Polynomial Relations Between Matrices of Graphs

Sam Spiro, Rutgers University Joint with Bryce Frederickson, Paul Horn, and Sabrina Lato

G

$$G \rightarrow M_G$$

$$G \to M_G \to \{\lambda_1, \ldots, \lambda_n\}$$

$$G \to M_G \to \{\lambda_1, \dots, \lambda_n\} \to \text{Properties of } G$$

Define the adjacency matrix A by

$$A_{ij} = \begin{cases} 1 & ij \in E(G) \\ 0 & ij \notin E(G) \end{cases}$$

Define the adjacency matrix A by

$$A_{ij} = \begin{cases} 1 & ij \in E(G) \\ 0 & ij \notin E(G) \end{cases}$$

Theorem

If $\{\lambda_1, \ldots, \lambda_n\}$ are the eigenvalues of A, then the total number of closed walks (walks from a vertex to itself) of length k in G is

$$\lambda_1^k + \cdots + \lambda_n^k$$
.

Let $D = diag(d_1, \ldots, d_n)$ be the diagonal matrix of degrees of G.

Let $D = \operatorname{diag}(d_1, \ldots, d_n)$ be the diagonal matrix of degrees of G. We define the Laplacian matrix L by

$$L = D - A$$
.

Let $D = \operatorname{diag}(d_1, \ldots, d_n)$ be the diagonal matrix of degrees of G. We define the Laplacian matrix L by

$$L = D - A$$
.

Example

If G is the path on 3 vertices, then

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \ D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ L = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

If G is a d-regular graph, then we have the nice relation

$$A = dI - L$$
,

and from this one can easily translate between eigenvalues of A and L.

If G is a d-regular graph, then we have the nice relation

$$A = dI - L$$

and from this one can easily translate between eigenvalues of A and L.

If G is biregular (i.e. bipartite where every vertex on the same side has the same degree d_i), then

$$A^2 = (d_1 I - L)(d_2 I - L)$$

If G is a d-regular graph, then we have the nice relation

$$A = dI - L$$

and from this one can easily translate between eigenvalues of A and L.

If G is biregular (i.e. bipartite where every vertex on the same side has the same degree d_i), then

$$A^{2} = (d_{1}I - L)(d_{2}I - L),$$

and using this one can also translate between the eigenvalues of A and L.

Question

Do there exist "triregular graphs", i.e. those with

$$A^3 = f(L)$$

for some polynomial f?

Question

Do there exist "triregular graphs", i.e. those with

$$A^3 = f(L)$$

for some polynomial f?

Theorem (S. 2018)

No.

Theorem (S. 2018)

Let G be a connected graph. If there exists a positive integer r and polynomial f such that

$$A^r = f(L),$$

then G is either regular or biregular.

Theorem (S. 2018)

Let G be a connected graph. If there exists a positive integer r and polynomial f such that

$$A^r = f(L),$$

then G is either regular or biregular.

Table: Graphs Satisfying $X^r = f(Y)$

X/Y	Α	L	Q	\mathcal{L}
Α		Reg, Bireg	Reg, Bireg	Reg, Bireg
L	Reg		Reg	Reg
Q	Reg	Reg		Reg
\mathcal{L}	Reg, Bireg	Reg	Reg	

Question (Vague)

When do there exist "nice" polynomials f, g such that f(A) = g(L)?

Question (Vague)

When do there exist "nice" polynomials f, g such that f(A) = g(L)?

This trivially holds if f = g = 0.

Question (Vague)

When do there exist "nice" polynomials f, g such that f(A) = g(L)?

This trivially holds if f = g = 0. To avoid issues like this, we'll say that a relationship is *proper* if $f(A) \neq cI$ for some $c \in \mathbb{R}$.

Question (Vague)

When do there exist "nice" polynomials f, g such that f(A) = g(L)?

This trivially holds if f=g=0. To avoid issues like this, we'll say that a relationship is *proper* if $f(A) \neq cI$ for some $c \in \mathbb{R}$.

For this project, we decided to focus on (proper) relations f(A) = g(L) when at least one of f, g has low degrees.

It's easy to show that having f(A) = g(L) with $\deg f = 1$ or $\deg g = 1$ implies G is regular.

It's easy to show that having f(A) = g(L) with $\deg f = 1$ or $\deg g = 1$ implies G is regular.

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f, deg $g \le 2$, then G is either regular or biregular.

We define the *join* $G \vee H$ by taking $G \cup H$ and adding all edges between G and H

Theorem (FHLS 2023+)

Let G be a k-regular m-vertex graph and H a d-regular n-vertex graph such that $G \vee H$ is not regular. Let A_G, A_H be the adjacency matrices of G, H and let A, L be the adjacency matrix and Laplacian matrix of $G \vee H$.

