Scilab Textbook Companion for Numerical Methods For Scientists And Engineers by K. S. Rao¹

Created by
Viswanath Pasumarthi
Numerical Methods
Chemical Engineering
IIT Guwahati
College Teacher
Dr. Prakash Kotecha
Cross-Checked by

May 23, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Numerical Methods For Scientists And Engineers

Author: K. S. Rao

Publisher: PHI Learning Pvt. Ltd., New Delhi

Edition: 2

Year: 2004

ISBN: 81-203-2395-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Basics in Computing	5	
2	Solution of Algebraic and Transcendental Equations	7	
3	Solution of Linear System of Equations and Matrix Inversion	21	
4	Eigenvalue Problems	33	
5	Curve Fitting	39	
6	Interpolation	47	
7	Numerical Differentiation and Integration	70	
8	Ordinary Differential Equations	90	
9	Parabolic Partial Differential Equations	100	
10	Elliptical Partial Differential Equations	110	
11	Hyperbolic Partial Differential Equations	117	

List of Scilab Codes

Exa 1.1	Conversion of Decimal to Binary
Exa 1.2	Conversion of Binary to Decimal
Exa 1.3	Conversion of Decimal to Binary and Octal
Exa 2.1	Root using Bisection Method
Exa 2.2	Root using Regula Falsi Method
Exa 2.3	Root using Regula Falsi Method
Exa 2.4	Root using Regula Falsi Method
Exa 2.5	Root using Method of Iteration
Exa 2.6	Root using Method of Iteration
Exa 2.7	Root using Newton Raphson Method 16
Exa 2.8	Root using Newton Raphson Method
Exa 2.9	Newton Scheme of Iteration
Exa 2.10	Newton Formula
Exa 2.11	Newton Raphson Extended Formula
Exa 2.12	Root using Muller Method
Exa 2.13	Graeffe Root Squaring Method
Exa 3.1	Gauss Elimination Method
Exa 3.2	Gauss Elimination Method with Partial Pivoting 22
Exa 3.3	Gauss Elimination Method with Partial Pivoting 23
Exa 3.4	Gauss Jordan Method
Exa 3.5	Crout Reduction Method
Exa 3.6	Jacobi Iterative Method
Exa 3.7	Gauss Seidel Method
Exa 3.8	Relaxation Method
Exa 3.9	Matrix Inverse using Gauss Elimination Method 30
Exa 3.10	Matrix Inverse using Gauss Jordan Method 31
Exa 4.1	Eigenvalues and Eigenvectors
Exa 4.2	Eigenvalues and Eigenvectors using Jacobi Method 34

Exa 4.3	Eigenvalues using Jacobi Method
Exa 4.4	Eigenvalues and Eigenvectors using Jacobi Method 37
Exa 5.1	Method of Group Averages
Exa 5.2	Method of Group Averages
Exa 5.3	Method of Group Averages
Exa 5.4	Method of Least Squares 41
Exa 5.5	Method of Least Squares
Exa 5.6	Method of Least Squares
Exa 5.7	Method of Least Squares
Exa 5.8	Principle of Least Squares
Exa 5.9	Method of Moments
Exa 5.10	Method of Moments
Exa 6.1	Forward Difference Table
Exa 6.2	Expression for Finite Difference Elements 48
Exa 6.3	Expression for Finite Difference Elements 48
Exa 6.4	Expression for Finite Difference Elements 48
Exa 6.5	Proof of Relation
Exa 6.6	Proofs of given Relations
Exa 6.7	Proof for Commutation of given Operations 49
Exa 6.8	Newton Forward Difference Interpolation Formula 49
Exa 6.9	Newton Forward Difference Interpolation Formula 50
Exa 6.10	Newton Forward Difference Interpolation Formula 51
Exa 6.11	Newton Forward Difference Interpolation Formula 52
Exa 6.12	Newton Backward Difference Interpolation Formula 53
Exa 6.13	Newton Backward Difference Interpolation Formula 54
Exa 6.14	Lagrange Interpolation Formula
Exa 6.15	Lagrange Interpolation Formula
Exa 6.16	Lagrange and Newton Divided Difference Interpolation
	Formulae
Exa 6.17	Newton Divided Difference Interpolation Formulae 58
Exa 6.18	Identity Proof for Newton and Lagrange Interpolation
	Formulae
Exa 6.19	Interpolation in Two Dimensions
Exa 6.20	Cubic Spline Curve
Exa 6.21	Cubic Spline Curve
Exa 6.22	Minima of a Tabulated Function
Exa 6.23	Maxima of a Tabulated Function
Exa 6 24	Determination of Function Value 68

Exa 7.1	Determination of Differential Function Value	70
Exa 7.2	Determination of Differential Function Value	71
Exa 7.3	Determination of Differential Function Value	72
Exa 7.4	Determination of Differential Function Value	73
Exa 7.5	Richardson Extrapolation Limit	75
Exa 7.6	Integral using Trapezoidal and Simpson One Third Rule	76
Exa 7.7	Integral using Simpson One Third Rule	77
Exa 7.8	Integral using Trapezoidal and Simpson One Third Rule	79
Exa 7.9	Integral using Simpson One Third Rule	80
Exa 7.10	Integral using Simpson One Third Rule	82
Exa 7.11	Romberg Integration Method	82
Exa 7.12	Double Integral using Trapezoidal Rule	84
Exa 7.13	Double Integral using Trapezoidal Rule	85
Exa 7.14	One Point Gauss Legendre Quadrature Formula	86
Exa 7.15	Two Point Gauss Legendre Quadrature Formula	87
Exa 7.16	Four Point Gauss Legendre Quadrature Formula	88
Exa 8.1	Initial Value Problem using Taylor Series Method	90
Exa 8.2	Initial Value Problem using Euler Method	91
Exa 8.3	Initial Value Problem using Modified Euler Method	92
Exa 8.4	Initial Value Problem using Second Order Runge Kutta	
	Method	93
Exa 8.5	Initial Value Problem using Fourth Order Runge Kutta	
	Method	94
Exa 8.6	Van Der Pol Equation using Fourth Order Runge Kutta	
	Equation	95
Exa 8.7	Milne Predictor Corrector Method	96
Exa 8.8	Milne Predictor Corrector Method	97
Exa 8.9	Adam Moulton Predictor Corrector Method	98
Exa 9.1	Taylor Series Expansion	100
Exa 9.2	Initial Boundary Value Problem using Explicit Finite	
	Difference Method	100
Exa 9.3	Initial Boundary Value Problem using Explicit Finite	
	Difference Method	102
Exa 9.4	Crank Nicolson Finite Difference Method	103
Exa 9.5	Crank Nicolson Finite Difference Method	105
Exa 9.6	Crank Nicolson Scheme for Diffusion Equation	106
Exa 9.7	Alternate Direction Implicit Method	106
Exa 10.1	Laplace Equation using Five Point Formulae	110

Exa 10.2	Temperature in Two Dimensional Geometry	111
Exa 10.3	Laplace Equation in Two Dimension using Five Point	
	Formulae	111
Exa 10.4	Poisson Equation using Liebmann Iterative Method	113
Exa 10.5	Laplace Equation using Liebmann Over Relaxation Method	od 114
Exa 11.1	Initial Value Problem using Wave Equation	117
Exa 11.2	Initial Value Problem using Wave Equation	118

Chapter 1

Basics in Computing

Scilab code Exa 1.1 Conversion of Decimal to Binary

```
1 //Example 1.1
2 clc
3 clear
4
5 dec_N = 47;
6 bin_N = dec2bin(dec_N)
7 disp(bin_N)
```

Scilab code Exa 1.2 Conversion of Binary to Decimal

```
1 //Example 1.2
2 clc
3 clear
4
5 dec = 0.7625;
6 iter = 1;
7 while(1)
8 dec = 2 * dec;
```

```
p(iter) = int(dec);
9
       dec = dec - int(dec);
10
       if iter == 8 then
11
12
           break
13
       end
       iter = iter + 1;
14
15 end
16 a = strcat(string(p));
17 bin = strcat(['0.',a])
18 disp(bin)
```

Scilab code Exa 1.3 Conversion of Decimal to Binary and Octal

```
1  //Example 1.3
2  clc
3  clear
4
5  dec_N = 59;
6  bin_N = dec2bin(dec_N)
7  oct_N = dec2oct(dec_N)
8  disp(bin_N, "Binary:")
9  disp(oct_N, "Octal:")
```

Chapter 2

Solution of Algebraic and Transcendental Equations

Scilab code Exa 2.1 Root using Bisection Method

```
1 / \text{Example } 2.1
2 clc
3 clear
5 function [root] = Bisection(fun,x,tol,maxit)
6 // Bisection: Computes roots of the function in the
      given range using Bisection Method
7 /// Input: Bisection (fun, x, tol, maxit)
8 // \text{ fun} = \text{function handle}
9 // x = range in between sign change is evident
10 // tol = Maximum error between iterations that can
      be tolerated
11 // maxit = Maximum number of iterations
12 //// Output: [root]
13 // Root: Root of the given function in defined range
14
15 if fun(x(1)) > 0 then
       xu = x(1); 	 x1 = x(2);
16
17 else
```

```
18 xu = x(2); x1 = x(1);
19 end
20
21 Ea = 1;
22 \text{ iter = 1;}
23
24 while (1)
        xr(iter) = (xl(iter) + xu(iter)) / 2;
25
26
        if fun(xr(iter)) > 0 then
27
            xu(iter+1) = xr(iter);
            xl(iter+1) = xl(iter);
28
29
        elseif fun(xr(iter)) < 0 then</pre>
30
            xl(iter+1) = xr(iter);
            xu(iter+1) = xu(iter);
31
32
        else
33
            break
34
       end
35
36
       if iter>1 then
            Ea(iter) = 100 * abs((xr(iter) - xr(iter-1))
37
                / xr(iter));
38
        end
39
       if Ea(iter) < tol | iter == maxit then</pre>
40
41
            break
42
       end
43
        iter = iter + 1;
44 \, \text{end}
45 \text{ root} = xr(iter);
46 endfunction
47
48 function f = fun1(x)
        f = x.^3 -9*x + 1;
49
50 endfunction
51
52 x = [2 4];
53 \text{ tol} = 1e-4;
54 \text{ maxit} = 5;
```

```
55 root = Bisection(fun1,x,tol,maxit);
56 disp(root,"root = ")
```

Scilab code Exa 2.2 Root using Regula Falsi Method

```
1 / Example 2.2
2 clc
3 clear
5 function [root] = FalsePosition(fun,x,tol,maxit)
6 // FalsePosition: Computes roots of the function in
      the given range using False Position Method
7 /// Input: FalsePosition (fun, x, tol, maxit)
8 // \text{ fun} = \text{function handle}
9 // x = range in between sign change is evident
10 // tol = Maximum error between iterations that can
     be tolerated
11 // maxit = Maximum number of iterations
12 //// Output: [root]
13 // Root: Root of the given function in defined range
14
15 if fun(x(1)) > 0 then
       xu = x(1); 	 x1 = x(2);
16
17 else
18
       xu = x(2);  x1 = x(1);
19 end
20
21 Ea = 1;
22 \text{ iter = 1;}
23
24 while(1)
       xr(iter) = xl(iter) - ((xu(iter)-xl(iter)) / (
25
          fun(xu(iter))-fun(xl(iter))) * fun(xl(iter)))
26
       if fun(xr(iter)) > 0 then
```

```
27
            xu(iter+1) = xr(iter);
28
            xl(iter+1) = xl(iter);
29
        elseif fun(xr(iter)) < 0 then</pre>
            xl(iter+1) = xr(iter);
30
31
            xu(iter+1) = xu(iter);
32
        else
33
            break
34
        end
35
36
        if iter>1 then
            Ea(iter) = 100 * abs((xr(iter) - xr(iter-1))
37
                / xr(iter));
38
        end
39
       if Ea(iter) < tol | iter == maxit then</pre>
40
41
            break
42
        end
        iter = iter + 1;
43
44 end
45 \text{ root} = xr(iter);
46 endfunction
47
48 function f = fun1(x)
        f = x.^3 - 9*x + 1;
49
50 endfunction
51
52 x = [2 4; 2 3];
53 \text{ tol} = 1e-4;
54 \text{ maxit} = 3;
55 \text{ for } i = 1:2
        root = FalsePosition(fun1,x(i,:),tol,maxit);
56
        root = round(root*10^5)/10^5;
57
       disp(strcat(["root(",string(i),") = ",string(
           root)]))
59 end
```

Scilab code Exa 2.3 Root using Regula Falsi Method

```
1 / Example 2.3
2 clc
3 clear
5 function [root] = FalsePosition(fun,x,tol,maxit)
6 // FalsePosition: Computes roots of the function in
      the given range using False Position Method
7 //// Input: FalsePosition(fun,x,tol,maxit)
8 // fun = function handle
9 // x = range in between sign change is evident
10 // tol = Maximum error between iterations that can
     be tolerated
11 // maxit = Maximum number of iterations
12 //// Output: [root]
13 // Root: Root of the given function in defined range
14
15 if fun(x(1)) > 0 then
16
       xu = x(1); 	 x1 = x(2);
17 else
18
       xu = x(2);  x1 = x(1);
19 end
20
21 Ea = 1;
22 \text{ iter} = 1;
23
24 while (1)
25
       xr(iter) = xl(iter) - ((xu(iter)-xl(iter)) / (
          fun(xu(iter))-fun(xl(iter))) * fun(xl(iter)))
       if fun(xr(iter)) > 0 then
26
27
           xu(iter+1) = xr(iter);
           xl(iter+1) = xl(iter);
28
```

```
elseif fun(xr(iter)) < 0 then</pre>
29
30
            xl(iter+1) = xr(iter);
            xu(iter+1) = xu(iter);
31
32
       else
33
            break
34
        end
35
       if iter>1 then
36
            Ea(iter) = 100 * abs((xr(iter) - xr(iter-1))
37
                / xr(iter));
38
        end
39
40
       if Ea(iter) < tol | iter == maxit then</pre>
41
            break
42
        end
43
        iter = iter + 1;
44 end
45 \text{ root} = xr(iter);
46 endfunction
47
48 function f = fun3(x)
       f = \log(x) - \cos(x);
49
50 endfunction
51
52 x = [1 2];
53 \text{ tol} = 1e-4;
54 \text{ maxit} = 5;
55 root = FalsePosition(fun3,x,tol,maxit);
56 disp(round(root*10^4)/10^4,"root = ")
```

