Background subtraction

Adaptive Gaussian Mixture Model

Andrea Mazzeo Daniele Moltisanti

GMM overview

For each pixel generates a mixture of gaussian distributions

$$p(X_t) = \sum_{i=1}^{k} w_{i,t} * N(X_i, \mu_{i,t}, \Sigma_{i,t})$$

- Two steps:
 - 1. Update the model
 - 2. Check if pixel belongs to background

Mahalanobis distance

$$\left(\sqrt{(x-\mu)^T*\Sigma(x-\mu)}\right) < T\sigma^{-1}$$

- Two possibile cases:
 - Match with one gaussian
 - No match with any gaussian

Towards our implementation

- Slow updating in transition scenario
- Two parameters usefull:
 - Threshold

Allows to manage the foreground detection.

Learning rate

Allows to manage the learning capability.

Threshold example

- THRESHOLD VALUE = 20
- Never used, due to its instability
- Result few accurate

Threshold example

- THRESHOLD VALUE = 70
- Foreground detected highly accurated
- Subject to instability
- Default value of OpenCV function
- Used in daily scenario

Threshold example

- THRESHOLD VALUE = 140
- More stability
- Allows to reduce lights effects
- Less realistic foreground detection
- Used in night scenario

Learning rate example

- LEARNING RATE VALUE = 0,001
- Learning too slow
- Used as lower bound
- Used in stable scenario:
 - Day
 - Night

Learning rate example

- LEARNING RATE VALUE = 0,05
- Learning fast
- Used as higher bound
- Used in transition scenario:
 - Sunset
 - Sunrise

Learning rate example

- LEARNING RATE VALUE = 0,1
- Learning too fast
- Never used

The main problem

Manage GMM parameters in automatic way. Regularized as a function of time.

Our idea

- Split the time in three scenario:
 - Day time
 - Night time
 - Transition: Sunrise, Sunset.
- According to each scenario, GMM parameters have to be set.
- Day:
 - Normal threshold Low learning rate
- Night:
 - High threshold Low learning rate
- Transition:
 - Normal threshold High learning rate

Our implementation

Training phase

- The goal is to acquire a gaussian model able to descern night and day.
- The model is build starting from the average of pixel value.
- The training phase is universal. It provides a general model valid for each webcam.

Training phase

How the average is computed?

- Taking 500 points from 5 squares
- Random points with uniform distribution
- Able to cover all image

Background subtraction

- 1. Each five frames takes one frame.
- 2. Evaluate the average.
- 3. Understand the scenario (night, day, transition).
- 4. Regulate the GMM parameters.
- 5. Update the gaussians.

Background Subtraction

Update GMM parameters

Results analysis

Compare ground truth and model identified:

- If pixel is classified as foreground in both → True Positive
- If pixel is classified as background in both → True Negative
- If pixel is classified as foreground in ground-truth and background in model identified → False Negative
- If pixel is classified as background in ground-truth and foreground in model identified

 False Positive

Results analysis

Evaluation metrics

$$\frac{TP + TN}{TP + TN + FP + FN} \qquad \frac{TP}{TP + FP} \qquad \frac{TP}{TP + FN} \qquad 2\frac{Recall \times Precision}{Recall + Precision}$$
 Accuracy Precision Recall F1 score

GROUND-TRUTH

Results analysis

Average results:

BACKGROUND DETECTED

ORIGINAL FRAME

Results analysis

- Check pixel per pixel differences between the two images
- Use a little threshold
- Results:

Results analysis

- From detected background and original frame extract a matrix made up by differences
- Create an image starting from this matrix
- This image represents the error

Thank you

Andrea Mazzeo Daniele Moltisanti