Índice general

1.	Aplicación de los MAG al análisis del cambio climático								
	1.1.	Model	ización de la temperatura media mensual	3					
		1.1.1.	Datos	3					
		1.1.2.	Descripción del modelo	5					
		1.1.3.	Visualización de los resultados	11					
	1.2.	Model	ización de gases de efecto invernadero	12					
		1.2.1.	Descripción de los datos	12					
		1.2.2.	Descripción de los modelos	15					
ъ.		C¢.		17					
Вi	Bibliografía 1								

Capítulo 1

Aplicación de los MAG al análisis del cambio climático

En esta sección nos proponemos el aplicar el contexto teórico visto hasta ahora sobre los modelos aditivos generalizados al análisis del cambio climático. Para ello principalmente utilizaremos el paquete de R: "mgcv" (siglas en inglés de "Vehículo de Computación para MAG Mixtos"), en particular haremos uso de su funcion "gam", la cual permite ajustar modelos aditivos generalizados, entre otros tipos de modelos, mediante splines de regresión penalizados (u smoothers similares) donde los parámetros de suavizado pueden ser estimados por distintos métodos, como por ejempli: mínima validación cruzada generalizada, mínimo AIC, por máxima verosimilitud o por REML (que es la opción por defecto).

Además del método de estimación, esta función también admite otras entradas que indican qué familia de distribuciones exponenciales se utiliza, si las observaciones toman distintos pesos, el método de optimización numérica utilizado, otros parámetros de control de estos métodos para el caso de que los habituales no converjan, etc.

Dividiremos las aplicaciones prácticas de los MAG en tres partes: la primera se centra en modelar la temperatura media mensual según una serie de variables climáticas y ver cómo ha variado con los años, en la siguiente veremos cómo han evolucionado a lo largo del tiempo las concentraciones de gases de efecto invernadero en la atmósfera y algunos de sus efectos, por último estudiaremos la media variacional del nivel del mar respecto del año 1993.

1.1. Modelización de la temperatura media mensual

1.1.1. Datos

Para esta primera aplicación de los modelos aditivos generalizados utilizaremos datos de elementos climáticos proporcionados por la Agencia Estatal de Meteorología española (AEMET), para ello utilizaremos la libreria "climaemet" Pizarro et al. [2021]:

```
#install.packages('climaemet')
library(climaemet)
```

Como hemos dicho antes, el conjunto de datos sobre el que trabajaremos a lo largo de esta sección está formado por variables climáticas, estas se definen como elementos que caracterizan el tiempo atmosférico y que interactuan entre sí en la troposfera. Aunque son elementos relacionados con el campo de la meteorología, su estudio a largo plazo, fundamenta las bases científicas de la climatología. En particular, el conjunto de datos mensuales que nos proporciona la anterior librería contiene más de 40 variables climáticas, por comodidad y para una mejor interpretación de los modelos nos quedaremos con las variables que representen la temperatura media mensual, la humedad relativa, la media mensual de precipitaciones y la velocidad media del viento. Otras variables climáticas de interés pueden ser la presión atmosférica y la nubosidad.

Estos datos provienen de una base de datos *open source* que ofrece la AEMET y en particular utilizamos las mediciones tomadas por la estación situada en el aeropuerto de Sevilla, se puede leer más sobre ellos en: https://opendata.aemet.es/centrodedescargas/inicio. Procedamos con la lectura y limpieza de los datos mensuales desde 1960 a 2023:

```
library(tidyr)
library(dplyr)
Clima <- aemet_monthly_period(station = "5783", start = 1960, end = 2023)
Clima <- Clima %>% separate(fecha, into = c("Año", "Mes"), sep = "-")
Clima$Año <- as.numeric(Clima$Año)
Clima$Mes <- factor(Clima$Mes, levels = as.character(1:12))
Clima <- Clima[,c(1,2,6,11,27,29,32)] # Seleccionamos las variables que nos interesa colnames(Clima) <- c('Año', 'Mes', 'HR', 'PresM', 'Prec', 'WMed', 'TMedM')
Clima <- Clima %>% arrange(Año, Mes) # Ordenamos por año y mes
Clima <- Clima[complete.cases(Clima$Mes),] # Retiramos las medias anuales</pre>
```

Hagamos ahora la primera visualización de ellos observando su estructura y un resumen:

```
str(Clima)
## tibble [768 x 7] (S3: tbl df/tbl/data.frame)
   $ Año
         : Factor w/ 12 levels "1", "2", "3", "4", ...: 1 2 3 4 5 6 7 8 9 10 ...
##
   $ Mes
##
          : num [1:768] 88 85 87 76 73 73 48 45 47 75 ...
   $ PresM: num [1:768] 1011 1013 1015 1013 1012 ...
   $ Prec : num [1:768] 81.3 205.2 108.7 18.4 45 ...
##
   $ WMed : num [1:768] 9 12 16 12 12 12 11 12 13 15 ...
##
   $ TMedM: num [1:768] 10.3 13 14.4 17.4 21 25.9 27.2 25.9 24.3 17.1 ...
##
summary(Clima)
##
        Año
                     Mes
                                   HR
                                                PresM
                                                              Prec
```

```
##
    Min.
            :1960
                    1
                            : 64
                                    Min.
                                            :31.00
                                                     Min.
                                                             :1004
                                                                      Min.
                                                                              :
                                                                                 0.00
    1st Qu.:1976
                    2
                              64
                                    1st Qu.:51.00
                                                      1st Qu.:1011
                                                                      1st Qu.:
                                                                                 2.00
##
##
    Median:1992
                    3
                              64
                                    Median :61.00
                                                     Median:1013
                                                                      Median: 26.40
            :1992
                    4
                              64
                                            :60.74
                                                                              : 45.81
##
    Mean
                                    Mean
                                                     Mean
                                                             :1014
                                                                      Mean
    3rd Qu.:2007
                    5
##
                            : 64
                                    3rd Qu.:71.00
                                                      3rd Qu.:1016
                                                                      3rd Qu.: 65.25
            :2023
                    6
                            : 64
                                            :90.00
                                                             :1028
                                                                              :361.10
##
    Max.
                                    Max.
                                                     Max.
                                                                      Max.
##
                                                      NA's
                     (Other):384
                                    NA's
                                            :9
                                                             :5
##
         WMed
                          TMedM
            : 5.00
                     Min.
                             : 8.40
##
    Min.
##
    1st Qu.: 9.00
                      1st Qu.:13.50
##
    Median :11.00
                     Median :18.10
##
    Mean
           :11.09
                     Mean
                             :18.93
##
    3rd Qu.:12.00
                      3rd Qu.:24.65
##
    Max.
            :22.00
                      Max.
                             :30.70
    NA's
##
            :17
                      NA's
                             :5
```

- HR: la humedad relativa media es un valor porcentual de la cantidad de vapor de agua presente en el aire con respecto a la máxima posible para unas condiciones dadas de presión y temperatura.
- PresM: la presión media mensual al nivel de la estación.
- Prec: la precipitación total mensual medida en milímetros.
- WMed: la velocidad media del aire se mide en metros por segundo.
- TMedM: la temperatura media mensual viene dada en grados centígrados.

1.1.2. Descripción del modelo

Tomaremos a la variable TMedM como variable de respuesta y al resto como variables explicativas. Antes de definir el modelo debemos notar que la variable $A\tilde{n}o$ no se ha definido como variable categórica, como sí se hizo para la variable Mes, sino que se define como variable numérica para luego poder tener una mejor representación de los resultados obtenidos. Además, si se hubiera definido de tal forma, resultaría que la mayoría de factores son no significativos. Dicho esto definimos el modelo como:

```
#install.packages('mgcv')
library(mgcv)

mag1 <- gam(TMedM~ s(HR)+s(PresM)+s(Prec)+s(WMed)+Año+Mes,data = Clima)
summary(mag1)

##
## Family: gaussian
## Link function: identity
##</pre>
```

```
## Formula:
## TMedM ~ s(HR) + s(PresM) + s(Prec) + s(WMed) + Año + Mes
## Parametric coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                                      -9.341
                                               < 2e-16 ***
## (Intercept) -55.026379
                            5.890706
## Año
                 0.032945
                            0.002917
                                      11.294
                                               < 2e-16 ***
## Mes2
                            0.232581
                                        8.269 6.56e-16 ***
                 1.923150
## Mes3
                                              < 2e-16 ***
                 4.537181
                            0.272233
                                      16.667
                 6.970016
## Mes4
                            0.318541
                                      21.881
                                              < 2e-16 ***
## Mes5
                10.287254
                            0.340623
                                      30.201
                                              < 2e-16 ***
## Mes6
                13.898675
                            0.351116
                                      39.584 < 2e-16 ***
## Mes7
                            0.378536
                                      43.971 < 2e-16 ***
                16.644447
## Mes8
                16.817040
                            0.373449
                                      45.032
                                              < 2e-16 ***
                                      43.118 < 2e-16 ***
## Mes9
                14.188786
                            0.329066
## Mes10
                 9.765255
                            0.283822
                                       34.406 < 2e-16 ***
## Mes11
                            0.238799
                                      17.412
                                              < 2e-16 ***
                 4.157867
## Mes12
                 0.798865
                            0.218239
                                        3.661
                                              0.00027 ***
## ---
                   0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
## Signif. codes:
## Approximate significance of smooth terms:
##
              edf Ref.df
                              F
                                 p-value
## s(HR)
            4.396
                   5.468 19.901
                                 < 2e-16 ***
## s(PresM) 1.551
                   1.945
                          6.211 0.001852 **
## s(Prec)
            2.704
                   3.410 6.083 0.000262 ***
## s(WMed)
                  1.000 10.396 0.001320 **
            1.000
## Signif. codes:
                   0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
##
## R-sq.(adj) = 0.962
                         Deviance explained = 96.3%
## GCV = 1.4701
                 Scale est. = 1.4251
```

Como podemos ver en el resumen del modelo, se toma por defecto que la variable dependiente sigue la distribución normal y que la función de enlace es la identidad. Se obtiene que el modelo es capaz de explicar el 96.3 % de la varianza con $R_{adj}^2 = 0.962$. Se tiene también que todas las variables predictoras son significativas. Observemos qué efecto tienen las variables predictoras sobre la temperatura media mensual:

De las gráficas de la derecha se puede interpretar que los efectos de *PresM* y *WMed* sobre la temperatura media mensual son lineales. Ajustamos entonces un nuevo modelo aditivo generalizado del mismo modo que antes pero imponiendo que el efecto de estas variables sea lineal:

```
mag2 <- gam(TMedM~ s(HR)+PresM+s(Prec)+WMed+Año+Mes,data = Clima)
summary(mag2)</pre>
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## TMedM ~ s(HR) + PresM + s(Prec) + WMed + Año + Mes
##
## Parametric coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                                       -5.158 3.22e-07 ***
## (Intercept) -1.388e+02
                            2.690e+01
## PresM
                8.417e-02
                            2.400e-02
                                        3.507 0.000481 ***
## WMed
               -7.201e-02
                            2.235e-02
                                       -3.222 0.001332 **
## Año
                3.253e-02
                            2.886e-03
                                      11.272
                                               < 2e-16 ***
## Mes2
                1.943e+00
                            2.315e-01
                                        8.394 2.50e-16 ***
## Mes3
                4.559e+00
                            2.713e-01
                                       16.804
                                               < 2e-16 ***
## Mes4
                6.972e+00
                            3.184e-01
                                       21.899
                                                < 2e-16 ***
## Mes5
                1.029e+01
                            3.402e-01
                                       30.245
                                                < 2e-16 ***
## Mes6
                1.391e+01
                            3.507e-01
                                       39.648
                                               < 2e-16 ***
```

```
## Mes7
               1.664e+01 3.782e-01 44.011 < 2e-16 ***
## Mes8
                          3.730e-01 45.064 < 2e-16 ***
               1.681e+01
## Mes9
               1.420e+01 3.285e-01 43.242 < 2e-16 ***
## Mes10
               9.791e+00 2.827e-01 34.635
                                            < 2e-16 ***
## Mes11
               4.188e+00 2.366e-01 17.702 < 2e-16 ***
## Mes12
               8.095e-01 2.181e-01
                                      3.711 0.000222 ***
## ---
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Approximate significance of smooth terms:
            edf Ref.df
                            F
                               p-value
## s(HR)
          4.469 5.551 20.250 < 2e-16 ***
## s(Prec) 2.610 3.294 5.994 0.000342 ***
                  0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
## Signif. codes:
##
## R-sq.(adj) = 0.962
                        Deviance explained = 96.3%
## GCV = 1.4708
                Scale est. = 1.4269
```

Podemos ver que tanto la desviación explicada como la estimación del error por validación cruzada coinciden con las del modelo anterior, sin embargo utilizaremos la función anova para dar una prueba de razón de verosimilitud que determine si el modelo más complejo mejora significativamente el ajuste.

Como el p-valor resultante del contraste de hipótesis es > 0.05, no tenemos evidencias significativas como para rechazar la hipótesis nula, es decir, se acepta que ambos modelos tienen el mismo ajuste.

También es posible compararlos mediante otros criterios, por ejemplo el AIC (Akaike Information Criterion) que tiene en cuenta el número de parámetros a estimar y el valor objetivo de la función de log-verosimilitud:

```
## df AIC
## mag1 23.65122 2386.466
## mag2 23.07915 2386.864
```

En este caso son casi idénticos, aunque el primer modelo tiene menor AIC.

Para obtener más información sobre el modelo planteado se utiliza la siguiente rutina de diagnósticos que nos proporciona información y gráficos útiles para evaluar la calidad del ajuste del modelo.

gam.check(mag1)


```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 10 iterations.
## The RMS GCV score gradient at convergence was 1.49324e-07 .
## The Hessian was positive definite.
## Model rank = 49 / 49
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                  edf k-index p-value
              k'
## s(HR)
            9.00 4.40
                         0.93
                                0.040 *
## s(PresM) 9.00 1.55
                                0.025 *
                         0.92
## s(Prec)
            9.00 2.70
                         0.94
                                0.045 *
## s(WMed)
            9.00 1.00
                               <2e-16 ***
                         0.87
## ---
## Signif. codes:
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Por un lado, la salida por consola nos informa de que se obtiene la convergencia por optimización del GCV y que el modelo es de rango completo. Los p-valores que aparecen se corresponden a los tests de residuos aleatorios correspondientes para cada predictor, en este caso todos excepto el asociado a Prec son < 0.05, lo que indica que los residuos no están distribuidos aleatoriamente y que se necesitaría una base de funciones de mayor dimensión. Por otro lado, observemos qué representa cada una de las gráficas generadas y cuál sería el caso ideal para cada una de ellas:

- Q-Q Plot: compara la distribución de los residuos con una distribución normal. Lo ideal es que los puntos se alineen aproximadamente en una línea recta.
- Resids vs. linear pred: representa los residuos contra el predictor lineal, ayuda a verificar si los residuos se distribuyen aleatoriamente, que sería lo ideal.
- Histogram of residuals: se trata de un histograma de los residuos, en este caso lo ideal es que muestre una distribución aproximadamente normal, centrada en cero, esto indicaría que los residuos no presentan sesgos significativos.
- Response vs. Fitted Values: representa los valores observados frente a los valores ajustados, lo ideal sería que los puntos resultantes se aconglomerasen en torno a la recta x = y.

Por lo general este modelo se comporta de manera decente, ya que se aproxima mucho a los casos ideales de cada gráfica. Podemo utilizar la librería *visibly* de Clark para hacer esta representación de forma más clara:

1.1.3. Visualización de los resultados

Una vez generado el modelo y comprobado que se tiene una bondad de ajuste decente, veamos cómo ajusta los datos para poder visualizar si se ha producido un cambio significativo en la temperatura media mensual a lo largo de los años.

```
Julio <- filter(Clima, Clima$Mes == 7)</pre>
Julio$Preds <- predict(mag1, newdata = Julio)</pre>
Julio <- Julio[complete.cases(Julio$Preds),]</pre>
lm1 <- gam(TMedM ~ Año,data = Julio)</pre>
Julio$LPreds <- predict(lm1, Julio)</pre>
library(ggplot2)
ggplot(Julio,aes(x=Año))+
  geom_point(aes(y=TMedM),size=1.5,col = 'black')+
  theme_minimal()+
  geom_line(aes(y=Preds),linewidth=1,col = 'darkred')+
  geom_line(aes(y=LPreds),linewidth=0.6,col = '#EB6146')+
  labs(title ="Temperatura media mensual del mes de Julio",x="Año",y="Temperatura ºC"
       legend = c('MAG1','Modelo Lineal'))+
  theme(axis.title = element_text(face = "italic"),
        legend.text = element_text( size = 10,colour = "black"),
        legend.title = element_blank(),legend.position = c(0.5,0.9))
```

Temperatura media mensual del mes de Julio

Con esta gráfica podemos apreciar claramente como la temperatura media en el mes de Julio ha ido aumentado con el paso de los años en la estación meteorológica del aeropuerto de San Pablo. Hemos introducido la recta proporcionada por el modelo lineal para los datos de los meses de Julio para tener una mejor apreciación de tal incremento.

1.2. Modelización de gases de efecto invernadero

1.2.1. Descripción de los datos

En esta sección ajustaremos modelos aditivos generalizados para estudiar la concentración atmosférica de gases de efecto invernadero, en particular analizaremos las medias mensuales globales de las concentraciones de dióxido de carbono (CO_2) , Metano (CH_4) y óxido nitroso (N_2O) . Para ello consideraremos los datos proporcionados por United Nations Environment Programme (UNEP), para el CO_2 se obtienen en https://wesr.unep.org/climate/essential-climate-variables-ecv/atmospheric-co2-concentration y para los dos siguientes en https://wesr.unep.org/climate/essential-climate-variables-ecv/atmospheric-ch4-n2o-sf6-concentration.

Ya hablamos sobre las emisiones de gases contaminantes en ?? pero no se llego a definir en qué consistían. Estos gases son capaces de absorber y emitir radiación dentro del espectro inflarrojo y, por tanto son capaces de retener el calor del Sol, lo que permite que el clima terrestre sea habitable para la humanidad. Sin embargo, desde el inicio de la revolución industrial, la actividad humana ha producido un desequilibrio en los niveles de concentración de estos gases en la atmósfera. En particular estudiaremos las concentraciones de los tres tipos de gases antes mencionads por ser las que se emiten en mayor cantidad o por ser las más potentes (en términos de contribución al efecto invernadero). Por ejemplo, las emisiones de CO_2 se corresponden aproximadamente con tres cuartas partes del total de emisiones y tarda en descomponerse en la atmósfera más de 100 años, sin embargo el CH_4 y el N_2O representan una parte mucho menor que el dióxido de carbono pero por unidad son mucho más potentes como gases de efecto invernadero.

Hagamos ahora una primera visualización de los datos. Para tener una mejor lectura de los datos, primero debemos transformar el archivo .xlsx, luego utilizamos la librería readxl para leerlo y la librería lubridate para obtener la fecha:

```
library(readxl)
library(lubridate)
```

 \blacksquare CO_2 :

```
CO2 <- read_excel('trends-in-atmospheric-carbon-dioxide-concentration.xlsx')

CO2$DateTime <- as.Date(CO2$DateTime) # Creamos las variables año y mes como categor

CO2$Año <- as.numeric(year(CO2$DateTime))

CO2$Mes <- factor(month(CO2$DateTime),levels = as.character(1:12))

CO2$Tmes <- as.numeric(CO2$'Monthly Data')

CO2$Trend <- as.numeric(CO2$'Trend')

CO2 <- CO2[,c(4,5,6,3)]

CO2 <- CO2 %>% arrange(Año, Mes) # Ordenamos por año y mes
```

De este modo nos queda un data frame con 794 observaciones, correspondientes a los meses desde marzo del 1958 hasta abril de 2024, y con las variables $A\tilde{n}o$, Mes, Tmes que se corresponde con la concentración media de CO_2 a nivel global medida en partes por millón (ppm) y Trend que es la media anual de las anteriores. 1 ppm significa que existe una molécula de ese gas por cada millón de moléculas de aire.

```
str(CO2)
```

```
## tibble [794 x 4] (S3: tbl_df/tbl/data.frame)
## $ Año : num [1:794] 1958 1958 1958 1958 ...
## $ Mes : Factor w/ 12 levels "1","2","3","4",..: 3 4 5 6 7 8 9 10 11 12 ...
## $ Tmes : num [1:794] 316 317 318 317 316 ...
## $ Trend: num [1:794] NA NA NA NA NA NA NA NA NA ...
```

summary(CO2)

```
##
         Año
                          Mes
                                         Tmes
                                                          Trend
##
            :1958
                            : 67
                                           :312.4
    Min.
                    3
                                    Min.
                                                     Min.
                                                             :316.0
##
    1st Qu.:1974
                    4
                            : 67
                                    1st Qu.:330.4
                                                     1st Qu.:331.1
    Median:1991
                                   Median :355.0
                                                     Median :355.7
##
                    1
                            : 66
##
    Mean
            :1991
                    2
                            : 66
                                    Mean
                                           :359.0
                                                     Mean
                                                             :359.3
                                    3rd Qu.:384.6
##
    3rd Qu.:2007
                    5
                            : 66
                                                     3rd Qu.:384.0
##
    Max.
            :2024
                    6
                            : 66
                                    Max.
                                           :426.6
                                                     Max.
                                                             :421.1
##
                    (Other):396
                                                     NA's
                                                             :729
```

\blacksquare CH_4 :

```
CH4 <- read_excel('trends-in-atmospheric-methane-concentration.xlsx')

CH4$DateTime <- as.Date(CH4$DateTime) # Creamos las variables año y mes

CH4$Año <- as.numeric(year(CH4$DateTime))

CH4$Mes <- factor(month(CH4$DateTime),levels = as.character(1:12))

CH4$Trend <- as.numeric(CH4$'Trend')

CH4 <- CH4[,c(3,4,2)]

CH4 <- CH4 %>% arrange(Año, Mes) # Ordenamos por año y mes
```

En este caso disponemos de 487 observaciones correspondientes a meses entre 1983 y 2024, las variables de tiempo $A\tilde{n}o$ y Mes y la variable Trend la cual representa la media mensual de concentración de metano a nivel global medida en partes por billón (ppb).

