Complier Homework 5

17341146 王程钥

exercise 4.2.1

Problem

Consider th context-free grammar: S o SS + |SS*|a and the string aa + a*

- b) Give a right most derivation for the string.
- c) Give a parse tree for the string.
- d) Is the grammar ambiguous or unambiguous? Justify your answer.

Answer

• b) most derivation $S\Rightarrow SS*\Rightarrow Sa*\Rightarrow SS+a*\Rightarrow Sa+a*\Rightarrow aa+a*$

• c) parse tree

• **d)** This grammar is unambiguous. Because excapt $S \to a$, only two grammar shoule be use on the sparse tree, $S \to SS$ + once, and $S \to SS$ * once. Since * is the right most character, $S \to SS$ * should be use first, it should be on higher layer of the tree. So we can only construct one kind of sparse tree, and this grammar is unambiguous.

exercise 4.4.1

Problem

For the following grammars, devise predictive parsers and show the parsing tables. (You may use left-factor and/or eliminate left-recursion from your grammars first).

ullet b) grammars : S
ightarrow + SS | * SS | a

ullet c) grammars : S o S(S)S|arepsilon

ullet d) grammars : S o S + S|SS|(S)|S*|a

Answer

• b)

no left-factor no left-recursion.

parsing tables

non-terminal	+	*	a	\$
S	S o + SS	S o + SS	S o + SS	

• c)

no left-factor

eliminate left-recursion

$$S o A | arepsilon \ A o (S) S A$$
 parsing tables

non-terminal	()	\$
S	S o A		S o A
A	A o (S)SA		A o arepsilon

• d) eliminate left-factor

$$S \to SA|(S)|a$$

 $A \to +S|S|*$

eliminate left-recursion

$$S
ightarrow (S)S'|aS'$$

 $A
ightarrow +S|S|*$
 $S'
ightarrow AS|arepsilon$

parsing tables

non-terminal	()	a	*	+	\$
S	S o (S)S'		S o aS'			
А	A o S		A o S	A o *	A o + S	
S'	S' o AS		S' o AS	S' o AS	S' o AS	S' oε