Noise, Overfitting, and Bias vs Variance

Hamid Dehghani
School of Computer Science
Birmingham
September 2020

Slides adapted from Iain Styles, School of Computer Science

Intended Learning Outcome

- Understand the effect of noise on machine learning problems
- Understand and explain the concepts of over and underfitting
- Be able to explain these concepts using the idea of biasvariance decomposition

Model choice

Remember

- We want to model the relationship between x and y as a mathematical function
 - f(w,x)
- If we know model, we can use that
 - $y(x) = \sin(2\pi x)$;
- But often we do not!
 - We will use a 'representation' that describes the data well, which we called a basis

Visual example

- Keeping to linear models will help us explore the details
- $y(x) = \sin(2\pi x)$;
 - So $f(\mathbf{w}, \mathbf{x}) = w_0 \sin(2\pi x)$; would be a trivial choice
- Assume we have no knowledge about model

$$- f(\mathbf{w}, \mathbf{x}) = \sum_{i=0}^{M-1} w_i x_i$$

Visual example

- $y(x) = \sin(2\pi x) = \sum_{i=0}^{M-1} w_i x_i$
- Expand y(x) using Maclaurin series:

$$\sin(ax) = ax - \frac{a^3x^3}{3!} + \frac{a^5x^5}{5!} - \frac{a^7x^7}{7!} + \cdots$$

- $w \approx (0,6.28, -41.34, 0,81.61, ...)$
- So if we start generating data using this approximation by increasing order, and compare to actual model, with no noise!

Polynomial fit of $y(x) = \sin(2\pi x)$;

What do you observe?

How good is the fit?

• Root-mean-square (RMS) error

$$-R = \sqrt{\frac{1}{N} \sum_{i} r_{i}}$$

 Modelled (approximated) function converges with little change at M-7

Coefficients of the fitted polynomial

M	w_0	w_1	W_2	<i>W</i> ₃	W ₄	<i>W</i> ₅	W_6	W ₇	<i>W</i> 8	W9
0	0.00									
1	0.00	-0.29								
2	0.00	-0.29	-0.00							
3	0.00	-0.07	-0.00	-0.31						
4	0.00	-0.07	0.00	-0.31	-0.00					
5	0.00	3.85	-0.00	-16.51	0.00	12.69				
6	0.00	3.85	-0.00	-16.51	0.00	12.69	-0.00			
7	-0.00	6.00	0.00	-35.84	-0.00	54.04	0.00	-24.20		
8	-0.00	6.00	0.00	-35.84	-0.00	54.04	0.00	-24.20	-0.00	
9	-0.00	6.28	0.00	-41.12	-0.00	78.61	0.00	-63.77	-0.00	20.00
True	0	6.28	0	-41.34	0	81.61	0	-76.7	0	42.1

- Coefficients are not quite correct
 - Effect of limited sample domain (Maclaurin series is over [-∞ ∞]
- Low order terms match well
- M = 9 has zero error
 - Exactly fits all data point
- A strong hint as to what can go wrong

Polynomial fit of $y(x) = \sin(2\pi x) + \varepsilon$;

Polynomial fit of $y(x) = \sin(2\pi x) + \varepsilon_1$;

Noise corrupts

- Low-order fits similar in most cases
- High-order fits very differently
- Noise in the data leads to noise in the estimated model
 - Robust models cannot model the data very well
- How can we understand this?

Bias-Variance Decomposition

- ▶ Underlying data generating function h(x)
- ightharpoonup Estimated model f(x)

What is the expected value of the least-squares loss?

$$\mathbb{E}[\mathcal{L}] = \mathbb{E}[(y - f)^2] \tag{1}$$

Bias-Variance Decomposition

We first expand the square

$$\mathbb{E}[\mathcal{L}] = \mathbb{E}[(y-f)^2]$$

$$= \mathbb{E}[y^2] + \mathbb{E}[f^2] - 2\mathbb{E}[yf]$$
(2)
(3)

The variance of a random variable is:

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2, \tag{4}$$

and for independent variables X and Y

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] \tag{5}$$

This allows us to rewrite the loss as

$$\mathbb{E}[\mathcal{L}] = \operatorname{var}[y] + (\mathbb{E}[y])^2 + \operatorname{var}[f] + (\mathbb{E}[f])^2 - 2\mathbb{E}[y]\mathbb{E}[f]$$
 (6)

Bias-Variance Decomposition

- ightharpoonup Recall $y = h(x) + \epsilon$
- Noise distribution: $\mathbb{E}[\epsilon] = 0$ and $var[\epsilon] = \sigma^2$
- ▶ So $\mathbb{E}[y] = h$ and $var[y] = \sigma^2$.

The expected loss becomes

$$\mathbb{E}[\mathcal{L}] = \sigma^{2} + h^{2} + \text{var}[f] + (\mathbb{E}[f])^{2} - 2h\mathbb{E}[f]$$

$$= \sigma^{2} + \text{var}[f] + h^{2} + (\mathbb{E}[f])^{2} - 2h\mathbb{E}[f]$$

$$= \sigma^{2} + \text{var}[f] + (h - \mathbb{E}[f])^{2}$$
(9)
$$\text{variance} \quad \text{bias}$$

What does it all mean?

- How can we interpret this result?
- ▶ Only contribution from data y is its variance σ^2 .
- All dependency on the specific sample, y, of the data has been absorbed into the other terms.
- The variance of f is a consequence of the variance in the data
 - ightharpoonup No noise ightarrow always learn the same model
 - Noisy samples → different models.
 - var f is sensitivity of learned model to the choice of data.

What does it all mean?

- ▶ $h(x) \mathbb{E}[f(x)]$ is the ability of the estimated model to accurately represent the true model
- It is the bias of the estimate.
- Fitting f(x) = mx * c to $h(x) = \sin(2\pi x)$ has a high bias: cannot represent the data
- But it has a low variance: insensitive to particular data choice
- Loss minimisation requires simultaneous minimisation of both bias and variance
 - Models that both fit and generalise well
 - Nearly always in conflict
- A fundamental limitation of machine learning.

