

University of Applied Sciences

TEAM OS CAR

Übersicht

- 1. Systemanforderung
- 2. Herausforderung
- 3. Sensoren
- 4. Computersystem
- 5. Systemkonzept
- 6. Fahrspurerkennung
- 7. Einparken
- 8. Kostenübersicht
- 9. Energiebilanz
- 10.Zusammenfassung

Systemanforderung

 Fahrbahnerkennung (Fahrregelung des Modellautos)

4. Energie- und Kosteneffiziente Lösung

2. Distanzermittlung (Hinderniserkennung)

5. ZukunftsorientierteEntwicklung desSystems

3. Einparken

Herausforderung

Zeitkritisches System

- Kommunikation zwischen den Teilsystemen
- Auswertung der Sensoren
- Ansteuerung von Aktoren

Begrenzte Ressourcen

- Rechenleistung
- Akkukapazität
- Finanzen

Sensorik I

Kamera

- 2 MegaPixel Kamera
- Parallelportanbindung
- Keine USB Kamera (hohe CPU Last => Latenz)
- Direktes Auslesen der Pixeldaten
- 60 fps bei 400x300 Pixel a 8 Bit => 7,2 Mbyte/s
- Hohe Rechenleistung nötig, bei Verarbeitung des gesamten Bildes.

Sensorik II

Distanzsensoren

• IR-Distanzsensoren

• Nahbereich: 4 bis 30 cm

• Fernbereich: 10 bis 80 cm

Alternativ:

- Ultraschallsensor
 - Langsamer
 - Aufwendigere Verarbeitung

Geschwindigkeitsmessung

- Hall-Sensor
 - Direkt am Motor
- Momentan Geschwindigkeit
- Zurückgelegte Strecke

Systemkonzept I

Erstellung von Subsystemen

- "Teile und Herrsche"
- Paralleles entwickeln möglich
- Systeme arbeiten autark
- Harte Echtzeit möglich
- Computersystem
 - Kameraverarbeitung
 - Systemsteuerung

Systemkonzept II / Regelkreis

Computersystem

Embedded ZYBO-Board DIGILENT

- ZYNQ-CHIP
 - 667 MHz Cortex-A9 dual-core CPU
 - FPGA
 - Bildverarbeitung auf Hardwareebene (Sobel)
 - Bilddaten direkt in den Speicher schreiben
- Geringer Energieverbrauch von ca. 2 Watt
- OS: UbuntuZed
- Preis: 130€

Alternativ:

- Raspberry Pi
 - Doppelter Energieverbrauch bei halber Rechenleistung
- Intel Atom-basierter PC

Mikrokontroller

32 Bit Architektur

Zukunftsweisend

ARM Cortex M0

- 48 MHz
- 64 kByte Flash
- Geringe Verlustleistung
- Ausreichende Rechenleistung für unsere Anwendungen

Hersteller

NXP

Preis ca. 20€

Alternativ: Atmel

- AVR ATmega 328P [8-Bit]
- 16 MHz
- 32 kByte Flash

Programmer & Debugger

LPC1115

ATmega328P

Fahrspurerkennung I

Fahrzeugkoordinatensystem

- 1. Fahrspuren werden ermittelt und Punkte erzeugt
- 2. Punkte werden ins Fahrzeugkoordinatensystem transformiert
- 3. Ein kubisches Polynoms wird für jede Fahrspur gebildet

Fahrspurerkennung II

Fahrzeugkoordinatensystem

Fahrzeugkoordinatensystem

5. Vorhersage der POI Aufgrund

Kamerakoordinatensystem

4. Erstellen der "Points of Interest" (Betrachtungsbereich des Bildes der Fahrzeugbewegung für die Fahrspurerkennung)

neuen Frames gesucht.

6. Fahrbahn wird im POI-Bereich des

1. IR-Sensor erfasst ein Objekt

2. IR-Sensor erfasst Objektende und startet die Messung

3. IR-Sensor detektiert ein neues Objekt und berechnet die Parklückengröße

4. Bei geeigneter Parklücke, fährt das Auto 10 cm weiter und beginnt das Einparken

5. Orientierung mithilfe der Sensoren in der Parklücke

6. Ende des Einparkens

Kostenübersicht

Posten	Preis
Fahrzeug-Komplettsatz	200,00€
Fernbedienung	120,00€
Sender- und Fahrzeugakkus	80,00€
Servomotor	25,00 €
ZYBO-Board	130,00 €
LPC-Micro Controller	60,00€
Kamera und Zubehör	35,00 €
IR-Sensoren	35,00 €
Sonstiges	70,00 €
Summe	755,00 €

Leistungsaufnahme

Posten	Aufnahme
ZYBO-Board	2,00 W
Sensoren	0,43 W
Karosserie	1,65 W
Schaltregler	0,42 W
RC-Empfänger	0,40 W
Motor	14,40 W
Summe	19,30 W

ist

ein energie- und kosteneffizientes autonom fahrendes Modellfahrzeug auf Basis eines modularen, erweiterbaren Systemkonzeptes

Vielen Dank für Ihre Aufmerksamkeit