MATHEMATICAL REASONING Chapter 16

3rd SECONDARY

SERIES I

DEFINICIÓN

Es la adición indicada de los términos de una sucesión. Es decir, sea la sucesión:

Entonces:

$$t_1 + t_2 + t_3 + t_4 + \dots + t_n = S$$

$$SERIE VALOR$$

$$DE LA$$

$$SERIE$$

$$SERIE$$

Donde,

$$t_k$$
: Forma General de los Sumandos

CLASIFICACIÓN

Es la adición indicada de los términos de una Sucesión Aritmética.

Por Ejemplo

Calcule el valor de la serie

$$1^{\circ}$$
 2° 3° ... 9° 10° $S = 5 + 8 + 11 + \dots + 29 + 32$

Calculamos el valor de la serie así:

$$S = 5 + 8 + 11 + \dots + 29 + 32$$

$$S = 32 + 29 + 26 + \dots + 8 + 5$$

$$2S = 37 + 37 + 37 + \dots + 37 + 37$$

$$\Rightarrow S = \frac{(5+32) \times}{2} = \underline{185}$$

ENCENERAL

$$S.A. = \left(\frac{t_1 + t_n}{2}\right)n$$

Donde, t_1 : Primer sumando

 t_n : Último sumando

n : Cantidad de sumandos

Calcule el valor de la serie.

$$1^{\circ} 2^{\circ} 3^{\circ} \dots 9^{\circ} 10^{\circ}$$

 $S = 5 + 8 + 11 + \dots + 29 + 32$

$$S = \left(\frac{5+32}{2}\right)^{\frac{5}{10}}$$

$$S = (37)5$$

$$S = 185$$

SERIES NOTABLES

Dentro de las Series más comunes podemos mencionar a las siguientes:

SERIEDELOS PRIMEROS NÚMEROS NATURALES

$$S = 1 + 2 + 3 + \dots + (n - 1) + n$$
 \longrightarrow $S = \frac{n(n+1)}{2}$

SERIE DE LOS PRIMEROS NÚMEROS PARES

$$S = 2 + 4 + 6 + 8 + \dots + 2n$$

$$\longrightarrow S = n(n+1)$$

SERIEDELOS PRIMEROS NÚMEROS IMPARES

$$S = 1 + 3 + 5 + 7 + \dots + (2n - 1)$$

$$S = n^2$$

SERIE DE LOS PRIMEROS NÚMEROS CUADRADOS

$$S = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$$
 \longrightarrow $S = \frac{n(n+1)(2n+1)}{6}$

$$S = \frac{n(n+1)(2n+1)}{6}$$

☐ SERIEDELOS PRIMEROS NÚMEROS CÚBICOS

$$S = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3$$
 \longrightarrow $S = \left(\frac{n(n+1)}{2}\right)^2$

$$S = \left(\frac{n(n+1)}{2}\right)^2$$

PROBLEMA 1

Marcia es una comerciante de un mercado que presta dinero a sus socios y anota lo que presta en una libreta. Si después de 40 días decide sacar la cuenta de cuánto ha prestado a sus socios llegando a anotar la siguiente sumatoria en su libreta:

$$S = 3 + 8 + 13 + 18 + \cdots$$
40 sumandos

¿Cuánto fue lo que prestó?

Resolución:

$$40 \text{ sumandos}$$
 $-2 3 + 8 + 13 + 18 + \cdots$
 $+5 + 5 + 5 + 5 + 5$

$$t_n = 5n - 2$$
 $t_{40} = 5(40) - 2$
 $t_{40} = 198$

$$S = \left(\frac{3 + 198}{2}\right)^{\frac{20}{40}}$$

$$S = (201)20$$

$$S = 4020$$

Prestó: 4020

01

PROBLEMA 2

Calcule la suma de los 20 primeros números enteros positivos que son múltiplos de 9.

