Remote Ad Hoc Sensor Networks

Li-Wen Yip

B.Engimaneering (Computer Systems), James Cook University

Remote Ad Hoc Sensor Networks

Introduction

Project Overview

- Australia is a huuuuge country
- Remote and inaccessible locations
- Challenging communication scenarios
- · An alternative approach: Ad Hoc Networking

What is an Ad-Hoc Network?

- Peer to peer network
- Distributed infrastructure
- Automatic and adaptive configuration
- Energy efficient

Typical Ad Hoc Sensor Networks

- Network Conditions
 - Dense, well connected topologies
 - Low traffic rates
- Tiny sensor nodes
 - Data collection
 - Data processing
 - Low power radios
- Long battery life

Crossbow "Mica" Motes

Remote Ad Hoc Sensor Networks

Size

- Large geographical areas
- Remote and inaccessible locations

Network Conditions

- Sparse, minimally connected topologies
- Large link distances (up to 10km)
- Exposure to environmental conditions

Applications

- Data collection
 - Great Barrier Reef monitoring stations
 - Water trough monitoring on cattle properties
- Rapidly deployable communications
 - Natural disasters
 - Battlefields

Davies Reef Remote Weather Station

Remote Ad Hoc Sensor Networks

Hardware

Hardware Overview

- Microcontroller based (PIC18C452)
- Programmable output power
- Cache routing information
- Schedule sleep periods
- CMOS Switch only consumes 5µA

Here's one I prepared earlier...

Remote Ad Hoc Sensor Networks

Software

Software

- Manchester Encoding/Decoding
- Power Saving Techniques
- Dynamic Address Allocation

Manchester Encoding / Decoding

- 1 -> 10; 0 -> 01
- Required for the X2010 FM Transceiver

Manchester Encoding

- Each change is calculated in advance and scheduled
- Not dependent on calculation time
- Allows for some slack
- Perform data fetching under interrupt

Manchester Encoding

Manchester Decoding

- Previous method involved start and stop bits
- Synchronise to the encoded clock
- Locks as soon as the data bit changes
- Extremely efficient runs at 9.6 kbps

Manchester Decoding

Clock Detection

- Detect if a valid signal is present
- Check that edges occur regularly
- Timer overflows -> clock error

Clock Detection

Software

- Manchester Encoding/Decoding
- Power Saving Techniques
- Dynamic Address Allocation

Scheduled Rendezvous

- Nodes are awake for 5 minutes every hour
- Suits periodic bulk data transfer
- Common in data collection applications

Synchronisation

- Distributed synchronisation
 - Large error tolerance
- Clock Drift
 - Phase Detection
- No connectivity between rendezvous periods
 - Preamble sampling

Preamble Sampling

- Use preamble to wake up other nodes
- Frequent brief samples
- Keep listening if there is any activity
- Preamble length = sampling delay
 - Save power while listening
 - Use more power when transmitting

Optimal Sampling Frequency

- Optimum sampling frequency depends on node density and traffic level
- Very effective for low density and low traffic
- Power savings up to 99%

Dynamic Optimisation

- Periods of localised increased traffic levels
- Dynamically adjust the sampling frequency when increased traffic is anticipated
- Reduced chance of collisions

Results

- Scheduled Rendezvous:
 - Scheduling implemented with RTC chip
 - Synchronise two nodes with 1 sec error
- Preamble Sampling:
 - Implemented and verified
 - Maintains connectivity
 - Power consumption proportional to duty cycle
- Dynamic Optimization
 - Basic operation verified
 - Future work use network and application layer information for more intelligence

Software

- Manchester Encoding/Decoding
- Power Saving Techniques
- Dynamic Address Allocation

Dynamic Address Allocation

- Traditional methods are centralised
 - e.g. DHCP Server
- Goals:
 - Dynamically allocate unique addresses
 - Cope with network dynamics
- Three ad hoc addressing techniques:
 - Centralised (elected leader)
 - Decentralised (distributed agreement)
 - Mutually exclusive address spaces

Mutually Exclusive Address Spaces

- Every node has a set of mutually exclusive addresses
- Every node can give some of its addresses away
- Very low overhead
- New protocol based upon two existing protocols

Here's how it works:

Address Depletion

Results

- Partially implemented for ns-2 network simulator
- Didn't work
- Poor documentation and support
- Simulation required to quantify results

Remote Ad Hoc Sensor Networks

Summary

Summary

- Hardware improved
 - More compact PCB design
 - Bypass switch 500mA reduced to 5uA
- Fast, efficient, reliable Manchester codec
 - Fully working mate!
- Power save protocol working
 - Theoretical 99% power saving
 - Requires simulation to quantify results
 - Identified areas for future improvement
- Dynamic address allocation developed
 - Implementation needs to be completed
 - Requires simulation to verify operation

Questions

Website:

Search for "JCU AD HOC" at

www.google.com