

AKM

Servomotores síncronos

Manual del producto Edición 09/2007

Conserve el manual durante toda la vida útil del producto.

Entregue el manual a posteriores usuarios o propietarios del producto.

Elija su motor:

Ediciones publicadas hasta la fecha:

Edición	Nota
09 / 2007	1ª edición

Reservado el derecho de introducir modificaciones técnicas para la mejora de los equipos Impreso en la RFA

Reservados todos los derechos. Prohibida la reproducción total o parcial de la presente obra por cualquier medio (impresión, fotocopia, microfilm u otros), así como su procesamiento, reproducción y divulgación por medio de sistemas electrónicos, sin expresa autorización escrita de la empresa Danaher Motion

Página

1	G	enera	lidades	
	1.1		e este manual	
	1.2		olos utilizados	
	1.3	Abrev	viaturas utilizadas	5
2	S	egurio		
	2.1	Instru	cciones de seguridad	6
	2.2	Utiliza	ación conforme	7
3	N	lormas	s válidas	
	3.1	EC D	eclaration of Conformity	8
4	IV		lación	
•	4.1		porte	q
	4.2		alaje	
	4.3		cenamiento	
	4.4		rtenzia / Limpieza	
	4.5		nación.	
5			cación del producto	Ū
5	5.1		nen de suministro	10
	5.2		de identificación	
	5.3		icación de modelo	
_				
6			oción técnica	40
	6.1		ctura de los motores	
	6.2		s técnicos generales	
	6.3		lo estándar	
		.3.1 .3.2	Forma de diseño	
		.s.z .3.3	Extremo del eje, lado de accionamiento	
		.s.s .3.4	Tipo de protección	
		.3. 4 .3.5	Dispositivo protector	
		.3.6	Clase de material aislante	
		.3.7	Calidad vibracional.	
		.3. <i>1</i> .3.8	Técnica de conexión	
		.3.9	Unidad de retorno	
		.3.10	Freno de detención	
		.3.11	Número de polos	
	6.4		ones	
	6.5		ios de selección.	
7			ción mecánica	
1	7.1		cciones importantes	16
_			·	10
8			ción eléctrica	
	8.1		cciones de seguridad	
	8.2		de instalación eléctrica	
	8.3		xión de los motores	
	8.4		es de conexión	
	-	.4.1	Conexión de motores con Resolver	
	•	.4.2	Conexión de motores con Codificador	
		.4.3	Conexión de motores con SFD	
		.4.4	Conexión de motores con ComCoder	
	8	.4.5	Conexión de motores con BISS	23
9			en funcionamento	
	9.1		cciones importantes	
	9.2		de puesta en funcionamento	
	03	Elimir	agaión de perturbaciones	26

	Página
écnicos	
iciones	
1	
2	30
3	32
4	34
5	36
5	38
7	40
ce	
ación de adaptadores de reductor RediMount	43
ación de reductores Micron para los adaptadores de reductor	44
3	

1 Generalidades

1.1 Sobre este manual

El presente manual describe los servomotores síncronos de la Serie AKM (modelo estándar).

El presente manual va dirigido a profesionales con conocimientos en electrotecnia y mecánica.

Los motores son utilizados en el sistema de accionamiento junto con los servoamplificadores. Por este motivo, tenga presente la totalidad de la documentación del sistema, compuesta por:

- Instrucciones de instalación y de puesta en funcionamiento del servoamplificador
- Instrucciones de instalación y de puesta en funcionamiento de una tarjeta de ampliación eventualmente existente
- Manual del usuario de software de operadores del servoamplificador
- Manual de accesorios
- Descripción técnica de la serie de motores AKM

1.2 Símbolos utilizados

1.3 Abreviaturas utilizadas

Véase capítulo 10.1 "Definiciones".

2 Seguridad

2.1 Instrucciones de seguridad

Las operaciones de transporte, instalación, puesta en funcionamiento y mantenimiento sólo podrán ser realizadas por personal cualificado. Por personal cualificado se entiende las personas que están familiarizadas con el transporte, la instalación, el montaje, la puesta en funcionamiento y el manejo del producto y que disponen de las correspondientes calificaciones profesionales. El personal especializado deberá conocer y observar las siguientes normas y directrices:

IEC 60364 y DIN VDE 0100

IEC 60664 y DIN VDE 0110

Normativa nacional de prevención de accidentes o BGV A3

- Antes del montaje y de la puesta en funcionamiento, lea detenidamente la presente documentación. La incorrecta manipulación del motor puede producir daños personales y materiales. La observación de los datos técnicos y las indicaciones de conexión (placa de identificación y documentación) son de obligado cumplimiento.
- El fabricante de la máquina elaborarár un análisis de riesgo de la máquina y adoptará las medidas adecuadas para que movimientos imprevistos no puedan causar daños personales ni materiales.
- Asegúrese de la adecuada puesta a tierra del bloque del motor con la barra colectora del armario de distribución como potencial de referencia. Careciendo de una toma de tierra de baja resistencia no se puede garantizar la seguridad personal.
- No extraiga ningún enchufe con el equipo en marcha. Existe peligro de muerte, de riesgos graves para la salud y de daños materiales.
- Las conexiones pueden llevar tensión, incluso con el motor parado. No suelte nunca las conexiones eléctricas estando bajo tensión. En circunstancias desfavorables se pueden producir chispazos que dañen a las personas y a los contactos.
- Al desconectar el servoamplificador de la corriente de alimentación, espere por lo menos cinco minutos antes de soltar piezas conductoras de corriente (por ejemplo, contactos, pernos, etc.). Los condensadores en el servoamplificador conducen tensiones peligrosas hasta unos cinco minutos después de cortar la alimentación de corriente. Para mayor seguridad, mida la corriente en el circuito intermedio y espere a que la corriente se sitúe por debajo de 40V.
- Durante el funcionamiento, los motores pueden tener superficies calientes según la clase de protección. La temperatura de las superficies puede alcanzar 100°C. Mida la temperatura y, antes de tocar el motor, espere hasta que se haya enfriado a 40°C.
- Si el motor gira libremente, quite/fije el muelle de ajuste que pueda existir, para evitar que salga despedido con el consiguiente peligro de accidente.

2.2 Utilización conforme

Los servomotores sincrónicos de la Serie AKM están diseñados especialmente para el accionamiento de equipos de manipulación, maquinaria textil, máquinas-herramientas, maquinaria de embalaje y similares con elevados requerimientos dinámicos.

Están **solamente** autorizados a operar en motores cumpliendo las condiciones del entorno definidas en la presente documentación.

Los motores de la Serie AKM está **exclusivamente** destinados a ser activados mediante servoamplificadores digitales regulados por velocidad y/o por par motor.

Los motores se montan como componentes de instalaciones eléctricas o maquinaria y solamente pueden ser puestos en servicio como componentes integrados.

Nunca se podrán conectar los motores directamente a la red.

El contacto de termoprotección incorporado en el arrollamiento del motor será evaluado y comprobado.

Garantizamos la conformidad del servosistema con los términos de la EC Declaration of Conformity de la página 8, solamente cuando se utilicen los componentes entregados por nosotros (servoamplificador, motor, cables, etc.).

3 Normas válidas

3.1 EC Declaration of Conformity

We, the company

Danaher Motion GmbH Wacholderstrasse 40-42 40489 Düsseldorf

hereby in sole responsibility declare the conformity of the product series

Motor series AKM (Types AKM1, AKM2, AKM3, AKM4, AKM5, AKM6, AKM7)

with the following standards:

- EC Directive 2004/108/EC
 Electromagnetic compatibility
 Used standard EN61800-3
- EC Directive 2006/95/EC
 Electrical devices for use in special voltage limits
 Used standard EN61800-5-1

Issued by: Business Unit Motors Europe

Bernhard Wührl

Weiterstadt, 25.05.2007

Legally valid signature

This Declaration does not contain any assurance of properties in the meaning of product liability. The notes on safety and protection in the operating instructions must always be observed.

The above-mentioned company has the following technical documentation for examination:

- Proper operating instructions
- Diagrams (for EU authority only)
- Test certificates (for EU authority only)
- Other technical documentation (for EU authority only)

4 Manipulación

4.1 Transporte

Clase de clima
 2K3 según EN 50178

Temperatura -25...+70° C, oscilación máx. 20K / hora

Humedad del aire humedad relativa máx. 5%... 95% sin condensar

- Sólo a cargo de personal especializado en el envase original reciclable del fabricante
- Evite impactos fuertes, particularmente sobre el extremo del eje

En caso de que el embalaje esté dañado, compruebe que el aparato no tiene daños visibles. Informe de ello al transportista y, en caso necesario, al fabricante.

4.2 Embalaje

Caja de cartón amortiguador de la espuma de Instapak[®].

 Usted puede volver la porción plástica al surtidor o a una compañía certificada (véase la "Eliminación").

Modelo de motor	Caja de cartón	7 111011 01 11101711	Modelo de motor	Caja de cartón	Altura máx. de estiba
AKM1	X	10	AKM5	X	5
AKM2	X	10	AKM6	X	1
AKM3	X	6	AKM7	X	1
AKM4	X	6			

4.3 Almacenamiento

Clase de clima
 1K4 según EN 50178

● Temp. de almacenamiento -25...+55°C, oscilación máx. 20K/hora

Humedad del aire humedad rel. máx. 5% ... 95% sin condensar

Sólo en el embalaje original reciclable del fabricante

Altura máx. de apilamiento véase en la tabla de embalaje

Tiempo de almacenamiento sin limitación

4.4 Advertenzia / Limpieza

- Advertenzia / limpieza sólo por personal profesional
- Los cojinetes van rellenos de grasa, que en condiciones normales es suficiente para 20.000 horas de servicio. Después de 20.000 horas de servicio en condiciones nominales, se deberían cambiar los cojinetes.
- Compruebe el motor cada 2500 horas de servicio, o bien, una vez al año para ruidos en los cojinetes. Si escucha ruidos en los cojinetes, detenga inmediatamente el motor y cambie los cojinetes
- La apertura de los motores trae consigo la pérdida de la garantía
- Límpiese con isopropanol o producto similar no sumergir ni pulverizar

4.5 Eliminación

De conformidad con la directiva 2002/96/CE (RAEE), nos encargamos de eliminar de manera adecuada los aparatos y accesorios viejos si el remitente se hace cargo de los gastos de transporte. Envíe los aparatos a

Danaher Motion GmbH Robert-Bosch-Straße 10 D-64331 Weiterstadt Germany

5 Identificación del producto

5.1 Volumen de suministro

- Motor de la Serie AKM
- Descripción técnica (CDROM)
- Nota adjunta a cada motor (información breve)

5.2 Placa de identificación

Leyenda:

MODEL Modelo

CUST P/N número de pieza del cliente lcs I_{0rms} (Corriente de parada) Tcs M_0 (Par motor de parada)

 $\begin{array}{ll} \text{Vs} & \quad \text{U}_n \text{ (Tensi\'on del circuito intermedio)} \\ \text{Nrtd} & \quad \text{nn (Velocidad nominal @ U}_n) \end{array}$

Prtd Pn (Potencia nominal)

Rm R25 (Resistencia de la bobina @ 25°)

SERIAL Número de serie

AMBIENT Temperatura ambiental máx.

