1. Let x,y both in U and V;

1.0 is both in U and V;

2.x+y in U; x+y in $V \rightarrow x+y$ both in U and V;

3.c is scalar in R, cx in U and cx in y, so cx in both U and V.

2.

Let U and V be subspaces of the vector space \mathbb{R}^n .

If neither U nor V is a subset of the other, then prove that the union $U \cup V$ is not a subspace of \mathbb{R}^n .

Since U is not contained in V, there exists a vector $\mathbf{u} \in U$ but $\mathbf{u} \notin V$.

Similarly, since V is not contained in U, there exists a vector $\mathbf{v} \in V$ but $\mathbf{v} \notin U$.

Seeking a contradiction, let us assume that the union is $U \cup V$ is a subspace of \mathbb{R}^n .

The vectors \mathbf{u}, \mathbf{v} lie in the vector space $U \cup V$.

Thus their sum $\mathbf{u} + \mathbf{v}$ is also in $U \cup V$.

This implies that we have either

$$\mathbf{u} + \mathbf{v} \in U \text{ or } \mathbf{u} + \mathbf{v} \in V.$$

If $\mathbf{u} + \mathbf{v} \in U$, then there exists $\mathbf{u}' \in U$ such that

$$\mathbf{u} + \mathbf{v} = \mathbf{u}'.$$

Since the vectors \mathbf{u} and \mathbf{u}' are both in the subspace U, their difference $\mathbf{u}' - \mathbf{u}$ is also in U. Hence we have

$$\mathbf{v} = \mathbf{u}' - \mathbf{u} \in U.$$

However, this contradicts the choice of the vector $\mathbf{v} \notin U$.

Thus, we must have $\mathbf{u} + \mathbf{v} \in V$.

In this case, there exists $\mathbf{v}' \in V$ such that

$$\mathbf{u} + \mathbf{v} = \mathbf{v}'$$
.

Since both \mathbf{v}, \mathbf{v}' are vectors of V, it follows that

$$\mathbf{u} = \mathbf{v}' - \mathbf{v} \in V$$

which contradicts the choice of $\mathbf{u}
otin V$.

Therefore, we have reached a contradiction. Thus, the union $U \cup V$ cannot be a subspace of \mathbb{R}^n .

Problem. Let W_1, W_2 be subspaces of a vector space V. Then prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subset W_2$ or $W_2 \subset W_1$.

We prove the following subspace criteria:

- 1. The zero vector $\mathbf{0}$ of V is in W_1+W_2 .
- 2. For any $\mathbf{u}, \mathbf{v} \in W_1 + W_2$, we have $\mathbf{u} + \mathbf{v} \in W_1 + W_2$.
- 3. For any $\mathbf{v} \in W_1 + W_2$ and $r \in K$, we have $r\mathbf{v} \in W_1 + W_2$.

Since W_1 and W_2 are subspaces of V, the zero vector ${\bf 0}$ of V is in both W_1 and W_2 . Thus we have

$$\mathbf{0} = \mathbf{0} + \mathbf{0} \in W_1 + W_2.$$

for some $\mathbf{x} \in W_1$ and $\mathbf{y} \in W_2$.

Similarly, we write

$$\mathbf{v} = \mathbf{x}' + \mathbf{y}'$$

for some $\mathbf{x}' \in W_1$ and $\mathbf{y}' \in W_2$.

Then we have

$$u + v = (x + y) + (x' + y')$$

= $(x + x') + (y + y')$.

Since ${\bf x}$ and ${\bf x}'$ are both in the vector space W_1 , their sum ${\bf x}+{\bf x}'$ is also in W_1 . Similarly we have ${\bf y}+{\bf y}'\in W_2$ since ${\bf y},{\bf y}'\in W_2$.

Thus from the expression above, we see that

$$\mathbf{u} + \mathbf{v} \in W_1 + W_2$$

hence condition 2 is met.

Finally, let $\mathbf{v} \in W_1 + W_2$ and $r \in K$.

