Package 'FinReg'

September 11, 2017

Type Pa	ckage	
Title Re	gularizing Bayesian Predictive Regressions	
Version	0.1.0	
Author	Guanhao Feng, Nicholas G. Polson	
Maintai	ner Jianeng Xu <jianeng@uchicago.edu></jianeng@uchicago.edu>	
Depends	g glmnet, spcov, Matrix	
_	ion This package implements a regularization method for VAR and SUR models and pro- les functions for regularization path plots.	
Encodin	g UTF-8	
License	GPL-2	
LazyData true RoxygenNote 6.0.1		
Index		
Breg	Regularize Bayesian predictive regression	

Description

Given regularization parameters, this function uses an iterative method to estimate the VAR(1) model,

$$X_t = \beta X_{t-1} + \epsilon_t$$

where all eigenvalues of β are smaller than one in modulus. The noise vector is assumed to be multivariate normally distributed with mean 0 and covariance Σ .

2 Breg

or SUR model

$$y_i = X^T \beta_i + \epsilon_i$$

where y_i is $N \times 1$, β_i is $K \times 1$ and ϵ_i is $N \times 1$; X^T is the design matrix. i = 1, 2, ..., m.

Usage

Breg(x,y=NULL,lambda,gamma,alpha=1,type = "var",tol=10^-7,Time=10,r=10^-14,step.size=10^3)

Arguments

x For type = "var", an $N \times K$ matrix containing observations of the VAR(1)

model;

For type = "sur", an $N \times K$ design matrix.

y For type = "var", NULL;

For type = "sur", an $N \times M$ response matrix.

lambda Regularization parameter for β estimation. Must be a nonnegative scalar.

gamma Regularization parameter for Σ estiantion. Must be a nonnegative scalar. The

penalty is defined as $||P * \Sigma||_1$ where P is a $K \times K$ matrix of all 1 and with 0

on the diagonal to ensure the positive-definiteness.

alpha Elastic-net mixing parameter as in glmnet, with $0 \le \alpha \le 1$. The coefficient

penalty is defined as

$$\lambda * \{(1-\alpha)/2||\beta||_2^2 + \alpha||\beta||_1\}.$$

alpha=1 is the lasso penalty, and alpha=0 is the ridge penalty.

type Model type: "var"(default), "sur".

tol Convergence threshold for the iterative estimation. The convergence criteria is

defined as

 $||\beta^{(i)} - \beta^{(i-1)}||_m \le tol$ $||\Sigma^{(i)} - \Sigma^{(i-1)}||_m < tol$

where 'm' denotes the maximum modulus of all the elements.

Time Maximum number of iterations.

r Condition number threshold when check if correlation matrix is singular.

step.size Parameter used in spcov.

Value

beta The estimate of coefficients.

For type = "var", an $K \times K$ matrix;

For type = "sur", a vector of length K*M.

sigma The estimate of noise variance matrix.

For type = "var", an $K \times K$ matrix. For type = "sur", an $M \times M$ matrix.

References

Guanhao Feng and Nicholas G. Polson (2016), Regularizing Bayesian Predictive Regressions. https://arxiv.org/abs/1606.01701

coef_Breg 3

See Also

```
glmnet, spcov
```

Examples

```
## simulating data
beta <- matrix(c(0.9,-0.1,-0.1,0.8),2,2)
x <- t(rep(0,2))
for (i in 1:1000)
    x<-rbind(x,t(beta%*%x[i,])+rnorm(2))
x <- x[-1,]
## estimating the model
Breg(x,lambd=0,gamma=0,alpha=1,tol=10^-3,Time=30)</pre>
```

coef_Breg

 $\label{eq:condition} \textit{Extract VAR}(1) \ \textit{and SUR coefficient and residual covariance from glm-net model}$

Description

This function extracts the coefficient matrix β and residual covariance matrix Σ of VAR(1) and SUR model from an glmnet object.

Usage

```
coef_Breg(model,lambda,X,Y,type="var")
```

Arguments

model An glmnet model.

lambda Regularization parameter used in the estimation of β .

X,Y Breg input.

type Model type: "var"(default), "sur".

Value

beta Coefficient matrix/vector.
recov Residual covariance matrix.

See Also

```
coef.glmnet, Breg
```

cv_Breg

cvCom

Compute MSE of predictions in a moving window

Description

This function is used in cv.Breg when type = "cv". Estimation an VAR(1) model in a moving window and make a 1-step ahead prediction. The MSE of prediction is computed.

Usage

```
cvCom(x,lambda,gamma,alpha,T,width,Time)
```

Arguments

x VAR(1) observations in a selected period.width Bandwidth of the moving window.

lambdaSee Breg.gammaSee Breg.alphaSee Breg.

T Number of observations.

Time See Breg.

See Also

Breg

cv_Breg

Select regularization parameters by cross-validation, AIC and BIC

Description

This function uses VAR(1) model.

Usage

```
cv_Breg(x,alpha=1,type="cv",width=NULL,lambda,gamma,tol=10^-3,Time=30)
```

Arguments

X	See Breg.
type	"cv"(default), "aic", "bic".
width	Length of the rolling window in computing 1-step ahead prediction errors when type = "cv".
lambda	See Breg.
gamma	See Breg.
alpha	See Breg.
tol	See Breg.
Time	See Breg.

icCom 5

Value

1ambda Selected lambda.gamma Selected gamma.

map MSE/AIC/BIC grid calculated to choose the lambda and gamma from.

See Also

Breg

icCom

Compute AIC and BIC of VAR(1) model

Description

This function calculates the AIC and BIC of estimated VAR(1) model.

Usage

```
icCom(x,type,lambda,gamma,alpha,T,Time)
```

Arguments

x x matrix as in Breg. type "aic", "bic".

lambda See Breg. gamma See Breg. alpha See Breg.

T Number of observations.

Time See Breg.

See Also

Breg

path

Regularization path of Bayesian predictive regression

Description

This functions computes the Bayesian regularization path for coefficient, prediction, correlation and 1-step ahead impulse, given a sequence of lambda or gamma.

Usage

```
path(x,y=NULL,lambda,gamma,r.type = "var",p.type = "coef",alpha=1,Time=5)
```

6 path

Arguments

```
For r. type = "var", an N \times K matrix conataining observations of VAR(1).
Χ
                  For r. type = "sur" or r. type = "group", an N \times K design matrix.
                  For r. type = "var", NULL;
У
                  For r. type = "sur" or r. type = "group", an N \times M response matrix.
                  Model type: "var"(default), "sur", "group".
r.type
                  Path type: "coef"(default), "pred", "corr", "impul".
p.type
lambda
                  See Breg.
gamma
                  See Breg.
                  See Breg.
alpha
Time
                  See Breg.
```

Details

Only one of lambda and gamma can be an increasing sequence and another one is a non-negative scalar (typical 0).

```
For p. type = "coef", "pred", lambda is a sequence.
For p. type = "corr", "impul", gamma is a sequence.
```

Value

path

A vector/matrix/array of regularization result. The first dimension size equals to the length of parameter sequence.

See Also

Breg

Examples

Index

```
Breg, 1, 3-6

coef.Breg (coef_Breg), 3

coef.glmnet, 3

coef_Breg, 3

cv.Breg (cv_Breg), 4

cv_Breg, 4

cvCom, 4

glmnet, 3

icCom, 5

path, 5

spcov, 3
```