

# Physics

## $General\ Physics\ I$

Module 1: Mechanics basics

Module 2: Energy and Oscillations

Potential Energy and Conservation of Energy

#### Potential Energy

- · Conservative Force
  - Conservative Force are forces for which W1=-W2 is always ture
  - Examples:gravitational force, spring force
  - Otherwise we could not speak of their potential energies
- Gravatational Potential Energy

$$U(y) = mgy$$

Elastic Potential Energy

$$U(x)=rac{1}{2}kx^2$$

### Conservation of Mechanical Energy

Reading a Potential Energy Curve

Work Done on ta System by an External Force

Power

$$P_{avg} = rac{\Delta E}{\Delta t}$$

$$P = \frac{dE}{dt}$$

#### Conservation of Energy

#### Equilibrium

- Static equilibrium
  - $F_{net} = 0$
  - $ilde{ au}_{net}=0$

#### Elasticity

- $Stress = modulus \times strian$
- Young's mudules, E, used for tension/compression (拉力/压力):

$$\frac{F}{A} = E \frac{\Delta L}{L}$$

- Shear mudules, G, used for shearing (剪切力):
  - $\Delta x$  is along a different axis than L

$$\frac{F}{A} = G \frac{\Delta x}{L}$$

- Bulk mudules, **B**, used for hydraulic compression (液压压力):
  - Relates pressure to volume change

$$p\,=\,B\,\frac{\Delta V}{V}$$

### Gravitation

#### Newton's Law of Gravitation

• Gravitation and the principle of Superposition

$$F\,=\,G\,rac{m_1m_2}{r^2}$$

· hell's theorem

· Gravitation Near Earth's surface

$$\circ$$
 Combine  $F=rac{GMm}{r^2}$  and  $F=ma_g$   $a_g=rac{GM}{r^2}$   $F_N-ma_g=m(-\omega^2R)$   $g=a_q-\omega^2R$ 

$$a_gpprox 9.8m/s^2 \ \omegapprox 7.3 imes 10^{-5} rad/s \ Rpprox 6357 km$$

· Gravitation Inside Earth

$$F=rac{GmM_{ins}}{r^2}$$
  $ho=rac{M_{ins}}{rac{4}{3}\pi r^3}=rac{M}{rac{4}{3}\pi R^3}$   $F=rac{GMm}{R^3}r$ 

**Gravitational Potential Energy** 

$$U=-rac{GMm}{r}$$
  $K+U=rac{1}{2}mv^2+(-rac{GMm}{R})=0$   $v=\sqrt{rac{2GM}{R}}$ 

Satellites: Orbits and Energy

• Escape Speed

$$mrac{v^2}{r}=rac{GMm}{r^2}$$

$$K=rac{1}{2}mv^2=rac{GMm}{2r}$$
  $K=-rac{U}{2}\left(circular\,orbit
ight)$   $E=K+U=-rac{GMm}{2r}\left(circular\,orbit
ight)$   $T^2=rac{4\pi^2}{GM}r^3$ 

## Oscillations

## Simple Harmonic Motion

- Frequency
- Period

$$T=rac{1}{f}$$
  $x(t)=x_{m}cos(\omega t+\phi)$   $\omega=rac{2\pi}{T}=2\pi f$   $v(t)=rac{dx}{dt}=-\omega x_{m}sin(\omega t+\phi)$   $a(t)=rac{dv}{dt}=rac{d^{2}x}{dt^{2}}=-\omega^{2}x_{m}cos(\omega t+\phi)=-\omega^{2}x(t)$   $F=ma=-m\omega^{2}x$   $\omega=\sqrt{rac{k}{m}}$  (Linear simple harmonic oscillation)

Energy in Simple Harmonic Motion\

$$U(t)=rac{1}{2}kx^2=rac{1}{2}kx_m^2cos^2(\omega t+\phi)$$

$$K(t)=rac{1}{2}mv^2=rac{1}{2}kx_m^2sin^2(\omega t+\phi)$$
 $E=U+K=rac{1}{2}kx_m^2$ 

