

Amplificadores operacionais - AmpOp

Prof. Alceu André Badin

Introdução

Circuito esquemático de um AmpOp – modelo LM741

OpAmp características

OpAmp características

!/DAELT

Amp-op ideal

- I. Impedância de entrada infinita
- 2. Impedância de saída nula
- 3. Ganho zero de modo comum ou, rejeição infinita de modo comum
- 4. Ganho infinito de malha aberta A
- 5. Largura de banda infinita

Amp-op real

Ex: LM741

CARACTERÍSTICAS ELÉTRICAS BÁSICAS:

Tensão de alimentação (polarização):V_{+max}=+22 V e V_{-min}= -22 V

Máxima corrente de saida: I_{osat}= 25 mA

Tensão de saida: -15 V < V_o < +15 V

Corrente de alimentação (sem carga): I e I. = I,7 mA

Tensão de saturação: V_{sat+} ++13,5 V V_{SAT-} =-12,5 V

Mínima resistência de carga: 2 kS

A típico: 200.000

► Sempre consultar folha de dados

Prof. Alceu A. Badin

UTFPR/DAELT

Ganho amp-op

- Amp-ops podem ser conectados em configurações de malha aberta ou de malha fechada.
- Malha aberta: uma configuração sem realimentação do retorno da saída do amp-op à sua entrada. O ganho do amp-op de malha aberta geralmente excede 100.000.
- Malha fechada: uma configuração que tem um caminho de realimentação negativo do retorno de saída do amp-op à sua entrada.
- Realimentação negativa reduz o ganho e melhora muitas características do amp-op.
- O ganho da malha fechada é sempre inferior ao ganho da malha aberta.

Amp-op inversor

- O sinal de entrada é aplicado à entrada inversora (–).
- A entrada não inversora (+) está aterrada.
- •O resistor de realimentação (R_f) está conectado da saída à entrada negativa (inversora), fornecendo realimentação negativa.

Ganho do amp-op inversor

O ganho é estabelecido utilizando-se resistores externos:

 R_f and R_1

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{f}}{R_{1}}$$

Ganho da unidade ($A_v = 1$):

$$R_f = R_1$$

$$A_v = \frac{-R_f}{R_1} = -1$$

O sinal negativo denota uma fase de deslocamento de 180° entre a entrada e a saída.

Prof. Alceu A. Badin UTFPR/DAELT

Terra virtual

Terra virtual: um termo utilizado para descrever a condição na qual $V_i \cong 0$ V (na entrada inversora) quando a entrada não inversora está aterrada.

• O amp-op tem uma impedância de entrada tão alta que mesmo com um ganho alto não há corrente de entrada.

Circuitos com amp-op comuns

- Amplificador inversor
- Amplificador não inversor
- Seguidor unitário
- Amplificador somador
- Integrador
- Diferenciador

Amplificadores inversor/não

inversor

Amplificador inversor

$$V_o = \frac{-R_f}{R_1} V_1$$

Amplificador não inversor

$$V_o = (1 + \frac{R_f}{R_1})V_1$$

Seguidor unitário

Prof. Alceu A. Badin

UTFPR/DAELT

Amplificador somador

• Pelo fato de o amp-op ter uma alta impedância de entrada, as múltiplas entradas são tratadas como entradas separadas.

$$V_1$$
 R_2
 V_2
 R_3
 V_3
 N_4
 N_4
 N_5
 N_6
 N_6

 $V_{o} = -\left(\frac{R_{f}}{R_{1}}V_{1} + \frac{R_{f}}{R_{2}}V_{2} + \frac{R_{f}}{R_{3}}V_{3}\right)$

Integrador

• A saída é a integral da entrada, i. e., ela é proporcional à área sob a forma de onda da entrada. Esse circuito é útil nos circuitos de filtro passa-baixas e circuitos condicionados por sensores.

$$v_o(t) = -\frac{1}{RC} \int v_1(t) dt$$

Diferenciador

• O diferenciador tira o derivado da entrada. Esse circuito é útil nos circuitos de filtro passa-altas.

$$V_o(t) = -RC \frac{dV_1(t)}{dt}$$

Parâmetros de offset CC

- Mesmo quando a tensão de entrada é zero, um amp-op pode ter um **offset** de saída. Causas do offset:
- o Tensão de offset de entrada.
- o Corrente de offset de entrada.
- o Tensão de offset de entrada e corrente de offset de entrada.
- o Corrente de polarização de entrada.

