Diamond price prediction Analysis

```
In [ ]: Dataset-1
         dataset link :https://www.kaggle.com/code/karnikakapoor/diamond-price-prediction/in
In [3]:
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import warnings
         warnings.filterwarnings("ignore")
        data=pd.read_csv("diamonds.csv")
In [4]:
In [5]:
         data
Out[5]:
                 Unnamed:
                             carat
                                         cut color clarity depth table price
                                                                                                Z
                                                                                          у
                          0
              0
                              0.23
                                                  Ε
                                                        SI2
                          1
                                        Ideal
                                                               61.5
                                                                     55.0
                                                                             326
                                                                                 3.95 3.98 2.43
              1
                          2
                              0.21
                                    Premium
                                                  Ε
                                                        SI1
                                                               59.8
                                                                     61.0
                                                                             326
                                                                                 3.89
                                                                                       3.84 2.31
              2
                              0.23
                                                  Ε
                                                       VS1
                                                               56.9
                                                                     65.0
                                                                                 4.05 4.07 2.31
                          3
                                       Good
              3
                          4
                              0.29
                                    Premium
                                                  Ι
                                                       VS2
                                                               62.4
                                                                     58.0
                                                                            334
                                                                                  4.20 4.23 2.63
                          5
                                                        SI2
                                                               63.3
                                                                     58.0
                                                                             335
              4
                              0.31
                                       Good
                                                  J
                                                                                 4.34
                                                                                      4.35 2.75
         53935
                      53936
                              0.72
                                       Ideal
                                                        SI1
                                                               60.8
                                                                     57.0
                                                                           2757
                                                                                  5.75
                                                                                       5.76
                                                                                             3.50
                                                 D
         53936
                      53937
                              0.72
                                       Good
                                                 D
                                                        SI1
                                                               63.1
                                                                     55.0
                                                                           2757
                                                                                  5.69
                                                                                       5.75 3.61
                                        Very
         53937
                      53938
                              0.70
                                                 D
                                                        SI1
                                                               62.8
                                                                     60.0
                                                                           2757
                                                                                  5.66
                                                                                       5.68
                                                                                             3.56
                                       Good
         53938
                      53939
                              0.86
                                    Premium
                                                 Н
                                                        SI2
                                                               61.0
                                                                     58.0
                                                                           2757
                                                                                  6.15
                                                                                       6.12 3.74
                                                        SI2
                                                 D
                                                               62.2
                                                                     55.0
                                                                           2757 5.83
                                                                                      5.87 3.64
         53939
                      53940
                              0.75
                                        Ideal
        53940 rows × 11 columns
In [6]: df=data.copy()
         df
```

Out[6]:		Unnamed: 0	carat	cut	color	clarity	depth	table	price	x	у	z
	0	1	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
	1	2	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
	2	3	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
	3	4	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
	4	5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
	•••		•••	•••		•••	•••					
	53935	53936	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.50
	53936	53937	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.61
	53937	53938	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.56
	53938	53939	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
	53939	53940	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64

53940 rows × 11 columns

In [7]: sns.histplot(x=df.carat)

Out[7]: <Axes: xlabel='carat', ylabel='Count'>


```
In [8]: q1=df["carat"].quantile(0.25)
    q3=df["carat"].quantile(0.75)
    iqr=q3-q1
    iqr
    lower=q1 - 1.5*iqr
    upper=q3 + 1.5*iqr
    upper
```

Out[8]: 2.0

```
In [9]: # count=((df["carat"]<lower)|(df["carat"]>upper)).sum()
# per=(count/len(df["carat"]))*100
# per
num=df.select_dtypes(include="float64")
#num.drop("price", axis=1,inplace=True)
num
```

Z

У

Out[9]: carat depth table x 0 0.23 61.5 55.0 3.95

0	0.23	61.5	55.0	3.95	3.98	2.43
1	0.21	59.8	61.0	3.89	3.84	2.31
2	0.23	56.9	65.0	4.05	4.07	2.31
3	0.29	62.4	58.0	4.20	4.23	2.63
4	0.31	63.3	58.0	4.34	4.35	2.75
•••						
53935	0.72	60.8	57.0	5.75	5.76	3.50
53936	0.72	63.1	55.0	5.69	5.75	3.61
53937	0.70	62.8	60.0	5.66	5.68	3.56
53938	0.86	61.0	58.0	6.15	6.12	3.74

