Soft gap in excitation spectrum of metastable states

Yoav Kallus

Santa Fe Institute

CCS 2015, Tempe September 29, 2015

Anomalous price impact

Price impact from 5×10^5 trades on futures market by J.-P. Bouchaud's CFM (Tóth et al., PRX **1**, 021006 (2011)).

Why anomalous?

Consider a good with a fixed supply. How is its price determined?

Why anomalous?

Consider a good with a fixed supply. How is its price determined?

Why anomalous?

When supply changes, how does price change?

Vanishing liquidity

Vanishing liquidity

The Coulomb glass

$$H = \sum_{i} n_{i} u_{i} + \sum_{i,j} \frac{(n_{i} - \nu)(n_{j} - \nu)e^{2}}{r_{ij}}$$

Gap appears at the Fermi level independent of filling

Pseudogap universality

Widely observed in disordered systems perched at metastable states SK spin glass:

Pseudogap universality

Widely observed in disordered systems perched at metastable states

SK spin glass:

Random close packing:

Critical stability

Critical stability

Random Close Packing

Force distribution:

$$P(f) \sim f^{0.42}$$

Critical exponents independent of dimension.

Random Close Packing

Force distribution:

$$P(f) \sim f^{0.42}$$

Gap distribution:

$$g(r) \sim r^{-0.42}$$

Critical exponents independent of dimension.

Place $m=\alpha n$ points randomly on the (n-1)-sphere, and try to find the point farthest from all of these.

Same universality class as sphere packing in $d \to \infty$

Numerical experiments

Numerical experiments

$$p(f) = n^{-\frac{\theta}{1+\theta}} \tilde{g}(rn^{\frac{1}{1+\theta}})$$

$$g(r) = n^{\frac{\gamma}{1-\gamma}} \tilde{p}(f n^{\frac{1}{1-\gamma}})$$

Numerical experiments

Future work: dynamics and avalanches