УДК 622.732.622.742 КП 29.52.40.330 Інв. № ОБ-81-09

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ (КПІ) ІНСТИТУТ ЕНЕРГОЗБЕРЕЖЕННЯ ТА ЕНЕРГОМЕНЕДЖМЕНТУ

03056, м. Київ, вул. Борщагівська, 115, корпус 22 тел. 241-76-27

3BIT

Про виконання курсової роботи на тему "Розрахунок технології та вибір техніки дробарко-сортувального заводу продуктивністю по готовій продукції 260 тис.м³/рік" з дисципліни "Переробка та збагачення корисних копалин" (Розділ 9)

Керівник:	д.т.н., проф. Терентьєв О.М.
Виконавець:	
Студентка гр. ОБ-81	Табунщик Л.С.

РЕФЕРАТ

Об'єкт дослідження — технологічний процес вибору і розрахунку технології переробки нерудних будівельних матеріалів у щебінь та вибір обладнання.

Мета роботи – розрахунок технології та вибір обладнання дробарносортувального заводу (ДСЗ) продуктивністю 260 тис. м³/рік готової продукції.

Методи дослідження та апаратура –математичний аналіз – для проведення розрахунків степеню подрібнення, виходу продукту, ефективності і продуктивності операцій ДСЗ; розрахунку – для обгрунтування вибору основного обладнання ДСЗ; графічний – для складання технологічної схеми переробки ДСЗ; калькулятор SKAINER SH – 102, ПЕОМ.

Результати дослідження. В результаті розраховано технологію ДСЗ та отримано щебінь фракцій 5...10 мм - %, тис.; 10...20 мм - %, тис.; 20...40 мм - %, тис.

Новизна — полягає в кількісному обґрунтуванні: вибору необхідної і достатньої кількості стадій дроблення; доцільності використання попереднього грохочення перед дробленням; технології утилізації відходів.

Основні конструктивні, технологічні й техніко-експлуатаційні характеристики і показники. Обґрунтовано обрана три стадійна технологічна схема ДСЗ продуктивністю по готовій продукції 260 тис.м³/рік. Запропоновано до використання наступні дробарки: на першій стадії — ВЩД 600х900; на другій стадії — КІД 900; на третій стадії — КІД 900

Ступінь впровадження – перед проектні розрахунки.

Взаємозв'язок з іншими дисциплінами – математика, фізика, гірнича справа.

Галузь застосування – гірництво.

Прогнозні припущення про розвиток об'єкту дослідження або розроблення — методика розрахунку технології і обладнання дробарко-сортувальних заводів.

ДРОБАРНО СОРТУВАЛЬНИЙ ЗАВОД, ДРОБАРКА, ГРОХОТ, ПОДРІБНЕННЯ, ЩЕБІНЬ, ПІСОК.

3MICT

Перелік умовних позначень, символів, одиниць, скорочень і термінів
9.1 Обгрунтування доцільності реконструкції ДСЗ та узгодження ДСЗ за
продуктивністю
9.2 Визначення споживачів і їх вимог до готової продукції
9.3 Вибір і обґрунтування технологічної схеми ДСЗ
9.4 Режим роботи ДСЗ
9.5 Визначення виробничої потужності заводу за вихідною сировиною
9.6 Розрахунок якісно-кількісної схеми з використанням ПОМ або без неї
9.7 Утилізація відходів
9.8 Технологічний баланс ДСЗ
9.9 Продуктивність технологічних операцій
9.10 Вибір та розрахунок дробарок ДСЗ
9.11 Вибір та розрахунок обладнання для грохочення
9.12 Вибір живильника
9.13 Вибір класифікатора
9.14 Джерела для промивання готової продукції і організація замкнутої циркуляції води
9.15 Вибір конвеєрів для забезпечення технології ДСЗ
9.16 Хвостосховища і склади готової продукції
Висновки
Практичні рекомендації
Перелік посилань
Полатки

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СИМВОЛІВ, ОДИНИЦЬ, СКОРОЧЕНЬ І ТЕРМІНІВ

```
ВАТ – відкрите акціонерне товариство;
вкл. – включно;
в.о. – відносна одиниця;
вул. – вулиця;
ВЩД – вібраційна щокова дробарка;
ДБК – домобудівний комбінат;
ДКПП – державний класифікатор продуктів і послуг;
ДСЗ – дробарко-сортувальний завод;
ДСТУ – Державний стандарт України;
Інв. – інвентарний;
K\Pi – код продукту;
КІД – конусна інерційна дробарка;
M. - Micto;
мм – міліметр;
ПОМ – персонально-обчислювальна машина;
рис. – рисунок;
тел. – телефон;
тис. - тисяча;
УДК – універсальний десятинний класифікатор;
```

9.1 Обгрунтування доцільності реконструкції та узгодження дробарно - сортувального заводу за продуктивністю

В результаті реконструкції проведена розвідка родовища та виявлено додаткові запаси обсягом 10 млн. м³, тому кар'єр буде розробляти родовище протягом 40 років при річній продуктивності 260 тис. м³/рік. Тому доцільна реконструкція дробарно - сортувального заводу (ДСЗ) до річної продуктивності 260 тис. м³/рік.

Потрібна продуктивність по вхідному матеріалу $\Pi_{\text{вх}}$:

$$\Pi_{ex} = \frac{Q_{BX} \times \delta_{eom}}{\gamma_{TOT} \times \delta_{B.\Pi.}} = \frac{260000 \times 1,3}{0.95 \times 1,7} = 209287,93 \frac{M^3}{pi\kappa},$$
(9.1)

де $Q_{BX} = 260000$ — річна продуктивність ДСЗ, м³/рік; $\delta_{zn} = 1,3$ — насипна маса (щільність) готової продукції, т/м³ [6]; $\gamma_{zom} = 0,95$ — орієнтовний вихід готової продукції, в.о.; $\delta_{gn} = 1,7$ — насипна маса вхідної продукції, т/м³ [6].

9.2 Визначення споживачів і їх вимог до готової продукції

9.2.1 Вимоги споживачів до готової продукції

Щебінь й пісок повинні відповідати вимогам державного стандарту України – Будівельні матеріали. Щебінь і пісок декоративні зі скельних гірських порід гірничозбагачувальних комбінатів і шахт України. Технічні вимоги [Текст] : ДСТУ Б В.2.7-102-2000. — На заміну ДСТУ БВ.2.7-17-95, ДСТУ БВ.2.7.32-95; чинний від 2000-07-01 [4].

Вимоги до готової продукції заводу за ДСТУ Б В.2.7-102-2000: насипна щільність щебеню не повинна бути більше 1600 кг/м^3 , піску — 1650 кг/м^3 ; марка по міцності щебеню та піску — не нижче 600; вміст пиловидних і глиняних часток не

повинен перевищувати 1 % по масі в щебінці та 7 % по масі в піску; вміст зерен пластинчастої й голкоподібної форми в щебені не повинен перевищувати 35 % по масі; марка по морозостійкості — не нижче F 25 для піску, щебінь розділяють на марки F 25, F 35, F 50 і F 100; вміст зерен слабких порід не повинен перевищувати 10 % по масі; вміст у щебені і піску сірчистих і сірчанокислих з'єднань у перерахуванні на SO₃ не повинен перевищувати 0,5 % по масі; вміст у щебені і піску породотвірних мінералів на основі оксидів і гідрооксидів заліза (магнезиту, гетиту, гематиту та ін.) не повинен перевищувати 10 % за обсягом кожного з них або 15 % їх суми; щебінь й пісок не повинні містити сторонніх засмічуючих домішок.

Вимоги споживачів готової продукції ДСЗ наведені в Таблиці 9.1.

Таблиця 9.1 – Споживачі готової продукції

Споживачі	Щебінь, тис. м ³ /рік/%			Пісок,	Відходи
CHOMIDA II	510	1020	2040	тис. м ³ /рік	тис.м ³ /рік
	MM	MM	MM	Tito ii pii	THE PLANT
1	2	3	4	5	6
ТОВ ДЕЛІ ГРУПП (м. Київ, вул. Кіквідзе, 12)	35/10	35/10	16/4,6	28/8	0,2/0,057
ТОВ ИСТОК-ОС (м. Київ, вул. Білічанська, 1, кв.64)	28/8	50/14,3	21,6/6,17	31/8,86	1,4/0,4
ВАТ ШЛЯХБУД (м. Київ, вул. Червоноармійська, 129)	11/3,14	12/3,43	14/4	13,6/3,8	2,5/0,7
Інші	11/3,14	23/6,6	6,4/1,8	9,4/2,7	0,4/0,11
Всього	85/24,3	120/34,3	58/16,6	82/23,43	4,5/1,28

9.3 Вибір і обґрунтування технологічної схеми ДСЗ

Для вибору технологічної схеми ДСЗ необхідно провести дослідження гранулометричного складу вхідної гірничої маси, яка надходить з кар'єру (додаток В).

9.3.1 Загальна ступінь подрібнення заводу ізаг [1]:

$$i_{3ar} = D_{max}/d_{max} = 500/20 = 25, B.o.,$$
 (9.2)

де $D_{max} = 500$ — максимальний розмір куска вихідної гірничої маси, мм;

 $d_{max} = 20$ — максимальний отриманий кусок готової продукції ДСЗ, оскільки фракція (10...20) мм має меншу насипну масу $\delta = 1,26...1,32 \ m/m^3$ і користується підвищеним попитом, оскільки використовується для виробництва асфальту, дорожнього покриття, бетону і конструкцій з нього тощо.

9.3.2 Часткова ступінь подрібнення і першої стадії:

$$i_1 = D_{\text{max}} / d_{1\text{max}} = 500 / 1,6 \cdot b_1 = 500 / 1,6 \cdot 100 = 3?13, \text{ B.o.},$$
 (9.3)

де $d_{1\text{max}}=1,6\cdot b_1=1,6\cdot 100=160$ — максимальний розмір куска на виході дробарки ВЩД-600х900, мм;

1,6 - коефіцієнт закрупнення куска на вході в дробарку, в.о. [8];

 b_1 =100 — ширина вихідної щілини дробарки ВЩД-600х900 для отримання максимальної кількості фракцій (10...20) мм, мм [8].

9.3.3 Часткова ступінь подрібнення і другої стадії з дробаркою КІД 900:

$$i_2 = d_{1\text{max}} / d_{2\text{max}} = 1.6 \cdot b_1 / 2, 8 \cdot b_2 = 1, 6 \cdot 100 / 2, 8 \cdot 25 = 2, 28, \text{ B.o.},$$
 (9.4)

де d_{2max} =2,8· b_2 =2,8·25=70 — максимальний розмір куска на виході дробарки, мм [9];

2,8 - коефіцієнт закрупнення куска на вході в дробарку, в.о. [9];

 b_2 =25 — ширина вихідної щілини дробарки КІД-900 для отримання максимальної кількості фракцій (10...20) мм, мм [9].

9.3.4 Часткова ступінь подрібнення із третьої стадії з дробаркою КІД 900:

$$i_3 = d_{2\text{max}} / d_{3\text{max}} = 2,8 \cdot b_2 / 3,3 \cdot b_3 = 2,8 \cdot 25 / 3,8 \cdot 5 = 3,68, \text{ B.o.},$$
 (9.5)

де d_{3max} =3,3· b_3 =3,8·5=19 — максимальний розмір куска на виході дробарки , мм [9];

3,8 - коефіцієнт закрупнення куска на вході в дробарку, в.о. [9];

 $b_3=5$ — ширина вихідної щілини дробарки КІД-900 для отримання максимальної кількості фракцій (0...5) мм, мм [9].

Перевіряємо кількість вибраних стадій по ступеню подрібнення. Для цього повинна виконуватись умова необхідної і достатньої кількості стадій подрібнення:

$$i_{3a\Gamma} < i_1 \cdot i_2 \cdot i_3 \cdot \dots \cdot i_n = 3,13 \cdot 2,28 \cdot 3,68 = 26,26 > 25$$
 (9.6)

Оскільки загальна ступінь подрібнення $i_{3ar} = 26,26$ більше 25, то достатньо трьох стадій.

Технологічна схема, наведена на рис. 9.1, потребує трьох стадійного подрібнення з замкнутим циклом на останній стадії. Перед кожною стадією необхідно проводити грохочення. Замкнутий цикл на останній стадії подрібнення забезпечує можливість регулювання виходу за крупністю і сприяє збільшенню якості щебінки за рахунок зменшення кусків лещадної та голчастої форми.

Рисунок 9.1 - Технологічна схема ДСЗ з річною продуктивністю 250 тис. ${
m M}^3$ /рік готової продукції з вихідної гірничої маси

9.4 Режим роботи дробарно-сортувального заводу

Розклад роботи ДСЗ прийнято цілорічним. Добовий розпорядок тризмінний, з 5 добовим робочим тижнем при двох вихідних. Приймаємо 8 годинний робочий день. Кількість робочих змін на тиждень 15. Розпорядок роботи складів по відвантаженню готової продукції цілорічний без вихідних днів [1].

