Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 11: Teorema di Krasowskii e teorema di Lyapunov per sistemi lineari

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2020-2021

Nella scorsa lezione

- ▶ Teorema di linearizzazione
- ▶ Funzioni energia e stabilità di sistemi non lineari
- ▶ Funzioni di Lyapunov
- ▶ Teorema di stabilità di Lyapunov

In questa lezione

- ▶ Teorema di Krasowskii
- ▶ Forme quadratiche e matrici (semi)definite positive
- ▶ Teorema di Lyapunov per sistemi lineari a t.c.
- ▶ Teorema di Lyapunov per sistemi lineari a t.d.

$$\dot{\bar{x}}(\bar{x}) \qquad \dot{x}(t) = f(x(t)), \quad \bar{x} \in \mathbb{R}^n \text{ equilibrio}$$

$$\dot{z} = Fz, \quad \text{sistema linearizzato attorno a } \bar{x}, \qquad \lambda_1, \lambda_2, \dots, \lambda_k \text{ autovalori di } F$$

$$\dot{x}(t) = f(x(t)), \quad \bar{x} \in \mathbb{R}^n$$
 equilibrio

$$\dot{z} = Fz$$
, sistema linearizzato attorno a \bar{x} , $\lambda_1, \lambda_2, \dots, \lambda_k$ autovalori di F

1. Se $\Re[\lambda_i] < 0$, $\forall i \implies \bar{x}$ as intoticamente stabile

$$\dot{x}(t) = f(x(t)), \quad \bar{x} \in \mathbb{R}^n$$
 equilibrio

$$\dot{z} = Fz$$
, sistema linearizzato attorno a \bar{x} , $\lambda_1, \lambda_2, \dots, \lambda_k$ autovalori di F

- **1.** Se $\Re[\lambda_i] < 0$, $\forall i \implies \bar{x}$ as intoticamente stabile
- **2.** Se $\exists i$ tale che $\Re[\lambda_i] > 0 \implies \bar{x}$ instabile

$$\dot{x}(t) = f(x(t)), \quad \bar{x} \in \mathbb{R}^n$$
 equilibrio

$$\dot{z} = Fz$$
, sistema linearizzato attorno a \bar{x} , $\lambda_1, \lambda_2, \dots, \lambda_k$ autovalori di F

- **1.** Se $\Re[\lambda_i] < 0$, $\forall i \implies \bar{x}$ as intoticamente stabile
- **2.** Se $\exists i$ tale che $\Re[\lambda_i] > 0 \implies \bar{x}$ instabile
- **3.** Se $\Re[\lambda_i] \leq 0$, $\forall i$, e $\exists i$ tale che $\Re[\lambda_i] = 0 \implies$ caso critico!

$$\dot{x}(t) = f(x(t)), \quad \bar{x} \in \mathbb{R}^n$$
 equilibrio

$$\dot{z} = Fz$$
, sistema linearizzato attorno a \bar{x} , $\lambda_1, \lambda_2, \dots, \lambda_k$ autovalori di F

- **1.** Se $\Re[\lambda_i] < 0$, $\forall i \implies \bar{x}$ as intoticamente stabile
- **2.** Se $\exists i$ tale che $\Re[\lambda_i] > 0 \implies \bar{x}$ instabile
- **3.** Se $\Re[\lambda_i] \leq 0$, $\forall i$, e $\exists i$ tale che $\Re[\lambda_i] = 0 \implies$ caso critico!

Con una funzione di Lyapunov V(x): 3.1. $\dot{V}(x)$ semidef. neg. $\Rightarrow \bar{x}$ sempl. stabile

3.2. $\dot{V}(x)$ def. neg. $\Rightarrow \bar{x}$ asint. stabile

Teorema di Krasowskii (t.c.)

Se abbiamo una V(x) con $\dot{V}(x)$ semidefinita negativa riusciamo a dire qualcosa riguardo alla **stabilità asintotica** di \bar{x} ?

Teorema di Krasowskii (t.c.)

Se abbiamo una V(x) con $\dot{V}(x)$ semidefinita negativa riusciamo a dire qualcosa riguardo alla **stabilità asintotica** di \bar{x} ?

