BEST AVAILABLE COPY

⑩日本国特許庁(JP)

@実用新楽出題公告

⑫実用新案公報(Y2)

 $\Psi 2 - 38161$

Pint Cl. *

晚別記号

宁内整斑番号

❷❷公告 平成2年(1990)10月16日

F 22 B 1/18

C 7715-3L

(金4頁)

49 実の名称

廃熱質流ポイラの温度制御整置

到実 至 昭59-15034 郵公 閉 昭60-128102

顧 昭59(1984)2月7日

@昭60(1985) 8 月28日

包令 案 者 児. 玉 往

神奈川県盛沢市錦沼樹 1-12-9-103

の出類人 株式会社小松製作所 東京都港区赤坂2丁回3番6号

なった 理 人 升理士 米原 正章

好1名

套 查 官 忠 好 上一好

1

匈突用新露登録情求の範囲

エンジン1の排ガスを熱輝として蒸気を発生す る廃熟質流ポイラ4の容気温度を輸出して、これ を目標素気温度と比較し、得られた個学をPID瘤 給水量信号により、廃熱質療ポイラ4への供給水 量を制御するものにおいて、蒸気エンジン1のス ロットル朝度を検出して得られた信号より供給水 量を算出し、これを動特性補債演算回路26によ パック信号に加算することにより、上記フィード パツク信号を補償することを特徴とする廃熱資流 ポイラの温度制御装置。

考集の詳細な説明

産業上の利用分野

この考案はエンジンの排ガスより熱エネルギー を回収する路熱質流ボイラの過熱温度制御装置に 関する。

從來技術

すポイラとしては、循環回路を有する循環ポイラ が多く用いられ、質流ポイラが用いられることは 少ない。これは循環ポイラは保水量が多く、ポイ う時定数が大きいため、供給熱量が変動しても比 較的制御が容易であることが挙げられる。

しかし循環ポイラには容骸及び重量が大きく、 起動から蒸気発生まで多くの時間を要すると共 に、高圧の場合、ドラムの製作に困難が伴い高価

となるため、高圧用には採用できないなどの不見 合がある。

2

一方質流ポイラは上記御羅ポイラのような不具 合が少ない反面、供給熱量、供給水量の変化によ 算回路へ入力して供給水量を算出し、得られた供 5 つて茶発開始点及び終了点が移動するなど動特性 が大きく変化するため、制御が難しい欠点があ る。特にエンジンの排ガスを熱源として過熱落気 を発生させ、その素気温度を制御する場合、供給 熱量を操作量として用いることができないため、 りフィードフオワード指令信号として、フィード 10 第1図に示すようなフィードパック制御系を用い て供給水量のみを制御している。

すなわち、回標蒸気温度を比較器aで、質流ボ イラoより出力される素気温度と比較して、その 個差をPID制御器 bに入力し、その偏差に応じて 15 質流ポイラ cに流入する供給水量を変化させるこ とにより、賞流ポイラcより出力される素気の温 度を郵卸している。しかし上記のような制御系で は、エンジンの出力変動に伴い供給熱量が貫流ボ イラロに外乱として作用することになる。この外 従来エンジンの排ガスを熱源にして蒸気を取出 20 乱は大きなエネルギーを有するが、この外乱によ る影響が出るまでに若干のタイムラグがあるた め、貧流ポイラcより出力される際気の温度をフ イードバツクして目標務気温度と比較した場合、 偏差が非常に大きくなり、精度の高い制御がなし 25 得ない不具合があった。

考案の目的

この考案はかかる不具合を除去する目的でなさ れたもので、精度の高い制御が可能な廃熱質流水

(2)

寒公 平 2-38161

イラの温度制御装置を提供しようとするものであ **క**ం

等案の構成

廃熱質流ポイラより出力される際気の温度を比 紋器にフィードパックして目標蒸気温度と比較す るに当って、上記フィードパツク信号をスロット ル開度より検出した信号より得られたフィードフ オワード信号により補償して、温度制御精度を向 上させた廃熱質流ポイラの温度制御装置。

