Lycée Thiers

Mini-Cours
MPSI-MPII

VALEUR ABSOLUE D'UN RÉEL

- Définition et représentation graphique -

La valeur absolue d'un nombre réel x est notée |x|. Il existe plusieurs façons équivalentes de la définir :

- \star |x| est la distance de x à 0
- \star |x| est égale à x si x ≥ 0 et à -x sinon
- \star |x| est le plus grand des deux nombres x et -x

Par exemple:

$$|5| = 5$$
 $|-3| = 3$

et

$$\forall t \in \mathbb{R}, \left| t^2 \right| = t^2$$

Exercice 1. Ecrire sans utiliser de valeur absolue (ni de calculette!):

$$\left|\sin\left(\frac{8\pi}{7}\right)\right| \qquad \left|\ln\left(\frac{7}{11}\right)\right| \qquad \left|e^{1/3} - e^{-1/3}\right|$$

Ci-dessous, le graphe de la fonction valeur absolue :

- Lien avec la racine carrée -

Une erreur classique consiste à affirmer que $\sqrt{x^2} = x$, sans prendre de précaution concernant le signe de x ...

Proposition. *Pour tout* $x \in \mathbb{R}$: $\sqrt{x^2} = |x|$.

 $D\acute{e}monstration.$ Si $r\geqslant 0$, alors \sqrt{r} désigne l'unique réel positif ou nul ayant r pour carré.

Etant donné $x \in \mathbb{R}$, il est clair que $|x| \ge 0$ et que $|x|^2 = x^2$. La formule en découle aussitôt.

Exercice 2. Développer $(1 - \sqrt{2})^2$ puis simplifier l'expression $\sqrt{3 - 2\sqrt{2}}$.

Exercice 3. Calculer plus simplement $\sqrt{1 + \cos(2x)}$, pour $x \in [0, 2\pi]$.

- (IN)ÉQUATIONS COMPORTANT UNE VALEUR ABSOLUE -

Commençons par préciser quelques « points-méthodes »...

Pour $a, b \in \mathbb{R}$, on a les équivalences suivantes :

- $\star |a| = |b| \Leftrightarrow (a = b \text{ ou } a = -b)$
- $\star |a| = b \Leftrightarrow (b \ge 0 \text{ et } (a = b \text{ ou } a = -b))$
- $\star |a| \le b \Leftrightarrow (a \le b \text{ et } -a \le b) \Leftrightarrow -b \le a \le b$

Noter qu'on a immédiatement $|a| \le b$ fausse si b < 0 (et peu importe la valeur de a).

 $\star |a| \geqslant b \Leftrightarrow (a \leqslant -b \text{ ou } a \geqslant b)$

Noter qu'on a immédiatement $|a| \ge b$ vraie si $b \le 0$ (et peu importe la valeur de a).

Exemple 1 - Résolvons dans \mathbb{R} chacune des équations :

$$(|x-1|-2)(|x+1|+2) = 0 (E)$$

$$(|x-1|-2)(|x+1|+2)=1$$
 (E')

 \heartsuit Pour (*E*) , la nullité du produit équivaut à la nullité de l'un au moins des facteurs. Or :

$$|x-1|-2=0 \Leftrightarrow (x-1=-2 \text{ ou } x-1=2) \Leftrightarrow (x=-1 \text{ ou } x=3)$$

et la condition |x + 1| + 2 = 0 est impossible, puisque $\forall x \in \mathbb{R}, |x + 1| + 2 \ge 2$.

L'ensemble des solutions de (*E*) est donc :

$$S = \{-1, 3\}$$

 \triangleright Pour (E'), on envisage trois cas:

★
$$\begin{bmatrix} \text{Cas I} : x \in D_1 =]-\infty, -1] \end{bmatrix}$$

L'équation équivaut successivement à :

$$((-x+1)-2)((-x-1)+2) = 1$$
$$(x+1)(x-1) = 1$$
$$x^2 - 2 = 0$$

L'ensemble des solutions qui relèvent de ce cas est :

$$S_1' = D_1 \cap \{-\sqrt{2}, \sqrt{2}\} = \{-\sqrt{2}\}$$

★ $| \text{Cas II} : x \in D_2 =]-1,1[$

L'équation équivaut successivement à :

$$((-x+1)-2)((x+1)+2) = 1$$
$$-(x+1)(x+3) = 1$$
$$x^2 + 4x + 4 = 0$$

L'ensemble des solutions qui relèvent de ce cas est :

