Neural Networks

Steve Cygu

January 24, 2019

OUTLINE

Introduction

Why Machine Learning? Neural Networks and Human Brain

Neural Networks

Types of Neural Networks Components

Fitting Neural Networks

Feed-forward
Back propagation
Gradient descent

Some Issues in Training Neural Networks

Example

Methods results

References

Why Machine Learning?

Can we write algorithm to correctly identify each of the objects?

504192

Neural Networks and Human Brain

Multi-layer perceptron (MLP)

Single-layer Perceptron

▶ No hidden layer, a single neuron.

Single-layer Perceptron

▶ No hidden layer, a single neuron.

$$\hat{y} = b + \sum_{i=1}^{n} x_i w_i$$

Components

Layers

- Input nodes
 No computation
- Hidden nodes (Neurons) Intermediate processing, computation and transfers to another hidden layer or output.
- Output nodes Uses a function (not necessarily activation function) to map the input from other layers to desired output format.
 - Sigmoid
 - Softmax

Synapse/Connections

- \triangleright Transfers the output of neuron i to the input of neuron j.
- ► Each connection is assigned weight, W_{ij}

Activation function

Introduces nonlinearity into the neuron output.

Sigmoid (Logistic Activation Function)

$$a(z) = \frac{1}{1 + exp(-z)}$$

Tanh (hyperbolic tangent Activation Function)

$$a(z) = tanh(z) = \frac{2}{1 + exp(-2z)} - 1 = 2sigmoid(2z) - 1$$

► ReLU (Rectified Linear Unit Activation Function)

$$a(z) = max(0, z)$$

Sigmoid and Tanh Activation Functions

Fitting Neural Networks

Weights are the parameters. The generic approach is by **gradient descent**.

- ► Forward-propagation (feed-forward)
- ► Backward-propagation

▶ Randomly assign starting weights and consider any Z_k^i , $k = 1 \cdots n$. Then,

▶ Randomly assign starting weights and consider any Z_k^i , $k=1\cdots n$. Then, $Z_1^i=X_1W_{1,1}^i+X_2W_{2,1}^i+X_3W_{3,1}^i+X_4W_{4,1}^i$

▶ Randomly assign starting weights and consider any Z_k^i , $k = 1 \cdots n$. Then, $Z_1^i = X_1 W_{1,1}^i + X_2 W_{2,1}^i + X_3 W_{3,1}^i + X_4 W_{4,1}^i$ $Z_2^i = X_1 W_{1,2}^i + X_2 W_{2,2}^i + X_3 W_{3,2}^i + X_4 W_{4,2}^i$

▶ Randomly assign starting weights and consider any Z_k^i , $k = 1 \cdots n$. Then, $Z_1^i = X_1 W_{1,1}^i + X_2 W_{2,1}^i + X_3 W_{3,1}^i + X_4 W_{4,1}^i$ $Z_2^i = X_1 W_{1,2}^i + X_2 W_{2,2}^i + X_3 W_{3,2}^i + X_4 W_{4,2}^i$ \vdots

 \blacktriangleright Randomly assign starting weights and consider any Z_k^i , $k=1\cdots n.$ Then,

$$\begin{split} Z_1^i &= X_1 W_{1,1}^i + X_2 W_{2,1}^i + X_3 W_{3,1}^i + X_4 W_{4,1}^i \\ Z_2^i &= X_1 W_{1,2}^i + X_2 W_{2,2}^i + X_3 W_{3,2}^i + X_4 W_{4,2}^i \\ \cdot \end{split}$$

÷

 Z^i 'component' is the sum of weighted inputs to each neuron.

$$Z^i = XW^i \tag{1}$$

Apply activation function to 1

$$a^i = a(Z^i) \tag{2}$$

Propagate 2 to the output layer

$$Z^j = a^i W^j \tag{3}$$

$$\Longrightarrow \hat{y} = a^j = a^*(Z^j) \tag{4}$$

- Aim is to estimate weights that ensures the model fits the training data well.
- Calculate the error at the output nodes and propagate them back to the network.

$$J = \sum_{i=1}^{n} \frac{1}{2} (y - \hat{y})^2 \tag{5}$$

- Aim is to estimate weights that ensures the model fits the training data well.
- Calculate the error at the output nodes and propagate them back to the network.

$$J = \sum \frac{1}{2} (y - \hat{y})^2 \tag{5}$$

$$J(W) = \frac{1}{2} \sum_{i} \left(y - a^* (a(XW^i)W^j) \right)^2$$
 (6)

- Aim is to estimate weights that ensures the model fits the training data well.
- Calculate the error at the output nodes and propagate them back to the network.

$$J = \sum \frac{1}{2} (y - \hat{y})^2 \tag{5}$$

$$J(W) = \frac{1}{2} \sum (y - a^*(a(XW^i)W^j))^2$$
 (6)

▶ Compute the gradient; $\frac{\partial J}{\partial W^i}$ and $\frac{\partial J}{\partial W^j}$

- Aim is to estimate weights that ensures the model fits the training data well.
- Calculate the error at the output nodes and propagate them back to the network.

$$J = \sum_{i=1}^{n} \frac{1}{2} (y - \hat{y})^2 \tag{5}$$

$$J(W) = \frac{1}{2} \sum_{i} \left(y - a^* (a(XW^i)W^j) \right)^2$$
 (6)

- ▶ Compute the gradient; $\frac{\partial J}{\partial W^i}$ and $\frac{\partial J}{\partial W^j}$
- Adjust the weights using optimization method such as Gradient Descent.

