

AMENDMENTS TO THE CLAIMS

The following listing of claims replaces all prior versions of the claims and all prior listings of the claims in the present application.

1. (previously presented) A Montgomery modular multiplier of a public-key cryptographic system that calculates a value congruent to “ ABR^{-1} ” (mod M) used in the cryptographic system, where A and B are input n-bit numbers, R^{-1} is an inverse number of R modular-multiplied for “mod M”, and M is a modulus, the Montgomery modular multiplier comprising:

an A-register storing a bit value a_i (where ‘i’ denotes an integer in the range of 0 to n-1) of the number A, which is smaller than the modulus M;

a B-register storing a bit value b_i of the number B, which is smaller than the modulus M;

an M-register storing a bit value m_i of the modulus M, which is an odd number;

a b_iA calculation logic circuit multiplying the number A by the bit value b_i to obtain b_iA ;

a q_i calculation logic circuit solving a Boolean logic equation “ $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ”, where s_0 is the least significant bit (LSB) of a sum S, c_0 is the LSB of a carry C, b_i is the bit value of the number B, and a_0 is the LSB of the number A, to obtain a bit value q_i ;

a q_iM calculation logic circuit multiplying the modulus M by the bit value q_i to obtain q_iM ;

a 4-2 compressor performing ‘n’ additions on the carry C, the sum S, the b_iA , and the q_iM to obtain interim values and summing the interim values to obtain a result using a carry propagation adder in response to a carry propagation adder signal;

an S-register updating a bit value s_i of the sum S and storing the updated bit value; and

a C-register updating a bit value c_i of the carry C and storing the updated bit value.

2. (previously presented) The Montgomery modular multiplier of claim 1, wherein the 4-2 compressor comprises:

a first full adder unit summing a bit value $b_i a_i$ of the $b_i A$, a bit value s_{i+1} of the sum S, and the bit value c_i of the carry C to obtain a carry cA_i and a sum sA_i ;

a multiplexer (MUX) unit selectively outputting either a bit value $q_i m_i$ of the $q_i M$, a carry cA_{i-1} , and the sum sA_i or the bit value s_{i+1} of the sum S, the bit value c_i of the carry C, and a bit value c_{i-1} of the carry C, in response to the carry propagation adder signal; and

a second full adder unit performing ‘n’ additions on the bit value $q_i m_i$ of $q_i M$, the carry cA_{i-1} , and the sum sA_i to calculate interim bit values s_i of the sum S and c_i of the carry C, when the carry propagation adder signal is in an inactive state, and summing the bit value s_{i+1} of the sum S, the bit value c_i of the carry C, and the bit value c_{i-1} of the carry C to obtain final results of the sum S and the carry C, when the carry propagation adder signal is in an active state.

3. (previously presented) The Montgomery modular multiplier of claim 2, wherein a carry save adder structure is a 4-input 2-output structure, in which the first and second full adder units operate when the carry propagation adder signal is in the inactive state.

4. (previously presented) The Montgomery modular multiplier of claim 2, wherein a carry propagation adder structure is a 3-input 2-output structure, in which only the second full adder unit operates when the carry propagation adder signal is in the active state.

5. (original) The Montgomery modular multiplier of claim 2, wherein the LSB of the carry cA_{i-1} and the LSB of the carry c_{i-1} are in a first logic state.
6. (previously presented) The Montgomery modular multiplier of claim 2, wherein the most significant bit (MSB) of the sum S is equal to the bit value cA_{n-1} at a clock pulse before the carry propagation adder signal is activated.
7. (previously presented) A method of performing a Montgomery modular multiplication in a Montgomery modular multiplier of a public-key cryptographic system, in which the Montgomery modular multiplier includes registers for storing bit values a_i , b_i , m_i , c_i , and s_i (where 'i' denotes an integer in the range of 0 to $n-1$) of a word A, a word B, a modulus M, a carry C, and a sum S, respectively, and calculates a value congruent to " ABR^{-1} " $(\text{mod } M)$, where A and B are input n-bit numbers, R^{-1} is an inverse number of R modular-multiplied for " $\text{mod } M$ ", and M is a modulus, the method comprising:
 - receiving the number A, the number B, and the modulus M;
 - multiplying the number A by a bit value b_i to obtain each bit of b_iA ;
 - solving a Boolean logic equation " $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ", where s_0 is the least significant bit (LSB) of a sum S, c_0 is the LSB of a carry C, b_i is the bit value of the number B, and a_0 is the LSB of the number A, to obtain a bit value q_i ;
 - multiplying the modulus M by the bit value q_i to obtain each bit of q_iM ;
 - performing 'n' additions on the carry C, the sum S, the b_iA , and the q_iM to obtain interim values for each bit of the sum S and the carry C in a carry save adder structure, in response to a carry propagation adder signal; and

summing the interim values to obtain the final results of the sum S and the carry C in a carry propagation adder structure, in response to the carry propagation adder signal.

8. (original) The method of claim 7, wherein the number A is smaller than the modulus M.

9. (original) The method of claim 7, wherein the number B is smaller than the modulus M.

