Теория вероятности и математическая статистика, 2 курс, $2\ {\rm cemectp}$

2 марта 2020 г.

Содержание

1	Сходимости случайных величин	2
2	Характеристические функции	6
3	Неравенство типа Хефдинга-Чернова	9
4	Теоремы непрерывности	11
5	Многомерная характеристическая функция и ЦПТ	14
6	Многомерное нормальное распределение	16
7	Условные математические ожидания: дискретный случай	19
8	Условные математические ожидания: общий случай	22

1 Сходимости случайных величин

Определение 1. Последовательность случайных величин ξ_n сходится к случайной величине ξ :

1. Почти наверное $(\xi_n \xrightarrow{\text{п.н.}} \xi)$, если

$$P\left(\lim_{n\to\infty}\xi_n=\xi\right)=1$$

2. По вероятности $(\xi_n \xrightarrow{p} \xi)$, если

$$\forall \varepsilon > 0 \lim_{n \to \infty} P(|\xi_n - \xi| \ge \varepsilon) = 0$$

3. По распределению $(\xi_n \xrightarrow{d} \xi)$, если

$$\lim_{n \to \infty} F_{\xi_n}(x) = F_{\xi}(x)$$

для любых x, в которых непрерывна F_{ε}

Теорема 1. (Эквивалетное определение сходимости по распределению) $\xi_n \xrightarrow{d} \xi \Leftrightarrow \forall g$ — непрерывна и ограничена на \mathbb{R} верно $\lim_{n\to\infty} \mathbb{E}g\left(\xi_n\right) = \mathbb{E}g\left(\xi\right)$

 $Доказательство. \Rightarrow$

Пусть t — точка непрерывности $F_{\xi}(t)$. Заметим, что $F_{\xi}(t) = P(\xi_x \in (-\infty, t]) = \mathbb{E}\operatorname{Ind}_{(-\infty,t]}(\xi)$.

В силу:

- (1) $\mathbb{E}\operatorname{Ind}_{(a_i,b_i]}(\xi_n) = F_{\xi_n}(b_i) F_{\xi_n}(a_i) \xrightarrow{n \to \infty} F_{\xi}(b_i) F_{\xi}(a_i) = \mathbb{E}\operatorname{Ind}_{(a_i,b_i]}(\xi)$
- (2) Линейность предела (с какими-то коэффициентами c_i)

Верна следующая сходимость:

$$\mathbb{E}\sum_{i=1}^{N} c_i \cdot \operatorname{Ind}_{(a_i,b_i]}(\xi_n) \to \mathbb{E}\sum_{i=1}^{N} c_i \cdot \operatorname{Ind}_{(a_i,b_i]}(\xi)$$

Теперь нам бы хотелось от непрерывной ограниченной функции на прямой перейти к функции на отрезке, а там мы уже сможем ее приблизить ступенчатой и воспользоваться предыдудщим утверждением и все доказать. Мы знаем, что

 $\forall \varepsilon > 0 \ \exists A$: $P\left(-A < \xi \leq A\right) > 1 - \varepsilon$ (потому что $P\left(\xi \in \mathbb{R}\right) = 1$). Тогда получаем:

$$F_{\xi_n}(A) - F_{\xi_n}(-A) \xrightarrow{n \to \infty} F_{\xi}(A) - F_{\xi}(-A) = P(-A < \xi \le A) > 1 - \varepsilon$$

То есть для $\forall \varepsilon > 0 \; \exists N \; \forall n > N \; \text{верно:}$

$$\left| \left(F_{\xi_n} \left(A \right) - F_{\xi_n} \left(-A \right) \right) - \left(F_{\xi} \left(A \right) - F_{\xi} \left(-A \right) \right) \right| < \varepsilon$$

Комбинируя последние два утверждения, получаем для $\forall \varepsilon > 0 \; \exists A \; \exists N \; \forall n > N$:

$$F_{\xi_n}(A) - F_{\xi_n}(-A) > F_{\xi}(A) - F_{\xi}(-A) - \varepsilon > 1 - 2\varepsilon$$

Из чего следует $\forall \varepsilon > 0 \; \exists A \; \exists N \; \forall n > N$:

$$P\left(-A \le \xi_n \le A\right) \ge F_{\xi_n}(A) - F_{\xi_n}(-A) > 1 - \varepsilon$$

Теперь возьмем любую непрерывную ограниченную функцию g, приблизим ее на отрезке [-A,A] ступенчатой функцией g_{ε} , что $|g(x)-g_{\varepsilon}(x)|<\varepsilon$, а вне отрезка положим $g_{\varepsilon}=0$. Имеем $\forall \varepsilon>0$ $\exists A \forall n$:

$$\left|\mathbb{E}g\left(\xi_{n}\right)-\mathbb{E}g\left(\xi\right)\right|\leq\left|\mathbb{E}\left(1-\operatorname{Ind}_{\left[-A,A\right]}\left(\xi_{n}\right)\right)\cdot g\left(\xi_{n}\right)-\mathbb{E}\left(1-\operatorname{Ind}_{\left[-A,A\right]}\left(\xi\right)\right)g\left(\xi\right)\right|+$$

$$+\left|\mathbb{E}\operatorname{Ind}_{[-A,A]}\left(\xi_{n}\right)\cdot g\left(\xi_{n}\right)-\mathbb{E}\operatorname{Ind}_{[-A,A]}\left(\xi\right)\cdot g\left(\xi\right)\right|$$

Ясно, что первый модуль $< C \cdot 2\varepsilon$ (из ограниченности $g \ \forall x_1, \ x_2$: $|g(x_1) - g(x_2)| < C$ и так как $P(|\xi| > A)$, $P(|\xi_n| > A) < \varepsilon$). А во втором модуле g заменим на g_ε с погрешностью ε , то есть он $< 2\varepsilon + |\mathbb{E}\mathrm{Ind}_{[-A,A]}(\xi_n) \cdot g_\varepsilon(\xi_n) - \mathbb{E}\mathrm{Ind}_{[-A,A]}(\xi) \cdot g_\varepsilon(\xi)|$. А про оставшийся модуль мы уже знаем, что он сходится к 0, так как ступенчатая функция(то есть $< \varepsilon$ для $\forall n > N$). В итоге имеем: $|\mathbb{E}g(\xi_n) - \mathbb{E}g(\xi)| < \varepsilon$. То есть $\lim_{n \to \infty} \mathbb{E}g(\xi_n) = \mathbb{E}g(\xi)$

Пусть t — точка непрерывности $F_{\xi}(t)$. Мы знаем, что $F_{\xi}(t) = \mathbb{E}\operatorname{Ind}_{(-\infty,t]}(\xi)$. Для $\forall \delta > 0$ определим функции:

$$g_{-\delta}(x) = \begin{cases} 1 & x < t - \delta \\ \frac{1}{\delta} \cdot (t - x) & t - \delta \le x \le t \\ 0 & t < x \end{cases}$$
$$g_{+\delta}(x) = \begin{cases} 1 & x < t \\ \frac{1}{\delta} \cdot (t - x) & t \le x \le t + \delta \\ 0 & t + \delta < x \end{cases}$$

Заметим, что $\forall x$:

$$\operatorname{Ind}_{(-\infty,t-\delta]}(x) \leq g_{-\delta}(x) \leq \operatorname{Ind}_{(-\infty,t]}(x) \leq g_{+\delta}(x) \leq \operatorname{Ind}_{(\infty,t+\delta]}(x)$$

Взяв матожидания $(x = \xi_n)$ от второго и третьего неравенств, получим:

$$\mathbb{E}g_{-\delta}\left(\xi_{n}\right) \leq F_{\xi_{n}}\left(t\right) \leq \mathbb{E}g_{+\delta}\left(\xi_{n}\right)$$

Теперь устремим $n \to \infty$:

$$\mathbb{E}g_{-\delta}\left(\xi\right) \leq \inf \lim_{n \to \infty} F_{\xi_n}\left(x\right) \leq \sup \lim_{n \to \infty} F_{\xi_n}\left(x\right) \leq \mathbb{E}g_{+\delta}\left(x\right)$$

Рассмотрим первое и последнее неравенство той цепочки $(x=\xi)$ и возьмем то него матожидание), получим:

$$F_{\xi}(t - \delta) \le \mathbb{E}g_{-\delta}(\xi) \le \mathbb{E}g_{+\delta}(\xi) \le F_{\xi}(t + \delta)$$

Теперь $\delta \to 0$:

$$F_{\xi}\left(t\right) = \mathbb{E}g_{-\delta}\left(\xi\right) = \inf\lim_{n \to \infty} F_{\xi_n}\left(t\right) = \sup\lim_{n \to \infty} F_{\xi_n}\left(t\right) = \mathbb{E}g_{+\delta}\left(\xi\right)$$

Получаем: $F_{\xi}(t) = \lim_{n \to \infty} F_{\xi_n}(t)$

Теорема 2. $\xi_n \xrightarrow{n.н.} \xi \Rightarrow \xi_n \xrightarrow{p} \xi$

Доказательство. Знаем $P\left(\lim_{n\to\infty}\xi_n=\xi\right)=1$. Заметим вложенность следующих событий для $\forall \varepsilon>0$: $\left\{\lim_{n\to\infty}\xi_n=\xi\right\}\Rightarrow\bigcup_{N=1}^{\infty}\bigcap_{n=N}^{\infty}\left\{|\xi_n-\xi|<\varepsilon\right\}$ (это по сути и есть определение предела, что для $\forall \varepsilon$, начиная с некоторого N выполнятется условие). То есть:

$$1 = P\left(\lim_{n \to \infty} \xi_n = \xi\right) \le P\left(\bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|\xi_n - \xi| < \varepsilon\}\right) = 1$$

Так как последовательность множеств $A_N = \bigcap_{n=N}^{\infty} \{ |\xi_n - \xi| < \varepsilon \}$ расширяющаяся $(A_N \subseteq A_{N+1})$, в объединении они дают событие вероятности 1, значит по теореме непрерывности $\lim_{N \to \infty} P(A_N) = 1$.

