Ecuacines diferenciales I Tomái Basile Áfrarez
30/04/20 1. Enhaba una solución particular pro cada una de las ecuaciones 4"+4=14 Propago Y=Ax+Bx+Cx+Dx+E > 1 12 Ax+ 6Bx+2C > A=1) :. Solvijá: | Y = X4 - 12x2 + 24 | B = 01 -> C=-12, 12A+1 = 0 6B+D=0 -> D=0. D E = 24 , ZC+ E = 0 Propongo y= Kex -> y' - Kex -> y'' = Kex
: y' - y = Kex - Kex = 0 : No Funciona Y = K x e - x -> y' = - K x e - x + K e - x -> y' = K x e - x - K e - x - X e - x - Z K e Propongo $y'' - y = e^{-x}$ $K \times e^{-x} - 2Ke^{-x} - K \times e^{-x} = e^{-x}$ $= -2Ke^{-x} = e^{-x}$ Sustituyo: -2K=1 Solución Gereral

2 a) 44" + 204" + 254 = 0 propongo y= eax - 49" + 204" + 254 = 0 -> 4(ex)"+ 20(ex)+25(exx)=0 -> 4x ex + 20 x ex + 25e=0 -> 4x + 20x + 25 = 0 | x = -5/2 con doble multiplicidad il una solvinó es y= e X $-7 4y'' + 20y' + 25y = -70e^{-5/12} + 25xe^{-5/12} + 25xe^{-5/12} + 25xe^{-5/12} = 0$ Es solución. Solución general: y = C, e + C2XC 2X b) $y'' - 2y' - 3y = 64xe^{-x}$ propongo exx Ecuación homogénea: y"- 2y'-3y =0 $\rightarrow \alpha^2 - 2\alpha - 3 = 0$ $\Rightarrow \alpha_1 = 3$ $\alpha_2 = -1$ 4, e 3× + Crex . Solución homogérea: Y4 =

b) 4,, 4	- 14 = 200 (3f)	Y(0) = 2 Y'(0) = 0
hamaginea.	y"+ 4y = 0	propriet y = ext - y'= xext - y"= diext
ه د	(+ Y = 0 ->	$\alpha_1 = 2$; $\alpha_2 = -2$;
, . L	Solution es :	e^{ot} (C, cos (zt) + Cz Sen(zt)) C, cos (zt) + Cz Sen (zt)]
	Propago $y = y'' + 4y = Sen(3t)$	A sen(st) $\rightarrow y'=3A\cos(3t) \rightarrow y''=-9A sen(3t)$
	9 A sen (3t) + 4 A sen ($3t) = Sen(3t) \rightarrow -5A = 1 \rightarrow A = -1/5$
	1° 1/p = -1/	15 Sen(3t/)
8 8		$y = C_1 \cos(it) + C_2 \sin(it) - \frac{1}{5} \sin(i3t)$ Sen (it) + 2C2 cos(zt) - $\frac{3}{5} \cos(3t)$
Pero:	y (a) = 2 y' (a) = 0 7	$c_1 = 2$ $c_2 = 3/5 = 8$ -> $c_2 = 3/10$
	:. La solución e	

1) al Muestre que el vertos et variación de parámetros on y"+ y = Fex).

1) eva a la solución portivular. Ypix) = (x +/t) sen(x-t) dt La enaim homogénea es i y"+y = a Que per inspección, time solveines Y = cos X /2 = sen X Tava el metado de Variación, proponenos: Ye = V. Y. + V. Y. W(Y, Y2) = Y, Y2 - Y, Y2 = 1052x + So2x = 1 e y par la teoria, soberno que vi = 5-1/2 fix) = 5x - Son(t) f(t) dt · 52 = 14, fit) dt = 1 cos (t) f(t) dt .: Solución particular: Yp = cosx (x - Son(t) f(t) dt + Sen x (cos(t) f(t) dt $Y_{P} = \int_{0}^{x} cosx son(t) f(t) dt + \int_{0}^{x} sen x cos(t) f(t) dt$ on la integral = \ (Senx cost - wsx sent) f(t) dt = 1 Sen X- t) f(t) dt b) Encentre algo similar para y"+ K"y = f(x) K>0 romogério: Y"+ K2y = 0 . nuevamente, por inspección Y1 = cos (Kx) y2 = Sen (Kx) Propone mos como solución particular a Yp= V, y, + V2 y2

