第三章 词法分析及其自动构造

词法分析程序的设计原则,单词的描述 技术, 识别机制及词法分析程序的自动构 造原理。

- 单词的描述工具
- 单词的识别系统
- · 设计词法分析程序,实现词法分析程序的自动构造

教学要求

- 1. 掌握:正规式, DFA的概念, NFA的概念
- 2. 理解: 将DFA 转换为NFA, 正规式 与有穷自动机间的转换

◎ 颀 什麽是词法分析程序

- 置实现词法分析(lexical analysis)的程序
 - △逐个读入源程序字符并按照构词规则切分成一系列单词。
 - △单词是语言中具有独立意义的最小单位,包括保留字、标识符、运算符、标点符号和常量等。
 - 词法分析是编译过程中的一个阶段,在语法分析前进行。也可以和语法分析结合在一起作为一遍,由语法分析程序调用词法分析程序来获得当前单词供语法分析使用。

词法分析程序和语法分析程序的关系

词法分析程序的主要任务:

△读源程序,产生单词符号

词法分析程序的其他任务:

△滤掉空格,跳过注释、换行符

△追踪换行标志,复制出错源程序,

△宏展开,

词法分析工作从语法分析工作独立出来的原因:

- △简化设计
- △改进编译效率
- △增加编译系统的可移植性

- 单词的描述工具-正规表达式,正规文法
- 单词的识别系统-有穷自动机
- · 设计词法分析程序,实现词法分析程序的自动构造

正规式

正规式也称正则表达式,是定义正规集的数学工具。正规表达式(regular expression)是说明单词的模式(pattern)的一种重要的表示法(记号),我们用以描述单词符号。

1 ε和Φ都是Σ上的正规式,它们所表示 的正规集分别为 $\{\varepsilon\}$ 和 $\{\}$;

- 2 任 Π a ∈ Σ , a是 Σ 上的一个正规式,它所表示的正规集为{a};
- 3 假定 e_1 和 e_2 都是 Σ 上的正规式,它们所表示的正规集分别为 $L(e_1)$ 和 $L(e_2)$,那么, (e_1) , e_1 e_2 , e_1 • e_2 , e_1 *也都是正规式,它们所表示的正规集分别为 $L(e_1)$, $L(e_1) \cup L(e_2)$, $L(e_1) L(e_2)$ 和 $(L(e_1))$ *。

4 仅由有限次使用上述三步骤而 定义的表达式才是Σ上的正规式, 仅由这些正规式所表示的集合 才是Σ上的正规集。

正规式中的符号

其中的"□"读为"或";"●"读为 "连接";"*"读为"闭包"(即, 任意有限次的自重复连接)。在不致混 済时,括号可省去,但规定算符的优先 顺序为"*"、"●"、"□"。连接 符"●"一般可省略不写。"*"、 "●"和"□"都是左结合的。

$\diamondsuit \Sigma = \{a, b\}, \Sigma 上的正规式和相应的正规集的例子$

```
{a}
    a
                            \{a,b\}
    a b
                            {ab}
    ab
                            {aa,ab,ba,bb}
    (a b)(a b)
                            {ε,a,aa,.....任意个a
    a *
                            的串}
    (a b)*
                          {ε,a,b,aa,ab,bb .....所有
                         由 a和b组成的串}
(a | b)*(aa | bb)(a | b)*
                         \{\Sigma*上所有含有两个相继
                         的a或两个相继的b组成的
                         串}
```

讨论两个例子

例4.1

 $\diamondsuit \Sigma = \{I, d\}, 则 \Sigma 上 的 正 规 式 r = I(I d) *$ 定义的正规集为: {I,II,Id,Idd,......},其中I代 表字母,d代表数字,正规式 即是 字母(字 母|数字)*,它表示的正规集中的每个元素 的模式是"字母打头的字母数字串",就 是Pascal和多数程序设计语言允许的的标 识符的词法规则.

讨论两个例子

例4.2

 $\Sigma = \{d, \bullet, e, +, -\},$

则Σ上的正规式

$$d*(\bullet dd * | \epsilon)(e(+ | - | \epsilon)dd* | \epsilon)$$

表示的是无符号数的集合。其中d为0~9的数字。

2,12.59,3.6e2,471.88e-1

程序设计语言的单词都能用正规式 来定义.

