Лекция 03 от 19.09.2016 Признаки сходимости знакопостоянных и знакопеременных рядов

Граница между сходящимися и расходящимися рядами

На прошлой лекции был сформулирован и доказан следующий признак:

Признак 1 (Интегральный признак Коши–Маклорена). Пусть $f(x) \geqslant 0$ — невозрастающая на $[1,\infty)$ функция. Тогда $\sum\limits_{n=1}^{\infty} f(n)$ и $\int\limits_{1}^{\infty} f(x) dx$ сходятся или расходятся одновременно.

С помощью него мы можем исследовать на сходимость семейство рядов

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}.$$

Как и для соответствующего интеграла, ряд сходится тогда и только тогда, когда $\alpha > 1$.

Может сложиться впечатление, что ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ является своего рода граничным между сходящимися и расходящимися рядами. Но исследуем теперь другой ряд (он нам также понадобится в дальнейшем):

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}.$$

Он сходится тогда и только тогда, когда сходится соответствующий интеграл.

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \int_{2}^{\infty} \frac{1}{\ln x} d\ln x = \ln \ln x \Big|_{2}^{\infty} = \infty$$

Данный ряд меньше, чем гармоничный ряд, однако расходится. Причем, как несложно убедиться, семейство рядов $\sum\limits_{n=2}^{\infty} \frac{1}{n \ln^{\beta} n}$ при $\beta>1$ уже сходится. Но при этом «граница» между сходящимися и расходящимися рядами не проходит по ряду $\sum\limits_{n=2}^{\infty} \frac{1}{n \ln n}$ — взять, например, ряд $\sum\limits_{n=2}^{\infty} \frac{1}{n \ln n \ln \ln n}$, который тоже расходится. И так далее, «границу» можно «уточнять» бесконечно. Следовательно, точной «границы» не существует.

Скорость роста частичных сумм расходящихся рядов

На прошлой лекции мы с помощью интегрального признака Коши–Маклорена научились оценивать остаток сходящихся рядов. Теперь научимся оценивать скорость роста частичных сумм расходящихся рядов.

Возьмем, например, гармонический ряд. Утверждается, что его частичные суммы оцениваются следующим образом:

$$\sum_{n=1}^{N} \frac{1}{n} = \ln N + C + o(1),$$

где C эта некая константа. Но как доказать, что это действительно корректная оценка? Фактически мы утверждаем сходимость последовательности $\{S_n\}$, где

$$S_n = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n.$$

Это можно воспринимать как последовательность частичных сумм и перейти к соответствующему ряду:

$$a_n = S_n - S_{n-1} = \frac{1}{n} - \ln n + \ln(n-1) = \frac{1}{n} - \ln \frac{n}{n-1} = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = \frac{1}{n} + \left(-\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right).$$

На последнем шаге мы воспользовались формулой Тейлора.

Мы получили, что $a_n = O\left(\frac{1}{n^2}\right)$, следовательно, данный ряд сходится. И так как мы построили сходящийся ряд, у которого последовательность $\{S_n\}$ будет последовательностью частичных сумм, данная последовательность также сходится. Что и доказывает нашу оценку.

Точно так же можно доказать оценки скорости «расходимости» частичных сумм, например, следующих рядов:

$$\sum_{n=2}^{N} \frac{1}{n \ln n} = \ln \ln N + C + o(1)$$

$$\sum_{n=1}^{N} \frac{1}{\sqrt[3]{n}} = \frac{3N^{2/3}}{2} + C + o(1)$$

Снова признаки сходимости знакопостоянных рядов

Вернемся теперь к признакам сходимости.

Признак 2 (Признак Куммера). *Пусть* $a_n, b_n > 0$ $u \ v_n := \frac{a_n}{a_{n+1}} b_n - b_{n+1}$. *Тогда:*

- 1. если существует такое l > 0, что начиная с некоторого места $v_n \geqslant l$, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;
- 2. если начиная с некоторого места $v_n \leqslant 0$ и $\sum_{n=1}^{\infty} \frac{1}{b_n}$ расходится, то и ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. Достаточно рассмотреть случай, когда наше неравенство выполняется для всех n.

