	ous chercherons aussi à comprendre (voir dernière question): • les bonnes pratiques pour le défenseur, i.e. la personne cherchant à générer/construire un système de génération de mots de passe. • les bonnes pratiques pour l'attaquant, i.e. la personne essayant de trouver le mot de passe.
: in	est important de commenter vos réponses, en utilisant des cellules markdown mport numpy as np rom numpy import genfromtxt rom pandas import read_csv mport pandas as pd
M : mc	<pre>lodèle monogramme (une lettre) : le générateur génère des mots de passe à partir des occurences des monogrammes • On récupére des données composées de [lettre,frequence d'apparition de la lettre] (voir fichier csv pour comma-separated-value) conogramme = pd.read_csv('monogramme.csv') creq_mono = (monogramme['frequency']).values</pre>
16	letters_mono = (monogramme['letters']).values rint(monogramme) # fréquences sont déja triées letters frequency
4 5 6 7 8 9 10 11	I 0.0723 R 0.0681 U 0.0605 L 0.0589 O 0.0534 D 0.0360 L C 0.0332
13 14 15 16 17 18 19 20	Q 0.0134 V 0.0127 G G 0.0110 F 0.0106 B B 0.0080 H 0.0064 O X 0.0054
	2 J 0.0019 3 Z 0.0007 4 K 0.0000
0 1 2 3	letters frequency E 0.1776 S 0.0823 A 0.0768
4	T 0.0730 crire une fonction qui calcule l'entropie à partir d'un vecteur constitué de probabilités empiriques (note, il est important de bien <i>gérer</i> le cas ou la probabilité est nulle). ef entropie(freq): # Filtrer les probabilités nulles pour éviter les erreurs de calcul
Q:	<pre>proba_non_nulles = freq[freq > 0] # Calcul de l'entropie ent = -np.sum(proba_non_nulles * np.log2(proba_non_nulles)) return ent : en utilisant ce modèle probabiliste pour générer un mot de passe, quelle est l'entropie d'un mot de passe de 8 lettres ?</pre>
pr L' Q:	ntropie_mono_8 = entropie(monogramme['frequency'])*8 rint(f"L'entropie d'un mot de passe de 8 lettres pour les monogrammes est de : {entropie_mono_8:.3f} bits.") d'entropie d'un mot de passe de 8 lettres pour les monogrammes est de : 31.676 bits. de l'aide de la fonction np.random.choice(), estimer le temps nécessaire en secondes pour tirer 100 000 mots de passes en utilisant ce générateur ? (note: ici le tirage n'est pas forcemment réali ar aléatoire, mais l'idée est surtout de mesurer le temps minimal nécessaire pour générer N mots de passes).
	Génère plusieurs mots de passe en utilisant des monogrammes de manière optimisée. ef generer_mdp_mono(n_lettres, monogrammes, frequences, nb_mdp): # Génération de tous les monogrammes nécessaires en une seule opération all_monogrammes = np.random.choice(monogrammes, n_lettres * nb_mdp, p=frequences) # Regroupement des monogrammes en mots de passe mots_passe = [''.join(all_monogrammes[i:i + n_lettres]) for i in range(0, n_lettres * nb_mdp, n_lettres)] return mots_passe
t mo t_ pr	o_lettres = 8 o_mdp = 100000 = time.time() ots_de_passe_mono = generer_mdp_mono(8, letters_mono, freq_mono, nb_mdp) _mono_100000 = time.time() - t rint("Exemple de 10 mots de passes de 8 lettres : ",mots_de_passe_mono[:10]) rint(f"Temps total pour générer 100 000 mots de passe de 8 lettres (monogrammes): {t_mono_100000:.3f} secondes.")
Ex Te On	rint("On serait beaucoup plus efficace et rapide si on ne faisait pas le .join mais les mots de passes seraient moins réalistes dans ce cas.") kemple de 10 mots de passes de 8 lettres : ['AAESIEET', 'JVAALQSF', 'ENEORPEO', 'PNRUSACL', 'ECEAIEAU', 'DSMADDTU', 'UEROEESB', 'ESLDAHLU', 'EEIACELE', 'IAINFemps total pour générer 100 000 mots de passe de 8 lettres (monogrammes): 0.485 secondes. In serait beaucoup plus efficace et rapide si on ne faisait pas le .join mais les mots de passes seraient moins réalistes dans ce cas. Tous definissons l'"entropie du devin" G (guessing entropie) comme le nombre moyen d'essais successif nécessaires pour trouver un mot de passe à partir de notre générateur. On peut montre $t \ge 2^H/4 + 1$ où $t \ge 2^H/4 + 1$ o
: G_ pr	calculer le minorant de G pour ce modèle _minorant_mono = 2^** entropie_mono_8 / 4 + 1 rint(f"Le minorant de G pour les monogrammes est d'environ {G_minorant_mono:.2f} essais.") e minorant de G pour les monogrammes est d'environ 857904864.68 essais.
