Université d'Ottawa Faculté de génie

École de science informatique et de génie électrique

University of Ottawa
Faculty of Engineering

School of Electrical Engineering and Computer Science

CEG2136: Computer Architecture I CEG2536: Architecture des Ordinateurs I

MIDTERM EXAMINATION

Duration: 1 hour and 30 minutes

Question 1

1.1 (12 x 1.5 point)

Fill out each row of the following table with the corresponding representation in other bases of the number given in that row; show the details of your calculations.

	decimal	binary	hexadecimal	octal		
(a)	25.5	1 1001.1	19.8	31.4		
(b)	10.25	10.25 1010.01		12.2		
(c)	26	1 1010	1A	32		
(d)	26	1 1010	1A	32		

- (a) $25.5_{10} = \frac{16 + 8 + 1 + \frac{1}{2}}{1001.100} = \frac{1001.1000}{1000} = \frac{19.8_{16}}{1001.100} = \frac{11001.100}{1000} = \frac{31.4_8}{1001.100} = \frac{11001.100}{1000} = \frac{11000}{1000} = \frac{11000$
- (b) $1010.01_2 = 8 + 2 + 1/4 = 10.25_{10} = 1010.0100 = A.4_{16} = 1010.010 = 12.2_8$
- (c) $1A_{16} = 11010_2 = 16+10 = 26_{10} = 11010 = 32$
- (d) Since the last 2 numbers in the last column is the same (32), it means that the last 2 rows represent the same value, such that their elements are identical.

1.2 (4 points)

In the 8-bit signed 2's complement representation, the number of distinct numbers is:

(a) 256

- (b) 128
- (c) 255
- (d) None of these

1.3 (6+6+8 = 20 points)

7-bit registers are used in this question to store numbers expressed in 2's complement representation.

(a) Convert the following two signed numbers to binary observing the above assumption:

$$A = (-31)_{10}$$

A's magnitude represented on 7 bits: $31 = 16 + 8 + 4 + 2 + 1 =$

$$= > A = -31 = 2$$
's complement (001 1111) = 110 0001
$$B = (+63)_{10} = 011 1111$$

(b) Find the 2's complement of the signed binary numbers A and B, and give your results in decimal, too:

Finding the 2's complement of a signed binary number will negate the number:

2's complement of A = 2's complement $(110\ 0001) = 001\ 1111$

2's complement of A in decimal: **0**01 1111₂ = $+31_{10}$

2's complement of B = 2's complement (011 1111) = $100\ 0001$, which is a negative number, say -x.

To find the magnitude (x) of this number (-x) we complement it, since x = -(-x) = 2's complement (-x): x = 2's complement (-x) = 2's complement $(100\ 0001) = 011\ 1111 = +63$ => 2's complement of B in decimal = -x = -63, which makes sense, since complementing B = 63, we negate its value to -63.

(c) Perform the following arithmetic operations in signed-2's complement representation, using a 7-bit ALU; show operations and results (including intermediary steps), both in binary and in decimal. Are there any overflows? How can a computer detect overflow?

The result $110\ 0000$ is a negative number, say -x.

To convert 110 0000 (i.e., -x) to decimal, first we find x, by complementing 110 0000, i.e., x = -(-x) = 2's complement (110 0000) = 001 1111 +1 = 010 0000 = +32, the result in decimal - x = -32... which was expected.

Are there any overflows?

There are no overflows since different-sign numbers are added.

How can a computer detect overflow?

1. Overflow = Carry₇ xor Carry₆

or

2. Overflow: Sign A & Sign B & /Sign result + /Sign A & /Sign B & Sign result **Ouestion 2**

You have a SRAM memory chip with a capacity of 8k x 4

a) How many input-output data lines does it have?

b) How many address lines does it have?

c) What is its capacity expressed in "bits"?

Answer c) ... 32 kbits =
$$2^3 2^{10} 2^2 = 2^{15} = 2^5 2^{10}$$

2.2
$$(2x6 = 12 points)$$

What is wrong with the following transfer statements (RTL)?

- a) xT: AR \leftarrow AR', AR \leftarrow 0
- b) yT: PC \leftarrow AR, PC \leftarrow PC + 1

One cannot load two different data in the same register!

Question 3 (20 points)

Design a 3-bit multi-function register $A(A_2 A_1 A_0)$ whose operation is described in the following table, where C_1 and C_0 are two control bits.

Use in your design JK flip flops, logic gates and any digital components (encoders, decoders, multiplexers, etc.); draw a detailed diagram of the logic circuit of the multi-function register.

