ÔN TẬP KIỂM TRA GIỮA HỌC KỲ I

ĐÈ 8

Câu 1. Cho hàm số bậc ba $f(x) = ax^3 + bx^2 + cx + d (a \ne 0)$ có bảng biến thiên như hình vẽ:

Hàm số đã cho đồng biến trên khoảng nào sau đâp?

A.
$$(-\infty; -4)$$
.

B. (0;2).

D. $(2;+\infty)$

Câu 2. Trên khoảng $(-\pi;\pi)$ đồ thị hàm số $y = \sin x$ được cho như hình vẽ:

Hỏi hàm số $y = \sin x$ nghịch biến trên khoảng nào sau đây?

$$\mathbf{A} \cdot (-\pi;0)$$

$$\mathbf{B}.\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$$

C.
$$(0;\pi)$$
.

D. $\left(\frac{\pi}{2};\pi\right)$.

Câu 3. Tha tất cả các giá trị thực của tham số m để hàm số $y = x^4 - 2mx^2 + 2020$ đồng biến tiên khoảng $(1; +\infty)$

A. $0 \le m \le 1$.

 $m \leq 1$.

C. $0 \le m \le 1$.

D. $m \le 0$.

Câu 4. Tìm khoảng nghịch biến của hàm số $y = \sqrt{3-x} + \sqrt{x-1}$.

A. (1;3).

B. $(-\infty; 2)$.

C. (2;3).

D. $(2;+\infty)$

Câu 5. Có bao nhiều giá trị nguyên của tham số m sao cho hàm số $f(x) = \frac{1}{3}x^3 + mx^2 + 4x + 2020$ đồng biến trên \mathbb{R} ?

A. 5.

B. 4.

C. 3.

D. 2.

Câu 6. Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+2}{x+5m}$ đồng biến trên khoảng $(-\infty;-10)$?

A. 2.

B. Vô số.

C. 1.

D. 3.

Câu 7. Cho hàm số y = f(x) có đồ thị như hình vẽ:

Hàm số $y = f(x^2 - 2)$ nghịch biến trên khoảng nào dưới đây?

A. $(-\infty; -2)$

B. (0;2)

 \mathbb{C} . $(2;+\infty)$.

D. (-2;0).

Câu 8. Cho hàm số f(x) có đạo hàm $f'(x) = x(x-1)^{\frac{1}{2}}(x-2)^{\frac{3}{2}}(x-3)^{\frac{4}{2}}$. Số điểm cực đại của hàm số đã cho là.

A. 2.

B. 1.

C. 0

D. 3.

Câu 9. Hàm số $y = x^3 - 3x^2 + mx - 2$ đạt cực tiểu tại x = 2 khi

A. m > 0

B. m = 0.

C. m < 0

D. $m \neq 0$.

Câu 10. Tập hợp các giá trị của tham số m để hàm số $y = x^3 + 6x^2 + 3(m+2)x - m - 1$ đạt cực trị tại các điểm x_1 và x_2 thỏa mãn $x_1 < 1 < x_2$ là

A. $(-\infty;1)$.

 \mathbf{B} . $(1;+\infty)$

C. (1,2).

D. $(-\infty;2)$.

Câu 11. Cho hàm số $f(x) = \frac{1}{2}x^3 - 2x^2 + 3x + 2021$ với mọi $x \in \mathbb{R}$. Gọi S là tổng tất cả các giá trị nguyên dương của tham số rn để hàm số $y = f(x^2 - 10x + m + 9)$ có 5 điểm cực trị. Tổng S thuộc khoảng nào trong các khoảng sau.

A. (110;120).

B. (120;130).

C. (130;140).

D. (140;150).

Câu 12. Biết đồ thị hàm số $y = x^3 - 3x + 1$ có hai điểm cực trị A, B. Khi đó phương trình đường thẳng AB là

A. y = 2x - 1

 $\mathbf{B} y = -2x + 1 .$

C. y = -x + 2

D. y = x - 2.

Câu 13. Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số $y = -x^4 + 2(m+1)x^2 - m^2$ có ba điểm cực trị tạo thành một tam giác vuông cân.

