- a) Demuestra que para cualquier $m \in \mathbb{N}$ existe una matriz real $A_{m \times m}$ que cumple que $A^3 = A + I$, donde I es la matriz identidad.
- b) Demuestra que det (A)>0 para todas las matrices $m\times m$ que cumplen que $A^3=A+I$.

Solución:

El apartado a) es sencillo de demostrar, ya que siempre se puede considerar una matriz diagonal $m \times m$ cuyos elementos de la diagonal sean raíces del polinomio $p(\lambda) = \lambda^3 - \lambda - 1$. Como es un polinomio de grado impar de coeficientes reales, seguro que tiene al menos una raíz real, ya que las raíces complejas se presentan en pares conjugados.

Sea $\lambda_1 \mid p(\lambda_1) = 0$, entonces la matriz $A = \lambda_1 I$ cumple que $A^3 = A + I$ para todo $m \in \mathbb{N}$.

Para demostrar el apartado b), se puede utilizar el hecho de que el determinante de A es igual al producto de sus autovalores. Resulta además que los posibles autovalores de A serán raíces de $p(\lambda)$.

Se pueden calcular los máximos y mínimos relativos del polinomio, de manera que se tiene $p'(x)=3x^2-1=0\iff x=\pm\frac{1}{\sqrt{3}},$ siendo $x=-\frac{1}{\sqrt{3}}$ el máximo relativo y $x=\frac{1}{\sqrt{3}}$ el mínimo relativo. Sucede que $p\left(-\frac{1}{\sqrt{3}}\right)<0$ y $p\left(\frac{1}{\sqrt{3}}\right)<0$, por lo que $p(\lambda)$ solo tiene una solucion real (λ_1) , y dos soluciones complejas $(\lambda_2$ y $\lambda_3)$.

Utilizando el teorema de Bolzano, se puede acotar λ_1 , de manera que $\lambda_1 \in (1, 2)$, ya que p(1) = -1 < 0 y p(2) = 5 > 0. Entonces $\lambda_1 > 0$.

Por otro lado, sean $\lambda_2 = r e^{i\phi}$ y $\lambda_3 = r e^{-i\phi}$ las raíces complejas de $p(\lambda)$. Por tanto, det $(A) = \lambda_1^{\alpha} \cdot (\lambda_2 \lambda_3)^{\beta}$, siendo α y β las multiplicidades de los autovalores. Se cumple que $\lambda_1^{\alpha} > 0$ ya que $\lambda_1 > 0$. Y por otro lado, $(\lambda_2 \lambda_3)^{\beta} = (r e^{i\phi} \cdot r e^{-i\phi})^{\beta} = (r^2)^{\beta} = (r^{\beta})^2 > 0$. Y como todos los factores son estrictamente positivos, se sigue que det (A) > 0.