# Estimación No Paramétrica de la Densidad

Ana M. Bianco & Paula M. Spano

Introducción al Aprendizaje Estadístico

#### Muestra - Datos

- Muestra aleatoria:  $X_1, \dots, X_n$  variables aleatorias i.i.d. (independientes e idénticamente distribuidas)
- Datos u observaciones:  $\mathbf{x} = x_1, \dots, x_n$  constituyen una realización de cierta variable aleatoria.

#### Estadística

- Ingredientes: datos generados por un mecanismo aleatorio: por ej., tiramos una moneda al aires sucesivas veces.
- Objetivo: inferir algo relacionado con el mecanismo (aleatorio) que genera los datos, por ejemplo: ¿cuál es la probabilidad de obtener cara con cierta moneda?
- Mecanismo: Función de distribución.
  - Caso discreto: función de probabilidad puntual
  - Caso continuo: función de densidad
- Modus Operandi: hacer alguna cuenta con los datos para obtener un valor que se parezca al que queremos estimar.

#### Estadística

- Muestra:  $(X_i)_{i\geq 1}$  i.i.d.  $X_i\sim F$ ,  $F\in\mathcal{F}$  familia de distribuciones posibles para nuestro problema
- Objetivo: inferir algo relacionado con el mecanismo que genera los datos:
  - $\mathbb{E}_F[X_1]$
  - $\mathbb{V}_F(X_1)$
  - $\mathbb{P}_F(X_1 \le 40)$
  - F
- Proponer un estimador para cada uno de los objetivos planteados.

#### Vamos al TP2

Vayamos el Ejercicio **Análisis de datos Gamma-ray bursts: ítem 1** 

### La empírica

Sean  $X_1, X_2, \dots, X_n$  i.i.d.,  $X_i \sim F$ . Definimos la función de distribución empírica como

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$  es una función aleatoria.
- $\bullet$   $\widehat{F}_n(t)$  representa a una acumulada que da peso 1/n a  $X_1,X_2,\ldots,X_n.$

#### Vamos al TP2

Vayamos el Ejercicio **Análisis de datos Gamma-ray bursts: ítems 2 y 3** 

## Empírica: una realización

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le t\}}$$



# Datos simulados: $X_1, ..., X_{25}$ i.i.d., $X_i \sim \mathcal{U}(0, 1)$



# Enfoque No Paramétrico

$$X_1, \ldots, X_n$$
, i.i.d., donde  $X_i \sim X$ .

 $X \sim F$  v.a. continua con densidad f(x)

$$\hat{F}_n$$
 = "la empírica"

$$\widehat{f}(x) = ?$$

# Enfoque No Paramétrico

- ullet X con densidad f(x): queremos estimar f(x)
- $X_1, \ldots, X_n$ , i.i.d., donde  $X_i \sim X$ .
- Queremos estimar f sin asumir una determinada forma:
   sólo asumimos que es f es suave.

# Enfoque No Paramétrico

- ullet X con densidad f(x): queremos estimar f(x)
- $X_1, \ldots, X_n$ , i.i.d., donde  $X_i \sim X$ .
- Queremos estimar f sin asumir una determinada forma:
   sólo asumimos que es f es suave.
- La forma más sencilla: Histograma

# Histograma

$$X_1, \ldots, X_n$$
, i.i.d., donde  $X_i \sim X$ 

• Sea  $C_j$  una partición de intervalos o clases acotados (bins) disjuntos tales que:

$$\mathbb{R} = \cup_j \mathcal{C}_j$$

• Para cada  $x \in \mathcal{C}_i$ 

$$\widehat{f}(x) = \frac{\#\{X_i : X_i \in \mathcal{C}_j\}}{n|\mathcal{C}_j|}$$

con  $|\mathcal{C}_j|$  ancho del bin  $\mathcal{C}_j$ 

# Histograma

$$X_1, \ldots, X_n$$
, i.i.d., donde  $X_i \sim X$ 

• Sea  $C_j$  una partición de intervalos o clases acotados (bins) disjuntos tales que:

$$\mathbb{R} = \cup_j \mathcal{C}_j$$

ullet Para cada  $x \in \mathcal{C}_j$ 

$$\widehat{f}(x) = \frac{\#\{X_i : X_i \in \mathcal{C}_j\}}{n|\mathcal{C}_j|}$$

con  $|\mathcal{C}_j|$  ancho del bin  $\mathcal{C}_j$ 

- El histograma requiere dos parámetros:
  - i) ancho del bin
  - ii) punto inicial del primer bin

#### Volvamos al TP2

Resolvemos el Ejercicio **Análisis de datos de Buffalo:** items 4 y 5.

