2

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
```

df = pd.read_csv('/content/Train.csv')
df.head()

$\overline{\Rightarrow}$		ID	Warehouse_block	Mode_of_Shipment	Customer_care_calls	Customer_rati
	0	1	D	Flight	4	
	1	2	F	Flight	4	
	2	3	А	Flight	2	
	3	4	В	Flight	3	

Flight

df.shape

→ (10999, 12)

5

df.dtypes

→

	0
ID	int64
Warehouse_block	object
Mode_of_Shipment	object
Customer_care_calls	int64
Customer_rating	int64
Cost_of_the_Product	int64
Prior_purchases	int64
Product_importance	object
Gender	object
Discount_offered	int64
Weight_in_gms	int64
Reached.on.Time Y.N	int64

dtype: object

df.drop(['ID'], axis=1, inplace=True)

df.isnull().sum()

	0
Warehouse_block	0
Mode_of_Shipment	0
Customer_care_calls	0
Customer_rating	0
Cost_of_the_Product	0
Prior_purchases	0
Product_importance	0
Gender	0
Discount_offered	0
Weight_in_gms	0
Reached.on.Time_Y.N	0

dtype: int64

df.duplicated().sum()

→ 0

df.describe()

	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_pur
count	10999.000000	10999.000000	10999.000000	10999.0
mean	4.054459	2.990545	210.196836	3.!
std	1.141490	1.413603	48.063272	1.!
min	2.000000	1.000000	96.000000	2.0
25%	3.000000	2.000000	169.000000	3.0
50 %	4.000000	3.000000	214.000000	3.(
75 %	5.000000	4.000000	251.000000	4.0
max	7.000000	5.000000	310.000000	10.0

df.head()

	Warehouse_block	Mode_of_Shipment	Customer_care_calls	Customer_rating
0	D	Flight	4	2
1	F	Flight	4	5
2	А	Flight	2	2
3	В	Flight	3	3
4	С	Flight	2	2

 $\label{linear} $$ $\operatorname{plt.pie}(df['Gender'].value_counts(),labels = ['F','M'], autopct='\%1.1f\%', starplt.title('Gender Distribution') $$$

Text(0.5, 1.0, 'Gender Distribution')

Gender Distribution

df.replace([np.inf, -np.inf], np.nan, inplace=True)

Text(0.5, 1.0, 'Cost of the Product')

Weight Distribution Cost of the Broduct


```
fig, ax = plt.subplots(1,3,figsize=(15,5)) sns.countplot(x = 'Warehouse_block', data = df, ax=ax[0]).set_title('Warehouse sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1]).set_title('Mode of Ssns.countplot(x = 'Reached.on.Time_Y.N', data = df, ax=ax[2]).set_title('Reached.on.Time_Y.N')
```



```
fig, ax = plt.subplots(2,2,figsize=(15,10)) sns.countplot(x = 'Customer_care_calls', data = df, ax=ax[0,0]).set_title('Customer_sns.countplot(x = 'Customer_rating', data = df, ax=ax[0,1]).set_title('Customer_sns.countplot(x = 'Prior_purchases', data = df, ax=ax[1,0]).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], kde = True).set_title('Prior_Pusns.histplot(x = 'Discount_offered', data = df, ax=ax[1,1], data = df, ax=ax[1,1], data = df, ax=ax[1,1], data = df, ax=
```



```
sns.countplot(x = 'Gender', data = df, hue = 'Reached.on.Time_Y.N').set_title('
```

Text(0.5, 1.0, 'Gender vs Reached on Time')


```
fig, ax = plt.subplots(1, 3, figsize=(15, 5))

# Weight Distribution
sns.violinplot(y=df['Weight_in_gms'], ax=ax[0], inner=None, x=df['Reached.on.Ti
sns.kdeplot(y=df['Weight_in_gms'], ax=ax[0], hue=df['Reached.on.Time_Y.N'], mul

# Product Importance
sns.countplot(x='Product_importance', data=df, ax=ax[1], hue='Reached.on.Time_\)

# Cost of the Product
sns.violinplot(y=df['Cost_of_the_Product'], ax=ax[2], inner=None, x=df['Reachec
sns.kdeplot(y=df['Cost_of_the_Product'], ax=ax[2], hue=df['Reached.on.Time_Y.N'
plt.tight_layout()
plt.show()

Weight Distribution

Product Importance
Cost of the Product
```

hed.on.Time_Y.N


```
fig, ax = plt.subplots(1,2,figsize=(15,5))

sns.countplot(x = 'Warehouse_block', data = df, ax=ax[0], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment', data = df, ax=ax[1], hue = 'Reached.on.Tin'sns.countplot(x = 'Mode_of_Shipment')
```



```
fig, ax = plt.subplots(2,2,figsize=(15,10)) sns.countplot(x = 'Customer_care_calls', data = df, ax=ax[0,0],hue = 'Reached.c sns.countplot(x = 'Customer_rating', data = df, ax=ax[0,1],hue = 'Reached.on.Ti sns.countplot(x = 'Prior_purchases', data = df, ax=ax[1,0],hue = 'Reached.on.Ti sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', data = df, ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', ax=ax[1,0]) sns.violinplot(x = 'Reached.on.Time_Y.N', y = 'Discount_offered', ax=ax[1,0]) sns.violinplot(x = True_Y.N', y = 'Discount_offered', ax=ax[1,0]) sns.violinplot(x = True_Y.
```


