

# Workshop on Machine learning — Day1

ML development for classification Problems

Date: 20<sup>th</sup> Aug 2021

dubrangala@gmail.com

# Day 1 Agenda

- Introduction
- General Steps to Build a ML Model
- Classification Model Use Case
- Exploratory Data Analysis
- General Feature engineering techniques
- Practical Demo using Python



## Dayananda Ubrangala

**Statistician and Data Science Specialist** 

**Publications** 









## General Steps to Build a Model

## A view of data mining process

| Bucket                              | Steps                                                             | Industry success | Competition Success |
|-------------------------------------|-------------------------------------------------------------------|------------------|---------------------|
| Translate Business                  | Define Business problem                                           | Very high        | Not applicable      |
| problem into Data<br>Mining Problem | Determine entity level to model at                                | Very high        | Not applicable      |
| Willing Frobiciti                   | Determine the target variable                                     | Very high        | Not applicable      |
| Plan for generalization             | Determine cross-validation techniques                             | Critical         | Critical            |
|                                     | Find the right validation dataset                                 | Critical         | Critical            |
| Feature engineering                 | Engineer features talking to stakeholders with business knowledge | High             | Not applicable      |
|                                     | Engineer features from the dataset                                | Very high        | Critical            |
| Modeling                            | Hyper-parameter tuning                                            | Medium           | Critical            |
|                                     | Ensembles of models                                               | Medium           | Critical            |
|                                     | Last mile optimizations                                           | Medium           | Critical            |
| Implementation                      | Use by the business resulting in business impact                  | Critical         | Not applicable      |

#### Stages in Building Machine Learning Classification Model



Exploratory
Data Analysis
(EDA)

Feature Engineering Building ML Models Model Validation

Impact

Multiple Data Sources like Customer Transactions, Firmographics, etc..

Understanding which are the **important** drivers

Based on the understanding of EDA and in discussions with the product experts, new features are engineered which can help in predicting better model accuracy

Building Machine learning models using all the meaningful features available and using techniques to handle big data and sparsity to finally generate scored list

Using the scored list from the model to do a real-world validation using either Test / Control or approach

Performance Measurement



# **Exploratory Data Analysis (EDA)**

#### Typical EDA used in machine learning



#### Top Libraries that can perform EDA in one line of python code



Pandas profiling is an open-source python library that automates the EDA process and creates a detailed report. Pandas Profiling can be used easily for large datasets as it is blazingly fast and creates reports in a few seconds



Sweetviz is an open-source python auto-visualization library that generates a report, exploring the data with the help of high-density plots. It not only automates the EDA but is also used for comparing datasets and drawing inferences from it.



D-Tale is an open-source python autovisualization library. It is one of the best auto data-visualization libraries. D-Tale helps you to get a detailed EDA of the data. It also has a feature of code export, for every plot or analysis in the report.



Autoviz is an open-source python auto visualization library that mainly focuses on visualizing the relationship of the data by generating different types of plot.



## Feature Engineering Techniques (FE)

### **Types of Data Cleaning and Feature Engineering**

A Missing variable imputation

| X1 | X2 | Х3 |
|----|----|----|
| 12 | А  | 1  |
| NA | В  | 0  |
| 22 | NA | NA |
| 34 | Α  | 1  |



D

one hot encoding for categorical features

| X1 | X2 | ХЗ |
|----|----|----|
| 12 | А  | 1  |
| 23 | В  | 1  |
| 22 | С  | 0  |
| 34 | Α  | 1  |



| X2_A | X2_B | X2_C |
|------|------|------|
| 1    | 0    | 0    |
| 0    | 1    | 0    |
| 0    | 0    | 1    |
| 1    | 0    | 0    |

B Removing duplicates

| X1 | X1 | X2 |
|----|----|----|
| 1  | 1  | 0  |
| 2  | 2  | 1  |
| 1  | 1  | 0  |
| 2  | 2  | 1  |



| X1 | X2 |
|----|----|
| 1  | 0  |
| 2  | 1  |
| 1  | 0  |
| 2  | 1  |

E

Outlier flag and imputation

| X1 | X2 | ХЗ |
|----|----|----|
| 68 | А  | 2  |
| 55 | В  | 4  |
| 1  | С  | 6  |
| 62 | А  | 3  |



| X1_cap | X1_imp |
|--------|--------|
| 0      | 68     |
| 0      | 55     |
| 1      | 61.6   |
| 0      | 62     |

Cleaning column names

| X1 | X2 | X33 |
|----|----|-----|
| 1  | А  | 0   |
| 2  | В  | 1   |
| 1  | А  | 0   |
| 2  | Α  | 1   |



|   | X1 | X2 | ХЗ |
|---|----|----|----|
|   | 1  | А  | 0  |
| • | 2  | В  | 1  |
|   | 1  | А  | 0  |
|   | 2  | Α  | 1  |



F

Bulk interactions for numerical features

X1\_X3\_multiple = X1 \* X3

| X1 | X2 | Х3 |
|----|----|----|
| 68 | А  | 2  |
| 55 | В  | 4  |
| 1  | С  | 6  |
| 62 | Α  | 3  |



| X1_X3_multiple |
|----------------|
| 136            |
| 220            |
| 6              |
| 186            |

Frequent Transformer

| X1 | X2 | Х3 |
|----|----|----|
| 68 | Α  | 2  |
| 55 | В  | 4  |
| 1  | С  | 6  |
| 62 | А  | 3  |



| X2_Freq | X2_Prop |
|---------|---------|
| 2       | 0.50    |
| 1       | 0.25    |
| 1       | 0.25    |
| 2       | 0.50    |

Date Variable Transformer

| X1        | X2 | Х3 |
|-----------|----|----|
| 1/11/2019 | А  | 2  |
| 12/1/2020 | В  | 4  |
| 23/6/2018 | С  | 6  |
| 18/9/2017 | Α  | 3  |



| X1_month | X1_year | X1_quarter |
|----------|---------|------------|
| 11       | 2019    | 4          |
| 1        | 2020    | 1          |
| 6        | 2018    | 2          |
| 9        | 2017    | 3          |



## Classification Models Use Cases

### HR Analytics: Job Change of Data Scientists

#### Objective

Predict the probability of a candidate looking for a new job

#### Data Source

Open-source Competition Data set

#### Evaluation

Area under the curve score

#### Details

This dataset designed to understand the factors that lead a person will work for the company(leaving current job), and the goal of this task is building model(s) that uses the current credentials, demographics, experience to predict the probability of a candidate looking for a new job or will work for the company.

#### Data Note

- The dataset is imbalanced so it might affect your result if you don't handle it
- Most features are categorical (Nominal, Ordinal, Binary), some with high cardinality so encoding methods and techniques will help to boost models performance
- Missing imputation strategy might affect the results so it can be a part of your pipeline as well.

# Practical Demo using Python Packages

EDA and ML Model (Random Forest and XGBoost)





# Q&A