ANOVA ANalysis Of VAriance

ANOVA

- ANOVA is a statistical method used to compare the means of 2 or more groups
- t-test can be used to compare 2 groups

ANOVA Hypotheses

Null hypothesis: Groups means are equal (no variation in means of groups)

$$H_0: \mu_1 = \mu_2 = ... = \mu_p$$

 Alternative hypothesis: At least, one group mean is different from other groups H₁: All μ are not equal

Assumptions

- The observations are obtained independently and randomly from the population defined by the factor levels
- The data for each factor level is normally distributed
- Independence of cases: the sample cases should be independent of each other
- Homogeneity of variance: Homogeneity means that the variance among the groups should be approximately equal

Types of ANOVA

One Way Anova

- One-way ANOVA is generally the most used method of performing the ANOVA test. It is also referred to as one-factor ANOVA, between-subjects ANOVA, and an independent factor ANOVA.
- It is used to compare the means of two independent groups using the F-distribution.

Two-way ANOVA

- Two-way ANOVA is carried out when you have two independent variables. It is an extension of one-way ANOVA.
- You can use the two-way ANOVA test when your experiment has a quantitative outcome and there are two independent variables.

Two-way ANOVA

- Two-way ANOVA with replication
- It is performed when there are two groups and the members of these groups are doing more than one thing
- Two-way ANOVA without replication
- This is used when you have only one group but you are double-testing that group.

N-Way ANOVA

A researcher can also use more than two independent variables, and this is an n-way ANOVA (with n being the number of independent variables you have), aka MANOVA Test.

Advantages of MANOVA vs. ANOVA

Multiple Dependent Variables

The MANOVA can measure multiple dependent variables, while the ANOVA only allows for one

Simultaneous testing

- Because the MANOVA tests multiple dependent variables at once, you're testing the effects of the independent variables simultaneously.
- Running multiple ANOVA tests on each variable not only takes more time, but increases the risk of type I statistical errors.

Disadvantages of MANOVA vs. ANOVA

The test is more complex to run than a single ANOVA, and your results can be more ambiguous

• One degree of freedom is lost with the addition of each new variable.