1. Итого, мы имеем, что $\frac{a_n}{a_{n+1}}b_n-b_{n+1}\geqslant l$. Домножим неравенство на a_{n+1} , благо оно положительно:

$$a_n \cdot b_n - a_{n+1} \cdot b_{n+1} \geqslant la_{n+1} > 0$$

Воспользуемся этим, оценив частичную сумму следующего ряда, при $N \in \mathbb{N}$:

$$\sum_{n=1}^{N} la_n \leqslant la_1 + (a_1b_1 - a_2b_2) + (a_2b_2 - a_3b_3) + \ldots + (a_{N-1}b_{N-1} - a_Nb_N) = la_1 + a_1b_1 - a_Nb_N \leqslant la_1 + a_1b_1$$

Итого, мы получили, что частичные суммы ряда $\sum_{n=1}^{\infty} la_n$ ограничены сверху. Значит, этот ряд сходится и, следовательно, сходится ряд $\sum_{n=1}^{\infty} a_n$.

2. Имеем, что $\frac{a_n}{a_{n+1}}b_n - b_{n+1} \leqslant 0$. Перенесем b_{n+1} в правую часть и разделим все на b_n :

$$\frac{a_n}{a_{n+1}} \leqslant \frac{b_{n+1}}{b_n}$$

Теперь перевернем дробь:

$$\frac{a_{n+1}}{a_n} \geqslant \frac{b_n}{b_{n+1}} = \frac{1/b_{n+1}}{1/b_n}.$$

По условию ряд $\sum_{n=1}^{\infty} \frac{1}{b_n}$ расходится, а значит признак сравнения дает расходимость ряда $\sum_{n=1}^{\infty} a_n$.

Но признак Куммера особо не используется, он скорее нужен, чтобы вывести другие признаки.

Признак 3 (Признак Раабе). Пусть $a_n > 0$ и существует предел

$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = A \in [-\infty, +\infty].$$

Тогда:

- 1. если A > 1, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;
- 2. если A < 1, то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. Признак Куммера при $b_n = n$.

Покажем, зачем нужен признак Раабе. Пусть $a_n = \frac{1}{n^{\alpha}}$. Тогда:

$$n\left(\frac{(n+1)^{\alpha}}{n^{\alpha}}-1\right)=n\left(\left(1+\frac{1}{n}\right)^{\alpha}-1\right)=n\left(1+\frac{\alpha}{n}+o\left(\frac{1}{n}\right)-1\right)\longrightarrow\alpha.$$

Как мы видим, признак Раабе позволяет «ловить» ряды с полиномиальной скоростью убывания членов. И это хорошо, так как раньше мы этого не умели.

Но у этого признака все еще есть «мертвая зона», когда A=1. Поэтому рассмотрим еще один признак, который не имеет «мертвой зоны», но, к сожалению, тоже не всегда применим.

Признак 4 (Признак Гаусса). Пусть для некоторого $\varepsilon > 0$ и $\alpha, \beta \in \mathbb{R}$ верно, что

$$\frac{a_n}{a_{n+1}} = \alpha + \frac{\beta}{n} + O\left(\frac{1}{n^{1+\varepsilon}}\right).$$

Тогда:

- 1. если $\alpha > 1$, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;
- 2. если $\alpha < 1$, то ряд $\sum_{n=1}^{\infty} a_n$ расходится;
- 3. если $\alpha=1$ и $\beta>1$, то ряд $\sum\limits_{n=1}^{\infty}a_{n}$ сходится;

4. если
$$\alpha = 1$$
 и $\beta \leqslant 1$, то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. Все эти утверждения на самом деле следуют из уже рассмотренных нами признаков. Так что просто назовем их.

- 1. Признак д'Аламбера.
- 2. Признак д'Аламбера.
- 3. Признак Раабе.
- 4. Если $\beta \neq 1$ признак Раабе. Если $\beta = 1$ признак Куммера при $b_n = n \ln n$.

