PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-037989

(43)Date of publication of application: 19.02.1991

(51)Int.Cl.

H05B 6/10

(21)Application number: 01-173365

(71)Applicant:

MITSUBISHI ELECTRIC CORP

(22)Date of filing:

04.07.1989

(72)Inventor:

NAKAMURA YUKINOBU

(54) INDUCTION HEATING DEVICE

(57) Abstract:

PURPOSE: To avoid a setting error by providing an induction coil at the upstream of an induction heating coil for measuring the diameter of a heated material, and causing the automatic outputting of optimum voltage depending upon the aforesaid diameter and the transfer speed of the material.

CONSTITUTION: When a heated material 5 passes an induction coil 10, the current value of the coil 10 thereby changed is detected, and the diameter of the material 5 is determined on the basis of the detected current value. In addition, voltage applied to an induction heating coil 4 necessary for heating and raising the temperature of the material 5 up to the predetermined level is determined on the basis of the diameter of the material 5, a transfer instruction signal therefor and a temperature rise instruction signal. As a result, high frequency voltage corresponding to the applied voltage is outputted to the induction heating coil 4. Consequently, the material 5 when passing the induction heating coil 4, is automatically heated to a desired level, depending upon the diameter and transfer speed. It is unnecessary, therefore, to enter the output voltage and transfer speed in advance, depending upon a product number, and the voltage is automatically set according to the type of the material 5, thereby ensuring the avoidance of a setting error.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]---

Copyright (C); 1998,2000 Japan Patent Office

⑩日本国特許庁(JP)

⑩公開特許公報(A)

平3-37989

@Int. Cl. 5

識別配号

庁内整理番号

@公開 平成3年(1991)2月19日

H 05 B 6/10

3 6 1

7103-3K

寒杏請求 未請求 請求項の数 1 (全7頁)

公発明の名称 誘導加熱装置

> 顧 平1-173365 ②特

平1(1989)7月4日 29出

個発 朗 兵庫県尼崎市塚口本町8丁目1番1号。三菱電機株式会社

伊丹製作所内

多出 三麥電機株式会社 東京都千代田区丸の内2丁目2番3号

弁理士 大岩 增雄 外2名 19代 理 人

- 1. 発明の名称 誘導加熱装置
- 2. 特許請求の範囲
- ()) 被加熱材を移送しつつこれと電磁的に結合 された誘導加熱コイルにて加熱する誘導加熱 装置において、

前記誘導加熱コイルの上流側に設けられ、 交流電波と接続される誘導コイルと、

核誘導コイルに通流する電流値を検出する 検出器と、

前記電流値により被加熱材径を決定する手 段と、

该手段によって決定された被加熱材径と、 被加熱材の移送速度及び昇温値の指令信号と により、被加熱材を所定の温度に迄昇温させ るのに必要な前記読導加熱コイルへの印加電 圧を決定する手段と

を備えていることを特徴とする誘導加熱袋 ₩.

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明はデータ設定の自動化を図れる誘導加熱 装置に関する。

〔從来の技術〕

第5図は特別昭63-126189号公報に開示された 従来の誘導加熱装置の構成を示すプロック図であ る。図中5は被加熱材であり、ピンチローラ7に て移送されつつ誘導加熱コイル4内を通過する。 誘導加熱コイル4には、図示していない電源に接 統されている受電盤1内の遮断器、変圧器2及び 高周波インバータ装置等の電源装置3を介して電 力が供給され、この誘導加熱コイル4と電磁的に 結合される被加熱材5が誘導加熱される。

なお、図中6は力率改善のために設けられてい。 るコンデンサである。

前記ピンチローラ7はモータ8にて回転駆動さ れるが、このモータ8の餌転速度は、駆動制御装 置りにて制御されている。

図中20はこの誘導加熱装置における創御手段で あるプログラマブル・コントローラ20であり、夫

*の被加熱材5の加熱データ、即ち被加熱材5の 移送速度のデータ及び前記電源装置3の出力電圧 のデータを記憶するためのレジスタを有している。 また、プログラマブル・コントローラ20には、被 加熱材5を特定するデータとしての製品番号を入 力する製品番号入力器21, 電源電圧3の出力電圧 の修正データを入力するための電圧修正データ入 力器21及び、被加熱材5の移送速度の修正データ を人力するための移送速度修正データ入力器23が 接続されている。製品番号入力器21にて被加熱材 5 の製品番号が入力され、プログラマブル・コン トローラ20が前記製品番号に対応する前記レジス タから加熱データを読出すとき、前記製品番号に 対応するレジスタに加熱データが未だに記憶され ていない場合は、電圧修正データ入力器21, 移送 速度修正データ入力器23から夫々入力された修正 データが加熱データとして前記レジスタに記憶さ れ、また記憶されている加熱データを修正する場 合は、電圧修正データ入力器21、移送速度修正デ ータ入力器23から入力された夫々の修正データに

