

Практическое использование статистических критериев

ПМИ ФКН ВШЭ, 28 сентября 2019 г.

Денис Деркач 1 , Алексей Артёмов 1,2 ,

(Ряд слайдов заимствован у Евгения Рябенко (Фейсбук))

¹ФКН ВШЭ ²Сколтех

Небольшая классификация критериев

- > Одновыборочные $\{X_i\}_{i=1}^n$
 - Критерий Неймана-Пирсона (согласие с одной из двух альтернатив)
 - > Лемма Неймана-Пирсона 🕗
 - > Критерий Колмогорова-Смирнова 📵 (согласие с распределением)
- > Двухвыборочные $\{X_i\}_{i=1}^n, \{Y_j\}_{j=1}^m$
 - > Критерий Стьюдента 4 (равенство средних)
 - Критерий перестановок («перемешиваемость» (равенство) распределений)
 - > Ранговый критерий MWW (6) (равенство распределений)
 - > Знаковый критерий 🕖 (равенство распределений)

Варианты двухвыборочных гипотез

О положении:

$$\mathbb{H}_0 \colon \mathbb{E}X = \mathbb{E}Y, \qquad \qquad \mathbb{H}_1 \colon \mathbb{E}X < \neq > \mathbb{E}Y;$$

$$\mathbb{H}_0 \colon \operatorname{med} X = \operatorname{med} Y, \qquad \qquad \mathbb{H}_1 \colon \operatorname{med} X < \neq > \operatorname{med} Y;$$

$$\mathbb{H}_0$$
: $\mathbf{P}(X > Y) = 0.5$, \mathbb{H}_1 : $\mathbf{P}(X > Y) < \neq > 0.5$;

$$\mathbb{H}_{0}$$
: $F_{X}(x) = F_{Y}(x)$, \mathbb{H}_{1} : $F_{X}(x) = F_{Y}(x + \Delta)$, $\Delta < \neq > 0$

$$\mathbb{H}_0: F_X(x) = F_Y(x), \qquad \mathbb{H}_1: F_X(x) < \neq > F_Y(x).$$

О рассеянии:

$$\mathbb{H}_0 \colon \mathbb{D}X = \mathbb{D}Y, \qquad \mathbb{H}_1 \colon \mathbb{D}X < \neq > \mathbb{D}Y;$$

$$\mathbb{H}_0: F_X(x) = F_Y(x + \Delta), \qquad \mathbb{H}_1: F_X(x) = F_Y(\sigma x + \Delta), \sigma < \neq > 1$$

Критерий Неймана-Пирсона

- > Пусть $X_i \sim \mathcal{N}(\theta, \sigma^2), i=1,\ldots,n$, а нулевая гипотеза заключается в том, что $\theta=\theta_0$.
- > Назовите достаточную статистику в этой задаче.

- > Пусть $X_i \sim \mathcal{N}(\theta, \sigma^2), i=1,\ldots,n$, а нулевая гипотеза заключается в том, что $\theta=\theta_0$.
- > Назовите достаточную статистику в этой задаче.
- > Достаточная статистика: $T(\mathbf{X}^{\ell}) = \overline{X}_n$.
- > Какое распределение $T(\mathbf{X}^{\ell})$, когда верна \mathbb{H}_0 ?

- > Пусть $X_i \sim \mathcal{N}(\theta, \sigma^2), i=1,\dots,n$, а нулевая гипотеза заключается в том, что $\theta=\theta_0$.
- > Назовите достаточную статистику в этой задаче.
- > Достаточная статистика: $T(\mathbf{X}^\ell) = \overline{X}_n$.
- > Какое распределение $T(\mathbf{X}^{\ell})$, когда верна \mathbb{H}_0 ?
- $T(\mathbf{X}^{\ell}) \sim \mathcal{N}(\theta_0, \sigma^2/n)$
- > Какова критическая область? (Когда отклоняем \mathbb{H}_0 ?)

- > Пусть $X_i \sim \mathcal{N}(\theta, \sigma^2), i=1,\dots,n$, а нулевая гипотеза заключается в том, что $\theta=\theta_0$.
- > Назовите достаточную статистику в этой задаче.
- > Достаточная статистика: $T(\mathbf{X}^\ell) = \overline{X}_n$.
- o Какое распределение $T(\mathbf{X}^\ell)$, когда верна \mathbb{H}_0 ?
- $T(\mathbf{X}^{\ell}) \sim \mathcal{N}(\theta_0, \sigma^2/n)$
- > Какова критическая область? (Когда отклоняем \mathbb{H}_0 ?)
- > Критическая область $\mathcal{R}_{\alpha}=[t_{\alpha},\infty)$, т.е. $T(\mathbf{X}^{\ell})\geqslant t_{\alpha}.$

> Подсчитайте вероятность ложной тревоги в этой задаче.

