과제 2 :: Edge Device를 위한 TensorFlow Lite CNN 모델 최적화

I. Overview

1. Objectives

- 강의 자료 5와 6에서 배운 내용을 기반으로, TensorFlow 및 TensorFlow Lite와 Arduino Nano 33 BLE를 사용하여 EMNIST 데이터셋 기반 "대문자 영문 알파벳" 손글씨 인식 모델을 최적화합니다.
- 제한된 하드웨어 리소스에서 효율적으로 동작하는 모델 개발을 통해, DL 모델의 Edge Device에서 의 응용 가능성을 탐구합니다.

2. Implementation

- TensorFlow 및 TensorFlow Lite를 사용하여 영문 알파벳 손글씨 인식 모델 설계 및 Arduino 보드 포팅
- 보드에서 모델의 추론 정확도와 추론 시간을 측정하고, 다양한 최적화 기법을 적용하여 결과를 비교

II. Tasks

Task 1. Development and hardware porting of DL model

- TensorFlow 및 TensorFlow Lite를 이용하여 대문자 영문 알파벳(Uppercase letters of Latin alphabet) 손 글씨 인식 모델 설계 및 학습
- 손글씨 숫자와 영문자를 포함하는 확장된 MNIST 데이터셋인 EMNIST (Extended Modified National Institute of Standards and Technology) 데이터셋을 활용하여 과제 진행
- 모델의 크기와 성능을 하드웨어 요구 사항에 맞게 설계. 이후 설계한 모델을 Arduino Nano 33 BLE에 포팅하여 추론 정확도와 추론 시간 확인 (추론 정확도는 Colab에서 획득, 추론 시간은 보드에서 획득)

Task 2. Optimize inference time

- Task 1에서 개발한 모델에 대해 추론 시간을 줄이는 동시에 정확도를 유지하기 위한 최적화 기법 (예: pruning, quantization, convolution 최적화 등)을 적용
- 최적화된 모델을 Arduino Nano 33 BLE에 다시 포팅하여, <u>평균 추론 정확도가 0.99 이상이면서, 동</u> 시에 "평균 추론 정확도 / 평균 추론 시간" 비율이 최대가 될 수 있도록 최적화

References for performing the task

https://www.tensorflow.org/api_docs/python/tf/keras/layers

https://keras.io/api/layers/

https://ssongnote.tistory.com/13

https://truman.tistory.com/188

https://laboputer.github.io/machine-learning/2020/03/12/mnist995/

III. Submission

1. Assignments

- 모델 최적화 및 포팅 과정(Task 1)이 담긴 Jupyter Notebook 파일(ipynb) 및 Arduino 소스 코드 파일
- 추론 시간 최적화 과정(Task 2)이 담긴 Jupyter Notebook 파일(.ipynb) 및 Arduino 소스 코드 파일
- 결과 및 분석을 닦은 보고서(PDF 형식)
 - * 보고서는 다음의 내용을 포함해야 합니다.
 - 시뮬레이션 결과 스크린샷
 - 설계한 딥러닝 모델의 설계 및 실행 방식
 - 측정된 추론 성능 및 적용된 최적화 기법
 - 적용 방법 및 결과

2. Submission Guidelines

- 모든 파일은 팀 대표 한 명이 HW2 팀명.zip(예: HW2 3팀.zip) 형식으로 압축하여 제출
- 과제의 재제출 역시 초기 제출자가 담당 (초기 제출자의 재제출 불가 시 사전 고지 필요)
- 제출 양식 미준수 시 5% 감점 (예: 보고서 확장자 오류, 재제출 시 사전 고지 없는 제출자 변경 등)
- AjouBb를 통해서만 제출 (메일 제출 불가)

3. Delayed submission

- 지각 제출 시 매일 15% 감점, 최대 50% 감점
- 미제출 과제는 0점 처리

IV. Criteria (Total points: 100 pt.)

1. 정확성 및 완성도 [60점]

- 가. 모델 설계 및 학습 [20점]
 - 1) 영문 알파벳 손글씨 인식 모델의 설계 및 학습 과정의 완성도
 - 2) 모델의 정확도 및 효율성
- 나. 모델 최적화 및 하드웨어 포팅 [20점]
 - 1) 하드웨어 요구 사항에 맞는 모델 최적화 및 성능 보완
 - 2) Arduino Nano 33 BLE에 포팅된 모델의 성공적 실행, 추론 정확도 및 시간 평가
- 다. 추론 시간 최적화 [20점]
 - 1) Task 1 모델에 적용된 최적화 기법의 선택 및 적용 과정의 적절성과 효과
 - 2) 최적화 적용 후, 모델의 추론 시간 단축 정도 및 추론 정확도에 미친 영향

2. 코드 품질 [10점]

- 가. 일관적인 코드 스타일 및 구조 [5점]
- 나. 주석을 통한 코드 설명 및 일관적인 명명 규칙 [5점]

3. 보고서 완성도 [30점]

- 가. 프로젝트 목적, 개발 및 구현 내용에 대한 명확한 서술 [10점]
- 나. 분석 및 최적화 과정의 상세한 설명 [10점]
- 다. 정보의 구조화, 가독성 등 명확한 보고서 포맷 및 표현 [10점]