

Facultad Informátic Universida Murcia

Apellidos, nombre: DNI: GRUPO: 1/2/3/PCEO

¿Has presentado las prácticas? señala NO / SI / Año anterior

Instrucciones: este ENUNCIADO debe entregarse al salir (los folios en sucio se entregan, pero aparte).

Todos los apartados y subaparatados deben ir claramente indicados. Las faltas ortográficas restan puntos. Un examen desordenado y poco legible resta puntos.

Parte I: PREGUNTAS TIPO TEST. Total 3 puntos sobre 10: respuesta bien +0.3 y respuesta mal -0.15.

- 1. [ENE2018] Sean los lenguajes $A = \{ww | w \in \{a,b\}^*\}$ y $B = \{w \in \{a,b\}^*\}$. Indica la respuesta **verdadera**:
 - a) $A \cup B = B$. V: $A \subset B$
 - b) $A \cap B = B \cup A$.
 - c) $\lambda \notin B^+$.
- 2. [ENERO2018] Sea M_1 un AF y M_{min} el autómata mínimo equivalente completo, indica la respuesta **verdadera**:
 - a) M_1 obligatoriamente tiene más estados pero podría tener el mismo número de estados finales.
 - b) El número de estados finales de M_{min} es siempre menor, exceptuando el estado trampa.
 - c) M_1 podría tener menos estados que M_{min} independientemente del estado trampa. V: M_1 podría ser AFND
- 3. [ENERO2018] En relación a las funciones de transición de los AFND, indica la respuesta verdadera:
 - a) La función se define como: $\delta: Q \times V \cup \{\lambda\} \to Q^*$
 - b) Al ser no determinista, puede devolver diferentes resultados según una probabilidad.
 - c) A diferencia de la función de transición de los AFD, devuelve un conjunto de estados. V: por definición
- 4. [ENERO2018] Dada la expresión regular $ER = (a^*b^*)^*a^*c^*$, indica la respuesta **verdadera**:
 - a) $L(ER) = \{(a^j c^k)^i c^i \mid i, j, k \ge 0\}.$
 - b) $L(ER) = \{wc^i \mid w \in \{a,b\}^*, i \ge 0\}$. V: $(a^*b^*)^*a^*c^* = (a|b)^*a^*c^* = (a^*b)^*a^*a^*c^* = (a^*b)^*a^*c^* = (a|b)^*c^*$
 - c) $L(ER) = \{(a^j c^k)^l c^i \mid i, j, k, l \ge 0\}.$
- 5. [ENE2018] Considerando las equivalencias entre expresiones regulares, indica la respuesta verdadera:
 - a) $(0|1)((0|1)1)^* = ((0|1)1)^*(0|1)$.
 - b) $0(\lambda|00^*) = 00^*$. V: $0(\lambda|00^*) = 00^*$
 - c) $0^*(10^*)^* = (10|0)^*$.
- 6. [ENERO2018] Dado el lenguaje $L_1 = \{a^i b^{i+2} \mid i \geq 0\}$, indica la respuesta **verdadera**:
 - a) Es posible encontrar una gramática regular G_R para que $L(G_R) = L_1$.
 - b) Es posible diseñar un AF con menos de 5 estados que acepte L_1 .
 - c) No podemos encontrar una expresión regular ER para que $L(ER) = L_1$. V: L_1 no es regular
- 7. [ENERO2018] Sea la GLC G_1 cuyas reglas son: $\{S \to aS \mid aA \mid \lambda, A \to aA \mid S \mid \lambda\}$, indica la respuesta **verdadera**:
 - a) Es una gramática regular y ambígua.
 - b) G_1 no es regular y, por tanto, no existe un AF que acepte sus cadenas.
 - c) Podemos generar la misma sentencia a partir de dos derivaciones a la derecha distintas. V: cadena aa
- 8. [ENERO2018] Sean dos GLC G_1 y G_2 , cuyas variable iniciales son S_1 y S_2 , para la concatenación de ambas se requiere:
 - a) Añadir una nueva regla $S \to S_1 S_2$. V: definición
 - b) Añadir las reglas $S_1 \to SS_2$ y $S_2 \to SS_1$.
 - c) Añadir la regla $S \to S_1 \mid S_2$.
- 9. [ENERO2018] Sea G_1 una gramática libre de contexto propia. Podemos afirmar que:
 - a) Podemos encontrar tanto una autómata de pila que acepta por estado final como por pila vacía. V: G_1 es GLC
 - b) Al ser propia no encontraremos reglas unitarias.
 - c) Al ser propia tiene un menor número de símbolos no terminales que una equivalente no propia.
- 10. [ENERO2018] Dado el lenguaje $L = \{ww^R w\}$, indica la respuesta verdadera:
 - a) Puede aceptarse por un AP no determinista pero no un AP determinista.
 - b) Puede aceptarse por un AP determinista y por tanto ser generado por una GLC.
 - c) No puede aceptarse por un AP. V: L no es libre de contexto

Parte II: PROBLEMAS. Total 7 puntos.

