

FACULTAD DE CS. EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPTO DE MATEMÁTICA.
PRIMER CUATRIMESTRE DE 2017
ECUACIONES DIFERENCIALES (1913)

PRÁCTICA 2. SIMETRÍAS

Ejercicio 1 Demostrar que las siguientes aplicaciones inducen grupos de Lie uniparamétricos

a.
$$\Gamma_{\epsilon}(x,y) = (x+\epsilon,y)$$
 y $\Gamma_{\epsilon}(x,y) = (x,y+\epsilon)$.

b.
$$\Gamma_{\epsilon}(x,y) = (e^{\epsilon}x,y)$$

c.
$$\Gamma_{\epsilon}(x,y) = \left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon x}\right)$$

d.
$$\Gamma_{\epsilon}(x,y) = \begin{pmatrix} \cos(\epsilon) & -\sin(\epsilon) \\ \sin(\epsilon) & \cos(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Ejercicio 2 Encontrar coordenadas canónicas para las simetrías de los incisos a y b del ejercicio 1. Repetir este mismo cálculo pero usando SymPy (o SAGE) con los incisos a, b y d.

Ejercicio 3 Ejercicios 1.1, 1.2, 1.4 y 1.5 de [1]

Ejercicio 4 Ejercicio 2.1, 2.2, 2.3, 2.5 y 2.6 de [1]

Ejercicio 5 Considere la ecuación $y' = -\frac{1}{xy + g(y)}$.

- i) Plantear la Condición de Simetría Linealizada y encontrar los infinitesimales ξ y η . Ayuda: Hacer el anzats $\xi=\xi(y),\,\eta\equiv0.$
- ii) Encontrar las coordenadas canónicas y plantear la ecuación en las mismas.
- iii) Resolver la ecuación en las coordenadas canónicas y concluir que la solución en coordenadas rectangulares está dada por la relación implícita $e^{\frac{y^2}{2}}x+\int g(y)e^{\frac{y^2}{2}}dy=C$.

Referencias

[1] P.E. Hydon. Symmetry Methods for Differential Equations: A Beginner's Guide. Cambridge University Press, 2000.