МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Кафедра «Програмна інженерія та інформаційні технології управління» Звіт з лабораторної роботи №2 3 предмету «Архітектура обчислювальних систем»

Виконав Студент групи КН-36а Рубан Ю.Д. Перевірили: Проф. Кафедри ПІІТУ Шевченко С.В. Асп. Кондоров О.М.

ТРИГГЕРЫ

2.1 Цель занятия

Построение и ознакомление с работой основных схем D и JK-тригерров с помощью инструментальных средств цифровой части пакета EWB: генератора слов (ГС), логического анализатора (ЛА), логического преобразователя (ЛП), вольтметра

2.2 Методические указания к выполнению лабораторной работы

Задание 1. Исследование работы D-триггера в статическом режиме Собрать схему в пакете EWB, которая представлена на рис. 2.1.

Рисунок 2.1 – Схема D-триггера

Задание 2. Собрать D-триггер, который имеет следующую внутреннюю структуру (рис.2.2).

Рисунок 2.2 – Внутренняя структура D-триггера

Задание 3. Снять временную диаграмму этого триггера.

Для создания сложного элемента («макроса») необходимо выделить те элементы, которые он будет включать (см. рис.3.3). Далее выбрать меню "Circuit \rightarrow Subcircuit" (или нажать Ctrl+B). Появится следующие диалоговое окно (рис. 2.3), где необходимо:

- 1 ввести имя элемента (SZ);
- 2 создать элемент ввести его в схему;
- 3 отменить.

Рисунок 2.3 — Создание макроса для D-триггера

Задание 4. Исследование работы D-триггера в динамическом режиме.

Собрать схему в пакете EWB, которая указана на рис. 2.4:

Рисунок 2.4 – Подключения D-триггера

С помощью объекта Генератор Импульсов (ГИ) на D-вход подать прямоугольные сигналы со следующими параметрами:

 $A=4~B~,~f=2~к\Gamma$ ц, а на вход синхронизации с помощью объекта Γ енератор Сигналов — следующие:

T = 10 к Γ ц.

С помощью объекта ЛА получить временную диаграмму.

Задание 5. Исследование работы асинхронного ЈК-триггера в статическом режиме.

Собрать схему в пакете EWB, которая представлена на рисунке 2.5:

Рисунок 2.5 – Схема ЈК-триггера

Задание 6. С помощью ЛА построить таблицу состояний (ТС), привести временную диаграмму.

Задание 7. Исследовать работу двухступенчатого ЈК-триггера в статическом режиме.

Создать свой «макрос» одноступенчатого JK-триггера с именем "jk" для схемы, представленной на рис. 2.6.

Рисунок 2.6 — Одноступенчатый JK-триггер Собрать схему двухступенчатого JK-триггера, используя созданный «макрос» (рис. 2.7).

Рисунок 2.7 – Двухступенчатый ЈК-триггер

Исследовать этот ЈК-триггер (привести временную диаграмму).

Задание 8. Исследовать работу двухступенчатого ЈК-триггера в динамическом режиме.

Собрать схему в пакете EWB, которая представлена на рисунке 2.8.

Рисунок 2.8 – Двухступенчатый ЈК-триггер

Исследовать ЈК-триггер, который работает в режиме Т-триггера (J=K=1). Для этого на синхровход подать прямоугольные сигналы со следующими параметрами (с помощью ГИ): $A=4~B,~f=10~\kappa\Gamma \mu,$ $t_u=50~m\kappa c.$

Снять осциллограмму с входов и выходов.

Задание 9. Собрать D-триггер на основе JK-триггера и исследовать его работу.

Рисунок 2.9 – D-триггер на основе ЈК-триггера

Привести временную диаграмму функционирования данного D-триггера.

