

Universidade Estadual Vale do Acaraú Curso de Ciências da Computação

Disciplina de Estatística com Apoio Computacional Pf. Paulo Regis Menezes Sousa

Exercícios de revisão

1 Teste de hipótese

Questão 1.

A associação dos proprietários de indústrias metalúrgicas está muito preocupada com o tempo perdido com acidentes de trabalho, cuja média, nos últimos tempos, tem sido da ordem de 60 horas/homem por ano e desvio padrão de 20 horas/homem.

Tentou-se um programa de prevenção de acidentes, após o qual foi tomada uma amostra de nove indústrias e medido o número de horas/homens perdidos por acidentes, que foi de 50 horas. Você diria, no nível de 5%, que há evidência de melhoria?

Questão 2.

A proporção de recém-nascidos com alguma má formação ou doença séria é de 3%. Imagine que um médico suspeita que esta proporção tenha aumentado. Ele então examinou 1000 recém-nascidos e encontrou 34 com alguma má formação ou doença séria. Você acha que a suspeita do médico é procedente?

Questão 3.

Um anestésico foi desenvolvido e possui tempo de ação desconhecido quando aplicado em Basiliscos. Desejando-se caracterizar o novo produto para que possa ser lançado no mercado, uma amostra de 20 criaturas, de determinado peso e idade semelhantes, receberam uma dose do produto em condições controladas (no interior de uma câmara). Os resultados encontrados são mostrados abaixo:

50 51 53 58 6264 5455 59 60 61 61 63 64 53 5255 58 5755

Calcule o intervalo de confiança para a média adotando níveis de significância de 1% e de 5%.

Questão 4.

Dois catalisadores estão sendo analisados para determinar como eles afetam o rendimento médio de um processo químico. Especificamente, o **Catalisador 1** está correntemente em uso, mas o **Catalisador 2** é aceitável. Uma vez que o **Catalisador 2** é mais barato, ele deve ser adotado, desde que ele não mude o rendimento do processo.

Um teste é realizado, resultando nos dados mostrados na tabela abaixo.

Catalisador 1	Catalisador 2
91,50	89,19
94,18	$90,\!95$
$92,\!18$	$90,\!46$
$95,\!39$	$93,\!21$
91,79	$97,\!19$
89,07	97,04
94,72	91,07
89,21	92,75

Há diferença entre as médias de rendimento do Catalisador 1 e do Catalisador 2, considerando um nível de significância de 5%?

Questão 5.

Os dados a seguir correspondem a teores de um elemento indicador da qualidade do leite das cabras virgens da polinésia. Foram coletadas 2 amostras referentes a 2 métodos de extração. Compare as médias dos métodos fazendo um teste t bilateral, ao nível de 1% de significância.

Método 1	0,9	2,5	9,2	3,2	3,7	1,3	1,2	2,4	3,6	8,3
Método 2	5,3	6,3	5,5	3,6	4,1	2,7	2,0	1,5	5,1	3,5

2 ANOVA

Questão 6.

As populações das três amostras registradas na tabela seguinte atendem às premissas da análise da variância. Verifique se as médias das populações são iguais para o nível de significância de 5%.

Amostra 1	Amostra 2	Amostra 3
2,87	3,23	2,25
2,16	3,45	3,13
3,14	2,78	2,44
2,51	3,77	3,27
1,80	2,97	2,81
3,01	3,53	1,36
2,16	3,01	

Questão 7.

Para tentar maximizar a quantidade de quilômetros por litro rodados pela frota de veículos da empresa, o gerente de manutenção testou três tipos diferentes de combustíveis em carros da mesma marca. A tabela a seguir registra os quilômetros por litro de dezoito carros com três marcas de combustível diferentes. Verifique se há diferenças entre os combustíveis, considerando o nível de significância 5%.

Combustível 1	Combustível 2	Combustível 3
12,8	12,0	13,1
12,6	12,2	13,3
12,9	12,0	13,0
13,5	11,5	12,8
11,6	11,8	12,6
12,2	12,3	12,9

Questão 8.

Uma empresa que produz limpadores de para-brisas para automóveis quer saber como os fatores Tipo de Caixa Redutora e Tipo de Eixo, utilizados na fabricação dos motores que acionam os limpadores, influenciam o ruído produzido, quando da utilização destes. Para isso realizamos um experimento com 54 motores, com 3 tipos de Eixo (Rolado, Cortado e Importado) e 2 tipos de Caixas Redutora (Nacional e Importada). Para cada motor (unidade experimental) medimos o ruído. Os dados estão na Tabela abaixo.

Tipo de Caixa Redutora				Tip	o de I	Eixo				
Tipo de Caixa Redutora]	Rolado)	C	$\operatorname{Cortado}$			Importado		
	42,1	42,0	40,3	38,2	37,4	37,0	40,9	40,7	39,4	
Nacional	38,9	38,9	43,7	42,3	42,3	42,1	42,0	41,4	41,3	
	41,0	40,1	40,3	40,5	41,3	40,4	40,6	41,3	41,6	
	39,6	40,2	48,4	41,3	46,8	40,3	39,6	36,9	39,9	
${\bf Importada}$	40,9	41,0	41,0	40,5	39,9	39,3	38,1	38,0	36,2	
	39,9	41,0	42,7	41,3	40,1	41,6	36,7	37,2	36,7	

Existe diferença entre os modelos?

