Chapter 8

Section 8.1

- 8.1.1 \vec{e}_1 , \vec{e}_2 is an orthonormal eigenbasis.
- 8.1.2 $\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}, \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-1 \end{bmatrix}$ is an orthonormal eigenbasis.
- 8.1.3 $\frac{1}{\sqrt{5}}\begin{bmatrix}2\\1\end{bmatrix}, \frac{1}{\sqrt{5}}\begin{bmatrix}-1\\2\end{bmatrix}$ is an orthonormal eigenbasis.
- 8.1.4 $\frac{1}{\sqrt{3}}\begin{bmatrix} 1\\1\\-1\end{bmatrix}, \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-1\\0\end{bmatrix}, \frac{1}{\sqrt{6}}\begin{bmatrix} 1\\1\\2\end{bmatrix}$ is an orthonormal eigenbasis.
- 8.1.5 Eigenvalues -1, -1, 2

Choose
$$\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$
 in E_{-1} and $\vec{v}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in E_2 and let $\vec{v}_3 = \vec{v}_1 \times \vec{v}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$.

- 8.1.6 $\frac{1}{3}\begin{bmatrix}2\\2\\1\end{bmatrix}$, $\frac{1}{3}\begin{bmatrix}2\\-1\\-2\end{bmatrix}$, $\frac{1}{3}\begin{bmatrix}1\\-2\\2\end{bmatrix}$ is an orthonormal eigenbasis.
- 8.1.7 $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$, $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$ is an orthonormal eigenbasis, so $S=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix}$ and $D=\begin{bmatrix}5&0\\0&1\end{bmatrix}$.
- 8.1.8 $\frac{1}{\sqrt{10}}\begin{bmatrix}3\\1\end{bmatrix}$, $\frac{1}{\sqrt{10}}\begin{bmatrix}-1\\3\end{bmatrix}$ is an orthonormal eigenbasis, with $\lambda_1=4$ and $\lambda_2=-6$, so $S=\frac{1}{\sqrt{10}}\begin{bmatrix}3&-1\\1&3\end{bmatrix}$ and $D=\begin{bmatrix}4&0\\0&-6\end{bmatrix}$.
- 8.1.9 $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\1\end{bmatrix}$, $\frac{1}{\sqrt{2}}\begin{bmatrix}-1\\0\\1\end{bmatrix}$, $\begin{bmatrix}0\\1\\0\end{bmatrix}$ is an orthonormal eigenbasis, with $\lambda_1=3, \lambda_2=-3$, and $\lambda_3=2$, so

$$S = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \\ 1 & 1 & 0 \end{bmatrix} \text{ and } D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

8.1.**10** $\lambda_1 = \lambda_2 = 0 \text{ and } \lambda_3 = 9.$

$$\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1\\0 \end{bmatrix}$$
 is in E_0 and $\vec{v}_2 = \frac{1}{3} \begin{bmatrix} 1\\-2\\2 \end{bmatrix}$ is in E_9 .

Let
$$\vec{v}_3 = \vec{v}_1 \times \vec{v}_2 = \frac{1}{3\sqrt{5}} \begin{bmatrix} 2\\ -4\\ -5 \end{bmatrix}$$
; then $\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3$ is an orthonormal eigenbasis.

$$S = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{3} & \frac{2}{3\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{3} & -\frac{4}{3\sqrt{5}} \\ 0 & \frac{2}{3} & -\frac{\sqrt{5}}{3} \end{bmatrix} \text{ and } D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- 8.1.11 $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\1\end{bmatrix}$, $\frac{1}{\sqrt{2}}\begin{bmatrix}-1\\0\\1\end{bmatrix}$, $\begin{bmatrix}0\\1\\0\end{bmatrix}$ is an orthonormal eigenbasis, with $\lambda_1=2$, $\lambda_2=0$, and $\lambda_3=1$, so $S=\frac{1}{\sqrt{2}}\begin{bmatrix}1&-1&0\\0&0&\sqrt{2}\\1&1&0\end{bmatrix}$ and $D=\begin{bmatrix}2&0&0\\0&0&0\\0&0&1\end{bmatrix}$.
- 8.1.12 a $E_1 = \operatorname{span} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $E_{-1} = (E_1)^{\perp}$. An orthonormal eigenbasis is $\frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$.
 - b Use Theorem 7.4.1: $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

c
$$A = SBS^{-1} = \begin{bmatrix} -0.6 & 0 & 0.8 \\ 0 & -1 & 0 \\ 0.8 & 0 & 0.6 \end{bmatrix}$$
, where $S = \begin{bmatrix} \frac{1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{2}{\sqrt{5}} & 0 & -\frac{1}{\sqrt{5}} \end{bmatrix}$.

- 8.1.13 Yes; if \vec{v} is an eigenvector of A with eigenvalue λ , then $\vec{v} = I_3 \vec{v} = A^2 \vec{v} = \lambda^2 \vec{v}$, so that $\lambda^2 = 1$ and $\lambda = 1$ or $\lambda = -1$. Since A is symmetric, E_1 and E_{-1} will be orthogonal complements, so that A represents the reflection about E_1 .
- 8.1.**14** Let S be as in Example 3. Then $S^{-1}AS = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.
- a. This matrix is 2A so that $S^{-1}(2A)S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix}$.
- b. This is $A 3I_3$, so that $S^{-1}(A 3I_3)S = S^{-1}AS 3I_3 = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- c. This is $\frac{1}{2}(A I_3)$, so that $S^{-1}\left(\frac{1}{2}(A I_3)\right)S = \frac{1}{2}(S^{-1}AS I_3) = \begin{bmatrix} -\frac{1}{2} & 0 & 0\\ 0 & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$.

- 8.1.15 Yes, if $A\vec{v} = \lambda \vec{v}$, then $A^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$, so that an orthonormal eigenbasis for A is also an orthonormal eigenbasis for A^{-1} (with reciprocal eigenvalues).
- 8.1.16 a ker(A) is four-dimensional, so that the eigenvalue 0 has multiplicity 4, and the remaining eigenvalue is tr(A) = 5.
 - b $B = A + 2I_5$, so that the eigenvalues are 2, 2, 2, 2, 7.
 - c $det(B) = 2^4 \cdot 7 = 112$ (product of eigenvalues)
- 8.1.17 If A is the $n \times n$ matrix with all 1's, then the eigenvalues of A are 0 (with multiplicity n-1) and n. Now $B = qA + (p-q)I_n$, so that the eigenvalues of B are p-q (with multiplicity n-1) and qn+p-q. Thus $\det(B) = (p-q)^{n-1}(qn+p-q)$.
- 8.1.18 By Theorem 6.3.6, the volume is $|\det A| = \sqrt{\det(A^T A)}$. Now $\vec{v_i} \cdot \vec{v_j} = ||\vec{v_i}|| ||\vec{v_j}|| \cos(\theta) = \frac{1}{2}$, so that $A^T A$ has all 1's on the diagonal and $\frac{1}{2}$'s outside. By Exercise 17 (with p = 1 and $q = \frac{1}{2}$), $\det(A^T A) = \left(\frac{1}{2}\right)^{n-1} \left(\frac{1}{2}n + \frac{1}{2}\right) = \left(\frac{1}{2}\right)^n (n+1)$, so that the volume is $\sqrt{\det(A^T A)} = \left(\frac{1}{2}\right)^{n/2} \sqrt{n+1}$.
- 8.1.19 Let $L(\vec{x}) = A\vec{x}$. Then A^TA is symmetric, since $(A^TA)^T = A^T(A^T)^T = A^TA$, so that there is an orthonormal eigenbasis $\vec{v}_1, \dots, \vec{v}_m$ for A^TA . Then the vectors $A\vec{v}_1, \dots, A\vec{v}_m$ are orthogonal, since $A\vec{v}_i \cdot A\vec{v}_j = (A\vec{v}_i)^TA\vec{v}_j = \vec{v}_i^TA^TA\vec{v}_j = \vec{v}_i \cdot (A^TA\vec{v}_j) = \vec{v}_i \cdot (\lambda_j\vec{v}_j) = \lambda_j(\vec{v}_i \cdot \vec{v}_j) = 0$ if $i \neq j$.
- 8.1.20 By Exercise 19, there is an orthonormal basis $\vec{v}_1, \ldots, \vec{v}_m$ of \mathbb{R}^m such that $T(\vec{v}_1), \ldots, T(\vec{v}_m)$ are orthogonal. Suppose that $T(\vec{v}_1), \ldots, T(\vec{v}_r)$ are nonzero and $T(\vec{v}_{r+1}), \ldots, T(\vec{v}_m)$ are zero. Then let $\vec{w}_i = \frac{1}{\|T(\vec{v}_i)\|}T(\vec{v}_i)$ for $i = 1, \ldots, r$ and choose an orthonormal basis $\vec{w}_{r+1}, \ldots, \vec{w}_n$ of $[\operatorname{span}(\vec{w}_1, \ldots, \vec{w}_r)]^{\perp}$. Then $\vec{w}_1, \ldots, \vec{w}_n$ does the job.
- 8.1.21 For each eigenvalue there are two unit eigenvectors: $\pm \vec{v}_1$, $\pm \vec{v}_2$, and $\pm \vec{v}_3$. We have 6 choices for the first column of S, 4 choices remaining for the second column, and 2 for the third.

Answer: $6 \cdot 4 \cdot 2 = 48$.

- 8.1.22 a If we let k=2 then A is symmetric and therefore (orthogonally) diagonalizable.
 - b If we let k=0 then 0 is the only eigenvalue (but $A\neq 0$), so that A fails to be diagonalizable.
- 8.1.23 The eigenvalues are real (by Theorem 8.1.3), so that the only possible eigenvalues are ± 1 . Since A is symmetric, E_1 and E_{-1} are orthogonal complements. Thus A represents a reflection about E_1 .
- 8.1.24 Note that A is symmetric and orthogonal, so that the eigenvalues are 1 and -1 (see Exercise 23).

$$E_1 = \operatorname{span}\left(\begin{bmatrix}1\\0\\0\\1\end{bmatrix}, \begin{bmatrix}0\\1\\1\\0\end{bmatrix}\right) \text{ and } E_{-1} = \operatorname{span}\left(\begin{bmatrix}1\\0\\0\\-1\end{bmatrix}, \begin{bmatrix}0\\1\\-1\\0\end{bmatrix}\right), \text{ so that }$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\-1\\1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1\\0\\0 \end{bmatrix} \text{ is an orthonormal eigenbasis.}$$

8.1.25 Note that A is symmetric an orthogonal, so that the eigenvalues of A are 1 and -1.

$$E_{1} = \operatorname{span}\left(\begin{bmatrix} 1\\0\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0\\0 \end{bmatrix}\right), E_{-1} = \operatorname{span}\left(\begin{bmatrix} 1\\0\\0\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\-1\\0 \end{bmatrix}\right)$$

The columns of S must form an eigenbasis for $A:S=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0 & 1\\ 0 & 0 & \sqrt{2} & 0 & 0\\ 0 & 1 & 0 & 0 & -1\\ 1 & 0 & 0 & -1 & 0 \end{bmatrix}$ is one possible choice.

- 8.1.26 Since J_n is both orthogonal and symmetric, the eigenvalues are 1 and -1. If n is even, then both have multiplicity $\frac{n}{2}$ (as in Exercise 24). If n is odd, then the multiplicities are $\frac{n+1}{2}$ for 1 and $\frac{n-1}{2}$ for -1 (as in Exercise 25). One way to see this is to observe that $\operatorname{tr}(J_n)$ is 0 for even n, and 1 for odd n (recall that the trace is the sum of the eigenvalues).
- 8.1.27 If n is even, then this matrix is J_n+I_n , for the J_n introduced in Exercise 26, so that the eigenvalues are 0 and 2, with multiplicity $\frac{n}{2}$ each. E_2 is the span of all $\vec{e}_i + \vec{e}_{n+1-i}$, for $i=1,\ldots,\frac{n}{2}$, and E_0 is spanned by all $\vec{e}_i \vec{e}_{n+1-i}$. If n is odd, then E_2 is spanned by all $\vec{e}_i + \vec{e}_{n+1-i}$, for $i=1,\ldots,\frac{n-1}{2}$; E_0 is spanned by all $\vec{e}_i \vec{e}_{n+1-i}$, for $i=1,\ldots,\frac{n-1}{2}$, and E_1 is spanned by \vec{e}_{n+1} .
- 8.1.**28** For $\lambda \neq 0$

$$f_A(\lambda) = \det \begin{bmatrix} -\lambda & & 0 & & 1 \\ & -\lambda & & & & 1 \\ & & \ddots & & & \vdots \\ 0 & & & -\lambda & & 1 \\ 1 & 1 & \cdots & 1 & & 1-\lambda \end{bmatrix} = \frac{1}{\lambda} \det \begin{bmatrix} -\lambda & & 0 & & 1 \\ & -\lambda & & & & 1 \\ & & \ddots & & & \vdots \\ 0 & & & -\lambda & & 1 \\ \lambda & \lambda & \cdots & \lambda & & \lambda - \lambda^2 \end{bmatrix}$$

$$= \frac{1}{\lambda} \det \begin{bmatrix} -\lambda & & 0 & & 1 \\ & -\lambda & & & & 1 \\ & & \ddots & & & \vdots \\ & 0 & & -\lambda & & 1 \\ 0 & 0 & \cdots & 0 & & -\lambda^2 + \lambda + 12 \end{bmatrix}$$

$$= -\lambda^{11}(\lambda^2 - \lambda - 12) = -\lambda^{11}(\lambda - 4)(\lambda + 3)$$

Eigenvalues are 0 (with multiplicity 11), 4 and -3.