Фонд чистого робочого часу Тч:

$$T_{y} = T_{3a\Gamma} * \kappa_{B} = 6075 * 0.85 = 5164 \text{ год},$$
 (9.7)

де $T_{3ar} = 6075$ — річний фонд роботи підприємства, год [1]; $\kappa_B = 0.85$ — коефіцієнт використання обладнання, який проектується [1]. Годинна продуктивність операції Q_{ron} :

$$Q$$
год= $260000/5164 = 50,35 \text{ м3/год}$ (9.8)

де Q_p =260000 — продуктивність ДСЗ по готовій продукції, згідно з завданням, м 3 /рік.

9.5 Визначення виробничої потужності заводу за вихідною сировиною

Потрібна продуктивність ДСЗ по вихідному матеріалу $Q_{\text{вх}}$ [3]:

$$Q_{BX} = Q_{\Gamma.\Pi.} \delta_{\Gamma OT} / (\gamma_{\Gamma OT} \cdot \delta_{BX}) = 260 \cdot 1,3 / (0,975 \cdot 1,7) = 203921,6 \text{ m}^3 / \text{pik}, \tag{9.9}$$

де $Q_{\text{г.п.}} = 260000$ — продуктивність ДСЗ по готовій продукції, м³/рік.

 $\delta_{\text{гот}} = 1,3$ – насипна маса (щільність) готової продукції фракцій (10..20) мм, т/м³ [6].

 $\gamma_{\text{гот}} = 0,975$ — вихід готової продукції з урахуванням утилізації відходів, в.о. $\delta_{\text{вх}} = 1,7$ — насипна маса (щільність) вхідного продукту, т/м³ [6].

Годинна продуктивність ДСЗ по вхідному матеріалу $Q_{\text{год}}$:

$$Q_{\text{год}} = \frac{Qp}{T_{4}} = \frac{203921.6}{5164} = 39,49 \text{ м}^{3}/\text{год}$$
, (9.10)

Продуктивність технологічних операцій Q_i :

$$Q_{rod} = Q_{rod} \cdot \gamma_i, \qquad (9.11)$$

де γ_i – вихід продукту і-ї операції, в.о.

9.6 Розрахунок якісно-кількісної схеми

9.6.1 Вихід продукту 2,3,6:

$$\gamma_2 = \gamma_1^{-100} \cdot E_1 = 0.25 \cdot 0.6 = 0.15, \text{ B.o.},$$
 (9.12)

де γ_1^{-100} =0,25 – вихід фракцій (0...100) мм у вхідній гірській масі, в.о.;

E=0,6 - ефективність грохочення на першій операції, прийнята згідно [1] за таблицею В.1 Додатку В, для розрахунку гіршого варіанту, в.о.

9.6.2. Вихід продукту операції 3 та 6:

$$\gamma_3 = \gamma_1 - \gamma_2 = 1 - 0.15 = 0.85;$$
 (9.14)

$$\gamma_6 = \gamma_3 = 0.85. \tag{9.15}$$

9.6.3 Фракційна ефективність операції грохочення 1:

$$E_1^{-d}=1-(1-E_1)\cdot(d/100)^c,$$
 (9.16)

$$C=K_1 \cdot E_1/(1-E_1)=1,06 \cdot 0,6/(1-0,6)=1,59;$$
 (9.17)

$$K_1=3,322 \cdot \lg(\gamma_1^{-100}/\gamma_1^{-50})=3,322 \cdot \lg(0,25/0,15)=1,06,$$
 (9.18)

де γ_1^{-50} =0,15 — визначено з характеристики крупності вхідної гірничої маси (Додаток В, таблиця В.2).

E1=0,6 – ефективність на першій стадії грохочення, для максимального забезпечення ефективності грохочення при зменшенні навантаження на дробарку, в.о.

Отже, за (9.16) фракційна єфективність грохочення на 1 операції:

$$\begin{split} &E_1^{-100} \! = \! 1 \! - \! (1 \! - \! E_1) \! \cdot \! (d_1/100)^c \! = \! 1 \! - \! (1 \! - \! 0,6) \! \cdot \! (100/100)^{1,59} \! = \! 0,6; \\ &E_1^{-70} \! = \! 1 \! - \! (1 \! - \! E_1) \! \cdot \! (d_2/100)^c \! = \! 1 \! - \! (1 \! - \! 0,6) \! \cdot \! (70/100)^{1,59} \! = \! 0,77; \\ &E_1^{-40} \! = \! 1 \! - \! (1 \! - \! E_1) \! \cdot \! (d_3/100)^c \! = \! 1 \! - \! (1 \! - \! 0,6) \! \cdot \! (40/100)^{1,59} \! = \! 0,91; \\ &E_1^{-20} \! = \! 1 \! - \! (1 \! - \! E_1) \! \cdot \! (d_4/100)^c \! = \! 1 \! - \! (1 \! - \! 0,6) \! \cdot \! (20/100)^{1,59} \! = \! 0,97; \\ &E_1^{-10} \! = \! 1 \! - \! (1 \! - \! E_1) \! \cdot \! (d_5/100)^c \! = \! 1 \! - \! (1 \! - \! 0,6) \! \cdot \! (10/100)^{1,59} \! = \! 0,99; \\ &E_1^{-5} \! = \! 1 \! - \! (1 \! - \! E_1) \! \cdot \! (d_6/100)^c \! = \! 1 \! - \! (1 \! - \! 0,6) \! \cdot \! (5/100)^{1,59} \! = \! 0,99; \\ &E_1^{-0,14} \! = \! 1 \! - \! (1 \! - \! E_1) \! \cdot \! (d_7/100)^c \! = \! 1 \! - \! (1 \! - \! 0,6) \! \cdot \! (0,14/100)^{1,59} \! = \! 0,99. \end{split}$$

9.6.4 Характеристика крупності продуктів операції 2:

$$\gamma_{2}^{-d} = \gamma_{1}^{-d} \cdot E_{1}^{-d}, \text{ B.o.}$$

$$\gamma_{2}^{-100} = \gamma_{1}^{-100} \cdot E_{1}^{-100} = 0,25 \cdot 0,6 = 0,15;$$

$$\gamma_{2}^{-70} = \gamma_{1}^{-70} \cdot E_{1}^{-70} = 0,18 \cdot 0,77 = 0,14;$$

$$\gamma_{2}^{-40} = \gamma_{1}^{-40} \cdot E_{1}^{-40} = 0,16 \cdot 0,91 = 0,15;$$
(9.19)

$$\begin{split} &\gamma_2^{-20} = \gamma_1^{-20} \cdot E_1^{-20} = 0, 1 \cdot 0, 97 = 0, 09; \\ &\gamma_2^{-10} = \gamma_1^{-10} \cdot E_1^{-10} = 0, 07 \cdot 0, 99 = 0, 07; \\ &\gamma_2^{-5} = \gamma_1^{-5} \cdot E_1^{-5} = 0, 04 \cdot 0, 99 = 0, 04; \\ &\gamma_2^{-0,14} = \gamma_1^{-0,14} \cdot E_1^{-0,14} = 0, 01 \cdot 0, 99 = 0, 01. \end{split}$$

9.6.5 Характеристика крупності продуктів операції 3:

$$\gamma_{3}^{-d} = \gamma_{1}^{-d} - \gamma_{2}^{-d}, \text{ B.o.}$$

$$\gamma_{3}^{-100} = \gamma_{1}^{-100} - \gamma_{2}^{-100} = 0,25 - 0,15 = 0,1;$$

$$\gamma_{3}^{-70} = \gamma_{1}^{-70} - \gamma_{2}^{-70} = 0,18 - 0,14 = 0,04;$$

$$\gamma_{3}^{-40} = \gamma_{1}^{-40} - \gamma_{2}^{-40} = 0,16 - 0,15 = 0,01;$$

$$\gamma_{3}^{-20} = \gamma_{1}^{-20} - \gamma_{2}^{-20} = 0,1 - 0,09 = 0,01;$$

$$\gamma_{3}^{-10} = \gamma_{1}^{-10} - \gamma_{2}^{-10} = 0,07 - 0,07 = 0;$$

$$\gamma_{3}^{-5} = \gamma_{1}^{-5} - \gamma_{2}^{-5} = 0,04 - 0,04 = 0;$$

$$\gamma_{3}^{-0,14} = \gamma_{1}^{-0,14} - \gamma_{2}^{-0,14} = 0,01 - 0,01 = 0.$$

9.6.6 Вихід продукту 4,5,7:

$$\gamma_4 = \gamma_2^{-20} \cdot E_2 = 0.09 \cdot 0.87 = 0.08,$$

9.6.6.1. Ефективність грохочення E_2 можна визначити за таблицею B1 Додатку B[1] або за емпіричною залежністю [5]:

$$E = e \cdot k_1 \cdot k_2 \cdot k_3 = 89 \cdot 1,05 \cdot 0,95 \cdot 0,98 = 87, \%,$$

де e = 89 - еталонна ефективність грохочення для середніх умов, % (Додаток Γ , таблиця Γ 1.);

 $k_1 = 1,05$ - коефіцієнт, що враховує кут нахилу грохота $12^{\rm o}$ (Додаток Γ , таблиця $\Gamma 2$) [5];

 $k_2'=0,95$ - коефіцієнт, що враховує процентний вміст зерен нижнього класу у вихідному матеріалі (Додаток Γ , таблиця Γ 2) [5];

 $k_3'=0,98$ - коефіцієнт, що враховує процентний вміст у нижньому класі зерен розміром, меншим за половину розміру отвору сита (Додаток Γ , таблиця Γ 2) [5].

$$E_2 = e \cdot k_1 \cdot k_2 \cdot k_3 = 89 \cdot 1,05 \cdot 0,95 \cdot 0,98 = 87, \%.$$

$$\gamma_5 = \gamma_2 - \gamma_4 = 0.15 - 0.08 = 0.07;$$

$$\gamma_7 = \gamma_5 + \gamma_6 = 0.07 + 0.85 = 0.92;$$

9.6.7 Фракційна ефективність операції грохочення 2:

$$E_2^{-d}=1-(1-E_2)\cdot(d/20)^c,$$
 (9.21)

де

$$C=K_2\cdot E_2/(1-E_2)=0.36\cdot 0.87/(1-0.87)=2.41;$$
 (9.22)

$$K_2=3,322 \cdot \lg(\gamma_2^{-20}/\gamma_2^{-10})=3,222 \cdot \lg(0,09/0,07)=0,36,$$
 (9.23)

де γ_1^{-10} =0,07 — визначено з характеристики крупності вхідної гірської маси, в.о.;

Отже,

$$\begin{split} &E_2^{-20} \!=\! 1 \text{-} (1 \text{-} E_2) \cdot (d_4/20)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (20/20)^{2,41} \!\!=\! 0,\!87; \\ &E_2^{-10} \!=\! 1 \text{-} (1 \text{-} E_2) \cdot (d_5/20)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (10/20)^{2,41} \!\!=\! 0,\!98; \\ &E_2^{-5} \!=\! 1 \text{-} (1 \text{-} E_2) \cdot (d_6/20)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (5/20)^{2,41} \!\!=\! 0,\!99; \\ &E_2^{-0,14} \!=\! 1 \text{-} (1 \text{-} E_2) \cdot (d_7/20)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (0,\!14/20)^{2,41} \!\!=\! 0,\!99. \end{split}$$

9.6.8 Характеристика крупності продуктів 5:

$$\gamma_5^{-d} = \gamma_2^{-d} (1-E_2^{-d})$$
, якщо d<20;
$$\gamma_5^{-d} = \gamma_2^{-d} - \gamma_4$$
, якщо d=20 або d>20;
$$\gamma_6^{-d} = \gamma_3^{-d} - \gamma_3^{-d} - \gamma_3^{-i3} \cdot b_{i3}^{-d};$$

$$\gamma_7^{-d} = \gamma_3^{-d} - \gamma_6^{-d}$$
, якщо d<70 або d=70.