Теперь заметим: $P(A_N) \leq P(|\xi_N - \xi| < \varepsilon)$. То есть: $\lim_{N \to \infty} P(|\xi_N - \xi| < \varepsilon) = 1$. Или что то же самое: $\lim_{N \to \infty} (1 - P(|\xi_N - \xi| < \varepsilon)) = \lim_{N \to \infty} P(|\xi_N - \xi| \ge \varepsilon) = 0$ — определение сходимости по вероятности.

Теорема 3. (Теорема Лебега о мажорируемой сходимости) $\xi_n \xrightarrow{p} \xi$ и $|\xi_n|, |\xi| \leq \eta$ п. н. (где η – случайная величина, что $\mathbb{E}\eta < \infty$), то $\mathbb{E}\xi_n \to \mathbb{E}\xi$

 \mathcal{A} оказательство. Докажем теорему в частном случае, когда $\eta \equiv C$. $\forall \varepsilon > 0 \forall n \mid \mathbb{E} \xi_n - \mathbb{E} \xi \mid \leq \mathbb{E} |\xi_n - \xi| = \mathbb{E} |\xi_n - \xi| \cdot \operatorname{Ind}_{|\xi_n - \xi| \geq \varepsilon} + \mathbb{E} |\xi_n - \xi| \cdot \operatorname{Ind}_{|\xi_n - \xi| < \varepsilon} \leq 2C \cdot P \left(|\xi_n - \xi| \geq \varepsilon \right) + \varepsilon \cdot 1$. Так как $\xi_n \stackrel{\mathrm{P}}{\to} \xi$, то $\exists N \forall n > N$: $P \left(|\xi_n - \xi| \geq \varepsilon \right) < \varepsilon$. Тогда получаем: $|\mathbb{E} \xi_n - \mathbb{E} \xi| < 2C \cdot \varepsilon + \varepsilon$. То есть $\mathbb{E} \xi_n \to \mathbb{E} \xi$.

Предложение 1. $\xi_n \xrightarrow{p} \xi \Rightarrow \partial \mathcal{A} \otimes g - \mathit{непрерывная}, \ g\left(\xi_n\right) \xrightarrow{p} g\left(\xi\right)$

Доказательство. Знаем для любой случайной величины $\forall \varepsilon > 0 \exists A : P\left(|\xi| > \frac{A}{2}\right) < \varepsilon$. $\exists N \forall n > N : P\left(|\xi_n| > A\right) \le P\left(|\xi - \xi_n| + |\xi| > A\right) \le P\left(|\xi - \xi_n| > \frac{A}{2}\right) + P\left(|\xi| > \frac{A}{2}\right) < \varepsilon$. Теперь возьмем g, она равномерно непрерывна на [-A,A]:

$$\forall \varepsilon > 0 \exists \delta > 0: |x - y| < \delta \Rightarrow |g(x) - g(y)| < \varepsilon \ \forall x, y \in [-A, A]$$

Докажем $g(\xi_n) \xrightarrow{p} g(\xi)$:

$$P(|g(\xi_n) - g(\xi)| \ge \varepsilon) = P(|g(\xi_n) - g(\xi)| \ge \varepsilon \mid \xi_n, \xi \in [-A, A]) \cdot P(\xi_n, \xi \in [-A, A]) + P(|g(\xi_n) - g(\xi)| \ge \varepsilon \mid \xi_n, \xi \notin [-A, A]) \cdot P(\xi_n, \xi \notin [-A, A])$$

Посмотрев на определение равномерное непрерывности, заметим, что:

$$P(|g(\xi_n) - g(\xi)| \ge \varepsilon \mid \xi_n, \xi \in [-A, A]) \le P(|\xi_n - \xi| \ge \delta)$$

А это уже, так как у нас есть сходимость по вероятности $\to 0$. И заметим, что

$$P\left(\xi_{n}, \xi \notin [-A, A]\right) \leq P\left(|\xi_{n}| > A\right) + P\left(|\xi| > A\right) < 2\varepsilon$$

То есть $\to 0$ при $n, A \to \infty$ Все, получили, что $P(|g(\xi_n) - g(\xi)| \ge \varepsilon) \to 0$ при $n, A \to \infty$.

Следствие 1. $\xi_n \xrightarrow{p} \xi \Rightarrow \xi_n \xrightarrow{d} \xi$

Теорема 4. (Эквивалетное опеределение сходимости почти наверное)

$$\xi_n \xrightarrow{n.n.} \xi \Leftrightarrow \forall \varepsilon > 0 : \lim_{n \to \infty} P\left(\sup_{k > n} |\xi_k - \xi| > \varepsilon\right) = 0$$

Доказательство. Рассмотрим следующие события:

$$A_k^{\varepsilon} = \{ |\xi_k - \xi| > \varepsilon \}$$

$$A^{\varepsilon} = \bigcap_{n=1}^{\infty} \bigcup_{k > n} A_k^{\varepsilon}$$

Заметим, что:

$$\left\{ \sup_{k \ge n} |\xi_k - \xi| > \varepsilon \right\} = \left\{ \exists k \ge n : |\xi_k - \xi| > \varepsilon \right\} = \bigcup_{k \ge n} A_k^{\varepsilon}$$

$$\left\{ \lim_{n \to \infty} \xi_n \ne \xi \right\} = \left\{ \exists \varepsilon > 0 \forall n \exists k \ge n : |\xi_k - \xi| \ge \varepsilon \right\} = \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k^{\varepsilon = \frac{1}{m}} = \bigcup_{m=1}^{\infty} A_m^{\frac{1}{m}}$$

Тогда имеем:

$$\xi_n \xrightarrow{\text{\tiny II.H.}} \xi \Leftrightarrow P\left(\lim_{n \to \infty} \xi_n \neq \xi\right) = 0 \Leftrightarrow P\left(\bigcup_{m=1}^{\infty} A^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall m \ P\left(A^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left$$

Теперь заметим вложенность последовательности событий $B_n^{\varepsilon} = \bigcup_{k \geq n} A_k^{\varepsilon}$ и, взглянув на определение A^{ε} , по теореме о непрерывности вероятностной меры продолжаем цепочку:

$$\Leftrightarrow \lim_{n \to \infty} P\left(\bigcup_{k \ge n} A_k^{\varepsilon}\right) = 0 \Leftrightarrow \lim_{n \to \infty} P\left(\sup_{k \ge n} |\xi_k - \xi| > \varepsilon\right) = 0$$

Теперь приведем некоторые примеры, опровергающие остальные следствия сходимостей

Пример 1.

$$\xi_n \xrightarrow{\mathrm{d}} \xi \not\Rightarrow \xi_n \xrightarrow{\mathrm{P}} \xi$$

Пусть $\Omega = \{\omega_1, \omega_2\}, \ P(\{\omega_i\}) = \frac{1}{2}$. Определим $\forall n \ \xi_n(\omega_i) = (-1)^i$. Положим $\xi = -\xi_n$. Тогда $\forall f$ непрерыной и ограниченной:

$$\mathbb{E}f\left(\xi_{n}\right) = \frac{f\left(1\right) + f\left(-1\right)}{2} = \mathbb{E}f\left(\xi\right)$$

То есть $\xi_n \xrightarrow{\mathrm{d}} \xi$. Однако $\forall n \mid \xi_n - \xi \mid = 2$, то есть $\xi_n \not\xrightarrow{\mathrm{P}} \xi$

Пример 2.

$$\xi_n \xrightarrow{P} \xi \not\Rightarrow \xi_n \xrightarrow{\text{\tiny II.H.}} \xi$$

Возьмем $\Omega=[0,1],\,\xi_{2^n+p}=\mathrm{Ind}_{\left[\frac{p}{2^n},\frac{p+1}{2^n}\right]},\,0\leq p<2^n.$ Ясно, что $\xi_n\xrightarrow{\mathrm{P}}\xi$, так как

$$\lim_{n \to \infty} P(\xi_n > 0) = \lim_{n \to \infty} \frac{1}{2^{\lfloor \log n \rfloor}} = 0$$

, но $\xi_n \xrightarrow{\eta_r \text{н.}} 0$, так как для любого исхода ω существует бесконечно много n, что $\xi_n(\omega) = 1$. Теперь осталось посмотреть на теорему 4 и все станет ясно.

Пример 3.

$$\xi_n \xrightarrow{\mathrm{d}} \xi \not\Rightarrow \xi_n \xrightarrow{\mathrm{II.H.}} \xi$$

Если бы следствие имело место, то отсюда вытекало бы, что:

$$\xi_n \xrightarrow{\mathrm{d}} \xi \not\Rightarrow \xi_n \xrightarrow{\mathrm{P}} \xi$$

противоречие

2 Характеристические функции

Определение 2. *Характеристической функцией* случайной величины ξ называется функция:

$$\varphi_{\xi}(t) = \mathbb{E}e^{it\xi} = \mathbb{E}\left(\cos\left(t\xi\right) + i\sin\left(t\xi\right)\right)$$

Предложение 2. (Свойства характеристических функций)

- 1. $\varphi_{\xi}(0) = 1, |\varphi_{\xi}(t)| \leq 1 \ \forall t \in \mathbb{R}$
- 2. $\varphi_{a\xi+b}(t) = e^{itb}\varphi_{\xi}(at)$
- 3. если $\xi_1, \dots \xi_n$ независимые случайные величины и $S = \xi_1 + \dots + \xi_n$, то

$$\varphi_S(t) = \varphi_{\xi_1}(t) \cdots \varphi_{\xi_n}(t)$$

Доказательство. .

