

Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

**Shih-Yung Lin, Ph.D., Lockheed Martin Mission Service
Eric Hoffman, Marcia Domack, NASA Langley Research Center,
Hampton VA**

**AeroMat 2007
June 27, 2007**

Outline

- **Background and Objectives**
- DMD Process – Electron Beam Freeform Fabrication (EBF³)
- Analytical and Experimental Approaches
- Results
- Summary and Future Plans

Integrally Stiffened Structure for Aerospace Applications

Single Blade

Orthogrid

Curvilinear

Features:

- Tailored stiffener arrays
- Near-net-shape fabrication
- Multi-functional novel designs

Benefits:

- Reduced cost, weight, part count, assembly time
- Enhanced structural performance

Fabrication:

- Machining
- Direct Metal Deposition
- Joining Methods

Objectives

- Use FEA results to guide development of Direct Metal Deposition (DMD) fabrication process for aerospace structures
- Develop experimental methods to control distortion and residual stresses in integral structure produced by DMD
- Understand the effects of geometry, boundary conditions, and processing parameters on distortion and residual stresses in integral structures produced by DMD

Outline

- Background and Objectives
- DMD Process – Electron Beam Freeform Fabrication (EBF³)
- Analytical and Experimental Approaches
- Results
- Summary and Future Plans

Electron Beam Free Form Fabrication (EBF³)

- Direct metal deposition process
- Focused electron beam to create a molten pool on a metallic substrate
- Metallic wire fed into molten pool created by electron beam
- Substrate translated with respect to the electron beam to build up 3-D parts layer by layer
- Metallic parts build directly from CAD files without molds or tooling

EBF³ System

Vacuum Chamber

Dual Wire Feeders

Tilt/Rotate Positioner

Fabrication of Single-Blade Stiffened Panel Using EBF³ Deposition Process

Fabrication Arrangement

Completed Panel

Build Plate
AI 2219-T8
0.190 in. thick

Wire
AI 2319

Panel Distortion
Transverse (across width)
Axial (lengthwise) curvature

Outline

- Background and Objectives
- DMD Process – Electron Beam Freeform Fabrication (EBF³)
- **Analytical and Experimental Approaches**
- Results
- Summary and Future Plans

Finite Element Approach

- PATRAN and NASTRAN FEA software
 - 2-D plain strain model
- Transient thermal analysis
 - To determine temperature profiles at any instance
- Thermal-mechanical analysis, nonlinear
 - To determine mechanical strain, stress, and distortion based on temperature change and boundary conditions
 - Elastic / perfect plastic material, temperature dependent
- Repeat transient thermal and thermal-mechanical analysis for each deposited layer
- Mechanical analysis, linear
 - To determine the effects of clamp release

Finite Element Approach – cont.

- All intrinsic processing parameters held constant:
 - wire feed speed, voltage, beam current, translation speed
- Experimental data used to supplement boundary conditions
 - melt pool depth and width
 - temperature profile
 - residual stresses and distortion
- Single-variable parametric study
 - Number of build deposit layers
 - Clamp position / clearance
 - Plate thickness
 - Machined build lands
 - Elastic/plastic pre-strain
 - Selective pre-heating / cooling / insulation

FEA Model

FEA Input Parameters

- Material: Aluminum 2219-T81 base plate and 2319 Al weld wire
- Deposition Temperature = 1200°F (latent heat fusion ignored; melt pool size increased)
- Room Temperature = 70°F
- Yield Stress = 50 ksi (temperature dependent)
- Young's Modulus = 10.5 Msi (temperature dependent)
- Poisson's Ratio = 0.33
- CTE = 12.4E⁻⁶ in/in/°F

Experimental Approach

- All intrinsic processing parameters held constant:
 - wire feed speed, voltage, beam current, translation speed
- Single-variable parametric study
 - Number of build deposit layers
 - Clamp position / clearance
 - Plate thickness
 - Machined build lands
 - Elastic / plastic pre-strain
 - Selective pre-heating / cooling / insulation
- Measurements to determine effect of parametric study on panel distortion and residual stresses and to validate FEA
 - Melt pool depth
 - Temperature distribution
 - Residual stresses
 - Panel distortion

Outline

- Background and Objectives
- DMD Process – Electron Beam Freeform Fabrication (EBF³)
- Analytical and Experimental Approaches
- **Results**
- Summary and Future Plans

Melt Pool Geometry and Temperature Profile Measurements

- Experimental measurements for FEA input parameters

- Melt pool depth estimated at 0.015 in.
- Multiple cross sections of single and two layer builds
- Based on maximum depth

- Thermocouples embedded from back side of build substrate
- Terminate at various depths below surface
- Placed on and adjacent to build line

Experimental Measurement of Melt Pool Temperature

Distortion as a Function of Number of Build Deposit Layers

In-plane Stress (σ_x) Distribution

(Single layer deposit; 1 in. clamp clearance)

Residual Stress Distribution

ASTM E837(Hole Drilling)

Distortion as a Function of Clamp Clearance

In-plane Stress (σ_x) Distribution

(Clamped at 1.0 in or 3.5 in. from Build Centerline)

Distortion as a Function of Plate Thickness

(clamped at 1.0 in. from build centerline)

Build Plate with Machined Build Land

0.060 in build land 0.030 in build land

Machined build plate

Detail A

Build Plate with Machined Build Land

Distortion as a Function of Machined Build Land Height

In-plane Stress (σ_x) Distribution With and Without Build Land

Elastic / Plastic Pre-strain Setup

Effect of Pre-strain on Panel Distortion

(clamped at 3.5 in. from build centerline)

Distortion as a Function of Build Plate Pre-heat Temperature

Effect of Localized Cooling on Panel Distortion

(Cooled at Bottom of Build Plate to 50°F, 70°F and 90°F)

Summary of Experimental Results on Panel Distortion

Outline

- Background and Objectives
- DMD Process – Electron Beam Freeform Fabrication (EBF³)
- Analytical and Experimental Approaches
- Results
- **Summary and Future Plans**

Summary

- **2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD**
 - Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures
- **Distortion and residual stresses are local to deposit**
 - Most distortion develops during deposition of the first few layers;
 - Little change in distortion or residual stresses after fifth deposit layer
 - Most of distortion is localized just beneath the build
- **Thicker build plates and the use of build lands results in greatest decrease in levels of distortion**
- **Pre-straining shown to reduce distortion**
 - Difficult to implement, particularly for complex stiffener arrays
- **Clamp position has complex effect on distortion and stresses**
 - Overall distortion reduced with decreasing clamp clearance
 - Larger clamp clearances induce bending
- **Use of pre-heat and active cooling show minor influence on panel distortion**
 - Generate changes in thermal gradients in the build plate

Future Plans

- Refinements to the FEA Model including
 - 3-D analysis
 - Additional alloy systems
 - Document procedures for the FEA process
- Experiments involving DOE on intrinsic processing parameters
 - Beam power
 - Accelerating voltage
 - Wire feed speed
 - Translation speed
- Use of vibratory stress relief