Organizační úvod

Poznámka

Zkouška bude snad ústní.

Úvod

Věta 0.1 (Lebesgueova míra)

Existuje právě jedna borelovská míra λ^n v \mathbb{R}^n taková, že

$$\lambda^{n} \left(\mathbf{X}_{i=1}^{n} [a_{i}, b_{i}] \right) = \prod_{i=1}^{n} \left(b_{i} - a_{i} \right), -\infty < a_{i} \leq b_{i} < \infty, 1 \leq i \leq n.$$

Poznámka

Zúplnění B^n značíme B_0^n a platí $B^n \subsetneq B_0^n \subsetneq \mathcal{P}(\mathbb{R}^n)$ (pro $n \geq 2$ jednoduché, pro n = 1 možná někdy příště).

 λ^n je translačně a rotačně invariantní (posunutím a otočením se nezmění).

 λ^n je σ -konečná.

 λ^n je regulární (můžeme její hodnotu na množině aproximovat jejími hodnotami na otevřené nadmnožině a uzavřené podmnožině^a).

 $\forall E\in B_{0}^{n}\ \forall \varepsilon>0\ \exists F\subset E\subset G, F\ \text{uzavřen\'a}, G\ \text{otevřen\'a}, \lambda^{n}\left(G\setminus F\right)<\varepsilon.$

Definice 0.1 (Pramíra)

 $\tilde{\mu}:\mathcal{A}\to[0,\infty]$ je pramíra (premeasure) na algebře \mathcal{A} podmnožin X, jestliže:

$$\tilde{\mu}\left(\emptyset\right)=0,$$

$$A_{i}\in\mathcal{A},\bigcup_{i}A_{i}\in\mathcal{A},A_{i}\text{ po dvou disjunktn\'i}\implies\tilde{mu}\left(\bigcup_{i}A_{i}\right)=\sum_{i}\tilde{\mu}\left(A_{i}\right).$$

Věta 0.2 (Hahn-Kolmogorov)

Buď $\tilde{\mu}$ pramíra na algebře \mathcal{A} . Pak existuje míra μ na $\sigma \mathcal{A}$ taková, že $\mu = \tilde{\mu}$ na \mathcal{A} . Je-li $\tilde{\mu}$ σ -konečná, je μ určená jednoznačně.

1 Konstrukce Lebesgueovy míry z vnější míry

Definice 1.1 (Vnější míra (outer measure))

Nechť $X \neq \emptyset$. Funkce $\mu^* : \mathcal{P}(X) \to [0, \infty]$ je vnější míra na X, jestliže:

$$\mu^{*}\left(\emptyset\right)=0,$$

$$A \subset B \implies \mu^*(A) \leq \mu^*(B)$$
, (monotonie)

$$A_i \subset X (i \in \mathbb{N}) \implies \mu^* \left(\bigcup_i A_i\right) \leq \sum_i \mu^*(A_i).$$
 (spočetná subadivita)

\(\sum_Například \)

$$\mu^* \equiv 0,$$

$$\mu^* = \delta_r, x \in X,$$

$$\mu^*(A) = \operatorname{card} A,$$

$$\mu * (A) := 0, A = \emptyset, \mu * (A) := 1, A \neq \emptyset,$$

$$X = \mathbb{R}, \lambda^*(A) := \inf \left\{ \sum_i |I_i|, A \subset \bigcup_i I_i, I_i \text{ otevřené intervaly} \right\}$$

Definice 1.2 (Měřitelnost vůči vnější míře)

Řekneme, že množina $A\subset X$ je μ^* -měřitelná, jestliže

$$\forall T \subset X : \mu^*(T) = \mu * (T \cap A) + \mu^*(T \setminus A).(*)$$

Značíme $\mathcal{A}_{\mu^*} := \{ A \subset X | A \text{ je } \mu^*\text{-měřitelná} \}.$

Poznámka

Ať μ^* je vnější míra na $X,Y\subset X.$ Pak restrikce $\mu^*|_Y:A\mapsto \mu^*(A\cap Y)$ je vnější míra a platí:

$$\mathcal{A}_{\mu^*} \subset \mathcal{A}_{\mu^*}|_Y$$

 \Box $D\mathring{u}kaz$

$$A \in \mathcal{A}_{\mu^*} : \mu^*|_Y(T) = \mu^*(T \cap Y) = \mu^*(T \cap Y \cap A) + \mu^*((T \cap Y) \setminus A) =$$
$$= \mu^*|_Y(T \cap A) + \mu^*|_Y(T \setminus A).$$

Věta 1.1 (Caratheodory)

 \mathcal{A}_{μ^*} je σ -algebra na X a $\mu := \mu^*|_{\mathcal{A}_{\mu^*}}$ je míra. Prostor $(X, \mathcal{A}_{\mu^*}, \mu)$ je úplný.

 $D\mathring{u}kaz$

 $\emptyset \in \mathcal{A}_{\mu}^{*}$ je zřejmé. Uzavřenost na komplement je také snadná, z definice $\mathcal{A}_{\mu^{*}}$. Místo sjednocení ukážeme uzavřenost na konečný průnik: Víme $T \subset X : \mu^{*}(T) = \mu^{*}(T \cap A) + \mu^{*}(T \setminus A)$, $\mu^{*}(T \cap A) = \mu^{*}(T \cup A \cup B) + \mu^{*}((T \cap A) \setminus B)$ a $\mu^{*}(T \setminus (A \cap B)) = \mu^{*}((T \setminus (A \cap B)) \cap A) + \mu^{*}((T \setminus (A \cap B)) \setminus A) = \mu^{*}((T \cap A) \setminus B) + \mu^{*}(T \setminus A)$.

Tedy $\mu^*(T) = \mu^*(T \cap A \cap B) + \mu^*((T \cap A) \setminus B) + \mu^*(T \setminus A) = \mu^*(T \cap A \cap B) + \mu^*(T \setminus (A \cap B))$. Tudíž \mathcal{A}_{μ^*} je algebra.

Nyní chceme ukázat, že μ^* je σ -aditivní na \mathcal{A}_{μ^*} : Buďte $A_i \in \mathcal{A}_{\mu^*}$ po dvou disjunktní. Volbou $T = A_1 \cup A_2$ dostaneme $\mu^*(A_1 \cup A_2) = \mu^*(A_1) + \mu^*(A_2) \implies \mu^*$ je konečně aditivní na \mathcal{A}_{μ^*} .

$$\forall n \in \mathbb{N} : \sum_{i=1}^{\infty} \mu^*(A_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu^*(A_i) = \lim_{n \to \infty} \mu^* \left(\bigcup_{i=1}^{n} A_i\right) \le \mu^* \left(\bigcup_{i=1}^{\infty} A_i\right).$$

Opačná nerovnost plyne ze spočetné subaditivity. To znamená, že

$$\mu^* \left(\bigcup_i A_i \right) = \sum_i \mu^* \left(A_i \right), A_i \in \mathcal{A}_{\mu^*},$$

po dvou disjunktní.

 \mathcal{A}_{μ^*} je uzavřená na disjunktní spočetné sjednocení: $A_i \in \mathcal{A}_{\mu^*}$, po dvou disjunktní, $T \subset X$.

$$\mu^*(T) = \mu^* \left(T \setminus \bigcup_{i=1}^n A_i \right) + \mu^* \left(T \cap \bigcup_{i=1}^n A_i \right) \ge \mu^* \left(T \setminus \bigcup_{i=1}^\infty A_i \right) + (\mu^*|_T) \left(\bigcup_{i=1}^\infty A_i \right) =$$

$$= \mu^* \left(T \setminus \bigcup_{i=1}^\infty A_i \right) + \sum_{i=1}^n (\mu^*|_T) (A_i).$$

Limitním přechodem $n \to \infty$ dostaneme

$$\mu^*(T) \ge \mu^*(T \setminus \bigcup_{i=1}^{\infty} A_i) + \sum_{i=1}^{\infty} (\mu^*|_T) (A_i) = \mu^* \left(T \setminus \bigcup_{i=1}^{\infty} \right) (\mu^*|_T) \left(\bigcup_{i=1}^{\infty} A_i \right) \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}_{\mu^*}.$$

Z tohoto všeho plyne, že $\mu=\mu^*|_{A_{\mu^*}}$ je míra na σ -algebře \mathcal{A}_{μ^*} . Zbývá už jen úplnost:

$$\mu^*(A) = 0, T \subset X \implies \mu^*(T) \ge \mu^*(T \setminus A) = \underbrace{\mu^*(T \cap A)}_{=0} + \mu^*(T \setminus A) \implies A \in \mathcal{A}_{\mu^*}.$$

Definice 1.3 (Metrická vnější míra)

Buď (X, ϱ) metrický prostor. Řekneme, že vnější míra μ^* na X je metrická, jestliže pro dvě množiny $A, B \subset X$ splňující dist(A, B) > 0 platí

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B).$$

Věta 1.2

Nechť μ^* je metrická vnější míra na metrickém prostoru (X, ϱ) . Pak $B(X) \subset \mathcal{A}_{\mu^*}$.

 $D\mathring{u}kaz$

Buď $F \subset X$ uzavřená. Ukážeme, že $F \in \mathcal{A}_{\mu^*}$. Označme

$$F_{\varepsilon} := \{ x \in X | \varrho(x, F) \le \varepsilon \}, \qquad \varepsilon > 0.$$

Nechť je dána $T \subset X$. Ověříme, že

$$\mu^*(T) \ge \mu^*(T \cap F) + \mu^*(T \setminus F).$$

BÚNO $\mu^*(T) < \infty$. Protože dist $(T \cap F, T \setminus F_{\varepsilon}) \ge \varepsilon > 0$, tak

$$\mu^*(T) \ge \mu^*(T \cap F) + \mu^*(T \setminus F_{\varepsilon},)$$

protože μ^* je metrická. Nyní stačí $\mu^*(T \setminus F_{\frac{1}{j}}) \stackrel{j \to \infty}{\to} \mu^*(T \setminus F)$. Označme $D_i := (F_{\frac{1}{i} \setminus F_{\frac{1}{(i+1)}}}) \cap T, i \in \mathbb{N}$. Platí $T \setminus F = (T \setminus F_{\frac{1}{i}}) \cup \bigcup_{i=j}^{\infty} D_i$, a tedy ze spočetné subadivity μ^* plyne

$$\mu^*(T \setminus F) \le \mu^*(T \setminus F_{\frac{1}{j}}) + \sum_{i=j}^{\infty} \mu^*(D_i).$$

Je-li |i-j| > 2 je dist $(D_i, D_j) > 0$ a tedy

$$\sum_{i=1}^{n} \mu^*(D_{2i}) = \mu^* \left(\bigcup_{i=1}^{n} D_{2i} \right) \le \mu^*(T) < \infty,$$

$$\sum_{i=1}^{n} \mu^*(D_{2i-1}) = \mu^* \left(\bigcup_{i=1}^{n} D_{2i-1} \right) \le \mu^*(T) < \infty.$$

Z toho už plyne, že $\sum_{i=j}^{\infty} \mu D_i \stackrel{j \to \infty}{\to} 0$.

Definice 1.4 (Kvádry v \mathbb{R}^n , objem kvádru)

Symbolem \mathcal{O}_n budeme značit množinu všech otevřených omezených kvádrů v \mathbb{R}^n (včetně prázdné množiny). Objemem kvádru $I = (a_1, b_1) \times \ldots \times (a_n, b_n) \in \mathcal{O}_n$ budeme myslet

$$v(I) := (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n).$$

Tvrzení 1.3

Budte $I, I_1, \ldots, I_k \in \mathcal{O}_n$

- 1. Je-li $I \subset \overline{I_1} \cup \ldots \cup \overline{I_k}$, platí $v(I) \leq v(I_1) + \ldots + v(I_k)$.
- 2. Je-li $\overline{I} = \overline{I_1} \cup \ldots \cup \overline{I_k}$ a jsou-li kvádry $I_{[k]}$ po dvou disjunktní, platí $v(I) = v(I_1) + \ldots + v(I_k)$.

 $D\mathring{u}kaz$

1. krok: Nechť $I = (a_1, b_1) \times \ldots \times (a_n, b_n)$, \mathcal{D}_i je dělení intervalu (a_i, b_i) , $i \in [n]$ a označme symbolem \mathcal{J} systém všech otevřených kvádrů $J_1 \times \ldots \times J_n$, kde J_i je otevřený interval z dělení \mathcal{D}_i . Pak zřejmě

$$\overline{I} = \bigcup_{J \in \mathcal{J}}, \qquad v(I) = \sum_{J \in \mathcal{J}} v(J).$$

- 2. krok: Jsou-li I_1, \ldots, I_k jako v druhém bodě, převedeme situaci snadno na případ uvažovaný v 1. kroku. Tím je dokázán druhý bod.
- 3. krok: První bod plyne z druhého, jelikož z libovolného pokrytí kvádru I kvádry I_1,\dots,I_k snadno vyrobíme disjunktní pokrytí.

Definice 1.5

Pro množinu $E\subset \mathbb{R}^n$ klademe

$$\lambda^{n*}(E) := \inf \left\{ \sum_{i=1}^{\infty} v(I_i) | E \subset \bigcup_{i=1}^{\infty} I_i \wedge I_i \in \mathcal{O}_n \right\}.$$

Pro $\delta > 0$ definujeme

$$\lambda_{\delta}^{n*}(E) = \inf \left\{ \sum_{i=1}^{\infty} v(I_i) | E \subset \bigcup_{i=1}^{\infty} I_i \wedge I_i \in \mathcal{O}_n \wedge \operatorname{diam}(I_i) < \delta \right\}.$$

Tvrzení 1.4

Pro $E \subset \mathbb{R}^n$ a $\delta > 0$ platí $\lambda^*(E) = \lambda^{n*}_{\delta}(E)$.

Nerovnost $\lambda^{n*}(E) \leq \lambda^{n*}_{\delta}$ je z definice. " \geq " BÚNO $\lambda^{n*}(E) < \infty$. Zvolme $\varepsilon > 0$. Z definice $\lambda^{n*}(E)$ existují $I_1, \ldots \in \mathcal{O}_n$ takové, že $E \subset \bigcup_i I_i$ a

$$\sum_{i} v(I_i) < \lambda^{n*}(E) + \varepsilon.$$

Každý z kvádrů I_i můžeme rozdělit na konečný počet disjunktních kvádrů $J_s^{[k(i)]}$ s diametry menšími než δ , přitom $\overline{I_i} = \bigcup \overline{J_i^{[k(i)]}}$. Podle předchozího tvrzení platí $v(I_i) = \sum v(J_i^{[k(i)]})$. Zřejmě existují $I_i^j \in \mathcal{O}_n$ takové že $\overline{J_i^j} \subset I_i^j$, diam $I_i^j < \delta$ a $v(I_i^j) < v(J_i^j) + \frac{\varepsilon}{k(i)2^i}$. Pak $E \subset \bigcup_{i=1}^{\infty} \bigcup_{j \in [k(i)]} I_i^j$, a tedy

$$\lambda_{\delta}^{n*}(E) \le \sum_{i=1}^{\infty} \sum_{j \in [k(i)]} v(I_i) + \varepsilon < \lambda^{n*}(E) + 2\varepsilon.$$

Nyní už limitním přechodem $\varepsilon \to 0$ dostaneme $\lambda_{\delta}^{n*}(E) \le \lambda^{n*}(E)$.

Věta 1.5

 $\overline{\lambda^{n*} \text{ je metrick\'a vn\'ejš\'i m\'ira na } \mathbb{R}^n \text{ a } \forall I \in \mathcal{O}_n \text{ plat\'i } \lambda^{n*}(I) = v(I).$

Množinová funkce λ^{n*} je zřejmě monotónní a platí $\lambda^{n*}(\emptyset) = 0$. Ukážeme spočetnou subaditivitu. Buďte $E_i \subset \mathbb{R}^n$ a předpokládejme, že $\lambda^{n*}(E_i) < \infty$. Zvolme $\varepsilon > 0$. Podle definice λ^{n*} existují $I_i^j \in \mathcal{O}_n$ takové, že $E_i \subset \bigcup_j I_i^j$ a $\sum_j v(I_i^j) < \lambda^{n*}(E_i) + \frac{\varepsilon}{2^i}$. Pak ale platí $\bigcup_i E_i \subset \bigcup_{i,j} I_i^j$, a tedy

$$\lambda^{n*}\left(\bigcup_{i} E_{i}\right) \leq \sum_{i,j} v(I_{i}^{j}) < \sum_{i} \lambda^{n*}(E_{i}) + \varepsilon.$$

Limitním přechodem $\varepsilon \to 0$ dostáváme spočetnou subaditivitu. λ^{n*} je tedy vnější míra.

Dále ukážeme, že λ^{n*} je metrická, tedy pro $A, B \subset \mathbb{R}^n$ takové, že dist(A, B) > 0 platí

$$\lambda^{n*}(A \cup B) \ge \lambda^{n*}(A) + \lambda^{n*}(B).$$

Je-li $\lambda^{n*}(A \cup B) = \infty$, nerovnost zřejmě platí. BÚNO ted $\lambda^{n*}(A \cup B) < \infty$. Zvolme $\varepsilon > 0$. Podle předchozího tvrzení existují $I_i \in \mathcal{O}_n$ takové že diam $(I_i) < \text{dist } \frac{A,B}{2}$ a $\sum_i v(I_i) < \lambda^{n*}(A \cup B) + \varepsilon$. Označme

$$\mathcal{I}_A := \{i \in \mathbb{N} | I_i \cap A \neq \emptyset\}, \mathcal{I}_B := \{i \in \mathbb{N} | I_i \cap B \neq \emptyset\}.$$

Žádný z kvádrů I_i nemůže zasáhnout obě množiny A, B, proto jsou tyto množiny disjunktní. Navíc zřejmě $A \subset \bigcup_{i \in \mathcal{I}_A} I_i$ a $B \subset \bigcup_{i \in \mathcal{I}_B} I_i$. Proto

$$\lambda^{n*}(A) + \lambda^{n*}(B) \le \sum_{i \in \mathcal{I}_A \cup \mathcal{I}_B} v(I_i) \le \sum_{i=1}^{\infty} v(I_i) < \lambda^{n*}(A \cup B) + \varepsilon.$$

Limitním přechodem $\varepsilon \to 0$ dostaneme požadovanou nerovnost.

Zbývá " $\forall I \in \mathcal{O}_n: \lambda^{n*}(I) = v(I)$ ". Nerovnost $\lambda^{n*}(I) \leq v(I)$ je zřejmá, stačí zvolit pokrytí $I_1 = I$.

Předpokládejme pro spor, že $\lambda^{n*}(I) < v(I)$. Pak existují $I_i \in \mathcal{O}_i$ takové, že $I \subset \bigcup_i I_i$ a $\sum_i v(I_i) < v(I)$. Zřejmě existuje $J \in \mathcal{O}_n$ takový, že $\overline{J} \subset I$ a $\sum_i v(I_i) < v(J)$. Protože \overline{J} je kompaktní, existuje $k \in \mathbb{N}$ takové, že $\overline{J} \subset \bigcup I_{[k]}$. Pak ale $v(J) \leq \sum v(I_{[k]})$ podle tvrzení výše, což je spor.

2 Znaménkové míry

Definice 2.1 (Znaménková míra, náboj)

Řekneme, že funkce $\sigma:\mathcal{A}\to\mathbb{R}^*$ je znaménková míra na měřitelném prostoru (X,\mathcal{A}) , jestliže

•
$$\sigma(\emptyset) = 0$$
,

- σ nabývá nejvýše jedné z hodnot $\pm \infty$,
- (σ -aditivita) pro libovolnou posloupnost po dvou disjunktních množin $A_n \in \mathcal{A}$ platí

$$\sigma\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \sigma(A_n).$$

Konečná znaménková míra se též nazývá náboj.

Definice 2.2 (Kladná a záporná množina)

Buď σ znaménková míra na (X, \mathcal{A}) Řekneme, že množina $A \in \mathcal{A}$ je kladná pro σ , jestliže pro každou měřitelnou množinu $E \subset A$ platí $\sigma(E) \geq 0$. Množina $A \in \mathcal{A}$ je záporná pro σ , jestliže pro každou měřitelnou množinu $E \subset A$ platí $\sigma(E) < 0$.

Tvrzení 2.1

Buď σ znaménková míra na (X, A) a $E \in A$ množina taková, že $0 < \sigma(E) < \infty$. Pak existuje kladná množina $A \subset E$ taková, že $\sigma(A) > 0$.

 $D\mathring{u}kaz$

Kdyby sama E byla kladná, položíme A := E. Pokud ne, definujeme

$$t_1 := \inf \{ \sigma(B) | B \subset E \land B \in \mathcal{A} \} < 0$$

a vybereme $E_1 \subset E$ takovou, že $\sigma(E_1) < \max\left\{\frac{t_1}{2}, -1\right\}$. Platí $\sigma(E \setminus E_1) = \sigma(E) - \sigma(E_1) > \sigma(E) > 0$, a pokud je množina $E \setminus E_1$ již kladná, vybereme ji za A a jsme hotovi.

Pokud ne, pokračujeme stejnou konstrukcí, tedy položíme

$$t_2 := \inf \{ \sigma(B) | B \subset E \setminus E_1 \land B \in \mathcal{A} \} < 0$$

a zvolíme $E_2 \subset E \setminus E_1$ takovou, že $\sigma(E_2) < \max\left\{\frac{t_2}{2}, -1\right\}$. Tímto způsobem buď po konečném počtu kroků najdeme kladnou množinu $A \subset E$ kladné míry, nebo sestrojíme posloupnost disjunktních měřitelných množin $E_1, E_2, \ldots, \subset E$ a posloupnost záporných čísel t_1, t_2, \ldots takové, že $\sigma(E_i) < \max\left\{t_{\frac{i}{2}}, -1\right\} < 0, i \in \mathbb{N}$.

Položme $A := E \setminus \bigcup_{i=1}^{\infty} E_i$. Ze spočetné aditivity dostaneme

$$\sigma(A) + \sum_{i=1}^{\infty} \sigma(E_i) = \sigma(E) > 0,$$

tedy $\sigma(A) > \sigma(E) > 0$ a řada $\sum_{i=1}^{\infty} \sigma(E_i)$ konverguje, tedy nutně $\sigma(E_i) \to 0$. Pak ale i $t_i \to 0$. Ukážeme, že A je kladná: Pro libovolnou $B \subset A$ měřitelnou platí $B \cap E_i = \emptyset$, $i \in \mathbb{N}$, tedy $\sigma(B) \geq t_i$, $i \in \mathbb{N}$ a protože $t_i \to 0$ je $\sigma(B) \geq 0$.

Věta 2.2 (Hahn-Banachův rozklad)

Buď σ znaménková míra na (X, A). Pak existuje rozklad $X = P \cup N$ takový, že P je kladná a N záporná množina pro σ .

 $D\mathring{u}kaz$

BÚNO $\sigma(E) < \infty$ pro každou $E \in \mathcal{A}$. (Kdyby ne, pracovali bychom s mírou $-\sigma$.) Položme $\lambda := \sup \{ \sigma(E) | E \in \mathcal{A} \wedge E \text{ kladná pro } \sigma \}$. Zřejmě $\lambda \geq 0$ (\emptyset je kladná).

Buďte $A_i \in \mathcal{A}$ kladné takové, že $\sigma(A_i) \to \lambda$ (existence plyne z definice suprema). Pak množina $P := \bigcup_{i=1}^{\infty} A_i$ je kladná a ze vztahu

$$\sigma(P) = \sigma(A_i) + \sigma(P \setminus A_i) \ge \sigma(A_i), \quad i \in \mathbb{N},$$

plyne $\sigma(P)=\lambda$. Ukážeme dále, že množina $N:=X\setminus P$ je záporná. Nechť $B\subset N$ je měřitelná. Kdyby $\sigma(B)>0$, pak by podle předchozího tvrzení existovala měřitelná kladná množina $B'\subset B$, pro niž $\sigma(B')>0$. Pak by ale $P\cup B'$ byla rovněž kladná množina s mírou

$$\sigma(P \cup B') = \sigma(P) + \sigma(B') > \sigma(B) = \lambda,$$

což by byl spor s definicí λ .

Definice 2.3 (Jordanův rozklad)

Buď σ znaménková míra na (X, \mathcal{A}) . Pak (nezáporné míry) $\sigma_+(\cdot) := \sigma(\cdot \cap P)$ a $\sigma_-(\cdot) := -\sigma(\cdot \cap N)$ nazýváme kladnou a zápornou částí σ a platí $\sigma = \sigma_+ - \sigma_-$.

Míru $|\sigma| := \sigma_+ + \sigma_-$ nazýváme totální variací znaménkové míry σ .

Tvrzení 2.3

Je-li $\sigma=\sigma'_+-\sigma'_-$ jiný rozklad znaménkové míry σ na rozdíl dvou nezáporných měr, pak $\sigma'_+\geq\sigma_+$ a $\sigma_-\geq\sigma_-$.

Důkaz

Pro libovolnou $E \in \mathcal{A}$ platí

$$\sigma_{+}(E) = \sigma(E \cap P) = \sigma'_{+}(E \cap P) - \sigma'_{-}(E \cap P) \le \sigma'_{+}(E \cap P) \le \sigma'_{+}(E \cap P)$$

Podobné se ukáže, že $\sigma'_{-}(E) \geq \sigma_{-}(E)$.

Věta 2.4 (Regularita Lebesgueovy míry)

Nechť $E \subset \mathbb{R}^n$. Je ekvivalentní:

- 1. $E \in \mathcal{A}_{\lambda^{n*}}$,
- 2. $\forall \varepsilon > 0 \ \exists F \subset E \subset G, \ F \ uzavřená, \ G \ otevřená, \ \lambda^n(G \setminus F) < \varepsilon,$

3. $\exists A \subset E \subset B, A, B \in \mathcal{B}^n, \lambda^n(B \setminus A) = 0,$

4. $E \in \mathcal{B}_0^n$.

 $D\mathring{u}kaz$

 $1 \implies 2: \text{ Mějme } E \in \mathcal{A}_{\lambda^{n*}}, \ \varepsilon > 0. \text{ Nechť nejprve } \lambda^{n*}(E) < \infty. \text{ Pak } \exists I_i \in O_n, \ E \subset \bigcup_i I_i, \\ \sum_i v(I_i) < \lambda^{n*}(E) + \frac{\varepsilon}{2}. \text{ Položme } G := \bigcup_i I_i \text{ (otevřená)}, \ E \subset G, \ \lambda^n(G \setminus E) < \frac{\varepsilon}{2}. \text{ Je-li} \\ \lambda^{n*}(E) = \infty, \text{ pak ze } \sigma\text{-konečnosti je } E = \bigcup_m E_m, \ E_m := E \cap [-m, m]^n. \ \lambda^{n*}(E_m) < \infty \implies \exists G_m \text{ otevřená}, \ E_m \subset G_m, \ \lambda^n(G_m \setminus E_m) < \frac{\varepsilon}{2^{m+1}}. \ G := \bigcup_m G_m \text{ otevřené}, \ E \subset G, \\ \lambda^n(G \setminus E) \leq \sum_m \lambda^n(G_m \setminus E_m) < \frac{\varepsilon}{2}.$

 $E^c \in \mathcal{A}_{\lambda^{m*}} \Longrightarrow \exists H \text{ otevřená}, E^c \subset H, \lambda^n(H \setminus E^c) < \frac{\varepsilon}{2}. F := H^c \text{ uzavřená}, F \subset E \subset G, \lambda^n(G \setminus F) = \lambda^n(G \setminus E) = \lambda^n(E \setminus F) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

 $2 \implies 3$: Nechť $E \subset \mathbb{R}^n$ splňuje 2.

$$\forall j \in \mathbb{N} \ \exists F_j \subset E \subset G_j, F_j \ \text{uzavřená}, G_j \ \text{uzavřená}, \lambda^n(G_j \setminus F_j) < \frac{1}{i}.$$

Položme $A := \bigcup_j F_j$, $B := \bigcap_j G_j$, $A, B \in \mathcal{B}^n$, $A \subset E \subset B$. $\lambda^n(B \setminus A) \leq \lambda^n(G_j \setminus F_j) < \frac{1}{j}$ pro libovolné $j \in \mathbb{N}$, tedy $\lambda^n(B \setminus A) = 0$.

 $3 \implies 4$: Jsou-li $A \subset E \subset B$ jako v 3, pak $B \setminus A$ je λ^n -nulová množina, a tedy $E \in \mathcal{B}_0^n$.

 $4 \implies 1$: $\mathcal{A}_{\lambda^{n*}}$ obsahuje \mathcal{B}^n a nulové množiny, tedy obsahuje \mathcal{B}^n_0 .

Věta 2.5 (Luzinova (běžně bývá obecnější))

Buď $f: \mathbb{R}^n \to \mathbb{R}$ lebesgueovsky měřitelná. Buď $\varepsilon > 0$. Pak existuje $G \subset \mathbb{R}^n$ otevřená taková, že $\lambda^n(G) < \varepsilon$ a restrikce $f|_{G^c}$ je spojitá.

 $D\mathring{u}kaz$

Buď U_1, U_2, \ldots posloupnost všech otevřených intervalů s racionálními koncovými body. f je lebesgueovsky měřitelná, tedy $\forall j, f^{-1}(U_1) \in \mathcal{B}_0^n$. Podle regularity pak $\exists F_j \subset f^{-1}(U_j) \subset G_j$, F_j uzavřená, G_j otevřená, $\lambda^n(G_j \setminus F_j) < \frac{\varepsilon}{2^j}$. Položme $G := \bigcup_j (G_j \setminus F_j)$. Zřejmě G je otevřená, $\lambda^n(G) \leq \sum_j \lambda^n(G_j \setminus F_j) < \varepsilon$.

Pro restrikci $g := F|_{G^c}$ platí:

$$g^{-1}(U_j) = \{x \in G^c : f(x) \in U_j\} = f^{-1}(U_j) \cap G^c = G_j \cap G^c, j \in \mathbb{N}.$$

Zřejmě $U \subset \mathbb{R}$ otevřená $\Longrightarrow U = \bigcup_{U_j \subset U} U_j$, tedy $g^{-1}(U) = \bigcup_{U_j \in U} g^{-1}(U_j)$ otevřená množina v G^c , tedy g je spojitá na G^c .

Poznámka

Obecně nelze požadovat $\lambda^n(G)=0$. Např. charakteristická funkce diskontinua kladné míry (podobně jako Cantorovo diskontinuum, ale nenulové míry), které dostaneme tak, že z prostředků intervalů v i-tém kroku vždy odebereme intervaly délky a_i tak, aby $a_1+2a_2+4a_3+\ldots<1$. (G z minulé věty pak bude sjednocení malých okolíček krajních bodů odebíraných intervalů.)

3 Regularita borelovských měr

Definice 3.1 (Regulární borelovská míra)

Borelovská míra μ na topologickém (metrickém) prostoru X je regulární, jestliže $\forall B \in \mathcal{B}(X) : \mu(B) = \inf \{ \mu(G) | B \subset G, G \text{ otevřená} \}.$

Poznámka

1) Často se hovoří o vnější regularitě (outer regular measure). 2) Pro konečné míry: μ je regulární $\Longrightarrow \forall B \in \mathcal{B} : \mu(B) = \sup \{\mu(F) | F \subset B, F \text{ uzavřená} \}.$

Věta 3.1

Každá konečná borelovská míra na metrickém prostoru je regulární.

 (X,ϱ) metrický prostor, μ borelovská míra na $X, \mu(X) < \infty$. Označme

$$\mathcal{D} := \{ B \in \mathcal{B}(X) | \ \varepsilon > 0 \ \exists F \subset B \subset G, F \ \text{uzavřená}, G \ \text{otevřená}, \mu(G \setminus F) < \varepsilon \} \,.$$

Ukážeme, že $\mathcal{D}:=\mathcal{B}(X)$. Nejprve \mathcal{D} obsahuje všechny množiny: $F\subset X$ uzavřená, $F_{<\varepsilon}:=\{x\in X|\ \varrho(x,F)<\varepsilon\}$ (otevřená). Zřejmě $F_{<\frac{1}{j}}\searrow F,\ j\to\infty$ z uzavřenosti $F.\ \mu$ konečna \Longrightarrow (spojitost míry) $\mu F_{<\frac{1}{j}}\to\mu(F)$.

 \mathcal{D} je σ -algebra: $\emptyset \in \mathcal{D}$, $D \in \mathcal{D} \implies D^c \in \mathcal{D}$:

$$F \subset D \subset G, \mu(G \setminus F) < \varepsilon \implies G^c \subset D^c \subset F^c, \mu(F^c \setminus G^c) < \varepsilon.$$

 $D_i \in \mathcal{D} \implies \bigcup_i D_i \in \mathcal{D}$:

$$\exists F_i \subset D_i \subset G_i, \mu(G_i \setminus F_i) < \frac{\varepsilon}{2^i}.$$

$$\bigcup_{i=1}^{N} F_i \subset \bigcup_{i=1}^{\infty} D_i \subset \bigcup_{i=1}^{\infty} G_i, N \in \mathbb{N}.$$

$$\infty$$

$$\bigcup_{i=1}^{\infty} G_i \setminus \bigcup_{i=1}^{?} F_i$$

FIXME?

Poznámka

 σ -konečné míry nemusí být regulární, viz prostor spočetně přímek procházejících počátkem v $\mathbb{R}^2.$

Definice 3.2 (Těsnost (= vnitřní regularita))

Borelovská míra μ na metrickém (topologickém) prostoru X je těsná (= tight), jestliže $\forall B \in \mathcal{B}(X) : \mu(B) = \sup \{\mu(K) | K \subset B \text{ kompaktní} \}.$

Poznámka

 μ je Radonova míra, jestliže je těsná a konečná na kompaktech.

Pokud μ je konečná a těsná, pak už je mu regulární.

Jestliže μ je konečná a regulární a $\mu(X) = \sup \{\mu(K) | K \subset X \text{ kompaktní}\}$, pak μ je těsná.

Věta 3.2

 $Pokud \mu$ je konečná borelovská míra na úplném separabilním metrickém prostoru, potom už je těsná.

Stačí ukázat $\mu(X) = \sup \{\mu(K) | K \subset X \text{ kompaktní} \}$: $S = \{x_1, x_2, \ldots\} \subset X \text{ hustá spočetná (ze separability)}$. $\forall n \in \mathbb{N} : \bigcup_i \mathcal{U}_{\frac{1}{n}}(x_i) = X$. Nechť je dáno $\varepsilon > 0$. Pak $\forall n \; \exists k_n : \mu\left(X \setminus \bigcup_{i=1}^{k_n} \mathcal{U}_{\frac{1}{n}}(x_i)\right) < \frac{\varepsilon}{2^n}$ (ze spojitosti míry).

Definujeme $A:=\bigcap_{n=1}^{\infty}\bigcup_{i=1}^{k_n}\mathcal{U}_{\frac{1}{n}}\left(x_i\right)\ (\in\mathcal{B}(X)).$ A je totálně omezená (tzn. $\forall \varepsilon>0\ \exists F\subset A$ kompaktní tak, že $A\subset\bigcup_{x\in F}B_{\varepsilon}(x)).$ \overline{A} je totálně omezená a uzavřená $\Longrightarrow \overline{A}$ je úplný MP (+ totálně omezený), tedy \overline{A} je kompaktní.

$$\mu(X \setminus \overline{A}) \le \mu(X \setminus A) = \mu\left(\bigcup_{n=1}^{\infty} \mu\left(X \setminus \bigcup_{i=1}^{k_n} \mathcal{U}_{\frac{1}{n}}(x_i)\right)\right).$$

4 Věta o rozšíření míry

Věta 4.1 (Hahn-Komogorov)

Buď $\tilde{\mu}$ pramíra na algebře $\mathcal{A} \subset \mathcal{P}(X) \implies$ existuje míra μ na $\sigma \mathcal{A}$ taková, že $\mu = \tilde{\mu}$ ne \mathcal{A} . Je-li $\tilde{\mu}$ σ -konečná, je μ určena jednoznačně.

Pro $E \subset X$ položme $\mu^*(E) := \inf \{ \sum_{i=1}^{\infty} \tilde{\mu}(A_i) | A_i \in \mathcal{A}, E \subset \bigcup_{i=1}^{\infty} A_i \}$. Ověříme, že μ^* je vnější míra.

 $\forall A \in \mathcal{A} : \mu^*(A) = \tilde{\mu}(A)$. Zřejmě $\mu^*(A) \leq \tilde{\mu}(A)$, jelikož můžeme pokrýt A množinami $A, \emptyset, \emptyset, \dots$. Pro \geq mějme $A \subset \bigcup_i A_i, A_i \in \mathcal{A}$. $B_1 := A_1 \cap A, B_2 := (A_2 \cap A) \setminus B_1, \dots$ O nich víme, že $A = \bigcup_i B_i, B_i$ po dvou disjunktní, $B_i \in \mathcal{A}$. $\tilde{\mu}(A) = \sum_i \tilde{\mu}(B_i) \leq \sum_i \tilde{\mu}(A_i)$, tedy z definice infima $\tilde{\mu}(A) \leq \inf_{A_i} \sum_i \tilde{\mu}(A_i) = \mu^*(A)$.

Zbývá ukázat, že $\mathcal{A} \subset \mathcal{A}_{\mu^*}$. Nechť $A \in \mathcal{A}$, $T \subset X$, $\mu^*(T) < \infty$. Stačí ukázat, že $\mu^*(T) \geq \mu(T \cap A) + \mu^*(T \setminus A)$. K danému $\varepsilon > 0$ existuje pokrytí $T \subset \bigcup_i A_i$ množinami $A_i \in \mathcal{A}$ takové že $\sum_i \tilde{\mu}(A_i) < \mu^*(T) + \varepsilon$. Protože $T \cap A \subset \bigcup_i (A_i \cap A)$, $T \setminus A \subset \bigcup_i (A_i \setminus A)$ a množiny $A_i \cap A$ i $A_i \setminus A$ patří do A, platí

$$\mu^*(T \cap A) \le \sum_i \tilde{\mu}(A_i \cap A), \qquad \mu^*(T \setminus A) \le \sum_i \tilde{\mu}(A_i \setminus A).$$

Sečtením dostaneme

$$\mu^*(T \cap A) + \mu^*(T \setminus A) \le \sum_i \tilde{\mu}(A_i \cap A) + \sum_i \tilde{A}(A_i \setminus A) = \sum_i \tilde{\mu}(A_i) < \mu^*(T) + \varepsilon,$$

z čehož plyne dokazovaná nerovnost. Podle C. věty je $\mu := \mu^* | A_{\mu^*}$ míra, která navíc podle druhé části důkazu rozšiřuje pramíru $\tilde{\mu}$ a podle třetí je definovaná na $\sigma \mathcal{A}$.

Jednoznačnost: \mathcal{A} uzavřená na konečné průniky, $\tilde{\mu}$ je σ -konečná $\Longrightarrow \exists A_n \in \mathcal{A}, A_n \nearrow X, \tilde{\mu}(A_n) < \infty \Longrightarrow \mu$ je jednoznačně určena (věta o jednoznačnosti míry, TMI1).

Poznámka (Zobecnění příkladu z TMI1)

 $E = X_{i=1}^{\infty} E_i$, E_i úplné separabilní metrické prostory (např. $E_i = \mathbb{R}$), $\emptyset \neq I \subset \mathbb{N}$... $E_I = E_i$, E, E_I metrické prostory. $\pi_I : E \to E_I$ kanonická projekce. A následující věta:

Věta 4.2 (Daniell-Kolmogorov)

 E_i úplné separabilní metrické prostory, $i \in \mathbb{N}$. Nechť pro každou $\emptyset \neq I \subset \mathbb{N}$ existuje borelovská pravděpodobnostní míra μ_I na E_I . A nechť je splněna projektivní vlastnost:

$$\emptyset \neq I \subset J \subset \mathbb{N} \ konečná, \forall B \in \mathcal{B}(E_I) : \mu_I(B) = \mu_J \left(\left(\pi_I^J \right)^{-1} (B) \right),$$

pak \exists ! borelovská míra μ na $E = X_{i=1}^{\infty} E_i$ taková, že $\forall \emptyset \neq I \subset \mathbb{N}$ konečná, $\forall B \in \mathcal{B}(E_I)$: $\mu(\pi_I^{-1}(B) = \mu_I(B))$.

Lemma 4.3

$$1)x_n, x \in E : x_n \to x \Leftrightarrow x_n(i) \to x(i), i \in \mathbb{N},$$
$$x_n, x \in E_I : x_n \to x \Leftrightarrow x_n(i) \to x(i), i \in I$$

- 2) π_I, π_I^J jsou spojitá zobrazení.
- 3) $\forall I \in ?_f : E_I \text{ je \'upln\'y separabiln\'i MP.}$

4)
$$\mathcal{B}(E_I) = \bigotimes_{i \in I} \mathcal{B}(E_i)$$
.

1 jsme nedokazovali, 2 a 3 jsou triviální.

$$A(A) \otimes_{i \in I} \mathcal{B}(E_i) = \sigma \{X_{i \in I} B_i | B_i \in \mathcal{B}(E_i)\} = \sigma \{X_{i \in I} | G_i \subset E_i \text{ otevřené} \},$$

tedy
$$X_{i\in I}G_i$$
 je otevřená v $E_I \Longrightarrow \bigotimes_{i\in I}\mathcal{B}(E_i) \subset \mathcal{B}(E_I)$. Naopak $U \subset E_I$ otevřená \Longrightarrow $U = \bigcup_{n=1}^{\infty} U_n$, kde $U_n = X G_i^n$, $G_i^n \subset E_i$ otevřená $\Longrightarrow \mathcal{B}(E_I) \subset \bigotimes_{i\in I}\mathcal{B}(E_i)$.

Věta 4.4 (Daniell-Kolmogorov)

 E_i úplné separabilní metrické prostory $i \in \mathbb{N}$. Nechť pro každou $I \in \mathcal{I}_f$ existuje borelovská pravděpodobnostní míra μ_I na E_I . Nechť $I \subset J \wedge I, J \in \mathcal{I}_f \implies \mu_I = \mu_J(\pi_I^J)^{-1}$. Pak existuje právě jedna borelovská pravděpodobnostní míra μ na E taková, že

$$\forall I \in \mathcal{I}_f : \mu_I = \mu(\pi_I)^{-1}.$$

Důkaz

Položme $\mathcal{A} := \{\pi_I^{-1}(B) | B \in \mathcal{B}(E_i), I \in \mathcal{I}_f \}$. Ukážeme nejprve, že systém \mathcal{A} je algebra. (Prostě se ověří podmínky.)

Definujeme množinovou funkci $\tilde{\mu}$ na \mathcal{A} předpisem

$$\tilde{\mu}(A) = \mu_I(B), A = \pi_I^{-1}(B), B \in \mathcal{B}_I.$$

Ukážeme nejprve konzistenci této definice (dvě vyjádření podle předpokladů dávají stejný výsledek, když se rozepíší).

Dále se ukáže, že $\tilde{\mu}$ je konečně aditivní množinová funkce. (Jednoduché.) Dále dokážeme, že je to pramíra (že splňuje podmínku spojitosti v prázdné množině).

Podle Hahn-Kolmogorovovy věty lze tedy pramíru $\tilde{\mu}$ jednoznačně rozšířit na pravděpodobnostní míru μ na $\sigma \mathcal{A}$. Zbývá ukázat, že $\sigma \mathcal{A} = \mathcal{B}(E)$. Protože projekce jsou spojité, je vzor každé otevřené množiny otevřená, tedy borelovská množina. Platí tedy $\sigma \mathcal{A} \subset \mathcal{B}(E)$. Pro opačnou inkluzi si uvědomme, že borelovská σ -algebra separabilního prostoru E je generována uzavřenými okolími $\overline{U}_{\varepsilon}(x)$ bodů $x \in E$, $\varepsilon > 0$. Z definice metriky v E a $E_{[n]}$ snadno dostaneme vztah

$$\overline{U}_{\varepsilon}(x) = \bigcup_{n=1}^{\infty} \pi_{[n]}^{-1}(\overline{U}_{\varepsilon}(\pi_{[n](x)})),$$

tedy $\overline{U}_{\varepsilon}(x) \in \sigma \mathcal{A}$. Platí tedy i $\mathcal{B}(E) \subset \sigma \mathcal{A}$ a důkaz je ukončen.

5 Charakterizace Riemannovsky integrovatelných funkcí

Věta 5.1

 $\operatorname{Bud} f:[a,b] \to \mathbb{R}$ omezená. Pak

 $f \in R[a,b] \Leftrightarrow fje \ spojit\'a \ v \ \lambda^1$ -skoro všude na (a,b).

 (\mathcal{D}_n) posloupnost zjemňujících se dělení intervalu [a,b].

$$\mathcal{D}_n = \left\{ a = x_0^{(n)} < x_1^{(n)} < \dots < x_{k_n}^{(n)} = b \right\}, n \in \mathbb{N}, ||\mathcal{D}_n|| = \max_{1 \le i \le k_n} (x_i^{(n)} - x_{i-1}^{(n)}) \stackrel{n \to \infty}{\to} 0.$$

Označme $s_n(x):=\inf_{[x^{(n)}_{i-1},x_i^{(n)}}f,\ S_n(x):=\sup_{[x^{(n)}_{i-1},x_i^{(n)}}f,\ x\in(x_{i-1}^{(n)},x_i^{(n)}],\ n\in\mathbb{N}$ a $S_n(x):=0,\ S_n(x):=0$ pro ostatní $x\in\mathbb{R}.$ Toto jsou jednoduché měřitelné funkce.

Horní a dolní Riemannův součet splňuje

$$\underbrace{\int_a^b f} \stackrel{n \to \infty}{\longleftarrow} s(f, \mathcal{D}_n) = \int_a^b s_n d\lambda^1, \overline{\int_a^b f} \stackrel{n \to \infty}{\longleftarrow} S(f, \mathcal{D}_n) = \int_a^b S_n d\lambda^1.$$

 $|f| \leq M$, tedy $-M \leq s_1 \leq s_2 \leq \ldots \leq f \leq \ldots \leq S_2 \leq S_1 \leq M$. Označme $f_1 := \lim_{n \to \infty} s_n$, $f_2 := \lim_{n \to \infty} S_n$ (bodové limity funkcí).

$$-M \leq s_n \searrow f_1 \leq f \leq f_2 \nwarrow S_n \leq M, qquadf_1, f_2$$
 měřitelné.

