СТЕПЕНЬ ОКИСЛЕНИЯ И ВАЛЕНТНОСТЬ

Для начала в качестве вступления рассмотрим образование молекулы воды:

У атома кислорода есть <u>два</u> неспаренных электрона, а у каждого атома водорода - только по одному.

Подходят два таких атома водорода к атому кислорода и образуют с ним хим связи:

теперь у них есть ОБЩИЕ электронные пары (как мило). Только вот кислород оказался не таким, каким казался сначала. Из-за высокого значения своей электроотрицательности он просто взял и нагло перетянул на себя, казалось бы, их ОБЩИЕ электрончики...

В итоге у кислорода, который жадно перетянул на себя ПО ОДНОМУ электрончику от каждого водорода, степень окисления <u>-2</u>, а у каждого из обманутых водородов +1.

Итак, СТЕПЕНЬ ОКИСЛЕНИЯ - это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный характер.

ЧТО ЖЕ ЭТО ЗНАЧИТ?

Степень окисления показывает нам, сколько электронов ОТДАЛ ИЛИ ПРИНЯЛ атом химического элемента.

CL : CL

СТЕПЕНЬ ОКИСЛЕНИЯ БЫВАЕТ..

ВЫСШАЯ = номеру группы нементы побоч

- элементы побочных подгрупп I и VIII групп (Cu⁺², Fe⁺⁶); O⁺² и F⁰

ПРОМЕЖУТОЧНАЯ!

НИЗШАЯ

Ме: О неМе: номер группы - 8

Примеры: С --- -4 N --- -3; Na --- О

постоянные с.о.

*Почти постоянные:

H: +1 (в гидридах Me -1)

0: -2 (в пероксидах -1:

O+2F2; O2+1F2)

F: -1

Me IA: +1

Me IIA: +2

Al: +3

НЕПОСТОЯННЫЕ С.О.

С: от -4 до +4

Si: -4, 0, +4

N: от -3 до +5

P: -3, 0, +1, +3, +5

S: -2, 0, +2, +4, +6

Cl: -1, 0, +1, +3, +5, +7

Fe, Cr: +2, +3, +6

Cu: +1, +2

ЗАПОМНИТЕ, ДЕТИ!

Очень часто: если элемент находится в чётной группе, то проявляет чётные с.о., если в нечётной - нечётные.

КАК ОПРЕДЕЛИТЬ С.О. В СЛОЖНОМ ВЕЩЕСТВЕ?

р.s. суммарная с.о. в любом соединении (как и суммарный заряд соединения, как и заряд любого атома) РАВНА НУЛЮ

Составляем уравнение и решаем его:

2х = 12, х = +6, значит, с.о. хрома в этом соединении: +6

ПРАКТИКА!

H₂SO₄ K₂O HNO₃ HNO₂ CO₂ C₂H₂ Cr₂O₃ H₂CrO₄

NaOH N₂O₅ HClO₄ H₃PO₄ HClO H₂SiO₃ CO K₂CO₃

КАК САМОМУ СОСТАВЛЯТЬ ФОРМУЛЫ? **МЕТОД "КРЕСТ-НАКРЕСТ"**

Нам говорят: "А составь-ка формулу оксида хрома (III)"

римская цифра в скобках обозначает степень окисления (естественно, её не пишут для атомов элементов с ПОСТОЯННОЙ степенью окисления)

ПРАКТИКА!

Составляем формулы:

оксида алюминия - Al,O,

оксида углерода (IV) - <u>CO</u>,

гидроксида железа (II) - Fe(OH),

сульфата хрома (III) - <u>Cr₂(SO₄)</u>₃

дигидрофосфата кальция - Са(Н,РО,),

КАК ОПРЕДЕЛИТЬ ЗАРЯД КИСЛОТНОГО ОСТАТКА?

КИСЛОТА ИМЕЕТ ВИД: Н А, где А - кислотный остаток

ЗАРЯД КИСЛОТНОГО ОСТАТКА РАВЕН ЧИСЛУ "ОТОРВАННЫХ" АТОМОВ ВОДОРОДА.

ЧТО ТАКОЕ "ВАЛЕНТНОСТЬ"?

Валентность - число хим связей, которые образует атом элемента в каком-либо соединении. Она обозначается римскими цифрами.

ХИМИЧЕСКАЯ СВЯЗЬ = ОДНА ЧЁРТОЧКА, т.е. валентность - именно число ОДИНАРНЫХ связей.

Определяем валентность:

В 99% случаев валентность по числовому значению БАСТ равна степени окисления!!!

Наиболее частые исключения из "правила":

- азот имеет высшую с.о. +5, но его максимальная валентнось IV
- у фтора валентность всегда равна [
- у кислорода II или III
- углерод в органике всегда четырёхвалентен

Порисуем структурные формулы? :)

LiOH, K_2O , Al_2O_3 , H_2SO_4 , HCl, Na_2SO_4 , $CaSO_4$, Cl_2O_5

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ

Валентные возможности - это возможность атома какого-либо химического элемента иметь то или иное значение валентности в химическом соединении. Они зависят от:

наличия и количества неспаренных электронов

наличия неподелённых электронных пар на внешнем электронном слое

наличия пустых (вакантных) орбиталей на внешнем электронном слое

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА ВОДОРОДА

Валентность I, так как имеется один неспаренный электрон.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА УГЛЕРОДА

Валентность IV, так как есть 4 неспаренных электрона.

СВЯЗИ В МОЛЕКУЛЕ УГАРНОГО ГАЗА СО:

1-2) Связи за счёт объединения неспаренных электронов образованы по ОБМЕННОМУ механизму.

3) Связь за счёт неподелённой электронной пары атома кислорода и вакантной орбитали атома углерода образована по ДОНОРНО-АКЦЕПТОРНОМУ механизму.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА АЗОТА

Валентности II, III, IV, так как 1) есть три неспаренных электрона (II, III); 2) неподелённая электронная пара.

СВЯЗИ В ИОНЕ АММОНИЯ NH, ::

- 1-3) Связи за счёт объединения неспаренных электронов образованы по ОБМЕННОМУ механизму.
- 4) Связь за счёт неподелённой электронной пары атома азота и вакантной орбитали иона водорода Н° образована по ДОНОРНО-АКЦЕПТОРНОМУ механизму.

В молекулах азотной кислоты и оксида азота (V) НЕСМОТРЯ НА С.О. АЗОТА +5, валентность всё равно равна IV!!! А всё потому, что в этих молекулах есть так называемые ПОЛУТОРНЫЕ СВЯЗИ.

ВАЛЕНТНЫЕ ФОЗМОЖНОСТИ ФОСФОРА

Валентности I, II, III, IV, так как есть 1) три неспаренных электрона и 2) неподелённая электронная пара.

Валентность V, так как есть пять неспаренных электронов.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА КИСЛОРОДА

Валентности II, III, так как есть 1) два неспаренных электрона; 2) неподелённая электронная пара.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА СЕРЫ

Валентность II, так как есть два неспаренных электрона.

Валентность IV, так как есть четыре неспаренных электрона.

Валентность VI, так как есть шесть неспаренных электронов.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА ФТОРА

Валентность I, так как имеется всего один неспаренный электрон.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА ХЛОРА

Валентность I, так как в основном состоянии есть только один неспаренный электрон.

Валентность III, так как в первом возбуждённом состоянии есть три неспаренных электрона.

Валентность V, так как во втором возбуждённом состоянии есть пять неспаренных электронов.

Валентность VII, так как в третьем возбуждённом состоянии есть семь неспаренных электрона.