Métodos de solución de problemas de optimización

Según el tipo de problema de optimización puede usarse uno u otro método de resolución

Tipo de problema	Método de resolución
Lineal: todas las ecuaciones con lineales. Las variables de decisión son números continuos	Simplex, del punto interior
No lineal: algunas de las ecuaciones son no lineales. Las variables de decisión son números continuos	Gradiente conjugado, newton, Metaheurísticas como Algoritmos genéticos, colonia de hormigas, etc
Combinatorial o mixta: algunas de las variables de decisión son valores enteros.	Ramificación y acotamiento (Branch and bound), Metaheurísticas como Algoritmos genéticos, colonia de hormigas, etc
Estocásticos: Algunos de los parámetros no se conocen con exactitud y son representados por una función de distribución de probabilidad.	Equivalente determinísticos, todos los de no linealidad Simulación+ Metaheurística (programación estocástica implícita)

El método simplex

Procedimiento Tabular

Forma Aumentada del modelo

Forma original

Max $Z = 3X_1 + 5X_2$

Sujeto a

$$X_1 \leq 4$$

$$2X_2 \leq 12$$

$$3X_1 + 2X_2 \le 18$$

$$X_1, X_2 \ge 0$$

Forma aumentada

Max
$$Z = 3X_1 + 5X_2$$

Sujeto a

$$X_1 + X_3 = 4$$

$$2X_2 + X_4 = 12$$

$$3X_1 + 2X_2 + X_5 = 18$$

$$X_1$$
, X_2 , X_3 , X_4 , $X_5 \ge 0$

Se basa en los siguientes Teoremas

- 1. La solución óptima, si existe, se encuentra en un vértice de la Región Factible.
- 2. Si una solución en un vértice, no tiene soluciones adyacentes mejores, esa es la solución óptima (óptimo local es global).
- 3. Una solución básica (en un vértice aumentada) es la resultante de hacer (n-m) variables iguales a cero y resolver el sistema de ecuaciones para las m variables restantes.
- 4. Soluciones adyacentes tienen iguales todas las variables básicas menos una (y por supuesto las no básicas).

Ejemplo

Max
$$Z = 3X_1 + 5X_2$$

Sujeto a:
 $X_1 \le 4$
 $2X_2 \le 12$
 $3X_1 + 2X_2 \le 18$
 $X_1, X_2 \ge 0$

Método simplex algebraico

- El método simplex es un procedimiento algebraico:
 - las soluciones se obtienen al resolver un sistema de *ecuaciones lineales* conformado a partir de las restricciones funcionales.
- El sistema de ecuaciones lineales se obtiene al convertir cada desigualdad de la forma original, en una *igualdad equivalente*.

Variables de holgura

 Son variables no negativas, que se adicionan al lado izquierdo de una restricción funcional de desigualdad del tipo ≤ para convertirla en una igualdad equivalente. Ejemplo:

Primera restricción: $X_1 \le 4$

Sea X₃ lo que le hace falta a X₁ para ser igual a 4

 $X_1 \le 4$ es equivalente a $X_1 + X_3 = 4$, donde $X_3 \ge 0$

X₃ es una variable de holgura

Características de las variables de holgura

- Tienen un coeficiente de costo igual a cero
- Tienen coeficiente 1 en la restricción donde aparecen y 0 en las demás restricciones
- Conforman una matriz identidad
 - Sirven para completar la base
- Tienen un significado real
 - Miden la cantidad de recurso no usado
 - Pueden aparecer en la solución óptima

Forma aumentada del modelo

Forma original	Forma aumentada
Max $Z = 3X_1 + 5X_2$	Max $Z = 3X_1 + 5X_2$
Sujeto a:	Sujeto a:
$X_1 \leq 4$	$X_1 + X_3 = 4$
$2X_2 \le 12$	$2X_2 + X_4 = 12$
$3X_1 + 2X_2 \le 18$	$3X_1 + 2X_2 + X_5 = 18$
$X_1, X_2 \ge 0$	$X_1, X_2, X_3, X_4, X_5 \ge 0$

Solución aumentada

• Es una solución para las variables originales (variables de decisión), que se ha aumentado con los valores correspondientes de las variables de holgura

Solución sistema original

Solución sistema aumentado

Solución básica

- Un sistema con m ecuaciones y con n variables (incluyendo las de decisión y de holgura), donde n > m, tiene n-m grados de libertad
- Se pueden dar valores arbitrarios a n-m de las variables y luego resolver el sistema para las otras m.

