

A.Birek, M.Kosiński, N.Ryciak, W.Ryciuk May 12, 2014

CONTENTS

1	Downloading data	3
2	SAS Path	4
	2.1 Importing data	4
	2.2 Merging files	4
	2.3 Summary for each variable	4
	2.4 Sorting	6
	2.5 Frequency tables	6
	2.5.1 ros	6
	2.5.2 Packages	6
3	Traditional $\mathcal R$ Path	7
	3.1 Unmerged \mathcal{R} files Path	7
	3.2 Merged \mathcal{R} files Path	7
	3.2.1 Names	7
	3.2.2 Getting Data	8
4	Rcpp Path	9
A	Preparing report	10
	A.1 Data download, unzipp, conversion syntax	10
В	SAS Syntax	11

 $Figure \ 1: \ Powered \ by \ ! \ https://github.com/MarcinKosinski/AlmostBigData$

CHAPTER

ONE

DOWNLOADING DATA

Syntax used for downloading, unzipping and merging data is available in section A.1. More or less downloading looked like this and took about: 1783.13 s

```
start <- as.Date("2012-10-01")
today <- as.Date("2014-05-10")
all_days <- seq(start, today, by = "day")
year <- as.POSIX1t(all_days)$year + 1900
urls <- pasteO("http://cran-logs.rstudio.com/", year, "/", all_days, ".csv.gz")

destdir <- "D:/bd1/AlmostBigData/cran-logs/"
n <- length(urls)
i = 1
for (i in 1:n) {
    destfile <- stri_paste(destdir, as.character(all_days[i]))
    download.file(urls[i], destfile)
}</pre>
```

Unzipping files syntax looked like this and took:

```
lok <- "D:/bd1/AlmostBigData"
gzpath <- character(n)
i <- 1
for (i in 1:n) {
    gzpath[i] <- paste(lok, "/cran-logs", all_days[i], sep = "")
}
install.packages("R.utils")
library(R.utils)
for (i in 1:n) {
    gunzip(gzpath[i], destname = paste(gzpath[i], ".csv"), remove = TRUE)
}</pre>
```

Converting CSV files with proper delimiter syntax looked like this and time spent was:

```
for (i in 1:n) {
    write.csv2(read.csv2(paste(gzpath[i], ".csv"), sep = ","), paste(gzpath[i], "_new.csv"))
}
```

CHAPTER

TWO

SAS PATH

Syntax used for importing, merging and summarizing data is available in chapter B.

2.1 Importing data

Importing csv files into SAS syntax looked like this and took: average 0.2 s for each file, that gives 2 min 40 S (Stoper method.)

```
proc import datafile='D:/bd1/AlmostBigData/cran-logs2012-10-01 _new.csv'
out=CR.cran1 dbms=csv replace;
    delimiter = ';';
    getnames=yes;
    run;

...

proc import datafile='D:/bd1/AlmostBigData/cran-logs2014-05-09 _new.csv'
out=CR.cran586 dbms=csv replace;
    delimiter = ';';
    getnames=yes;
    run;
```

2.2 Merging files

Merging all those files syntax looked like this and time expired was:

```
data Cr.DANE;
set
CR.cran1,
CR.cran2,
....
CR.cran586;
```

Time expired:

```
NOTE: The data set CR,DANE has 41611796 observations and 11 variables, NOTE: DATA statement used (Total process time):
real time 1:22,02
cpu time 11,94 seconds
```

2.3 Summary for each variable

Summaries of each variable syntax looked like this and time expired was:

```
proc summary data=Cr.DANE2 print;
   class package;
14
    run;
NOTE: There were 41611796 observations read from the data set CR.DANE2.
NOTE: PROCEDURE SUMMARY used (Total process time):
     real time 29.82 seconds
                        20.06 seconds
     cpu time
15
16
    proc summary data=Cr.DANE2 print;
17
    class version;
18
    run;
NOTE: There were 41611796 observations read from the data set CR.DANE2.
NOTE: PROCEDURE SUMMARY used (Total process time):
     real time
                       31.23 seconds
                        20.18 seconds
     cpu time
19
20
   proc summary data=Cr.DANE2 print;
21
    class r_arch;
22
   run;
NOTE: There were 41611796 observations read from the data set CR.DANE2.
NOTE: PROCEDURE SUMMARY used (Total process time):
     real time 30.65 seconds
                       10.12 seconds
     cpu time
23
24
    proc summary data=Cr.DANE2 print;
25
    class r_os;
26
    run;
NOTE: There were 41611796 observations read from the data set CR.DANE2.
NOTE: PROCEDURE SUMMARY used (Total process time):
     real time 30.59 seconds
     cpu time
                       12.58 seconds
27
28
   proc summary data=Cr.DANE2 print;
29
   class r_version;
30
   run;
NOTE: There were 41611796 observations read from the data set CR.DANE2.
NOTE: PROCEDURE SUMMARY used (Total process time):
     real time 30.56 seconds
                        10.95 seconds
     cpu time
31
   proc summary data=Cr.DANE2 print;
33
   class country;
34
    run;
NOTE: There were 41611796 observations read from the data set CR.DANE2.
NOTE: PROCEDURE SUMMARY used (Total process time):
    real time 30.07 seconds
```

```
cpu time 12.48 seconds
```

2.4 Sorting

Sort procedure is required that frequency table can be computed. Unfortunately it takes over 3 minutes...

