

Age of Information: A new metric proposed for measuring data freshness

Jiadong Lou,

University of Louisiana at Lafayette, Lafayette, Louisiana, USA

Data Freshness

Timely updates are essential in emerging applications of CPS/IoT

| Traditional Metrics

Limitation when describing "freshness"

Rate of message delivery over network.

Time for data traveling across the network

News Delivery Example

Definition

The time elapsed since the generation time of the latest arrival packet.

G(t): Generation time of a(t): He latest data a(t): AoI at the time t

$$a(t) = t - G(t)$$

Aol Variation

$$a(t) = \begin{cases} a(t-1)+1, & \text{No new packet arrived;} \\ t-G(t), & \text{Received a new packet generated at } G(t). \end{cases}$$

Aggregated Aol

$$\Delta A_{d_l} = \int_0^T a_{d_l}(t)dt$$

Time-averaged Aol

$$A_{d_l} = \frac{1}{T} \int_0^T a_{d_l}(t) dt$$

Data Transmission Example

Aol and Delay Comparisons

TABLE I
AOI VARIATION IN PERIODIC REQUEST WITH THE REQUEST CYCLE OF 2

Slot Node	1	2	3	4	5	6	7	8	9	10	Comparison Metrics
N_1	1	1	2	3	4	5	6	1	2	3	_
N_2	1	2	3	1	2	3	4	5	6	1	_
N_3	1	2	3	4	<u>5</u>	1	2	3	4	5	_
Transmission Delay	_	2	_	2	_	2	_	2	1	2	Long-term Delay: 2
AoI Variations	3	5	8	8	11	9	12	9	12	9	Accumulative AoI: 8.6

TABLE II
AOI VARIATION IN PERIODIC REQUEST WITH THE REQUEST CYCLE OF 4

Slot	1	2	3	4	5	6	7	8	9	10	Comparison Metrics
N_1	1	2	3	3	4	5	6	3	4	5	_
N_2	1	2	3	2	3	4	5	2	3	4	-
N_3	1	2	3	1	2	3	<u>4</u>	1	2	3	
Transmission Delay	-	_	_	9	_	_	_	9	_	-	Long-term Delay: 9
AoI Variations	3	6	9	6	9	12	15	6	9	12	Accumulative AoI: 8.7

| Existing Work

- Special network topologies
- Interference-free link sets
- Flexible routing
-

Multi-hop

Single-hop

- Generation rate control
- Queuing packet management
- Scheduling policies
- •

Applications scenario

- Interference and throughput
- Energy consuming
- Broadcast network
- Moving collection agents
-

Instant AoI Optimization in IoT Networks with Packet Combination

Jiadong Lou, Xu Yuan, and Nian-Feng Tzeng

University of Louisiana at Lafayette, Lafayette, Louisiana, USA

Outline

Network Model

IoT Networks

Packet Combination

New Metric

Instant Aol

Request Modes

Periodic Request

Proactive Request

loT Application

Packet Aggregation in the IoT Network

Packet Combination

Re-packing Rate and Transmission Time

Time slot for transmitting L packets: $\lceil \lambda L \rceil$ = 3

Instant Aol

Aol at Packet Delivered Time Point

Instant Aol
$$\bar{A}(k) = A(t(k))$$

Time-averaged Aol

$$\tilde{A} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

Long-term Instant Aol

$$\bar{A} = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} A(k)$$

Request Modes

Periodic Request: Arrived in every T time slot

Proactive Request: Arrived arbitrarily

| Periodic Request

Aol Profit: The Value of decreased Aol

Time interval between the two packets uploading

Periodic Request

Instant Aol Calculation

Instant AoI at H-th cycle

$$\bar{A}^E(H) = \bar{A}^E(0) + \frac{1}{|\mathcal{N}|} \sum_{h=1}^{H} \left(|\mathcal{N}| \cdot T - \sum_{n \in \mathcal{V}(h)} \Delta_n(h) \right)$$
Initial Aol Increased Aol Aol Profit

Long-term Instant Aol

 $\bar{A}^E = \bar{A}^E(0) + \frac{H+1}{2}T - \lim_{H \to \infty} \frac{1}{H} \frac{1}{|\mathcal{N}|} \sum_{h=1}^{H} \sum_{n \in \mathcal{N}} \tilde{b}_n(h)$

