An NFA is represented formally by a 5-tuple, (Q, Σ , Δ , q_0 , F), consisting of

- a finite set of states Q
- a finite set of input symbols Σ
- a transition function Δ: Q × Σ → P(Q).
- an initial (or start) state q₀ ∈ Q
- a set of states F distinguished as accepting (or final) states F ⊆ Q.

A deterministic finite automaton M is a 5-tuple, $(Q, \Sigma, \delta, q_0, F)$, consisting of

- a finite set of states (Q)
- a finite set of input symbols called the alphabet (Σ)
- a transition function (δ : Q × Σ → Q)
- an initial or start state (q₀ ∈ Q)
- a set of accept states (F ⊆ Q)

Language \rightarrow NFA

$\mathbf{2}\quad \mathbf{NFA} \rightarrow \mathbf{DFA}$

1. Create chart of single moves and ϵ^*

	a	b	ϵ^*
1			
2			
3			

2. Create chart of single move followed by ϵ^*

	$a\epsilon^*$	$b\epsilon^*$
1		
2		
3		

- 3. Draw DFA from second table
- 4. Add additional moves and trash states to make complete

${\bf 3}\quad {\bf DFA} \rightarrow {\bf Regular\ Expression}$

- 1. Create new start state
- 2. Add arrow to each existing state
- 3. Create new accept state
- 4. Add arrow from each existing state
- 5. Find triangle of connections and eliminate states

Assume that A is a regular language. S = ap3 By the pumping lemma, S can be decomposed into xyz such that xyi xy^iz \square A |y| > 0 |xy| \le P

NFA to GNFA is the elimination of each state for regular expressions