

Adv. Macro: Heterogenous Agent Models

Nicolai Waldstrøm 2024

Advertisement

Cagé and Piketty at CSS

- Thomas Piketty and Julia Cagé will visit CSS and discuss the history of policy conflict
- October 10 at 17:00-18:00 in room 35.01.05
- Interview by editor at danish newspaper Information, Rune Lykkeberg
- The first 100 students who sign-up will be able to attend (signup link)

Introduction

 Last time: How to solve consumption-saving models using dynamic programing

- Last time: How to solve consumption-saving models using dynamic programing
- Goal for today: Better understanding of household spending through the lens of traditional consumption-saving models

- Last time: How to solve consumption-saving models using dynamic programing
- Goal for today: Better understanding of household spending through the lens of traditional consumption-saving models
- Central economic questions:
 - 1. How do households consume out of transitory income shocks?
 - 2. How to design models that match the empirical evidence on the Marginal Propensity to Consume (MPC)?
 - 3. What is the effect of income risk on consumption dynamics?

- Last time: How to solve consumption-saving models using dynamic programing
- Goal for today: Better understanding of household spending through the lens of traditional consumption-saving models

Central economic questions:

- 1. How do households consume out of transitory income shocks?
- 2. How to design models that match the empirical evidence on the Marginal Propensity to Consume (MPC)?
- 3. What is the effect of income risk on consumption dynamics?

Plan for today:

- 1. Discuss the MPC, why it matters, and how it looks in the data
- 2. Consider a variety of models that attempt to match the data
- 3. Study the link between income risk and consumption behavior

- Last time: How to solve consumption-saving models using dynamic programing
- Goal for today: Better understanding of household spending through the lens of traditional consumption-saving models
- Central economic questions:
 - 1. How do households consume out of transitory income shocks?
 - 2. How to design models that match the empirical evidence on the Marginal Propensity to Consume (MPC)?
 - 3. What is the effect of income risk on consumption dynamics?

Plan for today:

- 1. Discuss the MPC, why it matters, and how it looks in the data
- 2. Consider a variety of models that attempt to match the data
- 3. Study the link between income risk and consumption behavior
- Primarily partial equilibrium leave general equilibrium for next lecture

MPC

The Marginal Propensity to Consume (MPC)

 Definition: How much a household spends out of a small, one-time, unanticipated income shock

$$MPC = \frac{\Delta C}{\Delta Y}$$

The Marginal Propensity to Consume (MPC)

 Definition: How much a household spends out of a small, one-time, unanticipated income shock

$$MPC = \frac{\Delta C}{\Delta Y}$$

- Notes:
 - 1. It is the MPC out of a transitory income shock (Friedman, 1957)
 - 2. It is the contemporaneous MPC (usually one quarter or a year)
 - 3. It is measured based on spending on nondurables and services

The Marginal Propensity to Consume (MPC)

 Definition: How much a household spends out of a small, one-time, unanticipated income shock

$$MPC = \frac{\Delta C}{\Delta Y}$$

- Notes:
 - 1. It is the MPC out of a transitory income shock (Friedman, 1957)
 - 2. It is the contemporaneous MPC (usually one quarter or a year)
 - 3. It is measured based on spending on nondurables and services
- For a comprehensive overview, see Kaplan and Violante (2022)

Central concept in modern heterogeneous-agent macroeconomics

- Central concept in modern heterogeneous-agent macroeconomics
- Affects macro response to:
 - Fiscal stimulus
 - Monetary policy
 - Redistribution
 - External shocks (markup shocks, oil/energy shocks, capital flows)

- Central concept in modern heterogeneous-agent macroeconomics
- Affects macro response to:
 - Fiscal stimulus
 - Monetary policy
 - Redistribution
 - External shocks (markup shocks, oil/energy shocks, capital flows)
- Historically: Tension between data and models

- Central concept in modern heterogeneous-agent macroeconomics
- Affects macro response to:
 - Fiscal stimulus
 - Monetary policy
 - Redistribution
 - External shocks (markup shocks, oil/energy shocks, capital flows)
- Historically: Tension between data and models
- We need macro models that can reproduce the data on MPC

MPC in the Data: Methods

- Three strands of empirical evidence on the size of the MPC:
 - Quasi-experimental evidence
 Johnson-Parker-Souleles (2006): Income tax rebates
 Gelman et al. (2020): government shutdown
 Fagereng et al. (2020), Golosov et al. (2021): lottery wins

MPC in the Data: Methods

- Three strands of empirical evidence on the size of the MPC:
 - Quasi-experimental evidence
 Johnson-Parker-Souleles (2006): Income tax rebates
 Gelman et al. (2020): government shutdown
 Fagereng et al. (2020), Golosov et al. (2021): lottery wins
 - Self-reported MPC from survey questions
 Bunn et al. (2018), Christelis et al. (2018), Fuster et al. (2020)

MPC in the Data: Methods

- Three strands of empirical evidence on the size of the MPC:
 - Quasi-experimental evidence
 Johnson-Parker-Souleles (2006): Income tax rebates
 Gelman et al. (2020): government shutdown
 Fagereng et al. (2020), Golosov et al. (2021): lottery wins
 - Self-reported MPC from survey questions
 Bunn et al. (2018), Christelis et al. (2018), Fuster et al. (2020)
 - Structural estimates
 Blundell-Pistaferri-Preston (2008), Commault (2019)

