

Insurance Cross Sale Prediction

Brown University

Dongjun Shin 11th Dec, 2021

(https://github.com/josh7197/midterm)

What matters?

Q : How can an insurance company sell cost effectively an additional insurance plans(=car insurance) to current customers?

→ If the company have accurately distinguish whether the current insurance holders are interested in the care insurance????

Is it important?

- Target marketing
- Cost saving
- Efficient customer service

How to predict?

- Classification problem
- Target variable(=Respond) is a Dummy variable
- If someone is interested, the dummy is 1, if not, 0

Where I get the data

Kaggle dataset

EDA - General Information

Variable	Classification	Explanation	
Gender	Categorical	Customer Gender(M:1, F:0)	
Age	Numerical	Customer Age	
Driving_License	Categorical	Having a DL has 1 or 0	
Region_Code	Categorical	Customer region code	
Previously_Insured	Categorical	Already having a car insurance has 1 or 0	
Vehicle_Age	Categorical	Vehicle Age	
Vehicle_Damage	Categorical	Damaged car has 1 or 0	
Annual_Premium	Numerical	The annual insurance premium	
Policy_Sales_Channel	Categorical	Contact channel Code	
Vintage	Numerical	Days when customers has been with the company	
Response(Target)	Categorical	Being interested has 1 or 0	

A Shape of Dataset

- 12 columns
 - -> 1 Target, 10 features (ID was excluded)
- 381,109 rows
 - -> No Missing Data

EDA - Remarkable Findings

- Imbalance data(87.74%)
- Cost saving
- Efficient customer service

 Why 1~2 vehicle owner are interested in? • 40~50 more interest

Cross Validation

1. Reducing Data Points

- Too large data points : 380K
- My laptop does not work with full data
- Random Stratification Sampling
 - Same Target variable ratio : 88%
- 5 Sampling with different random states

2. Splitting

- General Splitting
- Why ? IID (Unique ID)
- Test data ratio : 20%

3. Kfold Setting

• 3 folds for robust validation

4. Preprocessing

- OneHotEncoder
 - : Seven **categorical** features
- StandardEncoder

: Three **continuous** features

8. Function

- 5 different Random states
- Returning Best model & score per each random state
- Yielding means and std of Scores per each ML model

7. Models

- KNN Classification
- XGboost Classification
- Logistic Regression
- Random Forest

6. Grid Search

- Evaluation metricAccuracy Score
- Best parameter combination

5. Parameter setting

 Diverse hyper parameters per 4 different ML models

Cross Validation

ML Model

KNN Classification

XGboost Classification

Logistic Regression

Random Forest

Parameters

- **N_neighbors** : 3,5,7,20,30
- Weights: uniform, distance
- Learning_rate: 0.03, 0.05
- model__max_depth : 5,10,50,30,50
- **C**: 0.01, 0.1, 10, 50, 100
- fit_intercept: 0, penalty: ['12'], solver: lbfgs, max_iter: 10000000
- Min_samples_split: 16, 32, 64, 128
- Max_depth: 10,30,100,300

Error bar

Model comparison

Model	Means	std	std from the baseline
KNN	87.56%	0.0034	-0.5246
Logistic Regression	82.87%	0.0698	-0.6987
Random Forest	87.76%	0.0010	0.1448
XGboost	87.63%	0.0017	-0.6518

Base line accuracy: 87.74%

Confusion matrix

Implication

- All four matrices are similar like the left
 - Most are predicted to "Negative Response(=0)
- Alternative Trials
 - Starification splitting
 - Hyper-parameter re-setting

No Impact

Global feature importance

Random forest result

Model comparison

- Expected results
 - Age, vehicle damage, and previous insured are commonly most important to the period
 - Driver licence is less important
- Unexpected results
 - Gender is less critical than I expected

Local feature importance

- Main Features that lower the possibility from baseline
 - Previously insurance 0
 - Vehicle Damage Yes
 - Previous-insurance 1
- A feature that higher the possibility from baseline
 - Vintage

Outlook

Weakness

- All four models' performances are almost the same as the base line
- Almost 99% of responses are predicted to 0

• Potential trials for performance improvement

- Interaction variables
 - For instance, an interaction term between age and previous insured.
- New variables for largely dispersed categorical variables
 - Region codes and Sales channels have more than 50 categories.
 - But, most data points are densely populated in a small number of categories.