

Aula 8

Tópicos da aula de hoje:

- Processos que suportam gerenciamento dos custos
- Elaboração de orçamento
- Análise de valor agregado

Material de apoio do livro-texto **©** :

Dificuldade de fazer estimativas de custo em projetos:

Por mais que tenha-se dados históricos de atividades e de projetos similares, custos em projeto ainda estará sujeito a imprecisões.

É necessário verificar desvios de rota, recálculo de estimativas e realização de alterações sempre que necessário, de forma preventiva.

Estamos aqui!

Material de apoio do livro-texto (© :

Processos no gerenciamento de custos do projeto (PMI, 2008):

- Estimar os custos;
- Determinar o orçamento;
- Controlar os custos: influenciar os fatores geradores de custos adicionais e controlar as mudanças no orçamento ao longo da evolução do projeto.

A gestão de custos do projeto preocupa-se com a elaboração e o controle do orçamento do projeto, de forma agregada e não atividade por atividade, gerindo os fatores que podem influenciá-lo e desviá-lo dos desejados.

Estimar os custos: estimar custos necessários para completar todas as atividades de projeto;

Plano de contas ou códigos de contas:

- descreve a estrutura de codificação utilizada pela organização para reportar as informações financeiras para seu sistema contábil

Plano de contas é uma ferramenta de gestão financeira para empresas, que permite administrar as saídas e entradas;

Determinar o orçamento: valor agregado de todas as estimativas de custos, somando as estimativas de cada atividade ou pacotes de trabalho, para estabelecer a linha-base (baseline) de custo do projeto para fim de orçamento.

 Elaboração da baseline, mostrando sua evolução período a período, de forma acumulada

Estimativa *bottom-up*: técnica para estimar a duração e os custos das atividades.

 decomposição dos pacotes de trabalho em atividades menores, até detalhar suficientemente para estimar de forma precisa a duração e os custos da atividade.

WBS +	Nome da tarefa	Resource Names -	Custo total 🐷
1	▲ Reforma	ontingência[1];Cimento[20];Areia[2];Rejunte[20]	R\$ 172.023,10
1.1	Liberação da casa pela antiga moradora		R\$ 0,00
1.2	→ Reforma Interna		R\$ 84.421,60
1.2.1	▲ Alvenaria		R\$ 19.600,00
1.2.1.1	Refazer todo o contra piso da sala	Pedreiro 1	R\$ 2.800,00
1.2.1.2	Retirar 7 janelas e 1 porta	Pedreiro 1	R\$ 1.600,00
1.2.1.3	 Instalar com acabamento as novas janelas e a porta referente às que foram retiradas 		R\$ 6.800,00
1.2.1.3.1	Instalar as 2 janelas dos quartos	Pedreiro 2;Janelas[2]	R\$ 2.800,00
1.2.1.3.2	Instalar 5 janelas no térreo	Pedreiro 2;Janela Basculante 100cmx100cm[5]	R\$ 2.400,00
1.2.1.3.3	Instalar porta lateral	Pedreiro 2;Porta Lateral[1]	R\$ 1.600,00
1.2.1.4	Instalar com acabamento as novas janelas e a porta referente às que foram retiradas	Pedreiro 2	R\$ 2.000,00
1.2.1.5	Quebrar reboco em toda a extensão das paredes da sala com 0.40m de altura, deixando no tijolo	Pedreiro 1	R\$ 1.200,00
1.2.1.6	Impermeabilizar e rebocar deixando no ponto de pintura	Pedreiro 2	R\$ 2.000,00
1.2.1.7	Construir estruturas para instalar um banheiro no quarto da frente	Mestre de obras	R\$ 3.200,00
1.2.2	→ Pisos e azulejos		R\$ 18.061,60
1.2.2.1	Quebrar e retirar todo o piso e azulejo do lavabo, cozinha, banheiro de cima	Pedreiro 1	R\$ 3.200,00
1.2.2.2	Fazer a regularização de pisos e paredes	Pedreiro 2	R\$ 3.200,00
1.2.2.3		Argamassa[32]	R\$ 8.461,60
1.2.2.3.1	Assentar pisos e azulejos na cozinha	Pedreiro 2;Piso[20];Azulejo[45]	R\$ 2.900,00
1.2.2.3.2	Assentar pisos e azulejos na sala	Pedreiro 2;Piso[20]	R\$ 2,000,00

Linha de base - Baseline

Earned Value Analysis (Análise de valor agregado) - EVA

O <u>Valor Orçado</u> - VO (*Planned Value* – PV) é o valor total orçado para ser gasto em uma determinada atividade, pacote ou projeto, i.e., em um determinado ponto de verificação do projeto.