Ze zobecněné Leviho věty $\int_a^b s_n d\lambda^1 \to \int_a^b f_1 d\lambda^1$, $\int_a^b S_n d\lambda^1 \to \int_a^b f_2 d\lambda^1$.

$$\implies$$
: Necht $f \in R[a,b]$, tedy $\int_a^b f = \overline{\int_a^b f}$.

$$\implies \int_a^b f_1 d\lambda^1 = \int_a^b f_2 d\lambda^1 \implies \int_a^b (f_2 - f_1) d\lambda^1 = 0 \implies f_1 = f_2 \lambda^1$$
-s.v.

$$N := \{x \in [a, b] | f_1(x) \neq f_2(x)\} \cup \{x_i^{(n)} | 0 \le i \le k_n, n \in \mathbb{N} \}, \qquad \lambda^1(N) = 0.$$

Ukážeme, že f je spojitá ve všech bodech množiny $(a,b) \setminus N$: Buď $x \in (a,b) \setminus N$, $\varepsilon > 0$. Potom $f_1(x) = f_2(x) \implies \exists n \in \mathbb{N}, S_n(x) - s_n(x) < \varepsilon$. I_n nechť je otevřený interval dělení \mathcal{D}_n , pro nějž $x \in I_n$. Pak

$$s_n(x) \le f(y) \le S_n(x), y \in I_n \implies |f(y) - f(x)| \le 2\varepsilon, y \in I_n \implies f$$
 je spojitá v bodě x .

 \Leftarrow : Nechť $\lambda^1(\mathcal{D})=0$, kde $D:=\{x\in(a,b):\ f \text{ není spojitá v }x\}$. Ukážeme, že $S_n(x)-s_n(x)\stackrel{n\to\infty}{\to}0$

$$\implies S(f, \mathcal{D}_n) - s(f, \mathcal{D}_n) \to 0 \implies f \in R[a, b].$$

Nechť $x \in (a,b) \setminus \mathcal{D}$, $\varepsilon > 0$. Pak f je spojitá v bodě $x \implies \exists \delta > 0, \ |y-x| < \delta \implies |f(y) - f(x)| < \varepsilon$.

Zvolme n_0 tak velké, aby $||\mathcal{D}_n|| < \delta$, $n \ge n_0$. Pak

$$S_n(x) - s_n(x) \le 2 \sup \{ |f(y) - f(x)| : |y - x| < \delta \} < 2\varepsilon.$$

6 Pokrývací věty

Poznámka (Úmluva)

Koulí se myslí uzavřená koule, $B(x,r)=\{y\in\mathbb{R}^n|||y-x||\leq r\},\ r>0,\ \mathrm{rad}\,B=r,\ t>0\dots tB=B(x,t\cdot r).$

Lemma 6.1 (,5r" covering)

Nechť \mathcal{F} je systém koulí v \mathbb{R}^n (uzavřené, nedegenerované), $\sup_{B \in \mathcal{F}} (\operatorname{rad} B) < \infty$. Pak existuje disjunktní podsystém $\mathcal{F}' \subset \mathcal{F}$ takový, že

$$\forall B \in \mathcal{F} \ \exists B' \in \mathcal{F}' : B \cap B' \neq \emptyset \land B \subset 5B.$$

Důsledek

$$\bigcup \mathcal{F} \subset \bigcup_{B' \in \mathcal{F}'} 5B'$$

 $D\mathring{u}kaz$ ("5r" covering)

Označme $R := \sup_{B \in \mathcal{F}} \operatorname{rad} B$. $\mathcal{F}_k := \{B \in \mathcal{F} | \operatorname{rad} B \in \left(\frac{R}{2^{k+1}}, \frac{R}{2^k}\right]\}$, $k = 0, 1, \ldots$ Dále definujeme indukcí systémy \mathcal{B}_k , $k = 0, 1, \ldots$ \mathcal{B}_0 libovolný maximální disjunktní podsystém \mathcal{F}_0 . Máme-li $\mathcal{B}_0, \ldots, \mathcal{B}_k$: \mathcal{B}_{k+1} libovolný maximální disjunktní podsystém

$$\left\{ B \in \mathcal{F}_{k+1} | \forall B' \in \mathcal{B}_0 \cup \ldots \cup \mathcal{B}_k : B \bigcup B := \emptyset \right\},$$

 $\mathcal{F}' := \bigcup_{k=0}^{\infty} \mathcal{B}_k$ disjunktní podsystém \mathcal{F} .

Nyní už jen ověříme vztah ze znění: Nechť $B \in \mathcal{F}$, pak $B \in \mathcal{F}_k \Longrightarrow \exists B' \in \mathcal{B}_0 \cup \ldots \cup \mathcal{B}_k$, $B \cap B' \neq \emptyset$ (z maximality). Dále víme, že $\frac{R}{2^{k+1}} < \operatorname{rad} B \leq \frac{R}{2^k}$ a $\frac{R}{2^{k+1}} < \operatorname{rad} B'$, tedy rad $B < 2\operatorname{rad} B'$. Navíc B = B(x,r) a B' = B(x',r'), r < 2r', $B \cap B' \neq \emptyset$, tedy $||x - x'|| \leq r + r'$, tj. $\forall y \in B : ||y - x'|| \leq ||y - x|| + ||x - x'|| \leq r + r + r' < 5r'$.

Definice 6.1 (Vitaliovo pokrytí)

Nechť $A \subset \mathbb{R}^n$. Řekneme, že systém uzavřených koulí \mathcal{F} je Vitaliovým pokrytím (Vitaly Cover) množiny A, jestliže

$$\forall a \in A \ \forall \varepsilon > 0 \ \exists B \in \mathcal{F} : a \in B, \text{rad } B < \varepsilon.$$

Věta 6.2 (Vitaly Covering Theorem)

Nechť $A \subset \mathbb{R}^n$ a \mathcal{F} je Vitaliovo pokrytí A. Pak existuje disjuktní $\mathcal{F}' \subset \mathcal{F}$ takový, že $\lambda^n(A \setminus \bigcup \mathcal{F}') = 0$.

BÚNO nechť $\sup_{B\in\mathcal{F}}(\operatorname{rad} B)\leq 1$. "5r" covering lemma nám pak říká, že $\exists\mathcal{F}'\subset\mathcal{F}$ disjuktní takový, že platí

$$\forall B \in \mathcal{F} \ \exists B' \in \mathcal{F}' : B \cap B' \neq \emptyset \land B \subset 5B.$$

Ukážeme, že $\lambda^n(A \setminus \bigcup \mathcal{F}') = 0$. Označme $Z_r := (A \setminus \bigcup \mathcal{F}') \cap U_r(\mathbf{o}), \forall r > 0$. Ukážeme, že $\lambda^n(Z_r) = 0$.

Označme $\mathcal{F}'' := \{B' \in \mathcal{F}' | \mathcal{B}' \cap U_r(\mathbf{o}) \neq \emptyset\}$ a $\mathcal{F}''_k := \{B' \in \mathcal{F}'' | \operatorname{rad} B' \in \left(\frac{1}{2^{k+1}}, \frac{1}{2^k}\right]\}, k = 0, 1, 2, \dots \mathcal{F}'$ je disjuktní, tudíž

$$\sum_{B' \in \mathcal{F}''} \lambda^n(B') = \sum_{k=0}^{\infty} \sum_{B' \in \mathcal{F}''_k} \lambda^n(B') \le \lambda^n(B(0, r+2)) < \infty$$

 $\implies \mathcal{F}_k''$ je konečný $\forall k$. Nechť je dáno $\varepsilon > 0$. Pak

$$\exists k_0 \in \mathbb{N} : \sum_{k > k_0} \sum_{B' \in \mathcal{F}_h''} \lambda^n(B') < \varepsilon.$$

Zvolme pevně $z\in Z_r$. Zřejmě $z\notin \bigcup_{k=0}^{k_0}\bigcup_{B'\in\mathcal{F}_k''}B'=:K$ (kompakt). Z vlastnosti Vitaliova pokrytí pak:

$$\exists B \in \mathcal{F} : B \cap K = \emptyset, z \in B, B \subset U_r(0).$$

Z vlastnosti pokrytí F' zřejmě $B' \in \mathcal{F}'', B' \notin \bigcup_{k=0}^{k_0} \bigcup \mathcal{F}''_k$, tj. $z \in 5B' \implies Z_r \subset \bigcup_{k>k_0} \bigcup_{B' \in \mathcal{F}''_k} 5B' \implies \lambda^{n*}(Z_r) \leq \sum_{k>k_0} \sum_{B' \in \mathcal{F}''_k} \lambda^n(5B') < 5^n \varepsilon. \ \varepsilon \to 0$ nám dá $\lambda^n(Z_r) = 0$.

Definice 6.2 (Lebesgueova hustota)

Pro $A \subset \mathbb{R}^n$, $a \in \mathbb{R}^n$ definujeme $\Theta^{n*}(A, a) = \limsup_{\varepsilon \to 0_+} \frac{\lambda^{n*}(A \cap B(a, \varepsilon)}{\lambda^n(B(a, \varepsilon))}$ (≤ 1) a $\Theta^n_*(A, a) = \liminf_{\varepsilon \to 0_+} \frac{\lambda^{n*}(A \cap B(a, \varepsilon))}{\lambda^n(B(a, \varepsilon))}$, tzv. horní a dolní hustota množiny A v a. Pokud $\Theta^{n*}(A, a) = \Theta^n_*(A, a)$, pak definujeme Lebesgueovu hustotu A v a vztahem $\Theta^n(A, a) = \Theta^{n*}(A, a)$.

Věta 6.3 (Lebesgueova o hustotě (Lebesgue Density Theorem))

Pokud $A \subset \mathbb{R}^n$ je lebesgueovsky měřitelná, potom $\Theta^n(A,\cdot) = \chi_A(\cdot) \lambda^n$ -skoro všude.

