AM 120 Notes

Bannus Van der Kloot

September 20, 2012

Contents

1	September 6 Lecture	1
	1.1 Geometric interpretation	2
	1.1 Geometric interpretation	3
2	September 11 Lecture	4
	2.1 General Example	4 7
3	September 13 Lecture	7
4	September 18 Lecture	9
5	September 20 Lecture	11
	5.1 Finite precision	12

1 September 6 Lecture

There are two main problems that we will learn how to handle in this class.

- 1. Find $x \in \mathbb{R}^n$ such that Ax = b. A is m by n matrix, $b \in \mathbb{R}^n$ vector
- 2. Find x and λ such that $Ax = \lambda x$

Example

$$x + 2y = 3$$
$$4x + 5y = 6$$

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

There are 3 ways to solve:

1.
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix} \Rightarrow y = 2, x = -1$$

2.
$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} 5 & -2 \\ -4 & -1 \end{bmatrix} det A = -3$$

 $x = A^{-1}b \Rightarrow \frac{1}{-3} \begin{bmatrix} +3 \\ -6 \end{bmatrix}$

3. Kramer's rule

Summary Topics covered in next 3 classes:

- 1. Geometric interpretation of solving linear systems
- 2. Matrix notation (LU factorization)
- 3. Singular cases (no solution, multiple soln's)
- 4. Efficient way to solve Ax = b using computers

1.1 Geometric interpretation

Example Graphical method:

Row interpretation (plot lines on coordinate system):

$$2x - y = 1$$

$$x + y = 5$$
 Solution: $x = 2, y = 3$

Column interpretation:

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 1 \end{bmatrix} y = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Example 3 by 3 system:

Each row represents a plane:

$$2u + v + w = 5$$

 $4u - 6v + 0 = -2$

$$-2u + 7v + 2w = 9$$

Remember: inner product of vector with another vector equals $0 \Rightarrow$ orthogonal. Column interpretation:

$$\begin{bmatrix} 2\\4\\2 \end{bmatrix} u + \begin{bmatrix} 1\\-6\\7 \end{bmatrix} v + \begin{bmatrix} 1\\0\\2 \end{bmatrix} w = \begin{bmatrix} 5\\-2\\9 \end{bmatrix}$$

2

Example Overdetermined system:

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix}$$

Solution: c = 1, d = 1

In 4 dimensions, the rows represent 3-spaces, which are 'flat' relative to 4 dimensional space. If we intersect (x, y, z, t = 0) with (x, y, z = 0, t), two three spaces, we get (x, y) plane.

$$a_1u + a_2v + a_3w + a_4z = b$$

$$A = (a_1|a_2|a_3|a_4)$$

1.2 Algorithmic approach

Generalizing to n by n. How to solve Ax = b in a way that scales well? Gaussian elimination (row reduction).

$$2u + v + w = 5$$

$$4u - 6v + 0 = -2$$

$$-2u + 7v + 2w = 9$$

$$2u + v + w = 5$$

$$\Rightarrow -8v - 2w = -12$$

$$8v + 3w = 14$$

$$2u + v + w = 5$$

$$\Rightarrow -8v - 2w = -12$$

$$w = 2$$

$$\Rightarrow v = 1, u = 1$$

We need a process that takes:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}$$
$$x = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
$$b = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$$

...this Ax = b problem and transforms it to a $Ux = \hat{b}$ problem. We can get an upper triangular matrix, and obtain solution by back substitution.

Problems One issue that could arise is if the bottom row is all 0s: infinitely many solutions.

2 September 11 Lecture

Last class:

- Introduced first central problem of linear algebra: solving linear equations
- Studied column and row interpretation of linear systems
- Introduced Gaussian elimination

Example (from previous class) Row/Column interpretation.

$$2u + v + w = 5$$

 $4u - 6v + 0 = -2$
 $-2u + 7v + 2w = 9$

Row: Three planes intersecting. Column: linear combination of three vectors

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}$$

We were trying to figure out how to transform matrix A into an upper triangular matrix.

