CSE355 Class Notes - 2/14/2008

Converting DFA to Regular Expression:

Example: Write the Regular Expression for the following DFA:

Solution:

<u>Step 1:</u> Add a new initial state (S) and a common final state (E) using ϵ -transition:

Step 2: Remove state q0:

	S	q1	q2
S	ł	a	b
q1		aa	ab
q2		ba	bb

Step 3: Remove state q1:

	S	q2	E
S		a (b+aa)* ab	a (b+aa)*
q2		(a+ba) (b+aa)* ab	(a+ba) (b+aa)*
E			

Step 4: Remove state q2:

	S	Е
S		$(b + a (b+aa)^* ab) (bb + (a+ba) (b+aa)^* ab)^* (\epsilon + (a+ba) (b+aa)^*)$
Е		

Algebraic Laws for Regular Expressions:

$$\begin{split} L+M&=M+L\\ (L+M)+N&=L+(M+N)\\ L(MN)&=(LM)N\\ \epsilon L&=L=L\epsilon\\ \Phi L&=\Phi=L\Phi\\ L(M+N)&=LM+LN\\ (M+N)L&=ML+NL\\ (L^*)^*&=L^*\\ \epsilon^*&=\epsilon\\ \Phi^*&=\epsilon \end{split}$$

Show that $L = \{a^n b^n, n \ge 0\}$ is not a regular language

Proof:

Suppose to the contrary and it is regular

Then there must be a DFA for L

Suppose that the DFA has m number of states

This DFA must accept the string ambm

While processing a^m through the DFA it will go through some state at least twice It will look something like:

Now by looping more number of times at qi, we can have a string a^pb^m where p > m that is accepted by the DFA

This contradicts our assumption that the DFA was for language L.

Hence, out initial assumption that L is regular language must be wrong.

Pumping Lemma:

For any regular language L, there is an integer m such that all strings in L whose length is \geq m can be written as xyz such that:

- (i) $xy^ix \in L$
- (ii) $|xy| \le m$
- (iii) $y \neq \varepsilon$