

REEB FOLIATIONS ON S^5 AND CONTACT 5-MANIFOLDS VIOLATING THE THURSTON-BENNEQUIN INEQUALITY

ATSUHIDE MORI

ABSTRACT. We obtain the following two results through foliation theoretic approaches including a review of Lawson's construction of a codimension-one foliation on the 5-sphere:

- 1) The standard contact structure on the 5-sphere deforms to 'Reeb foliations'.
- 2) We define a 5-dimensional Lutz tube which contains a *plastikstufe*. Inserting it into any contact 5-manifold, we obtain a contact structure which violates the Thurston-Bennequin inequality for a convex hypersurface with contact-type boundary.

1. INTRODUCTION AND PRELIMINARIES

The first aim of this paper is to show that the standard contact structure \mathcal{D}_0 on S^5 deforms via contact structures into spinnable foliations, which we call Reeb foliations (§2). Here a spinnable foliation is a codimension-one foliation associated to an open-book decomposition whose binding is fibred over S^1 . In 1971, Lawson[16] constructed a spinnable foliation on S^5 associated to a Milnor fibration. We construct such a spinnable foliation on S^5 as the limit \mathcal{D}_1 of a family $\{\mathcal{D}_t\}_{0 \leq t < 1}$ of contact structures. Since S^5 is compact, the family $\{\mathcal{D}_t\}_{0 \leq t < 1}$ can be traced by a family of diffeomorphisms $\varphi_t : S^5 \rightarrow S^5$ with $\varphi_0 = \text{id}$ and $(\varphi_t)_*\mathcal{D}_0 = \mathcal{D}_t$ (Gray's stability).

The second aim is to show that any contact 5-manifold admits a contact structure which violates the Thurston-Bennequin inequality for a *convex* hypersurface (§3). We define a *5-dimensional Lutz tube* and explain how to insert it into a given contact 5-manifold to violate the inequality. Moreover a 5-dimensional Lutz tube contains a *plastikstufe*, which is an obstruction to symplectic fillability found by Niederkrüger[22] and Chekanov. A different *Lutz twist* on a contact manifold (M^{2n+1}, α) was recently introduced in Etnyre-Pancholi[6] as a modification of the contact structure $\mathcal{D} = \ker \alpha$ near an n -dimensional submanifold. Contrastingly, the core of our Lutz tube is a codimension-two contact submanifold. We change the standard contact structure on S^5 by inserting a Lutz tube along the binding of the open-book decomposition of a certain Reeb foliation.

The author[21] also showed that any contact manifold of dimension > 3 violates the Thurston-Bennequin inequality for a *non-convex* hypersurface. However he conjectures that the inequality holds for any *convex* hypersurface in the standard S^{2n+1} . See §4 for related problems.

The rest of this section is the preliminaries.

1.1. Thurston-Bennequin inequality. A *positive* (resp. *negative*) *contact manifold* consists of an oriented $(2n+1)$ -manifold M^{2n+1} and a 1-form α on M^{2n+1} with $\alpha \wedge (d\alpha)^n > 0$ (resp. $\alpha \wedge (d\alpha)^n < 0$). The (co-)oriented hyperplane distribution $\mathcal{D} = \ker \alpha$ is called the *contact structure* on the contact manifold (M^{2n+1}, α) . In the case where (M^{2n+1}, α) is positive, the symplectic structure $d\alpha|_{\ker \alpha}$ on the oriented vector bundle $\ker \alpha$ is also positive, i.e., $(d\alpha)^n|_{\ker \alpha} > 0$. Hereafter we assume that all contact structures and symplectic structures are positive.

In this subsection, we assume that any compact connected oriented hypersurface Σ embedded in a contact manifold (M^{2n+1}, α) tangents to the contact structure $\ker \alpha$ at finite number of interior points. Note that the hyperplane field $\ker \alpha$ is maximally non-integrable. Let $S_+(\Sigma)$ (resp. $S_-(\Sigma)$) denote the set of the positive (resp. negative) tangent points, and $S(\Sigma)$ the union $S_+(\Sigma) \cup S_-(\Sigma)$. The sign of the tangency at $p \in S(\Sigma)$ coincides with the sign of $\{(d\alpha|_{\Sigma})^n\}_p$. Considering on $(\ker \alpha, d\alpha|_{\ker \alpha})$, we see that the symplectic orthogonal of the intersection $T\Sigma \cap \ker \alpha$ forms an oriented line field L on Σ , where the singularity of L coincides with $S(\Sigma)$.

2000 *Mathematics Subject Classification.* Primary 57R17, Secondary 57R30, 57R20.

Key words and phrases. Contact structures; foliations ; Milnor fibrations; open-book decompositions.

Definition 1.1. The singular oriented foliation \mathcal{F}_Σ defined by $T\mathcal{F}_\Sigma = L$ is called the *characteristic foliation* on Σ with respect to the contact structure $\ker \alpha$.

Put $\beta = \alpha|_\Sigma$ and take any volume form ν on Σ . Then we see that the vector field X on Σ defined by $\iota_X \nu = \beta \wedge (d\beta)^{n-1}$ is a positive section of L . Moreover,

$$\iota_X \{\beta \wedge (d\beta)^{n-1}\} = -\beta \wedge \iota_X (d\beta)^{n-1} = 0, \quad \beta \wedge (d\beta)^{n-1} \neq 0 \implies \beta \wedge \iota_X d\beta = 0.$$

Thus the flow generated by X preserves the conformal class of β . Since ν is arbitrary, we may take X as any positive section of L . Therefore the 1-form β defines a holonomy invariant transverse contact structure of the characteristic foliation \mathcal{F}_Σ .

On the other hand, for any volume form $\mu (\neq \nu)$ on Σ , we see that the sign of $\text{div } X = (\mathcal{L}_X \mu)/\mu$ at each singular point $p \in S(\Sigma)$ coincides with the sign of p . Thus \mathcal{F}_Σ contains the information about the sign of the tangency to the contact structure $\ker \alpha$. We also define the *index* $\text{Ind } p = \text{Ind}_{Xp}$ of a singular point $p \in S(\Sigma)$ by using the above vector field X .

Definition 1.2. Suppose that the boundary $\partial\Sigma$ of the above hypersurface Σ is non-empty, and the characteristic foliation \mathcal{F}_Σ is positively (i.e., outward) transverse to $\partial\Sigma$. Then we say that Σ is a hypersurface with *contact-type* boundary. Note that $\beta|\partial\Sigma = \alpha|\partial\Sigma$ is a contact form.

Remark. The *Liouville vector field* X on a given exact symplectic manifold $(\Sigma, d\lambda)$ with respect to a primitive 1-form λ of $d\lambda$ is defined by $\iota_X d\lambda = \lambda$. If X is positively transverse to the boundary $\partial\Sigma$, then $(\partial\Sigma, \lambda|\partial\Sigma)$ is called the contact-type boundary. The above definition is a natural shift of this notion into the case of hypersurfaces in contact manifolds.

Let D^2 be an embedded disk with contact-type boundary in a contact 3-manifold. We say that D^2 is *overtwisted* if the singularity $S(D^2)$ consists of a single sink point. Note that a sink point is a negative singular point since it has negative divergence. A contact 3-manifold is said to be *overtwisted*, or *tight* depending on whether there exists an overtwisted disk with contact-type boundary in it, or not. We can show that the existence of an overtwisted disk with contact-type boundary is equivalent to the existence of an *overtwisted disk with Legendrian boundary*, which is an embedded disk D' similar to the above D^2 except that the characteristic foliation $\mathcal{F}_{D'}$ tangents to the boundary $\partial D'$, where $\partial D'$ or $-\partial D'$ is a closed leaf of $\mathcal{F}_{D'}$.

Let Σ be *any* surface with contact-type (i.e., transverse) boundary embedded in the standard S^3 . Then Bennequin[1] proved the following inequality which implies the tightness of S^3 :

$$\text{Thurston-Bennequin inequality. } \sum_{p \in S_-(\Sigma)} \text{Ind } p \leq 0.$$

Eliashberg proved the same inequality for symplectically fillable contact 3-manifolds ([3]), and finally for all tight contact 3-manifolds ([4]). Recently Niederkrüger[22] and Chekanov found a $(n+1)$ -dimensional analogue of an overtwisted disk with Legendrian boundary — a *plastikstufe* which is roughly the trace $K^{n-1} \times D^2$ of an overtwisted disk D^2 with Legendrian boundary travelling along a closed integral submanifold $K^{n-1} \subset M^{2n+1}$. However, in order to create some meaning of the above inequality in higher dimensions, we need a $2n$ -dimensional analogue of an overtwisted disk with contact-type boundary.

