A Practical Decision Framework for Implementing Evasion-Resilient Host-Based Analytics

Dr. Joe Mikhail
Brandon Werner
The MITRE Corporation

FloCon2020: January 2020

Overview

Research Questions

- 1. Can a framework be developed for non-data scientists to determine whether a given adversary technique is *best detected* with a heuristic analytic or a machine learning (ML) analytic?
 - A. Where can I find good host-based ML data?

Definitions

- Heuristic Analytic: Analytic that uses rules, estimates or educated guesses to find a satisfactory solution to a specific issue.
 - Not guaranteed to be optimal, perfect or rational, but sufficient for reaching an immediate, short-term goal
- ML Analytic: ML analytics discover patterns in data, and construct mathematical models using these discoveries
 - Example: Neural network to detect malicious powershell

Data-Evasion-Organization (DEO) Framework

- The proposed framework is comprised of a set of weighted criteria to evaluate data, evasion, and organizational factors in order to provide an analytic recommendation based on the DEO Score.
 - Data: How well the data supports the analytic.
 - Evasion: How versatile the analytic needs to be.
 - Organization: How well the organization supports analytic development.
- Weighting was assigned by applying framework to multiple use cases -> trial and error.

Given categorical weights for data, evasion, and organization: $W_D = 1, W_F = 1.5, W_O = 1,$

And scoring for each category:

$$S_{D_i}S_E, S_O$$

For the weighted total:

$$W_T = W_D + W_E + W_O$$

The final DEO score, $S_{DEO} = W_D S_D + W_E S_E + W_O S_O$

Output:

 $0 < S_{DEO} < 2.5$: Heuristic $2.5 < S_{DEO} < 5$: ML Model

Data-Evasion-Organization (DEO) Framework

MITRE Data-Evasion-Organization (DEO) Calculator Overview: This calculator provides a recommendation of whether a given ATT&CK technique is best **Directions/Overview of tool** detectable using a heuristic or a machine learning analytic. Directions: Populate the data, evasion, and org tabs with a score for each criteria number. The data tab represents one or more data sources. The evasion tab represents a single ATT&CK technique. The organization tab reflects a single organization. **Use-case name** Use Case: Regsvr32 Data, ATT&CK ID, Org Data Source: WinEvents ATT&CK ID: T1117 - Regsvr32 Organization: Category scoring (0-5) Category "Ratings" Category Score Rating Low Quality ML Data Data 1.333 Evasion 2.778 Marginal Evasion Potential 2.500 Marginal Org. Barriers for ML Organization Final Recommendation Final score S_F (0-5): Recommend: Heuristic Total 2.286 $0 < S_{DEO} < 2.5$: Heuristic 2.5<*S*_{*DEO*}<5: ML Model

Data Scoring Factors

	Data Source Name:	Data Source Name	
Criteria# Criteria D		Description	Weight
D.1	Data Quantity	Score the quantity of raw data is produced by the data source(s). 0=Small Quantity 5=Large Quantity	1
D.2	Data Availability	Score the data source(s) availability. Are there gaps in the data feed? Are there missing values in the data? Unavailable=0 Available=5	1
D.3	Data Diversity	Score the data source(s) diversity. Does it capture a single type of event or a wide range of events? Does it contain both background noise and malicious events? 0=Not diverse 5=Diverse	2
D.4	Data Granularity Level	Score the data granularity level. Does it contain high level data such as windows event logs or low level data such as hardware register data? 0=High Level 5=Low level	3
D.5	ATT&CK Data	Score the quantity of events in the dataset that are generated for the targeted ATT&CK technique. 0=Small Quantity 5=Large Quantity	3
D.6	Legacy systems	Score the percentage of data that is collected from legacy appliances/systems. 0=All Legacy 5=No Legacy	1
D.7	Data Matching	Score the maturity of existing data matching capabilities. 0=Low Maturity 5=High Maturity	1
Numerical data		Score the level of effort required to transform raw data sets into numerical features. 0=High Effort 5=Low Effort	2
D.9	Data Storage	Are there sufficient resources to store the required quantity of data for ML processing? Insufficient Resources=0 Sufficient Resources=5	1
D.10	Labeled Data	Score the percentage of labeled data. 0=No Labels 5=All Labeled	2

