

Classification of Census Income of Pakistan

By: Imran Ali

Contents:

INTRODUCTION TO DATA

DATA

Census income data of Pakistan Containing Following Columns & Values:

Listing of attributes:

■ salary: >50K, <=50K</pre>
age: continuous

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked

fnlwgt: continuous

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool

education-num: continuous

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse

DATA

□ occupation: Tech-support, Craft-repair, Other-service, Sales, Execmanagerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Admclerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces ☐ relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried ☐ race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black ☐ sex: Female, Male ☐ capital-gain: continuous ☐ capital-loss: continuous ☐ hours-per-week: continuous ☐ native-country: Pakistan, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

EDA & VISUALIZATION

```
census = pd.read_csv('census-pk.csv')
census.head()
```

Python

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	income	income_
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	40	Pakistan	<=50K	
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	Pakistan	<=50K	
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	40	Pakistan	>50K	
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40	Pakistan	>50K	
4	18	?	103497	Some- college	10	Never- married	?	Own-child	White	Female	0	0	30	Pakistan	<=50K	

census.shape

(43832, 16)

```
\triangleright \vee
       census.info()
[120]
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 43832 entries, 0 to 48841
    Data columns (total 16 columns):
        Column
                         Non-Null Count Dtype
                          -----
                         43832 non-null int64
        age
        workclass
                         43832 non-null object
        fnlwgt
                         43832 non-null int64
        education
                         43832 non-null object
     4 education-num
                         43832 non-null int64
        marital-status
                         43832 non-null object
       occupation
                         43832 non-null object
       relationship
                         43832 non-null object
        race
                         43832 non-null object
                         43832 non-null object
        sex
        capital-gain
                         43832 non-null int64
        capital-loss
                         43832 non-null int64
     12 hours-per-week
                         43832 non-null int64
     13 native-country
                         43832 non-null object
     14 income
                         43832 non-null object
     15 income above 50K 43832 non-null int64
    dtypes: int64(7), object(9)
    memory usage: 5.7+ MB
```

census.describe()

	age	fnlwgt	education-num	capital-gain	capital-loss	hours-per-week	income_above_50K
count	43832.000000	4.383200e+04	43832.000000	43832.000000	43832.000000	43832.000000	43832.000000
mean	38.698690	1.871419e+05	10.168667	1089.626529	88.789743	40.440774	0.243977
std	13.795294	1.051913e+05	2.393353	7455.791326	405.539243	12.471352	0.429484
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000	0.000000
25%	28.000000	1.156770e+05	9.000000	0.000000	0.000000	40.000000	0.000000
50%	37.000000	1.766720e+05	10.000000	0.000000	0.000000	40.000000	0.000000
75%	48.000000	2.344772e+05	12.000000	0.000000	0.000000	45.000000	0.000000
max	90.000000	1.490400e+06	16.000000	99999.000000	4356.000000	99.000000	1.000000

#statistical summary -categorical features
census.describe(include=object)

	workclass	education	marital-status	occupation	relationship	race	sex	native-country	income
count	43832	43832	43832	43832	43832	43832	43832	43832	43832
unique	9	16	7	15	6	5	2	1	2
top	Private	HS-grad	Married-civ-spouse	Exec-managerial	Husband	White	Male	Pakistan	<=50K
freq	30145	14570	20003	5606	17733	38493	29223	43832	33138

ľ

VISUALIZATION

VISUALIZATION

DATA PREPROCESSING

```
census.drop(['income', 'native-country'], axis=1, inplace=True)
```

Python

```
census["workclass"] = LabelEncoder().fit_transform(census["workclass"])
census["education"] = LabelEncoder().fit_transform(census["education"])
census["marital-status"] = LabelEncoder().fit_transform(census["marital-status"])
census["occupation"] = LabelEncoder().fit_transform(census["occupation"])
census["relationship"] = LabelEncoder().fit_transform(census["relationship"])
census["race"] = LabelEncoder().fit_transform(census["race"])
census["sex"] = LabelEncoder().fit_transform(census["sex"])
census["native-country"] = LabelEncoder().fit_transform(census["native-country"])
```

census.head()

