AiSD wszystkie - wersja z dnia 17 lipca 2017

Zadania z części 1.

Drzewa AVL, B-drzewa

- 1. (Zad. 12, cz. 1, 06.2017) Jak mocno można ograniczyć (w pesymistycznym przypadku) liczbę rotacji podczas usuwania wierzchołka z drzewa AVL o n wierzchołkach? Uzasadnij, że nie da się bardziej niż podałeś(aś).
- 2. (Zad. 19, cz. 1, 06.2016) Jaką największą wysokość może mieć drzewo AVL zawierające 67 kluczy? Odpowiedź uzasadnij.

Rozwiązanie:

Zbudujmy drzewo AVL o maksymalnej wysokości przy użyciu jak najmniejszej ilości wierzchołków. Nazwijmy je T_i Dla $T_0=0$ będzie to drzewo puste, dla $T_1=1$ będzie to drzewo jednoelementowe, dla $T_2=2$ będzie to drzewo składające się z korzenia i jednego syna. Dla T_n , gdzie $n\geq 3$ będzie to drzewo które składa się z korzenia i dwóch poddrzew, którymi są drzewa o wysokości T_{n-1} oraz T_{n-2} . Drzewa te nazywamy drzewami Fibbonacciego. Liczba wierzchołków takiego drzewa to $N_h=N_{h-1}+1+N_{h-2}$. W takim razieiczba wierzchołków kolejnych drzew Fibbonacciego to odpowiednio $0,1,2,4,7,12,20,33,54,88,\ldots$ Drzewo o 67 kluczach będzie miało więc maksymalnie wysokość 8, ponieważ, żeby zbudować drzewo AVL o wysokości 9 potrzeba minimum 88 kluczy.

- 3. (Zad. 14, cz. 1, 06.2015) Jeśli w drzewach AVL zmienilibyśmy warunek, by poddrzewa mogły różnić się o 2 (nie o 1) wysokością, to Czy drzewo n-wierzchołkowe dalej ma wysokość $\Theta(n)$?
- 4. (Zad. 09, 06.2017) Rozważamy B drzewa, których wierzchołki mogą pamiętać od dwóch do czterech kluczy. Narysuj, jak będzie wyglądać takie B drzewo po wstawieniu do początkowego pustego drzewa kolejno klucz $1,2,\ldots,10$.

Drzewa Splay

- 1. (Zad. 3, cz. 1, 06.2017) Narysuj
 - drzewo Spłay po wykonaniu na początkowo pustym drzewie ciągu operacji:

$$insert(n), insert(n-1), insert(n-2), ..., (insert(1),$$

- drzewo Splay po wykonaniu operacji Splay(n), Splay(n-1) na drzewie otrzymanym w poprzednim punkcie
- 2. (Zad. 6, cz. 1, 06.2016) Czy trójelementowe drzewo złożone z korzenia i dwóch jego synów może być drzewem splay? Odpowiedź uzasadnij.

Haszowanie

- 1. (Zad. 6, cz. 1, 06.2017) Rozważamy haszowanie metodą adresowania otwartego, w której konflikty rozwiązujemy metodą liniową. Pokaż, że po umieszczeniu n/2 kluczy w tablicy n elementowej, mogą istnieć dwie lokalizacje w tej tablicy, do których kolejny (tj. (n/2+1)szy) klucz ma szansę trafić z prawdopodobieństwem 1/n.
- 2. (Zad. 15, cz. 1, 06.2017) Ile pamięci zajmuje słownik statyczny (oparty o haszowanie dwupoziomowe) zawierający n kluczy? Co musimy w nim pamięta \acute{c} oprócz samych kluczy?
- 3. (Zad. 16, cz. 1, 06.2017) Podaj definicję i przykład uniwersalnej rodziny funkcji haszujących.
- 4. (Zad. 20, cz. 1, 06.2016) Jaka jest oczekiwana liczba kolizji podczas wstawiania n kluczy do tablicy o $m=n^2$ elementach, jeśli do wyznaczania miejsc wstawiania użyjemy funkcji o postaci $h(k)=((ak+b) \bmod p) \bmod m$, gdzie:
- 5. (Zad. 12, cz. 1, 06.2015) Oszacuj prawdopodobieństwo, że nie będzie żadnej kolizji podczas haszowania funkcją z uniwersalnej rodziny \sqrt{n} kluczy w tablicy rozmiaru n.