Рассмотрим подробнее последний случай, когда $\alpha=\beta=1$. Воспользуемся признаком Куммера при $b_n=n\ln n$ и равенством из условия:

$$v_n = \frac{a_n}{a_{n+1}} b_n - b_{n+1} = \left(1 + \frac{1}{n} + O\left(\frac{1}{n^{1+\varepsilon}}\right)\right) n \ln n - (n+1) \ln(n+1) =$$

$$= (n+1) \left(\ln n - \ln(n+1)\right) + O\left(\frac{\ln n}{n^{\varepsilon}}\right) =$$

$$= -(n+1) \ln\left(1 + \frac{1}{n}\right) + O\left(\frac{\ln n}{n^{\varepsilon}}\right) =$$

$$= -(n+1) \left(\frac{1}{n} + o\left(\frac{1}{n}\right)\right) + O\left(\frac{\ln n}{n^{\varepsilon}}\right) \longrightarrow -1$$

Итого, по признаку Куммера ряд действительно расходится.

Замечание 1. Вместо $O\left(\frac{1}{n^{1+\varepsilon}}\right)$ можно писать более слабое $O\left(\frac{1}{n\ln n}\right)$. Но первое чаще появляется в интересных примерах, поэтому исторически сложилось использовать его.

Признаки сходимости знакопеременных рядов

Признак 5 (Признак Лейбница). Пусть последовательность $\{b_n\}$ монотонно убывает к нулю. Тогда ряд $\sum_{n=0}^{\infty} (-1)^n b_n$ сходится, причем его остаток r_N имеет знак $(-1)^{N+1}$ и по модулю не больше b_{N+1} .

Доказательство. Докажем с помощью критерия Коши. Зафиксируем произвольное $\varepsilon>0$ и найдем такое $N\in\mathbb{N}$, что для всех n>N верно, что $b_n<\varepsilon$. Теперь для любого m>N и $p\in\mathbb{N}$ рассмотрим следующую величину:

$$\left| \sum_{n=m+1}^{m+p} (-1)^n b_n \right|.$$

Можно вынести $(-1)^{m+1}$ из суммы — на модуль это не повлияет, но зато нам будет удобнее считать, что первое слагаемое идет с положительным знаком.

Сгруппируем слагаемые следующим образом:

$$\left| \sum_{n=m+1}^{m+p} (-1)^n b_n \right| = \left| b_{m+1} + (-b_{m+2} + b_{m+3}) + (-b_{m+4} + b_{m+5}) + \dots \right|.$$

В силу монотонного убывания последовательности получаем, что каждая скобка не больше нуля. Последнее слагаемое, b_{m+p} , могло остаться без пары, но тогда оно идет с отрицательным знаком. Итого, получаем, что мы с b_{m+1} складываем только неположительные величины.

Сразу хочется ограничить модуль сверху величиной $|b_{m+1}|$, однако надо понимать, что выражение под модулем могло оказаться отрицательным, и тогда наша оценка не сработает. Поэтому надо отдельно показать, что подмодульное выражение все-таки положительно.

Сгруппируем слагаемые другим способом:

$$\left| \sum_{n=m+1}^{m+p} (-1)^n b_n \right| = \left| (b_{m+1} - b_{m+2}) + (b_{m+3} - b_{m+4}) + \dots \right|.$$

Каждая группа слагаемых не меньше нуля в силу монотонного убывания. Без пары могло остаться только последнее слагаемое, b_{m+p} , но тогда оно идет с положительным знаком. Следовательно, выражение под модулем не меньше нуля.

Итого:

$$\left| \sum_{n=m+1}^{m+p} (-1)^n b_n \right| \le |b_{m+1}| < \varepsilon.$$

Получаем, что по критерию Коши ряд сходится. Отсюда же следует оценка на остаток:

$$|r_N| = \left| \sum_{n=N+1}^{\infty} (-1)^n b_n \right| \leqslant b_{N+1}.$$

Аналогичным образом оценим знак остатка.

Снова вынесем за скобки знак $(-1)^{N+1}$ (но на этот раз его не убъет модуль), и сгруппируем слагаемые вторым способом:

$$r_N = \sum_{n=N+1}^{\infty} (-1)^n b_n = (-1)^{N+1} ((b_{N+1} - b_{N+2}) + (b_{N+3} - b_{N+4}) + \dots).$$

Здесь уже нет никаких проблем с последним слагаемым, так что вся скобка имеет положительный знак. А значит, r_N имеет знак $(-1)^{N+1}$. Что нам и требовалось.