Math 251

Due:	Name:

0.0.1 Grading rubric for Workshop 05

- 1. Make sure the vector is parallel to $\langle 1, 3 \rangle$.
- 2. Make sure that $\vec{v} \cdot \vec{w} = 0$.
- 3. Make sure the slope is right; -1/3.
- 4. As long as the idea is $\langle x, y \rangle \mapsto y/x$, they're good. If they express confusion about how to write it, my preferred way would be (at this point) $f(\langle x, y \rangle) = y/x$.
- 5. They should have the correct tangent line, y = 3x + 1, or when rearranged, 3x y = -1.
- 6. The line's slope is -A/B, and since $\langle A, B \rangle = -B\langle -A/B, 1 \rangle$ with $B \neq 0$, the vectors are parallel.
- 7. The general tangent line is y f(a) = f'(a)(x a), or f'(a)x y = f'(a)a f(a).
- 8. A vector orthogonal to the tangent line would be $\langle 1, f'(a) \rangle$. The dot product is evidently 0, so the claim is proved.