Cuál es el grado de libertad del ejemplo?

Solución y variables básicas

- Si se asigna el valor de 0, arbitrariamente, a (n-m) variables y se resuelve el sistema para las otras m, a estas m variables se les denominará variables básicas.
- Esto corresponde a una solución en un vértice, o una solución básica.

Ejemplo: halle una solución básica y diga cuáles son las variables básicas.

Clasificación de variables

 Cada variable (de decisión o de holgura) puede clasificarse en básica o no básica.

• En un sistema con n variables y m restricciones, donde n > m, habrá:

m: variables básicas

n - m: variables no básicas, iguales a cero, por definición

Clasificación de variables (2)

 Las variables básicas obtienen su valor al solucionar el sistema de m ecuaciones.

• Si los valores de las variables básicas satisfacen la condición de no negatividad se les denomina soluciones básicas factibles.

Ejemplo: Verificar en una solución básica factible

(continúa)

Ejemplo

Procedimiento algebraico

- 1. Hallar una solución inicial.
- 2. Hacer una Prueba de optimalidad.
- 3. Realizar nueva iteración
 - Determinación de la dirección de movimiento: Variable que entra a la base: columna pivote
 - Determinación de donde detenerse.
 Variable que sale de la base: fila pivote
- 4. Calcular una nueva solución básica factible
 - 1. Obtener 1 en la fila pivote
 - 2. Obtener 0 en el resto de la columna pivote

1. Hallar una solución básica inicial

• Seleccionar las variable básicas: las que conforman una matriz identidad, de orden m, en el sistema de ecuaciones (coeficientes tecnológicos)

Asignar el valor de cero a las variables restantes: Variables no básicas = 0

• En el ejemplo:

Variables básicas: x₃, x₄, x₅

Variables no básicas: $x_1 = 0$ y $x_2 = 0$.

1. Hallar una solución básica inicial

El sistema de ecuaciones:

(0)
$$Z - 3x_1 - 5x_2 = 0$$

(1) $x_1 + x_3 = 4$
(2) $2x_2 + x_4 = 12$
(3) $3x_1 + 2x_2 + x_5 = 18$

Como
$$x_1 = 0$$
 y $x_2 = 0$
entonces $x_3 = 4$, $x_4 = 12$ y $x_5 = 18$

La solución B.F. Inicial es (0,0,4,12,18)

2. Prueba de optimalidad

- La función objetivo es: $Z = 3X_1 + 5X_2 + 0X_3 + 0X_4 + 0X_5$
- ¿ Existen tasas de mejoramiento positivas?
- ¿En la función objetivo hay coeficientes positivos?
- Esto es equivalente a que haya coeficientes negativos en el renglón (0): $Z 3X_1 5X_2 = 0$

Sí, hay forma de mejorar!

3.1 Variable que entra a la base

Determinación de la dirección de movimiento

$$Z = 3X_1 + 5X_2$$

¿Aumenta X_1 ? ———— Tasa de mejoramiento en Z=3

¿Aumenta X_2 ? Tasa de mejoramiento en Z=5

5 > 3, se elige X_2 para aumentar su valor

En este momento X_2 es una v.n.b y se selecciona como la variable que entra a la base: X_2 (columna pivote)

Para ello se deben ajustar los valores de las demás variables.

3.2 Variable que sale de la base

Determinar donde detenerse.

¿Cuánto aumentar el valor de la v.b entrante X2, antes de detenerse?

