

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

LTL und Model Checking

Modellprüfung für LTL

Übersicht

Exklusive Zugriffskontrolle

Ereignisbasiertes Automatenmodell

Aussagenlogische Signatur ∑

Für $i \in \{1, 2\}$:

N_i Prozeß *i* befindet sich in einer nichtkritischen Region

 T_i Prozeß *i* befindet sich in der Anmeldephase

C_i Prozeß i befindet sich in einer kritischen Region

Automatenvokabular $V = 2^{\Sigma}$.

Ersetze die Ereignismarkierung einer Kante durch die Menge der Atome aus Σ , die im Zielzustand wahr werden.

Exklusive Zugriffskontrolle

Aussagenbasiertes Automatenmodell

Reduzierter Automat A_{me}

Zu verifizierende Eigenschaft

Wenn Prozeß 1 sich zur exklusiven Nutzung der Ressource anmeldet, dann wird er schließlich auch den Zugang erhalten.

Als LTL-Formel: $\Box (T_1 \rightarrow \Diamond C_1)$

Negierte Formel: $\Diamond (T_1 \wedge \Box \neg C_1)$

Büchi-Automat \mathcal{B}_{me} dazu:

Produktautomat $A_{me} \times B_{me}$

Offensichtlich gilt: $L^{\omega}(\mathcal{A}_{me} \times \mathcal{B}_{me}) = \emptyset$