Remark. The Thurston-Bennequin inequality can also be written in terms of relative Euler number: The vector field $X \in T\Sigma \cap \ker \alpha$ is a section of $\ker \alpha|_\Sigma$ which is canonical near the boundary $\partial\Sigma$. Thus under a suitable boundary condition we have

$$\langle e(\ker \alpha), [\Sigma, \partial\Sigma] \rangle = \sum_{p \in S_+(\Sigma)} \text{Ind } p - \sum_{p \in S_-(\Sigma)} \text{Ind } p.$$

Then the Thurston-Bennequin inequality can be expressed as

$$-\langle e(\ker \alpha), [\Sigma, \partial\Sigma] \rangle \leq -\chi(\Sigma).$$

There is also an absolute version of the Thurston-Bennequin inequality for a closed hypersurface Σ with $\chi(\Sigma) \leq 0$, which is expressed as $|\langle e(\ker \alpha), [\Sigma] \rangle| \leq -\chi(\Sigma)$, or equivalently

$$\sum_{p \in S_-(\Sigma)} \text{Ind } p \leq 0 \quad \text{and} \quad \sum_{p \in S_+(\Sigma)} \text{Ind } p \leq 0.$$

The absolute version trivially holds if the Euler class $e(\ker \alpha) \in H^{2n}(M; \mathbb{Z})$ is a torsion. Note that the inequality and its absolute version can be defined for any oriented plane field on an oriented 3-manifold M^3 (see Eliashberg-Thurston[5]). They are originally proved for a foliation on M^3 without Reeb components by Thurston (see [24]).

1.2. Convex hypersurfaces. In this subsection we explain Giroux's convex hypersurface theory outlined in [9] and add a possible relative version to it.

A vector field Y on a contact manifold (M, α) which satisfies $\alpha \wedge \mathcal{L}_Y \alpha = 0$ is called a *contact vector field*. Let V_α denote the set of all contact vector fields on (M, α) . It is well-known that the linear map $\alpha(\cdot) : V_\alpha \rightarrow C^\infty(M)$ is an isomorphism.

Definition 1.3. 1) For a given contact vector field Y on a contact manifold (M, α) , the function $H = \alpha(Y) \in C^\infty(M)$ is called the *Hamiltonian function* of Y . Conversely for a given function $H \in C^\infty(M)$, the unique contact vector field Y with $\alpha(Y) = H$ is called the *contact Hamiltonian vector field* of H . The contact Hamiltonian vector field of 1 lies in the degenerate direction of $d\alpha$ and is called the *Reeb field* of α .
2) A closed oriented hypersurface Σ embedded in a contact manifold (M, α) is said to be *convex* if there exists a contact vector field transverse to Σ .

Let Y be a contact vector field positively transverse to a closed convex hypersurface Σ , and $\Sigma \times (-\varepsilon, \varepsilon)$ a neighbourhood of $\Sigma = \Sigma \times \{0\}$ with $Y = \partial/\partial z$ ($z \in (-\varepsilon, \varepsilon)$). We may assume that the contact form α is Y -invariant after rescaling it by multiplying a suitable positive function. Note that this rescaling does not change the level set $\{\alpha(Y) = 0\}$. By perturbing Y in V_α if necessary, we can modify the Hamiltonian function $H = \alpha(Y)$ so that the level set $\{H = 0\}$ is a regular hypersurface of the form $\Gamma \times (-\varepsilon, \varepsilon)$ in the above neighbourhood $\Sigma \times (-\varepsilon, \varepsilon)$, where $\Gamma \subset M$ is a codimension-2 submanifold. Put $h = H|_\Sigma$.

Definition 1.4. The submanifold $\Gamma = \{h = 0\} \subset \Sigma$ is called the *dividing set* on Σ with respect to Y . Γ divides Σ into the *positive region* $\Sigma_+ = \{h \geq 0\}$ and the *negative region* $\Sigma_- = \{-h \leq 0\}$ so that $\Sigma = \Sigma_+ \cup (-\Sigma_-)$. We orient Γ as $\Gamma = \partial\Sigma_+ = \partial\Sigma_-$.

Note that $\pm Y|\{\pm H > 0\}$ is the Reeb field of $\alpha/|H| = \beta/|H| \pm dz$, where β is the pull-back of $\alpha|\Sigma$ under the projection along Y . Since the $2n$ -form

$$\Omega = (d\beta)^{n-1} \wedge (H d\beta + n\beta dH)$$

satisfies $\Omega \wedge dz = \alpha \wedge (d\alpha)^n > 0$, the characteristic foliation \mathcal{F}_Σ is positively transverse to the dividing set Γ . Thus Γ is a positive contact submanifold of (M, α) . The open set $U = \{|H| < \varepsilon'\}$ is of the form $(-\varepsilon', \varepsilon') \times \Gamma \times (-\varepsilon, \varepsilon)$ for sufficiently small $\varepsilon' > 0$. Let $\rho(H) > 0$ be an even function of H which is increasing on $H > 0$, and coincides with $1/|H|$ except on $(-\varepsilon', \varepsilon')$. Then we see that $d(\rho\alpha)|_{\text{int } \Sigma_\pm}$ are symplectic forms.

On the other hand, let $(\Sigma_\pm, d\lambda_\pm)$ be compact exact symplectic manifolds with the same contact-type boundary $(\partial\Sigma_\pm, \mu)$, where we fix the primitive 1-forms λ_\pm and assume that $\mu = \lambda_\pm|_{\partial\Sigma_\pm}$. Then $\lambda_i + dz$ is a z -invariant contact form on $\Sigma_i \times \mathbb{R}$ ($i = +$ or $-$, $z \in \mathbb{R}$).

Definition 1.5. The contact manifold $(\Sigma_i \times \mathbb{R}, \lambda_i + dz)$ is called the *contactization* of $(\Sigma_i, d\lambda_i)$. Take a collar neighbourhood $(-\varepsilon', 0] \times \partial\Sigma_i \subset \Sigma_i$ such that

$$\lambda_i + dz|((-\varepsilon', 0] \times \partial\Sigma_i \times \mathbb{R}) = e^s \mu + dz \quad (s \in (-\varepsilon', 0]).$$

We modify $\lambda_i + dz$ near $(-\varepsilon', 0] \times \partial\Sigma_i \times \mathbb{R}$ in a canonical way into a contact form α_i with

$$\alpha_i|((-\varepsilon', 0] \times \partial\Sigma_i \times \mathbb{R}) = e^{-s^2/\varepsilon'} \mu - \frac{s}{\varepsilon'} dz.$$

We call the contact manifold $(\Sigma_i \times \mathbb{R}, \alpha_i)$ the *modified contactization* of $(\Sigma_i, d\lambda_i)$.

Remark. The above symplectic manifold $(\Sigma_i, d\lambda_i)$ can be fully extended by attaching the half-symplectization $(\mathbb{R}_{\geq 0} \times \partial\Sigma_i, d(e^s \mu))$ to the boundary. The interior of the modified contactization is then contactomorphic to the contactization of the fully extended symplectic manifold.

The modified contactizations $\Sigma_+ \times \mathbb{R}$ and $\Sigma_- \times \mathbb{R}'$ match up to each other to form a connected contact manifold $((\Sigma_+ \cup (-\Sigma_-)) \times \mathbb{R}, \alpha)$ where $\mathbb{R}' = -\mathbb{R}$. Indeed, α can be written near $\Gamma \times \mathbb{R} = \partial\Sigma_+ \times \mathbb{R} = \partial\Sigma_- \times (-\mathbb{R}')$ as

$$\alpha|(-\varepsilon', \varepsilon') \times \Gamma \times \mathbb{R} = e^{-s^2/\varepsilon'} \mu - \frac{s}{\varepsilon'} dz \quad (s \in (-\varepsilon', \varepsilon'), z \in \mathbb{R}).$$

Definition 1.6. The contact manifold $((\Sigma_+ \cup (-\Sigma_-)) \times \mathbb{R}, \alpha)$ is called the *unified contactization* of $\Sigma = \Sigma_+ \cup (-\Sigma_-)$.

Since $(-\Sigma)_+ = \Sigma_-$ and $(-\Sigma)_- = \Sigma_+$, the unified contactization of $-\Sigma = \Sigma_- \cup (-\Sigma_+)$ can be obtained by turning the unified contactization of $\Sigma_+ \cup (-\Sigma_-)$ upside-down. Note that $-Y \in V_\alpha$. Clearly, a small neighbourhood of any convex hypersurface $\Sigma_+ \cup (-\Sigma_-)$ is contactomorphic to a neighbourhood of $(\Sigma_+ \cup (-\Sigma_-)) \times \{0\}$ in the unified contactization.

Conceptually, a convex hypersurface in contact topology play the same role as a contact-type hypersurface in symplectic topology — both are powerful tools for cut-and-paste because they have canonical neighbourhoods modeled on the unified contactization and the symplectization. Further Giroux[9] showed that any closed surface in a contact 3-manifold is smoothly approximated by a convex one. This fact closely relates contact topology with differential topology in this dimension. On the other hand, there exists a hypersurface which cannot be smoothly approximated by a convex one if the dimension of the contact manifold is greater than three (see [21]).

Definition 1.7. A compact connected oriented embedded hypersurface Σ with non-empty contact-type boundary in a contact manifold (M, α) is said to be *convex* if there exists a contact vector field Y such that $\alpha(Y)|\partial\Sigma > 0$ and Y is transverse to Σ .

Put $h = \alpha(Y)|\Sigma$ after perturbing Y . Then the dividing set $\Gamma = \{h = 0\}$ divides Σ into the positive region $\Sigma_+ = \{h \geq 0\}$ and the (possibly empty) negative region $\Sigma_- = \{h \leq 0\}$ so that

$$\Sigma = \Sigma_+ \cup (-\Sigma_-) \quad \text{and} \quad \partial\Sigma = \partial\Sigma_+ \cup \partial\Sigma_- \neq \emptyset.$$

Note that the above definition avoids touching of Γ to the contact-type boundary $\partial\Sigma$. Now the Thurston-Bennequin inequality can be written as

Thurston-Bennequin inequality for convex hypersurfaces. $\chi(\Sigma_-) \leq 0$ (or $\Sigma_- = \emptyset$).

Suppose that there exists a convex disk $\Sigma = D^2$ with contact-type boundary in a contact 3-manifold which is the union $\Sigma_+ \cup (-\Sigma_-)$ of a negative disk region Σ_- and a positive annular region Σ_+ . Then the convex disk Σ violates the Thurston-Bennequin inequality and is called a *convex overtwisted disk* ($\chi(\Sigma_-) = 1 > 0$). Conversely, it is clear that any overtwisted disk with contact-type boundary is also approximated by a convex overtwisted disk.

Definition 1.8. A *convex overtwisted hypersurface* is a connected convex hypersurface $\Sigma_+ \cup (-\Sigma_-)$ with contact-type boundary which satisfies $\chi(\Sigma_-) > 0$.

Note that any convex overtwisted hypersurface Σ contains a connected component of Σ_+ whose boundary is disconnected. This relates to Calabi's question on the existence of a compact connected exact symplectic $2n$ -manifold ($n > 1$) with disconnected contact-type boundary. McDuff[18] found the first example of such a manifold. Here is another example:

Example 1.9. (Mitsumatsu[19], Ghys[8] and Geiges[7]) To obtain a symplectic 4-manifold with disconnected contact-type boundary, we consider the mapping torus $T_A = T^2 \times [0, 1]/A \ni ((x, y), z)$ of a linear map $A \in SL(2; \mathbb{Z})$ ($A : T^2 \times \{1\} \rightarrow T^2 \times \{0\}$) with $\text{tr } A > 2$. Let $dvol_{T^2}$ be the standard volume form on $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ and v_\pm eigenvectors of A which satisfy

$$Av_\pm = a^{\pm 1}v_\pm, \quad \text{where } a > 1 \quad \text{and} \quad dvol_{T^2}(v_+, v_-) > 0.$$

In general, a cylinder $[-1, 1] \times M^3$ admits a symplectic structure with contact-type boundary if M^3 admits a co-orientable Anosov foliation (Mitsumatsu[19]). In the case where $M^3 = T_A$, the 1-forms $\beta_\pm = \pm a^{\mp z} dvol_{T^2}(v_\pm, \cdot)$ define Anosov foliations. Then the cylinder

$$(W_A = [-1, 1] \times T_A, d(\beta_+ + s\beta_-)) \quad (s \in [-1, 1])$$

is a symplectic manifold with contact-type boundary $(-T_A) \sqcup T_A$.

Using the above cylinder W_A , we construct a convex overtwisted hypersurface in §3.

2. CONVERGENCE OF CONTACT STRUCTURES TO FOLIATIONS

First we define a supporting open-book decomposition on a closed contact manifold.

Definition 2.1. Let (M^{2n+1}, α) be a closed contact manifold and \mathcal{O} an open-book decomposition on M^{2n+1} by pages P_θ ($\theta \in \mathbb{R}/2\pi\mathbb{Z}$). Suppose that the binding $(N^{2n-1} = \partial P_\theta, \alpha|N^{2n-1})$ of \mathcal{O} is a contact submanifold. Then if there exists a positive function ρ on M^{2n+1} such that

$$d\theta \wedge \{d(\rho\alpha)\}^n > 0 \quad \text{on } M^{2n+1} \setminus N^{2n-1},$$

the open-book decomposition \mathcal{O} is called a *supporting open-book decomposition* on (M^{2n+1}, α) .

The function ρ can be taken so that $\rho\alpha$ is axisymmetric near the binding. Precisely, we can modify the function ρ near a tubular neighbourhood $N^{2n-1} \times D^2$ except on the binding $N^{2n-1} \times \{0\}$, if necessary, so that with respect to the polar coordinates (r, θ) on the unit disk D^2

- i) the restriction $\rho\alpha|(N^{2n-1} \times D^2)$ is of the form $f(r)\mu + g(r)d\theta$,
- ii) μ is the pull-back $\pi^*(\rho\alpha|N^{2n-1})$ under the projection $\pi : N^{2n-1} \times D^2 \rightarrow N^{2n-1}$,
- iii) $f(r)$ is a positive function of r on $N^{2n-1} \times D^2$ with $f'(r) < 0$ on $(0, 1]$, and
- iv) $g(r)$ is a weakly increasing function with $g(r) \equiv r^2$ near $r = 0$ and $g(r) \equiv 1$ near $r = 1$.

Next we prove the following theorem.

Theorem 2.2. Let \mathcal{O} be a supporting open-book decomposition on a closed contact manifold (M^{2n+1}, α) of dimension greater than three ($n > 1$). Suppose that the binding N^{2n-1} of \mathcal{O} admits a non-zero closed 1-form ν with $\nu \wedge \{d(\rho\alpha|N^{2n-1})\}^{n-1} \equiv 0$ where ρ is a function on M^{2n+1} satisfying all of the above conditions. Then there exists a family of contact forms $\{\alpha_t\}_{0 \leq t < 1}$ on M^{2n+1} which starts with $\alpha_0 = \rho\alpha$ and converges to a non-zero 1-form α_1 with $\alpha_1 \wedge d\alpha_1 \equiv 0$. That is, the contact structure $\ker\alpha$ then deforms to a spinnable foliation.

Proof. Take smooth functions $f_1(r)$, $g_1(r)$, $h(r)$ and $e(r)$ of $r \in [0, 1]$ such that

- i) $f_1 \equiv 1$ near $r = 0$, $f_1 \equiv 0$ on $[1/2, 1]$, $f'_1 \leq 0$ on $[0, 1]$,
- ii) $g_1 \equiv 1$ near $r = 1$, $g_1 \equiv 0$ on $[0, 1/2]$, $g'_1 \geq 0$ on $[0, 1]$,
- iii) $h \equiv 1$ on $[0, 1/2]$, $h \equiv 0$ near $r = 1$,
- iv) e is supported near $r = 1/2$, and $e(1/2) \neq 0$.

Put $f_t(r) = (1-t)f(r) + tf_1(r)$, $g_t(r) = (1-t)g(r) + tg_1(r)$ and

$$\alpha_t|(N \times D^2) = f_t(r)\{(1-t)\mu + th(r)\nu\} + g_t(r)d\theta + te(r)dr,$$

where ν also denotes the pull-back $\pi^*\nu$. We extend α_t by

$$\alpha_t|(M \setminus (N \times D^2)) = \tau\rho\alpha + (1-\tau)d\theta \quad \text{where } \tau = (1-t)^2.$$

Then we see from $d\nu \equiv 0$ and $\nu \wedge (d\mu)^{n-1} \equiv 0$ that $\alpha_t \wedge (d\alpha_t)^n$ can be written as

$$\begin{aligned} n f_t^{n-1} (1-t)^n (g'_t f_t - f'_t g_t) \mu \wedge (d\mu)^{n-1} \wedge dr \wedge d\theta &\quad \text{on } N \times D^2 \quad \text{and} \\ \tau^{n+1} \rho^{n+1} \alpha \wedge (d\alpha)^n + \tau^n (1-\tau) d\theta \wedge \{d(\rho\alpha)\}^n &\quad \text{on } M \setminus (N \times D^2). \end{aligned}$$

Therefore we have

$$\alpha_t \wedge (d\alpha_t)^n > 0 \quad (0 \leq t < 1), \quad \alpha_1 \wedge d\alpha_1 \equiv 0 \quad \text{and} \quad \alpha_1 \neq 0.$$

This completes the proof of Theorem 2.2. \square

Remark. 1) A similar result in the case where $n = 1$ is contained in the author's paper[20]: Any contact structure $\ker\alpha$ on a closed 3-manifold deforms to a spinnable foliation.

- 2) The orientation of the compact leaf $\{r = 1/2\}$ depends on the choice of the sign of the value $e(1/2)$. Here the choice is arbitrary.

We give some examples of the above limit foliations which relate to the following proposition on certain T^2 -bundles over the circle.

Proposition 2.3 (Van Horn[26]). *Let $T_{A_{m,0}}$ denote the mapping torus $T^2 \times [0, 1]/A_{m,0} \ni ((x, y), z)$ of the linear map $A_{m,0} = \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix} : T^2 \times \{1\} \rightarrow T^2 \times \{0\}$ ($m \in \mathbb{N}$). Then $\ker(dy + mzdx)$ is the unique Stein fillable contact structure on $T_{A_{m,0}}$ (up to contactomorphism). Moreover it admits a supporting open-book decomposition $\mathcal{O}_{m,0}$ such that*

- i) *the page is a m -times punctured torus, and*
- ii) *the monodromy is the right-handed Dehn twist along (the disjoint union of m loops parallel to) the boundary of the page.*

Let \mathbb{C}^3 be the $\xi\eta\zeta$ -space, and π_ξ, π_η and π_ζ denote the projections to the axes.

