

PARTICLE SWARM OPTIMIZATION

Projekt – Sztuczna inteligencja

MATEUSZ BIRKHOLZ | ROBERT CHYREK
INFORMATYKA STOSOWANA 20/21

Spis treści

1.	Wstęp do działania algorytmu	2
	Zasada działania	2
	Wzór na prędkość cząsteczki	3
	Zmiana wartości zmiennych wzoru	4
	Schemat działania	4
2.	Funkcje celu	5
	Funkcja Beale'a	5
	Funkcja Himmelblau	5
	Funkcja Ackley'a N.2:	6
	Funkcja Bartelsa:	6
	Funkcja sinx * siny	7
3.	Opis działania aplikacji	7
	O aplikacji	7
	Obsługa programu	7
4.	Badanie minimów funkcji z wykorzystaniem programu.	9
	Badanie funkcji Beale'a:	10
	Badanie funkcji Himmelblau	12
	Badanie funkcji Ackley'a N.2	14
	Podsumowanie	16
	Wnioski:	16
5	Ribliografia	17

1. Wstęp do działania algorytmu.

Zasada działania

PSO (ang. Particle Swarm Optimization) jest to algorytm inspirowany biologicznie. Jego działanie ma imitować działanie roju lub stada zwierząt, które dzięki komunikacji między sobą oraz dzieleniu się swoimi doświadczeniami osiągają lepsze wyniki. Każda cząsteczka odpowiada jednostce stada/roju, która nie wyróżnia się na tle pozostałych. Każda z jednostek samodzielnie decyduje o swoich działaniach. Algorytm nie posiada centralnego zarządzania rojem. Jednostki informują się o swoich odkryciach i na podstawie zdobytego doświadczenia własnego jak i całego roju decydują o kierunku w którym się poruszają.

Algorytm PSO jest wykorzystywany do rozwiązywania problemów optymalizacyjnych, których rozwiązaniem jest optymalna wartość zadanej funkcji. Funkcję tą nazywa się funkcją celu. Zakresem wartości dla argumentów funkcji jest przestrzeń rozwiązań. Położenie cząsteczek zawsze zawiera się wewnątrz tej przestrzeni.

Algorytm PSO jest algorytmem heurystycznym, co znaczy że nie gwarantuje on znalezienia optymalnego czy też nawet prawidłowego rozwiązania problemu. Wykorzystuje się go jednak za względu na niski koszt i szybkość. Aby upewnić się co do poprawności rozwiązania znalezionego przez algorytm można próbować wykonywać go wielokrotnie. Algorytm zawiera w sobie elementy losowości, co w zależności od rozwiązywanego problemu może wpływać na różnice w otrzymywanych wynikach.

Algorytm PSO jest algorytmem iteracyjnym. Oznacza to że wykonuje on określoną liczbę cykli w trakcie jego działania. Inną opcją zakończenia algorytmu jest odnalezienie optymalnej wartości. Przestrzeń rozwiązań jest więc przeszukiwana w poszukiwaniu rozwiązania za pomocą roju cząsteczek, które poruszają biorąc pod uwagę doświadczenie własne i innych cząsteczek oraz element losowy. Zanim jednak algorytm przejdzie do wykonywania iteracji, wszystkie cząsteczki muszą być najpierw zainicjowane losową pozycją z przestrzeni rozwiązań a także losową prędkością początkową. Z każdą iteracją algorytmu cząsteczka przemieszcza się w obliczonym dla siebie kierunku i o obliczoną odległość. Cząsteczka po ruchu porównuje wynik w pozycji w której się znajduje do najlepszego wyniku jaki znalazła i zapamiętuje aktualną pozycje jeśli jest lepsza od poprzedniej. Jeśli jest ona lepsza od najlepszego znalezionego wyniku stada cząsteczka informuje o tym resztę roju.

