Quelques références utiles pour avancer en Statistique

Joseph SALMON http://josephsalmon.eu/

Voici une (de moins en moins) brève bibliographie de livres et d'autres supports en lien avec les statistiques. Attention, la plupart des références sont en anglais.

1 Pré-requis, en amont des statistiques

1.1 Analyse

Pour l'intégration [Rud87] existe en traduction française. Pour l'analyse fonctionnelle le livre incontournable est [Bre11]. En plus évolué, la géométrie des espaces de Banach est abordée dans [Pis89] (utile par exemple pour le calcul du volume de boule unités pour des distances ℓ_p , page 11 ou bien pour le recouvrement de la sphère page 49)

- [Bre11] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
- [Pis89] G. Pisier. The volume of convex bodies and Banach space geometry, volume 94 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1989.
- [Rud87] W. Rudin. *Real and complex analysis*. McGraw-Hill Book Co., New York, third edition, 1987.

1.2 Algèbre Linéaire

Il faut être suffisamment à l'aise avec le calcul matriciel pour bien commencer avec les modèles linéaires et aller jusqu'aux modèles économétriques : [Sch05] et [Gv96] peuvent être un bon début, avant d'attaquer l'économétrie à part entière.

Les classiques du genres sont [Gv96, HJ94] et [TB97] est aussi un bon point d'entrée. Pour aborder les chaînes de Markov il est bon de connaître le théorème de Perron-Frobenius et ses nombreuses conséquences [Sen06, LN12]. Pour des questions plus avancées, (majorization [MOA11], matrice bistochastiques) [Bha97] et pour les inverses généralisées [BIG03].

[Bha97] R. Bhatia. *Matrix analysis*, volume 169 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1997.

- [BIG03] A. Ben-Israel and T. N. E. Greville. Generalized inverses. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15. Springer-Verlag, New York, second edition, 2003. Theory and applications.
 - [Gv96] G. H. Golub and C. F. van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.
 - [HJ94] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge, 1994. Corrected reprint of the 1991 original.
- [LN12] B. Lemmens and R. Nussbaum. *Nonlinear Perron-Frobenius theory*, volume 189 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 2012.
- [MOA11] A. W. Marshall, I. Olkin, and B. C. Arnold. *Inequalities : theory of majorization and its applications*. Springer Series in Statistics. Springer, New York, second edition, 2011.
 - [Sch05] J. R. Schott. *Matrix analysis for statistics*. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, second edition, 2005.
 - [Sen06] E. Seneta. Non-negative matrices and Markov chains. Springer Series in Statistics. Springer, New York, 2006. Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544].
 - [TB97] L. N. Trefethen and D. III Bau. Numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

1.3 Analyse numérique

La réfrence en français est [Cia06]. D'autres sources en anglais peuvent compléter ce panorama [QSS07] (une version française existe aussi).

- [Cia06] P. G. Ciarlet. Introduction à l'analyse numérique matricielle et à l'optimisation. cours et exercices corrigés. 2006.
- [QSS07] A. Quarteroni, R. Sacco, and F. Saleri. *Numerical mathematics*, volume 37 of *Texts in Applied Mathematics*. Springer-Verlag, Berlin, second edition, 2007.

1.4 Convexité et optimisation

Pour l'optimisation et la convexité un bon départ est [BV04], et pour les concepts plus avancés [HUL93a, HUL93b, Nes04, RW98, Roc97, BL06]. Pour la partie plus algorithmique on consultera plutôt [CLRS01, NW06]

- [BL06] J. M. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 3. Springer, New York, second edition, 2006. Theory and examples.
- [BV04] S. Boyd and L. Vandenberghe. *Convex optimization*. Cambridge University Press, Cambridge, 2004.
- [CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to algorithms*. MIT press, 2001.
- [HUL93a] J-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms. I, volume 305. Springer-Verlag, Berlin, 1993.
- [HUL93b] J-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms. II, volume 306. Springer-Verlag, Berlin, 1993.
 - [Nes04] Y. Nesterov. Introductory lectures on convex optimization, volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004. A basic course.
 - [NW06] J. Nocedal and S. J. Wright. *Numerical optimization*. Springer Series in Operations Research and Financial Engineering. Springer, New York, second edition, 2006.
 - [Roc97] R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks.
 - [RW98] R. T. Rockafellar and R. J-B. Wets. Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998.

1.5 Probabilité

Pour le démarrage en probabilité les ouvrages suivant sont en français [CGDM01], [Ouv08], [Ouv07] [GS01]. Une introduction aux martingales et aux

- espérances conditionnelles est bien détaillée dans [Wil91] (avec une preuve de la loi des grands nombres suffisamment rigoureuse). Pour aller plus loin, quelques pistes sont les processus empiriques [Pol84, Pol02, van00] et la concentration de la mesure [Led01, LT11].
- [CGDM01] M. Cottrell, V. Genon-Catalot, C. Duhamel, and T. Meyre. Exercices de probabilités, Licence Master Écoles d'ingénieur. Cassini, 3^e edition, 2001.
 - [GS01] G. R. Grimmett and D. R. Stirzaker. *Probability and random processes*. Oxford University Press, New York, third edition, 2001.
 - [Led01] M. Ledoux. The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
 - [LT11] M. Ledoux and M. Talagrand. *Probability in Banach spaces*. Classics in Mathematics. Springer-Verlag, Berlin, 2011. Isoperimetry and processes, Reprint of the 1991 edition.
 - [Ouv07] J-Y. Ouvrard. *Probabilités : Tome 2, Licence CAPES*. Enseignement des mathématiques. Cassini, 2 edition, 2007.
 - [Ouv08] J-Y. Ouvrard. *Probabilités : Tome 1, Licence CAPES*. Enseignement des mathématiques. Cassini, 2 edition, 2008.
 - [Pol84] D. Pollard. Convergence of stochastic processes. Springer Series in Statistics. Springer-Verlag, New York, 1984.
 - [Pol02] D. Pollard. A user's guide to measure theoretic probability, volume 8 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2002.
 - [van00] S. A. van de Geer. *Empirical processes in M-estimation*. Cambridge university press, 2000.
 - [Wil91] D. Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.

2 Différentes branches des statistiques et du traitement du signal

2.1 Théorie de l'information

La référence mais d'autres livres peuvent se révéler utiles également : [Rom92] par exemple donne la construction de l'entropie à partir d'un petit nombre d'axiomes. À voir également [Mac03]. Point de vue en lien avec la géométrie différentielle : [ABK+87]

- [ABK⁺87] S-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, and C. R. Rao. *Differential geometry in statistical inference*. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 10. Institute of Mathematical Statistics, Hayward, CA, 1987.
 - [CT91] T. M. Cover and J. A. Thomas. *Elements of information theory*. Wiley Series in Telecommunications. John Wiley & Sons Inc., New York, 1991. A Wiley-Interscience Publication.
 - [Mac03] D. J. C. MacKay. Information theory, inference and learning algorithms. Cambridge University Press, New York, 2003.
 - [Rom92] S. Roman. Coding and information theory, volume 134 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1992.

2.2 Estimation et Test

Un classique pour l'introduction de cette théorie est [BD76]. Une version plus formelle est [Sha05]. À voir aussi [CB01, LC98] et pour les résultats de statistique asymptotique classique [vW96]. Pour les statistiques multivariées voir [Mui82].

- [BD76] P. J. Bickel and K. A. Doksum. Mathematical statistics. Holden-Day Inc., San Francisco, Calif., 1976. Basic ideas and selected topics, Holden-Day Series in Probability and Statistics.
- [CB01] G. Casella and R. L. Berger. *Statistical Inference*. Duxbury Press, 2 edition, 2001.
- [LC98] E. L. Lehmann and G. Casella. *Theory of point estimation*. Springer Texts in Statistics. Springer-Verlag, New York, 2 edition, 1998.
- [Mui82] R. J. Muirhead. Aspects of multivariate statistical theory. John Wiley & Sons Inc., New York, 1982. Wiley Series in Probability and Mathematical Statistics.

