Metode Numerik Secara Umum

Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti Teknik Sipil, Teknik Mesin, Elektro, dan sebagainya. Seringkali model matematika tersebut muncul dalam bentuk yang tidak ideal alias rumit. Model matematika yang rumit ini adakalanya tidak dapat diselesaikan dengan metode analitik yang sudah umum untuk mendapatkan solusi sejatinya (exact solution). Yang dimaksud dengan metode analitik adalah metode penyelesaian model matematika dengan rumus-rumus aljabar yang sudah baku (lazim).

Sebagai contoh ilustrasi, tinjau sekumpulan persoalan matematik di bawah ini. Bagaimana cara anda menyelesaikannya?

1. Tentukan akar-akar persamaan polinom:

$$23.4x^7 - 1.25x^6 + 120x^4 + 15x^3 - 120x^2 - x + 100 = 0$$

2. Selesaikan sistem persamaaan lanjar (linear):

3. Bila diperoleh tabulasi titik-titik (x,y) sebagai berikut (yang dalam hal ini rumus fungsi y = f(x) tidak diketahui secara eksplisit):

x	y = f(x)
2.5	1.4256
3.0	1.7652
3.5	2.0005
4.4	2.8976
6.8	3.8765

Peranan Komputer dalam Metode Numerik

Komputer berperan besar dalam perkembangan bidang metode numerik. Hal ini mudah dimengerti karena perhitungan dengan metode numerik adalah berupa

operasi aritmetika seperti penjumlahan, perkalian, pembagian, plus membuat perbandingan. Sayangnya, jumlah operasi aritmetika ini umumnya sangat banyak dan berulang, sehingga perhitungan secara manual sering menjemukan. Manusia (yang melakukan perhitungan manual ini) dapat membuat kesalahan dalam melakukannya. Dalam hal ini, komputer berperanan mempercepat proses perhitungan tanpa membuat kesalahan.

Penggunaan komputer dalam metode numerik antara lain untuk memprogram. Langkah-langkah metode numerik diformulasikan menjadi program komputer. Program ditulis dengan bahasa pemrograman tertentu, seperti FORTRAN, PASCAL, C, C++, BASIC, dan sebagainya.

Sebenarnya, menulis program numerik tidak selalu diperlukan. Di pasaran terdapat banyak program aplikasi komersil yang langsung dapat digunakan. Beberapa contoh aplikasi yang ada saat ini adalah *MathLab*, *MathCad*, *Maple*, *Mathematica*, *Eureka*, dan sebagainya. Selain itu, terdapat juga *library* yang berisi rutin-rutin yang siap digabung dengan program utama yang ditulis pengguna, misalnya *IMSL* (*International Mathematical and Statistical Library*) *Math/Library* yang berisi ratusan rutin-rutin metode numerik.

Selain mempercepat perhitungan numerik, dengan komputer kita dapat mencoba berbagai kemungkinan solusi yang terjadi akibat perubahan beberapa parameter. Solusi yang diperoleh juga dapat ditingkatkan ketelitiannya dengan mengubah-ubah nilai parameter.

Kemajuan komputer digital telah membuat bidang metode numerik berkembang secara dramatis. Tidak ada bidang matematika lain yang mengalami kemajuan penting secepat metode numerik. Tentu saja alasan utama penyebab kemajuan ini adalah perkembangan komputer itu sendiri, dari komputer mikro sampai komputer *Cray*, dan kita melihat perkembangan teknologi komputer tidak pernah berakhir. Tiap generasi baru komputer menghadirkan keunggulan seperti waktu, memori, ketelitian, dan kestabilan perhitungan. Hal ini membuat ruang penelitian semakin terbuka luas. Tujuan utama penelitian itu adalah pengembangan algoritma numerik yang lebih baik dengan memanfaatkan keunggulan komputer semaksimal mungkin. Banyak algoritma baru lahir atau perbaikan algoritma yang lama didukung oleh komputer.