Q:	En moyenne, un minimum d'environ 858 millions d'essais successifs seraient nécessaires pour trouver un mot de passe généré par ce modèle, en utilisant une stratégie d'attaque optimale. Ce calcul illustre la difficulté théorique de deviner un mot de passe généré par ce système, en se basant sur son entropie. combien de temps cela prendra-t-il pour trouver un mot de passe si l'on suppose qu'il est possible de prendre le générateur codé précédemment ? (en minutes)
# te	Calcul du temps nécessaire pour trouver un mot de passe en se basant sur le minorant de G et sur le temps pris pour générer 100000 mots de passe Estimation du temps pour un seul mot de passe emps_1_mdp = t_mono_100000 / nb_mdp Temps total estimé pour trouver un mot de passe (en secondes) emps_total_pour_trouver_mdp = G_minorant_mono * temps_1_mdp
pr Te	Convertir le temps en minutes emps_total_pour_trouver_mdp_minutes = temps_total_pour_trouver_mdp / 60 rint(f"Temps total estimé pour trouver un mot de passe (monogrammes) : {temps_total_pour_trouver_mdp_minutes:.2f} minutes") emps total estimé pour trouver un mot de passe (monogrammes) : 69.40 minutes n propose maintenant d'utiliser un modèle plus évolué qui est construit à partir de la probabilité conjointe de deux lettres successives (bigramme)
fr 1e Q:	igramme = read_csv('bigramme.csv', keep_default_na=False) req_bi = (bigramme['frequency']).values etters_bi = (bigramme['letters']).values : Quelles sont les 5 couples de lettres les plus représentés ? Contrairement aux monogrames, les fréquences ne sont pas triés igramme.sort_values(by=['frequency'], ascending=False).head()
12 11 8	letters frequency requency
: #	
pr	rint(f"L'entropie d'un mot de passe de 8 lettres est de : {entropie_bi_8:.3f} bits.") l'entropie d'un mot de passe de 8 lettres est de : 30.142 bits. Pourquoi cette entropie est-elle inférieure à celle du modèle construit sur des monogrammes ? Quelle propriété théorique de l'entropie peut justifier ce constat ?
	Les monogrammes, sélectionnés indépendamment, maximisent la variabilité et l'imprévisibilité, conduisant à une entropie élevée. En revanche, les bigrammes, avec leur dépendance entre lettres consécutives, présentent une variabilité réduite. Bien que les bigrammes offrent plus de combinaisons et une complexité accrue, la distribution inégale des probabilités (certains bigrammes étant plus fréquents que d'autres) diminue l'entropie globale. Ainsi, malgré une plus grande complexité théorique des bigrammes, la distribution déséquilibrée des probabilités mène à une entropie inférieure, reflétant une prévisibilité accrue par rapport à un modèle de monogrammes où chaque lettre a une chance relativement égale d'être choisie.
	La propriété théorique de l'entropie qui justifie ce constat est donc la dépendance entre les événements dans le modèle de bigrammes. L'entropie, en tant que mesure de l'incertitude ou de l'imprévisibilité, est influencée par la manière dont les événements (ou les lettres, dans ce cas) sont reliés les uns aux autres. A l'aide de la fonction np.random.choice(), calculer le temps nécessaire en secondes pour tirer 100 000 mots de passes en utilisant ce générateur? Génère plusieurs mots de passe en utilisant des monogrammes de manière optimisée.
	<pre>gef generer_mdp_bi(n_lettres, monogrammes, frequences, nb_mdp): # Génération de tous les monogrammes nécessaires en une seule opération all_monogrammes = np.random.choice(monogrammes, n_lettres * nb_mdp, p=frequences) # Regroupement des monogrammes en mots de passe mots_passe = [''.join(all_monogrammes[i:i + n_lettres]) for i in range(0, n_lettres * nb_mdp, n_lettres)] return mots_passe</pre>
t mo t_ #p	o_lettres = 4 o_mdp = 100000 = time.time() ots_de_passe_bi = generer_mdp_bi(4, letters_bi, freq_bi, nb_mdp) _bi_100000 = time.time() - t orint(mots_de_passe_bi) rint(f"Temps total pour générer 100 000 mots de passe de 8 lettres (bigrammes): {t_bi_100000:.3f} secondes.")
