

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport

PCT/ SE 98/01309

Newport
South WalksEC'D 06 AUG 1998
NP9 1RI WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

8 June 1998

Act 1977

Request for grant of a parent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Parties of you fill in this form)

01AUG97 E293046-1 D00389. P01/7700 25.00 - 9716194.7 The Patent Office

> Cardiff Road Newport Gwent NP9 1RH

		_	
1	Vouc	reference	ŕ

P11630GB-NF/vt

Patent application number (The Patent Office will fill in this part)

9716194.7

3. Full name, address and postcode of the or of

each applicant (underline all surnames)

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

Perstorp Limited, Aycliffe Industrial Estate, Newton Aycliffe, Darlington, Co. Durham, DL5 6EF

61316001 GB

Title of the invention

"IMPROVEMENTS IN OR RELATING TO CURABLE COATING"

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Forrester Ketley & Co., Forrester House, 52 Bounds Green Road, London, N11 2EY

Patents ADP number (if you know it)

00000133001

If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (if you know it)

Date of filing (day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is not named as an applicant, or

c) any named applicant is a corporate body. See note (d))

YES

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document 	
Continuation sheets of this form	
Description	17
Claim(s)	3
Abstract	_ ~
Drawing(s)	3 t S
10. If you are also filing any of the following, state how many against each item.	
Priority documents	-
Translations of priority documents	-
Statement of inventorship and right to grant of a patent (Patents Form 7/77)	-
Request for preliminary examination and search (Patents Form 9/77)	_
Request for substantive examination (Patents Form 10/77)	,
Any other documents (please specify)	- -
11.	I/We request the grant of a patent on the basis of this application
	Signature of ester Wolfey + Co. Date 31/07/97
12. Name and daytime telephone number of person to contact in the United Kingdom	Nigel Frankland - 0181 - 889 6622

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

PATENTS ACT 1977 P11630GB-NF/jsd

DESCRIPTION OF INVENTION

"IMPROVEMENTS IN OR RELATING TO CURABLE COATING"

THE PRESENT INVENTION relates to curable coating, and more particularly relates to curable coating utilising radiation, especially radiation in the form of ultra-violet light.

It has been proposed previously to provide various coatings which can be applied to a substrate in a liquid form and which can then be cured to form a solid coating. Typically, the liquid coating incorporates unsaturated organic compounds which include C=C double bonds. These compounds present within the liquid coating are effectively polymerised during the curing process.

It has been proposed to effect the curing utilising high energy electron radiation. Typically electrons are delivered by an electron beam accelerator which normally operates at a voltage in excess of 150kVe, although alternatively a nuclear source may be utilised. The radiation breaks some of the C=C double bonds present in the unsaturated organic material, generating free radicals which initiate free radical polymerisation of the remaining material. The equipment necessary to carry out this process is costly to purchase and has to be specially shielded to avoid any leakage of gamma radiation.

There have been many proposals concerning coatings which can be cured, in response to ultra-violet light,

involving free radical initiated polymerisation. Typically these coatings utilise a photo-initiator. initiator in this process is a material that absorbs light, and generates free radicals. The free radicals initiate the polymerisation of the coating. Photo-initiators are generally expensive, and can give rise to problems. example, they can create an undesirable odour or taste (which may be relevant when the coating is going to be in with a food product) and can also "yellowing", which is a tendency for the cured coating to adopt a yellow colour over the course of time.

It has been proposed to provide a coating which can be cured on exposure to ultra-violet light which does not incorporate a photo-initiator. A coating of this type is disclosed in US-A-5,446,073. This Specification teaches a formulation which has a balance of "acceptor" and "donor" The process described in US-A-5,446,073 has not species. yet been adopted by industry, primarily because reactive materials required are not readily commercially Also, the curing process is relatively slow available. with cure times typically being measured in terms of minutes. A further disadvantage of this technique is that it requires a combination of electron donating monomers and electron accepting monomers of relatively low molecular weight, and monomers in general are regarded as being prone to shrinkage during cure and are also regarded as being toxic since they may relatively easily penetrate the skin.