Вопросы для самоконтроля

- 1. Каким уравнением описывается работа D-триггера?
- 2. Составить таблицу состояний D-триггера.
- 3. Нарисуйте схему определенного преподавателем D-триггера.
- 4. Нарисуйте условное графическое изображение определенного преподавателем объекта D-триггера.
 - 5. Классификация схем D-триггеров.
 - 6. Объясните влияние помех на информационном входе D-триггера.
- 7. Определите основные динамические характеристики для определенного преподавателем D-триггера.
- 8. Как на базе D-триггера с прямым динамическим управлением построить D-триггер с обратным динамическим управлением?
 - 9. Как построить D-триггер на базе JK-триггера?
 - 10. Как построить D-триггер на базе RS-триггера?
- 11. Нарисуйте временную диаграмму с расчетом задержек логических элементов для определенного преподавателем D-триггера.
 - 12. Различия между D- и DV- триггерами
 - 13. Нарисовать таблицу состояний ЈК-триггера.
- 14. Нарисовать схему и объяснить принцип работы заданного преподавателем ЈК-триггера.
- 15. Принцип создания схем ЈК-триггеров на базе синхронных ЈК-триггеров
- 16. Почему в схемах асинхронных ЈК-триггеров используются линии задержки?
- 17. Определите основные динамические характеристики заданного преподавателем ЈК-триггера.
- 18. Нарисуйте условное графическое изображение заданного преподавателем ЈК-триггера.
- 19. Объясните причины влияния помех на информационных входах на состояние ЈК-триггера (на примере схемы заданной преподавателем).
- 20. Сравните по помехоустойчивости ЈК-триггер со статическим и динамическим управлением.
- 21. Как происходит управление состоянием триггера по асинхронным входам S, R? Особенности такого управления.
 - 22. Как построить на базе JK-триггера триггеры RS, D, T типов?
 - 23. Классификация ЈК-триггеров.
- 24. Определите нагружаемую способность заданного преподавателем ЈК-триггера.
- 25. Нарисуйте временные диаграммы (с расчетом задержек логических элементов) заданного преподавателем ЈК-триггера.

Ход выполнения работы

Задание 1. Исследовано работу D-триггера в статическом режиме

Собрано схему в пакете EWB, которая представлена на рис. 2.1.1

Рис. 2.1. 1 Схема D-триггера

Задание 2. Собрано D-триггер, который имеет следующую внутреннюю структуру (рис.2.2.1).

Рис. 2.2. 1 Внутренняя структура D-триггера

Задание 3. Снято временную диаграмму этого триггера.(рис. 2.3.1)

Рис. 2.3. 1 Временная диаграмма D-триггера

Задание 4. Исследовано работу D-триггера в динамическом режиме.

Собрано схему в пакете EWB, которая указана на рис. 2.4.1:

Рис. 2.4. 1 Подключение D-триггера

Задание 5. Исследовано работу асинхронного JK-триггера в статическом режиме. Собрано схему в пакете EWB, которая представлена на рисунке 2.5.1:

Задание 6. С помощью ЛА построено таблицу состояний (ТС), приведено временную диаграмму.

Рис. 2.5. 1 Асинхронный јк-триггер

Задание 7. Исследовано работу двухступенчатого ЈК-триггера в статическом режиме.

Создано свой «макрос» одноступенчатого JK-триггера с именем "jk" для схемы, представленной на рис. 2.6. 1:

Рис. 2.6. 1 Одноступенчатый ЈК-триггер

Собрано схему двухступенчатого JK-триггера, используя созданный «макрос» (рис. 2.7. 1).

Рис. 2.7. 2 Двухступенчатый ЈК-триггер

Задание 8. Исследовано работу двухступенчатого ЈК-триггера в динамическом режиме.

Собрано схему в пакете EWB, которая представлена на рисунке 2.8. 1

Рис. 2.8. 1 Двухступенчатый ЈК-триггер в динамическом режиме

Задание 9. Собрано D-триггер на основе ЈК-триггера и исследовано его работу.(рис. 2.9. 1)

Рис. 2.9. 1 D-триггер на основе JK-триггера