ABI Summer 2021 Introduction to Statistics

Guest Session 4

Javier Cabrera*, Volha Tryputsen** & Davit Sargsyan**

July 15, 2021

Body Weight vs. Age

- Twenty (20) mice between the age of 0 and 90 days were weighted
- What is the relationship between age and weight?

Average Weight by Age

- We can bin the mice by age, e.g., less than 1, 2 and 3 months old.
- Calculate the mean weight by age in months:

Age (Months)	Mean	SEM
1	4.53	1.16
2	11.54	0.79
3	18.37	1.15

 Mice weight is positively associated with age (older mice weight more)

Line of Best Fit

 Instead of binning the observation, lets try to find a relationship that we can describe with a line:

$$Y=a+bX$$

Where a is the y-intercept and b is the slope of the line

- There are many lines we can draw trough the data
- How do we find the best one? What does it mean – a line of best fit?

Linear Regression

- We can try to find a line that will minimize the sum of squares of residuals by fitting one that looks good and change intercept (a) and slope (b) until we cannot do any better
- Instead, we can solve for a and b: the method of least squares.

R output (function **Im**)

```
Call:
lm(formula = Weight ~ Days, data = dtg)
Residuals:
     Min
              10 Median
                                        Max
-2.23440 -0.21449 0.01892 0.25992 1.29533
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.787496
                     0.392868
                                 28.73 < 2e-16 ***
           0.213480
                      0.007429
Days
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.7988 on 18 degrees of freedom
Multiple R-squared: 0.9787, Adjusted R-squared: 0.9775
F-statistic: 825.7 on 1 and 18 DF, p-value: < 2.2e-16
(Intercept)
                   Days
  1.7874963
             0.2134798
```


Method of least squares

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, 2, \dots, n$$

To estimate (β_0,β_1) , we find values that minimize squared error:

$$L = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

The least squares estimators of β_0 and β_1 , say, $\hat{\beta}_0$ and $\hat{\beta}_1$, must satisfy

$$\frac{\partial L}{\partial \beta_0} \Big|_{\hat{\beta}_0, \hat{\beta}_1} = -2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{\partial L}{\partial \beta_1} \Big|_{\hat{\beta}_0, \hat{\beta}_1} = -2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$$

Least square normal equations

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} y_{i}x_{i}$$

The least squares estimates of the intercept and slope in the simple linear regression model are:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - \frac{\left(\sum_{i=1}^n y_i\right)\left(\sum_{i=1}^n x_i\right)}{n}}{\sum_{i=1}^n x_i^2 - \frac{\left(\sum_{i=1}^n x_i\right)^2}{n}}$$

where
$$\overline{y} = (1/n) \sum_{i=1}^{n} y_i$$
 and $\overline{x} = (1/n) \sum_{i=1}^{n} x_i$.

Predicting Observations

3 things to remember when fitting a linear model!

2) Goodness of fit

1) Diagnostics

(1) Model Diagnostics: residuals vs fitted

Residuals

! If residuals are scattered randomly around 0 with uniform variation, it indicates that the data fit a linear mode!

(1) Model Diagnostics: residuals vs fitted

(f) Biased and

Heteroscedastic

Residuals

(e) Biased and

Heteroscedastic

(d) Unbiased and

Heteroscedastic

(1) Model Diagnostics: normality of residuals

qq-plot of residuals

d. Thick Tails

e. Thin Tails

! The line on the plot is straight, supporting the assumption of normally distributed residuals!

(1) Model Diagnostics: outliers

An **outlier** is an observation that has a large **residual**. In other words, **the** observed value for **the** point is very different from that predicted by **the regression model**.

Q: What to do when data has outliers?

A: Use robust regression!

(2) Model Performance: Goodness of Fit

- How well you can predict a future dataset?
- R-squared is displayed in the summary(lm(y~x))
- Look at the plot of predicted values vs. observed
- R-squared = correlation(predicted vs. observed)^2
- NOTE: even if R-squared is low but the slope is significant, model can still be very useful to establish a relationship

(2) Model Performance: Goodness of Fit

- How well you can predict a future dataset?
- R-squared is displayed in the summary(lm(y~x))
- Look at the plot of predicted values vs. observed
- R-squared = correlation(predicted vs. observed)^2
- NOTE: even if R-squared is low but the slope is significant, model can still be very useful to establish a relationship

"All models are wrong, but some are useful"

- George Box

(3) Inference: Estimating the Slope

- Slope of a linear regression line tells us how much change in y-variable is caused by a unit change in x-variable.
- Q: Is it statistically significantly different than "zero"?
- A: For that, we can test the hypothesis that the regression slope parameter β is equal to zero. H_0 : $\beta_1 = 0$ vs. H_0 : $\beta_1 \neq 0$
- We calculate $t = b_1 / SE_{b1}$ to find a p-value for the t-test of significance of the slope.

