Phụ thuộc hàm

TS.Nguyễn Quốc Tuấn Bm. Mạng & HTTT

Nội dung

- □ Giới thiệu phụ thuộc hàm.
- Luật suy diễn Armstrong
- Phủ tối thiểu
- □ Tìm khóa lược đồ

Phụ thuộc hàm (1)

- □ Phụ thuộc hàm(PTH) Functional Dependencies
- Xét lược đồ quan hệ gồm n thuộc tính
 - $R(U), U = {\bar{A}_1, A_2, ..., A_n}$
- \square PTH giữa hai tập thuộc tính X, Y \subseteq U
 - Ký hiệu: $X \rightarrow Y$.
- X là vế trái và Y là vế phải của PTH.

Phụ thuộc hàm (2)

NHANVIEN_PHONGBAN TenNV MaNV NgSinh Diachi MaPB TenPB TrPhong ↑ ↑ ↑ ↑ MaNV → TenNV MaNV → MaPB MaPB → {TenPB, TrPhong}

- □ r ∈R thỏa mãn các PTH gọi là trạng thái hợp lệ của R
- Nhận xét:
 - Các PTH xuất phát từ các ràng buộc trong thế giới thực.
 - $\forall r \in R$, $\forall t \in r$, t[X] là duy nhất thì X là một siêu khóa của R.
 - Nếu K là một khóa của R thì K xác định hàm tất cả các tập thuộc tính của R.
 - PTH dùng để đánh giá một thiết kế CSDL

Bao đóng của tập PTH

- □ F là tập PTH trên R
 - $F = \{MaNV \rightarrow TenNV, MaPB \rightarrow \{TenPB, TrPhong\}, MaNV \rightarrow MaPB\}.$
 - ∀r∈R thỏa F và MaNV → {TenPB, TrPhong} cũng đúng với r thì MaNV → {TenPB, TrPhong} gọi là được suy diễn từ F.
- □ Bao đóng của F, ký hiệu F+, gồm
 - **■** F
 - Tất cả các PTH được suy diễn từ F.
- \square F gọi là đầy đủ nếu $F = F^+$.

Luật suy diễn (1)

- Luật suy diễn dùng để suy diễn một PTH mới từ một tập PTH cho trước.
- Hệ luật suy diễn Armstrong
 - Phản xạ: $Y \subseteq X \Rightarrow X \rightarrow Y$.
 - Tăng trưởng: $X \rightarrow Y \Rightarrow XZ \rightarrow YZ$, với $XZ = X \cup Z$.
 - Bắc cầu: $X \to Y, Y \to Z \Rightarrow X \to Z$.
 - Phân rã: $X \to YZ \Rightarrow X \to Y, X \to Z$.
 - $\blacksquare \text{ Hop: } X \to Y, X \to Z \Rightarrow X \to YZ.$
 - Bắc cầu giả: $X \to Y$, $WY \to Z \Rightarrow WX \to Z$.

Luật suy diễn (2)

- □ Ví dụ 1:
 - Cho $F=\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - Hãy chứng tỏ PTH A → CD suy diễn từ F nhờ luật dẫn Armstrong
 - Cách giải:
 - \Box A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C (luật bắc cầu)
 - $\Box \quad A \to C, A \to D \Rightarrow A \to CD \text{ (luật hợp)}.$
- \square Ví dụ 2: Cho F={AB \rightarrow E,AG \rightarrow I,BE \rightarrow I,E \rightarrow G,GI \rightarrow H}
 - Hãy chứng tỏ PTH AB → GH suy diễn từ F nhờ luật dẫn Armstrong?

Bao đóng của tập thuộc tính

- □ Làm thế nào để biết một PTH X → Y được suy diễn từ tập PTH F cho trước?
- □ Bao đóng của tập thuộc tính X đối với F, ký hiệu X⁺
 là
 - Tập các thuộc tính PTH vào X.
 - $\blacksquare X^+ = \{ A \in U \mid X \to A \in F^+ \}$
- □ Nhận xét:
 - $\blacksquare X \to Y \in F^+ \Leftrightarrow Y \subseteq X^+.$
 - Nếu K là khóa của R thì K+ = U.

Thuật toán tìm X+

- \square Input: U, F và X \subseteq U
- □ Output: X⁺
- □ Thuật toán
 - $B1: X^+ = X;$
 - B2: Nếu tồn tại $Y \rightarrow Z \in F$ và $Y \subseteq X^+$ thì
 - \blacksquare $X^+ = X^+ \cup Z$;
 - tiếp tục B2.
 - □ Ngược lại qua *B3*.
 - *B3*: output X⁺

Ví dụ tìm X+

- □ Input:
 - $\blacksquare \quad F = \{AB \to C, BC \to D, D \to EG\}$
 - \blacksquare X = BD
- \Box Output: X^+
- □ Thuật toán
 - \blacksquare X⁺ = BD.
 - Lặp 1:
 - \Box Tìm các PTH có về trái là tập con của $X^+ = BD$
 - D \rightarrow EG, thêm EG vào X⁺ ta được X⁺ = BDEG.
 - Lặp 2:
 - □ Tìm các PTH có vế trái là tập con của X+ = BDEG
 - Không có PTH nào.
 - Vậy $X^+ = BDEG$.