Stačí ukázat, že $\Theta^n(A, a) = 1$ pro λ^n -skoro všechna $a \in A$. BÚNO nechť A je omezená (obecně: $A \cap B(0, n), n \to \infty$). Pro číslo $0 < \delta < 1$ označme

$$A_{\delta} := \left\{ a \in A | \liminf_{r \to 0+} \frac{\lambda^n(A \cap B(a,r))}{\lambda^n(B(a,r))} < \delta \right\}.$$

Ukážeme, že $\lambda^n(A_\delta) = 0$. Z toho pak bude plynout, že $\Theta^n_*(A, a) = 1$, a tedy $\Theta^n(A, a) = 1$, pro skoro všechna $a \in A$.

Nechť pro spor $\lambda^{n*}(A_{\delta}) > 0$ pro nějaké $\delta < 1$. Z regularity Lebesgueovy míry (nebo z definice vnější míry λ^{n*}) víme, že existuje otevřená množina $G \supseteq A_{\delta}$ taková, že $\lambda^{n}(G) < \delta^{-1}\lambda^{n*}(A_{\delta})$. Položme

$$\mathcal{F} := \{B(a,r)|a \in A_{\delta}, B(a,r) \subset G, \lambda^{n}(A \cap B(a,r)) < \delta\lambda^{n}(B(a,r))\}.$$

Z definice množiny A_{δ} , je vidět, že \mathcal{F} je Vitaliovým pokrytím množiny A_{δ} . Podle Vitaliovy věty tedy existují po dvou disjunktní koule $B_1, B_2, \ldots \in \mathcal{F}$ takové, že $\lambda^n(A_{\delta} \setminus \bigcup_i B_i) = 0$. Pak ale

$$\lambda^{n*}(A_{\delta}) = \lambda^{n*}(A_{\delta} \cap \bigcup_{i} B_{i}) \leq \sum_{i} \lambda^{n*}(A_{\delta} \cap B_{i}) \leq \sum_{i} \lambda^{n}(A \cap B_{i}) <$$
$$< \delta \sum_{i} \lambda^{n}(B_{i}) \leq \delta \lambda^{n}(G) < \lambda^{n*}(A_{\delta}).$$
 4.

7 Důkaz věty o substituci

Věta 7.1

 $Je-li\ A\subset\mathbb{R}^n\ lebesgueovsky\ měřitelná\ a\ f:A\to\mathbb{R}^n\ L-lipschitzovské,\ platí\ \lambda^{n*}(f(A))\leq L^n\lambda^n(A).$

Je-li
$$A \subset B = B(x,r)$$
, pak $f(A) \subset f(b) \subset B(f(x), L \cdot r)$. $\Longrightarrow \lambda^{n*}(f(A)) \leq L^n \lambda^n(B)$.

Ukážeme, že pro $N \subset \mathbb{R}^n$ nulovou (tj. $\lambda^n(N) = 0$) je $\lambda^n(f(N)) = 0$: N nulová $\Longrightarrow \forall \varepsilon > 0 \; \exists I_i \; \text{otevřen\'e} \; \text{kv\'adry}, \; N \subset \bigcup_i I_i, \; \sum_i \lambda^n(I_i) < \varepsilon$.

Můžeme zařídit, aby $\frac{r(I_i)}{R(I_i)} \ge \eta > 0$, $i \in \mathbb{N}$, kde R(I) a r(I) jsou poloměry opsané a vepsané koule I: Rozdělíme intervaly vůči delší straně.

Když B_i jsou koule opsané $\overline{I_i}$, pak $\lambda^n(B_i) \leq \eta^{-n}\lambda^n(I_i)$ $(B_i' \subset I_i \subset B_i \dots \lambda^n(I_i) > \lambda^n(B_i') \geq \eta^n\lambda^n$ (B_i)).

$$\lambda^{n*}(f(N)) \leq \lambda^{n*}(\bigcup_{i} f(I_{i})) \leq \lambda^{n*}(\bigcup_{i} f(B_{i})) \leq \sum_{i} \lambda^{n*}(fB_{i}) \leq L^{n} \sum_{i} \lambda^{n}(B_{i}) \leq$$

$$\leq \left(\frac{L}{\eta}\right)^{n} \sum_{i} \lambda^{n}(I_{i}) < \left(\frac{L}{\eta}\right)^{n} \varepsilon.$$

$$\varepsilon \to 0 \dots \lambda^{n*}(f(N)) = 0.$$

 $A \subset \mathbb{R}^n$ měřitelná, $\varepsilon > 0$, BÚNO nechť $\lambda^n(A) < \infty$ (jinak je nerovnost triviálni). λ^n regulární $\Longrightarrow \exists G \supset A$ otevřená, že $\lambda^n(G) < \lambda^n(A) + \varepsilon$. $\mathcal{F} := \{B \text{ uzavřená koule} | B \subset G\}$ Vitaliovo pokrytí $G \Longrightarrow B_1, B_2, \ldots \in \mathcal{F}$ disjunktní, $\lambda^n(G \setminus \bigcup_i B_i) = 0$.

$$\lambda^{n*}(f(A)) \leq \lambda^{n*}(f(G)) \leq \lambda^{n*}(\bigcup_{i} f(B_{i}) \cup f(N)) \leq \sum_{i} \lambda^{n*}(f(B_{i})) + \lambda^{n*}(f(N)) \leq \sum_{i} \lambda^{n*}(f(D_{i})) + \lambda^{n*}(f(D_{i})) + \lambda^{n*}(f(D_{i})) \leq \sum_{i} \lambda^{n*}(f(D_{i})) + \lambda^{n$$

Definice 7.1 (Funkcionální norma)

Pro $L: \mathbb{R}^n \to \mathbb{R}^n$ lineární zobrazení, definujeme $||L|| := \sup_{||u|| < 1} ||Lu||$.

Poznámka

Označme $\delta(L) := \inf_{||u||=1} ||Lu||, L regulární \Leftrightarrow \delta(L) > 0.$ Tedy platí

 $\delta(L)||u|| \le ||Lu|| \le ||L|| \cdot ||u||, u \in \mathbb{R}^n.$

Tvrzení 7.2

 $L, M : \mathbb{R}^n \to \mathbb{R}^n \ dv$ ě regulární lineární zobrazení. Nechť existuje $\gamma > 0 \ takov$ é, že $\forall u \in \mathbb{R}^n : ||Lu|| \le \gamma ||Mu||$. Pak $|\det L| \le \gamma^n |\det M|$.

a) Nechť $M=\mathrm{id}.$ Z předpokladů plyne, že pro každou kouli B=B(O,R) je $L(B)\subset \gamma B,$ tedy

$$|\det L|\lambda^n(B) = \lambda^n(L(B)) \le \gamma^n \lambda^n(B) \implies |\det L| \le \gamma^n.$$

b) Pro M obecné: (v = Mu),

$$||LM^{-1}v|| \leq \gamma ||v||, v \in \mathbb{R}^n \implies |\det LM^{-1}| \leq \gamma^n \implies |\det L| \leq \gamma^n |\det M|.$$

Důkaz (Věty o substituci)

At je dáno $\varepsilon > 0$. $\forall x \in \mathcal{U} \ \exists r_x > 0 \ \forall y \in B(x, r_x)$:

$$1.||Dg(y) - Dg(x)|| < \varepsilon \cdot \delta(Dg(x))$$
 (ze spojitosti diferenciálu $(Dg(\cdot))$),

$$2.||g(y)-g(x)-Dg(x)(y-x)||<\varepsilon\cdot\delta(Dg(x))||y-x|| \qquad \text{(ze spojitosti diferenciálu }(Dg(x))).$$

$$Z \delta(L)||u|| < ||Lu|| < ||L|| \cdot ||u||$$
 je

$$1.'||Dg(y)u - Dg(x)u|| < \varepsilon \cdot ||Dg(x)u||, \qquad u \in \mathbb{R}^n,$$

$$2.'||g(y) - g(x) - Dg(x)(y - x)|| < \varepsilon \cdot ||Dg(x)(y - x)||.$$

 $\exists \{x_1, x_2, \ldots\} \subset \mathcal{U}$ (spočetná) taková, že $\mathcal{U} = \bigcup_i B(x_i, r_{x_i})$. (Neboť existují K_j kompaktní, které $K_j \nearrow \mathcal{U}$.) $B_i := B(x_i, r_{x_i}), L_i = Dg(x_i), i \in \mathbb{N}$.

$$1.' \implies 1.''(1-\varepsilon)||L_iu|| \le ||Dg(x)u|| \le (1+\varepsilon)||L_iu||, u \in \mathbb{R}^n, x \in B_i, i \in \mathbb{N}.$$

Existuje měřitelný rozklad $U = \bigcup_{i,j=1}^{\infty} E_{i,j}$ tak, že:

$$(a)E_{i,j} \subset B_i, \qquad (b)\operatorname{diam} E_{i,j} < \frac{1}{j}, \qquad (c)\forall x \in E_{i,j} : r_x > \frac{1}{j}.$$

$$\implies \forall x, y \in E_{i,j} : ||g(y) - g(x)|| \stackrel{2'}{\leq} (1 + \varepsilon)||Dg(x)(y - x)|| \stackrel{1''}{\leq} (1 + \varepsilon)^2||L_i(y - x)||,$$

$$||g(y) - g(x)|| \ge (1 - \varepsilon)||Dg(x)(y - x) \ge (1 - \varepsilon)^2||L_i(y - x)||.$$

 \implies zobrazení $g \circ L_i^{-1}: L_i(\mathcal{U}) \to g(\mathcal{U})$ je $(1+\varepsilon)^2$ -lipschitzovské, stejně jako zobrazení $L_i \circ g^{-1}: g(\mathcal{U}) \to L_i(\mathcal{U})$ je $(1-\varepsilon)^{-2}$ -lipschitzovské. Označme $\eta := \max\{(1+\varepsilon)^2, (1-\varepsilon)^{-2}\}.$

$$\lambda^n(g(A)) = \lambda^n(g(\bigcup_{i,j} E_{i,j})) = \lambda^n(\bigcup_{i,j} g(E_{i,j})) = \sum_{i,j} \lambda^n(g(E_{i,j})) \le \eta^n \sum_{i,j} \lambda^n(L_i(E_{i,j})) \stackrel{\text{TMI1}}{=}$$

$$= \eta^{n} \sum_{i,j} |\det L_{i}| \lambda^{n}(E_{i,j}) = \eta^{n} \sum_{i,j} \int_{E_{i,j}} |\det L_{i}| dx \le \eta^{2n} \sum_{i,j} \int_{E_{i,j}} |Jg(x)| dx =$$

$$= \eta^{2n} \int_{A} |Jg(x)| dx.$$

Podobně

$$\lambda^{n}(g(A)) \geq \eta^{-n} \sum_{i,j} \lambda^{n}(L(E_{i,j})) \geq \eta^{-n} \sum_{i,j} \int_{E_{i,j}} \eta^{-n} |Jg(x)| dx = \eta^{-2n} \int_{A} |Jg(x)| dx.$$

Následně pro $\varepsilon \to 0$ je $\eta \to 1$ a $\lambda^n(g(A)) = \int_A |J(g(x))| dx$.

