# 编码与调制

### 日期: 2024年10月17日

#### 知识总览

• 概念:编码&解码、调制&解调

- 常用的编码方法
  - 。 不归零编码 (NRZ)
  - 归零编码 (RZ)
  - 。 反向非归零编码 (NRZI)
  - 。 曼彻斯特编码
  - 。 差分曼彻斯特编码
- 常用的调制方法
  - 调幅 (AM)
  - 调频 (FM)
  - 调相 (PM)
  - 。 正交幅度调制 (QAM)

### 编码&解码、调制&解调

• 变换器:将二进制数据转换为信号

• 反变换器:将信号转换为二进制数据

• 编码&解码

。 编码: 二进制数据 → 数字信号

解码:数字信号 → 二进制数据

○ 有线网络适配器 (编码-解码器)

• 调制&解调

。 调制: 二进制数据 → 模拟信号

解调:模拟信号 → 二进制数据

○ 光猫 (Optical modem, 调制-解调器)

### 常见编码方法



- **不归零编码 (NRZ)** : 低 0 高 1, 中不变
  - 。 需要额外一条时钟线统一节奏
- **归零编码 (RZ)** : 低 0 高 1, 中归零
  - 。 统一节奏, 避免误差
- **反向非归零编码 (NRZI)** : 跳 0 不跳 1 看起点,中不变
  - NRZI: Non-Return-to-Zero Inverted
- **曼彻斯特编码**: 跳 0 反跳 1 看中间,中必变
  - 默认!!!: 上跳为 0, 下跳为 1
  - 。 也有下跳为 0, 上跳为 1
- **差分曼彻斯特编码**: 跳 0 不跳 1 看起点,中必变
  - 。 跳变节奏有利于信号同步
  - 。 抗干扰能力更强

## 各种编码特点

• 自同步能力: 信源和信宿可以根据信号完成"节奏同步",无需时钟信号

| 编码    | 自同步能力 | 浪费带宽 | 抗干扰能力 |
|-------|-------|------|-------|
| 不归零编码 | 无     | 不浪费  | 弱     |
| 归零编码  | 有     | 浪费   | 弱     |

|   | 编码       | 自同步能力                             | 浪费带宽        | 抗干扰能力      |
|---|----------|-----------------------------------|-------------|------------|
|   | 反相非归零编码  | 若增加冗余位<br>(eg: 8+1bit),<br>可支持自同步 | 浪一点,<br>但不多 | <b>5</b> 5 |
|   | 曼彻斯特编码   | 有                                 | 浪费          | 强          |
| _ | 差分曼彻斯特编码 | 有                                 | 浪费          | 很强         |

• 注意: 反相非归零编码可以每8个bit增加一个0, 手动实现自同步

#### • 例题 1



#### • 例题 2

#### 【2021年408真题\_34】

34. 若下图为一段差分曼彻斯特编码信号波形,则其编码的二进制位串是( )。



思考:给你二进制串和信号波形,如何判断是<mark>曼彻斯特or差分曼彻斯特</mark>?

技巧:两种编码都是"中必变",如果中间跳变方向和二进制能够一一对应,就是<mark>曼彻斯特</mark>

• **注意**: 也不排除考察上 1 下 0 的曼彻斯特编码

### 常见调制方法



基带信号:来自信源的数字信号,需调制后才能在某些信道上传输

• 调幅 AM: 又名辐移键控(ASK), 0和1的幅度不同

• 调频 FM: 又名频移键控 (FSK), 0 和 1 的频率不同

• 调相 PM: 又名相移键控 (PSK), 0 和 1 的相位不同

• 如何让一个码元携带更多比特数?

FM:设计 K 个幅值PM:设计 K 个频率PM:设计 K 个相位

○ **效果**: 1码元 = log<sub>2</sub> K 比特

### 正交幅度调制 (QAM)

• 若设计**m 中幅值**、**n 种相位**,则将 AM、PM 两种信号"复合",可以调制出**mn 种符号**,则此 QAM 有 1 码元 =  $\log_2 mn$  bit

#### 注意

- 。 上述信号可称为QAM-mn
- 。 QAM-n的意思是有 n 种信号的 QAM 调制方案
- 。 例如 ${f QAM-16}$ 就是调制  ${f 16}$  种信号, ${f 16}$  码元携带比特数为 ${f log}_2$   ${f 16}=4$

#### • 例题 3

34. 在一条带宽为 200 kHz 的无噪声信道上,若采用 4 个幅值的 ASK 调制,则该信道的最大数据 传输速率是()。

- A. 200 kbps
- B. 400 kbps C. 800 kbps
- D. 1600 kbps

○ 答案: C

#### • 例题 4

在无噪声情况下, 若某通信链路的带宽为 3kHz, 采用 4 个相位, 每个相位具有 4 种振幅的 QAM 调制技术,则该通信链路的最大数据传输速率是()。

- A. 12kbps
- B. 24kbps
- C. 48kbps
- D. 96kbps

○ 答案: B

### 总结: 各种编码的特点

|       | 不归零<br>(NRZ) | 归零<br>(RZ) | 反向非归零<br>(NRZI)  | 曼彻斯特编<br>码 | 差分曼彻斯特编<br>码 |
|-------|--------------|------------|------------------|------------|--------------|
| 自同步能力 | 无            | 有          | 若增加冗余位<br>可实现自同步 | 有          | 有            |
| 浪费带宽? | 无            | 浪费         | 不太浪费             | 浪费         | 浪费           |
|       | 弱            | 弱          | 弱                | 强          | 强            |

• 在题目中, 以太网默认使用曼彻斯特编码