3 Расчет двигателя постоянного тока

Исходные данные:

Номинальный ток потребляемы из сети $I_{\rm H} = 346 \, {\rm A};$

Номинальная частота вращения $n_{\rm H} = 1000$ об/мин;

Номинальное напряжение питающей сети $U_{\rm H} = 110~{\rm B}$;

Номинальное значение момента $M_H = 305,6 \; H \cdot M;$

Сопротивление цепи якоря $r_{\rm g} = 0.0164~{\rm Om};$

Сопротивление цепи возбуждения $r_{\rm B} = 11,0~{\rm Om};$

Таблица3-Исходные данные для вариантов 71–80

Пункты	Вариант	$I_{\scriptscriptstyle H}$, A	$n_{\scriptscriptstyle H}$,	$U_{\scriptscriptstyle H}$, B	$M_{\scriptscriptstyle H}$,	$r_{\scriptscriptstyle R}$, $O_{\scriptscriptstyle M}$	r_e , O_M
задания,			об/мин		Н:м		
подлежащие	71	8,7	1500	220	9,55	1,85	490,0
выполнению:	72	18,4	1500	220	20,37	0,67	156,0
1, 3, 14	73	73,0	1060	220	121,6	0,126	183,0
	74	64,0	685	220	167,3	0,281	128,0
	75	86,0	1000	110	76,4	0,0618	42,4
	76	66,0	1500	110	38,2	0,1026	45,2
	77	346,0	1000	110	305,6	0,0164	11,0
	78	275,0	750	110	318,3	0,0252	11,0
	79	172,0	1000	220	305,6	0,0666	44,0
	80	65,0	500	220	210,0	0,2895	44,0

Необходимо:

- 1) Начертить схему двигателя;
- 2) Рассчитать коэффициент полезного действия $\eta_{\rm H}$ двигателя при номинальной нагрузке;
- 3) Вычислить частоту вращения двигателя при увеличении сопротивления цепи возбуждения на 40% и статическом моменте сопротивления $M_c = 0.7 M_{\rm H}$. Построить естественную и искусственную механические характеристики. Определить КПД двигателя в этом режиме.

3.1 Схема двигателя постоянного тока с параллельным возбуждением и пусковым реостатом

Схема двигателя с учетом добавочного сопротивления представлена на рисунке 3.1.

Рисунок 3.1 – Схема включения двигателя

3.2 Определение коэффициента полезного действия $\eta_{\rm H}$ двигателя при номинальной нагрузке:

Для расчёта КПД двигателя $\eta_{\rm H}$ при номинальной нагрузке сначала найдем $P_{\rm H}$ — номинальная мощность двигателя:

$$P_{\rm H} = \frac{M_{\rm H} \cdot n_{\rm H}}{9,55},$$

$$P_{\rm H} = \frac{3.056 * 10^5}{9,55} = 3.2 * 10^4 \,\rm Br.$$
(3.1)

КПД рассчитываем по формуле (3.2):

$$\eta = \frac{P_{\rm H}}{I_{\rm H} \cdot U_{\rm H}} \cdot 100\%,$$

$$\eta = \frac{3.2 * 10^4}{3.806 * 10^4} \cdot 100\% = 84,078\%$$
(3.2)

3.3 Вычисление частоты вращения двигателя при увеличении сопротивления цепи возбуждения на 40% и статическом моменте сопротивления $M_c = 0.7 M_{\rm H}$.

