man über alle Phasen integrieren muss. Sei nun S unser normiertes Ausgangssignal **Notes** und P die Phasenverteilungsfunktion, so

ergibt sich die Beziehung

¹Fourier transformation

 $S(t) = S_0(t) \int_0^\infty P(\phi, t) e^{i\phi} d\phi \qquad (2)$

²Phase distribution function

³Fourier transformation

⁴Phase distribution function

wobei
$$S_0$$
 das Signal ohne Gradient ⁴Ph ist und die Normierungsbedingung

ist und die Normierungsbedingung
$$\int_{-\infty}^{\infty} P(\phi, t) d\phi = 1 \text{ gilt. Nun dürfen}$$