Biberg model: implementation details

The layout of the algorithm for obtaining the wall and interfacial friction values using Biberg friction model is explained in two alternative ways using pseudo-codes. The first one (Algorithm 1) uses fixed point iteration to minimize the difference between the wall to interface friction ratios for both the phases whereas in the second one (Algorithm 2) a more robust formulation using the no slip condition between the phases. It yields a F(x)=0 type formulation and can be solved using any root search algorithm like Newton-Raphson/Brent's method .

Algorithm 1: Biberg model implementation: Fixed point iteration

- 1. Take an initial guess τ_l , τ_g and τ_{lg} from Churchill correlation.
- 2. Calculate $K_{\rm g}$ and $K_{\rm l}$ using Equation (1).
- 3. Set a check variable named convergence = 0 and define a maximum iteration number.

while \sim convergence && iter \leq max iter do

- 4. Calculate $R_{\rm g}$ and $R_{\rm l}$ using Equation (4).
- 5. Calculate Δ_{il} and Δ_{ig} from Equation (6) by using the values of K_g , K_l and R_g , R_l calculated in step 2, 4 and setting Y = 0 for the interface.
- 6. Obtain Λ_g , Ψ_g , Λ_l , Ψ_l using Equation (7) and Equation (8) with the values of K_g , K_l and R_g , R_l calculated in step 2 and 4.
- 7. Calculate Λ_{Pois} , $\Lambda_{g,F}$, $\Lambda_{l,F}$ from Equation (9).
- 8. Calculate effective diameter and corresponding Reynold's number for gas and liquid from Equation (10).
- 9. Calculate $\lambda_{\rm g}$, $\lambda_{\rm l}$, $\tau_{\rm g}$, $\tau_{\rm l}$ and $\tau_{\rm lg}$ from Equation (11).
- 10. Recalculate $R_{\rm g}$ and $R_{\rm l}$ using Equation (4) with updated $\tau_{\rm g}$, $\tau_{\rm l}$ and $\tau_{\rm lg}$ values.
- 11. iter = iter + 1.
- 12. Check the convergence criteria $|R_{\rm g} R_{\rm g,old}| \le 1e^{-12}$ && $|R_{\rm g} R_{\rm g,old}| \le 1e^{-12}$ and set convergence = 1 if that's satisfied.

end

Biberg model: implementation details Contd.

Algorithm 2: Biberg model implementation: implicit approach using no-slip between phases

- 1. Invoke the function biberg_noslip with a variable $R_{\rm g}$ along with the known values of $A_{\rm g}$, $A_{\rm l}$, $u_{\rm g}$, $u_{\rm l}$ and CC.
- 2. This call to biberg_noslip returns a univariate function (function of R_g) handle bib_noslip as the first output argument in the following steps:
- 3. Set a check variable named interface_limit

$\mathbf{while} \sim \mathtt{interface}$ limit \mathbf{do}

- 4. Calculate K_g and K_l using Equation (1).
- 5. $R_{\rm g}$ acts as the input variable to the function call.
- 6. Calculate Δ_{ig} from Equation (6) by using the values of K_g calculated in step 4 and variable R_g by setting Y = 0 for the interface.
- 7. Obtain $\Lambda_{\rm g},\,\Psi_{\rm g}$ using Equation (7) and Equation (8) with the values of $K_{\rm g}$ and variable $R_{\rm g}$
- 8. Calculate Λ_{Pois} , $\Lambda_{g,F}$ and $\Lambda_{l,F}$ from Equation (9).
- 9. Calculate effective diameter and corresponding Reynold's number for gas phase from Equation (10).
- 10. Calculate $\lambda_{\rm g}$ and $\tau_{\rm g}$ from Equation (11).
- 11. Obtain τ_{lg} from the definition of R_g in Equation (4) using the value of τ_g .
- 12. Calculate $R_{\rm l}$ from the obtained value of $\tau_{\rm g}$ and variable $R_{\rm g}$ using Equation (5).
- 13. Calculate Δ_{il} from Equation (6) by using the values of K_l (from step 4) and R_l (calculated in step 12) by setting Y = 0 for the interface.
- 14. Obtain Λ_l , Ψ_l using Equation (7) and Equation (8) with the values of K_l and R_l .
- 15. Calculate effective diameter and corresponding Reynold's number for liquid phase from Equation (10).
- 16. Calculate λ_l and τ_l from Equation (11).
- 17. Calculate the residual in the no-slip condition using Equation (12). This is the univariate function of R_g .
- 18. Calculate $K_{g,min}$ and $K_{l,min}$ with the obtained value of τ_{lg} using Equation (2).
- 19. Check the smooth interface criteria $K_{\rm g,min} \leq K_{\rm g}$ && $K_{\rm l,min} \leq K_{\rm l}$ and set interface_limit = 1 if that's satisfied.

end

- 20. This residual function can be solved for $R_{\rm g}$ using any root search algorithm like Newton-Raphson/Brent's method.
- 21. Call the function biberg_noslip again with the known value of R_g to obtain the friction values τ_g , τ_l and τ_{lg} .

