MAE 143B Equation Sheet

P1.10 Galileo's Inclined Plane Problem

- h, fall height (ft)
- d, horizontal travel distance (in)*,
- l, length of inclined plane (ft),
- y, vertical distance*.

MATLAB commands: Fitting linear model

1 totting timear modes	$J = \text{II}(\alpha, \Pi, \text{poly}_{\Gamma}).$
Fitting quadratic model	f = fit(d, h, 'poly2'),
	for $h = lsin(\theta)$.
Estimating y :	
Conservation of energy	$\frac{1}{2}mv_x^2 = mgh,$
	$\Rightarrow v_x = \sqrt{2gh}$.
Vertical motion	$y = \frac{1}{2}gt^2,$
	$\Rightarrow t = \sqrt{2y/g}$.
Horizontal motion	$d = v_x t$,
	$d = \sqrt{2gh}\sqrt{2y/g},$
	$\Rightarrow d^2/4 = yh.$

f = fit(d. h. 'polv1')

P2.10 Elevator Problem

* units converted to feet.

$J_1\dot{\omega} + b_1\omega = \tau + (f_1 - f_2)r,$
$J_2\dot{\omega} + b_2\omega = \tau + (f_4 - f_3)r.$
$f_1 + m_1 \dot{v_1} = m_1 g + f_3.$
$f_2 + m_2 \dot{v_2} = m_2 g + f_4.$
$v_1 = r\omega, v_2 = -r\omega.$

$$(J_1+J_2+r^2(m_1+m_2))\dot{\omega}+(b_1+b_2)\omega = \tau+gr(m_1-m_2)$$
 (1)

ODE solution:

$$v_1(t) = \tilde{v_1}(1 - e^{\lambda t}) + v_1(0)e^{\lambda t},$$
 (2)

Furthermore:

$$\bar{v_1} = v_1(t)_{t \to \infty}, TC = -\frac{1}{\lambda}.$$

Steady state error	$e_{SS} = \bar{v_1} - v_{SS} = \bar{v_1} - \tilde{v_1}.$
Open loop	$\lambda_{OL} = -\frac{b}{a}$
	$\bar{v_1} = \frac{r}{b} [\tau + gr(m_1 - m_2)],$
	$TC_{OL} = -\frac{1}{\lambda_{OL}}$.
Closed loop	$ au(t) = K(\bar{v_1} - v_1(t)) \ controller$
	$\lambda_{CL} = -\frac{(b+Kr)}{a}$
	$\tilde{v}_1 = \frac{r}{b + Kr} [K \bar{v}_1 + gr(m_1 - m_2)],$
	$TC_{OL} = -\frac{1}{\lambda_{OL}},$
	$K = \frac{a-5b}{5\pi}$.
	∂r

3.8 Frequency Response

Input	$u(t) = A\cos\omega t + \phi,$
Response	$y_{ss}(t) = A G(j\omega) cos(\omega t + \phi + \angle G(j\omega)).$
Phase angle	$\angle G(j\omega) = \arctan\left(\frac{\Im G(j\omega)}{\Re G(j\omega)}\right),$
	$\angle G(j\omega) = \angle N\{G(j\omega)\} - \angle D\{G(j\omega)\}.$

For a LTI system without poles on the imaginary axis, i.e., $G_0(s) = 0$.

4.1 Tracking, Sensitivity and Integral Control

Lemma 4.1 Asymptotic tracking

Let S(s) be the asymptotically stable transfer function S(0) = 0. The system asymptotic tracks a constant reference input if the product GK has a pole at the origin.

Lemma 4.3 Internal stability

The closed-loop system is internally stable if and only if S(s) is asymptotically stable and any pole-zero cancellations of the product GK satisfy $\Re\{z\} < 0$.

Asymptotic stability if G(s) converges and is bounded for all $\Re(s) \geq 0$, i.e., G(s) does not have poles on the imaginary axis or on the right-hand side of the complex plane.

Asymptotic tracking if S(s) has a zero at s=0.

Asymptotic tracking if S(s) has a zero at s=0.

Asymptotic if D(s) has a zero at s=0, or the controller K(s) has a pole at the origin, i.e., $s=j\omega$.

Asymptotic tracking if S(s) has a zero at s = 0.

4.4 Feedback with Disturbances

Sensitivity	i.e., from $\bar{v_1}$ to e
	$S = \frac{1}{1 + GK}$
Disturbance	i.e., from w to e
	$D = GS = \frac{G}{1 + GK}$
Output-input	i.e., from $\bar{v_1}$ to v_1
	$H = GKS = \frac{GK}{1+GK}$.
Design	$H = GKS = \frac{GK}{1+GK}.$ $Q = GS = \frac{K}{1+GK}.$
$Closed{-loop\ system}$	For inputs
Closed-loop system	For inputs
$Closed-loop\ system$ $y = G(u+w),$	For inputs $y = H\bar{y} - Hv + Dw,$
y = G(u+w),	•
	•
$y = G(u+w),$ $u = K\tilde{e},$	$y = H\bar{y} - Hv + Dw,$ $u = Q\bar{y} - Qv - Hw.$
y = G(u+w),	$y = H\bar{y} - Hv + Dw,$

Laplace Transforms

$$\begin{split} L[f](s) &= \int_0^\infty e^{-sx} f(x) dx \\ f(t) &= t^n, n \geq 0 & F(s) = \frac{n!}{s^{n+1}}, s > 0 \\ f(t) &= e^{at}, a \ constant & F(s) = \frac{1}{s-a}, s > a \\ f(t) &= \sin bt, b \ constant & F(s) = \frac{b}{s^2+b^2}, s > 0 \\ f(t) &= \cos bt, b \ constant & F(s) = \frac{s}{s^2+b^2}, s > 0 \\ f(t) &= t^{-1/2} & F(s) = \frac{\pi}{s^{1/2}}, s > 0 \\ f(t) &= \delta(t-a) & F(s) = e^{-as} \\ f' & L[f'] &= sL[f] - f(0) \\ f'' & L[f''] &= s^2 L[f] - sf(0) - f'(0) \\ L[e^{at} f(t)] & L[f](s-a) \\ L[u_a(t) f(t-a)] & L[f]e^{-as} \end{split}$$

4.7 Pole-Zero Cancellations and Stability

Sensitivity	The poles of $S(s)$ are the zeros of the characteristic equation of $S(s)$.
	Furthermore, the zeros of $S(s)$ are
	the poles of the product GK .
GK	$\tilde{G}\tilde{K} = \frac{N_{\tilde{G}}N_{\tilde{K}}}{D_{\tilde{G}}D_{\tilde{K}}}$ which have polyno-
	mial roots $N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}D_{\tilde{K}} = 0.$
\overline{S}	If all the roots of $\tilde{G}\tilde{K}$ have ne-
	gative real parts, then $S(s) =$
	$\frac{D_{\tilde{G}}D_{\tilde{K}}}{N_{\tilde{G}}N_{\tilde{K}}+D_{\tilde{G}}D_{\tilde{K}}}$ and $H=1-S$ are
	asymptotically stable.
SG and SK	$SG = \frac{(s-z)}{(s-p)} \frac{N_{\tilde{G}} N_{\tilde{K}}}{N_{\tilde{G}} N_{\tilde{K}} + D_{\tilde{G}} D_{\tilde{K}}},$ $SK = \frac{(s-p)}{(s-z)} \frac{N_{\tilde{K}} D_{\tilde{G}}}{N_{\tilde{G}} N_{\tilde{K}} + D_{\tilde{G}} D_{\tilde{K}}}$
	$SK = \frac{(s-p)}{(s-z)} \frac{N_{\tilde{K}} D_{\tilde{G}}}{N_{\tilde{G}} N_{\tilde{K}} + D_{\tilde{G}} D_{\tilde{K}}}$
	are stable only if p and z are both
	negative.

6.1 Second-Order Systems

	3
Characteristic equation	$s^2 + 2\zeta\omega_n s + \omega_n^2, \omega_n > 0.$
Inverse Laplace	$\mathcal{L}^{-1} = \left\{ \frac{k}{s + \zeta \omega_n - j\omega_d} + \frac{k^*}{s + \zeta \omega_n + j\omega_d} \right\}$
Transform	$=2 k e^{-\zeta\omega_n t}\cos(w_d t + \angle k)$
Parameters	$\omega_d = \omega_n \sqrt{1 - \zeta^2}, 0 < \zeta < 1.$
	$\phi_d = \arcsin \zeta = \arctan \left(\frac{\zeta \omega_n}{\omega_d} \right).$
$Step\ response$	$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \omega_n > 0.$
	$y(t) = L^{-1} \left\{ \frac{G(s)}{s} \right\},$
	$=1-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_d t+$
	$\pi/2-\phi_d)$
where ζ is the	damping ratio and ω_n is the nature

where ζ is the damping ratio and ω_n is the natural frequency.