実施例

以下この考案を第2図以下に示す図面を参照し て許述する。図において 1 はエンジン、2 は設エ ンジン 1 に吸気を供給する吸気管で途中にスロツ トル3を有する。4は上配エンジン1と排気管 5 けられた伝熱管4mに水ポンプ6m及びこの水ポ ンプ6 aを駆動するモータ6 bよりなる水量調整 系8により水が供給されている。伝熱管4a内を 流通する供給水は、排ガスにより蒸気化されて管 る蒸気の温度を検出する蒸気温度検出器8が設け られている。また廃熱質流ポイラ4の入口には狭 ガス温度を検出する排ガス温度検出器9が、また 廃熱質流ポイラ4の供給水入口には供給水量検出 のスロットルる近傍には、スロットル開度検出器 11が、そしてエンジン1の出力軸1aには回転 検出器12が夫々設けられていて、これら検出器 で検出された信号は第3図に示す制御回路へ夫々 入力されるようになつている。

次に作用を混えて制御回路を説明すると、15 は減煙複雑国路で、目標素気温度16と、蒸気温 産檢出器 8 からの検出信号 8′が入力されていて、 間密が比較され、その偏差がPID演算回路17へ 入力される。PID演算回路17は偏差に応じて水 35 うになる。 畳偏差を算出し、フィードパック信号として指令 信号18を加算額算回路19へ出力する。

一方スロツトル開度娩出器11からの信号1 1′及びエンジン回転検出器12からの個号1 2'はガス流量マップ回路20へ入力されて、ス 40 の突集例を示すプロック図である。 ロットル開度とエンジン回転数の関係より予め作 成されたマップより掛ガス流量が算出される。算

出された排ガス流量信号21は乗算演算回路22 . へ入力されて郷ガス温度検出器9からの信号91 とからポイラ供給熱量が算出される。得られたボ イラ供給熱量23は供給水量推定マップ回路24 5 へ入力されて、ある供給熱量を与えたとき必要と なる供給水量から予め作成した供給水量推定マツ プより推定供給水量25が算出され、動特性補償 演算的路26へ出力される。歐特性補償回路26 は水量指令属号27をフィードフォワード指令と 10 して加賀浪算回路 19へ出力し、この加賀演算回 路19で、PID演算回路17からのフィードパツ ク信号18と、動物性補償微算回路26からのフ イードフォワード信号27が加算されて、設定水 量値号27′となる。この設定水量信号27′は減 を介して接続された廃熱貫流ポイラで、内部に殺 15 算複算回路2 8 へ入力されて、供給水量検出器 1 Oからの信号 1 Q'と比較され、その偏差がPID 油館回路29へ出力される。PID演算回路29で はこの偏差に応じて水量調節信号30を水量調節 系 8 へ出力し、廃熱資流ポイラ 4 への供給水量が 路了より取出されると共に、管路了には吐出され 20 創御される。これによつてエンジン1の出力変動 などによって排ガス流量や温度が変化しても精度 の高い温度調御が可能になる。

なおエンジン1の回転数が常に一定しているエ ンジン発電機などの場合は、創御回路も第4図に 器10が夫々設けられていると共に、吸気管2内 25 示すように箇略化できる。この場合供給水量マツ プは、スロットル開度に対して必要供給水量を与 えるものとして作成しておくものとする。 寄鑑の効果

> この考案は以上評述したようにエンジンのスロ 30 ツトル開度を制御信号として用い、得られたフィ - ドフォワード信号によりフィードパツク信号を 補償するようにしたことから、エンジンの出力変 動などが外乱として作用しても、これらの影響を 受けることなく精度の高い温度制御が行なえるよ

図面の簡単な説明

第1回は従来の制御系を示すプロック図、第2 図はこの考案の一実施例を示す全体的な構成図、 第3図は制御回路を示すプロック図、第4図は他

1はエンジン、4は路熱貫流ポイラ、28は励 特性補值演算回路。

(8)

突公 平 2-38161

第1図

第3図

(4)

美公 平 2-3916]