Wzór na prędkość cząsteczki

Z każdą iteracją kierunek cząsteczki jest obliczany na nowo zgodnie ze wzorem:

$$V_t = \omega V_{t-1} + \phi_l r_l (l-p) + \phi_g r_g (g-p)$$

Gdzie:

- V_t prędkość cząstki
- V_{t-1} prędkość cząstki z poprzedniego kroku
- ω współczynnik bezwładności, określa wpływ prędkości z poprzedniego kroku
- φ_I współczynnik dążenia do najlepszego lokalnego rozwiązania
- φ_g współczynnik dążenia do najlepszego globalnego rozwiązania
- I położenie najlepszego lokalnego rozwiązania
- g położenie najlepszego globalnego rozwiązania
- p położenie cząstki
- r_I, r_g losowe wartości z przedziału <0,1>

Zmiana wartości zmiennych wzoru

Wartości zmiennych wzoru na prędkość można modyfikować aby uzyskiwać nieco inne zachowanie cząsteczek. Zmienne te działają jak wagi które określają jak ważna dla cząsteczki jest dana składowa prędkości.

Wartość współczynnika bezwładności określa siłę z jaką cząsteczka będzie próbowała utrzymać swoją prędkość z poprzedniej iteracji. Im bardziej zwiększymy wartość tej zmiennej tym bardziej cząsteczka będzie chciała zachować zwoją prędkość z poprzedniego kroku.

Współczynnik dążenia do najlepszego optimum lokalnego będzie definiowała skłonność cząsteczki do pozostawania przy najlepszym rozwiązaniu jakie znalazła.

Analogicznie jest ze współczynnikiem dążenia do najlepszego optimum globalnego. Zwiększając jego wartość sprawiamy że cząsteczka będzie bardziej chętna aby kierować się do punktu w którym jest globalne optimum.

Schemat działania

- Dla każdej cząsteczki w roju:
 - Wylosuj pozycję początkową z przestrzeni rozwiązań
 - o Zapisz pozycję początkową cząstki jako najlepsze lokalne optimum
 - Jeśli rozwiązanie jest lepsze od najlepszego rozwiązania globalnego, zapisz je jako najlepsze globalne optimum
 - Wylosuj prędkość początkową
- Dla każdej cząsteczki w roju:
 - o Jeśli aktualne rozwiązanie jest lepsze od globalnego optimum:
 - Zapisz rozwiązanie jako globalne optimum
- Dopóki nie minie określona liczba iteracji lub nie zostanie znalezione rozwiązanie:
 - Dla każdej cząstki ze zbioru:
 - Wybierz losowe wartości parametrów r_l i r_g
 - Zaktualizuj prędkość cząstki według wzoru
 - Zaktualizuj położenie cząstki w przestrzeni
 - Jeśli aktualne rozwiązanie jest lepsze od lokalnego optimum :
 - Zapisz rozwiązanie jako lokalne optimum
 - Jeśli aktualne rozwiązanie jest lepsze od globalnego optimum:
 - Zapisz rozwiązanie jako globalne optimum

2. Funkcje celu

Do działania algorytmu potrzebne są funkcje celu które definiują wartość rozwiązań w przestrzeni. Na podstawie wartości tych funkcji cząsteczki wiedzą które rozwiązanie jest lepsze a które gorsze.

Do przetestowania działania programu wybraliśmy kilka przykładowych funkcji:

Funkcja Beale'a

$$F(x,y) = (1.5 - x + xy)^2 + (2.25 - x + (xy)^2)^2 + (2.625 - x + (xy)^3)^2$$

Globalne minimum: f(3, 0.5) = 0

Funkcja Himmelblau

$$F(x,y) = (x^2+y-11)^2 + (x+y^2-7)^2$$

Globalne minimum:

o
$$f(3,2)=0$$

o
$$f(-2.805118, 3.131312) = 0$$

o
$$f(-3.779310, -3.283186) = 0$$

Funkcja Ackley'a N.2:

$$F(x,y) = -200^{e^{-0.2\sqrt{x^2+y^2}}}$$

Globalne minimum: f(0,0) = -200

Funkcja Bartelsa:

$$F(x,y) = |x^2 + y^2 + xy| + |sinx| + |cosy|$$

Globalne minimum: f(0,0) = 1

Funkcja sinx * siny

$$F(x,y) = sinx * siny$$

Globalne minimum: Nieskończenie

wiele o wartości -1

3. Opis działania aplikacji

O aplikacji

Aplikacja została napisana w języku Python z wykorzystaniem bibliotek Numpy do obliczeń oraz Tkinter do utworzenia interfejsu użytkownika.

