随机过程

教材和参考书

- 《随机过程》(第5版), 刘次华编著, 华中科技大学出版社, 2017年.
- 《随机过程及其应用》(第3版),刘次华编著,高等教育出版社,2004年版,2018年重印.
- 《概率论与数理统计》(第4版),盛骤等编,高等教育出版社,2008年.
- · 《应用随机过程概率模型导论》(第11版),Sheldon M.Ross著,龚光鲁译,人民邮电出版社,2016年.
- 《应用随机过程》(第四版),张波、尚豪编著,中国人民大学出版社,2016年。

本学期教学内容

- Ch1. 预备知识
- · Ch2. 随机过程的概念与基本类型.
- Ch3. 泊松过程
- · Ch4. 马尔可夫链
- · Ch5. 连续时间的马尔科夫链
- Ch6\7. 平稳随机过程及其谱分析

言尼

本科阶段我们学习了《概率论与数理统计》课程,其中的"概率论"主要通过一个或多个随机变量研究随机现象的统计规律性,那时的"统计规律性"很少涉及到"时间"因素。但很多现实中往往还需要研究随机现象随时间发展变化的规律,即要研究随时间不断变化的随机变量,而且所涉及的随机变量通常是无穷多个,这就是"随机过程"这门课程的研究对象。

所以,随机过程一般被视为数学分支概率论的动态 部分。与此相对,本科阶段学的是"静态概率论",静 态概率论是随机过程的基础。

我们先对本学期随机过程学习所需要的概率论的基本知识作一回顾。

引言

广义的"概率论"与"随机过程",前者包括后者. 狭义的"概率论"与"随机过程",两者并列.

同: 都以研究揭示随机现象的统计规律性为己任。

异:概率论的研究对象是一个或有限多个随机变量 (顶多提及可列个),随机过程则是研究随机现象的发 展和变化的过程,即随时间不断变化的随机变量,而且, 所涉及的随机变量通常是无穷多个。

随机过程的研究以概率论为主要基础知识,所以我们先以本科阶段的概率论内容为基本线索,对本课程所需的概率论基本内容进行梳理。

第一章 预备知识

- 1.1 概率空间
- 1.2 随机变量及其分布
- 1.3 数字特征
- 1.4 特征函数与矩母函数
- 1.5 条件概率、条件期望、独立性

回忆:本科阶段的概率的公理化定义(较直观的公理化)

定义设有随机试验E, Ω 是E的样本空间,对于E的每一事件A,都对应唯一确定的一个实数P(A),如果对应关系 $P(\cdot)$ 满足以下三个条件,则称P(A)为事件A的概率。

- (1) 非负性: $P(A) \ge 0$
- (2) 规范性: $P(\Omega) = 1$
- (3) 可列可加性:

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

问: 定义域是Ω吗?

它是Ω中的子集组成的集合族!

问: 概率定义能否不依赖于"随机试验"?

• 1.1 概率空间

1.1.1 σ 域(σ -代数)、事件

定义 设 Ω 是 非 空 集 合 , F 是 由 Ω 的 某 些 子 集 组 成 的 集 合 族 , 若 :

- $(1)\Omega \in F$;
- (2)若 $A \in F$,则 $A \in F$;
- (3)若 $A_n \in F$, n=1, 2, ? ,则 $\bigcup_{n=1}^{\infty} A_n \in F$

则称F为 σ 域(σ -代数)。

 (Ω, F) 称为可测空间,F中的元素称为 事件.

σ域对"逆"和"可列并"封闭。

性质 设 F 是 Ω 的任意 σ - 代数,则

 $(1)\Phi \in F;$

- (2)F对"○"封闭。即若 $A,B \in F, 则AB \in F$;
- (3) F 对 "-" 封 闭 。 即 若 $A,B \in F$,则 $A B \in F$;
- (4) F对"○""∪"的封闭性可以扩展到任意有限多个。

即 若
$$A_i \in F$$
, $i = 1, 2, \dots, 则 \bigcup_{i=1}^{\infty} A_i, \bigcap_{i=1}^{\infty} A_i \in F$

性质推导如下

 $(1)\Phi \in F$.