There exist polynomials f,g such that f(A)=g(L) with $\deg g\leq 2$ if and only if there exists no $\mu\neq k,d$ which is an eigenvalue of both A_G and A_H and no eigenvalue of A_G or A_H is equal to $\frac{k+d-\sqrt{(k-d)^2+4mn}}{2}$.

Theorem (FHLS 2023+)

Let G be a k-regular m-vertex graph and H a d-regular n-vertex graph such that $G \vee H$ is not regular. Let A_G, A_H be the adjacency matrices of G, H and let A, L be the adjacency matrix and Laplacian matrix of $G \vee H$.

There exist polynomials f,g such that f(A)=g(L) with $\deg g\leq 2$ if and only if there exists no $\mu\neq k,d$ which is an eigenvalue of both A_G and A_H and no eigenvalue of A_G or A_H is equal to $\frac{k+d-\sqrt{(k-d)^2+4mn}}{2}$.

Informally, this says the join of two regular graphs G, H has f(A) = g(L) with $\deg(g) \leq 2$ if and only if G, H share no eigenvalues and neither of their eigenvalues equal $\frac{k+d-\sqrt{(k-d)^2+4mn}}{2}$.

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with $\deg f, \deg g \leq 2$, then G is either regular or biregular.

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with $\deg f, \deg g \leq 2$, then G is either regular or biregular.

$$f(x) = ax^2 + bx + c,$$
 $g(x) = \alpha x^2 + \beta x + \gamma.$

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f, deg $g \le 2$, then G is either regular or biregular.

$$f(x) = ax^2 + bx + c,$$
 $g(x) = \alpha x^2 + \beta x + \gamma.$

If a = 0 or $\alpha = 0$ then it is easy to show G is regular.

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f, deg $g \le 2$, then G is either regular or biregular.

$$f(x) = ax^2 + bx + c,$$
 $g(x) = \alpha x^2 + \beta x + \gamma.$

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f, deg $g \le 2$, then G is either regular or biregular.

$$f(x) = ax^2 + bx + c,$$
 $g(x) = \alpha x^2 + \beta x + \gamma.$

$$f(A)_{u,v} = a \cdot A_{u,v}^2 + b \cdot A_{u,v} + c \cdot I_{u,v}$$

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f, deg $g \le 2$, then G is either regular or biregular.

$$f(x) = ax^2 + bx + c,$$
 $g(x) = \alpha x^2 + \beta x + \gamma.$

$$f(A)_{u,v} = a \cdot A_{u,v}^2 + b \cdot A_{u,v} + c \cdot I_{u,v} = a \cdot d(u,v) \neq 0.$$

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f, deg $g \le 2$, then G is either regular or biregular.

$$f(x) = ax^2 + bx + c,$$
 $g(x) = \alpha x^2 + \beta x + \gamma.$

$$f(A)_{u,v} = a \cdot A_{u,v}^2 + b \cdot A_{u,v} + c \cdot I_{u,v} = a \cdot d(u,v) \neq 0.$$

$$g(L)_{u,v} = \alpha d(u,v).$$

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f, deg $g \le 2$, then G is either regular or biregular.

$$f(x) = ax^2 + bx + c,$$
 $g(x) = \alpha x^2 + \beta x + \gamma.$

$$f(A)_{u,v} = a \cdot A_{u,v}^2 + b \cdot A_{u,v} + c \cdot I_{u,v} = a \cdot d(u,v) \neq 0.$$

$$g(L)_{u,v} = \alpha d(u,v).$$

Having
$$f(A)_{u,v}=g(L)_{u,v}$$
 means
$$ad(u,v)=lpha d(u,v)$$

Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f, deg $g \le 2$, then G is either regular or biregular.

$$f(x) = ax^2 + bx + c,$$
 $g(x) = \alpha x^2 + \beta x + \gamma.$

If a=0 or $\alpha=0$ then it is easy to show G is regular. Assuming $G\neq K_n$, there exist vertices u,v at distance 2 in G.

$$f(A)_{u,v} = a \cdot A_{u,v}^2 + b \cdot A_{u,v} + c \cdot I_{u,v} = a \cdot d(u,v) \neq 0.$$

$$g(L)_{u,v} = \alpha d(u,v).$$

Having
$$f(A)_{u,v} = g(L)_{u,v}$$
 means

$$ad(u, v) = \alpha d(u, v) \implies a = \alpha.$$

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

$$f(A)_{u,v}=d(u,v)+b$$

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

$$f(A)_{u,v} = d(u,v) + b,$$
 $g(L)_{u,v} = d(u,v) - d(u) - d(v) - \beta$

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

$$f(A)_{u,v} = d(u,v) + b,$$
 $g(L)_{u,v} = d(u,v) - d(u) - d(v) - \beta$

$$\implies d(u) + d(v) = -b - \beta \quad \forall uv \in E(G).$$

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

Let u, v be two adjacent vertices of G.

$$f(A)_{u,v} = d(u,v) + b,$$
 $g(L)_{u,v} = d(u,v) - d(u) - d(v) - \beta$

$$\implies d(u) + d(v) = -b - \beta \quad \forall uv \in E(G).$$

We thus have d(u) + d(v) equal to a common value for all $uv \in E(G)$.

