MAT 202 Larson – Section 8.2 Integration by Parts

Continuing on with our investigation of techniques of integration we will now learn a very powerful tool called *Integration by Parts*.

Consider the following integrals: $\int x \ln x \, dx$, $\int x e^x \, dx$, and $\int e^x \sin x \, dx$.

Notice that the u-substitution approach for finding the integral is not an option. We will now develop a tool that will allow us integrate these types of integrals.

Deriving an Integration by Parts Formula:

- 1. We begin with the derivative of uv: $\frac{d}{dx}[uv] = u \frac{dv}{dx} + v \frac{du}{dx}$ (Product rule)
- 2. Integrating both sides with respect to x, we get:

$$\int \frac{d}{dx} [uv] dx = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx$$

$$uv = \int u dv + \int v du$$

3. Solving for $\int u \ dv$, we get the formula: $\int u \ dv = uv - \int v \ du$

Choosing u & dv:

In integration by parts, you have the freedom of choosing "u", and "dv". Here are your options:

- 1) Let dv be the most complicated portion of the integrand that fits a basic integration rule. Then u will be the remaining factor(s) of the integrand.
- 2) Let u be the portion of the integrand whose derivative is a function simpler than u. Then dv will be the remaining factor(s) of the integrand.

Note: dv will always include dx of the original integrand.

For example, with $\int xe^x dx$, we could choose: $u = e^x$ and dv = x dx or we could choose it the other way around: u = x and $dv = e^x dx$. In this case, the latter is better since the derivative of x is an easier function to deal with:

By letting u = x and $dv = e^x dx$, we get du = dx and $v = e^x$.

$$\int xe^x dx = uv - \int v du = xe^x - \int e^x dx = xe^x - e^x + C$$

Ex: Integrate the following:

a)
$$\int xe^{-4x} dx$$

b)
$$\int \frac{5x}{e^{2x}} dx$$

c)
$$\int \frac{(\ln x)^2}{x} dx$$

d)
$$\int \frac{\ln x}{x^3} dx$$

Ex: Integrate the following:

a)
$$\int xe^{-4x} dx$$

$$u = x \quad \text{id} v = \int e^{-4x} dx$$

$$du = dx \quad \text{if } v = -\frac{1}{4}e^{-4x}$$

Ex: Integrate the following:
$$\int u \, dv = uv - \int v \, du$$

$$u = x \qquad \begin{cases} dv = \int e^{-4x} \, dx \end{cases}$$

$$= x \cdot -\frac{1}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x} \, dx$$

$$du = dx \qquad \begin{cases} v = -\frac{1}{4}e^{-4x} - \frac{1}{4}e^{-4x} - \frac$$

$$\int \frac{5x}{e^{2x}} dx = \int 5xe^{-3x} dx$$

$$\ln = 5x \quad \langle dv = e^{-2x} dx \rangle = 5x \cdot -\frac{1}{3}e^{-2x} - \int -\frac{1}{3}e^{-2x} . 5 dx$$

$$du = 5 dx \quad \langle v = -\frac{1}{3}e^{-3x} \rangle = -\frac{5}{3}xe^{-3x} + \frac{5}{3}\int e^{-2x} dx$$

$$= -\frac{5}{3}xe^{-3x} - \frac{5}{4}e^{-3x} + C$$

$$\int \frac{(\ln x)^2}{x} dx \qquad \text{We don't need parts''}$$

$$here!$$

$$here!$$

$$du = \ln x$$

$$du = \frac{1}{x} dx$$

$$du = \frac{1}{x} dx$$

$$du = \frac{1}{x} dx$$

$$= \frac{1}{3} + C$$

$$= \frac{(\ln x)^3}{3} + C$$

$$\int \frac{\ln x}{x^3} dx = \int x^3 \ln x \, dx$$

$$U = \ln x \quad dv = x^3 dx$$

$$du = \frac{1}{x} dx \quad v = -\frac{1}{2}x^3$$

$$= \ln x \cdot -\frac{1}{2}x^{-2} - \int -\frac{1}{2}x^{-3} \cdot \frac{1}{x} \, dx$$

$$= -\frac{\ln x}{2x^2} + \frac{1}{2} \cdot \frac{x^{-3}}{2x} + C$$

$$= -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + C$$

In some cases, integration by parts must be used multiple times.

Ex: Integrate the following:

a)
$$\int x^2 \cos x \, dx$$

b)
$$\int x^3 \sin x \, dx$$

Ex: Solve the differential equation: $y' = \ln x$

Ex: Integrate the following:

$$x^{2} \cos x dx$$

$$u = x^{2} \quad dv = \cos x dx$$

$$du = ax dx \quad V = \sin x$$

$$x^{2} \cdot \sin x - \int 2x \sin x dx \qquad = u = 2x \quad dv = \sin x dx$$

$$x^{2} \cdot \sin x - \int -2x \cos x - \int -\cos x \cdot a dx$$

$$x^{2} \cdot \sin x - \left[-2x \cos x + 2 \int \cos x dx\right]$$

$$x^{2} \sin x - \left[-2x \cos x + 2 \int \cos x dx\right]$$

$$x^{3} \sin x - \left[-2x \cos x + 2 \sin x\right] + C$$

$$x^{3} \sin x + 2x \cos x - 2\sin x + C$$

b)
$$\int x^3 \sin x dx$$

 $u = x^3$ $dv = \sin x dx$
 $du = 3x^3 dx$ $V = -\cos x$
 $-x^3 \cos x + \int 3x^2 \cos x dx$
 $-x^3 \cos x + \left[3x^2 \sin x - \int 6x \sin x dx\right]$
 $-x^3 \cos x + 3x^2 \sin x - \left[-6x \cos x - \int -6\cos x dx\right]$
 $-x^3 \cos x + 3x^2 \sin x - \left[-6x \cos x - \int -6\cos x dx\right]$
 $-x^3 \cos x + 3x^2 \sin x - \left[-6x \cos x + 6\sin x\right] + C$
 $-x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6\sin x + C$

Ex: Solve the differential equation: $y' = \ln x$

$$du = \frac{1}{x} dx$$
 $V = X$

$$\times \ln x - \int x \cdot \frac{1}{x} dx$$

$$y = x ln x - x + C$$

Knowing What to Look For: The following are common integrals that need to be integrated by parts.

1. For integrals of the form: $\int x^n e^{ax} dx$, $\int x^n \sin ax dx$, or $\int x^n \cos ax dx$.

Let $u = x^n$ and $dv = e^{ax} dx$, $\sin ax dx$, or $\cos ax dx$.

2. For integrals of the form: $\int x^n \ln x \, dx$, $\int x^n \arcsin ax \, dx$, or $\int x^n \arctan ax \, dx$.

Let $u = \ln x$, $\arcsin ax$, or $\arctan ax$ and $dv = x^n dx$.

3. For integrals of the form: $\int e^{ax} \sin bx \, dx$, or $\int e^{ax} \cos bx \, dx$.

Let $u = \sin bx$, or $\cos bx$ and $dv = e^{ax} dx$.