Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Інститут прикладного системного аналізу Кафедра математичних методів системного аналізу

3BIT

про виконання лабораторної роботи №2 з дисципліни «Інтелектуальний аналіз даних»

Виконала:

Студентка III курсу Групи КА-76 Хиленко В.В.

Перевірила: Недашківська Н.І.

ın [3]:	<pre>import numpy as np from sklearn.datasets import make_blobs</pre>
	<pre>n_samples_1 = 1000 n_samples_2 = 100 centers = [[0.0 , 0.0] , [2.0, 2.0]] clusters_std = [1.5, 0.5] X1, Y1 = make_blobs(n_samples=[n_samples_1, n_samples_2], # gener ate 2d classification dataset</pre>
In [5]:	<pre>X2, Y2 = load_wine(return_X_y=True)</pre> 1. Представити початкові дані графічно. %matplotlib inline import seaborn as sns import pandas as pd from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt
<pre>In [6]: Out[6]:</pre>	<pre>make_blobs df1 = pd.DataFrame(X1) df1['y'] = Y1.astype("int") sns.pairplot(df1, hue='y') <seaborn.axisgrid.pairgrid 0x7f67a1b06518="" at=""> 4 2 4 2 4 2 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</seaborn.axisgrid.pairgrid></pre>
In [7]:	load_wine raw_data = load_wine()
Out[7]:	features = pd.DataFrame(data=raw_data['data'],columns=raw_data['feature_names']) data = features data.head() alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid 1 13.20 1.71 2.43 15.6 127.0 2.80 3.06 1 13.20 1.78 2.14 11.2 100.0 2.65 2.76 2 13.16 2.36 2.67 18.6 101.0 2.80 3.24 3 14.37 1.95 2.50 16.8 113.0 3.85 3.49
In [8]:	4 13.24 2.59 2.87 21.0 118.0 2.80 2.69 Теплокарта кореляцій між ознаками Квадрати з додатніми величинами показують кореляцію між ознаками. Чим більша величина, тим сильніше відношення. соггеlation = data.corr() plt.figure(figsize=(14, 12))
	heatmap = sns.heatmap(correlation, annot=True, linewidths=0, vmin=-1) alcohol - 1
	total_phenois - 0.29
	od280/od315_of_diluted_wines - 0.072
In [9]:	2. Розбити дані на навчальний і перевірочний набори. X1_train, X1_test, y1_train, y1_test = train_test_split(X1, Y1, test_siz e=0.2, random_state=42) X2_train, X2_test, y2_train, y2_test = train_test_split(X2, Y2, test_siz e=0.2, random_state=42)
	 3-8. Побудувати моделі класифікації або регресії згідно з варіантом та Представити моделі графічно. Виконати прогнози на основі моделей. Для кожної з моделей оцінити, чи має місце перенавчання. Розрахувати додаткові результати моделей, наприклад, апостеріорні імовірності, опорні вектори або інші (згідно з варіантом). Для задач класифікації розрахувати критерії якості для кожної моделі: матрицю неточностей (confusion matrix), точність (precision),
In [10]:	 повноту (recall), міру F1 (F1 score), побудувати криву точності-повноти (precision-recall (PR) curve), ROСкриву, показник AUC. from sklearn.svm import NuSVC, SVC from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, roc_curve, roc_auc_score, precision_recall_curve
In [11]:	<pre>make_blobs dataset def metrics1(true, predict, probs): #κρυτερί፤ яκοςτί для κοжнοї моделі print("Confusion Matrix:\n", confusion_matrix(true, predict)) print("Precision score: ", precision_score(true, predict)) print("Recall score: ", recall_score(true, predict)) print("F1 score: ", f1_score(true, predict)) probs = probs[:, 1] fpr, tpr, thresholds = roc_curve(true, probs) auc = roc_auc_score(true, probs)</pre>
	<pre>print(f"AUC score: {auc}") # ROC curve plt.plot(fpr, tpr) plt.title("ROC Curve") plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.show() # PR Curve precision, recall, _ = precision_recall_curve(true, probs) plt.plot(recall, precision) plt.title("PR Curve")</pre>
In [12]:	<pre>plt.xlabel('Recall') plt.ylabel('Precision') plt.show() def overfitting(clf, X_train, y_train, X_test, y_test): clf.fit(X_train, y_train) train_f1 = f1_score(y_train, clf.predict(X_train)) test_f1 = f1_score(y_test, clf.predict(X_test)) if train_f1 > test_f1: print(f"Overfitting {train_f1} >{test_f1}") else:</pre>
In [13]:	<pre>def plot_dec(X, y, clf, print_vectors=False): h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),</pre>
	<pre>clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to ea ch # point in the mesh [x_min, x_max]x[y_min, y_max]. plt.subplot(2, 2, 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])</pre>
	<pre># Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y) plt.xlabel('x1') plt.ylabel('x2') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(())</pre>
In [14]:	<pre>plt.yticks(()) plt.show() if print_vectors: try: print(clf.support_vectors_) except: pass make_blobs dataset NuSVC for nu in np.arange(0, 1, 0.1): clf = NuSVC(nu=nu, kernel="poly", probability = True, degree = 3)</pre>
	<pre>clf = NuSVC(nu=nu, kernel="poly", probability = True, degree = 3) try: clf.fit(X1_train, y1_train) except ValueError as e: print("nu {} not feasible".format(nu)) nu 0.0 not feasible nu 0.2 not feasible nu 0.300000000000000000000000000000000000</pre>
In [15]:	<pre>nu 0.8 not feasible clf = NuSVC(nu=0.1, kernel="poly", probability = True, degree = 3) clf.fit(X1_train, y1_train) metrics1(y1_test, clf.predict(X1_test), probs=clf.predict_proba(X1_test)) overfitting(clf, X1_train, y1_train, X1_test, y1_test) plot_dec(X1, Y1, clf, print_vectors=False) Confusion Matrix: [[193 11] [0 16]]</pre>
	[0 16]] Precision score: 0.5925925925926 Recall score: 1.0 F1 score: 0.7441860465116279 AUC score: 0.9810049019607844 ROC Curve
	0.6 - 0.2 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 0.0 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 -
