北京建筑大学

信息与计算科学专业 实验任务书指导书

课程名称 <u>《数据分析》</u>实验名称: <u>回归分析</u>实验地点:<u>基 C-423</u> 指导教师 <u>王恒友</u> 学生姓名: 李金哲 学号: 201707010119 实验日期: 2020.5.22 成绩:

【实验目的】

- (1) 熟悉数据的回归分析方法:
- (2) 熟悉撰写数据分析报告的方法:
- (3) 熟悉数据分析软件 SPSS, 并运用其完成数据回归分析。

【实验要求】

根据题目的具体要求、完成实验报告。

【实验内容】

- 1、某医院为了解病人对医院工作的满意程度 Y 和病人的年龄 X1、病情的严重程度 X2 和病人的忧虑程度 X3 之间的关系,随机调查了该医院的 30 位病人,得数据如表(见附近 data. txt)所示。
- (1) 拟合线性回归模型 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$, 通过残差分析考察模型及有关误差分布正态性假定的合理性:
- (2) 用逐步回归法选择最优回归方程:
- (3) 对选择的最优回归方程做残差分析,与(1)中的相应结果比较有何变化。

【分析报告】

实验步骤

1) 分析 -> 回归 -> 线性 (图 1-1)

图 1-1 线性分析选项

2) 将 v 放入因变量, x1、x2、x3 放入块,, 方法选择输入(图 1-2)

图 1-2 具体选项 1

3) 选择统计,将置信区间勾选;然后点击图将 ZPRED 和 ZRESID 拖入,勾选直方图和正态概率

结果分析

表 1-1 检验结果

ANOVA*											
模型		平方和	自由度	均方	F	显著性					
1	回归	4559. 322	3	1519. 774	14. 810	. 000 ^b					
	残差	2668. 044	26	102. 617							
	总计	7227. 367	29								
a. 因变量: y											
b. 预测	b. 预测变量: (常量), x3, x1, x2										

表1-2 系数表

系数°

· · · · · · · · · · · · · · · · · · ·									
未标准化系数			标准化系数			B 的 95.0% 置信区间			
模型		В	标准误差	Beta	t	显著性	下限	上限	
1	1 (常量)		23. 751		6. 485	. 000	105. 213	202. 855	
	x1	-1. 231	. 249	652	-4. 942	. 000	-1. 743	719	
	x2	436	. 729	114	598	. 555	-1. 935	1.063	
	x3	-8. 933	10. 362	159	862	. 396	-30. 232	12. 365	

a. 因变量: y

由表 1-1 可知,回归方程显著性检验的 F 统计量的观测值为 14.810,其对应的概率 P-值近似为 0。若显著性水平 a 为 0.05,因概率 P值小于 a,拒绝回归方程显著性检验的原假设,即回归系数不同时为 0,解释变量与被解释变量间存在显著的线性关系,选择线性模型具有合理性。

根据表1-2,可以得到回归方程为: $y = 154.034 - 1.231 * X_1 - 0.436 * X_2 - 8.933 * X_3$

但是若显著性水平a为0.05, x2的概率p值0.555, 大于a; x1, x3的概率p值小于a。故可以认为x2接受原假设,即x2和y没有显著的线性关系;而x1、x3拒绝原假设,即x1、x3和y存在显著的线性关系。能够判断该回归方程不是最优解

表 1-3 共线性诊断

共线性诊断*										
				方差比例						
模型	维	特征值	条件指标	(常量)	x1	x2	x3			
1	1	3. 964	1. 000	. 00	. 00	. 00	. 00			
	2	. 028	11. 971	. 03	. 95	. 01	. 01			

	3	. 007	23. 812	. 41	. 02	. 00	. 44	
	4	. 002	48. 491	. 56	. 03	. 99	. 55	
a. 因变量: y								

图 1-4 直方图 图1-5正正态p-p图

根据表1-3共轭线性诊断,能够得出最大特征值为3.964,其余依次快速减小,可以认为多重共线性较弱。

由图1-5的正态性图像结果图。可以看出,参数围绕准基线存在一定规律性。

二

实验步骤

仅需要将图1-2中的输入替换成步进即可(图2-1),其他的还如图1-1到图1-3

图 2-1 更新后的图1-2

结果分析

	农21 线位4户为利温术												
系数"													
							B 的 95.0	0% 置信区					
		未标准	化系数	标准化系数			间		共线性统计				
模型		В	标准误差	Beta	t	显著性	下限	上限	容差	VIF			
1	(常量)	118. 835	9. 179		12. 946	. 000	100. 032	137. 638					
	x1	-1, 433	. 232	759	-6, 170	. 000	-1. 908	957	1. 000	1. 000			

表2-1 线性回归分析结果

根据表2-1可以得出最优方程为

 $Y = 118.835 - 1.433 * X_1$

Ξ

a. 因变量: y

结果分析

图 3-1 标准化回归期望值

根据图3-1图像,表明在舍弃 X_2 和 X_3 后,不存在明显的异方情况,即问题二得出的方程Y = 118.835 - 1.433 * X_4 是最终的回归方程。而且当 X_4 提高1时,y评价改变1.433个变化量