Assignment 14 MAT 347

Q4i: First consider any permutation $\sigma \in S_3$. Let $w \in W$. We find that

$$\sigma \cdot w = \sum_{i=1}^{3} w_i e_{\sigma(i)}.$$

Since the coefficients do not change we have that $\sigma \cdot w \in W$. Now for any $\sum_i a_i \sigma_i$ we have that

$$\left(\sum_{i} a_{i} \sigma_{i}\right) \cdot w = \sum_{i} a_{i} \sigma_{i} \cdot w.$$

Since each $\sigma_i \cdot w \in W$, and W is a subspace the entire expression must also belong to W.

Q4ii: Note that the cardinality of \mathbb{F}_3^3 is 27 by a combinatorics argument. Similarly, W has a cardinality of 9. If there was a direct sum decomposition of \mathbb{F}_3^3 as $W \oplus V$ for some V, then V must contain 0 but no other vectors in W, so |V|=19. Since V must be a subgroup of \mathbb{F}_3^3 we must have that 19|27 which is absurd.