10. (original) The method of claim 7, wherein the modulus M is an odd number.

11. (previously presented) The method of claim 7, wherein the interim values and final results of the sum S and the interim values and final results of the carry C are calculated by:

summing a bit value $b_i a_i$ of the $b_i A$, a bit value s_{i+1} of the sum S, and a bit value c_i of the carry C to obtain a carry cA_i and a sum sA_i ;

selectively outputting either a bit value $q_i m_i$ of the $q_i M$, a carry cA_{i-1} , and the sum sA_i or the bit value s_{i+1} of the sum S, the bit value c_i of the carry C, and a bit value c_{i-1} of the carry C, in response to the carry propagation adder signal;

performing ‘n’ additions on the bit value $q_i m_i$ of the $q_i M$, the carry cA_{i-1} , and the sum sA_i to calculate interim bit values s_i of the sum S and c_i of the carry C, when the carry propagation adder signal is in an inactive state; and

summing the bit value s_{i+1} of the sum S, the bit value c_i of the carry C, and the bit value c_{i-1} of the carry C to obtain final results of the sum S and the carry C, when the carry propagation adder signal is in an active state.

12. (previously presented) The method of claim 7, wherein the carry save adder structure is a 4-input 2-output structure, in which the interim values of the sum S and the carry C are obtained from the $b_i A$ and the $q_i M$ when the carry propagation adder signal is in an inactive state.

13. (previously presented) The method of claim 7, wherein the carry propagation adder structure is a 3-input 2-output structure, in which the final results of the sum S and the carry C are obtained from the interim values of the sum S and the carry C when the carry propagation adder signal is in an active state.

14. (previously presented) The method of claim 11, wherein the LSB of the carry cA_{i-1} and the LSB of the carry c_{i-1} are in a first logic state.

15. (previously presented) The method of claim 11, wherein the most significant bit (MSB) of the sum S is equal to the bit value cA_{n-1} at a clock pulse before the carry propagation adder signal is activated.

16. (canceled)

17. (previously presented) A Montgomery modular multiplier of a public-key cryptographic system, comprising:

a multiplicand register, storing a bit value a_i of a number A;

a modulus register, storing a bit value m_i of a modulus M;

a multiplier register, storing a bit value b_i of a number B;

a b_iA calculation logic circuit multiplying the number A by a bit value b_i to obtain each bit of b_iA ;

a q_i calculation logic circuit solving a Boolean logic equation “ $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ”, where s_0 is the least significant bit (LSB) of a sum S, c_0 is the LSB of a carry C, b_i is the bit value of the number B, and a_0 is the LSB of the number A, to obtain a bit value q_i (where ‘i’ denotes an integer in the range of 0 to n-1);

a q_iM calculation logic circuit multiplying the modulus M by the bit value q_i to obtain each bit of q_iM ; and

a t-s compressor, wherein $t > 3$ and $s > 1$, performing ‘n’ additions on the carry C, the sum S, the b_iA , and the q_iM to obtain interim values for each bit of the sum S and the carry C in a carry save adder structure and summing the interim values to obtain final results of the sum S and the carry C in a carry propagation adder structure, in response to a carry propagation adder signal.

18. (previously presented) A system embodying a Montgomery modular multiplier, the system comprising:

an A-register storing a bit value a_i (where ‘i’ denotes an integer in the range of 0 to n-1) of an n-bit number A;

a B-register storing a bit value b_i of an n-bit number B;

an M-register storing a bit value m_i of an n-bit modulus M;

a b_iA calculation logic circuit multiplying the number A by the bit value b_i to obtain b_iA ;

a q_i calculation logic circuit solving a Boolean logic equation “ $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ”, where s_0 is the least significant bit (LSB) of a sum S, c_0 is the LSB of a carry C, b_i is the bit value of the number B, and a_0 is the LSB of the number A, to obtain a bit value q_i ;

a q_iM calculation logic circuit multiplying the modulus M by the bit value q_i to obtain q_iM ;

a compressor performing ‘n’ additions on the carry C, the sum S, the b_iA , and the q_iM to obtain interim values and summing the interim values to obtain a result using a carry propagation adder in response to a carry propagation adder signal;

an S-register updating a bit value s_i of the sum S and storing the updated bit value; and

a C-register updating a bit value c_i of the carry C and storing the updated bit value;

wherein given that the number A is smaller than the modulus M, the number B is smaller than the modulus M, the modulus M is odd, and R^{-1} is an inverse number of R modular-multiplied for “mod M”, the system calculates a value congruent to “ $ABR^{-1} \pmod{M}$ ”.

19. (previously presented) The system of claim 18, wherein the system comprises a public-key cryptographic system.

20. (previously presented) The system of claim 18, wherein the system is a public-key cryptographic system.

21. (previously presented) The system of claim 18, wherein the value congruent to “ ABR^{-1} ” (mod M) is used in a public-key cryptographic system.

22. (previously presented) The system of claim 18, wherein the value congruent to “ ABR^{-1} ” (mod M) is used in the system as a cryptographic key.