$$S_2' = D_2 \cap \{-2\} = \emptyset$$

★ Cas III :
$$x \in D_3 =]1, +\infty[$$

L'équation équivaut successivement à :

$$((x-1)-2)((x+1)+2) = 1$$
$$(x-3)(x+3) = 1$$
$$x^2 = 10$$

L'ensemble des solutions qui relèvent de ce cas est :

$$S_3' = D_3 \cap \{-\sqrt{10}, \sqrt{10}\} = \{\sqrt{10}\}$$

Finalement, l'ensemble des solutions de (E') est $S' = S'_1 \cup S'_2 \cup S'_3$, c'est-à-dire :

$$S' = \left\{ -\sqrt{2}, \sqrt{10} \right\}$$

Exemple 2 - Résolvons dans $\mathbb R$ puis dans $\mathbb Z$ l'inéquation :

$$2x^2 - |3x + 1| + x + 1 \le 0$$

Dans un premier temps, résolvons cette inéquation $\boxed{\text{dans }\mathbb{R}}$. On ne conservera ensuite que les solutions entières.

Distinguons deux cas:

★ Cas I :
$$x \le -\frac{1}{3}$$

L'inéquation équivaut successivement à :

$$2x^{2} - (-3x - 1) + x + 1 \le 0$$
$$x^{2} + 2x + 1 \le 0$$
$$(x + 1)^{2} \le 0$$
$$x = -1$$

L'ensemble des solutions qui relèvent de ce cas est :

$$R_1 = \left] -\infty, -\frac{1}{3} \right] \cap \{-1\} = \{-1\}$$

★ Cas II :
$$x > -\frac{1}{3}$$

L'inéquation équivaut successivement à :

$$2x^{2} - (3x + 1) + x + 1 \le 0$$
$$x(x - 1) \le 0$$
$$x \in [0, 1]$$

L'ensemble des solutions qui relèvent de cas est :

$$R_2 = \left| -\frac{1}{3}, +\infty \right| \cap [0, 1] = [0, 1]$$

On en déduit l'ensemble des solutions réelles :

$$R = R_1 \cup R_2 = \{-1\} \cup [0, 1]$$

puis l'ensemble des solutions entières :

$$S = R \cap \mathbb{Z} = \{-1, 0, 1\}$$

Pour s'entraîner, voici quelques questions similaires à chercher :

Exercice 4. Résoudre dans \mathbb{R} l'équation :

$$\left| x^2 - 3x - 1 \right| = \frac{x}{2} + 1$$

Exercice 5. Prouver que:

$$\forall x \in \mathbb{R}, \ \frac{x^2}{2} - 2|x - 1| \ge -4$$

Exercice 6. Résoudre dans \mathbb{R} l'inéquation :

$$|2x - 3|x - 1| < 1$$

Exercice 7. Résoudre dans \mathbb{R} l'équation :

$$x^4 - 2x^3 + |x| = 0$$

- Valeur absolue d'un produit, d'une somme -

Rappelons d'abord deux règles fondamentales, que l'on peut résumer par ceci :

Comparer deux réels positifs ou nuls revient à comparer leurs carrés.

Lemme 1. *Etant donnés a, b* \in [0, + ∞ [:

$$a = b \Leftrightarrow a^2 = b^2$$

Démonstration. Par équivalence :

$$a^2 = b^2 \Leftrightarrow (a - b)(a + b) = 0 \Leftrightarrow (a = b \text{ ou } a = -b)$$

et comme a,b sont positifs ou nuls (par hypothèse), cette dernière condition équivaut simplement à a=b.

Lemme 2. Etant donnés $a, b \in [0, +\infty[$, on a :

$$a \le b \Leftrightarrow a^2 \le b^2$$

Démonstration. On sait que $a^2 - b^2 = (a - b)(a + b)$. Si $a \le b$, alors $a - b \le 0$ tandis que $a + b \ge 0$, donc $a^2 - b^2 \le 0$. Et si a > b, alors a - b > 0 et a + b > 0 (somme de réels positifs ou nuls, mais distincts), d'où $a^2 - b^2 > 0$. □

Proposition. *Quels que soient les réels x, y :*

$$|xy| = |x| |y|$$

Démonstration. On constate que :

$$|xy|^2 = (xy)^2 = x^2y^2 = |x|^2 |y|^2 = (|x| |y|)^2$$

d'où la conclusion, d'après le lemme 1.

