1. 一条静态流水线有 6 个功能段组成,加法操作使用其中的 1、2、3、6 功能段,乘法操作使用其中的 1、4、5、6 功能段,每个功能段的延迟时间均相等。流水线的输出端与输入端之间有直接的数据通路,而且设置有足够的缓冲寄存器。用这条流水线计算 $F = \sum_{i=1}^{6} (A_i \times B_i)$,画出流水线时空图,并计算流水线的实际吞吐率、加速比和效率。

解:

加法:

	1	2	3	4
1	V			
2		√		
3			√	
4				
5				
6				√

乘法:

•				
	1	2	3	4
1	V			
2				
3				
4		√		
5			√	
6				V

时空图:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	М	М	М	М	М	М				A	A	A	A	A	A			
2											A	A	A	A	A	A		
3												A	A	A	A	A	A	
4		М	М	М	М	М	М											
5			М	М	M	М	М	М										
6				М	M	M	М	M	М				A	A	A	A	A	A

吞吐率: $\frac{12}{18\Delta t} = \frac{2}{3\Delta t}$

加速比: $\frac{12 \times 4\Delta t}{18\Delta t} = \frac{8}{3}$

效率: $\frac{12\times4}{18\times6} = \frac{4}{9}$

2. 一条由 4 个功能段组成的非线性流水线的预约表如下,每个功能段的延迟时间都 为Δt,

	1	2	3	4	5	6
S ₁	×					×
S ₂		×		×		
S ₃			×			
S ₄				×	×	

- 1) 写出流水线的禁止向量和初始冲突向量。
- 2) 画出调度流水线的状态图。
- 3) 求流水线的最小启动循环和最小平均启动距离。

解:

禁止向量: {5,2,1}

初始化冲突向量: (1 0 0 1 1)

调度流水线状态图:

调度方案	平均延迟/拍					
(3)	3					
(4)	4					
(3, 4) / (4, 3)	3.5					
(3, 4, 3) / (3, 3, 4) / (4, 3, 3)	3.3					

最小启动循环为: (3)

最小平均启动距离为: 3

		1 49J IVIL	ر رزما ا												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	A1			A2		A1	A3		A2	A4		A3			A4
2		A1		A1	A2		A2	A3		A3	A4		A4		
3			A1			A2			A3			A4			
4				A1	A1		A2	A2		A3	A3		A4	A4	

3. 假设向量长度均为 64, 在 CRAY-1 机上所用浮点功能部件的执行时间分别为:相加 6 拍, 相乘 7 拍, 求倒数近似值 14 拍;在存储器读数 6 拍,打入寄存器及启动功能部件各 1 拍。问下列各指令组内的哪些指令可以链接?哪些指令不可链接?不能链接的原因是什么?分别计算出各指令组全部完成所需的拍数。

解:

(1) 可以,但不需要进行链接,三条指令没有数据相关和功能部件冲突。完成所需的节拍数为:

$$\max \{(1+6+1+(64-1)\times 1),(1+6+1+(64-1)\times 1),(1+7+1+(64-1)\times 1)\}$$
= 72

(2) 可以,第一条指令和第二条、第三条指令直接没有相关性,而第二条和第三条指令之间有写读数据相关,因此可以将第二、第三条指令进行链接。完成所需的节拍数为:

$$\max \{(1+7+1+(64-1)\times 1),(1+6+1+1+6+1+(64-1)\times 1)\}\$$
= 79

(3) 不可以,第三条指令和第四条指令同时使用加法部件,因此它们无法进行链接,但是第一、第二、第三条指令之间有读写数据相关,可以进行链接。完成所需的节拍数为:

$$1+6+1+1+7+1+1+6+1+(64-1)=8+9+8+63=16+72=88$$