5.3 Codificación de modelo

6 Descripción técnica

6.1 Estructura de los motores

Los servomotores sincrónicos de las Series AKM son motores sin escobillas de corriente alterna para servoaplicaciones de altas prestaciones. Conjuntamente con nuestros servoamplificadores digitales son especialmente adecuados para las funciones de posicionamiento de robots industria-les, máquinas-herramientas, líneas de transferencia, etc., con elevados requerimientos dinámicos y de duración.

Los servomotores poseen imanes permanentes en el rotor. El material magnético Neodym permite que estos motores puedan funcionar en condiciones dinámicas muy elevadas. En el estátor se encuentra un arrollamiento trifásico alimentado por el servoamplificador. El motor carece de escobillas, la conmutación tiene lugar electrónicamente en el servoamplificador.

La temperatura del arrollamiento es controlada por sensores térmicos en los arrollamientos del estátor y transmitida a través de un termistor sin potencial (PTC, \leq 550 Ω / \geq 1330 Ω).

Los motores incorporan de serie como unidad de retorno un **resolver**. Los servoamplificadores evalúan la posición resolver del rotor y alimentan los motores con corrientes sinusoidales. La longitud del motor varía con el codificador montado. No es posible el montaje ulterior.

Los motores se entregan con o sin freno de detención montado. No es posible el montaje ulterior del freno.

Los motores están pintados de color negro mate (RAL 9005), no siendo resistente a disolventes (Tri, diluyentes, etc.).

6.2 Datos técnicos generales

Clase de clima 3K3 según EN 50178

Temperatura ambiente 5...+40°C con altura de emplaz. hasta 1000m sobre nivel del **(con datos nominales)** mar Con temperaturas ambiente superiores a 40°C y con

montaje encapsulado de los motores, tome contacto siempre

con nuestro Departamento de Aplicaciones.

Humedad autorizada (con datos nominales)

95% humedad relativa, sin formación de rocío

Reducción de potencia 1%/K en el rango 40°C...50°C hasta 1000 m sobre el nivel del

mar (Corrientes y momentos) con alturas de emplazamiento

superiores a 1000 m sobre el nivel del mar y 40°C

6% a 2000 m sobre el nivel del mar 17% a 3000 m sobre el nivel del mar 30% a 4000 m sobre el nivel del mar 55% a 5000 m sobre el nivel del mar

Sin reducción de potencia a alturas de emplazamiento

superiores a 1000 m sobre el nivel del mar y reducción de

temperatura en 10K / 1000m

Vida útil de cojinetes ≥ 20.000 horas de servicio

Datos técnicos⇒ p.27Datos de almacenamiento⇒ p.9

6.3 Modelo estándar

6.3.1 Forma de diseño

La forma básica de diseño de los servomotores sincrónicos AKM es la forma IM B5 según DIN EN 60034-7. Las formas de montaje autorizadas se indican en los datos técnicos.

6.3.2 Extremo del eje, lado de accionamiento

La transmisión de fuerza resulta a través del extremo cilíndrico A (ajuste k6) según DIN 748 con rosca de apriete (hasta DBL1/DBL2) pero **sin ranura del muelle de ajuste**. Para la vida útil de los cojinetes se ha partido de 20.000 horas de servicio.

Fuerza radial:

Si los motores propulsan a través de piñones o correas dentadas, se presentan elevadas fuerzas radiales. Los valores autorizados en el extremo del eje, en función de velocidad, se indican en los diagramas del capítulo 10. Los valores máximos permitidos figuran en los datos técnicos. Con aplicación de fuerza en el centro del extremo libre del eje F_R 10% puede ser mayor.

Fuerza axial

Cuando se montan piñones o poleas en el eje y se utilizan p. ej. engranajes angulares, se producen fuerzas axiales. Los valores máximos permitidos figuran en los datos técnicos.

La fuerza axial F_A no se debe superar FR/3.

Acoplamiento

Como elementos ideales de acoplamiento sin juego han dado muy buen resultado las tenazas tensoras, también en unión con acoplamientos de fuelle metálico.

6.3.3 Brida

Dimensiones de brida según Norma IEC, ajuste j6, precisión según DIN 42955 Clase de tolerancia : **R**

6.3.4 Tipo de protección

Modelo estándarIP65Modelo de eje estándarIP64Modelo de eje con retén radialIP67

6.3.5 Dispositivo protector

El modelo estándar del motor va equipado con un PTC sin potencial. El punto de conexión se encuentra a $155^{\circ}\text{C} \pm 5\%$. El PTC **no** protege contra sobrecargas instantáneas muy altas. Utilizando nuestro conductor resolver preconfeccionado, el dispositivo de termoprotección está integrado en el sistema de control del servoamplificador digital.

6.3.6 Clase de material aislante

Los motores cumplen con la clase F de materiales aislantes según IEC 85.

6.3.7 Calidad vibracional

Los motores se fabrican con el factor N de calidad vibracional según DIN EN 60034-14.

6.3.8 Técnica de conexión

Los motores se equipan de los conectadores angulares (AKM1: derecho los conectadores en los extremos del cable) para la fuente de alimentación y las señales de retorno

Los contraenchufes no están incluidos en el volumen de entrega. Ofrecemos conductores resolver y conductores de potencia confeccionados listos para su montaje. En el capítulo 8.3 se encuentran indicaciones sobre los materiales de conductores.

6.3.9 Unidad de retorno

Están	Resolver	bipolares de eje hueco
Opción Codificador EnDat, single-turn		AKM2-AKM4: ECN 1113, AKM5-AKM7: ECN1313
Opción	Codificador EnDat, multi-turn	AKM2-AKM4: EQN 1125, AKM5-AKM7: EQN1325
Opción	ComCoder	Codificador incremental con sensore Hall, resolución 500-10000 marcas
Opción SFD		Interfaz de Resolver digital
Opción	Codificador BiSS, Single-/Multi-Turn	AKM2-AKM4: AD36, AKM5-AKM7: AD58

La longitud del motor varía con el codificador montado. No es posible el montaje ulterior.

6.3.10 Freno de detención

Los motores se pueden suministrar opcionalmente con freno de detención incorporado. En freno magnético permanente (24 V CC) bloquea el rotor cuando está sin tensión. **Los frenos están diseñados como frenos de parada** y no son adecuados para operaciones de frenado permanentes durante el servicio. Cuando se ha desfrenado, el rotor se puede mover sin momento residual y el modo de trabajo es sin juego. La longitud del motor aumenta con el freno de parada montado.

Los frenos de detención pueden ser activados directamente por el servoamplificador de Danaher Motion (con riesgo para las personas) liberando a continuación el arrollamiento de freno en el servoamplificador, y no siendo necesaria una conexión adicional.

Cuando el freno de detención no es activado directamente por el servoamplificador se debe realizar una conexión adicional (p.ej., un varistor). Consulte a nuestro Departamento de Aplicaciones.

Un accionamiento de los frenos seguro para las personas exige, además, un contacto de cierre en el circuito de frenado y también un dispositivo de liberación (p. ej., un varistor) para los frenos.

Propuesta de conexión con SERVOSTAR 600:

6.3.11 Número de polos

Motor	Número de polos	Motor	Número de polos
AKM1	6	AKM5	10
AKM2	6	AKM6	10
AKM3	8	AKM7	10
AKM4	10		

6.4 Opciones

- Freno de detención

Freno de detención integrado en el motor.

Por el freno de detención aumenta la longitud del motor.

- Retén radial

Retén radial contra vapor de aceite y salpicaduras de aceite. La clase de protección del eje se incrementa así a IP67.

- Muelles de ajuste

Los motores se pueden entregar con ranuras y muelles de ajuste montados según DIN6885. El equilibrado del rotor se realiza con medio muelle de ajuste.

EnDat, BISS, ComCoder, SFD

Otro unidad de retorno se monta en vez del Resolver. La longitud del motor aumenta con el codificador montado

Con la excepción del retén radial las opciones no pueden ser adaptadas. Las opciones tales como retén radial del eje, freno, EnDat o Comcoder pueden conducir a una reducción de datos clasificados.

6.5 Criterios de selección

Los servomotores de corriente alterna están dimensionados para el servicio en los servoamplificadores de Danaher Motion. Ambas unidades forman conjuntamente un circuito cerrado de regulación de momentos o de velocidad.

Los principales criterios de selección son:

Momento de parada
 Velocidad nominal con tensión nominal
 Momentos de inercia de motor y carga
 Momento efectivo (calculado)
 M_{rms} [Nm]

En el cálculo de los motores y servoamplificadores necesarios, tenga presente la carga estática y la carga dinámica (aceleración/frenado). Nuestro Departamento de Aplicaciones proporcionará las fórmulas y ejemplos de cálculo correspondientes.

7 Instalación mecánica

7.1 Instrucciones importantes

Solamente los profesionales con conocimientos de mecánica están autorizados a montar el motor.

