Knights, Knaves, and Logical Reasoning Mechanising the Laws of Thought

¹Special thanks to Fabio Papacchini and Francis Southern

Introduction

Thinking Formalising Modelling Computing

Thinking

A Puzzle

You are on a strange island where people are divided into

- Knights always saying the truth
- Knaves always saying lies

You meet two natives of the island Alice and Bob, and ask them

"Are you knights or knaves?"

Alice answers "At least one of us is a knave"

What are Alice and Bob?

Alice: "At least one of us is a knave"

Alice: "At least one of us is a knave"

Alice: "At least one of us is a knave"

Formalizing

Formalizing Correct Reasoning

A: Socrates is a man

B: All men are mortal

C: All men are Socrates C: Socrates is mortal

Formalizing Correct Reasoning

A: Socrates is a man

B: All men are mortal

C: All men are Socrates C: Socrates is mortal

Woody Allen - Love and Death Aristotle

Formalizing Correct Reasoning

A: Socrates is a man

B: All men are mortal

C: All men are Socrates C: Socrates is mortal

Woody Allen - Love and Death Aristotle

Linguistic, philosophical, or mathematical approaches to formalisation

Propositional Logic

Propositions

An expression which is either true or false.

Propositions

An expression which is either true or false.

Proposition test: Is it true that...?

- $\cdot 2 + 2 = 5$
- Nanjing
- Grass is green
- We're in Nanjing
- · What's your name?
- It's raining

Not $-\neg$, And -&

Not

p	$\neg p$
F	Т
Т	F

It's not raining

Grass is *not* green.

Not $-\neg$, And -&

Not

p	$\neg p$
F	Т
Т	F

It's not raining

Grass is not green.

And

p	q	p & q
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Grass is green and it's raining.

We're in Nanjing and we're in NJU.

Or $- \mid$, Implication (If, then) $- \rightarrow$

Or

p	q	$p \mid q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Take an aspirin or lie down.

You can have milk or sugar in your tea.

Or $- \mid$, Implication (If, then) $- \rightarrow$

Or

p	q	$p \mid q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Take an aspirin or lie down.

You can have milk *or* sugar in yourtea.

Implication

p	q	$p \rightarrow q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

If you get 90% on this assignment, then you'll pass the course.

If you're late, then you'll give me a fiver.

Biimplication (If and only if) $- \leftrightarrow$

Biimplication

p	q	$p \leftrightarrow q$
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

I'll buy you a new wallet if (and only if) you need one.

He studies if (and only if) he can.

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F		
F	F	Т		
F	Т	F		
F	Т	Т		
Т	F	F		
Т	F	Т		
Т	Т	F		
Т	Т	Т		

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	
F	F	Т	F	
F	Т	F	F	
F	Т	Т	F	
Т	F	F	F	
Т	F	Т	F	
Т	Т	F		
Т	Т	Т		

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	
F	F	Т	F	
F	Т	F	F	
F	Т	Т	F	
Т	F	F	F	
Т	F	Т	F	
Т	Т	F	Т	
Т	Т	Т	Т	

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	Т	
Т	Т	Т	Т	

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	Т	F
Т	Т	Т	Т	

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	Т	F
Т	Т	Т	Т	Т

Modeling

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \longleftrightarrow X$

- "at least one of us is a knave"
- · "I'm a knave or Bob is a knave"
- $\neg k_A | \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A | \neg k_B)$$

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \longleftrightarrow X$

- "at least one of us is a knave"
- · "I'm a knave or Bob is a knave"
- $\neg k_A | \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A | \neg k_B)$$

k_A	k_B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \longleftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	
F	Т	Т	F	Т	
Т	F	F	Т	Т	
Т	Т	F	F	F	

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \longleftrightarrow X$

- "at least one of us is a knave"
- · "I'm a knave or Bob is a knave"
- $\neg k_A | \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A | \neg k_B)$$

k_A	k_B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \longleftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	
Т	F	F	Т	Т	
Т	Т	F	F	F	