Ví dụ tìm X+

- □ VD2: Cho lược đồ quan hệ Q(ABCDEG) và tập PTH F
 - $\blacksquare \quad F = \{ B \rightarrow A, DA \rightarrow CE, D \rightarrow H, GH \rightarrow C, AC \rightarrow D \}$
 - Tìm bao đóng của tập X={AC} dựa trên F
- VD3: Cho lược đồ quan hệ Q(ABCDEG) và tập PTH F
 - $\blacksquare \quad F = \{A \to C, A \to EG, B \to D, G \to E\}$
 - Xác định X⁺
 - \square X= {AB}
 - \square X={CGD}

Kiểm tra PTH suy diễn

- $\Box \quad \text{Cho F} = \{AB \to C, A \to D, D \to E, AC \to B\}$
 - Hai PTH $AB \rightarrow E$ và $D \rightarrow C$ có được suy diễn từ F hay không?

Các tập PTH tương đương

- \square Tập PTH F được nói là phủ tập PTH G nếu G \subseteq F⁺
- □ Hai tập PTH F và G là tương đương nếu
 - F phủ G và
 - (G phủ F
- □ Nhận xét
 - $\forall X \rightarrow Y \in G$, nếu $Y \subseteq X_F^+$ thì F phủ G.
 - F và G tương đương nếu và chỉ nếu $F^+ = G^+$

Tập PTH tối thiểu (1)

- □ Thừa PTH
 - $\blacksquare \quad \{A \to B, B \to C, A \to C\}, \text{ vì } A \to C \text{ được suy diễn từ } \{A \to B, B \to C\}$
 - \blacksquare A \to B, B \to C \Rightarrow A \to C (luật bắc cầu).
- □ Thừa thuộc tính
 - $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$, vì $A \rightarrow CD$ được suy diễn từ $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - \Box A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C (luật bắc cầu)
 - \Box $A \rightarrow C, A \rightarrow D \Rightarrow A \rightarrow CD$ (luật hợp).
 - $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$, vì $AC \rightarrow D$ được suy diễn từ $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - $\Box \quad A \to B, A \to D \Rightarrow A \to BD \text{ (luật hợp)}$
 - \Box A \rightarrow BD \Rightarrow AC \rightarrow BCD (luật tăng trưởng)
 - $\square AC \to BCD \Rightarrow AC \to D \text{ (luật phân rã)}.$

Tập PTH tối thiểu

- □ Tập PTH F là tối thiểu nếu thỏa các điều kiện sau:
 - Mọi PTH của F chỉ có một thuộc tính ở vế phải.
 - Không thể thay $X \to A$ thuộc F bằng $Y \to A$ với $Y \subset X$ mà tập mới tương đương với F.
 - Nếu bỏ đi một PTH bất kỳ trong F thì tập PTH còn lại không tương đương với F.
- □ Phủ tối thiểu của tập PTH E là tập PTH tối thiểu F tương đương với E.
- □ Nhận xét
 - Mọi tập PTH có ít nhất một phủ tối thiểu.

Thuật toán tìm tập PTH tối thiểu

- □ Input: tập PTH E.
- □ Output: phủ tối thiểu F của E.
- □ Thuật toán:
 - B1: $F = \emptyset$
 - B2: Với mọi $X \rightarrow Y \in E, Y = \{A_1, ..., A_k\}, A_i \in U$
 - $\Box \quad F = F \cup \{X \to \{A_i\}\}\$
 - B3: Với mỗi $X \rightarrow \{A\} \in F, X = \{B_1, ..., B_m\}, B_i \in U$
 - \square Với mỗi B_i , nếu $B_i \in (X \{B_i\})_F^+$ thì
 - $F = (F \{X \to \{A\}\}) \cup \{(X \{B_i\}) \to \{A\}\}$
 - B4: Với mỗi $X \to \{A\} \in F$
 - $\Box \quad G = F \{X \to \{A\}\}\$
 - $\square \quad \text{N\'eu } A \in X^+_G \text{ thì } F = F \{X \to \{A\}\}.$

Ví dụ tìm tập PTH tối thiểu

□ Tìm phủ tối thiểu của

$$E = \{A \rightarrow BC, A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- \blacksquare B1: $F = \emptyset$.
- $B2: F = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow C\}.$
- $B3: X \text{ \'et } AB \rightarrow C$
 - \Box $(A)_F^+ = ABC$ chứa B => B dư thừa
 - $\Box \quad F = \{A \to B, A \to C, B \to C\}.$
- *B4*:
 - \Box A \rightarrow C thừa do $A^{+}_{F-\{A \rightarrow C\}}$ =ABC chứa C
 - $\Box \quad F = \{A \to B, B \to C\}.$