Eigenvalues for 0 are $\vec{e}_1 - \vec{e}_i (i = 2, \dots, 12)$,

$$E_4 = \operatorname{span} \begin{bmatrix} 1\\1\\\vdots\\1\\4 \end{bmatrix} \text{ (12 ones)}, E_{-3} = \operatorname{span} \begin{bmatrix} 1\\1\\\vdots\\1\\-3 \end{bmatrix} \text{ (12 ones)}$$

so

diagonalizes A, and $D = S^{-1}AS$ will have all zeros as entries except $d_{12, 12} = 4$ and $d_{13, 13} = -3$.

- 8.1.29 By Theorem 5.4.1 (im A) $^{\perp} = \ker(A^T) = \ker(A)$, so that \vec{v} is orthogonal to \vec{w} .
- 8.1.30 The columns $\vec{v}, \vec{v}_2, \dots, \vec{v}_n$ of R form an orthogonal eigenbasis for $A = \vec{v} \vec{v}^T$, with eigenvalues $1, 0, 0, \dots, 0 (n-1 \text{ zeros})$, since

$$A\vec{v} = \vec{v}v^T\vec{v} = \vec{v}(\vec{v}\cdot\vec{v}) = \vec{v}, (\text{since } \vec{v}\cdot\vec{v} = 1) \text{ and } A\vec{v}_i = \vec{v}\,v^T\,\vec{v}_i = \vec{v}(\vec{v}\cdot\vec{v}_i) = \vec{0} \text{ (since } \vec{v}\cdot\vec{v}_i = 0).$$

$$A\vec{v} = \vec{v}v^T\vec{v} = \vec{v}(\vec{v} \cdot \vec{v}) = \vec{v}, \text{ (since } \vec{v} \cdot \vec{v} = 1) \text{ and } A\vec{v}_i = \vec{v}\vec{v}$$
Therefore we can let $S = R$, and $D = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$

- 8.1.31 True; A is diagonalizable, that is, A is similar to a diagonal matrix D; then A^2 is similar to D^2 . Now $\operatorname{rank}(D) = \operatorname{rank}(D^2)$ is the number of nonzero entries on the diagonal of D (and D^2). Since similar matrices have the same rank (by Theorem 7.3.6b) we can conclude that $\operatorname{rank}(A) = \operatorname{rank}(D) = \operatorname{rank}(D^2) = \operatorname{rank}(A^2)$.
- 8.1.32 By Exercise 17, $\det(A) = (1-q)^{n-1}(qn+1-q)$. A is invertible if $\det(A) \neq 0$, that is, if $q \neq 1$ and $q \neq \frac{1}{1-n}$.
- 8.1.33 The angles must add up to 2π , so $\theta = \frac{2\pi}{3} = 120^{\circ}$. (See Figure 8.1.)

Figure 8.1: for Problem 8.1.33.

Algebraically, we can see this as follows: let $A = [\vec{v}_1 \quad \vec{v}_2 \quad \vec{v}_3]$, a 2×3 matrix.

Then
$$A^TA = \begin{bmatrix} 1 & \cos\theta & \cos\theta \\ \cos\theta & 1 & \cos\theta \\ \cos\theta & \cos\theta & 1 \end{bmatrix}$$
 is a noninvertible 3×3 matrix, so that $\cos\theta = \frac{1}{1-3} = -\frac{1}{2}$, by Exercise 32, and $\theta = \frac{2\pi}{3} = 120^{\circ}$.

8.1.34 Let $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ be such vectors. Form $A = [\vec{v}_1 \quad \vec{v}_2 \quad \vec{v}_3 \quad \vec{v}_4]$, a 3×4 matrix.

Then
$$A^TA = \begin{bmatrix} 1 & \cos\theta & \cos\theta & \cos\theta \\ \cos\theta & 1 & \cos\theta & \cos\theta \\ \cos\theta & \cos\theta & 1 & \cos\theta \\ \cos\theta & \cos\theta & \cos\theta & 1 \end{bmatrix}$$
 is noninvertible, so that $\cos\theta = \frac{1}{1-4} = -\frac{1}{3}$, by Exercise 32, and $\theta = \arccos\left(-\frac{1}{3}\right) \approx 109.5^{\circ}$. See Figure 8.2.

Figure 8.2: for Problem 8.1.34.

The tips of $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ form a regular tetrahedron.

8.1.35 Let $\vec{v}_1, \ldots, \vec{v}_{n+1}$ be these vectors. Form $A = [\vec{v}_1 \cdots \vec{v}_{n+1}]$, an $n \times (n+1)$ matrix.

Then
$$A^TA = \begin{bmatrix} 1 & \cos\theta & \cdots & \cos\theta \\ \cos\theta & 1 & \cdots & \cos\theta \\ \vdots & & \ddots & \\ \cos\theta & & \cdots & 1 \end{bmatrix}$$
 is a noninvertible $(n+1) \times (n+1)$ matrix with 1's on the diagonal and $\cos\theta$ outside, so that $\cos\theta = \frac{1}{1-n}$, by Exercise 32, and $\theta = \arccos\left(\frac{1}{1-n}\right)$.

- 8.1.36 If \vec{v} is an eigenvector with eigenvalue λ , then $\lambda \vec{v} = A\vec{v} = A^2\vec{v} = \lambda^2\vec{v}$, so that $\lambda = \lambda^2$ and therefore $\lambda = 0$ or $\lambda = 1$. Since A is symmetric, E_0 and E_1 are orthogonal complements, so that A represents the orthogonal projection onto E_1 .
- 8.1.37 In Example 4 we see that the image of the unit circle is an ellipse with semi-axes 2 and 3. Thus $||A\vec{u}||$ takes all values in the interval [2, 3].
- 8.1.38 The spectral theorem tells us that there exists an orthonormal eigenbasis \vec{v}_1, \vec{v}_2 for A, with associated eigenvalues -2 and 3. Consider a unit vector $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2$ in \mathbb{R}^2 , with $c_1^2 + c_2^2 = 1$. Then $\vec{u} \cdot A\vec{u} = (c_1 \vec{v}_1 + c_2 \vec{v}_2) \cdot (-2c_1 \vec{v}_1 + 3c_2 \vec{v}_2) = -2c_1^2 + 3c_2^2$, which takes all values on the interval [-2, 3] since $-2 = -2c_1^2 2c_2^2 \le -2c_1^2 + 3c_2^2 \le 3c_1^2 + 3c_2^2 = 3$.
- 8.1.39 The spectral theorem tells us that there exists an orthonormal eigenbasis $\vec{v}_1, \vec{v}_2, \vec{v}_3$ for A, with associated eigenvalues -2, 3 and 4. Consider a unit vector $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3$ in \mathbb{R}^3 , with $c_1^2 + c_2^2 + c_3^2 = 1$. Then

$$\vec{u} \cdot A \vec{u} = (c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3) \cdot (-2c_1 \vec{v}_1 + 3c_2 \vec{v}_2 + 4c_3 \vec{v}_3) = -2c_1^2 + 3c_2^2 + 4c_3^2 \text{ , which takes all values on the interval } [-2,4] \text{ since } -2 = -2c_1^2 - 2c_2^2 - 2c_3^2 \leq -2c_1^2 + 3c_2^2 + 4c_3^2 \leq 4c_1^2 + 4c_2^2 + 4c_3^2 = 4.$$

- 8.1.40 Using the terminology introduced in Exercise 8.1.39, we have $||A\vec{u}|| = ||-2c_1\vec{v}_1 + 3c_2\vec{v}_2 + 4c_3\vec{v}_3|| = \sqrt{4c_1^2 + 9c_2^2 + 16c_2^2}$, which takes all values on the interval [2, 4]. Geometrically, the image of the unit sphere under A is the ellipsoid with semi-axes 2, 3, and 4.
- 8.1.41 The spectral theorem tells us that there exists an orthogonal matrix S such that $S^{-1}AS = D$ is diagonal. Let D_1 be the diagonal matrix such that $D_1^3 = D$; the diagonal entries of D_1 are the cube roots of those of D. Now $B = SD_1S^{-1}$ does the job, since $B^3 = (SD_1S^{-1})^3 = SD_1^3S^{-1} = SDS^{-1} = A$.
- 8.1.42 We will use the strategy outlined in Exercise 8.1.41. An orthogonal matrix that diagonalizes $A = \frac{1}{5} \begin{bmatrix} 12 & 14 \\ 14 & 33 \end{bmatrix}$ is $S = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$, with $S^{-1}AS = D = \begin{bmatrix} 8 & 0 \\ 0 & 1 \end{bmatrix}$. Now $D_1 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = SD_1S^{-1} = \frac{1}{5} \begin{bmatrix} 6 & 2 \\ 2 & 9 \end{bmatrix}$.
- 8.1.43 There is an orthonormal eigenbasis $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \vec{v}_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ with associated eigenvalues -9, -9, 24. We are looking for a nonzero vector $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3$ such that $\vec{v} \cdot A \vec{v} = (c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3) \cdot (-9c_1 \vec{v}_1 9c_2 \vec{v}_2 + 24c_3 \vec{v}_3) = -9c_1^2 9c_2^2 + 24c_3^2 = 0$ or $-3c_1^2 3c_2^2 + 8c_3^2 = 0$. One possible solution is $c_1 = \sqrt{8} = 2\sqrt{2}, \ c_2 = 0, \ c_3 = \sqrt{3}$, so that $\vec{v} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$.
- 8.1.44 Use Exercise 8.1.43 as a guide. Consider an orthonormal eigenbasis $\vec{v}_1,, \vec{v}_n$ for A, with associated eigenvalues $\lambda_1 \leq \lambda_2 \leq \leq \lambda_n$, listed in ascending order. If $\vec{v} = c_1 \vec{v}_1 + ... + c_n \vec{v}_n$ is any nonzero vector in \mathbb{R}^n , then $\vec{v} \cdot A \vec{v} = (c_1 \vec{v}_1 + ... + c_n \vec{v}_n) \cdot (\lambda_1 c_1 \vec{v}_1 + ... + \lambda_n c_n \vec{v}_n) = \lambda_1 c_1^2 + ... + \lambda_n c_n^2$. If all the eigenvalues are positive, then $\vec{v} \cdot A \vec{v}$ will be positive. Likewise, if all the eigenvalues are negative, then $\vec{v} \cdot A \vec{v}$ will be negative. However, if A has positive as well as negative eigenvalues, meaning that $\lambda_1 < 0 < \lambda_n$ (as in Example 8.1.43), then there exist nonzero vectors \vec{v} with $\vec{v} \cdot A \vec{v} = 0$, for example, $\vec{v} = \sqrt{\lambda_n} \vec{v}_1 + \sqrt{-\lambda_1} \vec{v}_n$.
- 8.1.45 a If $S^{-1}AS$ is upper triangular then the first column of S is an eigenvector of A. Therefore, any matrix without real eigenvectors fails to be triangulizable over \mathbb{R} , for example, $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
 - b Proof by induction on n: For an $n \times n$ matrix A we can choose a complex invertible $n \times n$ matrix P whose first column is an eigenvector for A. Then $P^{-1}AP = \begin{bmatrix} \lambda & \vec{v} \\ 0 & B \end{bmatrix}$. B is triangulizable, by induction hypothesis, that is, there is an invertible $(n-1) \times (n-1)$ matrix Q such that $Q^{-1}BQ = T$ is upper triangular. Now let $R = \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix}$. Then $R^{-1} \begin{bmatrix} \lambda & \vec{v} \\ 0 & B \end{bmatrix} R = \begin{bmatrix} 1 & 0 \\ 0 & Q^{-1} \end{bmatrix} \begin{bmatrix} \lambda & \vec{v} \\ 0 & B \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix} = \begin{bmatrix} \lambda & \vec{v}Q \\ 0 & T \end{bmatrix}$ is upper triangular. $R^{-1} \begin{bmatrix} \lambda & \vec{v} \\ 0 & B \end{bmatrix} R = R^{-1}P^{-1}APR = S^{-1}AS$, where S = PR, proving our claim.
- 8.1.46 a By definition of an upper triangular matrix, \vec{e}_1 is in ker U, \vec{e}_2 is in ker $(U^2), \ldots, \vec{e}_n$ is in ker (U^n) , so that all \vec{x} in \mathbb{C}^n are in ker (U^n) , that is, $U^n = 0$.

b By Exercise 45b, there exists an invertible S such that $S^{-1}AS = U$ is upper triangular. The diagonal entries of U are all zero, since A and U have the same eigenvalues; therefore $U^n = 0$ by part a. Now $A = SUS^{-1}$ and $A^n = SU^nS^{-1} = 0$, as claimed.

