

Projet 4A: UniPi

Etat d'avancement

Présentation, le 26/01/2022

Présenté par :

AYOUB EL ASRI LILIAN BESSONNEAU

Encadré par :

M. NICOLAS DELANOUE

Plan

Les différents approche pour la réalisation du projet.

Configuration du Raspberry Pi

Système d'exploitation Liaison avec **UniPi 1.1**

Programmation du Raspberry Pi

Mervis IDE Langage FBD

Application & Perspectives

Objectif

Remplacer l'API par l'ensemble d'un Raspberry Pi et UniPi.

Pourquoi?

- Prix
- Performances

Méthodes possibles

 Fonctionnement en utilisant un OS compatible avec la carte UniPi pour le Raspberry Pi.

Neuron Mervis OS

Fonctionnement en utilisant l'OS standard du Raspberry Pi, le Raspbian.

Caractéristiques du Raspberry Pi 3 Model B

Caractéristiques de l'UniPi 1.1

Schéma du montage

Etape 1:

Installation de l'OS sur le Raspberry Pi

Raspberry Pi Imager v1.6.2 - X Raspberry Pi												
Operating System NEURON-MERVIS-OS_IMAGE-2.4.1.0.IMG	Storage MASS STORA	WRITE										
Verifying 90%												
		CANCEL VERI	FY									

Etape 2:

 Avant d'éjecter la carte SD, il faudra ajouter dans config.txt, hdmi_force_hotplug, hdmi-group et hdmi_mode.

Etape 3:

Allumons le Raspi, on peut s'authentifier en utilisant :

Login: unipi

Password: unipi.technology

```
Debian GNU/Linux 10 unipi tty1

unipi login: unipi
Password:
Last login: Thu Feb 14 10:19:06 UTC 2019 on tty1
Linux unipi 5.10.63-u7+ #1496 SMP Wed Dec 1 15:58:11 GNT 2021 armu71

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANIY, to the extent unipi@unipi: 5
```


Etape 4:

 On fait une liaison entre le Raspberry Pi et l'ordinateur avec le câble Ethernet, et on récupère l'adresse IP.

```
univi@unipi:"$ /sbin/ifconfig
eth0: flags=4163<UP.BROADCAST,RUNNING,MULTICAST> ntu 1500
        inet 169.254.191.134 netnask 255.255.0.0 broadcast 169.254.255.255
        ineto reput: 3115:7216:9234:f518 prefixlen 64 scopeid 0x20<link>
        ether b8:27:eb:6b:6b:01 txqueuelen 1000 (Ethernet)
        RX packets 138 bytes 15308 (14.9 KiB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 29 bytes 4859 (4.7 KiB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
 lo: flags=73kUP,LOOPBACK,RUNNING> ntu 65536
         inet 127.0.0.1 metmask 255.0.0.0
         inet6 ::1 prefixlen 128 scopeid 0x10<host>
         loop txqueuelen 1000 (Local Loopback)
         RX packets 775 bytes 55071 (53.7 KiB)
         RX errors 0 dropped 0 overruns 0 frame 0
         TX packets 775 bytes 55071 (53.7 KiB)
         TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
   unipi@unipi:"$
```

Etape 5:

Au niveau de l'ordinateur on va installer Mevris IDE.

Etape 6:

On commence par créer une nouvelle solution

Etape 6:

On commence par créer une nouvelle solution

Etape 6:

On commence par créer une nouvelle solution

Etape 7:

Etape 7:

Etape 7:

Etape 7:

Etape 7:

 Après la création, il faudra que l'IDE détecte le Raspberry Pi qui ioue le rôle d'un PLC.

Attach Controller									×
Found PLCs:									
Address	Slave	Serial Number	Name	License	Runtime Version	Platform			
169.254.191.134 1	1	0000B827EB6B6B01	PLC	Not licensed	2.4.2611.125194	Unipi 1.1 / R System versi			
Attach Controller			×						
✓ Download Configuration									
Select if user can download	l configu	ration from selected PLC							
< Back	Next >	OK Cand	:el		< Back	Next >	OK	Cancel	

Notre Raspberry Pi est bien détecté

03

Programmation du Raspberry Pi

Etape 1:

Ajoutons un chaine pour la configuration du Modbus TCP

Etape 1:

Ajoutons un chaine pour la configuration du Modbus TCP

Etape 2:

 Au niveau du chaine de Modbus TCP, on ajoute la bibliothèque des composants correspondants de l'UniPi.

Etape 2:

 Au niveau du chaine de Modbus TCP, on ajoute la bibliothèque des composants correspondants de l'UniPi.

Etape 3:

On crée une autre chaine I2C.

Etape 4:

 Au niveau du chaine de I2C, on ajoute la bibliothèque des composants correspondants de l'UniPi.

Etape 4:

 Au niveau du chaine de I2C, on ajoute la bibliothèque des composants correspondants de l'UniPi.

Etape 5:

On bascule vers le main pour créer notre premier programme.

Etape 5:

On bascule vers le main pour créer notre premier programme.

 On fait le build de notre programme, puis on effectue le déploiement.

04 **Application** Perspectives

Application & Perspectives

Perspectives:

- 1- L'Interface Homme Machine existe au niveau de l'IDE, comment peut-on utiliser ce mécanisme ?
- 2- Est-ce qu'on peut programmer en langage C ou Python sans passer par l'IDE ?
- 3- Comment peut-on court-circuiter l'OS d'UniPi et utiliser directement le Raspbian ?

Application & Perspectives

Références:

Informations générales et études de cas :

https://www.unipi.technology/products/unipi-1-1-1-lite-19

Datasheets, OS, liens de téléchargement :

https://kb.unipi.technology/en:hw:03-unipi11

Tutoriel d'UniPi:

https://www.youtube.com/watch?v=mgUas3IxH2w

Merci pour votre
Attention