熱材5の加熱温度及び操業効率を決定する上で重要な要因である。

具体的には、電源器 3 の出力の高、低と被加熱材 5 の加熱菌、低と物が変数 6 にと 2 と被加熱 6 に 2 と 2 を 3 の加熱材 5 の加熱 6 に 2 と 3 と 3 の加熱材 5 の 6 に 3 と 5 を 6 に 2 と 5 を 6 に 3 と 5 を 7 に 5

【発明が解決しようとする課題】 ―

上述したような従来の誘導加熱装置では、外径. 材質等被加熱材の種類が多核に及んで加熱特性が 夫々異なるため、夫々に応じて被加熱材の最適移 送速度のデータ及び電源電圧の出力電圧のデータ を電圧修正データ人力器,移送速度修正データ入 力器からプログラマブル・コントローラに予め入 て修正した後のデータが加熱データとして前記レ ジスタに記憶される。

こうして、被加熱材 5 は誘導加熱工程の後工程 であるプレスでの設造に必要な所定温度に昇温させられ、プレスの処理速度に合うように移送される。

ところで、電源電圧3の出力電圧及びモータ8の回転速度、つまり被加熱材5の移送速度は被加

力しておく必要がある。従って、製品の点数が多くなると、これらのデータ入力作業が極めて繁雄になる成れがあった。また、誘導加熱装置の運転開始時に製品番号入力器から誤って別の製品番号を設定すると、被加熱材を所望の温度より通刺に加熱したり、加熱が不足したりする可能性があった。

本発明は新かる事情に鑑みてなされたものであり、誘導加熱コイルの上疫傷に被加熱材経を測定するための誘導コイルを設置し、被加熱材経と移送速度とに応じて最適な低圧を自動的に出力させる。とすることにより、製品番号に応じて出力、低圧及び移送速度を予め入力しておく必要がなく、設定ミスを回避できる誘導加熱装置の提供を目的とする。

〔保題を解決するための手段〕

本発明に係る誘導加熱装置は、誘導加熱コイルの上流側に設けられた誘導コイルに被加熱材を押 通させたときの電波値を検出器にて検出し、前記 電波値に基づいて被加熱材径を決定して、これと 被加熱材の移送速度及び昇温値の指令信号とにより、被加熱材を所定の温度に迄昇温させるのに必要な前配誘導加熱コイルへの印加電圧を決定するものである。

(作用)

本発明の誘導加熱装置は、被加熱材が誘導コイルを選過すると、これにより変化した誘導コイルの電流値が検出され、その電流値に基づいて極被加熱材をが決定される。そして、譲被加熱材を形立をは骨とと昇温値指令信号とにより、被加熱材を所定の退度にまで加熱昇温とにより、破壊加熱コイルに前記印加電圧に対応がある。で、誘導加熱コイルを通過すると、被加熱材を及び移送速度に応じて必要な温度に自動的に加熱される。(家権例)

以下、本発明をその実施例を示す図面に基づき 具体的に説明する。

第1図は本発明に係る誘導加熱装置の構成を示

13、被加熱材径設定器14、演算器15及び電圧設定 器16で構成されている。電流信号変換器13には、 前記検出器12にて検出された誘導コイル10に流れ る電液値が与えられ、電流信号変換器13でこの電 流値に比例した適当な電圧信号に変換される。第 2図は誘導コイル10に流れる電流と被加熱材5の 外径との関係を示すグラフであり、機軸には被加 熱材径をまた、縦軸には電流を失々とってある。 一般に、被加熱材5としては磁性鋼が使用される が、磁性鋼の場合は被加熱材5の外径が同一であ るならば、その材質に拘わらず誘導コイル10の両 始の交流インピーダンスは同一である。 従って被 . 加熱材 5 の外径が大きい程、前記交流インピーダ - ンスは小さくなり、第2関に示す如く被加熱材 5 の外径の大きさと電波の大きさとが直線で示され、 電流値から被加熱材5の外径の大きさを知ること ができる。電流信号変換器13から出力された電圧 信号は被加熱材径設定器14に入力される。この被 加熱材径設定器14は RON又は関数変換器により構 成され、前記電圧信号と被加熱材5の外径との相

