

(11) EP 0 551 324 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 09.07.1997 Bulletin 1997/28
- (21) Application number: 91917117.3
- (22) Date of filing: 01.10.1991

- (51) Int Cl.⁶: **C12N 15/31**, C12N 15/62, C12Q 1/68, G01N 33/569, C07H 21/04
- (86) International application number: PCT/GB91/01691
- (87) International publication number: WO 92/06198 (16.04.1992 Gazette 1992/09)

(54) SALMONELLA POLYNUCLEOTIDE SEQUENCE

POLYNUKLEOTIDSEQUENZ VON SALMONELLA
SEQUENCE DE POLYNUCLEOTIDES DE LA SALMONELLE

- (84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- (30) Priority: 01.10.1990 GB 9021338 17.10.1990 GB 9022570
- (43) Date of publication of application: 21.07.1993 Bulletin 1993/29
- (73) Proprietor: THE MINISTER OF AGRICULTURE FISHERIES AND FOOD IN HER BRITANNIC MAJESTY'S GOVERNMENT OF THE UNITED KINGDOM OF GREAT BRITAIN London SW1A 2HH (GB)
- (72) Inventor: WOODWARD, Martin, John 23 Burnsall Close Hampshire GU14 8NN (GB)

- (74) Representative: Skelton, Stephen Richard et al D/IPR1,
 7C/2/A31,
 MOD(PE) Abbey Wood,
 P.O. Box 702
 Bristol BS12 7DU (GB)
- (56) References cited: EP-A- 0 383 509

WO-A-89/10967

- JOURNAL OF BACTERIOLOGY, vol. 170, no. 9, September 1988, AMERICAN SOCIETY FOR MICROBIOLOGY, pages 4216-4222; FEUTRIER, J. ET AL
- JOURNAL OF BACTERIOLOGY, vol. 168, no. 1, October 1986, AMERICAN SOCIETY FOR MICROBIOLOGY, pages 221-227; FEUTRIER, J. ET AL
- JOURNAL OF GENERAL MICROBIOLOGY, vol. 136, no. 2, February 1990, COLCHESTER, GB, pages 265-272; RADFORD, A.J. ET AL

P 0 551 324 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

30

35

45

50

55

This invention relates to polynucleotides (DNA) comprising a sequence characteristic of certain serotypes of the genus Salmonella; to the use of sequences comprising the characteristic sequence as polymerase chain reaction and hybridization targets for the identification of said serotypes and to test kits for this; to the use of polynucleotides comprising the sequence to transform suitable host cells to make them capable of expressing amino acid sequences characteristic of said strains; to said amino acid sequence when so expressed and kits containing them; and to plasmids and transformed cells containing said polynucleotide sequences.

Organisms of the genus Salmonella, in particular <u>S. enteritidis</u>, <u>S. dublin</u> and <u>S. typhimurium</u> are responsible for infective food poisoning caused by their ingestion in contaminated food. Infection with Salmonella may also occur as a result of contact with contaminated materials. Once ingested, Salmonella is able to establish itself in the gut and multiply rapidly, resulting in the appearance of clinical symptoms several days after the initial ingestion.

It is therefore highly desirable to provide test methods by means of which Salmonella organisms may be detected. In recent years immunological tests have been devised in which specific antibodies, particularly monoclonal antibodies ("MABs"), to specific antigens are raised and which by exploitation of the antigen - antibody specific binding reaction the presence of the antigen can be detected. Such tests are fast and very specific.

It is known that Salmonella organisms have fimbria like structures on their surface (Duguid; J. P and R. R. Gillies (1958) J. Pathol. Bacteriol. <u>75</u>:519-520) and published evidence (Clegg, S., and G. F. Gerlach (1987) J. Bacteriol. <u>169</u>: 934-938.) suggests that there are antigenically distinct types of fimbriae, ie. possessing specific epitopes on the fimbrial antigens. The possibility of immunogenic tests for Salmonella, at least <u>S. enteritidis</u>, based upon these fimbrial antigens has been suggested (MAFF, Central Veterinary Laboratory "Animal Health" (1989):33). Methods of raising MABs to antigens on the surface of micro-organisms such as Salmonella are generally known.

Unfortunately known methods for raising antibodies to Salmonella surface antigens only go part way toward providing an immunological test for Salmonella. The basis of all these tests is to isolate micro-organisms from a sample suspected of harbouring Salmonella, then to grow the micro-organisms in vitro in a suitable culture medium until a quantity of the Salmonella sufficient to detect by such a test is believed to be present in the medium, and then applying the test. A problem occurs in that although Salmonella micro-organisms produce their fimbrial antigen when they grow in vivo, eg. in the gut, in animal tissues or fluids, in food products and in some natural environments, many of the fimbrial antigens are not produced when they are grown in vitro.

The present inventors have determined the polynucleotide sequence responsible for producing a characteristic fimbrial antigen, Salmonella enteritidis fimbrial antigen (SEFA). SEFA has an amino acid sequence forming an epitope on the fimbria 'in vivo' which is specifically found encoded by the DNA of the species <u>S. enteritidis</u> and some strains of the species <u>S. dublin</u> and <u>S. Moscow</u> but which is apparently absent in virtually all other serotypes. The identification and recognition of the significance of this sequence provides the basis for a number of determinative tests for the presence of the particular organisms or DNA/RNA derived from them and provides a method for production of transformed organisms capable of expressing SEFA or epitopic parts of SEFA.

The amino acid sequence of SEFA is provided below; it is of course to be expected that allelic variation will occur in some organisms.

AMINO ACID SEQUENCE OF SALMONELLA ENTERITIDIS FIMBRIAL ANTIGEN

MLIVDFWRFCNMRKSASAVAVLALIACGSAHAAGF VGNKAEVQAAVTIAAQNTTSANWSQDPGFTGPAVA AGQKVGTLSITATGPHNSVSIAGKGASVSGGVATV PFVDGQGQPVFRGRIQGANINDQANTGIDGLAGWR VASSQETLNVPVTTFGKSTLPAGTFTATFYVQQYQ

The codes above are standard codes, read amino-terminal to carboxy -terminal, left to right, M to N, according to the following key:

Amino acid					
Alanine	Α	Lysine	Κ	Arginine	R

(continued)

Methionine	М	Asparagine	N	Phenylalanine	F
Aspartic acid	D	Proline	Р	Cysteine	С
Pyroglutamyl	*E	Glutamic acid	Ε	Serine	s
Glutamine	Q	Threonine	Т	Glycine	G
Tryptophan	W	Histidine	Н	Tyrosine	Υ
Isoleucine	1	Valine	٧	Leucine	L

Thus in its broadest form the present invention relates to DNA which encodes SEFA, or an epitopic part thereof or an allelic variant of either, each being characterised in that they bind to the SEFA specific antibodies described below. A first preferred aspect of the present invention provides recombinant DNA comprising the sequences I and II:

Sequence I

5'- G CTCAGAATAC AACATCAGCC AACTGGAGTC AGGAT -3'
3'- C GAGTCTTATG TIGTAGTCGG TTGACCTCAG TCCTA -5'
230 240 250

Sequence II

5'- CCTGG CTTTACAGGG CCTGCTGTTG CTGCTGGTCA GAAAGTTGGT
3'- GGACC GAAATGTCCC GGACGACAAC GACGACCAGT CTTTCAACCA
260 270 280 290 300

ACTCTCAGCA TTACTGCTAC TGGTCCACAT AACTCAGTAT CTATTGCAGG TAAAGGGGCT
TGAGAGTCGT AATGACGATG ACCAGGTGTA TTGAGTCATA GATAACGTCC ATTTCCCCGA
310 320 330 340 350 360

TCGGTATCTG GTGGTGTAGC CACTGTCCCG TTCGTTGATG GACAAGGACA GCCTGTTTT -3'
AGCCATAGAC CACCACATCG GTGACAGGGC AAGCAACTAC CTGTTCCTGT CGGACAAAA -5'
370 380 390 400 410

or sequences degenerately equivalent thereto.

The numerals below each ten base pair sequence in sequence I and II above are those designating the position of the individual base pairs in a larger characteristic sequence that comprises the entire SEFA antigen coding polynucleotide sequence.

By 'degenerately equivalent' is meant that substitute codons are present, these being codons which though they differ in their nucleotide base sequence from the codons identified in sequences I and II above, still code for the same amino acid, as will be understood by a man skilled in the art.

Preferred recombinant DNA of the invention, comprising sequences I and II, is that comprising sequences III and IV.

5

10

15

20

25

30

35

40

45

50

Sequence III

5						
	5	'- ATGCTAAT	AGTTGATTTT	TGGAGATTTT	GTAATATGCG	TAAATCAGCA
	3	- TACGATTA	TCAACTAAAA	ACCTCTAAAA	CATTATACGC	ATTTAGTCGT
10		80	90	100	110	120
	TCTGCAGTAG	CAGTTCTTGC	TTTAATTGCA	TGTGGCAGTG	CCCACGCAGC	TGGCTTTGTT
	AGACGTCATC	GTCAAGAACG	AAATTAACGT	ACACCGTCAC	GGGTGCGTCG	ACCGAAACAA
15	130	140	150	160	170	180
20	GGTAACAAAG	CAGAGGITCA	GGCAGCGGTT	ACTATTGCAG	CTCAGAATAC	AACATCAGCC
	CCATTGTTTC	GTCTCCAAGT	CCGTCGCCAA	TGATAACGTC	GAGTCTTATG	TTGTAGTCGG
	190	200	210	220	230	240
25						
	AACTGGAGTC	AGGAT -3'				
•	TTGACCTCAG	TCCTA -5'				
30	. 250					
35			Seque	nce IV		
						A GAAAGTTGGT T CTTTCAACCA
40		26				
	ACTCTCAGCA	TTACTGCTAC	TGGTCCACAT	AACTCAGTAT	CTATTGCAGG	TAAAGGGGCT
45	TGAGAGTCGT	AATGACGATG	ACCAGGTGTA	TTGAGTCATA	GATAACGTCC	ATTTCCCCGA
	310	320	330	340	350	360
50	TCGGTATCTG	GTGGTGTAGC	CACTGTCCCG	TTCGTTGATG	GACAAGGACA	GCCTGTTTTC
	AGCCATAGAC	CACCACATCG	GTGACAGGGC	AAGCAACTAC	CTGTTCCTGT	CGGACAAAAG
	370	380	390	400	410	420
55						

	CGTGGGCGTA	TTCAGGGAGC	CAATATTAAT	GACCAAGCAA	ATACTGGAAT	TGACGGGCTT	
_	GCACCCGCAT	AAGTCCCTCG	GTTATAATTA	CTGGTTCGTT	TATGACCTTA	ACTGCCCGAA	
5	430	440	450	460	470	480	
10	GCAGGTTGGC	GAGTTGCCAG	CTCTCAAGAA	ACGCTAAATG	TCCCTGTCAC	AACCTTTGGT	
	CGTCCAACCG	CTCAACGGTC	GAGAGTTCTT	TGCGATTTAC	AGGGACAGTG	TTGGAAACCA	
	490	500	510	520	530	540	
15							
	AAATCGACCC	TGCCAGCAGG	TACTTTCACT	GCGACCTTCT	ACGTTCAGCA	GTATCAAAAC	-3'
20	TTTAGCTGGG	ACGGTCGTCC	ATGAAAGTGA	CGCTGGAAGA	TGCAAGTCGT	CATAGITITG	-5'
20	550	560	570	580	590	600	

or sequences degenerately equivalent thereto.

The significance of sequences III and IV is that when they run contiguously together, such that the -3' end of the top strand of sequence III is immediately followed by the top strand 5'- end of sequence IV, they consist of the polynucleotide sequence that encodes the amino acid sequence for SEFA (said upper strand).

Thus polynucleotide sequence encoding SEFA is on the upper strand as shown above beginning ATGCTAATAG on III and ending GTATCAAAAC on IV. Further sequences which comprise suitable flanking sequences for control of amino acid sequence expression may be produced by genetic engineering techniques from this continuous sequence.

The invention further provides recombinant DNA comprising sequence III and IV, in the form of that comprising sequences V and VI:

Sequence V

5	-	GATCCTTGTT CTAGGAACAA 10					
10							
		ATTTAACACG	CTTACGATTA	TCAACTAAAA	ACCTCTAAAA	GTAATATGCG CATTATACGC	ATTTAGTCGT
15		70	80	90	100	110	120
		TCTGCAGTAG	CAGTTCTTGC	TTTAATTGCA	TGTGGCAGTG	CCCACGCAGC	TGGCTTTGTT
20		AGACGTCATC	GTCAAGAACG	AAATTAACGT	ACACCGTCAC	GGGTGCGTCG	ACCGAAACAA
		130	140	150	160	170	180
25							
25						CTCAGAATAC	
					220	GAGTCTTATG	TIGIAGICGG 240
		190	200	210	220	230	240
30							
		AACTGGAGTC	AGGAT -3'				
		TTGACCTCAG	TCCTA -5'				
35		250					

40

45

50

` *55*

Sequence VI

5				CCTGCTGTTG GGACGACAAC 280		
10		TTACTGCTAC AATGACGATG 320				
15						
		GTGGTGTAGC CACCACATCG				
20	370	380	390	400	410	420
25		TTCAGGGAGC AAGTCCCTCG				
	430	440	450	460	470	480
30		GAGTTGCCAG CTCAACGGTC 500				
35	A A A TOO A GOO	*********				
		TGCCAGCAGG ACGGTCGTCC				
40	550	560	570	580	590	600
45		TAAACTTTAT ATTTGAAATA 620				

7

50

	TTTAAAAATA	TCTATTTTGA	ATAGATAGGT	TITATGCTTC	CATGCAAAAA	CTTAAAGAGG
	TATTTTAAA	AGATAAAACT	TATCTATCCA	AAATACGAAG	GTACGTTTTT	GAATTTCTCC
5	670	680	690	700	710	720
Ω		ATTITGAATA				
10	CTAATACATA	TAAAACTTAT			TAGAAAAAGG	
	730	740	750	760	770	780
15	TA COTTOCA A	TTGCTTCTTC	CCAAACTAAA	AAAATTCACC	A ACCATTATT	******
		AACGAAGAAG				
	790	800	810	820	830	840
	130	000	010	020	0,0	040
20						
	TATTATGGCC	TAAGATTGGG	CACTACACGT	GTTATTTATA	AAGAAGATGC	TCCATCAACA
	ATAATACCGG	ATTCTAACCC	GTGATGTGCA	CAATAAATAT	TTCTTCTACG	AGGTAGTTGT
25	850	860	870	880	890	900
	AGTTTTTGGA	TTATGAATGA	AAAAGAATAT	CCAATCCTTG	TTCAAACTCA	AGTATATAAT
30	TCAAAAACCT	AATACTTACT	TTTTCTTATA	GGTTAGGAAC	AAGTTTGAGT	TCATATATTA
	910	920	930	940	950	960
35						
		CATCAAAAGC				
		GTAGTTTTCG				1020
	970	980	990	1000	1010	1020
40						
	AATGCGCGAA	CAAGATTGAA	GGTAATACCA	ACAAGTAATC	TATTCAATAA	AAATGAGGAG
		GTTCTAACTT				
45	1030	1040	1050	1060	1070	1080
	- 3		•		·	

