

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
15 February 2001 (15.02.2001)

PCT

(10) International Publication Number
WO 01/11074 A2(51) International Patent Classification²:**C12Q**

(74) Agent: DOCHERTY, Pamela, A., Caffee, Halter & Griswold LLP, Suite 1400, 800 Superior Avenue, Cleveland, OH 44114 (US).

(21) International Application Number: PCT/US00/21223

(22) International Filing Date: 3 August 2000 (03.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/369,364 6 August 1999 (06.08.1999) US(71) Applicant (for all designated States except US): **THE CLEVELAND CLINIC FOUNDATION [US/US]**; 9500 Euclid Avenue, Cleveland, OH 44195 (US).

(71) Applicants and

(72) Inventors: APTE, Suneel, S. [IN/US]; 19917 Malvern Road, Shaker Hts., OH 44122 (US). HURSKAINEN, Tiina, L. [FI/FI]; Onnelantie 3A, FIN-90230 Oulu (FI). HIROHATA, Satoshi [JP/US]; 6809 Mayfield Road, #859, Mayfield Hts., OH 44124 (US).

(54) Title: NUCLEIC ACIDS ENCODING ZINC METALLOPROTEASES

ADAM-TS RELATED PROTEIN-1 (ADAM-TS1)

ADAM-TS1
951 a.a.

100 a.a.

ADAM-TS1
951 a.a.

N- [REPEATED DOMAIN BLOCK]

- SIGNAL PEPTIDE
- PRO-DOMAIN
- METALLOPROTEASE DOMAIN
- DISINTEGRIN-LIKE DOMAIN

- THROMBOSPONDIN TYPE I REPEAT
- CYSTEINE-RICH DOMAIN
- CYSTEINE-POOR DOMAIN
- UNIQUE DOMAINS

074 A2

such polyhydroxy acids, and most cells transfected or transfected with such vector. The present invention also relates to antibodies which are immunospecific for one or more of the ADAMTS-N proteins. The present invention also relates to a protein referred to hereinafter as ADAMTS-R1 (ADAM-TS Related protein-1) and the polynucleotides which encode such protein.

WO 01

-1-

NUCLEIC ACIDS ENCODING ZINC METALLOPROTEASES

Background of the Invention

This invention relates to isolated nucleic acid molecules which encode proteins belonging to a zinc metalloprotease family.

The zinc metalloproteases have been implicated in a variety of diseases and development disorders that involve* enhanced or depressed proteolysis of components of the extracellular matrix, receptors, or other extracellular molecules.

10 More particularly, the invention relates to isolated nucleic acid molecules encoding proteins belonging to a subfamily of zinc metalloproteases referred to as "ADAMTS", an abbreviation for A Disintegrin-like And Metalloprotease domain with ThromboSpordin type I motifs. Proteins in the ADAMTS subfamily all possess a Zn 15 protease catalytic site consensus sequence (HEXXH+H), which suggests an intact catalytic activity for each of these proteins. The ADAMTS proteins also have putative N-terminal signal peptides and lack transmembrane domains, which suggests that the proteins in this subfamily are secreted. The proteins in the ADAMTS subfamily also 20 possess at least one thrombospondin type (TSP1) motif, which suggests a binding of these proteins to components of the extracellular matrix (ECM) or to cell surface components.

Members of the ADAMTS subfamily of proteins are ADAMTS-1, ADAMTS-2, ADAMTS-3, and ADAMTS-4. ADAMTS-1 protein is selectively 25 expressed in colon 26 adenocarcinoma cachexigenic sublines. ADAMTS-1 mRNA is induced by the inflammatory cytokine interleukin-1 in vitro and by intravenous administration of lipopolysaccharide in vivo. Thus, the ADAMTS-1 protein is believed to play a role in tumor

-2-

cleavage of native triple-helical procollagen I and procollagen II. The ADAMTS-2 protein also has an affinity for collagen XIV. Lack of the ADAMTS-2 protein is known to cause dermatosparaxis in cattle, or Ehlers-Danlos syndrome type VIIC (EDS-VIIC) in humans. EDS-VIIC is characterized clinically by severe skin fragility, and biochemically by the presence in skin of procollagen which is incompletely processed at the amino terminus. Thus, it is believed that the ADAMTS-2 protein plays a role in processing of procollagen to mature collagen, an essential step for correct assembly of collagen into collagen fibrils. The ADAMTS-3 protein is similar in sequence to ADAMTS-2 and may have similar function.

The ADAMTS-4 protein catalyzes cleavage of the core protein of the extracellular matrix proteoglycan, aggrecan. Aggrecan degradation is an important factor in the erosion of articular cartilage in arthritic disease. Aggrecan fragments have been identified in cultures undergoing cartilage matrix degradation and in arthritic synovial fluids. Therefore, overexpression or activation 10 of ADAMTS-4 protein may be related to both inflammatory and non-inflammatory arthritis.

On the basis of the structure, location, and the demonstrated proteolytic activity of ADAMTS proteins 1-4, it is expected that other members of the ADAMTS subfamily play a role in the cleavage of proteoglycan core proteins that are found in the extracellular matrix, such as, for example, versican, brevican, neuracan, NG-2, aggrecan, as well as molecules such as collagen. It is also expected that other members of the ADAMTS subfamily play a role in embryogenesis. Implantation of a fertilized egg - preimplantation

embryogenesis, i.e., in development of the embryo.

-3-

subfamily of proteins, the nucleic acids that encode such proteins, and antibodies that are specific for such proteins. Such molecules are useful research tools for studying development of the extracellular matrix during embryogenesis and fetal development, and 5 for studying disorders or diseases that are characterized by improper development of the extracellular matrix or enhanced or reduced destruction of the extracellular matrix. Such molecules, particularly the nucleic acids and the antibodies, are also useful tools for diagnosing such diseases or for monitoring the efficacy of 10 therapeutic agents that have been developed to treat such diseases.

Summary of the Invention

The present invention provides novel, isolated, and substantially purified proteins having the characteristics of an 15 ADAMTS protein. The novel proteins are referred to hereinafter individually as "ADAMTS-5", "ADAMTS-6", "ADAMTS-7", "ADAMTS-8", "ADAMTS-9" and "ADAMTS-10", and collectively as "ADAMTS-N". In one embodiment, the ADAMTS-5 protein is a mature mouse protein which comprises amino acid 231 through amino acid 930 of the sequence set 20 forth set forth in SEQ ID NO: 2. In another embodiment, ADAMTS-5 is a human ADAMTS-5 protein which comprises amino acid 1 through amino acid 518 of the sequence set forth in SEQ ID NO: 4. In one embodiment, mature human ADAMTS-6 protein comprises amino acid 245 through amino acid 860 of SEQ ID NO: 6. In one embodiment, mature 25 human ADAMTS-7 protein comprises amino acid 233 through amino acid 997 of the sequence set forth in SEQ ID NO: 8. In one embodiment, mature ADAMTS-8 protein is a mouse protein which comprises amino acid 1 through amino acid 518 of the sequence set forth in SEQ ID NO: 10. In one embodiment, mature ADAMTS-9 protein

- 1 -

is a human protein which comprises amino acid 236 through amino acid 1882 of the sequence set forth in SEQ ID NO: 14. In another embodiment, ADAMTS-9 protein is a mouse protein which comprises amino acid 1 through amino acid 974 of the sequence set forth in SEQ ID NO: 16. In one embodiment, mature ADAMTS 10 protein is a human protein which comprises amino acid 212 through amino acid 1081 of the sequence set forth in SEQ ID NO: 18. In another embodiment, ADAMTS-10 protein is a mouse protein which comprises amino acid 1 through amino acid 517 of the sequence set forth in SEQ ID NO: 20.

The present invention also provides isolated polynucleotides which encode an ADAMTS-N protein or a variant thereof, polynucleotide sequences complementary to such polynucleotides, vectors containing such polynucleotides, and host cells transformed or transfected with such vectors. The present invention also relates to antibodies which are immunospecific for one or more of the ADAMTS-N proteins. The present invention also relates to a protein referred to hereinafter as ADAMTS-R1 (ADAM-T-S Related protein-1) and the polynucleotides which encode such protein. In one embodiment, the ADAMTS-R1 protein comprises amino acid 1 through amino acid 525 of the sequence set forth in SEQ. ID NO: 22.

Brief Description of the Drawings

Figure 1 shows an amino acid sequence (SEQ ID NO:2) of a full-length mouse ADAMTS-5 protein and a nucleic acid sequence (SEQ ID NO: 1) which encodes such protein.

25 Figure 2 shows an amino acid sequence (SEQ ID NO:4) of a partial
human ADAMTS-5 protein and a nucleic acid sequence (SEQ ID NO: 3)
which encodes such protein.

-5-

Figure 4 shows an amino acid sequence (SEQ ID NO:8) of a full-length human ADAMTS-7 protein and a nucleic acid sequence (SEQ ID NO:7) which encodes such protein.

Figure 5 shows an amino acid sequence (SEQ ID NO: 10) of a full-length mouse ADAMTS-8 protein and a nucleic acid sequence (SEQ ID NO:9) which encodes such protein.

Figure 6 shows an amino acid sequence (SEQ ID NO: 12) of a partial human ADAMTS-8 protein and a nucleic acid sequence (SEQ ID NO: 11) which encodes such amino acid sequence.

10 Figure 7 shows an amino acid sequence (SEQ ID NO: 14), of a full-length human ADAMTS-9 protein and a nucleic acid sequence (SEQ ID NO: 13) which encodes such protein.

Figure 8 shows an amino acid sequence (SEQ ID NO: 16) of a partial mouse ADAMTS-9 protein and a nucleic acid sequence (SEQ ID NO: 15) 15 which encodes such amino acid sequence.

Figure 9 shows an amino acid sequence (SEQ ID NO: 18) of a full-length human ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 17) which encodes such protein.

Figure 10 shows an amino acid sequence (SEQ ID NO:20) of a partial 20 mouse ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 19) which encodes such amino acid sequence.

Figure 11 shows an amino acid sequence (SEQ ID NO:22) of a full-length ADAMTS-11 protein and a nucleic acid sequence (SEQ ID NO: 21) which encodes such protein.

25 Figure 12 depicts the cloning strategy used for isolation of a. mouse and human ADAMTS-5 cDNAs b. human ADAMTS-6 cDNA and c. human ADAMTS-7

-6-

dotted lines. DNA scale marker (in bp) and amino acid scale marker are at upper right. Location of the probe used for *in situ* hybridization (ISH) is shown in a.

Figure 13 shows the predicted amino acid sequences of a. the mouse 5 and human ADAMTS-5 proteins (alignment shows mouse sequence above, partial human sequence below) b. ADAMTS-6, and c. ADAMTS-7. The active-site sequences and proposed Met-turn are enclosed in boxes. Potential furin cleavage site(s) are indicated by arrows.

Thrombospondin type I modules are underlined. Potential sites for N-10 linked glycosylation are overlined. Cysteine residues within the context of an MMP-like "cysteine switch" are indicated by the solid circles. Other cysteine residues are indicated by asterisks. The prodomain extends until the furin cleavage site, and the catalytic domain extends from the furin cleavage site to the approximate start 15 of the disintegrin-like sequence (Dis). The start of the spacer domain is indicated; the region between the N-terminal TS domain and the spacer domain is the cysteine-rich domain. The single letter amino acid code is used.

Figure 14 shows Northern analysis of expression of ADAMTS-5, 6 and 7. 20 RNA kilobase markers are shown at left of each autoradiogram, and tissue origin is indicated above each lane. a. Mouse embryo northern blots. b. Human multiple adult tissue northern blots.

Figure 15 is a schematic representation of the domain structure of ADAMTS-R1 protein as compared to ADAMTS-1 protein.

25 Figure 16 shows an amino acid sequence (SEQ ID NO: 24) of an alternative embodiment of a full length human ADAMTS-16 protein and a

-7-

(SEQ ID NO: 25) which encodes such protein.

Figure 18 is a schematic representation of the domain structure of human ADAMTS-9b protein as compared to human and mouse ADAMTS-9 protein.

5 Detailed Description of the Invention

ADAMTS-N Proteins

The present invention relates to novel, isolated, substantially purified, mammalian proteins belonging to the ADAMTS subfamily of metalloproteases. As used herein, the term "substantially purified" refers to a protein that is removed from its natural environment, isolated or separated, and at least 60% free, preferably 75% free, and most preferably 90% free from other components with which it is naturally associated.

The novel mammalian proteins are ADAMTS-5, ADAMTS-6, ADAMTS-7, 15 ADAMTS-8, ADAMTS-9 and ADAMTS-10, collectively ADAMTS-N. In one embodiment, the ADAMTS-5 protein is a mature mouse protein which comprises amino acid 231 through amino acid 930 of the sequence set forth in SEQ ID NO: 2. In another embodiment, the ADAMTS-5 protein is a human protein which comprises amino acid 1 through amino acid 20 518 of the sequence set forth in SEQ ID NO: 4. In one embodiment, ADAMTS-6 protein is a mat-Lire human protein which comprises amino acid 245 through amino acid 560 of SEQ ID NO:6. In one embodiment, the ADAMTS-7 protein is a mature human protein which comprises amino acid 233 through amino acid 997 of the sequence set forth in SEQ ID NO: 8. In one embodiment, the ADAMTS-8 protein is a mature mouse protein which comprises amino acid 229 through amino acid 905 of the sequence set forth in SEQ ID NO: 10. In another embodiment, the

comprises amino acid 229 through amino acid 905 of the sequence set

-8-

forth in SEQ ID NO: 14. In another embodiment, the ADAMTS-9 protein is a mouse protein which comprises amino acid 1 through amino acid 874 of the sequence set forth in SEQ ID NO: 16. In another embodiment, the ADAMTS-9 designated ADAMTS-9b is a human protein 5 which is comprised of 1934 amino acids as set forth in SEQ ID NO 26. In one embodiment, the ADAMTS-10 protein is a mature human protein which comprises amino acid 212 through amino acid 1081 of the sequence set forth in SEQ ID NO: 18. In another embodiment the ADAMTS- 10 protein is a mouse protein which comprises amino acid 1 10 through amino acid 525 of the sequence set forth in SEQ ID NO:20. In another embodiment, the ADAMTS-10 protein is a human protein which is comprised of 1072 amino acids as set forth in SEQ ID NO 24.

All of the novel ADAMTS-N proteins starting at the amino terminus comprise a signal sequence followed by a putative pro region 15 which contains a consensus sequence for furin cleavage (except for ADAMTS-10), a catalytic domain, a domain of 60-90 residues with 35 to 45% similarity to snake venom disintegrins, a TS module, a cysteine rich domain containing multiple conserved cysteine residues, a spacer domain, and one or multiple C terminal TS modules. (See Figure 12.)
20 As determined using the BLAST software from the National Center for Biotechnology Information, the predicted mature forms of the ADAMTS-N proteins show an overall 20-30% similarity to each other and to ADAMTS-1-4, although this may be considerably higher or lower for individual domains as described below.

25 The ADAMTS-N proteins also encompass variants of the ADAMTS-N proteins shown in Figs. 1-1G. A "variant" as used herein, refers to

of the reference sequence. The variant protein has an altered sequence

-9-

in which one or more of the amino acids in the reference sequence is deleted or substituted, or one or more amino acids are inserted into the sequence of the reference amino acid sequence. As a result of the alterations, the variant protein has an amino acid sequence which 5 is at least 95% identical to the reference sequence, preferably, at least 97% identical, more preferably at least 98% identical, most preferably at least 99% identical to the reference sequence. Variant sequences which are at least 95% identical have no more than 5 alterations, i.e. any combination of deletions, insertions or 10 substitutions, per 100 amino acids of the reference sequence.

Percent identity is determined by comparing the amino acid sequence of the variant with the reference sequence using MEGALIGN project in the DNA STAR program. Sequences are aligned for identity calculations using the method of the software basic local alignment 15 search tool in the BLAST network service (the National Center for Biotechnology Information, Bethesda, MD) which employs the method of Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) *J. Mol. Biol.* 215, 403-410. Identities are calculated by the Align program (DNAstar, Inc.) In all cases, internal gaps and amino 20 acid insertions in the candidate sequence as aligned are not ignored when making the identity calculation.

While it is possible to have nonconservative amino acid substitutions, it is preferred that the substitutions be conservative amino acid substitutions, in which the substituted amino acid has 25 similar structural or chemical properties with the corresponding amino acid in the reference sequence. By way of example,

a. amino acid e.g. serine and threonine with another substitution of

-10-

one acidic residue, e.g. glutamic acid or aspartic acid, with another; replacement of one amide-containing residue, e.g. asparagine and glutamine, with another; replacement of one aromatic, residue, e.g. phenylalanine and tyrosine, with another; replacement of one basic residue, e.g. lysine, arginine and histidine, with another; and replacement of one small amino acid, e.g., alanine, serine, threonine, methionine, and glycine, with another.

The alterations are designed not to abolish the immunoreactivity of the variant protein with antibodies that bind to 10 the reference protein. Guidance in determining which amino acid residues may be substituted, inserted or deleted without abolishing immunoreactivity of the variant protein with an antibody specific for the respective reference protein are found using computer programs well known in the art, for example, DNASTAR software.

15 The ADAMTS-N proteins also encompass fusion proteins comprising an ADAMTS-N protein and a tag, i.e., a second protein or one or more amino acids, preferably from about 2 to 65 amino acids, more preferably from about 34 to about 62 amino acids, which are added to the amino terminus of, the carboxy terminus of, or any point within 20 the amino acid sequence of an ADAMTS-N protein, or a variant of such protein. Typically, such additions are made to stabilize the resulting fusion protein or to simplify purification of an expressed recombinant form of the corresponding ADAMTS-N protein or variant of such protein. Such tags are known in the art. Representative 25 examples of such tags include sequences which encode a series of histidine residues, the epitope tag FLAG, the Herpes simplex

-11-

the respective ADAMTS-N protein are altered by posttranslational processes or synthetic methods. Examples of such modifications include, but are not limited to, acetylation, amidation, ADP-ribosylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or a lipid, cross-linking gamma-carboxylation, glycosylation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, sulfation, and transfer-RNA mediated additions of amino acids to proteins such as arginylation and ubiquitination.

The ADAMTS-N proteins are immunogenic and, thus, are useful for preparing antibodies. Such antibodies are useful for identifying and diagnosing disorders which are associated with decreased expression or activity or increased expression of an ADAMTS-N protein. The ADAMTS-N protein may also be useful for treating such disorder.

Diseases involving enhanced or depressed proteolysis of the core proteins of the extracellular matrix may involve enhanced expression or activity or decreased expression or activity of one or more ADAMTS-N proteins. Thus, ADAMTS-N proteins may be used to identify drugs, polypeptides, auto-antibodies, or other natural compounds which bind to an ADAMTS-N protein with sufficient affinity to block or facilitate its activity. The activity of the ADAMTS-N protein is assayed in the presence and the absence of the putative inhibitor or facilitator using any of a variety of protease assays known in the art. In general, the activity of the ADAMTS-N protein is assayed through the use of a peptide or protein substrate having a known or

for example, the substrate may be tagged with a fluorescent group so that

-12-

side of the cleavage site and with a fluorescence-quenching group on the opposite side of the cleavage site. Upon cleavage by the substrate, quenching is eliminated and a detectable signal is produced. Alternatively, the substrate is tagged with a colorimetric leaving group that more strongly absorbs upon cleavage. Agents which block ADAMTS-N-catalyzed cleavage of a protein substrate may be administered to a subject to block proteolysis of the corresponding protein substrate.

ADAMTS-R1 Protein

10 The present invention also relates to a protein, referred to hereinafter as "ADAMTS-R1". From its amino to its carboxyl terminus, ADAMTS-R1 comprises a signal peptide sequence, a TS1 module, a cysteine-rich domain, a spacer domain, and three TS1 modules. Thus, ADAMTS-R1 has a structure which is related to or similar to an 15 ADAMTS-N protein, but which lacks a catalytic domain and a disintegrin-like domain. In one embodiment, ADAMTS-R1, protein comprises amino acid 1 through amino acid 525 of the amino acid sequence, SEQ ID NO:22, shown in Fig. 11. Such protein has a 30-40% overall sequence identity with similar regions of the ADAMTS-N 20 proteins. The ADAMTS-R1 proteins also encompass variants of the amino acid sequence shown in Fig. 11 and fusion proteins which contain the amino acid sequence shown in Fig. 11 or a variant thereof. On the basis of its domain organization, it is expected that ADAMTS-R1 can bind to extracellular matrix or cell surface 25 molecules, including ADAMTS-N substrates. Thus, it is expected that ADAMTS-R1 can be used as an cell-matrix or cell-cell adhesion molecule or an ADAMTS-N competitive inhibitor. The ADAMTS-R1

-13-

expression or increased expression of an ADAMTS-R1 protein.

Polynucleotides

The present invention also provides isolated polynucleotides which encode the mammalian ADAMTS-N proteins and the mammalian ADAMTS-R1 protein. Figure 1 shows one embodiment of a polynucleotide, SEQ ID NO: 1, which encodes the full-length mouse ADAMTS-5 protein. Figure 2 shows one embodiment of a polynucleotide; SEQ ID NO: 3, which encodes a partial human ADAMTS-5 protein. Figure 3 shows one embodiment of a polynucleotide; SEQ ID NO: 5, which 10 encodes a full-length human ADAMTS-6 protein. Figure 4 shows one embodiment of a polynucleotide; SEQ ID NO: 7, which encodes a full-length human ADAMTS-7 protein. Figure 5 shows one embodiment of a polynucleotide; SEQ ID NO: 9, which encodes a full-length mouse ADAMTS-8 protein. Figure 6 shows one embodiment of a polynucleotide; 15 SEQ ID NO: 11, which encodes a partial human ADAMTS-8 protein.

Figure 7 shows one embodiment of a polynucleotide; SEQ ID NO: 13, which encodes a full-length human ADAMTS-9 protein. Figure 8 shows one embodiment of a polynucleotide; SEQ ID NO: 15, which encodes a partial ADAMTS-9 protein. Figure 9 shows one embodiment of a 20 polynucleotide; SEQ ID NO: 17, which encodes a full-length human ADAMTS-10 protein. Figure 10 shows one embodiment of a polynucleotide; SEQ ID NO: 19, which encodes a partial mouse ADAMTS-10 protein. Figure 11 shows one embodiment of a polynucleotide; SEQ ID NO: 21, which encodes a full-length ADAMTS-R1 protein.

25 Due to the known degeneracy of the genetic code wherein more than one codon can encode the same amino acid, a DNA sequence may vary from that shown in SEQ ID NO: 1 and still encode an ADAMTS-5

-14-

in SEQ ID NOS:6. Similarly a DNA sequence may vary from that shown in SEQ ID NOS: 7, 9, 11, and 13, and still encode the amino acid sequences shown in SEQ ID NOS: 8, 10, 12, and 14, respectively. Such variant DNA sequence may result from silent mutations, such as 5 for example those that occur during PCR amplification or from deliberate mutagenesis of a native sequence.

The present polynucleotides also encompass polynucleotides having sequences that are capable of hybridizing to the nucleotide sequences of FIGS 1 - 11 under stringent conditions, preferably 10 highly stringent conditions. Hybridization conditions are based on the melting temperature* of the nucleic acid binding complex or probe, as described in Berger and Kimmel (1987) Guide to Molecular Cloning Techniques, Methods in Enzymology, vol 152, Academic Press. The term "stringent conditions, as used herein, is the "stringency" 15 which occurs within a range from about Tm-5 (5° below the melting temperature of the probe) to about 20° C below Tm. As used herein "highly stringent" conditions employ at least 0.2 x SSC buffer and at least 65° C. As recognized in the art, stringency conditions can be attained by varying a number of factors such as the length and 20 nature, i.e., DNA or RNA, of the probe; the length and nature of the target sequence, the concentration of the salts and other components, such as formamide, dextran sulfate, and polyethylene glycol, of the hybridization solution. All of these factors may be varied to generate conditions of stringency which are equivalent to the 25 conditions listed above.

The present polynucleotides also encompasses alleles of the

* Alleles may result from one or more mutations in the AFAMTS N-1

-15-

ADAMTS-R1 encoding sequence. Such mutations typically arise from natural addition, deletion or substitution of nucleotides in the open reading frame sequences. Any gene which encodes an ADAMTS-N protein or ADAMTS-RI protein may have none, one, or several allelic forms.

5 Such alleles are identified using conventional techniques, such as for example screening libraries with probes having sequences identical to or complementary with one or more ADAMTS-N polynucleotides.

The present polynucleotides also encompass altered 10 polynucleotides which encode ADAMTS-N proteins, ADAMTS-R1 proteins, and variants thereof. Such alterations include deletions, additions, or substitutions. Such alterations may produce a silent change and result in an ADAMTS-N protein having the same amino acid sequence as the ADAMTS-N protein encoded by the unaltered polynucleotide. Such 15 alterations may produce a nucleotide sequence possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eucaryotic host may be incorporated into the nucleotide sequences showing Figures 1 -11 to increase the rate of expression of the proteins encoded by such sequences. Such 20 alterations may also introduce new restriction sites into the sequence or result in the production of an ADAMTS-N or ADAMTS-PI variant. Typically, such alterations are accomplished using site-directed mutagenesis.

The polynucleotides are useful for producing ADAMTS-N or 25 ADAMTS-R1 proteins. For example, an RNA molecule encoding an ADAMTS-N protein is used in a cell-free translation systems to prepare such proteins. Cell-free systems are well known in the art and include, for example, microsomal and synthetic RNA preparations, e.g., microsomes, i.e.,

-16-

SV40, bacterial plasmids, phage DNAs; yeast plasmids, vectors derived from combinations of plasmids and phage DNAs, viral DNA such as vaccinia, adenovirus, fowl pox virus, pseudorabies, baculovirus, and retrovirus. The DNA sequence is introduced into the expression vector by 5 conventional procedures.

Accordingly, the present invention also relates to recombinant constructs comprising one or more of the present polynucleotide sequences. Suitable constructs include, for example, vectors, such as a plasmid, phagemid, or viral vector, into which a sequence that encodes an ADAMTS-N protein or an ADAMTS-R1 protein has been inserted. In the expression vector, the DNA sequence which encodes the ADAMTS-N protein is operatively linked to an expression control sequence, i.e., a promoter, which directs mRNA synthesis.

Representative examples of such promoters, include the LTR or SV40 promoter, the *E. coli* lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or in viruses. The promoter may also be the natural promoter of the ADAMTS-N encoding sequence. The expression vector, preferably, also contains a ribosome binding site for translation initiation and a transcription terminator. Preferably, the recombinant expression vectors also include an origin of replication and a selectable marker, such as for example, the ampicillin resistance gene of *E. coli* to permit selection of transformed cells, i.e. cells that are expressing the heterologous DNA sequences. The polynucleotide sequence encoding the ADAMTS-N protein is incorporated into the vector in frame with translation reading frame of the vector.

-17-

(1989) Molecular Cloning A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y. and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY.

Polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein may also be used for diagnostic purposes. The polynucleotides may be used to detect and quantify ADAMTS-N or ADAMTS-R1 gene transcripts in biopsied tissues in which enhanced expression or reduced expression of the corresponding ADAMTS-N or ADAMTS-R1 gene is correlated with a disease. The diagnostic assay may be used to determine whether expression is absent, present, or altered and to determine whether certain therapeutic agents modulate expression of the corresponding ADAMTS-N or ADAMTS-R1 gene.

Also encompassed by the present invention, are single stranded polynucleotides, hereinafter referred to as antisense 15 polynucleotides, having sequences which are complementary to the DNA and RNA sequences which encode the ADAMTS-N or ADAMTS-R1 proteins. The term complementary as used herein refers to the natural binding of the polynucleotides under permissive salt and 5 temperature conditions by base pairing.

20 The present invention also encompasses oligonucleotides that are used as primers in polymerase chain reaction (PCR) technologies to amplify transcripts of the genes which encode the ADAMTS-N and ADAMTS-R1 proteins or portions of such transcripts. Preferably, the primers comprise 16-30 nucleotides, more preferably 19-25 nucleotides. Preferably, the primers have a G+C content of 40% or greater. Such oligonucleotides are at least 98% complementary with a complementary sequence, more preferably, 100% complementary with a complementary sequence.

100% complementary, more preferably, 98% complementary with a complementary sequence.

-18-

sense strand or its corresponding antisense strand. Primers which are which have 100% complementarity with the antisense strand of a double-stranded DNA molecule which encodes an ADAMTS-N protein have a sequence which is identical to a sequence contained within the sense strand. The identity of primers which are 15 nucleotides in length and have full complementarity with a portion of the antisense strand of a double-stranded DNA molecule which encodes the ADAMTS-N protein is determined using the nucleotide sequences, shown in FIG I - 11 and described by the general formula a-b; where a is any integer between 10 1 and the position number of the nucleotide which is located 15 residues upstream of the 3' end of the sense or antisense strand of the cDNA sequences shown in FIG 1 -11; where b is equal to a+14; and where both a and b correspond to the positions of nucleotide residues of the cDNA sequences shown in FIGS 1 - 11.

15 The present invention also encompasses oligonucleotides that are useful as hybridization probes for isolating and identifying cDNA clones and genomic clones encoding the ADAMTS-N or ADAMTS-R1 protein or allelic forms thereof. Such hybridization probes are also useful for detecting transcripts of the genes which encode the 20 ADAMTS-N family proteins or for mapping of the genes which encode the ADAMTS-N proteins Preferably, such oligonucleotides comprise at least 210 nucleotides, more preferably at least 230, most preferably from about 210 to 280 nucleotides. Such hybridization probes have a sequence which is at least 90% complementary with a sequence 25 contained within the sense strand of a DNA molecule which encodes an ADAMTS-N protein or ADAMTS-R1 protein or with a sequence contained within a target sequence which is complementary to the sense strand of a DNA molecule which encodes an ADAMTS-N protein or ADAMTS-R1 protein.

* within a range from about 70°C to 100°C below the melting temperature

-19-

Tm of the probe) to about 20°C to 25°C below Tm. The probes are used in Northern assays to detect transcripts of ADAMTS-N homologous genes and in Scuthern assays to detect ADAMTS-N homologous genes. The identity of probes which are 200 nucleotides 5' in length and have 5' full complementarity with a portion of the antisense strand of a double-stranded DNA molecule which encodes the ADAMTS-N protein is determined using the nucleotide sequences shown in FIG 1 - 10 and described by the general formula a-b; where a is any integer between 1 and the position number of the nucleotide which is located 200 residues upstream of the 3' end of the sense or antisense strand of the cDNA sequences shown in FIG 1 -10; b is equal to a +200; and where both a and b correspond to the positions of nucleotide residues of the cDNA sequences shown in FIG 1-10.

Such probes or primers are also useful for identifying tissues 15 or cells in which the corresponding ADAMTS-N or ADAMTS-R1 gene is preferentially expressed either constitutively or at particular state of tissue differentiation or development or in disease states.

Expression of the ADAMTS-N or ADAMTS-R1 gene in a particular tissue or group of cells is determined using conventional procedures 20 including, but not limited to, Northern analysis, in situ hybridization to RNA or RT-PCR amplification. Isolated

polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein are also useful as chromosome markers to map linked gene positions to identify chromosomal aberrations such as translocations, inversions 25 and trisomies, to compare with endogenous DNA sequences in patients to identify potential genetic disorders, and as probes to hybridize

-20-

and chromosomes, PCR, and allele specific hybridization.

Antibodies

In another aspect, the present invention relates to antibodies which are specific for and bind to the ADAMTS-5 protein, the ADAMTS-6 protein, the ADAMTS-7 protein, the ADAMTS-8 protein, the ADAMTS-9 protein, the ADAMTS-10 protein, or the ADAMTS-R1 protein. Such antibodies are useful research tools for identifying *tissues that contain elevated levels of the respective protein and for purifying the respective protein from cell or tissue extracts, medium of cultured cells, or partially purified preparations of intracellular and extracellular proteins by affinity chromatography. Such antibodies are also useful for identifying and diagnosing diseases associated with elevated or reduced levels of an ADAMTS-N protein or ADAMTS-R1 protein. Such antibodies are also useful for monitoring the effect of therapeutic agents on the synthesis and secretion of ADAMTS-N proteins by cells in vitro and in vivo. Such antibodies may also be employed in procedures, such as co-immunoprecipitation and co-affinity chromatography, for identifying other proteins, activators and inhibitors which bind to an ADAMTS-N or ADAMTS-R1 protein.

The present invention also provides a method for detecting an ADAMTS-N or ADAMTS-R1 protein, in a bodily sample from a patient using antibodies immunospecific for an ADAMTS-N or ADAMTS-R1 protein. The method comprises contacting the antibody with a sample taken from the patient; and assaying for the formation of a complex between the antibody and the corresponding ADAMTS-N or ADAMTS-R1 protein present in the sample. The sample may be a tissue or a biological fluid.

-21-

tissue, cells obtained from swabs and smears. To monitor changes in expression of the ADAMTS-N protein during fetal development and pregnancy, it is preferred that the sample be amniotic fluid. To monitor changes in expression of the ADAMTS-N protein during joint disorders, the preferred sample is synovial fluid. To monitor changes in expression of ADAMTS-N proteins during cancer, the preferred samples include, but are not limited to, serum, body fluids, or biopsy tissue. To monitor changes in expression of ADAMTS-N proteins during inflammation the preferred samples include, but are not limited to, serum, body fluids, or biopsy tissue.

The sample may be untreated, or subjected to precipitation, fractionation, separation, or purification before combining with the anti-ADAMTS-N protein antibody. For ease of detection, it is preferred that isolated proteins from the sample be attached to a substrate such as, a column, plastic dish, matrix, or membrane, preferably nitrocellulose. Preferably, the detection method employs an enzyme-linked immunosorbent assay (ELISA) or a Western immunoblot procedure.

Interactions between an ADAMTS-N protein in the sample and the corresponding anti ADAMTS-N antibody are detected by radiometric, colorimetric or fluorometric means, size separation, or precipitation. Preferably, detection of the antibody-ADAMTS-N protein complex is by addition of a secondary antibody that is coupled to a detectable tag, such as for example, an enzyme, fluorophore, or chromophore. Formation of the complex is indicative of the presence of the ADAMTS-N protein in the test sample. Thus, the amount of antibody-ADAMTS-N protein complex can be measured to quantitatively the amount of the ADAMTS-N protein in the test sample.

-22-

Deviation between control and test values establishes the parameters for diagnosing the disease.

Preparing the ADAMTS-N proteins and the ADAMTS-RI protein

The ADAMTS-N proteins and the ADAMT-SR1 protein may be produced 5 by conventional peptide synthesizers. The ADAMTS-N proteins and the ADAMTS-RI protein may also be produced using cell-free translationsystems and RNA molecules derived from DNA constructs that encode an ADAMTS-N protein or an ADAMTS-RI protein. Alternatively, ADAMTS-N proteins are made by transfecting host cells with expression 10 vectors that comprise a DNA sequence that encodes the respective ADAMTS-N protein and then inducing expression of the protein in the host. cells. For recombinant production, recombinant constructs comprising one or more of the sequences which encode the ADAMTS-N protein or a variant thereof are introduced into host cells by 15 conventional methods such as calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.

The ADAMTS-N protein and the ADAMTS-RI protein may be expressed 20 in suitable host cells, such as for example, mammalian cells, yeast, bacteria, insect cells or other cells under the control of appropriate promoters using conventional techniques. Suitable hosts include, but are not limited to, *E. coli*, *P. pastoris*, *Sac* cells and 293 HEK cells. Following transformation of the suitable host strain 25 and growth of the host strain to an appropriate cell density, the cells are harvested by centrifugation, disrupted by physical or

-23-

cell pellets or from cell culture medium, followed by salting-out, and one or more chromatography steps, including aqueous ion exchange chromatography, size exclusion chromatography steps, and high performance liquid chromatography (HPLC), and affinity chromatography may be used to isolate the recombinant ADAMTS-N protein or ADAMTS R1 protein.

Preparation of Antibodies

The ADAMTS-N proteins, and variants thereof are used as immunogens to produce antibodies immunospecific for one or more ADAMTS-N protein. The term "immunospecific" means the antibodies have substantially greater affinity for one or more ADAMTS-N protein than for other proteins. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, and Fab fragments.

Antibodies are also prepared using an oligopeptide having a sequence which is identical to a portion of the amino acid sequence of an ADAMTS-N protein. Preferably the oligopeptide has an amino acid sequence of at least five amino acids, and more preferably, at least 10 amino acids that are identical to a portion of the amino acid sequence of an ADAMTS-N protein. Such peptides are conventionally fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule. One preferred oligopeptide for preparing an antibody to mouse ADAMTS-5 has the sequence .C.HIKVRQFKAKIQTRE, SEQ ID NO: 10.

Another preferred oligopeptide for preparing an antibody to ADAMTS-5 is CEAKNGYQSDAKGVKTFVEWWPKVAG, SEQ ID NO: 3 1. One preferred oligopeptide for preparing an antibody to ADAMTS-6 has the sequence

-24-

preparing an antibody to ADAMTS-8 has the sequence
CVKEDVENPKAVWDGDWGP, SEQ ID NO:25. One preferred oligopeptide for
preparing an antibody to ADAMTS-9 has the sequence
QHPFQNEDYRPRSASPSRTH, SEQ ID NO:26. Another preferred oligopeptide
5 for preparing an antibody to ADAMTS-9 has the sequence
PQNCKEVKRLKGASEDGEYF, SEQ ID NO:27. One preferred oligopeptide for
preparing an antibody for ADAMTS-R1 has the sequence QELEEGAAVSEEPS,
SEQ ID NO:28. Another preferred oligopeptide for preparing an
antibody for ADAMTS-R1 has the sequence YYPENIKPKPKLOE; SEQ ID NO:29.

10 Polyclonal antibodies are generated using conventional
techniques by administering the ADAMTS-N protein or achimeric
molecule to a host animal. Depending on the host species, various
adjuvants may be used to increase immunological response. Among
adjuvants used in humans, Bacilli Calmette-Guerin (BCG), and
15 Corynebacterium parvum, are especially preferable. Conventional
protocols are also used to collect blood from the immunized animals
and to isolate the serum and or the IgG fraction from the blood.

For preparation of monoclonal antibodies, conventional
hybridoma techniques are used. Such antibodies are produced by
20 continuous cell lines in culture. Suitable techniques for preparing
monoclonal antibodies include, but are not limited to, the hybridoma
technique, the human B-cell hybridoma technique, and the EBV
hybridoma technique.

Various immunoassays may be used for screening to identify
25 antibodies having the desired specificity. These include protocols
which involve competitive binding or immunoradiometric assays and

30 polynucleotide comprised sequences encoding an ADAMTS-N

-25-

protein or an ADAMTS-R1 protein may be synthesized in whole or in part using chemical methods. Polynucleotides which encode an ADAMTS-N protein, particularly alleles of the genes which encode the ADAMTS-N protein, may be obtained by screening a genomic library or 5 cDNA library with a probe comprising sequences identical or complementary to the sequences shown in Figures 1 - 10 or with antibodies immunospecific for a ADAMTS-N protein to identify clones containing such polynucleotide.

Example 1 ADAMTS-512 protein

10 A cDNA encoding mouse ADAMTS-5 protein was obtained using IMAGE Clone 569515, purchased from Research Genetics, Huntsville, Alabama and 7 day old mouse embryo cDNA library from Clontech, Palo Alto, CA. A cDNA encoding human ADAMTS-5 protein was obtained using IMAGE Clone 345484 purchased from Research Genetics, Huntsville, Alabama 15 and a human fetal brain cDNA from Clontech. The clone inserts were sequenced in their entirety. Using oligonucleotide primers based on the sequences at the ends of the clone inserts as template, successive rounds of RACE (Rapid Amplification of cDNA Ends) by PCR was performed at 5' and 3' ends. RACE primers were generated 50-200 20 bp from the ends of the sequences so that the contiguity of RACE clones with the I.M.A.G.E. clone could be clearly established. A single round of 5' and 3' 20 RACE sufficed for cloning of the entire coding sequence of the mouse ADAMTS-5 protein and part of the catalytic zinc binding site through to the stop codon of the human 25 ADAMTS-5 protein. Primers were designed with calculated Tm>72°C and RACE was performed with nested primers for each amplification. PCR used the Advantage PCR reagents (Clontech, Palo Alto, CA); the

-26-

conditions; 95°C for 1 minute followed by 5 cycles of 95°C for 0.5 minutes, 72°C for 5 minutes, then 5 cycles of 95°C for 0.5 minutes, 70°C for 5 minutes and 20 cycles of 95°C for 0.5 minutes, 68°C for 5 minutes. The PCR products were analyzed by Southern blotting, 5 initially using [$\alpha^{32}P$]-dCTP labeled.

Hybridizing bands were ligated into pGEM-T Easy (Promega, Madison, WI) and individual clones were selected by another round of Southern analysis. Automated nucleotide sequencing of both strands of each clone were done at the Molecular Biotechnology Core of the 10 Lerner Research Institute, Cleveland Clinic Foundation and nucleotide sequence data were analyzed using the DNASTar software. By integration of the overlapping sequences thus obtained, a contiguous nucleotide sequence was determined. The nucleotide sequence of the mouse ADAMTS-5 cDNA and the predicted amino acid sequence of the 15 protein encoded by this cDNA are shown in Fig. 1. The nucleotide sequence of the human ADAMTS-5 cDNA and the predicted partial amino acid sequence of the protein encoded by this cDNA are shown in Fig. 2.

The predicted molecular mass (Mr) of the mature ADAMTS-5 20 protein is 73717.50 daltons. It is expected that the actual Mr of the active ADAMTS-5 protein is different due to post-translational modification, which could potentially increase the Mr. The predicted domain organization of ADAMTS-5 protein relative to the cloned cDNA is shown in Figure 12. The pro-domain of the full-length mouse 25 ADAMTS-5 protein has 3 consensus cleavage signals for furin. The most carboxyl-terminal furin cleavage site in ADAMTS-5 predicts the

-27-

while three residues are downstream, an arrangement that is shared with other ADAMTS members. The zinc binding signature is followed by a "Met-turn". The catalytic domain is followed by a domain with 35% similarity to snake venom disintegrins. The disintegrin domain 5 contains eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserved cysteine-rich sequence termed the cysteine-rich domain, designated "CRD", to distinguish it from the cysteine-free spacer domain. The CRD contains ten conserved cysteines and demonstrates high sequence homology with the CRD of 10 other ADAMTS-N proteins. The spacer domain of mouse ADAMTS-5 is 153 amino acids in length and is followed by a second TS module. ADAMTS-5 contains three potential glycosylation sites in the mature protease one of which is just upstream of the start of the spacer domain and the second lies within the spacer domain and the third is near the 15 start of the disintegrin domain. The human ADAMTS-5 protein and the mouse ADAMTS-5 protein have 96% sequence identity. ADAMTS-5 bears 46% sequence identity to ADAMTS-4 (KIAA0586), which is characterized as being involved in catabolism of aggrecan core protein in arthritis and 60% identity to ADAMTS-1 which is involved in inflammation.

20 Example 2 ADAMTS-6

The nucleotide sequence of a human cDNA encoding the full-length ADAMTS-6 protein was obtained using IMAGE clone 742630, which encodes EST AA400393, and a human fetal brain cDNA from Clontech. RACE was performed as described above in Example 1. The I.M.A.G.E. 25 clone 742630 contained an ORF flanked by consensus splice sequences, indicating the presence of introns. Two successive rounds of RACE at the 5' end and a single round of RACE at the 3' end provided the

-28-

The nucleotide sequence of the ADAMTS-6 DNA is shown in Fig. 3. The predicted amino acid sequence, SEQ ID NO:6, of the ADAMTS-6 protein is also shown in Fig. 3. The predicted Mr of the full-length, unprocessed ADAMTS-6 protein is 97,115 daltons., and the 5 predicted Mr of the mature ADAMTS-6 protein is 68412.10 daltons. The domain organization of the ADAMTS-6 protein is shown in Fig. 12. The pro-domain of the full-length ADAMTS-6 protein has one consensus cleavage signal for furin. The catalytic domain of the ADAMTS-6 contains six cysteine residues and the reproxysin -zinc binding 10 signature sequence, HEIVHENFGMNRD, which is followed by a "Met-sum". The catalytic domain is followed by a domain with 35% similarity to snake venom disintegrins. The disintegrin domain contains eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserve CRD sequence which contains ten 15 conserved cysteines and demonstrates high sequence homology with the CRD of other ADAMTS proteins. The spacer domain of ADAMTS-6 is 127 amino acids in length and is followed by a second TS module. ADAMTS-6 contains four potential glycosylation sites within the pyo-domain and two in the mature protease one of which is in the cysteine rich 20 domain and the other of which is in the spacer domain. ADAMTS-6 bears 46% sequence identity to ADAMTS-1, which is involved in inflammation.

Example 3 ADAMTS-7.

The nucleotide sequence of a cDNA encoding an ADAMTS-7 protein 25 was obtained using IMAGE clone 272098, which encodes EST N4.6032, and a human fetal brain cDNA from Clontech. RACE was performed as described above in Example 1. The I.M.A.G.E. clone 272098 encoded a

-29-

methionine codon lies within a satisfactory Kozak consensus for translation initiation.

The nucleotide sequence of the ADAMTS-7 cDNA is shown in Fig. 4. The predicted amino acid sequence, SEQ ID NO: 8, of the ADAMTS-7 protein is also shown in Fig. 4. The predicted Mr of the full-length, unprocessed ADAMTS-7 protein is 116,607 daltons, and the predicted Mr of the mature ADAMTS-7 protein is 84005 daltons. The domain organization of the ADAMTS-7 protein is shown in Fig. 12. The pro-domain of the full length ADAMTS-7 protein has one consensus cleavage signal for furin. The catalytic domain of the ADAMTS-7 protein contains eight cysteine residues and the reprolysin-zinc binding signature sequence, HELGHSFGIQHD, which is followed by a "Met-tum". The catalytic domain is followed by a domain with 30% similarity to snake venom disintegrins. The disintegrin domain contains eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserved CRD sequence which contains ten conserved cysteines. The spacer domain of ADAMTS-7 is 221 amino acids in length and is followed by a second TS module and a short sequence containing two cysteine residues. ADAMTS-7 contains three potential glycosylation sites within the mature protease; one of which is just upstream of the spacer domain and one of which is within the spacer domain. ADAMTS-7 bears 35% sequence identity to ADAMTS-1, which is characterized as being involved in inflammation and 32% identity to ADAMTS-2 which is a procollagen processing enzyme.

Example 4: ADAMTS-8

1. Nucleotide sequence of a cDNA encoding a partial ADAMTS-8 human

- 33 -

protein was obtained using IMAGE clone 2119838, which encodes EST A1400905, and a human fetal brain cDNA library from Clontech. RACE was performed, as described above in Example 1. The nucleotide sequence of the cDNA encoding the full-length ADAMTS-8 mouse protein 5 and the amino acid sequence of such protein is shown in Fig. 5. The nucleotide sequence of the cDNA encoding the partial ADAMTS-8 human protein and the amino acid sequence of such protein is shown in Fig. 6.

The predicted Mr of the full-length, unprocessed ADAMTS-8 mouse protein is 1260693 daltons, and the predicted Mr of the mature ADAMTS-8 protein is 68412.10 daltons. The pro domain of the full-length ADAMTS-8 protein has one consensus cleavage signal for furin. The catalytic domain contains eight cysteine residues and the reproblysm-zinc binding signature sequence, HELGHVLSMPHD, which is followed by a "Met-turn". The catalytic domain is followed by a domain with 20-30% similarity to snake venom disintegrins. The disintegrin-like domain contains eight cysteine residues. The first TS repeat is followed by a conserved CRD sequence which contains 10 conserved cysteines. The spacer domain of ADAMTS-8 is 146 amino acids in length and is followed by a second TS module. The ADAMTS-8 protein contains 4 potential glycosylation sites within the mature protease: one is in the cysteine-rich domain; one is in the catalytic domain; and two are in the disintegrin-like domain. ADAMTS-8 bears 46% sequence identity to ADAMTS-1 and 42% identity to ADAMTS-4.

Example 5: ADAMTS-9

The nucleotide sequence of a cDNA encoding a full-length, human

-31-

protein was obtained using IMAGE clone 535663, which encodes EST AA1 06215, and a mouse cDNA library obtained from Clonetech. RACE was performed as described above in Example 1. The nucleotide sequence of the cDNA encoding the full-length ADAMTS-9 human protein and the 5 amino acid sequence of such protein is shown in Fig. 6. The nucleotide sequence of the cDNA encoding the partial ADAMTS-9 mouse protein and the amino acid sequence of such protein is shown in Fig. 7.

The predicted Mr of the mature human ADAMTS-9 protein is 10 189777.20 daltons. The prodomain of the predicted ADAMTS-9 protein has 3 consensus cleavage signal for furin. The catalytic domain of the ADAMTS-9 contains eight cysteine residues and the reprotoxin - zinc binding signature sequence, HELGHVFNMPHD, which is followed by a "Met-turn". The catalytic domain is followed by a domain with 25-30% 15 similarity to snake venom disintegrins. The disintegrin domain contains eight cysteine residues. The first TS repeat contains is followed by a conserved CRD sequence which. contains 10 conserved cysteines. The spacer domain of ADAMTS-9 is 124 amino acids in length and is followed by 14 additional TS modules and a C-terminal 20 domain. The ADAMTS-9 protein contains 6 potential glycosylation sites within the mature protease: one in the spacer domain, one in TSP 1 -7, one in TSP 1-8, and 3 in the C-terminal domain. The ADAMTS-9 bears 44% sequence identity to ADAMTS-4.

Example 6: ADAMTS-10
15 The nucleotide sequence of a cDNA encoding a full-length ADAMTS-10 protein was obtained using IMAGE clone 110403, which encodes EST AA588434, and a human fetal brain cDNA from Clonetech. The nucleotide sequence of a cDNA encoding a partial, mouse ADAMTS-10 protein was obtained using IMAGE clone 1077653, which encodes EST

-32-

performed as described above in Example 1. The nucleotide sequence of the human ADAMTS-10 cDNA and the predicted amino acid sequence, SEQ ID 18, of the human ADAMTS-10 protein encoded by such DNA is shown in Fig. 9. The nucleotide sequence of the cDNA encoding the 5 partial mouse ADAMTS-10 protein and the amino acid sequence of such protein is shown in Fig. 10.

The predicted Mr of the mature ADAMTS-10 protein is 95238 daltons. The pro-domain of the full-length ADAMTS-10 protein has no consensus cleavage signal for furin. The catalytic domain of the 10 ADAMTS-10 contains eight cysteine residues and the reprolysin-zinc binding signature sequence, HEIGHTFGMNHD, which is followed by a "Met-turn". The catalytic domain is followed by a domain with 30% similarity to snake venom disintegrins. The disintegrin-like domain contains eight cysteine residues. The first TS repeat is followed by 15 a conserved CRD sequence which contains 8 conserved cysteines. The spacer domain of ADAMTS-10 is followed by 4 additional TS modules and a Kunitz domain. The ADAMTS-10 protein contains 2 potential glycosylation sites within the mature protease: one in the catalytic domain, and one in the TS 1-3 domain. ADAMTS-10 bears approximately 20 40% sequence identity to ADAM-TS1, which is characterized as being involved in inflammation.

Comparison of the ADAMTS-N Proteins.

As shown in Figure 11, the ADAMTS-5, ADAMTS-6, and ADAMTS-7 proteins share a common domain organization. From amino to carboxyl 25 termini, they are as follows:

1. A pre-pro region. A typical signal sequence of variable length is followed by a putative pro-region of variable length but

-33-

context similar to the cysteine "switch" of the MMPs. All three novel cDNAs predict consensus cleavage signals for furin, three in the case of ADAMTS-5, and one each in the case of ADAMTS-6 and ADAMTS-7. The most carboxyl-terminal furin cleavage site in ADAMTS-5 predicts the processing site for generation of the mature protease. The amino terminus of the mature proteins is predicted to start at the residue immediately following the cleavage sites.

2. **A catalytic domain.** The catalytic domains are very similar to each other and contain eight cysteine residues and a typical 10 reprodysin-type zinc binding signature followed by a "Met-turn".

Five cysteine residues are upstream of the zinc binding sequence, while three residues are downstream, an arrangement that is shared with other ADAMTS members. The methionine of the met-turn is not at a constant distance from the zinc-binding signature, but in all three 15 novel proteases, a constant cysteine residue is present in that interval.

3. **A disintegrin-like domain.** The catalytic domain is followed by a domain of 60-90 residues with 35-45% similarity to snake venom disintegrins, but without the canonical cysteine arrangement seen in 20 the latter. This disintegrin-like domain is of comparable length in ADAMTS-5 and ADAMTS-7, it is considerably shorter in ADAMTS-6.

4. **A TS module.** The first TS repeat is very similar in all three novel proteases and very similar to the first TS repeat of other ADAMTSS. It contains the same number of residues (fifty-two) in all 25 three novel proteins.

5. **The cysteine-rich domain.** This TS domain is followed by a

-34-

other domains. It shows the least homology of all the domains.

7. A C-terminal TS module. The sequence of the second TS module is more variant between the members of the ADAMTS family than the first TS module, despite the conservation of the number and spacing 5 of cysteine residues.

Overall, the predicted mature forms of these proteases show 20-30% similarity to each other and to ADAMTS1-4 although this may be considerably higher or lower for individual domains as described above.

10 ADAM-TS9 and ADAM-TS10 contain all the domains present in ADAMTS-5 through ADAMTS-8. In addition, ADAMTS-9 and ADAMTS-10 contain the following domains:

A. ADAMTS-9: After the c-terminal TS1 domain which is present in ADAMTS5-8, ADAMTS-9 contains 13 additional and homologous 15 TS11 domains, thus, ADAMTS-9 contains a total of 15 TS1 domains, of which 14 are adjacent to each other in the c-terminal half of the molecule. The 15th TS1 domain from the N-terminus is followed by a unique c-terminal domain which does not possess recognizable domain structure and contains 196 residues including 9 cysteine residues.

