CAILLON Armand - 11796

Avec BARBIER Lucas 40342

Mesure des défauts de l'œil

Objectifs

Source: clinique la martine. fr

voulu

réel

Sommaire

- Introduction
- II. Mise en évidence de la déformation d'un front d'onde par les inhomogénéités
 - a) Expérience
 - b) Simulation
- III. Mesure de la déformation d'un front d'onde avec la méthode inspirée de Shack-Hartmann
 - a) Expérience
 - b) Données obtenues
- IV. Traitement informatique du front d'onde reçu
 - a) Détermination du front d'onde aux points d'échantillonnage
 - b) Interpolation de Lagrange
 - c) Caractérisation de la déformation du front d'onde obtenu

I. Introduction

a) Présentation générale

L'œil

Quelques origines des défauts :

- Cristallin
- Humeurs

I. Introductionb) Modélisation de l'œil

Modèle plan de l'oeil

I. Introductionc) Différents défauts de l'œil

Défauts classiques	Défauts de haut degré
 Myopie Hypermétropie Astigmatisme Presbytie 	 Inhomogénéités dans les humeurs Défauts du cristallin (Cornée déformée)

II. Mise en évidence de la déformation d'un front d'onde par les inhomogénéités a) Expérience

Montage

II. Mise en évidence de la déformation d'un front d'onde par les inhomogénéitésa) Expérience

À t=0: Ajout d'eau Milieu Hétérogène concentrée en sucre <u>Image observée</u>:

Deux phénomènes entrent en jeu ici :

- La réfraction
- La différence de temps de parcours

II. Mise en évidence de la déformation du front d'onde par les inhomogénéitésb) Simulation : estimation du temps de parcours

Lumière en phase

Simulation des inhomogénéités

Front d'onde après traversée de la cuve (décalage en fonction du temps)

III. Mesure de la déformation d'un front d'onde avec la méthode inspirée de Shack-Hartmann

La méthode Shack-Hartmann

Positions idéales des points

III. Mesure de la déformation d'un front d'onde avec la méthode inspirée de Shack-Hartmann

La méthode Shack-Hartmann

III. Mesure de la déformation d'un front d'onde avec la méthode inspirée de Shack-Hartmann a) Expérience

Observation : Le Rayon est dévié par le plastique par rapport à une trajectoire idéale

Montage:

- Laser
- Lentille convergente
- •Plastique : surface déformée

III. Mesure de la déformation d'un front d'onde avec la méthode inspirée de Shack-Hartmann b) Données obtenues

Rayons arrivant sur la lentille

Rayons arrivant dans le plan focal image

III. Mesure de la déformation d'un front d'onde avec la méthode inspirée de Shack-Hartmann
b) Données obtenues

Modélisation de la déviation du faisceau

On assimile localement le pochon à deux sphères concentriques de rayon différent

- IV. Traitement informatique du front d'onde reçu
 - a) Détermination du front d'onde aux points d'échantillonnage

Détermination de la pente de la surface :

$$\frac{\partial z}{\partial x} = \frac{-X(M)}{f'}$$
 $\frac{\partial z}{\partial y} = \frac{-Y(M)}{f'}$

- IV. Traitement informatique du front d'onde reçu
 - a) Détermination du front d'onde aux points d'échantillonnage

$$\forall (i,j) \in [1,n-1]^2, z(i,j) = \frac{1}{2} \left[z(i-1,j) + \frac{\partial z}{\partial x}(i-1,j)\delta x + z(i,j-1) + \frac{\partial z}{\partial y}(i,j-1)\delta y \right]$$

IV. Traitement informatique du front d'onde reçub) Interpolation de Lagrange

$$Z(X,Y) = \sum_{i=0}^{n} \sum_{j=0}^{m} z_{i,j} L_i^x(X) L_j^y(Y)$$

$$L_i^x(X) = \prod_{\substack{k=1\\k\neq i}}^n \frac{X - x_k}{x_i - x_k}$$

Interpolateur selon x

$$L_j^y(Y) = \prod_{\substack{k=1\\k\neq j}}^n \frac{Y - y_k}{y_j - y_k}$$

Interpolateur selon y

IV. Traitement informatique du front d'onde reçub) Interpolation de Lagrange

Reconstitution du front d'onde

Le front d'onde interpolé « ressemble » au pochon

Les polynômes de Zernike sont une base des fonctions polynomiales de \mathcal{D} dans \mathbb{R} , elles mêmes denses dans $\mathcal{C}^0(\mathcal{D}, \mathbb{R})$ où $\mathcal{D} = \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 \leq 1\}$

