변이형피라제(AppA38M8)의 몇가지 효소학적특성

라현아, 조철만, 김주성

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《우리 나라에서도 연구사업을 잘하면 먹이첨가제를 자체로 생산하여 축산업을 발전시킬수 있습니다.》

먹이첨가제용효소로 리용되는 피타제의 열안정성 및 pH안정성을 비롯한 여러가지 효소학적특성을 개선하는것은 피타제생산과 응용에서 나서는 중요한 문제이다.

우리는 재조합변이형피타제유전자발현메타놀동화효모균그루[4]의 배양조건을 확립한데 이어 생성되는 변이형피타제 AppA38M8의 몇가지 효소학적특성을 밝히기 위한 연구를하였다.

재료와 방법

효소로는 메타놀동화효모 *Pichia pastoris* GS115(pPIC9K-appA38M8)[4]의 유도배양상청 액을 류산암모니움분별염석과 비오겔A0.5겔크로마토그라프려과를 통하여 분리정제한 변이형피타제를 리용하였다. 분리정제한 효소의 비활성은 1 481U/mg이다.

SDS-PAGE는 선행방법[7]에 준하여 12% 겔에서 진행하였으며 피타제활성은 린몰리브 덴청법[2]으로 측정하였다.

결과 및 론의

1) 변이형피라제의 분자량

SDS-PAGE상으로부터 단백질분자량표식자단편들의 상대이동도와 분자량의 로그값사이관계그라프를 작성하였다.(그림 1)

그림 1로부터 계산된 변이형피타제 AppA38M8의 분자량은 약 50kD이며 이것은 유전

자의 배렬정보로부터 계산된 리론적인 분자량 (44.472kD)보다 5.5kD정도 크다. 그것은 *P. pastoris*에서 효소가 생성되는 과정에 당사슬이 부가되였기때문이라고 본다.[6]

2) 최적온도와 열안정성

변이형피타제 AppA38M8의 활성에 미치는 온도의 영향은 그림 2와 같다.

그림 2에서 보는바와 같이 변이형피타제 AppA38M8은 반응시간 15min일 때 65°C에서 최대활성을 나타내며 그 이상의 온도에서는 효소활성이 급격히 감소하였다.

변이형피타제용액(2U/mL)을 55, 60, 65, 70℃

그림 1. 단백질분자량표식자의 상대이동도와 분자량의 로그값사이관계그라프 1-66.2kD, 2-45.0kD, 3-35.0kD, 4-25.0kD

에서 각이한 시간(0, 10, 20, 40, 60, 90, 120min) 처리하고 잔존활성을 측정하는 방법으로 열 안정성을 평가하였다.(그림 3)

그림 2. 반응온도에 따르는 효소활성 활성측정조건: pH 4.5, 반응시간 15min

그림 3. 방치온도와 시간에 따르는 효소활성변화 1-4는 방치온도가 각각 55, 60, 65, 70°C인 경우; 활성측정조건: 37°C, pH 4.5, 반응시간 15min

그림 3에서 보는바와 같이 변이형피타제는 55℃에서 2h동안 처리할 때 활성감소가 나타나지 않았으며 60℃에서 2h동안 처리한 후에는 초기활성의 54%를 유지하였다. 또한 65, 70℃에서 각각 40, 20min동안 처리한 후의 잔존활성은 30, 20%이상이였다.

변이형피타제 AppA38M8의 열불활성화반감기와 이미 연구가 진행된 대장균에서 클론화한 야생형AppA[3] 및 I427L변이형피타제[1]의 열불활성화반감기를 비교한 결과는 표와 같다.

효소명	발현계	열불활성화반감기/min		
		60℃	65℃	70°C
AppA	Escherichia coli	8.58	-	_
I427L변이형피타제	Escherichia coli	17.0	2.4	_
변이형피타제 AppA38M8	Pichia pastoris	106.0	21.0	5.7

표. 각이한 온도에서 열불활성화반감기의 비교

표에서 보는바와 같이 변이형피타제 AppA38M8은 60℃에서 야생형피타제 AppA에 비하여 13배정도 높은 열불활성화반감기를 가지며 60,65℃에서의 열불활성화반감기는 I427L 변이형피타제보다 6~8배정도 높았다.

이러한 열안정성개선은 *appA*38M8유전자배렬에 도입된 8개의 변이점들과 *P. pastoris* GS115에서 재조합피타제가 생성되는 과정에 부가된 당사슬에 의하여 단백질의 소수성중심이 안정화되고 구조적견고성이 증가된 결과[5, 6, 8]라고 본다.

3) 피라제활성에 미치는 pH의 영향

각이한 pH완충액에서 효소반응을 진행하여 변이형피타제활성의 pH의존성을 평가하였으며 해당한 pH의 완충액에서 효소(2U/mL)를 2h동안 방치한 후 최적조건에서 잔존활성을 측정하는 방법으로 pH안정성을 결정하였다.(그림 4)

그림 4에서 보는바와 같이 변이형피타제 AppA38M8은 2.0~10.0의 넓은 pH구간에서 안정하며 pH 4.5에서 최대활성을 나타낸다. pH 2 및 6에서의 피타제활성은 각각 최적pH에서 활성의 50, 40%이상이다.

¬) pH의존성, L) pH안정성: pH 2.0~3.5(글리신-염산완충액), pH 3.5~6.0(초산-초산나트리움 완충액), pH 7.0~9.0(트리스-염산완충액), pH 9.0~11.0(글리신-가성소다완충액); 반응온도 37℃, 반응시간 15min

4) 기질농도이존성과 운동학적상수

각이한 기질농도(0.1~2mmol/L 피틴산나트리움)에서 피타제활성을 측정(반응pH 4.5, 반응온도 65℃)하여 라인위버-버크그라프를 작성하였다.(그림 5)

그림 5로부터 계산된 변이형피타제 AppA38M8의 피틴산나트리움에 대한 $K_{\rm m},\ V_{\rm max}$ 값은 각각 0.363mmol/L, $1\ 800\mu$ mol/(min·mg)이다.