Teorema: Sia

$$\mathcal{N} \triangleq \{x \in \mathbb{R}^n : \dot{V}(x) = 0\}.$$

Se esiste un intorno \mathcal{I} di \bar{x} tale che non esiste alcuna traiettoria (diversa da quella banale $x(t) = \bar{x}, \forall t$) che sia interamente contenuta in $\mathcal{N} \cap \mathcal{I}$, allora \bar{x} è asintoticamente stabile. Altrimenti, \bar{x} è semplicemente stabile.

1. Oscillatore armonico (m = k = 1):

$$egin{bmatrix} \dot{x}_1(t) \ \dot{x}_2(t) \end{bmatrix} = egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix}, \quad ar{x} = 0$$

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

$$\dot{V}(x_1, x_2) = 0$$

$$\mathcal{N} = \left\{ x \in \mathbb{R}^2 : \dot{V}(x_1, x_2) = 0 \right\}$$

$$= \mathbb{R}^2$$

1. Oscillatore armonico (m = k = 1):

$$egin{bmatrix} \dot{x}_1(t) \ \dot{x}_2(t) \end{bmatrix} = egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix}, \quad ar{x} = 0$$

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

$$\dot{V}(x_1, x_2) = 0$$
, semidef. neg.

$$\mathcal{N}=\mathbb{R}^2$$

 $\implies \bar{x} = 0$ semplicemente stabile

2. Oscillatore armonico smorzato ($m = k = \nu = 1$):

$$egin{bmatrix} \dot{x}_1(t) \ \dot{x}_2(t) \end{bmatrix} = egin{bmatrix} 0 & 1 \ -1 & -1 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix}, \quad ar{x} = 0$$

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

2. Oscillatore armonico smorzato ($m = k = \nu = 1$):

$$egin{bmatrix} \dot{x}_1(t) \ \dot{x}_2(t) \end{bmatrix} = egin{bmatrix} 0 & 1 \ -1 & -1 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix}, \quad ar{x} = 0$$

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

$$\dot{V}(x_1,x_2)=-x_2^2$$
, semidef. neg.

$$\mathcal{N} = \{x_1 = \alpha, x_2 = 0, \alpha \in \mathbb{R}\}\$$

 $\implies \bar{x} = 0$ as into ticamente stabile

3. Pendolo semplice $(m = \ell = 1)$:

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -g \sin x_1(t) \end{cases} \qquad \bar{x} = 0$$

$$V(x_1,x_2)=g(1-\cos x_1)+rac{1}{2}x_2^2$$
 $\mathcal{N}=\mathbb{R}^2$ $\dot{V}(x_1,x_2)=0$ per krus

3. Pendolo semplice $(m = \ell = 1)$:

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -g \sin x_1(t) \end{cases} \quad \bar{x} = 0$$

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2}x_2^2$$

 $\dot{V}(x_1,x_2)=0$, semidef. neg.

$$\mathcal{N}=\mathbb{R}^2$$

 $\implies \bar{x} = 0$ semplicemente stabile

4. Pendolo semplice con attrito ($m = \ell = \nu = 1$):

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -g \sin x_1(t) - x_2(t) \end{cases} \qquad \bar{x} = 0$$

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2}x_2^2$$

4. Pendolo semplice con attrito ($m = \ell = \nu = 1$):

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -g \sin x_1(t) - x_2(t) \end{cases} \qquad \bar{x} = 0$$

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2}x_2^2$$

$$\dot{V}(x_1,x_2)=-x_2^2$$
, semidef. neg.

$$\mathcal{N} = \{x_1 = \alpha, x_2 = 0, \alpha \in \mathbb{R}\}\$$

 $\implies \bar{x} = 0$ as into ticamente stabile

5.
$$\begin{cases} \dot{x}_1(t) = -x_1^3(t) \\ \dot{x}_2(t) = -x_1^2(t)x_2(t) \end{cases} \quad \bar{x} = 0$$

$$V(x_1, x_2) = x_1^2 + x_2^2$$

5.
$$\begin{cases} \dot{x}_1(t) = -x_1^3(t) \\ \dot{x}_2(t) = -x_1^2(t)x_2(t) \end{cases} \quad \bar{x} = 0$$

$$V(x_1, x_2) = x_1^2 + x_2^2$$

$$\dot{V}(x_1, x_2) = -2x_1^2(x_1^2 + x_2^2)$$
, semidef. neg.