A. m=1

B. m = 1: m = 0.

C. m = 0.

D. m = -1; m = 0.

Câu 14. Cho hàm số y = f(x) liên tục trên \mathbb{R} . Biết rằng f(x) có đạo hàm f'(x) và hàm số y = f'(x) có bảng biến thiên như sau

Khẳng định nào sau đây là khẳng định đúng?

- **A.** Hàm số y = f(x) có đúng hai điểm cực trị.
- **B.** Hàm số y = f(x) đồng biến trên $(-\infty; 2)$.
- C. Hàm số y = f(x) nghịch biến trên (2;4).
- **D.** Hàm số y = f(x) nghịch biến trên (3,5).

Câu 15. Đồ thị hàm số $y = \frac{x^2 - x - 2}{x^2 - 1}$ có bao nhiều đường tiệm?

A. 0.

D. 3.

Câu 16. Có bao nhiều giá trị nguyên của tham số $m \in [-2020, 2020]$ để đỏ thị hàm số

 $y = \frac{x+2}{\sqrt{x^2 - 2x + m}}$ có hai đường tiệm cân đứng?

- **D.** 2018.

Câu 17. Cho hàm số y = f(x) có bảng biến thiên như sau

Tổng số đường tiệm cận của đồ thị hàm số đã cho là

D. 4.

Tìm m để đồ thị hàm số $y = \frac{x-2}{x^2 + (2m-3)x + m^2 - 2m}$ không có tiệm cận đứng. **Câu 18.**

- **B.** $m < \frac{9}{4}$. **C.** $m \neq \frac{9}{4}$.

Câu 19. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

Số đường tiệm cận đứng của đồ thị hàm số $y = \frac{x^2 - 1}{f^2(x) - 4f(x)}$ là

A. 2.

B. 3

4.

D. 1.

Câu 20. Giá trị lớn nhất của hàm số $f(x) = \frac{x-2}{x+1}$ trên đoạn [1;3] bằng

A. $-\frac{1}{2}$.

B. 1

 $\frac{\mathbf{C}}{4}$

D. $\frac{5}{2}$

Câu 21. Cho hàm số $f(x) = \frac{16\sin x - 4}{16\sin^2 x - 4\sin x + 9}$. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.

A. $M = m + \frac{8}{7}$.

B. 7M + 5m = 0

C. $M = \frac{5}{7}m$.

 $\mathbf{D}. M = -\frac{4}{7}m$

Câu 22. Cho các số thực x, y thỏa mãn $x^2 - xy + y^2 = 2$. Tìm giá trị nhỏ nhất của biểu thức $P = x^2 + xy + y^2$

A. $\min P = \frac{2}{3}$.

 $\mathbf{R} \quad \text{min } P = \frac{1}{6} \, .$

C. min $P = \frac{1}{2}$.

 $\min P = 2$

Câu 23. Cho hàm số $y = |x^4 + 2x^3 + x^2 + a|$. Có bao nhiều số nguyên a sao cho $\max_{[-1,2]} y \le 2020$

A. 4037.

B. 4036.

C. 4038.

D. 2021.

Câu 24. Để thiết kế một chiếc bể cá hình hộp chữ nhật có chiều cao là 60 cm, thể tích 96000 cm³. Người thợ dùng loại kính để sử dụng làm mặt bên có giá thành 70000 VNĐ/m² và loại kính để làm mặt đáy có giá thành 100000 VNĐ/m². Tính chi phí thấp nhất để hoàn thành bể cá.

A. 81200 VNĐ.

B. 80200 VNĐ.

C. 82200 VNĐ.

D. 83200 VNĐ.

Câu 25. Số giao điểm của đồ thị hàm số $y = x^3 - x^2 + 1$ và đồ thị hàm số $y = x^2 - x + 1$ là

A. 0.

B. 1.

C. 2.

D. 3.

Câu 26. Tìm tất cả các giá trị của tham số m để đồ thị hàm số $y = x^3 - 3x^2 - m$ cắt trục hoành tai đúng một điểm.

A. $m \in (-\infty; 0] \cup [2; +\infty)$.

B. $m \in (-\infty; -4) \cup (0; +\infty)$.

C. $m \in (-\infty; -4] \cup [0; +\infty)$.

D. $m \in (-\infty; 0) \cup (2; +\infty)$.

Câu 27. Cho hàm số $y = \frac{x+2}{x-1}$ có đồ thị là (C) và đường thẳng (d) có phương trình: y = -x + m với m là tham số. Tổng tất cả các giá trị của m để (d) cắt (C) tại hai điểm phân biệt A, B sao cho $AB = 2\sqrt{2}$ là

 \mathbf{C}_{\cdot} -2.

