Programmable Logic Devices – Laboratory

1. FPGA development board:

Digilent Basys 3 (Xilinx Artix-7 FPGA)

2. Install desgin software:

Xilinx Vivado Design Suite WebPack (for 1a)

https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

3. Go through tutorial:

https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/Vivado Tutorial.pdf

Mini projects (use buttons, switches and LEDs to test functionality):

1. Design **selected** circuit:

2. Design **selected** circuit:

- a. $T_4 = \{0,1,5,7,10,12,15\}$
- b. Y=(AB+C)D
- c. Truth table:

X1	X2	Х3	X4	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	-
0	1	1	0	-
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	-
1	1	1	1	-

- 3. Design **selected** code converter:
 - a. NB to 1-hot converter
 - b. NB to BCD converter
 - c. NB 7-segment display converter (outputs connected to 7-segment display)
- 4. Design multiplexer 4x1.

5. Design demultiplexer 1x2.

6. Design 4-bit adder.

7. Design combinational circuit, presented below, using previously designed circuit as components (VHDL port map instruction):

8. Design **selected** flip-flop witch asynchronous reset:

9. Design selected flip-flop with enable signal.

- 10. Design 8-bit shift register.
- 11. Design N-bit counter with synchronous reset (choose any N form 3 to 6).
- 12. Design modulo N counter (choose any N form 8 to 32).
- 13. Design frequency divider (divide input signal by 2/4/8 or 10).
- 14. Design selected state machine:
- 15. Write testbench for one previously designed circuit.

Number of mini projects accepted	Grade	
8	3	
9-10	3+	
11-12	4	
13-14	4+	
15	5	