

CSE 151A Intro to Machine Learning

Lecture 16 – Part 01
Gaussian Mixtures

Announcements

- Please submit regrade requests for yellows!
- No class on Monday.

K-Means

- Perhaps the most popular clustering algorithm.
- Fast, easy to understand.
- Assumes spherical clusters.

Example

Mixtures of Gaussians

Each cluster is specified by: • a Gaussian $P_i = \mathcal{N}(\vec{\mu}^{(i)}, C_i)$ • a mixing weight π_i

- Mixture distribution:

$$\mathbb{P}(\vec{x}) = \sum_{i=1}^{R} \pi_i P_i(\vec{x})$$

Interpretation

Soft-assignment: each point belongs to multiple Gaussians

Responsibility of cluster *j* for point *i*:

$$w_{ij} = \mathbb{P}(\text{cluster } j | \vec{x}^{(i)})$$
$$= \frac{\pi_j \mathbb{P}_j(\vec{x}^{(i)})}{\sum_{\ell} \pi_{\ell} \mathbb{P}_{\ell}(\vec{x}^{(i)})}$$

Fitting

Recall how we fit a multivariate Gaussian.

$$\vec{\mu} = \frac{1}{n} \sum_{i=1}^{n} \vec{x}^{(i)}$$

$$C = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} - \vec{\mu}) (\vec{x}^{(i)} - \vec{\mu})^{T}$$

Fitting

Fitting

Fitting a Mixture

Now to fit jth Gaussian with responsibilities w_{ii} :

$$\vec{\mu}^{(j)} = \frac{1}{\sum_{i=1}^{n} w_{ij}} \sum_{i=1}^{n} w_{ij} \vec{x}^{(i)}$$

$$C_{j} = \frac{1}{\sum_{i=1}^{n} w_{ij}} \sum_{i=1}^{n} w_{ij} (\vec{x}^{(i)} - \vec{\mu}^{(j)}) (\vec{x}^{(i)} - \vec{\mu}^{(j)})^{T}$$

$$\pi_{j} = \frac{1}{n} \sum_{i=1}^{n} w_{ij}$$

Problem

- To calculate $\vec{\mu}^{(j)}$, C_i , π_i we need responsibilities w_{ii} .
- ▶ But to calculate responsibilities, we need $\vec{\mu}^{(j)}$, π_i , C_i .

Idea

- ► Guess $\vec{\mu}^{(j)}$, π_j , and C_j
- Use these guesses to calculate responsibilities (i.e., make a soft assignment):

$$w_{ij} = \frac{\pi_j \mathbb{P}_j(\vec{x}^{(i)})}{\sum_{\ell} \pi_{\ell} \mathbb{P}_{\ell}(\vec{x}^{(i)})}$$

► Then update $\vec{\mu}^{(j)}$, π_i , C_i using w_{ij} . Repeat.

The EM Algorithm

- ► Initialize $\pi_1, ... \pi_i, \vec{\mu}^{(1)}, ..., \vec{\mu}^{(k)}, C_1, ..., C_k$
- Repeat until convergence:
 - Make soft assignment (update responsibilities):

$$W_{ij} = \frac{\pi_j \mathbb{P}_j(\vec{x}^{(i)})}{\sum_{\ell} \pi_{\ell} \mathbb{P}_{\ell}(\vec{x}^{(i)})}$$

Update mixing weights, means, covariances:

$$\vec{\mu}^{(j)} = \frac{1}{\sum_{i=1}^{n} w_{ij}} \sum_{i=1}^{n} w_{ij} \vec{x}^{(i)}$$

$$C_{j} = \frac{1}{\sum_{i=1}^{n} w_{ij}} \sum_{i=1}^{n} w_{ij} (\vec{x}^{(i)} - \vec{\mu}^{(j)}) (\vec{x}^{(i)} - \vec{\mu}^{(j)})^{T}$$

$$\pi_{j} = \frac{1}{n} \sum_{i=1}^{n} w_{ij}$$

Geyser Eruptions

Clustering with EM

- Like with LDA/QDA, can assume spherical, diagonal, full covariance.
- May require many initializations.
- One way to initialize: k-means.

K-Means and EM

- ► K-Means is a limit case of EM!
- ► Spherical Gaussians, variance \rightarrow 0.

CSE 151A Intro to Machine Learning

Lecture 16 – Part 02 Hierarchical Clustering

The goal of clustering:

Identify **structure** in data by grouping it into **clusters**.

Flat Clustering

Partitioning of \mathcal{X} into **disjoint** sets called **clusters** s.t. each point $x \in \mathcal{X}$ is in exactly one cluster.

How many clusters are there?

How many clusters are there?

How many clusters are there?

Allow clusters to nest...

