Algorithm Design & Analysis (CSE222)

Lecture-12

Recap

Edit Distance

- Weighted Subset
 - o 0/1 Knapsack

0/1 Knapsack

Let there are n items $\{1, 2, ..., n\}$, a weight function w: $[n] \rightarrow R_{>0}$ and a value function v: $[n] \rightarrow R_{>0}$. Let W > 0.

Goal: Find subset $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and the value of the subset if maximum.

0/1 Knapsack

Subproblem: Val(i,T): Maximum value from first i elements with weight limited to T.

Recurrence: $Val(i, T) = \max\{Val(i - 1, T), Val(i - 1, T - w_i) + v_i\}$

Final Solution: Val(n, W)

Running time?

Recurrence Problem

Is the following relation is true?

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Prove without showing LHS = RHS.

Outline

Graphs

Graphs: Captures relationship (a.k.a edges) between objects (a.k.a nodes).

Consists of collection of nodes (a.k.a vertices) V and a collection of edges E (sets of nodes).

$$G = (V, E)$$

Simple Graphs

- At most one edge between pair of vertices (i.e., each edge is a pair of nodes).
- Undirected (or symmetric) and unweighted edges.
- No self loops.

Undirected graph for symmetric relationship, G = (V, E). Every $e \in E$ is not an ordered pair (u, v).

Directed graph for asymmetric relationship, G = (V, E). Every $e \in E$ is an ordered pair (u, v).

Given a graph G = (V, E), a **path** p is a sequence of vertices $v_1, v_2, ..., v_n$ such that each pair of consecutive vertices (v_i, v_{i+1}) is an element in E.

A **simple path** is a sequence of vertices, where none of them are

repeated.

profits a,b,cv acbx

bcab

Given a graph G = (V, E), a **path** p is a sequence of vertices $v_1, v_2, ..., v_n$ such that each pair of consecutive vertices (v_i, v_{i+1}) is an element in E.

A **simple path** is a sequence of vertices, where none of them are repeated.

A cycle is a path if all the vertices are unique except for the first and the last.

A graph is called **connected** if there is a path between every pair of vertices.

A **tree** is a connected graph without any cycle.

A directed graph with no cycle is called directed acyclic graph (DAG).

The shortest path length from u to v is called the <u>distance</u> from u to v, i.e., $\delta_G(u, v)$.

The maximum distance between any pair of vertices is the <u>diameter</u> of a graph. **Eccentricity** of a vertex u {e(u)} is maximum distance of any other vertex v from

u.

The node with the smallest eccentricity is the <u>center</u> and its value is the <u>radius</u> of the graph.

Examples

$$dia=3$$
 $ecc(d)=3$
 $centr=b$
 $radius=2$

Graph Representation

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	1 1 0 1 0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	0 0 1 0 0 1

Graph Properties

A graph G = (V, E) is sparse if $|E| \ll |V|^2$.

Topological Sort of a DAG is a total ordering $v_1 < v_2 < ... < v_n$ of vertices in V such that for any edge $(v_i, v_i) \in E$, j > i.

If edges of DAG represents dependencies, then topological sort follows all dependencies.


```
Iterative-DFS(s)

1 Push(s)

2 while Stack is not empty

3 u \leftarrow \text{Pop}()

4 if u is unmarked

5 mark u

6 for every edge (u, v)

7 Push(v)
```

Graph Properties

A graph G = (V, E) is sparse if $|E| \ll |V|^2$.

Topological Sort of a DAG is a total ordering $v_1 < v_2 < ... < v_n$ of vertices in V such that for any edge $(v_i, v_j) \in E$, j > i.

If edges of DAG represents dependencies, then topological sort follows all dependencies.

Running time?

Outline

• Graphs

```
DFS(G)

for each u \in G.V

u.color = WHITE

time = 0

for each u \in G.V

if u.color == WHITE

DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

time = time + 1
u.d = time
u.color = GRAY // discover u

for each v \in G.Adj[u] // explore (u, v)

if v.color == WHITE

DFS-VISIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u
```

Entry and Exit time

DFS Tree Edge Types

Let DFS starts at node s and returns a tree.

We call an edge (u, v) a **tree edge** if it is present it the returned tree.

The rest of the edges in the graph, which are non-tree edges, can further be classified as back edges, forward edges, and cross edges.

An edge $(u, v) \in E$ is called **back edge**, if v is an ancestor of u in DFS tree. An edge $(u, v) \in E$ is called **forward edge**, if v is decentend of u in DFS tree.

An edge $(u, v) \in E$ is called <u>cross edge</u>, if v is neither ancestor nor a decentend of u in DFS tree.

Reference

Slides

Introduction to Algorithms by CLRS - Chp-22.3