

República de Moçambique Ministério da Educação

Exame Extraordinário Conselho Nacional de Exames, Certificação e Equivalências 90 Minutos

Física 10^a Classe / 2013

> Esta prova contém 7(sete) perguntas. Leia-a com atenção e responda na sua folha de exame. Na margem direita está indicada, entre parênteses, a cotação de cada pergunta em valores.

Qual dos gráficos representados corresponde ao movimento rectilíneo uniformemente 1. acelerado?

Cotação

(1,0)

2. Por meio do seu esforço muscular, um indivíduo eleva uma caixa de peso igual a 120N, a uma altura de 8m. Calcule:

a) a massa da caixa. (use $g = 10 \text{ m/s}^2$) (1,0)

b) o trabalho realizado pelo indivíduo. (2,0)

- 3. Das afirmações que se seguem, assinale com (V) as verdadeiras e com (F) as falsas:
 - A. Analiticamente, a resultante de um sistema de duas forças F₁ e F₂ com a mesma (0,5)direcção e sentidos contrários, determina-se fazendo a diferença entre os módulos das forças componentes.

B. Quanto maior a força aplicada numa superfície, menor será a pressão. (0,5)

C. Cadernal é a associação de n roldanas móveis e uma fixa. (0,5)

D. Considere dois pontos Y e Z no lago Niassa, situados, respectivamente, nas (0,5)profundidades h_Y = 10m e h_Z = 20m. Neste caso, a pressão hidrostática nos pontos Y e Z é tal que: $P_Y < P_Z$

4. Numa experiência realizada com um resistor encontram-se os seguintes dados:

U(V)	10	15	20	25	30
I(A)	5	7,5	10	12,5	15

- (1,5)a) Qual é o valor da resistência do resistor?
- (1,5)b) Qual é a potência dissipada no resistor quando a tensão nos extremos é de 10V?
- c) Que energia se dissipa em 20s quando o condutor é percorrido pela corrente de 10A? (1,5)
- 5. A figura representa um circuito eléctrico. Sabendo que a intensidade da corrente lida pelo
 - aparelho H é de 3A, calcule: $R_1 = 9\Omega$
 - a) a resistência total do circuito.
 - b) o valor indicado pelo instrumento "T".
 - c) a intensidade da corrente na resistência $R_1 = 9\Omega$.

- 6. Das afirmações que se seguem, assinale com (V) as verdadeiras e com (F) as falsas. (1,5)
 - A. Um condutor metálico homogéneo de comprimento L e secção transversal constante S, tem uma resistência R. Se o seu comprimento for triplicado, o novo valor da resistência passa a ser $\frac{R}{3}$.
 - B. Um condutor é percorrido por uma corrente de 1,2A em 10s. Nesse intervalo de tempo, a quantidade de carga que atravessa sua secção transversal é de 12C.
 - C. Nos condutores metálicos existem partículas que possuem uma certa liberdade para se movimentar no interior do metal, chamadas protões livres e que são responsáveis pela condução de eletricidade nos metais.
- 7. A figura representa uma onda do mar num dia de mau tempo na paradisíaca praia do Wimbe, na província de Cabo Delgado.
 - a) Determine a amplitude da onda.
 - b) Calcule o comprimento de onda.
 - c) Se a onda se propaga a uma velocidade de 3m/s, qual é a sua frequência?

(0,5)

(1,5)

(1,5)

2013/10^a Classe / Guia de Correcção / Exame Exraodinário de Física

Perg.	Resolução	Cotaçã	Cotação	
		Parc.	Tot.	
1.	D		<u>1,0</u>	
2.	a) $\frac{\text{Dados}}{\text{F} = 120\text{N}}$ $g = 10 \text{ m/s}^2$ m ? $F = m.g \Rightarrow m = \frac{F}{g} = \frac{120}{10} = 120$ (0,5) (0	2kg 1,0		
	b) $\frac{\text{Dados}}{\text{F} = 120\text{N}}$ h = 8m W? $W = m.g.h = F.h = 120.8 = 9$ (1,0) (0,5)	960 <i>J</i> 2,0 (0,5)	<u>3,0</u>	
3.	A V B F C F D V	4,05	2.0	
4.	a) $\frac{\text{Dados}}{\text{U}_1=10\text{V}}$ $R = \frac{U_1}{I_1} = \frac{U_2}{I_2} = \frac{15}{7,5} = 2\Omega$ $I_1=5\text{A}$ (0,5) (0,5) $I_2=7,5\text{A}$ R?	4x0,5 1,5	<u>2,0</u>	
	b) $\frac{\text{Dados}}{\text{U}=10\text{V}}$ $P = U.I = 10.5 = 50W$ I = 5A (0,5) (0,5) (0,5) P?	1,5		
	c) $\frac{\text{Dados}}{\text{R} = 2\Omega}$ $W = V.i.t = R.I^2.t = 2.10^2.20 = 40$ $t = 20s$ $(0,5)$ $(0,5)$ $(0,7)$	1,5 <u>4</u>	<u>1,5</u>	

2013/10ª Classe / Guia de Correcção / Exame Exraodinário de Física

Perg.	Resolução	Cotação
		Parc. Tot.
5.	a) $\frac{\text{Dados}}{R_1 = 9\Omega}$ $R_T = R_3 + \frac{R_1 \cdot R_2}{R_1 + R_2} = 4 + \frac{9 \cdot 18}{9 + 18} = 10\Omega$ $R_2 = 18\Omega$ $(1,0)$ $(0,5)$ $(0,5)$ $R_3 = 4\Omega$ R_T ?	2,0

b)
$$\frac{\text{Dados}}{I_{\text{T}} = 3\text{A}}$$
 $U_{T} = R_{T} I_{T} = 10.3 = 30V$ 1,0 $R_{\text{T}} = 10\Omega$ (0,5) (0,5) U_{T} ?

c)
$$\frac{\text{Dados}}{I_{\text{T}} = 3A}$$

 $R_{//} = 6\Omega$
 $I_{\text{R}1}$?

 $V_{//} = R_{//}.I_{\text{T}}$
 $I_{R_1} = \frac{V_{//}}{R_1} = \frac{R_{//}.I_{\text{T}}}{R_1} = \frac{3.6}{9} = 2A$
1,5
4.5
(0,5) (0,5)

6. A F
B V
C F
$$3x0.5$$
 1.5
7. a) $A = \frac{y_{máx}}{2} = \frac{4}{2} = 2m$ 0.5

b)
$$3\lambda = 18 \Rightarrow \lambda = \frac{18}{3} = 6m$$
 1,5 (0,5) (0,5)

c)
$$\frac{\text{Dados}}{\lambda = 6\text{m}}$$
 $v = \lambda . f \Rightarrow f = \frac{v}{\lambda} = \frac{3}{6} = 0,5 Hz$ 1,5 $\frac{3.5}{6} = \frac{3}{6} = 0,5 Hz$ (0,5) (0,5)