1 Variables

2 root

	var	symbol	documentation	type	units	eqs
12	$S_{A,p}$	S_Ap	selection matrix interface species-related measures	network		
21	$u_{N,t,u}$	u_Ntu	input signal in control domain	network		
8	$F^{sink}_{N,A}$	F_NA_sink	incidence matrix NA sink	network		
13	$S_{I,q}$	S_Aq	selection matrix arcs to outputs	network		
5	$F^{source}{}_{A,I}$	F_AI_source	incidence matrix AI source	network		
4	$F^{sink}{}_{N,I}$	F_NI_sink	incidence matrix NI sink	network		
18	cz_I	cz_I	interface variable macro -> control	network		
6	$F^{sink}{}_{A,I}$	F_AI_sink	incidence matrix AI sink	network		
20	$A_{N,t,u}$	A_Ntu	mapping from input elements to outputs	network		
15	$S_{N,q,t}$	S_Nqt	selection matrix or splitter	network		
2	$F_{N,A}$	F	incidence matrix	network		
3	$F^{source}{}_{N,I}$	F_NI_source	incidence matrix NI source	network		

	var	symbol	documentation	type	units	eqs
7	$F^{source}_{N,A}$	F_NA_source	incidence matrix NA source	network		
19	$A_{N,p,q}$	A_Npq	mapping from inputs to outputs	network		
17	cz_N	cz_N	output from control	network		
16	mv_I	mv_I	interface variable macro -> control	network		
11		I_tu	identity mapping from $<$ t $>$ to $<$ u $>$	network		
27	$I_{t,u}$	I_NA	identity mapping from $<$ N $>$ to $<$ A $>$	network		
10	$I_{N,A}$	S_Iq	selection matrix interface to control output	network		
9	$S_{I,q}$	S_Ip	selection matrix interface to control input	network		
22	$S_{I,p}$	y_Ntu	output signal in control domain	network		
14	$y_{N,t,u}$	S_Npu	selection matrix for stacker	network		
107	$S_{N,p,q}$	t_interval	time interval	frame	s	6
106	Δt	te	end time	frame	s	5
1	t^e	t	time	frame	s	
105	$egin{array}{c} t \ t^o \end{array}$	to	starting time	frame	s	4

	var	symbol	documentation	type	units	eqs
103		one	numerical value one	constant		2
	1					
102		zero	numerical value zero	constant		1
	0					
104		oneHalf	numerical value one half	constant		3
	0.5					
101		value	numerical value	constant		
	#					

3 physical

	var	symbol	documentation	type	units	eqs
24		r_y	y-coordinate	frame	m	
23	$egin{array}{c} r_{yN} \ r_{xN} \end{array}$	r_x	x-coordinate	frame	m	
25	r_{zN}	r_z	z-coordinate	frame	m	
108	U_N	U	fundamental state – internal energy	state	kgm^2s^{-2}	
110	V_N	V	volume	state	m^3	7
111	$n_{N,S}$	n	fundamental state – molar mass	state	mol	93
137	m_N	m	mass	state	kg	30
144	C_N	С	$fundamental\ state-charge$	state	A s	
109	S_N	S	fundamental state – internal entropy	state	$kg m^2 K^{-1} s^{-2}$	
121	N^A	Avo	Avogadro constant	constant	mol^{-1}	
132	λ_S	Mm	molecular masses	constant	$kg mol^{-1}$	
122	k^B	Boltz	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	
123	R	R	gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	17

	var	symbol	documentation	type	units	eqs
149		Axz	cross sectional are xz	secondaryState	m^2	41
	A_{xzN}					
143		rho	density	secondaryState	$kg m^{-3}$	36
	$ ho_N$					
148		Axy	cross sectional area xy	secondaryState	m^2	40
	A_{xyN}					
150		Ayz	cross sectional area yz	secondaryState	m^2	42
	A_{yzN}					

