Supervised learning

Aprendizaje Automático para la Robótica Máster Universitario en Ingeniería Industrial

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems

Bibliography

- Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. O'Reilly. 2020
- Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

Table of Contents

- I. k-Nearest Neighbors
 - kNN classification
 - kNN regression
 - Scikit-Learn
 - Summary
- 2. Linear models
 - Ordinary least squares
 - Ridge regression
 - Lasso regression
 - ElasticNet
 - Linear models for classification
 - Scikit-Learn
 - Summary
- 3. Naive Bayes Classifiers
 - Scikit-Learn
 - Summary

- 4. Decission Trees
 - Scikit-Learn
 - Summary
- 5. Ensembles of Decision Trees
 - Scikit-Learn
 - Summary
- 6. Support Vector Machines
 - Kernelized Support Vector Machines
 - Support Vector Machines
 - Summary
- 7. A
 - **■** b
 - A: Scikit-Learn
 - A: Summary
 - ARIMA

kNN classification (I)

Diagrama 1-NN y 3-NN.

kNN classification (II)

Diagrama frontera para varios valores de K

kNN regression

Scikit-learn

k-Nearest Neighbors

TODO

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

• linkage: 'ward', 'complete', 'average', 'single'

Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

k-Nearest Neighbors

Summary

Hyperparameters Advantages Disadvantages

Linear models

Linear regression (I)

Lineal regression assumes a linear relationship among variables

- This limitation can be easely overcome
- Surprisingly good results in high dimensional spaces

Lineal regression

$$y = a_0 + a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

Linear models (II)

Several methods to fit coefficients

- Ordinary Least Squares (OLS)
- Generalized Least Squares (GSL)
- Weighted Least Squares (WLS)
- Generalized Least Squares with AR Covariance Structure (GLSAR)

Regularization: Term that penalizes complexity

- L1 (Lasso regression)
- L2 (Ridge regression)
- ElasticNet: L1 and L2

Lasso $\lambda \sum_{i=1}^{n} \beta_{i}^{2}$

$$\lambda \sum_{i=1}^{n} |\beta_{i}|$$

ElasticNet

$$\alpha \sum_{j}^{n} \beta_{j}^{2} + (1 - \alpha) \sum_{j}^{n} |\beta_{j}|$$

Linear models

Scikit-learn

TODO

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

• linkage: 'ward', 'complete', 'average', 'single'

Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

Nearest Neigbbors **Linear models** Naive Bayes Classifiers Decission Trees Ensembles of Decision Trees Support Vector Machines ○○○○ ○○○ ○○○ ○○○

Linear models

Summary

Hyperparameters Advantages Disadvantages

Naive Bayes Classifiers

Naive Bayes Classifiers

Scikit-learn

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

- linkage: 'ward', 'complete', 'average', 'single'
- Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

earest Neighbors Linear models **Naive Bayes Classifiers** Decission Trees Ensembles of Decision Trees Support Vector Machines
1000 000 000 000

Naive Bayes Classifiers

Summary

Hyperparameters Advantages Disadvantages

Decission Trees

Scikit-learn

Constructor arguments:

- linkage: 'ward', 'complete', 'average', 'single'
- Methods:fit(),fit_predict()

Attributes:

- n clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

earest Neighbors Linear models Naive Bayes Classifiers **Decission Trees** Ensembles of Decision Trees Support Vector Machines

○○○○ ○○○ ○○○ ○○○ ○○○ ○○○

Decission Trees

Summary

Hyperparameters Advantages Disadvantages

Ensembles of Decision Trees

Ensembles of Decision Trees

Ensembles of Decision Trees: Scikit-learn

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

- linkage: 'ward', 'complete', 'average', 'single'
- Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

carest Neighbors Linear models Naive Bayes Classifiers Decission Trees Ensembles of Decision Trees Support Vector Machines

○○○ ○○○ ○○○ ○○○ ○○○

Ensembles of Decision Trees

Summary

Hyperparameters Advantages Disadvantages

Support Vector Machines

Support Vector Machines

Kernelized Support Vector Machines

Scikit-Learn

Support Vector Machines

Scikit-learn

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

- linkage: 'ward', 'complete', 'average', 'single'
- Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

Support Vector Machines

Summary

Hyperparameters Advantages Disadvantages

A

I

B: Scikit-learn

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

- linkage: 'ward', 'complete', 'average', 'single'
- Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

Nearest Neighbors Linear models Naive Bayes Classifiers Decission Trees Ensembles of Decision Trees Support Vector Machines
0000 000 000 000

A

B: Summary

Hyperparameters Advantages Disadvantages

Algorithms

ARIMA (I)

AR: Autoregressive model

- Current observation depends on the last p observations
- Long term memory

MA: Moving Average model

- Current observation linearly depends on the last q innovations
- Short term memory

ARMA model = AR + MA

• ARMA(p, q): Two hyperparameters, p and q

AR(p)

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-1} + \epsilon_t$$

MA(q)

$$X_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q}$$

 Linear models
 Naive Bayes Classifiers
 Decission Trees
 Ensembles of Decision Trees
 Support Vector Machines

 0000
 000
 000
 000
 0000

Algorithms

ARIMA (II)

ARIMA = AR + i + MA (AR integrated MA)

- ARIMA(p, d, q)
- Three integer parameters: p, q and d (in practice, low order models)

autoarima: search over p, q and d