	TCTTTGTATT	GGTTGTGTGT	AAAAGGAGTC	CCACCACTAA	ATGATAATGA	AAGCAATAAT
	AGAAACATAA	CCAACACACA	TTTTCCTCAG	GGTGGTGATT	TACTATTACT	TTCGTTATTA
5	1090	1100	1110	1120	1130	1140
	AAAAACAACA	TAACTACGAA	TCTTAATGTG	AATGTGGTTA	CGAATAGTTG	TATTAAATTA
10	TTTTTGTTGT	ATTGATGCTT	AGAATTACAC	TTACACCAAT	GCTTATCAAC	ATAATTTAAT
	1150	1160	1170	1180	1190	1200
15	ATTTATAGGC	CTAAAACTAT	AGACTTAACG	ACAATGGAGA	TTGCAGATAA	ATTAAAGTTA
	TAAATATCCG	GATTTTGATA	TCTGAATTGC	TGTTACCTCT	AACGTCTATT	TAATTTCAAT
	1210	1220	1230	1240	1250	1260
20						
20						
		GAAATAGTAT				
		CTTTATCATA				
25	1270	1280	1290	1300	1310	1320
	ለ ለጥለጥጥለ ለ ለጥ	CTGGTAATTT	A A C-T	ATTCCA A ATC	CATATATTCA	CCCATTTCCA
		GACCATTAAA				
30	1330		1350	1360	1370	1380
	1550	1340	1390	1500	13/0	1300
35	TATGCTCAAT	TACCTGGTGG	AGTACATAGT	AAAATAACTT	TGACTATTTT	GGATGATAAC
		ATGGACCACC				
	1390		1410	1420	1430	
	3 ,-					_,,,
40		٠				
	GGCGCTGAAA	TTATAAGAGA	ATTATTAGTT	TAAGGTGTAA	AACAAATGAA	GAAAACCACA
	CCGCGACTTT	AATATTCTCT	TAATAATCAA	ATTCCACATT	TTGTTTACTT	CTTTTGGTGT
	1450	1460	1470	1480	1490	1500
45						
50						
55						

	ATTACTCTAT	TTGTTTTAAC	CAGTGTATTT	CACTCTGGAA	ATGITTICTC	CAGACAATAT
	TAATGAGATA	AACAAAATTG	GTCACATAAA	GTGAGACCTT	TACAAAAGAG	GTCTGTTATA
5	1510	1520	1530	1540	1550	1560
	AATTTCGACT	ATGGAAGTTT	GAGTCTTCTC	CCGGTGAGAA	TGCATCTTTT	CTAAGTGTTG
10	TTAAAGCTGA	TACCTTCAAA	CTCAGAAGAG	GGCCACTCTT	ACGTAGAAAA	GATTCACAAC
	1570	1580	1590	1600	1610	1620
15						
		CTGGTAATTA				
		GACCATTAAT		•		
	1630	1640	1650	1660	1670	1680
20						
	ACTGAGTTGT	ATTTCAAATC	AATGACTCAG	ACTCTAGAAC	CATGCTTAAC	AAAAGAAAA
		TAAAGTTTAG				
25	1690	1700	1710	1720	1730	1740
23		·	-		. •	·
	CTTATAAAGT	ATGGGATCGC	CATCCAGGAG	CTTCATGGGT	TGCAGTTTGA	TAATGAACAA
30	GAATATTTCA	TACCCTAGCG	GTAGGTCCTC	GAAGTACCCA	ACGTCAAACT	ATTACTTGTT
	1750	1760	1770	1780	1790	1800
or	4.0					
35		TAGAGCATTC				
		ATCTCGTAAG				
	1810	1820	1830	1840	1850	1860
40						
	C:C-T-T-T-T-A A AT	CCACCATCTA	A A A TTT*TATY	TCCAATAGAC	ACTGAAATTG	CTGATGAAAA
						GACTACTTTT
	1870				1910	4.0
45	10,0	1000	10,0	1,00	1,10	1,20
50						

		GATGGCATTA				
_		CTACCGTAAT 1940	1950	1960	1970	1980
5	1930	1940	1950	1900	1970	1900
			0000 A 00 A 000000	COTTO A A ATTITO		
10		AGGAGAGAGA				
10		TCCTCTCTCT				
	1990	2000	2010	2020	2030	2040
15				0044440	maaaa	
		CTAAGGAATC				
		GATTCCTTAG				
	2050	2060	2070	2080	2090	2100
20						
	ATCAGCATAT	ATTTATGCTG	AGCGAGGTTT	AAAAAAATA	AAGAGCAAAC	TAACAGTTGG
	TAGTCGTATA	TAAATACGAC	TCGCTCCAAA	TTTTTTTAT	TTCTCGTTTG	ATTGTCAACC
25	2110	2120	2130	2140	2150	2160
	GGACAAATAT	ACCAGTGCAG	ATTTATTCGA	TAGCGTACCA	TTTAGAGGCT	TTTCTTTAAA
30	CCTGTTTATA	TGGTCACGTC	TAAATAAGCT	ATCGCATGGT	AAATCTCCGA	AAAGAAATTT
	2170	2180	2190	2200	2210	2220
35	TAAAGATGAA	AGTATGATAC	CTTTCTCACA	GAGAACATAT	TATCCAACAA	TACGTGGTAT
	ATTTCTACTT	TCATACTATG	GAAAGAGTGT	CTCTTGTATA	ATAGGTTGTT	ATGCACCATA
	2230	2240	2250	2260	2270	2280
40						
	TCCCAAAACC	AATGCGACTG	TACA ACTA AC	ACA A A ATCCA	TACTIVO ATLAT	A TENCHT A CHECK
						TAAGATGAAG
	2290					
45	2290	2500	2510	2)20	2550	2340
	AGTCCCCCCC	GGGCAATTCG	AGATAGGTAG	AGAACAAATT	GCTGATC -3	•
50		CCCGTTAAGC			_	
50	2350	_	_	_	-	
	2390	2,00	23/0	2,00		

or sequences degeneratively equivalent thereto.

55

For the purpose of expressing SEFA it will be realised by the skilled man that all the sequences above may comprise

For the purposes of expressing SEFA polypeptide or epitopic parts thereof the paired sequences I and II; III and IV; or V and VI run contiguously with each other without intervening base pairs between the two, in each case. These contiguous sequences are designated sequence VII, VIII and IX respectively.

degenerate codons instead of those listed above. It is not envisaged that such use will necessarily provide any advantage as preparation would be probably be more lengthy, but some transformed microorganisms may express SEFA more readily with certain codons in degenerate form suited to them.

The present invention provides novel recombinant plasmids, comprising the recombinant DNA comprising either paired sequences selected from I and II, III and IV, or V and VI or the contiguous sequences VII, VIII and IX, the degenerative or allelic equivalents of any of these; said plasmids being capable of expressing polypeptides characteristic of SEFA when used to transform suitable microorganisms.

These recombinant plasmids may then be used to transform a host, such as <u>E coli</u> or yeast, whereby use of cloning and selection methods provides clones which contain the particular sequence or suitably flanked antigen encoding portion having expression enabling sequences with it. Convenient tools for the selection of these clones are the aforementioned sequences themselves as modified in known ways to provide probes, ie. by radiolabelling. Such probe sequences are readily provided by use of the polymerase chain reaction on native SEFA sequence template or by DNA synthesizer techniques;

radiolabelling being achieved using standard techiques to tag on ³²P.

5

10

15

20

25

30

35

50

55

Preferred microorganisms for transformation are <u>E. coli</u> and yeasts; a particularly preferred microorganism being <u>E. coli</u> DH5alpha. Thus preferred plasmids will be those known to the man skilled in the art as suitable for transforming such organisms. Particularly preferred plasmids are accordingly pBR322, pACYC184 and, most preferred, pUC18.

The polynucleotides sequences above may be combined with any of these known plasmids for the purposes of providing the novel plasmids of the invention. Particularly preferred will be plasmids into which polynucleotides consisting of the contiguous sequences VIII or IX have been inserted as these will be readily provided from cultured <u>S</u>. enteritidis or S. dublin by use of restriction endonucleases and encode for the entire SEFA amino acid sequence.

In this respect use of antibodies targeted for SEFA allows facile recognition of transformed organisms which is particularly useful for selecting expressing organisms from a background population. Such antibodies are the subject of copending MAFF patent application (PCT GB 91/01690 of inventor C J Thoms). That application discusses the use of two different monoclonal antibodies targeted at SEFA, designated MAB69/25 and 71/3, these antibodies are excreted by the hybrodoma cell lines deposited at the ECACC under the accession numbers 90101101 and 90121902 respectively. MAB69/25 is employed in Tables I and II.

For example, the contiguous sequence IX may be blunt-ended using Klenow polymerase infilling and then ligated into a plasmid such as pUC18. Alternatively total genomic DNA is extracted from <u>S. enteritidis</u> or a strain of <u>S. dublin</u> possessing said fimbrial antigen, as determined using the monoclonal antibodies and techniques disclosed in the applicants copending application referred to above, and then partially digested with SaullIA restriction endonuclease to leave large fragments, some of which contain the sequences referred to above, which are then ligated into the plasmid vectors above.

The vectors of the present invention have further utility in so far as the contiguous sequences VII, VIII and IX all comprise a single BamH1 restriction endonuclease recognition site into which foreign peptide encoding DNA may be ligated by which it is sited within the reading frame of the transformant transcription system. This site is at the junction between the two sequences that make up the contiguous sequence; that occuring between base pair 255 and 256 in the numbering system applied at the bottom of each 10 base pairs above. Thus the present invention provides plasmids and transformants comprising the sequences I and II, or III and IV, or V and VI, or their degenerative or allelic equivalents, which have been augmented with further sequences. The invention provides a method for preparing these plasmid and transformants which inserts the further sequences into plasmids comprising the contiguous sequences VII, VIII or IX the at that BamH1 site.

Such augmented transformants are potentially capable of expression of mixed epitopic polypeptides comprising epitopes of SEFA together with further 'foreign' peptides. This opens the way to recombinantly produced peptides that are not easily expressed by other means. The fact that SEFA is a polypeptide that is passed to the exterior of the Salmonella cell of advantage in the recovery of such expressed polypeptides. The 'foreign' peptides may be further SEFA epitopes such as are bound by the antibodies above.

Thus the invention also provides micro-organisms, eg <u>E.coli</u> or yeasts, which have been transformed by insertion of one or more of the aforementioned sequences eg, by use of said plasmids.

Use of the micro-organisms provided by the invention gives a method of expression of the antigenic amino acid sequence SEFA referred to above and epitopic parts thereof which might be used as antigenic activity, that is having the ability to evoke production of antibodies in animal bodies.

In addition to use of the transformant expressed SEFA or epitopic parts thereof for immunological test purposes and kits for such, the recognition of the significance of the DNA sequences defined above provides methods of determination of DNA or RNA as being derived from the <u>S. enteritidis</u> or <u>S. dublin</u> serotypes in other, DNA/RNA based, tests.

TABLE I

2	64 Salmonella strains examined v	vith monoc	lonal antibody MAB69/25	
Serogra	oup Serotype (No. strains tested)	Serogroup Serotype (No. strains tested		
В	S. agama (1)	D1	S. gallinarium (44)	
	S. agona (1)		S. moscow (1)	
	S. bredeney (1)	i	S. ouakam (1)	
	S. derby (1)		S. panama (1)	
	S. heidelberg (1)		S. pullorum (3)	
	S. indiana (1)		S. wangata (1)	
	S. reading (1)	E1	S. anatum (1)	
	S. schwarzengrund (1)		S. give (1)	
	S. stanley (1)		S. lexington (1)	
	S. typhimurium (64)		S. london (1)	
C1	S. bareilly (1)		S. meleagridis (1)	
	S. infantis (1)		S. nchanga (1)	
	S. lille (1)		S. orion (1)	
	S. livingstone (1)	E2	S. binza (1)	
	S. mbandaka (1)		S. drypool (1)	
	S. montevideo (1)		S. manila (1)	
	S. ohio (1)		S. newington (1)	
	S. oranienburg (1)	E4	S. taksony (1)	
	S. oslo (1)		S. senftenberg (1)	
	S. thompson (1)	F	S. aberdeen (1)	
	S. virchow (1)	G1	S. havana (1)	
C2	S. goldcoast (1)		S. worthington (1)	
	S. hadar (1)	G2	S. ajiobo (1)	
	S. newport (1)		S. kedougou (1)	
C3	S. albany (1)	К	S. cerro (1)	
	S. kentucky (2)	N	S. urbana (1)	
	S. tado (1)	0	S. adelaide (1)	
D1	S. berta (1)		S. ealing (1)	
	S. canastel (1)	R	S. johannesburg (1)	
	S. dublin (36)	S	S. offa (1)	
	S. durban (1)	Т	S. gera (1)	
	S. enteritidis (58)			

TABLE II

45	Direct binding of MAB 69/25 to Salmonella strains							
	Se	rotype	Number Examined	Monoclonal antibody MAB 69/25 %bound				
	S. enteritidis	PT 1	2	56a(48-64)b				
50	S. enteritidis	PT 4	22	57 (14-100)				
	S. enteritidis	PT 4 plasmid minus	6	57 (49-65)				
	S. enteritidis	PT 5	1	83				
	S. enteritidis	PT 6	1	57				
	S. enteritidis	PT 7	1	89 (85-93)				
55	S. enteritidis	PT8	12	53 (15-90)				

Mean percentage of antibody binding relative to binding to high control (see text)
 Bange of binding

TABLE II (continued)

C	irect binding of MA	B 69/25 to Salmonella st	rains	
Serotype		Number Examined	Monoclonal antibody MAB 69/25 %bound	
S. enteritidis	PT 9	4	20 (17-23)	
S. enteritidis	PT 11	7	50 (23-77)	
S. enteritidis	PT 30	1	15	
S. enteritidis	untypable	1	41	
S. dublin		12	25 (9-40)	
S. dublin		24	0	
S. moscow		1	9	
Other Salmonella strainsc		169	0	

C Serotypes listed in Table I

5

10

15

20

25

35

45

The present invention further provides methods for determining the presence of microorganisms having DNA or RNA polynucleotide sequence encoding for SEFA or an epitopic part thereof, or such DNA or RNA itself, comprising:

- (a) providing a sample suspected of containing said encoding polynucleotide sequence;
- (b) determining the presence of said sequence by monitoring hybridization of SEFA targeted polynucleotide probes to it.

Such hybridization technique is carried out by methods that are now conventional in the art, using probes which are comprised of sequences complementary to a significant part of the target sequence and using temperature conditions suitable to achieved a desired stringency dependent on the degree of match of the probe to the target.

In a preferred form of this method the invention further provides methods for determining the presence of microorganisms having DNA or RNA polynucleotide sequence encoding for SEFA or an epitopic part thereof, or such DNA or RNA itself, comprising:

- (a) providing a sample suspected of containing said encoding polynucleotide sequence;
- (b) subjecting said sample to conditions under which polynucleotide sequences comprising sequences (I) and (II) are replicated by use of the polymerase chain reaction;
 - (c) determining the presence of any sequence produced.
- Conveniently the sequence produced is detected, in both cases, by use of a hybridization probe suitably specific thereto which comprises any of the aforementioned sequences, more specifically being one of the sequences in a suitably labelled form eg. being labelled in some way as will be known to a man skilled in the art. Most conveniently the label will incorporate radioactive phophorous (32P). A preferred such method comprises a PCR step (b) which employs primer pairs comprising one primer selected from groups (A) and the other from group(B):

Group A: Group B:

50	A1: 5' -GTGCGAATGCTAATAGTTGA- 3'	B1: 5' -AAAACAGGCTGTCCTTGTCCA- 3'
	A2: 5' -TGCGTAAATCAGCATCTGCA- 3'	B2: 5' -TTAGCGTTTCTTGAGAGCTGG- 3'
55	A3: 5' -TCTGCAGTAGCAGTTCTTGC- 3'	B3: 5' -TTTTGATACTGCTGAACGTAG- 3'

A4: 5' -GCTCAGAATACAACATCAGCCAA- 3'

PT = Phage type

The primers are numbered A1 to A4 and B1 to B3 for the purposes of identification later in this specification.

Any of the possible pairs selected in this way will identify the characteristic sequences VI, VII or IX sufficiently specifically enough for serotype determination purposes, ie: for determination of a Salmonella as being a SEFA encoding serotype and thus of one of the serotypes listed above.

As will be understood by a man skilled in the art, sequences which will specifically hybridize with sequence (VII) will include sequence (VII) itself, those having 75% or more, preferably 90% or more conformity to that sequence, and sequences comprising either strand of the two complementary sequences of any of these. Thus the step (c) of the method of this aspect of the invention may be carried out using a variety of hybridization probes that combine sufficiently specifically with the characteristic 'target' sequence comprising sequence (VII). For most purposes the primer sequences selected from those of groups (A) and (B) will be sufficiently specific to give reliable determination of the characteristic sequence, especially if a different 'primer' sequence is used for the probe of step (c) than those used for step (b).

