Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный технический университет» Факультет электроники и вычислительной техники Кафедра физики

Семестровая работа по дисциплине «Термодинамика и статистическая физика»

Вариант №17

Выполнила студентка группы Ф-469 Слоква В. И.

Проверил профессор, доктор физ.-мат. наук Крючков С. В. 2.41: атмосферное давление изменилось от $p_1=983$ гПа до $p_2=1003$ гПа. Какое приращение ΔU получает при этом внутренняя энергия воздуха, содержащегося в комнате объема V=50,0 м 3 ? Температура в комнате предполагается неизменной.

Решение:

запишем выражение для внутренней энергии через теплоемкость при постоянном объеме C_V : $U=C_V \nu T=rac{R}{\gamma-1}\cdot \nu T$. Для двухатомного газа $\gamma=7/5$.

Приращение внутренней энергии:

$$\Delta U = U_2 - U_1 = \frac{R}{\gamma - 1} \cdot T(\nu_2 - \nu_1).$$

По закону Менделеева-Клапейрона $\nu=rac{pV}{RT}$, тогда

$$\Delta U = \frac{R}{\gamma - 1} \cdot T \left(\frac{p_2 V}{RT} - \frac{p_1 V}{RT} \right) = \frac{V}{\gamma - 1} (p_2 - p_1).$$

Подставим значения:

$$\Delta U = \frac{50,0 \text{ м}^3}{7/5 - 1} \cdot 20 \text{ гПа} = 0,25 \text{ МДж.}$$

Ответ: $\Delta U=0.25\,$ МДж.

2.65: некоторое количество идеального газа ($\gamma=1,40$) расширяется от $V_1=20,0$ л до $V_2=50,0$ л так, что процесс на диаграмме (p,V) имеет вид прямой линии. Исходное давление $p_1=1000$ гПа, конечное $p_2=2000$ гПа. а) Является ли процесс политропическим?

б) Найти количество теплоты Q, поглощаемое газом в ходе расширения.

Решение:

по определению политропического процесса:

$$PV^n = \text{const}$$

Из графика видно, что p = aV, где

$$a = \operatorname{tg} \alpha = \frac{p_2 - p_1}{V_2 - V_1}.$$

Уравнение политропического процесса преобразуется к виду $aV^{n+1}=\mathrm{const}$ и

$$aV_1^{n+1} = aV_2^{n+1}, \qquad \left(\frac{V_1}{V_2}\right)^{n+1} = 1.$$

Отсюда n=-1 и $\frac{p}{V}=\mathrm{const.}$

Таким образом процесс является политропическим с n=-1.

Запишем выражение для внутренней энергии через теплоемкость при постоянном объеме C_V : $\Delta U = C_V \Delta T = \frac{R}{\gamma-1} \cdot (T_2 - T_1).$

По закону Менделеева-Клапейрона $T=rac{pV}{R}$, тогда ΔU :

$$\Delta U = \frac{R}{\gamma - 1} \cdot \frac{p_2 V_2 - p_1 V_1}{R} = \frac{p_2 V_2 - p_1 V_1}{\gamma - 1} = 20$$
 кДж.

Работа, по определению,

$$A = \int_{V_1}^{V_2} p \, dV = a \int_{V_1}^{V_2} V \, dV = \frac{p_2 - p_1}{V_2 - V_1} \cdot \frac{V_2^2 - V_1^2}{2} = 4,5$$
 кДж.

Тогда количество тепла $Q = \Delta U + A = 24,5$ кДж.

 $\it Omsem:$ a) да, n=-1; б) $\it Q=24,5\,$ кДж.

2.96: вблизи поверхности Земли отношение объемных концентраций кислорода (O_2) и азота (N_2) в воздухе $\eta_0 = 20.95/78.08 = 0.268$. Полагая температуру атмосферы не зависящей от высоты и равной $0^{\circ}C$, определить это отношение η на высоте h=10 км.

Решение:

по барометрической формуле:

$$\eta(h) = \eta_0 \cdot \exp\left(-mg \cdot \frac{h - h_0}{RT}\right),$$

где $m = M_{O_2} + M_{N_2}$.

Подставим числовые значения:

$$\eta(10 \text{ km}) = 0.268 \cdot \exp\left(-\frac{(32+28)\cdot 9.8\cdot 10^4}{8.31\cdot 273}\right) = 0.225.$$

Omsem: $\eta(10 \text{ km}) = 0.225$.

2.132: найти приращение энтропии ΔS при конденсации массы m=1,00 кг пара, находившегося при температуре $t_1=100^{\circ}C$, в воду и последующем охлаждении до температуры $t_2=20^{\circ}C$. Теплоемкость воды считать не зависящей от температуры. Конденсация происходит при давлении, равном 1 атм.

