## Projections and Normalization

The default projection in the eye (camera) frame is orthogonal

For points within the default view volume

$$x_p = x$$
$$y_p = y$$
$$z_p = 0$$

Projection plane at z = 0

#### Most graphics systems use view normalization

- All other views are converted to the canonical view by transformations that determine the projection matrix
- Allows use of the same pipeline for all views

#### Default orthographic projection

$$\mathbf{p}_{p} = \mathbf{Mp}$$

$$\mathbf{M}_{orth} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{p} = (x, y, z, 1)^{T}$$

$$\mathbf{p}_{p} = (x, y, 0, 1)^{T}$$

#### OpenGL Orthogonal Viewing

Ortho(left, right, bottom, top, near, far)



How to normalize this into the canonical view?

#### Orthogonal Normalization

normalization ⇒ find transformation to convert specified clipping volume to canonical volume



#### Orthogonal Matrix

#### Two steps

- Move center to origin
  - T(-(left+right)/2, -(bottom+top)/2, (near+far)/2))
- Scale to have sides of length 2
  - S(2/(left-right), 2/(top-bottom), 2/(near-far))

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### Final Projection

Set z=0

Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hence, general orthogonal projection in 4D is 
$$P = M_{orth}ST \qquad \text{for arbitrary orthogonal} \\ \text{to canonical view} \\ \text{for misst orthogonal} \\ \text{for a both the view plane $\pm = 0$} \\ \text{6}$$

#### OpenGL Perspective Viewing

Frustum(left,right,bottom,top,near,far)



Perpective (fovy, aspect, near, far)

**fovy**: field of view in degrees in y direction this often provides a better interface

#### Simple Perspective

Center of projection at the origin

Projection plane z = d, d < 0



# Perspective Equations (7) (7) (8) (9) Consider top and side views





$$x_{\rm p} = \frac{x}{z/d}$$

$$y_{\rm p} = \frac{y}{z/d}$$

$$z_{\rm p} = d$$

#### Homogeneous Coordinate Form

Consider 
$$\mathbf{p} = \mathbf{Mq}$$
 where 
$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \end{pmatrix}$$

$$\mathbf{q} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \quad \Rightarrow \quad \mathbf{p} = \begin{pmatrix} x \\ y \\ z \\ z/d \end{pmatrix} \quad = \begin{pmatrix} x \\ \frac{3}{\sqrt{d}} \\ \frac{3}{\sqrt{d}} \\ \frac{3}{\sqrt{d}} = \lambda \end{pmatrix}$$

#### Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at z = -1, and a 90 degree field of view determined by the planes

$$x = \pm z$$
,  $y = \pm z$ 



#### Perspective Matrices

Simple projection matrix in homogeneous coordinates

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Note that this matrix is independent of the far clipping plane

# Generalization



$$\mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

By this mapping, the point (x, y, z, 1) goes to

$$x'' = -x/z$$

$$y'' = -y/z$$

$$z'' = -(\alpha + \beta/z)$$

which projects orthogonally to the desired point regardless of  $\alpha$  and  $\beta$ 

# Picking $\alpha$ and $\beta$

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} = M \cdot \begin{pmatrix} -n \\ -n \end{pmatrix}$$

We want:

near plane z= -near be mapped to z= -1 far plane z= -far be mapped to z=1 and the sides be mapped to  $x=\pm 1$ ,  $y=\pm 1$ 

Solving two linear equations, we have

$$\alpha = \frac{\text{near} + \text{far}}{\text{near} - \text{far}}$$

$$\beta = \frac{2 \times \text{near} \times \text{far}}{\text{near} - \text{far}}$$



Then the new clipping volume is the canonical clipping volume

#### Normalization Transformation



#### OpenGL Perspective

glFrustum allows for an unsymmetric viewing frustum (although Perspective does not)



An unsymmetric viewing frustum can be normalized to the canonical view volume by first apply a shear and a scaling before applying N

#### Normalization and Hidden-Surface Removal

Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if  $z_1 > z_2$  in the original clipping volume then the for the transformed points  $z_1' > z_2'$ 

Thus hidden surface removal works if we first apply the normalization transformation

However, note that the formula z" = -( $\alpha$ + $\beta$ /z) is nonlinear, which implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small



# Why do we do it this way?

Normalization allows for a single pipeline for both perspective and orthogonal viewing

We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading

We simplify clipping

# Special Projection Effects



The Movie "Inception"