More than one predictors

 Now, let's add another variable to explain the weight difference: Diet

```
Call:
lm(formula = Weight ~ Days + Diet, data = dt1)
Residuals:
            10 Median
                            3Q
                                  Max
-3.7020 -1.2654 0.0955 0.9248 4.2371
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                -1.49437
                           0.69508
                                    -2.150
                0.28316
                         0.01169 24.229 < 2e-16 ***
Days
DietGrain+Cheese 5.78058
                           0.60238 9.596 1.39e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.898 on 37 degrees of freedom
Multiple R-squared: 0.9457, Adjusted R-squared: 0.9428
F-statistic: 322.2 on 2 and 37 DF, p-value: < 2.2e-16
```


Interaction

```
Call:
lm(formula = Weight ~ Days * Diet, data = dt1)
Residuals:
    Min
             1Q Median
                            3Q
                                   Max
-2.36887 -0.32586 0.05597 0.43711 2.11267
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  1.787496 0.473711
                   Days
DietGrain+Cheese
                                      0.282 0.779731
               0.174880
                           0.620641
                            0.011952 10.378 2.28e-12 ***
Days:DietGrain+Cheese 0.124037
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Residual standard error: 0.9631 on 36 degrees of freedom Multiple R-squared: 0.9864, Adjusted R-squared: 0.9853

F-statistic: 870.2 on 3 and 36 DF, p-value: < 2.2e-16

LINEAR MODEL FOR TWO FACTORS

Model: Data = Tot Mean + Factor 1 Effect + Factor 2 Eff + Error

LINEAR MODEL FOR TWO WAY TABLE of gene expressions:

This is a typical dataset where we have a response and two factors:

Factor 1 is the sample and Factor 2 is the probe and we want to estimate the sample effect .

Example: Observe the 11 probes for one gene in 6 samples

	C1	C2	C3	T1	T2	T3
Probe	1521b99	1532b99	2353b99	1521a99	1532a99	2353a99
1	137.08	165.92	112.41	168.68	83.05	103.02
2	603.08	605.42	420.91	681.18	534.05	479.02
3	851.08	981.42	724.91	989.18	809.35	717.02
4	19.76	15.91	22.29	31.22	30.23	13.57
5	237.08	193.42	136.41	227.18	255.05	114.02
6	77.58	128.22	83.21	87.18	91.85	41.98
7	1212.58	1188.22	818.91	1279.18	1279.05	959.32
8	759.38	798.42	770.91	857.48	1175.05	868.52
9	84.38	110.42	109.71	122.18	112.35	63.07
10	41.59	35.74	40.71	43.18	34.12	22.32
11	158.58	140.42	135.91	162.48	172.05	93.02

	exprs	probe	sample
1	168.68	1	T1
2	681.18	2	T1
3	989.18	3	T1
4	31.22	4	T1
5	227.18	5	T1
ϵ	87.18	6	T1
7	1279.18	7	T1
8	857.48	8	T1
9	122.18	9	T1
10	43.18	10	T1
11	162.48	11	T1
12	83.05	1	T2
13	534.05	2	T2
14	809.35	3	T2
15	30.23	4	T2
16	255.05	5	T2
17	91.85	6	T2
18	1279.05	7	T2
19	1175.05	8	T2
20	112.35	9	T2
21	34.12	10	T2
22	172.05	11	T2
23	103.02	1	T3
24	479.02	2	T3
25	717.02	3	T3
26	13.57	4	Т3
27	114.02	5	Т3
28	41.98	6	Т3

LINEAR MODEL FOR TWO FACTORS