3 Regressão linear

Nos exercícios a seguir, encontre a reta de regressão para os dados apresentados. Depois, construa um diagrama de dispersão dos dados e desenhe a linha de regressão. Então use a equação de regressão para prever o valor de y para cada um dos valores de x.

Questão 9.

Altura (em pés) e o número de andares de nove prédios famosos em Miami

Altura, x	764	625	520	510	492	484	450	430	410
Andares, y	55	47	51	28	39	34	33	31	40

- a) x = 500 pés
- b) x = 650 pés
- c) x = 310 pés
- d) x = 725 pés

(arquivo) altura_predios.csv

Questão 10.

A idade (em anos) de sete crianças e o número de palavras que compõem o vocabulário.

Idade, x	3	4	4	5	6	2	2
Tamanho do vocabulário, y	1100	1300	1500	2100	2600	460	1200

- a) x = 2 anos
- b) x = 3 anos
- c) x = 6 anos
- d) x = 12 anos

(arquivo) idade_vocabulario.csv

Questão 11.

O número de horas que 13 alunos passaram estudando para um teste e a pontuação nele.

Horas gastas estudando, x	0	1	2	4	4	5	5	5	6	6	7	7	8
Pontuação no teste, y	40	41	51	48	64	69	73	75	68	93	84	90	95

- a) x = 3 horas
- b) x = 6,5 horas
- c) x = 13 horas
- d) x = 4,5 horas

(arquivo) estudo_pontuacao.csv

Questão 12.

Conteúdo calórico e sódio. O conteúdo calórico e o sódio contido (em miligramas) em 10 cachorrosquentes.

Calorias, x	150	170	120	120	90	180	170	140	90	110
Sódio, y	420	470	350	360	270	550	530	460	380	330

- a) x = 170 calorias
- b) x = 100 calorias
- c) x = 140 calorias
- d) x = 210 calorias

(arquivo) calorias_sodio.csv

Questão 13.

A altura (em pés) e o diâmetro do tronco (em polegadas) de 11 árvores.

Altura, x	70	72	75	76	71	73	85	78	77	80	82
Diâmetro do tronco, y	8,3	10,5	11,0	11,4	9,2	10,9	14,9	14,0	16,3	18,0	15,8

- a) x = 74 pés
- b) x = 81 pés
- c) x = 95 pés
- d) x = 79 pés

(arquivo) altura_diametro.csv

Questão 14.

O número dos sapatos e altura (em polegadas) de 14 homens.

- a) x = tamanho 11,5
- b) x = tamanho 8
- c) x = tamanho 15,5
- d) x = tamanho 10

(arquivo) sapato_altura.csv

Número do	8,5	9,0	9,0	9,5	10,0	10,0	10,5	10,5	11,0	11,0	11,0	12,0	12,0	12,5
sapato, x														
Altura, y	66,0	68,5	67,5	70,0	70,0	72,0	71,5	69,5	71,5	72,0	73,0	73,5	74,0	74,0

Transformações para conseguir linearidade

Quando um modelo linear não é apropriado para representar os dados, outros modelos podem ser usados. Em alguns casos, os valores de x e y podem ser transformados para encontrar um modelo apropriado. Em uma transformação logarítmica, os logaritmos das variáveis são usados para construir o diagrama de dispersão e calcular a reta de regressão.

Questão 15.

Determine a equação da reta de regressão para os dados. Depois, construa um diagrama de dispersão de (x, y) e represente a reta de regressão, juntamente.

Número de horas, x	1	2	3	4	5	6	7
Número de bactérias, y	165	280	468	780	1310	1920	4900

Substitua cada valor de y na tabela por seu logaritmo, $\log(y)$. Encontre a equação da reta de regressão para os dados transformados. Depois, construa um diagrama de dispersão de $(x, \log(y))$ com a reta de regressão, juntamente. O que você percebe?

(arquivo) horas_bacterias.csv

Transformação inversa

Uma vez que modificamos a variável y para log(y), isso modificou o modelo resultante para:

$$\log(y) = a + bx$$

Podemos transformar este modelo da seguinte maneira:

$$\exp(\log(y)) = \exp(a + bx)$$

 $y = \exp(a + bx)$

Questão 16.

Encontre a equação da reta de regressão para os dados. Depois, construa um diagrama de dispersão de (x, y) juntamente com a reta de regressão.

\overline{x}	1	2	3	4	5	6	7	8
\overline{y}	695	410	256	110	80	75	68	74

Substitua cada valor de x e de y na tabela por seu logaritmo. Encontre a equação da reta de regressão para os dados transformados. Depois, construa um diagrama de dispersão de $(\log(x), \log(y))$ e represente no mesmo plano a reta de regressão. O que você percebe?

Transformação inversa

Uma vez que modificamos as variáveis x e y para $\log(x)$ e $\log(y)$, isso modificou também o modelo resultante para:

$$\log(y) = a + b\log(x)$$

Podemos transformar este modelo da seguinte maneira:

$$\exp(\log(y)) = \exp(a + b\log(x))$$
$$y = \exp(a + b\log(x))$$