Fower Electronics

Chapter 6

DC-AC Inverters

6-1. Single-phase Bridge Inverters

a **blanking time** of a few μs after turn-off of one switch in a leg before the other in the same leg are turned on,

otherwise a risk of reconduction in the outgoing switch, giving a short-circuit. Four combinations of switch states and the corresponding voltage levels:

1.
$$T_{A+}$$
, T_{B-} on: $v_{AN} = V_d$, $v_{BN} = 0$; $(T_{A-}, T_{B+} \text{ off})$ $v_o = V_d$

2.
$$T_{A-}$$
, T_{B+} on: $v_{AN} = 0$, $v_{BN} = V_d$; $(T_{A+}, T_{B-} \text{ off})$ $v_o = -V_d$

3.
$$T_{A+}$$
, T_{B+} on: $v_{AN} = V_d$, $v_{BN} = V_d$; $(T_{A-}, T_{B-} \text{ off})$ $v_o = 0$

4.
$$T_{A-}$$
, T_{B-} on: $v_{AN} = 0$, $v_{BN} = 0$; $(T_{A+}, T_{B+} \text{ off})$ $v_o = 0$

PWM with Bipolar Voltage Switching

Only one reference v_{control} is used for TA and TB signals (two switch states)

1.
$$T_{A+}$$
, T_{B-} on: $v_{AN} = V_d$, $v_{BN} = 0$; $(T_{A-}, T_{B+} \text{ off})$ $v_o = V_d$

2.
$$T_{A-}$$
, T_{B+} on: $v_{AN} = 0$, $v_{BN} = V_d$; $(T_{A+}, T_{B-} \text{ off})$ $v_o = -V_d$

amplitude modulation ratio:

$$m_a = V_{control(peak)} / V_{tri(peak)}$$

frequency modulation ratio:

$$m_f = f_s / f_1$$

- a. synchronous PWM
 - no subharmonics;
- b. m_f an odd integer
 - no even harmonics;
- c. harmonics appearing as sidebands centered around m_f and its multiples.

(c)

PWM with Bipolar Voltage Switching

 i_d consists of I_d , i_{d2} and the high-frequency components due to inverter switchings.

1.
$$T_{A+}$$
, T_{B-} on: $v_{AN} = V_d$, $v_{BN} = 0$; $(T_{A-}, T_{B+} \text{ off})$ $v_o = V_d$

2.
$$T_{A-}$$
, T_{B+} on: $v_{AN} = 0$, $v_{BN} = V_d$; $(T_{A+}, T_{B-} \text{ off})$ $v_o = -V_d$

$$i_o < 0$$
 T_{A-} , T_{B+} conduct; $i_d = -i_o$
 $i_o > 0$ D_{A-} , D_{B+} conduct; $i_d = -i_o$

PWM with Bipolar Voltage Switching

Linear

$$V_{o1max} = m_a V_d$$
$$m_a \le 1$$

Over-modulation
$$V_d < V_{olmax} < 4/\pi V_d$$
 $m_a > 1$

Square-wave operation $V_{olmax} = 4/\pi V_d$

$$V_{olmax} = 4/\pi V_d$$

Square-Wave Mode of Operation

Output voltage Fundamental as a Function of m_a

PWM with Bipolar Voltage Switching

Single-Phase Inverter

Figure 8-18 Single-phase inverter: (a) circuit; (b) fundamental-frequency components; (c) ripple frequency components; (d) fundamental-frequency phasor diagram.

DC power source – DC-AC Inverters – an AC load DC Voltage converted to Sinusoidal AC Voltage

- * Switch-mode using fast switching devices, anti diode (GTO, IGBT, power MOSFET, etc.)
- * Constant DC voltage source in DC side
- * both output amplitude and frequency variable
- * applications: AC motor drives and grid inverter

power flow bi-directional ac motor

PWM with Unipolar Voltage Switching

Leg A:

$$v_{control} > v_{tri}$$
 T_{A+} on $v_{AN} = V_d$; T_{A-} off) $v_{control} < v_{tri}$ T_{A-} on $v_{AN} = 0$; T_{A+} off)

Leg B:

$$\begin{aligned} -v_{control} > v_{tri} & T_{\text{B+}} \text{ on } & v_{BN} = V_d; \\ & (T_{\text{B-}} \text{ off}) \\ -v_{control} < v_{tri} & T_{\text{B-}} \text{ on } & v_{BN} = 0; \\ & (T_{\text{B+}} \text{ off}) \end{aligned}$$

$$v_o = v_{AN} - v_{BN}$$

- a. "effectively" doubling f_s
- b. harmonic components around f_s are absent

PWM with Unipolar Voltage Switching

Leg A:

$$T_{A+}$$
 on $i_o > 0$ T_{A+} conducts; $i_{d1} = i_o$
 $i_o < 0$ D_{A+} conducts; $i_{d1} = i_o$

$$T_{A-}$$
 on $i_o < 0$ T_{A-} conducts; $i_{d1} = 0$

$$i_0 > 0$$
 D_A conducts; $i_{d1} = 0$

Leg B:

$$T_{B+}$$
 on $i_o < 0$ T_{B+} conducts; $i_{d2} = -i_o$

$$i_o > 0$$
 D_{B+} conducts; $i_{d2} = -i_o$

$$T_{B}$$
 on $i_o > 0$ T_{B} conducts; $i_{d2} = 0$

$$i_o < 0$$
 D_B conducts; $i_{d2} = 0$

$$\boldsymbol{i_d} = \boldsymbol{i_{d1}} + \boldsymbol{i_{d2}}$$

 i_d consists of I_d , i_{d2} and the high-frequency components due to inverter switchings.