It has been discovered that short wavelength light may be used to effect a cure by direct fragmentation, in a similar way to the electron beam accelerator. Thus, it has been proposed to use light from excimer lamps, which have a wavelength of 172 mm, to cure radiation curable coatings without the use of a photo-initiator. However, this

technique has only been used successfully with very thin coatings, typically coatings less than 1 μm thick. The excimer energy is not able to penetrate readily into a coating which is of a greater thickness without excessive heat being generated. If an excimer lamp were used to irradiate a 10 μm thick coating, it would produce a "cured skin" on the surface, but not a complete cure.

The present invention seeks to provide a UV cured coating in which the disadvantages of prior proposals are obviated or reduced.

According to one aspect of the present invention, there is provided a method of coating a substrate, the method comprising the steps of applying a coating composition to at least selected areas of the substrate, exposing the coated substrate to ultra-violet light from at least one lamp having a power output of at least 140 watts per linear centimetre in a curing zone, to initiate curing of the coating, the coating composition comprising a mixture including at least a reactive part comprising between 30% and 100% multi-functional material and being photo-initiator-free, including the step of maintaining a substantially inert atmosphere in the curing zone where the substrate is exposed to said ultra-violet light.

The preferred multi-functional materials have a functionality of at least three.

Preferably, the inert atmosphere is obtained by purging the curing zone with inert gas such as nitrogen.

Advantageously, the oxygen concentration in the curing zone is less than 1,000 ppm and preferably less than 100 ppm.

Preferably, the multi-functional material comprises one or more reactive diluents.

Conveniently, the multi-functional material comprises one or more materials, each material having a molecular weight in excess of 480.

Advantageously, the multi-functional material comprises one or more materials which have three or more functional acrylate groups.

Conveniently, the coating material contains a prepolymer, and may comprise polyester acrylate, polyurethane acrylate, epoxyacrylate or a full acrylic material.

Conveniently, the pre-polymer is multi-functional.

Advantageously, the coating composition comprises, in addition to the reactive part, a filler, and the filler may comprises clay, silica or magnetisable particles.

Preferably, the power output of the lamp is at least 180 watts/cm and may be substantially 240 watts/cm.

Conveniently, UV light from the lamp has a substantial spectral content in the range 200-300 nm.

Preferably, UV light from the lamp has additional spectral content with peaks of approximately 370 nm, 408 nm and 438 nm.

Two or more lamps may be provided in the curing zone. The lamps may have different spectral properties or may have substantially identical spectral properties.

The invention relates to a substrate when coated by a method as described above.

In order that the invention may be more readily understood, and so that further features thereof may be appreciated, the invention will now be described, by way of example, with reference to the accompanying drawings in which:

FIGURE 1 is a diagrammatic view of an apparatus for use in curing a coating on a substrate;

FIGURE 2 is a graphical indication of the spectral output of a preferred UV lamp;

FIGURE 3 is a graphical representation of the spectral output of an alternative preferred UV lamp; and

FIGURE 4 shows the chemical structure of a reactant.

Referring initially to Figure 1 of the accompanying drawings, an apparatus for curing a coating applied to a substrate is illustrated.

An apparatus is illustrated which comprises a pair of rollers 1,2 adapted to guide a substrate 3, such as a sheet of aluminium foil or a sheet of paper, through the illustrated apparatus. The substrate 3 is coated, before entering the apparatus, completely or partially, with a curable composition which will be described in greater detail hereinafter. The curable composition may be applied as an un-broken coating or may be applied in the form of printing.

