数学物理方法作业集

潘逸文; 余钊焕†
中国广州中山大学物理学院

November 5, 2018

简介

2018 年秋季数学物理方法 (面向 17 级光电信息科学与工程) 作业。每周作业除了在课上宣布,本文件也会每周更新,可在 余钊焕教学主页 http://yzhxxzxy.github.io/cn/teaching.html 找到。

*Email address: panyw
5@mail.sysu.edu.cn †Email address: yuzhaoh
5@mail.sysu.edu.cn

1 第一周 (9月11日课上交)

1. 用指数表示法表示下面的复数

(a)
$$\frac{i}{\pi}$$
, (b) $1 + \sqrt{3}i$, (c) $1 + e^{\frac{9\pi i}{14}}e^{\frac{-\pi i}{7}}$, (1.1)

- 2. 设点集 $S \equiv \{z \in \mathbb{C} \mid |z| \leq R\}$,其中 R > 0。求解最大的 $N \in \mathbb{N}$,使得对于任意 S 的内点 z, z^N 都还是内点。写明推理。
 - 3. 考虑点集 $S \equiv \{z \in \mathbb{C} \mid |z-1| + |z+1| < R\}$, 其中 R > 0。 S 是否区域? 是否单连通?

2 第二周 (9 月 18 日课上交)

1. 用代数式 (即 x + iy 的形式) 表达以下复数,其中 $a, b \in \mathbb{R}$, i 是虚数单位,

(a)
$$a^i, \not \exists r \mid a > 0,$$
 (b) $i^{a+bi},$ (c) $\sin(a+ib)$. (2.1)

- 2. 设 $u(x,y)=e^x\sin y$,而且令 w=u(x,y)+iv(x,y) 为一个解析函数。求 w 关于 z=x+iy 的表达式。
 - 3. 设 f 为区域 D 内解析函数,同时,其值域是 \mathbb{R} 的子集。求证 f 是常数函数。

3 第三周 (9 月 25 日课上交)

- 1. 计算 $I(C_1) = \int_{C_1} \bar{z} dz$ 和 $I(C_2) = \int_{C_2} \bar{z} dz$,其中 C_1 和 C_2 分别是上半单位圆 (逆时针方向) 和下半单位圆 (顺时针方向)。
 - 2. 计算

$$\int_{|z|=1} \frac{\sin(\cos z)}{z} dz \ . \tag{3.1}$$

3. 设复变函数 f 在区域 D 内有定义且实部虚部的的一阶偏导数连续, $G \subset D$ 是其子区域并有 $G \cup \partial G \subset D$ 。证明复变函数的格林公式

$$\int_{\partial G} f(z,\bar{z})dz = \int_{G} \partial_{\bar{z}} f(z,\bar{z})d\bar{z}dz , \qquad (3.2)$$

其中面积元 $d\bar{z}dz = 2idxdy$ 。

4 第五周 (10 月 9 日交)

1. 计算围道积分

$$\oint_C \left(z + \frac{1}{z}\right)^n \frac{dz}{z}, \qquad C = \{z \in \mathbb{C} | |z| = 1 \}.$$

$$(4.1)$$

2. 计算围道积分, n = 1, 2, 3, ...

$$\oint_C \frac{e^z}{z^n} \frac{dz}{z} , \qquad C = \{ z \in \mathbb{C} | |z| = 1 \} .$$
(4.2)

- 3. 考虑级数 $\sum_{k=1}^{\infty} r_k c_k$, 其中 $r_k = (-1)^{k^2}$, $c_k = (-1)^k \frac{e^{ik\theta}}{k}$ 。分情况 $\theta = 0$ 和 $\theta = \pi$ 讨论级数是否收敛,是否绝对收敛,给出简要说明。
 - 4. 讨论下面幂级数是否收敛, 若收敛, 给出收敛半径

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n^n} z^n$$
, (2) $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n z^n$. (4.3)

5 第六周 (10 月 16 日交)

1. 考虑二元实函数 u(x,y)

$$u(x,y) \equiv \frac{x^2 - y^2}{x^4 + 2x^2y^2 + y^4} \ . \tag{5.1}$$

设 u(x,y) 是在某区域内解析的复变函数 f(z=x+iy) 的实部。

- (1) 用共轭调和函数方法求 f(z) 的虚部 v(x,y), 并写出函数 f(z) 关于 z=x+iy 的表达式;
- (2) 指出 f(z) 的奇点以及所属分类;
- (3) 分别以 z=0, z=1, z=-1 为展开中心,作 Laurent 或 Taylor 展开。指出所得级数的收敛区域或收敛半径。
 - 2. 考虑复变函数

$$f(z) \equiv \frac{z^n}{z-1}$$
, $n \in \mathbb{N}$. (5.2)