The step (b) is carried out using the enzyme Taq polymerase as is now conventional in the art. The necessary conditions are those as described in EP-A-0201184 or EP-A-0200362 (both Cetus Corpn.) In such reaction, the appropriate primers derived from the sequences act as initiators for synthesis of large quantities of DNA identical to, or substantially identical to the initial double stranded DNA sequence. In this way substantially larger quantities of the DNA sequence may be made from the small quantities which may be available by isolation from the <u>S. enteritidis</u> or <u>S. dublin</u> thus increasing the amount of sequence available to be detected. The mere opresence of increased amount of DNA may be used in this case to signify presence of target sequence.

The genetically transformed organisms of the invention and their use to produce SEFA and SEFA containing sequences of the invention will now be described by way of example only, the examples including use of the detection methods of the invention for confirming presence of transformants:

Example A. Preparation and cloning of S. enteritidis fimbrial antigen genes.

5

15

20

25

30

40

45

50

Step A1. Total genomic DNA was extracted from S. enteritidis using the method described in J B Goldberg & D E Ohman, (1984) J Bact 158 1115-1121.

<u>Step A2</u>. The DNA from step A1 was partially digested with SaullIA restriction endonuclease to yield fragments with an size range between 5 and 10 kb. 2ug of genomic DNA in a Tris-HCl based buffer of pH 7.4 were mixed with 0.25 units of SaullIA and incubated at 37°C.

Step A3. Cloning vector pUC18 was digested to completion with BamH1, giving compatible cohesive ends with SauIIIA, and was dephosphorylated with calf intestinal phosphatase.

Step A4. S. enteritidis DNA was ligated with vector pUC18 using T4 DNA ligase supplied by Bethesda Research Laboratories Life Technologies Inc. (Cat. No. 5224SB/SC). The supplier's instructions for use in ligation were followed.

Step A5. The recombinant plasmid from step A4 was used to transform commercially available <u>E.coli</u> DH5alpha supplied by Bethesda Labs (see above) as Library Efficiency (RTM) DH5alpha Competant Cells (Cat. No. 8263SA) using the supplier's instructions to produce a genomic library.

Step A6. Transformants were transferred to the surface of HYBOND-C filters by replica plating for Western Blotting. Standard Western Blotting procedures using the <u>S. enteritidis</u> fimbrial antigen specific monoclonal antibody MAB 69/25, derived by standard techniques from hybridoma cells deposited under Accession No.90101101 on 11 October 1990 at the European Collection of Animal Cell Cultures, PHLS Centre for Applied Microbiology & Research, Porton Down, Salisbury, Wiltshire SP4 OJG, United Kingdom, as described and claimed in copending application No (PCT GB91 ;our ref P0958WOD), were done to identify transformant colonies expressing SEFA and thus containing the aforementioned sequences (VI), (VII) and (IX).

<u>Step A7.</u> The recombinant plasmids from fimbrial antigen positive transformants were extracted and used in confirmatory tests to prove the insert encoded said fimbrial antigen.

At the end of stage A7 it is possible to probe the DNA of said transformants to show the presence of the sequences and then to analyse said sequence by known sequencing methods.

EXAMPLE B: Presentation of epitopes within the SEFA antigen by insertion of foreign DNA, in frame, into the SEFA encoding sequence.

As stated above, the present invention further provides the prospect of exploitation of the polynucleotide sequences of the present invention having with sequences encoding for desired foreign protein or peptide products to produce transformants having ability to secrete the desired product.

SB10 epitope of <u>Mycobacterium bovis</u> secreted antigen, MPB70 (Radford et al. (1990), J. Gen. Micro, <u>136</u>: 265-272) consists of the amino acid sequence as encoded for below:

Q D P V encoded amino acid

5'- CAG GAC CCG GTC -3' coding/master strand
3'- GTC CTG GGC CAG -5' complimentary strand

Synthetic oligonucleotides encompassing this sequence and providing BamH1 cohesive ends were made using an ABI PCR MATE EP model 391 DNA synthesizer following the manufacturer's methods. The oligonucleotides were as follows:

SB10.1 5'- GAT CAG GAC CCG GTC GCT -3'
SB10.2 3'- TC CTG GGC CAG CGA CTA G -5'

20

25

35

40

55

The two oligonucleotides, SB10.1 and SB10.2 were allowed to anneal to form a double stranded (duplex) molecule by heating to 95°C and then cooling to room temperature over a two hour period. Annealing was assessed by comparing rate of migration of the duplex molecule compared with the rate of migration of the two single oligonucleotides when run through 4% agarose in TBE buffer. A marginal retardation in migration rate was observed and suggested near 100% annealing.

A lambda EMBL library was prepared from <u>S.enteritidis</u> strain 1246 providing a 9 to 23 kilobase library which was probed with the SEFA sequence IX (consisting of sequences V and VI run contiguously). Hybridizing fragments were subcloned into pUC18 and a suitable vector comprising the SEFA antigen gene flanked by adjacent contiguous chromosomal DNA was selected on its ability to transform <u>E.coli</u>DH5 alpha to a SEFA expressing form: all general methods as conventional to the art (see eg. Maniatis).

The pUC18 vector so obtained was digested with BamH1 and agarose gel electrophoresis demonstrated that the DNA was cut once at the unique BamH1 site within the SEFA gene. Cut vector and duplex oligonucleotide (SB10.1 plus SB10.2) were mixed together (1:10 ratio) and ligated using T4 ligase (Life Technologies) using the manufacturers methods. The saturating amounts of duplex oligonucleotide increased rate of insertion and the lack of terminal phosphate groups on the duplex prevented multiple insertion. The ligated construct was designed to be as follows:

Q D Q D P V A D P amino acid

5'- CAG GAT CAG GAC CCG GTC GCT GAT CCT -3' coding/master strand
3'- GTC CTA GTC CTG GGC CAG CGA CTA GGA -5' complimentary strand

The ligated construct lacks the GGATCC BamH1 recognition sequence.

Thus prior to transforming the construct into <u>E.coli</u> DH5 alpha, the ligated DNA was cut with BamH1 to linearise any of the vector which lacked insert. The ligated DNA was then used to transform E.coli using standard procedures.

Recombinants were picked directly into a Polymerase Chain Reaction mixture in which the primers were designed to flank the insertion site to yield a product of 219 base pairs without insert or 237 base pairs with insert. PCR products were sized by gel lectrophoresis and those shown to be 237 base pairs were tested by digestion with BamH1 to ensure loss of the site.

A sample (8ul) was taken from the aqueous phase of the PCR reaction mixture and made 20ul by addition of HPLC grade water, X10 reaction buffer and 5U BamH1. The PCR product was digested for 3 hours at 37°C. Control experiments using the 219 base pair product were performed to demonstrate digestion. The entire reaction mixtures were loaded onto agarose gels and the DNA products resolved; those PCR products shown to be 237 base pairs did not cut with BamH1 giving evidence for insertion of the oligonucleotide duplex.

5

10

15

20

25

30

35

40

45

50

55

To confirm the presence of the insert and determine its orientation, PCR experiments were set up in which the primers were SB10.2 and a series of primers from primer group A above (see page 18) toward the proximal (5') end of the SEFA antigen gene. Of twelve recombinants tested, five gave the desired sized product and were, therefore, shown to have the insert in the correct orientation.

To confirm that the insert was encoding the SB10 epitope and was 'in frame' with the SEFA antigen sequence, double stranded DNA sequencing using standard protocols was done on the five positive clones identified above. The primers used were:

5'- TCTGCAGTAGCAGTTCTTGC -3' for the coding strand and

5'- AAAACAGGCTGTCCTTGTCCA -3' for the complimentary strand.

The DNA sequence of both strands across the insert site was established and was as predicted above.

<u>E. coli</u> recombinants harbouring the constructs, designated SEFA::SB10. 1 to 5 were tested immunologically for the production of SEFA. Western blots of whole <u>E. coli</u> cells harbouring each of the SEFA::SB10 constructs demonstrated the presence of a protein of about 15kDal (and a less intense protein band of about 18.5 kDal) when using anti-SEFA polyclonal and anti-SEFA monoclonal antibody 69/25. In control experiments, <u>E. coli</u> recombinants harbouring the vector gave protein bands of 14.5kDal and 18kDal in Western blot experiments using the same antibodies.

This data clearly demonstrates that the SEFA polynucleotide sequence may be modified to express additional amino acids within its primary structure without the loss of reactivity to one SEFA epitope specific antibody.

The complete sequence of the largest of the sequences of the invention, sequence IX, is given below with the sequences I, II, III, IV, V, VI, VII and VIII being indicated together with the probe sequences from probe groups A and B. These sequences are marked by reference to their 5' and 3' ends: eg. I-5', I-3' etc. The numbering given below each 10 base pairs of the sequences to VI above being related to their positions in this sequence IX.

Sequence IX

5						
	V-5'					
	5'- GATCCTTGTT	TTTTTTTTA	AATTTTTAAA	ATGGCGTGAG	TATATTAGCA	TCCGCACAGA
	3'- CTAGGAACAA	AAAAAAGAAT	TTAAAAATTT	TACCGCACTC	ATATAATCGT	AGGCGTGTCT
10	10	20	30	40	50	60
	A1- 5'	Ţ	7		A2-5	
		GAĂTGCTAAT			_	
15	ATTTAA <u>C</u> ACG	CTTACGATTA	TCAACTAAAA	ACCTCTAAAA	CATTATACGC	ATTTAGTCGT
	70	80	90	100	110	120
	A3-5'					
20	↓ A2-3'		A3-3'			
20		CAGTTCTTGC				
	AGACGICATC	GTCAAGAACG	AAATTAACGT	ACACCGTCAC	GGGTGCGTCG	ACCGAAACAA
	130	140	150	160	170	180
25						
				A4-5		
		CAGAGGTTCA				
		GTCTCCAAGT				
30	190	200	210	220	230	240
	A4-3'					
		and V -3':I				
		AGGATCCTGG				
35		TCCTAGGACC				
	250	260	270	280	290	300
		BamH1 site.	•			
40	ልሮሞሮሞሮልሮሮል	TTACTGCTAC	TOTOCACAT	A A COTTC A COTTA OT	CT ATTROCA CO	m
		AATGACGATG				
	310	320	330	340		
	510	520	330	340	350	360
45						

50

55

						11-3,
5					GACAAGGACA	
	AGCCATAGAC	CACCACATCG	GTGACAGGGC	AAGCAACT <u>A</u> C	CTGTTCCTGT	CGGACAAAAG
	370	380	390	400	410	420
				B1-	·3'	B1-5'
10						
					ATACTGGAAT	
	GCACCCGCAT	AAGTCCCTCG	GTTATAATTA	CTGGTTCGTT	TATGACCTTA	
15	430	440	450	460	470	480
					magamama s a	***
					TCCCTGTCAC	
20					AGGGACAGTG	
	490	1500	510	ĵ520 22. 51	530	540
		B2-3		B2-5'		
05						IV-3'
25	A A ATTOCA CCC	TOCOLOGICA	TA (-TOTOT) (-T	CCCACCTTCT	ACGTTCAGCA	_
					TGCAAGTCGT	
	550	560	570	580	590	600
30	550	500	510	P3	_31	B3-5'
				2)	3	25 5
	TAATTTAATT	TAAACTITAT	AAATGCCCTC	AATATGAGCG	AGTTTGGATA	ATTTTATTAT
					TCAAACCTAT	
35	610				650	660
40	TTAAAAATT	TCTATTTTGA	ATAGATAGGT	TTTATGCTTC	CATGCAAAAA	CTTAAAGAGG
**	AAATTTTAT	AGATAAAACT	TATCTATCCA	AAATACGAAG	GTACGTTTTT	GAATTTCTCC
	670	680	690	700	710	720
45						
	GATTATGTAT	ATTTTGAATA	AATTTATACO	TAGAACTGTT	ATCTTTTTCC	TTTTTTTTCC
	CTAATACATA	TAAAACTTAT	TTAAATATGO	ATCTTGACAA	TAGAAAAAGG	AAAAAAAACG
	730	740	750	760	770	780
50						

	TACCTTCCAA	TTGCTTCTTC	GGAAAGTAAA	AAAATTGAGC	AACCATTATT	AACACAAAAA
5	ATGGAAGGTT	AACGAAGAAG	CCTTTCATTT	TTTTAACTCG	TTGGTAATAA	TTGTGTTTTT
3	790	800	810	820	830	840
10		TAAGATTGGG				
	ATAATACCGG	ATTCTAACCC	GTGATGTGCA	CAATAAATAT	TTCTTCTACG	AGGTAGTTGT
	850	860	870	880	890	900
15						
		TTATGAATGA				
		AATACTTACT	TTTTCTTATA	GGTTAGGAAC	AAGTTTGAGT	TCATATATTA
	910	920	930	940	950	960
20						
		CATCAAAAGC				
25		GTAGITITCG		CATTGTGGTG	GATAAAACTT	TCAACTITCA
20	970	980	990	1000	1010	1020
	AATTOOOGAA	04404FF				
30		CAAGATTGAA				
		GTTCTAACTT				TTTACTCCTC
	1030	1040	1050	1060	1070	1080
35	The Water Manager	Contration	***	0010010011	100101	
		GGTTGTGTGT				
	1090	CCAACACACA 1100	1111001CAG			
40	1090	1100	1110	1120	1130	1140
₩						
	AAAAACAACA	TAACTACGAA	TCTTAATGTG	AATGTGGTTA	CGAATACTTC	ፐል ፻፻ል ል ልተሞል
		ATTGATGCTT				
45	1150	1160	1170	1180	1190	1200
			,0	1100	1190	1200

	ATTTATAGGC	CTAAAACTAT	AGACTTAACG	ACAATGGAGA	TTGCAGATAA	ATTAAAGTTA
	TAAATATCCG	GATTTTGATA	TCTGAATTGC	TGTTACCTCT	AACGTCTATT	TAATTTCAAT
5	1210	1220	1220	1240	1250	1260
10				AATCCAACAT		
	CTCTCTTTTC	CTTTATCATA	TCAATATTTC	TTAGGTTGTA	GTAGTATACA	CTTATAACGT
	1270	1280	1290	1300	1310	1320
15						
				ATTCCAAATG		
	TTATAATTTA	GACCATTAAA		TAAGGTTTAC		_
	1330	1340	1350	1360	1370	1380
20						
				AAAATAACTT		
25				TTTTATTGAA		
	1390	1400	1410	1420	1430	1440
	00000000444	TETRATE A CACA	الملحك لاطمان لا تطمان	TAAGGTGTAA	AACAAATGAA	CAAAACCACA
30				ATTCCACATT		
	1450					1500
	1450	1400	14/0	1400	1490	1,00
12						
35	ATTACTCTAT	TTGTTTTAAC	CAGTGTATTT	CACTCTGGAA	ATGITTTCTC	CAGACAATAT
		=		GTGAGACCTT		
	1510					
40		-3		-		
	AATTTCGACT	ATGGAAGTTT	GAGTCTTCTC	CCGGTGAGAA	TGCATCTTTT	CTAAGTGTTG
	TTAAAGCTGA	TACCTTCAAA	CTCAGAAGAG	GCCACTCTT	ACGTAGAAAA	GATTCACAAC
45	1570	1580	1590	1600	1610	1620
50						
50						