8.1.47 a For all
$$i, j, \left[\sum_{k=1}^{n} a_{ik} b_{kj} \right] \leq \sum_{k=1}^{n} |a_{ik} b_{kj}| = \sum_{k=1}^{n} |a_{ik}| |b_{kj}|$$

triangle inequality

b By induction on t: $|A^t| = |A^{t-1}A| \le |A^{t-1}| |A| \le |A|^{t-1} |A| = |A|^t$

part a by induction hypothesis

- 8.1.48 If $t \ge n-1$ then $(I_n+U)^t = I_n + \binom{t}{1}U + \binom{t}{2}U^2 + \dots + \binom{t}{n-1}U^{n-1}$, since $U^n = 0$. Now $\binom{t}{k} \le t^n$ for $k = 1, \dots, n-1$, so that $(I_n+U)^t \le t^n(I_n+U+\dots+U^{n-1})$, as claimed. Check that the formula holds for t < n-1 as well.
- 8.1.49 Let λ be the largest $|r_{ii}|$; note that $\lambda < 1$. Then $|R| = \begin{bmatrix} |r_{11}| & * \\ & \ddots & \\ 0 & |r_{nn}| \end{bmatrix} \le \begin{bmatrix} \lambda & & * \\ & \ddots & \\ 0 & & \lambda \end{bmatrix} = \lambda \begin{bmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{bmatrix} = \lambda (I_n + U)$, and $|R^t| \le |R|^t \le \lambda^t (I_n + U)^t \le \lambda^t t^n (I_n + U + \dots + U^{n-1})$.

 We learn in Calculus that $\lim_{t \to \infty} (\lambda^t t^n) = 0$, so that $\lim_{t \to \infty} (R^t) = 0$.
- 8.1.50 a From Exercise 45b we know that there is an invertible S and an upper triangular R such that $S^{-1}AS = R$, and $|r_{ii}| < 1$ for all i, since the diagonal entries of R are the eigenvalues of A. Now $\lim_{t \to \infty} R^t = 0$ by Exercise 49. Note that $A = SRS^{-1}$ and $A^t = SR^tS^{-1}$, so that $\lim_{t \to \infty} A^t = 0$, as claimed.
 - b See the remark after Definition 7.6.1.

Section 8.2

- 8.2.1 We have $a_{11} = \text{coefficient of } x_1^2 = 6, a_{22} = \text{coefficient of } x_2^2 = 8, a_{12} = a_{21} = \frac{1}{2} (\text{ coefficient of } x_1 x_2) = -\frac{7}{2}.$ So, $A = \begin{bmatrix} 6 & -\frac{7}{2} \\ -\frac{7}{2} & 8 \end{bmatrix}$
- 8.2.**2** $A = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}$
- $8.2.3 \quad A = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 4 & \frac{7}{2} \\ 3 & \frac{7}{2} & 5 \end{bmatrix}$

8.2.4
$$A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$$
, positive definite

8.2.5
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, indefinite (since $\det(A) < 0$)

8.2.6
$$A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$
, indefinite (since $\det(A) < 0$)

8.2.7
$$A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$
, indefinite (eigenvalues 2, -2, 3)

- 8.2.8 If $S^{-1}AS = D$ is diagonal, then $S^{-1}A^2S = D^2$, so that all eigenvalues of A^2 are ≥ 0 . So A^2 is positive semi-definite; it is positive definite if and only if A is invertible.
- 8.2.9 a $(A^2)^T = (A^T)^2 = (-A)^2 = A^2$, so that A^2 is symmetric.
 - b $q(\vec{x}) = \vec{x}^T A^2 \vec{x} = \vec{x}^T A A \vec{x} = -\vec{x}^T A^T A \vec{x} = -(A\vec{x}) \cdot (A\vec{x}) = -\|A\vec{x}\|^2 \le 0$ for all \vec{x} , so that A^2 is negative semi-definite. The eigenvalues of A^2 will be ≥ 0 .
 - c If \vec{v} is a complex eigenvector of A with eigenvalue λ , then $A^2\vec{v}=\lambda^2\vec{v}$, and $\lambda^2\leq 0$, by part b. Therefore, λ is *imaginary*, that is, $\lambda=bi$ for a real b. Thus, the zero matrix is the only skew-symmetric matrix that is diagonalizable over \mathbb{R} .
- $8.2. \mathbf{10} \quad L(\vec{x}) = (\vec{x} + \vec{v})^T A(\vec{x} + \vec{v}) \vec{x}^T A \vec{x} \vec{v}^T A \vec{v} = \vec{x}^T A \vec{x} + \vec{x}^T A \vec{v} + \vec{v}^T A \vec{x} + \vec{v}^T A \vec{v} \vec{x}^T A \vec{v} \vec{v}^T A \vec{v} = \vec{x}^T A \vec{v} + \vec{v}^T A \vec{x} = \vec{v}^T A \vec{x} + \vec{v}^T A \vec{x} = (2\vec{v}^T A) \vec{x},$

 \uparrow

note that $\vec{x}^T A \vec{v}$ is a scalar so that $\vec{x}^T A \vec{v} = (\vec{x}^T A \vec{v})^T = \vec{v}^T A^T \vec{x} = \vec{v}^T A \vec{x}$ if A is symmetric.

So L is linear with matrix $2\vec{v}^T A$.

- 8.2.11 The eigenvalues of A^{-1} are the reciprocals of those of A, so that A and A^{-1} have the same definiteness.
- 8.2.12 $\det(A)$ is the product of the two (real) eigenvalues. q is indefinite if an only if those have different signs, that is, their product is negative.

8.2.**13**
$$q(\vec{e_i}) = \vec{e_i} \cdot A\vec{e_i} = a_{ii} > 0$$

- 8.2.14 If det(A) is positive then both eigenvalues have the same sign, so that A is positive definite or negative definite. Since $\vec{e}_1 \cdot A\vec{e}_1 = a > 0$, A is in fact positive definite.
- 8.2.15 $A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$; eigenvalues $\lambda_1 = 7$ and $\lambda_2 = 2$

orthonormal eigenbasis
$$\vec{v}_1=\frac{1}{\sqrt{5}}\begin{bmatrix}2\\1\end{bmatrix},\,\vec{v}_2=\frac{1}{\sqrt{5}}\begin{bmatrix}-1\\2\end{bmatrix}$$

Figure 8.3: for Problem 8.2.15.

8.2.16
$$A = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}$$
; eigenvalues $\lambda_1 = \frac{1}{2}$, and $\lambda_2 = -\frac{1}{2}$ orthonormal eigenbasis $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\frac{1}{2}c_1^2 - \frac{1}{2}c_2^2 = 1$. (See Figure 8.4.)

8.2.17
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$$
, eigenvalues $\lambda_1 = 4$, $\lambda_2 = -1$ orthonormal eigenbasis $\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $4c_1^2 - c_2^2 = 1$ (hyperbola) (See Figure 8.5.)

8.2.18
$$A = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$$
, eigenvalues $\lambda_1 = 10$, $\lambda_2 = 5$ orthonormal eigenbasis $\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $10c_1^2 + 5c_2^2 = 1$. This is an ellipse, as shown in Figure 8.6.

8.2.19
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
; eigenvalues $\lambda_1 = 5$, $\lambda_2 = 0$ eigenvectors $\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

Figure 8.4: for Problem 8.2.16.

Figure 8.5: for Problem 8.2.17.

 $5c_1^2=1$ (a pair of lines) (See Figure 8.7.)

Note that $(x_1^2 + 4x_1x_2 + 4x_2^2) = (x_1 + 2x_2)^2 = 1$, so that $x_1 + 2x_2 = \pm 1$, and the two lines are $x_2 = \frac{1-x_1}{2}$ and $x_2 = \frac{-1-x_1}{2}$.

389

Copyright © 2013 Pearson Education, Inc.

Figure 8.6: for Problem 8.2.18.

Figure 8.7: for Problem 8.2.19.

8.2.20
$$A = \begin{bmatrix} -3 & 3 \\ 3 & 5 \end{bmatrix}$$
; eigenvalues $\lambda_1 = 6$ and $\lambda_2 = -4$

orthonormal eigenbasis
$$\vec{v}_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
, $\vec{v}_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

 $6c_1^2 - 4c_2^2 = 1$. This is a hyperbola, as shown in Figure 8.8.

8.2.21 a In each case, it is informative to think about the intersections with the three coordinate planes: $x_1 - x_2$, $x_1 - x_3$, and $x_2 - x_3$.

Figure 8.8: for Problem 8.2.20.

ullet] For the surface $x_1^2 + 4x_2^2 + 9x_3^2 = 1$, all these intersections are *ellipses*, and the surface itself is an *ellipsoid*.

This surface is connected and bounded; the points closest to the origin are $\pm \begin{bmatrix} 0 \\ 0 \\ \frac{1}{3} \end{bmatrix}$, and those farthest $\pm \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. (See Figure 8.9.)

Figure 8.9: for Problem 8.2.21a: $x_1^2 + 4x_2^2 + 9x_3^2 = 1$, an *ellipsoid* (not to scale).

•] In the case of $x_1^2 + 4x_2^2 - 9x_3^2 = 1$, the intersection with the $x_1 - x_2$ plane is an ellipse, and the two other intersections are hyperbolas. The surface is connected and not bounded; the points closest to the origin are

$$\pm \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$$
. (See Figure 8.10.)

Figure 8.10: for Problem 8.2.21a: $x_1^2 + 4x_2^2 - 9x_3^2 = 1$, a hyperboloid of one sheet (not to scale).

•] In the case $-x_1^2 - 4x_2^2 + 9x_3^2 = 1$, the intersection with the $x_1 - x_2$ plane is empty, and the two other intersections are hyperbolas. The surface consists of two pieces and is unbounded. The points closest to the origin are $\pm \begin{bmatrix} 0 \\ 0 \\ \frac{1}{3} \end{bmatrix}$. (See Figure 8.11.)

Figure 8.11: for Problem 8.2.21a: $-x_1^2 - 4x_2^2 + 9x_3^2 = 1$, a hyperboloid of two sheets (not to scale).

b
$$A = \begin{bmatrix} 1 & \frac{1}{2} & 1 \\ \frac{1}{2} & 2 & \frac{3}{2} \\ 1 & \frac{3}{2} & 3 \end{bmatrix}$$
 is positive definite, with three positive eigenvalues $\lambda_1, \lambda_2, \lambda_3$.

The surface is given by $\lambda_1 c_1^2 + \lambda_2 c_2^2 + \lambda_3 c_3^2 = 1$ with respect to the principal axis, an *ellipsoid*. To find the points closest to and farthest from the origin, use technology to find the eigenvalues and eigenvectors:

eigenvalues:
$$\lambda_1 \approx 0.56, \lambda_2 \approx 4.44, \lambda_3 = 1$$

unit eigenvectors:
$$\vec{v}_1 \approx \begin{bmatrix} 0.86 \\ 0.19 \\ -0.47 \end{bmatrix}$$
, $\vec{v}_2 \approx \begin{bmatrix} 0.31 \\ 0.54 \\ 0.78 \end{bmatrix}$, $\vec{v}_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

Equation:
$$0.56c_1^2 + 4.44c_2^2 + c_3^2 = 1$$

Farthest points when
$$c_1 = \pm \frac{1}{\sqrt{0.56}}$$
 and $c_2 = c_3 = 0$

Closest points when
$$c_2 = \pm \frac{1}{\sqrt{4.44}}$$
 and $c_1 = c_3 = 0$

Farthest points
$$\approx \pm \frac{1}{\sqrt{0.56}} \begin{bmatrix} 0.86\\0.19\\-0.47 \end{bmatrix} \approx \pm \begin{bmatrix} 1.15\\0.26\\-0.63 \end{bmatrix}$$

Closest points
$$\approx \pm \frac{1}{\sqrt{4.44}} \begin{bmatrix} 0.31\\ 0.54\\ 0.78 \end{bmatrix} \approx \pm \begin{bmatrix} 0.15\\ 0.26\\ 0.37 \end{bmatrix}$$

8.2.22
$$A = \begin{bmatrix} -1 & 0 & 5 \\ 0 & 1 & 0 \\ 5 & 0 & -1 \end{bmatrix}$$
; eigenvalues $\lambda_1 = 4$, $\lambda_2 = -6$, $\lambda_3 = 1$

Equation with respect to principal axis: $4c_1^2 - 6c_2^2 + c_3^2 = 1$, a hyperboloid of one sheet (see Figure 8.10).

