Spatial Tessellations

Second Edition

WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: Vic Barnett, Noel A. C. Cressie, Nicholas I. Fisher, Iain M. Johnstone, J. B. Kadane, David G. Kendall, David W. Scott, Bernard W. Silverman, Adrian F. M. Smith, Jozef L. Teugels,

Editors Emeritus: Ralph A. Bradley, J. Stuart Hunter

A complete list of the titles in this series appears at the end of this volume

Spatial Tessellations: Concepts and Applications of Voronoi Diagrams

Second Edition

ATSUYUKI OKABE

University of Tokyo, Japan

BARRY BOOTS

Wilfrid Laurier University, Ontario, Canada

KOKICHI SUGIHARA

University of Tokyo, Japan

SUNG NOK CHIU

Hong Kong Baptist University, China

With a Foreword by **D.G. KENDALL**

JOHN WILEY & SONS, LTD

Chichester • New York • Weinheim • Brisbane • Singapore • Toronto

Copyright © 1992, 2000 by John Wiley & Sons Ltd Baffins Lane, Chichester, West Sussex, PO19 1UD, England

> National 01243 779777 International (+44) 1243 779777

e-mail (for orders and customer enquiries): cs-books@wiley.co.uk

Visit our Home Page on http://www.wiley.co.uk or http://www.wiley.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE, UK, without the permission in writing of the Publisher.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 605 Third Avenue, New York, NY 10158-0012, USA

Wiley-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim Germany

Jacaranda Wiley Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distirpark, Singapore 129809

John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario, M9W 1L1, Canada

Library of Congress Cataloging-in-Publication Data

Okabe, Atsuyuki, 1945-

Spatial tessellations: concepts and applications of Voronoi diagrams / Atsuyuki Okabe ... [et al.]; with a foreword by D.G. Kendall — 2nd ed. p. cm. — (Wiley series in probability and statistics)

Includes bibliographical references and index.

ISBN 0-471-98635-6 (alk. paper)

Voronoi polygons.
 Spatial analysis (Statistics).
 Geometry—Data processing.
 Title. II. Series.

QA278.2.036 1999

519.5'36-dc21

99-13149

CIP

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

ISBN 0-471-98635-6

Typeset in 10/12pt Times by Florence Production Ltd, Stoodleigh, Devon

Contents

Foreword to the First Edition			xi	
Preface to the Second Edition Acknowledgements (First Edition)				
				Acknowled
Chapter 1	Intr	roduction	1	
	1.1	Outline	3	
	1.2	History of the concept of the Voronoi diagram	6	
	1.3	Mathematical preliminaries	12	
		1.3.1 Vector geometry	12	
		1.3.2 Graphs	24	
		1.3.3 Spatial stochastic point processes	31	
		1.3.4 Efficiency of computation	41	
Chapter 2	Definitions and Basic Properties of Voronoi Diagrams			
-	2.1	•	43	
	2.2	Definitions of the Delaunay tessellation		
		(triangulation)	52	
	2.3	Basic properties of the Voronoi diagram	57	
	2.4	Basic properties of the Delaunay triangulation	70	
	2.5	Graphs related to the Delaunay triangulation	97	
	2.6	Recognition of Voronoi diagrams	103	
		2.6.1 The geometric approach	104	
		2.6.2 The combinatorial approach	106	
Chapter 3	Gei	neralizations of the Voronoi diagram	113	
F	3.1 Weighted Voronoi diagrams			
		3.1.1 The multiplicatively weighted Voronoi diagram	120	
		3.1.2 The additively weighted Voronoi diagram	123	
		3.1.3 The compoundly weighted Voronoi diagram	127	
		3.1.4 The power diagram	128	
		3.1.5 The sectional Voronoi diagram	131	
		3.1.6 Applications	133	