- Proteja los motores contra esfuerzos excesivos.
 Especialmente durante el transporte y la manipulación, no se deberán doblar componentes, ni modificar las distancias de aislamiento.
- El lugar de instalación se encontrará libre de materiales conductores y agresivos.
 Durante el montaje del V3 (extremo del eje hacia arriba), ponga atención a que no penetren líquidos en los cojinetes. Antes de realizar el montaje encapsulado, consulte a nuestro Departamento de Aplicaciones.
- Asegúrese de la ventilación sin obstáculos de los motores, respetando la temperatura ambiente y la temperatura de la brida. Con temperaturas superiores a 40 °C, consulte previamente con nuestro Departamento de Aplicaciones.
 Procure la suficiente evacuación del calor en el entorno y en la brida del motor para no superar la temperatura máxima autorizada de 65 °C en la brida del motor.
- Los servomotores son equipos de precisión. Especialmente la brida y el eje corren peligro durante el almacenamiento y montaje. Evite el empleo de la fuerza, pues la precisión exige sensibilidad. En la colocación de acoplamientos, piñones y poleas para correas, utilice siempre la rosca prevista del eje del motor y, siempre que sea posible, caliente los elementos de salida. Los golpes y el empleo de la fuerza producen daños en los cojinetes y en el eje.

- Utilice siempre en lo posible tenazas tensoras sin holguras, tenazas de fricción, o acoplamientos como. Procure siempre la correcta alineación del acoplamiento. Las desviaciones producen vibraciones inadmisibles y destrozos en los cojinetes y en el acoplamiento.
- Cuando utilice correas dentadas, verifique siempre las fuerzas radiales autorizadas. Los esfuerzos radiales excesivos del eje reducen mucho la vida útil del motor.
- Evite en lo posible los esfuerzos axiales del eje del motor. Los esfuerzos axiales excesivos del eje reducen mucho la vida útil del motor.
- Evite siempre una suspensión mecánica sobredeterminada del eje del motor a través de un acoplamiento rígido y de suspensión adicional externa (por ejemplo, en el engranaje).
- Observe el número de polos del motor y del resolver y ajuste correctamente los números de polos. El ajuste incorrecto puede producir la destrucción sobre todo de los motores pequeños
- Controle las cargas radiales y axiales autorizadas F_R y F_A . Utilizando un accionamiento por correa dentada, el diámetro **mínimo** autorizado del piñón se obtiene según la ecuación siguiente: $d_{min} \ge \frac{M_0}{F_R} \times 2$.

8 Instalación eléctrica

8.1 Instrucciones de seguridad

Solamente los profesionales con conocimientos de electrotecnia están autorizados a cablear el motor.

El montaje y cableado de los motores se realizará siempre sin tensión, es decir, ninguna de las tensiones de servicio del aparato a conectar deberá estar activada.

Asegúrese de que la desconexión del armario de distribución sea segura (bloqueo, rótulos de advertencia, etc.). Las diferentes tensiones se conectarán en la primera puesta en funcionamiento.

No manipule nunca las conexiones eléctricas de los motores cuando se encuentren bajo tensión.

Las cargas residuales en los condensadores del servoamplificador pueden presentar valores peligrosos incluso hasta 5 minutos después de desconectar de la red.

Mida la tensión en el circuito intermedio y espere hasta que haya descendido por debajo de 40 V.

Las conexiones de control y de potencia pueden provocar tensión, incluso aunque el motor no esté girando.

El símbolo de masa /////, que se encuentra en todos los planos de conexión, indica que debe asegurarse de realizar una conexión en el armario de distribución con la mayor superficie posible conductora de electricidad, entre el aparato que lleva la indicación y la placa de montaje. Esta conexión hará posible la derivación de interferencias de alta frecuencia y no debe confundirse con la marca PE (medida de protección según EN 60204).

Respete también las indicaciones en los planos de conexión de las Instrucciones de instalación y de puesta en funcionamiento del servoamplificador utilizado.

8.2 Guía de instalación eléctrica

- Compruebe la correspondencia entre el servoamplificador y el motor. Compare la tensión nominal y la corriente nominal de los aparatos. Realice el cableado conforme al cuadro de conexiones de las Instrucciones de instalación y de puesta en funcionamiento del servoamplificador. Las conexiones del motor se encuentran en la páginas 19f. En la página 18 encontrará observaciones sobre las técnicas de conexión.
- Asegúrese de que la toma de tierra del servoamplificador y del motor esté perfectamente instalada. Véanse la adecuada protección de compatibilidad electromagnética y de puesta a tierra en las Instrucciones de instalación del servoamplificador utilizado. Ponga a tierra la placa de montaje y el bloque del motor.
 - Las indicaciones sobre las técnicas de conexión se encuentran en el p. 18.
- Tienda los cables de potencia y de control suficientemente espaciados (distancia > 20 cm). Así mejorará la compatibilidad electromagnética del sistema. Utilizando un cale de potencia del motor con conductores de mando de freno integrados, estos deberán estar apantallados. La pantalla estará dispuesta por ambos lados (véase manual de instalación del servoamplificador).
- Cableado
 - Tienda los cables de potencia y de control bien separados
 - Conecte el resolver y el codificador
 - Conecte los cables del motor cerca del servoamplificador
 - Apantallamientos a ambos lados en bornes de protección o en el enchufe de compatibilidad electromagnética
 - Conecta el freno de detención, si está montado.
 - Coloque el apantallamiento a ambos lados
- Realice el tendido de todos las conducciones de alta tensión con sección suficiente según EN 60204. En los datos técnicos se incluyen las secciones recomendadas.

 Realice apantallamientos de gran superficie (baja resistencia) a través de cajas de enchufe metalizadas, o bien, de uniones de cable roscadas compatibles electromagnéticamente.

8.3 Conexión de los motores

- Realice el cableado cumpliendo los reglamentos y normas vigentes.
- Para las conexiones de potencia y de retorno, utilice exclusivamente nuestras conducciones preconfeccionadas y protegidas.
- Coloque los apantallamientos en la forma indicada en las figuras de las Instrucciones de instalación de los servoamplificadores.
- Los apantallamientos mal colocados producen siempre a interferencias electromagnéticas.
- La longitud máxima del conductor se define en el manual de producto del servoamplificador utilizado.

Requisitos al material de cables:

Capacidad

Cable del motor - menor que 150 pF/m Cable Resolver - menor que 120 pF/m

8.4 Planes de conexión

8.4.1 Conexión de motores con Resolver

Enchufe redondo 12-pol.

Código del color selon IEC 757

8.4.2 Conexión de motores con Codificador

Servomotores AKM

8.4.3 Conexión de motores con SFD

8.4.4 Conexión de motores con ComCoder

22 Servomotores AKM

8.4.5 Conexión de motores con BISS

Esta página se ha dejado en blanco intencionadamente.

9 Puesta en funcionamento

9.1 Instrucciones importantes

Solamente los profesionales con amplios conocimientos de electrotecnia y de técnicas de accionamiento están autorizados a la puesta en funcionamiento del conjunto servoamplificador-motor.

Compruebe que todas las piezas de conexión que conducen tensión estén protegidas contra cualquier posible contacto. Se producen tensiones peligrosas de hasta 900V.

No manipule nunca las conexiones eléctricas de los motores cuando se encuentren bajo tensión. Las cargas residuales en los condensadores del servoamplificador pueden presentar valores peligrosos incluso hasta 5 minutos después de desconectar de la red.

La temperatura de la superficie del motor puede alcanzar 100 °C durante el servicio. Compruebe (mida) la temperatura del motor. Espere a que la temperatura haya descendido a 40 °C antes de tocar el motor con las manos.

Asegúrese de que, incluso con movimientos involuntarios del motor, no puedan existir peligros para las personas y para la máquina.

9.2 Guía de puesta en funcionamento

La forma de proceder en la puesta en accionamiento se describe a modo de ejemplo. Dependiendo del tipo de puesta en servicio de los aparatos puede ser adecuado o necesario un procedimiento u otro.

- Compruebe el montaje y la alineación del motor.
- Compruebe el firme asiento de los elementos de salida de fuerza (acoplamiento, engranaje, polea de la correa) así como el ajuste correcto (respetar las fuerzas radiales y axiales autorizadas).
- Compruebe el cableado y las conexiones del motor y del servoamplificador. Compruebe la correcta puesta a tierra.
- Compruebe el funcionamiento del freno de detención, si está montado. (conectar 24V, el freno se debe soltar).
- Compruebe si el rotor del motor gira libremente (soltar primero el freno, si está montado).
 Compruebe si se escuchan ruidos de fricción.
- Compruebe si se han tomado todas las medidas de protección contra contactos para las piezas móviles y las conductoras de tensión.
- Realice todas las comprobaciones específicas y necesarias para su equipo.
- Conforme a las Instrucciones de puesta en funcionamiento del servoamplificador, ponga ahora en marcha el accionamiento.
- En sistemas de varios ejes, ponga en marcha, una a una, cada una de las unidades de accionamiento servoamplificador-motor.

9.3 Eliminación de perturbaciones

Interprete la siguiente tabla como un botiquín de "Primera Ayuda". Las condiciones en que se ha procedido a la instalación determinan las causas por las que se produce una avería. En primer lugar se describen las causas de fallos que pueden afectar directamente al motor. Las incidencias que se presentan en el comportamiento de regulación tienen normalmente su origen en la parametrización errónea del servoamplificador. Vea la información al respecto en la documentación del servoamplificador y en el software de puesta en funcionamiento.

En el caso de sistemas poliaxiales, pueden existir otros defectos ocultos.

Nuestro Departamento de Aplicaciones se esforzará por resolver todos sus problemas.

