Real-Time Facial Emotion Recognition Using AI

Prepared By: Supervisor:

Dana Ghazal Prof. Gheith Abandah

Rawan Hamdan

The University of Jordan

Department of Computer Engineering

Introduction

- Facial emotion recognition (FER) is a technology that analyzes facial expressions from images or videos. [1]
- It has diverse **applications** in healthcare, gaming, and marketing. ^[2]
- Our project aims to build a real-time emotion analysis app.
- Focuses on Middle Eastern faces, and women wearing hijab.
- Improves **usability** in the Arab world.

Project Impact

- FER systems are important due to their **impact** on many field.
- In **healthcare**, used to monitor the facial expressions of patients. [3]
- In social life, it can help in communicate with others. [4]
- In **education**, used to monitoring students' attention. ^[5]

Related Work

- Face Analyzer is Android app that detect faces and provides facial attributes. [6]
 - The **disadvantage** is that results are not always accurate, and it does not work in real-time.
- Where our app stands out is the lack of bias.
 - Provide advice and helpful video.
 - Detect emotions in real-time.
 - Sends a notification about the user's feeling.

Face Analyzer App [7]

Datasets

Dataset	Includes	Total Number of Images	Number of Classes	Resolution	Emotion Classes	Source	Sample Images
FER2013	-	35,887	7	48x48	Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral	Kaggle	Angry Disgust Fear Happy Neutral Sad Surprise
Extended Cohn-Kanade (CK+)	-	902	7	640x490 or 640x480	Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral	University of California, Berkeley	
Japanese Female Facial Expression (JAFFE)	_	213	7	256x256	Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral	Kyushu University, Japan	99999
Iranian Emotional Faces Database (IEFDB)	_	248	7	5184x3456	Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral	Tehran University of Medical Sciences, Iran	
Hybrid	CK+, JAFFE, and IEFDB Datasets	1363	7	48x48	Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral	We Created It	

Datasets Preprocessing

- Preprocessed the datasets images into the **FER2013** dataset images format.
 - Resized the images to a size of 48x48 pixels.
 - Converted the **color space** of the images to **grayscale**.
 - Normalized the pixel values to a range between 0 and 1.
 - **Split** them as show in the table below.

Dataset	Split Value	Number of Images	Number of Images	
		for IEFDB Dataset	for Hybrid Dataset	
Train	60%	158	872	
Test	20%	50	273	
Validation	20%	40	218	

Retraining and Testing the CNN Model

- We used a CNN algorithm that can learn to extract facial features.
- It provides high accuracy to changes in facial expression and lighting. [8]
- Using **Python**, we have retrained and tested the ML model.
- Using the **Scikit-learn** library to train-test split.
- Using the **TensorFlow** library to load a pre-trained kaggle_model file.

The First Results

- We first **retrained** the model on the training set of the **IEFDB**.
- Using specific hyperparameters values.

Model Hyperparameters Retrained on the IEFDB Train Set

Model Hyperparameters	Values
Learning Rate	0.01
Number of Epochs	400
Batch Size	40
Optimizer	Adam
Loss Function	Categorical Cross-entropy

Accuracies of the Model Retrained on the IEFDB Train Set

Dataset	IEFDB Dataset Accuracy	Hybrid Dataset Accuracy
Train	92%	_
Test Before Retraining the Model	28%	16%
Test After Retraining the Model	74%	33%
Validation	58%	_

The Final Results

- To obtain good accuracy, and improve the performance of the ML model.
- We tried to increase the size of the training dataset using the hybrid dataset.
- We retrained the model on the training set of the hybrid dataset.

Model Hyperparameters Retrained on the Hybrid Train Set

Model Hyperparameters	Values
Learning Rate	0.001
Number of Epochs	300
Batch Size	70
Optimizer	Adam
Loss Function	Categorical Cross-entropy

Accuracies of the Model Retrained on the Hybrid Train Set

Dataset	IEFDB Dataset Accuracy	Hybrid Dataset Accuracy
Train	-	99%
Test Before Retraining the Model	34%	19%
Test After Retraining the Model	90%	88%
Validation	_	87%

Accuracy and Loss Model Graphs for Training and Validation Sets in the Hybrid Dataset

Confusion Matrix for Hybrid Test Set

• The most of the false predictions are in **neutral** emotion.

Convert Keras Model to TensorFlow Lite

We converted our Keras model to **TFLite** format for use in our Android app based on several steps:

- 1. Import the TensorFlow Lite converter.
- 2. Used the **TFLiteConverter** module to convert our Keras model into TFLite format.
- 3. We add it to our Android app as a model file.
- 4. In our app, we used the **TensorFlow Lite interpreter** to load the model.

Face Detection

- We used the **haarcascade_frontalface_alt.xml** file in our app for face detection.
 - Which is a pre-trained model classifier trained on a large dataset of face images.
 - It is part of the OpenCV library.
- This classifier can be used in various computer vision **applications**, such as security systems, and facial recognition. ^[9]

App Design and How it Works

• We developed our app using **Android Studio**, **Java** language, and **XML** code to design the UI.

Screen 1

Screen 2

Screen 3

Take a Photo from the Camera

Steps:

- > Press the button TAKE PHOTO.
- > Press CAPTURE IMAGE button to take a photo.
- > To view the results press PROCESS IMAGE button.
- > Then, the app displays the captured image, emotion, and advice.
- > Press WATCH VIDEO button to opens a video.

Image That Take by Camera

Choose Photo from Gallery

Steps:

- > Press the button TAKE PHOTO.
- Press CHOOSE IMAGE FROM GALLERY button to choose a photo.
- > To view the results press PROCESS IMAGE button.
- Then, the app displays the chosen image, emotion, and advice.
- > Press WATCH VIDEO button to opens a video.

Image That Choose from Gallery

Detects Emotions in Real-Time

Steps:

- > Press the button REAL-TIME.
- > The camera screen will open.
- > Press at the top to flip the camera.
- > Press at the top to set the delay time to send notification.
- You will receive a notification containing your emotions and tips.
- > Clicking on the notification will open a video for you to watch.

Surprise Emotion in Real-Time

Surprise Notification

Select Delay Time to Send Notification

- > You can choose one of these times.
- If we choose **one minute** for example, the notification will be sent after one minute.

Choose a Delay of One Minute

The Notification Appears After One Minute

Conclusions

- Our project addressed the challenge of identifying facial expressions by developing a real-time facial emotion recognition app.
- Focused on Middle Eastern faces, especially for women wearing hijab.
- To overcome the bias and inaccuracy.
- Used the efficient CNN algorithm to analyze facial expressions.
- It turned out that the retrained model on a hybrid dataset is the most accurate.
- Test accuracy of 88% was achieved on the **hybrid test set** and test accuracy of 90% on the **IEFDB test set**.
- We hope that our work will be beneficial for both academic and industrial purposes.

Future Work

- Expand the dataset.
- Link to cloud services.
- Integration with wearable devices, such as smartwatches.
- Detect emotions using voice or body language.

References

- [1] EDPS, K. Vemou, and A. Horvath, "Facial Emotion Recognition," 2021. [Online]. Available: https://edps.europa.eu/data-protection/our-work/publications/techdispatch/techdispatch-12021-facial- emotion-recognition_en. [Accessed 11 November 2022].
- [2] M. Pantic, M. Valstar, R. Rademaker, and L. Maat, "Web-based database for facial expression analysis," In 2005 IEEE international conference on multimedia and Expo, pp. 5-pp, IEEE, 2005.
- [3] Softwebsolutions, A. Modawal, "Know the benefits of facial recognition and emotion detection tools," 13 May 2022. [Online]. Available: https://www.softwebsolutions.com/resources/benefits-of-facial-recognition.html. [Accessed 18 November 2022].
- [4] F. Mo, J. Gu, K. Zhao, and X. Fu, "Confusion effects of facial expression recognition in patients with major depressive disorder and healthy controls," Frontiers in psychology, 12, 2021.
- [5] Venturebeat, "Chinese school installs facial recognition cameras to monitor students," 17 May 2018. [Online]. Available: https://venturebeat.com/ai/chinese-school-installs-facial-recognition-cameras-to-monitor-students/. [Accessed 19 November 2022].
- [6] Github, "Face Analyzer," [Online]. Available: https://github.com/ishaanjav/Face_Analyzer. [Accessed 4 January 2023].
- [7] Apkgk, "Face Analyzer," [Online]. Available: https://apkgk.com/app.anany.faceanalyzer. [Accessed 4 January 2023].
- [8] L. Bejjagam, and R. Chakradhara, "Facial Emotion Recognition using Convolutional Neural Network with Multiclass Classification and Bayesian Optimization for Hyper Parameter Tuning," 2022.
- [9] Ersanpreet, S. Singh, "Face and eyes detection with Viola Jones along with python code," 10 March 2020. [Online]. Available: https://ersanpreet.wordpress.com/tag/haarcascade_frontalface_default-xml/. [Accessed 28 February 2023].

Thank you!