	AAACGCTTCC	CTGGTAATTA	TGTTGTTGAT	GTATATTTGA	ATAATCAGTT	AAAAGAAACT
	TTTGCGAAGG	GACCATTAAT	ACAACAACTA	CATATAAACT	TATTAGTCAA	TTTTCTTTGA
5	1630	1640	1650	1660	1670	1680
					•	
	ACTGAGTTGT	ATTTCAAATC	AATGACTCAG	ACTCTAGAAC	CATGCTTAAC	AAAAGAAAAA
10	TGACTCAACA	TAAAGTTTAG	TTACTGAGTC	TGAGATCTTG	GTACGAATTG	TTTTCTTTTT
	1690	1700	1710	1720	1730	1740
15						
	CTTATAAAGT	ATGGGATCGC	CATCCAGGAG	CTTCATGGGT	TGCAGTTTGA	TAATGAACAA
	GAATATTICA	TACCCTAGCG	GTAGGTCCTC	GAAGTACCCA	ACGTCAAACT	ATTACTTGTT
	1750	1760	1770	1780	1790	1800
20						
		TAGAGCATTC				
	ACGCAAGAGA	ATCTCGTAAG	AGGAGAAATT	TATATGAATA	TTGCGCCGAT	TGGTTTCAAA
25	1810	1820	1830	1840	1850	1860
30		GCACCATCTA				
30		CGTGGTAGAT			TCACTTTAAC	GACTACTTTT
	1870	1880	1890	1900	1910	1920
35						
		GATGGCATTA				
		CTACCGTAAT			TCTCGAATTA	
	1930	1940	1950	1960	1970	1980
40						
	CTA A COMPAGE					
		AGGAGAGAGA				
		TCCTCTCTCT				
45	1990	2000	2010	2020	2030	2040

		TCCCTGGCGG	CTAAGGAATC	TATCATCTTG	GCAAAACTTG	TCAAGCGAAA	AAAAATTTGA
		AGGGACCGCC	GATTCCTTAG	ATAGTAGAAC	AGTTTTGAAC	AGTTCGCTTT	TTTTTAAACT
5		2050	2060	2070	2080	2090	2100
		-				-	
		ATCAGCATAT	ATTTATGCTG	AGCGAGGTTT	AAAAAAATA	AAGAGCAAAC	TAACAGTTGG
10		TAGTCGTATA	TAAATACGAC	TCGCTCCAAA	TTTTTTTAT	TTCTCGTTTG	ATTGTCAACC
		2110	2120	2130	2140	2150	2160
15				45550			
						TTTAGAGGCT	
						AAATCTCCGA	
		2170	2180	2190	2200	2210	2220
20							
		TAAAGATGAA	AGTATGATAC	CTTTCTCACA	GAGAACATAT	TATCCAACAA	TACGTGGTAT
		ATTTCTACTT	TCATACTATG	GAAAGAGTGT	CTCTTGTATA	ATAGGITGIT	ATGCACCATA
25		2230	2240	2250	2260	2270	2280
		TCCGAAAACC	AATCCGACTG	TAGAAGTAAG	ACAAATGGA	TACTTGATAT	ATTICUTA CUTTU
30						ATGAACTATA	
		2290	2300	2310	2320	2330	2340
		22,0	2,00			2550	2310
05						VI-3'	
35		AGTCCCCCC	GGGCAATTCG	AGATAGGTAG	AGAACAAATT	GCTGATC -3	•
		TCAGGGGGG	CCCGTTAAGC	TCTATCCATC	TCTTGTTTAA	CGACTAG -5	•
		2350	2360	2370	2380		
40							
45	Claims						
~							

(a) the Salmonella enteritidis fimbrial antigen (SEFA) amino acid sequence:

50

1. Recombinant DNA encoding

M L I V D F W R F C N M R K S A S A V A V L A L I A C G S A H A A G F V G N K A E V Q A A V T I A A Q N T T S A N W S Q D P G F T G P A V A A G Q K V G T L S I T A T G P H N S V S I A G K G A S V S G G V A T V P F V D G Q G Q P V F R G R I Q G A N I N D Q A N T G I D G L A G W R V A S S Q E T L N V P V T T F G K S T L P A G T F T A T F Y V Q Q Y Q N

- (b) an epitopic part thereof, or
- (c) an allelic variant of either

5

10

30

35

40

45

50

55

- the epitopic part and the allelic variant being characterised in that they are capable of specific binding with monoclonal antibody secreted by at least one of the hybridoma cell lines deposited at the ECACC under the accession numbers 90101101 and 90121902.
- Recombinant DNA as claimed claim 1 wherein suitable flanking sequences for control of amino acid sequence expression are provided.
 - 3. Recombinant DNA as claimed in claim 1 or claim 2 comprising the Sequences I and II:

25 Sequence I

5'- G CTCAGAATAC AACATCAGCC AACTGGAGTC AGGAT -3'
3'- C GAGTCTTATG TTGTAGTCGG TTGACCTCAG TCCTA -5'
230 240 250

Sequence II

5'- CCTGG CTTTACAGGG CCTGCTGTTG CTGCTGGTCA GAAAGTTGGT
3'- GGACC GAAATGTCCC GGACGACAAC GACGACCAGT CTTTCAACCA
260 270 280 290 300

ACTCTCAGCA TTACTGCTAC TGGTCCACAT AACTCAGTAT CTATTGCAGG TAAAGGGGCT
TGAGAGTCGT AATGACGATG ACCAGGTGTA TTGAGTCATA GATAACGTCC ATTTCCCCGA
310 320 330 340 350 360

TCGGTATCTG GTGGTGTAGC CACTGTCCCG TTCGTTGATG GACAAGGACA GCCTGTTTT -3'
AGCCATAGAC CACCACATCG GTGACAGGGC AAGCAACTAC CTGTTCCTGT CGGACAAAA -5'
370 380 390 400 410

or sequences degenerately equivalent thereto.

50

55

4. Recombinant DNA as claimed in any one of the preceding claims comprising Sequences III and IV.

5		Seque	ence III		
10	5'- ATGCTAAT 3'- TACGATTA 80				
15	TCTGCAGTAG CAGTTCTTGC AGACGTCATC GTCAAGAACG 130 140	AAATTAACGT			ACCGAAACAA
20					
	GGTAACAAAG CAGAGGTTCA CCATTGTTTC GTCTCCAAGT				
25	190 200	210	220	230	240
30	TTGACCTC	rc aggat -3' ag tccta -5'			
35	2:	,			
40					
45					

Sequence IV

_										
5			5'-	CCTGG	CTTTACAGGG	CCTGCTGTTG	CTGCTGGTCA	GAAAGTTGGT		
			3'-	GGACC	GAAATGTCCC	GGACGACAAC	GACGACCAGT	CTTTCAACCA		
				260	270	280	290	300		
10										
		ACTCTCAGCA	TTAC	TGCTAC	TGGTCCACAT	AACTCAGTAT	CTATTGCAGG	TAAAGGGGCT		
15		TGAGAGTCGT	AATG	ACGATG	ACCAGGTGTA	TTGAGTCATA	GATAACGTCC	ATTTCCCCGA		
		310		320	330	340	350	360		
20										
		TCGGTATCTG	GTGG	TGTAGC	CACTGTCCCG	TTCGTTGATG	GACAAGGACA	GCCTGTTTTC		
		AGCCATAGAC	CACC	ACATCG	GTGACAGGGC	AAGCAACTAC	CTGTTCCTGT	CGGACAAAAG		
		370		380	390	400	410	420		
25										
							ATACTGGAAT			
30		GCACCCGCAT	AAGT	CCCTCG	GTTATAATTA	CTGGTTCGTT	TATGACCTTA	ACTGCCCGAA		
		430		440	450	460	470	480		
35										
							TCCCTGTCAC			
		CGTCCAACCG	CTCA	ACGGTC	GAGAGTTCTT	TGCGATTTAC	AGGGACAGTG			
40		490		500	510	520	530	540		
								GTATCAAAAC	_	
45								CATAGTTTTG	-5	
		550		560	570	580	590	600		
50		or sequences dege	neratel	y equivale	ent thereto.					
	5.	Recombinant DNA as claimed in any one of the preceding claims comprising Sequences V and VI								

Sequence V

5	5'- GATCCTTGTT	TTTTTTCTTA	AATTTTTAAA	ATGGCGTGAG	TATATTAGCA	TCCGCACAGA
	3'- CTAGGAACAA	AAAAAAGAAT	TTAAAAATTT	TACCGCACTC	ATATAATCGT	AGGCGTGTCT
	10	20	30	40	50	60
10						
	TAAATTGTGC	GAATGCTAAT	AGTTGATTTT	TGGAGATTTT	GTAATATGCG	TAAATCAGCA
15	ATTTAACACG	CTTACGATTA	TCAACTAAAA	ACCTCTAAAA	CATTATACGC	ATTTAGTCGI
15	70	80	90	100	110	120
20	TCTGCAGTAG	CAGTTCTTGC	TTTAATTGCA	TGTGGCAGTG	CCCACGCAGC	TGGCTTTGTT
		GTCAAGAACG				
	130	_	150	160	170	180
25	-30	2.0	-70			
	GGTAACAAAG	CAGAGGTTCA	GGCAGCGGTT	ACTATTGCAG	CTCAGAATAC	AACATCAGCO
30	CCATTGTTTC	GTCTCCAAGT	CCGTCGCCAA	TGATAACGTC	GAGTCTTATG	TTGTAGTCGC
30	190	200	210	220	230	240
35	AACTGGAGTC	AGGAT -3'				
	TTGACCTCAG					
	250	_				
40						
			Sequence VI			
45		5'- CCTGG	CTTTACAGGG	CCTGCTGTTG	CTGCTGGTCA	GAAAGTTGG
		3'- GGACC	GAAATGTCCC	GGACGACAAC	GACGACCAGT	CTTTCAACC
		260	270	280	290	300
50						
EE						

	ACTCTCAGCA	TTACTGCTAC	TGGTCCACAT	AACTCAGTAT	CTATTGCAGG	TAAAGGGGCT
	TGAGAGTCGT	AATGACGATG	ACCAGGTGTA	TTGAGTCATA	GATAACGTCC	ATTTCCCCGA
5	310	320	330	340	350	360
10					GACAAGGACA	
	AGCCATAGAC		GTGACAGGGC	AAGCAACTAC	CTGTTCCTGT	CGGACAAAAG
	370	380	390	400	410	420
15						
	CGTGGGCGTA	TTCAGGGAGC	CAATATTAAT	GACCAAGCAA	ATACTGGAAT	TGACGGGCTT
	GCACCCGCAT	AAGTCCCTCG	GTTATAATŢA	CTGGTTCGTT	TATGACCTTA	ACTGCCCGAA
20	430	440	450	460	470	480
	CCACCATTCCC	CACTTCCCAC	OTOTO A A CA A	ACCOTA A ATO	TOCOTOTOAC	A A COMPUTOCAL
25	GCAGGTTGGC					
	CGTCCAACCG					
	490	500	510	520	530	540
30						
	AAATCGACCC	TGCCAGCAGG	TACTTTCACT	GCGACCTTCT	ACGTTCAGCA	GTATCAAAAC
	TTTAGCTGGG	ACGGTCGTCC	ATGAAAGTGA	CGCTGGAAGA	TGCAAGTCGT	CATAGITITG
35	550	560	570	580	590	600
40					AGTTTGGATA	
					TCAAACCTAT	TAAAATAATA
	610	620	630	640	650	660
45						
	TTTAAAAATA	TCTATTTTGA	ATAGATAGGT	TTTATGCTTC	. ATGCAAAAA	CTTAAAGAGG
	AAATTTTTAT	AGATAAAACT	TATCTATCCA	AAATACGAAG	GTACGTTTTT	GAATTTCTCC
50	670	680	690	700	710	720

	GATTATGTAT	ATTTTGAATA	AATTTATACG	TAGAACTGTT	ATCTTTTTCC	TTTTTTTTCC
	CTAATACATA	TAAAACTTAT	TTAAATATGC	ATCTTGACAA	TAGAAAAAGG	AAAAAAAACG
5	730	740	750	760	770	780
10	TACCTTCCAA	TTGCTTCTTC	GGAAAGTAAA	AAAATTGAGC	AACCATTATT	AACACAAAAA
	ATGGAAGGTT	AACGAAGAAG	CCTTTCATTT	TTTTAACTCG	TTGGTAATAA	TTGTGTTTTT
	790	800	810	820	830	840
15						
	TATTATGGCC	TAAGATTGGG	CACTACACGT	GTTATTTATA	AAGAAGATGC	TCCATCAACA
	ATAATACCGG	ATTCTAACCC	GTGATGTGCA	CAATAAATAT	TTCTTCTACG	AGGTAGTTGT
20	850	860	870	880	890	900
					•	
25	AGTTTTTGGA	TTATGAATGA	AAAAGAATAT	CCAATCCTTG	TTCAAACTCA	AGTATATAAT
	TCAAAAACCT	AATACTTACT	TITTCTTATA	GGTTAGGAAC	AAGTTTGAGT	
	910	920	930	940	950	960
30						
	•			GTAACACCAC		
	CTACTATTTA	GTAGTTTTCG	AGGTAAATAA	CATTGTGGTG		
35	970	980	990	1000	1010	1020
40				ACAAGTAATC		
				TGTTCATTAG		
	1030	1040	1050	1060	1070	1080
45						
					Amaama Amaa	*****
				CCACCACTAA		
50				GGTGGTGATT		
<i>50</i>	1090	1100	1110	1120	1130	1140

	AAAAACAACA	TAACTACGAA	TCTTAATGTG	AATGTGGTTA	CGAATAGTTG	TATTAAATTA
	TTTTTGTTGT	ATTGATGCTT	AGAATTACAC	TTACACCAAT	GCTTATCAAC	ATAATTTAAT
5	1150	1160	1170	1180	1190	1200
10	ATTTATAGGC	CTAAAACTAT	AGACTTAACG	ACAATGGAGA	TTGCAGATAA	ATTAAAGTTA
	TAAATATCCG	GATTTTGATA	TCTGAATTGC	TGITACCTCT	AACGTCTATT	TAATTTCAAT
	1210	1220	1220	1240	1250	1260
15						
	GAGAGAAAAG	GAAATAGTAT	AGTTATAAAG	AATCCAACAT	CATCATATGT	GAATATTGCA
	CTCTCTTTTC	CTTTATCATA	TCAATATTTC	TTAGGTTGTA	GTAGTATACA	CTTATAACGT
20	1270	1280	1290	1300	1310	1320
25	AATATTAAAT	CTGGTAATTT	AAGTTTTAAT	ATTCCAAATG	GATATATTGA	GCCATTTGGA
	TTATAATTTA	GACCATTAAA	TTCAAAATTA	TAAGGTTTAC	CTATATAACT	CGGTAAACCT
	1330	1340	1350	1360	1370	1380
30						
	TATGCTCAAT	TACCTGGTGG	AGTACATAGT	AAAATAACTT	TGACTATTTT	GGATGATAAC
	ATACGAGTTA	ATGGACCACC	TCATGTATCA	TTTTATTGAA	ACTGATAAAA	CCTACTATTG
35	1390	1400	1410	1020	1430	1440
40	GGCGCTGAAA	TTATAAGAGA	ATTATTAGIT	TAAGGTGTAA	AACAAATGAA	GAAAACCACA
	CCGCGACTTT	AATATTCTCT	TAATAATCAA	ATTCCACATT	TTGTTTACTT	CTTTTCGTGT
	1450	1460	1470	1480	1490	1500
45						
	ATTACTCTAT	TTGTTTTAAC	CAGTGTATTT	CACTCTGGAA	ATGTTTTCTC	CAGACAATAT
	TAATGAGATA	AACAAAATTG	GTCACATAAA	GTGAGACCTT	TACAAAAGAG	GTCTGTTATA
50	1510	1520	1530	1540	1550	1560