Por exemplo, um determinado pacote de trabalho é a entrega de um muro de uma casa de 90m². Esta atividade tinha um valor orçado de R\$ 4.500,00, ou seja, o valor que foi estimado como necessário para execução do muro, considerando-se todos recursos. duração estimada para a construção do muro ▶ era de 3 semanas (30m² por semana), considerou-se uma função linear de baseline de custo para esta atividade.

Earned Value Analysis (Análise de valor agregado) - EVA

O <u>Custo Real</u> - CR (*Actual Cost* - AC) é o custo total incorrido em um determinado período de tempo. O AC é o custo real, aquele desembolsado pela empresa no período.

No exemplo do muro, imagine que foram gastos efetivamente R\$ 1.000,00 nesta atividade na primeira semana, economizando R\$ 500,00, uma vez que o previsto (PV) era R\$ 1.500,00.

Earned Value Analysis (Análise de valor agregado) - EVA

O <u>Valor Agregado</u> – VA (*Earned Value* – EV) é o montante orçado para o trabalho efetivamente realizado no período. Para determinar este valor é preciso conhecer qual foi a porcentagem do trabalho planejado para o período que foi de fato executada.

Após fazer a apuração semanal dos custos do projeto, fez-se uma visita na obra, e para surpresa apenas 15m² de muro tinham sido erguidos, ou seja, 50% do planejado, cujo valor é de R\$ 750,00 (EV).

Earned Value Analysis (Análise de valor agregado) - EVA

O que a primeira vista parecia ser um bom resultado, pois se esperava gastar R\$1.500,00 (PV) na primeira semana, mas gastou-se apenas R\$1.000,00 (AC).

Na realidade era um resultado insatisfatório, pois se gastou R\$1.000,00 por um trabalho que vale R\$ 750,00 (EV), que é equivalente a 50% do trabalho planejado para o período, ou seja, apenas 15m² de muro feitos dos 30m² planejados.

Earned Value

Indicadores de Custo

VC - variação do custo	Cost Variance	CV
IDC - índice de desempenho do custo	Cost Performance Index	СЫ

CV= EV - AC

Em que:

CV: variância de custo (Cost Variance);

EV: Valor agregado (*Earned Value*) AC: Custo real (*Actual Cost*)

CPI = EV/AC

Em que:

CPI: índice de desempenho de custo

(Cost Performance Index)

Indicadores de Prazo

VP – variação do prazo	Schedule Variance	SV
IDP - índice de desempenho do prazo	Schedule Performance Index	SPI

SV = EV - PV

Em que:

SV: variância de prazo (Schedule Variance);

EV: Valor agregado (Earned Value)

PV: Valor Orçado (Planed Value)

SPI = EV/PV

Em que:

SPI: índice de desempenho de prazo

(Schedule Performance Index)

Earned Value

Controle de Custo

Influenciar os fatores geradores de custos adicionais e controlar as mudanças no orçamento ao longo da evolução do projeto.

- Influenciar os fatores que criam mudanças na *baseline* de custo para garantir que essas mudanças sejam benéficas
- Determinar se a baseline de custo foi alterada. Caso afirmativo ver o impacto da nova baseline de plano do projeto (controle integrado)
- Gerenciar as mudanças quando elas surgirem
- Identificar as causas das variações positivas ou negativas

(PMBoK, 2013)

Trade-off

Cronograma x Custo

Como posso reduzir a duração do projeto?

- Sem uso de recursos adicionais
- Com uso de recursos adicionais

Paralelismo (fast tracking)

Mudar seqüências conservadoras fazendo atividades em paralelo.