1. Понятно, так как в матожидании могут быть только комплексные числа с модулем ≤ 1 .

2.
$$\varphi_{a\xi+b}(t) = \mathbb{E}e^{it(a\xi+b)} = e^{itb}\mathbb{E}e^{i(at)\xi} = e^{itb}\varphi_{\xi}(at)$$

3.
$$\varphi_S(t) = \mathbb{E}\left(e^{it\xi_1}\cdots e^{it\xi_n}\right) = \mathbb{E}e^{it\xi_1}\cdots \mathbb{E}e^{it\xi_n} = \varphi_{\xi_1}(t)\cdots \varphi_{\xi_n}(t)$$

Пример 4. Вычислим $\varphi_{\xi}(t)$, где $\xi \sim N(0,1)$:

$$\varphi_{\xi}\left(t\right) = \mathbb{E}e^{it\xi} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos\left(tx\right) e^{-\frac{x^{2}}{2}} dx + \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sin\left(tx\right) e^{-\frac{x^{2}}{2}} dx$$

Заметим, что $\int_{-\infty}^{+\infty} \sin(tx) e^{-\frac{x^2}{2}} dx = 0$, так как это интеграл от нечетной функции по симметричному промежутку. Тогда имеем:

$$\varphi_{\xi}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) e^{-\frac{x^2}{2}} dx$$

Возьмем производную по t:

$$\varphi'_{\xi}(t) = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \sin(tx) \, e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sin(tx) \, d\left(e^{-\frac{x^2}{2}}\right) =$$

$$= \frac{1}{\sqrt{2\pi}} \sin(tx) \, e^{-\frac{x^2}{2}} \Big|_{-\infty}^{+\infty} - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \, e^{-\frac{x^2}{2}} dx = 0 - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \, e^{-\frac{x^2}{2}} dx = -t\varphi_{\xi}(t)$$

Теперь надо решить дифференциальное уравнение:

$$\varphi_{\xi}'(t) = -t\varphi_{\xi}(t)$$
$$\frac{\varphi_{\xi}'(t)}{\varphi_{\varepsilon}(t)} = -t$$

Интегрируем обе части:

$$\int \frac{d(\varphi_{\xi}(t))}{\varphi_{\xi}(t)} = \ln|\varphi_{\xi}(t)| + C = \int -tdt = -\frac{t^{2}}{2}$$
$$\varphi_{\xi}(t) = C'e^{-\frac{t^{2}}{2}}$$
$$\varphi_{\xi}(0) = 1 = C' \Rightarrow C' = 1$$

(Ответ никак нулевым быть не может, поэтому, когда мы поделили на хар функцию ничего плохого не произошло)

Предложение 3. Пусть случайная величина ξ обладает конечным k-тым моментом, то есть $\mathbb{E}|\xi|^k < \infty$. Тогда φ имеет непрерывную k-тую производную и $\varphi^{(k)}(0) = i^k \mathbb{E} \xi^k$

Доказательство. Заметим, что:

$$\left|\frac{e^{i\Delta t\xi}-1}{\Delta t}\right| \leq \frac{\sqrt{\left(\cos\left(\Delta t\xi\right)-1\right)^2+\sin^2\left(\Delta t\xi\right)}}{|\Delta t|} = \frac{\sqrt{2-2\cos\left(\Delta t\xi\right)}}{|\Delta t|} = \frac{2\left|\sin\left(\frac{\Delta t\xi}{2}\right)\right|}{\Delta t} \leq \frac{2\cdot\frac{|\Delta t\xi|}{2}}{|\Delta t|} = |\xi|$$

Возьмем вместо Δt последовательность $a_n \to 0$, Получим, что последовательность случайных величин, сходящихся почти наверное и ее предел $(i\xi)$ ограничены случайной величиной (ξ) с конечным ожиданием, получаем по теорема Лебега:

$$\mathbb{E}\frac{e^{ia_n\xi}-1}{a_n}\to \mathbb{E}i\xi$$

Теперь посчитаем производную хар фукнции:

$$\varphi'(t) = \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t) - \varphi(t)}{\Delta t} = \lim_{\Delta t \to 0} \mathbb{E}e^{it\xi} \cdot \frac{e^{i\Delta t\xi} - 1}{\Delta t} = i\mathbb{E}e^{it\xi}\xi$$

Теперь очевидна непрерывность первой производной и $\varphi'(0) = i\mathbb{E}\xi$, для производных высших порядков аналогично

Теорема 5.

 $\xi_n \xrightarrow{d} \xi \Leftrightarrow \forall t \lim_{n \to \infty} \varphi_{\xi_n}(t) = \varphi_{\xi}(t)$

 $Доказательство. \Rightarrow$

Очевидно по Теореме 1

 \Leftarrow

Докажем при условиии $\sup_{n} \mathbb{E} \xi_n^2 \leq C < \infty$. По неравенству Чебышева:

$$P(|\xi_n \ge A|) \le \frac{\mathbb{E}\xi^2}{A} \le \frac{C}{A}$$

Пусть f — ограниченная непрерывная функция и $M=\sup |f|$. Из записанного неравенства Чебышева следует, что $\forall \varepsilon>0 \exists A$:

$$P(|\xi_n| \ge A) \le \varepsilon, \ P(|\xi| \ge A) \le \varepsilon$$

Пусть непрерывная ограниченная f_{ε} совпадает с f на [-A,A], потом от -A-1 до -A и от A+1 до A она будет прямой из 0 в f(-A) и f(A) соответственно, а дальше будет повторять этот шаблон (периодическая). Заметим, что:

$$|\mathbb{E}f_{\varepsilon}(\xi_n) - \mathbb{E}f(\xi_n)| < 2M\varepsilon, \ |\mathbb{E}f_{\varepsilon}(\xi) - \mathbb{E}f(\xi)| < 2M\varepsilon$$

Теперь равномерно приблизим f_{ε} комбинацией sin, cos (знаем с матана, что периодическую можно так приблизить). А из сходимости хар функции мы знаем, что:

$$\lim_{n\to\infty} \mathbb{E}\sin\left(\xi_n\right) = \mathbb{E}\sin\left(\xi\right)$$

$$\lim_{n \to \infty} \mathbb{E} \cos(\xi_n) = \mathbb{E} \cos(\xi)$$

То есть получаем $\lim_{n\to\infty} \mathbb{E} f_{\varepsilon}(\xi_n) = \mathbb{E} f_{\varepsilon}(\xi)$. В итоге, вспоминая те неравенства с $2M\varepsilon$ и устремляя $n\to\infty$:

$$\mathbb{E}f\left(\xi\right) - 4M\varepsilon \le \inf \lim_{n \to \infty} \mathbb{E}f\left(\xi_n\right) \le \sup \lim_{n \to \infty} \mathbb{E}f\left(\xi_n\right) \le \mathbb{E}f\left(\xi\right) + 4M\varepsilon$$

Устремляя $\varepsilon \to 0$, получаем $\lim_{n \to \infty} \mathbb{E}f(\xi_n) = \mathbb{E}f(\xi)$, что доказывает сходимость по распределению.

Следствие 2. $\varphi_{\xi} \equiv \varphi_{\eta} \Rightarrow F_{\xi} \equiv F_{\eta}$

Доказательство. Предыдущая теорема + Теорема 1.

Теорема 6. (Центральная предельная теорема)

Пусть ξ_n — последовательность независимых одинаково распределенных случайных величин, причем $\mathbb{E}\xi_1 = \mu$, $\mathbb{D}\xi_1 = \sigma^2$. Тогда $\forall x$:

$$\lim_{n \to \infty} P\left(\frac{\xi_1 + \dots + \xi_n - n\mu}{\sigma\sqrt{n}} \le t\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-\frac{x^2}{2}} dx$$

 $(cnpaва \ записана \ F(t) - функция \ pacnpedeления случайной величины <math>c \ pacnpedeлением \ N(0,1))$

Доказательство. Переходя к случайным величинам $\xi_i = \frac{\xi_i - \mu}{\sigma}$ дальше будем считать, что $\mathbb{E}\xi_i = 0$ и $\mathbb{D}\xi_i = 1$. Пусть φ — хар функция случаной величины ξ_1 . Тогда хар функция случаной величины

$$\frac{\xi_1 + \dots + \xi_n}{\sqrt{n}}$$

равна

$$\varphi_n(t) = \left(\varphi\left(\frac{t}{\sqrt{n}}\right)\right)^n$$

Разложим $\varphi\left(\frac{t}{\sqrt{n}}\right)$ в ряд Тейлора в 0 (при $n\to\infty$), помним предложение 3:

$$\varphi\left(\frac{t}{\sqrt{n}}\right) = \varphi\left(0\right) + x\varphi'\left(0\right) + \dots = 1 + 0 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)$$

Следовательно получаем:

$$\varphi_n\left(t\right) = \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n = \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^{-\frac{2n}{t^2}\cdot\left(-\frac{t^2}{2}\right)} \xrightarrow{n\to\infty} e^{-\frac{t^2}{2}}$$

Получили характеристическую функцию нормального распределения, то есть и функции распределения должны совпадать.

