1st in C die Gleichung 22 41 = 0 (BSbar ? und auch für z=i für z= L ist die Gleichung $(-i)^2 + \lambda = 0$ erfüllt. (-i)·(-i)= i·i=-1 €·i = -1 $(-i)\cdot(-i) = -1$ Schreibweise In statt ist problematisch, denn einerseits soll (-1) . 1-1 = (-1) gellen,

und andererseits sollen auch die Rochenregeln

Definition

- $ightharpoonup \operatorname{Re}(z) := x \text{ ist der Realteil von } z.$
- ▶ Im(z) := y ist der Imaginärteil von z.

Baispie(://)
$$2 = -3 + 2i$$

$$Re(2) = -3$$

$$Im(2) = 2 \in \mathbb{R}$$

$$2) = 2 = -3i = 0 - 3i$$

$$Re(2) = 0$$

$$Im(2) = -3$$

Definition

- $ightharpoonup \operatorname{Re}(z) := x \text{ ist der Realteil von } z.$
- ▶ Im(z) := y ist der Imaginärteil von z.
- $ightharpoonup \overline{z} := x i y$ ist die zu z konjugiert komplexe Zahl.

Definition

- $ightharpoonup \operatorname{Re}(z) := x \text{ ist der Realteil von } z.$
- ▶ Im(z) := y ist der Imaginärteil von z.
- $ightharpoonup \overline{z} := x i y$ ist die zu z konjugiert komplexe Zahl.
- $|z| := \sqrt{x^2 + y^2}$ ist der Betrag von z. (Abstand zu 0.)

$$z = -3 + 2i$$

$$|z| = \sqrt{(-3)^2 + 2^2}$$

$$= \sqrt{9 + 4^7} = \sqrt{13}$$

12-w1?

© ©

Erinnerung an IR;

1x-y1 gibt den Abstand zwischen

R R x und y an,

Anschauung wa

Definition

- ightharpoonup Re(z) := x ist der Realteil von z.
- ▶ Im(z) := y ist der Imaginärteil von z.
- $ightharpoonup \overline{z} := x i y$ ist die zu z konjugiert komplexe Zahl.
- $|z| := \sqrt{x^2 + y^2}$ ist der Betrag von z.

Abstand von z zu w

Bemerkung

Für z = x + iy, w = u + iv mit $x, y, u, v \in \mathbb{R}$ wird |z - w|interpretiert als der Abstand von z zu w. denn

$$|z - w| = \sqrt{(\text{Re}(z - w))^2 + (\text{Im}(z - w))^2} = \sqrt{(x - u)^2 + (y - v)^2}.$$
| X + iy - (u+iv) | = | X - u + i (y - v) |
| Skizze:

- 1. $\overline{\overline{z}} = z$
- 2. $\overline{z+w} = \overline{z} + \overline{w}, \quad \overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. Ist z = x + iy mit $x, y \in \mathbb{R}$, so ist $|z|^2 = z \cdot \overline{z} = x^2 + y^2$. $(x + iy)(x iy) = x^3 + y^2$

- 1. $\overline{\overline{z}} = z$
- 2. $\overline{z+w} = \overline{z} + \overline{w}, \quad \overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. Ist z = x + iy mit $x, y \in \mathbb{R}$, so ist $|z|^2 = z \cdot \overline{z} = x^2 + y^2$.
- 4. Falls $z \neq 0$, dann ist $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

- 1. $\overline{\overline{z}} = z$
- 2. $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. Ist z = x + iy mit $x, y \in \mathbb{R}$, so ist $|z|^2 = z \cdot \overline{z} = x^2 + y^2$.
- 4. Falls $z \neq 0$, dann ist $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.
- 5. $Re(z) = \frac{1}{2}(z + \overline{z}), \quad Im(z) = \frac{1}{2i}(z \overline{z})$
- $6. |z| = |\overline{z}|$

- 1. $\overline{\overline{z}} = z$
- 2. $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. Ist z = x + iy mit $x, y \in \mathbb{R}$, so ist $|z|^2 = z \cdot \overline{z} = x^2 + y^2$.
- 4. Falls $z \neq 0$, dann ist $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.
- 5. $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z}), \quad \operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$
- 6. $|z| = |\overline{z}|$
- 7. $|\text{Re}(z)| \le |z|$, $|\text{Im}(z)| \le |z|$

$$|x| = \sqrt{x^2} \le \sqrt{x^2 + y^2} = |z|$$
 $|Re(z)|$

Für $z, w \in \mathbb{C}$ gelten:

- 1. $\overline{\overline{z}} = z$
- 2. $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. Ist z = x + iy mit $x, y \in \mathbb{R}$, so ist $|z|^2 = z \cdot \overline{z} = x^2 + y^2$.
- 4. Falls $z \neq 0$, dann ist $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.
- 5. $Re(z) = \frac{1}{2}(z + \overline{z}), \quad Im(z) = \frac{1}{2i}(z \overline{z})$
- 6. $|z| = |\overline{z}|$
- 7. $|\text{Re}(z)| \le |z|$, $|\text{Im}(z)| \le |z|$
- 8. $|z \cdot w| = |z| \cdot |w|$, $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ falls $w \neq 0$

Beweisidee:

1.–8. kann man direkt nachprüfen.

