6.842 Randomness and Computation

April 27, 2022

Lectures on Probabilistically Checkable Proofs

Lecturer: Ronitt Rubinfield Scribe: Yuchong Pan

The probablistically checkable proof (PCP) model consists of a polynomial time verifier, which is given an input x, a random string x, and a proof x (i.e., a fixed function).

Definition 1. We say that a language $L \in \mathsf{PCP}(r,q)$ if there exists a polynomial time verifier V such that

- (i) for all $x \in L$, there exists a proof π such that $\mathbb{P}_{\$}[V, \pi \text{ accepts}] = 1$;
- (ii) for all $x \notin L$, for any proof π' , $\mathbb{P}_{\$}[V, \pi' \text{ accepts}] < 1/4$.

Moreover, V uses at ist r(n) random bits and makes q(n) queries to π (each using 1 bit).

It is easy to see that $\mathsf{SAT} \in \mathsf{PCP}(0,n)$. Recall that the 3SAT problem asks for the satisfiability of a Boolean function F of the form $F = \bigwedge_i C_i$, where each clause C_i is of the form $C_i = y_{i_1} \vee y_{i_2} \vee y_{i_3}$ and each literal $y_{i_j} \in \{x_1, \ldots, x_n, \overline{x_1}, \ldots, \overline{x_n}\}$. We shall show the following theorem:

Theorem 2. $3SAT \in PCP(O(n^3), O(1))$.

Corollary 3. $NP \subseteq PCP(O(n^3), O(1))$.

Indeed, the following theorem holds:

Theorem 4. NP \subseteq PCP($O(\log n), O(1)$).

The first attempt of proving Theorem 2 is defining the proof π to be the settings of an assignment a, e.g., $a_1 = \mathsf{T}, a_2 = \mathsf{F}, \ldots$, and defining the verifier to pick a random clause C_i and check if a satisfies C_i . This is good because if a satisfies F, then $\mathbb{P}[V \text{ succeeds}] = 1$. However, this is bad because if a does not satisfy F, then there exists a clause i such that a does not satisfy C_i , so $\mathbb{P}_{\$}[V \text{ finds an unsatisfied } C_i] \geq 1/m$, where m is the number of clauses in F.

Recall Freivald's test:

Theorem 5 (Freivald's test). If $a, b \in \mathbb{Z}_2^n$ are such that $a \neq b$, then $\mathbb{P}_{r \in \mathbb{Z}_2^n}[a \cdot r \neq b \cdot r] \geq 1/2$. If A, B, C are $\{0, 1\}$ -valued $n \times n$ matrices such that $A \cdot B \neq C$, then $\mathbb{P}_{r \in \mathbb{Z}_2^n}[A \cdot B \cdot r \neq C \cdot r] \geq 1/2$. This also holds for equality modulo 2.

Proof. See Homework 1 and the orthogonality of the Fourier basis.

Proof of Theorem 2. We introduce an arithmetrization A(F) of a Boolean formula F over \mathbb{Z}_2 in Table 1. Then a Boolean formula F is satisfied by an assignment a if and only if A(F)(a) = 1. For a Boolean formula F consisting of clauses with 3 literals, $\deg A(F) \leq 3$.

We arithmetrize the complement of each clause separately (using for complements), i.e., let

$$C(x) = (\widehat{C}_1(x), \widehat{C}_2(x), \ldots).$$

Then $\widehat{C}_i(x) = 0$ if x satisfies C_i , so C(x) = (0, 0, ...) if F is satisfied by x. Recall that each C_i is a polynomial of degree at most 3, and the verifier V knows the coefficients.

Boolean formula F	$A(F)$ over \mathbb{Z}_2
T	1
F	0
x_i	x_i
$\overline{x_i}$	$1-x_i$
$\alpha \wedge \beta$	$\alpha \cdot \beta$
$\alpha \vee \beta = \overline{\bar{\alpha} \wedge \bar{\beta}}$	$1 - (1 - \alpha)(1 - \beta)$
$\overline{ \alpha \vee \beta \vee \gamma}$	$1 - (1 - \alpha)(1 - \beta)(1 - \gamma)$

Table 1: An arithmetrization A(F) of a Boolean formula F.

We apply Freivald's test to C(a). Fix an assignment a. For all $r \in \mathbb{Z}_2^m$,

$$\left(\widehat{C}_1(a), \dots, \widehat{C}_m(a)\right) \cdot (r_1, \dots, r_m) \equiv \sum_{i=1}^m r_i \widehat{C}_i(a) \pmod{2},$$

so by Freivald's test,

$$\mathbb{P}_{r \in \mathbb{Z}_2^m} \left[\sum_{i=1}^m r_i \widehat{C_i}(a) \equiv 0 \pmod{2} \right] = \left\{ \begin{array}{l} 1, & \text{if } \widehat{C_i}(a) = 0 \text{ (i.e., } F \text{ is satisfied by } a) \text{ for all } i \in [m], \\ \frac{1}{2}, & \text{otherwise.} \end{array} \right.$$

TODO.