Breast Cancer Tumor Classifications

The problem:

1 in 8 women will develop breast cancer in their lifetime.

Without ML the accuracy of breast cancer detection based on tumor features is around 85%.

The Solution:

Using ML, we can improve the accuracy of breast cancer detection to over 95%.

We can reduce the false negatives to less than 5%.

We can reduce the false positives to less than 5%

The Data:

id diagnosis	radius_mear tex	ture_mea pe	erimeter_m are	ea_mean s	moothness_c	ompactness c	oncavity_m c	oncave poin sy	ymmetry_n fr	actal_dime r	adius_se	texture_se	perimeter_sear	ea_se s	smoothness_	compactness	concavity_se	concave poir
842302 M	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	1.095	0.9053	8.589	153.4	0.006399	0.04904	0.05373	0.01587
842517 M	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	0.5435	0.7339	3.398	74.08	0.005225	0.01308	0.0186	0.0134
84300903 M	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	0.7456	0.7869	4.585	94.03	0.00615	0.04006	0.03832	0.02058
84348301 M	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	0.4956	1.156	3.445	27.23	0.00911	0.07458	0.05661	0.01867
84358402 M	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	0.7572	0.7813	5.438	94.44	0.01149	0.02461	0.05688	0.01885
843786 M	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	0.3345	0.8902	2.217	27.19	0.00751	0.03345	0.03672	0.01137
844359 M	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	0.4467	0.7732	3.18	53.91	0.004314	0.01382	0.02254	0.01039
84458202 M	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	0.5835	1.377	3.856	50.96	0.008805	0.03029	0.02488	0.01448
844981 M	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	0.3063	1.002	2.406	24.32	0.005731	0.03502	0.03553	0.01226
84501001 M	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	0.2976	1.599	2.039	23.94	0.007149	0.07217	0.07743	0.01432
845636 M	16.02	23.24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	0.3795	1.187	2.466	40.51	0.004029	0.009269	0.01101	0.007591
84610002 M	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	0.5058	0.9849	3.564	54.16	0.005771	0.04061	0.02791	0.01282
846226 M	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	0.9555	3.568	11.07	116.2	0.003139	0.08297	0.0889	0.0409
846381 M	15.85	23.95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	0.4033	1.078	2.903	36.58	0.009769	0.03126	0.05051	0.01992
84667401 M	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	0.2121	1.169	2.061	19.21	0.006429	0.05936	0.05501	0.01628
84799002 M	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	0.37	1.033	2.879	32.55	0.005607	0.0424	0.04741	0.0109
848406 M	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	0.4727	1.24	3.195	45.4	0.005718	0.01162	0.01998	0.01109
84862001 M	16.13	20.68	108.1	798.8	0.117	0.2022	0.1722	0.1028	0.2164	0.07356	0.5692	1.073	3.854	54.18	0.007026	0.02501	0.03188	0.01297
849014 M	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	0.7582	1.017	5.865	112.4	0.006494	0.01893	0.03391	0.01521
8510426 B	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	0.2699	0.7886	2.058	23.56	0.008462	0.0146	0.02387	0.01315
8510653 B	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	0.1852	0.7477	1.383	14.67	0.004097	0.01898	0.01698	0.00649
8510824 B	9.504	12.44	60.34	273.9	0.1024	0.06492	0.02956	0.02076	0.1815	0.06905	0.2773	0.9768	1.909	15.7	0.009606	0.01432	0.01985	0.01421
8511133 M	15.34	14.26	102.5	704.4	0.1073	0.2135	0.2077	0.09756	0.2521	0.07032	0.4388	0.7096	3.384	44.91	0.006789	0.05328	0.06446	0.02252
851509 M	21.16	23.04	137.2	1404	0.09428	0.1022	0.1097	0.08632	0.1769	0.05278	0.6917	1.127	4.303	93.99	0.004728	0.01259	0.01715	0.01038
852552 M	16.65	21.38	110	904.6	0.1121	0.1457	0.1525	0.0917	0.1995	0.0633	0.8068	0.9017	5.455	102.6	0.006048	0.01882	0.02741	0.0113
852631 M	17.14	16.4	116	912.7	0.1186	0.2276	0.2229	0.1401	0.304	0.07413	1.046	0.976	7.276	111.4	0.008029	0.03799	0.03732	0.02397
852763 M	14.58	21.53	97.41	644.8	0.1054	0.1868	0.1425	0.08783	0.2252	0.06924	0.2545	0.9832	2.11	21.05	0.004452	0.03055	0.02681	0.01352
852781 M	18.61	20.25	122.1	1094	0.0944	0.1066	0.149	0.07731	0.1697	0.05699	0.8529	1.849	5.632	93.54	0.01075	0.02722	0.05081	0.01911
852973 M	15.3	25.27	102.4	732.4	0.1082	0.1697	0.1683	0.08751	0.1926	0.0654	0.439	1.012	3.498	43.5	0.005233	0.03057	0.03576	0.01083
853201 M	17.57	15.05	115	955.1	0.09847	0.1157	0.09875	0.07953	0.1739	0.06149	0.6003	0.8225	4.655	61.1	0.005627	0.03033	0.03407	0.01354
853401 M	18.63	25.11	124.8	1088	0.1064	0.1887	0.2319	0.1244	0.2183	0.06197	0.8307	1.466	5.574	105	0.006248	0.03374	0.05196	0.01158
853612 M	11.84	18.7	77.93	440.6	0.1109	0.1516	0.1218	0.05182	0.2301	0.07799	0.4825	1.03	3.475	41	0.005551	0.03414	0.04205	0.01044
85382601 M	17.02	23.98	112.8	899.3	0.1197	0.1496	0.2417	0.1203	0.2248	0.06382	0.6009	1.398	3.999	67.78	0.008268	0.03082	0.05042	0.01112
854002 M	19.27	26.47	127.9	1162	0.09401	0.1719	0.1657	0.07593	0.1853	0.06261	0.5558	0.6062	3.528	68.17	0.005015	0.03318	0.03497	0.009643

Data Wrangling:

- Dataset had 32 columns with 569 samples
- Two columns were not "useful"
 - "id" and "Unnamed: 32"
- Removed them leaving 30 features
- Malignant tumors is the minority class

Heatmaps of Benign vs Malignant Tumors

Model Selection

1. Logistic Regression

2. Random Forest Classifier

3. K Nearest Neighbors

4. Support Vector Classifier

5. Decision Tree Classifier

Model Results after hyper-parameter adjustments

Conclusion:

		Accuracy	Recall	Precision	Cross Val Avg
<	Logistic Regression	0.976744	0.979798	0.970000	95.587879
	Random Forest	0.953488	0.929293	0.968421	94.789899
	KNN	0.948837	0.969697	0.923077	96.387879
	SVM	0.967442	0.969697	0.960000	94.787879
	Decision Tree	0.930233	0.909091	0.937500	93.787879

Takeaways:

- Logistic regression has an accuracy of 97.67% for correct classification
- Logistic regression has less than 2.02% false negatives
- Logistic regression has 3% false positives, which would just lead to more testing
- Cross Validation score is 95.58%

Questions?