Dreiecksungleichung

Satz $\mbox{F\"{u}r alle } z,w\in \mathbb{C} \mbox{ gilt } \\ |z+w| \leq |z|+|w| \, .$

$$\frac{3}{2} |z|^{2} + 2\overline{N} + \overline{Z} \underline{W} |W|^{2}$$

$$\frac{3}{2} \cdot \overline{N} \stackrel{?}{=} \overline{Z} \cdot \overline{W}$$

$$\frac{5}{2} \cdot \overline{N} \stackrel{?}{=} \overline{Z} \cdot \overline{W} \stackrel{?}{=} \overline{Z} \cdot \overline{W} \stackrel{?}{=} \overline{Z} \stackrel{?}{=} \overline{Z} \cdot \overline{W} \stackrel{?}{=} \overline{Z} \stackrel{?}{=} \overline{Z} \stackrel{?}{=} \overline{W} \stackrel{?}{=} \overline{Z} \stackrel{?}{=} \overline{Z} \stackrel{?}{=} \overline{W} \stackrel{?}{=} \overline{Z} \stackrel{?}{=} \overline{Z$$

Algebraische Grundlagen der Informatik SoSe 2025

KAPITEL I: Komplexe Zahlen

2. Polardarstellung

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Erinnerung (WiSe 2024/2025): Sinus und Kosinus

Erinnerung (WiSe 2024/2025): Sinus und Kosinus

$$\varphi = \frac{\text{Länge des Kreisbogens}}{r}$$

$$\sin(\varphi) = \frac{y}{r}$$

$$\cos(\varphi) = \frac{x}{r}$$

Kreiszahl $\pi=3,141...$ Kreisumfang $2\pi r$

▶ $\sin : \mathbb{R} \to [-1,1]$ und $\cos : \mathbb{R} \to [-1,1]$ $\sin 2\pi$ -periodisch, das heißt, für alle $\varphi \in \mathbb{R}$ gilt: $\sin(\varphi + 2\pi) = \sin(\varphi)$ und $\cos(\varphi + 2\pi) = \cos(\varphi)$.

Reihendarstellung vom Wise 2024/2025;

$$sin(\varphi) = \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k+1}}{(2k+1)!}$$

 $cos(\varphi) = \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k}}{(2k)!}$

Erinnerung (WiSe 2024/2025): Sinus und Kosinus

$$\varphi = \frac{\text{Länge des Kreisbogens}}{r}$$

$$\sin(\varphi) = \frac{y}{r}$$

$$\cos(\varphi) = \frac{x}{r}$$
Kreiszahl $\pi = 3, 141...$

Kreisumfang $2\pi r$

▶ $\sin : \mathbb{R} \to [-1,1]$ und $\cos : \mathbb{R} \to [-1,1]$ $\sin 2\pi$ -periodisch, das heißt, für alle $\varphi \in \mathbb{R}$ gilt: $\sin(\varphi + 2\pi) = \sin(\varphi)$ und $\cos(\varphi + 2\pi) = \cos(\varphi)$.

	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin	0	1	0	-1	0
cos	1	0	-1	0	1

- $ightharpoonup \cos(-\varphi) = \cos(\varphi)$, $\sin(-\varphi) = -\sin(\varphi)$ für alle $\varphi \in \mathbb{R}$
- ► Trigonometrischer Pythagoras: $\sin^2(\varphi) + \cos^2(\varphi) = 1$ für alle $\varphi \in \mathbb{R}$.

Additionstheoreme

Für alle $\varphi, \psi \in \mathbb{R}$ gelten:

Trigonometrische Darstellung komplexer Zahlen

Eine komplexe Zahl $0 \neq z = x + \mathrm{i}\, y, x, y \in \mathbb{R}$ lässt sich nun schreiben als

$$z = x + iy$$

$$= |z| \frac{x}{|z|} + i|z| \frac{y}{|z|}$$

$$= |z| \left(\frac{x}{|z|} + i \frac{y}{|z|} \right)$$

$$\cos(y) \quad \sin(y)$$

Trigonometrische Darstellung komplexer Zahlen

Eine komplexe Zahl $0 \neq z = x + \mathrm{i}\, y, x, y \in \mathbb{R}$ lässt sich nun schreiben als

$$z = x + i y$$

$$= |z| \frac{x}{|z|} + i |z| \frac{y}{|z|}$$

$$= |z| \left(\frac{x}{|z|} + i \frac{y}{|z|} \right)$$

$$= |z| \left(\cos(\varphi) + i \sin(\varphi) \right),$$

wobei $\varphi \in \mathbb{R}$ bis auf Vielfache von 2π festgelegt ist. Oft fordert man $\varphi \in [0, 2\pi)$, um Eindeutigkeit zu erhalten.