Polynômes de Zernike d'ordre n

$$Z_n^m(\rho,\theta) = \begin{cases} R_n^m(\rho) \times \cos(m\theta) & m \ge 0 \\ R_n^m(\rho) \times \sin(m\theta) & m < 0 \end{cases} \quad R_n^m(\rho) = \sum_{k=0}^{\frac{n-m}{2}} \frac{(-1)^k (n-k)!}{k! (\frac{n+m}{2}-k)! (\frac{n-m}{2}-k)!} \rho^{n-2k}$$

m = nombre de méridiens affectés n = ordre du polynôme

Les polynômes de Zernike en physique

<u>Décomposition de la déformation du front d'onde sur la base de Zernike</u>

Produit scalaire

$$< f_1, f_2 > = \frac{1}{\pi} \iint_D f_1(\rho, \Phi) f_2(\rho, \Phi) \rho d\rho d\Phi$$

Résultat obtenu après projection : ordres 0 et 1

Ordre 0

Résultat obtenu après projection : ordre 2

Résultat obtenu après projection : ordres 3 et 4

Ordre 3

Ordre 4

Projection sur la base des Polynômes de Zernike

Conclusion

Mesure précise des défauts :

 \Rightarrow Elaboration d'une correction OU changement de la position du rayon

Source: media4.obspm.fr

Annexes

Preuve pour la remontée à la surface

Théorème de Malus :

Les rayons lumineux sont perpendiculaires aux surfaces d'ondes.

Ainsi, en utilisant le théorème de Malus à l'entrée de la lentille, on en déduit que $\overrightarrow{AI_1}$ est un vecteur normal à la surface d'onde.

Or par construction $\overrightarrow{AI_1}/|\overrightarrow{OM}|$

De plus,
$$\overrightarrow{OM} = X(M)\overrightarrow{u_x} + Y(M)\overrightarrow{u_y} - f'\overrightarrow{u_z}$$

On en déduit donc \overrightarrow{n} vecteur normal unitaire à la surface d'onde au point de mesure A par

$$\overrightarrow{n} = \frac{X(M)\overrightarrow{u_x} + Y(M)\overrightarrow{u_y} - f'\overrightarrow{u_z}}{\sqrt{X(M)^2 + Y(M)^2 + f'^2}}$$

Où X(M), Y(M) et f' sont comus grâce à l'expérience

Figure 8: Schéma en vue de coupe selon (xOz)

Soit $h: x \mapsto f(x, y_0)$ alors l'expression de la tangente en x_0 de h est

$$T_{x_0}: z = h'(x_0)(x - x_0) + h(x_0) = \frac{\partial z}{\partial x}(M)(x - x_0) + z(M)$$

Ainsi un vecteur directeur de T_{x_0} est : $\overrightarrow{T}_{x_0} = \overrightarrow{u}_x + \frac{\partial z}{\partial x}(M)\overrightarrow{u}_z^2$

De même selon $\overrightarrow{u_y}$ on obtient : $\overrightarrow{T_{y_0}} = \overrightarrow{u_y} + \frac{\partial z}{\partial y}(M)\overrightarrow{u_z}$

Les connaissances d'une part du vecteur normal et d'autre part des vecteurs tangents à la surface selon $\overrightarrow{u_x}$ et $\overrightarrow{u_y}$ nous permettent de trouver les relations entre les dérivées partielles de z, X(M) et Y(M).

$$\overrightarrow{n} = \frac{X(M)\overrightarrow{u_x} + Y(M)\overrightarrow{u_y} - f'\overrightarrow{u_z}}{\sqrt{X(M)^2 + Y(M)^2 + f'^2}} = \alpha \overrightarrow{u_x} + \beta \overrightarrow{u_y} + \gamma \overrightarrow{u_z}$$

$$\overrightarrow{T_x} = \frac{\overrightarrow{T_{x_0}}}{\|\overrightarrow{T_{x_0}}\|}, \ \overrightarrow{T_y} = \frac{\overrightarrow{T_{y_0}}}{\|\overrightarrow{T_{y_0}}\|}$$

