Lecture 009, PDF

Many factors affect DO in water

Simple modeling approach (Streeter & Phelps)

- Addition by receration

- Removal by dagradation

$$L_0 = \frac{Q_0 L_0 + Q_W L_W}{(Q_0 + Q_0)}, \quad DO_0$$

$$DO_{r} = \frac{Q_{w}DO_{w} + Q_{R}DO_{R}}{(Q_{w} + Q_{R})}$$

Now stray behavior of mixed parcel

- Removal: Assume the rate of DO removed is proportional to the BOD remaining $\frac{dDO}{dL} = -k_d L_0 e^{-k_d t}$

- Reaeration. Assume the rate of DO addition is proportional to the difference between Dosat and current DO (linear driving fixice model) $\frac{dDO}{dt} = k_{\tau} \left(DO_{sat} - DO \right) \qquad D_{sat} = K_H P_{o_2}$

k, is related to depth, flow speed and relative hubuline

One common model for
$$k_r$$
 is the O'Connor & Dobbins model
$$k_r = \frac{3.90^{"2}}{H^{3/2}} \qquad \text{O is Stream Volocity} (m/s)$$

$$H \text{ is How depth } (m)$$

$$\frac{dD0}{dt} = k_r (D0st - D0) \quad (neaerahin)$$

$$\frac{dD0}{dt} = -k_a l_0 e^{-k_a t} \quad (degnerahin)$$

Net:
$$\frac{dDO}{dt} = k_r(DO_{Sat} - DO) - k_d L_o e^{-k_d t}$$

The term (DOsat - DO) is called the oxygen deficit D = (DOsat - DO)

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} dt = \frac{\partial}$$

So the equation describing time evolution of the deficit in

a moving water parcel is

$$\frac{dD}{dt} = k_{a}k_{b}e^{-k_{a}t} - L_{r}D \qquad \text{by separation } t \text{ integration}$$

$$D(t) = \frac{k_{d}L_{0}}{k_{r}-k_{d}} \left(e^{-k_{d}t}-e^{-k_{r}t}\right) + D_{0}e^{-k_{r}t}$$

Where Do = DOsat - DO.

Thus
$$DO(t) = DO_{sat} - \left[\frac{k_d L_o}{k_r - k_d} \left(e^{-k_d t} - e^{-k_r t}\right) + D_o e^{-k_r t}\right]$$

for a stream of relatively constant cross section x=ut or $t=\frac{x}{u}$ Using this model (streety-Pholos Equation) profiles of DO downstream of a woster input are plotted and should

Such a model is used to estimate: distance downstream to Minimum DO; Value of minimum DO; distance downstream to acceptable DO etc.

A typical Do-profile is illustrated below

The concert point is located from

$$t_c = \frac{1}{k_r - k_d} \ln \left(\frac{k_r}{k_d} \left[1 - \frac{P_0 \left(k_r - k_d \right)}{k_c L_0} \right] \right)$$

DO=2mg/L

1.10m3/s of effluent with BOD = Somg/L, is discharged into a sheam with

flow 8.7 m3/s with BOD = 6 mg/L, Deoxygenam earstant is k = 0.2/day

Avarage flow depth is 3.0m, Average flow width is 10.85m. Plot the Do

at 20°C

in the stream as a function of distance downstream. Locate the critical poin

(min Do).

O Vownstream BOD 4 DO after mixing

$$Do_{o} = \frac{(1.1m^{3}/s)(2m^{3}/L) + (8.7m^{3}/s)(8.3m^{3}/L)}{(1.1+8.7m^{3}/s)} = 7.6m^{3}/L$$

$$U = \frac{Q}{A} = \frac{1.1 + 8.7 \text{ m/s}}{(3.0 \times 10.85)} = 0.301 \text{ m/s}$$

$$k_r = \frac{(3.9)(0.3)^{1/2}}{(3.0)^{3/2}} = 0.41/day$$

Now one has required parameters to determine to 4 plot DO US X (ort)

(Attached spreadshed implements formulae)

7 = Ut = (0.30 m/sec X 230,680 sec) = 69300 meters

Lohes & Reservoirs

Natival Aging called everyphication:

Human activity accelerates to process.

wastes, rendf from agriculture etc.

