

GLake: 大模型时代显存+传输 管理与优化

蚂蚁集团-基础智能-Al Infra

赵军平 2024.5

■提纲

- 背景与技术挑战
 - 显存墙、传输墙
- GLake介绍:显存与传输优化
 - 训练场景
 - 推理场景
 - 其他: 混部、serverless
- 总结与展望
 - 开源地址

自我介绍

- 赵军平,蚂蚁异构计算与推理引擎负责人
- CCF HPC和存储专委委员,~200 中/美技术专利
 - 异构加速,虚拟化,K8S,推理优化,文件系统,企业级存储-保护等
 - "数据密集型应用系统设计" 译者
 - 2007~2019: EMC, Dell EMC, Start-up

数据密集型应用系统设计

作者: Martin Kleppmann 出版社: 中国电力出版社

原作名: Designing Data-Intensive Applications

译者: 赵军平/李三平/吕云松/耿煜

出版年: 2018-9-1

页数: 519 定价: 128

LLM技术挑战1:显存墙

· 显存容量、访存带宽 (特别是推理小batch场景)

350 2500 2250 300 2000 250 1500 200 989 150 1000 100 312 50 125 3.3 0.9 0 V100 A100 H100 B200

Roofline (TFlops vs. TB/s)

模型参数量 vs. 单卡显存容量

单卡算力 vs. 访存带宽

Llama2-70B推理为例

• 权重与KV cache的显存消耗分析 (假定FP16 未优化)

LLM技术挑战2: 传输墙

• 访存、卡-卡传输、PCIe传输等发展 << 算力发展

业界方案

思路	精度	性能	范围
模型/算法/实现改造 • DeepSeek • YOCO • MoD, MoE • LoRA	Case by case	Case by case	case by case
梯度累计	depends	中~高	训练过程适配
重计算	无影响	中	通用 计算换显存
offloading/swapping	无影响	低(同步) ~ 高(异步)	通用 包括UMA
混合精度、小型化	可能影响 - 无损压缩不影响	中-高	Dependents QAT, AMP, INT8
多卡并行:PP, TP, EP, SP	-	-	Depends 模型改造
以上组合			

观察

- 显存碎片化
 - 训练阶段管理开销,特别是recompute、offloading、并行等叠加使用
 - 推理阶段LLM KV cache: 动态生成
- 计算-传输-显存需一体优化
 - 多通道、细粒度融合、overlapping
- ·从单任务 -> 多任务、弹性服务(例如共享混部、serverless)
 - · → 系统层、全局的管理与优化;模型透明 → GLake

■蚂蚁集团-GLake总体架构

▮训练场景:显存碎片问题

• 例子

先设置: torch.cuda.set_per_process_memory_fraction(0.065): 这样限制上限使用~1GB

1: new 2个GPU Tensor1/2 400MB, 600MB

2: 删除T1, T2

3: new Tensor3/4/5 200MB, 100MB, 300MB

显存碎片原因分析

- CUDA不支持释放部分(空闲)显存区域
- 访存特征动态变化,LLM更加复杂
 - 数据集长短不一、训练->评估、cuDNN workspace等
 - 大模型:
 - Recompute
 - 分布式: 多卡、多stream并发
 - FSDP/DeepSpeed offloading
 - LoRA

P: PyTroch

L: LoRA O: Offload

76%

PR PLR PRO PLRO

R: Recomputation

$$\frac{\text{Memory Utilization}}{\text{Reserved GB}}$$

■如何显存碎片优化

挑战

- > 释放部分使用的block?
 - CUDA没有直接提供该能力API
- > "碎片整理"的**性能**影响?
 - ▶ 搬移-拷贝数据需同步计算,影响性能
- > 复杂性?
 - 对用户/模型透明,尽量无感知

思路

减少碎片产生

- ➤ Tensor及时释放->工具
- BFC(first-best-match-sz) -> least frag impact
- > 结合Tensor类型: 同类型(权重/中间值/ws)临近分配
- ▶ 提取tensor访问特征: 生命周期相近的临近分配

优化解决碎片★

- ➤ 基于细粒度chunk分配和释放,
- ▶ 异步分配、释放:减少性能影响
- 无数据搬移: 对应用透明, 降低复杂度

基本思路

2层指针与动态remapping (基于CUDA VMM)

- 虚拟:对用户可见,保证连续

- 物理: CHUNK_SIZE (2MB) 粒度分配,不要求连续

- Remapping: 动态回收chunk与重映射

Remap例子

GLake: 优化大模型训练显存碎片

- PyTorch caching allocator, pluggable; 对模型透明
- 重点:映射元数据管理(无数据copy),策略控制

GMLake: Efficient and Transparent GPU Memory Defragmentation for Large-scale DNN Training with Virtual Memory Stitching, ASPLOS24, 蚂蚁集团、上海交大等

Case Study

■ GM Lake分配策略设计

▶效果评测

硬件环境	16 × NVIDIA A100 SXM (80GB)		
训练框架	FSDP, DeepSpeed ZeRO, Colossal-Al Gemini		
模型	8 LLMs including OPT, Vicuna, GPT-2, GPT-NeoX and so on		
不同对比	Batch-size, Strategies, Distributed Training Devices and Different Training Engines		
负载	76 fine-tune workloads		