3 Неравенство типа Хефдинга-Чернова

Теорема 7. (Неравенство Хефдинга-Чернова)

Пусть случайные величины $\xi_1, \dots \xi_n$ независимы и $a_i \le \xi_i \le b_i$. Тогда для случайной величины $S_n = \xi_1 + \dots + \xi_n$ и для каждого t > 0 выполнено

$$P(|S_n - \mathbb{E}S_n| \ge t) \le 2 \exp\left(-\frac{t^2}{4\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Доказательство. Пусть $\eta_i = \xi_i - \mathbb{E}\xi_i$, тогда $|\eta_i| \le b_i - a_i$. Заметим, что для каждого $\lambda > 0$ (просто домножили и взяли экспоненту):

$$P(S_n - \mathbb{E}S_n \ge t) = P\left(\sum_{i=1}^n \eta_i \ge t\right) = P\left(e^{\lambda \sum \eta_i} \ge e^{\lambda t}\right)$$

Теперь применим неравенство Маркова:

$$P\left(e^{\lambda \sum \eta_i} \ge e^{\lambda t}\right) \le e^{-\lambda t} \mathbb{E}e^{\lambda \sum \eta_i}$$

Вспомним, что η_1, \dots, η_n независимы:

$$e^{-\lambda t} \mathbb{E} e^{\lambda \sum \eta_i} = e^{-\lambda t} \prod \mathbb{E} e^{\lambda \eta_i}$$

Оценим каждый множитель $\mathbb{E}e^{\lambda\eta_i}$ отдельно. Разложим его в ряд Тейлора:

$$\mathbb{E}e^{\lambda\eta_{i}} = 1 + \lambda \mathbb{E}\eta_{i} + \lambda^{2}\mathbb{E}\eta_{i}^{2} + \sum_{k=3}^{\infty} \frac{1}{k!} \lambda^{k} \eta^{k} \leq 1 + \lambda^{2} (b_{i} - a_{i})^{2} + \sum_{k=3}^{\infty} \frac{1}{k!} \lambda^{k} (b_{i} - a_{i})^{k}$$

Докажем, что при R > 0:

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k \le e^{R^2}$$

Если R > 1:

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k = 1 + \frac{1}{2}R^2 + \sum_{k=2}^{\infty} \frac{1}{k!}R^{2k} \left(\frac{k!}{(2k-1)!}R^{-1} + \frac{n!}{(2n)!}\right) \le 1 + \frac{1}{2}R^2 + \sum_{k=2}^{\infty} \frac{1}{k!}R^{2k} = e^{R^2}$$

Если же R < 1:

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k \le 1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{2^{k-1}}R^2 = 1 + R^2 \le e^{R^2}$$

Таким образом:

$$P(S_n - \mathbb{E}S_n \ge t) \le \exp\left(-\lambda t + \lambda^2 \sum_{i=1}^n (b_i - a_i)^2\right)$$

Взяв $\lambda = \frac{t}{2\sum (a_i - b_i)^2}$ получим желаемое неравенство. Для $P(S_n - \mathbb{E}S_n \ge t)$ получим такую же оценку, и, объединяя их, получим оценку на модуль, только придется домножить оценку на 2.

Следствие 3. Пусть $\xi_i \sim Bern\left(p\right)$ — набор n независимых случайных величин, $S_n = \xi_1 + \dots + \xi_n$, тогда

$$P\left(\left|\frac{S_n}{n} - p\right| \ge t\right) \le 2e^{-\frac{nt^2}{4}}$$

Доказательство. Разделим каждую случайную величину на n, тогда $\mathbb{E} \frac{S_n}{n} = p$, а $\sum_{i=1}^n (a_i - b_i)^2 = p$

$$n \cdot \frac{1}{n^2} = \frac{1}{n}$$
. Подставляем и получаем, нужное неравенство

Пример 5. Пусть в ящике какое-то количество черных и белых шаров. Каким должен быть размер выборки, чтобы оценить долю белых шаров с малой погрешностью? Пусть ξ_i — бернуллевская случайная величина, равная 1, если шар белого цвета и 0, если цвет черный. Мы хотим оценить вероятность успеха p. По неравенству выше:

$$P\left(\left|\frac{S_n}{n} - p\right| \ge t\right) \le 2e^{-\frac{nt^2}{4}} \le \varepsilon$$

Тогда при размере выборки $n=O\left(\frac{\ln\frac{1}{\varepsilon}}{t^2}\right)$ выборочное среднее приближает реальную долю белых шаров с точностью t с вероятностью более $1-\varepsilon$ (то есть вероятность, что наша оценка верна $\geq 1-\varepsilon$)

4 Теоремы непрерывности

Для применения ЦПТ на практике важную роль играют так называемые теоремы о непрерывности.

Предложение 4. Если последовательность случайных величин $\xi_n \stackrel{d}{\to} \xi$, то для всякой непрерывной g $g(\xi_n) \stackrel{d}{\to} g(\xi)$

Доказательство. Следует из Теоремы 1(эквивалентное определение сходимости по распределению). ■

Лемма 1. Пусть X, Y, Z — случайные величины. Тогда

$$P(X + Y \le t) \le P(X + Z \le t + \varepsilon) + P(|Y - Z| \ge \varepsilon), \ \forall t \in \mathbb{R}, \forall \varepsilon > 0$$

Доказательство. Заметим, что

$$P(X + Y \le t) \le P(X + Y \le t, |Y - Z| \le \varepsilon) + P(X + Y \le t, |Y - Z| \ge \varepsilon) \le$$

 $\le P(X + Z - \varepsilon \le t) + P(|Y - Z| \ge \varepsilon)$

Предложение 5. Если $\xi_n \stackrel{P}{\to} a = const \ u \ \eta_n \stackrel{d}{\to} \eta, \ mo \ \xi_n \eta_n \stackrel{d}{\to} a\eta, \ \xi_n + \eta_n \stackrel{d}{\to} a + \eta$

Доказательство. Докажем утверждение для суммы. Пусть $\varepsilon > 0$, тогда по лемме имеем:

$$P(\xi_n + \eta_n \le t) \le F_{n_n}(t - a + \varepsilon) + P(|\xi_n - a| \ge \varepsilon)$$

И

$$P(\xi_n + \eta_n \le t) \ge F_{\eta_n}(t - a - \varepsilon) - P(|\xi_n - a| \ge \varepsilon)$$

Устремляя сначала $n \to \infty$, а затем $\varepsilon \to 0$. Из сходимости по вероятности получаем, что $P(|\xi_n - a| \ge \varepsilon) \to 0$. Тогда в итоге имеем:

$$\lim \left(F_{\eta_n} \left(t - a - \varepsilon \right) - P \left(\left| \xi_n - a \right| \ge \varepsilon \right) \right) \le \lim F_{\xi_n + \eta_n} \left(t \right) \le \lim \left(F_{\eta_n} \left(t - a + \varepsilon \right) + P \left(\left| \xi_n - a \right| \ge \varepsilon \right) \right)$$

$$\lim F_{\xi_n + \eta_n} \left(t \right) = F_n \left(t - a \right) = F_{a + n} \left(t \right)$$

Теперь докажем утверждение для произведения. Пусть a=0 (случай, когда $a\neq 0$ выводится из суммы $(\xi_n-a)\,\eta_n$ и $a\eta_n$). Теперь заметим, что $\forall \varepsilon>0 \forall C>0$ верно включение:

$$\{|\xi_n \eta_n| > \varepsilon\} \subseteq \{|\eta_n| > C\} \bigcup \{|\xi_n| > \frac{\varepsilon}{C}\}$$

(Пояснение: это верно, так как пересечение отрицания обоих событий точно приводит к противоречию). Тогда, переходя к вероятностям, получаем:

$$P(|\xi_n \eta_n| > \varepsilon) \le 1 - F_{\eta_n}(C) + F_{\eta_n}(-C) + P(|\xi_n| > \frac{\varepsilon}{C})$$

Устремляя сначала $n \to 0$, а затем $C \to \infty$, получаем, что $\xi_n \eta_n \xrightarrow{\mathrm{P}} 0 \Rightarrow \xi_n \eta_n \xrightarrow{\mathrm{d}} 0$.

Пример 6. (Выборочная дисперсия)

Пусть задана последовательность независимых и одинаково распределенных случайных величин ξ_i , причем $\mathbb{E}\xi_i = \mu$ и $\mathbb{D}\xi_i = \sigma^2$. Тогда последовательность случайных величин

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^{\infty} (\xi_i - \overline{\xi_n})^2 \xrightarrow{P} \sigma^2$$

где $\overline{\xi_n}=\frac{\xi_1+\dots+\xi_n}{n}$ (умножаем на $\frac{1}{n-1}$, а не на $\frac{1}{n}$, чтобы $\mathbb{E}s_n^2=\sigma^2$, то есть таким образом посчитанная диспресия по вероятности сходится к именно тому, чему и надо, в другом случае будет небольшое смещение в $\frac{n-1}{n}$ раз, но с увеличение n разница в любом случае будет стрираться). Действительно:

$$s_n^2 = \frac{1}{n-1} \left(\sum_{i=1}^{\infty} \xi_i^2 - 2n\overline{\xi_n} \cdot \frac{1}{n} \sum_{i=1}^{\infty} + n\overline{\xi_n}^2 \right) = \frac{1}{n-1} \left(\sum_{i=1}^{\infty} \xi_i^2 - n\overline{\xi_n}^2 \right) = \frac{n}{n-1} \cdot \frac{1}{n} \sum_{i=1}^{\infty} \xi_i^2 - \frac{n}{n-1} \overline{\xi_n}^2$$

Теперь заметим, что по ЗБЧ:

$$\frac{1}{n} \sum_{i=1}^{\infty} \xi_i^2 \xrightarrow{P} \sigma^2 + \mu, \ \overline{\xi_n} \xrightarrow{P} \mu$$

Получили искомую сходимость

Пример 7. Пусть задана последовательность независимых и одинаково распределенных случайных величин ξ_i , причем $\mathbb{E}\xi_i = \mu$ и $\mathbb{D}\xi_i = \sigma^2 > 0$. Тогда из ЦПТ следует, что:

$$\frac{\xi_1 + \dots + \xi_n - n\mu}{\sigma \sqrt{n}} = \frac{\sqrt{n} \left(\overline{\xi_n} - \mu\right)}{\sigma} \xrightarrow{d} \xi \sim N(0, 1)$$