Supplies nutrients at a rate

greater than naturally occurs. - arthopogenic outraphication

Factors that control entrophication

- light povervation, related to clarify

(trobidity)

Z=0

Cydnotic Zone

light componsation

profundal Zone

+ Z

expressi zone: De by protosynthesis is greater than De used deving respiration protocold some: De used by respiration greater than De produced by photosynnutrient supply

growth limited by Least available nutrient. Control of limiting nutrient can help control eutrophication. Control of non-limiting nutrient only effective if it can be reduced enough to become the limiting nutrient.

Photosynthesis Capproximation)

106 CO2 + 16NO3 + HPO4 + 122H20 + 18H + C106 H263 O110 N16 P + 138 O2

Control
Source

Cost on Call mass (algae)

Calculate mass of N versus P in algae. It takes 7 times more N than P (by mass) to produce algae.

	Α	В	С	D	Е	F	G	Н	1	J
1	Lo		mg/L				J		<u> </u>	
2	Do		mg/L							
3	DOsat	9.09	mg/L							
4	2000.	0.00								
5	u	0.3	m/sec							
6	kd		/day	2.31481E-06	/sec					
7	kr	0.41		4.74537E-06						
8			,							
9	kdLo/(kr-kd	10.38095								
10	Δt	10800								
11										
12	t(sec)	x(meters)	exp(-kdt)	exp(-krt)	D	DO				
13	0	0	1	1		7.59				
14	10800	3240	0.97531	0.950041131	1.687376	7.402624				
15	21600	6480	0.951229	0.90257815		7.231086				
16	32400	9720	0.927743	0.857486366		7.074435				
17	43200	12960	0.904837	0.814647316		6.93177				
18	54000	16200	0.882497	0.773948457	2.287759	6.802241				
19	64800	19440	0.860708	0.735282868	2.404956	6.685044			_	
20	75600	22680	0.8394			DC				
21	86400	25920	0.8187			DO				
22	97200 108000	29160 32400	0.7985 0.7788							
24	118800	35640	0.7788	8						
25	129600	38880	0.7595	7						230688
26	140400	42120	0.7400	′ '46.			min			230000
27	151200	45360	0.7046	6		111111111111				
28	162000	48600	0.6872							
29	172800	51840	0.670	5 + + + + + + + + + + + + + + + + + + +						
30	183600	55080	0.653	,					. — —	
31	194400	58320	0.6376	4 + + + + + + + + + + + + + + + + + + +				ı DO	<u> </u>	
32	205200	61560	0.6218	3						
33	216000	64800	0.6065							
34	226800	68040	0.5915	2 + + + + + +						
35	237600	71280	0.576	1						
36	248400	74520	0.5627	'						
37	259200	77760	0.5488	0 + + + + + + + + + + + + + + + + + + +						
38	270000	81000	0.5352	0 500	000 100	000 150	000 200000)		
39	280800	84240	0.5220							
40	291600	87480	0.5091	0.000445004	2.040227	0.040000				
41	302400 313200	90720 93960	0.496585 0.484325	0.238115364 0.22621939		6.049663 6.071293				
43	324000	97200	0.464325	0.22621939		6.071293		-		
44	334800	100440	0.472307	0.204180678		6.120775				
45	345600	103680	0.449329	0.193980042		6.148265				
46	356400	106920		0.184289019						
47	367200	110160	0.427415	0.175082148		6.207922				
48	378000	113400		0.166335242						
49	388800	116640	0.40657	0.158025321	2.817165	6.272835				
50	399600	119880		0.150130555		6.306929				
51	410400	123120	0.386741	0.142630202		6.341952				
52	421200	126360	0.377192	0.135504558		6.377794				
53	432000	129600	0.367879	0.128734904		6.41435				
54	442800	132840	0.358796	0.122303453						
55	453600	136080	0.349938	0.116193311		6.48922				
56	464400	139320	0.341298	0.110388425		6.527359				
57	475200	142560	0.332871	0.104873544		6.565858				
58	486000	145800	0.324652	0.09963418	1	6.604645				
59	496800	149040 152280	0.316637	0.094656569		6.643649				
60	507600 518400	152280	0.308819 0.301194	0.089927634 0.085434951	2.407192 2.367939	6.682808 6.722061				
62	529200	158760	0.301194	0.085434951		6.761353				
63	540000	162000	0.286505	0.081100717		6.800633				
64	550800	165240	0.279431	0.073259306	1	6.839853				
	230000	. 302 10	0.2.0101	3.0.020000		2.00000				<u>I</u>