Puedo aumentar X₂ siempre y cuando: Todas las variables permanezcan no negativas

(1)
$$X_3 = 4 - X_1 \ge 0$$
 — No hay cota superior sobre X_2

(2)
$$X_4 = 12 - 2X_2 \ge 0$$
 $X_2 \le 6$

(3)
$$X_5 = 18 - 3X_1 - 2X_2 \ge 0$$
 $X_2 \le 9$

3.2 Variable que sale de la base

- X₂ puede crecer justo hasta 6, punto en el que X₄ ha llegado a 0.
 Variable que sale de la base: X₄
- El método simplex realiza el anterior análisis mediante la Prueba del cociente mínimo:
- Dividir el lado derecho entre el coeficiente de la variable que entra (X_2) :

$$(1) \qquad X_1 + X_3 = 4 \qquad \longrightarrow \quad \infty$$

(2)
$$2X_2 + X_4 = 12$$
 \longrightarrow $12/2 = 6$

(3)
$$3X_1 + 2X_2 + X_5 = 18$$
 \longrightarrow $18 / 2 = 9$

Fila pivote: renglón (2) Variable que sale: X₄

4. Calcular la nueva solución factible

• Cuando aumenta X₂ la SBF inicial cambia

Variables No Básicas

Variables básicas

SBF Inicial

$$X_1 = 0$$

$$X_2 = 0$$

$$X_3 = 4$$

$$X_4 = 12$$

$$X_5 = 18$$

Nueva SBF

$$X_1 = 0$$

$$X_4 = 0$$

$$X_3 = ?$$

$$X_2 = 6$$

Sistema de ecuaciones lineales

(0)
$$Z - 3X_1 - 5X_2 = 0$$

(1) $X_1 + X_3 = 4$
(2) $2X_2 + X_4 = 12$
(3) $3X_1 + 2X_2 + X_5 = 18$

El patrón de coeficientes de la variable que sale, X_4 , es (0,0,1,0)

La variable que entra a la base X_2 debe quedar con este patrón de coeficientes: (0,0,1,0)

4.1 Obtener 1 en el renglón pivote

 Toda la ecuación del mínimo cociente (fila pivote), se divide por el coeficiente de la variable que entra.

• El renglón (2) (fila pivote) era:

(2)
$$2X_2 + X_4 = 12$$

• El nuevo renglón pivote queda:

(2)
$$X_2 + 0.5X_4 = 6$$

4.2 Obtener 0 en el resto de la columna pivote

• Multiplicar el nuevo renglón pivote, por menos el coeficiente de la variable que entra en el renglón y el resultado sumarlo con el renglón

• Renglón (0):

(0)
$$Z - 3X_1 - 5X_2 = 0$$

(2)*-(-5) $5X_2 + 2.5X_4 = 30$
+(0) $Z - 3X_1 + 2.5X_4 = 30$

4.2 Obtener 0 en el resto de la columna pivote

- Renglón (1)
- (1) $X_1 + X_3 = 4$. En este caso, la variable que entra (X_2) está como debe ser: con coeficiente 0
- Renglón (2): Este es el nuevo renglón pivote
- Renglón (3)

(3)
$$3X_1 + 2X_2 + X_5 = 18$$

(2)*-(2) $-2X_2 - X_4 = -12$
+(3) $3X_1 - X_4 + X_5 = 6$

Nuevo sistema de ecuaciones

(0)
$$Z - 3X_1 + 5/2X_4 = 30$$

(1)
$$X_1 + X_3 = 4$$

(2)
$$X_2 + 1/2X_4 = 6$$

(3)
$$3X_1 - X_4 + X_5 = 6$$

Variables básicas: X₃, X₂, X₅

Variables no básicas: $X_1=0, X_4=0$

Solución básica factible: (0, 6, 4, 0, 6)

Valor de la F.O: 30

2. Prueba de optimalidad

• En el renglón (0) hay coeficientes negativos?

$$(0) \quad Z - 3X_1 + 5/2X_4 = 30$$

Sí!!!

Hay forma de mejorar la solución!