4 macroscopic

	var	symbol	documentation	type	units	eqs
154	âd	fnd_x	diffusion flow in x-direction	transport	$mol s^{-1}$	46 89
206	$\begin{vmatrix} \hat{n}_{xA,S}^d \\ \dot{H}_{yN}^d \end{vmatrix}$	aHnd_y	accumulation of enthalpy due to diffusional mass flow in y-direction	transport	$kg m^2 s^{-3}$	101
208		aq_x	accumulation due to heat flow in x-direction	transport	$kg m^2 s^{-3}$	103
212	$\dot{q}_{xN} \ \dot{n}_{yN,S}^d$	and_y	accumulation due to diffusion in y-direction	transport	$mol s^{-1}$	107
153		fq_z	heat flow in z-direction	transport	$kg m^2 s^{-3}$	45
194	$egin{array}{c} \hat{q}_{zA} \ & \dot{n}_{xN,S}^c \end{array}$	anc_x	accumulation of molar mass due to convection	transport	$mol s^{-1}$	87
157		d	flow direction of convective flow	transport		49
214	$egin{array}{c} d_A \ \dot{w}_N \end{array}$	aw	accumulation of enthalpy due to work flow	transport	$kg m^2 s^{-3}$	109
205	\dot{H}^d_{xN}	aHnd_x	accumulation of enthalpy due to diffusional mass flow in x-direction	transport	$kg m^2 s^{-3}$	100
158		c_AS	concentration in convective event-dynamic flow	transport	$m^{-3} mol$	50
204	\dot{B}_{xN}^{c}	aHnc_x	accumulation of enthalpy due to convective mass flow in x-direction	transport	$kg m^2 s^{-3}$	99
159	\hat{V}_A	fV	volumetric flow in x-direction	transport	$m^3 s^{-1}$	51 142
213	$\dot{n}_{zN,S}^d$	and_z	accumulation due to diffusion in z-direction	transport	$mol s^{-1}$	108

	var	symbol	documentation	type	units	eqs
210	\dot{q}_{zN}	aq_z	accumulation due to heat flow in z-direction	transport	kgm^2s^{-3}	105
195	$\dot{n}^d_{xN,S}$	and_x	accumulation due to diffusion in x-direction	transport	$mol s^{-1}$	88
209	\dot{q}_{yN}	aq_y	accumulation due to heat flow in y-direction	transport	$kg m^2 s^{-3}$	104
243	$y^{p+}{}_{A}$	y_p_positive	link variable y p positive to interface macroscopic	transport		141
156	$\hat{n}_{zA,S}^d$	fnd_z	diffusion flow in z-direction	transport	$mol s^{-1}$	48 91
151	\hat{q}_{xA}	fq_x	heat flow in x-direction	transport	kgm^2s^{-3}	43
211	\hat{w}_A	fw	a fixed work flow to start with	transport	kgm^2s^{-3}	106
160	$\hat{n}_{xA,S}^c$	fnc_x	molar convective flow in x-direction	transport	$\mod s^{-1}$	52
152	\hat{q}_{yA}	fq_y	heat flow in y-direction	transport	$kg m^2 s^{-3}$	44
155	$\hat{n}_{yA,S}^d$	fnd_y	diffusion flow in y-direction	transport	$\mod s^{-1}$	47 90
207	\dot{H}_{zN}^d	aHnd_z	accumulation of enthalpy due to diffusional mass flow in z-direction	transport	$kg m^2 s^{-3}$	102
234	$\hat{m}_{N,A}$	fm	convective mass flow	transport	$kg s^{-1}$	133
183	k_{xA}^c	kcA_x	convective mass conductivity in arc and x diretion	properties	$m^{-1}s$	76
185	k_{zA}^c	kcA_z	convecive mass conductivity in arc and y-direction	properties	$m^{-1} s$	78

	var	symbol	documentation	type	units	eqs
187	k_{yA}^q	kqA_y	thermal conductivity in arc and y-direction	properties	$kg K^{-1} s^{-3}$	80
189	ρ_A	rhoA	density in arc	properties	$kg m^{-3}$	82
184	k_{uA}^{c}	kcA_y	convective mass conductivity in arc and y-direction	properties	$m^{-1} s$	77
188	$egin{array}{c} k_{zA}^q \end{array}$	kqA_z	thermal conductivity in arc and z-direction	properties	$kg K^{-1} s^{-3}$	81
219	$R^e_{\ N}$	elResistant	electrical resistant	properties	$kg m^2 A^{-2} s^{-3}$	115
190	$\hat{k}_{x}^{d,Fick}{}_{A,S}$	kdAFick_x	Fick's diffusivity in arc and x-direction	properties	ms^{-1}	83
191	$\hat{k}_{u}^{d,Fick}{}_{A,S}$	kdAFick_y	Fick diffusivity in arc and y-direction	properties	ms^{-1}	84
193	$h_{A,S}$	hA	partial molar enthalpiies in arc	properties	$kg m^2 mol^{-1} s^{-2}$	86
182	$k^d_{zA,S}$	kdA_z	diffusivity in arc and z-direction	properties	$kg^{-1} m^{-4} mol^2 s$	75
180	$k^d_{xA,S}$	kdA_x	diffusivity in arc and x-direction	properties	$kg^{-1} m^{-4} mol^2 s$	73
181	$k_{yA,S}^d$	kdA_y	diffusivity in arc and y-direction	properties	$kg^{-1} m^{-4} mol^2 s$	74
186	$egin{array}{c} k^q_{xA} \end{array}$	kqA_x	thermal conductivity in arc and x-direction	properties	$kg K^{-1} s^{-3}$	79
192	$\hat{k}_z^{d,Fick}{}_{A,S}$	kdAFick_z	Fick diffusivity in arc and z-direction	properties	ms^{-1}	85
115	H_N	н	Enthalpy	state	kgm^2s^{-2}	11 112

	var	symbol	documentation	type	units	eqs
216	$H^o{}_N$	Но	initial enthalpy	state	kgm^2s^{-2}	111
116	A_N	A	Helmholtz energy	state	kgm^2s^{-2}	12
203	$n^o{}_{N,S}$	no	initial mass	state	mol	98
117	G_N	G	Gibbs free energy	state	$kg m^2 s^{-2}$	13
161	$\mu^o{}_{N,S}$	chemPotStandard	instantiating standard chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	53
114	$\mu_{N,S}$	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	10 54
217	$U^e{}_N$	Ue	electrical potential – voltage	effort	$kg m^2 A^{-1} s^{-3}$	113
112	p_N	p	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$	8
113	T_N	Т	temperature	effort	K	9 121 143
124	C_{pN}	Ср	total heat capacity at constant pressure	secondaryState	$kg m^2 K^{-1} s^{-2}$	18 117
140	$x_{N,S}$	x	mole fraction	secondaryState		33
136	$h_{N,S}$	h	partial molar enthalpies	secondaryState	$kg m^2 mol^{-1} s^{-2}$	29
141	c_{pN}	ср	specific heat capacity at constant pressure	secondaryState	$m^2 K^{-1} s^{-2}$	34 120
125	C_{VN}	cv	total heat capacity at constant volume	secondaryState	$kg m^2 K^{-1} s^{-2}$	19

