

# A Non-Invasive Glucose Monitoring (NIGM) System: Machine Learning-Based Calibration and Predictive Models Based on Multi-Sensor Data

Research Proposal by Andrius Busilas, 7th April 2025

# Link to video record



https://youtu.be/p2hLUDzFzCs

# What is a problem?

Invasive glucose monitoring is **painful** and inconvenient. The blood glucose monitoring requires a blood sample to be obtained, which is associated with self-harm:

- 4 to 6 times a day
- 1.825 per year
- 18.000 in 10 years

and it has a detrimental influence on the desire of patients to self-measure BG levels.



# What is a problem?



# Background

200 mil.

1990

830 mil.

2020

1.5% of global population

1.3 bn.

2050

5-10%

Type 1 diabetes

90%

ype 2 diabetes

(WHO, 2024), (Klein, 2023).

# Significance of study

1

## Medical Impact

Affordable, pain-free monitoring.

2

#### **Tech Innovation**

Multi-modal data fusion.

3

#### Scientific Contribution

Bridging ML and wearable tech.

## Research questions

#### Primary research question:

How can machine learning-based calibration and prediction models improve the accuracy and reliability of non-invasive glucose monitoring systems using multi-sensor data?

#### Secondary research questions

- RQ1: What are the most effective machine learning algorithms for processing and fusing multisensor data in NIGM systems?
- RQ2: How can calibration models be optimized to account for individual variability and environmental factors?
- RQ3: What are the key challenges in deploying ML-based NIGM systems in real-world scenarios?

# Aims and Objectives



- 1 Analyse existing NIGM technologies
  - 2 Collect multi-sensor data
    - 3 Develop ML models
  - 4 Validate models
- 5 Design a prototype NIGM system

# Key literature



(Bhajane et al., 2024; An et al., 2023), (Rangayyan & Krishnan, 2024), (Zamani et al., 2024), (Patel & Shah, 2021), (Rajesh Hanni et al., 2024), (Hussain et al., 2024), (Jiang & Ke, 2024), (Zanon et al., 2013; Moses et al., 2024), (Villena Gonzales et al., 2019), (Nomura et al., 2021), (Joshi & Kor, 2024).

## Methodology



(ElSayed et al., 2023), (Habehh & Gohel, 2021), (Villena Gonzales et al., 2019), (Chen et al., 2022), (Rodriguez-Calero et al., 2020), (Bian et al., 2024), (Pfob et al., 2022), (Clarke, 2005), (Zhang 2024), (Patel et al., 2023), (Rajkomar et al., 2019), (Rodbard, 2017), (Wiklund et al., 2016),



## Ethical considerations and risk assessment



Ethical Approval
Approval from ethics
committees



Data Privacy
Compliance with GDPR
HIPAA.



Informed Consent
Consent from participants

(Min et al., 2025).

## **Artefacts**

## **ML Models**

Calibration and prediction models.

## Prototype NIGM System

Functional prototype with user interface.

## **Dataset**

Curated multi-sensor glucose data.





## **Timeline**





Alghamdi, Y.A. et al. (2021) 'The association of blood glucose levels and arterial stiffness (cardio-ankle vascular index) in patients with type 2 diabetes mellitus', Cureus [Preprint]. doi:10.7759/cureus.20408.

An, Q. et al. (2023) 'A comprehensive review on machine learning in healthcare industry: Classification, restrictions, opportunities and challenges', Sensors, 23(9), p. 4178. doi:10.3390/s23094178.

Bhajane, K. et al. (2024) 'Non-invasive blood glucose monitoring system', Journal of Physics: Conference Series, 2763(1), p. 012017. doi:10.1088/1742-6596/2763/1/012017.

Bian, Q. et al. (2024) 'A hybrid transformer-LSTM model apply to glucose prediction', PLOS ONE, 19(9). doi:10.1371/journal.pone.0310084.

Ceriello, A. et al. (2022) 'Glycaemic management in diabetes: Old and new approaches', The Lancet Diabetes & Samp; Endocrinology, 10(1), pp. 75–84. doi:10.1016/s2213-8587(21)00245-x.

Clarke, W.L. (2005) 'The original Clarke Error Grid Analysis (EGA)', Diabetes Technology & Diabetes Diab

ElSayed, N.A. et al. (2023) '16. diabetes care in the hospital: standards of care in diabetes—2024', Diabetes Care, 47(Supplement\_1). doi:10.2337/dc24-s016.

ElSayed, N.A. et al. (2024) 'Introduction and methodology: Standards of care in diabetes—2025', Diabetes Care, 48(Supplement\_1). doi:10.2337/dc25-sint.

Habehh, H. & Gohel, S. (2021) 'Machine learning in Healthcare', Current Genomics, 22(4), pp. 291–300. doi:10.2174/1389202922666210705124359.

Hussain, M. et al. (2024) 'A comprehensive review on Deep Learning-based data fusion', IEEE Access, 12, pp. 180093–180124. doi:10.1109/access.2024.3508271.

Jiang, H. & Ke, H. (2024) 'Research progress in multi-sensor data fusion algorithms', Proceedings of the 2024 7th International Conference on Computer Information Science and Artificial Intelligence, pp. 547–552. doi:10.1145/3703187.3703279.

Joshi, A.M. & Kor, P. (2024) 'Smart glucometer for personalized health management of diabetes care', Proceedings of the 2024 6th International Conference on Software Engineering and Development, pp. 73–81. doi:10.1145/3686614.3686623.