	0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.3 - 0.4 - 0.3 - 0.5 - 0.4 - 0.5 - 0.5 - 0.4 - 0.5 - 0.5 - 0.4 - 0.5 -
	0.0 0.2 0.4 0.6 0.8 10 Recall Underfitting, 0.7311827956989246 < 0.7441860465116279
In [16]:	<pre>clf = NuSVC(nu=0.1, kernel="poly", probability = True, degree = 4) clf.fit(X1_train, y1_train) metrics1(y1_test, clf.predict(X1_test), probs=clf.predict_proba(X1_test)) overfitting(clf, X1_train, y1_train, X1_test, y1_test) plot_dec(X1, Y1, clf, print_vectors=False) Confusion Matrix: [[173 31] [4 12]] Precision score: 0.27906976744186046 Recall score: 0.75</pre>
	F1 score: 0.4067796610169491 AUC score: 0.1332720588235294 ROC Curve
	0.2
	0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	make_blobs dataset SVC
In [17]:	<pre>clf_t = SVC(kernel="poly", probability = True, class_weight = 'balanced') clf_t.fit(X1_train, y1_train) metrics1(y1_test, clf_t.predict(X1_test), probs=clf_t.predict_proba(X1_test)) overfitting(clf_t, X1_train, y1_train, X1_test, y1_test) plot_dec(X1, Y1, clf_t, print_vectors=False) Confusion Matrix: [[184 20] [0 16]] Precision score: 0.444444444444444444444444444444444</pre>
	F1 score: 0.6153846153846153 AUC score: 0.9862132352941176 ROC Curve
	0.2
	0.0
	0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate PR Curve
In [18]:	0.0 0.2 0.4 0.6 0.8 1.0 PR Curve 1.0
In [18]:	Overfitting 0.7655502392344498 >0.6153846153846153 Clf_l = SVC(kernel="linear", probability = True, class_weight = 'balance d')
In [18]:	PR Curve PR Curve Overfitting 0.7655502392344498 >0.6153846153846153 Clf_l = SVC(kernel="linear", probability = True, class_weight = 'balance d') clf_l.fit(X1_train, y1_train) metrics1(y1_test, clf_l.predict(X1_test), probs=clf_l.predict_proba(X1_test)) overfitting(clf_l, X1_train, y1_train, X1_test, y1_test) plot_dec(X1, Y1, clf_l, print_vectors=False) Confusion Matrix: [[176 28] [0 16]] Precision score: 0.363636363636365 Recall score: 1.0 Fiscore: 0.5333333333333333333333333333333333333
In [18]:	PR Curve PR Curve PR Curve Overfitting 0.7655502392344498 >0.6153846153846153 Clf_l = SVC(kernel="linear", probability = True, class_weight = 'balance d') Clf_l.fit(X1_train, y1_train) metrics1(y1_test, clf_l.predict(X1_test), probs=clf_l.predict_proba(X1_test)) coverfitting(clf_l, X1_train, y1_train, X1_test, y1_test) plot_dec(X1, Y1, clf_l, print_vectors=False) Confusion Matrix: [[376 28] [0 16] Precision score: 0.3636363636363658 Recall score: 1.0 ROC Curve PR Curve PR Curve PR Curve
In [18]:	PR Curve PR Curve PR Curve Overfitting 0.7655502392344498 >0.6153846153846153 Clf_l = SVC(kernel="linear", probability = True, class_weight = 'balance d') clf_l.fit(X1_train, y1_train) metricsi(y1_test, clf_l.predict(X1_test), probs=clf_l.predict_proba(X1_test)) coverfitting(clf_l, X1_train, y1_train, X1_test, y1_test) Precision Matrix: [[176 28] [0 16] Precision score: 0.3636363636363658 Recall score: 1.0 Fi score: 0.533333333333333 AUC score: 0.9770220588235294 ROC Curve PR Curve PR Curve PR Curve
	PR Curve PR Curve Overfitting 0.7655562392344498 >0.6153846153846153 Overfitting 0.7655562392344498 >0.6153846153846153 Overfitting 0.7655562392344498 >0.61538461538461538 Clf_l = SVC(kernel="linear", probability = True, class_weight = 'balance d') Clf_l.fit(X1_train, y1_train) metricsx[y1_test, clf_l.predict(X1_test), probs=clf_l.predict_proba(X1_test)) Overfitting(clf_l, X1_train, y1_train, X1_test, y1_test) plot_dec(X1, Y1, clf_l, print_vectors=False) Confusion Matrix: [[176 28] [0 16]] Precision score: 0.363636363636365 Recall Score: 1.0 ROC Curve Output ROC Curve Output PR Curve PR Curve PR Curve PR Curve Output ROC Curve Output Output ROC Curve Output ROC Curve Output Output Output ROC Curve Output Output ROC Curve Output Output Output ROC Curve Output Output ROC Curve Output Output Output Output ROC Curve Output Output ROC Curve Output Output ROC Curve Output Output
In [19]: In [20]:	Description of the product of the pr
In [19]: In [20]:	Overfitting 0.7665602392344498 > 0.6153846153846153 Overfitting 0.7665602392344498 > 0.6153846153 Overfitting 0.766560239234498 > 0.6153846153 Overfitting 0.7665602349498 > 0.6153846153 Overfitting 0.7665602349499898933333333333333333333333333333
In [19]: In [20]:	Object of the property of the control of the contro
In [19]: In [20]:	PR Curve PR Curve Outritting 0.765580292344408 +0.6153846153846153 Outritting 0.765580292344408 +0.6153846153
In [19]: In [20]: In [23]:	### PR Curve 10
In [19]: In [20]: In [23]:	### 10
In [19]: In [20]: In [21]:	### 52
In [19]: In [20]: In [21]:	Section
In [19]: In [20]: In [23]:	### 12
In [19]: In [20]: In [21]: In [23]:	### 10 10 10 10 10 10 10 1
In [19]: In [20]: In [21]: In [24]:	Description
In [19]: In [20]: In [21]: In [23]: In [25]:	### 150 10 10 10 10 10 10 10
In [19]: In [20]: In [21]: In [23]: In [25]:	The second secon
In [19]: In [20]: In [22]: In [23]: In [24]: In [26]:	The Color of the C
In [19]: In [20]: In [21]: In [23]: In [26]: In [30]:	The Core of the Co
In [29]: In [22]: In [24]: In [26]: In [30]:	The control of the co
In [29]: In [24]: In [26]: In [36]: In [37]: In [38]: In [38]:	The content of the
In [23]: In [24]: In [26]: In [30]: In [31]:	The second secon
In [24]: In [24]: In [24]: In [27]: In [33]: In [34]: In [35]:	The control of the co
In [24]: In [24]: In [24]: In [36]: In [37]: In [37]: In [37]:	The control of the co