Evasion Scoring Factors

	ATT&CK Technique ID:	Technique Name	
Criteria #	Criteria	Description	Weight
		Score the different number of ways that the ATT&CK	
E.1	Technique Versatility	technique be executed.	
		0=Single way 5=Multiple Ways	2
E.2	Code Signing	Does the technique rely on using a signed executable	
L.Z	Code Signing	or file? 0=Yes 5=No	1
E.3	Obfuscation	Score the susceptibility of the ATT&CK technique to	
E.3		obfuscation. 0=Not Susceptible 5=Highly Susceptible	2
		Score the susceptibility of the ATT&CK technique to	
E.4	Modification	modification for signature evasion.	
		0=Not Susceptible 5=Highly Susceptible	2
		Score the susceptibility of the ATT&CK technique to a	
E.5	Zero-Days	zero-day attack.	
		0=Not Susceptible 5=Highly Susceptible	1
		Is the technique executed via a malware file or a living	
E.6	File vs Fileless	off of the land technique?	
		0=CMD Line 2.5 Script 5=Compiled Malware	1

Organization Scoring Factors

	Organization Name: Org Name					
Criteria #	Criteria	Description	Weight			
0.1	Skillset	Score the organization's in-house and outsourced ML skillsets. 0=Novice 5=Expert	2			
0.2	Previous experience	Has the organization previously implemented advanced analytics or ML? 0=Never implemented 5=Several implementations	2			
0.3	Executive level support	Score the organization's leadership support for ML. 0=No support 5=Full support	1			
0.4	Classification / Sensitivity	Are some of the networks within the organization classified or sensitive, requiring additional effort for data ingest and processing? 0=Many networks 5=No networks	1			
0.5	Zero-Day Threats	Score the quantity of zero-day threats that the organization faces. 0=No zero-days 5=Many zero-days	1			
0.6	Security Architecture	Is the organization's security architecture simplified and organized in a cohesive manner? 0=Unorganized 5=Organized	2			
0.7	Funding	Is there sufficient funding to invest in analytic development? 0=No Funding 5=Sufficient Funding	2			
0.8	Timeframe	What is the timeframe to work with to deploy a given analytic? 0=Short-term(Hours/Days) 5=Long-Term(Months/Years)	1			
0.9	Signature Updates	How often are the SOC's signature-based detection capabilities updated with new signatures? 0=At least once a week 5=Annually	1			
0.10	Patching Updates	How often are the organization's network devices and endpoints updated with software patches? 0=At least once a week 5=Annually	1			

procmonML: The search for ML-friendly host-based data

- procmonML is a [prototype] tool that generates & utilizes labeled host-based process data in a condensed ML-ready format to detect malicious host-based behavior.
 - Objective 1: Limit data volume while retaining important information
 - Objective 2: Avoid need for computationally expensive ML models
 - Objective 3: Generate labeled data based on individual ATT&CK techniques

Components

- Host-based sensor (c# or powershell)
- Machine Learning training/testing tool (scikit-learn).
 - Skope-Rules to generate Splunk analytics

https://github.com/scikit-learn-contrib/skope-rules

Why ML for host-based detection?

- 1. Many heuristic analytics rely on string matching Easily evaded.
- 2. ML analytics increase the adversary workload needed to evade analytics.

Pyramid of Pain: Heuristic vs. Behavioral Analytics

Heuristic: not guaranteed to be optimal, perfect or rational, but sufficient for reaching an immediate, short-term goal.

MITRE

procmonML Data Organization

No PII!

	А	В	С	D	Е	F	G	Н	1
1	mName	pID	pName	eventCour	pTimeTota	psTimeSta	psTimeEn	Thread_co	Process_c(N
2	MM23801	4-8883673	System	181	0	########		170	1
3	MM23801	464-26121	smss	3	0	########		0	1
4	MM23801	648-11395	csrss	30	0	########		10	1
5	MM23801	792-43688	wininit	28	0	########		0	1
6	MM23801	876-61254	services	4331	0	########		13	1
7	MM23801	896-35839	Isass	101	0	########		3	1
8	MM23801	1020-6312	svchost	17	0	########		0	1
9	MM23801	376-48398	fontdrvho	11	0	########		0	1
10	MM23801	528-80691	svchost	96	0	########		6	1
11	MM23801	924-17975	svchost	42	0	########		0	1

The Big Tradeoff: Feature Processing vs. Event Consumption

procmonML Data Sources Investigated

Windows ETW:

- Threads, Processes, Registry, Module Loads, Network
- Timeseries data: Sequential events
- Timeseries data: Module Load Sizes, Registry Depth

Sysmon:

- Event 1 (Process), Event 3 (Network), Event 5 (Process), Event 7 (Module Loads), Event 8 (Remote Thread), Event 9 (Raw Disk Access), Event10 (Lsass Access), Event 11 (File Created) SwiftOnSec, Event 12-14 Registry SwiftOnSec, Event 15 (FileCreateStream), Event 17/18 Pipe Connect, Event 22 (DNS) SwiftOnSec
- Timeseries data: Module Load Sizes, Registry Depth

procmonML Experimental Setup

ML Model Validation: Does the ML model detect TXXXX? Rule Validation: Why does the ML model detect TXXXX?