	A	В	С	D	E	F	G	Н		
1	Lo	10.9	mg/L	В	-	г	G		- 1	J
	Do	1.5								
	DOsat	9.09	mg/L mg/L			+		1		
4	DOSat	3.03	mgc							
5	u .	0.3	m/sec							
	kd	0.2	/day	=B6/86400	/sec					
7		0.41	/day	=B7/86400	/sec					
8	· ·	Joan		-27700100	1000					
	kdLo/(kr-kd)	=D6*B1/(D7-D6)								
10	Δt	=3600*3								
11										
12	t(sec)	x(meters)	exp(-kdt)	exp(-krt)	D	DO				
13		=\$B\$5*A13	=EXP(-\$D\$6*A13)	=EXP(-\$D\$7*A13)	=\$B\$9*(C13-D13)+\$B\$2*D13	=\$B\$3-E13				
	=A13+\$B\$10	=\$B\$5*A14	=EXP(-\$D\$6*A14)	=EXP(-\$D\$7*A14)	=\$B\$9*(C14-D14)+\$B\$2*D14	=\$B\$3-E14				
15		=\$B\$5*A15	=EXP(-\$D\$6*A15)	=EXP(-\$D\$7*A15)	=\$B\$9*(C15-D15)+\$B\$2*D15	=\$B\$3-E15				
	=A15+\$B\$10	=\$B\$5*A16	=EXP(-\$D\$6*A16)	=EXP(-\$D\$7*A16)	=\$B\$9*(C16-D16)+\$B\$2*D16	=\$B\$3-E16				
	=A16+\$B\$10	=\$B\$5*A17 =EXP(-\$D\$6*A17) =E		=EXP(-\$D\$7*A17)	=\$B\$9*(C17-D17)+\$B\$2*D17	=\$B\$3-E17				
	=A17+\$B\$10				=\$B\$9*(C18-D18)+\$B\$2*D18	=\$B\$3-E18				
19	=A18+\$B\$10		DO	-	=\$B\$9*(C19-D19)+\$B\$2*D19	=\$B\$3-E19				
20					=\$B\$9*(C20-D20)+\$B\$2*D20	=\$B\$3-E20				
21	=A20+\$B\$10	8			=\$B\$9*(C21-D21)+\$B\$2*D21	=\$B\$3-E21				
22		- h.l	++++++++++++++++++++++++++++++++++++		=\$B\$9*(C22-D22)+\$B\$2*D22	=\$B\$3-E22				-
	=A22+\$B\$10 =A23+\$B\$10	7			=\$B\$9*(C23-D23)+\$B\$2*D23	=\$B\$3-E23				
25		6	արագարությունը և		=\$B\$9*(C24-D24)+\$B\$2*D24	=\$B\$3-E24 =\$B\$3-E25				=3600*2.67*24
26	=A24+\$B\$10 =A25+\$B\$10		++++++++++++++++++++++++++++++++++++		=\$B\$9*(C25-D25)+\$B\$2*D25 =\$B\$9*(C26-D26)+\$B\$2*D26	=\$B\$3-E25 =\$B\$3-E26				=3000 2.07 24
	=A26+\$B\$10	5			=\$B\$9*(C27-D27)+\$B\$2*D27	=\$B\$3-E27				
28	=A27+\$B\$10	4		HHH [po]	=\$B\$9*(C28-D28)+\$B\$2*D28	=\$B\$3-E28				
29		_		11111	=\$B\$9*(C29-D29)+\$B\$2*D29	=\$B\$3-E29				
