Revision of Lecture Two

- Factors causing **power lost**: propagation path loss, slow (large-scale) fading, and fast (small-scale) fading
 - Power budget rule:

$$\begin{split} P_{\mathsf{Tx}} &= P_{\mathsf{Rx}} + L_{\mathsf{total}} \\ L_{\mathsf{total}} &= L_{\mathsf{pathloss}} + L_{\mathsf{slow}} + L_{\mathsf{fast}} \end{split}$$

- Collaborative or relaying communication as seeing from simple model for receive signal power
- Two killer factors in mobile medium:
 - **Doppler spread**: time-varying nature of channel causes frequency dispersion, and a physical dimension/quantity Doppler frequency f_D
 - Multipath: which causes time dispersion, and a physical dimension/quantity excess delay au
- We will have in-depth look into these two phenomenas

Doppler Spread: Physics

- Mobile medium is hostile environment for communication, and one reason is channel
 is nonstationary or time-varying
 - Famous Doppler effect: moving changes frequency
 - Time varying nature of channel hence broadens signal spectrum
 - We have a new physical dimension or quantity called Doppler frequency f_{D}
- Recall in Digital Coding and Transmission, we learnt that signal spectrum must be strictly shaped
 - But Doppler effect may seriously destroy this careful shaped signal spectrum
- To fully understand the effects of this physical phenomena, we need to know distribution of signal power in the Doppler-frequency domain
 - Power spectral density (PSD) in Doppler frequency, or Doppler spectrum,
 characterises this spectrum broadening caused by time-varying nature of channel

Doppler Frequency: Derivation

- Consider mobile station (MS) moving at speed v:
 - Moving "changes" frequency → Doppler shift
 - Assuming far-away base station (BS) and incident EM waves are "parallel"
- Difference in path lengths from BS to MS is $\Delta l = d\cos\theta = v\Delta t\cos\theta$

• Let λ be wavelength, then phase change in received signal due to difference in path lengths is:

$$\Delta \phi = \frac{2\pi \Delta l}{\lambda} = \frac{2\pi v \Delta t \cos \theta}{\lambda}$$

• **Doppler frequency** is defined as rate of phase change due to moving:

$$f_D = \frac{1}{2\pi} \frac{\Delta \phi}{\Delta t} = \frac{v}{\lambda} \cos \theta = f_m \cos \theta$$

- f_m is the maximum Doppler frequency, unit in [Hz]
- ullet The arrival angle heta can be viewed as uniformly distributed

$$PDF(\theta) = \frac{1}{2\pi}, \quad 0 \le \theta \le 2\pi$$

- **Doppler frequency** $f_D = f_m \cos \theta$ is then cosine distributed

Doppler Spectrum: Math Model

• Received power in $d\theta$ around θ is proportional to $\frac{|d\theta|}{2\pi}$ (absolute operation as power ≥ 0), and

$$\frac{d\cos^{-1}x}{dx} = -\frac{1}{\sqrt{1-x^2}}, -1 \le x \le 1$$

• **Doppler power spectrum density**: (absolute operation because power ≥ 0)

$$S(f_D) \propto \frac{1}{2\pi} \left| \frac{d\theta}{df_D} \right| = \frac{1}{2\pi} \left| \frac{d(\cos^{-1}(f_D/f_m))}{df_D} \right| \quad \text{or} \quad S(f_D) = \frac{C}{\sqrt{1 - (f_D/f_m)^2}}$$

- Implications: frequency dispersion
 - Single frequency f_c broadened to a spectrum (f_c-f_m,f_c+f_m)

$$x(t) = a\cos\left(2\pi f_c + \varphi\right) \Rightarrow X(f) = \delta(f - f_c) \text{ and } X(f) \star S(f_D) = S(f - f_D)$$

– Signal with bandwidth $B_p=2B$ centred at f_c broadened to a bandwidth approximately $2B+2f_m$