2.5 Frequency tables

2.5.1 r os

Frequency tables syntax and the time expired for ${\tt r}$ os:

2.5.2 Packages

Frequency tables syntax and the time expired for packages, grouped by r os:

CHAPTER

THREE

TRADITIONAL \mathcal{R} PATH

3.1 Unmerged \mathcal{R} files Path

3.2 Merged \mathcal{R} files Path

Merging all filles with R looked like this:

It took around 25 mins.

3.2.1 Names

Getting all packages names, architectures kinds and operating system names was done in around 15 min using the following code:

```
options(stringsAsFactors = FALSE)
temp_dir <- destdir <- "~//BigData"
fname <- paste(temp_dir, "/dane.csv", sep = "")

nazwy <- vector("character")

skipy <- 0
nrowsy <- 2e+06
nazwy <- character(0)
arch <- character(0)
r_os <- character(0)

ileLinijek <- 0

while (class(try({
    d <- read.csv2(fname, skip = skipy, nrows = nrowsy)
}, silent = TRUE)) != "try-error") {
    nazwy <- union(d[, 7], nazwy)
    arch <- union(d[, 5], arch)</pre>
```

```
r_os <- union(d[, 6], r_os)
  ileLinijek <- ileLinijek + length(d[, 1])
  skipy <- skipy + nrowsy
}

nazwy <- na.omit(nazwy)
  arch <- na.omit(arch)
  r_os <- na.omit(r_os)
  n <- length(nazwy)
  a <- length(arch)
  r <- length(r_os)
  a_r <- data.frame(matrix(0, nrow = a, ncol = r))
  rownames(a_r) <- arch
  names(a_r) <- r_os</pre>

pakiety <- data.frame(rep(0, length.out = n), row.names = nazwy)

names(pakiety) <- "Krotnosci"
```

3.2.2 Getting Data

To get required data we used the following code:

```
skipy <- 0
nrowsy <- 2e+06
while (class(try({
    d <- read.csv2(fname, skip = skipy, nrows = nrowsy)
}, silent = TRUE)) != "try-error") {
    for (j in 1:length(d[, 1])) {
        if (!is.na(d[j, 7]))
            pakiety[(d[j, 7]), ] <- pakiety[(d[j, 7]), ] + 1
    }

    skipy <- skipy + nrowsy
}</pre>
```

```
skipy <- 0
nrowsy <- 2e+06
while (class(try({
    d <- read.csv2(fname, skip = skipy, nrows = nrowsy)
}, silent = TRUE)) != "try-error") {
    un <- unique(d[, 10])
    un <- na.omit(un)
    for (i in 1:length(un)) {
        s <- (d[d[, 10] == un[i], ][1, ])
        aa <- s[1, 6]
        rr <- s[1, 5]
        if (!is.na(aa) & !is.na(rr))
              a_r[rr, aa] <- a_r[rr, aa] + 1
}
skipy <- skipy + nrowsy
}</pre>
```

First took around 2 hours, and second.

CHAPTER FOUR

RCPP PATH

APPENDIX

A

PREPARING REPORT

A.1 Data download, unzipp, conversion syntax

```
start <- as.Date("2012-10-01")
today <- as.Date("2014-05-10")</pre>
all_days <- seq(start, today, by = "day")
year <- as.POSIX1t(all_days)$year + 1900</pre>
urls <- paste0("http://cram-logs.rstudio.com/", year, "/", all_days, ".csv.gz")</pre>
destdir <- "D:/bd1/AlmostBigData/cran-logs/"</pre>
n <- length(urls)</pre>
for (i in 1:n) {
    destfile <- stri_paste(destdir, as.character(all_days[i]))</pre>
    download.file(urls[i], destfile)
lok <- "D:/bd1/AlmostBigData"</pre>
gzpath <- character(n)</pre>
i <- 1
for (i in 1:n) {
    gzpath[i] <- paste(lok, "/cran-logs", all_days[i], sep = "")</pre>
install.packages("R.utils")
library(R.utils)
for (i in 1:n) {
    gunzip(gzpath[i], destname = paste(gzpath[i], ".csv"), remove = TRUE)
}
for (i in 1:n) {
    write.csv2(read.csv2(paste(gzpath[i], ".csv"), sep = ","), paste(gzpath[i], "_new.csv"))
```

APPENDIX

E

SAS SYNTAX

```
proc import datafile='D:/bd1/AlmostBigData/cran-logs2012-10-01 _new.csv'
out=CR.cran1 dbms=csv replace;
     delimiter = ';';
      getnames=yes;
      run;
. . .
proc import datafile='D:/bd1/AlmostBigData/cran-logs2014-05-09 _new.csv'
out=CR.cran586 dbms=csv replace;
      delimiter = ';';
      getnames=yes;
      run;
data Cr.DANE;
CR.cran1,
CR.cran2,
CR.cran586;
run;
proc summary data=Cr.DANE print;
class package;
run;
proc summary data=Cr.DANE print;
class version;
run;
proc summary data=Cr.DANE print;
class r_arch;
run;
proc summary data=Cr.DANE print;
class r_os;
run;
proc summary data=Cr.DANE print;
class r_version;
run;
proc summary data=Cr.DANE print;
class country;
run;
```

```
proc sort data=Cr.Dane out=CR.Dane2;
by r_os;
run;

proc freq data=Cr.dane2 page;
tables r_os;
run;

proc freq data=Cr.dane2 page;
by r_os;
tables package;
run;
```