UGANDA MARTYRS UNIVERSITY

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

FINAL EXAMS FOR BSc. Economics and Statistics YEAR 1

SEMESTER II, 2021/2022

MTC 1102: FOUNDATIONS OF MATHEMATICS

DATE: 22/7/2022

TIME: 9:30 am - 12:30 pm

Instructions

- 1. Attempt ANY FOUR questions
- Ensure that your name and registration number is indicated on the cover page of your work.
- 3. Where applicable, leave your answer in fractional form or round it to 2dp
- 4. Only Non-Programmable calculators are allowed

FINAL EXAMS Page 1

(a) With relevant examples, explain the three methods used to represent a set 3 marks (b) Differentiate between the following terms as used in set theory [1 mark] (i) Singleton and binary set (ii) Set difference and set symmetric difference [1 mark] 2 marks (iii) Sub set and proper sub set

(c) In a recent survey people were asked if they took a vacation in the summer, winter, or spring in the past year. The results were; 73 took a vacation in the summer, 51 took a vacation in the winter, 27 took a vacation in the spring, and 2 had taken no vacation. Also, 10 had taken vacations at all three times, 33 had taken both a summer and a winter vacation, 18 had taken only a winter vacation, and 5 had taken both a summer and spring vacation only.

[4 marks] (i) Summarize the above information in set language [4 marks] (ii) Represent the summarized information in a Venn diagram (iii) How many people had taken vacations during at most one time of the year? [2 marks] (iv) What percentage had taken vacations during both summer and winter only? [2 marks]

(d) A company that makes a certain brand of chairs has fixed costs of \$5,000 and variable costs of \$30 per chair. The company sells the chairs for \$50 each. Determine:-

[2 marks] (i) Cost function [2 marks] (ii) Revenue function [2 marks] (iii) Marginal cost function

FINAL EXAMS

Page 2

Q

(a) Using examples of your own, describe three ways in which a complex number can be [3 marks] represented

(b) Represent the following numbers on the same Argand diagram

[6 marks]

$$(i) - 5 + 2i$$

$$(iii)\frac{2+i}{3-i}$$

(c) Given the complex number z = x + iy; show that $zz = x^2 + v^2$

[3 marks]

(d) Reduce the following complex numbers in the form a+bi

(ii)
$$\frac{3-2i}{9+2i} + \frac{4+8i}{6+2i}$$
 [4 marks]

Question 3

(a) Solve the following complex numbers

(ii)
$$z_1 - 2iz_2 = 6$$
 and $2z_1 - 5z_2 = 23i$ [3 marks]
(iii) Find all the 4th roots of $2 - i\sqrt{12}$

(iii) Find all the 4th roots of
$$2-i\sqrt{12}$$
 [5 marks]

(b)

(i) Given that
$$z = 2 + i$$
 is a root of $2z^3 + pz^2 + 22z - 15 = 0$. Determine the value of p and other roots [6 marks]

(ii) Verify that $z_1 = 2 + i$ is a root of the equation $z^4 - 5z^3 + 3z^2 + 19z - 30 = 0$. Hence find the other roots of the equation [8 marks]

(a) Determine the number of ways in which you can mix up the alphabets of the following words

(i) "multiple"

[2 marks]

(ii) 'Lomerikaaciiikit"

[3 marks]

(b) Ramesh wants to invest \$5 million in two projects; A and B without equal allocation in each project. He decided to invest \$3 million in the most promising project and \$2 million in the less promising project. If seven projects for potential investment are shortlisted, determine the number of possible arrangements available for investment decision. [3 marks]

(c) There are seven distinct objects and Sam would like to take three of them at a time without considering order. Determine the number of ways in which Sam can arrange them if repetition of objects is allowed.

[3 marks]

(d) Given that f(x) = 2x + 1 and $g(x) = 7x^2 + 15$. Determine

$(i)(f\circ g)(x)$	
$(i)(f \circ g)(x)$ $(ii)(g \circ f)(x)$	[3 marks]
(ii) $(g \circ f)(x)$ (iii) Value of x for which $(f \circ g)(x) = (g \circ f)(x)$	
$(iv) f^{-1}(x) \dots (v) f \bullet g \dots$	(1) (1) (4 marks)
$(v) f \bullet g$	[2 marks]
() 3 8	[2 marks]

(a) For each the following circuits write the Boolean expression for the output Q, simplify the expression and draw an equivalent circuit diagram

(i)

[4 marks]

(ii)

[5 marks]

(b) Use De-Morgan's theorem to simplify the following Boolean expressions

$(i)\overline{A+BC}+AB$	·	[3 marks]
(ii) $\overline{A \oplus B}$		[4 marks]

(c) Construct circuits that produce the following out puts

(a) Using truth tables, identify whether the following statements are a tautology, a contradiction or a contingency

(i) PL: $((P \land Q) \rightarrow \neg R)$

[4 marks]

(ii) PL: $\neg [(P \rightarrow Q) \ V \ (Q \rightarrow P)]$

[4 marks]

(iii) PL: $((A \land B) \rightarrow C) \leftrightarrow (A \rightarrow (B \rightarrow C))$

[4 marks]

(b) Which of the following statements are logically equivalent?

(i) PL: $((P \land Q) \rightarrow \neg R)$ and PL: $(P \rightarrow Q) \land (Q \rightarrow R)$.

[5 marks]

(ii) PL: \neg (P $\rightarrow \neg$ Q) and PL: (P \land Q)

[4 marks]

(iii) $\neg (Q \rightarrow R)$ and $Q \land \neg R$

[4 marks]

Question 7

- (a) Given that set $Q = \{3, 4, 5, 6\}$ and that set $P = \{1, 2, 3, 4\}$
- (i) Define a binary relation R from set P to set Q
- (ii) Determine the number of relations in R
- (iii) Determine the sub relations $R_1 = \{(a, b) \mid a < b\}$; $R_2 = \{(a, b) \mid a + b < 7\}$ and $R_3 = \{(a, b) \mid b a = 2\}$

in R:-

- (b) Determine the following combined relations:-
- (i) $R_1 \cap R_2$
- (ii) R₂ U R₃
- (iii) R₃ R₂
- (iv) R₂ Δ R₃

- (c) Given a set $F = \{1, 2, 3, 4\}$; and that R is a binary relation on set F. Determine whether R is:
- (i) Reflexive
- (ii) Transitive
- (iii) Symmetric

END

FINAL EXAMS Page 7