53939 0.75 62.2 55.0 5.83 5.87 3.64

53940 rows × 6 columns

```
In [10]: Q1=num.quantile(0.25)
    Q3=num.quantile(0.75)
    IQR=Q3-Q1
    lower=Q1-1.5*IQR
    upper=Q3+1.5*IQR
    outliers_count=((num<lower)|(num>upper)).sum()
    outliers_percentage=(outliers_count/len(num))*100
    print(outliers_percentage)
    print(outliers_count)
```

```
depth 4.718205
        table
                 1.121617
                 0.059325
                 0.053763
        У
                 0.090842
        dtype: float64
                 1889
        carat
                 2545
        depth
        table
                605
                   32
        Х
                   29
        У
                   49
        Z
        dtype: int64
In [11]: #check the distribution
         plt.figure(figsize=(30,25),facecolor='orange')
         plotnum=1
         for i in num.columns:
             if(plotnum<7):</pre>
                  ax=plt.subplot(3,4,plotnum)
                  sns.distplot(num[i])
             plotnum+=1
         plt.tight_layout()
In [12]: # carat column
         q1=df.carat.quantile(0.25)
         q3=df.carat.quantile(0.75)
         iqr=q3-q1
         iqr
         mini=q1-1.5*iqr
         maxi=q3+1.5*iqr
         df.loc[(df["carat"]<mini) | (df["carat"]>maxi), "carat"]=df["carat"].median()
```

3.502039

carat

```
In [13]: #depth
         q1=df.depth.quantile(0.25)
         q3=df.depth.quantile(0.75)
         iqr=q3-q1
         igr
         mini=q1-1.5*iqr
         maxi=q3+1.5*iqr
         df.loc[(df["depth"]<mini) |(df["depth"]>maxi), "depth"]=df["depth"].mean()
         df.loc[(df["depth"]<mini) | (df["depth"]>maxi), "depth"]
Out[13]: Series([], Name: depth, dtype: float64)
In [14]: df.loc[(df["depth"]<mini) | (df["depth"]>maxi), "depth"]
Out[14]: Series([], Name: depth, dtype: float64)
In [15]:
         #table
         mean = np.mean(df.table)
         std = np.std(df.table)
         mini = mean-3*std
         maxi = mean+3*std
         df.loc[(df["table"]<mini)|(df["table"]>maxi),"table"]=df["table"].mean()
In [16]: df.loc[(df["table"]<mini)|(df["table"]>maxi),"table"]
Out[16]: Series([], Name: table, dtype: float64)
In [17]: #column x
In [18]: q1=df.x.quantile(0.25)
         q3=df.x.quantile(0.75)
         iqr=q3-q1
         iqr
         mini=q1-1.5*iqr
         maxi=q3+1.5*iqr
         df.loc[(df["x"]<mini) | (df["x"]>maxi), "x"]=df["x"].median()
In [19]: df.loc[(df["x"]<mini) | (df["x"]>maxi),"x"]
Out[19]: Series([], Name: x, dtype: float64)
In [20]: sns.boxplot(data=df, x=df.x)
Out[20]: <Axes: xlabel='x'>
```


In [21]: df.drop("Unnamed: 0", axis=1,inplace=True)
df

Out[21]:		carat	cut	color	clarity	depth	table	price	х	у	z
	0	0.23	Ideal	Е	SI2	61.500000	55.000000	326	3.95	3.98	2.43
	1	0.21	Premium	Е	SI1	59.800000	61.000000	326	3.89	3.84	2.31
	2	0.23	Good	Е	VS1	61.749405	57.457184	327	4.05	4.07	2.31
	3	0.29	Premium	1	VS2	62.400000	58.000000	334	4.20	4.23	2.63
	4	0.31	Good	J	SI2	63.300000	58.000000	335	4.34	4.35	2.75
	•••				•••						
	53935	0.72	Ideal	D	SI1	60.800000	57.000000	2757	5.75	5.76	3.50
	53936	0.72	Good	D	SI1	63.100000	55.000000	2757	5.69	5.75	3.61
	53937	0.70	Very Good	D	SI1	62.800000	60.000000	2757	5.66	5.68	3.56
	53938	0.86	Premium	Н	SI2	61.000000	58.000000	2757	6.15	6.12	3.74
	53939	0.75	Ideal	D	SI2	62.200000	55.000000	2757	5.83	5.87	3.64

53940 rows × 10 columns

```
In [22]: # plt.figure(figsize=(10,8))
# corr=(data.select_dtypes(exclude="object").corr())
```

```
# corr
# sns.heatmap(corr, annot=True)
```

In [23]: corr=df.select_dtypes(exclude="object").corr()
sns.heatmap(corr,annot=True)

Out[23]: <Axes: >

In [24]: df.drop("z", axis=1, inplace=True)
df

Out[24]:		carat	cut	color	clarity	depth	table	price	х	у
	0	0.23	Ideal	Е	SI2	61.500000	55.000000	326	3.95	3.98
	1	0.21	Premium	Е	SI1	59.800000	61.000000	326	3.89	3.84
	2	0.23	Good	Е	VS1	61.749405	57.457184	327	4.05	4.07
	3	0.29	Premium	1	VS2	62.400000	58.000000	334	4.20	4.23
	4	0.31	Good	J	SI2	63.300000	58.000000	335	4.34	4.35
	•••					•••				
	53935	0.72	Ideal	D	SI1	60.800000	57.000000	2757	5.75	5.76
	53936	0.72	Good	D	SI1	63.100000	55.000000	2757	5.69	5.75
	53937	0.70	Very Good	D	SI1	62.800000	60.000000	2757	5.66	5.68
	53938	0.86	Premium	Н	SI2	61.000000	58.000000	2757	6.15	6.12
	53939	0.75	Ideal	D	SI2	62.200000	55.000000	2757	5.83	5.87

53940 rows × 9 columns

```
In [25]: #Label encoding
    from sklearn.preprocessing import LabelEncoder
l=LabelEncoder()
for i in df.select_dtypes(include="object"):
    df[i]=l.fit_transform(df[i])
```

In [26]: **df**

Out[26]:		carat	cut	color	clarity	depth	table	price	x	у
	0	0.23	2	1	3	61.500000	55.000000	326	3.95	3.98
	1	0.21	3	1	2	59.800000	61.000000	326	3.89	3.84
	2	0.23	1	1	4	61.749405	57.457184	327	4.05	4.07
	3	0.29	3	5	5	62.400000	58.000000	334	4.20	4.23
	4	0.31	1	6	3	63.300000	58.000000	335	4.34	4.35
	•••					•••				
	53935	0.72	2	0	2	60.800000	57.000000	2757	5.75	5.76
	53936	0.72	1	0	2	63.100000	55.000000	2757	5.69	5.75
	53937	0.70	4	0	2	62.800000	60.000000	2757	5.66	5.68
	53938	0.86	3	4	3	61.000000	58.000000	2757	6.15	6.12
	53939	0.75	2	0	3	62.200000	55.000000	2757	5.83	5.87
	53940 rd	ows × S) colu	mns						

```
In [27]: #train and split
         X=df.drop("price" ,axis=1)
         y=df.price
In [28]: from sklearn.model_selection import train_test_split
         x_train,x_test, y_train,y_test=train_test_split(X,y, random_state=13, test_size=0.2
In [29]: print(x_train.shape)
         print(x_test.shape)
         print(y_train.shape)
         print(y_test.shape)
        (43152, 8)
        (10788, 8)
        (43152,)
        (10788,)
In [30]: #scaling
         from sklearn.preprocessing import MinMaxScaler
         s=MinMaxScaler()
In [31]: x_train[['carat', 'depth','cut','color','clarity','table', 'x','y']]=s.fit_transfor
         x_train
```

Out[31]:		carat	cut	color	clarity	depth	table	x	у
	1715	0.066667	0.75	0.500000	0.714286	0.169492	0.615385	0.135624	0.076740
	24957	0.277778	0.75	0.333333	0.428571	0.542373	0.692308	0.799277	0.137521
	22696	0.055556	0.75	0.500000	0.714286	0.084746	0.615385	0.124774	0.074363
	12972	0.450000	1.00	0.666667	0.714286	0.474576	0.461538	0.484629	0.109338
	47735	0.222222	0.50	0.166667	0.285714	0.423729	0.384615	0.318264	0.092360
	•••					•••			
	22260	0.727778	1.00	0.666667	0.285714	0.677966	0.307692	0.643761	0.124278
	33634	0.094444	0.50	0.166667	0.285714	0.525424	0.384615	0.157324	0.077589
	32842	0.088889	0.50	0.333333	0.714286	0.457627	0.307692	0.157324	0.077589
	47280	0.055556	1.00	0.833333	0.285714	0.525424	0.769231	0.097649	0.072835
	33106	0.105556	0.50	0.500000	0.714286	0.542373	0.461538	0.171790	0.080475