In [41]: __, axes = plt.subplots(1, 2, figsize=(15,5))

l='train_score')

'test_score')

0.9

0.8

0.7

0.5 -

In []:

Out[41]: Text(0.5, 1.0, 'Default model')

Default model

axes[1].plot(train_sizes2, np.mean(test_scores2, 1), color='red', label=
'test_score') axes[1].plot(train_sizes2, np.mean(train_scores2, 1), color='blue', labe

axes[1].hlines(np.mean([train_scores2[-1], test_scores2[-1]]), train_siz
es2[0], train_sizes2[-1], color='grey', linestyle='dashed')
axes[1].legend(loc=0)
axes[1].set_title('GridSearchCV model', size='x-large')

axes[0].plot(train_sizes1, np.mean(test_scores1, 1), color='red', label=

axes[0].plot(train_sizes1, np.mean(train_scores1, 1), color='blue', labe
l='train_score')
axes[0].hlines(np.mean([train_scores1[-1], test_scores1[-1]]), train_siz
es1[0], train_sizes1[-1], color='grey', linestyle='dashed')
axes[0].legend(loc=0)
axes[0].set_title('Default model', size='x-large')

0.99

0.98

0.97

0.95

Бачимо, що крива навчання для Default model стає близькою до кривої перевірки при

кривої навчання, яка вже зійшлася, можна лише використанням GridSearchCV model.

певному значенні розміру навчальної множини. Додавання нових навчальних прикладів не тільки істотно не покращують результати, але й відбуваеться погіршення. Поліпшити оцінку

GridSearchCV model

--- test_score --train_score

Класифікація за допомогою бібліотеки Scikit-Learn Python

• Моделі NuSVC(kernel="poly"). Розглянути різні комбінації гіперпараметрів nu, degree,

coef0 - управляє тим, наскільки сильно поліноми високого ступеня впливають на модель

Постановка завдання (Варіант 17)

Побудувати моделі класифікації на основі методу опорних векторів:

порівняно з поліномами низького ступеня.