1.4 Subrvang [F, sec. 1.3]

Definisi Mis $(V, +, \cdot)$ ruang vektor atas lapangan \mathbb{F} . Tigaan $(W, +, \cdot)$ disebut subruang dari $(V, +, \cdot)$ Jika $W \subseteq V$ dan $(W, +, \cdot)$ ruang vektor atas \mathbb{F} .

Teorema Mis $(V,+,\cdot)$ rvang vektor atas lapangan IF. Tigaan $(W,+,\cdot)$ merupakan subruang dari $(V,+,\cdot)$ jika dan hanya jika empat sifat berikut berlaku (i) $W \neq \emptyset$, (ii) $W \subseteq V$,

(iii) Utk setiap \bar{x} , $\bar{y} \in W$ berlaku $\bar{x} + \bar{y} \in W$, (ketertutupan that penjimlhan)

(iv) Utk Setiap & € #F dan ōc∈W berlaku & z∈W. (ketertutupan thd perkalian skalar)

Bukti

- Mis (v, t, ·) ruang vektov atas lapangan IF.

 (→) Mis (w, t, ·) subruang dari (v, t, ·). Dgn demikian,

 W ⊆ V dan (w, t, ·) ruang vektov atas IF, shg otomatis memeruhi (i)— (iv).
- (≼) Mis (i)-(iv) berlaku. Adb W⊆V dan (W,+,•)
 ruong vektor atas #. Dati (i)-(iv) felah diketahui
 bahwa W≠ø, W⊆V, dan W fertufup tha t dan•.
 Semua aksioma ruong vektor yg tidak memuat
 kvantifier eksistensi [semua kecuali (RV3) dan (RV4)] berlaku utk semua vektor di V, shg otomatis berlaku utk semua vektor di W \leq V. Artinya tinggal dibuktikan (RV3) dan (RV4). Ambil $\bar{x} \in W$. Dart (iv) dgn memilih $\alpha = 0$ diperoleh $\bar{o} = 0\bar{x} \in W$. Dari (iv) dgn memilih $\alpha = 1$ diperoleh $-\bar{x} = (-1)\bar{x} \in W$.

<u>Catatan</u> Sifat (îii) don (iv) ekuivalen dengan:

(v) Utk setiap a, BEH dan z, JEW berlaku az+ BJEW. (Ketertutupan tha kombinasi linear)

Bukti

(⇒) Mis (iii) dan (iv) berlaku. Ambil αβ ∈ F dan π, y∈W. Douri (iv), απ, βy∈W. Dari (iii), απ+βy∈W.

Mis (v) berlaku. Utk membuktikam (iii), ambil $\bar{x}, \bar{y} \in \mathbb{N}$.

Dart (v) dgn memilih $x = \beta = 1$, diperoleh $\bar{x} + \bar{y} = 1\bar{x} + 1\bar{y}$ $\in \mathbb{N}$. Utk membuktikam (iv), ambil $x \in \mathbb{F}$ dan $\bar{x} \in \mathbb{N}$.

Dari (v) dgn memilih $\beta = 0$ dan $\bar{y} = \bar{0}$ diperoleh $x\bar{x} = x\bar{x} + 0\bar{0} \in \mathbb{N}$.

Dibetikam svatu tvang vektor V atas svatu (apangam IF dan svatu himpunan W. Utk membuktikan bahwa:

W subrvang V, buktikan (i), (ii), dan (v).

· W bukan subrvang V, buktikan dengan contoh penyangkal bahwa salah sodu dari (i)-(iv) todak ferpenuhi, atau bahwa ō≠W [kavena ini beranti (iv) todak ferpenuhi utk x= 0.]

Contoh Mis ne N. Diket warg vektor real R. ?. (a) Buktikan bahwa

 $W_i:=\{(x_1,...,x_n)\in\mathbb{R}^n:x_1+...+x_n=0\}$ merupakan subruang dari \mathbb{R}^n .

(b) Buktzkan bahwa

Wz:=
$$\{(x_1,...,x_n)\in\mathbb{R}^N: x_1+...+x_n=1\}$$

bukan Subrvang dati \mathbb{R}^N .

(c) Buktīkam bahwa

$$w_3:=\{(x_1,...,x_n)\in\mathbb{R}^n: x_1,...,x_n>0\}$$

butan subruang dari \mathbb{R}^n .