Розрахунок проведений за формулою $\gamma_5 = \gamma_2 - \gamma_4$, бо продукт операції 5 складається з фракцій (20...100) мм, тобто відповідає умові d=20 або > 20, що задовольняє даній формулі.

$$\gamma_5^{-100} = \gamma_2^{-100} - \gamma_4 = 0,15 - 0,08 = 0,07;$$

$$\gamma_5^{-70} = \gamma_2^{-70} - \gamma_4 = 0,14 - 0,08 = 0,06;$$

$$\gamma_5^{-40} = \gamma_2^{-40} - \gamma_4 = 0,15 - 0,08 = 0,07;$$

$$\begin{split} &\gamma_5^{-20} = \gamma_2^{-20} \cdot (1 - E_2^{-20}) = 0,09 \cdot (1 - 0,87) = 0,01; \\ &\gamma_5^{-10} = \gamma_2^{-10} \cdot (1 - E_2^{-10}) = 0,06 \cdot (1 - 0,99) = 0,00; \\ &\gamma_5^{-5} = \gamma_2^{-5} \cdot (1 - E_2^{-5}) = 0,03 \cdot (1 - 0,99) = 0,00; \\ &\gamma_5^{-0,14} = \gamma_2^{-0,14} \cdot (1 - E_2^{-0,14}) = 0,01 \cdot (1 - 0,99) = 0,00. \end{split}$$

9.6.9 Характеристика крупності продуктів операції 6:

$$\gamma_6^{-d} = \gamma_3^{-d} + \gamma_3^{i3} \cdot b^{-d}_{i3},$$
 (9.24)

де і3 – обрана ширина вихідної щілини дробарки на операції 3 подрібнення; $b^{\text{-d}}_{i3}$ – вміст фракцій (0...d) мм в роздрібненому продукті на операції 3 дроблення.

Ширину вихідної щілини i_3 дробарки приймаємо 100 мм, щоб отримати найбільшу кількість фракції щебінки (10...20) мм. Тоді за характеристикою крупності, яка наведена у Додатку В, рисунок В.1 [1], знаходимо, що вихід продукту при прийнятій ширині вихідної щилини дробарки $\gamma_3^{i3} = 0,52$.

Склад необхідного класу від 0 до d в подрібненому продукті:

$$b=1-\beta^{-d}_{i3}$$
. (9.25)

Величина β^{+d} визначається за типовою характеристикою крупності [1]:

$$b^{-100}{}_{i3}=1-0,52=0,48;$$
 $b^{-70}{}_{i3}=1-0,63=0,37;$
 $b^{-40}{}_{i3}=1-0,95=0,05;$
 $b^{-20}{}_{i3}=1-0,97=0,03;$

$$b^{-10}{}_{i3}=1-0,99=0,01;$$

$$b^{-0,14}{}_{i3}=1-1=0;$$

$$\gamma_{6}^{-100}=\gamma_{3}^{-100}+\gamma_{3}^{-i3}b^{-100}{}_{i3}=0,1+0,52\cdot0,48=0,3496;$$

$$\gamma_{6}^{-70}=\gamma_{3}^{-70}+\gamma_{3}^{-70}b^{-70}{}_{i3}=0,04+0,52\cdot0,37=0,2324;$$

$$\gamma_{6}^{-40}=\gamma_{3}^{-40}+\gamma_{3}^{-40}b^{-40}{}_{i3}=0,01+0,52\cdot0,05=0,0360;$$

$$\gamma_{6}^{-20}=\gamma_{3}^{-20}+\gamma_{3}^{-20}b^{-20}{}_{i3}=0,01+0,52\cdot0,03=0,0256;$$

$$\gamma_{6}^{-10}=\gamma_{3}^{-10}+\gamma_{3}^{-10}b^{-10}{}_{i3}=0+0,52\cdot0,01=0,0052;$$

$$\gamma_{6}^{-5}=\gamma_{3}^{-5}+\gamma_{3}^{-5}b^{-5}{}_{i3}=0+0,52\cdot0,01=0,00052;$$

$$\gamma_{6}^{-0,14}=\gamma_{3}^{-0,14}+\gamma_{3}^{-0,14}b^{-0,14}{}_{i3}=0+0,52\cdot0=0.$$

9.6.10 Характеристика крупності продуктів операції 7 [1]:

$$\gamma_7^{-d} = \gamma_5^{-d} + \gamma_6^{-d};$$

$$\gamma_7^{-70} = \gamma_5^{-70} + \gamma_6^{-70} = 0,06 + 0,23 = 0,29;$$

$$\gamma_7^{-40} = \gamma_5^{-40} + \gamma_6^{-40} = 0,07 + 0,04 = 0,11;$$

$$\gamma_7^{-20} = \gamma_5^{-20} + \gamma_6^{-20} = 0,01 + 0,03 = 0,04;$$
(9.26)

$$\gamma_7^{-10} = \gamma_5^{-10} + \gamma_6^{-10} = 0 + 0,0052 = 0,0052;$$

$$\gamma_7^{-5} = \gamma_5^{-5} + \gamma_6^{-5} = 0 + 0,0052 = 0,0052;$$

$$\gamma_7^{-0,14} = \gamma_5^{-0,14} + \gamma_6^{-0,14} = 0 + 0 = 0,00.$$

9.6.11 Вихід продукту 8:

$$\gamma_8 = \gamma_7^{-70} \cdot E_4 = 0.29 \cdot 0.87 = 0.25,$$
(9.27)

Ефективність грохочення операції 4 визначена за методикою, що наведена у підпункті 9.6.6.1.

$$E_4=89\cdot1,05\cdot0,95\cdot0,98=87, \%;$$

 $\gamma_9=\gamma_7-\gamma_8=0,29-0,25=0,04;$
 $\gamma_{12}=\gamma_9=0,04.$

9.6.12 Фракційна ефективність операції грохочення 4:

$$E_4^{-d}=1-(1-E_4)\cdot(d/70)^c,$$
 (9.28)

$$C=K_4\cdot E_4/(1-E_4)=1,40\cdot 0,87/(1-0,87)=9,37;$$

$$K_4=3,322 \cdot \lg(\gamma_7^{-70}/\gamma_7^{-40})=3,322 \cdot \lg(0,29/0,11)=1,40,$$

Отже,

де

$$E_4^{-70} = 1 - (1 - E_4) \cdot (d_2/70)^c = 1 - (1 - 0.87) \cdot (70/70)^{9.37} = 0.87;$$

$$\begin{split} &E_4^{-40} \!=\! 1 \text{-} (1 \text{-} E_4) \cdot (d_3/70)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (40/70)^{9,37} \!=\! 0,\!99; \\ &E_4^{-20} \!=\! 1 \text{-} (1 \text{-} E_4) \cdot (d_4/70)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (20/70)^{9,37} \!=\! 0,\!99; \\ &E_4^{-10} \!=\! 1 \text{-} (1 \text{-} E_4) \cdot (d_5/70)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (10/70)^{9,37} \!=\! 0,\!99; \\ &E_4^{-5} \!=\! 1 \text{-} (1 \text{-} E_4) \cdot (d_6/70)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (5/70)^{9,37} \!=\! 0,\!99; \\ &E_4^{-0,14} \!=\! 1 \text{-} (1 \text{-} E_4) \cdot (d_7/70)^c \!=\! 1 \text{-} (1 \text{-} 0,\!87) \cdot (0,\!14/70)^{9,37} \!=\! 0,\!99. \end{split}$$

9.6.13 Характеристика крупності продуктів операції 8, 9:

$$\gamma_8^{-d} = \gamma_7^{-d} \cdot E_4^{-d};$$

$$\gamma_9^{-d} = \gamma_7^{-d} \cdot \gamma_8^{-d} = \gamma_7^{-d} \cdot (1 - E_4^{-d}).$$
(9.29)

9.6.14 Характеристика крупності продуктів операції 8:

$$\gamma_{8}^{-70} = \gamma_{7}^{-70} \cdot E_{4}^{-70} = 0,29 \cdot 0,87 = 0,25;$$

$$\gamma_{8}^{-40} = \gamma_{7}^{-40} \cdot E_{4}^{-40} = 0,11 \cdot 0,99 = 0,109;$$

$$\gamma_{8}^{-20} = \gamma_{7}^{-20} \cdot E_{4}^{-20} = 0,04 \cdot 0,99 = 0,039;$$

$$\gamma_{8}^{-10} = \gamma_{7}^{-10} \cdot E_{4}^{-10} = 0,0052 \cdot 0,99 = 0,005;$$

$$\gamma_{8}^{-5} = \gamma_{7}^{-5} \cdot E_{4}^{-5} = 0,0052 \cdot 0,99 = 0,005;$$

$$\gamma_{8}^{-0,14} = \gamma_{7}^{-0,14} \cdot E_{4}^{-0,14} = 0 \cdot 0,99 = 0,00.$$

9.6.15 Характеристика крупності продуктів операції 9:

$$\gamma_9^{-70} = \gamma_7^{-70} - \gamma_8^{-70} = 0,29 - 0,25 = 0,04;$$

$$\gamma_9^{-40} = \gamma_7^{-40} - \gamma_8^{-40} = 0,11 - 0,109 = 0,001;$$

$$\gamma_9^{-20} = \gamma_7^{-20} - \gamma_8^{-20} = 0,04 - 0,039 = 0,001;$$

$$\gamma_9^{-10} = \gamma_7^{-10} - \gamma_8^{-10} = 0,0052 - 0,005 = 0,0002;$$

$$\gamma_9^{-5} = \gamma_7^{-5} - \gamma_8^{-5} = 0,0052 - 0,005 = 0,0002;$$

$$\gamma_9^{-0,14} = \gamma_7^{-0,14} - \gamma_8^{-0,14} = 0,00.$$

9.6.16 Вихід продуктів 10, 11, 13:

$$\gamma_{10} = \gamma_8^{-10} \cdot E_5 = 0,005 \cdot 0,7 = 0,0035,$$

де E_5 =0,7 — ефективність операції грохочення 5 для максимального забезпечення ефективності грохочення при зменшення навантаження на дробарку [9].

$$\begin{split} \gamma_{11} = & \gamma_8 - \gamma_{10} = 0,25 - 0,0035 = 0,25; \\ \gamma_{13} = & \gamma_{11} + \gamma_{12} = \gamma_7 - \gamma_{10} = \gamma_1 - \gamma_4 - \gamma_{10} = 1 - 0,08 - 0,0035 = 0,92. \end{split}$$

9.6.17 Фракційна ефективність операції грохочення 5:

$$E_5^{-d}=1-(1-E_5)(d/10)^c$$
, $d<10$,

де
$$K_5=3,322 \lg (\gamma_8^{-10}/\gamma_8^{-5})=3,322 \lg (0,0051/0,005)=0,03;$$

$$C=K_5 E_5/(1-E_5)=0.03\cdot0.9/(1-0.9)=0.27;$$

$$E_5^{-10}=1-(1-0.9)(10/10)^{0.27}=0.90;$$

$$E_5^{-5}=1-(1-0.9)(5/10)^{0.27}=0.92;$$

$$E_5^{-0.14} = 1 - (1 - 0.9)(0.14/10)^{0.27} = 0.97.$$

9.6.18 Характеристика крупності продуктів 11,12,13:

$$\gamma_{11}^{-d} = \gamma_8^{-d} \cdot (1 - E_5^{-d})$$
, якщо d<10;

$$\gamma_{11}^{-d} = \gamma_8^{-d} - \gamma_{10}$$
, якщо d=10 або d>10;

$$\gamma_{12}^{-d} = \gamma_9^{-d} + \gamma_9^{-i6} \cdot b_{i6}^{-d}$$
, якщо d=i6 або d< i6;

$$\gamma_{12}^{-d} = \gamma_9^{-d} + \gamma_9^{id} \cdot b_{i6}^{-d}$$
, якщо d>i6;

$$\gamma_{13}^{-d} = \gamma_{11}^{-d} + \gamma_{12}^{-d}$$
.