En exploitant le fait que $\overrightarrow{n} \cdot \overrightarrow{T}_x = 0$ on obtient : $\frac{\partial z}{\partial x}(M) = -\frac{\alpha}{\gamma} = \frac{X(M)}{f'}$

De même avec $\overrightarrow{n} \cdot \overrightarrow{T}_y = 0$ on obtient : $\frac{\partial z}{\partial y}(M) = -\frac{\beta}{\gamma} = \frac{Y(M)}{P}$

Preuve pour la remontée à la surface

Il nous faut maintenant reconstituer à partir de la connaissance des dérivées partielles de z(x, y). Tout d'abord, ce qui nous intéresse est la position relative des points dans l'espace ; ainsi, sans pertes de généralités, nous pouvons fixer le point z(0,0) = 0.

Figure 9: Méthode pour reconstituer la surface

Nous avons élaboré la méthode suivante pour reconstituer la surface d'onde :

- Calculer à l'aide d'un développement limité à l'ordre 1 les points sur Ox et Oy
- 2. Calculer les autres points à l'aide d'une moyenne des points situés à gauche et en-dessous

Ainsi, pour un maillage de taille $n \times n$ on a:

1.
$$z(0,0) = 0$$

Sur $Ox : \forall i \in [1, n-1], z(i,0) = z(i-1,0) + \frac{\partial z}{\partial x}(i-1,0)\delta x$
Sur $Oy : \forall j \in [1, n-1], z(0,j) = z(0, j-1) + \frac{\partial z}{\partial y}(0, j-1)\delta y$

$$2. \ \forall (i,j) \in [\![1,n-1]\!]^2, \\ z(i,j) = \tfrac{1}{2} \left[z(i-1,j) + \tfrac{\partial z}{\partial x}(i-1,j) \delta x + z(i,j-1) + \tfrac{\partial z}{\partial y}(i,j-1) \delta y \right]$$

Nous obtenons ainsi un nuage de points qui correspond à une version discrète de la surface d'onde (mettre nuage de points)

Simulation cuve

```
import numpy as np
from PIL import Image
from pylab import *
import matplotlib.pyplot as plt
def tableau(i,j):
    return [[4.44*10**(-13) for a in range(j)] for k in range(i)],[[100 for a in
range(j)] for k in range(i)]
# 4.44*10**(-13) représente le temps de parcours de la case
def dimtab2D(t):
    return len(t), len(t[0])
def bulle(t1,t2): #fonction qui crée une bulle dans la cuve , modifie 2 tableaux un
pour le trajet, l'autre pour l'affichage
    i,j=dimtab2D(t1)
    r=randint(1,50) # rayon de la bulle
    (a,b)=(randint(0,i),randint(0,j)) # place de la bulle
    for p in range(-r,r+1):
        for w in range(-r,r+1):
           if floor(sqrt(p**2+w**2))<=r and -1<a-p<i and -1<b-w<j: #on regarde qu'on
est bien à une distance r du centre
                t1[a-p][b-w]=4.92*10**(-13) # on modifie la valeur du temps de parcours
                t2[a-p][b-w]=200
t1,t2=tableau(3000,5000)
for i in range(1000):
    bulle(t1,t2)
def somme(t,i):
   # somme la ième ligne de t
    s = 0
    for p in t[i]:
        s=s+p
    return s
def moyenne(L):
    for i in L:
        s=s+i
    return(s/len(L))
def simulation(t):
    L=[]
    A=[]
    for i in range(len(t)):
        A=A+[i]
    A=np.array(A)
    A=len(t)-A
    print(A) # on définit le nombre de lignes sur lesquelles on va travailler
    for i in range(len(t)):
       L=L+[somme(t,i)/100] # on incorpore dans L la durée de parcours de chaque ligne
    print(moyenne(L))
    return (np.array(L)-moyenne(L))/1000,A
X,Y=simulation(t1)
plt.close()
plt.plot(X,Y)
plt.xlim(-5e-15,5e-15)
plt.ylabel('ligne de la cuve')
plt.xlabel('écart entre les temps de parcours')
plt.show()
a=np.array(t2)
image = Image.fromarray(a)
image.show()
```

