MEDICAL IMAGING INFORMATICS: Lecture # 6

Segmentation

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

Norbert.schuff@ucsf.edu

Overview

- Definitions
- Role of Segmentation
- Segmentation methods
 - Intensity based
 - Shape based
 - Texture based
- Summary & Conclusion
- Literature

The Concept Of Segmentation

Identify classes (features) that characterize this image!

Intensity: Bright - dark

Shape: Squares, spheres, triangles

Texture: homogeneous – speckled

Connectivity: Isolated - connected

Topology: Closed - open

More On The Concept Of Segmentation

Can you still identify multiple classes in each image?

Segmentation Of Scenes

Segment this scene! Hint: Use color composition and spatial features

By J. Chen and T. Pappas; 2006, SPIE; DOI: 10.1117/2.1200602.0016

Examples: Intensity and Texture

Gray matter segmentation

By intensity

By texture

Segmentation of abdominal CT scan

image at: www.ablesw.com/3d-doctor/3dseg.htm

Stephen Cameron. Oxford U, Computing Laboratory

Definitions

 Segmentation is the partitioning of an image into regions that are homogeneous with respect to some characteristics.

In medical context:

 Segmentation is the delineation of anatomical structures and other regions of interest, i.e. lesions, tumors.

Formal Definition

If the domain of an image is Ω , then the segmentation problem is to determine sets (classes) Z_k , whose union represent the entire domain

$$\Omega = \bigcup_{k=1}^{N} Z_k$$

Sets are connected:

$$Z_k \bigcap Z_j = \alpha; k \neq j$$

More Definitions

- When the constraint of connected regions is removed, then determining the sets Z_k is termed pixel classification.
- Determining the total number of sets K can be a challenging problem.
- In medical imaging, the number of sets is often based on a-priori knowledge of anatomy, e.g. K=3 (gray, white, CSF) for brain imaging.

Labeling

- Labeling is the process of assigning a meaningful designation to each region or pixel.
- This process is often performed separately from segmentation.
- Generally, computer-automated labeling is desirable
- Labeling and sets Z_k may not necessarily share a oneto-one correspondence

Dimensionality

- Dimensionality refers to whether the segmentation operates in a 2D or 3D domain.
- Generally, 2D methods are applied to 2D images and 3D methods to 3D images.
- In some instances, 2D methods can be applied sequentially to 3D images.

Characteristic and Membership **Functions**

A characteristic function is an indicator whether a pixel at location j belongs to a particular class Z_k.

$$\chi_{k}(j) = \begin{cases} 1 & \text{if } ..j \in Z_{k} \\ 0 & \text{otherwise} \end{cases}$$

This can be generalized to a membership function, which does not have to be binary valued.

$$0 \le \chi_k(j) \ge 1$$
, for all j, k
$$\sum_{k=1}^{N} \chi_k(j) = 1$$
, for all j

The characteristic function describes a "deterministic" segmentation process whereas the membership function describes a "probabilistic" one.

Segmentation Has An Important Role

Segmentation Methods

Threshold Method

Angiogram showing a right MCA aneurysm

Dr. Chris Ekong; www.medi-fax.com/atlas/brainaneurysms/case15.htm

Histogram (fictitious)

Threshold Method

Original

Threshold min/max

Threshold standard deviation

Threshold Method Applied To Brain MRI

White matter segmentation

- •Major failures:
 - Anatomically non-specific
 - Insensitive to global signal inhomogeneity

Threshold: Principle Limitations

- Works only for segmentation based on intensities
- Robust only for images with global uniformity and high contrast to noise
- Local variability causes distortions
- Intrinsic assumption is made that the probability of features is uniformly distributed

Region Growing - Edge Detection

Seed point

Guided e.g. by energy potentials:

Similarity:
$$V(i, j) = \frac{I_i - I_j}{\sigma_{i,j}}$$

Edges:
$$V(i,j) = \frac{1}{I_i - I_j}$$

- Region growing groups pixels or subregions into larger regions.
- A simple procedure is pixel aggregation,
- It starts with a "seed" point and progresses to neighboring pixels that have similar properties.
- Region growing is better than edge detection in noisy images.

