Verjetnost

Luka Horjak (lh0919@student.uni-lj.si)

25. oktober 2022

Kazalo Luka Horjak

Kazalo

Uvod		3
1	Osnove verjetnosti 1.1 Izidi, dogodki, verjetnosti	
2	Slučajne spremenljivke 2.1 Diskretne slučajne spremenljivke	8
St	tvarno kazalo	9

Uvod Luka Horjak

Uvod

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Verjetnost v letu 2022/23. Predavatelj v tem letu je bil izr. prof. dr. Mihael Perman.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

1 Osnove verjetnosti

1.1 Izidi, dogodki, verjetnosti

Definicija 1.1.1. *Množico vseh možnih izidov* označujemo z Ω .

Definicija 1.1.2. *Dogođek* je vsaka podmnožica množice Ω .

Definicija 1.1.3. Družina dogodkov \mathcal{F} ima naslednje lastnosti:

- i) velja $\Omega \in \mathcal{F}$ in $\emptyset \in \mathcal{F}$,
- ii) če je $A \in \mathcal{F}$, je tudi $A^{c} \in \mathcal{F}$ in
- iii) če so $A_1, A_2, \ldots \in \mathcal{F}$, je tudi

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$$

Družini množic z zgornjimi lastnostmi pravimo σ -algebra.

Definicija 1.1.4. Verjetnost je preslikava $P: \mathcal{F} \to [0,1]$ z naslednjimi lastnostmi:

- i) Velja $P(\Omega) = 1$ in $P(\emptyset) = 0$.
- ii) Če so dogodki A_1, A_2, \ldots disjunktni, je

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n).$$

Trditev 1.1.5. Veljajo naslednje trditve:

- i) Velja $P(A) + P(A^{c}) = 1$.
- ii) Velja $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Dokaz. Trditev dokažemo po točkah:

i) Ker je $A \cup A^{c} = \Omega$ in $A \cap A^{c} = \emptyset$, je

$$P(A) + P(A^{c}) = P(\Omega).$$

ii) Obe strani lahko zapišemo kot

$$P(A \cap B^{c}) + P(A^{c} \cap B) + P(A \cap B).$$

Izrek 1.1.6 (Formula za vključitve in izključitve). Naj bodo $A_1, A_2, \dots A_n$ dogodki. Tedaj je

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{\substack{S \subseteq \{1,\dots,n\}\\S \neq \emptyset}} (-1)^{|S|+1} \cdot P\left(\bigcap_{i=1}^{n} A_i\right).$$

¹ To so aksiomi Kolmogorova.

Dokaz. Formulo dokažemo z indukcijo. Trditev za n=2 smo že dokazali. Naj bo

$$A = \bigcup_{i=1}^{n} A_i$$

in $B = A_{n+1}$. Tedaj je

$$\begin{split} P(A \cup B) &= P(A) + P(B) - P(A \cap B) \\ &= \sum_{\substack{S \subseteq \{1, \dots, n\} \\ S \neq \emptyset}} (-1)^{|S|+1} \cdot P\left(\bigcap_{i=1}^{n} A_i\right) + P(B) - \sum_{\substack{S \subseteq \{1, \dots, n\} \\ S \neq \emptyset}} (-1)^{|S|+1} \cdot P\left(\bigcap_{i=1}^{n} A_i \cap B\right) \\ &= \sum_{\substack{S \subseteq \{1, \dots, n+1\} \\ S \neq \emptyset}} (-1)^{|S|+1} \cdot P\left(\bigcap_{i=1}^{n} A_i\right). \end{split}$$

Izrek 1.1.7. Naj bodo $A_1 \subseteq A_2 \subseteq \dots$ naraščajoči dogodki. Tedaj je

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} P(A_n).$$

Dokaz. Velja

$$\bigcup_{n=1}^{\infty} A_n = A_1 \cup \bigcup_{n=2}^{\infty} (A_n \setminus A_{n-1}).$$

Velja torej

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = P(A_1) + \sum_{n=2}^{\infty} (P(A_n) - P(A_{n-1})) = \lim_{n \to \infty} P(A_n).$$

Opomba 1.1.7.1. Iz De Morganovih pravil sledi analog s preseki – če so $A_1 \supseteq A_2 \supseteq \dots$ padajoči dogodki, je

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} P(A_n).$$

Izrek 1.1.8 (Borel-Cantellijeva lema). Naj bodo A_1, A_2, \ldots dogodki in

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Če je

$$\sum_{k=1}^{\infty} P(A_k) < \infty,$$

je P(A) = 0.