야생형피타제[3]의 $K_{\rm m}(0.364 {\rm mmol/L}),~V_{\rm max}(1~284 \mu {\rm mol/(min\cdot mg)})$ 와 대비해볼 때 $K_{\rm m}$ 값은 류사하며 $V_{\rm max}$ 는 야생형보다 크다.

5) 금속이온의 영향

각이한 금속이온이 포함된 반응계에서 변이형피타제 AppA38M8의 활성을 측정하는 방법으로 금속이온의 영향을 보았다.(그림 6)

그림 5. 변이형피타제 AppA38M8의 라인위버-버크그라프

활성측정조건: 반응온도 37℃, 반응pH 4.5, 반응시간 15min; 완충액 0.5mmol/L의 해당한 금속양이온을 포함한 100mmol/L 트리스-염산완충액(pH 7.0)

그림 6에서 보는바와 같이 0.5mmol/L의 Mn^{2+} , Mg^{2+} , Ca^{2+} , K^+ 이 변이형피타제 AppA38M8에 대한 활성화작용을 나타내였는데 Mn^{2+} 의 효과가 가장 뚜렷하였다. 또한 효소의 활성은 Fe^{2+} 에 의하여 저해되였으나 야생형피타제[3] 및 I427L변이형피타제[1]에 대한 억제작용에 비하여 개선되였다.

6) 프로레아제의 영향

1mL의 변이형피타제(20U/mL)를 1mL의 펩신(40U/mL, 0.01mol/L HCl에 푼것.)과 판크레아틴(40U/mL, 0.01mol/L NaHCO₃용액에 푼것, pH 8.0)용액에 0~60min동안 각각 방치한 다음 0.1mol/L 초산완충액(pH 4.5)으로 희석한 후 활성을 측정하였다.(그림 7)

그림 7. 변이형피타제(AppA38M8)의 프로테아제분해저항성

1-펩신, 2-판크레아틴; 활성측정조건: 반응pH 4.5, 반응온도 37℃, 반응시간 15min

그림 7에서 보는바와 같이 변이형피타제 AppA38M8은 펩신으로 1h동안 처리한 후 초기활성의 95%이상을 유지하였다. 판크레아틴용액으로 1h동안 처리한 후의 잔존활성은 80%이상이였으며 이것은 야생형(30~40%)[3]에 비하여현저히 개선된것이다.

맺 는 말

- 1) 메타놀동화효모 *Pichia pastoris* GS115 (pPIC9K-appA38M8)의 배양액상청으로부터 분리정제한 변이형피타제 AppA38M8의 분자량은 약 50kD이며 최적pH는 4.5이고 2.0~11.0사이의넓은 pH구간에서 비교적 안정하다.
- 2) 효소반응시간 15min일 때 최적온도는 65°C이며 그 이상의 온도에서는 효소활성이 급격히 감소된다. 효소는 또한 55°C까지의 온도에서는 안정하며 60, 65, 70°C에서 열불활성화반감기는 각각 106.0, 21.0, 5.7min이다.
- 3) 변이형피타제 AppA38M8의 피틴산나트리움에 대한 $K_{\rm m}$, $V_{\rm max}$ 값은 각각 0.363mmol/L, 1 800 μ mol/(min·mg)이다.
- 4) 0.5mmol/L의 농도에서 Mn²⁺, Mg²⁺, Ca²⁺, K⁺은 변이형피타제 AppA38M8에 대하여 활 성화작용을 나타내며 Fe²⁺은 효소활성을 저해한다.
 - 5) 변이형피타제 AppA38M8은 펩신 및 판크레아틴의 분해작용에 대하여 안정하다.

참 고 문 헌

- [1] 김일성종합대학학보 생명과학, 66, 2, 58, 주체109(2020).
- [2] 김일성종합대학학보(자연과학), 61, 4, 98, 주체104(2015).
- [3] 김일성종합대학학보(자연과학), 62, 6, 110, 주체105(2016).
- [4] 라현아 등; 과학기술전당통보《생물》, 2509, 1, 주체109(2020).
- [5] M. Z. Yao et al.; Biotechnol. Lett., 35, 1669, 2013.
- [6] M. V. Ushasree et al.; Bioresource Technology, 278, 400, 2019.
- [7] J. Sambrook et al.; Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory Press, 1∼300, 2001.
- [8] E. Rodriguez et al.; Archives of Biochemistry and Biophysics, 382, 1, 105, 2000.

주체110(2021)년 1월 5일 원고접수

Several Enzymatic Characterization of the Phytase Mutant(AppA38M8)

Ra Hyon A, Jo Chol Man and Kim Ju Song

The molecular weight of phytase expressed in *Pichia pastoris* GS115(pPIC9K-appA38M8) is about 50kD based on SDS-PAGE. The optimum pH of modified phytase, AppA38M8, is 4.5 and it is relatively stable from pH 2.0 to 11.0. The optimum temperature is 65°C when the reaction time is 15 minutes and remains stable at 55°C for 2 hours. The $K_{\rm m}$ and $V_{\rm max}$ values for sodium phytate are 0.363mmol/L and 1 800 μ mol/(min·mg), respectively. The enzyme is activated by Mn²⁺, Mg²⁺, Ca²⁺, K⁺, but inhibited by Fe²⁺. It is stable at pepsin and pancreatin hydrolysis.

Keywords: phytase, P. pastoris, enzymatic characterization, AppA38M8