Proposition. (*Inégalité triangulaire*) - Quels que soient les réels x, y :

$$\left| x + y \right| \le |x| + \left| y \right|$$

avec égalité si, et seulement si, x et y sont de même signe.

Démonstration. On développe séparément :

$$|x + y|^2 = x^2 + 2xy + y^2$$
 et $(|x| + |y|)^2 = x^2 + 2|xy| + y^2$

Manifestement $xy \le |xy|$; donc:

$$\left|x+y\right|^2 \leqslant \left(\left|x\right|+\left|y\right|\right)^2$$

et d'après le lemme 2 :

$$\left| x + y \right| \le |x| + \left| y \right|$$

Le cas d'égalité est celui où |xy| = xy, c'est-à-dire celui où $xy \ge 0$. Cette condition signifie exactement que x et y sont de même signe.

Remarque. On peut aussi démontrer les propositions 1 et 2 en distinguant plusieurs cas, selon les signes respectifs de *x* et de *y*.

Exercice 8. Démontrer les deux propositions précédentes en suivant l'indication donnée en remarque.

Exercice 9. Prouver que si x, y, z sont trois réels quelconques, alors $|x + y + z| \le |x| + |y| + |z|$.

Exercice 10. Montrer, pour tout couple (x, y) de réels, l'inégalité $||x| - |y|| \le |x - y|$.

Exercice 11. Déterminer les couples (x, y) de réels tels que $|x - y| \le |x| - |y|$.

- Non dérivabilité en 0 de la fonction valeur absolue -

En effet, le « taux d'accroissement en 0 de la fonction valeur absolue » est la fonction T définie, pour tout $x \neq 0$, par :

$$T(x) = \frac{|x| - |0|}{x - 0} = \frac{|x|}{x} = \begin{cases} -1 & \text{si } x < 0\\ 1 & \text{si } x > 0 \end{cases}$$

On constate que:

$$\lim_{x \to 0^{-}} T(x) = -1$$
 et $\lim_{x \to 0^{+}} T(x) = 1$

donc, en particulier:

$$\lim_{x\to 0^{-}}T\left(x\right) \neq\lim_{x\to 0^{+}}T\left(x\right)$$

Ceci prouve la non-dérivabilité en 0 de la fonction valeur absolue.

Par ailleurs, cette fonction est d'évidence continue en tout $a \in \mathbb{R} - \{0\}$ et elle est aussi continue en 0 puisque $\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} |x| = 0 = |0|$.

Ainsi, la valeur absolue est un exemple (parmi les plus simples) de fonction continue mais non dérivable.

Remarque. On sait par ailleurs que toute fonction dérivable est continue. On vient donc de voir que la réciproque est fausse.

- Correction des exercices -

Exercice 1. Ecrire sans utiliser de valeur absolue (ni de calculette!):

$$\left|\sin\left(\frac{8\pi}{7}\right)\right| \qquad \left|\ln\left(\frac{7}{11}\right)\right| \qquad \left|e^{1/3} - e^{-1/3}\right|$$

Comme $\frac{8\pi}{7} = \pi + \frac{\pi}{7}$ et vu que $\frac{\pi}{7} \in]0, \pi[$:

$$\sin\left(\frac{8\pi}{7}\right) = -\sin\left(\frac{\pi}{7}\right) < 0$$

donc:

$$\left| \sin\left(\frac{8\pi}{7}\right) \right| = \sin\left(\frac{\pi}{7}\right)$$

Comme $\frac{7}{11} \in]0,1[$ et vu que $\ln(t) < 0$ pour tout $t \in]0,1[$:

$$\ln\left(\frac{7}{11}\right) < 0$$

et donc:

$$\left| \ln \left(\frac{7}{11} \right) \right| = -\ln \left(\frac{7}{11} \right) = \ln \left(\frac{11}{7} \right)$$

Enfin, la fonction exponentielle étant strictement croissante :

$$e^{-1/3} < e^{1/3}$$

et donc:

$$|e^{1/3} - e^{-1/3}| = e^{1/3} - e^{-1/3}$$

Exercice 2. Développer $(1 - \sqrt{2})^2$ puis simplifier l'expression $\sqrt{3 - 2\sqrt{2}}$.

On a
$$(1 - \sqrt{2})^2 = 1 - 2\sqrt{2} + (\sqrt{2})^2 = 3 - 2\sqrt{2}$$
 et donc :

$$\sqrt{3-2\sqrt{2}} = |1-\sqrt{2}| = \sqrt{2}-1$$

car $\sqrt{2} \ge 1$.