Scilab code Exa 2.4 Root using Regula Falsi Method

```
1 //Example 2.4
2 clc
3 clear
```

```
4
5 function [root] = FalsePosition(fun,x,tol,maxit)
6 // FalsePosition: Computes roots of the function in
      the given range using False Position Method
7 /// Input: FalsePosition(fun,x,tol,maxit)
8 // \text{ fun} = \text{function handle}
9 // x = range in between sign change is evident
10 // tol = Maximum error between iterations that can
     be tolerated
11 // maxit = Maximum number of iterations
12 //// Output: [root]
13 // Root: Root of the given function in defined range
14
15 if fun(x(1)) > 0 then
16
       xu = x(1); 	 x1 = x(2);
17 else
18
       xu = x(2);  x1 = x(1);
19 end
20
21 Ea = 1;
22 \text{ iter = 1;}
23
24 while (1)
       xr(iter) = xl(iter) - ((xu(iter)-xl(iter)) / (
25
          fun(xu(iter))-fun(xl(iter))) * fun(xl(iter)))
26
       if fun(xr(iter)) > 0 then
27
           xu(iter+1) = xr(iter);
           xl(iter+1) = xl(iter);
28
       elseif fun(xr(iter)) < 0 then</pre>
29
           xl(iter+1) = xr(iter);
30
           xu(iter+1) = xu(iter);
31
32
       else
33
           break
34
       end
35
       if iter>1 then
36
           Ea(iter) = 100 * abs((xr(iter) - xr(iter-1)))
37
```

```
/ xr(iter));
38
        end
39
       if Ea(iter) < tol | iter == maxit then</pre>
40
41
            break
42
        end
43
        iter = iter + 1;
44 end
45 \text{ root} = xr(iter);
46 endfunction
47
48 function f = fun4(x)
        f = x.*log10(x) - 1.2;
50 endfunction
51
52 clc
53 x = [2 3];
54 \text{ tol} = 1e-4;
55 \text{ maxit} = 2;
56 root = FalsePosition(fun4,x,tol,maxit);
57 disp(round(root*10^4)/10^4, "root = ")
```

Scilab code Exa 2.5 Root using Method of Iteration

```
1 //Example 2.5
2 clc
3 clear
4
5 function f = fun5(x)
6    f = exp(-x)/10;
7 endfunction
8
9 clc
10 tol = 1e-4;
11 maxit = 4;
```

```
12 \text{ xold} = 0;
13 \text{ iter} = 1;
14 while(1)
15
       xnew = fun5(xold);
16
       EA = abs(xnew - xold);
17
       if EA < tol | iter > maxit then
18
            break
19
       end
20
      xold = xnew;
21
       iter = iter + 1;
22 \text{ end}
23 root = round(xnew*10^4) / 10^4; //rounded to 4
      decimal places
24 disp(root, "root = ")
```

Scilab code Exa 2.6 Root using Method of Iteration

```
1 //Example 2.6
2 clc
3 clear
5 function f = fun6(x)
        f = 1./ sqrt(x+1);
7 endfunction
9 \text{ tol} = 1e-4;
10 \text{ maxit} = 6;
11 \text{ xold} = 1;
12 \text{ iter = 1;}
13 while(1)
        xnew = fun6(xold);
14
        EA = abs(xnew - xold);
15
       if EA < tol | iter > maxit then
16
17
             break
18
       end
```

Scilab code Exa 2.7 Root using Newton Raphson Method

```
1 / Example 2.7
2 clc
3 clear
5 \text{ function } [f,df] = fun7(x)
       f = x.*exp(x) - 2;
       df = x.*exp(x) + exp(x);
7
8 endfunction
9
10 \text{ xold} = 1;
11 \text{ maxit} = 2;
12 \text{ iter = 1;}
13
14 while (1)
15
       [fx,dfx] = fun7(xold);
       xnew = xold - fx/dfx;
16
17
       if iter == maxit then
18
            break
19
       end
20
      xold = xnew;
       iter = iter + 1;
21
22 end
23 root = round(xnew*10^3) / 10^3;
24 disp(root, "root = ")
```

Scilab code Exa 2.8 Root using Newton Raphson Method

```
1 / \text{Example } 2.8
2 clc
3 clear
5 \text{ function } [f,df] = fun8(x)
        f = x.^3 - x - 1;
        df = 3*x.^2 - 1;
8 endfunction
10 \text{ xold} = 1;
11 \text{ maxit} = 5;
12 iter = 1;
13
14 while (1)
15
        [fx,dfx] = fun8(xold);
16
        xnew = xold - fx/dfx;
17
        if iter == maxit then
18
            break
19
        end
20
        xold = xnew;
21
        iter = iter + 1;
22 \quad end
23 root = round(xnew*10^4) / 10^4;
24 disp(root, "root = ")
```

Scilab code Exa 2.9 Newton Scheme of Iteration

```
1 // Example 2.9
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 2.10 Newton Formula

```
1 //Example 2.10
2 clc
3 clear
5 N = 12;
6 \text{ xold} = 3.5;
7 \text{ iter = 1};
8 \text{ maxit} = 3;
9
10 while (1)
11
        xnew = (xold + N/xold) / 2;
12
        if iter == maxit then
13
            break
14
        end
15
        xold = xnew;
16
        iter = iter + 1;
17 end
18 root = round(xnew*10^4) / 10^4;
19 disp(root, "root = ")
```

Scilab code Exa 2.11 Newton Raphson Extended Formula

```
1 // Example 2.11
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 2.12 Root using Muller Method

```
1 //Example 2.12
    2 clc
   3 clear
    5 \text{ function } [f] = \text{fun12}(x)
                                         f = x.^3 - x - 1;
   7 endfunction
   9 x = [0 1 2];
10 h = [x(2)-x(1) x(3)-x(2)];
11 lamdai = h(2)/h(1);
12 \text{ deli} = 1 + lamdai;
13 f = fun12(x);
14
15 \text{ g} = f(1)*lamdai^2 - f(2)*deli^2 + f(3)*(lamdai + f(3))*(lamdai + f(3)
16 \text{ lamda} = -2*f(3)*deli / (g + sqrt(g^2 - 4*f(3)*deli*(
                                f(1)*lamdai - f(2)*deli + f(3)));
17 xnew = x(3) + lamda*h(2);
18 \text{ xnew} = \frac{\text{round}}{\text{(xnew*10^5)}} / 10^5;
19 disp(xnew, root = ")
```

Scilab code Exa 2.13 Graeffe Root Squaring Method

Chapter 3

Solution of Linear System of Equations and Matrix Inversion

Scilab code Exa 3.1 Gauss Elimination Method

```
1 / \text{Example } 3.1
2 clc
3 clear
5 A = [2 3 -1; 4 4 -3; -2 3 -1]; // Coefficient Matrix
6 B = [5; 3; 1]; //Constant Matrix
8 n = length(B);
9 \text{ Aug} = [A,B];
10
11 // Forward Elimination
12 \text{ for } j = 1:n-1
13
       for i = j+1:n
            Aug(i,j:n+1) = Aug(i,j:n+1) - Aug(i,j) / Aug
               (j,j) * Aug(j,j:n+1);
15
        end
16 \text{ end}
17
18 // Backward Substitution
```

```
19  x = zeros(n,1);
20  x(n) = Aug(n,n+1) / Aug(n,n);
21  for i = n-1:-1:1
22      x(i) = (Aug(i,n+1)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i);
23  end
24  disp(strcat(["x = ",string(x(1))]))
25  disp(strcat(["y = ",string(x(2))]))
26  disp(strcat(["z = ",string(x(3))]))
```

Scilab code Exa 3.2 Gauss Elimination Method with Partial Pivoting

```
1 / \text{Example } 3.2
2 clc
3 clear
5 A = [1 1 1; 3 3 4; 2 1 3]; // Coefficient Matrix
6 B = [7; 24; 16]; //Constant Matrix
8 n = length(B);
9 \text{ Aug} = [A,B];
10
11 // Forward Elimination
12 \text{ for } j = 1:n-1
13
       // Partial Pivoting
       [dummy,t] = max(abs(Aug(j:n,j)));
14
       lrow = t(1) + j - 1;
15
16
       Aug([j,lrow],:) = Aug([lrow,j],:);
17
18
       for i = j+1:n
            Aug(i,j:n+1) = Aug(i,j:n+1) - Aug(i,j) / Aug
19
               (j,j) * Aug(j,j:n+1);
20
       end
21 end
22
```

```
23  // Backward Substitution
24  x = zeros(n,1);
25  x(n) = Aug(n,n+1) / Aug(n,n);
26  for i = n-1:-1:1
       x(i) = (Aug(i,n+1)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i);
28  end
29  disp(strcat(["x = ",string(x(1))]))
30  disp(strcat(["y = ",string(x(2))]))
31  disp(strcat(["z = ",string(x(3))]))
```

Scilab code Exa 3.3 Gauss Elimination Method with Partial Pivoting

```
1 / Example 3.3
2 clc
3 clear
5 A = [0 4 2 8; 4 10 5 4; 4 5 6.5 2; 9 4 4 0]; //
      Coefficient Matrix
6 B = [24; 32; 26; 21]; //Constant Matrix
8 n = length(B);
9 \text{ Aug} = [A,B];
10
11 // Forward Elimination
12 \text{ for } j = 1:n-1
       // Partial Pivoting
13
14
       [dummy,t] = max(abs(Aug(j:n,j)));
15
       lrow = t(1) + j - 1;
       Aug([j,lrow],:) = Aug([lrow,j],:);
16
17
18
       for i = j+1:n
           Aug(i,j:n+1) = Aug(i,j:n+1) - Aug(i,j) / Aug
19
              (j,j) * Aug(j,j:n+1);
20
       end
```

Scilab code Exa 3.4 Gauss Jordan Method

```
1 / Example 3.4
2 clc
3 clear
5 A = [1 2 1; 2 3 4; 4 3 2];
6 B = [8; 20; 16];
7 n = length (B);
8 \text{ Aug} = [A,B];
9
10 // Forward Elimination
11 \text{ for } j = 1:n-1
12
       for i = j+1:n
            Aug(i,j:n+1) = Aug(i,j:n+1) - Aug(i,j) / Aug
13
               (j,j) * Aug(j,j:n+1);
14
       end
15 end
16
17 // Backward Elimination
```

Scilab code Exa 3.5 Crout Reduction Method

```
1 / \text{Example } 3.5
2 clc
3 clear
5 A = [5 -2 1; 7 1 -5; 3 7 4];
6 B = [4; 8; 10];
8 n = length (B);
9 L = zeros(n,n);
                             // L = Lower Triangular
      Matrix Initiation
10 U = eye(n,n);
                             // U = Upper Triangular
      Matrix Initiation
11
12 // LU Decomposition
13 \text{ for } i = 1:n
       sum1 = zeros(n-i+1,1);
14
       for k = 1:i-1
15
16
            sum1 = sum1 + L(i:n,k) * U(k,i);
17
       end
```

```
L(i:n,i) = A(i:n,i) - sum1;
18
19
20
       sum2 = zeros(1,n-i);
21
       for k = 1:i-1
22
            sum2 = sum2 + L(i,k) * U(k,i+1:n);
23
24
       U(i,i+1:n) = (A(i,i+1:n) - sum2) / L(i,i);
25 end
26
27 // Forward Substitution
28 D = ones(n,1);
29 \text{ for } i = 1:n
30
       sum3 = 0;
       for k = 1:i-1
31
32
            sum3 = sum3 + L(i,k) * D(k);
33
       D(i) = (B(i) - sum3) / L(i,i);
34
35 end
36
37 // Back Substitution
38 \times = ones(n,1);
39 \text{ for } i = n:-1:1
40
       sum4 = 0;
       for k = i+1:n
41
            sum4 = sum4 + U(i,k) * x(k);
42
43
       end
44
       x(i) = D(i) - sum4;
45 end
46
47 disp(strcat(["x1 = ", string(x(1))]))
48 disp(strcat(["x2 = ", string(x(2))]))
49 disp(strcat(["x3 = ", string(x(3))]))
```

Scilab code Exa 3.6 Jacobi Iterative Method

```
1 / \text{Example } 3.6
2 clc
3 clear
5 A = [83 \ 11 \ -4; \ 7 \ 52 \ 13; \ 3 \ 8 \ 29];
6 B = [95; 104; 71];
7
8 n = length (B);
9 \text{ tol} = 1e-4;
10 \text{ iter} = 1;
11 \text{ maxit} = 5;
12
13 x = zeros(n,1);
                                   //Intial guess
14 E = ones(n,1);
                                  //Assuming to avoid
      variable size error
15 S = diag(diag(A));
16
17
18 while (1)
19
        x(:,iter+1) = S\setminus(B + (S-A)*(x(:,iter)));
20
        E(:,iter+1) = (x(:,iter+1)-x(:,iter))./x(:,iter)
           +1) *100;
21
        if x(:,iter) == 0
22
             Error = 1;
23
        else
24
             Error = sqrt((sum((E(:,iter+1)).^2))/n);
25
        end
26
27
        if Error <= tol | iter == maxit</pre>
28
             break
29
30
        iter = iter+1;
31 end
32 \text{ xact} = x(:,iter);
33 x = round(x*10^4)/10^4;
34 \times (:,1) = [];
35 mprintf('%s %3s %9s %9s','Iter No.','x','y','z');
36 disp([(1:iter)' x']);
```

Scilab code Exa 3.7 Gauss Seidel Method

```
1 / Example 3.7
2 clc
3 clear
5 A = [1 -1/4 -1/4 0; -1/4 1 0 -1/4; -1/4 0 1 -1/4; 0]
      -1/4 -1/4 1];
6 B = [1/2; 1/2; 1/4; 1/4];
8 n = length (B);
9 \text{ tol} = 1e-4;
10 \text{ iter} = 1;
11 \text{ maxit} = 5;
12
13 x = zeros(n,1);
                                 //Intial guess
14 E = ones(n,1);
                                //Assuming to avoid
      variable size error
15 S = diag(diag(A));
16 T = S-A;
17 \text{ xold} = x;
18
19 while (1)
20
       for i = 1:n
            x(i,iter+1) = (B(i) + T(i,:) * xold) / A(i,i)
21
22
            E(i, iter+1) = (x(i, iter+1) - xold(i))/x(i, iter
               +1) *100;
            xold(i) = x(i,iter+1);
23
24
       end
25
26
       if x(:,iter) == 0
            E = 1;
27
28
        else
```

```
29
            E = sqrt((sum((E(:,iter+1)).^2))/n);
30
        end
31
32
        if E <= tol | iter == maxit</pre>
33
            break
34
        end
        iter = iter + 1;
35
36 \, \text{end}
37 X = x(:,iter);
38 x = round(x*10^5)/10^5;
39 \times (:,1) = [];
40 mprintf('%s %3s %11s %10s %10s','Iter No.','x1','x2'
      , 'x3', 'x4');
41 disp([(1:iter)' x']);
```

Scilab code Exa 3.8 Relaxation Method

```
1 / Example 3.8
2 clc
3 clear
5 A = [6 -3 1; 2 1 -8; 1 -7 1];
6 b = [11; -15; 10];
7
8 n = length (b);
9 \text{ tol} = 1e-4;
10 iter = 1;
11 \text{ maxit} = 9;
12
                                 //Intial guess
13 x = zeros(1,n);
14 \text{ absA} = \text{abs}(A);
15 [dummy, index] = \max(absA(1,:),absA(2,:),absA(3,:));
16 if length(unique(index)) == n
17
       nu_T = diag(diag(A(index,:))) - A(index,:);
18
       if abs(diag(A(index,:))) - (sum(abs(nu_T),2)) >
```

```
0
            A(index,:) = A;
19
            b(index,:) = b;
20
21
       end
22 \text{ end}
23
24 for iter = 1:maxit
       R(iter,:) = b' - x(iter,:) * A';
25
       [mx,i] = max(abs(R(iter,:)));
26
       Rmax(iter) = R(iter,i);
27
       dx(iter) = Rmax(iter) ./ A(i,i);
28
       x(iter+1,:) = x(iter,:);
29
30
       x(iter+1,i) = x(iter,i) + dx(iter);
31 end
32 R = round(R*10^4)/10^4;
33 Rmax = round(Rmax*10^4)/10^4;
34 dx = round(dx*10^4)/10^4;
35 x = round(x*10^4)/10^4;
36 mprintf('%s \%3s \%9s \%9s \%12s \%10s \%6s \%9s \%9s', 'Iter
       No.', 'R1', 'R2', 'R3', 'Max Ri', 'Diff dxi', 'x1', 'x2
      ', 'x3');
37 disp([(1:maxit)' R Rmax dx x(1:maxit,:)])
```