# Ejemplo real

Caída de nieve anual en Buffalo (N. Y.) en inviernos entre 1910/11 to 1972/73.



### Ejemplo real

Caída de nieve anual en Buffalo (N. Y.) en inviernos entre 1910/11 to 1972/73.



# Histogramas con distinto punto inicial

Datos simulados



# Desventajas del histograma

- el estimador de la densidad depende del punto inicial de los bins: para un número de bins fijo, la forma puede cambiar moviendo la ubicación de los bins
- la densidad estimada no es suave, es escalonada y esto no es propio de la densidad sino de la herramienta de estimación
- por estas razones, el histograma es usado sólo para visualización

# Ejemplo: datos simulados

¿Podremos hacer algo mejor?



### Busquemos otra idea...

- X con densidad f(x): queremos estimar f(x)
- ullet Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.

### Busquemos otra idea...

$$X_1, \ldots, X_n$$
, i.i.d., donde  $X_i \sim X$ 

- X con densidad f(x): queremos estimar f(x)
- ullet Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.

$$\mathbb{P}(X \in (x - h, x + h)) = \int_{x - h}^{x + h} f(t) dt$$

¿Cómo podemos aproximar esta probabilidad?

### Idea 1: Enfoque Frecuentista

- ullet X con densidad f(x): queremos estimar f(x)
- ullet Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.

### Idea 1: Enfoque Frecuentista

$$X_1, \ldots, X_n$$
, i.i.d., donde  $X_i \sim X$ 

- X con densidad f(x): queremos estimar f(x)
- Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.

$$\mathbb{P}(X \in (x - h, x + h)) = \int_{x - h}^{x + h} f(t) dt$$

### Idea 1: Enfoque Frecuentista

$$X_1, \ldots, X_n$$
, i.i.d., donde  $X_i \sim X$ 

- X con densidad f(x): queremos estimar f(x)
- Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.

$$\mathbb{P}(X \in (x - h, x + h)) = \int_{x - h}^{x + h} f(t) dt$$

$$\mathbb{P}(X \in (x - h, x + h)) \approx \frac{\#\{X_i \in (x - h, x + h)\}}{n}$$

### Idea 2: Enfoque analítico

• 
$$\mathbb{P}(X \in (x-h,x+h)) = \int_{x-h}^{x+h} f(t) dt$$
  
• Si  $h$  es pequeño y  $f$  continua en  $x$ ,



### Idea 2: Enfoque analítico

• 
$$\mathbb{P}(X \in (x-h,x+h)) = \int_{x-h}^{x+h} f(t) dt$$
  
• Si  $h$  es pequeño y  $f$  continua en  $x$ ,



#### Juntemos las dos ideas...

$$\mathbb{P}(X \in (x - h, x + h)) = \int_{x - h}^{x + h} f(t) dt$$

- $\mathbb{P}(X \in (x-h,x+h)) \approx \frac{\#\{X_i \in (x-h,x+h)\}}{n}$
- $\mathbb{P}(X \in (x-h,x+h)) \approx 2h f(x)$

#### Juntemos las dos ideas...

$$\mathbb{P}(X \in (x - h, x + h)) = \int_{x - h}^{x + h} f(t) dt$$

- $\mathbb{P}(X \in (x-h, x+h)) \approx \frac{\#\{X_i \in (x-h, x+h)\}}{n}$
- $\mathbb{P}(X \in (x-h, x+h)) \approx 2h f(x)$
- Entonces, podemos aproximar analíticamente

$$2h f(x) \approx \mathbb{P}\left(X \in (x - h, x + h)\right) \approx \frac{\#\{X_i \in (x - h, x + h)\}}{n}$$

#### Juntemos las dos ideas...

$$\mathbb{P}(X \in (x - h, x + h)) = \int_{x - h}^{x + h} f(t) dt$$

- $\mathbb{P}(X \in (x-h,x+h)) \approx \frac{\#\{X_i \in (x-h,x+h)\}}{n}$
- $\mathbb{P}(X \in (x-h, x+h)) \approx 2h f(x)$
- Entonces, podemos aproximar analíticamente

$$2h f(x) \approx \mathbb{P}\left(X \in (x - h, x + h)\right) \approx \frac{\#\{X_i \in (x - h, x + h)\}}{n}$$
$$f(x) \approx \frac{\#\{X_i \in (x - h, x + h)\}}{2h n}$$

