

RIGA TECHNICAL UNIVERSITY

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

INSTITUTE OF APPLIED COMPUTER SYSTEMS

Introduction to Operations Research Assignment 7 Writing OPL Program Using CPLEX with External Data

Name: Emir

Surname: Oguz

Student Number: 230ADB011

> Task

- Use CPLEX with external data: MS Excel and MS Access. Solve the problem with CPLEX and make report. (Task in Lecture Session - A Cargo Plane Task File)
- Make a report and add conclusion to it.

Answer

Code in CPLEX Model File

```
// define parameters
int n = ...; // number of cargos
int m = ...; // number of compartments
range cargos = 1..n;
range comps = 1..m;
float profit[cargos] = ...; // profit per ton for each cargo
float weight[cargos] = ...; // weight per ton for each cargo
float volume[cargos] = ...; // volume per ton for each cargo
float weight_cap[comps] = \dots; // weight capacity for each compartment float space_cap[comps] = \dots; // space capacity for each compartment
// define decision variables
dvar float+ x[cargos][comps]; // amount of each cargo to load into each compartment
dvar float+ y; // proportion of weight capacity to load into each compartment
// define objective function to maximize total profit
maximize sum(i in cargos, j in comps) profit[i] * x[i][j];
// define constraints
subject to {
  // ensure available weight is not exceeded for each cargo
  forall(i in cargos)
    available_weight:
    sum(j in comps) x[i][j] <= weight[i];</pre>
  // ensure weight capacity is not exceeded for each compartment
  forall(j in comps)
    weight_capacity:
    sum(i in cargos) x[i][j] <= weight_cap[j];</pre>
  // ensure space capacity is not exceeded for each compartment
  forall(j in comps)
    space capacity:
    sum(i in cargos) volume[i] * x[i][j] <= space_cap[j];</pre>
  // ensure plane is balanced by loading proportional weight into each compartment
  forall(j in comps)
    balanced_plane:
    sum(i in cargos) x[i][j] / weight_cap[j] == y;
```

Code in CPLEX Data File (for the Excel file)

```
n = 4; // cargos
m = 3; // comps

SheetConnection my_sheet ("TaskData.xlsx");
profit from SheetRead (my_sheet, "profit");
weight from SheetRead (my_sheet, "weight");
volume from SheetRead (my_sheet, "volume");

weight_cap from SheetRead (my_sheet, "weight_cap");
space_cap from SheetRead (my_sheet, "space_cap");
```

Output

Solution with objective 12,151.579		
	Name	Value
v 🎄	Data (9)	
« \$	cargos	14
«\$	comps	13
in .	m	
in .		4
I II ²	profit	[310 380 350 285]
I II ²	space_cap	[6800 8700 5300]
I II ²	volume	[480 650 580 390]
I II ²	weight	[18 15 23 12]
I II [™]	weight_cap	[10 16 8]
∨ 🦞	Decision variables (2)	
I If		[[0 0 0] [10 0 5] [0 12.947 3] [0 3.0526 0]]
.=	у	
∨ ***	Constraints (4)	
I	available_weight	$sum(j in 13) x[i][j] \le weight[i]$
■	balanced_plane	sum(i in 14) x[i][j] / weight_cap[j] == y
■	space_capacity	sum(i in 14) volume[i]*x[i][j] <= space_cap[j]
I	weight_capacity	$sum(i in 14) x[i][j] <= weight_cap[j]$

• Conclusion

In this assignment, firstly I created a CPLEX data file by writing the necessary codes to use the data in the Excel file. Then I wrote a code where I could use this data and created the CPLEX model file. I added the Excel file to the CPLEX project folder I created and ran the code. I got the data and decision variables that I used in the output and showed them in the assignment as well.

As a result, in this assignment, I found the most optimized way for the Cargo Plane Task. I learned where OPL is used and how to use CPLEX for external data.