```
summary(lm(exprs~ probe + sample,data))
Residuals:
             1Q Median
    Min
                             3Q
                                    Max
-237.84 -34.81
                  -9.40
                          41.93 260.47
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  3.482 0.00104 **
(Intercept)
              135.49
                          38.92
                                                                                         C3
                                                                                                    T1
                                                                                                                T2
                                                                   C1
                                                                              C2
                                                                                                                           T3
                                  9.326 1.59e-12 ***
probe2
              425.58
                          45.63
                                                                              1532b99
                                                                                         2353b99
                                                                                                     1521a99
                                                        Probe
                                                                   1521b99
                                                                                                                1532a99
                                                                                                                           2353a99
                          45.63 15.715 < 2e-16 ***
probe3
              717.13
                                                                        137.08
                                                                                   165.92
                                                                                              112.41
                                                                                                          168.68
                                                                                                                      83.05
                                                                                                                                103.02
probe4
             -106.20
                          45.63
                                 -2.327 0.02405 *
                                                                        603.08
                                                                                   605.42
                                                                                              420.91
                                                                                                         681.18
                                                                                                                     534.05
                                                                                                                                479.02
probe5
               65.50
                          45.63
                                  1.435 0.15741
probe6
              -43.36
                          45.63
                                 -0.950 0.34663
                                                                        851.08
                                                                                   981.42
                                                                                              724.91
                                                                                                          989.18
                                                                                                                     809.35
                                                                                                                                717.02
probe7
              994.52
                          45.63 21.794 < 2e-16 ***
                                                                        19.76
                                                                                    15.91
                                                                                               22.29
                                                                                                           31.22
                                                                                                                      30.23
                                                                                                                                 13.57
probe8
              743.27
                          45.63
                                 16.288 < 2e-16 ***
                                                                        237.08
                                                                                   193.42
                                                                                                          227.18
                                                                                                                     255.05
                                                                                                                                114.02
                                                                                              136.41
probe9
              -28.01
                          45.63
                                 -0.614 0.54215
                                                                                                          87.18
                                                                                                                      91.85
                                                                         77.58
                                                                                   128.22
                                                                                               83.21
                                                                                                                                 41.98
probe10
              -92.08
                          45.63
                                 -2.018 0.04899 *
                                                                       1212.58
                                                                                                                                959.32
                                  0.337 0.73745
                                                                                  1188.22
                                                                                              818.91
                                                                                                         1279.18
                                                                                                                    1279.05
probe11
               15.38
                          45.63
               16.49
                          33.70
                                  0.489 0.62684
sampleC2
                                                                       759.38
                                                                                   798.42
                                                                                              770.91
                                                                                                         857.48
                                                                                                                    1175.05
                                                                                                                                868.52
sampleC3
                          33.70 -2.174 0.03448 *
              -73.26
                                                                         84.38
                                                                                   110.42
                                                                                              109.71
                                                                                                          122.18
                                                                                                                     112.35
                                                                                                                                 63.07
sampleT1
                                  1.260 0.21368
               42.45
                          33.70
                                                                                                           43.18
                                                                                                                      34.12
                                                                                                                                 22.32
                                                                10
                                                                         41.59
                                                                                    35.74
                                                                                               40.71
sampleT2
               35.82
                          33.70
                                  1.063 0.29295
                                                                11
                                                                        158.58
                                                                                                                     172.05
                                                                                                                                 93.02
                                                                                   140.42
                                                                                              135.91
                                                                                                          162.48
                          33.70
                                 -1.908 0.06216 .
sampleT3
              -64.30
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 79.04 on 50 degrees of freedom

Multiple R-squared: 0.969, Adjusted R-squared: 0.9597

F-statistic: 104.3 on 15 and 50 DF, p-value: < 2.2e-16

Fitted model: Data = Total Sample Effect + Probe Effect + Residual

= (Intercept + sample) + Probe Effect + Residual

Condition: probe effects need to add up to zero

(Intercept)	probe2	probe3	probe4	probe5	probe6	probe7	probe8	probe9	probe10
	135.49	425.58	717.13	-106.20	65.50	-43.36	994.52	743.27	-28.01	-92.08
	probe11	sampleC2	sampleC3	sampleT1	sampleT2	sampleT3				
	15.38	16.49	-73.26	42.45	35 82	-64 30				

LINEAR MODEL FOR TWO FACTORS

Fitted model: Data = Total Sample Effect + Probe Effect + Residual = (Intercept + sample)+ Probe Effect + Residual

Condition: probe effects need to add up to zero

```
(Intercept)
                              probe3
                                          probe4
                                                       probe5
                                                                    probe6
                                                                                                         probe10
                 probe2
                                                                             probe7
                                                                                      probe8
                                                                                                probe9
                              717.13
                                         -106.20
                                                                                                          -92.08
    135.49
                 425.58
                                                        65.50
                                                                    -43.36
                                                                             994.52
                                                                                      743.27
                                                                                                -28.01
                                                                                                                   200
                            sampleC3
    probe11
               sampleC2
                                        sampleT1
                                                     sampleT2
                                                                 sampleT3
      15.38
                                           42.45
                                                                    -64.30
                  16.49
                              -73.26
                                                        35.82
sampleExpresLS = b[1] + c(sampleC1=0, b[12:16])
                                                                                                               residuals(lm1)
probeEffects = c(probe1=0,b[2:11])
mean(probeEffects) [1] 244.7035
(sampleExpresLS = sampleExpresLS + mean(probeEffects))
                                                                                                                   -100
sampleC1 sampleC2 sampleC3 sampleT1 sampleT2 sampleT3
380.1973 396.6845 306.9355 422.6473 416.0182 315.8982
                                                                                                                   -200
(probeEffects = probeEffects - mean(probeEffects))
             probe2
                       probe3
                                  probe4
   probe1
                                            probe5
                                                       probe6
                                                                 probe7
                                                                            probe8
                                                                                       probe9
                                                                                                probe10
                                                                                                          probe11
                                                                                                                             200
                                                                                                                                         600
                                                                                                                                              800
                                                                                                                                   400
                                                                                                                                                    1000
                                                                                                                                                          1200
-244.7035 180.8798 472.4298 -350.9002 -179.2035 -288.0602
                                                               749.8132 498.5632 -272.7118 -336.7868 -229.3202
 t.test(sampleExpresLS[1:3], sampleExpresLS[4:6])
                                                                                                                                     predict(lm1)
t = -0.53359, df = 3.8138, p-value = 0.6232
mean of x mean of y
```


361.2724 384.8545

Median Polish

Estimate the median rather than the mean

- Robust to outliers (Remember that Least Squares is not robust to outliers.)