Error	Causas posibles	Medidas para la eliminación de fallos errores				
	No accionar el servoamplificador Conductor de valor nominal cortado	Conectar la señal ENABLE Comprobar el conductor de valor nominal				
El motor no gira	Fases del motor cambiadas	Fijar correctamente las fases del motor				
	No se ha accionado el freno El accionamiento está bloqueado mecánicamente	Comprobar el control de los frenos Comprobar parte mecánica				
Motor gira dema- siado	Fases del motor cambiadas	Fijar correctamente las fases del motor				
El motor vibra	Interrumpida la protección del conductor del resolver Amplificación excesiva	Cambiar el conductor del resolver Utilizar valores por defecto del motor				
Aviso de error del freno	Cortocircuito el conductor de entrada de tensión del freno de detención del motor Freno de detención del motor defectuoso	Eliminar cortocircuito Cambiar el motor				
Aviso de error de estadio final	Cable del motor tiene cortocircuito o contacto a tierra El motor tiene cortocircuito o contacto a tierra	Cambiar el cable Cambiar el motor				
Aviso de error de resolver	El enchufe del resolver no está bien insertado El cable del resolver está interrumpido	Verificar la conexión Comprobar los conductores				
Aviso de error de temperatura del motor	El termointerruptor del motor se ha activado Enchufe del resolver suelto o cable del resolver interrumpido	 Esperar a que el motor se enfríe. Comprobar después por qué el motor se ha calentado Comprobar el enchufe y cambiarlo, si es preciso Colocar el cable del resolver 				
Freno no actúa	 Momento de detención exigido excesivamente alto Freno defectuoso Eje del motor con sobrecarga axial 	 Comprobar dimensionamiento Cambiar el motor Verificar la carga axial y reducirla. Cambiar el motor, pues están dañados los cojinetes 				

10 Datos técnicos

Todos los datos válidos para la temperatura ambientales de 40°C y la temperatura excesiva de la bobina 100K. Los datos pueden tener una tolerancia de el +/- 10%.

10.1 Definiciones

Par motor de parada M₀ [Nm]

El par motor de parada puede ser entregado durante un tiempo ilimitado desde un velocidad de n=0 min⁻¹ y en condiciones ambientales nominales.

Par motor nominal M_n [Nm]

El par motor nominal se entrega cuando el motor es alimentado con la corriente nominal a velocidad nominal. El par motor nominal puede ser entregado durante un tiempo ilimitado en servicio continuo (S1) al velocidad nominal.

Corriente de parada I_{0rms} [A]

La corriente de parada es el valor efectivo de la corriente sinusoidal que recibe el motor al n<100 min⁻¹, para poder entregar el par motor de parada.

Corriente máxima (corriente pulsatoria) I_{0max} [A]

La corriente máxima (valor sinusoidal eficaz) es aproximadamente equivalente a 4-times la corriente de parada. El valor real es determinado por la corriente máxima del servoamplificador se utiliza que.

Constante de par motor K_{Trms} [Nm/A]

La constante indica el par motor en Nm que genera el motor con 1A de corriente efectiva sinusoidal. $M=I \times K_T$ (hasta un máximo de $I=2 \times I_0$)

Constante de tensión K_{Erms} [mVmin]

La constante de tensión indica la fuerza electromotriz inducida del motor referida a 1000 r.p.m. como valor efectivo sinusoidal entre dos bornes.

Momento de inercia del rotor J [kgcm²]

La constante J es una medida de la capacidad de aceleración del motor. Con l_0 resulta, por ejemplo, un tiempo de aceleración t_b de 0 hasta 3000 min⁻¹:

$$t_b [s] = \frac{3000 \times 2\pi}{M_0 \times 60s} \times \frac{m^2}{10^4 \times cm^2} \times J \quad \text{con M}_0 \text{ en Nm y J en kgcm}^2$$

Constante térmica de tiempo tth [min]

La constante t_{th} indica el tiempo de calentamiento del motor frío bajo carga con l_0 hasta alcanzar 0,63 x 105 Kelvin de sobretemperatura.

Bajo carga con corriente máxima, el calentamiento tiene lugar en un tiempo mucho menor.

Tiempos de respuesta del freno t_{BRH} [ms] / t_{BRL} [ms]

Las constantes indican los tiempos de reacción del freno de detención en funcionamiento con tensión nominal en el servoamplificador.

U_{N}

Tensión nominal del red

Un

Tensión nominal del circuito intermedio $U_n = \sqrt{2} * U_N$

10.2 AKM1

Datos técnicos

	Data	Símbolo				AKM			
	Datos	[unidad]	11B	11C	11E	12C	12E	13C	13D
Da	tos eléctricos								
	Par motor de parada*	M ₀ [Nm]	0,18	0,18	0,18	0,31	0,31	0,41	0,40
	Corriente de parada	I _{0rms} [A]	1,16	1,45	2,91	1,51	2,72	1,48	2,40
	Tensión max del red	U _N [VAC]			2	30VA	2		
2	Velocidad nominal	n _n [min ⁻¹]		_	6000	_	3000	_	2000
3	Par motor nominal*	M _n [Nm]	-	_	0,18	_	0,31	_	0,40
U = 75VDC	Potencia nominal	P _n [kW]	-	_	0,11	_	0,10	_	0,08
20	Velocidad nominal	n _n [min ⁻¹]	4000	6000	_	4000	8000	3000	7000
115	Par motor nominal*	M _n [Nm]	0,18	0,18	_	0,30	0,28	0,41	0,36
II N	Potencia nominal	P _n [kW]	0,08	0,11	_	0,13	0,23	0,13	0,27
>	Velocidad nominal	n _n [min ⁻¹]	8000	_	_	8000	_	8000	_
230V	Par motor nominal*	M _n [Nm]	0,17	_	_	0,28	_	0,36	
_ N	Potencia nominal	P _n [kW]	0,14	_	_	0,23	_	0,30	_
>	Velocidad nominal	n _n [min ⁻¹]		_	_	_	_	_	_
4000	Par motor nominal*	M _n [Nm]	_	_	_	_	_	_	_
, ∥	Potencia nominal	P _n [kW]	_	_	_	_	_	_	_
>	Velocidad nominal	n _n [min ⁻¹]	_	_	_	_	_	_	_
480V	Par motor nominal*	M _n [Nm]	_	_	_	_	_	_	_
II	Potencia nominal	P _n [kW]	_	_	_	_	_	_	_
	Corriente máxima	I _{0max} [A]	4,65	5,79	11,6	6,06	10,9	5,93	9,6
	Par motor motor máximo	M _{0max} [Nm]	0,61	0,61	0,61	1,08	1,08	1,46	1,44
	Constante de par motor	K _{Trms} [Nm/A]	0,16	0,13	0,06	0,21	0,11	0,28	0,17
	Constante de tensión	K _{Erms} [mVmin]	10,2	8,3	4,1	13,3	7,2	17,9	10,9
	Resistencia de la bobina Ph-Ph	R ₂₅ [Ω]	18,2	12,1	3,1	12,4	3,9	13,5	5,4
	Inductividad de la bobina Ph-Ph	L [mH]	12,5	8,3	2,0	9,1	2,7	10,3	3,8
Da	tos mecánicos								
	Momento de inercia del rotor	J [kgcm²]		0,017		0,0)31	0,0)45
	N° de polos			6		(3	(3
	Par estático de fricción	M _R [Nm]		0,0011		0,0	021	0,0	031
	Constante térmica de tiempo	t _{TH} [min]		4		(3	7	7
	Peso de estándar	G [kg]		0,35		0,	49	0,	63
	Fuerza radiale admitido en el extremo del eje en 8000 min ⁻¹	F _R [N]				30			
Fuerza axial admitido en 8000 min ⁻¹ F _A [N]		F _A [N]				12			

^{*} brida de la referencia, aluminio 254mm * 254mm * 6,35mm

Conexiones y conductores

contained y contauctored						
Datos	AKM1					
Conexión de potencia	4 + 4-polos, redondo, en el extremo del cable 0,5m					
Cable del motor, protegido	4 x 1					
Cable del motor, con conductores de control, protegido	4 x 1 + 2 x 0,75					
Conexión del resolver	12-polos, redondo, en el extremo del cable 0,5m					
Cable del resolver, protegido	4 x 2 x 0,25mm²					
Conexión del Comcoder (Opción)	17-polos, redondo, en el extremo del cable 0,5m					

Plano acotado (representación esquemática)

Fuerza radial / axial el extremo del eje

10.3 AKM2

Datos técnicos

	_	Símbolo						Ał	CM					
	Datos	[unidad]	21C	21E	21G	22C	22E	22G	23C	23D	23F	24C	24D	24F
Da	tos eléctricos									_				
	Par motor de parada*	M ₀ [Nm]	0,48	0,50	0,50	0,84	0,87	0,88	1,13	1,16	1,18	1,38	1,41	1,42
	Corriente de parada	I _{0rms} [A]	1,58	3,11	4,87	1,39	2,73	4,82	1,41	2,19	4,31	1,42	2,21	3,89
	Tensión max del red	U _N [VAC]						48	30					
ည	Velocidad nominal	n _n [min ⁻¹]	_	2000	4000	_	1000	2500	_	_	1500	_	_	1000
75VDC	Par motor nominal*	M _n [Nm]	_	0,48	0,46	_	0,85	0,83	_	_	1,15	_	_	1,39
) = U	Potencia nominal	P _n [kW]	_	0,10	0,19	_	0,09	0,22	_	_	0,18	_	_	0,15
20	Velocidad nominal	n _n [min ⁻¹]	2500	7000	_	1000	3500	7000	1000	1500	4500	_	1500	3000
115	Par motor nominal*	M _n [Nm]	0,46	0,41	_	0,83	0,81	0,74	1,11	1,12	1,07	_	1,36	1,33
□ □	Potencia nominal	P _n [kW]	0,12	0,30	_	0,09	0,30	0,54	0,12	0,18	0,50	_	0,21	0,42
>	Velocidad nominal	n _n [min ⁻¹]	8000	_	_	3500	8000	_	2500	5000	8000	2000	4000	8000
230V	Par motor nominal*	M _n [Nm]	0,39	_	_	0,78	0,70	_	1,08	1,03	0,94	1,32	1,29	1,12
, ⊓ N	Potencia nominal	P _n [kW]	0,32	_	_	0,29	0,59	_	0,28	0,54	0,79	0,28	0,54	0,94
>	Velocidad nominal	n _n [min ⁻¹]	_	_	_	8000	_	_	5500	8000	_	4500	8000	
400V	Par motor nominal*	M _n [Nm]	_	_	_	0,68	_	_	0,99	0,92	_	1,25	1,11	
_ I I	Potencia nominal	P _n [kW]	_	_	_	0,57	_	_	0,57	0,77	_	0,59	0,93	_
>	Velocidad nominal	n _n [min ⁻¹]		_	_	8000	_	_	7000	8000	_	5500	8000	
480V	Par motor nominal*	M _n [Nm]	_	_	_	0,68	_	_	0,95	0,92	_	1,22	1,11	_
U _N = 4	Potencia nominal	P _n [kW]	_	_	_	0,57	_	_	0,70	0,77	_	0,70	0,93	_
	Corriente máxima	I _{0max} [A]	6,3	12,4	19,5	5,6	10,9	19,3	5,6	8,8	17,2	5,7	8,8	15,6
	Par motor motor máximo	M _{0max} [Nm]	1,47	1,49	1,51	2,73	2,76	2,79	3,77	3,84	3,88	4,73	4,76	4,82
	Constante de par motor	K _{Trms} [Nm/A]	0,30	0,16	0,10	0,61	0,32	0,18	0,80	0,52	0,27	0,97	0,63	0,36
	Constante de tensión	K _{Erms} [mVmin]	19,5	10,2	6,6	39	20,4	11,7	51,8	33,8	17,6	62,4	40,8	23,4
	Resistencia de la bobina Ph-Ph	R ₂₅ [Ω]	13,0	3,42	1,44	20	5,22	1,69	21,2	8,77	2,34	20,4	9,02	2,77
	Inductividad de la bobina Ph-Ph	L [mH]	19	5,2	2,18	35,5	9,7	3,19	40,7	17,3	4,68	43,8	18,7	6,16
Da	tos mecánicos													
	Momento de inercia del rotor	J [kgcm²]		0,11			0,16			0,22			0,27	
	N° de polos			6			6			6			6	
	Par estático de fricción	M _R [Nm]		0,002			0,005			0,007			0,01	
	Constante térmica de tiempo	t _{TH} [min]		8		9			10			11		
	Peso de estándar	G [kg]		0,82			1,1			1,38			1,66	
	Fuerza radiale admitido en el extremo del eje en 5000 min ⁻¹	F _R [N]						14	1 5					
	Fuerza axial admitido en 5000 min ⁻¹	F _A [N]	60											

