

FEATURES:

- High speed CMOS logic hex non-inverting buffers
- Rad-Pak® radiation hardened against natural space radiation
- Single Event Effects:
 - SEL: > 120 MeV/mg/cm2
- Total dose hardness:
- > 100 Krad (Si), depending upon space mission
- Package:
 - -16 Pin Rad-Pak® Flat Pack
- · Typical propagation delay:
 - 6ns at V_{CC} = 5V, C_L = 15pF, T_A = 25°C
- High-to-Low voltage level converter for up to V₁ = 16V
- Fanout (over temperature range)
 - -10 LSTTL loads (Standard Outputs)
 - -15 LSTTL loads (Bus Driver Outputs)
- · Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- · 2V to 6V operation
- · High noise immunity
- $-N_{IL} = 30\%$, $N_{IH} = 30\%$ of V_{CC} at $V_{CC} = 5V$

DESCRIPTION:

Maxwell Technologies' 54HC4050 high speed CMOS Logic Hex Non-Inverting Buffers features a greater than 100 krad(Si) total dose tolerance, depending upon space mission. These parts have a modified input protection structure that enables them to be used as logic level translators which will convert high-level logic to a low-level logic while operating off the low-level logic supply. For example, 15V input pulse levels can be down-converted to 0V to 5V logic levels. The modified input protection structure protects the input from negative electrostatic discharge. The 54HC4050 can be used as simple buffers or inverters without level translation.

Maxwell Technologies' patented Rad-Pak® packaging technology incorporates radiation shielding in the microcircuit package. It eliminates the need for box shielding while providing the required radiation shielding for a lifetime in orbit or space mission. In a GEO orbit, Rad-Pak provides greater than 100 krad (Si) radiation dose tolerance. This product is available with screening up to Class S.

TABLE 1. 54HC4050 PINOUT DESCRIPTIONS

Pin	Symbol	Description
1	V _{CC}	Power supply
8	V _{SS}	Ground
13, 16	NC	Not Connected
3, 5, 7, 9, 11, 14	A - F	Inputs
2	G = A	Buffered Output
4	H = B	Buffered Output
6	I = C	Buffered Output
10	J = D	Buffered Output
12	K = E	Buffered Output
15	L = F	Buffered Output

Table 2. 54HC4050 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T _S	-65	150	°C
Operating Temperature Range	T _A	-55	125	°C
DC Supply Voltage	V _{CC}	-0.5	7.0	V
DC Input Diode Current For V _I < -0.5V or V _I > V _{CC} +0.5V	I _{IK}	-20	+20	mA
DC Output Diode Current For $V_O < -0.5V$ or $V_O > V_{CC} +0.5V$	I _{OK}	-20	+20	mA
DC Output Source or Sink Current per Output Pin For $V_O > -0.5V$ or $V_O < V_{CC} +0.5V$	I _O	-25	+25	mA
DC V _{CC} or Ground Current	I _{CC} or I _{GND}	-50	+50	mA

TABLE 3. DELTA LIMITS

Parameter	Variation		
I _{cc}	±10% of specified value in Table 5		

Table 4. 54HC4050 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{cc}	2	6	V
DC Input or output Voltage	V_{l}, V_{O}	0	V _{cc}	V
Input Rise and Fall Time 2V 4.5V 6V		-	1000 500 400	ns
Temperature Range	T _A	-55	125	°C

TABLE 5. 54HC4050 DC ELECTRICAL CHARACTERISTICS

(V_{CC} = 5V ±10%, T_A = -55 to 125°C, unless otherwise specified)

