Упражнения: Прости проверки

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането" @ СофтУни.

0. Празно Visual Studio решение (Blank Solution)

Създайте празно решение (**Blank Solution**) във Visual Studio за да организирате решенията на задачите от упражненията – всяка задача ще бъде в отделен проект и всички проекти ще бъдат в общ solution.

- 1. Стартирайте Visual Studio.
- 2. Създайте нов **Blank Solution**: [File] → [New] → [Project].
- 3. Изберете от диалоговия прозорец [Templates] → [Other Project Types] → [Visual Studio Solutions] → [Blank Solution] и дайте подходящо име на проекта, например "Simple-Conditions":

Сега имате създаден празен Visual Studio Solution (без проекти в него):

Целта на този **blank solution** е да добавяте в него **по един проект за всяка задача** от упражненията.

1. Проверка за отлична оценка

Първата задача от тази тема е да се напише конзолна програма, която чете оценка (десетично число), въведена от потребителя, и отпечатва "Excellent!", ако оценката е 5.50 или по-висока.

вход	изход	вход	изход	вход	изход	вход	изход
6	Excellent!	5	(няма изход)	5.50	Excellent!	5.49	(няма изход)

- 1. Създайте нов проект в съществуващото Visual Studio решение. В Solution Explorer кликнете с десен бутон на мишката върху Solution 'Simple-Conditions'. Изберете [Add] → [New Project...]:
- 2. Ще се отвори диалогов прозорец за избор на тип проект за създаване. Изберете С# конзолно приложение и задайте име "Excellent-Result":

Вече имате solution с едно конзолно приложение в него. Остава да напишете кода за решаване на задачата.

- 3. Отидете в тялото на метода Main(string[] args) и напишете решението на задачата. Можете да си помогнете с кода от картинката по-долу:
- 4. Стартирайте програмата с [Ctrl+F5] и я тествайте с различни входни стойности:

5. Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/152#0. Трябва да получите 100 точки (напълно коректно решение):

2. Отлична оценка или не

Следващата задача от тази тема е да се напише **конзолна програма**, която **чете оценка** (десетично число), въведена от потребителя, и отпечатва "**Excellent!**", ако оценката е **5.50** или по-висока, или "**Not excellent.**" в противен случай.

вход	изход
6	Excellent!

вхо д	изход
5	Not excellent.

вход	изход
5.50	Excellent !

вход	изход
5.49	Not excellent.

- 1. Първо създайте нов С# конзолен проект в решението "Simple-Conditions".
 - Кликнете с мишката върху решението в Solution Explorer и изберете [Add] → [New Project...].
 - Изберете [Visual C#] → [Windows] → [Console Application] и задайте име "Excellent-or-Not".
- 2. Напишете кода на програмата. Може да си помогнете с примерния код от картинката:
- 3. Включете режим на автоматично превключване към текущия проект като кликнете върху главния solution с десния бутон на мишката и изберете [Set StartUp Projects...]:

Ще се появи диалогов прозорец, от който трябва да се избере [Startup Project] → [Current selection]:

- 4. Сега **стартирайте програмата**, както обикновено с [Ctrl+F5] и я тествайте:
- 5. Тествайте в **judge системата**: https://judge.softuni.bg/Contests/Practice/Index/152#1. Решението би трябвало да бъде прието като напълно коректно:

3. Четно или нечетно

Да се напише програма, която чете **цяло число**, въведено от потребителя, и печата дали е **четно** или **нечетно**. Примери:

вход	изход
2	even

вход	изход
3	odd

вход	изход
25	odd

вход	изход
1024	even

- 1. Първо добавете **нов С# конзолен проект** в съществуващия solution.
- 2. **Напишете кода** на програмата. Проверката за четност може да се реализира чрез проверка на **остатъка при деление на 2** по следния начин: var even = (num % 2 == 0).
- 3. Стартирайте програмата с [Ctrl+F5] и я тествайте:

4. Намиране на по-голямото число

Да се напише програма, която чете две цели числа, въведени от потребителя, и отпечатва по-голямото от двете. Примери:

вход	изход
5	5
3	

вход	изход
3	5
5	

вход	изход
10	10
10	

вход	изход
-5	5
5	

- 1. Първо добавете нов С# конзолен проект в съществуващия solution.
- 2. **Напишете кода** на програмата. Необходима е единична if-else конструкция.
- 3. Стартирайте програмата с [Ctrl+F5] и я тествайте:
- 4. Тествайте решението си в **judge системата**: https://judge.softuni.bg/Contests/Practice/Index/152#3.