Closest to origin when $c_1 = \pm \frac{1}{2}$, $c_2 = c_3 = 0$.

A unit eigenvector for eigenvalue 4 is $\vec{v} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, so that the desired points are $\pm \frac{1}{2} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \approx \pm \begin{bmatrix} 0.35 \\ 0 \\ 0.35 \end{bmatrix}$.

8.2.23 Yes;
$$M = \frac{1}{2}(A + A^T)$$
 is symmetric, and

$$\vec{x}^T M \vec{x} = \frac{1}{2} \vec{x}^T A \vec{x} + \frac{1}{2} \vec{x}^T A^T \vec{x} = \frac{1}{2} \vec{x}^T A \vec{x} + \frac{1}{2} \vec{x}^T A \vec{x} = \vec{x}^T A \vec{x}$$

Note that $\vec{x}^T A \vec{x}$ is a 1×1 matrix, so that $\vec{x}^T A \vec{x} = (\vec{x}^T A \vec{x})^T = \vec{x}^T A^T \vec{x}$.

8.2.**24**
$$q(\vec{e}_1) = \vec{e}_1 \cdot A\vec{e}_1 = \vec{e}_1 \cdot (\text{first column of } A) = a_{11}$$

8.2.25
$$q(\vec{v}) = \vec{v} \cdot A\vec{v} = \vec{v} \cdot (\lambda \vec{v}) = \lambda(\vec{v} \cdot \vec{v}) = \lambda$$

 \uparrow

 \vec{v} is a unit vector

8.2.26 False; If
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 then $q \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$.

8.2.27 Let $\vec{v}_1, \ldots, \vec{v}_n$ be an orthonormal eigenbasis for A with $A\vec{v}_i = \lambda_i \vec{v}_i$. We know that $q(\vec{v}_i) = \lambda_i$ (see Exercise 25), so that $q(\vec{v}_1) = \lambda_1$ and $q(\vec{v}_n) = \lambda_n$ are in the image.

We claim that all numbers between λ_n and λ_1 are in the image as well. To see this, apply the Intermediate Value Theorem to the continuous function $f(t) = q((\cos t)\vec{v}_n + (\sin t)\vec{v}_1)$ on $\left[0, \frac{\pi}{2}\right]$ (note that $f(0) = q(\vec{v}_n) = \lambda_n$ and $f\left(\frac{\pi}{2}\right) = q(\vec{v}_1) = \lambda_1$). (See Figure 8.12.)

Figure 8.12: for Problem 8.2.27.

The Intermediate Value Theorem tells us that for any c between λ_n and λ_1 , there is a t_0 such that $f(t_0) = q((\cos t_0)\vec{v}_n + (\sin t_0)\vec{v}_1) = c$. Note that $(\cos t_0)\vec{v}_n + (\sin t_0)\vec{v}_1$ is a unit vector. Now we will show that, conversely, $q(\vec{v})$ is on $[\lambda_n, \lambda_1]$ for all unit vectors \vec{v} . Write $\vec{v} = c_1\vec{v}_1 + \cdots + c_n\vec{v}_n$ and note that $\|\vec{v}\|^2 = c_1^2 + \cdots + c_n^2 = 1$. Then $q(\vec{v}) = \lambda_1c_1^2 + \lambda_2c_2^2 + \cdots + \lambda_nc_n^2 \leq \lambda_1c_1^2 + \lambda_1c_2^2 + \cdots + \lambda_1c_n^2 = \lambda_1$. Likewise, $q(\vec{v}) \geq \lambda_n$. We have shown that the image of S^{n-1} under q is the closed interval $[\lambda_n, \lambda_1]$.

8.2.28 The hint almost gives it away. Since D is a diagonal matrix with positive diagonal entries, we can write $D = D_1^2$, where D_1 is diagonal with positive diagonal entries (the square roots of the entries of D). Now $A = SDS^T = SD_1D_1S^T = SD_1(SD_1)^T = BB^T$ where $B = SD_1$. The columns of B are scalar multiples of the corresponding columns of S, so that they are orthogonal.

8.2.29 From Example 1 we have
$$S = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $D = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$. Let $D_1 = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ and $B = SD_1 = \begin{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 6 & 2 \\ -3 & 4 \end{bmatrix}$.

8.2.30 Define D_1 as in Exercise 28. Then $A = SDS^{-1} = SD_1D_1S^{-1} = (SD_1S^{-1})(SD_1S^{-1}) = B^2$, where $B = SD_1S^{-1}$. B is positive definite, since $S^{-1}BS = D_1$ is diagonal with positive diagonal entries.

8.2.31
$$S = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $D_1 = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ (see Exercise 29), so that $B = SD_1S^{-1} = \begin{bmatrix} 2.8 & -0.4 \\ -0.4 & 2.2 \end{bmatrix}$.

8.2.32 Recall that $a = q(\vec{e}_1) > 0$ and det $A = ac - b^2 = \lambda_1 \lambda_2 > 0$.

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} x & 0 \\ y & z \end{bmatrix} \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} = \begin{bmatrix} x^2 & xy \\ xy & y^2 + z^2 \end{bmatrix} \text{ means that } \begin{cases} x^2 = a \\ xy = b \\ y^2 + z^2 = c \end{cases}$$

It is required that x and z be positive. This system has the unique solution

$$x = \sqrt{a}$$

$$y = \frac{b}{x} = \frac{b}{\sqrt{a}}$$

$$z = \sqrt{c - y^2} = \sqrt{c - \frac{b^2}{a}} = \sqrt{\frac{ac - b^2}{a}}$$

8.2.33 Use the formulas for x, y, z derived in Exercise 32.

$$x = \sqrt{a} = \sqrt{8} = 2\sqrt{2}$$

$$y = \frac{b}{\sqrt{a}} = -\frac{2}{2\sqrt{2}} = -\frac{1}{\sqrt{2}}$$

$$z = \sqrt{\frac{ac - b^2}{a}} = \sqrt{\frac{36}{8}} = \frac{3}{\sqrt{2}}, \text{ so that}$$

$$L = \begin{bmatrix} 2\sqrt{2} & 0\\ -\frac{1}{\sqrt{2}} & \frac{3}{\sqrt{2}} \end{bmatrix}.$$

- 8.2.34 (i) implies (ii): See the hint at the end of the exercise.
 - (ii) implies (iii): det $A^{(m)}$ is the product of the (positive) eigenvalues.
 - (iii) implies (iv):

$$A = \begin{bmatrix} A^{(n-1)} & \vec{v} \\ \vec{v}^T & k \end{bmatrix} = \begin{bmatrix} B & 0 \\ \vec{x}^T & 1 \end{bmatrix} \begin{bmatrix} B^T & \vec{x} \\ 0 & t \end{bmatrix} = \begin{bmatrix} BB^T & B\vec{x} \\ \vec{x}^TB^T & \vec{x}^T\vec{x} + t \end{bmatrix}$$

The system $\begin{bmatrix} B\vec{x} = \vec{v} \\ \vec{x}^T\vec{x} + t = k \end{bmatrix}$ has the unique solution

$$\vec{x} = B^{-1}\vec{v}$$

$$t = k - \vec{x}^T \vec{x} = k - ||B^{-1} \vec{v}||^2.$$

Note that
$$t$$
 is positive since $0 < \det(A^{(n)}) = \det(A) = \det\begin{bmatrix} B & 0 \\ \vec{x}^T & 1 \end{bmatrix} \det\begin{bmatrix} B^T & \vec{x} \\ 0 & t \end{bmatrix} = (\det B)^2 \cdot t$. (iv) \Rightarrow (i)

$$\vec{x}^T A \vec{x} = \vec{x}^T L L^T \vec{x} = (L^T \vec{x})^T (L^T \vec{x}) = \|L^T \vec{x}\|^2 > 0 \text{ if } \vec{x} \neq \vec{0}, \text{ since } L \text{ is invertible.}$$

8.2.35 Solve the system
$$\begin{bmatrix} 4 & -4 & 8 \\ -4 & 13 & 1 \\ 8 & 1 & 26 \end{bmatrix} = \begin{bmatrix} x & 0 & 0 \\ y & w & 0 \\ z & t & s \end{bmatrix} \begin{bmatrix} x & y & z \\ 0 & w & t \\ 0 & 0 & s \end{bmatrix}$$

$$x^{2} = 4, \text{ so } x = 2$$

$$2y = -4, \text{ so } y = -2$$

$$2z = 8, \text{ so } z = 4$$

$$4 + w^{2} = 13, \text{ so } w = 3$$

$$-8 + 3t = 1, \text{ so } t = 3$$

$$16 + 9 + s^{2} = 26, \text{ so } s = 1$$

$$L = \begin{bmatrix} 2 & 0 & 0 \\ -2 & 3 & 0 \\ 4 & 3 & 1 \end{bmatrix}$$

8.2.36 If
$$A = QR$$
, then $A^T A = (QR)^T QR = R^T Q^T QR = R^T R = LL^T$, $L = R^T$.

8.2.37 $\frac{\partial q}{\partial x_1} = 2ax_1 + bx_2$ and $\frac{\partial q}{\partial x_2} = bx_1 + 2cx_2$, so that $q_{11} = \frac{\partial^2 q}{\partial x_1^2} = 2a$, $q_{22} = \frac{\partial^2 q}{\partial x_2^2} = 2c$, and $q_{12} = \frac{\partial^2 q}{\partial x_1 \partial x_2} = b$, and $D = \det \begin{bmatrix} q_{11} & q_{12} \\ q_{12} & q_{22} \end{bmatrix} = \det \begin{bmatrix} 2a & b \\ b & 2c \end{bmatrix} = 4ac - b^2 > 0$.

The matrix $A = \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix}$ of q is positive definite, since a > 0 and $\det(A) = \frac{1}{4}D > 0$. This means, by definition,

that q has a minimum at $\vec{0}$, since $q(\vec{x}) > 0 = q(\vec{0})$ for all $\vec{x} \neq \vec{0}$

- 8.2.38 The eigenvalues of B are p-q and nq+p-q=p+(n-1)q, so that B is positive definite if p-q>0 and p + (n-1)q > 0.
- 8.2.39 If $\vec{v}_1, \ldots, \vec{v}_n$ is such a basis consisting of unit vectors, and we let $A = [\vec{v}_1 \cdots \vec{v}_n]$, then

$$A^TA = \begin{bmatrix} 1 & \cos\theta & \cdots & \cos\theta \\ \cos\theta & 1 & \ddots & \cos\theta \\ \vdots & \ddots & \ddots & \vdots \\ \cos\theta & \cos\theta & \cdots & 1 \end{bmatrix} \text{ is positive definite, so that, by Exercise 38, } 1 - \cos\theta > 0 \text{ and } 1 + (n-1)\cos\theta > 0$$
 or $1 > \cos\theta > \frac{1}{1-n}$ or $0 < \theta < \arccos\left(\frac{1}{1-n}\right)$.

Conversely, if θ is in this range, then the matrix $\begin{bmatrix} 1 & \cos \theta & \cdots & \cos \theta \\ \cos \theta & 1 & \ddots & \cos \theta \\ \vdots & \ddots & \ddots & \vdots \\ \cos \theta & \cos \theta & \cdots & 1 \end{bmatrix}$ is positive definite, so that it has a

Cholesky factorization LL^T . The columns of L^T give us a basis with the desired property.

- 8.2.40 Let λ be the smallest eigenvalue of A. If we let $k=1-\lambda$, then the smallest eigenvalue of the matrix $A+kI_n$ will be $\lambda + k = 1$, so that all the eigenvalues of $A + kI_n$ will be positive. Thus matrix $A + kI_n$ will be positive definite, by Theorem 8.2.4.
- 8.2.41 The functions x_1^2, x_1x_2, x_2^2 form a basis of Q_2 , so that $\dim(Q_2) = 3$.
- 8.2.42 The functions $x_i x_j$ form a basis of Q_n , where $1 \le i \le j \le n$. A little combinatorics shows that there are $1+2+3+\cdots+n=n(n+1)/2$ such functions, so that $\dim(Q_n)=n(n+1)/2$
- 8.2.43 Note that $T(ax_1^2 + bx_1x_2 + cx_2^2) = ax_1^2$ (we let $x_2 = 0$). Thus $\operatorname{im}(T) = \operatorname{span}(x_1^2)$, $\operatorname{rank}(T) = 1$, $\operatorname{ker}(T) = 1$ $\operatorname{span}(x_1x_2, x_2^2)$, $\operatorname{nullity}(T) = 2$.
- $\operatorname{nullity}(T) = 0$ (T is an isomorphism).
- 8.2.45 Note that $T(ax_1^2 + bx_2^2 + cx_3^2 + dx_1x_2 + ex_1x_3 + fx_2x_3) = ax_1^2 + b + c + dx_1 + ex_1 + f$ (we let $x_2 = x_3 = 1$). Thus $\operatorname{im}(T) = P_2$ and $\operatorname{rank}(T) = 3$. The kernel of T consists of the quadratic forms with a = 0, d + e = 0, and b + c + f = 0 (consider the coefficients of x_1^2 , x_1 , and 1). The general element of the kernel is $q(x_1, x_2, x_3) = (-c f)x_2^2 + cx_3^2 ex_1x_2 + ex_1x_3 + fx_2x_3 = c(x_3^2 x_2^2) + e(x_1x_3 x_1x_2) + f(x_2x_3 x_2^2)$. Thus $\operatorname{ker}(T) = \operatorname{span}(x_3^2 x_2^2, x_1x_3 x_1x_2, x_2x_3 x_2^2)$ and $\operatorname{nullity}(T) = 3$.
- 8.2.46 Note that $T(ax_1^2 + bx_2^2 + cx_3^2 + dx_1x_2 + ex_1x_3 + fx_2x_3) = ax_1^2 + bx_2^2 + cx_1^2 + dx_1x_2 + ex_1^2 + fx_1x_2$ (we let $x_3 = x_1$). Thus $\operatorname{im}(T) = Q_2$ and $\operatorname{rank}(T) = 3$. The kernel of T consists of the quadratic forms with

 $\begin{array}{l} a+c+e=0, b=0, \text{ and } d+f=0 \text{ (consider the coefficients of } x_1^2, x_2^2, \text{ and } x_1x_2). \end{array} \\ \text{The general element of the kernel is } q(x_1, x_2, x_3) = (-c-e)x_1^2 + cx_3^2 - fx_1x_2 + ex_1x_3 + fx_2x_3 = c(x_3^2 - x_1^2) + e(x_1x_3 - x_1^2) + f(x_2x_3 - x_1x_2). \\ \text{Thus ker}(T) = \text{span}(x_3^2 - x_1^2, x_1x_3 - x_1^2, x_2x_3 - x_1x_2) \text{ and nullity}(T) = 3. \end{array}$

- 8.2.47 $T(A+B)(\vec{x}) = \vec{x}^T(A+B)\vec{x} = \vec{x}^T A \vec{x} + \vec{x}^T B \vec{x}$ equals $(T(A) + T(B))(\vec{x})$
 - $=T(A)(\vec{x})+T(B)(\vec{x})=\vec{x}^TA\vec{x}+\vec{x}^TB\vec{x}$. The verification of the second axiom of linearity is analogous.

By definition of a quadratic form, $\operatorname{im}(T) = Q_n$: For every quadratic form q in Q_n there is a symmetric $n \times n$ matrix A such that q = T(A). Thus, the rank of T is $\dim(Q_n) = n(n+1)/2$ (see Exercise 42).

By the rank nullity theorem,

$$\operatorname{nullity}(T) = \dim(\mathbb{R}^{n \times n}) - \operatorname{rank}(T) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$$

Next, let's think about the kernel of T. In our solution to Exercise 23 we observed that $T(A) = T(\frac{1}{2}(A + A^T))$; note that matrix $\frac{1}{2}(A + A^T)$ is symmetric. Now $\frac{1}{2}(A + A^T) = 0$ if (and only if) $A^T = -A$, that is, if A is skew-symmetric. Thus the skew-symmetric matrices are in the kernel of T. Since the space of skew-symmetric matrices has the same dimension as $\ker(T)$, namely, n(n-1)/2, we can conclude that $\ker(T)$ consists of all skew-symmetric $n \times n$ matrices.

8.2.48 The matrix of T with respect to the basis $x_1^2, x_1 x_2, x_2^2$ is $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, with the eigenvalues 1,1, -1 and

corresponding eigenvectors $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. Thus x_1x_2 and $x_1^2 + x_2^2$ are eigenfunctions with eigenvalue 1, and $x_1^2 - x_2^2$ has eigenvalue -1. Yes, T is diagonalizable, since there is an eigenbasis.

8.2.49 The matrix of T with respect to the basis $x_1^2, x_1 x_2, x_2^2$ is $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$, with the eigenvalues 1,2,4 and

corresponding eigenvectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Thus $x_1^2, x_1 x_2, x_2^2$ are eigenfunctions with eigenvalues 1, 2, and 4, respectively. Yes, T is diagonalizable, since there is an eigenbasis.

8.2.50 The matrix of T with respect to the basis $x_1^2, x_1 x_2, x_2^2$ is $A = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$, with the eigenvalues 0, 2, -2 and

corresponding eigenvectors $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\1 \end{bmatrix}.$

Thus $x_1^2 - x_2^2$, $x_1^2 + 2x_1x_2 + x_2^2$, $x_1^2 - 2x_1x_2 + x_2^2$ are eigenfunctions with eigenvalues 0, 2, and -2, respectively. Yes, T is diagonalizable, since there is an eigenbasis.

8.2.51 If B is negative definite, then A = -B is positive definite, so that the determinants of all principal submatrices $A^{(m)}$ are positive. Thus $\det(B^{(m)}) = \det(-A^{(m)}) = (-1)^m \det(A^{(m)})$ is positive for even m and negative for odd m.

- 8.2.52 Because $a_{ij} = \vec{e}_j^T A \vec{e}_i$, we have $q(\vec{e}_i) = a_{ii}$. Further, using linearity $q(\vec{e}_i + \vec{e}_j) = (\vec{e}_i + \vec{e}_j)^T A (\vec{e}_i + \vec{e}_j) = \vec{e}_i^T A \vec{e}_i + \vec{e}_i^T A \vec{e}_j + \vec{e}_j^T A \vec{e}_i + \vec{e}_j^T A \vec{e}_j = q(\vec{e}_i) + q(\vec{e}_j) + 2a_{ij}$. Solving for a_{ij} gives $a_{ij} = \frac{1}{2} (q(\vec{e}_i + \vec{e}_j) q(\vec{e}_i) q(\vec{e}_j))$.
- 8.2.53 a. Because $p(x,y) = q(x\vec{e}_i + y\vec{e}_j) = (x\vec{e}_i + y\vec{e}_j)^T A(x\vec{e}_i + y\vec{e}_j) = a_{ii}x^2 + a_{ij}xy + a_{ji}yx + a_{jj}y^2$, this is a quadratic form with matrix B.
 - b. If q is positive definite and $(x, y) \neq (0, 0)$, then $p(x, y) = q(x\vec{e}_i + y\vec{e}_j) > 0$.
 - c. If q is positive semidefinite, then $p(x,y) = q(x\vec{e}_i + y\vec{e}_j) \ge 0$ for all x, y.
 - d. If $q(x_1, x_2, x_3) = x_1^2 + x_2^2 x_3^2$ and we let i = 1, j = 2, then $p(x, y) = q(x, y, 0) = x^2 + y^2$ is positive definite.
- 8.2.54 The entries $a_{1j} = a_{j1}$ must all be 0. To see that $a_{1j} = 0$, consider the function $p(x,y) = q(x\vec{e}_1 + y\vec{e}_j)$ defined in Exercise 8.2.53. By Exercise 53a, the symmetric matrix of p will be $\begin{bmatrix} a_{11} & a_{1j} \\ a_{j1} & a_{jj} \end{bmatrix} = \begin{bmatrix} 0 & a_{1j} \\ a_{j1} & a_{jj} \end{bmatrix}$. This matrix is positive semidefinite, by Exercise 53c, implying that $\det \begin{bmatrix} 0 & a_{1j} \\ a_{j1} & a_{jj} \end{bmatrix} = -a_{1j}^2 \geq 0$. Thus $a_{1j} = 0$, as claimed.
- 8.2.55 As the hint suggests, it suffices to prove that $a_{ij} < a_{ii}$ or $a_{ij} < a_{jj}$, implying that for every entry off the diagonal there exists a larger entry on the diagonal. Now $q(\vec{e}_i \vec{e}_j) = (\vec{e}_i \vec{e}_j)^T A(\vec{e}_i \vec{e}_j) = a_{ii} 2a_{ij} + a_{jj} > 0$, or, $a_{ii} + a_{jj} > 2a_{ij}$, proving the claim.
- 8.2.56 Let $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ be the eigenvalues of A. In Exercise 8.2.27 we see that the range of q on unit vectors is the interval $[\lambda_n, \lambda_1]$. Since $a_{11} = q(\vec{e_1})$ is in that range, we must have $a_{11} \leq \lambda_1$, as claimed.
- 8.2.57 Working in coordinates with respect to an orthonormal eigenbasis for A, we can write the equation $q(\vec{x}) = 1$ as $\lambda_1 c_1^2 + \lambda_2 c_2^2 + \lambda_3 c_3^2 = 1$, where the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ are positive. This level surface is an ellipsoid.
- 8.2.58 Working in coordinates with respect to an orthonormal eigenbasis of A, we can write the equation $q(\vec{x}) = 1$ as $\lambda_1 c_1^2 + \lambda_2 c_2^2 = 1$, where the eigenvalues λ_1 and λ_2 are positive. This level surface is a cylinder.
- 8.2.59 Working in coordinates with respect to an orthonormal eigenbasis of A, we can write the equation $q(\vec{x}) = 1$ as $\lambda_1 c_1^2 = 1$, where the eigenvalue λ_1 is positive. This level surface is a pair of parallel planes, $c_1 = \pm 1/\sqrt{\lambda_1}$
- 8.2.60 Working in coordinates with respect to an orthonormal eigenbasis of A, we can write the equation $q(\vec{x}) = 1$ as $\lambda_1 c_1^2 + \lambda_2 c_2^2 + \lambda_3 c_3^2 = 1$, where the eigenvalue λ_1 is positive, while λ_2 and λ_3 are negative. This level surface is a hyperboloid of two sheets.
- 8.2.61 Working in coordinates with respect to an orthonormal eigenbasis of A, we can write the equation $q(\vec{x}) = 1$ as $\lambda_1 c_1^2 + \lambda_2 c_2^2 + \lambda_3 c_3^2 = 1$, where the eigenvalues λ_1 and λ_2 are positive, while λ_3 is negative. This level surface is a hyperboloid of one sheet.
- 8.2.62 Working in coordinates with respect to an orthonormal eigenbasis of A, we can write the equation $q(\vec{x}) = 0$ as $\lambda_1 c_1^2 + \lambda_2 c_2^2 + \lambda_3 c_3^2 = 0$, where the eigenvalues λ_1 and λ_2 are positive, while λ_3 is negative. This level surface is a cone.
- 8.2.63 Note that $\vec{w}_i \cdot \vec{w}_i = \frac{1}{\lambda_i}$. Now $q(c_1\vec{w}_1 + ... + c_n\vec{w}_n)$ = $(c_1\vec{w}_1 + ... + c_n\vec{w}_n) \cdot A(c_1\vec{w}_1 + ... + c_n\vec{w}_n) = (c_1\vec{w}_1 + ... + c_n\vec{w}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_nc_n\vec{w}_n) = \lambda_1c_1^2\frac{1}{\lambda_1} + ... + c_n\vec{w}_n$

$$\lambda_n c_n^2 \frac{1}{\lambda_n} = c_1^2 + \dots + c_n^2$$
, as claimed.

8.2.64 We will use the strategy outlined in Exercise 8.2.63. The symmetric matrix of q is $A = \begin{bmatrix} 8 & -2 \\ -2 & 5 \end{bmatrix}$, with an orthonormal eigenbasis $\vec{v}_1 = \frac{1}{\sqrt{5}}\begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{5}}\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, with associated eigenvalues $\lambda_1 = 9$ and $\lambda_2 = 4$. Thus the orthogonal basis $\vec{w}_1 = \frac{1}{\sqrt{\lambda_1}}\vec{v}_1 = \frac{1}{3\sqrt{5}}\begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\vec{w}_2 = \frac{1}{\sqrt{\lambda_2}}\vec{v}_2 = \frac{1}{2\sqrt{5}}\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ has the required property. (See Figure 8.13.)

