Johns Hopkins Engineering

Methods in Neurobiology

Research Models of Aging

Nematode: C. Elegans as Model of Aging

C. Elegans Cife Cycle

- Short generation time (~3 days at 20 °C)
- Short maximum lifespan of ~3 weeks (at 20 °C)
- Several distinct tissues, including SN
- Transparent body

Fruit Fly, Drosophila Melanogaster as Model of Aging

Baker Yeast: Saccharomyces Cerevisiae

Mus Musculus in Aging Research

- In-bred lines (SAMP mice);
- Out-bred lines;
- Genetic modified lines:
 - Accellerating aging (Mutator mouse, Werner KO mice
 - Delayed aging (GHR KO mice, Ames and Snell dwarf mice)

Protocols for Delayed Aging

Methionine Restriction (Meth-R)

Fish as a Model of Aging: Nothobranchius Furzeri

Fish as a Model of aging: Nothobranchius Furzeri

- Shortest life spans (~13 weeks) of any vertebrate species
- Cheap storage (eggs dessication)
- Extremely fertile: each female produces several hundred eggs
- Extended life-span after CR or resveratrol treatment

Other Aging Models

- Fischer 344 as inbred strain and with CR diet.
- Primates (Macaca mulatta)

Adult naked mole rats have a daily chance of dying of about one in 10,000. NATIONAL GEOGRAPHIC CREATIVE/ALAMY STOCK PHOTO

Naked mole rats defy the biological law of aging

By Kai Kupferschmidt | Jan. 26, 2018, 5:30 PM

References

Slide	Reference
2-3	Mack, H., I.D., Heimbucher, T., Murphy, C.T. 2018 The nematode Caenorhabditis elegans as a model for aging research, Drug Discovery Today: Disease Models 27, 3-13.
4	Piper, M.D.W., Partridge, L. 2018 Drosophila as a model for ageing Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1864:9, 2707-2717.
5	Oliveira, A.V., Vilaça, R., Santos, C.N.D., Costa, V., Menezes, R.C.A. 2016 Exploring the power of yeast to model aging and age-related neurodegenerative disorders Biogerontology 18: 3-34.
7	Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. 2005 Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. <i>Aging Cell.</i> 4(3):119–125. Weindruch, R., Walford, R.L., Fligiel, S., Guthrie, D. 1086 The Retardation of Aging in Mice by Dietary Restriction: Longevity, Cancer, Immunity and Lifetime Energy Intake, <i>The Journal of Nutrition</i> , 116, 4, 641–654.
8-9	Platzer, M., Englert, C. 2016 Nothobranchius furzeri: A Model for Aging Research and More. Trends in Genetics, 32: 9, 543-552.
10	Kai Kupferschmidt Jan. 26, 2018 Naked mole rats defy the biological law of aging. Science https://www.sciencemag.org/news/2018/01/naked-mole-rats-defy-biological-law-aging#