若两个正规式 e_1 和 e_2 所表示的正规集相同,则说 e_1 和 e_2 等价,写作 e_1 = e_2 。

△例如: $e_1 = a \mid b$, $e_2 = b \mid a$

又如: $e_1 = b(ab)^*$, $e_2 = (ba)^*b$ $e_1 = (a|b)^*$, $e_2 = (a^*|b^*)^*$

光设r, s, t为正规式, 正规式服从的代数规律有:

"或"服从交换律

$$2 r | (s | t) = (r | s) | t$$

"或"的可结合律

$$3 (rs) t=r(st)$$

"连接"的可结合律

```
4 r(s t)=rs rt
   (s t)r=sr tr 分配律
5 \text{ } \epsilon r = r, r \epsilon = r
   ε是"连接"的恒等元素
6 r | r=r
   r*=& | r | rr | ...
   "或"的抽取律
```

程序设计语言中的单词都能用正规式来定义

例子1

- $\mathfrak{X}\Sigma=\{0,1\}$ 上,至少有两个连续的0的0和1串的集合?
- **光以11**结尾的**0**和**1**串的集合?

例子1

```
(0|1) * 00 (0|1) *
(0|1) * 11
```

例子2

 $\mathbb{H}\Sigma=\{0,1\}$ 上,以0开始以1结尾的的0和1串的集合?

识别

有穷自动机

- 置,它能准确地识别正规集,即识别正规式所表示的集合。应用有穷自动机这个理论,为词法分析程序的自动构造寻找有效的方法和工具。
- 置有穷自动机分为两类:确定的有穷自动机(Deterministic Finite Automata, DFA)和不确定的有穷自动机(Nondeterministic Finite Automata, NFA)。

关于有穷自动机我们将讨论如下题目

确定的有穷自动机DFA 不确定的有穷自动机NFA NFA的确定化 DFA的最小化

确定的有穷自动机DFA

DFA定义:

- 一个确定的有穷自动机(DFA)M是一个五元组: $M=(K, \Sigma, f, S, Z)$ 其中
- 1. K是一个有穷集,它的每个元素称为一个状态;
- 2. Σ是一个有穷字母表,它的每个元素称为一个 输入符号,所以也称 Σ 为输入符号表;

DFA定义

- 3. **f**是转换函数,是在**K**×**∑**→**K**上的映射,即,如 **f**(k_i , **a**)= k_j ,(k_i ∈**K**, k_j ∈**K**)就意味着, 当前状态为 k_i ,输入符为**a**时,将转换为下一个 状态 k_i ,我们把 k_i 称作 k_i 的一个后继状态;
- 4.S∈K是唯一的一个初态;
- 5. Zc K是一个终态集,终态也称可接受状态或结束状态。

一个DFA 的例子:

DFA M=({S, U, V, Q}, {a, b}, f, S, {Q}) 其中f定义为:

$$f(S, a) = U$$
 $f(V, a) = U$

$$f(S, b) = V \qquad f(V, b) = Q$$

$$f(U, a) = Q$$
 $f(Q, a) = Q$

$$f(U, b) = V \qquad f(Q, b) = Q$$

DFA 的状态图表示

DFA 的矩阵表示

字符 状态	a	ь
S	U	V
U	Q	V
V	U	Q
Q	Q	Q

为了说明DFA如何作为一种识别机制, 我们还要理解下面的定义

Σ*上的符号串t在DFA M上运行

一个输入符号串t, (将它表示成 Tt_1 的形式, 其中 $T \in \Sigma$, $t_1 \in \Sigma^*$) 在DFA M=(K, Σ , f, S, Z) 上运行的定义为:

f (Q, Tt₁) =f (f (Q, T), t₁) 其中Q∈K 扩充转换函数f为 K×Σ*→K上的映射,且: f (ki, ε) = ki

Σ*上的符号串t被DFA M接受

 $M=(K, \Sigma, f, S, Z)$

若t∈ Σ *, f(S, t)=P, 其中S为 M的开始状态, P ∈ Z, Z为终态 集。

则称t为DFA M所接受(识别).

Σ^* 上的符号串t被DFA M接受

```
例:证明t=baab被下图的DFA所接受。
 f(S, baab) = f(f(S, b), aab)
   = f(V, aab) = f(f(V, a), ab)
  =f(U, ab) = f(f(U, a), b)
  =f(Q, b)=Q
 Q属于终态。
 得证。
                           b, a
```

DFA M所能接受的符号串的全体记为L(M).