Doppler Spread

- **Doppler spread** B_D is defined as the "bandwidth" of Doppler spectrum. It is a measure of spectral broadening caused by the time varying nature of the channel
- Coherence time $T_C \propto \frac{1}{B_D}$ is used to characterise the time varying nature of the frequency dispersion of the channel in time domain
- Fading effects due to Doppler spread: determined by mobile speed and signal bandwidth. Let baseband signal bandwidth be B_S and symbol period T_S , then
 - "Slow fading" channel: $T_S \ll T_C$ or $B_S \gg B_D$, signal bandwidth is much greater than Doppler spread, and effects of Doppler spread are negligible
 - "Fast fading" channel: $T_S > T_C$ or $B_S < B_D$, channel changes rapidly in during one symbol period T_S
- Here slow and fast fading are used to describe relationship between time rate of change in the channel and in the transmitted signal
 - Do not confuse with slow (large-scale) and fast (small-scale) fadings in propagation pathloss model

Normalised Doppler Frequency

- Velocity of mobile and signal bandwidth determine whether a signal undergoes fast or slow fading
 - i.e. ratio of Doppler bandwidth over signal bandwidth determines fast or slow fading
- Fading rate describes the relationship between rate of change in channel and rate of change in signal
 - Rate of change in channel is specified by velocity of mobile v and carrier frequency f_c , as characterised in the (maximum) Doppler frequency

$$f_m = \frac{v}{\lambda} = \frac{v \cdot f_c}{c}$$
, λ being wavelength, c being speed of light

- As signal bandwidth is much smaller than f_c , Doppler spread is approximately f_m
- Rate of change in signal is specified by symbol rate or symbol period T_s
- Often normalised Doppler frequency is used to specify fading rate

$$\bar{f}_m = f_m \cdot T_s$$

- $\bar{f}_m=10^{-6}$ is considered very slow fading, $\bar{f}_m=10^{-4}$ quite fast
- Example: Carrier frequency of 1 GHz \to wavelength $\lambda=c/f_c=3\cdot 10^8/10^9=0.3$ m User velocity of 10 m/s (36 km/h) and $\lambda=0.3$ m \to Doppler frequency $f_m=v/\lambda\approx 33$ Hz At symbol rate of 3.3 Msymbols/s, the normalised Doppler frequency becomes $\bar{f}_m=f_m\cdot T_s=33/(3.3\cdot 10^6)=10^{-5}$

Multipath: Physics

- Mobile medium is hostile environment for communication, and one reason is multipath distortion
 - EM wave propagation by reflection, diffraction and scattering, copies of signal arrives at receiver with different attenuations, phase shifts and delays
 - We have a new physical quantity or dimension called excess delay au
- Depend on ratio of this excess delay and symbol period, channel may be dispersive

- Recall in Digital Coding and Transmission, we learnt that pulse shaping achieves zero ISI, but multipath distortion may simply destroy it
- To fully understand the effects of this physical phenomena, we need to know distribution of channel/signal power in the excess-delay domain
 - PSD in excess delay, or power delay profile, characterises this time dispersion

Impulse Response of Multipath Channels

- ullet Multipath causes time dispersion, as described by bandpass CIR h(t, au)
 - As channel can be time-varying, time t is needed, and τ is multipath delay
 - Generally, $h(t,\tau)$ is a function of two inputs t and au
- Let equivalent baseband complex-envelope channel impulse response be $h_B(t,\tau)$

$$h_B(t,\tau) = \sum_{i=0}^{N-1} a_i(t,\tau) \exp(-j\theta_i(t,\tau)) \delta(\tau - \tau_i(t))$$

- $h_B(t,\tau)$ a three-D surface with two inputs: time and excess delay
- Useful to discretize τ into delay bins, each bin represents a multipath component
- $a_i(t,\tau)$, $\theta_i(t,\tau)$ and $\tau_i(t)$ are amplitude, phase shift and excess delay of ith multipath component, respectively

Channel Impulse Response: Dispersion

- Interpretation of $h_B(t,\tau)$: there are N multipaths, i.e. there are N copies of transmitted signal arriving at the receiver
- At time t, each copy arrives at the receiver with a different amplitude $a_i(t,\tau)$, goes through a different phase shift $\theta_i(t,\tau)$ and has a different excess delay $\tau_i(t)$
- Excess delay τ is function of t, amplitude is function of t and τ , phase shift is function of t and τ , and they are stochastic processes
- A special case is the time invariant channel, where

$$h_B(\tau) = \sum_{i=0}^{N-1} a_i \exp(-j\theta_i) \delta(\tau - \tau_i)$$

 θ_i : uniformly distributed, a_i : Rayleigh distributed, τ_i : Poisson distributed