Example 2.4 (Lawson's foliation). The link L of the singular point $(0, 0, 0)$ of the complex surface $\{\xi^3 + \eta^3 + \zeta^3 = 0\} \subset \mathbb{C}^3$ is diffeomorphic to the T^2 -bundle $T_{A_{3,0}}$. (To see this, consider the projective curve $\{\xi^3 + \eta^3 + \zeta^3 = 0\} \subset \mathbb{CP}^2$ diffeomorphic to T^2 . Since L is the union of the Hopf fibres over this torus, it is also a T^2 -bundle over the circle.) Moreover, since L is Stein fillable, it is contactomorphic to $(T_{A_{3,0}}, \mu = dy + 3zdx)$. Indeed the open-book decomposition $\mathcal{O}_{3,0}$ in Proposition 2.3 is equivalent to the supporting open-book decomposition $\{\arg(\pi_\xi|L) = \theta\}_{\theta \in \mathbb{R}/2\pi\mathbb{Z}}$ on L . (To see this, regard ξ as a parameter and consider the curve $C_\xi = \{\eta^3 + \zeta^3 = -\xi^3\}$ on the $\eta\zeta$ -plane, which is diffeomorphic to $T^2 \setminus \{\text{three points}\}$. Then we can see that the fibration $\{(\{\xi\} \times C_\xi) \cap B^6\}_{|\xi|=\varepsilon}$ ($0 < \varepsilon \ll 1$) is equivalent to the page fibration of $\mathcal{O}_{3,0}$, where B^6 denotes the unit hyperball of $\mathbb{C}^3 \approx \mathbb{R}^6 \ni (x_1, y_1, \dots, x_3, y_3)$.) We put

$$\Lambda = \sum_{i=1}^3 (x_i dy_i - y_i dx_i) \quad \text{and} \quad V_{\varepsilon, \theta} = \{\xi^3 + \eta^3 + \zeta^3 = \varepsilon e^{\sqrt{-1}\theta}\} \cap B^6 \quad (\theta \in \mathbb{R}/2\pi\mathbb{Z}).$$

Then Gray's stability implies that $\partial V_{\varepsilon, \theta} \subset (S^5, \Lambda|S^5)$ is contactomorphic to L . Since $\xi^3 + \eta^3 + \zeta^3$ is a homogeneous polynomial, the 1-form $\Lambda|V_{\varepsilon, \theta}$ is conformal to the pull-back of the restriction of Λ to $\Sigma_{\varepsilon, \theta} = \{\rho p \mid \rho > 0, p \in V_{\varepsilon, \theta}\} \cap S^5 \subset \{\arg(\xi^3 + \eta^3 + \zeta^3) = \theta\}$ under the central projection. Indeed $\rho x_i d(p y_i) - \rho y_i d(p x_i) = \rho^2 (x_i dy_i - y_i dx_i)$ holds for any function ρ . Thus the fibration $\{\Sigma_{\varepsilon, \theta}\}_{\theta \in \mathbb{R}/2\pi\mathbb{Z}}$ extends to a supporting open-book decomposition on the standard S^5 . We put $\nu = dz$ and apply Theorem 2.2 to obtain a limit foliation $\mathcal{F}_{3,0}$ of the standard contact structure. This is the memorable first foliation on S^5 discovered by Lawson[16].

For other examples, we need the following lemma essentially due to Giroux and Mohsen.

Lemma 2.5 (see [11]). *Let $f : \mathbb{C}^n \rightarrow \mathbb{C}$ be a holomorphic function with $f(0, \dots, 0) = 0$ such that the origin $(0, \dots, 0)$ is an isolated critical point. Take a sufficiently small hyperball $B_\varepsilon = \{|z_1|^2 + \dots + |z_n|^2 = \varepsilon^2\}$. Then there exists a supporting open-book decomposition on the standard S^{2n-1} such that the binding is contactomorphic to the link $\{f = 0\} \cap \partial B_\varepsilon$ and the page fibration is equivalent to the fibration $\{f = \delta\} \cap B_\varepsilon\}_{|\delta|=\varepsilon'}$ ($0 < \varepsilon' \ll \varepsilon$).*

Proof. Take the hyperball $B'_\varepsilon = \{|z_1|^2 + \dots + |z_{n+1}|^2 = \varepsilon^2\}$ on \mathbb{C}^{n+1} and consider the complex hypersurface $\Sigma_k = \{z_{n+1} = kf(z_1, \dots, z_n)\} \cap B'_\varepsilon$ with contact-type boundary $\partial\Sigma_k$ ($k \geq 0$). Then Gray's stability implies that $\partial\Sigma_k$ is contactomorphic to $\partial\Sigma_0 (= \partial B_\varepsilon)$. From $dz_{n+1}|_{\Sigma_\infty} = 0$ and $(x_{n+1} dy_{n+1} - y_{n+1} dx_{n+1})(-y_{n+1} \partial/\partial x_{i+1} + x_{n+1} \partial/\partial y_{n+1}) \geq 0$, we see that $\{\arg(f|\partial\Sigma_k) = \theta\}_{\theta \in S^1}$ is a supporting open-book decomposition of $\partial\Sigma_k$ equivalent to $\{f = \delta\} \cap B_\varepsilon\}_{|\delta|=\varepsilon'}$ if k is sufficiently large and $\varepsilon' > 0$ is sufficiently small. \square

Example 2.6. Consider the polynomials $f_1 = \xi^6 + \eta^3 + \zeta^2$ and $f_2 = \xi^4 + \eta^4 + \zeta^2$. Then the link L_m of the singular point $(0, 0, 0) \in \{f_m = 0\}$ is contactomorphic to the above T^2 -bundle $T_{A_{m,0}}$ with the contact form $\mu = dy + mzdx$ ($m = 1, 2$). Indeed $\mathcal{O}_{m,0}$ is equivalent to the supporting open-book decomposition $\{\arg(\pi_\xi|L_m) = \theta\}_{\theta \in \mathbb{R}/2\pi\mathbb{Z}}$ on L_m . (To see this, regard ξ as a parameter and consider $C_\xi = \{f_m = 0\}$ on the $\eta\zeta$ -plane, which is diffeomorphic to $T^2 \setminus \{m \text{ points}\}$. Then we can see that the fibration $\{(\{\xi\} \times C_\xi) \cap B^6\}_{|\xi|=\varepsilon}$ is equivalent to the page fibration of $\mathcal{O}_{m,0}$.) On the other hand, Lemma 2.5 says that there exists a supporting open-book decomposition on the standard S^5 which is equivalent to the Milnor fibration with binding L_m . We put $\nu = dz$ and apply Theorem 2.2 to obtain a limit foliation $\mathcal{F}_{m,0}$ ($m = 1, 2$).

- Definition 2.7.**
- 1) Let $f : \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ be a holomorphic function with $f(0, \dots, 0) = 0$ such that the origin is an isolated critical point or a regular point of f . If the origin is singular, the Milnor fibre has the homotopy type of a bouquet of n -spheres. Suppose that the Euler characteristic of the Milnor fibre is positive, that is, the origin is regular if n is odd. Then we say that the Milnor fibration is *PE* (=positive Euler characteristic).
 - 2) Let \mathcal{O} be a supporting open-book decomposition of the standard S^{2n+1} . Suppose that the binding is the total space of a fibre bundle π over $\mathbb{R}/\mathbb{Z} \ni t$, and the Euler characteristic of the page is positive. Then if $\nu = \pi^*dt$ satisfies the assumption of Theorem 2.2, the resultant limit foliation is called a *Reeb foliation*.

The above $\mathcal{F}_{m,0}$ ($m = 1, 2, 3$) are Reeb foliations associated to PE Milnor fibrations. To obtain other examples of foliations associated to more general Milnor fibrations, Grauert's topological characterization of Milnor fillable 3-manifolds is instructive ([12], see also [2]).

3. FIVE-DIMENSIONAL LUTZ TUBES

In this section, we define a 5-dimensional Lutz tube by means of an open-book decomposition whose page is a convex hypersurface. We insert the Lutz tube along the binding of a certain supporting open-book decomposition on the standard S^5 . Then we obtain a new contact structure on S^5 which violates the Thurston-Bennequin inequality for a convex hypersurface. We also show that the 5-dimensional Lutz tube contains a plastikstufe.

3.1. Convex open-book decompositions. We explain how to construct a contact manifold with an open-book decomposition by convex pages.

Proposition 3.1. *Let $(\Sigma_{\pm}, d\lambda_{\pm})$ be two compact exact symplectic manifolds with contact-type boundary. Suppose that there exists an inclusion $\iota : \partial\Sigma_- \rightarrow \partial\Sigma_+$ such that $\iota^*(\lambda_+| \partial\Sigma_+) = \lambda_-| \partial\Sigma_-$. Let φ be a self-diffeomorphism of the union $\Sigma = \Sigma_+ \cup_{\iota} (-\Sigma_-)$ supported in $\text{int } \Sigma_+ \sqcup \text{int } (-\Sigma_-)$ which satisfies*

$$(\varphi|\Sigma_{\pm})^* \lambda_{\pm} - \lambda_{\pm} = dh_{\pm}$$

for suitable positive functions h_{\pm} on Σ_{\pm} . We choose some connected components of $\partial\Sigma_+ \setminus \iota(\partial\Sigma_-)$ and take their disjoint union B . Then there exists a smooth map Φ from the unified contactization $\Sigma \times \mathbb{R}$ to a compact contact manifold (M, α) such that

- i) $\Phi|(\Sigma \setminus B) \times \mathbb{R}$ is a cyclic covering which is locally a contactomorphism,
- ii) $P_0 = \Phi(\Sigma \times \{0\}) \approx \Sigma$ is a convex page of an open-book decomposition \mathcal{O} on (M, α) ,
- iii) $\Phi(B \times \mathbb{R}) \approx B$ is the binding contact submanifold of \mathcal{O} , and
- iv) φ is the monodromy map of \mathcal{O} .

Proof. In the case where $\Sigma_- = \emptyset$ and $B = \partial\Sigma_+$, this proposition was proved in Giroux[10] (essentially in Thurston-Winkelnkemper[25]). Then \mathcal{O} is a supporting open-book decomposition. In general, let $\Sigma \times \mathbb{R}$ be the unified contactization, i.e., the union of the modified contactizations of Σ_{\pm} by the attaching map $(\iota, -\text{id}_{\mathbb{R}'}) : \partial\Sigma_- \times \mathbb{R}' \rightarrow \partial\Sigma_+ \times \mathbb{R} (= -\mathbb{R}')$. Consider the quotient $\Sigma \times (\mathbb{R}/2\pi c\mathbb{Z})$ ($c > 0$), and cap-off the boundary components $B \times (\mathbb{R}/2\pi c\mathbb{Z})$ by replacing the collar neighbourhood $(-\varepsilon', 0] \times B \times (\mathbb{R}/2\pi c\mathbb{Z})$ with $(B \times D^2, (\lambda_+|B) + r^2 d\theta)$ where $\theta = z/c$. Adding constants to h_{\pm} if necessary, we may assume that h_{\pm} are the restrictions of the same function h . We change the identification $(x, z + 2\pi c) \sim (x, z)$ to $(x, z + h) \sim (\varphi(x), z)$ before capping-off the boundary $B \times S^1$. This defines the map Φ and completes the proof. \square

Remark. Giroux and Mohsen proved that any symplectomorphism supported in $\text{int } \Sigma_+$ is isotopic via such symplectomorphisms to φ with $\varphi^*\lambda_+ - \lambda_+ = dh_+ (\exists h_+ > 0)$. They also proved that there exists a supporting open-book decomposition on any closed contact manifold by interpreting the result of Ibort-Martinez-Presas[14] on the applicability of Donaldson-Auroux's asymptotically holomorphic methods to complex functions on contact manifolds (see [10]).

3.2. Definition of Lutz tubes. Let W_A be the symplectic manifold with disconnected contact-type boundary $(-T_A) \sqcup T_A$ in Example 1.9. Then, by a result of Van Horn[26], each of the boundary component is a Stein fillable contact manifold. Note that $\text{tr}(A^{-1}) > 2$ and $(-T_A) \approx T_{A^{-1}}$. Precisely, there exists a supporting open-book decomposition on T_A described as follows.

Proposition 3.2. 1) (Honda[13], see also Van Horn[26]) Any element $A \in SL(2; \mathbb{Z})$ with $\text{tr } A > 2$ is conjugate to at least one of the elements

$$A_{m,k} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & k_1 \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & k_m \\ 0 & 1 \end{pmatrix} \in SL(2; \mathbb{Z}),$$

where $m \in \mathbb{Z}_{>0}$, $k = (k_1, \dots, k_m) \in (\mathbb{Z}_{\geq 0})^m$ and $k_1 + \dots + k_m > 0$.

- 2) (Van Horn[26]) The contact manifold $(\bar{T}_{A_{m,k}}, (\beta_- + \beta_+)|T_{A_{m,k}})$ ($k \neq 0$) admits a supporting open-book decomposition which is determined up to equivalence by the following data:

Page: The page P is the m -times punctured torus $\bigcup_{i \in \mathbb{Z}_m} P_i$, where P is divided into three-times punctured spheres P_i by mutually disjoint loops γ_i with $P_i \cup P_{i+1} = \gamma_i$.

Monodromy: The monodromy is the composition $\tau(\partial P) \circ \prod_{i=1}^m \{\tau(\gamma_i)\}^{k_i}$, where $\tau(\gamma)$ denotes the right-handed Dehn twist along γ .

These data determines a PALF (=positive allowable Lefschetz fibration) structure of the canonical Stein filling V of the contact manifold $T_{A_{m,k}}$ if $m \geq 2$ (see Loi-Piergallini [17] and Giroux [10]). Here we see through the PALF structure that attaching 1-handles to the page corresponds to attaching 1-handles to the canonical Stein filling, and adding right-handed Dehn twists along non-null-homologous loops to the monodromy corresponds to attaching 2-handles to the canonical Stein filling. Thus we have

$$\chi(V) = 1_{(\# \{0\}-handles)} - (m+1)_{(\# \{1\}-handles)} + (m+k_1+\dots+k_m)_{(\# \{2\}-handles)} > 0.$$

In the case where $m = 1$, let ℓ_1 and ℓ_2 denote simple loops on P which intersect transversely at a single point. It is well-known that $\tau(\partial P)$ is isotopic to $(\tau(\ell_1) \circ \tau(\ell_2))^6$. This new expression determines a PALF structure with $12+k_1$ singular fibres on the canonical Stein filling V of $T_{A_{1,(k_1)}}$. Then we have $\chi(V) = 1 - 2 + 12 + k_1 > 11$. Thus the following corollary holds.

Corollary. The contact manifold $(T_A, (\beta_- + \beta_+)|T_A)$ admits a Stein filling V with $\chi(V) > 0$.

Then the unified contactization of $W_A \cup (-V)$ under the natural identification $\{1\} \times T_A \sim \partial V$ contains a convex overtwisted hypersurface $(W_A \cup (-V)) \times \{0\}$.

Now we define a 5-dimensional Lutz tube.

Definition 3.3. Putting $\Sigma_+ = W_A$, $\Sigma_- = \emptyset$, $B = -(\{-1\} \times T_A) \approx T_{A^{-1}}$ and $\varphi = \text{id}_\Sigma$, we apply Proposition 3.1 to obtain a contact manifold $T_{A^{-1}} \times D' \approx T_A \times D^2$ ($D' = -D^2$), which we call the 5-dimensional Lutz tube associated to A ($\text{tr } A > 2$).

The next proposition explains how to insert a Lutz tube.

Proposition 3.4. Let $(V, d\lambda)$ be an exact strong symplectic filling of T_A with $\text{tr } A > 2$, $\psi : V \rightarrow V$ a diffeomorphism supported in $\text{int } V$. Suppose that $\chi(V) > 0$ and $\psi^* \lambda - \lambda = dh$ ($\exists h > 0$). Putting $\Sigma_+ = V$, $\Sigma_- = \emptyset$, $B = \partial V$ and $\varphi = \psi$, we apply Proposition 3.1 to obtain a closed contact manifold (M^5, α) with an open-book decomposition whose binding is T_A . Next we consider the union $W_A \cup (-V)$ with respect to the natural identification $\iota : \partial V \rightarrow \{1\} \times T_A \subset W_A$. Again putting $\Sigma_+ = W_A$, $\Sigma_- = V$, $B = \partial W_A \setminus \iota(\partial V)$ and $\varphi = (\text{the trivial extension of } \psi^{-1})$, we apply Proposition 3.1 to obtain another contact manifold (M', α') with an open-book decomposition, where the page is a convex overtwisted hypersurface and the binding is $T_{A^{-1}}$. Then there exists a diffeomorphism from M^5 to M' which preserves the orientation and sends T_A to $-T_{A^{-1}}$. We may consider that (M', α') is obtained by inserting the 5-dimensional Lutz tube associated to A along the binding T_A of a supporting open-book decomposition on (M^5, α) .

Remark. 1) Similarly, we can insert a 5-dimensional Lutz tube along any codimension-2 contact submanifold with trivial normal bundle which is contactomorphic to T_A ($\text{tr } A > 2$).

Particularly, we can insert the Lutz tube associated to A^{-1} along the core of the Lutz tube associated to A . Then we obtain a 5-dimensional analogue of the full Lutz tube.

- 2) We may consider the original 3-dimensional (half) Lutz tube as a trivial open-book decomposition by positive annuli whose binding is a connected component of the boundary. That is, starting with the exact symplectic annulus $([-1, 1] \times S^1, sd\theta)$ ($s \in [-1, 1], \theta \in S^1$) we can construct the 3-dimensional Lutz tube by Proposition 3.1 ($\varphi = \text{id}$).
- 3) Geiges[7] constructed an exact symplectic 6-manifold $[-1, 1] \times M^5$ with contact-type boundary, where M^5 is a certain T^4 -bundle over the circle. From his example, we can also construct a 7-dimensional Lutz tube. The author suspects that this Lutz tube enables us to change not only the contact structure but also the homotopy class of the almost contact structure of a given contact 7-manifold. See Question 5.3 in Etnyre-Pancholi[6].

3.3. Exotic contact structures on S^5 . We can insert a Lutz tube into the standard S^5 . Namely,

Theorem 3.5. *In the case where $m \leq 2$ and $k \neq 0$, $T_{A_{m,k}}$ is contactomorphic to the link of the isolated singular point $(0, 0, 0)$ of the hypersurface $\{f_{m,k} = 0\} \subset \mathbb{C}^3$, where*

$$\begin{aligned} f_{1,(k_1)} &= (\eta - 2\xi^2)(\eta^2 + 2\xi^2\eta + \xi^4 - \xi^{4+k_1}) + \zeta^2 \quad \text{and} \\ f_{2,(k_1,k_2)} &= \{(\xi + \eta)^2 - \xi^{2+k_1}\}\{(\xi - \eta)^2 + \xi^{2+k_2}\} + \zeta^2. \end{aligned}$$

Let $\mathcal{O}_{m,k}$ denote the Milnor fibration of the singular point $(0, 0, 0) \in \{f_{m,k} = 0\}$.

Remark. From Theorem 2.2 and Lemma 2.5 we obtain a Reeb foliation $\mathcal{F}_{m,k}$ associated to $\mathcal{O}_{m,k}$.

In order to prove Theorem 3.5 we prepare an easy lemma.

Lemma 3.6. 1) *The complex curve*

$$C = \{\zeta^2 = -(\eta - p_1) \cdots (\eta - p_{m+2})\} \quad (m = 1, 2)$$

on the $\eta\zeta$ -plane \mathbb{C}^2 is topologically an m -times punctured torus in \mathbb{R}^4 if the points p_i are mutually distinct. These points are the critical values of the branched double covering $\pi_\eta|C$, where $\pi_\eta : \mathbb{C}^2 \rightarrow \mathbb{C}$ denotes the projection to the η -axis.

- 2) *Let $B : p_1 = p_1(\theta), \dots, p_{m+2} = p_{m+2}(\theta)$ be a closed braid on $\mathbb{C} \times S^1$ ($\theta \in S^1$). Then the above curve $C = C_\theta$ traces a surface bundle over S^1 . Fix a proper embedding $l : \mathbb{R} \rightarrow \mathbb{C}$ into the η -axis such that $l(1) = p_1(0), \dots, l(m+2) = p_{m+2}(0)$. Suppose that the closed braid B is isotopic to the geometric realization of a composition*

$$\prod_{j=1}^J \{\sigma_{i(j)}\}^{q(j)} \quad (q(j) \in \mathbb{Z}, i(j) \in \{1, \dots, m+1\}),$$

where $\sigma_i : \mathbb{C} \rightarrow \mathbb{C}$ denotes the right-handed exchange of p_i and p_{i+1} along the arc $l([i, i+1])$ ($i = 1, \dots, m+1$). Then the monodromy of the surface bundle C_θ is the composition

$$\prod_{j=1}^J \{\tau(\ell_{i(j)})\}^{q(j)} \quad \text{where } \ell_i = (\pi_\eta|C)^{-1}(l([i, i+1])).$$

Proof of Theorem 3.5. Regard $\xi \neq 0$ as a small parameter and take the branched double covering $\pi_\eta|C_\xi$ of the curve $C_\xi = \{f_{m,k} = 0, \xi = \text{const}\} \cap B^6$. Then the critical values of $\pi_\eta|C_\xi$ are

$$\begin{aligned} p_1, p_2 &= -\xi^2\{1 - (\xi^{k_1})^{1/2}\} \quad \text{and} \quad p_3 = 2\xi_2 \quad \text{in the case where } m = 1 \\ (\text{resp. } p_1, p_2 &= -\xi\{1 - (\xi^{k_1})^{1/2}\}, p_3, p_4 = \xi\{1 - (-\xi^{k_2})^{1/2}\} \text{ in the case where } m = 2). \end{aligned}$$

As ξ rotates along a small circle $|\xi| = \varepsilon$ once counterclockwise, the set $\{p_1, \dots, p_{m+2}\}$ traces a closed braid, which is clearly a geometric realization of the composition

$$(\sigma_1 \circ \sigma_2)^6(\sigma_1)^{k_1} \quad (\text{resp. } (\sigma_1 \circ \sigma_2 \circ \sigma_3)^4(\sigma_1)^{k_1}(\sigma_3)^{k_2}).$$

From Lemma 3.6 and the well-known relation

$$\tau(\partial C_\xi) \simeq (\tau(\ell_1) \circ \tau(\ell_2))^6 \quad (\text{resp. } \tau(\partial C_\xi) \simeq (\tau(\ell_1) \circ \tau(\ell_2) \circ \tau(\ell_3))^4),$$

we see that the link of the singular point $(0, 0, 0) \in \{f_{m,k} = 0\}$ admits the supporting open-book decomposition in Proposition 3.2 2). This completes the proof of Theorem 3.5. \square

If we insert the Lutz tube associated to $A_{m,k}$ ($m = 1, 2, k \neq 0$) along the binding of the supporting open-book decomposition equivalent to $\mathcal{O}_{m,k}$, we obtain a contact structure $\ker(\alpha_{m,k})$ on S^5 . Then the page becomes a convex overtwisted hypersurface. The following theorem can be proved in a similar way to the proof of Lemma 2.2.

Theorem 3.7. *The contact structure $\ker(\alpha_{m,k})$ ($m = 1, 2, k \neq 0$) deforms via contact structures into a foliation which is obtained by cutting and turbulizing the page leaves of the Reeb foliation $\mathcal{F}_{m,k}$ along the hypersurface corresponding to the boundary of the Lutz tube.*

Let (M', α') be the contact connected sum of any contact 5-manifold (M^5, α) with the above exotic 5-sphere $(S^5, \alpha_{m,k})$. Then we see that the contact manifold $(M' \approx M^5, \alpha')$ contains a convex overtwisted hypersurface. Namely,

Theorem 3.8. *Any contact 5-manifold admits a contact structure which violates the Thurston-Bennequin inequality for a convex hypersurface with contact-type boundary.*

3.4. Plastikstufes in Lutz tubes. We show that there exists a plastikstufe in any 5-dimensional Lutz tube. First we define a plastikstufe in a contact 5-manifold.

Definition 3.9. Let (M^5, α) be a contact 5-manifold and $\iota : T^2 \rightarrow M^5$ a Legendrian embedding of the torus which extends to an embedding $\tilde{\iota} : D^2 \times S^1 \rightarrow M^5$ of the solid torus. Then the image $\tilde{\iota}(D^2 \times S^1)$ is called a *plastikstufe* if there exists a function $f(r)$ such that

$$(r^2 d\theta + f(r) dr) \wedge (\tilde{\iota}^* \alpha) \equiv 0, \quad \lim_{r \rightarrow 0} \frac{f(r)}{r^2} = 0 \quad \text{and} \quad \lim_{r \rightarrow 1} |f(r)| = \infty,$$

where r and θ denote polar coordinates on the unit disk D^2 .

Example 3.10. Consider the contactization

$$(\mathbb{R} \times T_A \times \mathbb{R}(\exists t), \alpha = \beta_+ + s\beta_- + dt)$$

of the exact symplectic manifold $(\mathbb{R}(\exists s) \times T_A, d(\beta_+ + s\beta_-))$, where β_\pm are the 1-forms described in Example 1.9. Take coordinates p and q near the origin on $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ such that $p = q = 0$ at the origin, $\partial/\partial p = v_+$ and $\partial/\partial q = v_-$. Then for small $\varepsilon > 0$, the codimension-2 submanifold

$$\mathcal{P} = \{p = \varepsilon a^{-z} g(s), q = \varepsilon a^z s g(s)\} \subset \mathbb{R} \times T_A \times \mathbb{R}$$

is compactified to a plastikstufe on the Lutz tube $T_A \times D^2$, where $g(s)$ is a function with

$$g(s) \equiv 0 \quad \text{on } (-\infty, 1], \quad \text{and} \quad g(s) \equiv \frac{1}{s \log s} \quad \text{on } [2, \infty).$$

Note that the boundary $\{(\infty, (0, 0, z), t) \mid z \in S^1, t \in S^1\} \approx T^2$ of the plastikstufe is a Legendrian torus, and on the submanifold \mathcal{P} the contact form α can be written as

$$\alpha|_{\mathcal{P}} = a^{-z} dq + sa^z dp + dt = \varepsilon(g(s) + 2sg'(s)) ds + dt.$$

Indeed, as $s \rightarrow \infty$,

$$g(s) \rightarrow 0, \quad sg(s) \rightarrow 0 \quad \text{and} \quad \int_2^s (g(s) + 2sg'(s)) ds \rightarrow -\infty.$$

Remark. As $\varepsilon \rightarrow 0$, the above plastikstufe converges to a solid torus $S^1 \times D^2$ foliated by S^1 times the straight rays on D^2 , i.e., the leaves are $\{t = \text{const}\}$.

The following theorem is proved in the above example.

Theorem 3.11. *There exists a plastikstufe in any 5-dimensional Lutz tube.*

Corollary. (Niederkrüger-van Koert[23].) *Any contact 5-manifold (M^5, α) admits another contact structure $\ker \alpha'$ such that (M^5, α') contains a plastikstufe.*

3.5. Topology of the pages. We decide the Euler characteristic of the page of the open-book decomposition given in Theorem 3.5 which is diffeomorphic to

$$F = \{f_{m,k}(\xi, \eta, \zeta) = \delta\} \cap \{|\xi|^2 + |\eta|^2 + |\zeta|^2 \leq \varepsilon\},$$

where $\delta \in \mathbb{C}$, $\varepsilon \in \mathbb{R}_{>0}$, $0 < |\delta| \ll \varepsilon \ll 1$. Let π_ξ , π_η and π_ζ denote the projections to the axes.