FFT

- 1. (Zad. 17, cz. 1, 06.2017) Algorytm FFT używaliśmy do zamiany reprezentacji wielomianu w reprezentację jako zbiór wartości wielomianu. Uzasadnij, dlaczego FFT możemy także zastosować do zamiany odwrotnej.
- (Zad. 16, cz. 1, 06.2016) Jak wiadomo FFT jest algorytmem opartym na strategii Dziel i Zwyciężaj. Przedstaw redukcję wykonaną w tym algorytmie.
- 3. (Zad. 5, cz. 1, 06.2015) Przedstaw macierze dla transformacji Fouriera (???)

Algorytmy wyszukiwania wzorca: KMP, KMR, Shift-And

1. (Zad. 8, cz. 1, 06.2017) Czy istnieje wzorzec o długości n (dla dowolnego n>5) nad alfabetem $\{a,b\}$, dla którego maksymalna wartość funkcji prefiksowej π jest równa

- a 0,
- b 1?
- 2. (Zad. 11, cz. 1, 06.2017) W algorytmie *Shift And* wykorzystywane są operacje logiczne na słowach maszynowych. Wytłumacz, w jaki sposób?
- 3. (Zad. 8, cz. 1, 06.2016) Dlaczego algorytm *Shift-And* stosowany jest jedynie do wyszukiwania krótkich wzorców?
- 4. (Zad. 10, cz. 1, 06.2016) Jaka jest największa wartość funkcji π dla wzorc
a $P=(ab)^k$? Odpowiedź uzasadnij.
- 5. (Zad. 1, cz. 1, 06.2015) Podaj przykład tekstu i wzorca dla których tablica C[0] = C[1] = C[9] = prawda, a dla pozostałych fałsz. Algorytm Shift-And.
- 6. (Zad. 2, cz. 1, 06.2015) Jak w KMR numeruje się słowa o długości 16?
- 7. (Zad. 4, cz. 1, 06.2015) Uzasadnij, że obliczenie funkcji pi(Wzorzec[1..m]) w algorytmie KMP ma złożoność O(m).

Algorytmy klasy NP i NC

- 1. (Zad. 5, cz. 1, 06.2016) Opisz ideę algorytmu klasy NC dla problemu dodawania liczb naturalnych.
- 2. (Zad. 15, cz. 1, 06.2016) Podaj definicję problemu plecakowego z powtórzeniami i przedstaw pseudowielomianowy algorytm rozwiązujący ten problem. Uzasadnij, że jest on pseudowielomianowy.
- 3. (Zad. 13, cz. 1, 06.2015) Podaj pseudowielomianowy algorytm, który wypisuje dzielniki pierwsze liczby n.

Drzewce

- 1. (Zad. 4, cz. 1, 06.2017) Podaj przykład drzewca (tj. podaj wartość kluczy wraz z przydzielonymi im priorytetami) o n wierzchołkach, w którym każdy wierzchołek wewnętrzny ma tylko prawego syna. Następnie podaj, który wierzchołek będzie wymagał najwięcej rotacji podczas ustawiania go. Ile to będzie rotacji? Odpowiedź uzasadnij.
- 2. (Zad. 4, cz. 1, 06.2016) Narysuj ciąg rotacji, które zostaną wykonane w trakcie wykonywania delete(p) na poniższym drzewcu. Litery w wierzchołkach drzewca oznaczają klucze, a liczby w nawiasach priorytety. Rotacje wypisz w kolejności wykonywania.

Rysunek 1: Drzewiec dla zadania 4.

Rysunek 1: rys do zad 4

3. (Zad. 8, cz. 1, 06.2015) Przedstaw drzewiec o n wierzchołkach, w którym usunięcie korzenia wymaga $\Omega(\sqrt{n})$ operacji, ew. podaj uzasadnienie dlaczego nie ma takiego drzewca.

Drzewa decyzyjne, gra z adwersarzem

1. (Zad. 5, cz. 1, 06.2017) Dolną granicę $\lceil \frac{3}{2}n-2 \rceil$ na liczbę porównań niezbędnych do wyznaczenia max i min w zbiorze n elementów można wykazać stosując grę z adwersarzem. Opisz skuteczną strategię w takiej grze. Jeśli jest to strategia opisana na wykładzie, możesz na tym poprzestać. Jeśli jest to inna strategia, wykaż, że jest skuteczna.

Algorytmy wyboru k-tego elementu (mediany)

- 1. (Zad. 7, cz. 1, 06.2017) Opisz w jaki sposób wybierany jest pivot w każdym z następujących z następujących algorytmów znajdowania k-tego elementu:
 - Algorytm Hoare'a,
 - Algorytm Magicznych Piątek,
 - Lazy Select.
- 2. (Zad. 7, cz. 1, 06.2016) Opisz ide
ę algorytmu znajdowania mediany opartego na idei próbkowania losowego.
- 3. (Zad. 16, cz. 1, 06.2015) Przerób kod QuickSorta na QuickSelect (selekcja k-tego elementu zamiast sortowania). Jaką ma złożoność?

