

${ m CI~3-CIN}$: Étude du comportement cinématique des systèmes

DEVOIR MAISON 6

1 Presse Cisaille à Bac CVB 1000 T

Activité proposée par Pierre Debout

1.1 Mise en situation

1.2 Fonctionnement

1.3 Analyse du système

Question 1

Proposer 3 exigences associées pour chacune à un critère et un niveau qui vous semble crédible.

Exigences	Critère	Niveau
Compacter des matériaux métalliques	Force de coupe	Equivalent à 1 000 tonnes
Cisailler la ferraille à longueur variable	Longueur des morceaux	30 à 95 cm
Compacter rapidement une grande quantité de ferraille	Cadence maximale	30 tonnes à l'heure

Question 2

Correction

Compléter le diagramme des blocs internes sur le document réponse en nommant et en distinguant les flux (matière en bleu, énergie en rouge, information en vert).

1.4 Étude de l'asservissement

1.4.1 Modélisation de l'équipage mobile

En supposant que les conditions initiales sont nulles, donner dans le domaine de Laplace et sous forme canonique :

- la fonction de transfert $H_1(p) = \frac{Y_1(p)}{Q_1(p)}$ pour F(p) (image de l'effort F(t)) nul; la fonction de transfert $H_2(p) = \frac{Y_2(p)}{F(p)}$ pour $Q_1(p)$ (image du débit $q_1(t)$) nul.

On donnera les formes littérales puis numériques.

D'une part,

$$Mp^{2}Y_{1}(p) = \frac{KQ_{1}(p)}{S_{1}p} - KY_{1}(p) - fpY_{1}(p) \iff H_{1}(p) = \frac{Y_{1}(p)}{Q_{1}(p)} = \frac{\frac{K}{S_{1}p}}{Mp^{2} + fp + K} = \frac{1}{S_{1}} \frac{1}{p\left(\frac{M}{K}p^{2} + \frac{f}{K}p + 1\right)}$$

D'autre part,

$$Mp^{2}Y_{1}(p) = -KY_{2}(p) - fpY_{2}(p) + F(p) \iff H_{2}(p) = \frac{Y_{2}(p)}{F(p)} = \frac{1}{Mp^{2} + fp + K} = \frac{\frac{1}{K}}{\frac{M}{K}p^{2} + \frac{f}{K}p + 1}$$

En réalisant l'application numérique, on a :

$$H_1(p) = \frac{20}{p \left(4 \cdot 10^{-4} \cdot p^2 + 0, 12 \cdot p + 1 \right)} \quad H_2(p) = \frac{4 \cdot 10^{-8}}{4 \cdot 10^{-4} \cdot p^2 + 0, 12 \cdot p + 1}$$

Question 4

En appliquant le principe de superposition, donner l'équation, dans le domaine de Laplace, liant Y(p) à $Q_1(p)$ et à F(p).

En utilisant le théorème de superposition, on a :

$$Y(p) = H_1(p)Q_1(p) + F(p)Y_2(p)$$

Question 5

Compléter sur le document réponse le schéma bloc permettant de définir la modélisation de l'« équipage mobile ». Préciser les unités des grandeurs physiques véhiculées.

1.4.2 Modélisation générale du fonctionnement de l'ensemble vérin et distribution

En déduire la fonction de transfert en boucle ouverte du système tiroir-vérin-distribution dont la transmittance est : $F_{BO}(p)$ = On donnera la forme littérale puis numérique.

On a:

$$\frac{U_S(p)}{U_e(p)} = K_C K_e G(p) = \frac{K_C K_e / S_1}{p \left(\frac{M}{K} p^2 + \frac{f}{K} p + 1\right)}$$

Après application numérique:

$$\frac{U_S(p)}{U_e(p)} = \frac{4}{p(4 \cdot 10^{-4} \cdot p^2 + 0, 12 \cdot p + 1)}$$

Question 7

Compléter le schéma bloc permettant de définir le système tiroir-vérin-distribution, son contrôle et sa commande dont la fonction de transfert en boucle fermée est : $\frac{Y(p)}{Y_c(p)}$

Question 8

Question 8

Calculer la fonction de transfert en boucle fermée sous sa forme canonique : $\frac{Y(p)}{Y_c(p)}$ en fonction des différents coefficients littéraux caractérisant le système. Effectuer l'application numérique pour A = 1.

$$\begin{split} \frac{Y(p)}{Y_C(p)} &= \frac{AK_CK_eG(p)}{1 + AK_CK_eG(p)} = \frac{\frac{AK_CK_e/S_1}{p\left(\frac{M}{K}p^2 + \frac{f}{K}p + 1\right)}}{1 + \frac{AK_CK_e/S_1}{p\left(\frac{M}{K}p^2 + \frac{f}{K}p + 1\right)}} = \frac{AK_CK_e/S_1}{AK_CK_e/S_1 + p\left(\frac{M}{K}p^2 + \frac{f}{K}p + 1\right)} \\ &\frac{\frac{Y(p)}{Y_C(p)}}{\frac{Y(p)}{AK_CK_e}} &= \frac{1}{1 + \frac{S_1}{AK_CK_e}p + \frac{S_1}{AK_CK_e}\frac{f}{K}p^2 + \frac{S_1}{AK_CK_e}\frac{M}{K}p^3} \end{split}$$

Application numérique :

$$\frac{Y(p)}{Y_C(p)} = \frac{1}{1 + 0,25p + 0,03p^2 + 10^{-4}p^3}$$

Question 9

Correction

Correction

Calculer les caractéristiques de cette transmittance. Que pensez-vous de la valeur du coefficient d'amortissement vis-à-vis du critère de rapidité?

Le système est un système du second ordre de gain statique K=1, de pulsation $\omega_0=6~rad/s$ et d'amortissement $\xi=0,75$.

Dans ce cas ξ est légèrement supérieur à 0,7. Il y aura donc un léger dépassement et le temps de réponse sera calculé sur la montée de la réponse temporelle.

1.4.3 Étude en position

Le système est alors soumis à une consigne $y_c(t) = u(t)$ où u(t) désigne l'échelon défini par :

- -u(t)=0 si t<0;
- $-u(t) = 100 \ mm \ \text{si} \ t > 0.$

Question 10

Tracer l'allure de la courbe de la réponse du système à ce signal sur la figure du document réponse. On veut voir apparaître :

- la pente à l'origine;
- les éventuels dépassements (on peut utiliser l'annexe);
- la courbe en régime permanent.

Calculer analytiquement puis numériquement l'écart statique (ou erreur de position). Que peut-on en conclure vis-à-vis de la précision ?

 $\varepsilon_{S} = \lim_{t \to \infty} (y(t) - y_{c}(t)) = \lim_{p \to 0} p(Y(p) - Y_{c}(p)) = \lim_{p \to 0} p \frac{100}{p} (1 - 1) = 0 \ mm$ L'asservissement est donc précis.

Dans la réalité le servo distributeur proportionnel délivre un débit d'huile $q_1(t)$ avec un retard de $\tau=0,1$ s et un gain $K_e=2\cdot 10^{-4}m^3/(s\cdot V)$ qui équivaut à un premier ordre.

