Evaluating Systems: precision-recall

Prof. Chris McCool

Overview

- Evaluating systems
 - Precision-Recall

- Essential to understanding how well the system works
 - Does it meet requirements
- Almost all classifiers produce a score
- The score is "thresholded" to make a decision
- Consider a two-class classifer with parameters θ that produces a score for the *i*-th sample precison and recall binary classificationlarda kullanmak daha iyi.

$$s_i = h(\boldsymbol{x}_i|\boldsymbol{\theta})$$

When we evaluate we have positive samples and negative samples

Precision

- the ratio of samples found that are relevant
- true positives (TP)
- true positives (TP) + false Positives (FP)

•
$$P = \frac{TP}{TP + FP}$$

Recall

- the ratio of relevant samples found
- true positives (TP)
- true positives (TP) + False negatives (FN)

•
$$R = \frac{TP}{TP + FN}$$

Relevant Samples (Positive Samples)

- true positives
 - the ones that we labelled as being true and are true samples
- false negatives
 - the ones that we labelled as being false and are true samples

Want to maximise true positives and minimise false negative

positive samples

false negatives

true positives

Not Relevant Samples (Negative Samples)

- true negatives
 - the ones that we labelled as being false and are false samples
- false positives
 - the ones that we labelled as being true and are false samples

Want to maximise true negatives and minimise false positives

negative samples

true negatives

false positives

Precision

- the ratio of samples found that are relevant
- true positives (TP)
- true positives (TP) + false Positives (FP)

•
$$P = \frac{TP}{TP + FP}$$

Precision-Recall: practical example

How accurately do we detect objects in the frame.

$$Precision = \frac{TP}{TP + FP}$$

Red are detections that are not the class of interest (FP).

Recall

- the ratio of relevant samples found
- true positives (TP)
- true positives (TP) + False negatives (FN)

•
$$R = \frac{TP}{TP + FN}$$

false negatives

true positives

Precision-Recall: practical example

How many of the objects in the frame do we find.

$$Recall = \frac{TP}{TP + FN}$$

Limitation include higher false detections.

Purple are detections that were missed (FN).

- At different thresholds $[\tau_1, \tau_2, ..., \tau_T]$ the system produces different results
 - false positives
 - false negatives
 - true positives
 - true negatives
- Could we summarise this with 1 number?

- Mixing precision and recall to produce a single number

$$F_1 = 2 * \frac{P * R}{P + R}$$

• Generalised as the F_{β} -score

$$F_{\beta} = (1 + \beta^2) * \frac{P * R}{\beta^2 P + R}$$

• *F*-Score

$$F_1 = 2 * \frac{P * R}{P + R}$$

•At the point where precision equals recall

Splitting your data

- Training Set
 - Used to train the model/system
- Validation Set
 - Used to validate the model, choose the best one (from the training)
 - Use this to get a threshold
- Evaluation Set
 - How well did my system go, with a threshold!
 - Use it once!
- Simply way to split is 2:1:1 ratio

Splitting your data

- Validation Set vs Evaluation Set
 - How well did my system go, with a threshold!
 - Will the threshold now represent the same point as on the validation set?
 - That is, will it be the point that precision equals recall on the evaluation set?
 - For a deployed system, why is it important to have a good threshold?

Evaluating Our Outlier Detector

- Now we know about precision, recall and how we might get a threshold
 - From the data!!
- Let's show an active example of this for our Gaussian class.

Overview

- Evaluating systems
 - Precision-Recall