Q: : H_ G_ pr	emps total pour générer 100 000 mots de passe de 8 lettres (bigrammes): 0.312 secondes. calculer le minorant de G pour ce modèle _bigramme = entropie_bi_8 _minorant_bi = $(2^{**}H_bigramme)/4 + 1$ rint(f"Le minorant de G pour les bigrammes est d'environ {G_minorant_bi:.2f} essais.")
	En moyenne, un minimum d'environ 296 millions d'essais successifs seraient nécessaires pour trouver un mot de passe généré par ce modèle, en utilisant une stratégie d'attaque optimale. Ce calcul illustre la difficulté théorique de deviner un mot de passe généré par ce système, en se basant sur son entropie. combien de temps cela prendra-t-il pour trouver un mot de passe si l'on suppose qu'il est possible de prendre le générateur codé précédemment ? (en minutes)
# te	Calcul du temps nécessaire pour trouver un mot de passe en se basant sur le minorant de G et sur le temps pris pour générer 100000 mots de passe emps_1_mdp = t_bi_100000 / nb_mdp Temps total estimé pour trouver un mot de passe (en secondes) emps_total_pour_trouver_mdp = G_minorant_bi * temps_1_mdp
pr Te	Convertir le temps en minutes emps_total_pour_trouver_mdp_minutes = temps_total_pour_trouver_mdp / 60 rint(f"Temps total estimé pour trouver un mot de passe (bigrammes) : {temps_total_pour_trouver_mdp_minutes:.2f} minutes") emps total estimé pour trouver un mot de passe (bigrammes) : 15.40 minutes : Modèle Uniforme: si maintenant on change de stratégie et on tire aléatoirement chaque lettre de l'alphabet de façon uniforme, quelle est l'entropie de ce nouveau générateur?
: in n_ er	mport math _letters = 26 ntropy_uniform_model = round(math.log2(n_letters),3)*8 rint(f"L'entropie d'un générateur uniforme de mots de passe est de {entropy_uniform_model} bits.")
Q:	<pre>d'un générateur uniforme de mots de passe est de 37.6 bits. A l'aide de la fonction np.random.choice(), calculer le temps nécessaire en secondes pour tirer 100 000 mots de passes en utilisant ce générateur? ef generate_passwords(n_passwords, password_length): alphabet = list('ABCDEFGHIJKLMNOPQRSTUVWXYZ') passwords = [] for _ in range(n_passwords):</pre>
n_ pa st pa	passwords.append(''.join(np.random.choice(alphabet, size=password_length))) # Taille arbitraire de 8 caractères return passwords Example usage _passwords = 100000 assword_length = 8 tart_time = time.time() # Start timing asswords = generate_passwords(n_passwords, password_length) asswords = generate_passwords(n_passwords, password_length)
pr pr [' Te	_uni_100000 = time.time() - start_time rint(passwords[:10]) rint(f"Temps total pour générer {n_passwords} mots de passe de {password_length} lettres (uniforme): {t_uni_100000:.3f} secondes.") ANIUITEE', 'CCQBRKXG', 'XCTSGBGZ', 'JFIISLVL', 'CCJRPZNN', 'OYSTKYJR', 'JUYWYMTS', 'YWKTRQMJ', 'CCQVXNBX', 'KWLADBMR'] emps total pour générer 100000 mots de passe de 8 lettres (uniforme): 5.002 secondes. calculer le minorant de G pour ce modèle
G_ pr Mi	Calcul du minorant de G à partir de l'entropie minorant_uniform = 2 ** (entropy_uniform_model)/4+1 cint(f"Minorant de G calculé à partir de l'entropie pour un mot de passe de 8 lettres : $\{G_minorant_uniform\}$ essais.") inorant de G calculé à partir de l'entropie pour un mot de passe de 8 lettres : 52079624666.3406 essais. cans ce cas précis, quelle est la valeur exacte de G ?
