Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №2 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Бендюков Александр группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	Постановка задачи			
2	Teo 2.1 2.2	r r	2 2 2	
3	Pea	видация	3	
4	Рез	льтаты 3		
5	Обо	суждение	10	
C	Спис	сок иллюстраций		
	1	Первая выборка, Y_1	3	
	2	Точечная линейная регрессия для Y_1	4	
	3	Информационное множество для Y_1	4	
	4	Коридор совместных значений для Y_1	5	
	5	Вторая выборка, Y_2	6	
	6	Точечная линейная регрессия для Y_2	6	
	7	Информационное множество для Y_2	7	
	8	Коридор совместных значений для Y_2	7	
	9	Третья выборка, Y_3	8	
	10	Точечная линейная регрессия для Y_3	8	
	11	Информационное множество для Y_3	9	
	12	Коридор совместных значений для Y_3	9	

1 Постановка задачи

2 Теория

2.1 Точечная линейная регрессия

Рассматривается задача восстановления зависимости для выборки (X, (Y)), $X = \{x_i\}_{i=1}^n, \mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n, x_i$ - точеный, \mathbf{y}_i - интервальный. Пусть искомая модель задана в классе линейных функций

$$y = \beta_0 + \beta_1 x \tag{1}$$

Поставим задачу оптимизацию 2 для нахождения точечных оценок параметров β_0, β_1 .

$$\sum_{i=1}^{m} w_i \to \min$$

$$\operatorname{mid} \mathbf{y}_i - w_i \cdot \operatorname{rad} \mathbf{y}_i \le X\beta \le \operatorname{mid} \mathbf{y}_i + w_i \cdot \operatorname{rad} \mathbf{y}_i$$

$$w_i \ge 0, i = 1, ..., m$$

$$w, \beta - ?$$

$$(2)$$

Задачу 2 можно решить методами линейного программирования.

2.2 Информационное множество

Информационным множеством задачи восстановления зависимости будем называть множество значений всех параметров зависимости, совместных с данными в каком-то смысле.

Коридором совместных зависимостей задачи восстановления зависимости называется многозначное множество отображений Υ , сопоставляющее каждому значению аргумента x множество

$$\Upsilon(x) = \bigcup_{\beta \in \Omega} f(x, \beta) \tag{3}$$

, где Ω - информационное множество, x - вектор переменных, β - вектор оцениваемых параметров.

Информационное множество может быть построено, как пересечение полос, заданных

$$\mathbf{y}_{i} \le \beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{m} x_{im} \le \overline{\mathbf{y}_{i}} \tag{4}$$

, где $i=\overline{1,n}\mathbf{y}_i\in\mathbf{Y}, x_i\in X, X$ - точечная выборка переменных, \mathbf{Y} - интервальная выборка откликов.

3 Реализация

Весь код написан на языке Python (версии 3.7.3). Ссылка на GitHub с исходным кодом.

4 Результаты

Данные S_X были взяты из файлов $data/dataset1/X/X_0.txt$, где $X \in \{-0_5, -0_25, +0_25, +0_5\}$. Набор δ_i получен из соответствующих файлов в data/dataset1/ZeroLine.txt.

Набор значений X точечный и одинаков для всех выборок. X = [-0.5, -0.25, 0.25, 0.5]. Набор значений отклика Y интервальный и разный для каждой выборки.

Построим линейную регрессию и найдём информационное множество для нескольких выборок.

Рассмотрим первую выборку Y_1 . Y_1 следующим образом. $y_i = [\min_{t \in S_i} S_i, \max_{t \in S_i} S_i]$, $i = [-0.5, -0.25, +0.25, +0.25], y_i \in Y_1$.

Рис. 1: Первая выборка, Y_1

Построим линейную регрессию, решив задачу 2 для выборки Y_1 .

Рис. 2: Точечная линейная регрессия для Y_1

Получим следующие оценки для параметров: $\beta_0=0.00076, \beta_1=0.86426.$ Тогда полученная модель имеет вид y=0.00076+0.86426x.

Найдём для данной выборки информационное множество.

Рис. 3: Информационное множество для Y_1

На рис. 3 можно заметит, что найденные параметры β_0,β_1 решением

задачи 2 лежат внутри информационного множества.

Построим коридор совместных значений для выборки Y_1 и информационного множества 3 и оценим значения выходной переменной y вне пределов значений входной переменной x.

Рис. 4: Коридор совместных значений для Y_1

На рис. 4 видно, что построенная точечная регрессия лежит внутри коридора совместных значений, что согласуется с рис. 3.

Проведём аналогичные построения для выборки Y_2 , построенную следующим образом. $y_i = [median(S_i) - \varepsilon, median(S_i) + \varepsilon], \ \varepsilon = \frac{1}{2^{14}} \ i = [-0.5, -0.25, +0.25, +0.25], y_i \in Y_2$ имеет вид.

Рис. 5: Вторая выборка, Y_2

Построим точечную линейную регрессию для Y_2 .

Рис. 6: Точечная линейная регрессия для Y_2

Для Y_2 получили следующие оценки параметров: $\beta_0=0.0005, \beta_1=0.85324.$ Построим информационное множество и коридор совместных значений для $Y_2.$

Рис. 7: Информационное множество для Y_2

Рис. 8: Коридор совместных значений для Y_2

В итоге для Y_2 получили, что точечная регрессия также попала в информационное множество.

Теперь проведём аналогичные построения для Y_3 , построенную аналогично Y_1 , за исключением отсутствия учёта δ_i . Y_3 имеет вид.

Рис. 9: Третья выборка, Y_3

Построим точечную регрессию.

Рис. 10: Точечная линейная регрессия для Y_3

Для Y_3 точечная линейная регрессия дала следующие оценки: $\beta_0 = -0.0052, \beta_1 = 0.85169.$ Информационное множество и коридор совместных значений имеют следующий вид.

Рис. 11: Информационное множество для Y_3

Рис. 12: Коридор совместных значений для Y_3

5 Обсуждение

Из полученных результатов можно заметить следующее. Наиболее маленькое информационное множество было получено для выборки Y_2 (рис. 3, 7, 11), что неудивительно, так как Y_2 имеет наименьшую интервальную неопределённость. Соответственно для Y_2 получили и наиболее узкий коридор совместных значений (рис. 4, 8, 12).

0	β_0	β_1
Y_1	0.00076	0.86426
Y_2	0.0005	0.85324
Y_3	-0.0052	0.85169

Видно, что для выборок Y_1,Y_2 точечная линейная регрессия дала более точный результат, близкий к ожидаемому $\beta_0=0.0,\beta_1=1.0$. Для Y_3 получили более неточную оценку, так оценка параметра β_0 для Y_3 отличается на порядок от соответствующей оценки для Y_1,Y_2 .

Также стоит отметить, что во всех случаях точечная линейная регрессия попала в информационное множество.