• OpAlu rd,rf1,rf2

50 (Mem) + 5 (BR) + 2 (Mux) + 10 (ALU) + 2 (Mux) + 5 (BR) = 74

 \square rd \leftarrow rf1 (OpAlu) rf2

ADDI rd, rf, constante

31

ORI rd, rf, constante

UNIDAD DE DATOS 32 31:26 25:0 **LPC** Read Write CS Write 20:16 FDC IB Banco de Read Write CS Instr Registros Memoria Instrucciones Dato R Memoria **50 Datos** Tema 2 00 Extensión de signo

■ SW rd,desp.(rf) 50 (Mem) + 5 (BR) + 10 (ALU) + 50 (Mem) = 115□ MEM[rf+desp] \leftarrow rd

101011 rf rd desp.

31 2625 2120 1615 0

LUI rd, constante

Instrucción	Tiempo
OpALU	74
ADDI	72
ORI	72
LW	122
SW	115
LUI	72
BEQ	74
J	57

Tema 2

Tema 2

- Ciclo 1: carga de la instrucción (común)
 - □ IR ← MEM[PC]

- Ciclo 2: Decodificación y búsqueda de operandos (común)
 - □ A ← BancoReg[IR[25:21]]
 - □ B ← BancoReg[IR[20:16]]
 - \square R \leftarrow ALU(PC;ExtSig(IR[15:0]);SUMA) 2 (Ext) + 4 (Mux) + 10 (ALU) + 3 (R) = 19

IR ←MEM[PC] PC ← ALU(PC;1;SUMA)

55

Ejecución: OpALU

- OpAlu rd,rf1,rf2: rd ← rf1 (OpAlu) rf2
- Ciclo 3: Cálculo del resultado
 - \square z,R \leftarrow ALU(A;B;IR[2:0])

4 (Mux) + 10 (ALU) + 3 (R) = 17

Ejecución: OpALU

- OpAlu rd,rf1,rf2: rd ← rf1 (OpAlu) rf2
- Ciclo 4: Almacenar resultado
 - □ BancoReg[IR[15:11]] ← R

2 (Mux) + 5 (BR) = 7

Ejecución: ADDI

- ADDI rd, rf, cons.: rd ← rf + cons.
- Ciclo 3: Cálculo del resultado
 - \square z,R \leftarrow ALU(A;IR[15]..IR[15:0];SUMA)

 $\begin{array}{c} \text{IR} \leftarrow \text{MEM[PC]} \\ \text{PC} \leftarrow \text{ALU(PC;1;SUMA)} \end{array} \\ \downarrow \\ \text{A} \leftarrow \text{BancoReg[IR[25:21]]} \\ \text{B} \leftarrow \text{BancoReg[IR[20:16]]} \\ \text{R} \leftarrow \text{ALU(PC;ExtSig(IR[15:0]);SUMA)} \end{array}$

2 (Ext) + 4 (Mux) + 10 (ALU) + 3 (R) = 19

Ejecución: ADDI

- ADDI rd, rf, cons.: rd ← rf + cons.
- Ciclo 4: Almacenar resultado
 - □ BancoReg[IR[20:16]] ← R

2 (Mux) + 5 (BR) = 7

Ejecución: ORI

- ORI rd, rf, cons.: rd \leftarrow rf OR cons.
- Ciclo 3: Cálculo del resultado
 - \Box z,R \leftarrow ALU(A;0..0,IR[15:0];OR) (----)
- Ciclo 4: Almacenar resultado

 - BancoReg[IR[20:16]] \leftarrow R (----)

2 (Ext) + 4 (Mux) + 10 (ALU) + 3 (R) = 19

2 (Mux) + 5 (BR) = 7

Ejecución: LW

- LW rd,desp.(rf): rd ← MEM[rf+desp]
- Ciclo 3: Cálculo dirección efectiva
 - \square R \leftarrow ALU(A;IR[15]..IR[15:0];SUMA)

 $\begin{tabular}{l} IR \leftarrow MEM[PC] \\ PC \leftarrow ALU(PC;1;SUMA) \\ \hline & \\ & \\ \hline & \\ A \leftarrow BancoReg[IR[25:21]] \\ B \leftarrow BancoReg[IR[20:16]] \\ R \leftarrow ALU(PC;ExtSig(IR[15:0]);SUMA) \\ \hline \end{tabular}$

100011 rd desp. 31 2625 2120 1615 32 25:0 **LPC** RM WM CS WR Read Write CS Write IR PC 20:16 FDC **LMDR** Banco de Dato R Dato W DC Registros Memoria R 32 Datos/Ins. MDR 50 Ext. Tema 2 34

Ejecución: LW

- LW rd,desp.(rf): rd ← MEM[rf+desp]
- Ciclo 4: Lectura dir. Efectiva
 - \square MDR \leftarrow MEM[R]

2 (Mux) + 50 (Mem) + 3 (MDR) = 55

Ejecución: LW

- LW rd,desp.(rf): rd ← MEM[rf+desp]
- Ciclo 5: Escritura en reg. Destino
 - BancoReg[IR[20:16]] ← MDR

2 (Mux) + 5 (BR) = 7

55

19

19

IR ←MEM[PC]

