经典模型

颜少华

办公地点: C303, A501

办公时间: 8: 00 - 17: 30

电话: 17395282136

课程介绍

- 课时: 80
- 上课时间: 8: 00 9: 30; 9: 45 11: 15
- 课程内容:逻辑回归和神经网络基础、图聚类、AlphaGo Zero、自然语言处理入门(时间有限可能不讲)。
- 成绩组成: 出勤(10)+作业(30)+考试(60)(待定)

学完这门课能干什么

本课程侧重理论学习,示例所用数据集均为演示所用,数据规模小,但是本课程的算法会在《机器学习框架》课程中调用各类库进行实现,并使用更加接近实际的数据集。

部分数学家生卒年(排名不分先后)

数学家	生卒年	数学家	生卒年		
牛顿	1643-1727	莱布尼茨	1646-1716		
高斯	1777-1855	贝叶斯	1702-1761		
欧拉	1707-1783	拉格朗日	1736-1813		
拉普拉斯	1749-1827	卡尔达诺	1501-1576		
凯利	1821-1895	阿基米德	前287年-前 212		
欧几里得	前330年—前 275	闵可夫斯基	1864—1909		
马尔可夫	1856-1922	刘徽	约225-约295		
祖冲之	429-500	祖暅	456-536		

经典

核心价值不会随时间流逝而改变的事物,被称作为经典。

经久不衰的万世之作,后人尊敬它称之为经典。

经典是指具有典范性、权威性、著作。

经典就是经过历史选择出来的"最有价值的书"。

英 /ˈklæsɪk(ə)l/ ◁) 美 /ˈklæsɪkl/ ◁) 全球(英国) ◁) ▷

简明 牛津 新牛津 MEW 朗文 韦氏 MEW 柯林斯 例句

adj. 古典的; 经典的; 传统的; 第一流的

n. 古典音乐

TOEFL | IELTS | CET6 | CET4 | 商务英语 | 考研

人工智能与其他学科

- 世界上第一台通用计算机 "ENIAC"于1946年2月14 日在美国宾夕法尼亚大学诞生。
- 人工智能(AI)这一称呼起源于1956年的达特茅斯会 议。
- 但人工智能的理论基础早就已经根植于其他学科中。

朴素贝叶斯

贝叶斯(约1702-1761)首先将归纳推理法用于概率 论基础理论,并创立了贝叶斯统计理论。

贝叶斯网络

K近邻

KNN (K Nearest Neighbor):

k个最近的邻居,即每个样本都可以用它最接近的k 个邻居来代表。

K近邻

决策树, 随机森林

线性回归与逻辑回归

神经网络基础

支持向量机(Support Vector Machine, SVM)

SVM: 寻找到一个超平面使样本分成两类,并且间隔最大。而我们求得的w就代表着我们需要寻找的超平面的系数。

支持向量机

• 核函数

K均值

马尔可夫

EM算法

EM算法

$$\gamma(i,k) = \frac{\pi_k N(x_i \mid \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x_i \mid \mu_j, \Sigma_j)}$$

$$\begin{cases}
N_k = \sum_{i=1}^N \gamma(i,k) \\
\mu_k = \frac{1}{N_k} \sum_{i=1}^N \gamma(i,k) x_i
\end{cases}$$

$$\begin{cases}
\mu = \frac{1}{n} \sum_i x_i \\
\sigma^2 = \frac{1}{n} \sum_i (x_i - \mu)^2
\end{cases}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{i=1}^N \gamma(i,k) (x_i - \mu_k) (x_i - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N} = \frac{1}{N} \sum_{i=1}^N \gamma(i,k)$$

特殊的数据集

A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R
!000表1	总人口、	户籍人口	、少数日	₹族人口比	七重、非	农业户口	人口比重	、城乡人	、口、家原	建户人口、	家庭户	类别(全	部数据)				
县市名	合计	总人口(人) 男	女	总人口 性别比	户籍人口 (人)	数民族人口比 (%)	业户口人口 (%)	城乡人口 城镇	1 (人) 乡村	户数 (户)	家庭 人口数(人)	3户 规模(人/户	中: 一人户(一代户	家庭户类别	別(户) 三代户	四代以上户
北京市市辖区	13569194 11509595	7074518 6020903	6494676 5488692	108.93 109.70	11167502 9285488		60.17 66.20	0 10522464	3046730 1632934	4096844 3483627	11922945 9983850	2.91 2.87	494553 443010	1267259 1105041	2240735 1892079	578024 478676	10826 7831
在楼区	535558	260402	266066	101 20	635381	6.40	80 73	0876661		160723	480205	2 88	23827	50061	90787	28505	280

