

Decision Tree Learning

Assistant Professor: IIIT Dharwad

Young Researcher: Heidelberg Laureate Forum

and Pingala Interaction in Computing

Young Scientist: Lindau Nobel Laureate Meetings

Postdoc: King's College London & The Alan Turing Institute

PhD: IIT Indore MTech: IIITDM Jabalpur

LINDAU

MEETINGS

NOBEL LAUREATE

Decision Trees

- Convenient Representation
 - Developed with learning in mind
 - Deterministic
 - Comprehensible output
- Expressive
 - Equivalent to propositional Disjunctive Normal Form (DNF)
 - Handles discrete and continuous parameters
- Simple learning algorithm
 - Handles noise well
 - Classify
 - Constructive (build DT by adding nodes)

Boolean function can represents Decision tree

The tree will in the worst case require exponentially many nodes, however.

Decision tree to make Decision Boundaries

• Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

Depth of Decision tree and Boolean functions

Decision Trees Provide Variable-Size Hypothesis Space

As the number of nodes (or depth) of tree increases, the hypothesis space grows

- depth 1 ("decision stump") can represent any boolean function of one feature.
- **depth 2** Any boolean function of two features; some boolean functions involving three features (e.g., $(x_1 \land x_2) \lor (\neg x_1 \land \neg x_3)$
- etc.

Disorder is bad Homogeneity is good

Which attribute should we use to split?

Example: "Good day for tennis"

- Attributes of instances
 - Outlook = {rainy (r), overcast (o), sunny (s)}
 - Temperature = {cool (c), medium (m), hot (h)}
 - Humidity = $\{ \text{normal (n), high (h)} \}$
 - Wind = $\{\text{weak (w), strong (s)}\}$
- Class value
 - Play Tennis? = $\{don't play (n), play (y)\}$
- Feature = attribute with one value
 - E.g., outlook = sunny
- Sample instance
 - outlook=sunny, temp=hot, humidity=high, wind=weak

Experience: "Good day for tennis"

Day Outlook		Temp	Humid Wind		PlayTennis?
d1	S	h	h	W	n
d2	S	h	h	S	n
d3	O	h	h	W	y
d4	r	m	h	W	y
d5	r	c	n	W	y
d6	r	c	n	S	n
d7	O	c	n	S	y
d8	S	m	h	W	n
d9	S	c	n	W	y
d10	r	m	n	W	y
d11	S	m	n	S	y
d12	O	m	h	S	y
d13	O	h	n	W	y
d14	r	m	h	S	n

Split training data

Split training data

5

Split training data

6

How to select an attribute?

Decision Tree General Algorithm

```
BuildTree(TraingData)
       Split(TrainingData)
Split(D)
       If (all points in D are of the same class)
               Then Return
        For each attribute A
               Evaluate splits on attribute A
       Use best split to partition D into D1, D2
       Split (D1)
       Split (D2)
```

How to learn decision trees

- Constructing optimal binary decision trees is an NP Complete problem
 - Optimal tree is one which minimizes the expected number of tests required to identify the unknown object
 - NP-complete: belongs to both NP and NP-hard; easy to verify a solution to NP-complete, but hard to find a solution
- Often resort to heuristic algorithms
 - Build an empty decision tree à split à recurse (choosing a good attribute for splitting is important)
 - Some examples: ID3, C4.5, CART

ID3 (Iterative Dichotomiser 3) algorithm

- ID3 (node, {training data}) # Generate a DT
 - 1. Pick an attribute (A) with the maximum information gain for the considered training data
 - 2. For each value of A, create new child node
 - 3. Split training data to child nodes
 - 4. Check subset for each child node
 - If subset is pure: stop
 - Else: ID3 (child node, {subset data})

Entropy (disorder) is bad Homogeneity is good

- Let S be a set of examples
- Entropy(S) = -P $\log_2(P)$ N $\log_2(N)$
 - P is proportion of pos example
 - N is proportion of neg examples
 - $0 \log 0 == 0$
- Example: S has 9 pos and 5 neg Entropy([9+, 5-]) = $-(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$ = 0.940

Information gain

Expected drop in entropy after split

$$\mathrm{Gain}(S,A) = H(S) - \sum_{V \in \mathrm{Values}(A)} \frac{|S_V|}{|S|} H(S_V)$$
 uncertainty before split

A: attribute

uncertainty after split

- S: set of training examples
- V: possible values of attribute A
- S_V : set of training examples with the value of attribute A = V
- Subsets with more examples have a larger effect