Более того, так как $s_n^2 \xrightarrow{P} \sigma^2 > 0$, то имеет место сходимость по распределению величин:

$$\frac{\sqrt{n}\left(\overline{\xi_{n}}-\mu\right)}{s^{2}}\xrightarrow{\mathrm{d}}\xi\sim N\left(0,1\right)$$

Предложение 6. Пусть $a, h_n \in \mathbb{R}$, $\lim_{n \to \infty} h_n = 0$ и f — непрерывно дифференцируемая функция на \mathbb{R} . Если последовательность случайных величин ξ_n сходится по распределению κ ξ , то:

$$\frac{f\left(a+h_n\xi_n\right)-f\left(a\right)}{h_n} \xrightarrow{d} f'\left(a\right)\xi$$

Доказательство. Имеет место равенство:

$$\frac{f(a+h_n\xi_n) - f(a)}{h_n} = \frac{f(a+1 \cdot h_n\xi_n) - f(a+0 \cdot h_n\xi_n)}{h_n} = \frac{1}{h_n} \int_0^1 f(a+th_n\xi_n) d(a+th_n\xi_n) = \xi_n \int_0^1 f(a+th_n\xi_n) dt$$

Из предложения 5(самый конец) получаем, что $h_n \xi_n \xrightarrow{P} 0$. Также заметим, что функция

$$g(y) = \int_0^1 f(a+ty)dt$$

непрерывна. Следовательно по предложению 4:

$$g(h_n\xi_n) = \int_0^1 f(a + th_n\xi_n) dt \xrightarrow{P} g(0) = f'(a)$$

Теперь снова используя предложение 5, получаем нужную сходимость.

Пример 8. Пусть задана последоватеность независисмых и одинаково распределенных случайных величин ξ_i , причем $\mathbb{E}\xi_i = \mu$ и $\mathbb{D}\xi_i = \sigma^2 > 0$. Если h — непрерывно дифференцируемая функция, то

$$\sqrt{n}\left(h\left(\overline{\xi_n}\right) - h\left(\mu\right)\right) \xrightarrow{d} \xi \sim N\left(0, q^2\right), \ q = \sigma h'\left(\mu\right)$$

Действительно, имеем равенство

$$\sqrt{n}\frac{\left(h\left(\overline{\xi_{n}}\right)-h\left(\mu\right)\right)}{\sigma}=\frac{1}{\sigma}\cdot\frac{h\left(\mu+n^{-\frac{1}{2}}\sigma\zeta_{n}\right)-h\left(\mu\right)}{n^{-\frac{1}{2}}}$$

где(сходимость по ЦПТ)

$$\zeta_{n} = \frac{\sqrt{n}\left(\overline{\xi_{n}} - \mu\right)}{\sigma} \xrightarrow{d} \xi \sim N\left(0, 1\right)$$

Используем предложение 6 и получаем требуемое.

Пример 9. Пусть $\xi_1, \dots \xi_n$ положительные независимые одинаково распределенные случайные величины, $\mathbb{E}\xi_1 = \mu, \ 0 < \mathbb{D}\xi_1 = \sigma^2 < \infty$. Рассмотрим случайную величину $S_n = \xi_1 + \dots + \xi_n$ и найдем предел в смысле сходимости по распределению у последовательности случайных величин $\sqrt{n}\left(\frac{n}{S_n} - \frac{1}{\mu}\right)$.

Первый способ:

$$\sqrt{n}\left(\frac{n}{S_n} - \frac{1}{\mu}\right) = -\frac{1}{\mu} \frac{n}{S_n} \sqrt{n} \left(\frac{S_n}{n} - \mu\right)$$

По ЦПТ

$$\sqrt{n}\left(\frac{S_n}{n} - \mu\right) \xrightarrow{d} \xi \sim N\left(0, \sigma^2\right)$$

По ЗБЧ

$$\frac{n}{S_n} \xrightarrow{P} \frac{1}{\mu}$$

Таким образом имеем:

$$\sqrt{n}\left(\frac{n}{S_n} - \frac{1}{\mu}\right) \xrightarrow{d} -\frac{1}{\mu}^2 \xi \sim N\left(0, \frac{\sigma^2}{\mu^4}\right)$$

Второй способ:

Пусть $h(x) = \frac{1}{x}$, тогда

$$\sqrt{n}\left(\frac{n}{S_{n}}-\frac{1}{\mu}\right)=\sqrt{n}\left(h\left(\frac{S_{n}}{n}\right)-h\left(m\right)\right)\xrightarrow{d}\xi\sim N\left(0,\sigma^{2}\left(h'\left(\mu\right)\right)^{2}\right)=N\left(0,\frac{\sigma^{2}}{\mu^{4}}\right)$$

5 Многомерная характеристическая функция и ЦПТ

Определение 3. *Характеристическая функция случайного вектора* $\xi = (\xi_1, \cdots, \xi_m)^T$ определяется равенством

 $\varphi_{\xi}(x) = \mathbb{E}e^{ix\xi} = \mathbb{E}e^{i\sum_{i=1}^{m}x_{i}\xi_{i}}$

Предложение 7. $\varphi_{\xi} \equiv \varphi_{\eta} \Leftrightarrow \xi \ u \ \eta \ u$ меют одинаковые распределения

Доказательство. Заметим, что

$$F_{\xi}(x_1, \cdots, x_m) = \mathbb{E}I_{\leq x_1}(\xi_1) \cdots I_{\leq x_m}(\xi_m)$$

По аналогии с одномерным случаем, нам достаточно доказать, что

$$\mathbb{E}g_1(\xi_1)\cdots g_m(\xi_m) = \mathbb{E}g_1(\eta_1)\cdots g_m(\eta_m)$$

для непрерывных периодических функций $g_k(u)$. Такие функции приближаются линейными комбинациями функций вида $e^{i\mu_k u}$. Значит, достаточно проверять совпадение выражений вида

$$\mathbb{E}\exp\left(i\mu_1\xi_1+\cdots+i\mu_m\xi_m\right)=\mathbb{E}\exp\left(i\mu_1\eta_1+\cdots+i\mu_m\eta_m\right)$$

А это у нас есть(это хар функции).

Следствие 4. Случайные величины ξ_1, \dots, ξ_m независимы тогда и только тогда, когда

$$\varphi_{\xi}(y_1, \cdots, y_m) = \varphi_{\xi_1}(y_1) \cdots \varphi_{\xi_m}(y_m)$$

 $Доказательство. \Rightarrow$

$$\varphi_{\xi}(y_1, \cdots, y_m) = \mathbb{E}e^{i(\xi_1y_1 + \cdots + \xi_my_m)} = \mathbb{E}e^{i\xi_1y_1} \cdots e^{i\xi_my_m} =$$

В силу независимости ξ_i

$$= \mathbb{E}e^{i\xi_1 y_1} \cdots \mathbb{E}e^{i\xi_m y_m} = \varphi_{\xi_1}(y_1) \cdots \varphi_{\xi_m}(y_m)$$

 \Leftarrow

Сделаем новый вектор (η_1, \dots, η_m) , так что:

- 1. Распр $\eta_i = \text{распр } \xi_i \ \forall i \in \{1, \cdots, m\}$
- 2. η_1, \cdots, η_m независимы

Определим $F(y) = F_{\eta_1}(y_1) \cdots F_{\eta_m}(y_m)$. Тогда мы знаем, что существует вектор, у которого такая функция распределения, из чего непременно следует независимость η_1, \cdots, η_m Посчитаем хар. функцию $\eta = (\eta_1, \cdots, \eta_m)$

$$\varphi_{\eta}(y) = \begin{bmatrix} \text{в силу} \\ \text{нез - сти } \eta_i \end{bmatrix} = \varphi_{\eta_1}(y_1) \cdots \varphi_{\eta_m}(y_m) = \varphi_{\xi_1}(y_1) \cdots \varphi_{\xi_m}(y_m) = \varphi_{\xi}(y)$$

По предыдущему предложению и независимости $\eta_1, \dots, \eta_m \Rightarrow \xi_1, \dots, \xi_m$ независимы.

Теорема 8. Пусть последовательность независимых одинаково распределенных случайных векторов $\xi^n = (\xi_1^n, \cdots, \xi_m^n) \in \mathbb{E}$ имеют конечные

$$\mathbb{E}\xi_i^1 = \mu_i, \ r_{ij} = cov\left(\xi_i^1, \xi_j^1\right)$$

Тогда величины

$$\eta_i^n = \frac{\xi_i^1 + \dots + \xi_i^n - n\mu_i}{\sqrt{n}}$$

таковы, что последовательность векторов $\eta^n = (\eta_1^n, \cdots, \eta_m^n) \xrightarrow{d} \eta$, характеристическая функция которого имеет вид

$$\varphi_{\eta}(y) = \exp\left(-\frac{\langle yR, y\rangle}{2}\right), \ R = (r_{ij})$$

Доказательство. В векторной форме:

$$\eta^n = \frac{\sum_{s=1}^n \xi^s - \mu n}{\sqrt{n}}$$

Запишем хар. функцию:

$$\varphi_{\eta^n}(t) = \varphi_{(\xi^1 - \mu + \dots + \xi^n - \mu)/\sqrt{n}}(t) = \varphi_{\xi^1 - \mu + \dots + \xi^n - \mu}\left(\frac{t}{\sqrt{n}}\right) =$$