> Подсчитайте вероятность ложной тревоги в этой задаче.

$$\alpha = \mathbb{P}_{\theta_0} \left(\frac{\sqrt{n}(\overline{X}_n - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_\alpha - \theta_0)}{\sigma} \right) =$$

$$= 1 - \Phi \left(\frac{\sqrt{n}(t_\alpha - \theta_0)}{\sigma} \right).$$

> Как выбрать t_{α} , чтобы $\alpha\leqslant\alpha_{0}$?

> Подсчитайте вероятность ложной тревоги в этой задаче.

$$\alpha = \mathbb{P}_{\theta_0} \left(\frac{\sqrt{n}(\overline{X}_n - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_\alpha - \theta_0)}{\sigma} \right) =$$

$$= 1 - \Phi \left(\frac{\sqrt{n}(t_\alpha - \theta_0)}{\sigma} \right).$$

> Как выбрать t_{α} , чтобы $\alpha \leqslant \alpha_0$?

$$t_{\alpha_0} = \theta_0 + \sigma x_{1-\alpha_0} / \sqrt{n}$$

> Подсчитайте вероятность ложной тревоги в этой задаче.

$$\alpha = \mathbb{P}_{\theta_0} \left(\frac{\sqrt{n}(\overline{X}_n - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_\alpha - \theta_0)}{\sigma} \right) =$$

$$= 1 - \Phi \left(\frac{\sqrt{n}(t_\alpha - \theta_0)}{\sigma} \right).$$

> Как выбрать t_{α} , чтобы $\alpha \leqslant \alpha_0$?

$$t_{\alpha_0} = \theta_0 + \sigma x_{1-\alpha_0} / \sqrt{n}$$

> Пусть на самом деле верна альтернатива $\mathbb{H}_1: \theta=\theta_1$, причем $\theta_1>\theta_0$. Какова вероятность ошибки 2-го рода?

> Подсчитайте вероятность ложной тревоги в этой задаче.

$$\alpha = \mathbb{P}_{\theta_0} \left(\frac{\sqrt{n}(\overline{X}_n - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_\alpha - \theta_0)}{\sigma} \right) =$$

$$= 1 - \Phi \left(\frac{\sqrt{n}(t_\alpha - \theta_0)}{\sigma} \right).$$

> Как выбрать t_{α} , чтобы $\alpha \leqslant \alpha_0$?

$$t_{\alpha_0} = \theta_0 + \sigma x_{1-\alpha_0} / \sqrt{n}$$

> Пусть на самом деле верна альтернатива $\mathbb{H}_1: \theta=\theta_1$, причем $\theta_1>\theta_0$. Какова вероятность ошибки 2-го рода?

$$\beta = \mathbb{P}_{\theta_1} \left(\overline{X}_n < t_{\alpha_0} \right) = \Phi \left(x_{1-\alpha_0} - \frac{\sqrt{n}(\theta_1 - \theta_0)}{\sigma} \right).$$

Лемма

Неймана-Пирсона

•Сравнение двух критериев

- > Критерии на самом деле задаются критическими множествами
- > Пусть имеется два критерия, заданных множествами \mathcal{R}'_{α} и \mathcal{R}''_{α} . Какой выбрать?

•Сравнение двух критериев

- > Критерии на самом деле задаются критическими множествами
- > Пусть имеется два критерия, заданных множествами \mathcal{R}'_{α} и \mathcal{R}''_{α} . Какой выбрать?
- > Сложная альтернатива: необходимо сравнивать функции мощности $W'(\theta)$ и $W''(\theta)$

•Сравнение двух критериев

- > Критерии на самом деле задаются критическими множествами
- > Пусть имеется два критерия, заданных множествами \mathcal{R}'_{α} и \mathcal{R}''_{α} . Какой выбрать?
- > Сложная альтернатива: необходимо сравнивать функции мощности $W'(\theta)$ и $W''(\theta)$

- > Простая альтернатива: существует наиболее мощный критерий (Неймана-Пирсона).
- > Идея: при заданной (достаточно малой) вероятности ошибки 1-го рода α постараться уменьшить вероятность ошибки 2-го рода β насколько возможно за счет подбора критического множества \mathcal{R}_{α} .

