МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.О. СУХОГО»

Гуманитарно-экономический факультет

Кафедра «Маркетинг и отраслевая экономика»

Отчёт по практическому заданию № 01 по дисциплине «Организация производства и управление предприятием» по теме

«Расчёт длительности производственного цикла сложного производственного процесса»

Вариант № 2

Выполнил: студент группы ПМ-41

Бабакулыева А.

Принял: ст. преподаватель

Астраханцев С.Е.

Задание №1 - Расчет длительности производственного цикла сложного производственного процесса

- 1. Рассчитать длительность производственных циклов простых процессов и процессов выполнения сборочных операций;
- 2. Построить календарный график производственного процесса изготовления партии изделий;
- 3. Определить срок запуска деталей в производство и дату начала сборки в календарных днях.

На предприятие N поступил заказ на изготовление партии изделий M, состоящей из: n = 115 + 2 = 117 штук.

Режим работы предприятия двухсменный. Продолжительность смены — 8 часов. Междусменными перерывами пренебречь. Изделие М передается на склад всей партией.

Изделие М состоит из сборочных единиц (агрегатов), собираемых из деталей, изготавливаемых на данном предприятии и комплектующих, получаемых по кооперации от предприятий-поставщиков.

Срок сдачи изделий на склад готовой продукции 27.07.2022 г.

Состав изделия М (схема сборки) и взаимосвязь между элементами представлена на рисунке.

Рисунок 1 – Сборка схемы изделия М

Четыре детали (Д-1, Д-2, Д-3, Д-4) обрабатываются по одинаковому технологическому процессу, включающему токарную, фрезерную и шлифовальную операции. На всех операциях установлено по одному станку. Среднее межоперационное время 15 мин. Принятый вид движения предметов труда — *последовательный*. Данные, характеризующие техпроцесс, представлены в табл.1.

Таблица 1. Исходные данные

Деталь	Норма штучного времени на операцию, мин							
	токарную	фрезерную	шлифовальную					
Д-1	2,5	1,7	1,0					
Д-2	1,8	1,6	1,1					
Д-3	3,0	2,7	2,2					
Д-4	1,9	8,2	7,4					

$$T_{\Pi_{DOCN}} = \frac{1}{T_{CM} f k} \left(n \sum_{i=1}^{U} \frac{t_i}{w_i} + U T_{MO} \right)$$

$$T_{n_{\text{nool}}} = \frac{1}{8 \cdot 2 \cdot 0.7} \cdot (117 \cdot (0,042 + 0,028 + 0,017) + 3 \cdot 0,25) = 0.972 \approx 1 \, \text{день}$$
 (Д-1)

$$T_{n_{\text{nocs}}} = \frac{1}{8 \cdot 2 \cdot 0.7} \cdot (117 \cdot (0,03 + 0,027 + 0,018) + 3 \cdot 0,25) = 0.850 \approx 1 \,$$
день (Д-2)

$$T_{n_{\text{noot}}} = \frac{1}{8 \cdot 2 \cdot 0.7} \cdot (117 \cdot (0,05 + 0,045 + 0,037) + 3 \cdot 0,25) = 1.442 \approx 1.5$$
 дня (Д-3)

$$T_{n_{\text{noot}}} = \frac{1}{8 \cdot 2 \cdot 0.7} \cdot (117 \cdot (0,032 + 0,137 + 0,123) + 3 \cdot 0,25) = 3.114 \approx 3 \, \text{дня}$$
 (Д-4)

Деталь Д-5, Д-6 и Д-7 изготавливаются в соответствии с исходными данными, представленными в табл.2. Среднее межоперационное время 10 мин.

Таблица 2. Технологический процесс обработки и нормы времени (в минутах) для деталей Д-5, Д-6, Д-7

№ операции	Наименование операции	Число станков	Д-5	Д-6	Д-7	
операции	D	CIAHKUB	(0	5.0	4.2	
	Револьверная	l	6,0	5,2	4,3	
2	Токарная	1	3,0	3,1	3,2	
3	Токарная	1	5,0	6,0	4,3	
4	Зубофрезерная	2	15,0	18,0	14,5	
5	Токарная	1	5,0	5,0	6,2	
6	Протяжная	1	2,0	3,2	3,3	
7	Сверление	2	13,0	12,5	12,8	

Для деталей Д-5 и Д-6 применяется параллельный вид движения, Д-7 — параллельно-последовательный. Размер транспортной партии — детали передаются с операции на операцию поштучно.

