Discussion 18: Taylor and Maclaurin Series

Maclaurin Series

1.
$$f(x) = \sin x$$

$f(x) = \sin x$	f(0) = 0	Maclaurin series: For all x
$f'(x) = \cos x$	f'(0) = 1	$f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
$f''(x) = -\sin x$	f''(0) = 0	$3! 5! 7! \frac{2}{n=0} (2n+1)!$
$f'''(x) = -\cos x$	f ""(0) = -1	$\left \left f^{n+1}(x) \right \le 1$

Taylor's inequality: M = 1

$$\left| R_n(x) \right| \le \frac{\left| x^{n+1} \right|}{(M+1)!}$$

 $|R_n(x)| \le \frac{|x^{n+1}|}{(M+1)!}$ $n \to \infty, |R_n(x)| \to 0$ Therefore, $\sin x$ is the sum of its Macluarin series for all x.

$$2. \quad f(x) = 2^x$$

$f(x) = 2^x$	f(0) = 1	Maclaurin series:
$f'(x) = (\ln 2)2^x$	f'(0) = ln2	$f(x) = 1 + \frac{\ln 2}{1!} x + \frac{(\ln 2)^2}{2!} x^2 + \frac{(\ln 2)^3}{3!} x^3 + \dots = \sum_{n=0}^{\infty} (\ln 2)^n \frac{x^n}{n!}$
$f''(x) = (\ln 2)^2 2^x$	$f''(0) = (\ln 2)^2$	$\int (x)^{-1} + \frac{1!}{1!} x + \frac{2!}{2!} x + \frac{3!}{3!} x + \dots - \sum_{n=0}^{\infty} (m z) \frac{1}{n!}$
$f'''(x) = (\ln 2)^3 2^x$	f'''(0) = -1	

Ratio test:
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$$
, for all x. $R = \infty$

$$\lim_{x\to 0}\frac{e^x-1-x}{x^2}$$

 $e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$ We know

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{\left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots\right) - 1 - x}{x^2}$$

$$= \lim_{x \to 0} \frac{\left(\frac{x^2}{2!} + \frac{x^3}{3!} + \dots\right)}{x^2} = \lim_{x \to 0} \frac{1}{2} + \frac{x}{3!} + \frac{x^2}{4!} + \dots = \frac{1}{2}$$

Taylor Series

1.
$$f(x) = x^6 - x^4 + 2, a = -2$$

$f(x) = x^6 - x^4 + 2$	f(-2) = 50	Taylor series:
$f'(x) = 6x^5 - 4x^3$	f'(-2) = -160	$f(x) = 50 + (-160)(x+2) + \frac{432}{2!}(x+2)^2 $
$f''(x) = 30x^4 - 12x^2$	f''(-2) = 432	$\frac{-912}{3!}(x+2)^3 + \dots$
$f'''(x) = 120x^3 - 24x$	f'''(-2) = -912	3!

2.
$$f(x) = \sqrt{x}, a = 16$$

$f(x) = \sqrt{x}$	f(16) = 4
$f'(x) = \frac{1}{2x^{\frac{1}{2}}}$	$f'(16) = \frac{1}{2.4}$
$f''(x) = -\frac{1}{2.2x^{\frac{3}{2}}}$	$f''(16) = -\frac{1}{2 \cdot 2 \cdot 4^3}$
$f'''(x) = \frac{3}{2.2.2x^{\frac{5}{2}}}$	$f'''(16) = \frac{3}{2 \cdot 2 \cdot 2 \cdot 4^5}$
$f^{4}(x) = \frac{3.5}{2.2.2.2x^{\frac{7}{2}}}$	$f^4(16) = -\frac{3.5}{2.2.2.2.4^7}$

Taylor series:

$$f(x) = 4 + \frac{1}{2.4}(x - 16) - \frac{1}{2.2.4^{3}}(x - 16)^{2} + \frac{3}{2.2.2.4^{5}}(x - 16)^{3} - \frac{3.5}{2.2.2.2.4^{7}}(x - 16)^{4} + \dots$$

$$= 4 + \frac{(x - 16)}{8} + \sum_{n=2}^{\infty} (-1)^{n+1} \frac{1.3.5....(2n - 3)}{2^{5n-2}.n!} (x - 16)^{n}$$

Ratio test:, for all x.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x}{16} - 1 \right| < 1 \Rightarrow converging$$

$$0 < x < 32$$

$$R = 16$$