CSC/MAT A67H3 F 2016 Midterm Duration — 90 minutes Aids allowed: none	Tutorial Number:	
Last Name: UTORID:	First Name: Student #:	
Instructors	: Bretscher and Pan	cer
	l you have received entification section Good Luck!	9
This midterm is <u>double sided</u> and consists 9 pages (including this one). Read each question carefully. If you a answer, try writing down all the information of the information of the policy of the page 1.	re unsure how to on you have first.	# 1:/15 # 2:/15 # 3:/10 # 4:/10 # 5:/10 # 6:/10
		TOTAL:/70

This page is for extra work.

Question 1. [15 MARKS]

Answer the following short answer questions. For each question circle all appropriate answers.

Part (a) [5 MARKS]

Each option below lists regions of the given Venn diagram. Circle all answers whose regions satisfy the statement:

$$p \leftrightarrow (q \wedge r)$$

(a) 1, 4 (b) 2, 4, 5 (c) 1, 8 (d) 6 (e) None

Part (b) [5 MARKS]

Write a propositional statement using \rightarrow and \neg (if necessary) equivalent to regions 3, 5 and 6. For part marks you can leave your solution using \land, \lor, \neg and \rightarrow . You do **not** need to specify which equivalence laws you use if you need them.

Part (c) [5 MARKS]

Circle every statement equivalent to $\neg a \rightarrow b$.

- (a) $\neg b \to a$
- (b) $a \to \neg b$
- (c) a is sufficient for $\neg b$
- (d) $\neg (a \land \neg b)$
- (e) b is sufficient for $\neg a$

- (f) a is necessary for $\neg b$
- (g) $\neg a$ is necessary for b
- (h) b if $\neg a$
- (i) $b \vee a$

Question 2. [15 MARKS]

Part (a) [5 MARKS]

Give an example to show that \forall does not distribute over \vee , in other words,

$$\forall x \in X, p(x) \lor q(x) \iff \forall x \in X, p(x) \lor \forall x \in q(x)$$

Part (b) [5 MARKS]

It is a fact that \forall does distribute over \land , i.e., that

$$\forall x \in X, (p(x) \land q(x)) \iff (\forall x \in X, p(x)) \land (\forall x \in X, q(x)).$$

Show that your previous example satisfies this equivalence law.

Part (c) [5 MARKS]

Determine whether \forall can be factored from an implication. In other words is

$$\forall x \in X, (p(x) \to q(x)) \iff (\forall x \in X, p(x)) \to (\forall x \in X, q(x))$$

true? Explain your reasoning. Marks will only be given for your explanation.

Question 3. [10 MARKS]

Answer the following questions to construct a direct proof that $\forall n \in \mathbb{N}, n \geq 2$,

$$\forall a \in \mathbb{N}, \forall b \in \mathbb{N}, a \equiv_n b \to a^2 \equiv_n b^2$$

Part (a) [2 MARKS]

Recall the Division Theorem which says that every natural number can be written in the form of nq + r for some $n, q, r \in \mathbb{N}$ where $0 \le r < n$. Write a and b in terms of n using the Division Theorem taking into consideration any common variables.

Part (b) [8 MARKS]

Now complete the proof.

Question 4. [10 MARKS]

Prove $\forall n \in \mathbb{N}, (n^2 - 1 \not\equiv_4 0) \to n$ is even.

Question 5. [10 MARKS]

In Assignment 1 we proved that for natural numbers a and n, a and n relatively prime is sufficient for there to exist a unique natural number b < n such that $ab \equiv_n 1$ (note that you can still answer this question even if you were unable to do the assignment question).

Part (a) [4 MARKS]

Write the following claim as an implication using quantifiers and \rightarrow . You may use p(x,y) to denote that x and y are relatively prime.

a and n relatively prime is necessary for there to exist a unique natural number b < n such that $ab \equiv_n 1$.

Part (b) [6 MARKS]

Prove the claim.

Question 6. [10 MARKS]

Prove the following statement S(n) for all $n \in \mathbb{N}, n \geq 8$:

$$S(n): \exists a \in \mathbb{N}, \exists b \in \mathbb{N}, 3a + 5b = n.$$

You may use *simple* or *strong induction*.

Use this page for rough work.