4. (Zad. 19, cz. 1, 06.2015) Podaj wzór rekurencyjny algorytmu magicznych piątek dla podziału na 7 elementów.

Izomorfizm drzew

- 1. (Zad. 10, cz. 1, 06.2017) Porównaj trudność problemu sprowadzania izomorfizmu drzew ukorzenionych i problemu sprawdzania izomorfizmu drzew nieukorzenionych.
- 2. (Zad. 13, cz. 1, 06.2016) Przedstaw ideę szybkiego algorytmu sprawdzania izomorfizmu drzew. W jakim czasie działa ten algorytm?

Geometria obliczeniowa

1. (Zad. 14, cz. 1, 06.2017) W jaki sposób, stosując iloczyn wektorowy można sprawdzić, czy dwa punkty (powiedzmy p_1 i p_2) leżą po tej samej stronie prostej przechodzącej przez dwa punkty (powiedzmy A i B)?

Union Find

- 1. (Zad. 18, cz. 1, 06.2017) W analizie problemu Union Find wykorzystywaliśmy pojęcie rzędu wierzchołka oraz grupy rzędu. Przypomnij definicję tych pojęć. Ile maksymalnie bitów potrzebujemy przeznaczyć na pamiętanie rzędu w każdym wierzchołku?
- 2. (Zad. 14, cz. 1, 06.2016) W jakim czasie można wykonać ciąg *n* operacji **union** i **find**, w którym wszystkie operacje **union** poprzedzają operację **find**? Odpowiedź uzasadnij.
- (Zad. 6, cz. 1, 06.2015) Podaj definicje: rząd wierzchołka i grupa rzędu wierzchołka

Drzewa Van Emde Boasa

- 1. (Zad. 19, cz. 1, 06.2017) Wyjaśnij po co oamiętane są wartości *min* i *max* w ja zdeh strukturze rekurencyjnej w drzewach (kolejkach van Emde Boasa)
- 2. (Zad. 9, cz. 1, 06.2016) Opisz (albo zapisz w pseudokodzie), w jaki sposób wykonywana jest operacja wstawiania klucza w drzewie van Emde Boasa.

Kopce - zwykłe, dwumianowe, Fibonacciego

1. (Zad. 2, cz. 1, 06.2017) Ile maksymalnie operacji *join* wykona się podczas łączenia kopców dwumianowych (wersja eager), z których każdy zawiera nie więcej niż 500 elementów? Przypomnienie: operacja *join* łączy dwa drzewa dwumianowe tego samego rzędu.

- 2. (Zad. 13, cz. 1, 06.2017) Niech T_1 oznacza najmniejsze pod względem liczby wierzchołków drzewo o rzędzie i, które może zawierać kopiec Fibonacciego. Narysuj drzewa T_i , dla $i = 0, 1, \ldots, 6$.
- 3. (Zad. 1, cz. 1, 06.2016) W jakim czasie można wykonać operację $\operatorname{succ}(\mathbf{x})$ w:
 - kopcu,
 - kopcu dwumianowym,
 - kopcu Fibonacciego,

która znajduje następnik klucza znajdującego się w wierzchołku o adresie x? Przez następnik klucza k rozumiemy najmniejszy występujący w kopcu klucz k' taki, że k' taki, że k'>k. Jeślik jest największym kluczem w kopcu, to $k'=\infty$. Możesz założyć, że wszystkie klucze w kopc są unikalne. Odpowiedź uzasadnij.

- 4. (Zad. 17, cz. 1, 06.2016) Napisz w pseudokodzie szybką procedurę budowy kopca. W jakim czasie działa ta procedura?
- 5. (Zad. 18, cz. 1, 06.2016) Wyjaśnij, na czym polega operacja kaskadowego odcinania w kopcu Fibonacciego.
- 6. (Zad. 10, cz. 1, 06.2015) Ile jest maksymalnie drzew w kopcu:
- 7. (Zad. 11, cz. 1, 06.2015) Złożoność procedury budującej kopiec (wersja z przesun-do-gory()).
- 8. (Zad. 17, cz. 1, 06.2015) Porównanie kosztów operacji min, delmin, insert, meld dla kopców dwumianowych w wersji Lazy i Eager.
- 9. (Zad. 18, cz. 1, 06.2015)
 - Podaj definicje rzędu drzewa w kopcu Fibbonaciego,
 - Podaj górne ograniczenie na ten rząd,
 - Podaj idee dowodu tego ograniczenia.