Exercice 3. Calculer plus simplement $\sqrt{1 + \cos(2x)}$, pour $x \in [0, 2\pi]$.

On sait (formule de duplication du cosinus) que, pour tout $x \in \mathbb{R}$:

$$\cos(2x) = 2\cos^2(x) - 1$$

Par conséquent :

$$\sqrt{1 + \cos(2x)} = \sqrt{2\cos^2(x)} = |\cos(x)| \sqrt{2}$$

Comme $x \in [0, 2\pi]$ par hypothèse, on voit que :

$$\sqrt{1 + \cos(2x)} = \begin{cases} \cos(x) \sqrt{2} & \text{si } x \in \left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right] \\ -\cos(x) \sqrt{2} & \text{si } x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \end{cases}$$

Exercice 4. Résoudre dans \mathbb{R} l'équation :

$$\left| x^2 - 3x - 1 \right| = \frac{x}{2} + 1$$

Les racines du trinôme $T(x) = x^2 - 3x - 1$ sont :

$$x_1 = \frac{3 - \sqrt{13}}{2} \qquad x_2 = \frac{3 + \sqrt{13}}{2}$$

★ Cas I : $x \in D_1 =]-\infty, x_1] \cup [x_2, +\infty[$ L'équation prend la forme

$$x^2 - 3x - 1 = \frac{x}{2} + 1$$

c'est-à-dire:

$$2x^2 - 7x - 4 = 0$$

soit finalement:

$$x = -\frac{1}{2} \qquad \text{ou} \qquad x = 4$$

mais il faut vérifier si ces valeurs appartiennent à D_1 . Pour cela, on peut les comparer numériquement à x_1 et x_2 , ou bien évaluer T en ces points (cf. méthode décrite dans le mini-cours « second degré »):

$$T\left(-\frac{1}{2}\right) = \frac{1}{4} + \frac{3}{2} - 1 = \frac{3}{4} > 0$$
 donc: $-\frac{1}{2} \in D_1$
 $T(4) = 16 - 12 - 1 = 3 > 0$ donc: $4 \in D_1$

L'ensemble des solutions qui relèvent de ce cas est donc :

$$S_1 = \left\{-\frac{1}{2}, 4\right\}$$

★ Cas II : $x \in D_2 = [x_1, x_2]$

L'équation prend la forme

$$-x^2 + 3x + 1 = \frac{x}{2} + 1$$

c'est-à-dire:

$$x^2 - \frac{5}{2}x = 0$$

soit finalement:

$$x = 0$$
 ou $x = \frac{5}{2}$

Là encore, on doit vérifier si ces valeurs appartiennent à D_2 . On calcule :

$$T(0) = -1 < 0$$
 donc: $0 \in D_2$
 $T(\frac{5}{2}) = \frac{25}{4} - \frac{15}{2} - 1 = -\frac{9}{4} < 0$ donc: $\frac{5}{2} \in D_2$

d'où l'ensemble des solutions qui relèvent de ce cas :

$$S_2 = \left\{0, \frac{5}{2}\right\}$$

Finalement, l'ensemble des solutions de l'équation proposée est :

$$S = \left\{ -\frac{1}{2}, 0, \frac{5}{2}, 4 \right\}$$

Exercice 5. Prouver que:

$$\forall x \in \mathbb{R}, \ \frac{x^2}{2} - 2|x - 1| \ge -4$$

Posons, pour tout $x \in \mathbb{R}$:

$$f(x) = \frac{x^2}{2} - 2|x - 1|$$

 \star Si $x \ge 1$:

$$f(x) = \frac{x^2}{2} - 2x + 2 = \frac{1}{2}(x^2 - 4x + 4) = \frac{1}{2}(x - 2)^2 \ge 0 > -4$$

 \star Si x < 1:

$$f(x) = \frac{x^2}{2} + 2x - 2 = \frac{1}{2} \left(x^2 + 4x - 4 \right) = \frac{1}{4} \left((x+2)^2 - 8 \right) \ge -4$$

d'où la conclusion (pour l'égalité *, on a utilisé la mise sous forme canonique).

Remarque. On aurait pu aussi poser

$$g(x) = \frac{x^2}{2} - 2|x - 1| + 4$$

et traiter séparément l'intervalle $]-\infty$, 1[et l'intervalle $[1,+\infty[$. Dans chaque cas, on effectue l'étude du signe d'un trinôme.