Region Growing – Watershed Technique

CT of different types of bone tissue (femur area)

M. Straka, et al. Proceedings of MIT 2003

- (a) WS over-segmentation
- (b) WS conditioned by regional density mean values
- (c) WS conditioned by hierarchical ordering of regional density mean values

Region Growing: Principle Limitations

- Segmentation results dependent on seed selection
- Local variability dominates the growth process
- Global features are ignored
- Generalization needed:
 - Unsupervised segmentation (i.e.insensitive to selection of seeds)
 - Exploitation of both local and global variability

Clustering

- Generalization using clustering
- Two commonly used clustering algorithms
 - K-mean
 - Fuzzy C-mean

Definitions: Clustering

- Clustering is a process for classifying patterns in such a way that the samples within a class Z_k are more similar to one another than samples belonging to the other classes Z_m, m ≠k; m = 1...K.
- The *k*-means algorithm attempts to cluster *n* patterns based on attributes (e.g. intensity) into *k* classes *k* < *n*.
- The objective is to minimize total intra-cluster variance in the least-square sense:

$$\sigma = \sum_{k=1}^{K} \sum_{\chi_j \in S_k} \left(\chi_j - \mu_k \right)^2$$

for k clusters Z_k, k= 1, 2, ..., K. μ_i is the mean point (centroid) of all pattern values ②_i ∈ Z_k.

Fuzzy Clustering

- The fuzzy C-means algorithm is a generalization of Kmeans.
- Rather than assigning a pattern to only one class, the fuzzy C-means assigns the pattern a number m, $0 \le m$ <= 1, described as membership function.

Three classes

Four classes

Original

2 clusters

Three classes

K – means: TRAPPED!

Five classes

Fuzzy C - means

These two components explain 100 % of the point variability.

Fuzzy C- Means Segmentation I

Two classes

Original

Fuzzy Segmentation II

Four classes

Original

Class I

Class 2

Class 3

Class 4

Brain Segmentation With Fuzzy C-Means

4T MRI, bias field inhomogeneity contributes to the problem of poor segmentation

Clustering: Principle Limitations

- Convergence to the optimal configuration is not guaranteed.
- Outcome depends on the number of clusters chosen.
- No easy control over balancing global and local variability
- Intrinsic assumption of a uniform feature probability is still being made
- Generalization needed:
 - Relax requirement to predetermine number of classes
 - Balance influence of global and local variability
 - Possibility to including a-priori information, such as non-uniform distribution of features.

Segmentation As Probabilistic Problem

- Treat both intensities Y and classes Z as random distributions
- The segmentation problems is finding the classes that maximize the likelihood to represent the image
- Segmentation in Bayesian formulation becomes :

$$p(Z \mid Y) = \frac{p(Z) * f(Y \mid Z)}{p(Y)}$$

- where
 - Y is the observed image (values y₁y_n)
 - Z is the segmented image (classes z₁zκ)
 - p(Z) is the prior probability
 - p(Y|Z) the observation probability
 - and p (Y) is the observation and hence stable

Treat As Energy Minimization Problem

Since p(Y) is stable, it follows:

$$\ln[p(Z|Y)] \propto \ln[p(Z)] + \ln[f(Y|Z)]$$

 The goal is to find the most probably distribution of p(Z|Y) given the data

 Since the log probabilities are all additive, they are equivalent to distribution of energy

$$E_{Z|Y} = \alpha \cdot E_Z + \beta \cdot E_{Y|Z}$$

- segmentation becomes an energy minimization problem.
- This means in particular that no probabilistic point of view is finally required.

Probability In Spatial Context

- Use the concept of Markov Random Fields (MRF) for segmentation
- Definition:
 - Classes Z are a MRF on Y if
 - p(z) > 0 for all $z ext{ } ext{$
 - p(z) at a location depends only on the neighboring locations
 - p(y|z) (observed data) is a random process following a distribution of many degrees of freedom (Gibbs distribution).

1st and 2nd order MRFs

1st and 2nd order MRFs

Step I: Define prior class distribution energy:

$$E_{z}(p,q) \propto \sum_{t \in N_{s}} \delta(z_{s}, z_{t})$$

$$\delta(z_{s}, z_{t}) = \begin{cases} -1, & z_{s} = z_{t} \\ +1 & z_{s} \square z_{t} \end{cases}$$

1st and 2nd order MRFs

 Step I: Define prior class distribution energy:

$$E_{Z}(p,q) \propto \sum_{t \in N_{s}} \delta(z_{s}, z_{t})$$

$$\delta(z_{s}, z_{t}) = \begin{cases} -1, & z_{s} = z_{t} \\ +1 & z_{s} \square z_{t} \end{cases}$$

• Step II: Select distribution of conditional observation probability, e.g gaussian:

$$E_{y|z}(p,q) \propto \frac{\left(y_{p,q} - \mu_z\right)^2}{2\sigma_z^2} + const.$$

- Y_{p,q} is the pixel value at location (p,q)
- $-\mu_z$ and σ_z are the mean value and variance of the class z

1st and 2nd order MRFs

Step III: Solve (iteratively) for the minimal distribution energy

$$\arg\min E_{z|y}\left(p,q\right) \propto \sum_{t \in N_s} \delta\left(z_s,z_t\right) + \frac{\left(y_{p,q} - \mu_z\right)^2}{2\sigma_z^2} + const.$$
 assignment similarity energy

How To Obtain A Prior Of Class Distributions?

