Lab Report 3

Name: Sricharan Vinoth Kumar

Roll no: 2024112022

Group no: 10

Experiment 1:

• Objective:

To assemble a binary Half Adder.

- Electronic Components Used:
 - o Digital Test Kit
 - o 7408 2 input AND IC
 - o 7486 2 input XOR IC
- Reference Circuit:

• <u>Procedure:</u>

- 1. Ensure that the input pins IP1-12 and output LEDs LG1-12 and LR1-12 are working. Set the CLOCK of the kit in FAST mode.
- 2. Set up the Half Adder as per the given circuit diagram using the AND and XOR ICs.
- 3. Connect any of the 2 input pins IP1-12 to the Half Adder and observe the outputs for the different combinations of inputs and draw the truth table accordingly.
- 4. Verify whether the truth table is correct or not.

• Observation:

Truth Table Obtained:

A	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

• Conclusion:

The Half Adder has been assembled successfully.

• <u>TinkerCAD simulation:</u>

https://www.tinkercad.com/things/2Z5f7NjTYS8-dsm-lab-3-exp-1?sharecode=tDout30IiVALsIo0KvfZ7QDe-Vk6hJEkwAsa4p3Seng

Experiment 2:

• Objective:

To assemble a binary Full Adder.

• Electronic Components Used:

- o Digital Test Kit
- o 7408 2 input AND IC
- o 7486 2 input XOR IC
- o 7432 2 input OR IC

• Reference Circuit:

• Procedure:

- 1. Ensure that the input pins IP1-12 and output LEDs LG1-12 and LR1-12 are working. Set the CLOCK of the kit in FAST mode.
- 2. Set up an Half Adder as done in the previous experiment.
- 3. Connect output C and the output of the Half Adder S1 and inputs to a new Half Adder to generate outputs S2 and C2.
- 4. Generate the final CARRY by connecting C1 and C2 to an OR gate.
- 5. Generate the truth table using the inputs A, B, C and outputs S2 and CARRY.
- 6. Verify whether the truth table is correct or not.

• Observation:

Truth table obtained:

A	В	C	S2	CARRY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1

1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• Conclusion:

The Full Adder has been assembled successfully.

• <u>TinkerCAD Simulation:</u>

https://www.tinkercad.com/things/a8eLwplTqy6-dsm-lab-3-exp-2?sharecode=CVRFh-eGHBVCAhqUD OsvlXmlKjn7ORH-jJFyHKRVrM

Experiment 3:

• Objective:

To build a binary Half Subtractor.

• Electronic Components Used:

- o Digital Test Kit
- o 7408 2 input AND IC
- o 7486 2 input XOR IC
- o 7040 Hex Inverter NOT IC

• Reference Circuit:

• Procedure:

- 1. Ensure that the input pins IP1-12 and output LEDs LG1-12 and LR1-12 are working. Set the CLOCK of the kit in FAST mode.
- 2. Set up the Half Subtractor as per the given circuit diagram using the AND, NOT and XOR ICs.
- 3. Connect any of the 2 input pins IP1-12 to the Half Subtractor and observe the outputs for the different combinations of inputs and draw the truth table accordingly.
- 4. Verify whether the truth table is correct or not.

• Observation:

Truth table obtained:

A	В	S	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

• Conclusion:

The Half Subtractor has been assembled successfully.

• TinkerCAD Simulation:

https://www.tinkercad.com/things/9E9Jzk68uW1-dsm-lab-3-exp-3?sharecode=aRmPqEZrio4ENFEz 2yLCqer2BsTBs8Lw75y9emcvqA

Experiment 4:

• Objective:

To build a binary Full Subtractor.

• Electronic Components Used:

- o 7408 2 input AND IC
- o 7486 2 input XOR IC
- o 7404 Hex Inverter (NOT) IC
- o 7432 2 input OR IC

• Reference Circuit:

• Procedure:

- 1. Ensure that the input pins IP1-12 and output LEDs LG1-12 and LR1-12 are working. Set the CLOCK of the kit in FAST mode.
- 2. Set up the Half Subtractor as done in the previous experiment.
- 3. Connect output C and the output of the Half Subtractor D1 to a new Half Subtractor to generate the final output D2 and borrow B2.
- 4. Connect the borrows B1 and B2 to an OR gate to get the final BORROW.

- 5. Obtain the truth table of the inputs A,B,C and the outputs D2 and BORROW.
- 6. Verify whether the truth table is correct or not.

• Observation:

Truth table obtained:

A	В	C	D2	BORROW
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

• Conclusion:

The Full Subtractor has been assembled successfully.

• <u>TinkerCAD Simulation:</u>

https://www.tinkercad.com/things/3NQhxHejLCC-dsm-lab-3-exp-4?sharecode=toktUGxAeWzVLtSaOXq 9II3G1w0EZMv0DAHHEYnq08