```
str(CH4)
```

```
## tibble [487 x 3] (S3: tbl_df/tbl/data.frame)
## $ Año : num [1:487] 1983 1983 1983 1983 ...
## $ Mes : Factor w/ 12 levels "1","2","3","4",..: 7 8 9 10 11 12 1 2 3 4 ...
## $ Trend: num [1:487] 1635 1636 1636 1637 1638 ...
```

summary(CH4)

```
##
         Año
                          Mes
                                        Trend
##
            :1983
                            : 41
                                           :1635
    Min.
                                    Min.
                    1
    1st Qu.:1993
                            : 41
                                    1st Qu.:1737
##
                    7
    Median:2003
                            : 41
                                    Median:1775
##
                    8
           :2003
                    9
                            : 41
##
    Mean
                                    Mean
                                           :1778
##
    3rd Qu.:2013
                    10
                            : 41
                                    3rd Qu.:1816
##
           :2024
                            : 41
    Max.
                    11
                                    Max.
                                           :1928
##
                     (Other):241
```

 \blacksquare N_2O :

```
N20 <- read_excel('trends-in-atmospheric-nitrous-oxide-concentration.xlsx')

N20$DateTime <- as.Date(N20$DateTime) # Creamos las variables año y mes

N20$Año <- as.numeric(year(N20$DateTime))

N20$Mes <- factor(month(N20$DateTime),levels = as.character(1:12))

N20$Trend <- as.numeric(N20$'Trend')

N20 <- N20[,c(3,4,2)]

N20 <- N20 %>% arrange(Año, Mes) # Ordenamos por año y mes
```

Para el caso del óxido nitroso sólo disponemos datos desde el 2001, por lo que obtenemos un conjunto de 277 observaciones para las variables $A\tilde{n}o$, Mes y Trend que representa la media mensual de concentración de N_2O a nivel global medida en partes por billón (ppb).

```
## tibble [277 x 3] (S3: tbl_df/tbl/data.frame)
## $ Año : num [1:277] 2001 2001 2001 2001 ...
## $ Mes : Factor w/ 12 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Trend: num [1:277] 316 316 316 316 ...
summary(N20)
```

```
##
         Año
                          Mes
                                        Trend
##
    Min.
            :2001
                            : 24
                                    Min.
                                            :316.0
                    1
                                    1st Qu.:320.0
##
    1st Qu.:2006
                    2
                            : 23
##
    Median:2012
                    3
                            : 23
                                    Median :325.1
##
           :2012
                    4
                            : 23
                                    Mean
                                            :325.6
    Mean
##
    3rd Qu.:2018
                    5
                            : 23
                                    3rd Qu.:330.7
##
    Max.
            :2024
                            : 23
                                    Max.
                                            :337.3
##
                     (Other):138
```

Solo con los resúmenes de los datos para los tres gases, teniendo en cuenta las medidas en las que vienen dados, ya se puede ver la gran diferencia que hay entre sus proporciones en la atmósfera.

1.2.2. Descripción de los modelos

Bibliografía

JJ Allaire, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard Iannone. *rmarkdown: Dynamic Documents for R*, 2023. URL https://CRAN.R-project.org/package=rmarkdown. R package version 2.21.

Michale Clark. Generalized additive models.

Pedro L. Luque-Calvo. Escribir un Trabajo Fin de Estudios con R Markdown, 2017.

Manuel Pizarro, Diego Hernangómez, and Gema Fernández-Avilés. *climaemet: Climate AEMET Tools*, 8 2021. URL https://hdl.handle.net/10261/250390.

Hadley Wickham, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, 2023a. URL https://CRAN.R-project.org/package=ggplot2. R package version 3.4.4.

Hadley Wickham, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. dplyr: A Grammar of Data Manipulation, 2023b. URL https://CRAN.R-project.org/package=dplyr. R package version 1.1.1.

Yihui Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R, 2023. URL https://yihui.org/knitr/. R package version 1.42.