Arbre
Terminologie
ADT Tree
Parcours préfixe et postfixe
Parcours en largeur
Arbre binaire
Propriétés de l'arbre binaire
ADT BinaryTree
Parcours en ordre
Arbre chaîné
Arbre dans un tableau

Qu'est-ce qu'un arbre ?

- En informatique, un arbre est un modèle abstrait d'une structure hiérarchique
- Un arbre est constitué de noeuds ayant une relation de parent-enfant
- · Les applications incluent :
 - les systèmes de fichiers
 - hiérarchies organisationnelles
 - héritage en programmation objet
 - généalogies et phylogénies
 - syntaxe de langages naturels et de programmation
 - expression arithmétiques
 - sections d'un document

François Major

Terminologie

Racine: noeud sans parent (A)

Nœud interne: noeud avec au moins un

enfant (A, B, C, F)

Nœud externe, ou feuille: nœud sans enfants

(E, I, J, K, G, H, D)

Ancêtres d'un nœud: parent, grand-parent,

grand-grand-parent, etc.

Profondeur d'un nœud: nombre d'ancêtres

Hauteur d'un arbre: profondeur maximale

d'un de ses nœuds (3)

Descendant d'un nœud: enfant, petit-enfant,

arrière-petit-enfant, etc.

Sous-arbre: arbre constitué d'un nœud et de

ses descendants

ADT Tree

- Nous utilisons des positions pour abstraire des nœuds (comme pour la liste positionnelle)
- · Méthodes génériques :
 - Integer len()
 - Boolean est_vide()
 - Iterator positions()
 - Iterator iter()
- Méthodes d'accès :
 - Position racine()
 - Position parent(p)
 - Iterator enfants(p)
 - Integer nb_enfants(p)

- Méthodes requête :
 - Boolean est_feuille(p)
 - Boolean est_racine(p)
- · Méthode de mise à jour :
 - element remplace(p, o)
- Des méthodes de mise à jour supplémentaires peuvent être définies par des structures de données implémentant l'ADT Arbre


```
# utilise ListQueue
from ListQueue import ListQueue
#ADT Tree (Classe de base)
class Tree:
    #inner class Position
    class Position:
        def element( self ):
            pass
        def __eq_ ( self, other ):
            pass
        def __ne__( self, other):
            return not( self == other )
```



```
# retourne la racine
def root( self ):
    pass
# retourne le parent d'une Position
def parent( self, p ):
    pass
# retourne le nombre d'enfants d'une Position
def num children( self, p ):
    pass
# retourne les enfants d'une Position
def children( self, p ):
    pass
# retourne le nombre de noeuds
def len ( self ):
    pass
# demande si une Position est la racine
def is_root( self, p ):
    return self.root() == p
# demande si une Position est une feuille
def is leaf( self, p ):
    return self.num_children( p ) == 0
# demande si un arbre est vide
def is empty( self ):
    return len( self ) == 0
# retourne la profondeur d'une Position
def depth( self, p ):
    # retourne le nombre d'ancêtres d'une Position
    if self.is_root( p ):
        return 0
    else:
        return 1 + self.depth( self.parent() )
```


Considérons 2 définitions pour la hauteur

```
# retourne la hauteur d'une Position avec depth (non efficace)
def height1( self, p ):
    # retourne la profondeur maximum des feuilles sous une Position
    # positions n'est pas implanté et se fait en O(n)
   return max( self.depth( p ) for p in self.positions() if self.is leaf( p ))
# retourne la hauteur d'une Position en descendant l'arbre (efficace)
def height( self, p ):
    # retourne la hauteur d'un sous-arbre à une Position
   if self.is_leaf( p ):
        return 0
    else:
        return 1 + max( self.height( c ) for c in self.children( p ) )
```


nb noeuds visités = 16

nb noeuds visités = 11

François Major Tree.py

Parcours préfixe

- Une parcours visite les noeuds d'un arbre de manière systématique
- Dans un parcours de préfixe, un noeud est visité avant ses descendants
- Application : imprimer un document

```
Algorithme préfixe(v)
visite(v)
pour chaque enfant w de v
préfixe(w)
```

```
# imprime le sous-arbre dont la racine est la Position p
# utilise un parcours préfixé
def preorder_print( self, p, indent = "" ):
    # on traite le noeud courant
    print( indent + str( p ) )
    # et par la suite les enfants, récursivement
    for c in self.children( p ):
        self.preorder_print( c, indent + " " )
```