	AATTTCGACT	ATGGAAGTTT	GAGTCTTCTC	CCGGTGAGAA	TGCATCTTTT	CTAAGTGTTG
	TTAAAGCTGA	TACCTTCAAA	CTCAGAAGAG	GGCCACTCTT	ACGTAGAAAA	GATTCACAAC
5	1570	1580	1590	1600	1610	1620
10	AAACGCTTCC	CTGGTAATTA	TGTTGTTGAT	GTATATTTGA	ATAATCAGTT	AAAAGAAACT
	TTTGCGAAGG	GACCATTAAT	ACAACAACTA	CATATAAACT	TATTAGTCAA	TITTCTTTGA
	1630	1640	1650	1660	1670	1680
15						
	ACTGAGTTGT	ATTTCAAATC	AATGACTCAG	ACTCTAGAAC	CATGCTTAAC	AAAAGAAAAA
	TGACTCAACA	TAAAGTTTAG	TTACTGAGTC	TGAGATCTTG	GTACGAATTG	TTTTCTTTTT
20	1690	1700	1710	1720	1730	1740
25		ATGGGATCGC				
	GAATATTTCA	TACCCTAGCG				
	1750	1760	1770	1780	1790	1800
30						
		TAGAGCATTC				
35		ATCTCGTAAG				
	1810	1820	1830	1840	1850	1860
2						
40				•		CTGATGAAAA
		CGTGGTAGAT				
	1870	1880	1890	1900	1910	1920
45						
	mamonooaa	0400004mm*	A CO CATATATATICA		A CI A COCHUM A AM	THE STATE OF THE S
		GATGGCATTA				
50		CTACCGTAAT				
	1930	1940	1950	1960	1970	1980

		CTAAGGTTGG	AGGAGAGAGA	TTCATACTTT	GGTCAAATTC	AACCTTGGTT	TTAATTTTGG		
		GATTCCAACC	TCCTCTCTCT	AAGTATGAAA	CCAGTTTAAG	TTGGAACCAA	AATTAAAACC		
5		1990	2000	2010	2020	2030	2040		
						_			
10		TCCCTGGCGG	CTAAGGAATC	TATCATCTTG	GCAAAACTTG	TCAAGCGAAA	AAAAATTTGA		
		AGGGACCGCC	GATTCCTTAG	ATAGTAGAAC	AGTTTTGAAC	AGTTCGCTTT	TTTTTAAACT		
		2050	2060	2070	2080	2090	2100		
15									
		ATCAGCATAT	ATTTATGCTG	AGCGAGGTTT	AAAAAAATA	AAGAGCAAAC	TAACAGTTGG		
		TAGTCGTATA	TAAATACGAC	TCGCTCCAAA	TTTTTTTAT	TTCTCGTTTG	ATTGTCAACC		
20		2110	2120	2130	2140	2150	2160		
25		GGACAAATAT	ACCAGTGCAG	ATTTATTCGA	TAGCGTACCA	TTTAGAGGCT	TTTCTTTAAA		
		CCTGTTTATA	TGGTCACGTC	TAAATAAGCT	ATCGCATGGT	AAATCTCCGA	AAAGAAATTT		
		2170	2180	2190	2200	2210	2220		
30									
		TAAAGATGAA	AGTATGATAC	CTTTCTCACA	GAGAACATAT	TATCCAACAA	TACGTGGTAT		
35		ATTTCTACTT	TCATACTATG	GAAAGAGTGT	CTCTTGTATA	ATAGGTTGTT			
~		2230	2240	2250	2260	2270	2280		
				<u></u>					
40					ACAAAATGGA				
					TGTTTTACCT				
		2290	2300	2310	2320	2330	2340		
45									
		1 cmaaaaaaa	CCCCA ATTERCO	ACAMA COTTA C	A C A A C A A ATTYD	COTTOLATEC 25	•		
					AGAACAAATT TCTTGTTTAA	-			
50						CONCING -5			
		2350	2300	23/0	2300				
		or sequences degenerately equivalent thereto.							
55	6.	5. Recombinant DNA as claimed in Claim 3 wherein the Sequences I and II are comprised within a contiguous se-							
	٠.	quence.			4				

7. Recombinant DNA as claimed in Claim 4 wherein the Sequences III and IV are comprised within a contiguous

sequence.

5

10

35

40

- 8. Recombinant DNA as claimed in Claim 5 wherein the Sequences V and VI are comprised within a contiguous sequence.
- Recombinant DNA as claimed in any one of claims 1 to 5 further comprising a sequence encoding for a further amino acid sequence.
- 10. Recombinant DNA as claimed in claim 9 wherein the further amino acid sequence comprises additional epitopic parts of SEFA, said epitopic parts being characterised in that they are capable of specific binding with monoclonal antibody secreted by at least one of the hybridoma cell lines deposited at the ECACC under the accession numbers 90101101 and 90121902.
- Recombinant DNA as claimed in claim 9 wherein the further amino acid sequence comprises a non-SEFA epitopic
 sequence.
 - 12. Recombinant DNA as claimed in claim 11 wherein the non-SEFA epitopic sequence comprises SB10 epitope of Mycobacterium bovis.
- 20 13. A novel plasmid comprising recombinant DNA as claimed in any one of claims 1 to 12.
 - 14. A plasmid as claimed in claim 13 comprising a plasmid suitable for transformation of <u>E.coli</u> or yeast into which the recombinant DNA has been inserted.
- 25 15. A plasmid as claimed in claim 13 or claim 14 comprising pBR322, pACYC184 or pUC18 into which the recombinant DNA has been inserted.
 - 16. A method for producing a plasmid as claimed in claim 15 comprising the following steps:
- 30 (a) extracting total genomic DNA from an <u>S. enteritidis</u> or a SEFA expressing <u>S. dublin</u> to produce the recombinant DNA;
 - (b) partially digesting the genomic DNA with SauIIIA restriction endonuclease to provide fragments in the size range 5 to 10 kilobases;
 - (c) ligating the fragments into a plasmid pBR322, pACYC184 or pUC18 and,
 - (d) selecting desired plasmids for their ability to express SEFA, or an epitopic part thereof being characterised in that it is capable of specific binding with monoclonal antibody secreted by at least one of the hybridoma cell lines deposited at the ECACC under the accession numbers 90101101 and 90121902.
 - 17. A method as claimed in claim 16 wherein the desired plasmid comprises a fragment comprising Sequences I and II of claim 3 contiguously and the method further comprises the step of ligating a further DNA sequence into the BamH1 site between the Sequences and in frame with the Sequences.
 - 18. A plasmid obtainable by the method of claim 16 or claim 17.
- 45 19. A transformant microorganism comprising a plasmid as claimed in any one of claims 13, 14, 15 or 18.
 - 20. A microorganism as claimed in claim 19 wherein the plasmid host is a yeast or an E.coli.
 - 21. A microorganism as claimed in claim 20 wherein the plasmid host is an E. coli DH5alpha.
 - 22. A polypeptide encoded by the recombinant DNA of claim 11.
- 23. A test kit for the identification of microorganisms as being of either serotype S. enteritidis or S. dublin comprising a polypeptide or oligopeptide comprising SEFA or an epitopic part thereof as expressed by a transformant as claimed in any one of claims 20 to 22 the epitopic part being characterised in that it is capable of specific binding with monoclonal antibody secreted by at least one of the hybridoma cell lines deposited at the ECACC under the accession numbers 90101101 and 90121902.

- 24. A method for the determination of the presence of microorganisms having DNA or RNA polynucleotide sequence encoding SEFA or such DNA or RNA itself, comprising: (a) providing a sample suspected of containing said encoding polynucleotide sequence; (b) determining the presence of said sequence by monitoring hybridization of SEFA sequence targeted polynucleotide hybridization probes with said DNA or RNA. 25. A method as claimed in claim 24 wherein the polynucleotide probes are targeted to any one of contiguous Sequence pairs I and II; III and IV; or V and VI of claims 3 to 5. 26. A method as claimed in claim 25 wherein the polynucleotide probe consists of contiguous Sequence pairs I and II; III and IV; or V and VI of claims 3 to 5. 27. A test kit for performing the method of any one of claims 24 to 26 comprising polynucleotide hybridization probes targeted at the contiguous Sequence pairs III and IV or V and VI of claim 4 and claim 5. 28. A test kit as claimed in claim 27 wherein the probes comprise sequences comprising contiguous Sequence pairs III and IV or V and VI of claim 4 and claim 5. 29. A method for determining the presence of microorganisms having DNA or RNA polynucleotide sequence encoding for SEFA or such DNA or RNA itself, comprising: (a) providing a sample suspected of containing said encoding polynucleotide sequence; (b) subjecting said sample to conditions under which polynucleotide sequences comprising Sequences I and If of claim 2 are replicated by use of the polymerase chain reaction; (c) determining the presence of any sequence produced. 30. A method as claimed in claim 29 wherein the step (c) is carried out using a polynucleotide hybridization probe. 31. A method as claimed in claim 29 or claim 30 wherein step (b) employs primer pairs comprising one primer selected from group (A) and the other from group (B): Group B: Group A: 5' -GTGCGAATGCTAATAGTTGA- 3' 5' -AAAACAGGCTGTCCTTGTCCA- 3' 5' -TGCGTAAATCAGCATCTGCA- 3' 5' -TTAGCGTTTCTTGAGAGCTGG- 3'
- 5' -GCTCAGAATACAACATCAGCCAA- 3'

5' -TCTGCAGTAGCAGTTCTTGC- 3'

5

10

20

25

30

35

40

45

50

55

32. A method as claimed in any one of claims 29 to 31 wherein the step (c) is carried out using an oligonucleotide probe selected from sequences of either of groups A or B (as described herein) which is different to that of either of the primers used for step (b).

5' -TTTTGATACTGCTGAACGTAG- 3'

33. A test kit for performing the method of any one of claims 29 to 32 comprising primers and probes having sequences selected from the groups (A) and (B).

Patentansprüche

1. Rekombinierte DNA, welche

(a) die Aminosauresequenz des Salmonellaenteritidis-Fimbrien-Antigens (SEFA):

MLIVDFWRFCNMRKSASAVAVLALIACGSAHAAGF V G N K A E V Q A A V T I A A Q N T T S A N W S Q D P G F T G P A V A A G Q K V G T L S I T A T G P H N S V S I A G K G A S V S G G V A T V P F V D G Q G Q P V F R G R I Q G A N I N D Q A N T G I D G L A G W R V A S S Q E T L N V P V T T F G K S T L P A G T F T A T F Y V Q Q Y Q

N

- (b) einen epitopen Teil davon, oder
- (c) eine allele Variante von beiden kodiert,

20

5

10

15

wobei der epitope Teil und die allele Variante dadurch gekennzeichnet sind, daß sie spezifisch mit einem monoklonalen Antikörper binden, der von mindestens einer der bei der ECACC mit den Zugangs-Nrn. 90101101 und 90121902 hinterlegten Hybridomzellinien sezerniert wird.

- 25 2. Rekombinierte DNA nach Anspruch 1, wobei geeignete flankierende Sequenzen zur Kontrolle der Aminosäureexpression vorgesehen sind.
 - 3. Rekombinierte DNA nach Anspruch 1 oder 2, welche die Sequenzen I und II umfaßt:

30

Sequenz I

5'- G CTCAGAATAC AACATCAGCC AACTGGAGTC AGGAT 35 3'- C GAGTCTTATG TIGTAGTCGG TTGACCTCAG TCCTA -5' 240 230 250

40

45

50

Sequenz II

5		5'- CCTGG	CTTTACAGGG	CCTGCTGTTG	CTGCTGGTCA	GAAAGTTGGT
		3'- GGACC	GAAATGTCCC	GGACGACAAC	GACGACCAGT	CTTTCAACCA
		260	270	280	290	300
10						
			•			
	ACTCTCAGCA	TTACTGCTAC	TGGTCCACAT	AACTCAGTAT	CTATTGCAGG	TAAAGGGGCT
15	TGAGAGTCGT	AATGACGATG	ACCAGGTGTA	TTGAGTCATA	GATAACGTCC	ATTTCCCCGA
	310	320	330	340	350	360
						•
20	TCGGTATCTG	GTGGTGTAGC	CACTGTCCCG	TTCGTTGATG	GACAAGGACA	GCCTGTTTT -3'
	AGCCATAGAC	CACCACATCG	GTGACAGGGC	AAGCAACTAC	CTCTTCCTGT	CGGACAAAA -5'
	370	380	390	400	410	
25						
	oder Sequenzen, die o	dazu äquivalent d	degeneriert sind.			
	4. Rekombinierte DNA n	ach ainam dar w	orbaraabaadaa A	nenriicha walch	n dia Saguanzar	III und IV umfaßt:
30	4. Herombinette DIA III	acii ciiiciii dei ve	mergenenden A	ilspiucile, weich	s die Sequenzer	i iii diid i v diiilabi.
35						
40						
45						
50						
55						

Sequenz III

5	· 5'	- ATGCT	AAT AGTI	GATTTT	TGGAGATTTT	GTAATATGCG	TAAATCAGCA
	3	- TACGA	TA TCAA	CTAAAA	ACCTCTAAAA	CATTATACGC	ATTTAGTCGT
			80	90	100	110	120
44							
10	TCTGCAGTAG	CAGTTCT	rgc ttta	ATTGCA	TGTGGCAGTG	CCCACGCAGC	TGGCTTTGTT
	AGACGTCATC	GTCAAGA:	ACG AAAT	TAACGT	ACACCGTCAC	GGGTGCGTCG	ACCGAAACAA
	130	:	140	150	160	170	180
15							
	GGTAACAAAG	CAGAGGT	rca ggca	AGCGGTT	ACTATTGCAG	CTCAGAATAC	AACATCAGCC
20	CCATTGTTTC	GTCTCCA	AGT CCG1	CCCCAA	TGATAACGTC	GAGTCTTATG	TTGTAGTCGG
	190	2	200	210	220	230	240
25							
	AACTGGAGTC						
	TTGACCTCAG	TCCTA -	5'				
30	250						
			9	Sequenz	z IV		
35							
		-					GAAAGTTGGT
		3'- G	GACC GAA	ATGTCCC	GGACGACAAC	GACGACCAGT	CTTTCAACCA
40			260	270	280	290	300
**							
							TAAAGGGGCT
45	TGAGAGTCG	r AATGAC	GATG ACC	CAGGTGTA	TTGAGTCATA	GATAACGTCC	ATTTCCCCGA
45		r AATGAC			TTGAGTCATA	GATAACGTCC	ATTTCCCCGA
45	TGAGAGTCG	r AATGAC	GATG ACC	CAGGTGTA	TTGAGTCATA	GATAACGTCC	ATTTCCCCGA
45	TGAGAGTCG	r aatgace	GATG ACC	CAGOTGTA 330	TTGAGTCATA 340	GATAACGTCC 350	ATTTCCCCGA 360
	TGAGAGTCG: 310 TCGGTATCT	r AATGACO	GATG ACC 320 TAGC CAC	AGGTGTA 330 TGTCCCG	TTGAGTCATA 340 TTCGTTGATG	GATAACGTCC 350 GACAAGGACA	ATTTCCCCGA 360 GCCTGTTTTC
	TGAGAGTCG: 310 TCGGTATCTC	T AATGACO	GATG ACC 320 TAGC CAC	AGGTGTA 330 TGTCCCG ACAGGGC	TTGAGTCATA 340 TTCGTTGATG AAGCAACTAC	GATAACGTCC 350 GACAAGGACA CTGTTCCTGT	ATTTCCCCGA 360 GCCTGTTTTC CGGACAAAAG
	TGAGAGTCG: 310 TCGGTATCT	T AATGACO	GATG ACC 320 TAGC CAC	AGGTGTA 330 TGTCCCG	TTGAGTCATA 340 TTCGTTGATG AAGCAACTAC	GATAACGTCC 350 GACAAGGACA CTGTTCCTGT	ATTTCCCCGA 360 GCCTGTTTTC CGGACAAAAG

