《大数据算法》作业 2022 年春

截止日期: 2022 年 3 月 27 日 23:59

Exercise 1 10 分

令 $\sum_{i=1}^r \sigma_i u_i v_i^T$ 为 A 的 SVD 分解,其中 $A \in \mathbb{R}^{n \times d}$ 。证明 $|u_1^T A| = \sigma_1$ 和 $|u_1^T A| = \max_{\|u\|=1} \|u^T A\|$ 。(对于向量 $x \in \mathbb{R}^d$, $\|x\| = \sqrt{\sum_{i=1}^d x_i^2}$ 。)

Exercise 2 20 分

令 $\sum_{i=1}^r \sigma_i u_i v_i^T$ 为一个秩为 r 的矩阵 A 的 SVD 分解。对于某个 k < r, $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ 是矩阵 A 的一个秩为 k 的近似。用奇异值 $\{\sigma_i, 1 \leq i \leq r\}$ 表达以下几个量。

- (a) $||A_k||_F^2$
- (b) $||A_k||_2^2$
- (c) $||A A_k||_F^2$
- (d) $||A A_k||_2^2$

Exercise 3 15 分

假设 k < d。假设 $U \in \mathbb{R}^{d \times k}$ 是一个随机矩阵,其第 (i,j) 个元素记作 u_{ij} 。这里 $\{u_{ij}\}$ 是独立的随机变量,满足:

$$u_{ij} = \begin{cases} 1 & \text{if } \frac{1}{2} \text{ in } \mathbb{K}^{2}, \\ -1 & \text{if } \frac{1}{2} \text{ in } \mathbb{K}^{2} \end{cases}$$

我们使用矩阵 U 作为一个随机投影矩阵。也就是说,对于一个行向量 $a \in \mathbb{R}^d$,我们把它映射到

$$f(a) = \frac{1}{\sqrt{k}}aU$$

对于 $1 \le j \le k$ 中的每个 j, 定义 $b_j = [f(a)]_j$, 即 b_j 是 f(a) 的第 j 个元素。

- 计算 E[b_j]。
- 计算 E[b_i²]。
- 计算 E[||f(a)||²]。

Exercise 4 15 分

在本课程中,我们学习了一个成功概率至少为0.6的解决(c,r)-ANN问题的算法,记作A。也就是说,针对

一个查询点 x,如果数据集合 \mathcal{P} 中存在一个点 a^* 满足 $d(x,a^*) \leq r$,那么算法 \mathcal{A} 将会以至少 0.6 的概率输出某个点 $a \in \mathcal{P}$,其满足 $d(x,a) \leq c \cdot r$ 。

假设 $\delta \in (0,1)$ 。使用上述算法 \mathcal{A} 作为一个子程序,给出一个成功概率至少为 $1-\delta$ 的新算法 \mathcal{B} 。也就是说,对于上述查询点 x,算法 \mathcal{B} 将会以至少 $1-\delta$ 的概率输出某个点 $a \in \mathcal{P}$,其满足 $d(x,a) \leq c \cdot r$ 。你的算法应该用尽可能少的查询时间。假设 \mathcal{A} 的查询时间是 $T_{\mathcal{A}}$ 。解释你算法的正确性,并且表达其查询时间。

Exercise 5 20 分

假设 $\alpha \in (0,1]$ 。假如我们将(基本的) Morris 算法修改如下:

- (a) 初始化 $X \leftarrow 0$
- (b) 对于每次更新, 以 $\frac{1}{(1+\alpha)^X}$ 的概率使 X 加 1
- (c) 对于查询, 输出 $\tilde{n} = \frac{(1+\alpha)^X 1}{\alpha}$.

记 X_n 为上述算法中 n 次更新以后的 X。令 $\tilde{n} = \frac{(1+\alpha)^{X_n}-1}{\alpha}$ 。

- 计算 $E[\tilde{n}]$ 并且给出 $Var[\tilde{n}]$ 的一个上界。
- 假设 $\epsilon, \delta \in (0,1)$ 。基于以上算法,给出一个新算法,使得新算法以至少 $1-\delta$ 的概率输出一个估计 \tilde{n} ,满足 $|\tilde{n}-n| \le \epsilon n$ 。解释你的算法的正确性与空间复杂度(即算法使用的比特数)。(你的算法只需要具有关于 $1/\delta$ 的多项式量级的空间复杂度即可。)

Exercise 6 20 分

考虑一个数据流,其中包含 m 个整数 a_1, a_2, \ldots, a_m 。这里 $a_i \in [n] = \{1, 2, \ldots, n\}$ 。我们想要用较小的空间估计这些数据的中位数。严格来说,设 $S = \{a_1, a_2, \ldots, a_m\}$,定义 $\mathrm{rank}(b) = |\{a \in S : a \leq b\}|$ 。简单起见,假设 S 中的元素各不相同,并且 m 对于算法是已知的。给定 $\varepsilon, \delta \in (0,1)$,我们的目标是找到一个数 b,使得

$$\Pr[|\operatorname{rank}(b) - \frac{m}{2}| > \varepsilon m] < \delta. \tag{1}$$

考虑如下算法:

- (a) 从S中,保存t个均匀采样(例如,使用Reservoir 采样)
- (b) 输出这 t 个采样的中位数

选择尽可能最小的 t, 使得不等式 (1) 成立。解释最终算法的正确性,并给出其空间复杂度。

提示: 你可以将 S 划分成 3 组: $S_L = \{a \in S : \operatorname{rank}(a) \leq m/2 - \varepsilon m\}$, $S_M = \{a \in S : m/2 - \varepsilon m \leq \operatorname{rank}(a) \leq m/2 + \varepsilon m\}$, 和 $S_H = \{a \in S : \operatorname{rank}(a) \geq m/2 + \varepsilon m\}$ 。注意到,如果样本中少于 t/2 个数来自 S_L 及 S_H ,那么样本的中位数是一个"好的"估计。