	var	symbol	documentation	type	units	eqs
120		v_z	velocity in z-direction	secondaryState	ms^{-1}	16
119	$egin{array}{c} v_{zN} \ v_{yN} \end{array}$	v_y	velocity in y-direction	secondaryState	ms^{-1}	15
118	v_{xN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	14
139	$n^t{}_N$	nt	total number of moles	secondaryState	mol	32
142	c_{VN}	cV	specific heat capacity at constant volume	secondaryState	$m^2 K^{-1} s^{-2}$	35
138	$c_{N,S}$	С	molar concentration	secondaryState	$m^{-3} mol$	31
222	$T^{ref}{}_N$	T_ref	reference temperature	secondaryState	K	119
202	$ ilde{n}_{N,S}$	np	link variable np to interface macroscopic	conversion	$m^{-3} mol s^{-1}$	97
220	$\dot{U}^e{}_A$	dUe	Kirkhoffs first law	diffState	$kg m^2 A^{-1} s^{-3}$	116
215	\dot{H}_N	dН	accumulation of enthalpy	diffState	$kg m^2 s^{-3}$	110
196	$\dot{n}_{N,S}$	an	differential mass balance without reaction	diffState	$mol s^{-1}$	92
218	$I^e{}_N$	current	current definition	internalTransport	A	114
223	$T^n{}_N$	T_meas_norming	value to norm measurement of temperature	observation	K	122
224	$ar{T}_N$	T_meas	temperature measurement	observation		123

5 reactions

	var	symbol	documentation	type	units	eqs
198		Ко	Arrhenius frequency factor	constant	$m^{-3} mol s^{-1}$	
197	$K^{o}{}_{K}$ $E^{a}{}_{K}$	Ea	Arrhenius activation energy	constant	$kg m^2 mol^{-1} s^{-2}$	
26		N	stoichiometric matrix	constant		
1.05	$N_{S,K}$					
167	$T_{N,p}$	T	link variable T to interface reactions	effort	K	60
165	7.1	x	link variable x to interface reactions	secondaryState		58
	$x_{N,S,p}$					
163	CNG	С	link variable c to interface reactions	secondaryState	$m^{-3} mol$	56
169	$c_{N,S,p}$	probability	probability of reaction to take place	conversion		62
	$\xi_{N,K,p}$	- ,				
200	~	np	production from reaction set	conversion	$m^{-3} mol s^{-1}$	95
160	$\tilde{n}_{N,S,q}$	6	f4 f	·		61
168	$f_{N,S,K,p}$	factor	factor for probability computation	conversion		61
199	~ ,~~,, <u>x</u>	K	Arrhenius reaction "constant"	conversion	$m^{-3} mol s^{-1}$	94
	$K_{N,K,p}$					

6 control

	var	symbol	documentation	type	units	eqs
237		p	controller gain	algebraic		
238	$egin{array}{c} p_{N,p,q} \ y^p{}_{N,q} \end{array}$	y_p_control	output of proportional controller	algebraic		136
227	$T_{setpoint N,p}$	T_setpoint	setpoint for temperatue	algebraic		126
226	$ar{T}_{N,p}$	T_meas	link variable T meas to interface control	algebraic		125
231	$e_{N,p}$	control_error	control error in normed temperature	algebraic		130
239	$y^{p+}{}_{N,q}$	y_p_{positive}	positive signal only	algebraic		137

7 macroscopic-control

	var	symbol	documentation	type	units	eqs
225	$_T_meas_I$	_T_meas	link variable T meas to interface macroscopic »> control with source:node	get		124

8 control-macroscopic

	var	symbol	documentation	type	units	eqs
242	y^{p+}	_y_p_positive	link variable y p positive to interface control »> macroscopic with source:arc	get		140

9 reactions-macroscopic

	var	symbol	documentation	type	units	eqs
201	$_np_{I,S}$	_np	link variable np to interface reactions »> macroscopic with source:node	get	$m^{-3} mol s^{-1}$	96

$10 \quad {\rm macroscopic-reactions}$

	var	symbol	documentation	type	units	eqs
164	$_x_{I,S}$	_x	link variable x to interface macroscopic $\gg>$ reactions with source:node	get		57
162	$_c_{I,S}$	_c	link variable c to interface macroscopic »> reactions with source:node	get	$m^{-3} mol$	55
166	$_T_I$	_Т	link variable T to interface macroscopic $\gg >$ reactions with source:node	get	K	59