- 1. Collect Background/Attack Data
- 2. Train Model on Background/Attack Data
- Develop Rules from Trained Model
- 4. Transfer Trained Model to Production

- Collect Background/Attack Data
- 2. Test ML Model on Background/Attack Data
- 3. Test Rules in Splunk

procmonML: T1117 Regsvr32 Training

Background process monitoring data

Regsvr32 attack process monitoring data

\square	Α	В	C	D	E	F	G	Н	1	J	
1	pID 💌	pName -T	eventC 💌	process 🔻	process 🔻	process 🔻	size_m ▼	size_m ▼	size_st(▼	size_m ▼	si
34	16692-40	3 (regsvr32	41	0	########	########	0	0	NaN	0	
38	13608-24	99 regsvr32	627	0	########	########	7	1.7	2.110819	19	
40	5432-490	26 regsvr32	7161	0	***************************************	***************************************	14	2.97561	4.071166	600	
35	8952-624	92 regsvr32	3198	1	***************************************	***************************************	59	4.705882	8.939363	40	
00											

Model Supervised Training

Behavioral vs Heuristic Analytics

T1117/Regsvr32

- Heuristic: index=__your_sysmon_data__ EventCode=1 regsvr32.exe | search ParentImage="*regsvr32.exe" AND Image!="*regsvr32.exe*"
- Behavior: ImageLoadCAbove_ts > 15.5 AND ImageLoadCBelow_ts > 55.5 AND pChildCount > 0.5 AND pEventCount <= 90.5 AND pTotalTime <= 19.0
 - Generated from Skope-Rules

T1003/Lsass Memory Dumping via Task Manager

- Heuristic: index=__your_sysmon_index__ EventCode=11
 TargetFilename="*Isass*.dmp"
 Image="C:\\Windows*\\taskmgr.exe"
- Behavior: Event10_ProcessAccess > 26.0 AND ImageLoadCount_ts > 72.5 AND ImageLoadMax_ts > 27887596.0
 - Generated from Skope-Rules

T1117 Random Forest: Top 10 Important Features

```
->ImageLoadLongestAbove_ts [0.02960394775174515]
->ImageLoadStddev_ts [0.03570493301655956]
->ImageLoadFirstMax_ts [0.06859589789115442]
->pChildCount [0.08906708368500121]
->ImageLoadCount_ts [0.09297165370691698]
->pEventCount [0.0973256942889903]
->Event7_ImageLoaded [0.10368026452379961]
->ImageLoadCBelow_ts [0.10401501003665445]
->ImageLoadCAbove_ts [0.10940586570856971]
->ImageLoadLongestBelow ts [0.1941145429437298]
```

T1003/Task Manager Random Forest: Top 10 Important Features

```
->ImageLoadAbsChange_ts [0.01432916390636319]
->ImageLoadChange_ts [0.020438063910462757]
->ImageLoadDerivative2_ts [0.04007307259369762]
->Event7_ImageLoaded [0.07857470259588384]
->ImageLoadLongestBelow_ts [0.09197986897845792]
->ImageLoadMax_ts [0.09291666911008406]
->Event10_ProcessAccess [0.12550452699766018]
->ImageLoadCount_ts [0.15867209692414885]
->ImageLoadCBelow_ts [0.16651193826713723]
->pEventCount [0.16875423884989843]
```

Behavior Analytics in Splunk

Closing Thoughts

- The susceptibility of a given technique to evasion (as characterized by slide 6) should be one of the primary factors of whether to implement a machine learning analytic or a heuristic analytic
 - Data and organization factors are key underlying components
- Analytics relying on primarily string/signature-based data sources are too easy to evade
- Process monitoring offers data about the behavior of a process much more difficult to evade
 - Inherently higher dimensional data requiring more complex analytics
 - Process monitoring data can be condensed on the endpoint to reduce data quantity
- Adversaries will try to evade ML models but this increases their work factor!
- Contact Info
 - Joe Mikhail <u>imikhail@mitre.org</u>
 - Brandon Werner <u>bwerner@mitre.org</u>

MITRE

MITRE's mission-driven teams are dedicated to solving problems for a safer world. Through our federally funded R&D centers and public-private partnerships, we work across government to tackle challenges to the safety, stability, and well-being of our nation.

Learn more www.mitre.org