^{*} brida de la referencia, aluminio 254mm * 254mm * 6,35mm

Datos de frenos

Dates de l'elles						
Datos	Símbolo [unidad]	Valor				
Momento de parada @ 120°C	M _{BR} [Nm]	1,42				
Tensión de conexión	U _{BR} [VDC]	24 ± 10 %				
Potencia eléctrica	P _{BR} [W]	8,4				
Momento de inercia	J _{BR} [kgcm ²]	0,011				
Tiempo de respuesta	t _{BRH} [ms]	20				
Tiempo de reacción	t _{BRL} [ms]	18				
Peso del freno	G _{BR} [kg]	0,27				
Contragolpe típico	[°mech.]	0,46				

Conexiones y conductores

Datos	AKM2
Conexión de potencia	4+4 polos, redondo, en ángulo
Cable del motor, protegido	4 x 1
Cable del motor, con conductores de control, protegido	4 x 1 + 2 x 0,75
Conexión del resolver	12 polos, redondo, en ángulo
Cable del resolver, protegido	4 x 2 x 0,25mm²
Conexión del Codicficador (Opción)	17 polos, redondo, en ángulo
Cable del codificador, geschirmt	7 x 2 x 0,25mm²

Plano acotado (representación esquemática)

Fuerza radial / axial el extremo del eje

10.4 AKM3

Datos técnicos

		Símbolo					AKM				
	Datos	[unidad]	31C	31E	31H	32C		32H	33C	33E	33H
Da	tos eléctricos	[0.0	<u> </u>	<u> </u>	020	<u> </u>	<u> </u>			
	Par motor de parada*	M ₀ [Nm]	1,15	1,20	1,23	2,00	2,04	2,10	2,71	2,79	2.88
	Corriente de parada	I _{0rms} [A]	1,37	2,99	5,85	1,44		5,50	1,47	2,58	5,62
	Tensión max del red	U _N [VAC]	,	,	,	,	480	,	,	,	,
ည	Velocidad nominal	n _n [min ⁻¹]	_	750	2000	_	_	1200	_	_	800
75VDC	Par motor nominal*	M _n [Nm]	_	1,19	1,20	_	_	2,06	_	_	2,82
U = 75	Potencia nominal	P _n [kW]	_	0,09	0,25	_	_	0,26	_	_	0,24
>	Velocidad nominal	n _n [min ⁻¹]	_	2500	6000	_	1000	3000	_	_	2500
115V	Par motor nominal*	M _n [Nm]	_	1,17	0,97	_	2,00	1,96	_	_	2,66
ı N N	Potencia nominal	P _n [kW]		0,31	0,61	_	0,21	0,62	_	_	0,70
>	Velocidad nominal	n _n [min ⁻¹]	2500	6000	_	1500	2500	7000	1000	2000	5500
230V	Par motor nominal*	M _n [Nm]	1,12	0,95	_	1,95	1,93	1,45	2,64	2,62	2,27
_ N	Potencia nominal	P _n [kW]	0,29	0,60	_	0,31	0,51	1,06	0,28	0,55	1,31
>	Velocidad nominal	n _n [min ⁻¹]	5000	_	_	3000	5500	_	2000	4500	_
400V	Par motor nominal*	M _n [Nm]	1,00	_	_	1,86	1,65	_	2,54	2,34	_
ı N O	Potencia nominal	P _n [kW]	0,52	_	_	0,58	0,95	_	0,53	1,10	_
>	Velocidad nominal	n _n [min ⁻¹]	6000	_	_	3500	6000	_	2500	5000	_
480V	Par motor nominal*	M _n [Nm]	0,91	_	_	1,83	1,58	_	2,50	2,27	_
ı ⊓ N	Potencia nominal	P _n [kW]	0,57	_	_	0,67	0,99	_	0,65	1,19	_
	Corriente máxima	I _{0max} [A]	5,5	12,0	23,4	5,7	8,9	22,0	5,9	10,3	22,5
	Par motor motor máximo	M _{0max} [Nm]	3,88	4,00	4,06	6,92	7,05	7,26	9,76	9,96	10,2
	Constante de par motor	K _{Trms} [Nm/A]	0,85	0,41	0,21	1,40	0,92	0,39	1,86	1,10	0,52
	Constante de tensión	K _{Erms} [mVmin]	54,5	26,1	13,7	89,8	59,0	24,8	120	70,6	33,4
	Resistencia de la bobina Ph-Ph	R ₂₅ [Ω]	21,4	4,74	1,29	23,8	10,3	1,69	26,6	9,01	1,96
	Inductividad de la bobina Ph-Ph	L [mH]	37,5	8,6	2,4	46,5	20,1	3,55	53,6	18,5	4,1
Da	tos mecánicos										
	Momento de inercia del rotor	J [kgcm²]		0,33			0,59			0,85	
	N° de polos			8			8			8	
	Par estático de fricción	M _R [Nm]		0,014			0,02			0,026	
	Constante térmica de tiempo	t _{TH} [min]		14			17			20	
	Peso de estándar	G [kg]		1,55			2,23			2,9	
	Fuerza radiale admitido en el extremo del eje en 3000 min ⁻¹	195									
	Fuerza axial admitido en 3000 min ⁻¹	F _A [N]					65				

^{*} brida de la referencia, aluminio 254mm * 254mm * 6,35mm

Datos de frenos

Datos	Símbolo [unidad]	Valor
Momento de parada @ 120°C	M _{BR} [Nm]	2,5
Tensión de conexión	U _{BR} [VDC]	24 ± 10 %
Potencia eléctrica	P _{BR} [W]	10,1
Momento de inercia	J _{BR} [kgcm ²]	0,011
Tiempo de respuesta	t _{BRH} [ms]	25
Tiempo de reacción	t _{BRL} [ms]	10
Peso del freno	G _{BR} [kg]	0,35
Contragolpe típico	[°mech.]	0,46

Conexiones y conductores

Datos	AKM3
Conexión de potencia	4+4 polos, redondo, en ángulo
Cable del motor, protegido	4 x 1
Cable del motor con conductores de control, protegido	4 x 1 + 2 x 0,75
Conexión del resolver	12 polos, redondo, en ángulo
Cable del resolver, protegido	4 x 2 x 0,25mm ²
Conexión del Codicficador (Opción)	17 polos, redondo, en ángulo
Cable del codificador, geschirmt	7 x 2 x 0,25mm²

Plano acotado (representación esquemática)

