Analysis I, Exercise 3

David Schmitz

Task 1

Assume the axiom of choice. Let A, B be non-empty sets, and $f: A \to B$ be a function. The function f is said to have a

- (i) Left-hand side inverse, if there exists a function $g: B \to A$ such that g(f(a)) = a for all $a \in A$. In this case, the function g is called the left-hand side inverse of f.
- (ii) Right-hand side inverse, if there exists a function $h: B \to A$ such that f(h(b)) = b for all $b \in B$. In this case, the function h is called the right-hand side inverse of f.

Prove the following:

- 1. The function f is injective iff f has a left-hand side inverse.
- 2. The function f is surjective iff f has a right-hand side inverse.
- 3. There exists an injective map from A to B iff there exists a surjective map from B to A.
- 4. If A is a countable set and there exists a surjective map $f: A \to B$, then the set B is finite or countable.

Solution.

1. Assume f has a left-hand side inverse g and let $f(a_1) = f(a_2)$ for some $a_1, a_2 \in A$. Applying g to both sides, we find that $a_1 = g(f(a_1)) = g(f(a_2)) = a_2$, so $a_1 = a_2$ and f is injective. Assume now that f is injective. Then for each $b \in B$, we have $|f^{-1}(\{b\})| \leq 1$, for if $f(a_1) = f(a_2)$ with $a_1, a_2 \in A$, then $a_1 = a_2$ by the injectivity of f. Choose some $a_0 \in A$ arbitrarily. We then define the function

$$g: B \to A, \quad b \mapsto \begin{cases} a_0 \text{ if } f^{-1}(\{b\}) = \{\}, \\ a_b \text{ if } f^{-1}(\{b\}) = \{a_b\}. \end{cases}$$

g is well-defined since $f^{-1}(\{b\})$ has at most one element. We claim that g is a left-hand side inverse. Indeed, let $a \in A$ be arbitrary. Then $f(a) \in B$ and since $f^{-1}(\{f(a)\}) = \{a\}$ (since f is injective), it follows that g(f(a)) = a, as desired.

2. Assume f has a right-hand side inverse h. Let $b \in B$. Observe that $h(b) \in A$ with f(h(b)) = b. Since $b \in B$ is arbitrary, f is surjective.

Assume now f is surjective. Let $X = \{f^{-1}(\{b\}) \mid b \in B\}$. We know that $f^{-1}(\{b\}) \subseteq A$ is non-empty by the surjectivity of f, so $X \subseteq \mathcal{P}(A)$ is a set of non-empty sets. Thus, by the axiom of choice, there is some choice function $h_1: X \to A$ such that $\forall Y \in X: h_1(Y) \in X$.

Denote by $h_2: B \to X$, $b \mapsto f^{-1}(\{b\})$ and let $h = h_1 \circ h_2: B \to A$. We claim that h is a right-hand side inverse.

Let $b \in B$ be arbitrary and let $a^* = h_1(h_2(b))$. We want to show $b = f(h(b)) = f(h_1(h_2(b))) = f(a^*)$. By the definition of h_1 , $a^* \in h_2(b) = f^{-1}(\{b\})$. Thus, $f(a^*) = b$, as desired.

- 3. Assume there exists an injective map $f: A \to B$. By 1., f has some left-hand side inverse $g: B \to A$. Since g(f(a)) = a for all $a \in A$, it follows that g must be surjective. In particular, a surjection $B \to A$ exists.
 - Assume there exists a surjective map $f: B \to A$. By 2., f has some right-hand side inverse $h: A \to B$. Let $a_1, a_2 \in A$ with $h(a_1) = h(a_2)$. Then $a_1 = f(h(a_1)) = f(h(a_2)) = a_2$. Therefore, h is injective. In particular, an injection $A \to B$ exists.
- 4. Let A be countable and $f: A \to B$ be surjective. Since A is countable, there is injective function $g: A \to \mathbb{N}$. By 3., there exists an injection $\tilde{f}: B \to A$. It's easy to see that $\tilde{g} = g \circ \tilde{f}: B \to \mathbb{N}$ is injective: if $b_1, b_2 \in B$ with $g(\tilde{f}(b_1)) = g(\tilde{f}(b_2))$, then by the injectivity of g, $f(b_1) = f(b_2)$. Again, $b_1 = b_2$ by the injectivity of f, so \tilde{g} is injective. By definition, this implies B is countable.

Task 2

Conclude from the axioms of a field \mathbb{F} that for all $x \in \mathbb{F}$ the additive inverse -x is uniquely determined and that -(-x) = x holds.

Solution. Let $x \in \mathbb{F}$ be arbitrary and assume $a, b \in \mathbb{F}$ are both additive inverses of x, i.e. x+a=0=x+b. Adding a to both sides yields a+(x+b)=a+(x+a). Using the associativity of addition, this is equivalent to (a+x)+b=(a+x)+a. By the commutativity of addition, 0=x+a=a+x, so 0+b=0+a. Since 0 is the neutral element with respect to addition, this implies b=a. Hence, additive inverses are unique.

For each x, the additive inverse is written as -x. Hence, x + (-x) = 0 for all x. By the commutativity of addition, (-x) + x = 0 also holds, so x must be the additive inverse of -x. However, this is nothing but -(-x). Thus, -(-x) = x, as desired.

Task 3

Prove that for all $x, y \in \mathbb{R}$

- $\max(x,y) = \frac{1}{2}(x+y+|x-y|)$, and
- $\min(x, y) = \frac{1}{2}(x + y |x y|).$

Solution. We consider the cases $x \ge y$ and x < y separately.

• Assume first $x \ge y$. Then $\max(x,y) = x$ and $x - y \ge 0$, so |x - y| = x - y. Thus, $\frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y + x - y) = x = \max(x,y)$ holds.

If x < y, then $\max(x, y) = y$ and x - y < 0, so |x - y| = y - x. Thus, $\frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y + y - x) = y = \max(x, y)$ holds.

• This can be proven analogously. A nicer solution might be to note that for all $x, y \in \mathbb{R}$,

$$\max(x,y) + \min(x,y) = x + y = \frac{1}{2}(2x + 2y - |x - y| + |x - y|)$$
$$= \frac{1}{2}(x + y + |x - y|) + \frac{1}{2}(x + y - |x - y|).$$

Since we already now that the first summands are equal, the second summands have to be equal as well.

Task 4

Show that

1.

$$\left(1 + \frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!} \le 3, \quad \text{for all } n \ge 1,$$

2.

$$\left(\frac{n}{3}\right)^n \le \frac{1}{3}n! \le \frac{1}{3}n^n$$
, for all $n \ge 1$.

Solution.

1. By the binomial formula,

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \cdot 1^{n-k} \cdot \left(\frac{1}{n}\right)^k = \sum_{k=0}^n \frac{n!}{k!(n-k)! \cdot n^k}$$
$$= \sum_{k=0}^n \frac{n(n-1)\dots(n-k+1)}{k! \cdot n^k} \le \sum_{k=0}^n \frac{1}{k!}.$$

Here, we used the inequality $n(n-1)\dots(n-k+1)\leq n^k$, which follows from multiplying $n\leq n, n-1\leq n,\dots,n-k+1\leq n$. To show other direction, we first note that $k!\geq 2^k$ for $k\geq 4$. It trivially holds for k=4, as $24\geq 16$, and for any $k\geq 4$, if $k!\geq 2^k$, then $(k+1)k!\geq 5k!\geq 2k!\geq 2\cdot 2^k=2^{k+1}$, so the result follows from induction.

Using this inequality, we observe that for $n \geq 4$.

$$\sum_{k=0}^{n} \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \sum_{k=4}^{n} \frac{1}{k!} = \frac{8}{3} + \sum_{k=4}^{n} \frac{1}{k!}$$
$$\leq \frac{8}{3} + \sum_{k=4}^{n} \frac{1}{2^k}$$

Let $S = \sum_{k=4}^{n} 2^{-k}$. Then (or by the formula for geometric series)

$$S = 2S - S = \sum_{k=4}^{n} 2^{-k+1} - \sum_{k=4}^{n} 2^{-k}$$

$$= \sum_{k=3}^{n-1} 2^{-k} - \sum_{k=4}^{n} 2^{-k} = \left(2^{-3} + \sum_{k=4}^{n-1} 2^{-k}\right) - \left(2^{-n} + \sum_{k=4}^{n-1} 2^{-k}\right)$$

$$= 2^{-3} - 2^{-n} < 2^{-3}.$$

Finally, we obtain

$$\sum_{k=0}^{n} \frac{1}{k!} \le \frac{8}{3} + \sum_{k=4}^{n} 2^{-k} \le \frac{8}{3} + \frac{1}{8} = \frac{67}{24} < 3.$$

The cases $n \geq 3$ can either be checked by hand or simply note that $\sum_{k=0}^{n} \frac{1}{k!}$ is an increasing function of n.

A more efficient way to prove the upper bound is to note that

$$\sum_{k=0}^{n} \frac{1}{k!} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \le 2 + \sum_{k=2}^{n} \frac{1}{k(k-1)} = 2 + \sum_{k=2}^{n} \left(\frac{k}{k(k-1)} - \frac{k-1}{k(k-1)} \right)$$
$$= 2 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) = 2 + \left(\sum_{k=1}^{n-1} \frac{1}{k} \right) - \left(\sum_{k=2}^{n} \frac{1}{k} \right) = 2 + 1 - \frac{1}{n} \le 3.$$

2. The upper bound is obvious and follows from

$$\frac{1}{3}n! = \frac{1}{3} \prod_{k=1}^{n} k \le \frac{1}{3} \prod_{k=1}^{n} n = \frac{1}{3}n^{n}.$$

Proving the lower bound is surprisingly subtle when neither Stirling's results nor derivatives and logarithms are useable. We proceed by induction.

For n=1, the inequality is satisfied, as $\frac{1}{3} \leq \frac{1}{3} \cdot 1!$. Now assume that $\left(\frac{n}{3}\right)^n \leq \frac{1}{3}n!$ for some $n \geq 1$. Multiplying this by $\left(1 + \frac{1}{n}\right)^n \leq 3$ (see above), it follows that

$$n! \ge \left(1 + \frac{1}{n}\right)^n \left(\frac{n}{3}\right)^n$$
$$= \left(\frac{n+1}{3}\right)^n.$$

Multiplying this by $\frac{n+1}{3}$, we obtain $\frac{1}{3}(n+1)! \ge \left(\frac{n+1}{3}\right)^{n+1}$, as desired.

Note. The approximation $\frac{67}{24} \approx 2.79167$ for $e \approx 2.71828$ has a relative error of around 2.7%.