30	=A29+\$B\$10	3			=\$B\$9*(C30-D30)+\$B\$2*D30	=\$B\$3-E30				
	=A30+\$B\$10	2			=\$B\$9*(C31-D31)+\$B\$2*D31	=\$B\$3-E31				
32	=A31+\$B\$10				=\$B\$9*(C32-D32)+\$B\$2*D32	=\$B\$3-E32				
33	=A32+\$B\$10	1			=\$B\$9*(C33-D33)+\$B\$2*D33	=\$B\$3-E33				
34	=A33+\$B\$10	0 +			=\$B\$9*(C34-D34)+\$B\$2*D34	=\$B\$3-E34				
35	=A34+\$B\$10	0 50000	100000 150	000 200000	=\$B\$9*(C35-D35)+\$B\$2*D35	=\$B\$3-E35				
36	=A35+\$B\$10	0 30000	100000 100	200000	=\$B\$9*(C36-D36)+\$B\$2*D36	=\$B\$3-E36				
37	=A36+\$B\$10	=\$B\$5*A37	=EXP(-\$D\$6*A37)	=EXP(-\$D\$7*A37)	=\$B\$9*(C37-D37)+\$B\$2*D37	=\$B\$3-E37				
38	=A37+\$B\$10	=\$B\$5*A38	=EXP(-\$D\$6*A38)	=EXP(-\$D\$7*A38)	=\$B\$9*(C38-D38)+\$B\$2*D38	=\$B\$3-E38				
39	=A38+\$B\$10	=\$B\$5*A39	=EXP(-\$D\$6*A39)	=EXP(-\$D\$7*A39)	=\$B\$9*(C39-D39)+\$B\$2*D39	=\$B\$3-E39				
40	=A39+\$B\$10	=\$B\$5*A40	=EXP(-\$D\$6*A40)	=EXP(-\$D\$7*A40)	=\$B\$9*(C40-D40)+\$B\$2*D40	=\$B\$3-E40				
41	=A40+\$B\$10	=\$B\$5*A41	=EXP(-\$D\$6*A41)	=EXP(-\$D\$7*A41)	=\$B\$9*(C41-D41)+\$B\$2*D41	=\$B\$3-E41				
42	=A41+\$B\$10	=\$B\$5*A42	=EXP(-\$D\$6*A42)	=EXP(-\$D\$7*A42)	=\$B\$9*(C42-D42)+\$B\$2*D42	=\$B\$3-E42				
43	=A42+\$B\$10	=\$B\$5*A43	=EXP(-\$D\$6*A43)	=EXP(-\$D\$7*A43)	=\$B\$9*(C43-D43)+\$B\$2*D43	=\$B\$3-E43		1	-	1
44	=A43+\$B\$10	=\$B\$5*A44	=EXP(-\$D\$6*A44)	=EXP(-\$D\$7*A44)	=\$B\$9*(C44-D44)+\$B\$2*D44	=\$B\$3-E44				-
45 46	=A44+\$B\$10 =A45+\$B\$10	=\$B\$5*A45 =\$B\$5*A46	=EXP(-\$D\$6*A45) =EXP(-\$D\$6*A46)	=EXP(-\$D\$7*A45) =EXP(-\$D\$7*A46)	=\$B\$9*(C45-D45)+\$B\$2*D45 =\$B\$9*(C46-D46)+\$B\$2*D46	=\$B\$3-E45 =\$B\$3-E46				
46	=A46+\$B\$10 =A46+\$B\$10	=\$B\$5*A47	=EXP(-\$D\$6*A47)	=EXP(-\$D\$7*A47)	=\$B\$9*(C47-D47)+\$B\$2*D47	=\$B\$3-E47				
48	=A47+\$B\$10 =A47+\$B\$10	=\$B\$5*A48	=EXP(-\$D\$6*A48)	=EXP(-\$D\$7*A48)	=\$B\$9*(C48-D48)+\$B\$2*D48	=\$B\$3-E48		1		+