Déviation

```
import matplotlib.pyplot as plt
import numpy as np

N=0.7
x=np.linspace(-np.pi/2,np.pi/2,1000)

## Double dioptre concave vers la droite

for i in range(1,10,2):
    R=i*10**(-1)
    y=(np.arcsin(N*np.sin(x))+np.arcsin(R*np.sin(x))-np.arcsin(N*R*np.sin(x))-
x)*(180/np.pi)
    plt.plot(x*180/np.pi,y,label = f'R = {R:.2}')
    plt.legend()

plt.title("Déviation à l'entrée de la lentille (en °)")
plt.xlabel("Angle d'incidence (en °)")
plt.show()
```

Polynômes

```
n=len(p)
import copy
                                                                                                                if j==i:
                                                for k in range (n):
p1=[[1,2,3],[0,3],[0,3,4,0,0]]
                                                                                                                   L=L
                                                    m=max (m, len(p[k]))
                                                                                                                else:
p2=[[2,3],[0,2,0]]
                                                for i in range (n):
                                                                                                                    L=mult1v(L,[-1[j]/(l[i]-l[j]),1/(l[i]-l[j])])
                                                    l=len(p[i])
                                                                                                            return L
#fonctions à 1 variable utiles
def normalize1v (pol1):
                                                    while l<m:
                                                                                                        def lagrangeX (1,i):
                                                        p[i].append(0)
    s=copy.deepcopy (pol1)
                                                                                                            L=[[1]]
                                                        l=len(p[i])
    while s[-1]==0 and len(s)>1:
                                                                                                            for j in range (len(1)):
        s.pop(len(s)-1)
                                                return p
                                                                                                                if j==i:
    return s
                                                                                                                    L=L
                                            def somme2v (pol1,pol2):
                                                                                                                else:
                                               p=copy.deepcopy(pol1)
def sommelv (pol1,pol2):
                                                                                                                   L=mult2v(L,[[-1[j]/(1[i]-1[j])],[1/(1[i]-1[j])])
    p=copy.deepcopy (pol1)
                                               q=copy.deepcopy(pol2)
                                                                                                            return L
    q=copy.deepcopy(pol2)
                                                n=len(p)
    p1=normalize1v(p)
                                                m=len(q)
                                                                                                        def interpole2v (lx,ly,t):
                                                if n<m :
    q1=normalize1v(q)
                                                                                                            Lx=[]
    n,m=len(p1),len(q1)
                                                    s=copy.deepcopy(q)
                                                                                                            Ly=[]
    if n > m :
                                                    for i in range (n):
                                                                                                            n=len(lx)
                                                        s[i]=somme1v(p[i],q[i])
                                                                                                            m=len(ly)
        s = p1
                                                                                                            inter=[[0]]
        for i in range (m):
                                                else:
                                                                                                            for k in range (n):
            s[i] += q[i]
                                                    s=copy.deepcopy(p)
                                                                                                                Lx.append(lagrangeX(lx,k)) # Calcul des Lagrangiens selon x
    else :
                                                    for i in range (m):
                                                        s[i]=somme1v(p[i],q[i])
        s = q1
                                                                                                                Ly.append([lagrangeY(ly,l)]) # Calcul des Lagrangiens selon y
        for i in range (n):
                                                return normalize2v(s)
                                                                                                            for i in range (n):
            s[i] += p[i]
                                                                                                                for j in range (m):
                                            def mult_scal2v (pol,x):
    return s
                                                                                                                    inter=somme2v(inter,mult scal2v(mult2v(Lx[i],Ly[i]),t[i][i])) # Somme pour
                                                p=copy.deepcopy (pol)
                                                                                                        chaque point
def mult_scal1v (pol,x):
                                                s=normalize2v(p)
                                                                                                            return inter
    p=copy.deepcopy (pol)
                                                for i in range (len(s)):
    s=normalize1v(p)
                                                    for j in range (len(s[0])):
    for i in range (len(s)):
                                                        s[i][j] *= x
        s[i] *= x
                                                return s
    return s
                                            def mult_monom2v (pol,x,i,j):
def mult_monom1v (pol,x,i):
                                                p=copy.deepcopy (pol)
    """Multiplie le polynôme par X^i"""
                                                s=mult_scal2v(p,x)
    p=copy.deepcopy (pol)
                                                n=len(s)
    m=mult_scal1v (p,x)
                                                m=len(s[0])
    s=[0]*i
                                                z1=[0]*j
    return s+m
                                                for k in range (n):
                                                                                     #rajoute à chaque sous liste autant de zéro
                                            que Le degré du monom en Y
def mult1v (pol1,pol2):
                                                    s[k]=z1+s[k]
    p=copy.deepcopy (pol1)
                                                z2=[[0]*(m+i)]*i
                                                                                     #decale Le degré du polynome en X
    q=copy.deepcopy (pol2)
                                                return z2+s
    p1,q1=normalize1v(p),normalize1v(q)
    m=[0]
                                           def mult2v (pol1,pol2):
    for i in range (len(p1)):
                                                p1=copy.deepcopy(pol1)
        s=mult_monom1v(q1,p1[i],i)
                                                p2=copy.deepcopy(pol2)
        m=somme1v(m,s)
                                                s1, s2=normalize2v(p1), normalize2v(p2)
    return normalize1v(m)
                                                n,m = len(s1), len(s1[0])
                                                f=[[0]]
#polynome 2 variables
                                                for i in range (n):
def normalize2v (pol):
                                                    for j in range (m):
    p=copy.deepcopy(pol)
                                                        f=somme2v(f,mult_monom2v(s2, s1[i][j], i, j))
    n=len(p)
                                                return f
    for i in range (n):
        p[i]=normalize1v(p[i])
                                            ##Lagrange 2 variables
    while p != [[0]] and p[-1] == [0]:
                                            def lagrangeY (1,i):
        p.pop(-1)
                                                L=[1]
    m=len(p[0])
                                                for j in range (len(1)):
```