The rollers 1,2 guide the substrate 3 through a channel 4 defined between a cooled backing plate 5, and a super-imposed cover 6. The cover 6 supports two lamps 7,8. The lamp 7 can be a "D" lamp, as supplied by Fusion Inc. The lamp 7 is located above a quartz window 9 that is sealed against the cover 6 so that light from the lamp 7 may shine through the quartz window 9 on to the substrate 3 as it passes through a curing zone formed by the channel 4.

The lamp 8 can be a "H" lamp as supplied by Fusion Inc. and is also associated with a quartz window 10 which is formed integrally with the cover 6 so that light from the lamp 8 can pass through the quartz window 10 into the curing zone in channel 4, and thus on to the substrate 3.

The lamps 7,8 each have a focussing reflector. The position of the lamps may be interchanged. In an alternative embodiment, only one lamp may be used, or two lamps of the same type may be used.

The lamps 7 and 8 emit UV light with wavelengths in the band 200 to 550 mm. The light is directed on to the substrate in a region in the central part of the channel 4.

The channel 4 is flushed with nitrogen in order to ensure that there is an inert atmosphere having a minimum quantity of oxygen within the channel. Thus, nitrogen is introduced through an inlet conduit 11 and passes to a dispersing nozzle 12 known as the "inlet knife" which is located on the under-side of the cover 6 above the roller 1, and which is adapted to prevent oxygen entering the channel 4. The nitrogen flows along the channel 4, past the region where the UV light is directed on to the substrate, in the same direction as the direction of

movement of the substrate 3. Nitrogen may also be injected into the channel 4 via nozzles located around the periphery of each quartz window. At the end of the channel 4 adjacent the roller 2 nitrogen flowing through a conduit 13 is passed through a nozzle 14 on the underside of the cover into the channel 4. Thus, there is a continuous flow of nitrogen within the channel 4 such that the concentration of oxygen within the channel 4 is less than 1,000 ppm and preferably less than 100 ppm. Instead of using nitrogen, other inert gases could be used. However, nitrogen is preferred because it is the least expensive inert gas.

The lamps 7 and 8 are supplied in a modular form, each module is 25.4 mm wide and extends transversely across the direction of movement of the web 3 through the channel 4. The lamps are high intensity lamps using medium pressure mercury vapour bulbs operating at a power level in excess of 140 watts per linear centimetre, preferably in excess of 180 watts per linear centimetre, and most preferably in the region of 240 watts per linear centimetre.

The output spectrum of the "D" lamp 7 is illustrated in Figure 2. It can be observed that the spectrum has a substantial spectral content within the range of 350-450 nm, with specific peaks at 355, 370, 383 and 408 nm. There is spectral content in the region of 200-350 nm, although the spectral content in the 200-250 nm range is minimal.

The spectrum of the "H" lamp 8 is illustrated in Figure 3. It can be seen that the spectrum has substantial spectral content in the region of 200-300 nm, with the spectral content at the longer wavelengths being restricted to isolated peaks at 312 nm, 370 nm, 408 nm and 438 nm. The spectral content in the region of 200-300 nm comprises a very broad peak centred on 225 nm and spanning the area

from 210-240 nm and a further relatively broad peak, which is less clearly defined, but which is substantially centred on 262 nm and effectively spans the range of 240-280 nm. It is believed that this very substantial spectral content at these very short wavelengths plays a significant role in creating free radicals to initiate polymerisation. The very high energy present in the well defined peaks at higher frequencies may also contribute.

The reactive part of the curable coating that is applied to the web 3 does not contain a photo-initiator, but does contain a substantial proportion (between 30% and 100% by weight) of multi-functional radiation curable elements. A multi-functional radiation curable element is a radiation curable element which comprises two or more functional groups. Functional groups are acrylate groups with C=C double bonds. If functionality is expressed as a number, the number indicates the number of C=C double bonds available to react, present in acrylate groups.

The radiation curable elements are preferably of low viscosity and can be considered to be reactive diluents, not only providing reactive capabilities, but also maintaining, in the unreacted state, the desired liquid properties of the coating material.

