Formelark i fysikk

Utvalgte konstanter

 $k = 8.99 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2}$ Coulomb-konstanten $\epsilon_0 = 8.854187 \cdot 10^{-12} \frac{F}{m}$ Elektrisk konstant $e = 1.6021766 \cdot 10^{-19} \, \text{C}$ Elementærladningen $m_e = 9.109382 \cdot 10^{-31} \,\mathrm{kg}$ Elektronets masse $m_p = 1.672621 \cdot 10^{-27} \,\mathrm{kg}$ Protonets masse $h = 6.62607004 \cdot 10^{-34}$ Js Plancks konstant $h = 4.135667662 \cdot 10^{-15} \text{eV s}$ Lysets hastighet c = 299792458 m/s

Dielektriske konstanter

Materiale	ϵ_r	Materiale	ϵ_r
Vakum	1.00000	Luft (tørr)	1.00059
Bakelitt	4.9	Kvartsglass	3.78
Pyrex (glass)	5.6	Polystyren	2.56
Teflon	2.1	Nylon	3.4
Papir	3.7	Vann	80

Diverse formler

Resistans

Massetetthet $s = \dot{s_0} + v t$ Bevegelsesligning for konstant hastighet $s = s_0 + v_0 t + \frac{1}{2}at^2$ Bevegelsesligning for konstant akselerasjon Newtons 2.lov F = ma $W = \Delta E_k = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$ Arbeid-Energisetningen $R_{eff} = R_1 + R_2 + R_3 + \cdots$ $\frac{1}{R_{eff}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$ $F = k \frac{|q_1 q_2|}{r^2}$ Motstandere i serie Motstandere i parallell Elektriske kraft mellom punktladninger $E = k \frac{|Q|}{r^2}$ Elektrisk feltstyrke fra punktladning $V = E \cdot d$ Elektrisk potensial i uniformt felt $V = \frac{kQ}{r}$ Elektrisk potensial fra punktladning Elektrisk kraft $I = \frac{dQ}{dt} = nqv_dA$ Elektrisk strøm $P = U_{ab}I = I^2R = \frac{U_{ab}^2}{P}$ Elektrisk effekt Elektrisk strømtetthet $J = nqv_d$ $\rho = \frac{E}{J}$ $R = \rho \frac{l}{A}$ Resistivitet

Elektrisk arbeid $W_{ab} = U_a - U_b = -\Delta U$ $W_{ab} = F \cdot d = qEd$ Elektrisk arbeid $E_n = k \frac{Qq}{r}$ Elektrisk potensiell energi til punktladning $E_n = Vq$ Elektrisk potensiell $C = \frac{Q}{U_A}$ Kapasistans til en kondensator $C = \epsilon_0 \frac{A}{d}$ Kapasistans til en platekondensator $C = \epsilon_0 \epsilon_r \frac{A}{d}$ Kapasistans til en platekondensator med dielektrikum $E = \frac{Q}{\epsilon_0 A} = \frac{U_{ab}}{d}$ Elektrisk feltstyrke til en platekondensator $\frac{1}{C_{eff}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$ $C_{eff} = C_1 + C_2 + C_3 + \cdots$ Kondensatorer i serie Kondensatorer i parallell $E = \frac{Q^2}{2C} = \frac{1}{2}CU_{ab}^2 = \frac{1}{2}QU_{ab}$ Potensiell energi i kondensatorer $E = \frac{1}{2}Li^2$ Energi i spole $\tau = \tilde{R}C$ Tidskonstant i RC-krets $I = I_0 e^{-t/\tau}, Q = Q_f \left(1 - e^{-t/\tau}\right)$ Oppladning av en kondensator $I = I_0 e^{-t/\tau}, Q = Q_0 e^{-t/\tau}$ Utladning av en kondensator $\vec{F} = a\vec{v} \times \vec{B}$ Magnetisk kraft på ladning i bevegelse $\vec{F} = I\vec{l} \times \vec{B}$ Magnetisk kraft på en leder $F = m \frac{v^2}{r}$ Kraft på masse i sirkelbevegelse $mv = h/\lambda$ de Broglies formel E = hfFotonets energi $\lambda = hc/E$ Fotonets bølgelengde