(k, h)-segmentation

Aristides Gionis and Heikki Mannila

Basic Research Unit

Helsinki Institute for Information Technology

Department of Computer Science, University of Helsinki, Finland

Recurrent sources

Movivation

(k,h)-segmentation

HMMs

Information theoretic

Statistical testing

MCMC

00001000001110111110010001001111101111

(k,h)-segmentation

- Given sequence $S = a_1, a_2, \dots, a_n$
- We want to find k segments
- But only h < k different segment types are allowed
- ullet Each of the k segments should be assigned to one of the h types
- ullet Find the best segmentation into k segments, the h types, and the assignment of each segment to one type

(k,h)-segmentation: problem definition

- ullet Assume piecewise constant representation, and L_2^2
- Given sequence $S = a_1, a_2, \dots, a_n$
- We want to find
 - partition of S into k segments S_1,\ldots,S_k ,
 - -h levels l_1,\ldots,l_h
 - assignment of segment j to level $l_j \in \{l_1, \ldots, l_h\}$

in order to minimize the total error

$$R[n, k, h] = \sum_{j=1}^{k} \sum_{i=b_j}^{e_j} (a_i - l_j)^2$$

Example

Example: k = 3 and h = 3

Example: k = 3 and h = 2

Some facts about the (k, h)-segmentation problem

- NP-Complete problem for multidimensional data (d > 1), w.r.t. L_1 and L_2 (contrast with k-segmentation, which is polynomial)
- Generalizes k-segmentation and clustering
 - k-segmentation: h = k
 - clustering: k = n
- Simple approximation algorithms that combine the above two subproblems
 - d=1: 3-approximation for L_1 , 5-approximation for L_2^2
 - -d>1: $(3+\epsilon)$ -approximation for L_1 , $(1+4\alpha^2)$ -approximation for L_2^2 , where α is the best approximation factor for k-means clustering problem

ClusterSegments algorithm

- Solve k-segmentation problem and obtain segments S_1, \ldots, S_k
- Consider the representative c_j for each segment S_j (mean, median, etc.)
- ullet Map segment S_j to a weighted point with value c_j and weight $w_j = |S_j|$
- ullet Cluster those k weighted points to h centers $L=\{l_1,\ldots,l_h\}$
- ullet Assign each segment to its closer center in L
- Running time is $O(n^2k)$ (from dynamic programming)

ITERATIVE algorithm

- ullet If we know the k best segments, we can find the h best levels
- ullet If we know the h best levels, we can find the k best segments
- Start from an initial solution,
 e.g., the one produced by the previous algorithm
- Iterate:
 - keep segment boundaries fixed, find levels
 - keep levels fixed, find boundaries
- EM-style, fast convergence, good results

Factor 3 approximation result for ClusterSegments

- \bullet d a metric
- Point i assigned to segment p(i)
- Segment j assigned to level r(j)
- Point i is assigned to level $l_{r(p(i))}$
- Minimize

$$\sum_{i=1}^{n} d(t_i, l_{r(p(i))})$$

- Claim: this is at most 3 times the optimum
- The segments are good segments (k, k)—segmentation
- The levels are good levels
- Some computation needed

Model section in (k, h)-segmentation

• Apply the BIC score function for model M_{kh}

$$S_{BIC}(M_{kh}) = 2LL(S \mid M_{kh}) + (\# \text{ parameters}) \log n$$

$$= \sum_{j=1}^{k} \sum_{i=b_j}^{e_j} (a_i - l_j)^2 + (k + hd) \log n$$

where $l_j \in L = \{l_1, ..., l_h\}$

- Normalize the sequence so that the total variance is equal to 1
- In case of multidimensional sequences do not normalize dimensions separately, so that dimensions with larger variability contribute more to the segmentation

Experiments with model section in (k, h)-segmentation

- ullet Synthetic datasets from a known model with k segments and h levels
- For segment S_j , points are generated from the normal distribution $\mathcal{N}(l_j, \sigma)$
- Verify that the model found by BIC agrees with the ground truth

