

Общероссийский математический портал

И. В. Грехов, Е. М. Гейфман, Л. С. Костина, Исследование переходного процесса переключения силового диода с накоплением заряда, $\mathcal{K}T\Phi$, 1983, том 53, выпуск 4, 726–729

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 62.76.218.247

19 октября 2022 г., 16:44:52

JOURNAL OF TECHNICAL PHYSICS

Vol. 53. No

УДК 621.38;

ИССЛЕДОВАНИЕ ПЕРЕХОДНОГО ПРОЦЕССА ПЕРЕКЛЮЧЕНИЯ СИЛОВОГО ДИОДА С НАКОПЛЕНИЕМ ЗАРЯДА

И. В. Грехов, Е. М. Гейфман, Л. С. Костина

Экспериментально исследованы зависимости переходных характеристик силовых диодо с накоплением заряда (ДНЗ) от их конструктивных параметров п режимов работы. Показаю что приборы на основе высокоомного кремния n-типа при достаточно большом обратно напряжении способны формировать импульсы большой длительности с крутым (< 1 мк фронтом.

Диоды с накоплением заряда (ДНЗ), способные формировать сверхрезки фронты спада тока, широко используются в слаботочной электронике [1, 2 Наличие в базовой области таких диодов тормозящего электрического пол обусловленного неоднородным распределением легирующей примеси, позволяе в широких пределах регулировать форму импульса обратного тока [1, 2]. 0нако ДНЗ с тормозящим электрическим полем являются принципиально мам мощными приборами, так как при высоких плотностях тока, когда концентра ция плазмы в базе превышает концентрацию легирующей примеси, встроеню электрическое поле практически не влияет на процесс переключения; увелич ние же концентрации примеси ведет к соответствующему снижению раб чего напряжения. В то же время для решения ряда проблем коммутации ней ходимо иметь ДНЗ большой мощности [3, 4]. Силовой ДНЗ, обладая способ ностью формировать импульсы тока с амплитудой в сотни ампер и кругы (сотни и даже десятки наносекунд) задним фронтом, должен блокировать бол шое (сотни и тысячи вольт) напряжение и обладать длительностью фазы вым кой обратной проводимости $t_{\text{вол}}$, сравнимой по величине с временем выключ ния мощных быстродействующих приборов ключевого типа (10-50 мкс) п амплитуде импульса обратного тока, примерно равной рабочему току эт приборов.

Целью настоящей работы являлось исследование переходных характериств силовых ДНЗ в зависимости от конструктивных параметров и режимов работь

Обычно процесс переключения диода в цепи, где последовательно с диоди имеется конечное по величине сопротивление нагрузки, разделяют на д этапа [1]: фазу высокой обратной проводимости (ВОП) и фазу востановлен обратного сопротивления (ВОС), или спада тока.

В соответствии с терминологией, принятой для диодов с накоплением зараг будем называть фазой ВОП $t_{\rm воп}$ промежуток времени от момента прохожден тока через нуль до того момента, когда он уменьшается до 0.9 своего амплиту, ного значения I_a , а временем спада $t_{\rm вос}$ — время, за которое ток уменьшает от 0.9 I_a до 0.1 I_a [5].

На первом этапе, длительность которого $t_{\rm вол}$ определяется величиной в копленного при протекании прямого тока заряда $Q_{\rm нак}$, обратное напряжени приложенное к диоду $U_{\rm p}$, существенно меньше, чем напряжение во внеше цепи $U_{\rm n}$, обратный ток велик и интенсивно выводит из базы диода заряд неры новесных несителей (ННЗ). В конце этапа у p-n-перехода образуется и быст расширяется область объемного заряда (ООЗ). На этапе спада тока $U_{\rm p} \sim 0$

расширение ООЗ практически прекращается и уменьшение количества ННЗ происходит в основном путем диффузии к ООЗ, а также рекомбинации их в базовой области. Таким образом, очевидно, что увеличение ширины базы диода W_n и времени жизни ННЗ в ней, необходимое для обеспечения высокого значения $t_{\rm воп}$, влечет за собой затягивание второго этапа — времени спада обратного тока.