Figure 8.13: for Problem 8.2.64.

- 8.2.65 Working in coordinates c_1, c_2 with respect to an orthonormal eigenbasis \vec{v}_1, \vec{v}_2 for A, we can write $q(\vec{x}) = \lambda_1 c_1^2 + \lambda_2 c_2^2$, where the eigenvalue λ_1 is positive while λ_2 is negative. We define the orthogonal vectors $\vec{w}_1 = \frac{1}{\sqrt{\lambda_1}} \vec{v}_1$ and $\vec{w}_2 = \frac{1}{\sqrt{-\lambda_2}} \vec{v}_2$. Note that $\vec{w}_1 \cdot \vec{w}_1 = \frac{1}{\lambda_1}$ and $\vec{w}_2 \cdot \vec{w}_2 = \frac{1}{(-\lambda_2)}$. Now $q(c_1\vec{w}_1 + c_2\vec{w}_2) = (c_1\vec{w}_1 + c_2\vec{w}_2) \cdot (\lambda_1 c_1\vec{w}_1 + \lambda_2 c_2\vec{w}_2) = \lambda_1 c_1^2 \frac{1}{\lambda_1} + \lambda_2 c_2^2 \frac{1}{(-\lambda_2)} = c_1^2 c_2^2$, as claimed.
- 8.2.66 We will use the strategy outlined in Exercise 8.2.65. The symmetric matrix of q is $A = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix}$, with an orthonormal eigenbasis $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, with associated eigenvalues $\lambda_1 = 8$ and $\lambda_2 = -2$. Thus the orthogonal basis $\vec{w}_1 = \frac{1}{\sqrt{\lambda_1}} \vec{v}_1 = \frac{1}{4} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\vec{w}_2 = \frac{1}{\sqrt{-\lambda_2}} \vec{v}_2 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ has the required property that $q(c_1\vec{w}_1 + c_2\vec{w}_2) = c_1^2 c_2^2$. (See Figure 8.14.)
- 8.2.67 Consider an orthonormal eigenbasis $\vec{v}_1, ..., \vec{v}_n$ for A with associated eigenvalues $\lambda_1, ..., \lambda_n$, such that the eigenvalues $\lambda_1, ..., \lambda_p$ are positive, $\lambda_{p+1}, ..., \lambda_r$ are negative, and the remaining eigenvalues are 0. Define a

Figure 8.14: for Problem 8.2.66.

new orthogonal eigenbasis $\vec{w}_1, ..., \vec{w}_n$ by setting $\vec{w}_i = \left(1 \middle/ \sqrt{|\lambda_i|}\right) \vec{v}_i$ for i = 1, ..., r and $\vec{w}_i = \vec{v}_i$ for i = r+1, ..., n. Note that $\vec{w}_i \cdot \vec{w}_i = 1 \middle/ \lambda_i$ for i = 1, ..., p and $\vec{w}_i \cdot \vec{w}_i = 1 \middle/ (-\lambda_i)$ for i = p+1, ..., r. Now $q(c_1\vec{w}_1 + ... + c_p\vec{w}_p + ... + c_r\vec{w}_r + ... + c_n\vec{w}_n) = (c_1\vec{w}_1 + ... + c_p\vec{w}_p + ... + c_r\vec{w}_r + ... + c_n\vec{w}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_p + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot (\lambda_1c_1\vec{w}_1 + ... + \lambda_pc_p\vec{w}_n + ... + c_n\vec{v}_n) \cdot ($

- 8.2.68 $p(\vec{x}) = q(L(\vec{x})) = q(R\vec{x}) = (R\vec{x})^T A(R\vec{x}) = \vec{x}^T (R^T A R) \vec{x}$, proving that p is a quadratic form with symmetric matrix $R^T A R$.
- 8.2.69 If A is positive definite, then $\vec{x}^T \left(R^T A R \right) \vec{x} = \left(R \vec{x} \right)^T A \left(R \vec{x} \right) \geq 0$ for all \vec{x} , meaning that $R^T A R$ is positive semidefinite. If A is positive definite and $\ker R = \left\{ \vec{0} \right\}$, then $\vec{x}^T \left(R^T A R \right) \vec{x} = \left(R \vec{x} \right)^T A \left(R \vec{x} \right) > 0$ for all nonzero \vec{x} , meaning that $R^T A R$ is positive definite. Conclusion: $R^T A R$ is always positive semidefinite, and $R^T A R$ is positive definite if (and only if) $\ker R = \left\{ \vec{0} \right\}$, meaning that the rank of R is m.
- 8.2.70 Since A is indefinite, there exist vectors \vec{v}_1 and \vec{v}_2 in \mathbb{R}^n such that $\vec{v}_1^T A \vec{v}_1 > 0$ and $\vec{v}_2^T A \vec{v}_2 < 0$. Since the $n \times m$ matrix R has rank n, we know that the image of R is all of \mathbb{R}^n , so that there exist vectors \vec{w}_1 and \vec{w}_2 in \mathbb{R}^m with $R\vec{w}_1 = \vec{v}_1$ and $R\vec{w}_2 = \vec{v}_2$. Now $\vec{w}_1^T R^T A R \vec{w}_1 = (R\vec{w}_1)^T A (R\vec{w}_1) = \vec{v}_1^T A \vec{v}_1 > 0$ and $\vec{w}_2^T R^T A R \vec{w}_2 = \vec{v}_2^T A \vec{v}_2 < 0$, proving that matrix $R^T A R$ is indefinite.
- 8.2.71 Anything can happen. Consider the example $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $R_1 = I_2$, $R_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $R_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then

 $R_1^TAR_1=A$ is indefinite, $R_2^TAR_2=[1]$ is positive definite, and $R_3^TAR_3=[-1]$ is negative definite.

Section 8.3

- 8.3.1 $\sigma_1 = 2, \sigma_2 = 1$
- 8.3.2 The image of the unit circle is the unit circle, since the transformation defined by A preserves length. Thus $\sigma_1 = \sigma_2 = 1$ by Theorem 8.3.2.
- 8.3.3 $A^T A = I_n$; the eigenvalues of $A^T A$ are all 1, so that the singular values of A are all 1.
- 8.3.4 $A^TA = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, with eigenvalues $\lambda_{1,2} = \frac{3\pm\sqrt{5}}{2}$. The singular values of A are $\sigma_1 = \sqrt{\frac{3+\sqrt{5}}{2}} = \frac{1+\sqrt{5}}{2} \approx 1.62$ and $\sigma_2 = \sqrt{\frac{3-\sqrt{5}}{2}} = \frac{-1+\sqrt{5}}{2} \approx 0.62$.
- 8.3.5 $A^TA = \begin{bmatrix} p^2 + q^2 & 0 \\ 0 & p^2 + q^2 \end{bmatrix}$, with eigenvalues $\lambda_1 = \lambda_2 = p^2 + q^2$. The singular values of A are $\sigma_1 = \sigma_2 = \sqrt{p^2 + q^2}$. A represents a rotation combined with a scaling, with a scaling factor of $\sqrt{p^2 + q^2}$, so that the image of the unit circle is a circle with radius $\sqrt{p^2 + q^2}$.
- 8.3.6 The eigenvalues of A^TA are $\lambda_1 = 25$ and $\lambda_2 = 0$, so that the singular values of A are $\sigma_1 = 5$ and $\sigma_2 = 0$ (these are also the eigenvalues of A; compare with Exercise 24).

 $E_5 = \operatorname{span} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, so that $\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ works. The image of the unit circle is the line segment connecting the tips of $A\vec{v}_1 = 5\vec{v}_1$ and $A(-\vec{v}_1) = -5\vec{v}_1$. See Figure 8.15.

Figure 8.15: for Problem 8.3.6.

8.3.7
$$A^T A = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

 $\lambda_1 = 4, \lambda_2 = 1; \sigma_1 = 2, \sigma_2 = 1$

eigenvectors of
$$A^TA$$
: $\vec{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{u}_1 = \frac{1}{\sigma_1}(A\vec{v}_1) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\vec{u}_2 = \frac{1}{\sigma_2}(A\vec{v}_2) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, so that $U = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$8.3.8 \quad A^{T}A = \begin{bmatrix} p^{2} + q^{2} & 0 \\ 0 & p^{2} + q^{2} \end{bmatrix}; \lambda_{1} = \lambda_{2} = p^{2} + q^{2}; \sigma_{1} = \sigma_{2} = \sqrt{p^{2} + q^{2}}$$
 eigenvectors of $A^{T}A$: $\vec{v}_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \vec{v}_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \vec{u}_{1} = \frac{1}{\sigma_{1}}A\vec{v}_{1} = \frac{1}{\sqrt{p^{2} + q^{2}}}\begin{bmatrix} p \\ q \end{bmatrix}, \ \vec{u}_{2} = \frac{1}{\sigma_{2}}A\vec{v}_{2} = \frac{1}{\sigma_{2}}A\vec{v}_{2} = \frac{1}{\sqrt{p^{2} + q^{2}}}\begin{bmatrix} -q \\ p \end{bmatrix}, \text{ so that } U = \frac{1}{\sqrt{p^{2} + q^{2}}}\begin{bmatrix} p & -q \\ q & p \end{bmatrix}, \Sigma = (\sqrt{p^{2} + q^{2}})I_{2}, V = I_{2}.$

8.3.9
$$A^T A = \begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix}$$
 (See Exercise 6)

 $\lambda_1 = 25, \, \lambda_2 = 0; \, \sigma_1 = 5, \, \sigma_2 = 0; \, \text{eigenvectors of } A^T A :$

$$\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \ \vec{u}_1 = \frac{1}{\sigma_1} A \vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \vec{u}_2 = \text{a unit vector orthogonal to}$$

$$\vec{u}_1 = \tfrac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix} \text{ so that } U = V = \tfrac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, \, \Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix}.$$

8.3.10 In Example 4 we found $\begin{bmatrix} 6 & 2 \\ -7 & 6 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$; now take the transpose of both sides:

$$\begin{bmatrix} 6 & -7 \\ 2 & 6 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \end{pmatrix}.$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow T$$

$$U \qquad \qquad \Sigma \qquad \qquad V^T$$

8.3.11
$$A^TA = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$
; $\lambda_1 = 4, \ \lambda_2 = 1; \ \sigma_1 = 2, \ \sigma_2 = 1$ eigenvectors of A^TA :

$$\vec{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \vec{u}_1 = \frac{1}{\sigma_1} A \vec{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \vec{u}_2 = \frac{1}{\sigma_2} A \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \vec{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

$$U = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \, \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \, V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

8.3.12 In Example 5 we see that
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}.$$

Now take the transpose of both sides.

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \end{pmatrix}$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$U \qquad \qquad \Sigma \qquad \qquad V^T$$

8.3.13
$$A^T A = \begin{bmatrix} 37 & 16 \\ 16 & 13 \end{bmatrix}$$
; $\lambda_1 = 45$, $\lambda_2 = 5$; $\sigma_1 = 3\sqrt{5}$, $\sigma_2 = \sqrt{5}$ eigenvectors of $A^T A$:

$$\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1 \end{bmatrix}, \ \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -1\\2 \end{bmatrix}, \ \vec{u}_1 = \frac{1}{\sigma_1} A \vec{v}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}, \ \vec{v}_2 = \frac{1}{\sigma_2} A \vec{v}_2 = \begin{bmatrix} 0\\1 \end{bmatrix},$$
 so that

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \, \Sigma = \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix}, \, V = \tfrac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}.$$

8.3.14
$$A^T A = \begin{bmatrix} 4 & 6 \\ 6 & 13 \end{bmatrix}; \lambda_1 = 16, \lambda_2 = 1; \sigma_1 = 4, \sigma_2 = 1$$

eigenvectors of
$$A^T A : \vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \ \vec{u}_1 = \frac{1}{\sigma_1} A \vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ \vec{u}_2 = \frac{1}{\sigma_2} A \vec{v}_2$$

$$=\frac{1}{\sqrt{5}}\begin{bmatrix} -1\\2 \end{bmatrix}$$
, so that

$$U = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}, \, \Sigma = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}, \, V = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}.$$

- 8.3.15 If $A\vec{v}_1 = \sigma_1\vec{u}_1$ and $A\vec{v}_2 = \sigma_2\vec{u}_2$, then $A^{-1}\vec{u}_1 = \frac{1}{\sigma_1}\vec{v}_1$ and $A^{-1}\vec{u}_2 = \frac{1}{\sigma_2}\vec{v}_2$, so that the singular values of A^{-1} are the reciprocals of the singular values of A.
- 8.3.16 If $A = U\Sigma V^T$ then $A^{-1} = V\Sigma^{-1}U^T$ and $(A^{-1})^TA^{-1} = U(\Sigma^{-1})^2U^{-1}$. Thus $(A^{-1})^TA^{-1}$ is similar to $(\Sigma^{-1})^2$, so that the eigenvalues of $(A^{-1})^TA^{-1}$ are the squares of the reciprocals of the singular values of A. It follows that the singular values of A^{-1} are the reciprocals of those of A.

