Mathematische Brückenkurs

Dr. Joseph Rudzinski

Abteilung Theorie der Polymere, Max-Planck-Institut für Polymer Forschung

Wintersemester 2021/22

Definition

Seien D und W Teilmengen von $\mathbb R$. Unter einer reellwertigen Funktion auf D versteht man eine Abbildung

$$f: D \to W, \quad x \to y = f(x)$$

Man nennt D den Definitionsbereich und W den Wertebereich Funktion.

Eine Funktion f ordnet jedem $x \in D$ ein $y \in W$ zu.

Umkehrfunktion

Definition

Gibt es zu jedem $y \in W$ genau ein $x \in D$ mit y = f(x), so ist die Funktion f umkehrbar. In diesem Fall bezeichnet man mit f^{-1} die Umkehrfunktion:

$$f^{-1}: W \to D, \quad y \to x = f^{-1}(y)$$

Umkehrfunktion

Beispiel

Es sei $D=\mathbb{R}_0^+$ und $W=\mathbb{R}_0^+$ sowie

$$f: D \to W, x \to x^2$$

Dann lautet die Umkehrfunktion

$$f^{-1}: W \to D, \quad y \to \sqrt{y}$$

Grenzwerte von Funktionen

Definition

Man sagt eine Funktion hat im Punkte a den Grenzwert c, falls es mindestens eine Folge $(x_n) \in D$ mit $\lim_{n \to \infty} x_n = a$ gibt. Gilt dann für jede Folge $(x_n) \in D$ mit $\lim_{n \to \infty} x_n = a$, dass

$$\lim_{n\to\infty} f(x_n) = c$$

so bezeichnet man c als den Grenzwert der Funktion f(x) im Punkte a.

In diesem Fall schreibt man: $\lim_{x\to a} f(x) = c$.

Grenzwerte von Funktionen

Satz

Die obige Bedingung ist äquivalent zu der Forderung, dass es zu jedem $\epsilon>0$ ein $\delta>0$ gibt, so dass

$$|f(x)-c|<\epsilon$$
, $\forall |x-a|<\delta$ und $x\in D$

Bemerkung: Es wird nicht vorausgesetzt, dass $a \in D$ liegt. Die Definition macht auch Sinn, falls D ein offenes Intervall ist und der Grenzwert an den Intervallgrenzen betrachtet wird.

Stetigkeit

Definition

Sei nun $a \in D$. Man bezeichnet eine Funktion als stetig im Punkte a falls

$$\lim_{x \to a} f(x) = f(a)$$

gilt.

Definition

Man bezeichnet eine Funktion als in einem Intervall stetig, falls sie in jedem Punkt des Intervalls stetig ist.

Die Heaviside-Funktion

Beispiel

Wir betrachten die Heaviside-Funktion, definiert durch

$$\Theta(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

Für diese Funktion gilt $\Theta(0) = 0$, aber

$$\lim_{x \to 0+} \Theta(x) = 1$$

Die Heaviside-Funktion ist im Punkte 0 nicht stetig.

Stetige Funktionen

Beispiel

Beispiele von Funktionen, die auf ganz \mathbb{R} stetig sind, sind Polynomfunktionen, $\exp(x)$, $\sin(x)$, $\cos(x)$, $\sinh(x)$, $\cosh(x)$.

Sätze über stetige Funktionen

Satz

Seien $f, g: D \to \mathbb{R}$ Funktionen, die in a stetig sind und sei $\lambda \in \mathbb{R}$. Dann sind auch die Funktionen

$$f+g:D\to \mathbb{R}$$

$$\lambda \cdot f : D \to \mathbb{R}$$

$$f \cdot g : D \to \mathbb{R}$$

im Punkte a stetig. Ist ferner $g(a) \neq 0$, so ist auch die Funktionen

$$\frac{f}{g}:D'\to\mathbb{R}$$

in a stetig, wobei $D' = \{x \in D \mid g(x) \neq 0\}$.

Gleichmäßige Stetigkeit

Definition

Eine Funktion $f: D \to \mathbb{R}$ heißt in D Gleichmäßig stetig, falls es zu jedem $\epsilon > 0$ ein $\delta > 0$ gibt, so dass

$$|f(x)-f(y)|<\epsilon$$
, $\forall |x-y|<\delta$.

Jede Funktion, die auf *D* gleichmässig stetig ist, ist auch in jedem Punkte aus *D* stetig im herkömmlichen Sinne. Die Umkehrung gilt jedoch nicht.

Gleichmäßige Stetigkeit (Fortsetzung)

Ist eine Funktion in jedem Punkte $x \in D$ stetig im herkömmlichen Sinne, so genügt es für ein vorgegebenes e für jedem Punkt ein δ_x zu finden. Dieses δ_x darf mit x variieren. Für die gleichmässige Stetigkeit wird dagegen gefordert, dass δ von x abhängig ist.

