Reinforcement Learning

(обучение с подкреплением, обучение систем управления)

Atari Games

Задача: набрать максимальное количество очков.

Состояние (state): изображение на экране $W \times H \times C$.

Действие (action): кнопки Up, Down, Left, Right, Fire.

Премия (reward): +N очков на каждом шаге.

Марковский процесс — вероятности перехода зависят только от текущего состояния s и действия a

 \mathbb{P} - распределение вероятностей перехода в состояние s_{t+1} для пары (s, a)

$$a = -1$$

	s_0	<i>s</i> ₁	s_n
s_0	0	0.9	0.1
s_1	0.2	0.2	0.6
s_n	0.6	0.1	0.3

$$a = 1$$

	s_0	s_1	s_1
s_0	0.1	0.2	0.7
s_1	0.6	0.1	0.3
S_n	0.2	0.2	0.6

$(S, \mathcal{A}, \pi^*, \mathcal{R}, \mathbb{P}, \gamma)$

 \mathcal{S} - множество состояний s

 ${\mathcal A}$ - множество действий a

 π^* - политика агента при выборе действия а в зависимости от состояния s

 ${\Bbb P}$ - распределение вероятностей перехода среды в состояние s_{t+1} для пары (s, a)

 ${\mathcal R}$ - распределение премий (reward) за пару (s, a)

 γ – дисконт премии на каждом шаге.

Алгоритм управления

В момент t_0 среда находится в состоянии $s_0{\sim}p(s_0)$ Цикл :

- агент совершает действие a_t в соответствии с политикой $\pi^*(s_t)$
- среда выдает премию $r_t \sim R(.|s_t,a_t)$
- среда переходит в состояние $s_{t+1} \sim P(.|s_t, a_t)$
- агент получает премию r_t и следующее состояние s_{t+1}

Политика π - это функция $S \to A$ которая аппроксимируется нейросетью.

Оптимальная политика π^* - это такая функция, которая позволяет получить максимальную сумму премий с дисконтом:

$$\sum_{t>0} \gamma^t r_t \to max$$