It is preferred that the average molecular weight of any single multi-functional radiation curable element utilised in the curable coating should be greater than 480. It has been found that relatively low molecular weight radiation curable elements may give rise to skin irritation. It is, however, believed that by utilising a molecular weight greater than 480, the risk of skin irritation arising is substantially reduced or obviated.

Typical examples of multi-functional radiation curable reactive diluents are propoxylated pentaerythritol tetra-acrylate or ethoxylated pentaerythritol tetra-acrylate. An alternative material comprises "OTA 480", a triacrylated low viscosity material available from UCB Chemicals of Anderlecht Str. 33, B-1620 Drogenbos, Belgium. The structure of OTA 480 is shown in Figure 4.

The curable coating may optionally comprise, in addition to the reactive part, a non-reactive part or filler that may comprise clay or silica. In some cases, where the coating is to have magnetic properties, the filler may comprise metal particles that may be magnetised.

It is believed that the very high intensity UV radiation applied by the lamps to the curable material generates sufficient free radicals to initiate the curing of the coating.

As the reaction takes place within the substantially inert atmosphere, it is thought that even though a relatively low number of radicals may be produced, because of the high functionality of the coating material, and because the radicals are not subject to oxygen quenching, the radicals that are available to initiate the reaction are sufficient to enable the reaction to proceed very rapidly. Although multi-functional materials, where functionality is greater than 3, are highly reactive, they are believed to undergo a relatively low level of conversion to form a fully cured coating, when compared to mono or di-functional materials.

It is believed that the physical properties of a coating formed solely from multi-functional reactive diluents of low viscosity, whilst sufficient for many

purposes, may not be considered sufficient for use as a high performance coating. In order to produce a coating formulation that exhibits solvent resistance and stain resistance, it has been found appropriate to combine, with the reactive diluents, a pre-polymer which preferably contains some unsaturation. A pre-polymer is a reactive material of relatively high viscosity. A pre-polymer, when used alone, does not exhibit liquid properties that are appropriate for a coating material that could be used for example in a direct gravure coating process. Examples of suitable pre-polymers are polyester acrylates, polyurethane acrylates and epoxy acrylates. The functionality of these materials is normally 2 or 3 but can be up to 6. thought that the higher the functionality of the prepolymers, the faster the curing performance of the coating.

EXAMPLE 1

A series of multi-functional materials were coated on to aluminium foil at a coat weight of approximately 10g/m². The coated foil was passed through a curing apparatus, similar to that shown in Figure 1, but with only one lamp Initially, the lamp was an "H" at a speed of 20 m/min. lamp, and subsequently the experiment was repeated using a The lamps were each operated at a power level of 240 watts/centimetre. The cured coating was subsequently tested using an acetone rub test utilising a SATRA rub Such a tester provides an indication of the degree tester. of curing. Solvent resistance is indicated as the number of double rubs effected before the coating applied to the aluminium foil is removed. The greater the number of rubs, the more solvent resistant is the coating.

The results are set out in Table 1.

TABLE 1

Coating Composition	Solvent Resistance - Ace rul	
	H Bulb	D Bulb
Tripropan-glycol- diacrylate	<2	<2
OTA 480 triacrylate	40	<2 _
<u>Tetra-acrylates</u>		
Ebecryl 40 (UCB)	95	<2
Ethoxylated- pentaerythritol tetra-acrylate (Croda)	4.5 _	<2
Tetra-acrylate with pre-polymer		
Actilane 320 PP 50 Epoxy acrylate with 50% Propoxylated- pentaerythritol tetra-acrylate (Ackros)	150	<2

Ebecryl 40 is a tetra-functional acrylated reactive diluent available from UCB Chemicals. The ethoxylated pentaerythritol tetra-acrylate was obtained from Croda Resins Ltd. of Crabtree Manorway, South Belvedere, Kent DA17 6BA. Actilane 320 PP 50 is obtained from Ackros Chemicals, Eccles Site, Bentcliffe Way, P.O. Box 1, Eccles, Manchester M30 OBH.