François Major Tree.py

Parcours postfixe

- Dans un parcours postfixe, un noeud est visité après ses descendants
- Application : calcul de l'espace utilisé par des fichiers dans un répertoire et ses sous-répertoires

```
Algorithme postfixe(v)
pour chaque enfant w de v
postfixe(w)
visite(v)
```

```
# imprime le sous-arbre dont la racine est la Position p
# utilise un parcours postfixé
def postorder print( self, p ):
    # on traite les enfants
    for c in self.children( p ):
         self.postorder print( c )
    # et par la suite le parent
    print( p )
                                                             ift2015/
                                                                                         8
                                                                                       tâches.txt
                                   devoirs/
                                                                    programmes/
                                                                                       1K
                                                        4
                                                                                     6
                              devoir1.txt
                                           TP0.doc
                                                       ArrayList.py
                                                                    Deque.py
                                                                                  Stack.py
                              3K
                                           2K
                                                                     25K
                                                       10K
                                                                                  20K
```


François Major Tree.py

Parcours en largeur

François Major Tree.py

Arbre binaire

- Un <u>arbre binaire</u> est un arbre avec les propriétés suivantes :
 - Chaque nœud interne a au plus deux enfants (exactement deux pour un arbre binaire plein)
 - Les enfants d'un nœud sont une paire ordonnée
- Nous appelons les enfants d'un nœud interne l'enfant de gauche et l'enfant de droite
- Une définition récursive alternative est : un <u>arbre</u> <u>binaire</u> est soit
 - un arbre constitué d'un seul nœud, ou
 - un arbre dont la racine a une paire ordonnée d'enfants, dont chacun est un arbre binaire
- Applications:
 - expressions arithmétiques
 - processus de décision
 - recherche

Arbres binaires plein et complet

Un <u>arbre binaire plein</u> ("full" en anglais) est un arbre binaire dont tous les noeuds internes possèdent 2 enfants. Un arbre binaire plein est aussi dit <u>propre</u> ou <u>stricte</u>.

Un <u>arbre binaire complet</u> ("complete" en anglais) est un arbre binaire dont tous les niveaux sauf possiblement le dernier sont complètement remplis et tous les noeuds sont le plus à gauche possible. Un arbre binaire complet n'est pas nécessairement plein!

François Major

Arbre binaire pour une expression arithmétique

Les nœuds internes sont les opérateurs

Les noeuds externes sont les opérandes

Exemple : $(2 \times (a - 1) + (3 \times b))$

François Major

Arbre de décision

Les nœuds internes sont des questions à réponses oui/non

Les nœuds externes sont des décisions

Exemple : décider quoi manger

Propriétés d'un arbre binaire plein

(tous les noeuds internes possèdent 2 enfants)

n = 7

e = 4 i = 3

h = 3

Notation:

- n nombre de noeuds
- e nombre de noeuds externes
- i nombre de noeuds internes
- h hauteur h

e ≤ 2^h ≤ 4

• Propriétés :