На рис. 1 приведены зависимости $t_{\text{воп}}$ и $t_{\text{вос}}$ от W_n для диодных структур типа p^+pnn^+ , изготовленных по диффузионной технологии [8] на основе кремния n-типа проводимости с $\rho_v \sim 50$ Ом·см. Хорошо видно, что с уменьшением W_n уменьшается как $t_{\text{воп}}$, так и $t_{\text{вос}}$. Существует, однако, интервал значений W_n (на рис. 1 это участок от $W_n \sim 260$ мкм до $W_n \sim 160$ мкм), в котором для $t_{\text{вос}}$ эта

Рис. 1. Зависимости $t_{\text{воп}} = f(W_n) \ (1, 1')$ и $t_{\text{вос}} = f(W_n) \ (2, 2')$. $\varphi_v = 50 \ \text{Ом · см, } x_p \sim 115 \ \text{мкм, } \tau_p \sim 30 \ \text{мкс, } x_{n+} = 35 \ \text{мкм.}$ Режимы измерений: $I_{\text{106p}} = I_{\text{lip}}$, $t_{\text{нин}} = 100 \ \text{мкс.} \ I, 2 - j_{np} = 1 \ \text{А/cm}^2; \ I', 2' - 10 \ \text{А/cm}^2$, $U_{\text{06p}} = 10 \ \text{B}$.

pn-перехода. 1, $1'-t_{\mathrm{BOH}}=f\left(x_{p}\right);\ 2,2'-t_{\mathrm{BOC}}=f\left(x_{p}\right).$ Параметры дио-дов: $\varrho_{p}\sim50~\mathrm{CM}\cdot\mathrm{CM},\ W_{R}\sim100~\mathrm{MkM},\ x_{R}+\sim30~\mathrm{MkM},\ \tau_{p}\sim20~\mathrm{MkC}.$ Режимы взмерений: $I_{\mathrm{Up}}=I_{\mathrm{Offp}},\,t_{\mathrm{HMH}}=100~\mathrm{MkC}.$ $1,2-j_{\mathrm{Hp}}=1~\mathrm{A/CM^{2}};\ 1',2'-10~\mathrm{A/CM^{2}},\ U_{\mathrm{Ofp}}=10~\mathrm{B}.$

зависимость существенно более резкая (при практически неизменном $t_{\rm вол}$ значения $t_{\rm вос}$ различаются почти вдвое). При дальнейшем уменьшении W_n наряду с продолжающимся резким снижением $t_{\rm вос}$ начинается более резкий спад $t_{\rm воп}$, который можно объяснить уменьшением величины $Q_{\rm нак}$ вследствие увеличения доли тока рекомбинации в диффузионной n^+ -области по отношению к полному току. При достаточно протяженных базовых областях влияние рекомбинации в n^+ -слое практически не сказывается на характере распределения ННЗ вблизи pn-перехода. Снижение $t_{\rm вос}$ с уменьшением W_n связано со снижением времени диффузионного пролета $t_{\rm up}=W_n^2/2D$ дырок через базовую n-область.

На рис. 2 представлены зависимости характеристик переключения $t_{\rm Boll}$ и $t_{\rm Boll}$ от глубины залегания p-n-перехода (толщины p-слоя x_p) диода. Для исследованных образцов, как видно из рис. 2, при увеличении x_p от 45 до 110 мкм длительность фазы ВОП увеличивалась более чем в 3 раза, а время спада $t_{\rm Boll}$ сократилось примерно вдвое. Такой характер зависимости определяется следующими обстоятельствами. Диффузионный p-слой состоит из двух областей: сильнолегированной ($\sim 10^{19}$ см $^{-3}$) тонкой (~ 10 мкм) p+-области, созданной кратковременной диффузией бора, и довольно протяженной (35—90 мкм) p-области, созданной диффузией алюминия с поверхностной концентрацией (5—7)· 10^{16} см $^{-3}$; p+- область является хорошим инжектором, а p-область при рабочей плотности тока «залита» электронно-дырочной плазмой. При переключении происходит быстрое уменьшение концентрации плазмы у p+p-перехода, однако в отличие от ситуации с p+n-переходом снижение концентрации до равновесного значения не приводит к образованию ООЗ и спаду обратного тока, поскольку в проведе-

