23/11/2020 music

In [15]:

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```

In [16]:

```
music_data=pd.read_csv('music.csv')
```

In [17]:

```
X = music_data.drop(columns=['genre'])
X
```

Out[17]:

	age	gender
0	20	1
1	23	1
2	25	1
3	26	1
4	29	1
5	30	1
6	31	1
7	33	1
8	37	1
9	20	0
10	21	0
11	25	0
12	26	0
13	27	0
14	30	0

23/11/2020 music

```
In [18]:
Y = music_data['genre']
Υ
Out[18]:
         HipHop
1
         HipHop
2
         HipHop
3
           Jazz
4
           Jazz
5
           Jazz
6
      Classical
7
      Classical
8
      Classical
9
          Dance
          Dance
10
11
          Dance
12
       Acoustic
13
       Acoustic
14
       Acoustic
Name: genre, dtype: object
In [19]:
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2)
In [20]:
model = DecisionTreeClassifier()
model.fit(X_train,Y_train)
predictions = model.predict(X_test)
predictions
Out[20]:
array(['Acoustic', 'Classical', 'HipHop'], dtype=object)
In [50]:
score = accuracy_score(Y_test,predictions)
print("{} %".format(score*100))
```

```
100.0 %
```