Решение:

изменение энтропии есть разница энтропий двух состояний:

$$\Delta S = S_2 - S_1 = \int_{1}^{2} \frac{\delta Q}{T} = \frac{\delta Q_2}{T} - \frac{\delta Q_1}{T},$$

где $\delta Q_2 = \int\limits_{T_1}^{T_2} cm\,dT$, $\delta Q_1 = mq_{\rm II}$, $q_{\rm II}$ – удельная теплота парообразования. Таким образом,

$$\Delta S = \int_{T_1}^{T_2} cm \frac{dT}{T} - \frac{mq_{\Pi}}{T_1} = m(c \ln(T_2/T_1) - q_{\Pi}/T_1).$$

Подставим значения:

$$\Delta S = 1 \ \text{кг} \cdot \left(4200 \, \frac{\text{Дж}}{\text{кг} \cdot \text{K}} \cdot \ln \left(293/373\right) - \frac{2,3 \cdot 10^6}{373} \frac{\text{Дж}}{\text{кг} \cdot \text{K}}\right) \approx -7 \ \text{кДж/K}.$$

Ответ: $\Delta S = -7$ кДж/К.

204: В цикле Карно в качестве холодильника выбрана вода при 4°С. Так как температурный коэффициент расширения при этой температуре равен нулю, то для осуществления цикла Карно не надо сообщать тепло холодильнику, т. е. КПД цикла равен единице. В чем ошибочность этого рассуждения?

Решение:

1. пусть во всех точках изотермы
$$\left(\frac{\partial V}{\partial T}\right)_P=0.$$
 Тогда $\left(\frac{\partial P}{\partial T}\right)_V=0,$ и

$$dU = \left[T \left(\frac{\partial P}{\partial T} \right) V - P \right] dV = -P \, dV.$$

По первому началу термодинамики:

$$\delta Q = dU + P \, dV = -P \, dV + P \, dV = 0.$$

Таким образом, изотерма во всех точках должна совпадать с адиабатой. В этом случае цикл Карно между температурой 4°С и какой-либо другой неосуществим.

2. Для воды коэффициент теплового расширения обращается в нуль только в одной точке изотермы, так что условия задачи неосуществимы.

306: Импульс фотона связан с его энергией соотношением $\varepsilon=pc$. Написать выражение для давления P фотонного газа.

Решение:

в общем виде давление газа имеет вид:

$$P = \sum n_i v_{iz} p_{iz}.$$

Усредним значение $v_z p_z$:

$$\langle v_z p_z \rangle = \frac{1}{n} \sum n_i v_{iz} p_{iz}.$$

Тогда давление примет вид $P=n\,\langle v_zp_z\rangle$. По определению скалярного произведения

$$\langle vp \rangle = \langle v_x p_x \rangle + \langle v_y p_y \rangle + \langle v_z p_z \rangle.$$

Так как направления скоростей равнозначны, то

$$\langle v_x p_x \rangle = \langle v_y p_y \rangle = \langle v_z p_z \rangle = \frac{1}{3} \langle vp \rangle.$$

Таким образом, давление примет вид $P = n \langle vp \rangle / 3$.

Если объем сосуда, в котором заключен газ, равен V, а полное число фотонов равно N, то n=N/V, и тогда:

$$P=rac{N}{3V}\left\langle vp
ight
angle ,\,\,$$
или $PV=rac{1}{3}\left\langle Nvp
ight
angle .$

По условию, v = c, $p = \varepsilon/c$:

$$PV = \frac{1}{3} \langle Ncp \rangle = \frac{1}{3} \langle N\varepsilon \rangle = \frac{1}{3} \langle E \rangle,$$

где $\langle E \rangle$ – средняя полная энергия фотонов в сосуде.

Ответ: $P = 1/3 \langle E \rangle$.

455: Ниже приведены значения постоянных Ван-дер-Ваальса для некоторых газов: Пользуясь этими значениями, вычислить критическое давле-

Газ	$a, 10^6$ атм $\cdot \mathrm{cm}^6/\mathrm{моль}^2$	$b, cm^2/моль$	
Гелий	0,034	23,7	
Водород Азот	0,24	26,6	
Азот	1,39	39,1	
Кислород	1,36	31,8	
CO_2	3,60	42,7	

ние, критическую температуру, критический объем, а также температуру Бойля для приведенных газов в предположении, что они подчиняются уравнению Ван-дер-Ваальса.

Решение:

для газов, подчиняющихся уравнению Ван-дер-Ваальса, температура Бойля и критические значения давления, объема, температуры выглядят следующим образом:

$$T_B=rac{a}{bR}, \quad P_{\scriptscriptstyle \mathrm{K}}=rac{a}{27b^2}, \quad V_{\scriptscriptstyle \mathrm{K}}=3b, \quad T_{\scriptscriptstyle \mathrm{K}}=rac{8}{27}rac{a}{bR}.$$

Подставляя значения a и b, получим:

Газ	$V_{\scriptscriptstyle m K},~{ m cm}^3$	$P_{\scriptscriptstyle m K}$, атм	$T_{\rm K}$, K	T_B , K
Гелий	71,1	2,24	5,18	17,5
Водород	79,8	12,56	32,58	110,0
Азот	117,3	33,67	128,36	433,2
Кислород	95,4	49,81	154,43	521,2
CO_2	128,1	73,13	304,43	1027,4