Obsługa programu

Po uruchomieniu programu pojawi się interfejs użytkownika. Składa się on z:

- 1. Pól wejściowych do wprowadzania danych
- 2. Listy wyboru funkcji celu
- 3. Konsoli w której wyświetlane są wyniki
- 4. Przycisku uruchamiającego

Pole wejściowe danych pozwalają na wprowadzenie ustawień z jakimi ma zostać uruchomiony algorytm w tym: wag, zakresu generowania cząsteczek, ilości cząsteczek oraz ilości cykli. Podczas wprowadzania danych należy pamiętać że ilość cykli oraz ilość cząsteczek muszą być liczbami całkowitymi.

Ustawienia:

- Współczynnik bezwładności
- Wpływ doświadczenia własnego współczynnik dążenia do lokalnego optimum
- Wpływ stada współczynnik dążenia do globalnego optimum
- Początek i koniec zakresu zakres w którym generowana jest początkowa pozycja cząstek
- Ilość cząsteczek
- Ilość cykli liczba iteracji

W polu wyboru funkcji znajduje się 5 przykładowych, opisanych wyżej funkcji celu.

Gdy ustawienia są wpisane, wciśnięcie przycisku PSO uruchomi pracę algorytmu, a informacje zebrane przez algorytm będą wyświetlane w konsoli.

W konsoli wyświetlane są informacje o nazwie funkcji, oczekiwanym wyniku, globalnych optimach w danym przejściu oraz o ostatecznym globalnym optimum znalezionym przez program.

4. Badanie minimów funkcji z wykorzystaniem programu.

Zbadaliśmy za pomocą programu 3 funkcje celu – Beale'a, Ackley'a N.2 oraz Himmelblau. Dla każdej z nich przeprowadziliśmy 5 prób znalezienia optimum. Badania przeprowadzaliśmy nie zmieniając wartości, ponieważ chcieliśmy sprawdzić wpływ elementu losowego na wynik algorytmu.

Wartość danych dla jakich przeprowadziliśmy badania to:

- Współczynnik bezwładności 0,5
- Współczynnik doświadczenia cząsteczki 0.8
- Współczynnik doświadczenia stada 0.9
- Zakres generacji cząsteczek <-100,100>
- Ilość cząsteczek 30
- Ilość cykli 50

Badanie funkcji Beale'a:

badame runkcji		- 0	
Numer iteracji	Próba nr 1	Próba nr 2	Próba nr 3
1	84.2647996464091	4424.361349729694	98.18609574030535
2	9.898612339297106	7.341059955735588	74.56016276382809
3	9.898612339297106	7.341059955735588	16.532745353627256
4	9.898612339297106	5.945251258865005	0.29517856625040306
5	9.898612339297106	2.2920334525759958	0.29517856625040306
6	9.898612339297106	0.03582762746301405	0.29517856625040306
7	8.10707846953341	0.03582762746301405	0.15250548248238355
8	0.3182311196016407	0.026441758611698982	0.15250548248238355
9	0.20034217362601275	0.026441758611698982	0.15250548248238355
10	0.20034217362601275	0.009088455440608807	0.15250548248238355
11	0.20034217362601275	0.009088455440608807	0.13158391203110123
12	0.20034217362601275	0.009088455440608807	0.06130415364157868
13	0.20034217362601275	0.009088455440608807	0.04466645001779619
14	0.12231148773779917	0.0036924582542209117	0.04466645001779619
15	0.12231148773779917	0.0036924582542209117	0.0008105196444701599
16	0.12231148773779917	0.0035654685134745437	0.0003606018238925165
17	0.12231148773779917	0.0032323426813594606	0.0003606018238925165
18	0.12231148773779917	0.0009750769612660985	0.0002899485642992265
19	0.08843944215111924	5.866787713590509e-05	5.435882989138044e-05
20	0.00016760300420659167	5.866787713590509e-05	5.182146952705021e-05
21	0.00016760300420659167	5.866787713590509e-05	5.182146952705021e-05
22	0.00016760300420659167	1.769770371640544e-05	5.182146952705021e-05
23	0.00016760300420659167	2.1432068222907547e-06	5.182146952705021e-05
24	0.00016760300420659167	2.1432068222907547e-06	6.758513653310184e-06
25	0.00016760300420659167	7.546984571554196e-07	1.6532518000503379e-06
26	0.0001325167370930787	7.546984571554196e-07	1.0179050763852683e-06
27	9.758391821055039e-05	7.546984571554196e-07	1.0179050763852683e-06
28	7.401113398339677e-06	7.546984571554196e-07	1.0179050763852683e-06
29	7.401113398339677e-06	7.546984571554196e-07	1.0159500277161634e-06
30	1.195599997441536e-06	7.546984571554196e-07	1.8045482060763753e-08
31	6.17319961074959e-07	1.2249142711199562e-07	1.8045482060763753e-08
32	6.17319961074959e-07	3.164293445710483e-08	1.8045482060763753e-08
33	1.7864093132469217e-08	5.8507830623643485e-09	1.1276857811176682e-08
34	1.7864093132469217e-08	5.8507830623643485e-09	1.1276857811176682e-08
35	1.7864093132469217e-08	5.8507830623643485e-09	3.781119241853295e-09
36	1.7864093132469217e-08	5.225016999964507e-09	1.1250810010754836e-09
37	1.1250810010754836e-09	3.6508310836144895e-09	1.1250810010754836e-09
38	1.1250810010754836e-09	5.328545635427414e-10	1.1250810010754836e-09
39	1.1250810010754836e-09	5.328545635427414e-10	9.45328890120513e-10
40	1.1250810010754836e-09	5.328545635427414e-10	1.578125000020677e-10
41	1.1250810010754836e-09	5.328545635427414e-10	1.578125000020677e-10
42	1.1250810010754836e-09	2.562607509835805e-10	0.0
43	2.952995633892592e-10	2.562607509835805e-10	0.0
44	0.0	2.562607509835805e-10	0.0
45	0.0	0.0	0.0
46	0.0	0.0	0.0
47	0.0	0.0	0.0
48	0.0	0.0	0.0
49	0.0	0.0	0.0
50	0.0	0.0	0.0

Numer iteracji	Próba nr 4	Próba nr 5
1	10.03078633880847	1450.9180674851182
2	0.510060017268898	4.9135668734717965
3	0.510060017268898	4.9135668734717965
4	0.510060017268898	4.9135668734717965
5	0.2906240944108437	4.9135668734717965
6	0.10801564504553418	4.9135668734717965
7	0.10801564504553418	4.472773115085947
8	0.03553622681419992	4.472773115085947
9	0.03553622681419992	0.8425350131576169
10	0.03553622681419992	0.41187902388590314
11	0.01228347852633601	0.4039215258041625
12	0.009937006221982334	0.4039215258041625
13	0.004980201112933864	0.4039215258041625
14	0.004980201112933864	0.3871311145554671
15	0.0037737495218404986	0.3871311145554671
16	0.0037737495218404986	0.3871311145554671
17	0.0027320760781454102	0.3784972564797598
18	0.0005851234384477383	0.37810174548632725
19	0.0002995810264479678	0.37810174548632725
20	0.00021238452077179725	0.37810174548632725
21	0.00011814366306757	0.37810174548632725
22	1.8766684271935998e-05	0.37810174548632725
23	1.2042819070684143e-05	0.3779084516956543
24	2.5707152044857216e-06	0.37779406701474966
25	8.402846418599657e-07	0.3777865574259088
26	6.978704789555886e-07	0.3777865574259088
27	6.978704789555886e-07	0.3777865574259088
28	3.98081259984208e-07	0.377736761291638
29	6.997295935526002e-08	0.3777203255218991
30	6.997295935526002e-08	0.37756778972209015
31	3.4034806596229566e-08	0.37756778972209015
32	9.555292304248074e-09	0.3775453102806815
33	9.555292304248074e-09	0.377488151013968
34	5.327704385463789e-10	0.3774026944393815
35	5.327704385463789e-10	0.3773542288514161
36	5.327704385463789e-10	0.37723905634826294
37	5.327704385463789e-10	0.37717588099958566
38	0.0	0.3771074494560276
39	0.0	0.3769984062601088
40	0.0	0.3768503140004804
41	0.0	0.37655909617675065
42	0.0	0.37618197582392254
43	0.0	0.375799333027522
44	0.0	0.37514311181717924
45	0.0	0.374140909920853
46	0.0	0.37338123943519014
47	0.0	0.3718877834100866
48	0.0	0.37005421718755693
49	0.0	0.36787744045733306
50	0.0	0.36715617806095247