Подсказка: може да си помогнете частично с кода от картинката, който е нарочно замъглен, за да помислите как да си го напишете сами:

5. Изписване на число до 10 с думи

Да се напише програма, която чете цяло число в диапазона [0...9], въведено от потребителя, и го изписва с думи на английски език. Ако числото е извън диапазона, изписва "number too big". Примери:

вход	изход
5	five

вход	изход
1	one

вход	изход
9	nine

вход	изход
10	number too big

6. Бонус точки

Дадено е **цяло число** — брой точки. Върху него се начисляват **бонус точки** по правилата, описани по-долу. Да се напише програма, която пресмята **бонус точките** за това число и **общия брой точки** с бонусите.

- Ако числото е до 100 включително, бонус точките са 5.
- Ако числото е по-голямо от 100, бонус точките са 20% от числото.
- Ако числото е по-голямо от 1000, бонус точките са 10% от числото.
- Допълнителни бонус точки (начисляват се отделно от предходните):
 - За четно число → + 1 т.

 \circ За число, което завършва на 5 \rightarrow + 2 т.

Примери:

вход	изход	вход	изхо
20	6	175	37
	26		212

вход	изход
2703	270.3
	2973.3

вход	изход
15875	1589.5
	17464.5

Ето как би могло да изглежда решението на задачата в действие:

Подсказка:

- Основните бонус точки можете да изчислите с if-else-if-else-if конструкция (имате 3 случая).
- Допълнителните бонус точки можете да изчислите с if-else-if конструкция (имате още 2 случая).

7. Сумиране на секунди

Трима спортни състезатели финишират за някакъв **брой секунди** (между **1** и **50**). Да се напише програма, която чете времената на състезателите, въведени от потребителя, и пресмята **сумарното им време** във формат "минути:секунди". Секундите да се изведат с водеща нула ($2 \rightarrow "02"$, $7 \rightarrow "07"$, $35 \rightarrow "35"$). Примери:

вход	изход
35	2:04
45	
44	

вход	изход
22	1:03
7	
34	

вход	изход
50	2:29
50	
49	

вход	изход
14	0:36
12	
10	

Тествайте решението си в **judge системата**:

https://judge.softuni.bg/Contests/Practice/Index/152#6.

Подсказка:

Сумирайте трите числа и получете резултата в секунди. Понеже 1 минута = 60 секунди, ще трябва да изчислите броя минути и броя секунди в диапазона от 0 до 59.

Ако резултатът е между 0 и 59, отпечатайте 0 минути + изчислените секунди. Ако резултатът е между 60 и 119, отпечатайте 1 минута + изчислените секунди минус 60.

Ако резултатът е между 120 и 179, отпечатайте 2 минути + изчислените секунди минус 120.

Ако секундите са по-малко от 10, изведете водеща нула преди тях.

8. Конвертор за мерни единици

Да се напише програма, която **преобразува разстояние** между следните 8 **мерни единици**: m, mm, cm, mi, in, km, ft, yd. Използвайте съответствията от таблицата по-долу:

входна единица	изходна единица
1 meter (m)	1000 millimeters (mm)
1 meter (m)	100 centimeters (cm)
1 meter (m)	0.000621371192 miles (mi)
1 meter (m)	39.3700787 inches (in)
1 meter (m)	0.001 kilometers (km)
1 meter (m)	3.2808399 feet (ft)
1 meter (m)	1.0936133 yards (yd)

Входните данни се състоят от три реда, въведени от потребителя:

- Първи ред: число за преобразуване
- Втори ред: входна мерна единица
- Трети ред: изходна мерна единица (за резултата)

Резултатът да се форматира до осмия знак след десетичната запетая.

Примерен вход и изход:

вход	изход
12 km ft	39370.07886932

вход	изход
150 mi in	9503999.99393599

вход	изход
450 yd km	0.41148000

Тествайте решението си в **judge системата**: https://judge.softuni.bg/Contests/Practice/Index/152#7.

9. Познай паролата

Да се напише програма, която **чете парола** (един ред с произволен текст), въведена от потребителя, и проверява дали въведеното **съвпада** с фразата "s3cr3t!P@ssw0rd". При съвпадение да се изведе "**Welcome**". При несъвпадение да се изведе "**Wrong password!**". Примери:

вход	изход
qwerty	Wrong
	password!

вход	изход
s3cr3t!P@ssw0r d	Welcome

вход	изход
s3cr3t!p@ss	Wrong password!

Тествайте решението си в **judge системата**:

https://judge.softuni.bg/Contests/Practice/Index/152#8.

