RA: 233228

i)
calculanda a motriz jacaliana da sistema:
$\int_{X_1} \int_{X_1}^{2P_1} \int_{X_2}^{2P_1} \frac{\partial P_1}{\partial X_2}$
des
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{\partial p_1}{\partial x_1} = 3$, $\frac{\partial p_1}{\partial x_2} = x_3 \text{ Den } (x_2 x_3)$, $\frac{\partial p_1}{\partial x_3} = x_2 \text{ Den } (x_2 x_3)$ (pula regra da codua) $\frac{\partial x_3}{\partial x_3} = \frac{x_2 \text{ Den } (x_2 x_3)}{\cos x_3}$
$\frac{\partial fz}{\partial x} = 2x_1; \frac{\partial fz}{\partial x_2} = -16z(x_2 + 0, 1); \frac{\partial fz}{\partial x_3} = cos(x_3)$
$\frac{\partial \beta_3}{\partial x_1} = -x_2 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_2} = -x_1 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_3} = 20$ $\frac{\partial \beta_3}{\partial x_1} = -x_2 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_2} = -x_1 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_3} = 20$ $\frac{\partial \beta_3}{\partial x_1} = -x_2 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_2} = -x_1 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_3} = 20$ $\frac{\partial \beta_3}{\partial x_1} = -x_2 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_2} = -x_1 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_3} = 20$ $\frac{\partial \beta_3}{\partial x_1} = -x_2 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_2} = -x_1 \cdot x_1 \cdot x_2 \cdot \frac{\partial \beta_3}{\partial x_3} = 20$
$\begin{bmatrix} 3 & \chi_3 \text{ Dem}(\chi_2 \chi_3) & \chi_2 \text{ Dem}(\chi_2 \chi_3) \\ 2\chi_1 & -162(\chi_2 + 0, 1) & \cos(\chi_3) \end{bmatrix}$
J(x) -X22 -X12 -X12 20

ii) Tabela de resultados para o método de Newton com erro tolerado de 1e-5

k (iteração)	x(k)	s(k)	Dr (x(k+1) - x(k))∞	F(x)
1	(0,50022; 0,01949; -0,52356)	(0,40022; -0,08051; -0,62152)	0,62152	(0,0007; -0,34448; 0,0319)
2	(0,50001; 0,00159; -0,52356)	(-0,0002; 0,0179; -0,00203)	0,0179	(4,3159e-5; 0,02595; 3,6209e- 5)
3	(0,5; 1,24977e-5; -0,5236)	(-1,41566e-5; -0,00158; - 4,12686e-5)	0,00158	(3,41872e-7; -0,0002; 2,89359e-7)
4	(0,5; 7,82392e-10; -0,5236)	(-1,13943e-7; -1,24969e-5; -3,26888e-7)	1,24969e-5	(2,14078e-11; -1,26499e-8; 1,80957e-11)

Função de iteração:

```
1  function res = metodo_newton(x, F, J);
 3
      e = le-5; # erro permitido
      x aux = 0; # marca x na iteração k-1
 4
      k = 0; # contador de iterações
 5
 6
      dr = e + 1; # distância relativa
7
      s = 0; # passo de newton
8
9
      while (modulo_infinito(F, 3) > e && dr > e)
10
        k++;
        s = inv(-J)*F;
11
12
        x_{aux} = x;
13
        x = x + s;
14
        dr = modulo_infinito((x - x_aux), 3);
15
16
       # atualiza valores de F e J com base em x
17
        F = [f1(x(1), x(2), x(3)); f2(x(1), x(2), x(3)); f3(x(1), x(2), x(3))];
        J = jacobiana(x(1), x(2), x(3));
18
19
      endwhile
20
21
      res = x;
22 Lend
```