Scheduling parameter

Latest uploading time slot

Periodic Request

Instant Aol Optimization

OPT-1
$$\max \sum_{h=1}^{H} \sum_{n \in \mathcal{N}} \tilde{b}_n(h)$$

 $s.t.$ Constraints: $\tilde{b}_n(h) \leq hT$

In a time slot, the node with minimum index uploads its new packet

Numerical Results

30 Sensing Nodes

50 Sensing Nodes

Proactive Request

Instant Aol Calculation

$$A^{E} = \frac{1}{|\mathcal{N}|} \left(\sum_{n \in \mathcal{N}} \left(A_{n}^{E}(0) + b_{s} + \lceil \lambda L \rceil - 1 \right) - \sum_{n \in \mathcal{V}} \Delta_{n} \right)$$

Initial Aol

Increased Aol

Aol Profit

Proactive Request

Instant Aol Optimization

$$A^{E} = \frac{1}{|\mathcal{N}|} \Big(\sum_{n \in \mathcal{N}} \left(A_{n}^{E}(0) + b_{s} + \lceil \lambda L \rceil - 1 \right) - \sum_{n \in \mathcal{V}} \Delta_{n} \Big)$$

L packets from sensing nodes

$$A^{E} = \frac{1}{|\mathcal{N}|} \left[f(L) - \frac{(L+1)}{2} L + |\mathcal{N}|(L+\lceil \lambda L \rceil) \right)$$

L Minimum Initial AoIs

Proactive Request

Instant Aol Optimization

Iteratively calculating the optimal Instant AoI under different L values

$$A^{E} = \frac{1}{|\mathcal{N}|} \left(f(L) - \frac{(L+1)}{2} L + |\mathcal{N}| (L + \lceil \lambda L \rceil) \right)$$

Numerical Results

Comparison under different sensing node counts and re-packing rates

Comparison with non-combination and greedy combination schemes

Aol and Throughput Tradeoffs in Routing-aware Multi-hop Wireless Network

Jiadong Lou*, Xu Yuan*, Sastry Kompella†, and Nian-Feng Tzeng*

*University of Louisiana at Lafayette, Lafayette, Louisiana, USA †U.S. Naval Research Laboratory, Washington D.C., USA

Motivation

Aol and Throughput Tradeoffs

Smart Home: Plenty of smart devices deployed to gather information

Lower AoI: timely responses for urgent events

High throughput: massive data uploads

Network Modeling

OFDM-based Multi-hop Wireless Networks

$$n_{ij}^l[b] = \begin{cases} 1, & \text{if the link } (i,j) \text{ is activated in channel } b \\ & \text{for sesssion } l, \\ 0, & \text{otherwise.} \end{cases}$$

Network Modeling

Link Activation and Frequency

Frequency

Activation Indicator

$$z_{ij}^l = \begin{cases} 1, & \text{if } f_{ij}^l \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$

Network Modeling

Transmission and Throughput

Generation rate at source: λ

Transmission rate at link (i, j): μ_{ij}

Throughput: U

Interfernce Modeling

Three Types of Interference

| Flexible Routing Modeling

Routing Models of three nodes

| Aol Calculation

Accumulated Trapezoid Areas

| Aol Calculation

Aol Variations at Two Consecutive Nodes

| Aol Calculation

Aol at Destination Node

Source node

Multi-objective Problem

Minimize time-averaged Aol

$$A_{ave} = \sum_{l \in \mathcal{L}} \frac{1}{2\lambda^l} + \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{T}_i}^{z_{ij}^l = 1} \frac{p^l}{\mu_{ij}}$$

Maximize Throughput

$$U_{\min} \leq U^l$$

| Pareto-optimal

Minimizing Two Objectives

Cannot make one individual metric better without making others worse

Local Optimal Throughput

 A scheduling including routing and channel allocation for optimizing Aol

Maximum Throughput achieved as the bottleneck rate

| Algorithm Design

1. Solve the optimization problem that merely minimizing the Aol

Get the global minimum AoI: A_{ave}

Get the local maximum throughput: v

| Algorithm Design

2. Add a throughput constraint to construct Aol optimization problem

| Algorithm Design

3. Repeat the step 2 until no feasible solutions

Pareto-optimal Curve

Obtain all Pareto-optimal points

We prove that all Pareto-optimal points can be found

|Simulation Results

Randomly generate a 25-node network.

|Simulation Results

Routing Variations

(d) The route for OPT-AoI with through- (e) The route for OPT-AoI with through- (f) The route for OPT-AoI with throughput constraint v=162.0 in the 4th iteration. put constraint v=178.0 in the 5th iteration. put constraint v=184.8 in the 6th iteration.

Simulation Results

-□- Interference Range 50

-Δ- Interference Range 60

-O- Interference Range 70

180

180

180

135

120

24

28

32

36

40

44

48

Total Time Averaged AoI

Different number of sessions

Different interference ranges

Thank You

Q&A