Notes on Statistical Field Theory

Lecturer: Prof. Dr. Dirk H. Rischke Notes Taker: Gui-Rong Liang

November 7, 2018

Contents

1	Thermodynamics & Statistical Mechanics	2
2	Quantum mechanics & Quantum Field Theory	3
3	Fundamental Integral Representation of the Partition Function 3.1 The Partition Function as Fundamental Integral 3.2 Neutral Scalar Fields	3 3 3
4	The Partition Function in Perturbation Theory 4.1 Expansion in Powers of the Interaction	3 3
5	Resummation Techniques 5.1 IR Divergences & Breakdown of Naive Perturbation Series 5.2 1PI Effective Action 5.3 2PI Effective Action (C-J-T Formalism) 5.4 Restoration of Spontanously ?? Symmetries 5.5 Symmetry Restoration in H&H-F Approximation 5.6 Fermions: the N-J-L Model 5.7 Superfluidity & Superconductivity 5.8 Gauge Theories: Hard Thermal Loop & Hard Dense Loop (Random Phase Approximation)	40 40 40 40 40 40
	5.9 The Function Renormalization Group	3

1 Thermodynamics & Statistical Mechanics

Closed system, Volume V, in thermodynamic equilibrium

Conserved quantities: energy E, particle no. N.

Comments: a) particle and anti-particle pairs can be created out of vacuum, only net particle no. or quantum numbers (e.g. net electric charge $N = N^+ - N^-$) are conserved.

b) different particle species, different conserved quantum numbers, $N_1, N_2, ..., N_M$.

Thermodaynamics

For closed system of volume V and M different conserved quantum numbers,

$$dE = T dS - p dV + \sum_{i}^{M} \mu_i dN_i.$$
(1)

Energy is an extensive quantity, it scales with volume V. If $V \to \alpha V$, then $E(\alpha S, \alpha V, \{\alpha N_i\}) = \alpha E(S, V, \{N_i\})$. Now let $\alpha = 1 + \epsilon$, where $|\epsilon| << 1$, we have

$$E(S, V, \{N_i\}) + \epsilon E(S, V, \{N_i\}) = E(S + \epsilon S, V + \epsilon V, \{N_i + \epsilon N_i\})$$

$$= E(S, V, \{N_i\}) + \epsilon \left[\frac{\partial E}{\partial S} \Big|_{V, \{N_i\}} S + \frac{\partial E}{\partial V} \Big|_{S, \{N_i\}} V + \sum_i \frac{\partial E}{\partial N_i} \Big|_{S, V} N_i \right]$$

$$= E(S, V, \{N_i\}) + \epsilon \left[TS - pV + \sum_i \mu_i N_i \right],$$
(2)

where in the first line we just plug in $\alpha = 1 + \epsilon$, in the second line we used the Taylor expansion and only kept the first-order term, and in the third line we used the partial thermodynamic relations. Comparing LHS and RHS, we immediately get

$$E(S, V, \{N_i\}) = TS - pV + \sum_{i} \mu_i N_i.$$
(3)

This is the fundamental relation of thermodynamics.

By taking its total derivative we have

$$dE = T dS + S dT - p dV - V dp + \sum_{i}^{M} (\mu_i dN_i + N_i d\mu_i) \implies 0 = S dT - V dp + \sum_{i}^{M} N_i d\mu_i,$$
 (4)

where we cancel terms due to the first law. This is the Gibbs-Duham relation.

Statistical Mechanics

micro-canonical partition function: $\Xi(E,V,\{N_i\}) = \text{numbers of all possible micro-states of the system.}$ relation with thermodynamics: $S(E,V,\{N_i\}) = \ln \Xi(E,V,\{N_i\})$ microscopic density of states is

$$\sigma(E, V, \{N_i\}) = \frac{\Xi(E, V, \{N_i\})}{\mathrm{d}E} = \sum_{\mathcal{R}}' \delta(E - E_{\mathcal{R}}), \tag{5}$$

where $\frac{\Xi(E,V,\{N_i\})}{\mathrm{d}E}$ denotes number of micro-states per energy interval, and \mathcal{R} denotes all micro-states, and prime for given V and $\{N_i\}$.

Calculation of equation of state $S(E, V, \{N_i\})$ is possible if $\Xi(E, V, \{N_i\})$ is known, but generally this is very hard to compute.

Canonical partition function: Laplace transform of $\sigma(E, V, \{N_i\})$,

$$Z(T, V, \{N_i\}) = \int_0^\infty dE \, e^{E/T} \sigma(E, V, \{N_i\}) = \int_0^\infty dE \, e^{E/T} \sum_{\mathcal{R}}' \delta(E - E_{\mathcal{R}}) = \sum_{\mathcal{R}}' e^{E_{\mathcal{R}}/T}$$
 (6)

relation to thermodynamics: $F(T, V, \{N_i\}) = -T \ln Z(T, V, \{N_i\})$.

2 Quantum mechanics & Quantum Field Theory

completeness relation:

$$\int \prod_{\vec{x}} d\phi_0(\vec{x}) |\phi_0\rangle \langle \phi_0| = 1 \tag{7}$$

orthogonality:

$$\langle \phi_a | \phi_b \rangle = \prod_{\vec{x}} \delta(\phi_a(\vec{x}) - \phi_b(\vec{x})) \equiv \delta[\phi_a - \phi_b],$$
 (8)

where the new delta notation is called the "functional δ -function".

- 3 Fundamental Integral Representation of the Partition Function
- 3.1 The Partition Function as Fundamental Integral
- 3.2 Neutral Scalar Fields
- 3.3 Charged Scalar Fields: Bose-Einstein Condensation
- 3.4 Fermion Fields
- 3.5 Massive Vector Fields
- 3.6 The Electro-magnetic Fields
- 4 The Partition Function in Perturbation Theory
- 4.1 Expansion in Powers of the Interaction
- 4.2 ϕ^4 Theory
- 4.3 Yukawa Theory
- 4.4 QED
- 4.5 QCD
- 5 Resummation Techniques
- 5.1 IR Divergences & Breakdown of Naive Perturbation Series
- 5.2 1PI Effective Action
- 5.3 2PI Effective Action (C-J-T Formalism)
- 5.4 Restoration of Spontanously ?? Symmetries
- 5.5 Symmetry Restoration in H&H-F Approximation
- 5.6 Fermions: the N-J-L Model
- 5.7 Superfluidity & Superconductivity
- 5.8 Gauge Theories: Hard Thermal Loop & Hard Dense Loop (Random Phase Approximation)
- 5.9 The Function Renormalization Group