	ACTCTCAGCA	TTACTGCTAC	TGGTCCACAT	AACTCAGTAT	CTATTGCAGG	TAAAGGGGCT
	TGAGAGTCGT	AATGACGATG	ACCAGGTGTA	TTGAGTCATA	GATAACGTCC	ATTTCCCCGA
5	310	320	330	340	350	360
10	TCGGTATCTG	CTCGTGTAGC	CACTGTCCCG	TTCGTTGATG	GACAAGGACA	GCCTGTTTTC
	AGCCATAGAC	CACCACATCG	GTGACAGGGC	AAGCAACTAC	CTGTTCCTGT	CGGACAAAAG
	370	380	390	400	410	420
15						
	CGTGGGCGTA	TTCAGGGAGC	CAATATTAAT	GACCAAGCAA	ATACTGGAAT	TGACGGGCTT
	GCACCCGCAT	AAGTCCCTCG	GTTATAATTA	CTGGTTCGTT	TATGACCTTA	ACTGCCCGAA
20	430	440	450	460	470	480
25	COACCETTCCC	GAGTTGCCAG	CTCTC A 1 C A A	ACCCTALATC	TCCCTGTCAC	AACCTTTGGT
		CTCAACGGTC				
		500	510	520	530	540
30	490	500	510)20	<i>)</i> ,,,	J. 0
	AAATCGACCC	TGCCAGCAGG	TACTITCACT	GCGACCTTCT	ACGTTCAGCA	GTATCAAAAC
35	TTTAGCTGGG	ACGGTCGTCC	ATGAAAGTGA	CGCTGGAAGA	TGCAAGTCGT	CATAGTTTTG
33	550	560	570	580	590	600
40	TAATTTAATT	TAAACTTTAT	AAATGCCCTC	AATATGAGCG	AGTTTGGATA	TATTATTTA
	ATTAAATTAA	ATTTGAAATA	TTTACGGGAG	TTATACTCGC	TCAAACCTAT	TAAAATAATA
	610	620	630	640	650	660
45						
	TTTAAAAATA	TCTATTTTGA	ATAGATAGGT	TTTATGCTTC	CATGCAAAAA	CTTAAAGAGG
50	AAATTTTTAT	AGATAAAACT	TATCTATCCA	AAATACGAAG	GTACGTTTTT	GAATTTCTCC
	670	680	690	700	710	720

	GATTATGTAT	ATTTTGAATA	AATTTATACG	TAGAACTGTT	ATCTTTTTCC	TTTTTTTTGC
	CTAATACATA	TAAAACTTAT	TTAAATATGC	ATCTTGACAA	TAGAAAAAGG	AAAAAAAACG
5	730	740	750	760	770	780
10	TACCTTCCAA	TIGCTICTIC	GGAAAGTAAA	AAAATTGAGC	AACCATTATT	AACACAAAAA
	ATGGAAGGTT	AACGAAGAAG	CCTTTCATTT	TTTTAACTCG	TTGGTAATAA	TICTCTTTTT
	790	800	810	820	830	840
15						
	TATTATGGCC	TAAGATTGGG	CACTACACGT	GTTATTTATA	AAGAAGATGC	TCCATCAACA
22	ATAATACCGG	ATTCTAACCC	GTGATGTGCA	CAATAAATAT	TTCTTCTACG	AGGTAGTTGT
20	850	860	870	880	890	900
25		~~**C\\TC\	AAAAGAATAT	CCAATCCTTG	TTCAAACTCA	ACTATATAAT
			TTTTCTTATA			
				940	950	960
30	910	920	930	940	,	,00
			TCCATTTATT			
35	CTACTATTTA	GTAGTTTTCG	AGGTAAATAA	CATTGTGGTG		
	970	980	990	1000	1010	1020
40	AATGCGCGAA	CAAGATTGAA	GGTAATACCA	ACAAGTAATC	TATTCAATAA	AAATGAGGAG
			CCATTATGGT			
	1030			1060	1070	1080
45	10,50		•			
			AAAAGGAGTC			
50	AGAAACATAA	CCAACACACA	TTTTCCTCAG	GGTGGTGATT	TACTATTACT	
	1090	1100	1110	1120	1130	1140

	AAAAACAACA	TAACTACGAA	TCTTAATGTG	AATGTGGTTA	CGAATAGTTG	TATTAAATTA
	TTTTTGTTGT	ATTGATGCTT	AGAATTACAC	TTACACCAAT	GCTTATCAAC	ATAATTTAAT
5	1150	1160	1170	1180	1190	1200
	•					
10	ATTTATAGGC	СТААААСТАТ	AGACTTAACG	ACAATGGAGA	TTGCAGATAA	ATTAAAGTTA
	TAAATATCCG	GATTTTGATA	TCTGAATTGC	TGTTACCTCT	AACGTCTATT	TAATTTCAAT
	1210	1220	1220	1240	1250	1260
15						
	GAGAGAAAAG	GAAATAGTAT	AGTTATAAAG	AATCCAACAT	CATCATATGT	GAATATTGCA
	стстсттттс	CTTTATCATA	TCAATATTTC	TTAGGTTGTA	GTAGTATACA	CTTATAACGT
20	1270	1280	1290	1300	1310	1320
25	AATATTAAAT					
	TTATAATTTA	GACCATTAAA	TTCAAAATTA	TAAGGTTTAC	CTATATAACT	CGGTAAACCT
	1330	1340	1350	1360	1370	1380
30						
	TATGCTCAAT					
35	ATACGAGTTA	ATGGACCACC	TCATGTATCA	TTTTATTGAA	ACTGATAAAA	
	1390	1400	1410	1020	1430	1440
40						
	GGCGCTGAAA					
	CCGCGACTTT	AATATTCTCT				
45	1450	1460	1470	1480	1490	1500
45						
						0404044747
	ATTACTCTAT					
50						GTCTGTTATA
	1510	1520	1530	1540	1550	1560

	AATTTCGACT	ATGGAAGTTT	GAGTCTTCTC	CCGGTGAGAA	TGCATCTTTT	CTAAGTGTTG
	TTAAAGCTGA	TACCTTCAAA	CTCAGAAGAG	GGCCACTCTT	ACGTAGAAAA	GATTCACAAC
5	1570	1580	1590	1600	1610	1620
10	AAACGCTTCC	CTGGTAATTA	TGTTGTTGAT	CTATATTTGA	ATAATCAGTT	AAAAGAAACT
	TTTGCGAAGG	GACCATTAAT	ACAACAACTA	CATATAAACT	TATTAGTCAA	
	1630	1640	1650	1660	1670	1680
15						
		ATTTCAAATC				
20	TGACTCAACA	TAAAGTTTAG	TTACTGAGTC			
20	1690	1700	1710	1720	1730	1740
25					maa	m1.4m01.401.4
25		ATGGGATCGC				
		TACCCTAGCG				_
	1750	1760	1770	1780	1790	1800
30						
		TAGAGCATTC	т сст сттт	<u>ለ</u> ተለተነርሞተልጥ	AACCCCCCTA	ACCAAAGTTT
		ATCTCGTAAG				
35	1810	1820		1840		1860
	1010	1020	1030	1040	10,0	2000
40	CCTTTTAAAT	GCACCATCTA	11177771 C	TCCAATAGAC	AGTGAAATTG	CTGATGAAAA
		CGTGGTAGAT				
	1870	1880	1890	1900	1910	1920
45	10/0	1000	10,0	2,00	-,	
	TATCTGGGAT	GATGGCATTA	ACGCTTTTCT	TTTAAATTAC	AGAGCTTAAT	TATTTGCATT
50		CTACCGTAAT				
	1930	1940	1950	1960	1970	1980
	-,,,0	-, ,-		-		

	CTAAGGTTGG	AGGAGAGAGA	TTCATACTTT	CGTCAAATTC	AACCTTGGTT	TTAATTTTCG
				CCACTTTAAG		
5	1990	2000	2010	2020	2030	2040
	•					
10	TCCCTGCCGG	CTAAGGAATC	TATCATCTTG	GCAAAACTTG	TCAAGCGAAA	AAAAATTTGA
	AGGGACCGCC	GATTCCTTAG	ATAGTAGAAC	ACTTTTCAAC	ACTTCGCTTT	TTTTTAAACT
	2050	2060	2070	2080	2090	2100
15						
15						
	ATCAGCATAT	ATTTATGCTG	AGCGAGGTTT	ETEEFF	AAGAGCAAAC	TAACACTTCC
	TACTCGTATA	TAAATACGAC	TCGCTCCAAA	TTTTTTTTAT	TTCTCGTTTG	ATTGTCAACC
20	2110	2120	2130	2140	2150	2160
25	• • • • • • • • • • • • • • • • • • • •			TAGCGTACCA		
				ATCCCATCCT	2210	2220
	2170	2130	2190	2200	2210	2220
30						
	m> 4.404TC4.4	ACTATCATAC	CTTTCTCACA	GAGAACATAT	TATCCAACAA	TACGTGGTAT
				CTCTTGTATA		
35		2240	2250	2260	2270	2280
	2230	0733	22,0			
40		AATCCCACTC	TACAAGTAAG	ACAAAATGGA	TACTTGATAT	ATTCTACTTC
	TOCOAAAACC	TTACCCTCAC	ATCTTCATTC	TGTTTTACCT	ATGAACTATA	TAAGATGAAG
					2330	2340
45	2290	2,00	2,324			
	٨٠٠٠٠٠	GGGCAATTCG	AGATAGGTAG	AGAACAAATT	GCTGATC -3	•
50	TCACCCCCCC	CCCGTTAAGC	TCTATCCATC	TCTTGTTTAA	CGACTAG -5	•
	2350	4 -		_		
	2,70					

oder Sequenzen, die dazu äquivalent degeneriert sind.

^{6.} Rekombinierte DNA nach Anspruch 3, wobei die Sequenzen I und II in einer aneinandergrenzenden Sequenz enthalten sind.

- Rekombinierte DNA nach Anspruch 4, wobei die Sequenzen III und IV in einer aneinandergrenzenden Sequenz enthalten sind.
- Rekombinierte DNA nach Anspruch 5, wobei die Sequenzen V und VI in einer aneinandergrenzenden Sequenz enthalten sind.
 - Rekombinierte DNA nach einem der Ansprüche 1 bis 5, die ferner eine Sequenz aufweist, die eine weitere Aminosäuresequenz kodiert.
- 10. Rekombinierte DNA nach Anspruch 9, wobei die weitere Aminosäuresequenz zusätzlich epitope Teile von SEFA aufweist, wobei die epitopen Teile dadurch gekennzeichnet sind, daß sie spezifisch mit monoklonalen Antikörper binden können, die von mindestens einer der bei der ECACC mit den Zugangs-Nrn. 90101101 und 90121902 hinterlegten Hybridomzellninien sezemiert werden.
- 11. Rekombinierte DNA nach Anspruch 9, wobei die weitere Aminosäuresequenz eine nicht-SEFA-epitope Sequenz umfaßt.
 - Rekombinierte DNA nach Anspruch 11, wobei die nicht-SEFA-epitope Sequenz das SB10-Epitop von Mycobacterium bovis umfaßt.
 - 13. Neues Plasmid, welches rekombinierte DNA nach einem der Ansprüche 1 bis 12 enthält.
 - 14. Plasmid nach Anspruch 13, das ein Plasmid umfaßt, das zur Transformation von E. coli oder Hefe geeignet ist, in das rekombinierte DNA eingeführt worden ist.
 - Plasmid nach Anspruch 13 oder 14, das pBR322, pACYC184 oder pUC18, in die rekombinierte DNA eingeführt worden ist, umfaßt.
 - 16. Verfahren zur Herstellung eines Plasmids nach Anspruch 15, bei dem:

5

20

25

30

35

45

- (a) die gesamte genomische DNA aus S. enteritidis oder SEFA exprimierendem S. dublin zur Herstellung der rekombinierten DNA extrahiert wird,
- (b) die genomischen DNA mit der Restriktionsendonuklease SaullIA zur Bereitstellung von Fragmenten im Größenbereich von 5 bis 10 Kilobasen zum Teil verdaut wird,
- (c) die Fragmente in das Plasmid pBR322, pACYC184 oder pUC18 ligiert werden und
- (d) gewünschte Plasmide selektiert werden, die zur Expression von SEFA oder epitope Teile davon, die dadurch gekennzeichnet sind, daß sie spezifisch mit einem monoklonalen Antikörper binden können, der von mindestens einer der bei der ECACC mit den Zugangs-Nrn. 90101101 und 90121902 hinterlegten Hybridomzellen sezemiert wird, befähigt sind.
 - 17. Verfahren nach Anspruch 16, wobei das erwünschte Plasmid ein Fragment umfaßt, das die Sequenzen I und II von Anspruch 3 aneinandergrenzend enthält, wobei das Verfahren femer aufweist, daß eine weitere DNA-Sequenz in die BamH1-Stelle zwischen den Sequenzen und im Leseraster mit den Sequenzen ligiert wird.
 - 18. Plasmid, das nach dem Verfahren von Anspruch 16 oder Anspruch 17 erhältlich ist.
- 59 19. Transformierter Mikroorganismus, welcher ein Plasmid nach einem der Ansprüche 13, 14, 15 oder 18 enthält.
 - 20. Mikroorganismus nach Anspruch 19, wobei der Plasmidwirt eine Hefe oder ein E. coli ist.
 - 21. Mikroorganism nach Anspruch 20, wobei der Plasmidwirt ein E. coli DH5alpha ist.
 - 22. Polypeptid, das durch die rekombinierte DNA von Anspruch 11 kodiert wird.
 - 23. Testkit zur Identifizierung von Mikroorganismen als entweder Serotyp S. enteritidis oder S. dublin, das ein Poly-

peptid oder Oligopeptid aufweist, welche SEFA oder einen epitopen Teil davon umfaßt, das von einer Transformante nach einem der Ansprüche 20 bis 22 exprimiert wird, wobei der epitope Teil dadurch gekennzeichnet ist, daß er spezifisch mit einem monoklonalen Antikörper binden kann, der von mindestens einer der bei der ECACC mit den Zugangs-Nrn. 90101101 und 90121902 hinterlegten Hybridomzellinien sezerniert wird.

- 24. Verfahren zur Bestimmung des Vorliegens von Mikroorganismen mit SEFA kodierender DNA- oder RNA-Polynukleotidsequenz, oder derartiger DNA oder RNA als solcher, bei dem:
 - (a) eine Probe bereitgestellt wird, die vermutlich die kodierende Polynukleotidsequenz enthält,
 - (b) das Vorliegen der Sequenz bestimmt wird, indem die Hybridisierung von Polynukleotid-Hybridisierungssonden, die auf die SEFA-Sequenz als Ziel gerichtet sind, mit der DNA oder RNA verfolgt wird.
- 25. Verfahren nach Anspruch 24, wobei die Polynukleotidsonden auf eine der aneinandergrenzenden Sequenzpaare I und II, III und IV oder V und VI der Ansprüche 3 bis 5 als Ziel gerichtet sind.
 - 26. Verfahren nach Anspruch 25, wobei die Polynukleotidsonde aus den aneinandergrenzenden Sequenzpaaren I und II, III und IV oder V und VI der Ansprüche 3 bis 5 besteht.
- 27. Testkit zur Durchführung des Verfahrens nach einem der Ansprüche 24 bis 26, das Polynukleotid-Hybridisierungssonden aufweist, die auf die aneinandergrenzenden Sequenzpaare III und IV oder V und VI von Anspruch 4 und Anspruch 5 als Ziel gerichtet sind.
 - 28. Testkit nach Anspruch 27, wobei die Sonden Sequenzen aufweisen, welche die aneinandergrenzenden Sequenzpaare III und IV oder V und VI von Anspruch 4 und Anspruch 5 umfassen.
 - 29. Verfahren zur Bestimmung des Vorliegens von Mikroorganismen mit SEFA kodierender DNA- oder RNA-Polynukleotidsequenz, oder derartiger DNA oder RNA als solcher, bei dem:
 - (a) eine Probe bereitgestellt wird, die vermutlich die kodierende Polynukleotidsequenz enthält,
 - (b) die Probe Bedingungen ausgesetzt wird, unter denen Polynukleotidsequenzen, welche die Sequenzen I und II von Anspruch 2 aufweisen, durch Anwendung der Polymerase-Kettenreaktion repliziert werden,
 - (c) das Vorliegen einer hergestellten Sequenz bestimmt wird.

5

10

25

30

35

5

- Verfahren nach Anspruch 29, wobei der Schritt (c) unter Verwendung einer Polynukleotid-Hybridisierungssonde durchgeführt wird.
- 40 31. Verfahren nach Anspruch 29 oder 30, wobei in Schritt (b) Primerpaare verwendet werden, wobei ein Primer aus Gruppe (A) und der andere aus Gruppe (B) ausgewählt ist:

45	Gruppe A:	Gruppe B:
	5' -GTGCGAATGCTAATAGTTGA- 3'	5' -AAAACAGGCTGTCCTTGTCCA- 3'
50	5' -TGCGTAAATCAGCATCTGCA- 3'	5' -TTAGCGTTTCTTGAGAGCTGG- 3'
55	5' -TCTGCAGTAGCAGTTCTTGC- 3'	5' -TTTTGATACTGCTGAACGTAG- 3'
33	5' -GCTCAGAATACAACATCAGCCAA- 3'	

- 32. Verfahren nach einem der Ansprüche 29 bis 31, wobei Schritt (c) unter Verwendung einer Oligonukleotidsonde durchgeführt wird, die unter den Sequenzen jeder der Gruppen A oder B (wie oben beschrieben) ausgewählt ist, welche sich von der unterscheidet, die jeder der in Schritt (b) verwendeten Primer hat.
- 33. Testkit zur Durchführung des Verfahrens nach einem der Ansprüche 29 bis 32, der Primer und Sonden aufweist, die Sequenzen haben, welche aus den Gruppen (A) und (B) ausgewählt sind.

Revendications

1. ADN recombinant, codant

(a) la séquence d'aminoacides de l'antigène de fimbriae de Salmonella enteritidis (SEFA)

M L I V D F W R F C N M R K S A S A V A V L A L I A C G S A H A A G F
V G N K A E V Q A A V T I A A Q N T T S A N W S Q D P G F T G P A V A
A G Q K V G T L S I T A T G P H N S V S I A G K G A S V S G G V A T V
P F V D G Q G Q P V F R G R I Q G A N I N D Q A N T G I D G L A G W R
V A S S Q E T L N V P V T T F G K S T L P A G T F T A T F Y V Q Q Y Q

25

10

15

20

- (b) une partie épitopique de cette séquence ou
- (c) un variant allélique de l'une ou l'autre,
- Ja partie épitopique et le variant allélique étant caractérisés en ce qu'ils sont capables de liaison spécifique avec un anticorps monoclonal sécrété par au moins l'une des lignées cellulaires d'hybridome déposées auprès de l'ECACC sous les numéros de dépôt 90101101 et 90121902.
- ADN recombinant suivant la revendication 1, dans lequel des séquences adjacentes convenables sont prévues pour contrôler l'expression de la séquence d'aminoacides.
 - 3. ADN recombinant suivant la revendication 1 ou la revendication 2, comprenant les séquences I et II :

Séquence I

5'- G CTCAGAATAC AACATCAGCC AACTGGAGTC AGGAT -3'
3'- C GAGTCTTATG TTGTAGTCGG TTGACCTCAG TCCTA -5'
230 240 250

50

40

45

		5'-	CCTGG	CTTTAC	CAGGG	CCTG	CTGTTG	CTG	TGGTCA	GAA	agitgg	•
5		3'-	GGACC	GAAATO	MCCC.	GGAC	GACAAC	GAC	CACCACT	CTT	TCAACC	4
		,	260		270		280		290		300)
10												
70	ÁCTCTCAGCA	TTA	CTGCTAC	TGGTCC	CACAT	AACT	CAGTAT	CTAT	TTGCAGG	TAA	AGGGGCT	
	TGAGAGTCGT	AAT	GACGATG	ACCAGO	TGTA	TTGA	GTCATA	GAT.	ACCTCC	ATT	CCCCG	
	310		320		330		340		350		360)
15												
	TCGGTATCTG											-
20	AGCCATAGAC			GTGACA		AAGC.	AACTAC	CTGT	TCCTGT	CGG	KCAAAA	- 5'
	370		380		390		. ₇ 00		410			
25	ou des séquenc	es qui	en sont l'é	quivalent	par dég	généres	scence.					
	4. ADN recombina	nt suiv	ant l'une q	uelconque	e des re	vendica	ations pré	céden	tes, compr	enant	les séque	ences III et IV
30					Séq	uenc	e III					
		5	'- ATGC	TAAT AC	ITTGAT	TII.	TGGAGA1	شتنتا	GTAATAI	roca	712270	14 <i>CC</i> 1
35			'- TACG									
				30		90		100		110		120
												120
40	TCTGCA	STAG	CAGTTCT	TTGC T	TAATT	GCA 1	TGTGGCA	ara	CCCACGO	AGC	TOGCTT	TOTT
			GTCAAGA									
		130		T ₇ O								
45												
			CAGAGGT									
50	CCATTG		GTCTCCA	AGT CC	CTCGC	CAA T	CGATAAC	GTC	GAGTCTI	ATG	TTGTAG	TCGG
		190		200		210		220		230		240

AACTGGAGTC AGGAT -3'
TTGACCTCAG TCCTA -5'
250

Séquence IV

5

15

20

25

30

35

40

45

55

5'- CCTGG CTTTACAGGG CCTGCTGTTG CTGCTGGTCA GAAAGTTGGT
3'- GGACC GAAATGTCCC GGACGACAAC GACGACCAGT CTTTCAACCA
250 270 280 290 300

ACTOTOAGCA TTACTGOTAC TGGTCCACAT AACTCAGTAT CTATTGCAGG TAAAGGGGGCT
TGAGAGTCGT AATGACGATG ACCAGGTGTA TTGAGTCATA GATAACGTCC ATTTCCCCGA
310 320 330 340 350 360

TCGGTATCTG GTGGTGTAGC CACTGTCGGG TTCGTTGATG GACAAGGACA GCCTGTTTTC
AGCCATAGAC CACCACATCG GTGACAGGGC AAGGAACTAC CTGTTCCTGT CGGACAAAAG
370 380 390 400 410 420

CGTGGGCGTA TTCAGGGAGC CAATATTAAT GACCAAGCAA ATACTGGAAT TGACGGGCTT GCACCGGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGGCCGAA 430 440 450 460 470 480

GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT
CGTCCAACCG CTCAACGGTC GAGAGTTCTT TGCGATTTAC AGGGACAGTG TTGGAAACCA
490 500 510 520 530 540

AAATCGACCC TGCCAGCAGG TACTITCACT GCGACCTTCT ACGTTCAGCA GTATCAAAAC -3'
TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG -5'
550 560 570 580 590 600

ou des séquences qui en sont l'équivalent par dégénérescence.

5. ADN recombinant suivant l'une quelconque des revendications précédentes, comprenant les séquences V et VI :

Séquence V

5							
	5'-	GATCCTTGTT	TTTTTTCTTA	AATTTTTAAA	ATGGCGTGAG	TATATTAGCA	TCCGCACAG
	3'-	CTAGGAACAA	AAAAAGAAT	TTAAAAATTT	TACCGCACTC	ATATAATCGT	AGGCGTGTCT
10		10	20	30	40	50	60
15		TAAATTGTGC	GAATGCTAAT	AGTTGATTTT	TGGAGATTTT	GTAATATGCG	TAAATCAGCA
15		ATTTAACACG	CTTACGATTA	TCAACTAAAA	ACCTCTAAAA	CATTATACGC	ATTTAGTCGT
		70	30	90	100	110	120
20							
		TCTGCAGTAG	CAGTTCTTGC	TTTAATTGCA	TGTGGCAGTG	CCCACGCAGC	TGGCTTTGTT
		AGACGTCATC	GTCAAGAACG	AAATTAACGT	ACACCGTCAC	SGGTGCGTCG	ACCGAAACAA
25		130	:40	150	160	170	180
30		GGTAACAAAG	CAGAGGTTCA	GGCAGCGGTT	ACTATTGCAG	CTCAGAATAC	AACATCAGCO
		CCATTGTTTC	GTCTCCAAGT	CCGTCGCCAA	TGATAACGTC	GAGTCTTATG	TTGTAGTCGC
		130	200	210	220	230	5#C
35							
		AACTGGAGTC	AGGAT -3'				
		TTGACCTCAG	TCCTA -5'				
40		250					
45				Séquence	VI		
		5'- C	CTGG CTTTACA	AGGG CCTGCT	TTG CTGCTG	ITCA GAAAGTI	CGT
50		3'- G	GACC GAAATG	CCC GGACGAC	CAAC GACGAC	CAGT CTTTCAA	CCA
			260	270	280	290	300

5 TGAGAGTCGT AATGACGATG ACCAGGTGTA TTGAGTCATA GATAACGTCC ATTTCCCCGA 10 TCGGTATCTG GTGGTGTAGC CACTGTCCCG TTCGTTGATG GACAAGGACA GCCTGTTTCTC 10 TCGGTATCTG GTGGTGAGC CACTGTCCCG TTCGTTGATG GACAAGGAC GCCTGTTTCCTGT CGGGACAAAAG 370 380 390 400 410 420 15 GCTGGGGGTA TTCAGGGACC CAATATTAAT GACCAAGCAA ATACTGGAAT TGACGGGGTT 20 GCACCCGCAT AAGTCGCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCCGAA 20 GCAGGTTGCC GAGTTGCCAG GTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT 25 GCAGGTTGCC GAGAGTTCTT TGCGATTTAC AGGGACATGT TTGGAAACCA 490 500 510 520 530 540 30 AAATCGACCC TGCCAGCAGG TACTTTCACT GCGTCGAAGT TGCAAGTCGT CATAGTTTTG 35 TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA		ACTCTCAGCA	TTACTGCTAC	.TGGTCCACAT	AACTCAGTAT	CTATIGCAGG.	TAAAGGGGCT
10 TCGGTATCTG GTGGTGTAGC CACTGTCCCG TTCGTTGATG GACAAGGACA GCCTGTTTCC AGCCATAGAC CACCACATCG GTGACAGGGC AAGCAACTAC CTGTTCCTGT CGGACAAAAC 370 380 390 400 410 420 15 CGTGGGCGTA TTCAGGGAGC CAATATTAAT GACCAAGCAA ATACTGGAAT TGACGGGCTT GCACCCGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCGAA 430 440 450 460 470 480 25 GCAGGTTGGC GAGTTCCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTCTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 490 500 510 520 530 540 AAATCGACCC TGCCAGCAGG TACTTCACT GCGACCTTCT ACGTTCAGCA GTATCAAAAC 35 TTTAGCTGGG ACGGTCGTC ATGAAAGTGA CGCTGGAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA ATTTGAAATA TTTACAGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 650 660		TGAGAGTCGT	AATGACGATG	ACCAGGTGTA	TTGAGTCATA	GATAACGTCC	ATTTCCCCGAL
AGCCATAGAC CACCACATCG GTGACAGGGC AAGCAACTAC CTGTTCCTGT CGGACAAAAGE 370 380 390 400 410 420 15 CGTGGGCGTA TTCAGGGAGC CAATATTAAT GACCAAGCAA ATACTGGAAT TGACGGGCTT GCACCCGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCCGAA 430 440 450 460 470 480 25 GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTCTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 490 500 510 520 530 540 36 AAATCGACCC TGCCAGCAGG TACTTCACT GCGACCTCT ACGTTCAGCA GTATCAAAAC TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 40 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGGG AGTTTGGATA ATTTTATTAT ATTAAATTAA	5	310	320	330	340.	350	360·
AGCCATAGAC CACCACATCG GTGACAGGGC AAGCAACTAC CTGTTCCTGT CGGACAAAAGE 370 380 390 400 410 420 15 CGTGGGCGTA TTCAGGGAGC CAATATTAAT GACCAAGCAA ATACTGGAAT TGACGGGCTT GCACCCGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCCGAA 430 440 450 460 470 480 25 GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTCTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 490 500 510 520 530 540 36 AAATCGACCC TGCCAGCAGG TACTTCACT GCGACCTCT ACGTTCAGCA GTATCAAAAC TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 40 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGGG AGTTTGGATA ATTTTATTAT ATTAAATTAA							
AGCCATAGAC CACCACATCG GTGACAGGGC AAGCAACTAC CTGTTCCTGT CGGACAAAAGE 370 380 390 400 410 420 15 CGTGGGCGTA TTCAGGGAGC CAATATTAAT GACCAAGCAA ATACTGGAAT TGACGGGCTT GCACCCGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCCGAA 430 440 450 460 470 480 25 GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTCTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 490 500 510 520 530 540 36 AAATCGACCC TGCCAGCAGG TACTTCACT GCGACCTCT ACGTTCAGCA GTATCAAAAC TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 40 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGGG AGTTTGGATA ATTTTATTAT ATTAAATTAA					•		
370 380 390 400 410 420	10	TCGGTATCTG	GTGGTGTAGC	CACTGTCCCG	TICGITGATG	GACAAGGACA:	GCCTGTTTTC
CGTGGGCGTA TTCAGGGAGC CAATATTAAT GACCAAGCAA ATACTGGAAT TGACGGGCTT GCACCCGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCCGAA 430 440 450 460 470 480		AGCCATAGAC	CACCACATCG	GTGACAGGGC	AAGCAACTAC	CTGTTCCTGT	CGGACAAAAG
CGTGGGCGTA TTCAGGGAGC CAATATTAAT GACCAAGCAA ATACTGGAAT TGACGGGCTT GCACCCGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCCGAA 430 440 450 460 470 480 25 GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TGCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTCTT TGCGATTTAC AGGGGACAGTG TTGGAAACCA 490 500 510 520 530 540 30 AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGCA GTATCAAAAC TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 40 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA ATTTGAAATA TTTACGGGGG TATACTCCC TCAAACCTAT TAAAATAATA 610 620 630 640 650 650 660		370	380	390	400	410	420
### GCACCCGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCCGAA ################################	15						
### GCACCCGCAT AAGTCCCTCG GTTATAATTA CTGGTTCGTT TATGACCTTA ACTGCCCGAA ################################							
25 GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTCTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 490 500 510 520 530 540 30 AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGCA GTATCAAAACC TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 40 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA		CGTGGGGGTA	TECAGGGAGC	CAATATTAAT	GACCAAGCAA	ATACTGGAAT	TGACGGGCTT
GCAGGITGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACGTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTCTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 190 500 510 520 530 540 AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGCA GTATCAAAACC TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA	20	GCACCCGCAT	AAGTCCCTCG	GTTATAATTA	CTGGTTCGTT	TATGACCTTA	ACTGCCCGAA
GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTGTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 190 500 510 520 530 540 AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGGA GTATCAAAAC TTTAGCTGGG ACGGTCGTCC ATGAAACTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660		430	440	450	460	470	480
GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTGTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 190 500 510 520 530 540 AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGGA GTATCAAAAC TTTAGCTGGG ACGGTCGTCC ATGAAACTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660							
GCAGGTTGGC GAGTTGCCAG CTCTCAAGAA ACGCTAAATG TCCCTGTCAC AACCTTTGGT CGTCCAACCG CTCAACGGTC GAGAGTTGTT TGCGATTTAC AGGGACAGTG TTGGAAACCA 190 500 510 520 530 540 AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGGA GTATCAAAAC TTTAGCTGGG ACGGTCGTCC ATGAAACTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660	05						
490 500 510 520 530 540 30 AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGCA GTATCAAAAC TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 40 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTATTAT ATTAAATTAA	25						
AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGCA GTATCAAAACC TTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660		CGTCCAACCG	CTCAACGGTC	GAGAGTTCTT	TGCGATTTAC	AGGGACAGTG	
AAATCGACCC TGCCAGCAGG TACTTTCACT GCGACCTTCT ACGTTCAGCA GTATCAAAACC TTTTAGCTGGG ACGGTCGTCC ATGAAAGTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 650		, 1 90	500	510	520	530	540
### TTTAGCTGGG ACGGTCGTCC ATGAAACTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTATTAT ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660	30						
### TTTAGCTGGG ACGGTCGTCC ATGAAACTGA CGCTGGAAGA TGCAAGTCGT CATAGTTTTG 550 560 570 580 590 600 TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTATTAT ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660							
TAATTTAATT TAAACTITAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTITATTAT ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660							
TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660	35	TTTAGCTGGG	_				
TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660		550	560	570	580	590	900c
TAATTTAATT TAAACTTTAT AAATGCCCTC AATATGAGCG AGTTTGGATA ATTTTATTAT ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660							
ATTAAATTAA ATTTGAAATA TTTACGGGAG TTATACTCGC TCAAACCTAT TAAAATAATA 610 620 630 640 650 660	40					, ~~~~~~~ . T 1	بل د بلحقه د بشمامتان د
610 620 630 640 650 660							
310 323						_	_
	45	910	620	030	040	טרני	000
TTTAAAAATA TCTATTTTGA ATAGATAGGT TTTATGCTTC CATGCAAAAA CTTAAAGAGG		Telebra 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ه ماملململول و مامامه	\ T 4C.4T4CC	بالملك الملالية .	CATGCAAAAA	CTTAAAGAGG
50 AAATTITTAT AGATAAAACT TATCTATCCA AAATACGAAG GTACGTTTTT GAATTTCTCC	50						
670 680 690 700 710 720	50						
670 300 750 750 750		9/0	, 000	, 670	, , , , , ,	, 20	, 30

	GATTATGTAT	ATTTTGAATA	AATTTATACG	TAGAACTGTT	ATCTTTTTCC	TTTTTTTTCC
_	CTAATACATA	TAAAACTTAT	TTAAATATGC	λ TCTTG λ C $\lambda\lambda$	TAGAAAAAGG	AAAAAAAACG
5	. 730	740	750	760	770	780
			•			
10	TACCTTCCAA	TTGCTTCTTC	GGAAAGTAAA	AAAATTGAGC	AACCATTATT	AACACAAAAA
	ATGGAAGGTT	AACGAAGAAG	CCTTTCATTT	TTTTAACTCG	TTGGTAATAA	TTGTGTTTTT
	790	300	910	320	330	840
15						
	TATTATGGCC	TAAGATTGGG	CACTACACGT	GTTATTTATA	AAGAAGATGC	TCCATCAACA
20	ATAATACCGG	ATTCTAACCC	GTGATGTGCA	CAATAAATAT	TTCTTCTACC	AGGTAGTTGT
	850	360	370	880	390	900
25						
				CCAATCCTTG		
				GGTTAGGAAC		
30	910	920	930	940	950	960
	•					
	C1TC1T141T	C1TC1211CC	شندة الملطانة تحالد	GTAACACCAC	المنتسنية م	100000 A 2000
35	*****			CATTGTGGTG		
	970	980	990		1010	1020
	710	500	7,0	2500	1010	1020
40	AATGCGCGAA	CAAGATTGAA	GGTAATACCA	ACAAGTAATC	TATTCAATAA	AAATGAGGAG
				TGTTCATTAG		
	1030					
45						
	TCTTTGTATT	GGTTGTGTGT	AAAAGGAGTC	CCACCACTAA	ATGATAATGA	AAGCAATAAT
50	AGAAACATAA	CCAACACACA	TTTTCCTCAG	GGTGGTGATT	TACTATTACT	TTCGTTATTA
	1090	1100	1110	1120	1130	1140

	АААААСААСА	TAACTACGAA	TCTTAATGTG	AATGTGGTTA	CGAATAGTTG	TATTAAATTA
5	TTTTTGTTGT	ATTGATGCTT	AGAATTACAC	TTACACCAAT	GCTTATCAAC	ATAATTTAAT
	1150	1160	1170	1180	1190	1200
	•					
10						
	ATTTATAGGC	CTAAAACTAT	AGACTTAACG	ACAATGGAGA	TTGCAGATAA	ATTAAAGTTA
	TAAATATCCG	GATTTTGATA	TCTGAATTGC	TGTTACCTCT	AACGTCTATT	TAATTTCAAT
15	1210	1220	1220	1240	1250	1260
15						
					CATCATATGT	
20	CTCTCTTTTC	CTTTATCATA	TCAATATTTC	TTAGGTTGTA	GTAGTATACA	CTTATAACGT
	1270	:280	1290	1300	1310	1320
25						
					GATATATTGA	
					CTATATAACT	
30	1330	1340	:350	1360	1370	1380
	#.#pama#	T. 00TCCTCC	\cr\c\\\	1 4 4 4 T 1 4 CTT	TGACTATTET	CCATCATAAC
35					ACTGATAAAA	
						1440
	1390	1700	1410	1020	2.50	20
40						
	GGCGCTGAAA	TTATAAGAGA	ATTATTAGTT	TAAGGTGTAA	AACAAATGAA	GAAAACCACA
					TIGTTTACTT	
45	1450			_		
	•					
50	ATTACTCTAT	TIGTTITAAC	CAGTGTATTT	CACTCTGGAA	ATGTTTTCTC	CAGACAATAT
	TAATGAGATA	AACAAAATTG	GTCACATAAA	GTGAGACCTT	TACAAAAGAG	GTCTGTTATA
	1510	1520	1530	1540	1550	1560

	AATTTCGACT	ATGGAAGTTT	GAGTCTTCTC	CCCGTGAGAA	TGCATCTTTT	CTAAGTGTTG
	TTAAAGCTGA	TACCTTCAAA	CTCAGAAGAG	GGCCACTCTT	ACGTAGAAAA	GATTCACAAC
5	1570	1580	1590	1600	1610	1620
					<i>*</i>	
10	AAACGCTTCC	CTGGTAATTA	TGTTGTTGAT	GTATATTTGA	ATAATCAGTT	AAAAGAAACT
	TTTGCGAAGG	GACCATTAAT	ACAACAACTA	CATATAAACT	TATTAGTCAA	TTTTCTTTGA
	1630	1540	1650	1660	1670	1690
15						
	ACTGAGTTGT	ATTTCAAATC	AATGACTCAG	ACTCTAGAAC	CATGCTTAAC	AAAAGAAAAA
20	TGACTCAACA	TAAAGTTTAG	TTACTGAGTC	TGAGATCTTG	GTACGAATTG	TEFFCTFFF
20	1690	1700	1710	1720	1730	1740
					•	
25					TGCAGTTTGA	
	GAATATTTCA	TACCCTAGCG	GTAGGTCCTC		ACCTCAAACT	_
	1750	:760	1770	1730	1790	1800
30						
					AACGCGGCTA	
35					TTGCGCCGAT	
	1810	1820	1830	1840	1850	1860
40				*********		CTC VTC 4 A A A
					AGTGAAATTG	
					TCACTTTAAC	
45	1870	1880	1890	1900	1910	1720
	************	. CATCOCATUA	7444	·	AGAGCTTAAT	TATTTGCATT
50						ATAAACGTAA
J.	1930			_		_
	1730	, 1740	, .,,,,	,	-214	•

	CTAAGGTTGG	AGGAGAGAGA	TTCATACTTT	GGTCAAATTC	AACCTTGGTT	TTAATTTTGG
	GATTCCAACC	TCCTCTCTCT	AAGTATGAAA	CCAGTTTAAG	TTGGAACCAA	AATTAAAACC
5	1990	, 2000	2010	2020	2030	2040
				•		
10	TCCCTGGCGG	CTAAGGAATC	TATCATCTTG	GCAAAACTTG	TCAAGCGAAA	AAAAATTTGA
	AGGGACCGCC	GATTCCTTAG	ATAGTAGAAC	AGTTTTGAAC	AGTTCGCTTT	TTTTTAAACT
	2050	2060	2070	2080	2090	2100
15						
	ATCAGCATAT	ATTTATGCTG	AGCGAGGTTT	ATAAAAAAA	AAGAGCAAAC	TAACAGTTGG
20	TAGTCGTATA	TAAATACGAC	TCGCTCCAAA	TITTTTTTAT	TTCTCGTTTG	ATTGTCAACC
	2110	2120	2130	2140	2150	2160
25						
25					TTTAGAGGCT	
			TAAATAAGCT	ATCCCATCCT	AAATCTCCGA	AAAGAAATTT
	2170	2180	2190	2200	2210	2220
30						
					TATCCAACAA	
35					ATAGGTTGTT	
	2230	2240	2250	2260	2270	2280
40						
	•				TACTTGATAT	
					ATGAACTATA	
45	2290	2300	2310	2320	2330	2340
	\ <i>c</i> =000000	acca, 4555ca	\ CATTACCTAC	1C14C144FF	corcare 1	1
50					GCTGATC -3'	
50					CGACTAG -5	
	2350	2300	2370	2380		
	ou des séquences qui en	sont l'équivalent	nar dénénéresce	ence		

ou des séquences qui en sont l'équivalent par dégénérescence.

^{6.} ADN recombinant suivant la revendication 3, dans lequel les séquences I et II sont comprises dans une séquence contiguē.

- ADN recombinant suivant la revendication 4, dans lequel les séquences III et IV sont comprises dans une séquence contiquē.
- ADN recombinant suivant la revendication 3, dans lequel les séquences V et VI sont comprises dans une séquence
 contiguê.
 - ADN recombinant suivant l'une quelconque des revendications 1 à 5, comprenant en outre une séquence qui code une autre séquence d'aminoacides.
- 10. ADN recombinant suivant la revendication 9, dans lequel l'autre séquence d'aminoacides comprend d'autres parties épitopiques de l'antigène SEFA, ces parties épitopiques étant caractérisées en ce qu'elles sont capables de liaison spécifique avec l'anticorps monoclonal sécrété par l'une au moins des lignées cellulaires d'hybridome déposées auprès de l'ECACC sous les numéros de dépôt 90101101 et 92121902.
- 15 11. ADN recombinant suivant la revendication 9, dans lequel l'autre séquence d'aminoacides comprend une séquence non-épitopique de SEFA.
 - ADN recombinant suivant la revendication 11, dans lequel la séquence non-épitopique de SEFA comprend l'épitope SB10 de <u>Mycobacterium bovis.</u>
 - 13. Plasmide nouveau comprenant l'ADN recombinant suivant l'une quelconque des revendications 1 à 12.
 - 14. Plasmide suivant la revendication 13, comprenant un plasmide qui convient pour la transformation de <u>E. coli</u> ou d'une levure dans lequel l'ADN recombinant a été inséré.
 - 15. Plasmide suivant la revendication 13 ou la revendication 14, comprenant le plasmide pBR322, pACYC184 ou pUC18 dans lequel l'ADN recombinant a été inséré.
 - 16. Procédé de production d'un plasmide suivant la revendication 15, comprenant les étapes suivantes :
 - (a) extraction de l'ADN génomique total d'une <u>S. enteritidis</u> ou d'une <u>S. dublin</u> exprimant l'antigène SEFA pour produire l'ADN recombinant;
 - (b) digestion partielle de l'ADN génomique avec l'endonucléase de restriction SaullIA pour produire des fragments s'échelonnant dans la plage de 5 à 10 kilobases;
 - (c) épissage des fragments en un plasmide pBR322, pACYC184 ou pUC18 et,
 - (d) sélection des plasmides désirés pour leur aptitude à exprimer l'antigène SEFA, ou une partie épitopique de cet antigène étant caractérisée par son aptitude à se lier spécifiquement à l'anticorps monoclonal sécrété par l'une au moins des lignées cellulaires d'hybridome déposée auprès de l'ECACC sous les numéros de dépôt 90101101 et 90121902.
 - 17. Procédé suivant la revendication 16, dans lequel le plasmide désiré comprend un fragment constitué des séquences I et II suivant la revendication 3 en contiguïté et le procédé comporte en outre l'étape de ligation d'une autre séquence d'ADN dans le site de BarnH1 entre les séquences et en phase avec les séquences.
- 45 18. Plasmide pouvant être obtenu par le procédé suivant la revendication 16 ou la revendication 17.
 - Micro-organisme transformant comprenant un plasmide suivant l'une quelconque des revendications 13, 14, 15 ou 18.
- Micro-organisme suivant la revendication 19, dans lequel l'hôte du plasmide est une levure ou un E. coli.
 - 21. Micro-organisme suivant la revendication 20, dans lequel l'hôte du plasmide est un E. coli DH5alpha.
 - 22. Polypeptide codé par l'ADN recombinant de la revendication 11.

20

25

30

35

40

55

23. Kit analytique permettant d'identifier des micro-organismes comme appartenant au sérotype <u>S. enteritidis</u> ou <u>S. dublin</u>, comprenant un polypeptide ou un oligopeptide qui comprend l'antigène SEFA ou une partie épitopique de cet antigène comme exprimé par un transformant suivant l'une quelconque des revendications 20 à 22, la partie

épitopique étant caractérisée en ce qu'elle est capable de liaison spécifique avec un anticorps monoclonal sécrété par l'une au moins des lignées cellulaires d'hybridome déposées auprès de l'EcACC sous les numéros de dépôt 90101101 et 90121902.

- 5 24. Méthode de détection de la présence de micro-organismes ayant une séquence polynucléotidique d'ADN ou d'ARN codant l'antigène SEFA ou cet ADN ou cet ARN lui-même, comprenant
 - (a) la prise d'un échantillon suspecté de contenir cette séquence polynucléotidique codante ;
 - (b) la détection de la présence de cette séquence par contrôle de l'hybridation avec cet ADN ou cet ARN de sondes d'hybridation polynucléotidiques ciblées sur la séquence de SEFA.
 - 25. Méthode suivant la revendication 24, dans laquelle les sondes polynucléotidiques sont ciblées sur l'une quelconque des paires contigués de séquences I et II, III et IV, ou V et VI suivant les revendications 3 à 5.
- 26. Méthode suivant la revendication 25, dans laquelle la sonde polynucléotidique consiste en paires de séquences contiguës I et II, III et IV, ou V et VI suivant les revendications 3 à 5.
 - 27. Kit analytique pour l'application de la méthode suivant l'une quelconque des revendications 24 à 26, comprenant des sondes d'hybridation polynucléotidiques ciblées sur les paires de séquences contiguës III et IV, ou V et VI suivant la revendication 4 et la revendication 5.
 - 28. Kit analytique suivant la revendication 27, dans lequel les sondes sont constituées de séquences comprenant des paires contiguës de Séquences III et IV, ou V et VI suivant la revendication 4 et la revendication 5.
- 25 29. Méthode de détection de la présence de micro-organismes ayant une séquence polynucléotidique d'ADN ou d'ARN codant l'antigène SEFA ou cet ADN ou cet ARN lui-même, comprenant :
 - (a) la prise d'un échantillon suspecté de contenir cette séquence polynucléotidique codante ;
 - (b) l'exposition de cet échantillon à des conditions dans lesquelles les séquences polynucléotidiques comprenant les séquences I et II suivant la revendication 2 sont répliquées par l'utilisation de la réaction de polymérisation en chaîne :
 - (c) la détection de la présence de toute séquence produite.

10

20

30

- 30. Méthode suivant la revendication 29, dans laquelle l'étape (c) est conduite au moyen d'une sonde d'hybridationpolynucléotidique.
 - 31. Méthode suivant la revendication 29 ou la revendication 30, dans laquelle l'étape (b) emploie des paires d'amorces comprenant une amorce choisie dans le groupe (A) et une autre amorce choisie dans le groupe (B)

Groupe B

5: -GTGCGAATGCTAATAGTTGA- 3' 5: -AAAACAGGCTGTCCTTGTCGA- 3'
5: -TGCGTAAATCAGCATCTGCA- 3' 5: -TTAGCGTTTCTTGAGAGCTGG- 3'
5: -TCTGCAGTAGCAGTTCTTGC- 3' 5: -TTTTGATACTGCTGAACGTAG- 3'
5: -GCTCAGAATACAACATCAGCCAA- 3'

32. Méthode suivant l'une quelconque des revendications 29 à 31, dans laquelle l'étape (c) est conduite au moyen d'une sonde oligonucléotidique choisie dans les séquences du groupe (A) ou du groupe (B) (comme indiqué dans

la description) qui est différente de celle de l'une ou l'autre des amorces utilisées dans l'étape (b).

_	33. Kit analytique pour l'application de la méthode suivant l'une quelconque des revendications 29 à 32, compr des amorces et des sondes ayant des séquences choisies dans les groupes (A) et (B).				
5					
10					
15					
20					
25					
30					
35					
40					
45					
50					
55					