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix} = \begin{bmatrix} 5 \\ -12 \\ 9 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ -2 & 7 & 2 \end{bmatrix}$$

Matrix operations Addition is associative: A+B+C=(A+B)+C=A+(B+C)Multiplication: dimension $m \times n$ multiplied by $n \times p$ results in $m \times p$ matrix. $AB \neq BA$.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 2 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 8 & 7 \end{bmatrix}$$

Matrix multiplication:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & & & \dots & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_{1i} x_i \\ \sum_{i=1}^n a_{2i} x_i \\ \dots \\ \sum_{i=1}^n a_{ni} x_i \end{bmatrix}$$

$$\begin{bmatrix} | & | & & | \\ a_1 & a_2 & \dots & a_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

$$\begin{bmatrix} | & | & & | \\ a_1 & a_2 & \dots & a_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} | & | \\ b_1 & b_2 \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | \\ Ab_1 & Ab_2 \\ | & & | \end{bmatrix}$$

Row reduction In matrix form

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}$$

1. Subtract 2 times row 1 to row 2

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{E_{21}} \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}_{A} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ -2 & 7 & 2 \end{bmatrix}$$

2. Subtract -1 times row 1 to row 3

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}_{E_{21}} E_{21} A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 8 & 3 \end{bmatrix}$$

3. Subtract -1 times row 2 to row 3

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}_{E_{32}} E_{31} E_{21} A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Originally we wanted to solve Ax = b. Now we have:

$$E_{32}E_{31}E_{21}A = U$$

where U is an upper triangular matrix.

$$E_{32}E_{31}E_{21}Ax = Ux$$

Let's let $E_{32}E_{31}E_{21}=L$. Then, we have

$$L^{-1}A = U$$

$$A = LU$$

$$Ux = C = E_{32}E_{31}E_{21}b$$

Now we can solve by back substitution.

$$L^{-1} = E_{32}E_{31}E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

Matrix inverse properties:

$$(AB)^{-1} = B^{-1}A^{-1}$$

 $(A_1A_2...A_n)^{-1} = A_n^{-1}...A_2^{-1}A_1^{-1}$

So we have:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}$$

Row reduction matrices A matrix that subtracts l times row j from row i is such that it includes -l in row i, column j.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}_{L} \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}_{U}$$

L is lower triangular and U is upper triangular.

- 1. Compute LU factorization
- 2. Solve for c in Lc = b (forward substitution)
- 3. Solve for x in Ux = c (back substitution)

We want to solve Ax = b. We factor to get LUx = b. First we find c such that Lc = b

2.1 General Example

$$\begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \Rightarrow \begin{aligned} c_1 &= b_1/l_{11} \\ c_2 &= b_2 - b_1l_{21}/l_{11} \\ c_3 &= b_3 - l_{31}b_1 - l_{32}(b_2 - b_1l_{21}) \end{aligned}$$
$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \Rightarrow x_2 = \frac{1}{u_{22}}(c_2 - u_{23}c_3/u_{33}) \\ x_1 &= \dots...$$

3 September 13 Lecture

Announcements

- Matlab tutorials (sections)
- Final projects
 - Adjustment based on class size
 - Pairs
- Assignment 1 due Fri @ 7pm in Pierce 303
- Collaboration policy

From last time:

- Linear equations \rightarrow Matrix notation
- Column j of $AB = Ab_i$

$$A \begin{bmatrix} | & | & | \\ b_1 & b_2 & \dots & b_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \dots & Ab_n \end{bmatrix}$$

• Introduced the LU factorization of square matrix A (see general example at end of last lecture)

7

$$Ax = b \Rightarrow LUx = b$$

- 1. Find LU
- 2. Solve for c in Lc = b
- 3. Solve for x in Ux = c

Example LU factorization

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$$

1. Subtract 2 times row 1 to row 2

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{E_{21}} A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 4 & 5 \end{bmatrix}$$

$$E_{21}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. Subtract 3 times row 1 to row 2

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}_{E_{31}} E_{21} A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & 2 \end{bmatrix}$$

3. Subtract 2 times row 2 to row 3

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}_{E} 32E_{31}E_{21}A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}_{U}$$

$$L^{-1} = E_{32}E_{31}E_{21} = \begin{bmatrix} 1 & 0 & 0 - 2 & 1 & 0 - 3 & -2 & 1 \end{bmatrix}$$

$$L^{-1}A = U$$

$$L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 0 \end{bmatrix}$$

Generalizing LU factorization To $n \times n$ matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$

8

1. Introduce zeros below a_{11} by subtracting multiples of row 1

- 2. Use multipliers $l = \frac{a_{i1}}{a_{11}}$
- 3. Repeat 1 and 2 for $a_{22}^*, a_{33}^*, \dots$

Step 1:

Step 2:

How many operations does this algorithm use?

$$\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2}$$

4 September 18 Lecture

To review: solving Ax = b:

- 1. Find LU = A
- 2. Solve for c in Lc = b (forward substitution)
- 3. Solve for x in Ux = c (back-subst)

Multipliers to find U are entries of L.