$$\mathcal{N} = \{x_1 = 0, x_2 = \alpha, \alpha \in \mathbb{R}\}\$$

 $\implies \bar{x} = 0$ semplicemente stabile

Teorema di Krasowskii (t.d.)

$$x(t+1) = f(x(t)), \quad \bar{x} \in \mathbb{R}^n$$
 equilibrio

Teorema: Sia
$$\mathcal{N} \triangleq \{x \in \mathbb{R}^n : \Delta V(x) = 0\}.$$

Se esiste un intorno \mathcal{I} di \bar{x} tale che non esiste alcuna traiettoria (diversa da quella banale $x(t) = \bar{x}$, $\forall t$) che sia interamente contenuta in $\mathcal{N} \cap \mathcal{I}$, allora \bar{x} è asintoticamente stabile. Altrimenti, \bar{x} è semplicemente stabile.

In questa lezione

- ▶ Teorema di Krasowskii
- Forme quadratiche e matrici (semi)definite positive
- ▶ Teorema di Lyapunov per sistemi lineari a t.c.
- ▶ Teorema di Lyapunov per sistemi lineari a t.d.

$$V(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}}_{=P} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{=x} = p_{11}x_1^2 + p_{22}x_2^2 + 2p_{12}x_1x_2$$

$$V(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}}_{=P} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{=x} = p_{11}x_1^2 + p_{22}x_2^2 + 2p_{12}x_1x_2$$

$$P = P^{\top} \implies \exists T \in \mathbb{R}^{2 \times 2}, \ TT^{\top} = I \ \text{tale che} \ T^{\top}PT = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$V(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}}_{=P} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{=x} = p_{11}x_1^2 + p_{22}x_2^2 + 2p_{12}x_1x_2$$

$$P = P^{ op} \implies \exists T \in \mathbb{R}^{2 \times 2}, \ TT^{ op} = I \ ext{tale che } T^{ op}PT = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$

$$\implies V(x_1, x_2) = x^\top T^\top \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \underbrace{\mathcal{T}x}_{Y} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \lambda_1 y_1^2 + \lambda_2 y_2^2$$

 $\implies \min\{\lambda_1, \lambda_2\} \|y\|^2 < V(x_1, x_2) < \max\{\lambda_1, \lambda_2\} \|y\|^2$

$$V(x_{1}, x_{2}) = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}}_{=x} \underbrace{\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}}_{=x} = p_{11}x_{1}^{2} + p_{22}x_{2}^{2} + 2p_{12}x_{1}x_{2}$$

$$P = P^{\top} \implies \exists T \in \mathbb{R}^{2 \times 2}, \ TT^{\top} = I \text{ tale che } T^{\top}PT = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}$$

$$\implies V(x_{1}, x_{2}) = x^{\top}T^{\top} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \underbrace{Tx}_{y} = \begin{bmatrix} y_{1} & y_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2}$$

$$V(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}}_{=P} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{=x} = p_{11}x_1^2 + p_{22}x_2^2 + 2p_{12}x_1x_2$$

$$P = P^{\top} \implies \exists T \in \mathbb{R}^{2 \times 2}, \ TT^{\top} = I \ \text{tale che} \ T^{\top}PT = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$\implies V(x_1, x_2) = x^\top T^\top \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \underbrace{\mathcal{T}x}_{V} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \lambda_1 y_1^2 + \lambda_2 y_2^2$$

$$\implies \min\{\lambda_1, \lambda_2\} \|y\|^2 \le V(x_1, x_2) \le \max\{\lambda_1, \lambda_2\} \|y\|^2$$

$$\implies V(x_1, x_2)$$
 (semi)definita positiva $\iff \lambda_1, \lambda_2 > (\ge) 0$

Definizione: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ con autovalori $\lambda_1, \lambda_2, \ldots, \lambda_k$, si dice (semi)definita positiva se $\lambda_1, \lambda_2, \ldots, \lambda_k > (\geq)$ 0. Se P è (semi)definita positiva, scriviamo $P \succ (\succeq)$ 0.

