? s pn=63289646 S15 1 S PN=63289646

? t s15/full

15/19/1 Links

JAPIO

(c) 2005 JPO & JAPIO. All rights reserved.

02672746 **Image available**

PROGRAM MODULE MANAGING SYSTEM

Pub. No.: 63-289646 [JP 63289646 A] **Published:** November 28, 1988 (19881128)

Inventor: OKAMOTO KEISUKE

Applicant: NEC CORP [000423] (A Japanese Company or Corporation), JP (Japan)

Application No.: 62-125059 [JP 87125059]

Filed: May 22, 1987 (19870522)

International Class: [4] G06F-009/44; G06F-009/06

JAPIO Class: 45.1 (INFORMATION PROCESSING -- Arithmetic Sequence Units)

Journal: Section: P, Section No. 845, Vol. 13, No. 116, Pg. 31, March 22, 1989 (19890322)

ABSTRACT

PURPOSE: To highly efficiently execute processing corresponding to debugging by allowing a table forming means to form a control table in accordance with an input referring to a display menu and controlling an external storage device and a main storage device in accordance with addresses in the table.

CONSTITUTION: A menu is displayed on a display device 2 by a menu control part 3 in a processor 16 in accordance with start based upon an input device 1. In accordance with the operation of the device 1 based upon the display, the table forming part 4 forms a source module table, an object module table and a load module table corresponding to a specified program by successively referring to a file table, a module table and respective program module tables in a file control table 14 stored in a storage part 17. A program module corresponding to an address shown in these tables is stored in a hard disk device in the external storage device and read out from the device 12 to the main storage device. Consequently, a necessary address can be determined without executing complex and easily missed calculation and the debugging processing can be highly efficiently executed.

⑩ 日本国特許庁(JP)

⑫ 公 開 特 許 公 報 (A)

昭63-289646

⑤Int_Cl.⁴

識別記号

庁内整理番号

❷公開 昭和63年(1988)11月28日

G 06 F 9

9/44 9/06 $\begin{array}{c} 3 & 2 & 2 \\ 3 & 1 & 0 \end{array}$

B-8724-5B B-7361-5B

審査請求 未請求 発明の数 1 (全6頁)

②特 願 昭62-125059

②出 頭 昭62(1987)5月22日

@発明者 岡本 恵輔

東京都港区芝5丁目33番1号 日本電気株式会社内

卯出 願 人 日本電気株式会社 東京都港区芝5丁目33番1号

砂代 理 人 弁理士 境 廣 巳

明細書

1.発明の名称

プログラムモジュール管理方式

2.特許請求の範囲

ソースモジュール、オブジェクトモジュール、ロードモジュールの各プログラムモジュールを外部記憶装置に格納する際の位置情報、前記外部記憶装置に格納された各プログラムモジュールを読出す主記憶装置の位置情報を指示する制御テーブルと、

該制御テーブルを作成するテーブル生成手段と、 設テーブル生成手段による前記制御テーブルの 作成時に使用される処理メニューを入出力装置に 表示し、前記処理メニューに従って前記入出力装 置から入力される情報を前記テーブル生成手段に 渡して前記制御テーブルを作成させるメニュー制 御手段とを構え、

ソースモジュール、オブジェクトモジュール、 ロードモジュールを前記外部記憶装置に格納する とき、および前記主記憶装置に統出すときには前 記制御テーブルに設定された位置情報に従わせる ことを特徴とするプログラムモジュール管理方式。 3.発明の詳細な説明

(産業上の利用分野)

〔従来の技術〕

ソースモジュール、 これをコンパイルしたオブジェクトモジュール、 複数のオブジェクトモジュールをリンクしたロードモジュールなどのプログラムモジュールを計算機システムの外部記憶装置に格納し、その後何等かの処理を行なうために主記憶装置に統出す場合、従来は、JCL(ジョブ制御倉器)を使用して外部記憶装置への格納や主

記憶装置への統出し等の処理の実行を指示している。

(発明が解決しようとする問題点)

このような方法では、JCLに関する理解が必要であり、またJCLはカードリーダから入力されるのでカードリーダが協えられているソフトウェアセンタ等の場所に出向かなければならないという問題点がある。

