Product Design & Development

Product Specifications

What are specifications?

- Specifications spell out in precise, measurable detail what the product has to do.
- Specifications represent an unambiguous agreement on what the team will attempt to achieve in order to satisfy the identified customer needs.
- Must include regulatory and agency approval requirements

Concept Development Process

Build and Test Models and Prototypes

Target Specs

Based on customer needs and benchmarking

Final Specs

Based on selected concept, feasibility, models, testing, and trade-offs

Product specifications

- Other names for 'product specifications'
 - Product requirements
 - Technical specifications

Product Specifications Example: Mountain Bike Suspension Fork

A specification

 A 'specification' (sing.) consists of a metric and a value

Example:

metric → "Average time to assemble"

value → "less than 75 seconds"

When are specs established?

 For simple products (e.g., soap): early in the development process, right after identifying customer needs

 For technology-intensive products: at least twice ...

For technology-intensive products

- Target specifications
 - (representing hopes and aspirations)
 are set immediately after the team has
 identified the customer needs it aims to
 meet.

- Refined specifications
 - (i.e., the specs the team aims to achieve)
 are documented in the project's "contract
 book".

Target specifications

To establish target specs:

- Prepare list of metrics, using the needs/metrics matrix.
- Collect benchmarking information.
- Set ideal and marginally acceptable target values for each metric.
- Reflect on results and process.

Metrics

Prepare a list of metrics

The underlying assumption is that consumer needs can be translated into precise, measurable specs and that meeting specs will result in satisfaction of the associated customer needs.

The Product Specs Process

- Set Target Specifications
 - Based on customer needs and benchmarks
 - Develop metrics for each need
 - Set ideal and acceptable values
- Refine Specifications
 - Based on selected concept and feasibility testing
 - Technical modeling
 - Trade-offs are critical
- Reflect on the Results and the Process
 - Critical for ongoing improvement

Start with the Customer Needs

#		NEED	Imp
1	The suspension	reduces vibration to the hands.	3
2	The suspension	allows easy traversal of slow, difficult terrain.	2
3	The suspension	enables high speed descents on bumpy trails.	5
4	The suspension	allows sensitivity adjustment.	3
5	The suspension	preserves the steering characteristics of the bike.	4
6	The suspension	remains rigid during hard cornering.	4
7	The suspension	is lightweight.	4
8	The suspension	provides stiff mounting points for the brakes.	2
9	The suspension	fits a wide variety of bikes, wheels, and tires.	5
10	The suspension	is easy to install.	1
	l 		

... but remember

- Metrics should be dependent, NOT independent, variables.
- Metrics should be practical.
- Some needs cannot be easily translated into quantifiable metrics (subjective needs).
- Metrics should include popular criteria used for 'marketplace' comparisons.

Establish Metrics and Units

Metric#	Need #s			
Σ		Metric	Imp	Units
1	1,3	Attenuation from dropout to handlebar at 10hz	3	dB
2	2,6	Spring pre-load	3	N
3	1,3	Maximum value from the Monster	5	g
4	1,3	Minimum descent time on test track	5	S
5	4	Damping coefficient adjustment range	3	N-s/m
6	5	Maximum travel (26in wheel)	3	mm
7	5	Rake offset	3	mm
8	6	Lateral stiffness at the tip	3	kN/m
9	7	Total mass	4	kg
10	8	Lateral stiffness at brake pivots	2	kN/m
11	9	Headset sizes	5	in
12	9	Steertube length	5	mm
13	9	Wheel sizes	5	list
14	9	Maximum tire width	5	in
15	10	Time to assemble to frame	1	S
16	11	Eandar compatibility	1	liot

Metrics Exercise: Ball Point Pen

- Customer Need:
 - The pen writes smoothly.
- Metric(s):
 - Variation in line thickness (mm)
 - 2. Variation in ink coverage (cc/mm²)
 - 3. Functional range of writing force (N)
 - 4. Functional range of writing velocity (mm/sec)
 - 5. Functional range of pen angle from vertical (deg)
 - 6. Variation in resistance to translational motion (N)

Assuming that smooth writing can be characterized by:

- Good quality line
- Preservation of line quality
- Ease of use...