	Il y a deux cas à différencier ici, celui où l'on génère les mots de passes sans remise (avec l'utilisation d'un dictionnaire par exemple) et celui où l'on génère les mots de passes avec remise (qui serait une approche bien moins efficace mais envisageable). Pour les calculs suivants, on pose: $C=26^8=$ le nombre de mots de passes possibles avec 8 lettres. • Dans le cas de la génération avec remise, on calculer G comme suit:
	$G=E$ ('on trouve le mot de passe au n-ième essai') $=\sum_{k=1}^{\infty}k*P(\text{'on trouve le mot de passe au n-ième essai'})$ $=\sum_{k=0}^{\infty}k*(\frac{C-1}{C})^{k-1}*\frac{1}{C}$
	$egin{align} &=rac{1}{C}*rac{d}{dx}(\sum_{k=0}^{\infty}x^k)_{(x=rac{C-1}{C})}\ &=rac{1}{C}*rac{d}{dx}(rac{1}{1-x})_{(x=rac{C-1}{C})}\ &=rac{1}{C}*rac{1}{(1-rac{C-1}{C})^2} \end{array}$
	$=\frac{1}{C}*\frac{1}{(\frac{1}{C})^2}$ $=C$ $=26^8$ • Dans le cas de la génération sans remise, on calculer G comme suit:
	• Dans le cas de la generation sans remise, on calculer G confine suit. $G = E(\text{'on trouve le mot de passe au n-ième essai'})$ $= \sum_{k=1}^{C} k * P(\text{'on trouve le mot de passe au n-ième essai'})$ $= \sum_{k=0}^{C} k * \frac{C-1}{C} * \frac{C-2}{C-1} * \dots * \frac{C+1-k}{C-k+2} * \frac{1}{C+1-k}$
	$egin{aligned} &=\sum_{k=0}^C k*rac{1}{C} \ &=rac{1}{C}*rac{C(C+1)}{2} \end{aligned}$
pr	$=\frac{C+1}{2}$ $=(26^8+1)/2$ [exact_avec_remise = 26 ** password_length rint(f"La valeur exacte de G pour un mot de passe de 8 lettres (modèle uniforme et génération avec remise) : {G_exact_avec_remise} combinaisons possibles.")
pr La La Q:	_exact_sans_remise = (26**password_length+1)/2 rint(f"La valeur exacte de G pour un mot de passe de 8 lettres (modèle uniforme et génération sans remise) : {G_exact_sans_remise} combinaisons possibles.") a valeur exacte de G pour un mot de passe de 8 lettres (modèle uniforme et génération avec remise) : 208827064576 combinaisons possibles. a valeur exacte de G pour un mot de passe de 8 lettres (modèle uniforme et génération sans remise) : 104413532288.5 combinaisons possibles. combien de temps cela prendra-t-il pour trouver un mot de passe en utilisant le générateur codé précédemment ? (en minutes) Calcul du temps nécessaire pour trouver un mot de passe en se basant sur le minorant de G et sur le temps pris pour générer 100000 mots de passe
# te	Estimation du temps pour un seul mot de passe emps_1_mdp = t_uni_100000 / nb_mdp Temps total estimé pour trouver un mot de passe (en secondes) emps_total_pour_trouver_mdp = G_minorant_uniform * temps_1_mdp Convertir le temps en minutes
pr Te	emps_total_pour_trouver_mdp_minutes = temps_total_pour_trouver_mdp / 60 rint(f"Temps total estimé pour trouver un mot de passe (uniforme) : {temps_total_pour_trouver_mdp_minutes:.2f} minutes") emps total estimé pour trouver un mot de passe (uniforme) : 43417.41 minutes : implémenter une attaque pratique qui consiste à: 1. pour le défenseur: (la personne qui génère le mot de passe) tirer un mot de passe de 4 lettres consécutives à partir de ce texte de Victor Hugo (texteFrancais.txt) tiré des Misérables.
