Stats for Data Science

Saumya Bhatnagar

February 14, 2020

Regression, Classification, Clustering

Table of contents

Regression, Classification, Clustering

Regression, Classification, Clustering

Regression

Classification

Decision Tree and Random Forest

Clustering

Clustering Types

Density Models

Distribution Models

Centroidal models

Connectivity Models

Analysis

Customer Analysis

Trend Analysis

Regression, Classification, Clustering

Regression

Regression, Classification, Clustering

- 1. Linear
- 2. KNN
- 3. SVM
- 4. Random Forest

Classification

- 1. Logistic
- 2. KNN
- 3. SVM Classifier
- 4. Random Forest

Clustering

- 1. K-Means
- 2. Hierarchical
- 3. DBSCAN
- 4. HDBSCAN

Analysis 0000000

Regression analysis is a statistical technique to assess the relationship between an predictor variable and one or more response factors.

	variable			variance
	Continuous,	Normal or		
	unbounded	Standard Gaussian	Identity	
	Continuous, Gamma or			
	non-negative	inverse Gamma		
	Discrete/	Poisson	Log	Identity
,		Quassi-poisson or		If not
		negative binomial		Identity
	Count Gamma Counts with Zero inflated poisson			Over dispersion
	multiple zero	may be checked for fitting		
	<u> </u>	D:		

Link

Mean to

Varianco

GLM Family

Binary Binomial or

Outcome

Variable

Logistic regression

Nominal Multinomial regression

Regression Model Selection Criteria

Three methods to classifier

Regression, Classification, Clustering

1. model a classification rule - knn, decision tree, perceptron, svm

Classification

- 2. model the probability of class membership given input data perceptron with cross-entropy cost
- make a probabilistic model of data within each class naive bayes 1 & 2 are discriminative classifications 3 is generative classification 2 & 3 probabilistic classification

Classification

O

Analysis 0000000

Decision Tree and Random Forest

Decision Tree

Classification

Analysis

Decision Tree and Random Forest

Random Forest

Clustering Types

"Help me understand our customers better so that we can market our products to them in a better manner!

Monothetic: Cluster members have some common property Expectation–Maximization (EM) Clustering using Gaussian Mixture Models (GMM)

Polythetic: Cluster members are similar to each other. Distance between elements define relationship

Hard Clustering: each data point either belongs to a cluster completely or not

Soft Clustering: a probability or likelihood of that data point to be in those clusters is assigned.

Regression,	Classification,	Clustering	
0			

Distribution models

how probable is it that all

Classificatio

Centroid models

iterative clustering

algorithms

Clustering

Density models

various

isolates

Analysis 00000000

different

Clustering Types

Connectivity models

data points closer in data

Stats for Data Science

Clustering Models

data points closer in data	now probable is it that all	iterative clustering algorithms in	isolates various different			
space exhibit more similarity	data points in the cluster be-	which the notion of similarity is de-	density regions and assign			
to each other than the data	long to the same distribution	rived by the closeness of a data	the data points within these			
points lying farther away	(e.g: Normal, Gaussian)	point to the centroid of the clusters	regions in the same cluster			
hierarchical clustering	Expectation-maximization	K-Means, k-median	mean-shift, DBSCAN and OPTICS			
Approaches: 1) Top-	EM uses multivariate normal	DZA	DBSCAN uses radius ϵ and			
bottom, 2) bottom-up	distributions		Center c			
lacks scalability for handling	These models often suffer	important to have prior knowledge	DBSCAN doesn't perform			
big datasets, Time complex-	from over-fitting. Prior	of the dataset. results change in ev-	as well when the clusters are			
ity: O(n ²)	knowledge to define num	ery trial	of varying density			
	clusters					
Results are reproducible	more flexibility in terms of	can handle big data , Time com-	DBSCAN identifies outliers			
	cluster covariance due to	plexity: O(n)	as noises			
	μ and σ (additional σ)					
chk1	elliptical shape (since we	work well when the shape of the	DBSCAN: can find arbi-			
	have a standard deviation in	clusters is hyper spherical (like circle	trarily sized and arbitrarily			
	both the x and y directions	in 2D, sphere in 3D)	shaped clusters			
Angola	GMMs support mixed mem-	AGO	DBSCAN: drawback in			
-	bership since is probability		high-dimensional data since			
	based		the distance threshold ϵ			
			becomes challenging to			
			estimate			
Saumya Bhatnagar						