W (y, y2) = Y, Y2 - Y1 Y2 = OS(Kx) K OS(Kx) + SON(Kx) K SON(Kx) = K-• Soberos que $\sqrt{1} = \int_{0}^{x} -\frac{1}{4} f(t) = \int_{0}^{x} -\frac{1}{4} sen(kt) f(t) dt$ $\sqrt{1} = \int_{0}^{x} \frac{1}{4} f(t) = \int_{0}^{x} -\frac{1}{4} sen(kt) f(t) dt$ $\sqrt{1} = \int_{0}^{x} \frac{1}{4} f(t) dt$ $\sqrt{1} = \int_{0}^{x} \frac{1}{4} f(t) dt$ => 1p= cos(Kx) [x-sen(Kt) F(+) yt + Sen(Kx) (x cos(Kt) F(t) bt = to [solkx) solke) + solkx) wilkt) dt] = | tx (x sen (kx-Kt) f (t) dt |

5 y + py + fy = f(t) , y(0) = y0 y'(0) = y6' - (1) which can set = y'(t) of $\overline{w} = \overline{F}(t, \overline{w})$, $\overline{w}(0) = \begin{pmatrix} y_0 \\ y_0 \end{pmatrix}$ or $\overline{w}(t) = \begin{pmatrix} y(t) \\ \overline{e}(t) \end{pmatrix}$, $\overline{F}(t, \overline{w}) = \begin{pmatrix} -p\overline{e} - qy + f(t) \end{pmatrix}$ Timbiei e pad esinor como: $\frac{1}{4\pi} \overline{w} (= A \overline{w} + \overline{b} (t) ... (3)$ on $A = \begin{pmatrix} 0 & 1 \\ -q - r \end{pmatrix} b (t) = \begin{pmatrix} 0 & 1 \\ -q - r \end{pmatrix}$ a) Usanto is the care vistos en che pera la ec. homogénea, escriba $\frac{1}{2} \left(\frac{1}{2} \frac{1}{4} \right) = \left(\frac{1}{2} \frac{1}{4} \right) + \left(\frac{1}{2} \frac{1}{4} \right$ Proponence 1/(t) = ext -> x2ext + px ext + q ext = 0 - d+ px+ 9=0 x, , x, & IR q, t + Cz exzt Casol: Tennos dos soluciones distintas

7 1 = ex. t y = ex. t => 2 = y = (121, e = + Cz az e az = Coso ?: Dos Soluciones iguales

= y = ea,t y = t ea,t 7= C, e + C, t ext + G, ext Caso 31: Dos soluciones complejos: a+ bi, a+bi

b+bit

y, = e bit
o bien: y, = e osibt), y= e sen(b+) > 4= eat (6, ws (bt) + (2 sen (bt)) - 7 = 41 = eat [(ac2-bc,) seribt) + (b(2+ ac1) cos(bt)]

b) Reexcribe las coluciones del inciso enterior de forma matricial (412) = x(2) (4) (aso 1) Dos carres Reales. d., de PR la solución general es y (t) = C, ext + Cz ext ort $-7 - \alpha_{1} C_{2} + \alpha_{1} Y_{0} + \alpha_{2} C_{2} = Y_{0}' - 3 \qquad C_{2} = Y_{0}' - \alpha_{1} Y_{0}$ $C_{1} = Y_{0} - C_{2} = Y_{0} - C$:. Y(t) = Yo dz-Yo' exit + Yo'-di Yo edzt • 4(t) = 40 (\alpha_2 e a,t \alpha_1 t) + 40 (\alpha_1 - a, \end{ar} \alpha_1 t) + 40 (\alpha_1 - a, \end{ar} \alpha_1 t) 7 (t) = 40 (d2 d, exit d, d2 exit) + 40' (x2 exit - x1 exit) dz-di (ext-exit) - di e «it + de e «nt \ \left(\alpha_1 \displa_2 - \displa_1 \text{\text} \left(\frac{\alpha_1 t}{\alpha_2 - \displa_1}\text{\text} \right)