Représentation plan

```
from Polynomes import *
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import math
def calc_z_coin (t,f, pasx,pasy) :
    m = len(t)
    n = len(t[0])
    Z = [[0 for _ in range (n)] for _ in range (m)]
    for i in range (1,n):
        X,Y = t[0][i-1]
        Z[\theta][i]=Z[\theta][i-1]-X/f*pasx
    for i in range (1,m):
        X,Y = t[i-1][0]
        Z[i][\theta]=Z[i-1][\theta]-Y/f*pasy
    for i in range (1,m):
        for j in range (1,n):
            X1 , Y1 = t[i][j-1]
            X2 , Y2 = t[i-1][j]
            Z[i][j] = 0.5*(Z[i][j-1]-X1/f*pasx + Z[i-1][j]-Y2/f*pasy)
    return Z
def calc_z_centre (t,f, pasx,pasy) :
    m = len(t)
    n = len(t[0])
    Z = [[0 for _ in range (n)] for _ in range (m)]
    if m % 2 ==0 :
        m1=m//2
    else:
        m1=m//2 + 1
    if n%2 == 0:
        n1=n//2
    else :
        n1=n//2 + 1
    for i in range (n1,n):
        X,Y = t[m1][i-1]
        Z[m1][i]=Z[m1][i-1]-X/f*pasx
    for i in range (n1-1,-1,-1):
        X,Y = t[m1][i+1]
        Z[m1][i]=Z[m1][i+1]+X/f*pasx
    for i in range (m1,m):
        X,Y = t[i-1][n1]
        Z[i][n1]=Z[i-1][n1]-Y/f*pasy
    for i in range (m1,-1,-1):
        X,Y = t[i+1][n1]
        Z[i][n1]=Z[i+1][n1]+Y/f*pasy
    for i in range (m1,m):
        for j in range (n1,n):
            X1, Y1=t[i][j-1]
            X2, Y2 = t[i-1][j]
            Z[i][j] = 0.5*(Z[i][j-1]-X1/f*pasx + Z[i-1][j]-Y2/f*pasy)
    for i in range (m1,m):
        for j in range (n1-1,-1,-1):
            X1,Y1=t[i][j+1]
            X2, Y2 = t[i-1][j]
            Z[i][j] = 0.5*(Z[i][j+1]+X1/f*pasx + Z[i-1][j]-Y2/f*pasy)
    for i in range (m1-1,-1,-1):
```

```
for j in range (n1,n):
                                                                                  X1, Y1=t[i][j-1]
                                                                                  X2, Y2 = t[i+1][j]
                                                                                  Z[i][j] = 0.5*(Z[i][j-1]-X1/f*pasx + Z[i+1][j]+Y2/f*pasy)
                           for i in range (m1-1,-1,-1):
                                                      for j in range (n1-1,-1,-1):
                                                                                 X1,Y1=t[i][j+1]
                                                                                  X2, Y2 = t[i+1][j]
                                                                                 Z[i][j] = 0.5*(Z[i][j+1]+X1/f*pasx + Z[i+1][j]+Y2/f*pasy)
                           return Z
t=[[(0,0),(-1,-1),(0,1),(-1,1),(-1,0),(1,1),(-1,0),(-1,1),(-1,0),(-1,1),(-1,1),(-1,2),
(0,0)],
                      [(2,1),(1,1),(0,0),(-1,0),(-2,0),(-1,0),(0,0),(0,0),(0,-1),(-1,1),(-1,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,1),(-2,
1)],
                      [(1,0),(0,0),(0,1),(-2,0),(-2,-1),(-1,2),(0,1),(0,0),(-1,1),(0,-1),(0,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,1),(-1,
                     [(1,\theta),(\theta,\theta),(\theta,\theta),(-2,-1),(\theta,-1),(1,-1),(\theta,-1),(\theta,-1),(\theta,\theta),(\theta,-1),(-2,-1),(-1,\theta),
(-1,0)],
                      [(2,0),(0,-1),(0,0),(-2,0),(-1,0),(0,0),(1,0),(-1,-2),(0,0),(0,0),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-
0)],
                      [(1,0),(0,0),(1,0),(-1,0),(0,0),(0,0),(0,0),(0,-1),(0,0),(0,0),(2,0),(-1,1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),(-1,-1),
1)],
                      [(1,0),(0,0),(2,0),(-1,0),(0,0),(0,0),(-2,2),(0,0),(0,0),(-1,0),(-1,1),(0,0),(-1,-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,0),(-1,
1)],
                       [(2,-2),(0,0),(1,-1),(0,-1),(0,0),(0,0),(0,0),(-1,0),(0,0),(0,-1),(-2,0),(-1,-
1)],
                      [(1,-1),(-1,1),(1,0),(-1,0),(0,0),(0,0),(0,-1),(0,0),(0,0),(0,0),(-1,0),(-1,-1),(-2,0)]
 -1)],
                       [(0,0),(1,-1),(-1,0),(2,0),(0,0),(0,-1),(0,0),(0,0),(0,0),(0,0),(0,-1),(0,0),(0,0)],
                       [(0,0),(1,-1),(-1,0),(1,-2),(0,-1),(1,-1),(0,0),(0,-1),(0,-1),(-1,-1),(0,0),(0,0),
(0,0)]]
plan_z1=calc_z_centre(t,200,5,5)
n1=len(plan z1[0])
m1=len(plan_z1)
lx=[i*0.5 for i in range (m1)]
ly=[j*0.5 for j in range (n1)]
z1=interpole2v(lx,ly,plan_z1)
def plan1 (x,y):
                           val=0
                           n=len(z1)
                           m=len(z1[0])
                           for i in range (n):
                                                      for j in range (m):
                                                                                  val += x**i * y**j * z1[i][j]
                           return val
def plan1_dec(x,y):
                           return plan1(3/2*x+2.5,3/2*y+2.5)
def plan1_polaire_decale(rho,phi):
                           return plan1(3/2*rho*math.sin(phi)+2.5,3/2*rho*math.cos(phi)+2.5)
def plan2 (x,y):
                           val=0
```