4. 8, 3. 0, 1. 4, 0. 1, Iris-setosas 5. 7, 4. 4, 1. 5, 0. 4, Iris-setosas 5. 7, 3. 8, 1. 7, 0. 3, Iris-setosas 5. 1, 3. 7, 1. 5, 0. 4, Iris-setosas 4. 8, 3. 4, 1. 9, 0. 2, Iris-setosas 5. 2, 3. 5, 1. 5, 0. 2, Iris-setosas 4. 8, 3. 1, 1. 6, 0. 2, Iris-setosas 5. 5, 4. 2, 1. 4, 0. 2, Iris-setosas 5. 5, 3. 5, 1. 3, 0. 2, Iris-setosas 4. 4, 3. 2, 1. 3, 0. 2, Iris-setosas 4. 4, 3. 2, 1. 3, 0. 2, Iris-setosas 5. 3, 3. 7, 1. 5, 0. 2, Iris-setosas 5. 3, 3. 7, 1. 5, 0. 2, Iris-setosas 6. 4. 3, 2, 4. 5, 1. 5, Iris-setosas 5. 3, 3. 7, 1. 5, 0. 2, Iris-setosas 5. 3, 3. 7,

以前课上的数据集基本都是向量形式的, 那么如果是这种形式的怎么办呢?

张三,是王五的好朋友,刚认识李四,对赵六很是反感。那么,对于张三,我们无法直接得出他的特征,但能知道他的活动圈。利用图聚类,可以将同一社交范围的人聚合到一起。

特殊的数据集

图聚类1: 谱聚类

图聚类2: 马尔可夫聚类

- 1 P=NP?
- 2 霍奇猜想
- 3 庞加莱猜想
- 4 黎曼假设

- 5 杨-米尔斯规范场 7 贝赫和斯维讷通-存在性和质量间 隔假设
- 6 NS方程解的存在 性与光滑性

載尔猜想

图聚类2: 马尔可夫聚类

图的其他应用: 推荐系统

	物	物	物	物
		品		
	1	2	3	4
用户1	$\int 1$	4	4	5
用户 2	1	5	4	5
用户 3	1	2	2	5
用户4	$\lfloor 2$	1	1	4)

	物品1	物品2	物品3	物品4	物品5	物品6
用户1	1				1	1
用户2	1	1				
用户3		1	1			
用户4			1	1		
用户5				1	1	
用户6				1		1

图的其他应用: 推荐系统

- 一个公司有N个岗位空缺,共有M人应聘,每个岗位需要有一定资格的人来填补,由于每个人的能力不同,所以不同的人能胜任不同的工作。
- 每个工作岗位只需要一个人,每个人也只能做一份工作。
- 现在已知每个人能胜任的工作,求这M个人做多能胜任几份工作。

◈ 假设N=5, M=5, 且每个人能胜任的工作如表中 所示。

◈ 方案:

- ◆ 1号应聘者参加工作5
- ◆ 2号应聘者参加工作3
- ◈ 3号应聘者参加工作1
- ◆ 5号应聘者参加工作2

应聘者	能胜任的工作
1	2, 5
2	2, 3, 4
3	1, 5
4	1, 2, 5
5	2

在图G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,则称M是一个匹配。选择这样的边数最大的子集称为图的最大匹配问题,最大匹配的边数称为最大匹配数。

此不上的聘题关图是面招问无。

• 交替路: 从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

• 增广路:从一个未匹配点出发,走交替路,如果到达另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

- 增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了1条。
- 我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(增广路定理)。

AlphaGo Zero

- AlphaGo Zero是谷歌下属公司Deepmind的新版程序。
- 从空白状态学起,在无任何人类输入(规则需要人的输入)的条件下,AlphaGo Zero能够迅速自学围棋,并以100:0的战绩击败"前辈"。

蒙特卡罗方法

理想与现实

2019年5月3日 - 超越人类 Mr.Chen 评论人工智能 4 2019-05-03 12:25:23 这篇影评可能有剧透 AI,大多数人都不能逃避的现实选择,不单是兴趣勾忆着我们的渴望,还有前景...

未来人工智能将超越人类、取代人类?霍金先生生前表示担忧!

2018年10月8日 - 霍金先生生前曾经对人工智能表示过担忧,霍金先生 客有了自己思维能力,动手...

智能是否将会超越人类呢? 人工智能产 可提高人工智能产品的智能程度是很多研 大多数的研发者都想要..

机大战"谷歌围棋人工智能AlphaGo击败 能技术破解并超越吗?这一...