20 B. ADAMTS-10: After the c-terminal TS1 domain which is present in ADAMTS 8, ADAMTS-10 contains 3 additional and homologous TS1 domains, thus, that ADAMTS-10 contains a total of 5 TS1 domains, of which 4 are adjacent to each other in the c-terminal half of the molecule. The 5th TS 1 domain from the N-terminus is followed by an 25 additional 47 amino acid residues including six (6) cysteine residues. These 47 residues have sequence similarity of 30%-40% to

-35-

from human and mouse tissues (Clontech, Palo Alto, CA) were hybridized to the [$\alpha^{32}P$]-dCTP labeled inserts of I.M.A.G.E. clones as per the manufacturer's recommendations followed by autoradiographic exposure for 3-7 days.

5 *In situ* hybridization used cryosections of mouse embryos of gestational age 8.5 days and 10.5 days. Embryos were collected with the inclusion of the surrounding uterus and fixed overnight in 4% paraformaldehyde. Sense and anti-sense probes continuously labeled with digoxigenin-UTP (Boehringer-Mannheim, Indianapolis, IN) were 10 transcribed with T7 and T3 RNA polymerases, respectively, using as template a 630 bp EcoRI-SacI fragment from the Adamts-5 clone 569515 (Fig. 14) cloned into pBluescript SK+ (Stratagene, La Jolla, CA). *In situ* hybridization was done essentially as previously described in Apte, et al. (1997) *J. Biol. Chem.* 272:2551-25517, which is 15 specifically incorporated herein by reference, except that sections were predigested with proteinase K (Boehringer-Mannheim, Indianapolis, IN) at a lower concentration (1-5 μ g/ml) than reported in Apte, et al.. Bound, digoxigenin-labeled probe was detected using an alkaline phosphatase tagged anti-digoxigenin 20 antibody (Boehringer-Mannheim, Indianapolis, IN) and nuclei were counterstained with methyl green.

Specific hybridization of the antisense Adamts-5 probe to sections of 8.5 day-old mouse embryos was obtained, whereas only low background staining was noted with the control sense probe. Staining 25 was uniform throughout the 8.5 day old embryos. In addition, there was labeling of mRNA in trophoblastic cells lining the uterine cavity

Embryo labeling was widespread but less intense compared to the rat

-36-

day-old embryo. Labeled cells were seen in mesenchyme and somites as well as in the neural tube and developing hindgut. Northern analysis also indicated that mRNA encoding ADAMTS-5 was present in human placenta but was barely detectable in adult lung, heart, brain, liver, skeletal muscle, kidney and pancreas.

Northern analysis showed undetectable expression of Adams-6 during mouse embryo development. Northern analysis indicated that mRNA encoding ADAMTS-6 was present in human placenta but was barely detectable in adult lung, heart, brain, liver, skeletal muscle, kidney and pancreas. Adams-7 was expressed at low levels throughout mouse development. In adult human tissues examined with human cDNA probes, ADAMTS-7 mRNA was found in all tissues examined, i.e. in lung, heart, brain, liver, skeletal muscle, kidney, pancreas and placenta. The sizes of the mRNA species recognized by the probes varied. ADAMTS-5 mRNA was approximately 10 kbp in size in human tissue. The most prominent Adams-5 species was estimated at 7.5 kbp together with additional bands at 10 kbp and 4.5 kbp. The lone mRNA species detected by ADAMTS-6 probe was approximately 8.5 kbp, whereas the most common mRNA species detected by ADAMTS-7 probe 5 was 5 kbp in size with an additional species seen at 7 kbp in skeletal muscle.

In mouse, ADAMTS-8 is expressed during fetal development (days 7, 11, 15, 17) and in adult mouse lung and heart with an mRNA size of approximately 3.8 kbp. In adult human tissue, ADAMTS-8 is expressed in lung and brain but not in heart, muscle, kidney, colon or thymus. The mRNA size is 3.8 kbp.

ADAMTS-9 is expressed in lung, ovary, placenta, heart, brain,

alternatively spliced in short forms of ADAMTS-

-37-

ADAMTS-10 is expressed in thymus, prostate, testis, ovary, small intestine, colon, peripheral blood leukocytes, heart, brain, placenta, lung, liver, muscle, kidney and pancreas, as well as in many cell lines such as A549, HeLa and K562. There are two 5 transcripts of 5 kb and 8kb present in all tissues.

Example 7: ADAMTS-R1

The nucleotide sequence of a cDNA encoding a full-length ADAMTS-R1 protein was obtained using IMAGE clone 752797 which encodes EST AA, and a human fetal brain cDNA from Clontech. RACE was 10 performed as described above in Example 1. The nucleotide sequence, SEQ ID NO:21, of the ADAMTS-R1 cDNA and the predicted amino acid sequence, SEQ ID NO:22, of the ADAMTS-R1 protein encoded by such DNA is shown in Fig. 11.

The predicted Mr of the full-length, unprocessed ADAMTS-R1 15 protein is 58358.20 daltons. The domain organization of the ADAMTS-10 protein is shown in Fig. 15. In contrast to the ADAMTS-N proteins of examples 1-6, ADAMTS-R1 protein does not have a pro-metalloprotease or disintegrin-like domain or a consensus cleavage signal for furin. ADAMTS-R1 has a signal(pre) peptide which is 20 followed by a first TS module and a conserved CRD sequence which contains 10 conserved cysteines. The spacer domain of ADAMTS-R1 is 115 amino acids in length and is followed by 3 additional TS modules and a short sequence of 33 amino acids. The ADAMTS-R1 protein contains one potential glycosylation sites which is in the spacer 25 domain. ADAMTS-R1 bears 30-40% sequence identity to ADAMTS1 and ADAMTS4 in the related domains. ADAMTS-R1 mRNA is present in human heart, brain, kidney, muscle, lung, placenta, testis, ovary, colon,

-38-

Although certain embodiments of this invention have been shown and described, various adaptations and modifications can be made without departing from the scope of the invention as defined in the appended claims.

CLAIMS

1. An isolated mammalian protein selected from the group consisting of an ADAMTS-5 protein an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein, and an ADAMTS-R1 protein.
2. The isolated mammalian protein of claim 1 wherein said protein comprises an amino acid sequence which is at least 95% identical to a sequence selected from the group consisting of: amino acid 262 through amino acid 930 of SEQ ID NO:2; amino acid 1 through amino acid 518 of SEQ ID NO:4; amino acid 245 through amino acid 860 of SEQ ID NO:6; amino acid 233 through amino acid 997 of SEQ ID NO:8; amino acid 229 through amino acid 905 of SEQ ID NO:10; amino acid 1 through amino acid 245 of SEQ ID NO:12; amino acid 236 through amino acid 1882 of SEQ ID NO:14; amino acid 1 through amino acid 874 of SEQ ID NO:16; amino acid 212 through amino acid 1081 of SEQ ID NO:18; amino acid 1 through amino acid 450 of SEQ ID NO:20; and amino acid 1 through amino acid 547 of SEQ ID NO:22.
3. The isolated protein of claim 2 wherein said amino acid sequence further comprises a prepropeptide sequence at the amino terminus thereof.
4. The isolated protein of claim 1 wherein said protein is a human ADAMTS-5 protein or a mouse ADAMTS-5 protein.
5. The isolated protein of claim 1 wherein said protein is a human ADAMTS-6 protein.
6. The isolated protein of claim 1 wherein said protein is a human

...

ADAMTS-9 or a mouse ADAMTS-9 protein.

9. The isolated protein of claim 1 wherein said protein is a human ADAMTS-10 or a mouse ADAMTS-10 protein.

10. The isolated protein of claim 1 wherein said protein is a human
5 ADAMTS-R1 protein.

11. An isolated polynucleotide comprising a sequence which encodes
a mammalian protein selected from the group consisting of an
ADAMTS-5 protein, an ADAMTS-6 protein, an ADAMTS-7 protein, an
ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein,
10 and an ADAMTS-R1 protein.

12. The isolated polynucleotide of claim 11 wherein said protein
comprises an amino acid sequence which is at least 95%
identical to a sequence selected from the group consisting of:
amino acid 262 through amino acid 930 of SEQ ID NO:2; amino
15 acid 1 through amino acid 518 of SEQ ID NO:4; amino acid 245
through amino acid 860 of SEQ ID NO:6; amino acid 233 through
amino acid 997 of SEQ ID NO:8; amino acid 229 through amino
acid 905 of SEQ ID NO:10; amino acid 1 through amino acid 245
of SEQ ID NO:12; amino acid 236 through amino acid 1882 of SEQ
20 ID NO:14; amino acid 1 through amino acid 874 of SEQ ID NO:16;
amino acid 212 through amino acid 1081 of SEQ ID NO:18; amino
acid 1 through amino acid 480 of SEQ ID NO:19, and amino acid 1
through amino acid 547 of SEQ ID NO:22.

13. The isolated polynucleotide of claim 11 wherein said nucleotide
25 sequence encodes a protein having a signal sequence at the
amino terminus thereof.

14. A NBL of an allelic variant thereof: nucleotide 1 through

nucleotide 1519 of SEQ ID NO:3 or an allelic variant thereof; nucleotide 754 through nucleotide 2602 of SEQ ID NO:5 or an allelic variant thereof; nucleotide 708 through nucleotide 3003 of SEQ ID NO:7 or an allelic variant thereof; nucleotide 962 through nucleotide 2952 of SEQ ID NO:9 or an allelic variant thereof; nucleotide 1 through nucleotide 739 of SEQ ID NO:11 or an allelic variant thereof; nucleotide 708 through nucleotide 5648 of SEQ ID NO:13 or an allelic variant thereof; nucleotide 1 through nucleotide 2625 of SEQ ID NO:15 or an allelic variant thereof; nucleotide 634 through nucleotide 3243 of SEQ ID NO:17 or an allelic variant thereof; nucleotide 1 through nucleotide 1642 of SEQ ID NO:19 or an allelic variant thereof; and nucleotide 51 through nucleotide 1625 of SEQ ID NO:21 or an allelic variant thereof.

15 15. The isolated polynucleotide of claim 11 wherein said polynucleotide hybridizes under stringent conditions to a nucleic acid molecule comprising a sequence complementary to the protein encoding sequence of SEQ ID NO:1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:9; SEQ ID NO:11; SEQ ID NO:13; SEQ ID NO:15; SEQ ID NO:17; SEQ ID NO:19; or SEQ ID NO:21.

20 16. An isolated polynucleotide having a sequence which is complementary to the protein encoding sequence of the polynucleotide of claim 11.

17. An expression vector comprising a polynucleotide of claim 11.

25 18. A host cell transformed or transfected with an expression vector of claim 17.

b) suitable for expression of an ADAMTS-X protein or an ADAMTS-Y

protein; and

(b) recovering said ADAMTS-N protein or said ADAMTS-R1 protein from the host cell culture.

20. An antibody that binds to a protein selected from the group consisting of an ADAMTS-5 protein, an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein and an ADAMTS-R1 protein.

21. An oligopeptide for producing an antibody that binds to an ADAMTS N protein or an ADAMTS-R1 protein wherein said oligopeptide has a sequence selected from the group consisting of:

- a) SVSIERFVETLIVVADK, SEQ ID NO:23;
- b) EVAEAAANFLALRSEDPDKY, SEQ ID NO:24;
- c) VKEDVENPKAVVDGDWGP, SEQ ID NO:25;
- 15 d) QHFFQNEDYRPRSASPSRTH, SEQ ID NO:26;
- e) PQNCKEVKRLKGASEDGEYF, SEQ ID NO:27;
- f) QELEEGAAVSEEPS, SEQ ID NO:28;
- g) YYPENIKPKPKLQE; SEQ ID NO:29;
- h) HIKVRQFKAKDQTRF; and
- 20 i) CEAHQGYQSDAKGVKTFVEWVPKYAG, SEQ ID NO:30.

Fig. 1

FEATURES	Location/Qualifiers
source	1..3002 /organism="Mus musculus" /db_xref='taxon:10090' /chromosome="Mouse 16" /map="58 cM (consensus position)"
gene	1..3002 /note="a disintegrin-like and metalloprotease domain with thrombospondin type I repeats" /gene="Adams5"
CDS	18..2810 /gene="Adams5" /note="putative secreted metalloprotease" /codon_start=1 /product="ADAM-TS5 (a disintegrin-like and metalloprotease domain with thrombospondin type I repeats)" /translation="MRLEWASLLLLLSSASCLSLAEDSPAAPAQDKTRQPQAAA AAEPDQPQGETERGHQLQPLAGQRRSGGLVNIIDQLYSGGGKVGYLVYAGGRFFLD LERDDTVGAAGSIVTAGGGLSASSGHRGHCFYRGTVDGSPRSLAVFDCGGLDGFFAV XHARYTLKPLLPGSWAEYERYTYGDGSSRILHVNREGFSFEALPPRASCTPASPSPGP QESPSPVHSRSPRRSALAPQLLDSAFSPSGNAGPQTWWRRRRSISRARQVELLLVAD SSMARMYGPGLQHYYLLTASIANRLYSHASIEHWIRLAVVIVVLTDKDTSELEVSDIA ATTLQNFCKWQHQHNQLGDDHEHNDAILFTREDLCGHHSCTLGMADVGTCSPER SCAVIEDDGLHAAFTVAHEIGHLLGLSHDDSKFCEENFGTTEDKRLMSSIILTSIDASK PWSKCTSATITEFLDDGKGNCILDELPRKQILGPEELPGQTYDATQQCNLTFGFEYSWC PGMDVCAPIWCNVVREQQGMVCLTKICPAVEGTGKGGRVCILQGKCVDKTKKKYSTSS HGNWGWSWPNGQCSRSCGGT/QFAIRHNNPAPENSGRYCTGKRAIYRSCSVTPCPNN

GKSFRHEQCEAKNGVQSDAIGVHTFVEWPHYAGJLPAEVNHLTCV.....
 KVTDGTECRPYSNVCGVRGACVRTGCDGIIGSHLQYDKCGVCGDNSSCTKIIIGTFNK
 KSKGNTDWRPIPEGATHIKRQFKAKDQTTRFFPAYLALAKKUTGEYLINSKRMISTSETI
 IDINGTIVIYSGWSEHEDFLHGNGWISATKEILIVQILACDPTKALGVRYSPFPVKTT
 QKVNSV1SAGSNFVGPHSTQ1QWVTPWLACSRTOCDTGWHTRTVQQQDQNPKLAKOCL
 LSQRFSATAFKQSLILKFC*

BASE COUNT 726 a 786 c 845 g 643 t

ORIGIN

1 ccggcgccgca ggcgcactatg cggatcgtgact gggccgttcctt gttgtgtata ctgtgtgtgc
 61 tgagcgttgtc ctgccttgtcc ctggcccgctg acagccccgc cggggcacctt gcccaggata
 121 aaacccaggca gcctcaggctt gcaggcaggcc cccgcgcggcc ggaccagccg caggccggagg
 181 aaacacggga gcgaggccat ttacaacccctt tgcccgccgca ggcggaggcc ggcggggctgg
 241 tccataataat agaccaactt tactctgggg gtggcaaaatg ggcgtactttt ttatcgcgg
 301 gcccggccggat ttccctgtt gacccgttggaga gagatgacac atgggggtgtt gtcggtagca
 361 tcgttactgc aggaggaggcc ctgagcgttcc cctctggcca cgggggtcac tgggttctaca
 421 gaggccaccgtt ggacccggcgc cctcgatccctt tagctgttctt tgacctctgc ggggggtctcg
 481 atgggtttctt tgcaatcggat catcgccgtt acatcttaaa gcaacttctg cgtgggttct
 541 gggccggatgt tgaacgaaatg tatggggatg gatcttcccg catcctgtat gtcataaacs
 601 gcccggccgtt tagttccggat gcccgtccgc cccgcggccag ttgcggactt cctgtatcccc
 661 catctggccgc ccaagagagc ccctcggtgc acatgtatgtc taggagacgc tcagcgctgg
 721 ccccgccatgt gctggccacat tcatgtttttt cgacatctgg gaacccggga cctcaagactt
 781 yylyyaggccg taggcggccgtt ccatacttca gggcccccgc ggtggggatc ctcttgggtgg
 841 ctgactcgccatggccagg atgtatggggatggccgtt gcaattttctg ctgaccctgg
 901 ccccccattccca caacaggccatg tacatgtatg caaggatttgc gaaaccatccatc cgcctggccg
 961 tgggtggatgtt ggtgggtgtt acggccatgg acacccgttcc ggggggtggcc aagaatgggg
 1021 ccaacggccatccatgtt tggaaatggcc acgaccaaaaa taaccacca gggggatgtatc
 1081 acgaagagacatccatgtatgca gcatatctgtt tcacccggatg ggtttttatgtt gggcatcatt
 1141 catgtacacatccatggatgtt gcaacgttttggatccatccatgtt ccgtgtgtgt
 1201 cagtgttttgc agatgtatggccatccatgtt ctttcactgtt ggtttttatgtt attggccatc
 1261 tacttggccatccatgtatgatccatgtt tctgtgtatgtt gaaacttccgtt actacaaag
 1321 acaagggtttt atatgttccatgtt atccatgtatgtt gcatgtatgtt atccaaagccatccatgtt
 1381 gcaacgttccatgtt cccatccatgtt gaaatccatgtt atgtatgttca tggtaatgtt ttcgtatgtt
 1441 taccatggccatccatgtt gcaatgttccatgtt gaaatccatgtt acagacccatc gatgtatgtt
 1501 agcactgttccatgtt gggccctgtt gtttttttttccatgtt gatgttccatgtt
 1561 cggccggccatccatgtt gtttttttttccatgtt gtttttttttccatgtt gatgttccatgtt
 1621 cggccggccatccatgtt gtttttttttccatgtt gtttttttttccatgtt gatgttccatgtt
 1681 acaaaaactaaatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 1741 cctgggggtca gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 1801 ataaccatgtt gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 1861 cctgtatgtt gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 1921 ccaaaaatgtt gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 1981 aatatgtatgtt gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2041 gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2101 actctgtgtt gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2161 agcttccatgtt gtttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2221 tcggaaacccatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2281 caaccacatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2341 ttttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2401 cccatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2461 atgtatgtt gtttttttttccatgtt gtttttttttccatgtt
 2521 ttgttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2581 cccatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2641 cccatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2701 cccatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2761 ttttttttttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2821 actcttccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2881 gggccatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 2941 gggccatccatgtt gtttttttttccatgtt gtttttttttccatgtt
 3001 gtttttttttccatgtt gtttttttttccatgtt

Fig. 2

Fig. 3

FEATURES	Location/Qualifiers
source	1..2848 /organism="Homo sapiens" /db_xref="taxon:9606" /chromosome="5"
gene	1..2848 /note=" A Disintegrin-like And Metalloprotease domain with Thrombospondin type I motifs 6" /genes="ADAMTS6"
CDS	22..2602 /genes="ADAMTS6" /note="zinc metalloprotease" /codon_start=1 /product=" A Disintegrin-like And Metalloprotease domain with Thrombospondin type I motifs-6 (ADAM-TS6)" /translation="MEILWKTLTWILSLIMASSEFHSDHRLSYSSQEEFLTYLERQL TIPIRVDQNGAFLSPTIVQDKHSRRRRSMDPDPQQAVSKLFFKLSAYGKFHLNLTL ITDFVSVGHFTVEYWGKDGPQWKGIFFLDNCHYTGYLQDQRSTTMKVALSNCVGLHGVIA EDEEYFIEPLKNTTEDSKHFSVENGHGPVYTKKSALQQRHLYDHSHOGVSDFTRSGKP WMLNDTISTVSYSLPINNTHHFQKRSVSIERFVETLVVADKMMVGYHGRKDIERYIL SVMENIVAKLYRDSSLGNVNNIIVARLIVLTDQPNLEINHHADKSLDSFCKWQKSILS HQSDGNTIPENSIAHHNIAVLTTRYDICTYQNKPCGTGLGLASVAGMCEPERSCSINED IGLGSAPTIAMEIIVENFGMHNHDGIGNSCGRKVMKQQNYGSSHYCEYQSFILVCLQSFX HHQLFREVCRELWCLSKSNRCVTNSIPAEESTLCQQTGNIEKGWCTYQGDCTVPPGTWPQS IDGGWGPWSLWGECSSRTCGGGVSSSLRHCDSPAPSGGGKYCLGERKRYRSCNTDPCPL GSRDFREKQCAOFDNMPFRGKYYNWKPYTGGGVKPCALNCLAEQGYNFYTERAPAVIDG TQCNADSLDICINGECKHVGCDNILGSDAREDFCRVCGGGSTCDAIEGFFNDSLPRG

Fig. 3 (con't)

GIMENWQIPRGWSHIEVREWAMSKONYLALKSEGDDFTYINGAMTICWPRKFDVASTAAPHYKRPTEDESESLEALGPSENLYTMLLQEONQIGIRYKEMNPITRGTGSCNEVGFTWNHCPWSECSATCAGGKMPTRQPTQRARWRTKHILSYALCLIKYKLIONNISCPFASSENLAKEILL

BASE COUNT 837 a 551 c 664 g 794 t 2 others
ORIGIN

Fig. 4

FEATURES	Location/Qualifiers
source	1..3218 /organism="Homo sapiens" /db_xref="taxon:9606" /chromosome="15"
gene	1..3218 /gene="ADAMTS7"
CDS	13..3003 /gene="ADAMTS7" /note="ZINC METALLOPROTEASE" /codon_start=1 /product=" A Disintegrin-like And Metalloprotease domain with Thrombospondin type I motifs-7 (ADAM-TS7)" /translation="MPGGPSRSPAPLLRPLLLLICALAPGAPGPAPGRATEGRAALD IVHFVVRDAGGSFLSYELWPRALRKREVSVRROAFAFYQYRGRELRFNLTANQHL APGFVSETRRRGGGLGRAHIRAHTPACHILLGEVQDPELEGGLAISACDGLKGWFQLSN EDYFIEPLCSAPARPGHAQPHVVVKRQAPERLAQRGDSSAPSTCGVQVYPELESRER WEQRQQWRRPRLRLHQRSVSKEKWETLVVADAKMVEYHGQPQVESVVLTIIMMAG LFHDPSIGNPIIHTIVRLVLLDEEEDLKITHHAINTLKSFCWKQKSINMKDAHPLH HDTAILLTRKDLCAAMNRPCETLGLSHVAGMCQPHRSCSINEDTGLPLAFTVAEILGH SFGIQHDGSGNDCEPVGKRPFIMSPQCLLYDAAPLITWSRCSRQVITRFFLDRGWGLCLED PPAKIIDFSPVPPGVLYJVSHQCRQLYQGAYSAFCEDMDNVCHTLWCVGTTCHSKLD AAVDGTRCGENKWLCLSGECPVGFREAVDGGNGWSAWSICSRSCCMGVQSAERQCT QPTPKYKGRYCVGERKFRFLCNLQACPAGRPSFRHVQCSHFDAMLYKQOLHTWVPVVJ DVNPCELHCRPANEYFAJKLRDAVVDGTPCYQVRASRDLCINGICQVVGCFEIDSGA MEDRCGVCHRGNGSTCHTVSGTFEEAEGLGVDVGLIPAGAREIRIQLVAEAANFLALR SEDPEKYFLNGGWTIQWNGDYQVAGTTFTYARRGNWENLTSPGPTKEFWIQUVASRG

POGGSRGGVPRPSTLHGGRSPGGVSPGSVTEPGSEPGPPAAASTS
 VHEGGWQQAPlGLGGWRHILVMGPPLPTQLLFQESNPGVHYETTIAPEAASDLYPF
 PVFSWYHGFWKCTVTCGRGEWGRHSPTCRGLVSGQGHNLQLPAHQWATTCLEWCFPS
 EPQFSICEMFLAIALCPRPAGRIVHG'

BASE COUNT 584 a 1041 c 1003 g 590 t

ORIGIN

1 ccggttcttg scatggccgg cggccccaaat ccccgccgac ccggccctttt gtgcgcggcc
 61 ctcttcgtcg tcctctcgcc tetggctccc ggagccccccg gacccggacc aggacgtcga
 111 accggggggc gggggggact ggacatcggtg caccgggttc gagtcgacggc gggggggctcc
 181 ttctgtctt acggacgtgtg gcccggcgca ctggcgaaagg gggatgtatac tggcgccga
 241 gacggcgccgg ctttcttacga gctacaatac cggggggccgg aggtgcgtttt caacctgacc
 301 gccaatcaga acctgctggc gcccgggtttt gtgagcgaga cggggggccgg cggcgccgtg
 361 gcccgccgca acatccggcc caacaccccg gcctgcaccc tgcttggcgaa ggtgcaggac
 421 ctggagctcg agggtgtggctt ggcggccatc acggcctggc acggccgtgaa aggtgtttt
 481 cagttcttca acgaggacta cttcatttag gcccggacca gtggccggcc cggcgccgtg
 541 cagccccccg cccatgtgtt gtaaaaggat cggggccggc agaggctggc acaggccggat
 601 gattcccgat ctccaaagtc ctgtggatgtt caagtgtacc cagagctggc gtctcgacgg
 661 gaggttgggg agcggcgccaa gcaatgtggcc cggccacccg tgaggcgatc acaccacccg
 721 tgggtcaga aagagaatgg ggtggggatcc ctggtagtag ctgtatccaa aatggtggag
 781 taccacggac agcggcaggat tgagagctat gtgcgtacca tcatgaacat gtggctggc
 841 ctgtttcatg accccagcat tgggaacccc atccacatca ccatttgccg cctggctctg
 901 ctggaaatgtt aggg
 961 ttctgtcaatg ggcggaaaatgg catcaacatc aagggggggatc cccatccatc gcaccatgac
 1021 actggccatcc tgcgttccatc aaggacccgtt tggggggccca tgaacccggcc ctgtggagacc
 1081 ctggggactgtt cccatgtggc gggcatgtgc cggccggccaccc gcaatgtcgac catcaacgg
 1141 gacacggggcc tggcgctggc ctccatgttca gcccacggc tggggcacag ttttggcatt
 1201 cagcatgaaatgg gaaacggggcaaa tgactgttagtccatggggaa aacggacccatc catcatgtct
 1261 ccacacgtcc tgcgttccatc acctgggtttcc acctgggtttcc gtcggccggcc ccaatccatc
 1321 accaggttcc ttggaccgtgg tggggggccctg tggctggaccc acccttcgtc caaggacatt
 1381 atcgacttcc cctcggtggc acctgggttc ctctatgtatc taagccatca gtggccgttc
 1441 cagttacgggg cttatcttcgtc ctgtggcgatc gacatggatc atgtctggca cacatctgg
 1501 tgcgttgg
 1561 gggggaaaatggatggggatggggatggggatggggatggggatggggatggggatggggatgggg
 1621 gtggatggggatggggatggggatggggatggggatggggatggggatggggatggggatggggatgg
 1681 gggtgtacaga ggcggccggcc gcaatgtcgac cggccatccatc ccaaatacaa aggccatcc
 1741 tgcgttggggatggggatggggatggggatggggatggggatggggatggggatggggatggggatgg
 1801 cccctccctcc gccaatgttca gtcggccaccc ttttgcgttca tgcgttccatc aggccatcc
 1861 cacacatggg tggccgtgttcaatggatggggatggggatggggatggggatggggatggggatgg
 1921 aatggatgttccatc tggccaaagaa gtcggggatggggatggggatggggatggggatggggatgg
 1981 gtcggccatccatc ggcggccggccatccatc tggccatccatc aatggccatccatc atggccatcc
 2041 gagattgttccatc cccgggttccatc tggggatggggatggggatggggatggggatggggatgg
 2101 tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2161 ctgtatccatc cggggccatccatc cggggccatccatc atccatccatc tggccatccatc tggccatcc
 2221 ctggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2281 tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2341 gagaatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2401 ctggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2461 ttcgttccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2521 ctgtatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2581 gtcggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2641 gtcggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2701 caatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2761 ttcgttccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2821 tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2881 ctccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 2941 tccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 3001 ggtggggatggggatggggatggggatggggatggggatggggatggggatggggatggggatggggatgg
 3061 ttcgttccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 3121 tgcgttccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc
 3181 ctggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatccatc tggccatcc

Fig. 5A

10 20 30 40 50 60 70

```

tagggcgaactgcacgggacgcgcggaggacgacggcgctcgccggccggggccacgtgcgtcgatctcg 70
ctaggttgctggcgacggaggagcgggctgcgcgatccagagggccaggaccgcgcgcacgt 140
gccgcgtggcgagtcggcctcccatccgattgtatttctggacagagcgaccgcgcgcgcacgt 210
gccaccaggcacctgcccggcgccggcgatcttcccttcccgctccgcagcactctgcggccATG 280
CTCCGGAGACCCCCACCACCAACCGGTGGCGGCCCTCTGCTGCTGCTATTGCAGCTGCCGCCGAC 350

```

360 370 380 390 400 410 420

```

TGCTCTGCAGCAGCGAGCGAAGCTCGGCTTCACCTGTCGGCTTCGGCCAGGGCTTCTGCTGCGCTGGCG 420
GGCGCGAGCGAGCGAAGCTCGGCTTCACCTGTCGGCTTCGGCCAGGGCTTCTGCTGCGCTGGCG 490
CTCTGAAGGCTAGCTTCTGGGACCGGAATTCAAGATGAGGCGGCTGGGGCTGAGCGGCGGGCGGGGG 560
CGCGAGCGGACTCGCTGGCTGCTTCTCTCGCACAGTGAATGGAGAACGGGACTCGCTGGGGCGAT 630
GAGCTGTGTCGCGGCGCTGAGCGGCTCGTTCTGCTGGCAAGCGAGGAGTTCAACATCCAGOCACAGGGC 700

```

710 720 730 740 750 760 770

```

GCTGGGGAACTCCTGGACCAAGCTCATCGCCTGGAGCGCTGGGGCGGGGACAGCGCCGCGAAGACCG 770
GCTCTGGTCCGGCGAGTCTTCCCGCTCCACGGACTGGAGCTGGAGGTGGAGATGGGTAATGGCGA 840
CGGACAGGAGAGAAGTGAACAAAGAACAGGACAGGAACCGAGGACAAAGGGGCTGCTCAAAGAGACAGAA 910
GACTCGGTAAGTGCACCCACCTTGGATCCAAAATAGAACGAGGTTTGTGTCGGAGGCTGCT 980
TCTGGAAACACTCTGGTGGCTGATGGCTCCATGGCTCTATGGACCCGACCTGGCAGAACCAAT 1050

```

1060 1070 1080 1090 1100 1110 1120

```

CTTCAGGCGAATGTCATGGCAGCGGAATCTACAAGCACCGAGGATCAGGAACCTCGCTAACCTTGTC 1120
GTTGGTGAAGTCTAAATAGTGGAAAAAGAAAGTGGCCCGGAATGTCGGACACCGGGGGCTCACAC 1190
TGGCGCAACTCTGGCAGTGGCAAGGGGCTTCAACAGGACAGTGAACCGCCACCCGGAGGACTATGACAC 1260
TGGCGACATCTGGACCGCGAAGAGCTCTGTCGGGAAGGGAGAGGAATGTCACACCGGGATGGCAAGAC 1330
GTTGGCAGCATCTGGACCGCGAAGAGCTCTGTCAGTGAAGGATGAGGACTGGCAGGGAGCTTAA 1400

```

1410 1420 1430 1440 1450 1460 1470

```

CTCTGGCGATGGCGAAGTACCTACAGAGGCTCTGGATGATGGTCACGGAGATGTCCTCTGGATGCCCGA 1470
TGGGCGCATGGCGAAGTACCTACAGAGGCTCTGGATGATGGTCACGGAGATGTCCTCTGGATGCCCGA 1540
CTCTGGTGTGTCACCTACAGAGGCTCTGGATGATGGTCACGGAGATGTCCTCTGGATGCCCGA 1610
CTCTGGTGTGTCACCTACAGAGGCTCTGGATGATGGTCACGGAGCTGAGCTGGACCCAGTGCAGA 1680
GCGAGTCTTGGCGCTGATTTCAGACACTGCGGCGAACCTCTGTCGGAGGACATCTGTCCTGCT 1750

```

9-54

Fig. 5A (con't)

1760 1770 1780 1790 1800 1810 1820

 CCGGGTCATCGGGATAGTGAATGAGCCCCATTGACACACAAAGAACATGGTAGCCCTGCTCTGGCTGATGTTA 1820
 CAACCTGTGGCCTGCGCACCTGTGCCCTGGATGGTAGCTGTGTAACCAAGGAGGATGTGGAGAAATCCCAA 1890
 GGCTGTGGTAGATGGAGACTGGGGTCCCTGGAGACCCCTGGGGACAATGTTCTCGCACTGTGGTGAGGG 1960
 ATACAATTCTGAAACCGTGAATGTGATAATGCAATGCGCTCAGAACATGGAGGAAGATTTTGCGCTGGGTGAAA 2030
 GAGTCAGTACCAATCATGCAACACAGAGGAATGTCACCAACCGAAAAACGCTCCGGGAGCACCAGTG 2100
 2110 2120 2130 2140 2150 2160 2170

 TGAGAAAATATAATGCTTACAACCAACACTGACCTGGATGGGAATTTCCTGCACTGGGTCCTCAAGTATICA 2170
 GGAGTGTCCCCTGAAACCGATGCAAGCTGTTTGCAGAGCCCGTGGGAGGAGTGGTCAAAGTGTGTTG 2240
 AAGCTTAAGGTGAATGATGGCACTCTGTTGCGAAGGGAACTCTGTCATCTGGCTCCGGGGAAATGTGT 2310
 TAAGGCTGCTCTGTGACCATGTGGTGAACTCACCTAACGAGCTGGACAAATGTGGGGTGTGCTGGGCAAA 2380
 GCGACTGCGCTTAAGGAAGATCTCGGTTCTTCACCCCTTCAGTTATGGCTACAATGACATTGTCACCA 2450
 2460 2470 2480 2490 2500 2510 2520

 TCCCAGCTGGTGCACAAACATTGATGTGAAACAGGGAGTCACCCAGGGGTCAAGGAAACGACGGCAGCTA 2520
 CCTGGGGCTGAAAGACAGCCAATGGGCACTACCTGCTCAATGGTAACCTGGCCATCTCTGCTCATAGAGCAA 2590
 GACATCTTGGTGAAGGGGACCATCTGAAGTACAGTGGCTCCATGGCTACCCCTGGAGGGCTGGAGAGCT 2660
 TCCAGGGCCTCTCCCTGAGCCTCTTACAGTACAGCTCTGACTGTGTCGGTGAAGGCTTCCCTGCAAAAGT 2730
 CAGATATAACCTCTTGTCCCAATGACATGGACTTCAGOGTGGCAGAACATGCAAGGAAAGAGCAACCAAC 2800
 2810 2820 2830 2840 2850 2860 2870

 AACATCATTCAAGTCACCTGGCTCTGGGGACTGGGTCTGGGAGACTGGCTGAAATGTCCGAGCACTGCA 2870
 GAGCTAGCTCCCAGGGCGGACTGTGGAAATGCAAGGGACCCCTCAGGTCAAGGCTCTGACACCTGTGATGA 2940
 GGCTCTGAAACCTGAGGGATGCCAAGCCCTGTGAAAGGCCAGGGCTGTCCTCTgtatccccttggtgaaa 3010
 tcttttaggttatggatttggctactggtaacagacaaaggccccctcaagggtgataactacatataat 3080
 caagatggcacggccctttcaggccttcattactacaacccttgggtactacctaatacataaggaag 3150
 3160 3170 3180 3190 3200 3210 3220

 agagaagaggtataaggtaacagattgtaaagtgtatgttgttggactggaccttgcattatgcca 3220
 agaagtgggtataggttaaaaggtagaagtgcacattatgtatccaaatgggagatttcagagccatctc 3290
 ttggcaaaaggacttagaaaagctaaatgaaaaaaagaaatttttttctatgtggttcccaaataatc 3360
 aaatctacatcacagcggggaaaaaatcagttatacaagaggtataaggccaggtgtggcagtgaacjccaa 3430
 agcaagctccataggtatctccaaagctatcttcagaaatgtccgtgtttcagtataaaatctgt 3500

Fig. 5A (con't)

3510 3520 3530 3540 3550 3560 3570
tgcctaaaaggcagcagtgtccatcacagggttatagaaaggccactttctcaggctgccacctgctgg 3570
ggcgaccatttcaagtattttagcaaatatgtctccgaactaaagtgtgttacaccaaaaagngc 3638

MOUSE ADAM TS 8

10 20 30 40

MLRDPTTTGWPPLL LLLLQLPPPPLVCGAPAGPGTGAQAS 40
 ELVVPTRLPGSASELAFHLSAFGQGFVLR LAPDASFLAPE 80
 FKIERLGSSAAAGGEPEGLRGCFSGTIVNGERESLAAMSC 120
 VAGWSGSFILLAGEEFTIQPQGAGDSLQDQPHRLQRWGPQR 160
 REDPGLAAAEVFPLPQGLEWEVEMNGQQERSDNEEDRK 200

210 220 230 240 N-terminus of mature protease

QDKEGLLKETEDSRKVPPPGSKTRSKRFVSEARFVETLL 240 FVSEAR
 VADASMAAFYGTDLQNHLTVMSMAARIYKHPHSIRNSVNL 280
 WVKVLIVEKERWGPEVSDIGGLTLRNFCSWQRRENKPSD 320
 RHPEHYDTAILFTRQNPCGKGEQCDTLGMADVGTICDPDK 360 5' up
 SCSVVIKDEGLQAAYTLAHELGHVLSMPHDDSKPCVRLFGP 400

410 420 430 440 3' p

MGKYHMMAPFFIHVNKFPLWSPCSAVYLTELLDDGHGDCL 440
 LDAPTSVLLPLPTGLPGHSTLYELDQQCKQIFGPDFRHCPN 480
 TSVEDICVQLCARHRSDEPICHTKNGSLIWAADGTPCGPG 520 8' p
 HLCLDGSCVLKEDVENPKAWVDGDWGPAREWGQCSRTOGG 560
 GIQFSNRECDNPMPQNGGRFCLGERVKYQSCNTTECPPNG 600

610 620 630 640

KSFREQQCEFYNAYNHFDLDGNFLQWPKYSGVSPRDRCK 640
 LIPCRARGRSEFKVFEAKVIDGTLCPDTLSICVRGQCVKA 680 10' p
 GCDHVNVNSPKFLDKCGVCGGKGTA CRKISGSFTPFSYGYN 720
 DIVTIPAGATNEDVKQRSHPGVRNDGSYLA LKTANGQYLL 760
 NENLAISALEQDILVKGTILKYSGSMATLERLQSFQALPE 800

810 820 830 840

PLTVQLLTIVSGEVFPKVRVTFFVNIDMDSVQNSKEFAT 840
 TATIQSLPSAEWVLDWSECPSTCRGSWQRRTIVECROPMSG 880
 QASDTCDEALKPEDAKPCGSQPCPL 925

Spacer ~146aa

Fig. 6A

CATALYTIC DOMAIN, ADAM TS-8 (HUMAN)

10	20	30	40
.....

```

CGACGGCAGAACGGGCTAGCGAGCCGCCACCGCCCGCTGG 40
GGCCAOGACTAGGACCAAGGGGTTTGTGTCTGAGGGCGC 80
TTCTGTGGAGACGCTGCTGGTGGCGATGCGTOCATGGCTG 120
CTTCTACGGGGCGACCTGCAGAACCACATCTGAQGIT 160
AATGTCTGTGGCAAGCCGAATCTACAAGCACCCCACCATC 200

```

210	220	230	240
.....

```

AAGAAATTCCATCAACCTGATGGGGTAAAAGTGCTGATCG 240
TAGAAGATGAAAAATGGGGGCCAGAGGTGTCCGACAATGG 280
GGGGCTTAACCTGOGTAACCTCTGCAACTGGCAGGGGT 320
TTCAACCAAGCCCAAGGACCGCCACCCAGAGCACTACGACA 360
CGGCCATCTGCTCACCAAGACAGAACCTCTGTGGCAGGA 400

```

410	420	430	440
.....

```

GGGGCTGTGACACCCCTGGGTGTGGCAGACATGGGACC 440
ATTTGTGACCCCAACAAAAGCTGCTCGTGTGAGGGATG 480
AGGGGCTTCAGGGGGCCACACCCCTGGCCCATGAACCTAGG 520
GCACTCTCAGCATGCCCAACGACGACTCCAAGGCGCTGC 560
ACACGGCTCTTCGGGCCATGGCAAGCACACGTGATGG 600

```

610	620	630	640
.....

```

CACCGCTGTCTGTCACCTGAAACAGACGGCTGGCCCTGGTC 640
CCCTGCAAGGCCATGTTCTCAGGCTGCCACCTGCAGGGG 680
TGGATCCATTTCAAGTATTTATGCAAATGTGTCTCTGAAC 720
TAAAGTGATCTTATGCC 739

```

HUMAN ADAM-TS8
CATALYTIC DOMAIN

10 20 → Mature protease FVSEAR. - - .
 30 40

RAEGASEPPPPLGATSRKRFVSEARFVETLLVADASMAA 40
FYGADLQNHLTLMSVAARTYKHPSTKNSINLMWVKLIV 80
EDEKNGPEVSDINGGLTLRNFCNWQRFNQPSDRHPEHYDT 120
AILLTRQNFCQEGLCDTLGVADIGTICCPNKSCSVIEDE 160
GLQAAHTLAFLGHVLSMPHDDSKPCTRLFGPMGKHHVMA 200

210 220 230 240

PLFVHLNQTLPWSPCSAMFSGCHLQGNHFKYLCKCVSEL 240
KCDLM 245

Fig. 6B

Fig. 7A

human *TPXm-TS9*

10 20 30 40 50 60 70

GAAGCACCATGCAGTTGTATCTGGGCCACACTGCTAACGCTCCTGGTGGGGACCTGGCGAGATGGG 70
 GAGCCCAGACGCGCGGCGCCGTCGCAAGGACA3GCTGCACCCGAGGCAAGTGAAATTATTAGAGACC 140
 CTGAGCGAATACGAAATCGTGTCCCCATCGAGTGAAAGCTCTGGAGAACCCCTTCCCAACGAAOGTCC 210
 ACTTCAAAAGAACCGGAAGGAGGATTAACTCTGCCACTGACCCCTGGGCTGCCCTCGCTCCTCTTC 280
 CTCCCTCTACCTCTCCAGGGCATTACCGCCTCTGCTTGGCCAGCAGTTCTATTAAATCTCACC 350

360 370 380 390 400 410 420

GCCAATGCCGGATTATAGCTCACTGTTCACTGTCACCCCTCTGGGACGCCGGGGTGAATCAGACCA 420
 AGTTTATTCCGAAGAGGAAGGCGAACTAAAGCAGTGTTCTACAAAAGGCTATGTCAATAACCAACTCCG 490
 AGCACACGGCGCGTCATAGCCTCTGCTAGGAATGAACACAAAAATAGGCACAGTAAAGACAAGAAGAAA 560
 ACCAGAGCAAGAAAATGGGGAGAAAGGATTAACTGGCTGGTGACGTAGCAGCATTAAACAGGGCTTAG 630
 CAACAGAGGCATTCTGCTTATGGTAATAAGACGGACAACACAAGAGAAAAGAGGGACACAGAAAGAC 700

710 720 730 740 750 760 770

AAAACGTTTTTAATCTATCCACGGTTGTAGAAGCTTGGTGGCAGACAACAGAACAGAACGGTTTAC 770
 CATGGAGAAAACCTTCAACACTATATTTAACCTTAAATGTCAATTGTAGCCTCTATCTATAAAGACCAA 840
 GTATTGGAAATTAAATTAATATTTGTTATTGIGAACTTAATTGTGATTCATAATGAACAGGAAGGGCTTC 910
 CATATCTTTAAATGCTCAGACAACATTAAAAACTTTGCCAGTGGCAGCTTGAACAGTOCAGGTGGA 980
 ATCCATCATGATACTGCTGTTCTTAACAAGACAGGATATCTGCAGAGCTCAOGACAAATGTGATAACT 1050

1060 1070 1080 1090 1100 1110 1120

TAGGCGCTGGCTGAACCTGGGAACCAATTGGTGTACCCCTATAGAACGCTGTTCTATTAGTGAAGAATGTGGATT 1120
 GAGTACACCTTTAAGATGGCGCATGAGCTGGGCCATGTGTTAACATGCTCATGATGACACACACAA 1190
 TTTAAAGAAGAAGGAGTAAAGAGTCCCGAGCATGTCATGGCTCCAACACTGAACCTCTACACCAACGCT 1260
 CGATGTGGCTCAAGTGTAGTGGAAATATACTGAGTTTATAGACACTGGTTATGGGAGGTGTTGCT 1330
 TAACGAACTGAATOCAGACOCTACCCCTTGGCTGTCGAACCTGCAGGGATCTTACAAAGTGAATAAA 1400

1410 1420 1430 1440 1450 1460 1470

CAATGNGAAITGAAATTGGACCAAGGTTCTCAGGTGTGCCATATATGATGGCAAGTGCAGACGGCTCTGGT 1470
 GCAATAACGTCATGGAGTACAAAGGCTGCCGGACTCAGCACACACACCTGGCGGATGGAGGGAGTG 1540
 CGAGGCTGGAAAGCACTGCAAGNATGGATTGTTGTTGCCAAAGAAATGEGATGTCCCCCTGACAGATGCA 1610

Fig. 7A (con't)

1760 1770 1780 1790 1800 1810 1820

CTGCAACACGGAGOCATGTCTCAAGCAGAACGGAGACTTCCGAGATGAACAGTGTGCTCACCTTGACGGG 1830
 AAGCATTAAACAACGGTCTGCTTCCCAATGCGCTGGGTCCTAAATACAGTGGAAATTCTGATGA 1890
 AGGACCGGTGCAAGTTGTCAGTGGCAGGGAACACAGCCTACTATCAGCTTCGAGACAGAGTGT 1960
 AGATGGAACCTCTTGTGCCAGGACACAAATGATATCTGTGTCAGGGCTTGTGCCAGGCAAGCTGGATGC 2030
 GATCATGTTAAACTCAAAGCCGGAGAGATAAAATGCGGGTTGTGGTGGGATAATTCTTCATGCA 2100

2110 2120 2130 2140 2150 2160 2170

AAACAGTGGCAGGAACATTAAATACAGTACATTATGGTACAATACTGTGGTCCGAATTCCAGTGGTGC 2170
 TACCAATATTGATGTGGCAGCACAGTTCTCAGGGAAACAGACGGATGACAACACTACTTAGCTTATCA 2240
 ACCAGTAAAGGTGAATCTTGCTAAATGAAACCTTGTGTCACAATGCCAAAAGGGAAATTGCAATTG 2310
 CGAATGCTGTGGTAGAGTACAGTGGGTOOGAGACTGCGTAGAAAGAAATTAACTCAACAGATGCAATTG 2380
 GCAAGAACCTTTCAGGTTTGTGGTGGGAAAGTTGTACAACCCGATGTACGTATTCTTCAT 2450

2460 2470 2480 2490 2500 2510 2520

ATTCCAATTGAAGATAAAACCTCAGCAGTTTACTGGAACAGTCATGGCCATGGCAAGCATGCAGTAAC 2530
 CCTGCCAAGGGGAACGGAAACGAAACTTGTGTCACCCAGGGAACTGATCAGCTTACTGTGTTCTGATCA 2590
 AAGATGCGATCGGCTGCCCCAGCCCTGGACACATTACTGAAACCTGTGGTACAGGCTGTGACCTGAGGTGG 2660
 CATGTTGCCAGCAGGAGTGAATGTAGTGGCCAGTGTGCTTGGGTTACCCACATTGGACATCTACTGTG 2730
 CCAAATATAGCAGGCTGGATGGGAAGACTGAGAAGGTGTATGATGGTTTTCAGCAGCATCCAAAC 2800

2810 2820 2830 2840 2850 2860 2870

AAGCAACCGTAAAAATGCTCAGGGGAATGTAACACGGGTGGCTGGCGTATTCTGCTGGACTGAATGT 2870
 TCAAAAAGCTGTGACGGTGGGACCCAGAGGAGAAGGGCTATTGTGTCATAACCCGAAATGATGTACTGG 2940
 ATGACAGCAAATGCCACACATCAAGAGAAAGTTACCATCAGAGGTGCAGTGAGTTCCCTGTGACACAGTG 3010
 GAAATCTGGAGACTGGTCAGAGTGTGCTGGTACCCGTGGAAAAGGGCATAACCACOOGCAGGTGGTGT 3080
 CAGTTTGGTGAAGATGATIAATGATAGAATGTGTCACCTGAGACCAAGCCAACATTATGCAAGACIT 3150

3160 3170 3180 3190 3200 3210 3220

GTCAGCAGCGGGAAATGTGCACTCTGGCAGGGGGTCCCTGGTACAGTGCAGTGTCACTTGTGGACAGGG 3220
 ATACCAAGCTAAGACCACTGAAATGCACTATGGGACTTATATGTCAGTGGTAGATGACAATGACTGTAAT 3290
 CGAGCAACTAGACCAACTGATAACCCAGGACTGTGATTACCATCATGTCATCTCCCCCAGCTCCCCGG 3360
 AACCGAGGAGAAGCACATACAGTGCACCAAGAACCCAGTGGGAGATTGGGTCTGGACCCCATGCTCAGC 3430
 CACTTGTGGAAAGGTACCCGGATGAGATACTCAGCTGGGAGATGAGAATGGCTCTGTGGCTGACGG 3500

Fig. 7A (con't)

3510 3520 3530 3540 3550 3560 3570
 AGTGCCTGTGCTACCCCTGCTAGAACAGTCGGCAAAGGAAGAAATGTCTGTGACAOCCCTGTGGCAATGGA 3570
 AGGCCCTTGACTGGAGCTCTTGCTCTGTGACCTGTGGCAAGGTAGGGCAACCCGGCAAGTGTATGTGTGT 3640
 CAACTACAGTGACCAACGTGATCGGAGTGAGTGACCGAGGATATACTCCAGAAACTGACCAGGAC 3710
 TGTTCCTATGTCACCATGCCCCCAAAGGACCCCAGACAGTGGCTTAGCTCAGCAACCCCTTOCAAATGAGG 3780
 ACTATCGTCCCCGGAGGCGCAGCCCCAGCCCGCACCATGTGCTGGTGGAAACCGAGTGGAGAACTGGCCC 3850
 3860 3870 3880 3890 3900 3910 3920
 CTGGGGGACCATGTTCCAGTAACCTGTGCTGGGGATCCCCAGCGCGTGTGTGTGTATGTGACGGATGAAAAT 3920
 CGATACACCGCAAACCGACTGTGTGGAGAGAATAAAACCTGATGACCAAAGAGGCTGTGAATCCGGCCCTT 3990
 GTCCTCAGTGGCTTATGGCAACTGGGAGAGTGCACTAACCTGTGTGGAGGCTATAAGAACAAAGACT 4060
 GGTGGTCTGTGTCAGCGCTCCAACGGTGAACGGTTCCAGATTGAGCTGTGAAATTCTTGATAAAACCTCCC 4130
 GATGTTGAGCAGTGTAACACACATGCTTGTCACACGACGCTGCACTGGAGTACTGGCCCTGGAGCTGTT 4200
 4210 4220 4230 4240 4250 4260 4270
 GTTCTGTCTTGTGGTCCAGGGCATAAACAACGAAATGTTACTGCACTGGCAAAAGATGGAAGGCCATT 4270
 AGAAAATGATTACTGTAAGCACCTGGCTAACGCCACATGGGACAGAAAGTGCGGAGGGAGATGCC 4340
 AAATGGAAAAGCTGGGCTTGGAGTCAGTGCTCTGTGTCTGTGGCCGAGGCGTACACCGAGGGCATGTGG 4410
 CCTGICAGATGGAACACACAAAATAGCCAGAGAGACCGAGTGCAACCCATACACAGAACCGGAGTCGGA 4480
 ATGCCAATGCCAAGGCCAACGGTGTCCCCCTTACACTTGGAGGGAGAGGAATGCCAAGAACATGCCACCAAG 4550
 4560 4570 4580 4590 4600 4610 4620
 ACCTGGGGAAAGGCTCCAGTACCGTAAGGTTGGTGTGTGGATGACAACAAAAACGAGGTGCACTGGG 4620
 CAAGGTGTGACGTGACCAAGGGCGTGGACGGTGAAGAGCTGTAGTTGCAACCCCTGCGAGTATGTCTG 4690
 GATCACAGGAGAATGGTCAAGTGCTGACCTGTGGAAAAGGCTAACAAACAAAGGCTTGCTCGTGC 4760
 AGTGAATTACACCGGAAAGAGAAATTATGAATAACAGTACCCAAACGCCATCAACTGCCAGGCCAGG 4830
 AGGCGGCCAGTGTGACCCCTGTACCTGAGGGAGTGCCCTGTCTGGGACACCTGGAGAGTTGGCAACTG 4900
 4910 4920 4930 494C 4950 4960 4970
 GGGGAGCTGCTCAGTGCTTGTGGTGTGGAGTGATGCAAGAGATCTGTGCAATGtttaaccaatgaggac 4970
 caacccagccacttatgccacactgtatctgaagccagaagaacggaaaaacctgcgttaatgttataact 5040
 ctcauttacccaaqaatttccaaacggagctaaaaagacttaaaggcccaagtgtgaagatggtaataatttct 5110

Fig. 7A (con't)

