

Programación en R

Introducción, presentación y motivación

Camilo Yate Támara

Introducción

Metodología Analítica **IDENTIFICAR FORMULAR PROBLEMA EVALUACIÓN Y** PREPARACIÓN MONITOREO DE DE DATOS **RESULTADOS** PRODUCCIÓN DESPLIEGUE **EXPLORACIÓN DEL MODELO** DESARROLLO **DE DATOS** VALIDACIÓN TRANSFORMACIÓN **DEL MODELO** Y SELECCIÓN CONSTRUCCIÓN **DEL MODELO**

Casos de Uso – Fomento de Uso de Líneas de Crédito

Pregunta de Negocio

¿Qué estrategias desarrollar para incentivar el uso de tarjeta de crédito en aquellos clientes que nunca la han usado?

Casos de Uso – Fomento de Uso de Líneas de Crédito

Consumo según lugar de residencia

Consumo según lugar de trabajo

Casos de Uso – Fomento de Uso de Líneas de Crédito

Fase 1 Cálculo de la probabilidad de Compra en instalaciones de Colsubsidio

Entrenamiento (70%)

Prueba (30%)

Modelo de Clasificación

(conjunto de entrenamiento)

- Regresión logística binomial
- Análisis Discriminante lineal
- Random Forest

Comparación de Modelos (Conjunto de Prueba)

Comparación de AUROC & F1
 Score.

Promedio armónico entre la sensibilidad y especificad

Selección de Modelo

Regresión Logística

Fase 2

Calculo de la UES de compra más probable

Partición

Entrenamiento (70%)

Prueba (30%)

Modelo de Clasificación

(conjunto de entrenamiento)

- Regresión logística multinomial
- KNN
- Elastic Net

Comparación de Modelos (Conjunto de Prueba)

Comparación de AUROC & F1
 Score.

Selección de Modelo

 Regresión logística multinomial Fase 3

Calculo del Convenio de compra más probable

Partición

Entrenamiento (70%)

Prueba (30%)

Modelo de Clasificación

(conjunto de entrenamiento)

- Regresión logística multinomial
- KNN
- Elastic Net

Comparación de Modelos (Conjunto de Prueba)

 Comparación de AUROC & F1 Score.

Selección de Modelo

KNN

Pregunta de Negocio

¿Qué estrategias desarrollar para incentivar el uso de tarjeta de crédito en aquellos clientes que nunca la han usado?

Pregunta de Negocio

¿Cuáles son los clientes que tendrían mejor respuesta a campañas de comunicación y promoción para los diferentes artículos ofrecidos por unas droguerías comerciales?

Los algoritmos de recomendación se basan en el producto punto entre dos vectores y en las fórmulas de correlación.

$$\vec{u} | \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

Correlación
$$sim(u,v) = \frac{\sum_{i=1}^{m} (r_{u,i} - r_{\vec{u}})(r_{v,i} - r_{\vec{v}})}{\sigma_u \sigma_v}$$

- Algoritmos de Recomendación Basado en Usuario
- Algoritmos de Recomendación Basado en Articulos

	Artículos o Productos					
Usuario	A	В			n	
1	1	1	0	0	0	
2	1	1	0	1	0	
3	1	0	1	0	1	
4	0	0	1	0	0	

En general, para un dataset con **n usuarios** y **m ítems**, para cada usuario se deben realizar **n-1 comparaciones**, en total **n(n-1).** En el peor de los casos cada comparación implica **m operaciones**

Métodos Basados en Densidades:

Buscan eliminar el supuesto de esfericidad de los datos. Sigue una forma de identificar clúster siguiendo el modo intuitivo en el que lo hace el cerebro humano, identificando regiones con alta densidad de observaciones separadas por regiones de baja densidad.

Métodos basados en distribuciones:

Considera que las observaciones proceden de una distribución (normal multivariante). En principio, cada clúster puede estar descrito por cualquier función de densidad, pero normalmente se asume que siguen una distribución multivariante normal.