5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 Needs vs. Metrics Attenuation from dropout to handlebar at 10 Hz Damping coefficient adjustment range Minimum descent time on test track Maximum value from the Monster Lateral stiffness at brake pivots Maximum travel (26 in. wheel) Time to assemble to frame ateral stiffness at the tip Maximum tire width Steertube length Spring preload Headset sizes Wheel sizes Rake offset Total mass Need Reduces vibration to the hands • . Allows easy traversal of slow, difficult terrain ٠ 3 Enables high-speed descents on bumpy trails • • Allows sensitivity adjustment 4 5 Preserves the steering characteristics of the bike • Remains rigid during hard cornering 6 Is lightweight Provides stiff mounting points for the brakes Fits a wide variety of bikes, wheels, and tires 10 Is easy to install

Benchmarking

- No product development team can expect to succeed without 'benchmarking' the project against competing products
 - Warning: Data in competitors' catalogues and supporting literature may *not* be accurate.
 Values for key metrics should be verified by independent testing and observation.

Benchmark on Metrics

Metric #	Need #s	Metric	Imp	Units	ST Tritrack	Maniray 2	Rox Tahx Quadra	Rox Tahx Ti 21	Tonka Pro	Gunhill Head Shox
1	1,3	Attenuation from dropout to handlebar at 10hz	3	dB	8	15	10	15	9	13
2	2,6	Spring pre-load	3	N	550	760	500	710	480	680
3		Maximum value from the Monster	5	g	3.6	3.2	3.7	3.3	3.7	3.4
4	1,3	Minimum descent time on test track	5	S	13	11.3	12.6	11.2	13.2	11
5	4	Damping coefficient adjustment range	3	N-s/m	0	0	0	200	0	0
6	5	Maximum travel (26in wheel)	3	mm	28	48	43	46	33	38
7		Rake offset	3	mm	41.5	39	38	38	43.2	39
8	6	Lateral stiffness at the tip	3	kN/m	59	110	85	85	65	130
9	7	Total mass	4	kg	1.409	1.385	1.409	1.364	1.222	1.1
10	8	Lateral stiffness at brake pivots	2	kN/m	295	550	425	425	325	650
11	9	Headset sizes	5	in	1.000 1.125	1.000 1.125 1.250	1.000 1.125	1.000 1.125 1.250	1.000 1.125	NA
12		Steertube length	5	mm	150 180 210 230 255	140 165 190 215	150 170 190 210	150 170 190 210 230	150 190 210 220	NA_
13		Wheel sizes	5	list	26in	26in	26in	26in 700C	26in	26in
14		Maximum tire width	5	in	1.5	1.75	1.5	1.75	1.5	1.5
15	10	Time to assemble to frame	1	S	35	35	45	45	35	85
16	11	Fender compatibility	1	list	Zefal	none	none	none	none	all
17	12	Instills pride	5	suhi	1	4	3	5	3	5

ETM 551 Product Design and Development -Lecture 4

Benchmark on Customer Needs

#		NEED	Imp	ST Tritrack		Rox Tahx Quadra	Rox Tahx Ti 21	Tonka Pro	
1	The suspension	reduces vibration to the hands.	3	•	••••	••	•••••	••	•••
2	The suspension	allows easy traversal of slow, difficult terrain.	2	••	••••	•••	•••••	•••	•••••
3	The suspension	enables high speed descents on bumpy trails.	5	•	•••••	••	•••••	••	•••
4	The suspension	allows sensitivity adjustment.	3	•	••••	••	•••••	••	•••
5	The suspension	preserves the steering characteristics of the bike.	4	••••	••	•	••	•••	•••••
6	The suspension	remains rigid during hard cornering.	4	•	•••	•	•••••	•	•••••
7	The suspension	is lightweight.	4	•	•••	•	•••	••••	•••••
8	The suspension	provides stiff mounting points for the brakes.	2	•	••••	•••	•••	••	•••••
9	The suspension	fits a wide variety of bikes, wheels, and tires.	5	••••	•••••	•••	•••••	•••	•
10	The suspension	is easy to install.	1	••••	••••	••••	••••	•••••	•
4.4	The augmention	works with for dore				_			

