MACHINE LEARNING AND PATTERN RECOGNITION

K-means and Spectral Clustering

Year: 2017/2018

Dao Quang Hoan 871510

Outline

- 1. K-means & Spectral Clustering
- 2. Elbow method
- 3. Apply to datasets
 - a. Moons dataset
 - b. Iris dataset
 - c. Seeds dataset
- 4. Conclusion

Introduction

K-means:

Step 1: Pick K random points as cluster centers

Step 2: Assign data points to the closest centers

Step 3: Change the cluster center to the average of the assigned points

Step 4: Repeat step 2 and 3 until until the centers don't change

$$\mathbf{y}_i = rg\min_{\mathbf{y}_i} \sum_{j=1}^K y_{ij} \|\mathbf{x}_i - \mathbf{m}_j\|_2^2$$

subject to:
$$y_{ij} \in \{0,1\} \ \ \forall j; \quad \sum_{j=1}^K y_{ij} = 1$$

Spectral clustering:

Step 1: Construct a similarity graph (KNN graph)

Step 2: Embed the data points in low dimensional space in which the clusters are

Step 3: Use the lowest eigenvalue in order to choose the eigenvector for clusters

Elbow method

Datasets

Dataset	Num of instances	Num of attributes	Num of clusters
Moons	150	2	2
Iris	150	4	3
Seeds	210	7	3

Moons dataset

Iris dataset

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. Class:

-- Iris Setosa

-- Iris Versicolour

-- Iris Virginica

dataset.head()

ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3.0	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5.0	3.6	1.4	0.2	Iris-setosa
	1 2 3 4	1 5.1 2 4.9 3 4.7 4 4.6	1 5.1 3.5 2 4.9 3.0 3 4.7 3.2 4 4.6 3.1	1 5.1 3.5 1.4 2 4.9 3.0 1.4 3 4.7 3.2 1.3 4 4.6 3.1 1.5	1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 4 4.6 3.1 1.5 0.2

Iris dataset

Seeds dataset

- 0. area A,
- 1. perimeter P,
- 2. compactness $C = 4*pi*A/P^2$,
- 3. length of kernel,
- 4. width of kernel,
- 5. asymmetry coefficient
- 6. Ingth of kernel groove.
- 7. Labels

All of these parameters were real-valued continuous.

data.head()

	0	1	2	3	4	5	6	7
0	15.26	14.84	0.8710	5.763	3.312	2.221	5.220	1
1	14.88	14.57	0.8811	5.554	3.333	1.018	4.956	1
2	14.29	14.09	0.9050	5.291	3.337	2.699	4.825	1
3	13.84	13.94	0.8955	5.324	3.379	2.259	4.805	1
4	16.14	14.99	0.9034	5.658	3.562	1.355	5.175	1

Seeds dataset

Spectral Clustering: Pros and Cons

- Elegant, and well-founded mathematically
- Works quite well when relations are approximately transitive (like similarity)
- Very noisy datasets cause problems
- "Informative" eigenvectors need not be in top few
- Performance can drop suddenly from good to terrible
- Expensive for very large datasets
- Computing eigenvectors is the bottleneck

Conclusion

K-Means

- Fast and Simple
- "Embarrassingly parallel"
- Not very useful on anisotropic data

Spectral clustering

- Excellent quality under many different data forms
- Much slower than KMeans