1. S is a simple space.

(i)
$$P(\phi) = 0$$
 (ii) $P(\overline{E}) = 1 - P(E)$ where $E \subseteq S$

(iii)
$$E_1 \subseteq S$$
, $E_2 \subseteq S$ and $E_1 \subseteq E_2 \Rightarrow P(E_2 - E_1) = P(E_2) - P(E_1)$ and $P(E_1) \le P(E_2)$

(iv)
$$E_1$$
, E_2 are events of $S \Rightarrow P(E_2 - E_1) = P(E_2) - P(E_1 \cap E_2)$

(v)
$$E \subseteq S \Rightarrow 0 \le P(E) \le 1$$

(vi) Number of sample points favorable to E = n(E) = m(S is taken to contain equally likely simple events)

Total number of sample points in S = n(S) = n. $P(E) = \frac{m}{n}$.

2. <u>Conditional event</u>

If E_1 , E_2 are events of a sample space S and if E_2 occurs after the occurance of E_1 , then the even of occurance of E_2 after the even E_1 is called conditional event. It is denoted by $\frac{E_2}{E_1}$. Similarly we define $\frac{E_1}{E_2}$.

3. Conditional Probability

 $E_1 \subseteq S$, $E_2 \subseteq S$ and $P(E_1) \neq 0$. Then the probability of E_2 after the event E_1 has occurred is called the conditional probability of E_2 given E_1 and is denoted by $P\left(\frac{E_2}{E_1}\right)$.

We define
$$P\left(\frac{E_2}{E_1}\right) = \frac{P(E_1 \cap E_2)}{P(E_1)}$$
.

Similarly we define
$$P\left(\frac{E_1}{E_2}\right) = \frac{P(E_1 \cap E_2)}{P(E_2)}$$

Note that
$$P\left(\frac{E_2}{E_1}\right) = \frac{n(E_1 \cap E_2)}{n(E_1)}, P\left(\frac{E_1}{E_2}\right) = \frac{n(E_1 \cap E_2)}{n(E_2)}$$

Also
$$P\left(\frac{E_2}{E_1}\right) + P\left(\frac{\overline{E_2}}{E_1}\right) = 1$$
.

4. If E is an even of a sample space S, then the odds in favour of E are defined as $P(E): P(\bar{E})$ and the odds against E are defined as $P(\bar{E}): P(E)$.

If
$$P(E)$$
: $P(\overline{E}) = m$: n , then $P(E) = \frac{m}{m+n}$ and $P(\overline{E}) = \frac{n}{m+n}$.

5. Independent and dependent events

If the occurrence of the even E_2 is not affected by the occurrence or non-occurrence of the event E_1 , then the event E_2 is said to be independent of E_1 and

$$P\left(\frac{E_2}{E_1}\right) = P(E_2)$$
. If $P(E_1) \neq 0$, $P(E_2) \neq 0$ and E_2 is independent of E_1 , then E_1 is

independent of E_2 . In this case we say that E_1 , E_2 are mutually independent or simply independent.

If the occurrence of the event E_2 is effected by the occurrence of E_1 then the events E_1 , E_2 are dependent and $P\left(\frac{E_2}{E_1}\right) \neq P(E_2)$.

e.g.: If a ball is drawn from a bag containing balls and replaced, the result of this drawing does not effect the outcome of the second and the two drawings are independent events.

If a ball is drawn from a bag containing balls and not replaced, the result of this drawing does effect the outcome of the second and the two drawing are dependent events.

6. Multiplication Theorem

$$E_1 \subseteq S$$
, $E_2 \subseteq S$ and $P(E_1) \neq 0$, $P(E_2) \neq 0$.

Then
$$P(E_1 \cap E_2) = P(E_1). \ P\bigg(\frac{E_2}{E_1}\bigg) \ \text{and} \ P(E_2 \cap E_1) = P(E_2) \ . \ P\bigg(\frac{E_1}{E_2}\bigg).$$

7. If E_1 , E_2 are independent events, then

(i)
$$P(E_1 \cap E_2) = P(E_1).P(E_2)$$

(ii)
$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1) \cdot P(E_2)$$

Note: If E_1 , E_2 are mutually exclusive we write $P(E_1 \cup E_2)$ as $P(E_1 + E_2)$ and if E_1 , E_2 are mutually independent we write $P(E_1 \cap E_2) = P(E_1 E_2)$.

Mutually exclusive events in general are not independent.

If E_1 , E_2 are mutually independent events such that $P(E_1) \neq 0$, $P(E_2) \neq 0$, then E_1 , E_2 will have at least one common sample point.

$$(\Theta \ E_1, \ E_2 \ are \ independent \ \Rightarrow P(E_1 \cap E_2) = P(E_1) \ P(E_2) \neq 0 \quad \Rightarrow E_1 \cap E_2 \neq \emptyset).$$

8. (i) If E_1 , E_2 , E_3 are mutually independent events, then $P(E_1 \cap E_2 \cap E_3) = P(E_1).P(E_2).P(E_3)$ and conversely. Thus mutually independent events are pairwise independent.

(ii) If E₁, E₂, E₃ are dependent events, then $P(E_1 \cap E_2 \cap E_3) = P(E_1 \cap E_2 \cap E_3) = P(E_1 \cap E_2)$. $P\left(\frac{E_3}{E_1 \cap E_2}\right)$

$$= P(E_1) \cdot P\left(\frac{E_2}{E_1}\right) \cdot P\left(\frac{E_3}{E_1 \cap E_2}\right).$$

- 9. If A and B are independent events, then
 - (i) \bar{A} and \bar{B}
- (ii) A and B
- (iii) Ā and B are independent events
- 10. If A, B, C are any three events of a sample space S, then $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(B \cap C) P(C \cap A) + P(A \cap B \cap C)$.
- 11. If M and N are two events of a sample space S, the probability that exactly one of them occurs

$$\begin{split} &= P[(M \cap \bar{N}) \cup (\bar{M} \cap N)] = P(M \cap \bar{N}) \\ &+ P(\bar{M} \cap N) \\ &= P(M) - (M \cap N) + P(N) - P(M \cap N) \\ &= P(M) + P(N) - 2P(M \cap N) \\ &= 1 - P(\bar{M}) + 1 - P(\bar{N}) - 2[1 - P(\bar{M} \cap N)] \\ &= -P(\bar{M}) - P(\bar{N}) + 2P(\bar{M} \cap \bar{N}) \\ &= -P(k) - P(\bar{N}) + 2(P(\bar{M})) + P(\bar{N}) - P(\bar{N}) \\ \end{split}$$

12. Description of normal park of cards (52)

 $= P(\overline{M}) + P(\overline{N}) - 2P(\overline{M} \cap \overline{N})$

Hearts, Diamonds, Clubs, Spades are four colours of a pack. King card, Queen card, Jack card are called face card. Thus there are 12 face cards in a normal pack.