Вопрос 1.8. Задача Коши для системы ОДУ. Существование и единственность решения. Устойчивость.

Ответ:

Система ОДУ n-го порядка: $\mathbf{F}(\mathbf{x}, \mathbf{y}', \mathbf{y}'', \dots, \mathbf{y}^{(n)}) = \mathbf{0}$.

Такая система определяет семейство кривых в пространстве, задача Коши фиксирует конкретную кривую.

Частный случай СОДУ: dy/dx = F(x, y)

Для этой системы выполняются все правила для ОДУ первого порядка:

Если в окрестности точки $(\mathbf{x}_0, \mathbf{y}_0)$ все функции Fi непрерывны по совокупности переменных (\mathbf{x}, \mathbf{y}) и имеют ограниченные производные по переменным \mathbf{y} , то задание начальных значений $\mathbf{y}(\mathbf{x}) = \mathbf{y}_0$, определяет одно, вполне определенное решение системы.

Обыкновенное дифференциальное уравнение n-го порядка ::= $F(x, y, y', y'', ..., y^{(n)})$ =0 (1).

Порядок ОДУ ::= порядок наивысшей входящей производной.

Решение ОДУ на $\langle a,b \rangle$::= функция $\varphi(x)$, такая, что $\varphi(x)$ n раз дифференцируема на $\langle a,b \rangle$ и $\forall x \in \langle a,b \rangle F(x,\varphi,\varphi',\varphi'',\dots,\varphi^{(n)})=0$.

Нормальная форма записи ОДУ — $y^{(n)}=f(x, y, y', y'', ..., y^{(n-1)})$ (2).

Задача Коши ::= по точке $(x_0, y_0, ..., y_n)$ найти решение уравнения (1), такое что $y(x_0)=y_0, ..., y^{(n)}(x_0)=y_n$.

Пусть f, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial y}$ непрерывны в некоторой окрестности x_0 , то в этой окрестности

существует и единственно решение задачи Коши для (2).

Условие Липшица в области $G(f \in Lip_v(G)) := \exists L > 0 \ \forall (x,y_1), \ (x,y_2) \in G \ |f(x,y_1) - f(x,y_2)| \le L|y_1-y_2|.$

Прямоугольник $R := \{(y, x) \mid ||y-y_0|| \le u \mid x-x_0| \le b, a, b > 0\}$

(Коши, Пикар) Пусть $F \in Lip_y(R)$ и $||F(y, x)|| \le M$ тогда при $|x-x_0| < h$ ($h=min\{a, b/M\}$) существует решение задачи Коши.

Общее решение ОДУ — множество функций, содержащее все решения ОДУ.