Handwritten Digit Recognition

Problem

 How can you make a computer recognize single handwritten digits?

(Pictures from MNIST-database; [1])

Problem

 Basic' Approach: Using Image processing for detection of special features: edges, corners, angles, etc.

For example: This features might be detected and their relative positioning and alignment to each other might me used for classification

(possible outcome of SIFT-features; [2])

Problem

• But what if a 5 looks like that:

It's very difficult (you might even say impossible) to create a set of rules, which define the concept of a 5

Introduction

- Is there a possibility to make a program understand the concept of given data itself?
 - \rightarrow Yes, there is!
 - Machine Learning Algorithms
 - Used Here: Artificial Neural Network (NN)

[3]

- Inspired by the brain: A huge amount of simple computing units (brain-cells/neurons) heavily interconnected (synapses)
- Impressively good at classification, learning and memory; rather bad at precise computation

[4]

Concept of a single (artificial) neuron:

- A number of inputs, each multiplicated with a special weight, are added up in the neuron
- If the sum reaches a special value, the neuron is being activated and ,fires' a signal

Concept of a single (artificial) neuron: Example

[5]

Input 1	Input 2	Output	Input 2
0	0	0	
0	1	0	1 — 0 1
1	0	0	
1	1	1	0 0 Input 1
			Input 1

The weights define this line (boolean AND)

A single neuron can't handle XOR

 Multiple neurons in several layers can handle much more complex problems

- How are the weights chosen, to solve a problem?
 - → put in data example
 - → measure error at output(s)
 - → adapt weights to reduce error

- MNIST-database-files contain 1000 pictures of a single digit
- Each picture is 28x28 pixels; greyscale
- For input pixels are put in row
 - Creating a vector of 1x784
- Pixel-values are normalized to be between 0 and 1

• 784 inputs (+bias input) are fully connected to 10 output neurons, representing the 10 different digits (0, ..., 9)

→ input image is a 4

Bias Unit:

"The use of biases in a neural network increases the capacity of the network to solve problems by allowing the hyperplanes that separate individual classes to be offset for superior positioning. "

[6]

Feed-forward:

- One sample is propagated trough the net and produces output vector
- Error for every output is calculated:

$$error_i = out_i(1 - out_i)(target_i - out_i)$$

- Why not simpler: error = abs(target out)?
 - Euclidean distance not applicable here, due to non-linear problem

Adapt weights:

 According to the error every weight - connected to current output (i) - is changed:

```
w_{ji} = w_{ji} + \Delta w_{ji}

with

\Delta w_{ji} = \eta * error_i * x_j
```

```
\eta = 0.2; learning rate x_j: input j (pixel j)
```

[7]

- After a few thousand examples the network learned the ,concept' of handwritten digits
- Now the outcomes should be tested:
 - Loading picture of digit, written by student
 - Scaling picture to 28x28
 - Apply threshold \rightarrow binary image \bigcirc
 - Invert colors: now white on black
 - Put through network; see results

Results

Error-Plot

Results

<u>Picture</u>	Classification	Certainty
0 _	0	0.9990
	1	0.9309
2 <u> </u>	2	0.9997
3	3	0.1275
#	4	0.6142
	5	0.2406
6	6	0.9956
7	7	0.8898
<i>8</i>	8	0.7294
7	9	0.9750

Not implemented

- Using Test-Data
 - Adding complexity to code
 - Unsatisfying results
 - Concept is hard to understand (learning theory)

Add source here

Summary

- Training with only 2000 samples shows good learning behavior (8500 planned)
- Test-data doesn't show significant results
- Verification satisfying
- Working with actual photographs also shows good results

Code structure

matlab functions

randn -creating (array) of small random values; ca. between -4

and 4

squeeze - removing unnecessary array dimensions:

1x1x28x28 to 28x28

csvread - loading .csv file (comma-separated values)

ceil - rounding decimals up to next integer value: 0.3 -> 1

imread - loading image file and returning array

imresize - resizing image to given tuple

imcomplement - returns complement image ("negative")

imshow - displays image

gray2ind - converts the binary image to grayscale

imwrite - writing image (array) to file

Sources

- [1] http://yann.lecun.com/exdb/mnist/
- [2] https://en.wikipedia.org/wiki/Scale-invariant feature transform
- [3] https://en.wikipedia.org/wiki/Machine learning
- [4] https://en.wikipedia.org/wiki/Brain#Cellular structure
- [5] http://www.mind.ilstu.edu/curriculum/mcp neurons/mcp neuron 1.php
- [6] http://www.webpages.ttu.edu/dleverin/neural network/neural networks.html
- [7] Tom M. Mitchell, Machine Learning, McGraw Hill, ISBN 0-07-115467-1