D-RAM

- Stores data as charge on capacitors
- If capacitor is charged
 - Data is 1
- Else
 - Data is 0.
- Needs refreshing cycle as capacitors have a tendency of discharging.
- The term dynamic refers to this tendency of the stored charge to leak away, even with power continuously applied.
- Volatile
- When read, data is lost. So, restoring need to be done.

D-RAM

- DRAM cell
 - Consists of a transistor and a capacitor.
 - Transistor acts a switch
 - If transistor is closed
 - Allows current to flow
 - Else
 - No current flows

D-RAM

Write

- Voltage signal is applied to the bit line.
 - High voltage − 1
 - Low voltage 0
- Address line is activated allowing the charge to be transferred to the capacitor

Read

- Address line is activated
- Charge on capacitor is fed out onto a bit line and to a sense amplifier.
- Sense amplifier compares with reference value and determines if the cell contains 0 or 1.
- The value is restored
- Used for large memory requirements

S-RAM

- Holds the data as long as the power is supplied
- Read operation don't destroy the original data.
- Expensive than DRAM but shorter cycle times.
- Used for faster small memories like cache memory.
- Uses 4 6 transistors to store a single bit of data
- Less power consumption than DRAM
- Complex construction

S-RAM

- Transistor arrangement gives stable logic state
- Logic State 1
 - C₁ high, C₂ low
 - $T_1 T_4$ off, $T_2 T_3$ on
- Logic State 0
 - C₂ high, C₁ low
 - T₂ T₃ off, T₁ T₄ on
- Address line controls two transistors T₅ T₆.
- When signal is applied to address line, T₅ and T₆ are on.
- Write apply value to B & complement to B
- Read bit value is read from line B

D-RAM Vs S-RAM

SRAM

- Volatile
- Faster
- Smaller memory units
- Complex construction
- Don't require refreshing circuit
- Cache memory
- Digital
- Expensive

DRAM

- Volatile
- Slower
- Larger memory units
- Simpler to build
- Require refresh
- Main memory
- Analog
- Less expensive