Topografia Avançada //

Prof. Diego Camargo

Aula 01 – Conceitos e fundamentos de Geoprocessamento e Georreferenciamento

Curso de Engenharia Civil Centro Federal de Educação Tecnológica de Minas Gerais

OBJETIVO DA AULA

1. Introdução do conteúdo da disciplina;

 Apresentar conceitos e fundamentos gerais do Geoprocessamento e Georreferenciamento;

POSICIONAMENTO

Elemento cada vez mais importante no cotidiano e mais presente na vida das pessoas.

- 1. Posicionamento relativo:
 - A objetos existentes (pontos de referências);
 - Sistema de endereçamento (endereços postais,
 - CEPs).
- 2. Posicionamento absoluto:
 - Coordenadas geográficas;
 - Aplicações diferentes têm necessidades diferentes.

POSICIONAMENTO

A capacidade de referenciar e localizar pontos na superfície da Terra é fundamental para várias atividades humanas.

Exemplos:

- Grandes descobrimentos, sec. XV;
- Desenvolvimento da Cartografia;
- Topografia moderna;
- GPS (GNSS).

CARTOGRAFIA

Segundo a Associação Cartográfica Internacional, "A cartografia é o conjunto de estudos e de observações científicas, artísticas e técnicas que, a partir de resultados de observações diretas ou da exploração de documentos elabora plantas, cartas, mapas, [...]. O objetivo primordial, portanto, é a pesquisa de técnicas e métodos de elaboração e utilização de plantas, cartas e mapas [...].

CARTOGRAFIA

Mapas vêm sendo usados desde tempos remotos com objetivo de registro de informações espaciais relevantes para atividades humanas e de apresentação e comunicação de informações geográficas.

da adoção de tecnologias partir Geoprocessamento, as funções desempenhadas pelo mapa de registro de dados Geográficos e de apresentação e comunicação de informações geográficas passam a ser desempenhadas pela base de dados, e por visualizações cartográficas obtidas a partir desta.

ou

GEOPROCESSAMENTO

A definição pode ser considerada como: "Processamento digital de imagens, cartografia digital e os sistemas informativos geográficos.";

"Processamento de dados contidos em uma base de dados referenciada territorialmente (geocodificada), usando recursos analíticos, gráficos e lógicos, para obtenção e apresentação dos dados."

Operação complexa:

- 1. Sistemas de satélites artificiais e equipamentos receptores de sinal.
- Computadores e softwares necessários para a manipulação dos dados.

Calculadora de preço da Uber

Prodoviária de Belo Horizonte, Av...×

CEFET-MG - Campus I, Av. Amaz... ×

Suas opções

● UberX R\$14-19 **①**

Juntos R\$14-19 **1**

Comfort R\$16-21 **1**

GEODÉSIA

"A geodésia é a ciência da medição e representação da superfície", Helmert, 1880.

Como medir e representar a terra?

DATUM GEODÉSICO

Datum (plural: data) é um termo latino cujo significado, para a geomática, é referência geométrica.

Referencial (um ponto, uma linha ou uma superfície) a partir do qual são determinadas as posições de elementos geográficos.

Geoide Elipsoide Tierra Proceso de modelización de la superficie de la Tierra: realidad - geoide - elipsoide

DATUM GEODÉSICO

ELIPSOIDE

f: achatamento

a: semieixo maior

b: semieixo menor

ELIPSOIDE

Nome	Valores dos elem	entos geométricos
Bessel 1841	a = 6.377.397 m	$f = \frac{1}{299,15}$
Clarke 1857	a = 6.378.345 m	$f = \frac{1}{294,26}$
Everest 1830	a = 6.377.276 m	$f = \frac{1}{300,8}$
Helmert 1907	a = 6.378.200 m	$f = \frac{1}{298,3}$
Geodetic Reference System 1980 (GRS80)	a = 6.378.137 m	$f = \frac{1}{298,257222101}$
World Geodetic System (WGS84)	a = 6.378.137 m	$f = \frac{1}{298,257223563}$

ELIPSOIDE

Nome	Sigla	<i>Datum</i> horizontal	Nome e valores dos elementos geométricos do elipsoide de referência
Brasileiro (Antigo)	SGB-CA	Córrego Alegre	Hayford 1924 $a = 6.378.388 m$ $f = \frac{1}{297}$
Brasileiro (Atual)		SIRGAS2000	GRS80 $a = 6.378.137 m \qquad f = \frac{1}{298,257222101}$
Sul Americano	SAD69	VT-CHUÁ	Elipsoide de referência 1967 $a = 6.378.160 m \qquad f = \frac{1}{298,25}$
Europeu	ED50	Potsdam	Internacional de 1924 $a = 6.378.388 m \qquad f = \frac{1}{297}$

Sistema de Coordenadas Cartesiano Plano ou Sistema Plano-Retangular;

Sistema de Coordenadas Polar Plano;

Sistema de Coordenadas Cartesiano Espacial;

Sistema de Coordenadas Geográficas Geodésicas

<u>Sistema de Coordenadas Plano-</u> Retangular:

Baseado o sistema de coordenadas cartesiano plano criado pelo filósofo francês, Renée Descartes (1569-1650).

