b. Differentiate ReLu from a Leaky ReLu with its advantages and disadvantages.

$PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Question

Marks BL CO PO

- 26.i. Why do we prefer CNN over ANN for image data as input? Discuss your 5 view on this.
- ii. Can we use CNN to perform dimensionality reduction? If yes then which 10 layer is responsible for dimensionality reduction particularly in CNN. Explain your answer with an example.
- 27.i. Are decision trees affected by outliers. Discuss your answer.
- ii. Is it possible to process long sequences using regular RNNs? If not, then 5 why not?
- iii. In what situations would you prefer to use LSTMs over simple neural nets? 5

Reg. No.

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, MAY 2023

Fourth Semester

Note		(For the	e candidates admitte	d from the	academic year 2022-2023 onward	S)			
(i)			be answered in OM illator at the end of 4		rithin first 40 minutes and OMR sl	eet shou	ld be	han	ded
(i	i)		t - C should be answ						
Tim	e: 3	Hours				Max	. Ma	rks:	75
			PART – A (20 >	< 1 = 20N	larks)	Marks	BL	CO	PO
			Answer ALI	-				,	
	1.		to a set of assuralize a limited set		made by a learning algorith vations.	m ¹	2	1	1
		(A) Inductive		. ,	Incremental learning				
		(C) Hypothesi	S	(D)	Bias				
17	2.	_	trait of a conce		ng algorithm should be able	to ¹	2	1	2
		(A) Back track	• -		Consider				
		(C) Progress v	vith	(D)	Restrict				
ec .	3.	refers correctly.	to a sample belon	ging to the	he negative class being classifi	ed 1	2	1	2
		(A) True posit	ive	(B)	True negative				
		(C) False posit	tive	(D)	False negative				
	4.	4. Inductive learning takes examples and generalized rather than starting with knowledge.					2	1	2
		(A) Inductive	0	(B)	Existing	<u>i</u>			
		(C) Deductive		(D)	Implicit				
	5.	In the case of a	decision tree,	is	referred as inductive bias	1	2	2	2
		(A) The depth	of the tree	(B)	A leaf node				

	(A)	Back track	(B)	Consider				
	(C)	Progress with	(D)	Restrict				
		refers to a sample bel	longing to t	he negative class being classified	1	2	1	2
		True positive	(B)	True negative				
	(C)	False positive	(D)	False negative				
2	l. Ind	uctive learning takes examp knowledge.	oles and ger	neralized rather than starting with	1	2	1	2
	(A)	Inductive	(B)	Existing				
	(C)	Deductive	(D)	Implicit				
- 5		he case of a decision tree, _			1	2	2	2
	` '	~		A leaf node				
	(C)	Root node	(D)	Middle layer		3		
(5.	is biased towards mul	tivalued att	ributes.	1	2	2	2
	(A)	Information gain	(B)	Gain ratio				
	(C)	Entropy	(D)	Gini index				
,	7.	handles the outliers au	tomatically	and are robust to outliers	1	2	2	2
	$\overline{(A)}$		•	Linear regression				
	(C)	Decision trees	(D)	Logistic regression				
1		ding new data points to a drail decision tree.	lecision tree	e may lead to the of the	· 1	2	2	2
	(A)	Stability	(B)	Regeneration				
	(C)	Learning ability	(D)	Increased complexity				

9.	Give a hypothesis space H, a hypoth training data there exists some alternat a smaller error than h' over the entire d	tive 1	hypothesis h' eH such that h has	1	3	3	2
			Overfit				
		. ,	Accept				
10.	·	ided B)	between different classes. 1, 0.5	1	3	3	2
	(C) 0.5, 0 ((D)	0.5, 0.5				
11.	performs well for both high dis	men	sional data and low dimensional	1 .	2	3	2
	(A) Kernelized SVM ((B)	SVM				
	(C) Linear regression ((D)	Decision trees				
12.	The softmax activation function outp	ut tl	he values between and	1	3	2	2
	$\overline{(A)}$ 1 and -1 ((B)	0 and 1		×		
	(C) $0.5 \text{ and } -0.5$	D)	–1.0 and ∝				
13.	has the ability to escape from l	local	minima and converge to global	1	3	4	2
	(A) Batch gradient percent (B)	Stochastic gradient percent		,		
	(C) Mini-batch gradient percent (
14.	Vanishing gradient can be solved by			1	3	4	2
	· 1 i · · · · · · · · · · · · · · · · ·		Tanh				
	(C) ReLu	D)	Binary step function				
15.	The computes the error of all	obse	ervations.	1	3	4	2
	` '	. ,	Cost function				
	(C) Tanh function (D)	Sigmoid function				
	[8]			1	3	4	2
16.	Given an array of real numbers: 5	aj	oplication of soft-max function			*1	
	[0]						
	transforms the array into -		4				
	(A) $[0.5121]$ ((B)	[0.9522]				
	0.7101		0.0471				
	0.6132		0.0003				
	5 5	(D)	[0.9511]				
	0.2120	-	0.4111				
	0.1121		0.3211				
	L J		r7				

17	was designed to benefit beneficial mass suition	1	2	5	2
1/.	was designed to handle handwriting recognition.	•	~		
	(A) Lenet (B) Alexnet				
	(C) Resnet (D) Gazlenet				
18	Vanishing gradient can be resolved by activation function.	1	2	5	2
10.	(A) Sigmoid (B) Tanh				
	(C) ReLu (D) Binary step function				
19.	handles handwriting and speech recognition effectively.	1	2	5	2
	(A) CNN (B) Neural N/WS				
	(C) Feed forward N/WS (D) RNN				
	(5) 1555 151 (15)				
20.	has the ability to process temporal data.	1	3	5	2
	(A) CNN (B) RNN				
	(C) Alexnet (D) Resnet				
	$PART - B (5 \times 8 = 40 Marks)$	Marks	BL	CO	PO
	Answer ALL Questions				
21. a.	Elucidate the steps in FIND 'S' algorithm with suitable examples. Also,	8	2	1	2
	write the pseudo code of the algorithm.				
	(OR)	0	2	1	2
b.	With suitable examples, justify the steps in the candidate elimination	8	2	1	2
	algorithm.				
22 -	With any of the decision of the state of the	8	2	2	1
22. a.	With respect to decision tree, discuss about hypothesis space search and	O	-	_	1
	inductive bias.				
	(OR)				
h	Write the steps involved in ID3 algorithm for constructing a decision tree.	8	2	2	2
0.	write the steps involved in 195 argorithm for constituting a decision area.				
23. a.	Compute the Eigen values and Eigen vectors of:	8	3	2	2
25. a.	(2 0 0)				
	$\begin{bmatrix} 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix}$				
	$\begin{pmatrix} 0 & 4 & 9 \end{pmatrix}$				
	(OR)				
b.	What is the main goal of the SVM algorithm? Differentiate a linear SVM	- 8	3	2	2
	from a non-linear SVM.				
		_			_
24. a.	Implement a perceptron for the logic gate "AND" with 2-bit binary inputs.	8	3	3	2
	N. Carrier Company				
	(OR)	0	3	3.0	2
b.	List out the types of gradient descent used for optimization and explain the	8	3	3	2
	SGD-Stochastic Gradient Descent with its advantages.				
25 -	Discover the ambitostome of the Alemant with a very 1 of 1	8	3	4	2
23. a.	Discuss the architecture of the Alex net with a neat sketch.	J	ر	-r	_

(OR)

Page 2 of 4