9.6.18.1 Характеристики крупності продуктів операції 11:

Отже, розрахунки проводимо за $\gamma_{11}^{-d} = \gamma_8^{-d} - \gamma_{10}$, так як d=10 або d>10:

$$\gamma_{11}^{-70} = \gamma_8^{-70} - \gamma_{10} = 0.25 - 0.0035 = 0.24;$$

$$\gamma_{11}^{-40} = \gamma_8^{-40} - \gamma_{10} = 0,109 - 0,0035 = 0,106;$$

$$\gamma_{11}^{-20} = \gamma_8^{-20} - \gamma_{10} = 0,039 - 0,0035 = 0,036;$$

$$\gamma_{11}^{-10} = \gamma_8^{-10} \cdot (1 - E_5^{-10}) = 0,005(1 - 0,90) = 0,0005;$$

$$\gamma_{11}^{-5} = \gamma_8^{-5} \cdot (1 - E_5^{-5}) = 0,005(1 - 0,92) = 0,0004;$$

$$\gamma_{11}^{-0,14} = \gamma_8^{-0,14} \cdot (1 - E_5^{-0,14}) = 0(1 - 0,97) = 0,00.$$

9.6.18.2 Характеристики крупності продуктів операції 12:

$$\gamma_{12}^{-d} = \gamma_9^{-d} + \gamma_9^{id} \cdot b_{i6}^{-d}, \text{ seign d>i6}$$

$$\gamma_9^{+40} + \gamma_9^{+i6} = 0,5;$$

$$b_6^{-70} = 1 - 0,22 = 0,78;$$

$$b_6^{-40} = 1 - 0,5 = 0,50;$$

$$b_6^{-20} = 1 - 0,72 = 0,28;$$

$$b_6^{-10} = 1 - 0,87 = 0,13;$$

$$b_6^{-5} = 1 - 0,93 = 0,07;$$

$$b_6^{-0,14} = 1 - 0,98 = 0,02;$$

$$\gamma_{12}^{-70} = \gamma_9^{-70} + \gamma_9^{+70} \cdot b_6^{-70} = 0,04 + 0,22 \cdot 0,78 = 0,21;$$

$$\gamma_{12}^{-40} = \gamma_9^{-40} + \gamma_9^{+40} \cdot b_6^{-40} = 0,001 + 0,5 \cdot 0,5 = 0,251;$$

$$\begin{split} \gamma_{12}^{-20} = & \gamma_9^{-20} + \gamma_9^{+20} \cdot b_6^{-20} = 0,011 + 0,72 \cdot 0,28 = 0,202; \\ \gamma_{12}^{-10} = & \gamma_9^{-10} + \gamma_9^{+10} \cdot b_6^{-10} = 0 + 0,87 \cdot 0,13 = 0,113; \\ \gamma_{12}^{-5} = & \gamma_9^{-5} + \gamma_9^{+5} \cdot b_6^{-5} = 0 + 0,93 \cdot 0,07 = 0,065; \\ \gamma_{12}^{-0,14} = & \gamma_9^{-0,14} + \gamma_9^{+0,14} \cdot b_6^{-0.14} = 0 + 0,98 \cdot 0,02 = 0,0196. \end{split}$$

9.6.18.3 Характеристика крупності операції продукту 13:

$$\gamma_{13}^{-70} = \gamma_{11}^{-70} + \gamma_{12}^{-70} = 0,24 + 0,21 = 0,45;$$

$$\gamma_{13}^{-40} = \gamma_{11}^{-40} + \gamma_{12}^{-40} = 0,106 + 0,251 = 0,357;$$

$$\gamma_{13}^{-20} = \gamma_{11}^{-20} + \gamma_{12}^{-20} = 0,036 + 0,202 = 0,238;$$

$$\gamma_{13}^{-10} = \gamma_{11}^{-10} + \gamma_{12}^{-10} = 0,005 + 0,113 = 0,118;$$

$$\gamma_{13}^{-5} = \gamma_{11}^{-5} + \gamma_{12}^{-5} = 0 + 0,065 = 0,065;$$

$$\gamma_{13}^{-0.14} = \gamma_{11}^{-0.14} + \gamma_{12}^{-0.14} = 0 + 0,0196 = 0,0196.$$

9.6.19 Вихід продуктів 14,15,16,17,18:

$$\begin{split} \gamma_{15} &= \gamma_{13} \text{--} \gamma_{13} \text{--}^{\text{--}}_{6} \cdot \text{E}_{7} / (\text{E}_{7} \cdot \text{b}_{8} \text{--}^{\text{--}}_{7}); \\ \gamma_{14} &= \gamma_{13} + \gamma_{15}; \ \gamma_{16} = \gamma_{15}; \\ E_{7} \text{--}^{\text{--}} &= 1 \text{--} (1 \text{--} \text{E}_{7}) (\text{d} / 40)^{\text{c}}, \\ C &= \text{K}_{7} \cdot \text{E}_{7} / (1 \text{--} \text{E}_{7}), \end{split}$$
 де :

$$K_7=3,322 \text{ lg } (\gamma_{13}^{-40}/\gamma_{13}^{-20});$$

$$\gamma_{17}=\gamma_{13}-\gamma_{13}^{-20} \cdot E_7^{-20};$$

$$\gamma_{18}=\gamma_{13}-\gamma_{17}.$$

9.6.14.1 Вихід продуктів 15,16:

Приймаємо E_7 =0,95 — загальна ефективність грохочення 7, b_{i7}^{-d7} — вміст фракції від 0 до d_7 визначається за типовою характеристикою крупності [1].

$$b_7^{-70}=1-0,12=0,88;$$

 $b_7^{-40}=1-0,42=0,58;$
 $b_7^{-20}=1-0,69=0,31;$
 $b_7^{-10}=1-0,82=0,18;$
 $b_7^{-5}=1-0,93=0,07;$
 $b_7^{-0.14}=1-0,98=0,02;$

$$\gamma_{15} = \gamma_{13} - \gamma_{13}^{-40} \cdot E_7 / (E_7 \cdot b_7^{-40}) = 0.92 - (0.357 \cdot 0.95 / (0.95 \cdot 0.58)) = 0.22;$$

$$\gamma_{16} = \gamma_{15} = 0.22, \text{ B.o.}$$

9.6.14.2 Вихід продуктів операцій 14 та 17:

$$\gamma_{14} = \gamma_{13} - \gamma_{15} = 0,92 - 0,22 = 0,7, \text{ B.o.};$$

$$\gamma_{17} = \gamma_{13} - \gamma_{13}^{-20} \cdot \text{E}_7^{-20} = 0,92 - 0,238 \cdot 0,99 = 0,712 \text{ B.o.}$$

9.6.14.3 Фракційна ефективність операції 7 грохочення:

$$E_{7}^{-d}=1-(1-E_{7})(d/40)^{c}; \qquad (9.31)$$

$$K_{7}=3,322 \lg (\gamma_{13}^{-40}/\gamma_{13}^{-20})=3,322 \lg (0,357/0,238)=0,58;$$

$$C=K_{7} \cdot E_{7}/(1-E_{7})=0,58 \cdot 0,95/(1-0,95)=11,02;$$

$$E_{7}^{-20}=1-(1-0,95)(20/40)^{11,02}=0,99 \%;$$

$$E_{7}^{-10}=1-(1-0,95)(10/40)^{11,02}=0,99 \%;$$

$$E_{7}^{-5}=1-(1-0,95)(5/40)^{11,02}=0,99 \%;$$

9.6.14.4 Вихід продуктів операції 19:

$$\gamma_{19} = \gamma_{13} - \gamma_{17} = 0,92 - 0,712 = 0,21$$
, B.O.

 $E_7^{-0.14} = 1 - (1 - 0.95)(0.14/40)^{11.02} = 0.99 \%.$

9.6.15 Характеристика крупності продукту операції 17:

$$\gamma_{17}^{-d} = \gamma_{13}^{-d} + \gamma_{15} \cdot b_{17}^{-d}, \text{ якщо d} < d_7;$$

$$\gamma_{17}^{-20} = \gamma_{13}^{-20} + \gamma_{15} \cdot b_7^{-20} = 0,238 + 0,22 \cdot 0,31 = 0,31 \text{ B.o.};$$

$$\gamma_{17}^{-10} = \gamma_{13}^{-10} + \gamma_{15} \cdot b_7^{-10} = 0,115 + 0,22 \cdot 0,18 = 0,15 \text{ B.o.};$$

$$\gamma_{17}^{-5} = \gamma_{13}^{-5} + \gamma_{15} \cdot b_7^{-5} = 0,067 + 0,22 \cdot 0,07 = 0,082 \text{ B.o.};$$

$$\gamma_{17}^{-0,14} = \gamma_{13}^{-0,14} + \gamma_{15} \cdot b_7^{-0,14} = 0,0196 + 0,22 \cdot 0,02 = 0,024 \text{ B.o.};$$

9.6.16 Товарне сортування при виготовленні щебеню до 20 мм.

9.6.16.1 Фракційна ефективність операції товарного сортування 9:

$$E_9^{-d} = 1 - (1 - E_9)(d/10)^c$$
, %, (9.32)

де
$$K_9 = 3.322 \lg (\gamma_{17}^{-10} / \gamma_{17}^{-5}) = 3.322 \lg (0.15 / 0.082) = 0.87;$$

$$C=K_9 \cdot E_9/(1-E_9)=0.87 \cdot 0.95/(1-0.95)=16.53$$
;

$$E_9^{-10}$$
=1-(1-0,95)(10/10)^{16,53}=0,95;

$$E_9^{-5}=1-(1-0.95)(5/10)^{16.53}=0.99;$$

$$E_9^{-0.14} = 1 - (1 - 0.95)(0.14/10)^{16.53} = 0.99.$$

9.6.16.2 Вихід щебеню фракції (5...10) мм після операції 20:

$$\gamma_{20} = \gamma_{17} - (\gamma_{21} + \gamma_{17}^{-5} \cdot E_9^{-5}) = 0.712 - (0.57 + 0.082 \cdot 0.99) = 0.06, \text{ B.o.}.$$

9.6.16.3 Вихід щебеню фракції (10...20) мм після операції 21:

$$\gamma_{21} = \gamma_{17} - \gamma_{17}^{-10} \cdot E_9^{-10} = 0,712 - 0,15 \cdot 0,95 = 0,57.$$

9.6.16.4 Вихід готової продукції:

$$\gamma_{rot} = \gamma_{19} + \gamma_{20} + \gamma_{21} = 0.21 + 0.06 + 0.57 = 0.84.$$

9.6.16.5 Вихід відходів фракції (0-5) мм операції 18:

$$\gamma_{18} = \gamma_{17}^{-5} \cdot E_9^{-5} = \gamma_{13} - \gamma_{rot} = 0.92 - 0.84 = 0.08$$
.

9.6.16.6 Перевірка:

$$\gamma_1 = \gamma_{ror} + \gamma_4 + \gamma_{10} + \gamma_{19} = 0.84 + 0.08 + 0.036 + 0.021 = 1.000.$$

9.6.17 Товарне сортування при виготовленні щебеню до 20 мм:

При товарному сортуванні можливий випуск щебеню фракції (20...40) мм, (10...20) мм, (5...10) мм або тільки (5...10) мм. Кількість і розміри фракції готової $\gamma_{20}^{(10-20)} = \gamma_{17} - \gamma_{17}^{-10} \cdot \text{E}_9^{-10} = 0,712 - 0,15 \cdot 0,95 = 0,57;$

$$\begin{split} \gamma_{20}^{(5...10)} = & \gamma_{17} \text{-} (\gamma_{20}^{(10...20)} + \gamma_{17} \text{-}^{5} \cdot \text{E}_{9} \text{-}^{5}) = 0,712 \text{-} (0,57 + 0,082 \cdot 0,99) = 0,061; \\ \gamma_{\text{rot}}^{(10...20)} = & \gamma_{20}^{(5...10)} + \gamma_{21}^{(10...20)} + \gamma_{18} = 0,061 + 0,78 + 0,08 = 0,921; \\ \gamma_{21}^{(10...20)} = & \gamma_{13} - \gamma_{17}^{-10} \cdot \text{E}_{9}^{-10} = 0,92 - 0,15 \cdot 0,95 = 0,78; \\ \gamma_{\text{rot}} = & \gamma_{21}^{(10...20)} + \gamma_{20}^{(5...10)} = 0,78 + 0,061 = 0,84; \end{split}$$

$$\gamma_{xB} = \gamma_{13} - \gamma_{rot} = 0.92 - 0.84 = 0.08$$
.

9.6.18 Годинна продуктивність ДСЗ по вхідному матеріалу $Q_{\text{год}}$ визначається за формулою :

$$Q_{\text{год}} = Q_{\text{вх}}/T_{\text{ч}} = 209290/5164 = 40,53, \text{ м}^3/\text{год}$$
 (9.33)

9.7 Утилізація відходів

Проведений розрахунок якісно-кількісної схеми показав, що вихід готової продукції становить 75 %, а у відходи йде 25 %. Завданням передбачено розробити

технологію переробки та збагачення щебеню з виходом готової продукції не менше 95 %. Для забезпечення заданого виходу готової продукції необхідно передбачити утилізацію відходів підприємства.

9.7.1 Вихід операції 22:

$$\gamma_{22} = \gamma_4 + \gamma_{10} + \gamma_{19} = 0.25 + 0.0035 + 0.21 = 0.464$$
.