;	 pour le défenseur: (la personne qui génère le mot de passe) tirer un mot de passe de 4 lettres consécutives à partir de ce texte de Victor Hugo (texteFrancais.txt) tiré des Misérables. pour l'attaquant: utiliser le modèle bigramme pour générer des mots de passe et minimiser le nombre d'essais. Pour cela on pourra : dans un premier temps pré-calculer un dictionnaire, qui contriendra un nombre de MdP générés classés dans l'ordre du plus probable au moins probable et qui ne contient pas de doublons dans un deuxième temps appeler ce dictionnaire pour comparer chacune de ses entrées au mot de passe généré. Il faudra faire ses tests plusieurs fois afin de d'obtenir un nombre moyens d'appel au dictionnaire nécessaire Il sera intéressant de comparer le nombre trouvé à la valeur de G (qui est une borne inférieure) Question annexe: Par un simple calcul, si le générateur utilisé n'est plus ce générateur mais un générateur qui tire chaque lettre de façon équiprobable, rappeler la valeur de G. Comparer cette valeur
: ##	la valeur trouvée en utilisant la stratégie "des 4 lettres consécutives". # Fonction générant un mot de passe ef get_passwd(): text_hugo = open("texteFrancais.txt","r") str_hugo = str(text_hugo.read())
	<pre># On remplace des lettres avec accent avec des lettres sans accent str_hugo = str_hugo.replace("Â", "A") str_hugo = str_hugo.replace("Û", "U") str_hugo = str_hugo.replace("Ô", "O") size_txt = len(str_hugo) idx_rand = np.random.randint(size_txt-4) #print(idx_rand)</pre>
in #	<pre>psswd = str_hugo[idx_rand:idx_rand+4] return(psswd) mport itertools mport pandas as pd Génération du dictionnaire ef generate_mdp_dictionary(password_length=4):</pre>
de	<pre># Produit cartésien des bigrammes pour tenir compte de toutes les combinaisons possibles couples = list(itertools.product(bigramme.letters.tolist(), repeat=2)) probs = list(itertools.product(bigramme.frequency.tolist(), repeat=2)) # Dictionnaire pour stocker les mots de passe et leurs probabilités mdp_dict = {} for c, p in zip(couples, probs):</pre>
	# Générer des mots de passe de 4 lettres et calculer leurs probabilités password = c[0][:2] + c[1][:2] proba = p[0] * p[1] if len(password) == password_length: if password not in mdp_dict or mdp_dict[password] < proba: mdp_dict[password] = proba # Création d'un DataFrame plutot qu'une liste pour trier les mots de passe
df	<pre>df_dictionary = pd.DataFrame(list(mdp_dict.items()), columns=['mdp', 'frequency']) df_dictionary = df_dictionary.sort_values(by='frequency', ascending=False, ignore_index=True) return df_dictionary f_dictionary = generate_mdp_dictionary() f_dictionary</pre>
:	mdp frequency 0 ESES 0.000567 1 ENES 0.000506 2 ESEN 0.000506 3 DEES 0.000466
45 45	4 ESDE 0.000466 66971 SIQD 0.000000 66972 SIQE 0.000000 66973 HFCF 0.000000
45 6	66974 SIQG 0.000000 66975 ZZZZ 0.000000 6976 rows × 2 columns Attaques sur 1000 mots de passes
ve	<pre>c_trial = 1000 ec_nb_trials = np.full(nb_trial, -1) or i in range(nb_trial): password = get_passwd() #génération du mdp try: index = df_dictionary[df_dictionary['mdp'] ==password].index.tolist()[0] vec_nb_trials[i] = index except: print(password)</pre>
	Affichage des valeurs et des comparaisons rint(f"En moyenne, il y a {np.mean(vec_nb_trials):.2f} appels.") rint(f"La valeur du minorant calculé pour un mot de passe avec 4 lettres et générateur monogramme est: {round(2**(entropie(monogramme['frequency']) * 4)/4+1, 3 rint(f"La valeur du minorant calculé pour un mot de passe avec 4 lettres et générateur bigramme est: {round(2**(entropie(freq_bi) * 2)/4+1, 3)}")
pr pr pr	rint(f"Cette valeur est bien une borne inférieure puisqu'elle est inférieure au nombre moyen d'appels = {np.mean(vec_nb_trials):.2f}")
pr pr pr pr pr En La Ce	rint(f"La valeur du minorant calculé pour un mot de passe avec 4 lettres et générateur uniforme est: {26**4/4+1}") rint(f"La valeur du minorant calculé pour un mot de passe avec 4 lettres et générateur uniforme est: {26**4/4+1}") rint(f"Cela montre que si nous avions utilisé le générateur uniforme, la valeur 6 serait {round((26**4/4+1)/np.mean(vec_nb_trials), 2)} fois plus grande que le n moyenne, il y a 13523.85 appels. a valeur du minorant calculé pour un mot de passe avec 4 lettres et générateur monogramme est: 14646.007 a valeur du minorant calculé pour un mot de passe avec 4 lettres et générateur bigramme est: 8607.029 ette valeur est bien une borne inférieure puisqu'elle est inférieure au nombre moyen d'appels = 13523.85 a valeur du minorant calculé pour un mot de passe avec 4 lettres et générateur uniforme est: 114245.0 et a valeur du minorant calculé pour un mot de passe avec 4 lettres et générateur uniforme est: 114245.0 et la montre que si nous avions utilisé le générateur uniforme, la valeur G serait 8.45 fois plus grande que le nombre moyen d'appels.