

Amendments to the Claims:

Please amend claims 1 and 32 and cancel claim 5 without prejudice or disclaimer as follows:

1. (Currently Amended) A method for producing a superconducting inductive component having at least two terminals, said method including depositing an insulating film directly on a substrate, depositing a superconducting film on the insulating film, and depositing a stack of alternately superconducting and insulating films comprising at least one line segment incorporating at least one terminal of the component on said insulating film, said line segment including one of a conducting layer and a superconducting layer.

2. (Previously Presented) The method according to claim 1, wherein depositing of each film constituting the stack is realized so as for said film to be perfectly crystallized.

3. (Cancelled)

4. (Cancelled)

5. (Cancelled)

6. (Previously Presented) The method according to claim 1, further including the following steps:

etching the stack of alternately superconducting and insulating films in such a way that the stack only remains at the locations where an inductive component is to be implanted.

7. (Previously Presented) The method according to claim 5, further including the following steps:

etching the stack in such a way that the stack only remains at the locations where an inductive component is to be implanted; and
etching the superconducting film.

8-10. (Cancelled)

11. (Withdrawn) A system for producing a superconducting inductive component having at least two terminals, said component comprising at least one line segment incorporating at least one terminal of the component, said line segment constituting a conducting or superconducting layer within a stack of alternately superconducting and insulating films, implementing the method according to claim 1.

12. (Withdrawn) The system according to claim 11, further including:
means for depositing a stack of alternately superconducting and insulating
films, and

means for etching all of the deposited films, these said means being arranged in
such a way that said deposited films remain only at the locations where an inductive
component is to be implanted.

13. (Withdrawn) The system according to claim 11, further including:
means for depositing a superconducting film on a substrate,
means for depositing on the superconducting film a stack of alternately
superconducting and insulating films, and
means for etching all of the deposited films, these means being arranged in such
a way that the film remains only at the locations where a superconducting line is to be
implanted and the stack remains only at the locations where an inductive component is to be
implanted.

14-20. (Cancelled)

21. (Withdrawn) A superconducting inductive component having at least two terminals, said component comprising at least one line segment incorporating at least one terminal of the component, said line segment constituting a conducting or superconducting layer within a stack of alternately superconducting and insulating films.

22. (Withdrawn) The component according to claim 21, wherein each film constituting the stack is perfectly crystallized.

23. (Withdrawn) The component according to claim 21 wherein at least one of the superconducting films is produced from $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ compounds.

24. (Withdrawn) The component according to claim 21, wherein at least one of the insulating films is made from LaAlO_3 compounds.

25. (Withdrawn) An antenna device comprising an electronic circuit including the superconducting inductive component of claim 21.

26. (Withdrawn) The antenna device according to claim 25, wherein the antenna is produced from a superconducting thin film.

27. (Withdrawn) A delay line device comprising an inductive component in series and a capacitive component in parallel downstream of said inductive component, wherein the inductive component is the superconducting inductive component of claim 21.

28. (Withdrawn) A phase shift radar device comprising a plurality of antennas each comprising an electronic circuit including a delay line according to claim 27, said delay line being arranged such that each of said antennas transmits a signal whose phase is shifted with respect to that of the near antennas.

29. (Withdrawn) An electronic frequency filtering device comprising an electronic circuit including the superconducting inductive component of claim 21.

30. (Withdrawn) A high-pass filter device comprising an inductive component in parallel and a capacitive component in series downstream of said inductive component, wherein the inductive component is the superconducting inductive component of claim 21.

31. (Withdrawn) A low-pass filter device comprising a capacitive component in parallel and an inductive component in series downstream of said capacitive component, wherein the inductive component is the superconducting inductive component of claim 21.

Serial No. 10/566,070

Office Action dated: August 5, 2010

Amendment D dated: January 4, 2011

32. (Currently Amended) The method according to claim 1, wherein
the superconducting inductive component operates at a high inductance that is obtained at
frequencies ~~equal to or less than of~~ 700-2000 Hz.