Question 12

Calculer la nouvelle fonction de transfert en boucle fermée sous sa forme canonique : $\frac{Y(p)}{Y_c(p)}$ en fonction des différents coefficients littéraux caractérisant le système. Effectuer l'application numérique pour A = 1.

$$\frac{Q_{1}(p)}{U_{e}(p)} = \frac{K_{e}}{1+\tau p} = \frac{2 \cdot 10^{-4}}{1+0.1p}$$

$$\frac{Y(p)}{Y_{c}(p)} = \frac{AK_{C} \frac{K_{e}}{1+\tau p} G(p)}{1+AK_{C} \frac{K_{e}}{1+\tau p} G(p)} = \frac{\frac{AK_{C}K_{e}/S_{1}}{p\left(1+\tau p\right)\left(\frac{M}{K}p^{2} + \frac{f}{K}p + 1\right)}}{1+\frac{AK_{C}K_{e}/S_{1}}{p\left(1+\tau p\right)\left(\frac{M}{K}p^{2} + \frac{f}{K}p + 1\right)}} = \frac{AK_{C}K_{e}/S_{1}}{p\left(1+\tau p\right)\left(\frac{M}{K}p^{2} + \frac{f}{K}p + 1\right) + AK_{C}K_{e}/S_{1}}$$

$$\frac{Y(p)}{Y_{c}(p)} = \frac{1}{1+\frac{S_{1}}{AK_{C}K_{e}}p + \left(\frac{f}{K} + \tau\right)\frac{S_{1}}{AK_{C}K_{e}}p^{2} + \left(\frac{M+\tau f}{K}\right)\frac{S_{1}}{AK_{C}K_{e}}p^{3} + \frac{M\tau}{K}\frac{S_{1}}{AK_{C}K_{e}}p^{4}}$$

$$\frac{Y(p)}{Y_c(p)} = \frac{1}{1 + 0.25p + 0.055p^2 + 3.1 \cdot 10^{-3}p^3 + 10^{-5}p^4}$$

D'après le tracé de la réponse à un échelon d'amplitude $100 \ mm$ sur le document réponse, déterminer l'écart statique ainsi que le temps de réponse. Comparer avec la première modélisation (le servodistributeur proportionnel délivre un débit d'huile $q_1(t)$ proportionnel à sa tension de commande $u_e(t)$). Conclure.

2 Carrousel au triple mouvement

Question 1

Exprimer $\overline{\Omega(2/1)}$ et $\overline{V(A \in 2/1)}$.

Les solides S_2 et S_1 sont en liaison pivot de centre O, d'angle β et d'axe $\overrightarrow{k_{21}}$. En conséquence en O, on a :

$$\{ \mathcal{V}(2/1) \} = \left\{ \begin{array}{c} \overrightarrow{\Omega(2/1)} = \dot{\beta} \overrightarrow{k_{21}} \\ \overrightarrow{V(O,2/1)} = \overrightarrow{0} \end{array} \right\}_{O} = \left\{ \begin{array}{c} \overrightarrow{\Omega(2/1)} = \dot{\beta} \overrightarrow{k_{21}} \\ \overrightarrow{V(A,2/1)} = \overrightarrow{V(O,2/1)} + \overrightarrow{AO} \wedge \overrightarrow{\Omega(2/1)} \end{array} \right\}_{A}$$

$$\overrightarrow{V(A,2/1)} = -L \overrightarrow{i_{2}} \wedge \dot{\beta} \overrightarrow{k_{21}} = L \dot{\beta} \overrightarrow{j_{2}}$$

Exprimer $\Omega(3/1)$ et $V(C \in 3/1)$.

Pour calculer la vitesse relative entre S_3 et S_1 , il faut décomposer le torseur cinématique : $\{\mathcal{V}(3/1)\} = \{\mathcal{V}(3/2)\} + \{\mathcal{V}(2/1)\}$

Les solides S_3 et S_2 sont en liaison pivot de centre A, d'angle γ et d'axe $\overrightarrow{k_{321^*}}$; donc :

$$\{\mathcal{V}(3/2)\} = \left\{ \begin{array}{c} \overrightarrow{\Omega(3/2)} = \dot{\gamma} \overrightarrow{k_{321^*}} \\ \overrightarrow{V(A,3/2)} = \overrightarrow{0} \end{array} \right\}_A$$

