习题一

一、单项选择题(本大题共10小题,每题只有一个正确答案,答对一题得2分,

1.设行列式
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
=m, $\begin{vmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{vmatrix}$ =n,则行列式 $\begin{vmatrix} a_{11} & a_{12} + a_{13} \\ a_{21} & a_{22} + a_{23} \end{vmatrix}$ 等于【 】

A. m+n

B. -(m+n) C. n-m D. m-n

2.设矩阵
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & -1 \\ -2 & 1 & 4 \end{pmatrix}$$
, $A^* \in A$ 的伴随矩阵,则 A^* 中位于(1, 2)的元素是【 】

3.设 A 是方阵,如有矩阵关系式 AB=AC,则必有【 】

A. A=0 B. $B \neq C$ $\forall A=0$ C. $A \neq 0$ $\forall B=C$ D. $|A| \neq 0$ $\forall B=C$

4.已知 3×4 矩阵 **A** 的行向量组线性无关,则秩(\mathbf{A}^{T})等于【 】

B. 2 C. 3 D. 4

5.设矩阵 **A** 的秩为 **r**,则 **A** 中【 】

A. 所有 r-1 阶子式都不为 0 B. 所有 r-1 阶子式全为 0

C. 至少有一个 r 阶子式不等于 0

D. 所有 r 阶子式都不为 0

6.设 Ax=b 是一非齐次线性方程组, η_1 , η_2 是其任意 2 个解,则下列结论错误的是【 1

A. $\eta_1 + \eta_2 \not\in Ax = 0$ 的一个解 B. $\frac{1}{2} \eta_1 + \frac{1}{2} \eta_2 \not\in Ax = b$ 的一个解

C. $\eta_{1} - \eta_{2} = Ax = 0$ 的一个解 D. $2 \eta_{1} - \eta_{2} = Ax = b$ 的一个解

7.设 n 阶方阵 A 不可逆,则必有【】

A. 秩(A)<n B. 秩(A)=n-1 C. A=0 D. 方程组 Ax=0 只有零解

8. 设 $A \neq n$ 阶方阵,则 A 能与 n 阶对角阵相似的充要条件是【

A. A 是对角阵

B. A 有 n 个互不相同的特征向量

C. A有n个线性无关的特征向量 D. A有n个互不相同的特征值

9.设 A 是正交矩阵,则下列结论错误的是【 】

A. $|\mathbf{A}|^2$ 必为 1 B. $|\mathbf{A}|$ 必为 1 C. $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$ D. A 的行(列)向量组是正交单位向量组 10.设 **A** 是实对称矩阵,**C** 是实可逆矩阵, $\mathbf{B} = \mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{C}$.则【

A. A 与 B 相似 B. A 与 B 不等价 C. A 与 B 有相同的特征值 D. A 与 B 合同

二、填空题(本大题共 10 小题, 每题 3 分, 共 30 分。)

11. 行列式
$$D = \begin{vmatrix} k & 2 & 0 \\ 1 & k+1 & 0 \\ 2 & 0 & 2 \end{vmatrix}$$
 中, $k =$ ______时, $D = 0$ 。
12.设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$,则 \mathbf{A}^{-1} 等于______。

13.设 $\mathbf{A} = (a_{ij})_{3\times 3}$, $|\mathbf{A}| = 2$, \mathbf{A}_{ij} 表示 $|\mathbf{A}|$ 中元素 a_{ij} 的代数余子式(i,j = 1,2,3),则

 $(a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23})^2 + (a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23})^2 + (a_{31}A_{21} + a_{32}A_{22} + a_{33}A_{23})^2 = \underline{\hspace{2cm}} \circ$

14. 若向量组 α_1 , α_2 , α_3 与向量组 β_1 , β_2 , β_3 等价, 其中 β_1 = $(1,0,0,0)^{\mathsf{T}}$, β_2 = $(0,1,0,0)^{\mathsf{T}}$,

 $β_3$ =(1, 1, 0, 0)^T,则向量组α₁, α₂, α₃的秩为____。

15.设向量(2, -3, 5)与向量(-4, 6, a)线性相关,则 a=____。

16.设 **A** 是 3×4 矩阵, 其秩为 3, 若 \mathbf{n}_1 , \mathbf{n}_2 为 **Ax=b** 的 2 个不同的解,则它的通解为_____。

17.设 \mathbf{A} 是 $\mathbf{m} \times \mathbf{n}$ 矩阵, \mathbf{A} 的秩为 $\mathbf{r}(<\mathbf{n})$,则 $\mathbf{A}\mathbf{x}=\mathbf{0}$ 的一个基础解系中含有解的个数为_____。

