Math 2001 Homework 7

Section 10.6 all exercises (1–4)

Due: Wednesday, 3 April 2019 (start of class)

- 1. In a first-order language with a binary relation, R(x, y), consider the following sentences:
 - $\exists x \ \forall y \ R(x,y)$
 - $\exists y \ \forall x \ R(x,y)$
 - $\forall x, y \ (R(x,y) \land x \neq y \rightarrow \exists z \ (R(x,z) \land R(z,y) \land x \neq z \land y \neq z))$

For each of the following structures, determine whether of each of those sentences is true or false.

- the structure (\mathbb{N}, \leq) , that is, the interpretation in the natural numbers where R is <
- the structure (\mathbb{Z}, \leq)
- the structure (\mathbb{Q}, \leq)
- the structure $(\mathbb{N}, |)$, that is, the interpretation in
- ullet the natural numbers where R is the "divides" relation
- the structure $(P(\mathbb{N}),\subseteq)$, that is, the
- interpretation where variables range over sets of natural numbers,
- where R is interpreted as the subset relation.
- 2. Create a 4 x 4 "dots" world that makes all of the following sentences true:
 - $\forall x \ (green(x) \lor blue(x))$
 - $\exists x, y \ (adj(x, y) \land green(x) \land green(y))$
 - $\exists x \ (\exists z \ right-of(z,x) \land \forall y \ (left-of(x,y) \rightarrow blue(y) \lor small(y)))$
 - $\forall x (large(x) \rightarrow \exists y (small(y) \land adj(x,y)))$
 - $\forall x \ (green(x) \to \exists y \ (same\text{-}row(x,y) \land blue(y)))$
 - $\forall x, y \ (same\text{-}row(x, y) \land same\text{-}column(x, y) \rightarrow x = y)$
 - $\exists x \ \forall y \ (adj(x,y) \rightarrow \neg same\text{-}size(x,y))$
 - $\forall x \; \exists y \; (adj(x,y) \land same\text{-}color(x,y))$
 - $\exists y \ \forall x \ (adj(x,y) \rightarrow same\text{-}color(x,y))$
 - $\exists x \ (blue(x) \land \exists y \ (green(y) \land above(x,y)))$
- 3. Fix a first-order language L, and let A and B be any two sentences in L. Remember that $\vDash A$ means that A is valid. Unpacking the definitions, show that if $\vDash A \land B$, then $\vDash A$ and $\vDash B$.
- 4. Give a concrete example to show that $\vDash A \lor B$ does not necessarily imply $\vDash A$ or $\vDash B$. In other words, pick a language L and choose particular sentences A and B such that $A \lor B$ is valid but neither A nor B is valid.