IMO IZLASE, DARBA LAPA, 2022-06-13

Polinoma racionālo sakņu teorēma: Dots vienādojums $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$ ar veseliem koeficientiem, kur $a_0, a_n \neq 0$. Ja x = p/q ir kāda šī polinoma racionāla sakne uzrakstīta kā nesaīsināma daļa, tad skaitītājs p dala brīvo koeficientu a_0 , bet saucējs q dala vecāko koeficientu a_n .

Lemma par polinoma vērtību summu: Dots pirmskaitlis p un polinoms ar veseliem koeficientiem P(x), kura pakāpe deg $F \le p-2$. Tad polinoma p pēc kārtas ņemtu vērtību summa, piemēram, $\sum_{k=1}^{p} P(k)$ dalās ar p.

2.1 levaduzdevumi

- 1. Kuras nesaīsināmas racionālas daļas r=p/q izpilda secinājumu polinoma racionālo sakņu teorēmai, ja algebriskais vienādojums ir šāds: $3r^3+r^2-7r-5=0$. Sadalīt šo izteiksmi reizinātājos.
- 2. Kādu atlikumu, dalot ar 7, dod $1^4 + 2^4 + ... + 100^4$?
- 3. Dots pirmskaitlis p un vesels skaitlis $k \in [1; p-1]$. Pierādīt, ka

$$\binom{p-1}{k} \equiv (-1)^k \pmod{p}.$$

4. Dots pirmskaitlis p. Pierādīt, ka eksistē bezgalīgi daudzi naturāli n, kuriem p dala $2^n - n$.

Atbilde:

- 1. Sadalījums reizinātājos ir $(r+1)^2(3r-5)=0$
- 2. Pēc lemmas par polinoma vērtību summu var atmest pirmos 98 saskaitāmos, jo 98 dalās ar 7. Paliek pāri $99^4 + 100^4 \equiv 1^4 + 2^4 \equiv 17 \equiv 3 \pmod{7}$.

2.2 Sacensību uzdevumi

2.1. uzdevums: Dots naturāls skaitlis $n \ge 2$, kuram definējam kopu A_n sekojoši:

$$A_n = \{2^n - 2^k \mid k \in \mathbb{Z}, \ 0 \le k < n\}.$$

Atrast lielāko naturālo skaitli, kuru nevar uzrakstīt kā viena vai vairāku kopas A_n elementu summu (vairāki elementi var arī sakrist).

2.2. uzdevums: Atrast visus naturālu skaitļu pārus (x, y), kuriem

$$\sqrt[3]{7x^2 - 13xy + 7y^2} = |x - y| + 1.$$

2.3. uzdevums: Dots naturāls skaitlis n > 1. Definējam virkni $(a_k)_{k \ge 1}$ sekojoši:

$$a_k = \left\lfloor \frac{n^k}{k} \right\rfloor.$$

Pierādīt, ka bezgalīgi daudzi šīs virknes locekļi ir nepāra skaitļi. (Reālam skaitlim x ar $\lfloor x \rfloor$ apzīmējam lielāko veselo skaitli, kas nepārsniedz x.)

2.4. uzdevums: Doti naturāli skaitļi, no kuriem katri divi ir savstarpēji pirmskaitļi: $a_1 < a_2 < \cdots < a_n$. Pie tam a_1 ir pirmskaitlis un $a_1 \geq n+2$. Uz reālu skaitļu nogriežņa $I=[0,a_1a_2\cdots a_n]$ atzīmējam visus tos veselos skaitļus, kuri dalās vismaz ar vienu no skaitļiem a_1,\ldots,a_n . Šie punkti sadala nogriezni I vairākos mazākos nogriežņos. Pierādīt ka visu nogriežņu garumu kvadrātu summa dalās ar a_1 .