MATE-T580: Quiz 5

Name:

Question 1

Auto is another R dataset that has information on different car models:

name	year	weight	horsepower	cylinders	mpg		##
chevrolet chevelle malibu	70	3504	130	8	18	1	##
buick skylark 320	70	3693	165	8	15	2	##
plymouth satellite	70	3436	150	8	18	3	##
amc rebel sst	70	3433	150	8	16	4	##
ford torino	70	3449	140	8	17	5	##

Which line of code represents the proper way to reproduce the plot above:

Α.

```
ggplot(Auto, aes(x=horsepower, y=mpg, shape=cylinders) + geom_point(size=1, alpha=0.5)
```

В.

```
ggplot(Auto, aes(x=horsepower, y=mpg, col=cylinders)) + geom_point(size=1, alpha=0.5)
```

 $\mathbf{C}.$

```
ggplot(Auto, aes(x=horsepower, y=mpg)) + geom_point(size=1, alpha=0.5, col=cylinders)
```

D.

```
ggplot(Auto, aes(x=horsepower, y=mpg)) + geom_point(size=1, alpha=0.5, shape=cylinders)
```

Question 2

For the same Auto dataset, you wish to compare basic statistics of mpg as function of cylinders. Complete the line of code below to produce the desired result.:

```
ggplot(Auto, aes(x=cylinders, y=mpg)) + _____
```

Α.

```
geom_density()
```

В.

```
geom_bar()
```

 \mathbf{C}

```
geom_histogram()
```

 \mathbf{D}

```
geom_boxplot()
```

Question 3

For the same Auto dataset, you wish to plot the distribution of car weight across all cars in the dataset. Which line of code represents the proper way to produce the desired result:

Α.

```
ggplot(Auto, aes(x=weight)) + geom_histogram()
```

В.

```
ggplot(Auto, aes(x=weight)) + geom_barplot()
```

 \mathbf{C}

```
ggplot(Auto, aes(x=weight)) + geom_boxplot()
```

 \mathbf{D}

```
ggplot(Auto, aes(x=weight)) + geom_point()
```

Question 4

For the same Auto dataset, write the line of code to reproduce the plot above:

Question 5

For the same Auto dataset, you wish to explore the development of mpg over time (i.e. the year variable), while controling for the number of cylinders. To avoid crowding your plot, you will use faceting, such that each panel corresponds to a fixed number of cylinders. Write the line of code to produce the desired result: