

Text Mining / Social Media Analysis

Kenn H. Kim, Ph. D.

School of Business Clemson University

1

Key Concepts and Techniques

- Key Concepts
 - · Text representation
 - Bag of words
 - · Text preprocessing
- Key Techniques
 - Term frequency (TF)
 - Inverse Document Frequency (IDF)
 - TF-IDF
 - Sentiment Analysis
 - Topic Modeling (NMF)

Text Representation

 Take a set of documents (i.e. Raw Text) – each of which is a relatively free-form sequence of words – and turn it into our familiar featurevector form (e.g. Bag of Words, Word Embedding, etc.).

3

Text Representation

Basic Terminology

- Document
 - A document is one piece of text, no matter how large or small. (e.g., a single sentence, a 10-page report, etc.)
- Token/Term
 - A document is composed of individual tokens/terms (e.g. a word).
- Corpus
 - A collection of documents is called a corpus (Latin for "body").

Δ

Bag of Words: Term Frequency (TF)

- · Treat every document as just a collection of individual words
 - Ignore grammar, word order, sentence structure, and (usually) punctuation
 - Treat every word in a document as a potentially important keyword of the document
- What will be the feature's value in a given document?
 - Each document is represented by the **term frequency** (i.e. the word count in the document).
 - The importance of a term in a document should increase with the number of times that the term occurs.

5

Bag of Words: TF Example

- An Example of Three Simple Documents (D1, D2, and D3)
 - D1: jazz music has a swing rhythm
 - · D2: swing is hard to explain
 - · D3: swing rhythm is a natural rhythm

(CHENVISER)

	jazz	music	has	a	swing	rhythm	is	hard	to	explain	natural
D1	1	1	1	1	1	1	0	0	0	0	0
D2	0	0	0	0	1	0	1	1	1	1	0
D3	0	0	0	1	1	2	1	0	0	0	1

Text Pre-processing

The following steps should be performed:

- The case should be normalized (jazz vs. Jazz)
 - · Every term should be in lowercase.
- Words should be stemmed (boy vs. boys)
 - Suffixes are removed.
 - · e.g., noun plurals are transformed to singular forms
- Stop-words should be removed (a, an, the, and, ...)
 - · A stop-word is a very common word in English.
 - Typical words such as the, and, of, and on are removed.

7

Text Pre-processing: Example

1) The case should be normalized.

Microsoft Corp and Skype Global today announced that they have entered into a
definitive agreement under which Microsoft will acquire Skype, the leading Internet
communications company, for \$8.5 billion in cash from the investor group led by
Silver Lake. The agreement has been approved by the boards of directors of both
Microsoft and Skype.

Text Pre-processing: Example

2) Words should be stemmed.

• microsoft corp and skype global today announced that they have entered into a definitive agreement under which microsoft will acquire skype, the leading internet communications company, for \$8.5 billion in cash from the investor group led by silver lake, the agreement has been approved by the boards of directors of both microsoft and skype.

9

Text Pre-processing: Example

3) Stop-words should be removed.

• microsoft corp and skype global today announce that they have enter into a definit agreement under which microsoft will acquire skype, the lead internet communic compani, for \$8.5 billion in cash from the invest group lead by silver lake, the agreement has approve by the board of director of both microsoft and skype.

Text Pre-processing: Example

 microsoft corp skype global today announce enter definit agreement microsoft acquire skype lead internet communic compani billion cash invest group lead silver lake agreement approve board director microsoft skype

Term	Count	Term	Count	Term	Count	Term	Count
skype	3	microsoft	3	agreement	2	global	1
approv	1	announc	1	acquir	1	lead	1
definit	1	lake	1	communic	1	internet	1
board	1	led	1	director	1	corp	1
compani	1	investor	1	silver	1	billion	1

11

Bag of Words: IDF

- Term frequency (TF) measures how prevalent a term is in a single document.
- Now, let's think about a term in the entire corpus, a collection of documents.
- When deciding the weight (i.e. importance) of a term, we may also care how sparse it is in the entire corpus (i.e. among documents).
- This is the **Inverse Document Frequency (IDF).**

Bag of Words: IDF Example

- When deciding the weight (i.e. importance) of a term, we may also care how sparse it is in the entire corpus (i.e. among documents). This is the Inverse Document Frequency (IDF).
- An Example of Three Simple Documents (D1, D2, and D3)
 - D1: jazz music has a unique rhythm
 - · D2: rhythm is hard to explain
 - D3: swing is a natural rhythm
- · rhythm vs. swing in the entire corpus
 - rhythm is "common" (not a important term of D1, D2, or D3)
 - swing is "sparse" (a very important term of D3).

13

Bag of Words: IDF

 $IDF(t) = 1 + \log\left(\frac{\text{Total number of documents}}{\text{Number of documents containing } t}\right)$

Bag of Words: TFIDF

- Term frequency (TF) measures how prevalent a term is in a single document.
- Inverse document frequency (IDF) measures the importance of a term in the entire corpus, a collection of documents.
- TFIDF is a very popular representation for text. It combines the TF and the IDF.
 - The TFIDF value of a term t in a given document d is thus:

$$TFIDF(t,d) = TF(t,d) \times IDF(t)$$

15

Text Representation: Bag of Words

- · Text Representation
 - Take a set of documents (i.e. Raw Text) each of which is a relatively free-form sequence of words – and turn it into our familiar feature-vector form (e.g. Bag of Words).

Text Representation: Bag of Words

- Treat every document as just a collection of individual words
 - Ignore grammar, word order, sentence structure, and (usually) punctuation
 - a) Term frequency (TF) measures how prevalent a term is in a single document.
 - b) Inverse document frequency (IDF) measures the importance of a term in the entire corpus, a collection of documents.
 - c) TFIDF is a very popular representation for text. It combines the TF and the IDF.
 - $TFIDF(t,d) = TF(t,d) \times IDF(t)$

17

Sentiment Analysis

□ Sentiment Analysis

- We also want to be able to recognize whether the writer's attitude towards a particular topic is positive, negative, or neutral.
 - a) It is **fun** and **easy** to do sentiment analysis! **(+2 positive)**
 - b) I hate python. It makes me frustrated... (-2 negative)
 - 1) Polarity
 - It represents the positivity (or negativity) of a given text.
 - 2) Subjectivity
 - It represents the subjectivity (or objectivity) of a given text.
 - Removing objective sentences from a document before classifying its polarity helped improve performance.

Sentiment Analysis: Example

☐ Sentiment Analysis (Example #1)

- a) It is **fun** but **hard** to do sentiment analysis! (P:1) (N:1) (T:9)
- b) I love BA but hate coding; it makes me frustrated. (P:1) (N:2) (T:10)

Let's define the subjectivity score to be the share of positive/negative words

- subjectivity = (# of pos/neg words) / (# words)
- If there is no emotional keyword, then subj = 0
- If all words are emotional, then subj = 1

Then let's define the polarity score to be as following:

- polarity = (# pos words #neg words) / (# words)
- If all words are postive, then pol = 1
- If all words are negative, then pol = -1
- If # pos words == # neg words, then pol = 0

19

Topic Modeling

☐ Latent Information Model (i.e. Topic Modeling)

