AceleraDev Data Science

Engenharia de Features

Variáveis categóricas

/

- Sem aplicações matemáticas;
- Agrupadores, classificadores;
- Possuem um limite de valores;
- "Encode"
 - Label Encode
 - o One Hot Encode

Label Encoding

Food Name	Categorical #	Calories	
Apple	1	95	
Chicken	2	231	
Broccoli	3	50	

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Binarização

- Transforma valores escalares em binários.
- Por padrão tudo que é positivo recebe valor 1.
- Boa prática normalizar/padronizar os valores.

Quantização (Binning)

- Separa as amostras em quartis de quantidade iguais.
- bins: Quantidade de "separações".
- Permite o agrupamento e criação de ranges

AceleraDev Data Science

Engenharia de Features

Variáveis Númericas

- StandardScaler
 - Z-score
 - (X Média) / (Desvio Padrão)

Variáveis Númericas

- MinMaxScaler
 - $\circ \quad X_{std} = (X X.min(axis=0)) / (X.max(axis=0) X.min(axis=0))$
 - X_scaled = X_std * (max min) + min

Normalização, Escala Transformação

- Aplicação de técnicas de normalização dos dados, de forma automática.
 - Preenchimento de valores faltantes;
 - o Aplicação de Padronização e Normalização;
 - o Transformação de colunas, por valores ou encode.
- O agrupamento permite a criação de pipelines
 - Reaproveitamento dos cálculos;
 - Aplicação simultânea

Remoção de outliers

```
 Procurando por outliers
```

- IQR
 - Menores que o Q1;
 - Maiores que o Q3;
 - Fórmula
 - IQR: Q3-Q1;
 - Abaixo: Q1 **x***IQR;
 - Acima: Q3 + **x***IQR;
 - x padrão 1,5

 $IQR = Q_3 - Q_1$

Lower Outlier = $Q1 - (1.5 \times IQR)$

Higher Outlier = $Q3 + (1.5 \times IQR)$

AceleraDev Data Science

Engenharia de Features

Features de Texto

- Categóricas por padrão
- Contagem
 - o Palavras, expressões,
- TF-IDF
 - Frequência do Termo
 - O peso de um termo que ocorre em um documento é diretamente proporcional à sua frequência
 - Inverso da Frequência no documento
 - A especificidade de um termo pode ser quantificada por uma função inversa do número de documentos em que ele ocorre

TFIDF

For a term i in document j:

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

Features de Texto

Agrupamento de termos;\

- Ordenação
- N-gram:
 - Agrupamento de 2 ou mais palavras, onde o a partir deste agrupamento passam a ser tratadas com 1 elemento único
- Stop-words:
 - palavras ou composições que não impactam em valor e entendimento.Normalmente são palavras de ligação como artigos, advérbios, sufixos, prefixos e radicais

this, N = 1 : This is a sentence is, unigrams: a, sentence this is, N = 2 : This is a sentence bigrams: is a. a sentence N = 3: This is a sentence trigrams: this is a, is a sentence

> stop	owords("engli	sh")				
[1]	"i"	"me"	"my"	"myself"	"we"	
[6]	"our"	"ours"	"ourselves"	"you"	"your"	
[11]	"yours"	"yourself"	"yourselves"	"he"	"him"	
[16]	"his"	"himself"	"she"	"her"	"hers"	
[21]	"herself"	"it"	"its"	"itself"	"they"	
[26]	"them"	"their"	"theirs"	"themselves"	"what"	
[31]	"which"	"who"	"whom"	"this"	"that"	
[36]	"these"	"those"	"am"	"is"	"are"	
[41]	"was"	"were"	"be"	"been"	"being"	
[46]	"have"	"has"	"had"	"having"	"do"	
[51]	"does"	"did"	"doing"	"would"	"should"	
[56]	"could"	"ought"	"i'm"	"you're"	"he's"	
[61]	"she's"	"it's"	"we're"	"they're"	"i've"	
[66]	"you've"	"we've"	"they've"	"i'd"	"you'd"	
[71]	"he'd"	"she'd"	"we'd"	"they'd"	"i'll"	
[76]	"you'll"	"he'll"	"she'll"	"we'll"	"they'll"	
[81]	"isn't"	"aren't"	"wasn't"	"weren't"	"hasn't"	
[86]	"haven't"	"hadn't"	"doesn't"	"don't"	"didn't"	
[91]	"won't"	"wouldn't"	"shan't"	"shouldn't"	"can't"	
[96]	"cannot"	"couldn't"	"mustn't"	"let's"	"that's"	
[101]	"who's"	"what's"	"here's"	"there's"	"when's"	
[106]	"where's"	"why's"	"how's"	"a"	"an"	

Feature Engineering

- https://jorisvandenbossche.github.io/blog/2018/05/28/scikit-learn-columntransformer
- https://medium.com/vickdata/easier-machine-learning-with-the-new-column-transformer-from-scikit-learn-c2268ea9564c
- https://code-examples.net/pt/docs/scikit_learn/modules/impute
- https://medium.com/datadriveninvestor/finding-outliers-in-dataset-using-python-efc3fce6ce32
- https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba
- https://adataanalyst.com/scikit-learn/countvectorizer-sklearn-example/
- https://towardsdatascience.com/hacking-scikit-learns-vectorizers-9ef26a7170af
 https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781789808452/1/ch01lvl1sec17/binarization