(2) F 对 " \cap " 封 闭 。 即 若 $A,B \in F$,则 $AB \in F$.

 $\mathop{\mathbb{i}\!\mathbb{E}}:AB=\Omega-AB=\Omega-(A\cup B)\in F$

(3) F 对 "-" 封 闭 。 即 若 $A,B \in F$,则 $A - B \in F$.

 $\text{iff}: A - B = AB \in F$

(4) F对"○""∪"的封闭性可以扩展到任意有限多个。

即 若 $A_i \in F$, $i = 1, 2, \dots, 则 \bigcup_{i=1}^{\infty} A_i, \bigcap_{i=1}^{\infty} A_i \in F$.

用数学归纳法证明(略)。

- **例1.1** 由 Ω 的 一 切 事 件 构 成 的 事 件 集 是 σ 代 数 .
 - (常常它为称为最广泛的 σ 代数 .)
- **例1.2** 由 $F = \{\Omega, \Phi\}$,则 F是 σ -代数。

称作平凡 σ -代数.

例1.3 对任意事件 $A \in \Omega, F = \{\Omega, A, A, \Phi\}$

是 σ - 代 数。

思考题

已知 $\Omega = \{1,2,3,4,5,6\}$,问下面哪些集合是 σ 域。

$$F_3 = \{ \Omega, \phi, \{1,3,5\} \{ 2,4,6 \} \};$$

事件的关系和运算练习题

例1. 设A,B,C表示三个事件, 试表示下列事件

(1) A 发生, B 与 C 不发生

(2) A与B发生, C不发生

 $(AB\overline{C})$

- (3) A, B与C都发生
- (4) A, B与C至少有一个发生
- (5) A, B与C全不发生
- (6) A, B与C至少有两个发生

 $(A \cup B \cup C)$

 $(\overline{A}\overline{B}\overline{C})$

1.1.2 概率

定义1.1.2 设 F 是 集 合 Ω 上 的 σ -代 数 , P(A) 是 定 义 在 F 上 的 非 负 集 函 数 $(A \in F)$, 且 满 足

- (1) 非负性:对任意 $A \in F$,有 $0 \le P(A) \le 1$;
- (2) 规范性: $P(\Omega) = 1$;
- (3) 可列可加性: 对 F中的任意两两互斥的可列个事件 A_{i} (i = 1, 2, ...)

$$P \left(\bigcup_{i=1}^{+\infty} A_i \right) = \sum_{i=1}^{+\infty} P(A_i)$$

则称P是 (Ω,F) 上的概率, (Ω,F,P) 称作概率空间,P(A)称为事件A的概率。

概率的基本性质

- (1) $P(\phi) = 0$,
- (2) 有限可加性. 特殊的,若A,B互斥,则

$$P(A \cup B) = P(A) + P(B)$$

- (3) P(A) = 1 P(A)
- $(4) A, B \in F$, 若 $A \subset B \implies P(A) \leq P(B)$ 单调性

若
$$A \subset B \implies P(B - A) = P(B) - P(A)$$

(5) 若
$$A_n \in F$$
, $n \ge 1$ 则 $P(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} P(A_n)$

(6)概率公式

$$P(B|A) = \frac{P(AB)}{P(A)}$$

ii. 乘法公式
$$P(AB)=P(B|A) P(A)$$

 $P(AB)=P(A|B) P(B)$

注: 作为条件的事件概率要大于零。

iii. 全概公式
$$P(A) = \sum_{i=1}^{n} P(AB_i) = \sum_{i=1}^{n} P(B_i) P(A \mid B_i)$$

其中, B_1, B_2, \dots, B_n 是一个完备事件组。

iv.贝叶斯公式
$$P(B_i | A) = \frac{P(A | B_i)P(B_i)}{\sum_{j=1}^{n} P(A | B_j)P(B_j)}$$

$$i=1,2,\cdots,n$$
.

其中, B_1, B_2, \dots, B_n 是一个完备事件组。

(7) 概率的连续性

定理: 若 $\{A_n, n \ge 1\}$ 是单调递增 (或递减)的事件序列

则
$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n)$$

具体情况:

1.1.3 事件的独立性

定义1.1.3 (Ω, F, P) 是概率空间, $Y \subset F$,若对Y中的任意

n个事件 A_1, A_2, \cdots, A_n ,总有

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = \prod_{i=1}^{n} P(A_{i})$$

则称事件族Y是独立的。

比如,三个事件相互独立?

