Les Nombres Complexes

0.1 Représentation algébrique

1. Définition

On appelle **nombre complexe** toute expression de la forme a+bi où a et b sont deux nombres réels et i représente un nouvel élément tel que $i^2 = -1$.

2. Notations

On note $\mathbb C$ l'ensemble des nombres complexes.

L'écriture z = a + bi avec a et b réels est appelée la **forme algébrique** de z.

a est la **partie réelle** de z et on note a = Re(z).

b est la partie imaginaire de z et on note b = Im(z)

3. Egalité

Soit z = a + bi avec a et b réels et z' = a' + b'i avec a' et b' réels. Alors :

$$z = z'$$
 si et seulement si $a = a'$ et $b = b'$

4. Propriété

Un nombre complexe z est un réel si et seulement si Im(z) = 0.

5. <u>Définition</u>

Un nombre complexe z est un **imaginaire pur** si et seulement si Re(z) = 0.

6. Opérations dans C

L'addition et la multiplication dans \mathbb{C} sont définies comme dans \mathbb{R} en tenant compte de $i^2 = -1$. Plus précisément, si z = a + bi avec a et b réels et z' = c + di avec c et d réels :

$$z + z' = (a+c) + (b+d)i$$

$$z \times z' = ac - bd + (ad+bc)i$$

$$\frac{z}{z'} = \frac{a+bi}{c+di} \times \frac{c-di}{c-di} = \frac{ac+bd+(bc-ad)i}{c^2+d^2}$$

Les propriétés de ces opérations dans $\mathbb C$ sont les mêmes que dans $\mathbb R$.

7. Exemple

Si
$$z = 3 + 2i$$
 et $z' = 4 + 3i$, $z + z' = 7 + 5i$, $z \times z' = 6 + 17i$ et $\frac{z}{z'} = \frac{18}{25} - \frac{1}{25}i$

8. Exercices

0.2 Conjugué d'un nombre complexe

Soit z = a + bi avec a et b réels. Le **conjugué** de z, noté \overline{z} , est le nombre complexe défini par :

$$\overline{z} = a - bi$$

1. Propriétés

 $\overline{\text{Soit } z \text{ et } z'}$ deux nombres complexes quelconques.

(a)
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

(b)
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$

(c) Si
$$z' \neq 0$$
, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$

(d) Pour tout naturel
$$n, \overline{z^n} = (\overline{z})^n$$

(e) Un complexe
$$z$$
 est un réel $\Leftrightarrow \overline{z}=z$

(f) Un complexe z est un imaginaire pur $\Leftrightarrow \overline{z} = -z$

(g)
$$\overline{\overline{z}} = z$$

(h)
$$Re(z) = \frac{1}{2}(z + \overline{z}) \text{ et } Im(z) = \frac{1}{2i}(z - \overline{z})$$

(i) Si z = a + bi avec a et b réels,

$$z \times \overline{z} = a^2 + b^2$$

Exemple

Soit n un entier relatif non nul

On considère les nombres complexe suivant $u_n = (1+i)^n + (1-i)^n$ et $v_n = (1+i)^n - (1-i)^n$ Montrer que u_n est un réel et que v_n est un imaginaire pur

0.3 Représentation Géométrique

Le plan est muni d'un repère orthonormé direct (O; \vec{u} , \vec{v}).

A tout point M du plan de coordonnées (a;b) est associé le nombre complexe z=a+bi appelé affixe du point M.

Le point M de coordonnées (a;b) est appelé **image** du nombre complexe z=a+bi. On note M(a+bi)

On dit aussi que le nombre complexe z = a + bi est l'affixe du vecteur \vec{u} de coordonnées (a; b) et que \vec{u} est le **vecteur image** de z.

2. Propriétés

(a) Si A et B sont deux points du plan d'affixes respectives z_A et z_B alors le vecteur \overrightarrow{AB} a pour affixe $z_B - z_A$. On écrit :

$$\overrightarrow{Affixe}(\overrightarrow{AB}) = z_{\overrightarrow{AB}} = z_B - z_A$$

(b) Soit $\overrightarrow{w_1}$ et $\overrightarrow{w_2}$ deux vecteurs quelconques d'affixes respectives z_1 et z_2 et k un réel. Alors :

Affixe
$$(\overrightarrow{w_1} + \overrightarrow{w_2}) = z_1 + z_2$$

Affixe $(k\overrightarrow{w_1}) = kz_1$

(c) Soit I le milieu de [AB], z_A, z_B et z_I les affixes respectives de A, B et I alors :

$$z_I = \frac{z_A + z_B}{2}$$

(d) Soit G le barycentre du triangle ABC, z_A, z_B z_C , z_G les affixes respectives de A, B, C et G alors :

$$z_G = \frac{z_A + z_B + z_C}{3}$$

Preuve: Exercice:

Exercices:

3. Module d'un nombre complexe

Le **module** du nombre complexe z = a + bi avec a et b réels est le réel positif, noté |z|, défini par :

$$\boxed{|z| = \sqrt{a^2 + b^2} = \sqrt{z \times \overline{z}}}$$

4. Interprétation géométrique

Le module de z est la distance entre

l'origine O du repère et le point M(z)

$$OM = |z| = \sqrt{a^2 + b^2}$$

5. Propriétés

Soit z et z' deux nombres complexes quelconques, et n un entier relatif non nul. Alors on a :

(a)
$$|z \times z'| = |z| \times |z'|$$

(b) Si
$$z' \neq 0, \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

(c) Si
$$z \neq 0, |z^n| = |z|^n$$

(d) Si
$$z \neq 0, |\bar{z}| = |z|$$

(e) Inégalité triangulaire :
$$|z+z'| \leq |z| + |z'|$$

(f) Si
$$A$$
 et B sont deux points du plan d'affixes respectives z_A et z_B alors :

$$AB = |z_B - z_A|$$

Exercices:

6. Argument d'un nombre complexe non nul

Le plan est muni d'un repère orthonormé direct (O; \vec{u} , \vec{v}).

Soit z un nombre complexe non nul de point image

M de coordonnées (a; b). On appelle **argument** de z

et on note arg z toute mesure en radians de l'angle orienté $(\vec{u}; \overrightarrow{OM})$

Remarque Un nombre complexe non nul z a une infinité d'arguments.

 $\overline{\text{Si }\theta}$ est l'un d'entre eux, les autres sont de la forme

 $\theta + 2\pi k$ avec $k \in \mathbb{Z}$.

On note arg $z = \theta \pmod{2\pi}$. On lit " θ modulo 2π "

Le réel 0 n'a pas d'argument.

7. Forme trigonométrique d'un complexe non nul

L'écriture : $z=r(\cos\theta+i\sin\theta)$ avec r=|z| et arg $z=\theta \pmod{2\pi}$ est appelée forme trigonométrique de z

8. Lien entre forme algébrique et forme trigonométrique

(a) Passage de la forme trigonométrique à la forme algébrique

z est un complexe non nul qui s'écrit z=a+bi avec a et b réels.

On note : r = |z| et θ un argument de z.

Si on connaît r et θ alors : $a = r \cos \theta$ et $b = r \sin \theta$

(b) Passage de la forme algébrique à la forme trigonométrique Si on connaît a et b alors :

$$r = |z| = \sqrt{a^2 + b^2} \text{ et } \theta \text{ défini par } : \begin{cases} \cos \theta = \frac{a}{r} \\ \sin \theta = \frac{b}{r} \end{cases}$$

9. Égalité entre deux complexes écrits sous forme trigonométrique

Si $z = r(\cos \theta + i \sin \theta)$ avec r = |z| et arg $z = \theta \pmod{2\pi}$ et $z' = r'(\cos \theta' + i \sin \theta')$ avec r' = |z'| et arg $z' = \theta' \pmod{2\pi}$ alors :

$$z = z' \Leftrightarrow r = r' \text{ et } \theta = \theta' \pmod{2\pi}$$

10. Théorème

Si $z = r(\cos \theta + i \sin \theta)$ avec r > 0 alors |z| = r et arg $z = \theta \pmod{2\pi}$

<u>Démonstration</u>

$$|z|^2 = r^2 \cos^2 \theta + r^2 \sin^2 \theta = r^2 \Rightarrow |z| = r$$

Soit θ' un argument de z. On a : $r(\cos \theta + i \sin \theta) = r(\cos \theta' + i \sin \theta') \Rightarrow \theta = \theta' \pmod{2\pi}$