нии тока участвуют основные носители p-слоя. Граница плазмы начинает перемещаться по p-слою в сторону p—n-перехода, и лишь при приближении к нему этой границы начнет образовываться ООЗ и уменьшаться обратный ток. Таким образом, увеличение x_p должно привести к увеличению $t_{\rm вол}$ и соответственно уменьшению $t_{\rm вос}$, поскольку к моменту образования ООЗ значительная часть заряда оказывается выведенной из диода. Такой характер процесса, как показал расчет, возможен только в том случае, если время жизни носителей в области p-слоя не слишком мало по сравнению с n-базой.

Приведенные выше зависимости позволяют определенным образом выбрать оптимальные параметры силового ДНЗ. Совершенно очевидно, однако, что требования одновременного получения высоких значений $Q_{\rm вол}$ и малых $t_{\rm вос}$ являются взаимно исключающими при малых рабочих напряжениях ($W_{\rm 003} \ll W_{\rm n}$),

Рис. 4. Осциплограммы пропесса переключения диодов с $\rho_v \sim 150~{\rm GeV} \times {\rm cm}$, $U_{\rm o6p} = 125~(1),~250~(2),~500~(3)$ и 750 В (4).

поскольку увеличение W_n и τ_p приведет к увеличению $t_{\rm вос}$. Исследование зависимости процесса переключения ДНЗ от режима переключения показало, чм увеличение обратного напряжения на диоде может привести к существенному уменьшению длительности второго этапа. На рис. З приведены зависимости $t_{\rm вос}=f$ ($U_{\rm ofp}$) для диодов, изготовленных на основе n-Si с $\rho_v\sim 50$ (I) и $\rho_v\sim 150~{\rm OM\cdot cm}$ (2), $W_n=120~{\rm mkm}$, $x_n+\sim 35~{\rm mkm}$, $x_p\sim 95~{\rm mkm}$, $\tau_p=20~{\rm mkc}$, $S\sim 1.3~{\rm cm}^2$, $I_{\rm np}=5~A$, $I_{\rm ofp}=10~A$, $t_{\rm вмп}=100~{\rm mkc}$. При одной и той же толщине базы диода 003~pn-перехода в более высокоомном материале занимает большую часть n-базы, п. следовательно, большая часть накопленного заряда оказывается выведенной на этапе ${\rm BO\Pi}$; $t_{\rm вос}$ при этом слабо зависит от τ_p , что позволяет сочетать в мощном диоде, работающем при достаточно большом напряжении, высокие значения $Q_{\rm нак}$ (высокое τ_p) и малые значения $t_{\rm вос}$. Осциллограммы процесса переключения (рис. 4) свидетельствуют о том, что при высоких значения обратного напряжения, приложенного к ДНЗ, изготовленному на основе высокоомного материала, появляется возможность формирования резких фровтов спада тока (< 1 мкс) при достаточно больших $t_{\rm воп}$.

На рис. З представлены также зависимости $t_{\rm вос}=f$ ($I_{\rm ofp}$) при $U_{\rm ofp}=125$ (3) 500 (4) и 800 В (5), $\rho_s=150$ Ом см. С увеличением $W_{\rm OO3}$ (ростом $U_{\rm ofp}$) $t_{\rm вос}$ падает, при этом увеличение $I_{\rm ofp}$ в начале этапа ВОС приводит также к резкому снижению $t_{\rm вос}$, которое при полном перекрытии n-базы областью объемного заряда должно определяться лишь временем пролета носителей через ООЗ с насыщенной скоростью.

Исследование зависимости $t_{\text{вол}}$ и $Q_{\text{вои}}$ от значения обратного тока, протекающего через диод на этом этапе (рис. 5), как и следовало ожидать, показало, что с увеличением отношения $I_{\text{пр}}/I_{\text{обр}}$ $t_{\text{вои}}$ растет, однако с некоторого момента $t_{\text{вол}} \geqslant \tau_p$ начинает снижаться $Q_{\text{воп}}$, т. е. возрастает роль рекомбинационных процессов в базе диода.