В силу независимости ξ_i и их одинаковой распределенности

$$= \left(\varphi_{\xi^1 - \mu} \left(\frac{t}{\sqrt{n}}\right)\right)^n$$

Разложим в ряд тейлора:

$$\left(\varphi_{\xi^1-\mu}\left(\frac{t}{\sqrt{n}}\right)\right)^n = \left(1+\bigtriangledown\varphi_{\xi^1-\mu}(0)\cdot\frac{t}{\sqrt{n}}+\frac{1}{2}\cdot D^2\varphi_{\xi^1-\mu}(0)\left\langle\frac{t}{\sqrt{n}},\frac{t}{\sqrt{n}}\right\rangle + o\left(\frac{1}{n}\right)\right)^n$$

Рассмотрим на 2-мерном случае (на других аналогично):

$$\varphi_{\xi}(t_1, t_2) = \mathbb{E}e^{it_1\xi_1 + it_2\xi_2}$$

Первая производная:

$$\frac{d}{dt_j}\varphi_{\xi}(t) = i\mathbb{E}\xi_j e^{it_1\xi_1 + it_2\xi_2}; \ \frac{d}{dt_j}\varphi_{\xi}(0) = i\mathbb{E}\xi_j$$

В нашем случае нетрудно понять, что $\nabla \varphi_{\xi^1 - \mu}(0) = 0$, так как у нас ξ это $\xi^1 - \mu$, а $i\mathbb{E}(\xi_i^1 - \mu_i) = 0$ Вторая производная:

$$\frac{d^2}{dt_j t_s} \varphi_{\xi}(t) = -\mathbb{E}\xi_j \xi_s e^{it_1 \xi_1 + it_2 \xi_2}; \quad \frac{d^2}{dt_j t_s} \varphi_{\xi}(0) = -\mathbb{E}\xi_j \xi_s$$

В нашем случае $-\mathbb{E}(\xi_j^1 - \mu_j)(\xi_s^1 - \mu_s) = -r_{js}$ Получаем:

$$\left(1 - \frac{1}{2} \langle Rt, t \rangle \frac{1}{n} + o\left(\frac{1}{n}\right)\right)^n \xrightarrow{n \to \infty} e^{-\frac{1}{2} \langle Rt, t \rangle}$$

6 Многомерное нормальное распределение

Определение 4. Случайный вектор $\xi \in \operatorname{Mat}_{m \times 1}$ имеет нормальное распределение или является гауссовским, если $\forall x \in \mathbb{R}^m$

 $\varphi_{\xi}(x) = \mathbb{E}e^{ix\xi} = e^{ix\mu - \frac{1}{2}xRx^T}$

где $\mu = (\mu_1, \cdots, \mu_m)^T$, $R \in \text{Mat}_{m \times m}$ — симметричная неотрицательно определенная. Далее кратко пишем

$$\xi \sim N(\mu, R)$$

Определение 5. Пусть $\xi \in \text{Mat}_{m \times 1}$ случайный вектор. Матрица $R \in \text{Mat}_{m \times m}$ с компонентами $r_{ij} = \text{cov}(\xi_i, \xi_j)$ называется ковариационной матрицей вектора ξ . Можно еще написать, что

$$R = \operatorname{cov}(\xi, \xi) = \mathbb{E}(\xi - \mathbb{E}\xi)(\xi - \mathbb{E}\xi)^{T}$$

Лемма 2. Симметричная неотрицательно определенная матрица $R \in Mat_{m \times m}$ является ковариционной матрицей случайного вектора-столбца $\xi \in Mat_{m \times 1}$ тогда и только тогда, когда $\forall x, y \in \mathbb{R}^m$

$$cov(x\xi, y\xi) = xcov(\xi, \xi)y^T = xRy^T$$

 $Доказательство. \Rightarrow$

Распишем по определению ковариации двух случайных величин (у нас именно они):

$$cov(x\xi, y\xi) = \mathbb{E}\left[\left(x\xi - \mathbb{E}x\xi\right)\left(y\xi - \mathbb{E}y\xi\right)\right] = \mathbb{E}\left[x\left(\xi - \mathbb{E}\xi\right)y\left(\xi - \mathbb{E}\xi\right)\right] =$$

Транспонируя скаляр, получаем тот же скаляр:

$$= \mathbb{E}\left[x\left(\xi - \mathbb{E}\xi\right)\left(y\left(\xi - \mathbb{E}\xi\right)\right)^{T}\right] = \mathbb{E}\left[x\left(\xi - \mathbb{E}\xi\right)\left(\xi - \mathbb{E}\xi\right)^{T}y^{T}\right] = x\mathbb{E}\left[\left(\xi - \mathbb{E}\xi\right)\left(\xi - \mathbb{E}\xi\right)^{T}\right]y^{T} = x\text{cov}\left(\xi,\xi\right)y^{T}$$

Возьмем $x = e_i$, $y = e_j$ (базисные единичные вектора). Тогда из данного равенства получим:

$$cov(e_i\xi, e_j\xi) = cov(\xi_i, \xi_j) = e_iRe_j = r_{ij}$$

Следовательно $R = \text{cov}(\xi, \xi)$ по определению.

Предложение 8. $\forall A \in Mat_{m \times m} \ \forall b \in Mat_{m \times 1} \ u \ \xi \in Mat_{m \times 1} - c$ лучайного вектора, верно:

$$cov(A\xi + b, A\xi + b) = AR_{\xi}A^{T}$$

Доказательство. Распишем по определению:

$$\operatorname{cov}(A\xi + b, A\xi + b) = \mathbb{E}\left[\left(A\xi + b - \mathbb{E}(A\xi + b)\right)\left(A\xi + b - \mathbb{E}(A\xi + b)\right)^{T}\right] =$$

$$= \mathbb{E}\left[\left(A\xi + b - b - \mathbb{E}A\xi\right)\left(A\xi + b - b - \mathbb{E}A\xi\right)^{T}\right] = \mathbb{E}\left[\left(A\xi - \mathbb{E}A\xi\right)\left(A\xi - \mathbb{E}A\xi\right)^{T}\right] =$$

$$= A\mathbb{E}\left[\left(\xi - \mathbb{E}\xi\right)\left(\xi - \mathbb{E}\xi\right)^{T}\right]A^{T} = AR_{\xi}A^{T}$$

Следствие 5. Если вектор $\xi \sim N(\mu, R)$, то вектор $A\xi + b \sim N(A\mu + b, AR_{\xi}A^{T})$

Теорема 9. Вектор $\xi \in Mat_{m \times 1}$ имеет нормальное распределение тогда и только тогда, когда $\forall x \in \mathbb{R}^m$ случайная величина $x\xi$ имеет нормальное распределение

Доказательство. \Rightarrow

Если ξ нормальный вектор, то

$$\varphi_{x\xi}(t) = \mathbb{E}e^{itx\xi} = \varphi_{\xi}(tx) = \exp\left(-\frac{1}{2}txR(tx)^{T} + itx\mu\right) =$$
$$= \exp\left(-\frac{1}{2}t^{2}xRx^{T} + itx\mu\right)$$

Получили хар функцию нормального распределения $x\xi \sim N\left(x\mu, xRx^T\right)$.

В обратную сторону:

$$\varphi_{\xi}(x) = \mathbb{E}e^{ix\xi} = \varphi_{x\xi}(1) = \exp\left(-\frac{1}{2}\mathbb{D}x\xi + i\mathbb{E}x\xi\right) = \exp\left(-\frac{1}{2}\operatorname{cov}(x\xi, x\xi) + ix\mu\right) =$$

$$= \exp\left(-\frac{1}{2}xRx^{T} + ix\mu\right)$$

, где $R = \text{cov}(\xi, \xi), \, \mu = \mathbb{E}\xi$. Последний переход вытекает из леммы2.

Следствие 6. Если $\xi \sim N(\mu, R)$, то $R = cov(\xi, \xi)$, $\mu = \mathbb{E}\xi$.

Следствие 7. Если вектор $\xi = (\xi_1, \xi_2)$ имеет нормальное распределение и $cov(\xi_1, \xi_2) = 0$, то случайные величины ξ_1 и ξ_2 независимы.

Доказательство. Пусть

$$\mu = \mathbb{E}\xi = (\mu_1, \mu_2)$$

Заметим, что

$$R = \operatorname{cov}(\xi, \xi) = \begin{pmatrix} \operatorname{cov}(\xi_1, \xi_1) & 0\\ 0 & \operatorname{cov}(\xi_2, \xi_2) \end{pmatrix}$$

Теперь запишем харфункцию ξ :

$$\varphi_{\xi}(x_{1}, x_{2}) = \exp\left(-\frac{1}{2}\left(x_{1}^{2}\mathbb{D}\xi_{1} + x_{2}^{2}\mathbb{D}\xi_{2}\right) + i\left(x_{1}\mu_{1} + x_{2}\mu_{2}\right)\right) =$$

$$= \exp\left(-\frac{1}{2}x_{1}^{2}\mathbb{D}\xi_{1} + ix_{1}\mu_{1}\right) \cdot \exp\left(-\frac{1}{2}x_{2}^{2}\mathbb{D}\xi_{2} + ix_{2}\mu_{2}\right) = \varphi_{\xi_{1}}(x_{1})\varphi_{\xi_{2}}(x_{2})$$

Теперь из следствия4 вытекает независимость ξ_1 и ξ_2

Следствие 8. Если $\xi \sim N(\mu, R) (\in Mat_{m \times 1})$, то $\exists A \in Mat_{m \times k}$, что $\xi = A\eta + \mu$, где $\eta = (\eta_1, \cdots, \eta_k)^T$, η_i — независимые N(0, 1) случайные величины. Причем $AA^T = R$

Доказательство. Пусть

$$\xi' = \xi - \mu = (\xi'_1, \cdots, \xi'_m)^T$$

Свели задачу к задачи нахождения ортонормированного базиса $\eta = (\eta_1, \cdots, \eta_k)^T$ в подпространстве $\langle \xi_1', \cdots, \xi_m' \rangle$ со скалярным произведением $(X,Y) = \mathbb{E} XY$. Эта задача решается методом Грама-Шмидта. Получили матрицу перехода A, что

$$\xi - \mu = \xi' = A\eta$$

То есть

$$\xi = A\eta + \mu$$

Осталось пояснить $AA^T = R$:

$$R = \operatorname{cov}(\xi, \xi) = \operatorname{cov}(\xi - \mu, \xi - \mu) = \operatorname{cov}(A\eta, A\eta) = A\operatorname{cov}(\eta, \eta) A^{T} = AEA^{T} = AA^{T}$$

 $cov(\eta, \eta) = E$, так как это ортонормированный базис.

