

Model Konseptual Penerapan Basis Data Spasiotemporal **Untuk Smart City Domain Transportasi**

Farizan Ramadhan | 13511081

Isi Presentasi

Sidang Tugas Akhir

Selayang Pandang

Analisis

Perancangan Solusi

Simulasi Model Konseptual

Kesimpulan & Saran

Peran Teknologi & Informasi di Pemerintah Kota

Pengembangan solusi berbasis teknologi dan informasi, menjadi kebutuhan utama *smart city.* Teknologi dan informasi tidak lagi menjadi *supporting system,* tetapi sudah menjadi kebutuhan kritis penyelenggaraan pemerintahan.

Pengelolaan Data dan Informasi Transportasi

Integrasi dengan teknologi informasi menjadi solusi yang smart. Belum adanya pondasi teknologi informasi khususnya aspek data pada sistem transportasi menyebabkan penyusunan kebijakan dan pengambilan keputusan terhambat.

RUMUSAN MASALAH

TUJUAN

Membuat model struktur data pada level konseptual sebagai elemen fundamental teknologi informasi untuk domain transportasi di lingkungan smart city.

IBM Smarter Cities Model

Aspek Smart City

Planning & Management

Pemerintahan

Keamanan Publik Perencanaan Urban Infrastructure

Transportasi Energi & Air Lingkungan Planning & Management

Edukasi Kesehatan Program Sosial Keamanan Publik

- ✓ Karakteristik Smart City
- ✓ Kebutuhan Kritis

Aspek Infrastruktur

Prioritization Matrix	Cost Saving (0,25)	Impact (0,5)	ICT Intergration Readiness (0,25)	TOTAL SCORE (sum)
Transportasi	3 x 0,25 = 0,75	5 x 0,5 = 2,5	4 x 0,25 = 1	4,25
Energi & Air	3 x 0,25 = 0,75	4 x 0,5 = 2	3 x 0,25 = 0,75	3,5
Lingkungan	5 x 0,25 = 1,25	4 x 0,5 = 2	2 x 0,25 = 0,5	3,75

Prioritization Matrix

Sistem Transportasi

Darat Udara

Laut

<u>Transportasi Urban</u>

Transportasi perkotaan, transportasi darat. Terkait erat dengan URBAN FORM dan SPASIALITAS,

Smart Transportation

Manajemen Pengelolaan Transportasi

Ketercapaian Smart Transportation

Meninjau Key Performance Indicator, dalam kategori TATA KELOLA.

Tujuan Umum: Pengembangan Manajemen Lalu Lintas.

Ukuran Kinerja: Dibentuknya Lembaga Terpadu dan Arsitektur Data & Informasi.

ISO/IEC 38500:2015

ICT Operations

Data & Application Management

Information and Technology Governance of IT Organization

Data & Application Management

Konseptual Lojikal Fisikal

Zachman Framework

Layer	View	Data
1	Scope / Contextual	Daftar entitas yang penting untuk proses bisnis transportasi
2	Business Model / Conceptual	Model Semantik atau Model Konseptual Skala Enterprise

<u>Data Transportasi</u>

Completeness, Accuracy, Consistency, Availability, dan Timeliness.

Real-Time.

Berorientasi pada pelayanan masyarakat.

Interaksi di Smart City

ALUR KERANGKA SOLUSI

SKEMA BASIS DATA SPASIOTEMPORAL

Skenario

Diberikan himpunan *event* hasil interaksi di smart city. Kemudian dipilih satu *event* tersebut untuk diolah datanya berdasarkan alur kerangka solusi dalam beberapa tahap kemudian dievaluasi hasilnya.

Tahap - 1, Interaksi.

Masyarakat - Infrastruktur. "Kecelakaan di Jalan Raya"

> Diambil dari himpunan *event* yang terjadi pada Global Events.