- [Sha05] J. Shao. Mathematical statistics: exercises and solutions. Springer, New York, 2005.
- [vW96] A. W. van der Vaart and Jon A. Wellner. Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996. With applications to statistics.

2.3 Statistique non-paramétrique

Il est bon de commencer par [Sil86, RS05], très bien illustré et facile à lire pour se familiariser avec les estimateurs à noyaux notamment. Dans un second temps la théorie est impeccable dans [Tsy04, Tsy09], et aussi dans [Efr99, DGL96, GKKW02]. Les polynômes locaux sont détaillés dans [FG96]. Enfin pour une thématique plus porter sur l'image il est bon de se reporter à [KT93]. Pour les inégalités de concentration [Mas07]. Pour les problèmes inverses [EHN96]. Pour aller vers un niveau recherche les cours d'été de Saint-Flour peuvent être utiles [Nem00, Cat04, Kol11]

- [Cat04] O. Catoni. Statistical learning theory and stochastic optimization, volume 1851 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.
- [DGL96] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition, volume 31 of Applications of Mathematics (New York). Springer-Verlag, New York, 1996.
 - [Efr99] S. Efromovich. *Nonparametric curve estimation*. Springer Series in Statistics. Springer-Verlag, New York, 1999. Methods, theory, and applications.
- [EHN96] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.
 - [FG96] J. Fan and I. Gijbels. Local polynomial modelling and its applications, volume 66 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1996.
- [GKKW02] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A distributionfree theory of nonparametric regression. Springer Series in Statistics. Springer-Verlag, New York, 2002.
 - [Kol11] V. Koltchinskii. Oracle inequalities in empirical risk minimization and sparse recovery problems, volume 2033 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011.

- [KT93] A. P. Korostelëv and A. B. Tsybakov. Minimax theory of image reconstruction, volume 82 of Lecture Notes in Statistics. Springer-Verlag, New York, 1993.
- [Mas07] P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics. Springer, Berlin, 2007.
- [Nem00] A. S. Nemirovski. *Topics in non-parametric statistics*, volume 1738 of *Lecture Notes in Math.* Springer, Berlin, 2000.
 - [RS05] J. O. Ramsay and B. W. Silverman. Functional data analysis. Springer Series in Statistics. Springer, New York, second edition, 2005.
 - [Sil86] B. W. Silverman. Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1986.
- [Tsy04] A. B. Tsybakov. Introduction à l'estimation non-paramétrique, volume 41 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 2004.
- [Tsy09] A. B. Tsybakov. *Introduction to nonparametric estimation*. Springer Series in Statistics. Springer, New York, 2009.

2.4 Grande dimension, Lasso, SVM, etc.

Un des premiers outils de réduction de dimension est l'analyse en composante principale qui est décrit dans [Jol02]. Des livres assez généraux couvrant aussi des éléments d'introduction aux statistiques [HTF09, Bis06]. Concernant le LASSO (ou la régularisation ℓ_1) [Bv11] est assez récent et couvre de nombreux points. Pour la littérature sur les SVM (Support Vector Machine) voir [SC00].

- [Bis06] C. M. Bishop. *Pattern recognition and machine learning*. Information Science and Statistics. Springer, New York, 2006.
- [Bv11] P. Bühlmann and S. van de Geer. Statistics for high-dimensional data. Springer Series in Statistics. Springer, Heidelberg, 2011. Methods, theory and applications.
- [HTF09] T. Hastie, R. Tibshirani, and J. Friedman. *The elements of statistical learning*. Springer Series in Statistics. Springer, New York, second edition, 2009.
 - [Jol02] I. T. Jolliffe. *Principal component analysis*. Springer Series in Statistics. Springer-Verlag, New York, second edition, 2002.

[SC00] J. Shawe-Taylor and N. Cristianini. An introduction to support vector machines: and other kernel-based learning methods. Cambridge University Press, 2000.

2.5 Statistiques temporelles, méthodes de contrôle, chañes de Markov

Une référence en anglais pour les séries temporelles est [Ham94]. Pour les processus, et plus particulièrement les chaînes de Markov, on peut se référer à [Duf96, Duf97, MT09, Bré99].

