Plan for 3D Deep

Jungwon Kang, Maryam Jameela, Razieh Ramak

Sept 30 2018

Objectives

Building 1st Version Deep Network for Each Task

Task	Major Contributor	Objectives
Noise filtering (for Optech)	Razieh Ramak	Point cloud segmentation (Noise/Non-noise), non real-time
Point cloud segmentation (for Optech)	Maryam Jameela	Point cloud segmentation (N-class objects), non real-time
3D object detection (for Thales)	Jungwon Kang	Real-time 3D object detection

Schedule

Month	Task	Deliverable
Oct 2018	Problem definitionDataset preparationLiterature survey	 Document describing problem definition, dataset, and literature survey Visualization of dataset
Nov	Practicing deep libraryDesign & implementation	Document describing design
Dec	Implementation	• Source code (Dec 31)
Jan 2019	Documentation	• Document describing implementation (Jan 15)

^{*}Submission deadline of major conferences starts from March.

Management Policy

Regular meeting or discussion biweekly

- Team website:
 - https://github.com/yorku-ausml/deep3d

To-do List

- Problem definition, including
 - Cause of noise (Razieh)
 - Object classes (Maryam, Jungwon)
- Dataset description, including
 - Existing Optech airborne dataset (Razieh)
 - Dataset size
 - Current repository
 - Visualization
- Etc
 - Finding point cloud label tool (for making ground-truth)
 - Finding visualization tool

Key Literature

Point cloud segmentation

- Large-scale point cloud segmentation with superpoint graphs <u>https://github.com/loicland/superpoint graph</u>
 *Rank 1 in http://www.semantic3d.net/
- PointNet++: deep hierarchical feature learning on point sets in a metric space https://github.com/charlesq34/pointnet2 *Rank 4 in http://www.semantic3d.net/

Object detection

 Joint 3D proposal generation and object detection from view aggregation https://github.com/kujason/avod

Current Progress

Oct 12 2018

Asana Assignment

Progress on Noise Filtering

Razieh

Atmospheric noise filtering

- Noise filtering Segmentation of raw point cloud using voxelization Pre-classification by defining special rules
- Feature extraction
 Using Eigen library and programming
- Classification sing SVM Using "libSVM"

• Understanding PCL and voxelization

- PCL
 A large scale, open project for 2D/3D image and point cloud processing. However, there is no PCL in noise filtering application
- Voxelization
 A data structure used to represent a collection of multi-dimensional points and is commonly used to represent three-dimensional data

Clarifying the Task

Dataset used for training?

What kind of dataset will be used?

Mobile data / airborne lasers / hybrid dataset mixture of both.

What kind of environment?
Indoor / Outdoor or Urban / Rural / Forest

Which object classes?

Key Papers

Point cloud segmentation

 PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

https://github.com/charlesq34/pointnet

*Both used in the two following papers

 PointNet++: deep hierarchical feature learning on point sets in a metric space

https://github.com/charlesq34/pointnet2

*Rank 4 in http://www.semantic3d.net/

 Large-scale point cloud segmentation with superpoint graphs <u>https://github.com/loicland/superpoint graph</u>
 *Rank 1 in http://www.semantic3d.net/

Publicly Available Dataset (1/3)

Semantic3D

- LiDAR dataset with over 3 billion points from a variety of urban and rural scenes.
- http://www.semantic3d.net/
- Managed by ETH (http://www.prs.igp.ethz.ch/)
- 8 class labels, namely {1: man-made terrain, 2: natural terrain, 3: high vegetation, 4: low vegetation, 5: buildings, 6: hard scape, 7: scanning artefacts, 8: cars}.

Publicly Available Dataset (2/3)

- S3DIS (Stanford Large-Scale 3D Indoor Space)
 - 3D RGB point clouds of six floors from three different buildings
 - http://buildingparser.stanford.edu/dataset.html
 - Currently, 2D-3D-S dataset is newly released.
 - 13 object classes (ceiling, floor, wall, beam, column, window, door, and movable elements: table, chair, sofa, bookcase, board and clutter for all other elements)

Publicly Available Dataset (3/3)

Etc

- Oakland 3-D Point Cloud Dataset (2009)
 - http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/
- NYU Depth Dataset V2 (2012)
 - https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
- Sydney Urban Objects data set
 - http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
- IQmulus & TerraMobilita Contest
 - Mobile laser scans (MLS) in dense urban environments
 - http://data.ign.fr/benchmarks/UrbanAnalysis/
- Vaihingen3D airborne benchmark
 - http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html

PointNet

Architecture

http://stanford.edu/~rqi/pointnet/

PointNet++

- Hierarchical Feature Learning Architecture
 - http://stanford.edu/~rqi/pointnet2/

Superpoint Graph (1/2)

Individual steps in pipeline

Superpoint Graph (2/2)

Illustration of our framework on a toy scan of a table and a chair. We perform geometric partitioning on the point cloud (a), which allows us to build the superpoint graph (b). Each superpoint is embedded by a PointNet network. The embeddings are then refined in GRUs by message passing along superedges to produce the final labeling (c).

Plan

Month	Task	Deliverable
Oct 2018	Problem definitionDataset preparationLiterature survey	 Document describing problem definition, dataset, and literature survey Visualization of dataset
Nov	Practicing deep libraryDesign & implementation	Document describing design
Dec	Implementation	• Source code (Dec 31)
Jan 2019	Documentation	Document describing implementation (Jan 15)