Example 1 shows that when the coating composition comprises only a di-acrylate, the solvent resistance has a very low value. When tri-acrylates or tetra-acrylates are utilised, a much greater degree of solvent resistance is achieved. When a tetra-acrylate mixed with a pre-polymer is utilised, there is substantial improvement in the performance of the cured coating. This is believed to be due to the introduction of higher molecular weight epoxy groups in the cross-linked structure of the coating.

EXAMPLE 2

A coating of HH52-0103 02 EBC foil coating material obtained from Glasurit GmbH, Postfach 6123, Muenster, Germany, was applied at a coat weight of approximately 10g/m² to an aluminium foil. This material comprises a relatively small proportion epoxy acrylate and relatively large proportion of pentaerythritol tetra-acrylate. The coated foil was passed at various speeds through a curing apparatus similar to that shown in Figure 1 but with only a single "H" lamp 7 operating. In an initial series of experiments, the "H" lamp was operated at a power of 240 watts per centimetre and in another series of experiments the "H" lamp was operated at a power of 160 watts per centimetre. The acetone rub test as described with reference to Example 1, was subsequently used to indicate the degree of curing. The results are shown in Table 2.

TABLE 2

Speed	•	Solvent Resistance Acetone rubs		
	@ 240 W/cm	@ 160 W/cm		
30 M/min	100	11		
40 M/min	35	9		
50 M/min	9	1		
60 M/min	4	1 ·		

Example 2 illustrates that the degree of curing of the coating is improved when the coating is provided with a substantial energy input in the UV spectrum. results are achieved with a relatively low speed of movement of the substrate through the curing apparatus and with the application of very intense high energy light. can be seen that it is important, for a satisfactory cure to be achieved, for there to be a sufficient power input for a sufficient period of time. The degree of cure achieved does not increase linearly with lower speed of passage through the curing zone (i.e. does not increase linearly with the exposure time to intense UV light). As can be seen, especially at 240 watts per centimetre, the degree of cure achieved increases very substantially, almost exponentially, with increased residence time in the curing zone.

It is believed that an even higher degree of cure can be achieved utilising two lamps within the curing zone. This is shown in Example 3 where the same coating is applied and cured using two lamps at a much higher speed.

EXAMPLE 3

A coating of HH52-0103 02 EBC foil coating material was coated on to a printed paper (Paper 13-2606), using a gravure coating unit at a coat weight of approximately 8 g/m² and a run speed of 80 metres per minute. The coated paper was passed through a UV curing apparatus of a type illustrated in Figure 1 flushed with nitrogen gas to as to achieve a residual oxygen level within the curing region of less than 100 ppm. The curing zone was illuminated, through quartz windows, by two high intensity UV lamps, one "H" bulb and one "D" bulb utilising focus-reflectors to direct UV light on to the coating to cure it to form a dry film, the two lamps operating at a power of 240 watts per linear centimetre.

The solvent resistance was greater than 50 acetone rubs (measured as in Example 2).

To test the performance of the coated paper as a furniture surfacing material, a sample of the coated paper was laminated, using aminoplast adhesive, on to a piece of Then stain and scratch tests were carried out using the techniques described in ISO 4211. For comparison purposes, the test run was repeated, adding to the coating material the photo-initiator recommended by, and obtainable from, Glasurit GmbH, which is a methyl-phenyl-glyoxylate identified as SR07 641H. This coated paper was also a piece of chipboard using laminated to aminoplast adhesive. For further comparison, a sample of commercially available furniture foil which had been lacquered using a water-based amino polyester lacquer and then thermally cured, was also laminated, using aminoplast adhesive, to

chipboard to represent a current commercially acceptable industry performance standard.

