Quantile GAM modelling with qgam

Matteo Fasiolo

matteo.fasiolo@bristol.ac.uk

Material available at:

https://github.com/mfasiolo/workshop_WARSAW19

These slides cover:

1 Intro to quantile GAM models

2 Fitting QGAMs

3 Quantile GAM modelling with qgam

Regression setting:

- y is our response or dependent variable
- x is a vector of covariates or independent variables

In **distributional regression** we want a good model for $p(y|\mathbf{x})$.

Model is $p_m\{y|\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})\}$, where $\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})$ are parameters.

Lots of options for $p_m(y|\mathbf{x})$: binomial, gamma, Poisson, Tweedie...

We consider continuous (not discrete) y.

Define $F(y|\mathbf{x}) = \text{Prob}(Y \leq y|\mathbf{x})$.

The τ -th $(\tau \in (0,1))$ quantile is $\mu_{\tau}(\mathbf{x}) = F^{-1}(\tau|\mathbf{x})$.

Matteo Fasiolo GAMLSS models 4 / 25

Given $p_m(y|\mathbf{x})$ we can get the conditional quantiles $\mu_{\tau}(\mathbf{x})$.

Quantile regression estimates conditional quantiles $\mu_{\tau}(\mathbf{x})$ directly.

No model for $p(y|\mathbf{x})$.

No assumptions on $p(y|\mathbf{x})$:

- no need to find good model for $p(y|\mathbf{x})$;
- no need to find normalizing transformations (e.g. Box-Cox);

Matteo Fasiolo GAMLSS models 7 / 25

Median income is a better indicator of how the "average" person is doing, relative to mean income.

Matteo Fasiolo GAMLSS models 8 / 25

The median is also more **resistant to outliers**.

Some quantiles are more important than others:

- electricity producers need to satisfy top electricity demand
- urban planners need estimates of extreme rainfall

Effect of explanatory variables may depend on quantile

$$q_{\tau}(\mathsf{Demand}) = f_1(\mathsf{Temp}) + f_2(\mathsf{TimeOfYear}) + f_3(\mathsf{Trend}) + f_4(\mathsf{Holiday}) + \cdots$$

Matteo Fasiolo GAMLSS models 12 / 25

These slides cover:

1 Intro to quantile GAM models

2 Fitting QGAMs

3 Quantile GAM modelling with qgam

Quantile GAM estimation

In parametric GAMs $\mu_{\tau}(\mathbf{x}) = F^{-1}(\tau|\mathbf{x})$.

Key fact: $\mu_{\tau}(\mathbf{x})$ is the minimizer of

$$L(\mu|\mathbf{x}) = \mathbb{E}\{ \rho_{\tau}(y-\mu) | \mathbf{x} \},$$

where ρ_{τ} is the "pinball" loss (Koenker, 2005):

In additive modelling context $\mu_{\tau}(\mathbf{x}) = \sum_{j=1}^{m} f_{j}(\mathbf{x}) = \mu_{\tau}(\boldsymbol{\beta})$.

Quantile GAM estimation

Problem: how to perform Bayesian update $p(\beta|y) \propto p(y|\beta)p(\beta)$?

A coherent approach is the Gibbs posterior (Bissiri et al., 2016)

$$p(eta|y) \propto \underbrace{\mathrm{e}^{-rac{1}{\sigma}
ho_{ au}\{y-\mu(eta)\}}}_{ ext{pseudo} \ p(y|eta)} p(eta),$$

where $1/\sigma > 0$ is the "learning rate".

Recall that $p(\beta) = p(\beta|\gamma)$, hence we need to:

- select learning rate $1/\sigma$
- ullet select smoothing parameters γ
- ullet estimate regression coefficients eta

Technical challenges

σ controls width of credible intervals:

Selecting the learning rate

We select σ so that the model-based uncertainty estimates match the sampling uncertainty, that is σ minimizes

$$\mathsf{CalibrLoss}(\sigma) = \int \mathsf{Dist}\{\mathsf{var}_m(\mathbf{x}), \mathsf{var}_{\mathbb{P}}(\mathbf{x})\} p(\mathbf{x}) d\mathbf{x},$$

Matteo Fasiolo GAMLSS models 17 / 25

Quantile GAM estimation

We use a hierarchical fitting framework:

1 Select σ to optimise coverage

$$\hat{\sigma} = \underset{\sigma}{\operatorname{argmin}} \operatorname{CalibrLoss}(\sigma).$$

2 For fixed σ , select γ to determine smoothness

$$\hat{\gamma} = \mathop{\mathsf{argmax}}_{\gamma} \, \mathsf{LAML}(\gamma)$$

where LAML
$$(\gamma) \approx p(y|\gamma) = \int p(y,\beta|\gamma) = \int p(y|\beta)p(\beta|\gamma)d\beta$$
.

3 For fixed γ and σ , estimate β

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{argmin}}_{oldsymbol{eta}} \ \sum_{i}
ho_{ au}\{y_i - \mu(oldsymbol{eta})\} + \mathsf{Pen}(oldsymbol{eta}|oldsymbol{\gamma}).$$

Quantile GAM estimation

ggam uses a modified loss which we call Extended log-F (ELF) loss.

This is smooth and convex and, as $\lambda \to 0$, we have recover pinball loss.

Since qgam 1.3.0, λ (err parameter) is selected automatically.

Selecting the learning rate

Motivation for using ELF:

pinball loss becomes very asymmetric on extreme quantiles.

Smoothing the pinball loss

 λ (called err in qgam) selected to balance variance and bias.

Matteo Fasiolo GAMLSS models 21 / 25

These slides cover:

1 Intro to quantile GAM models

2 Fitting QGAMs

3 Quantile GAM modelling with qgam

Demonstration in R

For more details on methodology, see:

Fasiolo, M., Goude, Y., Nedellec, R. and Wood, S.N., 2017. Fast calibrated additive quantile regression. arXiv preprint arXiv:1707.03307.

and the file "intro_to_qgam.pdf".

For more software training material see

http://mfasiolo.github.io/qgam/articles/qgam.html

https://mfasiolo.github.io/mgcViz/articles/qgam_mgcViz.html

THANK YOU!

Figure: Examples of quantile GAMs from Fasiolo et al. (2017).

References I

- Bissiri, P. G., C. Holmes, and S. G. Walker (2016). A general framework for updating belief distributions. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*.
- Fasiolo, M., Y. Goude, R. Nedellec, and S. N. Wood (2017). Fast calibrated additive quantile regression. arXiv preprint arXiv:1707.03307.
- Koenker, R. (2005). Quantile regression. Number 38. Cambridge university press.