9.7.2 Характеристика крупності продукту по операціях 4,10,19,22:

$$\begin{split} \gamma_4^{-20} &= \gamma_2^{-20} \cdot E_2^{-20} = 0,09 \cdot 0,87 = 0,078; \\ \gamma_4^{-10} &= \gamma_2^{-10} \cdot E_2^{-10} = 0,07 \cdot 0,98 = 0,069; \\ \gamma_4^{-5} &= \gamma_2^{-5} \cdot E_2^{-5} = 0,04 \cdot 0,99 = 0,039; \\ \gamma_4^{-0,14} &= \gamma_2^{-0,14} \cdot E_2^{-0,14} = 0,01 \cdot 0,99 = 0,0099; \\ \gamma_{10}^{-10} &= \gamma_8^{-10} \cdot E_5^{-10} = 0,005 \cdot 0,9 = 0,0045; \\ \gamma_{10}^{-5} &= \gamma_8^{-5} \cdot E_5^{-5} = 0,005 \cdot 0,9 = 0,0045; \\ \gamma_{10}^{-0,14} &= \gamma_8^{-0,14} \cdot E_5^{-0,14} = 0 \cdot 0,99 = 0; \\ \gamma_{19}^{-5} &= \gamma_{17}^{-5} \cdot E_9^{-5} = 0,082 \cdot 0,99 = 0,0812; \\ \gamma_{19}^{-0,14} &= \gamma_{17}^{-0,14} \cdot E_9^{-0,14} = 0,024 \cdot 0,99 = 0,0238; \\ \gamma_{22}^{-20} &= \gamma_4^{-20} + \gamma_{10}^{-20} + \gamma_{19}^{-20} = 0,0783 + 0 + 0 = 0,0783; \\ \gamma_{22}^{-10} &= \gamma_4^{-10} + \gamma_{10}^{-10} + \gamma_{19}^{-10} = 0,0686 + 0,0045 + 0 = 0,0731; \\ \gamma_{22}^{-5} &= \gamma_4^{-5} + \gamma_{10}^{-5} + \gamma_{19}^{-5} = 0,0396 + 0,0045 + 0,0812 = 0,125; \\ \gamma_{22}^{-0,14} &= \gamma_4^{-0,14} + \gamma_{10}^{-0,14} + \gamma_{19}^{-0,14} = 0,0099 + 0 + 0 = 0,0099. \end{split}$$

9.7.3 Фракційна ефективність грохочення:

$$E_{10}^{-d}=1-(1-E_{10})(d/10)^c,$$
 де $K_{10}=3,322\cdot \lg{(\gamma_{22}^{-10}/\gamma_{22}^{-5})}=3,322\cdot \lg{(0,58)}=0,78;$

C=
$$K_{10}$$
 $E_{10}/(1-E_{10})=0.78\cdot0.97/(1-0.97)=25.22;$
 $E_{10}^{-10}=1-(1-0.97)(10/10)^{25.22}=0.97;$
 $E_{10}^{-5}=1-(1-0.97)(5/10)^{25.22}=0.99;$
 $E_{10}^{-0.14}=1-(1-0.97)(0.14/10)^{25.22}=1.00.$

9.7.4 Вихід щебеню фракції (5-10) мм операції 24:

$$\gamma_{24} = \gamma_{22} - (\gamma_{25} + \gamma_{22}^{-5} \cdot E_9^{-5}) = 0.464 - (0.393 + 0.1254 \cdot 0.99) = 0.045.$$

Отримане значення не має змісту. Фізично це пояснюється так: після утилізації вихід фракції (10-20) мм γ_{24} =0, тобто цієї фракції у відходах немає.

9.7.5 Вихід щебеню фракції (10-20) мм операції 25:

$$\gamma_{25} = \gamma_{22} - \gamma_{22}^{-10} \cdot E_{10}^{-10} = 0,464 - 0,0731 \cdot 0,97 = 0,975.$$

9.7.6 Вихід готової продукції з обліком утилізації відходів:

$$\gamma_{\text{rot}}^{y} = \gamma_{24} + \gamma_{25} = 0 + 0.975 = 0.975.$$

9.7.7 Вихід фракції (0-5) мм:

$$\gamma_{23} = \gamma_{22}^{-5} \cdot E_{10}^{-5} = \gamma_{22} - \gamma_{rot}^{y} = 0,464 - 0,393 = 0,071.$$

9.7.8 Товарна класифікація для випуску подрібненого піску із відсіву:

$$\gamma_{27} = \gamma_{23} \cdot E_{11} = 0.071 \cdot 0.65 = 0.046$$
.

де E_{11} =0,65 - загальна ефективність товарної класифікації [3].

9.7.9 Вихід відходів після класифікації:

$$\gamma_{26} = \gamma_{23} - \gamma_{27} = 0.071 - 0.046 = 0.025$$
.

9.7.10 Вихід товарної фракції (10-20) мм:

Вихід з урахуванням утилізації відходів:

$$\gamma^{(10-20)} = \gamma_{21} + \gamma_{25} = 0,57 + 0,213 = 0,783.$$

9.7.11 Вихід готової продукції з урахуванням утилізації відходів:

$$\gamma_{\text{fot}}^{\ \ y} = \gamma_{18} + \gamma^{(5\text{-}10)} + \gamma^{(10\text{-}20)} + \gamma_{27} = 0,08 + 0,061 + 0,783 + 0,046 = 0,975.$$

9.7.12 Перевірка товарного балансу технологічної схеми

$$\gamma_1 = \gamma_{\text{rot}}^{y} + \gamma_{26} = 0,975 + 0,025 = 1,000.$$

9.8 Технологічний баланс ДСЗ

Потрібна продуктивність ДСЗ по вихідному матеріалу Qвх [3]:

$$Q_{\text{BX}} = Q_{\text{г.п.}} \delta_{\cdot_{\text{TOT}}} / (\gamma_{\text{rot}} \cdot \delta_{\text{BX}}) = 260 \cdot 1,3 / (0,975 \cdot 1,7) = 203921,6 \text{ m}^3 / \text{pik},$$

де $Q_{r.r.} = 260000 - продуктивність ДСЗ по готовій продукції, м³/рік.$

 $\delta_{\text{гот}} = 1,3$ – насипна маса (щільність) готової продукції фракцій (10..20) мм, т/м³ [6].

 $\gamma_{\text{гот}} = 0,975$ — вихід готової продукції з урахуванням утилізації відходів, в.о.

 $\delta_{\rm BX} = 1,7$ – насипна маса (щільність) вхідного продукту, т/м³ [6].

9.9 Продуктивність технологічних операцій

Продуктивність технологічних операцій Q_i визначається:

$$Q_{rod} = Q_{rod} \cdot \gamma_i, \tag{9.34}$$

де γ_i – вихід продукту і-ї операції, в.о.

Результати розрахунку технологічних операцій ДСЗ наведені в таблиці 9.2.

Таблиця 9.2 — Розрахункові дані технологічних операцій 1...27 ДСЗ з річною продуктивністю 260 тис. m^3 /рік по вхідній сировині.

№ операції	Вихід продукту, в.о.	Продуктивність $Q, M^3/год$	№ операції	Вихід продукту, в.о.	Продуктивність $Q, M^3/\Gamma O J$
1	2	3	4	5	6
1	1	40,53	17	0,712	28,86
2	0,15	6,08	18	0,08	3,24
3	0,85	34,45	19	0,21	8,51
4	0,08	3,24	20	0,06	2,43
5	0,07	2,84	21	0,57	23,10
6	0,85	34,45	22	0,464	18,81
7	0,92	37,28	23	0,071	2,88
8	0,25	10,13	24	0,045	1,82
9	0,54	22,27	25	0,393	15,93
10	0,0035	0,14	26	0,015	0,61
11	0,25	10,13	27	0,046	1,86
12	0,54	22,27	(5-10) мм	0,061	2,47
13	0,92	37,28	(10-20) мм	0,783	31,73
14	0,7	28,37	(20-40) мм	0,175	7,09
15	0,22	8,92	(0,14-5) MM	0,022	0,89
16	0,22	8,92			

9.10 Вибір і розрахунок дробарок дробарно-сортувального заводу

9.10.1 Вибір дробарного обладнання [10].

9.10.1.1 Розрахункова продуктивність дробарки ВЩД 600×900

Паспортна продуктивність дробарки ВЩД $600\times800~75~\text{м}^3/\text{год.},~[8].$ Розрахункова продуктивність ВЩД 600×900 :

$$Q_{p1} = Q_{\pi} \cdot K_{\mu} \cdot K_{\mu} \cdot K_{\phi} \cdot K_{B} = 75.0, 8.0, 89.1, 00.0, 85 = 45, M^{3}/\Gamma O J,$$

$$(9.35)$$

де $Q_n = 75$ - паспортна продуктивність дробарки ,м³/год [8] ;

 $K_{дp} = 0.80$ - поправочний коефіцієнт подрібнення матеріалу, прийнятий для особливо міцних порід з опором на стиск більше 250 МПа (Додаток Γ .3);

 $K_{\kappa p}=0,89$ - поправочний коефіцієнт на крупність матеріалу,так як 0,5B=300мм для дробарки ВЩД - 600×800 і в гірничий масі фракцій до 200 мм міститься 58 % (Додаток $\Gamma.2$);

 $K_{\varphi}=1{,}00$ - поправочний коефіцієнт, враховує форму подрібненного матеріалу гравійно-валунної маси з вмістом рваного каменю до 20% ;

 $K_{\rm B}=0.85$ - поправочний коефіцієнт на вологість дробарного матеріалу, прийнятий для граніту з природною вологоємкістю 8 % (Додаток $\Gamma.4$).

9.10.1.2 Кількість дробарок на першій стадії дрібнення:

$$n_1 = Q_1/Q_{p1} = 40,53/45 = 0,9 \approx 1.$$
 (9.36)

9.10.1.3 Коефіцієнт завантаження дробарки ВЩД 600×800:

$$K_1 = Q_1 / Q_{p1} \cdot n_1 = 40,53/45 \cdot 1 = 0,91.$$
 (9.37)

9.10.1.4 Розрахункова продуктивність КІД-900 на другій стадії дрібнення.

Паспортна продуктивність дробарки КІД-900 35 м³/год [9].

Розрахункова продуктивність:

$$Q_{p2} = Q_{\pi} \cdot K_{\mu} \cdot K_{\phi} \cdot K_{\kappa p} \cdot K_{B} = 35 \cdot 0,80 \cdot 0,89 \cdot 1,00 \cdot 0,85 = 21, M^{3}/год$$
, [9] (9.38)

де Q_n =35 - паспортна продуктивність дробарки, м³/год.

9.10.1.5 Кількість дробарок на другій стадії дрібнення:

$$n_2 = Q_2/Q_{p2} = 6.08/21 = 0.51 \approx 1.$$
 (9.39)

Годинна продуктивність 2 операції дрібнення:

$$Q_2 = Q_1 \cdot \gamma_2 = 40,53 \cdot 0,15 = 6,08, \text{ м}^3/\text{год}.$$
 (9.40)

9.10.1.6 Коефіцієнт завантаження дробарки КІД-900:

$$K_2=Q_2/Q_{p2} \cdot n_2=6.08/21 \cdot 1=0.51$$
, B.O. (9.41)

9.10.1.7 Розрахункова продуктивність КІД-900 на третій стадії дрібнення.

Паспортна продуктивність дробарки КІД-900 25 ${\rm M}^3/{\rm год}$, [9].

Розрахункова продуктивність:

$$Q_{p3} = Q_{\pi} \cdot K_{\mu} \cdot K_{\phi} \cdot K_{\kappa} \cdot K_{\mu} = 25 \cdot 0,80 \cdot 0,89 \cdot 1,00 \cdot 0,85 = 16, \text{ м}^3/\text{год},$$
 (9.42)

де Q_n =25 - паспортна продуктивність дробарки, м³/год, [9].

9.10.1.8 Кількість дробарок на третій стадії дрібнення:

$$n_3 = Q_3/Q_{p3} = 5,2/15 = 0,43 \approx 1.$$
 (9.43)

Годинна продуктивність 3 операції дрібнення:

$$Q_3 = Q_2 \cdot \gamma_3 = 6.08 \cdot 0.85 = 5.2$$
, м³/год. (9.44)

9.10.1.9 Коефіцієнт завантаження дробарки КІД-900:

$$K_3 = Q_2 / Q_{p2} \cdot n_2 = 6.08 / 15 \cdot 1 = 0.53, \text{ B.o.}.$$
 (9.45)

9.11 Вибір та розрахунок обладнання для грохочення [5].

Максимальний розмір куска у вихідній гірничій масі дорівнює 500 мм, тому вибираємо для попереднього грохочення нерухомий колосниковий грохот. Насипна маса вихідної сировини δ =1,6 т/м³, продуктивність Q_1 =77 м³/год. Витрати на встановлення нерухомого колосникового грохочення значно нижчі, ніж на встановлення ГІТ, тому знижується собівартість.

Продуктивність грохота по вихідній гірничій масі становить 77 м³/год. [5].

Для операції грохочення 1 обираємо грохіт ГІТ-21 з розміром отвору просіювальної поверхні сит 1000×2000 мм, продуктивність паспортна $50~{\rm m}^3/{\rm год}$. Площа сита $2,5~{\rm m}^2$.

9.11.1 Розрахункова продуктивність грохота ГІТ-21 [10]:

$$Q_{p1}$$
=c·q·F·k·l·m·n·o·p=0,85·63·2,5·0,44·1,74·1,3·1,0·0,9·1,0=119 м³/год, (9.46)

де с = 0,85 - для верхнього сита при навантаженні грохоту матеріалом по ширині $0,65B_{\rm c},[10];$

q = 63,00 - питома об'ємна продуктивність при розмірі отворів сит 100 мм, $m^3/(m^2 \cdot rog)$, (Додаток $\Gamma.8$);

F = 2,50 - площа поверхні сита, м²;

k = 0,44 - склад зерен у навантаженні грохоту, розмір яких менше половини отворів сита;

l = 1,74 - склад зерен у навантаженні грохота, розмір котрих більше отворів сита;

m=1,30 — вплив ефективності грохочення, при якому ефективність грохочення 80%, (Додаток Γ .7);

n = 1,00 - подрібнений матеріал;

о = 0,90 - розмір отворів сита при сухому матеріалі;

p = 1,00 - сухе грохочення.