则称A, B, C相互独立,

1.2 随机变量及其分布

1.2.1 随机变量

定义1.2.1 设 (Ω, F, P) 是概率空间, X是定义在 Ω 上,取值于实数集 R上的函数 $(\omega \to X(\omega))$,且对 $\forall x \in R$, $\{\omega: X(\omega) \le x\} \in F$,则称 $X(\omega)$ 是 F上的随机变量。

关于随机变量的几点说明如下:

- (1) $\{\omega: X(\omega) \leq a\} \in F$ 是 指 所 有 满 足 " $X(\omega) \leq a$ " 的 样 本 点 ω 的 集 合 , 定 义 要 求 $\{\omega: X(\omega) \leq a\}$ 是 (Ω, F, P) 中 的 一 个 事 件 , 因 而 可 以 定 义 它 的 概 率 。
- (2)定义中 ω 为自变量,为了书写方 便,简记 $\{\omega: X(\omega) \leq a \, \underline{\triangle} \{X \leq a\} = \{X \in (-\infty, a]\}, \quad \text{把} \, X(\omega)$ 记为X。
 - 一般随机变量符号常用 大写字母 X,Y,Z等表示。
 - $(3)X(\omega)$ 满足 $\{\omega: X(\omega) \leq a\} \in F$,则易证:

 $\forall a, b \in R, \{X > a\}, \{X < a\}, \{X = a\}, \{a \le X < b\}, \{a < X < b\}, \{a \le X \le b\} \in F.$

1.2.2 分布函数

F 上的随机变量,函数

$$F(x) = P(\omega : X(\omega) \le x), -\infty < x < +\infty$$

称为随机变量 X的分布函数。

分布函数的含义: 分布函数 F(x) 表示随机变量 X 取值

不超过 x的概率 (x为任意实数).

分布函数 F(x) 的性质:

- (1) $0 \le F(x) \le 1$;
- (3) $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$;
- (4)F(x)是 右连续的, 即 $F(x_0 + 0) = \lim_{t \to x_0^+} F(t) = F(x)$.

1.2.3 随机变量的类型

离散型: 分布律:
$$P(X = x_k) = p_k$$
 $k = 1, 2, \cdots$ $\sum_{k=1}^{\infty} p_k = 1$

$$F(x) = P(X \le x) = \sum_{x_k \le x} p_k$$

连续型: 概率密度

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

(其中
$$f(x)$$
) 为概率密度函数,
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
)

$$f(x) = \frac{dF(x)}{dx}$$

多维随机变量: $X = (X_1, X_2, \dots, X_d)$

— d维随机向量

1.2.4 多维随机变量联合分布函数:

$$F(x_1, x_2, \cdots, x_d) = P(X_1 \le x_1, X_2 \le x_2, \cdots, X_d \le x_d), x_k \in R$$

性质: 若 $F(x_1, x_2, \cdots, x_d)$ 是联合分布函数,则

(1)
$$0 \le F(x_1, x_2, \dots, x_d) \le 1$$
;

(2)
$$F(x_1, x_2, \dots, x_d)$$
 对每个变量都是单调的 ;

(3)
$$F(x_1, x_2, \dots, x_d)$$
 对每个变量都是右连续的;

$$(5) F(x_1, x_2, \dots, x_d) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_d} f(t_1, t_2, \dots, t_d) dt_d \dots dt_1$$

$$f(x_1, \dots, x_d) = \frac{\partial^d F(x_1, x_2, \dots, x_d)}{\partial x_1 \partial x_2 \dots \partial x_d}$$

1.2.5 一些常见的分布

1.离散均匀分布

分布列:
$$p_k = \frac{1}{n}, \quad (k = 1, 2, \dots, n)$$

2.二项分布(含两点分布)

分布列:
$$p_k = C_n^k p^k (1-p)^{n-k}$$
, $(0 \le k \le n)$ n为非负整数

称随机变量服从以n和p为参数的二项分布.记为: $X^{\Box}B(n,p)$

3.几何分布

分布列:
$$p_k = pq^{k-1}$$
, $(k \ge 1)$, $p + q = 1$

4.Poisson分布
分布列:
$$p_k = \frac{\lambda^k}{k!} e^{-\lambda}$$
, $(k = 0,1,\dots)$, $\lambda > 0$

参数为 的 Poisson 分布 λ

5.均匀分布

密度函数
$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{其它} \end{cases}$$
 记作 $X \sim U[a,b]$

6.正态分布

密度函数
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], x \in R$$

称之为参数为 μ 和 σ^2 的正态分布,也称为 Gauss 分布,

记作 $X \sim N(\mu, \sigma^2)$, $X \sim N(0,1)$ 称为标准正态分布

7.指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

8. x² 分布

9. T分布、F分布 用 χ^2 分布定义。

若
$$X \square N(0,1), Y \square \chi^2(n),$$
 若 $X \square \chi^2(n_1), Y \square \chi^2(n_2),$ 则 $T = \frac{X}{\sqrt{Y/n}} \sim t(n)$ 则 $F = \frac{X/n_1}{Y/n_2} \sim F(n_1,n_2)$

10. Γ分布:

密度函数
$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

称之为以 α , λ 为参数的 Γ 分布 , Γ 函数定义为

其中,
$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$$
 ($\alpha > 0$)

Γ 函数的性质:

- (2) $\Gamma(1) = 1$;
- (3) $\Gamma(\frac{1}{2}) = \sqrt{\pi}$;
- (4) $\Gamma(n+1) = n!$

注意:

指数分布和χ²分布都是特殊的Γ分布!

 $\alpha = 1$ 的 Γ 分 布 是 指 数 分 布 ,

 Γ 分布的 $\alpha = \frac{n}{2}$ (n为 正 整 数) , $\lambda = \frac{1}{2}$,

则此时Γ分布是χ²分布。

§ 1.3 随机变量的数字特征

§ 1.4 特征函数、母函数

一、数学期望和方差、矩

1. 数学期望的计算(复习)

离散型的:
$$EX = \sum_{k} x_{k} p_{k} = \sum_{k} x_{k} P(X = x_{k})$$

连续型的:
$$EX = \int_{-\infty}^{+\infty} x dF(x) = \int_{-\infty}^{+\infty} x f(x) dx$$

问 两种类型随机变量的数字特征,定义式能否统一?

需要引入一种新的积分,这就是黎曼-斯蒂尔杰斯(Rieman-Stieltjes)积分。

回忆黎曼积分:
$$\int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

$$a = x_0 < x_1 < \dots < x_{i-1} < x_i < \dots < x_n = b$$

2. 黎曼-斯蒂尔杰斯(Rieman-Stieltjes)积分

定义设 g(x), F(x)为有限区间 [a,b]上的实值函数,

$$a = x_0 < x_1 < \dots < x_{i-1} < x_i < \dots x_n = b$$

 $\Delta F(x_i) = F(x_i) - F(x_{i-1}), \quad \xi_i \in [x_{i-1}, x_i], \quad \lambda = \max\{\Delta x_i\}$
 若当 $\lambda \to 0$ 时, $\lim_{\lambda \to 0} \sum_{i=1}^{n} g(\xi_i) \Delta F(x_i)$ 存在, 且与分法及 ξ_i 的
 取值无关, 称 该 极 限 值 为 $g(x)$ 关 于 $F(x)$ 在 $[a,b]$ 上 的

黎曼-斯蒂尔杰斯积分。简称R-S积分。

记为
$$\int_{a}^{b} g(x)dF(x) = \lim_{\lambda \to 0} \sum_{i=1}^{n} g(\xi_{i}) \Delta F(x_{i})$$

注: (1) 当 $\lambda \to 0$ 时,意味着 $n \to \infty$,但反之不成立。

(2) 当 F(x) = x时, R - S 积分化为了黎曼积分。

(4) R - S积分的一个充分条件: 若 g(x)连续, F(x)单调,则 R - S积 分 存 在 .