Average Gray Matter Map Of 40 Subjects

Register to

Segment

Individual MRI

The Process of MRF Based Segmentation

4T MRI, SPM2, priors for GM, WM based on 60 subjects

Generalization to Mixed Gaussian Distributions

$$\arg\min E_{z|y}(p,q) \propto \sum_{t \in N_s} \delta(z_s, z_t) + \frac{(y_{p,q} - \mu_{z_s})^2}{2\sigma_{z_s}^2} + \frac{(y_{p,q} - \mu_{z_t})^2}{2\sigma_{z_t}^2} + const.$$

Find solution iteratively using Expectation Maximization (EM)

EM Of MRF Based Segmentation

Update distribution model

EMS

1.5 MRI, SPM2, tissue classes: GM, WM, CSF, WM Lesions

MRF Based Segmentation Using Various Methods

A: Raw MRI

B: SPM2

C: EMS

D: HBSA

from Habib Zaidi, et al, Neurolmage 32 (2006) 1591 – 1607

Geo-Cuts Algorithm for 3D Brain MRI Segmentation

Jie Zhu and Ramin Zabih
Cornell University

Principle Limitations Of MRF

Case where a simple energy minimization might not work:

- green: wrong segmentation
- red: correct segmentation

The segmentation energy of green might be smaller than that of red based on simple separation energy

A Case As Motivation

EMS

EMS gray matter segmentation

areas where EMS have problems.

How Geo-cuts Works

- The separation penalty is defined based on magnitude and direction of image gradient:
 - Small gradient magnitude:
 - separation penalty: large (all directions)

$$E(p,q) = \frac{1}{\nabla(I_p - I_q)}$$

- Large gradient magnitude
 - separation penalty :
 - small in direction of gradient.
 - very large in other directions.

Why Use Geo Cuts

Case where simple separation energy did not work:

- green: wrong segmentation
- red: correct segmentation

Using Geo-cuts leads to

- Higher separation energy for green than for red.
- → Correct segmentation

EMS vs. Geo Cuts

EMS gray matter

Geo-Cuts gray matter

Geo-Cuts white matter

Deformable Models

- So far segmentation methods have not exploited knowledge of shape.
- In shape based methods, the segmentation problem is again formulated as an energy-minimization problem. However, a curve evolves in the image until it reaches the lowest energy state instead of a MRF.
- External and internal forces deform the shape control the evolution of segmentation.

Deformable Template Segmentation

A. Lundervold et al. Model-guided Segmentation of Corpus Callosum in MR Images www.uib.no/.../arvid/cvpr99/cvpr99_7pp.html

3D Deformable Surfaces

Automated Delineation of Prostate Bladder and Rectum

Costa, J. École Nationale Supérieure des Mines de Paris www.jimenacosta.com/Jime.Publications.MICCAI0

Segmentation Via Texture Extraction

- Two classical methods for feature extraction
 - Co-occurrence matrix (CM)
 - Fractal dimensions (FD)

Co-Occurrance Matrix (CM)

Definition: The CM is a tabulation of how often different combinations. of pixel brightness values (gray levels) occur in an image.

Evaluation of CM

CM

MRI with spatially varying intensity bias

MRI with spatially homogenous intensity bias

Fractal Dimensions

Intuitive Idea:

Many natural objects have structures that are repeated regardless of scale. Repetitive structures can be quantified by fractal dimensions (FD).

Fractal Dimensions

Definition:

$$N \cdot \varepsilon^D = 1$$

$$D = \lim_{\varepsilon \to 0} \frac{\ln \left[N(\varepsilon) \right]}{\ln \left[\frac{1}{\varepsilon} \right]}.$$

Ç

Fractal Dimensions

MEDICAL IMAGE SEGMENTATION USING MULTIFRAC

Soundararajan Ezekiel; <u>www.cosc.iup.edu/sezekie/rub/icauoris/wieurcar</u>

Summary

Automated	Semi- automated	Initializing	Manual
Threshold	Region growing	Co-	Tracing
		occurrence	
MRF	K-means		
Shape Models	Fuzzy C-Means		
Fractal			
Dimensions			

Literature

- Segmentation Methods I and II; in Handbook of Biomedical 1. Imaging; Ed. J. S. Suri; Kluwer Academic 2005.
- WIKI-Books: http://en.wikibooks.org/wiki/SPM-VBM 2.
- FSL- FAST:http://www.fmrib.ox.ac.uk/fsl/fast4/index.html 3.

