School of Computer Science Engineering and Technology

Course- BTech Type- Core

Course Code- Course Name- Statistical Machine learning

Year- 2023-2024 Semester- odd

Date – 03-08- 2023 Batch- ALL

Question 1:

Normalize the given data (0-1) with min_max scaling

Gender	Age Range	Head Size(cm^3)	Brain Weight(grams)
1	1	4512	1530
1	1	3738	1297
1	1	4261	1335
1	1	3777	1282
1	1	4177	1590
1	1	3585	1300
1	1	3785	1400
1	1	3559	1255
1	2	3613	1355
2	2	3982	1375
2	2	3443	1340
2	2	3993	1380
2	2	3640	1355
2	2	4208	1522
2	2	3832	1208

Question 2:

https://www.kaggle.com/datasets/camnugent/california-housing-prices

Download the dataset from the above link.

- a) Read the data with pandas and describe the data
- b) Find data type and shape of each column
- c) Find the null values (if yes fill the null values with '0' or mean of that column)

Question 3:

https://www.kaggle.com/datasets/camnugent/california-housing-prices

- a) Read the data with pandas and find features and target variables
- b) Normalize the data with min-max scaling
- c) Split the data into train and test.

Answers:

1.

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

```
Import numpy as np
```

M1=Np.min(Head_size)

M2=Np.max(Head_size)

L=[]

For I in range(0,len(Head_size):

X=(x-m1)/m2-m1

L.append(X)

Print(L)

2.

Import pandas as pd

Import numpy as np

- a) D=pd.read_csv('https://www.kaggle.com/datasets/camnugent/california-housing-prices') Print(d.describe())
- b) Print(d.type())
 Print(d.shape)
- c) Print(d.isnull())

X=np.mean(Total_rooms)

D1=d.fillna(X)

```
3:
a) X=d.drop(columns=['Price'])
Y=d[["price"]]
b)
M1=Np.min(Head_size)
M2=Np.max(Head_size)
L=[]
For I in range(0,len(Head_size):
        X=(x-m1)/m2-m1
        L.append(X)
Print(L)
e)
X=D
print("Enter the splitting factor (i.e) ratio between train and test")
s_f = float(input())
n_train = math.floor(s_f * X.shape[0])
n_test = math.ceil((1-s_f) * X.shape[0])
X_train = X[:n_train]
y_train = y[:n_train]
X_test = X[n_train:]
y_test = y[n_train:]
print("Total Number of rows in train:",X_train.shape[0])
print("Total Number of rows in test:",X_test.shape[0])
```