Dokaz. Opazimo, da so

$$\bigcup_{k=n}^{\infty} A_k$$

padajoči dogodki, zato je

$$P(A) = \lim_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} A_k\right) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) = 0.$$

1.2 Pogojne verjetnosti

Definicija 1.2.1. Naj bo B dogodek z verjetnostjo P(B) > 0. Pogojno verjetnost dogodka A pri pogoju B definiramo kot

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Definicija 1.2.2. Nabor dogodkov $\{H_1, H_2, \dots\}$ je particija Ω , če je

$$\bigcup_{i} H_i = \Omega \quad \text{in} \quad \forall i \neq j \colon H_i \cap H_j = \emptyset.$$

Izrek 1.2.3 (Formula za popolno verjetnost). Naj bo $\{H_1, H_2, \dots\}$ particija Ω in A dogodek. Tedaj velja

$$P(A) = \sum_{i} P(A \mid H_i) \cdot P(H_i).$$

Dokaz. Velja

$$P(A) = \sum_{i} P(A \cap H_i) = \sum_{i} P(A \mid H_i) \cdot P(H_i).$$

Opomba 1.2.3.1. Velja tudi

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{k=1}^{n} P\left(A_k \mid \bigcap_{i=1}^{k-1} A_i\right).$$

Definicija 1.2.4. Dogodki A_1, \ldots, A_n so *neodvisni*, če za vse $S \subseteq \{1, \ldots, n\}$ velja

$$P\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}P(A_i).$$

Dogodki $\{A_n\}_{i\in I}$ so neodvisni, če je vsaka njihova končna poddružina neodvisna.

Opomba 1.2.4.1. Ekvivalentno sta dogodka neodvisna natanko tedaj, ko zanju velja $P(A \mid B) = P(A)$.

Izrek 1.2.5 (Borel-Cantellijeva lema). Naj bodo dogodki A_1, A_2, \ldots neodvisni in

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Če je

$$\sum_{i=1}^{\infty} P(A_i) = \infty,$$

je P(A) = 1.

Dokaz. Velja

$$A^{\mathsf{c}} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^{\mathsf{c}}.$$

Dovolj je pokazati, da imajo preseki verjetnost 0. Ker so tudi komplementi neodvisni, velja

$$P\left(\bigcap_{k=n}^{\infty} A_k^{\mathsf{c}}\right) \le P\left(\bigcap_{k=n}^{N} A_k^{\mathsf{c}}\right) = \prod_{k=n}^{N} (1 - P(A_k)) \le \prod_{k=n}^{N} e^{-P(A_k)},$$

kar konvergira proti 0.

Osnove verjetnosti Luka Horjak

Definicija 1.2.6. Družina dogodkov \mathcal{P} je π -sistem, če je za vsaka $A, B \in \mathcal{P}$ tudi $A \cap B \in \mathcal{P}$.

Izrek 1.2.7. Naj bo družina $\{B_1, \ldots, B_n\}$ π -sistem, A pa dogodek, ki je neodvisen od vsakega B_i . Potem je A neodvisen od vsakega dogodka, ki ga lahko sestavimo iz dogodkov B_i s komplementi, preseki in unijami.

Dokaz. Vsak dogodek, ki ga lahko sestavimo iz dogodkov $B_i,$ je disjunktna unija dogodkov oblike

$$\bigcap_{i=1}^{n} B_i^*,$$

kjer je $B_i^* \in \{B_i, B_i^c\}$. Ker delamo v π -sistemu, je brez škode za splošnost dovolj preveriti dogodke oblike

$$\bigcap_{i=1}^m B_i^{\mathsf{c}} \cap B_{m+1}.$$

Velja pa

$$P\left(A \cap \bigcap_{i=1}^{m} B_{i}^{\mathsf{c}} \cap B_{m+1}\right) = P\left(A \cap \left(\bigcup_{i=1}^{m} B_{i}\right)^{\mathsf{c}} \cap B_{m+1}\right)$$

$$= P(A \cap B_{m+1}) - P\left(\bigcup_{i=1}^{m} B_{i} \cap B_{m+1} \cap A\right)$$

$$= P(A) \cdot P(B_{m+1}) - P\left(\bigcup_{i=1}^{m} (B_{i} \cap B_{m+1} \cap A)\right)$$

