TOPIC:	DATE:
FILE UNDER:	PAGE:
	l(t) = 2 log Deluin (t) (4/4) Pluin (to)
	uir ~ Q(uilt)
	Cold use a general combrable dost. g (u To) (efferent) Theely combrable is proportion to
m.	p(y; (u;) Q(y; (z))
	$= g(u_i(Y_i, \tau))$
	Geyer 1990: or problem!
	1) Choose To
	2) Smolate Uil, - Uin N p(4: 14:, To)
	for 1=1,-7n
	(3) Maximizer l(T) to get Î
	4) Set To = 2
	5) Groto 2) until 11 To-21/48

TOPIC:	DATE:
FILE UNDER:	PAGE:
	For IS we do not need sup /g < 00 but what is regimed?
	Reall Crame's Theorem (Delta Method)
	Let younge be s.t. $\sqrt{n}(y-y) \rightarrow N(0, \Sigma)$
	Where M= E[Ti]. Let y: R be q
	differentable map, then
	Importance Sampling
	Let $Y_i = \begin{pmatrix} h(X_i) W_i \\ W_i \end{pmatrix}$ where $X_i \sim j$ $W_i = \frac{f(X_i)}{g(X_i)}$
	$So E_{3} = (Eh(X_{i})) = (M_{h})$
	Note that we can estmute Var(Y:)
	Sample Var Eh(X;)W; } Sample & Sh(X;)W; Sw; }
	Sample Cov [hkx)vi, wi Sample You [wi]
	Let V(a, b) = 9, Then Mh = V(12h(x)w; 12w;)
	Also V(a,b)=(1/b, -9/b2)

TOPIC:	DATE:
FILE UNDER:	PAGE:
	Varionce estimates for IS Cramer's Theorem: Suppose You you are sty In (Y-M) -> N(O, E) when h = IE Y. Let My: R->R be a differentiable map . Then In (M(Y)-M(M)) -> N(O, My (M) SM(M)) Test Par I 3 target density g 12 proposal density
	Let $y_i = \begin{pmatrix} h(x_i)w_i \end{pmatrix}$ where $x_i \sim g$ and $w_i = \frac{g(x_i)}{g(x_i)}$
)	Thurston (Constitution of the Constitution of

TOPIC:	DATE:
FILE UNDER:	PAGE:
T= (Mh) MET= Mh	Let $M(\frac{a}{b}) = \frac{1}{5} M(\frac{a}{b}) = (-\frac{a}{2})^{2}$ $M(\frac{a}{b}) = \frac{1}{5} M(\frac{a}{b})^{2}$

TOPIC:	DATE:
FILE UNDER:	PAGE:
Ex 2 Dest	Chamer's Theorem says: $V(\overline{y}) = \overline{y} Mh$ $V'(\overline{y}) = \overline{z} V'(\overline{y}) = \overline{z} h(x_i)^2 w_i^2 - 2 \overline{z} h(x_i) w_i^2 + \overline{z} w_i^2$ $\overline{z} w_i = \overline{z} h(x_i) w_i v_i^2 - 2 \overline{z} h(x_i) w_i v_i^2 + \overline{z} w_i^2$ $\overline{z} w_i = \overline{z} h(x_i) w_i v_i^2 - 2 \overline{z} h(x_i) w_i v_i^2 + \overline{z} w_i^2$ $\overline{z} w_i = \overline{z} h(x_i) w_i v_i^2 - 2 \overline{z} h(x_i) w_i v_i^2 + \overline{z} w_i^2$ $\overline{z} h(x_i) w_i v_i^2 = \overline{z} h(x_i) v_i^2 + \overline{z} w_i^2$ $\overline{z} h(x_i) w_i v_i^2 = \overline{z} h(x_i) v_i^2 + \overline{z} w_i^2$ $\overline{z} h(x_i) w_i v_i^2 = \overline{z} h(x_i) v_i^2 + \overline{z} w_i^2$ $\overline{z} h(x_i) w_i v_i^2 = \overline{z} h(x_i) v_i^2 + \overline{z} w_i^2$ $\overline{z} h(x_i) w_i v_i^2 = \overline{z} h(x_i) v_i^2 + \overline{z} w_i^2$ $\overline{z} h(x_i) w_i v_i^2 = \overline{z} h(x_i) v_i^2 + \overline{z} w_i^2$
	$ \mathbb{E}\left[W^{2}\right] = \mathbb{E}\left[\frac{f(x)}{g(x)}\right] < \infty $ $ \mathbb{E}\left[h(x)W^{2}\right] = \mathbb{E}\left[h(x)\left(\frac{f(x)}{g(x)}\right)^{2}\right] < \infty $
	All true if \$60 is bouled, which is required for RS.

TOPIC: Brostut	748	DATE: 007-1-30
FILE UNDER:		PAGE:
	so that the current state of only depends on the previous	P(Xi (Xi-1) The chain Xi
	$P = \begin{cases} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{cases}$ $P(X_n = j \mid X_n = i) = P_{ij}$	Transition Matry (Kernel)
	Sippose we start the chan w To, what is distribution after	er n Henfrons?

TOPIC:	DATE:
FILE UNDER:	PAGE:
	Geben truston motorx P
	$P(X_n = 1) = P_n$
	Whom P" = PXPXP X X P
	n times
	The ToPA = To RRRX xP
	n tres
<u>.</u>	Let TT be a vector (distribution) such that
	$T_{\alpha}P = T_{\alpha}$
	Call The a stationary distribution and a MC
	the Laker at 4 is sail to be stationary of it
reache	they this distribution.
	Basic limt theorem says that wher some
	Conlitures TIx - TIn -> 0 as in -> 0.
	No matter how we start the chan (TTo) Thin
	appoints the

Assurptions'. (D) Irrelable. Pig 70 for some n all All pan & i, j are accessible from one another (D) Appendix'. The chain does not make determinate Vists to a sobject of the state sque. (EX: Xo = 0 Xn = Xn=1 + En (Ex = 2-1 Yr (D) For n even, the does hots subset of even #5 For n even, the does hots subset of even #5 (EV) You but the form hots subset of even #5 (EV) You but the does hots subset of even #5 (EV) You but the does hot subset of even #6 (EV) Y
Directorble. Pij 70 for some n all Sor every 1, j All pairs & 1, j are accessible from one another Depender. The chain does not make deterministic Visits to a subset of the state space. ex: Xo = 0
Directorble. Pij 70 for some n all Sor every 1, j All pairs & 1, j are accessible from one another Depender. The chain does not make deterministic Visits to a subset of the state space. ex: Xo = 0

TOPIC:	DATE:
FILE UNDER:	PAGE:
	Let Xo, X, be an irrelowble, sperrobe, Makow Cham W/shtbray dot. IT. Let Xo N To, some arbitrary distribution. Then The (i) -> T(i) & i as n-700 I'melroble - ollste communicate When other Time Reversibility A Markov Cham of the reversible of (Xa, X, Xn) = (Xn, Xn, Xo) If (Xn) N TR, then (Yo, X,) = (X, Xo) -> Xo = X, -> Th = To P, the mond dust is stopping
	Let $T = T_0$. The chains have $T_i P_{ij} = T_j P_j;$ go from $i \rightarrow j$ go from $j \rightarrow i$