8.3.17 We need to check that
$$A\left(\frac{\vec{b}\cdot\vec{u}_1}{\sigma_1}\vec{v}_1+\cdots+\frac{\vec{b}\cdot\vec{u}_m}{\sigma_m}\vec{v}_m\right)=\operatorname{proj}_{\mathrm{im}A}\vec{b}$$
. (see Page 239).

But
$$A\left(\frac{\vec{b}\cdot\vec{u}_1}{\sigma_1}\vec{v}_1+\cdots+\frac{\vec{b}\cdot\vec{u}_m}{\sigma_m}\vec{v}_m\right)=\frac{\vec{b}\cdot\vec{u}_1}{\sigma_1}A\vec{v}_1+\cdots+\frac{\vec{b}\cdot\vec{u}_m}{\sigma_m}A\vec{v}_m=(\vec{b}\cdot\vec{u}_1)\vec{u}_1+\cdots+(\vec{b}\cdot\vec{u}_m)\vec{u}_m$$

= $\operatorname{proj}_{\operatorname{im} A} \vec{b}$, since $\vec{u}_1, \dots, \vec{u}_m$ is an orthonormal basis of $\operatorname{im}(A)$ (see Theorem 5.1.5).

8.3.18
$$\vec{b} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
, $\vec{u}_1 = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\vec{u}_2 = \frac{1}{2} \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$, $\vec{v}_1 = \frac{1}{5} \begin{bmatrix} 3\\-4 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{5} \begin{bmatrix} 4\\3 \end{bmatrix}$, $\sigma_1 = 2, \sigma_2 = 1$, so that

$$\vec{x}^* = \frac{\vec{b} \cdot \vec{u}_1}{\sigma_1} \vec{v}_1 + \frac{\vec{b} \cdot \vec{u}_2}{\sigma_2} \vec{v}_2 = \begin{bmatrix} -0.1\\ -3.2 \end{bmatrix}.$$

- 8.3.19 $\vec{x} = c_1 \vec{v}_1 + \dots + c_m \vec{v}_m$ is a least-squares solution if $A\vec{x} = c_1 A\vec{v}_1 + \dots + c_m A\vec{v}_m = c_1 \sigma_1 \vec{u}_1 + \dots + c_r \sigma_r \vec{u}_r = \text{proj}_{\text{im}A} \vec{b}$. But $\text{proj}_{\text{im}A} \vec{b} = (\vec{b} \cdot \vec{u}_1) \vec{u}_1 + \dots + (\vec{b} \cdot \vec{u}_r) \vec{u}_r$, since $\vec{u}_1, \dots, \vec{u}_r$ is an orthonormal basis of im(A). Comparing the coefficients of \vec{u}_i above we find that it is required that $c_i \sigma_i = \vec{b} \cdot \vec{u}_i$ or $c_i = \frac{\vec{b} \cdot \vec{u}_i}{\sigma_i}$, for $i = 1, \dots, r$, while no condition is imposed on c_{r+1}, \dots, c_m . The least-squares solutions are of the form $\vec{x}^* = \frac{b \cdot \vec{u}_1}{\sigma_1} \vec{v}_1 + \dots + \frac{\vec{b} \cdot \vec{u}_r}{\sigma_r} \vec{v}_r + c_{r+1} \vec{v}_{r+1} + \dots + c_m \vec{v}_m$, where c_{r+1}, \dots, c_m are arbitrary (see Exercise 17 for a special case).
- 8.3.20 a $A = U\Sigma V^T = UV^TV\Sigma V^T = QS$, where $Q = UV^T$ and $S = V\Sigma V^T$. Note that Q is orthogonal, being the product of orthogonal matrices; S is symmetric as $S^T = (V^T)^T\Sigma^TV^T = V\Sigma V^T = S$; and S is similar to Σ , so that the eigenvalues of S are the (nonnegative) diagonal entries of Σ .

b Yes, write $A = U\Sigma V^T = U\Sigma U^T UV^T = S_1Q_1$ where $S_1 = U\Sigma U^T$ and $Q_1 = UV^T$.

$$8.3.21 \quad A = \underbrace{\frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix}}_{\Sigma} \underbrace{\left(\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}\right)}_{V^{T}}$$

$$= \underbrace{\frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}}_{U} \underbrace{\left(\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}\right)}_{V^{T}} \underbrace{\left(\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}\right)}_{\Sigma} \underbrace{\left(\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}\right)}_{\Sigma} \underbrace{\left(\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}\right)}_{V^{T}}$$

$$= \underbrace{\frac{1}{5} \begin{bmatrix} 4 & 3 \\ -3 & 4 \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}}_{S}$$

8.3.22 a. T_1 is the orthogonal projection onto the plane perpendicular to the vector \vec{v} . T_2 scales by the length of the vector \vec{v} and T_3 is a rotation about the line through the origin spanned by \vec{v} by a rotation angle $\pi/2$. Because $Q = A_3$ is orthogonal and $S = A_2A_1$ is symmetric this is a polar decomposition: A = QS. b. Here, A_1 represents the orthogonal projection onto the xz plane, A_2 represents a scaling by a factor of 2, and A_3 represents a rotation about the y axis through an angle of $\pi/2$, counterclockwise as viewed from the positive y axis:

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}.$$

$$Thus Q = A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}, S = A_2 A_1 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \text{ and } A = QS = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}.$$

8.3.23 $AA^TU = U\Sigma V^TV\Sigma^TU^TU = U\Sigma Sigma^T$, since $V^TV = I_m$ and $U^TU = I_n$, so that

$$AA^T \vec{u}_i = \begin{cases} \sigma_i^2 \vec{u}_i & \text{for } i = 1, \dots, r \\ \vec{0} & \text{for } i = r+1, \dots, n \end{cases}$$

The nonzero eigenvalues of A^TA and AA^T are the same.

8.3.24 The eigenvalues of $A^TA = A^2$ are the squares of the eigenvalues of A, so that the singular values of A are the absolute values of the eigenvalues of A.

8.3.**25** See Figure 8.16.

Figure 8.16: for Problem 8.3.25.

Algebraically: Write $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2$ and note that $\|\vec{u}\|^2 = c_1^2 + c_2^2 = 1$.

Then $A\vec{u} = c_1\sigma_1\vec{u}_1 + c_2\sigma_2\vec{u}_2$, so that $||A\vec{u}||^2 = c_1^2\sigma_1^2 + c_2^2\sigma_2^2 \ge c_1^2\sigma_2^2 + c_2^2\sigma_2^2 = \sigma_2^2$ and $||A\vec{u}|| \ge \sigma_2$. Likewise $||A\vec{u}|| \le \sigma_1$.

- 8.3.26 Write $\vec{v} = c_1 \vec{v}_1 + \dots + c_m \vec{v}_m$ and note that $\|\vec{v}\|^2 = c_1^2 + \dots + c_m^2$. Then $A\vec{v} = c_1 \sigma_1 \vec{u}_1 + \dots + c_r \sigma_r \vec{u}_r$ and $\|A\vec{v}\|^2 = c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + \dots + c_r^2 \sigma_r^2 \le c_1^2 \sigma_1^2 + c_2^2 \sigma_1^2 + \dots + c_r^2 \sigma_1^2 \le \sigma_1^2 \|v\|^2$ so that $\|A\vec{v}\| \le \sigma_1 \|\vec{v}\|$. Likewise, $\|A\vec{v}\| \ge \sigma_m \|\vec{v}\|$.
- 8.3.27 Let \vec{v} be a unit eigenvector with eigenvalue λ and use Exercise 26.
- 8.3.28 If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $A^T A$, then $(\det A)^2 = \det(A^T A) = \lambda_1 \cdots \lambda_n = \sigma_1^2 \cdots \sigma_n^2$, so that $|\det A| = \sigma_1 \cdots \sigma_n$. For a 2 × 2 matrix:

Figure 8.17: for Problem 8.3.28.

 $|\det(A)| = \text{expansion factor} = \frac{\text{area of ellipse } A(\Omega)}{\text{area of unit circle } \Omega} = \frac{\pi\sigma_1\sigma_2}{\pi} = \sigma_1\sigma_2.$ See Figure 8.17.

8.3.29
$$A = U\Sigma V^T = [\vec{u}_1 \cdots \vec{u}_r \cdots] \begin{bmatrix} \sigma_1 & & & 0 \\ & \ddots & & \\ & & \sigma_r & \\ 0 & & & 0 \end{bmatrix} \begin{bmatrix} \vec{v}_1^T \\ \vdots \\ \vec{v}_r^T \\ \vdots \end{bmatrix} = [\vec{u}_1 \cdots \vec{u}_r \cdots] \begin{bmatrix} \sigma_1 \vec{v}_1^T \\ \vdots \\ \sigma_r \vec{v}_r^T \\ 0 \end{bmatrix}$$

405 Copyright © 2013 Pearson Education, Inc.

$$= \sigma_1 \vec{u}_1 \vec{v}_1^T + \dots + \sigma_r \vec{u}_r \vec{v}_r^T$$

8.3.30
$$\begin{bmatrix} 6 & 2 \\ -7 & 6 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} = 10 \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \left(\frac{1}{\sqrt{5}} [2 - 1] \right)$$
$$+5 \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \left(\frac{1}{\sqrt{5}} [1 \quad 2] \right) = \begin{bmatrix} 4 & -2 \\ -8 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$$

- 8.3.31 The formula $A = \sigma_1 \vec{u}_1 \vec{v}_1^T + \dots + \sigma_r \vec{u}_r \vec{v}_r^T$ gives such a representation.
- 8.3.32 $(SAR)^TSAR = R^TA^TS^TSAR = R^TA^TAR$ is similar to A^TA , so that the matrices A^TA and $(SAR)^TSAR$ have the same eigenvalues. Thus A and SAR have the same singular values.
- 8.3.33 Yes; since $A^T A$ is diagonalizable and has only 1 as an eigenvalue, we must have $A^T A = I_n$.
- 8.3.34 $A = U\Sigma U^T$ means that $U^TAU = U^{-1}AU = \Sigma$, i.e., A is orthogonally diagonalizable, with eigenvalues ≥ 0 . This is the case if and only if A is symmetric and positive semidefinite.
- 8.3.35 We will freely use the diagram on Page 393 (with r=m). We have $A^TA\vec{v}_i=A^T(\sigma_i\vec{u}_i)=\sigma_i^2\vec{v}_i$ and therefore $(A^TA)^{-1}\vec{v}_i=\frac{1}{\sigma_i^2}\vec{v}_i$ for $i=1,\ldots,m$. Then $(A^TA)^{-1}A^T\vec{u}_i=(A^TA)^{-1}(\sigma_i\vec{v}_i)=\frac{1}{\sigma_i}\vec{v}_i$ for $i=1,\ldots,m$ and $(A^TA)^{-1}A^T\vec{u}_i=\vec{0}$ for $i=m+1,\ldots,n$ since \vec{u}_i is in $\ker(A^T)$ in this case. Note that $(A^TA)^{-1}A^T\vec{u}_i$ is the least-squares solution of the equation $A\vec{x}=\vec{u}_i$; for $i=1,\ldots,m$ this is the exact solution since \vec{u}_i is in $\operatorname{im}(A)$.
- 8.3.36 We will freely use the diagram on Page 411. By construction of the \vec{v}_i as eigenvectors of A^TA we have $A^TA\vec{v}_i=\lambda_i\vec{v}_i=\sigma_i^2\vec{v}_i$, or $(A^TA)^{-1}\vec{v}_i=\frac{1}{\sigma_i^2}\vec{v}_i$. Then $A(A^TA)^{-1}A^T\vec{u}_i=A(A^TA)^{-1}(\sigma_i\vec{v}_i)=A\left(\frac{1}{\sigma_i}\vec{v}_i\right)=\frac{1}{\sigma_i}A\vec{v}_i=\vec{v}_i$ for $i=1,\ldots,m$ and $A(A^TA)^{-1}A^T\vec{u}_i=\vec{0}$ for $i=m+1,\ldots,n$ since \vec{u}_i is in $\ker(A^T)$ in this case. The fact that $A(A^TA)^{-1}A^T\vec{u}_i=\begin{cases} \vec{u}_i & \text{if } i=1,\ldots,m\\ \vec{0} & \text{if } i=m+1,\ldots,n \end{cases}$ means that the matrix $A(A^TA)^{-1}A^T$ represents the orthogonal projection onto $\operatorname{im}(A)=\operatorname{span}(\vec{u}_1,\ldots,\vec{u}_m)$.

