[ROM21]

p. 97

191 Exemples d'utilisation de techniques d'algèbre en géométrie.

I - Utilisation des nombres complexes

On se place dans un plan affine euclidien $\mathcal P$ muni d'un repère orthonormé $\mathcal R=(O,\vec i,\vec j)$.

1. Module, argument

Théorème 1. L'application

$$\mathcal{R} \to \mathbb{C}$$

$$(x,y) \mapsto x+iy$$

est une bijection.

En utilisant cette identification entre \mathscr{P} et \mathbb{C} , on peut identifier tout point du plan à un nombre complexe.

Théorème 2. Soient A et B deux points dont on note a et b les complexes associés.

- (i) |a| = OA.
- (ii) |b a| = AB.
- (iii) Soit $r \in \mathbb{R}_*^+$. L'ensemble des nombres complexes z tels que |z a| = r (resp. |z a| < r / $|z a| \le r$) est le cercle (resp. le disque ouvert / fermé) de centre A et de rayon r.
- (iv) Un point M d'affixe z est sur la médiatrice de [AB] si et seulement si |z a| = |z b|.

Proposition 3 (Inégalité triangulaire). Soient $z_1, ..., z_n \in \mathbb{C}^*$ avec $n \ge 2$, on a

$$\left| \sum_{k=1}^{n} z_k \right| \le \sum_{k=1}^{n} |z_k|$$

l'égalité étant réalisée si et seulement si z_1, \ldots, z_n sont linéairement liés.

Remarque 4. En reprenant les notations précédentes, et en désignant par $M_1, ..., M_n$ les points associés aux complexes $z_1, ..., z_n$, l'égalité

$$\left\| \sum_{k=1}^{n} \overrightarrow{OM_k} \right\| = \sum_{k=1}^{n} \left\| \overrightarrow{OM_k} \right\|$$

est équivalente à dire que les points O, M_1, \dots, M_n sont alignés.

Théorème 5. Si z est un nombre complexe de module 1, il existe un unique réel $\theta \in [-\pi, \pi[$ tel que

$$z = \cos(\theta) + i\sin(\theta)$$

Définition 6. On dit qu'un réel θ est un **argument** du nombre complexe z non nul si

$$\frac{z}{|z|} = \cos(\theta) + i\sin(\theta)$$

Théorème 7. Soient $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ deux vecteurs non nuls du plan. On note z_1 et z_2 les complexes associés.

- (i) Si θ_1 est un argument de z_1 , alors c'est également une mesure de l'angle orienté $(\vec{i}, \overrightarrow{v_1})$.
- (ii) Un argument de $\frac{z_2}{z_1}$ est une mesure de l'angle orienté $\theta = \widehat{(\overline{v_1},\overline{v_2})}$ et on a :

$$\cos(\theta) = \frac{\langle \overrightarrow{v_1}, \overrightarrow{v_2} \rangle}{\|\overrightarrow{v_1}\| \|\overrightarrow{v_2}\|} \text{ et } \sin(\theta) = \frac{\det(\overrightarrow{v_1}, \overrightarrow{v_2})}{\|\overrightarrow{v_1}\| \|\overrightarrow{v_2}\|}$$

où \langle ., . \rangle désigne le produit scalaire canonique.

2. Le triangle dans le plan complexe

Définition 8. Un **vrai triangle** dans le plan \mathcal{P} est la donnée de trois points non alignés A, B et C. Un tel triangle est noté $\mathcal{T} = ABC$.

Soit $\mathcal{T} = ABC$ un vrai triangle. On note a, b et c les complexes associés respectivement à A, B et C.

Théorème 9. L'aire de ABC est

$$\frac{1}{2} \left| \det \left(\overrightarrow{AB}, \overrightarrow{AC} \right) \right|$$

Proposition 10. Le trois médianes de \mathcal{T} concourent au point dont le complexe associé est

$$\frac{a+b+c}{3}$$

Définition 11. Le point précédent est appelé **centre de gravité** de \mathcal{F} . C'est aussi l'**isobarycentre** des points A, B et C.

Proposition 12. Le trois hauteurs de $\mathcal T$ concourent au point dont le complexe associé est

$$a_{\Omega} + b_{\Omega} + c_{\Omega}$$

p. 105

où a_{Ω} , b_{Ω} , c_{Ω} sont les complexes associés aux points A, B et C considérés dans le repère $(\Omega, \vec{i}, \vec{j})$ avec Ω centre du cercle circonscrit au triangle \mathcal{F} .

Définition 13. Le point précédent est appelé **orthocentre** de \mathcal{T} .

Proposition 14. Dans un vrai triangle, orthocentre, centre du cercle circonscrit et centre de gravité sont alignés.