Bagian mendasar dari perhitungan rekayasa yang dilakukan saat ini adalah perhitungan "waktu nyata" *(real time computing)*, yaitu perhitungan keluaran (hasil) dari data yang diberikan dilakukan secara simultan dengan *event* pembangkitan data tersebut, sebagaimana yang dibutuhkan dalam mengendalikan proses kimia atau reaksi nuklir, memandu pesawat udara atau roket dan sebagainya [KRE88]. Karena itu, kecepatan perhitungan dan kebutuhan memori komputer adalah pertimbangan yang sangat penting.

Jelaslah bahwa kecepatan tinggi, keandalan, dan fleksibilitas komputer memberikan akses untuk penyelesaian masalah praktek. Sebagai contoh, solusi sistem persamaan lanjar yang besar menjadi lebih mudah dan lebih cepat diselesaikan dengan komputer. Perkembangan yang cepat dalam metode numerik antara lain ialah penemuan metode baru, modifikasi metode yang sudah ada agar lebih mangkus, analisis teoritis dan praktis algoritma untuk proses perhitungan baku, pengkajian galat, dan penghilangan jebakan yang ada pada metode [KRE88].

Mengapa Kita Harus Mempelajari Metode Numerik?

Seperti sudah disebutkan pada bagian awal bab ini, para rekayasawan dan para ahli ilmu alam, dalam pekerjaannya sering berhadapan dengan persamaan matematik. Persoalan yang muncul di lapangan diformulasikan ke dalam model yang berbentuk persamaan matematika. Persamaan tersebut mungkin sangat kompleks atau jumlahnya lebih dari satu. Metode numerik, dengan bantuan komputer, memberkan cara penyelesaian persoalan matematika dengan cepat dan akurat.

Terdapat beberapa alasan tambahan mengapa kita harus mempelajari metode numerik [CHA91]:

- 1. Metode numerik merupakan alat bantu pemecahan masalah matematika yang sangat ampuh. Metode numerik mampu menangani sistem persamaan besar, kenirlanjaran, dan geometri yang rumit yang dalam praktek rekayasa seringkali tidak mungkin dipecahkan secara analitik.
- 2. Seperti sudah disebutkan pada upapab 1.4, di pasaran banyak tersedia program aplikasi numerik komersil. Penggunaan aplikasi tersebut menjadi lebih berarti bila kita memiliki pengetahuan metode numerik agar kita dapat memahami cara paket tersebut menyelesaikan persoalan.
- 3. Kita dapat membuat sendiri program komputer tanpa harus membeli paket programnya. Seringkali beberapa persoalan matematika yang tidak selalu dapat diselesaikan oleh program aplikasi. Sebagai contoh, misalkan ada program aplikasi tertentu yang tidak dapat dipakai untuk menghitung integrasi lipat dua, , atau lipat tiga, . Mau tidak mau, kita harus menulis sendiri programnya. Untuk itu, kita harus mempelajari cara pemecahan integral lipat dua atau lebih dengan metode numerik.
- 4. Metode numerik menyediakan sarana untuk memperkuat kembali pemahaman matematika. Karena, metode numerik ditemukan dengan menyederhanakan matematika yang lebih tinggi menjadi operasi matematika yang mendasar.

Tahap-Tahap Memecahkan Persoalan Secara Numerik

Ada enam tahap yang dilakukan dakam pemecahan persoalan dunia nyata dengan metode numerik, yaitu

1. Pemodelan

Ini adalah tahap pertama. Persoalan dunia nyata dimodelkan ke dalam persamaan matematika (lihat contoh ilustrasi pada upabab 1.2)

2. Penyederhanaan model

Model matematika yang dihasilkan dari tahap 1 mungkin saja terlalu kompleks, yaitu memasukkan banyak peubah (variable) atau parameter. Semakin kompleks model matematikanya, semakin rumit penyelesaiannya. Mungkin beberapa andaian dibuat sehingga beberapa parameter dapat diabaikan. Contohnya, faktor gesekan udara diabaikan sehingga koefisian gesekan di dalam model dapat dibuang. Model matematika yang diperoleh dari penyederhanaan menjadi lebih sederhana sehingga solusinya akan lebih mudah diperoleh.