Badanie funkcji Himmelblau

Dadamic rankeji	Himmelblau		
Numer iteracji	Próba nr 1	Próba nr 2	Próba nr 3
1	10258.542080484181	40816.43282247863	250.42768953728114
2	17.701713701426808	30.371394551106512	79.67770836093237
3	17.701713701426808	30.371394551106512	1.626446684952307
4	5.669591174839376	14.554992458488345	1.626446684952307
5	5.669591174839376	14.554992458488345	1.626446684952307
6	5.669591174839376	4.799002404189409	1.626446684952307
7	5.669591174839376	1.9235815275506445	1.626446684952307
8	0.40671701625987955	1.1694659032076373	1.626446684952307
9	0.40671701625987955	1.1694659032076373	0.689903991165414
10	0.40671701625987955	0.4729491981240445	0.689903991165414
11	0.40671701625987955	0.4729491981240445	0.046406565672850286
12	0.2909873629418867	0.3760852123266899	0.046406565672850286
13	0.2909873629418867	0.3760852123266899	0.046406565672850286
14	0.15830508950936328	0.3760852123266899	0.046406565672850286
15	0.15830508950936328	0.18265284430399376	0.035224296568659635
16	0.01850411118599452	0.14190871383745704	0.012690947944636925
17	0.01850411118599452	0.013180431386313288	0.0019496501851502639
18	0.0071576460705243	0.0012628652473279092	0.0019496501851502639
19	0.0002508207417749608	0.0012628652473279092	0.0011141112860993195
20	0.0002508207417749608	0.0009063744690912881	0.0011141112860993195
21	0.0002508207417749608	1.2993193710845854e-05	0.0005263535464007077
22	0.0002508207417749608	1.2993193710845854e-05	0.0005263535464007077
23	0.00017655994337195026	1.2993193710845854e-05	0.00013908295979453346
24	0.00015090329998319576	1.2993193710845854e-05	5.691053170470428e-05
25	0.00015090329998319576	1.2993193710845854e-05	4.6795852906328885e-07
26	4.118381411873753e-05	1.2993193710845854e-05	4.6795852906328885e-07
27	4.139584668826022e-06	4.563678620789307e-06	4.6795852906328885e-07
28	4.139584668826022e-06	4.563678620789307e-06	4.6795852906328885e-07
29	2.3635217606760014e-06	4.563678620789307e-06	4.6795852906328885e-07
30	2.3635217606760014e-06	1.8651573031303823e-06	4.6795852906328885e-07
31	1.0971603633803307e-06	6.437131752229539e-07	1.2610309202450598e-07
32	6.255376630558033e-07	2.960339386453148e-07	5.2898344012913254e-08
33	7.383697657828335e-08	6.580188402485474e-08	5.2898344012913254e-08
34	7.383697657828335e-08	6.580188402485474e-08	3.060010800155025e-08
35	7.383697657828335e-08	6.580188402485474e-08	3.060010800155025e-08
36	6.301282659389476e-08	6.580188402485474e-08	1.7000080000240544e-09
37	1.032301957343953e-08	4.7219120164487e-08	1.7000080000240544e-09
38	1.032301957343953e-08	3.5972821693283755e-08	1.7000080000240544e-09
39	8.761788190946605e-09	2.650571372157542e-09	1.6999920000227304e-09
40	7.413816822916684e-10	2.650571372157542e-09	1.6999920000227304e-09
41	7.413816822916684e-10	2.8113904961536327e-10	1.6999920000227304e-09
42	7.413816822916684e-10	2.8113904961536327e-10	0.0
43	7.413816822916684e-10	2.8113904961536327e-10	0.0
44	7.413816822916684e-10	2.8113904961536327e-10	0.0
45	7.413816822916684e-10	2.8113904961536327e-10	0.0
46	7.413816822916684e-10	2.8113904961536327e-10	0.0
47	7.413816822916684e-10	2.8113904961536327e-10	0.0
48	7.413816822916684e-10	2.8113904961536327e-10	0.0
49	7.413816822916684e-10	2.8113904961536327e-10	0.0
50	7.413816822916684e-10	2.8113904961536327e-10	0.0