また、各プログラムモジュールを外部記憶装置のどの場所に格納するのか及び外部記憶装置から
説出したプログラムモジュールを主記憶装置のど
の場所に格納するのかは、従来、オペレーティン
グシステムのメモリ割付機能により自動的に行な
われており、それらのメモリ割付場所を簡単に知
ることができなかったことから、デバッグ時に記
憶装置のリード、ライトを行なうときアドレス算出
出が面倒となり、デバッグが効率良く行なえない
と共にアドレス算出ミスによりプログラムの修正
誤りも起こり易いという問題点もある。

本発明はこのような従来の問題点を解決したも

渡して前記制御テーブルを作成させるメニュー制 御手段とを備え、

ソースモジュール、オブジェクトモジュール. ロードモジュールを前記外部記憶装置に格納する とき、および前記主記憶装置に読出すときには前 記期御テーブルに設定された位置情報に従わせる 構成を有する。

(作用)

各プログラムモジュールの外部記憶装置および 主記憶装置上での格納位置を指示する制御テーブ ルがキーボードなどの入力装置からの操作によっ て作成できるので、従来のようなJCLを使用す る必要がなくなり、また、プログラムモジュール の格納位置を任意に設定できるので、デバッグ時 の効率を高めることができる。

(実施例)

次に本発明の実施例について図面を参照して説明する。

第1図は本発明の実施例のブロック図であり、 キーボードなどの入力装置1と、CRTなどの表 のであり、その目的は、プログラムモジュールを 格納する外部記憶装置および主記憶装置の場所を 指示する格納情報を持つ制御テーブルをキーボー ドなどの入力装置からの操作で作成することがで き、各プログラムモジュールの外部記憶装置およ び主記憶装置上での格納位置を指示可能としたプ ログラムモジュール管理方式を提供することにあ る。

(問題点を解決するための手段)

本発明は上記目的を達成するために、ソースモジュール、オブジェクトモジュール、ロードモジュールの各プログラムモジュールを外部記憶装置に格納する際の位置情報、前記外部記憶装置に格納された各プログラムモジュールを統出す主記憶装置の位置情報を指示する制御テーブルと、

該制御テーブルを作成するテーブル生成手段と、 該テーブル生成手段による前記制御テーブルの 作成時に使用される処理メニューを入出力装置に 表示し、前記処理メニューに従って前記入出力装 置から入力される情報を前記テーブル生成手段に

示装置2と、処理装置16と、フロッピーディスク 装置などの補助記憶装置5と、プログラムファイ ル15を格納するハードディスク装置12とで構成さ れている。また処理装置16には、テーブル処理メ ニュー画面の表示入力制御を行なうメニュー制御 部3と、テーブル生成部4と、プログラム読込部 6と、コンパイラ7と、リンカ8と、ローダ等の 伝送部9と、主記像装置10と、実行部11と、記憶 部17とを含む。この記憶部17は主記憶の一部を構 成し、サプコマンドテーブル13. ファイル制御テ ーブル14が格納される。ハードディスク装置12の プログラムファイル15にはファイル制御テーブル 14の内容に従って、ソースモジュール (以下SM と称す), オプジェクトモジュール (以下OMと 称す)。ロードモジュール(以下LMと称す)の 各プログラムモジュールが格納される。

第2図はファイル制御テーブル14の構成例を示す。このような構成のファイル制御テーブル14を 本実施例では入力装置1からの入力により生成するものである。同図に示すファイル制御テーブル 14は、ファイルテーブル140,モジュールテーブル 141,,141, SMテーブル143, OMテーブル144, L Mテーブル145 とで構成される。ファイルテーブ ル140 の各エントリにはファイル名 (ABCD等) とモジュールテーブル 141, , 141,へのポインタ (MP, 等)とが格納され、そのポインタによっ て各モジュールテープル141,.141。がファイルテ -ブル140 にチェーンされる。また、各モジュー ルテープルにはモジュールテーブル141:に例示す るように、SMテーブル143 へのポインタ (SM P, 等), OMテープル144 へのポインタ (OM P、等)、1.Mテープル145 へのポインタ(L.M. P. 等) が格納され、モジュールテーブル141.に チェーンされている。SMテープル143,OMテー ブル144, L M テーブル145 には、更新日、更新回 数、予約サイズ、現在サイズ、ハードディスク装 謂の格納先頭アドレス (HDアドレス),ローディ ング時の主記憶先頭アドレス(MMアドレス)等 が格納される。