すプロック図である。 なお、前述の従来例と同一 または対応する部分には同一の参照符号を付して ある。

第1図中5は被加熱材であり、ピンチローラ7にて移送されつつ誘導コイル10内、誘導加熱コイル4内を順に通過する。前記誘導コイル10には、交流電源11から交流電流が供給されており、誘導コイル10に通流する電流は検出器12にて検出される。

一方、図示されていない電源に接続されている 受電整1の遮断器、変圧器2及び高周波インパー 夕装置等の電源装置3を介して誘導加熱コイル4 に電力が供給され、この誘導加熱コイル4と電磁 的に結合される被加熱材5が誘導加熱される。な お、図中6は力率改善のために設けられているコ ンデンサである。

また、前配ピンチローラ7はモータ8にて回転駆動されるが、このモータ8の回転速度は駆動制御装置9にて創御されている。

この誘導加熱装置の制御系は、電流信号変換器

関関係が、予め実験によって求められることによって、例えばテーブルの形で配位されている。 第3 図は前記相関関係の一例を示すグラフであり、被加熱材 5 の外径が50~42 mm の場合について示してある。被加熱材径設定器14は、このテーブルに基づいて前記電圧信号に対応する被加熱材径 4 。を設定し、その信号を演算器15、電圧設定器16に与える。

前記演算器15にはまた、外部で予め設定される 昇温値△ 8 及びこの加熱工程の後工程であるプレ スから移送速度信号 S が入力される。

ところで、被加熱材 5 を所定温度に昇温させる めに必要なエネルギ Q (kcal) は、次式で求められる

 $Q = C \times \Delta \Theta \times m \qquad \cdots (1)$

但し、C:被加熱材5の比熱 (kcal/kg·で)

△母:昇温値(℃)

m:被加熱材5の重量(kg)

(1)式から、時間あたり Mkg処理される被加熱材 5 を、誘導加熱コイル 4 で連続して昇温させるのに 必要な投入電力 Pw (kw)は、次式のように表される。

$$P_{u} = C \times \Delta \Theta \times M \times \frac{1}{860} \qquad \cdots (2)$$

また、時間あたりの前記処理量M (kg/b),被加熱材径d。(mm)及び移送速度S (mm/s)の関係は次式で表される。

$$M = \frac{\pi}{4} dv^{2} \times r \times 10^{-4} \times S \times 3600 \quad ...(3)$$

但し、7:被加熱材5の比重

そこで、前記演算器15は上述した(2)式。(3)式を用いて、入力された被加熱材径 d。 信号。 プレスより送られてくる移動速度 S 指令信号及び昇温値 ム の 信号を電圧設定器 16に入力する。 など に 一般の 飼材を被加熱材 5 の 対象 としていい。 は で は 一般の 関材を被加熱材 5 の 対象 としていい。 また、 比熱 C は 温度によって変化するが、 鍛造によって変化するが、 銀道に 200~1250℃の範囲ではほぼ一定であり、被加熱材 5 を常温から加熱する場合の比熱 C は、

である.

そこで、(2)式と(3)式とから電源装置3の出力電圧、即ち誘導加熱コイル4に加えられる電圧V。 (V) は(5)式のように表される。

$$V_{\circ} = \sqrt{\frac{Z_{\circ}}{\cos \phi_{\circ}}} \times K \times M \times \Delta \Theta \qquad \cdots (5)$$

なお、(5)式における Z e , cos ø e 及び v e は、 誘導加熱コイル 4 が同一であれば、被加熱材径 d w によってほぼ一義的に決定することができ、予め 計算又は実験によって求めておくことができる。

第4図は(5)式に基づいて電圧設定器16に記憶されている前記相関関係の一例を示すグラフであり、被加熱材径 d。か50~42mmの場合について示してある。電圧設定器16は、このテーブルに基づいて入力された被加熱材投入電力P。と被加熱材径 d。とから、移送速度 S に対応する所定の処理量 M の被加熱材 5 を所定の温度にするのに必要な電源装置 3 の出力電圧 V。を設定し、電源装置 3 に出力

平均値として一定の値を用いて良い。

被加熱材投入電力P。の信号が入力された電圧 設定器16は ROM又は関数変換器により構成され、 被加熱材径 d。 をパラメータとして、前記被加熱 材投入電力P。 と電源装置 3 の出力電圧、即ち続 承加熱コイル 4 に加えられる電圧 V。(V) との相 関関係が、予め導きだされる後述する式に基づい て、例えばテーブルの形で記憶されている。

ここで、電源装置3の出力電圧、即ち誘導加熱 コイル4に加えられる電圧V。(V) と前記被加熱 材投入電力P。とには下記式の関係がある。

$$P_{u} = \frac{V_{e^{2}}}{7.6} \times \cos \phi_{c} \times 7.6 \qquad \cdots (4)$$

