Title of the Document

Author Name

June 22, 2024

Contents

Title of the Document 2

1 Exercises

- 1. Let (X,d) be a metric space and $S\subseteq X$. Show that $\partial S=\emptyset$ if and only if S is both open and closed.
- 2. Show that for an arbitrary choice of $a, b, r \in \mathbb{R}$, the closed disk $(x-a)^2 + (y-b)^2 \le r^2$ is in a bounded set in \mathbb{R}^2 .
- 3. Let (X,d) be a metric space and for $x,y\in X$. Show that if $d(x,y)<\epsilon$ for every $\epsilon>0$, then x=y.
- (i) Assume $S \neq \emptyset$. Then $\exists x \in S$, such that $x \notin \partial S^*$. Then $x \in S^{int}$ and there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq S$.

However, by $x \notin \partial S$, this value of $\epsilon > 0$ implies $B_{\epsilon}(x) \cap S = \emptyset$, which is a contradiction, implying our assumption that $x \in S \cap S^{int}$ must be false and $\partial S \cap S^{int} = \emptyset$.

(iii) A set S is bounded iff $\exists M > 0$, such that $d(x,y) \leq M, \forall x,y \in S$

Let $a, b, r \in \mathbb{R}$.

$$\delta = \{(x,y) \in \mathbb{R} | (x-a)^2 + (y-b)^2 \le r^2\} \implies x^2 - 2ax + a^2 + y^2 - 2by + b^2 \le r^2$$

$$\implies x^2 - 2ax + y^2 - 2by \le r^2 - a^2 - b^2 \implies x^2 - 2ax + y^2 - 2by \le r^2 - a^2 - b^2 + 2ax + 2by$$

$$\implies x^2 + y^2 < r^2 - a^2 - b^2 + 2ax + 2by$$

Need to show x^2 is bounded,

$$(x-a)^2 \le r^2 \implies |x-a| \le |r| \implies |x-a| \le |r| + |a|$$

$$\implies |x| = |x-a+a| \le |x-a| + |a| \le |r| + |a|$$

$$\implies |x| \le |x-a+a| \le |x-a| + |a| \le |r| + |a|$$

$$\Rightarrow |y| \le r + |a|$$
$$\Rightarrow y^2 \le (r + |a|)^2$$

Same for $x, x^2 \le (r + |b|)^2$

$$\forall z = (x, y) \in D_{r,(a,b)}$$

$$||z|| = \sqrt{x^2 + y^2} \le \sqrt{(r + |a|)^2 + (r + |b|)^2}$$

Thus if $\sqrt{(r+|a|)^2+(r+|b|)^2}$, the bound holds.

#IS named boundless = distance boundedness.

Let
$$x = (x_1, x_2), y = (y_1, y_2) \in D_{r,(a,b)}$$

$$z_i \in \{x_i, y_i\}$$

$$(x_i - a)^2 + (x_i - b)^2 = r^2$$

Title of the Document 3

$$\Rightarrow d((x_i, b)) = \sqrt{(x_i - a)^2 + (x_i - b)^2} \le r$$

$$\Rightarrow d((x,y)) \le d((x,(a,b))) + d(y,(a,b))$$

$$= \sqrt{(x_i - a)^2 + (x_i - b)^2} + \sqrt{(y_i - a)^2 + (y_i - b)^2} \le r + r = 2r$$

(iii) Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\epsilon = d(x,y) \Rightarrow \epsilon > 0$ but $d(x,y) \notin \epsilon$. (contradiction).

(contradiction) Suppose $x \neq y$ and so $d(x, y) \neq 0$.

Choose $\epsilon > 0$ so that $\epsilon = d(x,y)$. Then we must have $d(x,y) < \epsilon = \frac{d(x,y)}{2}$, which is a contradiction, as this implies $d(x,y) = \frac{d(x,y)}{2}$

If
$$d(x,y) < \frac{d(x,y)}{2}$$

So
$$d(x,y) \le s\epsilon = \frac{\epsilon}{2}$$

Thus $\frac{\epsilon}{2} < \epsilon$

(iv)

Let $(V, ||\cdot||)$ be a normed vsp.

Then let r > 0 and $x \in V$. Then $B_r(x) = \{u \in V \mid d(x, u) < r\}$ $B_{r+||x||}(0) = \{v \in V \mid d(0, u) < r + ||x||\}$

Let $y \in B_r(x)$

$$d(0,y) \le d(0,x) + d(x,y)$$

$$\leq ||x|| + r$$

$$\Rightarrow B_r(x) \subseteq B_{r+||x||}(0)$$

(v) Suppose S is bounded. Then $\exists M \in \mathbb{R}$ such that $\forall x \in S||x|| \leq M$

 $(Equal to \exists M \in \mathbb{R} : \forall x \in V) \in S \subseteq B_M(0)$