Appendix: relevant equations for Biberg model

• Interfacial turbulence parameter

$$\kappa = 0.40$$

$$B = 5.5$$

$$K_{g,B0} = \frac{0.065\rho_{g}(u_{g} - u_{l})^{2}}{(\rho_{l} - \rho_{g})g\cos\phi h_{g}};$$

$$K_{l,B0} = 10\sqrt{\frac{\rho_{g}}{\rho_{l}}} \left| \frac{(u_{g} - u_{l})}{u_{l}} \right|.$$

$$(1)$$

$$K_{\text{g,min}} = \frac{\mu_{\text{g}}}{\rho_{\text{g}}} \frac{\exp(-\kappa B)}{\sqrt{\frac{|\tau_{\text{g}}|}{\rho_{\text{g}}}} h_{\text{g}}};$$

$$K_{\text{l,min}} = \frac{\mu_{\text{l}}}{\rho_{\text{l}}} \frac{\exp(-\kappa B)}{\sqrt{\frac{|\tau_{\text{lg}}|}{\rho_{\text{l}}}} h_{\text{l}}}.$$

$$(2)$$

$$K_{g,B} = \max(K_{g,B0}, K_{g,min});$$

$$K_{l,B} = \max(K_{l,B0}, K_{l,min}).$$

$$(3)$$

· Shear ratio

$$R_{\rm g} = \frac{\tau_{\rm lg}}{\tau_{\rm g}}$$
 ; $R_{\rm l} = -\frac{\tau_{\rm lg}}{\tau_{\rm l}}$.

$$G = \frac{(\rho_{\rm l} - \rho_{\rm g}) Ag \sin \phi}{R_{\rm g}\tau_{\rm g}} \quad ; \qquad R_{\rm l} = -\frac{\alpha_{\rm g}R_{\rm g}P_{\rm l}}{\alpha_{\rm l}P_{\rm g} + R_{\rm g} \left(P_{\rm lg} - \alpha_{\rm g}\alpha_{\rm l}G\right)}.$$
 (5)

• Model coefficients for calculating effective diameter

$$\Delta(Y,R,K) = \ln(1-Y) + \frac{(K^3 + R^3) \ln[Y + K(1-Y)]}{|R|^{5/2} - K^3} + \frac{(R + \sqrt{|R|}) \sqrt[3]{|R|} \ln[Y + |R|^{5/6} (1-Y)]}{3(K - |R|^{5/6})} - \frac{(R + \sqrt{|R|})(K + 2|R|^{5/6}) \sqrt[3]{|R|} \ln[Y^2 - (1-Y)(Y - (1-Y)|R|^{5/6})|R|^{5/6}]}{6(K^2 + |R|^{5/6}K + |R|^{5/3})} + \frac{K(R + \sqrt{|R|}) \sqrt[3]{|R|}}{\sqrt{3}(K^2 + |R|^{5/6}K + |R|^{5/3})} \tan^{-1} \left[\frac{2(Y - 1)|R|^{5/3} + (2Y - 1)|R|^{5/6} + 2Y)}{\sqrt{3}|R|^{5/6}} \right];$$
(6)

$$\begin{split} &\Lambda(R,K) = \frac{5(R+\sqrt{|R|})(|R|^{5/2}+K^2+K)R^2\ln(|R|)}{6(K^3-|R|^{5/2})(|R|^{5/2}-1)} \\ &-\frac{K(K^3+R^3)\ln(K)}{(K-1)(K^3-|R|^{5/2})} + \frac{(R+\sqrt{|R|})\sqrt[3]{|R|}}{\sqrt{3}(|R|^{5/3}+|R|^{5/6}+1)(K^2+|R|^{5/6}K+|R|^{5/3})} \\ &\left\{ (K-|R|^{5/3})\tan^{-1}\left[3^{-1/2}(1+2|R|^{-5/6})\right] - \left[K+(K+1)|R|^{5/6}\right]|R|^{5/6}\tan^{-1}\left[3^{-\frac{1}{2}}(2|R|^{5/6}+1)\right]\right\}; \end{split}$$

$$\Psi(R,K) = \frac{K(R+\sqrt{|R|})\sqrt[3]{|R|}}{\sqrt{3}(K^2+|R|^{5/6}K+|R|^{5/3})} \tan^{-1}\left(\frac{1+\frac{2}{|R|^{5/6}}}{\sqrt{3}}\right).$$
(8)

