Figure 1: Experimental procedure for the in vitro selection.

. E	st round		M13 titer [pfu/ml]	fold enrichment
5		fic elution fer pH2.2)	3,3 • 105	<u>.</u>
unspecific elution	specific elution (tc)	specific elution (TetR)	1,4 • 10 ⁷	42x
unspecific elution	specific elution (tc)	specific elution (TetR)	1,3 - 108	394x
Fins	ıl M13-aluəte	è		

2/20

Figure 2: Example for in vitro selected sequences.

• Unspecific elution (Gly buffer, pH 2.2)

```
pep1 Trp - His - Gly - Ala - Ile - Leu - Gly - Ser - Ala - Arg - Ala - Gln
pep2 Leu - Pro - Ser - Tyr - Met - Leu - His - Leu - Trp - Ser - Pro - His
pep3 Ala - His - Tyr - Ser - Leu - Tyr - Trp - Pro - Met - Ala - Thr - Phe
pep4 Tyr - His - Asn - Leu - Tyr - Gly - Leu - Pro - Leu - Gly - Pro - Trp
pep5 Trp - His - Gln - Thr - Tyr - Thr - Ser - Ser - Leu - Trp - Glu - Ser
```

• Specific elution (TetR, 4µM)

```
pep1 Trp - Thr - Trp - Asn - Ala - Tyr - Ala - Phe - Ala - Ala - Pro - Ser
pep2 Trp - His - Ser - Ser - Phe - Asn - Met - Phe - Ala - Tyr - Pro - Met
pep3 Trp - His - Leu - Pro - Leu - Ser - Trp - Thr - Thr - Arg - Leu - Pro
pep4 Trp - His - Thr - Pro - Ile - Ser - Leu - Leu - Lys - Gln - Val - Arg
pep5 Trp - His - Trp - Thr - Phe - Ser - Ser - Pro - Leu - Met - Gln - Thr
```

3/20

Figure 3: Characterisation of TetR-phage binding by ELISA.

Figure 4: Design of the peptide expressing construct.

5/20 Figure 5: Setup of the *in vivo* screening system.

Figure 6: McConkey plate.

-			
box	Plasmid I* encoding	Plasmid II** encoding	ß-Gal activity
1	TetR(B)	TrxA-pepBs1	+
2	TetR(B)	TrxA-pepBs1	+
3	TetR(B)	-	-
4	-	· -	+ (100%)
. 5	TetR(B)	TrxA	-

* pWH510lacl⁹ for TetR(B), pWH1200 (Altschmied et al., 1988)

** pWH610 for TrxA/TrxA-pepBs1, pWH806 (Wissmann et al., 1991)

"+" = induced (yellow colonies)

"-" = uninduced (colorless colonies)

7/20
Figure 7: LacZ assay for the TetR-inducing fusion protein TrxA-pepBs1.

8/20
Figure 8: Identification of the region of interaction between TetR and TrxA-pepBs1 by in vivo epitope mapping.

Figure 9: Structure of TetR.

10/20 Figure 10: Expression of the peptide correlates with induction of TetR.

11/20 Figure 11: *In vivo* characterisation of non-inducible TetR mutants.

12/20 Figure 12: Position of the amino acids H64, N82 and F86 relative to tetracycline and the interaction epitope.

13/20

Figure 14: In vivo characterisation of TetR inducibility by TrxA fusion proteins.

Figure 15: Correlation between the protein level and induction of TetR(B).

Figure 16: Comparison of a low and high TetR-expressing system.

17/20 Figure 17: Comparison of TetR(B) induction by C- and N-terminal TrxA-peptide fusions.

Figure 18: LacZ assay for the TetR-inducing fusion protein SbmC-pepBs1.

Figure 19: An in-frame fusion of an insertion element (IE^{FKS}) encoding the peptide Bs1 to TrxA leads to a protein that induces TetR(B).

Figure 20: An in-frame fusion of the insertion element IE^{FSK} to the *atpD* ORF at its endogenous location in the *E. coli* genome leads to a protein that induces TetR(B).

