Exercice 1 Démonstrations de cours

Soit un n-échantillon $X_1, ..., X_n$ suivant une loi de moyenne m et de variance v.

- 1. Calculer biais et variance de l'estimateur empirique de la moyenne. En déduire qu'il est consistant.
- 2. Calculer le biais de l'estimateur empirique de la variance.

Exercice 2 Estimateur des moments d'une loi uniforme

Soit $X_1, ..., X_n$ un *n*-échantillon suivant la loi $\mathcal{U}_{[0;\theta]}$.

- 1. Calculer un estimateur de θ par la méthode des moments à l'ordre 1.
- 2. Calculer son espérance, sa variance, et son risque quadratique.
- 3. Est-il consistant? Est-il biaisé?

Exercice 3 Comparaison d'estimateurs d'un paramètre d'une loi uniforme

Soit $(X_1,...,X_n)$ un n-échantillon d'un modèle $(\mathbb{R}_+,\mathcal{B}(\mathbb{R}_+),\{\mathcal{U}([0,\theta])\})$, avec $\theta \in \mathbb{R}_+^*$ paramètre à déterminer. Soit $g:\mathbb{R}_+^* \to \mathbb{R}$ une fonction différentiable vérifiant $\lim_{\theta \to 0^+} \theta g(\theta) = 0$.

- 1. Montrer que l'on peut choisir $T: \mathbb{R}_+ \to \mathbb{R}$ tel que $\hat{S}_n^{(1)} = \frac{1}{n} \sum_{i=1}^n T(X_i)$ soit un estimateur sans biais de $g(\theta)$.
- 2. Soit $X_{n:n} = max(X_1, ..., X_n)$.
 - (a) Montrer que $X_{n:n}$ a pour fonction de densité $f_{\theta,n}(x) = \frac{n}{\theta^n} x^{n-1} \mathbf{1}_{[0;\theta]}(x)$.
 - (b) Montrer que l'on peut choisir $\tilde{T}: \mathbb{R}^+ \to \mathbb{R}$ de telle sorte que $\hat{S}_n^{(2)} = \tilde{T}(X_{n:n})$ soit un estimateur sans biais de $g(\theta)$.

Dans la question qui suit, on pose pour tout $x \in \mathbb{R}_+^*$, g(x) = x.

3. Calculer le risque quadratique des estimateurs $\hat{S}_n^{(1)}$ et $\hat{S}_n^{(2)}$. En déduire que l'estimateur $\hat{S}_n^{(1)}$ est inadmissible.

Exercice 4 Matrice d'Information de Fisher et Borne de Cramer-Rao

Soient $t_1, t_2, ..., t_n$, des réels tels que $t_i \neq t_j$ pour deux indices $i \neq j$. On considère le modèle statistique :

$$Z = \begin{bmatrix} X_1 \\ \dots \\ X_n \end{bmatrix} \sim \mathcal{N}(m, \sigma^2 I_n), \tag{1}$$

avec
$$m=\begin{bmatrix} \beta_1+\beta_2t_1\\ \beta_1+\beta_2t_2\\ \dots\\ \beta_1+\beta_2t_n \end{bmatrix}$$
, et $(\beta_1,\beta_2)\in\mathbb{R}^2$ sont les paramètres inconnus. On suppose σ connu.

On admettra le résultat suivant.

Si $F(\theta)$ est la matrice d'information de Fisher relative au paramètre θ d'une distribution, alors tout estimateur sans biais de $g(\theta)$ admet comme borne de Cramer-Rao (minorant de la variance):

$$\frac{\partial g(\theta)}{\partial \theta}^T F^{-1}(\theta) \frac{\partial g(\theta)}{\partial \theta}.$$
 (2)

- 1. Déterminer la matrice d'information de Fisher $F(\beta_1, \beta_2)$.
- 2. Déterminer une borne inférieure sur la variance (i.e. borne de Cramer-Rao) d'un estimateur sans biais de β_1 .
- 3. Pour cette question, on suppose β_2 connu. En calculant la matrice d'information de Fisher $F(\beta_1)$, donner une borne inférieure sur la variance d'un estimateur sans biais de β_1 .

Exercice 5 Estimateur du maximum de vraisemblance du paramètre d'une loi uniforme Soit $X_1, ..., X_n$ un n-échantillon suivant la loi $\mathcal{U}_{[0:\theta]}$.

- 1. Calculer l'Estimateur du Maximum de Vraisemblance de θ .
- 2. Donner l'expression de sa fonction de densité de probabilité.
- 3. Calculer son biais, sa variance et son risque quadratique.

Rappel : la densité de probabilité d'une loi uniforme $\mathcal{U}_{[0;\theta]}$ s'écrit :

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & si \quad 0 \le x \le \theta, \\ 0 & sinon. \end{cases}$$
 (3)

Exercice 6 Estimateur du maximum de vraisemblance

Soient n variables aléatoires X_i , $i=1,\ldots,n$ indépendantes dont la densité de probabilité est de la forme $f(x,\theta) = \frac{x}{\theta} \exp\left[\frac{-x^2}{2\theta}\right] \mathbb{1}_{[0;1]}(x)$.

Rappel: $\mathbb{1}_{[0;1]}(x) = 1$ si $x \in [0;1]$ et $\mathbb{1}_{[0;1]}(x) = 0$ sinon.

On admettra les résultats suivants :

$$- E[X_i] = \sqrt{\frac{\pi}{2}} \sqrt{\theta}$$

$$-\operatorname{E}[X_i^2] = 2\theta$$

$$-\operatorname{E}[X_i] = \sqrt{\frac{\pi}{2}}\sqrt{\theta}$$

$$-\operatorname{E}[X_i^2] = 2\theta$$

$$-\operatorname{E}[X_i^3] = (3\sqrt{\frac{\pi}{2}})\theta\sqrt{\theta}$$

$$-\operatorname{E}[X_i^4] = 8\theta^2$$

$$- E[X_i^4] = 8\theta^2$$

- 1. Écrire la vraisemblance de (x_1, \ldots, x_n) en fonction de θ et montrer que cette fonction admet un maximum global unique que l'on déterminera. En déduire l'estimateur du maximum de vraisem-
- 2. Calculer la moyenne et la variance de $\hat{\theta}$. En déduire que l'estimateur est non-biaisé et converge vers θ .