EVALUATION

BY TAUTOLOGY

Model Evaluation

- What is Model Evaluation?
- Why need Model Evaluation?
- Model Evaluation in Regression

What is Model Evaluation?

Model Evaluation คือการวัดประสิทธิภาพของโมเดล

Model Evaluation

- ✓ What is Model Evaluation?
 - Why need Model Evaluation?
 - Model Evaluation in Regression

Why need Model Evaluation?

- เพื่อเลือก model ที่ดีที่สุด ผ่านการเปรียบเทียบประสิทธิภาพ
- เพื่อวิเคราะห์ model แล้วนำไปปรับปรุง และพัฒนาต่อ
- เพื่อวัดประสิทธิภาพของ model ก่อนนำไปใช้งานจริง

Model Evaluation

- ✓ What is Model Evaluation?
- **✓ Why need Model Evaluation?**
 - Model Evaluation in Regression

Model Evaluation in Regression

- R^2 score
- Mean Squared Error
- Mean Absolute Error
- Mean Absolute Percentage Error
- Conclusion

ТАUТ®LOGY

R^2 score

- What is R^2 score?
- Formula
- Step to calculate R^2
- Example
- Code

What is R^2 score?

 \mathbb{R}^2 score คือ ค่าที่บอกความสัมพันธ์ระหว่างค่าจริง และค่าพยากรณ์

Formula

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

- ullet y_i คือ sample ที่ i
- \hat{y}_i คือ ค่าที่พยากรณ์ได้จากโมเดลของ sample ที่ i
- ullet $ar{y}_i$ คือ ค่าเฉลี่ยของข้อมูล
- $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$

Step to calculate R^2

- 1. เก็บค่า y_i และ \widehat{y}_i
- 2. หาค่า \bar{y}
- 3. วัดประสิทธิภาพของ model ตามสูตรของ $R^{f 2}$

1. เก็บค่า y_i และ \hat{y}_i

	y_i	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

2. หาค่า \bar{y}

$$\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$\bar{y} = \frac{1188 + 1468 + \dots + 897}{7}$$

$$\bar{y} = 919.29$$

3. วัดประสิทธิภาพของ model ตามสูตรของ \mathbb{R}^2

	${y_i}$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

$$R^{2} = 1 - \frac{(1168 - 1204.183)^{2} + \dots + (897 - 873.342)^{2}}{(1168 - 919.29)^{2} + \dots + (897 - 919.29)^{2}}$$

$$R^2 = 0.997$$

	Actual_SalePrice	Predicted_SalePrice
0	1168.0	1204.18303571
1	1488.0	1498.15178571
2	1232.0	1199.06026786
3	949.0	947.08705357
4	439.0	438.01785714
5	262.0	275.15848214
6	897.0	873.34151786

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

1 r2_score(y_true, y_pred)

0.9971801836617127

 R^2 = 0.99718

Model Evaluation in Regression

- $\checkmark \cdot R^2$ score
 - Mean Squared Error
 - Mean Absolute Error
 - Mean Absolute Percentage Error
 - Conclusion

Mean Squared Error

- What is Mean Squared Error?
- Formula
- Step to calculate MSE
- Example
- Code

What is Mean Squared Error?

Mean Squared Error (MSE) คือ ค่าเฉลี่ยของ error (ผลต่างของค่าจริงและค่า พยากรณ์) ยกกำลังสอง

$$e_i = y_i - \widehat{y}_i$$

Formula

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

- ullet y_i คือ sample ที่ i
- $oldsymbol{\hat{y}}_i$ คือ ค่าที่พยากรณ์ได้จากโมเดลของ sample ที่ i
- ullet n คือ จำนวน sample

Step to calculate MSE

- 1. เก็บค่า y_i และ \widehat{y}_i
- 2. วัดประสิทธิภาพของ model ตามสูตรของ mean squared error (MSE)

1. เก็บค่า y_i และ \widehat{y}_i

	${\bf y_i}$	$\widehat{\mathbf{y}}_{i}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

2. วัดประสิทธิภาพของ model ตามสูตรของ mean squared error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

$$MSE = \frac{(1168 - 1204.183)^2 + \dots + (897 - 873.342)^2}{7}$$

$$MSE = 462.113$$

	Actual_SalePrice	Predicted_SalePrice
0	1168.0	1204.18303571
1	1488.0	1498.15178571
2	1232.0	1199.06026786
3	949.0	947.08705357
4	439.0	438.01785714
5	262.0	275.15848214
6	897.0	873.34151786

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

1 mean_squared_error(y_true, y_pred)

462.1128826530673

Model Evaluation in Regression

- $\checkmark \cdot R^2$ score
- **✓・ Mean Squared Error**
 - Mean Absolute Error
 - Mean Absolute Percentage Error
 - Conclusion

Mean Absolute Error

- What is Mean Absolute Error?
- Formula
- Step to calculate MAE
- Example
- Code

What is Mean Absolute Error?

