

- Magnetsku indukciju B možemo vizualizirati pomoću silnica (linija magnetskoga toka)
- To su linije kojima u svakoj njihovoj točki vektor magnetske indukcije predstavlja tangentu
- Silnice magnetskoga polja su zatvorene krivulje

- Magnetski tok Φ kroz površinu S: Vizualiziramo brojem linija magnetskog toka koje prolaze kroz površinu S
- U položaju zavojnice "a" u homogenom magnetskom polju tok je maksimalan
- U položaju "b" tok je nula
- Općenito u homogenom magnetskom polju: $\Phi = \vec{B} \cdot \vec{n}_0 \cdot S$
- n_0 je jedinična normala na površinu S

-

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

2

Međuinduktivitet u električnim krugovima

• Sustav dviju petlji protjecanih strujama

$$M = \frac{N_2 \Phi_{21}}{I_1} = \frac{N_1 \Phi_{12}}{I_2}$$

- Magnetski tok je proporcionalan struji koja ga stvara
- M je međuinduktivitet : jedinica henri (H)
- L_1 i L_2 : induktiviteti jedinica henri (H)

$$L_{i} = \frac{N_{i}\Phi_{i}}{I}$$

 $L_{2} = \frac{N_{1}\Phi_{22}}{I}$

• Ukoliko se sav stvoreni magnetski tok zatvara kroz obje petlje (nema rasipnog toka) vrijedi:

$$\Phi_{11} = \Phi_{21}$$
 $\Phi_{22} = \Phi_{12}$

$$M^{2} = \frac{N_{2}\Phi_{21}}{I_{1}} \cdot \frac{N_{1}\Phi_{12}}{I_{2}} = \frac{N_{1}\Phi_{11}}{I_{1}} \cdot \frac{N_{2}\Phi_{22}}{I_{2}} = L_{1} \cdot L_{2} \qquad M = \sqrt{L_{1} \cdot L_{2}}$$

- U općem slučaju tokovi nisu jednaki, pa vrijedi: $M = k\sqrt{L_1 \cdot L_2}$
- k je faktor magnetske veze bezdimenzionalna konstanta $0 \le k \le 1$

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

.

Međuinduktivitet u električnim krugovima

Promjena magnetskog toka inducira napon u svitku:

$$u_{1} = N_{1} \frac{d\Phi_{12}}{dt}$$

$$\Phi_{12} = \frac{MI_{2}}{N_{1}}$$

$$\Rightarrow u_{1} = M \frac{di_{2}}{dt}$$

$$u_{2} = N_{2} \frac{d\Phi_{21}}{dt}$$

$$\Phi_{21} = \frac{MI_{1}}{N_{2}}$$

$$\Rightarrow u_{2} = M \frac{di_{1}}{dt}$$

- Napon međuindukcije: vremenski promjenjiva električna struja kroz jednu zavojnicu inducira napon u drugoj zavojnici
- Primjena: transformatori

Transformator 220 V/110 V 50 VA Proizvodnja: VOLTA - Zagreb

Referentni predznaci

- Referentni predznaci kod napona međuindukcije: u shematskom prikazu određeni oznakom točke na priključnicama
- Magnetski tokovi se podupiru ako električna struja ima isti smjer u priključnicama označenim točkama
- Predznaci napona samoindukcije na zavojnici kroz koju protječe struja i napona međuindukcije na drugoj zavojnici su isti na priključnicama označenim točkom

$$u_{AB} = L_{AB} \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$u_{CD} = M \frac{\mathrm{d}i}{\mathrm{d}t}$$

F

 $\textbf{FER} \cdot \textbf{ZOEEM} \cdot \textbf{Osnove} \ elektrotehnike} \cdot \textbf{14.} \ \textbf{Meduinduktivno} \ \textbf{povezani} \ električni} \ krugovi \ i \ transformator$

Referentni predznaci

Uz promjenu referentnog smjera struje:

$$u_{AB} = -u_{BA} = -L_{AB} \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$u_{CD} = -M \frac{\mathrm{d}i}{\mathrm{d}t}$$