Numer iteracji	Próba nr 4	Próba nr 5	
1	231.12167967341261	100.88617563299566	
2	13.808892122404437	70.73051966406045	
3	13.808892122404437	4.107391010855962	
4	9.577540752178372	4.107391010855962	
5	9.577540752178372	4.107391010855962	
6	9.577540752178372	3.816266216281955	
7	5.522793586322036	3.816266216281955	
8	5.522793586322036	3.456455757886639	
9	3.8482506242113477	3.456455757886639	
10	1.4305105251895869	3.456455757886639	
11	0.6899399911369167	3.363463637022336	
12	0.2942785818942192	1.0559787495075557	
13	0.15289323593383655	0.5800002682534706	
14	0.07395399855386264	0.23953515109466558	
15	0.001988316455365443	0.09712956327004976	
	0.001988310433303443	0.01346980223138432	
16 17	0.001089821303895479	0.006895377049973145	
18	0.001067316629109305	0.006895377049973145	
19			
	0.0005041386994251973 0.0005041386994251973	0.0002673288676008445	
20 21		0.0002673288676008445	
	8.836157364460558e-05	0.0002673288676008445	
22	6.207929880516258e-05	0.0001746752780859059	
23	6.207929880516258e-05	7.862823829895587e-05	
24	3.08500792347719e-05	7.862823829895587e-05	
25	1.9774377149197842e-05	5.531415965408761e-05	
26 27	1.9774377149197842e-05 1.0179496326551341e-06	5.531415965408761e-05 3.129973828113644e-05	
28	1.0179496326551341e-06	4.139459838738839e-06	
29	6.516233292561835e-07 3.538212045307526e-07	4.139459838738839e-06	
30	3.538212045307526e-07 3.538212045307526e-07	2.012770017354261e-08	
31		2.012770017354261e-08	
32	7.010250802450551e-08	2.012770017354261e-08	
33	5.0499472003055406e-08	2.012770017354261e-08	
34	5.0499472003055406e-08	2.012770017354261e-08	
35	1.4799904000345973e-08	2.012770017354261e-08	
36	1.4500088000003113e-08	2.012770017354261e-08	
37	3.7000119999440087e-09	2.012770017354261e-08	
38	3.3999960002240892e-09	2.012770017354261e-08	
39	3.3999960002240892e-09	2.8113904961536327e-10	
40	0.0	2.8113904961536327e-10	
41	0.0	2.8113904961536327e-10	
42	0.0	2.8113904961536327e-10	
43	0.0	2.8113904961536327e-10	
44	0.0	2.8113904961536327e-10	
45	0.0	2.8113904961536327e-10	
46	0.0	2.8113904961536327e-10	
47	0.0	2.8113904961536327e-10	
48	0.0	2.8113904961536327e-10	
49	0.0	2.8113904961536327e-10	
50	0.0	2.8113904961536327e-10	