结论:

 Σ 上一个符号串集VC Σ *是正规的,当且仅当存在一个 Σ 上的确定有穷自动机M,使得

 $V=L(M)_{\circ}$

DFA的确定性表现在转换函数 $f:K \times \Sigma \to K$ 是一个单值函数,也 就是说,对任何状态k∈K,和输 入符号a∈∑, f(k, a)唯一地确 定了下一个状态。从状态转换图 来看, 若字母表 Σ 含有n个输入 字符, 那末任何一个状态结点最 多有n条弧射出,而且每条弧以 一个不同的输入字符标记。

DFA的行为很容易用程序来模拟.

```
DFA M= (K, \Sigma, f, S, Z) 的行为的模拟程序
  △K:=S;
  \triangle {K:=f(K,c);
  c:=getchar;
  \!\!
 else return ('no')
```

DFA

 $\Sigma = \{ \underline{\text{digit}}, \underline{\text{not digit}} \}$

不确定的有穷自动机NFA

定义

NFA M= $\{K, \Sigma, f, S, Z\}$, 其中K为状态的有穷非空集, Σ 为有穷输入字母表,f为K× Σ * 到K的子集(2 K)的一种映射,SCK是初始状态集,ZCK为终止状态集。

例子

```
NFA M = (\{S, P, Z\}, \{0, 1\}, f, \{S, P\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1
                                {Z})
  其中
            f(S, 0) = \{P\}
f(S, 1) = \{S, Z\}
f(P, 1) = \{Z\}
f(Z, 0) = \{P\}
f(Z, 1) = \{P\}
```

状态图表示

矩阵表示

矩阵表示

	0	1	
S	{P}	{S,Z}	0
P	{}	{Z}	0
Z	{ P }	{ P }	1

简化为

	0	1	
S	P	S,Z	0
P	•	Z	0
Z	P	P	1

NFA的例子-1

很多情况下,当从语言构造一个自动机时,一般会先构造一个NFA。

例1: 构造自动机M, 使其接受的语言是偶整数串的集合

设 d0={ 0, 2, 4, 6, 8 } d1={ 1, 3, 5, 7, 9}

例2: 构造自动机M, 使其接受的语言是偶整数串的集合, 但最高位不允许为0 设 d0={ 0, 2, 4, 6, 8 } d1={ 1, 3, 5, 7, 9} d2={ 2, 4, 6, 8}

NFA的例子-2

例:设有语言L={ $w|w \in \{0,1\}^+$,并且w中的每个1后面恰有两个相继的0直接跟随},构造接受这个语言的自动机M。

具有ε转移的不确定的有穷自动机

 $f为K \times \Sigma^*$ 到K的子集(2K)的一种映射

有如下定理₺

对任何一个具有ε转移的不确定的有穷自动机 NFA N,一定存在一个不具有ε转移的不确定的有穷自动机NFA M,使得L(M)=L(N)。与上例等价的一个NFA.

类似DFA, 对NFA M=⟨K, ∑, f, S, Z⟩也有如下定义

Σ*上的符号串t在NFA M上运行...

一个输入符号串t,(我们将它表示成 Tt_1 的形式,其中 $T \in \Sigma$, $t_1 \in \Sigma^*$)在NFA M上运行的定义为:

f(Q, Tt_1)=f(f(Q,T), t_1) 其中Q∈K. ∑*上的符号串t被NFA M接受

若t∈ Σ*, $f(S_0, t)=P$, 其中 $S_0 ∈ S$, P ∈ Z, 则称t为NFA M所接受(识别)

对于Σ*中的任何一个串t, 若存在一条从 某一初态到某一终态的道路,且这条道路 上所有弧的标记字依序连接成的串(不理睬 那些标记为ε的弧)等于t,则称t可为NFA M 所识别(读出或接受)。若M的某些结既是初 态又是终态,或者存在一条从某个初态到 某个终态的道路,其上所有弧的标记均为ε, 那么空字可为M所接受。

(0|1)*(000|111)(0|1)*

NFA M所能接受的符号串的全体记为 L(M)

结论:

 Σ 上一个符号串集VC Σ *是正规的,存在一个 Σ 上的不确定的有穷自动机M,使得V=L(M)。

确定有限自动机和不确定有限自动机

无论是NFA还是DFA,它们都是定义正规集合的工具。他们定义集合的能力相同。所以任意一个NFA都可等价地变换为DFA。例如:

确定有限自动机和不确定有限自动机

DFA是NFA的特例.对每个NFA N一定存在一个DFA M,使得 L(M)=L(N)。对每个NFA N存在着与之等价的DFA M。

NFA变换为DFA的例子

无论是NFA还是DFA,它们都是定义正规集合的工具。他们定义集合的能力相同。所以任意一个NFA都可等价地变换为DFA。例如:

NFA确定化算法:

有一种算法,将NFA转换成接受同样语言的DFA. 这种算法称为子集法。

与某一NFA等价的DFA不唯一.