Uz zamjenu oznaka priključnica (drugačije namatanje svitaka):

$$u_{AB} = L_{AB} \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$u_{\scriptscriptstyle AB} = L_{\scriptscriptstyle AB} \, rac{\mathrm{d}i}{\mathrm{d}t}$$
 $u_{\scriptscriptstyle EF} = -M \, rac{\mathrm{d}i}{\mathrm{d}t}$

Fazorski zapis

$$i(t) = I_0 \sin(\omega t + \alpha_I)$$

$$\dot{I} = I \angle \alpha_I$$

$$\dot{I} = I \angle \alpha_I$$

$$u_{AB} = L_{AB} \frac{\mathrm{d}i}{\mathrm{d}t} \qquad \Rightarrow \qquad \dot{U}_{AB} = j\omega L_{AB}\dot{I} = jx_{LAB}\dot{I}$$

$$u_{EF} = -M \frac{\mathrm{d}i}{\mathrm{d}t} \qquad \Rightarrow \qquad \dot{U}_{EF} = -j\omega M\dot{I} = -jx_M\dot{I}$$

F

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

8

Transformacija kruga s međuinduktivitetom

Uvodimo proširenje:

$$\dot{U}_{L1} = j\omega L_1 \dot{I}_1 - j\omega M (\dot{I}_2 + \dot{I}_1 - \dot{I}_1) = j\omega (L_1 - M)\dot{I}_1 + j\omega M (\dot{I}_1 - \dot{I}_2)$$

$$\dot{U}_{L2} = j\omega L_2 \dot{I}_2 - j\omega M (\dot{I}_1 + \dot{I}_2 - \dot{I}_2) = j\omega (L_2 - M)\dot{I}_2 - j\omega M (\dot{I}_1 - \dot{I}_2)$$

Transformacija kruga s međuinduktivitetom

- dobije se negativni induktivitet
- nema fizikalno značenje

ullet za $L_1 < M$ ili $L_2 < M$: dobije se negativni induktivitet u transformiranom krugu ullet nema fizikalno značenje radi se o pomoćnoj metodi rješavanja električnih krugova

Kod transformacije naznačavamo negativni induktivitet a ne kapacitet jer mu je reaktancija negativna ali upravno proporcionalna s frekvencijom – kod kapaciteta je reaktancija obrnuto proporcionalna s frekvencijom

F

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

10

Serijski spoj međuinduktivno povezanih zavojnica

 Suglasna veza: naponi samoindukcije i naponi međuindukcije se zbrajaju

$$u_{AB} = L_1 \frac{\mathrm{d}i}{\mathrm{d}t} + M \frac{\mathrm{d}i}{\mathrm{d}t} + L_2 \frac{\mathrm{d}i}{\mathrm{d}t} + M \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$L_{\mathrm{ekv}} = L_1 + L_2 + 2M$$

$$u_{AB} = (L_1 + L_2 + 2M) \frac{\mathrm{d}i}{\mathrm{d}t}$$

 Nesuglasna veza: naponi međuindukcije se oduzimaju od napona samoindukcije

$$u_{AB} = L_1 \frac{\mathrm{d}i}{\mathrm{d}t} - M \frac{\mathrm{d}i}{\mathrm{d}t} + L_2 \frac{\mathrm{d}i}{\mathrm{d}t} - M \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$u_{AB} = (L_1 + L_2 - 2M) \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$u_{AB} = (L_1 + L_2 - 2M) \frac{\mathrm{d}i}{\mathrm{d}t}$$

Primjer 1. Za spoj prikazan slikom odredite struju u krugu. Zadano $U=8~{
m V}.$

Rješenje:

I=1 A

⊫₹

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

12

Međuinduktivitet u električnim krugovima

Primjer 2. Izračunajte snagu na otporniku R=25 Ω prema slici. Zadano je X_1 = X_2 =25 Ω , X_M =20 Ω , U=25 V.

Rješenje:

P=71,7 W

Primjer 3. Kojeg je predznaka inducirani napon u_{cd} zavojnice (2) ako je struja kroz zavojnicu (1) rastuća naznačenog smjera?

