

Common Kinetic Scenarios

CHEMISTRY 2310: ADVANCED ORGANIC CHEMISTRY 1
INSTRUCTOR: YIMING WANG

First order kinetics

- Elementary unimolecular process $\mathbf{A} \xrightarrow{k} \mathbf{P}$ follows first order kinetics
- Differential rate law: $r = \frac{d[\mathbf{P}]}{dt} = -\frac{d[\mathbf{A}]}{dt} = k[\mathbf{A}]$
- Integrated rate law: Rewrite differential rate law as $-\frac{d[\mathbf{A}]}{[\mathbf{A}]} = k dt$. Then, using the conditions $[\mathbf{A}](0) = [\mathbf{A}]_0$ and $[\mathbf{A}](t) = [\mathbf{A}]$,

$$\begin{aligned} -\frac{d[\mathbf{A}]}{[\mathbf{A}]} = k dt &\implies -\int_{[\mathbf{A}]_0}^{[\mathbf{A}]} \frac{d[\widetilde{\mathbf{A}}]}{[\widetilde{\mathbf{A}}]} = \int_0^t k d\tilde{t} \\ &\implies -\left[\ln [\widetilde{\mathbf{A}}] \right]_{[\mathbf{A}]_0}^{[\mathbf{A}]} = \left[k\tilde{t} \right]_0^t \\ &\implies -(\ln [\mathbf{A}] - \ln [\mathbf{A}]_0) = kt - 0 \\ &\implies [\mathbf{A}] = [\mathbf{A}]_0 e^{-kt}. \end{aligned}$$

- Half-life: By definition, $\frac{1}{2}[\mathbf{A}]_0 = [\mathbf{A}]_0 e^{-kt_{1/2}}$, so

$$t_{1/2} = \frac{\ln 2}{k} \approx \frac{0.693}{k}$$

First order kinetics is characterized by a reaction half-life independent of initial concentration $[\mathbf{A}]_0$

- Using $[\mathbf{A}]_0 = [\mathbf{A}] + [\mathbf{P}]$, and $[\mathbf{P}](0) = 0$, $[\mathbf{P}](t) = [\mathbf{P}]$, can also write

$$\frac{d[\mathbf{P}]}{dt} = k[\mathbf{A}] = k([\mathbf{A}]_0 - [\mathbf{P}]) \implies \ln \left(\frac{[\mathbf{A}]_0}{[\mathbf{A}]_0 - [\mathbf{P}]} \right) = kt,$$

a useful form for plotting data

Zeroth order kinetics

- No true zeroth order reactions, reactions only appear this way due to conditions of the measurement, in other words, *pseudo-zeroth order*

- Differential rate law: $r = -\frac{d[\mathbf{A}]}{dt} = k$
- Integrated rate law: $[\mathbf{A}] = [\mathbf{A}]_0 - kt$
- Half-life: $t_{1/2} = \frac{1}{2k}[\mathbf{A}]_0$

Second order kinetics

- Elementary bimolecular process $\mathbf{A} + \mathbf{B} \xrightarrow{k} \mathbf{P}$ follows second order kinetics
- Differential rate law: $r = \frac{d[\mathbf{P}]}{dt} = k[\mathbf{A}][\mathbf{B}]$

Case I: $[A]_0 = [B]_0$ or $A = B$

- *Convention:* For the case $A = B$ (i.e. $2A \xrightarrow{k} P$), rate constant k is often redefined such that $-\frac{d[A]}{dt} = k[A]^2$ holds for easier comparison with the case where A and B are different. (Normally, the reaction stoichiometry gives $-\frac{1}{2} \frac{d[A]}{dt} = k[A]^2$.)

- Integrated rate law: Since $[A]_0 = [B]_0$, at any given time, we have

$$[A] = [A]_0 - [P] = [B]_0 - [P] = [B] \implies \frac{d[P]}{dt} = -\frac{d[A]}{dt} = k[A][B] = k[A]^2.$$

After rearranging,

$$\begin{aligned} -\frac{d[A]}{[A]^2} = k dt &\implies -\int_{[A]_0}^{[A]} \frac{d[\tilde{A}]}{[\tilde{A}]^2} = \int_0^t k d\tilde{t} \\ &\implies \frac{1}{[A]} = \frac{1}{[A]_0} + kt. \end{aligned}$$

- Half-life: $\frac{1}{2}[A]_0 = \frac{1}{[A]_0} + kt_{1/2} \implies t_{1/2} = \frac{1}{k[A]_0}$.

