Endomorphismes orthogonaux

Dans tout le chapitre, E désignera un espace euclidien de dimension $n \in \mathbb{N}^*$.

Définitions et premières propriétés

1) Caractérisations équivalentes

<u>Définition</u>: Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $u^* \circ u = Id_E$
- (ii) $u \circ u^* = Id_E$
- (iii) u est bijectif et $u^{-1} = u^*$

<u>Définition</u>: On appelle endomorphisme orthogonal de E tout endomorphisme $u \in \mathcal{L}(E)$ tel que

$$u^* \circ u = Id_E$$

On note O(E) l'ensemble des endomorphismes orthogonaux de E

<u>Propriété</u>: Soient $u \in \mathcal{L}(E)$, et B une base <u>orthonormée</u> de E. On a équivalence entre :

- (i) u est un endomorphisme orthogonal de E.
- (ii) $Mat_B(u)$ est une matrice orthogonale.

<u>Démonstration</u>: **★**

On a:

$$u \in O(E) \Leftrightarrow u^* \circ u = Id_E$$

 $\Leftrightarrow \operatorname{Mat}_B(u^*) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow {}^t\operatorname{Mat}_B(u) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow \operatorname{Mat}_B(u) \in O_n(\mathbb{R})$

(Le 3^e point vient du fait que B est orthonormée, donc $Mat_B(u^*) = {}^tMat_B(u)$)

Exemple: Soit F un sev de E tel que $F \neq E$, notons p_F la projection orthogonale sur F.

Comme
$$F \neq E$$
, et que $E = F \oplus F^{\perp}$, on a $F^{\perp} \neq \{0_E\}$

Donc
$$\exists x \in F^{\perp}, x \neq 0_E$$
. Alors $p_F(x) = 0_E$, donc $x \in \ker(p_F)$

Ainsi p_F n'est pas injectif, donc pas bijectif, donc $p_F \notin O(E)$.

Notons s_F la symétrie orthogonale par rapport à F. Dans une b.o.n B de E adaptée à la décomposition $E=F \oplus F^\perp$, alors $S=\mathrm{Mat}_B\bigl(s_f\bigr)$

Alors
$${}^tSS = SS = S^2 = I_n$$

Donc $S \in O_n(\mathbb{R})$.

Ainsi $s_F \in O(E)$.

<u>Propriété</u>: L'ensemble O(E) des endomorphismes orthogonaux de E muni de la composition est un groupe. Plus précisément, O(E) est un sous-groupe de $(GL(E), \circ)$ où GL(E) désigne l'ensemble des endomorphisme bijectifs de E:

- (i) $Id_E \in O(E)$
- (ii) $\forall u, v \in O(E), u \circ v \in O(E)$
- (iii) $\forall u \in O(E), u^{-1} \in O(E)$

<u>Théorème</u>: Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $u \in O(E)$
- (ii) u conserve la norme, ie $\forall x \in E$, ||u(x)|| = ||x||
- (iii) u conserve le produit scalaire, ie $\forall x, y \in E, \langle u(x), u(y) \rangle = \langle x, y \rangle$
- (iv) $\forall B = (e_1, ..., e_n)$ base orthonormée de E, l'image $(u(e_1), ..., u(e_n))$ de B est une base orthonormée de E (càd que u envoie toute b.o.n de E sur une b.o.n de E).
- (v) $\exists B = (e_1, ..., e_n)$ b.o.n de E telle que l'image $(u(e_1), ..., u(e_n))$ de B par u est une base orthonormée de E (càd u envoie au moins une b.o.n de E sur une b.o.n de E).

Remarque : Soit $u \in \mathcal{L}(E)$. Puisque $u \in O(E)$ ssi u conserve la norme, les endomorphismes orthogonaux de E sont aussi appelés isométries vectorielles de E.