特别地, 当g(x)连续, F(x)为分布函数时,

R - S积分必存在.

R-S 积分性质:

(1)
$$\int_{a}^{b} [k_{1}g_{1}(x) + k_{2}g_{2}(x)] dF(x)$$

$$= k_{1} \int_{a}^{b} g_{1}(x) dF(x) + k_{2} \int_{a}^{b} g_{2}(x) dF(x)$$

(2)
$$\int_{a}^{b} g(x)dF(x) = \sum_{i=0}^{n} \int_{c_{i}}^{c_{i+1}} g(x)dF(x)$$

$$(a = c_0 < c_1 < \dots < c_{n+1} = b)$$
 — 可加性

(3)
$$\int_{a}^{b} dF(x) = F(b) - F(a)$$

注: R - S积分与黎曼积分的最大的不同:

黎曼积分:
$$\int_{a}^{a} f(x)dx = 0$$

$$R - S 积分 : \int_{a^{-}}^{a} dF(x) = \lim_{\delta \to 0^{+}} \int_{a-\delta}^{a} dF(x) = F(a) - F(a^{-})$$

(即等于 a 点处的跳跃度 .)

当 F(x) 是一个阶梯函数时, 设 F(x) 在 $x = x_i$ 处有跳跃度

敛.

$$p_{i}$$
 ($i = 1, 2, \dots$), 则

$$\int_{-\infty}^{+\infty} g(x)dF(x) = \sum_{i=1}^{+\infty} g(x_i) p_i \qquad (包含了离散型)$$

一 转化为判别级数是否收

3. 用R-积分表示的数学期望和方差、矩

(1)一阶原点矩(数学期望):
$$EX = \int_{-\infty}^{\infty} x dF(x)$$

$$(2)$$
 k 阶 原 点 矩 : $EX^k = \int_{-\infty}^{+\infty} x^k dF(x)$

$$(3)k阶 中 心 距: E(X - EX)^k = \int_{-\infty}^{+\infty} (x - EX)^k dF(x)$$

二阶中心矩即方差

$$D(X) = \int_{-\infty}^{+\infty} (x - EX)^2 dF(x)$$

二、 协方差

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - EXEY$$

三、相关系数

$$\rho_{XY} = \frac{\operatorname{cov}(X, Y)}{\sqrt{D_X D_Y}}$$

也都可以用R-S积分表示

1.4 特征函数、母函数

1.4.1 特征函数

设X,Y为两个实随机变量,则

称

$$Z = X + iY$$

Z = X + iY ——复随机变量

$$EZ = EX + iEY$$

EZ = EX + iEY ——复随机变量的数学期望

定义1.4.1 设随机变量X的分布函数为F(x),称

$$g(t) = E\left(e^{itX}\right) = \int_{-\infty}^{\infty} e^{itX} dF(x), \quad -\infty < t < \infty$$

λX 的特征函数。

$$e^{itx} = \cos tx + i \sin tx$$

$$g(t) = E(e^{itX}) = E(\cos tX) + iE(\sin tX)$$
特征函数是一个实变量 的复值函数 .

• 分布律为 $P(X=x_k)=p_k$,k=1,2,...的离散型随机变量X,特征函数为

$$g(t) = \sum_{k=1}^{\infty} e^{itx} p_k$$

· 概率密度为f(x)的连续型随机变量X,特征函数为

$$g(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

例 设X服从二项分布B(n,p),求X的特征函数g(t)。

解 X的分布律为 $P(X=k)=C_n^k p^k q^{n-k}$, q=1-p, k=0,1,2,...,n

$$g(t) = \sum_{k=0}^{n} e^{itk} C_{n}^{k} p^{k} q^{n-k} = \sum_{k=0}^{n} C_{n}^{k} (pe^{it})^{k} q^{n-k} = (pe^{it} + q)^{n}$$

