

Laboratório

Testbench - Circuitos Sequenciais

Objetivos:

- · Circuitos Lógicos Sequenciais;
- Linguagem de Descrição de Hardware VHDL;
- Verificação Funcional;
- Simulação Funcional;
- Testbench;
- Geração de Estímulos;
- Assert.

Especificação - Circuit Under Verification (CUV):

1. O circuito lógico sequencial, cuja entidade foi denominada "reg_bank", foi projetado como um banco de registradores cujo pinout é apresentado na Tabela 1.

Nome	Sentido	Tipo / Tamanho		
clk	In	std_logic		
rst	in	std_logic		
wr_en	in	std_logic		
wr_address	in	std_logic_vector(3 downto 0)		
wr_data	in	std_logic_vector(7 downto 0)		
rd_en	in	std_logic		
rd_address	in	std_logic_vector(3 downto 0)		
rd data	out	std logic vector(7 downto 0)		

Tabela 1 – Especificação Funcional.

2. A Figura 1 apresenta o diagrama de referência da entidade do circuito.

Figura 1 – Diagrama de Referência.

3. A Tabela 2 apresenta os valores iniciais de cada registrador do banco, e também seus tipos de acesso.

Endereço	Valor Inicial	Tipo	
0000	x"32"	Read Only	
0001	x"30"	Read Only	
0010	x"31"	Read Only	
0011	x"37"	Read Only	
0100	x"30"	Read Only	
0101	x"39"	Read Only	
0110	x"06"	Read / Write	
0111	x"07"	Read / Write	
1000	x"08"	Read / Write	
1001	x"09"	Read / Write	
1010	x"0A"	Read / Write	
1011	x"FF"	Read / Write	
1100	x"FF"	Read / Write	
1101	x"FF"	Read / Write	
1110	x"FF"	Read / Write	
1111	x"FF"	Read / Write	

Tabela 2 – Valores e Tipos dos Registradores.

- 4. Considerar as seguintes especificações para o banco de registradores:
 - a. A frequência de operação do projeto deve ser de 50MHz;
 - b. O circuito é síncrono a borda de subida do sinal de clock (clk);
 - c. Os acessos de leitura possuem uma latência de um ciclo de clock;
 - d. Os valores dos dados dos registradores do tipo "Read Only" só podem ser lidos, isto é, seus valores n\u00e3o pode ser sobrescritos;
 - e. Os valores dos dados dos registradores do tipo "Read / Write" podem ser lidos e sobrescritos;
 - f. O pino de reset (rst) é ativo alto e síncrono ao sinal de clock (clk);
 - g. Após a inserção de um sinal de reset (rst), todos os dados dos registradores devem corresponder ao valor inicial apresentado na Tabela 2.
- 5. O acesso de leitura dos registradores deverá ser sensível à borda de subida do sinal de clock (clk), e ao nível lógico alto do sinal "rd_en", sendo o dado disponibilizado um ciclo de clock depois destes eventos.
- 6. O acesso de escrita dos registradores deverá ser sensível à borda de subida do sinal de clock (clk), e ao nível lógico alto do sinal "wr_en", sendo o dado registrado um ciclo de clock depois destes eventos.
- 7. O banco de registradores possui um tempo de power on reset de 100 ns, isto é, o circuito precisa de 100 ns para estar disponível para acessos após a sua energização.

Prática - Testbench:

- Desenvolva um Testbench que permita a verificação funcional do Circuit Under Verification (CUV) baseado na especificação apresentada neste documento;
- 2. Instancie, no Testbench, o Circuit Under Verification (CUV) disponibilizado;
- Desenvolva uma estrutura de geração de estímulos para o seu Testbench que excite o Circuit Under Verification (CUV);
- 4. Verifique se o Circuit Under Verification (CUV) possui divergências funcionais da especificação através de uma inspeção visual;
- 5. Desenvolva uma estrutura de checagem através do atributo "assert";
- 6. Caso sejam encontradas divergências, apresente estas divergências em um Relatório de Verificação indicando os testes realizados, as entradas inseridas e as eventuais inconsistências funcionais;
- 7. A Tabela 3 pode ser usada como referência para o Relatório de Verificação:

Item	Descrição da Verificação	Resultado Esperado	Resultado Obtido	Status

Tabela 3 – Modelo de Relatório de Verificação.

Critérios de Avaliação:

A Avaliação desta experiência seguirá os critérios indicados abaixo:

a) Testbench (50%):

- Instanciação CUV;
- Estruturas de Geração de Estímulos;
- Estrutura de Checagem / Assert;

b) Relatório (50%);

- Relatório de Verificação;
- o Identificação de Erros;

Os arquivos VHDL e o Relatório de Verificação deverão ser postados na **Área Moodle** da disciplina **até 23h55min** do dia **30/08**.