5260 5270 5280 5290 5300 5310 5320

GTCCCTATAACGGGAGCGGGGGCGATGACTGCGAACATGCGGAAGGATTACACGGCGGCTGGGTTTCCAG 5320
TTTCAGAAAATCAGAATAGACCTGACCACTGCAGATAATCACCACTGACTTACAGTTGCAAGGACA 5390
AGCGAAGGACATCCCGTCCCTTTGCCACAGCGGGGATGCTACAGCGCTGCCAAGTGCCCCACAGGGTC 5460
GTTTTAGCATCAACCTTTAAGGAACCGGCTTGTCTTTAACTGAATCTGCCAGATGGATATCACAGGGAA 5530
TTATGCTGCTCTGACATCAAGAAGTCGCCGGATGGTACCCGAGTGGTAGGGAAATGCGGTGGTTACTGT 5600

5610 5620 5630 5640 5650 5660 5670

GGAAAATCCACTCCATCCTCTGGTACTGGCTGGAGGTGGAGTTTATAGCTAACGGTGCCTTGAAGAGG 5670
AAGCCATTATGGATGGATGAAGGATAGTAATGCAATACCTCCACCTTAATTTGGGTCATGTATGIGT 5740
GTGTGTGTGTGTGACTTGTATGCTGTGTGIAATGIGTGTACATATACTATATACATA 5804

Fig. 7B

human Adam TS - 9

10 20 30 40 50 60 70

360 370 380 → *Mature protease FLSYR* 400 410 420

710 720 730 740 750 760 770

1060 1070 1080 1090 1100 1110 1120

1410 1420 1430 1440 1450 1460 1470

Sequence:

```

SIMOFVSWATLLTLVRDLAEMGSPAAAAVRKDRLHPRQVKLLETLS EYEIVSPIRVNALGEFPPTNVH 70
FKRTRRSINSATDPWPAFASSSSSSSTSSQAHYRLSAFGQQFLFNLTANAGFIAPLFTVILLGTPGVNQTK 140
FYSEEEFAELKHFYKRLCQYQLRAHGRPHQPLLRNEHKRHSKKTRARKWGERINLAGDVAALNSCLA 210
TEAFSAYGNKTDTREKRTHRRCKRFLSYPRFVEVLVADNRMVSYHGENLQHYILSTMSTIVASTYKOPS 280
IGLNLINIVTNLIVIHNEDQDGPISIFNAQTTLNFCQWHSNSPGIIHDTAVLLTRQDI CRAHDKCDIL 350
GLAEILGTICDPYRSCSISEDSGLSTAFTIAHELGVFNMPHDNNKCKEEGVKSPQHVMAPILNFTINPW 420
MSKCSRKYITTEFLDTGYGCILINEPESRPYPLVQLPGILYNVNKQXELIFPGPSQVCPPMMQCRRIWC 490
NNVNGVHKGCRTQHTPWAQDGTECEPGKHCKXGCPVKEMDVPVTGSGWSWPFGTCSRTOGGGIKTAIR 560
ECNRPEPKNGGKYCVGRRMKFKSCNTEPCLKQKRDFRDEQCAHFDGKFNINGLLPNVRWPKYSGILMK 630
DRCKLFCRVAGNTAYYQLDRVLDGTPCGQDINDICVQGLCRQACGDHVLSKARRDKCGVOGCCNSCK 700
TVAGTFNTIVHYGYNTIVRIPAGATNEDVRQHSPSGETDDNYLALSSSKGEFLNNGNFVUTAKREIRIG 770
NAVVEYSGSETAVERINSTDRIEQELLQVLSVGKLYNPDVRYSFNIPIEDKPQOFYWNHGPWQACSKP 840
CQGERKRKLVCITRESQQLTVSDQRCDRLPQPQHITEPCGTGCDLRHVASRSECQAQCGLGYRTLDIYCA 910
KYSRILDGKTEKVDDGFCSHPKPSNREKCSGECNTGGARYSAWTECSKSCDGQTQRRRAICVNTRNDVLD 980
DSKCTHQEKVTIQRCSEFPCPQWKGDWSECLVTCGKGHHRQWCQFGEDRLADRMCDPEKPTEMQTC 1050
QQPECASWQAGPVWQCSVTCGQGYQLRAVKCIIGTYMSWDONDNAATRPTDTQDCELPSCHPPAAPE 1120
TRRSTYSAPRITQWRFGSWTPCSATCGKGRMRVYSCRDENGSVADESACATLPRPVAKEECSVTPCGQWK 1190
ALDWSSCSVTQGQGRAITRQVMCVNYSQHVIDRSECDQDYIPETDQDCSMSPCPQRTPDGSLAQKPFQNEQ 1260
YRPRSASPSTRHVLGGNQWFTGFWGACSSTCAGGSQRRVAVCQDENGYTANDCVERIKPDBQRACESGPC 1330
PQWAYGNGECKLQGGGIFTLIVVQRSNGERFPDLSCENLDKPPDREQCVTHACPHDAANSTGPWSSC 1400
SVSJGRGHKQRNVYCMAKDGSHLFSDYCKHLAKPHGRKCRGGRCPKWKAQAWSQCSVSCGRGVQQRHVG 1470
CQIETHKLAIRETECNPYTRPESECECGPRTCPLYTWRAEEWQECTMTOGEGRYRKVVCVCDNKNEVHGA 1540
FCDVSKRVDRESCSLQPCEYWTGEWSECSVTCGKGYKQRLVSCSEIYTGKENYEYSYQTTINCPTQ 1610
PPSVHPCYLRECPVSAIWRVGNWGSCSVSCGVMQRSVQCLTNEQPSHLCHTDLKPEERKTCRWNMC 1680
ELPQNCKEVKRLKCASEDGEYFLMIRGILLKIFCAGWHSDFPKEYVILVHGDSNFSEVYGHRLHNPTEC 1750

```

Fig. 7B (con't)

1760 1770 1780 1790 1800 1810 1820

PYNGSRRDDCQCRKCYTAAGFSSFQKIRIDLTSMQIITIDLQFARTSEGH
PVPFATAGDCYSAAKCPQGR 1820
FSINLYGTGLSLTESARWI
SQGNYAVSDIKSPDGTRVVGKCGGYOGKCTPSSGTGLEVRVL.LRCFEEE 1890
AEMDG.RIVMQYLHNLGACVCVCVFCDLYACVCKCVITYYT 1934

Fig. 8

ORF=2

protein

```

MTAVISLCGMMGTFRSHDGYFLPLQSVDQEDEEBQN 40
KPHITYRHSTPQREPSTGKHACATSELNSHISKDKRKRIM 80
RKRRKRNSLADDVALLKSGLATKVLSGYSNQTNTRDRWV 120
HRKTKRFESYPRFVEVMVVADEHRMVLHYGANLQHYILTLW 160
SIVASITYKDSSIGNLINTIVIVNLWVINEQEGLPYINFNAQ 200
TTLKNFCQWQHSKNYLGGIQHDHTAVLVTREDICRAQDKCD 240
TLLGLAELGTICDPYRSCSISEDGLSTAFTIAHELGHVN 280
MPHDDSNKCKEEGVKSPQHVMAPILNFTINPAMWSKCSRK 320
YIIEFLDTGYGECLLNEPASRTYPPLPSQLPGGLYNVNKQC 360
ELIFGPGSQVCPTYMMQCRRLWCNNVDGAHKGCRTQHTFWA 400
DCTCECPGKHCKPGFCVPKEMECPAIDGSWGGWSHFGTCS 440
RTCGGGIKTAIRECNRPEPKNGGYCVGRRMKFKSCNTEP 480
CMIKQKRDFREEQCAHFDGKFNIDLLPSVRWPYKYSGIL 520
MDRCKLFCRVAGNTAYYQLRDRVIDGTPCGQDTNDICVQ 560
GLCRQAGCDHILNSKVRKOKCGICGGDNSSCKTVAGTFNT 600
VHYGYNIVRIIPAGATSLDVRQHSFSGKSEDINYLALSNS 640
KGEFLINGDFVVSMSKREVRVGSAVIEYSGSDNVERLNC 680
TDRIEFLLLQVLSVGKLYNPDVRYSFNIPIEDKPQQFYW 720
NSHGPWQACSKPQQGERRRKLCVCTIRESDQLTVSDQRCDRL 760
PQPQPVTEACGTDCDLRVHVASKSECSAQCGLGYRTLDIH 800
CAKYSRMDGKTEKVDDSFCCSSQPRPSNQEKCSCGECSTGGW 840
RYSAWTECSRSCDGQTQRRRAICVNTRNDV_LDDS 874

```

mame ADAMTS9

FLSYPRF...

Mouse ADAM-TS9

partial sequence

See figure

Created: Saturday, April 10, 1999 11:40 AM

DNA

10 20 30 40 50 60 70

```

GCACACTGGGGTCATCAGCCTGCTGCTCGGAAATGATGGCAOGTTGGCTCTCACGATGGAGATTATTC 70
ATTGAACCACTGGAGTCCTGCTGGATGAGCAAAGGGATGAAGAGGAACAAAACAACCCCCACATTATTTATA 140
GCGACAGCACCCCTCAAGAGGGAAACCCCTCCACAGGAAGCATGCTCTGGCTGGCTGACGACGTG 210
TCACAGTAAAGACAAGCGGAAAATCAGAATGCGAAAACGGAGAAAGAGGAATAGCCTGGCTGACGACGTG 280
GCACTCTAAAGAGCGGTTGGCAACAAAGGGTCTCTGGCTATAGCAACCAGACAACACAACAGGG 350

```

Fig. 8 (con't)

360 370 380 390 400 410 420

```

ACAGATGGAACCACAAAAGAACCAAACGCTTCTGTCTTACCCACGGTTTGTAGAGGTGATGGTGGTGGC 420
TGACCACAGGGATGGTTTATACCAACGGAGCAAACCTTCACAACTTATATCTTAACCTTAATGTCCATTGTA 490
GCTTCTATCTATAAAGACTCAAGTATIGGAAATTAAATTAAATTATIGTATTTGTAACCTTAGTTGIGATTC 560
ATAATGAACAGGAAGGACCTTACATAAATTCAATGCCACAGACAACATTAAAGAACCTTGCAGTGCA 630
GCACTCAAAGAACACTACTTGGTGGGATTCAACGACACAGCCGTTCTGGTCACAAGGGAAAGATACTCGC 700

```

710 720 730 740 750 760 770

```

AGACCTCCACANATCTGACACCTTACGGCTTGCTGAACTGGCAACCATTTGGGACCCCTACCGAACCT 770
GTTCCATTAGTGAAGACAGTGGCTGACCACAGCTTICACAATAGCTCACGAGCTGGGOCATGTGTTTAA 840
TATGCTCACGATGACAGCAATAATGCAAAGAAGAAGGAGTTAAGAGTCCCCAGCATGTCATGGCACCA 910
ACACTGAACCTCTACACCCAACCCCTGGATGTGGTCAAAGTGCAGTGGAAATACATCACTGAGTTCTAG 980
ACACTGGGTAAGGAGAGTGCCTGCTGAATGAACCTGCAATCCAGGACCTATCCTTGCCTTCCAAACTGCC 1050

```

1060 1070 1080 1090 1100 1110 1120

```

CGGCTTCTCTACAAACGTGAATAAAACAATGTGAACGTGATTTTGGGOCAGGGCTCTCAAGTGTGCCCTAT 1120
ATGATGCACTGCAAGACGGCTCTGGTCCAATAATGTGGATGGACACACAAAGCTGCAGGACTCAGCACCA 1190
CGCCTGGCAGATGGAACCGAGTGTGAGCTGGAAAGCACTGCAAGTTGGATTTGTGTTCCAAAGA 1260
AATGGAGGGGOCCTGCAATTGATGGATCTGGGAGGTTCGAGCCACTTGGGACCTGCTCAAGAACGTGT 1330
GGAGGAGGCATCAAAACAGOCATCACAGAGTGCAACAGACCAAGACCCAAAAATGGTGGAAAGTACTGTG 1400

```

1410 1420 1430 1440 1450 1460 1470

```

TAGGAAGGAGAATGAAGTTCAAAATCTGCAACACGGAGCCCTGCATGAAGCAGAACGGAGACTTCCGAGA 1470
GGAGCACTGTGCTCACTTGATGGCAAACACTTCACAACTCAATGGCTGCTGCCAGOGTAAGCTGGTTT 1540
CCTAAGTACAGOGGAATTGATGAAGGACCGGTGCAAGTTGTTCTGCAGAGTCCCAGGAACACAGCCT 1610
ACTAACAGCTOOGAGAGACAGAGTGATTGACOGAACCCCTTGIGGCCAGGACACAAATGACATCTGIGGCCA 1680
AGGCTTGGGGCAAGCTGGATGTGATCATATTAAACTCAAAGGTGGAAAGATAAAATGTGGGATT 1750

```

1760 1770 1780 1790 1800 1810 1820

```

TGTTGGGAGATAATTCTTCACTGCAAACAGTGGCAGGAACATTAAACACTGTCCATTATGGTACAATA 1820
CTGTTGTOCGAAATTCCGGCTGGTCTACCAAGCATTGACGCTGGTCAAGCACACGCTTCTCAGGGAAAGTCTGA 1890
GGATGACAACTAACCTAGCTTATCAAACAGTAAAGGTGAATTCTGCTAAATGGAGACTTTGTTGTCTCC 1960
ATGTCAAAAGGGAGGTGGTGGGAGGGAGGGAGCTTGTGAGTACAGGGATGGACAATGTGGTGGAAA 2030
GACTGAACGTGACGGACCGTATCGAGGAGAACCTCTCTTCAGGTGTTGTCGGTGGAAAGCTGTATAA 2100

```

Fig. 8 (con't)

2110 2120 2130 2140 2150 2160 2170

CCCAGATGTGGGTACTCAATTCAATATTCCCATTGAGGACAAACCTCAGCAATTACTGGAACAGTCAC 2170
GGCCCGTGGCAAGCATGCAGCAAGCCTGCCAACCGGAGCGAGCGAAAACCTGTTGCCACCAGGGAGT 2240
CTGATCAGCTAACCGTTCTGATCAAAGATGTGACCGGTGCCCCAGCCAGGACCTGTCACTGAAGCGTG 2310
CGGCACAGACTGTGACTTGACCTGGCACGTTGCCAGCAAGAGCGAATGCAGTGCCAGTGTGGTTGGC 2380
TACCGTACTTTAGACATCCACTGTGCCAAATACACCGAGATGGACCGGAAGACGGAGAAGGTGGATGACA 2450
2460 2470 2480 2490 2500 2510 2520

GTTCTGTAGCAGTCACCCAGACCGAGTAACCAGGAGAAATGCTCAGGAGAGTGCAGCACAGGTGGATG 2520
CCGCTATTCACTGGACCGAATGTTCTAGAAGCTGTGATGGTGGTACCCAGAGAAGAAGAGCAATTGT 2590
GTCAACACCCCGCAATGATGTCTGGATGACAGCAA 2625

Fig. 9A

Fig. 9A (con't)

1760 1770 1780 1790 1800 1810 1820
ACTTCAGAGAAGTGCAGTGTCTGAATTGACACCATCCCTTCCGGAAATCTACAAGTGAAAAC 1820
GTACCGGGGAGGGGGGTGAAGGGCTGCTCGCTCACGAGCTAGCGGAAGGCTCAACTCTACACGGAG 1890
AGGGCGGCAGCCGTGGACGGGACACCTGCCGCTCAGACACGGTGGACATTGCCAGTGGCGAAT 1960
GCAAGCACTGTGGCTGAGACCGAGTCTGGCTCCAGACCTGCCGGAGGACAAGTGCCCAGTGTGGCG 2030
TGACGGCAGTGCCTGCGAGACCATCGAGGGGTCTTCAGGCCAGCCTCACCTGGGCCCCGTACGAGGAT 2100
2110 2120 2130 2140 2150 2160 2170
GTOGTCGGATTCCAAAGGCTCCGTCACATCTTCATCCAGGATCTGAACCTCTCTCAGTCACITGG 2170
CCUTGAAGGGAGAACAGGGAGTCCCTCTGCTGGAGGGCTGCCCTGGACCCCCCAGCCCCACCGTCTGCC 2240
TCTAGCTGGACCACCTTCAACTGGACAGGGCCACACCAGGTCCAGAGCTCTGAAGGCGCTGGGACCG 2310
ATTAATGCCATCTCTCATGTCATGGTGGCTGGGGACCGAGCTGCCCTCGCTACCGCTCAATG 2380
CCCCCATGGCCGTGACTGCTGGCCCCCTACTCTGGCACTATGCCGCCCTGGACCAAGTGCTGGCCA 2450
2460 2470 2480 2490 2500 2510 2520
GTGTGCAGGGGTAGCCAGGTGCAGGGGGTGGAGTGCAGCAACAGCTGGACAGCTCCGGTGGGGGG 2520
CACTACTGGCAGTGCACAGCAAGCTGCCAAAAGGCAGCGGGCTGCAACAGGGAGGCTGCCCTCCAG 2590
ACTGGGGTGTAGGGAACTGGTGGCTCTGCCAGGGCGAGCTGGATGCAAGGGGGTGGCAGTGGCTGGT 2660
GTGCCAGGGGGCTCTCTGCCGGGGAGAGAAGGGCTGGACGACAGGGCATGCCGCCAGGGGGCCA 2730
CCTGTACTGGAGGCTGCCACGGCCCCACTTGCCCTGCCGGAGTGGCAACCCCTGACTGGCTGAGTGT 2800
2810 2820 2830 2840 2850 2860 2870
CCCCAAGCTGTGGCTGGCTCOGCCACCGAGTGGCCCTTGTAAGAGTGAGATCAACGATCTACTCT 2870
CCCCCTGGGCACTGCCCTTGCAACCAAGGCCACCATCTACTATGGATGTAACCTGGCCCTGCCCT 2940
CTGCCCTGGCTGGGTGACAGTGTAGTGGGGTGTGAGTGTCCACACAGTGTGGCCCTGGCCAGCAGCGCA 3010
CAGTGGCTGCCACAGGCCACACGGGCCAGCCATCTGAGAGTGCAGTGAACCTTGCGGCCATCCACCAT 3080
GGAGTAGTGTGAGGCCAAGTGTGACAGTGTGGTGGCTGGAGATGGGCGAGAAGAATGCCAGGATGT 3150
3160 3170 3180 3190 3200 3210 3220
AACAAGGTGGCTTAATGCCAGTGGCTCAAATTCTAGTCTGTAGGGAGACTACTGCCAGATGT 3220
GCTGAAAAAACTGCCAAGGGGGCTgggtaccttggaaaccaacctggagcacaggctggggacat 3290
ccactggagacggcatgaggaaaagggggcttgaaattgaagggtgagatgcagtggataatgtttat 3360
tgggttaaccctacagggtcctgactaagggtggagaagagctggctaccaggacccctctgtgtat 3430
cttggcccaatgtgatagtgtaaqaqagacactcccttgttgcacacatatttaagtccctagcacccctcc 3500

Fig. 9A (con't)

3510 3520 3530 3540 3550 3560 3570
accctttgatcgaaatatgtacttgtaaagagtgggggtggggagggtgtgcgtgtgcctgcggc 3570
actgttcatatccctacactctgagctgggggatttatatctgtatgggggagtaggttataccac 3640
ctccctgtagccctccccagactgacgaaggaaagatccacccaaacctctgcctgcctgcccagg 3710
ggggagttcaacatccaggccgtccccatcatggtgctacaaggccctgcccggggccacacactcct 3780
caccaagaaggcttacattaaaaaaaatgtgttatcctacaaaaaaaaaaaaactcgaggggggccc 3850
3860 3870 3880 3890 3900 3910 3920
ggtagccaaattccgcctatagtaaatngggtnna 3885

26.54
Fig. 9B

human ADAM TS-~~8~~ 10

10 20 30 40

210 220 230 240 → Matne proteze

410 420 430 440

610 620 630 640

810 820 830 840

SRTPSGLKMSSCPVMRAYRSPSPPAWITITGHQWPSRHILP 40
GAAPRHGQHSRVPPPLQLQSLASTHFLNLTRSSRLLAGRV 80
SVEYWIREGLAWRAARPHCLYAGHLQGQASSSHVAISTC 120
GGIHGLIVADEEEYLIEPLHGGPKGSRSPEESGPHVYKR 160
SSLRHPHLDTACGVRDEKPWKGRPWNLRTLKPPPAPLGN 200

ETERGQPGLKRSVSRERYVETLVVADKMMAYHGRRCVEQ 240
YVLADMNIVAKLFQDSSLGSTDVNILVTRLLLTEDQPTLE 280
ITHHAGKSLDSFCKWQKSIVNHSGHNAIPENGVANHDTA 320
VLITTRYDICITYKNKPCGTLCLEARWAECVSAREAAASMRTL 360
AATSVHHCHEIGHTFGMNHDGVGNSOGARGQDPAKLMAAH 400

ITMKTNPPFWSSCNRDYITSFLDSGLGLCLNNRPPRQDFV 440
YPTVAPGQAYDADEQCRFQHGKVSRQCKYGEVCSELWCLS 480
KSNRCITNSIPAAEGTLQTHILDKGWCYKRVCPFGSRP 520
EGVDGAWPWIPWGDCSRTCGGVSSSSRHCDSPRPTIGG 560
KYCLGERRRHRSCNTDDCPPGSQDFREVQCSEFDSDIPFRG 600

KFYKWNTYRGCGVKACSLTSIAEGNFYTERAAAVIDGTP 640
CRPDITVDICVSGECKHVGCDRVLGSDLREKKCRVCGGDGS 680
ACETIEGVFSASPAGYEDVVWIPKGSVHIFIQDNLNSL 720
SHLALKGDQESLILLEGLPGTPQPHRLPLAGTTFQLRQGP 760
QVQSLEALGPINASLIVMVLARTELPALRYRFNAPIARDS 800

LPPYSWHYAPWTKCSAQCAAGGSQVCAVECRNQLDSSAVAP 840
HYCSAHSKLPKRQPRACNTEPCPPDWVGWNSLCSRSCIDAG 880
VFSRSWVQRRVSAAEKAQDDSAACPQPRPVLEACHGPT 920
CPPEWATLDWSECTPSOCPGLRHWLCKSADQRSTLPPG 960
HCLPAAKPPSTMFCNLRRCPPARWVTSEWGECASTQOGLGQ 1000

Fig. 9B (con't)

1010 1020 1030 1040
.....
QQRTVRCTSHGQPSRECTEALRPSTMQQCEAKCDSVPP 1040
GDGPPEEKIVNKVAYCPLVLKFQFCSPRAYFRQMOCKTCGG 1080
R 1081

Fig. 10A

partial sequence of mouse ADAM TS-10

(See figure)

(see figure)

10 20 30 40

AGCAGCAGCTGGTGGATGGAACACACCTGCGCCCTGAC 40
ACGGTGACATTTGTGTCAGCGGGAGTGCAGCATGTAG 80
GCTGTGACAGGGTCTGGGTTCTGATCTCGAGAGGACAA 120
ATGCCGIGTGTGTCGGGTGATGCCAGTGCCTGTGAGACC 160
ATTGAACGGTGTCTTAGCCAGCTTGGCAGGAACCTGGT 200

210 220 230 240

ATGAGGAOGTCGTCGGATCCCCAAAGGTGCGGCCACAT 240
TTTCATCCAAGATCTGAACCTGTCCTGAGTCACCTGGCC 280
CTAAAGGGGACCAACAGTCTCTGCTACTGGAGGGCTAC 320
CTGGGACCCCCAACCTNACGGCCTTCCCTGGNTGGGAC 360
CACATTICATCTACGGCAGGGCCGGACCAGGCACAGAGC 400

410 420 430 440

CTGGAAAGCCCTGGGACCCATTAAATGCATCTCATCATCA 440
TGGTGGCTGGGCCAGGCAGAGTGGCTGCTCTCCACTACCG 480
CTTCAATGCCACCCATTGGCGGGATGCCACTGGCTCCCTAC 520
TCTGGCACTATGGCCCTGGACCAAATGCTCAGCCCCAGT 560
GTGCAAGGGGAGCCAGGTCCAAGTAGTGGAGTGGCGAAA 600

610 620 630 640

TCAGCTGGACAGCTCAGCAGTGGCCCCACACTACTGTAGT 640
GGGCAACAGTAAATTCGCCAAGAGGCAGGGTGCCTGCAACA 680
CAGAAOATGTCACCAAGATGGGTGTAAGGAAACTGGTC 720
AOGCTGAGCCGTAGCTGTCAGCTGGTGTGCGTAGCCGC 760
TCAGCTGGTGTGCCAACGCGGGTGTCTGTCAGAGGAAA 800

810 820 830 840

AAGCTTACAGCAGCTGCGTGCACAGCGACGCCAC 840
TCTGGCTGGAGGCGTGCACAGGCCAATGTCCTGAGTGG 880
TGGGCAACCTCGACTGGTCTGAGTGTAAACCCAGCTGTG 920
GGGCTGGTGTCTGGCGAGTGGTCTTGTAAAGAGTGC 960
GGGCTGGTGTCTGGCGAGTGGTCTTGTAAAGAGTGC 1000

Fig. 10A (con't)

1010 1020 1030 1040

GCAGCCAAGCCACCATCTACTATGCGATGTAACCTGGGCC 1040
GCTGCCCCCTCTGCCCCCTGGGTGACCAGTGAGTGGGGTGA 1080
GTGTTCCACACAGTGTGGCCTCGGCCAGCAGCGCACA 1120
GTGGCCTGACCAAGGCCACACGGCCAGCCATCTGAGAGT 1160
GCACTGAAGCCTTGGGGCATCCACCATGCAAGCAGTGTGA 1200

1210 1220 1230 1240

GGCCAAATGTGACAGTGTGGTGGGGCTGGAGATGGCCCA 1240
GAAGAACATGCAAGGATGTGAACAAGGTGGCTTACTGGCCCC 1280
TGGTCTCAAATTTCAGTTCTGTACCCCCAGCTTACTTCCC 1320
CCAGATGTGCTGCAAAACCTGCCAACGGCGCTAAGGTACCC 1360
TGGAAACCAACCTGGAGCACAGGCTGAGGCAGGGACATCC 1400

1410 1420 1430 1440

CACTGGAGAGGGCATGGGAAAGGGGGCTTGAATTGAA 1440
GGGTGAGATGCAAGTGTAAAGTATTATTGGTAACCCC 1480
TACAGGGCTTCTGACTTAAGGGTGGAGAACAGCTGGCTA 1520
CCCCAGGGACCCCTTGTGGATCTGGCCCANTTGATAG 1560
TGAAGACAGAGGACTCTTGGTGTACACATTAACTCC 1600

1610 1620 1630 1640

TTAGAOCCTTCCACCNITGATGGATAATGCTGGGAAGAG 1640
GN 1642

Fig. 10B

10 20 30 40 mouse Adam TS10
AAAVWDGTPCRPDIVDICVSGECKHVGCDRLGSDLREK 40
CRVCGGDGSACETIEGVFS2ALPGTGYEDVWIPKGSVHI 80
FIQDLNLSLALKGDQESLLLEGIPGTGPQXPXRLPLXGT 120
TFHLRQGPDQAQSLEALGPINASLIIMVLAQAEALPHYR 160
FNAPIARDALPPYSWYAPWTKCSAQCAAGGSQVQVVECRN 200
210 220 230 240
QLDSSAVAPHYCSGHSKLPKRQRAGNTEPCCPDWVVGWS 240
RCSRSCDAGVRSRSVVCQRRVSAAEKALDDSACPQPRPP 280
VLEACQGPMCPPEWATLDWSECTPSCCPCLHRVVLCKSA 320
DQRSTILPPGHCLPAAKPPSTMRCNLRRCPARWVTSEWGE 360
CSTQCCLGQQQRTVRCTSHTGQPSRECTEALRPSTMQQCE 400
410 420 430 440
AKCDSVVPDGPEECKDVNKAYCPLVLKFQFCRAYFR 440
QMCCCKTCQGR 450

Fig. 11A

Ligated 459225+482392 with Sac I(168)&Eco RI (or Not I)
 Cloning site:5';Eco RI 3';Not I Vector; PT7T3 pac.

You can put this construct to pcDNA3.1(+) for transfection
 5'-UTR is 50bp & 3'-UTR is 175bp

210-215; in 482392 it's TCCTAC(SY).

10	20	30	40
<hr/>			
gaattcggcacgaggcagtgtcgattctgattccggcaa	40		
ggatccaagcATGGAATGCTGCCGTCGGCAACTCCGGC	80		
ACACTGCTCTCTTCTGGCTTCTGCTCTGAGTTCCA	120		
GGACCGCACgctccGAGGAGGAACGGGACGGCCTATGGGA	160		
TGCTGGGGCCCATGGAGTGAATGCTACGGACCTGGGG	200		
210	220	230	240
<hr/>			
GGTGGGGCCGCAAATCTCTGAGGGCTGCCTGAGCAGCA	240		
AGAGCTGTGAAGGAAGAAATATCCGATACAGAACATGGAG	280		
TAAITGGACTGCCACCAGAACGAGGTGATTCGGACCT	320		
CAGCAATGCTCAGCTATAATGATGTCAGAACACCATGGCC	360		
AGTTTATGAAATGGCTTCTGTCATAATGACCCCTGACAA	400		
410	420	430	440
<hr/>			
CCATGTTCACTCAAGTGCCAAGCCAAAGGAACAACCTG	440		
GTGTTGAACCTACCACTTAAGGTCTTAGATGGTACGGTT	480		
GTATACAGAAATCTTGGATATCTCCATCACTGGTTATG	520		
CCAAATTGGCTCGGATCACCAGCTGGGAAGCAACGGTC	560		
AAGGAAGATAACTGTCGGCTCTCAAACGGAGATGGGTCCA	600		
610	620	630	640
<hr/>			
CTGGCGGGCTGGTCCGAGGGCACTATAAAATCCAGCTTC	640		
CCAAACCAAATCGGATGATACTGTTGCTTCAATTCCCTAT	680		
GGAGTAGACATATTGCGCTTGCTTAAAGGTCCTGATC	720		
ACTTATATCTGGAAAACAAAACCTCCAGGGACTAAAGG	760		
CTGGCGGGCTGGTCCGAGGGCACTATAAAATCCAGCTTC	800		

Fig. 11A (con't)

810 820 830 840

 AATTCCTAGTGCGACTTCCAGAAATTCCAGACAAAGACA 840
 TACTGAGPATGGCTGGACCACTCACAGCAGATTCTACTGT 880
 CAAGATTCTGAACCTGGGCTTCCGCTGACAGTACAGTCAG 920
 TTICATCTTCTATCAACCCATCATCCACCGATGGAGGGAGA 960
 CGGATTTCCTTCCTGCTCAACCTGTGGAGGAGGTAA 1000

 1010 1020 1030 1040

 TCAGCTGACATCGGCTGAGTGCTACGATCTGAGGAGAAC 1040
 CGTGTGGTTGCTGACCAATACTGTCACTATTACCCAGAGA 1080
 ACATCAAACCCAAACCCAAGCTTCAGGAGTGCACATTGGA 1120
 TCCCTGTCCAGCCAGTGACGGATACAAGCAGATCATGCT 1160
 TATGACCTCTACCATCCOCCTTCCTGGTGGAGGCCACCC 1200

 1210 1220 1230 1240

 CATGGACCGCGTGTCTCTCTCGTGTGGGGGGGATCCA 1240
 GAGCCGGGCAGTTCTCTGTGTGGAGGAGGACATCCAGGGG 1280
 CATGTCACCTTCAGTGGAAAGAGTGGAAATGCATGTACACCC 1320
 CTAAGATGCCCATGOGCAGGCCCTGCAACATTTTGACTG 1360
 CCTAAATGGCTGGCACAGGAGTGGTCTCCGTCCACAGTG 1400

 1410 1420 1430 1440

 ACGTGTGGCCAGGGCCTCAGATACCGTGTGGTCTCTGCA 1440
 TGGACCATGAGGAATGCACACAGGAGGCTGTAGCCCCAA 1480
 AACAAAGCCCCACATAAAAGAGGAATGCATGTACCCACT 1520
 CCTGCTATAAACCAAAGAATAACTTCCAGTCGAGGCCA 1560
 AGTTGCCATGGTCAACAA3CTCAAGAGCTAGAAGAAGG 1600

 1610 1620 1630 1640

 AGCTCTGTGTCAAGAGGCCCTCGTAAGttgtaaaaagca 1640
 cagacttgtatataatttggaaacttttgtttaaagaaaagca 1680
 gtgtctcactggttgttagctttcatgggttctgaactaag 1720
 tggtaatcatctccacaaaagcttttggtctcaaattaaa 1760
 gattgatttagttcaaaaaaaaaaaaaaaaagatgcggc 1800

WO 01-11074

PCT/US00-21223

33-54
g. 11A (con't)

3454
Fig. 11B

---	Asp(D)	30	# cua	Leu(L)	3	# uca	Ser(S)	6	# gnu	Val(V)	6
ugc	Cys(C)	26	# cuc	Leu(L)	11	# ucc	Ser(S)	10	# ---	Val(V)	29
ugu	Cys(C)	10	# cug	Leu(L)	14	# ucg	Ser(S)	5	# nnn	???(X)	6
---	Cys(C)	36	# cuu	Leu(L)	6	# ucu	Ser(S)	5	# TOTAL		526
caa	Gln(Q)	7	# uua	Leu(L)	4	# ---	Ser(S)	43	#		

Created: Wednesday, May 5, 1999 10:19 AM

Ligated 459225+482392 with Sac I(168)&Eco RI(or Not I)
Cloning site:5';Eco RI 3';Not I Vector; PT7T3 pac.

... human ADAM-TSR 1
Adam-TS related protein - 1.

10	20	30	40	
MECCRATPGTLLFLAFLLLSRTARSEEDRDGLWDANG 40				signal peptide
PWSECSRTOGGGAANSLRRCLSSKSCEGRNIRYRTCSVCD 80				
CPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDPNPCS 120				
LKQQAKGTILVVELAPKVLGDGTRCYTESLIMCISGLCQIV 160				
GCDHQLGSTVKEIDNOGVCNGDGSTCRLVRGQYKSQLSATK 200				
210	220	230	240	
SDDITVVAIPYGSRHRIRLVLKGPDHLYLETKTLQGIKGENS 240				
LSSTGTFLVDNSSVDFQPFPDKEILRMAGPLTADFTVKIR 280				
NSGSADSTVQFIFYQPIIHRWRETDFFPCSATOGGGYQLT 320				
SAECDYLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCTP 360				(C) YYPENNIKPKPKLQF
ASDGYKQIMPYDLYHPLPFWEATPWIACSSSCCGGIQSRA 400				
410	420	430	440	
VSCVEEDIQGHVTISVEEKMYTPKMPIAQPCNIFDCPKW 440				(C) QELLEEGRAV
LAQEWSPTVTOGQGLRYFWVLCIDHRGMHGCCSPKTKP 480				C-terminal epitope for Ab
HIKEECIVPTPCYKPKFELPVKAELPWFQQAQELBGAAV 520				SEEPS. 526

Similar to ADAM-TS family but lacks the
protease and disintegrin domain. Our
hypothesis may be a member of the

Fig. 12

a
 MRLEVASHLILILLISASCISLAADSPAAAPQDKTRQPQAAAAAEEFDQPQGEETRERGHQLQPLAGQRSSGLVHNIDQ 80
 DYSGGGKMGIVYAGGRFLFLDLERDDTVGAAGST*TAGGGLSASSGHRGHOFITGTWGSPPSLAVFDLOGGLDGFFAV 160
 KHPARYTLPFLFGSWAEVERIMDGSRILKVNREGFSTEPALPRASETTPASPSPSGPQESPSPVHSFSRPSALAPQLD 240
 HSAFSPSGNAGPQTWWRRRRRSISPARQVELLWADSSMAPMYGRGLQHYLLTLASIANRLYSHASILEHRLAWKV 320
 LTDKDTSLEVSKNAATTILKNFKWQHQHNLQGDIHEEHYDAALIFTREDLOGHNSCDTLGMADWGT*SPERSCAVIEDD 400
 GLHAAPIVHEIGHLLGSHDDEKFCEENFGITEKFIFSSILTSIDASKPWSKCTSATTITEFLDDGHNCLLDLPRPKI 480
 GHLLGSHDDEKFCEENFGITEKFIFSSILTSIDASKPWSKCTSATTITEFLDDGHNCLLDLPRPKI
 ↗ Dis
 LGPEELPGQTYCATQQCI LTGFPEYSCPGMDVCAFLWCAYVHQQMVLCKLPAVEGTPOGKGRVILQGKCVDKTFKK 560
 LGPEELPGQTYCATQQCI LTGFPEYSCPGMDVCAFLWCAYVHQQMVLCKLPAVEGTPOGKGRVILQGKCVDKTFKK
 YYSTSSHGNGWSGPWGCGCSRSCGGVQFAYRHONFAPIRNSGRYCTGKRAIYRSCSVTPCPNGKSFREOCEAKNTQ 640
 YYSTSSHGNGWSGPWGCSRSCGGVQFAYRHONFAPIRNSGRYCTGKRAIYRSCSLMPCPNKGSTRHEOCEAKNTQ
 SDAKGVKITFVEWPKYACVLPADVCKLTCRAKGTTGGVVVFSPVTDGTBCRPYSNSVCVRGCVRTGCDGIIGSKLQYDK 720
 SDAKGVKITFVEWPKYACVLPADVCKLTCRAKGTTGGVVVFSPVTDGTBCRPYSNSVCVRGCVRTGCDGIIGSKLQYDK
 * * → Spacer domain
 CGVGGGDNSCTKINGTINKKSKGYTDVRIPEGACHIKVRQFKAKDQTRFPAYLALKGNTGEYLINGKYMISTSETI ID 800
 CGVGGGDNSCTKINGTINKKSKGYTDVRIPEGACHIKVRQFKAKDQTRFTAYLALKGNTGEYLINGKYMISTSETI ID
 INGTVMNYSGWSHSDDFLHGIGYSATKEILIVQIAADPTKALGVRYSEFVPKTTIKVNSVLSHGSIKVGPHSTQLQW 880
 INGTVMNYSGWSHSDDFLHGIGYSATKEILIVQIAADPTKPLDVRYSEFVPKSTPKVNSVLSHGSIKVGSHTSQFW
 TGPWLACSRCTCDTGWHITFVQCDGNRKLAKGCLLSCRPSAFKQCLLKKC 930
 TGPWLACSRCTCDTGWHITFVQCDGNRKLAKGCLLSCRPSAFKQCLLKKC

Fig. 13

Hurskainen et al.⁸, Fig. 2a

MELLMATLWVLSLIDASSEFRHSDFLSISSEQEFTYLEHYQLTIPFVDQNGAFLSPTRKDKHSPRRRSPMDPIDIQQ 60
 AVSKLFFKISAYGHFHNLITLNIDFVSKGIFTVEWKGIDPQWKHDFLICHYTGILQDXSTTKVALSNJVGHLHVIAT 120
 EDEEFTIEPLQTEESGFSYENGPHVTVKISNLQORLYCHSHOG"SDFTESGKZWLNCTST"SYSLPENRHKK 180
 PQRSVSHERFETLVADKAMGYHGRDIEHTLSVMNTVAKYRDSSLGNVNLIARLIVLTEDQPNLENEADK 240
 SLSFCWQKSILSHQSDGNTIPENGTIAHHNVLTRYDICTYKAPGTLGLASVAGCEPERSCSREDIGLSAFT 300
 LHEIVHNGMNHSIGNSGRKW~~Q~~QNYGSSHYCEYQSF~~L~~VCLQSRLHHQLFREVCFELWCLS~~S~~ENRCVINSIPAAE 360
 GTLOQTGNIEKGWCYQGDCVPFGTWQSIDGG~~G~~GPWSLAGECSR~~T~~CGGGVSSSLRHCDSPAPS~~G~~GGKCYLGERKRYRSCN 420
 TDPCPLGSRDFREKQ~~C~~ADFLNMPFRGKYYNWKPYTGGVKP~~C~~ALN~~C~~LABGYNFYTERAPAVIDGTCQNA~~D~~LDIC~~C~~INGBC 480
 KHVGDINILGSDAREDRCRV~~O~~GGGGSTCDALEGFFNDSLPRGGYMEVQIPRGSVHIEREVAMSKNTALKSEEDNYI 540
 NGAWTIDWPRMFDVACTAFRYKRPTDEPESLEALGPTSENLTWVLLQEQNLGERYKPNPITRTGSDINEVGFTANIQP 600
 WSEOCATCAGGRMPTQOPTQRARWRTHKHSYALC~~I~~EKLIGNSCRFA~~S~~ONLAKETLL 660

C

MPOGPSFRSPAPLRLPLLILLCALAPGAPGAPGRATEGRAALDIVHPVRVDAGGSFLSYELWFRALRKRDVSVRDAPA 60
 FYHLQYRGRELRFNLTANCHILLARGFVSETRRRGCLGRAHRAHTPACHILLGEVQDPHEEGGLAAISACDGLKGVFQLSN 120
 EDIFIEFLDSAPAPPGHAQPHVYKRPQAPERLAQRGDSSAPSTOGVQVYPELESRREPWEQRQQWRPR~~R~~RLHQRSVSK 180
 EGWETIWADAKMVEYHGQPQVESVLTIMMVAGLFHDPSIGNPIHITIVRLVLEDEEEDLKITHAINTL~~K~~SPCKW 240
 QKSIIMYGAHPLHHDTAILTRKDLCAMIRPCETLGLSHVAGM~~Q~~PHRS~~C~~SIN~~E~~TGLPLAFTV~~A~~ELGHSGFGIQHG 300
 SGNDCEPVGKRPFT~~M~~POLLYDAAPLJWSRCSRQYITRFLDRGAGLCLDDPPAKD~~C~~IFPSVPPGVLYD~~V~~SHQCR~~L~~QYGA 360
 YSAFCEMDINVCHTL~~C~~SVGTTCHSKLDAAVDGTRGENK~~C~~LSGECVPMGRPEAVDGGWSANSICSRSCNGVDS 420
 AEFQTCPTPKYKGRYCVGERKRFRLCNLCACPAGRPSFFFVQC~~H~~FDAMLYKGQLH~~W~~W~~V~~ANDVNP~~C~~ELHCRPANEYF 480
 AKHLRDAWDGTPCYQVRASRDL~~C~~INGICKNGC~~F~~EDSGAMEDROGVCHENGSTCHIVSGIFEEAEGLG~~V~~DGLIPA 540
 GARETRIQEVAAEANFLALRSED~~F~~ERYFLNGW~~T~~IQ~~N~~CDYQVAGITFTYARRGWN~~L~~TSPGPTKE~~Z~~WIQV~~P~~ASRGPG 600
 GG~~E~~RGV~~F~~PP~~P~~STL~~H~~GF~~S~~PGGV~~S~~PGSVTEPGSEPGPPA~~A~~STS~~V~~SPSLK~~N~~VLVA~~W~~HRGG~~J~~~~C~~APLGLGGW~~R~~RLV~~M~~G 660
 PR~~L~~P~~T~~Q~~L~~FQ~~E~~SM~~P~~GVH~~T~~Y~~E~~Y~~T~~IF~~E~~AG~~G~~TFEV~~P~~PF~~F~~SM~~H~~GPW~~H~~CTV~~T~~CG~~G~~KA~~F~~HSP~~T~~CH~~G~~L~~V~~SG~~G~~H~~N~~QLPAH 720
 CATTGLEVCFSEQFSICERLALALCP~~P~~GRW~~H~~G 780

Fig. 13 (con't)

adamalysin II H E L G H N L G M E H D
 atrolysin A H E L G H N L G M V H D

hADAM-9 H E L G H N L G M N H D
 hADAM-10 H E V G H N F G S P H D
 hADAM-15 H E L G H S L G L D H D
 hADAM-17 H E L G H N F G A E H D
 mADAM-19 H E I G H N F G M S H D

a

mADAM-TS1 H E L G H V F N M P H D
 hADAM-TS2 H E T G H V L G M E H D
 hADAM-TS3 H E T G H V L G M E H D
 hADAM-TS4 H E L G H V F N M L H D
 mADAM-TS5 H E I G H L L G L S H D
 hADAM-TS6 H E I V H N F G M N H D
 hADAM-TS7 H E L G H S F G I Q H D

mADAM-TS1	W	G	P	W	G	P	W	G	D	C	S	R	T	C	G	G	V	Q	Y	20	
hADAM-TS2	W	G	A	W	S	P	F	G	S	C	S	R	T	C	G	T	G	V	K	F	20
hADAM-TS3	W	G	A	W	S	P	F	G	S	C	S	R	T	C	G	T	G	V	K	F	20
hADAM-TS4	W	G	P	W	G	P	W	G	D	C	S	R	T	C	G	G	G	V	Q	F	20
hADAM-TS5	W	G	S	W	S	S	W	G	Q	C	S	R	S	C	G	G	G	V	Q	F	20
hADAM-TS6	W	G	P	W	S	L	W	G	E	C	S	R	T	C	G	G	G	V	S	S	20
hADAM-TS7	W	S	G	W	S	A	W	S	I	C	S	R	S	C	G	M	G	V	Q	S	20

mADAM-TS1	T	M	R	E	C	D	N	P	V	P	K	N	G	G	K	Y	C	E	G	K	40
hADAM-TS2	R	T	R	Q	C	D	N	P	H	P	A	N	G	G	R	T	C	S	G	L	40
hADAM-TS3	R	T	R	Q	C	D	N	P	H	P	A	N	G	G	R	T	C	S	G	L	40
hADAM-TS4	S	S	R	D	C	T	R	P	V	P	R	N	G	G	K	Y	C	E	G	R	40
hADAM-TS5	A	Y	R	H	C	N	N	P	A	P	R	N	G	G	R	Y	C	T	G	K	40
hADAM-TS6	S	L	R	H	C	D	S	P	A	P	R	N	G	G	G	K	Y	C	L	G	40
hADAM-TS7	A	E	R	Q	C	T	Q	P	T	P	K	Y	K	G	R	Y	C	V	G	E	40

mADAM-TS1	R	V	R	Y	R	S	C	N	I	F	D	C								52
hADAM-TS2	A	Y	D	F	Q	L	C	N	S	Q	D	C								52
hADAM-TS3	A	Y	D	F	Q	L	C	S	R	Q	D	C								52
hADAM-TS4	R	T	R	F	R	S	C	N	T	F	D	C								52
hADAM-TS5	R	A	I	Y	H	S	C	S	L	M	P	C								52
hADAM-TS6	R	K	R	Y	R	S	C	N	T	D	P	C								52
hADAM-TS7	R	K	R	F	R	L	C	N	L	Q	A	C								52

Fig. 13 (con't)

Fig. 15

ADAM-TS RELATED PROTEIN-1 (ADAM-TSRI)

Fig. 15 (con't)

FIGURE 16

Pa

MSSCPVWAMRSPPSPPAWITTTGHCWPSRHLPP 40
 GAAPRHGGHSRVFPLQSGLASTHFLINLTRSSRLLAGRV 80
 SVEYWTREGLAWQRAARPHCLYAGHLQQQASSSHVAISTC 120
 GGLHGLIVADEEYLYIEPLHGGPKGSRSPEESGPHVVYKR 160
 SSLPHPHLDTACGVRDEKFWKGRPWLRTLKPPPAPLGN 200
 ETERGQPGKRSVSRRERYVETLVVADKMMVAYHGRDVEQ 240
 YVLAIMNIVAKLFQDSSLGSTIVNLVTRILLTEDQPTLE 280
 ITH-HAGKSLDSFCKWQKSIVNHSGHNAIPENGVANHTA 320
 VLITTRYDICITYKNKPCGTGLARWAECVSAREAAASMRTL 360
 AATSV-HCHEIGHTFCGMNHDCVGNGNCGARGQDPAKLMAAH 400
 ITMKTNPFWSSCNRDYITSFLDSGLGLCLNNRPPRQDFV 440
 YPTVAPGQAYDALEQCRFQHGVKSROCKYGEVCSELWCLS 480
 KSNRCITNSIPAABGTLCQTHYLDKGWCYKRCVPGSRP 520
 DGVGGAAGPWTWGDCSRTOGGGVSSSSRHCDSPRPTIGG 560
 KYCLGERRRHRSCNTDDCPPGSQDFREVQCSEFDsipFRG 600
 KFTAWHITYRGGVKACSLTSIAEGFNFYTERAAAVDGTP 640
 CRPDJWDICVSGECKHVGCDRVLGSDLREDKRCVCOGGDGS 680
 ACETIEGVFSPASPGAGYEDVWIPKGSVHIFIQDLNLSL 720
 SHLALKGQESLLLEGLPGTPQPHRLPLAGTTFQLRQGP 760
 QVQSLEALGPINASLIVMVLARTELPALRYRFNAPIARDS 800
 LPPYSWHYAPWIKCSAQCAAGGSQVQAVECRNQLDSSAVAP 840
 HYCSAHSKLPKRQRACNTEPCPPDWVGNWSLCSRSCDAG 880
 VFSRSVVCQRRVSAEEEKALDDSACPQPRPPVLEACHGPT 920
 CPPEWALDWSECTPSCGPGLRHRVVLCKSADHRATLPPA 960
 HCSPA4KPPATMRNCNLRRCPPARWAGEWGECSAQCGVGQ 1000
 RQRSVRCTSHTGQA SHECTEALRPPTTQQCEAKCDSPTPG 1040
 DGPEECKDVNKVAYCPLVLKFQFCSRAYFRQMOCKTCQGH 1080
 Created: Thursday, October 01, 1998 11:05 PM

FIGURE 16 (continued)

Pa

210 220 230 240
GAACCTGACCGCGAGCTCCCGTCTACTGGCAGGGGCGCGTC 240
TCCGTGGAGTACTGGACACGGGAGGGCCTGGCCTGGCAGA 280
GGGGCGCCCGGCCCCACTGCCCTCACGCTGGTCACCTGCA 320
GGGCCAGGCCACCCAGCTCCCATGTGGCCATCACCAACCTGT 360
GGAGGAGCTGCAACGGCCTGATCGTGGCAGACGAGGAAGAGT 400

410 420 430 440
ACCTGAACTGAGGCCCTGCACGGTGGGCCAAGGGTCTCG 440
GAGCGCGAGGAAAGTGGACCACATGTGGTGTACAACCGT 480
TCCCTCTCTGCGTCACCCCGAACCTGGACACAGCGCTGGAG 520
TGAGAGATGAGAAACCGTGGAAAGGGCGGCAATGGTGGCT 560
GGGGAGCTGAAGCCAACCGAGCTGCCAGACCCCTGGGAAT 600

610 620 630 640
GAAACAGAGCGTGGCCAGGCCAGGGCTGAAGCGATCGGTCA 640
GCGGAGAGCGCTACGTGGAGACCCCTGGTGGCTGACAA 680
GATGATGGTGGCCTATCACGGCGCCGGATGTGGAGCAG 720
TATGTOCTGGCCATCATGAACATTGTTGCCAAACTTTTCC 760
AGGAACTCGAGTCTGGGAAGCACCGTTAACATCCTCGTAAC 800

810 820 830 840
TCGCGCTCATCGTGTACCGGAGGACCGCCACTCTGGAG 840
ATCACTCACCATGCCGGGAAGTCCCTAGACAGCTCTGTA 880
AGTGGCAGAAATCCATCGTGAACCACAGCGGCCATGGCAA 920
TGTCATTCAGAGAACGGTGTGGCTAACCATGACACAGCA 960
GTCCTCATCACCGCTATGACATCTGCATCTACAAGAAC 1000

1010 1020 1030 1040
AACCCCTGGGCACACTAGGCCCTGGCCCGGTGGGGCGAATG 1040
TGTGAAGGCGAGAGAACGCTGCAGCGTCAATGAGGACATTG 1080
GCTGCCACAAGCGTCAACCATGCCACCGAGATGGGCACA 1120
CATTCCGGCATGAACCATGACCGCGTGGAAACAGCTGTGG 1160

FIGURE 16 (continued)

Pa

1210 1220 1230 1240

ATTACCATGAAGACCAACCCATTGTGTGGTCATCTGCA 1240
ACCGTGACTACATCACCAAGCTTCTAGACTCGGGCTGG 1280
GCTCTGOCTGAACAACCGGCCCCCAGACAGGACTTGTG 1320
TACCCGACAGTGGCACCGGGCCAAGCCTACGGATGCAGATG 1360
AGCAATGCCGCTTCAGCATGGAGTCAAATCGCGTCAGTG 1400

1410 1420 1430 1440

TAAATAACGGGAGGGTCTGCAGCGAGCTGIGGTGTCTGAGC 1440
AAGAGCAACCGGTCCATCACCAACAGCATCCCGGCGCGCG 1480
AGGCCACGCTGTGCGAGACGACACCCATCGACAAGGGGTG 1520
GTGCTACAAACGGGTCTGTGTCCCTTGGGTCGCGCCCA 1560
GAGGGTGTGGACGGAGCCTGGGGCGTGGACTCCATGGG 1600

1610 1620 1630 1640

GCGACTGCAGCGGACCTGTGGCCCCGGCGTGTCCCTTC 1640
TAGTOGTCACTGCGACAGCCCCAGGCCAACCATCGGGGC 1680
AAGTACTGTCTGGGTGAGAGAAGGGGGCACCGCTCTGCA 1720
ACACGGATGACTGTCCCCCTGGCTCCAGGACTTCAGAGA 1760
AGTGCAGTGTCTGAATTGACAGCATCCCTTCCGTGGG 1800

1810 1820 1830 1840

AAATTCTACAAGTGGAAAACGTACCGGGAGGGGGGTGA 1840
AGGCCCTGCTCGCTACGAGCTAGCGGAAGGCTTCAACTT 1880
CTACACGGAGACGGGGCAGXGIGGTGGACGGGACACCC 1920
TGGGCTGAGACACGGTGGACATTGCGGTAGTGGCGAAT 1960
GCPACGACTGGCTGCGACCGAGCTGGGCTCGAAGT 2000