$$e = i + 1$$

$$n = 2e - 1$$

$$h \leq (n-1)/2$$

$$e \le 2^h$$

$$h \ge \log_2 (n + 1) - 1$$

$$e = i + 1 = 3 + 1 = 4$$

$$n = 2e - 1 = 8 - 1 = 7$$

$$h \le i \le 3$$

$$h \le (n-1)/2 \le 6/2 \le 3$$

e ≤
$$2^h$$
 ≤ 8

$$h \ge \log_2 e \ge 2$$

$$h \ge \log_2 (n + 1) - 1 \ge 3 - 1 \ge 2$$

ADT BinaryTree

- L'ADT BinaryTree étend l'ADT Tree, c'est-àdire qu'il hérite de toutes ses méthodes
- Méthodes supplémentaires :
 - position gauche(p)
 - position droite(p)
 - position adelphe(p)
- D'autres méthodes supplémentaires peuvent être définies pour des structures de données spécifiques qui implantent l'ADT BinaryTree


```
# utilise Tree (Tree.py)
from Tree import Tree
# Classe de base pour arbres binaires
class BinaryTree( Tree ):
    # retourne l'enfant de gauche d'une Position
   def left( self, p ):
        pass
    # retourne l'enfant de gauche d'une Position
    def right( self, p ):
        pass
    # retourne l'adelphe d'une Position
    def sibling( self, p ):
        # on passe par le parent
        parent = self.parent( p )
        # si le parent n'existe pas, p est la racine, pas d'adelphe
        if parent is None:
            return None
        # sinon, si p est l'enfant gauche, on retourne l'enfant droit
                 si p est l'enfant droit, on retourne l'enfant gauche
        else:
            if p == self.left( parent ):
                return self.right( parent )
            else:
                return self.left( parent )
    # retourne un générateur des enfants dans l'ordre gauche-droit
    def children( self, p ):
        if self.left( p ) is not None:
            yield self.left( p )
        if self.right( p ) is not None:
            yield self.right( p )
    #print the subtree rooted by position p
    #using an inorder traversal
    def inorder_print( self, p ):
        if self.left( p ) is not None:
            self.inorder_print( self.left( p ) )
        print( p )
        if self.right( p ) is not None:
            self.inorder_print( self.right( p ) )
```


Parcours dans l'ordre

```
# traverse le sous-arbre dont la racine est une Position
# utilise un parcours dans l'ordre gauche-racine-droit
def inorder_print( self, p ):
    # si l'enfant gauche existe, on le traite, récursivement
    if self.left( p ) is not None:
        self.inorder_print( self.left( p ) )
    # on traite p
    print( p )
    # si l'enfant droit existe, on le traite, récursivement
    if self.right( p ) is not None:
        self.inorder_print( self.right( p ) )
```

```
Algorithme dansOrdre(v)
si v possède un enfant gauche
dansOrdre(gauche(v))
visite(v)
si v possède un enfant droit
dansOrdre(droit(v))
```


Dans un parcours dans l'ordre, un noeud est visité après son sous-arbre gauche et avant son sous-arbre droit

Application: dessiner un arbre binaire

x(v) = rang de v

y(v) = profondeur de v

DIRO

BinaryTree.py

Imprimer des expressions arithmétiques

Spécialisation d'un parcours inorder

imprimer l'expression de gauche entre parenthèses

imprimer l'opération

imprimer l'expression de droite entre parenthèses

((2x(a-1))+(3xb))

```
# imprime expression gauche
if self.left( p ) is not None:
    print( '(')
    self.printExpression( self.left( p ) )
# imprime opération
print( p )
# imprime expression droite
if self.right( p ) is not None:
    self.printExpression( self.right( p ) )
    print( ')' )
```

def printExpression(self, p):

```
Algorithme imprimeExpression(v)
si v possède un enfant gauche
imprimer("(")
imprimeExpression(gauche(v))
imprimer(v.element())
si v possède un enfant droit
imprimeExpression(droit(v))
imprimer(")")
```

BinaryTree.py

Évaluer les expressions arithmétiques

Spécialisation d'un parcours postorder

- méthode récursive renvoyant la valeur d'un sous-arbre
- lors de la visite d'un noeud interne, combinez les valeurs des sous-arbres


```
Algorithme evalExpr(v)
si est_feuille(v)
return v.element()
sinon
x = evalExpr(gauche(v))
y = evalExpr(droite(v))
op = opérateur stocké à v
return x op y
```


Structure chaînée pour un arbre

Un nœud est représenté par un objet contenant :

- un élément
- son parent
- une séquence de nœuds enfants

Structure chaînée pour un arbre binaire

Un nœud est représenté par un objet contenant :