Algorytmy znajdowania MST

- (Zad. 11, cz. 1, 06.2016) W jakim czasie działa algorytm Kruskala, jeśli:
 - krawędzie podane są w kolejności rosnących wag,
 - kolejka priorytetowa zaimplementowana jest przy pomocy kopca Fibonacciego.

Odpowiedź uzasadnij. Uwaga: Oba te warunki są spełnione jednocześnie

• (Zad. 20, cz. 1, 06.2015) Przykład grafu pełnego o n wierzchołkach takiego, że algorytm Boruvki znajdzie MST w jednej fazie.

Różne algorytmy

- 1. (Zad. 1, cz. 1, 06.2017) Opisz algorytm oparty na programowaniu dynamicznym wyznaczający optymalną kolejność mnożenia macierzy. Jaka jest jego złożoność? Jeśli jest to algorytm podany na wykładzie, możesz na tym poprzestać, w przeciwnym razie uzasadnij jego poprawność i złożoność.
- 2. (Zad. 20, cz. 1, 06.2017) Przypomnij sobie algorytm oparty na zasadzie Dziel i zwyciężaj, dla problemu znajdowania najbliższej pary punktów na płaszczyźnie. Opisz trzecią fazę algorytmu, a więc tę, która następuje po wywołaniach rekurencyjnych. Jaka jest jej złożoność?
- 3. (Zad. 12, cz. 1, 06.2016) Zapisz w pseudokodzie algorytm wielomianowy, znajdujący minimalny koszt obliczenia iloczynu ciągu macierzy.
- 4. (Zad. 15, cz. 1, 06.2015) Podaj pseudokod rozwiązania problemu LCS.

Inne

1. (Zad. 2, cz. 1, 06.2016) Rozwiąż rozwiązanie rekurencyjne (z redukcją do pierwiastka):

 $T(n) = \left\{ \begin{array}{rcl} 1 & : & n=1 \\ T(\sqrt{n} + O(1) & : & wpp \end{array} \right.$

Możesz ograniczyć się do rozwiązania dla n mających odpowiednią postać (taką, by w trakcie redukcji argumenty dla T były liczbami naturalnymi).

- 2. (Zad. 3, cz. 1, 06.2016) Narysuj sieć Benesa-Waksmana dla n = 8.
- 3. (Zad. 3, cz. 1, 06.2015) Przedstaw graficznie sieć komparatorów o głębokości ≤ 4 sortującej wszystkie ciągi 0-1 o długości 7.
- 4. (Zad. 9, cz. 1, 06.2015) Podaj rekurencyjny wzór na T(n) tak, by jego rozwiązanie było $O(\log\log n)$.
- 5. (Zad. 7, cz. 1, 06.2015) Czy drzewa A i B będą miały równą wysokość, jeśli przeprowadzi się na nich n operacji insert o wartościach:
 - dla A: 1, 2, 3, ..., n
 - dla B: n, n-1, ..., 2, 1

Zadania z części 2.

1. (Zad. 1, cz. 2, 06.2017) Przypomnijmy problem przechodzenia przez tablicę:

Problem (Przejście przez tablicę)

Dane: Tablica $\{i, j\}$ liczb nieujemnych (i = 1, ..., n; j = 1, ..., m)

Wynik: Ciąg indeksów i_1,\ldots,i_n taki, że $\forall_{j=1,\ldots,m-1}1\leq i_j\leq n$ oraz $|i_j-i_{j+1}|\leq 1$ maksymalizujący sumę $\sum_{j=1}^m a_{i_j,j}$

Ułóż algorytm dla następującego uogólnienia tego problemu: **Problem**

Dane: Tablica $\{a_{i,j}\}$ liczb nieujemnych $(i=1,\ldots,n;j=1,\ldots,m)$ **Wynik:** Dla każdych i,j takich, że $i=1,\ldots,n;j=1,\ldots,m$ należy podać największą wartość, po dodaniu której do $a_{i,j}$ wartość rozwiązania problemu przejścia przez tablicę nie ulegnie zmianie.

2. (Zad. 2, cz. 2, 06.2017) Dla zbiorów n chłopców i n dziewcząt chcemy znaleźć skojarzenia między nimi (tj. zbiór n par (chłopiec, dziewczynka)), które minimalizują średnią różnicę wzrostu w parze. Dokładniej: dane są dwa n - elementowe ciągi liczb naturalnych $C=c_1,c_2,\ldots,c_n$ oraz $D=d_1,d_2,\ldots,d_n$, gdzie c_i jest wzrostem i-tego chłopca, a d_i wzrostem i-tej dziewczynki (abstrahujemy od rzeczywistości c_i oraz d_i mogą być dowolnie duże). Chcemy znaleźć taką n-elementową permutację Π , że wartość

$$\frac{\sum_{i=1}^{n} |c_i - d_{\Pi(i)}|}{n}$$

jest minimalna.