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

Let u, v be two adjacent vertices of G.

$$f(A)_{u,v} = d(u,v) + b,$$
 $g(L)_{u,v} = d(u,v) - d(u) - d(v) - \beta$

$$\implies d(u) + d(v) = -b - \beta \quad \forall uv \in E(G).$$

We thus have d(u) + d(v) equal to a common value for all $uv \in E(G)$. This common value must be $\delta + \Delta$

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

Let u, v be two adjacent vertices of G.

$$f(A)_{u,v} = d(u,v) + b,$$
 $g(L)_{u,v} = d(u,v) - d(u) - d(v) - \beta$

$$\implies d(u) + d(v) = -b - \beta \quad \forall uv \in E(G).$$

We thus have d(u)+d(v) equal to a common value for all $uv \in E(G)$. This common value must be $\delta+\Delta$, which means every vertex of minimum degree is only adjacent to vertices of maximum degree and vice versa.

$$f(x) = x^2 + bx + c,$$
 $g(x) = x^2 + \beta x + \gamma.$

Let u, v be two adjacent vertices of G.

$$f(A)_{u,v} = d(u,v) + b,$$
 $g(L)_{u,v} = d(u,v) - d(u) - d(v) - \beta$

$$\implies d(u) + d(v) = -b - \beta \quad \forall uv \in E(G).$$

We thus have d(u) + d(v) equal to a common value for all $uv \in E(G)$. This common value must be $\delta + \Delta$, which means every vertex of minimum degree is only adjacent to vertices of maximum degree and vice versa. This means G is either regular or biregular.

Proposition

For $G \vee H$, under reasonable conditions there exist a proper relation f(A) = g(L) with deg f = 2, deg g = 3.

Proposition

For $G \vee H$, under reasonable conditions there exist a proper relation f(A) = g(L) with deg f = 2, deg g = 3.

Under "reasonable conditions", the vector space spanned by

$$\{A^i\}_{i=0}^\infty \cup \{L^i\}_{i=0}^\infty$$

has dimension at most 5.

Proposition

For $G \vee H$, under reasonable conditions there exist a proper relation f(A) = g(L) with deg f = 2, deg g = 3.

Under "reasonable conditions", the vector space spanned by

$${A^{i}}_{i=0}^{\infty} \cup {L^{i}}_{i=0}^{\infty}$$

has dimension at most 5. Thus there exists a non-trivial linear combination of

$$\{I, A, A^2, L, L^2, L^3\}$$

equal to 0.

Proposition

For $G \vee H$, under reasonable conditions there exist a proper relation f(A) = g(L) with deg f = 2, deg g = 3.

Under "reasonable conditions", the vector space spanned by

$${A^{i}}_{i=0}^{\infty} \cup {L^{i}}_{i=0}^{\infty}$$

has dimension at most 5. Thus there exists a non-trivial linear combination of

$$\{I, A, A^2, L, L^2, L^3\}$$

equal to 0. This is exactly a proper relation of the desired degrees.

Conjecture

If f(A) = g(L) is proper with deg $f \le 2$, $g \le 3$, then G is either regular, biregular, or the join of two regular graphs.

Conjecture

If f(A) = g(L) is proper with deg $f \le 2$, $g \le 3$, then G is either regular, biregular, or the join of two regular graphs.

Question

If f(A) = g(L) proper with deg f = 2, does G have at most 2 degrees?

Conjecture

If f(A) = g(L) is proper with deg $f \le 2$, $g \le 3$, then G is either regular, biregular, or the join of two regular graphs.

Question

If f(A) = g(L) proper with deg f = 2, does G have at most 2 degrees? More generally, does G have at most deg f degrees?

Problem

Can you come up with a guess as to which graphs have f(A) = g(L) with deg $f = \deg g = 3$? What about $\{\deg f, \deg g\} = \{2, 4\}$?

Problem

Can you come up with a guess as to which graphs have f(A) = g(L) with deg $f = \deg g = 3$? What about $\{\deg f, \deg g\} = \{2, 4\}$?

Conjecture

If $f(A) = g(\mathcal{L})$ with deg f, deg $g \leq 2$, then G is either regular or biregular.