Fuerza radial / axial el extremo del eje

10.5 AKM4

Datos técnicos

		Símbolo							AKM						
	Datos	[unidad]	41C	41F	41H	42C	42F	42G		43E	43G	43K	44F	44G	44J
Da	tos eléctricos	[aaaa]	1.0			.20			120			1011		1.0	
	Par motor de parada	M ₀ [Nm]	1,95	2,02	2,06	3,35	3,42	3,53	3,56	4,70	4,80	4,90	5,76	5,88	6,00
	Corriente de parada	I _{0rms} [A]	1,46			1,40			8,40	2,76		9,60	2,90	5,00	
	Tensión max del red	U _N [VAC]							480						
2	Velocidad nominal	n _n [min ⁻¹]		_	1000	_	_		_	_		_		_	_
75VDC	Par motor nominal*	M _n [Nm]	_	_	1,99	_	_	_		_	_		_	_	_
U = 7	Potencia nominal	P _n [kW]		_	0,21	_	_	_	_	_	_	_	_	_	_
>	Velocidad nominal	n _n [min ⁻¹]	_	1200	3000	_	_	_	3000	_	_	2500	_	_	_
115V	Par motor nominal*	M _n [Nm]	_	1,94	1,86	_	_	_	3,03	_	_	4,08	_	_	_
, II	Potencia nominal	P _n [kW]	_	0,24	0,58	_	_	_	0,95	_	_	1,07	_	_	_
>	Velocidad nominal	n _n [min ⁻¹]	1200	3000	6000	_	1800	3500	6000	1500	2500	6000	1200	2000	4000
230V	Par motor nominal*	M _n [Nm]	1,88	1,82	1,62	_	3,12	2,90	2,38	4,24	4,00	2,62	5,22	4,90	3,84
ا ا	Potencia nominal	P _n [kW]	0,24	0,57	1,02	_	0,59	1,06	1,50	0,67	1,05	1,65	0,66	1,03	1,61
>	Velocidad nominal	n _n [min ⁻¹]	3000	6000	_	1500	3500	6000	_	2500	5000	_	2000	4000	6000
4000	Par motor nominal*	M _n [Nm]	1,77	1,58	_	3,10	2,81	2,35	_	3,92	3,01		4,80	3,76	2,75
_ II	Potencia nominal	P _n [kW]	0,56	0,99	_	0,49	1,03	1,48	_	1,03	1,58	_	1,01	1,57	1,73
>	Velocidad nominal	n _n [min ⁻¹]	3500	6000	_	2000	4000	6000	_	3000	6000	_	2500	5000	6000
480V	Par motor nominal*	M _n [Nm]	1,74	1,58	_	3,02	2,72	2,35	_	3,76	2,57	_	4,56	3,19	2,75
ا ا	Potencia nominal	P _n [kW]	0,64	0,99	_	0,63	1,14	1,48	_	1,18	1,61	_	1,19	1,67	1,73
	Corriente máxima	I _{0max} [A]	5,8	11,4	22,4	5,61	11,0	19,2	33,7	11,0	19,5	38,3	11,4	20,0	35,2
	Par motor motor máximo	M _{0max} [Nm]	6,12	6,28	6,36	11,1	11,3	11,5	11,6	15,9	16,1	16,3	19,9	20,2	20,4
	Constante de par motor	K _{Trms} [Nm/A]	1,34	0,71	0,37	2,40	1,26	0,74	0,43	1,72	0,99	0,52	2,04	1,19	0,69
	Constante de tensión	K _{Erms} [mVmin]	86,3	45,6	23,7	154	80,9	47,5	27,5	111	63,9	33,2	132	76,6	44,2
	Resistencia de la bobina Ph-Ph	R ₂₅ [Ω]	21,3	6,02	1,56	27,5	7,78	2,51	0,80	8,61	2,61	0,74	8,08	2,80	0,94
	Inductividad de la bobina Ph-Ph	L [mH]	66,1	18,4	5,0	97,4	26,8	9,2	3,1	32,6	10,8	2,9	33,9	11,5	3,8
Da	tos mecánicos														
	Momento de inercia del rotor	J [kgcm²]		0,81			1	,5			2,1			2,7	
	N° de polos		10				1	0			10			10	
	Par estático de fricción	M _R [Nm]	0,014				0,0)26			0,038			0,05	
	Constante térmica de tiempo	t _{TH} [min]		13			1	7			20			24	
	Peso de estándar	G [kg]		2,44			3,	39			4,35			5,3	
	Fuerza radiale admitido en el extremo del eje en 3000 min ⁻¹	F _R [N]							450						
	Fuerza axial admitido en 3000 min ⁻¹	F _A [N]	180												

 $^{^{\}star}$ brida de la referencia, aluminio 254mm * 254mm * 6,35mm

Datos de frenos

Datos	Símbolo [unidad]	Valor									
Momento de parada @ 120°C	M _{BR} [Nm]	6									
Tensión de conexión	U _{BR} [VDC]	$24\pm10~\%$									
Potencia eléctrica	P _{BR} [W]	12,8									
Momento de inercia	J _{BR} [kgcm ²]	0,068									
Tiempo de respuesta	t _{BRH} [ms]	35									
Tiempo de reacción	t _{BRL} [ms]	15									
Peso del freno	G _{BR} [kg]	0,63									
Contragolpe típico	[°mech.]	0,37									

Conexiones y conductores

Datos	AKM4
Conexión de potencia	4+4 polos, redondo, en ángulo
Cable del motor, protegido	4 x 1,5
Cable del motor con conductores de control, protegido	4 x 1,5 + 2 x 0,75
Conexión del resolver	12 polos, redondo, en ángulo
Cable del resolver, protegido	4 x 2 x 0,25mm²
Conexión del Codicficador (Opción)	17 polos, redondo, en ángulo
Cable del codificador, geschirmt	7 x 2 x 0,25mm²

Plano acotado (representación esquemática)

Fuerza radial / axial el extremo del eje

10.6 AKM5

Datos técnicos

		Símbolo								AKM							
	Datos	[unidad]	515	51G	51K	52E	52G	52K	52M		52K	52M	53D	54G	54K	541	54N
Da	tos eléctricos	[umdau]	JIE	316	JIK	JZL	32 G	JZK	JZIVI	336	JJK	JJIVI	JJF	346	J4K	J4L	3414
Da	Par motor de parada*	M ₀ [Nm]	4 70	1 75	4 90	8,34	8 /13	8 60	8 60	11 /	11 6	11 /	11 /	1/1 3	1/1/	1/1	1/1 1
	Corriente de parada	I _{0rms} [A]				2,99										12.5	
	Tensión max del red	U _N [VAC]	2,75	4,04	9,4	2,99	4,12	9,3	13,1	480	9,4	13,4	19,1	5,0	9,1	12,5	17,0
()		n _n [min ⁻¹]								400							
ĺŽ	Velocidad nominal		_	_	_	_	_	_	_	_		_	_		_	_	
75VDC	Par motor nominal*	M _n [Nm]	_		_	_		_	_			_		_	_		_
. = O	Potencia nominal	P _n [kW]	_	_	_	_	_	_	_		_	_	_	_	_	_	_
20	Velocidad nominal	n _n [min ⁻¹]	_	_	2500	_	_	_	_	_	_	_	_	_	_	_	_
15	Par motor nominal*	M _n [Nm]	_	_	4,15	_		_	_	_	_	_	_	_	_	_	_
_ N N	Potencia nominal	P _n [kW]	_	_	1,09	_	_	_	_		_	_	_	_	_	_	_
>	Velocidad nominal	n _n [min ⁻¹]	1200	2500	5500	_	1500	3000	4500	1000	2000	3000	5000	_	1800	2500	3500
230V	Par motor nominal*	M _n [Nm]	4,41	4,02	2,35	_	7,69	6,80	5,20	10,7	10,1	8,72	5,88	_	12,7	11,5	9,85
U _N I	Potencia nominal	P _n [kW]	0,55	1,05	1,35	_	1,21	2,14	2,45	1,12	2,12	2,74	3,08	_	2,39	3,00	3,61
>	Velocidad nominal	n _n [min ⁻¹]	2500	5000	_	1500	2500	5500	_	2000	4000	_	_	1500	3500	4500	_
400V	Par motor nominal*	M _n [Nm]	3,98	2,62	_	7,61	7,06	3,90	_	9,85	7,65	_	_	12,9	10,0	8,13	_
U ∥ ∥	Potencia nominal	P _n [kW]	1,04	1,37	_	1,20	1,85	2,25	_	2,06	3,20	_	_	2,03	3,68	3,83	_
>	Velocidad nominal	n _n [min ⁻¹]	3000	6000	_	2000	3000	6000		2400	4500	_	_	2000	4000	_	
480V	Par motor nominal*	M _n [Nm]	3,80	1,94	_	7,28	6,66	3,25	_	9,50	6,85	_	_	12,3	9,25	_	_
U _N = 4	Potencia nominal	P _n [kW]	1,19	1,22	_	1,52	2,09	2,04	_	2,39	3,23	_	_	2,57	3,87	_	_
	Corriente máxima	I _{0max} [A]	8,24	14,5	28,3	9,00	14,2	27,8	39,4	14,3	28,1	40,3	57,4	14,9	29,2	37,5	53,4
	Par motor motor máximo	M _{0max} [Nm]				21,3											
	Constante de par motor	K _{Trms} [Nm/A]				2,79											
	Constante de tensión	K _{Erms} [mVmin]	110	63,6	33,5	179	115	60,1	42,4	154	79,8	54,7	38,4	185	96,6	72,9	51,3
	Resistencia de la bobina Ph-Ph	R ₂₅ [Ω]				8,96											
	Inductividad de la bobina Ph-Ph	L [mH]	36,6	12,1	3,40	44,7	18,5	5,00	2,50	21,3	5,70	2,70	1,30	22,9	6,20	3,50	1,80
Da	tos mecánicos																
	Momento de inercia del rotor	J [kgcm²]		3,4			6	,2			9	,1			1	2	
	N° de polos		10 0,022 20				1	0			1	0			1	0	
	Par estático de fricción	M _R [Nm]					0,0	04			0,0)58			0,0)77	
	Constante térmica de tiempo	t _{TH} [min]					2	4			2	8			3	1	
	Peso de estándar	G [kg]		4,2			5	,8			7	,4			(9	
	Fuerza radiale admitido en el extremo del eje en 3000 min ⁻¹	F _R [N]	450 180														
	Fuerza axial admitido en 3000 min ⁻¹	F _A [N]															

^{*} brida de la referencia, aluminio 305mm * 305mm * 12.7mm

Datos de frenos

Datos	Símbolo [unidad]	Valor
Momento de parada @ 120°C	M _{BR} [Nm]	14,5
Tensión de conexión	U _{BR} [VDC]	24 ± 10 %
Potencia eléctrica	P _{BR} [W]	19,5
Momento de inercia	J _{BR} [kgcm ²]	0,173
Tiempo de respuesta	t _{BRH} [ms]	80
Tiempo de reacción	t _{BRL} [ms]	15
Peso del freno	G _{BR} [kg]	1,1
Contragolpe típico	[°mech.]	0,31

Conexiones y conductores

Datos	AKM5					
Conexión de potencia	4+4 polos, redondo, en ángulo					
Cable del motor, protegido	4 x 1,5	4 x 2,5				
Cable del motor con conductores de control, protegido	4 x 1,5 + 2 x 0,75	4 x 2,5 + 2 x 1				
Conexión del resolver	12 polos, redo	ndo, en ángulo				
Cable del resolver, protegido	4 x 2 x 0,25mm²					
Conexión del Codicficador (Opción)	17 polos, redondo, en ángulo					
Cable del codificador, geschirmt	7 x 2 x (),25mm²				

Plano acotado (representación esquemática)

Model	х	Resolver	/Comcoder	Encoder				
Wodel	^	Υ	Z (freno)	Υ	Z (freno)			
AKM51	105.3	127.5	172.5	146.0	189.0			
AKM52	136.3	158.5	203.5	177.0	220.0			
AKM53	167.3	189.5	234.5	208.0	251.0			
AKM54	198.3	220.5	265.5	239.0	282.0			