Сравнение двух критериев

- > Пусть задана выборка \mathbf{X}^ℓ
- > Гипотеза \mathbb{H}_0 и альтернатива \mathbb{H}_1 порождают в выборочном пространстве \mathbb{R}^ℓ меры \mathbb{P}_0 и \mathbb{P}_1
- > Таким образом, необходимо найти множество G такое, что $\mathbb{P}_0(G)\leqslant \alpha$ и $\mathbb{P}_1(G)\to \sup_{G:\mathbb{P}_0(G)\leqslant \alpha}\mathbb{P}_1(G)$
- > Рассмотрим систему вложенных множеств $G_c = \{ \boldsymbol{x} \in \mathbb{R}^\ell : \frac{p_1(\boldsymbol{x})}{p_0(\boldsymbol{x})} \geqslant c \}$
- ightarrow Пусть $arphi(c)=\mathbb{P}_0(G_c)$, тогда arphi(c) убывает с ростом c

Сравнение двух критериев

ightarrow На самом деле, $\varphi(c)$ убывает быстрее, чем 1/c:

$$1 \geqslant \mathbb{P}_1(G_c) = \int_{G_c} p_1(\boldsymbol{x}) d\boldsymbol{x} \geqslant c \int_{G_c} p_0(\boldsymbol{x}) d\boldsymbol{x} = c \mathbb{P}_0(G_c) = c\varphi(c).$$

- > Далее еще потребуем, чтобы плотности $p_1({\boldsymbol x})$ и $p_0({\boldsymbol x})$ были всюду положительны
- > Дополнительно потребуем, чтобы $\forall \alpha \in (0,1) \quad \exists c = c_\alpha: \quad \varphi(c_\alpha) = \alpha.$

Лемма Неймана-Пирсона

Лемма (Неймана-Пирсона)

Наиболее мощный критерий уровня lpha задается критическим множеством

$$G^* = G_{c_{\alpha}} = \left\{ \boldsymbol{x} \in \mathbb{R}^{\ell} : \frac{p_1(\boldsymbol{x})}{p_0(\boldsymbol{x})} \geqslant c_{\alpha} \right\}$$

- > Пусть G критическое множество уровня α .
- ightarrow Тогда $\mathbb{P}_0(G_c)\geqslant lpha=\mathbb{P}_0(G_{c_lpha})$
- > Пусть $I({m x})$ индикатор G_c , $I^*({m x})$ индикатор G_{c_lpha}
- > Функция

$$f(\boldsymbol{x}) = (I^*(\boldsymbol{x}) - I(\boldsymbol{x}))(p_1(\boldsymbol{x}) - c_{\alpha}p_0(\boldsymbol{x}))$$

неотрицательна при всех $x \in \mathbb{R}^\ell$

Лемма Неймана-Пирсона

> Функция

$$f(\boldsymbol{x}) = (I^*(\boldsymbol{x}) - I(\boldsymbol{x}))(p_1(\boldsymbol{x}) - c_{\alpha}p_0(\boldsymbol{x}))$$

неотрицательна при всех $x \in \mathbb{R}^\ell$

> Поэтому

$$0 \leqslant \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} f(\boldsymbol{x}) d\boldsymbol{x} = \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} I^{*}(\boldsymbol{x}) p_{1}(\boldsymbol{x}) d\boldsymbol{x} - \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} I(\boldsymbol{x}) p_{1}(\boldsymbol{x}) d\boldsymbol{x} - \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} I^{*}(\boldsymbol{x}) p_{0}(\boldsymbol{x}) d\boldsymbol{x} - \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} I(\boldsymbol{x}) p_{0}(\boldsymbol{x}) d\boldsymbol{x} \Big] =$$

$$= \mathbb{P}_{1}(G^{*}) - \mathbb{P}_{1}(G) - c_{\alpha} \underbrace{\left[\mathbb{P}_{0}(G^{*}) - \mathbb{P}_{0}(G)\right]}_{>0}.$$

Критерий Неймана-Пирсона

- $\rightarrow \mathbb{H}_0: \theta = \theta_0$ vs. $\mathbb{H}_1: \theta = \theta_1$
- > Статистика Неймана-Пирсона:

$$T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{\prod_{i=1}^n f(X_i; \theta_1)}{\prod_{i=1}^n f(X_i; \theta_0)}.$$
 (1)

- > Допустим, что \mathbb{H}_0 отвергается при T>k. Выберем k так, что $\mathbb{P}_{\theta_0}(T>k)=\alpha.$
- > Тогда, критерий Неймана-Пирсона (на основе статистики (2)) будет иметь наибольшую мощность $W(\theta_1)$ среди всех критериев размера α .