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \longleftrightarrow X$

- "at least one of us is a knave"
- · "I'm a knave or Bob is a knave"
- $\neg k_A | \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A | \neg k_B)$$

$-k_A$	k_B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \longleftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	
Т	Т	F	F	F	

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \longleftrightarrow X$

- "at least one of us is a knave"
- · "I'm a knave or Bob is a knave"
- $\neg k_A | \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A | \neg k_B)$$

$-k_A$	k_B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \longleftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	Т
Т	Т	F	F	F	

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \longleftrightarrow X$

- "at least one of us is a knave"
- · "I'm a knave or Bob is a knave"
- $\neg k_A | \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A | \neg k_B)$$

k_A	k_B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \longleftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	Т
Т	Т	F	F	F	F

From Solving to Modeling

From Solving to Modeling

Alice: "At least one of us is a knave"

 k_A = Alice is a knight

The trick: "Alice says X" is the same as $k_A \leftrightarrow X$

"At least one of us is a knave" = $\neg k_A \mid \neg k_B$

Alice says "At least one of us is a knave" = $k_A \leftrightarrow (\neg k_A \mid \neg k_B)$

From Solving to Modeling

Alice: "At least one of us is a knave"

 k_A = Alice is a knight

The trick: "Alice says X" is the same as $k_A \leftrightarrow X$

"At least one of us is a knave" = $\neg k_A \mid \neg k_B$

Alice says "At least one of us is a knave" = $k_A \leftrightarrow (\neg k_A \mid \neg k_B)$

It can be (really) hard, but you only have to do it once!

Modeling a Sudoku

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

- at least one number per cell $(p_{1,1,4} | \dots | p_{9,1,4})$
- at most one number per cell $(p_{7,1,4} \rightarrow \neg p_{1,1,4}, p_{7,1,4} \rightarrow \neg p_{2,1,4})$

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

- at least one number per cell $(p_{1,1,4} | \dots | p_{9,1,4})$
- at most one number per cell $(p_{7,1,4} \rightarrow \neg p_{1,1,4}, p_{7,1,4} \rightarrow \neg p_{2,1,4})$
- no number can be repeated in a row

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

- at least one number per cell $(p_{1,1,4} | \dots | p_{9,1,4})$
- at most one number per cell $(p_{7,1,4} \rightarrow \neg p_{1,1,4}, p_{7,1,4} \rightarrow \neg p_{2,1,4})$
- no number can be repeated in a row/column

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

- at least one number per cell $(p_{1,1,4} | \dots | p_{9,1,4})$
- at most one number per cell $(p_{7,1,4} \rightarrow \neg p_{1,1,4}, p_{7,1,4} \rightarrow \neg p_{2,1,4})$
- no number can be repeated in a row/column/region

Computing

Automating the Process

Truth table

- mechanical
- time consuming (2ⁿ rows!)
- tedious

Automating the Process

Truth table

- mechanical
- time consuming (2ⁿ rows!)
- tedious

Let a computer do it for you!

- · ideal for mechanical tasks
- only needs an input formula
- · more reliable than us
- · much faster than us
- the output is easily customisable

Automated Reasoning

Much more than solving puzzles!

- software and hardware verification
 Intel and Microsoft
- information management biomedical ontologies, Semantic Web, databases
- combinatorial reasoning constraint satisfaction, planning, scheduling
- Internet security
- theorem proving in mathematics

Where Could Have Been Used

Ariane 5 rocket failure due to a software bug, cost \$370 million.

Where Has Been Used

IDK / IDK-8072909

To find and fix a bug in a widely used sorting algorithm!

Where Has Been Used

To find and fix a bug in a widely used sorting algorithm!

Even Amazon and Facebook use automated reasoning techniques!

Do You Want to Know More?

Follow this lecture!