# **Multimodal Prompting**

Generative Al

Module 1 – Lesson 5

## Today's activities



- Introduction to multimodal applications
- Multimodal LLMs
- Prompting MLLMs
- Multimodal use cases

# Introduction to multimodal applications

#### Your marketing company has been hired by a pet shop:

• They need to create individual flyers about each pet based on their images and bio.

How can you do that with traditional, single

modality models?

### We can consider an image-only model



Bird Dog

C Dog

Hamster Hamster Cat

Rabbit

- Learns information only from images
  - Computer vision (CV)
- Can accomplish basic image understanding tasks
  - Classifying images for our campaigns depending on the theme needed
    - Ex. Cat class, dog class
  - Object detection
  - Semantic segmentation
  - It won't accept the input search query or won't be able to generate text.

### We can consider a text-only model

- Learns information only from text
- Can accomplish basic text understanding tasks
  - Generating text based in a campaign description
- Won't be able to generate a description of the pets from images

There year old pomenerian looking...



#### What does "multimodal" mean?

- Humans are naturally multimodal in the way we interact with the world!
- Perceive the world using multiple senses:
  - Vision, hearing, smell, taste and touch
- Engage in non-verbal communication
  - Gestures
  - Facial expressions
  - Body language
  - Eye contact
  - Appearance

### Why multimodal?

- Generative AI shifted from prediction to interaction
- Multimodality is a way to boost AI performance to interact with humans to solve real world problems

#### **Data modalities**

#### • Image Data:

- The most versatile format for model inputs
- There's much more visual data than text data
  - Phones and webcams constantly take pictures and videos today
- It can be used to represent:
  - Text
  - Tabular data
  - Audio
  - And to some extent, videos

#### **Data modalities**

#### Text Data:

- Text is a powerful mode for model outputs
- A model that can understand/generate text can be used for many tasks:
  - Summarization
  - Translation
  - Reasoning
  - question answering,
  - etc.

#### Other data modalities

- Video
- Audio
- Haptic data
- Electrical signals

• In this course, we will focus mainly on **text** and **image** data.

# **Multimodal LLMs**

## Review: Large Language Models (LLMs)



- Foundation models trained on text.
- Large ML models that learn the probabilities of words being used in certain contexts.
- **Training task:** Learn to predict the missing word in a text sequence.



## Multimodal LLMs (MLLMs)



 Large language models trained on multiple modalities

- MLLMs typically use encoders and adapters to Equip LLMs with cross modal capabilities
  - Vision encoder
  - Video encoder
  - Audio encoder

# **Prompting MLLMs**

### **Prompting MLLMs**

- Text prompts:
  - Follow best prompting strategies discussed in previous lessons.
- **Image** prompts:
  - **Input format**: Most MLLMs use base64-encoded format
  - Image size: Adhere to the image size limitations (eg: <5MB)
  - Multiple images: Most MLLMs can only analyze a limited number of images
  - Image format: Follow the image format specified for the MLLM (eg: jpg, png, etc)
  - Image clarity: Avoid blurry images
  - Image placement: In most cases, it works better when images come before text
  - Image resolution: Be within the image resolution limits of the MLLM

## Multimodal use cases

### Visual question answering

 Instead of relying only on text for the context, you can give the model both text and images

#### • Examples:

- Generate text descriptions of images
- Query using both text and images
  - Image analysis using text prompts



What is the purpose of the highlighted part in the circuit board?

### Text-based image retrieval

 Image search matters not only for search engines but also for enterprises to be able to search through all their internal images and documents.

#### • Examples:

- Given a text query, find images whose captions/metadata are closest to this text query
- Given a text query, find all images whose embeddings are closest to this embedding

Find chairs in stock

## Can bring images with closest embeddings to the text



Using also image metadata

## Deep image similarity retrieval

- Given an image, find similar images
- Examples:
  - Retrieving similar images for Amazon products
  - Identifying other product from the manufacturer



#### **Next lesson**

• This lesson introduced multimodal models and applications.