NFA确定化算法:

假设NFA N=(K, Σ ,f,K₀,K_t)按如下办法构造一个DFA M=(S, Σ ,d,S₀,S_t),使得L(M)=L(N):

1. M的状态集S由K的一些子集组成。用[S_1 S_2 ... S_j]表示S的元素,其中 S_1 , S_2 ,... S_j 是K的状态。并且约定,状态 S_1 , S_2 ,... S_j 是按某种规则排列的,即对于子集{ S_1 , S_2 }={ S_2 , S_1 ,}来说,S的状态就是[S_1 , S_2];

- 2 M和N的输入字母表是相同的,即是 Σ ;
- 3 转换函数是这样定义的: $d([S_1 S_{2,...} S_j],a)=[R_1 R_{2,...} R_t]$ 其中 $\{R_1,R_2,...,R_t\}=\epsilon\text{-closure(move(}\{S_1,S_{2,...}S_i\},a))$
- 4 S_0 =ε-closure(K_0)为M的开始状态;
- $S_{t} = \{ [S_{i} S_{k}...S_{e}], 其中[S_{i} S_{k}...S_{e}] \in S 且 \{S_{i}, S_{k},...S_{e}\} \cap K_{t} \neq \Phi \}$

定义对状态集合 的几个有关运算:

1. **以态集合I的** ε -**闭包**,表示为 ε -closure(I),定义为一状态集,是状态集I中的任何状态S经任意条 ε 弧而能到达的状态的集合。

状态集合I的任何状态S都属于 ϵ -closure(I)。

2. **以态集合I的a弧转**操,表示为move(I,a)定义为状态集合 J, 其中J是所有那些可从I中的某一状态经过一条a弧而 到达的状态的全体。

状态集合■的有关运算的例子

构造NFA N的状态K的子集的算法:

假定所构造的子集族为C,即 $C=(T_1, T_2, ..., T_I)$,其中 $T_1, T_2, ..., T_I$ 为状态K的子集。

1 开始,令 ϵ -closure(K_0)为C中唯一成员,并且它是未被标记的。


```
while (C中存在尚未被标记的子集T) do
    标记T;
    for 每个输入字母a do
           U:= \varepsilon-closure(move(T,a));
           if U不在C中 then
        将U作为未标记的子集加在C中
```

对带空边的NFA的变换一子集构造法

1、状态集合I的 ε 闭包 ε -closure(I)

ε-closure(I): 定义为一个状态集,是状态I中的任何状态S经任意条ε弧 而能到达的状态集合。

2、状态集合I的a弧转换move(I,a)

move(I,a): 定义为一个状态集合J,其中J是所有那些可从I中的某一个状态经过一条a弧而能到达的状态的全体。

$$\epsilon$$
 -closure(0)= { 0,1,2,4,7 }, 令 $T_0 = \epsilon$ -closure(0)
move(T_0 ,a) = { 3,8 }
由3经 ϵ 边可到达6、7、1、2、4
 ϵ -closure(move(T_0 ,a)) = ϵ -closure({3,8})
= { 3,8,6,7,1,2,4 }


```
T_0 = \varepsilon - closure(0) = \{ 0, 1, 2, 4, 7 \},
          move(T_0, a) = \{ 3, 8 \}, move(T_0, b) = \{ 5 \}
T_1 = \varepsilon - closure(move(T_0, a)) = \{3, 8, 6, 7, 1, 2, 4\}
T_2 = \varepsilon - closure(move(T_0, b)) = \{ 5, 6, 7, 1, 2, 4 \}
          move(T_1, a) = \{3, 8\}, move(T_1, b) = \{5, 9\}
  \epsilon -closure (move (T_1, a)) = \{3, 8, 6, 7, 1, 2, 4\} = T1
  \epsilon -closure (move (T<sub>1</sub>, b)) = { 5, 9, 6, 7, 1, 2, 4 } = T3
          move(T_2, a) = \{3, 8\}, move(T_2, b) = \{5\}
  \epsilon -closure (move (T_2, a)) = \{3, 8, 6, 7, 1, 2, 4\} = T1
  \epsilon -closure (move (T<sub>2</sub>, b)) = { 5, 6, 7, 1, 2, 4 } = T2
          move(T_3, a) = \{ 3, 8 \}, move(T_3, b) = \{ 5, 10 \}
  \epsilon -closure (move (T<sub>3</sub>, a)) = { 3, 8, 6, 7, 1, 2, 4 } = T1
  \epsilon -closure (move (T<sub>3</sub>, b)) = { 5, 10, 6, 7, 1, 2, 4 } = T4
```


