285_Inorder Successor in BST

inorder: left - voot - right

for D: H's inorder snuersor is in / D's root

for ①: His inorder snuersor is in / D's right subtree nun if ① how no right Child

for 3: 'H's inorder successor is in / 3's right subtree nun if 3 has no right Child

Node's Locarion	Tis Inorder Successor in 1857
lefe subtree	Ze's vooc
Yout	Du's right subtree null if it has no right child
righe subtre	Ze's right subtill mul if it has no right child

if he use dévide and conquer

11 corner case

if (voot == mull) { yermn voot;

11 p is the root or p is in the right subtree

11 find p's morder successor in the right subtree

if (rove, val <= p.val) {

return morder Successor (boot. right, p);

11 p is in the left subtree

Il find p's morder successor in the left substree, if not found, vernm root;

} else {

TreeNode left = morder Successor (100°t. left, P); vernm (left!= mul)? left: 100°t;

230_Kth Smallest Element in a BST

2 b 5 T

Lefe subtree how 3 modes

If $K \le 3$, we find K in left subtree

If K > 3+1, we find K in Higher Subtree

If K = 3+1, K is the boot

BST

i. Lefe tree's nodes' value <= voot. val <= right tree's node's value

The Smallest elements distribution should be: Left tree > not > right tree

We need to count total # of modes in left sub-wee, let's call it I,

If $k \le l$, we do not need to find kith smallest element in the voor and right sub tree.

If K > 1+1, that means Kth Smallest element is in the right Subtree.

Otherwise, K== 1+1, Kth Smallest element is the root.