$\mathbf{2}$ سید سپهر هاشمیان $\mathbf{90102683}$ سید سپهر هاشمیان

آزمایشگاه تبدیل انرژی الکتریکی 1

2-2 آمادهسازی جهت آزمایش

ه در یک ترانسفورماتور با تعداد دور اولیه N₇ و ثانویه N₇، نسبت ولتاژ فط ثانویه به اولیه را در عالتی که اولیه ستاره و ثانویه نیز ستاره سربندی شده است؛ بدست آورید. همین کار را برای عالتی که ثانویه مثلث سربندی شده است نیز تکرار کنید.

$$a = N_2 / N_1$$
 ستاره به ستاره:

$$a = N_2 / N_1 * \sqrt{3}$$
 ستاره به مثلث:

ه مرعله قبل را با فرض اولیه مثلث تکرار کنید.

$$a = N_2 / N_1$$
 مثلث به مثلث:

$$a = N_2 * \sqrt{3} / N_1$$
 مثلث به ستاره:

چرا قبل از بستن کامل مثلث باید ولتاژ مثلث باز اندازهگیری شود.

تا بتوان هارمونیک سوم ولتاژ که در درون طقه ی مثلثی می باشد را مشاهده کرد . همجنین اگر سر ترانسفورمر را درست یسته باشیم باید ولتاژ اندازه گیری شده در عد صفر باشد . پس برای اطمینان از صعت اتصالات فود ولتاژ مثلث باز را بررسی کنیم .

ه با صرفنظر از امپدانس شافه عرضی، نمودار فازوری یک ترانسفورماتور سه فاز را در بار مفتلط پیشیفاز رسم نمایید و در مورد رگولاسیون ولتاژ آن بعث کنید.

برای هر فاز:

Leading power factor

ولتاژ رگولاسیون بستگی به مقدار بار دارد که میتواند کوچکتر یا بزرگتر یا عتی برابر صفر گردد.

3–2 شبيه سازى

در این قسمت با استفاده از نرم افزار MATLAB/ Simulink اتصالات مفتلف یک ترانسفورماتور سه فاز و عملکرد تعت بار آن مورد بررسی قرار می گیرد. شکل 1 نعوه سربندی ترانسفورماتور سه فاز به صورت ستاره و مثلث را نشان می دهد.

شكل 1: نعوه (تصال ستاره و مثلث

ارسى رتصالات مفتلف ترانسفورماتور -2

یک صفعه Simulink باز کنید و مدار شکل 2 را رسم نمایید. پارامترهای ترانسفورماتور و منبع تغذیه را به صورت شکل 3 تنظیم نمایید و نوع Solver باز کنید و مدار شکل که از نسفه 2012 نرم افزار، استفاده می کنید، لازم است؛ نوع علی مساله را در بلوک

PowerGUI از قسمت Configure Parameter آن Discrete با Sample time برابر 6-5 تعیین کنید. در قسمت Solver نیز نوع علی مساله باید Discrete انتفاب کردد.

شکل 2: مدار شبیه سازی برای بررسی اتصالات مفتلف ترانسفورماتور

شبیه سازی را در شرایط زیر انجام دهید:

🟶 (ولیه و ثانویه ترانسفورماتور را به صورت ستاره سربندی کنید (مانند شکلی 2) و ولتاژ فط و فاز (ولیه و ثانویه را مشاهده نمایید.

STATES:

II_Lm: TP Trans 12 Term/T1= 1.66 Arms -90.06 °

II_winding_1: TP Trans 12 Term/T2= 2.35 Arms -165.06 $^{\circ}$

II_Lm: TP Trans 12 Term/T2= 1.66 Arms 149.94 °

II_winding_1: TP Trans 12 Term/T3= 2.35 Arms 74.94 °

II_Lm: TP Trans 12 Term/T3= 1.66 Arms 29.94 $^{\circ}$

MEASUREMENTS:

U_V line p = 17299.91 Vrms 29.95°

U_V line s = 43238.52 Vrms 29.94°

U_V phase s = 24963.77 Vrms -60.06°

U_V phase p = 9988.11 Vrms -120.05°

SOURCES:

U_A: Three-Phase Source= 10000.00 Vrms 0.00°

U_B: Three-Phase Source= 10000.00 Vrms -120.00°

U_C: Three-Phase Source= 10000.00 Vrms 120.00°

الصال ثانویه را در عالت مثلث قرار دهید. مثلث را باز کنید و ولتاژ مثلث باز را مشاهده نمایید.

