Affinity - Association Rules Example:

Market Basket Analysis

Application of Market Basket Analysis:

- Improve the shop layout
- cross selling, cf. Amazon
- designing catalogues

How?

- Establish rules of this kind:
- If the items from set A are bought, then the probability that the items from set C are bought is "x" %.
- Short: if A, then P(C) = x%.
- Based on frequencies in a dataset
- A = 'antecedent', C = 'consequent'

Association Rule Mining

Instructor: Jesse Davis

Slides from: Chris Clifton, Pedro Domingos, Jeff Ullman

- Introduction and definitions
- Naïve algorithm
- Apriori
- PCY
- Limiting disk I/O
- FP Growth
- Multi-level association rules
- Incorporating constraints into mining
- Presenting results, other metrics

- Introduction and definitions
- Naïve algorithm
- Apriori
- PCY
- Limiting disk I/O
- FP Growth
- Multi-level association rules
- Incorporating constraints into mining
- Presenting results, other metrics

Association Rule Mining Task

Given: Set of transactions

Find: IF-THEN rules that predict the occurrence of

an item based on other items in the transaction

TID	Items	
1	Bread, Milk	
2	Bread, Milk, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Association Rules

 ${ Diaper } \rightarrow { Beer },$ ${ Milk, Bread } \rightarrow { Eggs, Coke }$ ${ Beer, Bread } \rightarrow { Milk }$

Implication means co-occurrence, not causality!

Why Association Rule Mining

- Motivation: Finding regularities in data
 - What products were often purchased together?
 - What kinds of DNA are sensitive to new drug?
- Foundation for many data mining tasks
 - Association
 - Correlation
- Algorithms do not require labeled data or for a user to specify a predefined target concept

- General many-many mapping (association) between items and baskets
- Connection among "items," not among "baskets"
- Focuses on common events, not rare events

Definition: Item Set

- Itemset: A collection of one or more items
 - Example: {Bread, Milk}
- k-itemset: An itemset that contains k items
 - 3-itemset: {Bread, Milk, Diaper}

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Support and Frequent Itemsets

- Simplest question: find sets of items that appear "frequently" in the baskets
- Support count for itemset I = the number of baskets containing all items in I
- Support: Fraction of transactions that contain an itemset
- Given a support threshold s, sets of items that appear in at least s baskets are called frequent itemsets

Example: Support

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Itemset	Freq
{Br,M}	4
{Br,D}	3

Support(
$$\{Br,M\}$$
) = 4/5 = 0.8
Support($\{Br,D\}$) = 3/5 = 0.6

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

• Frequent itemsets:

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 \neq \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j},

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

• Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

• Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}

Definition: Association Rules

- If-then rules about the contents of baskets
- Given:
 - Set of *items*: $I = \{i_1, i_2, ..., i_m\}$
 - Set of *transactions*: $D = \{d_1, d_2, ..., d_n\}$
- An association rule: $A \Rightarrow B$, where
 - A ⊂ I
 - B ⊂ I
 - $A \cap B = \emptyset$
- $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j."

Definition: Confidence

- Confidence of this association rule is the conditional probability of j given $i_1,...,i_k$
 - This gives a measure of how accurate the rule is
 - confidence(A \Rightarrow B) = P(B|A) = sup({A,B}) /sup(A)

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: Confidence

$$+ B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $- B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $- B_5 = \{m, p, b\}$ $+ B_6 = \{m, c, b, j\}$
 $- B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- An association rule: {m, b} → c
 - Confidence = 2/4 = 50%

Interestingness

Given association rule: I → j
 Interest = Confidence(j | I) - Support(j)

- Interest = 0: I has no influence on j
- Interest > 0: I may cause the presence of j
- Interest < 0: I discourages presence of j</p>

Items		
Bread, Milk		
Bread, Milk, Diaper, Beer, Eggs		
Milk, Diaper, Beer, Coke		
Bread, Milk, Diaper, Beer		
Bread, Milk, Diaper, Coke		

Itemset	Freq
{Br,M}	4
{Br,D}	3

Support(
$$\{M\}$$
) = 5/5 = 1.0
Confidence($Br \rightarrow M$) = 4/4 = 1.0
Interest($Br \rightarrow M$) = Conf($Br \rightarrow M$) - Supp(M) = 0.0

Types of Associations

Boolean:

Bread ^ Milk → Diapers

Items are either purchased or not

• Quantitative:

Look at a range of value

Number of Predicates Captured

Single attribute:

Bread ^ Milk → Diapers

Just purchases

Multiple attributes:

```
age in 30..39 ^ income in 42..48K → buys PC
```

Multi-relational:

```
buys(x, PC) ^{\text{friends}(x,y)} \rightarrow \text{buys}(y, PC)
```

Look at relationship between individuals

Single or Multiple Level

Single level:

Beer → Diapers

Generic item types

Multiple level:

Jupiler → Happy Baby

Stella → Care

Westmalle → Huggies

Specific beer

Specific diaper brand

Applications: Retail

- Baskets = sets of products someone bought in one trip to the store
 Items = products
- Example application: given that many people buy beer and diapers together:
 - Run a sale on diapers; raise price of beer
 - Only useful if many buy diapers and beer
- Example application: What items should store stock up on

Application: Plagarism

- Baskets = sentences
 Items = documents containing those sentences
- Items that appear together too often could represent plagiarism
- Notice items do not have to be "in" baskets

Application: Web Pages

Baskets = Web pagesItems = words

 Unusual words appearing together in a large number of documents, e.g., "Brad" and "Angelina," may indicate an interesting relationship