Math 535 - General Topology Fall 2012 Homework 11 Solutions

Problem 1. Let X be a topological space.

- **a.** Show that the following properties of a subset $A \subseteq X$ are equivalent.
 - 1. The closure of A in X has empty interior: $\operatorname{int}(\overline{A}) = \emptyset$.
 - 2. For all non-empty open subset $U \subseteq X$, there is a non-empty open subset $V \subseteq U$ satisfying $V \cap A = \emptyset$.

A subset $A \subseteq X$ satisfying these equivalent properties is called **nowhere dense** in X.

Solution. Recall that a subset $B \subseteq X$ is dense if and only if its complement has empty interior:

$$\overline{B} = X \Leftrightarrow \overline{B}^c = \emptyset = \operatorname{int}(B^c).$$

Now consider the following equivalent conditions.

 \overline{A} has empty interior.

- $\Leftrightarrow \overline{A}^c$ is dense. But note $\overline{A}^c = \operatorname{int}(A^c)$.
- \Leftrightarrow For all non-empty open subset $U \subseteq X$, we have $U \cap \operatorname{int}(A^c) \neq \emptyset$.
- \Leftrightarrow For all non-empty open subset $U \subseteq X$, there is a point $x \in U \cap A^c$ and an open neighborhood W of x satisfying $W \subseteq A^c$, in other words $W \cap A = \emptyset$.
- \Leftrightarrow (Taking $V = U \cap W$) For all non-empty open subset $U \subseteq X$, there is a non-empty open subset $V \subseteq U$ satisfying $V \cap A = \emptyset$.
- **b.** Show that the following properties of the space X are equivalent.
 - 1. Any countable intersection of open dense subsets is dense. In other words, if each $U_n \subseteq X$ is open and dense in X, then $\bigcap_{n=1}^{\infty} U_n$ is dense in X.
 - 2. Any countable union of closed subsets with empty interior has empty interior. In other words, if each $C_n \subseteq X$ is closed in X and satisfies $\operatorname{int}(C_n) = \emptyset$, then their union satisfies $\operatorname{int}(\bigcup_{n=1}^{\infty} C_n) = \emptyset$.

A space X satisfying these equivalent properties is called a **Baire space**.

Solution. Consider the following equivalent conditions.

If each $U_n \subseteq X$ is open and dense in X, then $\bigcap_{n=1}^{\infty} U_n$ is dense in X.

- \Leftrightarrow If each $U_n^c \subseteq X$ is closed and has empty interior in X, then $\left(\bigcap_{n=1}^{\infty} U_n\right)^c$ has empty interior in X.
- \Leftrightarrow (Taking $C_n := U_n^c$) If each $C_n \subseteq X$ is closed and has empty interior in X, then $\bigcup_{n=1}^{\infty} C_n$ has empty interior in X.

Definition. Let X be a topological space. A function $f: X \to \mathbb{R}$ is **lower semicontinuous** if for all $a \in \mathbb{R}$, the preimage $f^{-1}(a, +\infty)$ is open in X.

Equivalently: For all $x_0 \in X$ and $\epsilon > 0$, there is a neighborhood U of x_0 satisfying $f(x) > f(x_0) - \epsilon$ for all $x \in U$. This means that the values close to x_0 can "suddenly jump up" but not down.

Problem 2.

a. Let X be a topological space and $f: X \to \mathbb{R}$ a continuous real-valued function. Show that for every non-empty open subset $U \subseteq X$, there is a non-empty open subset $V \subseteq U$ on which f is bounded.

Solution. Pick a point $x \in U$. Since f is continuous at x, there is an open neighborhood W of x satisfying $f(W) \subseteq (f(x) - 1, f(x) + 1)$, in particular f is bounded on W. Now the subset $V := W \cap U$ is non-empty (since $x \in V$), open, and f is bounded on V.

b. (Willard Exercise 25C) Let X be a Baire space and $f: X \to \mathbb{R}$ a lower semicontinuous function. Show that for every non-empty open subset $U \subseteq X$, there is a non-empty open subset $V \subseteq U$ on which f is bounded above.

Solution. Note that for all $a \in \mathbb{R}$, the preimage $f^{-1}(-\infty, a] = (f^{-1}(a, +\infty))^c$ is closed in X. Express X as the countable union

$$X = f^{-1}(\mathbb{R})$$

$$f^{-1}\left(\bigcup_{n=1}^{\infty}(-\infty, n]\right)$$

$$\bigcup_{n=1}^{\infty}f^{-1}(-\infty, n]$$

$$=:\bigcup_{n=1}^{\infty}A_n$$

of closed subsets, and likewise

$$U = \bigcup_{n=1}^{\infty} (A_n \cap U).$$

Since U is open (and non-empty) and X is Baire, U cannot be meager, so that for some $m \in \mathbb{N}$, $A_m \cap U$ is not nowhere dense. Let $W \subseteq X$ be a non-empty open subset satisfying

$$W \subseteq \overline{A_m \cap U} \subseteq \overline{A_m} \cap \overline{U} = A_m \cap \overline{U}.$$

Since W is open and satisfies $W \subseteq \overline{U}$, it also satisfies $W \cap U \neq \emptyset$. This subset $V := W \cap U$ is non-empty, open, and contained in A_m so that f is bounded above on V (by the upper bound m).

