

Quantum Error Mitigation

Tianyi Wang

Technical University of Munich

School of Computation, Information and Technology

Department of Informatics 5

09.12.2022

Outline

- Introduction to Quantum Error Mitigation
 - Definition
 - Difference with Quantum Error Correction
 - Why do we use it?
- Various QEM techniques in chronological order
 - Qiskit Error Mitigation
 - General Error Mitigation
 - M3 and Others
- Conclusion

Introduction

Fact: (present) Quantum computers have errors

- 1: new types of errors! (bit **and phase**)

Therefore: need error handling

Interviewer: It says here you're extremely fast at factoring, what are the factors of 9025?

Quantum computer: 7 and 11.

Interviewer: that's not even close

Quantum computer: yeah, but it was fast.

Source: https://twitter.com/quantummemeing/status/1111309373693935616?lang=bn

Introduction

- Quantum Error Correction
 - Requires additional hardware
 - ! : not enough (physical) qubits!
 - Therefore: error mitigation!

when someone asks me how many more qubits we need for fault tolerant error correction

Source: https://twitter.com/quantummemeing/status/1260955451325325313

Introduction

- Quantum Error Mitigation
 - Using the outputs of (calibration) circuits to reduce/
 eliminate the error effects
 - Does not require additional hardware
 - Feasible on the near term
 - Common error types:
 - A. State preparation and measurement errors (SPAM)
 - B. Gate errors

Source: https://upload.wikimedia.org/wikipedia/commons/7/7d/Active_Noise_Reduction.svg

- Premise
 - Assume N qubits, 2^N possible states
 - Our quantum device produces result counts (v₁, v₂,..., v₂^N), which differ from the ideal (exact) data (e₁, e₂,..., e₂^N).

$$V = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{2^N} \end{pmatrix}, \quad E = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_{2^N} \end{pmatrix}.$$

- Construct (normalized) column vectors
- Postulate the existence of a 2^N x 2^N matrix M s.t.

$$ME = V$$

- Remarks:
 - 1. If device not error prone: M = I
 - 2. If device error prone, M has non-zero off-diagonal elements.

- Calibration and mitigation
 - Prepare qubits in all possible 2^N
 states and measure each state.
- Example (for 2 qubits)
 - Possible states: $|00\rangle, |01\rangle, |10\rangle, |11\rangle$
 - Calibration circuits:

- Calibration and mitigation
 - Enter the data from each calibration circuit into columns of M, where the j-th column, starting from left, takes data from the circuit whose state is given by the binary representation of j, for all j = 1,..., 2^N. M is the Qiskit calibration matrix
 - Note that

$$ME = V$$

- Therefore, noting $X = (x_1, x_2,..., x_2^N)$ as mitigated data,

$$MX = V$$

Therefore: using M⁻¹,

$$X = M^{-1}V$$

- Example (for 2 qubits)
 - M with shots=10000 on ibmq_quito

Intuition: "'00' becomes '01' 166 times" Side note: on aer_simulator:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Good:
 - Hands-on (directly from Qiskit)
 - Easy to understand
 - Unit of the method does not depend on circuit depth 0.2
 - But...
 - Only addresses SPAM errors
 - Does not work well for circuits with greater depths

when SPAM no longer major source of error

Therefore: General Error Mitigation!

Deutsch-Jozsa 2-qubit balanced run on ibmq_manila

- Calibration and mitigation (simplified)
 - Assume circuit C_g of depth D and with N qubits.
 - Prepare possible states twice.
 - Break C_g into two halves up to depth
 [D/2], add to calibration circuits.
 - Add inverse gates of the gates added.
 - Measure the calibration circuits and record the data in calibration matrix M₁
 - Analogously, for the remaining half of the gates on the remaining calibration circuits, and name the new matrix M₂.
 - Calculate the matrix $M_G = (M_1 + M_2)/2$. M_G serves the same purpose as M in QiEM.

 Example (for Deutsch-Jozsa circuit for 2 qubits, balanced)

- Break down to two halves =>
- First half has h(0), h(1), x(1)
- Second half has x(1), h(1), h(0)

- Calibration and mitigation (simplified)
 - Assume circuit C_g of depth D and with N qubits.
 - Prepare possible states **twice**.
 - Break C_g into two halves up to depth
 |D/2|, add to calibration circuits.
 - Add inverse gates of the gates added.
 - Measure the calibration circuits and record the data in calibration matrix
 M₁
 - Analog for the remaining half of the gates on the remaining calibration circuits, and name the new matrix M₂.
 - Calculate the matrix M_G = (M₁ + M₂)/
 M_G serves the same purpose as M in QiEM.

Hence the calibration circuits:

• Pack measurement outputs of the circuits on the left into the columns of 4 x 4 matrix M_1 , the right M_2 , Then determine M_{α}

- Discussions
 - Performs well also in deeper circuits
 - Union Does not require a priori assumption of a specific error model
 - Has to be implemented from scratch

• GEM vs QiEM

FIG. 7. Same as Fig. 4 except for N=2 and $D \in [74,80]$ with $\bar{D}=79.38$. The **H** gate was not used in the gate-set. The device used was IBM Q Burlington [34].

FIG. 10. Same as Fig. 7 except that Qiskit error mitigation was used for $D \in [72, 80]$ with $\bar{D} = 77.50$. The device used was IBM Q Burlington [34].

Source: https://arxiv.org/pdf/2011.10860.pdf

Blue: not mitigated; orange: mitigated; 2 qubits, similar D

M3: the future?

- Proposed by IBM Quantum researchers in Nov. 2021 and integrated in a Qiskit Runtime release
- Addresses the overhead introduced by the matrix-based approaches
- M3 stands for matrix-free measurement mitigation
- Subspace reduction, then solve the matrix. Convergence after O(1)

Source: https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.040326

• Remark: Qiskit Runtime offers other error mitigation methods besides M3, e.g. T-Rex, ZNE...

M3: the future?

Source: https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.040326

Conclusion

- Not requiring additional hardware, Quantum Error Mitigation might be a solution to errortolerant quantum computing in the near term
- · Qiskit error mitigation offers hands-on, adequate and basic measurement error mitigation
- With general error mitigation, better performance can be achieved in deeper circuits. It is independent of error models.
- M3 gives an outlook with its novel, matrix-free, hence overhead-reducing approach.

	Matrix-free?	Available in Qiskit?	Error model independent?
QiEM			
GEM	•	•	
M3			

References

- https://research.ibm.com/blog/quantum-error-suppression-mitigation-correction
- https://arxiv.org/pdf/2011.10860.pdf
- https://arxiv.org/pdf/2210.00921.pdf
- https://qiskit.org/textbook/ch-quantum-hardware/measurement-error-mitigation.html
- https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.040326
- https://quantum-computing.ibm.com/services/programs/docs/runtime/programs/
- https://qiskit.org/documentation/partners/qiskit_ibm_runtime/how_to/error-mitigation.html