2010 2020 2030 2040

GCGGGAAAGACAAGTGGCAGTGTGTGGGGGTGACGGCACT 2040
GCGTGGAGACCATCGAGGGGCTCTTCAGCCGAGCTCAC 2080
CTGGGGCGGGTACGGAGATGCGTCTGGATTCCCAAAGG 2120
CTGGGCTGACATCTCATCCAGGATCTGAACTCTCTCTC 2160

FIGURE 16 (continued)

Pa

2210 2220 2230 2240

```
TGGAGGGGCTGCGTGGGACCCCCCAGCCCCACCGTCTGCC 2240
TCTAGCTGGGACCACCTTCACACTGCGACAGGGGCCAGAC 2280
CAGGTCCAGAGCCTCGAAGCCCTGGGACCGATTAAATGCAT 2320
CTCTCATCGTCATGGTGCCTGGCCCGGACCGAGCTGCCTGC 2360
CCTCCGCTACCGCTTCACGCCCATCGCCCGTGACTCG 2400
```

2410 2420 2430 2440

```
CTGCCCCCTACTCTGGCACTATGCCCTGGACCAAGT 2440
GCTCGGCCAGTGTGCAGGCAGTAGCCAGGTGCAGCGGT 2480
GGAGTGCAGCAACCAGCTGGACAGCTCCGGTCCGCCCC 2520
CACTACTCAGTGCACAGCAAGCTGCCAAAAGGCAGC 2560
GOGCCTGCAACACGGAGCCTTGCCCTCCAGACTGGGTGT 2600
```

2610 2620 2630 2640

```
AGGGAACTGGTGCCTCTGCAGCGCAGCTGCGATGCCAGGC 2640
GTGCGCAGTCGCTGGTCGTGTGCCAGCGCGCTCTG 2680
CGCGGGAGGAGAACGGCGCTGACGACAGCGCATGCCGCA 2720
GCGCGCGACCTGTACTGGAGGCCTGCCACGGCCOCAC 2760
TGCCCTACGGAGTGGCGGACCTGACTGGCTGAGTGCA 2800
```

2810 2820 2830 2840

```
CCCCCAGCTGCCGGCGGGCTCCGCCACCGCGTGGTCC 2840
TTGCAAGACCGCAGACCACTGCCACGCTGCCCGGGCG 2880
CACTCTCAACCGGCCAAGCCACCGGCCACCATGCC 2920
GCAACTTGCGCGCTGCCCGCGGCCCTGGGTGCCCTGG 2960
CGAGTGGGTGAATGCTCTCACAGTGGCGCTGGCGAG 3000
```

3010 3020 3030 3040

```
CGGCAGCGCTACGGTGCCTGCACCCAGGCCACACGGGCCAGG 3040
CGTGCACCGAGTGCACGGAGGCCCTGCCGCCGCCACAC 3080
CGACCGAGTGTGAAGGCAAGTGCGACAGGCCAACCCCGGG 3120
GAOGGCCCTGAAGAGTGCAGGATGTGAACAAGGTGCGCT 3160
```

FIGURE 16 (continued)

Pa

3210 3220 3230 3240
.....
CTACTTCCGCCAGATGTGCTGCCAAAACCTGCCAGGGCAC 3240
tagggggcgcgccggcacccggagccacagctggggggtc 3280
tccgcgcgcccagccctgcagcgggcccccaagggggccc 3320
cgggggggggcgaaaactgggagggaaagggtgagacggagcc 3360
ggaagttatttattggaaaccctgcaggccctggctgg 3400
.....
3410 3420 3430 3440
.....
ggggatgga 3409

FIGURE 17

Molecular Weight 216301.30 Daltons

1934 Amino Acids

234 Strongly Basic(+) Amino Acids (K,R)

216 Strongly Acidic(-) Amino Acids (D,E)

477 Hydrophobic Amino Acids (A,I,L,F,W,V)

657 Polar Amino Acids (N,C,Q,S,T,Y)

7.734 Isoelectric Point

24.102 Charge at PH 7.0

MQFVSWATILLTLVRDLAEMGSPDAAAARVKDRLHPRQVKILETLSEYEIVSPIRVNALG 60
 EPFPPTNVHFMRIRRSINSATDPWPAFASSSSSSTSPQAHYRLSAFGQQFLFNLTANAGFI 120
 APLFTVTILLGTPGVNQTKFYSEEELKHCFYKGYNINSEHTAVISLCGMLGTFRSHD 180
 GGYFIEPLQSMDEQEDEEEQNPKHIYRRSAPQREPSTGRHACDTSEHKNRHSKKTR 240
 ARKWGERINILAGDVAALNSGLATEAFSAYGNKTDTREKRTHRRTKRFLSYPRFEVLVV 300
 ADNRMVSYHGENLQHYILTMSIVASITYKDPSIGNALINIVTVNLIVIHNEDGPSISFNA 360
 QTTLKNFCQWQHSNSPGGIHHTDAVLLTRQDICRAHDKCDTGLAELGTICDPYRSCSIS 420
 EDSGLSTRAFTIAHELGHVFVNMPHDDNNKCKEEGVKSPQHVMAPTLNFYTNPWMNSKCSRK 480
 YITEFLDTGYGBCLLNEPESRPVPLPVQLPGILYNVNQCELIPGPGSQVCPYMMQCRRL 540
 WCNNVNGVHKGCRTQHTPWADGTECEPGKHCKYGFCKEMIDVFTDGSWSWSPPGTCS 600
 RTOGGGIKTAIRECNRPEPKNGGKCYCVRMFKSCNTPECLKQKRDFRDEQCAHFDGKH 660
 FNITNGLLPNVFWPKYSGILMKDRCKLFCRVAGNTAYYQLRDRVIDGIPCGQDTNDICVQ 720
 GLCRQAGCDHVLSKARRDKCGVCGGDNSCKTVAGTFNTVHYGYNTVRIPIAGATNDV 780
 RQHFSFSGE1DDNYLALSSSKGEFLNGNFVUTMAKREIRIGNAVVEYSGSETAVERINS 840
 TDRIEQELLQVLSVGKLYNPDVRYSFNIPIEDKPQQFYWNSHGPWQACSKPCQGERKRK 900
 LVCTRESIDQLTVSDQRCDRLPQPGHTEPCGTGCDLRWHVASRSECQAQGLGYRTLDIY 960
 CAKYSRLDGKTEKVDDGFCSSHPKPSNREKCSGECTIGGWRYSAWTECSKSCDGGTQRRR 1020
 AICVNTRNDVLDSDKTHQEKTIQRCSEFPCPQWKSGDWSECLVTCGKGHKHRQWICQF 1080
 GEDPLNDRMCOPETKPTSMQTCQQPECASWQAGPWQCSVTCGQGYQLRAVKCIIGTYMS 1140
 VVDNDNCVAATRPITDQDCELPSCHPAAPETRRSTYSAPRTQWRFGSWIPCSATOOGKG 1200
 TRMHYVSCFLENSVADESACATLPRVAKEECSVTPCGQWIKALDWSSCSVTCGQGRATR 1260
 QVMCVNYSQHVTDRSECDQDYIPETDQDCSMSPCPQRTPDGSLAQHPFQNEDYRPRSASP 1320
 SRTHVLGGNCWRTGPWGACSSTCAGGSQRRVVQCDENGYTANDVERIKPDEQPACESG 1380
 PCPQWAYGWGECITLQCGGGIRTRLWQORSNGERFPDLSCIELDKPPDREQCNTIACPH 1440
 DAAWSTGPWSSCSVSCGRGHKQRWVYCMAKDGSHESDYCKHLAKPHGRKCRGGRCPKW 1500
 XAGAWSQCSVSCGRGVQQRHVGCQIGTHKIAFETECNPYTRPESECECQCPRCPLYTWRA 1560
 FENQECTKTCGEGSTRYRKAIVCDINKNEVHGARDIVSKRPVDRCSIQPCFVWITGEN 1620

1. The sequence of the protein is given in the PDB file 1J1A.pdb.
 2. The sequence is given in the PDB file 1J1A.pdb.

FIGURE 17 (continued)

Pa

DCYSAAKCPQGRFSINLYGTGLSLTESARWESQGNYAVSDIKKSPDGTRVVGKOGGYCGK 1920
 CTPSSGTGLEVRVL 1934

10 20 30 40

tgggggcagcggaggggagggtgggaagcaccATGCAGTT 40
 TGTATCCTGGGCCACACTGCTAACGCTCTGGTGCGGGAC 80
 CTGGCCGAGATGGGGAGGCCAGACGCCGGCGCCCGTGC 120
 GCAAGGACAGGCTGCACCCGAGGCAAGTGAATTATTAGA 160
 GACCCCTGAGCGAAATCGAAATCGTGTCTCCCATCCGAGTG 200

210 220 230 240

AACGCTCTCGGAGAACCTTTCCCACGAACGTCCTCA 240
 AAAGAACCGACGGAGCATTAACCTGCCCCACTGACCCCTG 280
 GCGTGCCTTGGCTCTCTCTCTCTACCTCCCCC 320
 CAGGCGCAATTACCGCTCTGCGCTTGGCCAGCAGTTTC 360
 TATTTAACCTCACCGCCAATGCGGATTATCGCTCCACT 400

410 420 430 440

GTTCACTGTCACCCCTCTCGGAGCGCCGGGGTGAATCAG 440
 ACCAAGTTTATTCCGAAGAGGAAGCGGAACTCAAGCACT 480
 GTTTCTACAAAGGCTATGTCAATACCAACTCCGAGCACAC 520
 GCGCGTCATCAGCCTCTGCTCAGGAATGCTGGCACATTC 560
 CGGTCTCATGATGGGGTTATTATTATTGAACCACACTACAGT 600

610 620 630 640

CTATGGATGAACAAGAAGATGAAGAGGAACAAAACAAACC 640
 CCACATCATTATAGGGCGACCCCGCCCCAGAGAGAGCGC 680
 TCAACAGGAAGGATGCGTGTGACACCTCAGAACACAAAAA 720
 ATAGGCACAGTAAAGACAAGAAGAAAACCAGAGCAAGAAA 760
 ATGGGAGAAAGGATTAACCTGGCTGGTAGCGTAGCAGCA 800

810 820 830 840

... 810

... 810
 GAGGAACCTCAKPCATAATTAACTTTAATGCAAT 1000

FIGURE 17 (continued)

Pg

1010 1020 1030 1040

TGTAGCCTCTATCTATAAAGACCCAAGTATTGGAAATTAA 1040
ATTAATATTGTTATTGTGAACCTAATTGTGATTCTATAATG 1080
AACAGGATGGGCCTCCATATCTTTAATGCTCAGACAAC 1120
ATTAAAAAAACTTTGCCAGTGGCAGCATTGAAACAGTCCA 1160
GGTGGAAATCCATCATGATACTGCTGTTCTCTAACAAAGAC 1200

1210 1220 1230 1240

AGGATATCTGCAGAGCTCACGACAAATGTGATACCTTAGG 1240
CCTGGCTGAACCTGGAAACCATTGTGATCCCTATAGAAGC 1280
TGTTCCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTA 1320
CGATGCCCATGAGCTGGCCATGTGTTAACATGCCCTCA 1360
TGATGACAACAACAAATGTAAGAAGAAGGAGTTAAGAGT 1400

1410 1420 1430 1440

CCCCAGCATGTCATGGCTCCAACACTGAACCTCTACACCA 1440
ACCCCTGGATGTGGTCAAAGTGTAGTCGAAAATATATCAC 1480
TGAGTTTTAGACACTGGTATGGCGAGTGTGTTGCTTAAC 1520
GAACCTGAATCCAGACCCCTACCCCTTGCTGCTCAACTG 1560
CAGGCATCTTACAACGTGAATAAACATGTGAATTGAT 1600

1610 1620 1630 1640

TTTTGGACCAGGTTCTCAGGTGTGCCCATATATGATGAG 1640
TGCAGACGGCTCTGGTGCATAAACGTCATGGAGTACACA 1680
AAGGCTGCCGGACTIONCACACACACCCCTGGCGCGATGGGAC 1720
GAGTGGAGAGCTGGAAAGGACTGTAAGTATGGATTTGT 1760
GTTCCAAAGAAATGGATGTGCGCGTACACAGATGGATCCT 1800

1810 1820 1830 1840

GGGAAAGTGGAGTCCCTTGGAAACCTGCTCCAGAACATG 1840
TGGAGGGGGCATCAAAACAGTCATTCGAGAGTGCACAGA 1880
CCAGAACCAAAAAATGGTGGAAAATACTGTGTAGGACGTA 1920
GAATGAAATTTAAGTCTGCAACACCGACCCATGTCTCAA 1960

FIGURE 17 (continued)

26

2010 2020 2030 2040

 GAOGGGAAGCATTAAACATCAACGGTCTGCTTCCCAATG 2040
 TGGCTGGGTCCCTAAATAACAGTCCAATTCTGATGAAGGA 2080
 CGGGTGCAAGTTGTTCTGCAGAGTGGCAGGGAACACAGCC 2120
 TACTATCAGCTTCGAGACAGAGTGTATAGATGGAACCTT 2160
 GTGCCAGGACACAAATGATATCTGIGTCCAGGGCTTTG 2200

2210 2220 2230 2240

 CGGGCAAGCTGGATGCGATCATGTTTAAACTCAAAAGCC 2240
 CGGAGAGATAAAATGGGGGTTTGTGGTGGCGATAATTCTT 2280
 CATGCAAAACAGTGGCAGGAACATTAAATACAGTACATTA 2320
 TCGTTACAATACTGTGGTCCGAATTCCAGCTGGTGTACC 2360
 AATATTGATGTGCGGCAGCACAGTTCTCAGGGAAACAG 2400

2410 2420 2430 2440

 ACGATGACAACACTTAGCTTATCAAGCAGTAAAGGTGA 2440
 ATTCTTGTAAATGAAACTTTGTGTACAATGGCCAAA 2480
 AGGGAAATTGGCATTGGGAATGCTGTGGTAGAGTACAGTG 2520
 GGTCCGAGACTGCCGTAGAAAGAATTAACTCAACAGATOG 2560
 CATTGAGCAAGAACTTTGCTTCAGGTTTGTGGTGGGA 2600

2610 2620 2630 2640

 AAGTTGTACAACCCGATGTACGCTATTCTTCAATATTG 2640
 CAATTGAAGATAAAACCTCAGCAGTTTACTGGAACAGTCA 2680
 TGGGCCATGGCAAGCATGCCATTAACCCCTGCCAAGGGGAA 2720
 CGEAAACGAAAACCTGTTGCACCCAGGAATCTGATCAGC 2760
 TTACTGTTCTGATCAAAGATGCGATGCCCTGCCAGCC 2800

2810 2820 2830 2840

 TGGACACAATTACTGAACCCCTGTGGTACAGGCTGTGACCTG 2840
 AGGTGGCATGTTGCAGCAGGAGTGAATGTAGTGCCTAGT 2880
 GTGGCTTGGGTTACCGCACATTGGACATCTACTGTGCCAA 2920
 ATATAGCAAGCTGGATGCGAAGACTGAGAAGGGTGTGAT 2960

FIGURE 17 (continued)

Pa

3010 3020 3030 3040
AATGCTCAGGGAAATGIAACACGGGTGGCTGGCGCTATTTC 3040
TGCCTGGACTGAATGTTCAAAAAGCTGTGACGGTGGGACC 3080
CAGAGGAGAAGGGCTATTGTGTCAATACCCGAAATGATG 3120
TACTGGATGACAGCAAATGCCACACATCAACAGAAAGTTAC 3160
CATTCAGAGGTGCAGTGAGTTCCTTGTCCACAGTGGAAA 3200

3210 3220 3230 3240
TCTGGAGACTGGTCAGAGTGCCTGGTCACCTGTGGAAAAG 3240
GCCATAACGACCGCCAGGTCTGGTGTCAAGTTGGTGAAGA 3280
TCGATTAATGATAGAATGTGTGACCTGAGACCAAGCCA 3320
ACATCTATGCAGACTTGTCAAGCAGCCGAAATGTGCATCCT 3360
GCCAGGGGGTCCCCCTGGTACAGTGCAGTGTCACTTGTGG 3400

3410 3420 3430 3440
ACAGGGATACCAAGCTAACAGGGAGTGTGAAATGCACTCATGGG 3440
ACITATATGTCAGTGGTAGATGACAATGACTGTAAATGCAAG 3480
CAACTAGACCAACTGATAACCCAGGACTGTGAATTACCATC 3520
ATGTCATCCTCCCCCAGCTGCCCCGGAAACGAGGAGAAC 3560
ACATACAGTGCACCAAGAACCCAGTGGGAAATTGGGTCTT 3600

3610 3620 3630 3640
GGACCCCATGCTCAGCCACTTGTGGGAAAGGTACCCGGAT 3640
GAGATAACGTCAAGCTCCGAGATGAGAATGGCTCTGTGGCT 3680
GACGAAGTGCCTGTGCTACCTGCCTAGACCCAGTGGCAA 3720
AGGAAAGATGTTCTGTGACAACCTGTGGCAATGGAAGGC 3760
CTTGGACTGGAGCTCTGCTCTGTGACCTGTGGCAAGGT 3800

3810 3820 3830 3840
AGGGCAACCCGGCAAGTGATGIGTGTCAACTACAGTGAAC 3840
AAGTGATCGATCGGAGTGAGTGTGACCAAGGATTATATCCC 3880
AGAAAATGACCCAGGACTGTCCATGTCAACCATGCGCTCAA 3920
AGGACCCAGACAGTGGCTTAGCTCAGCAACCCCTTCAA 3960

FIGURE 17 (continued)

P6

4010 4020 4030 4040
CCATGTGCTCGGTTGGAAACCACTGGAGAACCTGGCCCCCTGG 4040
GGAGCATGTCCAGTACCTGTGCTGGCGGATCCCAGCGGC 4080
GTGTTGTGTATGTCAAGGATGAAAATGGATAACACCGCAA 4120
CGACTGTGTCGGAGAGAATAAAACCTGATGAGCAAAGAGCC 4160
TGTGAATCCGGCCCCCTGTCTCAGTGGCTTATGGCAACT 4200

4210 4220 4230 4240
GGGGAGAGGTGCACTAACAGCTGTGTGGTGAGGCATAAGAAC 4240
AAGACTGGTGGCTGTCAAGCGGTCCAACGGTGAACGGTTT 4280
CCAGATTGAGCTGTGAAATTCTTGATAAAACCTCCGATC 4320
GTGAGCAGTGTAAACACACATGCTTGTCCACACGAOGCTGC 4360
ATGGAGTACTGGGCCCTGGAGCTCGTGTCTGTCTGT 4400

4410 4420 4430 4440
GGTGGAGGGCATAAACAAOGAAATGTTACTGCAATGGAA 4440
AAGATGGAAGCCATTAGAAAGTGTATTACTGTAAGCACCT 4480
GGCTAAGCCACATGGGCACAGAAAGTGGCGAGGAGGAAGA 4520
TGCCCCAAATGAAAGCTGGCGCTTGGAGTCAGTGCTCTG 4560
TGTCTGTGGCGAGGGGTACAGCAGAGGCATGTGGCTG 4600

4610 4620 4630 4640
TCAGATCGGAACACACAAAAATAGCCACAGAGAGACCGAGTGC 4640
AACCCATACACCAGACCGGAGTCGAATGCGAATGCCAAG 4680
GGCCACGGTGTGCGCTTACACTTGGAGCGCAGACCGAATG 4720
GCAAGAAATGCACCAAGACCTGCGGCGAAGGCTCCAGGTAC 4760
CGCAAGGTGGTGTGTGGATGACAACAAAAACGAGGTGC 4800

4810 4820 4830 4840
ATGGGGCACGCTGTGACGTGAGCAAGCGGCCGGTGGACCG 4840
TGAAAGCTGTAGTTTGCACACCTGCGAGTATGTCCTGGATC 4880
ACAGGAGAAATGGTCAGAGTGCAGTCAGTGAACCTGTGAAAG 4920
CCATACAACAAAAGCTTGTCTGTGAGGAGATTACAC 4960

FIGURE 17 (c) (nued)

5010 5020 5030 5040

AACTGCCAGGCACCGCAGCCCCCCCAGTGTTCACCCCTGTT 5040
ACCTGAGGGAGTGCCTGTCTGGCACCTGGAGAGTGG 5080
CAACTGGGGAGCTGCTCAGTGTCTTGTTGTTGGAGTG 5120
ATGCAGAGATCTGTGCAATGTTAACCAATGAGGAACAC 5160
CCAGCCACTTATGCCACACTGATCTGAAGCCAGAAGAACG 5200

5210 5220 5230 5240

AAAAACCTGCCGTAATGTCTATAACTGTGAGTTACCCAG 5240
AATTGCAAGGAGGTAAAAAGACTTAAAGGTGCCAGTGAAG 5280
ATGGTGAATATTTCCTGATGATTAGAGGAAGCTCTGAA 5320
GATATTCTGTGCGGGGATGCACTCTGACCACCCCCAAAGAG 5360
TACGTGACACTGGTGCATGGAGACTCTGAGAATTCTCCG 5400

5410 5420 5430 5440

AGGTTTATGGGCACAGGGTACACAACCCAACAGAAATGTCC 5440
CTATAACGGGAGCCGGCGCGATGACTGCCAATGTCCGAAG 5480
GATTACACGGCCGCTGGTTTCCAGTTTCAGAAAATCA 5520
GAATAGACCTGACCAGCATGCAGATAATCACCAGTGAATT 5560
ACAGTTTGCAGGACAAGCGAAGGACATCCCGTCCCCTTT 5600

5610 5620 5630 5640

GCGACAGCCGGGATTGCTACAGCGCTGCCAAGTGGCCAC 5640
AGGGTCGTTTAGCATCAACCTTATGGAACCGGCTTGTIC 5680
TTTAACCTGAATCTGCCAGATGGATATCACAAGGGATTAT 5720
GGCTGTCTCTGACATCAAGAAGTGCCTGGATGGTACCCGAG 5760
TGTAGGGAAATGCGGTGGTTACTGTGAAAATGCACTOC 5800

5810 5820 5830 5840

ATCCTCTGGTACTGGCTGGAGGTGCGAGTTTAtagcta 5840
aggtgctttgaagaggaagccattatggatggatgaagga 5880
tagtaatgcaataacctccacctaatttgggtgcattgtgt 5920
atgtgtgtgtgtgtttgtgtgtacttgtatgccttgtgt 5960

SEQUENCE LISTING

1975 May 26 AM 08:00 1975 May 26 AM 08:00 1975 May 26 AM 08:00 1975 May 26 AM 08:00

gac ttc tcc cca gtc aag cat gcg cgc tac act cta aag cca ctc ctc	530
Gly Phe Ala Val Lys His Ala Arg Tyr Thr Leu Lys Pro Leu Leu	
160 165 170	
5	
cgt ggg tcc tcc gca gag tat gaa cga att tat ggg gat gga tct tcc	576
Arg Gly Ser Trp Ala Glu Tyr Glu Arg Ile Tyr Gly Asp Gly Ser Ser	
175 180 185	
10 cgc atc ctg cat gtc tac aac cgc gag ggc ttt agc ttc gag gcc ctg	626
Arg Ile Leu His Val Tyr Asn Arg Glu Gly Phe Ser Phe Glu Ala Leu	
190 195 200	
15 ccg cca cgc gcc agt tgc gag act cct gca tcc cca tct ggg ccc caa	674
Pro Pro Arg Ala Ser Cys Glu Thr Pro Ala Ser Pro Ser Gly Pro Gln	
205 210 215	
20 gas agg ccc tcc gtg cac agt aga tct agg aga cgc tca gct ctg gcc	722
Glu Ser Pro Ser Val His Ser Arg Ser Arg Arg Ser Ala Leu Ala	
220 225 230 235	
25 ccc cag ctg ctg gag cac tca gct ttc tcc cca tct ggg aac gcg gga	770
Pro Gln Leu Leu Asp His Ser Ala Phe Ser Pro Ser Gly Asn Ala Gly	
240 245 250	
30 cct cag act tgg tgg agg cgt agg cgc cgt tcc atc tcc agg gcc cgc	818
Pro Gln Thr Trp Trp Arg Arg Arg Arg Ser Ile Ser Arg Ala Arg	
255 260 265	
35 cag gtg gag ctc ctc ttg gtg gct gac tcc atg gcc agg atg tat	866
Gln Val Glu Leu Leu Leu Val Ala Asp Ser Ser Met Ala Arg Met Tyr	
270 275 280	
40 ggg cgg ggc ctg cag cat tac ctg ctg acc atg gcc tcc atc gcc aac	914
Gly Arg Gly Leu Gln His Tyr Leu Leu Thr Met Ala Ser Ile Ala Asn	
285 290 295	
45 agg ctg tac agt cat gca agc att gag aac cac atc cgc ctg gct gtg	962
Arg Leu Tyr Ser His Ala Ser Ile Glu Asn His Ile Arg Leu Ala Val	
300 305 310 315	
50 gtg aag gtg gtg gtg ctg acg gag aag gag acg agt ctg gag gtg agc	1010
Val Lys Val Val Val Leu Thr Asp Lys Asp Thr Ser Leu Glu Val Ser	
320 325 330	
55 aag aat gac gtc aag acc ctc aag aac ttt tgc aat tgg gag cag cac	1058
Lys Asn Ala Ala Thr Thr Leu Lys Asn Phe Cys Lys Trp Gln His Gln	
335 340 345	
60 cat aat gag cta ggg gat bat raa gaa gag tac tar sat cca gcc att	1106
His Asn Gln Leu Gly Asp Asp His Glu Glu His Tyr Asp Ala Ala Ile	
350 355 360	
65 ctg ttc acc cga gag gat tta tgt ggg cat cat tca tgt gag acc ctg	1154
Leu Phe Thr Arg Glu Asp Leu Cys Gly His His Ser Cys Asp Thr Leu	
365 370 375	
70 tca atc ttc gag ttt gaa acc gta ttt tct gca tcc acc aca ttt gta	1202
tcc atc ttc gag ttt gaa acc gta ttt tct gca tcc acc aca ttt gta	
att ggg cat cta ttt ggg att ttt gtt gac gtt ttt aat ttt tgt gtt	

Ille	Sly	His	Leu	Leu	Gly	Ieu	Ser	His	Asp	Asp	Ser	Lys	Phe	Cys	Glu
415								420					425		
gag	aac	ttc	ggc	act	aca	gaa	gac	aag	cgt	tta	atg	tct	tca	atc	ctt
5	Glu	Asn	Phe	Gly	Thr	Thr	Glu	Asp	Lys	Arg	Ieu	Met	Ser	Ser	Ile
								430		435			440		
acc	agg	atc	gat	gca	tcc	aag	ccc	tgg	tcc	aaa	tcc	acg	tca	gcc	acc
10	Thr	Ser	Ile	Asp	Ala	Ser	Lys	Pro	Trp	Ser	Lys	Cys	Thr	Ser	Ala
								445		450			455		
atc	aca	gaa	ttc	ctg	gat	gat	ggc	cat	ggc	aat	tgt	tgt	ttg	cta	gac
15	Ile	Thr	Glu	Phe	Leu	Asp	Asp	Gly	His	Gly	Asn	Cys	Ieu	Leu	Asp
								460		465		470		475	
cca	cgg	aag	cag	att	ttg	ggc	ccc	gag	gaa	ctc	cca	gga	cag	acc	tac
20	Pro	Arg	Lys	Gln	Ile	Leu	Gly	Pro	Glu	Glu	Leu	Pro	Gly	Gln	Thr
								480			485		490		
tgc	cct	ggc	atg	gat	gtc	tgt	gct	ggc	cgt	tgg	tgt	gtc	gtg	gtg	1538
25	Cys	Pro	Gly	Met	Asp	Val	Cys	Ala	Arg	Leu	Trp	Cys	Ala	Val	Val
								510		515		520			
caa	ggc	caa	atg	gtg	tgt	ctg	acc	aag	ctg	ccg	gtc	gtg	gag	ggc	1634
30	Gln	Gly	Met	Val	Cys	Leu	Thr	Lys	Lys	Leu	Pro	Ala	Val	Glu	Gly
								525		530		535			
act	ccc	tgt	ggc	aag	gga	aga	gtc	tgc	ctt	caa	ggc	aaa	tgt	gtg	gac
35	Thr	Pro	Cys	Gly	Lys	Arg	Val	Cys	Leu	Gln	Gly	Lys	Cys	Val	Asp
								540		545		550		555	
aaa	act	aag	aaa	aaa	tat	tac	tgc	aca	tca	agc	cat	gga	aat	tgg	999
40	Dys	Thr	Lys	Lys	Tyr	Tyr	Ser	Thr	Ser	Ser	His	Gly	Asn	Trp	Gly
								560		565		570			
tcc	tgg	ggc	ccc	tgg	ggc	tgt	cgt	tct	cgc	tca	tgc	ggg	gga	gtg	1778
45	Ser	Trp	Gly	Pro	Trp	Gly	Gln	Cys	Ser	Arg	Ser	Cys	Gly	Gly	Val
								575		580		585			
cag	ttt	ggc	tar	ggc	cat	tgt	aat	aac	cct	gca	cct	cgt	aaa	agt	ggc
50	Gln	Thr	Ala	Tyr	Arg	His	Cys	Asn	Asn	Pro	Ala	Pro	Asn	Ser	Gly
								590		595		600			
ggc	tcc	tgc	aca	ggg	aaq	ggg	ggc	ata	tac	cgt	tcc	gtl	gtt	aca	1674
55	Arg	Tyr	Cys	Thr	Gly	Lys	Arg	Ala	Ile	Tyr	Arg	Ser	Dys	Ser	Val
								605		610		615			
ccc	tgc	cca	ccc	aat	ggc	aaa	tct	ttt	cgc	cat	gag	ccg	tgt	gaa	ggc
60	Pro	Cys	Pro	Pro	Asn	Gly	Lys	Ser	Phe	Arg	His	Glu	Gln	Cys	Glu
								620		625		630		635	
aaa	aat	ggc	tat	aaq	tct	cat	gaa	aaa	ggc	gtc	aaa	aca	ttt	gtc	gaa
65	Lys	Aan	Gly	Tyr	Gln	Ser	Asp	Ala	Lys	Gly	Val	Lys	Tar	Phe	Glu
								640		645		650			

4

5 gtt acg gat ggg act gaa tcc agg ccg tac agg aac tct gtg tgt gtc
 Val Thr Asp Gly Thr Glu Cys Arg Pro Tyr Ser Asn Ser Val Cys Val
 685 690 695 2114

 10 cca gga cgg tgt gtg aga act gga tgt gag ggc att att ggc tca aag
 Arg Gly Arg Cys Val Arg Thr Gly Cys Asp Gly Ile Ile Gly Ser Lys
 700 705 710 715 2162

 15 cta caa tat gac aag tgt gca gtg tgc cga ggg gat aac tcc agt tgt
 Leu Gln Tyr Asp Lys Cys Gly Val Cys Gly Asp Asn Ser Ser Cys
 720 725 730 2210

 20 aca aag att atc gga acc ttc aat aaa aaa agc aag ggt tat act gac
 Thr Lys Ile Ile Gly Thr Phe Asn Lys Lys Ser Lys Gly Tyr Thr Asp
 735 740 745 2258

 25 gtt gtg agg atc cct gaa gga gca acc cac ata aaa gtc cga cag ttc
 Val Val Arg Ile Pro Glu Gly Ala Thr His Ile Lys Val Arg Gln Phe
 750 755 760 2306

 30 aaa gcc aaa gac cag act aga ttc cct gcc tac tta gcc ctg aag aag
 Lys Ala Lys Asp Gln Thr Arg Phe Pro Ala Tyr Leu Ala Leu Lys Lys
 765 770 775 2354

 35 25 aaa act ggc gag tac ctt atc aat ggc aag tac atg att tcc act tca
 Lys Thr Gly Glu Tyr Leu Ile Asn Gly Lys Tyr Met Ile Ser Thr Ser
 780 785 790 795 2402

 40 30 gag acc atc atc gac atc aat ggt acc gtc atg aac tac agt gga tgg
 Glu Thr Ile Ile Asp Ile Asn Gly Thr Val Met Asn Tyr Ser Gly Trp
 800 805 810 2450

 45 35 agc cac aga gat gat ttt tta cat ggg atg ggc tat tca gcc aca aaa
 Ser His Arg Asp Asp Phe Leu His Gly Met Gly Tyr Ser Ala Thr Lys
 815 820 825 2498

 50 40 gaa atc ctg atc gtg cag atc ctt gcc aca gac cca act aaa ggg cta
 Glu Ile Leu Ile Val Gln Ile Leu Ala Thr Asp Pro Thr Lys Ala Leu
 830 835 840 2546

 55 45 ggc gtc cgt tac agc ttt ttt gtt ccc aag aag acc act caa aaa gta
 Gly Val Arg Tyr Ser Phe Phe Val Pro Lys Lys Thr Thr Gln Lys Val
 845 850 855 2594

 60 50 aac tct gtc atc agc cat ggc aag aac aag gtc gga cca cac tct aca
 Asn Ser Val Ile Ser His Gly Ser Asn Lys Val Gly Pro His Ser Thr
 860 865 870 875 2641

 65 55 gag atg cag tgg tgg gtc aca ggt cta tcc ctc gca tcc tcc agg acc tet
 Gln Leu Gln Trp Val Thr Gly Pro Trp Leu Ala Cys Ser Arg Thr Cys
 880 885 890 2689

 70 60 gac aca ggc tgg cac act agg acc gtc cag tgc gag gat gga aac agg
 Asp Thr Gly Trp His Thr Arg Thr Val Gln Cys Gln Asp Gly Ash Arg
 895 900 905 2736

 75 65 gaa ttc cgt aca tca ttt ctc tat gag acc ctc tat tcc tca ttt tcc
 910 915 920 2783

agtcatgcct tcatgtcatt gtcaccacsa gtcgaattat gggcagaatac tgcctcttgc 2960
 5
 gactaaaagg ttactctac ttgggtgaatg atggtaacctg ga 3002
 <210> 2
 <211> 930
 <212> PRT
 10 <213> mus musculus ADAMTS-5
 <400> 2
 Met Arg Leu Glu Trp Ala Ser Leu Leu Leu Leu Leu Ser
 1 5 10 15
 15 Ala Ser Cys Leu Ser Leu Ala Ala Asp Ser Pro Ala Ala Ala Pro Ala
 20 25 30
 Gln Asp Lys Thr Arg Gln Pro Gln Ala Ala Ala Ala Ala Glu Pro
 35 40 45
 Asp Gln Pro Gln Gly Gln Glu Thr Arg Glu Arg Gly His Leu Gln Pro
 20 50 55 60
 Leu Ala Gly Gln Arg Arg Ser Gly Gly Leu Val His Asn Ile Asp Gln
 65 70 75 80
 Leu Tyr Ser Gly Gly Lys Val Gly Tyr Leu Val Tyr Ala Gly Gly
 85 90 95
 25 Arg Arg Phe Leu Leu Asp Leu Glu Arg Asp Asp Thr Val Gly Ala Ala
 100 105 110
 Gly Ser Ile Val Thr Ala Gly Gly Leu Ser Ala Ser Ser Gly His
 115 120 125
 Arg Gly His Pys Phe Tyr Arg Gly Thr Val Asp Gly Ser Pro Arg Ser
 30 130 135 140
 Leu Ala Val Phe Asp Leu Cys Gly Gly Leu Asp Gly Phe Phe Ala Val
 145 150 155 160
 Lys His Ala Arg Tyr Thr Leu Lys Pro Leu Leu Arg Gly Ser Trp Ala
 165 170 175
 35 Glu Tyr Glu Arg Ile Tyr Gly Asp Gly Ser Ser Arg Ile Leu His Val
 180 185 190
 Tyr Asn Arg Glu Gly Phe Ser Phe Glu Ala Leu Pro Pro Arg Ala Ser
 195 200 205
 Cys Glu Thr Pro Ala Ser Pro Ser Gly Pro Gln Glu Ser Pro Ser Val
 40 210 215 220
 His Ser Arg Ser Arg Arg Arg Ser Ala Leu Ala Pro Gln Leu Leu Asp
 225 230 235 240
 His Ser Ala Phe Ser Pro Ser Gly Asn Ala Gly Pro Gln Thr Trp Trp
 245 250 255
 45 Arg Arg Arg Arg Ser Ile Ser Arg Ala Arg Gln Val Glu Leu Ile
 260 265 270
 Leu Val Ala Asp Ser Ser Met Ala Arg Met Tyr Gly Arg Gly Leu Gln
 275 280 285
 His Tyr Leu Leu Thr Met Ala Ser Ile Ala Asn Arg Leu Tyr Ser His
 30 290 295 300
 Ala Ser Ile Glu Asn His Ile Arg Leu Ala Val Val Lys Val Val Val
 305 310 315 320
 Leu Thr Asp Lys Asp Thr Ser Leu Glu Val Ser Lys Asn Ala Ala Thr
 325 330 335
 55 Thr Leu Lys Asn Phe Cys Lys Trp Gln His Gln His Asn Gln Leu Gly
 340 345 350
 Asp Asp His Gln Glu His Tyr Asp Ala Ala Ile Leu Phe Thr Arg Glu
 355 360 365

Thr Glu Asp Lys Arg Leu Met Ser Ser Ile Leu Thr Ser Ile Asp Ala
 435 440 445
 Ser Lys Pro Trp Ser Lys Cys Thr Ser Ala Thr Ile Thr Glu Phe Leu
 450 455 460
 5 Asp Asp Gly His Gly Asn Cys Leu Leu Asp Leu Pro Arg Lys Gln Ile
 465 470 475 480
 Leu Gly Pro Glu Glu Leu Pro Gly Gln Thr Tyr Asp Ala Thr Gln Gln
 485 490 495
 Cys Asn Leu Thr Phe Gly Pro Glu Tyr Ser Val Cys Pro Gly Met Asp
 10 500 505 510
 Val Cys Ala Arg Leu Trp Cys Ala Val Val Arg Gln Gly Gln Met Val
 515 520 525
 Cys Leu Thr Lys Lys Leu Pro Ala Val Glu Gly Thr Pro Cys Gly Lys
 530 535 540
 15 Gly Arg Val Cys Leu Gln Gly Lys Cys Val Asp Lys Thr Lys Lys Lys
 545 550 555 560
 Tyr Tyr Ser Thr Ser Ser His Gly Asn Trp Gly Ser Trp Gly Pro Trp
 565 570 575
 Gly Gln Cys Ser Arg Ser Cys Gly Gly Val Gln Phe Ala Tyr Arg
 20 580 585 590
 His Cys Asn Asn Pro Ala Pro Arg Asn Ser Gly Arg Tyr Cys Thr Gly
 595 600 605
 Lys Arg Ala Ile Tyr Arg Ser Cys Ser Val Thr Pro Cys Pro Pro Asn
 610 615 620
 25 Gly Lys Ser Phe Arg His Glu Gln Cys Glu Ala Lys Asn Gly Tyr Gln
 625 630 635 640
 Ser Asp Ala Lys Gly Val Lys Thr Phe Val Glu Trp Val Pro Lys Tyr
 645 650 655
 Ala Gly Val Ile Pro Ala Asp Val Cys Lys Leu Thr Cys Arg Ala Lys
 30 660 665 670
 Gly Thr Gly Tyr Tyr Val Val Phe Ser Pro Lys Val Thr Asp Gly Thr
 675 680 685
 Glu Cys Arg Pro Tyr Ser Asn Ser Val Cys Val Arg Gly Arg Cys Val
 690 695 700
 35 Arg Thr Gly Cys Asp Gly Ile Ile Gly Ser Lys Leu Gln Tyr Asp Lys
 705 710 715 720
 Cys Gly Val Cys Gly Gly Asp Asn Ser Ser Cys Thr Lys Ile Ile Gly
 725 730 735
 Thr Phe Asn Lys Ser Lys Gly Tyr Thr Asp Val Val Arg Ile Pro
 40 740 745 750
 Glu Gly Ala Thr His Ile Lys Val Arg Gln Phe Lys Ala Lys Asp Gln
 755 760 765
 Thr Arg Phe Pro Ala Tyr Leu Ala Leu Lys Lys Thr Gly Glu Tyr
 770 775 780
 45 Leu Ile Asn Gly Lys Tyr Met Ile Ser Thr Ser Glu Thr Ile Ile Asp
 785 790 795 800
 Ile Asn Gly Thr Val Met Asn Tyr Ser Gly Trp Ser His Arg Asp Asp
 805 810 815
 Phe Leu His Gly Met Gly Tyr Ser Ala Thr Lys Glu Ile Leu Ile Val
 820 825 830
 50 Gln Ile Leu Ala Thr Asp Pro Thr Lys Ala Leu Gly Val Arg Tyr Ser
 835 840 845
 Phe Phe Val Pro Lys Lys Thr Thr Gln Lys Val Asn Ser Val Ile Ser
 850 855 860
 55 His Gly Ser Asn Lys Val Gly Pro His Ser Thr Gln Leu Gln Trp Val
 865 870 875 880
 Thr Gly Pro Trp Leu Ala Cys Ser Arg Thr Cys Asp Thr Gly Trp His
 885 890 895

<210> 3
 <211> 1520
 <212> DNA
 5 <213> homo sapiens ADAMTS-5

<400> 3
 ggacatttac ttggccttc ccatgacgt tccaaattt gtgaagagac ctttggttcc 60
 acagaagata agcgcttaat gtttccatc ctaccagca ttgatgcatt taagccctgg 120
 10 tccaaatgc cttcagccac catcacagaa ttcttgatg atggccatgg taactttttg 180
 ctggacctac caegaaagca gatctgggc ccogaagaac tccaggaca gacctacgt 240
 gccaccaggc agtgcacactt gacattcggg cctgagtact cctgtgtcc cgccanggat 300
 stctgtgtc gctctgtggg tgcgtgtggta cgccaggcc agatgtctg tctgaccaag 360
 gagtcgtgtt tgcctatgt tactgtata accctgtcc cagaacaaac ggcacgtact 420
 15 gcacaggaa gaggccate taccactt gcaatgtcat gcccggccccaatggta 480
 aatcatttcg tcatgaacag tgcggccaa aaatggcttca tcaatgtatgat gcaaaaaggag 540
 tccaaacttt tgcgtgtgg gtcggccaaat atgcgggtgt cctgcggccg gatgtgtgc 600
 agtgcacccg cagagccaaag ggacttggct actatgtgtt attttttccaa aaggggaccg 660
 atggcactga atgttagggcc tacagtaatt cctgtgtccgtt cggggggaaat tgcgtgtggaa 720
 20 ctggctgtga cggcatcatt ggctcaaaggc tgjagtatga caatgtggaa gtagtgtggag 780
 gagacaactc cagcggtaca aagattgttg gaaccccttaa taagaaaaat aagggttaca 840
 ctgcgtgtt gaggatctt gaaaggccaa cocacataaa aatgcggccat tccaaaggcc 900
 aagaccagac tagatccatc gcttatttag cootgaaaaaa gaaaaacgggt gagtacatc 960
 tcaatggaaa stacatgtatc tccatgtac agactatcat tgacatcaat gaaacagtca 1020
 25 tgaactatag cgggtggcgc cacaggatg acttcgtca tggcatggc tactctgc 1080
 cgaaggaaat tccatatagtc cagatttttgc caacagaccc cactaaacca ttatgttcc 1140
 gttatagctt tttgttccc aagaagtccaa ctccaaaatg aatctgttc actatgtatc 1200
 gcagcaataa agtggggatca cacaacttgcg agcggcgtt ggtcaaggcc coatggctcg 1260
 30 octgtcttag gacgtgtac acagggtggc acaccggaaac ggtgcgtgc caggatggaa 1320
 accggaaatt aaaaaaggta tgcctcttc cccaaaggcc ttctcggttt aagcaatgt 1380
 tggtagagaa atgttagctt gtgggtttag atcttatgtc aaaaaagatca ctggaggatt 1440
 canccccgt gcaatcnngt tgaacaggaa ggctacccca acgcacagaa agtcatgttt 1500
 taatgacatt tgcacccagg 1520

35

<210> 4
 <211> 2848
 <212> DNA
 <213> Homo sapiens ADAMTS-6

40

<220>
 <221> CDS
 <222> (22) .. (2601)

45 <220>
 <221> misc_feature
 <222> 1369 .. 1371

<400> 4

F1 aatcatssag ttttttaat t atg gaa att ttg tgg aat agg ttg aat tgg 51
 Met Glu Ile Leu Trp Lys Thr Leu Thr Trp
 1 5 10

att ttg agg ctc atc atg gct tca tgg gaa ttt cat agt gac cac agg 99
 55 Ile Leu Ser Ile Ile Met Ala Ser Ser Glu Phe His Ser Asp His Arg
 15 20 25

Phe	Thr	Val	Lys	Asn	Asp	Lys	His	Ser	Arg	Arg	Arg	Arg	Ser	Met	Asp		
60						65			70								
cct	att	gat	cca	cag	cgc	gtc	tct	aag	tta	ttt	ttt	aaa	ctt	tca		291	
5	Pro	Ile	Asp	Pro	Gln	Gln	Ala	Val	Ser	Lys	Leu	Phe	Phe	Lys	Leu	Ser	
75							80			85				90			
gcc	tat	ggc	aag	cac	ttt	cat	cta	aac	tgg	act	ctc	aac	aca	gat	ttt	339	
Ala	Tyr	Gly	Lys	His	Phe	His	Leu	Asn	Leu	Thr	Leu	Asn	Thr	Asp	Phe		
10							95			100			105				
stg	tcc	aaa	cat	ttt	aca	gtc	gaa	tat	tgg	ggg	aaa	gat	gga	ccc	cag	387	
Val	Ser	Lys	His	Phe	Thr	Val	Glu	Tyr	Trp	Gly	Lys	Asp	Gly	Pro	Gln		
							110			115			120				
15																	
tgg	aaa	cat	gat	ttt	tta	gac	aac	tgt	cat	tac	aca	ggg	tat	ttg	caa	435	
Trp	Lys	His	Asp	Phe	Leu	Asp	Asn	Cys	His	Tyr	Thr	Gly	Tyr	Leu	Gln		
							125			130			135				
20	gat	caa	cgt	agt	aca	act	aaa	gtg	gtc	tta	agc	aac	tgt	gtt	ggg	ttg	483
Asp	Gln	Arg	Ser	Thr	Thr	Lys	Val	Ala	Leu	Ser	Asn	Cys	Val	Gly	Leu		
							140			145			150				
25	cat	ggg	gtt	att	gtc	aca	gaa	gat	gaa	gag	tat	ttt	atc	gaa	cct	tta	531
His	Gly	Val	Ile	Ala	Thr	Glu	Asp	Glu	Glu	Tyr	Phe	Ile	Glu	Pro	Leu		
							155			160			165			170	
30	aag	aat	acc	aca	gag	gat	tcc	aag	cat	ttt	agt	tat	gaa	aat	ggc	cac	579
Lys	Asn	Thr	Thr	Glu	Asp	Ser	Lys	His	Phe	Ser	Tyr	Glu	Asn	Gly	His		
35	cct	cat	gtt	att	tac	aaa	aag	tct	gcc	ctt	caa	caa	cga	cat	ctg	tat	627
Pro	His	Val	Ile	Tyr	Lys	Ser	Ala	Leu	Gln	Gln	Arg	His	Leu	Tyr			
40	gat	cac	tct	cat	tgt	ggg	gtt	tcc	gtt	aca	aga	agt	ggc	aaa	cct	tta	675
Asp	His	Ser	His	Cys	Gly	Val	Ser	Asp	Phe	Thr	Arg	Ser	Gly	Lys	Pro		
45	tgg	tgg	ctg	aat	gac	act	coa	ctg	tct	ctt	att	cac	tac	caa	att	aac	723
Trp	Trp	Leu	Asn	Asp	Thr	Pro	Leu	Phe	Leu	Ile	His	Tyr	Gln	Ile	Asn		
50	ttt	ctg	gac	ata	tgc	gtt	771										
Asn	Thr	His	Ile	His	His	Arg	Gln	Lys	Arg	Ser	Val	Ser	Ile	Glu	Arg		
55	ttt	ctg	gac	ata	tgc	gtt	819										
ttt	ctg	gac	ata	tgc	gtt												
55	ggc	cgc	aaa	gac	att	gaa	cat	tac	att	ttg	agt	gtg	atg	aat	ttt	gtt	867
Gly	Arg	Lys	Asp	Ile	Glu	His	Tyr	Ile	Leu	Ser	Val	Met	Asn	Ile	Val		
60	ttt	ctg	gac	ata	tgc	gtt	815										
ttt	ctg	gac	ata	tgc	gtt												

1. Amino acid sequence of the polypeptide encoded by the nucleic acid sequence of the present invention.

2. Amino acid sequence of the polypeptide encoded by the nucleic acid sequence of the present invention.

3. Amino acid sequence of the polypeptide encoded by the nucleic acid sequence of the present invention.

- 2 -

BRD DAT DAT GAG TGG ARA BRA BRA DAT DAT GGA DGA DGD GAA GAA GAA GAA

Lys Tyr Tyr Asn Trp Lys Pro Tyr Thr Gly Gly Gly Val Lys Pro Cys			
590	595	600	
gca tta aac tgc ttg gct gaa ggt tat aat ttc tac act gaa cgt gct			1675
5 Ala Leu Asn Cys Leu Ala Glu Gly Tyr Asn Phe Tyr Thr Glu Arg Ala			
605	610	615	
cct gcg gtg atc gat ggg acc cag tgc aat gcg gat tca ctg gat atc			1923
Pro Ala Val Ile Asp Gly Thr Gln Cys Asn Ala Asp Ser Leu Asp Ile			
10 620	625	630	
tgc atc aat gga gaa tgc aag cac gta ggc tgc gat aat att ttg gga			1971
Cys Ile Asn Gly Glu Cys Lys His Val Gly Cys Asp Asn Ile Leu Gly			
635	640	645	650
15 tct gat gct agg gaa gat aga tgt cga gtc tgc gga ggg cgc cga agc			2019
Ser Asp Ala Arg Glu Asp Arg Cys Arg Val Cys Gly Gly Gly Ser			
655	660	665	
20 aca tgt gat gcc att gaa ggg ttc ttc aat gat tca ctg ccc agg gga			2067
Thr Cys Asp Ala Ile Glu Gly Phe Phe Asn Asp Ser Leu Pro Arg Gly			
670	675	680	
ggc tac atg gaa gtg gtg cag ata tca aga ggc tct gtt cac att gaa			2115
Gly Tyr Met Glu Val Val Gln Ile Pro Arg Gly Ser Val His Ile Glu			
685	690	695	
gtt aga gaa gtt gcc atg tca aag aac tat att gct tta aaa tct gaa			2163
Val Arg Glu Val Ala Met Ser Lys Asn Tyr Ile Ala Leu Lys Ser Glu			
30 700	705	710	
gga gat gat tac tat att aat egt gcc tgg act att gac tgg cct agg			2211
Gly Asp Asp Tyr Tyr Ile Asn Gly Ala Trp Thr Ile Asp Trp Pro Arg			
715	720	725	730
35 aaa ttt gat gtt gct ggg aca gct ttt cat tas aag aga cca act gat			2259
Lys Phe Asp Val Ala Gly Thr Ala Phe His Tyr Lys Arg Pro Thr Asp			
735	740	745	
40 gaa cca gaa tcc ttg gaa gct cta ggt cct acc tca gaa aat ctc atc			2307
Glu Pro Glu Ser Leu Glu Ala Leu Gly Pro Thr Ser Glu Asn Leu Ile			
750	755	760	
gtc atg gtt ctg ctt caa gaa cag tat ttg gga att agg tat aag ttc			2355
45 Val Met Val Leu Leu Gln Glu Asn Leu Gly Ile Arg Tyr Lys Phe			
765	770	775	
aat gtt ccc att act cga aat ggc aat gaa gat aat gaa gtt ggg ttt			1403
Asn Val Pro Ile Thr Arg Thr Gly Ser Gly Asp Asn Glu Val Gly Phe			
50 780	785	790	
aca tgg aat tat cag cct tgg tca gaa tgc tca gct act tgc gct gga			1451
Thr Trp Asn His Gln Pro Trp Ser Glu Cys Ser Ala Thr Cys Ala Gly			
795	800	805	810
55 ggt aag atg ccc act agg cag ccc acc cag agg gca aga tgg aga aca			1499
Gly Lys Met Pro Thr Arg Gln Pro Thr Gln Arg Ala Arg Trp Arg Thr			
815	820	825	

ctt taa ttatattata ttccatttgc ttccaaaccc atgttaatttc tgccagatttc 2681
 Leu
 860
 5
 ttegtaaaat acatcttggc acaatgagtg tctctgtgg tgcgttgtcc aagactatct 2711
 tgaagggtggg ctgtttgcct ttcgtaaca cattcttggt aaagaacatc aaaagttta 2771
 10 aaaaagaaaa tgagcaagaa tcagacatca cagatgcaac ttcttgtaat gggagatgag 2831
 gagaatgtac ggctgtg 2848