On a donc:

$$\{\mathcal{V}(3/1)\} = \left\{ \begin{array}{c} \overrightarrow{\Omega(3/1)} = \left(\dot{\beta} + \dot{\gamma}\right) \overrightarrow{k_{321^*}} \\ \overrightarrow{V(A, 3/1)} = L \dot{\beta} \overrightarrow{j_2} \end{array} \right\}_A$$

En conséquences,

$$\overrightarrow{V(C,3/1)} = \overrightarrow{V(A,3/1)} + \overrightarrow{CA} \wedge \overrightarrow{\Omega(3/1)} = L\dot{\beta}\overrightarrow{j_2} + \left(-R\overrightarrow{i_3} - h\overrightarrow{k_{1^*}}\right) \wedge \left(\dot{\beta} + \dot{\gamma}\right)\overrightarrow{k_{321^*}}$$

$$\overrightarrow{V(C,3/1)} = L\dot{\beta}\overrightarrow{j_2} + R(\dot{\beta} + \dot{\gamma})\overrightarrow{j_3}$$

Orrection

Question 3

Exprimer $\overrightarrow{V(G \in 4/1)}$.

En prenant un peu de recul, il n'est pas forcément indispensable d'écrire entièrement le torseur cinématique. Par exemple, dans le cas de $\overrightarrow{V(G,4/1)}$:

$$\overrightarrow{V(G,4/1)} = \overrightarrow{V(C,4/1)} + \overrightarrow{GC} \wedge \overrightarrow{\Omega(4/1)} = \underbrace{\overrightarrow{V(C,4/3)}}_{\overrightarrow{0}} + \overrightarrow{V(C,3/1)} + \overrightarrow{GC} \wedge \underbrace{\overrightarrow{\Omega(4/1)}}_{\overrightarrow{\Omega(4/3)} + \overrightarrow{\Omega(3/1)}}$$

$$\overrightarrow{V(G,4/1)} = L \dot{\beta} \overrightarrow{j_2} + R \left(\dot{\beta} + \dot{\gamma} \right) \overrightarrow{j_3} + e \overrightarrow{k_4} \wedge \left(\left(\dot{\beta} + \dot{\gamma} \right) \overrightarrow{k_{321^*}} + \dot{\psi} \overrightarrow{j_{43}} \right)$$

On a:

$$\overrightarrow{k_4} \wedge \overrightarrow{k_{321^*}} = -\sin\psi \overrightarrow{j_{43}}$$

$$\overrightarrow{k_4} \wedge \overrightarrow{j_{43}} = -\overrightarrow{i_4}$$

On a donc:

$$\overrightarrow{V(G,4/1)} = L\dot{\beta}\overrightarrow{j_2} + R\left(\dot{\beta} + \dot{\gamma}\right)\overrightarrow{j_3} - e\left(\dot{\beta} + \dot{\gamma}\right)\sin\psi\overrightarrow{j_{43}} - e\dot{\psi}\overrightarrow{i_4}$$

$$\overrightarrow{V(G,4/1)} = L\dot{\beta}\overrightarrow{j_2} + (R - e\sin\psi)(\dot{\beta} + \dot{\gamma})\overrightarrow{j_3} - e\dot{\psi}\overrightarrow{i_4}$$

Le fût 1 est muni d'une poulie de diamètre D sur laquelle s'enroule une courroie qui entraîne en rotation la poulie de diamètre D/2 liée au disque 3 lors du mouvement de 2 par rapport à 1.

On a les hypothèses suivantes :

- non glissement entre la courroie et les poulies;
- la courroie est inextensible.

De plus le siège 4 est bloqué dans la position $\psi = -\pi/2$ par rapport au disque 3.

Question 4

En utilisant les hypothèses précédentes, montrer que $\dot{\gamma} = -2\dot{\beta}$.

