- •La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia.
- •La cinemática se interesa por la descripción analítica del movimiento espacial del robot como una función del tiempo, y en particular por las relaciones entre la posición y la orientación del extremo final del robot con los valores que toman sus coordenadas articulares.
- •Existen dos problemas fundamentales a resolver en la cinemática del robot; el primero de ellos se conoce como el problema cinemático directo y el segundo como problema cinemático inverso.

- •El problema cinemático directo consiste en determinar cuál es la posición y orientación del extremo final del robot, con respecto a un sistema de coordenadas que se toma como referencia, conocidos los valores de las articulaciones y los parámetros geométricos de los elementos del robot.
- •El problema cinemático inverso, resuelve la configuración que debe adoptar el robot para una posición y orientación del extremo conocidas.

- Denavit y Hartenberg propusieron un método sistemático para describir y representar la geometría espacial de los elementos de una cadena cinemática, y en particular de un robot, con respecto a un sistema de referencia fijo.
- •Este método utiliza una matriz de transformación homogénea para describir la relación espacial entre dos elementos rígidos adyacentes, reduciéndose así el problema cinemático a encontrar una matriz de transformación homogénea de 4x4 que relacione la localización espacial del extremo del robot con respecto al sistema de coordenadas de su base.

Cadenas Cinemáticas

•Dado que un robot se puede considerar como una cadena cinemática formada por objetos rígidos o eslabones unidos entre sí mediante articulaciones, se puede establecer un sistema de referencia fijo situado en la base del robot y describir la localización de cada uno de los eslabones con respecto a dicho sistema de referencia.

•De esta forma, el problema cinemático directo se reduce a encontrar una matriz homogénea de transformación **T** que relacione la posición y orientación del extremo del robot respecto del sistema fijo situado en la base del mismo. Esta matriz **T** será función de las coordenadas articulares.

Cadenas Cinemáticas

•La resolución del problema cinemático directo consiste en encontrar las relaciones que permiten conocer la localización espacial del extremo del robot a partir de los valores de sus coordenadas articulares.

•Así, si se han escogido coordenadas cartesianas y ángulos de Euler para representar la posición y orientación del extremo de un robot de seis grados de libertad, la solución al problema Cinemático directo vendrá dada por las relaciones:

Relaciones Espaciales

•
$$x = f_x(q_1, q_2, q_3, q_4, q_5, q_6)$$

•
$$y = f_y(q_1, q_2, q_3, q_4, q_5, q_6)$$

•
$$z = f_z(q_1, q_2, q_3, q_4, q_5, q_6)$$

•
$$\alpha = f_{\alpha}(q_1, q_2, q_3, q_4, q_5, q_6)$$

•
$$\beta = f_{\beta}(q_1, q_2, q_3, q_4, q_5, q_6)$$

•
$$\gamma = f_{\gamma}(q_1, q_2, q_3, q_4, q_5, q_6)$$

•La obtención de estas relaciones no es en general complicada, siendo incluso en ciertos casos (robots de pocos GDL) fácil de encontrar mediante simples consideraciones geométricas.

Relaciones Espaciales

•Por ejemplo para un robot de 2 GDL que se muestra en la figura, es fácil comprobar que:

•
$$x = l_1 \cos q_1 + l_2 \cos(q_1 + q_2)$$

•
$$y = l_1 senq_1 + l_2 sen(q_1 + q_2)$$

•Para robots de más grados de libertad puede plantearse un método sistemático basado en la utilización de las matrices de transformación homogénea.

Cadenas Cinemáticas

- •En general, un robot de *n* grados de libertad está formado por *n* eslabones unidos por *n* articulaciones, de forma que cada par articulación-eslabón constituye un grado de libertad.
- •A cada eslabón se le puede asociar un sistema de referencia solidario a él y utilizando las transformaciones homogéneas, es posible representar las rotaciones y traslaciones relativas entre los distintos eslabones que componen el robot.

