\leftarrow Optimization algorithms

Quiz, 10 questions

	Congratulations! You passed!	Next Item					
~	1 / 1 points						
1.							
Which	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?						
	$a^{[8]\{7\}(3)}$						
	$a^{[3]\{7\}(8)}$						
0	$a^{[3]\{8\}(7)}$						
Cor	ect						
	$a^{[8]\{3\}(7)}$						
~	1/1 points						
2. Which	of these statements about mini-batch gradient descent do you agree with?						
	You should implement mini-batch gradient descent without an explicit for-loop over difalgorithm processes all mini-batches at the same time (vectorization).	ferent mini-batches, so that the					
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.						
0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faste descent.	r than one iteration of batch gradient					
Cor	ort.						
Cor							
~	1/1 points						
3.							
vvny i:	the best mini-batch size usually not 1 and not m, but instead something in-between? If the mini-batch size is 1, you end up having to process the entire training set before m	aking any progress					
		uning uny progress.					
Un-	elected is correct						

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

Correct Optimization algorithms

Quiz, 10 questions

	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient
	descent.

Un-selected is correct

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making
progress.

Correct

1/1 points

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

\bigcirc	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

Optimization algorithms

Quiz, 10 questions

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

Correct

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

 $lpha=e^tlpha_0$

Correct

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$lpha=rac{1}{1+2*t}lpha_0$$

$$lpha = 0.95^t lpha_0$$

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $p_t = \beta v Qptimiz$ and the swast computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that, apply estions

Decreasing eta will shift the red line slightly to the right.					
Un-selected is correct					
Increasing eta will shift the red line slightly to the right.					
Correct True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.					
Decreasing eta will create more oscillation within the red line.					
Correct True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.					
Increasing β will create more oscillations within the red line.					

Un-selected is correct

Quiz, 10 questions

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent. (2) is	gradient descent with momentum	$(large \beta)$. (3) is g	radient descent with	momentum (small β)
(1) is gradient descent. (2) is	gradient descent with momentum	i (iai gc ρ) . (3) is gi	radicine acacente with	ρ

(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1 / 1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try using Adam
Correct

Try mini-batch gradient descent

Correct

Try tuning the learning rate lpha

Correct