D. 2.

Câu 28. Cho hàm số $y = x^4 - x^2 - 3$ có đồ thị là (C). Phương trình tiếp tuyến với đồ thị (C) tại điểm A(1;-3) là

A. y = -3.

C. y = 2x - 5.

6 biết tiếp tuyến song song Câu 29. Viết phương trình tiếp tuyến của đồ thị hàm số y với đường thẳng d: y = 2x + 13.

A. v = 2x - 3.

B. v = 2x + 13

C. y = 2x + 5.

D. y = 2x - 13

Câu 30. Cho hàm số y = f(x) xác định, có đạo hàm trên \mathbb{R} và thỏa điều kiện: $2f(x) + f(x^3) = x^6 + 2x^2 - 3$, $\forall x \in \mathbb{R}$. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1 là

A. y = 3x - 3.

B. y = -2x.

C. v = 2x - 2. **D.** v = -3x

- có đồ thị (C). Gọi Δ là tiếp tuyến của (C) tại điểm M (có Câu 31. Cho hàm số 1

hoành độ dương) sao cho Δ cùng với hai đường tiệm cận của (C) tạo thành tam giác có có chu vi nho nhất.

 $y = x - 2\sqrt{2} + 2.$

Câu 32. Đồ thị dưới đây của hàm số nào?

- **A.** $y = x^3 3x^2 + 2$. **B.** $y = x^3 3x + 2$.
- C. $y = -x^3 + 3x + 2$. D. $y = x^4 + 2x^2 + 2$.

Câu 33. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ sau:

Số nguyên của tham / tri phuong trình $f^2(\sin x) - (m+1)f(\sin x) + 2m - 2 = 0$ có đúng 4 nghiệm thuộc đoạn $[0;2\pi]$.

A. 1.

B. 2.

- **D.** 4.

Câu 34. Tập xác định của hàm số $y = (x^2 - x^2)$

- **A.** $D = \mathbb{R} \setminus \{-1, 2\}$.
- C. $D = (-2;2) \setminus \{-1\}$.

D. $D = (-\infty; -1) \cup (2; +\infty) \setminus \{-2\}$.

Tính đạo hàm của hàm số Câu 35.

A. $y' = (2x-3) \cdot 2^{x^2-3} \ln 2$

B. $y' = (2x-3).2^{x^2-3x}$.

C. y' = (2x - 3).2

D. $y' = (x^2 - 3x) \cdot 2^{x^2 - 3x - 1}$

Cho hàm số $y = \log_a x (0 < a \ne 1)$ có đồ thị là hình bên dưới. Giá trị của a bằng

- **A.** $a = \sqrt{2}$.
- **B.** $a = \frac{2}{3}$.
- **C.** a = 2.
- **D.** $a = \frac{1}{3}$.

Câu 37. Hình nào dưới đây không phải là hình đa diện?

Hình 1

Hình 2

Hình 3

Hình 4

A. Hình 1.

B. Hình 2.

C. Hình 3.

D. Hình 4.

Câu 38. Phát biểu nào sau đây là đúng?

A. Hình tứ diện đều có 4 đỉnh, 6 cạnh, 4 mặt.

B. Hình tứ diên đều có 4 đỉnh, 4 canh, 4 mặt.

C. Hình tứ diện đều có 6 đỉnh, 4 cạnh, 4 mặt.

D. Hình tứ diện đều có 6 đỉnh, 6 cạnh, 4 mặt.

Cho khối chóp có diện tích đáy bằng a^2 và chiều cao bằng 2a. Thể tích của khối chóp đã cho bằng

A.
$$\frac{2a^3}{3}$$
.

B. 2*a*

 \mathbf{D} . a^3 .