Definizione: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ con autovalori $\lambda_1, \lambda_2, \ldots, \lambda_k$, si dice (semi)definita positiva se $\lambda_1, \lambda_2, \ldots, \lambda_k > (\geq)$ 0. Se P è (semi)definita positiva, scriviamo $P \succ (\succeq)$ 0.

N.B. $P = P^{\top}$ (semi)definita positiva $\implies V(x) = x^{\top}Px$ (semi)definita positiva

Definizione: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ con autovalori $\lambda_1, \lambda_2, \dots, \lambda_k$, si dice (semi)definita positiva se $\lambda_1, \lambda_2, \dots, \lambda_k > (\geq)$ 0. Se P è (semi)definita positiva, scriviamo $P \succ (\succeq)$ 0.

N.B. $P = P^{\top}$ (semi)definita positiva $\implies V(x) = x^{\top}Px$ (semi)definita positiva

Definizione: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ con autovalori $\lambda_1, \lambda_2, \ldots, \lambda_k$, si dice (semi)definita negativa se $\lambda_1, \lambda_2, \ldots, \lambda_k < (\leq)$ 0. Se P è (semi)definita negativa, scriviamo $P \prec (\preceq)$ 0.

Definizione: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ con autovalori $\lambda_1, \lambda_2, \dots, \lambda_k$, si dice (semi)definita positiva se $\lambda_1, \lambda_2, \dots, \lambda_k > (\geq)$ 0. Se P è (semi)definita positiva, scriviamo $P \succ (\succeq)$ 0.

N.B. $P = P^{\top}$ (semi)definita positiva $\implies V(x) = x^{\top}Px$ (semi)definita positiva

Definizione: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ con autovalori $\lambda_1, \lambda_2, \ldots, \lambda_k$, si dice (semi)definita negativa se $\lambda_1, \lambda_2, \ldots, \lambda_k < (\leq)$ 0. Se P è (semi)definita negativa, scriviamo $P \prec (\preceq)$ 0.

Definizione: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ si dice indefinita se non è né semidefinita positiva né semidefinita negativa.

Test di Sylvester

Fatto: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ è definita positiva se e solo se tutti i minori principali (nord-ovest) di P sono positivi.

Test di Sylvester

Fatto: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ è definita positiva se e solo se tutti i minori principali (nord-ovest) di P sono positivi.

Esempi:

$$\mathbf{1.} \ P = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

2.
$$P = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

Test di Sylvester

Fatto: Una matrice $P \in \mathbb{R}^{n \times n}$ simmetrica $(P = P^{\top})$ è definita positiva se e solo se tutti i minori principali (nord-ovest) di P sono positivi.

Esempi:

1.
$$P = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix} \implies P$$
 definita positiva

2.
$$P = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \implies P$$
 semidefinita negativa

In questa lezione

- ▶ Teorema di Krasowskii
- ▶ Forme quadratiche e matrici (semi)definite positive
- ▶ Teorema di Lyapunov per sistemi lineari a t.c.
- ▶ Teorema di Lyapunov per sistemi lineari a t.d.

Sistemi lineari e funzioni di Lyapunov quadratiche (t.c.)

$$\dot{x}(t) = Fx(t)$$
, equilibrio $\bar{x} = 0$

Consideriamo la forma quadratica: $V(x) = x^{T}Px$, $P \succ 0$

Sistemi lineari e funzioni di Lyapunov quadratiche (t.c.)

$$\dot{x}(t) = Fx(t)$$
, equilibrio $\bar{x} = 0$

Consideriamo la forma quadratica: $V(x) = x^{T}Px$, $P \succ 0$

Come scegliere P affinchè V(x) sia una funzione di Lyapunov per il sistema ??