Rješenje:

$$u_{cd} > 0$$

⋿⋜

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

14

Međuinduktivitet u električnim krugovima

Primjer 4. Odredite frekvenciju naponskog izvora u mreži prema slici ako kroz otpornik R teče struja efektivne vrijednosti $0.5~\rm A.$ Zadano je $U=30~\rm V$, $R=40~\Omega$, $L_1=0.1~\rm H$; $L_2=0.4~\rm H$ i faktor magnetske veze k=1.

Rješenje:

$$f = 71,2 \text{ Hz}$$

Primjer 5. Na neferomagnetsku jezgru su namotane dvije zavojnice induktiviteta L_1 =1 H i L_2 = 4 H. Promjena struje strujnog izvora dana je na dijagramu. Ako je faktor magnetske veze k=0,4 odredite napon $u_{\rm ab}$ u trenutku t=1,5 ms.

Rješenje: u_{ab} =-8 V

⋿⋜

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

16

Transformator

- Transformator je statički elektromagnetski uređaj u kojem se električna energija iz jednog ili više izmjeničnih krugova prenosi u jedan ili više izmjeničnih krugova s nepromijenjenom frekvencijom
- Služi za povećanje ili smanjenje napona u izmjeničnim strujnim krugovima i/ili za galvansko odvajanje električnih krugova
- Sastoji se od dva ili više svitaka (zavojnice) koji su međusobno povezani međuinduktivnom vezom
- Svitak koji je spojen na izvor napona (ili struje) nazivamo primarnim svitkom (često skraćeno primar), a svitak na koji se spaja trošilo nazivamo sekundarnim svitkom (sekundar).
- Dvonamotni transformator: s jednim primarnim i jednim sekundarnim svitkom

Transformator

- Načelna konstrukcija dvonamotnoga transformatora: dva međuinduktivno povezana svitka namotana na jezgru
- Na sekundarni svitak spojeno je trošilo
- Osim za prijenos energije, transformatori se koriste i kao mjerni transformatori
- Mjerni transformatori svode mjerene napone i struje na vrijednosti prikladne za mjerenje – na sekundar se spaja voltmetar, odnosno ampermetar

Konstrukcija strujnog mjernog transformatora

Proizvodnja: Končar mjerni transformatori

⋿⋜

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

18

Transformator

1000 MVA 420/300/10,5 kV Ukupna masa 325 t Proizvodnja: KONČAR KPT - Zagreb

90,8 MVA (za visokonaponsku istosmjernu mrežu) 332/\v3±16%/107 kV Ukupna masa 155 t Proizvodnja: KONČAR KPT - Zagreb

Transformator

- Za transformaciju naponskih razina u sustavima u kojima se prenosi energija koriste se transformatori s feromagnetskom jezgrom
- Zračni transformatori sa jezgrom od neferomagnetskog materijala
- Feromagnetski materijali (željezo i njegove legure, kobalt, nikal ..):
 - kanaliziraju magnetski tok smanjuje se rasipni magnetski tok
 - povećavaju magnetsku indukciju B u svitku uz istu električnu struju

Zavojnica protjecana strujom u zraku

Feromagnetski materijali

Zavojnica protjecana strujom obuhvaća prstenastu feromagnetskiu jezgru

20

⋿⋜

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

- Feromagnetski materijali: tipični predstavnici željezo (Fe), kobalt (Co), nikal (Ni) - magnetizacija postoji i bez vanjske el. struje
- Proces magnetizacije feromagnetskih materijala objašnjavamo postojanjem Weissovih domena, odnosno postojanja područja spontane magnetiziranosti u takvim materijalima

Pierre Weiss (Mulhouse, 1865. – Lyon, 1940.), francuski fizičar

- Za magnetske indukcije veće od nekog iznosa, dolazi do zasićenja, u kojemu su sve Weissove domene poravnate
- U zasićenju feromagnetski materijal jezgre gubi sposobnost izrazitog kanaliziranja magnetskog toka – stoga u radnim uvjetima maksimalna indukcija u feromagnetskoj jezgri mora biti dovoljno mala da ne dođe do zasićenja

