About

This notebook illustrates the Central Limit Theorem (CLT) in action, using two large samples: the first from the standard uniform distribution, the second from a Poisson distribution.

A histogram of the actual sampling distribution of the mean is plotted alongside the approximated sampling distribution of the mean (as set out by the CLT).

Background

The Central Limit Theorem states that

If X_1, X_2, \ldots, X_n are n independent random observations from a population with mean μ and finite variance σ^2 , then for large n, the distribution of their mean \overline{X}_n is approximately normal with mean μ and variance σ^2/n , such that:

$$\overline{X}_npprox Nigg(\mu,rac{\sigma^2}{n}igg).$$

Reference: M248 Handbook, pp.12.

Imports

The function clt() can be read here. The header and docstring have been included at the bottom of the document.

```
import scipy.stats as stats
from util.clt import clt
```

Illustration 1

This uses samples generated from the **standard uniform distribution**, U(0,1).

```
clt(a_dist=stats.uniform(loc=0, scale=1),
    n=30,
    N=10000,
    bins=50)
```


Illustration 2

This uses samples generated from the **Poisson distribution**, Poisson(5).

```
clt(a_dist=stats.poisson(mu=5),
    n=50,
    N=10000,
    bins=20)
```


Function

This is a transclusion of the function clt() imports, header, and docstring, for illustration purposes.