Imagini de TEST:

Metoda A:

Daca aplicam algoritmul folosind indivizi cu o singura figura atunci toti indivizii vor tinde la o figura care are fitness-ul cat mai bun, astfel ca in final vom avea toti indivizii foarte asemanatori, suprapunandu-se si neaducand un plus de informatie imaginii:

Folosind dreptunghiuri pentru floare:

NR_SHAPES = 1 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.9 MUTATED_SHAPES = 0.3 MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] crossover = random

Folosind elipse pentru floare:

NR_SHAPES = 1 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.6 MUTATED_SHAPES = 1 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2]

Folosind elipse pentru Mona Lisa:

 $NR_SHAPES = 1 \\ MIN_AREA = 5 \\ MAX_AREA = 15 \\ NR_GUYS = 100 \\ NR_GUYS_SAVED = 0.6 \\ MUTATED_SHAPES = 1 \\ MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \\ MUTATED_SHAPES = 1 \\ MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \\ MUTATED_SHAPES = 1 \\ MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \\ MUTATED_SHAPES = 1 \\ MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \\ MUTATED_SHAPES = 1 \\ MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \\ MUTATION_PROB = [0.01, 0.05, 0.2] \\ MUTAT$

Metoda B:

Metoda B are rezultate mult mai bune deoarece functia de fitness tine cont de toate figurile care formeaza imaginea.

Folosind dreptunghiuri pentru floare:

Cel mai bun rezultat a fost obtinut folosind parametrii:

$NR_SHAPES = 50 \mid MIN_AREA = 5 \mid MAX_AREA = 15 \mid NR_GUYS = 100 \mid NR_GUYS_SAVED = 0.3$ $MUTATED_SHAPES = 0.1 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random$

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES = 0.1 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES = 0.1 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.1 MUTATED_SHAPES = 0.1 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 50 MIN_AREA = 3 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.1 MUTATED_SHAPES = 0.1 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.7 MUTATED_SHAPES = 0.1 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 30 MIN_AREA = 3 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.7 MUTATED_SHAPES = 0.1 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = rendom

$\label{eq:nr_shapes} $$NR_SHAPES = 50 \mid MIN_AREA = 5 \mid MAX_AREA = 15 \mid NR_GUYS = 100 \mid NR_GUYS_SAVED = 0.3 \\ MUTATED_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $NR_SHAPES = 0.3 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = [0.01, 0.05, 0.2] \mid crossover = [0.01, 0.05, 0.2] \mid crosso$

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES = 0.3 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES = 0.3 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

$NR_SHAPES = 50 \mid MIN_AREA = 5 \mid MAX_AREA = 15 \mid NR_GUYS = 100 \mid NR_GUYS_SAVED = 0.7$ $MUTATED_SHAPES = 0.7 \mid MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] \mid crossover = random$

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.7 MUTATED_SHAPES = 0.7 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 50 MIN_AREA = 3 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.7 MUTATED_SHAPES = 0.7 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 500 | MIN_AREA = 5 | MAX_AREA = 15 | NR_GUYS = 100 | NR_GUYS_SAVED = 0.3 | MUTATED_SHAPES = 0.3 | MUTATED_SHAPES = 0.3 | MUTATION_PROB = [0.01, 0.05, 0.1, 0.2]

NR_SHAPES = 500 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS SAVED = 0.3 MUTATED_SHAPES =

NR_SHAPES = 500 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES = 0.3 MUTATED_SHAPES = 0.3 MUTATED_PROB = [0.01, 0.05, 0.1, 0.2]

Folosind dreptunghiuri pentru Mona Lisa:

NR_SHAPES = 300 | MIN_AREA = 30 | MAX_AREA = 50 | NR_GUYS = 100 | NR_GUYS_SAVED = 0.3 | MUTATED_SHAPES = 0.3 | MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] | crossover = random

1_SHAPES = 300 MIN_AREA = 30 MAX_AREA = 50 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES = 0.3 MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] crossover = random Mo

1_SHAPES = 300 MIN_AREA = 30 MAX_AREA = 50 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES = 0.3 MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] crossover = random Ma

Folosind dreptunghiuri pentru Mona Lisa:

 $\label{eq:nr_shapes} $$NR_SHAPES = 50 \mid MIN_AREA = 5 \mid MAX_AREA = 15 \mid NR_GUYS = 100 \mid NR_GUYS_SAVED = 0.31 \\ MUTATED_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = random \\ $$NR_SHAPES = 0.3 \mid MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] \mid crossover = crossov$

NR SHAPES = 50 MIN AREA = 5 MAX AREA = 15 NR GUYS = 100 NR GUYS SAVED = 0.31 MUTATED SHAPES = 0.3 MUTATION PROB = [0, 0.01, 0.05, 0.1, 0.2] crossover = random

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.31 MUTATED_SHAPES = 0.3 MUTATION_PROB = [0, 0.01, 0.05, 0.1, 0.2] crossover = random

$\label{eq:nr_shapes} $$NR_SHAPES = 50 \mid MIN_AREA = 5 \mid MAX_AREA = 15 \mid NR_GUYS = 100 \mid NR_GUYS_SAVED = 0.3 \\ MUTATED_SHAPES = 0.3 \mid MUTATION_PROB = [0.05, 0.1, 0.2]$

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES =

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.3 MUTATED_SHAPES =

$NR_SHAPES = 50 \mid MIN_AREA = 5 \mid MAX_AREA = 15 \mid NR_GUYS = 100 \mid NR_GUYS_SAVED = 0.05$ MUTATED_SHAPES = 0.1 | MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] | crossover = random

NR_SHAPES = 50 MIN_AREA = 5 MAX_AREA = 15 NR_GUYS = 100 NR_GUYS_SAVED = 0.05 MUTATED_SHAPES = 0.1 MUTATION_PROB = [0.01, 0.05, 0.1, 0.2] crossover = random

