

C 0 1.2				
	T 0.+	Livin	0.10.1	
in Put: α' It target: $t > 7$ $\alpha' = \binom{1}{1}$, $t = \binom{2}{3}$ olz	Input	H idden	Output	target
$W^{\lambda} = \begin{pmatrix} 1 & -2 \\ 2 & 4 \\ -3 & 1 \end{pmatrix}$ $\delta^{\lambda} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$		0	3ء ۔	0 ±1
$W^3 = \begin{pmatrix} 1 & 1 & -3 \\ 2 & -1 & 3 \end{pmatrix}$, $b^3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, Q(tivation : $b^3 = b^3 = b$		0		
$\begin{pmatrix} a_1^3 \\ a_2^4 \end{pmatrix} = \delta \left(w^3 \cdot \delta \left(w^2 \cdot a_1^1 + b^2 \right) + b^3 \right) q^1 dr^1$	0	0	0 a32	0 t2
a_{3} $b \in \{(a_{3}^{3}-t_{1})^{2}+(a_{3}^{3}-t_{2})^{2}\}$ of $ch \Rightarrow b \mid r=0.013$				
Weight Uplute을 한 경과를 구해보자.				
[forward]				
$a \times e : \mathcal{L} \text{forward} \xrightarrow{\text{Wa+b}} \mathbb{Z}^{2} \xrightarrow{\delta(2)} \mathbb{Q}^{2}$				
/ (1)				
$2 \qquad \text{W}^2 \alpha' + \text{b}^2 \longrightarrow \left(\begin{array}{c} 0 \\ 8 \end{array} \right) \longrightarrow \left(\begin{array}{c} 0 \\ 8 \end{array} \right)$				
$3 \qquad w^2\alpha^2 + b^3 \longrightarrow \binom{15}{-4} \longrightarrow \binom{5}{-4}$				
[Back Ward]				
$ayer: l \qquad back Ward \longrightarrow J^{k}$				
$3 \qquad \frac{\partial L}{\partial z^a} \qquad \longrightarrow \begin{pmatrix} 13 \\ -7 \end{pmatrix}$				
$\mathcal{L} \qquad \left(\left(\begin{array}{c} w^3 \end{array} \right)^{\intercal} \cdot \delta^3 \right) \odot \delta'(\tilde{\epsilon}^z) \longrightarrow \left(\begin{array}{c} 1 \\ 3 \\ -60 \end{array} \right)$				
[Weight uflate]				
$\frac{\partial L}{\partial W^2} = \begin{pmatrix} 13 \\ -9 \end{pmatrix} \begin{pmatrix} 0 & 8 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 104 & 13 \\ 0 & -36 & -9 \end{pmatrix}, \frac{\partial L}{\partial W^2} = \begin{pmatrix} 13 \\ -9 \end{pmatrix}$				
$W^3 = 0.01 \frac{dL}{dW^3} = \begin{pmatrix} 1 & 0.94 & -3.13 \\ 2 & -0.94 & 3.09 \end{pmatrix}$				

b3 - 0.01	$\frac{dP_2}{d\Gamma} = \left(\right)$	1.89)			
) = (33 :		$\frac{\partial L}{\partial b^2} = \left(\frac{\partial L}{\partial b^2} \right)$	33
		1.69 3.67 -24 1.6)		
b2 - 0.01	$\frac{9P_x}{9\Gamma} = \left(\right.$	1.67			

