Memoria de Series Temporales

Enrique Sayas Bailach y Carlos Gila Blanco

2023-10-20

Introducción

Los dos datasets utilizados han sido descargados desde Kaggle.

El utilizado para la serie temporal con tendencia es annual_gold_rate, que muestra el valor anual del oro desde 1980 hasta 2022 en Dirham de los Emiratos Árabes Unidos.

Por otra parte, el dataset utilizado para la serie temporal con tendencia y estacionalidad es HospitalityEmployees, que muestra el número de empleados en la hostelería en California desde enero de 1990 hasta diciembre de 2018.

Carga de librerías

```
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
     method
##
     as.zoo.data.frame zoo
library(readr)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
```

```
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
```

Serie temporal con tendencia

Importación de los datos

```
gold <- read_csv("Datos/annual_gold_rate.csv",
    col_types = cols(Date = col_date(format = "%Y-%m-%d")))</pre>
```

Creación de la serie temporal

```
attach(gold)
gold_ts <- ts(AED, start=c(1980), frequency=1)
plot(gold_ts, ylab = "Gold Value (AED)")</pre>
```


Se puede observar que hay una tendencia.

Serie temporal con tendencia

En base a la evolución temporal del valor del oro, se puede observar que existe una tendencia pero no una estacionalidad.

Por tanto, el mejor modelo de suavizado exponencial será el modelo de Host.

Las ecuaciones de observación y actualización del modelo son las siguientes:

$$\hat{x}_{t} = L_{t-1} + T_{t-1} + \epsilon_{t}, \epsilon_{t} \sim N(0, \sigma^{2})$$

$$L_{t} = \alpha \cdot x_{t} + (1 - \alpha) \cdot (L_{t-1} + T_{t-1})$$

$$T_{t} = \beta \cdot (L_{t} - L_{t-1}) + (1 - \beta) \cdot T_{t-1}$$

Ecuación de predicción:

$$\hat{x}_{n+k} = L_n + k \cdot T_n$$

Creación del modelo

```
gold_holt <- HoltWinters(gold_ts, gamma = FALSE)</pre>
```

Visualización de los coeficientes y los parámetros

```
gold_holt$coefficients

## a b
## 6611.7100 141.3085

gold_holt$alpha

## alpha
## 1
gold_holt$beta
```

beta ## 0.6672362

Al ser $\alpha = 1$, sólo se tendrá en cuenta el valor anterior para calcular el nivel del valor siguiente.

A partir de los coeficientes obtenidos calculamos las ecuaciones de actualización:

$$L_t = x_t$$

$$T_t = 0.6672362 \cdot (L_t - L_{t-1}) + (1 - 0.6672362) \cdot T_{t-1}$$

Y la ecuación de predicción:

$$\hat{x}_{n+k} = 6611.71 + k \cdot 141.3085$$

Cálculo de la bondad del ajuste

```
fitval_gold <- fitted(gold_holt)</pre>
tail(fitval_gold, 10)
## Time Series:
## Start = 2013
## End = 2022
## Frequency = 1
##
            xhat
                   level
## 2013 6736.377 6130.18 606.19713
## 2014 4753.495 5183.46 -429.96532
## 2015 4153.513 4651.52 -498.00651
## 2016 3834.546 4260.90 -426.35435
                            80.49448
## 2017 4674.664 4594.17
## 2018 4659.736 4617.43
                            42.30557
## 2019 4701.048 4659.14
                          41.90818
## 2020 5433.078 5114.98 318.09846
## 2021 7529.487 6499.70 1029.78691
## 2022 7020.103 6606.30 413.80323
rmse <- sqrt(mean((gold_ts - fitval_gold[,1])^2))</pre>
rmse
## [1] 431.5184
mape <- 100*mean(abs(gold_ts-fitval_gold[,1])/gold_ts)</pre>
mape
## [1] 9.892781
```

A partir del MAPE se puede concluir que se tiene un error medio del 9.89%.

Representación de la serie real frente a la serie ajustada

```
plot(gold_holt)
```

Holt-Winters filtering

En el gráfico se puede observar el error medio del 9.89% respecto a la serie original.

Predicción para h=2

```
pred_gold <- predict(gold_holt,2)</pre>
```

Representación de la predicción junto a la serie

```
pred <- predict(gold_holt,n.ahead=4,prediction.interval=TRUE,level=0.95)
plot(gold_holt, pred)</pre>
```

Holt-Winters filtering

Serie temporal con tendencia + estacionalidad

Importación y Adecuación de la serie

Representación de la serie temporal

```
## The following object is masked from gold:
##
## Date

HospitalityEmployees_ts <- ts(Employees, start=c(1990,1), end=c(2018,12), frequency=12)
HospEmp2010_ts <- window(HospitalityEmployees_ts, start = c(2010,1))</pre>
```

plot(HospEmp2010_ts, ylab = "Hospitality Employees")

Descripción de la serie

```
plot(decompose(HospEmp2010_ts, type="additive"))
```

Decomposition of additive time series

En base a la evolución temporal del número de empleados en la hostelería, se puede observar que existe una tendencia y una estacionalidad.