次にファイル制御テーブル14の作成処理につい

次に入力装置 1 からリターンのメッセージが受信されると、ステップ S 12の処理で判別され、第3 図のステップ S 1 へ戻り、表示装置 2 の画面に再び第4 図に示すテーブル処理メニューが表示される。

次に入力装置1よりメニュー番号2のファイル 制御テーブル表示・更新を選択するメッセージが 受信されると(ステップS2)、メニュー制御部 3はメニュー番号2の処理を行なう(ステップS

第6図はメニュー番号2の処理を行なうステッ

て説明する。

操作者が入力装置1から起動信号を入力すると、 メニュー制御部3が起動され、メニュー制御部3 は例えば第3図に示す処理を開始し、例えば第4 図に示すようなテーブル処理メニューを表示装置 2の西面に表示する(ステップS1)。

次に入力装置1よりメニュー番号1のファイル名更新を選択するメッセージが受信されると(ステップS2)、メニュー制御部3はメニュー番号1の処理へ移行する(ステップS3)。

第5 図はメニュー番号1 の処理を行なうステップS3 の処理例であり、先ず、記憶部17のファイル制御テーブル14における第2 図に示したファイルテーブル140 を読込んでこれを表示装置2の西面に表示する(ステップS10)。

次に入力装置 1 からファイル名として例えば A B C D を示すメッセージとモジュール識別情報として S M を示すメッセージとが受信されると (ステップ S 11) 、ステップ S 12を経てメニュー制御部 3 は受信したメッセージつまりファイル名情報

アS4の処理例であり、先ず、メニュー制御部3はファイル名とモジュール識別名のメッセージ受信待ちとなる(ステップS20)。入力装置1より例えばファイル名ABCD、モジュール識別名SMのメッセージが与えられると、メニュー制御部3はこれを識別し、ステップS21、S22を経てステップS23へ進み、記憶部17中のファイル制御テーブル14における第2図のSMテーブル143を例えば第7図に示す形式で表示装置2の画面に表示する(ステップS23)。

操作者は第7図に示された内容の表示西面を見ながら、後で入力するSMの予約サイズ、格納先となるハードディスク装置12上のアドレス(HDアドレス)と、ローディング時の主記位装置10上のアドレス(MMアドレス)とを入力する。この入力されたHDアドレスなどは第6図のステップS20で受信され、メニュー制御部3はステップS21、S22を経てステップS24によりHDアドレスなどの入力情報をテーブル生成部4へ渡す。テーブル生成部4はこの入力情報を記憶部17のファイ

ル制御テーブル14に含込む。なお、更新日、更新回数、現在サイズは自動的に設定される。操作者が必要な情報を設定し終えるとリターンのメッセージを入力装置1から入力することにより、処理を終える。

さて、以上のようにして第2図のSMテーブル143 の作成を行なった後、例えば入力装置1からファイル名ABCD、モジュール種類がSMであることを指示して、作成したSMの各ステートメントを入力装置1或いは補助記憶装置5から入力すると、これらはプログラム読込部6に与えられる。そして、プログラム読込部6はファイル制御テーブル14のSMテーブル143 のHDアドレスを参照し、ハードディスク装置12の対応部分へ入力されたSMを記憶し、SMテーブル143 の現在サイズを設定する。これによって、ハードディスク装置12の記憶域のうち操作者が事前に指定されたアドレス部分にSMを格納することが可能となる。

操作者はSMテーブル143 を作成したと同様の 操作を行なうことにより、第2図のOMテーブル

置1からファイル名ABCD、モジュールの種別しMを指定すると、転送部9が起動され、転送部9はファイル制御テーブル14からLMテーブル145を参照し、そのHDアドレスで指示されたハードデバッグ装置12の領域からLMを読込んでそのしMテーブル145のMMアドレスの位置から順に主記憶装置10ヘロードしていく。そしてロード完了後、そのLMは実行部11によって実行される。

また本実施例では、表示装置 2 の画面に L M テーブル145 の内容を表示させることにより、操作者は実行中の L M の先頭アドレス (M M アドレス)を簡単に知ることができるので、 L M の任意のアドレスを指定した L M の実行が複雑なアドレス計算無しに容易に行なうことができ、デバックの強率を高めることができ、 L M のパッチによって修正すべき箇所のアドレスも容易に知ることができる。 更に、 転送部 9 に S M 、 O M の主記位装置 10 への読込みを入力装置 1 から指示した場合、 S M テーブル143、 O M テーブル144 に 設定された M M アドレスに従った位置に読込まれるので、 S M ・