Quiz

Die Funktion

$$f(x) = \begin{cases} 0 & x \le 0 \\ \sin(x) & x > 0 \end{cases}$$

ist im Punkte x = 0

- (A) stetig
- (B) nicht stetig

Quiz

Die Funktion

$$f(x) = \begin{cases} e^{-x} & x \le 0\\ \cos(x) & x > 0 \end{cases}$$

ist im Punkte x = 0

- (A) stetig
- (B) nicht stetig

Quiz

Die Funktion

$$f(x) = \begin{cases} \frac{1}{2} - e^{-x} & x \le 0\\ \frac{1}{2} + e^{x} & x > 0 \end{cases}$$

ist im Punkte x = 0

- (A) stetig
- (B) nicht stetig

Rationale Funktionen

Definition

Seien p(x) und q(x) Polynomfunktionen. Unter einer rationalen **Funktion versteht man eine Funktion**

$$R(x) = \frac{p(x)}{q(x)}.$$

Der Definitionsbereich einer rationalen Funktion ist gegeben durch $D = \{x \in \mathbb{R}, q(x) \neq 0\}.$

Eine rationale Funktion ist in ihrem Definitionsbereich stetig.

16

Partialbruchzerlegung

Rationale Funktionen können in Partialbrücke zerlegt werden. Ist

$$p(x) = p_n x^n + p_{n-1} x^{n-1} + \dots + p_1 x_1 + p_0$$

$$q(x) = q_m x^m + q_{m-1} x^{m-1} + \dots + q_1 x_1 + q_0$$

und ist ausserdem die Faktorisierung des Nennerpolynoms bekannt

$$q(x) = c \prod_{j=1}^{r} (x - x_j)^{\lambda_j},$$

wobei λ_j die Multiziplität der Nullstelle x_j angibt, so lässt sich die

rationale Funktion schreiben als
$$R(x) = \frac{p(x)}{q(x)} = P(x) + \sum_{j=1}^{r} \sum_{k=1}^{\lambda_j} \frac{a_{jk}}{(x - x_j)^k}$$

wobei P(x) ein Polynom vom Grad $\deg p(x) - \deg q(x)$ ist und $a_{ik} \in \mathbb{R}$.

<u>Partialbruchzerlegung</u>

Berechnung von P(x) und der Konstanten a_{jk} :

P(x) bestimmt sich durch Polynomdivision mit Rest.

Wir betrachten als Beispiel die rationale Funktion

$$\frac{x^4 + 3x^3 - 12x^2 - 3x + 18}{(x - 2)^2(x + 2)}$$

Für das Nennerpolynom haben wir

$$(x-2)^2(x+2) = x^3 - 2x^2 - 4x + 8$$

Polynomdivision

Polynomdivision mit Rest liefert

$$x^{4} + 3x^{3} - 12x^{2} - 3x + 18 : x^{3} - 2x^{2} - 4x + 8 = x + 5 + \frac{(2x^{2} + 9x - 22)}{(x^{3} - 2x^{2} - 4x + 8)}$$
$$-(x^{4} - 2x^{3} - 4x^{2} + 8x)$$

$$5x^{3} - 8x^{2} - 11x + 18$$

$$-(5x^{3} - 10x^{2} - 20x + 40)$$

$$2x^{2} + 9x - 22$$

Somit ist
$$P(x) = x + 5$$
.

Partialbruchzerlegung

Für den Rest verwendet man den Ansatz

$$\frac{2x^2 + 9x - 22}{x^3 - 2x^2 - 4x + 8} = \frac{a_{12}}{(x - 2)^2} + \frac{a_{11}}{(x - 2)} + \frac{a_{21}}{(x - 2)}$$

Man bringt die rechte Seite auf den Hauptnenner

$$\frac{a_{12}}{(x-2)^2} + \frac{a_{11}}{(x-2)} + \frac{a_{21}}{(x-2)} = \frac{(a_{11} + a_{21})x^2 + (a_{12} - 4a_{21})x + (2a_{12} - 4a_{11} + 4a_{21})}{x^3 - 2x^2 - 4x + 8}$$

Koeffizientenvergleich liefert ein lineares Gleichungssystem:

$$a_{11} + a_{21} = 2$$

$$a_{12} - 4a_{21} = 9$$

$$2a_{12} - 4a_{11} + 4a_{21} = -22$$

Partialbruchzerlegung

Durch Lösen des linearen Gleichungssystem findet man:

$$a_{12} = 1$$
, $a_{11} = 4$, $a_{21} = -2$

Somit erhalten wir das Ergebnis:

$$\frac{x^4 + 3x^3 - 12x^2 - 3x + 18}{(x - 2)^2(x + 2)} = x + 5 + \frac{1}{(x - 2)^2} + \frac{4}{(x - 2)} - \frac{2}{(x + 2)}$$

Trick

DR. JOSEPH RUDZINSKI (MPIP)

Die Koeffizienten der Partialbrüche mit der höchsten Potenz einer Nullstelle lassen sich einfacher bestimmen, indem man im Ansatzmit $(x - x_i)^{\lambda_j}$ multipliziert und dann $x = x_i$ setzt.

