Complex Numbers (Part ii) Tutorial

81–90 ■ Find the indicated roots, and graph the roots in the complex plane.

- 81. The square roots of $4\sqrt{3} + 4i$
 - 82. The cube roots of $4\sqrt{3} + 4i$
 - 83. The fourth roots of -81i
 - **84.** The fifth roots of 32

- 85. The eighth roots of 1
 - **86.** The cube roots of 1 + i
 - **87.** The cube roots of *i*
 - **88.** The fifth roots of *i*
 - **89.** The fourth roots of -1
 - **90.** The fifth roots of $-16 16\sqrt{3}i$

91–96 ■ Solve the equation.

$$91. z^4 + 1 = 0$$

92.
$$z^8 - i = 0$$

93.
$$z^3 - 4\sqrt{3} - 4i = 0$$
 94. $z^6 - 1 = 0$

94.
$$z^6 - 1 = 0$$

95.
$$z^3 + 1 = -i$$

96.
$$z^3 - 1 = 0$$

97. (a) Let $w = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ where *n* is a positive integer. Show that $1, w, w^2, w^3, \dots, w^{n-1}$ are the ndistinct nth roots of 1.

(b) If $z \neq 0$ is any complex number and $s^n = z$, show that the n distinct nth roots of z are

$$s$$
, sw , sw^2 , sw^3 , ..., sw^{n-1}

Complex Numbers (Part ii) Tutorial

Transform the complex numbers into Cartesian form:

a)
$$z = 2e^{i\frac{\pi}{6}}$$

b)
$$z = 2\sqrt{3}e^{i\frac{\pi}{3}}$$

$$c) z = 4e^{3\pi i}$$

$$d) z = 4e^{i\frac{\pi}{2}}$$

$$e) \ z = \sqrt{2} \ e^{i \frac{3\pi}{4}}$$

$$f) z = 2\sqrt{3}e^{i\frac{2\pi}{3}}$$

Sketch the following set of inequalities

a)
$$|z + 3| \le 1$$

b)
$$|z+2| \le |z-2|$$

c)
$$|z - i| \le |z + i|$$

d)
$$|z| \le |2z + 1|$$