Métodos Basados en Densidades:

Buscan eliminar el supuesto de esfericidad de los datos. Sigue una forma de identificar clúster siguiendo el modo intuitivo en el que lo hace el cerebro humano, identificando regiones con alta densidad de observaciones separadas por regiones de baja densidad.

Métodos basados en distribuciones:

Considera que las observaciones proceden de una distribución (normal multivariante). En principio, cada clúster puede estar descrito por cualquier función de densidad, pero normalmente se asume que siguen una distribución multivariante normal.

Con el fin de evaluar la calidad de un sistema de recomendación, es necesario particionar correctamente el conjunto de datos entre conjunto de entrenamiento y conjunto de prueba. En los sistemas de recomendación es usual el método *Holdout*.

Con el fin de determinar el modelo que otorga mejores rankings se utilizaran las siguientes métricas de evaluación

AUC: la probabilidad que para un usuario en particular, un ítem con interacción positiva esté en un ranking de recomendación superior a un artículo sin interacción

$$MRR = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{rango_i}$$

Los hiper parámetros de cada modelo son calibrados con el fin de maximizar ambas medidas

Pregunta de Negocio

¿Cuáles serían los clientes con mayor propensión a consumir los de productos o servicios en el dado y asimismo adquirir una membresía?

RFM - Análisis Total

Modelo de Clasificación:

Se propone modelar la probabilidad la intención de uso de alguno de los servicios propuestos para el dado, basados en los consumos individuales (para afiliados o beneficiarios) en alguno de los servicios similares ofrecidos actualmente.

Partición						
Entrenamiento	Prueba					
(70%)	(30%)					

Se utiliza una metodología OnevsAll con un Random Forest para estimar la probabilidad individual de cada servicio dados los consumos pasados y las demás covariables de la base

https://colsubsidio.shinyapps.io/Dados/

Se particiona la base de datos en conjunto de entrenamiento y validación con el fin de minimizar los errores de predicción del modelo

AUROC: 0,9127

		ACTIVIDADES DE APRENDIZAJE					
semana	TEMA	ACOMPAÑAMIENTO DE	TRABAJO				
		TEORÍA	PRÁCTICA	INDEPENDIENTE			
1	Presentaci •			NA			
	ón del	programático					
	curso •	7 10 01 01 01 0					
2,3,4,5	•	ripos de datos		TALLER			
	•	-00p3					
	Capítulo 1	Estructura de datos					
	Conceptos	Funciones.					
	básicos	Lotadiotica acoci iptiva)					
		tablas.					
	•	0.0000					
	•	Introducción a paquetes					
6	PRIMER PARCIAL						
7,8	•	Lectura de ficheros	SEGUNDA	TALLER			
	Capítulo 2 •	Análisis de ficheros	ENTREGA				
	Ficheros,	(Estructura)					
	limpieza y •	Data Wrangling					
	descripció •	Análisis descriptivo					
	n	(Descripción)					
	•	Visualización					
9,10	Capítulo 3						
	Segmentac •	KNN					
	ión						
11		SEGUNDO PARCIAL					
	•	conceptos, moderos de	LABORATORIO	ADELANTO			
12,13	Capítulo 4	regresión		PROYECTO			
12,13	Modeling •						
	•	1100100111001000					
14, 15, 16	•	matriz ac com asion	ADELANTO	ADELANTO			
	Capítulo 5	Métricas de resultados	PROYECTO	PROYECTO			
	Predicción	Análisis de resultados y					
	FIEUICCIOII	selección de modelos					
		PRESENTACIÓN FINAL					
		FRESENTACION FINAL					

7 de Septiembre

12 de Octubre → PreProyecto
19 de Octubre → Parcial 2

___ 16 de Noviembre → Proyecto
23 de Noviembre → Examen Final

Evaluación