Scilab code Exa 3.9 Matrix Inverse using Gauss Elimination Method

```
1 //Example 3.9
2 clc
3 clear
4
5 A = [1 1 1; 4 3 -1; 3 5 3];
6 n = length (A(1,:));
7 Aug = [A, eye(n,n)];
8
9 // Forward Elimination
10 for j = 1:n-1
```

```
11
       for i = j+1:n
12
            Aug(i,j:2*n) = Aug(i,j:2*n) - Aug(i,j) / Aug
               (j,j) * Aug(j,j:2*n);
13
       end
14 end
15
16 // Backward Elimination
17 \text{ for } j = n:-1:2
       Aug(1:j-1,:) = Aug(1:j-1,:) - Aug(1:j-1,j) / Aug
           (j,j) * Aug(j,:);
19 end
20
21 // Diagonal Normalization
22 \text{ for } j=1:n
       Aug(j,:) = Aug(j,:) / Aug(j,j);
23
24 end
25 \text{ Inv_A} = \text{Aug}(:,n+1:2*n);
26 disp(Inv_A, "Inverse of A (A-1) = ")
```

Scilab code Exa 3.10 Matrix Inverse using Gauss Jordan Method

```
1 //Example 3.10
2 clc
3 clear
5 A = [1 1 1; 4 3 -1; 3 5 3];
6 n = length (A(1,:));
7 Aug = [A, eye(n,n)];
8
9 N = 1:n;
10 \text{ for } i = 1:n
       dummy1 = N;
11
       dummy1(i) = [];
12
13
       index(i,:) = dummy1;
14 end
```

```
15
16 // Forward Elimination
17 \text{ for } j = 1:n
       [dummy2,t] = max(abs(Aug(j:n,j)));
18
19
       lrow = t+j-1;
       Aug([j,lrow],:) = Aug([lrow,j],:);
20
       Aug(j,:) = Aug(j,:) / Aug(j,j);
21
       for i = index(j,:)
22
            Aug(i,:) = Aug(i,:) - Aug(i,j) / Aug(j,j) *
23
               Aug(j,:);
24
       end
25 end
26 \text{ Inv_A} = \text{Aug}(:,n+1:2*n);
27 disp(Inv_A,"Inverse of A (A-1) = ")
```

Chapter 4

Eigenvalue Problems

Scilab code Exa 4.1 Eigenvalues and Eigenvectors

```
1 / \text{Example } 4.1
2 clc
3 clear
5 A = [2 3 2; 4 3 5; 3 2 9];
6 v = [1; 1; 1];
7 \text{ iter} = 1;
8 \text{ maxit} = 5;
9
10 while(1)
       u(:,iter) = A * v(:,iter);
11
12
       q(iter) = max(u(:,iter));
       v(:,iter+1) = u(:,iter) / q(iter);
13
14
        if iter == maxit then
15
            break
16
       end
17
        iter = iter + 1;
18 end
19 X = round(v(:,iter)*10^2) / 10^2;
20 disp(X, "Eigen Vector:")
```

Scilab code Exa 4.2 Eigenvalues and Eigenvectors using Jacobi Method

```
1 / \text{Example } 4.2
2 clc
3 clear
5 \text{ rt2} = \text{sqrt}(2);
6 A = [1 rt2 2; rt2 3 rt2; 2 rt2 1];
7 [n,n] = size(A);
8 iter = 1;
9 \text{ maxit} = 3;
10 D = A;
11 S = 1;
12
13 while(1)
       D_offdiag = D - diag(diag(D));
14
15
       [mx,index1] = max(abs(D_offdiag));
       i = index1(1);
16
       j = index1(2);
17
       if (D(i,i)-D(j,j)) == 0 then
18
            theta = \%pi/4;
19
20
       else
21
            theta = atan(2*D(i,j)/(D(i,i)-D(j,j))) / 2;
22
       end
23
       S1 = eye(n,n);
       S1(i,i) = cos(theta);
24
25
       S1(i,j) = -sin(theta);
26
        S1(j,i) = sin(theta);
27
       S1(j,j) = cos(theta);
28
29
       D1 = inv(S1) * D * S1;
30
       for j = 1:n
31
            for i = 1:n
                if abs(D1(i,j)) < 1D-10 then
32
```

```
D1(i,j) = 0;
33
34
                 end
             \quad \text{end} \quad
35
36
        end
37
        S = S * S1;
38
39
        if D1 - diag(diag(D1)) == zeros(n,n) | iter ==
           maxit then
             eigval = diag(D1);
40
             disp('Eigen Values:')
41
42
             disp(eigval)
43
44
             disp('Eigen Vectors:')
             disp(S(:,1))
45
             disp(S(:,2))
46
             disp(S(:,3))
47
48
             break
49
        end
50
51
        iter = iter + 1;
52
        D = D1;
53 end
```

Scilab code Exa 4.3 Eigenvalues using Jacobi Method

```
10
11 D = A;
12 S = 1;
13
14 while(1)
15
       D_offdiag = D - diag(diag(D));
16
       [mx,index1] = max(abs(D_offdiag));
       i = index1(1);
17
       j = index1(2);
18
       if (D(i,i)-D(j,j)) == 0 then
19
20
            theta = \%pi/4;
21
       else
22
            theta = atan(2*D(i,j)/(D(i,i)-D(j,j))) / 2;
23
       end
       S1 = eye(n,n);
24
25
       S1(i,i) = cos(theta);
26
       S1(i,j) = -sin(theta);
27
       S1(j,i) = sin(theta);
28
       S1(j,j) = cos(theta);
29
30
       D1 = inv(S1) * D * S1;
31
       for j = 1:n
32
            for i = 1:n
                if abs(D1(i,j)) < 1D-10 then
33
                    D1(i,j) = 0;
34
35
                end
36
            end
37
       end
       S = S * S1;
38
39
40
       if D1 - diag(diag(D1)) == zeros(n,n) | iter ==
          maxit then
            eigval = diag(D1);
41
            eigval = round(eigval*10^3)/10^3;
42
            disp('Eigen Values:')
43
            disp(eigval)
44
            break
45
46
       end
```

```
47

48    iter = iter + 1;

49    D = D1;

50 end
```

Scilab code Exa 4.4 Eigenvalues and Eigenvectors using Jacobi Method

```
1 / \text{Example } 4.4
2 clc
3 clear
5 A = [5 0 1; 0 -2 0; 1 0 5];
6 [n,n] = size(A);
7 \text{ iter} = 1;
8 \text{ maxit} = 3;
9 D = A;
10 S = 1;
11
12 while (1)
       D_offdiag = D - diag(diag(D));
13
14
       [mx,index1] = max(abs(D_offdiag));
15
       i = index1(1);
       j = index1(2);
16
17
       if (D(i,i)-D(j,j)) == 0 then
            theta = %pi/4;
18
19
       else
20
            theta = atan(2*D(i,j)/(D(i,i)-D(j,j))) / 2;
21
       end
22
       S1 = eye(n,n);
       S1(i,i) = cos(theta);
23
24
       S1(i,j) = -sin(theta);
25
       S1(j,i) = sin(theta);
26
       S1(j,j) = cos(theta);
27
28
       D1 = inv(S1) * D * S1;
```

```
29
        for j = 1:n
             for i = 1:n
30
                 if abs(D1(i,j)) < 1D-10 then
31
                      D1(i,j) = 0;
32
33
                  end
34
             end
35
        end
        S = S * S1;
36
37
        if D1 - diag(diag(D1)) == zeros(n,n) | iter ==
38
           maxit then
             eigval = diag(D1);
39
             disp('Eigen Values:')
40
             disp(eigval)
41
42
             disp('Eigen Vectors:')
43
             disp(S(:,1))
44
45
             disp(S(:,2))
             disp(S(:,3))
46
             break
47
48
        \quad \text{end} \quad
49
50
        iter = iter + 1;
51
        D = D1;
52 \;\; \mathrm{end}
```

Chapter 5

Curve Fitting

Scilab code Exa 5.1 Method of Group Averages

```
1 / \text{Example } 5.1
2 clc
3 clear
5 x = 10:10:80;
6 y = [1.06 \ 1.33 \ 1.52 \ 1.68 \ 1.81 \ 1.91 \ 2.01 \ 2.11];
8 X = log(x);
9 \quad Y = \log(y);
10
11 n = length(Y);
12 M1 = [sum(Y); sum(X.*Y)];
13 M2 = [n sum(X); sum(X) sum(X.^2)];
14
15 A = M2\M1;
16
17 m = \exp(A(1));
18 n = A(2);
19
20 disp(round(m*10^4)/10^4, "m =")
21 disp(round(n*10^4)/10^4, "n =")
```

Scilab code Exa 5.2 Method of Group Averages

```
1 //Example 5.2
2 clc
3 clear
5 x = [20 \ 30 \ 35 \ 40 \ 45 \ 50];
6 y = [10 11 11.8 12.4 13.5 14.4];
8 X = x.^2;
9 \quad Y = y;
10
11 n = length(Y);
12 M1 = [sum(Y); sum(X.*Y)];
13 M2 = [n sum(X); sum(X) sum(X.^2)];
14
15 A = M2\M1;
16
17 \ a = A(1);
18 \ b = A(2);
19
20 disp(round(a*10^4)/10^4, "a =")
21 disp(round(b*10^4)/10^4, "b =")
```

Scilab code Exa 5.3 Method of Group Averages

```
1 //Example 5.3
2
3 clc
4 clear
5
```

```
6 \times = [8 \ 10 \ 15 \ 20 \ 30 \ 40];
7 y = [13 14 15.4 16.3 17.2 17.8];
9 X = 1 ./x;
10 \quad Y = 1 ./y;
11
12 n = length(Y);
13 M1 = [sum(Y); sum(X.*Y)];
14 M2 = [n sum(X); sum(X) sum(X.^2)];
15
16 A = M2\M1;
17
18 b = A(1);
19 a = A(2);
20
21 disp(round(a*10^4)/10^4, "a =")
22 disp(round(b*10^4)/10^4, "b =")
```

Scilab code Exa 5.4 Method of Least Squares

```
1 //Example 5.4
2
3 clc
4 clear
5
6 X = 0.5:0.5:3;
7 Y = [15 17 19 14 10 7];
8
9 n = length(Y);
10 M1 = [sum(Y); sum(X.*Y)];
11 M2 = [n sum(X); sum(X) sum(X.^2)];
12
13 A = M2\M1;
14
15 b = A(1);
```

```
16 a = A(2);

17

18 disp(round(a*10^4)/10^4, "a =")

19 disp(round(b*10^4)/10^4, "b =")
```

Scilab code Exa 5.5 Method of Least Squares

```
1 / \text{Example } 5.5
2
3 clc
4 clear
6 x = 1:6;
7 y = [2.6 5.4 8.7 12.1 16 20.2];
9 \quad X = x;
10 Y = y ./x;
11
12 n = length(Y);
13 M1 = [sum(Y); sum(X.*Y)];
14 M2 = [n sum(X); sum(X) sum(X.^2)];
15
16 \quad A = M2 \setminus M1;
17
18 \ a = A(1);
19 b = A(2);
20
21 disp(round(a*10^5)/10^5, "a =")
22 disp(round(b*10^5)/10^5, "b =")
```

Scilab code Exa 5.6 Method of Least Squares

```
1 / \text{Example } 5.6
```

```
2
3 clc
4 clear
6 X = 1:0.2:2;
7 Y = [0.98 1.4 1.86 2.55 2.28 3.2];
9 n = length(Y);
10 M1 = [sum(X.^4) sum(X.^3) sum(X.^2); sum(X.^3) sum(X
      .^2) sum(X); sum(X.^2) sum(X) n];
11 M2 = [sum(X.^2 .* Y); sum(X.*Y); sum(Y)];
12 A = M1\M2;
13
14 a = A(1);
15 b = A(2);
16 c = A(3);
17
18 disp(round(a*10^4)/10^4, "a =")
19 disp(round(b*10^4)/10^4, "b =")
20 disp(round(c*10^4)/10^4, "c =")
```

Scilab code Exa 5.7 Method of Least Squares

```
1 //Example 5.7
2
3 clc
4 clear
5
6 x = 2:5;
7 y = [27.8 62.1 110 161];
8
9 X = log(x);
10 Y = log(y);
11
12 n = length(Y);
```

```
13 M1 = [sum(X.^2) sum(X); sum(X) n];
14 M2 = [sum(X.*Y); sum(Y)];
15 M = M1\M2;
16
17 b = M(1);
18 A = M(2);
19 a = exp(A);
20
21 disp(round(a*10^4)/10^4, "a =")
22 disp(round(b*10^4)/10^4, "b =")
```

Scilab code Exa 5.8 Principle of Least Squares

```
1 // Example 5.8
3 clc
4 clear
6 x = 1:4;
7 y = [1.65 2.7 4.5 7.35];
9 \quad X = x;
10 Y = log10(y);
11
12 n = length(Y);
13 M1 = [sum(X.^2) sum(X); sum(X) n];
14 M2 = [sum(X.*Y); sum(Y)];
15 M = M1 \setminus M2;
16
17 B = M(1);
18 A = M(2);
19 a = 10^A;
20 b = B/log10(\%e);
21
22 disp(round(a), "a =")
```

Scilab code Exa 5.9 Method of Moments

```
1 / \text{Example } 5.9
2
3 clc
4 clear
6 x = 2:5;
7 y = [27 40 55 68];
9 \text{ delx} = x(2) - x(1);
10 \text{ mu1} = \text{delx} * \text{sum}(y);
11 mu2 = delx * sum(x.*y);
12
13 n = length(y);
14 \ 1 = x(1) - delx/2;
15 u = x(n) + delx/2;
16
17 M1 = [integrate("x", 'x',1,u) u-1; integrate("x^2", 'x
      ',1,u) integrate("x",'x',1,u)];
18 M2 = [mu1; mu2];
19 M = M1 \setminus M2;
20
21 \ a = M(1);
22 b = M(2);
23
24 disp(round(a*10^4)/10^4, "a =")
25 disp(round(b*10^4)/10^4, "b =")
```

Scilab code Exa 5.10 Method of Moments

```
1 //Example 5.10
 2
3 clc
4 clear
5
6 x = 3:7;
7 y = [31.9 34.6 33.8 27 31.6];
9 \text{ delx} = x(2) - x(1);
10 mu1 = delx * sum(y);
11 mu2 = delx * sum(x.*y);
12 mu3 = delx * sum(x^2 .*y);
13
14 n = length(y);
15 \ 1 = x(1) - delx/2;
16 u = x(n) + delx/2;
17
18 \text{ t0} = u-1;
19 t1 = integrate("x", 'x',1,u);
20 t2 = integrate("x^2", 'x',1,u);
21 t3 = integrate("x^3", 'x',1,u);
22 t4 = integrate("x<sup>4</sup>", 'x',1,u);
23
24 \text{ M1} = [t2 \ t1 \ t0; \ t3 \ t2 \ t1; \ t4 \ t3 \ t2];
25 \text{ M2} = [\text{mu1}; \text{mu2}; \text{mu3}];
26 \text{ M1} = \text{round}(\text{M1}*10^2)/10^2;
27 \quad M = M1 \setminus M2;
28
29 c = M(1);
30 b = M(2);
31 \ a = M(3);
32
33 disp(round(a*10^4)/10^4, "a =")
34 disp(round(b*10^4)/10^4, "b =")
35 disp(round(c*10^4)/10^4, "c =")
```