The results are given in Table 3, where stain resistance is indicated on a 1-5 scale (5 being the best result and 1 being the worst result).

ISO 4211 Stain Resistance	Thermal Cured UV No. Photoinitiator UV + 0.5% SRO7-641H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	72.5 71.0
	Thermal Cured Lacquer		72.5
	Test Liquid	Acetic Acid Acetone Ammonia solution Blackcurrant juice Citric acid Cleansing agent Coffee Disinfectant (DETTOL) Disinfectant (SAVLON) Endorsing ink Ethanol Ethyl/Butyl acetate Iodine Milk (condensed) Olive Oil Paraffin oil BP SBP Spirit Sodium carbonate Sodium chloride Tea Water	TOTALS:

TABLE 3

Example 3 indicates that a coating composition in accordance with the present invention, with no photoinitiator, provides a superior performance to a coating composition which does include a photo-initiator. performance achieved by the material of the present invention is very similar to the performance achieved by the industry-acceptable-standard utilised for comparison purposes. Furthermore, by utilising a preferred lamp power, spectrum and reactive combination of UV materials, the process can operate at higher speeds.

Consequently, it is believed that the present invention provides a method of producing an industry-acceptable material without the use of photo-initiators, but whilst still providing the other advantages of UV curing.

The coating techniques described above have been found to be particularly suitable for applying coatings to flexible papers or films, such as papers or films produced on high speed coating and printing machines. The coatings have been found to be especially valuable for use on surfaces that are found in the home environment. Thus, the coatings may be applied to surfacing materials intended for application to furniture, walls, floors and ceilings. However, it is to be understood that the method described may utilised above be for less demanding coating applications, such as varnishes for books, magazines or record sleeves. The method described above may also be utilised for fabricating coated materials for use packaging where low odour coatings, or coatings which do not impart a "taste" to products, are of particular value.

CLAIMS:

- 1. A method of coating a substrate, the method comprising the steps of applying a coating composition to at least selected areas of the substrate, exposing the coated substrate to ultra-violet light from at least one lamp having a power output of at least 140 watts per linear centimetre in a curing zone, to initiate curing of the coating, the coating composition comprising a mixture including at least a reactive part comprising between 30% and 100% multi-functional material and being photo-initiator-free, including the step of maintaining a substantially inert atmosphere in the curing zone where the substrate is exposed to said ultra-violet light.
- 2. A method according to Claim 1 wherein the inert atmosphere is obtained by purging the said curing zone with inert gas.
- 3. A method according to Claim 2 wherein the inert gas comprises nitrogen.
- 4. A method according to any one of the preceding Claims wherein the oxygen concentration within the said curing zone is less than 1,000 parts per million.
- 5. A method according to Claim 4 wherein the oxygen concentration is less than 100 parts per million.
- 6. A method according to any one of the preceding Claims wherein the multi-functional material comprises one or more reactive diluents.
- 7. A method according to any one of the preceding Claims wherein the multi-functional material comprises one or more

materials, the or each material having a molecular weight in excess of 480.

- 8. A method according to any one of the preceding Claims wherein the multi-functional material comprises one or more materials which have three or more functional acrylate groups.
- 9. A method according to Claim 6, 7 or 8 wherein the coating material additionally contains a pre-polymer.
- 10. A method according to Claim 9 wherein the pre-polymer comprises polyester acrylate, polyurethane acrylate, epoxyacrelate, or a full acrylate material.
- 11. A method according to Claim 9 or 10 wherein the prepolymer is multi-functional.
- 12. A method according to any one of the preceding Claims wherein the coating composition comprises, in addition to the reactive part, a filler.
- 13. A method according to Claim 12 wherein the filler is clay.
- 14. A method according to Claim 12 wherein the filler is silica.
- 15. A method according to Claim 12 wherein the filler is magnetisable particles.
- 16. A method according to any one of the preceding Claims wherein the power output of the lamp is at least 180 watts/cm.

