Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann www.math.tu-dresden.de/~baumann

17.12.2018

11. Vorlesung

- Eigenwerte und Eigenvektoren von Matrizen
- Charakteristisches Polynom $\chi_A(x)$ einer Matrix $A \in K^{n \times n}$
 - Die Eigenwerte von A sind Nullstellen von $\chi_A(x)$.
- Eigenvektoren einer Matrix $A \in K^{n \times n}$
 - Eigenraum von A zum Eigenwert k
 - linear unabhängige Eigenvektoren von A

Eigenwerte und Eigenvektoren

• Es sei K ein Körper.

Ein Element $k \in K$ wird ein Eigenwert der quadratischen Matrix $A \in K^{n \times n}$ genannt, wenn es einen Vektor $v \in K^n \setminus \{0\}$ mit

$$Av = kv$$

gibt. Ein solcher Vektor wird ein Eigenvektor der Matrix A zum Eigenwert k genannt.

- Der Nullvektor $0 \in K^n$ ist für keinen Eigenwert der Matrix A ein Eigenvektor.
- Es gibt Matrizen, für die das Nullelement 0 ∈ K ein Eigenwert ist.

B	em	Es	gil	Ł A	0=0	= k	p, -	tür a	lle 1	EK	(Nu	Wekt	er is	t ke	n E	igonel	tor)								
												A=													
	BSP.	Ι Λ	121	1 / 1	2×2																				
		U _t =	(;):	sk ein	Eigen	uektor	Ubn	A zun	Eigun	rt]	, ole	un A	V ₁ = (4	11=1	ر فا خ										
		Vr=	(l) ~			_	-	^		- 3.	de	n A.	И= (°	()=3	(1)						,				
	Bem	K	EU) Von	Α.	<≥	3uE	K^\{	[د	/-\·U	=k.v	= k <u>E</u>	y e	\Rightarrow	3vE	K^\{	$0_{\mathbf{k}}$	A	v - ki	5.V =	(A-	KGn) U=	0	
												,									Kan U-k	. L&\$	nit.	foelt.	AL S
		<i>(=)</i>	das	hom	LG	Sm	ie di	r k	H, N	atvizi	Д-	-k _{En}										> PA			
		(=)	Zs.	€ಸ.	ein	non	Nul	Luekti	r V	vsclier	densi	EL.	mit	kom	wn	A-ke	h								
			١.	(A) K																					
						= O														,	L		2		
								m (ĺ	eler	Eig	ren VO.	dir 1) i	st i	ein 6	L	des	Kem,	s U	in a	r-14th	
	BSP:	4	1 -2_	-2 /		ges.	7	w (i	EVI																
			\0	- \		0 -			,			1)	lc 1	1	,	12	K	-1		/ 2	k	-1	1	
		det (A-	GU)	= 0	let/	1-K	- <u>L</u>	۱ د	=	-de	:£ (1-	K -:	20	=	. det	1-K	-L	9 1-k) = d = - k)(! =1	£(5	<u>k(K-1)</u> - 2-	-) 1-k -) 1-k	.)	
					KIKI		9	- L	ŀk,	k(1-1)	_	1	-	L H	r lelled				(ارر ا	<(K-1)_	2)			
		=	: 2	det(2	- 1-) :	= 20	det (-2	1-16	-)	= 1([-4)	(T)	1)	= D	>	D (1	= F/(+ = l	2	7=7	, / K=	-1	
															<u>/)</u>	k6	٤١.	1,2) -	=1 \ -1, (,	2 (ΞW	Von	Ά	
																	-		r .						

• Eine Matrix $A \in K^{n \times n}$ hat genau dann den Eigenwert $k \in K$, wenn

$$\det(A - kE_n) = 0$$

gilt.

- 0 ist ein Eigenwert von $A \iff A^{-1}$ existiert nicht
- Eine Matrix $A \in K^{n \times n}$ hat genau dann den Eigenwert $k \in K$, wenn das homogene lineare Gleichungssystem

$$(A - kE_n)v = 0$$

eine Lösung $v \neq 0$ besitzt.

Charakteristisches Polynom von A

Der Ausdruck

$$\chi_A(x) := \det(A - xE_n) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

wird charakteristisches Polynom der Matrix $A \in K^{n \times n}$ genannt.

• $k \in K$ ist ein Eigenwert von A genau dann, wenn k eine Nullstelle des charakteristischen Polynoms von A ist:

$$\chi_A(k) = c_n \cdot k^n + c_{n-1} \cdot k^{n-1} + \dots + c_1 \cdot k + c_0 = 0$$

Lineare Algebra

Folgerungen

- Jede Matrix $A \in K^{n \times n}$ hat höchstens n Eigenwerte.
- Jede Matrix $A \in \mathbb{C}^{n \times n}$ hat genau n Eigenwerte, wenn jeder Eigenwert mit seiner Vielfachheit (als Nullstelle von χ_A) gezählt wird.
- Ist A eine reelle symmetrische Matrix, d.h. $A^T = A$, dann sind alle Eigenwerte $k \in \mathbb{C}$ von A reell.
- Ist $A = (a_{ij}) \in K^{n \times n}$ und sind k_1, k_2, \dots, k_n die Eigenwerte von A, dann gilt

$$det(A) = k_1 \cdot k_2 \cdot \ldots \cdot k_n$$

Spur(A) = $k_1 + k_2 + \ldots + k_n$

Dabei ist
$$Spur(A) := a_{11} + a_{22} + \cdots + a_{nn}$$
.

Ulrike Baumann

Eigenvektoren zum Eigenwert k

Sei $A \in K^{n \times n}$ und k sei ein Eigenwert von A.

- Die Elemente von Ker $(A k \cdot E_n) \setminus \{0\}$ sind die zu k gehörigen Eigenvektoren von A.
- $Ker(A k \cdot E_n)$ ist der <u>Eigenraum</u> von A zum Eigenwert k.
- Der <u>Eigenraum</u> von <u>A zum Eigenwert k</u> ist ein <u>Untervektorraum</u> von Kⁿ.
- Sind k_1, \ldots, k_t paarweise verschiedene Eigenwerte von A mit zugehörigen Eigenvektoren v_1, \ldots, v_t (also $Av_i = k_i v_i$), dann sind die Vektoren v_1, \ldots, v_t linear unabhängig.

BS).	(Fo	vŁSI	et)u	91																		
					1						()-			\		a () .							
	K,	=	E	\			cer (i	4-	(E)	= ker	-1	- 2-	(,	= 9	Dan [દી ઇ	1)						
																		,)					
	Kz=			-	(· +	E)	= ke	rr (·	. 54	141)=5	Pen	(\	$(\cdot \cdot \cdot)$	7)					
	Ben	١.	(-\)	, (;) · (1)	Simel	, L	ц														
	Sal)) :	gib	ŧ,	7-1	:= k	υì	(i=1	, ,	£)	lm	el :	sind	k,	, k	t ') aa	res	Verso	hiedo	h,		
												dçm	n (simul	Vı.		V	. (U				