暗号通貨に対する統計的手 法による投資戦略の検討

A Study on Investment Strategy for Cryptocurrency with Statistical Methods

統計解析研究室 5CS23 小枩谷勇二

目次

- 1. 研究背景
- 2. 研究目的
- 3. 研究方法
- 4. 開発環境
- 5. 時系列解析について
- 6. BTC価格データの統計的性質の調査結果
- 7. 解析手法・投資戦略の検討
- 8. 結果
- 9. 考察
- 10. 今後の展望

研究背景

研究背景

近年***

暗号通貨

- -BTC(ビットコイン)
- -XRP(リップル)
- -その他

これらをはじめとした暗号通貨が開発されている.

研究背景 - 暗号通貨の価格

暗号通貨の価格:従来の通貨同様, 常に変動している.

BTC/JPY 2019/01/30-2019/01/31

価格帯Aで購入し、Bで売却する

利益を得ることが可能.

<u>暗号通貨に対し、投資戦略を</u> 検討したい。

研究背景 - 暗号通貨のデータ

暗号通貨:日時に対する**価格の数値データが存在**する時系列データ

統計的手法による, 価格データの解析・投資戦略の検討

研究背景 - 暗号通貨のデータ

暗号通貨:日時に対する**価格の数値データが存在**する時系列データ

同等のものには、**株式・外国為替**等が存在する.

P&G 2014/02-2019/01

ドル円 2019/02/06-2019/02/07

研究背景 - 先行研究について

株式:

データマイニングを利用してその価格を予測するシステムの開発[1]などが行われている.

外国為替:

多変量解析による価格の変動を要因を分析する研究[2]などが行われている.

暗号通貨:

統計的手法による解析等を行う試みは**ごく少数**にとどまっている.

研究目的

研究目的

暗号通貨の価格データに対して、統計的手法による投資戦略を 検討することが、本研究の目的である。

研究方法

研究方法

本研究は大きく分けて以下の手順で行う.

- 1. API(Cryptowatch[3])によるBTC価格データの取得
- 2. 価格データに対する統計的性質の調査
- 3. 価格データ解析手法・投資戦略の検討
- 4. 投資戦略による売買シミュレーション

研究方法 - 価格データについて

本研究において、使用するBTC価格データは以下の通り、

•取引所:bitFlyer

- 期間: 2018/10/31/ 12:00:00 - 2018/11/30 23:55:00

- 間隔: 開始から5分ごと

研究方法 - 統計的性質の調査について

暗号通貨:日時に対する価格の数値データが存在する時系列データ

時系列解析を行う.

開発環境

開発環境

開発環境は以下の通り.

用途	環境	外部依存関係		
開発OS	macOS Sierra10.12.6	-		
価格データ取得	Python3.6.4	mysqlclient		
価格データ保存	MySQL5.7.21	-		
統計的性質調査	R3.4.4	tseries urca RMySQL		
価格解析	Python anaconda3-5.1.0	TA-Lib		

時系列解析について

時系列解析について - 考え方

時系列データは、**全ての時点のデータは1度のみ観測可能**.

時系列解析について - 使用するデータ

本研究においては対数差分を解析する.

t 時点での価格を P_t , $\ln(x)$ をxの自然対数としたとき、対数差分は、

$$\ln(P_t) - \ln(P_{t-1})$$

となる.

時系列解析について - 使用するデータ

対数差分式は

$$\frac{P_t - P_{t-1}}{P_{t-1}}$$

と変形可能.

すなわち、原系列データの**対数差分は現時点のデータと直前のデータの変化** 率とみなせる.

時系列解析について - 定常性について

時系列解析:解析するデータが**定常性を有している必要がある.**

左の図では、**確率分布の平均が 一定である**ことが確認できる.

予測される**データの範囲は 時点に関係なく一定である**と言える。

時系列解析について - 定常性について

解析対象のデータが定常性を有しているか確認する必要がある.

単位根検定を行う.

本研究では、検定結果のp値が0.1未満ならば、データは定常性を有するものと みなす

時系列解析について - 自己相関

過去データを元に将来の価格変動を予測したい.

現在のデータと過去データの関係を調査

自己相関を調査

※自己相関:現時点のデータと、過去の時点のデータとの関係を示した指標.

BTC価格データの統計的性質

BTC価格データの統計的性質 - 対数差分

2018/10/31 12:00:00 - 2018/11/30 23:55:00のBTC価格データを示す.

BTC価格データの統計的性質 - 対数差分

同期間のBTC価格データの対数差分は以下の通り.

BTC価格データの統計的性質 - 定常性

単位根検定を行った結果は以下の通り.

対象データ	p値	結果			
原系列データ	0.5629	定常性を有さない			
対数差分	0.01未満	定常性を有する			

BTC価格データの統計的性質 - 自己相関

BTCの対数差分に対する、自己相関係数の算出結果は以下の通り、

自己相関係数は、いずれの時点においても0.05未満である。

有意な自己相関とは言えない.

解析手法・投資戦略の検討

解析手法 - 方針

BTC価格の対数差分は**定常過程ではあるが自己相関はない**..

ほぼランダムに発生している.

確率分布の性質・構造の推定は困難

対数差分の本解析は**有効ではない**.

解析手法 - 方針

価格データそのものを解析する.

価格データ:定常過程ではない.

解析手法は限られてくるが、不可能ではない.

本研究では、**単純移動平均線**を利用して解析する.

解析手法 - 単純移動平均

ある時系列データ $X_1, X_2, ...$ に対する期間p の, 任意の時点t での, 単純移動平均SMA(t, p)の値は,

$$SMA(t, p) = \frac{1}{p} \sum_{i=0}^{p-1} X_{t-i}$$

と算出される.

単純移動平均の算出例(期間=5時点)は以下の通り.

実現値 10 20 30 40 50 60 移動平均 - - - - 30 40	時点	1		2 3		,	4	5		6		
移動平均 30 40	実現値	10		20	3	80	4	10	5	50	6	00
	移動平均	-		-		-		-	(3	80	(2	10)

解析手法 - 単純移動平均

時系列データに対する単純移動平均線(期間=13時点)の描画例を示す.

※赤線:単純移動平均線,青線:原系列データ

単純移動平均線による投資戦略

単純移動平均線を利用し、**買い時・売り時の目安を示す**ことが可能。

買い時:ゴールデンクロス(GC) 売り時:デッドクロス(DC) といったものが存在する.

2つの期間の異なる単純移動平均線を描画し、

- ■短期線が長期線を下から上に突き抜けた:GC
- ■長期線が短期線を上から下に突き抜けた:DC

である.

単純移動平均線による投資戦略

図中において、GC時点で購入しDC時点で売却した場合、

売買・シミュレーションのルール

- ・2つの単純移動平均線の期間:5時点・25時点
- ・GC時点で購入、DC時点で売却したと仮定する.
- •取引量:1BTC固定
- 手数料等は計算に含まない。
- ロスカット等は行わない。
- ※ロスカット: 証券・通貨等を保有している状態で、損失が一定以上の水準に達した場合、その注文に対する決済を行い損失の拡大を防ぐこと.

結果

結果

最終的な売買結果は以下の表の通り.

期間	2018/10/31 12:00:00 - 2018/11/30 23:55:00
売買回数	231
利確回数	77
損益合計	-19424円

最終結果として、利益をあげることはできていない.

本研究における期間:価格は右肩下がり(下降トレンド)

購入→売却では**損失が発生しやすい**.

投資家のリスク許容度により、取りうる戦略も異なる.

本研究:リスクを低く抑える方針で考察

考えられる戦略:**空売りによるリスクヘッジ**

考察 - 空売りとリスクヘッジ

空売り:事前に取引会社から通貨等を借り、売却すること.

ドル円 2019/01/09-2019/01/10

考察 - 空売りとリスクヘッジ

価格下降時に空売りをした場合

ドル円 2019/01/09-2019/01/10

空売りの持ち高:**下降トレンド終了時**に返済したい。

トレンドをどのように判断するか.

移動平均線の傾きを観測する.

考察 - まとめ

- •古典的な時系列解析(対数差分解析): **有意ではない**...
- 単純移動平均線:下降トレンド中は損失が出やすい。

空売りによるリスクヘッジの必要性.

今後の展望

今後の展望

以下の事柄が、今後の展望の一例として挙げられる.