A hierarchical clustering:

Collection C of clusters s.t. any two are either **disjoint**, or **nested** (one is contained in the other).

How do we build a hierarchical clustering?

- There are two general approaches...
 - Agglomerative (bottom-up):
 Start with each point in own cluster, iteratively merge them.
 - Divisive (top-down): Start with all points in single cluster, recursively divide them.

Hierarchical Clustering

Input is a set of **objects** \mathcal{X} and a **dissimilarity** d:

$$d(x, x') \ge 0$$
 non-negativity $d(x, x') = d(x', x)$ symmetry

Linkage algorithms

- Linkage algorithms are a class of agglomerative approaches
- ► Idea:
 - 1. Start with each point in own cluster.
 - 2. Merge the two "closest" clusters.
 - 3. Repeat step 2 until we have a single cluster.

Linkage Algorithms

- How do we measure how close two clusters are?
- We use a **linkage function** \mathcal{L} taking pairs of clusters to \mathbb{R} .

Single-linkage, complete-linkage, average-linkage...

Single Linkage

The **smallest** distance between the clusters.

$$\mathcal{L}(C,C') = \min_{x,x' \in C \times C'} d(x,x')$$

Complete Linkage

The biggest distance between the clusters.

$$\mathcal{L}(C,C') = \max_{x,x' \in C \times C'} d(x,x')$$

Average-linkage (UPGMA)

The mean distance between the clusters.

$$\mathcal{L}(C,C') = \frac{1}{|C \times C'|} \sum_{x,x' \in C \times C'} d(x,x')$$

Dendrograms

Linkage clustering gives rise to a dendrogram.

- ightharpoonup Rooted tree whose leaves are points in \mathcal{X} .
- Can read off the linkage at which any pair of points merge.
- Cutting the dendrogram at any height produces flat clustering.

Remember Kruskal's Algorithm?

- Build minimum spanning tree of weighted graph.
- Every step, add "lightest edge".

Graph-Theoretic SLC

- Define complete weighted graph

 - Nodes are data pointsEdge weights are distances
- For any number λ , delete all edges of weight > λ .

Connected components of resulting graph are single-linkage clusters at level λ .

Practical considerations

Naïve implementations take $\Theta(n^3)$ time.

Practical considerations

- Naïve implementations take $\Theta(n^3)$ time.
- Some linkages have more efficient algorithms:
 - Single-linkage: $\Theta(n^2)$, since Prim's algorithm is $\Theta(n^2)$ on a complete graph.
 - Complete-, Average-linkage: $O(n^2 \log n)$.

Practical considerations

- Naïve implementations take $\Theta(n^3)$ time.
- Some linkages have more efficient algorithms:
 - Single-linkage: $\Theta(n^2)$, since Prim's algorithm is $\Theta(n^2)$ on a complete graph.
 - Complete-, Average-linkage: $O(n^2 \log n)$.
- Single-linkage is insensitive to density, exhibits chaining.

CSE 151A Intro to Machine Learning

Lecture 16 – Part 03 Density Cluster Trees

The goal of clustering: Identify structure in data by grouping it into clusters

The goal of clustering: Identify structure in data by grouping it into clusters

Assumption: data is drawn from some density.

What structure do we wish to recover?

A cluster of a density is a region of high probability. 1

¹Hartigan (1981), Wishart (1969)...

Connected components of $\{f \ge \lambda_1\}$?

Connected components of $\{f \ge \lambda_2\}$?

Connected components of $\{f \ge \lambda_3\}$?

A **cluster** is a connected component of $\{f \ge \lambda\}$ for any $\lambda > 0$.

A hierarchy of clusters

Clusters from higher levels nest within clusters from lower levels.

The density cluster tree

This gives rise to a tree structure called the **density cluster tree**.

What structure do we wish to recover?

This **density cluster tree** is what we hope to recover from data.

Robust single-linkage

Intuition: At first, only admit **high-density** points into graph.

- \triangleright Choose parameters α and k
- For each $x \in \mathcal{X}$, let $r_k(x)$ be the distance to x's k-th nearest neighbor.
- ► As \vec{r} grows from 0 to ∞ :
 - ► Let $V = \{x : r_b(x) \le r\}$.
 - ► Let $E = \{(x, x') : d(x, x') \le \alpha r\}.$
 - Build the graph $G_r = (V, E)$.
 - The clusters at time r are the connected components of G_r .

- Robust single-linkage recovers the density cluster tree (Chaudhuri and Dasgupta, 2010; Eldridge, Belkin, Wang 2015).
- Can be viewed as a transformation of metric, followed by single-linkage:

$$\tilde{d}(x,x') = \max\left\{r_k(x), r_k(x'), \frac{1}{\alpha}d(x,x')\right\}.$$

And therefore can be computed in $\Theta(kn^2)$ time.