- 17. A method according to Claim 16 wherein the power output of the lamp is substantially 240 watts/cm.
- 18. A method according to any one of the preceding Claims wherein UV light from the lamp has a substantial spectral content in the range of 200-300 nm.
- 19. A method according to Claim 18 wherein UV light from the lamp has a spectral content at peaks of approximately 370 nm, 408 nm and 438 nm.
- 20. A method according to any one of the preceding Claims wherein two lamps are provided in the curing zone, the lamps having different spectral properties.
- 21. A method according to any one of Claims 1 to 19 wherein two lamps are provided in the curing zone, the lamps having substantially identical spectral properties.
- 22. A substrate when coated by a method according to any one of the preceding Claims.
- 23. A method of coating a substrate substantially as herein described by way of example.
- 24. Any novel feature or combination of features disclosed herein.

		•
		0 •

FICH.

england of

-18-

CLAIMS:

- A method of coating a substrate, the method comprising the steps of applying a coating composition to at least selected areas of the substrate, exposing the coated substrate to ultra-violet light from at least one lamp having a power output of at least 140 watts per linear centimetre in a curing zone, to initiate curing of the coating, the coating composition comprising a mixture including at least a reactive part comprising between 30% 100% multi-functional material and and being photoinitiator-free, including the step of maintaining a substantially inert atmosphere in the curing zone where the substrate is exposed to said ultra-violet light.
- 2. A method according to Claim 1 wherein the inert atmosphere is obtained by purging the said curing zone with inert gas.
- 3. A method according to Claim 2 wherein the inert gas comprises nitrogen.
- 4. A method according to any one of the preceding Claims wherein the oxygen concentration within the said curing zone is less than 1,000 parts per million.
- 5. A method according to Claim 4 wherein the oxygen concentration is less than 100 parts per million.
- 6. A method according to any one of the preceding Claims wherein the multi-functional material comprises one or more reactive diluents.
- 7. A method according to any one of the preceding Claims wherein the multi-functional material comprises one or more

WO 99/06489 PCT/SE98/01309

-19-

materials, the or each material having a molecular weight in excess of 480.

- 8. A method according to any one of the preceding Claims wherein the multi-functional material comprises one or more materials which have three or more functional acrylate groups.
- 9. A method according to Claim 6, 7 or 8 wherein the coating material additionally contains a pre-polymer.
- 10. A method according to Claim 9 wherein the pre-polymer comprises polyester acrylate, polyurethane acrylate, epoxyacrelate, or a full acrylate material.
- 11. A method according to Claim 9 or 10 wherein the prepolymer is multi-functional.
- 12. A method according to any one of the preceding Claims wherein the coating composition comprises, in addition to the reactive part, a filler.
- 13. A method according to Claim 12 wherein the filler is clay.
- 14. A method according to Claim 12 wherein the filler is silica.
- 15. A method according to Claim 12 wherein the filler is magnetisable particles.
- 16. A method according to any one of the preceding Claims wherein the power output of the lamp is at least 180 watts/cm.

- 17. A method according to Claim 16 wherein the power output of the lamp is substantially 240 watts/cm.
- 18. A method according to any one of the preceding Claims wherein UV light from the lamp has a substantial spectral content in the range of 200-300 nm.
- 19. A method according to Claim 18 wherein UV light from the lamp has a spectral content at peaks of approximately 370 nm, 408 nm and 438 nm.
- 20. A method according to any one of the preceding Claims wherein two lamps are provided in the curing zone, the lamps having different spectral properties.
- 21. A method according to any one of Claims 1 to 19 wherein two lamps are provided in the curing zone, the lamps having substantially identical spectral properties.
- 22. A substrate when coated by a method according to any one of the preceding Claims.
- 23. A method of coating a substrate substantially as herein described by way of example.

3 / 3

FIG 4