$$\begin{array}{lll} \epsilon \ -closure \, (move \, (T_3 \ , b)) \ = \ \{ \ 5, 6, 7, 1, 2, 4, 10 \ \} \ = \ T4 \\ & move \, (T_4 \ , a) \ = \ \{ \ 3, 8 \ \}, & move \, (T_4 \ , b) \ = \ \{ \ 5 \ \} \\ \epsilon \ -closure \, (move \, (T_4 \ , a)) \ = \ \{ \ 3, 8, 6, 7, 1, 2, 4 \ \} \ = \ T1 \\ \epsilon \ -closure \, (move \, (T_4 \ , b)) \ = \ \{ \ 5, 6, 7, 1, 2, 4 \ \} \ = \ T2 \end{array}$$

所以,共有如下的状态:

$$T_0 = \{ 0, 1, 2, 4, 7 \}$$
 $T_1 = \{1, 2, 3, 4, 6, 7, 8 \}$
 $T_2 = \{1, 2, 4, 5, 6, 7 \}$
 $T_3 = \{1, 2, 4, 5, 6, 7, 9 \}$
 $T_4 = \{1, 2, 4, 5, 6, 7, 10 \}$

设DFA 的
$$V_N = \{T_0, T_1, T_2, T_3, T_4\}$$
 $\Sigma = \{a, b\}$ $D(T_0, a) = T_1, D(T_0, b) = T_2$ $D(T_1, a) = T_1, D(T_1, b) = T_3$ $D(T_2, a) = T_1, D(T_2, b) = T_2$ $D(T_3, a) = T_1, D(T_3, b) = T_4$ $D(T_4, a) = T_1, D(T_4, b) = T_2$

设DFA 的
$$V_N = \{T_0, T_1, T_2, T_3, T_4\}$$

 $\Sigma = \{a, b\}$

$$D(T_0, a) = T_1, D(T_0, b) = T_2$$

 $D(T_1, a) = T_1, D(T_1, b) = T_3$
 $D(T_2, a) = T_1, D(T_2, b) = T_2$
 $D(T_3, a) = T_1, D(T_3, b) = T_4$
 $D(T_4, a) = T_1, D(T_4, b) = T_2$

DFA

NFA的确定化

例子

	Ia	Ib
{i,1,2} S	{1,2,3} A	{1,2,4} B
{1,2,3} A	{1,2,3,5,6,f} C	{1,2,4} B
{1,2,4} B	{1,2,3} A	{1,2,4,5,6,f} D
{1,2,3,5,6,f} C	{1,2,3,5,6,f} C	{1,2,4,6,f} E
{1,2,4,5,6,f} D	{1,2,3,6,f} F	{1,2,4,5,6,f} D
$\{1,2,4,6,f\}$ E	{1,2,3,6,f} F	{1,2,4,5,6,f} D
$\{1,2,3,6,f\}$ F	{1,2,3,5,6,f} C	$\{1,2,4,6,f\}$ E

等价的DFA

确定有穷自动机的化简

光化简就是对给定的确定自动机A1,构造另一个确定的自动机A2,使L(A2)=L(A1)。并且A2的状态个数不多于A1的状态个数。

确定有穷自动机的化简

- 光说一个有穷自动机是化简了的,即是说,它没有 多余状态并且它的状态中没有两个是互相等价的。 一个有穷自动机可以通过消除多余状态和合并等 价状态而转换成一个最小的与之等价的有穷自动 机。
- **光**所谓有穷自动机的多余状态,是指这样的状态: 从自动机的开始状态出发,任何输入串也不能到 达的那个状态;或者从这个状态没有通路到达终 态。

DFA的最小化就是寻求最小状态DFA

最小状态DFA的含义:

没有多余状态(死状态)

没有两个状态是互相等价(不可区别)

两个状态s和t可区别:不满足

兼容性——同是终态或同是非终态

传播性——从s出发读入某个 $a(a \in \Sigma)$ 和从t出发读入某个a到达的状态等价。

无关状态

无用状态:

对于状态 S_i ,若从开始状态不能到达该状态,则称 S_i 为无用状态。

死状态:

对于状态 S_i ,若对任何输入符号a都不能从它到达终止状态,则称 S_i 为死状态。

无用状态和死状态统称为无关状态。

等价状态

等价状态:

从 S_i 出发能导出的所有符号串集合记为 $L(S_i)$,设有两个状态 S_i 和 S_j ,若有

$$L(S_i) = L(S_i)$$

则称Si和Si是等价状态。

C和D同是终态,读入a到达C和F, C和F同是终态, C和F读入a都到达C,读入b都到达E. C和D等价

最小状态DFA

对于一个DFA M = (K, Σ , f, k_0 , k_t), 存在一个最小状态

DFA M' = (K', Σ , f', k_0 , k_t), 使L(M')=L(M). 结论

△接受L的最小状态有穷自动机不计同构是唯一的。

"分割法"

DFA的最小化算法的核心

把一个DFA的状态分成一些不相交的子集,使得任何不同的两子集的状态都是可区别的,而同一子集中的任何两个状态都是等价的.

DFA的最小化—例子

化简DFA的例子

习题4.9 将下面的DFA最小化,并用正规式描述它所识别的语言。

	a	b	c	d
1	3 4	2		
1 2 3 4 5	4	2 2 6 7		
3		6	3	5
4		7	3	5 5
5	4			
6		6		
6 7		6		

 $\Pi 2$

 $\Pi 1$

		a	b	c	d
	1	3	2		
П1	2	4	2		
	3		6	3	5
	4		7	3	5
	5	4			
П2	6		6		
	7		6		

		a	b	c	d
П1	1	3	2		
	2	4	2		
<u> </u>	5	4			
П3	3		6	3	5
11.0	4		7	3	5
ПО	6		6		
П2	7		6		

		a	b	c	d
TT 1	1	3	2		
П1	2	4	2		
	5	4			
П3	3		6	3	5
	4		7	3	5
П2	6		6		
	7		6		

	a	b	С	d
1	3	2		
2	4	2		
5	4			
3		6	3	5
1 2 5 3 4		6 7	3	5 5
3 4 6 7			3	5

b*a(c|da)*bb*

词法分析程序的自动构造

对有穷自动机和正规表达式进行了上述讨论之后,我们介绍 词法分析程序的自动构造方法,这个方法基于有穷 自动机和正规表达式的等价性,即:

- 1.对于 Σ 上的一个NFA M,可以构造一个 Σ 上的正规式R,使得L(R)=L(M)。
- 2. 对于 Σ 上的一个正规式R, 可以构造一个 Σ 上的 NFA M, 使的L(M)=L(R)。

对于正规式R=Ø ,构造的NFA

对于正规式 $R=\epsilon$,构造的NFA

对于正规式R=a ,构造的NFA

对于正规式r, r= s|t构造的NFA

对于正规式r, r=st构造的NFA

对于正规式r, r=s*构造的NFA

举例:从正规表达式构造等价的 ε -NFA

正规表达式 1*0(0 1)*

从正规表达式构造等价的 ε -NFA

 ε

例、由正规式构造NFA

例、构造正规式 r=b((ab)*|bb)*ab的NFA

例、构造正规式 r=b((ab)*|bb)*ab的NFA

R=(a|ab)*bb*

正规式用于说明(描述)单词的结构十分简洁 方便。而把一个正规式编译(或称转换)为一 个NFA进而转换为相应的DFA,这个NFA或 DFA正是识别该正规式所表示的语言的句子 的识别器。基于这种方法来构造词法分析 程序 词法分析程序的设计技术可应用于其它领域,比如查询语言 以及信息检索系统等,这种应用领域的程序设计特点是, 通过字符串模式的匹配来引发动作

又如LEX,说明词法分析程序的语言,可以看成是一个模式动作语言。

词法分析程序的自动构造工具也广泛应用于许多方面,如用 以生成一个程序,可识别印刷电路板中的缺陷,又如开关 线路设计和文本编辑的自动生成等。

本章小结

词法分析程序是编译第一阶段的工作,它读入字符流的源程序,按照词法规则识别单词,交 由语法分析程序接下去。

本章讲述了词法分析程序设计原则,并介绍了分别作为正规集描述和识别机制的正规式和有穷动机。在此基础上给出了词法分析程序自动构造工具如LEX的原理。

识别PIO单词的DFA

