Final Design Project: Object Detection and Mapping

Sensing Objects with Sonar

ECE2031 Spring 2016

Motivation

- ECE 2031 includes the sophomore-level team design experience
- You have developed a useful set of tools, including an entire computer within the DE2 board
- Using tools creatively to solve problems is what engineers and computer scientists do

Project Components

- Propose a solution to a problem
 - Problem specifics explained later in this presentation
- Implement the proposed design on the DE2Bot
- Demonstrate, present, and document your solution

Technical Communication Aspects

- Your project includes three major UPCP assignments:
 - A proposal outlining what you intend to develop
 - An oral presentation of your design and results
 - A final design report
- You will also maintain a design logbook using forms provided by the UPCP
 - Specific requirements will be detailed on Piazza

Background on DE2Bot

- In Summer 2010, older lab robots were gutted, adding a new internal controller board and a connected DE2 on top
- Beginning Fall 2010, each semester a new capability has been added, or a new application has been demonstrated

DE2Bot Hardware Architecture

DE2 and FPGA System Architecture

ECE2031 DE2Bot Past Projects

- Basic robot interface (3 projects related to motors, sensors, and I2C)
- Robot control (2 projects related to velocity control)
- Robot Self-test
- Odometry (position estimation from wheel rotation)
- Implementation of hardware interrupts for SCOMP
- Complex mathematical functions in software (ATAN)
- Communication (sound generation, infrared remote control, wireless data interface)
- Navigation (wall-following, area recognition, 2 projects in point-topoint movement)
- This semester: Sensing objects using sonar

Position Control in the DE2Bot

- You cannot control the robot's position directly
 i.e., there is no goto(x, y) function
- You can read the cumulative rotation counter of the wheels
 - Has the benefit of giving you straight-line distance travelled, regardless of heading
- You can read the (X,Y,θ) estimate from the odometry module – discussed later
- The only things you can control are the velocities of the left and right wheels

"Open Loop" Movement

- Ideally, the robot would move in a straight line if both wheels receive the same velocity command
 - Ideally your car would drive in a straight line without you holding the steering wheel
- In reality, variations in motors, drive trains, and wheels will cause the robot to drift
- Most of the drift is detected by the odometry, and can thus be corrected
 - Using feedback from the odometry to correct drift would be "closed loop" control.

Odometry in the DE2Bot

- The wheel position encoders provide total distance moved by each wheel. They can not keep track of X, Y, and heading of the robot as a whole.
- A separate I/O device (from ECE2031 Summer 2012) added this capability:

```
x_i = x_{i-1} + \Delta U_i \cos \theta_i

y_i = y_{i-1} + \Delta U_i \sin \theta_i

where

\theta_i = heading of robot at instant i,

\Delta U_i = distance travelled in i<sup>th</sup> interval,

x_i, y_i = relative position of the robot's centerpoint

c at instant i.
```

Odometry Coordinate System

- At reset, the front of the robot is defined as the positive X direction, and positive Y is to the robot's left.
- θ increases CCW, as would be the normal convention.
- For as long as you don't reset it, the odometry module will estimate movement relative to the reset position.

Limitations of Odometry

- Errors accumulate as robot moves
- Inaccurate heading (orientation) results in incorrect incrementing of X, Y components

J. Borenstein, Sensors and Methods for Mobile Robot Positioning, 1996.

Sonar Transducers in the DE2Bot

- The sonar transducer emits a ping (a "chirp" at 50 kHz, actually)
 when a high voltage square wave is applied across its two terminals
- This is ultrasonic, but you will hear a click as a side-effect
 - o "Ultrasonic ranging" and "sonar ranging" are often used synonymously
- Transducers produce a small signal when an echo is detected
- Time-of-flight is proportional to distance between the transducer and whatever reflected the ping

DE2Bot I/O Devices

- Your program interacts with the robot using IN and OUT instructions to peripheral devices
- The downloadable
 DE2Bot Manual
 includes detail
 about every I/O
 device

Name	IO Address	IN/OUT	Description	
SWITCHES	0x00	IN	Read DE2 switc	
LEDS	0x01	OUT	Write to DE2 LE	
TIMER	0x02	IN/OUT	Read 10Hz time	
XIO*	0x03	IN	Read PB3-PB1,	
SSEG1	0x04	OUT	Write to left 4-	
SSEG2	0x05	OUT	Write to right	
LCD	0x06	OUT	Write to LCD (1	
XLEDS	0x07	OUT	Write to DE2 LE	
BEEP	0x0A	OUT	Write 1-7 for be	
CTIMER	0x0C	OUT	Configurable tir	
LPOS*	0x80	IN	Read the curre	
LVEL*	0x82	IN	Read the curre	
LVELCMD*	0x83	OUT	Write the desir	
RPOS*	0x88	IN	Read the curre	
RVEL*	0x8A	IN	Read the curre	
RVELCMD*	0x8B	OUT	Write the desir	
I2C_CMD*	0x90	OUT	Write configura	
J2C_DATA* ▲	0x91	IN/OUT	Read or write d	

