Intro to Data Science - HW 1

Copyright Jeffrey Stanton, Jeffrey Saltz, and Jasmina Tacheva

Enter your name here: Chaithra Kopparam Cheluvaiah

Attribution statement: (choose only one and delete the rest)

1. I did this homework by myself, with help from the book and the professor.

Define a variable:

```
x <- 280
```

Define the following vectors, which represent the **population** (in thousands) and **number of colleges** in each of the five counties in Central New York (CNY) – **Cayuga**, **Cortland**, **Madison**, **Onondaga**, and **Oswego**, in this order:

```
population <- c(80, 49, 73, 467, 122) colleges <- c(2, 2, 3, 9, 2)
```

Part 1: Calculating statistics using R

A. Show the number of observations in the **population** vector with the length() function:

length(population)

[1] 5

B. Show the number of observations in the **colleges** vector with the length() function:

length(colleges)

[1] 5

C. Calculate the average CNY population using the mean() function:

mean(population)

[1] 158.2

D. Calculate the average number of colleges in CNY using the mean() function:

mean(colleges)

[1] 3.6

E. Calculate the total CNY population using the sum() function:

sum(population) ## [1] 791 F. Calculate the total number of colleges in CNY using the sum() function: sum(colleges) ## [1] 18 G. Calculate the average CNY population again, this time using the results from steps A & E: sum(population)/length(population) ## [1] 158.2 H. Calculate the average number of colleges in CNY again, this time using the results from steps B & F: sum(colleges)/length(colleges) ## [1] 3.6 Part 2: Using the max/min and range functions in {r} I. How many colleges does the county with most colleges have? Hint: Use the max() function: max(colleges) ## [1] 9

J. What is the population of the least populous county in CNY? **Hint:** Use the min() function:

min(population)

[1] 49

K. Display the populations of the least populous and most populous county in the dataset together. **Hint:** Use the range() function:

range(population)

[1] 49 467

Part 3: Vector Math

L. Create a new vector called extraPop , which is the current population of a county + 50 (each county has 50,000 more people):
extraPop <- population + 50 extraPop
[1] 130 99 123 517 172
M. Calculate the average of extraPop :
mean(extraPop)
[1] 208.2
N. In a variable called bigCounties , store all the population numbers from the original population vector which are greater than 120 (using subsetting in R):
<pre>bigCounties <- population[population > 120] bigCounties</pre>
DigCounties
[1] 467 122
[1] 467 122