Case II: $[A]_0 \neq [B]_0$

- Integrated rate law obtained by rewriting everything in terms of $[P]$ ($\frac{d[P]}{dt} = k([A]_0 - [P])([B]_0 - [P])$), integrating by partial fractions, and reapplying $[A] = [A]_0 - [P]$ and $[B] = [B]_0 - [P]$:

$$\ln \left(\frac{[B][A]_0}{[A][B]_0} \right) = ([B]_0 - [A]_0)kt$$

Pseudo-first order kinetics

- For $A + B \xrightarrow{k} P$, if $[B] \approx [B]_0$ throughout the reaction, then $-\frac{d[A]}{dt} = k[A][B] \approx k[A][B]_0 = k_{\text{obs}}[A]$, where $k_{\text{obs}} = k[B]_0$.
- Reasonable assumption to make if $[B]_0 \gg [A]_0$ (at least an order of magnitude), or if B is constantly regenerated (i.e., it's catalytic)

Initial rate kinetics

- At low conversion (typically 5-10%), $[A] \approx [A]_0$. If the rate law is $r = -\frac{d[A]}{dt} = k[A]^n$, then $r = k[A]_0^n$.
- Can determine order in A this way: suppose initial rates are measured at two initial concentrations: say, $[A]_0$ and $[A]'_0 = 2[A]_0$, and initial rates measured for initial concentrations $[A]_0$ and $[A]'_0$ are r and $r' = 8r$, respectively. Then

$$r'/r = 8r/r = 8 = \frac{k[A]'_0^n}{k[A]_0^n} = \left(\frac{[A]'_0}{[A]_0} \right)^n = 2^n \implies n = 3.$$

Hence, reaction is third order in A .

Equilibrium kinetics

Consider an equilibrium

- Let $x = [\mathbf{A}]_0 - [\mathbf{A}]$. Differential rate law: $\frac{dx}{dt} = k_1([\mathbf{A}]_0 - x) - k_{-1}([\mathbf{B}]_0 + x)$

- Integrated rate law:

$$\ln\left(\frac{k_1[\mathbf{A}]_0 - k_{-1}[\mathbf{B}]_0}{k_1[\mathbf{A}]_0 - k_{-1}[\mathbf{B}]_0 - (k_1 + k_{-1})x}\right) = (k_1 + k_{-1})t$$

- Let $x_{\text{eq}} = [\mathbf{A}]_0 - [\mathbf{A}]_{\text{eq}}$. Applying differential rate law at equilibrium ($dx/dt = 0$) yields $k_1[\mathbf{A}]_0 - k_{-1}[\mathbf{B}]_0 = (k_1 + k_{-1})x_{\text{eq}}$. Substituting into the integrated rate law gives $\ln(x_{\text{eq}}/(x_{\text{eq}} - x)) = (k_1 + k_{-1})t$, or

$$[\mathbf{A}] - [\mathbf{A}]_{\text{eq}} = ([\mathbf{A}]_0 - [\mathbf{A}]_{\text{eq}})e^{-(k_1+k_{-1})t}.$$

In other words, approach towards equilibrium follows first order kinetics with $k_{\text{obs}} = k_1 + k_{-1}$.

Multistep reactions and steady state approximation

In general, no closed form expressions exist, even for the differential rate law, but pre-equilibrium assumption or steady state approximation often give reasonable approximations. Consider a reaction with a reversible first step and irreversible second step:

Pre-equilibrium

- Suppose $k_{-1} \gg k_2$. Since conversion to \mathbf{B} is much slower than reversible interconversion of \mathbf{A} and \mathbf{I} , can assume \mathbf{A} , \mathbf{I} in equilibrium, with $K = \frac{k_1}{k_{-1}}$:

- Differential rate law: using $K = [\mathbf{I}]/[\mathbf{A}]$,

$$r = \frac{d[\mathbf{B}]}{dt} = k_2[\mathbf{I}] = k_2K[\mathbf{A}] = \frac{k_2k_1}{k_{-1}}[\mathbf{A}]$$

Steady state approximation (SSA)