Représentation plan

```
n=len(z2)
    m=len(z2[0])
    for i in range (n):
        for j in range (m):
           val += x**i * y**j * z2[i][j]
    return val
ax = Axes3D(plt.figure())
plan1_dec = np.vectorize(plan1_dec)
R = np.arange(0,1,0.05)
Phi = np.arange(0,2*math.pi+0.1,0.05)
R,P = np.meshgrid(R, Phi)
X , Y = R*np.cos(P) , R*np.sin(P)
plan1 polaire decale = np.vectorize(plan1 polaire decale)
Z = plan1_dec(X, Y)
plt.xlabel('x',color = 'red')
plt.ylabel('y', color = 'red')
ax.plot_surface(X, Y, Z, cmap=cm.coolwarm)
plt.show()
plan_z2 = calc_z_centre(t, 200, 5, 5)
n2 = len(plan_z2[\theta])
m2 = len(plan_z2)
lx = [i * 0.5 for i in range(m2)]
ly = [j * 0.5 for j in range(n2)]
z2 = interpole2v(lx, ly, plan_z2)
ax = Axes3D(plt.figure())
plan2=np.vectorize(plan2)
X = np.arange(1, 4, 0.1)
Y = np.arange(1, 4, 0.1)
X, Y = np.meshgrid(X, Y)
Z = plan2(X, Y)
ax.plot_surface(X, Y, Z,cmap = cm.coolwarm)
plt.show()
```