Avg 15% Upto 33%

不同的训练框架 **14** GB on average & **25** GB at most

其他

- 与PyTorch ExpandSegment对比
- 相同:都借助VMM接口
- 不同: GLake的分配、粘合策略不同。内部实测效果优于ExpandSegment。二者可互补 (实现中)
- 扩展成为PyTorch pluggable allocator,方便lib替换方式使用
- 扩展支持跨stream: 机会复用
 - 开源、复用策略可灵活配置

【GLake: 推理场景

·case1: 单模型多进程实例 (python)

• 挑战: 跨进程的权重、中间结果的显存如何复用

• case2: LLM推理KV cache显存管理

• 长短不一动态生成, reserve低效; 动态分配容易碎片

• vLLM: PagedAttention, 额外做特殊管理, 修改kernel

· GLake思路: 坚持系统层面全局优化入手,对模型、 kernel透明

case1:多进程推理"显存dedup"

· 权重(RO):全局、细粒度、透明共享,类似存储 "重删"

•**全局**:支持跨线程、**跨进程、跨容器共**享

• 透明: 无需用户参与、**无需配置**

•细粒度: 层或者block级共享, 基于hash和字节比对

• 中间结果: 多模型 (DAG)、跨进程中间结果的时分复用

不同于 Triton Server/ONNXRT:

- 粒度: 模型所有W[]完全相同 vs. 显存块级 (通常比tensor粒度更小)

- 范围: 单进程 vs. 跨进程、跨容器

- **使用**: 手工配置 vs. 自动发现, 透明使用

■设计:跨进程、跨模型

• 核心:

- 虚拟-显存指针的动态管理与映射
- 跨进程export、引用计数等

节点 1

4	GPU#	权重大小	内容hash	物理显存地址
	0	50MB	e260b31ad2	0xE0710000
	0	24MB	b4ebe3387c	0xA3454120
	1	12MB	b85ccdefc9s	0x78AE2390

▶效果评测

• 6个进程总显存13.2->4.6GB(-65%)

- 权重优化: - 3.3GB, 25%

- 中间结果优化: - 5.3GB, 40%

- ✓ 精度 不影响
- ✓ 性能 不下降
- ✓ 模型 不感知
- ✓ 用户 不用配

■ Case2: LLM KV cache管理

- •问题:动态生成,***GB:与模型Hd#、Layer#以及运行时Batch#、Seq#成正比
- 现有方案: PagedAttention(vLLM): 显式管理block index, 显著降低碎片&提高batch
 - 不足1: 现有attention kernel需要改造,比如FlashAtt, FlashDecoding
 - **不足2**: ~10%~20+% kernel性能开销

- GLake: 继续系统层优化思路。模型看到**大而连续的虚地址**,物理显存动态映射
 - 好处1: 所有atten kernel几乎不需改造,虚拟地址连续
 - 好处2: 特定场景下, 20%~350%的kernel性能优势 (特别是GQA decoder)
 - GLake+FlashAtten/FlashDecoding/FlashInfer vs. vLLM PagedAtten kernel
 - 其他: 业界最新类似的思路, vAttention (未开源)

■VMM不足

- 部分API调用耗时波动严重
 - cuMemSetAccess: 10~100+X
 - 已反馈至NVIDIA: 确认问题并初步分析了原因 (lock attention)
- 部分硬件上kernel有影响
 - A100: ~10%
 - 其他如A10、L40s、L20、H**等可持平
- · 其他: API优化建议反馈至NV

■其他场景: 混部、serverless

在 线 量 GPU 多卡 显存+DRAM

多任务共享、混部

- 显存动态切分
- 算力动态压制

容器/进程保活下,显存自动保存和恢复

GPU 多卡 显存+DRAM

Serverless

- 显存(persistent)自动卸载 按需加载

显存+传输的**全局、动态管理**→ 提高GPU利用率、降低成本

■总结

- 显存-传输的巨大挑战
 - 硬件、互联演进: HBM4, NVLinkSwitch, CXL ...
 - 软件的深层优化
- GLake:系统层全局、动态管理与优化,对模型、用户尽量透明
 - 进行中:
 - 混部+Serverless显存动态管理
 - 推理显存全局统一管理、精细分配
 - KV cache SmartRebuild
 - L2 cache, DSM, ...

参考

- [1] **GMLake**: Efficient and Transparent GPU Memory Defragmentation for Large-scale DNN Training with Virtual Memory Stitching, https://arxiv.org/abs/2401.08156
- [2]Efficient memory management for large language model serving with pagedattention, https://arxiv.org/abs/2309.06180
- [3]vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention, <u>https://arxiv.org/abs/2405.04437</u>
- [4] **LLM Inference Unveiled**: Survey and Roofline Model Insights, https://arxiv.org/abs/2402.16363
- [5] **SKVQ**: Sliding-window Key and Value Cache Quantization for Large Language Models, https://arxiv.org/abs/2405.06219
- [6] **AttentionStore**: Cost-effective Attention Reuse across Multi-turn Conversations in Large Language Model Serving, https://arxiv.org/abs/2403.19708
- [7] You Only Cache Once: Decoder-Decoder Architectures for Language Models, https://arxiv.org/abs/2405.05254
- [8] **DeepSeek-V2**: A Strong, Economical, and Efficient Mixture-of-Experts Language Model, https://arxiv.org/abs/2405.04434
- [9] LoongServe: Efficiently Serving Long-context Large Language Models with Elastic Sequence Parallelism, https://arxiv.org/abs/2404.09526
- [10] **QServe**: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving, https://arxiv.org/abs/2405.04532

▮谢谢!

开源: https://github.com/intelligent-machine-learning/glake

欢迎star、欢迎交流、欢迎共建