Bayesian Statistics, Simulations and Software

Course outline

- Course consists of 12 half-days of lectures and practicals.
- **To pass**: Active participation in 10 of 12 half-days.
- 1. half-day: Introduction to likelihoods and Bayesian ideas and R software.
- **2.** half-day: Probability brush-up.

Probability brush-up

Setup: Perform an "experiment".

State space $\Omega =$ the set of all possible outcomes of the experiment.

Event: $A \subseteq \Omega$ — subset of the state space.

Example: Trip to the casino: Examples of events:

- At least three wins.
- Temperature inside the casino at noon \in [25, 26].

Probability

Notation: Probability of an event A is denoted P(A).

Properties:

- $0 \le P(A) \le 1.$
- $P(\Omega) = 1.$
- $\blacksquare P(\emptyset) = 0.$
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$

Complement: A^C is A's complement, i.e.

$$\blacksquare A \cap A^C = \emptyset, A \cup A^C = \Omega.$$

So

$$P(A) + P(A^C) = P(A \cup A^C) = 1$$

and hence

$$P(A^C) = 1 - P(A).$$

Example: A fair coin is tossed 10 times. What is the probability of any outcome?

Answer: 2^{-10} since all 2^{10} possible outcomes are equally likely.

What is the probability of at least one head?

Answer: $1 - P(\text{all tail}) = 1 - 2^{-10}$.

What is the probability of at least one head and at least one tail?

Answer: P(at least one head) + P(at least one tail)] -

 $P(\text{at least one head or at least one tail}) = 2[1 - 2^{-10}] - 1 = 1 - 2^{-9}.$

Law of total probabilty

Split Ω into pairwise disjoint sets

$$B_1, B_2, \ldots, B_n,$$

that is $B_i \cap B_j = \emptyset$ for $i \neq j$, and $\bigcup_{i=1}^n B_i = \Omega$.

Consider event A:

$$A = (B_1 \cap A) \cup (B_2 \cap A) \cup \cdots \cup (B_n \cap A).$$

Then
$$(B_i \cap A) \cap (B_j \cap A) = \emptyset$$
 for $i \neq j$, so

$$P(A) = P(B_1 \cap A) + P(B_2 \cap A) + \dots + P(B_n \cap A).$$

Conditional probability

For events $A,B\subseteq \Omega$ with P(B)>0, the conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Can be rewritten as

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

and so we obtain...

Bayes' Theorem

Bayes' theorem

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}.$$

Notice that we have "reversed" the conditioning. Since

$$P(B) = P(A \cap B) + P(A^C \cap B)$$

= $P(A)P(B|A) + P(A^C)P(B|A^C)$

we can reformulate Bayes' theorem as

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^{C})P(A^{C})}.$$

Example: Test for a rare disease

Known:

$$P(I) = 0.001$$

$$P(Z|I) = 0.92$$

$$\blacksquare \ P(Z|I^C) = 0.04 \quad \text{(false positive)}$$

Question:

■ Given positive test, what is the probability of having the disease? It is $P(I|Z) \approx 2.5\%$ because

$$P(I|Z) = \frac{P(Z|I)P(I)}{P(Z|I)P(I) + P(Z|I^C)P(I^C)} = \frac{0.92 \times 0.001}{0.92 \times 0.001 + 0.04 \times (1 - 0.001)}$$

Independence

Two events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B).$$

Consequences:

- $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A) \text{ provided } P(B) > 0.$
- ightharpoonup P(B|A) = P(B) provided P(A) > 0.
- \blacksquare A and B^C are independent.
- lacksquare A^C and B are independent.
- lacksquare A^C and B^C are independent.

Example:

Events:
$$I$$
=infected I

$$I^C$$
=uninfected

$$Z=$$
positive test

$$Z=$$
 positive test $Z^{C}=$ negative test

Known probabilities:

$$\blacksquare \ P(I) = p \in (0,1)$$

$$P(Z|I) = q$$

$$Arr$$
 $P(Z|I^C) = r$ (false positive)

Then Z and I are independent if and and only if P(Z) = q = r. However, we want q to be much larger than r.

Random variable

Definition: A random variable (RV) is a function X from the state space Ω to the real numbers \mathbb{R} (i.e. $X : \Omega \mapsto \mathbb{R}$).

Definition: Its distribution function

$$F(x) = P(X \le x), \quad x \in \mathbb{R},$$

is a non-decreasing function with $\lim_{x\to -\infty} F(x)=0$ and $\lim_{x\to \infty} F(x)=1.$

Definition: A discrete RV takes countably many values and has a probability density function (pdf) $\pi(x)$:

- \blacksquare $\pi(x) = P(X = x) \ge 0$ for $x \in \mathbb{R}$,
- \blacksquare $\sum_{x} \pi(x) = 1$ (where $\sum_{x} \dots$ means $\sum_{x \in X(\Omega)} \dots$).