3. Droites et cercles dans le plan complexe

Théorème 15. Toute équation de la forme

$$\alpha z\overline{z} + \overline{\beta}z + \beta\overline{z} + \gamma = 0, \ \alpha, \gamma \in \mathbb{R}, \ \beta \in \mathbb{C}$$

représente dans ${\cal P}$:

- (i) \mathscr{P} tout entier si $\alpha = \beta = \gamma = 0$.
- (ii) Ø si:

$$-\alpha = \beta = 0$$
 et $\gamma \neq 0$;

— ou
$$\alpha \neq 0$$
 et $|\beta|^2 - \alpha \gamma < 0$.

- (iii) Une droite dirigée par le vecteur \vec{v} représentant le complexe $i\beta$ si $\alpha = 0$ et $\beta \neq 0$.
- (iv) Le cercle dont le centre est associé au complexe $-\frac{\beta}{\alpha}$ et de rayon $\frac{\sqrt{|\beta|^2 \alpha \gamma}}{|\alpha|}$ si $\alpha \neq 0$ et $|\beta|^2 \alpha \gamma \geq 0$.

Corollaire 16 (Théorème d'Appolonius). Soient a et b deux nombres complexes distincts et $\lambda \in \mathbb{R}^+$. L'ensemble

$$E_{\lambda} = \{ z \in \mathbb{C} \mid |z - b| = \lambda |z - a| \}$$

est identifié dans \mathcal{P} ;

- À la médiatrice du segment [AB] pour $\lambda = 1$.
- Au cercle de centre le complexe associé à $\frac{b-\lambda^2 a}{1-\lambda^2}$ et de rayon $\frac{\lambda|a-b|}{|1-\lambda^2|}$ pour $\lambda \neq 1$.

Théorème 17. Soient A, B, C et D des points deux à deux distincts associés respectivement aux complexes a, b, c et d. Ces points sont alignés si et seulement si

$$\frac{c-b}{c-a}\frac{d-a}{d-b} \in \mathbb{R}^+$$

Corollaire 18 (Théorème de Ptolémée). Soient A, B, C et D des points deux à deux distincts. Le quadrilatère convexe ABCD est inscriptible dans un cercle si et seulement si

$$AC \times BD = AB \times CD + AD \times BC$$

II - Utilisation de la théorie des groupes

1. Actions de groupe

a. Cadre général

Soit X un ensemble fini. On considère une action \cdot de G sur X.

[**ULM21**] p. 71

Proposition 19. Soit $x \in X$. Alors:

- $-- |G \cdot x| = (G : \operatorname{Stab}_G(x)).$
- $-- |G| = |\operatorname{Stab}_{G}(x)||G \cdot x|.$
- $-- |G \cdot x| = \frac{|G|}{|\operatorname{Stab}_G(x)|}$

Théorème 20 (Formule des classes). Soit Ω un système de représentants des orbites de l'action de G sur X. Alors,

$$|X| = \sum_{\omega \in \Omega} |G \cdot \omega| = \sum_{\omega \in \Omega} (G : \operatorname{Stab}_{G}(\omega)) = \sum_{\omega \in \Omega} \frac{|G|}{|\operatorname{Stab}_{G}(\omega)|}$$

Définition 21. On définit :

- $X^G = \{x \in X \mid \forall g \in G, g \cdot x = x\}$ l'ensemble des points de X laissés fixes par tous les éléments de G.
- $X^g = \{x \in X \mid g \cdot x = x\}$ l'ensemble des points de X laissés fixes par $g \in G$.

Théorème 22 (Formule de Burnside). Le nombre r d'orbites de X sous l'action de G est donné par

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

Application 23. Deux colorations des faces d'un cube sont les mêmes si on peut passer de l'une à l'autre par une isométrie du dodécaèdre. Alors, le nombre de colorations distinctes d'un cube avec c couleurs est

$$\frac{c^2}{24}(c^4+3^2+12c+8)$$

[**I-P**] p. 121

b. Espaces affines

On peut réécrire le définition d'un espace affine en termes d'actions de groupes.

[**ROM21**] p. 73

Définition 24. Soit E un espace vectoriel sur \mathbb{R} . Un **espace affine** \mathscr{E} est un ensemble non vide qui agit (à droite) sur E de manière simplement transitive. On note · l'action correspondante. Les éléments de \mathscr{E} sont appelés **points** et les éléments de E sont appelés **vecteurs**.

Remarque 25. Ainsi, pour tout couple $(x, y) \in \mathcal{E}$, il existe un unique $u \in E$ tel que $y = x \cdot u$. On note alors $u = \overrightarrow{xy}$.

Le reste de la théorie découle de cette remarque.

2. Groupe diédral

Définition 26. Pour un entier $n \ge 1$, le **groupe diédral** D_n est le sous-groupe, de $\operatorname{GL}_2(\mathbb{R})$ engendré par la symétrie axiale s et la rotation d'angle $\theta = \frac{2\pi}{n}$ définies respectivement par les matrices

[ULM21] p. 8

 $S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ et } R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$

Exemple 27. $D_1 = \{id, s\}.$

Proposition 28. (i) D_n est un groupe d'ordre 2n.

(ii)
$$r^n = s^2 = id \text{ et } sr = r^{-1}s.$$

Proposition 29. Un groupe non cyclique d'ordre 4 est isomorphe à D_2 .

p. 28

Exemple 30. S_2 est isomorphe à D_2 .

p. 65

Proposition 31. Un groupe fini d'ordre 2p avec p premier est soit cyclique, soit isomorphe à D_p .

p. 28

Exemple 32. S_3 est isomorphe à D_3 .

p. 47

Proposition 33. Les sous-groupes de D_n sont soit cyclique, soit isomorphes à un D_m où $m \mid n$.

[ROM21] p. 84 **Théorème 34.** On désigne par Γ_n l'ensemble des sommets d'un polygone à n côtés et par $Is(\Gamma_n)$ l'ensemble des isométries qui conservent Γ_n . Alors,

$$\operatorname{Is}(\Gamma_n) = D_n$$

Exemple 35. Les isométries conservant un triangle équilatéral sont les éléments de D_3 .

III - Utilisation de la théorie des corps

On note \mathscr{P} un plan affine euclidien muni d'un repère orthonormé direct $\mathscr{R} = (O, \vec{i}, \vec{j})$. On s'autorise à identifier chaque point $M \in \mathscr{P}$ avec ses coordonnées $(x, y) \in \mathbb{R}^2$ dans \mathscr{R} .

[**GOZ**] p. 47

Définition 36. On dit qu'un point $M \in \mathcal{P}$ est **constructible** (sous-entendu à la règle et au compas) si on peut le construire en utilisant uniquement la règle et le compas, en supposant O et I = (1,0) déjà construits.

Proposition 37. Soient *A*, *B* deux points constructibles distincts.

- (i) Si *A* est constructible, son symétrique par rapport à *O* l'est aussi.
- (ii) J = (0, 1) est constructible.
- (iii) Si *C* est un point constructible, on peut construire à la règle et au compas la perpendiculaire à (*AB*) passant par *C*.
- (iv) Si *C* est un point constructible, on peut construire à la règle et au compas la parallèle à (*AB*) passant par *C*.

Proposition 38. Soit $x \in \mathbb{R}$.

(x,0) est constructible \iff (0,x) est constructible

Définition 39. Un nombre vérifiant la proposition précédente est dit **nombre constructible**.

Proposition 40. (i) Tout élément de \mathbb{Q} est constructible.

(ii) (x, y) est constructible si et seulement si x et y le sont.

Théorème 41. L'ensemble \mathbb{E} des nombres constructibles est un sous-corps de \mathbb{R} stable par racine carrée.

[DEV]

Théorème 42 (Wantzel). Soit $t \in \mathbb{R}$. t est constructible si et seulement s'il existe une suite fini $(L_0, ..., L_p)$ de sous-corps de \mathbb{R} vérifiant :

- (i) $L_0 = \mathbb{Q}$.
- (ii) $\forall i \in [1, p-1], L_i$ est une extension quadratique de L_{i-1} .
- (iii) $t \in L_p$.

Corollaire 43. (i) Si x est constructible, le degré de l'extension $\mathbb{Q}[x]$ sur \mathbb{Q} est de la forme 2^s pour $s \in \mathbb{N}$.

(ii) Tout nombre constructible est algébrique.

Contre-exemple 44. — $\sqrt[3]{2}$ est algébrique, non constructible.

— $\sqrt{\pi}$ est transcendant et n'est donc pas constructible.

Application 45 (Quadrature du cercle). Il est impossible de construire, à la règle et au compas, un carré ayant même aire qu'un disque donné.

Application 46 (Duplication du cube). Il est impossible de construire, à la règle et au compas, l'arête d'un cube ayant un volume double de celui d'un cube donné.