Problem 3. Show that a topological space X is of second category in itself if and only if any countable intersection of open dense subsets of X is non-empty.

Solution. Consider the following equivalent conditions.

X is of second category in itself, i.e. for any countable collection of nowhere dense subsets $A_n \subseteq X$, we have $\bigcup_{n=1}^{\infty} A_n \neq X$.

 \Leftrightarrow For any countable collection of *closed* nowhere dense subsets $C_n \subseteq X$, we have $\bigcup_{n=1}^{\infty} C_n \neq X$. (This implies the previous condition since A being nowhere dense implies \overline{A} being nowhere dense.)

 \Leftrightarrow (Taking $U_n = C_n^c$) For any countable collection of open dense subsets $U_n \subseteq X$, we have $\bigcap_{n=1}^{\infty} U_n \neq \emptyset$.

Problem 4. (Uniform boundedness principle) (Willard Exercise 25D.5) (Munkres Exercise 48.10) (Bredon I.17.2)

Let X be a Baire space and $S \subseteq C(X, \mathbb{R})$ a collection of real-valued continuous functions on X which is pointwise bounded: for each $x \in X$, there is a bound $M_x \in \mathbb{R}$ satisfying

$$|f(x)| \leq M_x$$
 for all $f \in S$.

Show that there is a non-empty open subset $U \subseteq X$ on which the collection S is uniformly bounded: there is a bound $M \in \mathbb{R}$ satisfying

$$|f(x)| \leq M$$
 for all $x \in U$ and all $f \in S$.

Solution. For all $n \in \mathbb{N}$, consider the subset of X

$$C_n = \{x \in X \mid |f(x)| \le n \text{ for all } f \in S\}$$

$$= \bigcap_{f \in S} \{x \in X \mid |f(x)| \le n\}$$

$$= \bigcap_{f \in S} f^{-1}[-n, n]$$

which is closed in X since each $f \in S$ is continuous.

Pointwise boundedness of the collection S yields $x \in C_n$ whenever $n \ge M_x$, or equivalently

$$X = \bigcup_{n=1}^{\infty} C_n.$$

Since X is Baire, it is in particular of second category in itself, so that for some $m \in \mathbb{N}$, C_m is not nowhere dense. Let $U \subseteq X$ be a non-empty open subset satisfying $U \subseteq \overline{C_m} = C_m$. Then the bound $|f(x)| \leq m$ holds for all $x \in U$ and all $f \in S$.

Definition. Let X and Y be normed real vector spaces. A linear map $T: X \to Y$ is **bounded** if there exists a constant $C \in \mathbb{R}$ satisfying

$$||Tx|| \le C||x||$$

for all $x \in X$.

By linearity, this condition is equivalent to the following number being finite:

$$||T|| := \sup_{x \in X \setminus \{0\}} \frac{||Tx||}{||x||}$$
$$= \sup_{||x|| = 1} ||Tx||$$
$$= \sup_{||x|| \le 1} ||Tx||.$$

The number $||T|| \in \mathbb{R} \cup \{\infty\}$ is called the **operator norm** of T.

Let

$$\mathcal{L}(X,Y) := \{T \colon X \to Y \mid T \text{ is linear and } ||T|| < \infty \}$$

denote the vector space of bounded linear maps from X to Y. It is a vector space under pointwise addition and scalar multiplication. One readily checks that the assignment $T \mapsto ||T||$ is indeed a norm on $\mathcal{L}(X,Y)$.

Problem 5. Let $T: X \to Y$ be a linear map between normed real vector spaces. Show that the following are equivalent.

- 1. T is continuous (everywhere).
- 2. T is continuous at some point $x_0 \in X$.
- 3. T is continuous at $0 \in X$.
- 4. T is bounded.

Solution. $(1 \Rightarrow 2)$ X is non-empty since it contains $0 \in X$.

 $(2 \Rightarrow 3)$ Let $\epsilon > 0$. By continuity of T at x_0 , there is a $\delta > 0$ satisfying $TB_{\delta}(x_0) \subseteq B_{\epsilon}(Tx_0)$. For any $x \in B_{\delta}(0)$, we have

$$d(Tx, T(0)) = ||Tx - 0||$$

$$= ||Tx||$$

$$= ||T(x_0 + x - x_0)||$$

$$= ||T(x_0 + x) - Tx_0||$$

$$= d(T(x_0 + x), Tx_0)$$

$$< \epsilon$$

so that T is continuous at 0.

