Check Kth Bit

Check Kth Bit

Given a non-negative integers N, design an algorithm check if its Kth bit is set or not.

Example

Input: N = 42, K = 3

Output: true

Input: N = 42, K = 4

Output: false

5 th	4 th	3rd	2 nd	1st	0 th
1	0	1	0	1	0

	km b	i F th	4 th	S ey -	2 nd	1st	0 th
	N	1	0	1	0	1	0
	N >> K	0	0	0	0	1	0
\	Km bi	†0	6	0	0	0	1
)	&	0	0	0	0	0	0

N=42, K=4

	5 th	4 th	3rd	2 nd	1st	0 th
,	0	0	0	0	0	1
1 << K	0	1	0_	0	0	0
N	1_	0	1	0	1	0
&	0	0	0	0	0	0
~~~						