Lista 5: Geometria Analítica

A. Ramos *

8 de junho de 2017

Resumo

Lista em constante atualização.

- 1. Equação da elipse;
- 2. Equação da hiperbóla.
- 3. Estudo unificado das cônicas não degeneradas.

Elipse

Dado dois pontos F_1 e F_2 no plano, e dois números positivos a e c $(a \ge c)$ com $dist(F_1, F_2) = 2c$. A elipse é definida como o seguinte conjunto

$$\mathcal{E} := \{ P \in \mathbb{R}^2 : dist(P, F_1) + dist(P, F_2) = 2a \}.$$

Os pontos F_1 e F_2 são chamados de focos. Defina $b:=\sqrt{a^2-c^2}$. Observe que por definição de b, temos que $a^2=b^2+c^2$. O número $e:=\frac{c}{a}$ é chamado de excentricidade da elipse.

- 1. eixo focal (eixo transverso): reta que contem os focos F_1 e F_2 ;
- 2. **vértices:** Interseção do eixo focal com a elipse. A interseção é dada por dois pontos, denotado V_1 e V_2 ;
- 3. **centro**: Ponto meio do segmento F_1F_2 ;
- 4. eixo normal (eixo conjugado): reta perperndicular ao eixo focal que passa pelo centro;
- 5. **corda:** qualquer segmento de une dois pontos diferentes da elipse;
- 6. corda focal: corda que passa por algum foco;
- 7. lado reto: corda focal paralela à reta normal;
- 8. raio vetor: segmento de reta que une algum foco com algum ponto da parábola;
- 9. diámetro: corda que passsa pelo centro.
- 10. eixo maior: segmento V_1V_2 . Observe que o eixo maior tem comprimento 2a;
- 11. **eixo menor:** segmeto definido pela interseção da elipse com a reta normal. Note que o eixo menor tem medida 2b;
- 12. retas diretrizes: retas paralelas à reta normal cuja distância ao centro C é a/e.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

$$dist(V_1, V_2) = 2a$$
 (eixo maior da elipse), $dist(F_1, F_2) = 2c$ (distância focal).

Remark 1: Note que a elipse é simetrica em relação ao eixo focal e também ao eixo normal.

Remark 2: Veja a construção geometrica da elipse na internet, por exemplo, https://www.youtube.com/watch?v=RYV-uBWdb8Y.

Usando um sistema de coordenadas a elipse $\mathcal E$ pode ser escrita com uma das seguintes formas.

Forma canônica (também chamada de forma reduzida) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ou $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, onde o centro C = (0,0) e o eixo focal é paralelo a algum dos eixos canônicos. Desenhe ambas elipse explicitando o segmento que tem comprimento a e/ou b.

Quando o centro C=(h,k) e o eixo focal é paralelo a algum dos eixos canônicos, $\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ ou $\frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1$,

Forma geral sem rotação $x^2 + y^2 + Dy + Ex + F = 0$. onde o eixo focal é paralelo a algum dos eixos canônicos.

Forma geral mesmo $Ax^2 + Bxy + Cy^2 + Dy + Ex + F = 0$ se $B^2 - 4AC < 0$.

Retas tangentes para a Elipse. Em qualquer ponto sobre a elipse podemos calcular retas tangentes e retas normais.

Quando
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. A reta tangente à \mathcal{E} no ponto $P = (x_0, y_0) \in \mathcal{E}$ é dada por $r : (\frac{x_0}{a^2})x + (\frac{y_0}{b^2})y = 1$. **Quando** $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$. A reta tangente à \mathcal{E} no ponto $P = (x_0, y_0) \in \mathcal{E}$ é dada por $r : (\frac{x_0}{a^2})x + (\frac{y_0}{a^2})y = 1$.

Com essas informações responda:

- 1. Calcule os focos, vértices, a medida do eixo maior e a do eixo menor, esboce as elipses
 - (a) $x^2/9 + y^2/25 = 1$ e $4x^2 + 10y^2 = 40$