vi CONTENTS

3.2	Highe	er-order Voronoi diagrams	134
	3.2.1	The order-k Voronoi diagram	135
	3.2.2	The ordered order-k Voronoi diagram	144
	3.2.3	Applications	150
3.3	The f	arthest-point Voronoi diagram and the kth	
	neare	st-point Voronoi diagram	151
	3.3.1	The farthest-point Voronoi diagram	151
	3.3.2	The kth nearest-point Voronoi diagram	155
	3.3.3	Applications	157
3.4	Voro	noi diagrams with obstacles	158
	3.4.1	The shortest-path Voronoi diagram	158
	3.4.2	The visibility shortest-path Voronoi diagram	163
	3.4.3	The constrained Delaunay triangulation	165
	3.4.4	SP- and VSP-Voronoi diagrams in a simple polygon	168
	3.4.5	Applications	168
3.5	Voro	noi diagrams for lines	169
	3.5.1	Voronoi diagrams for a set of points and straight	
		line segments	171
	3.5.2	Voronoi diagrams for a set of points, straight line	
		segments and circular arcs	176
	3.5.3	Voronoi diagrams for a set of circles	178
	3.5.4	Medial axis	181
	3.5.5	Applications	184
3.6	Voro	noi diagrams for areas	186
	3.6.1	The area Voronoi diagram	186
	3.6.2	Applications	188
3.7	Voro	noi diagrams with V-distances	189
	3.7.1	Voronoi diagrams with the Minkowski metric L_p	189
	3.7.2	Voronoi diagrams with the convex distance	194
	3,7.3	Voronoi diagrams with the Karlsruhe metric	201
	3.7.4	Voronoi diagrams with the Hausdorff distance	202
	3.7.5	Voronoi diagram with the boat-on-a-river distance	204
	3.7.6	Voronoi diagrams on a sphere	206
	3.7.7	Voronoi diagrams on a cylinder	209
	3.7.8	Voronoi diagrams on a cone	210
	3.7.9	Voronoi diagrams on a polyhedral surface	211
	3.7.10	Miscellany	212
	3.7.11	Applications	215
3.8	Netw	ork Voronoi diagrams	218
	3.8.1	The network Voronoi node diagram	219
	3.8.2	The network Voronoi link diagram	220
	3.8.3	The network Voronoi area diagram	221
	3.8.4	Applications	224
3.9	Voro	noi diagrams for moving points	224
	3.9.1	Dynamic Voronoi diagrams	224
	3.9.2	Applications	227

CONTENTS	vii

Chapter 4		orithms for Computing Voronoi Diagrams	229
		Computational preliminaries	229
		Data structure for representing a Voronoi diagram	235
		The incremental method	242
		The divide-and-conquer method	251
		The plane sweep method	257
	4.6	Practical techniques for implementing the algorithms	264
		4.6.1 Inconsistency caused by numerical errors	264
		4.6.2 Construction of an error-free world	265
	4 ~	4.6.3 Topology-oriented approach	269
	4.7	Algorithms for higher-dimensional Voronoi diagrams	275
		Algorithms for generalized Voronoi diagrams	280
	4.9	Approximation algorithms	287
Chapter 5	Pois	son Voronoi Diagrams	291
•	5.1	Properties of infinite Voronoi diagrams	295
	5.2	Properties of Poisson Voronoi diagrams	299
	5.3	Uses of Poisson Voronoi diagrams	300
	5.4	Simulating Poisson Voronoi and Delaunay cells	306
	5.5	Properties of Poisson Voronoi cells	311
		5.5.1 Moments of the characteristics of Poisson	
		Voronoi cells	311
		5.5.2 Conditional moments of the characteristics of	
		Poisson Voronoi cells	315
		5.5.3 Conditional moments of the characteristics of	
		the neighbouring cells of a Poisson Voronoi cell	324
		5.5.4 Distributional properties	331
	5.6	Stochastic processes induced by Poisson Voronoi	
		diagrams	350
		5.6.1 Point processes of centroids of faces	350
		5.6.2 Voronoi growth models	357
		5.6.3 The Stienen model	360
		5.6.4 Percolation on Poisson Voronoi diagrams and	
		Poisson Delaunay tessellations	361
	5.7	Sectional Voronoi diagrams	363
	5.8	Additively weighted Poisson Voronoi diagrams:	
		the Johnson-Mehl model	374
		Higher order Poisson Voronoi diagrams	385
		Poisson Voronoi diagrams on the surface of a sphere	389
		Properties of Poisson Delaunay cells	389
	5.12	Other random Voronoi diagrams	404

