Vertex of the Quadratic

Given a quadratic $t(d) = a d^2 + b d + c$ compute its value at $d_1 = -\frac{b}{2a}$ namely $t(d_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at ${\sf d}_{1^+}{\sf h}$, namely

 $t(d_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = t(d_1+h) - t(d_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1.

 $t(d) = 4 d^2 + 16 d + 31$