- Since \mathbf{I} is a reactive intermediate, $[\mathbf{I}]$ is small and more-or-less constant (steady state) for much of the reaction. Thus, we make the approximation

$$\frac{d[\mathbf{I}]}{dt} = 0 \quad (\text{SSA}).$$

- Steady state rate law for example above:

Apply SSA to \mathbf{I} :

$$\frac{d[\mathbf{I}]}{dt} = k_1[\mathbf{A}] - k_{-1}[\mathbf{I}] - k_2[\mathbf{I}] = 0$$

Solve for $[\mathbf{I}]$:

$$[\mathbf{I}] = \frac{k_1[\mathbf{A}]}{k_{-1} + k_2},$$

from which

$$r = \frac{d[\mathbf{B}]}{dt} = k_2[\mathbf{I}] = \frac{k_2k_1}{k_{-1} + k_2}[\mathbf{A}].$$

- Two limiting cases: if $k_{-1} \gg k_2$, then

$$r = \frac{k_2 k_1}{k_{-1} + k_2} [\mathbf{A}] \approx \frac{k_2 k_1}{k_{-1}} [\mathbf{A}],$$

which we derived in the pre-equilibrium case.

On the other hand, if $k_{-1} \ll k_2$, then

$$r = \frac{k_2 k_1}{k_{-1} + k_2} [\mathbf{A}] \approx \frac{k_2 k_1}{k_2} [\mathbf{A}] = k_1 [\mathbf{A}].$$

Here, the first step becomes the rate-limiting step, and k_{-1}, k_2 are kinetically invisible.

Michaelis-Menten Kinetics

Consider an enzyme catalyzed reaction with reversible first step and irreversible second step:

- Apply SSA to $\mathbf{E : S}$:

$$\begin{aligned} \frac{d[\mathbf{E : S}]}{dt} &= k_1 [\mathbf{E}][\mathbf{S}] - k_{-1} [\mathbf{E : S}] - k_{\text{cat}} [\mathbf{E : S}] \\ &= k_1 ([\mathbf{E}]_0 - [\mathbf{E : S}]) [\mathbf{S}] - k_{-1} [\mathbf{E : S}] - k_{\text{cat}} [\mathbf{E : S}] = 0 \end{aligned}$$

Solve for $[\mathbf{E : S}]$:

$$[\mathbf{E : S}] = \frac{k_1 [\mathbf{E}]_0 [\mathbf{S}]}{k_{-1} + k_{\text{cat}} + k_1 [\mathbf{S}]}$$

Thus,

$$\begin{aligned} \frac{d[\mathbf{P}]}{dt} &= k_{\text{cat}} [\mathbf{E : S}] = \frac{k_{\text{cat}} k_1 [\mathbf{E}]_0 [\mathbf{S}]}{k_{-1} + k_{\text{cat}} + k_1 [\mathbf{S}]} \\ &= \frac{k_{\text{cat}} [\mathbf{E}]_0 [\mathbf{S}]}{\frac{k_{-1} + k_{\text{cat}}}{k_1} + [\mathbf{S}]} \\ &= \frac{k_{\text{cat}} [\mathbf{E}]_0 [\mathbf{S}]}{K_M + [\mathbf{S}]}, \end{aligned}$$

where $K_M := (k_{-1} + k_{\text{cat}})/k_1$ is the *Michaelis-Menten constant*.

- Limiting cases: if $[\mathbf{S}] \gg K_M$, then

$$r \approx \frac{k_{\text{cat}} [\mathbf{E}]_0 [\mathbf{S}]}{[\mathbf{S}]} = k_{\text{cat}} [\mathbf{E}]_0 =: V_{\max},$$

so zeroth order (*saturation kinetics*); if $K_M \gg [\mathbf{S}]$, then

$$r \approx \frac{k_{\text{cat}} [\mathbf{E}]_0 [\mathbf{S}]}{K_M},$$

so first order in \mathbf{S} . When $K_M = [\mathbf{S}]$, then

$$r = \frac{1}{2} V_{\max}.$$

- *Lineweaver-Burk* (double reciprocal) plot: Taking the reciprocal of $r = \frac{V_{\max} [\mathbf{S}]}{K_M + [\mathbf{S}]}$, we obtain

$$\frac{1}{r} = \frac{K_M}{V_{\max}} \frac{1}{[\mathbf{S}]} + \frac{1}{V_{\max}},$$

making it useful to plot $1/r$ (y -axis) against $1/[\mathbf{S}]$ (x -axis).