HW #2 - due 10/25/2019

The goal of this homework is to illustrate applications of the singular value decomposition (SVD) and Tikhonov regularization to image deblurring.

Mathematical Background:

Consider a linear system of equations

$$\mathbf{A}\mathbf{x} = \mathbf{d} \tag{1}$$

where $\mathbf{d} \in \mathbb{R}^n$ is a given vector (observed/received data), $\mathbf{x} \in \mathbb{R}^n$ is an unknown vector (transmitted data), and $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a given nonsingular matrix (transformation of data).

In many applications the observed/received data is corrupted by unknown noise or measurement errors, such that we only have access to

$$\hat{\mathbf{d}} = \mathbf{d} + \boldsymbol{\xi}$$

where $\xi \in \mathbb{R}^n$ is an unknown noise vector. The problem is then formulated as follows:

Given the matrix **A** and a vector $\hat{\mathbf{d}}$, provide an approximation of the unknown vector \mathbf{x} .

Practical difficulties arise when **A** is ill-conditioned. In such case, an attempt to provide an approximation $\hat{\mathbf{x}} \approx \mathbf{x}$ by solving

$$\mathbf{A}\hat{\mathbf{x}} = \hat{\mathbf{d}} \tag{2}$$

will not work since $\hat{\mathbf{x}}$ will be drastically corrupted by noise. Regularization techniques are required to address this issue.

<u>Truncated SVD.</u> Consider the singular value decomposition of the matrix A

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}} \in \mathbb{R}^{n \times n} \tag{3}$$

where $\mathbf{U} = [\mathbf{u}_1 \, \mathbf{u}_2 \dots \mathbf{u}_n], \mathbf{S} = diag(\sigma_1, \sigma_2, \dots \sigma_n), \mathbf{V} = [\mathbf{v}_1 \, \mathbf{v}_2 \dots \mathbf{v}_n].$ The solution to the system (2) is expressed as

$$\hat{\mathbf{x}} = [\mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}]^{-1}\hat{\mathbf{d}} = \mathbf{V}\mathbf{S}^{-1}\mathbf{U}^{\mathrm{T}}\hat{\mathbf{d}} = \sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{\mathrm{T}}\hat{\mathbf{d}}}{\sigma_{i}}\mathbf{v}_{i}$$
(4)

For very small σ_i , the terms $(\mathbf{u}_i^{\mathrm{T}}\hat{\mathbf{d}})/\sigma_i$ will result in noise amplification.

In the truncated SVD regularization, an approximation $\hat{\mathbf{x}}_k$ to the solution is obtained by truncating the sum in (4) at a selected index k,

$$\widehat{\mathbf{x}}_k = \sum_{i=1}^k \frac{\mathbf{u}_i^{\mathrm{T}} \widehat{\mathbf{d}}}{\sigma_i} \mathbf{v}_i \tag{5}$$

The main difficulty is to find an appropriate truncation index k such that $\hat{\mathbf{x}}_k$ is a good approximation to the true value \mathbf{x} .

Tikhonov Regularization. In this approach, an approximation to \mathbf{x} is obtained as the solution to the least squares minimization problem:

$$\min_{\widehat{\mathbf{x}} \in \mathbb{R}^n} J(\widehat{\mathbf{x}}), \quad where \quad J(\widehat{\mathbf{x}}) \stackrel{def}{=} \|\mathbf{A}\widehat{\mathbf{x}} - \widehat{\mathbf{d}}\|^2 + \lambda^2 \|\widehat{\mathbf{x}}\|^2$$
 (6)

In (6), $\|\cdot\|$ denotes the Euclidean vector norm and λ is a scalar regularization parameter that controls the smoothness of the solution. If $\lambda = 0$ then no regularization is applied and the solution is (4). If λ is large, then $\lambda^2 \|\widehat{\mathbf{x}}\|^2$ has a significant contribution to the cost (6) and the solution $\widehat{\mathbf{x}}$ can not be a good approximation of \mathbf{x} . We view the solution to (6) as a function of the parameter λ and denote it $\widehat{\mathbf{x}}_{\lambda}$. The main difficulty is to find an appropriate value of the regularization parameter λ such that $\widehat{\mathbf{x}}_{\lambda}$ is a good approximation to the true value \mathbf{x} .

The solution $\hat{\mathbf{x}}_{\lambda}$ to the minimization problem (6) is obtained by solving the linear system

$$\left(\mathbf{A}^{\mathrm{T}}\mathbf{A} + \lambda^{2}\mathbf{I}\right)\widehat{\mathbf{x}}_{\lambda} = \mathbf{A}^{\mathrm{T}}\widehat{\mathbf{d}}$$
 (7)

and may be expressed using the SVD (3) of **A** as

$$\widehat{\mathbf{x}}_{\lambda} = \sum_{i=1}^{n} f_i(\lambda) \frac{\mathbf{u}_i^{\mathrm{T}} \widehat{\mathbf{d}}}{\sigma_i} \mathbf{v}_i$$
 (8)

where the filter factors $f_i(\lambda)$ are defined as

$$f_i(\lambda) = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2}, \ i = 1, 2, \dots n$$
(9)

The main difficulty in this approach is to select an appropriate value of the regularization parameter λ .

Homework content

Consider an image represented as a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ and a blurring process represented by the matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. Whereas the true image is the solution to the matrix equation

$$AX = D$$

we want to reconstruct an approximation $\widehat{\mathbf{X}}$ to the image \mathbf{X} given the blurring matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a matrix of received noisy data

 $\widehat{\mathbf{D}} = \mathbf{A}\mathbf{X} + \boldsymbol{\xi}$

The regularization procedure (5) or (8-9) is used to find an approximate solution $\hat{\mathbf{X}}$, one column at a time:

ALGORITHM

$$[U, S, V] = svd(A)$$

FOR i = 1 : m

$$\hat{d} = \hat{D}(:,i)$$

evaluate \hat{x}_i from (5) - TSVD solution or from (8-9) - Tikhonov solution

$$\hat{X} = [\hat{x}_1 \, \hat{x}_2 \dots \hat{x}_m]$$

For this assignment n=m=128, and X is a 128×128 matrix representing the image of a coin. The blurring operation is represented as follows: Consider a 128×128 symmetric tridiagonal matrix B with entries ¹

$$B(i,i) = 1 - 2L, i = 1, 2, \dots n$$

 $B(i,i+1) = L, i = 1, 2, \dots n - 1; \quad B(i+1,i) = L, i = 1, 2, \dots n - 1$

where L = 0.45. Then the blurring operator is

$$\mathbf{A} = \mathbf{B}^{10}$$

The file "hw2data.m" represents the 128×128 noisy data matrix $\hat{\mathbf{D}}$, obtained as

$$\hat{\mathbf{D}} = \mathbf{A}\mathbf{X} + \boldsymbol{\xi}$$

where $\boldsymbol{\xi}$ is an unknown 128 × 128 noise matrix. To visualize $\hat{\mathbf{D}}$, in MATLAB you may execute:

load hw2data.m; D = hw2data; imagesc(D); colormap(gray)

Jour job: Implement the TSVD and the Tikhonov regularization procedures to reconstruct an approximation $\hat{\mathbf{X}}$ of the unknown image \mathbf{X} such that the year and the inscriptions on the coin can be read.

- (50 points) Implement a function $\hat{X} = regularize(A, \hat{D}, method, p)$ that takes as input the noisy data matrix \hat{D} , the blurring matrix A and the regularization parameter p, and returns \hat{X} , the regularization approximation to X. The input value method is used to distinguish between the TSVD solution (5) in which case p is the truncation index and the Tikhonov solution (8-9) in which case p is the regularization parameter λ . Alternatively, you may write a function for each method tsvd and tikhonov, respectively.
- (20 points) Find values of k and λ such that from $\hat{\mathbf{X}}$ the year and the inscriptions on the coin can be read. Plot the l-curve.

Things to hand in: listing of the tsvd and tikhonov functions, value of index k (tsvd) and parameter λ (Tikhonov), reconstructed image: year, inscriptions; a plot of the singular values σ_i on a \log_{10} scale and the filter factors f_i ; a plot of the l-curve.

¹such matrix results from discretization of the 1-D heat equation $u_t - ku_{xx} = 0$ with $L = k\Delta t/(\Delta x)^2$.