Unit 6: Algebraic Structures
Topic 2: Cyclic Group

- Cyclic group
- 2 Lagrange' Theorem
- 3 Consequences of Lagrange's Theorem
- Problems

Cyclic group

Definition

A group G is called cyclic if there is an element a in G such that

 $G = \langle a \rangle = \{a^k : k \in \mathbb{Z}\}$. Such an element a is called a generator of G.

Cyclic group

Definition

A group G is called cyclic if there is an element a in G such that $G = \langle a \rangle = \{a^k : k \in \mathbb{Z}\}$. Such an element a is called a generator of G.

Remark

If G is finite group of order n, then G is cyclic if and only if G has an element of order n.

- Cyclic group
- 2 Lagrange' Theorem
- 3 Consequences of Lagrange's Theorem
- Problems

Lagrange' Theorem

Theorem (Lagrange's Theorem)

The order of a subgroup of a finite group divides the order of the group.

- Cyclic group
- 2 Lagrange' Theorem
- 3 Consequences of Lagrange's Theorem
- Problems

Lagrange's Theorem and Cyclic group

Theorem

Every subgroup of a cyclic group is cyclic. If $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k, namely, $\langle a^{\frac{n}{k}} \rangle$.

Consequences of Lagrange's Theorem

• The order of each element of a finite group divides the order of the group.

Consequences of Lagrange's Theorem

- The order of each element of a finite group divides the order of the group.
- If G is a cyclic group of order n with generator a, then a^k is also a generator of G if and only if gcd(k, n) = 1.

Consequences of Lagrange's Theorem

- The order of each element of a finite group divides the order of the group.
- If G is a cyclic group of order n with generator a, then a^k is also a generator of G if and only if gcd(k, n) = 1.
- A group of prime order is always cyclic.

- Cyclic group
- 2 Lagrange' Theorem
- 3 Consequences of Lagrange's Theorem
- Problems

Problems

Problems:

• Suppose $G = \langle a \rangle$ and |a| = 20. How many subgroups does G have? List a generator for each of these subgroups.

Problems

Problems:

- Suppose $G = \langle a \rangle$ and |a| = 20. How many subgroups does G have? List a generator for each of these subgroups.
- **②** If g is a generator of the cyclic group U(49), then find all generators of this group.

Thank You

Any Question!!!