На рис. 6 приведены зависимости $t_{\mathtt{вол}}$ от длительности импульса прямого тока $t_{\scriptscriptstyle \mathrm{IMHI}}$, протекавшего через диод перед переключением. С ростом $t_{\scriptscriptstyle \mathrm{BMI}}$ $t_{\scriptscriptstyle \mathrm{BOR}}$ тоже увеличивается до некоторого значения, практически не меняющегося при дальнейшем увеличении $t_{\rm имп}$, причем чем больше плотность тока, тем меньше длительность импульса, начиная с которой $t_{\rm воп}$ перестает расти. Таким образом, при большей плотности прямого тока квазистационарное распределение кон-

PMC. 5. Sabucumocth $t_{\rm son}=f\left(I_{\rm np}/I_{\rm obp}\right)$ (1) w $Q_{\rm son}=f\left(I_{\rm np}/I_{\rm obp}\right)$ (2).

Параметры диода: $\rho_v = 150$ Ом см; $\kappa_p \sim 95$ мкм, $x_{n+} = 35$ MKM, $W_n = 120$ MKM, $\tau_p \sim 30$ MKC, S = 1.3 CM². Режим измерений: $I_{\pi p} = 10 \text{ A}$, $U_{06p} = 800 \text{ B}$, $t_{\text{имп}} =$ = 100 MKC.

Рис. 6. Зависимость $t_{\text{воп}} = f(t_{\text{имп}})$ для различных плотностей тока.

 $j - j_{\pi p} = 1$, z = 2, 3 - 5, 4 - 10, 5 - 40, $6 = 50 \,\mathrm{A/cm^2}$. Параметры циода: $\rho_v = 150$ Ом · см, $x_p = 100$ мкм, $x_{n+} = 35$ MKM, $W_n = 150$ MKM, $\tau_p \sim 70$ MKC, $S \sim$ $\sim 6 \text{ cm}^2$, $I_{\rm np} = I_{\rm 06p}$.

центрации устанавливается быстрее. Из рис. 6 следует также, что при $I_{\rm np}/I_{\rm oбp}$ =const с ростом плостности тока j_{np} $t_{воп}$ резко сокращается. Этот эффект связан с уменьшением коэффициента инжекции p-n-перехода при увеличении j_{np} , причем в исследуемых структурах сокращение $t_{\mathtt{son}}$ начинает проявляться уже в области сравнительно малых плотностей: при $t_{\text{воп}} \sim 40$ мкс и более повышение $j_{\text{пр}}$ от 1 до 10 A/cм² приводит к уменьшению $t_{\text{воп}}$ вдвое, что обусловливается спецификой конструкции ДНЗ — малое W_n и большое τ_p обеспечивают высокую плотность электронно-дырочной плазмы даже при довольно малом j_{nn} .

Приведенные результаты исследования процесса переключения диодных структур на основе высокоомного кремния позволяют сделать заключение о возможности создания промышленных образцов силовых ДНЗ, способных формировать импульсы большой длительности и амплитуды с крутым (< 1 мкс) задним фронтом.

Литература

- [1] С. А. Еремин, О. К. Мокеев, Ю. Р. Носов. Полупроводниковые диоды с накоплением заряда и их применение, 151. «Сов. радио», М. (1966).
- [2] Ю. Р. Носов. Физические основы работы полупроводникового диода в импульсном режиме. «Наука» (1968). [3] Л. В. Дюков, Л. В. Николаев. АС № 540379; БИ, № 47 (1976). [4] В. Л. Кузьмин. Автореф. канд. дис. ВЭИ им. В. И. Ленина, М. (1974). [5] Каталог СССР. Вентили ВЛ 10-500 А, 05.04.34-75.

- [6] И. В. Грехов и др. Электросвязь, № 10, 42 (1963).

Физико-технический институт им. А. Ф. Иоффе АН СССР Ленинград

Поступило в Редакцию 13 мая 1982 г.