Sistemi lineari e funzioni di Lyapunov quadratiche (t.c.)

$$\dot{x}(t) = Fx(t)$$
, equilibrio $\bar{x} = 0$

Consideriamo la forma quadratica: $V(x) = x^{T}Px$, $P \succ 0$

Come scegliere P affinchè V(x) sia una funzione di Lyapunov per il sistema ??

Per il teorema di Lyapunov: $\dot{V}(x)$ deve essere (semi)definita negativa !!

Sistemi lineari e teorema di Lyapunov (t.c.)

$$\dot{V}(x) = \dot{x}^{\top} P x + x^{\top} P \dot{x} = x^{\top} F^{\top} P x + x^{\top} P F x = x^{\top} (F^{\top} P + P F) x \quad \text{semidef. neg.}$$

$$\implies F^{\top} P + P F = -Q, \quad Q \succeq 0 \quad \text{(Equazione di Lyapunov a t.c.)}$$

Teorema: Dato un sistema $\dot{x} = Fx$ e una matrice P > 0:

- **1** Se $F^{\top}P + PF = -Q$ con $Q \succeq 0$ allora il sistema è semplicemente stabile.
- **2** Se $F^{\top}P + PF = -Q$ con $Q \succ 0$ allora il sistema è asintoticamente stabile.

Esempi

1.
$$F = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$
, $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0$

2.
$$F = \begin{bmatrix} -1 & 3 \\ 0 & -1 \end{bmatrix}$$
, $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0$

Esempi

1.
$$F = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$
, $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0 \implies Q = -(F^{T}P + PF)$ definita positiva

2.
$$F = \begin{bmatrix} -1 & 3 \\ 0 & -1 \end{bmatrix}$$
, $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0 \implies Q = -(F^TP + PF)$ indefinita

Equazione di Lyapunov (t.c.)

Come scegliere P affinchè V(x) sia una funzione di Lyapunov per il sistema ??

Equazione di Lyapunov (t.c.)

Come scegliere P affinchè V(x) sia una funzione di Lyapunov per il sistema ??

Teorema: Dato un sistema $\dot{x} = Fx$ asintoticamente stabile, per ogni Q > 0 esiste un'unica matrice $P \succ 0$ tale che

$$F^{\mathsf{T}}P + PF = -Q.$$

Inoltre P è data dall'espressione

$$P = \int_0^\infty e^{F^{\mathsf{T}}t} Q e^{Ft} dt.$$

Esempi

1.
$$F = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$
, $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0$

2.
$$F = \begin{bmatrix} -1 & 3 \\ 0 & -1 \end{bmatrix}$$
, $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0$

G. Baggio

Esempi

1.
$$F = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$
, $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0 \implies P = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$ definita positiva

2.
$$F = \begin{bmatrix} -1 & 3 \\ 0 & -1 \end{bmatrix}$$
, $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0 \implies P = \begin{bmatrix} \frac{1}{2} & \frac{3}{4} \\ \frac{3}{4} & \frac{11}{4} \end{bmatrix}$ definita positiva

G. Baggio

Lez. 11: Teorema di Krasowskii e Lyapunov per sis. lin.

Test per la stabilità asintotica di sistemi lineari a t.c.

- **1.** Fissare una $Q \succ 0$ (presa a caso)
- **2.** Risolvere il sistema di equazioni lineari $F^{\top}P + PF = -Q$
 - **2.1** Se il sistema non ammette soluzioni o ne ammette infinite allora il sistema **non è** asintoticamente stabile
 - 2.2 Se il sistema ammette un'unica soluzione allora:
 - **2.2.1** Se P > 0 allora il sistema è asintoticamente stabile
 - **2.2.2** Se $P \not\succeq 0$ allora il sistema **non è** asintoticamente stabile

Osservazioni

1. Il test non permette di concludere nulla circa la stabilità semplice del sistema.

Osservazioni

1. Il test non permette di concludere nulla circa la stabilità semplice del sistema.

2. La condizione $P \succ 0$ (verificabile tramite test di Sylvester) è essenziale per determinare al stabilità asintotica e non può essere sostituita con $P \succeq 0$.

Osservazioni

1. Il test non permette di concludere nulla circa la stabilità semplice del sistema.

2. La condizione $P \succ 0$ (verificabile tramite test di Sylvester) è essenziale per determinare al stabilità asintotica e non può essere sostituita con $P \succeq 0$.

3. Il test è vantaggioso da un punto di vista computazionale. Infatti permette di decidere circa la stabilità asintotica (o meno) del sistema evitando completamente il calcolo esplicito degli autovalori di F (spesso impraticabile per dimensioni n > 2)!!

In questa lezione

- ▶ Teorema di Krasowskii
- ▶ Forme quadratiche e matrici (semi)definite positive
- ▶ Teorema di Lyapunov per sistemi lineari a t.c.
- ▶ Teorema di Lyapunov per sistemi lineari a t.d.

Sistemi lineari e funzioni di Lyapunov quadratiche (t.d.)

$$x(t+1) = Fx(t)$$
, equilibrio $\bar{x} = 0$

Consideriamo la forma quadratica: $V(x) = x^{T}Px$, P > 0

$$\Delta V(x(t)) = V(x(t+1)) - V(x(t)) = x^{\top}(t+1)Px(t+1) - x^{\top}(t)Px(t)$$
$$= x^{\top}(F^{\top}PF - P)x \quad \text{semidef. neg.}$$

$$\implies F^{\top}PF - P = -Q$$
, $Q \succeq 0$ (Equazione di Lyapunov a t.d.)

Sistemi lineari, teorema ed equazione di Lyapunov (t.d.)

Teorema: Dato un sistema x(t+1) = Fx(t) e una matrice $P \succ 0$:

- **1** Se $F^{\top}PF P = -Q$ con $Q \succeq 0$ allora il sistema è semplicemente stabile.
- **2** Se $F^{\top}PF P = -Q$ con $Q \succ 0$ allora il sistema è asintoticamente stabile.

Sistemi lineari, teorema ed equazione di Lyapunov (t.d.)

Teorema: Dato un sistema x(t+1) = Fx(t) e una matrice P > 0:

- **1** Se $F^{\top}PF P = -Q$ con $Q \succeq 0$ allora il sistema è semplicemente stabile.
- **2** Se $F^{\top}PF P = -Q$ con $Q \succ 0$ allora il sistema è asintoticamente stabile.

Teorema: Dato un sistema x(t+1) = Fx(t) asintoticamente stabile, per ogni Q > 0 esiste un'unica matrice P > 0 tale che

$$F^{\top}PF - P = -Q.$$

Inoltre P è data dall'espressione

$$P = \sum_{t=0}^{\infty} (F^{\top})^t Q F^t.$$

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 11: Teorema di Krasowskii e teorema di Lyapunov per sistemi lineari

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2020-2021

⊠ baggio@dei.unipd.it

baggiogi.github.io

Se abbiamo una V(x) con $\dot{V}(x)$ semidefinita negativa riusciamo a dire qualcosa riguardo alla s**tabilità asintotica** di \bar{x} ?

Teorema: Sia

$$\mathcal{N} \triangleq \{x \in \mathbb{R}^n : \dot{V}(x) = 0\}.$$

Se esiste un intorno $\mathcal I$ di $\bar x$ tale che non esiste alcuna traiettoria (diversa da quella banale $x(t)=\bar x, \, \forall t$) che sia interamente contenuta in $\mathcal N\cap \mathcal I$, allora $\bar x$ è asintoticamente stabile. Altrimenti, $\bar x$ è semplicemente stabile.

G. Baggio

Lez. 11: Teorema di Krasowskii e Lyapunov per sis. I

18 Marzo 2021

note

2. Oscillatore armonico smorzato ($m=k=\nu=1$):

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, \quad \bar{x} = 0$$

$$V(x_1,x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$V(x_1, x_2) = \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2$$

$$N = \{ x \in \mathbb{R}^1 : \dot{V}(x) = 0 \} = \{ x_1, x_2 \in \mathbb{R} : x_2 = 0 \}$$

$$x(t) \in \mathcal{N} \Rightarrow x_2(t) = 0 \quad \forall t \Rightarrow \dot{x}_2(t) = 0 \quad \forall t$$

$$x(t) \in \mathcal{N} \Rightarrow x_{2}(t) = 0 \quad \forall t \Rightarrow \dot{x}_{2}(t) = 0 \quad \forall t$$

$$(\dot{x}_{2}(t) = -x_{1}(t) - x_{2}(t) \Rightarrow 0 = -x_{1}(t) \Rightarrow x_{1}(t) = 0 \quad \forall t$$

4. Pendolo semplice con attrito ($\emph{m}=\ell=\nu=1$):

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -g \sin x_1(t) - x_2(t) \end{cases} \bar{x} = 0$$

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2}x_2^2$$

 $\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -g \sin x_1 - x_2 \end{cases} \quad \bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

G. Baggio Lez. 11: Teorema di Krasowskii e Lyapunov per sis. lin.

i. lin. 18 Marz

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2} x_2^2$$

$$V(x_1, x_2) = -x_2^2$$
 semidef. neg.

$$N = \{ x \in \mathbb{R}^2 : V(x) = 0 \} = \{ x_1, x_2 \in \mathbb{R} : x_1 = 0 \}$$

$$x(t) \in \mathcal{N} \Rightarrow x_2(t) = 0 \quad \forall t \Rightarrow \dot{x}_2(t) = 0 \quad \forall t$$

$$\Rightarrow \dot{x}_2(t) = -g \sin x_1(t) - x_2(t) \Rightarrow 0 = -g \sin(x_1(t))$$

I un information X tale the $0 = -g \sin(x_1(t)) \Rightarrow x_1(t) = 0$

in questo intorno l'unica traielloria interamente contenuta in Ne

$$x(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

per krasowskii x e asint. stabile

5.
$$\begin{cases} \dot{x}_1(t) = -x_1^3(t) \\ \dot{x}_2(t) = -x_2^2(t)x_2(t) \end{cases} \quad \bar{x} = 0$$

$$V(x_1, x_2) = x_1^2 + x_2^2$$

$$\dot{V}(x_1, x_2) = -2x_1^2(x_1^2 + x_2^2)$$
, semidef. neg $\mathcal{N} = \{x_1 = 0, x_2 = \alpha, \alpha \in \mathbb{R}\}$

$$\implies \bar{x} = 0$$
 semplicemente stabile

$$\begin{cases} \dot{X}_1 = -X_1^3 \\ \dot{X}_2 = -X_1^2 X_2 \end{cases} \bar{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\bigvee \left(X_1, X_2 \right) = X_1^2 + X_2^2$$

$$V(x_1, x_2) = 2x_1 \dot{x}_1 + 2x_2 \dot{x}_2$$

$$= -2x_1^4 - 2x_1^2x_2^2 = -2x_1^2(x_1^2 + x_2^2)$$
 semidef. neg.
(in un intorno di \bar{x})

Per il teorema di Lyapunov, x è (almeno) simplicamente stabile

Utilizziamo Krasowskii:

$$N = \{ x : \dot{V}(x) = 0 \} = \{ x_1, x_2 \in \mathbb{R} : x_1 = 0 \}$$

$$-x(t) \in N \Rightarrow x_1(t) = 0 \quad \forall t \Rightarrow \dot{x}_1(t) = 0 \quad \forall t$$

$$\begin{cases} 0 = 0 & \begin{cases} 1' & \Rightarrow x(0) = \begin{bmatrix} 0 \\ x_{1,0} \end{cases} & x_{2,0} \neq 0 \Rightarrow \end{cases}$$

$$\begin{cases} \dot{x}_{1} = 0 & \begin{cases} x_{2,0} \neq 0 \end{cases} & x_{2,0} \neq 0 \Rightarrow \end{cases}$$

$$\Rightarrow \times (\sigma) = \begin{bmatrix} \sigma \\ \times \iota, \sigma \end{bmatrix}$$

$$x_{i,c} \neq 0 \Rightarrow x(t) = \begin{bmatrix} 0 \\ \kappa_{i,c} \end{bmatrix} \in \mathcal{N}$$

⇒ Per Krosso wskii x e (solo) sempl. stabile