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

 $X_1, \ldots, X_n$ , i.i.d., donde  $X_i \sim X$ 

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$\bullet \widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 1$$

Notemos que

$$\widehat{f}(x) \ge 0$$
 •  $\int \widehat{f}(x) dx$ 

 $X_1, \ldots, X_n$ , i.i.d., donde  $X_i \sim X$ 

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$\bullet \widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 1$$

Notemos que

$$\widehat{f}(x) \ge 0$$
 •  $\int \widehat{f}(x) dx$ 

$$X_1, \ldots, X_n$$
, i.i.d., donde  $X_i \sim X$ 

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$\bullet \widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 1$$

Notemos que

$$\widehat{f}(x) \ge 0$$
 •  $\int \widehat{f}(x) dx =$ 

$$\hat{f}(x) = \frac{1}{2h \, n} \sum_{i=1}^{n} \mathcal{I}_{(x-h,x+h)}(X_i)$$

Estimador de Parzen

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} \mathcal{I}_{[-1,1]} \left( \frac{x - X_i}{h} \right)$$

 $X_1, \ldots, X_n$ , i.i.d., donde  $X_i \sim X$ 

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$\bullet \widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 1$$

Notemos que

$$\widehat{f}(x) \ge 0$$
 •  $\int \widehat{f}(x) dx =$ 

$$\widehat{f}(x) = \frac{1}{2h \, n} \sum_{i=1}^{n} \mathcal{I}_{(x-h,x+h)}(X_i)$$

Estimador de Parzen

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} \mathcal{I}_{[-1,1]} \left( \frac{x - X_i}{h} \right)$$

• si 
$$K(t) = \frac{1}{2}\mathcal{I}_{[-1,1]}(t)$$
  $\Rightarrow$ 

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

 $X_1, \ldots, X_n$ , i.i.d., donde  $X_i \sim X$ 

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

Estimador de Parzen

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} \mathcal{I}_{[-1,1]} \left( \frac{x - X_i}{h} \right)$$

Si 
$$K(t) = \frac{1}{2}\mathcal{I}_{[-1,1]}(t) \quad \Rightarrow$$

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

Juntando todo...

$$\bullet \ K(t) = \tfrac{1}{2} \mathcal{I}_{[-1,1]}(t) \quad \Rightarrow \quad \widehat{f}(x) = \tfrac{1}{nh} \sum_{i=1}^n \ K\left(\tfrac{x-X_i}{h}\right)$$
 
$$\bullet \ K: \text{ núcleo} \qquad \bullet \ h: \text{ ventana}$$

Vayamos a resolver los ítems 6 a 10 del TP2.

#### Juntando todo...

• 
$$K(t) = \frac{1}{2}\mathcal{I}_{[-1,1]}(t)$$
  $\Rightarrow$   $\widehat{f}(x) = \frac{1}{nh}\sum_{i=1}^{n} K\left(\frac{x-X_i}{h}\right)$ 

• K : núcleo • h : ventana





### **Núcleos**



# Tipos de núcleos

- Núcleo Rectangular:  $K(t) = \frac{1}{2}\mathcal{I}_{[-1,1]}(t)$
- Núcleo Triangular:  $K(t) = (1-|t|)\mathcal{I}_{[-1,1]}(t)$
- Núcleo Gausssiano:  $K(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}t^2}$
- Núcleo Epanechnikov:  $K(t) = \frac{3}{4}(1-t^2)\mathcal{I}_{[-1,1]}(t)$

# Núcleos



### Comandos de R

```
nieve=scan()
126.4 82.4 78.1 51.1 90.9 76.2 104.5 ...

density(nieve, from=40, to=40, n=1, kernel="rectangular", bw=5)$y
[1] 0.003665716

pp.rec=density(nieve, kernel="rectangular", window=5)
pp.nor=density(nieve, kernel="gaussian", window=5)

plot(pp rec)
lines(pp.rec$x,pp.rec$y,type="l",col="black",lwd=2)
lines(pp.nor$x,pp.nor$y,type="l",col="red",lwd=2)
```



# Interpretación del estimador de núcleos

Fuente: Tesis de Lic. en Cs. Matem. de Sofía Ruiz, 2016.



# Estimadores de núcleos (Rosenblatt-Parzen)

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

- K núcleo: \*  $K \ge 0$  y \*  $\int K(x)dx = 1$ .
- h: ventana o parámetro de suavizado
- Notemos que  $\widehat{f}(x)$  depende de n, del núcleo K y de h





#### **Visitemos**

https://shinyserv.es/shiny/kde/