43152 rows × 8 columns

In [32]:	<pre>x_test[['carat','depth','cut','color','clarity','table', 'x','y']]=s.transform(x_te</pre>	
	x_test	

Out[32]:		carat	cut	color	clarity	depth	table	x	у
	11622	0.555556	0.50	0.833333	0.428571	0.288136	0.538462	0.576854	0.115959
	53686	0.333333	1.00	0.166667	0.428571	0.694915	0.230769	0.394213	0.102207
	6479	0.455556	0.75	0.333333	0.428571	0.389831	0.846154	0.508137	0.110187
	40391	0.183333	0.50	0.500000	0.428571	0.186441	0.461538	0.274864	0.089983
	37663	0.122222	0.75	0.333333	0.285714	0.508475	0.538462	0.200723	0.081664
	•••	•••				•••			•••
	10910	0.466667	0.75	0.666667	0.285714	0.118644	0.538462	0.515371	0.113243
	19279	0.444444	1.00	0.500000	0.142857	0.499899	0.846154	0.502712	0.111545
	37775	0.116667	0.50	0.166667	0.714286	0.508475	0.384615	0.189873	0.080475
	41250	0.055556	1.00	0.333333	0.285714	0.559322	0.692308	0.095841	0.072666
	18461	0.727778	0.00	0.666667	0.285714	0.499899	0.769231	0.721519	0.129542

10788 rows × 8 columns

In [33]: # model training
from sklearn.linear_model import LinearRegression

```
model=LinearRegression()
          model.fit(x_train,y_train)
Out[33]:
          ▼ LinearRegression
          LinearRegression()
In [34]: y_pred=model.predict(x_test)
          y_pred
Out[34]: array([ 6889.04124634, 5089.4357925 , 6120.62929429, ...,
                  1480.69386083, -1526.22861944, 9059.72001347])
In [35]: from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
          mse=mean_squared_error(y_test,y_pred)
Out[35]: 2964242.1740486836
In [36]: mae=mean_absolute_error(y_test, y_pred)
Out[36]: 1289.5139887046507
In [37]: r2_score(y_test,y_pred)
Out[37]: 0.8149437115127462
In [38]: # adjusted r2 score
          adj_r2=1-(1-0.81)*(5394-1)/(5394-8-1)
          adj_r2
Out[38]: 0.8097177344475395
 In [ ]: # adj r2 score should be less than a r2
 In [ ]: #Ridge
          from sklearn.linear_model import Ridge
In [118...
          from sklearn.model_selection import GridSearchCV
          ridge=Ridge(random_state=10)
          parameters={'alpha':[0.01,0.001]}
          ridge_regressor=GridSearchCV(ridge,parameters,scoring="neg_root_mean_squared_error"
          ridge_regressor.fit(x_train,y_train)
          ▶ GridSearchCV
Out[118...
           ▶ estimator: Ridge
                 ▶ Ridge
```

```
In [119... y_pred_r=ridge_regressor.predict(x_test)
          y_pred_r
          array([ 6889.29885425, 5089.1798881 , 6120.72349834, ...,
Out[119...
                  1480.81131885, -1526.20617813, 9059.8776627 ])
In [120...
          r2_score(y_test,y_pred_r)
Out[120...
          0.8149330248416461
In [121...
          #Lasso
          from sklearn.linear_model import Lasso
          lasso=Lasso(alpha=0.01, random_state=13)
          lasso.fit(x_train,y_train)
Out[121...
                          Lasso
          Lasso(alpha=0.01, random_state=13)
In [122... y_pred_la=lasso.predict(x_test)
          y_pred_la
Out[122... array([ 6889.86068986, 5088.56727117, 6120.99903369, ...,
                  1480.94152073, -1526.22133244, 9060.41268522])
In [76]: r2_score(y_test,y_pred_la)
Out[76]: 0.814916314339691
In [47]: conclusion:
          # when i tried both Min max and standard scaler nothing improvement is there
          # random state 13 transforms the accuracy to from 80 t0 81
          # used ridge and apply GridsearchCV to control the overfitting
 In [1]: pwd
```

Out[1]: 'C:\\Users\\User\\ML models'