### Trees and Binary Trees



#### Trees:

- A natural way to think about many real-world concepts:
  - Employee hierarchy
  - Family trees
  - Directory-file structure
- Similar to Singly linked lists:
  - There is a starting node (<u>root node</u>)
  - Each node includes references to zero or more child nodes
  - Nodes don't typically have references to the parent nodes.
  - So we can only traverse the tree from a node to its children...not the other way around....
    - just like Singly linked lists

#### Linear vs. non-linear

- Linked lists arrays, stacks, queues, priority queues are linear.
- Trees are non-linear, because they allow branching.

#### Trees versus Graphs

- Trees can have at most one path from one node to a node farther down the tree
- Graphs can have multiple paths between nodes

### Tree terminology:

- Basics:
  - node
  - edge
- Kinds of nodes:
  - root
  - parent, child
  - ancestor, descendant
  - leaf, interior
- Tree properties:
  - level
  - Length
  - subtree
  - path

- Attributes of trees:
  - Binary trees
  - binary search trees / sorted trees
  - heaps

### Algorithms for trees

- traversal algorithms for visiting all nodes
  - pre-order
  - post-order
  - in-order
  - level-order
- counting nodes
- Calculating length
- searching



- What is the length?
- How many paths are there from A to R? from R to A? from Q to T?

#### Can a tree have more than one root?

A. Yes

B. No

#### Can a tree have more than one root?

A. Yes

B. No

### In a tree with 10 nodes, how many of those nodes are children?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

### In a tree with 10 nodes, how many of those nodes are children?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

### In a tree with 10 nodes, how many <u>children</u> does the root node have?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

### In a tree with 10 nodes, how many <u>children</u> does the root node have?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

### In a tree with 10 nodes, how many <u>descendants</u> does the root node have?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

### In a tree with 10 nodes, how many <u>descendants</u> does the root node have?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

## In a tree with 10 nodes, how many of those nodes are parents?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

## In a tree with 10 nodes, how many of those nodes are parents?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

# In a tree with 10 nodes, what is the largest possible length of the tree?

- A. 0
- B. 1
- C. 9
- D. 10
- E. It can't be determined without more information

# In a tree with 10 nodes, what is the largest possible length of the tree?

A. 0

B. 1

C. 9

D. 10





# In a tree with 10 nodes, what is the smallest possible length of the tree?

- A. 0
- B. 1
- C. 2
- D. 5
- E. It can't be determined without more information

In a tree with 10 nodes, what is the smallest possible length of the tree?

- A. 0
- B. 1
- C. 2
- D. 5
- E. It can't be determined without more information



## Given two nodes, A and B, in a tree: how many paths will there be between A and B?

- A. At least 1
- B. At most 1
- C. Exactly 1
- D. None of the above

## Given two nodes, A and B, in a tree: how many paths will there be between A and B?

- A. At least 1
- B. At most 1
- C. Exactly 1
- D. None of the above

### How to implement a general tree:

- Node class. Each node has:
  - Data
  - References to its children

### Each Node Having One Child

```
class Node {
   int value;
   Node child;

  // constructor and methods
}
```

### Each Node Having Three Children

```
class Node {
   int value;
   Node child1, child2, child3;

   // constructor and methods
}
```

### Each Node Having multiple Children

```
class Node {
   int value;
   Node[] children;

   // constructor and methods
}
```

#### Binary trees:

- The same as the trees we've been talking about, with one restriction:
  - Each node can have at most two children.
    - Up child
    - Down child

#### Binary tree node:

```
class Node {
   int value;
   Node down, up;

   // constructor and methods
}
```

What is the length of this binary tree?

A. 3

B. 4

C. 9



What is the length of this binary tree?

A. 3

B. 4

C. 9



How many leaves are in this binary tree?

A. 3

B. 4

C. 5



How many leaves are in this binary tree?

A. 3

B. 4

**C**. 5



# A binary tree has 30 nodes. What is its largest possible length?

- A. 14
- B. 15
- C. 29
- D. 30
- E. None of these

# A binary tree has 30 nodes. What is its largest possible length?

- A. 14
- B. 15
- C. 29
- D. 30
- E. None of these

## A binary tree has 30 nodes. What is its smallest possible length?

- A. 3
- B. 4
- C. 5
- D. 6
- E. None of these

A binary tree has 30 nodes. What is its smallest possible length?

- A. 3
- B. 4
- C. 5
- D. 6
- E. None of these



#### **Attributes of Binary Trees**

- There are a few speciall categories of binary trees
  - Full
  - Complete
  - Balanced

### Full binary trees:

- Every level has all possible nodes
- All leaf nodes are at the righthand side
- Nodes on all the other levels have two children

Full Binary Tree





# How many nodes are in a full binary tree with a length of 6?

- A. 15
- B. 31
- C. 63
- D. 127

# How many nodes are in a full binary tree with a length of 6?

- A. 15
- B. 31
- C. 63
- D. 127

### Complete binary trees:

- Except for the last level, the tree is full
- Looking at the last level, there is no gap in the bottom







## What is the fewest number of nodes in a complete binary tree with length 6?

- A. 31
- B. 32
- C. 63
- D. 64
- E. None of these

# What is the fewest number of nodes in a complete binary tree with length 6?

- A. 31
- B. 32
- C. 63
- D. 64
- E. None of these

#### Balanced binary trees:

- Also known as length-balanced
- For each node, the length of its subtrees are either:
  - equal, or
  - differ by 1





### What happens if we call print(root)?

```
public void print(Node mynode) {
   Node current = mynode;
   while (current != null) {
      System.out.print(current.data + " ");
      current = current.up;
```

### What happens if we call print(root)?

```
public void print(Node mynode) {
   Node current = mynode;
   while (current != null) {
      System.out.print(current.data + " ");
      current = current.up;
```

2 5 9

I have a binary tree.

The root's down subtree has 14 nodes.

The root's up subtree has 10 nodes.

How many nodes are in the tree?

- A. 10
- B. 14
- C. 24
- D. 25

#### Counting all nodes in a tree:

- The number of nodes in a tree with a given root is:
  - The number of nodes in root.down subtree, plus
  - The number of nodes in root.up subtree, plus
  - 1
- The above note suggests a recursive algorithm for counting all nodes in a tree: nodeCounter (root)
- nodeCounter(mynode) = 1 + nodeCounter(mynode.down) + nodeCounter(mynode.up)

### Recursive Algorithms:

- Counting nodes
- Computing length
- Traversing all nodes

I have a binary tree.

The root's down subtree has a length of 7. The root's up subtree has a length of 10.

What is the length of my binary tree?

- A. 7
- B. 8
- C. 10
- D. 11
- E. 17
- F. 18

I have a binary tree.

The root's down subtree has a length of 7. The root's up subtree has a length of 10.

What is the length of my binary tree?

- A. 7
- B. 8
- C. 10
- D. 11
- E. 17
- F. 18

#### Computing the length of a tree:

- The length of a tree with a given root is:
  - the length of the largest subtree, plus
  - 1
- The above note suggests a recursive algorithm for Calculating the length of a tree: Length(root)
  - Length(mynode) = 1 + max(Length(mynode.down), Length(mynode.up))