ממ"ך 11

Note: Sometimes I'll be using e.g. ¬A to represent the complement of A (My editor doesn't fully support superscript or overline)

2

×

Prove:

 $(A\backslash B) \cup (B\backslash C) = (A \cup B) \setminus (B \cap C)$

First: expand left-hand side $(A\B) \cup (B\C)$

$$(A \cap \neg B) \cup (B \cap \neg C)$$
 // diff
 $(A \cup B) \cap (A \cup \neg C) \cap (\neg B \cup B) \cap (\neg B \cup \neg C)$ // distributivity
 $(A \cup B) \cap (A \cup \neg C) \cap (\neg B \cup \neg C)$ // $(\neg B \cup B) \equiv T$
 $(A \cup B) \cap [(A \cap \neg B) \cup \neg C]$ // dist.

Second: expand right-hand side $(A \cup B) \setminus (B \cap C)$

```
(A \cup B) \cap \overline{(B \cap C)}
(A \cup B) \cap (\neg B \cup \neg C)
(A \cap \neg B) \cup (A \cap \neg C) \cup (B \cap \neg B) \cup (B \cap \neg C) \qquad // \text{dist}
(A \setminus B) \cup (A \cap \neg C) \cup (B \cap \neg C) \qquad // (B \cap \neg B) \equiv \emptyset
(A \setminus B) \cup [(A \cup B) \cap \neg C] \qquad // \text{dist}
[(A \setminus B) \cup (A \cup B)] \cap [(A \cap \neg B) \cup \neg C] \qquad // \text{dist}
// \text{I'll now prove that } [(A \setminus B) \cup (A \cup B)] \equiv (A \cup B),
// \text{then get back to expanding the full statement}
```

```
Since (A \setminus B) \subseteq A and A \subseteq (A \cup B) \Rightarrow

(A \setminus B) \subseteq (A \cup B)

Therefore

(A \setminus B) \cup (A \cup B) = (A \cup B)
```

$(A \cup B) \cap [(A \cap \neg B) \cup \neg C]$

We see that left-hand side \equiv right-hand side, therefore (A\B) \cup (B\C) = (A \cup B) \ (B \cap C)

Prove:

if $P(A) \vee P(B) = P(C)$, then $(C=A) \vee (C=B)$

I'll be proving: $(C\subseteq A \land A\subseteq C) \lor (C\subseteq B \land B\subseteq C)$ Since it's equivalent to

First: proof that $C\subseteq A \lor C\subseteq B$

 $C \in P(C)$ // power set definition $P(C) = P(A) \lor P(B) \Rightarrow C \in (P(A) \lor P(B))$ $C \in P(A) \lor C \in P(B)$ $C \subseteq A \lor C \subseteq B$

Second: proof that $A\subseteq C$ \vee $B\subseteq C$

 $A \in P(A)$

 $P(A) \subseteq P(A) \cup P(B)$ // union definition

 $A \in P(A) \cup P(B)$

 $(C=A) \vee (C=B)$

Given $P(C) = (P(A) \cup P(B)) \Rightarrow A \in P(C)$

 $A\subseteq C$

 $B \in P(B)$

 $P(B) \subseteq P(A) \cup P(B)$ // union definition

 $B \in P(A) \cup P(B)$

Given $P(C) = (P(A) \cup P(B)) \Rightarrow B \in P(C)$

B⊆C

Since $C\subseteq A \vee C\subseteq B$ and $A\subseteq C$ and $B\subseteq C$,

we conclude that:

 $C\subseteq A \lor C\subseteq B \land A\subseteq C \land B\subseteq C$

Therefore

(C=A) v (C=B)

7

Prove:

if A,B are finite and $|P(A)| = 2 \cdot |P(A \setminus B)|$, then $|A \cap B| = 1$

```
(1)
```

 $A \setminus B \equiv A \setminus (A \cap B)$ // by definition

(2)

We know that for any two sets X,Y, if $Y \subseteq X$ then $|X \setminus Y| = |X| - |X \cap Y|$ Certainly $(A \cap B) \subseteq A$, so $|A \setminus (A \cap B)| = |A| - |A \cap B|$.

(3)

Assuming $|A \cap B| = 1$, if follows that: $|A| - |A \cap B| = |A| - 1$, therefore using (1) and (2):

 $|A \setminus B| = |A \setminus (A \cap B)| = |A| - |A \cap B| = |A| - 1$, so $|P(A \setminus B)| = 2^{A} |A \setminus B| = 2^{A} |$

(4): Expanding $2 \cdot |P(A \setminus B)|$

$$2 \cdot |P(A \setminus B)| = 2 \cdot 2^{(|A| - 1)} = 2^{|A|}$$

(5)

 $|P(A)| = 2^|A|$ // by definition

(6)

 $|\mathrm{P}(\mathrm{A})| = 2 \cdot |\mathrm{P}(\mathrm{A} \backslash \mathrm{B})|$

3

X

Prove: if $(A \subset B)$, then $(A \cup \neg B) \neq U$

Since A is a **proper** subset of B, then $(B\backslash A) \neq \emptyset$.

Expanding ($B\A$):

 $(B \cap \neg A)$

 $(\neg A \cap B)$ // comm.

(A ∪ ¬B) // DeMorgan