True or False

Ch 8.TF.1 T. If
$$D = \begin{bmatrix} \lambda_1 & . & 0 \\ . & . & . \\ 0 & . & \lambda_n \end{bmatrix}$$
, then $D^TD = D^2 = \begin{bmatrix} \lambda_1^2 & . & 0 \\ . & . & . \\ 0 & . & \lambda_n^2 \end{bmatrix}$. The eigenvalues of D^TD are $\lambda_1^2, \ldots, \lambda_n^2$, and the singular values of D are $\sqrt{\lambda_1^2} = |\lambda_1|, \ldots, \sqrt{\lambda_n^2} = |\lambda_n|$.

- Ch 8.TF.**2** F, since det $\begin{bmatrix} 2 & \frac{5}{2} \\ \frac{5}{2} & 3 \end{bmatrix} = -\frac{1}{4} < 0$ (see Theorem 8.2.7).
- Ch 8.TF.3 T, by the spectral theorem (Theorem 8.1.1)
- Ch 8.TF.4 T. Note that $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = a > 0$, by Definition 8.2.3.

- Ch 8.TF.5 F. The orthogonal matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ fails to be diagonalizable (over \mathbb{R}).
- Ch 8.TF.6 T. If $A = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, then the eigenvalue of $A^TA = \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 25 \end{bmatrix}$ is $\lambda = 25$, so that the singular value of A is $\sigma = \sqrt{\lambda} = 5$.
- Ch 8.TF.7 F. The last term, $5x_2$, does not have the form required in Definition 8.2.1
- Ch 8.TF.8 F. The singular values of A are the square roots of the eigenvalues of A^TA , by Definition 8.3.1.
- Ch 8.TF.9 T, by Theorem 8.2.4.
- Ch 8.TF.**10** T, by Definition 8.2.1
- Ch 8.TF.11 F. Consider the shear matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. The unit circle isn't mapped into itself, so that the singular values fail to be 1, 1.
- Ch 8.TF.12 F. In general, $(A^T A)^T = A^T A \neq AA^T$
- Ch 8.TF.13 T, by Theorem 8.3.2
- Ch 8.TF.14 T. All four eigenvalues are negative, so that their product, the determinant, is positive.
- Ch 8.TF.**15** T, by Theorem 8.1.2
- Ch 8.TF.16 F, since the determinant is 0, so that 0 is an eigenvalue.
- Ch 8.TF.17 F. Consider $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
- Ch 8.TF.18 T, since AA^T is symmetric (use the spectral theorem)
- Ch 8.TF.19 T, by Theorem 8.2.4: all the eigenvalues are positive.
- Ch 8.TF.20 T, since the matrix is symmetric.
- Ch 8.TF.21 T. The eigenvalues $\lambda_1, \ldots, \lambda_n$ of A are nonzero, since A is invertible, so that the eigenvalues $\lambda_1^2, \ldots, \lambda_n^2$ of A^2 are positive. Now use Theorem 8.2.4.
- Ch 8.TF.22 T, by Theorem 8.3.2, since $\vec{v} = A\vec{e}_1$ and $\vec{w} = A\vec{e}_2$ are the principal semi-axis of the image of the unit circle.
- Ch 8.TF.23 F. As a counterexample, consider $A = S = 2I_n$.
- Ch 8.TF.**24** T, since $\vec{e}_i^T A \vec{e}_i = a_{ii} < 0$.

- Ch 8.TF.25 T. By Theorem 7.3.6, matrices A and B have the same eigenvalues. Now use Theorem 8.2.4.
- Ch 8.TF.26 T. The spectral theorem guarantees that there is an orthogonal R such that R^TAR is diagonal. Now let $S = R^T$.
- Ch 8.TF.**27** F. Let $A = I_2$, $\vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- Ch 8.TF.28 T. Consider the singular value decomposition $A = U \sum V^T$, or $AV = U \sum$, where V is orthogonal (see Theorem 8.3.5). We can let S = V, since the columns of $AS = AV = U \sum$ are orthogonal, by construction.
- Ch 8.TF.29 T. By the spectral theorem, A is diagonalizable: $S^{-1}AS = D$ for some invertible S and a diagonal D. Now $D^n = S^{-1}A^nS = S^{-1}0S = 0$, so that D = 0 (since D is diagonal). Finally, $A = SDS^{-1} = S0S^{-1} = 0$, as claimed.
- Ch 8.TF.30 F. If k is negative, then $kq(\vec{x})$ will be negative definite.
- Ch 8.TF.31 F. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then 1 is a singular value of BA but not of AB.
- Ch 8.TF.32 T, since $A + A^{-1} = A + A^{T}$ is symmetric.
- Ch 8.TF.33 F. For example, $(x_1^2)(x_2x_3)$ fails to be a quadratic form.
- Ch 8.TF.**34** T. We can write $q(\vec{x}) = \vec{x}^T \begin{bmatrix} 1 & \frac{5}{2} \\ \frac{5}{2} & 4 \end{bmatrix} \vec{x}$.
- Ch 8.TF.35 F. Consider $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, which is indefinite.
- Ch 8.TF.36 T, by Definition 8.2.3: $\vec{x}^T(A+B)\vec{x} = \vec{x}^TA\vec{x} + \vec{x}^TB\vec{x} > 0$ for all nonzero \vec{x} .
- Ch 8.TF.37 T, since $\vec{x} \cdot A\vec{x}$ is positive, so that $\cos \theta$ is positive, where θ is the angle enclosed by \vec{x} and $A\vec{x}$.
- Ch 8.TF.38 T. Preliminary remark: If σ is the largest singular value of an $n \times m$ matrix M, then $\|M\vec{v}\| \le \sigma \|\vec{v}\|$ for all \vec{v} in \mathbb{R}^m (see Exercise 8.3.26). Now let σ_1 , σ_2 be the singular values of matrix AB, with $\sigma_1 \ge \sigma_2$, and let \vec{v}_1 be a unit vector in \mathbb{R}^2 such that $\|AB\vec{v}_1\| = \sigma_1$ (see Theorem 8.3.3). Now $\sigma_2 \le \sigma_1 = \|A(B\vec{v}_1)\| \le 3\|B\vec{v}_1\| \le 3 \cdot 5\|\vec{v}_1\| = 15$, proving our claim; note that we have used the preliminary remark twice.
- Ch 8.TF.**39** F. Consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
- Ch 8.TF.40 T. If λ is the smallest eigenvalue of A, let $k = 1 \lambda$. Then the smallest eigenvalue of $A + kI_n$ is $\lambda + k = 1$, so that all the eigenvalues of $A + kI_n$ are positive. Now use Theorem 8.2.4.

- Ch 8.TF.41 T. The quadratic form $q(x_1, x_2) = \begin{bmatrix} x_1 & 0 & x_2 \end{bmatrix} \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \\ x_2 \end{bmatrix} = ax_1^2 + 2cx_1x_2 + fx_2^2$ is positive definite. The matrix of this quadratic form is $A = \begin{bmatrix} a & c \\ c & f \end{bmatrix}$, and $\det(A) = af c^2 > 0$ since A is positive definite. Thus $af > c^2$, as claimed.
- Ch 8.TF.**42** F. Consider the positive definite matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$.
- Ch 8.TF.**43** F. Consider the indefinite matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- Ch 8.TF.44 T. By Theorem 8.3.2., the continuous function $f(x) = A \begin{bmatrix} \cos x \\ \sin x \end{bmatrix}$ has the global maximum 5 and the global minimum 3. Note that the image of the unit circle consists of all vectors of the form $A \begin{bmatrix} \cos x \\ \sin x \end{bmatrix}$. By the intermediate value theorem, f(c) = 4 for some c. Let $\vec{u} = \begin{bmatrix} \cos c \\ \sin c \end{bmatrix}$ (draw a sketch!).
- Ch 8.TF.**45** T, since $\vec{x}^T A^2 \vec{x} = -\vec{x}^T A^T A \vec{x} = -(A\vec{x})^T A \vec{x} = -\|A\vec{x}\|^2 \le 0$ for all \vec{x} .
- Ch 8.TF.46 T. If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $A^T A$, then $\lambda_1 \lambda_2 \ldots \lambda_n = \det(A^T A) = (\det A)^2$. If $\sigma_1 = \sqrt{\lambda_1}, \ldots, \sigma_n = \sqrt{\lambda_n}$ are the singular values of A, then $\sigma_1 \sigma_2 \ldots \sigma_n = \sqrt{\lambda_1 \lambda_2 \ldots \lambda_n} = |\det A|$, as claimed.
- Ch 8.TF.47 F. Note that the columns of S must be unit eigenvectors of A. There are two distinct real eigenvalues, λ_1 , λ_2 , and for each of them there are two unit eigenvectors, $\pm \vec{v}_1$ (for λ_1) and $\pm \vec{v}_2$ (for λ_2). (Draw a sketch!) Thus there are 8 matrices S, namely $S = \begin{bmatrix} \pm \vec{v}_1 & \pm \vec{v}_2 \end{bmatrix}$ and $S = \begin{bmatrix} \pm \vec{v}_2 & \pm \vec{v}_1 \end{bmatrix}$
- Ch 8.TF.48 T. See the remark following Definition 8.2.1.
- Ch 8.TF.49 F. Some eigenvalues of A may be negative.
- Ch 8.TF.**50** F. Consider the similar matrices $A = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 4 \\ 0 & 3 \end{bmatrix}$. Matrix A has the singular values 0 and 3, while those of B are 0 and 5.
- Ch 8.TF.51 T. Let \vec{v}_1, \vec{v}_2 be an orthonormal eigenbasis, with $A\vec{v}_1 = \vec{v}_1$ and $A\vec{v}_2 = 2\vec{v}_2$. Consider a nonzero vector $\vec{x} = c_1\vec{v}_1 + c_2\vec{v}_2$; then $A\vec{x} = c_1\vec{v}_1 + 2c_2\vec{v}_2$. If $c_1 = 0$, then $\vec{x} = c_2\vec{v}_2$ and $A\vec{x} = 2c_2\vec{v}_2$ are parallel, and we are all set. Now consider the case when $c_1 \neq 0$. Then the angle between \vec{x} and $A\vec{x}$ is $\arctan(2c_2/c_1) \arctan(c_2/c_1)$; to see this, subtract the angle between \vec{v}_1 and \vec{x} from the angle between \vec{v}_1 and $A\vec{x}$ (draw a sketch). Let $m = c_2/c_1$ and use calculus to see that the function $f(m) = \arctan(2m) \arctan(m)$ assumes its global maximum at $m = \frac{1}{\sqrt{2}}$. The maximal angle between \vec{x} and $A\vec{x}$ is $\arctan(\sqrt{2}) \arctan(1/\sqrt{2}) < 0.34 < \pi/6$.

- Ch 8.TF.52 T. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. By Theorem 8.3.2, $A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ c \end{bmatrix} = \sqrt{a^2 + c^2} < 5$ (since the length of the semi-major axis of the image of the unit circle is less than 5). Thus a < 5 and c < 5. Likewise, b < 5 and d < 5.
- Ch 8.TF.53 T. We need to show that each entry $a_{ij} = a_{ji}$ off the diagonal is smaller than some entry on the diagonal. Now $(\vec{e_i} \vec{e_j})^T A(\vec{e_i} \vec{e_j}) = a_{ii} + a_{jj} 2a_{ij} > 0$, so that $a_{ii} + a_{jj} > 2a_{ij}$. Thus the larger of the diagonal entries a_{ii} and a_{jj} must exceed a_{ij} .
- Ch 8.TF.54 T. Let $\lambda_1, ..., \lambda_m$ be the distinct eigenvalues of A, with the associated eigenspaces E_{A,λ_i} . Since A is diagonalizable, we know that $\sum_{k=1}^m \dim(E_{A,\lambda_i}) = n$. By definition of an eigenvector E_{A,λ_i} is a subspace of E_{A^3,λ_i^3} , Since $E_{k=1}^m \dim(E_{A^3,\lambda_i^3})$ cannot exceed n, we must have $E_{A,\lambda_i}=E_{A^3,\lambda_i^3}$ for all eigenvalues. Applying the same reasoning to B and B^3 , we can conclude that $E_{A,\lambda_i}=E_{A^3,\lambda_i^3}=E_{B^3,\lambda_i^3}=E_{B,\lambda_i}$. Since the diagonalizable matrices A and B have the same eigenvectors with the same eigenvalues, they must be equal.