Exercice 6. Résoudre dans \mathbb{R} l'inéquation :

$$|2x - 3|x - 1| < 1$$

★ $Cas I : x \le 1$

L'inéquation s'écrit :

$$|2x - 3(1 - x)| < 1$$

c'est-à-dire:

$$|5x - 3| < 1$$

ou encore:

$$\left|x - \frac{3}{5}\right| < \frac{1}{5}$$

c'est-à-dire:

$$-\frac{1}{5} < x - \frac{3}{5} < \frac{1}{5}$$

d'où un premier ensemble partiel de solutions :

$$S_1 = \left[\frac{2}{5}, \frac{4}{5}\right[\cap] - \infty, 1] = \left[\frac{2}{5}, \frac{4}{5}\right[$$

★ Cas II : x > 1

L'inéquation s'écrit:

$$|2x-3(x-1)|<1$$

c'est-à-dire:

$$|-x + 3| < 1$$

ou encore:

$$-1 < -x + 3 < 1$$

d'où l'ensemble des solutions qui relèvent de ce cas :

$$S_2 = [2, 4[\cap]1, +\infty[=]2, 4[$$

Finalement, l'ensemble des solutions est $S = S_1 \cup S_2$, soit :

$$S = \left| \frac{2}{5}, \frac{4}{5} \right| \cup]2, 4[$$

Exercice 7. Résoudre dans \mathbb{R} l'équation :

$$x^4 - 2x^3 + |x| = 0$$

On distingue deux cas.

★ Cas I : x < 0

L'équation s'écrit

$$x^4 - 2x^3 - x = 0$$

ce qui est impossible (le membre de gauche est strictement positif!).

★ Cas II : $x \ge 0$

L'équation s'écrit:

$$x^4 - 2x^3 + x = 0$$

Factorisons d'abord par *x* :

$$x\left(x^3 - 2x^2 + 1\right) = 0$$

puis observons que 1 est racine de $x^3 - 2x^2 + 1$, ce qui permet de factoriser sous la forme :

$$x^{3} - 2x^{2} + 1 = (x - 1)(x^{2} + \alpha x - 1) \tag{*}$$

[les coefficients de plus haut et de plus bas degrés du trinôme se trouvant « à vue »!] puis, par identification du coefficient de x dans les deux membres de (\star), on trouve :

$$0 = -\alpha - 1$$
 soit : $\alpha = -1$

Bref, l'équation prend finalement la forme :

$$x(x-1)(x^2 - x - 1) = 0$$

Parmi les deux racines du trinôme $x^2 - x - 1$, seule $\frac{1+\sqrt{5}}{2}$ est retenue (l'autre étant strictement négative).

Finalement, l'ensemble des solutions est :

$$S = \left\{0, 1, \frac{1+\sqrt{5}}{2}\right\}$$

Exercice 8. Preuve des propositions 1 et 2 par disjonction de cas.

- **★** Prop 1:
 - ▶ Si $x \ge 0$ et $y \ge 0$, alors $xy \ge 0$, donc :

$$|xy| = xy = |x| |y|$$

▶ Si $x \ge 0$ et y < 0, alors $xy \le 0$, donc :

$$|xy| = -xy = x(-y) = |x| |y|$$

et même chose dans le cas où x < 0 et $y \ge 0$. Enfin, si x < 0 et y < 0, alors xy > 0, donc :

$$|xy| = xy = (-x)(-y) = |x| |y|$$

- **★** Prop 2:
 - ▶ Si $x \ge 0$ et $y \ge 0$, alors $x + y \ge 0$, donc :

$$|x+y| = x + y = |x| + |y|$$

▶ Si x < 0 et y < 0, alors x + y < 0, donc :

$$|x + y| = -(x + y) = -x - y = (-x) + (-y) = |x| + |y|$$

- ▶ Si $x \ge 0$ et y < 0, deux sous-cas se présentent :
 - * Si $|y| \le |x|$, c'est-à-dire si $x + y \ge 0$, alors :

$$|x + y| = x + y = |x| - |y| < |x| < |x| + |y|$$

* Si |y| > |x|, c'est-à-dire si x + y < 0, alors :

$$|x + y| = -x - y = -|x| + |y| \le |y| \le |x| + |y|$$

▶ Le cas x < 0 et $y \ge 0$ est analogue au précédent (il suffit d'échanger les rôles de x et de y).