Matrices de Transformación

- •Normalmente, la matriz de transformación homogénea que representa la posición y orientación relativa entre los sistemas asociados a dos eslabones consecutivos del robot se suele denominar matriz ⁱ⁻¹**A**_i.
- •Así pues, ⁰A₁ describe la posición y orientación del sistema de referencia solidario al primer eslabón con respecto al sistema de referencia solidario a la base, ¹A₂ describe la posición y orientación del segundo eslabón respecto del primero, etc.

Matrices de Transformación

- Del mismo modo, denominando a las matrices resultantes del producto de las matrices $^{i-1}\mathbf{A}_i$ con i desde 1 hasta k, se puede representar de forma total o parcial la cadena cinemática que forma el robot.
- •Así, por ejemplo, la posición y orientación del sistema solidario con el segundo eslabón del robot con respecto al sistema de coordenadas de la base se puede expresar mediante la matriz ⁰**A**₂:

•
$${}^{0}\mathbf{A}_{2} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2}$$

Matrices de Transformación

 De manera análoga, la matriz representa la localización del sistema del tercer eslabón:

$${}^{0}\mathbf{A}_{3} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3}$$

• Cuando se consideran todos los grados de libertad a la matriz ${}^{0}\mathbf{A}_{n}$ se le suele denominar \mathbf{T} . Así, dado un robot de seis grados de libertad, se tiene que la posición y orientación del eslabón final vendrá dada por la matriz \mathbf{T} :

$$T = {}^{0}A_{6} = {}^{0}A_{1} {}^{1}A_{2} {}^{2}A_{3} {}^{3}A_{4} {}^{4}A_{5} {}^{5}A_{6}$$

- •Aunque para describir la relación que existe entre dos elementos contiguos se puede hacer uso de cualquier sistema de referencia ligado a cada elemento, la forma habitual que se suele utilizar en robótica es la representación de Denavit-Hartenberg.
- •Denvit-Hartenbarg en 1955 propusieron un método matricial que permite establecer de manera sistemática un sistema de coordenadas {S_i} ligado a cada eslabón i de una cadena articulada, pudiéndose determinar a continuación las ecuaciones cinemáticas de la cadena completa.

•Según la representación de D-H, escogiendo adecuadamente los sistemas de coordenadas asociados a cada eslabón, será posible pasar de uno al siguiente mediante 4 transformaciones básicas que dependen exclusivamente de las características geométricas del eslabón.

•Estas transformaciones básicas consisten en una sucesión de rotaciones y traslaciones que permiten relacionar el sistema de referencia del elemento i con el sistema del elemento i-1.

- Las transformaciones básicas son las siguientes:
- 1. Rotación alrededor del eje z_{i-1} un ángulo θ_{i}
- 2. Traslación a lo largo de z_{i-1} una distancia d_i; vector
 - $\mathbf{d}_{i}(0,0,d_{i})$.
- 3. Traslación a lo largo de x_i una distancia a_i ; vector $\mathbf{a}_i(a_i, 0,0)$.
- 4. Rotación alrededor del eje x_i un ángulo α_i .

•Dado que el producto no es conmutativo las transformaciones se han de realizar en el orden indicado. De este modo se tiene que:

$$^{i-1}\mathbf{A}_i = \text{Rot}(z,\theta_i) \text{ Tras}(0,0,\text{d}i) \text{ Tras}(a_i,0,0) \text{ Rot}(x,\alpha_i)$$

• y realizado el producto entre matrices:

$${}^{i-1}\mathbf{A}_i = \begin{bmatrix} \cos\theta_i & -sen\theta_i & 0 & 0 \\ sen\theta_i & \cos\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha_i & -sen\alpha_i & 0 \\ 0 & sen\alpha_i & \cos\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$^{i-1}\mathbf{A}_{i} = \begin{bmatrix} \cos\theta_{i} & -\cos\alpha_{i}sen\theta_{i} & sen\alpha_{i}sen\theta_{i} & a_{i}\cos\theta_{i} \\ sen\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -sen\alpha_{i}\cos\theta_{i} & a_{i}sen\theta_{i} \\ 0 & sen\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

donde θ_i , a_i , d_i , α_i , son los parámetros D-H del eslabón i. De este modo, basta con identificar los parámetros θ_i , a_i , d_i , α_i para obtener las matrices A y relacionar así todos y cada uno de los eslabones del robot.