- The quarterly aggregate MPC is between 15% and 25%
 - Annual MPCs are larger since spending responses are persistent

- \blacksquare The quarterly aggregate MPC is between 15% and 25%
 - Annual MPCs are larger since spending responses are persistent
 - Size dependence: MPC larger for small income shocks

- The quarterly aggregate MPC is between 15% and 25%
 - Annual MPCs are larger since spending responses are persistent
 - Size dependence: MPC larger for small income shocks
 - Sign asymmetry: MPC much larger for negative income shocks

- The quarterly aggregate MPC is between 15% and 25%
 - Annual MPCs are larger since spending responses are persistent
 - Size dependence: MPC larger for small income shocks
 - Sign asymmetry: MPC much larger for negative income shocks
- There is large heterogeneity in MPCs across households
 - Liquid wealth: MPC larger for low wealth households
 - Fixed individual characteristics: MPC larger for young, low-income households

Taking Stock

• In the data, the MPC is large and heterogeneous

Taking Stock

• In the data, the MPC is large and heterogeneous

These observations have important implications for modern macro

Taking Stock

These observations have important implications for modern macro

• Question: how can common macro models generate a large MPC?

MPCs in Macro Models

Model overview

- Permanent income hypothesis Friedman (1957)
- Buffer-stock consumption model Deaton (1991, 1992); Carroll (1992, 1997)
- 3. Multiple-asset buffer-stock consumption models Kaplan and Violante (2014)

Quick aside: General vs. partial equilibrium

- Today everything is gonna be set in partial equilibrium
 - No market clearing (labor market, goods market, asset market)
 - Prices w, r are therefore exogenous
 - Only endogenous variables are the choice variables and endo. states of households
 - Typically consumption c and savings a

Quick aside: General vs. partial equilibrium

- Today everything is gonna be set in partial equilibrium
 - No market clearing (labor market, goods market, asset market)
 - Prices w, r are therefore **exogenous**
 - Only endogenous variables are the choice variables and endo. states
 of households
 - Typically consumption c and savings a
- General equilibrium
 - Households, firms and government interact through market clearing
 - Prices are endogenous and adjust to clear these markets
 - Next lecture

- No idiosyncratic risk, no borrowing constraint
- Household problem:

$$\max_{\{c_t, a_t\}} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$
 s.t.
$$c_t + a_t = Ra_{t-1} + y_t$$

- No idiosyncratic risk, no borrowing constraint
- Household problem:

$$\max_{\{c_t, a_t\}} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$
s.t.
$$c_t + a_t = Ra_{t-1} + y_t$$

Consumption function:

$$c\left(a
ight)=\mathfrak{m}\left[Ra+\sum_{t=0}^{\infty}\left(rac{1}{R}
ight)^{t}y_{t}
ight],\ ext{where }\mathfrak{m}=1-R^{-1}(Reta)^{rac{1}{\sigma}}$$

- No idiosyncratic risk, no borrowing constraint
- Household problem:

$$\max_{\{c_t, a_t\}} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$
 s.t.
$$c_t + a_t = Ra_{t-1} + y_t$$

Consumption function:

$$c\left(a\right)=\mathfrak{m}\left[Ra+\sum_{t=0}^{\infty}\left(rac{1}{R}
ight)^{t}y_{t}
ight],\; where\; \mathfrak{m}=1-R^{-1}(Reta)^{rac{1}{\sigma}}$$

- Observation: The consumption function is linear in asset holdings
 - → wealth distribution irrelevant for MPC
 - \Rightarrow Cannot reproduce empirical evidence on correlation between wealth and MPCs

- Parameterization:
 - 1. Log utility ($\sigma = 1$): then we can simplify to: $\mathfrak{m} = 1 \beta = r$
 - 2. Plausible (quarterly) calibrations: m = 0.5%
- Representative Agent model features a tiny MPC

- Parameterization:
 - 1. Log utility ($\sigma = 1$): then we can simplify to: $\mathfrak{m} = 1 \beta = r$
 - 2. Plausible (quarterly) calibrations: $\mathfrak{m} = 0.5\%$
- Representative Agent model features a tiny MPC
- Why? With concave utility u(c) across periods households want to smooth consumption across periods

Representative Agent (RA) Model

- Parameterization:
 - 1. Log utility ($\sigma = 1$): then we can simplify to: $\mathfrak{m} = 1 \beta = r$
 - 2. Plausible (quarterly) calibrations: m = 0.5%
- Representative Agent model features a tiny MPC
- Why? With concave utility u(c) across periods households want to smooth consumption across periods
 - I.e. Prefer $u(1) + \beta u(1)$ to $u(2) + \beta u(0)$ when β is high (Jensen's inequality)

Representative Agent (RA) Model

- Parameterization:
 - 1. Log utility ($\sigma = 1$): then we can simplify to: $\mathfrak{m} = 1 \beta = r$
 - 2. Plausible (quarterly) calibrations: m = 0.5%
- Representative Agent model features a tiny MPC
- Why? With concave utility u(c) across periods households want to smooth consumption across periods
 - I.e. Prefer $u(1) + \beta u(1)$ to $u(2) + \beta u(0)$ when β is high (Jensen's inequality)
 - In the RA model there is nothing preventing excessive consumption smoothing

Representative Agent (RA) Model

- Parameterization:
 - 1. Log utility ($\sigma = 1$): then we can simplify to: $\mathfrak{m} = 1 \beta = r$
 - 2. Plausible (quarterly) calibrations: m = 0.5%
- Representative Agent model features a tiny MPC
- Why? With concave utility u(c) across periods households want to smooth consumption across periods
 - I.e. Prefer $u(1) + \beta u(1)$ to $u(2) + \beta u(0)$ when β is high (Jensen's inequality)
 - In the RA model there is nothing preventing excessive consumption smoothing
 - Household optimally spread out spending out of income gain across all periods ⇒ low MPC

Can macro models generate a high MPC, and if so, how?