Jawab

- (a) (i) Karena $(0, -1, 0) \in W_1$ maka $W_1 \neq \emptyset$,
 - (ii) Jelas W1 = IR" berdasarkan definisi W1.
 - (v) Ambil $\alpha, \beta \in \mathbb{R}$ down $\overline{x}, \overline{y} \in W_1$. Tulis $\overline{x} = (\overline{x}_1, ..., \overline{x}_n)$ dan $\overline{y} = (y_1, ..., y_n)$ wtk svatu $x_1, ..., x_n, y_1, ..., y_n \in \mathbb{R}$ dengan $x_1 + ... + x_n = 0$ dan $y_1 + ... + y_n = 0$. Perhatikan

dengan Zi = Xxi+ Byi∈ R. Karena

$$z_1 + \dots + z_n = (\alpha x_1 + \beta y_1) + \dots + (\alpha x_n + \beta y_n)$$

= $\alpha(x_1 + \dots + x_n) + \beta(y_1 + \dots + y_n)$

$$= 40 + \beta 0$$
$$= 0,$$

maka dx+βy∈W1.

Jadi, Wi subruang dari PR".

- (b) Karena (0,...,0) ≠ Wz maka Wz bukan subruang dari R!
- (c) Pilih $(1,...,1) \in W_3$ dan $-1 \in \mathbb{R}$. Perhatikan $-1(1,...,1) = (-1,...,-1) \not\in W_3$.

Jadi, Wz tidak tertutup that perkahian skalar, shg Wz bukan subruang dari Rn.

Catatan

- · Untuk setiap ruang vektor V, himpunan {ō} (himpunan trivial) dan V senditi selalu merupakan subruang dati V.
- · Contoh? Subrang dari beberapa wang vektor:

1	
Ruang vektor	Contoh subruang
\mathbb{R}^2 actors \mathbb{R}	semua garis yg melalui tötik asal
\mathbb{R}^3 atas \mathbb{R}	semua garis yg melalui tötik asal
	semva bidang yg melalui titik asal
IF[x] atas F	F[x] In utk setiap n=No
	·
F(R,R) atas R	$C(R) := \{ f \in F(R,R) : f \text{ kontinu} \}$
.02/10	
Fran actors IF, net	{A∈F ^{n×n} ; A matriks skalar}
	SACH-NXN 15 15 5717
	{A E H nxn : A matriks diagonal}

{A < Frxn ; A matriks segitiga atas} SAEFINN: A matriks segitiga bawah? {A∈ #=nxn: A matricks simetric (yaitu AT=A)} {A ∈ # nxn: A matriks simetri miring (yaitu AT=-A) } {A ∈ F nxn : tr(A) = o}

Teorema Mis W, dan W2 dwa subrvang dari svatu rvang vektor V atas svatu (apangan F, maka: (a) W1 N W2 subrang dari V.

- (b) WIUWz Subruang dari V jika dan hanya jika $W_1 \subseteq W_2$ atom $W_2 \subseteq W_1$.
- (c) W1+W2 := {Ū1+Ū2 : Ū1∈W1 dan Ū2 ∈W23 subrvang darè V. Bukti

Mis W₁ dam W₂ subrang dari V atas IF.
(a) Adb W₁ \(\text{N}\) \(\text{V}\) subrang \(\text{V}\).

- - (i) Km W1, W2 subriang, maka ō ∈ W1 dan ō ∈ W2 shg o∈ W, ∩Wz, artinya W, ∩Wz ≠ Ø.
 - (ii) Kry W1, W2 subruang, maka W1 S V dan W2 SV, shg WINWZ SV.
 - (V) Ambil diβE# dan zig∈ Win W2- Krn zij∈ WINW2 maka ZIJEWI dan ZIJE We. Karena W, Wz subruang, maka dx+ by = W, dan xx+ by €Wz, shg αx+ βy € W, ∩ Wz. Jadi, W, ∩Wz subNang V.

(b) (←) Mis W₁ ⊆ W₂ atom W₂ ⊆ W₁. Adb W₁ U W₂ sub-

ruang V. Jika $W_1 \subseteq W_2$ maka $W_1 \cup W_2 = W_2$ yg diket merupakan subruang dari V. Jika $W_2 \subseteq W_1$ maka $W_1 \cup W_2 = W_1$ yg diket merupakan subruang dati V.

(a) Mis $W_1 \cup W_2$ subrvang dati V. Adb $W_1 \subseteq W_2$ atom $W_2 \subseteq W_1$. Utk keperluan kontradiksi, andaikan $W_1 \not\subseteq W_2$ dan $W_2 \not\subseteq W_1$. Artinya, ada $\overline{x} \in W_1$ dengan $\overline{x} \not\in W_2$ dan ada $\overline{y} \in W_2$ dengan $\overline{y} \not\in W_1$. Karena $\overline{x} \in W_1$ maka $\overline{x} \in W_1$ $\cup W_2$. Karena $\overline{y} \in W_2$ maka $\overline{y} \in W_1$ $\cup W_2$. Karena $\cup W_1 \cup W_2$ subtrang, maka $\overline{x} + \overline{y} \in W_1$ $\cup W_2$, artinya $\overline{x} + \overline{y} \in W_1$ atom $\overline{x} + \overline{y} \in W_2$.