例 设 $X\sim N(0,1)$, 求X的特征函数。

$$g(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx} e^{-\frac{x^2}{2}} dx$$

$$g'(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ix e^{itx} e^{-\frac{x^2}{2}} dx = \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx} d\left(-e^{-\frac{x^2}{2}}\right)$$

$$= -\frac{i}{\sqrt{2\pi}} e^{itx - \frac{x^2}{2}} \Big|_{-\infty}^{\infty} - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx} e^{-\frac{x^2}{2}} dx = -t^{\square} g(t),$$

$$g'(t) + tg(t) = 0,$$

$$\frac{dg}{g} = -tdt, \quad \ln |g(t)| = -\frac{1}{2}t^2 + C$$

从 面
$$g(t) = e^{-\frac{1}{2}t^2}$$

常见分布的数字特征和特征函数

	期望	方差	特征函数
0-1 分布	p	pq	$q + pe^{it}$
二项 分布 B(n,p)	np	npq	$(q + pe^{it})^n$
泊松 分布 P(2)	λ	λ	$e^{\lambda(e^{it}-1)}$

	期望	方差	特征函数
均匀 分布 U(a,b)	$\frac{a+b}{2}$	$\frac{\left(\boldsymbol{b}-\boldsymbol{a}\right)^2}{12}$	$\frac{e^{ibt}-e^{iat}}{i(b-a)t}$
正态 分布 N(µ,σ²)	μ	$oldsymbol{\sigma}^{^2}$	$e^{i\mu t - \frac{1}{2}\sigma^2 t^2}$
指数 分布 E(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - it}$

1.4.2 特征函数的性质

(1)
$$g(0) = 1, |g(t)| \le 1, g(-t) = g(t)$$

(2)若随机变量X的n阶矩 EX^n 存在,则 g(t) k阶可导,且

$$g^{(k)}(0)=i^kEX^k, k\leq n$$

(3)若 $X_1, X_2, ..., X_n$ 是相互独立的随机变量,

则
$$X=X_1+X_2+...+X_n$$
的特征函数

$$g(t) = g_1(t) g_2(t) \dots g_n(t)$$

由特征函数科技计算随机变量的各种数字特征

少 当
$$k=1$$
时, $EX=g^{(1)}(0)/i$;
当 $k=2$ 时, $DX=-g^{(2)}(0)-(g^{(1)}(0)/i)^2$ 。

性质4 随机变量的分布函数由特征函数唯一确定。

1.4.3 n维随机变量的特征函数

定义1.1.1 设 $X=(X_1, X_2, ..., X_n)$ 是n维随机变量, $t=(t_1, t_2, ..., t_n) \in \mathbb{R}^n$,则称

$$g(t) = g(t_1, t_2, \cdots, t_n) = E e^{itX^T} = E \left[exp \left(i \sum_{k=1}^n t_k X_k \right) \right]$$

为X的特征函数。

注意: X^T 表示 $X = (X_1, X_2, \dots, X_n)$ 的转置.

1.4.4 母函数

(1) 定义1.2.2 设X是非负整数值随机变量,分布律 $P\{X=k\}=p_k, k=0,1,...$

则称

$$P(s) = E(s^X) = \sum_{k=0}^{\infty} p_k s^k = \sum_{k=0}^{\infty} s^k p(X = k)$$
 为X的母逐数。

- 母函数的性质
- (1)非负整数值随机变量的分布律 p_k 由其母函数P(s)唯一确定

$$p_n = \frac{P^{(n)}(0)}{n!}, n = 0, 1, 2, \cdots$$

(2)设P(s)是X的母函数,

若EX存在,则EX=P'(1)

若DX存在,则DX= $P''(1)+P'(1)-[P'(1)]^2$

- (3)独立随机变量之和的母函数等于母函数之积
- (4)若 $X_1,X_2,...$ 是相互独立同分布的非负整数值随机变量,N是与 $X_1,X_2,...$ 独立的非负整数值随机变量,则

$$Y = \sum_{k=1}^{N} X_k$$

的母函数为H(s)=G(P(s)),且 $EY=ENEX_1$ 其中G(s),P(s)分别是N, X_1 的母函数.