- [Bré99] P. Brémaud. *Markov chains*, volume 31 of *Texts in Applied Mathematics*. Springer-Verlag, New York, 1999. Gibbs fields, Monte Carlo simulation, and queues.
- [Duf96] M. Duflo. Algorithmes stochastiques, volume 23 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 1996.
- [Duf97] M. Duflo. Random iterative models, volume 34 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1997. Translated from the 1990 French original by Stephen S. Wilson and revised by the author.
- [Ham94] J. D. Hamilton. *Time series analysis*. Princeton University Press, Princeton, NJ, 1994.
- [MT09] S. Meyn and R. L. Tweedie. *Markov chains and stochastic stability*. Cambridge University Press, Cambridge, second edition, 2009. With a prologue by Peter W. Glynn.

2.6 Statistiques bayesiennes

[RC04] C. P. Robert and G. Casella. *Monte Carlo statistical methods*. Springer Texts in Statistics. Springer-Verlag, New York, 2 edition, 2004.

2.7 Traitement des images et du signal

Livre théorique sur le point de vue minimax en imagerie [KT93]. Une introduction plus douce avec codes en Matlab : [GWE04]. Conjointement pour l'utilisation de la DFT (Discrete Fourier Transform) il est bon d'avoir [LH95] sous la main. Pour des versions plus mathématiques de la théorie de Fourier [GW99].

Pour découvrir les ondelettes et leurs applications [Mal09] avec de jolies illustrations, est plutôt axé théorie du signal alors que [HKPT98] aborde plutôt le versant statistiques. Enfin le versant mathématiques est donné dans [Dau92].

Le point de vue continue, diffusion, équations aux dérivées partielles, etc., est présenté dans [Wei98, Sap01]. Concernant la reconnaissance de motif dans les images un ouvrage populaire est [DHS01] (exemple utile page 70 : minimisation de l'entropie en continue conduit à une distribution gaussienne).

Pour le point de vue moderne sur le lien entre sparsité (parcimonie) et représentations des signaux [Ela10].

- [Dau92] I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
- [DHS01] R O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley-Interscience, New York, second edition, 2001.
 - [Ela10] M. Elad. Sparse and redundant representations. Springer, New York, 2010. From theory to applications in signal and image processing, With a foreword by Alfred M. Bruckstein.
- [GW99] C. Gasquet and P. Witomski. Fourier analysis and applications, volume 30 of Texts in Applied Mathematics. Springer-Verlag, New York, 1999.
- [GWE04] R. C. Gonzalez, R. E. Woods, and S. L. Eddins. *Digital image processing using MATLAB*. Pearson Education India, 2004.
- [HKPT98] W. Härdle, G. Kerkyacharian, D. Picard, and A. B. Tsybakov. Wavelets, approximation, and statistical applications, volume 129 of Lecture Notes in Statistics. Springer-Verlag, New York, 1998.
 - [KT93] A. P. Korostelëv and A. B. Tsybakov. Minimax theory of image reconstruction, volume 82 of Lecture Notes in Statistics. Springer-Verlag, New York, 1993.
 - [LH95] W. L. and V. E. Henson. The DFT. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. An owner's manual for the discrete Fourier transform.
 - [Mal09] S. Mallat. A wavelet tour of signal processing. Elsevier/Academic Press, Amsterdam, 2009. The sparse way, With contributions from Gabriel Peyré.

- [Sap01] G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, 2001.
- [Wei98] J. Weickert. Anisotropic diffusion in image processing. European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart, 1998.

3 Disciplines connexes

3.1 Théorie des jeux

[CBL06] N. Cesa-Bianchi and G. Lugosi. *Prediction, learning, and games*. Cambridge University Press, 2006.

4 Logiciels

- Matlab (payant): http://www.mathworks.fr/ et de l'aide en traitement du signal http://www.ceremade.dauphine.fr/~peyre/numerical-tour/
- Octave (gratuit): (presque) Matlab compatible http://www.gnu.org/software/octave/
- Scilab (gratuit): http://www.scilab.org/
- R (gratuit): http://www.r-project.org/ et un bon tutorial d'Emmanuel Paradis pour débuter cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf.