Universidade Federal de Minas Gerais

Escola de Engenharia – Departamento de Engenharia Eletrônica

Arquitetura e Organização de Computadores

Prova 03 – 40 pontos

1. Considere a arquitetura MIPS Ciclo Único com Pipeline, onde seja possível suportar as instruções detalhadas embaixo.

Código	Registros		Memória	
Apresentar um Código principal que chame uma				
função capaz de resolver a série de Fibonacci para			_	
cada valor armazenado em memória.	\$0	00 00 00 00	00 00 00 2c	01 ac 1b 00
O resultado obtido, será armazenado no mesmo			00 00 00 28	aa 71 bb f0
endereço de memória onde o número utilizado para	\$t0	00 00 00 00	00 00 00 24	ff 0c 0e ee
executar a série foi obtido.	\$t1	00 00 00 00	00 00 00 20	00 00 fe 00
Isto será realizado para todos os endereços listados	\$t2	80 00 00 00	00 00 00 1c	a2 5f 44 00
nessa tabela.			00 00 00 18	01 22 44 59
Observações:	\$s0	00 00 00 00	00 00 00 14	00 00 00 00
Incluir todos os tipos de hazards na	\$s1	00 00 00 00	00 00 00 10	bb 00 00 00
implementação pensando na sua execução em	\$s2	00 00 00 00	00 00 00 0c	00 00 00 10
	\$s3	00 00 00 00	80 00 00 00	10 fe dc ba
Microarquitetura Single Cicle com Pipeline.	\$s4	00 00 00 00	00 00 00 04	00 00 00 00
Incluir endereços para cada instrução. Desta	\$s5	00 00 00 00	00 00 00 00	13 57 9b cd
forma serão identificados de acordo com o				
comportamento da memória de instruções.				

- a. Apresentar os registros e a memória após a execução dos códigos listados previamente.
 Apresentar esse código em MARS.
- b. Desenhar o caminho de dados com hazards (Forwarding e Stalls) existentes, elementos dos hazards, e sistemas de controle. Evidenciar os sinais de controle e sistema de controle do hazard necessários para cada uma das instruções listadas. Apresentar as equações implementadas no sistema de controle de hazard para realizar a toma de decisão.
- c. Evidenciar comportamento do sistema proposto com hazards existentes. DIAGRAMA DE BLOCOS.
- d. Implementar um processador superescalar para o processador pipeline previamente detalhado.
- e. Reordene o código de forma que produza o mesmo resultado, de forma a eliminar a ocorrência de Hazards para o processador pipeline e para o processador superescalar.
- f. Implementar um processador multiciclo, e single cicle, que suporte as mesmas instruções previamente apresentadas e comparar o desempenho dos três tipos de processadores após executar 5 Milhões de vezes o conjunto de instruções obtidas nas seções anteriores, tendo em conta os tempos apresentados a seguir:

Elemento	Parâmetro	Atraso (ps)
Reg clk to Q	t_{pcqpc}	25
Reg setup	t _{setup}	10
Multiplexer	t _{mux}	15
ALU	t _{ALU}	120
Mem. read	t _{mem}	200
Reg. file read	t_{RFread}	70
Reg. file setup	t _{RFsetup}	5

2. Concatenar com o processador pipeline previamente desenhado um sistema de memória física e um disco rígido. Desenhar o caminho de dados.

- a. As interações com memória geradas na sequência de instruções detalhadas no ponto anterior serão implementadas em uma CACHE com mapeamento direto, em uma associativa de n-vias e em uma totalmente associativa. As CACHES L1 e L2 estão dentro do processador com taxa de erro de 30% e tamanho de 64KB para L1, e taxa de erro de 15% e tamanho de 512KB para L2. L3 está fora do processador com taxa de erro de 5% e tamanho de 2 MB, e a Memória principal tem um tamanho de 8GB. Desenhar o hardware e as tabelas para cada um dos tipos de CACHE previamente mencionados, incluindo a correlação entre as CACHES. Apresentar mapa de conjuntos para cada tipo de CACHE (Número de conjuntos, bits necessários para mapear na memória principal o conjunto no qual pertence cada endereço, e número de bits correspondentes ao tag_bit).
- b. Comparar o miss rate obtido por cada um dos tipos de CACHE avaliados e o tempo médio de acesso à memória. Justificar caso seja evidenciada alguma diferença entre os tipos de CACHES avaliadas.
- c. A memória virtual possui um tamanho de 15GB, a memória física tem um tamanho de 8GB e o tamanho da página é 4KB. Desenhar as páginas da memória virtual e da memória física. Realizar para uma memória virtual de um e dois níveis.
- d. Evidenciar o esquema necessário para converter um endereço virtual em um endereço físico.