Parameter	Symbol	Test Condition	S	Min	Max	Unit
High Level Output Voltage CMOS Loads	V _{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}, I_{O} = -0.02\text{mA}$ $V_{CC} = 2V$ $V_{CC} = 4.5V$ $V_{CC} = 6V$		1.9 4.4 5.9	 	V
High Level Output Voltage TTL Loads		$V_I = V_{IH}$ or V_{IL} , $I_O = -4$ mA $V_{CC} = 4.5$ V	+25°C	3.98		
TTL LOads		V _{CC} - 4.5 V	-55 to 125°C	3.7		
		$V_I = V_{IH}$ or V_{IL} , $I_O = -5.2$ mA	+25°C	5.48		
		V _{CC} = 6V	-55 to 125°C	5.2		
Low Level Output Voltage CMOS Loads	V _{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}, I_{O} = -0.02\text{mA}$ $V_{CC} = 2V$ $V_{CC} = 4.5V$ $V_{CC} = 6V$			0.1 0.1 0.1	V
Low Level Output Voltage		$V_I = V_{IH}$ or V_{IL} , $I_O = 4mA$	+25°C	0.26		
TTL Loads		V _{CC} = 4.5V	-55 to 125°C	0.4		
		$V_I = V_{IH}$ or V_{IL} , $I_O = 5.2$ mA	+25°C	0.36		
		V _{CC} = 6V	-55 to 125°C	0.4		
High Level Input Voltage	V _{IH}	V _{CC} = 2V	•	1.5		V
		$V_{CC} = 4.5V$		3.15		
		$V_{CC} = 6V$		4.2		
Low Level Input Voltage	V _{IL}	V _{CC} = 2V			0.5	V
		$V_{CC} = 4.5V$			1.35	
		$V_{CC} = 6V$			1.8	
Input Leakage Current	I _I	V_{CC} = 6V, V_{I} = V_{CC} or GND	+25°C		±0.1	μΑ
			-55 to 125°C		±1	
		V _{CC} = 6V, V _I = 15V	+25°C		±0.5	
			-55 to 125°C		±5	

54HC4050

TABLE 5. 54HC4050 DC ELECTRICAL CHARACTERISTICS

(V_{CC} = 5V ±10%, T_A = -55 to 125°C, unless otherwise specified)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Quiescent Device Current	I _{cc}	$V_1 = V_{CC}$ or GND, $I_0 = 0$ mA +25°C			2	μΑ
		$V_{CC} = 6V$	-55 to 125°C		40	

TABLE 6. 54HC4050 AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 10\%, T_A = -55 \text{ to } 125^{\circ}\text{C}, \text{ unless otherwise specified})$

Parameter	Symbol	Test Co	NDITION	Min	Max	Unit
Propogation Delay nA to nY	t _{PLH,} t _{PHL}	C _L = 50pF V _{CC} = 2V	+25°C		85	ns
			-55 to 125°C		130	
		V _{CC} = 4.5V	+25°C		17	
			-55 to 125°C		26	
		V _{CC} = 6V	+25°C		14	
			-55 to 125°C		22	
Transition Times	t _{TLH,} t _{THL}	$C_L = 50pF$ $V_{CC} = 2V$	+25°C			ns
(Figure 1)		$V_{CC} = 2V$			75	
			-55 to 125°C		110	
		V _{CC} = 4.5V	+25°C		15	
			-55 to 125°C		22	
		V _{CC} = 6V	+25°C		13	
			-55 to 125°C		19	

TABLE 7. 54HC4050 CAPACITANCE¹

Parameter	Symbol	Test Conditions	Max	Unit
Input Capacitance	C _I		10	pF
Power Dissipation Capacitance ^{2, 3}	C _{PD}	V _{CC} = 5V	35	pF

- 1. Guaranteed by design.
- 2. C_{PD} is used to determine the dynamic power consumption, per gate.
- 3. $P_D = V_{CC}^2$ fi $(C_{PD} + C_L)$ where fi = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

54HC4050

FIGURE 1. TRANSITION TIMES AND PROPOGATION DELAY TIMES, COMBINATION LOGIC

16-PIN RAD-PAK® FLAT PACKAGE

SYMBOL		DIMENSION	
	Min	Nом	Max
А	0.115	0.135	0.150
b	0.015	0.017	0.019
С	0.004	0.005	0.007
D	0.407	0.415	0.423
E	0.275	0.280	0.285
E1			0.500
E2	0.150	0.156	0.162
E3	0.030	0.062	
е		0.050 BSC	
L	0.325	0.335	0.345
Q	0.020	0.033	0.045
S1	0.005	0.024	0.045
N		16	

F16-01 Note: All dimensions in inches

54HC4050

Important Notice:

These data sheets are created using the chip manufacturer's published specifications. Maxwell Technologies verifies functionality by testing key parameters either by 100% testing, sample testing or characterization.

The specifications presented within these data sheets represent the latest and most accurate information available to date. However, these specifications are subject to change without notice and Maxwell Technologies assumes no responsibility for the use of this information.

Maxwell Technologies' products are not authorized for use as critical components in life support devices or systems without express written approval from Maxwell Technologies.

Any claim against Maxwell Technologies must be made within 90 days from the date of shipment from Maxwell Technologies. Maxwell Technologies' liability shall be limited to replacement of defective parts.

54HC4050

Product Ordering Options