- Idealni transformator:
 - ✓ Gubici transformatora jednaki su ništici
 - ✓ Nema rasipnog toka sve magnetske silnice se zatvaraju kroz jezgru i kroz oba svitka – faktor magnetske veze k=1

$$N_1$$
 – broj zavoja primara N_2 - broj zavoja sekundara

$$u_1 = N_1 \frac{\mathrm{d}\Phi}{\mathrm{d}t} \qquad u_2 = N_2 \frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

$$\frac{u_1}{u_2} = \frac{N_1 \frac{\mathrm{d}\Phi}{\mathrm{d}t}}{N_2 \frac{\mathrm{d}\Phi}{\mathrm{d}t}} = \frac{N_1}{N_2}$$

$$\frac{u_1}{u_2} = \frac{N_1}{N_2}$$

Prva transformatorska

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

Idealni transformator

$$n = \frac{N_1}{N}$$

Prijenosni omjer transformatora

Neka se magnetski tok u jezgri transformatora mijenja po zakonu: $\Phi = -\Phi_m \cos(\omega t)$

Napon primara je tada:

$$u_1 = N_1 \frac{d\Phi}{dt} = N_1 \frac{d(-\Phi_m \cos(\omega t))}{dt} = \omega N_1 \Phi_m \sin(\omega t) = U_{1\text{max}} \sin(\omega t)$$

$$U_{1\text{max}} = \omega N_1 \Phi_m$$

Efektivna vrijednost primarnog napona:

$$U_1 = \frac{\omega}{\sqrt{2}} N_1 \Phi_m$$
 $U_1 = 4,44 f N_1 \Phi_m$

$$U_1 = 4,44 f N_1 \Phi_n$$

$$\Phi_{\scriptscriptstyle m} = B_{\scriptscriptstyle m} \cdot S$$

Kod projektiranja transformatora mora se poštovati da maksimalna magnetska indukcija u jezgri B_{m} ne premaši vrijednost kod kojega dolazi do zasićenja. Tipične maksimalne vrijednosti B_{m} su u rasponu 1,2 T do 1,7 T.

22

Kod idealnog transformatora nema gubitaka, pa će snage na primaru i na sekundaru biti jednake:

$$P_1 = P_2$$

Ukoliko zbog jednostavnosti pretpostavimo da je na sekundar transformatora spojen radni otpor R vrijedit će

$$P_{\scriptscriptstyle 1} = U_{\scriptscriptstyle 1} I_{\scriptscriptstyle 1}$$

$$P_1 = U_1 I_1$$
 $P_2 = U_2 I_2 = \frac{N_2}{N_1} U_1 I_2$

Izjednačavanjem dobivamo

$$\frac{I_1}{I_2} = \frac{N_2}{N_1}$$

Druga transformatorska jednadžba

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

24

Idealni transformator

- -Pretpostavimo da je na sekundar idealnog transformatora spojen radni otpor R
- -Tada će ulazni otpor transformatora biti jednak $R_{1u} = \frac{U_1}{I_1} = \frac{nU_2}{I_2} = n^2 R$

$$R_{1u} = \frac{U_1}{I_1} = \frac{nU_2}{\frac{I_2}{n}} = n^2 R$$

- Ukoliko je idealni transformator opterećen impedancijom Z, možemo poopćiti

$$\frac{\dot{U}_1}{\dot{U}_2} = \frac{N_1}{N_2} = n$$

$$\frac{\dot{I}_1}{\dot{I}_2} = \frac{N_2}{N_1} = \frac{1}{n}$$

$$\underline{Z}_{1u} = \frac{\dot{U}_1}{\dot{I}_1} = \frac{n\dot{U}_2}{\frac{\dot{I}_2}{n}} = n^2 \underline{Z}$$

Simbol transformatora

Simbol transformatora s feromagnetskom jezgrom

Primjer 6. Efektivna vrijednost struje izvora na shemi prema slici iznosi 1 A uz ω_1 =1000 rad/s. Ako je prijenosni omjer idealnog transformatora n= N_1 : N_2 =0,1, a pri kružnoj frekvenciji ω_2 =1500 rad/s efektivna vrijednost struje izvora iznosi 0,5 A, odredite otpor R.