In the case where $m = 1$, the critical values of $\pi_\xi|F$ are the solutions of the system

$$f_{1,(k_1)} - \delta = 0, \quad \frac{\partial}{\partial \eta} f_{1,(k_1)} = 0, \quad \frac{\partial}{\partial \zeta} f_{1,(k_1)} = 2\zeta = 0 \quad \text{and} \quad |\xi| \ll \varepsilon.$$

Therefore, for each critical value ξ of $\pi_\xi|F$, we have the factorization

$$(\eta - 2\xi^2)(\eta^2 + 2\xi^2\eta + \xi^4 - \xi^{4+k_1}) - \delta = (\eta - a)^2(\eta + 2a)$$

of the polynomial of η , where the parameter $a \in \mathbb{C}$ depends on ξ . By comparison of the coefficients of the η^1 -terms and the η^0 -terms we have

$$-4\xi^4 + \xi^4 - \xi^{4+k_1} = a^2 - 2a^2 - 2a^2 \quad \text{and} \quad -2\xi^6 + 2\xi^{6+k_1} - \delta = 2a^3.$$

Eliminating the parameter a , we obtain the equation

$$4\xi^{12+k_1}(9 - \xi^{k_1})^2 = 108\xi^6(1 - \xi^{k_1})\delta + 27\delta^2.$$

Then we see that $\pi_\xi|F$ has $12 + k_1$ critical points, which indeed satisfy $a \neq -2a$, i.e., the map $\pi_\xi|F$ defines a PALF structure on F with $12 + k_1$ singular fibres. Thus we have

$$\chi(F) = 1 - 2 + 12 + k_1 = 11 + k_1.$$

In the case where $m = 2$, we have the factorization

$$\{(\xi + \eta)^2 - \xi^{2+k_1}\}\{(\xi - \eta)^2 + \xi^{2+k_2}\} - \delta = (\eta - a)^2(\eta + a - b)(\eta + a + b) \quad (a, b \in \mathbb{C}).$$

By comparison of the coefficients we have

$$\begin{cases} \xi^2(2 + \xi^{k_1} - \xi^{k_2}) = 2a^2 + b^2 \\ \xi^3(\xi^{k_1} + \xi^{k_2}) = ab^2 \\ \xi^4(1 - \xi^{k_1})(1 + \xi^{k_2}) - \delta = a^2(a^2 - b^2) \end{cases}.$$

In order to eliminate a, b , we put $a = u + v$ and $\xi^2(2 + \xi^{k_1} - \xi^{k_2}) = 6uv$. Then we have

$$\begin{cases} 6uv - 2(u + v)^2 = b^2 \\ \xi^3(\xi^{k_1} + \xi^{k_2}) = -2(u^3 + v^3) \\ \xi^4(1 - \xi^{k_1})(1 + \xi^{k_2}) - \delta = (u + v)^4 + 2(u^3 + v^3)(u + v) \end{cases}.$$

Further we put

$$p = uv, \quad q = u^3 + v^3 \quad \text{and} \quad r = (u + v)^4 + 2(u^3 + v^3)(u + v).$$

Then p, q and r are polynomials of ξ . Eliminating a from

$$q (= q(p, a)) = 3pa - a^3 \quad \text{and} \quad r (= r(p, a)) = -6pa^2 + 3a^4,$$

we obtain

$$(27q^4 - r^3) + 54(prq^2 - p^3q^2) + 18p^2r^2 - 81p^4r = 0,$$

which is a polynomial equation of ξ . As $\delta \rightarrow 0$, the left hand side converges to

$$\xi^{12+k_1+k_2} \left\{ 1 - \frac{\xi^{k_1} - \xi^{k_2}}{2} + \frac{(\xi^{k_1} + \xi^{k_2})^2}{16} \right\}^2.$$

Therefore $\pi_\xi|F$ has $12 + k_1 + k_2$ critical points, which indeed satisfy $4a^2 \neq b^2$ and $b \neq 0$, i.e., the map $\pi_\xi|F$ defines a PALF structure on F with $12 + k_1 + k_2$ singular fibres. Thus we have

$$\chi(F) = 1 - 3 + 12 + k_1 + k_2 = 10 + k_1 + k_2.$$

3.6. Symplectic proof. In this subsection we sketch another proof of the following theorem, which is slightly weaker than Theorem 3.5 and the result of the previous subsection.

Theorem 3.12. *The contact manifold $T_{A_{m,k}}$ ($m = 1, 2$) is contactomorphic to the binding of a supporting open-book decomposition on the standard S^5 whose page $P_{m,k}$ satisfies $\chi(P_{m,k}) = 11+k_1$ in the case where $m = 1$ and $\chi(P_{m,k}) = 10 + k_1 + k_2$ in the case where $m = 2$.*

We start with the following observation.

Observation. 1) We consider the fibre

$$V_\delta = \{\xi^2 + \eta^2 + \zeta^2 = \delta\} \subset \mathbb{C}^3$$

of the singular fibration $f(\xi, \eta, \zeta) = \xi^2 + \eta^2 + \zeta^2 : \mathbb{C}^3 \rightarrow \mathbb{C}(\exists \delta)$, which we call the first fibration. If $\delta \neq 0$, the restriction $\pi_\xi|V_\delta$ is a singular fibration over the ξ -axis, which we call the second fibration. The fibre of the second fibration is

$$F_\xi = (\pi_\xi|V_\delta)^{-1}(\xi) = \{\eta^2 + \zeta^2 = \delta - \xi^2\}.$$

If $\xi^2 \neq \delta$, the restriction $\pi_\eta|F_\xi$ has critical values $\pm\gamma = (\delta - \xi^2)^{1/2}$. That is, the second fibre F_ξ is a double cover of the η -axis branched over $\pm\gamma$. We call $\pi_\eta|F_\xi$ the third fibration. Then the line segment between $\pm\gamma$ lifts to the vanishing cycle

$$\{(0, \gamma x, \gamma y) \mid (x, y) \in S^1 \subset \mathbb{R}^2\} (\approx S^1) \subset F_\xi$$

which shrinks to the singular points $(\delta^{1/2}, 0, 0)$ on the fibres $F_{\delta^{1/2}}$. On the other hand, the line segment between $\delta^{1/2}$ on the ξ -axis lifts to the vanishing Lagrangian sphere

$$L = \{(\delta^{1/2}x, \delta^{1/2}y, \delta^{1/2}z) \mid (x, y, z) \in S^2 \subset \mathbb{R}^3\} (\approx S^2) \subset V_\delta$$

which shrinks to the singular point $(0, 0, 0)$ on V_0 . The monodromy of the first fibration around $\delta = 0$ is the Dehn-Seidel twist along the Lagrangian sphere L (see [10]).

2) Next we consider the tube

$$B' = \{|\xi + \eta^2 + \zeta^2| \leq \varepsilon\} \cap B^6$$

of the regular fibration $g(\xi, \eta, \zeta) = \xi + \eta^2 + \zeta^2 : \mathbb{C}^3 \rightarrow \mathbb{C}$. Let V'_δ denote the fibre $g^{-1}(\delta)$ ($|\delta| \leq \varepsilon$) of the first fibration g and F'_ξ the fibre of the second fibration $\pi_\xi|V'_\delta$. The third fibration $\pi_\eta|F'_\xi$ has two critical points $(\delta - \xi)^{1/2}$ on the η -axis. Then the line segment between $(\delta - \xi)^{1/2}$ lifts to the vanishing circle

$$\{(\xi, (\delta - \xi)^{1/2}x, (\delta - \xi)^{1/2}y) \mid (x, y) \in S^1 \subset \mathbb{R}^2\} (\approx S^1) \subset F'_\xi$$

which shrinks to the singular point $N = (\delta, 0, 0)$ on F'_ξ . By attaching a symplectic 2-handle to B' , we can simultaneously add a singular fibre to each second fibration $\pi_\xi|V'_\delta$ so that the above vanishing cycle shrinks to another singular point S than N . Here the vanishing cycle traces a Lagrangian sphere from the north pole N to the south pole S . (The attaching sphere can be considered as the equator.) The symplectic handle body $B' \cup$ (the 2-handle) can also be realized as a regular part

$$f^{-1}(U) \cap B^6 \quad (\exists U \approx D^2, U \not\ni 0)$$

of the singular fibration f in the above 1). Thus we can add a singular fibre $V_0 \cap B^6$ to it by attaching a symplectic 3-handle. That is, the tube $\{|f| \leq \varepsilon\} \cap B^6$ of the singular fibration f can be considered as the result of the cancellation of the 2-handle and the 3-handle attached to the above tube B' of the regular fibration g . Note that such a cancellation preserves the contactomorphism-type of the contact-type boundary.

Proof of Theorem 3.12. Take the tubes $\{|h_m| \leq \varepsilon\} \cap B^6$ ($m = 1, 2$) of the regular fibrations

$$h_1(\xi, \eta, \zeta) = \xi + \eta^3 + \zeta^2 \quad \text{and} \quad h_2(\xi, \eta, \zeta) = \xi + \eta^4 + \zeta^2.$$

Let $F_{m,\xi}$ denote the fibre of the second fibration $\pi_\xi|h_m^{-1}(\delta)$. Then the third fibration $\pi_\eta|F_{m,\xi}$ has $m+2$ singular fibres ($m = 1, 2$). We connect the corresponding critical values on the η -axis by a simple arc consisting of $m+1$ line segments $\sigma_1, \dots, \sigma_{m+1}$, which lift to vanishing cycles