Badanie funkcji Ackley'a N.2

	TACKICY a IV.2		
Numer iteracji	Próba nr 1	Próba nr 2	Próba nr 3
1	-59.96203687141518	-134.82674587914784	-31.459379897129093
2	-84.61217755949578	-141.20443113231065	-129.170222300546
3	-153.4002515247965	-149.58212084648267	-160.81292478062318
4	-171.0528787570474	-149.58212084648267	-172.65251294573324
5	-171.0528787570474	-189.02672394713986	-177.7675251836314
6	-171.0528787570474	-189.66970285821242	-193.45614010434906
7	-171.0528787570474	-189.66970285821242	-193.45614010434906
8	-187.76796966941197	-189.66970285821242	-193.45614010434906
9	-190.5796097470067	-193.0467377755408	-193.82723896369382
10	-196.82139097310412	-193.57297855626078	-194.38545190604754
11	-196.82139097310412	-198.1573981003636	-194.38545190604754
12	-197.71849427740796	-198.1573981003636	-195.7749039542798
13	-198.598791997284	-198.1573981003636	-197.98462853053755
14	-198.598791997284	-199.5233941017641	-198.97633222550405
15	-199.17433687505738	-199.5233941017641	-198.97633222550405
16	-199.31035840240298	-199.79784536874888	-198.97633222550405
17	-199.31035840240298	-199.79784536874888	-199.31505243007237
18	-199.31035840240298	-199.79784536874888	-199.5360555757847
19	-199.31035840240298	-199.81082568674776	-199.76038210837882
20	-199.7623850863897	-199.81082568674776	-199.76038210837882
21	-199.7623850863897	-199.81082568674776	-199.89552007501413
22	-199.85461284718153	-199.92204802264615	-199.89552007501413
23	-199.89096754689857	-199.96688235577744	-199.89552007501413
23 24	-199.90705451290088	-199.96688235577744	-199.9614685334284
24 25	-199.96332094293638	-199.9720935254414	-199.97980597066748
26 26	-199.96332094293638	-199.9720935254414	-199.97980597066748
27	-199.9826341193013	-199.9826341193013	-199.99175395874641
28	-199.9826341193013	-199.98468523460977	-199.99175395874641
29	-199.9826341193013	-199.9996000004	-199.99677512290054
30	-199.991055928087	-199.9996000004	-199.99677512290054
31	-199.99800000999997	-199.9996000004	-199.99677512290054
32	-199.99800000999997	-199.9996000004	-199.9974701938718
33	-199.99800000999997	-199.9996000004	-199.9988000036
34	-199.99800000999997	-199.9996000004	-199.9988000036
35 36	-199.9992000016	-200.0	-200.0
36	-199.9992000016	-200.0	-200.0
37	-199.9992000016	-200.0	-200.0
38	-199.9992000016	-200.0	-200.0
39	-199.9996000004	-200.0	-200.0
40	-200.0	-200.0	-200.0
41	-200.0	-200.0	-200.0
42	-200.0	-200.0	-200.0
43	-200.0	-200.0	-200.0
44	-200.0	-200.0	-200.0
45	-200.0	-200.0	-200.0
46	-200.0	-200.0	-200.0
47	-200.0	-200.0	-200.0
48	-200.0	-200.0	-200.0
49	-200.0	-200.0	-200.0
50	-200.0	-200.0	-200.0

Numer iteracji	Próha nr 4	Próba nr 5	
1	-161.85226548767375	-73.62756780240424	
2	-161.85226548767375	-115.07952273671698	
3	-161.85226548767375	-130.4128729899273	
4	-190.3019568788089	-143.78532872830203	
5	-190.3019568788089	-149.2619407957853	
6	-190.3019568788089	-149.2619407957853	
7	-194.6871993975896	-190.98855941067532	
8	-194.6871993975896	-190.98855941067532	
9	-194.6871993975896	-190.98855941067532	
10	-194.6871993975896	-190.98855941067532	
11	-195.2225167211901	-193.63915889106917	
12	-199.16310848131934	-197.18105983318725	
13	-199.16310848131934	-197.18105983318725	
14	-199.96705184172833	-198.7351208447813	
15	-199.96705184172833	-199.58349305529006	
16	-199.96705184172833	-199.58349305529006	
17	-199.96705184172833	-199.58349305529006	
18	-199.96705184172833	-199.73464246574494	
19	-199.96705184172833	-199.80830371088268	
20	-199.96705184172833	-199.94315739762024	
21	-199.96705184172833	-199.94315739762024	
22	-199.9940536609002	-199.94315739762024	
23	-199.9940536609002	-199.94315739762024	
24	-199.9940536609002	-199.94315739762024	
25	-199.9940536609002	-199.9509444231673	
26	-199.9940536609002	-199.96041200017416	
27	-199.9944287222884	-199.98175802517312	
28	-199.99773727110016	-199.98674600596965	
29	-199.999600004	-199.99235815672833	
30	-199.999600004	-199.9983507645497	
31	-199.999600004	-199.9983507645497	
32	-199.9996000004	-199.9983507645497	
33	-199.999600004	-199.9985577846898	
34	-199.999600004	-199.9985577846898	
35	-200.0	-199.9996000004	
36	-200.0	-199.9996000004	
37	-200.0	-200.0	
38	-200.0	-200.0	
39	-200.0	-200.0	
40	-200.0	-200.0	
41	-200.0	-200.0	
42	-200.0	-200.0	
43	-200.0	-200.0	
44	-200.0	-200.0	
45	-200.0	-200.0	
46	-200.0	-200.0	
47	-200.0	-200.0	
48	-200.0	-200.0	
49	-200.0	-200.0	
50	-200.0	-200.0	