En considérant l'hypothèse de roulement sans glissement au point I, le point I est immobile lorsqu'on considère le mouvement de la courroie (notée c) par rapport à la poule 1:

$$\overrightarrow{V(I,c/1)} = \overrightarrow{0}$$

En utilisant la décomposition du vecteur vitesse :

$$\overrightarrow{V(I,c/1)} = \overrightarrow{V(I,c/2)} + \overrightarrow{V(I,2/1)}$$

En conséquence,

$$\overrightarrow{V(I,c/2)} = -\overrightarrow{V(I,2/1)}$$

Par ailleurs,

$$\overrightarrow{V(I,2/1)} = \overrightarrow{V(O,2/1)} + \overrightarrow{IO} \wedge \overrightarrow{\Omega(2/1)} = 0 - \frac{D}{2} \overrightarrow{i_c} \wedge \dot{\beta} \overrightarrow{k_{321^*}} = \frac{D}{2} \dot{\beta} \overrightarrow{j_c}$$

De même, en considérant l'hypothèse de roulement sans glissement au point J, le point J est immobile lorsqu'on considère le mouvement de la courroie (notée c) par rapport à la poule 3:

$$\overrightarrow{V(J,c/3)} = \overrightarrow{0}$$

En utilisant la décomposition du vecteur vitesse :

$$\overrightarrow{V(J,c/3)} = \overrightarrow{V(J,c/2)} + \overrightarrow{V(J,2/3)}$$

En conséquence,

$$\overrightarrow{V(J,c/2)} = -\overrightarrow{V(J,2/3)}$$

Par ailleurs,

$$\overrightarrow{V(J,2/3)} = \overrightarrow{V(A,2/3)} + \overrightarrow{JO} \wedge \overrightarrow{\Omega(2/3)} = 0 - \frac{D}{4} \overrightarrow{i_c} \wedge - \dot{\gamma} \overrightarrow{k_{321^*}} = -\frac{D}{4} \dot{\gamma} \overrightarrow{j_c}$$

La courroie étant inextensible,

$$\overrightarrow{V(I,c/2)} = \overrightarrow{V(J,c/2)}$$

Et donc:

$$\dot{\gamma} = -2\dot{\beta}$$

Question 5

En déduire la nouvelle expression de $\overrightarrow{V(G,4/1)}$ en fonction de R, L, e et $\dot{\beta}$.

On a donc $\dot{\psi} = 0$ et :

$$\overrightarrow{V(G,4/1)} = L\dot{\beta}\overrightarrow{j_2} - \dot{\beta}(R+e)\overrightarrow{j_3}$$

Question 6

Exprimer l'accélération du point G dans le mouvement de 4/1 en fonction de R, L, e, $\dot{\beta}$ si $\dot{\beta}$ est constant.

Correction

$$\overrightarrow{\Gamma(G,4/1)} = \left[\frac{d\overrightarrow{V(G,4/1)}}{dt} \right]_{\mathscr{R}_1} = L \underbrace{\ddot{\beta}}_{0} \overrightarrow{j_2} + L\dot{\beta} \left[\frac{d\overrightarrow{j_2}}{dt} \right]_{\mathscr{R}_1} - \underbrace{\ddot{\beta}}_{0} (R+e) \overrightarrow{j_3} - \dot{\beta} (R+e) \left[\frac{d\overrightarrow{j_3}}{dt} \right]_{\mathscr{R}_1} \\
\left[\frac{d\overrightarrow{j_2}}{dt} \right]_{\mathscr{R}_1} = \left[\frac{d\overrightarrow{j_2}}{dt} \right]_{\mathscr{R}_2} + \overrightarrow{\Omega(2/1)} \wedge \overrightarrow{j_2} = \overrightarrow{0} + \dot{\beta} \overrightarrow{k_{21^*}} \wedge \overrightarrow{j_2} = -\dot{\beta} \overrightarrow{i_2} \\
\left[\frac{d\overrightarrow{j_3}}{dt} \right]_{\mathscr{R}_1} = \left[\frac{d\overrightarrow{j_3}}{dt} \right]_{\mathscr{R}_3} + \overrightarrow{\Omega(3/1)} \wedge \overrightarrow{j_3} = \overrightarrow{0} + (\dot{\beta} + \dot{\gamma}) \overrightarrow{k_{321^*}} \wedge \overrightarrow{j_3} = \dot{\beta} \overrightarrow{i_3} \\
\overrightarrow{\Gamma(G,4/1)} = -L\dot{\beta}^2 \overrightarrow{i_2} - \dot{\beta}^2 (R+e) \overrightarrow{i_3}$$

