STA610 Lab04

Yuren Zhou

2024-09-20

- Write down your answers in any blank sheet and submit your work in paper during the lab.
- Your work will not be graded. As long as you submit, you will get a full credit.
- For those who missed the lab today, you can submit it via email to me for half credit.

One-way ANOVA

Load the package.

```
library(lme4)
```

```
## Loading required package: Matrix
```

Generate data in case www2.stat.duke.edu is still down.

```
# Set seed for reproducibility
set.seed(0)

# Number of groups and observations per group
n_groups <- 4
n_obs_per_group <- 10

# Create a group factor
group <- factor(rep(1:n_groups, each = n_obs_per_group))

# Define group means
group_means <- c(5, 10, 15, 20)

# Generate the response variable (Y) with random noise
y <- rep(group_means, each = n_obs_per_group) + rnorm(n_groups * n_obs_per_group, mean=0, sd = 2)

# Combine into a data frame
data_anova <- data.frame(group, y)

# Take a look at the data
head(data_anova)</pre>
```

```
## group y
## 1 1 7.525909
```

```
## 2
         1 4.347533
## 3
         1 7.659599
## 4
         1 7.544859
## 5
         1 5.829283
## 6
         1 1.920100
Fit a one-way ANOVA model using lme4.
# Fit the model using lme4
anova_model <- lmer(y ~ 1 + (1 | group), data = data_anova, REML = FALSE)
# Summarize the model
summary(anova_model)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | group)
##
      Data: data_anova
##
##
        AIC
                 BIC
                       logLik deviance df.resid
##
        182
                 187
                          -88
                                   176
                                              37
##
## Scaled residuals:
       Min
##
                  10
                       Median
                                    30
## -2.23280 -0.66737 -0.04368 0.87337 2.32573
## Random effects:
## Groups Name
                         Variance Std.Dev.
## group
             (Intercept) 30.769
                                 5.547
## Residual
                          2.995
                                  1.731
## Number of obs: 40, groups: group, 4
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept)
                12.610
                             2.787
                                     4.525
Get confidence intervals using confint.
# Get confidence intervals for both fixed and random effects
confint(anova_model)
## Computing profile confidence intervals ...
##
                  2.5 %
                           97.5 %
               3.124333 13.658199
## .sig01
## .sigma
               1.396553 2.222698
## (Intercept) 5.531632 19.688103
# If you only want confidence intervals for the intercept
confint(anova_model, parm = "beta_")
```

Computing profile confidence intervals ...

```
##
                  2.5 % 97.5 %
## (Intercept) 5.531632 19.6881
# If you only want confidence intervals for the standard deviations
confint(anova_model, parm = "theta_")
## Computing profile confidence intervals ...
##
             2.5 %
                       97.5 %
## .sig01 3.124333 13.658199
  .sigma 1.396553 2.222698
Extract random effect modes using ranef.
# Extract random effect modes
random_effects <- ranef(anova_model)</pre>
# View random effect modes for each group
random_effects$group
##
     (Intercept)
## 1
       -6.825581
       -3.302684
## 2
## 3
        2.504569
```

What are the obtained estimates for the effect of each group (fixed effect intercept + random effect mode)? How do they compare to the sample means of each group?

How do they compare to the population means of each group (5, 10, 15, 20)?

Linear Models with Interactions (Linear Fixed Effects Models)

Let $y = (y_1, \ldots, y_n)$ be the response variable, $x = (x_1, \ldots, x_n)$ be a continuous covariate, and $z = (z_1, \ldots, z_n)$ be a categorical covariate. Say each i corresponds to a student, x corresponds to household income, z corresponds to school, and y corresponds to test score. How to interpret the differences between the following linear models?

```
1. y_i = \beta_0 + \beta_1 x_i + \epsilon_i;

2. y_i = (\beta_0 + a_{0,z_i}) + \beta_1 x_i + \epsilon_i;

3. y_i = \beta_0 + (\beta_1 + a_{1,z_i})x_i + \epsilon_i;

4. y_i = (\beta_0 + a_{0,z_i}) + (\beta_1 + a_{1,z_i})x_i + \epsilon_i.
```

We simulate some data in the following.

4

7.623696

```
# Set seed for reproducibility
set.seed(0)
# Define the number of levels for the categorical variable z
n_levels <- 3 # For example, three groups in z
n_obs_per_level <- 50 # Number of observations per level of z</pre>
# Create a categorical variable z with three levels
z <- factor(rep(1:n_levels, each = n_obs_per_level), labels = c("Group1", "Group2", "Group3"))</pre>
# Generate a continuous variable x (randomly sampled from a normal distribution)
x <- rnorm(n_levels * n_obs_per_level, mean = 50, sd = 10)
# Define interaction terms (different slopes for each group)
beta_0 <- c(5, 7, 9) # Different intercepts for each group
beta_x <- c(1, 1, 1) # Different slopes for x in each group
# Generate the response variable y with interaction effects
y <- numeric(length(x))
for (i in 1:n_levels) {
  group_idx <- which(z == levels(z)[i])</pre>
 y[group_idx] <- beta_0[i] + beta_x[i] * x[group_idx] + rnorm(length(group_idx), sd = 2)
# Combine into a data frame
data <- data.frame(x, z, y)</pre>
# Take a look at the data
head(data)
##
                   Z
## 1 62.62954 Group1 70.57006
## 2 46.73767 Group1 49.11483
## 3 63.29799 Group1 68.10494
## 4 62.72429 Group1 72.46373
## 5 54.14641 Group1 60.92767
## 6 34.60050 Group1 39.09613
```

Fit all four linear models above to the simulated data. What is the R-square of each model?

Select the best model using information criteria (e.g. AIC/BIC) or any other approach you find appropriate (e.g. F-tests). Which model have you selected?