Domain Prediction Using Context in *Plasmodium falciparum*

Alejandro Ochoa 2012-03-01

Protein domains

Domain predictions:

F-box

WD4(WD40 WD40

WD40 WD40 WD40

Pfam: a database of protein domain families

```
YACQ...VCH...KSFSRM...SLLNKHSSS..NC
SNAI DROME/362-385
                            YQCK...SCS...RTFSRM...SLLHKHEET..GC
SNAI XENLA/232-255
SNAI_MOUSE/236-259
                            YOCO...ACA...RTFSRM...SLLHKHOES..GC
                            YSCT...SCS...KTFSRM...SLLTKHSEG..GC
ESCA DROME/426-449
SUHW DROAN/221-243
                            HVCG...KCY...KTFRRL...MSLKKHLEF...
TERM DROME/323-346
                            LHCR...RCR...TQFSRR...SKLHIHQKL..RC
                            FMCA...DCG...RCFSVS...SSLKYHQRI...
Z020 XENLA/174-196
                            IKCK...DCG...QMFSTT...SSLNKHRRF..
EVI1 HUMAN/217-239
Z02 XENLA/34-59
                            YSCA...DCG...KHFSEK...MYLQFHQKNPSEC
                            YRCE...DCD...QLFESK...AELADHQKF..PC
EVI1 HUMAN/21-44
ZNF10 HUMAN/517-539
                            YKCN...QCG...IIFSQN...SPFIVHQIA...H
                            YKCE...ECG...KAFKQL...STLTTHKII...C
ZNF91 HUMAN/238-260
                            IKCE...ECG...KAFSTR...STYYRHQKN...H
ZFP58 MOUSE/120-142
                            YKCEF.ADCE...KAFSNA...SDRAKHONR..TH
TRA1 CAEEL/306-331
                            YTCS...TCG...KTYRQT...STLAMHKRS..AH
ZNF76 HUMAN/345-368
                            YRCS...QCG...KAFRRT...SDLSSHRRT..QC
ZN12 MICSA/106-129
LOLAL DROME/794-817
                            YECR...HCG...KKYRWK...STLRRHENV..EC
                            YECN...KCG...KFFRYC...FTLNRHQRV...H
ZNF17 HUMAN/435-457
                            FVCV...HCG...KGFRDN...YKLSLHLRI...H
ZG32 XENLA/34-56
                            YVCYF.ADCG...QQFRKH...NQLKIHQYI...H
TF3A BUFAM/104-128
                            YVCT...ECG...TSFRVR...PQLRIHLRT...H
ZG46 XENLA/146-168
MZF1_HUMAN/412-434
                            FVCG...DCG...OGFVRS...ARLEEHRRV...H
ZN239 MOUSE/6-28
                            YKCD...KCG...KGFTRS...SSLLVHHSV...H
                            YKCG...ECG...KTFSRS...THLTQHQRV...H
ZSC22 HUMAN/352-374
                            FACD...ICG...RKFARS...DERKRHTKI...H
EGR1 HUMAN/396-418
                            YACK...ICG...KDFTRS...YHLKRHQKYS.SC
SUHW DROAM/349-373
CF2 DROME/485-508
                            YTCP...YCD...KRFTQR...SALTVHTTK..LH
                            YTCS...YCG...KSFTQS...NTLKQHTRI...H
CF2 DROME/401-423
                            YTCE...ICD...GKFSDS...NQLKSHMLV...H
KRUP DROME/306-328
TYY1 HUMAN/383-407
                            YVCPF.DGCN...KKFAQS...TNLKSHILT...H
ZG52 XENLA/61-83
                            YTCT...QCN...KQFSHS...AQLRAHIST...H
TTKB DROME/538-561
                            YPOP...FOF...KEFTRK...DNMTAHVKI..IH
ZNF76 HUMAN/285-309
                            YTOPE.PHOG...RGFTSA...TNYKNHVRI...H
                            YMCQ...VCL...TLFGHT...YNLFMHWRT..SC
SDC1 CAEEL/145-168
                            YQCD...ICG...QKFVQK...INLTHHARI...H
SRYC DROME/358-380
SDC1 CAEEL/270-292
                            YFCH...ICG...TVFIEQ...DNLFKHWRL...H
TRA1 CAEEL/276-300
                            NKCEY.PGCG...KEYSRL...ENLKTHRRT...H
ESCA DROME/370-392
                            CKCN...LCG...KAFSRP...WLLQGHIRT...H
```

- 11,912 curated families!
- Profile Hidden Markov Models (HMMs): probabilistic models of sequence families

Why predict domains?

