Sensor de Conductividad

¿Para qué sirve?

Un sensor de conductividad mide la capacidad de una solución para conducir una corriente eléctrica.

El único **Beneficio** es saber en su totalidad cuanto es la conductividad en el agua, pero para el caso de la hidroponía debe tener un valor especifico que es de 1.0 a 1.2ms/cm, con este sensor podemos saberlo y al mismo tiempo poder resolver si es mayor el mismo valor para un mejor crecimiento de las plantas.

Pasos a desarrollar

- 1. Construir el circuito.
- 2. Obtener datos de la conductividad del agua.
- Conexión al servidor vía Wifi.
- 4. Registrarlo en una base de datos en tiempo real para tener un mejor control.
- 5. Si la conductividad es mayor a 1.2mS/cm pasar el agua a través de un filtro.

Material a ocupar.

- Arduino Uno (con posibilidad de cambio).
- Cables para protoboard.
- Sensor de Conductividad
- Placa fenólica 15x15.
- Protoboard
- Filtro de Tinaco

Cotización de Materiales

Material	Cantidad	Costo	Total	Enlace
Tarjeta De Desarrollo Esp32				
Esp-32s Módulo Wifi +	1	\$270.00	\$270.00	Mercado Libre
Bluetooth				
Protoboard 400 Puntos	1	\$39.00	\$39.00	Mercado Libre
Sensor de conductividad	1	\$550.00	\$550.00	<u>Amazon</u>
Placa fenólica 10x15	1	\$39.00	\$39.00	Mercado Libre
Filtro de Tinaco	1	\$210.00	\$210.00	Mercado Libre
Tubo de PVC 1/2	1	\$60.48	\$60.48	Mercado Libre
			¢1 160 40	

\$1,168.48

ROI

Si estimamos el costo de un Rack de aproximado de 80 plantas el costo es de \$6,400.00 Aprox. Si no se llegase a cuidar se podría tener una perdida estimada de \$4, 800.00 por las plantas entonces si se implementa este sensor podríamos reducir estas pérdidas, el sistema cuesta alrededor de \$1, 200.00.

Para el sistema de control contamos con un filtro ya que la conductividad que viene de la tubería de agua potable es de 5.0 a 5.5 S/m, pasando esta misma agua por el filtro debemos de acercarnos al valor de 1.0 a 1.2mS/cm, que es lo recomendado para las plantas, si llagase a un nivel inferior a este, la misma agua regresará por el proceso de nutrientes del sistema hidropónico para llegar a ese mismo valor.