Potensi Tanah Sebagai Media Penyimpanan Karbon (Carbon Storage)

Disusun oleh: Feronika Sianipar 18/430498/PN/15815

Dosen Pembimbing:

Muhammad Saifur Rohman, S. P., M. Si., M. Eng., Ph. D.

NIP: 19731112 200912 1 001

Daftar Isi

Pendahuluan

Latar belakang dan tujuan

Isi

Pendorong dan Indikator Penyimpanan Karbon Organik Tanah

Berupa:

Iklim, Topografi, Bahan induk, Organisme dan Sifat Tanah

Pendahuluan

SOC merupakan fungsi utama dari tanah

SOC dari dekomposisi

SOC berperan dalam kesuburan tanah dan produksi pertanian

Fungsi Karbon Organik Tanah

Hara

Erosi tanah dan memperbaiki struktur tanah

Pertumbuhan akar = Kepadatan tanah

Peran Karbon Organik Tanah dalam Lingkup Lingkungan Global

Penyerap karbon dioksida (CO2) dari atmosfer

Climate Change

Pendorong dan Indikator Penyimpanan Karbon Organik Tanah

Iklim

Curah hujan

Suhu

Pengaruh terhadap SOC

Topografi

Tipe iklim mikro dan komunitas vegetasi yang berbeda, dan dengan demikian variasi karbon yang signifikan

Bahan induk

L, Q, G, B, dan T masing-masing mewakili batugamping, tanah merah kuaterner, granit, basal, dan batu pasir merah tersier, perbedaan yang signifikan pada p <0,05

Vegetasi alami

Adanya perbedaan dekomposisi C berdasarkan vegetasi

Penggunaan dan pengelolaan lahan

No.	Lokasi	Penggunaan lahan	C-organik	Karbon Stok (ton/ha)
1	Rantau Pulung (Desa Margomulyo)	Kebun Campuran	5,39	160,4
2	Long Masangat (Desa Mukti Utama)	Kebun Karet	4,21	120,7
3	Batu Ampar (Desa Beno Harapan)	Kebun Lada	2,08	60,3
4	Sangatta Utara (Dusun Kabo Jaya)	Kebun Jati	0,98	24,7
5	Sangatta Utara (Dusun Kabo Jaya)	Semak	0,94	24,0

Biota tanah

Fauna tanah

Sifat tanah

(Johnson dan Harris, 2017)

SOC di lahan pertanian Bavaria berdasarkan kelas tekstur tanah dan elevasi

Soil texture class	Elevation (m.a.s.l.)	$SOC (mg.g^{-1})$
Sand	<350	0.70-1.37
	350-550	0.75-1.57
Silt	<350	0.86-1.56
	350-550	1.17-1.88
	>550	1.20-2.19
Clay	<350	1.23-2.16
	350-550	1.31-2.52
	>550	2.33-4.19
Loam	<350	1.00-1.64
	350-550	1.16-2.32
	>550	1.80-3.55

(Liu et al., 2016).

Oksida aluminium (Al) dan besi (Fe)

Kesimpulan

- 1. Penyimpanan karbon organik tanah memiliki peran penting dalam menjaga keseimbangan lingkungan dan memastikan produktivitas tanah
- 2. Penyimpanan karbon organik tanah mempengaruhi kualitas dan kesuburan tanah, serta mengontrol konsentrasi CO2 dalam atmosfer
- 3. Aktivitas manusia seperti perubahan lahan, pertanian intensif, dan penebangan hutan menyebabkan penurunan konsentrasi karbon organik tanah

DAFTAR PUSTAKA

- Aerts, R., dan F. S. Chapin. 2000. The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns. Advances in ecological research 30: 1-67
- Ambarak, Z., M. Ompi, D. Saâ, J.R. Rimper, A.P. Rumengan, dan N.E. Bataragoa. 2021. Keanekaragaman makrobentos yang menempati agregasi kerang, septifer bilocullaris di tiwoho, kabupaten minahasa utara, sulawesi utara. Jurnal pesisir dan laut tropis 9: 133-140.
- Amelung, W., W. E. H. Blum, dan K. Kaise. 2007. Stabilization of soil organic matter by clay minerals. Geoderma, 140: 1-13.
- Castrillo, M., A. Merino, dan J. M. de la Rosa. 2010. The effect of oxides and hydroxides on organic matter stabilizationisation in soils. Geoderma 158: 151-162.
- Cavicchioli, R., W.J. Ripple, K.N., Timmis, F Azam, L.R. Bakken, M. Baylis, M. J.Behrenfeld, A. Boetius, P.W. Boyd, A.T. Classen dan T.W., Crowther, 2019. Scientists' warning to humanity: microorganisms and climate change. Nature microbiology 17: 569-586
- Chen, Y., X. Li, L. Zhang, L., Song, Z. He. 2020. Microbes as drivers and passengers of soil organic carbon dynamics. Frontiers in microbiology 11: 937.
- Chen, Y. dan X. Liu. 2018. The role of soil surface area in regulating carbon cycling in agricultural soils. Soil science society of america journal 82: 723-731.

- Liang, B.,Y. Li, M. Fan, dan H. Chen. 2014. Clay minerals and soil organic matter: interactions and implications for nutrient cycling. Plant and soil 378: 1-11.
- Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'Neill, B., J. O. Skjemstad, J. Thies, F. J. Luizão, J. Petersen, dan E.G. Neves. 2008. Black carbon increases cation exchange capacity in soils. Soil science society of america journal 72: 1569-1575.
- Liu, X.,Y. Li, M. Fan, dan H. Chen. 2016. The role of soil clay minerals in regulating the turnover and stabilisation of soil organic matter. Soil biology and biochemistry 98 : 84-90.
- Qi, Y., dan Y. Feng. 2019. Microorganisms in soil organic carbon cycling and soil health. Frontiers in microbiology 10: 1019.
- Mosier, A. R., K. Butterbach-Bahl, dan D. van Dam. 2017. Microbial pathways in soils for mitigation of N2O and CH4 emissions. Environmental Science dan Technology 51: 8863-8873.
- Nurida, N. L., T. Yanuarti, dan Taryono. 2020. Pengaruh bahan induk, pengelolaan tanah, dan varietas padi terhadap kandungan karbon organik tanah pada lahan sawah di bali. Jurnal Ilmu tanah dan lingkungan 22: 33-42.
- Ren, X., Y. Gong, Z. Hao, dan Y. Lu. 2017. Microbial communities and carbon cycling in different soil types and land use systems. Frontiers in microbiology 8: 2298.
- Rumpel, C., I. Kögel-Knabner, dan B. Marschner. 2005. Formation and turnover of organic matter-mineral associations in temperate soils. Plant and soil 274: 41-53.
- Sanchez, G. A., E. Penalve, X. Delclos dan M.S. Engel. 2018. Mating and aggregative behaviors among basal hexapods in the early cretaceous. Plos one.