Median Polish model: Data = Tot Median + Row Effect + Col Eff + Residual

Fitted model: Data = Total Sample Effect + Probe Effect + Residual

Total Sample Effect = Tot Median+ Col Effect

ALGORITHM FOR MEDIAN POLISH: Estimate Row Col and Tot effects using medians.

- Alternate iteration of removing the medians of rows and columns
- Continue iteration until reduction is less than a constant in sum of residual squares or absolute residuals

To run Median Polish, use the medpolish function on R

```
Overall: 148.7713
Row Effects:
                                                                                                        11
                                       51.8725 -59.1175 1050.9000 669.5225 -38.3225 -110.8350
 -4.3975 416.8688 678.5188 -125.7012
                                                                                                    0.0000
Column Effects:
      C1
                C2
                                             Т2
                                    T1
                                                       т3
  3.65375 -2.19625 -31.96375 24.30625
                                        2.19625 -47.67375
Residuals:
                 C2
                                  T1
        C1
                          C3
                                                    Т3
                               0.000 -63.5200
                       0.000
1 -10.9475 23.7425
                                                 6.3200
   33.7863 41.9762 -112.766 91.234 -33.7863
                                              -38.9463
                                              -62.5963
   20.1363 156.3262 -70.416 137.584 -20.1363
   -6.9638 -4.9638
                     31.184 -16.156
                                      4.9638
                                               38.1737
   32.7825 -5.0275 -32.270
                               2.230 52.2100
                                              -38.9500
  -15.7275 40.7625
                      25.520 -26.780
                                       0.0000
                                                 0.0000
    9.2550 -9.2550 -348.797 55.203 77.1825 -192.6775
8 -62.5675 -17.6775 -15.420 14.880 354.5600
                                               97.9000
9 -29.7225
             2.1675
                     31.225 -12.575 -0.2950
                                                0.2950
                    34.738 -19.063 -6.0125
    0.0000
             0.0000
                                               32.0575
                     19.103 -10.598 21.0825
```

To Calculate the samples gene expressions, add the overall median to the column effects

-8.0775

sampleExpresRob = mp\$overall+ mp\$col

mp = medpolish(dat)

6.1550 -6.1550

Median Polish

We compare now the samples expressions obtain from LS and Median Polish. The results show a big difference.

We calculate the sum of squares differences standardized and in Percent.

```
SSdiff = sum((sampleExpresRob-geneEffects)^2)/sum(sampleExpresRob^2)*100
[1] 271.377
```

This is clear evidence that the gene has many outliers.

If the gene expressions don't have outliers, we expect Ssdiff < 25%

Median Polish

Homework:

The dataset probdata.csv contains probe expressions of 1100 probes for 6 samples. The probes 1100 correspond to 100 different genes, 11 probes per gene. For each of the 100 genes:

- 1. Calculate the LS expressions using the Im function as above
- 2. Calculate the Robust expressions using the medpolish function as above
- 3. Calculate the SSdiff statistic as above and calculate the proportion of genes that don't have outliers in the sense that Ssdiff is less than 25%

Class exercise (if there is time) or a homework

Brain size vs. body mass (MASS::Animals)

	Body Weight (kg)	Brain (g)
Mountain beaver	1.35	8.1
Cow	465	423
Grey wolf	36.33	119.5
Goat	27.66	115
Guinea pig	1.04	5.5
Dipliodocus	11700	50
Asian elephant	2547	4603
Donkey	187.1	419
Horse	521	655
Potar monkey	10	115
Cat	3.3	25.6
Giraffe	529	680
Gorilla	207	406
Human	62	1320
African elephant	6654	5712
Triceratops	9400	70
Rhesus monkey	6.8	179
Kangaroo	35	56
Golden hamster	0.12	1
Mouse	0.023	0.4
Rabbit	2.5	12.1
Sheep	55.5	175
Jaguar	100	157
Chimpanzee	52.16	440
Rat	0.28	1.9
Brachiosaurus	87000	154.5
Mole	0.122	3
Pig	192	180

Class exercise (if there is time) or a homework

Use: transformations, outliers (justify!), lm, correlation, ...

References

https://www.statlearning.com/