PC ← ALU(PC;1;SUMA)

A ← BancoReg[IR[25:21]] B ← BancoReg[IR[20:16]]

 $R \leftarrow ALU(PC;ExtSig(IR[15:0]);SUMA)$

R ← **ALU**(**A**;**IR**[15]..**IR**[15:0];**SUMA**)

MDR ← MEM[R]

Ejecución: SW

- SW rd,desp.(rf): MEM[rf+desp] ← rd
- Ciclo 3: Cálculo dirección efectiva
 - \square R \leftarrow ALU(A;IR[15]..IR[15:0];SUMA)

IR ← MEM[PC]
PC ← ALU(PC;1;SUMA)

A ← BancoReg[IR[25:21]]
B ← BancoReg[IR[20:16]]
R ← ALU(PC;ExtSig(IR[15:0]);SUMA)

R ← ALU(A;IR[15]..IR[15:0];SUMA)

2 (Ext) + 4 (Mux) + 10 (ALU) + 3 (R) = 19

Ejecución: SW

- SW rd,desp.(rf): MEM[rf+desp] ← rd
- Ciclo 4: Escritura en memoria
 - MEM[R] ← B

2 (Mux) + 50 (Mem) = 52

Ejecución: LUI

- LUI rd, constante: rd ← cons.,0..0
- Ciclo 3: Cálculo despalzamiento const.
 - \square R \leftarrow ALU(A;IR[15:0],0..0;SUMA)

Ejecución: LUI

- LUI rd, constante: rd ← cons.,0..0
- Ciclo 4: Almacenar en registro
 - □ BancoReg[IR[20:16]] ← R

2 (Mux) + 5 (BR) = 7

Ejecución: BEQ

- BEQ rf,rd,dir: if (rd=rf) PC \leftarrow PC+1+dir
- Ciclo 3: Cálculo de la condición
 - \square Z \leftarrow ALU(A;B;RESTA) 4 (Mux) + 10 (ALU) + 3 (R) = 17

Ejecución: BEQ

- BEQ rf,rd,dir: if (rd=rf) PC ← PC+1+dir
- Ciclo 4: Carga registro PC
 - \square PC * z \leftarrow R

4 (Mux) + 3 (PC) = 7

Ejecución: J

- J dir: PC ← (PC+1)[31:26],dir
- Ciclo 3: Carga de PC
 - \square PC \leftarrow PC[31:26], IR[25:0] 4 (Mux) + 3 (PC) = 7

Camino crítico: 55 ns

Tiempo de ciclo (Multiciclo): 55 ns

Instruc ción	Tiempo (Monoc.)	Tiempo (Multic.)
OpALU	122	4*55 = 220
ADDI	122	4*55 = 220
ORI	122	4*55 = 220
LW	122	5*55 = 275
SW	122	4*55 = 220
LUI	122	4*55 = 220
BEQ	122	4*55 = 220
J	122	3*55 = 165

- Multiciclo mucho peor que Monociclo
- ¿Por qué?
 - El acceso a memoria es el que determina el tiempo de ciclo
- ¿Solución?
 - Partir el acceso a memoria en varios ciclos

Acceso a memoria en varios ciclos

- Dividimos el acceso a memoria en 3 ciclos
 - Los dos primeros sólo direccionan memoria
 - El tercero carga el dato en el destino (IR)
 - La restricción ahora es que el los 3 ciclos no pueden tardar menos de 50ns (16,6ns cada uno)

Acceso a memoria en varios ciclos

Acceso a memoria en varios ciclos

- Acceso a memoria: 17+17+21= 55 > 50
 - IR se carga después de 55 ns direccionando la memoria con PC

Tema 2

Tiempo de ciclo (Multiciclo): 21ns

Instrucción	Tiempo (Monoc.)	Tiempo (Multic.)	Tiempo (Multic. Modificado)
OpALU	122	4*55 = 220	6*21 = 126
ADDI	122	4*55 = 220	6*21 = 126
ORI	122	4*55 = 220	6*21 = 126
LW	122	5*55 = 275	9*21 = 189
SW	122	4*55 = 220	8*21 = 168
LUI	122	4*55 = 220	6*21 = 126
BEQ	122	4*55 = 220	6*21 = 126
J	122	3*55 = 165	5*21 = 105

Se acerca pero no mejora

Mejorar camino crítico

Mejorar camino crítico

Tema 2

Tiempo de ciclo (Multiciclo): 19ns

Instrucción	Tiempo (Monoc.)	Tiempo (Multic.)	Tiempo (Multic. Modificado)
OpALU	122	4*55 = 220	6*19 = 114
ADDI	122	4*55 = 220	6*19 = 114
ORI	122	4*55 = 220	6*19 = 114
LW	122	5*55 = 275	9*19 = 171
SW	122	4*55 = 220	8*19 = 152
LUI	122	4*55 = 220	6*19 = 114
BEQ	122	4*55 = 220	6*19 = 114
J	122	3*55 = 165	5*19 = 95

- Ya mejora algo pero poco
- ¿qué ocurriría si el retardo de la memoria fuera 200 en vez de 50?

Tema 2