18.设向量 α 、 β 都是单位向量,则向量 α + β 与 α — β 的内积(α + β , α — β) = ______。

19.设 3 阶矩阵 A 的行列式|A|=8,已知 A 有 2 个特征值-1 和 4,则另一特征值为。

20.设矩阵
$$A = \begin{pmatrix} 0 & 10 & 6 \\ 1 & -3 & -3 \\ -2 & 10 & 8 \end{pmatrix}$$
,已知 $\alpha = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ 是它的一个特征向量,则 α 所对应的特征值

为____。

三、计算题(本大题共 4 小题, 共 42 分)

21.设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$$
, 求 $\left(\mathbf{A}^*\right)^{-1}$ 。(8分)

22.设矩阵
$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
,求矩阵 \mathbf{B} 使其满足矩阵方程 $\mathbf{AB} = \mathbf{A} + 2\mathbf{B}$ 。(8分)

23.求 方程组
$$\begin{cases} x_1 + x_3 = -3 \\ 2x_1 - x_2 + 4x_3 = -4 \end{cases}$$
的通解。(12分)
$$x_1 - x_2 + 3x_3 = -1$$

24.设实二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+3x_3^2+4x_2x_3$,求正交变换 X=PY 化该二次型为标准形。(14 分)

四、证明题:

- 25. 设 η_0 是非齐次线性方程组 **Ax=b** 的一个特解, ξ_1 , ξ_2 是其导出组 **Ax=0** 的一个基础解系.试证明: η_0 , η_0 + ξ_1 , η_0 + ξ_2 线性无关。(8分)
- 26. 已知 A 为 $m \times n$ 实矩阵,证明: $A^T A$ 是正定矩阵的充分必要条件为 秩 $(A) = n \cdot (8 \text{ } f)$

习题二

一、单项选择题(本大题共 10 小题,每题只有一个正确答案,答对一题得 2 分,共 20 分)

1. 设 A	是4阶矩阵	, 则 -A =【	
--------	-------	-----------	--

A. -4|A| B. -|A| C. |A| D. 4|A|

2. 设 A 为 n 阶可逆矩阵,下列运算中正确的是【】

A. $(2A)^{T}=2A^{T}$ B. $(3A)^{-1}=3A^{-1}$ C. $[(A^{T})^{T}]^{-1}=[(A^{-1})^{-1}]^{T}$ D. $(A^{T})^{-1}=A$

3. 设 2 阶方阵 A 可逆,且 $A^{-1} = \begin{pmatrix} -3 & 7 \\ 1 & -2 \end{pmatrix}$,则 $A = \mathbf{C}$

A. $\begin{pmatrix} -2 & 7 \\ 1 & -3 \end{pmatrix}$ B. $\begin{pmatrix} 2 & 7 \\ 1 & 3 \end{pmatrix}$ C. $\begin{pmatrix} 2 & -7 \\ -1 & 3 \end{pmatrix}$ D. $\begin{pmatrix} 3 & 7 \\ 1 & 2 \end{pmatrix}$

4. 设向量组 α₁, α₂, α₃线性无关,则下列向量组线性无关的是【

A. α_1 , α_2 , $\alpha_1 + \alpha_2$ B. α_1 , α_2 , $\alpha_1 - \alpha_2$

C. α_{1} - α_{2} , α_{2} - α_{3} , α_{3} - α_{1} D. α_{1} + α_{2} , α_{2} + α_{3} , α_{3} + α_{1}

5. 向量组 α_1 = (1, 0, 0), α_2 = (0, 0, 1), 下列向量中可以由 α_1 , α_2 线性表出的是【 1

A. (2, 0, 0) B. (-3, 2, 4) C. (1, 1, 0) D. (0, -1, 0)

6. 设 A, B 均为 3 阶矩阵, 若 A 可逆, 秩 (B) =2, 那么秩 (AB) = 【 】

A. 0

B. 1 C. 2

7. 设 A 为 n 阶矩阵, 若 A 与 n 阶单位矩阵等价, 那么方程组 Ax=b【

A. 无解

B. 有唯一解 C. 有无穷多解

D. 解的情况不能确定

8. 在 \mathbb{R}^3 中,与向量 α_1 = (1, 1, 1), α_2 = (1, 2, 1)都正交的单位向量是【

A. (-1, 0, 1) B. $\frac{1}{\sqrt{2}}$ (-1, 0, 1) C. (1, 0, -1) D. $\frac{1}{\sqrt{2}}$ (1, 0, 1)

9. 下列矩阵中,为正定矩阵的是【

 $A. \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix} \qquad B. \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad C. \quad \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D. \quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