Пример

- $X_i \sim \mathcal{N}(\mu, \sigma^2)$, причем дисперсия σ^2 известна
- $\rightarrow \mathbb{H}_0: \mu = \mu_0 \text{ vs. } \mathbb{H}_1: \mu = \mu_1$
- > Статистика Неймана-Пирсона:

$$T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{\prod_{i=1}^n \mathcal{N}(X_i; \mu_1, \sigma^2)}{\prod_{i=1}^n \mathcal{N}(X_i; \mu_0, \sigma^2)}.$$
 (2)

> Подсчитайте статистику критерия (упростите)

Пример

- $X_i \sim \mathcal{N}(\mu, \sigma^2)$, причем дисперсия σ^2 известна
- $\rightarrow \mathbb{H}_0: \mu=\mu_0$ vs. $\mathbb{H}_1: \mu=\mu_1$
- > Статистика Неймана-Пирсона:

$$T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{\prod_{i=1}^n \mathcal{N}(X_i; \mu_1, \sigma^2)}{\prod_{i=1}^n \mathcal{N}(X_i; \mu_0, \sigma^2)}.$$
 (2)

важен знак!

- > Подсчитайте статистику критерия (упростите)
- > Получается

$$T = \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{\ell} \left[(X_i - \mu_1)^2 - (X_i - \mu_0)^2 \right] \right] =$$

$$= \exp\left[\frac{n}{\sigma^2} (\mu_1 - \mu_0) \underbrace{\left[\overline{X}_{\ell} - \frac{\mu_1 + \mu_0}{2}\right]}\right]$$

Критерий согласия

Колмогорова

Выборочная функция распределения

- > Пусть дана выборка $\{X_i\}_{i=1}^n$ из распределения F(x).
- > Выборочной функцией распределения называется функция $\widehat{F}_n(x)$:

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I_{X_i \leqslant x}.$$

где $I_{X_i\leqslant x}$ указывает, попало ли наблюдение X_i в область $(-\infty,x]$:

$$I_{X_i \leqslant x} = \begin{cases} 1, & X_i \leqslant x; 0, \\ X_i > x. \end{cases}$$

> Легко проверить, что $\widehat{F}_n(x)$ — состоятельная оценка F(x), при этом $\widehat{F}_n(x) \sim \text{Bin}(n,F(x))$.

Выборочная функция распределения

Критерий согласия Колмогорова

> Пусть выборочная функция распределения \widehat{F}_n , построенная по выборке $\{X_i\}_{i=1}^n$, имеет вид:

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I_{X_i \leqslant x},$$

> Задача:

$$\mathbb{H}_0:\widehat{F}_n(X)=F(X)$$
 vs. $\mathbb{H}_1:\widehat{F}_n(X)\neq F(X)$

Критерий согласия Колмогорова

> Статистика критерия для $\widehat{F}_n(x)$:

$$D_n = \sup_{x} |\widehat{F}_n(x) - F(x)|,$$

> Распределение статистики Колмогорова: если $F(X) \in C^1(\mathbb{X})$, то для введённой статистики справедливо:

$$\forall t > 0: \lim_{n \to \infty} P(\sqrt{n}D_n \le t) = K(t) = \sum_{j=-\infty}^{+\infty} (-1)^j e^{-2j^2 t^2}.$$

- > Если $\sqrt{n}D_n$ превышает критическое значение K_α уровня α , то \mathbb{H}_0 отвергается. Иначе не отвергается на уровне α .
- > Если lpha достаточно близко к 1, то: $K_lpha pprox \sqrt{-rac{1}{2}\lnrac{1-lpha}{2}}.$
- > Асимптотическая мощность критерия равна 1.