Multipath causes time dispersion and results in intersymbol interference

Power Delay Profile

- Power delay profile $P(\tau)$: channel power spectral density as a function of excess delay, i.e. how channel power is distributed along dimension excess delay τ
- Consider a local area around a spatial position, averaging $|h_B(t,\tau)|^2$ over time gives rise to $P(\tau)$
- Specifically, $P(\tau)$ is Fourier transform of autocorrelation function of $h_B(t,\tau)$
- ullet Power delay profile: two-D curve over au

- Power delay profile or power spectral density has "properties" of probability density function, so one can talks about moments of the underlying "stochastic process"
 - Again, it is useful to discretize excess delay au into bins

Power Delay Profile: Statistics

• Mean excess delay is defined as the first moment of power delay profile, and in general

$$\bar{\tau} = \frac{\int P(\tau) \, \tau \, d\tau}{\int P(\tau) \, d\tau}$$

but with discretized excess delay

$$\bar{\tau} = \frac{\sum_{i} P(\tau_i) \tau_i}{\sum_{i} P(\tau_i)}$$

• Root mean square (RMS) delay spread is defined as the square root of the second central moment of power delay profile:

$$\sigma_{\tau} = \sqrt{\bar{\tau^2} - (\bar{\tau})^2}$$

where with discretized excess delay the second moment is given by

$$\bar{\tau^2} = \frac{\sum_i P(\tau_i) \tau_i^2}{\sum_i P(\tau_i)}$$

- Coherence bandwidth is a measure of the range of frequencies over which the channel is "flat"
 (i.e. passing spectral components with approximately equal gain and linear phase)
 - Coherence bandwidth $\propto \frac{1}{\sigma_T}$, and 50% coherence bandwidth is defined as:

$$B_C pprox rac{1}{5\sigma_{ au}}$$

Angle Power Spectrum

- With antenna array sampling space, we may also consider power distribution in spatial or angular domain
- Angle power spectrum defines average power as a function of angle θ (angle-of-arrival for receive antenna and angle-of-departure for transmit antenna)

- \bullet Similar to delay power profile, we can define mean angle θ and RMS angle spread σ_{θ}
- ullet Angle spread causes space selective fading o signal amplitude depends on spatial location of antenna/signals
- Coherence distance D_C is spatial separation for which autocorrelation coefficient of spatial fading drops to 0.7 $D_c \propto \frac{1}{-}$

Scattering Functions

- Complete channel statistics are captured in a triple scattering function: Doppler-angle-delay scattering function $S(f_D, \theta, \tau)$, four-D surface of three inputs
- Doppler-delay and angle-delay scattering functions $S(f_D,\tau)$ and $S(\theta,\tau)$ are two most widely used three-D marginal spectra

• Doppler, delay and angle power spectra $S(f_D)$, $P(\tau)$ and $S(\theta)$ are three two-D **marginal spectra** of single input, related to scattering function $S(f_D, \theta, \tau)$, e.g.

$$S(f_D) = \int \int S(f_D, \theta, \tau) d\theta d\tau, \ P(\tau) = \int \int S(f_D, \theta, \tau) df_D d\theta$$

Summary

- Mobile channels are hostile due to:
 - Doppler spread which causes frequency dispersion
 - Multipath which causes time dispersion
- Doppler spectrum: speed broadens signal spectrum
 - Doppler PSD (spectrum): Doppler spread, and coherence time
 - What are **slow** and **fast** fading channels, and normalised Doppler frequency
- Multipath: excess delays of different copies of signal arrived
 - Power delay profile: mean excess delay, RMS delay spread, coherence bandwidth
- Complete characterisation of channel: Doppler-angle-delay scattering function
 - Doppler spectrum, power delay profile and angle power spectrum are its marginal spectra
 - Angle power spectrum: RMS angle spread, and coherence distance