1. 特征函数

对任意随机变量,都可以定义特征函数。

定义 设随机变量X的分布函数为F(x),称

$$g(t) = E\left(e^{itX}\right) = \int_{-\infty}^{\infty} e^{itX} dF(x), -\infty < t < \infty$$
 为X的特征函数。

性质及应用:可以用特征函数随机变量的各种数字特征。

例如 若随机变量X的n阶矩 EX^n 存在,则 g(t) k阶可导,且 $g^{(k)}(0)=i^kEX^k$, $k\leq n$

2. 母函数

此概念只适用于离散型随机变量。

$$\mathcal{Z}X$$
 $P(s) = E(s^{X}) = \sum_{k=0}^{\infty} p_{k} s^{k} = \sum_{k=0}^{\infty} s^{k} p(X = k)$

被称为非负整数值随机变量X的母函数。

其中
$$p(X = k) = p_k$$
 $(k = 1, 2, 3, \cdots)$ 是 X 的分布律。

性质及应用。如:

分别用其在0和1点的各阶导数求分布律、数字特征.

§ 1.5 n 维正态分布

一维正态分布 X □ N (u,σ²)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-u)^2}{2\sigma^2}\right\}, -\infty < x < +\infty.$$

2. 二维正态分布 $X = (X_1, X_2)^{\square} N(u_1, u_2, \sigma_1^2, \sigma_2^2, \rho)$

$$f(x_{1}, x_{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp\left\{-\frac{1}{2(1-\rho^{2})} \left[\frac{(x-u_{1})^{2}}{\sigma_{1}^{2}} - 2\rho \frac{(x_{1}-u_{1})(x_{2}-u_{2})}{\sigma_{1}\sigma_{2}} + \frac{(x-u_{2})^{2}}{\sigma_{2}^{2}}\right]\right\},$$

$$-\infty < x_{1}, x_{2} < +\infty.$$

 $X_i \cap N(u_i, \sigma_i^2), i = 1, 2.$ $\rho 为 X_1, X_2$ 的相关系数.

X1, X3相互独立时的联合密度函数呢?

3.n 维正态分布

(1) 若 X_1, X_2, \cdots, X_n 相互独立时, $X = (X_1, X_2, \cdots, X_n)$ 的联合概率密度为

$$f(x_{1}, x_{2}, \dots, x_{n}) = \frac{1}{(2\pi)^{n/2} \prod_{i=1}^{n} \sigma_{i}} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \frac{(x_{i} - u_{i})^{2}}{\sigma_{i}^{2}} \right\}$$

(2) 一般情况下, $X = (X_1, X_2, \cdots, X_n)$ 的联合概率密度为

$$f(x_1, x_2, \dots, x_n) = \frac{1}{(2\pi)^{n/2} |B|^{1/2}} \exp \left\{ -\frac{1}{2} (X - u) B^{-1} (X - u)^{T} \right\}$$

式中 $\mathbf{u} = (u_1, u_2, \cdots, u_n)$ 为常向量,B为n阶正定矩阵,B为B的行列式。

则称X服从n维正态分布。记作: $X^{\square}N_{\pi}(\mathbf{u},B)$.

(3) n 维正态分布的性质

- 1) n 维 正 态 随 机 变 量 (X_1, X_2, \cdots, X_n) 的 每 一 个 分 量 都 是 正 态 变 量 ; 反 之 , 若 X_1, X_2, \cdots, X_n 都 是 正 态 变 量 , 且 相 互 独 立 , 则 (X_1, X_2, \cdots, X_n) 是 n 维 正 态 变 量 .
- 2) (X_1, X_2, \cdots, X_n) 服 从 n 维 正 态 分 布 的 充 要 条 件 是 : X_1, X_2, \cdots, X_n 的 任 意 的 线 性 组 合 $l_1X_1 + l_2X_2 + \cdots + l_nX_n$ 都 服 从 一 维 正 态 分 布 。 (其 中 l_1, l_2, \cdots, l_n 不 全 为 零).

