GRADIENT BOOSTED TREES xgboost library

Outline

- Boosting, Gradient boosting
- Feature Importance and Feature Selection
- > Learning Curves
- > Early stopping to avoid overfitting
- > Tuning parameters

Boosting models

- An ensemble method where new models are added to correct the errors made by existing models
- Models are added sequentially until no further improvement can be made

Boosting models

- An ensemble method where new models are added to correct the errors made by existing models
- Models are added sequentially until no further improvement can be made
- Gradient boosting is an ensemble method where new models are created to predict the residuals (errors) of previous models and then added together to make final prediction

Build xgboost models

```
from xgboost import XGBClassifier from sklearn.metrics import accuracy_score
```

```
model = XGBClassifier()
model.fit(X_train,y_train)
```

```
pred = model.predict(X_test)
accuracy_score(y_test,pred)
```

Feature Importance

```
from xgboost import XGBClassifier from sklearn.metrics import accuracy_score
```

```
model = XGBClassifier()
model.fit(X_train,y_train)
model.feature_importances_

pred = model.predict(X_test)
accuracy_score(y_test,pred)
```

Select subset of features by importance

SelectFromModel

- takes a first model1 to find features importance
- selects all features with importance greater than or equal to
 a threshold

transform the dataset into a new one with the selected features.

Select subset of features by importance

SelectFromModel

- takes a first model1 to find features importance
- selects all features with importance greater than or equal to
 a threshold
- transform the dataset into a new one with the selected features

Once dataset has the selected features fit a model2 for prediction

Model1 and model2 may be different (i.e. model1 may be RF and model 2 may be LogisticRegression)

from sklearn.feature_selection import SelectFromModel

```
# model1 to find features importance
model1 = XGBClassifier()
model1.fit(X train,y train)
# select features
selection = SelectFromModel(model1,threshold=14, prefit = True)
X train selected = selection.transform(X train)
X test selected = selection.transform(X test)
# fit model2 with selected features
model2 = XGBClassifier()
model2.fit(X_train_selected, y_train)
accuracy score(y test, pred = model2.predict(X test selected))
```


 Make a loop to find the performance of each set of features

Sets of features defined by thresholds

 Thresholds are equal to variable importance of each feature

.

from sklearn.feature_selection import SelectFromModel

Performance step-by-step

Learning Curves

```
# split data into train and test sets
X train, X test, y train, y test = train test split(X, Y,
                           test size=0.33, random state=1)
# fit model requesting train and test error rates
eval set = [(X train,y_train),(X_test, y_test)]
model = XGBClassifier()
model.fit(X train, y train, eval metric="error",
                         eval set=eval set, verbose=True)
# store train and test error rates (then plot them)
model.evals result()
```

Learning Curves

Early Stopping

define a number of trees over which no improvement is observed

Tuning parameter –Kfold cross validation

```
from sklearn.model_selection import GridSearchCV, StratifiedKFold
n_{trees} = range(20,80,10)
model = XGBClassifier()
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=1)
param_grid = dict(n_estimators=n_trees)
grid_search = GridSearchCV(model, param_grid,scoring="neg_log_loss",
                                                     cv=kfold)
grid_result = grid_search.fit(X,Y)
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
n_trees = list(n_estimators)
```

Tuning parameter –Kfold cross validation

.

×	params	mean_test_score	std_test_score
0	20	-0.493858	0.039632
1	30	-0.483538	0.046256
2	40	-0.480428	0.049159
3	50	-0.480157	0.051132
4	60	-0.482531	0.053802
5	70	-0.484747	0.054087

Tuning parameters –Kfold cross validation

```
n_{trees} = range(30,90,10)
depth_values = [1,2,3]
model = XGBClassifier()
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=1)
param_grid = dict(max_depth=depth_values, n_estimators=n_trees)
grid_search = GridSearchCV(model, param_grid,scoring="neg_log_loss",
                                                     cv=kfold)
grid_result = grid_search.fit(X,Y)
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
```

Tuning parameters –Kfold cross validation