1. RA model: No

One-Asset Heterogeneous Agent (HA) Model

- Add idiosyncratic income risk, realistic borrowing constraint
- Household problem:

$$\max_{\{c_t, a_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$
 s.t. $c_t + a_t = Ra_{t-1} + y_t$ $y_{t+1} \sim \mathcal{F}(y_t)$ $a_t \geq 0$

One-Asset Heterogeneous Agent (HA) Model

- Add idiosyncratic income risk, realistic borrowing constraint
- Household problem:

$$\max_{\{c_t, a_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$
s.t.
 $c_t + a_t = Ra_{t-1} + y_t$
 $y_{t+1} \sim \mathcal{F}(y_t)$
 $a_t \geq 0$

- Main takeaways:
 - 1. Consumption function c(a) is concave due to precautionary motive
 - 2. There is an optimal buffer stock of assets that HHs want to achieve

Consumption function is concave

- x = a/y is the share of assets to permanent income (Carroll 2001)
- Concavity: Slope of consumption (=MPC) increases as $x \to 0$
- But approximately linear for large x (as in representative agent model)

- If $x_t < x^*$: Expected consumption growth decreases (precautionary saving motive)
- If $x_t > x^*$: Expected consumption growth increases (impatience, $\beta R < 1$)

Takeaways:

1. As $x\to\infty$, the expected growth rate of consumption (and the MPC) converge to their values in the RA model

Takeaways:

- 1. As $x \to \infty$, the expected growth rate of consumption (and the MPC) converge to their values in the RA model
- 2. As $x \to 0$ the MPC approaches due to binding borrowing constraint

Takeaways:

- 1. As $x \to \infty$, the expected growth rate of consumption (and the MPC) converge to their values in the RA model
- 2. As $x \to 0$ the MPC approaches due to binding borrowing constraint
- 3. If the consumer is impatient, there exists a unique target assets-to-permanent-income ratio (x^*)

From the inidividual to the aggregate MPC

Individual MPC for a household with state (a, y):

$$m(a,y) = \frac{c(a+x,y) - c(a,y)}{x} \simeq \frac{\partial c(a,y)}{\partial a}$$

From the inidividual to the aggregate MPC

• Individual MPC for a household with state (a, y):

$$m(a,y) = \frac{c(a+x,y) - c(a,y)}{x} \simeq \frac{\partial c(a,y)}{\partial a}$$

Aggregate MPC:

$$\overline{\mathbf{m}} = \sum_{a,y} \mathfrak{m}(a,y) \times D(a,y)$$

From the inidividual to the aggregate MPC

• Individual MPC for a household with state (a, y):

$$m(a,y) = \frac{c(a+x,y) - c(a,y)}{x} \simeq \frac{\partial c(a,y)}{\partial a}$$

Aggregate MPC:

$$\overline{\mathbf{m}} = \sum_{a,y} \mathfrak{m}(a,y) \times D(a,y)$$

- Two key determinants:
 - 1. Consumption function $c(a, y) \Longrightarrow MPC$ function m(a, y)
 - 2. Wealth distribution D(a, y)

• Shape of the consumption function m(a, y)

- Shape of the consumption function m(a, y)
 - \bullet Uninsurable income risk \to precautionary saving motive
 - Risk-aversion and prudence (u",u"")
 - Occasionally binding borrowing constraint

- Shape of the consumption function m(a, y)
 - \blacksquare Uninsurable income risk \to precautionary saving motive
 - Risk-aversion and prudence (u",u"")
 - Occasionally binding borrowing constraint
 - Strength of precautionary saving is decreasing in wealth

- Shape of the consumption function m(a, y)
 - \blacksquare Uninsurable income risk \to precautionary saving motive
 - Risk-aversion and prudence (u",u"")
 - Occasionally binding borrowing constraint
 - Strength of precautionary saving is decreasing in wealth
 - \blacksquare Consumption function is concave \to MPC is decreasing in wealth

- Shape of the consumption function m(a, y)
 - ullet Uninsurable income risk o precautionary saving motive
 - Risk-aversion and prudence (u",u"")
 - Occasionally binding borrowing constraint
 - Strength of precautionary saving is decreasing in wealth
 - \blacksquare Consumption function is concave \to MPC is decreasing in wealth
 - \blacksquare As wealth grows, the MPC \to MPC in the RA model

- Shape of the consumption function m(a, y)
 - ullet Uninsurable income risk o precautionary saving motive
 - Risk-aversion and prudence (u",u"")
 - Occasionally binding borrowing constraint
 - Strength of precautionary saving is decreasing in wealth
 - \blacksquare Consumption function is concave \to MPC is decreasing in wealth
 - lacktriangle As wealth grows, the MPC ightarrow MPC in the RA model
- Shape of the wealth distribution D(a, y)
 - Bigger mass at bottom, where c function is concave \rightarrow large MPC

Calibration Strategy:

- 1. As before, we set $\sigma = 1$, so that we have log utility
- 2. Set the interest rate r to be 1% per year
- 3. Choose β so that the model matches some target of mean wealth

Calibration Strategy:

- 1. As before, we set $\sigma = 1$, so that we have log utility
- 2. Set the interest rate r to be 1% per year
- 3. Choose β so that the model matches some target of mean wealth

Calibration 1:

- 1. Target US data: wealth to income ratio of 4.1
- 2. This gives an MPC of 4.6%

- High wealth target imply high β -> HHs are very patient and save a lot
- Very few high MPC households

Calibration Strategy:

- 1. As before, we set $\gamma = 1$, so that we have log utility
- 2. Set the interest rate r to be 1% per year
- 3. Choose β so that the model matches some target of mean wealth

Calibration 1:

- 1. Target US data: wealth-to-income ratio of 4.1
- 2. This gives an MPC of 4.6%

Calibration 2:

- 1. Target a counterfactual wealth-to-income ratio of 0.5
- 2. This gives an MPC of 14%

 Now we have a lot more high MPC households (hand-to-mouth HHs)

- Can macro models generate a high MPC, and if so, how?
 - 1. RA model: No
 - 2. One-asset HA model: only by neglecting the majority of wealth

- Can macro models generate a high MPC, and if so, how?
 - 1. RA model: No
 - 2. One-asset HA model: only by neglecting the majority of wealth
- Where do we go from here?

- Can macro models generate a high MPC, and if so, how?
 - 1. RA model: No
 - 2. One-asset HA model: only by neglecting the majority of wealth
- Where do we go from here?
- Wanted: a version of the HA model that:
 - 1. Generates a large aggregate MPC
 - 2. Matches wealth holdings as in the data

- Can macro models generate a high MPC, and if so, how?
 - 1. RA model: No
 - 2. One-asset HA model: only by neglecting the majority of wealth
- Where do we go from here?
- Wanted: a version of the HA model that:
 - 1. Generates a large aggregate MPC
 - 2. Matches wealth holdings as in the data
- Observation:
 - Not all household wealth is <u>immediately</u> available for consumption smoothing

- Can macro models generate a high MPC, and if so, how?
 - 1. RA model: No
 - 2. One-asset HA model: only by neglecting the majority of wealth
- Where do we go from here?
- Wanted: a version of the HA model that:
 - 1. Generates a large aggregate MPC
 - 2. Matches wealth holdings as in the data
- Observation:
 - Not all household wealth is <u>immediately</u> available for consumption smoothing
 - Important difference between liquid (i.e. bank deposits) and illiquid wealth (i.e. housing, retirement accounts)

- Can macro models generate a high MPC, and if so, how?
 - 1. RA model: No
 - 2. One-asset HA model: only by neglecting the majority of wealth
- Where do we go from here?
- Wanted: a version of the HA model that:
 - 1. Generates a large aggregate MPC
 - 2. Matches wealth holdings as in the data

Observation:

- Not all household wealth is <u>immediately</u> available for consumption smoothing
- Important difference between liquid (i.e. bank deposits) and illiquid wealth (i.e. housing, retirement accounts)
- ⇒ Third generation of consumption-saving models: Multiple-asset buffer-stock consumption models

Continuum of households

- Continuum of households
- Life-cycle HHs live for a fixed number of periods (no infinite horizon)

- Continuum of households
- Life-cycle HHs live for a fixed number of periods (no infinite horizon)
- Face uninsurable idiosyncratic income shocks

- Continuum of households
- Life-cycle HHs live for a fixed number of periods (no infinite horizon)
- Face uninsurable idiosyncratic income shocks
- Choose consumption, saving and portfolio allocation

- Continuum of households
- Life-cycle HHs live for a fixed number of periods (no infinite horizon)
- Face uninsurable idiosyncratic income shocks
- Choose consumption, saving and portfolio allocation
- Two assets: liquid (m) and illiquid (a) with $r^a > r^m$
 - ullet Liquid: cash + deposits + directly held stock unsecured debt
 - Illiquid: housing equity + retirement account (85% of net worth)

Two-Asset HA Model - Kaplan & Violante (2014)

- Continuum of households
- Life-cycle HHs live for a fixed number of periods (no infinite horizon)
- Face uninsurable idiosyncratic income shocks
- Choose consumption, saving and portfolio allocation
- Two assets: liquid (m) and illiquid (a) with $r^a > r^m$
 - ullet Liquid: cash + deposits + directly held stock unsecured debt
 - Illiquid: housing equity + retirement account (85% of net worth)
- \bullet Fixed transaction cost κ to move funds into / out of illiquid account

Two-Asset HA Model - Kaplan & Violante (2014)

- Continuum of households
- Life-cycle HHs live for a fixed number of periods (no infinite horizon)
- Face uninsurable idiosyncratic income shocks
- Choose consumption, saving and portfolio allocation
- Two assets: liquid (m) and illiquid (a) with $r^a > r^m$
 - ullet Liquid: cash + deposits + directly held stock unsecured debt
 - Illiquid: housing equity + retirement account (85% of net worth)
- Fixed transaction cost κ to move funds into / out of illiquid account
- Q: Why do HHs want to hold liquid or illiquid assets in this model? Why would you want to hold both assets?