Tahap – 2, Identifikasi dan Elaborasi Events

Masyarakat - Infrastruktur. "Kecelakaan di Jalan Raya"

Interaksi Masyarakat - Infrastruktur, "kecelakaan di jalan raya"		
Entitas yang terlibat	1 Kendaraan Pribadi,	
(mereferensi dari kamus entitas transportasi)	1 Kendaraan Umum (angkutan kota, minibus), 2 Sepeda Motor	
Model Fitur generic yang dibangkitkan	TransportationEvent & TransportationFeature	
(mereferensi dari model abstrak hasil analisis)		

Tahap – 3, Transformasi Data, Justifikasi, dan Stadarisasi Label.

Menguraikan aspek statis dan dinamis

Nama Aspek	Data
Statis	Jalan Raya "x"
Dinamis	1 Kendaraan Umum, 1 Kendaraan pribadi, 2 sepeda motor

Transformasi Elemen yang terlibat

Nama Elemen	Data
Jalan Raya "X"	Nama jalan (<i>string</i>), panjang jalan (<i>real</i>), area jalan
	(geom), dll.
Kendaraan	id_pengemudi (<i>string</i>), id_kendaraan (<i>string</i>), nomor
Umum	trayek (<i>string</i>)
Kendaraan	id_pengemudi (<i>string</i>), id_kendaraan (<i>string</i>), jenis
Pribadi	kendaraan (<i>string</i>), dll.
Sepeda Motor	id_pengemudi (<i>string</i>), id_kendaraan (<i>string</i>), dll.

Tahap – 3, Transformasi Data, Justifikasi, dan Stadarisasi Label.

Validasi event berdasarkan urban form

Justifikasi Elemen Spasial dan Temporal

Nama Elemen	Data Spasial	Data Temporal
Jalan Raya "X"	Panjang Jalan : <i>real</i>	Start : datetime
	Area terjadinya event : <i>geom</i>	End : <i>datetime</i>

Tahap – 3, Transformasi Data, Justifikasi, dan Stadarisasi Label. Labeling causal states

Previous State	Current State	Set of Prediciton State
Normal	Kecelakaan tingkat 1	cek ke daftar state

Standarisasi Labeling Causal States

Tahap - 4, Evaluasi dan Input ke Basis Data.

Memeriksa kemungkinan event yang dependen dan independen

Event-1

Identifier Event	XXX-YYY-ZZZ-12345	
TransportationFeature	Geometry: area	
	Transportation Segment : daftar path dan point	
	Transportation Path : daftar rute yang terkena dampak	
	Transportation Point : daftar titik kejadian (lokasi 2 dimensi), informasi topologi	
	Daftar Entitas	
TransportationEvent	Attribute Event : datetime	
	Start Position : lokasi	
	End Position : lokasi	
	Feature Event : -	

Basis Data Spasiotemporal

Kesesuaian dengan Tata Kelola Pemerintahan Berbasis IT, good governance

- ✓ Pengelolaan di level operasional
- ✓ Sesuai dengan Proses Bisnis

Kualitas Data, dan Pengembangan Lebih Lanjut

- ✓ Menjamin consistency, accuracy, completeness, timeliness
- ✓ Mendukung pengembangan lebih lanjut, Moving Object Spasiotemporal

Aspek Transportasi

- ✓ Mendukung kebutuhan smart transportation (KPI)
- ✓ Mendukung informasi transportasi dan prediksi kondisi transportasi

Pelayanan Masyarakat

√ Siap OpenData

Kesimpulan

Model generic yang dibuat *feasible* untuk dikembangkan lebih lanjut ke tahap selanjutnya.

Basis Data Spasiotemporal yang menjadi hilir dari pengelolaan data dapat menjawab kebutuhan *smart transportasi* mengacu pada kebutuhan transportasi urban dan *smart city.*

Saran

Pengembangan dilanjutkan ke level lojikan hingga fisikal agar manfaat lebih terasa dari sisi penyelenggaraan transportasi di smart city. Pendekatan Moving Object Spasiotemporal dapat dilakukan untuk mendukung sudut pandang dinamis ketika infrastruktur fisik sudah siap.

08.30 - 10.00