Designing the schematic and the layout of an inverter using Skywater 130nm process

- Create a working directory using: mkdir <dir_name>
- 2. Go to the directory using: cd <dir_name>
- 3. Copy in the example directory the xschem initialization file available in the PDK cp ~/share/pdk/sky130A/libs.tech/xschem/xschemrc .
- 4. create an ngspice initialization file .spiceinit with the following lines:

```
set ngbehavior=hs
```

set ng_nomodcheck

set color0=white

set color1=black

set xbrushwidth=2

- 5. Start xschem using: xschem &
- 6. Create the schematic and the symbol of the inverter using xschem. To do that, click on the '+' sign on the tab where the current file is displayed.
- 7. To find components use shift+i. Or use tools->insert symbol
- 8. For the inverter, use pfet_01v8 and nfet_01v8. You can find those in xschem_library/sky130_fd_pr(something like this).
- 9. Double click on the writings to change the length and width of the mosfets. You can use nmos length 0.5um, width 1um, pmos length 0.5um, and width 2um.
- 10. Add pins using tools->insert symbol. The input pin should be ipin, output pin is opin, and for VDD and GND, you should use iopin. Connect everything using 'w'

- 11. Save the schematic. Then create symbol using Symbol > Make symbol from schematic
- 12. You will see an automatically generated symbol. You can edit it to look like an inverter symbol.
- 13. Next, simulate the inverter with ngspice. To do that, create another schematic file. Use your inverter to make a test bench. You can use 'vsource' from the symbols. To use it as a pulse, edit it like following:

X Edit Properties				
Path: /home/nchakra1/opt/xschem/share/xschem/xschem_library/devices				
Symbol vsource.sym	OK	Cancel	Load	С
$\ \ \square$ No change properties $\ \ \square$ Preserve unchanged props	Cop	y cell Ed	it Attr: <	ALL
name=Vin value="pulse(0 1.8 5n 0.1n 0.1n 10n	20n)"	savecurre	ent=fal	se

14. Add a TT_Models file from symbols library. Use code.sym. Then edit the content like following by double-clicking on it.

15. Also add another code_shown.sym and edit it to include transient analysis.

16. Your final testbench will look like following:

17. Save the file. Then click on 'Netlist', after that click on 'Simulate'. Once simulation is completed, you will see a window like following:

```
🟋 ngspice
                                                                           X
ngspice 1 -> display
Here are the vectors currently active:
Title: ** sch_path: /home/nchakra1/example_xschem_sky130/inv_test.sch
Name: tran1 (Transient Analysis)
Date: Sat Oct 19 21:02:27 2024
    m.x1.xm1.msky130_fd_pr__pfet_01v8#body: voltage, real, 104 long
    m.x1.xm1.msky130_fd_pr__pfet_01v8#dbody: voltage, real, 104 long
    m.x1.xm1.msky130_fd_pr__pfet_01v8#sbody: voltage, real, 104 long
    m.x1.xm3.msky130_fd_pr__nfet_01v8#body: voltage, real, 104 long
    m.x1.xm3.msky130_fd_pr__nfet_01v8#dbody: voltage, real, 104 long
m.x1.xm3.msky130_fd_pr__nfet_01v8#sbody: voltage, real, 104 long
                          : voltage, real, 104 long
    net.1
                          : voltage, real, 104 long
    net2
    net3
                          : voltage, real, 104 long
    net4
                          : voltage, real, 104 long
                          : time, real, 104 long [default scale]
    time
    vdd#branch
                          : current, real, 104 long
    vin#branch
                          : current, real, 104 long
                          : current, real, 104 long
    vn#branch
ngspice 2 -> plot net3
ngspice 3 -> /home/nchakra1/tmp/hc3758_0.ps: No such file or directory
```

- 18. You can type plot 'net_name' to see the output.
- 19. Once you are done with this part, start working on the layout using magic. Make sure to use the exact nmos and pmos dimensions as the schematic in your layout.