$\ell_1, \dots, \ell_{m+1}$ on the fibre $F_{m,\xi}$. Then we can attach a symplectic 2-handle to the tube along one of the vanishing cycles $\ell_1, \dots, \ell_{m+1}$, and cancel it by attaching a 3-handle as is described in the above observation. Iterating this procedure, we can obtain a symplectic filling of the standard S^5 as the total space of a symplectic singular fibration over D^2 whose regular fibre is an exact symplectic filling of $T_{A_{m,k}}$. Then the Euler characteristic of the fibre is $11+k_1$ ($m=1$) or $10+k_1+k_2$ ($m=2$). Indeed, the relation

$$\tau(\partial F_{1,\xi}) \simeq (\tau(\ell_1) \circ \tau(\ell_2))^6 \quad (\text{resp. } \tau(\partial F_{2,\xi}) \simeq (\tau(\ell_1) \circ \tau(\ell_2) \circ \tau(\ell_3))^4)$$

implies that we can attach $12+k_1$ (resp. $12+k_1+k_2$) pairs of 2- and 3-handles to the tube $\{|h_1| \leq \varepsilon\} \cap B^6$ (resp. $\{|h_2| \leq \varepsilon\} \cap B^6$) to obtain the above fibration. This completes the proof of Theorem 3.12 \square

- Remark.**
- 1) Giroux and Mohsen further conjectured that, for any supporting open-book decomposition on a contact manifold (M^{2n+1}, α) , we can attach a n -handle to the page to produce a Lagrangian n -sphere S^n , and then add a Dehn-Seidel twist along S^n to the monodromy to obtain another supporting open-book decomposition on (M^{2n+1}, α) ([10]). We did a similar replacement of the supporting open-book decomposition in the above proof of Theorem 3.12 by means of symplectic handles.
 - 2) Take a triple covering from the three-times punctured torus to the once punctured torus $F_{1,\xi}$ such that ℓ_2 lifts to a long simple closed loop. Then from the relations

$$\tau(\partial F_{1,\xi}) \simeq (\tau(\ell_1) \circ \tau(\ell_2))^6 \simeq (\tau(\ell_1) \circ \tau(\ell_2)^3)^3$$

we see that the Dehn twist along the boundary of the three-times punctured torus is also isotopic to a composition of Dehn twists along non-separating loops. On the other hand, take a double covering from the four-times punctured torus to the twice punctured torus $F_{2,\xi}$ such that ℓ_2 lifts to a long simple closed loop. Then from the relations

$$\begin{aligned} \tau(\partial F_{2,\xi}) &\simeq \{\tau(\ell_1)\}^{-1} \circ \{\tau(\ell_1) \circ \tau(\ell_3) \circ \tau(\ell_2)\}^4 \circ \tau(\ell_1) \\ &\simeq \{\tau(\ell_2) \circ \tau(\ell_3) \circ \tau(\ell_2)^2 \circ \tau(\ell_1) \circ \tau(\ell_2)\}^2 \end{aligned}$$

we see that the Dehn twist along the boundary of the four-times punctured torus is also isotopic to a composition of Dehn twists along non-separating loops.

Problem. Can we generalize Theorem 3.12 to the case where $m=3$ or 4 ?

4. FURTHER DISCUSSIONS

A (half) Lutz twist along a Hopf fibre in the standard S^3 produces a basic overtwisted contact manifold $\overline{S^3}$ diffeomorphic to S^3 . This overtwisted contact structure is supported by the negative Hopf band. Indeed any overtwisted contact manifold $\overline{M^3}$ is a connected sum with $\overline{S^3}$ (i.e., $\overline{M^3} = \exists M^3 \# \overline{S^3}$). Moreover a typical supporting open-book decomposition on $\overline{M^3}$ is the Murasugi-sum (=plumbing) with a negative Hopf band (see [10]). — The author's original motivation was to find various Lutz tubes in a given overtwisted contact 3-manifold or simply in $\overline{S^3}$. (See [20] for the first model of a Lutz tube by means of a supporting open-book decomposition.) Since the binding of the trivial supporting open-book decomposition on S^3 is a Hopf fibre, the above Lutz twist inserts a Lutz tube along the binding. Then the Lutz twist produces a non-supporting trivial open-book decomposition \mathcal{O} by convex overtwisted disks. In 5-dimensional case, the Lutz tube (i.e., the neighbourhood of the binding of \mathcal{O}) is replaced by a 5-dimensional Lutz tube which contains a plastikstufe, and the convex overtwisted disk (i.e., the page) by a convex overtwisted hypersurface violating the Thurston-Bennequin inequality. The idea of placing a Lutz tube around the binding of a non-supporting open-book decomposition is also found in the recent work of Ishikawa [15]. However, in general, the insertion of a 5-dimensional Lutz tube requires only the normal triviality of the contact submanifold T_A in the original contact manifold.

Problem 4.1. Suppose that a contact 5-manifold (M^5, α) contains a Lutz tube. Then does it always contain a convex overtwisted hypersurface?

We also have the basic exotic contact 5-manifold $\overline{S^5}$ which is diffeomorphic to S^5 and supported by the 5-dimensional negative Hopf band. Here the negative Hopf band is the mirror image of the positive Hopf band which is (the page of) the Milnor fibration of $(0, 0, 0) \in \{\xi^2 + \eta^2 + \zeta^2 = 0\}$. Thus the monodromy of the negative Hopf band is the inverse of the Dehn-Seidel twist (see Observation 1) in §3.6). The fundamental problem is

Problem 4.2. Does $\overline{S^5}$ contains a Lutz tube or a plastikstufe? Could it be that $\overline{S^5}$ is contactomorphic to $(S^5, \ker(\alpha_{m,k}))$? Note that almost contact structures on S^5 are mutually homotopic.

The next problem can be considered as a variation of Calabi's question (see §1).

Problem 4.3. Does the standard S^{2n+1} ($n > 1$) contains a convex hypersurface with disconnected contact-type boundary?

If there is no such hypersurfaces, the following conjecture trivially holds.

Conjecture 4.4. The Thurston-Bennequin inequality holds for any convex hypersurface with contact-type boundary in the standard S^{2n+1} .

REFERENCES

- [1] D. Bennequin: *Entrelacements et équations de Pfaff*, Astérisque, **107-108** (1983), 83–161.
- [2] C. Caubel, A. Nemethi and P. Popescu-Pampu: *Milnor open books and Milnor fillable contact 3-manifolds*, Topology **45**(3) (2006) 673–689
- [3] Y. Eliashberg: *Filling by holomorphic discs and its applications*, Geometry of low-dimensional manifolds 2, London Math. Soc. Lect. Note Ser. **151**(1990), 45–72.
- [4] Y. Eliashberg: *Contact 3-manifolds twenty years since J. Martinet's work*, Ann. Inst. Fourier, **42** (1991), 165–192.
- [5] Y. Eliashberg and W. Thurston: *Confoliations*, A.M.S. University Lecture Series, **13** (1998).
- [6] J. Etnyre and D. Pancholi: *On generalizing Lutz twists*, preprint (2009), arXiv:0903.0295 [math.SG]
- [7] H. Geiges: *Symplectic manifolds with disconnected boundary of contact type*, Int. Math. Res. Notices, **1** (1994), 23–30.
- [8] E. Ghys: *Déformation de flots d'Anosov et de groupes fuchsiens*, Ann. Inst. Fourier, **42** (1992), 209–247.
- [9] E. Giroux: *Convexité en topologie de contact*, Comm. Math. Helv. **66** (1991), 637–677.
- [10] E. Giroux: *Géométrie de contact: de la dimension trois vers les dimensions supérieures*, Proc. ICM-Beijing, **2** (2002), 405–414.
- [11] E. Giroux: *Contact structures and symplectic fibrations over the circle*, Notes of the summer school “Holomorphic curves and contact topology”, Berder, 2003.
- [12] H. Grauert: *Über Modifikation und exceptionelle analytische Mengen*, Math. Ann. **146** (1962), 331–368.
- [13] K. Honda: *On the classification of tight contact structures II*, J. Diff. Geom., **55** (2000), 83–143.
- [14] A. Ibort, D. Martinez and F. Presas: *On the construction of contact submanifolds with prescribed topology*, J. Diff. Geom., **56** (2000), 235–283.
- [15] M. Ishikawa: *Compatible contact structures of fibred Seifert links in homology 3-spheres*, preprint (2009).
- [16] H. Lawson: *Codimension-one foliations of spheres*, Ann. of Math., **94** (1971), 494–503.
- [17] A. Loi and R. Piergallini: *Compact Stein surfaces with boundary as branched covers of B^4* , Invent. Math. **143** (2001), 325–348.
- [18] D. McDuff: *Symplectic manifolds with contact type boundaries*, Invent. Math. **103**(1991), 651–671.
- [19] Y. Mitsumatsu: *Anosov flows and non-Stein symplectic manifolds*, Ann. Inst. Fourier **45** (1995), 1407–1421.
- [20] A. Mori: *A note on Thurston-Winkelnkemper's construction of contact forms on 3-manifolds*, Osaka J. Math. **39** (2002), 1–11.
- [21] A. Mori: *On the violation of Thurston-Bennequin inequality for a certain non-convex hypersurface*, preprint (2009).
- [22] K. Niederkrüger: *The plastikstufe — a generalization of the overtwisted disk to higher dimensions*, Algebr. Geom. Topol. **6** (2006), 2473–2508.
- [23] K. Niederkrüger and O. van Koert: *Every contact manifolds can be given a non-fillable contact structure*, Int. Math. Res. Notices, **23**(2007), rnm115, 22 pages.
- [24] W. Thurston: *Norm on the homology of 3-manifolds*, Memoirs of the A. M. S., **339** (1986), 99–130.
- [25] W. Thurston and E. Winkelnkemper: *On the existence of contact forms*, Proc. A. M. S., **52** (1975), 345–347.
- [26] J. Van Horn-Morris: *Constructions of open book decompositions*, Thesis (2007), Univ. of Texas at Austin.