Кількість грохотів ГІТ 21:

$$N_1 = Q_1/Q_{p1} = 40,53/119 = 0,45 \approx 1.$$
 (9.47)

Коефіцієнт завантаження грохота:

$$K_1 = Q_1 / N_1 \cdot Q_{p1} = 40,53/(1.119) = 0,45.$$
 (9.48)

Таким чином, один грохіт ГІТ-21 забезпечує грохочення 1 з коефіцієнтом завантаження 45%.

9.11.2 Розрахункова продуктивність грохота ГІТ 21 [10]:

$$Q_{2p}$$
=c·q·F·k·l·m·n·o·p=0,7·28·2,0·0,147·0,94·1,12·1,0·0,75·1,0=4,55 м³/год, (9.49)

де с = 0,7 - для верхнього сита при навантаженні грохоту матеріалом по ширині не більше $0,65\mathrm{B}_\mathrm{c};$

q = 28,00 - питома об'ємна продуктивність при розмірі отворів сит 20 мм, $m^3/(m^2 \cdot rog)$ [1];

F = 2,00 - площа поверхні сита,м²;

k = 0,147 - склад зерен у навантаженні грохоту, розмір яких менше половини отворів сита γ_2^{-10} =4,9 % [1];

1=0,94 - склад зерен у навантаженні грохота, розмір котрих більше отворів сита ($\gamma_2^{-20-100} = \gamma_2^{-100}$ - $\gamma_2^{-20} = 0,168$ -0,050=0,118);

m = 1,12 - ефективність грохочення;

n = 1,0 - подрібненний матеріал;

o = 0.75 - вологість матеріалу 8%;

p = 1.0 - сухе грохочення.

Розрахункова продуктивність грохота ГІТ 21 з урахуванням коефіцієнта залипання сита.

$$Q_{2p} = Q_{2p} \cdot \kappa_{3} = 4,54 \cdot 0,7 = 3,18 \text{ м}^{3}/\text{год},$$
 (9.50)

де к $_3$ =0,7- коефіцієнт залипання сита з природною вологістю матеріалу 8, % [3].

Кількість грохотів ГІТ 21:

$$N_2 = Q_2/Q_2 = 6.08/3.18 = 1.9 = 2.$$
 (9.51)

Коефіцієнт завантаження грохота:

$$K_2 = Q_2 / N_2 Q_{2p} = 6,08/2 \cdot 3,18 = 0,94.$$
 (9.52)

Таким чином один грохіт ГІТ-21 забезпечує грохочення 3 з коефіцієнтом завантаження 94%.

9.11.3 Вибір та розрахунок обладнання для операції грохочення 4.

Після першого подрібнення розміри кусків вихідної гірської маси зменшились, границя розділення грохочення 4 за технологічною схемою

становить 70 мм. Використовуємо для даного грохочення грохот ГІТ-31. Розрахункова продуктивність ГІТ-31 на грохоченні 4[1]:

$$Q_{p4} = c \cdot q \cdot F \cdot k \cdot l \cdot m \cdot n \cdot o \cdot p = 0,7 \cdot 50 \cdot 3,1 \cdot 0,42 \cdot 1,0 \cdot 1,2 \cdot 1,0 \cdot 0,75 \cdot 1,0 = 35,15 \text{ м}^3/год,$$
 (9.53)

де c = 0,7 - для верхнього сита при навантаженні грохоту матеріалом по ширині не більше $0,65B_{c};$

q = 50 - питома об'ємна продуктивність при розмірі отворів сит 70 мм, $m^3/(m^2 \cdot rog)$

F = 3,1 - площа поверхні сита,м²

k = 0,42 - склад зерен у навантаженні грохоту, розмір котрих менше половини отворів сита;

1 = 1,0 - склад зерен у навантаженні грохота, розмір котрих більше отворів сита;

m = 1,2 - ефективність грохочення;

n = 1,0 - подрібнений матеріал;

o = 0.75 - вологість матеріалу;

p = 1,0 - сухе грохочення.

9.11.4 Вибір та розрахунок обладнання для грохочення 5.

Границя розділення на грохоті 5 становить 10 мм, тому використовуємо грохот інерційний середнього типу ГІС 21.

Розрахункова продуктивність ГІС 21 на грохоченні 5[1]:

$$Q_{4p} = c \cdot q \cdot F \cdot k \cdot l \cdot m \cdot n \cdot o \cdot p = 0, 7 \cdot 19, 0 \cdot 2, 0 \cdot 0, 3 \cdot 0, 96 \cdot 1, 2 \cdot 1, 0 \cdot 0, 75 \cdot 1, 0 = 6,40 \ \text{м}^3 / \text{год} \ , \ (9.54)$$

де с=0,7 - для верхнього сита при навантаженні грохоту матеріалом по ширині не менше $0,65\mathrm{B}_\mathrm{c},$

q=19 - питома об'ємна продуктивність при розмірі отворів сит 10 мм, ${\rm m}^3/({\rm m}^2\cdot {\rm год})$

F=2,0 - площа поверхні сита,м²

k=0,3 - склад зерен у навантаженні грохоту, розмір котрих менше половини отворів сита γ_8^{-5} =0,1%

l=0,96 - склад зерен у навантаженні грохота, розмір котрих більше отворів сита

$$\gamma^{10-70} = \gamma_8^{-70} - \gamma_8^{-10} = 0,25-0,005 = 0,245;$$

m=1,2 - ефективність грохочення, оскільки $E_4=0,86$,

n=1,0 - подрібненний матеріал,

о=0,75 - вологість матеріалу,

р= 1,0 - продуктивність грохота, тому що розмір отвору 10 мм.

Розрахункова продуктивність грохота ГІС 21 з урахуванням коефіцієнта залипання сита.

$$Q_{5p} = Q_{5p} \cdot \kappa_3 = 6.40 \cdot 0.7 = 4.48 \text{ M}^3 / \text{год},$$
 (9.55)

де к $_3$ =0,7- коефіцієнт залипання сита з природною вологістю матеріалу 8 % [3].

Кількість грохотів ГІС 21:

$$N_5 = Q_8/Q_{5p} = 10,13/4,48 = 1,99 = 2.$$
 (9.56)

Коефіцієнт завантаження грохота:

$$K_5 = Q_8 / N_5 = 10,13/2 \cdot 4,48 = 0,97.$$
 (9.57)

Таким чином один грохіт ГІС-21 забезпечує грохочення 4 з коефіцієнтом завантаження 97 %.

9.11.5 Вибір та розрахунок обладнання для грохочення 7.

Для грохочення 7 застосовуємо інерційний грохот легкого типу ГІЛ-32 Розрахункова продуктивність ГІЛ 32 на грохоченні для верхнього сита [1]:

$$Q_{7p}$$
=c·q·F·k·l·m·n·o·p=1·28·3,1·0,6·0,96·0,75·1·0,75·1=28,12 м³/год, (9.58)

де c=1,0 - для верхнього сита при навантаженні грохоту матеріалом по ширині не менше $0,65\mathrm{B}_\mathrm{c},$

q=28 - питома об'ємна продуктивність при розмірі отворів сит 20 мм, ${\rm m}^3/({\rm m}^2\cdot {\rm год})$

F=3,1 - площа поверхні сита,м²

k=0,6 - склад зерен у навантаженні грохоту, розмір котрих менше половини отворів сита γ_{14}^{-10} =0,061.

l=0,96 - склад зерен у навантаженні грохота, розмір котрих більше отворів сита

m=0,75 - ефективність грохочення, оскільки $E_7=0,95,$ в.о.[1]

n=1,0 - подрібненний матеріал,

о=0,75 - вологість матеріалу,

р= 1,0 - продуктивність грохота, тому що розмір отвору 20 мм.

Розрахункова продуктивність Q_{7p} грохоту ГІЛ-32 для нижнього сита [1]:

$$Q_{7p}$$
=c·q·F·k·l·m·n·o·p=0,7·28,0·3,1·0,6·0,96·0,75·1·0,75·1=19,68 м³/год (9.59)

Кількість грохотів ГІЛ-32 на операції грохочення 7

$$N_7 = Q_{14} / Q_{7p} = 28,43 / 28,12 = 1 \text{ IIIT.}$$
 (9.60)

На грохочення 7 надходить продукт операції 14.

Отже, потрібен лише 1 грохіт.

На нижнє сито надходить продукт операції 17.

$$N_7' = Q_{17} / Q_{7p} = 28,86/19,68 = 1,46 = 2 \text{ IIIT.}$$
 (9.61)

Отже, потрібен лише 1 грохіт.

Коефіцієнт завантаження грохота ГІЛ 32 по верхньома ситу:

$$K_7^1 = Q_{14} / N_7 Q_{7p} = 28/1.28, 12 = 0.89.$$
 (9.62)

Коефіцієнт завантаження грохота ГІЛ 32 по нижньому ситу:

$$K_7^2 = Q_{14} / N_7 Q_{7p} = 28,86/2 \cdot 19,68 = 0,73.$$
 (9.63)

9.11.6 Вибір та розрахунок обладнання для грохочення 9.

Грохочення 9 – товарне і здійснюється мокрим методом.

Для грохочення 9 застосовуємо інерційний грохот легкого типу ГІЛ-22.

Розрахункова продуктивність Q_{9p} грохоту ГІЛ-22 для верхнього сита [1]:

$$Q_{9p}$$
=c·q·F·k·l·m·n·o·p=1·19,0·2·0,6·0,96·0,75·1·0,75·1=12,31 м³/год, (9.64)

де c = 1,0 – коефіцієнт використання поверхні сита, для верхнього сита при навантаженні грохоту матеріалом по ширині не менше 0,7 Вс,

g = 19— питома об'ємна продуктивність 1 m^3 сита грохоту при розмірі отворів сита $10 \text{ мм}, \text{ м}^3/(\text{м}^2 \text{ год}), [1];$

k=0,6- склад зерен у навантаженні грохоту, розмір яких менше половини отворів сита $\gamma_{17}^{-5}=8,2$ %, в.о., [1];

l = 0.96 – склад зерен у навантаженні грохота, розмір котрих більше отворів сита, в.о., [1];

$$\gamma_{13}^{-10-20} = \gamma_{13}^{-20} - \gamma_{13}^{-10} = 0,238-0,115=0,123;$$

m = 1,0 - ефективність грохочення $E_9 = 0,91$, в.о., [1];

n = 1,0 – на сито подається подрібнений матеріал, в.о., [1];

о=0,9- вологість матеріалу 10 %,в.о., [1];

р= 1,25 – вологе грохочення, в.о., [1].

Розрахункова продуктивність грохоту ГІЛ-22 для нижнього сита [1]:

$$Q_{9p}$$
=c·q·F·k·l·m·n·o·p=0,85·11·2·0,6·0,96·0,75·1·0,75·1,25=7,57 м³/год, (9.65)

де g = 11— питома об'ємна продуктивність $1m^3$ сита грохоту при розмірі отворів сита 5 мм, $m^3/(m^2 \text{ год})$, [1];

c = 0.85 – коефіцієнт використання поверхні сита, для нижнього сита при навантаженні грохоту матеріалом по ширині не менше 0.7 Вс;

Вс-ширина сита, в.о., [1].

Кількість грохотів ГІЛ-22 на операції грохочення 9

$$N_9 = Q_{17} / Q_{9p} = 28,86/12,31 = 2 \text{ IIIT.}$$
 (9.66)

На грохочення надходить продукт операції 17.

Отже, потрібен лише 1 грохіт.

На нижнє сито надходить продукт операції 20.

$$N_9' = Q_{20} / Q_{9p} = 2,43/7,57 = 0,32 = 1 \text{ IIIT.}$$
 (9.67)

Отже, потрібен лише 1 грохіт.

Коефіцієнт завантаження грохота k₉, k₉ на операції грохочення 9

Коефіцієнт завантаження грохота на операції грохочення 9 по верхньому ситу [1]:

$$k_9 = Q_{17} / (N_9 \cdot Q_{9p}) = 28,86 / (2 \cdot 12,31) = 0,91 \text{ B.o.}$$
 (9.68)

Коефіцієнт завантаження грохота на операції грохочення 9 по нижньому ситу [1]:

$$k_9' = Q_{20} / (N_9' \cdot Q_{9p}) = 2.43 / (1 \cdot 7.57) = 0.32 \text{ B.o.}$$
 (9.69)

9.11.7 Вибір та розрахунок обладнання для грохочення 10.

