Neuronal Stem Cell: DNA Replication

Brain:

Neural Stem Cells & Progenitor Cells

Basic Genetic Processes: R² T⁵

Replication of DNA (during Cell Division)

Protein Formation Steps:

- > Transcription,
- > RNA processing,
- > Transference,
- > Translation
- > Translocation

DNA Reproduces Semi-Conservatively (Meselson-Stahl Expt.)

Stage 1: Translation

DNA Template Strand

Forming Pre-mRNA

RNA polymerase Start site Stop site on template on template INITIATION strand strand Polymerase binds to 5', MANAGE STATE S promoter sequence in duplex DNA. "Closed complex" Promoter Polymerase melts duplex DNA near 5', transcription start site, forming a transcription bubble. "Open Transcription complex" bubble Initial rNTPs Polymerase catalyzes DODOO DOO S phosphodiester linkage of two initial rNTPs.

14 base pairs,

1000 nucleotides per minute

Three Stages of Transcription

ELONGATION

Polymerase advances
3' → 5' down template
strand, melting duplex
DNA and adding rNTPs
to growing RNA.

TERMINATION

5 At transcription stop site, polymerase releases completed RNA and dissociates from DNA.

primary transcript

(a) SV40 DNA replication fork **Monkey DNA Replication:** Large T-antigen Pol α Lagging strand 5 Pol δ **Simian Virus 40** 4 Primase Rfc Primer **PCNA 700000** 5' (b) PCNA Double-VIV stranded DNA Pol δ Leading strand 3 **PCNA** Single-(c) RPA stranded DNA

RNA polymerase Start site Stop site on template on template INITIATION strand strand Polymerase binds to 5', MANAGE STATE S promoter sequence in duplex DNA. "Closed complex" Promoter Polymerase melts duplex DNA near transcription start site, forming a transcription bubble. "Open Transcription complex" bubble Initial rNTPs Polymerase catalyzes phosphodiester linkage of two initial rNTPs.

Three Stages of Transcription

ELONGATION

Polymerase advances
3' → 5' down template
strand, melting duplex
DNA and adding rNTPs
to growing RNA.

14 base pairs

1000 nucleotides per minute

TERMINATION

At transcription stop site, polymerase releases completed RNA and dissociates from DNA.

primary transcript

Bi-directional Mechanism of DNA Replication

DNA Outside Nucleus:

Human Mitochondrial Clock

Mitochondrion Outer Mitochondrial Inner membranes - Matrix Intermembrane space Golgi Exoplasmic Lysosome Cytosolic Endoplasmic reticulum Plasma membrane Nucleus' Exterior Cytosol Inner Nuclear membranes Intermembrane space

SNP rate Subregions Regions(s) (or site within codon) (per site * year) 1.6×10^{-7} HVR I Control 2.3×10^{-7} HVR II region 1.5 × 10⁻⁸ remaining 8.8×10^{-9} Protein-(1st and 2nd) 1.9×10^{-8} coding (3rd) 8.2×10^{-9} DNA encoding rRNA (rDNA) 6.9×10^{-9} DNA encoding tRNA (tDNA) 2.4×10^{-8} other T_{CHI CA} assumed 6.5 Ma, relative rate to 1st & 2nd codons

Mitochondrial Circular DNA Like Plasmid

(Mitochondria: a bacteria earlier)

small ribosomal RNA Large ribosomal RNA Leu Glu ND1 ND6 -lle ND5 **Human mtDNA** GInf-Met L strand -ND2 H strand Ala Leu Cys Ser Tyr His ND4 Arg Asp Gly Lys ND4L Cytochrome c Cytochrome c ND3 oxidase 3 **ATPase** ATPase subunit 8

Phe

Thr

Annual Mutation:

SNP Rates