What is the # of operations needed to get LU factorization?

$$\approx \frac{n^3 - n}{3}$$

Forward substitution Number of operations:

$$(n-1) + (n-2) + ...(1) \approx O(n^2)$$

Back substitution is similar process (also $O(n^2)$). Most time consuming place is step 1.

9

Algorithm Failure This Ax = b:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

has solution $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. However, our algorithm won't find the answer because it can't switch rows. If the algorithm fails we have two options:

- 1. We need to rearrange rows
- 2. No solution
- 3. Infinitely many solutions

Example of (2):

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example of (3):

$$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Fact det(A) = det(LU) = det(L) det(U)

$$\det(U) = \prod_{i=1}^{n} u_{ii}$$

Example Consider this:

$$\begin{bmatrix} 0.0001 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 0.0001 & 1 \\ 0 & -9999 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -9998 \end{bmatrix}$$

$$\Rightarrow x_2 = \frac{9998}{9999}$$

$$0.0001x_1 + \frac{9998}{9999} = 1$$

$$\Rightarrow x_1 = \frac{10000}{9999}$$

If we do all of this with limited precision (say 3 digits), we do the following:

$$\begin{bmatrix} 0.0001 & 1 \\ 0 & -10^4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -10^4 \end{bmatrix}$$
$$\Rightarrow x_2 = 1$$

Then if we use the first equation, we get

$$\Rightarrow x_1 = 0$$

This is called **catastrophic cancellation**.

5 September 20 Lecture

First part of AM120 is to solve Ax = b for arbitrary ||A|| = n.

$$u_{11} = a_{11}, u_{22} = a_{22}$$

Pseudocode did not have 0s in L and U. Second part of code is given L and b, should output c. Third part takes U and c and outputs x.

Assignment 2 Due on Monday morning (9am).

This Doolittle algorithm can fail:

- 1. If there is a pivot = 0
 - (a) System is singular $\Rightarrow \det(A) = 0$. This means there is no solution or infinitely many solutions.
 - (b) We can exchange rows and 'cure' system.

$$\det(A) = \det(L)\det(U) = 1 \prod_{k=1}^{n} u_{kk}$$

Example From last class:

$$\begin{bmatrix} 0.0001 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

This had true solution:

$$x_1 = \frac{10000}{9999}, x_2 = \frac{9998}{9999}$$

But with limited precision (three digit arithmetic), we got:

$$x_1 = 0, x_2 = 1$$

What if we switch the rows?

$$\begin{bmatrix} 1 & 1 \\ 0.0001 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 10^{-4} & 1 \end{bmatrix}_{T} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 - 2 \cdot 10^{-4}t \end{bmatrix}$$

5.1 Finite precision

The computer represents a floating point number with a sign, exponent, and digits for the value itself. When we are talking about n-digit arithmetic, we are referring to the number of digits storing the value.

$$U = \text{max exponent}$$

$$L = \text{lowest exponent}$$

$$P = \text{mantissa number of digits}$$

$$\beta = \text{base}$$

For example, for L=-1, U=1, p=2 and $\beta=10$:

$$(\text{sign})d_0.d_1d_2...d_p \times 10^{\text{exponent}}$$

largest
$$9.9 \times 10^{1} = 99$$

smallest (non-zero) $1.0 \times 10^{-1} = 0.1$

Examples of real values in floating point systems:

What is the total number of floating point numbers?

$$2(\beta - 1)\beta^{p-1}(u - l + 1) + 1$$

Largest representable number:

$$(\beta - 1).(\beta - 1)...(\beta - 1) \cdot \beta^{U}$$

Smallest number (absolute value):

$$\beta^L$$
(underflow)

Machine precision Note that the difference between the real number and the floating point number chosen depends on exponent.

$$\forall x \in R, \exists \text{fl}(x) = \hat{x} \text{ such that } |x - \hat{x}| \leq \sum |x|$$

Note that this is not really true for all $x \in R$ – only within a certain range. ϵ_{mach} is the largest number s.t. $\text{fl}(1 + \epsilon_{\text{mach}}) > 1$.

Floating point numbers are not associative:

$$A + (B + C)) \neq (A + B) + C$$