EE2004: Microcomputer Systems

Test 1 Review

Topics

1. Introduction to Computer Systems

(a)Buses

- Address Bus unidirectional
 - How many memory locations can be addressed by an Nbit address bus?
- Data Bus bidirectional
 - What is the largest unsigned number that can be carried into a CPU by an N-bit data bus?
- Control Bus
- Describe the interactions between these three types of buses in the read and write operations.

(b) Three different components:

- Central processing unit (CPU): Made up of three components:
 - Arithmetic-logic unit (ALU)
 - Registers
 - Control unit: controls instruction processing
- Memory unit
- Input/Output (I/O) unit
 - o Define peripherals and ports.

(c) Terminology

- How many bits are there in a nibble? byte?
- Write down the exact values represented by kilo, mega, giga.

(d) Harvard vs. Von Neumann Architecture

- Von Neumann
 - Data and program memories are combined
 - Fetching and execution cannot be done in the same instruction cycle
- Harvard
 - Data and program memories are separated.
 - Each has its own address and data buses
 - Fetching and execution can be done in the same instruction cycle.

- (e) Describe the difference between microcontroller and microprocessor
 - Microprocessor is just the CPU. Peripherals are implemented separately and are required to connect to CPU by long wires.
 - In a microcontroller, CPU and all peripherals are implemented in one chip
 - Harvard architecture is too expensive to be implemented in microprocessor. CPU and peripherals are required to be connected by long wires (costly). The wire required for Harvard is doubled. → Von Neumann is preferred
 - We can afford two sets of buses required for Harvard in microcontroller because CPU and peripherals are packed together.

2. PIC18 Microcontroller

- (a) Architecture
- (b) Access bank vs. BSR
- (c) Understand the documentation in data sheet
- (d) How the status register changes in an addition operation
- (e) Describe the difference between addwf and addwfc.

3. I/O Programming

- (a) Code assembly language to use the ports for input or output. Need to know how to set the TRISX register appropriately, where $X = \{A, B, C, D, E\}$ depending on the port being used.
- (b)Code I/O bit manipulation programs for the PIC
- (c) Check the state of an I/O port (i.e., PORTX register, where $X = \{A, B, C, D, E\}$) and make branching decision based on it
- (d) Interface with 1-digit/4-digit 7-segment LED and keypad matrix

4. PIC18 Assembly Language Programming

4.1

- (a)Terminology
 - Machine vs. assembly language
 - 2 types of assembly language statements: instructions and directives
 - 4 elements of an assembly language statement:
 - o label
 - o mnemonics
 - o operands
 - o comments
- (b) Know functions of common directives: org, set, equ, cblock
- (c) Fetching and execution in PIC18
 - Understand each step of my animation

4.2

- (a) Know instructions used for subtracting unsigned number
- (b) Know microcontroller does not subtract; it adds a negative number; negative number is represented by the 2's complement format
- (c) Be able to determine all status flags in an addition operation
 - OV: would not occur when +ve added by a -ve number
 - If +ve added by a +ve results in an –ve number *or* –ve added by a –ve results in a +ve number, then OV must have occurred.

(d)BCD addition

- Under two conditions, you would get an incorrect BCD addition result
- Use daw to adjust
- (e)Compare instruction: Make branching decision based on the value in a file register

4.3

- (a)Looping
 - Initialization
 - Statements to repeat
 - monitor number of iterations/repetitions
- (b) Conditional jumps
 - make branching decision based on status flag
 - encode destination by relative address

relative address is 8-bit, ranging from -128 to 127

(c) goto

- encode destination by absolute address
- last bit of address not encoded; only most significant 20 bits are encoded.

(d)bra

- encode destination by relative address
- relative address is 11-bit, ranging from -1024 to 1023
- (e) Know how absolute/relative addresses are encoded in machine code.
- (f) Branch instruction timing
 - Conditional jumping: 2 instruction cycles if jump, 1 if not jump
 - Unconditional jumping always takes 2 instruction cycles.
 - Conditional skipping: 1 instruction cycle if not jump, 2 or 3 if jump.
- (g) Application of nested loop in generating time delay
 - Calculate the total time delay generated by the loop with different values of [DELAY_H] and [DELAY_L]. See Week 6 tutorial.

4.4

- (a) Know difference between branching and subroutine calling
 - After calling a subroutine, program counter needs to get back to the main program.
 - Return address must be stored in <u>hardware stack</u> before executing the subroutine
- (b) List the events that occur when <u>calling</u> and <u>returning from</u> a subroutine
- (c) Know how the instruction call encodes absolute address of destination and the instruction reall encodes relative address of destination.
- (d) Know how to determine the contents of the hardware stack, TOS and STKPTR at all points of a program, and in particular immediately after the execution of a call/rcall or return instruction.
 - Be prepared to answer a question similar to the tutorial question.