Chapter 6

Interpolation

Scilab code Exa 6.1 Forward Difference Table

```
1 / Example 6.1
2
3 clc
4 clear
6 x = 0.1:0.2:1.3;
7 y = [0.003 \ 0.067 \ 0.148 \ 0.248 \ 0.37 \ 0.518 \ 0.697];
9 n = length(x);
10 del = %nan*ones(n,6);
11 del(:,1) = y';
12 \text{ for } j = 2:6
         for i = 1:n-j+1
              del(i,j) = del(i+1,j-1) - del(i,j-1);
14
15
         end
16 \, \text{end}
17 del = [x' del];
18 del = round(del*10^3)/10^3;
19 mprintf("%5s %7s %8s %9s %8s %8s %8s", 'x', 'y', 'dy', '
       \mathrm{d}2\mathrm{y} ', '\mathrm{d}3\mathrm{y} ', '\mathrm{d}4\mathrm{y} ', '\mathrm{d}5\mathrm{y} ')
20 disp(del)
```

Scilab code Exa 6.2 Expression for Finite Difference Elements

```
1 // Example 6.2
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 6.3 Expression for Finite Difference Elements

```
1 // Example 6.3
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 6.4 Expression for Finite Difference Elements

```
1 // Example 6.4
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 6.5 Proof of Relation

```
1 // Example 6.5
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 6.6 Proofs of given Relations

```
1 // Example 6.6
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 6.7 Proof for Commutation of given Operations

```
1 // Example 6.7
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 6.8 Newton Forward Difference Interpolation Formula

```
1 / \text{Example } 6.8
 2
 3 clc
4 clear
 6 x = 10:10:50;
7 y = [46 66 81 93 101];
9 n = length(x);
10 del = %nan*ones(n,5);
11 \ del(:,1) = y';
12 \text{ for } j = 2:5
        for i = 1:n-j+1
13
            del(i,j) = del(i+1,j-1) - del(i,j-1);
14
15
        end
16 end
17 \text{ del}(:,1) = [];
19 X = 15; //input
```

```
20 \text{ for } i = 1:n
        if X>x(i) then
21
             h = x(i+1) - x(i);
22
             p = (X-x(i)) / h;
23
24
             x0 = x(i);
25
             y0 = y(i);
             dely0 = del(i,:);
26
             dely0(isnan(y0)) = [];
27
28
        end
29 \text{ end}
30
31 \quad Y = y0;
32
33 for i = 1:length(dely0)
        t = 1;
34
        for j = 1:i
35
             t = t * (p-j+1);
36
37
38
        Y = Y + t*dely0(i)/factorial(i);
39 end
40 \text{ Y} = \text{round}(Y*10^4)/10^4;
41 disp(Y, "f(15) = ")
```

Scilab code Exa 6.9 Newton Forward Difference Interpolation Formula

```
1 //Example 6.9
2
3 clc
4 clear
5
6 x = 0.1:0.1:0.5;
7 y = [1.4 1.56 1.76 2 2.28];
8
9 n = length(x);
10 del = %nan*ones(n,5);
```

```
11 del(:,1) = y';
12 \text{ for } j = 2:5
        for i = 1:n-j+1
13
14
             del(i,j) = del(i+1,j-1) - del(i,j-1);
15
        end
16 \text{ end}
17 \text{ del}(:,1) = [];
18
19 X = poly(0, "X");
20 h = x(2) - x(1);
21 p = (X-x(1)) / h;
22 \times 0 = \times (1);
23 y0 = y(1);
24 \text{ dely0} = \text{del}(1,:);
25
26 \ Y = y0;
27
28 for i = 1:length(dely0)
        t = 1;
29
30
        for j = 1:i
             t = t * (p-j+1);
31
32
33
        Y = Y + t*dely0(i)/factorial(i);
34 end
35 \text{ Y} = \text{round}(Y*10^2)/10^2;
36 disp(Y, "Required Newton''s Interpolating Polynomial:
       ")
```

Scilab code Exa 6.10 Newton Forward Difference Interpolation Formula

```
1 //Example 6.10
2
3 clc
4 clear
5
```

```
6 x = 1:5;
7 Y = poly(0, "Y");
8 y = [2 5 7 Y 32];
9
10 n = length(x);
11 del = %nan*ones(n,5);
12 \text{ del}(:,1) = y';
13 for j = 2:5
        for i = 1:n-j+1
14
            del(i,j) = del(i+1,j-1) - del(i,j-1);
15
16
        end
17 \text{ end}
18 \text{ del}(:,1) = [];
19
20 // del4 = 0
21
22 \text{ y0} = \text{del}(:,4);
23 y0(isnan(y0)) = [];
24 \quad Y = roots(y0)
25 disp(Y, "Missing value f(x3) = ")
```

Scilab code Exa 6.11 Newton Forward Difference Interpolation Formula

```
1 //Example 6.11
2
3 clc
4 clear
5
6 x = 0:5;
7 y = [-3 3 11 27 57 107];
8
9 n = length(x);
10 del = %nan*ones(n,4);
11 del(:,1) = y';
12 for j = 2:4
```

```
13
        for i = 1:n-j+1
             del(i,j) = del(i+1,j-1) - del(i,j-1);
14
15
        end
16 \text{ end}
17 \text{ del}(:,1) = [];
18
19 X = poly(0, "x");
20 h = x(2) - x(1);
21 p = (X-x(1)) / h;
22 \times 0 = \times (1);
23 y0 = y(1);
24 \text{ dely0} = \text{del}(1,:);
25
26 \ Y = y0;
27
28 for i = 1:length(dely0)
        t = 1;
29
30
        for j = 1:i
             t = t * (p-j+1);
31
32
33
        Y = Y + t*dely0(i)/factorial(i);
34 end
35 disp(Y, "Required cubic polynomial:")
```

Scilab code Exa 6.12 Newton Backward Difference Interpolation Formula

```
1 //Example 6.12
2
3 clc
4 clear
5
6 x = 1:8;
7 y = x^3;
8
9 n = length(x);
```

```
10 del = %nan*ones(n,4);
11 \ del(:,1) = y';
12 \text{ for } j = 2:4
13
        for i = 1:n-j+1
14
              del(i+j-1,j) = del(i+j-1,j-1) - del(i+j-2,j)
                 -1);
15
         end
16 \text{ end}
17
18 X = 7.5;
19 h = x(2) - x(1);
20 p = (X-x(n)) / h;
21 \times n = x(n);
22 \text{ yn} = \text{y(n)};
23 \text{ delyn} = \text{del(n,:)};
24
25 \quad Y = 0;
26
27 \text{ for } i = 0:length(delyn)-1
28
        t = 1;
29
        for j = 1:i
             t = t * (p+j-1);
30
31
         end
32
        Y = Y + t*delyn(i+1)/factorial(i);
33 end
34 \text{ disp}(Y, "y(7.5) = ")
```

Scilab code Exa 6.13 Newton Backward Difference Interpolation Formula

```
1 //Example 6.13
2
3 clc
4 clear
5
6 x = 1974:2:1982;
```

```
7 y = [40 \ 43 \ 48 \ 52 \ 57];
9 n = length(x);
10 del = %nan*ones(n,5);
11 del(:,1) = y';
12 \text{ for } j = 2:5
13
        for i = 1:n-j+1
             del(i+j-1,j) = del(i+j-1,j-1) - del(i+j-2,j)
14
                -1);
15
        end
16 end
17
18 X = 1979;
19 h = x(2) - x(1);
20 p = (X-x(n)) / h;
21 \times n = x(n);
22 \text{ yn} = \text{y(n)};
23 \text{ delyn} = \text{del(n,:)};
24
25 \quad Y = 0;
26
27 for i = 0:length(delyn)-1
28
        t = 1;
        for j = 1:i
29
             t = t * (p+j-1);
30
31
        end
32
        Y = Y + t*delyn(i+1)/factorial(i);
33 end
34 \ Y = round(Y*10^4)/10^4;
35 disp(Y, "Estimated sales for the year 1979: ")
```

Scilab code Exa 6.14 Lagrange Interpolation Formula

```
1 //Example 6.14
2
```

```
3 clc
4 clear
6 x = [1 3 4 6];
7 y = [-3 \ 0 \ 30 \ 132];
9 n = length(x);
10 \quad Y = 0;
11 X = poly(0, "X");
12 /X = 5;
13 \text{ for } i = 1:n
14
       t = x;
15
       t(i) = [];
16
       p = 1;
       for j = 1:length(t)
17
            p = p * (X-t(j))/(x(i)-t(j));
18
19
        end
20
       Y = Y + p*y(i);
21 end
22 	ext{ Y5} = horner(Y,5);
23 disp(Y5,"y(5) = ")
```

Scilab code Exa 6.15 Lagrange Interpolation Formula

```
1 //Example 6.15
2
3 clc
4 clear
5
6 x = [1 2 5];
7 y = [1 4 10];
8
9 n = length(x);
10 Y = 0;
11 X = poly(0, "X");
```

```
12 / X = 5;
13 \text{ for } i = 1:n
14
        t = x;
        t(i) = [];
15
16
        p = 1;
17
        for j = 1:length(t)
            p = p * (X-t(j))/(x(i)-t(j));
18
19
        end
20
        Y = Y + p*y(i);
21 end
22 	ext{ Y5} = horner(Y,3);
23 disp(Y5,"f(3) = ")
```

Scilab code Exa 6.16 Lagrange and Newton Divided Difference Interpolation Formulae

```
1 //Example 6.16
^{2}
3 clc
4 clear
6 x = [0 1 2 4];
7 y = [1 1 2 5];
9 n = length(x);
10 del = %nan*ones(n,4);
11 del(:,1) = y';
12 \text{ for } j = 2:4
13
        for i = 1:n-j+1
            del(i,j) = (del(i+1,j-1) - del(i,j-1)) / (x(
14
                i+j-1) - x(i);
15
        end
16 \text{ end}
17 \text{ del}(:,1) = [];
18
```

```
19 Y = 0;
20 X = poly(0, "X");
21 \text{ for } i = 1:n
22
       t = x;
23
       t(i) = [];
24
       p = 1;
       for j = 1:length(t)
25
            p = p * (X-t(j))/(x(i)-t(j));
26
27
28
       Y = Y + p*y(i);
29 end
30 disp(round(Y*10^4)/10^4, "Interpolating polynomial:")
```

Scilab code Exa 6.17 Newton Divided Difference Interpolation Formulae

```
1 //Example 6.17
2
3 clc
4 clear
5
6 x = [0 1 4];
7 y = [2 1 4];
9 n = length(x);
10 del = %nan*ones(n,3);
11 \ del(:,1) = y';
12 \text{ for } j = 2:3
        for i = 1:n-j+1
13
            del(i,j) = (del(i+1,j-1) - del(i,j-1)) / (x(
14
                i+j-1) - x(i);
15
        end
16 \text{ end}
17 \text{ del}(:,1) = [];
18
19 Y = 0;
```

```
20 X = 2;
21 \text{ for } i = 1:n
22
        t = x;
        t(i) = [];
23
24
        p = 1;
25
        for j = 1:length(t)
             p = p * (X-t(j))/(x(i)-t(j));
26
27
        end
28
        Y = Y + p*y(i);
29 \quad end
30 \text{ disp}(Y,"y(2) = ")
```

Scilab code Exa 6.18 Identity Proof for Newton and Lagrange Interpolation Formulae

```
1 // Example 6.18
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 6.19 Interpolation in Two Dimensions

```
1 //Example 6.19
2
3 clc
4 clear
5
6 x = 0:4;
7 n = length(x);
8 f = "X^2 + Y^2 - Y";
9 tab = %nan*ones(n,5);
10
11 for j = 0:4
12 fj = strsubst(f,'Y','j');
```

```
13
        for i = 1:n
14
              tab(i,j+1) = eval(strsubst(fj,'X','x(i)'));
15
         end
16 \text{ end}
17 // tab(:,1) = [];
18 mprintf("%4s %6s %6s %6s %6s", 'x', 'y=0', 'y=1', 'y
       =2', y=3', y=4')
19 disp([(0:4), tab])
20 \text{ tab2} = \text{tab}(2:4,2:4);
21 n1 = length(tab2(:,1));
22 \quad y = 2:4;
23
24 \text{ del1} = \text{%nan*ones}(n1,3);
25 \text{ del1(:,1)} = tab2(:,1);
26 \text{ for } j = 2:4
         for i = 1:n1-j+1
27
28
              del1(i,j) = del1(i+1,j-1) - del1(i,j-1);
29
         end
30 end
31
32 \text{ del2} = \text{%nan*ones}(n1,3);
33 \text{ del2}(:,1) = tab2(:,2);
34 \text{ for } j = 2:4
35
         for i = 1:n1-j+1
36
              del2(i,j) = del2(i+1,j-1) - del2(i,j-1);
37
         end
38 end
39
40 \text{ del3} = \text{%nan*ones}(n1,3);
41 \text{ del3}(:,1) = tab2(:,3);
42 \text{ for } j = 2:4
43
         for i = 1:n1-j+1
              del3(i,j) = del3(i+1,j-1) - del3(i,j-1);
44
45
         end
46 \, \text{end}
47
48 y0 = y(1);
49 \quad Y = 3.5;
```

```
50 \text{ hy} = y(2) - y(1);
51 \text{ py} = (Y-y0)/hy;
52
53 \text{ fly = 0};
54 \text{ del1y0} = \text{del1}(1,:);
55 for i = 0:length(del1y0)-1
        t = 1;
56
        for j = 1:i
57
58
             t = t * (py-j+1);
59
        end
        f1y = f1y + t*del1y0(i+1)/factorial(i);
60
61 end
62
63 	 f2y = 0;
64 \text{ del2y0} = \text{del2(1,:)};
65 for i = 0:length(del2y0)-1
        t = 1;
66
67
        for j = 1:i
68
             t = t * (py-j+1);
69
        end
70
        f2y = f2y + t*del2y0(i+1)/factorial(i);
71 end
72
73 \text{ f3y} = 0;
74 \text{ del3y0} = \text{del3}(1,:);
75 for i = 0:length(del3y0)-1
76
        t = 1;
77
        for j = 1:i
             t = t * (py-j+1);
78
79
        end
80
        f3y = f3y + t*del3y0(i+1)/factorial(i);
81 end
82
83 del = %nan*ones(n1,3);
84 \text{ del}(:,1) = [f1y; f2y; f3y];
85 \text{ for } j = 2:4
        for i = 1:n1-j+1
86
             del(i,j) = del(i+1,j-1) - del(i,j-1);
87
```

```
88
         end
89 end
90
91 	 f = 0;
92 X = 2.5;
93 \times 0 = x(2);
94 \text{ hx} = x(2) - x(1);
95 px = (X-x0)/hx;
96 \text{ del0} = \text{del}(1,:)
97 for i = 0:length(del0)-1
98
         t = 1;
99
         for j = 1:i
100
             t = t * (px-j+1);
101
         end
102
        f = f + t*del0(i+1)/factorial(i);
103 end
104 disp(f, "f(2.5,3.5) = ")
```

Scilab code Exa 6.20 Cubic Spline Curve

