MEX Presentation Theme

a simple and clean beamer theme

Presenter Name

Complete Institute Name

October 15, 2025

- 1 Introduction
- 2 Related Work
- 3 Proposed Method
- 4 Result
- 5 Discussion
- 6 Conclusion

- 1 Introduction
- 2 Related Work
- 3 Proposed Method
- 4 Resul
- 5 Discussion
- 6 Conclusion

Introduction

•000

This is the first highlighted keyword to emphasize an important concept.

The second point addresses another key idea in Knuth 1984.

Objectives Scope

Introduction

Sample Block Title

This block presents a key concept that is crucial for understanding the topic.

Sample Alert Block Title

This block presents a more alarming key concept that is crucial for understanding the topic.

Name (Institute) BTFX Presentation 2 / 13

Actors & Features

Actors:

Introduction

Features:

Contributions

Introduction ○○○●

Scientific Contribution

Real-world Contribution

- 1 Introduction
- 2 Related Work
- 3 Proposed Method
- 4 Resul
- 5 Discussion
- 6 Conclusion

Advancements

Introduction 0000

Research gaps

Introduction

Research gap

 \Rightarrow Concluding statement.

- 1 Introduction
- 2 Related Work
- 3 Proposed Method
- 4 Result
- 5 Discussion
- 6 Conclusion

Overview

Figure. The caption of the figure.

Name (Institute) BIRN Presentation 7 / 13

Sample Process Algorithm

Introduction 0000

Goal:

Result:

Step:

Scope:

- 1 Introduction
- 2 Related Work
- 3 Proposed Method
- 4 Result
- 5 Discussion
- 6 Conclusion

Prototyping

GitHub repository: Demo Website:

Figure. The caption of the figure.

Figure. The caption of the figure.

Name (Institute) BIEX Presentation 9 / 13

- 1 Introduction
- 2 Related Work
- 3 Proposed Method
- 4 Result
- 5 Discussion
- 6 Conclusion

Limitations

Introduction 0000

 \Rightarrow Concluding statement.

Comparison

Introduction

Table. Comparison of different methods (✓: YES, ✗: NO).

	Your Method	Method B	Method C	Method D	Method E	Method F
Feature 1	✓	✓	Х	✓	Х	1
Feature 2	✓	×	✓	✓	✓	X
Feature 3	X	✓	✓	×	×	1
Feature 4	✓	✓	×	×	✓	X
Feature 5	×	×	✓	✓	×	✓
Feature 6	✓	X	✓	X	X	X

- 1 Introduction
- 2 Related Work
- 3 Proposed Method
- 4 Result
- 5 Discussion
- 6 Conclusion

Demonstration

Process A

Introduction

Scenario 1

Scenario 2

Process B

◆불 ▶ 불|= 쒸٩♡

Name (Institute) BIEX Presentation 13 / 13

Scope Back to Objectives

Formalizing - Sample Algorithm (Back to Sample process)

Algorithm (Result) ← Sample(Input1)

Require: Input1 is a predefined parameter.

```
1: Set ← Ø
```

- 2: **for** element ∈ Input1 **do**
- 3: **if** Condition(element) is true **then**
- 4: Set \leftarrow Set \cup {Process(element)}
- 5: **else**
- 6: **continue**
- 7: end if
- 8: end for
- 9: Intermediate ← Transform(Set)
- 10: return Result

Algorithm (Result) \leftarrow Sample(Input1)

Require: Input1 is a predefined parameter.

```
1: Set ← Ø
```

- 2: **for** element ∈ Input1 **do**
- 3: **if** Condition(element) is true **then**
- 4: Set \leftarrow Set \cup {Process(element)}
- 5: **else**
- 6: **continue**
- 7: end if
- 8: end for
- 9: Intermediate ← Transform(Set)
- 10: return Result

References I

[Knu84] Donald E. Knuth. "Literate Programming". In: *The Computer Journal* 27.2 [1984], pp. 97–111.