import xgboost as xgb import optuna I removed the Material and Id columns since the former is not numerical and the latter is not informative. In []: # Load data X_raw = pd.read_csv('train_X.csv') y raw = pd.read csv('train y.csv') # Drop all non-numeric features X = X raw.drop(columns=['Material', 'Id']) $y = y_raw['Egap']$ # Normalization scaler = StandardScaler() X normalized = scaler.fit transform(X) X_normalized_df = pd.DataFrame(X_normalized, columns=X.columns) # Spliting X_train, X_val, y_train, y_val = train_test_split(X_normalized_df, y, test_size=0.2, random_state=5) First, I trained a baseline model. In []: # Baseline Linear Regression lr_model = LinearRegression() lr model.fit(X train, y train) # Predict on the training set (optional, for in-sample evaluation) lr train pred = lr model.predict(X train) # Predict on the validation set lr val pred = lr model.predict(X val) # Evaluate the model lr train mse = mean squared error(y train, lr train pred) lr_val_mse = mean_squared_error(y_val, lr_val_pred) # Print evaluation metrics print("Training MSE:", lr_train_mse) print("Validation MSE:", lr_val_mse) Then, after trying different models, I selected XGBoost, which gives the best performance in general. I also found the importance of each feature which will be used later. In []: # XGBoost xqb model = xqb.XGBRegressor(n_estimators=7417, # Number of boosting rounds # Maximum depth of trees max depth=8, learning_rate=0.02, # Step size shrinkage subsample=0.90, # Fraction of samples to use per boosting round colsample_bytree=0.36, # Fraction of features to use per tree reg alpha=0.76, reg lambda=0.58, min_child_weight=15, random_state=5 # Fit the model X_train_inner, X_val_inner, y_train_inner, y_val_inner = train_test_split(X train, y train, test size=0.2, random state=5 xgb model.fit(X train, y train, eval set=[(X val inner, y val inner)], verbose=False) # Predict on training and validation sets xgb_train_pred = xgb_model.predict(X_train) xgb_val_pred = xgb_model.predict(X_val) # Evaluate the model xgb_train_mse = mean_squared_error(y_train, xgb_train_pred) xgb_val_mse = mean_squared_error(y_val, xgb_val_pred) # Print evaluation metrics print("Training MSE:", xgb_train_mse) print("Validation MSE:", xgb_val_mse) # Find inportant feature important_features = xgb_model.feature_importances_ I used grid search to find the best parameters. In []: # Define the parameter grid param grid = { 'n estimators': [5000], # Number of boosting rounds 'max_depth': [6, 7, 8, 9], # Maximum depth of trees 'learning_rate': [0.02], # Step size shrinkage 'subsample': [0.8, 0.9, 0.95], # Fraction of samples per boosting round 'colsample_bytree': [0.4, 0.5, 0.6, 0.7], # Fraction of features per tree #'reg_alpha': [0.1, 0.5, 1, 5, 10], #'reg_lambda': [0.1, 0.5, 1, 5, 10], 'min_child_weight': [5, 10, 15, 20, 25] # Initialize the GridSearchCV grid search = GridSearchCV(estimator=xgb.XGBRegressor(random_state=42), param_grid=param_grid, scoring='neg_mean_squared_error', # Use MSE as the scoring metric # 3-fold cross-validation cv=3, verbose=2, # Display progress n jobs=-1 # Use all available cores # Fit GridSearchCV grid search.fit(X_train_reduced, y_train) # Print the best parameters and the best score print("Best Parameters:", grid_search.best_params_) print("Best Score (MSE):", -grid_search.best_score_) Then I reduced the least important features, and trained another XGBoost model. In []: # XGBoost Reduced xgb model = xgb.XGBRegressor(# Number of boosting rounds n estimators=5000, max depth=6, # Maximum depth of trees # Step size shrinkage learning rate=0.02, # Fraction of samples to use per boosting round subsample=0.8, # Fraction of features to use per tree colsample_bytree=0.4, reg alpha=0.76, reg lambda=0.58, min_child_weight=10, random state=5 threshold = 0.0001 X train reduced = X train.iloc[:, important features > threshold] X val reduced = X val.iloc[:, important features > threshold] # Fit the model with reduced dataset xgb_model.fit(X_train_reduced, y_train) # Predict on training and validation sets xgb_train_pred = xgb_model.predict(X_train_reduced) xgb_val_pred = xgb_model.predict(X_val_reduced) # Evaluate the model xgb train mse = mean squared error(y train, xgb train pred) xgb_val_mse = mean_squared_error(y_val, xgb_val_pred) # Print evaluation metrics print("Training MSE:", xgb_train_mse) print("Validation MSE:", xgb_val_mse) I used Optuna for more hyperparameter tuning. In []: def objective(trial): # Define the hyperparameter search space "n_estimators": trial.suggest_int("n_estimators", 900, 20000), "max_depth": 8, "learning rate": 0.02, "subsample": trial.suggest_float("subsample", 0.9, 1.0), "colsample_bytree": trial.suggest_float("colsample_bytree", 0.4, 0.5), "reg_alpha": trial.suggest_float("reg_alpha", 1e-8, 1.0), "reg_lambda": trial.suggest_float("reg_lambda", 1e-8, 1.0), "min_child_weight": trial.suggest_float("min_child_weight", 10, 15), "random state": 5 # Train-test split within the training data for validation X_train_inner, X_val_inner, y_train_inner, y_val_inner = train_test_split(X_train, y_train, test_size=0.2, random_state=42 # Initialize the XGBoost Regressor model = xgb.XGBRegressor(**params, early_stopping_rounds=10, eval_metric="rmse") # Train the model model.fit(X_train_inner, y_train_inner, eval_set=[(X_val_inner, y_val_inner)], verbose=False # Predict and calculate validation MSE preds = model.predict(X val inner) mse = mean_squared_error(y_val_inner, preds) return mse # Optuna will minimize this metric In []: # Create the study and optimize study = optuna.create study(direction="minimize") study.optimize(objective, n_trials=50) # Print the best parameters print("Best parameters:", study.best_params) print("Best MSE:", study.best_value) Then I trained the final model with all training data. In []: # XGBoost Reduced FINAL # Load data test raw = pd.read csv('test X.csv') test = test_raw.drop(columns=['Material', 'Id']) scaler = StandardScaler() test_normalized = scaler.fit_transform(test) test_normalized_df = pd.DataFrame(test_normalized, columns=test.columns) # Train model xgb_model = xgb.XGBRegressor(n estimators=9000, # Number of boosting rounds max depth=6, # Maximum depth of trees learning rate=0.02, # Step size shrinkage subsample=0.8, # Fraction of samples to use per boosting round # Fraction of features to use per tree colsample_bytree=0.4, reg alpha=0.76, reg lambda=0.58, min child weight=10, random state=5 threshold = 0X reduced = X normalized df.iloc[:, important features > threshold] test_reduced = test_normalized_df.iloc[:, important_features > threshold] # Fit the model with reduced dataset xgb model.fit(X reduced, y) # Predict on training and validation sets test_pred = xgb_model.predict(test_reduced) Finally, I wrote the csv file to submit. In []: # Make File to Submit out = pd.read_csv('y_sample_submission.csv') out['Egap'] = test pred out.to_csv('predictions.csv', index=False)

In []: import pandas as pd

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean squared error

from sklearn.model_selection import train_test_split, GridSearchCV