Epreuve de contrôle continu n°2

durée : 1h - documents et calculatrices interdits

Justifier vos réponses en détaillant les calculs effectués

Exercice 1. (6 points)

Les ensembles F suivants sont-ils des sous-espaces vectoriels de E?

1)
$$E = \mathbb{R}^2$$
, $F = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$

1)
$$E = \mathbb{R}^2$$
, $F = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$
2) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y - z = 0 \text{ et } x - 5z = 0\}$
3) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - z = 1\}$
4) $E = \mathbb{R}^2$, $F = \{(x, y) \in \mathbb{R}^2 \mid x + y \ge 0\}$

3)
$$E = \mathbb{R}^3$$
, $F = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - z = 1\}$

4)
$$E = \mathbb{R}^2$$
, $F = \{(x, y) \in \mathbb{R}^2 \mid x + y \ge 0\}$

Exercice 2. (7 points)

Soit $H = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + y - z = 0\}$ et $A = \{(0, 1, 1), (1, 1, 4)\}.$

- 1) Montrer que H = Vect(A).
- 2) Montrer que les vecteurs de A forment une famille libre et en déduire la dimension de H.
- 3) Déterminer un supplémentaire de H dans \mathbb{R}^3 .

Exercice 3. (7 points)

Soient les vecteurs de \mathbb{R}^3 définis par

$$a_1 = (1, 0, 2), \ a_2 = (2, 1, 0), \ a_3 = (0, 1, 2).$$

- 1) Montrer que (a_1, a_2, a_3) est une base de \mathbb{R}^3 .
- 2) Quelles sont les coordonnées du vecteur u = (3, 6, 6) dans la base (a_1, a_2, a_3) ?