viii CONTENTS

Chapter 6	Spa	tial Interpolation	411
•		Polygonal methods	416
		6.1.1 Nearest neighbour interpolation	417
		6.1.2 Natural neighbour interpolation	418
	6.2	Triangular methods	427
	6.3	Modifying Delaunay triangulations	434
	6.4	Approximating surfaces	437
	6.5	Delaunay meshes for finite element methods	439
		6.5.1 Two-dimensional Delaunay meshes	440
		6.5.2 Three-dimensional Delaunay meshes	442
	6.6	Ordering multivariate data	446
Chapter 7	Mo	dels of Spatial Processes	453
		Assignment models	454
		Growth models	476
	7.3	Spatial-temporal processes	482
		7.3.1 Spatial competition models: the Hotelling process	482
		7.3.2 Adjustment models	489
	7.4	Two-species models	491
Chantan 9	Do!	nt Battom Analysis	495
Chapter 8		nt Pattern Analysis Palyson based methods	498
	0.1	Polygon-based methods	498
		8.1.1 Direct approach	502
	0 2	8.1.2 Indirect approaches	506
		Triangle-based methods Nearest neighbour distance methods	512
	0.3	•	312
		8.3.1 Nearest neighbour distance method for	514
		point-like objects	314
		8.3.2 Nearest neighbour distance method for	517
		line-like objects	517
		8.3.3 Nearest neighbour distance method for	500
		area-like objects	520
	0.4	8.3.4 Multi nearest neighbour distance method	521
	8.4	* · · · · · * * · · · · * · · · · · · ·	521
		8.4.1 Internal shape	521
	0 5	8.4.2 External shape	523
		Spatial intensity	525
		Segmenting point patterns	527
	ð./	Modelling point processes	529

CONTENTS	i

Chapter 9	Locational Optimization Through Voronoi Diagrams 9.1 Preliminaries				
	<i>7</i> ,1		The non-linear, non-convex programming problem	532 532	
		9.1.2		534	
			The penalty function method	538	
	92		tional optimization of points	541	
	7.2		Locational optimization of point-like facilities used by independent users	542	
		9.2.2	Locational optimization of points in a three- dimensional space	548	
		9.2.3	Locational optimization of point-like facilities used by groups	549	
		9.2.4	Locational optimization of a hierarchical facility	551	
			Locational optimization of observation points for estimating the total quantity of a spatial variable		
			continuously distributed over a plane	555	
		9.2.6	Locational optimization of service points of a mobile facility	558	
		9.2.7	Locational optimization of terminal points through		
			which users go to the central point	559	
		9.2.8	Locational optimization of points on a continuous		
			network	563	
	9.3	Loca	tional optimization of lines	564	
		9.3.1	Locational optimization of a service route	564	
		9.3.2	Locational optimization of a network	567	
		9.3.3	Euclidean Steiner minimum tree	570	
	9.4	Loca	tional optimization over time	575	
		9.4.1	Multi-stage locational optimization	575	
		9.4.2	Periodic locational optimization	578	
	9.5		noi fitting and its application to locational nization problems	581	
		9.5.1	Method of fitting a Voronoi diagram to a polygonal tessellation	581	
		9.5.2	Locational optimization for minimizing restricted	-	
		7.5.2	areas	584	
References				585	
Index				657	

Foreword to the First Edition

I was delighted to be asked to write a preface to this beautiful and outstandingly original book. It is the unique treatise on its subject, it fills a serious gap in the literature and it covers the theory and the huge range of applications in a masterly way.

The authors are right to distinguish Voronoi diagrams and Delone tessellations. The Delone construction decomposes a Euclidean space of m dimensions, containing a given set of points, into non-overlapping space-filling simplexes (not, of course, all of the same shape and size), so that it tessellates the space using tiles that are identical with one another up to linear transformations. The Voronoi construction also splits up the space into polyhedral cells, but now they are much less uniform in character – the number of faces will vary from one cell to another, so that it would be wrong to call the result a tessellation.

These mutually dual procedures give fascinating but different insights into the structure of a set of points in *m* dimensions, and they have found numerous applications. At the time of writing there is a new application on the largest of all possible scales which throws light on the structure of the Universe as we see it. This will be seen as a particularly interesting development when one recalls that most of the earlier applications (for example, to the study of the structure of metallic composites, and other such aggregates) were on the microscopic scale. The reader of this book is strongly urged to look at a review paper just published by Icke and van de Weygaert (*Quarterly Journal, Royal Astronomical Society*, 32, 85-112). There it is shown that the Voronoi construction not only gives insight into the distribution of galaxies, but also permits a new approach to the dynamics that mould the shape of the universe we live in.

My own contributions have been in the Delone tradition, and are concerned (for example) with the way in which high-dimensional Delone simplexes pack together around a common vertex. Thus in 15 dimensions the number of such locally associated simplexes turns out to be of the order of 44 million million. This implies a related statement about the Voronoi polyhedra, and there tells us something about the number of faces of an individual cell. It seems likely that the huge number of Delone simplexes in such a local 'fan' can be roughly partitioned into a moderate number of

'chunky' simplexes (substantial faces in the Voronoi case), and a vast number of 'needle-like' ones (tiny faces), but we have no precise information on this matter at the moment.

It is a great pleasure to welcome this book to the Wiley series.