Грохочення 10 призначене для утилізації відходів. Воно здійснюється мокрим методом.

Для грохочення 10 застосовуємо інерційний грохот легкого типу ГІЛ-21.

Розрахункова продуктивність Q_{10p} грохоту ГІЛ-21 [1]:

$$Q_{10p} = c \cdot q \cdot F \cdot k \cdot l \cdot m \cdot n \cdot o \cdot p = 1 \cdot 11 \cdot 2 \cdot 0, 6 \cdot 0, 94 \cdot 0, 75 \cdot 1 \cdot 0, 75 \cdot 1, 25 = 8,72 \text{ м}^3/год, (9.70)$$

де c = 1 – коефіцієнт використання поверхні сита, для верхнього сита при навантаженні грохоту матеріалом по ширині не менше $0.7~\mathrm{Bc}$;

Вс - ширина сита, в.о., [1];

g = 11— питома об'ємна продуктивність 1 m^3 сита грохоту при розмірі отворів сита 5 мм, $\text{м}^3/(\text{м}^2 \text{ год})$, [1];

k=0,6- склад зерен у навантаженні грохоту, розмір яких менше половини отворів сита $\gamma_{22}^{-0,14}=1$ %, в.о., [1];

1 = 0.94 – склад зерен у навантаженні грохота, розмір котрих більше отворів сита, в.о., [1];

$$\gamma_{22}^{-5-20} = \gamma_{22}^{-20} - \gamma_{22}^{-5} = 0.0783 - 0.035 = 0.043$$
, B.O.;

 $m = 1 - \text{ефективність грохочення } E_{10} = 0,91, \text{ в.о., } [1];$

n = 1 – на сито подається подрібнений матеріал, в.о., [1];

о = 0,9- вологість матеріалу 10 %, в.о., [1];

p = 1,25 – вологе грохочення, в.о., [1].

Кількість грохотів ГІЛ-21 на операції грохочення 10

$$N_{10} = Q_{22} / Q_{10p} = 2,996 / 8,72 = 0,35 \text{ IIIT.}$$
 (9.71)

На грохочення надходить продукт операції 22.Отже потрібен лише 1 грохіт.

Коефіцієнт завантаження грохота k_{10} на операції грохочення 10:

$$k_{10} = Q_{22}/(N_{10} \cdot Q_{10p}) = 2,998/(1 \cdot 8,72) = 0,35 \text{ B.o.}$$
 (9.72)

Результати розрахунку заносимо до Таблиці 9.3

Таблиці 9.3 – Результат розрахунку грохотів

Марка грохота	Q_p , м 3 /год	N, штук	к, в.о.
1	2	3	4
1.Колосниковий	17,01	1	
2.ΓIT-21	3,58	1	0,91
3.FIT-31	35,15	1	0,76
4.ΓIC-21	4,48	2	0,97
5.ГІЛ-32 в.с.	28,12	1	0,89
H.C.	19,68	1	0,73
6.ГІЛ-22 в.с.	12,31	1	0,91
H.C.	7,57	1	0,32
7.ГІЛ-11	8,72	1	0,35

9.12 Вибір живильника

ПОТ-15

Розміри: довжина — 8500 мм, ширина — 5670 мм, висота — 2055 мм, маса — 45548 кг, швидкість стрічки — 0.025 м/с, продуктивність — 100 м3/год.

9.13 Вибір класифікатора

Продукт крупністю (0...5) мм з операції 23 надходить на класифікатор. Обираємо класифікатор 1КСН-7,5 [12].

9.13.1 Розрахунок класифікатора

Продуктивність класифікатора Q_{11} по піску [12]:

$$Q_{11} = 5.6 \cdot i \cdot n \cdot k_1 \cdot D_1^s = 5.6 \cdot 1 \cdot 7.8 \cdot 0.95 \cdot 1.3^s = 91.17 \frac{M^3}{\Gamma O_{\overline{A}}}.$$
(9.81)

де i = 1 - кількість спіралей, в.о., [12];

n = 7,8 — частота обертання спіралі, об/ хв., [12];

 k_1 =0,95 — коефіцієнт, який враховує крупність перероблюваного піску. Він прийнятий для модуля крупністю M=30, в.о., [12];

 D_1 =1,3 – діаметр спіралі, м, [12].

9.13.1.1 Кількість N_{11} та коефіцієнт завантаження k_{11} класифікатора:

$$N_{11}=Q_{23}\cdot(\delta_{23}/Q_{11})=9,32\cdot(1,5/91,17)=0,15\approx1 \text{ mt.}$$
 (9.82)

$$K_{11}=Q_{23}\cdot(\delta_{23}/Q_{11})\cdot N_{11}=9,32\cdot(1,5/91,17)\cdot 1=0,15 \text{ B.o.}$$
 (9.83)

Отже, прийнятий класифікатор 1КСН-12М буде завантажений на 0,15 % і має резерв підвищення продуктивності.

9.14 Джерела для промивки готової продукції та організації циркуляції води

Для забезпечення ДСЗ водою використовується натуральне джереловідроблений кар'єром з об'ємом води:

$$V=L\cdot B\cdot h=\cdot 90\cdot 60\cdot 50=270000 \text{ m}^3,$$
 (9.84)

де L=80 - довжина кар'єра ,м;

В=60 - ширина кар'єру, м;

h=50 - глибина кар'єру, м.

Існуюче водосховище буде постійно наповнюватись водою із нового кар'єра підземними водами та з водосховища.

Для забезпечення технологічної схеми водою на заводі організовано замкнутий цикл з тристадійним освітленням води.

Необхідна кількість води для заводу [3]:

$$Q_{\theta o \partial u \ 3a2} = Q_{\theta} \cdot t_{p.\partial o \delta} \cdot n = 250 \cdot 24 \cdot 75 = 450000 \text{ m}^3$$
 (9.85)

9.15 Вибір конвеєрів для забезпечення технології ДСЗ

Ширина смуги конвеєра В повинна задовольняти умову [9]:

$$B \ge Q_{\text{max}} + 200 \,\mathrm{M}\,,$$
 (9.86)

де Q_{max} – найбільший лінійний розмір кусків породи, мм.

Продуктивність конвеєра Q [9]:

$$Q = F \cdot V \cdot \gamma = c \cdot (0.9B - 0.05)^2 V \cdot \gamma$$
, т/год, (9.87)

де $F = c \cdot (0.9B - 0.05)^2 -$ площа насипного матеріалу, мм², [9];

с – коефіцієнт, який залежить від кута відкосу матеріалу і ширини смуги, в.о., [9];

В – ширина стрічки конвеєра, мм, [9];

V – швидкість руху смуги конвеєра, м/год, [9];

 γ – насипна маса гірської маси, т/м³, [9].

Враховуючи ці параметри вибираємо необхідні конвеєра і заносимо їх у таблицю 9.4

Таблиця 9.4 – Вибір конвеєрів

Номер	Продуктивність	Ширина	Швидкість V,	Довжина
конвеєра	Q , м 3 /год	стрічки В, мм	м/с	конвеєра, м
1	2	3	4	5
1	77,460	1200	1,50	90
N2	12,471	1200	1,00	30
N3	64,989	1000	1,70	30
N5	9,760	800	0,80	25
N6	64,989	650	1,80	25
N9	59,179	650	1,70	30
N22	20,372	500	2,00	40
N8	15,569	650	3,05	25
N12	59,179	650	2,5	30
N11	13,478	650	3,15	45
N21	53,138	500	1,70	20
N20	5,964	500	1,90	20
N19	4,803	500	2,0	20

9.16 Хвостосховища та склади готової продукції

Місткість складів готової продукції визначається виходячи із продуктивності ДСЗ і допустимої перерви постачання рухомого складу під завантаження.

Так як ДСЗ з цілорічним розпорядком праці, то об'єм складів визначається залежно від розпорядку відвантаження річної продукції.

Для фракції (20..40) мм об'єм складу V_{ck} [4]:

$$V_{c\kappa} = Q^{(20..40)} \cdot (365 - N)/365 = 22566,68 \cdot (365 - 358)/365 = 432,8 \text{ m}^3,$$
 (9.88)

де $Q^{(20-40)} = 22566,68 - річна продуктивність заводу по фракції (20...40) мм, м³/рік;$

N=358 – тривалість сезону відвантаження, дні, [4].

Для фракції (10..20) мм об'єм складу V_{ck} [4]:

$$V_{cx} = Q^{(10...20)} \cdot (365 - N) / 365 = 142732,96 \cdot (365 - 358) / 365 = 2737,3 \text{ m}^3, (9.88)$$

де $Q^{(10..20)}$ =142732,96— річна продуктивність заводу по фракції (10...20) мм, M^3 /рік.

Для фракції (5...10) мм об'єм складу $V_{c\kappa}$ [4]:

$$V_{c\kappa} = Q^{(5...10)} \cdot (365 - N) / 365 = 10224,72 \cdot (365 - 358) / 365 = 196,1 \text{ m}^3, \quad (9.89)$$

де $Q^{(5...10)}$ =10224,72 м³– річна продуктивність заводу по фракції (5...10) мм, м³/рік.

Для фракції (0,14...5) мм об'єм складу $V_{c\kappa}$ [4]:

$$V_{c\kappa} = Q^{(0,14...5)} \cdot (365 - N) / 365 = 97599,6 \cdot (365 - 358) / 365 = 1871,7 \text{ m}^3, \quad (9.90)$$

 $\text{де}\,Q^{(0,14\dots 5)}=97599,6$ — річна продуктивність заводу по фракції $(0,14\dots 5)$ мм, м³/рік.

Склад штабельно-естакадний, розташований вздовж залізничних шляхів. Постачання продукції на склад — конвеєрами з пересувною скидаючою тачкою. Відвантаження — екскаваторне. Для збереження якості готової продукції на складах передбачається розділювальні сітки.

ВИСНОВКИ

- 1. В результаті реконструкції проведена розвідка родовища та виявлено додаткові запаси обсягом 10 млн. м³, тому кар'єр буде розробляти родовище протягом 40 років при річній продуктивності 260 тис. м³/рік.
- 2. Розрахована необхідна кількість вхідної гірничої маси 209287,93 м³/рік, для забезпечення виходу готової продукції дробарно-сортувального заводу при продуктивності 260 тис. м³/рік.
- 3. Згідно ДСТУ Б В.2.7-34:2001, що поширюється на щебінь з середньою густиною зерен понад 2,8 г/см³ до 3,2 г/см³, розглянуті та описані основні вимоги споживачів до готової продукції за основними показниками якості: насипною масою; зерновим складом; формою зерен; міцністю; абразивністю; вмістом зерен слабких порід; морозостійкістю; вмістом пилуватих і глинистих часток, у тому числі глини у грудках; стійкістю структури; вмістом шкідливих домішок і сполук.
- 4. Згідно ДСТУ Б В.2.7-76-98 «Будівельні матеріали. Пісок для будівельних робіт з відсіву подрібнення скельних гірських порід гірничо-збагачувальних комбінатів України», що поширюється на пісок з відсіву подрібнення з середньою щільністю зерен понад 2,8 до 3,2 г/см³, розглянуті та описані основні вимоги: насипна щільність;- зерновий склад; вміст пилуватих і глинистих часток, у тому числі глини в грудках; вміст глинистих часток, визначених методом набрякання (при розробці відвалів відсіву дроблення); вміст органічних домішок; міцність; морозостійкість; вміст порід і мінералів, віднесених до шкідливих домішок; значення сумарної питомої активності природних радіонуклідів до якості пісків.
- 5. Обравши максимальний розмір куска на вході 500 мм і на виході 20 мм, для отримання більшої кількості фракцій (10...20) мм, встановлено загальну ступінь подрібнення рівною 26,26 та три часткові: 3,13; 2,28; 3,68, відповідно добуток яких дорівнює 26,26 і перевищує загальну. Тому було доцільно обрати трьох стадійну технологічну схему подрібнення.
- 6. За нормами технологічного проектування підприємств нерудних будівельних матеріалів встановлено режим роботи ДСЗ: розклад роботи ДСЗ

рийнято цілорічним; добовий розпорядок тризмінний; робочий тиждень — 5 діб; 8 годинний робочий день; кількість робочих змін на тиждень 15; -розпорядок роботи складів по відвантаженню готової продукції цілорічний без вихідних днів.