Критерий Стьюдента

Критерий Стьюдента (t-test)

- > Пусть $X, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, где (μ, σ^2) неизвестны.
- > Задача

$$\mathbb{H}_0: \mu = \mu_0 \quad vs. \quad \mathbb{H}_1: \mu \neq \mu_0$$

> Обозначим через S_n^2 выборочную дисперсию. Статистика критерия:

$$T = \frac{\sqrt{n}(\overline{X_n} - \mu_0)}{S_n}$$

- > Основная гипотеза отвергается, если $|T|>t_{n-1,\alpha/2}$, где $t_{n-1,\alpha/2}$ квантиль распределения Стьюдента с n-1 степенями свободы.
- > При больших n выполняется $T \sim \mathcal{N}(0,1)$, то есть при больших n t-критерий эквивалентен критерию Вальда.

Распределение Стьюдента (t-test)

Определение

Случайная величина имеет распределение Стьюдента (t-распределение) с k степенями свободы, если:

$$f(t) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})(1 + \frac{t^2}{k})^{\frac{k+1}{2}}}$$

При $k \to \infty$ t-распределение стремится к стандартному нормальному распределению. При k=1 t-распределение совпадает с распределением Коши.

> t-критерий используют, когда распределение данных близко к нормальному, а размер выборки невелик

Критерий Стьюдента (t-test)

Критерий Стьюдента (t-test)

Рис.: http://tananyag.geomatech.hu/m/53882

Двухвыборочный t-критерий

- > $\{X_i\}_{i=1}^n, \{Y_j\}_{j=1}^m$ две выборки из нормальных распределений $\mathcal{N}(\mu_X, \sigma_X^2), \mathcal{N}(\mu_Y, \sigma_Y^2)$
- > Задача

$$\mathbb{H}_0: \mu_X = \mu_Y$$
 vs. $\mathbb{H}_1: \mu_X \neq \mu_Y$

> Механика проверки гипотезы та же, что и раньше.

критерии

непараметрические

Ранговые

Альтернативы однородности

- > Имеем две выборки $\mathbf{X}^n \sim F(x)$ и $\mathbf{Y}^m \sim G(x)$
- > Гипотеза однородности $\mathbb{H}_0: F(x) = G(x), x \in \mathbb{R}$

- > Бывает важно уловить отклонения от \mathbb{H}_0 только определенного типа (наличие прироста Y_j по сравнению с X_i)
- ightarrow Сужение альтернативы \Longrightarrow более эффективные критерии
- > Перестановки: гипотеза однородности против альтернативы неоднородности \mathbb{H}_1 (вариант а))
- > Манн-Уитни: гипотеза однородности против альтернативы доминирования \mathbb{H}_1 (варианты б) и в))

Перестановочные

критерии

непараметрические

Критерий перестановок

- Критерий перестановок применяется для проверки того, отличаются ли распределения.
- > Пусть $X_1,...,X_m \sim F_X$ и $Y_1,...,Y_n \sim F_Y$ две независимые выборки. Требуется решить:

$$\mathbb{H}_0: F_X = F_Y \quad vs. \quad \mathbb{H}_1: F_X \neq F_Y$$

> Критерий перестановок — «точный» в том смысле, что он не использует предположения об асимптотической сходимости к нормальному распределению.

Критерий перестановок:

- 1. Обозначим через $T(x_1,...,x_m,y_1,...,y_n)$ некоторую тестовую статистику, например, $T(X_1,...,X_m,Y_1,...,Y_n)=|\overline{X}_m-\overline{Y}_n|.$
- 2. Положим N=m+n и рассмотрим все N! перестановок объединенной выборки $X_1,...,X_m,Y_1,...,Y_n$.
- 3. Для каждой из перестановок подсчитаем значение статистики $T. \ \ \,$
- 4. Обозначим эти значения $T_1, ..., T_{N!}$.

Теорема (Критерий перестановок)

Если \mathbb{H}_0 верна, то при фиксированных упорядоченных значениях $\{X_1,...,X_m,Y_1,...,Y_n\}$ значение статистики T распределены равномерно на множестве $T_1,...,T_{N!}$.

