Entity-Based Knowledge Conflicts in Question Answering

Shayne Longpre*, Kartik Perisetla*, Anthony Chen*, Nikhil Ramesh, Chris DuBois, Sameer Singh

What is a contextual-parametric knowledge conflict?

Inference Time:

Gates of Heaven?

C: ...Iron gates in the clouds, guarded by **Bon Jovi**, the keeper of the keys to the kingdom....

Contextual Knowledge

Why do we care if models ignore the context?

Why do we care which knowledge models use?

- 1. Static knowledge v. Temporal knowledge → Generalization
- 2. *Interpretability* of a prediction
- 3. Context grounding mitigates hallucination, bias, stochastic parroting

Summary of Findings

- 1. QA Dataset → **Substitution Framework** → Knowledge Conflicts
- 2. **Benchmark behaviour** (parametric vs contextual) → lots of **hallucination**!!!
- 3. **Factors**: (1) model size, (2) quality of retriever at training, (3) popularity of entities
- 4. Mitigate this behaviour → improves **generalization**.

Substitution Framework

Original Example	Q: Who do we meet at the Gates of Heaven? C:Iron gates in the clouds, guarded by <u>Saint Peter</u> , the keeper of the keys to the kingdom
Alias Substitution	C:Iron gates in the clouds, guarded by <u>Peter the Apostle</u> , the keeper of the keys to the kingdom <> Policy: Wikidata alias of original answer <>
Corpus Substitution	C:Iron gates in the clouds, guarded by <u>Bon Jovi</u> , the keeper of the keys to the kingdom <> Policy: Sample PERSON from training set <>
	Types: [PER, LOC, ORG, DAT, NUM]

Human Assessment

98%

Fluency of original Natural Questions examples

84%

Fluency of Corpus Substituted Natural Questions examples

Model Behaviour

AO: Answer Overlap NAO: No Answer Overlap

Model Behaviour

Train: Natural Questions
Test: Corpus Substitution

Train: NewsQA
Test: Corpus Substitution

Substitute

Substitute

Original Other

Original Other

Model Behaviour

Train: NQ

Test: Alias Substitution

Extractive QA Model Train: NQ

Test: Corpus Substitution

Takeaway:

Parametric preference over context is prevalent, and contradictions cause confusion/instability in predictions.

Memorization Ratio?

What *Factors* affect the

Factor 1: Model Size

Takeaway:

As model capacity grows, it relies more heavily on

memorized information (even from pre-training).

Factor 2: Retriever Quality during Training

Recall@K vs. Memorization Ratio

Takeaways:

Reader models ignore context when retrievers are poor.

Only trust context when retrievers are near-perfect.

How can we *mitigate*

memorization/hallucination?

Mitigating Memorization

Recall Key Insight: training with perfect retrieval → low Memorization Ratio

But...

- We don't have unlimited gold passage labels to train on
- And SOTA QA models need to train on the same retriever they will use at test time...

Solution: Train on: [1] (fallible) model-retrieved passages + [2] corpus-substitution version.

Mitigating Memorization

	Inference Set	M_R	$EM(\Delta)$	
	NQ TRAIN NQ DEV (AO)	$29.5 \rightarrow 2.6$ $27.1 \rightarrow 1.9$	$70.9 \rightarrow 64.9 \text{ (-5.0)}$ $62.7 \rightarrow 64.2 \text{ (+1.5)}$	
\rightarrow	NQ DEV (NAO) NEWSQA	$\begin{array}{c} 1.5 \rightarrow 0.0 \\ 9.3 \rightarrow 0.6 \end{array}$	$32.9 \rightarrow 40.0 (+7.1)$ $21.4 \rightarrow 25.8 (+4.4)$	-
	(4)		177	1

Thank you!

Please don't hesitate to reach out!

- Email: <u>slongpre@mit.edu</u>
- Repository: https://github.com/apple/ml-knowledge-conflicts
- Paper: https://arxiv.org/abs/2109.05052