Experiments with model section in (k, h)-segmentation

Hidden Markov models (HMMs)

- h states, m symbols, sequence $S = a_1 \dots a_n$ of n observations, where $a_i \in \{\alpha_1, \dots, \alpha_m\}$
- Sequence has been generated according to the following process
 - at state u, symbol α is emitted with probability $Q[u,\alpha]$
 - move from state u to state v with probability P[u,v] (only symbols are observed, states are hidden)
- Question: Given the sequence S, what is the most likely sequence of states that has generated S?
- Assume sequence of states $\Lambda = \lambda_1 \dots \lambda_n$. Then

$$Pr[\Lambda \mid S] \propto Pr[S \mid \Lambda] = Pr[\lambda_1]Q[\lambda_1, a_1] \prod_{i=2}^{n} P[\lambda_{i-1}, \lambda_i]Q[\lambda_i, a_i]$$

HMMs (cont.)

- Denote by $\Theta = (P, Q)$ the parameters of HMM
- The two HMM problems:
 - if the HMM parameters Θ are known determine the sequence of states Λ that maximizes $Pr[S, \Lambda \mid \Theta]$ given the model
 - determine the HMM parameters Θ in order to maximize $Pr[S \mid \Theta]$
- The first problem can be solved by dynamic programming
- In this context it is also known as the "Viterby algorithm"

Estimating the parameters of an HMM

- ullet Improve Θ iterative so that $Pr[S \mid \Theta]$ increases
- Stop when $Pr[S \mid \Theta]$ converges
- Iterative improving of $Pr[S \mid \Theta]$ is based on Baum-Welch equations
- Essentially are the emperical probabilities
 - -P[u,v] is the expected number of times of making a transition from u to v over the expected number of times being in u
 - $Q[u,\alpha]$ is the expected number of times of emitting symbol α while being in state u over the expected number of times being in u
- However, the emperical probabilties are estimated over all possible state sequences, which can be done (again) by dynamic programming

Connection between HMMs and (k, h)-segmentation

• Want to find Λ :

$$\arg\max_{\Lambda} \Pr[\Lambda \mid S] = \arg\max_{\Lambda} \Pr[\lambda_1] Q[\lambda_1, a_1] \prod_{i=2}^{n} \Pr[\lambda_{i-1}, \lambda_i] Q[\lambda_i, a_i]$$

• Assume k state changes, $\Lambda = \lambda_1 \dots \lambda_k$ and corresponding segments of the sequence $S = S_1 \dots S_k$, with durations $t_j = |S_j|$

$$Pr[S \mid \Lambda] = Pr[\lambda_1]Q[\lambda_1, a_1] \prod_{i=2}^n P[\lambda_{i-1}, \lambda_i]Q[\lambda_i, a_i]$$

$$= Pr[\lambda_1]Pr[S_1 \mid \lambda_1]P[\lambda_1, \lambda_1]^{t_1-1}$$

$$\prod_{j=2}^k P[\lambda_{j-1}, \lambda_j]Pr[S_j \mid \lambda_j]P[\lambda_j, \lambda_j]^{t_j-1}$$

Connection between HMMs and (k, h)-segmentation

Assume "uniform" transition probabilities, i.e.,

Then

$$Pr[\Lambda \mid S] = \prod_{j=1}^{k} Pr[S_j \mid \lambda_j])(p^{n-k}(1 - \frac{p}{h})^k)$$

Taking minus logarithms, we want to minimize

$$-LL(S \mid \Lambda) + f(n, k, h)$$

very similar to (k, h)-segmentation with BIC!

Connection between HMMs and (k, h)-segmentation

- So, (k, h)-segmentation is more restricted than HMM (uniform case)
- More appropriate to numeric values, while HMM more common for descrete symbols
- Question: Can one generalize the (k,h)-segmentation techniques to the general HMM problem?