#### An Angular Simple Harmonic Oscillator

$$au = -\kappa \theta$$

$$T=2\pi\sqrt{rac{I}{\kappa}}$$

#### Pendulums, Circular motion

$$au=-L(F_g sin heta)$$
  $lpha=-rac{mgL}{I} heta$   $\omega=\sqrt{rac{mgL}{I}}$   $T=2\pi\sqrt{rac{F}{g}}=2\pi\sqrt{rac{I}{mgh}}$ 

### Damped Simple Harmonic Motion

$$egin{aligned} F_d &= -bv \ mrac{d^2x}{dt^2} + brac{dx}{dt} + kx = 0 \ x(t) &= x_m e^{rac{-bt}{2m}}cos(\omega't + \phi) \ \omega' &= \sqrt{rac{k}{m} - rac{b^2}{4m^2}} \ E(t) &pprox rac{1}{2}Kx_m^2 e^{rac{-bt}{m}} \end{aligned}$$

#### Waves

#### Sinusoidal Waves

• Transverse Waves

$$y(x,t)=y_m sin(kx-\omega t)$$
  $k=rac{2\pi}{\lambda} ext{ (angular wave number)}$   $\omega=rac{2\pi}{T} ext{ (angular frequency)}$   $f=rac{1}{T}=rac{\omega}{2\pi} ext{ (frequency)}$ 

Longitudinal Waves
 Sound Waves

$$B=-rac{\Delta p}{\Delta V/V}=
ho v^2$$
  $v=\sqrt{rac{B}{
ho}}$   $I=rac{P_s}{4\pi r^2} ext{(Intensity)}$ 

Wave Speed

$$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f \text{ (wave speed)}$$

· Wave Speed on a Stretched String

$$\mu = \frac{m}{l}$$
 (linear density)

$$v = \sqrt{\frac{\tau}{\mu}}$$
(speed)

Energy and Power of a Wave Travelling along a String

$$dK = rac{1}{2}dmu^2$$
  $rac{dK}{dt} = rac{1}{2}rac{dm}{dt}u^2 = rac{1}{2}\mu v\omega^2 y_m^2 cos^2(kx - \omega t)$   $(rac{dK}{dt})_{avg} = rac{1}{4}\mu v\omega^2 y_m^2 = (rac{dU}{dt})_{avg}$   $P_{avg} = rac{d(K+U)}{dt} = 2(rac{dK}{dt})_{avg} = rac{1}{2}\mu v\omega^2 y_m^2$   $a_y = rac{d^2y}{dt^2}$   $rac{d^2y}{dx^2} = rac{\mu}{\tau}rac{d^2y}{dt^2}$  (wave equation)

Interference of Waves

$$y'(x,t)=y_1(x,t)+y_2(x,t)$$
  $If:$   $y_1(x,t)=y_msin(kx-\omega t)$   $y_2(x,t)=y_msin(kx-\omega t+\phi)$   $s.t.$   $y'(x,t)=[2y_mcosrac{1}{2}\phi]sin(kx-\omega t+rac{1}{2}\phi)$ 

· Sound Interference

$$\phi = rac{\Delta L}{\lambda} 2\pi$$

#### **Phasors**

#### Standing Waves

$$If:$$
  $y_1(x,t)=y_m sin(kx-\omega t)$   $y_2(x,t)=y_m sin(kx+\omega t)$   $s.t.$   $y'(x,t)=[2y_m sinkx]cos\omega t$ 

- Resonance
- · A pipe open at both ends

$$sin(kL)=0
ightarrow KL=rac{2\pi}{\lambda}L=n\pi$$
  $f=rac{v}{\lambda}=rac{nv}{2L}\,,\,n=1,2,3,\ldots$ 

· A pipe closed at one end and open at the other

$$f=rac{v}{\lambda}=rac{nv}{4L}\,,\,n=1,3,5,\ldots$$

Doppler's Effect

$$f' = f rac{v \pm v_D}{v \pm v_S}$$
  $sin heta = rac{v}{v_S}$ 

## Module 3: Thermodynamics