- For new sequences, before experiments start...
- Domains may imply functions
- Experimental alternatives are unfeasible as protein databases grow exponentially

Plasmodium falciparum

- Malaria
- Information challenges
 - Diverged eukaryote
 - 80% AT-bias
 - Low-complexity regions
- Annotation
 - 5.5K proteins
 - 45% unknown function
 - 20% unknown in yeast
 - 88% of annotations are bioinformatical

Domain Prediction Using Context: dPUC

DEAD Helicase_C zf-CCHC

RNA_pol_Rpb2RN/RNtRIRNA_pol_Rpb2_6RNA_pol_Rpb2_7

Background

- Domains co-occur in limited combinations
- Domains are scored independently of each other

• Idea

- Score domains in combination
- Context + Sequence evidence

General Solution: Integer Linear Programming

Max: $\Sigma_i S_i$

$$S_i = H_i X_i + \Sigma_j C_{ij} X_{ij}$$

$$X_{i}, X_{i}, X_{ji} \in \{0, 1\}$$

$$0 \leq x_i + x_j - 2 x_{ij} \leq 1$$

$$X_i + X_j \leq 1$$

$$S_i \ge 0$$

∀i (domain score)

$$\forall i,j \ (x_{ij} = x_i \& x_j),$$

 $\forall i,j$ with overlaps,

∀i (domain thresh)

Speedup: positive elimination

Problem: ILP is too slow with too many domains.

$$S_{i,P}^{+} = H_i + \Sigma_{j \in P} \max \{ 0, C_{ij} \}$$

Eliminate *i* unless $S_{i,P}^+ \ge 0$, iterate.

Very fast and effective!

Then solve remaining domains with ILP.

Other speedups (version 2):

- Trivial cases (no overlaps, all positive context)
- Use C library rather than call executable
- Better constraints

dPUC 2.0: LP constraints

Old
$$E_{ij} = D_i \& D_j$$
, $V = 5/12$

New
$$E_{ij} = D_i \& D_j$$
, $V = 2/12$

Improved signal to noise

Improved ortholog coherence on *Plasmodium* species

New predictions

- Phosphatase -> RNA lariat debranching enzyme
- P. falciparum

Standard Pfam dPUC Pfam

Metallophos

Metallophos

DBR1

S. cerevisiae

Standard Pfam dPUC Pfam

MetallophosDBR1
MetallophosDBR1

New predictions

- MIF4G domain-containing protein ->
 Poly-A binding protein-interacting protein 1
- P. falciparum

Length (aa) Standard Pfam dPUC Pfam

_ 350 400 450	<u> </u> 2650	2700	2750	2800	2850	2900	2950
		MIF4G					
PAM2			М	IIF4G			

H. sapiens

Length (aa) Standard Pfam dPUC Pfam

 [50	100	150	200	250	[300	[350	400	450
	PA	M2		MIF4G				
	PA	M2		MIF4G				

New predictions

RNA helicase -> mRNA sequestration

Description Organism	RNA helicase-1 <i>P. falciparum</i>						
Standard Pfam		DEAD	Helicas <u>e_</u> C	_			
dPUC Pfam		DEAD	Helicase_C zf-	<u>-с</u> снс			
Description Organism	DDX 41 _DROME ATP-dependent RNA helicase abstrakt D. melanogaster						
Standard Pfam		DEAD	Helicase_C				
dPUC Pfam		DEAD	Helicase_C zf-CC	нс			
Description Organism	DDX41_HUMAN Probable ATP-dependent RNA helicase DDX41 H. sapiens						
Standard Pfam dPUC Pfam		DEAD	Helicase_C zf-CC	HC			
		DEAD	<u> Helicase_C zf-CC</u>	HC			

Domain context

- Complements sequence evidence
- Improves domain predictions
- Works best on Plasmodium

Mona Singh & Lab

- Jesse Farnham
- Dario Ghersi
- Peng Jiang
- Anton Persikov
- Jimin Song
- Josh Wetzel

Thesis Committee

- Leonid Krugliak
- Saeed Tavazoie

dpuc.princeton.edu

Manuel Llinás & Lab

- Lindsey Altenhofen
- Katie Baska
- Simon Cobbold
- Björn Kafsack
- Ian Lewis
- Yael Marshall
- Jessica O'Hara
- Heather Painter
- Joana Santos
- Ariel Schneider
- April Williams

NSF GRFP