8 时序逻辑电路

- 8.1 时序电路的结构、分类和描述方式
- 8.2 基于触发器时序电路的分析和设计
- 8.3 集成计数器
- 8.4 寄存器

8.4 寄存器

Parallel

一个触发器可以保存一位二 进制数,由多个触发器组成的 能同时保存多位二进制数据的 电路, 称为寄存器(register)。

寄存器在数字系统或计 算机中常用来暂时存放信息。

data input lines

寄存器通常有锁存寄 存器和移位寄存器。

Data

stored

4位三态并行输入并行输出寄存器74LS173

(1) 74LS173的符号图

CR是异步清零端;

EN A EN B 是输出使能端

ST_A和 ST_B 是输入控制端

74LS173的内部是四个上升沿触发的D触发器。

74173功能表

CLR	СР	$\overline{ST}_A + \overline{ST}_B$	EN A + EN B	工作状态
1	×	×	×	清0
0	0	×	×	保持不变
0	1	1	×	保持不变
0	1	0	×	置数
0	1	×	1	高阻
0	×	×	0	允许输出

(3) 74LS173的应用——通过 公共数据总线传送数据。

数字系统和计算机中, 挂接到总 线的部件通常具有三态输出或者通过 三态缓冲器接到总线。

 $DB_3\sim DB_0$ 是四位数据总线,寄存器的输入端 $D_3\sim D_0$ 、输出端 $Q_3\sim Q_0$ 分别与相应的数据总线相连。

任一时刻,只能有一个寄存器输出端 使能,其余两个寄存器的输出必须处于高 阻态。否则总线上电位将不确定,可能损 坏寄存器。

例已知各寄存器起始数据为 [I]=1011, [II]=1000, [III]=0111,将下图中的信号加在寄存器I、II、 III的使能输入端。试决定在 t_1 、 t_2 、 t_3 和 t_4 时刻,各寄存器的内容。

[解] t_1 时刻,寄存器II的数据1000送到总线,寄存器III接收,[I]=1011,[II]=1000,[III]=1000; t_2 时刻,寄存器III的数据1000送到总线,无数据接收,各寄存器数据不变; t_3 时刻,无数据传送,各寄存器数据不变; t_4 时刻,寄存器I的数据1011送到总线,寄存器II、III接收,[I]=1011,[II]=[III]=1011。

移位寄存器

移位寄存器(shift register)除了有寄存数码的功能外,还具有将数码移位的功能。

移位寄存器按移位方式可分为单向移位寄存器(左移或 右移功能)和双向移位寄存器(兼有左移和右移的功能)。

移位寄存器的工作方式:

串行输入,并行输出;

并行输入,串行输出。

串行输入,串行输出;

并行输入,并行输出;

上页

下页

返回

由D触发器组成的四位单向移位寄存器

D触发器构成的串行输入、并行/串行输出移位寄存器。

 $Q_3 \sim Q_0$ 是并行数据输出端,该电路亦可从任一Q端输出串行数据。

输入数据从 D_0 端送入,在时钟脉冲上升沿作用下,数据相继向高位移入,由 $Q_0 {
ightarrow} Q_1 {
ightarrow} Q_2$ 。

集成移位寄存器

1. 8位单向移位寄存器74164 74164是一个串行输入、并行输出的八位单向移位寄存器。

(1) 74164符号图

CR是异步清0端;

D_{SA}、D_{SB}是串行数据输入端;

串行输入数据 $D_0 = D_{SA}D_{SB}$

 $Q_7 \sim Q_0$ 并行数据输出端。

(2) 74164功能表

\overline{CR}	CP	D_0	Q_0Q_1	 Q_7		
0	X	×	0 0	 0		
1	↑	0	$0 Q_0$	 Q_6		
1	↑	1	$1 Q_0$	 Q_6		

$$D_0 = D_{\mathrm{SA}} D_{\mathrm{SB}}$$

移位寄存器的应用

一个数字系统经常会有很多外围设备,由于引脚数有限,常常 用移位寄存器实现端口的扩展。

比如,74LS164是一个串行输入并行输出的移位寄存器,可用于扩展并行输出口。

● LED数码管<u>静态显示</u>

思考: 要在最左边两个数码管上显示12, 如何送段码?

先送2:

hgfedcba

10100100 (先送a 的0,最后送h的1)

再送1:

hgfedcba

11111001 (先送a的1,最后送h的1)

静态显示: 公共端已接有效 电平, 各数码管段码独立。

送一次段码后显示即稳定,亮 度高。但所需器件多。

LED数码管<u>动态显示</u>

一片74LS164锁 存数码管七段信息, 由译码器74LS138 进行位选,完成动 态显示。

74LS165扩展并行输入口

FUNCTION TABLE

	INPUT:	FUNCTION	
PL	CLK	CLK INH	FUNCTION
L	X	Х	Parallel load
Н	Н	X	No change
Н	X	Н	No change
Н	L	1	Shift [†]
Н	1	L	Shift [†]

74LS165是8位并行输入串 行输出移位寄存器,可以扩 展一个或多个8位并行输入 接口。

上页下页(

74194

 \mathbf{D}_{SL}

2. 4位双向移位寄存器74194

D₀~D₃为并行数据输入端

CR为异步置零输入端

M₁、M₀为工作方式控制端

DSL是数据左移输入端

D_{SR}是数据右移输入端

Q₀~Q₃为并行数据输出端

C,	M_1	$\mathbf{M_0}$	CP	D_{L}	D_{R}	D_{0}	D_1	D_2	D_3	Q_{\circ}	Q_1	Q_2	Q_3
0	×	×	×	×	×	×	×	×	×	0	0	0	0
1	0	0	×	×	×	×	$^{\prime}$ \times	×	×		保	持	
1	0	. 1	. 🕇	×	$S_{\mathtt{R}}$	×	×	×	×	S_{R}	Q_0^{π}	Q_1^n	Q_2^n
1	1	0	†	$S_{\mathtt{L}}$	×	×	×	×	×	Q_1^n	Q_2^n	Q_3^n	S_{L}
1	. 1	1	†	×	×	a	b	с	d	а	b	с	d
1	×	×	0	×	×	×	×	×	×		保	持	

[例]设计一串行序列检测器,当检测到111序列时,电路输出为1。

使用移位寄存器加组合门电路

作业

自练题:

• 8.16

作业题:

- 8.13
- 8.17

本章小结

- 1. 时序逻辑电路的特点;任一时刻输出状态不仅取决于当时的输入信号, 还与电路的原状态有关。因此时序电路中必须含有存储器件。
- 2. 描述时序逻辑电路逻辑功能的方法有状态转换表、状态转换图和时序 图等。
- 3. 基于触发器的时序逻辑电路的分析步骤
- 4. 基于FF的时序逻辑电路的设计步骤
- 5. 计数器是一种简单而又最常用的时序逻辑器件。计数器不仅能用于统计输入脉冲的个数,还常用于分频、定时、产生节拍脉冲等。
- 6. 用已有的M进制集成计数器产品可以构成N(任意)进制的计数器
- 7.寄存器也是一种常用的时序逻辑器件。寄存器分为数码寄存器和移位 <u>寄存器两种。</u>