 15 <210> 5
 <211> 859
 <212> PRT
 <213> Homo sapiens ADAMTS-6

 20 <400> 5
 Met Glu Ile Leu Trp Lys Thr Leu Thr Trp Ile Leu Ser Leu Ile Met
 1 5 10 15
 Ala Ser Ser Gln Phe His Ser Asp His Arg Leu Ser Tyr Ser Ser Gln
 20 25 30
 25 Glu Glu Phe Leu Thr Tyr Leu Glu His Tyr Gln Leu Thr Ile Pro Ile
 35 40 45
 Arg Val Asp Gln Asn Gly Ala Phe Leu Ser Phe Thr Val Lys Asn Asp
 50 55 60
 Lys His Ser Arg Arg Arg Ser Met Asp Pro Ile Asp Pro Gln Gln
 65 70 75 80
 Ala Val Ser Lys Leu Phe Phe Lys Leu Ser Ala Tyr Gly Lys His Phe
 85 90 95
 His Leu Asn Leu Thr Leu Asn Thr Asp Phe Val Ser Lys His Phe Thr
 100 105 110
 35 Val Glu Tyr Trp Gly Lys Asp Gly Pro Gln Trp Lys His Asp Phe Leu
 115 120 125
 Asp Asn Cys His Tyr Thr Gly Tyr Leu Gln Asp Gln Arg Ser Thr Thr
 130 135 140
 Lys Val Ala Leu Ser Asn Cys Val Gly Leu His Gly Val Ile Ala Thr
 145 150 155 160
 40 Glu Asp Glu Gln Tyr Phe Ile Glu Pro Leu Lys Asn Thr Thr Gln Asp
 165 170 175
 Ser Lys His Phe Ser Tyr Glu Asn Gly His Pro His Val Ile Tyr Lys
 180 185 190
 45 Lys Ser Ala Leu Gln Gln Arg His Leu Tyr Asp His Ser His Cys Gly
 195 200 205
 Val Ser Asp Phe Thr Arg Ser Gly Lys Pro Trp Trp Leu Asn Asp Thr
 210 215 220
 Ile Leu Phe Leu Ile His Tyr Gln Ile Asn Asn Thr His Ile His His
 225 230 235 240
 50 Arg Gln Lys Arg Ser Ser Ile Gln Arg Phe Val Glu Thr Leu Val
 245 250 255
 Val Ala Asp Lys Met Met Val Gly Tyr His Gly Arg Lys Asp Ile Gln
 260 265 270
 55 His Tyr Ile Leu Ser Val Met Asn Ile Val Ala Lys Leu Tyr Arg Asp
 275 280 285
 Ser Ser Leu Gly Asn Val Val Asn Ile Ile Val Ala Arg Leu Ile Val
 290 295 300

Cys Gly Thr Leu Gly Leu Ala Ser Val Ala Gly Met Cys Glu Pro Glu
 370 375 380
 Arg Ser Cys Ser Ile Asn Glu Asp Ile Gly Leu Gly Ser Ala Phe Thr
 385 390 395 400
 5 Ile Ala His Glu Ile Val His Asn Phe Gly Met Asn His Asp Gly Ile
 405 410 415
 Gly Asn Ser Cys Gly Arg Lys Val Met Lys Gln Gln Asn Tyr Gly Ser
 420 425 430
 Ser His Tyr Cys Glu Tyr Gln Ser Phe Phe Leu Val Cys Leu Gln Ser
 10 435 440 445
 Arg Xaa His His Gln Leu Phe Arg Glu Val Cys Arg Glu Leu Trp Cys
 450 455 460
 Leu Ser Lys Ser Asn Arg Cys Val Thr Asn Ser Ile Pro Ala Ala Glu
 465 470 475 480
 15 Gly Thr Leu Cys Gln Thr Gly Asn Ile Glu Lys Gly Trp Cys Tyr Gln
 485 490 495
 Gly Asp Cys Val Pro Phe Gly Thr Trp Pro Gln Ser Ile Asp Gly Gly
 500 505 510
 Trp Gly Pro Trp Ser Leu Trp Gly Glu Cys Ser Arg Thr Cys Gly Gly
 515 520 525
 20 Gly Val Ser Ser Ser Leu Arg His Cys Asp Ser Pro Ala Pro Ser Glu
 530 535 540
 Val Glu Lys Tyr Cys Leu Gly Glu Arg Lys Arg Tyr Arg Ser Cys Asn
 545 550 555 560
 25 Thr Asp Pro Cys Pro Leu Gly Ser Arg Asp Phe Arg Glu Lys Gln Cys
 565 570 575
 Ala Asp Phe Asp Asn Met Pro Phe Arg Gly Lys Tyr Tyr Asn Trp Lys
 580 585 590
 Pro Tyr Thr Gly Gly Val Lys Pro Cys Ala Leu Asn Cys Leu Ala
 30 595 600 605
 Glu Gly Tyr Asn Phe Tyr Thr Glu Arg Ala Pro Ala Val Ile Asp Gly
 610 615 620
 Thr Gln Cys Asn Ala Asp Ser Leu Asp Ile Cys Ile Asn Gly Glu Cys
 625 630 635 640
 35 Lys His Val Gly Cys Asp Asn Ile Leu Gly Ser Asp Ala Arg Glu Asp
 645 650 655
 Arg Cys Arg Val Cys Gly Gly Gly Ser Thr Cys Asp Ala Ile Glu
 660 665 670
 Gly Phe Phe Asn Asp Ser Leu Pro Arg Gly Gly Tyr Met Glu Val Val
 40 675 680 685
 Gln Ile Pro Arg Gly Ser Val His Ile Glu Val Arg Glu Val Ala Met
 690 695 700
 Ser Lys Asn Tyr Ile Ala Leu Lys Ser Glu Gly Asp Asp Tyr Tyr Ile
 705 710 715 720
 45 Asn Gly Ala Trp Thr Ile Asp Trp Pro Arg Lys Phe Asp Val Ala Gly
 725 730 735
 Thr Ala Phe His Tyr Lys Arg Pro Thr Asp Glu Pro Glu Ser Leu Glu
 740 745 750
 Ala Leu Gly Pro Thr Ser Glu Asn Leu Ile Val Met Val Leu Ile
 50 755 760 765
 Glu Gln Asn Leu Gly Ile Arg Tyr Lys Phe Asn Val Pro Ile Thr Arg
 770 775 780
 Thr Gly Ser Gly Asp Asn Gln Val Gly Phe Thr Trp Asn His Gln Pro
 785 790 795 800
 55 Trp Ser Glu Cys Ser Ala Thr Cys Ala Gly Gly Lys Met Pro Thr Arg
 805 810 815
 Gln Pro Thr Gln Arg Ala Arg Trp Arg Thr Lys His Ile Leu Ser Tyr
 820 825 830

<211> 3218
 <212> DNA
 <213> Homo sapiens ADAMTS-7
 5 <220>
 <221> CDS
 <222> (13) .. (3003)
 <40C> 6
 10 ccgggttcctg cc atg ccc ggc ggc ccc agt ccc cgc agc ccc gcg cct ttg 51
 Met Pro Gly Gly Pro Ser Pro Arg Ser Pro Ala Pro Leu
 1 5 10
 15 ctg cgc ccc ctc ctc ctg ctc tgc gct ctg gct ccc ggc ggc ccc 99
 Leu Arg Pro Leu Leu Leu Cys Ala Leu Ala Pro Gly Ala Pro
 15 20 25
 20 gga ccc gca cca gga cgt gca acc gag ggc cgg ggc gca ctg gac atc 147
 Gly Pro Ala Pro Gly Arg Ala Thr Glu Gly Arg Ala Ala Leu Asp Ile
 20 30 40 45
 25 gtg cac ccg gtt cga gtc gac gcg ggg ggc tcc ttc ctg tcc tac gag 195
 Val His Pro Val Arg Val Asp Ala Gly Gly Ser Phe Leu Ser Tyr Glu
 50 55 60
 30 ctg tgg ccc cgc gca ctg cgc aag cgg gat gta tct gtg cgc cga gac 243
 Leu Trp Pro Arg Ala Leu Arg Lys Arg Asp Val Ser Val Arg Arg Asp
 55 70 75
 35 ggg ccc gcc ttc tac gag cta caa tac cgc ggs cgc gag ctc cgc ttc 291
 Ala Pro Ala Phe Tyr Glu Leu Gln Tyr Arg Gly Arg Glu Leu Arg Phe
 60 65 90
 40 aac ctg acc gcc aat cag cac ctg ctg gcg ccc ggc ttt gtg agc gag 339
 Asn Leu Thr Ala Asn Gln His Leu Leu Ala Pro Gly Phe Val Ser Glu
 95 100 105
 45 acg cgg cgg cgc ggs ggc ctg ggc cgc gcg cac atc cgg gcc cac acc 387
 Thr Arg Arg Arg Gly Leu Gly Arg Ala His Ile Arg Ala His Thr
 110 115 120 125
 50 ccg gcc tgc cac ctg ctt ggc gag gtg cag gac cct gag ctc gag ggt 435
 Pro Ala Cys His Leu Leu Gly Glu Val Gln Asp Pro Glu Leu Glu Gly
 130 135 140
 55 ggg ctg gcg gcc atc agg ggc tgg gac ggg ctg aaa ggt gtg ttc cag 483
 Gly Ile Ala Ala Ile Ser Ala Cys Asp Gly Ile Lys Gly Val Phe Gln
 145 150 155
 60 ctc tcc aac gag gag taa ttc atc gag ctc ctg gag agt gcc ccg ggc 531
 Leu Ser Asn Glu Asp Tyr Phe Ile Glu Pro Leu Asp Ser Ala Pro Ala
 160 165 170
 65 cgg cct ggc sac gac cag ccc cat gtg gtg tac aag cgt cag gcc ccg 579
 Arg Pro Gly His Ala Gln Pro His Val Val Tyr Lys Arg Gln Ala Pro
 175 180 185

Arg Gln Cln Trp Arg Arg Pro Arg Leu Arg Arg Leu His Cln Arg Ser
 226 230 235
 gtc agc aaa gag aag tgg tgc gag acc ctg gta gta gct gat gcc aaa 771
 5 Val Ser Lys Glu Lys Trp Cys Glu Thr Ile Val Val Ala Asp Ala Lys
 240 245 250
 atg gtc gag tac cac gga cag ccg caa gtt gag agc tat gtg ctg acc 819
 Met Val Glu Tyr His Gly Gln Pro Gln Val Glu Ser Tyr Val Leu Thr
 10 255 260 265
 atc atg aac atc gtg gct ggc ctg ttt cat gac ccc agc att ggg aac 867
 Ile Met Asn Met Val Ala Gly Leu Phe His Asp Pro Ser Ile Gly Asn
 270 275 280 285
 15 ccc atc cac atc acc att gtg cgc ctg gtc ctg ctg gaa gat gag gag 915
 Pro Ile His Ile Thr Ile Val Arg Leu Val Leu Leu Glu Asp Glu Glu
 290 295 300
 20 gag gac cta aag atc acg cac cat gca gac aac acc ctg aag agc ttc 965
 Glu Asp Leu Lys Ile Thr His His Ala Asp Asn Thr Leu Lys Ser Phe
 305 310 315
 25 tgc aag tgg cag aaa agc atc aac atg aag ggg gat gcc cat ccc ctg 1011
 Cys Lys Trp Gln Lys Ser Ile Asn Met Lys Gly Asp Ala His Pro Leu
 320 325 330
 30 cac cat gac act gcc atc ctg ctc acc aga aag gag ctg tgt gca gcc 1059
 His His Asp Thr Ala Ile Leu Leu Thr Arg Lys Asp Leu Cys Ala Ala
 335 340 345
 35 atg aac cgg ccc tgt gag acc ctg gga ctg tcc cat gtg ggc ggc atg 1107
 Met Asn Arg Pro Cys Glu Thr Leu Gly Leu Ser His Val Ala Gly Met
 350 355 360 365
 35 tgc cag ccg cac cgc agc tgc agc atc aac gag gag gag acc ggc ctg ccg 1155
 Cys Gln Pro His Arg Ser Cys Ser Ile Asn Glu Asp Thr Gly Leu Pro
 370 375 380
 40 ctg gcc ttc act gta gcc cac gag ctc ggg cac agt ttt ggc att gag 1203
 Leu Ala Phe Thr Val Ala His Glu Leu Gly His Ser Phe Gly Ile Gin
 385 390 395
 45 cat gag gga agc ggc aat gag tgt gag gcc gtt ggg aaa cga cct ttc 1251
 His Asp Gly Ser Cys Asn Asp Cys Glu Pro Val Gly Lys Arg Pro Phe
 400 410 415
 50 atc atg tct tca gag ctc ttt gat gac gct gtc gtt ggg aaa cgt ttt 1299
 Ile Met Ser Pro Cln Ile Leu Tyr Asp Ala Ala Pro Ile Thr Trp Ser
 416 420 425
 55 cgc tgc agc ggc cag tat aic acc agg ttc ctt gag cgt ggg tgg ggc 1347
 Arg Cys Ser Arg Cln Tyr Ile Thr Arg Phe Leu Asp Arg Gly Trp Gly
 430 435 440 445
 55 tgc tgc ctc gag gag cct met gac aag gag att atc gag ttc ccc tgg 1395
 Leu Cys Leu Asp Asp Pro Pro Ala Lys Asp Ile Asp Phe Pro Ser
 450 455 460

1539
 aca ctc tgg tgc tct gtg ggg acc acc tgt cac tcc aag ctg gat gca
 Thr Leu Trp Cys Ser Val Gly Thr Thr Cys His Ser Lys Leu Asp Ala
 495 510 505
 5
 1567
 gct gtg gac ggc acc cgg tct ggg gag aat aag tgg tgt ctc agt ggg
 Ala Val Asp Gly Thr Arg Cys Gly Glu Asn Lys Trp Cys Leu Ser Gly
 510 515 520 525
 1635
 10 gag tgc gta ccc atg ggc ttc cgg ccc gag gcc gtg gat ggt ggc tgg
 Glu Cys Val Pro Val Gly Phe Arg Pro Glu Ala Val Asp Gly Gly Trp
 530 535 540
 1683
 15 tct ggc tgg agc gcc tgg tcc atc tgc tca cgg agc tgt ggc atg ggc
 Ser Gly Trp Ser Ala Trp Ser Ile Cys Ser Arg Ser Cys Gly Met Gly
 545 550 555
 1731
 20 gta cag agc gcc gag cgg cag tgc acg cag cct acg ccc aaa tac aaa
 Val Gln Ser Ala Glu Arg Gln Cys Thr Gln Pro Thr Pro Lys Tyr Lys
 560 565 570
 25 20 ggc aga tac tgt gtg ggt gag cgc aag cgc ttc cgc ctc tgc aac ctg
 Gly Arg Tyr Cys Val Gly Glu Arg Lys Arg Phe Arg Leu Cys Asn Leu
 575 580 585
 1779
 25 25 cag gcc tgc cct get ggc cgc ccc tcc ttc cgc cac gtc cag tgc agc
 Gin Ala Cys Pro Ala Gly Arg Pro Ser Phe Arg His Val Gln Cys Ser
 590 595 600 605
 1827
 30 30 cac ttt gac gct atg ctc tac aag gac cag ctg cac aca tgg gtg ccc
 His Phe Asp Ala Met Leu Tyr Lys Gly Gln Leu His Thr Trp Val Pro
 610 615 620
 1875
 35 35 stg gtc aat gac gtc aac ccc tgc gag ctg cac tgc cgg ccc gcg aat
 Val Val Asn Asp Val Asn Pro Cys Glu Leu His Cys Arg Pro Ala Asn
 625 630 635
 1923
 40 40 gag tac ttt gcc aag aag ctg cgg gag gcc tgg tgc gat ggc acc ccc
 Glu Tyr Phe Ala Lys Lys Leu Arg Asp Ala Cys Val Asp Gly Thr Pro
 640 645 650
 1971
 45 45 tgc tac cag gtc cga gcc agc cgg gac ctc tgc atc aac ggc atc tgt
 Cys Tyr Gln Val Arg Ala Ser Arg Asp Leu Cys Ile Asn Gly Ile Cys
 655 660 665
 2019
 45 45 aag aac gtc ggc tgg gac ttc gag att gag tcc ggt gct atg gag gac
 Lys Asn Val Gly Cys Asp Phe Glu Ile Asp Ser Gly Ala Met Gln Asp
 670 675 680 685
 2067
 50 50 ggg tat tat cst ctt tgc cac ggc aac ggc tcc acc tgg cac acc ggg tgg
 Arg Cys Gly Val Cys His Gly Asn Gly Ser Thr Cys His Thr Val Ser
 690 695 700
 2115
 55 55 ggg acc ttc gag gag gcc gag ggg ctg ggg tat gtc gat gtc ggg ctg
 Gly Thr Phe Glu Glu Ala Glu Gly Ile Gly Tyr Val Asp Val Gly Leu
 705 710 715
 2161
 atc cca gca ggc aca pcc gag atc pcc atc cca gag att gcc gag act
 2211

Asn Gly Gly Trp Thr Ile Gln Trp Asn Gly Asp Tyr Gln Val Ala Gly 750 755 760 765 acc acc ttc aca tac gca cgc agg ggc aac tgg gag aac ctc acg tcc 2355 5 Thr Thr Phe Thr Tyr Ala Arg Arg Gly Asn Trp Glu Asn Leu Thr Ser 770 775 780 ccg ggt ccc acc aag gag cct gtc tgg atc cag gtg cct gcc tcc cgt 2403 Pro Gly Pro Thr Lys Glu Pro Val Trp Ile Gln Val Pro Ala Ser Arg 10 785 790 795 ggc cca ggc ggg ggs agc aga ggc gga gtc ccc agg ccc agc acc ctc 2451 Gly Pro Gly Gly Ser Arg Gly Gly Val Pro Arg Pro Ser Thr Leu 800 805 810 15 cat ggc aag tct cgt cct gga gga gtg agc cct ggt tca gtc aca gag 2499 His Gly Arg Ser Arg Pro Gly Val Ser Pro Gly Ser Val Thr Glu 815 820 825 20 cct ggc tct gag cca ggc cct cct gct gcg gcc tct acc tca gtt tcc 2547 Pro Gly Ser Glu Pro Gly Pro Pro Ala Ala Ser Thr Ser Val Ser 830 835 840 845 cca tct tta aaa tgg ccc aat ctt gta gct gca gtt cac aga ggt ggc 2595 25 Pro Ser Leu Lys Trp Pro Asn Leu Val Ala Ala Val His Arg Gly Gly 850 855 860 tgg ggt caa gct cct tta gga ctg ggt gga tgg aga aga cac ttt gtg 2643 Trp Gly Gln Ala Pro Leu Gly Leu Gly Trp Arg Arg His Leu Val 30 865 870 875 ctc atg ggc ccc cgc ctg ccc acc caa ctg ctg ttc cag gag agc aac 2691 Leu Met Gly Pro Arg Leu Pro Thr Gln Leu Leu Phe Gln Glu Ser Asn 880 885 890 35 cct ggg gtg cac tac gag tac acc atc cac agg gag gca ggt ggc cac 2739 Pro Gly Val His Tyr Glu Tyr Thr Ile His Arg Glu Ala Gly Gly His 895 900 905 40 gac gag gtc ccc ccc gtg ttc tcc tgg cat tat ggg ccc tgg acc 2787 Asp Glu Val Pro Pro Val Phe Ser Trp His Tyr Gly Pro Trp Thr 910 915 920 925 aag tgc acta gtc acc tgc egg aga ggt gag aag tgg egg agg tac agc 2835 45 Lys Cys Thr Val Thr Cys Gly Arg Gly Glu Lys Trp Gly Arg His Ser 930 935 940 ccc acc tgg agg ggc tta gtg tat gaa gga car ttt ctt gag ctc 2883 Pro Thr Cys Arg Gly Leu Val Ser Gly Gln Gly His Trp Leu Glu Leu 50 945 950 955 cca gct cac tgg gcc acc acg ggt ttg gaa gtt tg: ttc tct gag 2931 Pro Ala His Cys Trp Ala Thr Thr Gly Leu Glu Val Cys Phe Ser Glu 960 965 970 55 cct gag ttc tcc att tgt gag atg agg gta ggg att gca ctg tgt ccc 2979 Pro Gln Ile Ser Ile Cys Glu Met Arg Leu Ala Ile Ala Leu Cys Phe 985 990 995

ggcccaatttc attaactctg actctttaccc gccccggccgg ccgcgtcgagc cgagtaatca 3213
 ctagt 3218
 5

<210> 7
 <211> 997
 <212> PRT
 10 <213> Homo sapiens ADAMTS-7

<400>	7		
Met Pro Gly Gly Pro Ser Pro Arg Ser Pro Ala Pro Leu Leu Arg Pro			
1	5	10	15
Leu Leu Leu Leu Cys Ala Leu Ala Pro Gly Ala Pro Gly Pro Ala			
20	25	30	
Pro Gly Arg Ala Thr Glu Gly Arg Ala Ala Leu Asp Ile Val His Pro			
20	35	40	45
Val Arg Val Asp Ala Gly Gly Ser Phe Leu Ser Tyr Glu Leu Trp Pro			
50	55	60	
25 Arg Ala Leu Arg Lys Arg Asp Val Ser Val Arg Arg Asp Ala Pro Ala			
65	70	75	80
Phe Tyr Glu Leu Gln Tyr Arg Gly Arg Glu Leu Arg Phe Asn Leu Thr			
85	90	95	
30 Ala Asn Gln His Leu Leu Ala Pro Gly Phe Val Ser Glu Thr Arg Arg			
100	105	110	
Arg Gly Gly Leu Gly Arg Ala His Ile Arg Ala His Thr Pro Ala Cys			
35	115	120	125
His Leu Leu Gly Glu Val Gln Asp Pro Glu Leu Glu Gly Leu Ala			
130	135	140	
40 Ala Ile Ser Ala Cys Asp Gly Leu Lys Gly Val Phe Gln Leu Ser Asn			
145	150	155	160
Glu Asp Tyr Phe Ile Glu Pro Leu Asp Ser Ala Pro Ala Arg Pro Gly			
165	170	175	
45 His Ala Gln Pro His Val Val Tyr Lys Arg Gln Ala Pro Gln Arg Leu			
180	185	190	
Ala Gln Arg Gly Asp Ser Ser Ala Pro Ser Thr Cys Gly Val Gln Val			
50	195	200	205
Tyr Pro Glu Leu Glu Ser Arg Arg Gln Arg Trp Glu Gln Arg Gln Gln			
210	215	220	
55 Trp Arg Arg Pro Arg Leu Arg Arg Leu His Gln Arg Ser Val Ser Lys			
225	230	235	240
Trp Arg Arg Pro Arg Leu Arg Arg Leu His Gln Arg Ser Val Ser Lys			

Ile Thr Ile Val Arg Leu Val Leu Leu Glu Asp Glu Glu Glu Asp Leu
 290 295 300

Lys Ile Thr His His Ala Asp Asn Thr Leu Lys Ser Phe Cys Lys Trp
 5 305 310 315 320

Gln Lys Ser Ile Asn Met Lys Gly Asp Ala His Pro Leu His His Asp
 325 330 335

10 Thr Ala Ile Leu Leu Thr Arg Lys Asp Leu Cys Ala Ala Met Asn Arg
 340 345 350

Pro Cys Glu Thr Leu Gly Leu Ser His Val Ala Gly Met Cys Gln Pro
 355 360 365

15 His Arg Ser Cys Ser Ile Asn Glu Asp Thr Gly Leu Pro Leu Ala Phe
 370 375 380

Thr Val Ala His Glu Leu Gly His Ser Phe Gly Ile Gln His Asp Gly
 20 385 390 395 400

Ser Gly Asn Asp Cys Glu Pro Val Gly Lys Arg Pro Phe Ile Met Ser
 405 410 415

25 Pro Gln Leu Leu Tyr Asp Ala Ala Pro Leu Thr Trp Ser Arg Cys Ser
 420 425 430

Arg Gln Tyr Ile Thr Arg Phe Leu Asp Arg Gly Trp Gly Leu Cys Leu
 435 440 445

30 Asp Asp Pro Pro Ala Lys Asp Ile Ile Asp Phe Pro Ser Val Pro Pro
 450 455 460

Gly Val Leu Tyr Asp Val Ser His Gln Cys Arg Leu Gln Tyr Gly Ala
 35 465 470 475 480

Tyr Ser Ala Phe Cys Glu Asp Met Asp Asn Val Cys His Thr Leu Trp
 485 490 495

40 Cys Ser Val Gly Thr Thr Cys His Ser Lys Leu Asp Ala Ala Val Asp
 500 505 510

Gly Thr Arg Cys Gly Glu Asn Lys Trp Cys Leu Ser Gly Glu Cys Val
 515 520 525

45 Pro Val Gly Phe Arg Pro Glu Ala Val Asp Gly Gly Trp Ser Gly Trp
 530 535 540

Ser Ala Thr Ser Ile Cys Ser Arg Ser Cys Gly Met Gly Val Glu Ser
 545 550 555 560

Ala Glu Arg Gln Cys Thr Gln Pro Thr Pro Lys Tyr Lys Gly Arg Tyr
 565 570 575

55 Cys Val Gly Glu Arg Lys Arg Phe Arg Leu Cys Asn Leu Gln Ala Cys
 580 585 590

Pro Ala Glu Arg Pro Ser Phe Ala His Val Glu Cys Ser His Phe Arg

Ala Lys Lys Leu Arg Asp Ala Cys Val Asp Gly Thr Pro Cys Tyr Gln
 645 650 655
 Val Arg Ala Ser Arg Asp Leu Cys Ile Asn Gly Ile Cys Lys Asn Val
 5 660 665 670
 Gly Cys Asp Phe Glu Ile Asp Ser Gly Ala Met Glu Asp Arg Cys Gly
 675 680 685
 10 Val Cys His Gly Asn Gly Ser Thr Cys His Thr Val Ser Gly Thr Phe
 690 695 700
 Glu Glu Ala Glu Gly Leu Gly Tyr Val Asp Val Gly Leu Ile Pro Ala
 705 710 715 720
 15 Gly Ala Arg Glu Ile Arg Ile Gln Glu Val Ala Glu Ala Ala Asn Phe
 725 730 735
 Leu Ala Leu Arg Ser Glu Asp Pro Glu Lys Tyr Phe Leu Asn Gly Gly
 20 740 745 750
 Trp Thr Ile Gln Trp Asn Gly Asp Tyr Gln Val Ala Gly Thr Thr Phe
 755 760 765
 25 Thr Tyr Ala Arg Arg Gly Asn Trp Glu Asn Leu Thr Ser Pro Gly Pro
 770 775 780
 Thr Lys Glu Pro Val Trp Ile Gln Val Pro Ala Ser Arg Gly Pro Gly
 785 790 795 800
 30 Gly Gly Ser Arg Gly Gly Val Pro Arg Pro Ser Thr Leu His Gly Arg
 805 810 815
 Ser Arg Pro Gly Gly Val Ser Pro Gly Ser Val Thr Glu Pro Gly Ser
 35 820 825 830
 Glu Pro Gly Pro Pro Ala Ala Ser Thr Ser Val Ser Pro Ser Leu
 835 840 845
 40 Lys Trp Pro Asn Leu Val Ala Ala Val His Arg Gly Gly Trp Gly Gln
 850 855 860
 Ala Pro Leu Gly Leu Gly Gly Trp Arg Arg His Leu Val Leu Met Gly
 865 870 875 880
 45 Pro Arg Leu Pro Thr Glu Leu Leu Pro Gln Glu Ser Asn Pro Gly Val
 885 890 895
 His Tyr Glu Tyr Thr Ile His Arg Gln Ala Gly Gly His Asp Glu Val
 900 905 910 915
 Pro Pro Pro Val Phe Ser Trp His Tyr Gly Pro Trp Thr Lys Cys Thr
 915 920 925
 55 Val Thr Cys Gly Arg Gly Gln Lys Trp Gly Arg His Ser Pro Thr Cys
 930 935 940
 Arg Gly Ile Val Ser Gly Gln Gly His Trp Leu Glu Ile Pro Ala His

Gly Arg Val His Gly
 995
 5
 <210> 8
 <211> 3638
 <212> DNA
 <213> Mus musculus ADAMTS-8
 10
 <220>
 <221> CDS
 <222> (278)..(2992)
 15 <400> 8
 tagggcgact gcaaggagacg ccgggggggg cggcgatctgg cggccgggggg cggccacgtgc 60
 tccatgttctg cttagtttggc tggggcggggc ggagcggggtt gggcgatcca gaaggggccgc 120
 20 cagggaccgc cgccgcacgt ggccgttggc gggccgggtt cccatccga ttgtatcattt 180
 ttcctggaca gagcgaccccg gcccggctggg gcccaccggca cctggccggcc cgccggccatc 240
 25 ttctttccctt tccccggcttc cggcgactt tggccccc atg ctc cgc gac ccc acc 295
 Met Leu Arg Asp Pro Thr
 1 5
 acc acc ggg tgg ccc ctc ctg ctg ctg cta ttg cag ctg ctg ccc ccc 343
 Thr Thr Gly Trp Pro Pro Leu Leu Leu Leu Leu Gln Leu Pro Pro
 30 10 15 20
 348
 ccc cca ctc gtc tgc gga gcc ccc acg cgg ttg ccc ggc agc ggg ggg cag 381
 Pro Pro Leu Val Cys Gly Ala Pro Ala Gly Pro Gly Thr Gly Ala Gln
 25 30 35
 355
 gcc tcc gag cta gtg gtc ccc acg cgg ttg ccc ggc agc ggg ggg agc ggg 439
 Ala Ser Glu Leu Val Val Pro Thr Arg Leu Pro Gly Ser Ala Ser Glu
 40 45 50
 460
 ctc gct ttc cac ctg tcc gcc ttc ggc cag ggc ttc gtg ctg cgc ctg 467
 Leu Ala Phe His Leu Ser Ala Phe Gly Gln Gly Phe Val Leu Arg Leu
 55 60 65 70
 468
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890

5	gct gcc gac gaa gtt ttc ccc stc ctt caa gga ctg gag tgg gaa gtg Ala Ala Ala Glu Val Phe Pro Leu Pro Gln Gly Leu Glu Trp Glu Val 170 175 180	823
10	gag atg ggt aat ggg cag gga cag gag aga agt gac aac gaa gag gac Glu Met Gly Asn Gly Gln Gly Glu Arg Ser Asp Asn Glu Glu Asp 185 190 195	871
15	aag aag cag gag aag gag ggg ttg ctc aaa gag aca gaa gac tcc cgc Lys Lys Gln Asp Lys Glu Gly Leu Leu Lys Glu Thr Glu Asp Ser Arg 200 205 210	919
20	aaa gtg cca cca ccc ttc gga tcc aaa act aga agc aag agg ttt gtg Lys Val Pro Pro Pro Phe Gln Ser Lys Thr Arg Ser Lys Arg Phe Val 215 220 225 230	967
25	tcc gag gct cgc ttc gtg gaa aca ctt ctg gtg gct gat gcg tcc atg Ser Glu Ala Arg Phe Val Glu Thr Leu Leu Val Ala Asp Ala Ser Met 235 240 245	1015
30	gct gcc ttc tat ggg acc gac ctg cag aac cac atc ctc acg gtg atg Ala Ala Phe Tyr Gly Thr Asp Leu Gln Asn His Ile Leu Thr Val Met 250 255 260	1063
35	tca atg gca gcc cga atc tac aag cac ccg agc atc agg aac tcc gts Ser Met Ala Ala Arg Ile Tyr Lys His Pro Ser Ile Arg Asn Ser Val 265 270 275	1111
40	aac ctt gtg gtg gtg aaa gtg cta ata gtg gaa aaa gaa aga tgg ggc Asn Leu Val Val Val Lys Val Leu Ile Val Glu Lys Glu Arg Trp Gly 280 285 290	1159
45	cgg gaa gtg tcc gac aac ggg ggg ccc aca ctg cgc aac ttc tgc agc Pro Glu Val Ser Asp Asn Gly Gly Leu Thr Leu Arg Asn Phe Cys Ser 295 300 305 310	1207
50	tgg caa cgg cgt ttc aac aag ccc agt gac cgc cac ccg gag cac tat Trp Gln Arg Arg Phe Asn Lys Pro Ser Asp Arg His Pro Glu His Tyr 315 320 325	1255
55	gac act gcc atc ttg ttc acc aga cag aac ttc tgt ggg aag gga gag Asp Thr Ala Ile Leu Phe Thr Arg Gln Asn Phe Cys Gly Lys Glu 330 335 340	1303
60	cag tgt gac acc cts ggg atg gca gac gtt cgc acc atc tgt gac con Gln Cys Asp Thr Ile Gly Met Ala Asp Val Gly Thr Ile Cys Asp Pro 345 350 355	1351
65	gac aag aca tgg tca gtc atc aag gat gaa gca tgg cag gca gca tar Asp Lys Ser Cys Ser Val Ile Lys Asp Glu Gly Leu Gln Ala Ala Tyr 360 365 370	1399
70	acc ctg gcc cat gag cta ggg cac stt stc agc atg ccc cat gat gat Thr Leu Ala His Glu Leu Gly His Val Leu Ser Met Pro His Asp Asp 375 380 385 390	1447
75	tgt aac ccc tar cts aca ttc ttg ccc gca aca gac aac tar gag atp Tyr Asp Pro Tar Cys Asn Ttc Ttg Ccc Gca Aca Gac Aac Tar Gag Atp	1495

Cys Ser Ala Val Tyr Leu Thr Glu Leu Leu Asp Asp Gly His Gly Asp			
425	430	435	
tgt ctt ctg gat gcc ccc acc tgg gtt ctg ccc ctc ccc aca ggc ctc		1639	
5 Cys Leu Leu Asp Ala Pro Thr Ser Val Leu Pro Leu Pro Thr Gly Leu			
440	445	450	
cgc ggc cac agc acc ctc tac gag ctg gac cag cag tgc aag cag atc		1687	
Fro Gly His Ser Thr Leu Tyr Glu Leu Asp Gln Gln Cys Lys Gln Ile			
10 455	460	465	470
ttt ggg cct gat ttc cga cac tgc ccc aac acc tct gtg gag gac atc		1735	
Phe Gly Pro Asp Phe Arg His Cys Pro Asn Thr Ser Val Glu Asp Ile			
475	480	485	
15 tgt gtc cag ctc tgt gcc cgt cat cgg gat agt gat gag ccc att tgc		1783	
Cys Val Gln Leu Cys Ala Arg His Asp Ser Asp Glu Pro Ile Cys			
490	495	500	
20 ccc aca aag aat ggt agc ctg ctc tgg gct gat ggt aca ccc tgt ggc		1831	
His Thr Lys Asn Gly Ser Leu Leu Trp Ala Asp Gly Thr Pro Cys Gly			
505	510	515	
cct ggg cac ctg tgc ctg gat ggt agc tgt gta ctc aag gag gat gtg		1879	
25 Pro Gly His Leu Cys Leu Asp Gly Ser Cys Val Leu Lys Glu Asp Val			
520	525	530	
gag aat ccc aag gct gtg gta gat gga gac tgg ggt ccc tgg aga ccc		1927	
Glu Asn Pro Lys Ala Val Val Asp Gly Asp Trp Gly Pro Trp Arg Pro			
30 535	540	545	550
tgg gga caa tgt tct cgc acc tgt ggt gga ggg ata caa ttc tcc uac		1975	
Trp Gly Gln Cys Ser Arg Thr Cys Gly Gly Ile Gln Phe Ser Asn			
555	560	565	
35 cgt gaa tgt gat aat cca atg cct cag aat gga gga aga ttt tgc ctg		2023	
Arg Glu Cys Asp Asn Pro Met Pro Gln Asn Gly Gly Arg Phe Cys Leu			
570	575	580	
40 cgt gaa aga gtc aag tac caa tca tgc aac aca gag gaa tgt cca cca		2071	
Gly Glu Arg Val Lys Tyr Gln Ser Cys Asn Thr Glu Glu Cys Pro Pro			
585	590	595	
aac gga aaa agc ttc cgg gag cag gag tgt gaa aaa tat aat gcc tac		2119	
45 Asn Gly Lys Ser Phe Arg Glu Gln Gln Cys Glu Ile Tyr Asn Ala Tyr			
600	605	610	
aac cac act gag ctg gat ggg aat ttc ctg cag tgg gtc ccc aag tat		2167	
Asn His Thr Asp Leu Asp Gly Asn Phe Leu Gln Trp Val Pro Lys Tyr			
615	620	625	630
tca gga gtg tcc ccc cga gac cga tgg aag ctg ttt tgc aga gcc cgt		2215	
Ser Gly Val Ser Pro Arg Asp Arg Cys Lys Leu Phe Cys Arg Ala Arg			
635	640	645	
55 ggg agg agt gag ttc aac gtc ttt gaa gct aag gtg atc gat ggc act		2263	
Gly Arg Ser Glu Phe Lys Val Phe Glu Ala Lys Val Ile Asp Gly Thr			
650	655	660	

tgc ggg stg tct ggg ggc aaa ggc act ggc tgc agg aag atc tcc Sgg
 Cys Gly Val Cys Gly Gly Lys Gly Thr Ala Cys Arg Lys Ile Ser Gly
 695 700 705 710 2400
 5
 tct ttc acc ccc ttc agt tat ggc tac aat gac att gtc acc atc cca
 Ser Phe Thr Pro Phe Ser Tyr Gly Tyr Asn Asp Ile Val Thr Ile Pro
 715 720 725 2455
 10 gct ggt gcc aca aac att gat gtc aaa cag cgg agt cac cca egg gtc
 Ala Gly Ala Thr Asn Ile Asp Val Lys Gln Arg Ser His Pro Gly Val
 730 735 740 2503
 15 agg aac gac ggg agc tac ctg gcg ctg aag aca gcc aat egg tag tac
 Arg Asn Asp Gly Ser Tyr Leu Ala Leu Lys Thr Ala Asn Gly Glu Tyr
 745 750 755 2551
 20 ctg ctc aat ggt aac ctg gcc att tct gcc ata gag caa gac atc ttg
 Leu Leu Asn Gly Asn Leu Ala Ile Ser Ala Ile Glu Gln Asp Ile Leu
 760 765 770 2599
 25 gtg aag ggg acc atc ctg aag tat agt ggc tcc atg gct acc ctg gag
 Val Lys Gly Thr Ile Leu Lys Tyr Ser Gly Ser Met Ala Thr Leu Glu
 775 780 785 790 2647
 30 25
 cgg ctg cag agc ttc cag gcc ctg cct gag cct ctt aca gta gag ctc
 Arg Leu Gln Ser Phe Gln Ala Leu Pro Glu Pro Leu Thr Val Glu Leu
 795 800 805 2695
 35 30
 ctg act gtg tct ggt gag gtc ttc cct cca aaa gtc aga tat acc ttc
 Leu Thr Val Ser Gly Glu Val Phe Pro Pro Lys Val Arg Tyr Thr Phe
 810 815 820 2743
 40 35
 ttg gtc ccc aat gac atg gag ttc agc ggg cag aat agc aag gaa aga
 Phe Val Pro Asn Asp Met Asp Phe Ser Val Gln Asn Ser Lys Glu Arg
 825 830 835 2791
 45 40
 gca acc acc aac atc att tag tca ctg ccc tct ggg gag tgg gtt ctg
 Ala Thr Thr Asn Ile Ile Glu Ser Leu Pro Ser Ala Glu Trp Val Leu
 840 845 850 2839
 50 45
 gga gac tgg tct gaa tgt ccg agc acg tgc aga ggt agc tgg gag cgg
 Gly Asp Trp Ser Glu Cys Pro Ser Thr Cys Arg Gly Ser Trp Glu Arg
 855 860 865 870 2887
 55 50
 cgg act gtg gaa tgc agg gac ccc tca ggt gag ggc tct gag acc acc tgt
 Arg Thr Val Glu Cys Arg Asp Pro Ser Gly Glu Ala Ser Asp Thr Cys
 875 880 885 2935
 60 55
 gat gag gct tgc aaa cct gag gag gac ggc tgg acc tgt gga agg cgg cgg
 Asp Glu Ala Leu Lys Pro Glu Asp Ala Lys Pro Cys Gly Ser Glu Pro
 890 895 900 2983
 65 55
 tgt ccc ctc tgatccccctt ggtggaaaacc tttagggctt atggattttgg
 Cys Pro Leu
 RIS 3032

For more information about the project, visit www.earthobservatory.nasa.gov.

ttttttcatat ttgggttcgg caataatcaa tctaaatcac ccggggggaaa aatcaataa 3391
 caagaggat aaggccaggt gttggcagtg aacgcggaaag caagctccat aggtatctcc 3452
 5 aagctatattt cagaaatgttc cgtggctgtt ttcaagtatta aaatctgttg tctaaaaggg 3512
 cagcagtgtc catcacaggg ttatagaaag ccactttct cagggctgccca cctgtgtgggg 3572
 10 cggaccatt tcaagtatcc atgcaaataat gtctccgaac taaaatgtgtt cttagaccaa 3632
 aagnrc 3632

15 <210> 9
 <211> 905
 <212> PRT
 <213> *Mus musculus ADAMTS-6*

20 <400> 9
 Met Leu Arg Asp Pro Thr Thr Gly Trp Pro Pro Leu Leu Leu Leu
 1 5 10 15

Leu Leu Gln Leu Pro Pro Pro Leu Val Cys Gly Ala Pro Ala Gly
 25 20 25 30

Pro Gly Thr Gly Ala Gln Ala Ser Glu Leu Val Val Pro Thr Arg Leu
 35 40 45

30 Pro Gly Ser Ala Ser Glu Leu Ala Phe His Leu Ser Ala Phe Gly Gln
 50 55 60

Gly Phe Val Leu Arg Leu Ala Pro Asp Ala Ser Phe Leu Ala Pro Glu
 65 70 75 80

35 Phe Lys Ile Glu Arg Leu Gly Gly Ser Ser Ala Ala Ala Gly Gly Glu
 85 90 95

Pro Gly Leu Arg Gly Cys Phe Phe Ser Gly Thr Val Asn Gly Glu Arg
 40 100 105 110

Glu Ser Leu Ala Ala Met Ser Cys Val Ala Gly Trp Ser Gly Ser Phe
 115 120 125

45 Leu Leu Ala Gly Gln Glu Phe Thr Ile Gln Pro Gln Gly Ala Gly Asp
 130 135 140

Ser Leu Asp Gln Pro His Arg Leu Gln Arg Trp Gly Pro Gly Gln Arg
 145 150 155 160

50 Arg Glu Asp Pro Gly Leu Ala Ala Ala Glu Val Phe Pro Leu Pro Gln
 165 170 175

Gly Leu Glu Trp Glu Val Glu Met Gly Asn Gly Gln Gly Gln Glu Arg
 180 185 190

Ser Asp Asn Glu Glu Asp Lys Lys Gln Asp Lys Gln Gly Leu Leu Lys
 195 200 205

Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Thr Asp Leu Gln Asn

	245	250	255
	His Ile Leu Thr Val Met Ser Met Ala Ala Arg Ile Tyr Lys His Pro		
	260	265	270
5	Ser Ile Arg Asn Ser Val Asn Leu Val Val Val Lys Val Leu Ile Val		
	275	280	285
	Glu Lys Glu Arg Trp Gly Pro Glu Val Ser Asp Asn Gly Gly Leu Thr		
10	290	295	300
	Leu Arg Asn Phe Cys Ser Trp Gln Arg Arg Phe Asn Lys Pro Ser Asp		
	305	310	315
	320		
	15 Arg His Pro Glu His Tyr Asp Thr Ala Ile Leu Phe Thr Arg Gln Asn		
	325	330	335
	Phe Cys Gly Lys Gly Glu Gln Cys Asp Thr Leu Gly Met Ala Asp Val		
	340	345	350
20	Gly Thr Ile Cys Asp Pro Asp Lys Ser Cys Ser Val Ile Lys Asp Glu		
	355	360	365
	Gly Leu Gln Ala Ala Tyr Thr Leu Ala His Glu Leu Gly His Val Leu		
25	370	375	380
	Ser Met Pro His Asp Asp Ser Lys Pro Cys Val Arg Leu Phe Gly Pro		
	385	390	395
	400		
	30 Met Gly Lys Tyr His Met Met Ala Pro Phe Phe Ile His Val Asn Lys		
	405	410	415
	Thr Leu Pro Trp Ser Pro Cys Ser Ala Val Tyr Leu Thr Glu Leu Leu		
	420	425	430
35	Asp Asp Gly His Gly Asp Cys Leu Leu Asp Ala Pro Thr Ser Val Leu		
	435	440	445
	Pro Leu Pro Thr Gly Leu Pro Gly His Ser Thr Leu Tyr Glu Leu Asp		
40	450	455	460
	Gln Gln Cys Lys Gln Ile Phe Gly Pro Asp Phe Arg His Cys Pro Asn.		
	465	470	475
	480		
	45 Thr Ser Val Glu Asp Ile Cys Val Gln Leu Cys Ala Arg His Arg Asp		
	485	490	495
	Sei Asp Glu Phe Ile Cys His Thr Lys Asn Gly Ser Leu Leu Thr Ala		
	500	505	510
50	Asp Gly Thr Pro Cys Gly Pro Gly His Leu Cys Leu Asp Gly Ser Cys		
	515	520	525
	Val Leu Lys Glu Asp Val Glu Asn Pro Lys Ala Val Val Asp Gly Asp		
55	530	535	540
	Trp Gly Phe Trp Arg Pro Trp Gly Gln Cys Ser Arg Thr Cys Gly Gly		
	545	550	555
	560		

	595	600	605
	Glu Lys Tyr Asn Ala Tyr Asn His Thr Asp Leu Asp Gly Asn Phe Leu		
	610	615	620
5	Gln Trp Val Pro Lys Tyr Ser Gly Val Ser Pro Arg Asp Arg Cys Lys		
	625	630	635
	640		
10	Leu Phe Cys Arg Ala Arg Gly Arg Ser Glu Phe Lys Val Phe Glu Ala		
	645	650	655
	Lys Val Ile Asp Gly Thr Leu Cys Gly Pro Asp Thr Leu Ser Ile Cys		
	660	665	670
	675		
	15 Val Arg Gly Gln Cys Val Lys Ala Gly Cys Asp His Val Val Asn Ser		
	680	685	
	690		
	Pro Lys Lys Leu Asp Lys Cys Gly Val Cys Gly Gly Lys Gly Thr Ala		
	695	700	
20	705		
	Cys Arg Lys Ile Ser Gly Ser Phe Thr Pro Phe Ser Tyr Gly Tyr Asn		
	710	715	720
	725		
25	Asp Ile Val Thr Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Lys Gln		
	730	735	
	740		
	Arg Ser His Pro Gly Val Arg Asn Asp Gly Ser Tyr Leu Ala Leu Lys		
	745	750	
	755		
	30 Thr Ala Asn Gly Gln Tyr Leu Leu Asn Gly Asn Leu Ala Ile Ser Ala		
	760	765	
	770		
	Ile Glu Gln Asp Ile Leu Val Lys Gly Thr Ile Leu Lys Tyr Ser Gly		
	775	780	
35	785		
	Ser Met Ala Thr Leu Glu Arg Leu Gln Ser Phe Gln Ala Leu Pro Glu		
	790	795	800
	805		
40	Pro Leu Thr Val Gln Leu Leu Thr Val Ser Gly Glu Val Phe Pro Pro		
	810	815	
	820		
	Lys Val Arg Tyr Thr Phe Phe Val Pro Asn Asp Met Asp Phe Ser Val		
	825	830	
	835		
	45 Gln Asn Ser Lys Glu Arg Ala Thr Thr Asn Ile Ile Gln Ser Leu Pro		
	840	845	
	850		
	Ser Ala Glu Trp Val Leu Gly Asp Trp Ser Glu Cys Pro Ser Thr Phe		
	855	860	
50	865		
	Arg Gly Ser Trp Gln Arg Arg Thr Val Glu Cys Arg Asp Pro Ser Gly		
	870	875	880
	885		
	55 Gln Ala Ser Asp Thr Cys Asp Glu Ala Leu Lys Pro Glu Asp Ala Lys		
	890	895	
	895		
	Pro Cys Gly Ser Gln Pro Cys Pro Leu		

?

```

<220>
<221> CDS
<222> '3' ... (737)

5 <400> 10
cg agg gca gaa ggg gct agc gag ccc cca ccc ctg ggg gcc acg 47
    Arg Ala Glu Gly Ala Ser Glu Pro Pro Pro Leu Gly Ala Thr
    1           5           10          15
                                         20          25          30

10 agt agg acc aag cgg ttt gtg tct gag ggc cgc ttc gtg gag acg ctg 95
    Ser Arg Thr Lys Arg Phe Val Ser Glu Ala Arg Phe Val Glu Thr Leu
    20
                                         25
                                         30

15 ctg gtg gcc gat ggc tcc atg gct gcc ttc tac ggg gcc gag ctg cag 143
    Leu Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Ala Asp Leu Gln
    35
                                         40
                                         45

20 aac cac atc ctg acg tta atg tct gtg gca gcc cga atc tac aag cac 191
    Asn His Ile Leu Thr Ieu Met Ser Val Ala Ala Arg Ile Tyr Lys His
    20          50          55          60

25 ccc acg atc aag aat tcc atc aac ctg atg ctg gta aaa gtg ctg atc 209
    Pro Ser Ile Lys Asn Ser Ile Asn Leu Met Val Val Lys Val Leu Ile
    65
                                         70
                                         75

30 gta gaa gat gaa aaa tgg ggc cca gag gtg tcc gac aat ggg ggg ctt 257
    Val Glu Asp Glu Lys Trp Gly Pro Glu Val Ser Asp Asn Gly Gly Leu
    80
                                         85
                                         90
                                         95

35 aca ctg cgt aac ttc tgc aac tgg cag cgg cgt ttc aac cag ccc aco 315
    Thr Leu Arg Asn Phe Cys Asn Trp Gin Arg Arg Phe Asn Gln Pro Ser
    100
                                         105
                                         110

40 gac cgc cac cca gag cac tac gac acg gcc atc ctg ctc acr aga cag 383
    Asp Arg His Pro Glu His Tyr Asp Thr Ala Ile Leu Leu Thr Arg Gln
    115
                                         120
                                         125

45 aac ttc tgt ggg cag gag ggg ctg tgt gac acc ctg ggt stg gca gag 431
    Asn Phe Cys Gly Gln Glu Gly Leu Cys Asp Thr Leu Gly Val Ala Asp
    130
                                         135
                                         140

50 atc ggg acc att tgt gac ccc aac aaa agc tgc tcc gtg atc gag gat 479
    Ile Gly Thr Ile Cys Asp Pro Asn Lys Ser Cys Ser Val Ile Glu Asp
    145
                                         150
                                         155

458 gac ggg ctc cag ggg gcc cac acc ctg gct cat gaa ctg ggg cac stg 527
    Glu Gly Leu Gln Ala Ala His Thr Leu Ala His Glu Leu Gly His Val
    163
                                         168
                                         173
                                         178

500 ctc acg atg ccc cac gag tcc aay ctc tgc kfa cgg ctc ctc ggg 575
    Leu Ser Met Pro His Asp Asp Ser Lys Pro Cys Thr Arg Leu Phe Gly
    180
                                         185
                                         190

550 ccc atg ggc aag cac cac gtg atg gca ccc ctg ttc gtc cac ctg aac 623
    Pro Met Gly Lys His His Val Met Ala Pro Leu Phe Val His Leu Asn
    195
                                         200
                                         205

```

Leu Lys Cys Asp Leu Met
 240 245

5 <210> 11
 <211> 245
 <212> PRT
 <213> Homo sapiens ADAMTS-8

10 <400> 11
 Arg Ala Glu Gly Ala Ser Glu Pro Pro Pro Pro Pro Leu Gly Ala Thr Ser
 1 5 10 15

Arg Thr Lys Arg Phe Val Ser Glu Ala Arg Phe Val Glu Thr Leu Leu
 15 20 25 30

Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Ala Asp Leu Gln Asn
 35 40 45

20 His Ile Leu Thr Leu Met Ser Val Ala Ala Arg Ile Tyr Lys His Pro
 50 55 60

Ser Ile Lys Asn Ser Ile Asn Leu Met Val Val Lys Val Leu Ile Val
 65 70 75 80

25 Glu Asp Glu Lys Trp Gly Pro Glu Val Ser Asp Asn Gly Gly Leu Thr
 85 90 95

Leu Arg Asn Phe Cys Asn Trp Gln Arg Arg Phe Asn Gln Pro Ser Asp
 30 100 105 110

Arg His Pro Glu His Tyr Asp Thr Ala Ile Leu Leu Thr Arg Gln Asn
 115 120 125

35 Phe Cys Gly Gln Glu Gly Leu Cys Asp Thr Leu Gly Val Ala Asp Ile
 130 135 140

Gly Thr Ile Cys Asp Pro Asn Lys Ser Cys Ser Val Ile Glu Asp Glu
 145 150 155 160

40 Gly Leu Gln Ala Ala His Thr Leu Ala His Glu Leu Gly His Val Leu
 165 170 175

Ser Met Pro His Asp Asp Ser Lys Pro Cys Thr Arg Leu Phe Cys Pro
 45 180 185 190

Met Cys Lys His His Val Met Ala Pro Leu Phe Val His Leu Asn Gln
 195 200 205

50 Thr Leu Ile Trp Ser Pro Cys Ser Ala Met Phe Ser Cys Cys His Leu
 210 215 220

Gln Gly Trp Ile His Phe Lys Tyr Leu Cys Lys Cys Val Ser Glu Leu
 225 230 235 240

Lys Cys Asp Leu Met
 245

```

<221> CDS
<222> (31..(E648)

<220>
5 <221> misc_feature
<222> (1563)..(1565)

<220>
10 <221> misc_feature
<222> (1404)..(1406)

<400> 12
G a a g c a c c a t g c a g t t t g t a t c c t c g g c c a c t g c t a a c g c t c c t g 47
    Ser Thr Met Gln Phe Val Ser Trp Ala Thr Leu Ieu Thr Leu Leu
15      1           5                   10                  15

s t g c g g a c c t g g c c a g a t g g g g a g c c c a g a c g g c c g g c g g s t g 95
    Val Arg Asp Leu Ala Glu Met Gly Ser Pro Asp Ala Ala Ala Val
20      20          25                   30

c g c a a g g a c a g g c t g c a c c c g a g g c a a g t g a a a t t a t t a g a g a c c c t g 143
    Arg Lys Asp Arg Leu His Pro Arg Gln Val Lys Leu Leu Glu Thr Leu
25      35          40                   45

25 a g c g a a t a c g a a t a t c g t g t c t c c a t c c g a g t g a a c g c t g c t c g g a a 191
    Ser Glu Tyr Glu Ile Val Ser Pro Ile Arg Val Asn Ala Leu Gly Glu
30      50          55                   60

c c c t t t c c c a c g a a c g t c c a c t t c a a a a g a a c g c g a c g a t t a a c 239
30 Pro Phe Pro Thr Asn Val His Phe Lys Arg Thr Arg Arg Ser Ile Asn
35      65          70                   75

t c t g c c a c t g a c c c t g g c t t c g c t c t c c t c t c t c t c t c t c t c t c t 287
    Ser Ala Thr Asp Pro Trp Pro Ala Phe Ala Ser Ser Ser Ser Ser Ser
35      80          85                   90                  95

a c c t c c c a g s c g c a t t a c c g c t c t c t g c c t t c s c g c a g c a g t t t 335
    Thr Ser Ser Gln Ala His Tyr Arg Leu Ser Ala Phe Gly Gln Gln Phe
40      100         105                  110

c t a t t t a a t c t c a c c g c a a t g c c g g a t t t a t c g c t g t c c a c t 383
    Leu Phe Asn Leu Thr Ala Asn Ala Gln Phe Ile Ala Pro Leu Phe Thr
45      115         120                  125

45 g t c a c c t c t c t t g g g a c g c c c g g t g a a t c a g a a g t t t t a t t c c 431
    Val Thr Leu Ieu Gly Thr Pro Gly Val Asn Glu Thr Lys The Tyr Ser
50      130         135                  140

g a a g a a g g g a a g a a g c a t t c a a a a g g c t a t g t c a a 479
50 Glu Gln Gln Ala Glu Ieu Lys His Cys Phe Tyr Lys Arg Leu Cys Gln
55      145         150                  155

t a c c a a t c t c a c c a c g c g t c a t c a g c c t c t c a g a a t g a d 527
    Tyr Gln Leu Arg Ala His Gly Arg His Gln Pro Leu Leu Arg Asn Glu
55      160         165                  170                  175

c a c a a a t a a g g c a c a g t a g t a a a g a a g a c c a g a g a g a a a a 575
    His Ivs Asn Arg His Ser Ivs Asp Ivs Ivs Ivs Thr Arg Ala Arg Ivs
55

```

	210	215	220	
	aca aga gaa aag egg acc cac aga agg aca aaa cgt ttt tta tcc tat			719
	Thr Arg Glu Lys Arg Thr His Arg Arg Thr Lys Arg Phe Leu Ser Tyr			
5	225	230	235	
	cca cgg ttt gta gaa gtc ttg gtg gtc gca gac aac aga atg ctt tca			767
	Pro Arg Phe Val Glu Val Leu Val Ala Asp Asn Arg Met Val Ser			
	240	245	250	255
10				
	tac cat gga gaa aac ctt caa cac tat att tta act tta atg tca att			815
	Tyr His Gly Glu Asn Leu Gln His Tyr Ile Leu Thr Leu Met Ser Ile			
	260	265	270	
15				
	gtt gca gcc tct atc tat aaa gac cca agt att gga aat tta att aat att			863
	Val Ala Ser Ile Tyr Lys Asp Pro Ser Ile Gly Asn Leu Ile Asn Ile			
	275	280	285	
	gtt att gtg aac tta att gtg att cat att gaa cag gat ggg cct tcc			911
20	Val Ile Val Asn Leu Ile Val Ile His Asn Glu Gln Asp Gly Pro Ser			
	290	295	300	
	ata tct ttt aat gct cag aca aca tta aaa aac ttt tg: cag tgg cag			959
	Ile Ser Phe Asn Ala Gln Thr Thr Leu Lys Asn Phe Cys Gln Trp Gln			
25	305	310	315	
	cat tcg aac agt cca ggt gga atc cat cat gat act gct ctc tta			1007
	His Ser Asn Ser Pro Gly Gly Ile His His Asp Thr Ala Val Leu			
	320	325	330	335
30				
	aca aga cag gat atc tgc aga gct cac gac aaa tgt gat acc tta ggc			1055
	Thr Arg Gln Asp Ile Cys Arg Ala His Asp Lys Cys Asp Thr Leu Gly			
	340	345	350	
	ctg gct gaa ctg gga acc att tgt gat ccc tat aga agt tgt tct att			1103
	Leu Ala Glu Leu Gly Thr Ile Cys Asp Pro Tyr Arg Ser Cys Ser Ile			
	355	360	365	
	agt gaa gat agt gga ttg agt aca gct ttt acg atc gct cat gag ctg			1151
40	Ser Glu Asp Ser Gly Leu Ser Thr Ala Phe Thr Ile Ala His Glu Leu			
	370	375	380	
	ggc cat gtg ttt aac atg cct cat gat gac aac aac aaa tgt aaa gaa			1199
	Gly His Val Phe Asn Met Pro His Asp Asp Asn Lys Cys Lys Glu			
45	385	390	395	
	gaa gga gtt aag agt ccc aac cat gtc atg gct cca acg ctg aac tcc			1247
	Glu Gly Val Lys Ser Pro Gln His Val Met Ala Pro Thr Leu Asn Phe			
	400	405	410	415
50				
	tac acc aac ccc tgg atg tgg tca aag tgt agt cga aaa tat atc act			1295
	Tyr Thr Asn Pro Trp Met Trp Ser Lys Cys Ser Arg Lys Tyr Ile Thr			
	420	425	430	
	gag ttt ita gad act ggt tat ggc gag tgt ttg ctt aac gaa cct gaa			1343
	Glu Phe Leu Asp Thr Gly Tyr Gly Gln Cys Leu Leu Asn Glu Pro Gln			
	435	440	445	

ccs tat atg atg cag tgc aga cgg ctc tgg tgc aat aac gtc aat gga	1487
Pro Tyr Met Met Gln Cys Arg Arg Leu Trp Cys Asn Asn Val Asn Gly	
480 485 490 495	
5 gta cac aaa ggc tgc cgg act cag ctc aca ccc tgg gcc gat ggg acp	1536
Val His Lys Gly Cys Arg Thr Gln His Thr Pro Trp Ala Asp Gly Thr	
500 505 510	
10 gag tgc gag cct gga aag cac tgc aag nat gga ttt tgt gtt ccc aaa	1583
Glu Cys Glu Pro Gly Lys His Cys Lys Xaa Gly Phe Cys Val Pro Lys	
515 520 525	
15 gaa atg gat gtc ccc gtg aca gat gga tcc tgg gga agt tgg aat ccc	1631
Glu Met Asp Val Pro Val Thr Asp Gly Ser Trp Gly Ser Trp Ser Pro	
530 535 540	
20 ttt gga acc tgc tcc aga aca aca tgt gga ggg ggc atc aaa aca gcc att	1679
Phe Gly Thr Cys Ser Arg Thr Cys Gly Gly Ile Lys Thr Ala Ile	
545 550 555	
25 cga gag tgc aac aga cca gaa cca aia aat ggt gga aaa tac tat gta	1727
Arg Glu Cys Asn Arg Pro Glu Pro Lys Asn Gly Gly Lys Tyr Cys Val	
560 565 570 575	
30 gga cgt aga atg aaa ttt aag tcc tgc aac acg gag cca tgt ctc aag	1775
Gly Arg Arg Met Lys Phe Lys Ser Cys Asn Thr Glu Pro Cys Leu Lys	
580 585 590	
35 cag aag cga gac ttc cga gat gaa cag tgc ttt gac ggg aag	1823
Gln Lys Arg Asp Phe Arg Asp Glu Gln Cys Ala His Phe Asp Gly Lys	
595 600 605	
40 cat ttt aac atc aac ggt ctg ctt ctc aat gtc cgc tgg gtc cct aas	1871
His Phe Asn Ile Asn Gly Leu Leu Pro Asn Val Arg Trp Val Pro Lys	
610 615 620	
45 tac agt gga att ctg atg aag gac cgg tgc aag ttg ttc tgc aga gtc	1919
Tyr Ser Gly Ile Leu Met Lys Asp Arg Cys Lys Leu Phe Cys Arg Val	
625 630 635	
50 cca ggg aac aca gcc tac tat cag ctt cga gac aga gtc ata gat gga	1967
Ala Gly Asn Thr Ala Tyr Tyr Gln Leu Arg Asp Arg Val Ile Asp Gly	
640 645 650 655	
55 ast cct tgt egg cag gac aca aat gat atc tgt gtc cag ggg ctt tgc	2015
Thr Pro Cys Gly Gln Asp Thr Asn Asp Ile Cys Val Gln Gly Leu Cys	
660 665 670	
60 cgg caa gct gga tgc gat cat gtt tta aac tca aaa gca cgg aya gat	2064
Arg Gln Ala Gly Cys Asp His Val Leu Asn Ser Lys Ala Arg Arg Asp	
675 680 685	
65 aaa tgc ggg gtt tgt ggt egg gat aat tat tca tgc aaa aca gtc gca	2111
Lys Cys Gly Val Cys Gly Gly Asp Asn Ser Ser Cys Lys Thr Val Ala	
690 695 700	
70 gpa aca tti aat aca gta cat tat cgt tac aat act gtc gtc cga att	2159
Gly Thr Phe Asn Thr Val His Tyr Gly Thr Asn Thr Val Val Arg Ile	

	740	745	750	
				2363
	tcc ttg cta aat gga aac ttt gtt gtc aca atg gcc aaa agg gaa att Phe Leu Leu Asn Gly Asn Phe Val Val Thr Met Ala Lys Arg Glu Ile			
5	755	760	765	
				2351
	cgc att ggg aat gct gtg gta gag tac agt ggg tcc gag act gcc gta Arg Ile Gly Asn Ala Val Val Glu Tyr Ser Gly Ser Thr Ala Val			
	770	775	780	
10				
	gaa aga att aac tca aca gat cgc att gag caa gaa ctt ttg ctt cag Glu Arg Ile Asn Ser Thr Asp Arg Ile Glu Gln Glu Leu Leu Gln			2399
	785	790	795	
15				
	gtt ttg tcg gtg gga aag ttg tac aac tcc gat gta cgc tat tct ttc Val Leu Ser Val Gly Lys Leu Tyr Asn Pro Asp Val Arg Tyr Ser Phe			2447
	800	805	810	815
20				
	aat att cca att gaa gat aac cct cag tac ttt tac tgg aac agt cat Asn Ile Pro Ile Glu Asp Lys Pro Gln Gln Phe Tyr Trp Asn Ser His			2455
	820	825	830	
25				
	ggg cca tgg caa gca tgc agt aaa ccc tgc caa ggg gaa cgg aaa cga Gly Pro Trp Gln Ala Cys Ser Lys Pro Cys Gln Gly Glu Arg Lys Arg			2543
	835	840	845	
30				
	aaa ctt gtt tgc acc agg gaa tct gat cag ctt act gtt tct gat caa Lys Leu Val Cys Thr Arg Glu Ser Asp Gln Leu Thr Val Ser Asp Gln			2591
	850	855	860	
35				
	aga tgc gat cgg ctg ccc cag cct gga cac att act gaa ccc tgt ggt Arg Cys Asp Arg Leu Pro Gln Pro Gly His Ile Thr Glu Pro Cys Gly			2639
	865	870	875	
40				
	aca ggc tgt gac ctg agg tgg cat gtt gcc agc agg agt gaa tgt agt Thr Gly Cys Asp Leu Arg Trp His Val Ala Ser Arg Ser Glu Cys Ser			2667
	880	885	890	895
45				
	gcc cag tgt ggc ttg ggt tac cgc aca ttg sac atc tac tgt gcc aaa Ala Gln Cys Gly Leu Gly Tyr Arg Thr Leu Asp Ile Tyr Cys Ala Lys			2735
	900	905	910	
50				
	tat agc agg ctg gat ggg aag act gag aag gtt gat gat ggt ttt tgc Tyr Ser Arg Leu Asp Gly Lys Thr Glu Lys Val Asp Asp Gly Phe Cys			2763
	915	920	925	
				2831
	agt agc cat ccc aaa cca agc aac cgt gaa aaa tgc tca ggg gaa tgt Ser Ser His Pro Lys Pro Ser Asn Arg Glu Lys Cys Ser Gly Glu Cys			
	930	935	940	
55				
	aac aca ggt ggc ttg cgc tat tct gcc tgg act gaa tgt tca aaa agc Asn Thr Gly Gly Trp Arg Tyr Ser Ala Trp Thr Glu Cys Ser Lys Ser			2879
	945	950	955	
				2927
	tgt gac ggt ggg acc cag agg aga agg gct att tgt gtc aat acc cga Cys Asp Gly Gly Thr Gln Arg Arg Ala Ile Cys Val Asn Thr Arg			
	960	965	970	975

tgg tca gag tgc ttg gtc acc tgt gga aaa ggg cat aag cac agc cag Trp Ser Glu Cys Ieu Val Thr Cys Gly Lys Gly His Lys His Ser Gin 1010 1015 1020	3071
5 stc tgg tgt cag ttt ggt gaa gat cga tta aat gat aya atg tgt gac Val Trp Cys Gin Phe Gly Glu Asp Arg Leu Asn Asp Arg Met Cys Asp 1025 1030 1035	3119
cct gag acc aag cca aca tct atg cag act tgt cag cag cca gaa tgt 10 Pro Glu Thr Lys Pro Thr Ser Met Gln Thr Cys Gin Gin Pro Glu Cys 1040 1045 1050 1055	3167
10 sca tcc tgs cag gcg ggt ccc tgg gta cag tgt agt gtc act tgt gga Ala Ser Trp Gin Ala Gly Pro Trp Val Gin Cys Ser Val Thr Cys Gly 15 1060 1065 1070	3215
cag gga tac cag cta aya gca gtg aaa tgc att att ggg act tat atg Gln Gly Tyr Gin Ieu Arg Ala Val Lys Cys Ile Ile Gly Thr Tyr Met 1075 1080 1085	3263
20 tca gtg gta gat gac aat gac tgt aat gca gca act aya cca act gat Ser Val Val Asp Asp Asn Asp Cys Asn Ala Ala Thr Arg Pro Thr Asp 1090 1095 1100	3311
25 acc cag gac tgt jaa tta cca tca tgt cat cct ccc cca gct gcc ccc Thr Gln Asp Cys Glu Leu Pro Ser Cys His Pro Pro Ala Ala Pro 1105 1110 1115	3359
30 gaa acg ays aya agc aca tac agt gca cca aya acc cag tgg cga tti Glu Thr Arg Arg Ser Thr Tyr Ser Ala Pro Arg Thr Gin Trp Arg Phe 1120 1125 1130 1135	3407
35 ggg tct tgs acc cca tgc tca gcc act tgt ggg aaa ggt acc cgg atg Gly Ser Trp Thr Pro Cys Ser Ala Thr Cys Gly Lys Gly Thr Arg Met 1140 1145 1150	3455
40 aga tac gtc ays tgc cga gat gag aat ggc tct stg gct gac gag agt Arg Tyr Val Ser Cys Arg Asp Glu Asn Gly Ser Val Ala Asp Glu Ser 1155 1160 1165	3503
45 gcc tgt gct acc ctg cct aga cca gtg gca aag gaa jaa tgt tct gtg Ala Cys Ala Thr Ieu Pro Arg Pro Val Ala Lys Glu Glu Cys Ser Val 1170 1175 1180	3551
50 aca ccc tgt ggg caa tgg aag gcc ttg gac tgg ayc tct tgc tcc gtg Thr Pro Cys Gly Gin Trp Lys Ala Ieu Asp Trp Ser Ser Cys Ser Val 1185 1190 1195	3599
55 agc tjt ggg caa ggt ays gca acc cgg caa gtg atg tgt gtc bac tcc Thr Cys Gly Gin Gly Arg Ala Thr Arg Gin Val Met Cys Val Asn Tyr 1200 1205 1210 1215	3647
60 agt gac cac stg atc gat cgg agt ggg tgt gac cag bat tat atc cca Ser Asp His Val Ile Asp Arg Ser Glu Cys Asp Gln Asp Tyr Ile Pro 1220 1225 1230	3695
65 gaa act gac cag gag tgt tcc atg tca cca tcc bat caa agg acc ccc Glu Thr Asp Gin Asp Iys Ser Met Ser Pro Iys Pro Gin Arg Thr Pro	3741

1265	1270	1275	
aga act ggc ccc tgg gga gca tgt tcc aat acc tgt got ggc gga tcc Arg Thr Gly Pro Trp Gly Ala Cys Ser Ser Thr Cys Ala Gly Ser			3887
5 1280	1285	1290	1295
cag cgg cgt gtt gta tgt cag gat gaa aat gga tac acc gca aac Gln Arg Arg Val Val Val Cys Gln Asp Glu Asn Gly Tyr Thr Ala Asn			3935
10 1300		1305	1310
gac tgt gtg gag aga ata aaa cct gat gag caa aga ggc tgt gaa tcc Asp Cys Val Glu Arg Ile Lys Pro Asp Glu Gln Arg Ala Cys Glu Ser			3983
1315	1320		1325
15 sgc cct tgt cct cag tgg gct tat ggc aac tgg gga gag tgc act aag Gly Pro Cys Pro Gln Trp Ala Tyr Gly Asn Trp Gly Glu Cys Thr Lys			4031
1330	1335	1340	
ctg tgt ggt gga ggc ata aga aca aga ctg gtc tct cag cgg tcc 20 Leu Cys Gly Gly Ile Arg Thr Arg Leu Val Val Ser Gln Arg Ser			4079
1345	1350	1355	
aac ggt gaa cgg ttt cca gat ttg agc tgt gaa att ctt gat aaa cct Asn Gly Glu Arg Phe Pro Asp Leu Ser Cys Glu Ile Leu Asp Lys Pro			4127
25 1360	1365	1370	1375
ccc gat cgt gag cag tgt aac aca cat gct tgt cca cac gac gct gca Pro Asp Arg Glu Gln Cys Asn Thr His Ala Cys Pro His Asp Ala Ala			4175
1380	1385	1390	
30 tgg agt act ggc cct tgg agc tcg tgt tct gtc tct tgt ggt cga ggg Trp Ser Thr Gly Pro Trp Ser Ser Cys Ser Val Ser Cys Gly Arg Gly			4223
1395	1400	1405	
35 cat aaa caa cga aat gtt tac tgc atg gca aaa gat gga agc cat tta His Lys Gln Arg Asn Val Tyr Cys Met Ala Lys Asp Gly Ser His Leu			4271
1410	1415	1420	
40 gaa agt gat tac tgt aag cac ctg gct aag cca cat ggg cac aga aag Glu Ser Asp Tyr Cys Lys His Leu Ala Lys Pro His Gly His Arg Lys			4319
1425	1430	1435	
45 tgc cga gga gga aga tgc ccc aaa tgg aaa gct ggc gct tgg agt cag Cys Arg Gly Gly Arg Cys Pro Lys Trp Lys Ala Gly Ala Trp Ser Gln			4367
1440	1445	1450	1455
tgc tct gtc tcc atg ggc cga ggc gta cag cag agg cat ttg ggc tot Cys Ser Val Ser Met Gly Arg Gly Val Gin Iln Arg His Val Gly Cys			4415
1460	1465	1470	
50 cas atc gga aca cac aaa ata ecc aga gag acc gag tgc aac cca tac Gln Ile Gly Thr His Lys Ile Ala Arg Glu Thr Glu Cys Asn Pro Tyr			4463
1475	1480	1485	
55 acc aga ccg gag tgc gaa tgc gaa tgc cca ggc cca cgg tgc ccc ctt Thr Arg Pro Glu Ser Glu Cys Glu Cys Glu Gly Pro Arg Pys Pro Leu			4511
1490	1495	1500	

gag gtg cat ggg gca cgc tgc gag agc aag cgg ccc gtg gag cst Glu Val His Gly Ala Arg Cys Asp Val Ser Lys Arg Pro Val Asp Arg 1540 1548 1550	4655
5 gaa agc tgt ast ttg caa ccc tgc gag tat gtc tgg act aca gga gaa Glu Ser Cys Ser Leu Gln Pro Cys Glu Tyr Val Trp Thr Gly Glu 1555 1560 1565	4703
10 tgg tca gag tgc tca gtg acc tgt gga aaa ggc tac aac caa agg ctt Trp Ser Glu Cys Ser Val Thr Cys Gly Lys Gly Tyr Lys Gln Arg Leu 1570 1575 1580	4751
15 stc tcg tgc agc gag att tac acc ggg aaa gag aat tat gaa tac agc Val Ser Cys Ser Glu Ile Tyr Thr Gly Lys Glu Asn Tyr Glu Tyr Ser 1585 1590 1595	4799
20 tac caa acc acc atc aac tgc cca ggc agc cag ccc ccc agt gtt cac Tyr Gln Thr Thr Ile Asn Cys Pro Gly Thr Gln Pro Pro Ser Val His 1600 1605 1610 1615	4847
25 ccc tct tac ctg agg gag tgc cct gtc tcg gcc acc tgg aga gtt ggc Pro Cys Tyr Leu Arg Glu Cys Pro Val Ser Ala Thr Trp Arg Val Gly 1620 1625 1630	4895
30 aac tgg ggg ags tgc tca ggg tct tgt ggt gtt gga gtg atg cag aga Asn Trp Gly Ser Cys Ser Val Ser Cys Gly Val Gly Val Met Gln Arg 1635 1640 1645	4943
35 tct gtg caa tgt tta acc aat gag gac caa ccc agc ccc tta tgc cac Ser Val Gln Cys Leu Thr Asn Glu Asp Gln Pro Ser His Leu Cys His 1650 1655 1660	4991
40 act gat ctg aag cca gaa gaa cga aaa acc tgc cgt aat gtc tat aac Thr Asp Leu Lys Pro Glu Glu Arg Lys Thr Cys Arg Asn Val Tyr Asn 1665 1670 1675	5039
45 tgt gag tta ccc cag aat tgc aag gag gta aaa aga ctt aaa ggt gcc Cys Glu Leu Pro Gln Asn Cys Lys Glu Val Lys Arg Leu Lys Gly Ala 1680 1685 1690 1695	5087
50 agt gaa gat ggt gaa tat ttc ctg atg att aga gga aag ctt ctg aag Ser Glu Asp Gly Glu Tyr Phe Leu Met Ile Arg Gly Lys Leu Leu Lys 1700 1705 1710	5135
55 ata ttc tgt ggg ggg atg caa tct gag caa ccc aac ggg tac gtg aca Ile Phe Cys Ala Gly Met Ser Asp His Pro Lys Glu Tyr Val Thr 1715 1720 1725	5183
60 ctg gtg cat gga Sac tct Gag aat ttc tcc Bag gtt tat ggg Sac aag Leu Val His Gly Asp Ser Glu Asn Phe Ser Glu Val Tyr Gly His Arg 1730 1735 1740	5231
65 tta cac aac cca aca gaa tgt ccc tat aac ggg agc cgg ccc gat gac Leu His Asn Pro Thr Glu Cys Pro Tyr Asn Gly Ser Arg Arg Asp Asp 1745 1750 1755	5279
70 tgc caa tgt Cgg aag gat tsc aca ggt cct ggg ttt tcc aet ttt cug Tyr Gln Cys Arg Ile Asp Thr Thr Ala Ala Gly Phe Ser Ser Phe Glu	5327

	1795	1800	1805	
	ggg gat tgc tac aac gct ggc aag tgc cca cag ggt cgt ttt aac atc Gly Asp Cys Tyr Ser Ala Ala Lys Cys Pro Gln Gly Arg Phe Ser Ile			5471
5	1810	1815	1820	
	aac ctt tat gga acc ggc ttg tct tta act gaa tcc gcc aca tgg ata Asn Leu Tyr Gly Thr Gly Leu Ser Leu Thr Glu Ser Ala Arg Trp Ile			5519
	1825	1830	1835	
10	tca caa ggg aat tat gct gtc tct gac aac aag tcc ccg gat ggt Ser Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser Pro Asp Gly			5567
	1840	1845	1850	1855
15	acc cga gtc gta ggg aaa tgc ggt ggt tac tct gga aaa tgc act cca Thr Arg Val Val Gly Lys Cys Gly Tyr Cys Gly Lys Cys Thr Pro			5616
	1860	1865	1870	
20	tcc tct ggt act ggc ctg gag gtg cya gtt tta tagcttaagggt gcttttgaaga 5668 Ser Ser Gly Thr Gly Leu Glu Val Arg Val Leu			
	1875	1880		
	ggaaagccatt atggatggat gaaggatagt aatgcataac ctccaccta atttgggtgc 5728			
25	atgtgtatgt gtgtgtgtgt ttgtgtgtga cttgtatgtct tggtgtgtaa aatgtgtgtaa 5788 catatacata tataca			5804
30	<210> 13 <211> 1882 <212> PRT <213> Homo sapiens ADAMTS-9			
35	<400> 13 Ser Thr Met Gln Phe Val Ser Trp Ala Thr Leu Leu Thr Leu Val 1 5 10 15			
40	Arg Asp Leu Ala Glu Met Gly Ser Pro Asp Ala Ala Ala Val Arg 20 25 30			
	Lys Asp Arg Leu His Pro Arg Gln Val Lys Leu Leu Glu Thr Leu Ser 35 40 45			
45	Glu Tyr Glu Ile Val Ser Pro Ile Arg Val Asn Ala Leu Gly Glu Pro 50 55 60			
	Phe Pro Thr Asn Val His Phe Lys Arg Thr Arg Arg Ser Ile Asn Ser 65 70 75 80			
50	Ala Thr Asp Pro Trp Pro Ala Phe Ala Ser Ser Ser Ser Ser Thr 85 90 95			
55	Ser Ser Gln Ala His Tyr Arg Leu Ser Ala Phe Gly Gln Gln Phe Leu 100 105 110			
	Phe Asn Leu Thr Ala Asn Ala Gly Phe Ile Ala Pro Leu Phe Thr Val 115 120 125			

	165	170	175
Lys Asn Arg His Ser Lys Asp Lys Lys Thr Arg Ala Arg Lys Trp			
180	185	190	
5			
Gly Glu Arg Ile Asn Leu Ala Gly Asp Val Ala Ala Leu Asn Ser Gly			
195	200	205	
Leu Ala Thr Glu Ala Phe Ser Ala Tyr Gly Asn Lys Thr Asp Asn Thr			
10 210	215	220	
Arg Glu Lys Arg Thr His Arg Arg Thr Lys Arg Phe Leu Ser Tyr Pro			
225	230	235	240
15 Arg Phe Val Glu Val Leu Val Val Ala Asp Asn Arg Met Val Ser Tyr			
245	250	255	
His Gly Glu Asn Leu Gln His Tyr Ile Leu Thr Leu Met Ser Ile Val			
250	265	270	
20			
Ala Ser Ile Tyr Lys Asp Pro Ser Ile Gly Asn Leu Ile Asn Ile Val			
275	280	285	
Ile Val Asn Leu Ile Val Ile His Asn Glu Gln Asp Gly Pro Ser Ile			
25 290	295	300	
Ser Phe Asn Ala Gln Thr Thr Leu Lys Asn Phe Cys Gin Trp Gln His			
305	310	315	320
30 Ser Asn Ser Pro Gly Gly Ile His His Asp Thr Ala Val Leu Leu Thr			
325	330	335	
Arg Gln Asp Ile Cys Arg Ala His Asp Lys Cys Asp Thr Leu Gly Ile			
340	345	350	
35			
Ala Glu Ile Gly Thr Ile Cys Asp Pro Tyr Arg Ser Cys Ser Ile Ser			
355	360	365	
Glu Asp Ser Gly Leu Ser Thr Ala Phe Thr Ile Ala His Glu Ile Gly			
40 370	375	380	
His Val Phe Asn Met Pro His Asp Asp Asn Asn Lys Cys Lys Glu Glu			
385	390	395	400
45 Gly Val Lys Ser Pro Gln His Val Met Ala Pro Thr Leu Asn Phe Tyr			
405	410	415	
Thr Asn Pro Trp Met Trp Ser Lys Cys Ser Arg Lys Tyr Ile Thr Glu			
420	425	430	
50			
Phe Leu Asp Thr Gly Tyr Gly Glu Cys Leu Leu Asn Glu Pro Glu Ser			
435	440	445	
Arg Pro Tyr Pro Leu Pro Val Gin Leu Pro Gly Ile Leu Tyr Asn Val			
450	455	460	
Asn Lys Gln Kaa Glu Leu Ile Phe Gly Phe Gly Ser Gin Val Cys Pro			
465	470	475	480

	515	520	525
	Met Asp Val Pro Val Thr Asp Gly Ser Trp Gly Ser Trp Ser Pro Phe		
	530	535	540
5	Gly Thr Cys Ser Arg Thr Cys Gly Gly Ile Lys Thr Ala Ile Arg		
	545	550	555
	Glu Cys Asn Arg Pro Glu Pro Lys Asn Gly Gly Lys Tyr Cys Val Gly		
10	565	570	575
	Arg Arg Met Lys Phe Lys Ser Cys Asn Thr Glu Pro Cys Leu Lys Gln		
	580	585	590
	Lys Arg Asp Phe Arg Asp Glu Gln Cys Ala His Phe Asp Gly Lys His		
	595	600	605
	Phe Asn Ile Asn Gly Leu Leu Pro Asn Val Arg Trp Val Pro Lys Tyr		
	610	615	620
20	Ser Gly Ile Leu Met Lys Asp Arg Cys Lys Leu Phe Cys Arg Val Ala		
	625	630	635
	Gly Asn Thr Ala Tyr Tyr Gln Leu Arg Asp Arg Val Ile Asp Gly Thr		
25	645	650	655
	Pro Cys Gly Gln Asp Thr Asn Asp Ile Cys Val Gln Gly Leu Cys Arg		
	660	665	670
	Gln Ala Gly Cys Asp His Val Leu Asn Ser Lys Ala Arg Arg Asp Lys		
	675	680	685
	Cys Gly Val Cys Gly Gly Asp Asn Ser Ser Cys Lys Thr Val Ala Gly		
	690	695	700
35	Thr Phe Asn Thr Val His Tyr Gly Tyr Asn Thr Val Val Arg Ile Pro		
	705	710	715
	Ala Gly Ala Thr Asn Ile Asp Val Arg Gln His Ser Phe Ser Gly Glu		
40	725	730	735
	Thr Asp Asp Asp Asn Tyr Leu Ala Leu Ser Ser Ser Lys Gly Glu Phe		
	740	745	750
	Leu Leu Asn Gly Asn Phe Val Val Thr Met Ala Lys Arg Glu Ile Arg		
	755	760	765
	Ile Gly Asn Ala Val Val Glu Tyr Ser Gly Ser Glu Thr Ala Val Glu		
	770	775	780
50	Arg Ile Asn Ser Thr Asp Arg Arg Ile Glu Glu Glu Leu Leu Glu Val		
	785	790	795
	Leu Ser Val Gly Lys Leu Tyr Asn Pro Asp Val Arg Tyr Ser Phe Asn		
55	805	810	815
	Ile Pro Ile Glu Asp Lys Pro Gln Gln Ile Tyr Trp Asn Ser His Gly		
	820	825	830

865	870	875	880
Gly Cys Asp Leu Arg Trp His Val Ala Ser Arg Ser Glu Cys Ser Ala			
	885	890	895
5	Gln Cys Gly Leu Gly Tyr Arg Thr Leu Asp Ile Tyr Cys Ala Lys Tyr		
	900	905	910
10	Ser Arg Leu Asp Gly Lys Thr Glu Lys Val Asp Asp Gly Phe Cys Ser		
	915	920	925
	Ser His Pro Lys Pro Ser Asn Arg Glu Lys Cys Ser Gly Glu Cys Asn		
	930	935	940
15	Asp Gly Gly Trp Arg Tyr Ser Ala Trp Thr Glu Cys Ser Lys Ser Cys		
	945	950	955
	Asp Gly Gly Thr Gln Arg Arg Ala Ile Cys Val Asn Thr Arg Asn		
	955	970	975
20	Asp Val Leu Asp Asp Ser Lys Cys Thr His Gln Glu Lys Val Thr Ile		
	980	985	990
	Gln Arg Cys Ser Glu Phe Pro Cys Pro Gln Trp Lys Ser Gly Asp Trp		
25	995	1000	1005
	Ser Glu Cys Leu Val Thr Cys Gly Lys His Lys His Ser Gln Val		
	1010	1015	1020
30	Trp Cys Gln Phe Gly Glu Asp Arg Leu Asn Asp Arg Met Cys Asp Pro		
	1025	1030	1035
	Glu Thr Lys Pro Thr Ser Met Gln Thr Cys Gln Gln Pro Glu Cys Ala		
	1045	1050	1055
35	Ser Trp Gln Ala Gly Pro Trp Val Gln Cys Ser Val Thr Cys Gly Gln		
	1060	1065	1070
	Gly Tyr Gln Leu Arg Ala Val Lys Cys Ile Ile Gly Thr Tyr Met Ser		
40	1075	1080	1085
	Val Val Asp Asp Asn Asp Cys Asn Ala Ala Thr Arg Pro Thr Asp Thr		
	1090	1095	1100
45	Gln Asp Cys Glu Leu Pro Ser Cys His Pro Pro Pro Ala Ala Pro Glu		
	1105	1110	1115
	Thr Arg Arg Ser Thr Tyr Ser Ala Pro Arg Thr Gln Trp Arg Phe Gly		
	1125	1130	1135
50	Ser Trp Thr Pro Cys Ser Ala Thr Cys Gly Lys Gly Thr Arg Met Arg		
	1140	1145	1150
	Tyr Val Ser Cys Arg Asp Glu Asn Gly Ser Val Ala Asp Glu Ser Ala		
55	1155	1160	1165
	Cys Ala Thr Leu Pro Arg Pro Val Ala Lys Glu Glu Cys Ser Val Thr		
	1170	1175	1180

	1220	1225	1230
	Thr Asp Gln Asp Cys Ser Met Ser Pro Cys Pro Gln Arg Thr Pro Asp		
	1235	1240	1245
5	Ser Gly Leu Ala Gln His Pro Phe Gln Asn Glu Asp Tyr Arg Pro Arg		
	1250	1255	1260
	Ser Ala Ser Pro Ser Arg Thr His Val Leu Gly Gly Asn Gln Trp Arg		
10	1265	1270	1275
	Thr Gly Pro Trp Gly Ala Cys Ser Ser Thr Cys Ala Gly Gly Ser Gln		
	1285	1290	1295
15	Arg Arg Val Val Val Cys Gln Asp Glu Asn Gly Tyr Thr Ala Asn Asp		
	1300	1305	1310
	Cys Val Glu Arg Ile Lys Pro Asp Glu Gln Arg Ala Cys Glu Ser Gly		
	1315	1320	1325
20	Pro Cys Pro Gln Trp Ala Tyr Gly Asn Trp Gly Glu Cys Thr Lys Leu		
	1330	1335	1340
	Cys Gly Gly Gly Ile Arg Thr Arg Leu Val Val Ser Gln Arg Ser Asn		
25	1345	1350	1355
	Gly Glu Arg Phe Pro Asp Leu Ser Cys Glu Ile Leu Asp Lys Pro Pro		
	1365	1370	1375
30	Asp Arg Glu Gln Cys Asn Thr His Ala Cys Pro His Asp Ala Ala Trp		
	1380	1385	1390
	Ser Thr Gly Pro Trp Ser Ser Cys Ser Val Ser Cys Gly Arg Gly His		
	1395	1400	1405
35	Lys Gln Arg Asn Val Tyr Cys Met Ala Lys Asp Gly Ser His Leu Glu		
	1410	1415	1420
	Ser Asp Tyr Cys Lys His Leu Ala Lys Pro His Gly His Arg Lys Cys		
40	1425	1430	1435
	Arg Gly Gly Arg Cys Pro Lys Trp Lys Ala Gly Ala Trp Ser Gln Cys		
	1445	1450	1455
45	Ser Val Ser Met Gly Arg Gly Val Gln Gln Arg His Val Gly Cys Glu		
	1460	1465	1470
	Ile Gly Thr His Lys Ile Ala Arg Glu Thr Glu Cys Asn Pro Tyr Thr		
	1475	1480	1485
50	Arg Pro Glu Ser Glu Cys Glu Cys Gln Gly Pro Arg Cys Pro Leu Tyr		
	1490	1495	1500
	Thr Trp Arg Ala Glu Glu Trp Glu Cys Thr Lys Thr Cys Gly Glu		
55	1505	1510	1515
	Gly Ser Arg Tyr Arg Lys Val Val Cys Val Asp Asp Asn Lys Asn Glu		
	1525	1530	1535

	1570	1575	1580
	Ser Cys Ser Glu Ile Tyr Thr Gly Lys Glu Asn Tyr Glu Tyr Ser Tyr		
1585	1590	1595	1600
5	Gln Thr Thr Ile Asn Cys Pro Gly Thr Gln Pro Pro Ser Val His Pro		
	1605	1610	1615
	Cys Tyr Leu Arg Glu Cys Pro Val Ser Ala Thr Trp Arg Val Gly Asn		
10	1620	1625	1630
	Trp Gly Ser Cys Ser Val Ser Cys Gly Val Gly Val Met Gln Arg Ser		
	1635	1640	1645
	15 Val Gln Cys Leu Thr Asn Glu Asp Gln Pro Ser His Leu Cys His Thr		
	1650	1655	1660
	Asp Leu Lys Pro Glu Glu Arg Lys Thr Cys Arg Asn Val Tyr Asn Cys		
1665	1670	1675	1680
20	Glu Leu Pro Gln Asn Cys Lys Glu Val Lys Arg Leu Lys Gly Ala Ser		
	1685	1690	1695
	Glu Asp Gly Glu Tyr Phe Leu Met Ile Arg Gly Lys Leu Leu Lys Ile		
25	1700	1705	1710
	Phe Cys Ala Gly Met His Ser Asp His Pro Lys Glu Tyr Val Thr Leu		
	1715	1720	1725
	30 Val His Gly Asp Ser Glu Asn Phe Ser Glu Val Tyr Gly His Arg Leu		
	1730	1735	1740
	His Asn Pro Thr Glu Cys Pro Tyr Asn Gly Ser Arg Arg Asp Asp Cys		
1745	1750	1755	1760
35	Gln Cys Arg Lys Asp Tyr Thr Ala Ala Gly Phe Ser Ser Phe Gln Lys		
	1765	1770	1775
	Ile Arg Ile Asp Leu Thr Ser Met Gln Ile Ile Thr Thr Asp Leu Gln		
40	1780	1785	1790
	Phe Ala Arg Thr Ser Glu Gly His Pro Val Pro Phe Ala Thr Ala Gly		
	1795	1800	1805
	45 Asp Cys Tyr Ser Ala Ala Lys Cys Pro Gln Gly Arg Phe Ser Ile Asn		
	1810	1815	1820
	Ile Tyr Gly Thr Gly Ile Ser Leu Thr Gln Ser Ala Arg Tyr Ile Ser		
	1825	1830	1835
50	Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser Pro Asp Gly Thr		
	1845	1850	1855
	Arg Val Val Gly Lys Cys Gly Gly Tyr Cys Gly Lys Cys Thr Pro Ser		
55	1860	1865	1870
	Ser Gly Thr Gly Leu Glu Val Arg Val Leu		
	1875	1880	1885

<220>
<221> CDS
<222> (2)....2623:

5 <400> 14
g cac act gcg gtc atc aac ctg tgc tcc gga atg atg ggc aac ttc cgc 49
His Thr Ala Val Ile Ser Leu Cys Ser Gly Met Met Gly Thr Phe Arg
1 5 10 15

10 tct cac gat gga gat tat ttc att gaa cca ctg cag tct gtg gat gag 97
Ser His Asp Gly Asp Tyr Phe Glu Pro Leu Gln Ser Val Asp Glu
20 25 30

caa gag gat gaa gag gaa caa aac aaa ccc cac att att tat agg cac 145
15 Gln Glu Asp Glu Glu Gln Asn Lys Pro His Ile Ile Tyr Arg His
35 40 45

20 agc acc cct cag agg gaa ccc tcc aca gga aag cat gcc tgc gcc acc 193
Ser Thr Pro Gin Arg Glu Pro Ser Thr Gly Lys His Ala Cys Ala Thr
50 55 60

25 tca gaa ctc aaa aat aat cac agt aaa gac aag cgg aaa atc aga atg 241
Ser Glu Leu Lys Asn Ser His Ser Lys Asp Lys Arg Lys Ile Arg Met
65 70 75 80

30 cga aaa cgg aga aag agg aat aac ctg gct gac gac gtg gca ctg cta 289
Arg Lys Arg Arg Lys Arg Asn Ser Leu Ala Asp Asp Val Ala Leu Leu
85 90 95

35 aag aac ggt ttg gca aca aag stg ctc tct ggc tat aac aac cag aca 337
Lys Ser Gly Leu Ala Thr Lys Val Leu Ser Gly Tyr Ser Asn Gln Thr
100 105 110

40 aac aac aca agg sac aga tgg aac cac aaa aga acc aaa cgc ttt ctg 385
Asn Asn Thr Arg Asp Arg Trp Asn His Lys Arg Thr Lys Arg Phe Leu
115 120 125

45 tcc tac cca cgg ttt gta gag stg atg gtg stg gct gac cac agg atg 433
Ser Tyr Pro Arg Phe Val Glu Val Met Val Val Ala Asp His Arg Met
130 135 140

50 gtt tta tac cat gga gca aac ctt caa cat tat atc tta acc tta atg 481
Val Leu Tyr His Gly Ala Asn Leu Gln His Tyr Ile Leu Thr Leu Met
145 150 155 160

55 tcc att gta gct tct atc tat aac gac tca agt att gga aat tta att 529
Ser Ile Val Ala Ser Ile Tyr Lys Asp Ser Ser Ile Gly Asn Leu Ile
165 170 175

60 lit att gtt att gtc dac tta gtc att dat mal gaa cug gaa gga 577
Asn Ile Val Ile Val Asn Leu Val Val Ile His Asn Glu Gln Glu Gly
180 185 190

65 cct tac ata aat ttc aat gcc cag aca aca tta aag aac ttt tgc cag 625
Pro Tyr Ile Asn Phe Asn Ala Gln Thr Thr Leu Lys Asn Phe Cys Gln
195 200 205

70 acc tta agt ttt gct gaa tgg tgg aac att tgg gac ttt ttt tgg aac 673

Thr	Leu	Gly	Leu	Ala	Glu	Leu	Gly	Thr	Ile	Cys	Asp	Pro	Tyr	Arg	Ser	
245								250					255			
tgt	tcc	att	agt	gaa	gac	agt	ggg	ctg	agg	aca	gtc	ttc	aca	ata	gtc	
5	Cys	Ser	Ile	Ser	Glu	Asp	Ser	Gly	Leu	Ser	Thr	Ala	Phe	Thr	Ile	Ala
								260				265			270	
cac	gag	ctg	ggc	cat	gtg	ttt	aat	atg	cct	cac	gat	gac	agc	aat	aaa	
His	Glu	Leu	Gly	His	Val	Phe	Asn	Met	Pro	His	Asp	Asp	Ser	Asn	Lys	
10								275				280			285	
tgc	aaa	gaa	gaa	gga	gtt	aag	agt	ccc	cag	cat	gtc	atg	gca	cca	aca	
Cys	Lys	Glu	Glu	Gly	Val	Lys	Ser	Pro	Gln	His	Val	Met	Ala	Pro	Thr	
								290				295			300	
15	ctg	aac	tcc	tac	acc	aac	ccc	tgg	atg	tgg	tca	aag	tgc	agt	cgg	aaa
Leu	Asn	Phe	Tyr	Thr	Asn	Pro	Trp	Met	Trp	Ser	Lys	Cys	Ser	Arg	Lys	
								305				310			315	
20	tac	atc	act	gag	tcc	cta	gac	act	ggg	tac	gga	gag	tgc	ttg	ctg	aat
Tyr	Ile	Thr	Glu	Phe	Leu	Asp	Thr	Gly	Tyr	Gly	Glu	Cys	Leu	Leu	Asn	
								325				330			335	
25	gaa	cct	gca	tcc	agg	acc	tat	cct	ttg	cct	tcc	caa	ctg	ccc	ggc	ctt
Glu	Pro	Ala	Ser	Arg	Thr	Tyr	Pro	Leu	Pro	Ser	Gln	Leu	Pro	Gly	Leu	
								340				345			350	
30	ctc	tac	aac	gtg	aat	aaa	caa	tgt	gaa	ctg	att	ttt	ggg	cca	ggc	tct
Ieu	Tyr	Asn	Val	Asn	Lys	Gln	Cys	Glu	Leu	Ile	Phe	Gly	Pro	Gly	Ser	
								355				360			365	
35	caa	gtg	tgc	ccc	tat	atg	atg	cag	tgc	aga	cgg	ctc	tgg	tgc	aat	aat
Gln	Val	Cys	Pro	Tyr	Met	Met	Gln	Cys	Arg	Arg	Leu	Trp	Cys	Asn	Asn	
								370				375			380	
40	gtg	gat	gga	gca	cac	aaa	ggc	tgc	aaq	act	cag	cac	acg	ccc	tgg	gca
Val	Asp	Gly	Ala	His	Lys	Gly	Cys	Lys	Thr	Gln	His	Thr	Pro	Trp	Ala	
								385				390			400	
45	gat	gga	acc	gag	tgt	gag	cct	gga	aag	cac	tgc	aag	ttt	ttt	tgt	
Asp	Gly	Thr	Glu	Pys	Glu	Pro	Gly	Lys	His	Cys	Lys	Phe	Gly	Phe	Cys	
								405				410			415	
50	gtt	ccc	aaa	gaa	atg	gas	ggc	cct	gca	att	gtt	gga	tcc	tgg	gga	ggt
Val	Frc	Lys	Glu	Met	Glu	Gly	Pro	Ala	Ile	Asp	Gly	Ser	Trp	Gly	Gly	
								420				425			430	
55	tgg	agg	cac	ttt	ggg	acc	tgc	tca	aga	acg	tgt	ggg	ggc	atc	aaa	
Trp	Ser	His	Phe	Gly	Thr	Sys	Ser	Arg	Thr	Cys	Gly	Gly	Ile	Lys		
								435				440			445	
60	aca	ggc	atc	aga	gag	tgc	aac	aga	cca	aaa	aat	gtt	ggg	aag		
Thr	Ala	Ile	Arg	Glu	Dys	Asn	Arg	Pro	Gls	Pro	Lys	Asn	Gly	Gly	Lys	
								450				455			460	
65	tac	tgt	gta	gga	agg	aga	atg	aag	ttt	aaa	tcc	tgc	aac	acg	gag	ccc
Tyr	Dys	Val	Gly	Arg	Arg	Met	Lys	Ile	Lys	Ser	Cys	Asn	Thr	Glu	Prc	
								465				470			475	

¹ مکالمہ احمد بن حنبل، جلد ۲، ص ۱۷۰، مطبوعہ مکالمہ احمد بن حنبل، دہلی، ۱۹۶۳ء۔

Ala Cys Gly Thr Asp Cys Asp Leu Arg Trp His Val Ala Ser Lys Ser
 770 775 780

gaa tgc aat gcc cag tgt ggt ttg ggc tac cgt act tta gac atc cac 2401
 5 Clu Cys Ser Ala Gin Cys Gly Leu Gly Tyr Arg Thr Leu Asp Ile His
 785 790 795 800

tgt gcc aaa tac agc agg atg gac ggg aag acg gag aag gtg gat gac 2449
 Cys Ala Lys Tyr Ser Arg Met Asp Gly Lys Thr Glu Lys Val Asp Asp
 10 805 810 815

aat ttc tgt agc aat caa ccc aga ccg aat aac cag gag aaa tgc tca 2497
 Ser Phe Cys Ser Ser Gln Pro Arg Prc Ser Asn Gln Glu Lys Cys Ser
 820 825 830

15 gga gag tgc aat aca ggt gga tgg cgc tat tca gcc tgg acc gaa tgt 2545
 Gly Glu Cys Ser Thr Gly Gly Trp Arg Tyr Ser Ala Trp Thr Glu Cys
 835 840 845

20 tct aca aat gat ggt ggt acc cac aca aca aca att tgt gtc 2593
 Ser Arg Ser Cys Asp Gly Gly Thr His Arg Arg Ala Ile Cys Val
 850 855 860

aac acc cgc aat gat gtc ctg gat gac aat aa 2625
 25 Asn Thr Arg Asn Asp Val Leu Asp Asp Ser
 865 870

<210> 15
 30 <211> 674
 <212> PRT
 <213> Mus musculus ADAMTS-9

<400> 15
 35 His Thr Ala Val Ile Ser Leu Cys Ser Gly Met Met Gly Thr Phe Arg
 1 5 10 15

Ser His Asp Gly Asp Tyr Phe Ile Glu Pro Leu Gln Ser Val Asp Glu
 20 25 30

40 Gln Glu Asp Glu Glu Gln Asn Lys Pro His Ile Ile Tyr Arg His
 35 40 45

Ser Thr Pro Gln Arg Gln Pro Ser Thr Gly Lys His Ala Cys Ala Thr
 45 50 55 60

Ser Gln Leu Lys Asn Ser His Ser Lys Asp Lys Arg Lys Ile Arg Met
 65 70 75 80

50 Arg Lys Arg Arg Lys Arg Asn Ser Leu Ala Asp Asp Val Ala Leu Lys
 85 90 95

Lys Ser Gly Leu Ala Thr Lys Val Leu Ser Gly Tyr Ser Asn Gln Thr
 100 105 110

55 Asn Asn Thr Arg Asp Arg Trp Asn His Lys Arg Thr Lys Arg Arg Phe Leu
 115 120 125

Asn Ile Val Ile Val Asn Leu Val Val Ile His Asn Glu Gln Gly
 180 185 190

5 Pro Tyr Ile Asn Phe Asn Ala Gln Thr Thr Leu Lys Asn Phe Cys Gln
 195 200 205

Trp Gln His Ser Lys Asn Tyr Leu Gly Gly Ile Gln His Asp Thr Ala
 210 215 220

10 Val Leu Val Thr Arg Glu Asp Ile Cys Arg Ala Gln Asp Lys Cys Asp
 225 230 235 240

Thr Leu Gly Leu Ala Glu Leu Gly Thr Ile Cys Asp Pro Tyr Arg Ser
 15 245 250 255

Cys Ser Ile Ser Glu Asp Ser Gly Leu Ser Thr Ala Phe Thr Ile Ala
 260 265 270

20 His Glu Leu Gly His Val Phe Asn Met Pro His Asp Asp Ser Asn Lys
 275 280 285

Cys Lys Glu Glu Gly Val Lys Ser Pro Gln His Val Met Ala Pro Thr
 290 295 300

25 Leu Asn Phe Tyr Thr Asn Pro Trp Met Trp Ser Lys Cys Ser Arg Lys
 305 310 315 320

Tyr Ile Thr Glu Phe Leu Asp Thr Gly Tyr Gly Glu Cys Leu Leu Asn
 30 325 330 335

Glu Pro Ala Ser Arg Thr Tyr Pro Leu Pro Ser Gln Leu Pro Gly Leu
 340 345 350

35 Leu Tyr Asn Val Asn Lys Gln Cys Glu Leu Ile Phe Gly Pro Gly Ser
 355 360 365

Gln Val Cys Pro Tyr Met Met Gln Cys Arg Arg Leu Trp Cys Asn Asn
 370 375 380

40 Val Asp Gly Ala His Lys Gly Cys Lys Thr Gln His Thr Pro Trp Ala
 385 390 395 400

Asp Gly Thr Glu Cys Glu Pro Gly Lys His Cys Lys Phe Gly Phe Cys
 415 410 415

Val Pro Lys Glu Met Glu Gly Pro Ala Ile Asp Gly Ser Trp Gly Gly
 420 425 430

45 Thr Ser His Phe Gly Thr Cys Ser Arg Thr Cys Gly Gly Ile Lys
 435 440 445

Thr Ala Ile Arg Glu Cys Asn Arg Pro Glu Pro Lys Asn Gly Gly Lys
 450 455 460

50 Tyr Cys Val Gly Arg Arg Met Dls Phe Lys Ser Cys Asn Thr Glu Pro
 465 470 475 480

Cys Arg Val Ala Gly Asn Thr Ala Tyr Tyr Gln Leu Arg Asp Arg Val
 530 535 540
 5 Ile Asp Gly Thr Pro Cys Gly Gln Asp Thr Asn Asp Ile Cys Val Gln
 545 550 555 560
 Gly Leu Cys Arg Gln Ala Gly Cys Asp His Ile Leu Asn Ser Lys Val
 565 570 575
 10 Arg Lys Asp Lys Cys Gly Ile Cys Gly Asp Asn Ser Ser Cys Lys
 580 585 590
 Thr Val Ala Gly Thr Phe Asn Thr Val His Tyr Gly Tyr Asn Thr Val
 15 595 600 605
 Val Arg Ile Pro Ala Gly Ala Thr Ser Ile Asp Val Arg Gln His Ser
 610 615 620
 20 Phe Ser Gly Lys Ser Glu Asp Asp Asn Tyr Leu Ala Leu Ser Asn Ser
 625 630 635 640
 Lys Gly Glu Phe Leu Leu Asn Gly Asp Phe Val Val Ser Met Ser Lys
 645 650 655
 25 Arg Glu Val Arg Val Gly Ser Ala Val Ile Glu Tyr Ser Gly Ser Asp
 660 665 670
 Asn Val Cys Glu Arg Leu Asn Cys Thr Asp Arg Ile Glu Glu Glu Leu
 30 675 680 685
 Leu Leu Gln Val Leu Ser Val Gly Lys Leu Tyr Asn Pro Asp Val Arg
 690 695 700
 35 Tyr Ser Phe Asn Ile Pro Ile Glu Asp Lys Pro Gln Gln Phe Tyr Trp
 705 710 715 720
 Asn Ser His Gly Pro Trp Gln Ala Cys Ser Lys Pro Cys Gln Gly Glu
 725 730 735
 40 Arg Arg Pro Lys Leu Val Cys Thr Arg Glu Ser Asp Gln Leu Thr Val
 740 745 750
 Ser Asp Gln Arg Cys Asp Arg Leu Pro Gln Pro Gly Pro Val Thr Glu
 755 760 765
 Ala Cys Gly Thr Asp Cys Asp Leu Arg Trp His Val Ala Ser Lys Ser
 770 775 780
 50 Gln Cys Ser Ala Gln Cys Gly Leu Gly Tyr Arg Thr Leu Asp Ile His
 785 790 795 800
 Cys Ala Lys Tyr Ser Arg Met Asp Gly Lys Thr Glu Lys Val Asp Asp
 805 810 815
 55 Ser Phe Cys Ser Ser Gln Pro Arg Pro Ser Asn Gln Gln Lys Cys Ser
 820 825 830

Leu	Lys	Arg	Ser	Val	Ser	Arg	Glu	Arg	Tyr	Val	Glu	Thr	Met	Asp	Val	
210						215					220					
5	Ser	Gly	Aac	Atg	Gtg	Gcc	Tat	Cac	Ggg	Cgc	Cgg	Gat	Gtg	Gag	Cag	
Ala	Asp	Lys	Met	Met	Val	Ala	Tyr	His	Gly	Arg	Arg	Asp	Val	Cln	720	
225						230					235				240	
10	Tat	Gtc	Ctg	Gcc	Atc	Atg	Aac	Att	Gtt	Gcc	Aaa	Ctt	Ttc	Cag	Gac	768
	Tyr	Val	Leu	Ala	Ile	Met	Asn	Ile	Val	Ala	Lys	Leu	Phe	Gln	Asp	Ser
	245					250					255				255	
15	Agc	Ctg	Gga	Agc	Acc	Gtc	Gtt	Aac	Atc	Ctc	Act	Cgc	Ctc	Atc	Ctg	816
Ser	Leu	Gly	Ser	Thr	Val	Asn	Ile	Leu	Val	Thr	Arg	Leu	Ile	Leu	Ieu	
	260					265					270					
20	Acg	Gag	Gac	Cag	Ccc	Act	Ctg	Gag	Atc	Acc	Cac	Cat	Gcc	Ggg	Aag	784
Leu	Asp	Glu	Asp	Gln	Pro	Thr	Leu	Glu	Ile	Thr	His	His	Ala	Gly	Ilys	Ser
	275					280					285					
25	Cta	Gac	Agc	Ttc	Tgt	Aag	Tgg	Cag	Aaa	Tcc	Atc	Gtg	Aac	Cac	Agc	912
Leu	Asp	Ser	Phe	Cys	Lys	Trp	Gln	Lys	Ser	Ile	Val	Asn	His	Ser	Gly	
	290					295					300					
30	Cat	Ggc	Aat	Gcc	Att	Cca	Gag	Aac	Ggt	Gct	Aac	Cat	Gac	Aca	Gca	960
His	Gly	Asn	Ala	Ile	Pro	Glu	Asn	Gly	Val	Ala	Asn	His	Asp	Thr	Ala	
	305					310					315				320	
35	Gtg	Ctc	Atc	Aca	Cgc	Tat	Gac	Atc	Tgc	Atc	Tac	Aag	Aac	Aaa	Ccc	1008
Val	Leu	Ile	Thr	Arg	Tyr	Asp	Ile	Cys	Ile	Tyr	Lys	Asn	Lys	Pro	Cys	
	320					325					330				335	
40	Ggc	Aca	Cta	Ggc	Ctg	Gcc	Cgg	Tgg	Gcg	Gaa	Tgt	Gtg	Agc	Gcg	Aga	1056
Gly	Thr	Leu	Gly	Leu	Ala	Arg	Trp	Ala	Glu	Cys	Val	Ber	Ala	Arg	Glu	
	340					345					350					
45	Gtc	Gca	Gcg	Tca	Atg	Agg	Aca	Ttg	Gct	Gcc	Aca	Agc	Gtt	Cac	Atc	1104
Ala	Ala	Ala	Ser	Met	Arg	Thr	Leu	Ala	Ala	Thr	Ser	Val	His	His	Cys	
	355					360					365					
50	Cac	Gag	Atc	Ggg	Cac	Aca	Ttc	Ggc	Atg	Aac	Cat	Gac	Ggc	Gtg	Gga	1152
His	Glu	Ile	Gly	His	Thr	Phe	Gly	Met	Asn	His	Asp	Gly	Val	Gly	Asn	
	370					375					380					
55	Agc	Tgt	Ggg	Gcc	Cgt	Ggt	Cag	Gac	Cca	Aag	Ctc	Atg	Gct	Gcc	Cac	1200
Ser	Cys	Gly	Ala	Arg	Gly	Bln	Asp	Pro	Ala	Lys	Leu	Met	Ala	Ala	His	
	385					390					395				400	
60	Att	Acc	Arg	Aag	Act	Aac	Cca	Ttc	Gtg	Tta	Tcc	Tgc	Aac	Cgt	Gac	1248
Ile	Thr	Met	Lys	Thr	Asn	Pro	Phe	Val	Trp	Sei	Ser	Cys	Asn	Arg	Asp	
	405					410					415					
65	Tac	Atc	Acc	Arg	Ttt	Cia	Gac	Tcg	Ggc	Ctg	Ggg	Ctc	Tgc	Ctg	Aac	1296
Tyr	Ile	Thr	Ser	Phe	Leu	Asp	Ser	Gly	Leu	Gly	Leu	Cys	Leu	Asn	Asn	
	420					425					430					
70	Ggg	Ccc	Ccc	Agc	Cag	Gac	Ttt	Gtg	Tac	Ccg	Aca	Gca	Cgg	Ggg	Caa	1344
Arg	Pro	Pro	Arg	Gln	Asp	Phe	Val	Tyr	Pro	Thr	Val	Ala	Pro	Gly	Gln	
	435					440					445					

It is also important to note that the term "soft power" is often used in a more general sense to refer to the ability of a country to influence other countries through its culture, politics, and economy.

Leu	Pro	Gly	Thr	Pro	Gln	Pro	His	Arg	Leu	Pro	Leu	Ala	Gly	Thr	Thr	
740									745					750		
ttt caa ctg cga cag ggg cca gac cag gtc cag agc ctc gaa gcc ctg															2304	
5	Phe	Gln	Leu	Arg	Gln	Gly	Pro	Asp	Gln	Val	Gln	Ser	Leu	Glu	Ala	Leu
	755							760					765			
sga ccg att aat gca tct ctc atc gtc atg gtg ctg gcc cgg acc gag															2352	
Gly	Prc	Ile	Asn	Ala	Ser	Leu	Ile	Val	Met	Val	Leu	Ala	Arg	Thr	Glu	
10		770					775				780					
ctg cct gcc ctc cgc tac cgc ttc aat gcc ccc atc gcc cgt gac tcg															2400	
Leu	Pro	Ala	Leu	Arg	Tyr	Arg	Phe	Asn	Ala	Pro	Ile	Ala	Arg	Asp	Ser	
15		785			790				795				800			
ctg ccc ccc tac tcc tgg cac tat gcg ccc tgg acc aag tgc tcc gcc															2448	
Leu	Pro	Pro	Tyr	Ser	Trp	His	Tyr	Ala	Pro	Trp	Thr	Lys	Cys	Ser	Ala	
	805						810				815					
20 cag tgt gca ggc ggt agc cag gtg cag gcg gtg gag tgc cgc aac cag															2496	
Gln	Cys	Ala	Gly	Gly	Ser	Gln	Val	Gln	Ala	Val	Glu	Cys	Arg	Asn	Gln	
	820						825				830					
ctg gac agc tcc gcg gtc gcc ccc cac tac tgc agt gcc cac agc aag															2544	
25	Leu	Asp	Ser	Ser	Ala	Val	Ala	Pro	His	Tyr	Cys	Ser	Ala	His	Ser	Lys
	835						840				845					
ctg ccc aaa agg cag cgg gcc tgc aac acg gag cct tgc cct cca gag															2592	
Leu	Pro	Lys	Arg	Gln	Arg	Ala	Cys	Asn	Thr	Glu	Pro	Cys	Pro	Pro	Asp	
30		850					855				860					
tgg ctt gta ggg aac tgg tgc ctc tgc agc cgc agc tgc gat gca ggc															2640	
Trp	Val	Val	Gly	Asn	Trp	Ser	Leu	Cys	Ser	Arg	Ser	Cys	Asp	Ala	Gly	
35		865			870			875				880				
gtg cgc agt acg tcg gtc gtg tgc cag cgg cgc gtc tct gcc gcg gag															2688	
Val	Arg	Ser	Thr	Ser	Val	Val	Cys	Gln	Arg	Arg	Val	Ser	Ala	Ala	Glu	
	885						890				895					
40 gag aag gcg ctg gac gac gca tgc ccc cag cgg cgc cca cct gta															2736	
Glu	Lys	Ala	Leu	Asp	Ser	Ala	Cys	Pro	Gln	Pro	Arg	Pro	Pro	Val		
	900						905				910					
ctg gag gcc tgc tac ggg ccc act tgc cct ccc gag tgg gca aac ctc															2784	
45	Leu	Glu	Ala	Cys	His	Gly	Pro	Thr	Cys	Pro	Pro	Glu	Trp	Ala	Thr	Leu
	915						920				925					
gac tgg tct gag tct aca aca aca tgg ggg cat ggt ctc cgc tac cga															2832	
Asp	Trp	Ser	Glu	Cys	Thr	Pro	Ser	Cys	Gly	Pro	Gly	Ieu	Arg	His	Arg	
50		930			935			940				945				
gtg gtc ctt tgt aag aca gat cca cga tct act ctg ccc cct ggg															2880	
Vai	Val	Lew	Cys	Lys	Ser	Ala	Asp	Gln	Arg	Ser	Thr	Leu	Pro	Pro	Gly	
	945			950			955				960					
55 gac tgg ctt cct gca ggc aag fca cca tct act atg cga tat gac ttg															2928	
His	Cys	Leu	Pro	Ala	Ala	Lys	Pro	Pro	Ser	Thr	Met	Arg	Cys	Asn	Leu	
	965			970			975				980					

After the Sun sets Day 2nd May 2011. Sun Aries Star Val Argo Days TRI
2011 2012 2013

agc cac acc ggc cag cca tct cga gag tgc act gaa gcc ttc cgg cca 3072
 Ser His Thr Gly Gln Pro Ser Arg Glu Cys Thr Glu Ala Leu Arg Pro
 1010 1015 1020
 5 tcc acc atg cag cag tgt gag gcc aag tgt gag aat gtg gtc ccc cct 3100
 Ser Thr Met Gln Gln Cys Glu Ala Lys Cys Asp Ser Val Val Pro Pro
 1025 1030 1035 1040
 10 gga gat ggc cca gaa gaa tgc aag gat gtg aac aag gtg gct tac tgc 3169
 Gly Asp Gly Pro Glu Glu Cys Lys Asp Val Asn Lys Val Ala Tyr Cys
 1045 1050 1055
 15 ccc ctg gtg ctc aaa ttt cag ttc tgt agc cga gcc tac ttc ccc cag 3216
 Pro Leu Val Lys Phe Gln Phe Cys Ser Arg Ala Tyr Phe Arg Gln
 1060 1065 1070
 20 atg tgc tgc aaa acc tgc caa ggc cgc tag ggtacctgga accaacacctgg 3266
 Met Cys Cys Lys Thr Cys Gln Gly Arg
 1075 1080
 agcacaggct gaggcagggg acatccact ggagagggca tgagggaaag gggggcttga 3326
 attgaagggt gagatgcagt taaaagttat ttattggta accctacagg gtcctgact 3386
 25 aagggggtggaa gaagagctgg ctaccctggg accctctgtt gtatcttccc cagttgatag 3446
 tgaagagaga ggactccttg ttgcacacat atttaagtcc ctgcacccc tccccccctt 3506
 30 tgatcgaaat atgtacttgt aagagttgggg gtgggggggg gtgtgtgtgtt gcccgtcccc 3566
 ttgcacgtt ctatccctac actctgagct ggggggattt atatctgtca tgggggggggt 3626
 aggctttata ccacccccc gtggccctcc cccagactga cgaagggggaa gatccacccc 3686
 35 aacccctggcc ctgcctgccc cagggggggag ttcaacatcc aggccgttcc ccatcatgtt 3746
 gctacaagcc ctgcctgggg gccccacacac tcctcaccaa gaagccttac attaaaaaaag 3806
 40 ttgtgtttatc ctacaaaaaa aaaaaaaaaac tcgaggggggg gccccgttacc caattcgccg 3866
 tatagtaaat nnnnnntta 3885
 45 <210> 17
 <211> 1081
 <212> PRT
 <213> Homo sapiens ALAMTS 11
 50 <400> 17
 Ser Arg Thr Pro Ser Gly Leu Lys Met Ser Ser Cys Pro Val Trp Arg
 1 5 10 15
 Ala Met Arg Ser Pro Ser Pro Ala Trp Thr Thr Gly His Cys
 20 25 30
 55 Trp Pro Ser Arg His Leu Leu Pro Gly Ala Ala Pro Arg His Gly Gly
 35 40 45
 His Ser Arg Val Pro Pro Leu Leu Gln Ser Gly Leu Ala Ser Thr His
 50 55 60

Ala Asp Glu Glu Glu Tyr Leu Ile Glu Pro Leu His Gly Gly Pro Lys
 130 135 140
 Gly Ser Arg Ser Pro Glu Glu Ser Gly Pro His Cys Val Tyr Lys Arg
 145 150 155 160
 5 Ser Ser Leu Arg His Pro His Leu Asp Thr Ala Cys Gly Val Arg Asp
 165 170 175
 Glu Lys Pro Trp Lys Gly Arg Pro Trp Trp Leu Arg Thr Leu Lys Pro
 180 185 190
 Pro Pro Ala Arg Pro Leu Gly Asn Glu Thr Glu Arg Gly Gln Pro Gly
 10 195 200 205
 Leu Lys Arg Ser Val Ser Arg Glu Arg Tyr Val Glu Thr Met Asp Val
 210 215 220
 Ala Asp Lys Met Met Val Ala Tyr His Gly Arg Arg Asp Val Glu Gln
 225 230 235 240
 15 Tyr Val Leu Ala Ile Met Asn Ile Val Ala Lys Leu Phe Gln Asp Ser
 245 250 255
 Ser Leu Gly Ser Thr Val Asn Ile Leu Val Thr Arg Leu Ile Leu Leu
 260 265 270
 Thr Glu Asp Gln Pro Thr Leu Glu Ile Thr His His Ala Gly Lys Ser
 275 280 285
 20 Leu Asp Ser Phe Cys Lys Trp Gln Lys Ser Ile Val Asn His Ser Gly
 290 295 300
 His Gly Asn Ala Ile Pro Glu Asn Gly Val Ala Asn His Asp Thr Ala
 305 310 315 320
 25 Val Leu Ile Thr Arg Tyr Asp Ile Cys Ile Tyr Lys Asn Lys Pro Cys
 325 330 335
 Gly Thr Leu Gly Leu Ala Arg Trp Ala Glu Cys Val Ser Ala Arg Glu
 340 345 350
 Ala Ala Ala Ser Met Arg Thr Leu Ala Ala Thr Ser Val His His Cys
 355 360 365
 His Glu Ile Gly His Thr Phe Gly Met Asn His Asp Gly Val Gly Asn
 370 375 380
 Ser Cys Gly Ala Arg Gly Gln Asp Pro Ala Lys Leu Met Ala Ala His
 385 390 395 400
 35 Ile Thr Met Lys Thr Asn Pro Phe Val Trp Ser Ser Cys Asn Arg Asp
 405 410 415
 Tyr Ile Thr Ser Phe Leu Asp Ser Gly Leu Gly Leu Cys Leu Asn Asn
 420 425 430
 Arg Pro Pro Arg Gln Asp Phe Val Tyr Pro Thr Val Ala Pro Gly Gln
 435 440 445
 40 Ala Tyr Asp Ala Asp Glu Gln Cys Arg Phe Gln His Gly Val Lys Ser
 450 455 460
 Arg Gln Cys Lys Tyr Gly Glu Val Cys Ser Glu Leu Trp Cys Leu Ser
 465 470 475 480
 45 Lys Ser Asn Arg Cys Ile Thr Asn Ser Ile Pro Ala Ala Glu Gly Thr
 485 490 495
 Leu Cys Gln Thr His Thr Ile Asp Lys Gly Trp Cys Tyr Lys Arg Val
 500 505 510
 Cys Val Pro Phe Gly Ser Arg Pro Gln Gly Val Asp Gly Ala Trp Gly
 515 520 525
 50 Pro Trp Thr Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val
 530 535 540
 Ser Ser Ser Ser Arg His Cys Asp Ser Pro Arg Pro Thr Ile Gly Gly
 545 550 555 560
 55 Lys Tyr Cys Leu Gly Glu Arg Arg Arg His Arg Ser Cys Asn Thr Asp
 565 570 575
 Asp Cys Pro Pro Gly Ser Gln Asp Phe Arg Glu Val Gln Cys Ala Glu
 580 585 590

Val Gly Cys Asp Arg Val Leu Gly Ser Asp Leu Arg Glu Asp Lys Cys
 660 665 670
 Arg Val Cys Gly Gly Asp Gly Ser Ala Cys Glu Thr Ile Glu Gly Val
 675 680 685
 5 Phe Ser Pro Ala Ser Pro Gly Ala Gly Tyr Glu Asp Val Val Trp Ile
 690 695 700
 Pro Lys Gly Ser Val His Ile Phe Ile Gln Asp Leu Asn Leu Ser Leu
 705 710 715 720
 Ser His Leu Ala Leu Lys Gly Asp Gln Glu Ser Leu Leu Leu Glu Gly
 10 725 730 735
 Leu Pro Gly Thr Pro Gln Pro His Arg Leu Pro Leu Ala Gly Thr Thr
 740 745 750
 Phe Gln Leu Arg Gln Gly Pro Asp Gln Val Gln Ser Leu Glu Ala Leu
 755 760 765
 15 Gly Pro Ile Asn Ala Ser Leu Ile Val Met Val Leu Ala Arg Thr Glu
 770 775 780
 Leu Pro Ala Leu Arg Tyr Arg Phe Asn Ala Pro Ile Ala Arg Asp Ser
 785 790 795 800
 Leu Pro Pro Tyr Ser Trp His Tyr Ala Pro Ile Tyr Lys Cys Ser Ala
 20 805 810 815
 Gln Cys Ala Gly Gly Ser Gln Val Gln Ala Val Glu Cys Arg Asn Gln
 820 825 830
 Leu Asp Ser Ser Ala Val Ala Pro His Tyr Cys Ser Ala His Ser Lys
 835 840 845
 25 Leu Pro Lys Arg Gln Arg Ala Cys Asn Thr Glu Pro Cys Pro Pro Asp
 850 855 860
 Trp Val Val Gly Asn Trp Ser Leu Cys Ser Arg Ser Cys Asp Ala Gly
 865 870 875 880
 Val Arg Ser Thr Ser Val Val Cys Gln Arg Arg Val Ser Ala Ala Glu
 30 885 890 895
 Glu Lys Ala Leu Asp Asp Ser Ala Cys Pro Gln Pro Arg Pro Pro Val
 900 905 910
 Leu Glu Ala Cys His Gly Pro Thr Cys Pro Pro Glu Trp Ala Thr Leu
 915 920 925
 35 Asp Trp Ser Glu Cys Thr Pro Ser Cys Gly Pro Gly Leu Arg His Arg
 930 935 940
 Val Val Leu Cys Lys Ser Ala Asp Gln Arg Ser Thr Leu Pro Pro Gly
 945 950 955 960
 His Cys Leu Pro Ala Ala Lys Pro Pro Ser Thr Met Arg Cys Asn Leu
 40 965 970 975
 Arg Arg Cys Pro Pro Ala Arg Trp Val Thr Ser Glu Trp Gly Glu Cys
 980 985 990
 Ser Thr Gln Cys Gly Leu Gly Gln Gln Arg Thr Val Arg Cys Thr
 995 1000 1005
 45 Ser His Thr Gly Gln Pro Ser Arg Gln Cys Thr Glu Ala Leu Arg Pro
 1010 1015 1020
 Ser Thr Met Gln Gln Cys Glu Ala Lys Cys Asp Ser Val Val Pro Pro
 1025 1030 1035 1040
 Gly Asp Gly Pro Gln Gln Cys Lys Asp Val Asn Lys Val Ala Tyr Cys
 50 1045 1050 1055 1060
 Pro Leu Val Leu Lys Phe Gln Phe Cys Ser Arg Ala Tyr Phe Arg Gln
 1060 1065 1070
 Met Cys Cys Lys Thr Cys Gln Gly Arg
 1075 1080

```

<220>
<221> misc_feature
<222> (338)...(340)

5 <220>
<221> misc_feature
<222> (353)...(355)

<400> 18
10 a gca gca gct gtg gtg gat gga aca ccc tgc cgc cct gac acg gtg gac 49
    Ala Ala Ala Val Val Asp Gly Thr Pro Cys Arg Pro Asp Thr Val Asp
     1           5           10          15

    att tgt gtc agc ggc gag tgc aag cat gta ggc tgt gac agg ctc ctg 97
15 Ile Cys Val Ser Gly Glu Cys Lys His Val Gly Cys Asp Arg Leu Leu
     20          25          30

    ggt tct gat ctc cga gag gac aaa tgc cgt stg tgt ggg ggt gat ggc 145
    Gly Ser Asp Leu Arg Glu Asp Lys Cys Arg Val Cys Gly Gly Asp Gly
20     35          40          45

    agt gcc tgt gag acc att gaa ggt gtc ttt agc cca gct ttg cca gga 193
    Ser Ala Cys Glu Thr Ile Glu Gly Val Phe Ser Pro Ala Leu Pro Gly
     50          55          60

25    act ggg tat gas gac gtc gtc tgg atc ccc aaa ggc tcg gtc cac att 241
    Thr Gly Tyr Glu Asp Val Val Trp Ile Pro Lys Gly Ser Val His Ile
     65          70          75          80

30    ttc atc caa gat ctg aac ctg tcc ctg agt cac ctg gcc cta aag ggg 289
    Phe Ile Gln Asp Leu Asn Leu Ser Leu Ser His Leu Ala Leu Lys Gly
     85          90          95

    gac caa gag tct ctg cta ctg gag ggg cta cct ggg acc ccc caa cct 337
35 Asp Gln Glu Ser Leu Leu Leu Glu Gly Leu Pro Gly Thr Pro Gln Pro
     100         105         110

    nac cgc ctt ccc ctg gnt ggg acc aca ttt cat cta cgg cag ggg ccc 385
    Xaa Arg Leu Pro Leu Xaa Gly Thr Thr Phe His Leu Arg Gln Gly Pro
40     115         120         125

    gac cag gca cag agc ctg gaa gcc ctg gga ccc att aat gca tct ctc 433
    Asp Gln Ala Gln Ser Leu Glu Ala Leu Gly Pro Ile Asn Ala Ser Leu
     130         135         140

45    itc atc atg gtg ctg gcc caa gca gag ttg cct gct ctc ctc tac ccc 481
    Ile Ile Met Val Leu Ala Gln Ala Glu Leu Pro Ala Leu His Tyr Arg
     145         150         155         160

50    ttc atc gca ccc att gcc ccc gat gca ttc gtc ctt ccc tac tcc tgg 529
    Phe Asn Ala Pro Ile Ala Arg Asp Ala Leu Pro Phe Tyr Ser Trp His
     165         170         175

55    tat gcc ccc tgg acc aaa tgc tca gcc pag tgg gca ggc egg ago cag 577
    Tyr Ala Pro Trp Thr Lys Cys Ser Ala Gln Cys Ala Gly Gly Ser Gln
     180         185         190

```

Sys	Asn	Thr	Glu	Pro	Cys	Pro	Asp	Trp	Val	Val	Gly	Asn	Trp	Ser
225			230					235				240		
sgc tgc agc cgt agc tgc gac gct ggt gtc cgt agc cgc tca tgc gtc														769
5	Arg	Cys	Ser	Arg	Ser	Cys	Asp	Ala	Gly	Val	Arg	Ser	Arg	Ser
			245					250				255		
tgc caa cgc cgg gtg tct gct gca gag gaa aaa gcc tta gac gac agt														817
	Cys	Gln	Arg	Arg	Val	Ser	Ala	Ala	Glu	Glu	Lys	Ala	Leu	Asp
10														
			260					265				270		
gcc tgt cca cag cca cgc cca cct gtg ctg gag gcc tgc caa ggc cca														865
	Ala	Cys	Pro	Gln	Pro	Arg	Pro	Val	Leu	Glu	Ala	Cys	Gln	Gly
			275					280				285		
15														
atg tgc cct cct gag tgg gca acc ctc gac tgg tct gag tgt acc cca														913
	Met	Cys	Pro	Pro	Glu	Trp	Ala	Thr	Leu	Asp	Trp	Ser	Glu	Cys
			290					295				300		
20	agc	tgt	ggg	cct	ggg	ctc	cgc	cac	cga	gtg	gtc	ctt	tgt	aag
	Ser	Cys	Gly	Leu	Arg	His	Arg	Val	Val	Leu	Cys	Lys	Ser	Ala
			305					310				315		320
25	gat	caa	cga	tct	act	ctg	ccc	cct	ggg	cac	tgc	ctt	cct	gca
	Asp	Gln	Arg	Ser	Thr	Leu	Pro	Pro	Gly	His	Cys	Leu	Pro	Ala
			325					330				335		
30	cca	cca	tct	act	atg	cga	tgt	aac	ttg	ccg	cgc	tgc	cct	gcc
	Pro	Pro	Ser	Thr	Met	Arg	Cys	Asn	Leu	Arg	Arg	Cys	Pro	Pro
			340					345				350		
35	tgg	gtg	acc	agt	gag	tgg	ggg	gag	tgt	tcc	aca	cag	tgt	ggc
	Trp	Val	Thr	Ser	Glu	Trp	Gly	Glu	Cys	Ser	Thr	Gln	Cys	Gly
			355					360				365		
40	cag	cag	cag	cgc	aca	gtg	cgc	tgc	acc	agg	cac	acc	ggc	tct
	Gln	Gln	Gln	Arg	Thr	Val	Arg	Cys	Thr	Ser	His	Thr	Gly	Gln
			370					375				380		
45	cga	gag	tgc	act	gaa	gcc	ttg	cg	cca	tcc	acc	tgc	tgt	gag
	Arg	Glu	Cys	Thr	Glu	Ala	Leu	Arg	Pro	Ser	Thr	Met	Gln	Gln
			385					390				395		400
50	ggc	aag	tgt	gac	agt	gtg	gtg	ccg	cct	ggg	gat	ggc	cca	gaa
	Ala	Lys	Cys	Asp	Ser	Val	Val	Pro	Pro	Gly	Asp	Gly	Pro	Glu
			405					410				415		
55	aag	gtt	gtg	aat	aag	gtg	gtt	aat	tgc	ccg	gtg	gtt	aaa	tcc
	Lys	Asp	Val	Asn	Lys	Val	Ala	Tyr	Cys	Pro	Ieu	Val	Lys	Phe
			420					425				430		
60	tcc	tgt	agc	gcc	tac	tcc	cgc	cag	atg	agc	tgc	aaa	acc	tgc
	Phe	Cys	Ser	Arg	Ala	Tyr	Phe	Arg	Gln	Met	Ser	Cys	Lys	Thr
			435					440				445		

ПОДСЧЕТЫ СРЕДНЕГО ЧИСЛА ПАРНЯХ ПРИЧЕМОСТИ В РАСПРЕДЕЛЕНИИ ПО ГРУППАМ 1-41

1642

5 <210> 19
 <211> 450
 <212> PRT
 <213> Mus musculus ADAMTS-10

10 <400> 19
 Ala Ala Ala Val Val Asp Gly Thr Pro Cys Arg Pro Asp Thr Val Asp
 1 5 10 15

Ile Cys Val Ser Gly Glu Cys Lys His Val Gly Cys Asp Arg Leu Leu
 15 20 25 30

Gly Ser Asp Leu Arg Glu Asp Lys Cys Arg Val Cys Gly Gly Asp Gly
 35 40 45

20 Ser Ala Cys Glu Thr Ile Glu Gly Val Phe Ser Pro Ala Leu Pro Gly
 50 55 60

Thr Gly Tyr Glu Asp Val Val Trp Ile Pro Lys Gly Ser Val His Ile
 65 70 75 80

25 Phe Ile Gln Asp Leu Asn Leu Ser Leu Ser His Leu Ala Leu Lys Gly
 85 90 95

Asp Gln Glu Ser Leu Leu Leu Glu Gly Leu Pro Gly Thr Pro Gln Pro
 30 100 105 110

Xaa Arg Leu Pro Leu Xaa Gly Thr Thr Phe His Leu Arg Gln Gly Pro
 115 120 125

35 Asp Gln Ala Gln Ser Leu Glu Ala Leu Gly Pro Ile Asn Ala Ser Leu
 130 135 140

Ile Ile Met Val Leu Ala Gln Ala Glu Leu Pro Ala Leu His Tyr Arg
 145 150 155 160

40 Phe Asn Ala Pro Ile Ala Arg Asp Ala Leu Pro Pro Tyr Ser Trp His
 165 170 175

Tyr Ala Pro Trp Thr Lys Cys Ser Ala Gln Cys Ala Gly Ser Gln
 45 180 185 190

Val Gln Val Val Glu Cys Arg Asn Gln Leu Asp Ser Ser Ala Val Ala
 195 200 205

50 Pro His Tyr Lys Ser Gly His Ser Lys Leu Pro Lys Arg Gln Arg Ala
 210 215 220

Cys Asn Thr Glu Pro Cys Pro Pro Asp Trp Val Val Gly Asn Trp Ser
 225 230 235 240

55 Arg Cys Ser Arg Ser Cys Asp Ala Gly Val Arg Ser Arg Ser Val Val
 245 250 255

Ser Cys Gly Pro Gly Leu Arg His Arg Val Val Leu Cys Lys Ser Ala
 305 310 315 320

5 Asp Gln Arg Ser Thr Leu Pro Pro Gly His Cys Leu Pro Ala Ala Lys
 325 330 335

Pro Pro Ser Thr Met Arg Cys Asn Leu Arg Arg Cys Pro Pro Ala Arg
 340 345 350

10 Trp Val Thr Ser Glu Trp Gly Glu Cys Ser Thr Gln Cys Gly Leu Gly
 355 360 365

Gln Gln Gln Arg Thr Val Arg Cys Thr Ser His Thr Gly Gln Pro Ser
 15 370 375 380

Arg Glu Cys Thr Glu Ala Leu Arg Pro Ser Thr Met Gln Gln Cys Glu
 385 390 395 400

20 Ala Lys Cys Asp Ser Val Val Pro Pro Gly Asp Gly Pro Glu Glu Cys
 405 410 415

Lys Asp Val Asn Lys Val Ala Tyr Cys Pro Leu Val Leu Lys Phe Gln
 420 425 430

25 Phe Cys Ser Arg Ala Tyr Phe Arg Gln Met Ser Cys Lys Thr Cys Gln
 435 440 445

Gly Arg
 30 450

```

<210> 20
35 <211> 1803
<212> DNA
<213> Homo sapiens ADAMTS-R1

<220>
40 <221> CDS
<222> :51)..(1634)

<400> 20
gaattcggca cgaggccatgttccgatttttc attccggcaa ggatccaaatgc atg gaa 56
45 Met Glu
:
tgc tgc cgt agg gca acc ctt agg aca ctg aca atc ttt ctg gat ttg 104
Cys Tyr Arg Arg Ala Thr Pro Gly Thr Leu Ieu Ieu Phe Leu Ala Phe
50 5 11 15
:
ctg ctc ctg agt tcc agg acc gca cgc tcc gag gag gac cgg gas ggc 152
Leu Leu Leu Ser Ser Arg Thr Ala Arg Ser Glu Glu Asp Arg Asp Gly
55 20 25 30
:
ata tgg gat gca tgg ggc tca tgg agt gaa tgg tca cgg acc tgg cgg 200
Leu Trp Asp Ala Trp Gly Pro Trp Ser Glu Ser Arg Thr Cys Gly
65 75 85 95 105

```

For the first time in history, the world has been able to witness the birth of a new nation, the People's Republic of China.

cca	gaa	gca	ggc	gtt	aat	tcc	cga	gct	cag	caa	tgc	tca	gct	cat	aat	aat	gtt
Pro	Glu	Ala	Gly	Asp	Phe	Arg	Ala	Gln	Gln	Cys	Ser	Ala	His	Asn	Asp		344
85								90					95				
5																	
gtc	aag	cac	cat	ggc	cag	ttt	tat	gaa	tgg	ctt	cct	gtg	tct	aat	gac		392
Val	Lys	His	His	Gly	Gln	Phe	Tyr	Glu	Trp	Ieu	Pro	Val	Ser	Asn	Asp		
100						105						110					
10																	
cct	gac	aac	cca	tgt	tca	ctc	aag	tgc	caa	gcc	aaa	gga	aca	acc	ctg		440
Pro	Asp	Asn	Pro	Cys	Ser	Leu	Lys	Cys	Gln	Ala	Lys	Gly	Thr	Thr	Leu		
115						120				125			130				
15																	
gtt	gtt	gaa	cta	gca	cct	aag	gtc	tta	gat	ggt	acg	cgt	tgc	tat	aca		488
Val	Val	Glu	Leu	Ala	Pro	Lys	Val	Ieu	Asp	Gly	Thr	Arg	Cys	Tyr	Thr		
135								140				145					
20																	
gaa	tct	ttg	gat	atg	tgc	atc	agt	ggt	tta	tgc	caa	att	gtt	ggc	tgc		516
Glu	Ser	Ieu	Asp	Met	Cys	Ile	Ser	Gly	Ieu	Cys	Gln	Ile	Val	Gly	Cys		
165						170			175			180					
25																	
gat	cac	cag	ctg	ggg	agg	acc	gtc	aag	gaa	cat	aac	tgt	egg	gtc	tgc		584
Asp	His	Gln	Leu	Gly	Ser	Thr	Val	Lys	Glu	Asp	Asn	Cys	Gly	Val	Cys		
165								170				175					
30																	
aac	ggg	gat	ggg	tcc	acc	tgc	egg	ctg	gtc	cga	ggg	cag	tat	aaa	tcc		612
Asn	Gly	Asp	Gly	Ser	Thr	Cys	Arg	Ieu	Val	Arg	Gly	Gln	Tyr	Lys	Ser		
180						185			190								
35																	
gga	agt	aga	cat	att	cgc	ctt	gtc	tta	aaa	ggt	cct	gat	cac	tta	tat		728
Gly	Ser	Arg	His	Ile	Arg	Leu	Val	Ieu	Lys	Gly	Pro	Asp	His	Ieu	Tyr		
215								220				225					
40																	
ctg	gaa	acc	aaa	acc	ctc	cag	ggg	act	aaa	ggt	gaa	aac	agt	ctc	agc		776
Leu	Glu	Thr	Lys	Thr	Ieu	Gln	Gly	Thr	Lys	Gly	Asn	Ser	Ieu	Ser			
230								235				240					
45																	
tcc	aca	ggg	act	ttc	ctt	gtg	gac	aat	tct	agt	gtg	gac	ttc	cag	aaa		824
Ser	Thr	Gly	Thr	Phe	Leu	Val	Asp	Asn	Ser	Val	Asp	Phe	Gln	Lys			
245								250				255					
50																	
tta	caa	gac	aaa	ggg	ata	cgt	aga	atg	gtt	ggg	ccu	ctc	aca	gca	cat		872
Phe	Pro	Asp	Lys	Glu	Ile	Ile	Arg	Met	Ala	Gly	Frs	Ieu	Thr	Ala	Asp		
260						265			270								
55																	
ttc	att	gtt	aaa	att	ggg	aat	tcc	ggc	tcc	gtt	ggc	agt	ggc	gtc	ggc		911
Phe	Ile	Val	Iys	Ile	Arg	Asn	Ser	Gly	Ser	Ala	Asp	Ser	Thr	Val	Gln		
275						280			285			290					
60																	
ttc	atc	tcc	tat	caa	ccc	atc	atc	cac	cga	tgg	agg	gag	acg	gat	tcc		968
Phe	Ile	Phe	Tyr	Gln	Pro	Ile	Ile	His	Arg	Trp	Arg	Glu	Thr	Asp	Phe		
295								300				305					

10 Aug 11, Louie Thompson from Dept 301, 1st Comp, 2nd Inf Regt, 1st Div, 1st Armd Div
41 42 43

Cys Gly Gly Ala Ala Asn Ser Leu Arg Arg Cys Leu Ser Ser Lys
 50 55 60
 Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp
 65 70 75 80
 5 Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala Gln Gln Cys Ser Ala His
 85 90 95
 Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser
 100 105 110
 10 Asn Asp Pro Asp Asn Pro Cys Ser Leu Lys Cys Gln Ala Lys Gly Thr
 115 120 125
 Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys
 130 135 140
 Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser Gly Leu Cys Gln Ile Val
 145 150 155 160
 15 Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly
 165 170 175
 Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr
 180 185 190
 Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Ile
 20 195 200 205
 Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His
 210 215 220
 Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser
 225 230 235 240
 25 Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe
 245 250 255
 Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu Thr
 260 265 270
 Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser Thr
 30 275 280 285
 Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu Thr
 290 295 300
 Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Tyr Gln Leu Thr
 305 310 315 320
 35 Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn Arg Val Val Ala Asp Gln
 325 330 335
 Tyr Cys His Tyr Tyr Pro Glu Asn Ile Lys Pro Lys Pro Lys Leu Gln
 340 345 350
 Glu Cys Asn Leu Asp Pro Cys Pro Ala Ser Asp Gly Tyr Lys Gln Ile
 40 355 360 365
 Met Pro Tyr Asp Leu Tyr His Pro Leu Pro Arg Trp Glu Ala Thr Pro
 370 375 380
 Trp Thr Ala Cys Ser Ser Cys Gly Gly Ile Gln Ser Arg Ala
 385 390 395 400
 45 Val Ser Cys Val Glu Glu Asp Ile Gln Gly His Val Thr Ser Val Glu
 405 410 415
 Glu Trp Lys Cys Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys
 420 425 430
 Asn Ile Phe Asp Cys Pro Lys Trp Ile Ala Gln Glu Trp Ser Pro Cys
 50 435 440 445
 Thr Val Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile
 450 455 460
 Asp His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro
 465 470 475 480
 55 His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro Lys
 485 490 495
 Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln Ala Cln

<213> Homo sapiens ADAMTS-5

<400> 22
Gly His Leu Leu Gly Leu Ser His Asp Asp Ser Lys Phe Cys Glu Glu
5 1 5 10 15

Thr Phe Gly Ser Thr Glu Asp Lys Arg Leu Met Ser Ser Ile Leu Thr
20 25 30

10 Ser Ile Asp Ala Ser Lys Pro Trp Ser Lys Cys Thr Ser Ala Thr Ile
35 40 45

Thr Glu Phe Leu Asp Asp Gly His Gly Asn Cys Leu Leu Asp Leu Pro
50 55 60

15 Arg Lys Gln Ile Leu Gly Pro Glu Glu Leu Pro Gly Gln Thr Tyr Asp
65 70 75 80

Ala Thr Gln Gln Cys Asn Leu Thr Phe Gly Pro Asp Tyr Ser Val Cys
20 85 90 95

Pro Gly Xaa Asp Val Cys Ala Arg Leu Trp Cys Ala Val Val Arg Gln
100 105 110

25 Gly Gln Met Val Cys Leu Thr Lys Lys Leu Pro Ala Val Glu Gly Thr
115 120 125

Pro Cys Gly Lys Gly Arg Ile Cys Leu Gln Gly Lys Cys Val Asp Lys
130 135 140

30 Thr Lys Lys Tyr Tyr Ser Thr Ser Ser His Gly Asn Trp Gly Ser
145 150 155 160

Trp Gly Ser Trp Gly Gln Cys Ser Arg Ser Cys Gly Gly Val Gln
35 165 170 175

Phe Ala Tyr Arg His Cys Asn Asn Pro Ala Pro Arg Asn Asn Gly Arg
180 185 190

40 Tyr Cys Thr Gly Lys Arg Ala Ile Tyr His Ser Cys Ser Leu Met Pro
195 200 205

Cys Pro Pro Asn Gly Lys Ser Phe Arg His Glu Gln Cys Glu Ala Lys
210 215 220

45 Asn Gly Tyr Gln Ser Asp Ala Lys Gly Val Lys Thr Phe Val Glu Trp
225 230 235 240

Val Pro Lys Tyr Ala Gly Val Leu Pro Ala Asp Val Cys Lys Leu Thr
250 255 260

Ser Cys Arg Ala Lys Gly Thr Gly Tyr Val Val Phe Ser Pro Lys Val
265 270

55 Thr Asp Gly Thr Glu Cys Arg Pro Tyr Ser Asn Ser Val Cys Val Arg
275 280 285

Sequence divergences from the human ADAMTS-5 protein sequence are indicated by the following symbols:

1. Insertions or deletions of amino acids are indicated by a plus sign (+) or minus sign (-) respectively.

Val Arg Ile Pro Glu Gly Ala Thr His Ile Lys Val Arg Gln Phe Lys
 340 345 350

Ala Lys Asp Gln Thr Arg Phe Thr Ala Tyr Leu Ala Leu Lys Lys Lys
 5 355 360 365

Asn Gly Glu Tyr Leu Ile Asn Gly Lys Tyr Met Ile Ser Thr Ser Glu
 370 375 380

10 Thr Ile Ile Asp Ile Asn Gly Thr Val Met Asn Tyr Ser Gly Trp Ser
 385 390 395 400

His Arg Asp Asp Phe Leu His Gly Met Gly Tyr Ser Ala Thr Lys Glu
 405 410 415

15 Ile Leu Ile Val Gln Ile Leu Ala Thr Asp Pro Thr Lys Pro Leu Asp
 420 425 430

Val Arg Tyr Ser Phe Phe Val Pro Lys Lys Ser Thr Pro Lys Val Asn.
 20 435 440 445

Ser Val Thr Ser His Gly Ser Asn Lys Val Gly Ser His Thr Ser Gln
 450 455 460

25 Pro Gln Trp Val Thr Gly Pro Trp Leu Ala Cys Ser Arg Thr Cys Asp
 465 470 475 480

Thr Gly Trp His Thr Arg Thr Val Gln Cys Gln Asp Gly Asn Arg Lys
 485 490 495

30 Leu Ala Lys Gly Cys Pro Leu Ser Gln Arg Pro Ser Ala Phe Lys Gln
 500 505 510

Cys Leu Leu Lys Lys Cys
 35 515

<210> 23
 <211> 3409
 40 <212> DNA
 <213> Homo sapiens ADAMTS-10

<220>
 <221> CDS
 45 <222> (25)..(3240)

<400> 23
 tcacggatgtt ctttttgtttt cttttttttt atgg aat tgc tgg tgg aga gct 51
 Met Ser Ser Cys Pro Val Trp Arg Ala
 : :
 50 atg aga tgg ccc tcc cca ccc ggg tgg acc aca acg ggg gag tgg tgg 93
 Met Arg Ser Pro Ser Pro Ala Trp Thr Thr Gly His Cys Trp
 10 15 20 25

55 cct tct tgg ccc ctc ctc tcc tgg gca gca ggg ccc gag ggg ggg gag 147
 Pro Ser Arg His Leu Leu Pro Gly Ala Ala Pro Arg His Gly Gly His
 : : 42

gts gag tac tgg aca cgg gas ggc ctc gac tgg cag agg ggg gcc cgg Val Glu Tyr Trp Thr Arg Gln Gly Leu Ala Trp Gln Arg Ala Ala Arg 75 80 85	291
5 ccc cac tgc ctc tac gct ggt cac ctg cag ggc tag gcc agc agt tcc Pro His Cys Leu Tyr Ala Gly His Leu Gln Gly Gln Ala Ser Ser Ser 90 95 100 105	339
10 cat gtg gcc atc agc acc tgg tgg gga ggc ctg cac ggc ctg atc gtg gca His Val Ala Ile Ser Thr Cys Gly Gly Leu His Gly Leu Ile Val Ala 110 115 120	367
15 gac gag gaa gag tac ctg att gag ccc ctg cac ggt ggg ccc aag ggt Asp Glu Glu Tyr Leu Ile Glu Pro Leu His Gly Gly Pro Lys Gly 125 130 135	435
20 tct cgg agc ccg gag gaa agt gga cca cat gtg gtg tac aag cgt tcc Ser Arg Ser Pro Glu Glu Ser Gly Pro His Val Val Tyr Lys Arg Ser 140 145 150	483
25 tct ctg cgt cac ccc cac ctg gac aca gcc tgg gga gtg aga gat gag Ser Leu Arg His Pro His Leu Asp Thr Ala Cys Gly Val Arg Asp Glu 155 160 165	531
30 aaa ccg tgg aaa ggg ccg cca tgg tgg ctg cgg acc ttg aag cca ccg Lys Pro Trp Lys Arg Pro Trp Trp Leu Arg Thr Leu Lys Pro Pro 170 175 180 185	579
35 cct gcc aga ccc ctg ggg aat gaa aca gag cgt ggc cag cca ggc ctg Pro Ala Arg Pro Leu Gly Asn Glu Thr Arg Gly Gln Pro Gly Leu 190 195 200	627
40 aag cga tcg gtc agt cga gag cgc tac gtg gag acc ctg gtg gtg gct Lys Arg Ser Val Ser Arg Glu Arg Tyr Val Glu Thr Leu Val Val Ala 205 210 215	675
45 gac aag atg atg ggg gcc tat cac ggg cgc cgg gat gtg gag cag tat Asp Lys Met Met Val Ala Tyr His Gly Arg Arg Asp Val Glu Gln Tyr 220 225 230	723
50 gtc ctg gcc atc atg aac att gtt gcc aaa ctt ttc cag gag tac agt Val Leu Ala Ile Met Asn Ile Val Ala Lys Leu Phe Gln Asp Ser Ser 235 240 245	771
55 ctg gga agc acc gtt aac atc ctc gta act cgg ctc atc ctg ctc aag Leu Gly Ser Thr Val Asn Ile Leu Val Thr Arg Leu Ile Leu Leu Thr 250 255 260 265	819
60 gag gag gag ccc act tgg gag acc acc cac cat ggt ggg aag tcc cta Glu Asp Gln Pro Thr Leu Glu Ile Thr His His Ala Gly Lys Ser Leu 270 275 280	857
65 gac agc ttc tgt aag tgg cag aaa tcc atc gtg aac cac agc ggc cat Asp Ser Phe Cys Lys Trp Gln Lys Ser Ile Val Asn His Ser Gly His 285 290 295	915
70 gag aat tgg ttt ttt Glu Asp Gln Pro Trp Gln Lys Ser Ile Val Asn His Ser Gly His 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895	595

Thr	Ieu	Gly	Leu	Ala	Arg	Trp	Ala	Glu	Cys	Val	Ser	Ala	Arg	Glu	Ala	
330				335					340				345			
gca ggg tca atg agg aca ttg gct gcc aca aag gtt cac cat tgc cac															1167	
5	Ala	Ala	Ser	Met	Arg	Thr	Leu	Ala	Ala	Thr	Ser	Val	His	His	Cys	His
				350					355				360			
gag atc ggg cac aca ttc ggc atg aac cat gac ggc gtg gga aac agc															1155	
	Glu	Ile	Gly	His	Thr	Phe	Gly	Met	Asn	His	Asp	Gly	Val	Gly	Asn	Ser
10				365					370				375			
tgt ggg gcc cgt ggt cag gac cca gcc aag ctc atg gct gcc cac att															1203	
	Cys	Gly	Ala	Arg	Gly	Gln	Asp	Pro	Ala	Lys	Leu	Met	Ala	Ala	His	Ile
				380				385				390				
15	acc	atg	aag	acc	aac	cca	tcc	gtg	tgg	tca	tcc	tgc	aac	cgt	gac	tac
	Thr	Met	Lys	Thr	Asn	Pro	Phe	Val	Tyr	Ser	Ser	Cys	Asn	Arg	Asp	Tyr
				395				400				405				
20	atc	acc	agc	ttt	cta	gac	tcc	ggc	ctg	ggg	ctc	tgc	ctg	aac	aac	cgg
	Ile	Thr	Ser	Phe	Leu	Asp	Ser	Gly	Leu	Gly	Leu	Cys	Leu	Asn	Asn	Arg
				410				415				420				425
25	ccc	ccc	aga	cag	gac	ttt	gtg	tac	ccg	aca	gtg	gca	cgg	ggc	caa	gcc
	Pro	Pro	Arg	Gln	Asp	Phe	Val	Tyr	Pro	Thr	Val	Ala	Pro	Gly	Gln	Ala
				430				435				440				1347
30	tac	gat	gca	gat	gag	caa	tcc	cgc	ttt	cag	cat	ggg	gtc	aaa	tcc	cgt
	Tyr	Asp	Ala	Asp	Glu	Gln	Cys	Arg	Phe	Gln	His	Gly	Val	Lys	Ser	Arg
				445				450				455				1395
35	cag	tgt	aaa	tac	ggg	gag	gtc	tgc	agc	gag	ctg	tgg	tgt	ctg	ags	aag
	Gln	Cys	Lys	Tyr	Glu	Val	Cys	Ser	Glu	Leu	Trp	Cys	Leu	Ser	Lys	
				460				465				470				1443
40	agc	aac	cgg	tgc	atc	acc	aac	agc	atc	cgg	gcc	ggc	gag	ggc	acg	ctg
	Ser	Asn	Arg	Cys	Ile	Thr	Asn	Ile	Pro	Ala	Ala	Glu	Gly	Thr	Leu	
				475				480				485				1491
45	tgg	cag	acg	cac	acc	atc	gac	aag	ggg	tgg	tgc	tac	aaa	cgg	gts	tgt
	Cys	Gln	Thr	His	Thr	Ile	Asp	Lys	Gly	Trp	Cys	Tyr	Lys	Arg	Val	Cys
				490				495				500				1539
50	gtc	ccc	ttt	ggg	tcc	ccg	cca	gag	ggg	gtg	gac	ggg	gcc	tgg	ggg	ccg
	Val	Pro	Phe	Gly	Ser	Arg	Frt	Glu	Gly	Val	Asp	Gly	Ala	Trp	Gly	Frc
				510				515				520				1587
55	tgg	act	caa	tgg	ggc	gar	tgc	agt	egg	acc	ter	ggg	ggg	ggg	ggg	tcc
	Trp	Thr	Pro	Trp	Gly	Asp	Cys	Ser	Arg	Thr	Cys	Gly	Gly	Gly	Val	Ser
				525				530				535				1636
60	tct	tct	agt	cgt	cac	tgc	gac	agg	ccc	agg	cca	acc	atc	ggg	ggg	aag
	Ser	Ser	Arg	His	Cys	Asp	Ser	Pro	Arg	Pro	Thr	Ile	Gly	Gly	Lys	
				540				545				550				1683
65	tac	tct	ttg	ggt	gag	aaa	ggg	cac	tgc	tac	agg	gtt	gac			
	Tyr	Cys	Ileu	Gly	Glu	Arg	Arg	Arg	Arg	His	Arg	Ser	Cys	Asn	Thr	Asp
				555				560				565				1731

590 591 592 593 594 595 596 597 598 599 600 601

5	ggg ggc gtc aag gcc tcc acg agc cta cgt gaa ggc ttc Gly Gly Gly Val Lys Ala Cys Ser Leu Thr Ser Leu Ala Glu Phe 605 610 615	1875
	aac ttc tac acg gag agg gca gca gtc gtg gac ggg aca ccc tgc Asn Phe Tyr Thr Glu Arg Ala Ala Val Val Asp Gly Thr Pro Cys 620 625 630	1923
10	cgt cca gac acg gtg gac att tgc gtc aat ggc gaa tgc aag cac gtg Arg Pro Asp Thr Val Asp Ile Cys Val Ser Gly Glu Cys Lys His Val 635 640 645	1971
	ggc tgc gac cga gtc ctg ggc tcc gac ctg cgg gag gag aag tgc cga 15 Gly Cys Asp Arg Val Leu Gly Ser Asp Leu Arg Glu Asp Lys Cys Arg 650 655 660 665	2019
20	gtg tct ggc ggt gac ggc aat gcc tgc gag acc atc gag ggc gtc ttc Val Cys Gly Asp Gly Ser Ala Cys Glu Thr Ile Glu Gly Val Phe 670 675 680	2067
	agc cca gcc tca cct ggg gcc ggg tac gag gat gtc gtc tgg att ccc Ser Pro Ala Ser Pro Gly Ala Gly Tyr Glu Asp Val Val Trp Ile Pro 685 690 695	2115
25	aaa ggc tcc gtc cac atc ttc atc cag gat ctg aac ctc tct ctc aat Lys Gly Ser Val His Ile Phe Ile Gln Asp Leu Asn Leu Ser Leu Ser 700 705 710	2163
	cac ttg gcc ctg aag gga gac cag gag tcc ctg ctg ctg gag ggg ctg His Leu Ala Leu Lys Gly Asp Gln Glu Ser Leu Leu Glu Gly Leu 715 720 725	2211
30	cct ggg acc ccc cag ccc cac ctg ctc ctt cta gct ggg acc acc ttt Pro Gly Thr Pro Gln Pro His Arg Leu Pro Leu Ala Gly Thr Thr Phe 730 735 740 745	2259
	caa ctg cga cag ggg cca gac cag gtc cag agc ctc gaa gcc ctg gga Gln Leu Arg Gln Gly Pro Asp Gln Val Glu Ser Leu Glu Ala Leu Gly 750 755 760	2307
35	ccg att aat gca tct ctc atc gtc atg gtg ctg gcc egg acc gag ctg Pro Ile Asn Ala Ser Leu Ile Val Met Val Leu Ala Arg Thr Glu Leu 765 770 775	2355
	cgt gcc ctc cgs tac cgs ttc aat gcc ccc atc gcc cgt gac tcc ctg Pro Ala Leu Arg Tyr Arg Phe Asn Ala Pro Ile Ala Arg Asp Ser Leu 780 785 790	2403
40	ccc ccc tac tcc tgg cac tat ggg ccc tgg acc aag tgg tcc gtt cug Pro Pro Tyr Ser Trp His Tyr Ala Pro Trp Thr Lys Cys Ser Ala Cln 795 800 805	2451
	tgt gca ggc ggt aac cag gtc cag gcg gtc gag tcc cgg aac cag ctg 55 Cys Ala Gly Gly Ser Gln Val Gln Ala Val Glu Cys Arg Asn Gln Leu 810 815 820 825	2499

gtt gta ttt aat tgg tcc ttt ttt aat cgt aac tgg gtt gtt ttt
1840

Val Val Gly Asn Trp Ser Leu Cys Ser Arg Ser Cys Asp Ala Gly Val		
860	865	870
cgc agt cgc tcc gtc gtg tgc caa cgc cgc atc tct gcc gcg gag gag	2691	
5 Arg Ser Arg Ser Val Val Cys Gln Arg Arg Val Ser Ala Ala Glu Glu		
875	880	885
aag gca ctg gac gac agc gca tgc ccc cag cgc cca cct gta ctg	2739	
Lys Ala Leu Asp Asp Ser Ala Cys Pro Gln Pro Arg Pro Pro Val Leu		
10 890	895	900
gag gcc tgc cac ggc ccc act tgc cct ccc gag tgg gca gcc ctc gac	2787	
Glu Ala Cys His Gly Pro Thr Cys Pro Pro Glu Trp Ala Ala Leu Asp		
910	915	920
15 tgg ctt gag tgc acc ccc agc tgc ggg ccc ctc ccc cac ccc gtc	2835	
Trp Ser Glu Cys Thr Pro Ser Cys Glu Pro Glu Leu Arg His Arg Val		
925	930	935
20 gtc ctt tgc aag agc gca gac cac ccc gca aag ctc ccc ccc gag cac	2863	
Val Leu Cys Lys Ser Ala Asp His Arg Ala Thr Leu Pro Pro Ala His		
940	945	950
25 tgc tca ccc gcc gca aag cca ccc gct acc atg cgc tgc aac ttg cgc	2931	
Cys Ser Pro Ala Ala Lys Pro Pro Ala Thr Met Arg Cys Asn Leu Arg		
955	960	965
30 cgc tgc ccc ccc gcc gca aag cca ccc gct acc atg cgc tgg ggt gag tgc tct	2979	
Arg Cys Pro Pro Ala Arg Trp Val Ala Gly Glu Trp Gly Glu Cys Ser		
970	975	980
35 gca cag tgc ggc gtc ggg cag cgg cag cgc tgg gtc cgc tgc acc agc	3027	
Ala Gln Cys Gly Val Gly Gln Arg Gln Arg Ser Val Arg Cys Thr Ser		
990	995	1000
40 cac acg ggc cag ccc tcc cac gag tgc acg gag gca ctc ccc ccc	3075	
His Thr Gly Gln Ala Ser His Glu Cys Thr Glu Ala Leu Arg Pro Pro		
1005	1010	1015
45 acc acg cag cag tgt gag gca aag tgc gac agc cca acc ccc ggg gag	3123	
Thr Thr Gln Gln Cys Glu Ala Lys Cys Asp Ser Pro Thr Pro Gly Asp		
1020	1025	1030
50 ggc cct gaa gag tgc aag gat gtc aac aag gtc gca tac tgg ccc ctc	3171	
Gly Pro Glu Glu Cys Lys Asp Val Asn Lys Val Ala Tyr Cys Pro Leu		
1035	1040	1045
55 tgg ctc aaa ttt tgg ttc tcc aag cca gca tac ttc cys cag atg tgg	3219	
Val Leu Lys Phe Gln Phe Cys Ser Arg Ala Tyr Phe Arg Gin Met Cys		
1050	1055	1060
60 tgc aaa acc tgg cag ggc cac tggggggcgc gggggccccg gggccacacgc	3270	
Cys Lys Thr Cys Gln Gly His		
1070		
65 tggggggggcgc tggggggggcgc gggggggggcgc gggggggggcgc gggggggggcgc	3331	

<400> 24
 Met Ser Ser Cys Pro Val Trp Arg Ala Met Arg Ser Pro Ser Pro Pro
 1 5 10 15
 5 Ala Trp Thr Thr Thr Gly His Cys Trp Pro Ser Arg His Leu Leu Pro
 20 25 30
 Gly Ala Ala Pro Arg His Gly Gly His Ser Arg Val Pro Pro Leu Leu
 10 35 40 45
 Gln Ser Gly Leu Ala Ser Thr His Phe Leu Leu Asn Leu Thr Arg Ser
 50 55 60
 15 Ser Arg Leu Leu Ala Gly Arg Val Ser Val Glu Tyr Trp Thr Arg Glu
 65 70 75 80
 Gly Leu Ala Trp Gln Arg Ala Ala Arg Pro His Cys Leu Tyr Ala Gly
 85 90 95
 20 His Leu Gln Gly Gln Ala Ser Ser His Val Ala Ile Ser Thr Cys
 100 105 110
 Gly Gly Leu His Gly Leu Ile Val Ala Asp Glu Glu Glu Tyr Leu Ile
 25 115 120 125
 Glu Pro Leu His Gly Gly Pro Lys Gly Ser Arg Ser Pro Glu Glu Ser
 130 135 140
 30 Gly Pro His Val Val Tyr Lys Arg Ser Ser Leu Arg His Pro His Leu
 145 150 155 160
 Asp Thr Ala Cys Gly Val Arg Asp Glu Lys Pro Trp Lys Gly Arg Pro
 165 170 175
 35 Trp Trp Leu Arg Thr Leu Lys Pro Pro Pro Ala Arg Pro Leu Gly Asn
 180 185 190
 Glu Thr Glu Arg Gly Gln Pro Gly Leu Lys Arg Ser Val Ser Arg Glu
 40 195 200 205
 Arg Tyr Val Glu Thr Leu Val Val Ala Asp Lys Met Met Val Ala Tyr
 210 215 220
 45 His Gly Arg Arg Asp Val Glu Gln Tyr Val Leu Ala Ile Met Asn Ile
 225 230 235 240
 Val Ala Lys Leu Ile Glu Asp Ser Ser Leu Gly Ser Thr Val Asn Ile
 245 250 255
 50 Leu Val Thr Arg Leu Ile Leu Leu Thr Glu Asp Gln Pro Thr Leu Glu
 260 265 270
 Ile Thr His His Ala Gly Lys Ser Leu Asp Ser Phe Cys Lys Trp Gln
 55 275 280 285
 Lys Ser Ile Val Asn His Ser Gly His Gly Asn Ala Ile Pro Glu Asn
 290

Ala Ile Cys Val Ser Ala Arg Ile Ala Ala Ser Met Arg Thr Leu

	340	345	350
5	Ala Ala Thr Ser Val His His Cys His Cys Ile Gly His Thr Phe Gly 355 360 365		
	Met Asn His Asp Gly Val Gly Asn Ser Cys Gly Ala Arg Gly Gln Asp 370 375 380		
10	Pro Ala Lys Leu Met Ala Ala His Ile Thr Met Lys Thr Asn Pro Phe 385 390 395 400		
	Val Trp Ser Ser Cys Asn Arg Asp Tyr Ile Thr Ser Phe Leu Asp Ser 405 410 415		
15	Gly Leu Gly Leu Cys Leu Asn Asn Arg Pro Pro Arg Gln Asp Phe Val 420 425 430		
	Tyr Pro Thr Val Ala Pro Gly Gln Ala Tyr Asp Ala Asp Glu Gln Cys 435 440 445		
20	Arg Phe Gln His Gly Val Lys Ser Arg Gln Cys Lys Tyr Gly Glu Val 450 455 460		
25	Cys Ser Glu Leu Trp Cys Leu Ser Lys Ser Asn Arg Cys Ile Thr Asn 465 470 475 480		
	Ser Ile Pro Ala Ala Glu Gly Thr Leu Cys Gln Thr His Thr Ile Asp 485 490 495		
30	Lys Gly Trp Cys Tyr Lys Arg Val Cys Val Pro Phe Gly Ser Arg Pro 500 505 510		
	Glu Gly Val Asp Gly Ala Trp Gly Pro Trp Thr Pro Trp Gly Asp Cys 515 520 525		
35	Ser Arg Thr Cys Gly Gly Val Ser Ser Ser Arg His Cys Asp 530 535 540		
40	Ser Pro Arg Pro Thr Ile Gly Gly Lys Tyr Cys Leu Gly Glu Arg Arg 545 550 555 560		
	Arg His Arg Ser Cys Asn Thr Asp Asp Cys Pro Pro Gly Ser Gln Asp 565 570 575		
45	Phe Arg Glu Val Gln Cys Ser Glu Phe Asp Ser Ile Phe Phe Arg Gly 580 585 590		
	Lys Phe Tyr Lys Trp Lys Thr Tyr Arg Gly Gly Val Lys Ala Cys 595 600 605		
50	Ser Ile Thr Ser Leu Ala Glu Gly Phe Asn Phe Tyr Thr Glu Arg Ala 610 615 620		
	Ala Ala Val Val Asp Gly Thr Pro Cys Arg Pro Asp Thr Val Asp Ile 625 630 635 640		
	Cys Val Ser Gly Glu Cys Lys His Val Gly Cys Asp Arg Val Leu Gly 645 650 655		

690	695	700	
Ile Gln Asp Leu Asn Leu Ser Leu Ser His Leu Ala Leu Lys Gly Asp			
705	710	715	720
5 Gln Glu Ser Leu Leu Leu Glu Gly Leu Pro Gly Thr Pro Gln Pro His			
725	730	735	
Arg Leu Pro Leu Ala Gly Thr Thr Phe Gln Leu Arg Gln Gly Pro Asp			
10 740	745	750	
Gln Val Gln Ser Leu Glu Ala Leu Gly Pro Ile Asn Ala Ser Leu Ile			
755	760	765	
15 Val Met Val Leu Ala Arg Thr Glu Leu Pro Ala Leu Arg Tyr Arg Phe			
770	775	780	
Asn Ala Pro Ile Ala Arg Asp Ser Leu Pro Pro Tyr Ser Trp His Tyr			
785	790	795	800
20 Ala Pro Trp Thr Lys Cys Ser Ala Gln Cys Ala Gly Gly Ser Gln Val			
805	810	815	
Gln Ala Val Glu Cys Arg Asn Gln Leu Asp Ser Ser Ala Val Ala Pro			
820	825	830	
His Tyr Cys Ser Ala His Ser Lys Leu Pro Lys Arg Gln Arg Ala Cys			
835	840	845	
30 Asn Thr Glu Pro Cys Pro Pro Asp Trp Val Val Gly Asn Trp Ser Leu			
850	855	860	
Cys Ser Arg Ser Cys Asp Ala Gly Val Arg Ser Arg Ser Val Val Cys			
865	870	875	880
35 Gln Arg Arg Val Ser Ala Ala Glu Glu Lys Ala Leu Asp Asp Ser Ala			
885	890	895	
Cys Pro Gln Pro Arg Pro Pro Val Leu Glu Ala Cys His Gly Pro Thr			
900	905	910	
40 Cys Pro Pro Glu Trp Ala Ala Leu Asp Trp Ser Glu Cys Thr Pro Ser			
915	920	925	
Cys Gly Pro Gly Leu Arg His Arg Val Val Leu Cys Lys Ser Ala Asp			
930	935	940	
45 His Arg Ala Thr Ieu Pro Pro Ala His Cys Ser Pro Ala Ala Lys Pro			
945	950	955	960
50 Pro Ala Thr Met Arg Cys Asn Leu Arg Arg Cys Pro Pro Ala Arg Trp			
965	970	975	
Val Ala Gly Glu Trp Gly Glu Cys Ser Ala Gln Cys Gly Val Gly Gln			
980	985	990	
55 Arg Gln Arg Ser Val Arg Cys Thr Ser His Thr Gly Gln Ala Ser His			
995	1000	1005	

	1045	1050	1055	
Ser Arg Ala Tyr Phe Arg Gln Met Cys Cys Lys Thr Cys Gln Gly His	1060	1065	1070	
5				
<210> 25				
<211> 5990				
10 <212> DNA				
<213> Homo sapiens ADAMTS-9b				
<220>				
<221> CDS				
15 <222> (33)...(5634)				
<400> 25				
tcqqqcccaqc ccaqccaaqqq qtqqqaagca cc atg cag ttt gta tcc tgg gcc	53			
Met Gln Phe Val Ser Trp Ala	1	5		
20				
aca ctg cta acg ctc ctg gtc cggt gac ctg ggg gag atg ggg agc cca	101			
Thr Leu Leu Thr Leu Leu Val Arg Asp Leu Ala Glu Met Gly Ser Pro	15	20		
25				
gac gcc gcg gcc gcc gtg cgc aag gac agg ctg cac ccg agg caa gtg	149			
Asp Ala Ala Ala Ala Val Arg Lys Asp Arg Leu His Pro Arg Gln Val	26	30	35	
30 aaa tta tta gag acc ctg aca gaa tac gaa atc gtg tct ccc atc cca	187			
Lys Leu Leu Glu Thr Leu Ser Glu Tyr Glu Ile Val Ser Pro Ile Arg	40	45	55	
35 gtg aac gct ctc gga gaa ccc ttt ccc acg aac gtc cac ttc aaa aga	245			
Val Asn Ala Leu Gly Glu Pro Phe Pro Thr Asn Val His Phe Lys Arg	60	65	70	
40				
acg cga cgg agc att aac tct gcc act gac ccc tgg cct gcc ttc gcc	293			
Thr Arg Arg Ser Ile Asn Ser Ala Thr Asp Pro Trp Pro Ala Phe Ala	75	80	85	
45 tcc tcc tct tcc tct acc tcc ccc cag ggg cat tac cgg ctc tct	341			
Ser Ser Ser Ser Ser Thr Ser Pro Gln Ala His Tyr Arg Leu Ser	90	95	100	
50 gcc ttc ggc cag cag ttt cta ttt sat ctc acc gct aat gct gga ttt	383			
Ala Phe Gly Gln Gln Phe Leu Phe Asn Leu Thr Ala Asn Ala Gly Phe	105	110	115	
55 atc gct cca ctt tcc act gtc acc ctc ttt ggg acg ccc ggg gtg ala	421			
Ile Ala Pro Leu Phe Thr Val Thr Leu Leu Gly Thr Pro Gly Val Asn	120	125	130	135
60 cag acc aag ttt tat tcc gaa gag gaa gca gtc aag cac tgg tcc	485			
Gln Thr Lys Phe Tyr Ser Glu Glu Ala Glu Leu Lys His Cys Phe	140	145	150	
65 tcc att gaa cca cta ccc ttt atg gat gaa taa gaa gtc gaa gaa	513			

Phe Ile Glu Pro Leu Gln Ser Met Asp Glu Gln Glu Asp Glu Glu Glu			
185	186	187	
caa aac aaa ccc cac atc att tat agg cgc aac gca ccc cag aga gag			607
5 Gln Asn Lys Pro His Ile Ile Tyr Arg Arg Ser Ala Pro Gln Arg Glu			
200	205	210	215
ccc tca aca gga agg cat gca tgt gac acc tca gaa cac aaa aat agg			725
Pro Ser Thr Gly Arg His Ala Cys Asp Thr Ser Glu His Lys Asn Arg			
10 220	225	230	
cac agt aaa gac aag aag aaa acc aga gca aca aaa tgg gga gaa agg			773
His Ser Lys Asp Lys Lys Thr Arg Ala Arg Lys Trp Gly Glu Arg			
235	240	245	
15 att aac ctg gct ggt gac gta gca gca tta aac aac ggc tta gca aca			821
Ile Asn Leu Ala Gly Asp Val Ala Ala Leu Asn Ser Gly Leu Ala Thr			
250	255	260	
20 gag gca ttt tct gct tat ggt aat aag acg gac aac aca aca gaa aag			869
Glu Ala Phe Ser Ala Tyr Gly Asn Lys Thr Asp Asn Thr Arg Glu Lys			
265	270	275	
25 agg acc cac aga agg aca aaa cgt ttt tta tcc tat cca cgg ttt gta			917
Arg Thr His Arg Arg Thr Lys Arg Phe Leu Ser Tyr Pro Arg Phe Val			
280	285	290	295
30 gaa gtc ttg gtg gtg gca gac aac aga atg gtt tca tac cat gga gaa			965
Glu Val Leu Val Val Ala Asp Asn Arg Met Val Ser Tyr His Gly Glu			
300	305	310	
aac ctt caa cac tat att tta act tta atg tca att gta gcc tct atc			1013
Asn Leu Gln His Tyr Ile Leu Thr Leu Met Ser Ile Val Ala Ser Ile			
315	320	325	
35 tat aaa gac cca agt att gga aat tta att aat att gtt att gtg aac			1061
Tyr Lys Asp Pro Ser Ile Gly Asn Leu Ile Asn Ile Val Ile Val Asn			
330	335	340	
40 tta att gtg att cat aat gaa cag gat ggg cct tcc ata tct ttt aat			1109
Ieu Ile Val Ile His Asn Glu Gln Asp Gly Pro Ser Ile Ser Phe Asn			
345	350	355	
45 gct cag aca aca tta aaa aac ttt tgc taa tgg cag cat tgg aac agt			1157
Ala Gln Thr Thr Leu Lys Asn Phe Cys Gln Trp Gln His Ser Asn Ser			
360	365	370	375
50 cca ggt gga atc cat cat gat gct gtt tta aca aca aca cag gat			1168
Pro Gly Gly Ile His His Asp Thr Ala Val Leu Leu Thr Arg Gln Asp			
380	385	390	395
55 atc tgc aca gat cac gac aaa tgc gat acc tta ggc ctg gct gaa ctc			1253
Ile Cys Arg Ala His Asp Lys Cys Asp Thr Leu Gly Leu Ala Glu Leu			
395	400	405	
60 gga acc att tgc pat ccc tat aya ayc tct tct att agt gaa gat aat			1271
Gly Thr Ile Cys Asp Pro Tyr Arg Ser Cys Ser Ile Ser Glu Asp Ser			
410	415	420	425

<pre> agt ccc cag cat gtc atg cct cca aca ctg aac ttc tac acc aac ccc Ser Pro Gln His Val Met Ala Pro Thr Leu Asn Phe Tyr Thr Asn Pro 460 465 470 </pre>	1445
5	
<pre> tgg atg tgg tca aag tgt agt cga aaa tat atc act gag ttt ita gac Trp Met Trp Ser Lys Cys Ser Arg Lys Tyr Ile Thr Glu Phe Leu Asp 475 480 485 </pre>	1493
10	
<pre> act ggt tat cgc gag tgt ttg ctt aac gaa cct gaa tcc aga ccc tac Thr Gly Tyr Gly Glu Cys Leu Leu Asn Glu Pro Glu Ser Arg Pro Tyr 490 495 500 </pre>	1541
15	
<pre> cct ttg cct gtc caa ctg cca ggc att ctt tac aac gtc aat aaa caa Pro Leu Pro Val Gln Leu Pro Gly Ile Leu Tyr Asn Val Asn Lys Gln 505 510 515 </pre>	1589
20	
<pre> tgt gaa ttg att ttt gga cca ggt tct cag gtg tgc cca tat atg atg Cys Glu Leu Ile Phe Gly Pro Gly Ser Gln Val Cys Pro Tyr Met Met 520 525 530 535 </pre>	1637
25	
<pre> cag tgc aga cgg ctc tgg tcg aat aac gtc aat gga gta cac aaa ggc Gln Cys Arg Arg Leu Trp Ser Asn Asn Val Gly Val His Lys Gly 540 545 550 </pre>	1685
30	
<pre> ggg aag cac tgc aag tat gga ttt tgt gtt ccc aaa gaa atg gat gtc Gly Lys His Cys Lys Tyr Gly Phe Cys Val Pro Dls Glu Met Asp Val 570 575 580 </pre>	1781
35	
<pre> ccc gtg aca gat gga tcc tgg gga agt tgg agt ccc ttt gga acc tgc Pro Val Thr Asp Gly Ser Trp Gly Ser Trp Ser Pro Phe Gly Thr Cys 585 590 595 </pre>	1829
40	
<pre> tcc aca aca tgt gga ggc atc aaa aca gcc att cga gag tgc aac Ser Arg Thr Cys Gly Gly Ile Lys Thr Ala Ile Arg Glu Cys Asn 600 605 610 615 </pre>	1877
45	
<pre> aga cca gaa cca aaa aat ggt gga aaa tac tgt gta gga cgt aga atg Arg Pro Glu Pro Lys Asn Gly Gly Lys Tyr Cys Val Gly Arg Arg Met 620 625 630 </pre>	1925
50	
<pre> aaa ttc aag tcc tgc aac acg ggg cca tgt ctc aag cag aag cga gac Lys Phe Lys Ser Cys Asn Thr Glu Pro Cys Leu Lys Gln Lys Arg Asp 635 640 645 </pre>	1973
55	
<pre> aac ggt ctg ctt ccc aat stg cgc tgg gtc cct aaa tac agt gga att Asn Gly Leu Leu Pro Asn Val Arg Trp Val Pro Lys Tyr Ser Gly Ile 665 670 675 </pre>	2069
60	
<pre> ttt ttc aag cca aat tcc tcc aat ttt tcc tcc tcc tcc tcc tcc tcc tcc </pre>	2117

Gln Asp Thr Asn Asp Ile Cys Val Gln Gly Leu Cys Arg Gln Ala Gly
 715 720 725 2161
 tgc gat cat stt tta aac tca aaa gcc cgg aga gat aaa tgc ggg gtt
 5 Cys Asp His Val Ieu Asn Ser Lys Ala Arg Arg Asp Lys Cys Gly Val
 730 735 740
 tgt ggt ggc gat aat tct tca tgc aaa aca gtc gca gga aca ttt aat
 Cys Gly Gly Asp Asn Ser Ser Cys Lys Thr Val Ala Gly Thr Phe Asn
 10 745 750 755 2309
 aca gta cat tat ggt tac aat act gtc gtc cga att cca gct ggt gct
 Thr Val His Tyr Gly Tyr Asn Thr Val Val Arg Ile Pro Ala Gly Ala
 15 760 765 770 775 2357
 acc aat att gat gtg cgg cag cac agt ttc tca ggg gaa aca gac gat
 Thr Asn Ile Asp Val Arg Gln His Ser Phe Ser Gly Glu Thr Asp Asp
 20 780 785 790 2405
 gac aac tac tta gct tta tca agc agt aaa ggt gaa ttc ttg cta aat
 Asp Asn Tyr Leu Ala Leu Ser Ser Lys Gly Glu Phe Leu Leu Asn
 25 795 800 805 2453
 gga aac ttt gtt gtc aca atg gcc aaa agg gaa att cgc att ggg aat
 25 Cys Asn Phe Val Val Thr Met Ala Lys Arg Glu Ile Arg Ile Gly Asn.
 810 815 820 2501
 gct gtg gta gag tac agt ggg tcc gag act gcc gta gaa aga att aac
 Ala Val Val Glu Tyr Ser Gly Ser Glu Thr Ala Val Glu Arg Ile Asn.
 30 825 830 835 2549
 tca aca gat cgc att gag caa gaa ctt ttg ctt cag gtt ttg tcc gtc
 Ser Thr Asp Arg Ile Glu Gln Glu Leu Leu Leu Gln Val Leu Ser Val
 35 840 845 850 855 2597
 gga aag ttg tac aac ccc gat gta cgc tat tct ttc aat att cca att
 Cys Lys Leu Tyr Asn Pro Asp Val Arg Tyr Ser Phe Asn Ile Pro Ile
 40 860 865 870 2645
 gaa gat aaa cct cag cag ttt tac tgg aac agt cat ggg cca tgg caa
 Glu Asp Lys Pro Gin Gln Phe Tyr Trp Asn Ser His Gly Pro Trp Gln
 45 875 880 885 2693
 gca tgc agt aaa ccc tgc caa ggg gaa cgg aaa cga aas ctt gtt tgc
 45 Ala Cys Ser Lys Pro Cys Gln Gly Glu Arg Lys Arg Lys Leu Val Cys
 890 895 900 2741
 att agg gaa tct gat cag stt act gtt tct gat caa aca tgg jat cgg
 Thr Arg Glu Ser Asp Gln Leu Thr Val Ser Asp Gln Arg Cys Asp Arg
 50 905 910 915 2789
 ctg ccc cag cct gga cac att act gaa ccc tgt ggt aca ggc tgt gac
 Leu Pro Gln Pro Gly His Ile Thr Glu Pro Cys Gly Thr Gly Cys Asp
 55 920 925 930 935 2837
 stp agg tgg cat stt gcc agg agg agt gaa tgt agt gct cag tgt ggc
 Leu Arg Trp His Val Ala Ser Arg Ser Glu Cys Ser Ala Gln Cys Gly
 60 940 945 950 955 2885

1000 1000 1000

aaa cca aac aac cgt gaa aaa tgc tca ggc gaa tat aac acc ggt ggc Lys Pro Ser Asn Arg Glu Lys Cys Ser Gly Glu Cys Asn Thr Gly Gly 985 990 995	3029
5 tgg cgc tat tct gcc tgg act gaa tgt tca aaa aac tgt sac ggt ggg Trp Arg Tyr Ser Ala Trp Thr Glu Cys Ser Lys Ser Cys Asp Gly Gly 1000 1005 1010 1015	3077
10 acc cag agg aga agg gct att tgt gtc aat acc cga aat gat gta ctg Thr Gln Arg Arg Ala Ile Cys Val Asn Thr Arg Asn Asp Val Leu 1020 1025 1030	3125
15 gat gac aac aaa tgc aca cat caa gag aaa gtt acc att tag agg tgc Asp Asp Ser Lys Cys Thr His Gln Lys Val Thr Ile Gln Arg Cys 1035 1040 1045	3173
20 agt gag ttc cct tgt cca cag tgg aaa tct gga gac tgg tca gag tgc Ser Glu Phe Pro Cys Pro Glu Tyr Lys Ser Glu Asp Trp Ser Glu Cys 1050 1055 1060	3221
25 ttg gtc acc tgt gga aaa cgg cat aag cac cgc cag gtc tgg tgt tag Leu Val Thr Cys Gly Lys His Lys His Arg Gln Val Trp Cys Gln 1065 1070 1075	3269
30 ttt ggt gaa gat cga tta aat gat aga atg tgt gac cct gag acc aag Phe Gly Glu Asp Arg Leu Asn Asp Arg Met Cys Asp Pro Glu Thr Lys 1080 1085 1090 1095	3317
35 cca aca tct atg cag act tgt cag cag ccg gaa atg gca tcc tgg cag Pro Thr Ser Met Gln Thr Cys Gln Gln Pro Glu Met Ala Ser Trp Gln 1100 1105 1110	3365
40 gcg ggt ccc tgg gta cag tgc agt gtc act tgt gga cag gga tac tag Ala Gly Pro Trp Val Gln Cys Ser Val Thr Cys Gly Gln Gly Tyr Gln 1115 1120 1125	3413
45 cta aga gca gtg aaa tgc atc att ggg act tat atg tca gtg gta gat Leu Arg Ala Val Lys Cys Ile Ile Gly Thr Tyr Met Ser Val Val Asp 1130 1135 1140	3461
50 gac aat gac tgt aat gca gca act aga cca act gat acc sag gac tgt Asp Asn Asp Cys Asn Ala Ala Thr Arg Pro Thr Asp Thr Gln Asp Cys 1145 1150 1155	3509
55 gaa tta cca tca tgt cat cct ccc cca gct ggc ccg gaa acc agg aca Glu Leu Pro Ser Cys His Pro Pro Pro Ala Ala Pro Glu Thr Arg Arg 1160 1165 1170 1175	3557
60 agc aca taa tgt gca cca aga tcc tgg tgg tga ttt ggg ttt tgg arg Ser Thr Tyr Ser Ala Pro Arg Thr Gln Trp Arg Phe Gly Ser Trp Thr 1180 1185 1190	3617
65 cca tgc tca gcc act tgt ggg aaa ggt acc cgg atg aga tac gtc agc Pro Cys Ser Ala Thr Cys Gly Lys Gly Thr Arg Met Arg Tyr Val Ser 1195 1200 1205	3653
70 tcc tca cat gag aat ggt tat gca acc tac gag agt ggc tgt gct acc	3711

...
...
ccn tgg aag gca ttc pcc tcc agc tcc tcc gtc acc tgg tcc tcc tcc

Gln Thr Cys Ser Val Asn Tyr Ser Asp His Val
 1240 1245 1250 1255

ggt agg gca acc cgg caa gtg atg tgc aac tac agt gac cac gtc
 5 Gly Arg Ala Thr Arg Gln Val Met Cys Val Asn Tyr Ser Asp His Val
 1260 1265 1270 1275

atc gat cgg agt gag tgc gac cag gat tat atc cca gaa act gac cag
 Ile Asp Arg Ser Glu Cys Asp Gln Asp Tyr Ile Pro Glu Thr Asp Gln
 10 1275 1280 1285 1290

gac tgc tcc atg tca cca tgc cct caa agg acc cca gac agt ggc tta
 Asp Cys Ser Met Ser Pro Cys Pro Gln Arg Thr Pro Asp Ser Gly Leu
 1290 1295 1300 1305

15 gct cag cac ccc ttc caa aat gag gac tat cgt ccc cgg agc gcc agc
 Ala Gln His Pro Phe Gln Asn Glu Asp Tyr Arg Pro Arg Ser Ala Ser
 1305 1310 1315 1320

20 ccc agc cgc acc cat gtg ctc ggt gga aac cag tgg aga act ggc ccc
 Pro Ser Arg Thr His Val Leu Gly Asn Gln Trp Arg Thr Gly Pro
 1320 1325 1330 1335

25 tgg gga gca tgt tcc agt acc tgc gtc gga tcc cag cgg cgt gtc
 25 Trp Gly Ala Cys Ser Ser Thr Cys Ala Gly Ser Gln Arg Arg Val
 1340 1345 1350 1355

30 gtt gta tgt cag gat gaa aat gga tac acc gca aac gac tgt gtg gag
 Val Val Cys Gln Asp Glu Asn Gly Tyr Thr Ala Asn Asp Cys Val Glu
 1355 1360 1365 1370

35 aga ata aaa cct gat gag caa aga gca tgt gaa tcc ggc cct tgt cct
 Arg Ile Lys Pro Asp Glu Gln Arg Ala Cys Glu Ser Gly Pro Cys Pro
 1370 1375 1380 1385

40 cag tgg gct tat ggc aac tgg gga gag tgc act aag ctg tgt ggt gga
 Gln Trp Ala Tyr Asn Trp Gly Glu Cys Thr Lys Leu Cys Gly Gly
 1385 1390 1395 1400

45 ggc ata aga aca aga ctg gtg gtc tgt cag cgg tcc aac ggt gaa cgg
 Gly Ile Arg Thr Arg Leu Val Val Cys Gln Arg Ser Asn Gly Glu Arg
 1400 1405 1410 1415

50 ttt cca gat ttg agt tgt gaa att ctt gat aaa cct ccc gat cgt gag
 45 The Pro Asp Leu Ser Cys Glu Ile Leu Asp Lys Pro Pro Asp Arg Glu
 1420 1425 1430 1435

55 cag tgt aac aca cat gct tgc cca ccc gac gct gca tgg agt aat ggc
 Gln Cys Asn Thr His Ala Cys Pro His Asp Ala Ala Trp Ser Thr Gly
 1435 1440 1445 1450

60 cct tgg agc tcc tgt tct gtc tct tgt ggt cga egg cat aaa ccc cga
 Pro Trp Ser Ser Cys Ser Val Ser Cys Gly Arg Gly His Lys Gln Arg
 1450 1455 1460 1465

65 aat gtt tac tgc atg gca aac gat gga aag cat ttg gaa agt gat tac
 Asn Val Tyr Cys Met Ala Lys Asp Gly Ser His Leu Glu Ser Asp Tyr
 1465 1470 1475 1480

Arg Arg Lys Arg Lys Arg Lys Arg Lys Arg Lys Arg Lys Arg Val Val

tgt ggc cga ggc gta cag cag aac cat gtc ggc tgt cag atc gga aca Cys Gly Arg Gly Val Gln Gln Arg His Val Gly Cys Gln Ile Gly Thr 1515 1520 1525	4613
5	
cac aaa ata gcc aga gac acc gag tgc aac cca tac acc aga ccg gag His Lys Ile Ala Arg Asp Thr Glu Cys Asn Pro Tyr Thr Arg Pro Glu 1530 1535 1540	4661
10	
tcg gaa tgc gaa tgc caa ggc cca cgg tgt ccc ctt tac act tgg agg Ser Glu Cys Glu Cys Gln Gly Pro Arg Cys Pro Leu Tyr Thr Trp Arg 1545 1550 1555	4709
15	
gca gag gaa tcg caa gaa tgc acc aag acc tgc ggc gaa ggc tcc agg Ala Glu Glu Ser Gln Glu Cys Thr Lys Thr Cys Gly Glu Gly Ser Arg 1560 1565 1570 1575	4757
20	
tac cgs aaq qtq qtq tqt qtq qat qac aac aaa aac qaq qtq cat qqq Tyr Arg Lys Val Val Cys Val Asp Asp Asn Lys Asn Glu Val His Gly 1580 1585 1590	4805
25	
gca cgc tgt gac gtg agc aag cgg cgg gtc gac cgt gaa agc tgt agt Ala Arg Cys Asp Val Ser Lys Arg Pro Val Asp Arg Glu Ser Cys Ser 1595 1600 1605	4853
30	
ttg caa ccc tgc gag tat gtc tgg atc aca gga gaa tgg tca gag tgc Leu Gln Pro Cys Glu Tyr Val Trp Ile Thr Gly Glu Trp Ser Glu Cys 1610 1615 1620	4901
35	
tca gtg acc tgt gga aaa ggc tac aaa caa egg ctt gtc tgg tgc agc Ser Val Thr Cys Gly Lys Gly Tyr Lys Gln Arg Leu Val Ser Cys Ser 1625 1630 1635	4949
40	
gag att tac acc ggg aaa gag aat tat gaa tac agc tac caa acc acc Glu Ile Tyr Thr Gly Lys Glu Asn Tyr Glu Tyr Ser Tyr Gln Thr Thr 1640 1645 1650 1655	4997
45	
atc aac tgc cca ggc acg cag ccc agt gtt cac ccc tgt tac ctg Ile Asn Cys Pro Gly Thr Gln Pro Pro Val His Pro Cys Tyr Leu 1660 1665 1670	5045
50	
agg gag tgc cct gtc tgg gcc acc tgg aga gtt ggc aac tgg ggg agc Arg Glu Cys Pro Val Ser Ala Thr Trp Arg Val Gly Asn Trp Gly Ser 1675 1680 1685	5093
55	
tgt tca gtg cct tgt ggt stt gga gtg atg cag aga tct stg caa tgt Cys Ser Val Ser Cys Gly Val Met Gln Arg Ser Val Gln Cys 1690 1695 1700	5141
60	
tta acc aat gag gag caa ccc agc bac tta tgc bac act gat ctg aag Leu Thr Asn Glu Asp Gln Pro Ser His Leu Cys His Thr Asp Leu Lys 1705 1710 1715	5169
65	
cca gaa gaa cga aaa acc tgc cgt aat gtc tat aac tgt gag tta ccc Pro Glu Glu Arg Lys Thr Cys Arg Asn Val Tyr Asn Cys Glu Leu Pro 1720 1725 1730 1735	5237

Gly Met His Ser Asp His Pro Lys Glu Tyr Val Thr Leu Val His Gly
 1770 1775 1780

gac tct gag aat ttc tcc gag gtt tat ggg cac aeg tta cac aac cca 5429
 5 Asp Ser Glu Asn Phe Ser Glu Val Tyr Gly His Arg Leu His Asn Pro
 1785 1790 1795

aca gaa tgt ccc tat aac ggg agc cgg cgc gat gac tgc caa tgt cgg 5477
 Thr Glu Cys Pro Tyr Asn Gly Ser Arg Asp Asp Cys Gln Cys Arg
 10 1800 1805 1810 1815

aag gat tac acg gcc gct ggg ttt tcc agt ttt cag aaa atc aga ata 5525
 Lys Asp Tyr Thr Ala Ala Gly Phe Ser Ser Phe Gln Lys Ile Arg Ile
 1820 1825 1830

15 gac ctg acc agc atg caq ata atc acc act gac tta cag ttt gca agg 5573
 Asp Leu Thr Ser Met Gln Ile Ile Thr Thr Asp Leu Gln Phe Ala Arg
 1835 1840 1845

20 aca agc gaa gga cat ccc gtc cct ttt gcc aca gcc ggg gat tgc tac 5621
 Thr Ser Glu Gly His Pro Val Pro Phe Ala Thr Ala Gly Asp Cys Tyr
 1850 1855 1860

agc gct gcc aag tgc cca caq ggt cgt ttt agc atc aac ctt tat gca 5669
 25 Ser Ala Ala Lys Cys Pro Gln Gly Arg Phe Ser Ile Asn Leu Tyr Gly
 1865 1870 1875

acc ggc ttg tct tta act gaa tct gcc aga tgg ata tca caa ggg aat 5717
 Thr Gly Leu Ser Leu Thr Glu Ser Ala Arg Trp Ile Ser Gln Gly Asn
 30 1880 1885 1890 1895

tat gtc tct gac atc aag aag tcg ccg gat ggt acc cga gtc gta 5765
 Tyr Ala Val Ser Asp Ile Lys Ser Pro Asp Gly Thr Arg Val Val
 1900 1905 1910

35 ggg aaa tgc ggt ggt tac tgt gga aaa tgc act cca tcc tct ggt act 5813
 Gly Lys Cys Gly Gly Tyr Cys Gly Lys Cys Thr Pro Ser Ser Gly Thr
 1915 1920 1925

40 ggc ctg gag gtg cga gtt tta tagctaagggt gctttgaaga ggaaggccatt 5864
 Gly Leu Glu Val Arg Val Leu
 1930

atggatggat gaaggatagt atcgaaatac stccaccta atttggatgc atgtgtatgt 5924
 45 ctgttgtgtt ttgttgtgtga ctgtgtatgtt ctgtgtgtata aatgttgtgtata cttatataat 5984

tataca 5992

50:
 <210> 26
 <211> 1934
 <212> PRT
 <213> Homo sapiens ADAMTS-9b

55 <400> 26
 Met Gln Phe Val Ser Trp Ala Thr Leu Leu Thr Leu Val Arg Asp

	50	55	60
	Thr Asn Val His Phe Lys Arg Thr Arg Arg Ser Ile Asn Ser Ala Thr		
	65	70	75
5	Asp Pro Trp Pro Ala Phe Ala Ser Ser Ser Ser Ser Ser Thr Ser Pro		
	85	90	95
	Gln Ala His Tyr Arg Leu Ser Ala Phe Gly Gln Gln Phe Leu Phe Asn		
10	100	105	110
	Leu Thr Ala Asn Ala Gly Phe Ile Ala Pro Leu Phe Thr Val Thr Leu		
	115	120	125
	Leu Gly Thr Pro Gly Val Asn Gln Thr Lys Phe Tyr Ser Glu Glu Glu		
	130	135	140
	Ala Glu Leu Lys His Cys Phe Tyr Lys Gly Tyr Val Asn Thr Asn Ser		
	145	150	155
20	Glu His Thr Ala Val Ile Ser Leu Cys Ser Gly Met Leu Gly Thr Phe		
	165	170	175
	Arg Ser His Asp Gly Gly Tyr Phe Ile Glu Pro Leu Gln Ser Met Asp		
25	180	185	190
	Glu Gln Glu Asp Glu Glu Gln Asn Lys Pro His Ile Ile Tyr Arg		
	195	200	205
	Arg Ser Ala Pro Gln Arg Glu Pro Ser Thr Gly Arg His Ala Cys Asp		
30	210	215	220
	Thr Ser Glu His Lys Asn Arg His Ser Lys Asp Lys Lys Lys Thr Arg		
	225	230	235
35	Ala Arg Lys Trp Gly Glu Arg Ile Asn Leu Ala Gly Asp Val Ala Ala		
	245	250	255
	Leu Asn Ser Gly Leu Ala Thr Glu Ala Phe Ser Ala Tyr Gly Asn Lys		
40	260	265	270
	Thr Asp Asn Thr Arg Glu Lys Arg Thr His Arg Arg Thr Lys Arg Phe		
	275	280	285
	Leu Ser Tyr Pro Arg Phe Val Glu Val Val Val Ala Asp Asn Arg		
	290	295	300
	Met Val Ser Tyr His Gly Glu Asn Leu Glu His Tyr Ile Leu Thr Leu		
	305	310	315
35	Met Ser Ile Val Ala Ser Ile Tyr Lys Asp Pro Ser Ile Gly Asn Leu		
	325	330	335
	Ile Asn Ile Val Ile Val Asn Leu Ile Val Ile His Asn Glu Gln Asp		
40	340	345	350
	Gly Pro Ser Ile Ser Phe Asn Ala Glu Thr Thr Leu Lys Asn Phe Cys		
	355	360	365

	405	410	415
	Cys Ser Ile Ser Glu Asp Ser Cys Leu Ser Thr Ala Phe Thr Ile Ala		
	420	425	430
5	His Glu Leu Gly His Val Phe Asn Met Pro His Asp Asp Asn Asn Lys		
	435	440	445
	Cys Lys Glu Glu Gly Val Lys Ser Pro Gln His Val Met Ala Pro Thr		
10	450	455	460
	Leu Asn Phe Tyr Thr Asn Pro Trp Met Trp Ser Lys Cys Ser Arg Lys		
	465	470	475
	Arg Lys		
15	Tyr Ile Thr Glu Phe Leu Asp Thr Gly Tyr Gly Glu Cys Leu Leu Asn		
	485	490	495
	Glu Pro Glu Ser Arg Pro Tyr Pro Leu Pro Val Gln Leu Pro Gly Ile		
	500	505	510
20	Leu Tyr Asn Val Asn Lys Gln Cys Glu Leu Ile Phe Gly Pro Gly Ser		
	515	520	525
	Gln Val Cys Pro Tyr Met Met Gln Cys Arg Arg Leu Trp Ser Asn Asn		
25	530	535	540
	Val Asn Gly Val His Lys Gly Cys Arg Thr Gln His Thr Pro Trp Ala		
	545	550	555
	560		
30	Asp Gly Thr Glu Cys Glu Pro Gly Lys His Cys Lys Tyr Gly Phe Cys		
	565	570	575
	Val Pro Lys Glu Met Asp Val Pro Val Thr Asp Gly Ser Trp Gly Ser		
	580	585	590
35	Trp Ser Pro Phe Gly Thr Cys Ser Arg Thr Cys Gly Gly Ile Lys		
	595	600	605
	Thr Ala Ile Arg Glu Cys Asn Arg Pro Glu Pro Lys Asn Gly Lys		
40	610	615	620
	Tyr Cys Val Gly Arg Arg Met Lys Phe Lys Ser Cys Asn Thr Glu Pro		
	625	630	635
	640		
45	Cys Leu Lys Gln Lys Arg Asp Phe Arg Asp Glu Gln Cys Ala His Phe		
	645	650	655
	Asp Cys Lys His Phe Asn Ile Asn Cys Leu Leu Pro Asn Val Arg Thr		
	660	665	670
50	Val Pro Lys Tyr Ser Gly Ile Leu Met Lys Asp Arg Cys Lys Leu Phe		
	675	680	685
	Cys Arg Val Ala Gly Asn Thr Ala Tyr Tyr Gln Leu Arg Asp Arg Val		
55	690	695	700
	Ile Asp Cys Thr Pro Cys Gly Gln Asp Thr Asn Asp Ile Cys Val Gln		
	705	710	715
	720		

51
Tyr Ile Ala Gly Thr Phe Asn Thr Val His Tyr Cys Tyr Asn Thr Val

	755	760	765
	Val Arg Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Arg Gln His Ser		
	770	775	780
5	Phe Ser Gly Glu Thr Asp Asp Asp Asn Tyr Leu Ala Leu Ser Ser Ser		
	785	790	795
	Lys Gly Glu Phe Leu Leu Asn Gly Asn Phe Val Val Thr Met Ala Lys		
10	805	810	815
	Arg Glu Ile Arg Ile Gly Asn Ala Val Val Glu Tyr Ser Gly Ser Glu		
	820	825	830
15	Thr Ala Val Glu Arg Ile Asn Ser Thr Asp Arg Ile Glu Gln Glu Leu		
	835	840	845
	Leu Leu Gln Val Leu Ser Val Gly Lys Leu Tyr Asn Pro Asp Val Arg		
	850	855	860
20	Tyr Ser Phe Asn Ile Pro Ile Glu Asp Lys Pro Gln Gln Phe Tyr Trp		
	865	870	875
	Asn Ser His Gly Pro Trp Gln Ala Cys Ser Lys Pro Cys Gln Gly Glu		
25	885	890	895
	Arg Lys Arg Lys Leu Val Cys Thr Arg Glu Ser Asp Gln Leu Thr Val		
	900	905	910
30	Ser Asp Gln Arg Cys Asp Arg Leu Pro Gln Pro Gly His Ile Thr Glu		
	915	920	925
	Pro Cys Gly Thr Gly Cys Asp Leu Arg Trp His Val Ala Ser Arg Ser		
	930	935	940
35	Glu Cys Ser Ala Gln Cys Gly Leu Gly Tyr Arg Thr Leu Asp Ile Tyr		
	945	950	955
	Cys Ala Lys Tyr Ser Arg Leu Asp Gly Lys Thr Glu Lys Val Asp Asp		
40	965	970	975
	Gly Phe Cys Ser Ser His Pro Lys Pro Ser Asn Arg Glu Lys Cys Ser		
	980	985	990
45	Gly Glu Cys Asn Thr Gly Gly Trp Arg Tyr Ser Ala Trp Thr Glu Cys		
	995	1000	1005
	Ser Lys Ser Cys Asp Gly Gly Tyr Gln Arg Arg Arg Ala Ile Lys Val		
	1010	1015	1020
50	Asn Thr Arg Asn Asp Val Leu Asp Asp Ser Lys Cys Thr His Gln Glu		
	1025	1030	1035
	Lys Val Thr Ile Gln Arg Cys Ser Glu Phe Pro Cys Pro Gln Trp Lys		
55	1045	1050	1055
	Ser Gly Asp Trp Ser Gln Cys Leu Val Thr Cys Gly Lys His Lys		
	1060	1065	1070
60	Phe Glu Met Ala ser Trp Gln Ala Gly Ile Trp Val Gln Cys Ser Val		

	1105	1110	1115	1120
5	Thr Cys Gly Gln Gly Tyr Gln Leu Arg Ala Val Lys Cys Ile Ile Gly 1125	1130		1135
	Thr Tyr Met Ser Val Val Asp Asp Asn Asp Cys Asn Ala Ala Thr Arg 1140	1145		1150
10	Pro Thr Asp Thr Gln Asp Cys Glu Leu Pro Ser Cys His Pro Pro Pro 1155	1160	1165	
	Ala Ala Pro Glu Thr Arg Arg Ser Thr Tyr Ser Ala Pro Arg Thr Sln 1170	1175	1180	
15	Trp Arg Phe Gly Ser Trp Thr Pro Cys Ser Ala Thr Cys Gly Lys Gly 1185	1190	1195	1200
	Thr Arg Met Arg Tyr Val Ser Cys Arg Asp Glu Asn Gly Ser Val Ala 1205	1210		1215
20	Asp Glu Ser Ala Cys Ala Thr Leu Pro Arg Pro Val Ala Lys Glu Glu 1220	1225		1230
	Cys Ser Val Thr Pro Cys Gly Gln Trp Lys Ala Leu Asp Trp Ser Ser 1235	1240	1245	
25	Cys Ser Val Thr Cys Gly Gln Gly Arg Ala Thr Arg Gln Val Met Cys 1250	1255	1260	
	30 Val Asn Tyr Ser Asp His Val Ile Asp Arg Ser Glu Cys Asp Gln Asp 1265	1270	1275	1280
	Tyr Ile Pro Glu Thr Asp Gln Asp Cys Ser Met Ser Pro Cys Pro Gln 1285	1290		1295
35	Arg Thr Pro Asp Ser Gly Leu Ala Gln His Pro Phe Gln Asn Glu Asp 1300	1305		1310
	Tyr Arg Pro Arg Ser Ala Ser Pro Ser Arg Thr His Val Leu Gly Gly 1315	1320	1325	
40	Asn Gln Trp Arg Thr Gly Pro Trp Gly Ala Cys Ser Ser Thr Cys Ala 1330	1335	1340	
	45 Gly Gly Ser Gln Arg Arg Val Val Cys Cln Asp Glu Asn Gly Tyr 1345	1350	1355	1360
	Thr Ala Asn Asp Cys Val Gln Arg Ile Lys Pro Asp Glu Gln Arg Ala 1365	1370		1375
50	Cys Glu Ser Gly Pro Cys Pro Gln Trp Ala Tyr Gly Asn Trp Gly Glu 1380	1385	1390	
	Cys Thr Lys Leu Cys Gly Gly Ile Arg Thr Arg Leu Val Val Cys 1395	1400	1405	
55	Gln Arg Ser Asn Gly Gln Arg Phe Pro Asp Ile Ser Cys Glu Ile Leu 1410	1415		1420

	1460	1465	1470	
	Ser His Leu Glu Ser Asp Tyr Cys Lys His Leu Ala Lys Pro His Gly			
	1475	1480	1485	
5	His Arg Lys Cys Arg Gly Gly Arg Cys Pro Lys Trp Lys Ala Gly Ala			
	1490	1495	1500	
	Trp Ser Gln Cys Ser Val Ser Cys Gly Arg Gly Val Gln Gln Arg His			
10	1505	1510	1515	1520
	Val Gly Cys Gln Ile Gly Thr His Lys Ile Ala Arg Asp Thr Glu Cys			
	1525	1530	1535	
15	Asn Pro Tyr Thr Arg Pro Glu Ser Glu Cys Glu Cys Gln Gly Pro Arg			
	1540	1545	1550	
	Cys Pro Leu Tyr Thr Trp Arg Ala Glu Glu Ser Gln Glu Cys Thr Lys			
	1555	1560	1565	
20	Thr Cys Gly Glu Gly Ser Arg Tyr Arg Lys Val Val Cys Val Asp Asp			
	1570	1575	1580	
	Asn Lys Asn Glu Val His Gly Ala Arg Cys Asp Val Ser Lys Arg Pro			
25	1585	1590	1595	1600
	Val Asp Arg Glu Ser Cys Ser Leu Gln Pro Cys Glu Tyr Val Trp Ile			
	1605	1610	1615	
30	Thr Gly Glu Trp Ser Glu Cys Ser Val Thr Cys Gly Lys Gly Tyr Lys			
	1620	1625	1630	
	Gln Arg Leu Val Ser Cys Ser Glu Ile Tyr Thr Gly Lys Glu Asn Tyr			
	1635	1640	1645	
35	Glu Tyr Ser Tyr Gln Thr Thr Ile Asn Cys Pro Gly Thr Gln Pro Pro			
	1650	1655	1660	
	Ser Val His Pro Cys Tyr Leu Arg Glu Cys Pro Val Ser Ala Thr Trp			
40	1665	1670	1675	1680
	Arg Val Gly Asn Trp Gly Ser Cys Ser Val Ser Cys Gly Val Gly Val			
	1685	1690	1695	
45	Met Gln Arg Ser Val Gln Cys Leu Thr Asn Glu Asp Gln Pro Ser His			
	1700	1705	1710	
	Leu Cys His Thr Asp Leu Lys Pro Glu Glu Arg Lys Thr Cys Arg Asn			
	1715	1720	1725	
50	Val Tyr Asn Cys Glu Leu Pro Gln Asn Cys Lys Glu Val Lys Arg Leu			
	1730	1735	1740	
	Lys Gly Ala Ser Glu Asp Gly Glu Tyr Phe Leu Met Ile Arg Gly Lys			
55	1745	1750	1755	1760
	Ieu Leu Lys Ile Phe Cys Ala Gly Met His Ser Asp His Pro Lys Glu			
	1770	1775	1780	

1810 1815 1820
Ser Phe Gln Lys Ile Arg Ile Asp Leu Thr Ser Met Gln Ile Ile Thr
1825 1830 1835 1840
5 Thr Asp Leu Gln Phe Ala Arg Thr Ser Glu Gly His Pro Val Pro Phe
1845 1850 1855
Ala Thr Ala Gly Asp Cys Tyr Ser Ala Ala Lys Cys Pro Gln Gly Arg
10 1860 1865 1870
Phe Ser Ile Asn Leu Tyr Gly Thr Gly Leu Ser Leu Thr Glu Ser Ala
1875 1880 1885
15 Arg Trp Ile Ser Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser
1890 1895 1900
Pro Asp Gly Thr Arg Val Val Gly Lys Cys Gly Gly Tyr Cys Gly Lys
1905 1910 1915 1920
20 Cys Thr Pro Ser Ser Gly Thr Gly Leu Glu Val Arg Val Leu
1925 1930