- 1. 2 puntos Sean los lenguajes L_1 y L_2 definidos como:
 - L_1 : cadenas de aes y bes cuyo prefijo y sufijo es ab.
 - L_2 : cadenas de aes y bes que, al menos, contienen una subcadena ab.
 - a) (0.5p) Define formalmente los lenguajes L_1 y L_2 (por comprensión y/o usando operadores de lenguajes).
 - b) (1.0p) Diseña un AFD que acepte el lenguaje $\overline{L_1}$.
 - c) (0.5p) Diseña una ER que defina el lenguaje $L_1 \cap L_2$

SOLUCION:

a)

$$L_1 = \{ab\} \cup \{abwab \mid w \in \{a, b\}^*\}$$

$$L_2 = \{xaby \mid x, y \in \{a, b\}^*\}$$

b)

Se diseña el autómata que acepta el lenguaje L_1 :

Es un autómata completo, y podemos complementarlo para obtener el de $\overline{L_1}$:

2. 2 puntos Dado el siguiente autómata M_2 , obtén el **autómata finito determinista** equivalente utilizando el algoritmo visto en clase.

c)

Teniendo en cuenta que $L_1 \cap L_2 = L_1$, la expresión regular es $ER = ab(\lambda | (a|b)^*ab)$.

SOLUCION:

Calculamos la función de lambda-clausura (LC):

- $LC(q_0) = \{q_0\}$
- $LC(q_1) = \{q_1, q_2, q_3, q_4\}$
- $LC(q_2) = \{q_2, q_4\}$
- $LC(q_3) = \{q_3\}$
- $LC(q_4) = \{q_2, q_4\}$

Aplicamos el resto del algoritmo para calcular la función de transición y nuevos estados. El resultado es el siguiente AFD:

3. 2 puntos Sea la gramática G_3 con las siguientes reglas de producción:

$$\begin{split} S &\rightarrow aA \mid cC \mid AC \\ A &\rightarrow aaA \mid \lambda \\ B &\rightarrow bB \mid bbA \\ C &\rightarrow cC \mid D \\ D &\rightarrow \lambda \end{split}$$

- a) (0.5p) Define formalmente el lenguaje $L(G_3)$ (por comprensión y/o usando operadores de lenguajes).
- b) (1.5p) Obtén una gramática λ -libre equivalente a G_3 usando el algoritmo visto en clase.

SOLUCION:

a)

El lenguaje $L(G_3)$ se puede considerar la unión de tres lenguajes, uno por cada una de las reglas de S:

$$L(G_3) = L_1 \cup L_2 \cup L_3$$

donde
$$L_1 = \{a^{2i+1} \mid i \geq 0\}, L_2 = \{c^j \mid j \geq 1\} \text{ y } L_3 = \{a^{2i}c^j \mid i, j \geq 0\}.$$

b)

Aunque no es necesario, se puede hacer un paso previo de eliminación de símbolos inútiles. La variable B es inalcanzable, de modo que podemos trabajar con el resto de la gramática:

$$S \to aA \mid cC \mid AC$$

$$A \to aaA \mid \lambda$$

$$C \to cC \mid D$$

$$D \to \lambda$$

Las variables anulables son $V_{anu} = \{A, D, C, S\}$. Eliminamos las λ -reglas:

$$S \rightarrow aA \mid cC \mid AC$$
$$A \rightarrow aaA$$

$$A \to aaA$$

$$C \to cC \mid D$$

A continuación se modifica la gramática para que los símbolos anulables aparezcan o se eliminen en el lado derecho de las reglas, en todas las combinaciones posibles, pero sin añadir ninguna λ -regla salvo para S:

$$\begin{split} S \rightarrow aA \mid a \mid cC \mid c \mid AC \mid C \mid A \mid \lambda \\ A \rightarrow aaA \mid a \\ C \rightarrow cC \mid c \mid D \end{split}$$

La gramática anterior ya es λ -libre. Podría darse un último paso para eliminar el símbolo inútil D (improductiva):

$$\begin{split} S &\to aA \mid a \mid cC \mid c \mid AC \mid C \mid A \mid \lambda \\ A &\to aaA \mid aa \\ C &\to cC \mid c \end{split}$$

4. 1 punto Dado el lenguaje $L_4 = \{a^{2n}b^{n+1} \mid n > 0\}$, diseña un autómata de pila **determinista** con aceptación por **estado** final que acepte L_4 .

SOLUCION:

