Introduction to Soft Robotics

Autumn 2023

Instructors: Jonas Jørgensen, Saravana P.M Babu

TA: Aida Parvaresh, Arman Goshtasbi

Part 1: Arduino 101

Arduino Uno and Serial communication

Download Link

GitHub Link

Part 2: MPX5100 Integrated Silicon Pressure Sensor

MPX5100, 0 to 100 kPa Pressure Transducer

V_{out}	Output Voltage				
GND	Ground				
Vs	Voltage Supply				
DNC	Do not connect				

Characteristic	Symbol	Min	Тур	Max	Unit		
Pressure range ⁽¹⁾ Gauge, differential: MPX5100G/MPXV5100G Absolute: MPX5100AP	P _{OP}	0 15	_	100 115	kPa		
Supply voltage ⁽²⁾	V _S	4.75	5.0	5.25	V _{DC}		
Supply current	Io	_	7.0	10	mAdc		 P
	+5.0 V	V _{OUT}	00	ITPUT			
0.01 μF 1.0 μF	IPS	1	<u></u> 470	pF			Phidget websi

Right port: GND Middle Port: 5V Left Port: Signal

Full data sheet of the pressure sensor

Wiring to Arduino

Please before connection to Arduino double check with TA for the wire connections

Voltage to Pressure Conversion

Nominal Transfer Value: $V_{OUT} = V_S (P \times 0.009 + 0.04)$

 $V_{OUT} = V_S (P \times 0.009 + 0.04)$ ± (Pressure Error x Temp. Mult. x 0.009 x V_S) $V_S = 5.0 \text{ V} \pm 0.25 \text{ V}$

Arduino Bit conversion

$$Voltage = \frac{5}{1023} * analogread$$

Part 3: Conductive Rubber Cord Sensor

Voltage divider

TECHNICAL DETAILS

Length: approximately 1 meter = 39 inches

Diameter: 2mm

Resistance: 350-400 ohms per inch / 140 - 160 ohms per centimeter

Voltage divider (Wikipedia)

Wheatstone Bridge

Wheatstone bridge instruction (Youtube)

$$R_{3} = R_{4} * (\frac{1 - (\frac{R_{2}}{R_{1} + R_{2}} - \frac{V_{out}}{V_{s}})}{\frac{R_{2}}{R_{1} + R_{2}} - \frac{V_{out}}{V_{s}}})$$

Part 4: Data Acquisition with MATLAB and Python

MATLAB

Setting up Arduino data collection in MATLAB

- → Type: a = arduino("com3", "Uno") in MATLAB command windows (the com is dependent on your computer COM)
- → Install the required package if needed (Link)
- → When the package is installed, you can directly read the voltage of the analog pin of the Arduino via readVoltage (a, 'analogpin')
- → An example code to measure the pressure in Part 2 can be accessed via GitHub and the next slide

MATLAB

```
%% Setting up arudino
a = arduino('com','Uno');
%% Collecting voltage information from the arduino
seconds =10; % Defining the required duration for the data collection
elapse time = 0;
tic % initiate time duration
while elapse time<seconds
    v = readVoltage(a, 'A0'); % collecting voltage data from Arduino.
   % Please mind that you have to adjust the pin based on the your input
   % pin in arduino
    elapse time = toc; %collecting time for each iteration
end
%% Applying sensor transfer function
 P = (v-0.2)/0.045; % calculating the pressure based on the read voltage
```


Python

Setting up Arduino data collection in Python

- → Type \$ pip install pyserial in you Python console to install it.
- → If you are using Anaconda Prompt use the following code: conda install pyserial
- → Import Serial, time, matplotlib.pyplot for acquiring the data and plotting.
- → An example code to measure the pressure in Part 2 can be accessed via GitHub and the next slide

Python

```
import serial
import time
import matplotlib.pyplot as plt
ser = serial.Serial('COM4', 9600)
time.sleep(2)
data = []
for i in range(50):
    line = ser.readline()
    if line:
        string = line.decode()
        num = float(string)
        print(num)
        data.append(num)
ser.close()
plt.plot(data)
plt.xlabel('Time')
plt.show()
```

