Data Structures and Algorithms 2 Course Syllabus

		Start of term 24/09/2023
Week 1 Chap. 1 - Programming: A General Overview 1 Lecture	26/09	1.1 Introduction 1.2 Mathematics Review 1.3 A Brief Introduction to Recursion 1.4 C++ Classes (self study) 1.5 C++ Details (self study) 1.6 Templates (self study) 1.7 Using Matrices (self study)
Week 2 Chap. 2 - Algorithm Analysis 1 Lecture	03/10	2.1 Mathematical Background2.2 Model2.3 What to Analyse2.4 Running-Time Calculations
Week 3 + Week 4 Chap. 3 - Lists, Stacks, and Queues 2 Lectures	03/10 & 10/10	3.1 Abstract Data Types (ADTs) 3.2 The List ADT 3.3 vector and list in the STL 3.4 Implementation of vector 3.5 Implementation of list 3.6 The Stack ADT 3.7 The Queue ADT
	12/10	=======→ HOMEWORK 1 OUT
Week 5 + Week 6 Chap. 4 - Trees 2 Lectures	17/10 & 24/10	4.1 Preliminaries 4.2 Binary Trees 4.3 The Search Tree ADT—Binary Search Trees
		Quiz # 1 4.4 AVL Trees 4.5 Splay Trees (self study) 4.6 Tree Traversals (Revisited) 4.7 B-Trees 4.8 Sets and Maps in the Standard Library (self study)
	26/10 →	=======→ MINI-PROJECT OUT
Week 7 + Week 8 Chap. 5 - Hashing 2 Lectures	31/10 & 7/11	5.1 General Idea 5.2 Hash Function 5.3 Separate Chaining 5.4 Hash Tables without Linked Lists 5.5 Rehashing 5.6 Hash Tables with Worst-Case O(1) Access 5.7 Universal Hashing 5.8 Extendible Hashing

	02/11	=======→ HOMEWORK 1 DUE	
Sun. 12/11	09:00 – 11:00	Midterm Exam	
Week 9 + Week 10 Chap. 6 - Priority Queues (Heaps) 2 Lectures	21/11 & 28/11	 6.1 Model 6.2 Simple Implementation 6.3 Binary Heap 6.4 Applications of Priority Queues 6.5 d-Heaps 6.6 Leftist Heaps 6.7 Skew Heaps 6.8 Binomial Queues 6.9 Priority Queues in the Standard Library (self study) 	
		======== + HOMEWORK 2 OUT	
Week 11 & Week 12 & Week 13 Chap. 7 - Sorting 3 Lectures	05/12 & 12/12 & 19/12	 7.1 Preliminaries 7.2 Insertion Sort 7.3 A Lower Bound for Simple Sorting Algorithms 7.4 Shellsort 7.5 Heapsort 7.6 Mergesort 7.7 Quicksort 7.8 A General Lower Bound for Sorting 7.9 Decision-Tree Lower Bounds for Selection Problems 7.10 Adversary Lower Bounds 7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 7.12 External Sorting 	
	Thu. 14/12 14:30 – 15:00	Quiz # 2	
	14/12/2023 →	=======→ MINI-PROJECT DUE	
	07/01/2024 →	======= → HOMEWORK 2 DUE	
Week 14 Chap. 9 - Graph Algorithms (Brief Intro.) 2 Lectures	16/01/2024	 9.1 Definitions 9.2 Topological Sort 9.3 Shortest-Path Algorithms 9.4 Network Flow Problems 9.5 Minimum Spanning Tree 9.6 Applications of Depth-First Search 9.7 Introduction to NP-Completeness (if time allows) 	
Last day of classes 18/01/2023 FINAL EXAM (During the week 21–25/01/2024)			