IV - Utilisation de l'algèbre linéaire

1. Déterminant et volume

Théorème 47. L'aire $\mathcal{A}(v, w)$ du parallélogramme engendré par deux vecteurs $v, w \in \mathbb{R}^n$ est égale à

$$\mathscr{A}(v, w) = |\det(v, w)|$$

Corollaire 48. Soient $v_1, \ldots, v_n \in \mathbb{R}^n$. On note $\mathcal{V}(v_1, \ldots, v_n)$ le volume du parallélépipède rectangle engendré par v_1, \ldots, v_n (ie. l'ensemble $\{z \in \mathbb{R}^n \mid z = \sum_{i=1}^n \lambda_i v_i, \lambda_i \in [0,1]\}$). On a alors :

$$\mathcal{V}(v_1,\dots,v_n) = |\det(v_1,\dots,v_n)|$$

[**GRI**] p. 130

2. Étude d'une suite de polygones

Proposition 49 (Déterminant circulant). Soient $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n \in \mathbb{C}$. On pose $\omega = e^{\frac{2i\pi}{n}}$. Alors

[**GOU21**] p. 153

[I-P]

p. 389

$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{vmatrix} = \prod_{j=0}^{n-1} P(\omega^j)$$

où $P = \sum_{k=0}^{n-1} a_k X^k$.

[DEV]

Application 50 (Suite de polygones). Soit P_0 un polygone dont les sommets sont $\{z_{0,1},\ldots,z_{0,n}\}$. On définit la suite de polygones (P_k) par récurrence en disant que, pour tout $k \in \mathbb{N}^*$, les sommets de P_{k+1} sont les milieux des arêtes de P_k .

Alors la suite (P_k) converge vers l'isobarycentre de P_0 .

3. Groupe spécial orthogonal en dimension 2 et 3

Définition 51. On définit $SO(E) = \{u \in \mathcal{O}(E) \mid \det(u) = 1\} \text{ et } SO_n(\mathbb{R}) = \{A \in \mathcal{O}_n(\mathbb{R}) \mid \det(A) = 1\}$

[**GRI**] p. 241

Proposition 52. SO(E) est un sous-groupe distingué de $\mathcal{O}(E)$ d'indice 2 (de même que $SO_n(\mathbb{R})$ dans $\mathcal{O}_n(\mathbb{R})$).

[ROM21] p. 724

Exemple 53.

$$\frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix} \in SO_3(\mathbb{R})$$

Théorème 54. Soit $A \in \mathcal{O}_2(\mathbb{R})$. Alors :

 $- \underline{\operatorname{Si} A} \in \operatorname{SO}_2(\mathbb{R}) :$

$$\exists \theta \in \mathbb{R} \text{ tel que } A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

(rotation d'angle θ).

— $\underline{\text{Si } A \notin \text{SO}_2(\mathbb{R})}$:

$$\exists \theta \in \mathbb{R} \text{ tel que } A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

(symétrie orthogonale par rapport à la droite d'angle polaire $\frac{\theta}{2}$).

Théorème 55. Soit $A \in \mathcal{O}_3(\mathbb{R})$ et u l'endomorphisme de E dont la matrice dans la base canonique est A. Alors, il existe \mathscr{B} une base orthonormée de E telle que la matrice de u dans \mathscr{B} est

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & \epsilon \end{pmatrix}$$

avec $\epsilon=\pm 1$. On note E_ϵ le sous-espace vectoriel associé à la valeur propre ϵ .

- Si $\epsilon = 1: f \in SO(E)$ est la rotation d'angle $2\cos(\theta) + 1$ autour de l'axe E_1 .
- $\underline{\text{Si } \epsilon = -1}: f \notin \text{SO}(E)$ est la composée de la rotation d'angle $2\cos(\theta) 1$ autour de l'axe E_{-1} avec la symétrie orthogonale par rapport à E_{-1}^{\perp} .

Théorème 56. Soit G un sous-groupe fini de $SO_3(\mathbb{R})$. Alors, G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$, D_n , A_4 , S_4 ou A_5 (où $n \ge 2$).

[ULM21] p. 138

Application 57 (Solides de Platon). Il y a cinq polyèdres réguliers : le tétraèdre, le cube, l'octaèdre, le dodécaèdre et l'icosaèdre.

Annexes

FIGURE 1 – La suite de polygones.

Figure 2 – Le groupe $\mathcal{O}_2(\mathbb{R})$.

p. 244

[I-P] p. 389

[**GRI**] p. 242

Figure 3 – Le groupe $\mathcal{O}_3(\mathbb{R})$.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-l3-m1-2e-edition-9782729842772.html.

Algèbre Linéaire [GRI]

Joseph Grifone. Algèbre Linéaire. 6e éd. Cépaduès, 9 jan. 2019.

https://www.cepadues.com/livres/algebre-lineaire-edition-9782364936737.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.

Théorie des groupes [ULM21]

Felix Ulmer. *Théorie des groupes. Cours et exercices.* 2e éd. Ellipses, 3 août 2021.

https://www.editions-ellipses.fr/accueil/13760-25304-theorie-des-groupes-2e-edition-9782340057241.html.