```
In [2]: import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
In [3]: df=pd.read_csv(r"C:\Users\manis\Downloads\ionosphere_data.csv")
```

Out[3]:		column_a	column_b	column_c	column_d	column_e	column_f	column_g	colum
	0	True	False	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37
	1	True	False	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93
	2	True	False	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12
	3	True	False	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00
	4	True	False	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23
	•••	•••	•••	•••	•••	•••		•••	
	346	True	False	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05
	347	True	False	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01
	348	True	False	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03
	349	True	False	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03
	350	True	False	0.84710	0.13533	0.73638	-0.06151	0.87873	80.0

351 rows × 35 columns

```
In [4]: pd.set_option('display.max_rows',10000000000)
   pd.set_option('display.max_columns',10000000000)
   pd.set_option('display.width',95)
```

In [5]: print('This DataFrame has %d Rows and %d Columns'%df.shape)

This DataFrame has 351 Rows and 35 Columns

In [6]: df.head()

[o].	2, 3, 100 20 (7)										
Out[6]:		column_a	column_b	column_c	column_d	column_e	column_f	column_g	column_		
	0	True	False	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.3770		
	1	True	False	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.9359		
	2	True	False	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.1206		
	3	True	False	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.0000		
	4	True	False	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.2325		
4									•		

```
features matrix=df.iloc[:, 0:34]
In [7]:
In [8]: target_vector=df.iloc[:, -1]
 In [9]: print('The Features Matrix Has %d Rows adn %d Columns(s)'%(features matrix.shape)
        print('The Target Matrix Has %d Rows adn %d Columns(s)'%(np.array(target vector)
       The Featues Matrix Has 351 Rows adn 34 Columns(s)
       The Target Matrix Has 351 Rows adn 1 Columns(s)
In [10]: features matrix standardized=StandardScaler().fit transform(features matrix)
In [11]: | algorithm=LogisticRegression(penalty='12',dual=False,tol=1e-4,C=1.0,fit intercept
In [12]: Logistic_Regression_Model=algorithm.fit(features_matrix_standardized,target_vect
0.36946, -0.47357, 0.56811, -0.51171, 0.4107800000000003, -0.461680000
                     -0.54487,0.18641,-0.453]]
        predictions=Logistic Regression Model.predict(observation)
        print('The Model Predicted The Observation To Belong To Class %s'%(predictions))
       The Model Predicted The Observation To Belong To Class ['g']
In [16]: print('The Algorithm Was Trained To Predict One Of The Two Classes:%s'%(algorith
       The Algorithm Was Trained To Predict One Of The Two Classes:['b' 'g']
In [17]: print("""The Model Says The Probability Of The Observation We Passed Belonging T
        print()
        print("""The Model Says The Probability Of The Observation We Passed Belonging T
       The Model Says The Probability Of The Observation We Passed Belonging To Class
       ['b'] Is 0.0077739316001405045
       The Model Says The Probability Of The Observation We Passed Belonging To Class
       ['g'] Is 0.9922260683998595
In [ ]:
```