1

Assignment 14

Shaik Zeeshan Ali AI20MTECH11001

Download all python codes from

https://github.com/Zeeshan-IITH/IITH-EE5609/new/master/codes

and latex-tikz codes from

https://github.com/Zeeshan-IITH/IITH-EE5609

1 PROBLEM

Let $p_n(x) = x^n$ for $x \in \mathbb{R}$ and let $\varrho = span\{p_0, p_1, p_2, ...\}$. Then

- 1) ϱ is a vector space of all real valued continuous functions on \mathbb{R} .
- 2) ϱ is a subspace of all real valued continuous functions on \mathbb{R} .
- 3) $\{p_0, p_1, p_2, ...\}$ is a linearly independent set in the vector space of all real valued continuous functions on \mathbb{R} .
- 4) Trigonometric functions belong to ϱ .

2 CONSTRUCTION

Given	$p_n(x) = x^n \text{ for } x \in \mathbb{R} \text{ and } \varrho = span\{p_0, p_1, p_2,\}.$
Vector	The set S consisting of all real continuous functions on $\mathbb R$ forms a vector space.
space	Let f and g be two real continuous functions from the set S .
of real	Since the sum of two continuous function is a continuous function.
continuous	i) Addition is commutative $f + g = g + f$
functions	<i>ii</i>) Addition is associative $f + (g + h) = (f + g) + h$
on R	iii)There is unique O, zero function which maps every element to 0.
	iv)Additive inverse. For each f in S , $-f$ is a function in S .
	v)Properties of scalar multiplication. For $c, c_1, c_2 \in \mathbb{R}$,
	a) $1f = f$ where the constant function 1 maps every element to 1.
	$b) (c_1c_2)f = c_1(c_2f)$
	$c) \ c(f+g) = cf + cg$
	$d) c_1 + c_2)f = c_1 f + c_2 f$
	Hence the set S forms a vector space.

ϱ represents the vector space of polynomials. Polynomial functions are infintely
continuously differentiable. So any function that is continuous but not differentiable can
not be represented by polynomials.
Example the function $ \mathbf{x} $ is continous but cannot be represented in
polynomial basis.Therefore option 1 is incorrect.
$arrho$ forms a subspace of all real valued continuous function on $\mathbb R$
Let α, β be two polynomial functions of order m and n, represented by the tuple of
coefficients (a_0, a_2, a_2a_m) and (b_0, b_1, b_2b_n) , then $c\alpha + \beta$ is also
a polynomial function whose coefficients are $(ca_0 + b_0, ca_1 + b_1, ca_2 + b_2)$
Therefore ϱ is a subspace of all real valued continuous functions on \mathbb{R} .
For example consider two functions $f = \{2, 0, 4\}$ and $g = \{0, 2, 1, 5\}$, then $2f + g$
will be $2f + g = 2(2 + 4x^2) + (2x + x^2 + 5x^3) = 4 + 2x + 9x^2 + 5x^3 = \{4, 2, 9, 5\}.$
Consider the expression
$a_0p_0 + a_1p_1 + a_2p_2 + \dots = 0 \implies a_0 = a_1 = a_2 = \dots = 0$
Hence $\{p_0, p_1, p_2,\}$ are linearly independent set in the vector space of all real valued
continuous functions on \mathbb{R} .
The fundamental period of trigonometric functions is finite, where as polynomials are
aperiodic. So, they cannot belong to the same class.
For example $\sin x$ has a fundamental period of 2π . $\tan x$ is continuous in the interval
$(-\frac{\pi}{2}, \frac{\pi}{2})$, but is not defined at $k\frac{\pi}{2}$ where $k \in odd(\mathbb{N})$.

TABLE 1: Answer