Подсказка: използвайте if-else конструкцията.

10. Число от 100 до 200

Да се напише програма, която **чете цяло число**, въведено от потребителя, и проверява дали е **под 100**, **между 100 и 200** или **над 200**. Да се отпечатат съответно съобщения като в примерите по-долу:

вход	изход
95	Less than 100

вход	изход	
120	Between 100 ar 200	ıd

вход	изход	
210	Greater than 200	

Тествайте решението си в judge системата:

https://judge.softuni.bg/Contests/Practice/Index/152#9.

Подсказка: използвайте if-else-if-else конструкция за да проверите всеки от трите случая.

11. Еднакви думи

Да се напише програма, която **чете две думи**, въведени от потребителя, и проверява дали са еднакви. Да не се прави разлика между главни и малки думи. Да се изведе "yes" или "no". Примери:

вход	изход
Hello Hello	yes

вход	изход
SoftUni softuni	yes

вход	изход
Soft	no
Uni	

вход	изход
beer	no
vodka	

вход	изход
HeL10 hELLo	yes

Тествайте решението си в **judge системата**:

https://judge.softuni.bg/Contests/Practice/Index/152#10.

Подсказка: използвайте if-else конструкция. Преди сравняване на думите ги обърнете в долен регистър: word = word.ToLower().

12. Информация за скоростта

Да се напише програма, която чете скорост (десетично число), въведена от потребителя, и отпечатва информация за скоростта. При скорост до 10 (включително) отпечатайте "slow". При скорост над 10 и до 50 отпечатайте "average". При скорост над 50 и до 150 отпечатайте "fast". При скорост над 150 и до 1000 отпечатайте "ultra fast". При по-висока скорост отпечатайте "extremely fast". Примери:

вход	изход
8	slow

вход	изход
49.5	average

вход	изход
126	fast

вход	изход
160	ultra fast

вход	изход
3500	extremel
	y fast

Тествайте решението си в **judge системата**:

https://judge.softuni.bg/Contests/Practice/Index/152#11.

Подсказка: използвайте серия от if-else-if-else-... конструкции, за да хванете всичките 5 случая.

13. Лица на фигури

Да се напише програма, в която потребителят въвежда вида и размерите на геометрична фигура и пресмята лицето й. Фигурите са четири вида: квадрат (square), правоъгълник (rectangle), кръг (circle) и триъгълник (triangle). На първия ред на входа се чете вида на фигурата (square, rectangle, circle или triangle). Ако фигурата е квадрат, на следващия ред се чете едно число – дължина на страната му. Ако фигурата е правоъгълник, на следващите два реда четат две числа – дължините на страните му. Ако фигурата е кръг, на следващия ред чете едно число – радиусът на кръга. Ако фигурата е триъгълник, на следващите два реда четат две числа – дължината на страната му и дължината на височината към нея. Резултатът да се закръгли до 3 цифри след десетичната точка. Примери:

вход	изход
square 5	25

вход	изход
rectangle 7 2.5	17.5

вход	изход
circle 6	113.097

вход	изход
triangle	45
20	

Тествайте решението си в **judge системата**:

https://judge.softuni.bg/Contests/Practice/Index/152#12.

Подсказка: използвайте серия от if-else-if-else-... конструкции, за да обработите 4-те вида фигури.

14. Време + 15 минути

Да се напише програма, която **чете час и минути** от 24-часово денонощие, въведени от потребителя, и изчислява колко ще е **часът след 15 минути**. Резултатът да се отпечата във формат hh:mm. Часовете винаги са между 0 и 23, а минутите винаги са между 0 и 59. Часовете се изписват с една или две цифри. Минутите се изписват винаги с по две цифри, с водеща нула когато е необходимо. Примери:

вход	изход
1	2:01
46	

вход	изход
0	0:16
01	

вход	изход
23	0:14
59	

вход	изход
11	11:23
08	

вход	изход
12 49	13:04

Тествайте решението си в **judge системата**:

https://judge.softuni.bg/Contests/Practice/Index/152#13.

Подсказка: добавете 15 минути и направете няколко проверки. Ако минутите надвишат 59, увеличете часовете с 1 и намалете минутите със 60. По аналогичен начин разгледайте случая, когато часовете надвишат 23. При печатането на минутите проверете за водеща нула.

15. Еднакви 3 числа

Три еднакви числа: да се въведат 3 числа и да се отпечата дали са еднакви (yes / no).

16. *Изписване на число до 100 с думи

Да се напише програма, която превръща число [0...100] в текст: 25 \rightarrow "twenty five"