

Design of a PID controller for the pedestal top electron density at KSTAR

Minseok Kim¹, SangKyeun Kim², Keith Erickson², Andy Rothstein¹, Ricardo Shousha², SangHee Han³, June-Woo Juhn³, Boseong Kim^{3,4}, Youngho Lee³ CheolSik Byun¹, Jalal Butt¹, SeongMoo Yang², Qiming Hu², David Eldon⁵, HyunSun Han³, Nikolas Logan⁶, Azarakhsh Jalalvand¹, and Egemen Kolemen^{1,2}

E-mail: mseokim@princeton.edu

¹Department of Mechanical & Aerospace Engineering, Princeton University ²Princeton Plasma Physics Laboratory, Princeton, NJ, USA ³Korea Institute of Fusion Energy, Daejeon 34133, Republic of Korea ⁴Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea ⁵General Atomics, San Diego, CA, 92121, USA ⁶Department of Applied Physics, Columbia University, New York, NY, 10027, USA 66th Annual Meeting of the APS Division of Plasma Physics, Atlanta, Georgia, USA, October 07-11, 2024

Introduction

- 1. Electron density profile can be reconstructed using five channels of two-colored interferometer (TCI) [1].
- 2. The reconstruction algorithm can be accelerated by using a neural network, enabling real-time density profile control in KSTAR.

1. Electron density profile reconstruction model

- : Normalized poloidal flux function ψ_m : Position of the middle of pedestal $\; (\psi_m = 1 - \Delta/2) \;$: Pedestal width
- : Plasma density at the pedestal top : The ratio of electron density between pedestal top and LCFS
- (c)Scrape off layer multiplier: $4-3\psi$ $(1 \ge \psi \ge 0)$ $s(\psi) =$ $(\psi > 1)$
- ψ_t : Position of the pedestal top $(\psi_t = 1 - \Delta)$ a_2 : The difference of the plasma density between axis and pedestal top

 a_3 : Fitting coefficient in the core region

 a_4 : Fitting coefficient in the core region

< Fig.1. Descriptions of the fitting model >

2. Parametrize flux mapping to real-space

< Fig.3. Equilibrium at Z=0 plane >

3. Fitting the model with TCI

< Fig.4. Top view of TCI at KSTAR >

KSTAR #33969 @7.413s

< Fig.5. Reconstructed ne profiles >

4. Neural network with 2022 KSTAR experimental data

- 1. Training dataset [237,718,208 ($\sim 10^8$)]
- 2. Validation dataset [46,906 ($\sim 10^4$)]
- 3. Test dataset [46,907 ($\sim 10^4$)]

< Fig.6. Model description >

5. Neural network with 2023 KSTAR experimental data

- 1. Training dataset [237,718,208 ($\sim 10^8$)]
- 2. Validation dataset [33,591 ($\sim 10^4$)]
- 3. Test dataset [33,592 ($\sim 10^4$)]

< Fig.9. Model description >

6. Conclusion & Future works

- 1. Real-time electron density profile reconstruction algorithm has been implemented at the KSTAR PCS.
- 2. The density at ψ_N =0.2 and 0.9 will be our control target with the actuators of gas puff, pellet, SMBI, and RMP for the experiment on January 3rd. (Tentative)
- 3. The controller can be used to help achieve high-beta and hybrid scenarios.

Acknowledgement

- Lee, S. G., et al. "Overview and recent progress of KSTAR diagnostics." Journal of Instrumentation 17.01 (2022): C01065. 2. Snyder, P. B., et al. "ELMs and constraints on the H-mode pedestal: peeling-ballooning stability calculation and comparison with
- experiment." Nuclear fusion 44.2 (2004): 320. 3. Minseok is pleased to acknowledge that the work reported on in this paper was substantially performed using the Princeton Research