· Jika \$\infty \in W_1 maka

 $\ddot{y} = (\bar{x} + \bar{y}) - \bar{x} \in W_{l},$ kontradiksi dengan $\ddot{y} \not\in W_{l}.$

· Jika z+y e Wz Maka

 $\bar{x} = (\bar{x} + \bar{y}) - \bar{y} \in W_2,$

kontradiksi dengan oc & Wz.

Dyn demikiam kita telah membuktikan yg diinginkan.

(C) (atihan. 19

1.5 Kombinasi linear dan rentang [J, sec.1.1]

Mis V suatu tuang vektor atas suatu (apangan it.

Mis $n \in \mathbb{N}$ dan $\{\bar{x}_1, ..., \bar{x}_n\} \subseteq V$.

Definisi Suatu kombinasi linear dari himpunan $\{\bar{x}_1,...,\bar{x}_n\}$ adl suatu vektor $\Delta_1\bar{x}_1+...+\Delta_n\bar{x}_n$, di mana $\alpha_1,...,\alpha_n\in \mathbb{F}$ disebut koefisien dari komlin +56.

Catatan

- · Kita juga mengatakan bhw $\alpha_1\overline{\alpha}_1+\cdots+\alpha_n\overline{\alpha}_n$ adl komlin dan vektor-vektor $\overline{\alpha}_1,\ldots,\overline{\alpha}_n$.
- · Tanpa simbol: Svatu komlîn datî sebanyak berhingga vektor adl svatu hasil penjumlahan datî kelipatan² skalar datî vektor² tsb.

Contoh Diket wang vektor real R. Dua contoh komlin dari $\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 4 \end{pmatrix} \right\} \subseteq \mathbb{R}^2$ adl

$$\binom{4}{-8} = 2\binom{1}{2} + (-1)\binom{-2}{4}$$
 dom $\binom{-2}{4} = 0\binom{1}{2} + 1\binom{-2}{4}$.

Apakah (1) merupakan komlin dari $\{(-2), (-2)\}$?
Perhatikan SPL

$$\alpha_1\left(\frac{1}{-2}\right) + \alpha_2\left(\frac{-2}{4}\right) = \left(\frac{1}{1}\right), \text{ yaitu } \left(\frac{1}{-2}, \frac{-2}{4}\right)\left(\frac{\alpha_1}{\alpha_2}\right) = \left(\frac{1}{1}\right).$$

Matriks lengkapnya

$$\begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & 1 \end{pmatrix} 2R_1 + R_2 \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

Karena SPL tsb inkonsistem (tidak mempunyai jawab), maka (!) bukam komlin dari $\{(\frac{1}{2}), (\frac{-2}{4})^2\}$.

Definisi Suatu subhimpunan $\{\bar{x}_1,...,\bar{x}_n\} \subseteq V$ dikatakan merentang (atau membangun) ruang vektor V jika setiap vektor di V merupakan komlin dari $\{\bar{x}_1,...,\bar{x}_n\}$.

Contoh Apakah $\{(-2), (-2)\}$ merentang \mathbb{R}^{2} ?

Jawab

Ambil $y \in \mathbb{R}^2$. Tulis $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ wth svatu $y_1, y_2 \in \mathbb{R}$.

Mis $\alpha_1, \alpha_2 \in \mathbb{R}$ memenuhi $\alpha_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \alpha_2 \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \text{ yaitu } \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$ Ini adl SPL yg matriks lengkapnya Contoh Apakah $\{(-1), (-2)\}$ merentang \mathbb{R}^2 ? Jawab Ambil yell. Tulis y = (y,) with suatury, yzell. Mis «1, «2 ∈R memenuhi $\alpha_1\left(-2\right) + \alpha_2\left(-2\atop 3\right) = \begin{pmatrix} y_1\\ y_2 \end{pmatrix}, \text{ yaitu } \begin{pmatrix} 1 & -2\\ -2 & 3 \end{pmatrix} \begin{pmatrix} \alpha_1\\ \alpha_2 \end{pmatrix} = \begin{pmatrix} y_1\\ y_2 \end{pmatrix}$ Ini adl SPL yg matriks (engkapnya $\begin{pmatrix} 1 & -2 & y_1 \\ -2 & 3 & y_2 \end{pmatrix}$ $\begin{pmatrix} 1 & -2 & y_1 \\ 0 & -1 & 2y_1 + y_2 \end{pmatrix}$ Sistem ini konsisten utk setiap $y \in \mathbb{R}^2$. Jadi, $\{(-\frac{1}{2}), (-\frac{2}{3})\}$ merentang 1R2.

Catatan Mis $m, n \in \mathbb{N}$ dan $\{\bar{x}_1, ..., \bar{x}_n\} \subseteq \mathbb{F}^m$. Vektor $\bar{y} \in \mathbb{F}^m$ merupakan komlin dari $\{\bar{x}_1, ..., \bar{x}_n\}$ jika

dan hanya jika
$$SPL$$

$$\left(\begin{array}{c} 1\\ \overline{\chi}_1 & \dots & \overline{\chi}_n \end{array}\right) \left(\begin{array}{c} 1\\ \vdots\\ \vdots\\ \vdots\\ \chi_n \end{array}\right) = \overline{y}$$
bersifat konsisten.

Himp $\{\overline{\chi}_1, \dots, \overline{\chi}_n\}$ merentang f^{M} jika dan hanya jika SPL di atas konsisten luntuk setiap $\overline{y} \in f^{M}$.

Definisi $[J, Def. 1.12]$ Spam (atau rentang) dari $\{\overline{\chi}_1, \dots, \overline{\chi}_n\}$ adalah span $\{\overline{\chi}_1, \dots, \overline{\chi}_n\}$ i = $\{\underline{\chi}_1 \overline{\chi}_1 + \dots + \underline{\chi}_n \overline{\chi}_n : \underline{\chi}_1, \dots, \underline{\chi}_n\}$ (Intuk lengkapnya, kita sepakati bahwa span $\underline{g} := \{\bar{g}\}$.

Catatan Kita juga mengatakan bahwa span $\underline{g} := \{\bar{g}\}$.

Catatan Kita juga mengatakan bahwa span $\underline{g} := \{\bar{g}\}$.

Catatan Kita juga mengatakan bahwa span $\underline{g} := \{\bar{g}\}$.

Catatan Kita juga mengatakan bahwa span $\underline{g} := \{\bar{g}\}$.

Teorema Himp span $\{\overline{\chi}_1, \dots, \overline{\chi}_n\}$ subruang dari V .

Bukti

Adb span $\{\overline{\chi}_1, \dots, \overline{\chi}_n\}$ subruang dari V .

(i) Karena $\bar{g} := 0, \dots, \bar{g} := 0, \dots, \bar{g}$

untuk suatu $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n \in \mathbb{F}$. Perhatikan $\alpha \overline{x} + \beta \overline{y} = \lambda(\alpha_1 \overline{x}_1 + \dots + \alpha_n \overline{x}_n) + \beta(\beta_1 \overline{x}_1 + \dots + \beta_n \overline{x}_n)$ $= (\alpha \alpha_1 + \beta \beta_1) \overline{x}_1 + \dots + (\alpha \alpha_n + \beta \beta_n) \overline{x}_n,$ artinya $\alpha \overline{x} + \beta \overline{y} \in \operatorname{span} \{\overline{x}_1, \dots, \overline{x}_n\}$.
Jadi, span $\{\overline{x}_1, \dots, \overline{x}_n\}$ subruang dari V. \square

Teorema Misalkan $k \in \mathbb{N}$ dengan $k \ge n$. Jika $\{\bar{x}_1,...,\bar{x}_n\}$ merentang V.

(<u>Tanpa simbol</u>; Setiap superhimpunan berhingga da ic svatu himpunan perentang juga merupakan himpunan perentang.)

Bukti Misalkan k∈N dengan k≥n. Misalkan (xī,..., xī, s menentang V. Adb {xī,..., xīk merentang V. Ambī/

 $\overline{y} \in V$. Karena $\{\overline{x}_1,...,\overline{x}_n\}$ merentang V, maka ada $(x_1,...,x_n) \in \mathbb{F}$ shy

 $y = \sqrt{x_1} + \cdots + \sqrt{x_n} \overline{x_n}$ $= \sqrt{x_1} + \cdots + \sqrt{x_n} \overline{x_n} + 0 \overline{x_{n+1}} + \cdots + 0 \overline{x_k},$ artinya $\overline{y} \in \text{span} \{\overline{x_1}, \dots, \overline{x_k}\}$. Jadi, $\{\overline{x_1}, \dots, \overline{x_k}\}$ merentang V.