11. Argument d'un produit

Soit z et z' deux complexes non nuls avec :

$$z = r(\cos \theta + i \sin \theta)$$
 avec $r = |z|$ et arg $z = \theta \pmod{2\pi}$ et $z' = r'(\cos \theta' + i \sin \theta')$ avec $r' = |z'|$ et arg $z' = \theta' \pmod{2\pi}$

On a:

$$z \times z' = rr'(\cos \theta + i \sin \theta)(\cos \theta' + i \sin \theta')$$

= $rr'((\cos \theta \cos \theta' - \sin \theta \sin \theta') + i(\cos \theta \sin \theta' + \sin \theta \cos \theta')$
= $rr'(\cos(\theta + \theta') + i \sin(\theta + \theta'))$

Comme rr' > 0, alors $\arg(z \times z') = \theta + \theta'$

Propriété Soit z et z^\prime deux complexes non nuls. Alors :

$$arg(z \times z') = arg(z) + arg(z') \text{ [mod } 2\pi\text{]}$$

Exercice d'application : On considère les deux nombres complexes $z_1=1+i\sqrt{3}$ et $z_2=1-i$

- (a) Écrire $z_1.z_2$ sous forme algébrique
- (b) Écrire $z_1,\,z_2$ sous forme trigonométrique
- (c) Écrire $z_1.z_2$ sous forme trigonométrique et en déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$

12. Propriétés

Pour tous nombres complexes z et z^\prime non nuls :

- (a) Pour $n \in \mathbb{N}^*$: arg $(z^n) = n \times \arg z \pmod{2\pi}$
- (b) $\operatorname{arg}\left(\frac{1}{z}\right) = -\operatorname{arg}\left(z\right) \left[\operatorname{mod} 2\pi\right]$
- (c) $\operatorname{arg}\left(\frac{z}{z'}\right) = \operatorname{arg}\left(z\right) \operatorname{arg}\left(z'\right) \left[\operatorname{mod} 2\pi\right]$
- (d) $\arg \overline{z} = -\arg z \pmod{2\pi}$

Démonstration

Exercice: On considère le nombre complexe $z = -\sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}$

- (a) Écrire z^2 sous forme trigonométrique
- (b) Déterminer le module, et un argument de z
- (c) En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$

Exercice:

13. Angles orientés et arguments

Soit A et B sont deux points du plan muni d'un repère orthonormé direct (O; \vec{u} , \vec{v}) d'affixes respectives z_A et z_B et M est le point d'affixe z_M tel que : $\overrightarrow{OM} = \overrightarrow{AB}$.

On sait que : $z_M = z_B - z_A$ et d'autre part : $\arg(z_M) = (\overrightarrow{u}; \overrightarrow{AB})$. On obtient donc :

$$arg(z_B - z_A) = (\overrightarrow{u}; \overrightarrow{AB})$$

14. Notation exponentielle

Soit f la fonction qui à tout réel θ associe le complexe $f(\theta) = \cos \theta + i \sin \theta$

Pour tous réels θ et θ' , on a vu que : $f(\theta + \theta') = f(\theta) \times f(\theta')$ et f(0) = 1 : f vérifie une relation fonctionnelle analogue à celle de la fonction exponentielle.

Notation Pour tout nombre réel θ , on note $e^{i\theta} = \cos \theta + i \sin \theta$

15. <u>Définition</u>

Une forme exponentielle d'un nombre complexe z non nul d'argument θ est :

$$z = |z|e^{i\theta}$$

16. Propriétés Pour tous nombres réels θ et θ' et n entier naturel :

(a)
$$|e^{i\theta}| = 1$$
 et $\arg(e^{i\theta}) = \theta[2\pi]$

(b)
$$e^{i\theta} \times e^{i\theta'} = e^{i(\theta + \theta')}$$

(c)
$$\frac{e^{i\theta}}{e^{i\theta'}} = e^{i(\theta - \theta')}$$

(d)
$$(e^{i\theta})^n = e^{i\theta n}$$
 (formule de Moivre)

(e)
$$\overline{e^{i\theta}} = e^{-i\theta}$$

0.4 Équations de second degrees à coefficients réels

On considère l'équation $aZ^2 + bZ + c = 0$ dont l'inconnue est Z est un nombre complexe et les coefficients a, b et c sont des réels avec $a \neq 0$. On note Δ le réel $b^2 - 4ac$ appelé le discriminant.

