- 1	٠		٠.	
- 1	1	m	ıT	С
- 1	ı	111	Iι	c

goal: performance tradeoffs & fundamental limits

refs: Astrom & Murray Ch 12 (SISO case) [AM] Zhau, Dayle, Glaver Ch 6 (MIMO case) [ZDG]

· letting $S = \frac{1}{1+PC}$ denote senithinty transfer function (SISO):

thm: [Thm 14.1 in AM] [Thm 6.2 ZDG] (Bade integral formula)

 $\int_0^\infty \log |S(j\omega)| d\omega = \pi \cdot \sum \{ \text{Rep} | p \text{ is a pole of } P \}$ in right half-plane

= 0 <>> process P is stable

* importantly, the integrals value depends only on the (in) stability of the process P — invariant to controller C

- since $\log |S(jw)| < 0 \iff |S(jw)| < 1$, any range of frequencies where cartalles attenuates output disturbance (since S = Tyw) must be compensated by

conge where courtsolles amplifies disturbance C=1 log | $S(j\omega)$ | $d\omega = \int_{0}^{\infty} \log |S(j\omega)| d\omega$ * as control engineers, all we can do its shift area under cone (never decrease the area)