Classification

Clustering

OO

OOO

OOO

OOO

OOO

Analysis 0000000

Clustering Types

Density Models

mean-shift clustering

Regression, Classification, Clustering

consider a set of points in two-dimensional space a circular sliding window C centered and radius r as the kernel hill-climbing algorithm that involves shifting this kernel iteratively to a higher density (\propto number of points) region until convergence At every iteration,

- shift the center point to the mean of the points within the window (hence the name)
- -gradually move towards areas of higher point density
- until no longer increase in the density
- When multiple sliding windows overlap the window containing the most points is preserved. The data points are then clustered according to the sliding window in which they reside.

Clustering

Analysis

Density Models

Regression, Classification, Clustering

Density-Based Spatial Clustering of Applications with Noise-DBSCAN

-label all data point to be unvisited. For all unvisited points:

- 1. All points which are within the ϵ distance are neighborhood points (part of the same cluster)
- 2. If neighborhood points i = minPoints, then the clustering process starts and the current data point becomes the first point in the new cluster - Otherwise, mark the point as noise -In both cases that point is marked as "visited"
- 3. repeated for all of the new points in the cluster group
- 4. next an new unvisited point is retrieved and processed

Since at the end of this all points have been visited, each point will have been marked as either belonging to a cluster or being noise.

Classification

Clustering

OOO
OOO
OOO
OOO

Analysis 0000000

Density Models

Clustering 000

Analysis

Density Models

Hierarchical DBSCAN - HDBSCAN

Clustering

Analysis

Distribution Models

Regression, Classification, Clustering

Gaussian Mixture Models (GMMs)

Assumption: the data points are Gaussian distributed (parameters: the mean and the standard deviation)! Each Gaussian distribution is assigned to a single cluster. To find the parameters of the Gaussian for each cluster, use an optimization algorithm called Expectation-Maximization (EM).

Distribution Models

Regression, Classification, Clustering

Expectation—Maximization (EM) using GMM

choose num of clusters compute the probability that each data point belongs to a particular cluster. With a Gaussian distribution we are assuming that most of the data lies closer to the center of the cluster. From probabilities \rightarrow recompute set of parameters such that we maximize the probabilities of data points within the clusters We compute these new parameters using a weighted sum of the data point positions, where the weights are the probabilities of the data point belonging in that particular cluster.

Repeat till convergence

Classification

Clustering

Analysis 0000000

Distribution Models

Centroidal models

K means

iterative clustering algorithm that aims to find local maxima in each iteration

take a quick look at the data and choose k (num clusters) assign data points to the cluster ↔ compute cluster centroid repeat to reduce variation error

elbow method

Regression, Classification, Clustering

Centroidal models

Regression, Classification, Clustering

k-median

K median vs kmeans: instead of recomputing the group center points using the mean (like in K-Means) we use the median vector of the group. This method is **less sensitive to outliers** (because of using the Median) but is much slower for larger datasets as **sorting is required** on each iteration when computing the Median vector

mean-shift vs kmeans: Instead of selecting the number of clusters as mean-shift automatically discovers this (advantage), the selection of the window size/radius "r" can be non-trivial.

Centroidal models

kmeans fail

Regression, Classification, Clustering

K-Means is actually a special case of GMM in which each cluster's covariance along all dimensions approaches 0

Connectivity Models

Regression, Classification, Clustering

Agglomerative Hierarchical Clustering

The decision of dividing into or merging **two** clusters is taken on the basis of closeness of these clusters. Metrics for deciding the closeness of two clusters:

Euclidean distance:
$$||a - b||_2 = \sqrt{\sum_i (a_i - b_i)}$$

Squared Euclidean distance:
$$||a - \underline{b}||_2^2 = \sum (a_i - b_i)^2$$

Manhattan distance:
$$||a-b||_1 = \sum |a_i-b_i|$$

Maximum distance:
$$||a - b||_{INFINITY} = \max_i |a_i - b_i|$$

Mahalanobis distance:
$$\sqrt{(a-b)^T}S^{-1}(-b)$$

Maybe, use average linkage which defines the distance between two clusters to be the average distance between data points in the first cluster and data points in the second cluster.