0 K/s ¹ 6... 45% ■□ 早上8:15 〈 总资产 *少华 嗨, 我是你的智能理财助理

余额宝

基金

优选理财, 去财富看看

资产诊断 评测基金 分析涨跌

花呗有利息吗

- 第一次作业 基于KNN的鸢尾花分类。ra
- 第四次作业 基于PCA特征降维的鸢尾
- 第三次作业 基于朴素贝叶斯的鸢尾花

如果花呗未按时还款,产生逾期,逾期费 用=逾期金额*逾期天数*0.05%(建议按期 还款,以免产生不良的记录影响信用)。

花呗

金黄 买入0费率

总资产(元) ~ *****

化呗有利息吗

为你筛选了以下相关内容:

大v观点 网贷利息那么高,为何还有人借?

我想……没有人想欠别人钱的,更不想被债务压得喘 不过气来! 大部分的网贷平台利息都要高于银行, 相对也还算比较透明化,但也有不少存在"暗息"的...

06-05 10:29

话呗有利息吗

这个词我还在学,下次告诉你好不好?

咨询其他问题

智能理财助理

花呗有无利息

我想......没有人想欠别人钱的,更不想被债务压得喘 不过气来! 大部分的网贷平台利息都要高于银行. 相对也还算比较透明化,但也有不少存在"暗息"的...

06-05 10:29

这个问题好深奥, 我要去学习下, 你可以 问问其他问题~

☆ 投索工具

花呗有利息否

花呗有利息否

基金诊断

多做对了30億

引走神了。试试问我下面这些功能怎么

机器阅读理解首次超越人类。云从科技自然语言处理创新纪录

2019年3月8日 - 这意味着,人工智能系统首次在深度阅读理解超越人 类。云从科技是一家孵化于中国科学院重庆研究院的高科技企业,专注 于计算机视觉与人工智能。 机器在阅读理解上首次超越...

* 澎湃新闻 ▼ - 百度快照

个问题好深奥, 我要去学习下, 你可以 可其他问题~

帮我选理财

机器阅读理解首次超越人类!云从科技创自然语言处理新纪录

2019年3月8日 - 论文中, 云从科技与上海交通大学基于原创DCMN算 法,提出了一种全新的模型,使机器阅读理解正确率提高了4.2个百分点, 并在高中测试题部分首次超越人类(机器正确率69.8%、... **d**健康体检

動 科技湃V ▼ - 百度快照

机器阅读理解能否超越人类?中国平安队给出了最有可能的答案

2018年12月4日 - 聚焦自然语言处理(NLP)的研究发展,目前主要有三个方向:翻译、聊天、阅读 理解,其中翻译已经被人类研究到较高水平,近年来像银行机器人聊天也顺利落地使...

https://baijiahao.baidu.com/s?... ▼ - 百度快照

有问题可以向我提问哟

理想与现实

百度为您找到相关结果约18,900,000个

▽搜索工具

诺奖得者为何说"人工智能其实就是统计学"AI真的只是华丽辞藻吗

2018年8月12日 - Sargent(托马斯·萨金特)在"共享全球智慧 引领未来 科技"世界科技创新论坛上表示:人工智能其实就是统计学,只不过用了 一个很华丽的辞藻。 托马斯·萨金特是谁呢? ...

思维解构 ▼ - 百度快照

诺奖得主:人工智能绝不只是统计学!

2018年8月20日 - Sargent在2018年世界科技创新论坛上表示,所有的 人工智能利用的都是统计学来解决问题,人工智能只不过是传统统计学 挂上了一个很华丽的辞藻,果真如此为什么直到最近56年...

號 賦能商学院 ▼ - 百度快照

任正非说:人工智能就是统计学,你听懂了吗?

2019年2月11日 - 最近任正非在一次采访中说:大学里没有人工智能这门课,人工智能就是统计学,人们老说人工智能、人工智能,而中国的教育却不重视基础教育,尤其不重视数学教育。 我个人...

緣 瀑布先生 ▼ - 百度快照

任正非:人工智能就是统计学 要提高对统计学重视程度

2019年1月20日 - 华为创始人兼CEO任正非在接受央视《面对面》采访,当谈到人工智能是,任正非表示.人工智能就是统计学,这个学科计算机与统计学就是人工智能。任正非指出....

人工智能的初心

1950年,图灵提出著名的"图灵测试",指出如果第三者无法辨别人类与人工智能机器反应的差别,则可以论断该机器具备人工智能。

自然语言处理

自然语言处理的研究方向

- 语音识别
- 情感分析
- 文摘生成
- 文本分类
- 知识图谱
- 机器翻译
- 智能问答
- 舆论分析
- 信息检索
- 信息抽取

自然语言处理发展现状

《2018年世界人工智能产业发展蓝皮书》预计
 2021年全球自然语言处理市场的价值可以达到160亿美元。

自然语言处理学者全球分布图

自然语言处理华人库专家国内分布

全球专家情况

自然语言处理顶尖学者h-index分布

- 全球自然语言处理顶尖学者的h-index平均数为**59**
- h-index指数大于60的学者 最多占比41%
- h-index指数在40到60之间
 的学者次之,占比40%

中国专家情况

自然语言处理华人库专家h-index分布

- h-index指数的平均数为14, 这一数值远远低于自然语言处 理全球top1000学者h-index 指数平均数。
- h-index指数<10的专家人数 最多,占比60%
- 10-19次之,占比17%
- >60的专家占比仅占9%
- 自然语言处理华人专家整体水平低于自然语言处理领域全球 top1000的学者,尤其是在hindex指数>60的学者方面有 所欠缺。

我们要研究的

对于英语来说,词与词之间有明确的分界符(手写体除外),但汉语的词与词之间却没有明确的界限,所以需要有一个方法对中文进行分词。

中文分词

结婚的和尚未结婚的

结婚的和尚未结婚的

6

网页 资讯 视频 图片 知道 文库 贴吧 采购 地图 更多»

百度为您找到相关结果约4,010,000个

▽搜索工具

佛祖没说过和尚不能结婚,和尚的老婆曾有专门称呼 搜狐

2018年8月4日 - 在我们的认知里, 和尚是不能结婚的。 但史料记载, 后秦高僧鸠摩罗什一生就结过两次婚, 并且还生了孩子。 据说第二次结婚后, 在佛教界产生了很大的躁动。 ...

② 搜狐网 ▼ - 百度快照

为什么和尚不许结婚,可释迦牟尼佛却结婚生子

2018年9月28日 - 我们都知道,佛教有规定,和尚、尼姑都不能结婚。可在佛教史上,却有一个让和尚尼姑们尴尬却又无法回避的事实,那就是 释迦牟尼佛结了婚,生了子。这件事情被佛徒...

● 潭映大千 - 百度快照

和尚不能结婚道士能结婚为什么 这其实有一定的误解 秀目网

2018年1月11日 - 关于和尚为什么不能结婚,其实有过争辩。有人曾经提过要不要学下日本僧人可以结婚,不过最后这个提案被否决了。而关于道士为什么不能够结婚,其实也是一个...

● 秀目网 ▼ - 百度快照

法律有规定和尚不能结婚吗? 百度知道

4个回答 - 回答时间: 2017年9月5日

最佳答案: 当然允许。我国婚姻法第五条 结婚必须男女双方完全自愿,不许任何一方对他方加以

隐马尔可夫模型

一个人的身体有正常、轻感冒、重感冒三种状态,某个小镇的医疗水平,无法测出某个人到底是正常,还是轻感冒,还是重感冒。他们只能看出来这个人到底是没什么症状、咳嗽、发烧还是拉肚子。假设病人的外在表现仅仅和他当天的内在状态有关,和其他的条件无关,关系如下表:

	活蹦乱跳	咳嗽	发烧	拉肚子
正常	0.7	0.2	0	0.1
轻感冒	0.5	0.2	0.2	0.1
重感冒	0.3	0.2	0.3	0.2

隐马尔可夫模型

• 同时,这个小镇有53%的人身体是正常的,31%的人患了轻感冒,而16%的人患了重感冒,那么一个人如果我们不知道任何信息的情况下去猜,显然我们应该猜这个人53%的可能性是正常的,31%的可能性患了轻感冒,而16%的可能患了重感冒。同时一个人两天之间的身体状况满足下面的关系:

昨天

状态	正常	轻感冒	重感冒
正常	0.7	0.2	0.1
轻感冒	0.4	0.4	0.2
重感冒	0.2	0.5	0.3

隐马尔可夫模型

• z表示身体状况(正常还是感冒), x表示外在表现(咳嗽等), z是无法直接观测的, 但是z满足马尔可夫链的性质。

维特比算法

隐马尔可夫模型与中文分词

总结

- 数学有益于身体健康
- 逻辑回归和神经网络基础
- 图聚类: 谱聚类和马尔可夫聚类
- AlphaGo Zero: 蒙特卡罗方法
- 自然语言处理: 隐马尔可夫模型

参考资料(排名不分先后)

参考资料(排名不分先后)

- 知乎
- CSDN
- GitHub
- 鸠摩搜书
- 小不点搜索http://www.xiaoso.net/
- http://www.allitebooks.org/