3. Formulasi numerik

Setelah model matematika yang sederhana diperoleh, tahap selanjutnya adalah memformulasikannya secara numerik, antara lain:

- a. menentukan metode numerik yang akan dipakai bersama-sama dengan analisis galat awal (yaitu taksiran galat, penentuan ukuran langkah, dan sebagainya). Pemilihan metode didasari pada pertimbangan:
 - apakah metode tersebut teliti?
 - apakah metode tersebut mudah diprogram dan waktu pelaksanaannya cepat?
 - apakah metode tersebut tidak peka terhadap perubahan data yang cukup kecil?
- b. menyusun algoritma dari metode numerik yang dipilih.

4. Pemrograman

Tahap selanjutnya adalah menerjemahkan algoritma ke dalam program komputer dengan menggunakan salah satu bahasa pemrograman yang dikuasai.

5. Operasional

Pada tahap ini, program komputer dijalankan dengan data uji coba sebelum data yang sesungguhnya.

6. Evaluasi

Bila program sudah selesai dijalankan dengan data yang sesungguhnya, maka hasil yang diperoleh diinterpretasi. Interpretasi meliputi analisis hasil *run* dan membandingkannya dengan prinsip dasar dan hasil-hasil empirik untuk menaksir kualitas solusi numerik, dan keputusan untuk menjalankan kembali program dengan untuk memperoleh hasil yang lebih baik.

Peran Ahli Informatika dalam Metode Numerik

Dari tahap-tahap pemecahan yang dikemukan di atas, tahap 1 dan 2 melibatkan para pakar di bidang persoalan yang bersangkutan. Kalau persoalannya dalam bidang eknik Sipil, maka orang dari bidang Sipil-lah yang menurunkan model matematikanya. Kalau persoalannya menyangkut bidang Teknik Kimia (TK), maka ahli Teknik Kimia-lah yang mempunyai kemmapuan membentuk model matematikanya.

Dimanakah peran orang Informatika? Orang Informatika baru berperan pada tahap 3 dan 4, dan 5. Tetapi, agar lebih memahami dan menghayati persoalan, sebaiknya orang Informatika juga ikut dilibatkan dalam memodelkan, namun perannya hanyalah sebagai pendengar.

Tahap 6 memerlukan kerjasama informatikawan dengan pakar bidang bersangkutan. Bersama-sama dengan pakar, informatikawan mendiskusikan hasil numerik yang diperoleh, apakah hasil tersebut sudah dapat diterima, apakah perlu dilakukan perubahan parameter, dsb.

Perbedaan Metode Numerik dengan Analisis Numerik

Untuk persoalan tertentu tidaklah cukup kita hanya menggunakan metode untuk memperoleh hasil yang diinginkan; kita juga perlu mengetahui apakah metode tersebut memang memberikan solusi hampiran, dan seberapa bagus hampiran itu [BUC92]. Hal ini melahirkan kajian baru, yaitu **analisis numerik**.

Metode numerik dan analisis numerik adalah dua hal yang berbeda. Metode adalah algoritma, menyangkut langkah-langkah penyelesaian persoalan secara numerik, sedangkan analisis numerik adalah terapan matematika untuk menganalisis metode [NOB72]. Dalam analisis numerik, hal utama yang ditekankan adalah analisis galat dan kecepatan konvergensi sebuah metode. Teorema-teorema matematika banyak dipakai dalam menganalisis suatu metode. Di dalam buku ini, kita akan memasukkan beberapa materi analisis numerik seperti galat metode dan kekonvergenan metode.

Tugas para analis numerik ialah mengembangkan dan menganalisis metode numerik. Termasuk di dalamnya pembuktian apakah suatu metode konvergen, dan menganalisis batas-batas galat solusi numerik. Terdapat banyak sumber galat, diantaranya tingkat ketelitian model matematika, sistem aritmetik komputer, dan kondisi yang digunakan untuk menghentikan proses pencarian solusi. Semua ini harus dipertimbangkan untuk menjamin ketelitian solusi akhir yang dihitung.

TUGAS

SETELAH MEMBACA MATERI AWAL PERKULIAHAN INI KALIAN DITUGASKAN UNTUK MEMBUAT SEMACAM RINGKASAN DARI MATERI INI.

Kemudian dikirimkan sebelum batas waktu yang sudah ditentukan