Maximizing Gain(S, A) is equivalent to minimizing uncertainty after split

Gain of Splitting on Wind

Values(wind)=weak, strong S = [9+, 5-]

$$S_{\text{weak}} = [6+, 2-]$$

 $S_{\text{s}} = [3+, 3-]$

Gain(S, wind)

= Entropy(S) - $\sum (|S_v| / |S|)$ Entropy(S_v)

$$v \in \{weak, s\}$$

- = Entropy(S) 8/14 Entropy(S_{weak}) - 6/14 Entropy(S_s)
- $= 0.940 (8/14) \ 0.811 (6/14) \ 1.00$
- = .048

Day	Wind	Tennis?
d1	weak	n
d2	S	n
d3	weak	yes
d4	weak	yes
d5	weak	yes
d6	S	n
d7	S	yes
d8	weak	n
d9	weak	yes
d10	weak	yes
d11	S	yes
d12	S	yes
d13	weak	yes
d14	S	n

Information gain

Gain(S, Outlook) =
$$H(S) - \frac{5}{14}H(S_{\text{sunny}}) - \frac{4}{14}H(S_{\text{overcast}}) - \frac{5}{14}H(S_{\text{rain}})$$

= $0.94 - \frac{5}{14} * 0.97 - \frac{4}{14} * 0 - \frac{5}{14} * 0.97 = 0.25$

Evaluating Attributes

Decision Tree Representation

Good day for tennis?

Decision tree is equivalent to logic in disjunctive normal form

 $Play \Leftrightarrow (Sunny \land Normal) \lor Overcast \lor (Rain \land Weak)$

Numeric Attributes

Issues

- Missing data
- Real-valued attributes
- Many-valued features
- Evaluation
- Overfitting

Evaluation: Cross Validation

- Partition examples into *k* disjoint sets
- Now create *k* training sets
 - Each set is union of all equiv classes except one
 - ullet So each set has (k-1)/k of the original training data

Cross validation

- Partition examples into *k* disjoint sets
- Now create *k* training sets
 - Each set is union of all equiv classes except one
 - So each set has (k-1)/k of the original training data

Cross Validation

- Partition examples into *k* disjoint sets
- Now create *k* training sets
 - Each set is union of all equiv classes except one
 - ullet So each set has (k-1)/k of the original training data

Cross Validation

- Partition examples into *k* disjoint sets
- Now create *k* training sets
 - Each set is union of all equiv classes except one
 - So each set has (k-1)/k of the original training data

Cross-Validation (2)

- Training and validation sets
 - training set is used to build the tree
 - a separate validation set is used to evaluate the accuracy over subsequent data, and to evaluate the impact of pruning
 - justification: validation set is unlikely to exhibit the same noise and spurious correlation
 - rule of thumb: 2/3 to the training set, 1/3 to the validation set
- Leave-one-out
 - Use if < 100 examples (rough estimate)
 - Hold out one example, train on remaining examples
- M of N fold
 - Repeat M times
 - Divide data into N folds, do N fold cross-validation

Overfitting

Number of Nodes in Decision tree

Overfitting Definition

- DT is *overfit* when exists another DT' and
 - DT has *smaller* error on training examples, but
 - DT has *bigger* error on test examples
- Causes of overfitting
 - Noisy data, or
 - Training set is too small
- Solutions
 - Reduced error pruning
 - Early stopping
 - Rule post pruning

Avoid Overfitting

- How to avoid overfitting?
 - Stop growing the tree
 - before it perfectly classifies the training data
 - when data split is not statistically significant
 - Allow overfitting, but post-prune the tree
 - Grow full tree, then post-prune
 - Acquire more training data
 - Remove irrelevant attributes (manual process not always possible)
- How to select "best" tree:
 - Measure performance over training data
 - Measure performance over separate validation data set
 - Add complexity penalty to performance measure (heuristic: simpler is better)

Reduced Error Pruning

• Split data into train and validation set

- Repeat until pruning is harmful
 - Remove each subtree and replace it with majority class and evaluate on validation set
 - Remove subtree (resulting in errors) this will leads to largest gain in accuracy

Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves *validation* set accuracy

Reduced Error Pruning Example

Validation set accuracy = 0.75

Reduced Error Pruning Example

Validation set accuracy = 0.80

Reduced Error Pruning Example

Validation set accuracy = 0.70

Reduced Error Pruning Example

Use this as final tree

Early Stopping

Number of Nodes in Decision tree

Post Rule Pruning

- Split data into train and validation set
- Prune each rule independently
 - Remove each pre-condition and evaluate accuracy
 - Pick pre-condition that leads to largest improvement in accuracy
- Note: ways to do this using training data and statistical tests
 - 1. Convert tree to equivalent set of rules
 - 2. Prune each rule independently of others
 - 3. Sort final rules into desired sequence for use

Conversion to Rule


```
Outlook = Sunny \land Humidity = High \Rightarrow Don't play
```

Outlook = Sunny
$$\land$$
 Humidity = Low \Rightarrow Play

 $Outlook = Overcast \Rightarrow Play$

• • •

IF $(Outlook = Sunny) \ AND \ (Humidity = High)$

THEN PlayTennis = No

IF $(Outlook = Sunny) \ AND \ (Humidity = Normal)$

THEN PlayTennis = Yes

. . .