- ・他のテクニカル指標の導入・組み合わせによる投資戦略の検討
- •移動平均線係数•期間調整

参考文献

[1] 矢部大輔・木村昌臣(2008)「データマイニングによる株価予測システムの開発」

[2] 砂田吉一・橋本次郎(1989)「多変量解析による為替レートの要因分析 (第2回計算機統計学会シンポジウム報告 経済と経営の実証分析:計算機の利用)」

[3] Market Data REST API https://cryptowatch.jp/docs/api

参考 - 単位根・定常性 - 単位根とは

単位根:離散確率過程(時系列データ)の<u>性質を表す</u>言葉

定義:離散確率過程Xt (t=1,2,...) において, Xtは

$$X_t = \phi_p X_{t-p} + \cdots + \varepsilon_t \quad (p = 1, 2, ..., t)$$

であるとみなせる(p次の自己回帰確率過程である)場合,

 XE_t :ホワイトノイズ

参考 - 単位根・定常性 - 単位根とは

係数 $\Phi_1...\Phi_p$, 次数pによる方程式

$$1 - \phi_1 z - \cdots - \phi_p z^p = 0$$

の解に、Z=Iが1つのみ存在する場合、その離散確率過程は単位根過程である。

※この方程式は、**自己回帰特性方程式**と呼ばれる.

参考 - 単位根 - 定常性 - 単位根過程

例えば、時系列データXt(t=1,2,...)が、

$$X_t = X_{t-1} + \varepsilon_t$$

とみなせる場合は、この時系列データは単位根過程とされる.

式の解釈:

現在の値は、直前の値にランダムな変動を加えたものである.

参考 - 単位根 - 定常性 - 単位根過程

単位根過程の一例を以下に示す.

参考 - 単位根 • 定常性 - 単位根過程

単位根過程であるかの判断:単位根検定

拡張Dickey-Fuller検定

拡張Dickey-Fuller検定:

帰無仮説:データは単位根過程である.

対立仮説:データは単位根過程ではない.

参考 - 単位根 • 定常性 - 単位根過程

先ほどの例(P&G 2014/01-2019/01)に対する拡張Dickey-Fuller検定:

p値:0.2494であり帰無仮説が採択される. P&G 2014/01-2019/01の株価は単位根過程と言える. ※有意水準10%

※有意水準について:

経済・金融系のデータに対する統計的検定:有意水準10%とされる ことが多い. 本研究においても同様.

参考-単位根-定常性-定常過程

時系列解析:解析するデータが定常性を有している必要がある.

定常性:2種類存在する.

- ·<u>弱</u>定常性(<u>弱</u>定常過程)
- •強定常性(強定常過程)

経済・金融系の時系列データ:

弱定常性を有している(<u>弱</u>定常過程である)必要がある.

参考 - 単位根 - 定常性 - 弱定常過程

弱定常過程である時系列データ:どの時点においても,

- ・データの平均が一定
- データの自己共分散が一定

とみなせるデータを指す.

※自己共分散:現時点のデータと過去の任意の時点のデータの関係を示した 指標

参考 - 単位根 - 定常性 - 弱定常過程

すなわち、弱定常過程である時系列データとは、以下の通り、

左の図では、**確率分布の平均が** 一定であることが確認できる.

予測される**データの範囲は 時点に関係なく一定である**と言える.

参考 - 単位根 - 定常性 - 弱定常過程

弱定常過程の例:単位根過程の差分・対数差分

※単位根過程は定常過程ではない.

参考 - 単位根・定常性 - 定常性の判断

定常過程であるかの判断: 単位根検定(拡張Dickey-Fuller検定)

単位根過程<u>ではない</u>必要がある. (帰無仮説を棄却)

ただし. 単位根過程ではない=定常過程であるとは限らない.

※拡張Dickey-Fuller検定自体、単位根過程であるとみなせるか 否か以上の事象については言及していない.

参考 - 単位根・定常性 - 定常性の判断

データ解析の現場:チャート(時系列)の形で判断

_____ 確率分布の**平均が一定とみなせる**ならば、**定常過程とする.**

このような時系列データは、(弱)定常過程であるとみなされる.

※そもそも単位根過程の差分・対数差分は弱定常過程.