§ 13 Die Dimension eines Vektorraumes

(13.1) AUSTAUSCHLEMMA

Sei $B = \{v_1, \dots, v_n\} \subseteq V$ eine Basis des Vektorraumes V. Für einen Vektor $w \in V$ gelte

$$w = \alpha_1 v_1 + \ldots + \alpha_j v_j + \ldots + \alpha_n v_n \ (\alpha_i \in \mathbb{R}) \ \mathrm{mit} \ \alpha_j \neq 0 \ \mathrm{für \ ein} \ j \in \{1, 2, \ldots, n\}$$

Dann ist auch die Menge

$$C := \{v_1, \dots, v_{i-1}, w, v_{i+1}, \dots, v_n\}$$

eine Basis von V.

Der j-te Vektor aus B wird gegen den Vektor w ausgetauscht.

Ist also B eine Basis von V und ist $w \neq o_V$, so läßt sich ein geeigneter Vektor aus B gegen diesen Vektor w austauschen. Es lassen sich sogar simultan geeignete Vektoren aus B durch die Vektoren einer beliebig vorgegebenen linear unabhängigen Teilmenge von V ersetzen, so daß wieder eine Basis von V entsteht. Dies ist die Aussage des folgenden Satzes:

(13.2) AUSTAUSCHSATZ von STEINITZ (Ernst Steinitz, 1871–1929)

Sei $B = \{v_1, \ldots, v_n\} \subseteq V$ eine Basis des Vektorraumes V und $T = \{w_1, \ldots, w_m\} \subseteq V$ eine linear unabhängige Teilmenge von V. Dann lassen sich m geeignete Vektoren v_{i_1}, \ldots, v_{i_m} aus B gegen die Vektoren w_1, \ldots, w_m aus T austauschen, so daß wieder eine Basis von V entsteht.

Insbesondere gilt $m \leq n$.

(13.3) FOLG: Besitzt ein Vektorraum V eine Basis aus n Elementen, so hat jede linear unabhängige Teilmenge von V höchstens n Elemente.

(13.4) SATZ: V sei ein endlich erzeugbarer Vektorraum. Dann gilt:

- a) V besitzt eine endliche Basis.
- b) Jede Basis von V ist endlich
- c) Je zwei Basen von V haben gleichviel Elemente.

(13.5) **DEF:** V sei ein Vektorraum über \mathbb{R} .

- a) Besitzt V eine endliche Basis B, so heißt die Anzahl |B| der Elemente von B die Dimension von V, in Zeichen $|B| =: \dim_{\mathbf{R}}(V)$.
- b) Besitzt V eine endliche Basis B, so heißt V endlich-dimensional, anderenfalls unendlich-dimensional, in Zeichen $\dim_{\mathbf{R}}(V) = \infty$.

Auf Grund von (13.4) ist die Dimension von V unabhängig von der ausgewählten Basis, da alle Basen von V gleichviele Elemente haben.

(13.6) BEISPIELE: a) Der Anschauungsraum hat die Dimension 3.

- b) $\dim_{\mathbf{R}}(\mathbb{R}^3) = |\mathcal{E}_3| = 3$, $\dim_{\mathbf{R}}(\mathbb{R}^2) = 2$, $\dim_{\mathbf{R}}(\mathbb{R}) = 1$
- c) $\dim_{\mathbb{R}}(\mathbb{R}^n) = n$, da $|\mathcal{E}_n| = n$ (12.11a).
- d) $\dim_{\mathbb{R}}(M_{m,n}(\mathbb{R})) = m \cdot n$, $\dim_{\mathbb{R}}(M_n(\mathbb{R})) = n^2$ (12.11c)
- e) Der Vektorraum der symmetrischen (2×2) -Matrizen hat die Dimension 3 (Aufg. 42a). Der Vektorraum der symmetrischen $(n \times n)$ -Matrizen $(n \ge 1)$ hat die Dimension $\frac{1}{2}n(n+1)$ (Aufgabe 42b).
- f) Sei $A \in M_{m,n}(\mathbb{R})$. Dann hat der Lösungsraum $L_0 \subseteq \mathbb{R}^n$ des homogenen linearen Gleichungssystem $Ax = o_m$ die Dimension $n \operatorname{rg}(A)$ (10.26).
- g) V sei ein Vektorraum: $\dim_{\mathbf{R}}(V) = 0 \iff V = O$.
- h) $\dim_{\mathbf{R}}(\mathcal{F}_0(\mathbf{R})) = \infty$ (vgl. (12.11h)).

<u>BEM:</u> Man kann den Dimensionsbegriff auch auf den Fall nicht endlich erzeugbarer Vektorräume erweitern: Zwei Basen B und B' eines Vektorraumes V haben immer "dieselbe Mächtigkeit" oder "dieselbe Kardinalzahl", d.h. es gibt eine bijektive Abbildung $B \longrightarrow B'$. Im endlichen Falle bedeutet dies gerade |B| = |B'|. Als Dimension eines Vektorraumes V definiert man dann die Mächtigkeit einer beliebigen Basis von V. Im Beispiel (12.11d) ist damit die Dimension von $\mathcal{F}_0(\mathbb{R})$ die Kardinalzahl der Basis $\mathcal{E} = \{\varepsilon_i | i \in \mathbb{N}\}$, also $\dim_{\mathbb{R}}(\mathcal{F}_0(\mathbb{R})) = \operatorname{card}(\mathbb{N}) = \aleph_0$.

