1330

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»						
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»						
Лабораторная работа № <u>1</u>						
Тема Методы Пикара, Эйлера, Рунге-Кутта						
Студент Брянская Е.В.						
Группа ИУ7-62Б						
Оценка (баллы)						
Преподаватель Градов В.М.						

Москва. 2021 г.

Задание

Тема. Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

Цель работы. Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

Исходные данные.

ОДУ, не имеющее аналитического решения:

$$\begin{cases} u'(x) = x^2 + u^2, \\ u(0) = 0 \end{cases}$$
 (1)

Результат работы программы. Таблица, содержащая значения аргумента с заданным шагом в интервале $[0, x_{max}]$ и результаты расчета функции u(x) в приближениях Пикара (от 1-го до 4-го), а также численными методами. Границу интервала x_{max} выбирать максимально возможной из условия, чтобы численные методы обеспечивали точность вычисления решения уравнения u(x) до второго знака после запятой.

Описание алгоритмов

Задача Коши

Общее решение дифференциального уравнения n-ого порядка зависит от n констант. Требуется задать n дополнительных условий:

$$u(x) = \phi(x, c_1, c_2, \dots c_n)$$
(2)

В задаче Коши все дополнительные условия задаются в одной точке ξ :

$$u_k(\xi) = \eta_k, k = 1, \dots n \tag{3}$$

Задачу Коши можно решить с помощью следующих алгоритмов.

Приближённый аналитический метод Пикара

$$\begin{cases} u'(x) = f(x, u), \\ u(\xi) = \eta \end{cases}$$
 (4)

$$u(x) = \eta + \int_{\xi}^{x} f(t, u(t))dt$$
 (5)

Получается, что

$$y^{(s)}(x) = \eta + \int_{\xi}^{x} f(t, y^{(s-1)}(t))dt$$
 (6)

$$y^{(0)} = \eta \tag{7}$$

Найдём 1, 2, 3 и 4 приближение для (1).

$$y^{(1)} = 0 + \int_{0}^{x} t^{2} dt = \frac{t^{3}}{3} \Big|_{0}^{x} = \frac{x^{3}}{3}$$
 (8)

$$y^{(2)} = 0 + \int_{0}^{x} \left[\left(\frac{t^3}{3} \right)^2 + t^2 \right] dt = \frac{t^7}{63} \Big|_{0}^{x} + \frac{t^3}{3} \Big|_{0}^{x} = \frac{x^7}{63} + \frac{x^3}{3}$$
 (9)

$$y^{(3)} = 0 + \int_{0}^{x} \left[\left(\frac{t^{3}}{3} + \frac{t^{7}}{63} \right)^{2} + t^{2} \right] dt = \frac{t^{15}}{15 \cdot 63^{2}} \Big|_{0}^{x} + \frac{2 \cdot t^{11}}{3 \cdot 63 \cdot 11} \Big|_{0}^{x} + \frac{t^{7}}{63} \Big|_{0}^{x} + \frac{t^{3}}{3} \Big|_{0}^{x} =$$

$$= \frac{x^{15}}{59535} + \frac{2 \cdot x^{11}}{2079} + \frac{x^{7}}{63} + \frac{x^{3}}{3}$$

$$(10)$$

$$y^{(4)} = 0 + \int_{0}^{x} \left[\left(\frac{t^{15}}{59535} + \frac{2 \cdot t^{11}}{2079} + \frac{t^{7}}{63} + \frac{t^{3}}{3} \right)^{2} + t^{2} \right] dt = \frac{x^{31}}{109\ 876\ 902\ 975} + \frac{4 \cdot x^{27}}{3\ 341\ 878\ 155} + \frac{4 \cdot x^{23}}{399\ 411\ 543} + \frac{2 \cdot x^{23}}{86\ 266\ 215} + \frac{2 \cdot x^{19}}{3\ 393\ 495} + \frac{4 \cdot x^{19}}{2\ 488\ 563} + \frac{4 \cdot x^{15}}{93\ 555} + \frac{x^{15}}{59\ 535} + \frac{2 \cdot x^{11}}{2079} + \frac{x^{7}}{63} + \frac{x^{3}}{3}$$

$$(11)$$

Реализация представлена на листинге 1.

Кроме того, поставленную задачу можно решить с помощью численных методов.