Exercice 9. Prouver que si x, y, z sont trois réels quelconques, alors :

$$\left|x + y + z\right| \le |x| + \left|y\right| + |z|$$

D'une part, on a par associativité de l'addition :

$$x + y + z = (x + y) + z$$

et par inégalité triangulaire :

$$\left| (x+y) + z \right| \le \left| x+y \right| + |z|$$

d'où:

$$\left|x+y+z\right| \le \left|x+y\right| + |z| \tag{\star}$$

D'autre part, on a par inégalité triangulaire :

$$\left|x+y\right| \leqslant |x| + \left|y\right|$$

et donc, en ajoutant |z| à chaque membre de cette dernière inégalité :

$$|x+y|+|z| \le \left(|x|+|y|\right)+|z|$$

c'est-à-dire, à nouveau par associativité de l'addition :

$$|x+y|+|z| \le |x|+|y|+|z| \tag{\star}$$

Enfin, d'après (\star) et $(\star\star)$ et par transitivité de la relation \leq :

$$\left| \left| x + y + z \right| \le |x| + \left| y \right| + |z|$$

Profitons de l'occasion pour analyser, dans le détail, les règles de calcul qui nous ont servi ici :

★ <u>L'associativité</u> de l'addition, qui permet de parenthéser une somme de trois termes de deux manières :

$$\forall (a, b, c) \in \mathbb{R}^3, (a + b) + c = a + (b + c)$$

ce qui conduit, en pratique, à noter simplement a+b+c. Noter que la soustraction ne possède pas cette propriété, puisque (par exemple) :

$$(3-2)-1=0 \neq 2=3-(2-1)$$

et que la notation a - b - c devrait a priori être considérée comme ambigüe! C'est par convention que l'on considère que a - b - c désigne (a - b) - c.

★ La <u>compatibilité de la relation</u> ≤ <u>avec l'addition</u>, qui permet d'ajouter un <u>même</u> nombre à chaque membre d'une inégalité :

$$\forall (a, b, c) \in \mathbb{R}^3, a \leq b \Rightarrow a + c \leq b + c$$

★ La **transitivité** de la relation ≤, qui permet de « mettre bout-à-bout » des inégalités :

$$\forall (a, b, c) \in \mathbb{R}^3, \quad a \leq b \\ b \leq c$$
 $\Rightarrow a \leq c$

★ et, bien sûr, l'inégalité triangulaire, énoncée et démontrée à la proposition 2.

Exercice 10. Montrer, pour tout couple (x, y) de réels, l'inégalité $||x| - |y|| \le |x - y|$.

Soient x, y deux réels. Pour établir $|x| - |y| \le |x - y|$, il suffit (cf. « point-méthode ») de montrer que :

$$|x| - |y| \le |x - y| \tag{\spadesuit}$$

et que:

$$-\left(\left|x\right| - \left|y\right|\right) \leqslant \left|x - y\right| \tag{\diamond}$$

Pour (♦), on applique l'inégalité triangulaire :

$$|x| = |(x - y) + y| \le |x - y| + |y|$$

puis on retranche |y| à chaque membre.

Dans l'inégalité (\blacklozenge) qui est maintenant établie pour tout couple (x, y) de réels, on déduit par simple permutation des lettres :

$$|y| - |x| \le |y - x|$$

c'est-à-dire exactement (\diamondsuit) .

Exercice 11. Déterminer les couples (x, y) de réels tels que :

$$|x - y| \le |x| - |y|$$

Méthode 1 Découpons \mathbb{R}^2 en six zones, comme indiqué ci-dessous :

En examinant tour à tour chacune d'elles, on constate que seules les zones 1 et 4 conviennent.

Méthode 2 Grâce à l'exercice précédent, on sait que l'inégalité $|x-y| \ge |x| - |y|$ est vérifiée pour tout $(x,y) \in \mathbb{R}^2$. De ce fait, la condition $|x-y| \le |x| - |y|$ équivaut à |x-y| = |x| - |y|, c'est-à-dire à |x-y| + |y| = |x|. On reconnaît le cas d'égalité dans l'inégalité triangulaire! La condition proposée équivaut donc à :

$$x - y$$
 et y de même signe

Ainsi:

$$|x > y \text{ et } y \ge 0$$

 $|x - y| \ge |x| - |y| \Leftrightarrow \text{ ou }$
 $|x \le y \text{ et } y \le 0$