Comparación de los modelos

Modelo Holt-Winters con estacionalidad aditiva

```
emp_ad <- HoltWinters(HospEmp2010_ts, seasonal = "additive")
fit_emp_ad <- fitted(emp_ad)

#RMSE
rmse_ad <- sqrt(mean((HospEmp2010_ts - fit_emp_ad[,1])^2))
rmse_ad</pre>
```

[1] 6.192158

```
#MAPE
mape_ad <- 100*mean(abs(HospEmp2010_ts-fit_emp_ad[,1])/HospEmp2010_ts)
mape_ad</pre>
```

[1] 0.2809599

Modelo Holt-Winters con estacionalidad multiplicativa

```
emp_mult <- HoltWinters(HospEmp2010_ts, seasonal = "multiplicative")
fit_emp_mult <- fitted(emp_mult)

#RMSE
rmse_mult <- sqrt(mean((HospEmp2010_ts - fit_emp_mult[,1])^2))
rmse_mult</pre>
```

[1] 5.668459

```
#MAPE
mape_mult <- 100*mean(abs(HospEmp2010_ts-fit_emp_mult[,1])/HospEmp2010_ts)
mape_mult</pre>
```

[1] 0.2562788

Comparación entre los modelos Holt-Winters aditivo y multiplicativo en base a los errores RMSE y MAPE

Holt-Winters	RMSE	MAPE
Additive	6.192158	0.2809599
Multiplicative	5.668459	0.2562788

El mejor modelo de suavizado exponencial será el modelo de Host-Winters con estacionalidad aditiva pues la diferencia en el RMSE entre ambos modelos es muy pequeña, siendo más fácil la implementación del modelo con estacionalidad aditiva.

Las ecuaciones de observación y actualización del modelo son las siguientes:

$$\hat{x}_{t} = L_{t-1} + T_{t-1} + S_{t-c} + \epsilon_{t}, \epsilon_{t} \sim N(0, \sigma^{2})$$

$$L_{t} = \alpha \cdot (x_{t} - S_{t-c}) + (1 - \alpha) \cdot (L_{t-1} + T_{t-1})$$

$$T_{t} = \beta \cdot (L_{t} - L_{t-1}) + (1 - \beta) \cdot T_{t-1}$$

$$S_t = \gamma \cdot (x_t - L_t) + (1 - \gamma) \cdot S_{t-c}$$

Y la ecuación de predicción:

$$\hat{x}_{n+k} = L_n + k \cdot T_n + S_{n+k-c}$$

Creación del modelo

```
emp_fit <- HoltWinters(HospEmp2010_ts, seasonal = "additive")</pre>
```

Visualización de los coeficientes y los parámetros

emp_fit\$coefficients

```
##
                          b
                                      s1
                                                   s2
                                                                s3
                                                                             s4
             a
                                                        -9.900944
## 2009.266255
                   4.174587
                             -50.815982
                                          -25.284286
                                                                      8.480798
##
                         s6
                                      s7
                                                                s9
                                                                            s10
            s5
##
     21.666781
                  31.274928
                              32.127005
                                           26.301510
                                                         1.009574
                                                                     -3.544818
##
           s11
                        s12
     -8.699546
                  -9.266255
##
```

emp_fit alpha

```
## alpha
## 0.6583277
```

emp_fit\$beta

```
## beta
## 0.05505944
```

emp_fit\$gamma

```
## gamma
## 1
```

Al ser $\beta=0.055$ la tendencia es constante y como $\gamma=1$, la estacionalidad la calculará a través de la diferencia entre el valor de x_t y L_t .

A partir de los coeficientes obtenidos calculamos las ecuaciones de actualización:

$$L_t = 0.6583277 \cdot (x_t - S_{t-12}) + (1 - 0.6583277) \cdot (L_{t-1} + T_{t-1})$$

$$T_t = 0.05505944 \cdot (L_t - L_{t-1}) + (1 - 0.05505944) \cdot T_{t-1}$$

$$S_t = x_t - L_t$$

Y la ecuación de predicción

$$\hat{x}_{n+k} = 2009.266255 + k \cdot 4.174587 + S_{n+k-12}$$

Cálculo de la bondad del ajuste

```
fitval_emp <- fitted(emp_fit)
tail(fitval_emp, 10)</pre>
```

```
## Kar 2018 1964.329 1969.284 4.149945 -9.1051677
## Apr 2018 1984.679 1971.901 4.065523 8.7129286
## May 2018 2001.345 1975.519 4.040897 21.7845324
```

```
## Jun 2018 2014.448 1979.333 4.028405 31.0862977
## Jul 2018 2018.811 1983.725 4.048416 31.0373608
## Aug 2018 2021.033 1989.873 4.164014 26.9962024
## Sep 2018 2000.808 1992.698 4.090316 4.0189341
## Oct 2018 1994.962 1990.990 3.771060 0.2006361
## Nov 2018 1978.181 1987.545 3.373715 -12.7378949
## Dec 2018 1989.725 1998.700 3.802133 -12.7770725
```

Representación de la serie real frente a la serie ajustada

```
plot(emp_fit)
```

Holt-Winters filtering

Predicción para h=c

```
pred_hosp <- predict(emp_fit,12)</pre>
```

Representación de la predicción junto a la serie

```
pred <- predict(emp_fit,n.ahead=12,prediction.interval=TRUE,level=0.95)
plot(emp_fit, pred)</pre>
```

Holt-Winters filtering

