|Chapter 26 Current and Resistance

Electric Current

- Electric current (I) is the rate of flow of electric charge through a surface.
- The SI unit of current is the **ampere** (A):

$$I = \frac{dQ}{dt}$$

where dQ is the change in charge over time dt.

• 1 ampere (A) means 1 coulomb (C) of charge flows through a conductor per second.

Average Current

(Instantaneous electric) : I

• If ΔQ is the charge passing through an area in time Δt :

$$I_{ ext{avg}} = rac{\Delta Q}{\Delta t}$$

Direction of Current

- By convention, current direction is the direction a positive charge would flow.
- The actual flow of electrons is opposite to this convention.

Current and Drift Speed

- **Drift speed** (v_d) is the average velocity of charge carriers due to an electric field.
- If n is the number of charge carriers per unit volume and q is the charge per carrier:

$$I=nqv_dA$$

where

ullet A is the cross-sectional area of the conductor.

Ohm's Law

- Analogy: Resistance of water flow in a river
 - Ohm's Law describes the relationship between voltage (ΔV), current (I), and resistance (R):

$$\Delta V = IR$$

• Resistance R is constant for **ohmic materials** over a range of voltages and currents.

Definition of Resistance

• Resistance (R) of a conductor depends on material, length L, and cross-sectional area A:

$$R = \rho \frac{L}{A}$$

ρ: Resistivity of the material, unique for each material.

Factors Affecting Resistance

- Length (L): Resistance increases with length.
- Cross-sectional Area (A): Resistance decreases with larger area.
- Temperature: Resistance of most metals increases with temperature.

Resistivity and Temperature

• Temperature dependence of resistivity for most metals:

$$ho =
ho_0 \left(1 + lpha (T - T_0)
ight)$$

- α: Temperature coefficient of resistivity.
- T: Temperature, T_0 is a reference temperature (usually 20°C).

Superconductors

- ullet Superconductors are materials that exhibit zero resistance below a critical temperature T_C .
- Current in a superconductor can flow indefinitely without energy loss.

Electrical Power

• Electric power (P) is the rate at which electrical energy is converted to other forms:

$$P = IV$$

Applying Ohm's Law, power can also be expressed as:

$$P = I^2 R = \frac{V^2}{R}$$

• Unit of power: watt (W), where $1\,\mathrm{W} = 1\,\mathrm{J/s}.$

Power Transmission

• Power losses during transmission are minimized by using high voltage and low current:

$$P_{
m loss} = I^2 R$$

- High voltage reduces current for a given power, minimizing power loss due to resistance.
- Since $I_{transmit}\downarrow$, $I_{source}\downarrow$