Robot Operational Details

- ONE robot per team at a time
- Teams in the current section ALWAYS get a robot
- Power switch is on bottom (directly beneath speaker)
 - When robot has power, DE2 has power, too
- Turn robot off when not in use, to conserve battery
- LEDs indicate hardware status (see manual for details)
- Red and black pushbuttons are not used at this time

Working with Complex Systems

- When something doesn't work, the robot gets blamed
- It is true equipment CAN fail, but almost all problems are user-related:
 - FPGA design (possibly in bdf, possibly in VHDL)
 - SCOMP code (assembly errors can be elusive)
 - Careless errors (code not assembled, some VHDL not compiled, variables not initialized, something not reset)
- Use the robot self-test to identify any hardware problems with a robot, and show this to a TA

Project Development

Inside the FPGA Hardware Block

FPGA logic cell usage by component

Memory resources

FPGA on-chip RAM usage by component (Odometry uses a lot for big sine and cosine look-up tables)

Project Motivation

- Previously, sonar has been used only in a limited sense
- The few related projects have explored:
 - Wall following (maintaining a near-constant sonar reading on one side of the robot as it moves)
 - Recognizing large areas as being "different"
 - Avoiding collision (in multiple projects)
- Now, it's time to use sonar to find objects
- A combination of intelligent sensing strategy and efficient movement will be required to maximize your performance

Your Design Task for Spring 2016

- Given an arena with certain locations that may be occupied by objects, use sonar to find all the present objects in a limited time
 - Counting them is sufficient for significant points
 - Describing their grid location results in greater points
- Demo score will be based on number of objects identified, location accuracy, speed, and lack of collisions

Sonar sensing arena

- 8 ft. by 10 ft. (approx.) arena bounded by short walls with two gaps
- 3-6 objects placed near center of grid cells
- Two different types of objects
 - o Cube
 - Cylinder
- Robot starts outside arena

Characteristics of sensed objects

- Cube and cylinder will soon be defined
 - Cylinder will probably be 5-gallon plastic bucket
 - Cube will probably be about 1 ft x 1 ft. x 1 ft. (or slightly smaller), in a material suitable for sonar sensing
- Arena walls are particle board
 - Easily sensed, except perhaps from shallow angles

Sensing strategy

- Any scenario is likely to have partially occluded objects
- Exploration by the robot may be necessary
- Every object is visible from at least one side
 - None are surrounded by other objects

Robot runs

- Each team gets three runs
- Number and location of objects varies in each run
- Each run lasts 60-90 seconds (still TBD)

Scoring generalities

- Accurately counting number of objects increases score
 - No extra credit for identifying cube vs. cylinder
- Being able to send coordinates results in higher score
 - Assembly code to send (x, y) data over wireless communication will be provided for you
- If not all time is used, additional points are given
- Collisions will result in point penalties
 - Small penalty for hitting objects
 - Greater penalty for hitting boundaries

Project Demo Score

- You will demonstrate your results on the last day of lab
 - This is separate from your oral (PowerPoint) presentation, which is also on that day
- The demo provides a raw score for each group
 - Scoring details provided next week
- All raw scores get compiled to rank teams for a 500-point demo score (i.e. "it gets curved")
 - This is the 500-point "project demo" grade you see on the syllabus

Design Space (factors that drive design choices)

Sensing technique:

- Stop and turn 360 degrees while scanning?
- Scan while exploring?

Movement:

- How to enter arena safely?
- Attempt to do everything from center aisle? Or move throughout arena?

Hardware modifications:

Is there anything useful to add to SCOMP or the peripherals?

General procedure:

- Will you change anything between runs?
 - You will not be allowed to interact with the robot once object locations are known.