Function table of 3-bit register A.

		_	Operation	$A_2^+ A_1^+ A_0^+$
\uparrow	0	0	No change	$A_2 A_1 A_0$
↑	0	1	Increment by 3	$A_2 A_1 A_0 + 3$
↑	1	0	Increment by 3 Decrement by 3	$A_2 A_1 A_0 + 3$ $A_2 A_1 A_0 + 3$
1	1	1	Loading external inputs, say $I_2 I_1 I_0$	$I_2 I_1 I_0$

Answer:

Characteristic Table

1 (uUI		
\boldsymbol{J}	K	Q(n)	Q(n+1)
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Excitation Table

Q(n)	Q(n+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Remember the generation of the FF excitation equations:

- Copy to J the next state Q(n+1) if Q(n)=0
 Copy to K the complement of the next state Q(n+1) if Q(n)=1
 J and K should be "x" otherwise

$$\underline{\mathbf{C}_{1}} \underline{\mathbf{C}_{0}} = \mathbf{00} => \mathbf{no \ change} \le A_{i} (n+1) = A_{i} (n) ; i = \{0,1,2\}$$

$$=> J_2 = 0$$
; $K_2 = 0$; $J_1 = 0$; $K_1 = 0$; $J_0 = 0$; $K_0 = 0$.

$C_1 C_0 = 01 =>$ Increment by 3

Pr	esent Sta	te		Next State	!	FF Inputs					
$A_2(n)$	$A_1(n)$	$A_0(n)$	$A_2(n+1)$	$A_1(n+1)$	$A_0(n+1)$	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	1	1	0	X	1	X	1	X
0	0	1	1	0	0	1	X	0	X	X	1
0	1	0	1	0	1	1	X	X	1	1	X
0	1	1	1	1	0	1	X	X	0	X	1
1	0	0	1	1	1	X	0	1	X	1	X
1	0	1	0	0	0	X	1	0	X	X	1
1	1	0	0	0	1	X	1	X	1	1	X
1	1	1	0	1	0	X	1	X	0	X	1

$$J_2 = K_2 = A_0 + A_1$$

 $J_1 = K_1 = A_0$,
 $J_0 = K_0 = 1$

 $\underline{C_1 \ C_0} = 10 \Rightarrow Decrement by 3$

Pr	esent Sta	te	Next State			FF Inputs					
$A_2(n)$	$A_1(n)$	$A_0(n)$	$A_2(n+1)$	$A_1(n+1)$	$A_0(n+1)$	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	1	0	1	1	X	0	X	1	X
0	0	1	1	1	0	1	X	1	X	X	1
0	1	0	1	1	1	1	X	X	0	1	X
0	1	1	0	0	0	0	X	X	1	X	1
1	0	0	0	0	1	X	1	0	X	1	X
1	0	1	0	1	0	X	1	1	X	X	1
1	1	0	0	1	1	X	1	X	0	1	X
1	1	1	1	0	0	X	0	X	1	X	1

$$K_2$$
 $A_1 A_0 \ 00 \ 01 \ 11 \ 10$
 $J_2 = K_2 = A_0' + A_1' = (A_0 A_1)'$
 $J_1 = K_1 = A_0$
 $J_2 = K_2 = A_0 = 1$

$$J_2 = K_2 = A_0' + A_1' = (A_0 A_1)'$$

 $J_1 = K_1 = A_0$
 $J_0 = K_0 = 1$

$C_1 C_0 = 11 = > Load I_2I_1I_0 to A_2A_1A_0$: $<=> A_i (n+1) = I_i (n) ; i= \{0,1,2\}$

$A_i(n)$	I_i	$A_i(n+1)$	J_i	K_i
0	0	0	0	х
0	1	1	1	x
1	0	0	х	1
1	1	1	х	0

$$J_i = K_i = I_i \text{ xor } A_i$$

or
 $J_i = I_i$; $K_i = I_1$ '
or ...