[물제 2]				
in Put: α^{1} It target: t ? t $\alpha^{1} = {1 \choose 1}$, $t = {2 \choose 3}$ ol $\mathbb Z$	Input	H idden	Output	taræt
$W^{2} = \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \qquad b^{2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $W^{3} = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \qquad b^{3} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \text{a.ctivation} \qquad b \in (x) = x^{2}$	_		3	- 1
$W^3 = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$, $b^3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, QCti Vation : $b^3 = b^3 = b^$			o @1	
$\begin{pmatrix} a_1^3 \\ a_2^4 \end{pmatrix} = b \left(w^3 \cdot b \left(w^2 \cdot a_1^2 + b^2 \right) + b^3 \right) \sqrt[q]{a_1}$	- 0	0	o a3,	0 t2
$L_{\text{Loss}} = \frac{1}{2} \left[(Q_1^3 - t_1)^2 + (Q_2^3 - t_2)^2 \right] \text{ of } CH \text{ ∂P} r = 0.0 \frac{3}{2}$				
Weight Unlute 및 한 경과를 구해보자.				
[forward]				
$ayer: l$ forward $\xrightarrow{Wa+b} z^l \xrightarrow{\delta(z)} a^l$				
/ ('1)				
$2 \qquad W^2 \Omega' + V^2 \longrightarrow {\binom{-1}{2}} \longrightarrow {\binom{n}{4}}$				
$3 \qquad W^{2}\alpha^{2} + b^{2} \longrightarrow \binom{-J}{L} \longrightarrow \binom{J}{J}$				
[Back Ward]				
Layer: l back Ward> Ja				
$3 \qquad \frac{\partial L}{\partial z^3} \qquad \longrightarrow \begin{pmatrix} -42 \\ -4 \end{pmatrix}$	<u> </u>	(= (a3 - ±1) () (2· Z ³) = (1)	0 (-6) = (-42)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		W1 L2	$\frac{\left(2\cdot z_{2}^{2}\right)^{\left(1\right)}}{\left(-42\atop -4\right)} \odot \left(-12\atop 4\right)}$. , , . , .
~ ((W)'8) O V (194/	((w -).a)	(-1 -1	/(-4/) (4/	(184)
[Weight uplate]				
$\frac{\partial L}{\partial W^3} : \begin{pmatrix} -41 \\ -4 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} : \begin{pmatrix} -41 & -168 \\ -4 & -16 \end{pmatrix} \qquad \qquad \frac{\partial L}{\partial b^3} : \begin{pmatrix} -41 \\ -4 \end{pmatrix}$				
$\frac{\partial L}{\partial W^{3}} = \begin{pmatrix} -4 \\ -4 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} = \begin{pmatrix} 42 & -168 \\ -4 & -16 \end{pmatrix} , \frac{\partial L}{\partial W^{3}} = \begin{pmatrix} -42 \\ -4 \end{pmatrix}$ $W^{3} = 0.01 \frac{dL}{dW^{3}} = \begin{pmatrix} 1.42 & 0.68 \\ 2.04 & -0.84 \end{pmatrix}$				
$b^3 - 0.01 \frac{dL}{db} = \binom{0.41}{0.04}$				
·				
$\frac{\partial L}{\partial w^k} = \begin{pmatrix} 100 \\ 184 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} = \begin{pmatrix} 100 \\ 184 \end{pmatrix} \begin{pmatrix} 194 \\ 184 \end{pmatrix} \begin{pmatrix} \frac{\partial L}{\partial b^k} \end{pmatrix} = \begin{pmatrix} 100 \\ 194 \end{pmatrix}$				
$W^2 - 0.01 \frac{\partial L}{\partial w^2} = \begin{pmatrix} 0 & -3 \\ -0.34 & -0.34 \end{pmatrix}$				
.,				

 $\frac{1}{b^2}$ - 0.01 $\frac{\partial L}{\partial b^2}$ = $\begin{pmatrix} -1 \\ -1.84 \end{pmatrix}$

[
$$gad3$$
]

inter (a) T target: T f $a^1 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$, $A = (-1, 0, 1)$
 $W^{\pm} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, $b^{\pm} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $W^{\pm} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 \end{pmatrix}$, $b^{\pm} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $W^{\pm} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 \end{pmatrix}$, $b^{\pm} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $W^{\pm} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $b^{\pm} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $activation : 6cv = z$
 $a^{\mu} = 6 \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $activated : b^{\pm} = b^{\pm} \end{pmatrix} + b^{\pm} \end{pmatrix} + b^{\pm} \end{pmatrix} + b^{\pm} \end{pmatrix}$
 $L_{asyet} = \frac{1}{3} \left[\begin{pmatrix} (a^{\pm} - b_1)^{\pm} + (a^{\pm} + b_2)^{\pm} + (a^{\pm} +$