STATES:

II_Lm: TP Trans 12 Term/T1= 1.66 Arms -90.06 $^{\circ}$

II_winding_1: TP Trans 12 Term/T2= 2.35 Arms -165.06 °

II_Lm: TP Trans 12 Term/T2= 1.66 Arms 149.94 °

II_winding_1: TP Trans 12 Term/T3= 2.35 Arms 74.94 °

II_Lm: TP Trans 12 Term/T3= 1.66 Arms 29.94 °

MEASUREMENTS:

U_V line p = 17299.91 Vrms 29.95°

U_V line & phase s = 0.00 Vrms -173.15°

U_V phase p = 9988.11 Vrms -120.05°

SOURCES:

U A: Three-Phase Source= 10000.00 Vrms 0.00°

U_B: Three-Phase Source= 10000.00 Vrms -120.00°

U_C: Three-Phase Source= 10000.00 Vrms 120.00°

مقادیر ولتاژهای فاز و فط (اولیه و ثانویه) را در این اتصال (ستاره به مثلث) مشاهده نمایید.

STATES:

II Lm: TP Trans 12 Term/T1= 1.66 Arms -90.06 °

II_winding_1: TP Trans 12 Term/T2= 2.35 Arms -165.06 $^{\circ}$

II_Lm: TP Trans 12 Term/T2= 1.66 Arms 149.94 °

II_winding_1: TP Trans 12 Term/T3= 2.35 Arms 74.94 °

II_winding_2: TP Trans 12 Term/T3= 0.00 Arms 0.00 °

```
II_Lm: TP Trans 12 Term/T3= 1.66 Arms 29.94 °
```

MEASUREMENTS:

U V line p = 17299.91 Vrms 29.95°

U_V line & phase s = 24963.77 Vrms -0.06°

U_V phase p = 9988.11 Vrms -120.05°

SOURCES:

U_A: Three-Phase Source= 10000.00 Vrms 0.00°

U_B: Three-Phase Source= 10000.00 Vrms -120.00°

U_C: Three-Phase Source= 10000.00 Vrms 120.00°

اولیه را به صورت مثلث بببندید و با ثانویه ستاره و مثلث شبیهسازی را تکرار کنید.

مثلث به ستاره:

STATES:

II_winding_1: TP Trans 12 Term/T1= 4.07 Arms -15.17 °

II Lm: TP Trans 12 Term/T1= 2.88 Arms -60.17 °

II_winding_1: TP Trans 12 Term/T2= 4.07 Arms -135.17 °

II_Lm: TP Trans 12 Term/T2= 2.88 Arms 179.83 °

II_winding_1: TP Trans 12 Term/T3= 4.07 Arms 104.83 °

II_Lm: TP Trans 12 Term/T3= 2.88 Arms 59.83 °

MEASUREMENTS:

U_V line & phase p = 17258.81 Vrms 29.85°

U_V line s = 74713.40 Vrms 59.83°

U_V phase s = 43135.80 Vrms -30.17°

SOURCES:

U_A: Three-Phase Source = 10000.00 Vrms 0.00°

U_B: Three-Phase Source = 10000.00 Vrms -120.00°

U_C: Three-Phase Source = 10000.00 Vrms 120.00°

STATES:

II_winding_1: TP Trans 12 Term/T1= 4.07 Arms -15.17 °

II_Lm: TP Trans 12 Term/T1= 2.88 Arms -60.17 $^{\circ}$

II_winding_1: TP Trans 12 Term/T2= 4.07 Arms -135.17 °

II_Lm: TP Trans 12 Term/T2= 2.88 Arms 179.83 °

II_winding_1: TP Trans 12 Term/T3= 4.07 Arms 104.83 °

II_winding_2: TP Trans 12 Term/T3= 0.00 Arms 154.60 °

II_Lm: TP Trans 12 Term/T3= 2.88 Arms 59.83 °

MEASUREMENTS:

U_V line & phase p = 17258.81 Vrms 29.85°

U_V line & phase s = 43135.80 Vrms 29.83°

SOURCES:

U_A: Three-Phase Source = 10000.00 Vrms 0.00°

U_B: Three-Phase Source = 10000.00 Vrms -120.00°

U_C: Three-Phase Source = 10000.00 Vrms 120.00°

2-3-2 شبيه سازى عالت بابارى

رسم کنید. پارامترهای منبع تغذیه، ترانسفورماتور و بار را به صورت شکل 5، تنظیم نموده و نوع Simulinkمدار شکل 4 را در معیط Solver را Solver را Solver

شکل 4: مدار شبیه سازی در دالت با باری

شکلی 5: پارامترهای منبع تغذیه، ترانسفورماتور و بار

را در پارامترهای بار صفر انتفاب کنید)، بار اهمی القایی (در ایت شرایط مقدار QC و QC شبیه سازی را با بار اهمی (در ایت شرایط مقدار QC را در پارامترهای بار صفر انتفاب کنید) و بار اهمی افزانی (در ایت شرایط مقدار QC را در پارامترهای بار صفر انتفاب کنید) و بار اهمی فزانی (در ایت شرایط مقدار این شرایط مقدار این شرایط مقدار کلید و پارامترهای بار صفر انتفاب کنید و پارامتری توان از دو واتمتر تکفاز به اولیه ترانسفورماتور شکل 4، اضافه کنید و شبیه سازی را با بار اهمی، اهمی القایی و اهمی فزانی، تکرار کنید.

