#### DS 4300

# Introduction to the Graph Data Model

Mark Fontenot, PhD Northeastern University

# What is a Graph Database

- Data model based on the graph data structure
- Composed of nodes and edges
  - edges connect nodes
  - each is uniquely identified
  - each can contain properties (e.g. name, occupation, etc)
  - supports queries based on graph-oriented operations
    - traversals
    - shortest path
    - lots of others
  - Each node/edge uniquely identifiable
  - Own query language

# Where do Graphs Show up?

#### - Social Networks

- yes... things like Instagram,
- but also... modeling social interactions in fields like psychology and sociology

#### - The Web

- it is just a big graph of "pages" (nodes) connected by hyperlinks (edges)
- Chemical and biological data
  - systems biology, genetics, etc.
  - interaction relationships in chemistry

# Basics of Graphs and Graph Theory

# What is a graph?

### **Labeled Property Graph**

- Composed of a set of node (vertex) objects and relationship (edge) objects
- Labels are used to mark a node as part of a group
- Properties are attributes (think KV pairs) and can exist on nodes and relationships
- Nodes with no associated relationships are OK. Edges not connected to nodes are <u>not</u> permitted.



#### **Paths**

A *path* is an ordered sequence of nodes connected by edges in which no nodes or edges are repeated.



Ex: 
$$1 \rightarrow 2 \rightarrow 6 \rightarrow 5$$

Not a path:

$$1 \rightarrow 2 \rightarrow 6 \rightarrow 2 \rightarrow 3$$

# Flavors of Graphs

**Connected (vs. Disconnected)** – there is a path between any two nodes in the graph

**Weighted (vs. Unweighted)** – edge has a weight property (important for some algorithms)

**Directed (vs. Undirected)** – relationships (edges) define a start and end node

Acyclic (vs. Cyclic) – Graph contains no cycles

## Connected vs. Disconnected



# Weighted vs. Unweighted



## Directed vs. Undirected



# Cyclic vs Acyclic



# Sparse vs. Dense

Adjacency list for sparse data, matrix for dense Undirected graphs only need half the adjacency matrix



- Rooted tree
  - Root node and no cycles
- Binary tree
  - Up to 2 child nodes and no cycles

Spanning Tree

- Subgraph of all nodes but not all relationships and no cycles
- Lowest total weight for spanning tree on weighted edges, not just shortest







**Trees** 

Rooted Tree Root node and no cycles Binary Tree Up to 2 child nodes and no cycles Spanning Tree Subgraph of all nodes but not all relationships and no cycles

# Types of Graph Algorithms - Pathfinding

### - Pathfinding

- finding the shortest path between two nodes, if one exists, is probably the most common operation
- "shortest" means fewest edges or lowest weight
- Average Shortest Path can be used to monitor efficiency and resiliency of networks.
- Minimum spanning tree, cycle detection, max/min flow... are other types of pathfinding
- Fewest edges for unweighted, lowest weight for weighted
- Good for identifying resiliency and bottlenecks

#### BFS vs DFS

#### BFS - visits nearest neighbors first

DFS - walks down each branch first



### **Shortest Path**

#### Spanning tree - sum of edge weights minimized

#### Shortest path

- Shortest path between 2 nodes, calculated by relationship weights all -pairs shortest paths
- Optimized calculations for shortest paths from all nodes to all other nodes Single source shortest path 8

Shortest path from a root node to all other nodes

Minimum spanning tree

Shortest path connecting all nodes

$$(A, E) = 5 \text{ via } D$$

$$(B, C) = 6$$

And so on...





#### Shortest Path

Calculated by

relationship weights

Shortest path between 2 nodes (A to C shown)

#### All-Pairs Shortest Paths

Optimized calculations for shortest paths from all nodes to all other nodes

Single Source Shortest Path

Shortest path from a root node (A shown) to all other nodes

Minimum Spanning Tree

Shortest path connecting all nodes (A start shown)

# Types of Graph Algorithms - Centrality & Community Detection

### - Centrality

- determining which nodes are "more important" in a network compared to other nodes
- EX: Social Network Influencers?

#### - Community Detection

 evaluate clustering or partitioning of nodes of a graph and tendency to strengthen or break apart



PageRank: SEO initially focused on how many pages pointed to the searched page (could be inflated by creating dummy websites): optimized into how many pages point to those pages (layered approach)

# Some Famous Graph Algorithms

- **Dijkstra's Algorithm** single-source shortest path algo for positively weighted graphs
- A\* Algorithm Similar to Dijkstra's with added feature of using a heuristic to guide traversal
- PageRank measures the importance of each node within a graph based on the number of incoming relationships and the importance of the nodes from those incoming relationships

# Neo4j

- A Graph Database System that supports both transactional and analytical processing of graph-based data
- Relatively new class of no-sql DBs
- Considered schema optional (one can be imposed)
- Supports various types of indexing
- ACID compliant
- Supports distributed computing
- Similar: Microsoft CosmoDB, Amazon Neptune