(13.7) SATZ: Sei V ein Vektorraum mit $\dim_{\mathbf{R}}(V)=n$. Dann gilt

- a) Jede linear unabhängige Teilmenge von V hat höchstens n Elemente.
- b) Jede linear unabhängige Teilmenge von V mit genau n Elementen ist eine Basis von V .
- c) Jedes Erzeugendensystem von V hat mindestens n Elemente.
- d) Jedes Erzeugendensystem von V mit genau n Elementen ist eine Basis von V.

(13.8) BASISERGÄNZUNGSSATZ

V sei ein endlich-dimensionaler Vektorraum , und E sei ein endliches Erzeugendensystem von V. Dann läßt sich jede linear unabhängige Teilmenge $T\subseteq V$ durch Hinzunahme geeigneter Vektoren aus E zu einer Basis von V ergänzen .

(13.9) FOLG: V sei ein endlich-dimensionaler Vektorraum und $U\subseteq V$ ein Untervektorraum . Dann gilt:

- a) U ist endlich-dimensional und $\dim_{\mathbf{R}}(U) \leq \dim_{\mathbf{R}}(V)$.
- b) Jede Basis von U läßt sich zu einer Basis von V ergänzen.
- c) $\dim_{\mathbf{R}}(U) = \dim_{\mathbf{R}}(V) \implies U = V$.

(13.10) FOLG: V sei ein endlich-dimensionaler Vektorraum . Zu jedem Untervektorraum U von V gibt es einen Untervektorraum U' von V mit

$$U + U' = V$$
 und $U \cap U' = O$

U' ist i. a. nicht eindeutig bestimmt.

(13.11) DEF: V sei ein Vektorraum, U_1 und U_2 seien Untervektorräume von V. Dann heißt V die direkte Summe von U_1 und U_2 (in Zeichen: $V = U_1 \oplus U_2$), wenn gilt

$$V = U_1 + U_2$$
 und $U_1 \cap U_2 = O$

Bezeichnungen: Gilt $V=U_1\oplus U_2$, so heißt U_1 (und auch U_2) ein direkter Summand von V und U_2 ein direktes Komplement von U_1 .

(13.12) LEMMA: V sei ein Vektorraum, und U_1 und U_2 seien Untervektorräume von \overline{V} . Dann sind folgende Aussagen äquivalent:

- a) $V = U_1 \oplus U_2$
- b) Jeder Vektor $v \in V$ läßt sich eindeutig in der Form $v = u_1 + u_2$ mit $u_1 \in U_1$, $u_2 \in U_2$ darstellen.

(13.13) LEMMA: V sei ein endlich-dimensionaler Vektorraum . U_1 und U_2 seien Untervektorräume von V mit $V=U_1\oplus U_2$. Dann gilt:

- a) Sind B_1 eine Basis von U_1 und B_2 eine Basis von U_2 , so ist $B:=B_1\cup B_2$ eine Basis von V.
- b) $\dim_{\mathbf{R}}(V) = \dim_{\mathbf{R}}(U_1) + \dim_{\mathbf{R}}(U_2)$.

(13.14) DEF: V sei Vektorraum , U_1, \ldots, U_s seien Untervektorräume von V . Dann heißt V die direkte Summe von U_1, \ldots, U_s , (in Zeichen: $V = U_1 \oplus \ldots \oplus U_s = \bigoplus_{i=1}^s U_i$) , wenn gilt:

i)
$$V = \sum_{i=1}^{s} U_i$$

$$egin{aligned} \operatorname{ii}) & \left(egin{array}{ccc} \sum_{i=1 top k=1}^s U_i
ight) \cap U_k = O & orall \, k=1,2,\ldots,s \end{aligned}$$

(13.15) SATZ: V sei ein endlich-dimensionaler Vektorraum , U_1,\ldots,U_s seien Untervektorräume von V mit $V=\bigoplus_{i=1}^s U_i$. Dann gilt:

- a) Ist B_i eine Basis von U_i für alle $i=1,2,\ldots,s$, so ist $B:=\bigcup_{i=1}^s B_i$ eine Basis von V .
- b) $\dim_{\mathbf{R}}(V) = \sum_{i=1}^{s} \dim_{\mathbf{R}}(U_i)$.

(13.16) SATZ: <u>Dimension der Summe zweier Unterräume</u>

V sei ein endlich–dimensionaler Vektorraum , U_1 und U_2 seien Untervektorräume von V . Dann gilt:

$$\dim_{\mathbf{R}}(U_1 + U_2) = \dim_{\mathbf{R}}(U_1) + \dim_{\mathbf{R}}(U_2) - \dim_{\mathbf{R}}(U_1 \cap U_2).$$