3.1 Variable que entra a la base

$$Z = 30 + 3X_1 - 5/2X_4$$

¿Si Aumenta X_1 ? Tasa de mejoramiento en Z=3

¿Si Aumenta X_4 ? — Tasa de mejoramiento en Z=-5/2

Se elige X₁ para aumentar el valor Z pues con X₄ disminuye

En la solución actual, X_1 es una v.n.b y se selecciona como la variable que entra a la base: X_1 (columna pivote)

Se deben ajustar los valores de las variables.

3.2 Variable que sale de la base

• Prueba del cociente mínimo: Se divide el lado derecho por el coeficiente de la variable que entra (X_1)

(1)
$$X_1 + X_3 = 4$$
 $4/1 = 4$

(2)
$$X_2 + 1/2X_4 = 6$$

(3)
$$3X_1 - X_4 + X_5 = 6$$
 $6/3 = 2$

Variable que sale de la base: X₅

Variables básicas: X_1, X_2, X_3

Nuevo renglón pivote: (3)

4.1 Obtener 1 en el renglón pivote

• Renglón (3): Toda la ecuación del mínimo cociente (fila pivote) se divide por el coeficiente de la variable que entra

$$3X_1 - X_4 + X_5 = 6$$

$$(3)/3$$
 $X_1 - 1/3X_4 + 1/3X_5 = 6/3$

Nuevo renglón pivote:

(3)
$$X_1 - 1/3X_4 + 1/3X_5 = 2$$

4.2 Obtener 0 en el resto de la columna pivote

- Multiplicar el nuevo renglón pivote, por menos el coeficiente de la variable que entra en el renglón y el resultado sumarlo con el renglón
- Renglón (0):

(0)
$$Z - 3X_1 + 5/2X_4 = 30$$

(3)*-(-3) $3X_1 - X_4 + X_5 = 6$
+(0) $Z + 3/2 X_4 + X_5 = 36$

4.2 Obtener 0 en el resto de la columna pivote

• Renglón (1)

(1)
$$X_1 + X_3 = 4$$

(3)*-(1) $-X_1 + 1/3X_4 - 1/3X_5 = -2$
+(1) $X_3 + 1/3X_4 - 1/3X_5 = 2$

• Renglón (2)

(2)
$$X_2 + 1/2X_4 = 6$$
.

En este caso, la variable que entra (X₁) está como debe ser: con coeficiente 0

• Renglón (3): Es el nuevo renglón pivote

Nuevo sistema de ecuaciones

(0)
$$Z +3/2 X_4 + X_5 = 36$$

(1)
$$X_3 + 1/3X_4 - 1/3X_5 = 2$$

(2)
$$X_2 + 1/2X_4 = 6$$

(3)
$$X_1 - 1/3X_4 + 1/3X_5 = 2$$

Variables básicas: X_3, X_2, X_1

Variables no básicas: $X_5=0, X_4=0$

Solución básica factible: (2, 6, 2, 0, 0)

Valor de la F.O: 36

2. Prueba de optimalidad

• En el renglón (0) hay coeficientes negativos?

(0)
$$Z + 3/2 X_4 + X_5 = 36$$

No!!!

Esta es la solución óptima!!

Valor de la F.O:
$$Z=36$$

 $X_1=2, X_2=6, X_3=2$

En resumen

Procedimiento algebráico método SIMPLEX

Hallar una solución al sistema aumentado

1. Hacer una Prueba de optimalidad.

Determina si ya llegó al optimo. Si es así, para, y si no, determina cual variable entra a la base

3. Prueba de cociente mínimo

Determina el valor de la variable que entra a la base Determina la variable que sale de la base

4. Llevar a forma apropiada de eliminación gaussiana

Calcular una nueva solución básica factible

Iteración 0

(0)
$$Z - 3X_1 - 5X_2$$

$$= 0$$

$$X_1 + X_3$$

$$2X_2$$

$$2X_2 + X_4 = 12$$

(3)
$$3X_1 + 2X_2 + X_5 = 18$$

$$+X_5 = 18$$

Prueba de optimalidad:

 $-5 < -3 \implies X_2$ entra a la base

Prueba de cociente mínimo:

$$4/0=\infty$$

VB Z=0 VNB $x_1 = 0$ $x_3 = 4$ $x_2 = 0$ $x_4 = 12$ $x_5 = 18$

X₄ sale de la base

Iteración 1

llevar a forma apropiada de eliminación gaussiana

(0)
$$Z - 3X_1 + 5/2X_4 = 30$$

(1) $X_1 + X_3 = 4$

$$(1) X_1 + X_3 = 4$$

(2)
$$X_2 + 1/2X_4 = 6$$

(3) $3X_1 - X_4 + X_5 = 6$

$$(3) 3X_1 -X_4 + X_5 = 6$$

Prueba de optimalidad:

 $-3 < 5/2 \implies X_1$ entra a la base

Prueba de cociente mínimo:

$$4/1=4$$

 $6/0=\infty$
 $6/3=2$ (mínimo)

X₅ sale de la base

Iteración 2

llevar a forma apropiada de eliminación gaussiana

$$(0)$$
 Z

$$+3/2 X_4 + X_5 = 36$$

$$X_3 + 1/3 X_4 - 1/3 X_5 = 2$$

$$\chi_2 + 1/2 X_4$$

$$X_2 + 1/2 X_4 = 6$$

$$-1/3 X_{\Delta} + 1/3 X_{5} = 2$$

VNB

VB

Z = 36

$$x_5 = 0$$
 $x_3 = 2$

$$\chi_3 = 2$$

$$x_4 = 0 \quad x_2 = 6$$

$$x_2 = 6$$

$$x_1 = 2$$

Prueba de optimalidad:

Ya no hay posibilidades de mejora (todos los coeficientes de (0) son positivos

SOLUCION OPTIMA

$$x_1 = 2$$

 $x_2 = 6$
 $x_3 = 2$

 $x_{5} = 0$

$$x_3 = 2$$

$$x_4 = 0$$

$$Z = 36$$

EL MÉTODO SIMPLEX

Procedimiento Tabular

				Coefic						
lter	V.B	Ec#	Z	X ₁	X ₂	X ₃	X ₄	X ₅	L.D	Razón
0	Z	(0)	1	-3	-5	0	0	0	0	
	<i>X</i> ₃	(1)	0	1	0	1	0	0	4	
	X ₄	(2)	0	О	2	0	1	0	12	
	X ₅	(3)	0	3	2	0	0	1	18	
_				Coefic	cientes					
Iter	V.B	Ec#	Z	X ₁	X ₂	X ₃	X ₄	X ₅	L.D	Razón
1	Z	(0)	1	-3	0	0	5/2	0	30	
	X_3	(1)	О	1	0	1	О	0	4	
	X ₂	(2)	0	0	1	0	1/2	0	6	
	X ₅	(3)	0	3	0	0	-1	1	6	

				Coefic	1.0	_				
lter	V.B	Ec#	Z	X_1	X ₂	X ₃	X_4	X ₅	L.D	Razón
2	Z	(0)	1	0	0	0	3/2	1	36	
	X ₃	(1)	0	0	0	1	1/3	-1/3	2	
	X ₂	(2)	0	0	1	0	1/2	0	6	
	X ₁	(3)	0	1	0	0	-1/3	1/3	2	

Forma tabular

- Forma más adecuada para realizar cálculos y análisis
- En la tabla se registran:
 - Coeficientes de costo (C_i)
 - Coeficientes tecnológicos (a_{ii})
 - Términos independientes o lado derecho (b_i)
 - La variable básica que aparece en cada ecuación

Tablero simplex

Prueba de optimalidad

• La S.B.F actual es (0,0,4,12,18) con Z = 0

• La solución Básica Factible es óptima, si y sólo si todos los coeficientes en el renglón (0) son no negativos.

- Renglón (0) en el tablero simplex actual ?
- La solución actual es óptima?