6-2. Three-phase Bridge Inverters

switch states

and the corresponding voltage levels

$[T_{A+}, T_{B+}, T_{C+}, T_{A-}, T_{B-}, T_{C-}]$

$$= [0, 0, 0, 1, 1, 1]$$
 for $V[v_{AB}, v_{BC}, v_{CA}] = [0, 0, 0]$
$$= [1, 0, 0, 0, 1, 1]$$
 for $V[v_{AB}, v_{BC}, v_{CA}] = [V_d, 0, -V_d]$
$$= [0, 1, 0, 1, 0, 1]$$
 for $V[v_{AB}, v_{BC}, v_{CA}] = [-V_d, V_d, 0]$
$$= [1, 1, 0, 0, 0, 1]$$
 for $V[v_{AB}, v_{BC}, v_{CA}] = [0, V_d, -V_d]$
$$= [0, 0, 1, 1, 1, 0]$$
 for $V[v_{AB}, v_{BC}, v_{CA}] = [0, -V_d, V_d]$
$$= [1, 0, 1, 0, 1, 0]$$
 for $V[v_{AB}, v_{BC}, v_{CA}] = [V_d, -V_d, 0]$
$$= [0, 1, 1, 1, 0, 0]$$
 for $V[v_{AB}, v_{BC}, v_{CA}] = [-V_d, 0, V_d]$
$$= [1, 1, 1, 0, 0, 0]$$
 for $V[v_{AB}, v_{BC}, v_{CA}] = [0, 0, 0]$

Three-Phase PWM Waveforms

DC-AC Inverters

Leg A:

$$egin{aligned} & v_{control,\,A} > v_{tri} & \mathrm{T_{A+}\ on} & v_{AN} = V_d; \ & v_{control,\,A} < v_{tri} & \mathrm{T_{A-}\ on} & v_{AN} = 0; \end{aligned}$$

Leg B:

$$v_{control, B} > v_{tri}$$
 T_{B+} on $v_{BN} = V_d$;
 $v_{control, B} < v_{tri}$ T_{B-} on $v_{BN} = 0$;

Leg C:

$$v_{control, C} > v_{tri}$$
 T_{C+} on $v_{CN} = V_d$;
 $v_{control, C} < v_{tri}$ T_{C-} on $v_{CN} = 0$;

$$v_{AB} = v_{AN} - v_{BN}$$

 m_f should be odd and a multiple of 3 to cancel out even harmonics and the harmonics at the odd multiples of m_f in the line-to-line voltage.

(c)

Three-Phase PWM Waveforms

The current consists of a DC component and the switching-frequency related harmonics.

Leg A:

$$T_{A+}$$
 on $i_A > 0$ T_{A+} conducts; $i_{dI} = i_A$
 $i_A < 0$ D_{A+} conducts; $i_{dI} = i_A$

$$T_{A}$$
 on $i_A < 0$ T_{A} conducts; $i_{dI} = 0$

$$i_A > 0$$
 D_A conducts; $i_{d1} = 0$

Leg B:

$$T_{B+}$$
 on $i_B > 0$ T_{B+} conducts; $i_{d2} = i_B$

$$i_B < 0$$
 D_{B+} conducts; $i_{d2} = i_B$

$$T_{B}$$
 on $i_B < 0$ T_{B} conducts; $i_{d2} = 0$

$$i_B > 0$$
 D_B conducts; $i_{d2} = 0$

Leg C:

$$T_{C+}$$
 on $i_C > 0$ T_{C+} conducts; $i_{d3} = i_C$

$$i_C < 0$$
 D_{C+} conducts; $i_{d3} = i_C$

$$T_{C}$$
 on $i_C < 0$ T_{C} conducts; $i_{d3} = 0$

$$i_C > 0$$
 D_C conducts; $i_{d3} = 0$

$$i_d = i_{d1} + i_{d2} + i_{d3}$$

Three-Phase PWM Waveforms

Linear

$$V_{LL1rms} = 0.612m_aV_d$$

$$m_a \le 1$$

Over-modulation $0.612V_d < V_{LL1rms} < 0.78V_d$

$$m_a > 1$$

Square-wave operation

$$V_{LL1rms} = 0.78 V_d$$
 $\frac{\sqrt{6}}{\pi} \approx 0.78$

Output voltage Fundamental as a Function of m_a

Fundamental Frequency

Analysis at the fundamental frequency can be done using phasors.

Transition from Inverter to Rectifier Mode

analysis based on the fundamental-frequency components

6-3. Effect of Blanking Time

Voltage jump when the current reverses direction

Summary:

- DC-AC inverter v.s. thyristor AC/DC inversion mode
- Switch states in DC/AC inverter (T, output voltage, current)
- Output voltage modulation method (waveforms)
- Output voltage and four-quadrant operation
- Frequency/amplitude modulation ratio: harmonics, over-modulation
- Required both for single-phase and three-phase DC-AC inverters

The End