11 Equations

12 Generic

no	equation	documentation	layer
1	$0 := \mathbf{Instantiate}(\#, \#)$	numerical value zero	root
2	$1 := \mathbf{Instantiate}(\#, \#)$	numerical value one	root
3	$0.5 := \mathbf{Instantiate}(\#, \#)$	numerical value one half	root
4	$t^o := \mathbf{Instantiate}(t, \#)$	starting time	root
5	$t^e := \mathbf{Instantiate}(t, \#)$	end time	root
6	$\Delta t := \mathbf{Instantiate}(t, \#)$	time interval	root
7	$V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}$	volume	physical
8	$p_N := \frac{\partial U_N}{\partial V_N}$	thermodynamic pressure	physical
9	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	macroscopic
10	$\mu_{N,S} := rac{\partial U_N}{\partial n_{N,S}}$	chemical potential	macroscopic
11	$H_N := U_N - p_N \cdot V_N$	Enthalpy	macroscopic
12	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	macroscopic
13	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	macroscopic
14	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocity in x-direction	macroscopic
15	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$	velocity in y-direction	macroscopic
16	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	macroscopic

no	equation	documentation	layer
17	$R := N^A \cdot k^B$	gas constant	physical
18	$C_{pN} := \frac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	macroscopic
19	$C_{VN} := \frac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	macroscopic
29	$h_{N,S} := H_N \cdot (n_{N,S})^{-1}$	partial molar enthalpies	macroscopic
30	$m_N := \lambda_S \stackrel{S}{\star} n_{N,S}$	mass	macroscopic
31	$c_{N,S} := (V_N)^{-1} \cdot n_{N,S}$	molar concentration	macroscopic
32	$n^{t}{}_{N} := \mathbf{reduceSum}\left(n_{N,S}, S\right)$	total number of moles	macroscopic
33	$x_{N,S} := \left(n^t{}_N\right)^{-1} \cdot n_{N,S}$	mole fraction	macroscopic
34	$c_{pN} := C_{pN} \cdot \left(m_N \right)^{-1}$	specific heat capacity at constant pressure	physical
35	$c_{VN} := C_{VN} \cdot \left(m_N \right)^{-1}$	specific heat capacity at constant volume	macroscopic
36	$\rho_N := \left(V_N\right)^{-1} . m_N$	density	physical
40	$A_{xyN} := r_{xN} \cdot r_{yN}$	cross sectional area xy	physical
41	$A_{xzN} := r_{xN} \cdot r_{zN}$	cross sectional are xz	physical
42	$A_{yzN} := r_{yN} \cdot r_{zN}$	cross sectional area yz	physical
43	$\hat{q}_{xA} := k_{xA}^q \cdot A_{yzN} \cdot F_{N,A} \overset{N}{\star} T_N$	heat flow in x-direction	macroscopic
44	$\hat{q}_{yA} := k_{yA}^q \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} T_N$	heat flow in y-direction	macroscopic
45	$\hat{q}_{zA} := k_{zA}^q \cdot A_{xyN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in z-direction	macroscopic

no	equation	documentation	layer
46	$\hat{n}_{xA,S}^d := \hat{k}_x^{d,Fick}{}_{A,S} \cdot A_{yzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	Fick diffusion flow in x-direction	macroscopic
47	$\hat{n}_{yA,S}^d := \hat{k}_y^{d,Fick}{}_{A,S} \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	Fick diffusion flow in y-direction	macroscopic
48	$\hat{n}_{zA,S}^d := \hat{k}_z^{d,Fick}{}_{A,S} \cdot (A_{xyN} \cdot F_{N,A}) \overset{N}{\star} c_{N,S}$	Fick diffusion flow in z-direction	macroscopic
49	$d_A := \mathbf{sign}\left(F_{N,A} \overset{N}{\star} p_N\right)$	flow direction of convective flow	macroscopic
50	$c_{A,S} := (0.5 \cdot (F_{N,A} - d_A \cdot F_{N,A})) \stackrel{N}{\star} c_{N,S}$	concentration in convective event-dynamic flow	macroscopic
51	$\hat{V}_A := (\rho_A)^{-1} \cdot k_{xA}^c \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} p_N$	volumetric flow in x-direction	macroscopic
52	$\hat{n}_{xA,S}^c := \hat{V}_A \cdot c_{A,S}$	molar convective flow in x-direction	macroscopic
53	$\mu^o{}_{N,S} := \mathbf{Instantiate}(\mu_{N,S}, \#)$	instantiating standard chemical potential	macroscopic
54	$\mu_{N,S} := \mu^o_{N,S} + R \cdot T_N \cdot \ln(x_{N,S})$	chemical potential standard model with mole fraction	macroscopic
61	$f_{N,S,K,p} := x_{N,S,p}((N_{S,K}))$	factor for probability computation	reactions
62	$\xi_{N,K,p} \coloneqq \prod_S f_{N,S,K,p}$	probability of reaction to take place	reactions
73	$k_{xA,S}^d := I_{N,A} \stackrel{N}{\star} \left(\left(\mu_{N,S} \right)^{-1} \cdot \left(v_{xN} \cdot \left(\left(V_N \right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and x-direction	macroscopic
74	$k_{yA,S}^d := I_{N,A} * \left(\left(\mu_{N,S} \right)^{-1} \cdot \left(v_{yN} \cdot \left(\left(V_N \right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and y-direction	macroscopic
75	$k_{zA,S}^d := I_{N,A} \stackrel{N}{\star} \left((\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and z-direction	macroscopic
76	$k_{xA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN} \right)$	convective mass conductivity in arc and x diretion	macroscopic
77	$k_{yA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN} \right)$	convective mass conductivity in arc and y-direction	macroscopic

no	equation	documentation	layer
78	$k_{zA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN} \right)$	convecive mass conductivity in arc and y-direction	macroscopic
79	$k_{xA}^{q} := I_{N,A} * ((V_{N})^{-1} . C_{pN} . v_{xN})$	thermal conductivity in arc and x-direction	macroscopic
80	$k_{yA}^q := I_{N,A} \stackrel{N}{\star} \left(\left(V_N \right)^{-1} . C_{pN} . v_{yN} \right)$	thermal conductivity in arc and y-direction	macroscopic
81	$k_{zA}^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot C_{pN} \cdot v_{zN} \right)$	thermal conductivity in arc and z-direction	macroscopic
82	$ ho_A := I_{N,A} \stackrel{N}{\star} ho_N$	density in arc	macroscopic
83	$\hat{k}_x^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{xN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and x-direction	macroscopic
84	$\hat{k}_{y}^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{yN} \cdot \frac{\partial U_{N}}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and y-direction	macroscopic
85	$\hat{k}_z^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{zN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and z-direction	macroscopic
86	$h_{A,S} := I_{N,A} \stackrel{N}{\star} h_{N,S}$	partial molar enthalpiies in arc	macroscopic
87	$\dot{n}_{xN,S}^c := F_{N,A} \star \hat{n}_{xA,S}^c$	accumulation of molar mass due to convection	macroscopic
88	$\dot{n}^d_{xN,S} := F_{N,A} \stackrel{A}{\star} \hat{n}^d_{xA,S}$	accumulation due to diffusion in x-direction	macroscopic
89	$\hat{n}_{xA,S}^d := k_{xA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	Fick diffusion flow in x-direction	macroscopic
90	$\hat{n}_{yA,S}^d := k_{yA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	Fick diffusion flow in y-direction	macroscopic
91	$\hat{n}_{zA,S}^d := k_{zA,S}^d \cdot (A_{xyN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	mass diffusion flow in z-direction	macroscopic
92	$\dot{n}_{N,S} := \dot{n}_{xN,S}^c + \dot{n}_{xN,S}^d + \boldsymbol{V}_N \cdot \tilde{n}_{N,S}$	differential mass balance without reaction	macroscopic

