Data Preparation for Data Mining

Lesson 4

Lesson 4 Overview

- Sampling
- Variability
- Confidence
- Numeric vs. Nominal Attributes
 - Dealing with Numeric Variables

Lesson 4 Overview

- Sampling
- Variability
- Confidence
- Numeric vs. Nominal Attributes
 - Dealing with Numeric Variables
 - Dealing with Nominal Variables

Purpose of Sampling

- Get enough data so that all of the relationships at all levels:
 - Superstructure
 - Macrostructure
 - Microstructure

are captured

Data Population

- O
- All the data as the whole is called the Data Population
- The data is not the population
- The Data is simply a set of measurements about the population of objects

Why not use all the data?

- Problems with using all of the data
 - The whole data not available
 - Too much data
 - Necessary to sample the data when building models

Purpose of Sampling

- Capture a Sample:
 - To represent only some part of the population

Sampled Datasets

- Modeling requires at least two datasets to be sampled, and sometimes three
- Essential that each of the samples represents the full set of relationships that are present in the whole population
- If not, the model does not represent what would be found in the population

Variability of Variables

- 0
- Main Feature of a Variable
 - Takes on a variety of values
 - Contains Pattern distribution
 - Numerical variables
 - Categorical variables

Tools for Examining Variability

Example:

```
34,45,56,67,4,5,5,45,57,56,76,65,56,78,59,4
4,43,44,33,55,77,66,99,88,77,66,55,44,22,33
,44,55,44,46,67,85,82,71,64,51,52,34, etc.
```

- Is there any pattern?
- Graphical Display of a Pattern Distribution
 - Histogram, Curve

Histogram

Curve

- Can be very jagged
- Smoothing
- Each smoothing method gives a slightly different curve

 Which is the correct pattern shape for that particular distribution, if any?

Issues

- Until a representative sample is obtained, it is impossible to know if the pattern in some particular random sample dies represent the "true" variability
- While it is obvious there is some sort of pattern to a distribution, various ways of looking at it seem to produce slightly different patterns

The Question

Q

Which of these shapes, if any, is the right one to use?

Variability of Variables

- Problems
 - Convergence: True Population
 Distribution Pattern Unknown
 - Measuring Variability: Which Distribution Curve is the Right one to use?

Converging

- To Create a Distribution Curve for the Sample
 - Selecting instance values, one at a time at random
 - Recalculated when adding a new instance value

Converging

- Converge
 - At first: a large change
 - After a while: settled down -> Converges to the final shape
- Summary
 - What is measured not the shape of the curve, but the variability of the sample

Measuring Variability

- Require Some Method of Measuring Variability
 - Without being sensitive to column width or smoothing method
- What is Variability
 - How far the individual instances from the Mean of the sample

Measuring Variability

- Standard Deviation --- One Popular Measure
- One Formula:

Standard deviation
$$-\sqrt{(\sum (x-m)^2/(n-1))}$$

Another Formula: Important for data preparation process

$$\mathbf{S} = \sqrt{(\sum x^2 - nm^2)/(n-1)}$$

Variability of Numeric and Alpha Variables

- Why Confidence
 - An alternative of sampling the whole population
 - To establish some acceptable degree of confidence,
 - 95% as a satisfactory level of confidence

Variability of Numeric and Alpha Variables

- Distinction
 - Alpha: for nominal / categorical; measured in nonnumeric scales
 - Numeric: measured in numeric scales
 - Different when measuring variability

Measuring Variability of Numeric Variables

9

- Covered earlier
- Random sampling without introducing bias

Measuring Variability of Alpha Variables

- Instead of standard deviation
- Rate of Discovery (ROD):
 - Measure the rate of change of the relative proportion of values discovered
 - Sample size increases, the ROD of new alpha values falls

Confidence

- Measuring and testing for confidence
- Confidence in capturing variability
- Problems with sampling
- Confidence and instance count

Measuring confidence

- Required confidence level arbitrarily chosen
- Sampling vs. entire population
- Testing for confidence from a sample
- Level of confidence vs. number of tests

Confidence with entire population

- Sampling and modeling unnecessary
- Inferential modeling could be used to find interrelationships
- No training necessary no risk of overtraining either

Confidence with entire population

- Confidence levels easy to calculate if sampling is used and population (or size of it) is known
- Otherwise, assumptions necessary to determine LOC

Testing for confidence

- If entire population is not available, we need either assumptions about
 - the randomness of the sample
 - the distribution of the data

OR

- the success ratio of tests, assuming the tests are independent
- i.e. the size of the population is not needed.

Testing for confidence (cont.)

- Assumption: LOC = "error rate", i.e. (1confidence)
- No. of tests necessary to achieve desired LOC:

$$c = 1 - e^n => n = \log(1-c)/\log(c)$$

Note that no knowledge of the size of the population is required.

Example of repetitive tests

Skepticism	Error rate	No. of tests
0.9	0.9	1
0.81	0.9	2
0.729	0.9	3
0.6561	0.9	4
0.59049	0.9	5

Confidence in variability

- How to determine that the variability of the sample is similar to that of the population?
- convergence: if variability remains within a particular range, variability is assumed captured (to a particular level of confidence)
 - How to measure convergence?
 - How to discover the range?

Capturing variability

- Relies on normal distribution
- If variability not normally distributed, can be adjusted to resemble normal distribution
 - this relies on convergence of changes in variance around the mean

Example

Example: CREDIT data, DAS record variability:

95% certainty that 95% of variability captured

Problems with sampling

- Missing values
 - ignored
 - null vs. 0
 - density thresholds to keep or not to keep?

- Missing values
- Constants
 - not necessarily easy to spot
 - discard if found

- Missing values
- Constants
- Representative samples?
 - problems with categorical variables

- Missing values
- Constants
- Representative samples?
- Monotonic variables
 - detection may be difficult because of sampling
 - two methods to use for detection:
 - interstitial linearity
 - rate of discovery

- Interstitial linearity:
 - intervals between values are evaluated
 - if spacing is consistent, monotonicity is assumed
- Rate of discover

- Interstitial linearity:
 - intervals between values are evaluated
 - if spacing is consistent, monotonicity is assumed
- Rate of discover
 - every sample will contain a new value
 - may be legitimate, but using both characteristics together makes detection of monotonicity likely

Summary

- Deciding how much data the miner needs to make sure that variables have their variability represented
- Variability important
- Never perfect confidence
- Sampling plausible

Summary

- We can either select enough data to establish the needed level of confidence
- Or, determine how much confidence is justified in a limited dataset on hand

Summary

- Selecting the appropriate level of confidence requires:
 - Problem knowledge
 - Domain knowledge
 - Cannot be automatically determined
 - 95% works reasonably well
- Confidence decisions must be made by the problem owner, problem holder, domain expert and the miner

Next

Assignment II

- Handling non-numeric variables
- Fix various problems in the variables

Assignment II