Opção sem uso de recursos adicionais

Paralelismo

Análise Crítica das Precedências

Paralelismo

Análise Crítica das Precedências

Reduz a duração do projeto em 6 unidades de tempo e altera o caminho crítico

Compressão da duração (crashing)

 Alocação de recursos adicionais (com gastos adicionais e risco de diminuição da qualidade)

Exemplos:

- o contratação de equipe adicional com necessidade de treinamento e supervisão ou terceirizar atividade com impacto no custo
- horas-extras do pessoal já alocado com risco de fadiga no médio e longo prazo

Opção com uso de recursos adicionais

Custos do Projeto

- **Custos diretos:** são aqueles que variam segundo suas utilizações efetivas (ex: mão-de-obra, material)
- Custos indiretos: são aqueles que não variam segundo suas utilizações efetivas (ex: aluguel, seguros, depreciações)
- custos causais: são esporádicos (ex: multas por atraso na execução, multas ambientais...)

Curva de Custo Direto

Custo Total

Custo Total

*Trade-offs*Custo-Cronograma

Compressão da duração (crashing)

Início: o Ponto de Mínimo da Curva de Custo Direto, ou seja, todas as atividades em duração normal.

Passo 1: Identificar o(s) caminho(s) crítico(s) e os custos iniciais

Crashing - passo-a-passo

Passo 1: Identificar o(s) caminho(s) crítico(s)

Atividades	Prec	$\mathbf{D}_{\mathbf{A}}$	$\mathbf{D}_{\mathbf{N}}$	C_{N}	$\mathbf{C}_{\mathbf{A}}$	CM
A		6	11	30	40	2
В		5	12	42	63	3
C		11	19	23	31	1
D	A	7	12	51	71	4
Е	В,С	5	11	105	159	9
F	C	9	13	170	210	10
G	D,E	13	22	90	135	5
Н	В,С	7	12	100	135	7
I	F	9	14	130	135	1

CF = \$8/unidade de tempo

$$CD = \sum_{A}^{I} C_N = 741$$

Crashing - passo-a-passo

Atividades	Prec
A	
В	
C	
D	A
Е	B,C
F	С
G	D,E
Н	B,C
I	F

CT_{projeto} = 8*52+741=1.157

Qual atividade ou conjunto de atividades acelerar?

AULA 9 – Como acelerar um projeto

Crashing - passo-a-passo

Passo 2: Identificar os conjuntos de atividades candidatas a aceleração

- <u>1 caminho crítico</u> cada uma das atividades do caminho crítico é candidata a aceleração
- +1 caminho crítico conjuntos formados com uma atividade de cada caminho crítico

Passo 3: calcular CM dos conjuntos candidatos e decidir pelo de mínimo.

Crashing - passo-a-passo

Passo 2: Conjuntos candidatos {C}; {E} e {G}

Passo 3: CM dos conjuntos são 1, 9 e 5, respectivamente.

Acelerar C!

Atividades	Prec	D _A	D _N	$\mathbf{C}_{\mathbf{N}}$	$\mathbf{C}_{\mathbf{A}}$	CM
A		6	11	30	40	2
В		5	12	42	63	3
С		11	19	23	31	1
D	A	7	12	51	71	4
Е	В,С	5	11	105	159	9
F	С	9	13	170	210	10
G	D,E	13	22	90	135	5
Н	В,С	7	12	100	135	7
I	F	9	14	130	135	1

Quanto acelerar?

Quanto vou poder acelerar C?

Atividades	Prec	$\mathbf{D}_{\mathbf{A}}$	$\mathbf{D_N}$	C_N	CA	CM
A		6	11	30	40	2
В		5	12	42	63	3
C		11	19	23	31	1
D	A	7	12	51	71	4
E	B,C	5	11	105	159	9
F	C	9	13	170	210	10
G	D,E	13	22	90	135	5
H	B,C	7	12	100	135	7
I	F	9	14	130	135	1

Quanto acelerar?

