Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao February 8, 2023

What we have seen last time

- Finish proving Dirichlet's approximation theorem.
- Higher Diophantine equations

Today's topics

- Higher Diophantine equations
- Modular world
 - congruence and modulus
 - modular arithmetic

Question

Find all triples of integers (a, b, c) such that

$$a^2 + b^2 = N \cdot c^2$$
.

Or, equivalently, find all rational points on the circle

$$X^2 + Y^2 = N.$$

N.B. $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$. Hence, it is sufficient to consider only N = primes.

When N=3, it seems impossible to find any rational point. In fact, we will show that

Theorem 12.1

There is no nontrivial triples of integers (a, b, c) such that

$$a^2 + b^2 = 3 \cdot c^2$$
.

Proof. Indeed, is such a triple (a, b, c) exists, then we may assume gcd(a, b, c) = 1 (since the equation is homogeneous).

Proof. From the equation, we get

$$a^2 + b^2 + c^2 = 4 \cdot c^2$$
.

$$X \in \mathbb{Z}$$

H x is even =) $4/x^2$

If x is odd => $4/x^2-1$
 $x = 2n+1$ $(2n+1)^2$
 $= 4n^2+4n+1$

Namely, $4 \mid a^2 + b^2 + c^2$.

If any of a, b, c is odd, then 4 ta2+62+12

On the other hand, a square can either be divided by 4 (if the base is even), or equals a multiple of 4 plus 1 (if the base is odd). Hence, the sum $a^2 + b^2 + c^2$ is a multiple of 4 if and only if all of a, b, c are even, contradicting with gcd(a, b, c) = 1.

To prove the equation $a^2 + b^2 = 3 \cdot c^2$ has no nontrivial solution, we reduce the problem to prove $a^2 + b^2 - 3 \cdot c^2$ is never a multiple of 4 except the trivial cases. Namely, we try to solve the equation in remainders after dividing by 4. Doing so, we reduce an infinite problem to finite problem.

Part V

Modular Worlds

Definition 12.2

Let m be a positive integer (called the **modulus**). We say two integers a and b are **congruent modulo** m, written as

$$a \equiv b \pmod{m}$$
,

if $m \mid a - b$.

$$m \cdot X = a - b$$
 has sol. in \mathbb{Z} .

e.g. even²
$$\equiv 0 \mod 4$$
 odd² $\equiv 1 \mod 4$

Theorem 12.3

Fix a modulus m. "Being congruent module m" is an equivalence relation on \mathbb{Z} . Namely,

- (reflexivity) for all integer $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$; $\bowtie \square$
- (symmetry) for all integers $a, b \in \mathbb{Z}$, if $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$; |a-b| = a
- (transitivity) for all integers $a, b, c \in \mathbb{Z}$, if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

$$m \mid \alpha - b \wedge m \mid b - c \Rightarrow m \mid \alpha - c$$

Definition 12.4

For any integer $a \in \mathbb{Z}$, the set of integers congruent to a modulo m is called the **congruence class (modulo m)** with **representative** a, written as $[a]_m$, or simply [a] or \bar{a} if the modulus m is clear.

Example 12.5

Take 2 to be the modulus. $[0]_2$ is the set of even numbers, while $[1]_2$ is the set of odd numbers.

Definition 12.6

The **residue set modulo** m, written as \mathbb{Z}/m , is the quotient set of \mathbb{Z} up to congruence modulo m. Namely, \mathbb{Z}/m is the set of congruence classes modulo m.

A priori, every integer defines a congruence class. But many of them turn out to be the same. $\alpha \in \mathbb{Z} \longrightarrow \alpha$

Example 12.7

It turns out that $\mathbb{Z}/2$ consists of only two classes: $[0]_2$, the even numbers, and $[1]_2$, the odd numbers.

a even
$$\Rightarrow [a]_i = [o]_i$$

odd $\Rightarrow [a]_i = [o]_i$

Definition 12.8

Let x be an integer and m be a modulus.

The *natural representative of* x *modulo* m is the remainder r left under the division

$$x = q \cdot m + r$$
, $0 \le r < m$, $q \in \mathbb{Z}$.

Example 12.9

- The natural representative of 1234567 (mod 10) is 7.
- The natural representative of 7²⁰²³ (mod 2) is 1.

Note that $x \equiv r \pmod{m}$. Hence, $[r]_m = [x]_m$. Namely, r is a representative of the congruence class $[x]_m$.

Note that the natural representative depends only on the congruence class $[x]_m$, rather than the integer x.

Theorem 12.10

The set \mathbb{Z}/m is finite. In fact, it is bijective to the set of remainders dividing m: $\{0, \dots, m-1\}$.

Proof. The following process gives a bijection from \mathbb{Z}/m to $\{0, \dots, m-1\}$: for any congruence class $[x]_m$, take the natural representative r of it.

Theorem 12.11

Fix a modulus m. Let a, b, c, d be integers such that

$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$.