Conclusion

(T FF approach, i.e., J = K = T):

C_1	C_0	$J_2 = K_2$	$J_1 = K_1$	$J_0 = K_0$
0	0	0	0	0
0	1	$A_0 + A_1$	A_0 '	1
1	0	$(A_0A_1)'$	A_0	1
1	1	$I_2 \operatorname{xor} A_2$	$I_1 \operatorname{xor} A_1$	$I_0 \operatorname{xor} A_0$

$C_1C_0 \not\mid CLK$

D FF + adders approach:

Comprehensive description but longer approach:

Control	l Present State		tate	1	Next State			F	F I	npu	ts		FF input equations
C_1C_0	$A_2(n)$	$A_1(n)$	$A_0(n)$	$A_2(n+1)$	$A_1(n+1)$	$A_0(n+1)$	J_2	_	_		_	K_0	
00	0	0	0	0	0	0	0	X	0	X	0	X	
	0	0	1	0	0	1	0	X	0	X	X	0	$J_2 = K_2 = 0$
	0	1	0	0	1	0	0	X	X	0	0	X	
	0	1	1	0	1	1	0	X	X	0	X	0	$J_1 = K_1 = 0$
	1	0	0	1	0	0	X	0	0	X	0	X	
	1	0	1	1	0	1	X	0	0	X	X	0	$J_0 = K_0 = 0$
	1	1	0	1	1	0	X	0	X	0	0	X	
	1	1	1	1	1	1	X	0	X	0	X	0	
01	0	0	0	0	1	1	0	X	1	X	1	X	
	0	0	1	1	0	0	1	X	0	X	X	1	$J_2 = K_2 = A_0 + A_1$
	0	1	0	1	0	1	1	X	X	1	1	X	
	0	1	1	1	1	0	1	X	X	0	X	1	$J_1 = K_1 = A_0$
	1	0	0	1	1	1	X	0	1	X	1	X	
	1	0	1	0	0	0	X	1	0	X	X	1	$J_0 = K_0 = 1$
	1	1	0	0	0	1	X	1	X	1	1	X	
	1	1	1	0	1	0	X	1	X	0	X	1	
10	0	0	0	1	0	1	1	X	0	X	1	X	
	0	0	1	1	1	0	1	X	1	X	X	1	$J_2 = K_2 = A_0' + A_1' = (A_0 A_1)'$
	0	1	0	1	1	1	1	X	X	0	1	X	
	0	1	1	0	0	0	0	X	X	1	X	1	$J_1 = K_1 = A_0$
	1	0	0	0	0	1	X	1	0	X	1	X	
	1	0	1	0	1	0	X	1	1	X	X	1	$J_0 = K_0 = 1$
	1	1	0	0	1	1	X	1	X	0	1	X	
	1	1	1	1	0	0	X	0	X	1	X	1	
11	0	0	0	I_2	I_1	I_0	I_2	X				-	
	0	0	1	I_2	I_1	I_0	I_2	X		X			$J_2 = I_2$
	0	1	0	I_2	I_1	I_0	I_2	X		I_1	I_0	_	$K_2 = I_2$
	0	1	1	I_2	I_1	I_0	I_2	X		I_1			
	1	0	0	I_2	I_1	I_0	X		I_1	X		X	$K_1 = I_1$
	1	0	1	I_2	I_1	I_0		<i>I</i> ₂ '	I_1				
	1	1	0	I_2	I_1	I_0		I_2		I_1			$K_0 = I_0$
	1	1	1	I_2	I_1	I_0	X	I_2	X	I_1	$\boldsymbol{\mathcal{X}}$	I_0	

Question 4 (20 points)

Design a 4-bit arithmetic circuit, with two selection variables x and y; the 1-bit variable z is an input of full adder. The circuit generates the following eight arithmetic operations under control of x, y and z: (Note: X) is the 1's complement of X)

x y	z = 0	z = 1
0 0	F = A + B (add)	F = A + B + 1
0 1	F = A (transfer)	F = A+1 (increment)
10	F = B' (complement)	F = B' + 1 (negate)
1 1	F = A + B	F = A-B (subtract)

Draw the logic diagram of the two least significant bits of your arithmetic circuit, *only*. Use full adders and other logic circuits (multiplexer, gates) as required.

Answer:

xy		z = 0)	z = 1
0 0	$A_3 A_2 A_1 A_0 +$	$B_3 B_2 B_1 B_0 + 0$	$A_3 A_2 A_1 A_0 +$	$B_3 B_2 B_1 B_0 + 1$
0 1	$A_3 A_2 A_1 A_0 +$	$0 \ 0 \ 0 \ 0 + 0$	$A_3 A_2 A_1 A_0 +$	0 0 0 0 + 1
1 0	0 0 0 0 +	B ₃ 'B ₂ 'B ₁ 'B ₀ '+	0 0 0 0 +	B ₃ 'B ₂ 'B ₁ 'B ₀ '+ 1
1 1	$A_3 A_2 A_1 A_0 +$	B ₃ 'B ₂ 'B ₁ 'B ₀ '+	$A_3 A_2 A_1 A_0 +$	B ₃ 'B ₂ 'B ₁ 'B ₀ '+ 1