Ví dụ tìm tập PTH tối thiểu

□ Tìm phủ tối thiểu của $F1=\{A\rightarrow C, AB\rightarrow C, B\rightarrow EG, BE\rightarrow D, C\rightarrow H, A\rightarrow H\}$

Ví dụ tìm tập PTH tối thiểu

□ Tìm phủ tối thiểu của $F1=\{AB\rightarrow C, A\rightarrow DE, B\rightarrow M, M\rightarrow GH, D\rightarrow IJ\}$

Siêu khóa và Khóa

- \Box Cho R(U)
 - S ⊆ U là siêu khóa nếu $\forall r \in \mathbb{R}$, $\forall t_1, t_2 \in \mathbb{R}$, $t_1 \neq t_2$ thì $t_1[S] \neq t_2[S]$.
 - K ⊆ U là khóa nếu K là siêu khóa nhỏ nhất.
 - \Box A \in K được gọi là thuộc tính khóa.
- □ Nhận xét
 - S xác định hàm tất cả các thuộc tính của R.
 - R có thể có nhiều khóa.

Xác định khóa của lược đồ

- □ Input: tập PTH F xác định trên lược đồ R(U).
- □ Output : khóa K của R.
- □ Thuật toán
 - *B1*:
 - \square $K = U = \{A_1, ..., A_n\}$
 - \Box i=1;
 - *B2*:
 - $\square \quad \text{N\'eu } U \subseteq (K \{A_i\})_{F}^+ \text{ thì } K = K \{A_i\}.$
 - \Box i = i + 1;
 - \square Nếu i > n thì sang B3. Ngược lại, tiếp tục B2.
 - *B3*:
 - □ Output K.

Ví dụ tìm khóa của lược đồ

- \Box Cho R(U), U = {A, B, C, D, E, F, G}.
 - $\blacksquare \quad F = \{B \to A, D \to C, D \to BE, DF \to G\}.$
- □ Tìm khóa của R
 - B1:
 - \square K = ABCDEFG.
 - B2:
 - □ Lặp 1: $(BCDEFG)_{E}^{+} = BCDEFGA \Rightarrow K = BCDEFG$.
 - □ Lặp 2: $(CDEFG)_{F}^{+} = CDEFGBA \Rightarrow K = CDEFG$.
 - \Box Lặp 3: (DEFG)_F = DEFGCBA \Rightarrow K = DEFG.
 - \Box Lặp 4: (EFG) $^+_{\rm F}$ = EFG.
 - \square Lặp 5: (DFG)_E = DFGCBEA \Rightarrow K = DFG.
 - \Box Lặp 6: $(DG)_{F}^{+}$ = DGCBEA.
 - \Box Lặp 7: $(DF)_{F}^{+}$ = DFCBEAG \Rightarrow K = DF.
 - B3:
 - □ Khóa là K = DF.

Ví dụ tìm tất cả khóa của lược đồ

- \Box Cho R(U), U = {A, B, C, D, E, F}.
 - $\blacksquare \quad F = \{AE \to C, CF \to A, BD \to F, AF \to E\}.$
- □ Tìm 1 khóa của lược đồ trên?

Ví dụ tìm tất cả khóa của lược đồ

- \Box Cho R(U), U = {A, B, C, D, E, F}.
 - $\blacksquare \quad F = \{AE \to C, CF \to A, BD \to F, AF \to E\}.$
- □ Hỏi ABD có phải là 1 khóa của lược đồ hay không? Vì sao? \

Xác định tất cả khóa của lược đồ

- □ Input: tập PTH F xác định trên lược đồ R(U).
- □ Output: tất cả khóa của R.
- □ Thuật toán
 - *B1*:
 - \square Xây dựng 2^n tập con của $U = \{A_1, A_2, ..., A_n\}$
 - $S = \{\};$
 - *B2*:
 - \Box Với mỗi tập con $X \subseteq U$
 - $\square \quad \text{N\'eu } U \subseteq X_F^+ \text{ thì } S = S \cup \{X\}$
 - *B3*:
 - \Box $\forall X, Y \in S$, nếu $X \subset Y$ thì $S = S \{Y\}$
 - *B4*:
 - □ S là tập các khóa của R

Ví dụ tìm tất cả khóa của lược đồ

- \Box Cho R(U), U = {A, B, C, D, E, F}.
 - $\blacksquare \quad F = \{AE \to C, CF \to A, BD \to F, AF \to E\}.$
- □ Tìm tất cả khóa của R
 - Tập siêu khóa
 - □ S = {ABD, BCD, ABCD, ABDE, BCDE, ABCDE, ABDF, BCDF, ABCDF, ABDEF, BCDEF, ABCDEF}.