Then we have

$$a+b\equiv c+d\pmod{m}$$
 and $ab\equiv cd\pmod{m}$.
 $(a+b)-((+d)\equiv a-c+b-d\equiv k.m+k_2.m$

Proof. (Product) Suppose $\underline{a} - c = k_1 m$ and $b - d = k_2 m$. Then

$$ab = (c + k_1 m)(d + k_2 m) = cd + (k_1 d + k_2 c + k_1 k_2 m)m.$$

Hence, $m \mid ab - cd$.

П

$$\begin{array}{c} (a) = (c) \\ (b) = (d) \end{array} \Rightarrow \begin{array}{c} (a+b) = (c+d) \\ (ab) = (cd) \end{array}$$

The previous theorem tells us that the congruence class of the sum/product is independent of the choice of representatives. We thus are able to define the *addition* and *multiplication* of congruence classes.

Definition 12.12

* The **sum** of two congruence classes $[a]_m$ and $[b]_m$ is $[a+b]_m = [a] + [b]_m$. The **product** of two congruence classes $[a]_m$ and $[b]_m$ is $[ab]_m = [a] + [b]_m$.

Example 12.13

$$[1234567]_{10} \cdot [20230208]_{10} = [7]_{10} \cdot [8]_{10} = [5]_{10} = [6]_{10}$$

$$\uparrow_{not.vep}.$$

^{*}Compare this with what in Example 2.7, where we already have the notions of the sum and product of two sets. $A + B := \{a+b \mid a \in A \}$ $A \cdot B := \{a+b \mid a \in A \}$

Definition 12.14

The residue set \mathbb{Z}/m together with the **addition** and **multiplication** of congruence classes and the neutral elements $\mathbf{0} := [0]_m$ and $\mathbf{1} := [1]_m$ of them respectively, is called the **residue ring modulo** m.

We have a **residue map**:

$$\pi_m\colon \mathbb{Z}\longrightarrow \mathbb{Z}/m\colon a\mapsto [a]_m$$
 respecting their structures. addition to addition mult. to mult. neutrals to neutrals (0 to 0 & 1 to 1)

• We can translate problems on \mathbb{Z} through π_m . Note that this map is not bijective, hence solving problems on \mathbb{Z}/m doesn't mean solving problems on \mathbb{Z} . Since any solution in \mathbb{Z} will **descend** to a solution in \mathbb{Z}/m , it is convenient to use modular arithmetic to disprove problems on \mathbb{Z} .

Example 12.15

If $X^2 + Y^2 = 3Z^2$ has any integer solution, then it descends to a solution in $\mathbb{Z}/4$. But we can verify there is no such a solution in $\mathbb{Z}/4$.

$$(\alpha, b, c) \neq (0, 9, 0)$$

$$(\alpha^{1} + b^{2} =) c^{2} = (0, 9, 0)$$

$$(\alpha^{2} + b^{2} =) c^{2} = (0, 9, 0)$$

$$(\alpha^{2} + b^{2} =) c^{2} = (0, 9, 0)$$

Definition 12.16

Fix a modulus m. A congruence class α is a **unit** in \mathbb{Z}/m if there is a congruence class β such that $\alpha\beta=1$. The class β is called the **multiplicative inverse** of α . Suppose a and b are representatives of α and β respectively. Then we say a is **(multiplicative) invertible modulo** m and b is a **multiplicative inverse of** a **modulo** m.

Example 12.17

[275 is a unit

 $2 \cdot 3 \equiv 2 \cdot 8 \equiv 1 \pmod{5}$. Hence, 2 is (multiplicative) invertible modulo 5, and 3 and 8 are two multiplicative inverse of 2 modulo 5.

Theorem 12.18

Fix a modulus m. An integer a is invertible modulo m if and only if a is coprime to m.

```
Proof. a is invertible modulo m
```

 \iff there is $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{m}$

 \iff there is $b \in \mathbb{Z}$ such that $m \mid ab - 1$

 \iff the Diophantine equation aX + mY = 1 has integer solutions The last is equivalent to gcd(a, m) = 1 by the Bézout's identity. \square

After Class Work

Terminology

Terminology

A *(commutative) ring* is a set R equipped with two monoid structures (R, +, 0) and $(R, \cdot, 1)$ such that:

- 1. (R, +, 0) is an abelian group;
- 2. $(R, \cdot, 1)$ is an abelian monoid;
- 3. The two operations + and \cdot are compatible in the sense of the following distributive laws:
 - (left distributive law) $\forall a, b, c \in R : a \cdot (b + c) = a \cdot b + a \cdot c$;
 - (right distributive law) $\forall a, b, c \in R : (a + b) \cdot c = a \cdot c + b \cdot c$.

Refer to the after-class part of lecture 1 and 3.

Terminology

Example 12.19

- $(\mathbb{Z}, +, 0, \cdot, 1)$: the set of integers \mathbb{Z} equipped with the *addition* and *multiplication* operations and their neutral elements 0 and 1 respectively, is a ring.
- $(\mathbb{Z}/m, +, 0, \cdot, 1)$: the residue set \mathbb{Z}/m together with the *addition* and *multiplication* of congruence classes and their neutral elements $\mathbf{0} := [0]_m$ and $\mathbf{1} := [1]_m$ respectively, is a ring.
- The residue map $\pi_m : \mathbb{Z} \to \mathbb{Z}/m$ is a surjective homomorphism between rings.