```
//Example 6.20

clc
clear
function [p] = cubicsplin(x,y)
// Fits point data to cubic spline fit

n = length(x);
a = y(1:n-1); // Spline Initials

M1 = zeros(3*(n-1));
M2 = zeros(3*(n-1),1);
// Point Substitutions
for i = 1:n-1
```

```
16
       M1(i,i) = x(i+1) - x(i);
17
       M1(i,i+n-1) = (x(i+1) - x(i))^2;
       M1(i,i+2*(n-1)) = (x(i+1) - x(i))^3;
18
       M2(i) = y(i+1) - y(i);
19
20 end
21
22 // Knot equations
23 \text{ for } i = 1:n-2
       // Derivative (S') continuity
24
        M1(i+n-1,i) = 1;
25
       M1(i+n-1,i+1) = -1;
26
       M1(i+n-1,i+n-1) = 2*(x(i+1)-x(i));
27
28
       M1(i+n-1,i+2*(n-1)) = 3*(x(i+1)-x(i))^2;
       // S'' continuity
29
       M1(i+2*n-3,i+n-1) = 2;
30
       M1(i+2*n-3,i+n) = -2;
31
       M1(i+2*n-3,i+2*(n-1)) = 6*(x(i+1)-x(i));
32
33 end
34 // Given BC
35 \text{ M1}(3*n-4,n) = 1;
36 \quad M1(3*n-3,2*n-2) = 1;
37 \text{ M1}(3*n-3,3*n-3) = 3*(3-2);
38
39 \text{ var} = M1 \setminus M2;
40 var = round(var);
41 b = var(1:n-1);
42 c = var(n:2*(n-1));
43 d = var(2*(n-1)+1:3*(n-1));
44 p = [d c b a(:)];
45 endfunction
46
47 x = 0:3;
48 \quad y = [1 \quad 4 \quad 0 \quad -2];
49 p = cubicsplin(x,y);
50 for i = 1:length(p(:,1))
        disp(strcat(["S", string(i-1), "(x) ="]))
51
        disp(poly(p(i,:),"X",["coeff"]))
52
53 end
```

Scilab code Exa 6.21 Cubic Spline Curve

```
1 //Example 6.21
2
3 clc
4 clear
6 function [p] = cubicsplin(x,y)
  // Fits point data to cubic spline fit
8
9 n = length(x);
                    // Spline Initials
10 a = y(1:n-1);
11
12 M1 = zeros(3*(n-1));
13 M2 = zeros(3*(n-1),1);
14 // Point Substitutions
15 \text{ for } i = 1:n-1
16
       M1(i,i) = x(i+1) - x(i);
       M1(i,i+n-1) = (x(i+1) - x(i))^2;
17
       M1(i,i+2*(n-1)) = (x(i+1) - x(i))^3;
18
19
       M2(i) = y(i+1) - y(i);
20 end
21
22 // Knot equations
23 \text{ for } i = 1:n-2
       // Derivative (S') continuity
24
25
       M1(i+n-1,i) = 1;
       M1(i+n-1,i+1) = -1;
26
       M1(i+n-1,i+n-1) = 2*(x(i+1)-x(i));
27
28
       M1(i+n-1,i+2*(n-1)) = 3*(x(i+1)-x(i))^2;
       // S'' continuity
29
       M1(i+2*n-3,i+n-1) = 2;
30
       M1(i+2*n-3,i+n) = -2;
31
       M1(i+2*n-3,i+2*(n-1)) = 6*(x(i+1)-x(i));
32
```

```
33 end
34 // Given BC
35 \text{ M1}(3*n-4,1) = 1;
36 \quad M1(3*n-3,n-1) = 1;
37 \text{ M1}(3*n-3,2*n-2) = 2*(3-2);
38 \text{ M1}(3*n-3,3*n-3) = 3*(3-2)^2;
39 \quad M2(3*n-4) = 2;
40 \quad M2(3*n-3) = 2;
41
42 \text{ var} = M1 \setminus M2;
43 var = round(var);
44 b = var(1:n-1);
45 c = var(n:2*(n-1));
46 d = var(2*(n-1)+1:3*(n-1));
47
48 p = [a(:) b c d];
49 endfunction
50
51 x = 0:3;
52 y = [1 4 0 -2];
53 p = cubicsplin(x,y);
54 for i=1:length(p(:,1))
        disp(strcat(["S", string(i-1),"(x) = "]))
55
        disp(poly(p(i,:),"x",["coeff"]))
56
57 end
```

Scilab code Exa 6.22 Minima of a Tabulated Function

```
1 //Example 6.22
2
3 clc
4 clear
5
6 x = 3:8;
7 y = [0.205 0.24 0.259 0.262 0.25 0.224];
```

```
8
9 n = length(x);
10 del = %nan*ones(n,5);
11 del(:,1) = y';
12 \text{ for } j = 2:5
13
        for i = 1:n-j+1
14
             del(i,j) = del(i+1,j-1) - del(i,j-1);
15
        end
16 \, \text{end}
17
18 \ X = poly(0, "X");
19 \times 0 = x(1);
20 y0 = y(1);
21 h = x(2) - x(1);
22 p = (X-x0)/h;
23 \text{ del0} = \text{del}(1,:);
24 del0 = round(del0*10^4)/10^4;
25 \text{ del0} = \text{del0}(1:find(del0==0)-1);
26
27 \quad Y = 0;
28 for i = 0:length(del0)-1
29
        t = 1;
30
        for j = 1:i
            t = t * (p-j+1);
31
32
33
        Y = Y + t*del0(i+1)/factorial(i);
34 end
35 \text{ disp}(Y, "y = ")
36
37 dydx = derivat(Y);
38 minx = roots(dydx);
39 miny = round(horner(Y, minx)*10^5)/10^5;
40 \operatorname{disp}(\min x, \min_x = ")
41 disp(miny, "min_y = ")
42 //min_y value is incorrectly displayed in textbook
      as 0.25425 instead of 0.26278
```

Scilab code Exa 6.23 Maxima of a Tabulated Function

```
1 //Example 6.23
3 clc
4 clear
6 \quad x = [-1 \ 1 \ 2 \ 3];
7 y = [-21 15 12 3];
9 n = length(x);
10 X = poly(0, "X");
11 \quad Y = 0;
12 \text{ for } i = 1:n
13
        t = x;
14
       t(i) = [];
15
        p = 1;
16
        for j = 1:length(t)
17
            p = p * (X-t(j))/(x(i)-t(j));
18
        end
        Y = Y + p*y(i);
19
20 end
21
22 dydx = derivat(Y);
23 extx = real(roots(dydx));
24 \text{ extx} = \text{round}(\text{extx}*10^4)/10^4;
25 d2ydx = derivat(dydx);
26
       horner(d2ydx,extx(1)) < 0 then</pre>
27 if
        maxx = extx(1);
28
        maxy = horner(Y, maxx);
29
30 else
31
       maxx = extx(2);
        maxy = horner(Y, maxx);
32
```

```
33 end

34 maxy = round(maxy*10^4)/10^4;

35 disp(maxx, "max_x = ")

36 disp(maxy, "max_y = ")
```

Scilab code Exa 6.24 Determination of Function Value

```
1 //Example 6.24
3 clc
4 clear
6 x = 1:3:10;
7 F = [500426 329240 175212 40365];
9 n = length(x);
10 del = %nan*ones(n,4);
11 \ del(:,1) = F';
12 \text{ for } j = 2:4
        for i = 1:n-j+1
13
             del(i,j) = del(i+1,j-1) - del(i,j-1);
14
15
        end
16 \text{ end}
17
18 \text{ del0} = \text{del}(1,:);
19 X = 2;
20 \times 0 = \times (1);
21 h = x(2) - x(1);
22 p = (X-x0) / h;
23 \text{ F2} = 0;
24 for i = 0:length(del0)-1
25
        t = 1;
        for j = 1:i
26
27
             t = t * (p-j+1);
28
        end
```

```
29  F2 = F2 + t*del0(i+1)/factorial(i);

30  end

31

32  f2 = F(1) - F2;

33  disp(f2,"f(2) = ")
```

Chapter 7

Numerical Differentiation and Integration

Scilab code Exa 7.1 Determination of Differential Function Value

```
1 / \text{Example } 7.1
2
3 clc
4 clear
6 x = 0:0.2:1;
7 y = [1 1.16 3.56 13.96 41.96 101];
9 n = length(x);
10 del = %nan*ones(n,6);
11 \ del(:,1) = y';
12 \text{ for } j = 2:6
       for i = 1:n-j+1
13
            del(i,j) = del(i+1,j-1) - del(i,j-1);
14
15
        end
16 \text{ end}
17 del = round(del*10^2)/10^2;
18 mprintf("%5s %6s %9s %8s %8s %8s %7s", 'x', 'y', 'dy', '
      d2y', 'd3y', 'd4y', 'd5y')
```

Scilab code Exa 7.2 Determination of Differential Function Value

```
1 / \text{Example } 7.2
2
3 clc
4 clear
5
6 x = 1.4:0.2:2.2;
7 y = [4.0552 \ 4.953 \ 6.0496 \ 7.3891 \ 9.025];
9 n = length(x);
10 del = %nan*ones(n,5);
11 \ del(:,1) = y';
12 \text{ for } j = 2:5
13
        for i = 1:n-j+1
14
            del(i+j-1,j) = del(i+j-1,j-1) - del(i+j-2,j)
                -1);
15
        end
16 \text{ end}
17 mprintf("%5s %6s %10s %10s %9s %9s", 'x', 'y', 'dy', '
      d2y', 'd3y', 'd4y')
18 disp([x' del])
```

Scilab code Exa 7.3 Determination of Differential Function Value

```
1 / Example 7.3
2
3 clc
4 clear
6 x = 0:4;
7 y = [6.9897 7.4036 7.7815 8.1281 8.451];
9 n = length(x);
10 del = %nan*ones(n,5);
11 \ del(:,1) = y';
12 \text{ for } j = 2:6
        for i = 1:n-j+1
13
14
            del(i,j) = del(i+1,j-1) - del(i,j-1);
15
        end
16 \, {\rm end}
17 \text{ del}(:,1) = [];
18 n0 = length(del(1,:));
19
20 X = 2;
21 i = find(x==X);
```

```
22 \text{ dowy} = 0;
23
24 \text{ for } j = 1:n0
        if j==2*int(j/2) then
25
26
             add = del(i,j);
27
        else
28
             add = (del(i-1,j) + del(i,j))/2;
             i = i-1;
29
30
             if i==0 then
31
                  break
32
             end
33
        end
34
35
        if add == %nan then
36
             break
37
        else
             dowy(j) = add;
38
39
        end
40 end
41 mprintf("%5s %6s %10s %9s %9s %9s", 'x', 'y', 'dy', 'd2y
       ', 'd3y', 'd4y')
42 disp([x' y' del])
43
44 \text{ mu} = 1;
45 h = x(2) - x(1);
46 \text{ dy2} = \text{mu/h*(dowy(1)} - 1/6*\text{dowy(3)};
47 	ext{ d2y2} = mu/h^2*(dowy(2)-1/12*dowy(4));
48 \text{ dy2} = \text{round}(\text{dy2}*10^4)/10^4;
49 	ext{ d2y2} = round(d2y2*10^4)/10^4;
50
51 disp(dy2, "y''(2) = ")
52 \text{ disp}(d2y2,"y",","(2) = ")
```

Scilab code Exa 7.4 Determination of Differential Function Value

```
1 / \text{Example } 7.4
2
3 clc
4 clear
6 \times = [0.15 \ 0.21 \ 0.23 \ 0.27 \ 0.32 \ 0.35];
7 y = [0.1761 \ 0.3222 \ 0.3617 \ 0.4314 \ 0.5051 \ 0.5441];
9 n = length(x);
10 del = %nan*ones(n,6);
11 del(:,1) = y';
12 \text{ for } j = 2:6
13
        for i = 1:n-j+1
14
             del(i,j) = (del(i+1,j-1) - del(i,j-1)) / (x(
                i+j-1)-x(i);
15
        end
16 end
17 \text{ del}(:,1) = [];
18 del = round(del*10^3)/10^3;
19 mprintf("%5s %6s %10s %10s %8s %9s %9s", 'x', 'y', 'dy'
       , 'd2y', 'd3y', 'd4y', 'd5y')
20 disp([x', y', del])
21 X = poly(0, "X");
22 \text{ del0} = \text{del}(1,:);
23 y0 = y(1);
24 \ Y = y0;
25 for i = 1:length(del0)
26
        p = 1;
27
        for j = 1:i
28
            p = p*(X-x(j));
29
        end
30
        Y = Y + p*del0(i);
31 end
32
33 dydx = derivat(Y);
34 d2ydx = derivat(dydx);
35
36 \text{ XX} = 0.25;
```

Scilab code Exa 7.5 Richardson Extrapolation Limit

```
1 //Example 7.5
2
3 clc
4 clear
6 \text{ function } [f] = y(x)
        f = -1/x;
7
8 endfunction
10 \text{ H} = [0.0128 \ 0.0064 \ 0.0032];
11 n = length(H);
12 x = 0.05;
13 h = H(1);
14 Fh = (y(x+h) - y(x-h)) / (2*h);
15 Fh2 = (y(x+h/2) - y(x-h/2)) / (h);
16 Fh4 = (y(x+h/4) - y(x-h/4)) / (h/2);
17
18 \text{ F1h2} = (4*\text{Fh2} - \text{Fh}) / (4-1);
19 F1h4 = (4*Fh4 - Fh2) / (4-1);
20 \text{ F2h4} = (4^2 * \text{F1h4} - \text{F1h2}) / (4^2 - 1);
21 del = %nan*ones(n,3);
22 del(:,1) = [Fh Fh2 Fh4]';
23 \text{ del}(1:2,2) = [F1h2 F1h4]';
24 \text{ del}(1,3) = F2h4;
```

```
25

26 disp(del(1,n),"y''(0.05) = ")

27 Exact = 1/x^2;

28 disp(Exact,"Exact Value:")
```

 $\bf Scilab\ code\ Exa\ 7.6\ Integral\ using\ Trapezoidal\ and\ Simpson\ One\ Third\ Rule$

```
1 / Example 7.6
2
3 clc
4 clear
6 function [I] = trap (fun,a,b,n)
7 // Integrate the function over the interval using
      Trapezoidal Formula
8 // \text{trap } (\text{fun}, a, b, n)
9 // fun - function to be integrated
10 // a - lower limit of integration
11 // b - upper limit of integration
12 // n - No. of times trapezoidal rule needs to be
     performed
13
14 N = n + 1; // N - total no. of points
15 h = (b-a) / (N-1);
16 x = linspace(a,b,N);
17 y = fun(x);
18
19 sum1 = y(1) + 2 * sum(y(2:N-1)) + y(N);
20 I = h * sum1 / 2;
                                         // Trapezoidal
      Integral Value
21 endfunction
22
23 function [I] = simp13 (fun,a,b,n)
24 // Integrate the function over the interval using
```