Rješenje: $R=48,1 \text{ k}\Omega$

匚

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

26

Idealni transformator

Primjer 7. Ako je prijenosni omjer idealnog transformatora $n=N_1:N_2=0,1$ odredite otpor R_2 tako da snaga koja se razvija na njemu bude dvostruko veća od snage koja se razvija na otporniku $R_1=20~\Omega.$

Rješenje:

$$R_2 = 4 \text{ k}\Omega$$

Primjer 8. Koliki mora biti prijenosni omjer ($n=N_1:N_2$) idealnog transformatora ako želimo postići da struja izvora iznosi $0,5~\mathrm{A}~\mathrm{uz}~\omega=200~\mathrm{rad/s}$, i da kasni u odnosu na napon izvora.

<u>Rješenje</u>: 0,52

⋿⋜

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

28

Idealni transformator

Primjer 9. Koliki mora biti prijenosni omjer $(n=N_1:N_2)$ idealnog transformatora ako želimo postići da struja kroz otpornik R bude maksimalna. Zadana je kružna frekvencija izvora $\omega=200 \text{ rad/s}$.

Rješenje:

1,41

Primjer 10. Primarni namot transformatora sastoji se od N_1 =1000 zavoja. Ako je transformator priključen na napon U=220 V frekvencije f=50 Hz, odredite amplitudu magnetske indukcije u jezgri. Otpor namota i rasipanje magnetskog toka zanemarujemo. Površina jezgre je $10~\rm cm^2$.

Rješenje:

1 T

Primjer 11. Na realni sinusni naponski izvor unutarnjeg otpora $R_{\rm i}$ = $100~\Omega$ priključeno je preko idealnog transformatora trošilo otpora R. Ako je prijenosni omjer transformatora N_1 : N_2 =0,1 odredite otpor R uz koji će snaga na trošilu biti maksimalna.

Riešenie:

 $R=10 \text{ k}\Omega$

F

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

30

Idealni transformator

Primjer 12. Idealni transformator ima odnos broja namotaja $N_1:N_2=10$. Na sekundar je spojen kondenzator $X_{\rm c}=10~\Omega$, a na primar idealni izvor sinusne struje iznosa $10~{\rm mA}$ (efektivno). Kolika je efektivna vrijednost napona na stezaljkama primara?

Riešenje:

10 V

Primjer 13. Idealni transformator koji ima prijenosni omjer $N_1:N_2=2$ opterećen je otporom R=5 Ω . Izračunajte struju primara ako je primar priključen na realni naponski izvor s parametrima: $U_{\rm ph}=12$ V, f=50 Hz, $R_{\rm i}=50$ Ω . Kolike su struje primara i sekundara ako sekundarne stezaljke kratko spojimo?

Rješenje:

 $I_{\rm p}$ =0,171 A

Uz kratki spoj sekundara: $I_p=0.24 \text{ A}$, $I_s=0.48 \text{ A}$

Primjer 14. Trošilo impedancije \underline{Z} priključeno je preko idealnog transformatora na realni naponski izvor s parametrima $U_{\rm ph}=14,14~{\rm V}$, $\underline{Z}_{\rm i}=-3{\rm j}~\Omega$. Ako je radna snaga trošila P, a jalova Q, odredite moguće iznose radnog i reaktivnog otpora trošila, te napon na stezaljkama izvora. Zadano: $N_1=1000$, $N_2=500$, $P=100~{\rm W}$, $Q=200~{\rm VAr}$ (ind). Rješenje:

 $0,45+j0,9~\Omega$; 30 V ili $0,25+j0,5~\Omega$; 22,4 V

Primjer 15. Idealni transformator ima prijenosni omjer n=4. Primarni napon je U_1 =100 V, a primarna struja je I_1 =2 A (f=50 Hz). Izračunajte otpor koji je priključen na sekundar, te radnu snagu na sekundaru. Rješenje:

 3.125Ω ; 200 W

⋿⋜

FER · ZOEEM · Osnove elektrotehnike · 14. Međuinduktivno povezani električni krugovi i transformator

32

Idealni transformator

Primjer 16. Transformator je priključen na sinusni napon U=220 V frekvencije f=50 Hz. Maksimalna indukcija u jezgri je $B_{\rm m}$. Otpor namota i rasipanje magnetskog toka zanemarujemo. Odredite napon U_1 frekvencije f/2 koji možemo priključiti na transformator a da maksimalna magnetska indukcija ostane jednaka.

Rješenje:

110 V