Calculer la valeur maximale de la norme de cette accélération pour $\dot{\beta} = 2rad/s$, L = 5m, R = 1m, e = 1m.

On a:

$$||\overrightarrow{\Gamma(G,4/1)}||^2 = L^2 \dot{\beta}^4 + \dot{\beta}^4 (R+e)^2 + 2L \dot{\beta}^4 (R+e) \cos(\overrightarrow{i_2}, \overrightarrow{i_3}) = L^2 \dot{\beta}^4 + \dot{\beta}^4 (R+e)^2 + 2L \dot{\beta}^4 (R+e) \cos \gamma$$

 $||\overrightarrow{\Gamma(G,4/1)}||^2$ est maximal lorsque $\cos \gamma = 1$; donc

$$||\overline{\Gamma(G,4/1)}|| = \sqrt{L^2 \dot{\beta}^4 + \dot{\beta}^4 (R+e)^2 + 2L \dot{\beta}^4 (R+e)} = \dot{\beta}^2 (L+R+e) = 28 \ m \cdot s^{-2}$$

Le dessin ci-dessous montre le mécanisme permettant de faire varier en fonctionnement l'angle θ_1 . L'actionneur de ce mécanisme est le vérin hydraulique 5–6.

Soit $\overrightarrow{FH} = 2a \overrightarrow{i_7}$, $\overrightarrow{FE} = 3a \overrightarrow{i_1}$ (où a est une constante positive); $\overrightarrow{EH} = x(t) \overrightarrow{i_{56}}$ et $\varphi(t) = (\overrightarrow{i_7}, \overrightarrow{i_1})$.

Question 8

Correction

Exprimer x en fonction de a et φ puis la vitesse de sortie de la tige du vérin, soit $\overrightarrow{V(H,6/5)}$, en fonction de a, φ et $\dot{\varphi}$.

Commençons par écrire la fermeture de chaîne cinématique dans le triangle EFH :

$$\overrightarrow{EF} + \overrightarrow{FH} + \overrightarrow{HE} = \overrightarrow{0} \iff x(t)\overrightarrow{i_{56}} = 2a\overrightarrow{i_7} - 3a\overrightarrow{i_1}$$

En élevant cette relation au carré, on a :

$$x(t)^2 = 4a^2 + 9a^2 - 12a^2\cos\phi$$

En conséquence,

$$x(t) = a\sqrt{13 - 12\cos\phi}$$

Par ailleurs,

$$\overrightarrow{V(H,6/5)} = \left[\frac{d\overrightarrow{EH}}{dt}\right]_{\mathcal{R}_5} = \frac{d(a\sqrt{13 - 12\cos\phi})}{dt}\overrightarrow{i_{56}}$$

$$\overrightarrow{V(H,6/5)} = \frac{6a\dot{\phi}\sin\phi}{\sqrt{13 - 12\cos\phi}}\overrightarrow{i_{56}}$$

Orrection

En considérant que dans cet intervalle de temps, $\dot{\varphi}$ est constante, déterminer le volume d'huile nécessaire au passage de la position $\varphi = \pi/9$ à la position $\varphi = \pi/3$, si S est la section du piston sur laquelle agit l'huile.

Correction

$$Vol = S \cdot \left(x \left(\frac{\pi}{9} \right) - x \left(\frac{\pi}{6} \right) \right) = 0,187 \ m^3$$

AN: a = 2m, $S = 700cm^2$.