· Correlations for free surface flow and Poiseuille flow

$$K_{l,F} = 0.56;$$

$$\Lambda_{Pois} = \frac{2}{27} (2\sqrt{3}\pi + 9);$$

$$\Lambda_{g,F} = 0;$$

$$\Lambda_{l,F} = \frac{K_{l,F} \ln(K_{l,F})}{1 - K_{l,F}}.$$

$$(9)$$

• Effective pipeflow diameter

$$F_{\rm g} = \frac{\Lambda_{\rm g} + \Psi_{\rm g} - \Lambda_{g,F}}{\Lambda_{\rm Pois} - \Lambda_{g,F}};$$

$$F_{\rm l} = \frac{\Lambda_{\rm l} + \Psi_{\rm l} - \Lambda_{l,F}}{\Lambda_{\rm Pois} - \Lambda_{l,F}};$$

$$D_{\rm eff,g} = 4\frac{A_{\rm g}}{P_{\rm g}} \left(\frac{P_{\rm g}}{P_{\rm g} + P_{\rm lg}}\right)^{F_{\rm g}};$$

$$D_{\rm eff,l} = 4\frac{A_{\rm l}}{P_{\rm l}} \left(\frac{P_{\rm l}}{P_{\rm l} + P_{\rm lg}}\right)^{F_{\rm l}};$$

$$Re_{\rm g} = \frac{\rho_{\rm g} D_{\rm eff,g} |u_{\rm g}|}{\mu_{\rm g}};$$

$$Re_{\rm l} = \frac{\rho_{\rm l} D_{\rm eff,l} |u_{\rm l}|}{\mu_{\rm l}}.$$

• Wall and interfacial shear stress

$$\frac{1}{\sqrt{\lambda_{g0}}} = -1.8 \log_{10} \left(\frac{6.9}{Re_{g}} + \left(\frac{k_{s}}{3.7D} \right)^{1.11} \right);$$

$$\frac{1}{\sqrt{\lambda_{l0}}} = -1.8 \log_{10} \left(\frac{6.9}{Re_{g}} + \left(\frac{k_{s}}{3.7D} \right)^{1.11} \right);$$

$$\frac{1}{\sqrt{\lambda_{g}}} = \frac{\frac{5.02}{Re_{g}\sqrt{\lambda_{g0}}} - 4.6 \left(\frac{2.51}{Re_{g}\sqrt{\lambda_{g0}}} + \frac{k_{s}}{3.7D} \right) \log_{10} \left(\frac{2.51}{Re_{g}\sqrt{\lambda_{g0}}} + \frac{k_{s}}{3.7D} \right)}{\frac{5.02}{Re_{g}} + 2.3 \left(\frac{2.51}{Re_{l}\sqrt{\lambda_{l0}}} + \frac{k_{s}}{3.7D} \right)};$$

$$\frac{1}{\sqrt{\lambda_{l}}} = \frac{\frac{5.02}{Re_{l}\sqrt{\lambda_{l0}}} - 4.6 \left(\frac{2.51}{Re_{l}\sqrt{\lambda_{l0}}} + \frac{k_{s}}{3.7D} \right) \log_{10} \left(\frac{2.51}{Re_{l}\sqrt{\lambda_{l0}}} + \frac{k_{s}}{3.7D} \right)}{\frac{5.02}{Re_{l}} + 2.3 \left(\frac{2.51}{Re_{l}\sqrt{\lambda_{l0}}} + \frac{k_{s}}{3.7D} \right)};$$

$$\tau_{g} = \frac{1}{8} \lambda_{g} \rho_{g} |u_{g}| u_{g};$$

$$\tau_{l} = \frac{1}{8} \lambda_{l} \rho_{l} |u_{l}| u_{l};$$

$$|\tau_{lg}| = \frac{\kappa^{2} \rho_{g} \rho_{l} |R_{g} R_{l}| (u_{g} - u_{l})^{2}}{\left[\operatorname{sgn}(u_{g})(\Lambda_{g} - \Delta_{ig})\sqrt{\rho_{l} |R_{l}|} - \operatorname{sgn}(u_{l})(\Lambda_{l} - \Delta_{il})\sqrt{\rho_{g} |R_{g}|} \right]^{2}}.$$

• Residual in no-slip condition

residual_noslip =
$$\operatorname{sgn}(u_{g}) \frac{\sqrt{\frac{|\tau_{g}|}{\rho_{g}}}}{\kappa} (\Lambda_{g} - \Delta_{ig}) - \operatorname{sgn}(u_{l}) \frac{\sqrt{\frac{|\tau_{l}|}{\rho_{l}}}}{\kappa} (\Lambda_{l} - \Delta_{il})$$
 } (12)