```
Simpson's 1/3rd rule
25 // simp 13 (fun, a, b, n)
26 // fun - function to be integrated
27 // a - lower limit of integration
28 // b - upper limit of integration
29 // n - No. of times simpson's 1/3 rd rule needs to be
       performed
30
                         // N - total no. of points
31 N = 2 * n + 1;
32 h = (b-a) / (N-1);
33 \times = linspace(a,b,N);
34 y = fun(x);
35
36 \text{ sum1} = y(1) + 4 * sum(y(2:2:N-1)) + 2 * sum(y(3:2:N-1))
      -2)) + y(N);
  I = h* sum1 / 3;
                                            // Simpson's 1/3
      rd Integral Value
38 endfunction
39
40 n = 6;
41 \text{ ntrap = n;}
42 \text{ ns} 13 = n/2;
43 I = [trap(sin,0,\%pi,ntrap); simp13(sin,0,\%pi,ns13)];
44 I = round(I*10^4)/10^4;
45 true = integrate('sin(x)', 'x', 0, \%pi);
46 err = abs(true - I) / true*100;
47 err = round(err*100)/100;
48
49 disp(I(1), "y_trap = ")
50 \text{ disp}(I(2), "y\_simp13 = ")
51 \text{ disp(err(1),"error\_trap = ")}
52 \text{ disp(err(2),"error\_simp13 = ")}
```

Scilab code Exa 7.7 Integral using Simpson One Third Rule

```
1 / \text{Example } 7.7
2
3 clc
4 clear
6 \text{ function } [I] = \text{simp13 } (\text{fun}, a, b, n)
  // Integrate the function over the interval using
      Simpson's 1/3rd rule
8 // simp13 (fun,a,b,n)
9 // fun - function to be integrated
10 // a - lower limit of integration
11 // b - upper limit of integration
12 // n - No. of times simpson's 1/3rd rule needs to be
       performed
13
14 N = 2 * n + 1;
                         // N - total no. of points
15 h = (b-a) / (N-1);
16 x = linspace(a,b,N);
17 y = fun(x);
18
19 sum1 = y(1) + 4 * sum(y(2:2:N-1)) + 2 * sum(y(3:2:N-1))
      -2)) + y(N);
                                            // Simpson's 1/3
20 I = h* sum1 / 3;
      rd Integral Value
21 endfunction
22
23 n = 8;
24 \text{ ns} 13 = n/2;
25 I = simp13(log,1,5,ns13);
26 I = round(I*10^4)/10^4;
27 deff('[y] = true(x)', ['y = x * log(x) - x']);
28 trueVal = true(5) - true(1);
29 err = abs(trueVal - I) / trueVal*100;
30 \text{ err} = \text{round}(\text{err}*100)/100;
31
32 \text{ disp}(I,"y\_simp13 = ")
33 disp(trueVal, "Actual Integral = ")
34 \text{ disp(err,"} error\_simp13 = ")
```

Scilab code Exa 7.8 Integral using Trapezoidal and Simpson One Third Rule

```
1 //Example 7.8
3 clc
4 clear
6 function [I] = trap (fun,a,b,n)
7 // Integrate the function over the interval using
     Trapezoidal Formula
8 // trap (fun,a,b,n)
9 // fun - function to be integrated
10 // a - lower limit of integration
11 // b - upper limit of integration
12 // n - No. of times trapezoidal rule needs to be
     performed
13
14 N = n + 1; // N - total no. of points
15 h = (b-a) / (N-1);
16 x = linspace(a,b,N);
17 y = fun(x);
18
19 sum1 = y(1) + 2 * sum(y(2:N-1)) + y(N);
20 I = h * sum1 / 2;
                                        // Trapezoidal
     Integral Value
21 endfunction
22
23 function [I] = simp13 (fun,a,b,n)
24 // Integrate the function over the interval using
     Simpson's 1/3rd rule
25 // simp13 (fun, a, b, n)
26 // fun - function to be integrated
27 // a - lower limit of integration
```

```
28 // b - upper limit of integration
29 // n - No. of times simpson's 1/3rd rule needs to be
       performed
30
31 N = 2 * n + 1;
                        // N - total no. of points
32 h = (b-a) / (N-1);
33 \times = linspace(a,b,N);
34 y = fun(x);
35
36 \text{ sum1} = y(1) + 4 * \text{sum}(y(2:2:N-1)) + 2 * \text{sum}(y(3:2:N-1))
      -2)) + y(N);
37 I = h* sum1 / 3;
                                            // Simpson's 1/3
      rd Integral Value
38 endfunction
39
40 function [f] = fun1(x)
        f = 1 ./(1+x^2);
41
42 endfunction
43
44
45 n = 4;
46 \text{ ntrap} = n;
47 \text{ ns} 13 = n/2;
48 I = [trap(fun1,0,1,ntrap); simp13(fun1,0,1,ns13)];
49 I = round(I*10^4)/10^4;
50 true = intg(0,1,fun1);
51
52 \text{ disp}(I(1), "y_trap = ")
53 \text{ disp}(I(2), "y\_simp13 = ")
54 disp(I(2)*4, "Approx pi = ")
```

Scilab code Exa 7.9 Integral using Simpson One Third Rule

```
1 //Example 7.9
```

```
3 clc
4 clear
6 \text{ function } [I] = \text{simp13 } (\text{fun,a,b,n})
7 // Integrate the function over the interval using
      Simpson's 1/3rd rule
8 // simp13 (fun, a, b, n)
9 // fun - function to be integrated
10 // a - lower limit of integration
11 // b - upper limit of integration
12 // n - No. of times simpson's 1/3rd rule needs to be
       performed
13
14 N = 2 * n + 1; // N - total no. of points
15 h = (b-a) / (N-1);
16 x = linspace(a,b,N);
17 y = fun(x);
18
19 sum1 = y(1) + 4 * sum(y(2:2:N-1)) + 2 * sum(y(3:2:N-1))
      -2)) + y(N);
20 I = h* sum1 / 3;
                                          // Simpson's 1/3
      rd Integral Value
21 endfunction
22
23 function [f] = fun1(x)
       f = sqrt(2/\%pi)*exp(-x^2/2);
25 endfunction
26
27 h = 0.125;
28 n = (1-0)/h;
29 \text{ ns} 13 = n/2;
30 I = simp13(fun1,0,1,ns13);
31 I = round(I*10^4)/10^4;
32
33 disp(I, "Integral value, I = ")
```

Scilab code Exa 7.10 Integral using Simpson One Third Rule

```
1 //Etample 7.10
3 clc
4 clear
6 t = 0:10:80;
7 a = [30 \ 31.63 \ 33.34 \ 35.47 \ 37.75 \ 40.33 \ 43.25 \ 46.69]
      50.67];
9 h = t(2) - t(1);
10 n = length(t);
11
12 \text{ Is} 13 = a(1);
13 \text{ for } i = 2:n-1
        rem2 = i-fix(i./2).*2;
14
15
        if rem2 == 0 then
16
             Is13 = Is13 + 4*a(i);
17
        else
             Is13 = Is13 + 2*a(i);
18
19
        end
20 \text{ end}
21 \text{ Is} 13 = (\text{Is} 13 + a(n))/10^3;
22 Is13 = round(h/3*Is13*10^4)/10^4;
23 disp(strcat(["v = ",string(Is13)," km/s"]))
```

Scilab code Exa 7.11 Romberg Integration Method

```
1 //Example 7.11
2
3 clc
```

```
4 clear
6 \quad x = 1:0.1:1.8;
7 x = round(x*10)/10;
8 y = [1.543 \ 1.669 \ 1.811 \ 1.971 \ 2.151 \ 2.352 \ 2.577 \ 2.828
       3.107];
9 n = length(x);
10 \times 0 = \times (1);
11 xn = x(n);
12
13 N = [1 2 4 8]
14 for j = 1:length(N)
       h = (xn - x0)./N(j);
15
       I = y(1);
16
       for xx = x0+h:h:xn-h
17
            xx = round(xx*10)/10;
18
19
            I = I + 2*y(x==xx);
20
       end
       Itrap(j) = h/2*(I + y(n));
21
22
       IRomb(1) = Itrap(1);
23
       if j^{=1} then
            IRomb(j) = (4^{(j-1)}*Itrap(j)-IRomb(j-1))
24
               /(4^{(j-1)-1});
25
       end
26 \, \text{end}
27 IRomb = round(IRomb*10^5)/10^5;
28
29 disp(Itrap(length(N)), "Integral using Trapezoidal
      rule:")
30 disp(IRomb(length(N)), "Integral using Romberg''s
      formula:")
31 //In third step of computation of integral using
      Romberg's formula, author mistakenly took the
      1.7672 instead of 1.7684 which resulted in a
      difference
```

Scilab code Exa 7.12 Double Integral using Trapezoidal Rule

```
1 //Example 7.12
3 clc
4 clear
6 \quad function [f] = fun1(x,y)
        f = 1 / (x+y);
 8 endfunction
10 x = 1:0.25:2;
11 \quad y = x;
12
13 m = length(x);
14 n = length(y);
15
16 \text{ del} = \text{%nan*ones}(m,n);
17 \text{ for } j = 1:n
18
        for i = 1:m
             del(i,j) = fun1(x(i),y(j));
19
20
        end
21 end
22
23 \text{ hx} = x(2) - x(1);
24 \text{ for } i = 1:m
25
        I = del(i,1);
26
        for j = 2:n-1
             I = I + 2*del(i,j);
27
28
29
        Itrap1(i) = hx/2 * (I+del(i,n));
31 Itrap1 = round(Itrap1*10^4)/10^4;
32
```

```
33  hy = y(2) - y(1);
34  Itrap2 = Itrap1(1)
35  for i = 2:n-1
36    Itrap2 = Itrap2 + 2* Itrap1(i);
37  end
38  Itrap2 = round(hy/2*(Itrap2+Itrap1(m))*10^4)/10^4;
39  disp(Itrap2,"I = ")
```

Scilab code Exa 7.13 Double Integral using Trapezoidal Rule

```
1 //Example 7.13
3 clc
4 clear
6 \quad function [f] = fun1(x,y)
        f = sqrt(sin(x+y));
8 endfunction
10 x = 0:\%pi/8:\%pi/2;
11 \quad y = x;
12
13 m = length(x);
14 n = length(y);
15
16 del = %nan*ones(m,n);
17 \text{ for } j = 1:n
18
        for i = 1:m
19
             del(i,j) = fun1(x(i),y(j));
20
        end
21 end
22
23 \text{ hx} = x(2) - x(1);
24 \text{ for i} = 1:m
25
        I = del(i,1);
```

```
26
       for j = 2:n-1
27
            I = I + 2*del(i,j);
28
        end
29
        Itrap1(i) = hx/2 * (I+del(i,n));
30 \, \text{end}
31 Itrap1 = round(Itrap1*10^4)/10^4;
32
33 hy = y(2) - y(1);
34 \text{ Itrap2} = \text{Itrap1}(1)
35 \text{ for } i = 2:n-1
36
        Itrap2 = Itrap2 + 2* Itrap1(i);
37 end
38 Itrap2 = round(hy/2*(Itrap2+Itrap1(m))*10^4)/10^4;
39 disp(Itrap2,"I = ")
```

Scilab code Exa 7.14 One Point Gauss Legendre Quadrature Formula

```
1 //Example 7.14
3 clc
4 clear
6 n = 1;
7 	 if 	 n==1 	 then
       M = [0 \ 2];
9 elseif n==2
10
       M = [sqrt(1/3) 1; -sqrt(1/3) 1];
11 elseif n==3
       M = [0 8/9; -0.774597 5/9; 0.774597 5/9];
12
13 elseif n==4
       M = [-0.339981 \ 0.652145; \ -0.861136 \ 0.347855;
14
          0.339981 0.652145; 0.861136 0.347855];
15 elseif n==5
16
       M = [-0 \ 0.568889; \ -0.538469 \ 0.467914; \ -0.906180
          0.236927; 0 0.568889; 0.538469 0.467914;
```

Scilab code Exa 7.15 Two Point Gauss Legendre Quadrature Formula

```
1 //Example 7.15
2
3 clc
4 clear
5
6 n = 2;
7 	 if 	 n==1 	 then
       M = [0 \ 2];
9 elseif n==2
       M = [sqrt(1/3) 1; -sqrt(1/3) 1];
10
11 elseif n==3
12
       M = [0 8/9; -0.774597 5/9; 0.774597 5/9];
13 elseif n==4
14
       M = [-0.339981 \ 0.652145; \ -0.861136 \ 0.347855;
          0.339981 0.652145; 0.861136 0.347855];
15 elseif n==5
       M = [-0 \ 0.568889; \ -0.538469 \ 0.467914; \ -0.906180
16
          0.236927; 0 0.568889; 0.538469 0.467914;
          0.906180 0.236927];
17 elseif n==6
```

Scilab code Exa 7.16 Four Point Gauss Legendre Quadrature Formula

```
1 //Example 7.16
2
3 clc
4 clear
6 \text{ function } [f] = fun1(x)
       f = 3*x^2 + x^3;
8 endfunction
9
10 n = 4;
11 if n==1 then
12
       M = [0 \ 2];
13 elseif n==2
       M = [sqrt(1/3) 1];
14
15 elseif n==3
       M = [0 8/9; -0.774597 5/9; 0.774597 5/9];
16
17 elseif n==4
       M = [-0.339981 \ 0.652145; \ -0.861136 \ 0.347855;
18
          0.339981 \ 0.652145; \ 0.861136 \ 0.347855];
19 elseif n==5
```

```
20
      M = [-0 \ 0.568889; \ -0.538469 \ 0.467914; \ -0.906180
          0.236927; 0 0.568889; 0.538469 0.467914;
          0.906180 0.236927];
21 elseif n==6
       M = [-0.238619 \ 0.467914; \ -0.661209 \ 0.360762;
22
          -0.932470 0.171325; 0.238619 0.467914;
          0.661209 0.360762; 0.932470 0.171325];
23 end
24
25 X = M(:,1);
26 \ W = M(:,2);
27 I = 0;
28 for i = 1:length(X)
30 \text{ end}
31 \text{ disp}(I,"I = ")
```

Chapter 8

Ordinary Differential Equations

Scilab code Exa 8.1 Initial Value Problem using Taylor Series Method

```
1 / Example 8.1
2
3 clc
4 clear
6 function [f] = dydt(t,y)
        f = t + y;
8 endfunction
10 \ y0 = 0;
11 t0 = 1;
12 t = 1.2;
13 h = 0.1;
14
15 n = (t-t0)/h;
16 \text{ tt} = \text{t0};
17 y = y0;
18 \text{ den} = [1 \ 2 \ 6 \ 24 \ 120];
19 \text{ for } i = 1:n
20
        d2ydt = 1 + dydt(tt,y);
21
        d3ydt = d2ydt;
```

```
22
       d4ydt = d3ydt;
       d5ydt = d4ydt;
23
24
       dy = [dydt(tt,y) d2ydt d3ydt d4ydt d5ydt];
25
       tt = tt + h;
26
       for j = 1:length(dy)
27
           y = y + dy(j)*(tt-t0)^j/den(j);
28
       end
29
       t0 = tt;
30 end
31 disp(y, "y(1.2) = ")
32
33 function [f] = closed(t)
34
       f = -t -1 + 2*exp(t-1);
35 endfunction
36 \text{ yclosed} = \text{closed}(1.2);
37 yclosed = round(yclosed*10^4)/10^4;
38 disp(yclosed, "y_closed form = ")
39 disp ("Comparing the results obtained numerically and
       in closed form, we observe ")
40 disp("that they agree up to four decimals")
```

Scilab code Exa 8.2 Initial Value Problem using Euler Method

Scilab code Exa 8.3 Initial Value Problem using Modified Euler Method

