Week 5: Cloud and API deployment

Name: Sijing Liu

Batch code: LISUM13: 30 Submission date: 2-Oct-2022 Submitted to: Data Glacier

Toy data details: demand

Total number of observations	26
Total number of files	1
Total number of features	6
Base format of the file	.csv
Size of the data	925+ bytes

Each step of deployment

<mark>Install Heroku</mark>

C:\Users\pc>heroku --version » Warning: Our terms of service have changed: https://dashboard.heroku.com/terms-of-service heroku/7.53.0 win32-x64 node-v12.21.0

Observing toy data (use data set of week 4)

Average parking rates per month	Monthly income of riders	Population of city	Price per week	Number of weekly riders	City
50	5800	1800000	15	192000	1
50	6200	1790000	15	190400	2
60	6400	1780000	15	191200	3
60	6500	1778000	25	177600	4
60	6550	1750000	25	176800	5
70	6580	1740000	25	178400	6
75	8200	1725000	25	180800	7
75	8600	1725000	30	175200	8
75	8800	1720000	30	174400	9
80	9200	1705000	30	173920	10
80	9630	1710000	30	172800	11
80	10570	1700000	40	163200	12
85	11330	1695000	40	161600	13
100	11600	1695000	40	161600	14
105	11800	1690000	40	160800	15
105	11830	1630000	40	159200	16
105	12650	1640000	65	148800	17
110	13000	1635000	102	115696	18
125	13224	1630000	75	147200	19
130	13766	1620000	75	150400	20
150	14010	1615000	75	152000	21
155	14468	1605000	80	136000	22
165	15000	1590000	86	126240	23
175	15200	1595000	98	123888	24
175	15600	1590000	87	126080	25
190	16000	1600000	77	151680	26

- The toy data is the classic sample used to build regression model and predict transit demands.
- The 2~5 columns ('Price per week', 'Population of city', 'Monthly income of riders', 'Average parking rates per month') are supposed to predict the 1st column ('Number of weekly riders').

Training ML Model

model.py — This contains code for the regression model to predict transit demands ('Number of weekly riders') based on the four attributions ('Price per week', 'Population of city', 'Monthly income of riders', 'Average parking rates per month').

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
from sklearn.linear_model import LinearRegression
dataset = pd.read csv('demand.csv')
X = dataset.iloc[:, 2:6]
Y = dataset.iloc[:, 1] # predicted column
# build regression model
regressor = LinearRegression()
regressor.fit(X, Y)
# save the simple model
pickle.dump(regressor, open('model.pkl','wb'))
# load the simple model
model = pickle.load(open('model.pkl','rb'))
print(model.predict([[63, 1610000, 16200, 200]]))
```

Creating Web App

• *app.py* — This contains Flask APIs that receives sales details through GUI or API calls, computes the predicted value based on our model and returns it.

```
import numpy as np
from flask import Flask, request, jsonify, render_template
import pickle

app = Flask(_name_)
model = pickle.load(open('model.pkl', 'rb'))

@app.route('/')
def home():
    return render_template('index.html')
```

```
@app.route('/predict', methods=['POST'])
def predict():
    int_features = [int(x) for x in request.form.values()]
    final_features = [np.array(int_features)]
    prediction = model.predict(final_features)
    output = round(prediction[0])
    return render_template('index.html', prediction_text='Number of weekly riders should be {} K'.format(output/1000))
@app.route('/results', methods=['POST'])
def results():
    data = request.get_json(force=True)
    prediction = model.predict([np.array(list(data.values()))])
    output = prediction[0]
    return jsonify(output)

if __name__ == "__main__":
    app.run(debug=True)
```

Committing code in online repo

https://github.com/Sijing98/Week5 Heroku

Account Creation in Heroku & Linking GitHub to Heroku

Deployment of ML app

Manual deploy

Deploy the current state of a branch to this app.

Deploy a GitHub branch

This will deploy the current state of the branch you specify below. <u>Learn more</u>.

Choose a branch to deploy

🎉 main	÷	Deploy Branch	ĺ
Receive code from GitHub			Q
Build main a96a5e18			0
Release phase			0
Deploy to Heroku			

Your app was successfully deployed.

Testing the web app