Tensão de offset de entrada

(V_{IO})

• A folha de dados para um amp-op indica uma tensão de offset de entrada (V_{IO}) .

• O efeito da tensão de offset de entrada pode ser calculado com:

$$V_{o(offset)} = V_{IO} \frac{R_1 + R_f}{R_1}$$

Parâmetros de frequência

• Um amp-op é amplificador com ampla largura de banda. Os fatores seguintes afetam a largura da banda do amp-op:

o Ganho

Taxa de inclinação

Ganho e largura de banda

- A alta resposta em frequência do amp-op é limitada por seus circuitos internos. O gráfico mostrado é para um ganho de malha aberta $(A_{OL} \text{ ou } A_{VD})$. Isso significa que o amp-op está operando com o mais alto ganho possível sem resistor com realimentação.
- No modo de malha aberta, um amp-op tem uma largura de banda estreita. A largura da banda aumenta no modo de malha fechada, mas o ganho é inferior.

Taxa de inclinação (SR)

• Taxa de inclinação (SR): a taxa máxima à qual um amp-op pode mudar sua saída sem distorção.

$$SR = \frac{\Delta V_o}{\Delta t}$$
 (in V/\mus)

A taxa de inclinação é listada nas folhas de dados como taxa V/µs.

Prof. Alceu A. Badin

UTFPR/DAELT

Frequência de sinal máximo

• A taxa de inclinação determina a frequência mais alta do amp-op sem distorção.

$$f \leq \frac{SR}{2\pi V_{p}}$$

onde V_P é o pico de tensão.

Dados gerais do amp-op

- Outras taxas de amp-op encontradas em folhas de dados são:
- Especificações absolutas
- Características elétricas
- o Desempenho

Especificações absolutas

• Estas são as espeficações típicas para o amp-op:

Tabela 10.2 Valores máximos absolutos.

Tensão de alimentação	±22 V
Dissipação interna de potência	500 mW
Tensão de entrada diferencial	±30 V
Tensão de entrada	±15 V

Características elétricas

Tabela 10.3 Características elétricas do μ A741: $V_{CC} = \pm 15 \text{ V}$, $T_A = 25 \text{ °C}$.

Características	Mínima	Típica	Máxima	Unidade
$V_{ m IO}$ Tensão de offset de entrada		1	6	mV
$I_{\rm IO}$ Corrente de offset de entrada		20	200	nA
I_{IB} Corrente de polarização de entrada		80	500	nA
$V_{\rm ICR}$ Faixa de tensão de entrada de modo-comum	±12	±13		V
V_{OM} Oscilação máxima de pico da tensão de saída	±12	±14		V
$A_{ m VD}$ Amplificação de tensão diferencial para grandes sinais	20	200		V/mV
r_i Resistência de entrada	0,3	2		$M\Omega$
r_o Resistência de saída		75		Ω
C_i Capacitância de entrada		1,4		pF
CMRR Razão de rejeição de modo-comum	70	90		dB
I_{CC} Corrente de alimentação		1,7	2,8	mA
P_D Dissipação total de potência		50	85	mW

• Observe: essas taxas são para condições específicas de circuito, e elas frequentemente incluem valores máximos, mínimos e típicos.

Prof. Alceu A. Badin UTFPR/DAELT

CMRR

- Uma taxa que é única aos amp-ops é a CMRR ou razão de rejeição de modo comum.
- Pelo fato de o amp-op ter duas entradas que são opostas na fase (entrada inversora e entrada não inversora) qualquer sinal que seja comum a ambas as entradas será cancelado.
- A CMRR do amp-op é uma medida da capacidade de cancelar sinais de modo comum.