Zernike

```
import math
def Rmn(m,n,rho):
    R = 0
    if (n-abs(m)) % 2 == 0:
        for k in range((n-abs(m))//2+1):
            R += ((-1)^{++}k^{+}math.factorial(n-k)) /
(math.factorial(k)*math.factorial((n+abs(m))/2-k)*math.factorial((n-abs(m))/2-
k))*rho**(n-2*k)
    return R
def Zernike(rho,phi,m=None,n=None):
    if m==None:
       m = Zernike_xy.m
    else:
        Zernike_xy.m = m
    if n==None:
        n = Zernike_xy.n
    else:
       Zernike_xy.n = n
    if m >= 0 :
        return Rmn(m,n,rho)*math.cos(m*phi)
    else:
        return Rmn(m,n,rho)*math.sin(m*phi)
def Zernike_xy(x,y,m=None,n=None):
    if m==None:
        m = Zernike_xy.m
    else:
        Zernike_xy.m = m
    if n==None:
        n = Zernike xy.n
    else:
        Zernike_xy.n = n
    return Zernike(math.sqrt(x*x+y*y),math.atan2(y,x),Zernike_xy.m,Zernike_xy.n)
```

Projection Zernike sur plusieurs ordres

```
from scipy.integrate import dblquad
from Zernike import *
from Représentation_plan import *
def ps(f,g,domaine_rho,domaine_phi):
    return dblquad(lambda rho, phi : 1/(math.pi)*f(rho,phi)*g(rho,phi)*rho,
domaine_phi[0], domaine_phi[1], lambda rho : domaine_rho[0],
lambda rho : domaine rho[1], epsabs=1e-5, epsrel=1e-5)[0]
plan_z1=calc_z_centre(t,200,5,5)
lx=[i*0.5 for i in range (m1)]
ly=[j*0.5 for j in range (n1)]
for i in range (6):
    z1=interpole2v(lx,ly,plan_z1)
    projection_zernike = []
    for n in range(i+1):
        pr = []
        for m in range(-n,n+1,2):
            Zernike_xy(0,0,m,n) #Calcul du polynômes Z(n,m)
            prod = ps(Zernike,plan1_polaire_decale,[0,1],[0,2*math.pi])/ps(Zernike,
Zernike,[0,1],[0,2*math.pi]) #Porjection du front d'onde sur Z(n,m)
            pr.append(prod)
        projection_zernike.append(pr)
    def resultat(x,v):
        res = 0
        for n in range(i+1):
            k = 0
            for m in range(-n,n+1,2):
                Zernike_xy.n, Zernike_xy.m = n,m
                res += (projection_zernike[n][k])*Zernike_xy(x,y)
                k += 1
        return res
    ax = Axes3D(plt.figure())
    resultat = np.vectorize(resultat)
    R = np.arange(0,1,0.05)
    Phi = np.arange(0,2*math.pi+0.1,0.05)
    R,P = np.meshgrid(R, Phi)
    X, Y = R*np.cos(P), R*np.sin(P)
    Z = resultat(X,Y)
    ax.plot_surface(Y, X, Z, cmap=cm.coolwarm)
    plt.xlabel('x', color = 'red')
    plt.ylabel('y', color = 'red')
    plt.show()
```