<u>Course</u>

<u>Progress</u>

<u>Dates</u>

Discussion

More... ▼

☆ Course / Section 2: Continuous Probability / 2.2 Assessment: Continuous Probability

Previous	┏ ✓	┏ ✓		Next >
uestions Bookmark this	3 and 4: ACT scores, p	part 2		
	: due Mar 17, 2021 04:40 IST ©			
about ther	•	t raw ACT scores to Z-score	es and answer some questio	ns
that to sta and standa	ndardize values (convert va ard deviation of 1), you must ean and standard deviation	Ill from <u>Data Visualization</u> (th lues into Z-scores, that is, va subtract the mean and ther of act_scores, not the origin	alues distributed with a mean n divide by the standard dev	n of 0
Questio	n 3a			
1.0/1.0 point What is the		eater than 2 (2 standard dev	viations above the mean)?	
0.0233		✓		
\(\)				
Submit	You have used 1 of 10 attempt	ots		
Questio	n 3b			
1.0/1.0 point What ACT		2 standard deviations above	e the mean (Z = 2)?	
32.1906		✓		
\(\)	_			
Submit	You have used 1 of 10 attemp	ots		
Questio	O.a.			

1.0/1.0 point (graded)

A Z-score of 2 corresponds roughly to the 97.5th percentile.

Use <code>qnorm()</code> to determine the 97.5th percentile of normally distributed data with the mean and standard deviation observed in <code>act_scores</code>.

In this 4-part question, you will write a function to create a CDF for ACT scores.

Write a function that takes a value and produces the probability of an ACT score less than or equal to that value (the CDF). Apply this function to the range 1 to 36.

Question 4a

1.0/1.0 point (graded)

What is the minimum integer score such that the probability of that score or lower is at least .95? Your answer should be an integer 1-36.

Question 4b

1.0/1.0 point (graded)

Use qnorm() to determine the expected 95th percentile, the value for which the probability of receiving that score or lower is 0.95, given a mean score of 20.9 and standard deviation of 5.7.

What is the expected 95th percentile of ACT scores?

Question 4c

1.0/1.0 point (graded)

As discussed in the Data Visualization course, we can use quantile() to determine sample quantiles from the data.

Make a vector containing the quantiles for p <- seg(0.01, 0.99, 0.01), the 1st through 99th percentiles of the act_scores data. Save these as sample_quantiles.

In what percentile is a score of 26?

Your answer should be an integer (i.e. 60), not a percent or fraction. Note that a score between the 98th and 99th percentile should be considered the 98th percentile, for example, and that quantile numbers are used as names for the vector sample_quantiles .

Question 4d

0.0/1.0 point (graded)

Make a corresponding set of theoretical quantiles using qnorm() over the interval $p \leftarrow seq(0.01, 0.99, 0.01)$ with mean 20.9 and standard deviation 5.7. Save these as theoretical_quantiles on the y-axis versus theoretical_quantiles on the x-axis.

Which of the following graphs is correct?

Submit You have used 2 of 2 attempts Loading [a11y]/mathjax-sre.js < Previous</pre> Next >

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>