Критерий перестановок

Теорема

Обозначим как перестановочное распределение статистики T такое, согласно которому:

$$\mathbb{P}_0(T = T_i) = \frac{1}{N!}, \quad i = 1, ..., N!$$

Пусть t_{obs} — значение статистики, которое было получено в опыте. Тогда:

$$p$$
-value = $\mathbb{P}(T > t_{obs}|f) = \frac{1}{N!} \sum_{j=1}^{N!} \mathbb{I}(T_j > t_{obs}), \quad f \in \mathcal{F}_0$

Критерий перестановок: пример

- > Пусть $(X_1, X_2, Y_1) = (1, 9, 3)$.
- ightarrow Пусть $T(X_1,X_2,Y_1)=|\overline{X}-\overline{Y}|=2$, тогда

Перестановка	Значение T	Вероятность
(1,9,3)	2	1/6
(9,1,3)	2	1/6
(1,3,9)	7	1/6
(3,1,9)	7	1/6
(3,9,1)	5	1/6
(9,3,1)	5	1/6

> p-value = $\mathbb{P}(T > 2) = 4/6$.

Вариационный ряд, ранги, связки

> Вариационный ряд:

$$X_1,\ldots,X_n \;\Rightarrow\; X_{(1)}\leqslant\ldots<\underbrace{X_{(k_1)}=\ldots=X_{(k_2)}}_{\text{связка размера }k_2-k_1+1}<\ldots\leqslant X_{(n)}$$

- > Ранг наблюдения X_i :
- ightarrow если X_i не в связке, то ${
 m rank}\,(X_i) = r\colon X_i = X_{(r)}$,
- o если X_i в связке $X_{(k_1)}, \dots, X_{(k_2)}$, то $\mathrm{rank}\,(X_i) = rac{k_1 + k_2}{2}$.

Критерий ранговых сумм MWW

- > Построим вариационный ряд из объединенной выборки $(X_1,\ldots,X_n,Y_1,\ldots,X_m)$
 - ightarrow Верна $\mathbb{H}_0 \implies$ значения Y_i рассеяны по всему ряду
 - ightarrow Иначе средний ранг значений Y_{i} относительно большой
- > Обозначим S_j ранг порядковой статистики $Y_{(j)}$ в этом ряду
- > Положим $V = S_1 + \cdots + S_m$
- > Критическая область: $V \geqslant c$, где $c = {\sf const}$
- > Большие выборки: (Mann-Whitney-Wilcoxon, MWW)

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} I_{X_i < Y_j} \to \mathcal{N}\left(\frac{nm}{2}, \frac{nm(n+m+1)}{12}\right)$$

Знаковые

критерии

непараметрические

Двухвыборочный критерий знаков

выборки:
$$\mathbf{X}^{\ell} = (X_1, \dots, X_n)$$

$$\mathbf{Y}^{\ell} = (Y_1, \dots, Y_n), X_i \neq Y_i$$

выборки связанные

нулевая гипотеза: \mathbb{H}_0 : $\mathbf{P}(X > Y) = \frac{1}{2}$

альтернатива: \mathbb{H}_1 : $\mathbf{P}(X > Y) < \neq > \frac{1}{2}$

статистика: $T\left(\mathbf{X}^{\ell}, \mathbf{Y}^{\ell}\right) = \sum_{i=1}^{n} \mathbb{I}_{\left\{X_{i} > Y_{i}\right\}}$

нулевое распределение: $\operatorname{Bin}(n,\frac{1}{2})$

Двухвыборочный критерий знаков: Примеры

- > (Hollander & Wolfie, 29f): депрессивность 9 пациентов была измерена по шкале Гамильтона до и после первого приёма транквилизатора. Подействовал ли транквилизатор?
- H_0 : уровень депрессивности не изменился.
 - H_1 : уровень депрессивности снизился.
- > Критерий знаков: p=0.09, 95% нижний доверительный предел для медианы изменения -0.041.

Двухвыборочный критерий знаков: Примеры

- > (Laureysens et al., 2004): для 13 разновидностей тополей, растущих в зоне интенсивного загрязнения, в августе и ноябре измерялась средняя концентрация алюминия в микрограммах на грамм древесины.
- \mathbb{H}_0 : концентрация алюминия не менялась. \mathbb{H}_1 : концентрация алюминия изменилась.
- Для тополей 10 из 13 разновидностей концентрация алюминия увеличилась.
- > Критерий знаков: p=0.0923, 95% доверительный интервал для медианы изменения [-0.687, 10.107] .

Причины использовать критерий знаков

- > Точные разности $X_i Y_i$ неизвестны, известны только их знаки.
- > Разности $X_i Y_i$ при \mathbb{H}_1 могут быть небольшими по модулю, но иметь систематический характер по знаку.
- > Разности $X_i Y_i$ при \mathbb{H}_0 могут быть большими по модулю, но случайными но знаку.