David Kendall

Preface to the Second Edition

The First Edition of this book was published in 1992. In 1995, it was reprinted. At that time, we suggested to the publishers that, given the continuing interest in Voronoi diagrams in so many quarters, rather than consider further reprints they allow us to prepare a new, revised, Second Edition. We were pleased to receive a positive reply and so this volume was born.

While this edition maintains the overall structure of the first, there are substantial changes in the content. In particular, on-going growth in research relating to Voronoi diagrams is reflected in the addition of much new material to this volume. Although such additions occur throughout the book, they are most visible in new generalizations of the ordinary Voronoi diagram, new and revised results relating the Poisson Voronoi diagram, and new applications of all forms of Voronoi diagrams. The growth in Voronoi diagram research is also manifest in several other ways. One is the presence of a fourth author, Sung Nok Chiu, without whose contribution the original three authors would probably still be labouring over the revisions. Another is the increase in the number of references from 677 in the First Edition to 1680, 523 of which have appeared since the First Edition was published.

In order to accommodate the new developments we have omitted some material from the First Edition. This is most obvious in the mathematical preliminaries in Chapter 1 where we have omitted the sections relating to matrices, derivatives, integration and probability.

This book is accompanied by a World Wide Web site (http://okabe.t.u-tokyo.ac.jp/okabelab/Voronoi/index.html) which provides additional material such as pointers to available Voronoi diagrams and related geometric software and other Web sites featuring Voronoi diagrams. Our WWW page can also be used to notify us of any errors. Although the text has been proofread many times by ourselves and others, it is inevitable that some logical and typographical errors will not have been detected. We will correct any errors we become aware of and provide an Errata list on our WWW page.

December 1998 The authors

Acknowledgments (First Edition)

So many people helped in so many ways during the preparation of this book that it is only possible to acknowledge a few of them individually. First, we are deeply grateful to D.G. Kendall, who read through the draft and encouraged its publication; and to Y. Asami, C.M. Hoffmann, M. Iri, K. Murota and A. Suzuki, who suggested or commented on parts of the draft. Our special thanks also go to D.A. Aboay, F. Aurenhammer, H. Edelsbrunner, S. Egginton, J.D. Embury, M.F. Goodchild, M. Hori, H.-C. Imhof, G. Le Caër, U. Lorz, J. Mecke, R.E. Miles, J. Møller, L. Muche, Y. Ohsawa, N. Rivier, Y.M. Seoung, D. Stoyan, T. Suzuki, M. Tanemura, G. Toussaint, D.S. Wilkinson, H. Yomono and L. Zaninetti, who provided material. We must also express our debt to A. Dawkins, S. Henry H. Honkers, J. Horton, T. Kaneko, O. Kurita, R. Metcalfe, P. Schaus, M. Stone and T. Yoshikawa, among others, who assisted in production. For the help that they have given us, we are indebted to the staff of the publisher, in particular, C. Farmer. S. Gale, J. Narain and H. Ramsey. We should also acknowledge the award of a Book Preparation Grant from Wilfrid Laurier University which helped meet costs incurred during the preparation of the manuscript. Finally we are grateful for academic e-mail networks which made us feel as if we had been working in the same office.

Acknowledgments (Second Edition)

As with the First Edition, so many people helped us in different ways in the preparation of this edition that it is impossible to acknowledge all of them individually. However, we are especially indebted to two individuals who exposed us to significant applications which were either overlooked or received only passing reference in the first edition. Initially by means of a footnote in Oden et al. (1993) and later by direct communication, H. Goebl revealed the use of Voronoi diagrams in linguistics, while E. Agrell, by way of his book (Agrell, 1997), showed us how much we had missed on the use of Voronoi diagrams in coding. For their comments and suggestions on the First Edition or drafts of this edition we would like to thank H. Imai, K. Imai, R. Klein, R.C. Lindenbergh, U. Lorz, M. McAllister, L. Muche, T. Roos, M. Schlather, N. Shiode, and C.A. Wang. We would also like to thank those who generously shared their unpublished research or other material with us, C. Gold, U. Lorz, K. McLeod, C. Moukarzel, L. Muche, K. Ohnishi, M. Schlather, D. Stoyan, and D. Watson. Thanks are also due to those who assisted in the production of this edition, especially P. Churcher, S. Horiike, J. Horton, C. Kanasaki, T. Kuroiwa, M. Lefebyre, H. Rayner, P. Schaus, and C. Yoshimoto. Finally, it is again a pleasure to acknowledge the help and guidance we have received from the staff of the publisher, in particular, S. Clutton, S. Corney, and H. Ramsey, who dealt with the idiosyncrasies of four authors scattered around the globe with both patience and good humour.