Fuerza radial / axial el extremo del eje

10.7 AKM6

Datos técnicos

	2410															
	Datos	Símbolo [unidad]	620	62K	62M	62D	620	62K		(M	6AV	641	640	65K	GEN	GENI
Da	tos eléctricos	Lauraari	026	02K	o∠ivi	027	ขอน	OSK	OSIVI	OSN	04 r \	04L	047	/ICO	MICO	NCO
Da	Par motor de parada*	M ₀ [Nm]	11,9	12,2	12,2	12,3	16,5	16,8	17,0	17,0	20,8	21,0	20,4	24,8	25,0	24,3
	Corriente de parada	I _{0rms} [A]	4.9	9.6	13.4	18,8	4,5	9,9	13,8			12,8		9.8	13.6	17.8
	Tensión max del red	U _N [VAC]	7,3	3,0	13,4	10,0	4,5	3,3		-480	3,2	12,0	10,0	3,0	13,0	17,0
()	Velocidad nominal	n _n [min ⁻¹]							230	400						
75VDC	Par motor nominal*										_					
U = 75\	Potencia nominal	M _n [Nm] P _n [kW]	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5V	Velocidad nominal	n _n [min ⁻¹]	_	_	_		_	_	_		_	_	_	_	_	_
115	Par motor nominal*	M _n [Nm]	_	_	_	_	_	_	_	_	_	_	_	_	_	_
U _N =	Potencia nominal	P _n [kW]	_	_	_	_	_	_	_	_	_	_	_	_	_	_
>	Velocidad nominal	n _n [min ⁻¹]	_	2000	3000	4500	_	1500	2000	3000	1200	1500	2500	1000	1500	2000
230V	Par motor nominal*	M _n [Nm]	_	10,4	9,50	8,10	_	14,9	14,3	13,0	18,8	18,4	16,0	22,8	21,9	19,8
U _N =	Potencia nominal	P _n [kW]	_	2,18	2,98	3,82	_	2,34	2,99		2,36	2,89	4,19	2,39	3,44	4,15
>	Velocidad nominal	n _n [min ⁻¹]	1800	3500	6000	_	1200	3000	4000	5000	2000	3000	4500	2000	2500	3500
400V	Par motor nominal*	M _n [Nm]	10,4	9,00	5,70	_	14,9	12,9	11,3	9,60	17,2	15,6	11,9	20,2	19,2	16,0
_ U _N = ∠	Potencia nominal	P _n [kW]	1,96	3,30	3,58	_	1,87	4,05	4,73	5,03	3,60	4,90	5,61	4,23	5,03	5,86
>	Velocidad nominal	n _n [min ⁻¹]	2000	4500	6000	_	1500	3500	4500	6000	2500	3500	5500	2200	3000	4000
480V	Par motor nominal*	M _n [Nm]	10,2	8,00	5,70	_	14,6	12,0	10,5	7,00	16,3	14,4	9,00	19,7	18,1	14,7
U _N =	Potencia nominal	P _n [kW]	2,14	3,77	3,58	_	2,29	4,40	4,95	4,40	4,27	5,28	5,18	4,54	5,69	6,16
	Corriente máxima	I _{0max} [A]	14,6	28,7	40,3	56,5	13,4	29,7	41,4	52,2	27,5	38,4	55,9	29,4	40,9	53,3
	Par motor motor máximo	M _{0max} [Nm]	29,8	30,1	30,2	30,4	41,8	42,6	43,0	43,0	53,5	54,1	52,9	64,5	65,2	63,7
	Constante de par motor	K _{Trms} [Nm/A]	2,47	1,28	0,91	0,66	3,70	1,71	1,24	0,98		1,66	1,10		1,85	1,38
	Constante de tensión	K _{Erms} [mVmin]	159	82,1	58,8	42,2	238	110	79,9	63,3	147	107	71,0	164	119	88,88
	Resistencia de la bobina Ph-Ph	R ₂₅ [Ω]	4,13	1,08	0,57	0,30	5,50	1,14	0,61	0,39	1,41	0,75	0,36	1,35	0,73	0,43
	Inductividad de la bobina Ph-Ph	L [mH]	31,7	8,5	4,4	2,2	43,5	9,3	4,9	3,1	11,8	6,2	2,8	11,4	6,1	3,4
Da	tos mecánicos															
	Momento de inercia rotor	J [kgcm²]		1	7			2	4			32			40	
	N° de polos			1	0			1	0			10			10	
	Par estático de fricción	M _R [Nm]		0,05			0	,1			0,15			0,2		
	Const. térmica de tiempo	t _{TH} [min]		20				2	:5			30			35	
	Peso de estándar	G [kg]		8	,9		11,1					13,3			15,4	
	Fuerza radiale admitido en el extremo del eje en 3000 min ⁻¹	F _R [N]	770 280													
	Fuerza axial admitido en 3000 min ⁻¹	F _A [N]														

^{*} brida de la referencia, aluminio 457mm * 457mm * 12.7mm

Datos de frenos

24.00 40 1101100											
Datos	Símbolo [unidad]	Valor									
Momento de parada @ 120°C	M _{BR} [Nm]	25									
Tensión de conexión	U _{BR} [VDC]	24 ± 10 %									
Potencia eléctrica	P _{BR} [W]	25,7									
Momento de inercia	J _{BR} [kgcm ²]	0,61									
Tiempo de respuesta	t _{BRH} [ms]	105									
Tiempo de reacción	t _{BRL} [ms]	20									
Peso del freno	G _{BR} [kg]	2									
Contragolpe típico	[°mech.]	0.24									

Conexiones y conductores

Datos	AKM6
Conexión de potencia	4+4 polos, redondo, en ángulo
Cable del motor, protegido	4 x 2,5
Cable del motor con conductores de control, protegido	4 x 2,5 + 2 x 1
Conexión del resolver	12 polos, redondo, en ángulo
Cable del resolver, protegido	4 x 2 x 0,25mm²
Conexión del Codicficador (Opción)	17 polos, redondo, en ángulo
Cable del codificador, geschirmt	7 x 2 x 0,25mm²

Plano acotado (representación esquemática)

Model	l x	Resolve	r/Comcoder	Encoder		
Model		Y	Z (freno)	Y	Z (freno)	
AKM62	130.5	153.7	200.7	172.2	218.7	
AKM63	155.5	178.7	225.7	197.2	224.7	
AKM64	180.5	203.7	250.7	222.2	268.7	
AKM65	205.5	228.7	275.7	247.2	294.7	

Fuerza radial / axial el extremo del eje

10.8 AKM7

Datos técnicos

		Símbolo	AKM						
	Datos	[unidad]	72K	72M	72P	73M	73P	74L	74P
Da	tos eléctricos	-							
	Par motor de parada*	M ₀ [Nm]	29,7	30,0	29,4	42,0	41,6	53,0	52,5
	Corriente de parada	I _{0rms} [A]	9,3	13,0	18,7	13,6	19,5	12,9	18,5
	Tensión max del red	U _N [VAC]				480			
၁	Velocidad nominal	n _n [min ⁻¹]	_	_	_	_	_	_	_
75VDC	Par motor nominal*	M _n [Nm]	_	_	_	_	_	_	
U = 7	Potencia nominal	P _n [kW]	-	_	_	_	_	_	_
>	Velocidad nominal	n _n [min ⁻¹]	_	_	_	_	_	_	_
115V	Par motor nominal*	M _n [Nm]	_	_	_	_	_	_	_
J N	Potencia nominal	P _n [kW]	_	_	_	_	_	_	_
≥	Velocidad nominal	n _n [min ⁻¹]		_	1800	_	1300	_	_
230V	Par motor nominal*	M _n [Nm]		_	23,8	_	34,7	_	_
ı N	Potencia nominal	P _n [kW]	_	_	4,49	_	4,72	_	_
>	Velocidad nominal	n _n [min ⁻¹]	1500	2000	3000	1500	2400	1200	1800
400V	Par motor nominal*	M _n [Nm]	25,1	23,6	20,1	33,8	28,5	43,5	39,6
ا ا	Potencia nominal	P _n [kW]	3,94	4,94	6,31	5,31	7,16	5,47	7,46
>	Velocidad nominal	n _n [min ⁻¹]	1800	2500	3500	1800	2800	1400	2000
480V	Par motor nominal*	M _n [Nm]	24,0	22,1	18,2	32,1	26,3	41,5	35,9
ا ا	Potencia nominal	P _n [kW]	4,52	5,79	6,67	6,05	7,71	6,08	7,52
	Corriente máxima	I _{0max} [A]	27,8	38,9	56,1	40,8	58,6	38,7	55,5
	Par motor motor máximo	M _{0max} [Nm]	79,2	79,7	78,5	113	111	143	142
	Constante de par motor	K _{Trms} [Nm/A]	3,23	2,33	1,58	3,10	2,13	4,14	2,84
	Constante de tensión	K _{Erms} [mVmin]	208	150	102	200	137	266	183
	Resistencia de la bobina Ph-Ph	R ₂₅ [Ω]	1,36	0,69	0,35	0,76	0,38	0,93	0,47
	Inductividad de la bobina Ph-Ph	L [mH]	20,7	10,8	5,0	12,4	5,9	16,4	7,7
Da	tos mecánicos								
	Momento de inercia del rotor	omento de inercia del rotor J [kgcm²] 65		92		120			
	N° de polos		10		10		10		
	Par estático de fricción	M _R [Nm]	0,16		0,24		0,33		
	Constante térmica de tiempo	t _{TH} [min]	46		53		60		
	Peso de estándar	G [kg]	19,7 26,7		33	3,6			
	Fuerza radiale admitido en el extremo del eje en 1000 min ⁻¹	F _R [N]	1300						
	Fuerza axial admitido en 1000 min ⁻¹	F _A [N]	500						

^{*} brida de la referencia, aluminio 457mm * 457mm * 12.7mm

Datos de frenos

Datos	Símbolo [unidad]	Valor		
Momento de parada @ 120°C	M _{BR} [Nm]	53		
Tensión de conexión	U _{BR} [VDC]	24 ± 10 %		
Potencia eléctrica	P _{BR} [W]	35,6		
Momento de inercia	J _{BR} [kgcm ²]	1,64		
Tiempo de respuesta	t _{BRH} [ms]	110		
Tiempo de reacción	t _{BRL} [ms]	35		
Peso del freno	G _{BR} [kg]	2,1		
Contragolpe típico	[°mech.]	0,2		

Conexiones y conductores

Datos	AKM7
Conexión de potencia	4+4 polos, redondo, en ángulo
Cable del motor, protegido	4 x 2,5
Cable del motor con conductores de control, protegido	4 x 2,5 + 2 x 1
Cnductores de control, protegido	4 x 1
Conexión del resolver	12 polos, redondo, en ángulo
Cable del resolver, protegido	4 x 2 x 0,25mm ²
Conexión del Codicficador (Opción)	17 polos, redond
Cable del codificador, geschirmt	7 x 2 x 0,25mm²

Plano acotado (representación esquemática)

Model X		Resolve	r/Comcoder	Encoder		
Wiodei	_ ^	^ Y		Υ	Z (freno)	
AKM72	164.5	192.5	234.5	201.7	253.3	
AKM73	198.5	226.5	268.5	235.7	287.3	
AKM74	232.5	260.5	302.5	269.7	321.3	

Fuerza radial / axial el extremo del eje

Esta página se ha dejado en blanco intencionadamente.