Sedaj lahko unijo razvijemo po načelu vključitev in izključitev, nato pa izpostavimo P(A), ki je neodvisen z vsemi peseki. Po ponovni uporabi vključitev in izključitev dobimo

$$P\left(A \cap \bigcap_{i=1}^{m} B_{i}^{\mathsf{c}} \cap B_{m+1}\right) = P(A) \cdot \left(P(B_{m+1}) - P\left(\bigcup_{i=1}^{m} B_{i} \cup B_{m+1}\right)\right)$$
$$= P(A) \cdot P\left(\bigcap_{i=1}^{m} B_{i}^{\mathsf{c}} \cap B_{m+1}\right).$$

Izrek 1.2.8. Naj bosta $\{A_1, \ldots, A_m\}$ in $\{B_1, \ldots, B_n\}$ π -sistema dogodkov. Če so vsi dogodki A_i neodvisni z vsemi dogodki B_j , so neodvisni vsi dogodki, ki jih lahko sestavimo s komplementi, unijami in preseki množic iz posameznega sistema.

25. oktober 2022

2 Slučajne spremenljivke

2.1 Diskretne slučajne spremenljivke

Definicija 2.1.1. *Slučajna spremenljivka X* je taka funkcija $X: \Omega \to \mathbb{R}$, da je $X^{-1}((a,b])$ dogodek v \mathcal{F} za vsak interval (a,b].

Opomba 2.1.1.1. Iz definicij sledi, da so dogodki tudi praslike unij intervalov. Takim množicam pravimo *Borelove množice*.

Definicija 2.1.2. Slučajna spremenljivka X je diskretna, če je zaloga vrednosti diskretna množica.

Opomba 2.1.2.1. Za diskretne slučajne spremenljivke označimo

$$P(X = k) = P(X^{-1}(\{k\})).$$

Definicija 2.1.3. Porazdelitev slučajne spremenljivke X je dana z naborom verjetnosti $P(X^{-1}((a,b]))$ za vse a < b.

Definicija 2.1.4. Slučajna spremenljivka X ima hiper-geometrijsko porazdelitev s parametri $B,\,R$ in n, če velja

$$P(X = k) = \frac{\binom{B}{k} \cdot \binom{R}{n-k}}{\binom{B+R}{n}}.$$

Opomba 2.1.4.1. Verjetnosti P(X = k) je največja pri

$$k = \left| \frac{(B+1)(n+1)}{N+2} \right|.$$

Če je zgornji ulomek celo število, je maksimum dosežen tudi pri k-1.

Definicija 2.1.5. Slučajna spremenljivka X ima binomsko porazdelitev s parametroma n in p, če velja

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}.$$

Opomba 2.1.5.1. Verjetnosti P(X = k) je največja pri

$$k = \lfloor (n+1)p \rfloor.$$

Če je (n+1)p celo število, je maksimum dosežen tudi pri k-1.

Definicija 2.1.6. Slučajna spremenljivka X ima geometrijsko porazdelitev s parametrom p, če velja

$$P(X = k) = p \cdot (1 - p)^{k-1}.$$

Definicija 2.1.7. Slučajna spremenljivka X ima negativno binomsko porazdelitev s parametroma m in p, če velja

$$P(X = k) = \binom{k-1}{m-1} p^m (1-p)^{k-m}.$$

Stvarno kazalo

D		
Dogodek, 4		
Neodvisen, 6		
I		
Izrek		
Borel-Cantellijeva lema, 5, 6		
Vključitve in izključitve, 4		
M		
Množica izidov, 4		
Particija, 6		
P		
Porazdelitev		
Binomska, 8		
Geometrijska, 8		
Hiper-geometrijska, 8		
Negativna binomska, 8		
regatività billollibra, o		
\mathbf{S}		
σ -algebra, 4		
Slučajna spremenljivka, 8		
Diskretna, 8		
Porazdelitev, 8		
V		
Verjetnost, 4		
•		
Pogojna verjetnost, 6		