TT009 Matemática Aplicada I Prova Final, 3 Set 2003 Prof. Nelson Luís Dias

NOME: ANDRESSA GUADAGNIN Assinatura: _____

ATENÇÃO: Leia atentamente todas as questões, e comece pelas mais fáceis para você. Resolva as questões de forma limpa e organizada, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

 ${f 2}$ [1,5] Considere a função

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando}:$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x},\;\frac{\partial u}{\partial y},\;\frac{\partial v}{\partial x},\;\frac{\partial v}{\partial y}$$

são contínuas em todos os pontos do eixo real?

c) $\left[0,5\right]$ A função f(z) é analítica em todos os pontos do eixo real?

 $\mathbf{3}$ [1,5] Complete a tabela abaixo, seguindo o exemplo dado; não escreva fora dos espaços designados, e seja sucinto(a)! Nas equações abaixo, a, b e c são constantes reais genéricas, e f(x) e g(x) são funções reais genéricas.

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

TT009 Matemática Aplicada I Prova Final, 3 Set 2003 Prof. Nelson Luís Dias

NOME: CLARISSA SÉKULA Assinatura: _____

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

TT009 Matemática Aplicada I Prova Final, 3 Set 2003 Prof. Nelson Luís Dias NOME: CÉSAR A. DA SILVA

Assinatura:

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

TT009 Matemática Aplicada I Prova Final, 3 Set 2003 Prof. Nelson Luís Dias

NOME: GIANE R. GMACH Assinatura:

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

TT009 Matemática Aplicada I Prova Final, 3 Set 2003 Prof. Nelson Luís Dias

NOME: GILBERTO MAZER KUBIS Assinatura: _____

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

TT009 Matemática Aplicada I Prova Final, 3 Set 2003 Prof. Nelson Luís Dias

NOME: HELDER RAFAEL NOCKO Assinatura: _____

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

TT009 Matemática Aplicada I

Prova Final, 3 Set 2003 Prof. Nelson Luís Dias

NOME: LEANDRO BERGMANN TAYTELBAUM Assinatura:

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, *nos espaços designados*: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

TT009 Matemática Aplicada I Prova Final, 3 Set 2003 Prof. Nelson Luís Dias

NOME: MARCELO ANDRIONI

Assinatura:	

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

TT009 Matemática Aplicada I Prova Final, 3 Set 2003 Prof. Nelson Luís Dias

NOME: OTHAVIO TONIASSO TAKEDA

Assinatura:	
TOOTITOO OLI CO.	

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] + [\mathbf{c} \times [\mathbf{a} \times \mathbf{b}]] + [\mathbf{b} \times [\mathbf{c} \times \mathbf{a}]] = \mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

NOME: PALOMA GIOVANA FARIA

A • 1	
Assinatura:	
Tibbilia ala.	

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

NOME: RAFAEL CABRAL GONÇALVES

Assinatura:	

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, *nos espaços designados*: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] + [\mathbf{c} \times [\mathbf{a} \times \mathbf{b}]] + [\mathbf{b} \times [\mathbf{c} \times \mathbf{a}]] = \mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

NOME: RICARDO FURLAN Assinatura: _____

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] + [\mathbf{c} \times [\mathbf{a} \times \mathbf{b}]] + [\mathbf{b} \times [\mathbf{c} \times \mathbf{a}]] = \mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

NOME: ALUNO GENÉRICO Assinatura:

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

NOME: ALUNO GENÉRICO Assinatura:

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).

NOME: ALUNO GENÉRICO Assinatura:

ATENÇÃO: Leia atentamente *todas* as questões, e comece pelas mais fáceis para você. Resolva as questões de forma *limpa e organizada*, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

1 [2,0] Usando a identidade de Jacobi,

$$[\mathbf{a} \times [\mathbf{b} \times \mathbf{c}]] = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

Mostre que

$$[\mathbf{a}\times[\mathbf{b}\times\mathbf{c}]]+[\mathbf{c}\times[\mathbf{a}\times\mathbf{b}]]+[\mathbf{b}\times[\mathbf{c}\times\mathbf{a}]]=\mathbf{0}.$$

$$f(z) = (3y^2 - x^3) + i(6xy^2 - 3yx^2).$$

 $Responda, \ \textbf{justificando} :$

- a) [0,5] As equações de Cauch-Riemman são satisfeitas em todos os pontos do eixo real?
- b) [0,5] As derivadas parciais

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

são contínuas em todos os pontos do eixo real?

c) [0,5] A função f(z) é analítica em todos os pontos do eixo real?

Equação diferencial	Classificação	Encaminhamento da solução
y' + f(x)y = g(x)	EDO, linear, ordem 1, não-homogênea	Faça $y = u(x)v(x)$, substitua e resolva uma equação homogênea para $u(x)$.
ay'' + by' + cy = f(x)		
$x^2y'' + xy' + y = 0$		
$x^2y'' + xy' + (x^2 - 1)y = 0$		

4 [2,0] Se a transformada de Laplace de f(t) é $(2s^2+s+1)/(s^3+s^2+s+1)$, obtenha f(t).

$$\mathcal{F}[f(x)](k) \equiv \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

tem a propriedade

$$\mathcal{F}[f'(x)](k) = ik\mathcal{F}[f],$$

e que $\mathcal{F}[\delta(x)] = 1$, calcule $\mathcal{F}[H(x)]$, onde H(x), a função de Heaviside, é a antiderivada (ou seja: a primitiva) da delta de Dirac $\delta(x)$ (no sentido, naturalmente, da teoria de Distribuições).