(b)
$$4x^2 + 169y^2 = 676$$
 e $16x^2 - 4 + 4y^2 = 0$

- 2. Escreve a equação reduzida da elipse nos seguintes casos:
 - (a) Centro = (0,0), eixo focal paralelo ao eixo x, o eixo menor mede 6 e a distância focal é 8.
 - (b) Os focos são (0,6) e (0,-6) e o eixo maior mede 34
 - (c) Centro = (0,0), um foco é $(0,-\sqrt{40})$ e o ponto $(\sqrt{5},14/3)$ pertence à elipse.
 - (d) Os focos são $F_1 = (1,1)$ e $F_2 = (-1,-1)$ e satisfaz $dist(P,F_1) + dist(P,F_2) = 4$
- 3. Considere uma elipse com foco F=(-2,0) que passa por P=(2,-3) e tem como reta diretriz é r:x+8=0. Encontre a excentricidade da elipse. $Rpta:\ e=1/2$.
- 4. Encontre a equeção da elipse cujo focos e vértices coincidem com os focos e vértices das parábolas \mathcal{P}_1 : $y^2 + 4x = 12$ e \mathcal{P}_2 : $y^2 4x = 12$. Rpta: $5x^2 + 9y^2 = 45$.
- 5. Se uma elipse tem seu centro na origem, seus focos sobre o eixo x a distância entre as diretrizes é 12. Se $P=(3,\sqrt{5})$ pertence à elipse, encontre sua equação reduzida. *Rpta:* Duas elipses, $\mathcal{E}_1:8x^2+24y^2=192$ e $\mathcal{E}_2:35x^2+84y^2=735$.
- 6. Seja $B_1 = (3,5)$ e $B_2 = (3,-3)$ os extremos do eixo menor da elipse que tem uns dos vértices sobre a reta 3x y + 7 = 0. Rpta: $\mathcal{E}: 16(x-3)^2 + 25(y-1)^2 = 400$.
- 7. Considere a equação da elipse em forma reduzida. Mostre que se (x_0, y_0) está na elipse, os pontos $(x_0, -y_0)$, $(-x_0, y_0)$ e $(-x_0, -y_0)$ também pertencem à elipse.
- 8. Se a distância entre as diretrizes de uma elipse é 18, e os focos são os pontos (1,5) e (1,3). Encontre a equação da elipse. Rpta: $9(x-1)^2 + 8(y-4)^2 = 72$.

- 9. Considere a elipse $b^2x^2 + a^2y^2 = a^2b^2$, com foco $F_1 = (c,0)$, $F_2 = (-c,0)$ e um ponto $P = (x_0,y_0)$ da elipse. Mostre que o raio vetor PF_1 é igual $a ex_0$ (i.e $|\overrightarrow{PF_1}| = a ex_0$) e raio vetor PF_2 é $aa + ex_0$ (i.e $|\overrightarrow{PF_2}| = a + ex_0$)
- 10. Encontre a equação da corda focal da elipse $16x^2 + 25y^2 = 400$, cujo comprimento é 8 unidades e passa pelo foco com coordenadas positivas. Rpta: $\sqrt{2}y \pm 2(x-3) = 0$.
- 11. Considere a parábola $\mathcal{P}: x^2 = 4y$. Ache a equação da elipse cujo centro é o vértice de \mathcal{P} tal que o extremo do eixo menor é o foco da parábole e o eixo tranverso da elipse é paralelo à diretriz da parábola. $Rpta: \mathcal{E}: x^2 + 2y^2 = 32$. Dica: Considere que a corda é PQ, onde P e Q estão na elipse. (1) Encontre primeiro o foco $F = (f_1, f_2)$, (2) Escreva a equação da reta que define a corda PQ, tipo $y f_1 = m(x f_2)$, onde m é a incognita, (3) Note que o comprimento do segmento PQ é igual à soma dos segmentos PF e FQ, (4) Use o problema anterior para calcular PF e FQ.
- 12. Encontre a equação da elipse com centro (1, -3), com um foco em (0, -6) e a interseção do eixo focal com uma diretriz da elipse é (3, 3). $Rpta: e = 1/\sqrt{2}$, $\mathcal{E}: 19x^2 6xy + 11y^2 56x + 72y 64 = 0$.
- 13. Seja \mathcal{E} uma elipse e P um ponto exterior à elipse $(P \notin \mathcal{E})$. Encontre as retas tangentes da elipse que passam por P, nos seguintes casos:
 - (a) $\mathcal{E}: 9y^2 + 4x^2 = 72$, P = (0,4) Rpta: 2x + 3y 12 = 0, 2x 3y + 12 = 0;
 - (b) $\mathcal{E}: 2x^2 + 3y^2 + x y = 5$, P = (3, -1) Rpta: x + y = 2, 9x 191y = 218.
 - (c) A reta r: 2x y 3 = 0 é tangente à elipse $\mathcal{E}: 9x^2 + 16y^2 = 144$? Rpta: não, r é uma reta secante (i.e. corta a elipse em dois pontos)
 - (d) A reta r: 2x + y = 10 é tangente à elipse $\mathcal{E}: 4x^2 + 9y^2 = 36$? Rpta: não, r não intercepta a elipse.
- 14. Seja \mathcal{E} uma elipse, com excentricidade 1/5 tal que r:2x+y+128=0 é a diretriz associada ao foco F=(-4,0). Ache a equação da elipse assim como também a equação da outra diretriz. $Rpta: 121x^2-4xy+124y^2+488x-256y-14384=0$ e diretriz 2x+y-122=0.
- 15. Seja $\mathcal{E}: x^2 + 3y^2 + 3x 4y = 3$. Encontre os valores de $\alpha \in \mathbb{R}$ para que as retas $5x + 2y + \alpha$ sejam tangentes à elipse. $Rpta: \alpha = -7$ e $\alpha = 58/3$.
- 16. *Propriedade refletora da Elipse: Mostre que a tangente da elipse num ponto T da elipse forma ângulos iguais com os raios focais em dito ponto. Dica: Considere a forma reduzida da elipse e a formula $\tan(\alpha + \beta) = (\tan(\alpha) + \tan(\beta))/(1 \tan(\alpha)\tan(\beta))$.
- 17. Seja $\mathcal{E}: 4x^2 + 9y^2 = 180$. Do foco esquerdo da elipse sai um raio de luz com um ângulo de inclinação α com $\tan(\alpha) = -2$, que bate na elipse no ponto $P = (x_0, y_0) \ (y_0 > 0)$ e é refletido. Ache a equação da reta que contem o raio refletido. Rpta: r: 2x + 11y 10 = 0.

Hipérbole

Dado dois pontos F_1 e F_2 no plano, e dois números positivos a e c (c > a) com $dist(F_1, F_2) = 2c$. A hipérbole é o conjunto

$$\mathcal{H} := \{ P \in \mathbb{R}^2 : |dist(P, F_1) - dist(P, F_2)| = 2a \}.$$

Os pontos F_1 e F_2 são chamados de focos. Defina $b := \sqrt{c^2 - a^2}$. Por definição de b, temos que $c^2 = b^2 + a^2$ (**perceba as diferenças com a hipérbole**). O número $e := \frac{c}{a}$ é chamado de *excentricidade* da hipérbole. Veja que para a hipérbole e > 1.

- 1. eixo focal (eixo transverso): reta que contem os focos F_1 e F_2 ;
- 2. **vértices:** Interseção do eixo focal com a hipérbole. A interseção são dois pontos denotados por V_1 e V_2 ;
- 3. **centro**: Ponto meio do segmento F_1F_2 ;

- 4. eixo normal (eixo conjugado): reta perperndicular ao eixo focal que passa pelo centro;
- 5. corda: qualquer segmento de une dois pontos diferentes da hipérbole;
- 6. corda focal: corda que passa por algum foco;
- 7. lado reto: corda focal paralela ao eixo normal;
- 8. raio vetor: segmento de reta que une algum foco com algum ponto da hipérbole;
- 9. eixo maior: segmento V_1V_2 . Observe que o eixo maior tem comprimento 2a;
- 10. eixo menor: segmento definido pela interseção da hipérbole com o eixo normal. O eixo menor tem medida 2b;
- 11. retas diretrizes: retas paralelas à reta normal cuja distância ao centro $C \in a/e$.
- 12. rectângulo fundamental: rectângulo cujo centro é o centro da hipérbole, com lados de comprimento 2a e 2b e paralelos aos eixo transveso e conjugado respectivamente.
- 13. assintotas: retas que passam por C, não interceptam à hipérbole mas tendem à hipérbole no infinito. Ditas retas são definas pelas diagonais do rectângulo fundamental.
- 14. ramo da hipérbole: cada uma das curvas que definem a hipérbole.

Observe que para a hipérbole $dist(V_1, V_2) = 2a < dist(F_1, F_2) = 2c$.

Remark 1: Note que a hipérbole é simetrica em relação ao eixo focal e ao eixo normal.

Remark 2: Veja a construção geometrica da hipérbole na internet, por exemplo, https://www.youtube. com/watch?v=ETV_bWAPOqU.

