

PROBLEMA

Calcular <u>velocidad</u> y <u>desplatamiento</u> de un extremo de una cuerda de longitud L. que reacciona un impulso que se le imprime en el otro extremo. Los látigos son una cuerda ine xtensible de masa tranable mo >> m L.

1 Cuerda de misma masa por unidad de longitud; extremo fijo.

CUNDICIONES -	224 = c2 224 ; c= [T->tension
V (x,0) = f(x)	$\frac{\partial^2 \Psi}{\partial t^2} = \frac{\partial^2 \Psi}{\partial x^2}$; $c = \frac{T + \text{tension}}{M + \text{densidad}}$
4(1,1)=0	lineal
Y(0, 1)= 0 Usindo	Y (x, t) = A (x) B(t)
Ý(x,0)= ((x)	
A (x) 22B = C2 B(t) 22A
	2 t2 · 3 x2
	$\partial^2 B = C^2 \partial^2 \Delta = \lambda = -\omega^2 i \lambda = -\omega^2$
B(1) 2 t2 A(1) 2x2
Ahora resolviendo:	
$\partial^2 B = -\omega^2 B \rightarrow B(t) =$	C cos (wt) + Dsen (wt).
2 t2	
$\partial^2 A = -\omega^2 A \rightarrow A(x) =$	E COS (W x) + F Sen (W x)
3 x2 C2	
Susando las condiciones: V	Y (0, t) = 0 4 (L, t) = 0
se obliene:	
A(0) = E =	
A(L) = Ser	$\left(\begin{array}{c} \omega \downarrow \end{array}\right) = 0 \rightarrow \omega_{n} = n\pi C. n \in \mathbb{Z}^{+}$
Entonces:	
An(t) = Se	$ \left(\begin{array}{c} $
	(c) (L)
En consecuencia, la solución para	, el modon es:
Yn (x,t) = A(x) B(t) = Ser	(nn x) [Cn cos (nn c t) + On sen (nnct)

4 (x, t) = 2 = 0 4 (x, t) Ahora por las otras concliciones y(x, u) = (0x) y y(x, 0) = f(x) ① γ (x,0) = Σ = 0 An sen (n x) = f(x) An = 2 pl f(x) sen (nnx) dx 2 y(x,t)-Isen (ntx) [-An ntot sen (ntct) + Bn nTC (0) (NT Ct)] - V(x,0) = Zn=0 Bn nTC Sen (nTx) Bn = 2 f(x) sen (nnx)dx * (x,t) = Z = 0 Sen (n x) (2) L -((x) Sen (n x) dx (0) (n x x) + 2 S f(x) sen (nnx) dx sen (nnc) Y(x1t): Z'n=0 sen (nTx) [- 2nTC] (x) sen (nTx) dx sen (nTct) + 2 (1 f(x) sen (nTx) dx cos (nDc+)]