Exercise 3: The brush tyre model

In the lectures on tyre modelling (4, 5 and 6) it is explained that the tyre can be seen as a function block with multiple inputs and outputs, as shown in the figure below.

In lecture 5 the brush tyre model has been discussed and in this case effect of the inclination angle γ is neglected. In this exercise you are asked to program the brush model yourself and to make plots of the resulting tyre characteristics. The model parameters are given below.

Parameter	Description	Value
$r_{\!f}$	free tyre radius	0.3 m
c_z	tyre vertical stiffness	250000 N/m
c_p	tread element stiffness	9•10 ⁶ N/m ²
μ	friction coefficient	1.2

a) Make a plot of half of the contact length a as a function of the vertical force F_z using the empirical equation given on VD lecture notes page 126 (suggested range: 0 to 10 kN).

The next thing to be done is to program the brush model as a MATLAB function, typically the calling syntax would be:

```
[Fx,Fy,Mz] = brush(kappa,alpha,Fz)
```

So you create a file "brush.m", which will contain the following lines:

```
function [Fx,Fy,Mz] = brush(kappa,alpha,Fz) ... (your algorithm)

Fx = ... (provide the right equations here)

Fy = ... (provide the right equations here)

Mz = ... (provide the right equations here)

return
```

This function can then be called from the MATLAB command line. The function should be able to handle combined slip conditions.

- b) Program the function and include the listing of brush.m in the report. How to handle the case of complete wheel lock? (κ exactly equal to -1)
- c) Make plots of the pure slip characteristics at a vertical load of 4000 N:
 - Longitudinal force F_x versus longitudinal slip κ
 - Lateral force F_{ν} versus sideslip angle α
 - Aligning moment M_z versus sideslip angle α

You can use the graphs of the lecture notes 135 and 139 as a reference.

- d) Make plots of the combined slip characteristics at a vertical load of 4000 N. For the side slip angle α use a value of 0, 5, and 20 degrees, vary the longitudinal slip κ from -1 to 1.
 - Longitudinal force F_{κ} versus longitudinal slip κ
 - Lateral force F_{ν} versus longitudinal slip κ
 - Aligning moment M_z versus longitudinal slip κ