Predicting the Outcomes of March Madness Games

By Aviva Mazurek

Objectives and Methodology

Objective

- Predict individual outcomes of march madness games
 - Final SVM model predicts game outcomes with 86% accuracy

Methodology

- Data sources
 - Sports Reference historical brackets, seeding, advanced stats from regular season
 - ESPN Stats from regular season
 - Kenpom Ranking System, wins/losses per team in regular season
- Created multiple dictionaries to merge all data from 2002-2019

Feature engineering creates larger disparity between wins and losses - allows model to learn better

Which features are more significant?

→ Most significant features: Kenpom ratings, wins from regular season, losses from regular season, SOS adv, SRS adv, seeding

Modeling Data - Trained and Tested on Data From 2002-2019

Model	Accuracy (%)
Decision Tree	75.62
KNN	69.68
XGBoost	85.14
Logistic Regression	84.43
Support Vector Machine (SVM)	86.20

^{**}The accuracy is an average of 10 random train test split accuracies (except for the decision tree)

Experiment: Used SVM model to predict individual game outcomes for 2019 brackets

- Trained and tested data on all data from 2002-2018 (excluded 2019 data)
- Used the model to predict 2019 march madness results

Eastern Region

Western Region

Midwest Region

Southern Region

Final 4

Conclusions

- Can predict individual march madness games with 86% accuracy
 - Feature engineering and inclusion of Kenpom stats increased accuracy tremendously

Future Work

- T-Pot pipeline determined logistic regression coupled with SGDC Classifier produces 90% accuracy
 - Model difficult to interpret requires investigation
- Incorporate point outcomes of games
- Conduct same experiment as for 2019, but for every year and determine where the model fails the most
- Incorporate more features/engineering