- Rozwiąż następujący algorytm zachłanny: w i-tym kroku ($i=1,2,\ldots,n$) spośród nieskojarzonych jeszcze chłopców i dziewcząt kojarzymy parę o najmniejszej różnicy wzrostów. Czy ten algorytm jest poprawny? Udowodnij swoje stwierdzenie.
- Podaj lepszy algorytm dla tego problemu, tzn. poprawny w przypadku, gdy powyższy jest niepoprawny, bądź, szybszy (i oczywiście poprawny) w przypadku, gdy powyższy jest poprawny. Udowodnij poprawność swojego algorytmu i podaj złożoność.
- 3. (Zad. 3, cz. 2, 06.2017) Skonstruuj strukturę danych, która umożliwia efektywne wykonywanie następujących operaci na n, początkowo wyzerowanych, licznikach:
 - inc(k) zwiększ o 1 wartość k-tego licznika
 - settomax() ustaw wszystkie liczniki na maksymalną (w momencie wykonywania tej operacji) wartość licznika
 - get(k) wypisz wartość k-tego licznika

Zadania z części 3.

1. (Zad. 1, cz. 3, 06.2017) Ciąg nazywamy nienudnym, jeżeli każdy jego spójny podciąg zawiera co najmniej jedne unikalny element (tzn. występujący

w tym podciągu dokładnie raz). Ułóż algorytm, który dla danego ciągu liczb naturalnych sprawdzi, czy jest on nienudny.

2. (Zad. 2, cz. 3, 06.2017) Wariancją ciągu liczbowego
 $A=\langle a_1,...,a_n\rangle$ nazywamy liczbę

$$V_A = \begin{cases} 0 & gdy & n = 1\\ \sum_{i=1}^{n-1} |ai + 1 - a_i| & gdy & n > 1 \end{cases}$$

ułóż algorytm, który dla zadanego ciągu liczbowego A znajdzie podział zbioru indeksów $\{1, 2, ..., n\}$ na dwa rozłączne podzbiory $I = \{i_1, i_2, ..., i_k\}$ oraz $J = \{j_1, j_2, ..., j_{n-k}\}$ takie, że:

- $i_1 < i_2 < \ldots < i_l, j_1, j_2, \ldots, j_{n-k} \text{ oraz } I \cup J = \{1, 2, \ldots, n\}$
- suma $V_{A_I} oraz V_{A_I}$ jest minimalna,

gdzie
$$A_I = \langle x_{i_1}, \dots, x_{i_k} \rangle$$
, a $A_J = \langle x_{j_1}, \dots, x_{k_{n-k}} \rangle$,

3. (Zad. 3, cz. 3, 06.2017) Rozważamy ciąg operacji Insert(i), DeleteMin oraz Min(i) wykonywanych na S-podzbiorze zbioru $\{1,\ldots,n\}$. Obliczenia rozpoczynami z $S=\phi$. Instrukcja Insert(i) wstawia liczbę i do S. Instrukcja DeleteMin wyznacza najmniejszy element w S i usuwa go z S. Natomiast wykonanie Min(i) polega na usunięciu z S wszystkich liczb mniejszych od i.

Niech ρ będzie ciągiem instrukcji Insert(i), DeleteMin oraz Min(i) takimi, że dla każdego $i, 1 \leq i \leq n$, instrukcja Inser(i) występuje co najwyżej jeden raz. Mając dany ciąg ρ naszym zadaniem jest znaleźć ciąg liczb usuwanych kolejno przez instrukcję DeleteMin. Podaj algorytm rozwiązujący to zadanie.

Uwaga: Zakładamy, że cały ciąg ρ jest znany na początku, czyli interesuje nas wykonanie go off-line

4. (Zad. 4, cz. 3, 06.2017) Rozpiętością ciągu liczbowego $A=\langle a_1,...,a_n\rangle$ nazywamy liczbę:

$$Span(A) = max\{a_i | i = 1, ..., n\} - min\{a_i | i = 1, ..., n\}$$

Ułoż algorytm obliczający

$$\sum_{1 \le p \le k \le n} Span(A_p^k)$$

gdzie
$$A_p^k = \langle a_p, \dots, a_k \rangle$$