Setting target values

- Set ideal and marginally acceptable target values for each metric.
 - At least X
 - At most X
 - Between X and Y
 - Exactly X
 - A set of discrete values

Assign Marginal and Ideal Values

	Ne)
Metric Units	Marginal Value	Ideal Value
1 Attenuation from dropout to handlebar at 10hz dB	>10	>15
2 Spring pre-load N 480	800	650 - 700
3 Maximum value from the Monster g	<3.5	<3.2
4 Minimum descent time on test track s	<13.0	<11.0
5 Damping coefficient adjustment range N-s/m	0	>200
6 Maximum travel (26in wheel) mm 33	3 - 50	45
7 Rake offset mm 3	7 - 45	38
8 Lateral stiffness at the tip kN/m	>65	>130
9 Total mass kg	<1.4	<1.1
10 Lateral stiffness at brake pivots kN/m	>325	>650
	1.000 1.125	1.000 1.125 1.250
		150
	150	170
	170	190
	190	210
12 Steertube length mm	210	230
		26in
13 Wheel sizes list	26in	700c
14 Maximum tire width in	>1.5	>1.75
15 Time to assemble to frame s	<60	<35

Refining the specs (at the end of the Concept Development phase)

- Develop technical models of product.
- Develop cost model.
- Refine specs, making trade-offs where necessary.
- Base trade-offs on tests using technical models and preliminarily cost model.
- Reflect on results and process.

Technical models

Develop technical models of the product:

- A technical model is a tool for predicting the values of different metrics for a particular set of design decisions.
 - As used here, a 'model' may be an analytical or physical approximation of the product.

Cost model

Develop a cost model of the product:

 Goal is to make sure product can be produced at a reasonable cost.

- How much uncertainty is there in the technical and cost models?
- Is concept chosen by team best for target market, or might it be more suitable for another market or segment (low-end or high-end instead of middle?)

 Should the firm initiate a formal effort to develop better technical models of some aspect of product performance for future use?

Specification Trade-offs

Perceptual Mapping Exercise

Set Final Specifications

	METRIC	Units	Value
1	Attenuation from dropout to handlebar at 10hz	dB	>12
2	Spring pre-load	Ν	650
3	Maximum value from the Monster	g	<3.4
4	Minimum descent time on test track	S	<11.5
5	Damping coefficient adjustment range	N-s/m	>100
6	Maximum travel (26in wheel)	mm	43
7	Rake offset	mm	38
8	Lateral stiffness at the tip	kN/m	>75
9	Total mass	kg	<1.4
10	Lateral stiffness at brake pivots	kN/m	>425
11	Headset sizes	in	1.000 1.125
			150 170 190 210
12	Steertube length	mm	230
13	Wheel sizes	list	26in
14	Maximum tire width	in	>1.75
15	Time to assemble to frame	S	<45
16	Fondor compatibility	liot	Zofol

Quality Function Deployment (House of Quality)

Reflect on results and process

- Are team members 'gaming'?
- Should team consider offering multiple products?
- Are any specification missing?

Reflect on results and process

Is the product a winner?

- Product concept should allow team to see specs in a way that the price will meet the customer needs and excel competitively.
- Product concept + specs should offer prospect of competitive pricing + performance meeting or exceeding customer needs
- If not, return to concept generation and selection phase or abandon project.

Summary

- Customer needs expressed in the "language of the customer"
- First target specifications than final specs
- For target specifications:
 - Prepare the list of metrics
 - Collect benchmarking information
 - Set ideal and marginally acceptable values
 - Reflect on the results and the process

Summary

 Final specifications are developed by assessing the actual technological constraints and the expected production costs using analytical and physical models

Summary

- Five step process for refining specifications
 - Develop technical models of the product
 - Develop a cost model of the product
 - Refine the specifications, making trade-offs where necessary
 - Flow down the specifications as appropriate
 - Reflect on the results and the process