

Calculus 2nd unit — Written test 4th June 2025 -Sheet n. 00001

Instructions: the boxes (T / F)

can be used to choose the answer: True (\mathbf{T}) or False (\mathbf{F}) .

The box "C" can be used to correct mistakes, since it "flips" the given answer.

To choose a box, blacken it out **completely**: (not \boxtimes or \boxtimes).

> \mathbf{v} \mathbf{F} \mathbf{C}

Name: _					
Surname	:				
	·				
]

1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D 4A 4B 4C 4D

ID number:

- 1) Say if the following statements are true or false (1.5 point for each right answer).
- 1A) We have

$$\int_{\frac{\pi}{2}}^{\pi} \frac{\cos(x)}{\sin(x)} dx = \ln(\sin(\pi))$$

- **1B)** One has $\int_0^1 (7x^2 + 9x + 11) = \frac{7}{3} + \frac{9}{2} + 11$
- 1C) One has

$$\int_{3}^{7} x \ln(2x) dx = \frac{1}{2} x^{2} \left(\ln(2x^{2}) - \frac{1}{3} \right) \Big|_{3}^{7}$$

- **1D)** One has $\int_{-7}^{7} e^{4x^2} \sin(2x) dx = 0$
- 2) Say if the following statements are true or false (1.5 point for each right answer).
- **2A)** One has

$$\int_{2}^{\infty} \frac{\ln x}{x^2} < \infty$$

2B) One has

$$\int_0^1 \frac{e^x - 1}{x} dx < \infty$$

2C) One has

$$\int_0^\infty \frac{1}{1+x^{1/2}} < \infty$$

2D) One has

$$\int_{1}^{\infty} x^{4} \sin\left(\frac{1}{x}\right) dx < \infty$$

- 3) Say if the following statements are true or false (1.5 point for each right answer). Consider the series $\sum_{n=1}^{\infty} \frac{6n}{6n+1} (x-2)^n$
- **3A)** The radius of convergence of the series is 1.
- **3B)** The series is convergent at x=3.
- **3C)** The series is convergent at x = 1.
- **3D)** The series is convergent at x = 5/2.
- 4) Say if the following statements are true or false (1.5 point for each right answer).
- **4A)** The series $\sum_{n=1}^{\infty} \frac{n}{6n^3+8}$ is convergent.
- 4B) The series $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent. 4C) The series $\sum_{n=1}^{\infty} \frac{n!}{\sqrt{(2n)!}}$ is divergent. 4D) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ is convergent.

Exercise 5							
a	b	c	d				

Surname Name ID number Sheet n. 00001

- 5) 2 points for each right answer = 8 points for the whole exercise.
- a) Consider the differential equation

$$(\star) \qquad y''(t) + -5y'(t) + 6y(t) = \sin(4t)$$

Write the general integral of the associated homogeneous equation.

- **b)** Find a particular solution of (\star) .
- c) Write the general integral of the equation (\star) .
- d) Solve the equation y'(t) + y(t) = 1 t.