Variable que entra a la base

• La variable con el mayor coeficiente (en valor absoluto) en el renglón (0)

Iterac	Iteracion = 0											
F. #	VD			Lado	Domán							
Ec#	Ec# VB	Z	X ₁	, X ₂	X ₃	X ₄	X ₅	derecho	Razón			
(0)	Z	1	-3	-5	0	0	0	0				
(1)	X ₃	0	1 /	0	1	0	0	4				
(2)	X ₄	0	0 /	2	0	1	0	12				
(3)	X ₅	0	3/	2	0	0	1	18				

Variable que entra

Columna pivote

Variable que sale de la base

- Aplicar la prueba del cociente mínimo:
 - Elegir coeficientes de la columna pivote estrictamente positivos.
 - Dividir cada elemento del lado derecho por el coeficiente de la columna pivote.
 - Identificar el renglón que tiene la menor de estas razones.
 - La variable básica que sale de la base es la variable básica de este renglón: Fila Pivote

Variable que sale de la base

Obtener 1 en la fila pivote

• Dividir el renglón pivote (renglón 2) entre el número pivote (2) y obtener el nuevo renglón pivote.

F. #	V/D			Lado	Dozán				
Ec#	VB	Z	X ₁	X ₂	X ₃	X ₄	X ₅	derecho	Razón
(2)	X ₄	0	0	2	0	1	0	12	
/2		0	0	1	0	1/2	0	6	

Nuevo renglón pivote

Obtener 0 en el resto de la columna pivote

- Multiplicar el nuevo renglón pivote, por menos el coeficiente de la variable que entra en el renglón y el resultado sumarlo con el renglón
- Renglón (0)

		Lado					
	Z	X ₁	X ₂	X ₃	X ₄	X ₅	derecho
(0)	1	-3	-5	0	0	0	0
(2)*5	0	0	5	0	5/2	0	30
+ (0)	1	-3	0	0	5/2	0	30

La tabla completa

VB			Coeficientes								
	Z	X ₁	X ₂	X ₃	X ₄	X ₅	derecho	Razón			
Z	1	-3	0	0	5/2	0	30				
X ₃	0	1	0	1	0	0	4				
X ₂	0	0	1	0	1/2	0	6				
X ₅	0	3	0	0	-1	1	6				
(3) X ₅ 0 3 0 0 -1 1 6											
	X ₃ X ₂ X ₅	X ₃ 0 X ₂ 0	X ₃ 0 1	X ₃ 0 1 0	X ₃ 0 1 0 1 X ₂ 0 0 1 0 X ₅ 0 3 0 0	X ₃ 0 1 0 1 0 X ₂ 0 0 1 0 1/2 X ₅ 0 3 0 0 -1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X ₃ 0 1 0 1 0 0 4 X ₂ 0 0 1 0 1/2 0 6 X ₅ 0 3 0 0 -1 1 6			

SBF actual: (0, 6, 4, 0, 6) con Z = 30

matriz identidad

Siguiente iteración

• Optimalidad? Variable que sale?, variable que entra?

Iterac	cion = :	1								
F. #	VB			Lado	Do-án					
Ec# VE	VB	Z	X ₁	X ₂	X ₃	X ₄	X ₅	derecho	Razón	
(0)	Z	1	-3	0	0	5/2	0	30	-	
(1)	X ₃	0	1	0	1	0	0	4	4	
(2)	X ₂	0	0	1	0	1/2	0	6	-	
(3)	X ₅	0	3	0	0	-1	1	6	2 *	
Rengló pivote		Variable qu sale	CC	olumna pivote	Variable o entra	que			Mínimo	

Nueva solución básica factible

• ...Después de realizar las operaciones algebraicas elementales:

Iterac	Iteracion = 2											
F. #	VD			Lado	Do-ź-							
Ec#	VB	Z	X ₁	X ₂	X ₃	X ₄	X ₅	derecho	Razón			
(0)	Z	1	0	0	0	3/2	1	36				
(1)	X ₃	0	0	0	1	1/3	-1/3	2				
(2)	X ₂	0	0	1	0	1/2	0	6				
(3)	X_1	0	1	0	Q	-1/3	1/3	2				

No hay coeficientes negativos!... SOLUCIÓN ÓPTIMA! X1=2, X2=6, X3=2 (sobran 2 unidades de recurso 1) y Z= \$36000