电子电路手册 Electronic Circuits Manual

丁毅

(中国科学院大学, 北京 100049)

Yi Ding

(University of Chinese Academy of Sciences, Beijing 100049, China)

2024.11 - ...

序言

Preface

Contents

序言				
Pr		IJ		
Contents				
1	Cap	pacitance	1	
	1.1	Capacitance Multiplier	1	
	1.2	Capacitance Measurement	1	
	1.3	Varible Capacitance	1	
Re	eferen	nce	1	

Chapter 1 Capacitance

1.1 Capacitance Multiplier

This part refers to references [?] and [?]. Below are two basic concepts for capacitance multiplication:

Figure 1.1: Basic Capacitance Multiplier Circuits

Thus, we obtain the equivalent capacitance as:

Current Mode:
$$C_{\text{eq}} = (1+K)C \Longrightarrow \begin{cases} C_{\text{eq}} > C, & K > 0 \\ C_{\text{eq}} < C, & K < 0 \end{cases}$$
 (1.1)

Voltage Mode:
$$C_{\text{eq}} = \frac{C}{1+K} \Longrightarrow \begin{cases} C_{\text{eq}} < C, & K > 0 \\ C_{\text{eq}} > C, & K < 0 \end{cases}$$
 (1.2)

A simple implementation of cap multiplier, depicted in Fig.1.2, combining a unit-gain buffer (voltage fllower) and a inverting amplifier, is a voltage mode circuit. yielding the equivalent capacitance:

$$C_{\text{eq}} = \frac{C}{1+K} = \frac{1}{1-\frac{R_2}{R_1}} = \frac{R_1}{R_1-R_2}C$$
 (1.3)

where $K=-\frac{R_2}{R_1}$ is the closed-loop gain of the inverting amplifier. Since inverting amplifier has a low input impedance, the unit-gain buffer is a necessary. To change it into a two-terminal element, just replace GND with the negtive terminal of the input voltage, e.g. $V_{\text{in},-}$.

Figure 1.2: A Simple Implementation of Capacitance Multiplier

1.2 Capacitance Measurement

1.3 Varible Capacitance