

Proyecto 2: Clustering

Prof. Ariana Villegas

1. Sección teórica. (30 pts)

1.1. Fundamentos de K-means y GMM. (10 pts)

Considere algoritmos de agrupamiento para datos $D = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}\$ con $x^{(i)} \in \mathbb{R}^d$.

- 1. La función objetivo de k-means se define como $J(\mu_1, \dots, \mu_k, z) = \sum_{i=1}^N \sum_{j=1}^k z_{ij} ||x^{(i)} \mu_j||^2$, donde $z_{ij} \in \{0, 1\}$ indica las asignaciones de clúster. Explique por qué esta función nunca aumenta durante las iteraciones del algoritmo y por qué esto no garantiza encontrar el óptimo global. (5 pts)
- 2. Compare k-means y Modelos de Mezclas Gaussianas (GMM) matemáticamente. Específicamente, describa qué suposiciones hace cada modelo sobre la forma y el tamaño de los clústeres, y proporcione un ejemplo simple de datos donde GMM superaría a k-means. (5 pts)

1.2. Agrupamiento Jerárquico. (10 pts)

Para un conjunto de datos $D = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}\$ con $x^{(i)} \in \mathbb{R}^d$:

- 1. En el agrupamiento jerárquico aglomerativo:
 - (a) Defina matemáticamente las métricas de distancia de enlace simple, enlace completo y enlace promedio entre clústeres. (5 pts)
 - (b) Para el conjunto de datos en \mathbb{R}^2 con puntos: (1,1), (2,1), (5,3), (6,3) y (10,5), muestre las primeras dos fusiones que ocurrirían usando enlace simple y explique cómo el resultado podría diferir con enlace completo. (5 pts)

1.3. Agrupamiento Basado en Densidad. (10 pts)

Para algoritmos de agrupamiento basados en densidad:

- 1. Defina formalmente los conceptos de puntos directamente alcanzables por densidad, alcanzables por densidad y conectados por densidad en DBSCAN. (5 pts)
- 2. Utilizando un pequeño ejemplo de conjunto de datos, ilustre cómo DBSCAN puede identificar clústeres de forma arbitraria mientras explica por qué k-means fallaría en el mismo conjunto de datos. (5 pts)

2. Sección aplicada. (70 pts)

- 1. Para este proyecto, desarrollarás un sistema de recomendación de películas basado en técnicas de agrupamiento de imágenes. El sistema recomendará películas similares analizando y agrupando características visuales de pósters o fotogramas de películas. Para entrenar su sistema de recomendación utilicen el archivo movies_train.csv, y para la evaluación empleen el archivo movies_test.csv siguiendo el formato de sample_submission.csv. Ambos archivos están disponibles en el siguiente enlace de Drive.
- 2. Puedes obtener los datos de las siguientes fuentes:
 - a) MovieLens Dataset (25M o más pequeño) [Recommended]
 - b) Movie Genre from Poster Dataset
 - c) TMDb API (para descargar pósters adicionales si es necesario)
- 3. Extrae características visuales de los pósters de películas utilizando técnicas tradicionales de computer vision. E.g.: a) Histogramas de color (RGB, HSV), b) Descriptores de textura (GLCM, LBP), de forma o bordes (HOG, SIFT), c) Momentos de imagen (Hu, Zernike).
- 4. Reduce la dimensionalidad de los vectores de características extraídos utilizando al menos dos técnicas. Ej.
 - a) PCA (Análisis de Componentes Principales)
 - b) LDA (Análisis Discriminante Lineal) si tienes etiquetas de género
 - c) SVD (Descomposición en Valores Singulares)

Analiza y compara los resultados obtenidos con ambos métodos.

- 5. Implementa dos algoritmos de agrupamiento distintos para organizar las películas según sus características visuales. Compara los resultados y justifica cuál es más adecuado para agrupar pósters de películas. E.g.:
 - a) Un método de particionamiento (K-means, K-medoids)
 - b) Un método jerárquico (Agrupamiento jerárquico)
 - c) Un método basado en densidad (DBSCAN, OPTICS)
 - d) Un método basado en distribución (GMM)
- 6. Desarrolla un visualizador simple pero funcional que permita:
 - a) Buscar películas por similitud visual (seleccionando un póster o subiendo una imagen)
 - b) Mostrar películas representativas de cada grupo (cluster)
 - c) Visualizar la distribución de películas en un espacio bidimensional según sus características visuales
 - d) Filtrar resultados por género, año u otros metadatos disponibles
- 7. Evalúa la calidad de las agrupaciones y recomendaciones mediante:
 - a) Métricas internas: silhoutte score, rand index, información mutua
 - b) Análisis de coherencia de género dentro de cada grupo (¿las películas dentro de un mismo grupo comparten géneros similares?)
 - c) Ejemplos concretos de recomendaciones generadas y su relevancia

Uso de bibliotecas: Para preprocesamiento/métodos/métricas distintas a las que requieren explicitamente implementación, eres libre de utilizar bibliotecas.

2.1. Rúbrica de Evaluación

Criterios	Excelente	Bueno	Aceptable	Deficiente
Extracción de	Implementación de	Buena implementa-	Implementación	Implementación
Características	dos o más técnicas	ción de dos técnicas.	básica con análisis li-	incorrecta. Carac-
Visuales (15 pts)	con análisis profun-	Características útiles	mitado. Característi-	terísticas inadecua-
	do. Características	para el clustering.	cas parcialmente	das.
	altamente discrimi-		útiles.	
	nativas.			
Algoritmos de	Implementación ex-	Implementación co-	Implementación	Implementación defi-
Clustering (15	perta de dos algo-	rrecta con buena se-	básica con configu-	ciente o uso incorrec-
pts)	ritmos con optimiza-	lección de paráme-	ración estándar y	to. Sin análisis o jus-
	ción rigurosa. Com-	tros y análisis com-	análisis limitado.	tificación.
	paración crítica y jus-	parativo.		
	tificación sólida.			
Sistema de Re-	Sistema sofistica-	Sistema funcional	Sistema básico con	Sistema deficiente.
comendación (10	do que aprovecha	que utiliza apropia-	uso limitado de los	Recomendaciones
pts)	eficazmente los	damente los clusters.	clusters. Recomen-	irrelevantes o sin
	clusters. Recomen-	Recomendaciones	daciones simples.	relación con el clus-
	daciones de alta	razonables.		tering.
	calidad.			
Visualizador In-	Visualizador comple-	Visualizador funcio-	Visualizador simple	Visualizador defi-
teractivo (10 pts)	to e interactivo. Re-	nal con capacidades	con funcionalidad li-	ciente o no funcional.
	presentación clara de	interactivas básicas.	mitada. Representa-	No permite explorar
	clusters y recomen-	Buena representa-	ción básica.	resultados.
	daciones. Interfaz in-	ción.		
	tuitiva.			
Evaluación del	Evaluación rigu-	Buena evaluación	Evaluación bási-	Evaluación super-
Sistema (10 pts)	rosa con múltiples	con métricas apro-	ca con métricas	ficial o incorrecta.
	métricas. Análisis	piadas. Análisis	estándar. Análisis	Métricas inadecua-
	profundo. Compara-	comparativo adecua-	limitado.	das.
	ciones sistemáticas.	do.		
Votación Mejor	5 votos = 5 puntos.	4 votos = 4 puntos.	3 votos = 3 puntos.	1-2 votos = 1-2 pun
Recomendación				tos.
(5 pts)				
Informe Técnico	Informe ejemplar	Buen informe con es-	Informe básico con	Informe incompleto
(5 pts)	con visualizaciones	tructura clara. Resul-	análisis superficial.	o desorganizado.
	profesionales. Análi-	tados bien presenta-		Análisis deficiente.
	sis crítico y reflexivo.	dos.		

Cuadro 1: Rúbrica para el Sistema de Recomendación Basado en Clustering

^{*} Evita usar capturas de pantalla para mostrar resultados como precisión, puntuación F1, pérdida o error. En su lugar, asegúrate de que todos los resultados estén correctamente formateados y presentados dentro del documento.

^{*} El documento debe tener **un máximo de 8 páginas** y puede incluir cualquier número de apéndices que se consideren apropiados.