- •D-H 1. Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.
- •D-H 2. Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en n.
- •D-H 3. Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática, será el eje a lo largo del cual se produce el desplazamiento.

- •**D.H 4.** Situar el origen del sistema en la base $\{S_0\}$ en cualquier punto del eje z_0 . Los ejes x_0 y y_0 se situarán de modo que formen un sistema de dextrógiro con z_0 .
- •D.H 5. Para i de 1 a n-1, situar el sistema $\{S_i\}$ (solidario al eslabón i) en la intersección del eje z_i con la línea normal común a z_{i-1} y z_i . Si ambos ejes se cortasen se situaría $\{S_i\}$ en el punto de corte. Si fuesen paralelos $\{S_i\}$ se situaría en la articulación i+1.
- •**D-H 6.** Situar x_i en la línea normal común a z_{i-1} y z_i o en la dirección normal a los planos z_{i-1} - z_i si z_{i-1} y z_i se intersectan.

•**D-H 7.** Situar y_i de modo que forme un sistema dextrógiro con x_i y z_i.

•**D-H 8.** Situar el sistema $\{S_n\}$ en el extremo del robot de modo que z_n coincida con la dirección de z_{n-1} y x_n sea normal a z_{n-1} y z_n .

•D-H 9. Obtener θ_i como el ángulo que hay que girar en torno a z_{i-1} para que x_{i-1} y x_i queden paralelos.

•D.H 10. Obtener d_i como la distancia, medida a lo largo de z_{i-1} , que habría que desplazar $\{S_{i-1}\}$ para que x_i y x_{i-1} queden alineados.

- •**D.H 11.** Obtener a_i como la distancia medida a lo largo x_i (que ahora coincidiría con x_{i-1}) que habrá que desplazar el nuevo $\{S_{i-1}\}$ para que su origen coincidiese con $\{S_i\}$.
- •**D.H 12.** Obtener α_i como el ángulo que habría que girar en torno a x_i (que ahora coincidiría con x_{i-1}), para que el nuevo $\{S_{i-1}\}$ coincidiese totalmente con $\{S_i\}$.

• D.H. 13. Obtener las matrices de transformación i-1 A_i.

•**D.H. 14.** Obtener la matriz de transformación que relaciona el sistema de la base con el del extremo del robot $\mathbf{T} = {}^{0}\mathbf{A}_{1}$, ${}^{1}\mathbf{A}_{2}$,... ${}^{n-1}\mathbf{A}_{n}$.

•D.H 15. La matriz T define la orientación y posición del extremo referido a la base en función de las n coordenadas articulares.

•Los cuatro parámetros de D-H $(\theta_i, a_i, d_i, \alpha_i)$ dependen únicamente de las características geométricas de cada eslabón y de las articulaciones que le unen con el anterior y el siguiente. Estos parámetros se muestran en la siguiente figura y representan:

 $\cdot \theta_i$ es el ángulo que forman los ejes x_{i-1} y x_i medido en un plano perpendicular al eje z_{i-1} , utilizando la regla de la mano derecha. Se trata de un parámetro variable en articulaciones giratorias.

•d_i es la distancia a lo largo del eje z_{i-1} desde el origen del sistema de coordenadas (i-1)-ésimo hasta la intersección del eje z_{i-1} con el eje x_i . Se trata de un parámetro variable en articulaciones prismáticas.

•a_i es la distancia a lo largo del eje x_i que va desde la intersección del eje z_{i-1} con el eje x_i hasta el origen del sistema i-ésimo, en el caso de articulaciones giratorias. En el caso de articulaciones prismáticas, se calcula como la distancia más corta entre los ejes z_{i-1} y z_i .

• α_i es el ángulo de separación del eje z_{i-1} y el eje z_i , medido en un plano perpendicular al eje x_i , utilizando la regla de la mano derecha.

•Una vez obtenidos los parámetros D-H, el cálculo de las relaciones entre los eslabones consecutivos del robot es inmediato.

•Obtenida la matriz T, ésta expresará la orientación y posición del extremo del robot en función de sus coordenadas articulares, con lo que quedará resuelto el problema cinemático directo.