no	equation	documentation	layer
93	$n_{N,S} := \int_{t^o}^{t^e} \dot{n}_{N,S} \ dt + n^o{}_{N,S}$	fundamental state – molar mass	macroscopic
94	$K_{N,K,p} := K^o{}_K \cdot \exp\left((-E^a{}_K) \cdot (R \cdot T_{N,p})^{-1}\right)$	Arrhenius reaction "constant"	reactions
95	$\tilde{n}_{N,S,q} := A_{N,p,q} \star \left(N_{S,K} \star \left(K_{N,K,p} \cdot \xi_{N,K,p} \right) \right)$	production from reaction set	reactions
98	$\left \ n^o{}_{N,S} := \mathbf{Instantiate}(n_{N,S},\#) \right $	initial mass	macroscopic
99	$\dot{H}_{xN}^c := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^c \stackrel{S}{\star} h_{N,S} \right)$	enthalpy accumulation due to convective flow in x-direction	macroscopic
100	$\dot{H}_{xN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in x-direction	macroscopic
101	$\dot{H}_{yN}^d := F_{N,A} \overset{A}{\star} \left(\hat{n}_{yA,S}^d \overset{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in y-direction	macroscopic
102	$\dot{H}_{zN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{zA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in z-direction	macroscopic
103	$\dot{q}_{xN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{xA}$	accumulation due to heat flow in x-direction	macroscopic
104	$\dot{q}_{yN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{yA}$	accumulation due to heat flow in y-direction	macroscopic
105	$\dot{q}_{zN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{zA}$	accumulation due to heat flow in z-direction	macroscopic
106	$\hat{w}_A := \mathbf{Instantiate}(\hat{q}_{xA}, \#)$	a fixed work flow to start with	macroscopic
107	$\dot{n}_{yN,S}^d := F_{N,A} \star \hat{n}_{yA,S}^d$	accumulation due to diffusion in y-direction	macroscopic
108	$\dot{n}_{zN,S}^d := F_{N,A} \star \hat{n}_{zA,S}^d$	accumulation due to diffusion in z-direction	macroscopic

no	equation	documentation	layer
109	$\dot{w}_N := F_{N,A} \overset{A}{\star} \hat{w}_A$	accumulation of enthalpy due to work flow	macroscopic
110	$\dot{H}_N := \dot{H}^c_{xN} + \dot{H}^d_{xN} + \dot{H}^d_{yN} + \dot{H}^d_{zN} + \dot{q}_{xN} + \dot{q}_{yN} + \dot{q}_{zN} + \dot{w}_N$	accumulation of enthalpy	macroscopic
111	$H^o{}_N := \mathbf{Instantiate}(H_N, \#)$	initial enthalpy	macroscopic
112	$H_N := \int_{t^o}^{t^e} \dot{H}_N \ dt + H^o{}_N$	Enthalpy	macroscopic
113	$U^e{}_N := (C_N)^{-1} . U_N$	electrical potential – voltage	macroscopic
114	$I^e{}_N := rac{dC_N}{dt}$	current definition	macroscopic
115	$R^e{}_N := (I^e{}_N)^{-1} . U^e{}_N$	electrical resistant	macroscopic
116	$\dot{U}^e{}_A := F_{N,A} \stackrel{A}{\star} (R^e{}_N . I^e{}_N)$	Kirkhoffs first law	macroscopic
117	$C_{pN} := m_N \cdot c_{pN}$	total heat capacity at constant pressure	macroscopic
119	$T^{ref}{}_N := \mathbf{Instantiate}(T_N, \#)$	reference temperature	macroscopic
120	$c_{pN} := \mathbf{Instantiate}(c_{pN}, \#)$	constant specific heat capacity at constant pressure	macroscopic
121	$T_N := H_N \cdot (C_{pN})^{-1} + T^{ref}{}_N$	temperature from constant heat capacity	macroscopic
122	$T^n{}_N := \mathbf{Instantiate}(T_N, \#)$	value to norm measurement of temperature	macroscopic
123	$\bar{T}_N := T_N \cdot \left(T^n{}_N\right)^{-1}$	temperature measurement	macroscopic
126	$T_{setpointN,p} := \mathbf{Instantiate}(\bar{T}_{N,p}, \#)$	setpoint for temperatue	control
130	$e_{N,p} := T_{setpointN,p} - \bar{T}_{N,p}$	control error in normed temperature	control

no	equation	documentation	layer
133	$\hat{m}_{N,A} := \hat{V}_A \cdot ho_N$	convective mass flow	macroscopic
136	$y^p{}_{N,q} := (-p_{N,p,q}) \stackrel{p}{\star} e_{N,p}$	output of proportional controller	control
137	$y^{p+}{}_{N,q} := \max(0.y^{p}{}_{N,q}, y^{p}{}_{N,q})$	positive signal only	control
142	$\hat{V}_A := y^{p+}_{A} \cdot (\rho_A)^{-1} \cdot k_{xA}^c \cdot A_{yzN} \cdot F_{N,A} * p_N$	controlled volumetric flow in x-direction	macroscopic
143	${T}_N := \mathbf{Root}\left(H_N ight)$	temperature from constant heat capacity	macroscopic
144	$residual T_N := H_N - (U_N - p_N \cdot V_N)$	residual formulation	macroscopic
145	$residualT_N := H_N - \left(\int_{t^o}^{t^e} \dot{H}_N \ dt + H^o{}_N\right)$	residual formulation	macroscopic

13 Interface Link Equation

no	equation	documentation	layer
55	$_c_{I,S} := F^{source}{}_{N,I} \overset{N}{\star} c_{N,S}$	interface equation	macroscopic -> reactions
56	$c_{N,S,p} := \left(F^{sink}_{N,I} \cdot _c_{I,S}\right) \stackrel{I}{\star} S_{I,p}$	interface equation	reactions
57	$x_{I,S} := F^{source}_{N,I} \overset{N}{\star} x_{N,S}$	interface equation	macroscopic -> reactions
58	$x_{N,S,p} := (F^{sink}_{N,I} \cdot _x_{I,S}) \overset{I}{\star} S_{I,p}$	interface equation	reactions
59	$_T_I := F^{source}{}_{N,I} \stackrel{N}{\star} T_N$	interface equation	macroscopic -> reactions
60	$T_{N,p} := (F^{sink}_{N,I} \cdot _T_I) \overset{I}{\star} S_{I,p}$	interface equation	reactions
96	$_np_{I,S} := \mathbf{reduceSum}\left(\left(\left(F^{source}_{N,I} \stackrel{N}{\star} \tilde{n}_{N,S,q}\right).S_{I,q}\right), q\right)$	interface equation	reactions -> macroscopic
97	$\hat{n}_{N,S} := F^{source}{}_{N,I} \overset{I}{\star} _np_{I,S}$	interface equation	macroscopic
124	$_T_meas_I := F^{source}{}_{N,I} \stackrel{N}{\star} \bar{T}_N$	interface equation	macroscopic -> control
125	$\bar{T}_{N,p} := \left(F^{sink}_{N,I} \cdot _T_meas_I\right) \overset{I}{\star} S_{I,p}$	interface equation	control
140	$y^{p+}_{I} := \mathbf{reduceSum}\left(\left(\left(F^{source}_{N,I} * y^{p+}_{N,q}\right) . S_{I,q}\right), q\right)$	interface equation	control -> macro- scopic
141	$y^{p+}{}_{A} := F^{source}{}_{A,I} \stackrel{I}{\star} {}_{_} y^{p+}{}_{I}$	interface equation	macroscopic