```
1 //Example 8.3
2
3 clc
4 clear
6 function [f] = dydt(t,y)
        f = t + sqrt(y);
8 endfunction
9
10 \ y0 = 1;
11 t0 = 0;
12 h = 0.2;
13 t = 0.6;
14 n = (t-t0)/h;
15
16 \text{ tt} = \text{t0};
17
18 \text{ for } i = 1:n
        y11 = y0 + h*dydt(tt,y0);
19
20
       t1 = tt + h;
       y1 = y0 + h/2*(dydt(tt,y0) + dydt(t1,y11));
21
```

```
22     y1 = round(y1*10^4)/10^4;
23
24     y(i) = y1;
25     y0 = y1;
26     tt = t1;
27 end
28 mprintf("%5s %8s",'t','y')
29 disp([(t0+h:h:t)', y])
```

Scilab code Exa 8.4 Initial Value Problem using Second Order Runge Kutta Method

```
1 / Example 8.4
2
3 clc
4 clear
6 function [f] = fun1(x,y)
       f = (y+x) / (y-x);
8 endfunction
10 function [f] = rk2(x,y)
       k1 = h*fun1(x,y);
11
       k2 = h*fun1(x+3/2*h,y+3/2*k1);
12
13
       f = y + 1/3*(2*k1+k2);
14 endfunction
15
16 \times 0 = 0;
17 y0 = 1;
18 h = 0.2;
19 x = 0.4;
20 n = (x-x0)/h;
21
22 \text{ for } i = 1:n
23
       y = rk2(x0,y0);
```

Scilab code Exa 8.5 Initial Value Problem using Fourth Order Runge Kutta Method

```
1 / \text{Etample } 8.5
3 clc
4 clear
6 function [f] = fun1(t,y)
       f = t + y;
   endfunction
10 function [f] = rk4(t,y)
       k1 = h*fun1(t,y);
11
       k2 = h*fun1(t+1/2*h,y+1/2*k1);
12
13
       k3 = h*fun1(t+1/2*h,y+1/2*k2);
       k4 = h*fun1(t+h,y+k1);
14
       f = y + 1/6*(k1+2*k2+2*k3+k4);
15
16 endfunction
17
18 \text{ t0} = 0;
19 y0 = 1;
20 h = 0.1;
21 t = 0.4;
22 n = (t-t0)/h;
23
24 \text{ for } i = 1:n
25
       y = rk4(t0, y0);
```

Scilab code Exa 8.6 Van Der Pol Equation using Fourth Order Runge Kutta Equation

```
1 //Example 8.6
3 clc
4 clear
  function [f] = f1(x,y,p)
       f = p;
   endfunction
10 function [f] = f2(x,y,p)
11
       f = 0.1*(1-y^2)*p - y;
12 endfunction
13
14 \times 0 = 0;
15 \text{ y0} = 1;
16 p0 = 0;
17 h = 0.2;
18 x = 0.2;
19 n = (x-x0)/h;
20
21 \text{ for } i = 1:n
       k1 = h*f1(x0,y0,p0);
22
23
       11 = h*f2(x0,y0,p0);
24
       k2 = h*f1(x0+h/2,y0+k1/2,p0+11/2);
       12 = h*f2(x0+h/2,y0+k1/2,p0+11/2);
25
```

```
26
       k3 = h*f1(x0+h/2,y0+k2/2,p0+12/2);
       13 = h*f2(x0+h/2,y0+k2/2,p0+12/2);
27
       k4 = h*f1(x0+h,y0+k3,p0+13);
28
       14 = h*f2(x0+h,y0+k3,p0+13);
29
30
       y = y0 + 1/6*(k1+2*(k2+k3)+k4);
31
       p = p0 + 1/6*(11+2*(12+13)+14);
       y = round(y*10^4)/10^4;
32
       p = round(p*10^4)/10^4;
33
34 end
35
36 \text{ disp}(y,"y(0.2) = ")
37 \text{ disp}(p,"y","(0.2) = ")
```

Scilab code Exa 8.7 Milne Predictor Corrector Method

```
1 / \text{Example } 8.7
2
3 clc
4 clear
5
6 \text{ function } [f] = dy(t,y)
        f = 1/2*(t+y);
8 endfunction
9
10 \text{ tt} = 0:0.5:1.5;
11 \text{ yy} = [2 \ 2.636 \ 3.595 \ 4.968];
12
13 \ t0 = tt(1);
14 \ y0 = yy(1);
15 t = 2;
16 h = tt(2) - tt(1);
17 n = (t-t0)/h;
18 \text{ for } i = 1:n
19
        dydt(1) = dy(t0, yy(1));
        dydt(2) = dy(t0+h,yy(2));
20
```

Scilab code Exa 8.8 Milne Predictor Corrector Method

```
1 //Example 8.8
3 clc
4 clear
6 \text{ function } [f] = dy(t,y)
        f = t + y;
7
8 endfunction
9
10
11 \text{ tt} = 0:0.1:0.3;
12 \text{ yy} = [1 \ 1.1103 \ 1.2428 \ 1.3997];
13
14 \ t0 = tt(1);
15 \ y0 = yy(1);
16 t = 2;
17 h = tt(2) - tt(1);
18 \ n = (t-t0)/h;
19 \text{ for } i = 1:n
20
        dydt(1) = dy(t0, yy(1));
21
        dydt(2) = dy(t0+h,yy(2));
22
        dydt(3) = dy(t0+2*h, yy(3));
```

```
23
       dydt(4) = dy(t0+3*h, yy(4));
24
25
       yP = yy(1) + 4*h/3*(2*dydt(2)-dydt(3)+2*dydt(4))
26
       dydt(5) = dy(t0+4*h,yP);
       yC = yy(3) + h/3*(dydt(3)+4*dydt(4)+dydt(5));
27
28 end
29 yC = round(yC*10^4)/10^4;
30 disp(yC, "y(0.4) = ")
31
32 t = [tt'; t0+4*h];
33 y = [yy'; yC];
34 mprintf("\n\%6s %8s", 't', 'y')
35 disp([t y])
```

Scilab code Exa 8.9 Adam Moulton Predictor Corrector Method

```
1 //Example 8.9
3 clc
4 clear
5
6 function [f] = fun1(t,y)
7
       f = y - t^2;
8 endfunction
10 function [f] = rk4(t,y)
11
       k1 = h*fun1(t,y);
12
       k2 = h*fun1(t+1/2*h,y+1/2*k1);
       k3 = h*fun1(t+1/2*h,y+1/2*k2);
13
       k4 = h*fun1(t+h,y+k1);
14
       f = y + 1/6*(k1+2*k2+2*k3+k4);
15
16 endfunction
17
18 t0 = 0;
```

```
19 y0 = 1;
20 t = 1;
21 h = 0.2;
22 n = (t-t0)/h;
23 y = y0;
24
25 \text{ for } i = 2:4
26
       y(i) = rk4(t0, y0);
27
       t0 = t0 + h;
       y0 = y(i);
28
29 end
30
31 \text{ t0} = 0;
32 \, dydt(1) = fun1(t0,y(1));
33 dydt(2) = fun1(t0+h, y(2));
34 \, dydt(3) = fun1(t0+2*h,y(3));
35 \text{ dydt}(4) = \text{fun1}(t0+3*h,y(4));
36
37 \text{ for } i = 1:n-3
38
       yP = y(4) + h/24*(55*dydt(4)-59*dydt(3)+37*dydt
           (2) - 9*dydt(1));
39
        dydt(5) = fun1(t0+(3+i)*h, yP);
40
       yC = y(4) + h/24*(9*dydt(5)+19*dydt(4)-5*dydt(3)
          +dydt(2));
41
       y = [y(2:4); yC];
42
       dydt = [dydt(2:4); fun1(t0+(3+i)*h,yC)]
43 end
44 disp(yC, "Computed Solution: y(1.0) = ")
46 function [f] = true(t)
       f = t^2 + 2*t + 2 - exp(t);
47
48 endfunction
49 ytrue = true(1.0);
50 ytrue = round(ytrue*10^4)/10^4;
51 disp(ytrue, "Analytical Solution: y(1.0) = ")
```

Chapter 9

Parabolic Partial Differential Equations

Scilab code Exa 9.1 Taylor Series Expansion

```
1 // Example 9.1
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 9.2 Initial Boundary Value Problem using Explicit Finite Difference Method

```
1 //Example 9.2
2
3 clc
4 clear
5 6 delx = 0.1;
7 delt = 0.002;
8 xf = 1;
9 tf = 0.006;
```

```
10 x = 0:delx:xf;
11 t = 0:delt:tf;
12 m = length(x);
13 n = length(t);
14 lamda = delt/delx^2;
15
16 y = zeros(n,m);
17 y(1:n,1) = 0;
18 y(1:n,m) = 0;
19 y(1,1:m) = \sin(\%pi*x);
20 \quad for \quad k = 2:n
       M1 = zeros(m-2);
21
22
       M2 = zeros(m-2,1);
       for i = 1:m-2
23
24
            M1(i,i) = 1+2*lamda;
            if i==1
25
26
                M1(i,i+1) = -lamda;
27
                M2(i) = y(k-1,i+1) + lamda*y(k,i);
28
            elseif i == m-2
29
                M1(i,i-1) = -lamda;
                M2(i) = y(k-1,i+1) + lamda*y(k,i+2);
30
31
            else
32
                M1(i,i+1) = -lamda;
33
                M1(i,i-1) = -lamda;
34
                M2(i) = y(k-1, i+1);
35
            end
36
       end
37
       y(k,2:m-1) = (M1\M2)';
38 end
39 y = round(y*10^4)/10^4;
40 mprintf("%4s %7s %9s %8s %9s %9s %9s %9s %9s %9s %9s %9s
       \%9s\ \%9s", 'n', 't', 'x = 0.0', 'x = 0.1', 'x = 0.2', '
      x = 0.3', 'x = 0.4', 'x = 0.5', 'x = 0.6', 'x = 0.7',
      x = 0.8, x = 0.9, x = 1.0,
41 disp([(0:n-1)', t', y])
42
43 disp("At t = 0.006:")
44 disp(y(n,1:m), "Computed Solution:")
```

```
45 Texact = exp(-%pi^2*tf)*sin(%pi*x);
46 Texact = round(Texact*10^4)/10^4;
47 disp(Texact, "Analytical Solution:")
```

Scilab code Exa 9.3 Initial Boundary Value Problem using Explicit Finite Difference Method

```
1 / \text{Example } 9.3
3 clc
4 clear
6 \text{ delx} = 0.1;
7 \text{ delt} = 0.001;
8 \text{ xf} = 0.5;
9 \text{ tf} = 0.003;
10 x = 0:delx:xf;
11 t = 0:delt:tf;
12 m = length(x);
13 n = length(t);
14 r = delt/delx^2;
15
16 T = zeros(m,n);
17 T(1:m,1) = 0;
18 \text{ delTxi} = 0;
19 \text{ delTxf} = 1;
20
21 \text{ for } j = 1:n
22
        M1 = zeros(m,m);
        M2 = zeros(m,1);
23
        for i = 1:m
24
25
             if i == 1 then
                  M1(i,i) = 1;
26
                  M1(i,i+1) = -1;
27
28
                  M2(i) = -delx * delTxi;
```

```
29
           elseif i == m then
30
                M1(i,i) = 1;
                M1(i,i-1) = -1;
31
32
                M2(i) = delx * delTxf;
33
           else
34
                M1(i,i) = 1;
               M2(i) = r*T(i+1,j) + (1-2*r) * T(i,j) +
35
                   r*T(i-1,j);
36
           end
37
       end
38
       T(1:m,j+1) = (M1\M2);
39 end
40 T = T(:,2:n+1);
41 mprintf("%4s %7s %9s %5s %7s %9s %9s %9s",'n','t','x
      = 0.0', 'x=0.1', 'x = 0.2', 'x = 0.3', 'x = 0.4', 'x
      = 0.5;
42 disp([(0:n-1), t, T,])
```

Scilab code Exa 9.4 Crank Nicolson Finite Difference Method

```
1 //Example 9.4
2
3 clc
4 clear
5
6 delx = 0.25;
7 delt = 1/32;
8 xf = 1;
9 tf = delt;
10 x = 0:delx:xf;
11 t = 0:delt:tf;
12 m = length(x);
13 n = length(t);
14 r = delt/delx^2;
15
```

```
16
17 T = zeros(m,n);
18 T(1:m,1) = 1;
19 T(1,1:n) = 0;
20 T(m, 1:n) = 0;
21
22 \text{ for } j = 1:n-1
23
       M1 = zeros(m-2, m-2);
       M2 = zeros(m-2,1);
24
       for i = 2:m-1
25
           if i == 2 then
26
27
               M1(i-1,i-1)
                             = -2*(1+r);
28
               M1(i-1,i) = r;
               M2(i-1) = -(r*T(i+1,j) + 2*(1-r)*T(i)
29
                   ,j) + r*T(i-1,j));
30
           elseif i == m-1
               M1(i-1,i-2) = r;
31
32
               M1(i-1,i-1) = -2*(1+r);
               M2(i-1) = -(r*T(i+1,j) + 2*(1-r)*T(i)
33
                   ,j) + r*T(i-1,j));
34
           else
               M1(i-1,i-2) = r;
35
36
               M1(i-1,i-1) = -2*(1+r);
               M1(i-1,i) = r;
37
               M2(i-1) = -(r*T(i+1,j) + 2*(1-r)*T(i)
38
                   ,j) + r*T(i-1,j));
39
           end
40
       end
41
       T(2:m-1,j+1) = (M1\M2);
42 \text{ end}
43 T1 = M1\M2;
44 for i = 1:length(T1)
       disp(strcat(["T",string(i)," = ",string(T1(i))])
          );
46 end
```

Scilab code Exa 9.5 Crank Nicolson Finite Difference Method

```
1 //Example 9.5
3 clc
4 clear
6 \text{ delx} = 1;
7 \text{ delt} = 1.893;
8 \text{ alpha} = 0.132;
9 \text{ xf} = 4;
10 \text{ tf = delt};
11 x = 0:delx:xf;
12 t = 0:delt:tf;
13 m = length(x);
14 n = length(t);
15 r = alpha*delt/delx^2;
16 r = round(r*10^2)/10^2;
17
18 T = zeros(m,n);
19 T(1:m,1) = 1000;
20
21 \text{ for } j = 1:n-1
       M1 = zeros(m,m);
22
23
       M2 = zeros(m,1);
       for i = 1:m
24
25
            if i == 1 then
                 M1(i,i) = -(2+2.15*r);
26
                 M1(i,i+1) = 2*r;
27
                 M2(i) = -(2*r*T(2,j) + (2-2.15*r)*T(1,j)
28
                     + 21*r);
        elseif i == m then
29
30
            M1(i,i) = -(2+1.75*r);
            M1(i,i-1) = 2*r;
31
```

```
M2(i) = -(2*r*T(m-1,j) + (2-1.75*r)*T(m,j) -
32
               35*r);
33
           else
               M1(i,i-1) = r;
34
35
               M1(i,i)
                        = -2*(1+r);
               M1(i,i+1) = r;
36
               M2(i) = -(r*T(i+1,j) + 2*(1-r)*T(i,j)
37
                  ) + r*T(i-1,j);
38
           end
39
       end
       T(1:m,j+1) = (M1\M2);
40
41 end
42 disp(M1, "Coefficient Matrix:")
43 disp(M2, "Constant Matrix:")
44 T = round(T*10^4)/10^4;
45 disp(T', "Table:")
```