 $(3 \Rightarrow 4)$ Taking $\epsilon = 1$, since T is continuous at 0, there is a $\delta > 0$ satisfying $TB_{\delta}(0) \subseteq B_1(T(0)) = B_1(0)$. Thus for any x with ||x|| < 1, we have

$$||Tx|| = ||T\left(\frac{\delta}{\delta}x\right)||$$

$$= ||\frac{1}{\delta}T(\delta x)||$$

$$= \frac{1}{\delta}||T(\delta x)||$$

$$< \frac{1}{\delta}(1)$$

$$= \frac{1}{\delta}$$

and linearity of T implies $||Tx|| \leq \frac{1}{\delta}$ whenever $||x|| \leq 1$. Therefore T is bounded:

$$||T|| = \sup_{||x|| \le 1} ||Tx|| \le \frac{1}{\delta}.$$

 $(4 \Rightarrow 1)$ If T has bound C, then T is Lipschitz continuous with Lipschitz constant C, hence continuous. For all $x, x' \in X$, we have

$$d(Tx, Tx') = ||Tx - Tx'||$$

$$= ||T(x - x')||$$

$$\leq C||x - x'||$$

$$= Cd(x, x'). \square$$

Problem 6. Consider the Banach space

$$l^{\infty} = \{ x \in \mathbb{R}^{\mathbb{N}} \mid ||x||_{\infty} < \infty \}$$

with the supremum norm $||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$. Consider the linear subspace of lists that are eventually zero:

$$X := \{x \in l^{\infty} \mid \exists N \in \mathbb{N} \text{ such that } x_i = 0 \text{ for all } i > N\} \subset l^{\infty}.$$

Consider the continuous linear maps $T_n: X \to \mathbb{R}$ defined by

$$T_n(x) = nx_n.$$

a. Show that the collection $\{T_n\}_{n\in\mathbb{N}}$ is pointwise bounded but not uniformly bounded.

Solution. Pointwise bounded. Let $x \in X$ and let $N \in \mathbb{N}$ be large enough so that $x_i = 0$ for all i > N. Then for all n > N, we have

$$T_n x = n x_n = 0$$

and therefore

$$\sup_{n\in\mathbb{N}} |T_n x| = \max_{1\le n\le N} |T_n x| < \infty.$$

Not uniformly bounded. Consider the standard basis vectors $e^k \in X$ whose coordinates are

$$e_i^k = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$$

and note that these are unit vectors: $||e^k||_{\infty} = 1$.

The equality $T_n(e^n) = n(e^n) = n(1) = n$ implies

$$||T_n|| = \sup_{x \in X \setminus \{0\}} \frac{||T_n x||}{||x||}$$

$$\geq \frac{||T_n e^n||}{||e^n||}$$

$$= \frac{|n|}{1}$$

$$= n$$

It follows that the collection $\{T_n\}_{n\in\mathbb{N}}$ is not uniformly bounded:

$$\sup_{n\in\mathbb{N}}||T_n||=\infty.\quad\square$$

b. Part (a) implies that X cannot be complete. Show explicitly that X is not complete by exhibiting a Cauchy sequence in X that does not converge in X.

Solution. Let us denote the sequence index as a superscript. Consider the sequence $(x^{(n)})_{n\in\mathbb{N}}$ in X consisting of the following vectors:

$$x_i^{(n)} = \begin{cases} \frac{1}{i} & \text{if } i \le n \\ 0 & \text{if } i > n. \end{cases}$$

Note that each vector $x^{(n)}$ is eventually zero, hence a legitimate element of X.

The sequence is Cauchy. For any $N \in \mathbb{N}$ and $m, n \geq N$ (with $m \leq n$), the distance

$$d(x^{(m)}, x^{(n)}) = ||x^{(m)} - x^{(n)}||$$

$$= \max\{\frac{1}{m+1}, \frac{1}{m+2}, \dots, \frac{1}{n}\}$$

$$= \frac{1}{m+1}$$

$$< \frac{1}{N}$$

converges to 0 as $N \to \infty$.

The sequence does not converge in X. Let $x \in X$ and let $N \in \mathbb{N}$ be large enough so that $x_i = 0$ for all i > N. Then for all n > N, the distance

$$d(x^{(n)}, x) = ||x^{(n)} - x||$$

$$= \sup_{i \in \mathbb{N}} |x_i^{(n)} - x_i|$$

$$\geq \sup_{i > N} |x_i^{(n)} - x_i|$$

$$= \sup_{i > N} |x_i^{(n)}|$$

$$= |x_{N+1}^{(n)}|$$

$$= \frac{1}{N+1}$$

is bounded away from 0. Therefore the sequence $(x^{(n)})_{n\in\mathbb{N}}$ does not converge to $x\in X$.