Sistema de Coordenadas Polar

Plano:

Determinada a origem é definido a posição de um ponto através de dados de ângulo e distância:

Sistema de Coordenada

Espacial:

Considera-se a altitude dos pontos (coordenadas z

apresentam 3 valores, ex. X, Y e

Z).

Sistema de Coordenada

Espacial:

Considera-se a altitude dos

pontos (coordenadas

apresentam 3 valores, ex. X, Y e

Z).

Sistema de Coordenadas

Geodésicas:

Latitude geodésica (ϕ_g) de um ponto na superfície de referência é o valor angular do arco formado pela reta normal a essa superfície, nesse ponto, e o plano equador.

Sistema de Coordenadas

Geodésicas:

Longitude geodésica (λ_g) de um ponto na superfície de referência é o valor do ângulo diedro que forma o plano meridiano. Meridiano Greenwich ou Meridiano Principal.

O uso do Sistema de Coordenadas Plano Retangular na Geomática não pode ser feito sem algumas considerações especiais. Devido a esfericidade da Terra, não é possível representar pontos da sua superfície nesse sistema sem que haja algum tipo de deformação.

Deformação, neste caso, significa deformação dos ângulos entre as direções e/ou deformação das distâncias e/ou deformação da superfície representada. Para resolver esse problema existem duas soluções: a primeira consiste em utilizar uma Projeção Cartográfica.

- 1. Projeções cilíndricas;
- 2. Projeções cônicas;
- 3. Projeções azimutais ou planas.

Projeção azimutal ou plana do polo.

Uma outra solução consiste em representar diretamente os pontos medidos sobre o Sistema do Coordenadas Plano Retangular sem que se aplique qualquer transformação entre a superfície elipsoidal e a superfície plana.

Neste caso, visto que a superfície terrestre é aproximadamente esférica, é preciso restringir as distâncias a serem representadas em função do nível de precisão que se deseja obter.

No Brasil, utiliza-se a Projeção Cartográfica Plano Retangular denominada Projeção Universal Transversa de Mercator — UTM, que no passado também foi denominada Projeção de Gauss-Krüger.

Projeção UTM (Universal Transversa de Mercator)

Pode ser vizualizada como um cilindro secante à superfície de referência;

Fator k aumenta na medida em que se afasta do ponto de tangência

Cilindro Secante:

Considerando o mesmo arco na superfície do elipsoide, temos valores de k maiores e menores que 1.

Fator k tem margem de aumento menor

MONOGRAFIA - MGBH

3. Coordenadas oficiais

3.1. SIRGAS2000 (Época 2000.4)

Coordenadas Geodésicas						
Latitude:	- 19° 56' 30,8431"	Sigma:	0,001 m			
Longitude:	- 43° 55' 29,6291"	Sigma:	0,001 m			
Alt. Elip.:	974,86 m	Sigma:	0,006 m			
Alt. Orto.:	981,07 m	Fonte:	GPS/MAPGEO2010			
Coordenadas Cartesianas						
X:	4.320.741,822 m	Sigma:	0,004 m			
Y:	-4.161.560,476 m	Sigma:	0,004 m			
Z :	-2.161.984,249 m	Sigma:	0,002 m			
Coordenadas Planas (UTM)						
UTM (N):	7.794.587,879 m					
UTM (E):	612.507,701 m					
MC:	-45					

Conclusão

MONOGRAFIA - MGBH

Coordenadas Sirgas						
	Latitude(gms)	Longitude(gms)	Altitude Geométrica(m)			
Coordenada Oficial ⁴	-19° 56′ 30,8427″	-43° 55′ 29,6290″	974,82			
Coordenada na data do levantamento ⁵	-19° 56′ 30,8378″	-43° 55′ 29,6303″	974,82			
$Sigma(95\%)^{6} (m)$	0,002	0,005	0,010			
Modelo Geoidal	MAPGEO2010					
Ondulação Geoidal (m)	-6,21					
Altitude Ortométrica (m)	981,02					

Aplicações:

- 1. Modelo Digital de Terreno;
- 2. Sistema de Gerência de Pavimentos;
- 3. Cadastramento, planejamento e gestão da infraestrutura urbana;
- 4. Avaliação de dados de viagens urbanas;
- 5. Gestão de banco de dados espaciais.

Elipsóide (WGS84)

Elipsóide (SAD69)

SIRGAS 2000 (Policônica)

SAD69 (Projeção Cônica)

EPSG

European Petroleum Survey Group (EPSG) é uma coletânea de sistemas de referências de coordenadas. A sigla se refere a entidade que utilizou estes códigos numéricos para organizar os dados.

EPSG

Na prática os SRC podem ser organizados pelo número EPSG, veja os exemplos:

EPSG:31983: SIRGAS 2000 / UTM zone 23S

EPSG:4326: WGS 84

EPSG:4291: SAD69

EPSG:4674: SIRGAS 2000