2) Isométries directes et indirectes

Propriété : Soit $u \in O(E)$, alors $det(u) \in \{-1, 1\}$

Démonstration:

```
Soit u \in O(E), alors u^* \circ u = Id_E
```

Donc $\det u^* \times \det u = 1$

Soit B une b.o.n alors $\det u^* = \det \operatorname{Mat}_B(u^*) = \det({}^t\operatorname{Mat}_B(u)) = \det(\operatorname{Mat}_B(u)) = \det u$

Ainsi $(\det(u))^2 = 1$, donc $\det u = \pm 1$

<u>Corollaire</u>: Si $A \in O_n(\mathbb{R})$, det(a) ∈ {-1, +1}

Attention : Si det $u \in \{-1,1\}$, on n'a pas forcément u orthogonal!

<u>Définition</u>: On appelle isométrie <u>directe</u> (ou positive) de E tout $u \in O(E)$ tel que $\det(u) = 1$.

On appelle isométrie indirecte de E tout $u \in O(E)$ tel que $\det(u) = -1$.

<u>Proposition</u>: L'ensemble des isométries directes de E, noté SO(E), est un sous-groupe de $(O(E), \circ)$, on l'appelle groupe spécial orthogonal de E. L'ensemble des matrices orthogonales de déterminant +1, noté $SO_n(\mathbb{R})$, est un sous-groupe de $(O_n(\mathbb{R}), \times)$, appelé groupe spécial orthogonal d'ordre n.

Exemples:

- $Id_E \in SO(E)$
- $-Id_E \in SO(E) \Leftrightarrow \dim(E)$ est paire

Soit F un sev de E, notons s_F la symétrie orthogonale par rapport à F. On a vu que $s_F \in O(E)$, et si on prend une b.o.n B de E adaptée à la décomposition $E = F \oplus F^{\perp}$ (ie B est la concaténation d'une b.o.n de F avec une b.o.n de F^{\perp}) alors

$$Mat_{B}(s_{F}) = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & -1 & & & \\ & & & & \ddots & & \\ & & & & & -1 \end{pmatrix}$$

Où le nombre de 1 correspond à $\dim F$ et celui de -1 à $\dim F^{\perp}$

On a alors $\det(s_F) = (-1)^{\dim(F^{\perp})}$

Ainsi $s_F \in SO(E) \Leftrightarrow \dim(F^{\perp})$ est paire

3) Lien avec les réflexions

<u>Définition</u>: Soit H un sev de E. On dit que H est un **hyperplan** de E si dim $H = \dim E - 1$

<u>Propriété</u>: Soit H un sev de E. On a équivalence entre :

- (i) H est un hyperplan de E
- (ii) $\exists a \in E \text{ avec } ||a|| = 1 \text{ tel que } H = (\text{Vect}(a))^{\perp}$

<u>Définition</u>: on appelle **réflexion** de E toute symétrie orthogonale par rapport à un hyperplan de E.

Remarque : Si s est une réflexion de E, il existe un hyperplan H de E tq s est la symétrie orthogonale par rapport à H.

<u>Théorème</u>: Tout endomorphisme orthogonal de E peut s'écrire comme la composée de m réflexions de E, avec $m \in [0, \dim(E)]$.

Réductions des endomorphismes orthogonaux

1) Quelques résultats utiles pour la réduction

Proposition: Soit $u \in O(E)$, alors $Sp(u) \in \{1, -1\}$

<u>Démonstration</u>: **★**

Soit $\lambda \in Sp(u)$, alors comme E est euclidien, $\lambda \in \mathbb{R}$

Alors $\exists x \in E, x \neq 0_E$, tel que $u(x) = \lambda x$.

Alors d'une part : $||u(x)|| = ||\lambda x|| = |\lambda|||x||$

Et d'autre part, $u \in O(E)$ donc u conserve la norme, ainsi ||u(x)|| = ||x||

D'où $||x|| = |\lambda| ||x||$, ie $|\lambda| = 1$

Donc $\lambda = \pm 1$

<u>Attention</u>: contrairement aux endomorphismes autoadjoints, qui possèdent toujours au moins une valeur propre (réelle), il existe des endomorphismes orthogonaux qui n'admettent aucune valeur propre.

Corollaire : Soit $A \in O_n(\mathbb{R})$, alors $Sp_{\mathbb{R}}(A) \subset \{-1,1\}$.