- (1) 列举 f(z) 以原点为中心的环状/开圆盘状解析区域;
- (2) 以原点为展开中心,在上述每一个解析区域内写出 f(z) 的 Laurent 或 Taylor 展开 $f(z) = \sum_{k=-\infty}^{+\infty} \lambda_k z^k$,并比较展开系数 $\lambda_{k\geq 0}$ 与 $f^{(k)}(0)/k!$ 是否相等 (可为一般 n 和 k 计算通项然后比较,也可取 n=2,k=1,2,3)。

6 第七周 (10月 23日交)

1. 计算下面函数在 z=0 的留数

(a)
$$\frac{\cos z}{z^3}$$
, (b) $\frac{e^z}{z^3}$. (6.1)

2. 计算下面函数在指定奇点的留数

(a)
$$\frac{1}{\sinh \pi z}$$
, $z = ni$, $n \in \mathbb{Z}$, (b) $\frac{e^z}{z^2 - 1}$, $z = 1$. (6.2)

3. 利用留数定理计算积分

(a)
$$\oint_{|z|=\rho>1} \frac{5z-2}{z(z-1)} dz$$
, (b) $\oint_{|z|=1} \frac{\cos z}{z^{2n}} dz$, $n=1,2,\dots$ (6.3)

4. 利用留数定理计算积分

(a)
$$\int_0^{+\infty} \frac{x \sin x}{x^2 + a^2} dx$$
, $a > 0$, (b) $\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2} dx$. (6.4)

7 第八周 (10月 30日交)

1. 弦在阻尼介质中振动, t 时刻 x 处单位长度所受阻力为

$$F(x,t) = -R\frac{\partial u(x,t)}{\partial t},\tag{7.1}$$

其中 R 称为阻力系数。试推导弦在该阻尼介质中的波动方程。

- 2. 弹性均匀细杆,x = 0 端固定,x = l 端被拉长至 x = l + d 并保持静止(d 不超过弹性限度), t = 0 时突然放开 x = l 端,写出杆作纵振动的定解问题。
 - 3. 混凝土浇灌后逐渐放出水化热,放热速率正比于当时尚储存着的水化热密度 Q,即

$$\frac{dQ}{dt} = -\beta Q. (7.2)$$

假设混凝土的热导率 k 是常数, 试推导浇灌后混凝土内的热传导方程。

8 第九周(11月6日交)

1. 考虑以下定解问题

$$\frac{\partial^2 u}{\partial t^2} - 9 \frac{\partial^2 u}{\partial x^2} = 0, \qquad 0 < x < 5, \quad t > 0$$
(8.1)

$$u(0,t) = 0,$$
 $u(5,t) = 0,$ $t \ge 0$ (8.2)

$$u\Big|_{t=0} = 4\sin(\pi x) - \sin(2\pi x) - 3\sin(5\pi x)$$
, $\frac{\partial u}{\partial t}\Big|_{t=0} = 0$, $0 \le x \le 5$. (8.3)

- (1a) 考虑变量分离的特殊解 u = X(x)T(t),写出相应 X,T 的本征问题,并结合边界条件求解 X的本征问题。
 - (1b) 求解 T, 并写下一般解。
 - (1c) 利用初始条件确定一般解的系数。
 - 2. 考虑以下定解问题

$$\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = 0 , \qquad 0 < x < \ell, \quad t > 0$$
 (8.4)

$$u\Big|_{x=0} = 0, \qquad \frac{\partial u}{\partial x}\Big|_{x=\ell} = 0, \qquad t \ge 0$$

$$u\Big|_{t=0} = \frac{u_0 x}{\ell}, \qquad 0 \le x \le \ell.$$
(8.5)

$$u\Big|_{t=0} = \frac{u_0 x}{\ell} , \qquad 0 \le x \le \ell . \tag{8.6}$$

- (2a) 考虑变量分离的特殊解 u = X(x)T(t), 写出相应 X, T 的本征问题, 并结合边界条件求解 X的本征问题。
 - (2b) 求解 T,并写下一般解。
 - (2c) 利用初始条件确定一般解的系数。(可利用公式 $(\sin x x \cos x)' = x \sin x$)

第十周 (11月13日交)

1. 求解下面定解问题

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 , \qquad 0 < x < a, \quad 0 < y < b$$
 (9.1)

$$\frac{\partial u}{\partial x}\Big|_{x=0} = \frac{u_0}{a} , \quad u(a,y) = u_1 + u_2 \cos \frac{\pi}{b} y$$
(9.2)

$$\frac{\partial u}{\partial y}\Big|_{y=0} = 0, \qquad \frac{\partial u}{\partial y}\Big|_{y=b} = 0.$$
 (9.3)

2. 求解下面定解问题

$$\frac{\partial u}{\partial t} - \kappa \frac{\partial^2 u}{\partial x^2} = 0, \qquad 0 < x < \ell, \quad t > 0 \tag{9.4}$$

$$\frac{\partial u}{\partial x}\Big|_{x=0} = 0, \qquad \left(\frac{\partial u}{\partial x} + hu\right)_{x=\ell} = 0$$
 (9.5)

$$u(x, t = 0) = u_0 . (9.6)$$