$$T_{\Pi_{\Pi\Lambda P}} = \frac{1}{T_{CM} \cdot f \cdot k} \left((n - n_T) \left(\frac{t_i}{w_i} \right)_{MAX} + n_T \sum_{i=1}^{U} \frac{t_i}{w_i} + U T_{MO} \right)$$

$$T_{n_{nop}} = \frac{1}{8 \cdot 2 \cdot 0,7} \cdot (116 \cdot 0.125 + 1 \cdot 0.817 + 1.17) = 1.451 \approx 1.5 \, \partial \text{Hg} \qquad (\text{Д-5})$$

$$T_{n_{nop}} = \frac{1}{8 \cdot 2 \cdot 0.7} \cdot (116 \cdot 0.15 + 1 \cdot 0.883 + 1.17) = 1.714 \approx 2 \, \partial \text{Hg} \qquad (\text{Д-6})$$

$$T_{\Pi_{\Pi\Lambda P}_{noc}} = \frac{1}{T_{CM} f k} \left(n \sum_{i=1}^{U} \frac{t_i}{w_i} - (n - n_T) \sum_{i=1}^{U} \left(\frac{t_i}{w_i} \right)_{MIN} + U T_{MO} \right)$$

$$T_{n_{nop-noc}} = \frac{1}{8 \cdot 2 \cdot 0,7} \cdot (117 \cdot 0.583 - 116 \cdot 0.392 + 1.17) = 2.133 \approx 2 \, \partial \text{Hg} \qquad (\text{Д-7})$$

Для изготовления всех остальных сборочных единиц используются покупные комплектующие изделия, находящиеся на складе предприятия.

Трудоемкость сборочных операций представлена в табл. 3.

На сборке СБ-4, СБ-41, СБ-11 и СБ-13 занято по два рабочих на каждой операции; на сборке СБ-12, СБ-22 и СБ-32 — трое рабочих; на сборке всех остальных сборочных единиц — по одному рабочему. Длительность межоперационного пролеживания на сборочных операциях принять равной 1 час.

Таблица 3. Трудоемкость сборки сборочных единиц и изделия в часах на 1 изделие

Изделие, сб. ед.	M	СБ-	СБ-	СБ-	СБ-	СБ- 11	СБ-	СБ- 13	СБ- 21	СБ- 22	СБ- 31	СБ- 32	СБ- 41	СБ- 42	СБ- 43
Труд-емк., час	1,5	2,2	1,5	2,3	3,1	2,8	3,8	2,1	2,0	3,5	2,0	3,5	3,0	2,5	1,5
Кол-во. раб., чел.	1	1	1	1	2	2	3	2	1	3	1	3	2	1	1
Длит. Сбор. цикла, день	21	28	21	29	19	17	15	14	26	14	26	14	18	31	21

$$T_{co.i} = \frac{t_{co.i} \cdot n + T_{MO}}{f \cdot P_i \cdot T_{CM} \cdot k}$$

Срок запуска в производство деталей и даты начала выполнения сборочных операций представить в таблице 4:

 Таблица 4. Сроки запуска в производство деталей и дата начала выполнения сборочных операция

Наименование изделия,	Срок запуска в производство,					
сборочных единиц,	дата начала выполнения					
деталей	сборочных операций					
Д-1	21.05.2022					
Д-2	21.05.2022					
Д-3	20.05.2022					
Д-4	17.05.2022					
Д-5	18.05.2022					
Д-6	22.05.2022					
Д-7	22.05.2022					
СБ-11	22.05.2022					
СБ-12	24.05.2022					
СБ-13	25.05.2022					
СБ-21	20.05.2022					
СБ-22	04.07.2022					
СБ-31	11.05.2022					
СБ-32	24.05.2022					
СБ-41	30.06.2022					
СБ-42	17.05.2022					
СБ-43	27.05.2022					
СБ-1	09.06.2022					
СБ-2	16.06.2022					
СБ-3	08.06.2022					
СБ-4	18.06.2022					
M	07.07.2022					
Окончание работ	27.07.2022					

Вывод: в ходе выполнения данной работы был произведен расчет длительности производственного цикла простых процессов и процессов выполнения сборочных операций, в том числе с разными видами движения предметов труда: последовательным, параллельным и параллельно-последовательным. Был построен календарный график производственного процесса изготовления партии изделий, на основе которого был определен срок запуска деталей в производство и дата начала сборки в календарных днях.

Масштаб календарного графика: 1 клетка – 1 день.