Polardarstellung komplexer Zahlen

$$e^{i\varphi} := \cos(\varphi) + i\sin(\varphi).$$

$$e^{x} = \exp(x) = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

$$i A : \text{ Zeige, dass}$$

$$\exp(i\varphi) = \cos(\varphi) + i\sin(\varphi)$$

$$\text{Reihendarstellungen vorwenden.}$$

Polardarstellung komplexer Zahlen

Definition

Für $\varphi \in \mathbb{R}$ definiere

$$e^{i\varphi} := \cos(\varphi) + i\sin(\varphi).$$

Bemerkung

Jedes $z \in \mathbb{C}$ besitzt eine Darstellung (die so genannte "Polardarstellung") der Form

$$z=re^{\mathrm{i}\,arphi}$$
 mit $r\in[0,\infty)$ und $arphi\in\mathbb{R}.$

Dabei ist r = |z|.

Falls $z \neq 0$, dann wird φ als ein Argument von z bezeichnet und ist bis auf Addition von $2k\pi$, $k \in \mathbb{Z}$, eindeutig bestimmt.

Beispiele zur Polardarstellung

Beispiele zur Polardarstellung

Beispiele zur Polardarstellung

$$i = 1 \cdot e^{i\pi/2} \quad \left(= \underbrace{\cos(\pi/2)}_{=0} + i\underbrace{\sin(\pi/2)}_{=1} \right)$$

$$-1 = 1 \cdot e^{i\pi} \quad \left(= \underbrace{\cos(\pi)}_{=-1} + i\underbrace{\sin(\pi)}_{=0} \right)$$

Umrechnung: Polardarstellung \rightarrow kartesische Form

Umrechnung von Polardarstellung in kartesische Form

Sei
$$z = re^{i\varphi} \in \mathbb{C}$$
, wobei $r \in [0, \infty), \varphi \in \mathbb{R}$.

$$= r \cdot (\cos(\varphi) + i \sin(\varphi))$$

$$= r \cdot \cos(\varphi) + i \cdot r \cdot \sin(\varphi)$$

Umrechnung: Polardarstellung \rightarrow kartesische Form

Umrechnung von Polardarstellung in kartesische Form

Sei
$$z = re^{i\varphi} \in \mathbb{C}$$
, wobei $r \in [0, \infty), \varphi \in \mathbb{R}$.

- 1.) $x = r \cos(\varphi)$
- 2.) $y = r \sin(\varphi)$

Kartesische Form von z: z = x + y i.

Umrechnung: kartesische Form \rightarrow Polardarstellung

Umrechnung von kartesischer Form in Polardarstellung
$$Z = 1 + \sqrt{3}$$

Bsp.:
$$z = 1+\sqrt{3}i$$
 $r = |z| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$
 $\cos(\varphi) = \frac{x}{|z|} = \frac{1}{2}$
 $\varphi = \arccos(\frac{1}{2}) = \frac{\pi}{3}$
 $\varphi = \frac{\pi}{3}$

$$\cos(\varphi) = \frac{x}{|z|} = \frac{1}{2}$$

$$\varphi = \arccos(\frac{1}{2}) = \frac{\pi}{3}$$

$$\overline{z} = 1 - \sqrt{3}i$$

$$|\overline{z}| = \dots = 2$$

$$\cos(\varphi) = \frac{x}{|z|} = \frac{x}{|z|} = \cos(\varphi)$$

$$A \stackrel{?}{=} \arcsin(\frac{x}{|z|})$$

$$\cos(\varphi) = \frac{x}{|z|} = \frac{1}{2}$$

$$\varphi = \arccos(\frac{1}{2}) = \frac{\pi}{3}$$

$$z = 2e^{i\frac{\pi}{3}}$$

arccos: $[-1, 1] \rightarrow [0, \pi]$ $\frac{4}{\pi} = 2\pi - q = 2\pi - \arccos(\frac{x}{|z|})$ $\frac{1}{\pi} = 2\pi$

Umrechnung: kartesische Form \rightarrow Polardarstellung

Umrechnung von kartesischer Form in Polardarstellung

Sei
$$z = x + y$$
 i $\in \mathbb{C} \setminus \{0\}$, wobei $x, y \in \mathbb{R}$.
1.) $r = |z| = \sqrt{x^2 + y^2}$
2.) $\varphi = \begin{cases} \arccos \frac{x}{|z|}, & \text{falls } y \geq 0 \\ 2\pi - \arccos \frac{x}{|z|}, & \text{falls } y < 0 \end{cases}$
Polardarstellung von z : $z = re^{i\varphi}$