بار لهمي :

STATES:

II_transfo_1_Lm: Three-Phase Transformer (Two Windings)= 0.39 Arms -90.96 °

II_transfo_2_winding_1: Three-Phase Transformer (Two Windings)= 39.61 Arms -122.43 °

II_transfo_2_winding_2: Three-Phase Transformer (Two Windings)= 91.50 Arms 58.13 °

II_transfo_2_Lm: Three-Phase Transformer (Two Windings)= 0.39 Arms 149.04 °

II_transfo_3_winding_1: Three-Phase Transformer (Two Windings)= 39.61 Arms 117.57 °

II transfo 3 winding 2: Three-Phase Transformer (Two Windings)= 91.50 Arms -61.87 °

II_transfo_3_Lm: Three-Phase Transformer (Two Windings)= 0.39 Arms 29.04 °

MEASUREMENTS:

U_Voltage Measurement= 734920.72 Vrms 29.97°

U Voltage Measurement1= 734920.72 Vrms 89.97°

U_Voltage Measurement2= 314501.18 Vrms -91.87°

I_Current Measurement= 91.50 Arms -1.87°

I_Current Measurement1= 39.61 Arms -2.43°

I_Current Measurement2= 39.61 Arms 117.57°

SOURCES:

U_A: Three-Phase Source= 424352.45 Vrms 0.00°

U_B: Three-Phase Source= 424352.45 Vrms -120.00°

U_C: Three-Phase Source= 424352.45 Vrms 120.00°

STATES:

II RLC Load1= 171.83 Arms 148.34 °

II RLC Load2= 171.83 Arms 28.34 °

II RLC Load= 171.83 Arms -91.66 °

II_transfo_1_Lm: Three-Phase Transformer (Two Windings)= 0.38 Arms -90.82 °

II_transfo_2_winding_1: Three-Phase Transformer (Two Windings)= 82.84 Arms 175.02 °

II_transfo_2_winding_2: Three-Phase Transformer (Two Windings)= 192.11 Arms -5.10 °

II_transfo_2_Lm: Three-Phase Transformer (Two Windings)= 0.38 Arms 149.18 °

II_transfo_3_winding_1: Three-Phase Transformer (Two Windings)= 82.84 Arms 55.02 °

II_transfo_3_winding_2: Three-Phase Transformer (Two Windings)= 192.11 Arms -125.10 °

II transfo 3 Lm: Three-Phase Transformer (Two Windings)= 0.38 Arms 29.18 °

MEASUREMENTS:

U_Voltage Measurement= 734133.18 Vrms 29.98°

U_Voltage Measurement1= 734133.18 Vrms 89.98°

U_Voltage Measurement2= 295313.41 Vrms -91.66°

I_Current Measurement= 192.11 Arms -65.10°

I_Current Measurement1= 82.84 Arms -64.98°

I_Current Measurement2= 82.84 Arms 55.02°

SOURCES:

U_A: Three-Phase Source= 424352.45 Vrms 0.00°

U_B: Three-Phase Source= 424352.45 Vrms -120.00°

U_C: Three-Phase Source= 424352.45 Vrms 120.00°

STATES:

Uc_RLC Load1= 194191.88 Vrms -122.11 °

Uc_RLC Load2= 194191.88 Vrms 117.89 °

Uc_RLC Load= 194191.88 Vrms -2.11 °

II_transfo_1_Lm: Three-Phase Transformer (Two Windings)= 0.41 Arms -91.12 °

II_transfo_2_winding_1: Three-Phase Transformer (Two Windings)= 93.60 Arms -59.01 °

II_transfo_2_winding_2: Three-Phase Transformer (Two Windings)= 218.81 Arms 121.32 °

II_transfo_2_Lm: Three-Phase Transformer (Two Windings)= 0.41 Arms 148.88 °

II_transfo_3_winding_1: Three-Phase Transformer (Two Windings)= 93.60 Arms -179.01 °

II_transfo_3_winding_2: Three-Phase Transformer (Two Windings)= 218.81 Arms 1.32 °

II_transfo_3_Lm: Three-Phase Transformer (Two Windings)= 0.41 Arms 28.88 °

MEASUREMENTS:

U_Voltage Measurement= 735816.27 Vrms 29.95°

U Voltage Measurement1= 735816.27 Vrms 89.95°

U Voltage Measurement2= 336350.20 Vrms -92.11°

I Current Measurement= 218.81 Arms 61.32°

I_Current Measurement1= 93.60 Arms 60.99°

I_Current Measurement2= 93.60 Arms -179.01°

SOURCES:

U A: Three-Phase Source= 424352.45 Vrms 0.00°

U_B: Three-Phase Source= 424352.45 Vrms -120.00°

U_C: Three-Phase Source= 424352.45 Vrms 120.00°