 Value function in period j is the max of the value if you do not (N) or do adjust (A) illiquid assets

$$V_{j}\left(a_{j-1}, m_{j-1}, z_{j}\right) = \max\left\{V_{j}^{N}\left(a_{j-1}, m_{j-1}, z_{j}\right), \ V_{j}^{A}\left(a_{j-1}, m_{j-1}, z_{j}\right)\right\}$$

 Value function in period j is the max of the value if you do not (N) or do adjust (A) illiquid assets

$$V_{j}\left(a_{j-1}, m_{j-1}, z_{j}\right) = \max\left\{V_{j}^{N}\left(a_{j-1}, m_{j-1}, z_{j}\right), \ V_{j}^{A}\left(a_{j-1}, m_{j-1}, z_{j}\right)\right\}$$

Value function if you do not adjust:

$$\begin{aligned} V_{j}^{N}\left(a_{j-1}, m_{j-1}, z_{j}\right) &= \max_{c_{j}, m_{j}} u\left(c_{j}\right) + \beta \mathbb{E}_{j}\left[V_{j+1}\left(a_{j}, m_{j}, z_{j+1}\right)\right] \\ &\text{subject to} \\ &c_{j} + m_{j} \leq m_{j-1}\left(1 + r^{m}\right) + y_{j}\left(z_{j}\right) \\ &a_{j} = a_{j-1}(1 + r^{a}) \\ &m_{j} \geq \underline{m} \end{aligned}$$

 Value function in period j is the max of the value if you do not (N) or do adjust (A) illiquid assets

$$V_{j}\left(a_{j-1}, m_{j-1}, z_{j}\right) = \max\left\{V_{j}^{N}\left(a_{j-1}, m_{j-1}, z_{j}\right), \ V_{j}^{A}\left(a_{j-1}, m_{j-1}, z_{j}\right)\right\}$$

• Value function if you do not adjust:

$$V_{j}^{N}\left(a_{j-1}, m_{j-1}, z_{j}\right) = \max_{c_{j}, m_{j}} u\left(c_{j}\right) + \beta \mathbb{E}_{j}\left[V_{j+1}\left(a_{j}, m_{j}, z_{j+1}\right)\right]$$
 subject to
$$c_{j} + m_{j} \leq m_{j-1}\left(1 + r^{m}\right) + y_{j}\left(z_{j}\right)$$

$$a_{j} = a_{j-1}\left(1 + r^{a}\right)$$

$$m_{j} \geq \underline{m}$$

• States: $(a_{i-1}, m_{i-1}, z_i) = \text{illiquid assets}$, liquid assets, productivity

Value function in period j is the max of the value if you do not (N)
or do adjust (A) illiquid assets

$$V_{j}\left(a_{j-1}, m_{j-1}, z_{j}\right) = \max\left\{V_{j}^{N}\left(a_{j-1}, m_{j-1}, z_{j}\right), \ V_{j}^{A}\left(a_{j-1}, m_{j-1}, z_{j}\right)\right\}$$

• Value function if you do not adjust:

$$V_{j}^{N}\left(a_{j-1},m_{j-1},z_{j}\right) = \max_{c_{j},m_{j}}u\left(c_{j}\right) + \beta\mathbb{E}_{j}\left[V_{j+1}\left(a_{j},m_{j},z_{j+1}\right)
ight]$$
 subject to
$$c_{j}+m_{j} \leq m_{j-1}\left(1+r^{m}\right)+y_{j}\left(z_{j}\right)$$
 $a_{j}=a_{j-1}(1+r^{a})$ $m_{j} \geq \underline{m}$

- States: $(a_{i-1}, m_{i-1}, z_i) = \text{illiquid assets}$, liquid assets, productivity
- Choices: $(c_i, m_i) = \text{consumption}$, liquid asset tmrw

Value function if you adjust:

$$\begin{split} V_{j}^{A}\left(a_{j}, m_{j-1}, z_{j}\right) &= \max_{c_{j}, a_{j}, m_{j}} u\left(c_{j}\right) + \beta \mathbb{E}_{j}\left[V_{j+1}\left(a_{j}, m_{j}, z_{j+1}\right)\right] \\ &\text{subject to} \\ &c_{j} + a_{j} + m_{j} \leq a_{j-1}(1 + r^{a}) + m_{j-1}(1 + r^{m}) - \kappa + y_{j}\left(z_{j}\right) \\ &a_{j} \geq 0, m_{j} \geq \underline{m} \end{split}$$

• Choices: (c_j, a_j, m_j) = consumption, illiquid asset tmrw, liquid asset tmrw

Result: Two different Euler equations

 Short-Run Euler Equation - governed by saving vs dissaving in the liquid asset (HHs adjust liquid assets every period)

$$u'(c_j) = \beta(1+r^m)u'(c_{j+1})$$

Result: Two different Euler equations

 Short-Run Euler Equation - governed by saving vs dissaving in the liquid asset (HHs adjust liquid assets every period)

$$u'(c_j) = \beta(1+r^m)u'(c_{j+1})$$

 Long-Run Euler Equation - governed by saving vs dissaving in the illiquid assets (only adjust illiquid asset infrequently)

$$u'(c_j) = \beta(1+r^a)^N u'(c_{j+N})$$

where N is the number of periods between adjustment

Stylized example 1 - policy function

Zoom in on life-cycle dynamics of savings and portefolio choice in simplified model with:

Coarse hump-shaped earnings profile over life

• Large transaction cost κ

FIGURE 1.—Example of life-cycle of a poor hand-to-mouth agent in the model.

• Income profile: High earnings while working, lower after retirement

FIGURE 1.—Example of life-cycle of a poor hand-to-mouth agent in the model.

 Liquid assets adjust more throughout lifecycle since they are suitable for consumption smoothing

FIGURE 1.—Example of life-cycle of a poor hand-to-mouth agent in the model.

Illiquid assets adjust only 3 times

FIGURE 1.—Example of life-cycle of a poor hand-to-mouth agent in the model.

 Slope of consumption function between adj. dates obey short-run Euler, slope across adj. dates obey long-run euler

FIGURE 1.—Example of life-cycle of a poor hand-to-mouth agent in the model.

 Agent exhibits poor hand-to-mouth behavior between periods 40-60, when she consumes all of her income and holds zero liquid assets

Example 2

FIGURE 2.—Example of life-cycle of a wealthy hand-to-mouth agent in the model.

• Same example as before, but increase the return on the illiquid asset r^a . This incentivizes HHs to substitute from the liquid to illiquid asset

Example 2

FIGURE 2.—Example of life-cycle of a wealthy hand-to-mouth agent in the model.

 Agent exhibits wealthy hand-to-mouth behavior between periods 55 to 100, when she owns illiquid wealth, but zero liquid wealth

- Three types of households in the model:
 - Unconstrained (60%) (positive liquid and illiquid wealth)
 - Poor HtM: zero net worth (14%) (zero liquid and illiquid wealth)
 - Wealthy HtM (26%) (zero liquid wealth, but positive illiquid wealth)

- Three types of households in the model:
 - Unconstrained (60%) (positive liquid and illiquid wealth)
 - Poor HtM: zero net worth (14%) (zero liquid and illiquid wealth)
 - Wealthy HtM (26%) (zero liquid wealth, but positive illiquid wealth)
- Why hold zero liquid and some illiquid wealth at the same time?

- Three types of households in the model:
 - Unconstrained (60%) (positive liquid and illiquid wealth)
 - Poor HtM: zero net worth (14%) (zero liquid and illiquid wealth)
 - Wealthy HtM (26%) (zero liquid wealth, but positive illiquid wealth)
- Why hold zero liquid and some illiquid wealth at the same time?
- Trade-off between higher return and illiquidity:
 - Long-run gain: higher level of consumption
 - Short-run cost: worse consumption smoothing

- Three types of households in the model:
 - Unconstrained (60%) (positive liquid and illiquid wealth)
 - Poor HtM: zero net worth (14%) (zero liquid and illiquid wealth)
 - Wealthy HtM (26%) (zero liquid wealth, but positive illiquid wealth)
- Why hold zero liquid and some illiquid wealth at the same time?
- Trade-off between higher return and illiquidity:
 - Long-run gain: higher level of consumption
 - Short-run cost: worse consumption smoothing
- If gains exceeds costs ⇒ Wealthy HtM

Wealthy HtM households in the data

 Share of US population that are Hand-to-mouth in Survey of Consumer Finances

Wealthy HtM households in the data

What is a reasonable calibration of such a model?

Calibration Strategy:

- As before, we set $\gamma = 1$, so that we have log utility
- Set the interest rate r^{liq} on liquid assets to -2% per year (cash or bonds)

What is a reasonable calibration of such a model?

Calibration Strategy:

- As before, we set $\gamma=1$, so that we have log utility
- Set the interest rate r^{liq} on liquid assets to -2% per year (cash or bonds)
- There remains three parameters:
 - Discount rate β
 - Return on illiquid assets r^{illiq}
 - Transaction cost κ

What is a reasonable calibration of such a model?

Calibration Strategy:

- As before, we set $\gamma=1$, so that we have log utility
- Set the interest rate r^{liq} on liquid assets to -2% per year (cash or bonds)
- There remains three parameters:
 - Discount rate β
 - Return on illiquid assets r^{illiq}
 - Transaction cost κ.
- Choose these three parameters so the model matches three targets:
 - Mean wealth-to-income ratio (4.1)
 - Share of HtM households (34%)
 - Share of wealthy HtM households (25%)

Results from the two-asset model

- What matters most for the MPC is liquid wealth, not total wealth
- MPC remains high even for households with sizeable illiquid wealth
- We can match both MPC and aggregate stock of wealth in the two-asset model

- Two-asset models a la Kaplan & Violante (2014) are computationally intensive to solve due to:
 - Large state space (two endogenous states)
 - Non-convexities
- \bullet Simpler model that still matches 1) aggregate wealth, 2) aggregate MPC: Heterogeneous β model

- Two-asset models a la Kaplan & Violante (2014) are computationally intensive to solve due to:
 - Large state space (two endogenous states)
 - Non-convexities
- Simpler model that still matches 1) aggregate wealth, 2) aggregate MPC: Heterogeneous β model
- Other options:
 - Wealth-in-utility (Michaillat and Saez 2021)
 - Behavoiral models (Present Bias, Maxted et al. 2014)

 Standard one-asset model with ex-ante (=permanent) preference heterogeneity

- Standard one-asset model with ex-ante (=permanent) preference heterogeneity
- Discount factors β uniformely distributed between $[\overline{\beta} 2\Delta, \overline{\beta} + 2\Delta]$ (with $\Delta = 0$ we obtain standard model)

$$\begin{split} V\left(a_{t-1}, z_{t}, \beta\right) &= \max_{c_{t}} u\left(c_{t}\right) + \beta \mathbb{E}\left[V\left(a_{t}, z_{t+1}, \beta\right)\right] \\ &\text{subject to} \\ c_{t} + a_{t} \leq a_{t-1}\left(1 + r\right) + z_{t} \\ a_{t} \geq 0 \end{split}$$