Then there exist $\mathbf{x} \in W_1$ and $\mathbf{y} \in W_2$ such that

$$\mathbf{v} = \mathbf{x} + \mathbf{y}$$
.

Since W_1 is a subspace, it is closed under scalar multiplication. Hence we have $r\mathbf{x}\in W_1$. Similarly, we have $r\mathbf{y}\in W_2$.

It follows from this observation that

$$egin{aligned} r\mathbf{v} &= r(\mathbf{x}+\mathbf{y}) \ &= r\mathbf{x} + r\mathbf{y} \in W_1 + W_2, \end{aligned}$$

and thus condition 3 is met.

Therefore, by the subspace criteria W_1+W_2 is a subspace of V.

4.

```
Proof. \dim(W_1\cap W_2) \leq \dim(V) \Rightarrow W_1\cap W_2 has a finite basis \beta=\{u_1,u_2,\cdots,u_k\}. We can extend \beta to a basis \beta_1=\{u_1,u_2,\cdots,u_k,v_1,v_2,\cdots,v_m\} for W_1 and to a basis \beta_2=\{u_1,u_2,\cdots,u_k,k_1,k_2,\cdots,k_p\} for W_2. Let \alpha=\{u_1,u_2,\cdots,u_k,v_1,v_2,\cdots,v_m,w_1,w_2,\cdots,w_p\}. We claim that \alpha is a basis for W_1+W_2.
```

To prove the claim, we need to check that

1. α is linearly independent.

Let
$$a_1u_1+\cdots+a_ku_k+b_1v_1+\cdots+b_mv_m+c_1w_1+\cdots+c_pw_p=0$$
, for some scalars $a_1,\cdots,a_k,b_1,\cdots,b_m,c_1,\cdots,c_p$.
Then $(-b_1)v_1+\cdots+(-b_m)v_m=a_1u_1+\cdots+a_ku_k+c_1w_1+\cdots+c_pw_p\in W_1\cap W_2$.
Since β is a basis for $W_1\cap W_2$, we have $(-b_1)v_1+\cdots+(-b_m)v_m=d_1u_1+\cdots+d_ku_k$ for some scalars d_1,\cdots,d_k .
 $\Rightarrow d_1u_1+\cdots+d_ku_k+b_1v_1+\cdots+b_mv_m=0$
 $\Rightarrow d_1=\cdots=d_k=b_1=\cdots=b_m=0$, since β_1 is a basis for W_1 .
 $\Rightarrow a_1u_1+\cdots+a_ku_k+c_1w_1+\cdots+c_pw_p=0$
 $\Rightarrow a_1=\cdots=a_k=c_1=\cdots=c_p=0$, since β_2 is a basis for W_2 .
Hence α is linearly independent.

2. $W_1 + W_2 = \text{span}(\alpha)$.

Let $u=v+w\in W_1+W_2$, where $v\in W_1$ and $w\in W_2$, be any vector in W_1+W_2 . Since β_1 is a basis for W_1 and β_2 is a basis for W_2 , we can find some scalars $x_1, \dots, x_k, y_1, \dots, y_m, z_1, \dots, z_k$, such that

$$u = (x_1u_1 + \dots + x_ku_k + y_1v_1 + \dots + y_mv_m) + (z_1u_1 + \dots + z_ku_k + t_1w_1 + \dots + t_pw_p)$$

= $((x_1 + z_1)u_1 + \dots + (x_k + z_k)u_k + y_1v_1 + \dots + y_mv_m + t_1w_1 + \dots + t_pw_p)$

That is, $W_1 + W_2 \subseteq \operatorname{span}(\alpha)$.

It is easy to see that span(α) $\subseteq W_1 + W_2$.

Hence $W_1 + W_2 = \operatorname{span}(\alpha)$.

Therefore, α is a basis for $W_1 + W_2$.

Finally, we have

$$\dim(W_1 + W_2) = k + m + p = (k + m) + (k + p) - k = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

Ш