Problem 1

Let $\varphi: X_0 \subset X \longrightarrow Y$ be a continuous map. Recall the construction of glueing X to Y via φ from class.

1. Show that Y can be considered to be a subspace of $X \cup_{\varphi} Y$. Show that the same is true for X if φ is a homeomorphism onto its image.

Proof. It is

$$X \cup_{\varphi} Y := (X \sqcup Y) / \sim$$

 $a \sim f(a)$

We want to find a surjective map $\psi: Y \longrightarrow X \cup_{\varphi} Y$ such that $\psi(U)$ is open in the quotient topology.