- Standard one-asset model with ex-ante (=permanent) preference heterogeneity
- Discount factors β uniformely distributed between $\left[\overline{\beta}-2\Delta,\overline{\beta}+2\Delta\right]$ (with $\Delta=0$ we obtain standard model)

$$\begin{split} V\left(a_{t-1}, z_{t}, \beta\right) &= \max_{c_{t}} u\left(c_{t}\right) + \beta \mathbb{E}\left[V\left(a_{t}, z_{t+1}, \beta\right)\right] \\ &\text{subject to} \\ c_{t} + a_{t} \leq a_{t-1}\left(1 + r\right) + z_{t} \\ a_{t} \geq 0 \end{split}$$

 \blacksquare Calibrate average β and dispersion Δ to match aggregate wealth and aggregate MPC

- Standard one-asset model with ex-ante (=permanent) preference heterogeneity
- Discount factors β uniformely distributed between $\left[\overline{\beta}-2\Delta,\overline{\beta}+2\Delta\right]$ (with $\Delta=0$ we obtain standard model)

$$\begin{split} V\left(a_{t-1}, z_{t}, \beta\right) &= \max_{c_{t}} u\left(c_{t}\right) + \beta \mathbb{E}\left[V\left(a_{t}, z_{t+1}, \beta\right)\right] \\ &\text{subject to} \\ c_{t} + a_{t} \leq a_{t-1}\left(1 + r\right) + z_{t} \\ a_{t} \geq 0 \end{split}$$

- \blacksquare Calibrate average β and dispersion Δ to match aggregate wealth and aggregate MPC
- Can match
 - Aggregate wealth since high β households hold a lot of wealth
 - Aggregate MPC since low β households have high MPC

- Patient (high β) households have low MPCs but hold a lot of wealth
- Impatient (low β) households have high MPCs but hold a little wealth

Main Takeaways for the MPC

- Can macro models generate a high MPC, and if so, how?
 - RA model: No.
 - MPC ~= 0.5%
 - One-asset HA model:
 - Realistic wealth calibration: MPC = 4.6%
 - Low wealth calibration or β -het: MPC = 15%
 - Two-asset HA model:
 - Realistic wealth calibration: MPC = 15%

Unemployment Risk and Consumption Dynamics

- Question: How does unemployment risk affect household spending?
 - During recessions, unemployment risk increases
 - This may induce HHs to increase their buffer stock of assets (precautionary savings)
 - The resulting fall in consumption may increase output volatility (note: general equilibrium, so not today)
 - This channel has been difficult (if not impossible) to capture with RA models

Unemployment Risk and Consumption Dynamics

- Question: How does unemployment risk affect household spending?
 - During recessions, unemployment risk increases
 - This may induce HHs to increase their buffer stock of assets (precautionary savings)
 - The resulting fall in consumption may increase output volatility (note: general equilibrium, so not today)
 - This channel has been difficult (if not impossible) to capture with RA models
- Our goal: Study a HA model that can capture this channel
 - We will closely follow Harmenberg and Öberg (2021)

- Start with a standard buffer stock model, expanded to have:
 - 1. Durable (d) and nondurable consumption (c)
 - Durable consumption: Car, fridge, furniture etc.
 - Nondurable consumption: Food, services etc.
 - 2. Time varying unemployment risk

- Start with a standard buffer stock model, expanded to have:
 - 1. Durable (d) and nondurable consumption (c)
 - Durable consumption: Car, fridge, furniture etc.
 - Nondurable consumption: Food, services etc.
 - 2. Time varying unemployment risk
- Households maximize

$$\max_{\{c_{it},d_{it},a_{it}\}_{i=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_{it},d_{it})$$

- Start with a standard buffer stock model, expanded to have:
 - 1. Durable (d) and nondurable consumption (c)
 - Durable consumption: Car, fridge, furniture etc.
 - Nondurable consumption: Food, services etc.
 - 2. Time varying unemployment risk
- Households maximize

$$\max_{\{c_{it},d_{it},a_{it}\}_{i=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_{it},d_{it})$$

Subject to

$$c_t + d_t + a_t \le \Upsilon(z_t, n_t) + (1 - \delta)d_{t-1} + Ra_{t-1} - F(d_t, d_{t-1}),$$

 $a_t > 0.$

$$F(d_t, d_{t-1}) = \begin{cases} 0 & \text{if } d_t = (1 - \delta)d_{t-1}, \\ hd_{t-1} & \text{if } d_t \neq (1 - \delta)d_{t-1} \end{cases}$$

Adjustment costs to durable consumption

$$F(d_t, d_{t-1}) = \left\{ egin{array}{ll} 0 & ext{if } d_t = (1-\delta)d_{t-1}, \ hd_{t-1} & ext{if } d_t
eq (1-\delta)d_{t-1}. \end{array}
ight.$$

 Why do we need the adjustment cost? ⇒ Want to capture »lumpy« investment behavoir (durable purchases are infrequent, but large)

Adjustment costs to durable consumption

$$F\left(d_{t},d_{t-1}
ight)=\left\{egin{array}{ll} 0 & ext{if } d_{t}=(1-\delta)d_{t-1},\ hd_{t-1} & ext{if } d_{t}
eq(1-\delta)d_{t-1}. \end{array}
ight.$$