Метод Эйлера

Явная схема выглядит следующим образом (12).

$$y_{n+1} = y_n + hf(x_n, y_n) (12)$$

В этом случае нужно выбирать шаг, так как он определяет точность и устойчивость. Реализация представлена на листинге 1.

Метод Рунге-Кутта

Будем рассматривать метод второго порядка точности.

$$y_{n+1} = y_n + h[(1 - \alpha)k_1 + \alpha k_2], \tag{13}$$

где

$$k_1 = f(x_n, y_n),$$
 $k_2 = f(x_n + \frac{h}{2\alpha}, y_n + \frac{h}{2\alpha}k_1), \alpha = \frac{1}{2}$ или $\alpha = 1$ (14)

Реализация представлена на листинге 1.

Демонстрация работы программы

Результаты работы программы на отрезке [0;2] с шагом 10^{-6} представлены в таблице ниже (для наглядности берётся х с шагом 0.1).

	Метод	Метод	Метод	Метод	Метод	Метод
x	Пикара	Пикара	Пикара	Пикара	Эйлера	Рунге-Кутта
	(1 приб-е)	(2 приб-е)	(3 приб-е)	(4 приб-е)		
0.00	$0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00}$
0.10	3.33e-04	3.33e-04	3.33e-04	3.33e-04	3.33e-04	3.33e-04
0.20	2.67e-03	2.67e-03	2.67e-03	2.67e-03	2.67e-03	2.67e-03
0.30	9.00e-03	9.00e-03	9.00e-03	9.00e-03	9.00e-03	9.00e-03
0.40	2.13e-02	2.14e-02	2.14e-02	2.14e-02	2.14e-02	2.14e-02
0.50	4.17e-02	4.18e-02	4.18e-02	4.18e-02	4.18e-02	4.18e-02
0.60	7.20e-02	7.24e-02	7.24e-02	7.24e-02	7.24e-02	7.24e-02
0.70	1.14e-01	1.16e-01	1.16e-01	1.16e-01	1.16e-01	1.16e-01
0.80	1.71e-01	1.74e-01	1.74e-01	1.74e-01	1.74e-01	1.74e-01
0.90	2.43e-01	2.51e-01	2.51e-01	2.51e-01	2.51e-01	2.51e-01
1.00	3.33e-01	3.49e-01	3.50e-01	3.50e-01	3.50e-01	3.50e-01
1.10	4.44e-01	4.75e-01	4.77e-01	4.78e-01	4.78e-01	4.78e-01
1.20	5.76e-01	6.33e-01	6.40e-01	6.41e-01	6.41e-01	6.41e-01
1.30	7.32e-01	8.32e-01	8.50e-01	8.53e-01	8.53e-01	8.53e-01
1.40	9.15e-01	$1.08\mathrm{e}{+00}$	$1.12\mathrm{e}{+00}$	$1.13\mathrm{e}{+00}$	$1.13\mathrm{e}{+00}$	$1.13\mathrm{e}{+00}$
1.50	$1.12e{+00}$	$1.40\mathrm{e}{+00}$	$1.49\mathrm{e}{+00}$	$1.51\mathrm{e}{+00}$	$\begin{array}{ c c } 1.52\mathrm{e}{+00} \end{array}$	$1.52\mathrm{e}{+00}$
1.60	$1.37\mathrm{e}{+00}$	$1.79\mathrm{e}{+00}$	$1.98\mathrm{e}{+00}$	$2.05\mathrm{e}{+00}$	$2.08\mathrm{e}{+00}$	$2.08\mathrm{e}{+00}$
1.70	$1.64\mathrm{e}{+00}$	$2.29\mathrm{e}{+00}$	$2.67\mathrm{e}{+00}$	$2.86\mathrm{e}{+00}$	$2.97\mathrm{e}{+00}$	$2.97\mathrm{e}{+00}$
1.80	$1.94\mathrm{e}{+00}$	$2.92 \mathrm{e}{+00}$	$3.65\mathrm{e}{+00}$	$4.15\mathrm{e}{+00}$	$4.69\mathrm{e}{+00}$	$4.69\mathrm{e}{+00}$
1.90	$2.29\mathrm{e}{+00}$	$3.71\mathrm{e}{+00}$	$5.08\mathrm{e}{+00}$	$6.37\mathrm{e}{+00}$	$9.57\mathrm{e}{+00}$	$9.57\mathrm{e}{+00}$
2.00	$2.67\mathrm{e}{+00}$	$4.70\mathrm{e}{+00}$	$7.22\mathrm{e}{+00}$	$1.05\mathrm{e}{+01}$	3.17e + 02	$3.18\mathrm{e}{+02}$

