

Operating Systems

Internals and Design Principles

William Stallings

Chapter 1 - Part 2 Computer System Hardware

Ninth Edition, Global Edition By William Stallings

Computer Memory

- Design constraints on memory are:
 - Capacity
 - Speed
 - Price
- Memory access time must keep up with the processor speed
- Cost of memory must be reasonable in relationship to other hardware components

Memory Trade-Offs

Faster
access time
= greater
cost per bit

Greater capacity
= smaller cost per
bit

Greater capacity = slower access speed

No perfect memory solution exists

Approach for best performance: multiple levels of different memory types

Memory Hierarchy

Registers Topic of this lecture Inboard Cache Memory Main Memory Magnetic Disk Outboard CD-ROM Storage CD-RW DVD-RW DVD-RAM Blu-Ray Magnetic Tape Off-line Storage

Copyright ©

Memory Hierarchy

Going down the hierarchy:

- > Decreasing cost per bit
- > Increasing capacity
- > Increasing access time
- Decreasing frequency of access to the memory by the processor

Design question that we address in this Chapter

Two-Level Memory Example

- Processor has access to two levels of memory
- Level 1 contains 1,000 bytes and has an access time of 0.1 microseconds (small and fast memory: cache)
- Level 2 contains 100,000 bytes and has an access time of 1 microsecond (large and slow memory: main memory)
- If data is found in Level 1 then processor accesses it directly
- If data is found in Level 2 then it is first transferred to Level 1 and then accessed by the processor

Average access time

Performance of Two-Level Memory

Average access time

 $(0.95) (0.1 \mu s) + (0.05) (0.1 \mu s + 1 \mu s)$

 $= 0.095 \, \mu s + 0.055 \, \mu s$

 $= 0.15 \, \mu s$

Copyright © 2018 Pearson Education, Ltd. All Rights Reserved.

Principle of Locality

- How to achieve a high hit ratio?
- Observation: memory accesses by the processor tend to **cluster** (loops, iterative array access, etc.)
- Organize data across memory levels such that current cluster in use is in the cache memory

Array

Cache-Main Memory

- Small cache memory contains copy of portion of larger main memory that is likely to be accessed by the processor in future
- Copy clusters into cache based on principle of locality

Cache-Main Memory

- Small cache memory contains copy of portion of larger main memory that is likely to be accessed by the processor in future
- Copy clusters into cache based on principle of locality

Cache and Block Size

Cache Size

Small caches already have significant impact on performance

Block Size

The size of data exchanged between cache and main memory

Mapping Function

Determines which cache slot the block will occupy

Two constraints:

When one block is read in, another may have to be **replaced**

The more flexible the mapping function, the more complex is the search in the cache

Replacement Algorithm

- Least Recently Used (LRU) Algorithm
 - Strategy is to replace a block that has been in the cache the longest with no access to it

Write Policy

Dictates when an updated cache block is written back to main memory

- Every time the cache block is updated
- Only when the cache block is replaced: may cause problems in **multiprocessor systems**

Write Policy

Dictates when an updated cache block is written back to main memory

- Every time the cache block is updated
- Only when the cache block is replaced: may cause problems in **multiprocessor systems**

Write Policy

Dictates when an updated cache block is written back to main memory

- Every time the cache block is updated
- Only when the cache block is replaced: may cause problems in **multiprocessor systems**

Multiprocessor Systems: Symmetric Multiprocessors (SMP)

- A stand-alone computer system with the following characteristics:
 - Two or more processors of similar capability
 - Processors share main memory and are connected by a system bus
 - Processors share access to I/O devices
 - All processors can perform the same functions
 - Communication between processors via shared memory

SMP Advantages

Performance

• Work can be done in parallel

Availability

• Failure of a single processor does not halt the machine

Scaling

 Vendors can offer a range of products with different price and performance characteristics

Incremental Growth

• Each additional processor enhances the performance

Multiprocessor Systems: Multicore Computer

- Combines two or more processors (cores) on a single chip
 - Each core consists of all of the components of an independent processor
- Exclusive and shared caches
- Fast communication between cores
- External communication to other chips via controllers

Chapter 1 Summary

- Basic hardware elements
- Evolution of the microprocessor
- Instruction execution
- Interrupts
 - Interrupts and the instruction cycle
 - Interrupt processing
 - Multiple interrupts
- Memory hierarchy

- Cache memory
 - Motivation
 - Cache principles
 - Cache design
- Multiprocessor and multicore organization
 - Symmetric multiprocessors
 - Multicore computers