Connectivity Models

Regression, Classification, Clustering

hierarchical agglomerative clustering (HAC) or bottom-up

- 1. Each data point as a single cluster
- select a distance metric
- 3. Iterate till convergence
 - combine two clusters with the smallest average linkage

The height in the dendrogram at which two clusters are merged represents the distance between two clusters in the data space. take 4 clusters as the red horizontal line in the dendrogram covers maximum vertical distance AB.

Regression, Classification, Clustering

Churn or Retention Analysis

Customer Retention Rate: The percentage of customers who repurchase in a given time period compared to an equal and preceding time period

Churn Rate: The inverse of Customer Retention Rate, or the percent of users who did not repurchase or whom you lost

proactive churns: losing customers due to cancellations passive churn: failures to renew

Regression, Classification, Clustering

Cohort Analysis and Life Time Value (LTV)

LTV: The expected amount of profit/revenue from a user CLV = NPV (net present value) of the sum of all future revenues from a customer, minus all costs associated with that customer Why LTV: - Tracking your LTV to Customer Acquisition Cost (CAC) ratio: Companies typically use the 3:1 CAC ratio or Cost Per Acquisition (CPA)

- Evaluating your most valuable marketing channels
- Focus on retaining your most valuable customers

Historic CLV: sum of the gross profit from all historic purchases for an individual customer

Avg Order Value, AOV =
$$\frac{Revenue}{Orders}$$
; Avg Purchase Rate = $\frac{Orders}{NumCustomers}$

Avg Customer Value = $\frac{AvgPurchaseVal}{AvgPurchaseRate}$ gives LTV

Avg Customer Lifespan = $\frac{SumCustomerLifespans}{NumCustomers}$ gives LTV

Avg Customer Value X Avg Customer Lifespan

ARPU X $\sum_{n=0}^{N} (1-CR)^t$ [N=num months to examine]

LTV = $\frac{ARPU/CR_n}{ARPU-Avg}$...[ARPU=Avg rev per User, for n months]

ARPU/ $\frac{CR_n}{ARPU-Avg}$ x DR [for variable churn & n months]

ASP/ $\frac{CR_n}{ARPU-Avg}$ AGM x $\frac{CR_n}{Avg}$ Transaction [AGM=Avg Gross Margin]

CLV = $\frac{AGM \times \sum_{0}^{numTransactions} Transaction}{AGM(R/(1+D-R))}$ [account expansion]

T_avg = avg monthly transactions; ALT=avg User Lifespan (in months)
D=monthly discount rate; R=monthly retention rate; DR=Discount Rate
to adjusts for mix churn (Δηριγα) Renewals. Constant. Declining and Cliff
Saumya Bhatnagar
Stats for Data Science

CR=Churn rate; ASP=Avg Selling Price; m=\fARPU/user/month;

Steps to LTV:

Regression, Classification, Clustering

- ▶ Normalizing to Acquisition Date: Bin users into buckets like Day 0, Day 1, Day 2 or Week 0, Week 1, Week 2, and so on.
- Normalized to a Closed Time Limit: Broader questions "What is my total CLTV," should be replaced with "What is our 3-year or 5-year LTV?" & should be based on:
 - 1. Average Customer Lifespan
 - 2. Customer Retention Rate
 - 3. Churn Rate: The inverse of Customer Retention Rate.
 - 4. Time to General Profitability Against Acquisition Costs: If your business is a "Loss Leader" Model this time may be a longer length than businesses with lower acquisition costs and lower profitability.
 - Rate of Discount

Regression, Classification, Clustering

Types of churn and LTV

- Annual Renewals: larger churn at each contract renewal.
- ► Cliff churn: majority of the churn within the first month, and then a small constant churn thereafter.
- ► Constant: steady, constant churn rate (shown as 3.5%).
- Declining: churn rate starts at zero, increases each month.

0

Analysis 00000•00

Customer Analysis

Survival Analysis

Analysis 000000

Customer Analysis

Sentiment Analysis

Analysis 0000000

Customer Analysis

Propensity of Cross-sell

tion Clustering
000
00000
000

Analysis

Other Analysis

Whale Curve Analysis

Regression, Classification, Clustering

Pareto Principle: for many events, roughly 80% of the effects come from 20% of the causes

Clustering

Analysis 000

Other Analysis

"Loss Leader" Model

Regression, Classification, Clustering

"Loss Leader" Model, where you introduce new customers at a high cost in the hope of building a customer base or securing future revenue?

0

000

Clustering

Analysis

Other Analysis

Thank You!