Теорема 10. Если $\xi \sim N\left(\mu,R\right)$ (в этой теореме сделаем $\mu := \mu^T \in R^m$) и $detR \neq 0$, случайный вектор ξ имеет плотность

$$\rho(x) = \frac{1}{(2\pi)^{\frac{m}{2}} \sqrt{\det R}} e^{-2^{-1}(x-\mu)R^{-1}(x-\mu)^{T}}$$

Доказательство. Так как $\xi = A\eta + \mu$, причем $\exists A^{-1}$, то

$$P\left(\xi \in B\right) = P\left(A\eta + \mu \in B\right) = \frac{1}{\left(\sqrt{2\pi}\right)^m} \int_{A\eta + \mu \in B} e^{-2^{-1}xx^T} dx =$$

$$= \frac{1}{(2\pi)^{\frac{m}{2}}} \int_B e^{-2^{-1}\left(A^{-1}(x-\mu)\right)\left(A^{-1}(x-\mu)\right)^T} d\left(A^{-1}\left(x-\mu\right)\right) = \frac{1}{(2\pi)^{\frac{m}{2}} \det A} \int_B e^{-2^{-1}\left(A^{-1}(x-\mu)\right)\left(A^{-1}(x-\mu)\right)^T} dx$$

Остается заметить, что

$$\det AA^T = (\det A)^2 = \det R$$

оти и

$$A^{-1}(x-\mu) (A^{-1}(x-\mu))^{T} = (x-\mu) A^{-1} (A^{-1})^{T} (x-\mu)^{T} =$$

$$= (x-\mu) (AA^{T})^{-1} (x-\mu)^{T} = (x-\mu) R^{-1} (x-\mu)^{T}$$

Пример 10. Пусть $\xi = (\xi_1, \dots, \xi_n)^T$, где $\xi_i \sim N(0, \sigma^2)$ и независимы между собой (или, что то же самое $\xi \sim N(0, \sigma^2 E)$). Положим

$$\overline{\xi} = \frac{\xi_1 + \dots + \xi_n}{n}, \ \zeta = (\xi_1 - \overline{\xi})^2 + \dots + (\xi_n - \overline{\xi})^2$$

 $(\zeta$ — выборочная диспресия). Покажем, что $\overline{\xi}$ и ζ независимы.

Пусть $U \in \operatorname{Mat}_{n \times n}$ — ортогональная матрица $(UU^T = E)$, первая строка которой имеет вид $\left(n^{-\frac{1}{2}}, \cdots, n^{-\frac{1}{2}}\right)$. Тогда координаты вектора $u = U\xi \sim N\left(0, U\sigma^2 E U^T\right) = N\left(0, \sigma^2 E\right)$ являются независимыми. Заметим, что $u_n = \overline{\xi}\sqrt{n}$ и что

$$u^{T}u = u_{1}^{2} + \dots + u_{n}^{2} = n\overline{\xi^{2}} + u_{2}^{2} + \dots + u_{n}^{2} = \xi^{T}U^{T}U\xi = \xi^{T}\xi = \xi_{1}^{2} + \dots + \xi_{n}^{2}$$

Иначе говоря

$$u_2^2 + \cdots + u_n^2 = \xi_1^2 + \cdots + \xi_n^2 - n\overline{\xi^2}$$

Теперь заметим

$$\zeta = \xi_1^2 + \dots + \xi_n^2 - 2\sum_{i=1}^n \xi_i \overline{\xi} + n\overline{\xi}^2 = \xi_1^2 + \dots + \xi_n^2 - n\overline{\xi}^2 = u_2^2 + \dots + u_n^2$$

Так как u_1, \dots, u_n — независимы, то и $\frac{u_1}{\sqrt{n}} = \overline{\xi}$ и $u_2^2 + \dots + u_n^2 = \zeta$ тоже независимы.

Распределение величины $\chi = \eta_1^2 + \dots + \eta_n^2$, где η_i независимые с распределением N(0,1), называют распределением хи-квадрат с n степенями свободы и обозначают через χ_n^2 . Найдем плотсноть распределения χ_n^2 :

$$P(\chi \le t) = (2\pi)^{-\frac{n}{2}} \int_{\eta_1^2 + \dots + \eta_n^2 \le t} e^{-\frac{x_1^2 + \dots + x_n^2}{2}} dx =$$

Делаем сферическую замену $(w_n - \text{площадь } n$ -мерной единичной сферы):

$$= (2\pi)^{-\frac{n}{2}} w_n \int_0^{\sqrt{t}} r^{n-1} e^{-\frac{r^2}{2}} dr$$

Тогда

$$\rho(t) = (2\pi)^{-\frac{n}{2}} w_n \cdot \frac{1}{2} t^{-\frac{1}{2}} t^{\frac{n-1}{2}} e^{-\frac{t}{2}} = \frac{1}{2} (2\pi)^{-\frac{n}{2}} w_n t^{\frac{n-2}{2}} e^{-\frac{t^2}{2}} \operatorname{Ind}_{t>0}$$

7 Условные математические ожидания: дискретный случай

Предположим, что задана дискретная случайная величина

$$\xi\left(w\right) = \sum_{i=1}^{n} x_{i} \operatorname{Ind}_{A_{i}}\left(w\right)$$

Рассмотрим следующую задачу: найти математическое ожидание ξ , если достоверно известно, что произошло событие B, P(B) > 0. Поскольку мы знаем, что событие B произошло, то надо пересчитать вероятности A_k с учетом новой информации, а именно, заменить $P(A_k)$ на $P(A_k|B)$. Таким образом, надо вычислить математическое ожидание не относительно исходной вероятностной меры P, а относительно условной вероятности $P(\cdot|B)$.

Определение 6. Имеем:

$$\mathbb{E}\left(\xi|B\right) = \sum_{i=1}^{n} x_{i} P\left(A_{i}|B\right) = \sum_{i=1}^{n} x_{i} \frac{\mathbb{E}\left(\operatorname{Ind}_{A_{i}}\operatorname{Ind}_{B}\right)}{P\left(B\right)} = \frac{\mathbb{E}\left(\xi\operatorname{Ind}_{B}\right)}{P\left(B\right)}$$

Это выражение будем называть условным математическим ожиданием относительно события В.

Пусть теперь имеется разбиение

$$\Omega = \bigcup_{k=1}^{N} B_k, \ B_k \cap B_m = \emptyset, \ P(B_k) > 0$$

Обозначим это разбиение $\{B_k\}$ через \mathcal{B} . Удобно собрать вместе значения условных математических ожиданий $\mathbb{E}\left(\xi|B_k\right)$.

Определение 7. Рассмотрим случайную величину:

$$\Lambda(w) = \sum_{i=1}^{N} \operatorname{Ind}_{B_i}(w) \mathbb{E}(\xi|B_i)$$

Если $w \in B_i$, то эта случайная величина выдает среднее значение ξ при условии, что произошло событие B_i . Величину $\Lambda(w)$ называют условным математическим ожиданием относительно разбиения \mathcal{B} и обозначают через $\mathbb{E}(\xi|\mathcal{B})$.

Случайную величину

$$P(A|\mathcal{B}) = \mathbb{E}\left(\operatorname{Ind}_A|\mathcal{B}\right)$$

называют условной вероятностью события A относительно разбиения \mathcal{B} . Ясно, что

$$\mathbb{E}\left(\xi|\mathcal{B}\right) = \sum_{i=1}^{N} \operatorname{Ind}_{B_{i}}\left(w\right) \mathbb{E}\left(\xi|B_{i}\right) = \sum_{i=1}^{N} \operatorname{Ind}_{B_{i}}\left(w\right) \sum_{j=1}^{n} x_{j} P\left(A_{j}|B_{i}\right) = \sum_{j=1}^{n} \sum_{i=1}^{N} \operatorname{Ind}_{B_{i}}\left(w\right) x_{j} P\left(A_{j}|B_{i}\right) =$$

$$= \sum_{j=1}^{n} x_{j} \sum_{i=1}^{N} \operatorname{Ind}_{B_{i}}\left(w\right) P\left(A_{j}|B_{i}\right) = \sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} \operatorname{Ind}_{B_{i}}\left(w\right) \mathbb{E}\left(\operatorname{Ind}_{A_{j}}|B_{i}\right) = \sum_{j=1}^{n} x_{j} \mathbb{E}\left(\operatorname{Ind}_{A_{j}}|\mathcal{B}\right) =$$

$$= \sum_{j=1}^{n} x_{j} P\left(A_{j}|\mathcal{B}\right)$$

Пример 11. Рассмотрим важный пример, когда $\mathcal{B} = \{B, \overline{B}\}$. Тогда

$$P(A|\mathcal{B}) = \operatorname{Ind}_{B}P(A|B) + \operatorname{Ind}_{\overline{B}}P(A|\overline{B})$$

Если $w \in B$, то $P(A|\mathcal{B})(w) = P(A|B)$

Теорема 11. Имеют место следующие свойства условного математического ожидания:

- (1) (линейность) $\mathbb{E}(\alpha\xi + \beta\eta|\mathcal{B}) = \alpha\mathbb{E}(\xi|\mathcal{B}) + \beta\mathbb{E}(\eta|\mathcal{B})$
- (2) (монотонность) из $\xi \leq \eta$ следует $\mathbb{E}(\xi|\mathcal{B}) \leq \mathbb{E}(\eta|\mathcal{B})$
- (3) (аналог формулы полной вероятности) $\mathbb{E}\left(\mathbb{E}\left(\xi|\mathcal{B}\right)\right)=\mathbb{E}\xi$
- (4) (независимость) если случаная величина ξ не зависит от разбиения \mathcal{B} , т.е. случайные величины ξ и Ind_{B_k} независимы, то $\mathbb{E}(\xi|\mathcal{B}) = \mathbb{E}\xi$
- (5) для всякой случайной величины $\eta = \sum_{k=1}^{N} c_k Ind_{B_k}$ верно равенство $\mathbb{E}\left(\eta \xi | \mathcal{B}\right) = \eta \mathbb{E}\left(\xi | \mathcal{B}\right)$

Доказательство. Свойства (1) и (2) следуют из того, что они верны отдельно для каждого B_k . Свойство (3) проверяется непосредственной подстановкой:

$$\mathbb{E}\left(\mathbb{E}\left(\xi|\mathcal{B}\right)\right) = \mathbb{E}\left(\sum_{i=1}^{N} \operatorname{Ind}_{B_{i}} \mathbb{E}\left(\xi|B_{i}\right)\right) = \mathbb{E}\left(\sum_{i=1}^{N} \operatorname{Ind}_{B_{i}} \frac{\mathbb{E}\left(\xi \operatorname{Ind}_{B_{i}}\right)}{P\left(B\right)}\right) = \sum_{i=1}^{N} \mathbb{E}\left(\operatorname{Ind}_{B_{i}}\right) \frac{\mathbb{E}\left(\xi \operatorname{Ind}_{B_{i}}\right)}{P\left(B_{i}\right)} = \sum_{i=1}^{N} \mathbb{E}\left(\xi \operatorname{Ind}_{B_{i}}\right) = \mathbb{E}\xi$$

Обоснуем пункт (4). Так как ξ и Ind_{B_k} независимы, то

$$\mathbb{E}\left(\xi|B_{k}\right) = \frac{\mathbb{E}\left(\xi\operatorname{Ind}_{B_{k}}\right)}{P\left(B_{k}\right)} = \frac{\mathbb{E}\xi\mathbb{E}\operatorname{Ind}_{B_{k}}}{P\left(B_{k}\right)} = \mathbb{E}\xi$$

Следовательно,

$$\mathbb{E}\left(\xi|\mathcal{B}\right) = \sum_{k=1}^{N} \operatorname{Ind}_{B_{k}}\left(w\right) \mathbb{E}\left(\xi|B_{k}\right) = \sum_{k=1}^{N} \operatorname{Ind}_{B_{k}}\left(w\right) \mathbb{E}\xi = \mathbb{E}\xi$$

Для обоснования (5) достаточно заметить, что

$$\mathbb{E}\left(\eta\xi|B_k\right) = c_k \mathbb{E}\left(\xi|B_k\right)$$

Наиболее типична ситуация, когда разбиение ${\cal B}$ появляется посредством некоторой случайной величины

$$\eta = \sum_{i=1}^{N} y_i \operatorname{Ind}_{B_i},$$

где y_i — разлиные числа и $P(B_i) > 0$.

Определение 8. В этом случае $B_i = \{w : \eta(w) = y_i\}$ и условное математическое ожидание $\mathbb{E}(\xi|\mathcal{B})$ обозначают через $\mathbb{E}(\xi|\eta)$ и называют *условным математическим ожиданием относительно* η .

Несложно предъявить функцию F (это можно сделать несколькими способами), что

$$\mathbb{E}\left(\xi|\eta\right)(w) = F\left(\eta\left(w\right)\right)$$

Легко видеть, что $F(y_i) = \mathbb{E}(\xi|B_i)$.

Можно воспринимать $\mathbb{E}(\xi|\eta)$ как проекцию ξ на η , а $\mathbb{E}\xi\eta$ как их скаляное произведение.

Лемма 3. Для условного математического ожидания выполнено

$$\mathbb{E}\left(\xi f\left(\eta\right)\right) = \mathbb{E}\left[f\left(\eta\right)\mathbb{E}\left(\xi|\eta\right)\right]$$

для произвольной функции f. Кроме того, если для какой-то случайной величины $\zeta = g(\eta)$ выполнено

$$\mathbb{E}\left(\xi f\left(\eta\right)\right) = \mathbb{E}\left(f\left(\eta\right)\zeta\right),\,$$

 $mo \zeta = \mathbb{E}(\xi|\eta) \ n.н.$

Доказательство. По (5) и (4) из теоремы 11:

$$\mathbb{E}\left[f\left(\eta\right)\mathbb{E}\left(\xi|\eta\right)\right] = \mathbb{E}\left[\mathbb{E}\left(f\left(\eta\right)\xi|\eta\right)\right] = \mathbb{E}\left(f\left(\eta\right)\xi\right)$$

Докажем вторую часть:

$$\mathbb{E}(f(\eta)\zeta) = \mathbb{E}(\xi f(\eta)) = \mathbb{E}[f(\eta)\mathbb{E}(\xi|\eta)]$$
$$\mathbb{E}[f(\eta)(\zeta - \mathbb{E}(\xi|\eta))] = 0$$

Так как ζ и $\mathbb{E}(\xi|\eta)$ — функции от η , то возьмем $f(\eta) = \zeta - \mathbb{E}(\xi|\eta)$ и получим:

$$\mathbb{E}\left(\zeta - \mathbb{E}\left(\xi|\eta\right)\right)^2 = 0,$$

то есть $\zeta = \mathbb{E}\left(\xi | \eta\right)$ п.н.

Теперь докажем, что $\mathbb{E}\left(\xi|\eta\right)$ и правда является проекцией ξ на η .

Предложение 9. Пусть $\mathbb{E}\xi^2 < \infty$. Условное матетическое ожидание $\mathbb{E}(\xi|\eta)$ среди всех случайных величин вида $f(\eta)$ является лучшим среднеквадратическим приближением для ξ , m.e.

$$\min_{\zeta:\zeta=f(\eta)} \mathbb{E}\left(\xi-\zeta\right)^2 = \mathbb{E}\left[\xi-\mathbb{E}\left(\xi|\eta\right)\right]^2$$

Доказательство. Пусть $\zeta = f(\eta)$. Так как $(\mathbb{E}(\xi|\eta) - \zeta - \varphi)$ функция от η)

$$\mathbb{E}\left[\left(\xi - \mathbb{E}\left(\xi|\eta\right)\right)\left(\mathbb{E}\left(\xi|\eta\right) - \zeta\right)\right] = 0,$$

то

$$\mathbb{E}\left(\xi - \zeta\right)^{2} = \mathbb{E}\left[\left(\xi - \mathbb{E}\left(\xi|\eta\right)\right) + \left(\mathbb{E}\left(\xi|\eta\right) - \zeta\right)\right]^{2} = \\ \mathbb{E}\left[\xi - \mathbb{E}\left(\xi|\eta\right)\right]^{2} + 2\mathbb{E}\left[\left(\xi - \mathbb{E}\left(\xi|\eta\right)\right)\left(\mathbb{E}\left(\xi|\eta\right) - \zeta\right)\right] + \mathbb{E}\left[\mathbb{E}\left(\xi|\eta\right) - \zeta\right]^{2} \ge \mathbb{E}\left[\xi - \mathbb{E}\left[\xi|\eta\right)\right]^{2}$$

Последнее неравенство достигается взятием $\zeta = \mathbb{E}\left(\xi | \eta\right)$

8 Условные математические ожидания: общий случай

Определение 9. ξ, η — случаные величины. $\mathbb{E}|\xi| < \infty$. Тогда случайная величина вида $F(\eta)$ называется условным математическим ожиданием $\mathbb{E}(\xi|\eta)$, если

$$\mathbb{E}\left[\xi f\left(\eta\right)\right] = \mathbb{E}\left[\mathbb{E}\left(\xi|\eta\right) f\left(\eta\right)\right]$$

для любой ограниченной f. Любые две случаные величины, удовлетворяющие этому условию почти наверное совпадают (лемма 3).

Из этого определения следует, что $\mathbb{E}(\xi|\eta)$ есть наименее отличающаяся от ξ случайная величина вида $F(\eta)$, то есть проекция ξ на η .

Предложение 10. Предположим, что распределение случайной величины (ξ, η) задано совместной плотностью $\rho_{\xi\eta}(x,y)$. Тогда

$$\mathbb{E}\left(g\left(\xi,\eta\right)|\eta=y\right) = \int_{-\infty}^{+\infty} g\left(x,y\right) \frac{\rho_{\xi\eta}\left(x,y\right)}{\rho_{\eta}\left(y\right)} dx$$

Доказательство. Имеет место цепочка равенств:

$$\mathbb{E}\left[g\left(\xi,\eta\right)f\left(\eta\right)\right] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g\left(x,y\right)f\left(y\right)\rho_{\xi\eta}\left(x,y\right)dxdy =$$

$$= \int_{-\infty}^{+\infty} f(y) \underbrace{\int_{-\infty}^{+\infty} g(x,y) \frac{\rho_{\xi\eta}(x,y)}{\rho_{\eta}(y)}}_{=F(y)} \rho_{\eta}(y) dy = \mathbb{E}\left[F(\eta) f(\eta)\right]$$

Следовательно $F\left(\eta\right)=\mathbb{E}\left(\xi|\eta\right)$ по определению.