1. Si $\Delta > 0$ alors l'équation admet deux solutions réelles

$$Z_1 \frac{-b + \sqrt{\Delta}}{2}$$
 $Z_2 = \frac{-b - \sqrt{\Delta}}{2a}$.

2. Si
$$\Delta = 0$$
 alors l'équation admet une solution réelle $-\frac{b}{2a}$.

3. Si
$$\Delta < 0$$
 alors l'équation admet deux solutions complexes conjuguées

$$Z_1 = \frac{-b + i\sqrt{-\Delta}}{2}$$
 $Z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$.

Exercices:

Exercices:

Devoir maison:

0.5 Équations de second degrees à coefficients Complexes

1. Racines carrée d'un nombre complexe

<u>Définition</u> On dit que δ est une racine carrée de Z si $Z = \delta^2$.

On pose Z = X + iY et $\delta = x + iy$; alors :

$$\delta$$
 est une racine carrée de $Z\Leftrightarrow \left\{\begin{array}{l} x^2+y^2=|Z|\\ x^2-y^2=X\\ xy \text{ est du signe de } Y \end{array}\right.$

Les deux racines carrées de Z sont donc

$$\pm \left(\sqrt{\frac{\sqrt{X^2 + Y^2} + X}{2}} + i \operatorname{signe}(Y) \sqrt{\frac{\sqrt{X^2 + Y^2} - X}{2}}\right)$$

Remarque EVITER D ÉCRIRE \sqrt{Z} , sauf si Z est réel $\geqslant 0$; voici ce qui peut arriver si vous le faites :

$$-1 = i \cdot i = \sqrt{-1}\sqrt{-1} = \sqrt{(-1)(-1)} = \sqrt{1} = 1$$

Forme canonique de $az^2 + bz + c$. $si \ a \neq 0, \ \Delta = b^2 - 4ac$ (discriminant)

$$az^{2} + bz + c = a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right) = \frac{1}{4a}\left((2az + b)^{2} - \Delta\right)$$

On considère l'équation $aZ^2 + bZ + c = 0$ dont l'inconnue est Z est un nombre complexe et les coefficients a, b et c sont des réels avec $a \neq 0$. On note Δ le réel $b^2 - 4ac$ appelé le discriminant. si $a \neq 0$, l'équation $az^2 + bz + c = 0$ possède toujours deux solutions, confondues si $\Delta = 0$:

$$\frac{-b\pm\delta}{2a}$$
 où δ est l'une des racines carrées de Δ

1 Racine nième d'un nombre complexe

<u>Définition</u> Soient z et $Z \in \mathbb{C}$ et $n \in \mathbb{N}$

$$z$$
 est une racine $n-i$ ème de Z si $z^n=Z$

1. si $Z \neq 0$ est de module R et d'argument Θ , z possède exactement n racines n—ièmes distinctes de même module égal à $\sqrt[n]{R}$ et d'argument :

$$\frac{\Theta}{n} + \frac{2k\pi}{n}$$
 avec $k \in [|0, n-1|]$

2. les points-images de ces racines forment un polygone régulier à n côtés inscrit dans un cercle de centre O et de rayon $\sqrt[n]{R}$; on en déduit que la somme des racines n—ièmes d'un complexe est nulle. Remarque puisqu'il y n racines n-ièmes, ON N'ECRIT JAMAIS DANS UN CALCUL $\sqrt[n]{Z}$ sauf si Z est $réel \ge 0$.

Eventuellement, on peut par contre considérer que l'écriture $\sqrt[n]{Z}^{\mathbb{C}}$ représente L'ENSEMBLE des n racines n-ièmes complexes de Z (notation non classique).

Exemples E3 :
$$\sqrt{1}^{\mathbb{C}} = \{1, -1\}$$
, $\sqrt{-1}^{\mathbb{C}} = \{i, -i\}$, et déterminer de même les ensembles $\sqrt{i}^{\mathbb{C}}$, $\sqrt{1+i}^{\mathbb{C}}$, $\sqrt[4]{-1}^{\mathbb{C}}$, $\sqrt[6]{-1}^{\mathbb{C}}$.