144 を作成し、その O M テーブル144 の H D ア ドレス, M M ア ドレスに所望の値を設定した後、入力装置 1 からコンパイラ 7 にファイル名 A B C D の S M をコンパイルすべき指示を与えると、コンパイラ 7 は S M テーブル143 の H D ア ドレス、現在サイズを参照して S M を読出し、これを翻訳して O M テーブル144 に設定された H D ア ドレスに従ってハードディスク装置12の領域に O M を格納し、また現在サイズを設定する。

更に操作者が、HDアドレス、MMアドレスに所望の値を設定したLMテーブル145を作成し、リンクすべき複数のOMを指定してリンカ8に指示を与えると、リンカ8は対応するOMテーブルを参照してリンクすべきOMをハードディスク装置12から読取ってリンク処理を行ない、これを指定されたLMテーブル145に設定されたHDアドレスに従ってハードディスク装置12の領域に格納し、現在サイズを設定する。

次に、デバッグを行なうために、ファイル名 A BCDのLMを実行させる場合、操作者が入力装

OMのデバッグも容易に行なうことができる。

なお、メニュー制御部3は、第4図のメニュー番号3のファイル一覧表表示が選択されれば、ファイルテーブル140.各モジュールテーブル141..

1412の内容を表示装置2の画面に表示する。また、メニュー番号4のサブコマンドテーブル13が選択されれば、記憶部17に格納されたサブコマンドテーブル13の内容を表示装置2の画面に表示する。ここで、サブコマンドテーブル13は、リンカ8の起動時等に使用するサブコマンドを格納する為のものであり、操作者はそのサブコマンドを使用してリンカ8等に与えるコマンドを選択することができる。

(発明の効果)

以上説明したように、本発明によれば、メニュー制御手段によってCRT等の出力装置に表示されるテーブル処理メニュー画面に従ってキーポード等の入力装置から必要なデータを入力していくことで、プログラムモジュールの外部記憶装置および主記憶装置上での格納位置を指示するSMテ

ーブル等の制御テーブルを、JCLを使用することなく作成することができるので、オペレーティングシステムの専門知識がない操作者も容易に定なり、且つ、SM、OM、LMを外部記憶装置になり、且つ、SM、OM、LMを外部記憶装置には前記制御テーブルに設定された位置情報に従わせるものであるから、プログラムモジュールの格納場所を操作者が側御テーブルに設定した場所通りとすることができ、デバッグ時の効率を高めることが可能となる。

4.図面の簡単な説明

第1図は本発明の実施例のブロック図、

第2図はファイル制御テーブル14の構成例を示す図、

第3図はメニュー制御部3の処理例の流れ図、 第4図はテーブル処理メニュー画面の内容例を 示す図、

第5図はメニュー番号1の処理例の流れ図、

第6図はメニュー番号2の処理例の流れ図およ

び、

第7図はSMテープル表示画面の内容例を示す 図である。

図において、

1 … 入力装置 10 … 主記位装置

2 … 表示装置 11 … 実行部

3 …メニュー制御部 12…ハードディスク装置4 …テーブル生成部 13…サブコマンドテーブル

5 …補助記憶装置 14…ファイル制御テーブル

6…プログラム読込部 15…プログラムファイル

7 … コンパイラ 16 … 処理装置

8 … リンカ 17 … 記憶部

9…転送部

特許出願人 日本電気株式会社 代理人 弁理士 境 廣 巳

本発明の実施例のブロック図 第 1 図

ファイル制御テーブル14 の構成例を示す図 第 2 図

メニュー制御部3の処理例の流れ図 第3図

テーブル処理メニュー画面の内容例を示す図 第 4 図

メニュー番号1 の処理例の流れ図 第 5 図

メニュー番号2の処理例の流れ図 第 6 図

```
FILE名: ABCD
SM TABLE
1 更新日 ( 10/2 )
2 更新回数 ( 2 )
3 予約サイズ ( 38400 )
4 現在サイズ ( 3840 )
5 HDアドレス (002000000)
6 MMアドレス ( 5000 )
7 リターン
```

SM テーブル表示画面の内容例を示す図 第 7 図