### Logic Gates

CSE 4205: Digital Logic Design

#### Aashnan Rahman

Junior Lecturer

Computer Science and Engineer

Department of Computer Science and Engineering (CSE) Islamic University of Technology

## Logic Gates Device performing logical operations

#### Logic Gates

An electric circuit that operate on one or more input signals to generate an output signal based on specific requirement(s)

#### Switching Circuits / Binary Signal

Binary logic variable A can be represented as a switch A as following:

switch ON logic 1

switch OFF logic 0

Bectronic digital circuits uses transistors as switches

- Conduct current → **switch on**
- Doesn't conduct current → switch off



# 02 **Basic Gates** Building blocks used in digital electronics

#### **AND Gate**

It produces a high output (logic 1) only when all of its inputs are high; if any input is low (logic 0), the output will also be low.



Figure 5: 2 input AND Gate

| A | В | Output |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 0      |
| 1 | 0 | 0      |
| 1 | 1 | 1      |

Table 2: Truth Table of AND Gate

$$F = A.B$$

#### **OR** Gate

Outputs a high signal (logic 1) if at least one of its inputs is high. If all inputs are low (logic 0), only then will the output be low.



$$F = A + B$$

#### **NOT Gate**

It operates on a single input and a single output. It performs a logical inversion.



$$F=ar{A}$$

#### Equivalent Circuits



#### Timing Diagram



#### Gate Delay

Length of time it takes for an input change to result in the corresponding output change





### 03 Universal Gates

Can construct any other logic gate

#### NAND Gate

Complement of AND. Only Low when all inputs are high.



Figure 8: 2 input NAND Gate

| Α | В | Output |
|---|---|--------|
| 0 | 0 | 1      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 0      |

Table 5: Truth Table of NAND Gate

$$F = \overline{A \cdot B}$$

#### NOR Gate

Complement of OR. Only High when all inputs are low.



Figure 10: 2 input NOR Gate

| Α | В | Output |
|---|---|--------|
| 0 | 0 | 1      |
| 0 | 1 | 0      |
| 1 | 0 | 0      |
| 1 | 1 | 0      |

Table 7: Truth Table of NOR Gate

$$F = \overline{A + B}$$

# 04 Exclusive Gates

True only under specific conditions of exclusivity

#### **XOR Gate**

Odd 1 selector



Figure 11: 2 input XOR Gate

| Α | В | Output |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 0      |

Table 8: Truth Table of X-OR Gate

$$F = A \oplus B = \bar{A}B + A\bar{B}$$

#### X–NOR Gate

Even 1 selector



Figure 12: 2 input X-OR Gate

| Α | В | Output |
|---|---|--------|
| 0 | 0 | 1      |
| 0 | 1 | 0      |
| 1 | 0 | 0      |
| 1 | 1 | 1      |

Table 9: Truth Table of NOR Gate

$$F = \overline{A \oplus B} = A \odot B = (A \cdot B) + (\overline{A} \cdot \overline{B})$$

#### Buffer

A type of logic gate that amplifies a signal without changing its logic level.

"Buffer" gate



| Input | Output |
|-------|--------|
| 0     | 0      |
| 1     | 1      |

### Thank You!!

Feel free to ask any questions