Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Elektryczny

Radosław Rajczyk

nr albumu: 23804

Implementacja algorytmu Viterbiego z wykorzystaniem biblioteki OpenCL

Praca dyplomowa magisterska kierunek: Automatyka i Robotyka specjalność: Systemy sterowania procesami przemysłowymi

> Opiekun pracy: **dr hab. inż. Przemysław Mazurek** Katedra Przetwarzania Sygnałów i Inżynierii Multimedialnej Wydział Elektryczny

> > Szczecin, 2016

Spis treści

1	Str	eszczenie	3
2	\mathbf{W} stęp		
	2.1	Przetwarzanie obrazu i jego rola w automatyce przemysłowej	4
	2.2	Istotność szybkości obliczeń w problemach wizji // maszynowej	4
	2.3	Cel, zakres i zastosowania pracy	5
3	Metody równoległego przetwarzania danych		6
	3.1	Wielowątkowość CPU dla aplikacji C/C++	6
		3.1.1 Biblioteka POSIX dla systemów Unix	6
		3.1.2 OpenMP - wieloplatformowe API	6
		3.1.3 Wielowątkowość w standardzie C++11	6
	3.2	Programowanie równoległe z wykorzystaniem GPU	6
		3.2.1 Architektura GPU i porównanie względem CPU	6
		3.2.2 Biblioteka OpenCL	6
4	Algorytm Viterbiego		
	4.1	Opis działania i zastosowania	7
	4.2	Implementacja w języku C++	7
		4.2.1 Wersja szeregowa	7
		4.2.2 Wersja równoległa - C++11	7
		4.2.3 Wersja równoległa - OpenCL	7
5	Wyniki badań doświadczalnych implementacji algorytmu Viterbiego		
	5.1	Porównanie czasu działania dla implementacji szeregowej, wielowątkowej oraz z wyko-	
		rzystaniem biblioteki OpenCL	8
	5.2	Porównanie szybkości algorytmów dla różnych konfiguracji sprzętowych	8
6	Wn	Wnioski końcowe	
7	Zał	ącznik B	10
8	8 Załącznik A		11
9		liografia	12
Spis rysunków			13

Streszczenie

To jest streszczenie

\mathbf{Wstep}

2.1 Przetwarzanie obrazu i jego rola w automatyce przemysłowej

W zagadnieniach technik pomiarowych oraz analizy otoczenia coraz częściej stosowane są rozwiązania wykorzystujące systemy wizyjne. Do najpopularniejszych zastosowań przemysłowych wizji maszynowej należą [1]:

- inspekcja elementów na linii technologicznej
- określanie właściwej orientacji i położenia elementów
- identyfikacja produktów
- pomiary metrologiczne

W automatyce przemysłowej gdzie do zagadnień inspekcji wcześniej niezbędna była ocena wizualna człowieka, obecnie powszechnie stosuje się systemy wizyjne, w których skład wchodzą kamery przemysłowe, czujniki wyzwalające(np. na bazie pozycji) oraz urządzenie odpowiadającego za proces decyzyjny. Występują również rozwiązania w postaci systemów wbudowanych, gdzie inteligentna kamera oprócz akwizycji obrazu zajmuje się jego przetwarzaniem i analizą, wykorzystując własny procesor.[1][2]

Sprawdzanie orientacji i położenia elementów w przemyśle jest wykorzystywane między innymi w technologii montażu, gdzie informacje z urządzeń wizyjnych są wykorzystywane przez manipulatory przemysłowe do zautomatyzowanego montażu, sortowania oraz paletyzacji wyrobów.[1]

Identyfikowanie produktów na bazie obrazu cyfrowego jest wykorzystywane przy sortowaniu oraz monitorowaniu przepływu elementów i lokalizacji wąskich gardeł. Przykładowe metody indentyfikacji to stosowanie kodów kreskowych i kodów DataMatrix.[1]

2.2 Istotność szybkości obliczeń w problemach wizji maszynowej

Większość praktycznych zastosowań przetwarzania obrazu jako dodatkowej informacji w sterowaniu jednym bądź grupą urządzeń, wymaga akwizycji oraz wykonywania obliczeń w czasie rzeczywistym. Oznacza to, że wybrany algorytm wykorzystywany do analizy obrazu cyfrowego, wraz z resztą niezbędnego kodu, musi posiadać czas wykonania spełniający narzucone przez sterowany system.

Dla zastosowań przemysłowych. gdzie monitorowane obiekty poruszają się z dużą prędkością, szybkość podjęcia decyzji przez system wizyjny może być wąskim gardłem dla danej gałęzi linii produkcyjnej. Do wykonania decyzji o, np. usunięciu wadliwego produktu z przenośnika taśmowego, niezbędna jest podrozdział 2 [4]

2.3 Cel, zakres i zastosowania pracy

podrozdział 3

Metody równoległego przetwarzania danych

3.1 Wielowątkowość CPU dla aplikacji C/C++

To jest rozdział 1 [6],[5]

3.1.1 Biblioteka POSIX dla systemów Unix

To jest podrozdział 1 rozdziału 1

3.1.2 OpenMP - wieloplatformowe API

To jest podrozdział 2 rozdziału 1

3.1.3 Wielowątkowość w standardzie C++11

To jest podrozdział 3 rozdziału 1

3.2 Programowanie równoległe z wykorzystaniem GPU

To jest rozdział 2[6],[3] [5]

3.2.1 Architektura GPU i porównanie względem CPU

To jest podrozdział 1 rozdziału 2

3.2.2 Biblioteka OpenCL

To jest podrozdział 2 rozdziału 2

Algorytm Viterbiego

4.1 Opis działania i zastosowania

To jest rozdział 1

4.2 Implementacja w języku C++

To jest rozdział $2\,$

4.2.1 Wersja szeregowa

To jest podrozdział 1 rozdziału $2\,$

4.2.2 Wersja równoległa - C++11

To jest podrozdział 2 rozdziału 2

4.2.3 Wersja równoległa - OpenCL

To jest podrozdział 3 rozdziału 2

Wyniki badań doświadczalnych implementacji algorytmu Viterbiego

5.1 Porównanie czasu działania dla implementacji szeregowej, wielowątkowej oraz z wykorzystaniem biblioteki OpenCL

To jest rozdział 1

5.2 Porównanie szybkości algorytmów dla różnych konfiguracji sprzętowych

To jest rozdział 2

Wnioski końcowe

To jest zakończenie

Załącznik B

To jest załącznik B

Załącznik A

To jest załącznik A

Bibliografia

- [1] Cognex. Introduction to machine vision. http://www.assemblymag.com/ext/resources/White_Papers/Sep16/Introduction-to-Machine-Vision.pdf, 2016.
- [2] E.R. Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Elsevier, 225 WYman Street, Waltham, 02451, USA, 2012.
- [3] Michel Goossens, Frank Mittelbach, and Alexander Samarin. *The LaTeX Companion*. Addison-Wesley, Reading, Massachusetts, 1993.
- [4] Przemysław Mazurek Grzegorz Matczak. Line following with real-time viterbi trac-before-detect algorithm. *Przegląd Elektrotechniczny*, 1/2017:69–72, 2017.
- [5] Wikipedia. Acripting language. http://en.wikipedia.org/wiki/Scripting_language, 2014.
- [6] Wikipedia. Scripting language. http://en.wikipedia.org/wiki/Scripting_language, 2014.

Spis rysunków