Geometria Analítica e Vetores

Geometria Analítica - Um tratamento vetorial

Posições relativas entre reta e plano no espaço

Docente: Prof^{a} . Dr^{a} . Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil

Referência: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

No espaço Oxyz, dados a reta r e o plano (π) . Dadas equações de r e (π) , podemos sempre determinar:

- **1** Um ponto $A \in r$; um vetor de direção $\vec{u_r}$ da reta r;
- **2** Um vetor normal \vec{n}_{π} do plano (π) .

Problema: Baseando em pontos A e os vetores $\vec{u_r}$ e $\vec{n_{\pi}}$, estudar as posições relativas entre a reta r e o plano (π) .

Temos três casos:

- $r \in (\pi)$ são paralelos;
- \circ r está contida em (π) ;
- \circ $r \in (\pi)$ são transversais (se interceptam em um ponto).

Caso 1: $r \in (\pi)$ são paralelos

Caso 1: $r \in (\pi)$ são paralelos.

Neste caso:

- **1** \vec{u}_r e \vec{n}_π são ortogonais $(\vec{u}_r.\vec{n}_\pi=0)$;
- **2** O ponto A não pertence ao plano (π) .

Caso 2: r está contida em (π)

Caso 2: r está contida em (π) ;

Neste caso:

- **1** \vec{u}_r e \vec{n}_π são ortogonais $(\vec{u}_r.\vec{n}_\pi=0)$;
- **2** O ponto A pertence ao plano (π) .

Caso 3: $r \in (\pi)$ são transversas.

Neste caso:

 \vec{u}_r e \vec{n}_π não são ortogonais $(\vec{u}_r.\vec{n}_\pi \neq 0)$.

Resumo: relações relativas entre reta e plano no espaço

No espaço Oxyz, dados a reta r e o plano (π) .

 $A \in r$, \vec{u}_r : vetor de direção de r; \vec{n}_{π} : vetor normal de (π) .

- **1** r **e** (π) **são paralelos:** quando
 - i) \vec{u}_r e \vec{n}_π são ortogonais $(\vec{u}_r.\vec{n}_\pi=0)$;
 - ii) O ponto A não pertence ao plano (π) .
- **2** r está contida em (π) : quando
 - i) \vec{u}_r e \vec{n}_π são ortogonais $(\vec{u}_r.\vec{n}_\pi=0)$;
 - ii) O ponto A pertence ao plano (π) .
- ③ $r e(\pi)$ são transversas: quando $\vec{u}_r e \vec{n}_{\pi}$ não são ortogonais $(\vec{u}_r.\vec{n}_{\pi} \neq 0)$.

Exemplo 1: Dados a reta $r : x - 3 = y - 2 = \frac{z+1}{2}$ e o plano $(\pi) : x + 2y - z = 10$.

- **1** Estude a posição relativa entre $r \in (\pi)$;
- **2** Caso r e (π) são transversais, obtenha a intersecção deles.

Exemplo 2: Verifique se a reta

$$\begin{cases} x = 2 + t \\ y = 1 + t \\ z = -3 - 2t \end{cases}$$
 $(t \in \mathbb{R})$

está contida no plano

$$(\pi): \ 2x + y + 3z - 1 = 0.$$

Exercícios

Exercício 1

Verifique a posição relativa da reta $r: \left\{ \begin{array}{l} x-y+z=0 \\ 2x+y-z-1=0 \end{array} \right.$ com o plano

 $(\pi): (x, y, z) = (0, 0, 1) + \lambda(1, 0, 3) + \mu(-1, 1, 1).$

Em caso de serem transversais, obtenha o ponto de intersecção.

Exercício 2

Dados o plano

$$(\pi): (x, y, z) = (1, 1, 3) + \lambda(1, -1, 1) + \mu(0, 1, 3) \quad (\lambda, \mu \in \mathbb{R})$$

e a reta

$$r: (x, y, z) = (1, 1, 1) + \alpha(3, 2, 1) \quad (\alpha \in \mathbb{R}).$$

Estude a posição relativa entre o plano (π) e a reta r. Se eles são transversais, encontre a interseção.

Bom estudo!