11 Apéndice

11.1 Asignación de adaptadores de reductor RediMount

AKM1xx - Ax AKM1xx - Bx AKM1xx - Cx AKM2xx - Ax AKM2xx - Ax	RM060-130 RM060-311 RM060-XXX RM060-6 RM075-6 RM090-6 RM100-6 RM060-11 RM075-11	brida in. (mm) 1.38 (35.1) 1.47 (37.3) en preparación 1.22 (31.0) en preparación 2.47 (62.7)
AKM1xx - Bx AKM1xx - Cx AKM2xx - Ax AKM2xx - Bx	RM060-311 RM060-XXX RM060-6 RM075-6 RM090-6 RM100-6 RM060-11	1.47 (37.3) en preparación 1.22 (31.0) en preparación 2.47 (62.7)
AKM1xx - Cx AKM2xx - Ax AKM2xx - Bx	RM060-XXX RM060-6 RM075-6 RM090-6 RM100-6 RM060-11	en preparación 1.22 (31.0) en preparación 2.47 (62.7)
AKM2xx - Ax AKM2xx - Bx	RM060-6 RM075-6 RM090-6 RM100-6 RM060-11	1.22 (31.0) en preparación 2.47 (62.7)
AKM2xx - Bx	RM075-6 RM090-6 RM100-6 RM060-11	en preparación 2.47 (62.7)
	RM090-6 RM100-6 RM060-11	2.47 (62.7)
	RM100-6 RM060-11	
	RM060-11	
		en preparación
		1.22 (31.0)
		en preparación
	RM090-11	2.47 (62.7)
ALCA 40 C	RM100-11	en preparación
AKM2xx - Cx	RM060-343	1.22 (31.0)
	RM075-343	1.69 (42.9)
	RM090-343	1.74 (44.1)
	RM100-343	2.47 (62.7)
AKMO: D	RM115-343	1.93 (48.9)
AKM2xx - Dx	RM060-XXX	en preparación
	RM075-XXX	en preparación
	RM090-XXX	en preparación
ALCA AC	RM100-XXX	en preparación
AKM2xx - Ex	RM060-11	1.22 (31.0)
	RM075-11	en preparación
	RM090-11	2.47 (62.7)
	RM100-11	en preparación
AKM3xx - Ax	RM060-19	1.22 (31.0)
	RM075-19	1.69 (42.9)
	RM090-19	1.74 (44.1)
	RM100-19	2.32 (58.9)
AKM3xx - Cx	RM060-XXX	en preparación
	RM075-XXX	en preparación
	RM090-XXX	en preparación
	RM100-XXX	en preparación
AKM3xx - Gx	RM060-20	1.22 (31.0)
	RM075-20	1.69 (42.9)
	RM090-20	1.74 (44.1)
AKM4xx - Ax	RM075-40	1.69 (42.9)
	RM090-40	1.74 (44.1)
	RM100-40	1.72 (43.7)
	RM115-40	1.93 (48.9)
AKM4xx - Bx	RM075-307	en preparación
	RM090-307	2.47 (62.7)
	RM100-307	en preparación
	RM115-307	1.93 (48.9)
AKM4xx - Cx	RM075-124	1.69 (42.9)
	RM090-124	1.74 (44.1)
	RM100-124	1.72 (43.7)
	RM115-124	1.93 (48.9)
AKM4xx - Ex	RM075-28	1.69 (42.9)
	RM090-28	1.74 (44.1)
	RM100-28	1.72 (43.7)
	RM115-28	1.93 (48.9)
AKM4xx - Gx	RM075-37	1.69 (42.9)
	RM090-37	1.74 (44.1)
	RM100-37	1.72 (43.7)
	RM115-37	1.93 (48.9)
AKM4xx - Hx	RM075-25	1.69 (42.9)
	RM090-25	1.74 (44.1)
	RM100-25	1.72 (43.7)
	RM115-25	1.93 (48.9)

AKM Motor	RediMount	Longitud de la brida in. (mm)
AKM4xx - Kx	RM075-105	1.69 (42.9)
7 11 11 17 17 17 17 17 17 17 17 17 17 17	RM090-105	1.74 (44.1)
	RM100-105	1.72 (43.7)
	RM115-105	1.93 (48.9)
AKM5xx - Ax	RM090-71	2.47 (62.7)
7 11 11 11 17 17 17 17 17 17 17 17 17 17	RM100-71	1.72 (43.7)
	RM115-71	1.93 (48.9)
	RM142-71	2.74 (69.6)
	RM180-71	3.60 (91.4)
AKM5xx - Bx	RM090-72	2.47 (62.7)
7 11 11 10 701 271	RM100-72	2.08 (52.8)
	RM115-72	2.36 (59.9)
	RM142-72	2.74 (69.6)
AKM5xx - Cx	RM090-53	en preparación
ARTIVIOXX - OX	RM100-53	en preparación
	RM115-53	2.36 (59.9)
	RM142-53	en preparación
AKM5xx - Dx	RM090-XXX	en preparación
ARIVIJAA - DA	RM100-XXX	en preparación
	RM115-XXX	en preparación
	RM142-XXX	
AKMEW CV		en preparación
AKM5xx - Gx	RM090-69 RM100-69	2.47 (62.7)
		1.72 (43.7)
	RM115-69	1.93 (48.9)
AKMEW Hy	RM142-69	2.74 (69.6)
AKM5xx - Hx	RM090-52A	1.74 (44.1)
	RM100-52	1.72 (43.7)
	RM115-52	2.36 (59.9)
ALCA (Comp. And	RM142-52	2.74 (69.6)
AKM6xx - Ax	RM115-92	en preparación
	RM142-92	3.21 (81.5)
	RM180-92	3.60 (91.4)
	RM220-92	2.74 (69.5)
AKM6xx - Gx	RM115-88	2.36 (59.9)
	RM142-88	3.21 (81.5)
	RM180-88	3.60 (91.4)
A16840 16	RM220-88	en preparación
AKM6xx - Kx	RM115-83	2.36 (59.9)
	RM142-83	2.74 (69.6)
	RM180-83	en preparación
A16840	RM220-83	en preparación
AKM6xx - Lx	RM115-XXX	en preparación
	RM142-XXX	en preparación
	RM180-XXX	en preparación
	RM220-XXX	en preparación
AKM7xx - Ax	RM142-114S	3.36 (85.3)
	RM180-114	3.60 (91.4)
	RM220-114	2.74 (69.6)
AKM7xx - Gx	RM142-107	3.36 (85.3)
	RM180-107	3.60 (91.4)
	RM220-107	2.74 (69.9)
AKM7xx - Kx	RM142-96	3.36 (85.3)
	RM180-96	3.60 (91.4)
	RM220-96	en preparación

11.2 Asignación de reductores Micron para los adaptadores de reductor

Los reductores siguientes son aptos para adaptadores RediMount:

RediMount Adapter	Engranaje de Micron
RM060	DT60, DTR60, DTRS60, DTRH60, NT23, NTP23, NT60, NTR23, UT006, UTR006,
RIVIUOU	EQ23, EQ60
RM075	UT075, UTR075, UT090, UTR090
RM090	DT90, DTR90, DTRS90, DTRD90, DTRH90, NT34, NTP34, NT90, NTR34
RM100	UT010, UTR010, ET010, UT115, UTR115
RM115	DT115, DTR115, DTRS115, DTRD115, DTRH115, NT42, NTP42, NT115, NTR42
RM142	DT142, DTR142, DTRS142, DTRD142, DTRH142, NT142, UT014, UTR014, ET014
RM180	UT018, UTR018, ET018
RM220	UT220

Encontrará más detalles sobre las bridas RediMount y los reductores Micron en nuestra página web

11.3 Indice

Α	Abreviaturas	F	Forma de diseño
	Advertenzia 9 AKM1 28 AKM2 30 AKM3 32 AKM4 34 AKM5 36	I	Fuerza radial
	AKM6	L	Limpieza 9
	AKM7 40	M	Momento de inercia del rotor 27
	Altura da arilarrianta	N	Número de polos 14
	Altura de apilamiento 9 Asignación de reductor 44	0	Opciones
В	BISS	Р	Par motor de parada
С	Calidad vibracional		Planes de conexión
	Codificación de modelo	R	Reducción de potencia
	Constante de par motor	S	SFD
	Contacto de protección térmica	Т	Técnica de conexión
E	EC Declaration of Conformity 8 Eliminación 9		Tipo de protección
	Eliminación de perturbaciones 26 Embalaje 9	U	Unidad de retorno
	Estructura de los motores 12 Extremo del eje	V	Volumen de suministro 10

Venta y servicio

Queremos ofrecer al cliente un servicio de calidad. Para ello les agradecemos que contacten con su representante local de ventas. En el caso de que no lo conozcan, no duden en ponerse en contacto con nosotros en las siguientes direcciones:

Europa

Servicio al cliente Danaher Motion Europa

Internet www.DanaherMotion.net

E-Mail support_dus.germany@danahermotion.com

Tfno: +49(0)203 - 99 79 - 0 Fax: +49(0)203 - 99 79 - 216

Norteamérica

Danaher Motion Customer Support North America

Internet www.DanaherMotion.com
E-Mail DMAC@danahermotion.com

Tfno: +1 - 540 - 633 - 3400 Fax: +1 - 540 - 639 - 4162