Для начала найдем $I_{\rm B.H}$ – номинальный ток обмотки возбуждения:

$$I_{\text{B.H}} = \frac{U_{\text{H}}}{r_{\text{B}}},$$
 (3.3)
 $I_{\text{B.H}} = \frac{110}{11} = 10 \text{ A}.$

Найдем $I_{\rm H.H}$ — номинальный ток обмотки якоря:

$$I_{\text{H.H}} = I_{\text{H}} - I_{\text{B.H}},$$

$$I_{\text{H.H}} = I_{\text{H}} - I_{\text{B.H}} = 3.46 * 10^4 \text{ A}.$$
(3.4)

Для дальнейших расчетов найдем ток якоря в режиме холостого хода:

$$I_{\text{A.X}} = \frac{I_{\text{H}}^2 \cdot r_{\text{A}}}{U_{\text{H}}},$$

$$I_{\text{A.X}} = \frac{346^2 \cdot 0.0164}{110} = 17.849 \,\text{A}$$
(3.5)

Вычислим ток возбуждения при увеличении сопротивления цепи возбуждения на 40%:

$$r_{\rm B} = 11 + 4.4 = 15.4 \,\mathrm{Om}$$
 $I_{\rm B} = \frac{U_{\rm H}}{r_{\rm R}} = \frac{110}{15.4} = 7.143 \,\mathrm{A}$

Отношение $\Phi/\Phi_{\rm H}$ найдём из графика зависимости $\Phi=f(I_{\rm B})$: для $\frac{I_{\rm B}}{I_{\rm BH}}=0.714: \frac{\Phi}{\Phi_{\rm H}}=0.93.$

Рассчитаем частоту вращения на холостом ходу для естественной характеристики:

$$n_{xx} = n_{H} \cdot \frac{U_{H} - r_{H} \cdot I_{H}}{U_{H} - r_{H} \cdot I_{H}},$$

$$n_{xx} = 1000 \cdot \frac{110 - 0.016 \cdot 17,849}{110 - 0.016 \cdot 3.46 \cdot 10^{3}} = 2008 \frac{\text{об}}{\text{мин}}.$$
(3.6)

Ток якоря при искусственной характеристике на холостом ходу:

$$I'_{\text{H.X}} = I_{\text{H.X}} \frac{\Phi_{\text{H}}}{\Phi},$$
 (3.7)
 $I'_{\text{H.X}} = 17,849 \frac{1}{0.93} = 19.192 \text{ A}$

Ток якоря при искусственной характеристике под нагрузкой:

$$Mc=0.7*M_{H}=213.92$$

$$I'_{H} = I_{H} \frac{\Phi_{H}}{\Phi} \cdot \frac{M_{C}}{M_{H}},$$

$$I'_{H} = 3.46*10^{4} \cdot \frac{1}{0.93} \cdot 0.7 = 2,604*10^{3} \text{ A}.$$
(3.8)

Частота вращения для искусственной характеристики на холостом ходу:

$$n'_{xx} = n_{H} \cdot \frac{U_{H} - r_{g}I'_{g,X}}{U_{H} - r_{g}I_{g,H}} \cdot \frac{\Phi_{H}}{\Phi},$$

$$n'_{xx} = 1000 \cdot \frac{110 - 0,016 \cdot 17,846}{110 - 0,016 * 3,46 * 10^{3}} \cdot \frac{1}{0,93} = 2,215 * 10^{3} \frac{\text{of}}{\text{мин}}.$$
(3.9)

Частота вращения для искусственной характеристики под нагрузкой выполняется выражением:

$$n' = n_{\rm H} \cdot \frac{U_{\rm H} - r_{\rm H} I_{\rm H}'}{U_{\rm H} - r_{\rm H} I_{\rm H.H}} \cdot \frac{\Phi_{\rm H}}{\Phi}, \tag{3.10}$$

$$n' = 1000 \cdot \frac{110 - 0,016 \cdot 2,604}{110 - 0,016 * 3,46 * 10^3} \cdot \frac{1}{0,93} = 1.359 * 10^3 \frac{\rm o6}{\rm muH}.$$

Рассчитаем мощность при данной нагрузке:

$$P = \frac{M_{\text{C}} \cdot n'}{9,55},$$

$$P = \frac{213,92 \cdot 1,359 * 10^{3}}{9,55} = 3,043 * 10^{4} \text{ Bt.}$$
(3.11)