In unserem Beispiel lassen sich so a_{12} und a_{21} bestimmen:

$$a_{12} = \frac{2x^2 + 9x - 22}{(x-2)^2(x+2)}(x-2)^2 \bigg|_{x=2} = \frac{2x^2 + 9x - 22}{(x+2)} \bigg|_{x=2} = \frac{8 + 18 - 22}{4} = 1$$

$$a_{21} = \frac{2x^2 + 9x - 22}{(x-2)^2(x+2)}(x+2) \bigg|_{x=-2} = \frac{2x^2 + 9x - 22}{(x-2)^2} \bigg|_{x=-2} = \frac{8 - 18 - 22}{16} = -2$$

WISE 2021/22

Trigonometrische Funktionen

Neben den Winkelfunktionen Sinus und Kosinus

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right), \quad \sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right),$$

gibt es weitere trigonometrische Funktionen:

$$\tan(x) = \frac{\sin(x)}{\cos(x)}, \quad \text{Tangens}$$

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$
, Tangens $\sec(x) = \frac{1}{\cos(x)}$, Sekans

$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$
, Kotangens $\csc(x) = \frac{1}{\sin(x)}$, Kosekans

$$csc(x) = \frac{1}{\sin(x)}$$
, Kosekans

<u>Umkehrfunktionen</u>

Die Umkehrfunktionen werden mit arcsin, arccos, arctan, etc.

bezeichnet:

$$\arcsin(x) = \sin^{-1}(x)$$
, Arkussinus

$$arccos(x) = cos^{-1}(x)$$
, Arkuskosinus

$$arctan(x) = tan^{-1}(x)$$
, Arkustangens

Die Umkehrfunktionen lassen sich durch den Logarithmus

ausdrücken:

DR. JOSEPH RUDZINSKI (MPIP)

$$\arcsin(x) = \frac{1}{i} \ln\left(ix + \sqrt{1 - x^2}\right)$$

$$\arccos(x) = \frac{1}{i} \ln\left(x + i\sqrt{1 - x^2}\right)$$

$$\arctan(x) = \frac{1}{2i} \ln \left(\frac{1 + ix}{1 - ix} \right)$$

<u>Geometrie</u>

DR. JOSEPH RUDZINSKI (MPIP)

Hyperbolische Funktionen

Neben den bereits eingeführten hyperbolischen Funktionen

$$\cosh(x) = \frac{1}{2} \left(e^x + e^{-x} \right), \quad \sinh(x) = \frac{1}{2} \left(e^x - e^{-x} \right),$$

definiert man auch

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

Bemerkung: Für sinh und cosh gilt

$$\cosh^2(x) - \sinh^2(x) = 1$$

<u>Umkehrfunktionen</u>

Die inversen Funktionen werden als Areafunktionen bezeichnet:

 $arsinh(x) = sinh^{-1}(x)$, Areasinus Hyperbolicus

 $\operatorname{arcosh}(x) = \cosh^{-1}(x)$, Areakosinus Hyperbolicus

 $artanh(x) = tanh^{-1}(x)$, Areatangens Hyperbolicus

Die Umkehrfunktionen lassen sich ebenfalls durch den Logarithmus ausdrücken: $\operatorname{arcosh} = \ln \left(x + \sqrt{x^2 - 1} \right)$

$$\operatorname{arsinh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$

$$\operatorname{artanh}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

Zusammenhang zwischen trigonomichen und hyperbolischen Funktionen

$$\sin(x) = \frac{1}{i} \sinh(ix)$$

$$\arcsin(x) = \frac{1}{i} \operatorname{arsinh}(ix)$$

$$\cos(x) = \cosh(ix)$$

$$arccos(x) = \frac{1}{i}arcosh(x)$$

$$\tan(x) = \frac{1}{i} \tanh(x)$$

$$\arctan(x) = \frac{1}{i} \operatorname{arctanh}(ix)$$

Quiz

Die Flächeninhalt der schraffierten Fläche ist

(A)
$$\frac{1}{6}$$

- (B) φ
- (C) 2φ
- (D) $sin(\varphi) cos(\varphi)$