- un élément
- son parent
- son enfant gauche
- son enfant droit


```
# utilise BinaryTree (BinaryTree.py)
from BinaryTree import BinaryTree
# implémentation de BinaryTree avec des noeuds chaînés
class LinkedBinaryTree( BinaryTree ):
    # classe imbriquée _Node
    class Node:
        # crée une structure statique pour _Node utilisant __slots__
        __slots__ = '_element', '_parent', '_left', '_right'
        def __init__( self, element,
                      parent = None,
                      left = None,
                      right = None ):
            self._element = element
            self._parent = parent
            self. left = left
            self._right = right
```



```
# classe imbriquée Position, une sous-classe de BinaryTree.Position
class Position( BinaryTree.Position ):
    # constructeur
    # le container (l'arbre) et une référence au noeud sont requis
    # le noeud est de type Node
    def __init__( self, container, node ):
        self._container = container
        self._node = node
    def str (self):
        return str( self._node._element )
    def element( self ):
        return self. node. element
    # deux Positions sont équivalente si elles sont du même type
    # et réfèrent au même noeud
    def eq ( self, other ):
        return type( other ) is type( self ) and other. node is self. node
# retourne le noeud d'une Position si valide
# soit, une instance de Position du même container existante
def validate( self, p ):
    if not isinstance( p, self.Position ):
        raise TypeError( 'p must be proper Position type' )
    if p. container is not self:
        raise ValueError( 'p does not belong to this container' )
    # si p a été deleté (_parent pointe à lui-même: see _delete plus bas)
    if p. node. parent is p. node:
        raise ValueError( 'p is no longer valid' )
    return p. node
#retourne une instance de Position pour un noeud donné (None sinon)
def make position( self, node ):
    return self.Position( self, node ) if node is not None else None
```



```
# constructeur d'un BinaryTree
# crée un arbre binaire vide
def __init__( self ):
    self._root = None
    self._size = 0
# retourne la taille
def __len__( self ):
    return self. size
# retourne la racine
def root( self ):
    return self._make_position( self._root )
# retourne le parent d'une Position si valide
def parent( self, p ):
    node = self._validate( p )
    return self._make_position( node._parent )
# retourne l'enfant gauche d'une Position si valide
def left( self, p ):
    node = self._validate( p )
    return self._make_position( node._left )
# retourne l'enfant droit d'une Position si valide
def right( self, p ):
    node = self._validate( p )
    return self._make_position( node._right )
# retourne le nombre d'enfants d'une Position si valide
def num children( self, p ):
    node = self._validate( p )
    count = 0
    if node. left is not None:
        count += 1
    if node._right is not None:
        count += 1
    return count
```


Méthodes du niveau "développeur"...

```
# ajoute la racine avec valeur e, si elle n'existe pas déjà
# retourne sa Position
def _add_root( self, e ):
    if self. root is not None: raise ValueError( 'Root exists' )
    # taille devient 1
   self._size = 1
    # on crée un noeud pour la racine et retourne sa Position
    self._root = self._Node( e )
    return self._make_position( self._root )
# ajoute un enfant à gauche de valeur e à une Position
# si elle est valide et si cet enfant n'existe pas déjà
def _add_left( self, p, e ):
   node = self._validate( p )
    if node._left is not None: raise ValueError( 'Left child exists' )
    # on incrémente la taille
   self. size += 1
    # on crée un noeud pour l'enfant et on retourne sa Position
   node._left = self._Node( e, node )
    return self._make_position( node._left )
# ajoute un enfant à droite de valeur e à une Position
# si elle est valide et si cet enfant n'existe pas déjà
def add right( self, p, e ):
   node = self._validate( p )
    if node._right is not None: raise ValueError( 'Right child exists' )
    # on incrémente la taille
    self. size += 1
    # on crée un noeud pour l'enfant et on retourne sa Position
   node._right = self._Node( e, node )
    return self._make_position( node._right )
# remplace l'élément d'une Position si valide
# retourne l'ancien élément
def replace( self, p, e ):
   node = self._validate( p )
   old = node._element
   node. element = e
   return old
```


Méthodes du niveau "développeur"...

```
# delete une Position si valide
# la remplace par son enfant s'il y en a un (mais pas 2!)
# retourne l'élément deleté
def delete( self, p ):
    # validation de la Position
    node = self._validate( p )
    # doit avoir au plus 1 enfant
    if self.num_children( p ) == 2: raise ValueError( 'p has two children' )
    # on prend l'enfant existant ou None s'il n'y en a aucun
    child = node. left if node. left else node. right
    # s'il y a un enfant, il est adopté par son grand-parent
    # ou par personne s'il n'en a pas
    if child is not None:
        child._parent = node._parent
    # si la Position était la racine, la nouvelle racine
    # devient l'enfant
    if node is self. root:
        self._root = child
    # sinon, on remplace le noeud par son enfant
                                                                                      В
    # de gauche s'il était enfant gauche
    # de droite s'il était enfant droit
        parent = node. parent
        if node is parent._left:
            parent._left = child
        else:
            parent. right = child
    # on décrémente la taille
    self. size -= 1
    # on rend la Position invalide (en mettant parent sur lui même)
    node. parent = node
    # on retourne l'élément deleté
    return node._element
```

_delete fonctionne sur les noeuds qui possèdent au plus 1 enfant (A, D et C)

