We saw in Section 46.2 that the change in the objective function after a pivoting step during which column j^+ comes in and column k^- leaves is given by

$$\theta^{j^+} \left(c_{j^+} - \sum_{k \in K} \gamma_k^{j^+} c_k \right) = \theta^{j^+} (\overline{c}_K)_{j^+},$$

where

$$\theta^{j^+} = \frac{u_{k^-}}{\gamma_{k^-}^{j^+}}.$$

If we denote the value of the objective function $c_K u_K$ by z_K , then we see that

$$z_{K^+} = z_K + \frac{(\overline{c}_K)_{j^+}}{\gamma_{k^-}^{j^+}} u_{k^-}.$$

This means that the new value z_{K^+} of the objective function is obtained by first normalizing the ℓ th row by dividing it by the pivot $\gamma_{k^-}^{j^+}$, and then adding $(\bar{c}_K)_{j^+} \times$ the zeroth entry of the normalized ℓ th line by $(\bar{c}_K)_{j^+}$ to the zeroth entry of line 0.

In updating the reduced costs, we subtract rather than add $(\bar{c}_K)_{j^+} \times$ the normalized row ℓ from row 0. This suggests storing $-z_K$ as the zeroth entry on line 0 rather than z_K , because then all the entries row 0 are updated by the *same* elementary row operations. Therefore, from now on, we use tableau of the form

$-c_K u_K$	\overline{c}_1	 \overline{c}_j	 \overline{c}_n
u_{k_1}	γ_1^1	 γ_1^j	 γ_1^n
:	:	÷	÷
u_{k_m}	γ_m^1	 γ_m^j	 γ_m^n

The simplex algorithm first chooses the incoming column j^+ by picking some column for which $\bar{c}_j > 0$, and then chooses the outgoing column k^- by considering the ratios $u_k/\gamma_k^{j^+}$ for which $\gamma_k^{j^+} > 0$ (along column j^+), and picking k^- to achieve the minimum of these ratios.

Here is an illustration of the simplex algorithm using elementary row operations on an example from Papadimitriou and Steiglitz [134] (Section 2.9).

Example 46.4. Consider the linear program

maximize
$$-2x_2 - x_4 - 5x_7$$

subject to
$$x_1 + x_2 + x_3 + x_4 = 4$$

$$x_1 + x_5 = 2$$

$$x_3 + x_6 = 3$$

$$3x_2 + x_3 + x_7 = 6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0.$$