Podsumowanie

W zależności od funkcji celu program z większą lub mniejszą częstotliwością znajdował poprawne rozwiązanie.

Najlepsze wyniki wykazała funkcji Ackley'a N.2. Za każdym razem udało się znaleźć oczekiwane minimum. Średnia iteracja w której algorytm znajdował rozwiązanie to 36.

Najgorsze wyniki wykazała funkcja Himmelblau. Z pięciu prób jedynie 2 odnalazły poprawne rozwiązanie. Odnalazły je w okolicach 41 próby. Jednak mimo nieprawidłowego rozwiązania program był dość blisko osiągnięcia wyniku. Nieudane próby były na tyle blisko oczekiwanego 0 że posiadały 0 nawet na 10 miejscu po przecinku.

Jeśli chodzi o funkcję Beale'a program znalazł rozwiązanie w czterech z pięciu prób. Program znajdował rozwiązanie w okolicach 42 iteracji. Co zastanawiające podczas ostatniej próby był dość daleko od rozwiązania w porównaniu do innych funkcji, w których błąd był rzędu 9 miejsc po przecinku.

Wnioski:

- Podejrzewam że problemy w znalezieniu minimum funkcji Himmelblau wynikają z tego ze z tych trzech funkcji tylko ona jedna posiadała więcej niż jedno minimum. Być może cząsteczki mieszały się między sobą na zmianę znajdując inne z minimów.
- Rozwiązaniem problemu funkcji Himmelblau może być zmniejszenie wag a przez to spowolnienie przemieszczania się cząsteczki.
- Mimo dużych wartości początkowych w pierwszych iteracjach cząsteczki szybko zbliżały się do minimum.
- Z otrzymanych wyników można wywnioskować że losowość może zaważyć o znalezieniu lub nieznalezieniu rozwiązania.
- Im bardziej zbliżone są do siebie sąsiednie wartości funkcji (jak np. w przypadku himmeblau, której wykres przypomina miskę o prawie płaskim dnie), tym trudniej jest znaleźć prawidłowe rozwiązanie. Z kolei w odwrotnej sytuacji, kiedy między sąsiednimi wartościami funkcji jest spora różnica(jak w przypadku funkcji Ackley'a N.2 która wygląda jak lejek), znacznie łatwiej jest znaleźć minimum.

5. Bibliografia

- Benchmarkfcns.xyz Wzory i wykresu funkcji celu http://benchmarkfcns.xyz/
- 2) Alife.pl Optymalizacja za pomocą roju cząstek http://www.alife.pl/optymalizacja-rojem-czastek
- 3) Zastosowanie algorytmu optymalizacji rojem cząstek http://zeszyty-naukowe.wwsi.edu.pl/zeszyty/zeszyt13/Zastosowanie algorytmu optymalizacji rojem czast ek do znajdowania ekstremow globalnych wybranych funkcji %20testowych.pdf
- 4) Towrdsdatascience.com Algorytm inspirowany naturą <u>https://towardsdatascience.com/nature-inspired-optimization-algorithms-particle-swarm-optimization-2cd207d0d37e</u>