Klein, H.E. (2023) Diabetes prevalence expected to double globally by 2050, AJMC. Available at: https://www.ajmc.com/view/diabetes-prevalence-expected-to-double-globally-by-2050 [Accessed: 25 March 2025].

Min, S. et al. (2025) 'Minimally and non-invasive glucose monitoring: The road toward commercialization', Sensors & Diagnostics [Preprint]. doi:10.1039/d4sd00360h.

Moses, J.C. et al. (2024) 'Non-invasive blood glucose monitoring technology in diabetes management: Review', mHealth, 10, pp. 9–9. doi:10.21037/mhealth-23-9.

Nomura, A. et al. (2021) 'Artificial Intelligence in current diabetes management and prediction', Current Diabetes Reports, 21(12). doi:10.1007/s11892-021-01423-2.

Nyiramana, M.P. (2024) 'Advances in non-invasive glucose monitoring: Challenges, technologies, and future prospects', Research Output Journal of Public Health and Medicine, 3(3), pp. 1–5. doi:10.59298/rojphm/2024/3315.

Patel, V. & Shah, A.K. (2021) 'Machine Learning for Biomedical Signal Processing', Machine Learning and the Internet of Medical Things in Healthcare, pp. 47–66. doi:10.1016/b978-0-12-821229-5.00002-1.

Pfob, A., Lu, S.-C. & Sidey-Gibbons, C. (2022) 'Machine learning in medicine: A practical introduction to techniques for data preprocessing, hyperparameter tuning, and model comparison', BMC Medical Research Methodology, 22(1). doi:10.1186/s12874-022-01758-8.

Rahman, A. et al. (2024) 'Machine learning and deep learning-based approach in Smart Healthcare: Recent advances, applications, challenges and opportunities', AIMS Public Health, 11(1), pp. 58–109. doi:10.3934/publichealth.2024004.

Rajesh Hanni, J., Santhosh, K.V. & Srinidhi, N.N. (2024) 'Design of a novel predictive technique to estimate liquid level and concentration using multi-sensor data fusion', IEEE Access, 12, pp. 98787–98802. doi:10.1109/access.2024.3422610.

Rajkomar, A., Dean, J. & Kohane, I. (2019) 'Machine learning in medicine', New England Journal of Medicine, 380(14), pp. 1347–1358. doi:10.1056/nejmra1814259.

Rangayyan, R.M. & Krishnan, S. (2024) Biomedical Signal Analysis. Hoboken, NJ: Wiley-IEEE Press.

Rodbard, D. (2017) 'Continuous Glucose Monitoring: A review of recent studies demonstrating improved glycemic outcomes', Diabetes Technology & Diabetes & Diabetes Technology & Diabetes & Diabetes &

Rodriguez-Calero, I.B. et al. (2020) 'Prototyping strategies for stakeholder engagement during front-end design: Design practitioners' approaches in the medical device industry', Design Studies, 71, p. 100977. doi:10.1016/j.destud.2020.100977.

Roglic, G. (2016) Global report on diabetes. Geneva, Switzerland: World Health Organization.

Seaquist, E.R. et al. (2013) 'Hypoglycemia and diabetes: A report of a workgroup of the American Diabetes Association and the endocrine society', Diabetes Care, 36(5), pp. 1384–1395. doi:10.2337/dc12-2480.

Singh, A.K. & Berretti, S. (2024) Data fusion techniques and applications for Smart Healthcare. S.I.: Academic Press.

Sun, T., Liu, J. & Chen, C.J. (2024) 'Calibration algorithms for continuous glucose monitoring systems based on interstitial fluid sensing', Biosensors and Bioelectronics, 260, p. 116450. doi:10.1016/j.bios.2024.116450.

Uhl, S. et al. (2023) 'Effectiveness of continuous glucose monitoring on metrics of glycemic control in type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials', The Journal of Clinical Endocrinology & Samp; Metabolism, 109(4), pp. 1119–1131. doi:10.1210/clinem/dgad652.

Villena Gonzales, W., Mobashsher, A. & Abbosh, A. (2019) 'The progress of glucose monitoring—a review of invasive to minimally and non-invasive techniques, devices and sensors', Sensors, 19(4), p. 800. doi:10.3390/s19040800.

Wiklund, M.E., Kendler, J. & Strochlic, A.Y. (2016) Usability testing of Medical Devices. Boca Raton: CRC Press.

World Health Organization (WHO) (2024) Diabetes, World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes#:~:text=The%20number%20of%20people%20living,for%20their%20diabetes%20in%202022. [Accessed: 24 March 2025].

Zamani, A.S. et al. (2024) 'Implementation of machine learning techniques with big data and IOT to create effective prediction models for health informatics', Biomedical Signal Processing and Control, 94, p. 106247. doi:10.1016/j.bspc.2024.106247.

Zanon, M. et al. (2013) 'Non-invasive continuous glucose monitoring with multi-sensor systems: A Monte Carlo-based methodology for assessing calibration robustness', Sensors, 13(6), pp. 7279–7295. doi:10.3390/s130607279.

Zhang, H. (2024) 'Application of biosensors in non-invasive blood glucose monitoring', E3S Web of Conferences, 553, p. 05001. doi:10.1051/e3sconf/202455305001.