Phase detector and Phase locked loop

Hersh Aditya Samdani (EP22B027)

Aim:

- To study the workings of Phase Detector and Phase Locked Loop by constructing a phase detector and phase-locked loop
- To find the variation of phase difference with potentiometer resistance, and output DC.
- To study the relationship between Phase Difference and the DC control signal of PLL.
- Calculate the lock range and the capture range for different capacitor values.

Apparatus:

- IC565 Op-Amp
- DC Power Supply
- Oscilloscope
- Function Generator
- Multimeter
- 10K Potentiometer
- Resistors and Capacitors of required values

Setup:

Observations:

$$V_{pp} = 12V, f = 5kHz$$

Figure 1: Block Diagram of PLL-565

Figure 2: Circuit Diagram of Phase Shifter

Figure 3: Experimental PLL Circuit

Sl. No	Resistance (in $k\Omega$)	Phase Difference φ (in $^{\circ}$)
1	0.0063	180
2	0.0566	170
3	0.1018	160
4	0.155	150
5	0.2112	140
6	0.2725	130
7	0.342	120
8	0.418	110
9	0.507	100
10	0.591	90
11	0.683	80
12	0.806	70
13	0.919	60
14	1.180	50
15	1.472	40
16	1.898	30
17	2.898	20
18	6.5	10

Table 1: Variation of Phase Difference with Resistance

Figure 4: Plot of Phase Difference vs Resistance

Sl.No	$C_f ext{ (in } \mu F)$	$f_{\rm max} ({ m kHz})$	f_{\min} (kHz)	$B_c \text{ (kHz)}$
1	0.1	6.0	3.2	2.8
2	0.2	6.5	2.7	3.8
3	0.047	7.0	2.7	4.3

Table 2: Capture Range Data

Sl.No	Frequency (kHz)	Voltage (V)
1	4	9.24
2	5	8.53
3	6	8.88

Table 3: FM Output Readings

Error Analysis:

- Error in Resistance(ΔR) = 0.1 kHz
- Error in Phase Difference $(\Delta \phi) = 1^{\circ}$
- Error in Voltage $(\Delta V) = 0.001 \text{ V}$

Error in Capture Range:

- $\Delta f_{min} = 0.01 \text{kHz}$
- $\Delta f_{max} = 0.01 \text{kHz}$
- Error in measuring $\Delta B_c = \Delta f_{min} + \Delta f_{max} = 0.02 \text{kHz}$
- For $C_f = 0.1 \mu F$, $B_c = 2.8 \pm 0.02 \text{kHz}$
- For $C_f = 0.2 \mu \text{F}$, $B_c = 3.8 \pm 0.02 \text{kHz}$
- For $C_f = 0.047 \mu \text{F}$, $B_c = 4.3 \pm 0.02 \text{kHz}$

Results:

- Phase difference between input and output voltage and resistance is nearly linear decreasing but decays with increase in resistance.
- The control DC voltage from the phase detector seemingly decreases with decrease in the phase difference in an almost linear relationship.
- We can see the capture range always falls withing the lock in range and decreases with increase in the capacitance value.
- The FM output voltage decreases with increase in input frequency.

Discussion:

- We can thus see the use of phase locked loops for clock generation and synchronization in digital systems. Through it, we obtain stable and precise timing across various components.
- We can generate higher frequency clocks from a low frequency reference using frequency multipliers, which find use in microprocessors and communication systems.
- The nonlinear nature of the FM output voltage trend with input frequency demonstrates the filtering and demodulation behavior of the loop filter and VCO.