• o) (aso 2): Dos souriores igunes & + y= Ge + Cz E ext : . y (t) = Yo e at + (yo' - of Yo) + eat > y(t) = 1/0 (ext- xtext) + 40' (text) y'(t) = 2 40 ext + 2(40'-240) text + (40'-240) ext > 1/1+ - 40 (- 22 e et) + 1/0 (xte at + ext) =) (YH) = (eat at eat text) (Yo)] (aso 3) Dos soluciones unjugados $\rightarrow y = e^{at} (C_1 \omega_3(bt) + (z Seq(bt))$ $\rightarrow y' = e^{at} [(a(z-b(z) Seq(bt)) + (b(z+q(z)) \omega_3(bt))]$ Pero: Y(0) = Y0 C1 = Y0 C2 = Y0' -> C2 = Y0' - a C1/b · . . Y= eat (Yo ws (bt) + (Yo'-a Yo) sen (bt)) = Y(t) = Yo [eat [os (bt) - & soult]] + Yo' (eat senibt)) 1) y'= eat [(a (16' - a 40) - b 40) ser(bt) + (10' - a 16 + a 40) cos(bt)] -> Y'(+1 = 10 [-3-6] eat ser(bt) + Yo' eat [\$ sor(bt) + cos (bt)]

	c) Usant el nétros de variación de del sistema a) en el caso os homogo	e parámetros, escriba um solveim particular
	(as 1) Dos caines distintas: So	luciones: Y = e x, t , Y = e x t
-		parcieties, $y = \sqrt{y_1} + \sqrt{z_2} + \sqrt{z_3} = \sqrt{z_3} = \sqrt{z_3} + \sqrt{z_3} = z$
١	W(41,42) = 41 /2' - 4241 = ext x2	$e^{\alpha_z t} - \alpha$, $e^{\alpha_z t} e^{\alpha_z t} = (\alpha_z - \alpha_z) e^{\alpha_z t}$
9	For la teoria, towns gue $V_i = \int -\frac{h}{h} t$ $V_i = \int f(t') dt'$ $\int (d_2 - \alpha_1) e^{\alpha_1 t'} dt'$	$f(t) dt' = - \int e^{\alpha_2 t'} f(t') dt'$ $f(x_1, y_2) dt' = - \int e^{\alpha_2 t'} f(t') dt'$
	$V_{z} = \int \frac{Y_{1} f(t')}{W(Y_{2}, Y_{1})} dt' = \int \frac{e^{d_{1} t'} f(t')}{(d_{2} - d_{1})} \frac{e^{d_{1} t'}}{e^{d_{1} t'}}$	$dt' = \begin{cases} f(t') \\ (\alpha_1 - \alpha_1) e^{\alpha_1} t' \end{cases} dt'$
)	(aso 2) Dos raises ignobi	Solucions: Y = e at y = teat
	W(4,42) = 4,42-42 41 = ext	eataxedt)-teataeat = ezaz
	· \(\(\) = \(\) - \(\) - \(\) \	f(t') dt' = \ \ - \te^{\alpha t'} f(t') dt'
	· V2 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	t'), $dt' = \int e^{-\alpha t'} f(t') dt'$
	y la solvión particular es	y = v, y, + vz y2

••) (aso	3 :	Rai	(25)	U	omp le	ijus.	-	-	5	obeid	nes	: Yi	ea	CO	5(1	(t c	, h	e	Sen	(bt)	
wi	11,12)	+	4,1	1/2	4,	Yz	=	e	cos	(bt)) (6	e	t cos (ht)	+ a	ot	er(b	t1)		,,)			
				Ь	20	t (a	- 052	e bt)	Sen ;	(bt) Sen ³	Cbt))	e	sen	(bt)	+ e	29:	5	os (b)	t)			
Por 1	a teon	14	tene	2cm																			1
1,	= }	- Y2	flt' Ilyn) Yu)	lt'	=	5	- 0	at	Sen (1 b e	ot) rati	flt	!']	dŧ'	II	5	- e	at	sen (bt') F	(t1)	d
V2 =	5	1 F W(4)	(t!) (Y2)	θŧ	1	-	e	at'o	ns (6t) ae	fle	(1)	dt	-		je	at	cos	(৮ 6	')	fl	٤٠)	te.
		! 6	tonce	25	la	Solu	ción	(na(-	ticul	n (2		= 1	5, y,	+	νz	y-z					