[138]

Python

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	income_above_50K
(25	4	226802	1	7	4	7	3	2	1	0	0	40	0	0
1	38	4	89814	11	9	2	5	0	4	1	0	0	50	0	0
2	28	2	336951	7	12	2	11	0	4	1	0	0	40	0	1
3	44	4	160323	15	10	2	7	0	2	1	7688	0	40	0	1
2	18	0	103497	15	10	4	0	3	4	0	0	0	30	0	0

age	1	0.016	-0.071	-0.014	0.03	-0.26	-0.016	-0.27	0.028	0.096	0.077	0.057	0.073		
workclass	0.016	1	-0.018	0.02	0.059	-0.069	0.26	-0.091	0.07	0.09	0.038	0.012	0.14		
fnlwgt	-0.071	-0.018	1	-0.008	-0.0093	0.027	0.0016	0.014	-0.051	0.019	-1.9e-06	-0.0035	-0.015		
education	-0.014	0.02	-0.008	1	0.32	-0.034	-0.023	-0.011	0.025	-0.026	0.026	0.014	0.06		
education-num	0.03	0.059	-0.0093	0.32	1	-0.063	0.11	-0.096	0.083	0.011	0.13	0.082	0.16		
marital-status	-0.26	-0.069	0.027	-0.034	-0.063	1	-0.018	0.18	-0.079	-0.13	-0.043	-0.033	-0.19		
occupation	-0.016	0.26	0.0016	-0.023	0.11	-0.018	1	-0.08	0.014	0.079	0.024	0.017	0.081		
relationship	-0.27	-0.091	0.014	-0.011	-0.096	0.18	-0.08	1	-0.14	-0.58	-0.057	-0.058	-0.26		
race	0.028	0.07	-0.051	0.025	0.083	-0.079	0.014	-0.14	1	0.11	0.023	0.029	0.048		
sex	0.096	0.09	0.019	-0.026	0.011	-0.13	0.079	-0.58	0.11	1	0.047	0.046	0.23		
capital-gain	0.077	0.038	-1.9e-06	0.026	0.13	-0.043	0.024	-0.057	0.023	0.047	1	-0.032	0.082		
capital-loss	0.057	0.012	-0.0035	0.014	0.082	-0.033	0.017	-0.058	0.029	0.046	-0.032	1	0.052		
hours-per-week	0.073	0.14	-0.015	0.06	0.16	-0.19	0.081	-0.26	0.048	0.23	0.082	0.052	1		
native-country															
ncome_above_50K	0.23	0.053	0.0037	0.069	0.33	-0.2	0.076	-0.26	0.09	0.22	0.22	0.15	0.23		
	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	Sex	capital-gain	capital-loss	hours-per-week	native-country	

- 0.8 - 0.6 - 0.4 - 0.2 - 0.0


```
x = census.iloc[:, :-1]
y = census.iloc[:, -1]
x
```

Python

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours-per- week	native- country
0	25	4	226802	1	7	4	7	3	2	1	0	0	40	0
1	38	4	89814	11	9	2	5	0	4	1	0	0	50	0
2	28	2	336951	7	12	2	11	0	4	1	0	0	40	0
3	44	4	160323	15	10	2	7	0	2	1	7688	0	40	0
4	18	0	103497	15	10	4	0	3	4	0	0	0	30	0
48837	27	4	257302	7	12	2	13	5	4	0	0	0	38	0
48838	40	4	154374	11	9	2	7	0	4	1	0	0	40	0
48839	58	4	151910	11	9	6	1	4	4	0	0	0	40	0
48840	22	4	201490	11	9	4	1	3	4	1	0	0	20	0
48841	52	5	287927	11	9	2	4	5	4	0	15024	0	40	0

43832 rows × 14 columns

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
print(x_train.shape)
print(y_train.shape)

