Universitat Oberta de Catalunya

Trabajo Fin de Master

Propuesta para la monitorización del rendimiento de la producción mediante la integración de un sistema de Business Intelligence "Power BI"

Máster en Industria 4.0 2020/2022

Daniel Vargas Olivencia

ÍNDICE

- 1. JUSTIFICACIÓN
- 2. OBJETIVOS
- 3. METODOLOGÍA
- 4. PRODUCTO Y PROCESO
- 5. ARQUITECTURA DEL NUEVO SISTEMA
- 6. DESARROLLO
- 7. RESULTADOS
- 8. CONCLUSIONES
- 9. FUTUROS TRABAJOS

1- Justificación

Operaciones

- Fabricación
- Mantenimiento
- Calidad

Datos Sin explotar

Data Driven

Dashboard's

2- Objetivos

Objetivos principales:

- 1. La medición del rendimiento de la producción a través de la herramienta Power BI que permita:
- 1.1 Proporcionar una visión estratégica de las operaciones de la fábrica.
- **1.2 Analizar de forma combinada** información interna y externa procedente de distintas fuentes y sistemas.

3- Metodología

1. Diagnóstico de oportunidades

- Conocimiento del producto
- Operaciones fábrica
- Identificación arquitectura (Gestión datos y análisis rendimiento de la producción)

2. Estado del arte

- Dashboard's
- KPI's Producción & Mantenimiento

5. Análisis del rendimiento de la producción

4. Elaboración Dashboard's

4- Producto y Proceso

8 Componentes

- (14) Estaciones de trabajo
- (4) Estaciones Expulsión control automático calidad (Merma)

5- Arquitectura

Anterior

Actual

6- Desarrollo

PASOS

1. Definición del Data SET

2. Obtención de los datos

3. Preparación de los datos

4. Conexión al origen de los datos

5. Modelado de los datos

6. Visualización de los datos

HERRAMIENTAS

TAREAS

- Diagrama de influencia sobre la productividad
- · Descargar y Crear
- Limpieza & Conversión (XML-> XLSX)
- Vinculaciones Funciones: BUSCARV, CONCATENAR)
- Get Data

Lenguaje DAX

Herramientas de visualización

6- Desarrollo: Definición del Data Set

Factor		Consecuencia			
Ordenes 👚	Mermas 🎓	Rechazos 🏤	Productividad 🔻		
Lote 🁚	Mermas 🔻	Rechazos 👢	Productividad 👚		
Mermas 1			Productividad 🦊		
Averias 🁚	Mermas 🎓	Rechazos 🏤	Productividad 🔻		
Rechazos 👚			Productividad 🦊		

- 1. Productividad
- 2. Ordenes de trabajo (N.º de cambios de formato)
- 3. Lote promedio
- 4. Consumo tipo de componentes
- 5. % Merma
- 6. % Rechazo
- 7. MTTR
- 8. N.º Incidencias surgidas

6- Desarrollo: Obtención de los datos

Conocer los perfiles de datos de los archivos descargables de cada plataforma MES, ERP y MTTO

6- Desarrollo: Preparación de los datos

1. Transformar los archivos XML a XLSX y generar un único archivo Excel común e integrado

2. Vincular los distintos orígenes de datos en uno solo, "hoja Excel de producción" dentro del archivo STATUS.XLSX.

6- Desarrollo: Conexión al origen de los datos

6- Desarrollo: Modelado de los datos

	DAX	Observaciones		
	<pre>Unidades_QK = sum('Producción'[Unidades_Qk_produccion])</pre>	Unidades OK fabricadas		
JiempoOperación = SUMX('Producción' Producción' [HarasOper]/1000000)		Tiempo de fabricación		
	Productividad = divide([Unidades_OK].[TiempoOperación].0)	Productividad media		
	Ordenes = Countrows(DISTINCT('Producción'[Orden]))			
	Lote promedio = DIVIDE([Unidades_OK],[Cambios],0)	Cantidad de unidades promedio por lote		
	V.E = sum('Producción'[V.E]) Merma Válvula de gas			
V.C = sum('Producción'[V.C]) Merma		Merma Válvula de carga		
Llama = sum('Producción'[Llama]) Merma llama alt		Merma llama alta o baja		
	Soplete = sum('Producción'[Soplete])	Merma de llama alta invertida		
	<pre>Mermas.l = sumx('Producción','Producción'[Soplete]+ 'Producción'[Llama]+'Producción'[V.C]+'P roducción'[V.E])</pre>	Mermas totales		
	<pre>%Mermas.T = divide([Mermas.T].[Unidades_OK]+[Mermas. T].0)</pre>	% de mermas con respecto a las unidades fabricadas en la orden de fabricación		
	% <u>V.E</u> = divide([V.E],[<u>Unidades_OK</u>]+[<u>Vermas_J</u>],0)	% de mermas con respecto a las unidades fabricadas en la orden de fabricación		
	%V.C = divide([V.C <u>].[Unidades_OK]</u> +[Uermas.],0)	% de mermas con respecto a las unidades fabricadas en la orden de fabricación		
	<pre>%Soplete = divide([Soplete],[Unidades_OK]+[Vermas_I],0)</pre>	% de mermas con respecto a las unidades fabricadas en la orden de fabricación		
	%Llama = divide([Llama],[Unidades_OK]+[Mermas.T], 0)	% de mermas con respecto a las unidades fabricadas en la orden de fabricación		
	RECHAZOS = sum('Producción'[Unidades_nok_calidad])	Rechazos por dpto. de calidad		
	<pre>%Rechazos = divide([RECHAZOS],[Unidades_OK],0)</pre>	% de rechazos con respecto a las unidades fabricadas en la orden de fabricación		