Project Starting Point

- You will have a complete SCOMP
 - Implements all instructions in Table 7.1 of lab manual
 - Implements additional instructions detailed in robot manual
 - Implements a 10-level subroutine call stack
 - Has twice as much program memory (2048 words)
 - Supports hardware interrupts from four sources
- You will have a complete DE2Bot Quartus project
 - Has an additional DE2 I/O device working: the LCD
 - Has the full complement of robot I/O devices
- You will have two example ASM programs
 - An introduction to the robot, for your exercises next week
 - A basic project starting point

Project Phases and Key Dates

- Introductory exercises (next week in lab)
 - Focus on understanding DE2Bot and its capabilities.
- Get more details, including proposal tips, in lecture next week
- Turn in proposal on April 7/8 at start of either lecture
 - That's three in-session weeks away, but you should have 3/4 of your design <u>finished</u> by then.
- Complete your design by April 18
 - You will not be able to work in the lab after this day.
- Final demonstration April 19-21
 - Demonstrate your solution in your section. Points for your demo will factor into your grade.
 - Make a PowerPoint presentation, explaining your design, what worked, & what didn't.
- Turn in final report by the following Monday, April 25

Project Schedule

Assignments Due Lab Activity

Lecture Topic

Assignments Due Lab Activity

Lecture Topic

Assignments Due Lab Activity

Lecture Topic

Assignments Due Lab Activity

Lecture Topic

Assignments Due Lab Activity

Lecture Topic

Assignments Due Lab Activity

Lecture Topic

	<u> </u>					
13-Mar	14-Mar	15-Mar	16-Mar	17-Mar	18-Mar	19-Mar
			Lab 8 Results			
OPEN HRS	OPEN HRS Project Initial Exercises*				OPEN HRS	CLOSED
					Proposals &	
					Exam Review	
20-Mar	21-Mar	22-Mar	23-Mar	24-Mar	25-Mar	26-Mar
			NONE			
CLOSED	•		Spring Break		•	CLOSED
27 Mar.	20 Mar	20 Mar	20 M	24 Mar	4.000	2 4
27-Mar	28-Mar	29-Mar	30-Mar Logbook Checks*	31-Mar	1-Apr	2-Apr
CLOSED	OPEN HRS	Practical	Exercise #2 & Proj	ect Work*	OPEN HRS	OPEN HR
CLUSED	OPEN FINS	Fractical	LACICISE #2 & FIO	ect Work	OPENTING	OPENHA
			Written Exam			
3-Apr	4-Apr	5-Apr	6-Apr	7-Apr	8-Apr	9-Apr
			Proposal			
OPEN HRS	OPEN HRS		OPEN HRS	OPEN HR		
					Oral	
					1	
					Presentation	
10-∆pr	11-Δpr	12-Δnr	13-Apr	1 4- Δnr	Tips	16-Anr
10-Apr	11-Apr	12-Apr	13-Apr	14-Apr		16-Apr
-	-	12-Apr	Logbook Checks*	14-Apr	Tips 15-Apr	-
-	11-Apr OPEN HRS	12-Apr		14-Apr	Tips	
-	-	12-Apr	Logbook Checks*	14-Apr	Tips 15-Apr	
10-Apr OPEN HRS 17-Apr	-	12-Apr 19-Apr	Logbook Checks* Finish Project 20-Apr	14-Apr 21-Apr	Tips 15-Apr	
OPEN HRS	OPEN HRS		Logbook Checks* Finish Project 20-Apr Logbook Checks*		Tips 15-Apr OPEN HRS Report Tips 22-Apr	OPEN HR
OPEN HRS	OPEN HRS		Logbook Checks* Finish Project 20-Apr		Tips 15-Apr OPEN HRS Report Tips	OPEN HR
OPEN HRS	OPEN HRS		Logbook Checks* Finish Project 20-Apr Logbook Checks*		Tips 15-Apr OPEN HRS Report Tips 22-Apr	OPEN HR

Next Week in Lab

- You will have some guided exercises to perform
 - Robot self-test
 - Basic robot movement
 - Sonar reading
 - Associated check-offs count towards your Logbook grade
- If you complete the exercises before your lab period is over, don't waste that extra time
 - You have four lab sessions (<u>including</u> next week) and a handful of open hours to complete this project
 - The lab will be full in those last few days
 - Robots will have to be rationed
 - o Don't be part of the herd

Clarifications

- Additional announcements and clarifications and will be posted on Piazza
 - You are responsible for information posted there
 - Could include changes to rules or assignments
 - Make sure you are monitoring it!
- Use Piazza to ask questions
 - If a general question is asked, everyone can benefit from the answer
 - If your question contains details specific to your design, you can limit the visibility to only instructors.
 - Grey areas of rules will not necessarily be interpreted in your favor at the last minute. Ask for clarification.