49	=A47+\$B\$10 =A48+\$B\$10	=\$B\$5*A49	=EXP(-\$D\$6*A49)	=EXP(-\$D\$7*A49)	=\$B\$9*(C49-D49)+\$B\$2*D49	=\$B\$3-E49		1		+
50	=A49+\$B\$10	=\$B\$5*A50	=EXP(-\$D\$6*A50)	=EXP(-\$D\$7*A50)	=\$B\$9*(C50-D50)+\$B\$2*D50	=\$B\$3-E50				+
51	=A50+\$B\$10	=\$B\$5*A51	=EXP(-\$D\$6*A51)	=EXP(-\$D\$7*A51)	=\$B\$9*(C51-D51)+\$B\$2*D51	=\$B\$3-E51				
52	=A51+\$B\$10	=\$B\$5*A52	=EXP(-\$D\$6*A52)	=EXP(-\$D\$7*A52)	=\$B\$9*(C52-D52)+\$B\$2*D52	=\$B\$3-E52				
53	=A52+\$B\$10	=\$B\$5*A53	=EXP(-\$D\$6*A53)	=EXP(-\$D\$7*A53)	=\$B\$9*(C53-D53)+\$B\$2*D53	=\$B\$3-E53				
54	=A53+\$B\$10	=\$B\$5*A54	=EXP(-\$D\$6*A54)	=EXP(-\$D\$7*A54)	=\$B\$9*(C54-D54)+\$B\$2*D54	=\$B\$3-E54				
55		=\$B\$5*A55	=EXP(-\$D\$6*A55)	=EXP(-\$D\$7*A55)	=\$B\$9*(C55-D55)+\$B\$2*D55	=\$B\$3-E55				
56	=A55+\$B\$10	=\$B\$5*A56	=EXP(-\$D\$6*A56)	=EXP(-\$D\$7*A56)	=\$B\$9*(C56-D56)+\$B\$2*D56	=\$B\$3-E56				
57	=A56+\$B\$10	=\$B\$5*A57	=EXP(-\$D\$6*A57)	=EXP(-\$D\$7*A57)	=\$B\$9*(C57-D57)+\$B\$2*D57	=\$B\$3-E57				
58	=A57+\$B\$10	=\$B\$5*A58	=EXP(-\$D\$6*A58)	=EXP(-\$D\$7*A58)	=\$B\$9*(C58-D58)+\$B\$2*D58	=\$B\$3-E58				
59	=A58+\$B\$10	=\$B\$5*A59	=EXP(-\$D\$6*A59)	=EXP(-\$D\$7*A59)	=\$B\$9*(C59-D59)+\$B\$2*D59	=\$B\$3-E59				
60	=A59+\$B\$10	=\$B\$5*A60	=EXP(-\$D\$6*A60)	=EXP(-\$D\$7*A60)	=\$B\$9*(C60-D60)+\$B\$2*D60	=\$B\$3-E60				
61	=A60+\$B\$10	=\$B\$5*A61	=EXP(-\$D\$6*A61)	=EXP(-\$D\$7*A61)	=\$B\$9*(C61-D61)+\$B\$2*D61	=\$B\$3-E61				
62	=A61+\$B\$10	=\$B\$5*A62	=EXP(-\$D\$6*A62)	=EXP(-\$D\$7*A62)	=\$B\$9*(C62-D62)+\$B\$2*D62	=\$B\$3-E62				
63	=A62+\$B\$10	=\$B\$5*A63	=EXP(-\$D\$6*A63)	=EXP(-\$D\$7*A63)	=\$B\$9*(C63-D63)+\$B\$2*D63	=\$B\$3-E63				
64	=A63+\$B\$10	=\$B\$5*A64	=EXP(-\$D\$6*A64)	=EXP(-\$D\$7*A64)	=\$B\$9*(C64-D64)+\$B\$2*D64	=\$B\$3-E64				