Usando um sistema de coordenadas a hipérbole \mathcal{H} pode ser escrita com uma das seguintes formas.

Forma canônica (também chamada de forma reduzida). Nesta caso, a hipérbole é o lugar geometrico definido por $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (hipérbole horizontal) ou $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ (hipérbole vertical), onde o centro C = (0,0) e o eixo focal é paralelo a algum dos eixos canônicos. Desenhe ambas hipérbole explicitando o segmento que tem comprimento a e/ou b. Lembre $dist(V_1, V_2) = 2a$.

Remark: Nesse caso as assíntotas podem ser facilmente calculadas. De fato:

- 1. Quando \mathcal{H} é uma hipérbole horizontal, as assíntotas são as retas $y=\pm \frac{b}{a}x$;
- 2. Quando \mathcal{H} é uma hipérbole vertical, as assíntotas são as retas $y=\pm \frac{a}{h}x$.

Quando o centro C = (h, k) e o eixo focal é paralelo a algum dos eixos canônicos, temos que a hipérbole pode ser descrita como $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ ou $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$. Forma geral sem rotação $Ax^2 - Cy^2 + Dy + Ex + F = 0$. onde o eixo focal é paralelo a algum dos eixos

canônicos.

Forma geral mesmo $Ax^2 + Bxy + Cy^2 + Dy + Ex + F = 0$ se $B^2 - 4AC > 0$.

Retas tangentes para a hipérbole. Em qualquer ponto sobre a hipérbole podemos calcular retas tangentes

Quando
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
. A reta tangente à \mathcal{H} no ponto $P = (x_0, y_0) \in \mathcal{H}$ é dada por $r : (\frac{x_0}{a^2})x - (\frac{y_0}{b^2})y = 1$. Quando $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$. A reta tangente à \mathcal{H} no ponto $P = (x_0, y_0) \in \mathcal{H}$ é dada por $r : (\frac{y_0}{a^2})y - (\frac{x_0}{b^2})x = 1$.

Com essas informações responda:

- 1. Calcule os focos, vértices, as equações das assíntotas. Esboce as hipérboles
 - (a) $16x^2 25y^2 = 400$ e $9y^2 4y^2 = 36$
 - (b) $x^2 y^2 + 1 = 0$ e $x^2 4y^2 = 1$