Gradient descent

$$W_{t+1} = W_t - \gamma \Delta J(W_t)$$

Gradient descent

$$W_{t+1} = W_t - \gamma \Delta J(W_t)$$

Some Issues in Training Neural Networks

Starting values

- Starting weights are random numbers near zero.
- However, near zero weights collapses NN into approximately linear model.
- Exactly zero weights leads to zero derivatives and perfect symmetry.
- Large weights lead to poor results.

Some Issues in Training Neural Networks

Starting values

- Starting weights are random numbers near zero.
- However, near zero weights collapses NN into approximately linear model.
- Exactly zero weights leads to zero derivatives and perfect symmetry.
- Large weights lead to poor results.

2. Overfitting and Stopping Criterion

- Reduce training error to some predetermined threshold overfitting.
- Regularization by weight decay (analogous to ridge regression), $\lambda \geq 0$. Larger values of λ shrinks weights toward zero.
- \triangleright Cross-validation is used to estimate λ .

3. Convergence at the Local Minima

Example

► Breast Cancer Wisconsin Data Set

Example

- Breast Cancer Wisconsin Data Set
- ► The data set contains 569 cases with 31 variables. The diagnosis classification is either (M = Malignant) or (B = Benign).

Example

- Breast Cancer Wisconsin Data Set
- ► The data set contains 569 cases with 31 variables. The diagnosis classification is either (M = Malignant) or (B = Benign).

more.	32 entries		Search:
	vars	labels	
1	id_number	ID number	
2	diagnosis	Diagnosis ($M = malignant, B = benign$)	
3	radius_mean	radius (mean of distances from center to points on the perimeter) - Mean	
4	texture_mean	texture (standard deviation of gray-scale values) - Mean	
5	perimeter_mean	perimeter - Mean	
6	area_mean	area - Mean	
7	smoothness_mean	smoothness (local variation in radius lengths) - Mean	
8	compactness_mean	compactness (perimeter^2 / area - 1.0) - Mean	
9	concavity_mean	concavity (severity of concave portions of the contour) - Mean	
10	concave_points_mean	concave points (number of concave portions of the contour) - Mean	
11	symmetry_mean	symmetry - Mean	
12	fractal_dimension_mean	fractal dimension ("coastline approximation" - 1) - Mean	
13	radius_se	radius (mean of distances from center to points on the perimeter) - Standard error	
14	texture_se	texture (standard deviation of gray-scale values) - Standard error	
15	perimeter_se	perimeter - Standard error	
16	area_se	area - Standard error	
17	smoothness_se	smoothness (local variation in radius lengths) - Standard error	
18	compactness_se	compactness (perimeter^2 / area - 1.0) - Standard error	
19	concavity_se	concavity (severity of concave portions of the contour) - Standard error	
20	concave_points_se	concave points (number of concave portions of the contour) - Standard error	
21	symmetry_se	symmetry - Standard error	
22	fractal_dimension_se	fractal dimension ("coastline approximation" - 1) - Standard error	
23	radius_worst	radius (mean of distances from center to points on the perimeter) - Worst	
24	texture_worst	texture (standard deviation of gray-scale values) - Worst	
25	perimeter_worst	perimeter - Worst	
26	area_worst	area - Worst	
27	smoothness_worst	smoothness (local variation in radius lengths) - Worst	
28	compactness_worst	compactness (perimeter^2 / area - 1.0) - Worst	
29	concavity_worst	concavity (severity of concave portions of the contour) - Worst	
30	concave points worst	concave points (number of concave portions of the contour) - Worst	

- ▶ Data partitioning: 80% training set and 20% test set
- ► Automatic grid search, with a *tunelength* = 10 was used to find optimal parameter values

- ▶ Data partitioning: 80% training set and 20% test set
- ► Automatic grid search, with a *tunelength* = 10 was used to find optimal parameter values
 - Weight decay

- ▶ Data partitioning: 80% training set and 20% test set
- ► Automatic grid search, with a *tunelength* = 10 was used to find optimal parameter values
 - Weight decay
 - Number of hidden neurons

- ▶ Data partitioning: 80% training set and 20% test set
- ► Automatic grid search, with a *tunelength* = 10 was used to find optimal parameter values
 - Weight decay
 - Number of hidden neurons
- ▶ 10-fold cross validation
- ROC was used as the performance metric

results: Weight decay and hidden neurons

results: Weight decay and hidden neurons

size decay 1 3 0.04216965

Result: Resampling distribution

Result: Predictions

Result: Predictions

Probabilities

Result: Predictions

Conclusions

- Discussed Gradient descent in neural network
- ▶ Appled neural network to classify breast cancer. The model provides a good classification of the data, with ROC of 0.99.

References

- [1] Trevor, H., Robert, T., & JH, F. (2009). The elements of statistical learning: data mining, inference, and prediction. *Springer series in statistics*. Second Edition
- [2] Tom M. Mitchell. (1997). Machine Learning *McGraw-Hill International Editions*.
- [3] Internet sources (2019).