Scilab code Exa 9.6 Crank Nicolson Scheme for Diffusion Equation

```
1 // Example 9.6
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 9.7 Alternate Direction Implicit Method

```
1 //Example 9.7
2
3 clc
4 clear
5
6 h = 2;
7 delt = 4;
8 tf = 8;
```

```
9 \text{ xf} = 8;
10 \text{ yf} = 6;
11 x = 0:h:xf;
12 y = 0:h:yf;
13 t = 0:delt:tf;
14 m = length(x);
15 n = length(y);
16 p = length(t);
17 r = delt/h^2;
18 r = round(r*10^2)/10^2;
19
20 T = 50*ones(n,m);
21 \quad TO = T;
22 T(1,1:m) = 110:-10:70;
23 T(n,1:m) = 0:10:40;
24 T(2:n-1,1) = [65; 25];
25 T(2:n-1,m) = [60; 50];
26
27 u = (m-2)*(n-2);
28 index = [repmat(2:m-1,1,n-2); gsort(repmat(2:n-1,1,m))]
      -2))];
29
30 \text{ M1} = zeros(u,u);
31 M2 = zeros(u,1);
32 \text{ for } j = 2:m-1
33
       for i = 2:n-1
34
            ind = find(index(1,:) == j \& index(2,:) == i);
35
            if j == 2 then
                M1(ind, ind) = 1+2*r;
36
                M1(ind, ind+1) = -r;
37
                M2(ind) = r*T(i,j-1) + r*T0(i-1,j) +
38
                    (1-2*r)*TO(i,j) + r*TO(i+1,j);
39
            elseif j == m-1 then
                M1(ind, ind-1) = -r;
40
                M1(ind, ind) = 1+2*r;
41
                M2(ind) = r*T(i,j+1) + r*T0(i-1,j) +
42
                    (1-2*r)*TO(i,j) + r*TO(i+1,j);
43
            else
```

```
M1(ind,ind-1) = -r;
44
                M1(ind, ind) = 1+2*r;
45
                M1(ind,ind+1) = -r;
46
                M2(ind) = r*T0(i-1,j) + (1-2*r)*T0(i,j)
47
                    + r*T0(i+1,j);
48
            end
49
       end
50 end
51 value = M1\M2;
52 value = round(value*10^4)/10^4;
53 for i = 1:length(index(1,:))
       t = index(:,i);
54
55
       T(t(2),t(1)) = value(i);
56 end
57 \text{ disp}(T, "At t = 4:")
58 \text{ TO} = \text{T};
59
60 index = gsort(index, 'lc', 'i');
61 \text{ M1} = zeros(u,u);
62 \text{ M2} = zeros(u,1);
63 \text{ for } j = 2:m-1
       for i = 2:n-1
64
            ind = find(index(1,:) == j \& index(2,:) == i);
65
            if i == 2 then
66
                M1(ind,ind) = 1+2*r;
67
68
                M1(ind, ind+1) = -r;
69
                 M2(ind) = r*T(i-1,j) + r*T0(i,j-1) +
                    (1-2*r)*T0(i,j) + r*T0(i,j+1);
            elseif i == n-1 then
70
                M1(ind, ind-1) = -r;
71
                 M1(ind, ind) = 1+2*r;
72
                 M2(ind) = r*T(i+1,j) + r*T0(i,j-1) +
73
                    (1-2*r)*TO(i,j) + r*TO(i,j+1);
74
            else
                M1(ind,ind-1) = -r;
75
                M1(ind, ind) = 1+2*r;
76
77
                 M1(ind, ind+1) = -r;
                 M2(ind) = + r*T0(i,j-1) + (1-2*r)*T0(i,j
78
```

```
) + r*T0(i,j+1);
79         end
80         end
81    end
82    value = M1\M2;
83    value = round(value*10^4)/10^4;
84    for i = 1:length(index(1,:))
85         t = index(:,i);
86         T(t(2),t(1)) = value(i);
87    end
88    disp(T,"At t = 8:")
```

Chapter 10

Elliptical Partial Differential Equations

Scilab code Exa 10.1 Laplace Equation using Five Point Formulae

```
1 //Example 10.1
2
3 clc
4 clear
6 h = 1/4;
7 \text{ xf} = 1;
8 \text{ yf} = 1;
9 x = 0:h:xf;
10 \ y = 0:h:yf;
11 m = length(y);
12 n = length(x);
13
14 u = zeros(m,n);
15 u(m,:) = 100*x;
16 \ u(:,n) = 100*y';
17 u0 = u;
18
19 I = ceil(m/2);
```

```
20 J = ceil(n/2);
21
22 u(J,I) = (u0(J-2,I-2) + u0(J-2,I+2) + u0(J+2,I-2) +
      u0(J+2,I+2)) / 4;
23
24 \text{ for } j = [J-1 J+1]
        for i = [I-1 I+1]
25
             u(j,i) = (u(j-1,i-1) + u(j-1,i+1) + u(j+1,i)
26
                -1) + u(j+1,i+1)) / 4;
27
        end
28 end
29
30 \text{ j1} = [J-1 \ J \ J+1];
31 \text{ i1} = [I I-1 I+1 I];
32 \text{ for } k = 1:4
        i = i1(k);
33
34
        j = j1(k);
        u(j,i) = (u(j,i-1) + u(j,i+1) + u(j-1,i) + u(j-1,i)
           +1,i)) / 4;
36 \, \text{end}
37
38 disp(u,"u:")
```

Scilab code Exa 10.2 Temperature in Two Dimensional Geometry

```
1 // Example 10.2
2 // This is an analytical problem and need not be coded.
```

Scilab code Exa 10.3 Laplace Equation in Two Dimension using Five Point Formulae

```
1 //Example 10.3
```

```
2
   3 clc
   4 clear
   5
   6 m = 5;
   7 n = 5;
  8 u = zeros(m,n);
  9 u(m,:) = [50 100 100 100 50];
10 \ u0 = u;
11 I = ceil(m/2);
12 J = ceil(n/2);
14 u(J,I) = (u0(J-2,I-2) + u0(J-2,I+2) + u0(J+2,I-2) +
                         u0(J+2,I+2)) / 4;
15
16 \text{ for } j = [J-1 \ J+1]
                              for i = [I-1 I+1]
17
                                                 u(j,i) = (u(j-1,i-1) + u(j-1,i+1) + u(j+1,i)
                                                             -1) + u(j+1,i+1)) / 4;
19
                               end
20 \text{ end}
21
22 	 j1 = [J-1 	 J 	 J 	 J+1];
23 	 i1 = [I 	 I-1 	 I+1 	 I];
24 \text{ for } k = 1:4
25
                             i = i1(k);
                              j = j1(k);
26
                              u(j,i) = (u(j,i-1) + u(j,i+1) + u(j-1,i) +
                                          +1,i)) / 4;
28 end
29
30 \text{ kf} = 2;
31 tab = zeros(kf+1,(m-2)*(n-2));
32 \text{ row = []};
33 \text{ for } j = 2:n-1
                              row = [row u(j, 2:m-1)];
34
35 end
36 \text{ tab}(1,:) = row;
```

```
37 \text{ for } k = 1:kf
38
        row = [];
        for j = 2:n-1
39
            for i = 2:m-1
40
                 u(j,i) = (u(j,i-1) + u(j,i+1) + u(j-1,i)
41
                     + u(j+1,i)) / 4;
42
            end
            row = [row u(j,2:m-1)];
43
44
        row = round(row*10^4)/10^4;
45
        tab(k+1,:) = row;
46
47 end
48 mprintf("%4s %9s %9s %9s %9s %10s %10s %10s %10s
      \%10\mathrm{s} ", 'r ', 'u11 ', 'u21 ', 'u31 ', 'u12 ', 'u22 ', 'u32 ', '
      u13', 'u23', 'u33')
49 disp([(1:k+1), tab])
```

Scilab code Exa 10.4 Poisson Equation using Liebmann Iterative Method

```
1 //Example 10.4
2
3 clc
4 clear
5
6 h = 1/3;
7 x = 0:h:1;
8 y = 0:h:1;
9 m = length(y);
10 n = length(x);
11 u = zeros(m,n);
12 u(m, 2:n-1) = 1;
13
14 \text{ kf} = 5;
15 tab = zeros(kf,(m-2)*(n-2));
16 \quad for \quad k = 1:kf
```

```
17
       row = [];
18
       for j = 2:n-1
            for i = 2:m-1
19
                constant = 10/9*(5 + 1/9*(i-1)^2 +
20
                   1/9*(j-1)^2);
21
                u(j,i) = (u(j,i-1) + u(j,i+1) + u(j-1,i)
                    + u(j+1,i) + constant) / 4;
22
            end
23
            row = [row u(j,2:m-1)];
24
       end
       row = round(row*10^4)/10^4;
25
26
       tab(k,:) = row;
27 end
  mprintf("%4s %9s %9s %9s %9s", 'r', 'u11', 'u21', 'u12',
      'u22')
29 disp([(1:k)' tab])
```

Scilab code Exa 10.5 Laplace Equation using Liebmann Over Relaxation Method

```
1 //Example 10.5
2
3 clc
4 clear
5
6 x = 0:4;
7 y = 0:4;
8 m = length(y);
9 n = length(x);
10 u = zeros(m,n);
11 u(m,:) = x.^3;
12 u(:,n) = 16*y';
13 u0 = u;
14
15 I = ceil(m/2);
```

```
16 J = ceil(n/2);
17
18 \ u(J,I) = (u0(J-2,I-2) + u0(J-2,I+2) + u0(J+2,I-2) +
       u0(J+2,I+2)) / 4;
19
20 \text{ for } j = [J-1 \ J+1]
        for i = [I-1 I+1]
21
              u(j,i) = (u(j-1,i-1) + u(j-1,i+1) + u(j+1,i)
22
                 -1) + u(j+1,i+1)) / 4;
23
         end
24 end
25
26 	 j1 = [J-1 	 J 	 J 	 J+1];
27 	 i1 = [I 	 I-1 	 I+1 	 I];
28 \text{ for } k = 1:4
        i = i1(k);
29
30
        j = j1(k);
        u(j,i) = (u(j,i-1) + u(j,i+1) + u(j-1,i) + u(j-1,i)
31
            +1,i)) / 4;
32 end
33 disp(u,"u:")
34
35 p = m-1;
36 q = n-1;
37 c = \cos(\%pi/p) + \cos(\%pi/q);
38 \text{ w} = 4/(2+\text{sqrt}(4-c^2));
39 \text{ w} = \text{round}(\text{w}*10^3)/10^3;
40
41 \text{ kf} = 10;
42 tab = zeros(kf+1,(m-2)*(n-2));
43 \text{ row} = [];
44 \text{ for } j = 2:n-1
        row = [row u(j, 2:m-1)];
45
46 \, \text{end}
47 \text{ tab}(1,:) = row;
48 \text{ for } k = 1:kf
        row = [];
49
        for j = 2:n-1
50
```

```
for i = 2:m-1
51
               u(j,i) = (u(j,i-1) + u(j,i+1) + u(j-1,i)
52
                   + u(j+1,i)) *w/4 + (1-w)*u(j,i);
53
           end
54
           row = [row u(j,2:m-1)];
55
       end
       row = round(row*10^4)/10^4;
56
57
       tab(k+1,:) = row;
58 end
59 mprintf("\n\n%8s %9s %10s %10s %9s %10s %10s %9s %9s
     ",'u11','u21','u31','u12','u22','u32','u13','u23','u33')
60 disp(tab)
```

Chapter 11

Hyperbolic Partial Differential Equations

Scilab code Exa 11.1 Initial Value Problem using Wave Equation

```
1 //Example 11.1
2
3 clc
4 clear
6 \text{ delx} = 1/8;
7 \text{ delt} = 1/8;
8 x = 0:delx:1;
9 t = 0:delt:1;
10 m = length(x);
11 n = length(t);
12 u = zeros(n,m);
13 u(1,:) = sin(%pi*x);
14 N = 1/delx;
15 r = delt/delx;
16
17 \text{ for } j = 2:n
        for i = 2:m-1
18
            if j == 2 then
```

```
u(j,i) = (2*(1-r^2)*u(j-1,i) + r^2*(u(j-1,i))
20
                   -1,i-1) + u(j-1,i+1))) /2;
21
            else
                u(j,i) = 2*(1-r^2)*u(j-1,i) + r^2*(u(j-1,i))
22
                   -1,i-1) + u(j-1,i+1) - u(j-2,i);
23
            end
24
       end
25 end
26 \ u = round(u*10^4)/10^4;
27 mprintf("\n\n%6s %9s %9s %8s %s %8s %10s %10s %9s
      \%7s \%s", 't', 'x = 0.0', 'x = 0.125', 'x = 0.25', 'x =
       0.375', 'x = 0.5', 'x=0.625', 'x = 0.75', 'x=0.875',
      x = 1.0, n, n;
28 disp([(0:1/8:1), u (0:n-1),]);
29 mprintf("\n\n");
30 t = [1/2 1];
31 \text{ for } i = 1:length(t)
32
       Ex(i,:) = sin(%pi*x) * cos(%pi*t(i));
33 end
34 \text{ Ex} = \text{round}(\text{Ex}*10^4)/10^4;
35 disp("At t = 1/2:")
36 disp(u(find(x==1/2),:), "Computed Solution:")
37 disp(Ex(1,:), "Actual Solution:")
38
39 disp("At t = 1:")
40 disp(u(find(x==1),:), "Computed Solution:")
41 disp(Ex(2,:), "Actual Solution:")
```

Scilab code Exa 11.2 Initial Value Problem using Wave Equation

```
1 //Example 11.2
2
3 clc
4 clear
5
```

```
6 \text{ delx} = 0.2;
7 \text{ delt} = 0.2;
8 x = 0:delx:1;
9 t = 0:delt:0.8;
10 m = length(x);
11 n = length(t);
12 u = zeros(n,m);
13 u(1,:) = x^2;
14 \ u(:,m) = 1+t';
15 N = 1/delx;
16 r = delt/delx;
17
18 \text{ for } j = 2:n
        for i = 2:m-1
19
20
             if j == 2 then
                  u(j,i) = (2*(1-r^2)*u(j-1,i) + r^2*(u(j-1,i))
21
                     -1,i-1) + u(j-1,i+1)) + 2*delt) /2;
22
             else
                  u(j,i) = 2*(1-r^2)*u(j-1,i) + r^2*(u(j-1,i))
23
                     -1,i-1) + u(j-1,i+1) - u(j-2,i);
24
             end
25
        end
26 \, \text{end}
27 u = round(u*10^4)/10^4;
28 mprintf("\n\%5s \%9s \%7s \%7s \%s \%6s \%6s", 't', 'x = 0.0'
       , \dot{x} = 0.2, \dot{x} = 0.4, \dot{x} = 0.6, \dot{x} = 0.8, \dot{x} = 1.0
       ');
29 disp([t', u])
```