但し、 Z c : 誘導加熱コイル 4 の両端のインン ・ ピーダンス

cosøc : 誘導加熱コイル4の力率

ッ : 誘導加熱コイル4の効率

なお、前記誘導加熱コイル 4 の効率 ϕ c は、被加熱材 5 に投入される電力 P w と誘導加熱コイルに投入される電力($\frac{V_{\phi}^{\epsilon}}{2}$ \times $\cos\phi$ c)との比

する。これにより、電源装置3は出力電圧V。の 高周波電力を誘導加熱コイル4に出力し、被加熱 材5を所定の温度加熱する。

なお、前記移送速度信号Sは駆動制御装置9に も入力され、駆動制御装置9は被加熱材5がピン チローラ7により移送速度信号Sにて移送される ようにモータ8の回転速度を制御する。

このようにして、被加熱材 5 は誘導加熱コイル 4 によって加熱される前に、誘導コイル10により その外径が検出され、移送速度 S 指令信号、昇温 値 Δ Θ 指令信号により必要な出力電力 V。 が設定 されるので、誘導加熱コイル 4 を通過する際に所 定の温度に加熱昇温されることとなる。

なお、本発明装置で用いる交流電源装置11は通常の簡用周波数の電源でよく、誘導加熱装置の制御用電源から分岐して用いることができる。そして、前配交流電源装置11から流す電流は微小なものでよく、このことから消費電力も値かとなる。 従って、誘導コイル10に通波する電流も微小なものでよく、前記誘導コイル10も細い導線程よい。

特開平3~37989 (5)

(発明の効果)

以上詳述した如く本発明に係る誘導加熱装置にあっては、被加熱材を誘導加熱コイルにて加熱材を誘導加熱コイルにて加熱材を表面という低力に誘導力を設けたので、製品を自動的に決定できる手段を設けたので、製品を与に応じて出力電圧と移送速度を予め入力しいのに、数がなく、被加熱材の種類に応じてもあって、被加熱材を常に最適な温度に加熱できるという低れた効果を奏する。

4. 図面の簡単な単明

第1図は本発明に係る誘導加熱装置の構成を示すブロック図、第2図は誘導コイル10に流れる電流と被加熱材5の外径との関係を示すグラフ、第3図は電圧信号と被加熱材5の外径との相関関係の一例を示すグラフ、第4図は被加熱材投入電力P』と電源装置3の出力電圧電圧V。との相関関係の一例を示すグラフ、第5図は従来の誘導加熱

装置の構成を示すプロック図である。

 3 … 電源装置
 4 … 誘導加热コイル

 5 … 被加熱材
 10 … 誘導コイル
 11 … 交流電源装置

 7 被置
 12 … 検出器
 14 … 被加熱材径設定器

 15 … 演算器
 16 … 電圧設定器

なお、図中、岡一符号は岡一、又は相当部分を示す。

代理人 大岩增雄

特閒平3-37989 (6)

2 3 ¥

3

特許庁長官殿

特照略 1 -173365号 1.事件の表示

2. 発明の名称

誘導加熱築置

3. 補正をする者

事件との関係 特許出顧人

東京都千代田区丸の内二丁目2番3号 住 所

名 称 (601) 三菱電機株式会社

代表者 志 岐 守 哉

4.代 理

住 所

東京都千代田区丸の内二丁目2番3号

三菱電機株式会社内

(7375) 弁理士 大 岩 増 雄 氏 名 (連絡先03(213)3421特許部)

方式条

特開平3-37989 (7)

以上

るのを「出力電圧」と訂正する。

5. 補正の対象

明細書の「発明の詳細な説明」及び「図面の 簡単な説明」の間

- 6. 補正の内容
- 6-1 明細書の「発明の詳細な説明」の間
- (1) 明細書第3頁第8、15及び19行に「21」とあ るのを「22」と訂正する。
- (2) 明細書第4頁第5行に「21」とあるのを「22」 と訂正する。
- (3) 明和書第4頁第19行に「電源電圧」とあるの
- を「電源装置」と訂正する。
- (4) 明細書第5頁第12行に「調整より」とあるの
- を「調整に」と訂正する。
- (5) 明細書第5頁第18行に「電源電圧」とあるの を「電源装置」と訂正する。
- (6) 明細音第13頁の(5)式に Zc とあるの cos ¢c --- と訂正する。 cos øe × ve
- 6-2 明細書の「図面の簡単な説明」の個 明細書第15貫第19行に「出力、電圧電圧」とあ