- 7. Розраховано фонд чистого часу 5164 год та годинна продуктивність дробарно сортувального заводу 50,35 м³/год. Обрано трьохстадійну технологічну схему ДСЗ, з обов'язковим попереднім грохоченням перед кожною стадією.
- 8. При проектуванні ДСЗ передбачена утилізації мокрим способом, що дозволяє зільшити вихід готової продукції від 75 до 95,6 %, що зменшує відходи.
- 9. Проведений розрахунок якісно-кількісної схеми по операціях (1...27), а саме: виходу продукту, фракційної ефективності, характеристики крупності продуктів. Побудована таблиця 9.2, на основі результатів розрахунків технологічних операцій ДСЗ.
- 10. Проведено вибір і розрахунок обладнання для реалізації технології ДСЗ.При виборі дробарного обладнання обрані дробарки ВЩД 600х900 (1ша стадія подрібнення), КІД 900 (2а, 3я стадії). Розраховані для них такі параметри: розрахункова продуктивність (Qp = 45m^3 /год; Qp = 21m^3 /год; Qp = 15m^3 /год;); кількість дробарок для роботи на кожній із стадій (n_1 =2 um., n_2 =1 um., n_3 =1 um.); коефіцієнти завантаження дробарки (K1 = 0,83 в.о., K2 = 0,68 в.о., K3 = 0,80 в.о.). Обрано та розраховано обладнання для грохочення , результати розрахунків приведені в таблиці 9.1.
- 11. В якості обладнання для промивки обрано класифікатор 1КСН-7,5. Проведено розрахунок продуктивності класифікатора по піску (Qп=52,99 м 3 /год). Розрахована необхідна кількість обладнання (N = 1 шт.) та коефіцієнт завантаження (K3 = 0,28 в.о.).
- 12. Для забезпечення ДСЗ водою використовується натуральне джерело, з відробленим кар'єром об'ємом води :V = 270000 м^3 . Розрахована необхідна кількість води для заводу, що склала : Qв = 450000 м^3 .

ПРАКТИЧНІ РЕКОМЕНДАЦІЇ

- 1. Звіт може бути використаний як основа для проектування ефективного використання ресурсів на підприємствах переробки гірських порід та утилізації відходів виробництва. Використання в математичній моделі емпіричних рівнянь може призвести до спотворення результатів моделювання. Дана модель потребує експериментальної бази.
- 2. Аналіз розрахунків сприяє гнучкому вибору і обґрунтуванню технологічних схем переробки та збагачення будівельних гірських порід для конкретних виробничих умов виробництва.
- 3. Розрахунок технологічної схеми ДСЗ та вибір обладнання є трудомістким і займає багато часу, тому застосування обчислювальної техніки дає змогу суттєво скоротити час і підвищити продуктивність розрахунку.

ПЕРЕЛІК ПОСИЛАНЬ

- 1. Нормы технологического проектирования предприятий промышленности нерудных строительных материалов / [Абрамсон В.Ш., Аксенов В.С., Андронников И.К. и др.] Л.: Строиздат, 1977. 368 с.
- 2. Терентьєв О.М. Техніка і технологія переробки будівельних гірських порід. Методичні вказівки до вивчення курсу для студентів гірничих спеціальностей усіх видів форм навчання / Уклад. О.М. Терентьєв, В.О. Хоренко. К.: ІОЦ Видавництво "Політехніка", 2002. 88 с.
- 3. Терентьев О.М. Методические указания к курсовому и дипломному проектированию по курсу «Переработка, качество и обогащение полезных ископаемых» для студентов специальности «Технология и комплексная механизация открытой разработки месторождений полезных ископаемых» / Олег Маркович Терентьев. К.: КПИ, 1986. 64 с.
- 4. Терентьєв О.М. Основи переробки та збагачення корисних копалин. Методичні вказівки до вивчення курсу для студентів спеціальності «Розробка родовищ корисних копалин» / Уклад. О.М. Терентьєв, В.О. Хоренко. К.: ІОЦ "Видавництво «Політехніка», 2003. 112 с.
- 5. Крупко В.Г. Методичні вказівки до практичних і самостійних робіт з дисципліни «Машини для виробництва будівельних матеріалів». / Укл. В.Г. Крупко, М.Ю. Дорохов. Краматорськ: ДДМА, 2003. Ч. 2. 28 с.
- 6. ДСТУ Б В.2.7-34:2001 «Щебінь для будівельних робіт із скельних гірських порід та відходів, сухого магнітного збагачення залізистих кварцитів гірничо-збагачувальних комбінатів і шахт України», дійсний.
- 7. ДСТУ Б В.2.7-76-98 «Будівельні матеріали. Пісок для будівельних робіт з відсіву подрібнення скельних гірських порід гірничо-збагачувальних комбінатів України», дійсний.
- 8. ГОСТ 27412-93 «Дробилки Щекове. Общие технические условия», действителен.

- 9. ГОСТ 14916-82 «Дробилки. Термины и определения. Технические условия».
- 10. Сажин Ю.Г. Расчеты рудоподготовки обогатительных фабрик. Учебник.-Алматы: КазНТУ, 2000.-179с.
- 11. Геомеханика открытых горных работ/ А.М.Гальперин.-М.:изд. Моск.гос. Горного университета,2003.-473с.

ДОДАТОК А

Універсальний десятинний класифікатор

- 622. гірнича справа
- .732 дроблення
- .742 грохоти, решета, сита для збагачення
- .621 загальне машинобудування, ядерна техніка, електротехніка, механічна технологія в цілому
 - .564 брущатка, щебінь
 - .553 вивчення родовищ корисних копалин
 - .926 обладнання для дроблення та подрібнення твердих матеріалів
 - .08 степінь дроблення або зменшення крупності

додаток б

Код продукту визначаємо з ДКПП 016-97

- 29 машинне устаткування
- .52 машини та устаткування для добування в промисловості та будівництві
- .40 машини для оброблення мінеральних матеріалів
- .330 машини для сортування, подрібнення, змішування та таке інше
- 14 матеріали неенергетичні, продукція добувної промисловості інша
- .2 пісок та глина
- .21 пісок та гравій
- .1 пісок та гравій

додаток в

Таблиця В.1 – Ефективність операцій грохочення [1]

Найменування операції	Тип обладнання	Ефективність грохочення, %
1	2	3
Попереднє грохочення перед першою стадією подрібнення	Колосниковий нерухомий грохот Інерційний грохот	6070 7085
Те ж саме перед другою стадією подрібнення	Вібраційний грохот	8590
Кінцеве товарне грохочення,	Інерційний грохот	9098
грохочення в замкненому циклі	Вібраційний грохот	9098
Класифікація	Спіральний класифікатор	6070
Промивання	Коритні і вібраційні промивочні мийки	8595

Таблиця В.2 - Фракційний склад вхідної гірничої маси

Розмір фракції,	Вихід фракції,	Розмір фракції,	Вихід фракції,
MM	В.О	MM	B.O
1	2	3	4
00,14	0,01	070	0,18
05	0,06	0100	0,25
010	0,09	0200	0,58
020	0,15	0300	0,80
040	0,16	0500	1,00

Крупність в долях ширини розвантажувальної щілини дробарки

Рисунок В1 — Типова характеристика крупності продуктів дроблення вивержених порід і міцних вапняків з межою міцності 60,0 Мпа і більше у вібраційних щокових дробарках: γ , % - сумарний вихід верхнього класу.

додаток г.

Таблиця $\Gamma.1$ – Значення коефіцієнта e, % [5]

Тип грохота	Щебінь	Гравій
Горизонтальний з напрямленими коливаннями	89	91
Горизонтальний з коловими коливаннями	86	87

Таблиця $\Gamma.2$ – Значення коефіцієнтів k_1 , k_2 , k_3 [5]

Кут нахилу, градус	k' ₁	Вміст зерен нижнього класу у вихідному матеріалі, %	k_2	Вміст у нижньому класі зерен розміром, меншим за половину розміру отвору сита, %	$k_{\mathtt{s}}^{\cdot}$
0	1,0	20	0,86	20	0,9
9	1,07	30	0,9	30	0,95
12	1,05	40	0,95	40	0,98
15	1,03	50	0,97	50	1,0
18	1,0	60	1,0	60	1,01
21	0,96	70	1,02	70	1,03
24	0,88	80	1,03	80	1,04

Таблиця Г.3 – Поправочний коефіцієнт на крупність матеріалу [10]

Склад у живленні										
фракцій крупніше 0,5В,	5	10	20	25	30	40	50	60	70	80
%										
1	2	3	4	5	6	7	8	9	10	11
Ккр	1,1	1,08	1,05	1,04	1,03	1,00	0,97	0,95	0,92	0,89

Таблиця Г.4 – Поправочний коефіцієнт на дробимість матеріалу [10]

Категорія міцності породи	Тимчасовий опір на стиснення, МПа	Коефіцієнт дробимості				
1	2	3				
Особливо міцні	більше 250	0,80				
Міцні	200250	0,85				
Міцні	180200	0,90				
Міцні	150180	0,95				
Середньої міцності	60150	1,00				
Нижче середньої	менше 60	1,20				
міцності						

Таблиця Г.5 – Поправочний коефіцієнт на вологість дробимого матеріалу, який містить комкуючу дрібницю [10]

Вологість	4	5	6	7	0	0	10	11	
матеріалу, %	4	3	O	/	0	9	10	11	
1	2	3	4	5	6	7	8	9	
Кв	1,00	1,00	0,95	0,90	0,85	0,80	0,77	0,65	

Таблиця Г.6 – Значення поправочних коефіцієнтів [10]

Коэф фици ент	Условия, учитыва емые коэффиц иентом	Условия грохочения и значения коэффициентов										
К	Влияние мелочи	Содержание в питании зерен, размерами меньше половины отверстия сита, %	<10	10	20	30	40	50	60	70	80	90
		Значение коэффициента	0.30	0. 44	0.	0.	1.	1. 2	1. 4	1. 6	1.8	2.
L	Влияние крупных	Содержание в питании зерен, размерами крупнее отверстия сита, %	10	20	25	30	40	50	60	70	80	90
		Значение коэффициента	0.94	0. 97	1.	1. 03	1.	1.18	1. 32	1. 74	2. 00	3. 36

Закінчення таблиці Г.6

Коэф фици ент	Условия, учитывае мые коэффиц иентом	Условия грохочения и значения коэффициентов											
M	Влияние эффекти вности	Эффективность грохочения, %	40	50	60	70	80	90	92	94	95	96	
ия	грохочен ия	Значение коэффициента	2.30	2.1	1.9	1.6	1.3	1.0	0.9	0.8	0.7	0.6	
N	Форма зерен и материал	Форма зерен	Дробразны			-	окру	ерна Угол круглой фор- ы (морская алька) 1.5					
		Значение коэффициента	1.0						2.5			.3	
О	Влияние влажнос ти материал	Материал	Для отверстий меньше 2: мм Сухой Влаж Комкунный щий						больше 25 мм				
	a	Значение коэффициента	1.0		0.75– 0.85	0.	2–0.6	5 (0.9–1.0				
P	Способ	Грохочение	Для с мм Сухо							больше 25 мм			
	ия	Значение коэффициента	1.0			1.25- 1.40			1.0				

Таблиця Г.7 – Питома продуктивність вібраційних грохотів [10]

Отвір сита, мм	5	8	10	12	16	20	25	32	40	50	70	80	100
Среднє значення, $M^3/(M^2*4)$	10	16	19	21	24.5	28	31	34	38	42	50	55	63

Таблиця Г.8 – Технічні характеристики спіральних класифікаторів з непогружною спіраллю [10]

	1	1	1	1	ı	Γ		T		
Типоразмер	Диаме	Длин	Угол	Чис	Частота	Мощно	Macc	Габариты, мм		
классифика	тр	a	накло	ло	вращен	сть	а, т	Длин	Шири	Высо
тора	спира	ванн	на	спир	ия	двигате		a	на	та
	ли,	ы,	ванны	алей	спирали	ля, кВт		a	на	1a
	MM	MM	, град.		, мин ⁻¹					
1KCH-3	300	3000	18	1	25	1.1	0.8			
1KCH-5	500	4500	18	1	12	1.1	1.5	5600	1000	1350
1KCH-7.5	750	5500	18	1	7.8	3.0	3.0	7200	1350	1600
1KCH-10	1000	6500	18	1	5.0	5.5	5.0			
1KCH-12	1200	6500	18	1	4.1, 8.3	3.0,	7.0	8500	1700	3000
						6.0				
1KCH-15	1500	8200	18	1	3.4, 6.8	7.5	13.0	1000	2360	3750
								0		
1KCH-20	2000	8400	18	1	2.0, 4.0	13.0	19.0	1100	2800	4750
								0		
1KCH-24	2400	9200	18	1	1.8, 3.6	13.0	23.0			

Закінчення таблиці Г.8

1КСН-	2400	9200	18	1	2.6, 5.2	11.0	21.4	1250	3150	4900
24A								0		
1КСН-	2400	1340	24	1	3.6	22.0	33.1	1600	2900	3950
24Б		0						0		
1KCH-30	3000	1250	18	1	1.5, 3.0	30.0	37.0	1600	2900	3950
		0						0		
2КСН-24	2400	9200	0–18	2	3.6	22.0	42.0	1175	3750	6000
								0		
2KCH-30	3000	1250	0–18	2	3.6	40.0	72.0	1505	5600	4000
		0						0		

додаток д