Câu 40. Cho hình chóp tam giác đều $S.\overrightarrow{ABC}$ có cạnh đây $\overrightarrow{AB} = 2a\sqrt{3}$, góc giữa mặt bên và mặt đáy là 60°. Tính thể tích khối chóp SABC

A. $8a^3\sqrt{3}$.

B. $a^3\sqrt{3}$.

D. $3a^3\sqrt{3}$.

Câu 41. Cho hình chóp S.ABC có SA = 3a và SA vuông gốc với đáy, tam giác ABC là tam giác vuông cân tại B, AC = 2a. Tính thể tích P của khối chóp S.ABC.

A.
$$V = \frac{a^3}{3}$$
.

C. $V = 2a^3$.

D. $V = a^3$

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AB = BC = a, $AD = 2\alpha$. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối chốp S.ABCD

$$CV = \frac{3a^3\sqrt{3}}{2}$$

Cho khối chóp S.ABC có thể tích $V = a^3$. Mặt bên SBC là tam giác vuông cân tại S, có $BC = a\sqrt{2}$. Khoảng cách từ trung điểm I của AB đến mặt phẳng (SBC) là

A. 6*a* .

B. 2a.

C. 3a.

D. $\frac{3}{2}a$.

Cho khối chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M và N theo thứ tự là trung điểm của SA và SB . Tính $k = \frac{V_{S.CDMN}}{V_{BCNADM}}$?

A. $k = \frac{1}{2}$.

B. $k = \frac{3}{5}$. **C.** $k = \frac{5}{9}$.

D. $k = \frac{3}{9}$.

Câu 45. Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại B, góc $BAC = 60^{\circ}$, AC = 3a, CC' = 2a. Thể tích khối lặng trụ ABC.A'B'C' bằng

A.
$$\frac{9\sqrt{3}a^3}{8}$$
.

B.
$$\frac{9\sqrt{3}a^3}{4}$$
 .

B.
$$\frac{9\sqrt{3}a^3}{4}$$
 . **C.** $\frac{3\sqrt{3}a^3}{12}$.

D.
$$\frac{3\sqrt{3}a^3}{4}$$
.

Câu 46. Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh 4a, hình chiếu của A'trên đáy trùng với trọng tâm G của tam giác ABC, góc giữa cạnh bên và đáy bằng 30°. Tính thể tích khối lăng trụ ABC. A'B'C'

A.
$$\frac{16\sqrt{3}a^3}{3}$$
.

B. $16a^3\sqrt{3}$. **C.** $\frac{4\sqrt{3}a^3}{2}$.

D. $\frac{4\sqrt{3}a^3}{2}$.

Cho hình lập phương ABCD.A'B'C'D', khoảng cách từ C' đến mặt phẳng (A'BD)bằng $\frac{4a\sqrt{3}}{2}$. Tính theo a thể tích khối lập phương ABCD.A'B'C'D'.

A.
$$V = 8a^3$$
.

B.
$$V = 3\sqrt{3} a^3$$
.

C.
$$V = 8\sqrt{3} a^3$$
. D. $V = 216a^2$.

$$V = 216a^2$$
.

Câu 48. Cho hình chóp S.ABCD có đẩy là hình thang cân với AB = 2a; BC = CD = DA = a. SA vuông góc với mặt phẳng đáy, SC tạo với đáy một góc 60°. Mặt phẳng (P) đi qua A, vuông góc SB và cắt các cạnh SB, SC, SD lần lượt tại M, N, P. Tính thể tích khối đa diện ABCDMNP.

A.
$$\frac{668a^3\sqrt{3}}{2080}$$
.

B.
$$\frac{669a^3\sqrt{3}}{2080}$$

C.
$$\frac{667a^3\sqrt{3}}{2080}$$
.

$$\mathbf{D.} \frac{666a^3\sqrt{3}}{2080}.$$

Câu 49. Cho hình lăng trạ tam giác đều ABC.A'B'C' có AB = a và có thể tích bằng $\frac{a^3\sqrt{6}}{A}$. Góc giữa hai đường thẳng AB' và BC' bằng

A. 90°

C. 60°.

D. 45°.

Cho khối lăng trụ ABC.A'B'C' có thể tích bằng 2020. Gọi M, N lần lượt là trung Câu 50 điểm của AA'; BB' và điểm P nằm trên cạnh CC' sao cho PC = 3PC'. Thể tích của khối đa diện lỗi có các đỉnh là các điểm A,B,C,M,N,P bằng

2020

C. $\frac{2525}{3}$.

D. $\frac{3535}{2}$.