- Why do we need the adjustment cost? ⇒ Want to capture »lumpy« investment behavoir (durable purchases are infrequent, but large)
- Income depends on both productivity and employment status

$$\Upsilon(z_t, n_t) = z_t (n_t + b (1 - n_t))$$

• with $b < 1 = \text{replacement rate (income when } n_t = 0)$

$$F\left(d_{t},d_{t-1}
ight)=\left\{egin{array}{ll} 0 & ext{if } d_{t}=(1-\delta)d_{t-1},\ hd_{t-1} & ext{if } d_{t}
eq(1-\delta)d_{t-1}. \end{array}
ight.$$

- Why do we need the adjustment cost? ⇒ Want to capture »lumpy« investment behavoir (durable purchases are infrequent, but large)
- Income depends on both productivity and employment status

$$\Upsilon(z_t,n_t)=z_t\left(n_t+b\left(1-n_t\right)\right)$$

- with b < 1 = replacement rate (income when $n_t = 0$)
- Where the employment process for n_t is governed by two parameters:
 - The job finding probability and job separation probability

$$F(d_t, d_{t-1}) = \left\{ egin{array}{ll} 0 & ext{if } d_t = (1 - \delta) d_{t-1}, \ h d_{t-1} & ext{if } d_t
eq (1 - \delta) d_{t-1}. \end{array}
ight.$$

- Why do we need the adjustment cost? ⇒ Want to capture »lumpy« investment behavoir (durable purchases are infrequent, but large)
- Income depends on both productivity and employment status

$$\Upsilon(z_t, n_t) = z_t (n_t + b (1 - n_t))$$

- with b < 1 = replacement rate (income when $n_t = 0$)
- Where the employment process for n_t is governed by two parameters:
 - The job finding probability and job separation probability
- Job separation probability = 1% in expanisions and 2% in recessions

$$F(d_t, d_{t-1}) = \begin{cases} 0 & \text{if } d_t = (1 - \delta)d_{t-1}, \\ hd_{t-1} & \text{if } d_t \neq (1 - \delta)d_{t-1} \end{cases}$$

- Why do we need the adjustment cost? ⇒ Want to capture »lumpy« investment behavoir (durable purchases are infrequent, but large)
- Income depends on both productivity and employment status

$$\Upsilon(z_t, n_t) = z_t (n_t + b (1 - n_t))$$

- with b < 1 = replacement rate (income when $n_t = 0$)
- Where the employment process for n_t is governed by two parameters:
 - The job finding probability and job separation probability
- Job separation probability = 1% in expanisions and 2% in recessions
- Job finding probability = 2% in both expansions and recessions

How might unemployment risk affect consumption

- Two channels:
 - Unemployment-risk channel (ex-ante)
 - Unemployment channel (ex-post)

How might unemployment risk affect consumption

- Two channels:
 - Unemployment-risk channel (ex-ante)
 - Unemployment channel (ex-post)
- What is the difference between the two channels?
 - The first captures the saving response to an increase in future job separation probability
 - $\blacksquare \ \ \, \mathsf{Increased} \ \, \mathsf{unemployment}\mathsf{-risk} \Longrightarrow \mathsf{larger} \ \, \mathsf{optimal} \ \, \mathsf{buffer} \ \, \mathsf{stock}$
 - The second captures the fall in consumption induced by being hit by a bad shock
 - Decreased income ⇒ less resources available for consumption

How might unemployment risk affect consumption

- Two channels:
 - Unemployment-risk channel (ex-ante)
 - Unemployment channel (ex-post)
- What is the difference between the two channels?
 - The first captures the saving response to an increase in future job separation probability
 - Increased unemployment-risk ⇒ larger optimal buffer stock
 - The second captures the fall in consumption induced by being hit by a bad shock
 - Decreased income ⇒ less resources available for consumption
- Which of these channels is more important?

Results

• Response of durables is much larger than nondurables

Results

- Response of durables is much larger than nondurables
- For durables: unemployment-risk channel is most important (wait-and-see effect)

Results

- Response of durables is much larger than nondurables
- For durables: unemployment-risk channel is most important (wait-and-see effect)
- For nondurables: unemployment-risk matters initially, but unemployment accounts for the majority in the long-term

Summary

Summary and next week

- Today: Three applications of dynamic programming to understand household spending dynamics
 - 1. The role of credit constraints
 - 2. Modeling the large average MPC to income shocks
 - 3. Consumption dynamics with time-varying unemployment risk

Summary and next week

- Today: Three applications of dynamic programming to understand household spending dynamics
 - 1. The role of credit constraints
 - 2. Modeling the large average MPC to income shocks
 - 3. Consumption dynamics with time-varying unemployment risk
- Next week: General equilibrium

Summary and next week

- Today: Three applications of dynamic programming to understand household spending dynamics
 - 1. The role of credit constraints
 - 2. Modeling the large average MPC to income shocks
 - 3. Consumption dynamics with time-varying unemployment risk
- Next week: General equilibrium
- Homework exercises: (see notebook in Github repo)
 - 1. Adjust the discount factor, β , to target different levels of average wealth. How does the average MPC change across calibrations?
 - 2. Extend the model with permanent discount factor heterogeneity. Can you find a level of dispersion that allows you to both match a high level of liquidty and a higher MPC?