Exercise 2.1

- 1. Identify $\sqrt{48}$ as rational or irrational number.
- 2. Give an example of each, of two irrational numbers to show that

 (i) their sum is an irrational number.
 - (ii) their difference is a rational number.
 - (iv) their quotient is a rational number.

(iii) their product is not always an irrational number.

- (v) their quotient is an irrational number.
- (v) their quotient is an irrational number.

 3. Which of the following statements are true or false?
- (i) $(7+\sqrt{7})(7-\sqrt{7})$ is not a rational number.
- (ii) $(5+\sqrt{3})^2$ is a rational number.

- (iii) The product of a non-zero rational number and an irrational number is an irrational number.
- (iv) The difference of a rational number and an irrational number is an irrational number.
- (v) The quotient of a rational number and an irrational number is an irrational number.
- 4. Give three examples to show that square roots of all the positive integers are not always irrational.
 - (i) The decimal form of an irrational number is neither nor

 - (ii) 3.7777... when expressed in the form $\frac{p}{a}$ is

5. Fill in the blanks.

- (iii) The product of $\sqrt{27}$ and $\sqrt{3}$ is which is a number 9.
- (iv) An irrational number cannot be written in the form, where p and q are both integers and $q \neq 0$.
 - (v) Sum of the irrational numbers $\sqrt{3}$ and $-\sqrt{3}$ is, which is a

Answers

1. Irrational number

2. (i)
$$\sqrt{5} + \sqrt{3}$$
 and $\sqrt{5} - \sqrt{3}$ (ii) $5 + \sqrt{2}$ and $3 + \sqrt{2}$

(i)
$$\sqrt{5} + \sqrt{5}$$
 and $\sqrt{5} - \sqrt{3}$ (ii) $5 + \sqrt{2}$ and $5 + \sqrt{3}$

$$(ii)$$
 False

(iii)
$$3+\sqrt{5}$$
 and $3-\sqrt{5}$ (iv) $6\sqrt{50}$ and $3\sqrt{2}$ (v) $8\sqrt{15}$ and $2\sqrt{3}$ (i) False (ii) True (iv) True

Teach san ban

4.
$$\sqrt{16}$$
, $\sqrt{25}$, $\sqrt{81}$

(i) terminating; recurring (ii)
$$\frac{34}{9}$$

(ii)
$$\frac{34}{9}$$
 (iii) $\sqrt{81}$; rational

(iv)
$$\frac{p}{q}$$

(vi) irrational number