Then

$$F(x) = \sum_{y \le x} \pi(y)$$

is a step function.

Example: Binomial distribution

A discrete RV X follows a **binomial distribution** with parameters p and n ($0 \le p \le 1$ and $n \in \{1, 2, 3, \ldots\}$) if

$$\pi(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x \in \{0, 1, 2, \dots, n\}$$

where

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}, \quad k! = 1 \cdot 2 \cdot 3 \cdots k.$$

Notation: $X \sim B(n, p)$.

Interpretation:

- Perform n independent experiments, each with outcomes "success" or "failure".
- P("success") = p for all experiments.
- Let X = number of successes.
- Then $X \sim B(n, p)$.

Expectation and variance of RV

Definition: The expectation (or mean value) of a discrete RV is $\mu=E[X]=\sum_x x\pi(x).$

Properties:

- $E[h(X)] = \sum_{x} h(x)\pi(x)$ for functions h.
- \blacksquare E[a+bX]=a+bE[X] for numbers a and b.

Definition: The variance of a discrete RV is

$$\begin{split} \sigma^2 &= Var[X] = E[(X - \mu)^2] \\ &= \sum_x (x - \mu)^2 \pi(x) = E[X^2] - (E[X])^2. \end{split}$$

Property: $Var(a + bX) = b^2 Var(X)$ for numbers a and b.

Example: Assume $X \sim B(n, p)$:

- \blacksquare E[X] = np.

Continuous Random Variables

A continuous RV is specified by a probability density function (pdf) π , that is

$$\pi(x) \ge 0 \text{ for } x \in \mathbb{R}, \quad \int_{-\infty}^{\infty} \pi(x) dx = 1,$$

so that

$$\blacksquare$$
 $P(a \le X \le b) = \int_a^b \pi(x) dx$ for all numbers $a \le b$.

Distribution function: $F(x) = P(X \le x) = \int_{-\infty}^{x} \pi(y) dy$ is a non-decreasing continuous function with $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.

Expected value of continuous RV:

- $\blacksquare E[X] = \int_{-\infty}^{\infty} x \pi(x) dx.$
- $\blacksquare E[h(X)] = \int_{-\infty}^{\infty} h(x)\pi(x)dx.$

Variance of continuous RV:

$$\sigma^2 = Var(X) = E[(X - \mu)^2] = \int (x - \mu)^2 \pi(x) dx = E[X^2] - \mu^2.$$

Convention

For simplicity we call a pmf or pdf for a density.

It will always be clear whether we consider the density of a discrete or a continuous RV.

Important special case: For $a \leq b$,

$$E[1(a \le X \le b)] = P(a \le X \le b)$$

(a probability can be expressed as an expectation).

Example: Normal distribution

A RV X follows a normal distribution with mean μ and precision τ if it has density

$$\pi(x) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{1}{2}\tau(x-\mu)^2\right), \quad x \in \mathbb{R}.$$

Notation: $X \sim \mathcal{N}(\mu, \tau)$.

Note: X is a continuous RV and $\tau = \frac{1}{\operatorname{Var}(X)}$.

Independence of continuous RVs

Let X and Y be continuous RVs with joint $\operatorname{pdf}/\operatorname{density}$

$$\pi(x,y)$$

so that $P(X,Y) \in A) = \int_A \pi(x,y) dx dy$ for any $A \subseteq \mathbb{R}^2$.

Then X and Y are independent if and only if

$$\pi(x,y) = \pi_X(x)\pi_Y(y), \quad x,y \in \mathbb{R},$$

where $\pi_X(x)$ and $\pi_Y(y)$ are the (marginal) densities for X and Y, respectively; e.g.

$$\pi_X(x) = \int_{-\infty}^{\infty} \pi(x, y) dy.$$

The conditional pdf/density is

$$\pi_{Y|X}(y|x) = \frac{\pi(x,y)}{\pi_X(x)}$$
 if $\pi_X(x) > 0$.

Example: Independent normals

Assume $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \tau)$ (iid = independent and identially distributed). Then the joint pdf/density is

$$\pi(x_1, x_2, \dots, x_n) = \prod_{i=1}^n \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{1}{2}\tau(x_i - \mu)^2\right)$$
$$= \left(\frac{\tau}{2\pi}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2}\tau\sum_{i=1}^n (x_i - \mu)^2\right).$$

Similar exposition if we consider independent discrete RVs... Or when considering discrete and continuous RVs together...