Вопросы при защите лабораторной работы

- 1. Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.
- 2. Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

В силу того, что численные методы зависят от величины шага, то изменяя его, можно прийти к наиболее точному результату при фиксированном значении аргумента. Как только результат перестаёт отличатся от результатов, полученных ранее, то можно сделать вывод о том, что корректный результат получен.

3. Каково значение функции при x=2, т.е. привести значение u(2).

При x=2 и шаге 10^{-6} методом Рунге-Кутта было получено значение функции равное 317.82.

Код программы

Листинг 1 — Лабораторная работа №1

```
1 from math import sqrt
|def f(x, y):
    return x**2 + y**2
6 def picard 1(x args):
    res = []
    for x in x args:
      res.append(x**3 / 3)
    return res
10
11
12 def picard_2(x_args):
    res = []
13
    for x in x args:
      res.append(x**3 / 3 + x**7 / 63)
15
    return res
16
17
  def picard 3(x args):
18
    res = []
19
    for x in x args:
^{20}
      res.append(x**3 / 3 + x**7 / 63 + x**15 / 59535 + 2*x**11 / 2079)
21
    return res
^{22}
  def picard 4(x args):
24
    res = []
25
    for x in x_args:
26
      res.append(x**3/3 + x**7/63 + x**15/59535 + 2*x**11/2079 +
27
      x**31/109876902975 + 4*x**23/99411543 + 4*x**27/3341878155 + 2*x
     **23/86266215 + 2*x**19/3393495 + 4*x**19/2488563 + 4*x**15/93555
    return res
29
30
31 def runge kutta(x, y, h, num):
    alpha = 0.5
32
    res = []
33
    temp = h / (2 * alpha)
34
^{35}
    for i in range(num):
36
      res.append(y)
37
```

```
38
    k1 = f(x, y)
39
    k2 = f(x + temp, y + temp * k1)
40
41
    y += h * ((1 - alpha) * k1 + alpha * k2)
42
    x += h
43
44
    return res
45
46
47
  def euler explicit(x, y, h, num):
    res = []
49
50
    for i in range(num):
51
      res.append(y)
52
53
    try:
54
      y += h * f(x, y)
55
      x += h
56
    except OverFlowError:
57
      for k in range(i, num):
58
        res.append('----')
      break
60
    return res
61
62
  def count_x_args(x, x_max, h):
    x args = []
    while x \le x = x max:
65
      x args.append(x)
66
      x += h
67
    return x args
68
69
71 def print head():
    print(' '*4+'x'+' '*4+'|'+' '*17+'Метод Пикара'+' '*18+'|'+' '*6+'
72
     Метод Эйлера '+' '*5+'|'+' '*3+'Метод РунгеКутта-'+' '*3+'\n'+' '*9+'|'+'
      '*5+'1'+' '*5+'|'+' '*5+'2'+' '*5+'|'+' '*5+'3'+' '*5+'|'+' '*5+'4'+
     ' '*5+'|'+' '*3+'Явный'+' '*3+'\n'+'-'*55)
73
74
```

```
def main():
    print head()
76
77
    x, x max, y = 0, 2, 0
78
    h = 10 ** -6
79
80
    x_args = count_x_args(x, x max, h)
81
82
    res runge kutta = runge kutta (x, y, h, num)
83
    res euler explicit = euler explicit (x, y, h, num)
84
    res picard 1 = picard 1(x args)
85
    res picard 2 = picard 2(x args)
86
    res picard 3 = picard 3(x args)
87
    res picard 4 = picard 4(x args)
88
89
    for i in range(len(x args)):
90
      print('{:9.3f}|{:11.3e}|{:11.3e}|{:11.3e}|{:11.3e}|{:11.3e}|
     '.format(x_args[i], res_picard_1[i], res_picard_2[i], res_picard_3[i
     ], res picard 4[i], res euler explicit[i], res runge kutta[i]))
92
93
94 if __name__ == '__main__':
    main()
```