Probing Kitaev spin liquids with resonant inelastic X-ray scattering

Gábor Halász

Kavli Institute for Theoretical Physics, UCSB

Natalia Perkins (U. of Minnesota)

Brent Perreault (U. of Minnesota)

Jeroen van den Brink (IFW Dresden)

Quantum spin liquids

Magnetic phases with long-range quantum entanglement

Fractionalization into nonlocal quasiparticles

Anyonic quasiparticle statistics

Topological order and ground-state degeneracy

Problem: No "smoking-gun" experimental signatures

Kitaev spin liquids

[Picture credit: Gegenwart & Trebst, Nat. Phys. 2015]

Experimental relevance: $(Na,Li)_2IrO_3$, α -RuCl₃

Exactly solvable limit: Kitaev models

Kitaev honeycomb model

[Picture credit: Gegenwart & Trebst, Nat. Phys. 2015]

$$H_{K} = -J_{K} \sum_{\langle i,j \rangle_{x}} \sigma_{i}^{x} \sigma_{j}^{x} - J_{K} \sum_{\langle i,j \rangle_{y}} \sigma_{i}^{y} \sigma_{j}^{y} - J_{K} \sum_{\langle i,j \rangle_{z}} \sigma_{i}^{z} \sigma_{j}^{z}$$

Kitaev honeycomb model

Quantum spin liquid with fractionalized excitations:

- \rightarrow Gauge fluxes (ϕ): gapped & localized
- → Majorana fermions: gapless at Dirac points

3D Kitaev models

Hyperhoneycomb Hyperhexagon model

model

Hyperoctagon model

$$H_{K} = -J_{K} \sum_{\langle i,j \rangle_{x}} \sigma_{i}^{x} \sigma_{j}^{x} - J_{K} \sum_{\langle i,j \rangle_{y}} \sigma_{i}^{y} \sigma_{j}^{y} - J_{K} \sum_{\langle i,j \rangle_{z}} \sigma_{i}^{z} \sigma_{j}^{z}$$

3D Kitaev models

Nodal structures of the gapless Majorana fermions:

[O'Brien, Hermanns, Trebst, PRB 2016]

model

 W_3

Weyl points

Hyperhexagon Hyperhoneycomb model

Nodal line

Hyperoctagon model

Fermi surfaces

Kitaev materials

Two-dimensional (layered) honeycomb systems:

 α -(Na,Li)₂IrO₃

[Picture credit: Das et al.]

 α -RuCl₃

[Picture credit: Banerjee et al.]

Three-dimensional harmonic-honeycomb systems:

 (β,γ) -Li₂IrO₃ [hyper- and stripy-honeycomb lattices]

Kitaev materials

Effective low-energy Hamiltonian for $J_{\text{eff}} = 1/2$ "spins":

$$H = H_K + \text{(other terms)}$$
 [Jackeli & Khaliullin, PRL 2009]

Resonant inelastic X-ray scattering

Resonant inelastic X-ray scattering

 $(Na,Li)_2IrO_3$ with Ir^{4+} in $5d^5$ configuration [L_3 edge]:

Resonant inelastic X-ray scattering

Four fundamental channels → No interference

Spin-conserving (SC) channel creates two fermions

Three non-spin-conserving (NSC) channels create two fluxes and one fermion:

NSC channels ~ Inelastic neutron scattering response:

Knolle, Kovrizhin, Chalker, Moessner, PRL 2014

SC channel → Lowest-order inelastic response:

Dirac points

K M

K points

Gapless response

Γ and K points

3D Kitaev models

Hyperhexagon model:

Hyperhoneycomb model:

Hyperoctagon model:

Hyperhexagon model

Hyperhoneycomb model

Nodal line

Gapless
response within high-symmetry planes

Hyperoctagon model

Fermi surfaces

Gapless response in a finite fraction of the Brillouin zone

3D Kitaev models

Hyperhexagon model:

Hyperhoneycomb model:

Hyperoctagon model:

Summary

Exact RIXS responses of Kitaev spin liquids

→ Probe fractionalized excitations separately

NSC channels pick up fluxes and recover INS response

SC channel picks up Majorana fermions

- → Pronounced momentum dispersion
- → Distinct fingerprints of different nodal structures
- Strong suppression around the Γ point

