CS143 Homework #1

1. Given the relations R(A,B,C) and S(A,B,C) with their tuples:

R(A,B,C)			
A	В	C	
3	2	1	
4	2	3	
4	5	6	
2	5	3	
1	2	6	

S(A,B,C)			
A	В	C	
2	5	3	
2	5	4	
4	2	3	
3	2	1	

Then we determine:

(R-S)			
A	В	С	
4	5	6	
1	2	6	

(S-R)			
A	В	C	
2	5	3	

Therefore, we find that the union is:

$(R-S) \cup (S-R)$				
A	В	C		
4	5	6		
1	2	6		
2	5	3		

2. Given R(A,B) and S(B,C,D):

R(A,B)		
A	В	
1	2	
3	4	
5	6	

C	\mathbf{D}	\boldsymbol{C}	D)
21	D,	C.	U)

В	С	D
2	4	6
8	6	8
7	5	9

$(R \times S)(R.A, R.B, S.B, S.C, S.D)$

R.A	R.B	S.B	S.C	S.D
1	2	2	4	6
1	2	8	6	8
1	2	7	5	9
3	4	2	4	6
3	4	8	6	8
3	4	7	5	9
5	6	2	4	6
5	6	8	6	8
5	6	7	5	9

$$R\bowtie_{R.A < S.C \land R.B < S.D} S = \sigma_{R.A < S.C \land R.B < S.D}(R \times S)$$

Therefore, after using the theta-join operator (which we skipped in lecture), we have:

 $(R \times S)(R.A, R.B, S.B, S.C, S.D)$

(1t 11 b)(1til 1, 1tib, bib, bic, bib				
R.A	R.B	S.B	S.C	S.D
1	2	2	4	6
1	2	8	6	8
1	2	7	5	9
3	4	2	4	6
3	4	8	6	8
3	4	7	5	9
5	6	8	6	8

3. Given the database relations:

Customer(customer-name, street, city)
Branch(branch-name, city)
Account(customer-name, branch-name, account-number)

a. Find the names of all customers who have an account in the 'Region12' branch.

$$\pi_{customer-name}(\sigma_{branch-name='Region12'}(Account))$$

b. Find the names of all customers who have an account in a branch NOT located in the same city that they live in.

$$\pi_{c1.customer-name}(\sigma_{c1.customer-name=c2.customer-name \ ^c1.branch-name > c2.branch-name \ (\rho_{c1}(Customer \bowtie Branch) \times \rho_{c2}(Account)))$$

c. Find the branches that do not have any accounts.

$$\pi_{branch-name}(Branch) - \pi_{branch-name}(Account)$$

d. Find the customer names who do not have any account in the 'Region12' branch.

$$\pi_{customer-names}(Customer) - \pi_{customer-names}(\sigma_{branch-name='Region12'}(Account))$$

e. Find the customer names who have accounts in all the branches located in 'Los Angeles'. You are not allowed to use the division operator directly for this question.

$$\begin{split} \pi_{customer-name}(Customer) \\ &- \pi_{customer-name} \left(\pi_{customer-name}(Customer) \right. \\ &\times \pi_{branch-name} \left(\sigma_{city='Los\ Angeles'}(Branch) \right. \\ &\left. - \pi_{customer-name,branch-name} \left(\sigma_{city='Los\ Angeles'}(Account) \right) \right) \right) \end{split}$$

f. Find the customer names who have only one account.

$$\pi_{customer-name}(Account) \\ -\pi_{customer-name}(\sigma_{a1.customer-name=a2.customer-name \land a1.account-number>a2.account-number} \\ \left(\rho_{a1}(Account) \times \rho_{a2}(Account)\right))$$

4. Given the relation Student(sid, GPA), write a relational algebra that finds the ids of the students with the lowest GPA.

$$\pi_{sid}(Student) - \pi_{sid}\left(\sigma_{s1.sid \neq s2.sid \land s1.GPA > s2.GPA}(\rho_{s1}(Student) \times \rho_{s2}(Student))\right)$$