Recordemos:

$$S = \frac{n(n+1)}{2}$$

HELICO | PRACTICE

PROBLEMA 3

Geovani es el papá de Ronald quien es profesor de Literatura. Geovani le propone a su hijo ir al cine pero le pone como condición un reto matemático que consiste en resolver el siguiente problema:

Efectúe:

$$2 + 4 + 6 + 8 + \cdots + 80$$

¿Cuál fue su respuesta? Recordemos:

$$S = n(n+1)$$

Resolución:

$$t_{n} = 2n$$

$$S = \left(\frac{2 + 80}{2}\right)^{2}$$

$$80 = 2n$$

 $40 = n$
 $S = (82)20$
 $S = 1640$

Otra forma:

$$S = 2 + 4 + 6 + 8 + \dots + 80 \rightarrow n = 40$$

 $S = 40(41)$
 $S = 1640$

HELICO | PRACTICE

PROBLEMA 4

Ricardo se había comprado el álbum del mundial Rusia 2018 y para completarlo, decidió comprar figuritas de la siguiente manera: El primer día compró 1, el segundo día compro 3, el tercer día compró 5, el cuarto día compró 7 y así sucesivamente hasta que el último día compró 8 veces de lo que compró el tercer día, aumentado en 19. Podría usted decir, ¿cuántas figuritas compró en total Ricardo?

Recordemos:

$$S = n^2$$

Resolución:

$$t_{n} = 2n - 1$$

$$59 = 2n - 1$$

$$60 = 2n$$

$$30 = n$$

$$S = (60)15$$

$$S = (900)$$

Otra forma:

$$S = 1 + 3 + 5 + 7 + \dots + 59 \rightarrow n = 30$$

 $S = (30)^2$
 $S = 900$ \therefore 900

HELICO | PRACTICE

PROBLEMA 5

El alumno Víctor al estar desarrollando su tarea semanal se confundió al resolver el siguiente problema:

Halle el valor de la serie:

$$H = 1^2 + 2^2 + 3^2 + 4^2 + \dots + 20^2$$

Si la respuesta de Víctor fue de 10 unidades más que la correcta.

¿Cuál fue la respuesta de Víctor?

PROBLEMA 6

Resolución:

$$H = 1^2 + 2^2 + 3^2 + 4^2 + \dots + 20^2$$

$$\rightarrow n = 20$$

01

Recordemos:

$$S = \frac{n(n+1)(2n+1)}{6}$$

Reemplazando:

$$H = \frac{{10 \choose 20(21)(41)}}{{10 \choose 20}}$$

$$H = 70(41)$$

$$\rightarrow H = 2870$$

Respuesta de Víctor:

PROBLEMA 6

Un grupo de 35 estudiantes del quinto grado; con el objeto de convocar a jóvenes de su edad que apoyen una campaña contra la contaminación ambiental emprendieron dicha labor logrando captar un número considerable de simpatizantes como muestra el siguiente cuadro

Día	1°	2°	3°	4°	5°	•••
N° de simpatizantes	35	39	43	47	51	•••

Dicha campaña duro 20 días. Determine cuántos jóvenes apoyan la causa contra la contaminación ambiental.

Resolución:

31 35 + 39 + 43 + 47 + 51 + ...
$$S = \left(\frac{35 + 111}{2}\right)^{10}$$

$$t_n = 4n + 31$$

$$t_{20} = 4(20) + 31$$

$$S = (146)x 10$$

$$S = 1460$$

PROBLEMA 7

Las principales causas de los incendios forestales en el mundo son: el cambio climático y las practicas del uso de la tierra. Es así que las áreas de bosques incendiadas en el mundo en promedio cada año varían de acuerdo al siguiente cuadro; en miles de kilómetros cuadrados.

Año	2000	2001	2002	2003	•••
Km^2	2	4	6	8	•••

Para el año 2025 cuál será el total de kilómetros cuadrados incendiados de área forestal en el mundo.

Resolución:

$$0 \underbrace{2^{\circ} + 4 + 6 + 8 + \cdots + 2n}_{+2 + 2 + 2}$$

$$S = \left(\frac{2 + 52}{2}\right)^{\frac{13}{26}}$$