_delete(feuille)


```
def _delete( self, p ):
    # validation de la Position
    node = self._validate( p )
    # doit avoir au plus 1 enfant
    if self.num_children( p ) == 2: raise ValueError( 'p has two children' )
    # on prend l'enfant existant ou None s'il n'y en a aucun
    child = node._left if node._left else node._right
    # s'il y a un enfant, il est adopté par son grand-parent
    # ou par personne s'il n'en a pas
    if child is not None:
        child._parent = node._parent
    # si la Position était la racine, la nouvelle racine
    # devient l'enfant
    if node is self. root:
        self._root = child
    # sinon, on remplace le noeud par son enfant
    # de gauche s'il était enfant gauche
    # de droite s'il était enfant droit
        parent = node. parent
        if node is parent._left:
            parent._left = child
        else:
            parent._right = child
    # on décrémente la taille
                                                      В
    self. size -= 1
    # on rend la Position invalide (en mettant parent sur lui même)
    node._parent = node
    # on retourne l'élément deleté
                                              Ø
    return node._element
                         Ø
```

_delete(racine)


```
def _delete( self, p ):
    # validation de la Position
   node = self. validate( p )
    # doit avoir au plus 1 enfant
    if self.num_children( p ) == 2: raise ValueError( 'p has two children' )
    # on prend l'enfant existant ou None s'il n'y en a aucun
   child = node._left if node._left else node._right
    # s'il y a un enfant, il est adopté par son grand-parent
    # ou par personne s'il n'en a pas
    if child is not None:
        child. parent = node. parent
    # si la Position était la racine, la nouvelle racine
    # devient l'enfant
    if node is self. root:
        self._root = child
    # sinon, on remplace le noeud par son enfant
    # de gauche s'il était enfant gauche
    # de droite s'il était enfant droit
       parent = node. parent
       if node is parent._left:
           parent._left = child
           parent._right = child
    # on décrémente la taille
    self. size -= 1
    # on rend la Position invalide (en mettant parent sur lui même)
   node._parent = node
    # on retourne l'élément deleté
    return node._element
                                              root
                                                                  Ø
```

Méthodes du niveau "développeur"

```
# attache des sous-arbres gauche et droit à une Position feuille si valide
def _attach( self, p, t1, t2 ):
    # validation de p
    node = self. validate( p )
    # s'assurer que c'est une feuille
    if not self.is leaf( p ): raise ValueError( 'position must be leaf' )
    # s'assurer que les types des sous-arbres sont compatibles
    if not type( self ) is type( t1 ) is type( t2 ):
        raise TypeError( 'Tree types must match' )
    # augmenter la taille de celles des deux sous-arbres attachés
    self. size += len( t1 ) + len( t2 )
    # on attache un sous-arbre non vide
    # en mettant son parent à la feuille d'attache
    # en mettant à None sa racine et à 0 sa taille
    # cet arbre n'existera plus de manière individuelle
   if not t1.is_empty():
       t1._root._parent = node
       node. left = t1. root
                                                                                C
       t1. root = None
       t1. size = 0
    if not t2.is empty():
                                                                node
       t2. root. parent = node
       node._right = t2._root
       t2. root = None
       t2. size = 0
                                                                         t1
                                                                                      t2
```

<u>_attach</u> fonctionne sur les feuilles uniquement

LinkedBinaryTree.py

Tableau pour un arbre binaire

Les nœuds sont stockés dans un tableau A

Le nœud v est stocké à A[index(v)]

- index(racine) = 0
- si le nœud est l'enfant gauche :
 index(nœud) = 2 * index(parent(nœud)) + 1
- si le nœud est l'enfant droit :
 index(nœud) = 2 * index(parent(nœud)) + 2

Conclusions du module

- Nous avons exploré des structures récursives d'arbre et d'arbre binaire.
- Nous avons regardé la terminologie utilisée pour décrire les noeuds d'un arbre et leurs relations et leurs propriétés.
- Nous avons décrit des méthodes pour parcourir les noeuds d'un arbre et d'un arbre binaire.
- Nous avons défini les ADT pour un arbre (*Tree*) et un arbre binaire (*BinaryTree*) ainsi que des implantations chaînées (*LinkedBinaryTree*) et dans un tableau, dans le cas de l'arbre binaire.
- Nous avons implanté la notion de *Position*, comme nous l'avions fait pour la liste positionnelle.
- Nous nous sommes intéressé à la hauteur d'un arbre binaire et en particulier en pire et meilleur cas.