§1.6 条件期望

- 设X, Y是离散型随机变量,对一切使 $P{Y=y}>0$ 的y,定义
- (1) Y=y时X的条件概率

$$P\{X = x_k \mid Y = y\} = \frac{P\{X = x_k, Y = y\}}{P\{Y = y\}}$$
 分在该数 $k = 0, 1, 2, \cdots$

(2) Y=y时X的条件分布函数

$$F(x|y) = P\{X \le x | Y = y\}, \quad -\infty < x < +\infty$$

(3) Y=y时X的条件期望

$$E(X|Y=y) = \int_{-\infty}^{+\infty} x dF(x|y) = \sum_{x} xP\{X=x|Y=y\}$$

注意: E(X|Y=y) 是y的函数。

设X, Y是连续型随机变量,联合密度为f(x, y), 对一切使 $f_Y(y)>0$ 的y,定义

(1) Y=y时X的条件密度

$$f(x|y) = \frac{f(x,y)}{f_X(x)}$$

(2) Y=y时X的条件分布函数

$$F(x|y) = P\{X \le x | Y = y\} = \int_{-\infty}^{x} f(u|y) du, \quad -\infty < x < +\infty$$

(3) Y=y时X的条件期望

$$E(X|Y=y) = \int_{-\infty}^{+\infty} x dF(x|y) = \int_{-\infty}^{+\infty} x f(x|y) dx$$

例 袋中有2个红球,3个白球,从中不放回的接连取出两个球。设X表示第一次取到的红球数,Y表示第二次取到的红球数。求 E(Y|X=1)和E(Y|X=0)

解: X = 1和0时的条件分布分别是

Y=k	1	0
P(Y=k X=1)	1/4	3/4

Y=k	1	0
$P(Y=k \mid X=0)$	1/2	1/2

故
$$E(Y=k|X=1)=1/4$$
 $E(Y=k|X=0)=1/2$

条件期望的性质:

- 若随机变量X,Y的期望存在,则 $EX = E[E(X|Y)] = \int E(X|Y = y)dF_Y(y)$
- 如果Y是离散型随机变量,则 $EX = \sum E(X|Y=y)P\{Y=y\}$
- 如果Y是连续型随机变量,则

$$EX = \int_{-\infty}^{\infty} E(X | Y = y) f(y) dy$$

证明: 设X,Y都是离散型随机变量

$$EX = \sum_{x} xP\{X = x\}$$

$$= \sum_{x} x \sum_{y} P\{X = x \mid Y = y\} P\{Y = y\}$$

$$= \sum_{x} \sum_{y} xP\{X = x \mid Y = y\} P\{Y = y\}$$

$$= \sum_{y} \sum_{x} xP\{X = x \mid Y = y\} P\{Y = y\}$$

$$= \sum_{y} E(X \mid Y = y) P\{Y = y\}$$

- 即,若一随机变量数学期望计算比较复杂,
- 则可以先引进一个随机变量,并探讨其在新变量
- 取值固定时的条件期望,进一步再对引进的随机
- 变量计算期望。

条件期望性质例题

设在某候车站停靠的火车只有1列、该火车站早晨开门的时间作为零时刻,而从零时刻到火车启程时刻t的进站乘客数N(t)服从参数为 λt 的泊松分布,计算在(0,t]内来该站所有乘客的等车时间总和的数学期望。

解:设 W_i 为第i个乘客到达车站的时刻,本题即求 $E\left(\sum_{i=1}^{N(t)}(t-W_i)\right)$.

先求在N(t)给定的条件下等车总和的条件期望:

$$E\left(\left(\sum_{i=1}^{N(t)} \left(t - W_i\right)\right) \middle| N(t) = n\right) = nt - E\left(\sum_{i=1}^{n} W_i \middle| N(t) = n\right)$$

 $:: W_1, W_2, \dots, W_n$ 显然均服从(0, t]上的均匀分布,

$$\therefore E\left(\sum_{i=1}^{N(t)} W_i \middle| N(t) = n\right) = \frac{nt}{2} \qquad \text{fig.}, \quad E\left(\sum_{i=1}^{N(t)} (t - W_i) \middle| N(t) = n\right) = nt - \frac{nt}{2} = \frac{nt}{2}$$

故,

$$E\left(\sum_{i=1}^{N(t)} \left(t - W_i\right)\right) = E\left(E\left(\left(\sum_{i=1}^{N(t)} \left(t - W_i\right)\right) \middle| N(t) = n\right)\right) = E\left(\frac{N(t) \bullet t}{2}\right) = \frac{t}{2}E\left(N(t)\right) = \frac{\lambda t^2}{2}$$