

# T.C. KÜTAHYA DUMLUPINAR ÜNİVERSİTESİ Mühendislik Fakültesi

## Yüksek Düzey Programlama Dersi Proje Raporu

### Konu:

Digit Recognizer Veri Seti ile Model Geliştirme

## Öğrenci:

Süleyman Sefa GÜRER 202013172034

## Öğretmen

Doc. Dr. Hasan TEMURTAŞ

#### Proje Raporu: El Yazısı Rakamların Tanınması için Derin Öğrenme Modeli

#### 1. Proje Tanımı

Bu proje, Kaggle'ın **Digit Recognizer** veri seti kullanılarak el yazısı rakamları tanımayı amaçlayan bir derin öğrenme modelinin geliştirilmesini içermektedir. Model, Convolutional Neural Network (CNN) tabanlı bir mimari kullanılarak eğitilmiş ve test edilmiştir.

#### 2. Kullanılan Yöntemler ve Teknolojiler

• Veri Seti: Kaggle'ın Digit Recognizer veri seti (train.csv ve test.csv).

Veri seti bağlantısı: https://www.kaggle.com/competitions/digit-recognizer/data

- Model: Convolutional Neural Network (CNN).
- Kütüphaneler: TensorFlow, Keras, NumPy, Pandas, Matplotlib, Sklearn.
- Veri Hazırlama:
  - o Etiketler ayrılarak veri seti giriş (X) ve hedef (y) olarak düzenlendi.
  - o Piksel değerleri 0-255 aralığından 0-1 aralığına normalize edildi.

o Eğitim ve doğrulama veri setleri %80- %20 oranında ayrıldı.

#### 3. Modelin Mimarisi

Model, aşağıdaki CNN katmanlarını içermektedir:

- 1. **Giriş Katmanı:** 28x28 piksel boyutunda gri tonlamalı görüntüler.
- 2. Convolutional Katmanlar: Özellik çıkarımı için 3 adet Conv2D katman.

3. **Pooling Katmanlar:** Maksimum havuzlama (MaxPooling) işlemleri.

#### 4. Gizli katmanlar:

- İlk Gizli Katman: 512 nöronlu tam bağlantılı bir katman, ReLU (Rectified Linear Unit) aktivasyon fonksiyonu kullanılarak hesaplama yapar.
- İkinci Gizli Katman: 256 nöronlu tam bağlantılı bir katman, yine ReLU aktivasyon fonksiyonu kullanır.

Bu katmanlar, modelin daha karmaşık özellikleri öğrenmesine yardımcı olur.

5. Çıkış Katmanı: Softmax aktivasyonu ile 10 sınıf (rakamlar 0-9).

#### 4. Model Eğitimi

Eğitim sürecinde farklı **epok sayıları** denenmiş ve bu süre boyunca modelin performansı değerlendirilmiştir.

#### • İlk Eğitim (20 Epok):

- Eğitim kayıpları düşük olsa da doğrulama doğruluğu tatmin edici seviyede değildi.
- Model test veri setinde yanlış tahminler yaptı. Yapılan tahmin sonuçları:

Gerçek: [1, 4, 0, 4, 6] Tahmin: [8, 8, 8, 4, 8])

o 20 epok, modelin yeterince öğrenmesi için yetersizdi.

#### • Gelişmiş Eğitim (60 Epok):

 Epok sayısı 60'a çıkarıldığında model hem eğitim hem de doğrulama setlerinde yüksek performansa ulaştı.

Tahmin sonuçları:

```
• 1/1 — Os 59ms/step

Modelin tahmin ettiği etiketler: [1 7 2 6 8]

Gerçek etiketler: [1 7 2 6 8]
```

- o Doğru tahmin oranı önemli ölçüde arttı.
- Bu durum, modelin uzun süre eğitildiğinde daha iyi genelleme yapabildiğini gösterdi.

#### Eğitim ve Doğrulama Kayıp Grafiği:



#### 5. Test Sonuçları

Model, test veri setinde rastgele seçilmiş 5 örnek üzerinde test edilmiştir. Sonuçlar, 60 epok eğitim sonrasında çok daha başarılı olmuştur.

#### Tahmin Edilen ve Gerçek Değerlerin Karşılaştırması (60 Epok):



#### 6. Değerlendirme

#### 1. Eğitim Süresi ve Performans:

- o 20 epok ile yapılan eğitim sonucunda model düşük doğruluk gösterdi.
- Eğitim süresi 60 epoka çıkarıldığında, model çok daha başarılı tahminler yaparak genelleme yeteneğini geliştirdi.

#### 2. Model Başarıları:

o Model, eğitim veri seti üzerinde %99,96 doğruluk sağladı.

o Doğrulama veri setinde %97,92 doğruluk oranına ulaştı.

```
# Doğrulama doğruluğunu almak için
validation_accuracy = max(history.history['val_accuracy']) * 100
print(f"Doğrulama Doğruluğu: %{validation_accuracy:.2f}")

V 0.0s

Doğrulama Doğruluğu: %97.92
```

o Test setinde seçilen rastgele 5 örnek üzerinde doğru tahminler yaptı.

#### Sonuç

Bu çalışma, el yazısı rakamları tanımaya yönelik bir CNN modelinin geliştirilmesini, farklı epok sayılarında değerlendirilmesini ve test edilmesini kapsamıştır. **Eğitim süresinin artırılmasının modelin başarısını önemli ölçüde artırdığı** gözlemlenmiştir.