Macro III: Problem Set 3 Deadline: Monday, 28/09/2020

Tiago Cavalcanti

September 2020

1. **Aiyagari Model.** Time is discrete and indexed by t = 0, 1, 2... Let $\beta \in (0, 1)$ be the subjective discount factor, $c_t \ge 0$ be consumption at period t and l_t be labor supply at t. Agents are ex-ante identical and have the following preferences:

Preferences:

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^{1-\sigma_c}}{1-\sigma_c} + \gamma \frac{(1-l_t)^{1-\sigma_l}}{1-\sigma_l} \right) \right],$$

where σ_c , $\sigma_l > 1$, $\gamma > 0$. Expectations are taken over an idiosyncratic shock, z_t , on labor productivity, where

$$\ln(z_{t+1}) = \rho \ln(z_t) + \epsilon_{t+1}, \ \rho \in [0, 1].$$

Variable ϵ_{t+1} is an iid shock with zero mean and variance σ_{ϵ}^2 . Markets are incomplete as in Huggett (1993) and Aiyagari (1994). There are no state contingent assets and agents trade a risk-free bond, a_{t+1} , which pays interest rate r_t at period t. In order to avoid a Ponzi game, we impose a natural borrowing limit.

Technology: There is no aggregate uncertainty and the technology is represented by $Y_t = K_t^{\alpha} N_t^{1-\alpha}$. Let I_t be investment at period t. Capital evolves according to:

$$K_{t+1} = (1 - \delta)K_t + I_t.$$

Let $\delta = 0.08$, $\beta = 0.96$, $\alpha = 0.4$, $\gamma = 0.75$ and $\sigma_c = \sigma_l = 2$.

(a) Use a finite approximation for the autoregressive process

$$\ln(z') = \rho \ln(z) + \epsilon.$$

where ϵ' is normal iid with zero mean and variance σ_{ϵ}^2 . Use a 7 state Markov process spanning 3 standard deviations of the log wage. Let ρ be equal to 0.98 and assume that $\sigma_z^2 = \frac{\sigma_{\epsilon}^2}{1-\rho^2} = 0.621$. Simulate this shock and report results.

- (b) State the households' problem.
- (c) State the representative firm's problem.
- (d) Define the recursive competitive equilibrium for this economy.
- (e) Write down a code to solve this problem. Find the policy functions for a', c, and l.
- (f) Solve out for the equilibrium allocations and compute statistics for this economy. Report basic statistics about this economy, such as: the capital-to-output ratio, cumulative distribution of income (e.g., bottom 1%, 5%, 10%, 50%, top 1%, top 5%, top 10%), cumulative distribution of wealth (e.g., bottom 1%, 5%, 10%, 50%, top 1%, top 5%, top 10%).
- 2. **Hopenhayn model.** On paying a fixed operating cost $\kappa > 0$, an incumbent firm that hires n workers produces flow output $y = zn^{\alpha}$ with $0 < \alpha < 1$ where z > 0 is a firm-level productivity level. The productivity of an incumbent firm evolves according to an AR(1) in logs

$$\ln(z_{t+1}) = (1 - \rho) \ln(\bar{z}) + \rho \ln(z_t) + \sigma \epsilon_{t+1}, \ \rho \in (0, 1), \ \sigma > 0$$

where $\epsilon_{t+1} \sim N(0,1)$. Firms discount flow profits according to a constant discount factor $0 < \beta < 1$. There is an unlimited number of potential entrants. On paying a sunk entry cost $\kappa_e > 0$, an entrant receives an initial productivity draw $z_0 > 0$ and then starts operating the next period as an incumbent firm. For simplicity, assume that initial productivity z_0 is drawn from the stationary productivity distribution implied by the AR(1) above.

Individual firms take the price p of their output as given. Industry-wide demand is given by the $D(p) = \bar{D}/p$ for some constant $\bar{D} > 0$. Let labor be the numeraire, so that the wage is w = 1. Let $\pi(z)$ and v(z) denote respectively the profit function and value function of a firm with productivity z. Let v_e denote the corresponding expected value of an entering firm. Let $\mu(a)$ denote the (stationary) distribution of firms and let m denote the associated measure of entering firms.

- (a) Derive an expression for the profit function.
- (b) Set the parameter values $\alpha=2/3,\ \beta=0.8,\ \kappa=20,\ \kappa_e=40,\ \ln(\bar{z})=1.4,\ \sigma=0.20,\ \rho=0.9$ and $\bar{D}=100$. Discretize the AR(1) process to a Markov chain on 33 nodes. Solve the model on this grid of productivity levels. Calculate the equilibrium price p^* and measure of entrants m^* . Let z^* denote the cutoff level of productivity below which a firm exits. Calculate the equilibrium z^* . Plot the stationary distribution of firms and the implied distribution of employment across firms. Explain how these compare to the stationary distribution of productivity levels implies by the AR(1).

- (c) Now suppose the demand curve shifts, with \bar{D} increasing to 120. How does this change the equilibrium price and measure of entrants? How does this change the stationary distributions of firms and employment? Give intuition for your results.
- 3. Ramsey model in continuous time. Consider the decentralised Ramsey model in continuous time. Households solve

$$\max_{c,l} \int_0^\infty e^{-\rho t} u(c,l) dt,$$

subject to

$$\dot{a} = w(1 - l) + ra - c,$$

where c is consumption, a denotes assets and l is leisure. ρ is the subjective discount rate, r is the interest rate and w is the wage rate. Firms rent capital and labour from households to maximise

$$\max AK^{\alpha}N^{1-\alpha} - wN - (r+\delta)K,$$

where δ is the depreciation rate and A is a productivity factor.

- (a) Write down the HJB associated with the households problem. Explain the steps to derive it.
 - From now on, assume that $u(c, l) = \log(c) + \eta \log(l)$. You can assume that $\rho = 0.04$ and $\eta = 0.75$
- (b) For a given interest rate r and wage rate w, write down a code to solve the households problem.
- (c) Write down the market clearing conditions. Assume that $\delta = 0.06$, A = 1 and $\alpha = 0.33$.
- (d) Write down the equations that describe the steady-state of the system and solve for the steady-state level of capital and labour supply.
- (e) Write down a code to solve out the whole transition. Then simulate a permanent change in the TFP factor, such that A increases from A=1 to A=1.2. Plot the evolution of capital, labour and consumption.