- construire graphiquement les 8 racines huitième de (-3+4i)/5.
- déterminer une valeur approchée d'une racine cinquième de -2+3i à l'aide d'une machine à calculer.
 - calculer $(2+i)^3$ et en déduire l'ensemble $\sqrt[3]{2+11i}^{\mathbb{C}}$.
 - 3) Groupe des racines n-ièmes de l'unité.

Remarque préalable : l'inverse, le conjugué, le produit de racines n-ièmes de l'unité est encore une racine n—ième de l'unité.

On verra plus tard que cela implique que l'ensemble $U_n = \sqrt[n]{1}^{\mathbb{C}}$ de ces racines forme un groupe multi-

 $U_1=\{1\}, U_2=\{1,-1\}, U_3=\{1,e^{\frac{2i\pi}{3}},e^{\frac{4i\pi}{3}}=e^{-\frac{2i\pi}{3}}\} \text{ ; si l'on pose } j=e^{\frac{2i\pi}{3}}, \text{ alors } U_3=\{1,j,j^2\} \text{ et l'on pose } j=e^{\frac{2i\pi}{3}}, \text{ alors } j=e^{\frac{2i\pi}{3}}\}$

$$U_{1} = \{1\}, U_{2} = \{1, -1\}, U_{3} = \{1, e^{-3}, e^{-3} = e^{--3}\}; \text{ si l'on pose } j = e^{-3}, e^{-3}\}$$

$$j = \frac{-1 + i\sqrt{3}}{2} \text{ (forme à utiliser le moins possible)}$$

$$j^{2} = \overline{j} = \frac{1}{j}$$

$$1 + j + j^{2} = 0$$

$$U_{4} = \{\dots, \}, U_{6} = \{\dots, \}$$

$$U_4 = \{\dots, \}, U_6 = \{\dots, \}$$

Et si
$$u = e^{\frac{2i\pi}{n}}, U_n = \left\{ e^{\frac{2ik\pi}{n}} / k \in \mathbb{Z} \right\} = \{1, u, u^2, ..., u^{n-1} \}$$

Et comme $u^{n-k} = \overline{u}^k$ on peut écrire :

$$U_n = \begin{cases} \{1, u, \overline{u}, u^2, \overline{u}^2, \dots, u^p, \overline{u}^p\} & \text{si } n = 2p + 1\\ \{1, \dots, u^p, \overline{u}^p\} & \text{si } n = 2p \end{cases}$$

2 Similitudes directes du plan.

<u>Définition</u> la rotation plane de centre Ω et d'angle θ est l'application $M \mapsto M'$ définie par

$$\begin{cases} \left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}\right) = \theta & [2\pi] \\ \Omega M = \Omega M' \end{cases}$$

Définition l'homothètie plane de centre Ω et d'angle k est l'application $M \mapsto M'$ définie par

$$\overrightarrow{\Omega M} = k \overrightarrow{\Omega M}'$$

<u>Définition</u> la similitude plane (directe) de centre Ω d'angle θ , de rapport k est la composée (commutative) de la rotation précédente avec l'homothétie de centre Ω et de rapport k.

Définition

Propriété : multiplier un complexe par le complexe $ke^{i\alpha}$ revient à faire subir à son point image une similitude directe de centre O de rapport k et d'angle α .

Application:

 $\overline{1. \text{ Si } M'(z')}$ est l'image de M(z) par la similitude directe de centre $\Omega(\omega)$ de rapport k et d'angle α , on a:

$$z' - \omega = ke^{i\alpha} \left(z - \omega \right)$$

2. Si a et b sont deux complexes, la transformation du plan

$$M(z) \mapsto M'(z')$$
 avec $z' = az + b$

est

- soit la translation de vecteur $\overrightarrow{u}(b)$ si a=1.
- soit la similitude directe de centre $\Omega\left(\frac{b}{1-a}\right)$ de rapport |a| d'angle arg a si $a \neq 1$.

C'est une homothétie ssi a est réel, et une rotation ssi a est de module 1.