From Policy Gradient to Actor-Critic methods The policy gradient derivation (1/3)

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Reminder: policy search formalization

- $lackbox{ We want to optimize } J(m{ heta}) = \mathbb{E}_{ au \sim \pi_{m{ heta}}}[R(au)]$, the global utility function
- ightharpoonup We tune policy parameters heta, thus the goal is to find

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} J(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{\tau} P(\tau|\boldsymbol{\theta}) R(\tau)$$
 (1)

where $P(\tau|\boldsymbol{\theta})$ is the probability of trajectory au under policy $\pi_{\boldsymbol{\theta}}$

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013) A survey on policy search for robotics. Foundations and Trends® in Robotics, 2(1–2):1–142

Policy Gradient approach

- ▶ General idea: increase $P(\tau|\theta)$ for trajectories τ with a high return
- Gradient ascent: Following the gradient from analytical knowledge
- Issue: in general, the function $J(\theta)$ is unknown
- How can we apply gradient ascent without knowing the function?
- ► The answer is the Policy Gradient Theorem

Policy Gradient approach (2)

- ▶ Direct policy search works with $<\theta, J(\theta)>$ samples
- It ignores that the return comes from state and action trajectories generated by a controller π_{θ}
- ▶ We can obtain explicit gradients by taking this information into account
- Not black-box anymore: access the state, action and reward at each step
- ► The transition and reward functions are still unknown (gray-box approach)
- Requires some math magics
- This lesson builds on "Deep RL bootcamp" youtube video #4A: https://www.youtube.com/watch?v=S_gwYj1Q-44 (Pieter Abbeel)

Plain Policy Gradient (step 1)

• We are looking for $\theta^* = \operatorname{argmax}_{\theta} J(\theta) = \operatorname{argmax}_{\theta} \sum_{\tau} P(\tau | \theta) R(\tau)$ $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \sum_{\tau} P(\tau | \boldsymbol{\theta}) R(\tau)$ $= \quad \sum \nabla_{\boldsymbol{\theta}} P(\tau|\boldsymbol{\theta}) R(\tau)$ * gradient of sum is sum of gradients $= \sum_{\tau} \frac{P(\tau|\boldsymbol{\theta})}{P(\tau|\boldsymbol{\theta})} \nabla_{\boldsymbol{\theta}} P(\tau|\boldsymbol{\theta}) R(\tau) \qquad \text{* Multiply by one}$ $= \sum P(\tau|\boldsymbol{\theta}) \frac{\nabla_{\boldsymbol{\theta}} P(\tau|\boldsymbol{\theta})}{P(\tau|\boldsymbol{\theta})} R(\tau) \qquad \text{* Move one term}$ $= \sum_{\tau} P(\tau|\boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} {\rm log} P(\tau|\boldsymbol{\theta}) R(\tau) \quad \text{* by property of gradient of log}$ = $\mathbb{E}_{\tau}[\nabla_{\theta} \log P(\tau|\theta) R(\tau)]$ * by definition of the expectation ____

Plain Policy Gradient (step 2)

- We want to compute $\mathbb{E}_{\tau}[\nabla_{\theta} \log P(\tau|\theta)R(\tau)]$
- $lackbox{ We do not have an analytical expression for } P(au|m{ heta})$
- ▶ Thus the gradient $\nabla_{\theta} \log P(\tau|\theta) R(\tau)$ cannot be computed
- Let us reformulate $P(\tau|\boldsymbol{\theta})$ using the policy $\pi_{\boldsymbol{\theta}}$
- What is the probability of a trajectory?
- At each step, probability of taking each action (defined by the policy) times probability of reaching the next state given the action
- ▶ Then product over states for the whole horizon *H*

$$P(\tau|\boldsymbol{\theta}) = \prod_{t=1}^{H} p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}) . \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t})$$
(2)

► (Strong) Markov assumption here: holds if steps are independent

Plain Policy Gradient (step 2 continued)

► Thus, under Markov assumption,

$$\begin{split} \nabla_{\boldsymbol{\theta}} \log \, \mathrm{P}(\boldsymbol{\tau}|\boldsymbol{\theta}) &= & \nabla_{\boldsymbol{\theta}} \log [\prod_{t=1}^{H} p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}).\pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t})] \\ & * \log \, \mathrm{of} \, \mathrm{product} \, \mathrm{is} \, \mathrm{sum} \, \mathrm{of} \, \mathrm{logs} \\ &= & \nabla_{\boldsymbol{\theta}} [\sum_{t=1}^{H} \log \, \mathrm{p}(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}) + \sum_{t=1}^{H} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t})] \\ &= & \nabla_{\boldsymbol{\theta}} \sum_{t=1}^{H} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t}) \, * \, \mathrm{because} \, \mathrm{first} \, \mathrm{term} \, \mathrm{independent} \, \mathrm{of} \, \boldsymbol{\theta} \\ &= & \sum_{t=1}^{H} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t}) \, * \, \mathrm{no} \, \, \mathrm{dynamics} \, \mathrm{model} \, \mathrm{required!} \end{split}$$

▶ The key is here: we know $\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)!$

Plain Policy Gradient (step 2 continued)

▶ The expectation $\nabla_{\theta}J(\theta) = \mathbb{E}_{\tau}[\nabla_{\theta}\log P(\tau|\theta)R(\tau)]$ can be rewritten

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau} \left[\sum_{t=1}^{H} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) R(\tau) \right]$$

lacktriangle The expectation can be approximated by sampling over m trajectories:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}^{(i)} | \mathbf{s}_{t}^{(i)}) R(\boldsymbol{\tau}^{(i)})$$
(3)

- ► The policy structure π_{θ} is known, thus the gradient $\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s})$ can be computed for any pair (\mathbf{s}, \mathbf{a})
- We moved from direct policy search on $J(\theta)$ to gradient ascent on π_{θ}
- ▶ Can be turned into a practical (but not so efficient) algorithm

Algorithm 1

$$R = \sum_{t=1}^{H} r_t$$

$$p(a_1|s_1) \ p(a_2|s_2)$$

$$r_1$$

$$r_2$$

$$r_3$$

$$r_4$$

$$r_4$$

$$r_4$$

$$r_4$$

$$r_4$$

$$r_4$$

$$r_4$$

$$r_4$$

$$r_6$$

$$r_8$$

$$r_9$$

- ► Sample a set of trajectories from π_{θ}
- Compute:

$$Loss(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}^{(i)}|\mathbf{s}_{t}^{(i)}) R(\tau^{(i)})$$
(4)

- Minimize the loss using the NN backprop function with your favorite pytorch or tensorflow optimizer (Adam, RMSProp, SGD...)
- lterate: sample again, for many time steps
- Note: if $R(\tau) = 0$, does nothing
- ▶ Next lesson: Policy gradient improvement

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

References

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al.

A survey on policy search for robotics. Foundations and Trends \circledR in Robotics, 2(1-2):1-142, 2013.