Solutions of Tutorial-2

Problem set 2.2

- 7 If a=2 elimination must fail (two parallel lines in the row picture). The equations have no solution. With a=0, elimination will stop for a row exchange. Then 3y=-3 gives y=-1 and 4x+6y=6 gives x=3.
- **8** If k=3 elimination must fail: no solution. If k=-3, elimination gives 0=0 in equation 2: infinitely many solutions. If k=0 a row exchange is needed: one solution.
- 12 Elimination leads to this upper triangular system; then comes back substitution.

$$2x+3y+z=8$$
 $x=2$ $y+3z=4$ gives $y=1$ If a zero is at the start of row 2 or row 3, $8z=8$ $z=1$ that avoids a row operation.

24 Elimination fails on $\begin{bmatrix} a & 2 \\ a & a \end{bmatrix}$ if a=2 or a=0. (You could notice that the determinant a^2-2a is zero for a=2 and a=0.)

Problem set 2.3

$$\mathbf{1} \ E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 7 & 1 \end{bmatrix}, \ P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

6 Example: $\begin{bmatrix} 2 & 3 & 7 \\ 2 & 3 & 7 \\ 2 & 3 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$. If all columns are multiples of column 1, there

is no second pivot.

17 The parabola $y = a + bx + cx^2$ goes through the 3 given points when a + 2b + 4c = 8. a + 3b + 9c = 14

Then a=2, b=1, and c=1. This matrix with columns (1,1,1), (1,2,3), (1,4,9) is a "Vandermonde matrix."

25 The last equation becomes 0 = 3. If the original 6 is 3, then row 1 + row 2 = row 3. Then the last equation is 0 = 0 and the system has infinitely many solutions.

Problem set 2.4

$$\mathbf{5} \ \text{(a)} \ A^2 = \begin{bmatrix} 1 & 2b \\ 0 & 1 \end{bmatrix} \text{ and } A^n = \begin{bmatrix} 1 & nb \\ 0 & 1 \end{bmatrix}. \quad \text{(b)} \ A^2 = \begin{bmatrix} 4 & 4 \\ 0 & 0 \end{bmatrix} \text{ and } A^n = \begin{bmatrix} 2^n & 2^n \\ 0 & 0 \end{bmatrix}$$

6
$$(A+B)^2 = \begin{bmatrix} 10 & 4 \\ 6 & 6 \end{bmatrix} = A^2 + AB + BA + B^2$$
. But $A^2 + 2AB + B^2 = \begin{bmatrix} 16 & 2 \\ 3 & 0 \end{bmatrix}$.

27 (a) (row 3 of A) \cdot (column 1 or 2 of B) and (row 3 of A) \cdot (column 2 of B) are all zero.

(b)
$$\begin{bmatrix} x \\ x \\ 0 \end{bmatrix} \begin{bmatrix} 0 & x & x \end{bmatrix} = \begin{bmatrix} 0 & x & x \\ 0 & x & x \\ 0 & 0 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} x \\ x \\ x \end{bmatrix} \begin{bmatrix} 0 & 0 & x \end{bmatrix} = \begin{bmatrix} 0 & 0 & x \\ 0 & 0 & x \\ 0 & 0 & x \end{bmatrix}$: **both upper**.

32 A times $X = [x_1 \ x_2 \ x_3]$ will be the identity matrix $I = [Ax_1 \ Ax_2 \ Ax_3]$.

Problem set 2.5

- **6** (a) Multiply AB = AC by A^{-1} to find B = C (since A is invertible) (b) As long as B C has the form $\begin{bmatrix} x & y \\ -x & -y \end{bmatrix}$, we have AB = AC for $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- 7 (a) In Ax = (1,0,0), equation 1 + equation 2 equation 3 is 0 = 1 (b) Right sides must satisfy $b_1 + b_2 = b_3$ (c) Row 3 becomes a row of zeros—no third pivot.
- **15** If A has a column of zeros, so does BA. Then BA = I is impossible. There is no A^{-1} .

Problem set 2.7

- **2** $(AB)^{\mathrm{T}} = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix} = B^{\mathrm{T}}A^{\mathrm{T}}$. This answer is different from $A^{\mathrm{T}}B^{\mathrm{T}}$ (except when AB = BA and transposing gives $B^{\mathrm{T}}A^{\mathrm{T}} = A^{\mathrm{T}}B^{\mathrm{T}}$).
- **3** (a) $((AB)^{-1})^{\mathrm{T}} = (B^{-1}A^{-1})^{\mathrm{T}} = (A^{-1})^{\mathrm{T}}(B^{-1})^{\mathrm{T}}$. This is also $(A^{\mathrm{T}})^{-1}(B^{\mathrm{T}})^{-1}$. (b) If U is upper triangular, so is U^{-1} : then $(U^{-1})^{\mathrm{T}}$ is *lower* triangular.

5 (a)
$$x^{T}Ay = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 5$$

- (b) This is the row $x^{\mathrm{T}}A = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ times y.
- (c) This is also the row x^{T} times $Ay = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$.
- **16** $A^2 B^2$ (but not (A + B)(A B), this is different) and also ABA are symmetric if A and B are symmetric.

39 Start from
$$Q^TQ = I$$
, as in $\begin{bmatrix} q_1^T \\ q_2^T \end{bmatrix} \begin{bmatrix} q_1 & q_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- (a) The diagonal entries give $m{q}_1^{
 m T}m{q}_1=1$ and $m{q}_2^{
 m T}m{q}_2=1$: unit vectors
- (b) The off-diagonal entry is $m{q}_1^{\mathrm{T}}m{q}_2=0$ (and in general $m{q}_i^{\mathrm{T}}m{q}_j=0$)
- (c) The leading example for Q is the rotation matrix $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}.$