: When N = 10 * P, then P is liniting nutrient N < 10 x P , then N is limiting nutrient

In addition to relative abundance, it absolute abundance exceedes 0.3 mg/L-N & 0.015 mg/L-P one expects algal blooms.

Cimple Phospherous Model

Modeling is used to estimate amount of control to apply to reduce P 5 0.01 mg/L "OK" ; P 3 0.02 mg/L "too much" eutrophication rate:

Inflow: S+Q;C;

Outflow: QC + Vs AC

fraction that "settles" - absorve it is

an internal mass transfer torm

at equilibrium
$$\left(\frac{d+c}{dt}=0\right)$$
: $S+Q;C;=QC+VsAC$ Solve for $C=\frac{S+Q;C;}{Q+VsQ}$

Lake with A=80.10 m2, 15m3/s intlow; C=0.01mg/- Load of 1g/s, settling rate is lom/yr. Find P at equilibrium; % removal at load to heep lake at 0.01 mg/L.

$$0 \quad C = \frac{S + Q_{i}C_{i}}{Q + V_{5}A} = \frac{1000mg/s}{1000mg/s} + \frac{0.01mg}{m^{3}} \cdot \frac{1000L}{m^{3}} \cdot \frac{15m^{3}}{s} = 28.48mg/s \cdot \frac{1m^{3}}{1000L} = 0.0284\frac{m}{L}$$

(B)
$$\frac{\chi \, mg/s}{40.367 \, m^3/s} = 10.00 \, mg/m^3$$
 (Solve for χ)
$$\chi = 253.6 \, mg/s$$
 (Solve for χ)
$$\chi = 253.6 \, mg/s$$
 (Solve for χ)
$$\chi = 1000 - 253.6 \, mg/s \times 100 = 74.6\%$$

This simple moul neglects stratification (incomplete mixing) and seasoned fluctiation in injuts. Such model features are beyond scope of course, but one should be aware of thermal strathcath effects

Thermal Stratification

Hoo density - temp. dependence is not monotonic - has peak value near 4°C

. 4'l water sinks' relative to colder of warmer water. Eneutes distinct temp.

complety mixed upper layer epiliminon thermodine transition layer (zone) cool bottom zone hypolimnion

layers in lakes that inhibit vertical mixing

Comes spring & sunner and summer & full Vertical profile makes "one turn" possible. During onaturn materials in sediment one

Mesusponded high turb.

ogliotrophic

ecotrophic - light cont reach as deep. Os demand in hypoliminan not helped by algal On production It tumore is rare then H25, CH4 & CO2 build up in hypoteminan (anoxic) region. take can "burp" with catastrophic results (to living organisms).

Acid deposition

Nutwal rain (in equilibrium with almospheric CO2) has pH x 5.6 Come rain has pH < 4.0 caused by SOY & NOx in atmosphere. If lake is poorly buffered, it will experience a drop in pH.

A buttered system resists change in pH when acid is added - carbonate system is a natural butter.

Ht is increased, but it combines with Hlog- to make H2 CO3t.
Reduction Shifts all equilibria so Caco3 dissolves to supply more Hlog-

 $H_{2}co_{3}^{*} \rightleftharpoons H^{+} + Hco_{3}^{-}$ $Hco_{3}^{-} \rightleftharpoons H^{+} + co_{3}^{2}^{-}$ $Caco_{3(s)} \rightleftharpoons Ca^{2+} + co_{3}^{2-}$

At very low pH, certain wetals play important bettering role $Al_2Si_2O_5(OH)_y + 6H^{\dagger} \Rightarrow 2Al^{3\dagger} + 2Si(OH)_y + H_2O$ (kaolinite) $Al(OH)_3 + 3H^{\dagger} \Rightarrow Al^{3\dagger} + 3H_2O$ (globsite)(Clays)