PRODUCCIÓN

Lenguaje DAX

MTTR = divide([[_Averia],[NºInciden],0)	Tiempo de reparación promedio por avería
<pre>LAveria = sum('Registro (2)'[Min])</pre>	Tiempo de apertura de la avería
NºInciden = sum('Registro_'[NºIn])	Cantidad de incidencias surgidas

6- Desarrollo: Visualización de los datos

1. Gráfico de líneas para la proyección del histórico de los datos

2. Segmentación de datos para la diferenciación de periodos temporales y maquinas

- 3. Matrices para la visualización de los datos en formato tabla
- 4. Formatos condicionales para la identificación de alertas

Máquina *	ОК	R	%R	М	% M	%V.C	%V.E	% S	%F
± 11901	23.689.004	459.443	1,94 %	681.676	2,80%	0,5%	0,6%	0,8%	0,9%
11902	24.284.401	346.052	1,42 %	725.636	2,90%	0,6%	0,3%	0,7%	1,1%
± 11904	22.755.218	617.723	2,71 %	759.789	3,23%	0,9%	0,4%	0,7%	1,1%
± 11905	22.822.255	619.011	2,71 %	822.685	3,48%	1,1%	0,5%	0,7%	1,0%
11906	23.679.863	570.874	2,41 %	670.727	2,75%	0,7%	0,6%	0,4%	1,0%
12901	23.994.056	563.839	2,35 %	507.597	2,07%	0,5%	0,1%	0,3%	1,1%
Total	141.224.797	3.176.942	2,25 %	4.168.110	2,87%	0,7%	0,4%	0,6%	1,0%

7- Resultados: DASHBOARD'S

7- Resultados: DASHBOARD'S

- Producción por periodo de tiempo y máquina
- 1. Productividad, mermas y rechazos
- 2. Cantidad de ordenes fabricadas o cambios de formato
- 3. Lote promedio
- 4. Tipos de componentes consumidos
- Acciones de mantenimiento por periodo de tiempo y máquina
- 1. MTTR: Tiempo de reparación promedio por avería.
- 2. Cantidad de incidencias surgidas

7- Resultados: Análisis de los datos

1. Las cadenas de ensamblaje más antiguas son más productivas.

2. Los tipos de cuerpos de poliamida Azul Oscuro y Verde 340C son los menos productivos y los que además generan mayor cantidad de merma.

COLOR	ок	Productividad	-96M
CUERPO CLIP AZUL OSCURO	3.386.106	5.291,42	5,14%
CPO CL PA RECICLADA AZUL OSCURO	7.490	5.923,55	4,88%
CUERPO CLIP VERDE 340C	3.372.301	5.484,44	4,52%

3. El componente embellecedor de tipo niquelado es el más productivo.

EMBELLECEDOR	Productividad •
EMB. FLAM PK NIQ. LOG. CLIP 15,7*0,35	5.941,52
EMBELLECEDOR NEGRO CP11 "MADE IN SPAIN"	5.878,34
EMBELLECEDOR NEGRO CP12 "MADE IN SPAIN"	5.717,53
EMB. CLIPPER 18,1*0,35 (LATON-PASIV)	5.713,94

8- Conclusiones

La información proporcionada por los Dashboard's ha permitido:

- ✓ 1. Analizar de forma combinada información interna y externa procedente de distintas fuentes y sistemas (MES, ERP, MTTO).
- ✓ 2. Tener una visión estratégica de las operaciones de la fábrica, común e integrada de los datos disponibles, variable en el tiempo, que da soporte a la toma de decisiones con razones objetivas.

9- Futuros trabajos

- Monitorización a tiempo real
- Añadir los KPI de OEE y MTBF
- Dotar de la capacidad de realizar proyecciones y pronósticos futuros en base a toda la información recopilada y analizada:

Como puede ser la investigación de líneas de pronóstico para el mantenimiento predictivo: