Lecture 07.	ub modul arity.		
⇒ Greely Alg			
11			
A method	or Heuristic that co	un be applied -	to many discrete problem
⇒ @ Submodula	rity and motivaids		
	rity and mostroids		
	Settings \Rightarrow greedy	alg. computes	the opt- soln.
	alg. remains a val	lid strategy th	at one can try
in many se	etings.		
D. 1			
Destr. [In	b modularity]		element is subjet
Let N	be a discrete se	et-	1 of IV (set)
We say	that a non-nego	ative function	$f: (2^N) \rightarrow \mathbb{R}$ is
•	if:		
		> f(AUB) + (f(ANB)
		holds for all si	ubsets A, BEN
	$\widetilde{(1)}$		
one can	Rewrite (1) as	follows:	
5	(A) - F(A NB) 3	f(AUB) - f(B)	for all A.B S.N
N (-	A	A:	
Mote: U 指量部分均是	В	VS VS	
A-ANB!		what is the	increment 0

Inition :

华5越大,增量越小

W

Submodularity captures the Notion of:

dimensioning returns

Example:

Let f(S) = # of elements in S

=) f is submodular

f(A)+f(B) = f(AUB)+f(AMB)

Example:

N= [n]

=) fis sub modular

Let f(s) = \(\sum_{i \in s} \) Wi wi zo

Example:

N= [n]

Let f(s) = min { T, ∑ Wī }

check: f(A)+ f(B) > f(A 1B) + f(A UB)

 \rightarrow case 1: $f(A) = \sum_{i \in A} W_i + f(B) = \sum_{i \in B} W_i$

 $\begin{cases}
f(A \cap B) = \sum_{i \in A \cap B} W_i & (A \cap B \subseteq B) \\
f(A \cup B) = T & (A \cup B \supseteq A)
\end{cases}$

$$\rightarrow$$
 case 3: $f(A) = f(B) = T$
 $\Rightarrow f(AUB) = f(AUB) = T$

Another Way of Check! Submodularity can be characterized in terms of INCREMENT means. Proposition: A non-neg function for is sub-modular ⇒ f(SU(j)) - f(s) > f(SU(j,k)) - f(SU(k)) for all subsets $S \subseteq N$ & $\{\hat{j}, k\} \in N \setminus S$ Note: > obvious € Non-trivial Pf of "€": Assume (2) holds for all S and {j,k3 ∈ N\S Take S= ANB A\B= {j,...,jr} B \ A = { k1, ..., ks} we need to show: $f(B) - f(B \cap A) \ge f(A \cup B) - f(A)$ Check: F(B) - f(BNA) = f(SU{k1,-, ks}) - f(s) = = f(SU{k,..., ki}) - f(SU{k,..., ki-1}) > \(\SU\\ \k_1,..., \ki, \ji\\) - f(\SU\\ \k_1,..., \ki-1, \ji\\) > > \frac{s}{s} f(SU\{k_1,...,k_i}\)/(A\B)) - f(SU\{k_1,...,k_{in}})

U (A/B))

$$= \sum_{i=1}^{S} f(AU\{k_{i,i-1},k_{i}\}) - f(AU\{k_{i,i-1},k_{i-1}\})$$

Detn: (Non-decreasing)

N -> discrete set

 $f: 2^N \longrightarrow \mathbb{R}$ is non-decreasing $\Leftrightarrow f(A) \in f(B)$ for all $A \subseteq B$

Proposition: f is submodular & non-decreasing

Pf: => f / snb modular non-decreasing

Non-decrewing: 515) & f 15 V Fits

$$f(T) \leq f(SUT)$$

= $\left[f(SUT) - f(S)\right] + f(S)$

$$= \sum_{i} f(SUT_{i}) - f(SUT_{i+1}) + f(S)$$

$$\begin{cases} & \sum \left[f(SV(\lceil i \backslash \lceil i \backslash \rceil) - f(s)\right] + f(s) \\ & = \sum \left[f(SV(\lceil i \backslash \rceil) - f(s)\right] + f(s) \\ & = \sum \left[f(SV(\lceil i \backslash \rceil) - f(s)\right] + f(s) \\ & = \sum \left[f(SV(\lceil i \backslash \rceil) - f(s)\right] + f(s) \\ & = \left[f(SV(\lceil i \backslash \rceil) + f(s) + f(s)\right] + f(s) \\ & = \left[f(SV(\lceil i \backslash \rceil) + f(s)\right] + f(s) + f(s) \\ & = \left[f(SV(\lceil i \backslash \rceil) + f(s)\right] + f(s) + f(s) \\ & = \left[f(SV(\lceil i \backslash \rceil) + f(s)\right] + f(s) + f(s) \\ & = \left[f(SV(\lceil i \backslash \rceil) + f(s)\right] + f(s) + f(s) \\ & = \left[f(SV(\lceil i \backslash \rceil) + f(s)\right] + f(s) + f(s) + f(s) \\ & = \left[f(SV(\lceil i \backslash \rceil) + f(s)\right] + f(s) + f($$