10. 已知 A 是 n 阶实对称矩阵, $A^2=A$,秩(A)=n,则 x^TAx 是【

A. 正定二次型 B. 负定二次型 C. 既不正定也不负定 D. 无法判断

二、填空题(本大题共10小题, 每题3分,共30分。)

12. 设行矩阵
$$A=(a_1\,a_2\,a_3)$$
 , $B=(b_1\,b_2\,b_3)$,且 $A^TB=\begin{bmatrix} 1 & 2 & 1 \\ -1 & -2 & -1 \\ 1 & 2 & 1 \end{bmatrix}$,则 $AB^T=$ _______。

- 13. 设 A 为 3 阶方阵,且 $|A| = \frac{1}{2}$,则 $|2A^*| = ______.$
- 14. 当向量组 α ¡=(1, 2, 3), α ₂=(2, 2, 2), α ₃=(3, 0, t) 线性相关时, t=_____。
- 15. 若3元齐次线性方程组Ax=0的基础解系含2个解向量,则矩阵A的秩等于_____

16. 矩阵
$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & -1 \\ -3 & 1 & 2 \end{pmatrix}$$
的秩等于______。

- 17. 设 α_1 , α_2 是非齐次线性方程组 Ax=b 的解,又已知 k_1 α_1+k_2 α_2 也是 Ax=b 的解,则 $k_1+k_2=$ ____。
- 18. 已知 $P^{-1}AP = \begin{pmatrix} 1 & & \\ & 2 & \\ & & -1 \end{pmatrix}$,其中 $P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$,则矩阵 A 的属于特征值 $\lambda = -1$ 的特征向

量是____。

- 19. 设 A 为 n 阶方阵,已知矩阵 E-A 不可逆,那么矩阵 A 必有一个特征值为_____。
- 20. 实对称矩阵 $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 3 & 5 \end{pmatrix}$ 所对应的二次型 $\mathbf{x}^T A \mathbf{x} = \underline{\hspace{1cm}}$ 。
- 三、计算题(本大题共4小题,共计42分)
- 21. 设 $A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix}$,矩阵 B 满足 AB = A + 2B,求 B。(8分)
- 22. 设向量 $\alpha_1 = (1,2,1)^T$ 和 $\alpha_2 = (1,1,2)^T$ 都是方阵 A 的属于特征值 $\lambda = 2$ 的特征向量,又向量 $\beta = \alpha_1 + 2\alpha_2$,求 $A^2\beta$ 。(8 分)
- 23. 给定向量组 $\alpha_1 = (-2,1,0,3)^T$, $\alpha_2 = (1,-3,2,4)^T$, $\alpha_3 = (3,0,2,-1)^T$, $\alpha_4 = (0,-1,4,9)^T$.

试判断 α_4 是否为 α_1 , α_2 , α_3 的线性组合;若是,则求出组合系数。(12分)

24. 设已知
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
求正交矩阵 P ,使 $P^{-1}AP$ 为对角矩阵。(14 分)

四、证明题

25. 设 η_0 是非齐次线性方程组 **Ax=b** 的一个特解, ξ_1 , ξ_2 ,…, ξ_r 是其导出组 **Ax=0** 的一个基础解系.

试证明: η_0 , $\eta_{0+}\xi_1$, $\eta_{0+}\xi_2$, …, $\eta_{0+}\xi_1$ 线性无关。(8分)

26. 已知 A 为 $m \times n$ 实矩阵,证明: $A^T A$ 是正定矩阵的充分必要条件为 秩 (A) = n。

习题三:							
一、单项选择题(本大题共10小题,每小题2分,共20分。)							
1. 设 A 是 3 阶方阵,且 $\left A\right =2$,则 $\left -A\right =$ 【							
A6	B. -2	C. 2	D. 6				
2. 设 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,	则 A 的伴随矩阵 A	*= []					
A. $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	B. $\begin{bmatrix} -d & c \\ b & -a \end{bmatrix}$	C. $\begin{bmatrix} -d & b \\ c & -a \end{bmatrix}$ D.	$\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$				
3. A 是 n 阶方阵,且 A 的第一行可由其余 n-1 个行向量线性表示,则下列结论中错误的是【 】							
A. $r(A) \leq n-1$		B. A 有一个列向量	量可由其余列向量线性表示				
C. A =0		D. A 的 n-1 阶余	子式全为零				
4. 设 A 为 n 阶方阵, AB=0, 且 B≠0,则【 】							
A. A 的列向量组线	性无关	B. A=0					
C. A 的列向量组线	性相关	D. A 的行向量组织	线性无关				
5. 设α ₁ 、α ₂ 是非	齐次线性方程组 Ax	=b 的解,β是对应剂	Y次线性方程组 Ax=0 的解,则				
Ax=b 必有一个解是	. []						
A. $\alpha_1 + \alpha_2$ B. $\alpha_1 + \alpha_2$	$c_1 - \alpha_2$ C. β	$+\alpha_1 + \alpha_2$ D. $\beta + \frac{1}{2}$	$\frac{1}{3}\alpha_1 + \frac{2}{3}\alpha_2$				
6. 设齐次线性方程	组 Ax=0 的基础解系	《 含有一个解向量,当	á A 是 3 阶方阵时,【 】				
A. $r(A)=0$	B. $r(A)=1$	C. r(A)=2	D. $r(A)=3$				
7. 设 A 与 B 等价,	则【】						
A. A 与 B 合同	B. A 与 B 相似	C. $ A = B $	D. $r(A)=r(B)$				
8. 已知 A 相似于 /	$\Lambda = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$,则 $ A = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$	[]					
A2	B1	C. 0	D. 2				
9. 设λ ₀ 是可逆阵 Δ	A 的一个特征值,则	J A⁻²必有一个特征值	是【 】				
A. $\frac{\lambda_0}{2}$	B. $\frac{1}{2\lambda_{c}}$	C. $\frac{1}{\lambda_o^2}$	D. $\frac{2}{\lambda_0}$				

10. 设 3 阶实对称矩阵 A 的特征值分别为 1, 0, -1, 则【
 A. |A|≠0
 B. |A|=0
 C. A 负定
 D. A 正定

1. 按自然数从小到大为标准次序,则排列 54123 的逆序数=____。

二、填空题(本大题共 10 小题,每小题 2 分,共 20 分。)

- 4. 设 α_1 = (1, 2, 4), α_2 =(-1, -2, y) 且 α_1 与 α_2 线性相关,则 y=_____。
- 5. 若向量组 α ₁, α ₂, ···, α _s线性无关,且可由向量组 β ₁, β ₂, ···, β _t线性表出,则 s _____t。 (填 ≥ 或 ≤)
- 6. 若 A 是秩为 1 的三阶方阵, η_1, η_2, η_3 是 Ax=b 的解,且 $\eta_1 \eta_2$ 与 $\eta_2 \eta_3$ 无关,

则 Ax=b 的通解可表示为 x=____。

7. 已知
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,则 $x = \underline{\qquad}$ 。

- 8. 若向量 $\alpha = (1, -2, 1)$ 与 $\beta = (2, 3, t)$ 正交,则 $t = ______$ 。
- 9. 已知三阶实对称矩阵A有三个特征值 2, 1, -2, $B=A^2+2E$,则B的特征值是
- 10. 二次型 $f(x_1, x_2, x_3, x_4) = x_1^2 + x_1x_2 + 3x_1x_4 5x_4^2$ 的对称矩阵是_____。

三、计算题 (本大题共50分)

1. 设
$$A = \begin{pmatrix} 0 & 3 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
且 $AB = A + 2B$,求 B 。 (10 分)

2. 讨论 p 取何值时,下列线性方程组无解?有解?并在有解时求其通解。

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = 0 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = p \end{cases} (14 \%)$$

3. 已知
$$A = \begin{bmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{bmatrix}$$
的一个特征向量是 $\zeta = (1, 1, -1)^T$,确定 a,b 以及 ζ 的特征值。

(10分)

4. 用正交变换化二次型 $f(x_1, x_2, x_3)=2x_1^2+3x_2^2+3x_3^2+4x_2x_3$ 为标准型,并写出所用的正交变换。(16 分)

四、证明题

- 1. 设向量组 α_1 , α_2 , α_3 线性无关,证明 $\alpha_1+\alpha_2$, $\alpha_1-\alpha_2$, α_3 也线性无关。
- 2. 设A与B都是n阶正定矩阵,证明: A+B也是正定矩阵。

习题	题四:					
– ,	. 单项选择题 (本为	、题共 10 小题,每小	题2分,	共 20 分。)		
1.	二阶行列式 $\begin{vmatrix} k-1\\2 \end{vmatrix}$	2 k - 1 ≠0 的充分必要	条件是	()		
A.	$k\neq -1$	B. k≠3	C. k≠	-1 且 k≠3	D. k≠-1 或≠3	
2.	设A为三阶矩阵,	A =a≠0,则其伴随	矩阵 A*f	的行列式 A* =	= []	
A.	a	$B. a^2$	$C. a^3$		D. a ⁴	
3.	设A、B为同阶可	逆矩阵,则以下结论	正确的是	₽【 】		
	. AB = BA			B. $ A+B = A + B $		
	$(AB)^{-1} = A^{-1}B^{-1}$		_	D. (A+B)	2 = A^2 + $2AB$ + B^2	
		说法错误的是【	1			
	存在 B 使 AB=E			B. A ≠0	=	
C.	A 相似于对角阵			D. A的n [/]	个列向量线性无关	
5.	矩阵 $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$ 的知	逆矩阵的【 】				
Α.	$\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$	B. $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	C. $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	D. $\begin{bmatrix} 0 & -1 \\ -1 & -2 \end{bmatrix}$	
6.	已知 A 的一个 k 阶	子式不等于 0,则秩	(A) 满足	[] .		
A.	秩(A)>k	B. 秩(A)≥k	C. 秩(A	A)=k	D. 秩(A)≤k	
7.	设α1,α2是非齐λ	次方程组 Ax=b 的解	,β是对	一应的齐次方和	程组 Ax=0 的解,	
	则 Ax=b 必有一个的	解是【 】				
A.	$\alpha_1 + \alpha_2$	B. $\alpha_1 - \alpha_2$	C. f	$\beta + \alpha_1 + \alpha_2$	$D. \beta + \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2$	
8.	若 A= $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix}$ 与	$B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ 相似	,则 x=	()		
A.	-1	B. 0	C. 1		D. 2	
9.	若 A 相似于 $\Lambda = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 -1], 则 A-E =【	1			
A.	-1	B. 0	C. 1		D. 2	
10	设3阶实对称矩阵	ΕΔ 的特征值分别为	1. 0	-1. ∭【	1	

B. |A|=0 C. A 负定

二、填空题(本大题共 10 小题, 每小题 2 分, 共 20 分。)

D. A 正定

A. $|A| \neq 0$

- 11. 设 A, B 均为三阶可逆阵, |A|=2, 则|2B⁻¹A²B|= 。
- 12. 在五阶行列式中, 项a₂₁ a₃₂ a₄₅ a₁₄ a₅₃ 的符号为____。
- 13. 向量空间 $V=\{x=(x_1,x_2,0) \mid x_1,x_2\}$ 为实数 }的维数为_____。

14. 设三阶方阵A等价于
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,则R(A)=_____。

15. 设 α_1 =[1, 2, x], α_2 =[-2, -4, 1]线性相关,则 x=____。

16. 矩阵
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 [1 -1 1]的秩为_____。

- 17. 设 λ_0 是可逆阵 A 的一个特征值,则 A^{-2} 必有一个特征值是
- 18. 已知齐次方程组 $A_{4\times 5}$ x=0 的基础解系含有 2 个向量,则 A 的秩=____。
- 19. 若向量 $\alpha = (1, -2, 1)$ 与 $\beta = (2, 3, t)$ 正交,则 $t = ______$ 。
- 20. 二次型 $f(x_1,x_2,x_3)=x_1^2-2x_1x_2+x_2x_3$ 的矩阵是_____。
- 三、计算题 (本大题共50分)

1. 设
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
, 求 $(A+2E)^{-1}(A^2-4E)$ 。 $(10 分)$

2. 讨论 a 为何值时下列方程组无解? 有无穷解? 并在有解时求其通解.

$$\begin{cases} x_1 + 2x_3 + x_4 = 2 \\ x_1 + x_2 + x_3 + 4x_4 = a \\ x_1 - x_2 + 3x_3 - 2x_4 = 1 \end{cases}$$
 (14 %)

3. 设
$$A = \begin{bmatrix} x & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
 的特征值是 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = 4$.

- (1) 求 x 的值; (2) A 是否相似于对角阵, 为什么? (10分)
- 4. 用正交变换化二次型 $f(x_1, x_2, x_3)=2x_1^2+3x_2^2+3x_3^2+4x_2x_3$ 为标准型,

并写出所用的正交变换。(16分)

四、证明题(每题5分,共10分)

- 1. 设向量组 α_1 , α_2 , α_3 线性无关,证明 $\alpha_1+\alpha_2$, $\alpha_1-\alpha_2$, α_3 也线性无关。
- 2. 设A与B都是n阶正定矩阵,证明: A+B也是正定矩阵。