Adversarial Autoencoders (AAE)

Adapted from Makhzani et al. 2015

Giovanni Papini

Universitá degli Studi di Firenze

February 12, 2019

Context

- Scalable generative models to capture rich distributions
- Graphical models such as RBMs , DBNs, DBMs are based on MCMC algorithms for doing inference
- VAEs, GANs, GMMNs are trained via direct back-propagation
- The AAE is trained with dual objectives:
 - minimizing the reconstruction error $||\mathbf{x} \hat{\mathbf{x}}||^2$
 - adversarial training criterion matching the aggregated posterior distribution of the latent representation to an arbitrary prior

The AAE architecture

The encoder

- o **Deterministic** (used in the paper)
- ∘ Gaussian posterior $z_i \sim \mathcal{N}(\mu_i(\mathbf{x}), \sigma_i(\mathbf{x}))$
- Universal approximator posterior $z|x, \eta \sim \delta(z f(x, \eta))$ where η is random noise with a fixed distribution

$$q(oldsymbol{z}|oldsymbol{x}) = \int_{\Omega_{\eta}} q(oldsymbol{z}|oldsymbol{x}, oldsymbol{\eta}) p_{\eta}(oldsymbol{\eta}) \mathrm{d}oldsymbol{\eta}$$

Relationship with VAEs

VAE aims to minimize the negative ELBO:

$$\begin{split} \mathbb{E}_{\mathbf{x}}[-\log p(\mathbf{x})] &< \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})}[-\log p(\mathbf{x}|\mathbf{z})] + \mathbb{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \right] \\ &= \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathbf{z}}[-\log p(\mathbf{x}|\mathbf{z})] \right] + \mathbb{E}_{\mathbf{x}}[-H(q(\mathbf{z}|\mathbf{x}))] \\ &+ \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})}[-\log p(\mathbf{z})] \\ &= \mathsf{Reconstr.} \ \ \mathsf{Err.} - \mathsf{Entropy} + \mathsf{Crossentropy} \end{split}$$

VAE

- encourages q(z) to match p(z) modes because of crossentropy penalty
- needs the exact functional form of the prior distribution in order to back-propagate through KL divergence

AAE

- o encourages q(z) to match the whole p(z) because of the adversarial training
- can impose even complicated distributions just through the capability of sampling from them

Relationship with VAE

Relationship with GAN and GMMN

GAN AAE relies on the autoencoder to capture the data imposes the data distribution distribution to the output of shapes a much lower a neural network dimensional space into a much simpler distribution **GMMN** AAE o (first) trains a dropout uses adversarial training as autoencoder (then) fits a

- (first) trains a dropout autoencoder (then) fits a distribution in the code-space of the pretrained network
- uses adversarial training as a regularizer that shapes the code distribution while training the autoencoder from scratch

Likelihood analysis

- Benchmarks on: MNIST, <u>Toronto Face Dataset</u> (TFD)
- \circ Not direct likelihood measure, but lower bound approximation (KDE using Gaussian Parzen window, σ selected by cross-validation)
- $\circ\,$ Samples of 10K and 10M units to estimate the test set log-likelihood

MNIST(10K) MNIST(10M) TFD(10K) TFD(10M)					
DBN	138 ± 2	-	\parallel 1909 \pm 66 \parallel	-	
Stacked CAE	121 ± 1.6	_	2110 ± 50	-	
Deep GSN	214 ± 1.1	-	2890 ± 29	-	
GAN	225 ± 2	386	2057 ± 26	-	
GMMN + AE	282 ± 2	_	2204 ± 20	-	
AAE	340 ± 2	427	\parallel 2252 \pm 16 \parallel	2522	

Semi-supervised approach

Architecture

o Incorporate one-hot vector in the latent representation

Semi-supervised approach

- The AAE disentangles style features from content/semantic features
- \circ Experiments on MNIST and Street View House Number dataset (SVHN)

Semi-supervised classification

Architecture

- Improve classification performance using both labeled and unlabeled data
- Assume the latent space is a mixed Categorical and Gaussian distribution

$$p(\textbf{\textit{y}}) = \mathsf{Cat}(\textbf{\textit{y}}) \quad p(\textbf{\textit{z}}) = \mathcal{N}(\textbf{\textit{z}}; 0, \textbf{\textit{I}})$$

 For each distribution a different adversarial network regularizes the latent representation

Semi-supervised classification

Training

3-phase training, all with SGD:

- 1. reconstruction the AE updates the encoder $q(\mathbf{z}, \mathbf{y}|\mathbf{x})$ to minimize the reconstruction error
- 2. regularization each adversarial network
 - first updates the discriminative network to distinguish true samples from the generated samples
 - then update the encoder to confuse the discriminative networks
- 3. semi-supervised classification the AE updates q(z, y|x) to minimize the cross-entropy cost on a labeled minibatch

Semi-supervised classification

Results

	MNIST(100)	MNIST(1000)	MNIST(All)	SVHN(1000)
NN Baseline	25.80	8.73	1.25	47.5
VAE (M1) + TSVM	11.82 ± 0.025	4.24 ± 0.07	-	55.33 ± 0.11
VAE (M2)	11.97 ± 1.71	3.60 ± 0.56	-	36.02 ± 0.10
VAE (M1 + M2)	3.33 ± 0.14	2.40 ± 0.02	0.96	24.63
CatGÀN	1.91 ± 0.1	1.73 ± 0.18	0.91	-
Ladder Networks	1.06 ± 0.37	0.84 ± 0.08	0.57 ± 0.02	-
ADGM	0.96 ± 0.10	-	-	16.61 ± 0.24
AAE	$ $ 1.90 \pm 0.10	$ 1.60 \pm 0.08$	0.85 ± 0.02	17.70 ± 0.30

Table: Error rate on semi-supervised classification.

Unsupervised clustering

- Similar to the semi-supervised architecture, but without the semi-supervised training stage
- Not necessarily 10 classes, arbitrary number of clusters
- o Benchmark criterion: find $\arg\max_{\mathbf{x}_n} q(y_i|\mathbf{x}_n)$ and assign label of x_n to all elements of *i*-th cluster, then compute error rate based on the assigned class labels

	MNIST (Unsupervised)
CatGAN (20 clusters) AAE (16 clusters)	9.70
AAE (16 clusters)	9.55 ± 2.05
AAE (30 clusters)	4.10 ± 1.13

Table: Error-rate on unsupervised clustering

Unsupervised clustering

```
66660066660
  66266466666
a
  72222222222
  7777777797
  55055005505
  9 4 9 4 4 4 4 4 9 9 9
9
  94797491947
  353333333333
  0000000000
0
  1181811811
3
  33353535358
3
  222223212232
9
  9499649944
  888888888888
1
  . . . . . . . . . . . . . . . .
9
  47499744979
```

Dimensionality reduction

Architecture

- \circ Typically, non-regularized autoencoders fracture the manifolds \Rightarrow very different codes for similar images
- Little modification label-integrated AAE architecture

o Additional cost to penalize euclidean distance between cluster heads

Dimensionality reduction

- Reducing the dimensionality of the hidden space (from 10 to 2) can impact on the predictive power of the whole network
- Ad hoc tricks can balance this trade-off

Conclusions

Pros

- it is framework capable of modeling complex distributions only requiring to be able to sample from it
- the AAE is highly flexible, could be combined with variational objectives (see Rosca et al. 2017)

Cons

- like GANs, it requires much hyper-parameter tuning to perform at the top
- o it could suffer from complex adversarial game dynamics
- it could be an overkill just to treat Gaussian/Gaussian-mixture distributions
- * It would need some real-world testing.

References

Bengio, Yoshua et al. (2013). "Better mixing via deep representations". In: International Conference on Machine Learning, pp. 552–560.

Bengio, Yoshua et al. (2014). "Deep generative stochastic networks trainable by backprop". In: *International Conference on Machine Learning*, pp. 226–234.

Goodfellow, Ian et al. (2014). "Generative adversarial nets". In: Advances in neural information processing systems, pp. 2672–2680.

Kingma, Diederik P and Max Welling (2013). "Auto-encoding variational bayes". In: arXiv preprint arXiv:1312.6114.

Li, Yujia, Kevin Swersky, and Rich Zemel (2015). "Generative moment matching networks". In: International Conference on Machine Learning, pp. 1718–1727.

Maaløe, Lars et al. (2016). "Auxiliary deep generative models". In: arXiv preprint arXiv:1602.05473.

Makhzani, Alireza et al. (2015). "Adversarial autoencoders". In: arXiv preprint arXiv:1511.05644.

Rosca, Mihaela et al. (2017). "Variational approaches for auto-encoding generative adversarial networks". In: arXiv preprint arXiv:1706.04987.