Python

(35065, 14)
```

(35065,) (35065,)

ML MODELS

Logistic Regression

```
model = LogisticRegression()
   model.fit(x train, y train)
   y pred = model.predict(x test)
   print('Accuracy Score: ', accuracy_score(y_pred, y_test))
   print('Confusion Matrix: ', confusion_matrix(y_pred, y_test))
   print('Classification Report', classification report(y test,y pred))
Accuracy Score: 0.7914908178396258
Confusion Matrix: [[6367 1614]
[ 214 572]]
Classification Report
                                   precision
                                                recall f1-score
                                                                   support
                            0.97
                  0.80
                                      0.87
                                                6581
                  0.73
                            0.26
           1
                                      0.38
                                                2186
                                      0.79
                                                8767
    accuracy
  macro avg
                  0.76
                            0.61
                                      0.63
                                                8767
weighted avg
                  0.78
                            0.79
                                      0.75
                                                8767
```

Support Vector Machine

```
model1 = SVC()
      model1.fit(x_train, y_train)
      y pred = model1.predict(x test)
      print('Accuracy Score: ', accuracy_score(y_pred, y_test))
      print('Confusion Matrix: ', confusion matrix(y pred, y test))
      print('Classification Report', classification_report(y_test,y_pred))
.597
  Accuracy Score: 0.7884110870309113
   Confusion Matrix: [[6571 1845]
    [ 10 341]]
   Classification Report
                                      precision recall f1-score
                                                                      support
              0
                     0.78
                               1.00
                                         0.88
                                                   6581
              1
                     0.97
                               0.16
                                         0.27
                                                   2186
                                         0.79
                                                   8767
       accuracy
                                         0.57
      macro avg
                     0.88
                               0.58
                                                   8767
   weighted avg
                     0.83
                                         0.72
                               0.79
                                                   8767
```

K-Nearest Neighbors

```
model2 = KNeighborsClassifier(n neighbors=5)
       model2.fit(x train, y train)
       y_pred = model2.predict(x_test)
       print('Accuracy Score: ', accuracy score(y pred, y test))
       print('Confusion Matrix: ', confusion matrix(y pred, y test))
       print('Classification Report', classification_report(y_test,y_pred))
161
```

c:\Users\Lenovo\anaconda3\envs\streamlit\lib\site-packages\sklearn\neighbors\ classification.py:237: FutureWarning:

Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is ta be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.

```
Accuracy Score: 0.7731264970913654
Confusion Matrix: [[6032 1440]
[ 549 746]]
Classification Report
                                   precision
                                               recall f1-score
                                                                  support
                  0.81
                            0.92
                                      0.86
                                                6581
                  0.58
                            0.34
                                      0.43
                                                2186
```

MLP Classifier

```
+ Markdown
                                                                + Code
      model3 = MLPClassifier(max_iter=100, alpha = 0.001, random_state=0)
      model3.fit(x_train, y_train)
      y pred = model3.predict(x test)
       print('Accuracy Score: ', accuracy_score(y_pred, y_test))
       print('Confusion Matrix: ', confusion_matrix(y_pred, y_test))
       print('Classification Report', classification_report(y_test,y_pred))
164]
   Accuracy Score: 0.7902361126953348
   Confusion Matrix: [[6503 1761]
    [ 78 425]]
   Classification Report
                                                   recall f1-score support
                                       precision
                      0.79
                                0.99
                                          0.88
                                                    6581
              0
                                0.19
              1
                      0.84
                                          0.32
                                                    2186
                                          0.79
                                                    8767
       accuracy
                                          0.60
                      0.82
                                0.59
                                                    8767
      macro avg
   weighted avg
                      0.80
                                0.79
                                          0.74
                                                    8767
```

Random Forest

[252 11	.10]]						
Classific	ation	Report		precision	recall	f1-score	support
	0	0.85	0.96	0.91	6581		
	1	0.81	0.51	0.63	2186		
accur	acy			0.85	8767		
macro	avg	0.83	0.73	0.77	8767		
weighted	avg	0.84	0.85	0.84	8767		

24Slides