Далее рассчитаем КПД при данной нагрузке:

$$r_{\text{A}}=10*r_{\text{g}}=0.164$$

$$\sum P = I_{\text{Я.H}}^2 \cdot r_{\text{Я}} + I_{\text{В.H}}^2 \cdot \left(r_{\text{В}} + r_{\text{Д}}\right) + I_{\text{Я.H}}^2 \cdot r_{\text{Я}} = 3,942 * 10^5 \text{ Bt}$$

$$\eta = \frac{P_{\text{H}}}{P_{\text{H}} \cdot \sum P} \cdot 100\%, \qquad (3.12)$$

$$\eta = \frac{3,2 * 10^4}{3,2 * 10^4 \cdot 3,942 * 10^5} \cdot 100\% = 83,11\%$$
 Построим графики зависимостей $n = f(\text{M})$ для естественной и

Построим графики зависимостей n=f(M) для естественной и искусственной характеристики учитывая, что для искусственной характеристики $M_C=0.8\cdot M_H=0.8\cdot 213.92=244.48\ H\cdot M.$

Рисунок 3.2 – Зависимость n = f(M) для естественной и искусственной характеристики.

Заключение

В результате выполнения курсовой работы был закреплён теоретический материал и выработаны навыки его практического использования; была построена схема обмоток трёхфазного трансформатора, определены номинальные токи в первичной и вторичной обмотки трансформатора, вычислен коэффициент трансформации фазовых и линейных напряжений, Тобразная схема замещения трансформатора, вычислены мощности потерь холостого хода и короткого замыкания, вычислены требуемые параметры, построили векторную диаграмму для упрощенной схемы замещения, построили графики зависимостей напряжения на зажимах вторичной обмотки и КПД от коэффициента нагрузки. Было установлено, что КПД трансформатора достигает своего максимума при коэффициенте нагрузки равном 0,5.

По заданной нагрузочной диаграмме электропривода определена эквивалентная мощность и выбран асинхронный двигатель 4АК180М4УЗ с фазным ротором. Произведены проверки выбранного двигателя на нагрев по методу средних потерь, на перегрузочную способность при снижении напряжения в сети, а также расчёт теплового режима выбранного двигателя по заданной нагрузочной диаграмме. В результате, было установлено, что до установившегося теплового состояния двигатель прошел 3 цикла. Определено сопротивление добавочного резистора, включённого в цепь ротора выбранного двигателя для снижения частоты вращения на заданную величину при номинальном моменте сопротивления. Построена естественная и реостатная механические характеристики двигателя. Рассчитано сопротивления секций пускового резистора и потери электрической энергии при реостатном и прямом пуске. Изучены схемы управления пуском и реверсом асинхронных двигателей.

В завершающей части курсовой работы была составлена схема двигателя постоянного тока с учётом добавочного сопротивления. Было установлено, что при увеличении добавочного сопротивления частота вращения уменьшается, КПД машины увеличивается с увеличением частоты вращения. Рассчитан КПД двигателя при номинальной нагрузке (составил 82,64%). Вычислен КПД при данной нагрузке. Построены графики естественной и искусственной механических характеристик.

Библиографический список

- 1) В.В. Харламов, В.П. Беляев, Л.Е. Серкова, Е.И. Шельмук. Электрические машины: Учебно-методическое пособие для самостоятельной работы по дисциплине «Электрические машины». 2-е изд., с измен. Омский гос. ун-т путей сообщения. Омск, 2016. 30 с.
- 2) В.Д. Авилов, В.П. Беляев, Е.Н. Савельева. Асинхронные двигатели в системах электропривода: Методические указания к выполнению курсовой работы Омский гос. ун-т путей сообщения. Омск, 2011. 44 с.
- 3) В.Д. Авилов, Ю.Л. Иванилов, Р.В. Сергеев, Л.Е. Серкова, Е.А. Третьяков, В.В. Харламов, П.К. Шкодун. Электрические машины. Часть 3. Асинхронные машины: Учебно-методическое пособие к выполнения лабораторных работ. 2-е изд., с измен. Омский гос. ун-т путей сообщения. Омск, 2015. 37 с.
 - 4) Стандарт предприятия ОмГУПС-1.2-2005.