Example

```
Outlook = Sunny \land Humidity = High \Rightarrow Don't play
             Validation set accuracy = 0.68
   \rightarrow Outlook = Sunny \Rightarrow Don't play Validation set accuracy = 0.65
   \rightarrow Humidity = High \Rightarrow Don't play | Validation set accuracy = 0.75
                       Keep this rule
```

Overfitting 2

Figure from w.w.cohen

Scikit Learn on Decision Trees

Regression

https://scikit-learn.org/stable/modules/tree.html

Scikit Learn on Decision Trees

Given training vectors $x_i \in \mathbb{R}^n$, i=1,..., I and a label vector $y \in \mathbb{R}^l$, a decision tree recursively partitions the feature space such that the samples with the same labels or similar target values are grouped together.

Let the data at node m be represented by Q_m with n_m samples. For each candidate split $\theta=(j,t_m)$ consisting of a feature j and threshold t_m , partition the data into $Q_m^{left}(\theta)$ and $Q_m^{right}(\theta)$ subsets

$$Q_m^{left}(heta) = \{(x,y)|x_j \leq t_m\} \ Q_m^{right}(heta) = Q_m \setminus Q_m^{left}(heta)$$

The quality of a candidate split of node m is then computed using an impurity function or loss function H(), the choice of which depends on the task being solved (classification or regression)

$$G(Q_m, heta) = rac{n_m^{left}}{n_m} H(Q_m^{left}(heta)) + rac{n_m^{right}}{n_m} H(Q_m^{right}(heta))$$

Select the parameters that minimises the impurity

$$\theta^* = \operatorname{argmin}_{\theta} G(Q_m, \theta)$$

Recurse for subsets $Q_m^{left}(\theta^*)$ and $Q_m^{right}(\theta^*)$ until the maximum allowable depth is reached, $n_m < \min_{samples}$ or $n_m = 1$. https://scikit-learn.org/stable/modules/tree.html

Scikit Learn on Decision Trees

• Gini and Log Loss or Entropy:

If a target is a classification outcome taking on values 0,1,...,K-1, for node m, let

$$p_{mk} = rac{1}{n_m} \sum_{y \in Q_m} I(y=k)$$

be the proportion of class k observations in node m. If m is a terminal node, predict_proba for this region is set to p_{mk} . Common measures of impurity are the following.

Gini:

$$H(Q_m) = \sum_k p_{mk} (1-p_{mk})$$

Log Loss or Entropy:

$$H(Q_m) = -\sum_k p_{mk} \log(p_{mk})$$

https://scikit-learn.org/stable/modules/tree.html

References

References

- Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. *Neural Computation*, 10 (7) 1895-1924
- Densar, J., (2006). Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal of Machine Learning Research, pages 1-30.
- Machine Learning, Jesse Davis, jdavis@cs.washington.edu https://courses.cs.washington.edu/courses/cse573/08au/slides/
- Daniel S. Weld https://www.cs.washington.edu/people/faculty/weld
- CS489/698: Intro to ML, Lecture 19: Decision Tree, Instructor: Sun Sun (17/18/18)
- "Introductory Applied Machine Learning" by Victor Lavrenko and Nigel Goddard University of Edinburgh.
- https://scikit-learn.org/stable/modules/tree.html

תודה רבה

Ευχαριστώ

Hebrew

Greek

Спасибо

Danke

Russian

German

धन्यवादः

Merci

ধন্যবাদ Bangla Sanskrit

நன்றி

Tamil

شكر أ Arabic

French

ಧನ್ಯವಾದಗಳು

Kannada

Thank You English

നന്ദ്വി

Malayalam

多謝

Grazie

Italian

ధన్యవాదాలు

Telugu

આભાર Gujarati Traditional Chinese

ਧੰਨਵਾਦ

धन्यवाद

多谢

Spanish

Gracias

Punjabi Hindi & Marathi

Simplified Chinese

https://sites.google.com/site/animeshchaturvedi07

Obrigado Portuguese

ありがとうございました Japanese

ขอบคุณ

감사합니다

Thai Korean