Passo 4: Calcular o passo de aceleração. $x_1 = min(D_N - D_A)$, para todas as atividades do conjunto a ser acelerado

$$x_1 = 19 - 11 = 8$$

Atividades	Prec	$\mathbf{D}_{\mathbf{A}}$	$\mathbf{D}_{\mathbf{N}}$	C_N	CA	CM
A		6	11	30	40	2
В		5	12	42	63	3
C		11	19	23	31	1
D	A	7	12	51	71	4
E	B,C	5	11	105	159	9
F	C	9	13	170	210	10
G	D,E	13	22	90	135	5
H	B,C	7	12	100	135	7
I	F	9	14	130	135	1

Se acelerar C em 8 unidades, o projeto reduzirá 8 unidades? O que mais preciso verificar?

Quanto acelerar?

Quantos caminhos tem esse projeto?

Passo 4: Calcular o passo de aceleração.

 x_2 = min $FL(P_L)$, ou seja, a menor folga livre dos conjuntos alternativos que não contém a(s) atividade(s) acelerada(s)

$$x_2 = min(FL_{ADG} FL_{BEG} FL_{BH}) = min(7, 7, 28) = 7$$

```
ADG 0+7+0=7
BEG 7+0+0=7
BH 7+21=28
CEG
CH
CFI
```


Quanto acelerar?

x = min(8; 7) = 7

Passo 4: Calcular o passo de aceleração.

x= min(x₁, x₂), em que: · x₁= min(D_N - D_A), para todas as atividades do conjunto a ser acelerado

 x_2 = min FL(P₁), ou seja, a menor folga livre dos conjuntos alternativos que não contém a(s) atividade(s)

acelerada(s)

D 12

Obs: Quando não há conjunto alternativo, por definição x2 = ∞

Atualizar os dados

Passo 5: Acelerar a atividade em x e calcular nova duração do projeto

Atualizar os dados

Passo 6: calcular o novo CT projeto.

$$CT_{\text{projeto}}$$
= (8 * 45) + (741 + 7 * 1) = 1.108

Quando parar?

 Sempre que todas as atividades de um caminho crítico estiverem na duração acelerada.

Ou,

- Critério 1 conduzir o projeto ao mínimo custo total
 - Regra de parada: CM>CF
- Critério 2 conduzir o projeto a data de término desejada
 - Regra de parada: Duração do projeto for contraída até a data desejada.

No nosso exemplo queremos o mínimo custo total. Já devemos parar?

Continuando...

2º iteração

Passo 1: Identificar o(s) caminho(s) crítico(s)

caminhos críticos

ADG; BEG; CEG

ADG BEG CEG BH CH CFI

Crashing - passo-a-passo

Passo 2: Identificar os conjuntos de atividades candidatas

Conjuntos candidatos: {ABC}; {AE}; {DBC}; {DE}; {G}

Crashing - passo-a-passo

Passo 3: calcular CM dos conjuntos candidatos e decidir pelo de mínimo.

$$CM_{ABC} = 2+3+1=6$$

 $CM_{AE} = 2+9=11$
 $CM_{DBC} = 4+3+1=8$
 $CM_{DE} = 4+9=13$
 $CM_{G} = 5=5$

Acelerar G!

Ativ idades	CM
A	2
В	3
C	1
D	4
E	9
F	10
G	5
Н	7
I	1

Crashing - passo-a-passo

Passo 4: Calcular o passo de aceleração.

$$x_1 = 22-13 = 9$$

$$x_2 = min(FL_{BH}FL_{CH}FL_{CFI})$$

= min(21, 21, 6)
= 6

Atividades	Prec	$\mathbf{D}_{\mathbf{A}}$	\mathbf{D}_{N}	C_N	CA	CM
A		6	11	30	40	2
В		5	12	42	63	3
C		11	19 12	23	31	1
D	A	7	12	51	71	4
E	B,C	5	11	105	159	9
F	C	9	13	170	210	10
G	D,E	13	22	90	135	5
H	B,C	7	12	100	135	7
I	F	9	14	130	135	1

$$x = min(9; 6)$$

= 6

Atualizar os dados

Passo 5: Acelerar a atividade em x e calcular nova duração do projeto

Fundamentos em Gestão de Projetos: Construindo Competências para Gerenciar Projetos. Editora Atlas, 3ª ed, 2011

Atualizar os dados

Passo 6: calcular o novo CT projeto.