ASSIGNMENT 8: COMP2711H

FALL 2015

Q1 In the lecture about elementary number theory, we defined the congruence class mod p

$$\overline{i} = \{x \in \mathbb{Z} | x \equiv i \pmod{p}\},\$$

where i is an integer and called a representative of its congruence class. Note that any integer in \bar{i} can be employed as a representative of \bar{i} . We now define

$$\mathbb{Z}/p\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{p-1}\}.$$

Define two binary operations on $\mathbb{Z}/p\mathbb{Z}$ as follows:

$$\overline{i} + \overline{j} = \overline{i+j}$$
 and $\overline{i} \times \overline{j} = \overline{ij}$.

Let p be a prime.

- (a) Prove that $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ is a finite field with p elements. (8 marks)
- (b) Prove that $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ is isomorphic to $(\mathbb{Z}_p, \oplus_p, \otimes_p)$. (8 marks)
- Q2 Let $\pi(x) = x^2 + x + 2 \in GF(3)[x]$.
 - (a) Prove that $\pi(x)$ is irreducible over GF(3). (3 marks)
 - (b) Write down all the elements in $GF(3^2)$, where each element is a polynomial of degree at most one over GF(3). (3 marks)
 - (c) Let $\pi(x)$ be the irreducible polynomial for defining the multiplication in $GF(3^2)$. Compute $(x+1)\cdot(2x+1)$.
 - (d) Find out the multiplicative inverse of x + 1. (3 marks)
 - (e) Find out the minimal polynomial of x + 1 over GF(3). (3 marks)
 - (f) Find out a generator α of $GF(3^2)^*$, and express each α^i as a polynomial of degree at most 1 over GF(3). (3 marks)
 - (g) Compute $\operatorname{Tr}_{\operatorname{GF}(3^2)/\operatorname{GF}(3)}(x+1)$. (3 marks)
 - (h) Compute $N_{GF(3^2)/GF(3)}(x+1)$. (3 marks)
- Q3 Show that the sum of all elements in $GF(p^m)$ is zero, if $p^m \neq 2$. (12 marks)
- Q4 Let $\mathbb{F} = GF(q^n)$ and $\mathbb{K} = GF(q)$. Prove the following properties of the trace function $\operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(x)$ from \mathbb{F} to \mathbb{K} :
 - (a) $\operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(a+b) = \operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(a) + \operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(b)$ for all $a, b \in \mathbb{F}$. (4 marks)
 - (b) $\operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(ca) = c\operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(a)$ for all $a \in \mathbb{F}$ and $c \in \mathbb{K}$. (4 marks)
 - (c) $\operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(c) = nc$ for all $c \in \mathbb{K}$. (4 marks)
 - (d) $\operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(a^q) = \operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(a)$. (4 marks)
- Q5 Let $\mathbb{K} = GF(q)$ and $\mathbb{F} = GF(q^n)$. Prove the following properties of the norm function $N_{\mathbb{F}/\mathbb{K}}(x)$:
 - (a) $N_{\mathbb{F}/\mathbb{K}}(ab) = N_{\mathbb{F}/\mathbb{K}}(a)N_{\mathbb{F}/\mathbb{K}}(b)$ for all $a, b \in \mathbb{F}$. (4 marks)
 - (b) $N_{\mathbb{F}/\mathbb{K}}(a) = a^n$ for all $a \in \mathbb{K}$. (4 marks)
 - (c) $N_{\mathbb{F}/\mathbb{K}}(a^q) = N_{\mathbb{F}/\mathbb{K}}(a)$ for all $a \in \mathbb{F}$. (4 marks)
- Q6 Let $f(x) = x^d + b_{d-1}x^{d-1} + \cdots + b_1x + b_0 \in GF(p)[x]$ be the minimal polynomial of $\beta \in GF(p^m)$ over GF(p). Prove that

$$\operatorname{Tr}_{\operatorname{GF}(p^m)/\operatorname{GF}(p)}(\beta) = -(m/d)b_{d-1}$$

and

$$N_{GF(p^m)/GF(p)}(\beta) = (-)^m b_0^{m/d}.$$

(20 marks)

Date: Handed out on Nov. 25, due on Dec. 2 (Please give your assignment paper to the TA between 3:30pm-4:30pm on Dec. 2, his office is at Room 2394).