Last Time

LI Lemma: Suppose (VI,..., Vm) is LD in V.

Then I jel,..., m s.t

- (a) Vj & span (V1, ..., Vj-1)
- (b) if ith element is removed from vi....vm then the span of the remaining = span (v,,..., vm)

Main Goal: If Y has two bases, (v,,..,vm), (w,,..., wm) then

Want to figure this out.

Key Theorem: Suppose V is finite dimensional and

@ (U,,..., Um) is LI (u; EV)

(b) (v,...,vh) spans V (v; EV)

then win

Let $B=(V_1,...,V_n)$ (spans Y)

- 1) add in u, & B, remove one element of B to get B= (u, v2, ..., vn) still spans V elements of B
- (2) add in uzf B, remove one element of B to get B=(u, uz, y,"_, vn) still spans V elements of B

keep guing

B = (U, Uz, ..., Um, Vm+1, ..., Vn) Still spans V

Step 1: At beginning of step 1, B= (v,...vn) spans V.

" (U,1V,1V21..., Vn) is LD → U,= a,V, + ... + anvn -u, +a,v,+... +a,vn=0

Thus, LI Lenna > IV; E(u, v, ..., vn) Such that vj & span (u,,..., vj-1) and removing it keeps span(u,,v,,...,v). So: span (u, all vi's except vi) = span B= V

Step i: At beginning B= (u, ..., u; , Vi', ..., vn')

Note: those subset of

are LI (V1, ..., vn)

Consider Ui: if ism, then we are done. MIN Otherwise Juis Cu, ..., um).

Consider (u,,...,ui,,ui,,v'i,...,vn') spans V

end

end

B= (u, ..., ui, Viti ___, vi

Some subset of

(v, ..., vn)

What happens if at the beginning of step i: B= (u,, ..., u;-,) spans V ism -This CANNUT happen since then ui Espan (uj, ..., ui-i) , since (U1,-1, Un) is LI. => m in

Example

To $\begin{pmatrix}
1 \\
1 \\
-1
\end{pmatrix}, \begin{pmatrix}
2 \\
1 \\
3
\end{pmatrix}, \begin{pmatrix}
6 \\
1 \\
1
\end{pmatrix}, \begin{pmatrix}
42 \\
e^{\pi z} + 3 \\
17.1 - e
\end{pmatrix}$ LI \mathcal{R}^{3} ?

R³ is spanned by $\begin{pmatrix}
6 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0
\end{pmatrix}, \therefore 4 \not\sharp 3 c!$

Corollary: If V has two bases, $(u_1, ..., u_m)$, $(v_1, ..., v_n)$ then m = n $(u_1, ..., u_m)$ is LI; $(v_1, ..., v_n)$ spans $V \Rightarrow M \leq n$ $(v_1, ..., v_n)$ is LI; $(u_1, ..., u_m)$ spans $V \Rightarrow n \leq m$

a spanning set a: If V is finite dimensional, does V have a basis. A: Yup.

Theorem: If (V₁₁..., V_n) spans V, then some subset of (v₁,..., v_n) is a basis of V.

Proof: Think about it