Mean Absolute Error (MAE) คือ ค่าเฉลี่ยของ absolute ของ error (ผลต่างของค่า จริงและค่าพยากรณ์)

$$e_i = y_i - \widehat{y}_i$$

Formula

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

- ullet y_i คือ sample ที่ i
- \hat{y}_i คือ ค่าที่พยากรณ์ได้จากโมเดลของ sample ที่ i
- ullet n คือ จำนวน sample

Step to calculate MAE

- 1. เก็บค่า y_i และ \hat{y}_i
- 2. วัดประสิทธิภาพของ model ตามสูตรของ mean absolute error (MAE)

1. เก็บค่า y_i และ \hat{y}_i

	${\bf y_i}$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

2. วัดประสิทธิภาพของ model ตามสูตรของ mean absolute error (MAE)

	y_i	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y_i}|$$

$$MAE = \frac{1}{7} \{ |1168 - 1204.183| + \dots + |897 - 873.342| \}$$

$$MAE = 16.998$$

	Actual_SalePrice	Predicted_SalePrice
0	1168.0	1204.18303571
1	1488.0	1498.15178571
2	1232.0	1199.06026786
3	949.0	947.08705357
4	439.0	438.01785714
5	262.0	275.15848214
6	897.0	873.34151786

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

1 mean_absolute_error(y_true, y_pred)

16.998086734694034

Model Evaluation in Regression

- $\checkmark \cdot R^2$ score
- **✓・ Mean Squared Error**
- ✓ Mean Absolute Error
 - Mean Absolute Percentage Error
 - Conclusion

Mean Absolute Percentage Error

- What is Mean Absolute Percentage Error?
- Formula
- Step to calculate MAPE
- Example
- Code

What is Mean Absolute Percentage Error?

Mean Absolute Percentage Error (MAPE) คือ ค่าเฉลี่ยของ absolute ของ อัตราส่วนระหว่าง error (ผลต่างของค่าจริงและค่าพยากรณ์) และข้อมูลจริง

$$e_i = y_i - \widehat{y}_i$$

Formula

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y_i}}{y_i} \right|$$

- ullet y_i คือ sample ที่ i
- \hat{y}_i คือ ค่าที่พยากรณ์ได้จากโมเดลของ sample ที่ i
- *n* คือ จำนวน sample

Step to calculate MAPE

- 1. เก็บค่า y_i และ \widehat{y}_i
- 2. วัดประสิทธิภาพของ model ตามสูตรของ mean absolute percentage error (MAPE)

Example

1. เก็บค่า y_i และ \hat{y}_i

	${oldsymbol{y_i}}$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

Example

2. วัดประสิทธิภาพของ model ตามสูตรของ mean absolute percentage error (MAPE)

	${\bf y_i}$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y_i}}{y_i} \right|$$

$$MAPE = \frac{1}{7} \left\{ \left| \frac{1168 - 1204.183}{1168} \right| + \dots + \left| \frac{897 - 873.342}{897} \right| \right\}$$

$$MAPE = 0.021$$

	Actual_SalePrice	Predicted_SalePrice
0	1168.0	1204.18303571
1	1488.0	1498.15178571
2	1232.0	1199.06026786
3	949.0	947.08705357
4	439.0	438.01785714
5	262.0	275.15848214
6	897.0	873.34151786

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

1 mean_absolute_percentage_error(y_true, y_pred)

0.02076988136170835

Model Evaluation in Regression

- $\checkmark \cdot R^2$ score
- **✓・ Mean Squared Error**
- ✓ Mean Absolute Error
- ✓ Mean Absolute Percentage Error
 - Conclusion

Conclusion

Name	Formula
R^2	$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$
MSE	$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$
MAE	$MAE = \frac{1}{n} \sum_{i=1}^{n} y_i - \widehat{y_i} $
MAPE	$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left \frac{y_i - \widehat{y}_i}{y_i} \right $

Model Evaluation in Regression

- $\checkmark \cdot R^2$ score
- **✓・ Mean Squared Error**
- ✓ Mean Absolute Error
- **✓ Mean Absolute Percentage Error**
- **✓ Conclusion**

Model Evaluation

- ✓ What is Model Evaluation?
- ✓ Why need Model Evaluation?
- **✓ Model Evaluation in Regression**