Modelos capacitivos de neurônios

Daniel Penalva UNESP - Instituto de Física Teórica e USP - Instituto de Física de São Carlos

14 de maio de 2012

Sumário

- 1 Eletrofisiologia de Membranas Excitáveis
- 2 Modelagem matemática da membrana excitável

- Eletrofisiologia de Membranas Excitáveis
 - Potencial de Nerst
 - Voltage Clamp
- Modelagem matemática da membrana excitável

Difusão de íons e potencial de equilíbrio(reversão)

Potencial de equilíbrio para ions típicos (Izhikevich Cap. 2 pág 26)

Equilibrium Potentials

Na⁺
$$62 \log \frac{145}{5} = 90 \text{ mV}$$

 $62 \log \frac{145}{15} = 61 \text{ mV}$

$$K^{+}$$
 $62 \log \frac{5}{140} = -90 \text{ mV}$

$$Cl^{-}$$
 $-62 \log \frac{110}{4} = -89 \text{ mV}$

$$Ca^{2+}$$
 31 log $\frac{2.5}{10^{-4}}$ = 136 mV
31 log $\frac{5}{10^{-4}}$ = 146 mV

Difusão de ions e potencial de equilibrio (reversão)

Potencial de equilíbrio para ions típicos (Izhikevich Cap. 2 pág 26)

Equilibrium Potentials

$$E_{Ion} = \frac{KT}{zF} \ln \frac{[Ion]_{in}}{[Ion]_{out}}$$

Goldman-Hodgkin-Katz, equilíbrio simultâneo de várias espécies ionicas

$$\mathsf{E}_{Ion} = \frac{RT}{F} \ln \frac{P_A[IonA]_{in} + P_B[IonB]_{in}}{P_A[IonA]_{out} + P_B[IonB]_{out}}$$

Medindo corrente iônica através do engate de voltagem

Obtenção das relações I-V

Exemplo de fitting para dados de V-Clamp(Izhikevich Cap. 2 pág 31)

- 1 Eletrofisiologia de Membranas Excitáveis
- Modelagem matemática da membrana excitável
 - Circuitos capacitivos
 - Capacitâncias
 - Multi-modularidade

Modelagem da membrana como circuito capacitivo

Canais e membrana como circuitos (Izhikevich Cap. 2 pág 28) outside inside

Modelagem da membrana como circuito capacitivo

$$I_{total} = C_m \dot{V} + I_{Na} + I_K + I_{Ca} + I_{Cl}$$

Modelagem da membrana como circuito capacitivo

$$I_{total} = C_m \dot{V} + I_{Na} + I_K + I_{Ca} + I_{Cl}$$

$$I_{Ion} = g_{Ion}(V)(V - E_{Ion})$$

Taxa de canais no estado aberto e gates ativadores/desativadores

 $g_{Ion}=ar{g}_{Ion}p$, e $p=m^ah^b$ m é a probabilidade de gate de ativação estar agindo. h é a probabilidade de gate de desativação não estar agindo. $\dot{m}=rac{m_\infty(V)-m}{ au_m(V)}$ e $\dot{h}=rac{h_\infty(V)-h}{ au_h(V)}$

Modelagem de gates através de dados experimentais de V-Clamp

Com a membrana no estado de voltage clamp, $\dot{V}=0$, temos: $I(V_s) = \bar{g} m_{\infty}(V_s)(V_s - E)$, canais com apenas ativação.

Modelagem multimodular de morfologia e de redes neurais

$$C_s \dot{V}_s = -I(V_s, t) + g_s(V_s - V_d)$$

$$C_d \dot{V}_d = -I(V_d, t) + g_d(V_d - V_s)$$