- 2. Escreve a equação reduzida da elipse nos seguintes casos:
 - (a) Os focos são $F_1=(3,-1)$ e $F_2=(3,4)$ e satisfaz $|dist(P,F_1)-dist(P,F_2)|=3$;
 - (b) Os focos são $F_1 = (-1, 1)$ e $F_2 = (1, 1)$ e satisfaz $|dist(P, F_1) dist(P, F_2)| = 1$;
 - (c) Os vértices são (2,0) e (-2,0) e os focos são (3,0) e (-3,0);
 - (d) Os vértices são (15,0) e (-15,0) e as assíntotas são 5y 4x = 0 e 5y + 4x = 0.
- 3. Encontre a equação da hipérbole cujos focos são (4,0) e (-4,0), e o coeficiente ângular duma das assíntotas é 3. Rpta: $\mathcal{H}: 45x^2 5y^2 = 72$.
- 4. Seja uma hipérbole com centro na origem, focos sobre o eixo x cuja distância entre as diretrizes é 4 e passa por P = (4,3). $Rpta: \mathcal{H}: 3x^2 2y^2 = 30$
- 5. Considere a elipse $\mathcal{E}: 25x^2 + 9y^2 = 225$. Se os focos dessa elipse coincidem com os focos duma hipérbole de excentricidade 4/3. Escreva a equação reduzida da hipérbole. $Rpta: \mathcal{H}: 7y^2 9x^2 = 63$.
- 6. Calcule a àrea do triângulo formado por as assíntotas de hipérbole $\mathcal{H}: x^2-4y^2=16$ e a reta r: 3x-2y+12=0. $Rpta: 9u^2$
- 7. Encontre a equação reduzida de uma hipérbole se os focos são os pontos (-10,0) e (10,0), e suas assíntotas são as retas $r: y = \pm 2x$. $Rpta: \mathcal{H}: 4x^2 y^2 = 80$.
- 8. Se as assíntotas duma hipérbole, que tem um foco em (3, -2), são $r_1: 3x-4y-5=0$ e $r_2: 3x+4y+11=0$. Encontre a sua excentricidade. Rpta: e=5/4.
- 9. É possível construir uma hipérbole com focos em (3,4) e (-1,-2) tal que a **medida do eixo maior** é 2. Caso afirmativo, escreva a equação de dita hipérbole. *Rpta:* Sim, $\mathcal{H}: 3x^2+8y^2+12xy-18x-28y+11=0$. *Dica:* Use a definição da hipérbole.
- 10. Considere a hipérbole $b^2x^2 a^2y^2 = a^2b^2$, com foco $F_1 = (c,0)$, $F_2 = (-c,0)$ e um ponto $P = (x_0,y_0)$ da hipérbole. Mostre que o raio vetor PF_1 é igual $|a ex_0|$ (i.e $|\overrightarrow{PF_1}| = |a ex_0|$) e raio vetor PF_2 é $|a + ex_0|$ (i.e $|\overrightarrow{PF_2}| = |a + ex_0|$)
- 11. Encontre as retas tangentes da hipérbole $\mathcal{H}: x^2-4y^2=20$ perpendiculares à reta r:4x+3y-7. Rpta: $r_1:3x-4y+10=0$ e $r_2:3x+4y-10=0$.
- 12. Ache um ponto P da hipérbole $\mathcal{H}: 9x^2-12y^2=216$ mais próximo à reta r: 3x+2y+1=0. Calcule também a distância entre P e a reta r. Rpta: P=(-6,3) e distância= $11/\sqrt{13}$.
- 13. Considere uma hipérbole \mathcal{H} com focos em (6,-1) e (0,-4) e passa por A=(0,-9). Ache as equações das diretrizes. Rpta: $\mathcal{D}_1: 6x+3y-23=0$ e $\mathcal{D}_2: 6x+3y+2=0$.
- 14. *Propriedade refletora da Hipérbole: Mostre que a tangente da hipérbole num ponto T forma ângulos iguais com os raios focais em dito ponto. Dica: Considere a forma reduzida da elipse e a formula $\tan(\alpha + \beta) = (\tan(\alpha) + \tan(\beta))/(1 \tan(\alpha) \tan(\beta))$.
- 15. Encontre a equação da hipérbole com centro na origem, que passa por P=(0,2) se o eixo focal é 2x-y=0 e uma assintota é o eixo x. *Dica:* $Rpta: \mathcal{H}: 3y^2+4xy=12$.

Estudo unificado das cônicas não degeneradas

Usando a excentrecidade, é possível escrever todas as cônicas não degeneradas (menos a cricunferência) de forma uniforme. De fato, temos o seguinte resultado:

Theorem 0.1 Seja uma reta fixa \mathcal{D} , chamada de diretriz e um ponto F fixo chamado foco com $F \notin \mathcal{D}$. Defina o sequinte lugar geometrico

$$\mathcal{K} := \{ P \in \mathbb{R}^2 : dist(P, F) = e \ dist(P, \mathcal{D}) \}. \tag{1}$$

onde e>0 é uma constante fixa. Esse lugar geometrico K é chamado de cônica. Dependendo do valor de e temos as seguintes alternativas:

- 1. Se e = 1, então K é uma parábola;
- 2. Se $e \in (0,1)$, então K é uma elipse;
- 3. Se e > 1, então K é uma hipérbole.

Reciprocamente, toda cônica não degenerada que não seja uma circunferência pode ser escrita como (1).

Remark: As seções cônicas são curvas obtidas ao intercetar um plano com um cone. Veja, por exemplo: https://www.youtube.com/watch?v=HO2zAU3Eppo.

Responda as seguintes questões:

- 1. Seja \mathcal{K} uma cônica que passa por P=(-2,3), com foco F=(2,3) e reta diretriz $\mathcal{D}:y+1=0$. Identifique a cônica e encontre a equação analítica que a descreve. Rpta: \mathcal{K} é uma parábola cuja equação é $x^2-4x-8y+12=0$.
- 2. Se temos uma cônica cujo foco é (-1, -4), cuja reta diretriz é x = 2 e passa por P = (-3, -5), identifique dita cônica e ache a sua equação. Rpta: elipse, $\mathcal{E}: 4x^2 + 5y^2 + 14x + 40y + 81 = 0$.
- 3. Considere uma cônica cujo foco é (3, -1), cuja reta diretriz é 2x 3 = 0 e passa por P = (6, 55). Identifique a cônica e ache a sua equação. Rpta: hipérbole $\mathcal{H}: 11x^2 9y^2 6x 18y 45 = 0$.