Nombre y Apellido:				Padrón:			
Correo electrónic	20:			Fí	sica II A /	B / 82.02	
Cuatrimestre y a	ño:	JTP:		Profesor:	••••••	N ⁰ hojas:	
	1 1	2	1 3	1 4	5		

Problema 1. Una zona cargada electrostáticamente, se modela como una distribución lineal recta de longitud L y densidad de carga λ . Los extremos de esta distribución son los puntos A (L/2;L/2;0) y B (L/2;-L/2;0) en coordenadas cartesianas ortogonales (x;y;z). En el punto C (-L/2;L/2:0) se ubica una carga puntual Q y en el punto D (-L/2,-L/2;0) otra - Q. Si la configuración cargada se encuentra en el vacío; se pide:

a) Calcular el potencial del punto O (0;0;0) con respecto a la referencia cero de potenciales tomada en puntos muy alejados (infinito); y el trabajo que hay que efectuar contra el campo electrostático para llevar en forma cuasiestacionaria, una carga puntual q desde el punto O antes mencionado hasta el punto P (L:0:0).

b) Si con centro en el punto O se coloca un dieléctrico macizo y descargado (sin carga libre en ningún punto) de forma esférica de radio L/4, y suponiendo que el dieléctrico es homogéneo isotrópico y lineal, con constante dieléctrica k, calcular la densidad volumétrica de carga de polarización en el punto O y explicar cualitativamente donde se distribuye la carga de polarización.

Problema 2. Una espira deformable, evoluciona en el vacío en forma cuasiestacionaria e isotérmica, desde una posición y forma inicial, donde su coeficiente de autoinducción es L_i, hasta una posición y forma final donde dicho coeficiente es L_f. Si en la evolución las acciones electromotrices mantienen la corriente I constante en la espira, se pide:

- a) Calcular la variación de la energía del campo magnético.
- b) Si la evolución se realiza en un tiempo τ, calcular el valor medio de la fuerza electromotriz inducida.

Problema 3. Dos capacitores cargados se encuentran conectados en serie con un resistor (los tres elementos en serie conforman un circuito sin nodos) cuya resistencia es R=1 Ω , en régimen estacionario de corriente (corriente nula). Uno de los capacitores, con espacio vacío entre placas, tiene una capacitancia $C_{10}=1$ μF , mientras que el otro tiene una capacitancia $C_2=2$ μF . La diferencia de potencial entre placas de los capacitores es de $V_0=10$ V. Si en el instante t=0 se coloca entre placas del primer capacitor un dieléctrico de contante dieléctrica k=2, ocupando la totalidad del espacio entre éstas (suponer despreciable el tiempo de introducción del dieléctrico); se pide:

- a) Calcular la corriente en el circuito para un instante $t = 1 \mu s$, indicando el capacitor que aumenta su carga.
- b) Calcular las cargas finales de los capacitores una vez finalizado el transitorio.

Problema 4 A. (sólo para física IIA y 82.02). Un cuerpo de masa $m_x = 25$ g y cuyo calor específico es igual a $c_x = 1,675$ J/(K.g) se encuentra a una temperatura de 600 K, en esas condiciones se lo coloca en un recipiente adiabático que contiene 20 g de hielo a 0 °C y a una atmósfera de presión. Suponiendo que el proceso es isobárico, que la sustancia introducida no cambia de fase ni reacciona químicamente con el agua, y siendo el calor latente de fusión del hielo $l_f = 335$ J/g y el calor específico del agua $c_a = 4,187$ J/(K.g), se pide:

- a) Calcular el estado y la temperatura final de la mezcla. (Suponer que el intercambio de calor involucra sólo a las masas mencionadas)
- b) Calcular la variación de entropía del sistema conformado por las masas mezcladas.

Problema 5 A. (sólo para física IIA y 82.02). Dos paredes planas y paralelas muy extensas (suponer modelo de área infinita), se encuentran separadas en el vacío una distancia d. Las temperaturas de las paredes se mantienen estacionarias siendo las mismas T_1 y T_2 ($T_1 > T_2$). Las paredes pueden considerarse como cuerpos negros ideales.

- a) Si a una distancia d/4 de la pared más caliente y paralela a la misma, se coloca un tabique también muy extenso, de espesor despreciable, supuesto también cuerpo negro ideal; calcular la temperatura que alcanza el tabique en régimen estacionario y cuanto disminuye la transmisión de calor por unidad de tiempo y superficie (con respecto a la situación sin tabique) si las temperaturas de las paredes se mantienen constantes.
 b) Si se retira el tabique y se introduce un gas ocupando la totalidad del espacio entre las paredes, y suponiendo que el coeficiente de convección de ambas interfases es h; calcular la temperatura de la masa gaseosa en régimen estacionario y el calor transmitido por unidad de tiempo y superficie si las temperaturas de las paredes se mantienen constantes. (Suponer conocida la constante de Stefan-Boltzmann y considerar que a las temperaturas involucradas las moléculas de gas no absorben ni emiten radiación térmica apreciable).
- **Problema 4 B.** (sólo para física IIB). Se tiene un conductor constituido por dos varillas perpendiculares unidas en un punto P₁. La varilla O-P₁ tiene longitud l₁ y la P₁-P₂, longitud l₂. El conjunto rota con velocidad angular constante w, manteniendo su plano normal al eje de rotación que pasa por el punto O; todo se encuentra inmerso en un campo magnético uniforme y estacionario B, paralelo al eje de rotación. Considerando que no hay campo eléctrico inducido medido por un observador supuesto en reposo; se pide:
- a) Calcular la fuerza electromotriz inducida entre los extremos O y P₂, Indicando en un esquema la polaridad de la misma en función de los sentidos supuestos para la resolución.
- b) Calcular la diferencia de potencial entre los mismos puntos y su relación con la fem evaluada en el punto anterior.

Problema 5 B. (sólo para física IIB). Un circuito RLC serie está alimentado en régimen alterno permanente por una fuente de 110 V eficaces y frecuencia de 60 Hz, presentando a dicha frecuencia un factor de potencia de 0,57. Si se sabe que el circuito alcanza su condición de resonancia a 70 Hz con una corriente eficaz (en resonancia) de 2 A. Se pide:

a) Calcular los valores de R, L, C y la corriente que impone el generador.

b) Dibujar el diagrama fasorial para la frecuencia del generador.