COMP 322 HW2 Written Michelle Pang acc - accumulator LOR, booken); finish (acc) { for each Assignment f of a value in [k] to each node in V do: colorable accumulator (AND, boolean); finish (colorable) { for each [u.v] EE do: async { if f(u): f(v) then; colorable.pub (false); acc. put (coloroble.geo()); IA 15 16 return acceget(); 2). Let n = |V|, m = |E|, then there one K^n total mappings for the for-each loop on line 3, and m total mappings for the for-each loop on line 7. So total WORK = $O(K^n \cdot m)$ line 7. So total WORK=O(K".m) 3). Yes. Since the sequential algorithm can finish without checking all possibilities while the parallel algorithm only finishes when all possibilities are checked, the sequential algorithm may finish execution earlier than my parallel algorithm. Thus it is possible that my parallel algorithm has a larger value of WORK than sequential algorithm.

4). No. Be	course porollel	algorithm ho	s to check an	possibilities. S	o it will
almous howe	Work.	r is greated	than on eq	possibilities. So wal to the se	quential
5). It is pos be benign, b they all sto	ssible for my because althous one "false" in	algorithm to gh multiple the object	exhibit a do touks write t to Colonable.	note race, and no the came b	! thest would costion,