8 Konvergence posloupnosti funkcí

Poznámka (Přípomenutí TMI1)

 $f_n, f: (X, \mathcal{A}, \mu) \to \mathbb{R}$ nebo \mathbb{C} jsou měřitelné.

$$f_n \stackrel{\text{s. v.}}{\to} f \equiv \mu \left\{ x | f_n(x) \not\to f(x) \right\} = 0.$$

$$f_n \stackrel{L^p}{\to} f \equiv ||f_n - f||_p \to 0.$$

$$f_n \stackrel{\mu}{\to} f \equiv \forall \varepsilon > 0 : \mu \left\{ x |||f_n(x) - f(x)|| \ge \varepsilon \right\} \to 0.$$

Tvrzení 8.1

$$f_n, f \in L^p(\mu), f_n \xrightarrow{L^p} f \implies f_n \xrightarrow{\mu} f.$$

$$\mu(X) < \infty : f_n \xrightarrow{s. v.} \implies f_n \xrightarrow{\mu} f.$$

$$\mu(X) < \infty : f_n \xrightarrow{\mu} f \implies \exists f_{n_k}, f_{n_k} \xrightarrow{s. v.} f.$$

$$\mu(X) < \infty : 1 \le p < q \le \infty \implies L^p(\mu) \supset L^q(\mu), f_n \xrightarrow{L^q} f \implies f_n \xrightarrow{L^p} f.$$

Věta 8.2 (Lebesgueova věta + upgrade)

$$\frac{1}{f_n \stackrel{s. \ v.}{\to} f, \ \exists g \in L^1(\mu), |f_n| \le g \ \forall n \implies \int f_n d\mu \to \int f d\mu}$$

Dokonce $f_n \stackrel{L^1}{\to} f$.

BÚNO $f_n(x) \to f(x), x \in X$ (například v těch bodech předefinujeme všechny funkce na 0).

$$g_n := \inf \{ f_n, f_{n+1}, \dots \}, h_n := \sup \{ f_n, f_{n+1} \}.$$

$$-g \le g_n \le f_n \le h_n \le g, \qquad g_n \nearrow f \swarrow h_n.$$

$$|f_n - f| \le h_n - g_n \le 2g \in L^1(\mu), \qquad h_n - g_n \searrow \stackrel{\text{Levi}}{\Longrightarrow} \int (h_n - g_n) d\mu \to 0 \implies$$

$$\implies \int |f_n - f| d\mu \to 0 \Leftrightarrow f_n \stackrel{L^1}{\to} f.$$

Poznámka

$$f \in L^1(\mu) \implies \lim_{c \to \infty} \int_{x:|f(x)| \le c} |f(x)| d\mu(x) = 0.$$

Definice 8.1 (Stejnoměrně integrovatelná posloupnost)

Řekneme, že posloupnost (f_n) měřitelných funkcí na (X, \mathcal{A}, μ) je stejnoměrně integrovatelná (uniformly integrable), jestliže

$$\lim_{c \to \infty} \sup_{n} \int_{|f_n| \ge C} |f_n| d\mu = 0.$$

Tvrzení 8.3

 μ konečná, (f_n) stejnoměrně integrovatelná $\implies f_n \in L^1(\mu)$, $\sup_n ||f_n||_1 < \infty$.

$$\int |f_n| = \underbrace{\int_{|f_n| < c} |f_n| d\mu}_{|f_n| < c} + \underbrace{\int_{|f_n| > c} |f_n| d\mu}_{|f_n| < c} \le c\mu(X) + 1 \text{ pro dostatečně velká } c.$$

Věta 8.4

 $\overline{Necht \, \mu(X) < \infty \, a \, f_n \overset{\mu}{\to} f. \, Pak \, f_n \overset{L_1}{\to} f \Leftrightarrow (f_n) \, je \, stejnoměrně \, integrovatelná.}$

" \Leftarrow ": Necht $f_n \xrightarrow{\mu} f$, (f_n) je stejnoměrně integrovatelná. Pak $f_n \in L^1(\mu)$ a existuje vybraná podposloupnost (f_{n_i}) , $f_{n_i} \xrightarrow{s.v.} f$.

$$\int |f|d\mu = \int (\lim_{j \to \infty} |f_{n_j}|)d\mu \le \liminf_{j \to \infty} \int |f_{n_j}|d\mu < \infty \implies f \in L^1(\mu).$$

Předpokládejme nejprve, že $\exists c \in \mathbb{R}, |f_n| < c, |f| \le c$ skoro všude. Buď $\varepsilon > 0$, položme $\delta := \frac{\varepsilon}{2\mu(X)}$.

$$\int |f_n - f| d\mu = \int_{\{|f_n - f| \le \delta\}} |f_n - f| d\mu + \int_{\{|f_n - f| > \delta\}} |f_n - f| \le \delta$$

$$\leq \delta\mu(X) + 2c\mu(\{x||f_n(x) - f(x)| > \delta\}) \stackrel{n \geq n_0}{\leq} \frac{\varepsilon}{2} + 2c\frac{\varepsilon}{4c} < \varepsilon \implies f_n \stackrel{L_1}{\to} f.$$

Nyní $f_n, f \in L^1$ libovolné, $f_n \stackrel{\mu}{\to} f$, (f_n) stejnoměrně integrovatelná, $\varepsilon > 0$.

$$\int |f_n - f| d\mu \leq \int_{\{|f_n| > c\}} |f_n - f| d\mu + \int_{\{|f_n| > c\}} |f_n - f| d\mu + \int_{\{|f| > c\}} |f_n - f| d\mu =: I_n^1(c) + I_n^2(c) + I_n^3(c),$$

$$I_n^2(c) \leq \leq \int_{\{|f_n| > c\}} |f_n| d\mu + \int_{\{|f_n| > c \land |f| \le c\}} |f| d\mu + \int_{\{|f_n| > c \land |f| > c\}} |f| d\mu \leq 2 \int_{\{|f_n| > c\}} |f_n| + \int_{\{|f| > c\}} |f|,$$

$$I_n^3(c) \leq \leq \int_{\{|f| > c\}} |f| d\mu + \int_{\{|f_n| > c \land |f| > c\}} |f_n| d\mu + \int_{\{|f_n| < c \land |f| > c\}} |f_n| d\mu \leq \int_{\{|f_n| > c\}} |f_n| + 2 \int_{\{|f| > c\}} |f|,$$

$$I_n^2(c) + I_n^3(c) < \frac{\varepsilon}{2}, \qquad \forall c \geq c_0,$$

z první části navíc $I_n^1(c) < \frac{\varepsilon}{2}, \, \forall n \geq n_0.$ Tedy $\int |f_n - f| d\mu < \varepsilon.$

$$, \Longrightarrow$$
 "Necht $f_n \stackrel{L_1}{\to} f$, $\varepsilon > 0$.

$$\forall c: \int_{\{|f_n|>c\}} |f_n| d\mu \leq \int_{\{|f_n|>c\}} |f_n - f| d\mu + \int_{\{|f_n|>c \land |f| \leq \frac{c}{2}\}} |f| + \int_{\{|f_n|>c \land |f|>\frac{c}{2}\}} |f| \leq \frac{c}{2} |f| + \frac{c}{2} |f|$$

$$\leq \int |f_n - f| d\mu + \frac{c}{2} \mu \left\{ x ||f_n(x) - f(x)| \geq \frac{c}{2} \right\} + \int_{\left\{ |f| > \frac{c}{2} \right\}} |f| d\mu \leq 2 ||f_n - f||_1 + \frac{\varepsilon}{2} < \varepsilon.$$

Protože $f \in L^1$, existuje $c_0 > 0$ takové, že $\int_{|f| > \frac{\varepsilon}{2}} |f| < \frac{\varepsilon}{2}$ pro $c > c_0$. Rovněž pro každou funkci f_1, \ldots, f_{n_0} existuje $c_i > 0$ takové, že $\int_{|f_i| > c} |f_i| < \varepsilon, \ c > c_i, \ i \in [n_0]$. Pro $c > \max \{c_{[n_0]_0}\}$ pak platí $\int_{|f_n| > c} |f_n| < \varepsilon$ pro všechna $n \in \mathbb{N}$. Tím je dokázána stejnoměrná integrovatelnost f_n .