CS & IT ENGINEERING

IPv4 Addressing

Lecture No-04

By-Ankit Doyla Sir

TOPICS TO BE COVERED

Classful Addressing

```
<u>Class-B</u> → 10 → 2<sup>30</sup> (128-191)
                          HID=16 bit
      NID = 16 bit
10 6 bit
1000000-1287
10000001 - 129
10000010 - 130
10 11111 1 - 191
```


2¹⁶ N/v's 2¹⁶ Host/ Network

2¹⁴ Networks 2¹⁶ - 2 Host/ Network

128.157.0.0 X 128.57.255.255 X HID = 16 bit $00000000 \cdot 000000000 \rightarrow 0 \cdot 0 \times 0$ $11111111 \cdot 111111 \rightarrow 255 \cdot 255 \times$


```
c|ass-c → 110 → 2 (192-223)
                          HID=8 bit
      NID=24bit
110 5 bit
11000000-192
110 00001 - 193
110 11111-223
```


24 Netwooks

21 Netwooks

28 Host | Network
28-2 Host | Network

32 x 28 x 28 = 29 Networks

HID = 8 bit

1111111 → 255 X

$C|QSS-D| \rightarrow 1110 \rightarrow 2^{28} (274-239)$

255

Note

- 10 No Network-19 and No Host-ig in class-D
- (2) class-D is reserved For Multicasting

c|qss-E → 1111 → 2 (240-255)

Note

- 1 No Network-id and No Host-id in class-E
- 2) Class-E is reserved For resporch and Future purpose

CLASSFUL ADDRESSING

 \square Class A \rightarrow 0

1

 \rightarrow

(1 - 126),

No. of IP Addresses = 2^{31}

 \square Class B \rightarrow 10

 \rightarrow

(128 - 191),

No. of IP Addresses = 2^{30}

 \square Class C \rightarrow 110

 \rightarrow

(192 - 223),

No. of IP Addresses = 2^{29}

Class D \rightarrow 1110

 \rightarrow

(224 - 239),

No. of IP Addresses = 2^{28}

□ Class $E \rightarrow 1111$

 \rightarrow

(240 - 255),

No. of IP Addresses = 2^{28}

CLASSFUL ADDRESSING

Class	Number of Networks	Number of hosts Networks
Class A	$2^7 - 2 = 126$	$2^{24} - 2$ = 1,67,77,214 hosts
Class B	2 ¹⁴ = 16,384	216 - 2
		= 65,534 hosts
Class C	$2^{21} = 20,97,152$	28 - 2
		= 254 hosts
Class D	No NID and HID, all 28 remaining bits are used to define multicast address	
Class E	No NID and HID, it is meant for research and future purpose	

- A. 01111111.01010101.11111110.00001111
- B. 11101111.01001110.11001100.01010011
- 10001111.00000011.11111100.00111100
- D. 11011111.11001111.11100010.11111010

Classft
$$\rightarrow 0$$

Class-B $\rightarrow 10$
Class-C $\rightarrow 110$
Class-D $\rightarrow 1110$
Class-E $\rightarrow 1111$

Find the invalid IP address from the following choices? (Assuming Classful addressing scheme is followed)

- A. 150.168.10.1
- B. 190.100.1.100
- 10.256.100.100
- D. 80.10.254.100

A. 192.168.100.100

B. 127.100.100.100

c. 10.100.100.100

D. 172.16.100.100

127 X.X.X - Self-connectivity

Loop Back testing

or

Interprocess comm"

Loop Back Addressing

127.0.0.0 X 127.255.255 X

- A. 194.50.21.145
- B. 194.47.21.130
 - c. 194.45.21.120
 - D. 194.47.20.130

1100 0010 . 0010 1111 . 00010 101 . 1000 0010

$$(C2)_{16}$$
 $(2F)_{16}$ $16'_{16}$ $2X16+15$ $12X16'+2X16'$ $327+15$ $192+2$ 47 194 194 194 194 194

$$(15)_{16}$$
 $1*|6+5=21$
 $(82)_{16}$
 $8*|6+2=130$

The Dotted decimal notation (DDN) format for the given Hexadecimal notation (HDN) 172A84C8

$$(17)_{16}$$
 $(24)_{16}$ $(84)_{16}$ $(88)_{16}$ $1186+7$ $11846+8$ $11846+8$ $11846+8$ $11846+8$ $11846+8$ $11846+8$

Suppose, instead of using 16 bits for network part of a Class B, 20 bits had been used. Then the number of Class B networks and hosts per network are

- A. 2¹⁰, 2¹²
- B. 2¹⁸, 2¹²
- 2¹⁸, 2¹² 2
 - D. 2¹⁰, 2¹² 2

Class-B 10/14bit

No. of
$$n/w$$
's= 2^{14}

No. of $1/w$'s= 2^{14}

$$A. 3m = 2m$$

$$B. 7m = 8n$$

$$D. 2m = 3n$$

No of you's in class-
$$B = 2^m = 2^{14}$$

No of Host in class $B = 2^n - 2 = 2^{16} - 2$

$$M = 14$$
, $\eta = 16$
 $M = 14$, $\eta = 16$
 $M = \frac{14}{16}$
 $M = \frac{1}{16}$
 $M = \frac{1}{16}$

D. $2^{16} - 2$

- B. $2^{21} 1$
- C. 216
- **5.** 28 2

In classful addressing, a large part of the available addresses are

(Hw)

- A. Dispersed
- B. Blocked
- C. Wasted
- D. Reserved

No oF Host Network

What is the possible number of networks and addresses in each network under class B addresses in IPv4 addressing format.

IP Address 200.198.32.65 belong to which class?

Percent of Addresses occupied by Class D?

- A. 50 %
- B. 25 %
- 6.25 %
 - D. 12.5 %

- A. 2²⁴
- B. 2⁷
- C. 214
- D. 221

A host with IP address 10.100.100.100 wants to use loopback testing. What are the source and destination addresses ? (Assuming Classful addressing scheme is followed.)

10.100.100.100 and 10.100.100.100

10.100.100.100 and 255.255.255.255

10.100.100.100 and 127.1.100.1

127.100.100.100 and 10.100.100.100

