1 Characteristics Model

				nstances -							
filename	status	formulation	time	value	relax_time	relax_value	gap	edges	columns	rows	nodes
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.0 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.0	Optimal Optimal	(U) (I)	0.82088 4.3723	4224.9 4224.9	0.003999 0.033995	4672 4397.6	4.9329e-05 0	372 372	$\frac{473}{795}$	844 1538	388 552
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.0	Optimal	(L)	1.2978	4224.9	0.033995	4397.6	8.4941e-05	372	795	1166	502
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.0	Optimal	(P)	2.5296	4224.9	0.006999	4648.5	0	372	473	844	1179
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.0	Optimal	(STM)	243.32	4224.9	0.14698	4637.1	9.923e-05	372	795	1538	41127
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.1	Optimal	(U)	2.6876	4455.8	0.002999	4942.9	5.6573e-05	401	502	902	933
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.1	Optimal	(I)	4.3633	4455.8	0.036994	4656	0	401	853	1654	591
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.1	Optimal	(L)	3.5345	4455.8	0.025996	4656	4.7189e-05	401	853	1253	664
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.1 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.1	Optimal Optimal	(P) (STM)	2.5386 143.38	4455.8 4455.8	0.006999 0.12698	4920.9 4924.3	9.7884e-05 9.9813e-05	401 401	502 853	$902 \\ 1654$	1126 22215
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(U)	2.9486	4739.8	0.003	5186.5	0	412	513	924	721
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(I)	7.7388	4739.8	0.041993	4933.7	7.6874e-05	412	875	1698	953
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(L)	5.2312	4739.8	0.020996	4933.7	8.4036e-05	412	875	1286	995
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(P)	4.0694	4739.8	0.006999	5163.8	8.1625e-05	412	513	924	1847
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(STM)	151.59	4739.8	0.16698	5157.2	9.9922e-05	412	875	1698	32419
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(U)	2.1407	4409.4	0.002999	4872.7	7.1922e-05	381	482	862	866
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.3 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.3	Optimal Optimal	(I) (L)	4.8183 3.4945	4409.4 4409.4	0.036995 0.026996	4572.9 4572.9	5.7928e-06 0	381 381	813 813	1574 1193	901 685
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(P)	2.5846	4409.4	0.020999	4827.2	7.9543e-05	381	482	862	1498
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(STM)	32.424	4409.4	0.11898	4816.4	9.3046e-05	381	813	1574	6559
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(U)	0.26496	4059.3	0.003999	4433.1	4.2461e-05	370	471	840	148
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(I)	1.1318	4059.3	0.034995	4206.3	6.0428e-05	370	791	1530	465
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(L)	0.6449	4059.3	0.015998	4206.3	9.7152e-05	370	791	1160	271
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(P)	1.1558	4059.3	0.006999	4397.1	0	370	471	840	519
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.4 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(STM)	14.797 3.6964	4059.3 4663	0.14498 0.002999	4441.3 5225.9	9.283e-05 8.1434e-05	370 377	791 478	$1530 \\ 854$	2342 1092
c-n=50-c=14-p=7-o=8-1=1-h=100-d=0.25.5 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.5	Optimal Optimal	(U) (I)	3.6964 5.9081	4663	0.002999	5225.9 4881	8.1434e-05 9.115e-05	377	478 805	$\frac{854}{1558}$	1092
c-n=50-c=14-p=7-o=8-1=1-h=100-d=0.25.5 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(L)	4.1914	4663	0.030993	4881	9.4093e-05	377	805	1181	975
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(P)	6.82	4663	0.009999	5201.2	9.8596e-05	377	478	854	3099
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(STM)	1092.6	4663	0.089986	5191.2	9.9964e-05	377	805	1558	196042
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.6	Optimal	(U)	3.0435	4032.1	0.001	4580.5	8.4468e-05	381	482	862	768
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.6	Optimal	(I)	6.567	4032.1	0.032995	4327.6	9.0941e-05	381	813	1574	793
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.6 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.6	Optimal Optimal	(L) (P)	4.0274 3.7504	4032.1 4032.1	0.016997 0.007999	4327.6 4541.9	0 9.4785e-05	381 381	813 482	1193 862	760 2016
c-n=50-c=14-p=7-o=8-1=1-h=100-d=0.25.6 c-n=50-c=14-p=7-o=8-1=1-h=100-d=0.25.6	Optimal	(STM)	123.61	4032.1	0.12798	4533.3	9.9873e-05	381	813	1574	24337
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.7	Optimal	(U)	1.8967	4339.1	0.001	4750.3	8.0607e-05	412	513	924	541
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.7	Optimal	(I)	3.4815	4339.2	0.036994	4507.6	0	412	875	1698	571
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.7	Optimal	(L)	1.8977	4339.1	0.032995	4507.6	0	412	875	1286	562
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.7	Optimal	(P)	1.8797	4339.1	0.007998	4735.8	9.0044e-05	412	513	924	841
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.7	Optimal	(STM)	122.45	4339.1	0.19897	4721.7	9.9903e-05	412	875	1698	16943
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.8	Optimal	(U)	4.4843	4449	0.003	5002.1	9.3107e-05	409	510	918	1612
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.8 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.8	Optimal Optimal	(I) (L)	9.6295 5.9661	4449 4449	0.041994 0.024996	4702.4 4702.4	9.7124e-05 8.6498e-05	409 409	869 869	1686 1277	1233 1142
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.8	Optimal	(P)	4.9662	4449	0.009999	4960.2	9.4477e-05	409	510	918	2680
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.8	Optimal	(STM)	555.81	4449	0.12798	4947.9	9.9885e-05	409	869	1686	123252
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.9	Optimal	(U)	0.51692	4623.6	0.002	5126.5	9.2691e-05	390	491	880	330
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.9	Optimal	(I)	0.72089	4623.6	0.034995	4836.3	3.5915e-05	390	831	1610	120
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.9	Optimal	(L)	0.78888	4623.6	0.021997	4836.3	7.9991e-05	390	831	1220	340
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.9	Optimal	(P)	1.6478	4623.6	0.006999 0.13098	5097.8 5074.1	0	390 390	491 831	880 1610	755 2118
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.9 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.10	Optimal Optimal	(STM) (U)	14.05 1.1958	4623.6 4686.1	0.13098	5140.1	8.8293e-05 2.0189e-05	384	485	868	728
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.10 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.10	Optimal	(I)	1.1958	4686.1	0.002	4860.8	9.1624e-05	384	819	1586	571
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.10	Optimal	(L)	1.7227	4686.1	0.021997	4860.8	9.0563e-05	384	819	1202	831
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.10	Optimal	(P)	2.6326	4686.1	0.009998	5112.6	0	384	485	868	1056
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.10	Optimal	(STM)	20.521	4686.1	0.10398	5102.2	9.9628e-05	384	819	1586	3645
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.11	Optimal	(U)	4.2564	4137.8	0.003	4676	7.3969e-05	384	485	868	1514
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.11	Optimal	(I)	13.976	4137.8	0.044993 0.028995	4415.7	8.3735e-05	384 384	819 819	1586 1202	1910 1470
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.11 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.11	Optimal Optimal	(L) (P)	5.6341 3.8194	4137.8 4137.8	0.028995 0.007999	4415.7 4644.4	4.2777e-05 6.1338e-05	384 384	819 485	1202 868	1470 1727
c-n=50-c=14-p=7-o=8-1=1-n=100-d=0.25.11 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.11	Optimal	(STM)	768.94	4137.8	0.10898	4645.9	9.9722e-05	384	485 819	868 1586	131586
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.11 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(U)	2.1957	3817.7	0.002	4262.6	9.4969e-05	395	496	890	687
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(I)	5.6661	3817.7	0.022996	4053.1	-4.7646e-16	395	841	1630	769
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(L)	4.0294	3817.7	0.014998	4053.1	5.2432e-05	395	841	1235	857
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(P)	2.1117	3817.7	0.006	4226.2	0	395	496	890	1021
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(STM)	24.767	3817.7	0.097985	4229.5	8.9804e-05	395	841	1630	5210
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.13	Optimal	(U) (I)	3.2885	3788.2	0.003	4347.2	9.4574e-05 0	404 404	505 850	908 1666	969 954
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.13 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.13	Optimal Optimal	(L)	5.8921 3.4505	3788.2 3788.2	0.039994 0.027996	4041.6 4041.6	8.7565e-05	404	859 859	1262	954 762
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.13	Optimal	(P)	3.6214	3788.2	0.006999	4315.4	6.2954e-05	404	505	908	2284
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.13	Optimal	(STM)	105.59	3788.2	0.11098	4285.8	9.7197e-05	404	859	1666	22152
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(U)	3.1115	4362.4	0.001	4876.1	7.8342e-05	389	490	878	889
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(I)	6.1731	4362.4	0.031995	4596.1	5.8528e-05	389	829	1606	697
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(L)	4.2254	4362.4	0.023996	4596.1	6.6675e-05	389	829	1217	763
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(P)	4.2774	4362.4	0.006999	4842.6	5.6725e-05	389	490	878 1606	1653
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.14 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.15	Optimal Optimal	(STM) (U)	252.08 10.604	4362.4 4127.7	0.12098 0.002	4838.8 4591	9.9981e-05 7.7841e-05	$\frac{389}{372}$	829 473	844	41659 3875
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.15 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.15	Optimal	(I)	12.868	4127.7	0.002	4347	6.7961e-05	372	795	1538	2253
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.15	Optimal	(L)	13.309	4127.7	0.023996	4347	9.8951e-05	372	795	1166	4942
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.15	Optimal	(P)	16.912	4127.7	0.006999	4573.6	9.8975e-05	372	473	844	11446
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.15	Optimal	(STM)	2426.1	4127.7	0.12998	4565.6	9.9962e-05	372	795	1538	513655

				stances -							
filename	status	formulation	time	value	relax_time	relax_value	gap	edges	columns	rows	nodes
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.16 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(U)	1.1358 3.4605	4440.8 4440.8	0.003 0.041994	4893.5 4668.5	1.7221e-05 0	381 381	482 813	862 1574	759 593
c-n=50-c=14-p=7-o=8-1=1-h=100-d=0.25.16 c-n=50-c=14-p=7-o=8-1=1-h=100-d=0.25.16	Optimal Optimal	(I) (L)	3.3635	4440.8	0.023996	4668.5	0	381	813	1193	593 597
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(P)	2.0797	4440.8	0.008999	4865.3	8.3822e-05	381	482	862	1076
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(STM)	31.382	4440.8	0.12198	4895.7	9.4178e-05	381	813	1574	6080
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(U)	5.0132	4112.8	0.004	4642.6	8.9766e-05	383	484	866	1559
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(I)	7.7388	4112.8	0.06599	4331.3	8.6589e-05	383	817	1582	955
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.17 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.17	Optimal Optimal	(L) (P)	5.4292 5.1552	4112.8 4112.8	0.033995 0.006999	4331.3 4618.3	9.8068e-05 9.5524e-05	383 383	817 484	1199 866	937 2908
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.17 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(STM)	206.8	4112.8	0.10199	4587.2	9.9887e-05	383	817	1582	45422
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(U)	5.1352	4022.7	0.002999	4519.6	8.6691e-05	390	491	880	2417
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(I)	14.239	4022.7	0.037994	4244.6	9.8201e-05	390	831	1610	3528
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(L)	7.8618	4022.7	0.018997	4244.6	9.2076e-05	390	831	1220	2978
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(P)	6.245	4022.7	0.005999	4457.7	9.5992e-05	390	491	880	5027
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.18 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.19	Optimal Optimal	(STM) (U)	491.86 3.8914	4022.7 4523.1	$0.097985 \\ 0.002$	4515.8 5030.2	9.9815e-05 2.3083e-05	390 380	831 481	1610 860	136629 1265
c-n=50-c=14-p=7-o=8-1=1-h=100-d=0.25.19 c-n=50-c=14-p=7-o=8-1=1-h=100-d=0.25.19	Optimal	(I)	6.777	4523.1	0.002	4769.2	8.9528e-05	380	811	1570	1359
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(L)	4.3683	4523.1	0.026996	4769.2	4.8418e-05	380	811	1190	1166
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(P)	4.6833	4523.1	0.008999	5015	9.7981e-05	380	481	860	2744
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(STM)	303.95	4523.1	0.097985	4981.3	9.8494e-05	380	811	1570	53397
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.0	Optimal	(U)	11.515	8141.1	0.005999	9035.3	9.956e-05	795	996	1790	2000
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.0	Optimal	(I)	24.364	8141.1	0.10498	8505.8	7.5228e-05	795 795	1691 1691	$\frac{3280}{2485}$	1364
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.0 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.0	Optimal Optimal	(L) (P)	13.311 28.054	8141.1 8141.1	0.06699 0.017997	8505.8 8951.5	9.8929e-05 9.7093e-05	795 795	996	1790	1398 8644
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(STM)	3600	8141.1	0.33595	8988.4	0.0093791	795	1691	3280	232775
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.1	Optimal	(U)	48.489	8617.1	0.006999	9522.4	9.9972e-05	836	1037	1872	9536
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.1	Optimal	(1)	90.894	8617.1	0.10798	9061.7	9.8934e-05	836	1773	3444	8085
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.1	Optimal	(L)	78.003	8617.1	0.072989	9061.7	9.9196e-05	836	1773	2608	10499
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.1	Optimal	(P)	125.45	8617.1	0.023996	9454.8	9.9349e-05	836	1037	1872	40381
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.1 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.2	Feasible Optimal	(STM) (U)	$3600 \\ 126.13$	8617.1 8092.5	0.46693 0.009999	9518 9090.7	0.0098125 9.9201e-05	836 786	1773 987	$\frac{3444}{1772}$	246368 20827
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(I)	233.23	8092.5	0.12398	8513.4	9.7884e-05	786	1673	3244	20463
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(L)	89.679	8092.5	0.054992	8513.4	9.9861e-05	786	1673	2458	12261
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(P)	1962.6	8092.5	0.022996	9030	9.9986e-05	786	987	1772	807659
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(STM)	3600	8092.5	0.50492	8955.8	0.011499	786	1673	3244	263878
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(U)	35.404	8713.3	0.006999	9714.1	9.9805e-05	798	999	1796	7640
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.3 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.3	Optimal Optimal	(I) (L)	91.781 46.862	8713.3 8713.3	0.14898 0.081988	9139.4 9139.4	9.7747e-05 9.9462e-05	798 798	1697 1697	3292 2494	7815 7059
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(P)	214.4	8713.3	0.025996	9644.8	9.9703e-05	798	999	1796	83485
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(STM)	3600	8713.3	0.58191	9672.5	0.013953	798	1697	3292	213810
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(U)	71.81	8503.5	0.006999	9420.6	9.9919e-05	819	1020	1838	12960
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(I)	104.22	8503.5	0.11098	8954.5	9.9065e-05	819	1739	3376	10712
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(L)	70.679	8503.5	0.057991	8954.5	9.9562e-05	819	1739	2557	11089
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.4 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.4	Optimal Feasible	(P) (STM)	355.8 3600.1	8503.5 8503.5	$0.017998 \\ 0.57391$	9360.9 9381.5	9.9905e-05 0.011309	819 819	1020 1739	1838 3376	148065 322801
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(U)	7.4009	8897.5	0.003999	9911.8	9.537e-05	802	1003	1804	710
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(I)	13.289	8897.5	0.074989	9260	9.4068e-05	802	1705	3308	820
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(L)	7.9318	8897.5	0.058991	9260	4.9994e-05	802	1705	2506	587
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(P)	10.863	8897.5	0.019997	9835.5	9.9674e-05	802	1003	1804	2264
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(STM)	3600	8897.5	0.43094	9828.6	0.0051951	802	1705	3308	149101
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.6 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.6	Optimal Optimal	(U) (I)	20.797 40.27	8411.3 8411.3	0.005999 0.10198	9270.2 8788.4	2.2981e-05 9.9389e-05	800 800	1001 1701	1800 3300	4295 4411
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.6	Optimal	(L)	26.513	8411.3	0.052992	8788.4	9.9647e-05	800	1701	2500	4240
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.6	Optimal	(P)	82.431	8411.3	0.026996	9173.5	9.9863e-05	800	1001	1800	33074
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(STM)	3600	8411.3	0.45193	9222.9	0.0057415	800	1701	3300	304822
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.7	Optimal	(U)	20.961	8797.6	0.003999	9822	9.4662e-05	821	1022	1842	2675
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.7	Optimal	(I)	38.389	8797.6	0.10698	9266	9.6024e-05	821	1743	3384	2483
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.7 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.7	Optimal Optimal	(L) (P)	36.33 113.82	8797.6 8797.6	0.087986 0.018997	9266 9738.5	9.4715e-05 9.97e-05	821 821	1743 1022	$\frac{2563}{1842}$	4237 35297
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(STM)	3600	8797.6	0.44893	9765.5	0.012284	821	1743	3384	177813
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.8	Optimal	(U)	28.481	9165	0.006998	10246	9.2037e-05	792	993	1784	3761
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.8	Optimal	(I)	34.409	9165	0.088987	9610.1	9.5266e-05	792	1685	3268	2626
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.8	Optimal	(L)	24.207	9165	0.06599	9610.1	9.8879e-05	792	1685	2476	3037
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.8	Optimal	(P)	56.278	9165	0.026996	10181	9.9352e-05	792 792	993	1784	14738
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.8 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.9	Feasible Optimal	(STM) (U)	3600.1 357.12	9165 8781.7	0.44293 0.009998	10111 9870.5	0.014558 9.9817e-05	792 785	1685 986	$\frac{3268}{1770}$	198414 62074
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.9	Optimal	(I)	1043.4	8781.7	0.11698	9337	9.9998e-05	785	1671	3240	92651
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.9	Optimal	(L)	558.11	8781.7	0.06399	9337	9.9963e-05	785	1671	2455	105191
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.9	Optimal	(P)	1448.8	8781.7	0.022997	9810	9.9965e-05	785	986	1770	662996
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(STM)	3600	8781.7	0.6829	9770.2	0.020989	785	1671	3240	175058
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.10	Optimal	(U)	11.22	9037.9	0.006999	9990.8	8.8382e-05	756	957	1712	2116
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.10 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.10	Optimal Optimal	(I) (L)	22.103 14.274	9037.9 9037.9	0.096985 0.06599	9354.1 9354.1	9.9907e-05 9.6428e-05	756 756	1613 1613	3124 2368	1417 1454
c-n=100-c=19-p=7-o=8-1=1-n=100-d=0.25.10 c-n=100-c=19-p=7-o=8-1=1-h=100-d=0.25.10	Optimal	(L) (P)	39.956	9037.9	0.015998	9953.1	9.6428e-05 9.9749e-05	756 756	957	1712	13473
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(STM)	3600.2	9037.9	0.49592	9917.2	0.0093294	756	1613	3124	206441
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.11	Optimal	(U)	138.77	8096.2	0.005999	9072.1	9.979e-05	770	971	1740	33100
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.11	Optimal	(I)	324.43	8096.2	0.12098	8542.8	9.9731e-05	770	1641	3180	37416
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.11	Optimal	(L)	133.08	8096.2	0.060991	8542.8	9.9937e-05	770	1641	2410	23903
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.11 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.11	Optimal Feasible	(P) (STM)	328.93 3600	8096.2 8096.2	0.021996 0.45793	9008 9018.8	9.9899e-05 0.015614	770 770	971 1641	$\frac{1740}{3180}$	110522 197717
C-n=100-C=13-p=1-0=0-1=1-11=100-0=0.25.11	reasible	(O 1 IVI)	3000	0030.2	0.43793	3010.0	0.013014	110	1041	3100	131111

				nstances -							
filename	status	formulation	time	value	relax_time	relax_value	gap	edges	columns	rows	nodes
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.12 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.12	Optimal Optimal	(U) (I)	15.922 30.259	8434.1 8434.1	0.005999 0.098985	9400.6 8841.7	9.3449e-05 9.9851e-05	798 798	999 1697	1796 3292	3091 2293
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.12 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(L)	20.61	8434.1	0.098983	8841.7	8.9479e-05	798	1697	2494	2636
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(P)	29.852	8434.1	0.020997	9317.8	9.89e-05	798	999	1796	9159
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(STM)	3600	8434.1	0.48993	9337	0.008576	798	1697	3292	223210
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.13	Optimal	(U)	13.602	9195.9	0.007999	10108	9.697e-05	794	995	1788	2360
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.13	Optimal	(I)	22.79	9195.9	0.12198	9563.7	6.7934e-05	794	1689	3276	1455
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.13	Optimal	(L)	10.339	9195.9	0.072989	9563.7	6.5023e-05	794	1689	2482	897
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.13	Optimal Feasible	(P)	47.085 3600	9195.9 9195.9	0.019997 0.37094	10036 10065	9.9508e-05 0.0062494	794 794	995 1689	$\frac{1788}{3276}$	12379 322026
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.13 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(STM) (U)	723.42	8568.1	0.006999	9686.7	9.9849e-05	794	991	1780	142425
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(I)	984.2	8568.1	0.10798	9080.9	9.9877e-05	790	1681	3260	82193
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(L)	718.69	8568.1	0.099985	9080.9	9.9987e-05	790	1681	2470	115182
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(P)	2675	8568.1	0.024997	9614	9.9968e-05	790	991	1780	982667
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.14	Feasible	(STM)	3600.1	8566.6	0.46893	9561.5	0.027551	790	1681	3260	144002
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.15	Optimal	(U)	13.232	8020.8	0.004999	8804.9	9.7136e-05	753	954	1706	2996
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.15	Optimal	(I)	31.134	8020.8 8020.8	0.14098 0.053992	8350.2 8350.2	9.9365e-05 9.9986e-05	753 753	$\frac{1607}{1607}$	$\frac{3112}{2359}$	2835 1639
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.15 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.15	Optimal Optimal	(L) (P)	11.539 30.5	8020.8 8020.8	0.053992	8738.8	9.9986e-05 9.9191e-05	753 753	954	1706	10228
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(STM)	3600	8020.8	0.46393	8796.6	0.0028044	753	1607	3112	286695
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(U)	83.661	8800.7	0.009999	9833	9.977e-05	787	987	1774	16077
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(I)	103.44	8800.7	0.12698	9266.5	9.9887e-05	787	1674	3248	9098
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(L)	117.61	8800.7	0.063991	9266.5	9.9665e-05	787	1674	2461	18220
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(P)	251.89	8800.7	0.022996	9782	9.9893e-05	787	987	1774	96050
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(STM)	3600	8800.7	0.48493	9737.2	0.022557	787	1674	3248	137141
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.17 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.17	Optimal Optimal	(U) (I)	287.92 513.9	8603.2 8603.2	0.008999 0.12098	9674.7 9069.6	9.991e-05 9.9973e-05	838 838	1039 1777	$1876 \\ 3452$	55803 41127
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(L)	251.47	8603.2	0.081988	9069.6	9.9836e-05	838	1777	2614	42123
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(P)	1773.3	8603.2	0.025996	9599.7	9.9983e-05	838	1039	1876	626570
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.17	Feasible	(STM)	3600	8603.2	0.61591	9568.9	0.021993	838	1777	3452	182853
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(U)	134.09	7987.4	0.006999	8929.8	9.9671e-05	815	1016	1830	23681
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(I)	148.21	7987.4	0.11198	8416.9	9.9931e-05	815	1731	3360	11869
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(L)	96.812	7987.4	0.051992	8416.9	9.9347e-05	815	1731	2545	13585
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.18 c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.18	Optimal Feasible	(P) (STM)	$\frac{265.1}{3600}$	7987.4 7987.4	0.020997 0.53192	8881.1 8810.5	9.993e-05 0.02009	815 815	1016 1731	1830 3360	103386 132041
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(U)	35.172	9250.4	0.005	10135	9.9161e-05	829	1030	1858	7823
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(I)	40.57	9250.4	0.10698	9643.6	9.7634e-05	829	1759	3416	4666
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(L)	18.254	9250.4	0.06899	9643.6	9.8932e-05	829	1759	2587	2728
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(P)	111.11	9250.4	0.021996	10072	9.9594e-05	829	1030	1858	38656
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(STM)	3600	9250.4	0.6399	10048	0.010591	829	1759	3416	199581
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.0	Optimal	(U)	64.684	12955	0.011998	14189	9.9872e-05	1173	1474	2646	8732
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.0 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.0	Optimal Optimal	(I)	146.24	12955 12955	0.24996 0.12898	13481 13481	9.9932e-05 9.9729e-05	1173 1173	2497 2497	4842 3669	9145 11388
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.0 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.0	Optimal	(L) (P)	94.831 305.66	12955	0.12898	14063	9.9999e-05	1173	1474	2646	80815
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(STM)	3600.1	12955	1.2838	14121	0.015274	1173	2497	4842	93875
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(U)	3600	12008	0.014998	13806	0.0067091	1136	1437	2572	481070
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(I)	3600.1	12008	0.20697	12877	0.0079626	1136	2423	4694	148168
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(L)	3600	12008	0.19597	12877	0.0075195	1136	2423	3558	367992
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(P)	3600	11998	0.028996	13635	0.015745	1136	1437	2572	868001
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.1 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.2	Feasible Optimal	(STM) (U)	3600.1 626.31	11998 12848	1.3348 0.011998	13606 14332	0.037151 9.9962e-05	1136 1163	$\frac{2423}{1464}$	$\frac{4694}{2626}$	113221 104411
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.2 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(I)	2875	12848	0.19797	13460	9.9902e-05 9.9994e-05	1163	2477	4802	221943
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.2	Optimal	(L)	1047.7	12848	0.14898	13460	9.9977e-05	1163	2477	3639	150788
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(P)	3600	12848	0.039994	14218	0.0049172	1163	1464	2626	959911
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(STM)	3600.1	12843	1.2958	14176	0.018839	1163	2477	4802	103404
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(U)	2378.2	12001	0.017997	13392	9.999e-05	1196	1496	2692	389516
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(I)	3600	12001	0.27496	12573	0.00068147	1196	2542	4934	193520
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(L) (P)	2137.4	12001	0.13898	12573	9.9988e-05 0.0048875	1196	2542	3738	341966
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.3 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.3	Feasible Feasible	(STM)	3600 3600	12001 12001	0.038994 1.1958	13244 13348	0.020506	1196 1196	$\frac{1496}{2542}$	$\frac{2692}{4934}$	1037874 89977
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(U)	3600	12082	0.013998	13608	0.00081164	1153	1454	2606	479369
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(I)	3600	12082	0.17497	12790	0.0020671	1153	2457	4762	271490
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(L)	3423.3	12082	0.12098	12790	9.9988e-05	1153	2457	3609	382066
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(P)	3600.3	12082	0.027996	13516	0.0089427	1153	1454	2606	894181
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(STM)	3600	12082	0.90686	13472	0.025217	1153	2457	4762	168873
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(U)	94.622	13282	0.012998	14598	9.9999e-05	1167	1468	2634	14272
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.5 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.5	Optimal Optimal	(I) (L)	126.72 68.189	13282 13282	0.17497 0.12898	13847 13847	9.9679e-05 9.9792e-05	1167 1167	$2485 \\ 2485$	$\frac{4818}{3651}$	7083 6260
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(P)	2026.8	13282	0.030995	14500	9.9998e-05	1167	1468	2634	598341
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(STM)	3600.1	13282	0.74289	14550	0.016419	1167	2485	4818	124991
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(U)	3600	13547	0.008998	14988	0.0012332	1210	1511	2720	521377
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(I)	3600.1	13547	0.14298	14170	0.0023433	1210	2571	4990	196522
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(L)	3600.1	13547	0.087987	14170	0.0013804	1210	2571	3780	558812
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(P)	3600	13547	0.029996	14899	0.0061004	1210	1511	2720	817877
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.6 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.7	Feasible Optimal	(STM) (U)	3600 957.03	13547 12555	0.84187 0.012998	14861 13939	0.022747 9.9985e-05	1210 1216	2571 1517	$\frac{4990}{2732}$	149922 143179
c-n=150-c=22-p=7-o=8-1=1-n=100-d=0.25.7 c-n=150-c=22-p=7-o=8-1=1-h=100-d=0.25.7	Optimal	(I)	957.03 850.15	12555	0.20697	13162	9.9985e-05 9.9975e-05	1216	2583	5014	51308
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.7	Optimal	(L)	705.75	12555	0.13198	13162	9.9944e-05	1216	2583	3798	108016
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(P)	3600	12555	0.027996	13806	0.0053616	1216	1517	2732	919995
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(STM)	3600.1	12555	1.4688	13856	0.020725	1216	2583	5014	113818

			All I	nstances -	Part 4						
filename	status	formulation	time	value	relax_time	relax_value	gap	edges	columns	rows	nodes
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(U)	3600	12970	0.012998	14544	0.0025843	1156	1457	2612	481890
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.8 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.8	Feasible Feasible	(I) (L)	3600 3600	12970 12970	0.26196 0.14998	13653 13653	0.0032509 0.0023565	$\frac{1156}{1156}$	2463 2463	4774 3618	258708 456812
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.8 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(E) (P)	3600	12970	0.033995	14396	0.0023363	1156	1457	2612	855391
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(STM)	3600.1	12970	1.2288	14481	0.025982	1156	2463	4774	167708
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(U)	3600	13045	0.012998	14848	0.0025973	1206	1507	2712	469005
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(I)	3600.1	13045	0.18997	13895	0.0021148	1206	2563	4974	288498
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(L)	3600.1	13045	0.17397	13895	0.0028318	1206	2563	3768	425992
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(P)	3600	13045	0.044993	14695	0.011012	1206	1507	2712	763805
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(STM)	3600	13045	0.93086	14767	0.031818	1206	2563	4974	161998
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(U)	3600	12235	0.009998	13845	0.0048745	1108	1408	2516	505022
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(I)	3600	12235	0.19797	13004	0.0050607	1108	2366	4582	223774
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(L)	3600	12235	0.12698	13004	0.0048364	1108	2366	3474	486586
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(P)	3600	12235	0.028996	13704	0.010455	1108	1408	2516	995220
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(STM)	3600	12224	1.0228	13737	0.03174	1108	2366	4582	114681
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(U)	3600	12283	0.020997	13828	0.0083187	1209	1510	2718	427814
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(I)	3600	12282	0.20997	12999	0.0080299	1209	2569	4986	179121
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(L)	3600	12283	0.10398	12999	0.0059478	1209	2569	3777	274007
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(P)	3600	12282	0.039994	13729	0.012702	1209	1510	2718	817514
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(STM)	3600	12283	1.0438	13715	0.035094	1209	2569	4986	150000
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(U)	1198.3	13124	0.014997	14618	9.9961e-05	1209	1510	2718	140128
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(I)	709.45	13124	0.26396	13788	9.9838e-05	1209	2569	4986	37482
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.12	Optimal	(L) (P)	1334.8 3600	13124	0.11298	13788	9.9957e-05	1209 1209	2569	3777 2718	135864 808908
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.12	Feasible			13124	0.044993	14528	0.004552		1510		
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.12 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.13	Feasible Feasible	(STM) (U)	3600.1 3600	13124 12330	1.0798 0.014998	14536 13901	$0.021629 \\ 0.0047707$	$\frac{1209}{1176}$	$\frac{2569}{1477}$	$\frac{4986}{2652}$	127261 333210
c-n=150-c=22-p=7-o=8-l=1-n=100-d=0.25.13 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(I)	3600.1	12330	0.25396	12992	0.0055391	1176	2503	4854	158751
c-n=150-c=22-p=7-o=8-1=1-n=100-d=0.25.13 c-n=150-c=22-p=7-o=8-1=1-h=100-d=0.25.13	Feasible	(L)	3600.1	12330	0.25396	12992	0.0055391	1176	2503	3678	362517
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.13 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(E) (P)	3600.1	12330	0.12098	13818	0.010048	1176	1477	2652	560190
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.13 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(STM)	3600	12324	1.0848	13739	0.03142	1176	2503	4854	102088
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(U)	874.27	12872	0.016997	14397	9.9896e-05	1197	1498	2694	107405
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(I)	770.97	12872	0.16298	13522	9.9984e-05	1197	2545	4938	95624
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(L)	668.85	12872	0.12698	13522	9.9986e-05	1197	2545	3741	99378
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.14	Feasible	(P)	3600.1	12872	0.027996	14306	0.0046641	1197	1498	2694	916078
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.14	Feasible	(STM)	3600	12872	1.0258	14306	0.019646	1197	2545	4938	132884
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.15	Optimal	(U)	1822.6	12575	0.017998	14002	9.9979e-05	1241	1542	2782	296052
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(I)	3600	12575	0.22397	13182	0.00091419	1241	2633	5114	194333
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.15	Optimal	(L)	3251.8	12575	0.15698	13182	0.0001	1241	2633	3873	461133
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(P)	3600	12575	0.050992	13908	0.0040356	1241	1542	2782	907401
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(STM)	3600	12575	0.98585	13919	0.021754	1241	2633	5114	127174
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(U)	674.48	12158	0.014998	13311	9.9997e-05	1188	1489	2676	74262
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(I)	723.65	12158	0.25096	12670	9.9755e-05	1188	2527	4902	39630
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(L)	571.15	12158	0.11998	12670	9.9783e-05	1188	2527	3714	52898
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(P)	2862.3	12158	0.039994	13215	9.9997e-05	1188	1489	2676	685405
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(STM)	3600	12157	1.0118	13214	0.014812	1188	2527	4902	94825
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(U)	240.39	13322	0.014998	14654	9.9743e-05	1206	1507	2712	28983
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(I)	288.8	13322	0.20197	13835	9.9992e-05	1206	2563	4974	13546
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(L)	126.7	13322	0.12898	13835	9.9978e-05	1206	2563	3768	14513
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.17	Optimal	(P)	968.43	13322	0.039994	14553	9.9982e-05	1206	1507	2712	285283
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.17	Feasible	(STM)	3600	13322	1.3198	14543	0.019634	1206	2563	4974	100663
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(U)	1265.3	12602	0.020997	14064	9.9911e-05	1144	1445	2588	140835
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(I)	1610.5	12602	0.19597	13221	9.9952e-05	1144	2439	4726	93810
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(L)	477.91	12602	0.13298	13221	9.9848e-05	1144	2439	3582	47514
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(P)	3600	12602	0.032995	13929 13905	0.0047621	1144 1144	1445 2439	2588 4726	1047894
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(STM)	3600	12602	0.74489 0.009998		0.021545	1144 1186		$\frac{4726}{2672}$	146521
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.19	Optimal Optimal	(U)	69.073	12385 12385	0.009998 0.21197	13710 12890	9.9278e-05 9.6127e-05	1186	$\frac{1487}{2523}$	2672 4894	9649 4033
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.19 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(I) (L)	87.985 57.493	12385	0.21197 0.17797	12890	9.6127e-05 9.6628e-05	1186	2523	3708	4033
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.19 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.19	Optimal	(E) (P)	442	12385	0.034994	13587	9.9976e-05	1186	1487	2672	99319
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.19 c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(STM)	3600	12381	0.92986	13624	0.012552	1186	2523	4894	115813
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(U)	3600	16215	0.017998	18130	0.0055344	1418	1819	3236	447491
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(I)	3600	16215	0.23497	17048	0.0033344	1418	3037	5872	168295
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(L)	3600	16215	0.16398	17048	0.0032288	1418	3037	4454	281977
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(P)	3600	16215	0.041994	17926	0.0032288	1418	1819	3236	502121
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(STM)	3600	16215	1.7397	18011	0.026255	1418	3037	5872	93352
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(U)	3600	16784	0.015998	18569	0.0026734	1421	1822	3242	381161
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(I)	3600	16784	0.32195	17536	0.0032049	1421	3043	5884	183073
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(L)	3600.1	16784	0.18397	17536	0.00236	1421	3043	4463	421861
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(P)	3600	16784	0.049993	18454	0.0081239	1421	1822	3242	848460
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(STM)	3600	16781	1.9317	18466	0.023166	1421	3043	5884	127444
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(U)	3600	16255	0.015997	18165	0.0053456	1411	1810	3222	329723
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(I)	3600	16255	0.30095	17055	0.0033911	1411	3021	5844	128106
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(L)	3600	16255	0.15998	17055	0.0040449	1411	3021	4433	226382
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(P)	3600	16255	0.047993	18004	0.010705	1411	1810	3222	721923
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(STM)	3600	16244	1.3368	17990	0.026643	1411	3021	5844	101257
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(U)	1019	17991	0.015998	19934	9.9969e-05	1425	1826	3250	134562
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(I)	1156.3	17991	0.25296	18764	9.9914e-05	1425	3051	5900	65956
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(L)	731.93	17991	0.13898	18764	9.9956e-05	1425	3051	4475	71376
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(P)	3600	17991	0.047993	19773	0.0051588	1425	1826	3250	724872
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(STM)	3600	17986	1.6547	19853	0.019093	1425	3051	5900	82289

				stances -							
filename	status	formulation	time	value	relax_time	relax_value	gap	edges	columns	rows	nodes
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(U)	3600	17053	0.018997	18870	0.0013547	1392	1793	3184	323114
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(I)	2669.5	17053	0.19797	17810	9.9998e-05	1392	2985	5768	158963
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.4	Optimal	(L)	3376.3	17053	0.16498	17810	9.9998e-05	1392	2985	4376	355796
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.4 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.4	Feasible Feasible	(P) (STM)	3600 3600.1	17053 17049	0.045993 0.91686	18699 18646	0.0042724 0.018891	1392 1392	1793 2985	3184 5768	683408 120874
c-n=200-c=25-p=7-o=8-1=1-n=100-d=0.25.4 c-n=200-c=25-p=7-o=8-1=1-h=100-d=0.25.5	Optimal	(STM) (U)	1398.9	16408	0.91686	18318	9.9982e-05	1392	1795	3192	174191
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.5 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(I)	2889.5	16408	0.23496	17260	9.9982e-05 9.9993e-05	1396	2991	5784	164609
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.5	Optimal	(L)	1581.8	16408	0.18597	17260	9.9995e-05	1396	2991	4388	176339
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(P)	3600	16408	0.048993	18117	0.0068091	1396	1795	3192	590218
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(STM)	3600.1	16408	1.3208	18238	0.02292	1396	2991	5784	108496
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(U)	3600	16918	0.016998	18837	0.0044499	1381	1782	3162	367961
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(I)	3600.1	16918	0.24696	17758	0.00484	1381	2963	5724	153103
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(L)	3600	16918	0.13698	17758	0.0036828	1381	2963	4343	420222
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(P)	3600	16918	0.040994	18683	0.010271	1381	1782	3162	750161
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(STM)	3600	16918	1.5888	18617	0.02297	1381	2963	5724	115967
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(U)	3600	16888	0.013998	18802	0.0039065	1426	1827	3252	305297
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(I)	3600.1	16888	0.24596	17747	0.0025036	1426	3053	5904	190503
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(L)	3600	16888	0.14398	17747	0.0025347	1426	3053	4478	242117
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(P)	3600	16888	0.048993	18603	0.0091637	1426	1827	3252	707575
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(STM)	3600.1	16888	1.6338	18752	0.026908	1426	3053	5904	75003
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(U)	3600	16885	0.013998	18704	0.0030935	1370	1770	3140	516781
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(I)	3600	16885	0.26396	17706	0.0030849	1370	2940	5680	178981
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.8	Feasible Feasible	(L) (P)	3600 3600	16885	0.12298	17706 18487	0.0027881 0.0084962	1370 1370	2940 1770	4310 3140	340306 704771
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.8	Feasible Feasible		3600	16885 16885	0.042994 1.1968	18487 18613	0.0084962 0.019039	1370	1770 2940	3140 5680	704771 147076
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.8 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.9	Feasible Feasible	(STM) (U)	3600	16885	0.012998	18613 18812	0.019039	1370	2940 1800	3198	147076 290029
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.9 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(I)	3600	16870	0.30695	17686	0.001393	1399	2999	5796	164490
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.9 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.9	Optimal	(L)	1477.6	16870	0.30093	17686	9.9989e-05	1399	2999	4397	122135
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(P)	3600	16870	0.051992	18626	0.0078783	1399	1800	3198	679429
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(STM)	3600	16836	1.5158	18654	0.026417	1399	2999	5796	92541
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(U)	3600.1	16109	0.014997	18015	0.0052638	1385	1786	3170	300087
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(I)	3600	16109	0.27996	16954	0.0044815	1385	2971	5740	157872
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(L)	3600	16109	0.15298	16954	0.0041865	1385	2971	4355	298413
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(P)	3600.1	16109	0.045993	17848	0.013272	1385	1786	3170	644187
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(STM)	3600	16109	1.6427	17889	0.026876	1385	2971	5740	118636
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	`(U) ´	3600	17731	0.017997	19661	0.00072028	1398	1799	3196	284244
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.11	Optimal	(I)	3412.4	17731	0.25396	18532	9.9994e-05	1398	2997	5792	161653
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.11	Optimal	(L)	1722	17731	0.17597	18532	9.9943e-05	1398	2997	4394	142926
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(P)	3600.1	17731	0.040994	19441	0.0069976	1398	1799	3196	657526
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(STM)	3600	17731	1.2378	19469	0.017351	1398	2997	5792	149641
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(U)	3600	16505	0.017997	18538	0.0047816	1416	1817	3232	329185
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(I)	3600.1	16505	0.29796	17335	0.0033101	1416	3033	5864	183683
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(L)	3600.1	16505	0.17597	17335	0.0046748	1416	3033	4448	320067
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(P)	3600	16505	0.046993	18347	0.010268	1416	1817	3232	754685
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(STM)	3600	16477	1.4378	18258	0.027824	1416	3033	5864	94681
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(U)	3600	16297	0.014998	18238	0.0037432	1403	1804	3206	353901
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.13 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.13	Feasible Feasible	(I) (L)	3600 3600	16297 16297	0.26596 0.16398	17143 17143	0.0033018 0.0025635	$\frac{1403}{1403}$	$3007 \\ 3007$	$\frac{5812}{4409}$	150001 352840
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.13 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(P)	3600	16297	0.16398	18105	0.010994	1403	1804	3206	459936
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(STM)	3600	16294	1.2288	18105	0.010334	1403	3007	5812	106131
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(U)	753.36	17471	0.017997	19466	9.9976e-05	1419	1820	3238	65802
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(I)	1551.8	17471	0.38694	18248	9.9997e-05	1419	3039	5876	76917
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.14	Optimal	(L)	1067.3	17471	0.12898	18248	9.9995e-05	1419	3039	4457	68506
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.14	Feasible	(P)	3600	17471	0.049992	19266	0.0037352	1419	1820	3238	601561
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.14	Feasible	(STM)	3600	17471	2.0577	19228	0.016237	1419	3039	5876	77561
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(U)	3600	16814	0.016997	18750	0.004972	1414	1815	3228	426979
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(I)	3600.1	16814	0.34795	17710	0.0057151	1414	3029	5856	141171
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(L)	3600	16814	0.25296	17710	0.0035927	1414	3029	4442	293905
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(P)	3600	16814	0.035994	18612	0.0090781	1414	1815	3228	668101
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(STM)	3600	16814	1.8847	18570	0.026732	1414	3029	5856	92231
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(U)	3600	15860	0.007998	17728	0.0021945	1459	1860	3318	450534
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(I)	3600	15860	0.21097	16653	0.0013139	1459	3119	6036	273623
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.16	Optimal	(L)	2338.1	15860	0.16798	16653	9.9992e-05	1459	3119	4577	312694
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(P)	3600	15860	0.047992	17486	0.0074598	1459	1860	3318	788134
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(STM)	3600	15860	1.2158	17632	0.022549	1459	3119	6036	134126
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.17	Feasible	(U)	3600	17434	0.010998	19602	0.0053487	1418	1819	3236	304491
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.17	Feasible	(I)	3600	17434	0.23696	18365	0.0057699	1418	3037	5872	147894
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.17	Feasible	(L) (P)	3600 3600	17434	0.13798	18365 19442	0.004056 0.014051	1418 1418	3037	4454	289977 852191
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.17 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.17	Feasible Feasible	(STM)	3600	17434 17406	0.022996 1.1428	19442 19540	0.014051 0.033917	1418	1819 3037	$3236 \\ 5872$	852191 123557
c-n=200-c=25-p=7-o=8-1=1-h=100-d=0.25.17 c-n=200-c=25-p=7-o=8-1=1-h=100-d=0.25.18	Optimal	(STM) (U)	392.87	16538	0.016997	19540 18206	0.033917 9.9887e-05	1418 1469	3037 1869	3338	123557 59308
c-n=200-c=25-p=7-o=8-i=1-n=100-d=0.25.18 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.18	Optimal	(I)	595.62	16538	0.26796	17203	9.9887e-05 9.9919e-05	1469	3138	6076	29263
c-n=200-c=25-p=7-0=8-1=1-n=100-d=0.25.18 c-n=200-c=25-p=7-0=8-1=1-h=100-d=0.25.18	Optimal	(L)	532.07	16538	0.26796	17203	9.9919e-05 9.9914e-05	1469	3138	4607	54570
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.18 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(P)	3600	16538	0.14298	18091	0.0028664	1469	1869	3338	748908
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(STM)	3600.1	16538	1.4648	18096	0.022839	1469	3138	6076	76890
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.18 c-n=201-c=25-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(U)	3600.1	17637	0.012998	19463	0.0022339	1450	1851	3300	302607
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(I)	3600	17637	0.28496	18464	0.0037271	1450	3101	6000	106972
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(L)	3600.1	17637	0.17897	18464	0.0034791	1450	3101	4550	372102
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(P)	3600	17637	0.035995	19358	0.010077	1450	1851	3300	753707
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(STM)	3600	17622	1.5008	19378	0.025211	1450	3101	6000	91131

				nstances -							
filename	status	formulation	time	value	relax_time	relax_value	gap	edges	columns	rows	nodes
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(U)	3600.1	19972	0.029995	22352	0.0060325	1827	2328	4154	187003
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(I)	3600.1	19972	0.53092	21021	0.0055595	1827	3905	7558	79601
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.0	Feasible Feasible	(L) (P)	3600.1 3600	19972 19972	0.22097 0.087986	21021 22157	0.0059444 0.012785	1827 1827	3905 2328	5731	148062
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.0					0.00.00					4154	458381
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(STM)	3600.1	19951	2.8696	22237	0.027909	1827	3905	7558	63321
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.1 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.1	Feasible Feasible	(U)	3600 3600.1	22664 22664	0.023996 0.53592	25150 23707	0.0047561 0.0038666	1938 1938	$\frac{2438}{4126}$	$4376 \\ 8002$	255085 73354
	Feasible	(I) (L)	3600.1	$\frac{22664}{22664}$	0.33592	23707	0.0034876	1938	4126	6064	168837
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.1 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(P)	3600	22664	0.081987	24973	0.011836	1938	2438	4376	505485
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(STM)	3600.1	22659	0.53492	25021	0.025754	1938	4126	8002	73891
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(U)	3600	21523	0.028996	24051	0.005975	1931	2432	4362	200265
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(I)	3600.2	21523	0.56491	22687	0.0060553	1931	4113	7974	75208
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(L)	3600.1	21523	0.29596	22687	0.0044726	1931	4113	6043	188797
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(P)	3600.1	21523	0.075989	23794	0.013936	1931	2432	4362	334091
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(STM)	3600	21523	0.6419	23916	0.0252	1931	4113	7974	56949
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(U)	3600	21807	0.032995	24000	0.001355	1942	2442	4384	221297
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(I)	1860.9	21807	0.41294	22660	9.999e-05	1942	4134	8018	84508
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.3	Optimal	(L)	3167.7	21807	0.27896	22660	9.999e-05	1942	4134	6076	166075
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(P)	3600	21807	0.075989	23810	0.0054216	1942	2442	4384	541797
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(STM)	3600.1	21807	0.50992	23793	0.016324	1942	4134	8018	85971
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	`(U) ´	3600	21392	0.031996	23609	0.0029231	1909	2409	4318	219570
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(I)	3600	21392	0.49393	22290	0.00071187	1909	4068	7886	89354
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(L)	3600	21389	0.26796	22290	0.00070975	1909	4068	5977	206428
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(P)	3600.2	21392	0.055992	23457	0.0059426	1909	2409	4318	375933
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(STM)	3600.1	21392	0.62191	23408	0.019761	1909	4068	7886	60521
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(U)	3600.1	21470	0.025996	23726	0.00319	1931	2432	4362	240065
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(I)	3600.2	21470	0.44493	22355	0.0024086	1931	4113	7974	93308
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(L)	3600.1	21470	0.36395	22355	0.0018319	1931	4113	6043	166897
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(P)	3600	21470	0.059991	23552	0.0065351	1931	2432	4362	426565
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(STM)	3600	21470	0.73989	23509	0.018427	1931	4113	7974	56402
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(U)	3600	21308	0.023996	23799	0.0063481	1920	2421	4340	230471
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(I)	3600	21305	0.36894	22380	0.0052764	1920	4091	7930	116182
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(L)	3600	21308	0.20797	22380	0.004926	1920	4091	6010	204511
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(P)	3600	21308	0.048992	23597	0.012647	1920	2421	4340	633772
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(STM)	3600.1	21306	0.53492	23654	0.026601	1920	4091	7930	90008
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(U)	3600	19932	0.024996	22344	0.0095957	1993	2494	4486	153281
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(I)	3600.1	19917	0.62491	21085	0.011563	1993	4237	8222	64675
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(L)	3600	19932	0.32695	21085	0.0096025	1993	4237	6229	113791
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.7	Feasible Feasible	(P) (STM)	3600 3600.1	19932 19881	0.093985 0.62991	22185 22118	0.016877 0.033781	1993 1993	$\frac{2494}{4237}$	4486 8222	423837 49771
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.7 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(STM) (U)	3600.1	20802	0.62991	23266	0.033781	1993	2465	4428	217924
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.8 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(I)	3600.1	20802	0.42594	21906	0.013073	1964	4179	8106	83321
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(L)	3600.1	20802	0.31995	21906	0.0097215	1964	4179	6142	121727
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(P)	3600.1	20806	0.084987	23093	0.017213	1964	2465	4428	333824
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(STM)	3600.1	20766	0.53292	23058	0.031352	1964	4179	8106	65271
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(U)	3600	20632	0.031995	23106	0.0082872	1879	2380	4258	160976
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(I)	3600.1	20632	0.49293	21778	0.008141	1879	4009	7766	88606
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(L)	3600	20638	0.31995	21778	0.0071233	1879	4009	5887	209207
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(P)	3600.1	20632	0.081988	22866	0.015332	1879	2380	4258	382984
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(STM)	3600.2	20623	0.74389	22984	0.030787	1879	4009	7766	86451
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(U)	3600	22327	0.031995	24664	0.0055349	1894	2395	4288	263489
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(I)	3600.1	22327	0.48593	23275	0.0052451	1894	4039	7826	82001
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(L)	3600	22327	0.29795	23275	0.0036105	1894	4039	5932	149687
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(P)	3600.1	22327	0.06699	24490	0.010362	1894	2395	4288	455189
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(STM)	3600.1	22327	0.45493	24537	0.02328	1894	4039	7826	66201
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(U)	3600.2	21142	0.028995	23695	0.0090919	1978	2479	4456	186871
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(I)	3600.1	21142	0.40994	22320	0.0082315	1978	4207	8162	94991
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(L)	3600	21142	0.26196	22320	0.0083989	1978	4207	6184	151203
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(P)	3600	21142	0.057992	23494	0.016222	1978	2479	4456	639171
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.11	Feasible	(STM)	3600	21142	0.41994	23569	0.029718	1978	4207	8162	64161
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(U)	3600	20730	0.024996	23039	0.0067989	1964	2465	4428	218824
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(I)	3600.1	20730	0.40694	21733	0.0064884	1964	4179	8106	89631
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(L)	3600	20730	0.27096	21733	0.0051845	1964	4179	6142	146227
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(P)	3600	20730	0.071989	22830	0.0111	1964	2465	4428	356024
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.12	Feasible	(STM)	3600.1	20730	0.60391	22870	0.026398	1964	4179	8106	55171
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(U)	3600	22068	0.022997	24507	0.0054653	1951	2452	4402	191485
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(I)	3600.1	22068	0.55392	23104	0.0052713	1951	4153	8054	64893
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(L)	3600	22068	0.31195	23104	0.0045016	1951	4153	6103	176002
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.13	Feasible	(P)	3600	22068	0.075988	24322	0.01197	1951	2452	4402	339285
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.13 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.14	Feasible Feasible	(STM) (U)	3600.1 3600	22068 21194	0.6449 0.024997	24366 23412	0.026839 0.0078716	1951 1976	4153 2477	8054 4452	63731 154165
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.14 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.14	Feasible Feasible	(I)	3600 3600.1	$\frac{21194}{21194}$	0.0-00.	23412 22200	0.0078716	1976	4203	4452 8154	
	Feasible		3600.1	21194	0.48593 0.30595	22200	0.0070097	1976	4203	6178	67808 144192
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.14 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.14	Feasible	(L) (P)	3600.1	21194	0.089986	23283	0.011632	1976	2477	4452	418865
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.14 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.14	Feasible	(STM)	3600.1	21194	0.6759	23260	0.011632	1976	4203	8154	44153
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.14 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(SIM) (U)	3600.1	22345	0.6759	23260	0.027442	1976	4203 2496	4492	236284
c-n=250-c=26-p=7-o=8-1=1-h=100-d=0.25.15 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(I)	3600.1	22345	0.55892	23471	0.0081997	1996	4242	8234	60292
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(L)	3600.1	22345	0.36894	23471	0.0074866	1996	4242	6238	168296
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(P)	3600	22345	0.091986	24662	0.015772	1996	2496	4492	345484
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.15	Feasible	(STM)	3600	22340	0.59491	24740	0.029303	1996	4242	8234	70564
		(~)									

filename	status	formulation	time	stances - l value	relax_time	relax_value	gap	edges	columns	rows	nodes
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(U)	3600.1	21068	0.035994	23540	0.0084311	1934	2434	4368	206073
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(I)	3600.1	21069	0.46793	22186	0.0079784	1934	4118	7986	90125
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(L)	3600.1	21069	0.34195	22186	0.0078013	1934	4118	6052	163111
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(P)	3600	21069	0.076988	23381	0.014824	1934	2434	4368	466073
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.16	Feasible	(STM)	3600.1	21069	0.74289	23313	0.027976	1934	4118	7986	52925
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.17	Feasible	(U)	3600	22017	0.026996	24533	0.010167	1960 1960	2461	4420	224712 82607
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.17 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.17	Feasible Feasible	(I) (L)	3600.1 3600.1	$\frac{22017}{22017}$	$0.43493 \\ 0.30795$	23163 23163	0.0095279 0.0098642	1960	$4171 \\ 4171$	8090 6130	187007
	Feasible	(P)	3600.1	22017	0.056991	24360	0.016796	1960	2461	4420	543363
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.17 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.17	Feasible	(STM)	3600.1	21990	0.70789	24321	0.010790	1960	4171	8090	59907
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.17 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(U)	3600.1	21412	0.032995	23832	0.0094339	1980	2481	4460	221277
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(I)	3600.1	21412	0.53492	22564	0.0077041	1980	4211	8170	93592
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(L)	3600.1	21412	0.31495	22564	0.0074705	1980	4211	6190	141412
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(P)	3600.1	21412	0.081987	23680	0.014886	1980	2481	4460	394581
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.18	Feasible	(STM)	3600.1	21412	0.59691	23704	0.03027	1980	4211	8170	60778
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(U)	3600	20792	0.014998	23141	0.0056652	1882	2383	4264	187395
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(I)	3600.1	20792	0.32295	21764	0.0056431	1882	4015	7778	81171
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(L)	3600	20792	0.25196	21764	0.0034396	1882	4015	5896	280967
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(P)	3600	20792	0.060991	22926	0.010024	1882	2383	4264	568893
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25.19	Feasible	(STM)	3600.1	20786	0.47893	22973	0.024332	1882	4015	7778	75841
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(U)	3600	25330	0.027996	28348	0.012512	2133	2734	4866	214016
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(I)	3600	25330	0.6639	26732	0.011112	2133	4567	8832	64531
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(L)	3600.1	25330	0.33195	26732	0.011367	2133	4567	6699	176172
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(E)	3600.1	25330	0.10498	28102	0.011367	2133	2734	4866	456716
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.0	Feasible	(STM)	3600.1	25326	0.6419	28171	0.0153659	2133	4567	8832	76031
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(U)	3600.1	25052	0.027996	28182	0.012387	2130	2730	4860	186906
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(I)	3600.1	25054	0.53892	26421	0.0094014	2130	4560	8820	70497
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(L)	3600	25054	0.24996	26421	0.0089484	2130	4560	6690	129111
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(P)	3600	25054	0.078987	27881	0.019111	2130	2730	4860	334406
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.1	Feasible	(STM)	3600.1	25052	0.97985	28021	0.032329	2130	4560	8820	43871
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(U)	3600	24843	0.033995	27567	0.0088609	2157	2758	4914	187493
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(I)	3600.2	24843	0.62191	26003	0.0072074	2157	4615	8928	64009
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(L)	3600	24843	0.24596	26003	0.0063793	2157	4615	6771	112337
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(P)	3600	24843	0.081987	27268	0.015137	2157	2758	4914	409793
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.2	Feasible	(STM)	3600.1	24836	0.77588	27381	0.025925	2157	4615	8928	37209
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(U)	3600	24701	0.029996	27575	0.007795	2147	2748	4894	195518
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(I)	3600.1	24701	0.52192	25916	0.0054941	2147	4595	8888	70889
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(L)	3600.1	24701	0.26696	25916	0.0050693	2147	4595	6741	111502
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(P)	3600	24701	0.081987	27317	0.013469	2147	2748	4894	384518
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.3	Feasible	(STM)	3600.2	24701	0.54692	27364	0.025761	2147	4595	8888	47568
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(U)	3600.1	25667	0.046993	28435	0.0065752	2129	2730	4858	206004
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(I)	3600	25667	0.48293	26725	0.0038287	2129	4559	8816	74730
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(L)	3600	25667	0.33895	26725	0.0034257	2129	4559	6687	158649
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(P)	3600	25667	0.095985	28188	0.009663	2129	2730	4858	387447
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.4	Feasible	(STM)	3600.1	25666	0.6309	28234	0.022309	2129	4559	8816	48616
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(U)	3600.1	24267	0.023996	27277	0.010489	2105	2706	4810	181072
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(I)	3600.1	24263	0.40394	25608	0.011034	2105	4511	8720	68052
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(L)	3600	24263	0.31795	25608	0.010708	2105	4511	6615	95280
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(P)	3600.1	24267	0.071989	26985	0.018956	2105	2706	4810	467172
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.5	Feasible	(STM)	3600.1	24237	0.60791	27078	0.034104	2105	4511	8720	61021
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(U)	3600	25723	0.027995	28402	0.0063326	2096	2696	4792	201884
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(I)	3600.1	25723	0.57091	26825	0.0040462	2096	4492	8684	79092
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(L)	3600	25723	0.26296	26825	0.0040379	2096	4492	6588	159516
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(P)	3600	25723	0.097985	28192	0.010215	2096	2696	4792	394112
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.6	Feasible	(STM)	3600.1	25722	0.6729	28143	0.022464	2096	4492	8684	41861
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(U)	3600	24534	0.027996	27224	0.0073479	2049	2648	4698	240392
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(I)	3600.1	24534	0.41594	25617	0.0053521	2049	4397	8496	106419
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(L)	3600	24534	0.22697	25617	0.0051066	2049	4397	6447	197110
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(P)	3600	24534	0.077988	26983	0.012138	2049	2648	4698	401077
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.7	Feasible	(STM)	3600.1	24534	0.60491	27003	0.021355	2049	4397	8496	54411
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(U)	3600	25220	0.027996	28139	0.0087043	2131	2731	4862	186228
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(I)	3600.1	25220	0.44493	26549	0.0072386	2131	4562	8824	88927
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(L)	3600.1	25220	0.24796	26549	0.0067642	2131	4562	6693	220916
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(P)	3600	25220	0.067989	27885	0.015408	2131	2731	4862	366909
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.8	Feasible	(STM)	3600	25197	0.54492	27902	0.029228	2131	4562	8824	82884
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(U)	3600	24115	0.032995	26960	0.0065922	2155	2756	4910	197387
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(I)	3600.1	24115	0.45793	25310	0.0061398	2155	4611	8920	69101
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(L)	3600.1	24115	0.27496	25310	0.005546	2155	4611	6765	142502
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(P)	3600	24115	0.090986	26647	0.01416	2155	2756	4910	370187
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.9	Feasible	(STM)	3600.1	24115	0.74189	26739	0.025141	2155	4611	8920	69401
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(U)	3600.1	26225	0.027996	29184	0.0097616	2221	2822	5042	167770
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(I)	3600.2	26224	0.6469	27491	0.0083721	2221	4743	9184	61388
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10	Feasible	(L)	3600	26224	0.33695	27491	0.0081427	2221	4743	6963	145467
	Feasible	(P)	3600	26224	0.091986	29010	0.017002	2221	2822	5042	345443
		(STM)	3600.1	26212	0.76588	28943	0.028717	2221	4743	9184	39790
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10	reasible										
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10 c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10	Feasible Feasible		3600	24299	0.031995	27370	0.012399	2120	2721	4840	178177
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10	Feasible Feasible	(U)	3600 3600.2	24299 24299	0.031995 0.50792	27370 25588	0.012399 0.0093368	2120 2120	$\frac{2721}{4541}$	4840 8780	178177 61302
$\begin{array}{l} c\text{-}n=300\text{-}c=28\text{-}p=7\text{-}o=8\text{-}l=1\text{-}h=100\text{-}d=0.25.10} \\ c\text{-}n=300\text{-}c=28\text{-}p=7\text{-}o=8\text{-}l=1\text{-}h=100\text{-}d=0.25.10} \\ c\text{-}n=300\text{-}c=28\text{-}p=7\text{-}o=8\text{-}l=1\text{-}h=100\text{-}d=0.25.11} \\ c\text{-}n=300\text{-}c=28\text{-}p=7\text{-}o=8\text{-}l=1\text{-}h=100\text{-}d=0.25.11} \end{array}$	Feasible	(U) (I)	3600.2	24299	0.50792	25588	0.0093368	2120	4541	8780	61302
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10 c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.10 c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25.11	Feasible Feasible	(U)									

			Tal	ble with M	eans and Sta	andard Deviati	ons - All Instan	ces				
group	formulation	optimal	feasible	time	time_d	relax_time	$relax_time_d$	nodes	nodes_d	gap	gap_d	gap_improvement
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(U)	20	0	3.1164	2.2266	0.0025997	0.00091628	1103	813.89	6.5462e-05	2.9044e-05	0.11385
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(I)	20	0	6.3704	3.7699	0.037594	0.0081683	1039	745.26	5.1719e-05	4.0003e-05	0.050724
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(L) (P)	20 20	0	4.2234	2.7436	0.024396	0.0053039	1110 2325.1	1036.4	6.2571e-05	3.5706e-05	0.050713
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25 c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(STM)	20	0	$4.174 \\ 356.3$	3.2842 549.05	0.007849 0.12368	0.0013142 0.025558	71339	2335.6 $1.1468e+05$	6.4513e-05 9.7571e-05	3.9228e-05 3.6591e-06	0.10673 0.10591
c-n=100-c=14-p=7-o=8-1=1-h=100-d=0.25 c-n=100-c=19-p=7-o=8-1=1-h=100-d=0.25	(U)	20	0	109.26	168.49	0.12308	0.023338	20798	32712	9.3871e-05	1.657e-05	0.10391
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(I)	20	0	196.76	298.04	0.11208	0.016414	17290	25894	9.5885e-05	8.3505e-06	0.04909
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(L)	20	ő	117.21	184.76	0.06739	0.012272	19098	31938	9.4441e-05	1.2773e-05	0.049092
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(P)	20	ō	497.56	767.2	0.021947	0.0031692	1.9198e+05	2.9835e+05	9.956e-05	6.365e-07	0.099306
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(STM)	0	20	3600	0.038872	0.49707	0.08411	2.1583e + 05	57988	0.013004	0.0064772	0.090305
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(U)	12	8	1953.3	1449	0.014448	0.003232	2.5781e + 05	1.9151e + 05	0.0016549	0.0024666	0.11445
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(I)	10	10	2209.5	1505	0.21277	0.035504	1.3432e + 05	94684	0.001948	0.0025931	0.048757
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(L)	13	7	1958.3	1504.9	0.13578	0.025016	2.3744e + 05	1.8673e + 05	0.0015631	0.0023238	0.049159
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(P)	5	15	3030.3	1101.8	0.035645	0.0064508	7.4597e + 05	2.798e + 05	0.0058832	0.004498	0.10064
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(STM)	0	20	3600	0.028368	1.074	0.19685	1.2498e + 05	24539	0.023225	0.0067839	0.082976
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(U)	4	16	3058.2	1096	0.015548	0.0026918	3.0737e + 05	1.1815e + 05	0.0029551	0.0019734	0.10445
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(I)	6	14	3133.8	901.44	0.27206	0.044568	1.4926e + 05	50210	0.0025186	0.001994	0.045885
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(L)	8	12	2801.4	1119	0.16283	0.027715	2.5823e + 05	1.1283e+05	0.0020996	0.001724	0.044052
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(P)	0	20	3600	0.023749	0.044093	0.0065405	6.9209e+05	97172	0.0084186	0.0028663	0.093932
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(STM)	0	20	3600	0.0126	1.4825	0.28403	1.0644e+05	22040	0.023906	0.0041665	0.079669
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(U)	0	20	3600	0.034205	0.027896	0.0046349	2.0883e+05	30290	0.0069098	0.0027061	0.10015
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(I) (L)	1	19 19	3513.1 3578.4	379.05 94.219	0.47793 0.29591	0.073161 0.040878	82761 $1.7012e+05$	12671 35993	0.0062499 0.0056342	0.0028741 0.0028273	0.042958 0.04353
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(L) (P)	0	20	3578.4 3600	0.03748	0.29591 0.073989	0.040878	1.7012e+05 4.4718e+05	35993 94421	0.0056342 0.012606	0.0028273	0.04353
c-n=250-c=26-p=7-o=8-l=1-n=100-d=0.25 c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(STM)	0	20	3600.1	0.03748	0.71404	0.50315	4.4718e+05 65099	11981	0.012606	0.0033232	0.076818
c-n=250-c=26-p=7-0=8-1=1-n=100-d=0.25 c-n=300-c=28-p=7-0=8-1=1-h=100-d=0.25	(U)	0	20	3600.1	0.03134	0.032345	0.0054515	1.9498e+05	24362	0.0076576	0.0025724	0.10547
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(I)	0	20	3600.1	0.042438	0.53692	0.088031	76803	15725	0.0062447	0.0023724	0.039443
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(L)	0	20	3600	0.024551	0.2983	0.04443	1.3976e+05	31708	0.0058823	0.0024261	0.041959
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(P)	ŏ	20	3600	0.010909	0.089986	0.016181	3.8705e+05	42430	0.013516	0.003441	0.08881
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(STM)	ō	20	3600.1	0.030594	0.71819	0.11902	55743	15139	0.026006	0.004388	0.077525
-	. /											
		T.	able with M	eans and C	Standard Do	viations - Only	solved within t	he time limit				
group	formulation	optimal	feasible	time	time_d	relax_time	relax_time_d	nodes	nodes_d	gap	gap_d	gap_improvement
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(U)	20	0	3.1164	2.2266	0.0025997	0.00091628	1103	813.89	6.5462e-05	2.9044e-05	0.11385
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(I)	20	ő	6.3704	3.7699	0.037594	0.0081683	1039	745.26	5.1719e-05	4.0003e-05	0.050724
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(L)	20	Ö	4.2234	2.7436	0.024396	0.0053039	1110	1036.4	6.2571e-05	3.5706e-05	0.050713
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(P)	20	0	4.174	3.2842	0.007849	0.0013142	2325.1	2335.6	6.4513e-05	3.9228e-05	0.10673
c-n=50-c=14-p=7-o=8-l=1-h=100-d=0.25	(STM)	20	0	356.3	549.05	0.12368	0.025558	71339	1.1468e + 05	9.7571e-05	3.6591e-06	0.10591
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(U)	20	0	109.26	168.49	0.006899	0.0017577	20798	32712	9.3871e-05	1.657e-05	0.11284
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(I)	20	0	196.76	298.04	0.11208	0.016414	17290	25894	9.5885e-05	8.3505e-06	0.04909
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(L)	20	0	117.21	184.76	0.06739	0.012272	19098	31938	9.4441e-05	1.2773e-05	0.049092
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(P)	20	0	497.56	767.2	0.021947	0.0031692	1.9198e + 05	2.9835e+05	9.956e-05	6.365e-07	0.099306
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(U)	12	0	855.44	697.41	0.014914	0.0030124	1.2145e+05	1.1236e+05	9.9881e-05	1.9494e-07	0.10818
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(I)	10	0	818.95	813.97	0.21177	0.031643	57360	63437	9.9523e-05	1.1368e-06	0.044961
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(L)	13	0	1074.3	1118.7	0.13506	0.016719	1.3969e+05	1.4938e+05	9.9661e-05	8.8027e-07	0.046449
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(P) (U)	5 4	0	1321 891.02	979.94 367.9	0.036194 0.017247	0.003429 0.00082878	3.4983e+05 1.0847e+05	2.5046e+05 48056	9.999e-05 9.9954e-05	9.6534e-09 3.8612e-08	0.090632 0.10976
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(I)	6	0	2045.9	1008.9	0.017247	0.00082878	1.0956e+05	54159	9.9954e-05 9.9969e-05	3.8612e-08 3.7194e-08	0.10976
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25 c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(L)	8	0	1603.4	859.36	0.16023	0.038304	1.6304e+05	1.066e+05	9.9973e-05	2.9411e-08	0.044763
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(I)	1	0	1860.9	0	0.41294	0.019237	84508	0	9.999e-05	0	0.038983
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(L)	1	0	3167.7	0	0.27896	0	1.6608e+05	0	9.999e-05	o o	0.038983
	` '		-		-		-		-		-	
		Tab	le with Mes	ns and Sta	indard Devis	ations - Only n	ot solved within	the time limit				
group	formulation	optimal	feasible	time	time_d	relax_time	relax_time_d	nodes	nodes_d	gap	gap_d	gap_improvement
c-n=100-c=19-p=7-o=8-l=1-h=100-d=0.25	(STM)	0	20	3600	0.038872	0.49707	0.08411	2.1583e+05	57988	0.013004	0.0064772	0.090305
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(U)	ŏ	8	3600	0.0078062	0.013748	0.0034184	4.6234e+05	55047	0.0039874	0.0024784	0.12386
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(I)	ő	10	3600.1	0.030332	0.21377	0.03896	2.1129e+05	45377	0.0037964	0.002572	0.052554
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(L)	0	7	3600	0.026726	0.13712	0.035581	4.1896e + 05	86527	0.0042809	0.0020161	0.054193
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(P)	0	15	3600	0.062766	0.035461	0.0071715	8.7802e + 05	1.1717e + 05	0.007811	0.0034802	0.10398
c-n=150-c=22-p=7-o=8-l=1-h=100-d=0.25	(STM)	0	20	3600	0.028368	1.074	0.19685	1.2498e + 05	24539	0.023225	0.0067839	0.082976
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(U)	0	16	3600	0.013095	0.015123	0.0028254	3.571e + 05	67152	0.0036689	0.0015232	0.10312
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(I)	0	14	3600	0.023744	0.27474	0.036696	1.6627e + 05	37144	0.0035551	0.0014486	0.046365
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(L)	0	12	3600	0.029849	0.16456	0.032023	3.2168e + 05	59802	0.0034327	0.00071499	0.04286
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(P)	0	20	3600	0.023749	0.044093	0.0065405	6.9209e+05	97172	0.0084186	0.0028663	0.093932
c-n=200-c=25-p=7-o=8-l=1-h=100-d=0.25	(STM)	0	20	3600	0.0126	1.4825	0.28403	1.0644e+05	22040	0.023906	0.0041665	0.079669
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(U)	0	20 19	3600	0.034205	0.027896	0.0046349	2.0883e+05	30290	0.0069098	0.0027061	0.10015
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(I) (L)	0		3600.1	0.045012	0.48135	0.073487	82669	12993	0.0065736	0.002569	0.043168
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25	(L) (P)	0	19 20	3600 3600	$0.023702 \\ 0.03748$	0.2968 0.073989	0.04175	1.7033e+05	36915	0.0059255	0.0025919 0.0035232	0.043769
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25		0	20 20	3600.1			0.013078	4.4718e+05	94421	$0.012606 \\ 0.02657$		0.090225
c-n=250-c=26-p=7-o=8-l=1-h=100-d=0.25 c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(STM) (U)	0	20	3600.1	0.03154 0.012031	$0.71404 \\ 0.032345$	0.50315 0.0054515	65099 1.9498e+05	11981 24362	0.02657	0.0043344 0.0025724	0.076818 0.10547
c-n=300-c=28-p=7-o=8-1=1-n=100-d=0.25 c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(I)	0	20	3600.1	0.012031	0.032345	0.0054515	76803	15725	0.0076576	0.0023724	0.10547
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25 c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(L)	0	20	3600.1	0.024551	0.2983	0.04443	1.3976e+05	31708	0.0058823	0.0024468	0.039443
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25 c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(P)	0	20	3600	0.024551	0.089986	0.016181	3.8705e+05	42430	0.013516	0.0024408	0.08881
c-n=300-c=28-p=7-o=8-l=1-h=100-d=0.25	(STM)	ő	20	3600.1	0.030594	0.71819	0.11902	55743	15139	0.026006	0.004388	0.077525
	(/	-	-									

2 Neighborhood Model

					tances - Part						
filename	status	formulation	time	value	relax_time	relax_value	gap	edges	columns	rows	nodes
n-n=50-h=3-d=8-m=10.0 n-n=50-h=3-d=8-m=10.0	Optimal	(U)	4.1684 4.4083	13778 13778	0.003 0.021997	15879	9.2666e-05	290 290	391 631	680 1210	1121 700
	Optimal	(I)	3.6694			14776	7.9122e-05 0				
n-n=50-h=3-d=8-m=10.0	Optimal	(L)		13778	0.013998	14776	9.8389e-05	290	631	920	799
n-n=50-h=3-d=8-m=10.0 n-n=50-h=3-d=8-m=10.0	Optimal Optimal	(P) (STM)	3.7914 124.81	13778 13778	0.006999 0.031995	15493 15668	9.9512e-05	290 290	391 631	$680 \\ 1210$	2091 40063
n-n=50-h=3-d=8-m=10.1	Optimal	(U)	3.6584	11021	0.004	12285	1.2962e-05	335	435	770	719
n-n=50-h=3-d=8-m=10.1		(I)	4.9192	11021	0.036995	11637	8.4677e-05	335	720	1390	633
n-n=50-h=3-d=8-m=10.1	Optimal Optimal	(L)	4.3133	11021	0.030995	11637	3.9854e-05	335	720	1055	672
n-n=50-h=3-d=8-m=10.1	Optimal	(P)	3.4345	11021	0.008998	12088	7.6103e-05	335	435	770	1628
n-n=50-h=3-d=8-m=10.1	Optimal	(STM)	23.171	11021	0.064991	11938	9.4166e-05	335	720	1390	5017
n-n=50-h=3-d=8-m=10.1	Optimal	(U)	0.14498	20393	0.004	21456	0	336	437	772	35
n-n=50-h=3-d=8-m=10.2	Optimal	(I)	0.69889	20393	0.022996	20846	5.9561e-05	336	723	1394	194
n-n=50-h=3-d=8-m=10.2	Optimal	(L)	0.56191	20393	0.017997	20846	0.55010-00	336	723	1058	192
n-n=50-h=3-d=8-m=10.2	Optimal	(P)	0.6309	20393	0.008999	21155	2.9897e-05	336	437	772	333
n-n=50-h=3-d=8-m=10.2	Optimal	(STM)	2.3396	20393	0.043993	21191	7.6101e-05	336	723	1394	675
n-n=50-h=3-d=8-m=10.3	Optimal	(U)	5.4872	8361.7	0.003	9567.7	8.7734e-05	315	416	730	1300
n-n=50-h=3-d=8-m=10.3	Optimal	(I)	9.5426	8361.7	0.025996	9038	6.6076e-05	315	681	1310	1657
n-n=50-h=3-d=8-m=10.3	Optimal	(L)	5.6931	8361.7	0.019997	9038	9.4682e-05	315	681	995	1182
n-n=50-h=3-d=8-m=10.3	Optimal	(P)	4.5963	8361.7	0.006999	9448.3	8.9434e-05	315	416	730	2401
n-n=50-h=3-d=8-m=10.3	Optimal	(STM)	138.48	8361.7	0.06399	9406.7	9.5402e-05	315	681	1310	19824
n-n=50-h=3-d=8-m=10.4	Optimal	(U)	0.44193	96063	0.001999	98058	9.2492e-05	306	407	712	214
n-n=50-h=3-d=8-m=10.4	Optimal	(I)	2.6256	96063	0.023997	96882	-1.5148e-16	306	663	1274	497
n-n=50-h=3-d=8-m=10.4	Optimal	(L)	1.8647	96063	0.018997	96882	5.4521e-05	306	663	968	461
n-n=50-h=3-d=8-m=10.4	Optimal	(P)	1.7267	96063	0.009999	97532	7.2794e-05	306	407	712	755
n-n=50-h=3-d=8-m=10.4	Optimal	(STM)	4.8013	96063	0.037994	97308	8.2109e-05	306	663	1274	759
n-n=50-h=3-d=8-m=10.5	Optimal	(U)	1.7577	15671	0.005	17598	2.7951e-05	363	464	826	634
n-n=50-h=3-d=8-m=10.5	Optimal	(I)	4.1034	15671	0.034994	16463	8.7274e-05	363	777	1502	637
n-n=50-h=3-d=8-m=10.5	Optimal	(L)	2.9396	15671	0.025996	16463	-2.3215e-16	363	777	1139	681
n-n=50-h=3-d=8-m=10.5	Optimal	(P)	3.8224	15671	0.009999	17045	4.7329e-05	363	464	826	1396
n-n=50-h=3-d=8-m=10.5	Optimal	(STM)	7.3119	15671	0.046993	16771	8.8143e-05	363	777	1502	1258
n-n=50-h=3-d=8-m=10.6	Optimal	(U)	2.1187	21016	0.004	23526	9.7019e-05	322	423	744	754
n-n=50-h=3-d=8-m=10.6	Optimal	(I)	4.7043	21016	0.029995	21679	-3.462e-16	322	695	1338	621
n-n=50-h=3-d=8-m=10.6	Optimal	(L)	3.6044	21016	0.016998	21679	8.8386e-05	322	695	1016	687
n-n=50-h=3-d=8-m=10.6	Optimal	(P)	3.5675	21016	0.009998	22579	9.4381e-05	322	423	744	972
n-n=50-h=3-d=8-m=10.6	Optimal	(STM)	10.686	21016	0.057991	22236	9.0594e-05	322	695	1338	2161
n-n=50-h=3-d=8-m=10.7	Optimal	(U)	2.6046	14995	0.003999	16686	-1.213e-16	324	425	748	662
n-n=50-h=3-d=8-m=10.7	Optimal	(I)	3.4755	14995	0.022996	15763	0	324	699	1346	546
n-n=50-h=3-d=8-m=10.7	Optimal	(L)	2.8086	14995	0.020997	15763	0	324	699	1022	550
n-n=50-h=3-d=8-m=10.7	Optimal	(P)	2.1527	14995	0.004999	16403	0	324	425	748	806
n-n=50-h=3-d=8-m=10.7	Optimal	(STM)	15.831	14995	0.053992	16022	8.7093e-05	324	699	1346	3100
n-n=50-h=3-d=8-m=10.8	Optimal	(U)	0.97685	16230	0.002999	17836	4.9357e-05	305	406	710	461
n-n=50-h=3-d=8-m=10.8	Optimal	(I)	3.2875	16230	0.023996	17060	3.4084e-05	305	661	1270	541
n-n=50-h=3-d=8-m=10.8	Optimal	(L)	2.6146	16230	0.016997	17060	1.7916e-06	305	661	965	529
n-n=50-h=3-d=8-m=10.8	Optimal	(P)	2.1677	16230	0.008998	17532	0	305	406	710	662
n-n=50-h=3-d=8-m=10.8	Optimal	(STM)	11.368	16230	0.076988	17687	7.9475e-05	305	661	1270	1929
n-n=50-h=3-d=8-m=10.9	Optimal	(U)	3.1915	11478	0.003999	13104	8.3569e-05	335	436	770	851
n-n=50-h=3-d=8-m=10.9	Optimal	(I)	4.4663	11478	0.024996	12351	0	335	721	1390	586
n-n=50-h=3-d=8-m=10.9	Optimal	(L)	3.8354	11478	0.017997	12351	7.0016e-05	335	721	1055	823
n-n=50-h=3-d=8-m=10.9 n-n=50-h=3-d=8-m=10.9	Optimal	(P)	3.9954	11478	0.006999	12841	7.0966e-05	335 335	436 721	770	2048
	Optimal	(STM)	13.47	11478	0.06799	12751	9.9872e-05			1390	2944
n-n=50-h=3-d=8-m=10.10	Optimal	(U)	1.0049	15552	0.003	17194	2.2238e-05	315	416	730	411
n-n=50-h=3-d=8-m=10.10 n-n=50-h=3-d=8-m=10.10	Optimal Optimal	(I) (L)	3.2405 2.8916	15552 15552	0.026996 0.027995	16230 16230	-2.3392e-16 0	315 315	681 681	1310 995	505 629
n-n=50-h=3-d=8-m=10.10 n-n=50-h=3-d=8-m=10.10	Optimal	(L) (P)	2.8916 2.2946	15552 15552	0.027995 0.010998	16230 17012	9.29e-05	315	681 416	730	629 693
n-n=50-h=3-d=8-m=10.10 n-n=50-h=3-d=8-m=10.10	Optimal	(STM)	8.6677	15552	0.059991	16687	9.6112e-05	315	681	1310	1290
n-n=50-h=3-d=8-m=10.11	Optimal	(U)	0.81388	18502	0.003999	20122	8.3489e-05	297	398	694	413
n-n=50-h=3-d=8-m=10.11	Optimal	(I)	3.0805	18502	0.021996	19308	0.54550-00	297	645	1238	529
n-n=50-h=3-d=8-m=10.11	Optimal	(L)	1.8097	18502	0.015997	19308	-1.9663e-16	297	645	941	534
n-n=50-h=3-d=8-m=10.11	Optimal	(P)	2.1477	18502	0.006999	19830	2.6981e-05	297	398	694	736
n-n=50-h=3-d=8-m=10.11	Optimal	(STM)	6.527	18502	0.036995	19615	7.9994e-05	297	645	1238	1806
n-n=50-h=3-d=8-m=10.12	Optimal	(U)	5.0692	10584	0.002999	11895	0	343	442	786	720
n-n=50-h=3-d=8-m=10.12	Optimal	(I)	5.1902	10584	0.029996	11224	ő	343	735	1422	642
n-n=50-h=3-d=8-m=10.12	Optimal	(L)	3.3025	10584	0.024996	11224	4.0746e-05	343	735	1079	575
n-n=50-h=3-d=8-m=10.12	Optimal	(P)	2.2187	10584	0.008999	11677	2.8416e-05	343	442	786	655
n-n=50-h=3-d=8-m=10.12	Optimal	(STM)	44.432	10584	0.094985	11576	9.8596e-05	343	735	1422	7671
n-n=50-h=3-d=8-m=10.13	Optimal	(U)	0.69689	13590	0.003999	15331	8.3016e-05	341	442	782	225
n-n=50-h=3-d=8-m=10.13	Optimal	(I)	2.9655	13590	0.028995	14245	6.5237e-05	341	733	1414	510
n-n=50-h=3-d=8-m=10.13	Optimal	(L)	2.4656	13590	0.018997	14245	8.7757e-05	341	733	1073	568
n-n=50-h=3-d=8-m=10.13	Optimal	(P)	2.4346	13590	0.009998	15004	7.0224e-05	341	442	782	767
n-n=50-h=3-d=8-m=10.13	Optimal	(STM)	7.3769	13590	0.063991	14722	9.4532e-05	341	733	1414	1146
n-n=50-h=3-d=8-m=10.14	Optimal	`(U) ´	2.6636	11752	0.002999	13182	0	328	429	756	632
n-n=50-h=3-d=8-m=10.14	Optimal	(I)	3.4825	11752	0.033995	12437	7.3413e-05	328	707	1362	561
n-n=50-h=3-d=8-m=10.14	Optimal	(L)	2.5126	11752	0.021996	12437	0	328	707	1034	607
n-n=50-h=3-d=8-m=10.14	Optimal	(P)	3.5295	11752	0.009998	12987	9.3951e-05	328	429	756	1484
n-n=50-h=3-d=8-m=10.14	Optimal	(STM)	18.665	11752	0.062991	12819	9.8064e-05	328	707	1362	5971
n-n=50-h=3-d=8-m=10.15	Optimal	`(U) ´	5.0172	9110.8	0.004999	10444	3.1245e-05	364	464	828	941
n-n=50-h=3-d=8-m=10.15	Optimal	(I)	6.434	9110.8	0.035995	9773.1	6.9073e-05	364	778	1506	702
n-n=50-h=3-d=8-m=10.15	Optimal	(L)	5.2622	9110.8	0.019997	9773.1	-1.9965e-16	364	778	1142	745
n-n=50-h=3-d=8-m=10.15	Optimal	(P)	4.8853	9110.8	0.008998	10241	6.6327e-05	364	464	828	2102
n-n=50-h=3-d=8-m=10.15	Optimal	(STM)	59.002	9110.8	0.06299	10227	9.3308e-05	364	778	1506	11309

filename	status	formulation	time	All Ins value	tances - Part : relax_time	relax_value	gap	edges	columns	rows	nodes
n-n=50-h=3-d=8-m=10.16	Optimal	(U)	2.5366	11192	0.002	12851	4.92e-05	317	418	734	687
n-n=50-h=3-d=8-m=10.16	Optimal	(I)	3.6014	11192	0.023996	12061	0	317	685	1318	641
n-n=50-h=3-d=8-m=10.16	Optimal	(L)	2.2866	11192	0.022996	12061	0	317	685	1001	520
n-n=50-h=3-d=8-m=10.16	Optimal	(P)	2.2217	11192	0.005999	12601	0	317	418	734	938
n-n=50-h=3-d=8-m=10.16	Optimal	(STM)	17.411	11192	0.060991	12597	8.631e-05	317	685	1318	4414
n-n=50-h=3-d=8-m=10.17	Optimal	(U)	0.36695	11459	0.004	12722	0	337	438	774	140
n-n=50-h=3-d=8-m=10.17	Optimal	(I)	0.99285	11459	0.024996	12014	0	337	725	1398	334
n-n=50-h=3-d=8-m=10.17	Optimal	(L)	1.3808	11459	0.015997	12014	5.7286e-05	337	725	1061	732
n-n=50-h=3-d=8-m=10.17	Optimal	(P)	1.6727	11459	0.008998	12491	0	337	438	774	608
n-n=50-h=3-d=8-m=10.17	Optimal	(STM)	6.409	11459	0.050992	12448	8.7997e-05	337	725	1398	940
n-n=50-h=3-d=8-m=10.18	Optimal	(U)	3.4845	16210	0.003999	17836	6.4812e-05	324	425	748	1192
n-n=50-h=3-d=8-m=10.18	Optimal	(I)	8.1748	16210	0.021997	16952	9.0269e-05	324	699	1346	1880
n-n=50-h=3-d=8-m=10.18	Optimal	(L)	7.0419	16210	0.015998	16952	8.7275e-05	324	699	1022	2218
n-n=50-h=3-d=8-m=10.18	Optimal	(P)	6.486	16210	0.005999	17555	9.9814e-05	324	425	748	5403
n-n=50-h=3-d=8-m=10.18	Optimal	(STM)	68.802	16210	0.049992	17525	9.9143e-05	324	699	1346	17871
n-n=50-h=3-d=8-m=10.19	Optimal	(U)	0.6879	15377	0.003	16666	9.1484e-05	315	416	730	661
n-n=50-h=3-d=8-m=10.19	Optimal	(I)	2.4306	15377	0.035994	15970	0	315	681	1310	511
n-n=50-h=3-d=8-m=10.19	Optimal	(L)	2.2427	15377	0.026996	15970	5.8881e-05	315	681	995	509
n-n=50-h=3-d=8-m=10.19	Optimal	(P)	1.7157	15377	0.004999	16411	4.8616e-05	315	416	730	515
n-n=50-h=3-d=8-m=10.19	Optimal	(STM)	4.4743	15377	0.084987	16321	0	315	681	1310	630
n-n=100-h=3-d=8-m=10.0	Optimal	(U)	7.8068	42032	0.007999	46766	9.8015e-05	725	926	1650	928
n-n=100-h=3-d=8-m=10.0	Optimal	(I)	17.824	42032	0.075989	43867	9.6764e-05	725	1551	3000	1145
n-n=100-h=3-d=8-m=10.0	Optimal	(L)	11.066	42032	0.044993	43867	7.0797e-05	725	1551	2275	1116
n-n=100-h=3-d=8-m=10.0	Optimal	(P)	17.992	42032	0.023996	45642	9.5153e-05	725	926	1650	4008
n-n=100-h=3-d=8-m=10.0	Optimal	(STM)	1030.2	42032	0.12598	45212	9.9216e-05	725	1551	3000	65447
n-n=100-h=3-d=8-m=10.1	Optimal	(U)	13.218	39055	0.008999	43447	9.4429e-05	704	905	1608	2548
n-n=100-h=3-d=8-m=10.1	Optimal	(I)	29.309	39055	0.071989	41022	9.944e-05	704	1509	2916	2861
n-n=100-h=3-d=8-m=10.1	Optimal	(L)	15.025	39055	0.041993	41022	9.7545e-05	704	1509	2212	2120
n-n=100-h=3-d=8-m=10.1	Optimal	(P)	171.54	39055	0.021996	42354	9.9686e-05	704	905	1608	42648
n-n=100-h=3-d=8-m=10.1	Optimal	(STM)	944.35	39055	0.13998	41992	9.9997e-05	704	1509	2916	96855
n-n=100-h=3-d=8-m=10.2	Optimal	(U)	6.0811	55521	0.007999	60712	8.0055e-05	763	964	1726	743
n-n=100-h=3-d=8-m=10.2	Optimal	(I)	12.57	55521	0.081987	57178	7.3376e-05	763	1627	3152	813
n-n=100-h=3-d=8-m=10.2	Optimal	(L)	8.9636	55521	0.071989	57178	9.6486e-05	763	1627	2389	772
n-n=100-h=3-d=8-m=10.2	Optimal	(P)	9.0616	55521	0.020997	59341	9.7348e-05	763	964	1726	1581
n-n=100-h=3-d=8-m=10.2	Optimal	(STM)	39.363	55521	0.14698	57868	9.8391e-05	763	1627	3152	4471
n-n=100-h=3-d=8-m=10.3	Optimal	(U)	111.09	32237	0.007998	37761	9.8761e-05	694	895	1588	15593
n-n=100-h=3-d=8-m=10.3	Optimal	(I)	132.53	32237	0.06799	35079	9.9692e-05	694	1489	2876	11583
n-n=100-h=3-d=8-m=10.3	Optimal	(L)	105.2	32237	0.062991	35079	9.9174e-05	694	1489	2182	11439
n-n=100-h=3-d=8-m=10.3	Optimal	(P)	666.47	32237	0.024997	36689	9.9856e-05	694	895	1588	208807
n-n=100-h=3-d=8-m=10.3	Feasible	(STM)	3600.1	32237	0.14098	36945	0.012424	694	1489	2876	321391
n-n=100-h=3-d=8-m=10.4	Optimal	(U)	389.5	33620	0.008999	38884	9.9545e-05	712	910	1624	47835
n-n=100-h=3-d=8-m=10.4	Optimal	(I)	204.18	33620	0.085987	35931	9.9e-05	712	1522	2948	18444
n-n=100-h=3-d=8-m=10.4	Optimal	(L)	122.19	33620	0.079988	35931	9.9617e-05	712	1522	2236	13899
n-n=100-h=3-d=8-m=10.4	Optimal	(P)	950.12	33620	0.018997	37999	9.996e-05	712	910	1624	307385
n-n=100-h=3-d=8-m=10.4	Feasible	(STM)	3600.1	33620	0.23097	37735	0.01517	712	1522	2948	220616
n-n=100-h=3-d=8-m=10.5	Optimal	(U)	40.482	39708	0.006999	44263	9.9796e-05	714	914	1628	5319
n-n=100-h=3-d=8-m=10.5	Optimal	(I)	45.305	39708	0.086987	41608	9.8293e-05	714	1528	2956	3948
n-n=100-h=3-d=8-m=10.5	Optimal	(L)	21.259	39708	0.061991	41608	9.3728e-05	714	1528	2242	2660
n-n=100-h=3-d=8-m=10.5	Optimal	(P)	111.31	39708	0.018998	43567	9.865e-05	714	914	1628	25306
n-n=100-h=3-d=8-m=10.5	Optimal	(STM)	2385.6	39708	0.17597	43009	9.994e-05	714	1528	2956	154996
n-n=100-h=3-d=8-m=10.6	Optimal	(U)	15.642	35629	0.010999	39418	9.6817e-05	711	912	1622	1941
n-n=100-h=3-d=8-m=10.6	Optimal	(I)	26.615	35629	0.085987	37461	9.861e-05	711	1523	2944	2507
n-n=100-h=3-d=8-m=10.6	Optimal	(L)	21.011	35629	0.055991	37461	9.4109e-05	711	1523	2233	2364
n-n=100-h=3-d=8-m=10.6	Optimal	(P)	158.6	35629	0.022996	38887	9.84e-05	711	912	1622	32284
n-n=100-h=3-d=8-m=10.6	Feasible	(STM)	3600.1	35629	0.16597	38326	0.0042869	711	1523	2944	187423
n-n=100-h=3-d=8-m=10.7	Optimal	(U)	294.7	32273	0.010998	36864	9.9891e-05	715	916	1630	38222
n-n=100-h=3-d=8-m=10.7	Optimal	(I)	1118.2	32273	0.11098	34741	9.9846e-05	715	1531	2960	106965
n-n=100-h=3-d=8-m=10.7	Optimal	(L)	906.97	32273	0.072988	34741	9.9958e-05	715	1531	2245	115534
n-n=100-h=3-d=8-m=10.7	Optimal	(P)	2423.5	32273	0.033995	36230	9.9999e-05	715	916	1630	397898
n-n=100-h=3-d=8-m=10.7	Feasible	(STM)	3600	32273	0.17297	35745	0.021597	715	1531	2960	201695
n-n=100-h=3-d=8-m=10.8	Optimal	(U)	13.21	34076	0.009999	38376	9.2156e-05	711	912	1622	2045
n-n=100-h=3-d=8-m=10.8	Optimal	(I)	20.642	34076	0.098985	35626	9.6568e-05	711	1523	2944	1664
n-n=100-h=3-d=8-m=10.8 n-n=100-h=3-d=8-m=10.8	Optimal Optimal	(L) (P)	13.638 58.592	$34076 \\ 34076$	0.06399 0.023996	35626 37390	9.8658e-05 9.9343e-05	$711 \\ 711$	1523 912	$\frac{2233}{1622}$	$1402 \\ 16541$
n-n=100-h=3-d=8-m=10.8 n-n=100-h=3-d=8-m=10.9	Optimal Optimal	(STM)	903.2 10.324	34076 52915	0.16698 0.012998	37203 57978	9.9735e-05 9.7889e-05	711 689	1523 890	$\frac{2944}{1578}$	92095 1832
n-n=100-n=3-d=8-m=10.9 n-n=100-h=3-d=8-m=10.9	Optimal	(I)	10.324 16.074	52915	0.012998	55023	9.7889e-05 9.9462e-05	689	1479	2856	1350
n-n=100-h=3-d=8-m=10.9 n-n=100-h=3-d=8-m=10.9	Optimal Optimal	(L) (P)	16.038 98.265	52915 52915	0.046993 0.018997	55023 57111	9.1123e-05 9.933e-05	689 689	1479 890	$\frac{2167}{1578}$	2334 29852
n-n=100-n=3-d=8-m=10.9 n-n=100-h=3-d=8-m=10.9	Optimal		98.265 1754.7	52915	0.13298	56268	9.933e-05 9.9784e-05	689	1479	2856	133989
n-n=100-h=3-d=8-m=10.10		(STM)	37.624	52915 45790	0.13298	51053	9.9627e-05	645	1479 846	1490	
n-n=100-h=3-d=8-m=10.10 n-n=100-h=3-d=8-m=10.10	Optimal	(I)	40.039	45790 45790	0.009999 0.085987	51053 48698		645	846 1391	1490 2680	7151 3527
n-n=100-n=3-d=8-m=10.10 n-n=100-h=3-d=8-m=10.10	Optimal			45790	0.040994	48698 48698	9.8643e-05 9.9225e-05	645	1391	2035	3527 4124
n-n=100-n=3-d=8-m=10.10 n-n=100-h=3-d=8-m=10.10	Optimal Optimal	(L) (P)	25.454 182.49	45790	0.040994	48698 50452	9.9225e-05 9.9971e-05	645	846	2035 1490	60115
n-n=100-h=3-d=8-m=10.10 n-n=100-h=3-d=8-m=10.10	Feasible	(STM)	3600.5	45790	0.11998	50452 50001	0.0031953	645	1391	2680	206789
n-n=100-n=3-d=8-m=10.10 n-n=100-h=3-d=8-m=10.11	Optimal	(SIM) (U)	5.5872	51604	0.11998	55980	6.0961e-05	689	890	1578	644
	Optimal	(I)	9.0866	51604	0.005999	53491	6.0961e-05 0	689	1479	2856	595
n n=100 h=2 d=8 m=10 11		(1)	9.0000	31004	0.072969	00491	U	009	14/9	2000	595
n-n=100-h=3-d=8-m=10.11				51004	0.052002	E9/01	9 5717- 05	660	1470	2167	624
n-n=100-h=3-d=8-m=10.11	Optimal	(L)	8.1918	51604	0.053992	53491	2.5717e-05	689	1479	2167	624
				51604 51604 51604	0.053992 0.017997 0.14598	53491 55403 54743	2.5717e-05 7.0761e-05 9.9981e-05	689 689 689	$1479 \\ 890 \\ 1479$	2167 1578 2856	624 1174 14171

filename	status	formulation	time	All Ins	tances - Part	relax_value	gap	edges	columns	rows	nodes
n-n=100-h=3-d=8-m=10.12	Optimal	(U)	22.03	46815	0.006999	51208	9.8749e-05	719	920	1638	3036
n-n=100-h=3-d=8-m=10.12	Optimal	(I)	64.221	46815	0.085987	48776	9.9954e-05	719	1539	2976	6456
n-n=100-h=3-d=8-m=10.12	Optimal	(L)	40.846	46815	0.06699	48776	9.396e-05	719	1539	2257	4529
n-n=100-h=3-d=8-m=10.12	Optimal	(P)	215.92	46815	0.027996	50588	9.9864e-05	719	920	1638	42746
n-n=100-h=3-d=8-m=10.12	Feasible	(STM)	3600	46815	0.15198	50001	0.007785	719	1539	2976	218501
n-n=100-h=3-d=8-m=10.13	Optimal	(U)	38.637	34200	0.009999	38419	9.8417e-05	711	912	1622	3804
n-n=100-h=3-d=8-m=10.13	Optimal	(I)	57.822	34200	0.11598	36291	9.9295e-05	711	1523	2944	4123
n-n=100-h=3-d=8-m=10.13	Optimal	(L)	43.762	34200	0.06399	36291	9.8351e-05	711	1523	2233	3987
n-n=100-h=3-d=8-m=10.13	Optimal	(P)	255.88	34200	0.022997	37975	9.9886e-05	711	912	1622	36356
n-n=100-h=3-d=8-m=10.13	Feasible	(STM)	3600.1	34200	0.22397	37484	0.016158	711	1523	2944	247413
n-n=100-h=3-d=8-m=10.14	Optimal	(U)	8.0398	59110	0.012998	64630	9.7362e-05	715	914	1630	819
n-n=100-h=3-d=8-m=10.14	Optimal	(I)	13.317	59110	0.11498	61485	5.5188e-05	715	1529	2960	615
n-n=100-h=3-d=8-m=10.14	Optimal	(L)	10.494	59110	0.06199	61485	8.0536e-05	715	1529	2245	791
n-n=100-h=3-d=8-m=10.14	Optimal	(P)	19.649	59110	0.022997	63219	9.9657e-05	715	914	1630	6329
n-n=100-h=3-d=8-m=10.14	Optimal	(STM)	276.18	59110	0.27996	62476	9.9473e-05	715	1529	2960	23202
n-n=100-h=3-d=8-m=10.15	Optimal	(U)	4.6713	37221	0.006999	41385	4.8069e-05	630	831	1460	873
n-n=100-h=3-d=8-m=10.15	Optimal	(I)	7.1579	37221	0.057991	39096	4.876e-05	630	1361	2620	675
n-n=100-h=3-d=8-m=10.15	Optimal	(L)	5.2292	37221	0.040994	39096	0	630	1361	1990	671
n-n=100-h=3-d=8-m=10.15	Optimal	(P)	9.7515	37221	0.015998	40683	9.9653e-05	630	831	1460	3767
n-n=100-h=3-d=8-m=10.15	Optimal	(STM)	74.472	37221	0.10798	40294	9.7556e-05	630	1361	2620	10226
n-n=100-h=3-d=8-m=10.16	Optimal	(U)	1591.8	53714	0.007999	59682	9.9967e-05	771	972	1742	188862
n-n=100-h=3-d=8-m=10.16	Optimal	(I)	960.04	53714	0.10498	56613	9.9983e-05	771	1643	3184	66015
n-n=100-h=3-d=8-m=10.16	Optimal	(L)	1261.2	53714	0.074989	56613	9.9793e-05	771	1643	2413	94715
n-n=100-h=3-d=8-m=10.16	Feasible	(P)	3600	53714	0.029996	58609	0.005174	771	972	1742	485292
n-n=100-h=3-d=8-m=10.16	Feasible	(STM)	3600	53714	0.20897	57655	0.015831	771	1643	3184	220781
n-n=100-h=3-d=8-m=10.17	Optimal	(U)	39.636	109325	0.008999	113057	9.9963e-05	701	902	1602	5015
n-n=100-h=3-d=8-m=10.17	Optimal	(I)	22.578	109325	0.094986	111259	9.9246e-05	701	1503	2904	1863
n-n=100-h=3-d=8-m=10.17	Optimal	(L)	15.258	109326	0.061991	111259	9.7966e-05	701	1503	2203	1461
n-n=100-h=3-d=8-m=10.17	Optimal	(P)	99.973	109326	0.029995	112340	9.9353e-05	701	902	1602	18852
n-n=100-h=3-d=8-m=10.17	Optimal	(STM)	2185.8	109326	0.14198	112173	9.9996e-05	701	1503	2904	274709
n-n=100-h=3-d=8-m=10.18	Optimal	(U)	18.839	31183	0.008998	35156	9.6683e-05	677	878	1554	3411
n-n=100-h=3-d=8-m=10.18	Optimal	(I)	66.839	31183	0.095985	33212	9.2991e-05	677	1455	2808	3987
n-n=100-h=3-d=8-m=10.18	Optimal	(L)	56.992	31183	0.056991	33212	9.8974e-05	677	1455	2131	4960
n-n=100-h=3-d=8-m=10.18	Optimal	(P)	371.7	31183	0.024996	34625	9.97e-05	677	878	1554	78800
n-n=100-h=3-d=8-m=10.18	Feasible	(STM)	3600	31183	0.16298	34349	0.0040606	677	1455	2808	343984
n-n=100-h=3-d=8-m=10.19	Optimal	(U)	6.39	39777	0.008999	43496	9.0056e-05	686	887	1572	817
n-n=100-h=3-d=8-m=10.19	Optimal	(I)	8.5527	39777	0.061991	41194	8.9232e-05	686	1473	2844	734
n-n=100-h=3-d=8-m=10.19	Optimal	(L)	6.921	39777	0.038994	41194	6.0458e-05	686	1473	2158	703
n-n=100-h=3-d=8-m=10.19	Optimal	(P)	7.5399	39777	0.019997	42681	9.7072e-05	686	887	1572	1685
n-n=100-h=3-d=8-m=10.19	Optimal	(STM)	57.473	39777	0.15198	41826	9.9955e-05	686	1473	2844	5117
n-n=150-h=3-d=8-m=10.15	Optimal	(U)	25.83	66073	0.010998	74363	9.8603e-05	958	1259	2216	4460
n-n=150-h=3-d=8-m=10.0	Optimal	(I)	50.05	66073	0.11398	69844	9.9693e-05	958	2067	3982	4624
n-n=150-h=3-d=8-m=10.0	Optimal	(L)	29.34	66073	0.075988	69844	9.9078e-05	958	2067	3024	3930
n-n=150-h=3-d=8-m=10.0	Optimal	(P)	834.35	66073	0.027995	73257	9.9948e-05	958	1259	2216	358710
n-n=150-h=3-d=8-m=10.0	Feasible	(STM)	3600	66073	0.17797	72352	0.0083008	958	2067	3982	212187
n-n=150-h=3-d=8-m=10.1	Optimal	(U)	546.72	78712	0.019997	88275	9.9894e-05	1064	1364	2428	51228
n-n=150-h=3-d=8-m=10.1	Optimal	(I)	222.93	78712	0.17997	82850	9.9859e-05	1064	2278	4406	14215
n-n=150-h=3-d=8-m=10.1	Optimal	(L)	229.34	78712	0.078988	82850	9.9831e-05	1064	2278	3342	20976
n-n=150-h=3-d=8-m=10.1								1064			
	Optimal	(P)	2335.7	78712	0.037994	86450	9.9952e-05		1364	2428	307966
n-n=150-h=3-d=8-m=10.1	Feasible	(STM)	3600	78712	0.24496	85945	0.016982	1064	2278	4406	100085
n-n=150-h=3-d=8-m=10.2	Optimal	(U)	877.34	65009	0.008999	72810	9.9947e-05	1097	1398	2494	96362
n-n=150-h=3-d=8-m=10.2	Optimal	(I)	792.51	65009	0.17997	68345	9.9908e-05	1097	2345	4538	45435
n-n=150-h=3-d=8-m=10.2	Optimal	(L)	447.99	65009	0.094986	68345	9.9569e-05	1097	2345	3441	31264
n-n=150-h=3-d=8-m=10.2	Feasible	(P)	3600	65009	0.082988	71623	0.006312	1097	1398	2494	726788
n-n=150-h=3-d=8-m=10.2	Feasible	(STM)	3600	65009	0.27596	70842	0.016295	1097	2345	4538	277604
n-n=150-h=3-d=8-m=10.3	Optimal	(U)	1907.3	92340	0.017998	99224	9.9958e-05	1112	1413	2524	137788
n-n=150-h=3-d=8-m=10.3	Feasible	(I)	3600	92340	0.20597	95535	0.00022895	1112	2375	4598	154019
n-n=150-h=3-d=8-m=10.3	Optimal	(L)	1009.3	92340	0.10998	95535	9.996e-05	1112	2375	3486	66291
n-n=150-h=3-d=8-m=10.3	Feasible	(P)	3600	92340	0.054991	98103	0.006598	1112	1413	2524	460593
n-n=150-h=3-d=8-m=10.3	Feasible	(STM)	3600	92340	0.23597	97838	0.01377	1112	2375	4598	139226
n-n=150-h=3-d=8-m=10.4	Feasible	(U)	3600	64882	0.019997	73536	0.0055694	1071	1372	2442	259605
n-n=150-h=3-d=8-m=10.4	Feasible	(I)	3600	64882	0.20097	68810	0.0033094	1071	2293	4434	140323
n-n=150-h=3-d=8-m=10.4	Feasible	(L)	3600	64882	0.098985	68810	0.0031397	1071	2293	3363	280992
n-n=150-h=3-d=8-m=10.4	Feasible	(P)	3600	64882	0.06599	72337	0.01722	1071	1372	2442	606505
n-n=150-h=3-d=8-m=10.4	Feasible	(STM)	3600	64882	0.38794	71702	0.032094	1071	2293	4434	220828
n-n=150-h=3-d=8-m=10.5	Optimal	(U)	877.2	65219	0.011998	73077	9.9977e-05	971	1272	2242	106449
n-n=150-h=3-d=8-m=10.5	Optimal	(I)	2140.9	65219	0.15998	68908	9.9967e-05	971	2093	4034	185981
n-n=150-h=3-d=8-m=10.5	Optimal	(L)	1441.5	65219	0.10798	68908	9.9879e-05	971	2093	3063	181545
n-n=150-h=3-d=8-m=10.5	Feasible	(P)	3600.1	65219	0.042994	71699	0.0016118	971	1272	2242	925860
n-n=150-h=3-d=8-m=10.5	Feasible	(STM)	3600	65219	0.24596	71225	0.011623	971	2093	4034	220388
n-n=150-h=3-d=8-m=10.6	Optimal	(U)	118.14	71176	0.015998	78811	9.9374e-05	1034	1330	2368	12626
n-n=150-h=3-d=8-m=10.6	Optimal	(I)	312.91	71176	0.12998	75096	9.9683e-05	1034	2214	4286	18742
n-n=150-h=3-d=8-m=10.6	Optimal	(L)	89.907	71176	0.080987	75096	9.9379e-05	1034	2214	3252	8290
	Feasible	(P)	3600	71176	0.038994	77672	0.0015414	1034	1330	2368	473237
n-n=150-h=3-d=8-m=10.6		(STM)	3600	71176	0.34295	77574	0.016866	1034	2214	4286	144071
n-n=150-h=3-d=8-m=10.6			3000	11110							
n-n=150-h=3-d=8-m=10.6	Feasible		00000								
n-n=150-h=3-d=8-m=10.6 n-n=150-h=3-d=8-m=10.7	Optimal	(U)	3336.2	79253	0.014998	88749	9.9985e-05	1168	1469	2636	258305
n-n=150-h=3-d=8-m=10.6 n-n=150-h=3-d=8-m=10.7 n-n=150-h=3-d=8-m=10.7	Optimal Optimal	(U) (I)	2482.4	79253	0.18197	83392	9.9955e-05	1168	2487	4822	121447
n-n=150-h=3-d=8-m=10.6 n-n=150-h=3-d=8-m=10.7	Optimal	(U)									
n-n=150-h=3-d=8-m=10.6 n-n=150-h=3-d=8-m=10.7 n-n=150-h=3-d=8-m=10.7	Optimal Optimal	(U) (I)	2482.4	79253	0.18197	83392	9.9955e-05	1168	2487	4822	121447

						stances - Part	4					
mest 50 mest	filename	status	formulation	time	value	relax_time	relax_value	gap	edges	columns	rows	nodes
Land Education												
mars												
Description												
Example December												
Description												
Example Company Comp												
December Company Com			(I)									
Description Company												
Section Company Comp		Feasible							1045			
mar 150 h = 3 d = 5 m = 10												
Description Computer Comput	n-n=150-h=3-d=8-m=10.10	Optimal	(U)	773.31	68199	0.015998	76165	9.96e-05	999	1300	2298	65162
Description Possible Possib	n-n=150-h=3-d=8-m=10.10	Optimal	(I)	320.14	68199	0.14298	72385	9.9846e-05	999	2149	4146	15425
Banel Bolt-B-de-Remail Color Feasible Color Seasible Col					68199							
Banel Bolt-B-de-Remail Color Feasible Color Seasible Col	n-n=150-h=3-d=8-m=10.10	Feasible	(P)	3600	68199	0.039994	74889	0.0076853	999	1300	2298	808340
h-m=150-h=3-d=8-m=10.11 Optimal (I)												
m=15tb-h=3cd-s-m=10.11 Optimal (I) 100.6 82522 0.2007 88500 9.9065c-05 1064 2270 3446 80507 1064 2270 3446 80507 1064 2270 3446 80507 1064 2270 3446 80507 1064 2270 3446 80507 1064 2270 3446 80507 1064 2270 3446 80507 1064 2270 3446 80507 1064 2270 3446 80507 1064 2270 3446 2270 3446	n-n=150-h=3-d=8-m=10.11	Feasible	(U)	3600		0.012998	90902	0.0017248	1064	1365	2428	413728
n=150-h=3-d=8-m=10.11 Optimal (L)									1064	2279		
n-m=150-h=3d-m8-m=10.11 Feasible (P) 3600 82352 0.030295 8505 0.002306 1.064 1305 2428 485886 n-m=150-h=3d-m8-m=10.12 Feasible (STM) 300 82532 0.030295 8505 0.002306 1.064 12279 440 140886 n-m=150-h=3d-m8-m=10.12 Optimal (I) 62.6.37 72644 0.13098 76902 9.9059-0.0106 2233 4414 22649 n-m=150-h=3d-m8-m=10.12 Optimal (I) 62.6.42 72644 0.13098 76902 9.9059-0.0106 2233 4414 22649 n-m=150-h=3d-m8-m=10.12 Feasible (P) 3600 72644 0.069685 76902 9.9059-0.0106 2233 4414 22649 n-m=150-h=3d-m8-m=10.12 Feasible (P) 3600 72644 0.069685 76902 9.9059-0.0106 1307 2432 947430 n-m=150-h=3d-m8-m=10.13 Optimal (IV) 21.247 64366 0.018997 71032 9.0059-0.0106 1307 2432 947430 n-m=150-h=3d-m8-m=10.13 Optimal (IV) 21.247 64366 0.018997 71032 9.018-0.05 1089 1300 2478 1003 n-m=150-h=3d-m8-m=10.13 Optimal (IV) 21.247 64366 0.018997 71032 9.4419-0.05 1089 2299 4450 1065 n-m=150-h=3d-m8-m=10.13 Optimal (IV) 21.247 64366 0.083987 67020 9.4419-0.05 1089 2299 4450 1065 n-m=150-h=3d-m8-m=10.13 Optimal (IV) 21.247 64360 0.083987 67020 9.4419-0.05 1089 2299 4450 1065 n-m=150-h=3d-m8-m=10.13 Optimal (IV) 21.247 64360 0.083987 67020 9.4419-0.05 1089 2299 4450 1065 n-m=150-h=3d-m8-m=10.14 Optimal (IV) 21.247 64360 0.083987 67020 9.4419-0.05 1089 2299 4450 1065 n-m=150-h=3d-m8-m=10.14 Optimal (IV) 21.247 64360 0.083987 78080 9.0031009 1089 2299 4450 240311 n-m=150-h=3d-m8-m=10.14 Optimal (IV) 21.247 64360 0.03694 00.083987 80250 00.083987 80250 00.083987 80250 00.083987 00.08398 00.0												
n=150-h=3-d=8-m=10.12 Optimal (U)												
n=150h=3d=8-m=10.12												
n-m=150-h=3-d=s-m=10.12												
n=150h=3-d=8-m=10.12												
n-m=150-h=3-d=8-m=10.12 Feasible Feasi												
n=s150-h=3-d=3-m=s10.12 Peasible (STM) 3600 72644 0.21997 71632 0.017673 1066 2283 4414 261693 n=s150-h=3-d=3-m=s10.13 Optimal (I) 32.183 64306 0.10897 71632 9.4419-05 1089 1390 4278 1603 n=s150-h=3-d=3-m=s10.13 Optimal (I) 32.183 64306 0.12988 71602 9.4419-05 1089 2329 4506 1605 n=s150-h=3-d=3-m=s10.13 Optimal (I) 32.183 64306 0.043994 70300 9.944-05 1089 1390 4278 37056 n=s150-h=3-d=3-m=s10.13 Optimal (I) 32.183 64306 0.043994 70300 9.9944-05 1089 1390 4278 37056 n=s150-h=3-d=3-m=s10.14 Optimal (I) 1372.7 71095 0.016997 78800 9.9954-05 1041 1345 2388 221812 n=s150-h=3-d=3-m=s10.14 Optimal (I) 1372.7 71095 0.016997 78800 9.9922-05 1041 1345 2388 221812 n=s150-h=3-d=3-m=s10.14 Optimal (I) 1372.7 71095 0.016997 78800 9.9922-05 1041 1345 2388 271814 n=s150-h=3-d=3-m=s10.14 Peasible (IP) 3600 71095 0.016997 78900 9.9922-05 1041 1345 2388 271814 n=s150-h=3-d=3-m=s10.14 Optimal (II) 1372.7 71095 0.016997 78900 0.01193 78494 0.01133 1441 1345 2388 171814 n=s150-h=3-d=3-m=s10.15 Optimal (II) 398.41 86085 0.025909 94002 9.0019 1044 2239 4326 212996 n=s150-h=3-d=3-m=s10.15 Optimal (II) 398.41 86085 0.025909 94002 95005 1071 1371 2442 25815 n=s150-h=3-d=3-m=s10.15 Optimal (II) 398.41 86085 0.025909 94002 99050-05 1071 1371 2442 25815 n=s150-h=3-d=3-m=s10.15 Optimal (II) 398.41 86085 0.02698 39778 9.9025-05 1071 1272 232 4434 13800 n=s150-h=3-d=3-m=s10.15 Optimal (II) 1872 87852 0.01997 9627 90905-05 1071 1271 2442 580889 n=s150-h=3-d=3-m=s10.15 Optimal (II) 1872 87852 0.01998 9628-05 1071 1271 1272 4442 80885 n=s150-h=3-d=3-m=s10.15 Peasible (II) 3000 87852 0.02996 94002 90000 0.00190 1054 2259 4366 14091 n=s150-h=3-d=3-m=s10.15 Peasible (II) 3000 87852 0.02997 96279 0.00190 1054 2259 4366 14091 n=s150-h=3-d=3-m=s10.15 Peasible (II) 3000 87852 0.02997 96279 0.00190 1054 2259 4366 14091 n=s150-h=3-d=3-m=s10.15 Peasible (II) 3000 87852 0.02997 96279 0.00190 1054 2259 4366 14091 n=s150-h=3-d=3-m=s10.15 Peasible (II) 3000 87852 0.02997 96279 0.00190 1054 2259 4366 14091 n=s150-h=3-d=3-m=s10.15 Peasible (II) 3000 87852 0.0												
n=150-h=3-d=5-m=10.13 Optimal (I) 21.347 64306 0.12398 (7620 9.3519-05 1089 1390 2478 1603 n=150-h=3-d=5-m=10.13 Optimal (I) 32.183 64306 0.12398 (7620 9.3519-05) 1089 2329 4500 1065 n=150-h=3-d=5-m=10.13 Optimal (I) 121.88 64306 0.12398 (7620 9.3519-05) 1089 2329 4500 1065 n=150-h=3-d=5-m=10.13 Optimal (I) 121.88 64306 0.03394 (7630 9.341-05) 1089 2329 2478 47056 n=150-h=3-d=5-m=10.14 Optimal (II) 171.0705 0.041098 (7780 9.992-05) 1044 1345 2388 22181 2478 n=150-h=3-d=5-m=10.14 Optimal (II) 171.7705 0.12498 7525 0.9922-05 1044 1345 2388 22181 2478 n=150-h=3-d=5-m=10.14 Optimal (II) 171.7705 0.12498 7525 0.9922-05 1044 1345 2388 22181 2478 n=150-h=3-d=5-m=10.14 Optimal (II) 171.7705 0.12498 7525 0.9922-05 1044 1345 2388 22181 2478 n=150-h=3-d=5-m=10.14 Optimal (II) 171.7705 0.12498 7525 0.9922-05 1044 1345 2388 22181 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0												
n-n=150-ha-das-8-m=10.13												
n-m=150-h=3-d=8-m=10.13												
n=150-h=3-d=8-m=10.13												
n-n=150-h=3-d=8-m=10.14 Optimal (U) 1511 71095 0.104997 79800 9.9925-05 1044 2239 4326 100678 n-n=150-h=3-d=8-m=10.14 Optimal (U) 1372.7 71095 0.12498 75235 9.9966-05 1044 2239 4326 100678												
n=150-h=3-d=8-m=10.14 Optimal (I) 1511 71095 0.16997 79800 9.9922-05 1044 1345 2388 221812 n=150-h=3-d=8-m=10.14 Optimal (I) 1372.7 71095 0.12498 75235 9.9889-05 1044 2239 3282 100958 1050-h=3-d=8-m=10.14 Optimal (I) 1372.7 71095 0.15498 75235 9.9889-05 1044 2239 3282 100958 1												
n=150-h=3-d=8-m=10.14												
n-m=150-h=3-d=8-m=10.14 Optimal (I)												
n-n=150-h=3-d=8-m=10.14 Feasible (F) 3600 71095 0.041993 78404 0.01133 1044 1345 2388 717004 n-n=150-h=3-d=8-m=10.15 Optimal (I) 282.63 80805 0.025996 94002 9.9861e-05 1071 1371 2442 25815 Optimal (I) 38.41 80805 0.025996 94002 9.9861e-05 1071 1371 2442 25815 Optimal (I) 38.41 80805 0.025996 94002 9.9861e-05 1071 2292 3303 8800 Optimal (I) 38.41 80805 0.025996 94002 9.9861e-05 1071 2292 3303 8800 Optimal (I) 38.41 80805 0.025996 94002 9.99186-05 1071 2292 3303 8800 Optimal (I) 38.41 80805 0.082887 89739 9.9925e-05 1071 2292 3303 8800 Optimal (I) 38.41 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.41 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.41 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.41 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.41 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.61 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.61 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.61 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.61 80805 0.082887 89739 9.91886-05 1071 2292 3303 8800 Optimal (I) 38.61 80805 0.02999 0.0001 1054 1355 2408 84289 Optimal (I) 38.61 80805 0.082887 89909 0.0001 1054 1355 2408 84289 Optimal (I) 3600 87852 0.01999 0.0909 0.00019 1054 1259 3312 172076 Optimal (I) 3600 87852 0.029496 94285 0.018008 1054 2259 3312 172076 Optimal (I) 40805 87852 0.029496 94285 0.018008 1054 2259 3436 164991 Optimal (I) 40805 87852 0.029496 94285 0.018008 1054 2259 3436 164991 Optimal (I) 40805 87852 0.029496 94285 0.018008 1054 2259 3436 164991 Optimal (I) 40805 87852 0.029496 94285 0.018008 1054 2259 3436 164991 Optimal (I) 40805 8985 0.018008 1054 2259 3436 164991 Optimal (I) 40805 8985 0.01806 2333 3408 188337 Optimal (I) 40805 8985 0.01806 2333 3408 188337 Optimal (I) 40805 8985 0.01806 2333 3408 188337 Optimal (I) 40805 8985 0.01805 8985 0.01806 2333 3408 188337 Optimal	n-n=150-h=3-d=8-m=10.14	Optimal	(I)	1372.7	71095	0.12498	75235	9.9889e-05	1044	2239	4326	100678
n-n=150-h=3-d=8-m=10.14 Feasible (STM) 3600 71095 0.27596 77204 0.0179 1044 2239 4326 212996 n-n=150-h=3-d=8-m=10.15 Optimal (I) 398.41 80885 0.26996 89739 9.9026e-05 1071 2292 4344 19180 1071	n-n=150-h=3-d=8-m=10.14	Optimal	(L)	1037.3	71095	0.15498	75235	9.9966e-05	1044	2239	3282	109595
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n-n=150-h=3-d=8-m=10.14				71095					1345	2388	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n-n=150-h=3-d=8-m=10.14	Feasible	(STM)	3600	71095	0.27596	77294	0.0179	1044	2239	4326	212996
n-=150-h=3-d=8-m=10.15												
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n-n=150-h=3-d=8-m=10.15		(1)		86085			9.9025e-05	1071	2292	4434	19180
n-n=150-h=3-d=8-m=10.15												
$\begin{array}{c} \text{n.} = 150 \text{h.} = 3 \text{-d.s.} = \text{m.} = 10.15 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.16 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.17 \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.17 \\ \text{optimal} \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.17 \\ \text{Optimal} \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.17 \\ \text{Optimal} \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.17 \\ \text{Optimal} \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.17 \\ \text{Optimal} \\ \text{n.} = 150 \text{-h.} = 3 \text{-d.s.} = \text{m.} = 10.17 \\ \text{Peasible} \\ \text{Pl.} \\ \text{3600} \\ \text{61647} \\ \text{0.03595} \\ \text{66954} \\ \text{0.13997} \\ \text{77364} \\ \text{0.0029328} \\ \text{1093} \\ \text{1993} $		Optimal										
n-=150-h=3-d=8-m=10.16												
$\begin{array}{c} \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.16 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.16 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.16 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.16 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.16 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.16 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.16 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.16 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{n.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.17 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{N.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} = 150 - \text{h.} = 3 - \text{d.} = \text{h.} = 10.18 \\ \text{easible} \\ \text{o.} =$												
$\begin{array}{c} \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.16 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.16 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.16 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.16 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.16 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{optimal} \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{optimal} \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{optimal} \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{optimal} \\ \text{optimal} \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{optimal} \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{optimal} \\ \text{optimal} \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{easible} \\ \text{(P)} & 3600 & 61647 & 0.035995 & 65477 & 9.99690 - 50 & 1086 & 2323 & 4494 & 120830 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.17 \\ \text{easible} \\ \text{(E)} & 3600 & 61647 & 0.035995 & 66955 & 0.010045 & 1086 & 1387 & 2472 & 751495 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.18 \\ \text{easible} \\ \text{(U)} & 3600 & 69564 & 0.013997 & 77364 & 0.0029328 & 1093 & 1394 & 2486 & 243549 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.18 \\ \text{easible} \\ \text{(I)} & 3600 & 69564 & 0.10598 & 78804 & 0.0061947 & 1093 & 2337 & 3429 & 343207 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.18 \\ \text{easible} \\ \text{(D)} & 3600 & 69564 & 0.10598 & 78804 & 0.0036019 & 1093 & 2337 & 3429 & 343207 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.18 \\ \text{easible} \\ \text{(D)} & 3600 & 69564 & 0.10598 & 78804 & 0.0036019 & 1093 & 2337 & 3429 & 343207 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.18 \\ \text{easible} \\ \text{(STM)} & 3600 & 69564 & 0.10598 & 78804 & 0.0036019 & 1093 & 2337 & 3429 & 343207 \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.19 \\ \text{optimal} \\ \text{n.} = 150 \text{-h.} 3 \text{-d.} 8 \text{-m.} = 10.19 \\ \text{optimal} \\ \text{(I)} & 1925.5 & 69936 & 0.17797 & 78375 & 9.99$												
$\begin{array}{c} \mathbf{n} \cdot \mathbf{n} = 150 \cdot \mathbf{h} = 3 \cdot \mathbf{d} = 8 \cdot \mathbf{m} = 10.16 & \text{Feasible} & (\text{F}) & 3600 & 87852 & 0.051992 & 95589 & 0.011365 & 1054 & 2259 & 4366 & 164091 \\ \mathbf{n} \cdot \mathbf{n} = 150 \cdot \mathbf{h} = 3 \cdot \mathbf{d} = 8 \cdot \mathbf{m} = 10.17 & \text{Feasible} & (\text{U}) & 3600 & 61647 & 0.012998 & 70202 & 0.0037556 & 1086 & 1387 & 2472 & 263577 \\ \mathbf{n} \cdot \mathbf{n} = 150 \cdot \mathbf{h} = 3 \cdot \mathbf{d} = 8 \cdot \mathbf{m} = 10.17 & \text{Optimal} & (\text{I}) & 1608.5 & 61647 & 0.012998 & 70202 & 0.0037556 & 1086 & 2323 & 4494 & 120830 & 10.01299 & 10.003750 & $												
$\begin{array}{c} \text{n.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{n.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{n.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{n.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{n.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.17 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.18 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.19 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.19 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.19 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.19 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.19 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.19 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.19 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot \text{m.} = 10.19 \\ \text{o.} = 150 \cdot \text{h.} = 3 \cdot \text{d.} = 8 \cdot m$												
$\begin{array}{c} \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.17 & \mathbf{potpinal} & (\mathbf{U}) & 3600 & 61647 & 0.012998 & 70202 & 0.0037556 & 1086 & 1387 & 2472 & 263577 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.17 & \mathbf{Optimal} & (\mathbf{L}) & 1840.9 & 61647 & 0.095985 & 65477 & 9.9969 - 05 & 1086 & 2323 & 3408 & 188337 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.17 & \mathbf{Peasible} & (\mathbf{P}) & 3600 & 61647 & 0.035995 & 6885 & 0.010045 & 1086 & 1387 & 2472 & 751498 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \mathbf{Peasible} & (\mathbf{STM}) & 3600 & 61647 & 0.32695 & 67630 & 0.027196 & 1086 & 2323 & 4494 & 190678 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \mathbf{Peasible} & (\mathbf{U}) & 3600 & 69564 & 0.13997 & 77364 & 0.0029328 & 1093 & 1394 & 2486 & 243549 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \mathbf{Peasible} & (\mathbf{L}) & 3600 & 69564 & 0.12998 & 73804 & 0.0061947 & 1093 & 2337 & 4522 & 311480 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \mathbf{Peasible} & (\mathbf{P}) & 3600 & 69564 & 0.032995 & 76363 & 0.01185 & 1093 & 1394 & 2486 & 822276 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \mathbf{Peasible} & (\mathbf{P}) & 3600 & 69564 & 0.032995 & 76363 & 0.01185 & 1093 & 1394 & 2486 & 822276 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \mathbf{Peasible} & (\mathbf{P}) & 3600 & 69564 & 0.032995 & 76363 & 0.01185 & 1093 & 1394 & 2486 & 822276 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{Optimal} & (\mathbf{U}) & 3233.1 & 69036 & 0.016997 & 77467 & 9.9997e-05 & 1048 & 1349 & 2366 & 265249 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{Optimal} & (\mathbf{U}) & 3233.1 & 69036 & 0.013997 & 77367 & 9.9983e-05 & 1048 & 2247 & 324 & 217696 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{Optimal} & (\mathbf{U}) & 1232.8 & 69036 & 0.07398 & 76106 & 0.094727 & 1048 & 1349 & 2366 & 221318 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{p} = \mathbf{m} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{p} = \mathbf{m} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf$			(P)									
$\begin{array}{c} \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.17 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.17 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.17 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.17 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.17 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.17 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.17 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.17 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.18 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - 48 - 8m = 10.19 \\ \mathbf{n} = 150 - h$												
$\begin{array}{c} n_{n} = 150 - h = 3 - d = 8 - m = 10.17 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.17 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.17 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.17 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.18 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d = 8 - m = 10.19 \\ n_{n} = 150 - h = 3 - d$												
$\begin{array}{c} \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.17 & \text{Feasible} & (\mathbf{P}) & 3600 & 61647 & 0.035995 & 68985 & 0.010045 & 1086 & 1387 & 2472 & 751495 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \text{Feasible} & (\mathbf{U}) & 3600 & 69564 & 0.013997 & 77364 & 0.0029328 & 1093 & 1394 & 2486 & 243549 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \text{Feasible} & (\mathbf{L}) & 3600 & 69564 & 0.12998 & 73804 & 0.0061947 & 1093 & 2337 & 4522 & 311480 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \text{Feasible} & (\mathbf{L}) & 3600 & 69564 & 0.10598 & 73804 & 0.0036019 & 1093 & 2337 & 3429 & 343207 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \text{Feasible} & (\mathbf{P}) & 3600 & 69564 & 0.032995 & 76363 & 0.01185 & 1093 & 1394 & 2486 & 822276 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.18 & \text{Feasible} & (\mathbf{STM}) & 3600 & 69564 & 0.27696 & 75609 & 0.023818 & 1093 & 2337 & 4522 & 200101 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{Optimal} & (\mathbf{U}) & 3233 & 69036 & 0.17697 & 77367 & 9.9997 - 0.5 & 1048 & 1244 & 117695 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{Optimal} & (\mathbf{U}) & 1232 & 69036 & 0.17797 & 73375 & 9.9838 - 0.5 & 1048 & 2247 & 3294 & 92404 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{Peasible} & (\mathbf{P}) & 3600 & 69036 & 0.073989 & 76106 & 0.0094727 & 1048 & 1349 & 2366 & 321318 \\ \mathbf{n} = \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \mathbf{Peasible} & (\mathbf{P}) & 3600 & 69036 & 0.023997 & 121783 & 9.9987 - 0.05 & 1048 & 2247 & 4342 & 20688 \\ \mathbf{n} = \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 & \mathbf{Optimal} & (\mathbf{U}) & 3364 & 109253 & 0.22697 & 121783 & 9.9987 - 0.019571 & 1048 & 2247 & 4342 & 20689 \\ \mathbf{n} = \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 & \mathbf{Optimal} & (\mathbf{U}) & 3600 & 109253 & 0.22697 & 121783 & 9.9987 - 0.019571 & 1048 & 2247 & 3294 & 2020785 \\ \mathbf{n} = \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 & \mathbf{Optimal} & (\mathbf{U}) & 3600 & 109253 & 0.02697 & 121783 & 9.9987 - 0.019571 & 1$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{c} \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.18 & \mathbf{Feasible} & (\mathbf{U}) & 3600 & 69564 & 0.113997 & 77364 & 0.0029328 & 1093 & 1394 & 2486 & 243549 \\ \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.18 & \mathbf{Feasible} & (\mathbf{L}) & 3600 & 69564 & 0.12998 & 73804 & 0.0036019 & 1093 & 2337 & 3429 & 343207 \\ \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.18 & \mathbf{Feasible} & (\mathbf{L}) & 3600 & 69564 & 0.10598 & 73804 & 0.0036019 & 1093 & 2337 & 3429 & 343207 \\ \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.18 & \mathbf{Feasible} & (\mathbf{F}) & 3600 & 69564 & 0.032995 & 76363 & 0.01185 & 1093 & 1394 & 2486 & 822276 \\ \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.19 & \mathbf{Optimal} & (\mathbf{U}) & 3233.1 & 69936 & 0.16997 & 77467 & 9.9997e-05 & 1048 & 1349 & 2396 & 265249 \\ \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.19 & \mathbf{Optimal} & (\mathbf{L}) & 1925.5 & 69036 & 0.17977 & 73375 & 9.9893e-05 & 1048 & 2247 & 3424 & 117695 \\ \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.19 & \mathbf{Optimal} & (\mathbf{L}) & 1232.8 & 69036 & 0.13398 & 73375 & 9.9977e-05 & 1048 & 2247 & 3294 & 92404 \\ \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.19 & \mathbf{Peasible} & (\mathbf{S} \mathbf{TM}) & 3600 & 69036 & 0.73989 & 76160 & 0.0094727 & 1048 & 1349 & 2396 & 221049 \\ \mathbf{n} - \mathbf{n} - 150 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.0 & \mathbf{Peasible} & (\mathbf{S} \mathbf{TM}) & 3600 & 69036 & 0.7296 & 75837 & 0.019571 & 1048 & 2247 & 4342 & 107695 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.0 & \mathbf{Optimal} & (\mathbf{U}) & 3364 & 109253 & 0.22697 & 114557 & 9.9993e-05 & 1423 & 3047 & 5892 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.0 & \mathbf{Peasible} & (\mathbf{S} \mathbf{TM}) & 3600 & 109253 & 0.22697 & 114557 & 9.9993e-05 & 1423 & 3047 & 5892 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.0 & \mathbf{Peasible} & (\mathbf{F}) & 3600.1 & 109253 & 0.05991 & 119106 & 0.0094481 & 1423 & 1824 & 2466 & 210695 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = \mathbf{N} - \mathbf{m} = 10.0 & \mathbf{Peasible} & (\mathbf{F}) & 3600.1 & 10735$												
$\begin{array}{c} \mathbf{n-n=150-h=3-d=8-m=10.18} & \text{Feasible} & (I) & 3600 & 69564 & 0.12998 & 73804 & 0.0061947 & 1093 & 2337 & 4522 & 311480 \\ \mathbf{n-n=150-h=3-d=8-m=10.18} & \text{Feasible} & (P) & 3600 & 69564 & 0.032995 & 76363 & 0.01185 & 1093 & 1394 & 2486 & 822276 \\ \mathbf{n-n=150-h=3-d=8-m=10.18} & \text{Feasible} & (P) & 3600 & 69564 & 0.032995 & 76363 & 0.01185 & 1093 & 1394 & 2486 & 822276 \\ \mathbf{n-n=150-h=3-d=8-m=10.19} & \text{Optimal} & (U) & 3233.1 & 69036 & 0.076997 & 77467 & 9.9997e-05 & 1048 & 1349 & 2396 & 265249 \\ \mathbf{n-n=150-h=3-d=8-m=10.19} & \text{Optimal} & (I) & 1925.5 & 69036 & 0.17997 & 73375 & 9.9893e-05 & 1048 & 2247 & 4342 & 117695 \\ \mathbf{n-n=150-h=3-d=8-m=10.19} & \text{Optimal} & (I) & 1232.8 & 69036 & 0.17398 & 73375 & 9.9893e-05 & 1048 & 2247 & 4342 & 117695 \\ \mathbf{n-n=150-h=3-d=8-m=10.19} & \text{Feasible} & (P) & 3600 & 69036 & 0.073989 & 76106 & 0.094727 & 1048 & 1349 & 2396 & 321318 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Peasible} & (STM) & 3600 & 69036 & 0.073989 & 76106 & 0.094727 & 1048 & 1349 & 2396 & 321318 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Optimal} & (U) & 3364 & 109253 & 0.020997 & 121783 & 9.9987e-05 & 1423 & 1824 & 3246 & 210093 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & (I) & 3600 & 199253 & 0.22697 & 114557 & 0.00094452 & 1423 & 3047 & 5892 & 169665 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & (STM) & 3600 & 109253 & 0.13798 & 114557 & 9.993e-05 & 1423 & 3047 & 5892 & 109658 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & (STM) & 3600.1 & 109253 & 0.13798 & 114557 & 9.993e-05 & 1423 & 3047 & 5892 & 109658 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & (STM) & 3600.1 & 109253 & 0.13798 & 114557 & 0.00094452 & 1423 & 3047 & 5892 & 109658 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & (STM) & 3600.1 & 107357 & 0.16997 & 121000 & 0.007594 & 1388 & 1789 & 3176 & 257496 \\ \mathbf{n-n=200-h=3-d=8-m=10.1} & \text{Feasible} & (I) & 3600.1 & 107357 & 0.15098 & 114499 & 0.023071 & 1388 & 1789 & 3176 & 656696 \\ \mathbf{n-n=200-h=3-d=8-m=10.1} & \text{Feasible} & (I) & 3600.1 & 107357 & 0.15098 & 114499 & 0.023071 & 1388 & 1789 & 3176 & 656696 \\ n-n=200-h=3-d=8-m=10.$												
$\begin{array}{c} \textbf{n.n=150-h=3-d=8-m=10.18} & Feasible & (L) & 3600 & 69564 & 0.10598 & 73804 & 0.0036019 & 1093 & 2337 & 3429 & 342907 \\ \textbf{n.n=150-h=3-d=8-m=10.18} & Feasible & (P) & 3600 & 69564 & 0.032995 & 76363 & 0.01185 & 1093 & 1334 & 2486 & 822276 \\ \textbf{n.n=150-h=3-d=8-m=10.19} & Optimal & (U) & 3233.1 & 69036 & 0.16997 & 77467 & 9.9997e-05 & 1048 & 1349 & 2336 & 265249 \\ \textbf{n.n=150-h=3-d=8-m=10.19} & Optimal & (I) & 1925.5 & 69036 & 0.17977 & 73375 & 9.9997e-05 & 1048 & 1244 & 3424 & 117695 \\ \textbf{n.n=150-h=3-d=8-m=10.19} & Optimal & (L) & 1232.8 & 69036 & 0.17977 & 73375 & 9.9997e-05 & 1048 & 2247 & 3294 & 92404 \\ \textbf{n.n=150-h=3-d=8-m=10.19} & Optimal & (L) & 1232.8 & 69036 & 0.13398 & 73375 & 9.9977e-05 & 1048 & 2247 & 3294 & 92404 \\ \textbf{n.n=150-h=3-d=8-m=10.19} & Feasible & (P) & 3600 & 69036 & 0.073989 & 76106 & 0.094727 & 1048 & 1349 & 2396 & 265249 \\ \textbf{n.n=200-h=3-d=8-m=10.19} & Feasible & (STM) & 3600 & 69036 & 0.27296 & 75837 & 0.019571 & 1048 & 2247 & 3424 & 90658 \\ \textbf{n.n=200-h=3-d=8-m=10.0} & Feasible & (I) & 3600 & 109253 & 0.22097 & 114557 & 0.00094452 & 1423 & 3047 & 5892 & 169665 \\ \textbf{n.n=200-h=3-d=8-m=10.0} & Feasible & (P) & 3600.1 & 109253 & 0.05991 & 119106 & 0.0094448 & 1423 & 1824 & 2246 & 262168 \\ \textbf{n.n=200-h=3-d=8-m=10.0} & Feasible & (P) & 3600.1 & 109253 & 0.38094 & 118768 & 0.015446 & 1423 & 3047 & 5892 & 169665 \\ \textbf{n.n=200-h=3-d=8-m=10.1} & Feasible & (U) & 3600 & 107357 & 0.016997 & 121000 & 0.0075934 & 1388 & 1789 & 3176 & 656696 \\ \textbf{n.n=200-h=3-d=8-m=10.1} & Feasible & (P) & 3600.1 & 107357 & 0.15098 & 114049 & 0.0035852 & 1388 & 2977 & 5752 & 187261 \\ \textbf{n.n=200-h=3-d=8-m=10.2} & Feasible & (P) & 3600 & 103445 & 0.26996 & 116415 & 0.009215 & 1464 & 3129 & 46569 & 146816 \\ \textbf{n.n=200-h=3-d=8-m=10.2} & Feasible & (U) & 3600 & 103445 & 0.045993 & 114552 & 0.019327 & 1464 & 3129 & 6656 & 128735 \\ \textbf{n.n=200-h=3-d=8-m=10.2} & Feasible & (P) & 3600 & 103445 & 0.045993 & 114552 & 0.019327 & 1464 & 3129 & 6656 & 128735 \\ \textbf{n.n=200-h=3-d=8-m=10.2} & Feasible & (P) & 3600 & 103445 & 0.045993 & 114552 & 0.$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Feasible									3429	343207
$\begin{array}{c} \mathbf{n-n=150-h=3-d=8-m=10.19} \\ \mathbf{n-n=150-h=3-d=8-m=10.19} \\ \mathbf{n-n=150-h=3-d=8-m=10.19} \\ \mathbf{0ptimal} \\ \mathbf{(I)} \\ 1925.5 \\ 0.00500 \\ 0.01797 \\ 0.00500 \\ 0.01797 \\ 0.00500 \\ 0.0094727$												
$\begin{array}{c} \mathbf{n-n=150-h=3-d=8-m=10.19} \\ \mathbf{n-n=150-h=3-d=8-m=10.19} \\ \mathbf{n-n=150-h=3-d=8-m=10.19} \\ \mathbf{0ptimal} \\ \mathbf{(I)} \\ 1925.5 \\ 0.00500 \\ 0.01797 \\ 0.00500 \\ 0.01797 \\ 0.00500 \\ 0.0094727$	n-n=150-h=3-d=8-m=10.18	Feasible	(STM)	3600	69564	0.27696	75609	0.023818	1093	2337	4522	200101
$\begin{array}{c} \mathbf{n-n=150-h=3-d=8-m=10.19} & \text{Optimal} & \text{(I)} & 1925.5 & 69036 & 0.17797 & 73375 & 9.9893e-05 & 1048 & 2247 & 4342 & 117695 \\ \mathbf{n-n=150-h=3-d=8-m=10.19} & \text{Optimal} & \text{(L)} & 1232.8 & 69036 & 0.13398 & 73375 & 9.9977e-05 & 1048 & 2247 & 3294 & 92404 \\ \mathbf{n-n=150-h=3-d=8-m=10.19} & \text{Feasible} & \text{(P)} & 3600 & 69036 & 0.073989 & 76106 & 0.0094727 & 1048 & 1349 & 2396 & 321318 \\ \mathbf{n-n=150-h=3-d=8-m=10.19} & \text{Feasible} & \text{(STM)} & 3600 & 69036 & 0.27296 & 75837 & 0.019571 & 1048 & 2247 & 4342 & 90658 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Optimal} & \text{(U)} & 3364 & 109253 & 0.020997 & 121783 & 9.9987e-05 & 1423 & 1824 & 3246 & 210093 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & \text{(I)} & 3600 & 109253 & 0.22697 & 114557 & 0.00094452 & 1423 & 3047 & 5892 & 169665 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & \text{(P)} & 3600.1 & 109253 & 0.13798 & 114557 & 9.9993e-05 & 1423 & 3047 & 5892 & 169665 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & \text{(FM)} & 3600.1 & 109253 & 0.059991 & 119106 & 0.0094448 & 1423 & 1824 & 3246 & 262168 \\ \mathbf{n-n=200-h=3-d=8-m=10.0} & \text{Feasible} & \text{(STM)} & 3600.1 & 109253 & 0.38094 & 118768 & 0.015446 & 1423 & 3047 & 5892 & 200785 \\ \mathbf{n-n=200-h=3-d=8-m=10.1} & \text{Feasible} & \text{(U)} & 3600.1 & 107357 & 0.27696 & 114049 & 0.0064229 & 1388 & 2977 & 5752 & 187261 \\ \mathbf{n-n=200-h=3-d=8-m=10.1} & \text{Feasible} & \text{(I)} & 3600.1 & 107357 & 0.27696 & 114049 & 0.0055852 & 1388 & 2977 & 5752 & 187261 \\ \mathbf{n-n=200-h=3-d=8-m=10.1} & \text{Feasible} & \text{(I)} & 3600.1 & 107177 & 0.41594 & 117774 & 0.028754 & 1388 & 2977 & 5752 & 188381 \\ \mathbf{n-n=200-h=3-d=8-m=10.1} & \text{Feasible} & \text{(I)} & 3600.1 & 107177 & 0.41594 & 117774 & 0.028754 & 1388 & 2977 & 5752 & 188381 \\ \mathbf{n-n=200-h=3-d=8-m=10.2} & \text{Feasible} & \text{(I)} & 3600 & 103445 & 0.026996 & 116415 & 0.0092105 & 1464 & 3129 & 6056 & 146816 \\ \mathbf{n-n=200-h=3-d=8-m=10.2} & \text{Feasible} & \text{(I)} & 3600 & 103445 & 0.045993 & 114552 & 0.019327 & 1464 & 3129 & 6056 & 128735 \\ \mathbf{n-n=200-h=3-d=8-m=10.2} & \text{Feasible} & \text{(I)} & 3600 & 103445 & 0.045993 & 114552 & 0.019327 & 14$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.19 & \text{Feasible} & (STM) & 3600 & 69036 & 0.27296 & 76837 & 0.019571 & 1048 & 2247 & 4342 & 90658 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 & \text{Optimal} & (U) & 3364 & 109253 & 0.220997 & 121783 & 9.9876 - 05 & 1423 & 1824 & 3246 & 210093 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 & \text{Optimal} & (L) & 1869 . 2 & 109253 & 0.22697 & 114557 & 0.00094452 & 1423 & 3047 & 4869 & 126520 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 & \text{Optimal} & (L) & 1869 . 2 & 109253 & 0.13798 & 114557 & 9.99936 - 05 & 1423 & 3047 & 4469 & 126520 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 & \text{Feasible} & (P) & 3600.1 & 109253 & 0.58991 & 119106 & 0.0094448 & 1423 & 3447 & 5892 & 200785 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 & \text{Feasible} & (STM) & 3600.1 & 109253 & 0.38094 & 118768 & 0.015446 & 1423 & 3047 & 5892 & 200785 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 & \text{Feasible} & (U) & 3600 & 107357 & 0.016997 & 121000 & 0.0075934 & 1388 & 1789 & 3176 & 257496 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 & \text{Feasible} & (I) & 3600.1 & 107357 & 0.27696 & 114049 & 0.0064229 & 1388 & 2977 & 5752 & 187261 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 & \text{Feasible} & (P) & 3600 & 107357 & 0.50992 & 119449 & 0.023071 & 1388 & 1789 & 3176 & 656966 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 & \text{Feasible} & (STM) & 3600.1 & 107177 & 0.41594 & 117774 & 0.028754 & 1388 & 2977 & 5752 & 188381 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.2 & \text{Feasible} & (STM) & 3600.1 & 107177 & 0.41594 & 117774 & 0.028754 & 1388 & 2977 & 5752 & 188381 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.2 & \text{Feasible} & (I) & 3600 & 103445 & 0.26696 & 109513 & 0.0083149 & 1464 & 3129 & 6056 & 146816 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.2 & \text{Feasible} & (I) & 3600 & 103445 & 0.45793 & 114552 & 0.019327 & 1464 & 1865 & 3328 & 16500 \\ \mathbf{n} - \mathbf{n} - 200 - \mathbf{h} = 3$			(P)									
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.0 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.1 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.2 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.2 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.2 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10.2 \\ \mathbf{n} - \mathbf{n} = 200 - h$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$			(E)									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$									1464	3129		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n-n=200-h=3-d=8-m=10.2	Feasible		3600	103445	0.045993		0.019327	1464	1865	3328	425209
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n-n=200-h=3-d=8-m=10.2	Feasible			103445	0.45793	112795	0.026671	1464	3129	6056	128735
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
n-n=200-h=3-d=8-m=10.3 Feasible (P) 3600 114227 0.041993 123838 0.011477 1451 1852 3302 354792												
110200 - 110												
	n-n-200-n-3-u=6-m=10.3	reasible	(01111)	3000	114221	0.0019	144010	0.010720	1401	3103	0004	110201

				All Ins	tances - Part						
filename	status	formulation	time	value	relax_time	relax_value	$_{ m gap}$	edges	columns	rows	nodes
n-n=200-h=3-d=8-m=10.4	Feasible	(U)	3600.1	114262	0.022997	127898	0.0099357	1409	1810	3218	392219
n-n=200-h=3-d=8-m=10.4	Feasible	(I)	3600	114262	0.39794	121136	0.0091944	1409	3019	5836	235136
n-n=200-h=3-d=8-m=10.4	Feasible	(L)	3600.1	114262	0.17197	121136	0.0094138	1409	3019	4427	224827
n-n=200-h=3-d=8-m=10.4	Feasible	(P)	3600.1	114262	0.049992	125923	0.019045	1409	1810	3218	828419
n-n=200-h=3-d=8-m=10.4	Feasible	(STM)	3600	114262	0.49493	124828	0.028252	1409	3019	5836	93983
n-n=200-h=3-d=8-m=10.5	Feasible	(U)	3600	167722	0.022997	181681	0.0058237	1447	1848	3294	192640
n-n=200-h=3-d=8-m=10.5	Feasible	(I)	3600.1	167722	0.24096	173874	0.0029931	1447	3095	5988	152082
n-n=200-h=3-d=8-m=10.5	Feasible	(L)	3600	167722	0.18497	173874	0.0027373	1447	3095	4541	285913
n-n=200-h=3-d=8-m=10.5	Feasible	(P)	3600	167722	0.075989	179352	0.0092275	1447	1848	3294	641098
n-n=200-h=3-d=8-m=10.5	Feasible	(STM)	3600.1	167722	0.44893	177314	0.014018	1447	3095	5988	210161
n-n=200-h=3-d=8-m=10.6	Feasible	(U)	3600.1	132201	0.025996	144495	0.002237	1441	1841	3282	208641
n-n=200-h=3-d=8-m=10.6	Feasible	(I)	3600	132201	0.26096	137771	0.00073612	1441	3082	5964	145621
n-n=200-h=3-d=8-m=10.6	Optimal	(L)	3307.9	132201	0.18897	137771	9.9988e-05	1441	3082	4523	192727
n-n=200-h=3-d=8-m=10.6	Feasible	(P)	3600	132201	0.06399	142973	0.0097934	1441	1841	3282	572191
n-n=200-h=3-d=8-m=10.6	Feasible	(STM)	3600.1	132201	0.31695	140966	0.015589	1441	3082	5964	142391
n-n=200-h=3-d=8-m=10.7	Feasible	(U)	3600	101656	0.013998	113267	0.0047205	1444	1844	3288	204230
n-n=200-h=3-d=8-m=10.7	Feasible	(I)	3600.2	101656	0.18697	107106	0.0030462	1444	3088	5976	200175
n-n=200-h=3-d=8-m=10.7	Optimal	(L)	2777.9	101656	0.15498	107106	9.9994e-05	1444	3088	4532	245069
n-n=200-h=3-d=8-m=10.7	Feasible	(P)	3600	101656	0.06699	111359	0.011927	1444	1844	3288	238730
n-n=200-h=3-d=8-m=10.7	Feasible	(STM)	3600	101656	0.49892	110274	0.02132	1444	3088	5976	146821
n-n=200-h=3-d=8-m=10.8	Feasible	(U)	3600	114562	0.013998	125900	0.0050683	1476	1877	3352	219724
n-n=200-h=3-d=8-m=10.8	Feasible	(I)	3600	114562	0.23596	119764	0.0005804	1476	3153	6104	147041
n-n=200-h=3-d=8-m=10.8	Feasible	(L)	3600.1	114562	0.13498	119764	0.0020368	1476	3153	4628	286297
n-n=200-h=3-d=8-m=10.8	Feasible	(P)	3600.1	114562	0.06799	124483	0.0020308	1476	1877	3352	722030
n-n=200-h=3-d=8-m=10.8 n-n=200-h=3-d=8-m=10.8	Feasible	(STM)	3600.1	114562	0.59391	122891	0.020368	1476	3153	6104	153831
n-n=200-h=3-d=8-m=10.8 n-n=200-h=3-d=8-m=10.9	Feasible	(U)	3600.1	93771	0.023996	105550	0.0052699	1395	1796	3190	190906
n-n=200-h=3-d=8-m=10.9 n-n=200-h=3-d=8-m=10.9	Optimal	(I)	2852.9	93771	0.24196	98763	9.9903e-05	1395	2991	5780	157792
n-n=200-h=3-d=8-m=10.9 n-n=200-h=3-d=8-m=10.9	Optimal	(L)	2852.9 3489.8	93771	0.24196	98763 98763	9.9999e-05	1395	2991 2991	4385	263436
n-n=200-n=3-d=8-m=10.9 n-n=200-h=3-d=8-m=10.9		(E) (P)	3489.8	93771	0.19897	103714	0.0098383		2991 1796	3190	
n-n=200-h=3-d=8-m=10.9 n-n=200-h=3-d=8-m=10.9	Feasible Feasible		3600 3600.1	93771	0.06499 0.43793	103714	0.0098383	1395 1395	1796 2991	3190 5780	493417 125011
		(STM)									
n-n=200-h=3-d=8-m=10.10	Feasible	(U)	3600.1	114823	0.022996	127959	0.0072647	1482	1883	3364	196650
n-n=200-h=3-d=8-m=10.10	Feasible	(I)	3600.1	114823	0.36794	120734	0.0066407	1482	3165	6128	143989
n-n=200-h=3-d=8-m=10.10	Feasible	(L)	3600.1	114823	0.21797	120734	0.0064381	1482	3165	4646	196687
n-n=200-h=3-d=8-m=10.10	Feasible	(P)	3600	114823	0.098985	125780	0.015045	1482	1883	3364	510001
n-n=200-h=3-d=8-m=10.10	Feasible	(STM)	3600	114823	0.47793	123958	0.024405	1482	3165	6128	169031
n-n=200-h=3-d=8-m=10.11	Feasible	(U)	3600	108571	0.026996	122392	0.005818	1382	1783	3164	207620
n-n=200-h=3-d=8-m=10.11	Feasible	(I)	3600.1	108571	0.28196	114835	0.0036402	1382	2965	5728	113371
n-n=200-h=3-d=8-m=10.11	Feasible	(L)	3600	108571	0.13698	114835	0.0027256	1382	2965	4346	188617
n-n=200-h=3-d=8-m=10.11	Feasible	(P)	3600	108571	0.078988	119639	0.014573	1382	1783	3164	470578
n-n=200-h=3-d=8-m=10.11	Feasible	(STM)	3600.1	108571	0.54792	119219	0.022392	1382	2965	5728	193961
n-n=200-h=3-d=8-m=10.12	Feasible	(U)	3600	146800	0.021997	160972	0.0045302	1510	1911	3420	160034
n-n=200-h=3-d=8-m=10.12	Feasible	(I)	3600.1	146800	0.37394	152689	0.0020045	1510	3221	6240	172982
n-n=200-h=3-d=8-m=10.12	Feasible	(L)	3600.1	146800	0.15698	152689	0.0013329	1510	3221	4730	201192
n-n=200-h=3-d=8-m=10.12	Feasible	(P)	3600	146800	0.051992	158525	0.009774	1510	1911	3420	552612
n-n=200-h=3-d=8-m=10.12	Feasible	(STM)	3600	146783	0.77988	156873	0.019336	1510	3221	6240	78329
n-n=200-h=3-d=8-m=10.13	Optimal	(U)	720.37	107146	0.021996	119574	9.9958e-05	1407	1808	3214	40002
n-n=200-h=3-d=8-m=10.13	Optimal	(I)	793.32	107146	0.32295	112214	9.9236e-05	1407	3015	5828	24239
n-n=200-h=3-d=8-m=10.13	Optimal	(L)	333.62	107146	0.21697	112214	9.113e-05	1407	3015	4421	12760
n-n=200-h=3-d=8-m=10.13	Feasible	(P)	3600	107146	0.077988	117353	0.0038501	1407	1808	3214	556313
n-n=200-h=3-d=8-m=10.13	Feasible	(STM)	3600.1	107146	0.55292	115249	0.013648	1407	3015	5828	109924
n-n=200-h=3-d=8-m=10.14	Feasible	(U)	3600	89150	0.027996	101028	0.0053028	1453	1854	3306	163353
n-n=200-h=3-d=8-m=10.14	Feasible	(I)	3600.1	89150	0.29795	94881	0.0031712	1453	3107	6012	166690
n-n=200-h=3-d=8-m=10.14	Feasible	(L)	3600	89150	0.35995	94881	0.0022995	1453	3107	4559	204613
n-n=200-h=3-d=8-m=10.14	Feasible	(P)	3600	89150	0.07099	99375	0.015653	1453	1854	3306	446331
n-n=200-h=3-d=8-m=10.14	Feasible	(STM)	3600	89150	0.49793	98333	0.026767	1453	3107	6012	132051
n-n=200-h=3-d=8-m=10.15	Optimal	(U)	2643.7	118400	0.047993	130889	9.9948e-05	1441	1842	3282	159405
n-n=200-h=3-d=8-m=10.15	Optimal	(I)	2043.8	118400	0.31695	123326	9.9974e-05	1441	3083	5964	102151
n-n=200-h=3-d=8-m=10.15	Optimal	(L)	1776	118400	0.14498	123326	9.9998e-05	1441	3083	4523	118785
n-n=200-h=3-d=8-m=10.15	Feasible	(P)	3600	118400	0.054992	128619	0.0074364	1441	1842	3282	435680
n-n=200-h=3-d=8-m=10.15	Feasible	(STM)	3600	118400	0.47693	126879	0.011555	1441	3083	5964	168432
n-n=200-h=3-d=8-m=10.16	Feasible	(U)	3600	138301	0.018997	152509	0.0044795	1491	1892	3382	369501
n-n=200-h=3-d=8-m=10.16	Feasible	(I)	3600.1	138301	0.26996	145131	0.006118	1491	3183	6164	89645
n-n=200-h=3-d=8-m=10.16	Feasible	(L)	3600	138301	0.14498	145131	0.0050704	1491	3183	4673	272232
n-n=200-h=3-d=8-m=10.16	Feasible	(P)	3600	138301	0.06499	149966	0.015379	1491	1892	3382	344116
n-n=200-h=3-d=8-m=10.16	Feasible	(STM)	3600	138301	0.48593	147985	0.0207	1491	3183	6164	170903
n-n=200-h=3-d=8-m=10.17	Feasible	(U)	3600	121917	0.019997	138688	0.0057149	1461	1862	3322	258100
n-n=200-h=3-d=8-m=10.17	Feasible	(I)	3600.1	121917	0.28496	128949	0.0044619	1461	3123	6044	159798
n-n=200-h=3-d=8-m=10.17	Feasible	(L)	3600	121917	0.16398	128949	0.0041673	1461	3123	4583	249817
n-n=200-h=3-d=8-m=10.17	Feasible	(P)	3600	121917	0.06599	134515	0.014205	1461	1862	3322	567451
n-n=200-h=3-d=8-m=10.17	Feasible	(STM)	3600.1	121917	0.44993	133146	0.024676	1461	3123	6044	185344
n-n=200-h=3-d=8-m=10.17	Optimal	(U)	781.62	122902	0.022997	137584	9.9917e-05	1480	1880	3360	37599
n-n=200-h=3-d=8-m=10.18 n-n=200-h=3-d=8-m=10.18	Optimal	(I)	298.01	122902	0.26496	128826	9.9521e-05	1480	3160	6120	12822
n-n=200-h=3-d=8-m=10.18 n-n=200-h=3-d=8-m=10.18	Optimal	(L)	199.01	122902	0.15998	128826	9.9162e-05	1480	3160	4640	10727
n-n=200-h=3-d=8-m=10.18 n-n=200-h=3-d=8-m=10.18		(P)		122902		134667		1480	1880	3360	487881
n-n=200-n=3-d=8-m=10.18 n-n=200-h=3-d=8-m=10.18	Feasible Feasible	(STM)	3600 3600	122902	0.057992 0.36694	133029	0.0044624 0.016538	1480	3160	6120	108781
n-n=200-h=3-d=8-m=10.19	Feasible	(U)	3600	125406	0.031995	138523	0.0043022	1413	1813	3226	160912
n-n=200-h=3-d=8-m=10.19	Feasible	(I)	3600	125406	0.17997	131247	0.0034774	1413	3026	5852	235070
n-n=200-h=3-d=8-m=10.19	Feasible	(L)	3600	125406	0.12098	131247	0.0032933	1413	3026	4439	209351
n-n=200-h=3-d=8-m=10.19	Feasible	(P)	3600	125406	0.059991	136194	0.012809	1413	1813	3226	261513
n-n=200-h=3-d=8-m=10.19	Feasible	(STM)	3600.1	125406	0.37594	134865	0.018748	1413	3026	5852	151441

filename	status	formulation	time	value	tances - Part (relax_time	relax_value	gap	edges	columns	rows	nodes
n-n=250-h=3-d=8-m=10.0	Feasible	(U)	3600.1	137984	0.038994	153430	0.0042894	1787	2288	4074	99446
n-n=250-h=3-d=8-m=10.0	Feasible	(I)	3600	137984	0.32495	144725	0.0022143	1787	3825	7398	123677
n-n=250-h=3-d=8-m=10.0	Feasible	(L)	3600.1	137984	0.25996	144725	0.0008239	1787	3825	5611	199492
n-n=250-h=3-d=8-m=10.0	Feasible	(P)	3600	137984	0.084987	150590	0.016305	1787	2288	4074	333618
n-n=250-h=3-d=8-m=10.0	Feasible	(STM)	3600.1	137984	0.77588	149846	0.020404	1787	3825	7398	116201
n-n=250-h=3-d=8-m=10.1	Feasible	(U)	3600.1	183620	0.046993	200793	0.0070364	1864	2364	4228	196133
n-n=250-h=3-d=8-m=10.1	Feasible	(I)	3600.1	183620	0.36794	192063	0.0068385	1864	3978	7706	103051
n-n=250-h=3-d=8-m=10.1	Feasible	(L)	3600.1	183620	0.23296	192063	0.0068532	1864	3978	5842	214171
n-n=250-h=3-d=8-m=10.1	Feasible	(P)	3600.1	183620	0.11198	197858	0.016112	1864	2364	4228	393433
n-n=250-h=3-d=8-m=10.1	Feasible	(STM)	3600	183620	0.56991	196330	0.021382	1864	3978	7706	56402
n-n=250-h=3-d=8-m=10.2	Feasible	(U)	3600.1	146004	0.032995	163794	0.0071332	1804	2305	4108	167229
n-n=250-h=3-d=8-m=10.2	Feasible	(I)	3600.1	146004	0.42094	153877	0.0064709	1804	3859	7466	108191
n-n=250-h=3-d=8-m=10.2	Feasible	(L)	3600.1	146004	0.23796	153877	0.0069873	1804	3859	5662	140982
n-n=250-h=3-d=8-m=10.2	Feasible	(P)	3600	146004	0.087986	161625	0.019461	1804	2305	4108	464141
n-n=250-h=3-d=8-m=10.2	Feasible	(STM)	3600	146004	0.54492	158870	0.03216	1804	3859	7466	119461
n-n=250-h=3-d=8-m=10.2	Feasible	(U)	3600	148826	0.028996	166498	0.0094421	1900	2401	4300	145629
n-n=250-h=3-d=8-m=10.3	Feasible	(I)	3600.1	148826	0.47993	156818	0.0067707	1900	4051	7850	116397
n-n=250-h=3-d=8-m=10.3	Feasible	(L)	3600.1	148826	0.25696	156818	0.0057251	1900	4051	5950	192717
n-n=250-h=3-d=8-m=10.3	Feasible	(P)	3600.2	148826	0.10598	163534	0.020866	1900	2401	4300	345407
n-n=250-h=3-d=8-m=10.3	Feasible	(STM)	3600.1	148826	0.60591	160931	0.025348	1900	4051	7850	117241
n-n=250-h=3-d=8-m=10.4	Feasible	(U)	3600.1	143281	0.033995	161876	0.018665	1821	2322	4142	209785
n-n=250-h=3-d=8-m=10.4	Feasible	(I)	3600.1	143261	0.28696	153134	0.016218	1821	3893	7534	117881
n-n=250-h=3-d=8-m=10.4	Feasible	(L)	3600.1	143261	0.34995	153134	0.016133	1821	3893	5713	154611
n-n=250-h=3-d=8-m=10.4	Feasible	(P)	3600	143261	0.091986	159719	0.028027	1821	2322	4142	381011
n-n=250-h=3-d=8-m=10.4	Feasible	(STM)	3600.1	143277	0.6349	157614	0.042101	1821	3893	7534	80275
n-n=250-h=3-d=8-m=10.5	Feasible	(U)	3600.1	150997	0.032995	167173	0.010706	1760	2261	4020	183199
n-n=250-h=3-d=8-m=10.5	Feasible	(I)	3600.1	150997	0.36695	158235	0.0077255	1760	3771	7290	126692
n-n=250-h=3-d=8-m=10.5	Feasible	(L)	3600.1	150997	0.21197	158235	0.0083693	1760	3771	5530	220001
n-n=250-h=3-d=8-m=10.5	Feasible	(P)	3600	150997	0.074989	164501	0.017666	1760	2261	4020	444277
n-n=250-h=3-d=8-m=10.5	Feasible	(STM)	3600	150997	0.55692	162314	0.024329	1760	3771	7290	117451
n-n=250-h=3-d=8-m=10.6	Feasible	(U)	3600	148579	0.029996	165183	0.0044355	1862	2363	4224	234728
n-n=250-h=3-d=8-m=10.6	Feasible	(I)	3600.1	148579	0.33195	155233	0.0021722	1862	3975	7698	125284
n-n=250-h=3-d=8-m=10.6	Feasible	(L)	3600.1	148579	0.23297	155233	0.0021722	1862	3975	5836	181202
n-n=250-h=3-d=8-m=10.6	Feasible	(P)	3600	148579	0.06599	162396	0.011547	1862	2363	4224	254070
n-n=250-h=3-d=8-m=10.6	Feasible	(STM)	3600.1	148579	0.48093	159905	0.014869	1862	3975	7698	101511
n-n=250-h=3-d=8-m=10.7	Feasible	(U)	3600	152337	0.036994	169926	0.0064706	1794	2295	4088	173299
n-n=250-h=3-d=8-m=10.7	Feasible	(I)	3600.2	152337	0.41194	160480	0.0056218	1794	3839	7426	130121
n-n=250-h=3-d=8-m=10.7	Feasible	(L)	3600	152337	0.24996	160480	0.0048472	1794	3839	5632	182027
n-n=250-h=3-d=8-m=10.7	Feasible	(P)	3600	152337	0.089987	167318	0.018454	1794	2295	4088	354271
n-n=250-h=3-d=8-m=10.7	Feasible	(STM)	3600	152337	0.56891	166214	0.026181	1794	3839	7426	86961
n-n=250-h=3-d=8-m=10.8	Feasible	(U)	3600	126545	0.040994	143219	0.011052	1818	2319	4136	154176
n-n=250-h=3-d=8-m=10.8	Feasible	(I)	3600.1	126545	0.33695	133753	0.007842	1818	3887	7522	93691
n-n=250-h=3-d=8-m=10.8	Feasible	(L)	3600.1	126545	0.19397	133753	0.0054922	1818	3887	5704	178612
n-n=250-h=3-d=8-m=10.8	Feasible	(P)	3600	126545	0.10598	140648	0.020315	1818	2319	4136	361976
n-n=250-h=3-d=8-m=10.8	Feasible	(STM)	3600	126545	0.6349	138886	0.033313	1818	3887	7522	111801
n-n=250-h=3-d=8-m=10.9	Feasible	(U)	3600	166928	0.030995	185249	0.0081467	1804	2305	4108	150391
n-n=250-h=3-d=8-m=10.9	Feasible	(I)	3600.1	166928	0.36195	175565	0.0080559	1804	3859	7466	108686
n-n=250-h=3-d=8-m=10.9	Feasible	(L)	3600.1	166928	0.22497	175565	0.0072094	1804	3859	5662	203482
n-n=250-h=3-d=8-m=10.9	Feasible	(P)	3600.1	166928	0.083987	182211	0.017777	1804	2305	4108	346361
n-n=250-h=3-d=8-m=10.9	Feasible	(STM)	3600	166928	0.6719	180212	0.022423	1804	3859	7466	116996
n-n=250-h=3-d=8-m=10.10		(U)	3600		0.038994	171110	0.0067016	1807	2304		
	Feasible			154181						4114	298414
n-n=250-h=3-d=8-m=10.10	Feasible	(I)	3600.1	154181	0.36095	161931	0.0045819	1807	3861	7478	146200
n-n=250-h=3-d=8-m=10.10	Feasible	(L)	3600.1	154181	0.23097	161931	0.0038462	1807	3861	5671	189593
n-n=250-h=3-d=8-m=10.10	Feasible	(P)	3600.1	154181	0.094986	168109	0.01639	1807	2304	4114	401391
n-n=250-h=3-d=8-m=10.10	Feasible	(STM)	3600.1	154181	0.62491	166554	0.02329	1807	3861	7478	135941
n-n=250-h=3-d=8-m=10.11	Feasible	(U)	3600.1	181287	0.028995	198198	0.0033075	1876	2377	4252	246575
n-n=250-h=3-d=8-m=10.11	Feasible	(I)	3600	181287	0.35195	188669	0.0030361	1876	4003	7754	170428
n-n=250-h=3-d=8-m=10.11	Feasible	(L)	3600	181287	0.24296	188669	0.0031903	1876	4003	5878	217532
n-n=250-h=3-d=8-m=10.11	Feasible	(P)	3600.1	181287	0.10298	195252	0.011953	1876	2377	4252	337975
n-n=250-h=3-d=8-m=10.11	Feasible	(STM)	3600.1	181287	0.49992	193134	0.016916	1876	4003	7754	127028
n-n=250-h=3-d=8-m=10.12	Feasible	(U)	3600	150891	0.015998	168771	0.0033823	1842	2342	4184	155424
n-n=250-h=3-d=8-m=10.12	Optimal	(I)	2750.9	150891	0.37394	157919	9.9971e-05	1842	3934	7618	67878
n-n=250-h=3-d=8-m=10.12	Optimal	(L)	1736.1	150891	0.26296	157919	9.9878e-05	1842	3934	5776	87808
n-n=250-h=3-d=8-m=10.12	Feasible	(P)	3600	150891	0.073989	165653	0.012173	1842	2342	4184	596307
n-n=250-h=3-d=8-m=10.12	Feasible	(STM)	3600.1	150891	0.88187	163858	0.021958	1842	3934	7618	181606
n-n=250-h=3-d=8-m=10.13	Feasible	(U)	3600	158464	0.046993	177727	0.0052882	1766	2267	4032	194995
n-n=250-h=3-d=8-m=10.13	Feasible		3600.1	158464	0.33295	167628	0.0052882	1766	3783	7314	122928
n-n=250-h=3-d=8-m=10.13	Feasible	(I) (L)	3600.1	158464	0.20797	167628	0.0033847	1766	3783	5548	244722
		(L) (P)									
n-n=250-h=3-d=8-m=10.13	Feasible		3600.1	158464	0.086986	174761	0.016585	1766	2267	4032	299695
n-n=250-h=3-d=8-m=10.13	Feasible	(STM)	3600.1	158464	0.82188	172833	0.025517	1766	3783	7314	142351
n-n=250-h=3-d=8-m=10.14	Feasible	(U)	3600	151437	0.027996	167167	0.0046308	1788	2289	4076	164123
n-n=250-h=3-d=8-m=10.14	Feasible	(I)	3600.1	151437	0.34295	157925	0.00061626	1788	3827	7402	146261
n-n=250-h=3-d=8-m=10.14	Optimal	(L)	3257.6	151437	0.20997	157925	9.9997e-05	1788	3827	5614	271821
n-n=250-h=3-d=8-m=10.14	Feasible	(P)	3600	151437	0.069989	164974	0.011842	1788	2289	4076	498331
n-n=250-h=3-d=8-m=10.14	Feasible	(STM)	3600.1	151437	0.70589	162772	0.019491	1788	3827	7402	146531
n-n=250-h=3-d=8-m=10.15	Feasible	(U)	3600	139810	0.039994	156352	0.0099638	1806	2307	4112	266498
n-n=250-h=3-d=8-m=10.15	Feasible	(I)	3600	139810	0.37194	147763	0.0084713	1806	3863	7474	144598
n-n=250-h=3-d=8-m=10.15	Feasible	(L)	3600.1	139810	0.19597	147763	0.007797	1806	3863	5668	189792
n-n=250-h=3-d=8-m=10.15	Feasible	(P)	3600	139810	0.079988	153765	0.020691	1806	2307	4112	191188

filename	status	formulation	time	All Inst	tances - Part 7 relax_time	relax_value	an n	edges	columns	rows	nodes
n-n=250-h=3-d=8-m=10.16	Feasible	(U)	3600	124672	0.032995	140053	gap 0.0058427	1808	2308	4116	202340
n-n=250-h=3-d=8-m=10.16	Feasible	(I)	3600	124672	0.31195	131535	0.0042067	1808	3866	7482	199201
n-n=250-h=3-d=8-m=10.16	Feasible	(L)	3600	124672	0.21297	131535	0.0028112	1808	3866	5674	207201
n-n=250-h=3-d=8-m=10.16	Feasible	(P)	3600.2	124672	0.093986	137455	0.016357	1808	2308	4116	336440
n-n=250-h=3-d=8-m=10.16	Feasible	(STM)	3600	124672	0.54792	135598	0.02316	1808	3866	7482	154659
n-n=250-h=3-d=8-m=10.17	Feasible	(U)	3600	156911	0.032995	177244	0.006838	1777	2274	4054	129623
n-n=250-h=3-d=8-m=10.17	Feasible	(I)	3600	156911	0.21097	166068	0.0052017	1777	3801	7358	193201
n-n=250-h=3-d=8-m=10.17	Feasible	(L)	3600.1	156911	0.15098	166068	0.0057679	1777	3801	5581	225701
n-n=250-h=3-d=8-m=10.17	Feasible	(P)	3600.1	156911	0.089987	174257	0.017195	1777	2274	4054	454661
n-n=250-h=3-d=8-m=10.17	Feasible	(STM)	3600	156911	0.6749	171126	0.021591	1777	3801	7358	161221
n-n=250-h=3-d=8-m=10.18	Feasible	(U)	3600	136977	0.034995	156563	0.014096	1800	2301	4100	185997
n-n=250-h=3-d=8-m=10.18	Feasible	(I)	3600.1	136977	0.22997	145769	0.011111	1800	3851	7450	93001
n-n=250-h=3-d=8-m=10.18	Feasible	(L)	3600	136977	0.20497	145769	0.010919	1800	3851	5650	167399
n-n=250-h=3-d=8-m=10.18	Feasible	(P)	3600	136977	0.10398	152923	0.024028	1800	2301	4100	381731
n-n=250-h=3-d=8-m=10.18	Feasible	(STM)	3600	136977	0.78988	150037	0.031157	1800	3851	7450	132851
n-n=250-h=3-d=8-m=10.19	Feasible	(U)	3600	219381	0.029995	238004	0.0048622	1810	2311	4120	131974
n-n=250-h=3-d=8-m=10.19	Feasible	(I)	3600.1	219381	0.19797	227911	0.0025225	1810	3871	7490	164282
n-n=250-h=3-d=8-m=10.19	Feasible	(L)	3600.1	219381	0.17297	227911	0.0018292	1810	3871	5680	229172
n-n=250-h=3-d=8-m=10.19	Feasible	(P)	3600	219381	0.080987	234756	0.011458	1810	2311	4120	322821
n-n=250-h=3-d=8-m=10.19	Feasible	(STM)	3600	219381	0.55992	232565	0.011400	1810	3871	7490	113482
n-n=300-h=3-d=8-m=10.0	Feasible	(U)	3600.1	211388	0.046993	236455	0.011201	2203	2803	5006	202710
n-n=300-h=3-d=8-m=10.0	Feasible	(I)	3600	211372	0.37394	223713	0.011349	2203	4706	9112	111651
n-n=300-h=3-d=8-m=10.0	Feasible	(L)	3600.1	211372	0.37394	223713	0.011349	2203	4706	6909	152647
n-n=300-h=3-d=8-m=10.0 n-n=300-h=3-d=8-m=10.0	Feasible	(E) (P)	3600.1	211388	0.29793	232967	0.010679	2203	2803	5006	317672
n-n=300-h=3-d=8-m=10.0	Feasible	(STM)	3600.1	211388	0.35695	229708	0.030485	2203	4706	9112	80579
n-n=300-h=3-d=8-m=10.0 n-n=300-h=3-d=8-m=10.1	Feasible	(U)	3600.1	174510	0.040994	195989	0.030483	2175	2773	4950	217604
n-n=300-h=3-d=8-m=10.1	Feasible	(I)	3600.1	174510	0.35195	184830	0.011958	2175	4648	9000	129879
n-n=300-h=3-d=8-m=10.1	Feasible	(L)	3600.1	174510	0.33193	184830	0.010037	2175	4648	6825	204151
n-n=300-h=3-d=8-m=10.1 n-n=300-h=3-d=8-m=10.1	Feasible	(E) (P)	3600.1	174510	0.10198	192917	0.010324	2175	2773	4950	368981
n-n=300-h=3-d=8-m=10.1 n-n=300-h=3-d=8-m=10.1	Feasible	(STM)	3600.1	174510	0.60191	191394	0.025319	2175	4648	9000	117016
n-n=300-h=3-d=8-m=10.1	Feasible	(U)	3600.1	192693	0.05999	216349	0.030399	2184	2785	4968	179392
n-n=300-h=3-d=8-m=10.2	Feasible			192693	0.36795	204096	0.013433	2184	4669	9036	
n-n=300-h=3-d=8-m=10.2 n-n=300-h=3-d=8-m=10.2	Feasible	(I) (L)	3600.1 3600.1	192693	0.30295	204096	0.01081	2184	4669	6852	122751 134312
n-n=300-h=3-d=8-m=10.2 n-n=300-h=3-d=8-m=10.2	Feasible Feasible	(P) (STM)	3600 3600	192693 192682	0.11598 0.6539	212842	0.028193	2184 2184	2785	4968 9036	305981
						210275	0.029912		4669		84960
n-n=300-h=3-d=8-m=10.3	Feasible	(U)	3600.1	196476	0.043993	221974	0.01529	2177	2778	4954	185261
n-n=300-h=3-d=8-m=10.3	Feasible	(I)	3600.1	196473	0.40994	208769	0.013794	2177	4655	9008	125701
n-n=300-h=3-d=8-m=10.3	Feasible	(L)	3600.1	196476	0.35395	208769	0.013697	2177	4655	6831	148717
n-n=300-h=3-d=8-m=10.3	Feasible	(P)	3600.1	196429	0.11298	217344	0.029709	2177	2778	4954	353361
n-n=300-h=3-d=8-m=10.3	Feasible	(STM)	3600.1	196429	0.71789	215385	0.033364	2177	4655	9008	101794
n-n=300-h=3-d=8-m=10.4	Feasible	(U)	3600.1	162909	0.040994	187277	0.010389	2214	2815	5028	129189
n-n=300-h=3-d=8-m=10.4	Feasible	(1)	3600.1	162909	0.43893	173908	0.009511	2214	4729	9156	111351
n-n=300-h=3-d=8-m=10.4	Feasible	(L)	3600.1	162909	0.37994	173908	0.0081996	2214	4729	6942	126827
n-n=300-h=3-d=8-m=10.4	Feasible	(P)	3600.1	162909	0.16398	183328	0.026352	2214	2815	5028	315181
n-n=300-h=3-d=8-m=10.4	Feasible	(STM)	3600.1	162909	0.83087	181683	0.038807	2214	4729	9156	84741
n-n=300-h=3-d=8-m=10.5	Feasible	(U)	3600.1	196245	0.028996	218134	0.011652	2174	2775	4948	114066
n-n=300-h=3-d=8-m=10.5	Feasible	(I)	3600.1	196245	0.46993	206579	0.010741	2174	4649	8996	107016
n-n=300-h=3-d=8-m=10.5	Feasible	(L)	3600.1	196245	0.32895	206579	0.0090534	2174	4649	6822	136902
n-n=300-h=3-d=8-m=10.5	Feasible	(P)	3600	196245	0.10398	214601	0.022249	2174	2775	4948	394931
n-n=300-h=3-d=8-m=10.5	Feasible	(STM)	3600.1	196245	0.78188	212983	0.027076	2174	4649	8996	95616
n-n=300-h=3-d=8-m=10.6	Feasible	(U)	3600	202207	0.046993	225215	0.0032777	2161	2762	4922	209665
n-n=300-h=3-d=8-m=10.6	Feasible	(I)	3600.1	202207	0.45093	211370	0.0032659	2161	4623	8944	135991
n-n=300-h=3-d=8-m=10.6	Feasible	(L)	3600	202207	0.27596	211370	0.0024982	2161	4623	6783	157191
n-n=300-h=3-d=8-m=10.6	Feasible	(P)	3600.1	202207	0.12398	221708	0.014852	2161	2762	4922	291791
n-n=300-h=3-d=8-m=10.6	Feasible	(STM)	3600.1	202207	0.51992	217609	0.021796	2161	4623	8944	92841
n-n=300-h=3-d=8-m=10.7	Feasible	(U)	3600	171884	0.036994	193876	0.0088728	2198	2799	4996	206836
n-n=300-h=3-d=8-m=10.7	Feasible	(I)	3600.1	171884	0.34895	182798	0.0079066	2198	4697	9092	138385
n-n=300-h=3-d=8-m=10.7	Feasible	(L)	3600	171884	0.17097	182798	0.0059965	2198	4697	6894	190657
n-n=300-h=3-d=8-m=10.7	Feasible	(P)	3600	171884	0.11898	190707	0.022104	2198	2799	4996	419011
n-n=300-h=3-d=8-m=10.7	Feasible	(STM)	3600	171884	0.55492	189631	0.031887	2198	4697	9092	111035
n-n=300-h=3-d=8-m=10.8	Feasible	(U)	3600	188432	0.045993	212419	0.013065	2248	2849	5096	105721
n-n=300-h=3-d=8-m=10.8	Feasible	(I)	3600.1	188432	0.41694	200089	0.010242	2248	4797	9292	83971
n-n=300-h=3-d=8-m=10.8	Feasible	(L)	3600	188432	0.29596	200089	0.011279	2248	4797	7044	105271
n-n=300-h=3-d=8-m=10.8	Feasible	(P)	3600	188432	0.11898	208654	0.025735	2248	2849	5096	355010
n-n=300-h=3-d=8-m=10.8	Feasible	(STM)	3600	188415	0.79088	206268	0.032959	2248	4797	9292	51845
n-n=300-h=3-d=8-m=10.9	Feasible	(U)	3600	209252	0.048992	233478	0.0082219	2273	2873	5146	88272
n-n=300-h=3-d=8-m=10.9	Feasible	(I)	3600.1	209252	0.49692	219638	0.0082813	2273	4846	9392	106981
n-n=300-h=3-d=8-m=10.9	Feasible	(L)	3600.2	209252	0.36794	219638	0.0088797	2273	4846	7119	137496
n-n=300-h=3-d=8-m=10.9	Feasible	(P)	3600.1	209252	0.15398	229133	0.020001	2273	2873	5146	244940
n-n=300-h=3-d=8-m=10.9	Feasible	(STM)	3600.1	209252	0.82388	225930	0.024955	2273	4846	9392	78689
n-n=300-h=3-d=8-m=10.10	Feasible	(U)	3600	189776	0.039994	214415	0.010654	2151	2751	4902	169474
n-n=300-h=3-d=8-m=10.10	Feasible	(I)	3600	189776	0.52992	201477	0.0093803	2151	4602	8904	119369
n-n=300-h=3-d=8-m=10.10	Feasible	(L)	3600	189776	0.26696	201477	0.00924	2151	4602	6753	185621
n-n=300-h=3-d=8-m=10.10	Feasible	(P)	3600	189776	0.093985	209875	0.020325	2151	2751	4902	412191
n-n=300-h=3-d=8-m=10.10	Feasible	(STM)	3600.1	189776	0.52892	207512	0.028828	2151	4602	8904	109106
n-n=300-h=3-d=8-m=10.11	Feasible	(U)	3600.1	194697	0.042994	217975	0.0086993	2212	2812	5024	122182
n-n=300-h=3-d=8-m=10.11	Feasible	(I)	3600.1	194697	0.43993	204464	0.0065467	2212	4724	9148	85741
			3600.1	194697	0.34395	204464	0.0070377	2212	4724	6936	123331
n-n=300-h=3-d=8-m=10 11	Feasible										
n-n=300-h=3-d=8-m=10.11 n-n=300-h=3-d=8-m=10.11	Feasible Feasible	(L) (P)	3600.1	194697	0.12498	213703	0.017195	2212	2812	5024	305628

The content of the	group	formulation	optimal	feasible	Table time	e with Mean	s and Standar	d Deviations - A	All Instances nodes	nodes_d	gap	gap_d	gap_improvement
	n-n=50-h=3-d=8-m=10			0									
	n-n=50-h=3-d=8-m=10	(STM)	20	0	29.702	38.392	0.058791	0.015316	6538.9	9397.1	8.6326e-05	2.1038e-05	0.083541
	n-n=100-h=3-d=8-m=10	(U)	20	0	133.77	348.91	0.0090988	0.001841	16572	41431	9.236e-05	1.3574e-05	0.1092
Description Company													
Den 1906 1				-									
Description Company													
Column													
number n													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
Name													
Residual Content				20									
n=s0-h=3-d=8-m=10				Tab	le with Mea	ns and Star	ndard Deviatio	ns - Only solve	d within the tim	e limit			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	group	formulation	optimal	feasible	time	$time_d$	relax_time	relax_time_d	nodes	nodes_d	gap	gap_d	gap_improvement
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-n=50-h=3-d=8-m=10	(U)	20	0	2.3446	1.6726	0.0035495	0.00080464	638.65	334.77	4.8462e-05	3.7399e-05	0.11173
$\begin{array}{c} n_{-1}=50-h_{-3}-d_{-8}-m_{-10} & (F) & 20 & 0 & 2.9746 & 1.3443 & 0.0082486 & 0.01755 & 13.49.7 & 110.8.6 & 5.5326-05 & 3.5511-05 & 0.091292 \\ n_{-1}=50-h_{-3}-d_{-8}-m_{-10} & (U) & 20 & 0 & 13.377 & 34.91 & 0.009298 & 0.01811 & 16572 & 41.431 & 9.236-05 & 1.3574-05 & 0.008341 \\ n_{-1}=100+h_{-3}-d_{-8}-m_{-10} & (U) & 20 & 0 & 13.377 & 34.91 & 0.009088 & 0.001841 & 16572 & 41.431 & 9.236-05 & 1.3574-05 & 0.10922 \\ n_{-1}=100+h_{-3}-d_{-8}-m_{-10} & (U) & 20 & 0 & 13.377 & 34.91 & 0.009088 & 0.001841 & 16572 & 41.431 & 9.236-05 & 1.3574-05 & 0.10922 \\ n_{-1}=100+h_{-3}-d_{-8}-m_{-10} & (F) & 19 & 0 & 307.05 & 552.67 & 0.022944 & 0.004235 & 69270 & 1.0841-05 & 9.756-05 & 6.4361-06 & 0.089773 \\ n_{-1}=100+h_{-3}-d_{-8}-m_{-10} & (U) & 15 & 0 & 1086.9 & 1012.8 & 0.11631 & 0.0041295 & 1.0001-05 & 84206 & 9.3746-05 & 1.6058-06 & 0.11281 \\ n_{-1}=150+h_{-3}-d_{-8}-m_{-10} & (U) & 15 & 0 & 1086.9 & 1012.8 & 0.16324 & 0.003635 & 6271 & 54507 & 9.9441-05 & 1.6058-06 & 0.11281 \\ n_{-1}=150+h_{-3}-d_{-8}-m_{-10} & (U) & 15 & 0 & 1086.9 & 1012.8 & 0.16324 & 0.003635 & 6271 & 54507 & 9.9441-05 & 1.6058-06 & 0.11281 \\ n_{-1}=200+h_{-3}-d_{-8}-m_{-10} & (U) & 4 & 0 & 1736.2 & 1236.9 & 0.039744 & 0.003635 & 6271 & 54507 & 9.9441-05 & 1.6058-06 & 0.11281 \\ n_{-1}=200+h_{-3}-d_{-8}-m_{-10} & (U) & 4 & 0 & 1736.2 & 1236.9 & 0.039744 & 0.0075216 & 5.2106-05 & 1.03360+05 & 9.9934-05 & 5.2266-08 & 0.004139 \\ n_{-1}=200+h_{-3}-d_{-8}-m_{-10} & (U) & 4 & 0 & 1477 & 1155 & 0.028496 & 0.007521 & 5.2106-05 & 1.03360+05 & 9.9934-05 & 5.2266-08 & 0.004139 \\ n_{-1}=200+h_{-3}-d_{-8}-m_{-10} & (U) & 1 & 0 & 2750.9 & 0.005734 & 0.007521 & 5.2106-05 & 1.03360+05 & 9.9934-05 & 5.2266-08 & 0.007521 \\ n_{-1}=200+h_{-3}-d_{-8}-m_{-10} & (U) & 1 & 0 & 2750.9 & 0.005734 & 0.00767 & 1.5876-05 & 0.9935-05 & 5.2876-07 & 0.013284 \\ n_{-1}=200+h_{-3}-d_{-8}-m_{-10} & (U) & 0 & 5 & 3600 & 0.0198 & 0.01639 & 0.02677 & 1.05649 & 0.006839 & 0.007573 \\ n_{-1}=150+h_{-3}-d_{-8}-m_{-10} & (U) & 0 & 5 & 3600 & 0.0198 & 0.01639 & 0.02677 & 0.005503 & 0.0$	n-n=50-h=3-d=8-m=10	(I)		0	4.0912	2.0622	0.027696	0.0051481	671.35	385.03	3.5439e-05	3.7127e-05	0.048041
$ \begin{array}{c} \mathbf{n} = \mathbf{b} \cdot \mathbf{b} = \mathbf{d} \cdot \mathbf{d} = \mathbf{d} \cdot \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{a} = 10 \cdot \mathbf{b} = 3 \cdot \mathbf{d} - \mathbf{d} \cdot \mathbf{m} = 100 \\ \mathbf{n} - \mathbf{a} = 10 \cdot \mathbf{b} = 3 \cdot \mathbf{d} - \mathbf{d} \cdot \mathbf{m} = 100 \\ \mathbf{n} - \mathbf{a} = 10 \cdot \mathbf{b} = 3 \cdot \mathbf{d} - \mathbf{d} \cdot \mathbf{m} = 100 \\ \mathbf{n} - \mathbf{a} = 10 \cdot \mathbf{b} = 3 \cdot \mathbf{d} - \mathbf{d} \cdot \mathbf{m} = 100 \\ \mathbf{n} - \mathbf{a} = 10 \cdot \mathbf{d} - \mathbf{a} \cdot \mathbf{d} - \mathbf{d} \cdot \mathbf{d} - \mathbf$				0									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
n-n=100-h=3-d=8-m=10 (F)													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c} n-n=150-h=3-d=8-m=10 & (I) & 15 & 0 & 95.47 & 790.81 & 0.16324 & 0.036353 & 62791 & 54507 & 9.9461-05 & 1.3676-06 & 0.05419 \\ n-n=150-h=3-d=8-m=10 & (L) & 17 & 0 & 992.82 & 916.67 & 0.10128 & 0.023745 & 79306 & 70072 & 9.9441-05 & 5.7256-08 & 0.09439 \\ n-n=200-h=3-d=8-m=10 & (U) & 4 & 0 & 1874 & 1155 & 0.028496 & 0.01279 & 1.177e+05 & 75147 & 9.9934-05 & 5.7256-08 & 0.09439 \\ n-n=200-h=3-d=8-m=10 & (L) & 7 & 0 & 1874 & 1058.7 & 0.28671 & 0.03429 & 74251 & 59229 & 9.9659-05 & 2.987e-07 & 0.013284 \\ n-n=200-h=3-d=8-m=10 & (L) & 7 & 0 & 1964.8 & 1231.4 & 0.17183 & 0.0277 & 1.3857e+05 & 94548 & 9.809e-05 & 2.987e-07 & 0.013284 \\ n-n=250-h=3-d=8-m=10 & (L) & 2 & 0 & 2750.9 & 0 & 0.37394 & 0 & 67878 & 0 & 9.997t-05 & 0 & 0.07591 \\ n-n=250-h=3-d=8-m=10 & (L) & 2 & 0 & 2496.8 & 700.71 & 0.28646 & 0.026496 & 1.7891e+05 & 92006 & 9.997t-05 & 0 & 0.005791 \\ n-n=250-h=3-d=8-m=10 & (P) & 0 & 1 & 3600 & 0 & 0.024996 & 0.04848 & 1.7891e+05 & 92006 & 9.997t-05 & 0.088523 \\ n-n=100-h=3-d=8-m=10 & (P) & 0 & 1 & 3600 & 0 & 0.029996 & 0 & 4.8529e+05 & 0 & 0.005174 & 0 & 0.085523 \\ n-n=100-h=3-d=8-m=10 & (V) & 0 & 5 & 3600 & 0.010198 & 0.014998 & 0.0287 & 2.9954e+05 & 51668 & 0.01108 & 0.006193 & 0.085943 \\ n-n=150-h=3-d=8-m=10 & (U) & 0 & 5 & 3600 & 0.01198 & 0.014998 & 0.0287 & 2.9954e+05 & 51668 & 0.01108 & 0.006193 & 0.085943 \\ n-n=150-h=3-d=8-m=10 & (U) & 0 & 16 & 3600 & 0.023717 & 0.037946 & 0.00287 & 2.9954e+05 & 51668 & 0.01168 & 0.0040594 & 0.01683 & 0.01887 \\ n-n=150-h=3-d=8-m=10 & (U) & 0 & 16 & 3600 & 0.023718 & 0.06289 & 1.8936e+05 & 54855 & 0.0040594 & 0.004838 & 0.01887 \\ n-n=200-h=3-d=8-m=10 & (U) & 0 & 16 & 3600 & 0.023718 & 0.02959 & 0.008296 & 1.8936e+05 & 54855 & 0.0045094 & 0.004838 & 0.004877 \\ n-n=200-h=3-d=8-m=10 & (U) & 0 & 16 & 3600 & 0.023718 & 0.02959 & 0.008296 & 1.8936e+05 & 54855 & 0.004509 & 0.004777 & 0.002471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.004471 & 0.00447$				-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
n-=200h=3-d=8-m=10													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
n-n=250-h=3-d=8-m=10													
R-n=250-h=3-d=8-m=10													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										92006		5.985e-08	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Table	with Means	s and Standa	ard Deviations	- Only not solv	ved within the ti	ime limit			
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 100 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 \\ \mathbf{n} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} $				feasible	time	$_{ m time_d}$	relax_time	relax_time_d	nodes	nodes_d			
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} = 10 -$													
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (1) & 0 & 5 & 3600 & 0.021909 & 0.17497 & 0.037666 & 2.0698e + 05 & 60500 & 0.002477 & 0.0024731 & 0.051458 \\ \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (P) & 0 & 16 & 3600 & 0.023717 & 0.04768 & 0.014647 & 6.8451e + 05 & 1.7507e + 05 & 0.0084921 & 0.0041583 & 0.089008 \\ \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (V) & 0 & 16 & 3600 & 0.022113 & 0.29531 & 0.662989 & 1.8936e + 05 & 49605 & 0.017278 & 0.0064602 & 0.068267 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (U) & 0 & 16 & 3600 & 0.039681 & 0.022059 & 0.065269 & 2.2175e + 05 & 66658 & 0.0056949 & 0.0019083 & 0.0079537 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (L) & 0 & 16 & 3600.1 & 0.0345 & 0.27402 & 0.061197 & 1.6593e + 05 & 37290 & 0.0040884 & 0.0025993 & 0.038076 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (P) & 0 & 20 & 3600 & 0.025298 & 0.06359 & 0.012907 & 4.9181e + 05 & 1.5161e + 05 & 0.01257 & 0.0047077 & 0.096387 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (P) & 0 & 20 & 3600 & 0.025749 & 0.48553 & 0.12907 & 4.9181e + 05 & 1.5161e + 05 & 0.01257 & 0.0047077 & 0.096387 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (U) & 0 & 20 & 3600 & 0.023749 & 0.48553 & 0.1027 & 1.4868e + 05 & 36212 & 0.02365 & 0.0049801 & 0.0069679 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (U) & 0 & 20 & 3600 & 0.016763 & 0.034195 & 0.0068444 & 1.845e + 05 & 47732 & 0.0076145 & 0.0037457 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (L) & 0 & 18 & 3600.1 & 0.035743 & 0.33695 & 0.067904 & 1.3336e + 05 & 29839 & 0.0060559 & 0.0035088 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (P) & 0 & 20 & 3600.1 & 0.027739 & 0.22619 & 0.040896 & 1.2513e + 0.568e + 05 & 26118 & 0.005813 & 0.0035701 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (P) & 0 & 20 & 3600.1 & 0.027739 & 0.02619 & 0.040896 & 1.2513e + 05 & 27828 & 0.024383 & 0.0063595 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = $													
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{L}}) & 0 & 16 & 3600 & 0.021602 & 0.12265 & 0.028658 & 3.07e + 05 & 26404 & 0.0033052 & 0.0002102 & 0.058972 \\ \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{F}}) & 0 & 16 & 3600 & 0.022113 & 0.29531 & 0.062989 & 1.8936e + 05 & 49605 & 0.017278 & 0.0064602 & 0.068267 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{U}}) & 0 & 16 & 3600 & 0.039681 & 0.022059 & 0.0652369 & 2.2175e + 05 & 66658 & 0.0056949 & 0.0019083 & 0.0079537 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{L}}) & 0 & 16 & 3600 & 0.039681 & 0.022059 & 0.0652369 & 2.2175e + 05 & 66658 & 0.0056949 & 0.0019083 & 0.0079537 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{L}}) & 0 & 16 & 3600.1 & 0.033708 & 0.17397 & 0.061197 & 1.65936 + 05 & 37290 & 0.0043503 & 0.0023993 & 0.0038076 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{L}}) & 0 & 13 & 3600.1 & 0.032708 & 0.17397 & 0.059165 & 2.3946e + 05 & 54825 & 0.0043503 & 0.023999 & 0.0047573 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{F}}) & 0 & 20 & 3600 & 0.025298 & 0.06359 & 0.012907 & 4.9181e + 05 & 1.5161e + 05 & 0.012507 & 0.0047077 & 0.096387 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{U}}) & 0 & 20 & 3600 & 0.023749 & 0.48553 & 0.1027 & 1.4868e + 05 & 36212 & 0.020365 & 0.004801 & 0.0069679 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{U}}) & 0 & 19 & 3600.1 & 0.035743 & 0.33695 & 0.067904 & 1.3336e + 05 & 29839 & 0.0660599 & 0.0035088 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{L}}) & 0 & 18 & 3600.1 & 0.027739 & 0.22619 & 0.040896 & 1.9658e + 05 & 26118 & 0.005513 & 0.0035701 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{L}}) & 0 & 20 & 3600.1 & 0.05713 & 0.089086 & 0.12452 & 3.7496e + 05 & 54826 & 0.004222 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\dot{\mathbf{L}}) & 0 & 20 & 3600.1 & 0.05275 & 0.64195 & 0.10686 & 1.2213e + 05 & 27828 & 0.024383 & 0.063595 & 0 \\ n$													
$\begin{array}{c} \textbf{n-n} = 150 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{P}) & 0 & 16 & 3600 & 0.023717 & 0.04768 & 0.014647 & 6.8451 \textbf{e} + 05 & 1.7507 \textbf{e} + 05 & 0.0084921 & 0.041583 & 0.089008 \\ \textbf{n-n} = 150 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{STM}) & 0 & 20 & 3600 & 0.022113 & 0.29531 & 0.062989 & 1.8936 \textbf{e} + 05 & 49605 & 0.017278 & 0.0064602 & 0.068267 \\ \textbf{n-n} = 200 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{I}) & 0 & 16 & 3600 & 0.039681 & 0.022059 & 0.0652369 & 2.2175 \textbf{e} + 05 & 66658 & 0.0056949 & 0.0019083 & 0.0079537 \\ \textbf{n-n} = 200 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{I}) & 0 & 16 & 3600.1 & 0.0345 & 0.27402 & 0.061197 & 1.6593 \textbf{e} + 05 & 37290 & 0.0040884 & 0.0025993 & 0.038076 \\ \textbf{n-n} = 200 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{P}) & 0 & 20 & 3600 & 0.025298 & 0.06359 & 0.012907 & 4.9181 \textbf{e} + 05 & 1.5161 \textbf{e} + 05 & 0.0043503 & 0.0023999 & 0.0047573 \\ \textbf{n-n} = 200 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{F}) & 0 & 20 & 3600 & 0.023749 & 0.48553 & 0.12207 & 4.9181 \textbf{e} + 05 & 1.5161 \textbf{e} + 05 & 0.012507 & 0.0047077 & 0.0996387 \\ \textbf{n-n} = 200 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{U}) & 0 & 20 & 3600 & 0.023749 & 0.48553 & 0.1027 & 1.4868 \textbf{e} + 05 & 36212 & 0.020365 & 0.0049801 & 0.0069679 \\ \textbf{n-n} = 250 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{I}) & 0 & 19 & 3600.1 & 0.035743 & 0.33695 & 0.067904 & 1.3336 \textbf{e} + 05 & 29839 & 0.060555 & 0.035088 & 0 \\ \textbf{n-n} = 250 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{P}) & 0 & 20 & 3600.1 & 0.027739 & 0.22619 & 0.040896 & 1.9658 \textbf{e} + 05 & 26118 & 0.0037457 & 0 \\ \textbf{n-n} = 250 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{P}) & 0 & 20 & 3600.1 & 0.027739 & 0.22619 & 0.04086 & 1.9658 \textbf{e} + 05 & 28399 & 0.0060555 & 0.0035088 & 0 \\ \textbf{n-n} = 250 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{P}) & 0 & 20 & 3600.1 & 0.027739 & 0.22619 & 0.040896 & 1.9658 \textbf{e} + 05 & 26118 & 0.0037407 & 0.0037407 & 0 \\ \textbf{n-n} = 250 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{P}) & 0 & 20 & 3600.1 & 0.02755 & 0.64195 & 0.10686 & 1.2213 \textbf{e} + 05 & 27828 & 0.024333 & 0.0063595 & 0 \\ \textbf{n-n} = 300 \textbf{-h} = 3 \textbf{-d} = 8 \textbf{-m} = 10 & (\textbf{I}) & 0 & 20 & 3600$													
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 150 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 -$													
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (U) & 0 & 16 & 3600 & 0.039681 & 0.022059 & 0.0052369 & 2.2175 - +05 & 66658 & 0.0056949 & 0.0019083 & 0.0079537 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{L}) & 0 & 13 & 3600.1 & 0.032708 & 0.17397 & 0.059165 & 2.3946 + 05 & 54825 & 0.0043503 & 0.0023999 & 0.0047573 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{L}) & 0 & 13 & 3600.1 & 0.032708 & 0.17397 & 0.059165 & 2.3946 + 05 & 54825 & 0.0043503 & 0.0023999 & 0.0047573 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{P}) & 0 & 20 & 3600 & 0.025298 & 0.06359 & 0.012907 & 4.9181 + 05 & 0.12507 & 0.0047077 & 0.0096387 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{U}) & 0 & 20 & 3600 & 0.023749 & 0.48553 & 0.1027 & 1.4868 + 05 & 36212 & 0.020365 & 0.0049801 & 0.0069679 \\ \mathbf{n} - \mathbf{n} - 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{U}) & 0 & 20 & 3600 & 0.016763 & 0.034195 & 0.0068444 & 1.845 + 05 & 47732 & 0.0076145 & 0.037457 & 0 \\ \mathbf{n} - \mathbf{n} - 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{L}) & 0 & 19 & 3600.1 & 0.035743 & 0.33695 & 0.067904 & 1.3336 + 05 & 29839 & 0.0060559 & 0.035808 & 0 \\ \mathbf{n} - \mathbf{n} - 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{L}) & 0 & 18 & 3600.1 & 0.027739 & 0.22619 & 0.040896 & 1.96586 + 05 & 29839 & 0.0060559 & 0.035808 & 0 \\ \mathbf{n} - \mathbf{n} - 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{P}) & 0 & 20 & 3600.1 & 0.051213 & 0.089086 & 0.012452 & 3.7496 + 05 & 86042 & 0.01726 & 0.004222 & 0 \\ \mathbf{n} - \mathbf{n} - 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{U}) & 0 & 20 & 3600.1 & 0.02755 & 0.64195 & 0.10686 & 1.2213 + 05 & 27828 & 0.024383 & 0.0063595 & 0 \\ \mathbf{n} - \mathbf{n} - 300 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{U}) & 0 & 20 & 3600.1 & 0.038864 & 0.45248 & 0.090895 & 1.092 + 05 & 17788 & 0.0084076 & 0.0022547 & 0 \\ \mathbf{n} - \mathbf{n} - 300 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{L}) & 0 & 20 & 3600.1 & 0.038656 & 0.2931 & 0.051716 & 1.4853 + 05 & 23224 & 0.0084076 & 0.0022668 & 0 \\ \mathbf{n} - \mathbf{n} - 300 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{P}) & 0 & 20 & $													
$\begin{array}{c} \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{I}) & 0 & 16 & 3600.1 & 0.0345 & 0.27402 & 0.661197 & 1.65936 + 05 & 37290 & 0.040884 & 0.0025993 & 0.0038076 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{P}) & 0 & 20 & 3600 & 0.025298 & 0.06359 & 0.012907 & 4.9181e + 05 & 1.5161e + 05 & 0.012507 & 0.0047077 & 0.096387 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{F}) & 0 & 20 & 3600 & 0.025298 & 0.06359 & 0.012907 & 4.9181e + 05 & 1.5161e + 05 & 0.012507 & 0.0047077 & 0.096387 \\ \mathbf{n} - \mathbf{n} = 200 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{U}) & 0 & 20 & 3600 & 0.023749 & 0.48553 & 0.1027 & 1.4868e + 05 & 36212 & 0.02365 & 0.0049801 & 0.0069679 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{I}) & 0 & 19 & 3600.1 & 0.035743 & 0.33695 & 0.067904 & 1.3336e + 05 & 29839 & 0.060559 & 0.0035088 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{I}) & 0 & 18 & 3600.1 & 0.027739 & 0.22619 & 0.040896 & 1.2568e + 05 & 26118 & 0.005813 & 0.0035701 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{P}) & 0 & 20 & 3600.1 & 0.027733 & 0.02719 & 0.040896 & 1.2568e + 05 & 26118 & 0.005813 & 0.0035701 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{P}) & 0 & 20 & 3600.1 & 0.027733 & 0.02719 & 0.040896 & 1.2513e + 05 & 26118 & 0.005813 & 0.0035701 & 0 \\ \mathbf{n} - \mathbf{n} = 250 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{P}) & 0 & 20 & 3600.1 & 0.02775 & 0.64195 & 0.10686 & 1.2213e + 05 & 27828 & 0.024383 & 0.0063595 & 0 \\ \mathbf{n} - \mathbf{n} = 300 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{I}) & 0 & 20 & 3600.1 & 0.03854 & 0.45248 & 0.090895 & 1.092e + 05 & 17788 & 0.008691 & 0.0024547 & 0 \\ \mathbf{n} - \mathbf{n} = 300 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{I}) & 0 & 20 & 3600.1 & 0.038645 & 0.29331 & 0.051716 & 1.4853e + 05 & 23224 & 0.008476 & 0.002568 & 0 \\ \mathbf{n} - \mathbf{n} = 300 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf{I}) & 0 & 20 & 3600.1 & 0.038645 & 0.29331 & 0.051716 & 1.4853e + 05 & 23224 & 0.008476 & 0.002568 & 0 \\ \mathbf{n} - \mathbf{n} = 300 - \mathbf{h} = 3 - \mathbf{d} = 8 - \mathbf{m} = 10 & (\mathbf$													
$\begin{array}{c} \textbf{n-n} = 200 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{L}}) & 0 & 13 & 3600.1 & 0.032708 & 0.17397 & 0.059165 & 2.3946 e^+ \textbf{05} & 54825 & 0.0045503 & 0.0023999 & 0.0047573 \\ \textbf{n-n} = 200 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{F}}) & 0 & 20 & 3600 & 0.025298 & 0.06359 & 0.012907 & 4.9181 e^+ \textbf{05} & 1.5161 e^+ \textbf{05} & 0.012507 & 0.0047077 & 0.0096387 \\ \textbf{n-n} = 200 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{S}} TM) & 0 & 20 & 3600 & 0.023749 & 0.48553 & 0.1027 & 1.4868 e^+ \textbf{05} & 36212 & 0.020365 & 0.0049801 & 0.0069679 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{U}}) & 0 & 19 & 3600.1 & 0.035743 & 0.33695 & 0.067904 & 1.8336 e^+ \textbf{05} & 29839 & 0.00605588 & 0 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{L}}) & 0 & 18 & 3600.1 & 0.035743 & 0.33695 & 0.067904 & 1.8336 e^+ \textbf{05} & 29839 & 0.0060583 & 0.0037457 & 0 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{L}}) & 0 & 18 & 3600.1 & 0.027739 & 0.22619 & 0.040896 & 1.9658 e^+ \textbf{05} & 26118 & 0.005813 & 0.0035701 & 0 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{F}}) & 0 & 20 & 3600.1 & 0.027731 & 0.089086 & 0.12452 & 3.7496 e^+ \textbf{05} & 56042 & 0.004222 & 0 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{F}}) & 0 & 20 & 3600.1 & 0.02755 & 0.64195 & 0.10686 & 1.2213 e^+ \textbf{05} & 27828 & 0.024333 & 0.0063595 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{I}}) & 0 & 20 & 3600.1 & 0.038584 & 0.45248 & 0.908955 & 1.992 e^+ \textbf{05} & 17788 & 0.0088691 & 0.0022547 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{L}}) & 0 & 20 & 3600.1 & 0.038665 & 0.29331 & 0.051716 & 1.4853 e^+ \textbf{05} & 23224 & 0.0084076 & 0.0025668 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{L}}) & 0 & 20 & 3600.1 & 0.038665 & 0.29331 & 0.051716 & 1.4853 e^+ \textbf{05} & 23224 & 0.0084076 & 0.0025668 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\dot{\textbf{L}}) & 0 & 20 & 3600.1 & 0.038665 & 0.29331 & 0.051716 & 1.4853 e^+ \textbf{05} & 23224 & 0.0084076 & 0.0025668 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10$													
$\begin{array}{c} \textbf{n-n} = 200 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (P) & 0 & 20 & 3600 & 0.025298 & 0.06359 & 0.012907 & 4.9181e + 05 & 1.5161e + 05 & 0.012507 & 0.0047077 & 0.0096387 \\ \textbf{n-n} = 220 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (U) & 0 & 20 & 3600 & 0.016763 & 0.034195 & 0.0068444 & 1.845e + 05 & 36212 & 0.020365 & 0.0049801 & 0.006679 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (U) & 0 & 20 & 3600 & 0.016763 & 0.034195 & 0.0068444 & 1.845e + 05 & 47732 & 0.0076145 & 0.0037457 & 0 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (I) & 0 & 19 & 3600.1 & 0.035743 & 0.33695 & 0.067904 & 1.3336e + 05 & 29839 & 0.0060559 & 0.0035088 & 0 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (U) & 0 & 18 & 3600.1 & 0.027739 & 0.22619 & 0.040896 & 1.9658e + 05 & 26118 & 0.0058701 & 0 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (P) & 0 & 20 & 3600.1 & 0.051213 & 0.089086 & 0.012452 & 3.7496e + 05 & 86042 & 0.01726 & 0.004222 & 0 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\textbf{U}) & 0 & 20 & 3600.1 & 0.02775 & 0.64195 & 0.10686 & 1.2213e + 05 & 27828 & 0.024833 & 0.0063595 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\textbf{U}) & 0 & 20 & 3600.1 & 0.038584 & 0.45248 & 0.090895 & 1.092e + 05 & 17788 & 0.008891 & 0.0024547 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\textbf{L}) & 0 & 20 & 3600.1 & 0.038645 & 0.29331 & 0.051716 & 1.4853e + 05 & 23224 & 0.0084076 & 0.0024567 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\textbf{P}) & 0 & 20 & 3600 & 0.042379 & 0.12068 & 0.32337 & 3.4562e + 05 & 59666 & 0.021713 & 0.0041483 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\textbf{P}) & 0 & 20 & 3600 & 0.042379 & 0.12068 & 0.32337 & 3.4562e + 05 & 59666 & 0.021713 & 0.0041483 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\textbf{P}) & 0 & 20 & 3600 & 0.042379 & 0.12068 & 0.32337 & 3.4562e + 05 & 59666 & 0.021713 & 0.0041483 & 0 \\ \textbf{n-n} = 300 - \textbf{h} = 3 - \textbf{d} = 8 - \textbf{m} = 10 & (\textbf{P}) & 0 & 20 & 3600 & 0.042379 & 0.12068 & 0.32337 & 3.4562e + 05 & 59666 & 0.021713 & 0.0041483 & 0 \\ \textbf{n-n} = $													
$\begin{array}{c} \textbf{n-n} = 200 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{n-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 250 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - \textbf{h} = 3 - d = 8 - \textbf{m} = 10 \\ \textbf{m-n} = 300 - $													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\textbf{n-n=300-h=3-d=8-m=10} \qquad \textbf{(P)} \qquad \qquad 0 \qquad \qquad 20 \qquad 3600 \qquad 0.042379 \qquad 0.12068 \qquad 0.032337 \qquad 3.4562e+05 \qquad 50966 \qquad 0.021713 \qquad 0.0041483 \qquad 0 \qquad 0.0041483 \qquad 0$													
			0										0

3 Popularity Model

filename		formulation			nces - Part 1	, ,		,	,		1
p-n=50-e=400-q=200-d=0.25.0	status Optimal	(U)	4.3863	value 1111.7	relax_time 0.001999	relax_value 1263.2	gap 0	edges 400	columns 496	rows 900	nodes 992
p-n=50-e=400-q=200-d=0.25.0	Optimal	(I)	7.1739	1111.7	0.037995	1189	7.8778e-05	400	846	1650	1114
p-n=50-e=400-q=200-d=0.25.0	Optimal	(L)	4.5893	1111.7	0.025996	1189	5.3605e-05	400	846	1250	981
p-n=50-e=400-q=200-d=0.25.0	Optimal	(P)	4.2413	1111.7	0.006999	1250.6	9.2385e-05	400	496	900	2579
p-n=50-e=400-q=200-d=0.25.0	Optimal	(STM)	229.71	1111.7	0.06699	1262.9	9.9776e-05	400	846	1650	81050
p-n=50-e=400-q=200-d=0.25.1	Optimal	(U)	4.9223	1043.1	0.002	1204.8	0	400	494	900	1072
p-n=50-e=400-q=200-d=0.25.1	Optimal	(I)	6.354	1043.1	0.033995	1122.4	5.842e-05	400	844	1650	693
p-n=50-e=400-q=200-d=0.25.1	Optimal	(L)	3.6784	1043.1	0.017997	1122.4	0	400	844	1250	673
p-n=50-e=400-q=200-d=0.25.1	Optimal	(P)	2.5266	1043.1	0.004999	1189.8	8.2565e-05	400	494	900	895
p-n=50-e=400-q=200-d=0.25.1	Optimal	(STM)	116.85	1043.1	0.055992	1191.5	9.7872e-05	400	844	1650	17176
p-n=50-e=400-q=200-d=0.25.2	Optimal	(U)	3.5924	1048.8	0.002	1198	0	400	497	900	576
p-n=50-e=400-q=200-d=0.25.2	Optimal	(I)	6.2701	1048.8	0.039994	1128.3	2.6408e-05	400	847	1650	541
p-n=50-e=400-q=200-d=0.25.2	Optimal	(L)	3.7394	1048.8	0.019997	1128.3	3.8288e-05	400	847	1250	523
p-n=50-e=400-q=200-d=0.25.2	Optimal	(P)	2.7166	1048.8	0.005999	1191	4.393e-05	400	497	900	919
p-n=50-e=400-q=200-d=0.25.2	Optimal	(STM)	118.71	1048.8	0.072989	1196.1	9.9679e-05	400	847	1650	14655
p-n=50-e=400-q=200-d=0.25.3	Optimal	(U)	1.7547	1113.6 1113.6	0.002 0.044993	1264.6 1192.5	6.9265e-05 0	400 400	495 845	$900 \\ 1650$	801 551
p-n=50-e=400-q=200-d=0.25.3 p-n=50-e=400-q=200-d=0.25.3	Optimal Optimal	(I) (L)	5.0292 3.5755	1113.6	0.025996	1192.5	0	400	845	1250	597
p-n=50-e=400-q=200-d=0.25.3 p-n=50-e=400-q=200-d=0.25.3	Optimal	(P)	2.6456	1113.6	0.006999	1257	5.7095e-05	400	495	900	906
p-n=50-e=400-q=200-d=0.25.3 p-n=50-e=400-q=200-d=0.25.3	Optimal	(STM)	226.14	1113.6	0.069989	1265.1	9.8696e-05	400	845	1650	38556
p-n=50-e=400-q=200-d=0.25.4	Optimal	(U)	5.6571	1113.0	0.003999	1336.6	7.6616e-05	400	496	900	836
p-n=50-e=400-q=200-d=0.25.4 p-n=50-e=400-q=200-d=0.25.4	Optimal	(I)	5.5162	1148.4	0.032995	1245.9	7.0010e-03 0	400	846	1650	551
p-n=50-e=400-q=200-d=0.25.4 p-n=50-e=400-q=200-d=0.25.4	Optimal	(L)	4.1944	1148.4	0.032993	1245.9	0	400	846	1250	547
p-n=50-e=400-q=200-d=0.25.4 p-n=50-e=400-q=200-d=0.25.4	Optimal	(P)	3.7364	1148.4	0.007999	1321.6	5.9933e-05	400	496	900	1500
p-n=50-e=400-q=200-d=0.25.4	Optimal	(STM)	153.63	1148.4	0.077988	1337.3	9.8042e-05	400	846	1650	23853
p-n=50-e=400-q=200-d=0.25.5	Optimal	(U)	0.62691	1241.5	0.002999	1348.7	3.8136e-05	400	496	900	338
p-n=50-e=400-q=200-d=0.25.5	Optimal	(I)	3.6185	1241.5	0.036995	1275.5	0	400	846	1650	544
p-n=50-e=400-q=200-d=0.25.5	Optimal	(L)	2.1907	1241.5	0.018997	1275.5	7.1058e-06	400	846	1250	987
p-n=50-e=400-q=200-d=0.25.5	Optimal	(P)	1.7987	1241.5	0.007999	1343.3	7.2392e-05	400	496	900	813
p-n=50-e=400-q=200-d=0.25.5	Optimal	(STM)	21.536	1241.5	0.061991	1333.2	9.8075e-05	400	846	1650	3573
p-n=50-e=400-q=200-d=0.25.6	Optimal	(U)	0.42294	1121	0.001	1245.9	7.3173e-05	400	496	900	144
p-n=50-e=400-q=200-d=0.25.6	Optimal	(I)	4.2694	1121	0.06099	1176.7	0	400	846	1650	536
p-n=50-e=400-q=200-d=0.25.6	Optimal	(L)	1.9827	1121	0.020997	1176.7	-6.0849e-16	400	846	1250	481
p-n=50-e=400-q=200-d=0.25.6	Optimal	(P)	1.5168	1121	0.005999	1239.8	0	400	496	900	604
p-n=50-e=400-q=200-d=0.25.6	Optimal	(STM)	12.955	1121	0.079988	1234.7	9.1403e-05	400	846	1650	1931
p-n=50-e=400-q=200-d=0.25.7	Optimal	(U)	4.8693	1129.8	0.003	1266.2	9.7791e-05	400	498	900	965
p-n=50-e=400-q=200-d=0.25.7	Optimal	(I)	6.47	1129.8	0.055991	1211	8.3503e-05	400	848	1650	746
p-n=50-e=400-q=200-d=0.25.7	Optimal	(L)	4.5073	1129.8	0.027996	1211	7.552e-05	400	848	1250	729
p-n=50-e=400-q=200-d=0.25.7	Optimal	(P)	3.1875	1129.8	0.006999	1256.5	2.2902e-05	400	498	900	1178
p-n=50-e=400-q=200-d=0.25.7	Optimal	(STM)	278.48	1129.8	0.083987	1270.3	9.8825e-05	400	848	1650	38183
p-n=50-e=400-q=200-d=0.25.8	Optimal	(U)	2.0567	1028.7	0.002	1197.1	9.61e-06	400	497	900	616
p-n=50-e=400-q=200-d=0.25.8	Optimal	(I)	7.3179	1028.7	0.035995	1117.9	2.8741e-05	400	847	1650	682
p-n=50-e=400-q=200-d=0.25.8	Optimal	(L)	4.7483	1028.7	0.027996	1117.9	0	400	847	1250	690
p-n=50-e=400-q=200-d=0.25.8 p-n=50-e=400-q=200-d=0.25.8	Optimal Optimal	(P) (STM)	2.8376 81.243	1028.7 1028.7	0.006999 0.072988	1184.1 1177	3.7737e-05 9.7018e-05	400 400	497 847	900 1650	949 13065
p-n=50-e=400-q=200-d=0.25.8 p-n=50-e=400-q=200-d=0.25.9	Optimal	(U)	0.29196	1150.2	0.002999	1267.3	7.1579e-05	400	499	900	71
p-n=50-e=400-q=200-d=0.25.9	Optimal	(I)	1.1578	1150.2	0.039994	1194.2	9.6218e-05	400	849	1650	357
p-n=50-e=400-q=200-d=0.25.9	Optimal	(L)	0.89586	1150.2	0.023997	1194.2	8.5378e-05	400	849	1250	406
p-n=50-e=400-q=200-d=0.25.9	Optimal	(P)	1.2098	1150.2	0.005999	1260.2	0	400	499	900	509
p-n=50-e=400-q=200-d=0.25.9	Optimal	(STM)	9.6575	1150.2	0.090986	1248.9	9.2584e-05	400	849	1650	1047
p-n=50-e=400-q=200-d=0.25.10	Optimal	(U)	3.8624	1049.8	0.003	1218	7.7948e-05	400	496	900	698
p-n=50-e=400-q=200-d=0.25.10	Optimal	(I)	7.9638	1049.8	0.035994	1148.7	0	400	846	1650	593
p-n=50-e=400-q=200-d=0.25.10	Optimal	(L)	5.4482	1049.8	0.018998	1148.7	0	400	846	1250	654
p-n=50-e=400-q=200-d=0.25.10	Optimal	(P)	6.37	1049.8	0.006999	1208.1	9.0865e-05	400	496	900	2282
p-n=50-e=400-q=200-d=0.25.10	Optimal	(STM)	267.98	1049.8	0.06499	1212.9	9.8536e-05	400	846	1650	31181
p-n=50-e=400-q=200-d=0.25.11	Optimal	(U)	3.8534	1097	0.003	1249.2	7.6875e-05	400	498	900	814
p-n=50-e=400-q=200-d=0.25.11	Optimal	(I)	5.9941	1097	0.041993	1183.2	5.6207e-06	400	848	1650	597
p-n=50-e=400-q=200-d=0.25.11	Optimal	(L)	4.4963	1097	0.015998	1183.2	0	400	848	1250	681
p-n=50-e=400-q=200-d=0.25.11	Optimal	(P)	2.8636	1097	0.007999	1239.5	9.6084e-05	400	498	900	964
p-n=50-e=400-q=200-d=0.25.11	Optimal	(STM)	419.82	1097	0.092986	1234.6	9.9723e-05	400	848	1650	83955
p-n=50-e=400-q=200-d=0.25.12	Optimal	(U)	1.0288	1141.1	0.002999	1275	4.6029e-05	400	494	900	488
p-n=50-e=400-q=200-d=0.25.12	Optimal	(I)	5.9451	1141.1	0.040993	1205.6	0	400	844	1650	558
p-n=50-e=400-q=200-d=0.25.12	Optimal	(L)	4.3573	1141.1	0.021996	1205.6	4.8429e-05	400	844	1250	781
p-n=50-e=400-q=200-d=0.25.12	Optimal	(P)	2.0637	1141.1	0.006999	1268.7 1265.5	7.9823e-05	400	494	900 1650	673
p-n=50-e=400-q=200-d=0.25.12	Optimal	(STM)	93.456	1141.1	0.084987		9.9494e-05	400	844		13602
p-n=50-e=400-q=200-d=0.25.13	Optimal	(U)	0.17297	1167.3	0.003	1287.2	0 2 08760 05	400 400	495	900	52
p-n=50-e=400-q=200-d=0.25.13 p-n=50-e=400-q=200-d=0.25.13	Optimal Optimal	(I) (L)	1.6917 1.4588	1167.3 1167.3	0.036994 0.018997	1212.9 1212.9	2.0876e-05 1.9572e-05	400	845 845	$\frac{1650}{1250}$	410 529
p-n=50-e=400-q=200-d=0.25.13 p-n=50-e=400-q=200-d=0.25.13	Optimal	(L) (P)	0.78488	1167.3	0.018997	1278.7	1.9572e-05 0	400	845 495	900	529 657
p-n=50-e=400-q=200-d=0.25.13 p-n=50-e=400-q=200-d=0.25.13	Optimal	(STM)	9.2476	1167.3	0.006999	1278.7	7.4799e-05	400	495 845	1650	894
p-n=50-e=400-q=200-d=0.25.13 p-n=50-e=400-q=200-d=0.25.14	Optimal	(U)	4.0454	1099.2	0.003	1250.8	8.2075e-05	400	499	900	1001
p-n=50-e=400-q=200-d=0.25.14 p-n=50-e=400-q=200-d=0.25.14	Optimal	(I)	6.802	1099.2	0.035994	1171.3	2.0446e-05	400	849	1650	860
p-n=50-e=400-q=200-d=0.25.14 p-n=50-e=400-q=200-d=0.25.14	Optimal	(L)	4.7683	1099.2	0.020997	1171.3	2.3891e-05	400	849	1250	1063
p-n=50-e=400-q=200-d=0.25.14	Optimal	(P)	2.9146	1099.2	0.006999	1243	6.6431e-05	400	499	900	1571
p-n=50-e=400-q=200-d=0.25.14	Optimal	(STM)	463.44	1099.2	0.059991	1241.1	9.945e-05	400	849	1650	121807
p-n=50-e=400-q=200-d=0.25.15	Optimal	(U)	0.52092	1222.7	0.002999	1389.8	0	400	499	900	155
p-n=50-e=400-q=200-d=0.25.15	Optimal	(I)	2.3146	1222.7	0.035995	1281.6	8.0855e-05	400	849	1650	635
p-n=50-e=400-q=200-d=0.25.15	Optimal	(L)	1.4298	1222.7	0.028995	1281.6	7.6105e-05	400	849	1250	611
p-n=50-e=400-q=200-d=0.25.15	Optimal	(P)	1.9707	1222.7	0.007999	1375.4	9.9462e-05	400	499	900	786
p-n=50-e=400-q=200-d=0.25.15	Optimal	(STM)	34.849	1222.7	0.083987	1363.1	9.9842e-05	400	849	1650	7241

Part	filename	status	formulation	time	value	nces - Part 2 relax_time	relax_value	gap	edges	columns	rows	nodes
pension-400-q=200-d=20-d=20-d=20-d=20-d=20-d=20-d=20-												
p==50==400==200=40=51.6												
Para 506-400-40-20-1-10-25-11												
p==50==400==200-=19.54.17 Optimal (I) 0.0601 948.07 0.0602 1056.0 5.35.16-0.5 400 405 900 085 p==50==400-=200-=19.54.17 Optimal (P) 1.55011 948.02 0.007399 1085.0 0.0006-0.0 400 407 900 2274 p==50==400-=200-=19.54.17 Optimal (P) 0.55021 948.02 0.007399 1085.0 0.0006-0.0 400 407 900 2274 p==50==400-=200-=19.54.18 Optimal (I) 0.5502 1088 0.003399 1205.0 0.0006-0.0 400 407 900 220 p==50==400-=200-=19.54.18 Optimal (I) 0.5502 1088 0.003399 1205.0 0.0006-0.0 400 407 900 200 p==50==400-=200-=19.54.18 Optimal (I) 0.5502 1088 0.003399 1205.0 0.003399 1205.0 0.003												
Pa=806=400-40_25-17 Opininal (1)	p-n=50-e=400-q=200-d=0.25.16											
pres56e=400-q=200-d=0.5;17 Optimal (I) 4:0543 048,02 0.017908 1028-3 6.00 400 451 1520 850 1029-1029-1029-1029-1029-1029-1029-1029-												
Pumping	p-n=50-e=400-q=200-d=0.25.17	Optimal	(I.)									
pu=50e=400,q=200,d=0.25.17 Optimal (F) Optimal (I) 0.006 0.08398 10978 9,9875-05 400 847 1500 4974 pu=50e=400,q=200,d=0.25.18 Optimal (I) 0.0078 1088 0.018997 112.9 9,105-05 400 407 1505 485 pu=50e=400,q=200,d=0.25.18 Optimal (I) 0.0078 1088 0.018997 112.9 9,105-05 400 407 1505 485 pu=50e=400,q=200,d=0.25.18 Optimal (I) 0.008 100 100 100 100 100 100 100 100 100												
Pump	p-n=50-e=400-q=200-d=0.25.17											
### Part												
pn=50=400=200-40-02.81												
pn=50=400=200-d=0.25.18 Optimal (F) 1.5278 1088 0.065099 1197.7 2.6131-06 400 497 900 547 1090 547	p-n=50-e=400-q=200-d=0.25.18											
Part												
pn=5pn=4p0=4p0=4p0=4p0=1b1 p)												
pn=50==800-=400-q=200-d=0.51	p-n=50-e=400-q=200-d=0.25.19	Optimal	(U)	4.7323	1107	0.003	1263.3	5.6182e-05	400	494	900	827
pn=50==800-=400-q=200-d=0.51	p-n=50-e=400-q=200-d=0.25.19	Optimal	(I)	6.926	1107	0.039994	1178.5	3.5544e-05	400	844	1650	807
pn=100=e800-q=200-d=0.25.19 Optimal (TM) 200.95 1167 0.84888 1256 9.8962-05 400 844 1650 43085 pn=100-e800-q=200-d=0.25.0 Optimal (U) 20.515 20.05999 2476.4 8.235-05 800 999 1800 3444 pn=100-e800-q=200-d=0.25.0 Optimal (L) 23.154 2215.1 0.045993 234.4 9.7173-05 800 1989 2200 2852 pn=100-e800-q=200-d=0.25.0 Optimal (F) 23.154 2215.1 0.045993 234.4 9.7173-05 800 1889 2200 2852 pn=100-e800-q=200-d=0.25.1 Optimal (F) 23.154 2215.1 0.045993 234.4 9.7173-05 800 1889 2200 2852 pn=100-e800-q=200-d=0.25.1 Optimal (I) 23.154 2215.1 0.045993 2344.8 9.7173-05 800 989 1800 8512 pn=100-e800-q=200-d=0.25.1 Optimal (I) 2197.8 2114.4 0.3298 2400 9.9983-05 800 1889 3300 186013 pn=100-e800-q=200-d=0.25.1 Optimal (I) 2197.8 2114.4 0.3298 2400 9.9988-05 800 1886 3300 186013 pn=100-e800-q=200-d=0.25.1 Optimal (I) 20.513 2007.3 0.13991 2400 9.9888-05 800 1886 2500 174873 pn=100-e800-q=200-d=0.25.1 Optimal (II) 20.513 2007.3 0.13991 2400 9.9888-05 800 1886 2500 174873 pn=100-e800-q=200-d=0.25.1 Optimal (II) 20.513 2007.3 0.13991 2215.1 7.4158-05 800 1928 3300 1200 pn=100-e800-q=200-d=0.25.2 Optimal (II) 20.513 2007.3 0.13991 2215.1 7.4158-05 800 1928 3300 1200 1436 pn=100-e800-q=200-d=0.25.2 Optimal (II) 20.513 2007.3 0.13991 2215.1 7.4158-05 800 1929 3300 1100 1436 pn=100-e800-q=200-d=0.25.2 Optimal (II) 20.513 2007.3 0.13991 2215.0 0.9988-05 800 1929 1800 1436 pn=100-e800-q=200-d=0.25.2 Optimal (III) 25.436 2007.3 0.018991 2215.1 7.4158-05 800 1929 3300 1100 1436 pn=100-e800-q=200-d=0.25.2 Optimal (III) 25.436 2007.3 0.018991 2215.1 7.4158-05 800 1929 1800 1436 pn=100-e800-q=200-d=0.25.3 Optimal (III) 25.436 2007.3 0.018991 2253.4 Pn=100-e800-q=200-d=0.25.3 Optimal (III) 25.436 2007.3 0.018991 2253.4 Pn=100-e800-q=200-d=0.25.3 Optimal (III) 25.436 2007.3 0.018991 2309.8 9.9980-05 800 1929 1800 1438 9pn=100-e800-q=200-d=0.25.3 Optimal (III) 25.436 2007.3 0.018991 2309.9 9.9980-05 800 1929 1800 1300 1919 1800 1131 pn=100-e800-q=200-d=0.25.3 Optimal (III) 25.436 2007.3 0.018991 2309.9 9.9980-05 800 1929 1800 1300 1919 1800 1131 pn=100-	p-n=50-e=400-q=200-d=0.25.19	Optimal	(L)	4.2594	1107	0.019997	1178.5	9.7467e-05	400	844	1250	730
Pam=100-cesS00-q=200.d=0.25.0 Optimal (I)		Optimal	(P)		1107	0.006	1258	9.7344e-05	400	494	900	
Description Computer Description Computer Description Descri									400		1650	
pn=100e=800-q=200d=025.0 Optimal (I) 23.154 2215.1 0.045993 2334.4 9.7173e-05 800 1989 2500 2682 269.9 pn=100e=800-q=200d=025.1 Optimal (I) 1064 2214.1 0.005999 2463.5 9.9503e-05 800 998 1800 831 1800 831 1800 851 1800		Optimal	(U)									
$\begin{array}{c} \text{p-n=100-c=800-q=200-d=0.2.5.} & \text{Optimal} & (\text{p}) & 26.81 & 2215.1 & 0.016997 & 2463.9 & 9.9563-05 & 800 & 989 & 1800 & 8612 \\ \text{p-n=100-c=800-q=200-d=0.2.5.1} & \text{Optimal} & (1) & 2197.8 & 2141.4 & 0.01398 & 2400 & 9.9683-05 & 800 & 1686 & 3500 & 16861 \\ \text{p-n=100-c=800-q=200-d=0.2.5.1} & \text{Optimal} & (1) & 2197.8 & 2141.4 & 0.01398 & 2400 & 9.9683-05 & 800 & 1686 & 2500 & 174873 \\ \text{p-n=100-c=800-q=200-d=0.2.5.1} & \text{Optimal} & (1) & 2197.8 & 2141.4 & 0.01398 & 2400 & 9.9683-05 & 800 & 1686 & 2500 & 174873 \\ \text{p-n=100-c=800-q=200-d=0.2.5.2} & \text{Optimal} & (1) & 2190.0 & 2141.4 & 0.01598 & 2555.2 & 0.004375 & 800 & 866 & 1800 & 1458098 \\ \text{p-n=100-c=800-q=200-d=0.2.5.2} & \text{Optimal} & (1) & 20.513 & 2007.3 & 0.00999 & 2375.0 & 0.004375 & 800 & 806 & 1800 & 1458098 \\ \text{p-n=100-c=800-q=200-d=0.2.5.2} & \text{Optimal} & (1) & 20.513 & 2007.3 & 0.00999 & 2375.0 & 0.00375 & 800 & 1692 & 3300 & 1600 \\ \text{p-n=100-c=800-q=200-d=0.2.5.2} & \text{Optimal} & (1) & 20.434 & 2097.3 & 0.07999 & 2215.9 & 7.4776-05 & 800 & 1692 & 3300 & 1600 \\ \text{p-n=100-c=800-q=200-d=0.2.5.2} & \text{Optimal} & (1) & 20.434 & 2097.3 & 0.017991 & 2215.9 & 7.4776-05 & 800 & 1692 & 3300 & 1600 \\ \text{p-n=100-c=800-q=200-d=0.2.5.2} & \text{Optimal} & (1) & 22.438 & 2097.3 & 0.017991 & 2215.9 & 7.4776-05 & 800 & 1692 & 3300 & 1600 \\ \text{p-n=100-c=800-q=200-d=0.2.5.2} & \text{Optimal} & (1) & 22.438 & 2007.3 & 0.017991 & 2215.9 & 7.4776-05 & 800 & 1692 & 3300 & 1600 \\ \text{p-n=100-c=800-q=200-d=0.2.5.2} & \text{Optimal} & (1) & 22.638 & 2116 & 0.00899 & 2266.0 & 7.6714-05 & 800 & 1692 & 3300 & 81973 \\ \text{p-n=100-c=800-q=200-d=0.2.5.3} & \text{Optimal} & (1) & 22.638 & 2116 & 0.00899 & 2266.0 & 7.6714-05 & 800 & 1694 & 3300 & 1238 \\ \text{p-n=100-c=800-q=200-d=0.2.5.3} & \text{Optimal} & (1) & 22.638 & 2116 & 0.00899 & 2365.0 & 800 & 1604 & 3300 & 1238 \\ \text{p-n=100-c=800-q=200-d=0.2.5.4} & \text{Optimal} & (1) & 22.638 & 2116 & 0.00899 & 2365.0 & 800 & 1604 & 3300 & 1238 \\ \text{p-n=100-c=800-q=200-d=0.2.5.4} & \text{Optimal} & (1) & 22.638 & 2116 & 0.00899 & 2365.0 & 800 & 1604 & 3300 & 1238 \\ \text$		Optimal										
$\begin{array}{c} \text{pn=10} \\ \text{pn=10} \\ \text{color} \\ co$												
$\begin{array}{c} \text{pn=10} \\ \text{colo} = 800 \\ \text{q=20} \\ \text{d=20} \\ \text{colo} = 25.1 \\ \text{Optimal} \\ \text{(i)} \\ $			(P)									
$\begin{array}{c} \text{p-n=100-es800-q=200-d=0.25.1} & \text{Optimal} & (1) & 2197.8 & 2141.4 & 0.13298 & 2400 & 9.988-65 & 800 & 1686 & 3300 & 156615 \\ \text{p-n=100-es800-q=200-d=0.25.1} & \text{Potimal} & (1) & 1377.6 & 2141.4 & 0.73298 & 2400 & 9.988-65 & 800 & 1686 & 2300 & 174873 \\ \text{p-n=100-es800-q=200-d=0.25.2} & \text{Optimal} & (1) & 20.31 & 2097.3 & 0.073989 & 221.3 & 0.067761 & 800 & 1686 & 3300 & 227097 \\ \text{p-n=100-es800-q=200-d=0.25.2} & \text{Optimal} & (1) & 20.31 & 2097.3 & 0.073997 & 221.5 & 9.7476-65 & 800 & 1692 & 2300 & 1436 \\ \text{p-n=100-es800-q=200-d=0.25.2} & \text{Optimal} & (1) & 12.43 & 2097.3 & 0.075991 & 221.5 & 8.6984-65 & 800 & 1692 & 2300 & 2099.0 \\ \text{p-n=100-es800-q=200-d=0.25.2} & \text{Optimal} & (1) & 12.43 & 2097.3 & 0.075991 & 221.5 & 8.6984-65 & 800 & 1692 & 2300 & 2099.0 \\ \text{p-n=100-es800-q=200-d=0.25.2} & \text{Optimal} & (2770) & 224.6 & 2097.3 & 0.2197 & 225.6 & 9.945-65 & 800 & 1692 & 2300 & 2099.0 \\ \text{p-n=100-es800-q=200-d=0.25.3} & \text{Optimal} & (1) & 25.436 & 2097.3 & 0.2197 & 225.6 & 9.945-65 & 800 & 1692 & 2300 & 2099.0 \\ \text{p-n=100-es800-q=200-d=0.25.3} & \text{Optimal} & (1) & 25.687 & 2116 & 0.06989 & 224.7 & 8.354-65 & 800 & 1692 & 2300 & 2099.0 \\ \text{p-n=100-es800-q=200-d=0.25.3} & \text{Optimal} & (1) & 18.502 & 2116 & 0.06989 & 242.7 & 8.354-65 & 800 & 1694 & 2300 & 2198.0 \\ \text{p-n=100-es800-q=200-d=0.25.3} & \text{Optimal} & (1) & 18.502 & 2116 & 0.06989 & 244.2 & 9.874-65 & 800 & 1694 & 2300 & 1241.4 \\ \text{p-n=100-es800-q=200-d=0.25.3} & \text{Optimal} & (1) & 11.602.0 & 2116 & 0.06989 & 244.2 & 9.874-65 & 800 & 1694 & 2300 & 1241.4 \\ \text{p-n=100-es800-q=200-d=0.25.4} & \text{Optimal} & (1) & 11.602.0 & 2116 & 0.06989 & 244.2 & 9.874-65 & 800 & 1694 & 2300 & 1241.4 \\ \text{p-n=100-es800-q=200-d=0.25.4} & \text{Optimal} & (1) & 11.602.0 & 2106.4 & 0.06989 & 244.2 & 9.874-65 & 800 & 1694 & 2300 & 1241.4 \\ \text{p-n=100-es800-q=200-d=0.25.4} & \text{Optimal} & (1) & 11.602.0 & 21.602.0 & 0.06989 & 21.802.0 & 0.012.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.002.0 & 0.$												
$\begin{array}{c} p_{n=1} = 100 - es 800 - q = 200 - d = 0.25.1 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.1 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.1 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.2 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.3 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.4 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.5 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.5 \\ p_{n=1} = 100 - es 800 - q = 200 - d = 0.5.5 \\ p_{n=1} = 100 - e$	p-n=100-e=800-q=200-d=0.25.1											
$\begin{array}{c} p_{n=1} = 100 - e=800 - q=20 - d=0.25.1 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.1 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.1 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=20 - d=0.25.5 \\ p_{n=1} = 100 - e=800 -$	p-n=100-e=800-q=200-d=0.25.1											
$\begin{array}{c} \text{pn=10-0e=800-q=20-d=0.25.1} & \text{Feasible} \\ \text{pn=10-0e=800-q=20-d=0.25.2} & \text{Optimal} & (\text{U}) & 20.513 & 300.73 & 0.07371. & 7.418e-05 & 800 & 1092 & 3300 & 1366 \\ \text{pn=10-0e=800-q=20-d=0.25.2} & \text{Optimal} & (\text{U}) & 20.513 & 2007.3 & 0.17397 & 2215.0 & 7.4778e-05 & 800 & 1092 & 3300 & 1000 \\ \text{pn=10-0e=800-q=20-d=0.25.2} & \text{Optimal} & (\text{P}) & 18.286 & 2007.3 & 0.17397 & 2215.0 & 7.4778e-05 & 800 & 1092 & 3300 & 1000 \\ \text{pn=10-0e=800-q=20-d=0.25.2} & \text{Optimal} & (\text{P}) & 18.286 & 2007.3 & 0.17397 & 2215.0 & 8.086e-05 & 800 & 1092 & 3300 & 1900 \\ \text{pn=10-0e=800-q=20-d=0.25.2} & \text{Optimal} & (\text{U}) & 25.436 & 2007.3 & 0.21197 & 2354.6 & 9.930e-05 & 800 & 1692 & 3300 & 81973 \\ \text{pn=10-0e=800-q=20-d=0.25.3} & \text{Optimal} & (\text{U}) & 25.436 & 2116 & 0.00399 & 222.7 & 8.354e-05 & 800 & 1692 & 3300 & 18973 \\ \text{pn=10-0e=800-q=20-d=0.25.3} & \text{Optimal} & (\text{U}) & 25.436 & 2116 & 0.00399 & 222.7 & 8.354e-05 & 800 & 1694 & 3300 & 1238 \\ \text{pn=10-0e=800-q=20-d=0.25.3} & \text{Optimal} & (\text{U}) & 25.436 & 2116 & 0.00399 & 222.7 & 8.354e-05 & 800 & 1694 & 3300 & 1238 \\ \text{pn=10-0e=800-q=20-d=0.25.3} & \text{Optimal} & (\text{U}) & 25.436 & 2116 & 0.00399 & 222.7 & 8.354e-05 & 800 & 1694 & 3300 & 1238 \\ \text{pn=10-0e=800-q=20-d=0.25.3} & \text{Optimal} & (\text{U}) & 25.436 & 2116 & 0.00399 & 226.0 & 7.6714e-05 & 800 & 1694 & 3300 & 1238 \\ \text{pn=10-0e=800-q=20-d=0.25.4} & \text{Optimal} & (\text{U}) & 214.67 & 216.4 & 0.00997 & 2395.2 & 0.011326 & 800 & 1694 & 3300 & 19031 \\ \text{pn=10-0e=800-q=20-d=0.25.4} & \text{Optimal} & (\text{U}) & 214.67 & 216.4 & 0.00999 & 2395.2 & 0.011326 & 800 & 1694 & 3300 & 19031 \\ \text{pn=10-0e=800-q=20-d=0.25.4} & \text{Optimal} & (\text{U}) & 214.67 & 0.00999 & 2395.2 & 0.011326 & 800 & 1694 & 3000 & 23711 \\ \text{pn=10-0e=800-q=20-d=0.25.4} & \text{Optimal} & (\text{U}) & 214.67 & 0.00999 & 2345.2 & 9.9935-05 & 800 & 1694 & 3000 & 23711 \\ \text{pn=10-0e=800-q=20-d=0.25.5} & \text{Optimal} & (\text{U}) & 17.49 & 2156.4 & 0.00999 & 2415.2 & 9.8938-05 & 800 & 1694 & 3000 & 23711 \\ \text{pn=10-0e=800-q=20-d=0.25.5} & \text{Optimal} & (\text{U}) & 17.49 & 2292.6 & 0.00999 &$												
$\begin{array}{c} p_{n=1} = 100 - e=800 - q=200 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.2 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.3 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.4 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=800 - q=200 - d=0.25.5 \\ p_{n=1} = 100 - e=$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p-n=100-e=800-q=200-d=0.25.2	Optimal										
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{c} p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.3 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.4 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.5 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.6 \\ p_{n} = 100 - e = 800 - q = 200 - d = 0.25.6 \\ p_{n} = 100 - e = $					2097.3	0.21197			800			
$\begin{array}{c} p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.3 & {\rm Optimal} & {\rm (I)} & 22.687 & 2116 & 0.03998 & 2266.9 & 7.6714-05 & 800 & 1694 & 3300 & 1238 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.3 & {\rm Optimal} & {\rm (P)} & 29.137 & 2116 & 0.031998 & 2400.7 & 9.9208-05 & 800 & 994 & 1800 & 8849 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.3 & {\rm Cptimal} & {\rm (W)} & 214.6 & 2.296.9 & 2492.2 & 9.8744-05 & 800 & 994 & 1800 & 8849 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.4 & {\rm Optimal} & {\rm (W)} & 214.6 & 2.256.4 & 0.006999 & 2442.2 & 9.8744-05 & 800 & 990 & 1800 & 21711 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.4 & {\rm Optimal} & {\rm (W)} & 214.6 & 2.256.4 & 0.006999 & 2442.2 & 9.8744-05 & 800 & 990 & 1800 & 21711 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.4 & {\rm Optimal} & {\rm (W)} & 249.28 & 2156.4 & 0.054999 & 2442.2 & 9.8744-05 & 800 & 990 & 1800 & 21711 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.4 & {\rm Optimal} & {\rm (P)} & 249.28 & 2156.4 & 0.054991 & 2319.8 & 9.9832-05 & 800 & 1900 & 1200 & 12449 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.4 & {\rm Optimal} & {\rm (P)} & 249.28 & 2156.4 & 0.071997 & 2428.9 & 9.9932-05 & 800 & 990 & 1800 & 97194 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.4 & {\rm Optimal} & {\rm (W)} & 17.149 & 2292.6 & 0.00599 & 2618.7 & 5.0054-05 & 800 & 990 & 1800 & 17149 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.5 & {\rm Optimal} & {\rm (W)} & 17.149 & 2292.6 & 0.00599 & 2618.7 & 5.0054-05 & 800 & 991 & 1800 & 17134 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.5 & {\rm Optimal} & {\rm (W)} & 17.49 & 2292.6 & 0.074988 & 2450.7 & 8.7586-05 & 800 & 1991 & 1800 & 17149 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.5 & {\rm Optimal} & {\rm (W)} & 37.63 & 2292.6 & 0.074988 & 2450.7 & 8.7586-05 & 800 & 1991 & 1800 & 1780 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.6 & {\rm Optimal} & {\rm (W)} & 37.63 & 2138.6 & 0.074998 & 2415.9 & 8.8742-05 & 800 & 1991 & 1800 & 1780 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.6 & {\rm Optimal} & {\rm (W)} & 37.63 & 2138.6 & 0.074998 & 2415.9 & 8.8742-05 & 800 & 1991 & 1800 & 1780 \\ p_{\rm m}=100-{\rm e}=800-q=200-{\rm d}=0.25.6 & {\rm$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$					2116				800	1694		1238
$\begin{array}{c} p_{\rm m}=100-{\rm e}=800-q=20-0.d=0.25.3 \\ p_{\rm m}=100-{\rm e}=800-q=200-d=0.25.4 \\ p_{\rm m}=100-{\rm e}=800-q=200-d=0.25.5 \\ p_{\rm m}=10$	p-n=100-e=800-q=200-d=0.25.3	Optimal	(L)	18.502	2116	0.031995	2266.9	8.4663e-05	800	1694	2500	1411
$\begin{array}{c} p_{-n}=100-e=800-q=200-d=0.25.4 & \text{Optimal} & \text{(U)} & 214.67 & 2156.4 & 0.0669987 & 2319.8 & 9.98860-5 & 800 & 1690 & 3300 & 9931 \\ p_{-n}=100-e=800-q=200-d=0.25.4 & \text{Optimal} & \text{(L)} & 100.51 & 2156.4 & 0.054991 & 2319.8 & 9.9868e-05 & 800 & 1690 & 2500 & 12449 \\ p_{-n}=100-e=800-q=200-d=0.25.4 & \text{Optimal} & \text{(P)} & 249.28 & 2156.4 & 0.017997 & 2428.9 & 9.99320-05 & 800 & 990 & 1800 & 97194 \\ p_{-n}=100-e=800-q=200-d=0.25.4 & \text{Feasible} & \text{(STM)} & 3600 & 2156.4 & 0.22197 & 2418.3 & 0.029321 & 800 & 1690 & 3300 & 187711 \\ p_{-n}=100-e=800-q=200-d=0.25.5 & \text{Optimal} & \text{(U)} & 17.149 & 229.6 & 0.05999 & 2168.7 & 5.0054e-05 & 800 & 991 & 1800 & 1134 \\ p_{-n}=100-e=800-q=200-d=0.25.5 & \text{Optimal} & \text{(I)} & 31.688 & 2292.6 & 0.05999 & 2168.7 & 5.0054e-05 & 800 & 991 & 1800 & 1134 \\ p_{-n}=100-e=800-q=200-d=0.25.5 & \text{Optimal} & \text{(I)} & 31.688 & 2292.6 & 0.05999 & 2168.7 & 5.0054e-05 & 800 & 1691 & 3300 & 1443 \\ p_{-n}=100-e=800-q=200-d=0.25.5 & \text{Optimal} & \text{(I)} & 31.688 & 2292.6 & 0.16188 & 2450.7 & 8.7586e-05 & 800 & 1691 & 3300 & 1443 \\ p_{-n}=100-e=800-q=200-d=0.25.5 & \text{Peasible} & \text{(STM)} & 3600.1 & 2292.6 & 0.017897 & 2404.4 & 9.863e-05 & 800 & 1691 & 3300 & 146912 \\ p_{-n}=100-e=800-q=200-d=0.25.6 & \text{Optimal} & \text{(I)} & 39.577 & 2138.6 & 0.07999 & 2415.9 & 8.8242e-05 & 800 & 193 & 1800 & 3787 \\ p_{-n}=100-e=800-q=200-d=0.25.6 & \text{Optimal} & \text{(I)} & 39.577 & 2138.6 & 0.07999 & 2415.9 & 8.8242e-05 & 800 & 1693 & 3300 & 24911 \\ p_{-n}=100-e=800-q=200-d=0.25.6 & \text{Optimal} & \text{(I)} & 39.577 & 2138.6 & 0.016997 & 2404.8 & 9.9302e-05 & 800 & 1693 & 3300 & 24911 \\ p_{-n}=100-e=800-q=200-d=0.25.6 & \text{Optimal} & \text{(I)} & 39.577 & 2138.6 & 0.016997 & 2404.8 & 9.9302e-05 & 800 & 1693 & 3300 & 24911 \\ p_{-n}=100-e=800-q=200-d=0.25.6 & \text{Optimal} & \text{(I)} & 13.138.6 & 0.016997 & 2404.8 & 9.9302e-05 & 800 & 1693 & 3300 & 24911 \\ p_{-n}=100-e=800-q=200-d=0.25.6 & \text{Optimal} & \text{(I)} & 13.138.6 & 0.016997 & 2404.8 & 9.9302e-05 & 800 & 1693 & 3300 & 25041 \\ p_{-n}=100-e=800-q=200-d=0.25.7 & Optimal$		Optimal		29.137	2116				800	994	1800	
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p-n=100-e=800-q=200-d=0.25.4											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p-n=100-e=800-q=200-d=0.25.5											
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{c} p_{n}=100-e=800-q=200-d=0.25.5 \\ p_{n}=100-e=800-q=200-d=0.25.6 \\ p_{n}=100-e=800-q=200-d=0.25.7 \\ p_{n}=100-e=800-q=200-d=0.25.8 \\ p_{n}=100-e=800-q=200-d=0.25.9 \\ p_{n}=100-e=800-q=200-d=0.25.0 \\ p_{n}=100-e=800-q=200-d=0.25.0 \\ p_{n}=100-e=800-q=200-d=0.25.0 \\ p_{n}=100-e=800-q=200-d=0.25.0 \\ p_{n}=100-e=800-q=200-d=0.25.0 \\ p_{n}=100-e=800-q=200-d=0.25.0 \\ p_{n}=100-e=800-q=200-d=0.$	p-n=100-e=800-q=200-d=0.25.5							9.00016-05				
$\begin{array}{c} p-n=100-e=800-q=200-d=0.25.6 \\ p-n=100-e=800-q=200-d=0.25.7 \\ p-n=100-e=800-q=200-d=0.25.8 \\ p-n=100-e=800-q=200-d=0.25.9 \\ p-n=100-e=800-q=200-d=0.25.10 \\ p-n=100-e=800-q=200-d=0.25.10 \\ p-n=100-e=800-q=200-d=0.25.10 \\ p-n=100-e=800-q=200-d=0.25.10 \\ p-n=100-e=800-q=200-d=0.25.10 \\ p-n=100-e=800-q=200-d=0.25.11 \\ p-n=100-e=800-q=200-d=0.25.11 \\ p-n=100-e=800-q=2$												
$\begin{array}{c} p-n=100-e=800q=200-d=0.25.6 \\ p-n=100-e=800q=200-d=0.25.6 \\ p-n=100-e=800q=200-d=0.25.6 \\ p-n=100-e=800q=200-d=0.25.6 \\ p-n=100-e=800q=200-d=0.25.6 \\ p-n=100-e=800q=200-d=0.25.6 \\ p-n=100-e=800q=200-d=0.25.7 \\ p-n=100-e=800q=200-d=0.25.8 \\ p-n=100-e=800q=200-d=0.25.9 \\ p-n=100-e=800q=200-d=0.25.10 \\ p-n=100-e=800q=200-d=0.25.11 \\ p-n=100-e=800$	p-n=100-e=800-q=200-d=0.25.6											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(-)									
$\begin{array}{c} \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.6 & \text{Feasible} & (STM) & 3600 & 2138.6 & 0.23097 & 2393.3 & 0.021746 & 800 & 1693 & 3300 & 223414 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 & \text{Optimal} & (U) & 188.11 & 2135.8 & 0.006999 & 2461.4 & 9.9487e-05 & 800 & 996 & 1800 & 14390 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 & \text{Optimal} & (I) & 102.01 & 2135.8 & 0.11198 & 2317.3 & 9.0238e-05 & 800 & 1696 & 3300 & 8256 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 & \text{Optimal} & (L) & 74.292 & 2135.8 & 0.048993 & 2317.3 & 9.6238e-05 & 800 & 1696 & 3300 & 8256 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 & \text{Optimal} & (P) & 529.14 & 2135.8 & 0.019997 & 2447.9 & 9.9896e-05 & 800 & 996 & 1800 & 234409 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 & \text{Optimal} & (U) & 27.834 & 2042.5 & 0.005 & 2354.8 & 9.4413e-05 & 800 & 992 & 1800 & 3128 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \text{Optimal} & (U) & 27.834 & 2042.5 & 0.0698 & 2199.1 & 9.3999e-05 & 800 & 1692 & 3300 & 2477 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \text{Optimal} & (L) & 39.196 & 2042.5 & 0.051992 & 2199.1 & 9.9861e-05 & 800 & 1692 & 3300 & 2477 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \text{Optimal} & (L) & 39.196 & 2042.5 & 0.051992 & 2199.1 & 9.9861e-05 & 800 & 1692 & 3300 & 2477 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \text{Optimal} & (P) & 84.366 & 2042.5 & 0.018997 & 2344.6 & 9.9882e-05 & 800 & 992 & 1800 & 2535 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \text{Optimal} & (P) & 44.366 & 2042.5 & 0.018997 & 2344.6 & 9.9882e-05 & 800 & 994 & 1800 & 58267 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 & \text{Optimal} & (P) & 47.1 & 2027.5 & 0.026999 & 2378.1 & 9.9918e-05 & 800 & 994 & 1800 & 58267 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 & \text{Optimal} & (P) & 2491.7 & 2027.5 & 0.028996 & 2364.1 & 9.9982e-05 & 800 & 1694 & 3300 & 224915 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.0 & \text{Optimal} & (P$												
$\begin{array}{c} \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.6 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.7 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 \\ \mathbf{p} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 \\ \mathbf{p}$									800			36910
$\begin{array}{c} \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 7 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 8 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 9 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 9 \\ \mathbf{p} - \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25, 9 \\ \mathbf{p} - \mathbf{p} - $	p-n=100-e=800-q=200-d=0.25.6				2138.6							
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p-n=100-e=800-q=200-d=0.25.7											
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{c} \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \mathrm{Optimal} & (\mathrm{U}) & 27.84 & 2042.5 & 0.005 & 2354.8 & 9.4413 e-05 & 800 & 992 & 1800 & 3128 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \mathrm{Optimal} & (\mathrm{I}) & 41.293 & 2042.5 & 0.005 & 2354.8 & 9.4413 e-05 & 800 & 992 & 3300 & 2477 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \mathrm{Optimal} & (\mathrm{L}) & 39.196 & 2042.5 & 0.01698 & 2199.1 & 9.399 e-05 & 800 & 1692 & 2300 & 3356 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \mathrm{Optimal} & (\mathrm{L}) & 39.196 & 2042.5 & 0.018997 & 2344.6 & 9.9882 e-05 & 800 & 1692 & 2500 & 3356 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.8 & \mathrm{Feasible} & (\mathrm{STM}) & 3600 & 2042.5 & 0.018997 & 2344.6 & 9.9882 e-05 & 800 & 1692 & 23300 & 150111 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 & \mathrm{Optimal} & (\mathrm{U}) & 471 & 2027.5 & 0.006999 & 2378.1 & 9.918 e-05 & 800 & 1692 & 3300 & 150111 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 & \mathrm{Optimal} & (\mathrm{U}) & 471 & 2027.5 & 0.006999 & 2378.1 & 9.918 e-05 & 800 & 1694 & 3300 & 176249 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 & \mathrm{Optimal} & (\mathrm{L}) & 679.7 & 2027.5 & 0.073989 & 2242.5 & 9.9782 e-05 & 800 & 1694 & 3300 & 176249 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.9 & \mathrm{Optimal} & (\mathrm{P}) & 2491.7 & 2027.5 & 0.028996 & 2364.1 & 9.9982 e-05 & 800 & 1694 & 2500 & 141643 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.10 & \mathrm{Optimal} & (\mathrm{P}) & 13.32 & 2182.8 & 0.006999 & 2428.9 & 9.8266 e-05 & 800 & 1694 & 3300 & 224915 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.10 & \mathrm{Optimal} & (\mathrm{I}) & 16.53 & 2182.8 & 0.082988 & 2307.6 & 9.5746 e-05 & 800 & 1691 & 3300 & 889 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.10 & \mathrm{Optimal} & (\mathrm{P}) & 10.579 & 2182.8 & 0.042993 & 2307.6 & 5.4497 e-05 & 800 & 1691 & 3300 & 62445 \\ \mathbf{p} - \mathbf{n} = 100 - \mathbf{e} = 800 - \mathbf{q} = 200 - \mathbf{d} = 0.25.11 & \mathrm{Optimal} & (\mathrm{P}) & 10.$	p-n=100-e=800-q=200-d=0.25.7				2135.8							
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{c} \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 2.55.8 & \textbf{Optimal} & \textbf{(I)} & 41.293 & 2042.5 & 0.16698 & 2199.1 & 9.3999 - 0.5 & 800 & 1692 & 3300 & 2477 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.8 & \textbf{Optimal} & \textbf{(L)} & 39.196 & 2042.5 & 0.051992 & 2199.1 & 9.9861 e - 0.5 & 800 & 1692 & 3300 & 2356 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.8 & \textbf{Optimal} & \textbf{(P)} & 84.366 & 2042.5 & 0.018997 & 2344.6 & 9.9882 e - 0.5 & 800 & 992 & 1800 & 25335 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.8 & \textbf{Feasible} & \textbf{(STM)} & 3600 & 2042.5 & 0.27596 & 2343.3 & 0.025409 & 800 & 1692 & 3300 & 150111 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.9 & \textbf{Optimal} & \textbf{(U)} & 471 & 2027.5 & 0.00699 & 2378.1 & 9.9918 e - 0.5 & 800 & 994 & 1800 & 58267 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.9 & \textbf{Optimal} & \textbf{(I)} & 1502.1 & 2027.5 & 0.1298 & 2242.5 & 9.9782 e - 0.5 & 800 & 1694 & 3300 & 176249 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.9 & \textbf{Optimal} & \textbf{(P)} & 2491.7 & 2027.5 & 0.028996 & 2364.1 & 9.9982 e - 0.5 & 800 & 1694 & 3300 & 1201715 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.9 & \textbf{Optimal} & \textbf{(P)} & 2491.7 & 2027.5 & 0.028996 & 2364.1 & 9.9982 e - 0.5 & 800 & 994 & 1800 & 1021715 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.10 & \textbf{Optimal} & \textbf{(U)} & 13.32 & 2182.8 & 0.06999 & 2428.9 & 9.8256 e - 0.5 & 800 & 994 & 1800 & 1021715 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.10 & \textbf{Optimal} & \textbf{(I)} & 16.53 & 2182.8 & 0.082988 & 2307.6 & 9.5746 e - 0.5 & 800 & 1691 & 3300 & 889 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.10 & \textbf{Optimal} & \textbf{(I)} & 10.579 & 2182.8 & 0.042993 & 2307.6 & 5.4497 e - 0.5 & 800 & 1691 & 2500 & 923 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.10 & \textbf{Optimal} & \textbf{(I)} & 10.579 & 2182.8 & 0.014998 & 2418.8 & 9.2538 e - 0.5 & 800 & 1691 & 3300 & 62445 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} $												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p-n=100-e=800-q=200-d=0.25.8											
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{c} \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 2.5.9 & \textbf{Optimal} & \textbf{(I)} & 1502.1 & 2027.5 & 0.1298 & 2242.5 & 9.9782e - 0.5 & 800 & 1694 & 3300 & 176249 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.9 & \textbf{Optimal} & \textbf{(L)} & 679.7 & 2027.5 & 0.073989 & 2242.5 & 9.9569e - 0.5 & 800 & 1694 & 2500 & 141643 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.9 & \textbf{Optimal} & \textbf{(P)} & 2491.7 & 2027.5 & 0.028996 & 2364.1 & 9.9982e - 0.5 & 800 & 994 & 1800 & 1021715 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.19 & \textbf{Feasible} & \textbf{(STM)} & 3600 & 2027.5 & 0.15398 & 2384 & 0.051616 & 800 & 1694 & 3300 & 224915 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.10 & \textbf{Optimal} & \textbf{(U)} & 13.32 & 2182.8 & 0.06999 & 2428.9 & 9.8256e - 0.5 & 800 & 991 & 1800 & 978 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.10 & \textbf{Optimal} & \textbf{(I)} & 16.53 & 2182.8 & 0.082988 & 2307.6 & 9.5746e - 0.5 & 800 & 1691 & 3300 & 889 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.10 & \textbf{Optimal} & \textbf{(P)} & 10.252 & 2182.8 & 0.014998 & 2418.8 & 9.2538e - 0.5 & 800 & 991 & 1800 & 2752 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.11 & \textbf{Optimal} & \textbf{(W)} & 16.44 & 2182.8 & 0.18797 & 2403.1 & 9.9988e - 0.5 & 800 & 1691 & 3300 & 62445 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.11 & \textbf{Optimal} & \textbf{(U)} & 16.48 & 2257 & 0.07998 & 2614.4 & 9.9569e - 0.5 & 800 & 1688 & 3300 & 4525 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.11 & \textbf{Optimal} & \textbf{(I)} & 10.191 & 2257 & 0.13598 & 2453.5 & 9.8682e - 0.5 & 800 & 1688 & 3300 & 4525 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.11 & \textbf{Optimal} & \textbf{(I)} & 10.191 & 2257 & 0.13598 & 2453.5 & 9.8682e - 0.5 & 800 & 1688 & 2500 & 5999 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.11 & \textbf{Optimal} & \textbf{(I)} & 10.191 & 2257 & 0.072989 & 2453.5 & 9.9684e - 0.5 & 800 & 1688 & 2500 & 5999 \\ \textbf{p} - \textbf{n} = 100 - \textbf{e} = 800 - \textbf{q} = 200 - \textbf{d} = 0.25.11 & \textbf{Optimal}$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p-n=100-e=800-q=200-d=0.25 9											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p-n=100-e=800-a=200-d=0.25.10											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p-n=100-e=800-q=200-d=0.25.10											
$\begin{array}{llllllllllllllllllllllllllllllllllll$												
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p-n=100-e=800-q=200-d=0.25.10	Optimal										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p-n=100-e=800-q=200-d=0.25.11			106.46		0.007998	2614.4	9.9569e-05		988	1800	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p-n=100-e=800-q=200-d=0.25.11	Optimal	(I)	101.91	2257	0.13598	2453.5	9.8682e-05		1688	3300	4525
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p-n=100-e=800-q=200-d=0.25.11	Optimal	(L)	69.325	2257		2453.5	9.9604e-05		1688		
$p-n=100-e=800-q=200-d=0.25.11 \text{Feasible} \qquad (STM) \qquad 3600 2255.2 0.18897 \qquad 2597.1 \qquad 0.038214 800 \qquad 1688 3300 166118 1688 3300 166118 1689 16$	p-n=100-e=800-q=200-d=0.25.11											
	p-n=100-e=800-q=200-d=0.25.11	Feasible	(STM)	3600	2255.2	0.18897	2597.1	0.038214	800	1688	3300	166118

filename	status	formulation	time	value	nces - Part 3 relax_time	relax_value	gap	edges	columns	rows	nodes
p-n=100-e=800-q=200-d=0.25.12	Optimal	(U)	9.2206	2209.3	0.008999	2447.4	8.3911e-05	800	993	1800	895
p-n=100-e=800-q=200-d=0.25.12	Optimal	(I)	17.883	2209.3	0.15198	2324.7	8.4792e-05	800	1693	3300	873
p-n=100-e=800-q=200-d=0.25.12	Optimal	(L)	12.224	2209.3	0.06099	2324.7	7.7748e-05	800	1693	2500	851
p-n=100-e=800-q=200-d=0.25.12	Optimal	(P)	11.7	2209.3	0.017998	2434.6	9.8433e-05	800	993	1800	2931
p-n=100-e=800-q=200-d=0.25.12	Optimal	(STM)	1241.1	2209.3	0.23496	2422.3	9.9915e-05	800	1693	3300	133176
p-n=100-e=800-q=200-d=0.25.13	Optimal	(U)	32.281	2076.6	0.006999	2374.3	9.4537e-05	800	992	1800	3753
p-n=100-e=800-q=200-d=0.25.13	Optimal	(I)	68.168	2076.6	0.12398	2237.2	9.9489e-05	800	1692	3300	7935
p-n=100-e=800-q=200-d=0.25.13	Optimal	(L)	101.45	2076.6	0.050992	2237.2	9.9642e-05	800	1692	2500	16423
p-n=100-e=800-q=200-d=0.25.13	Optimal	(P)	296.09	2076.6	0.018997	2361.1	9.9764e-05	800	992	1800	126279
o-n=100-e=800-q=200-d=0.25.13	Feasible	(STM)	3600	2076.6	0.32995	2355.4	0.018742	800	1692	3300	257813
o-n=100-e=800-q=200-d=0.25.14	Optimal	(U)	31.485	2030.3	0.006999	2317.2	8.8811e-05	800	992	1800	2949
o-n=100-e=800-q=200-d=0.25.14	Optimal	(I)	41.032	2030.3	0.11198	2177.2	9.2557e-05	800	1692	3300	3045
o-n=100-e=800-q=200-d=0.25.14	Optimal	(L)	32.084	2030.3	0.050993	2177.2	9.6608e-05	800	1692	2500	3714
o-n=100-e=800-q=200-d=0.25.14	Optimal	(P)	82.144	2030.3	0.013998	2306.8	9.9411e-05	800	992	1800	30382
o-n=100-e=800-q=200-d=0.25.14	Feasible	(STM)	3600.1	2030.3	0.30695	2295.1	0.021209	800	1692	3300	225413
o-n=100-e=800-q=200-d=0.25.15	Optimal	(U)	169.88	2144.9	0.005999	2466.7	9.9e-05	800	990	1800	18241
o-n=100-e=800-q=200-d=0.25.15	Optimal	(I)	218.65	2144.9	0.15598	2339.9	9.7763e-05	800	1690	3300	17440
o-n=100-e=800-q=200-d=0.25.15	Optimal	(L)	138.85	2144.9	0.041993	2339.9	9.9403e-05	800	1690	2500	16200
o-n=100-e=800-q=200-d=0.25.15	Optimal	(P)	785.22	2144.9	0.018997	2457.7	9.996e-05	800	990	1800	324986
			3600	2144.9	0.27496			800			193611
o-n=100-e=800-q=200-d=0.25.15	Feasible	(STM)				2457.6	0.041225		1690	3300	
o-n=100-e=800-q=200-d=0.25.16	Optimal	(U)	54.189	2054.2	0.007999	2358.3	9.6686e-05	800	989	1800	4135
o-n=100-e=800-q=200-d=0.25.16	Optimal	(I)	64.93	2054.2	0.10298	2216.6	8.9183e-05	800	1689	3300	4651
o-n=100-e=800-q=200-d=0.25.16	Optimal	(L)	91.068	2054.2	0.047993	2216.6	9.9175e-05	800	1689	2500	11054
o-n=100-e=800-q=200-d=0.25.16	Optimal	(P)	134.05	2054.2	0.019997	2348.6	9.8181e-05	800	989	1800	38819
o-n=100-e=800-q=200-d=0.25.16	Feasible	(STM)	3600	2054.2	0.21097	2350.9	0.019857	800	1689	3300	188210
o-n=100-e=800-q=200-d=0.25.17	Optimal	(U)	104.27	2125.9	0.005999	2420.6	9.5599e-05	800	990	1800	9091
o-n=100-e=800-q=200-d=0.25.17	Optimal	(I)	79.151	2125.9	0.096986	2298.2	9.9748e-05	800	1690	3300	6344
o-n=100-e=800-q=200-d=0.25.17	Optimal	(L)	61.74	2125.9	0.06499	2298.2	9.8733e-05	800	1690	2500	8398
o-n=100-e=800-q=200-d=0.25.17	Optimal	(P)	154.52	2125.9	0.021997	2409.9	9.9757e-05	800	990	1800	47386
p-n=100-e=800-q=200-d=0.25.17	Feasible	(STM)	3600	2125.9	0.24396	2427.2	0.026456	800	1690	3300	194811
p-n=100-e=800-q=200-d=0.25.18	Optimal	(U)	45.622	2041.2	0.006999	2349.9	8.3941e-05	800	989	1800	3551
o-n=100-e=800-q=200-d=0.25.18	Optimal	(I)	63.152	2041.2	0.094986	2198.3	9.7613e-05	800	1689	3300	4521
o-n=100-e=800-q=200-d=0.25.18	Optimal	(L)	47.498	2041.2	0.078988	2198.3	9.9388e-05	800	1689	2500	6100
o-n=100-e=800-q=200-d=0.25.18	Optimal	(P)	110.19	2041.2	0.021996	2337	9.8735e-05	800	989	1800	32402
o-n=100-e=800-q=200-d=0.25.18	Feasible	(STM)	3600	2041.2	0.22397	2316.1	0.028549	800	1689	3300	125976
o-n=100-e=800-q=200-d=0.25.19	Optimal	(U)	56.77	2211.9	0.007999	2494.1	9.8003e-05	800	994	1800	6584
o-n=100-e=800-q=200-d=0.25.19	Optimal	(I)	53.424	2211.9	0.13198	2328.7	9.9001e-05	800	1694	3300	3387
o-n=100-e=800-q=200-d=0.25.19	Optimal	(L)	45.466	2211.9	0.061991	2328.7	9.9468e-05	800	1694	2500	5227
p-n=100-e=800-q=200-d=0.25.19	Optimal	(P)	58.471	2211.9	0.019997	2479.4	9.993e-05	800	994	1800	13901
p-n=100-e=800-q=200-d=0.25.19	Feasible	(STM)	3600	2211.9	0.16198	2477	0.017566	800	1694	3300	266841
p-n=150-e=1200-q=200-d=0.25.0	Optimal	(U)	1480.6	3157.7	0.010998	3680.9	9.964e-05	1200	1481	2700	103132
p-n=150-e=1200-q=200-d=0.25.0	Optimal	(I)	1461.2	3157.7	0.18297	3464.4	9.9202e-05	1200	2531	4950	72792
p-n=150-e=1200-q=200-d=0.25.0	Optimal	(L)	1718.5	3157.7	0.11198	3464.4	9.9772e-05	1200	2531	3750	253445
p-n=150-e=1200-q=200-d=0.25.0	Feasible	(P)	3600	3157.7	0.035995	3662.8	0.014424	1200	1481	2700	879222
p-n=150-e=1200-q=200-d=0.25.0	Feasible	(STM)	3600	3157.7	0.42094	3657.3	0.052463	1200	2531	4950	144361
p-n=150-e=1200-q=200-d=0.25.1	Optimal	(U)	74.804	3309.4	0.012998	3740.6	9.6113e-05	1200	1491	2700	3995
p-n=150-e=1200-q=200-d=0.25.1	Optimal	(I)	140.59	3309.4	0.19997	3530.4	9.9606e-05	1200	2541	4950	5403
p-n=150-e=1200-q=200-d=0.25.1	Optimal	(L)	107.97	3309.4	0.10798	3530.4	9.8482e-05	1200	2541	3750	8637
p-n=150-e=1200-q=200-d=0.25.1	Optimal	(P)	397.12	3309.4	0.038994	3722.8	9.9931e-05	1200	1491	2700	81660
p-n=150-e=1200-q=200-d=0.25.1	Feasible	(STM)	3600	3306.2	0.36994	3708.2	0.030736	1200	2541	4950	114192
p-n=150-e=1200-q=200-d=0.25.2	Optimal	(U)	157.1	3087.6	0.011998	3527.9	9.5548e-05	1200	1492	2700	9655
o-n=150-e=1200-q=200-d=0.25.2	Optimal	(I)	361.24	3087.6	0.24496	3336.9	9.913e-05	1200	2542	4950	18343
p-n=150-e=1200-q=200-d=0.25.2	Optimal	(L)	281.41	3087.6	0.091986	3336.9	9.9969e-05	1200	2542	3750	23511
p-n=150-e=1200-q=200-d=0.25.2 p-n=150-e=1200-q=200-d=0.25.2	Optimal	(E)	970.09	3087.6	0.091986	3504.3	9.9969e-05 0	1200	1492	2700	323808
		(-)									
o-n=150-e=1200-q=200-d=0.25.2	Feasible	(STM)	3600	3087.6	0.44093	3507	0.027321	1200	2542	4950	132493
o-n=150-e=1200-q=200-d=0.25.3	Optimal	(U)	218.32	3342.9	0.009998	3801.6	9.9153e-05	1200	1488	2700	13726
o-n=150-e=1200-q=200-d=0.25.3	Optimal	(I)	358.36	3342.9	0.16198	3619.6	9.9567e-05	1200	2538	4950	20311
o-n=150-e=1200-q=200-d=0.25.3	Optimal	(L)	243.96	3342.9	0.086987	3619.6	9.9954e-05	1200	2538	3750	28161
o-n=150-e=1200-q=200-d=0.25.3	Optimal	(P)	882.77	3342.9	0.027996	3777.8	9.9918e-05	1200	1488	2700	237039
o-n=150-e=1200-q=200-d=0.25.3	Feasible	(STM)	3600.1	3340.5	0.28396	3800.8	0.030199	1200	2538	4950	145811
o-n=150-e=1200-q=200-d=0.25.4	Optimal	(U)	300.38	3223.5	0.010999	3674.8	9.9518e-05	1200	1484	2700	21851
o-n=150-e=1200-q=200-d=0.25.4	Optimal	(I)	235.57	3223.5	0.15398	3455	9.9819e-05	1200	2534	4950	13199
o-n=150-e=1200-q=200-d=0.25.4	Optimal	(L)	270.58	3223.5	0.088986	3455	9.8168e-05	1200	2534	3750	25658
o-n=150-e=1200-q=200-d=0.25.4	Optimal	(P)	1486.9	3223.5	0.039994	3649.4	9.9945e-05	1200	1484	2700	356109
o-n=150-e=1200-q=200-d=0.25.4	Feasible	(STM)	3600.1	3223.2	0.32395	3656.8	0.028531	1200	2534	4950	118396
o-n=150-e=1200-q=200-d=0.25.5	Optimal	(U)	352.37	3173.5	0.010998	3624.1	9.9777e-05	1200	1487	2700	19281
o-n=150-e=1200-q=200-d=0.25.5	Optimal	(I)	440.29	3173.5	0.30595	3402.8	9.9905e-05	1200	2537	4950	16871
o-n=150-e=1200-q=200-d=0.25.5	Optimal	(L)	353.64	3173.5	0.091987	3402.8	9.9795e-05	1200	2537	3750	28097
o-n=150-e=1200-q=200-d=0.25.5	Feasible	(P)	3600	3173.5	0.022997	3599.3	0.0051219	1200	1487	2700	1045383
o-n=150-e=1200-q=200-d=0.25.5	Feasible	(STM)	3600	3173.5	0.54092	3591.1	0.033239	1200	2537	4950	125188
				3173.5	0.54092	3686.2		1200	2537 1476	$\frac{4950}{2700}$	46461
o-n=150-e=1200-q=200-d=0.25.6	Optimal	(U)	1196.3	0-00			9.9423e-05				
p-n=150-e=1200-q=200-d=0.25.6	Optimal	(I)	2011.9	3130.7	0.23896	3464.9	9.9993e-05	1200	2526	4950	77332
o-n=150-e=1200-q=200-d=0.25.6	Optimal	(L)	1382	3130.7	0.12098	3464.9	9.9944e-05	1200	2526	3750	83883
o-n=150-e=1200-q=200-d=0.25.6	Feasible	(P)	3600	3130.7	0.030995	3663.8	0.014264	1200	1476	2700	625317
p-n=150-e=1200-q=200-d=0.25.6	Feasible	(STM)	3600.1	3130.1	0.25596	3658.2	0.059864	1200	2526	4950	78271
p-n=150-e=1200-q=200-d=0.25.7	Feasible	(U)	3600	3216.1	0.011998	3707.4	0.0038681	1200	1485	2700	132971
o-n=150-e=1200-q=200-d=0.25.7	Feasible	(I)	3600	3216.1	0.22596	3487.5	0.0029645	1200	2535	4950	147586
o-n=150-e=1200-q=200-d=0.25.7	Feasible	(L)	3600	3216.1	0.10398	3487.5	0.0040491	1200	2535	3750	363686
480 4000 000 1 000 8	Feasible	(P)	3600	3216.1	0.035995	3686	0.018008	1200	1485	2700	710071
p-n=150-e=1200-q=200-d=0.25.7											

filename	status	formulation	time	All Instar	nces - Part 4 relax_time	relax_value	gap	edges	columns	rows	nodes
p-n=150-e=1200-q=200-d=0.25.8	Optimal	(U)	897.44	3303.9	0.008999	3802.8	9.9792e-05	1200	1487	2700	49012
p-n=150-e=1200-q=200-d=0.25.8	Optimal	(I)	1725.7	3303.9	0.20797	3595.7	9.9913e-05	1200	2537	4950	89461
p-n=150-e=1200-q=200-d=0.25.8	Optimal	(L)	889.23	3303.9	0.088987	3595.7	9.9892e-05	1200	2537	3750	89237
p-n=150-e=1200-q=200-d=0.25.8	Feasible	(P)	3600	3303.9	0.032995	3774.1	0.0077325	1200	1487	2700	921473
p-n=150-e=1200-q=200-d=0.25.8	Feasible	(STM)	3600	3303.9	0.42294	3781.5	0.03606	1200	2537	4950	131230
p-n=150-e=1200-q=200-d=0.25.9	Optimal	(U)	574.4	3384	0.011998	3855.2	9.9114e-05	1200	1486	2700	29703
p-n=150-e=1200-q=200-d=0.25.9	Optimal	(I)	560.7	3384	0.26196	3654.4	9.9652e-05	1200	2536	4950	28921
p-n=150-e=1200-q=200-d=0.25.9	Optimal	(L)	175.11	3384	0.11898	3654.4	9.9947e-05	1200	2536	3750	13552
p-n=150-e=1200-q=200-d=0.25.9	Optimal	(P)	3029	3384	0.039994	3834.5	9.998e-05	1200	1486	2700	695567
p-n=150-e=1200-q=200-d=0.25.9 p-n=150-e=1200-q=200-d=0.25.10	Feasible Feasible	(STM) (U)	3600 3600	3384 3103	0.32095 0.012998	3814.7 3646.9	0.036321 0.014573	1200 1200	2536 1486	$\frac{4950}{2700}$	110187 99172
p-n=150-e=1200-q=200-d=0.25.10 p-n=150-e=1200-q=200-d=0.25.10	Feasible	(I)	3600	3103	0.25496	3428.4	0.014373	1200	2536	4950	119087
p-n=150-e=1200-q=200-d=0.25.10	Feasible	(L)	3600	3103	0.11798	3428.4	0.01307	1200	2536	3750	285087
p-n=150-e=1200-q=200-d=0.25.10	Feasible	(P)	3600	3103	0.029996	3627.5	0.02567	1200	1486	2700	1069021
p-n=150-e=1200-q=200-d=0.25.10	Feasible	(STM)	3600	3094.8	0.37794	3612.5	0.070473	1200	2536	4950	120811
p-n=150-e=1200-q=200-d=0.25.11	Optimal	(U)	1017.9	3132.7	0.013998	3628.3	9.9785e-05	1200	1489	2700	51897
p-n=150-e=1200-q=200-d=0.25.11	Optimal	(I)	483.12	3132.7	0.18397	3415.7	9.9746e-05	1200	2539	4950	31898
p-n=150-e=1200-q=200-d=0.25.11	Optimal	(L)	651.48	3132.7	0.085987	3415.7	9.9984e-05	1200	2539	3750	89877
p-n=150-e=1200-q=200-d=0.25.11	Feasible	(P)	3600	3132.7	0.033995	3606.4	0.0063949	1200	1489	2700	846467
p-n=150-e=1200-q=200-d=0.25.11	Feasible	(STM)	3600	3132.7	0.52192	3582.5	0.034921	1200	2539	4950	96390
p-n=150-e=1200-q=200-d=0.25.12	Optimal	(U)	149.77	3153.9	0.010999	3575.8	9.83e-05	1200	1485	2700	11185
p-n=150-e=1200-q=200-d=0.25.12	Optimal	(I)	301.78	3153.9	0.21997	3370.7	9.9596e-05	1200	2535	4950	14921
p-n=150-e=1200-q=200-d=0.25.12	Optimal	(L)	130.37	3153.9	0.077988	3370.7	9.9586e-05	1200	2535	3750	16282
p-n=150-e=1200-q=200-d=0.25.12	Optimal	(P)	1297.6	3153.9	0.030996	3561.6	9.9939e-05	1200	1485	2700	405859
p-n=150-e=1200-q=200-d=0.25.12	Feasible	(STM)	3600.1	3153.9	0.29996	3546.8	0.030177	1200	2535	4950	124386
p-n=150-e=1200-q=200-d=0.25.13	Optimal	(U)	2844.3	3067.8	0.010999	3545.4	9.9931e-05	1200	1483	2700	145071
p-n=150-e=1200-q=200-d=0.25.13	Optimal	(I)	1591	3067.8	0.18897	3354.9	9.9861e-05	1200	2533	4950	84274
p-n=150-e=1200-q=200-d=0.25.13	Feasible	(L)	3600	3067.8	0.10898	3354.9	0.0033283	1200	2533	3750	205367
p-n=150-e=1200-q=200-d=0.25.13 p-n=150-e=1200-q=200-d=0.25.13	Feasible Feasible	(P) (STM)	3600.1 3600	3067.8	0.031995 0.39894	3521.8 3542.9	0.013198 0.050959	1200 1200	1483 2533	2700 4950	725524 114918
p-n=150-e=1200-q=200-d=0.25.13 p-n=150-e=1200-q=200-d=0.25.14			3600	3067.8	0.39894				1483	$\frac{4950}{2700}$	
p-n=150-e=1200-q=200-d=0.25.14 p-n=150-e=1200-q=200-d=0.25.14	Feasible Feasible	(U) (I)	3600	3185.4 3185.4	0.22397	3745.1 3504.8	0.0048199 0.005003	1200 1200	2533	4950	105265
p-n=150-e=1200-q=200-d=0.25.14 p-n=150-e=1200-q=200-d=0.25.14	Feasible	(L)	3600	3185.4	0.22397	3504.8	0.0037664	1200	2533	3750	151084 318575
p-n=150-e=1200-q=200-d=0.25.14 p-n=150-e=1200-q=200-d=0.25.14	Feasible	(P)	3600	3185.4	0.039994	3723.2	0.014132	1200	1483	2700	638935
p-n=150-e=1200-q=200-d=0.25.14 p-n=150-e=1200-q=200-d=0.25.14	Feasible	(STM)	3600	3181.1	0.32895	3752.3	0.054618	1200	2533	4950	141401
p-n=150-e=1200-q=200-d=0.25.15	Optimal	(U)	866.83	3334.2	0.011998	3837.4	9.9322e-05	1200	1486	2700	32346
p-n=150-e=1200-q=200-d=0.25.15	Optimal	(I)	620.1	3334.2	0.28996	3596.6	9.9464e-05	1200	2536	4950	20859
p-n=150-e=1200-q=200-d=0.25.15	Optimal	(L)	438.16	3334.2	0.10698	3596.6	9.9623e-05	1200	2536	3750	34839
p-n=150-e=1200-q=200-d=0.25.15	Feasible	(P)	3600	3334.2	0.032995	3823.1	0.0050582	1200	1486	2700	874743
p-n=150-e=1200-q=200-d=0.25.15	Feasible	(STM)	3600	3334.2	0.53792	3762.7	0.037484	1200	2536	4950	75751
p-n=150-e=1200-q=200-d=0.25.16	Feasible	(U)	3600	3155.6	0.010998	3690.6	0.0073831	1200	1481	2700	133022
p-n=150-e=1200-q=200-d=0.25.16	Feasible	(I)	3600	3155.6	0.20897	3469.3	0.007021	1200	2531	4950	165417
p-n=150-e=1200-q=200-d=0.25.16	Feasible	(L)	3600.1	3155.6	0.090986	3469.3	0.0041938	1200	2531	3750	323682
p-n=150-e=1200-q=200-d=0.25.16	Feasible	(P)	3600.1	3155.6	0.032995	3670.7	0.026249	1200	1481	2700	864622
p-n=150-e=1200-q=200-d=0.25.16	Feasible	(STM)	3600	3154.8	0.51892	3680.1	0.061944	1200	2531	4950	122182
p-n=150-e=1200-q=200-d=0.25.17	Feasible	(U)	3600	3074.5	0.008999	3667.7	0.0049066	1200	1482	2700	114913
p-n=150-e=1200-q=200-d=0.25.17	Feasible	(I)	3600.1	3074.5	0.27996	3433.9	0.0057346	1200	2532	4950	115183
p-n=150-e=1200-q=200-d=0.25.17	Feasible	(L)	3600	3074.5	0.12498	3433.9	0.008554	1200	2532	3750	248683
p-n=150-e=1200-q=200-d=0.25.17	Feasible	(P)	3600	3074.5	0.032995	3642.3	0.028438	1200	1482	2700	987523
p-n=150-e=1200-q=200-d=0.25.17	Feasible	(STM)	3600.1	3067.9	0.33895	3647.7	0.071107	1200	2532	4950	89841
p-n=150-e=1200-q=200-d=0.25.18 p-n=150-e=1200-q=200-d=0.25.18	Optimal Optimal	(U) (I)	146.35 152.55	3255.7 3255.7	0.010998 0.17197	3680.5 3503.4	9.8382e-05 9.8334e-05	1200 1200	$\frac{1485}{2535}$	$\frac{2700}{4950}$	7886 7767
p-n=150-e=1200-q=200-d=0.25.18 p-n=150-e=1200-q=200-d=0.25.18	Optimal	(L)	165.96	3255.7	0.17197	3503.4	9.8334e-05 9.9719e-05	1200	2535 2535	$\frac{4950}{3750}$	15018
p-n=150-e=1200-q=200-d=0.25.18 p-n=150-e=1200-q=200-d=0.25.18	Optimal	(E)	1557.4	3255.7	0.037994	3664.6	9.996e-05	1200	1485	2700	445225
p-n=150-e=1200-q=200-d=0.25.18 p-n=150-e=1200-q=200-d=0.25.18	Feasible	(STM)	3600	3255.7	0.49893	3687	0.031753	1200	2535	4950	106451
p-n=150-e=1200-q=200-d=0.25.19	Feasible	(U)	3600	3088	0.011998	3643	0.0087773	1200	1483	2700	57339
p-n=150-e=1200-q=200-d=0.25.19	Feasible	(I)	3600.1	3088	0.27496	3411.1	0.0070284	1200	2533	4950	74384
p-n=150-e=1200-q=200-d=0.25.19	Optimal	(L)	3581.5	3088	0.11198	3411.1	9.9886e-05	1200	2533	3750	358960
p-n=150-e=1200-q=200-d=0.25.19	Feasible	(P)	3600	3088	0.039994	3619.5	0.023907	1200	1483	2700	838624
p-n=150-e=1200-q=200-d=0.25.19	Feasible	(STM)	3600.1	3077.9	0.6359	3606.3	0.070872	1200	2533	4950	137011
p-n=200-e=1600-q=200-d=0.25.0	Feasible	(U)	3600	4078.3	0.021997	4708.1	0.014327	1600	1982	3600	58861
p-n=200-e=1600-q=200-d=0.25.0	Feasible	(I)	3600.1	4077.7	0.32395	4461.1	0.0066127	1600	3382	6600	95778
p-n=200-e=1600-q=200-d=0.25.0	Feasible	(L)	3600.1	4078.3	0.15998	4461.1	0.0088133	1600	3382	5000	222078
p-n=200-e=1600-q=200-d=0.25.0	Feasible	(P)	3600	4067.2	0.042993	4687.2	0.02818	1600	1982	3600	679501
p-n=200-e=1600-q=200-d=0.25.0	Feasible	(STM)	3600.1	4064.3	1.0898	4692.6	0.0648	1600	3382	6600	92131
p-n=200-e=1600-q=200-d=0.25.1	Feasible	(U)	3600.1	4308.3	0.015998	4949.4	0.0098543	1600	1981	3600	46566
p-n=200-e=1600-q=200-d=0.25.1	Feasible	(I)	3600	4308.3	0.39494	4676.9	0.01162	1600	3381	6600	51508
p-n=200-e=1600-q=200-d=0.25.1	Feasible	(L)	3600.1	4308.3	0.19497	4676.9	0.0094979	1600	3381	5000	152277
p-n=200-e=1600-q=200-d=0.25.1	Feasible	(P)	3600	4308.3	0.053992	4921.9	0.025232	1600	1981	3600	343152
p-n=200-e=1600-q=200-d=0.25.1	Feasible	(STM)	3600.1	4294.6	0.55592	4914.2	0.057598	1600	3381	6600	77701
p-n=200-e=1600-q=200-d=0.25.2	Optimal	(U)	2144.1	4239.8	0.019997	4867.3	9.9749e-05	1600	1981	3600	89125
p-n=200-e=1600-q=200-d=0.25.2	Optimal	(I)	1668.1	4239.8	0.43394	4609.5	9.9849e-05	1600	3381	6600	43654
p-n=200-e=1600-q=200-d=0.25.2	Optimal	(L)	1234.2	4239.8	0.12098	4609.5	9.9978e-05	1600	3381	5000	90004
p-n=200-e=1600-q=200-d=0.25.2	Feasible	(P)	3600	4239.8	0.028995	4844.4	0.015753	1600	1981	3600	689991
p-n=200-e=1600-q=200-d=0.25.2 p-n=200-e=1600-q=200-d=0.25.3	Feasible Feasible	(STM) (U)	3600 3600	4239.8 4161.2	0.76188 0.017997	4837.3 4694.5	0.04301 0.0034616	1600 1600	3381 1985	6600 3600	65001 71926
p-n=200-e=1600-q=200-d=0.25.3 p-n=200-e=1600-q=200-d=0.25.3		(I)	1532.5	4161.2 4161.2	0.017997 0.27196	$4694.5 \\ 4441.2$	0.0034616 9.9915e-05	1600	3385	6600	71926 65743
p-n=200-e=1600-q=200-d=0.25.3 p-n=200-e=1600-q=200-d=0.25.3	Optimal		974.63	4161.2	0.27196	4441.2 4441.2	9.9915e-05 9.9704e-05	1600	3385	5000	64714
p-n=200-e=1600-q=200-d=0.25.3 p-n=200-e=1600-q=200-d=0.25.3	Optimal Feasible	(L) (P)	3600	4161.2	0.17897	4672.8	0.0097904	1600	1985	3600	544617
p-n=200-e=1600-q=200-d=0.25.3 p-n=200-e=1600-q=200-d=0.25.3	Feasible Feasible	(STM)	3600	4161.2	0.57791	4670.3	0.033838	1600	3385	6600	65981
p-11-200-e-1000-q=200-a=0.25.3	reasible	(D 1 IVI)	3000	4101.2	0.57791	4010.3	0.000000	1000	3300	0000	00901

filename	status	formulation	time	value	ces - Part 5 relax_time	relax_value	gap	edges	columns	rows	nodes
p-n=200-e=1600-q=200-d=0.25.4	Feasible	(U)	3600.1	4167.2	0.017998	4826.7	0.0053135	1600	1980	3600	84451
p-n=200-e=1600-q=200-d=0.25.4	Feasible	(I)	3600	4167.2	0.43493	4528.6	0.0047275	1600	3380	6600	114259
p-n=200-e=1600-q=200-d=0.25.4	Optimal	(L)	3501.3	4167.2	0.13798	4528.6	9.999e-05	1600	3380	5000	226518
p-n=200-e=1600-q=200-d=0.25.4	Feasible	(P)	3600	4167.2	0.040993	4796.9	0.019239	1600	1980	3600	569381
p-n=200-e=1600-q=200-d=0.25.4	Feasible	(STM)	3600	4167.2	0.6519	4777.2	0.047653	1600	3380	6600	149354
p-n=200-e=1600-q=200-d=0.25.5	Feasible	(U)	3600.1	4372.4	0.023996	5050.2	0.013818	1600	1977	3600	49303
p-n=200-e=1600-q=200-d=0.25.5	Feasible Feasible	(I) (L)	3600 3600	4372.9 4372.9	$0.27396 \\ 0.15698$	4782.8 4782.8	0.01121 0.013185	1600 1600	3377 3377	6600 5000	75373 98773
p-n=200-e=1600-q=200-d=0.25.5 p-n=200-e=1600-q=200-d=0.25.5	Feasible	(P)	3600	4372.9	0.13098	5025.8	0.013183	1600	1977	3600	440641
p-n=200-e=1600-q=200-d=0.25.5	Feasible	(STM)	3600	4372.4	0.90686	5031.7	0.044689	1600	3377	6600	65800
p-n=200-e=1600-q=200-d=0.25.6	Optimal	(U)	2886.3	4154.8	0.029995	4758.5	9.9937e-05	1600	1982	3600	99100
p-n=200-e=1600-q=200-d=0.25.6	Optimal	(I)	2883.2	4154.8	0.42394	4475.6	9.9998e-05	1600	3382	6600	82825
p-n=200-e=1600-q=200-d=0.25.6	Optimal	(L)	2126.9	4154.8	0.17497	4475.6	9.9897e-05	1600	3382	5000	113311
p-n=200-e=1600-q=200-d=0.25.6	Feasible	(P)	3600	4154.8	0.047993	4725	0.011293	1600	1982	3600	630821
p-n=200-e=1600-q=200-d=0.25.6	Feasible	(STM)	3600.1	4154.8	0.6339	4761.2	0.038979	1600	3382	6600	52611
p-n=200-e=1600-q=200-d=0.25.7	Optimal	(U)	434.69	4434.9	0.016997	5017.5	9.8982e-05	1600	1983	3600	18557
p-n=200-e=1600-q=200-d=0.25.7	Optimal	(I)	299.98	4434.9	0.33295	4730.1	9.9514e-05	1600	3383	6600	10578
p-n=200-e=1600-q=200-d=0.25.7	Optimal	(L)	263.24	4434.9	0.16897	4730.1	9.9704e-05	1600	3383	5000	14194
p-n=200-e=1600-q=200-d=0.25.7	Feasible	(P)	3600	4434.9	0.057991	4986.7	0.0020212	1600	1983	3600	592491
p-n=200-e=1600-q=200-d=0.25.7	Feasible	(STM)	3600	4434.9	1.1468	4980.1	0.027257	1600	3383	6600	80601
p-n=200-e=1600-q=200-d=0.25.8	Feasible	(U)	3600.1	4401.4	0.020997	5151.6	0.0056592	1600	1984	3600	48563
p-n=200-e=1600-q=200-d=0.25.8	Feasible	(I)	3600	4401.4	0.37194	4824.9	0.0029116	1600	3384	6600	79191
p-n=200-e=1600-q=200-d=0.25.8	Feasible	(L)	3600	4401.4	0.19697	4824.9	0.0016902	1600	3384	5000	117230
p-n=200-e=1600-q=200-d=0.25.8	Feasible	(P)	3600	4401.4	0.038994	5123.2	0.022124	1600	1984	3600	422401
p-n=200-e=1600-q=200-d=0.25.8	Feasible	(STM)	3600.1	4394.6	0.59891	5117.2	0.054092	1600	3384	6600	68841
p-n=200-e=1600-q=200-d=0.25.9	Feasible	(U)	3600.1	4417.7	0.014998	5138.3	0.0052134	1600	1978	3600	56732
p-n=200-e=1600-q=200-d=0.25.9	Feasible	(I)	3600	4417.7	0.34395	4871.3	0.0041375	1600	3378	6600	89074
p-n=200-e=1600-q=200-d=0.25.9	Feasible	(L)	3600	4417.7	0.19497	4871.3	0.0034415	1600	3378	5000	174239
p-n=200-e=1600-q=200-d=0.25.9	Feasible	(P)	3600	4417.7	0.054992	5106.2	0.01706	1600	1978	3600	547851
p-n=200-e=1600-q=200-d=0.25.9	Feasible	(STM)	3600.1	4416.5	0.50992	5117.9	0.052074	1600	3378	6600	62665
p-n=200-e=1600-q=200-d=0.25.10	Feasible	(U)	3600	4146.1	0.017997	4877	0.016856	1600	1978	3600	50504
p-n=200-e=1600-q=200-d=0.25.10	Feasible	(I)	3600	4146.1	0.32195	4571.9	0.012945	1600	3378	6600	75874
p-n=200-e=1600-q=200-d=0.25.10	Feasible	(L)	3600	4146.1	0.19397	4571.9	0.012221	1600	3378	5000	106245
p-n=200-e=1600-q=200-d=0.25.10	Feasible	(P)	3600	4146.1	0.046992	4837.7	0.028892	1600	1978	3600	621704
p-n=200-e=1600-q=200-d=0.25.10	Feasible	(STM)	3600.1	4134.2	0.52492	4867.4	0.064749	1600	3378	6600	84521
p-n=200-e=1600-q=200-d=0.25.11	Feasible	(U)	3600	4124.2	0.011999	4791.3	0.0052486	1600	1986	3600	72751
p-n=200-e=1600-q=200-d=0.25.11	Feasible	(I)	3600.1	4124.2	0.6579	4467.8	0.0028389	1600	3386	6600	92582
p-n=200-e=1600-q=200-d=0.25.11	Feasible	(L)	3600	4124.2	0.24496	4467.8	0.0017851	1600	3386	5000	178282
p-n=200-e=1600-q=200-d=0.25.11	Feasible Feasible	(P)	3600.1 3600.1	4124.2 4124.1	0.048992 0.54892	4755.6 4729.7	0.018673 0.054647	1600 1600	1986 3386	3600 6600	577790 95182
p-n=200-e=1600-q=200-d=0.25.11	Feasible	(STM)	3600.1	4362.2	0.54892	4729.7	0.0049692	1600	1978	3600	95182 45693
p-n=200-e=1600-q=200-d=0.25.12 p-n=200-e=1600-q=200-d=0.25.12	Feasible	(U) (I)	3600.1	4362.2	0.23197	4662.9	0.0038506	1600	3378	6600	66508
p-n=200-e=1600-q=200-d=0.25.12	Optimal	(L)	1610.9	4362.2	0.16398	4662.9	9.9829e-05	1600	3378	5000	52936
p-n=200-e=1600-q=200-d=0.25.12	Feasible	(P)	3600	4362.2	0.034994	4914.3	0.013326	1600	1978	3600	527505
p-n=200-e=1600-q=200-d=0.25.12 p-n=200-e=1600-q=200-d=0.25.12	Feasible	(STM)	3600	4362.2	0.41494	4925.1	0.03908	1600	3378	6600	56911
p-n=200-e=1600-q=200-d=0.25.13	Feasible	(U)	3600.1	4285	0.023996	4992	0.010871	1600	1981	3600	43833
p-n=200-e=1600-q=200-d=0.25.13	Feasible	(I)	3600	4285	0.42594	4688	0.0071136	1600	3381	6600	67662
p-n=200-e=1600-q=200-d=0.25.13	Feasible	(L)	3600	4285	0.20597	4688	0.0089541	1600	3381	5000	106877
p-n=200-e=1600-q=200-d=0.25.13	Feasible	(P)	3600.1	4285	0.056992	4966.7	0.021936	1600	1981	3600	540101
p-n=200-e=1600-q=200-d=0.25.13	Feasible	(STM)	3600.1	4285	1.0478	4932.7	0.044819	1600	3381	6600	72971
p-n=200-e=1600-q=200-d=0.25.14	Feasible	(U)	3600	4379	0.017998	5129.4	0.013442	1600	1983	3600	56861
p-n=200-e=1600-q=200-d=0.25.14	Feasible	(I)	3600	4379	0.41494	4846.1	0.011774	1600	3383	6600	65619
p-n=200-e=1600-q=200-d=0.25.14	Feasible	(L)	3600.1	4379	0.17597	4846.1	0.01288	1600	3383	5000	130379
p-n=200-e=1600-q=200-d=0.25.14	Feasible	(P)	3600	4379	0.056991	5103.4	0.030223	1600	1983	3600	388848
p-n=200-e=1600-q=200-d=0.25.14	Feasible	(STM)	3600.1	4368.6	0.54892	5085.9	0.068007	1600	3383	6600	58091
p-n=200-e=1600-q=200-d=0.25.15	Feasible	(U)	3600	4360.8	0.018997	4985.1	0.0039528	1600	1969	3600	68395
p-n=200-e=1600-q=200-d=0.25.15	Feasible	(I)	3600	4360.8	0.42494	4690.9	0.0023787	1600	3369	6600	68865
p-n=200-e=1600-q=200-d=0.25.15	Feasible	(L)	3600	4360.8	0.10998	4690.9	0.0016278	1600	3369	5000	156771
p-n=200-e=1600-q=200-d=0.25.15	Feasible	(P)	3600	4360.8	0.031996	4951.4	0.011304	1600	1969	3600	534521
p-n=200-e=1600-q=200-d=0.25.15	Feasible	(STM)	3600	4360.8	0.73789	4945.4	0.041451	1600	3369	6600	68031
p-n=200-e=1600-q=200-d=0.25.16	Feasible	(U)	3600.1	4280.9	0.020997	4918.3	0.014786	1600	1967	3600	50393
p-n=200-e=1600-q=200-d=0.25.16	Feasible	(I)	3600.1	4280.9	0.27896	4639.3	0.010115	1600	3367	6600	72481
p-n=200-e=1600-q=200-d=0.25.16	Feasible	(L)	3600	4280.9	0.12398	4639.3	0.0081344	1600	3367	5000	105863
p-n=200-e=1600-q=200-d=0.25.16	Feasible	(P)	3600.1	4280.9	0.051992	4886.5	0.0269	1600	1967	3600	440511
p-n=200-e=1600-q=200-d=0.25.16	Feasible	(STM)	3600.1	4280.9	1.0009	4904.6	0.052514	1600	3367	6600	52931
p-n=200-e=1600-q=200-d=0.25.17	Optimal	(U)	871.91	4291.6	0.016997	4868.6	9.993e-05	1600	1973	3600	27331
p-n=200-e=1600-q=200-d=0.25.17	Optimal	(I)	2345.8	4291.6	0.37394	4570.4	9.9947e-05	1600	3373	6600	49437
p-n=200-e=1600-q=200-d=0.25.17	Optimal	(L)	577.66	4291.6	0.17497	4570.4	9.9599e-05	1600	3373	5000	18978
p-n=200-e=1600-q=200-d=0.25.17	Feasible	(P)	3600	4291.6	0.041994	4842.4	0.0091774	1600	1973	3600	560699
p-n=200-e=1600-q=200-d=0.25.17 p-n=200-e=1600-q=200-d=0.25.18	Feasible Feasible	(STM) (U)	3600.2 3600.1	4291.6 4103.1	1.1748 0.016997	4833.5 4851.4	0.036375 0.016671	1600 1600	3373 1980	6600 3600	67091 70651
p-n=200-e=1600-q=200-d=0.25.18 p-n=200-e=1600-q=200-d=0.25.18	Feasible Feasible	(I)	3600.1	4103.1 4103.1	0.016997	4851.4 4593.9	0.0000	1600	1980 3380	3600 6600	70651
	Feasible		3600.1	4103.1	0.36594 0.22997	4593.9 4593.9	0.015987 0.014913	1600	3380	5000	111676
p-n=200-e=1600-q=200-d=0.25.18 p-n=200-e=1600-q=200-d=0.25.18	Feasible	(L) (P)	3600.1	4103.1	0.22997	4593.9 4825.2	0.014913	1600	3380 1980	3600	478141
p-n=200-e=1600-q=200-d=0.25.18 p-n=200-e=1600-q=200-d=0.25.18	Feasible	(STM)	3600.1	4103.1	0.048993	4825.2 4847.7	0.083167	1600	3380	6600	97276
	Feasible	(STM) (U)	3600.1	4080.4 4278.6	0.77488	4847.7	0.083167	1600	3380 1977	3600	75732
	reasible	(U)	3000	4410.0	0.010999	404U.1			1311	3000	10104
p-n=200-e=1600-q=200-d=0.25.19	Fearible	(T)	3600	1279 6	0.16109	4664 4	0.011170	1600	2277	6600	103672
p-n=200-e=1600-q=200-d=0.25.19	Feasible	(I)	3600	4278.6	0.16198	4664.4	0.011179	1600	3377	6600 5000	103673
	Feasible Feasible Feasible	(I) (L) (P)	3600 3600 3600	4278.6 4278.6 4278.6	0.16198 0.093986 0.025996	4664.4 4664.4 4885.8	0.011179 0.010996 0.026088	1600 1600 1600	3377 3377 1977	6600 5000 3600	103673 180756 809503

filename	status	formulation	time	All Instan	ces - Part 6 relax_time	relax_value	gap	edges	columns	rows	nodes
p-n=250-e=2000-q=200-d=0.25.0	Feasible	(U)	3600.1	5465	0.017997	6314.8	0.023665	2000	2464	4500	51965
p-n=250-e=2000-q=200-d=0.25.0	Feasible	(I)	3600.1	5459.8	0.51592	5991.8	0.023093	2000	4214	8250	45795
p-n=250-e=2000-q=200-d=0.25.0	Feasible	(L)	3600.1	5462	0.25796	5991.8	0.019937	2000	4214	6250	89295
p-n=250-e=2000-q=200-d=0.25.0	Feasible	(P)	3600	5461.2	0.047993	6287.6	0.037879	2000	2464	4500	359261
p-n=250-e=2000-q=200-d=0.25.0	Feasible	(STM)	3600.1	5437.4	0.40794	6252.3	0.070327	2000	4214	8250	52791
p-n=250-e=2000-q=200-d=0.25.1	Feasible	(U)	3600	5341.1	0.021997	6217.7	0.016568	2000	2472	4500	44123
p-n=250-e=2000-q=200-d=0.25.1	Feasible	(I)	3600.1	5336.5	0.53292	5905.3	0.017361	2000	4222	8250	37503
p-n=250-e=2000-q=200-d=0.25.1	Feasible	(L)	3600	5336.5	0.22197	5905.3	0.016989	2000	4222	6250	98511
p-n=250-e=2000-q=200-d=0.25.1	Feasible	(P)	3600	5341.1	0.099985	6182.1	0.0311	2000	2472	4500	381511
p-n=250-e=2000-q=200-d=0.25.1	Feasible	(STM)	3600.1	5330.1	0.56392	6156.9	0.056111	2000	4222	8250	50811
p-n=250-e=2000-q=200-d=0.25.2	Feasible	(U)	3600	5186.5	0.019997	5947.8	0.0091112	2000	2476	4500	43902
p-n=250-e=2000-q=200-d=0.25.2	Feasible	(I)	3600.1	5184.4	0.6869	5624.8	0.010969	2000	4226	8250	39207
p-n=250-e=2000-q=200-d=0.25.2	Feasible	(L)	3600	5186.5	0.14498	5624.8	0.0077448	2000	4226	6250	96932
p-n=250-e=2000-q=200-d=0.25.2	Feasible	(P)	3600	5186.5	0.043993	5914.1	0.020326	2000	2476	4500	417272
p-n=250-e=2000-q=200-d=0.25.2	Feasible	(STM)	3600	5181.8	0.47393	5931.5	0.052808	2000	4226	8250	51241
p-n=250-e=2000-q=200-d=0.25.3	Feasible	(U)	3600	5334.4	0.023997	6251.8	0.022304	2000	2466	4500	51721
p-n=250-e=2000-q=200-d=0.25.3	Feasible	(I)	3600.1	5334.4	0.48293	5870.6	0.016789	2000	4216	8250	56297
p-n=250-e=2000-q=200-d=0.25.3	Feasible	(L)	3600	5334.4	0.25596	5870.6	0.017857	2000	4216	6250	72951
p-n=250-e=2000-q=200-d=0.25.3	Feasible	(P)	3600.1	5334.4	0.06199	6216.5	0.035981	2000	2466	4500	325941
p-n=250-e=2000-q=200-d=0.25.3	Feasible	(STM)	3600.1	5333.5	0.49193	6224.4	0.074025	2000	4216	8250	47097
p-n=250-e=2000-q=200-d=0.25.4	Feasible	(U)	3600	5313.8	0.021997	6128.2	0.01414	2000	2464	4500	52415
p-n=250-e=2000-q=200-d=0.25.4	Feasible	(I)	3600	5313.8	0.42094	5766.8	0.014109	2000	4214	8250	45649
p-n=250-e=2000-q=200-d=0.25.4	Feasible	(L)	3600.1	5313.8	0.23896	5766.8	0.014109	2000	4214	6250	122695
p-n=250-e=2000-q=200-d=0.25.4 p-n=250-e=2000-q=200-d=0.25.4	Feasible	(P)	3600.1	5313.8	0.23890	6097.1	0.012399	2000	2464	4500	413081
p-n=250-e=2000-q=200-d=0.25.4 p-n=250-e=2000-q=200-d=0.25.4	Feasible	(STM)	3600.1	5305.4	0.41994	6066.7	0.058459	2000	4214	8250	64741
p-n=250-e=2000-q=200-d=0.25.4 p-n=250-e=2000-q=200-d=0.25.5	Feasible	(U)	3600.1	5148.5	0.025996	6096.7	0.038439	2000	2473	4500	39424
p-n=250-e=2000-q=200-d=0.25.5 p-n=250-e=2000-q=200-d=0.25.5	Feasible	(I)	3600.1	5148.5	0.55292	5706.8	0.022803	2000	4223	8250	31657
p-n=250-e=2000-q=200-d=0.25.5 p-n=250-e=2000-q=200-d=0.25.5	Feasible	(L)	3600.1	5148.3	0.33292	5706.8	0.020521	2000	4223	6250	79204
p-n=250-e=2000-q=200-d=0.25.5 p-n=250-e=2000-q=200-d=0.25.5	Feasible	(P)	3600	5147.2	0.21397	6050.6	0.043721	2000	2473	4500	341211
p-n=250-e=2000-q=200-d=0.25.5 p-n=250-e=2000-q=200-d=0.25.5	Feasible	(STM)	3600	5134.8	0.078988	6079	0.043721	2000	4223	8250	52199
			3600		0.27396		0.080314	2000	2477		39083
p-n=250-e=2000-q=200-d=0.25.6	Feasible	(U)		5256.3		6094.8				4500	
p-n=250-e=2000-q=200-d=0.25.6	Feasible	(I)	3600.1	5256.3	0.50292	5781.4	0.0076694	2000	4227	8250	70231
p-n=250-e=2000-q=200-d=0.25.6	Feasible	(L)	3600.1	5256.3	0.32695	5781.4	0.0088327	2000	4227	6250	86608
p-n=250-e=2000-q=200-d=0.25.6	Feasible	(P)	3600	5256.3	0.06599	6061.1	0.026604	2000	2477	4500	432286
p-n=250-e=2000-q=200-d=0.25.6	Feasible	(STM)	3600.1	5254.2	0.44593	6083	0.062431	2000	4227	8250	56811
p-n=250-e=2000-q=200-d=0.25.7	Feasible	(U)	3600	5279.4	0.021997	6098.4	0.010179	2000	2478	4500	73889
p-n=250-e=2000-q=200-d=0.25.7	Feasible	(I)	3600	5279.4	0.40494	5741.1	0.0065305	2000	4228	8250	88809
p-n=250-e=2000-q=200-d=0.25.7	Feasible	(L)	3600	5279.4	0.40894	5741.1	0.0072644	2000	4228	6250	131509
p-n=250-e=2000-q=200-d=0.25.7	Feasible	(P)	3600	5279.4	0.059991	6059.9	0.023027	2000	2478	4500	312031
p-n=250-e=2000-q=200-d=0.25.7	Feasible	(STM)	3600.1	5273.7	0.36095	6077.7	0.051417	2000	4228	8250	60991
p-n=250-e=2000-q=200-d=0.25.8	Feasible	(U)	3600	5562.6	0.024996	6365.6	0.0081651	2000	2469	4500	32387
p-n=250-e=2000-q=200-d=0.25.8	Feasible	(I)	3600.1	5562.6	0.52792	5989.8	0.0063748	2000	4219	8250	40300
p-n=250-e=2000-q=200-d=0.25.8	Feasible	(L)	3600.1	5562.6	0.26096	5989.8	0.0057431	2000	4219	6250	79600
p-n=250-e=2000-q=200-d=0.25.8	Feasible	(P)	3600	5562.6	0.06499	6332.5	0.021945	2000	2469	4500	377302
p-n=250-e=2000-q=200-d=0.25.8	Feasible	(STM)	3600.1	5560.1	0.41294	6301.9	0.048503	2000	4219	8250	39900
p-n=250-e=2000-q=200-d=0.25.9	Feasible	(U)	3600	5120.6	0.024997	5962.6	0.015487	2000	2460	4500	39308
p-n=250-e=2000-q=200-d=0.25.9	Feasible	(I)	3600.1	5120.6	0.37294	5671.5	0.010573	2000	4210	8250	69091
p-n=250-e=2000-q=200-d=0.25.9	Feasible	(L)	3600	5120.6	0.20597	5671.5	0.013127	2000	4210	6250	198001
p-n=250-e=2000-q=200-d=0.25.9	Feasible	(P)	3600.1	5120.6	0.060991	5919.6	0.032537	2000	2460	4500	520401
p-n=250-e=2000-q=200-d=0.25.9	Feasible	(STM)	3600.1	5100.8	0.39994	5992.7	0.063413	2000	4210	8250	57161
p-n=250-e=2000-q=200-d=0.25.10	Feasible	(U)	3600	5274.4	0.025996	6180.6	0.023404	2000	2475	4500	45151
p-n=250-e=2000-q=200-d=0.25.10	Feasible	(I)	3600.1	5275.5	0.43593	5847.1	0.022859	2000	4225	8250	39228
p-n=250-e=2000-q=200-d=0.25.10	Feasible	(L)	3600.1	5275.7	0.28896	5847.1	0.022652	2000	4225	6250	50621
p-n=250-e=2000-q=200-d=0.25.10	Feasible	(P)	3600.1	5275.5	0.080988	6145.3	0.042012	2000	2475	4500	404382
p-n=250-e=2000-q=200-d=0.25.10	Feasible	(STM)	3600.1	5271.2	0.37894	6174.8	0.077369	2000	4225	8250	64721
p-n=250-e=2000-q=200-d=0.25.11	Feasible	(U)	3600	5592.9	0.027996	6435.3	0.015481	2000	2469	4500	36867
p-n=250-e=2000-q=200-d=0.25.11	Feasible	(I)	3600.1	5592.9	0.47193	6091.7	0.012895	2000	4219	8250	37300
p-n=250-e=2000-q=200-d=0.25.11	Feasible	(L)	3600.1	5592.9	0.24296	6091.7	0.012893	2000	4219	6250	54547
p-n=250-e=2000-q=200-d=0.25.11 p-n=250-e=2000-q=200-d=0.25.11	Feasible	(P)	3600.1	5592.9	0.24296	6409.3	0.011682	2000	2469	4500	240974
p-n=250-e=2000-q=200-d=0.25.11 p-n=250-e=2000-q=200-d=0.25.11		(STM)	3600.1					2000	4219		
	Feasible		3600.1 3600	5587.7	0.51192	6388.1	0.061894	2000	4219 2469	8250	40231
p-n=250-e=2000-q=200-d=0.25.12	Feasible	(U)		5355.7	0.024996	6208.1	0.011414			4500	37120
p-n=250-e=2000-q=200-d=0.25.12	Feasible	(I)	3600.1	5355.7	0.43094	5853.3	0.011376	2000	4219	8250	45911
p-n=250-e=2000-q=200-d=0.25.12	Feasible	(L)	3600	5355.7	0.21497	5853.3	0.01044	2000	4219	6250	81200
p-n=250-e=2000-q=200-d=0.25.12	Feasible	(P)	3600	5355.7	0.068989	6171.9	0.030417	2000	2469	4500	279491
p-n=250-e=2000-q=200-d=0.25.12	Feasible	(STM)	3600.1	5337.6	0.47393	6150.1	0.057242	2000	4219	8250	51632
p-n=250-e=2000-q=200-d=0.25.13	Feasible	(U)	3600.1	5558.3	0.021997	6376.7	0.012636	2000	2471	4500	40922
p-n=250-e=2000-q=200-d=0.25.13	Feasible	(I)	3600	5558.3	0.43293	5997.2	0.0098893	2000	4221	8250	33502
p-n=250-e=2000-q=200-d=0.25.13	Feasible	(L)	3600	5558.3	0.26796	5997.2	0.0083576	2000	4221	6250	103997
p-n=250-e=2000-q=200-d=0.25.13	Feasible	(P)	3600	5558.3	0.078988	6341.5	0.025435	2000	2471	4500	213678
p-n=250-e=2000-q=200-d=0.25.13	Feasible	(STM)	3600.1	5548.8	0.48593	6329.6	0.057457	2000	4221	8250	47451
p-n=250-e=2000-q=200-d=0.25.14	Feasible	(U)	3600	5285.5	0.014997	6017.8	0.01483	2000	2477	4500	68101
p-n=250-e=2000-q=200-d=0.25.14	Feasible	(I)	3600	5284.6	0.29396	5719.9	0.01213	2000	4227	8250	84691
	Feasible	(L)	3600	5285.5	0.10099	5719.9	0.011714	2000	4227	6250	198708
p-n=250-e=2000-q=200-d=0.25.14	Feasible	(P)	3600	5284.6	0.033995	5983.5	0.022709	2000	2477	4500	557491
p-n=250-e=2000-q=200-d=0.25.14 p-n=250-e=2000-q=200-d=0.25.14	Feasible										
	Feasible Feasible	(STM)	3600	5274.2	0.26696	5996.1	0.048512	2000	4227	8250	79871
p-n=250-e=2000-q=200-d=0.25.14 p-n=250-e=2000-q=200-d=0.25.14			3600 3600	5274.2 5276.6	0.26696 0.030995		0.048512 0.014867	$\frac{2000}{2000}$	4227 2472	$8250 \\ 4500$	79871 39723
p-n=250-e=2000-q=200-d=0.25.14 p-n=250-e=2000-q=200-d=0.25.14 p-n=250-e=2000-q=200-d=0.25.15	Feasible Feasible	(STM) (U)	3600	5276.6	0.030995	6175.8	0.014867	2000			
$\begin{array}{l} \text{p-n=250-e=2000-q=200-d=0.25.14} \\ \text{p-n=250-e=2000-q=200-d=0.25.14} \\ \text{p-n=250-e=2000-q=200-d=0.25.15} \\ \text{p-n=250-e=2000-q=200-d=0.25.15} \end{array}$	Feasible Feasible Feasible	(STM) (U) (I)	$3600 \\ 3600.1$	5276.6 5276.6	$0.030995 \\ 0.41294$	6175.8 5831.5	0.014867 0.015803	$\frac{2000}{2000}$	$\frac{2472}{4222}$	$4500 \\ 8250$	39723 45731
p-n=250-e=2000-q=200-d=0.25.14 p-n=250-e=2000-q=200-d=0.25.14 p-n=250-e=2000-q=200-d=0.25.15	Feasible Feasible	(STM) (U)	3600	5276.6	0.030995	6175.8	0.014867	2000	2472	4500	39723

filename	status	formulation	time	value	ces - Part 7 relax_time	relax_value	gap	edges	columns	rows	$_{ m nodes}$
p-n=250-e=2000-q=200-d=0.25.16	Feasible	(U)	3600	5388.5	0.024997	6187.9	0.011301	2000	2473	4500	45174
p-n=250-e=2000-q=200-d=0.25.16	Feasible	(I)	3600.1	5388.5	0.41794	5844	0.0079089	2000	4223	8250	52004
p-n=250-e=2000-q=200-d=0.25.16	Feasible	(L)	3600	5388.5	0.14398	5844	0.0056578	2000	4223	6250	99906
p-n=250-e=2000-q=200-d=0.25.16	Feasible	(P)	3600	5388.5	0.068989	6150.8	0.024902	2000	2473	4500	442321
p-n=250-e=2000-q=200-d=0.25.16	Feasible	(STM)	3600.1	5388.5	0.46793	6147.4	0.051292	2000	4223	8250	36411
p-n=250-e=2000-q=200-d=0.25.17	Feasible	(U)	3600	5239.8	0.027996	6137	0.015029	2000	2474	4500	39741
p-n=250-e=2000-q=200-d=0.25.17	Feasible	(I)	3600.1	5239.8	0.55692	5743.6	0.013096	2000	4224	8250	55471
p-n=250-e=2000-q=200-d=0.25.17	Feasible	(L)	3600	5239.8	0.31995	5743.6	0.010666	2000	4224	6250	74041
p-n=250-e=2000-q=200-d=0.25.17	Feasible	(P)	3600	5239.8	0.074989	6097.3	0.032783	2000	2474	4500	415561
p-n=250-e=2000-q=200-d=0.25.17	Feasible	(STM)	3600	5214.7	0.43693	6086.2	0.067902	2000	4224	8250	49111
p-n=250-e=2000-q=200-d=0.25.18	Feasible	(U)	3600	5348.8	0.025996	6125.9	0.0096873	2000	2471	4500	33253
p-n=250-e=2000-q=200-d=0.25.18	Feasible	(I)	3600.1	5348.8	0.59891	5763	0.0067616	2000	4221	8250	48325
o-n=250-e=2000-q=200-d=0.25.18	Feasible	(L)	3600	5348.8	0.18497	5763	0.0038499	2000	4221	6250	111015
o-n=250-e=2000-q=200-d=0.25.18	Feasible	(P)	3600	5348.8	0.053992	6093.4	0.019737	2000	2471	4500	388101
o-n=250-e=2000-q=200-d=0.25.18	Feasible	(STM)	3600.1	5348.8	0.48393	6103.1	0.05303	2000	4221	8250	48762
p-n=250-e=2000-q=200-d=0.25.19	Feasible	(U)	3600.1	5314.5	0.019997	6119.1	0.0094924	2000	2470	4500	47901
p-n=250-e=2000-q=200-d=0.25.19	Feasible	(I)	3600.1	5314.5	0.48693	5764	0.010211	2000	4220	8250	53701
o-n=250-e=2000-q=200-d=0.25.19	Feasible	(L)	3600	5314.5	0.25896	5764	0.0066198	2000	4220	6250	100592
o-n=250-e=2000-q=200-d=0.25.19	Feasible	(P)	3600	5314.5	0.06799	6085.1	0.024761	2000	2470	4500	403451
o-n=250-e=2000-q=200-d=0.25.19	Feasible	(STM)	3600.1	5304.1	0.46893	6079.1	0.059176	2000	4220	8250	52561
o-n=300-e=2400-q=200-d=0.25.0	Feasible	(U)	3600	6068.6	0.029995	7150.2	0.034739	2400	2957	5400	34891
o-n=300-e=2400-q=200-d=0.25.0	Feasible	(I)	3600.1	6062.5	0.81288	6747.6	0.031922	2400	5057	9900	24067
o-n=300-e=2400-q=200-d=0.25.0	Feasible	(L)	3600.1	6066.7	0.38994	6747.6	0.028752	2400	5057	7500	45671
o-n=300-e=2400-q=200-d=0.25.0	Feasible	(P)	3600	6068.6	0.079988	7110.2	0.050452	2400	2957	5400	314291
o-n=300-e=2400-q=200-d=0.25.0	Feasible	(STM)	3600	6054.8	0.6299	7104.5	0.090737	2400	5057	9900	29024
o-n=300-e=2400-q=200-d=0.25.1	Feasible	(U)	3600	6509.1	0.038994	7691.3	0.025575	2400	2960	5400	36441
o-n=300-e=2400-q=200-d=0.25.1	Feasible	(I)	3600	6509	0.40294	7266.6	0.022743	2400	5060	9900	42365
o-n=300-e=2400-q=200-d=0.25.1	Feasible	(L)	3600.1	6508.2	0.29696	7266.6	0.02151	2400	5060	7500	76471
p-n=300-e=2400-q=200-d=0.25.1	Feasible	(P)	3600.1	6508.1	0.091986	7640.6	0.039506	2400	2960	5400	291721
o-n=300-e=2400-q=200-d=0.25.1 o-n=300-e=2400-q=200-d=0.25.1	Feasible	(STM)	3600.2	6500.3	0.491986	7640.6	0.039506	2400	5060 5060	9900	40601
p-n=300-e=2400-q=200-d=0.25.2	Feasible	(U)	3600	6467.9	0.032995	7468.3	0.020109	2400	2954	5400	30490
o-n=300-e=2400-q=200-d=0.25.2	Feasible	(I)	3600	6467.9	0.46893	7035.3	0.0177	2400	5054	9900	34620
o-n=300-e=2400-q=200-d=0.25.2	Feasible	(L)	3600.1	6467.9	0.24296	7035.3	0.018572	2400	5054	7500	46020
o-n=300-e=2400-q=200-d=0.25.2	Feasible	(P)	3600.1	6467.9	0.060991	7418.4	0.033792	2400	2954	5400	238193
o-n=300-e=2400-q=200-d=0.25.2	Feasible	(STM)	3600.1	6463.2	0.38794	7385.5	0.061766	2400	5054	9900	38301
o-n=300-e=2400-q=200-d=0.25.3	Feasible	(U)	3600	6458.3	0.034994	7514.1	0.020167	2400	2963	5400	34556
o-n=300-e=2400-q=200-d=0.25.3	Feasible	(I)	3600.1	6458.3	0.53992	7114.7	0.021156	2400	5063	9900	29661
p-n=300-e=2400-q=200-d=0.25.3	Feasible	(L)	3600	6458.3	0.32595	7114.7	0.018625	2400	5063	7500	65451
p-n=300-e=2400-q=200-d=0.25.3	Feasible	(P)	3600	6458.3	0.097986	7468.6	0.035994	2400	2963	5400	289181
p-n=300-e=2400-q=200-d=0.25.3	Feasible	(STM)	3600.1	6457.7	0.56691	7468	0.06728	2400	5063	9900	43451
p-n=300-e=2400-q=200-d=0.25.4	Feasible	(U)	3600.1	6403	0.040993	7379.3	0.02254	2400	2959	5400	33061
p-n=300-e=2400-q=200-d=0.25.4	Feasible	(I)	3600.1	6405.6	0.52492	7053	0.019333	2400	5059	9900	34925
p-n=300-e=2400-q=200-d=0.25.4 p-n=300-e=2400-q=200-d=0.25.4	Feasible	(L)	3600.1	6405.6	0.23396	7053	0.015333	2400	5059	7500	44825
p-n=300-e=2400-q=200-d=0.25.4	Feasible	(P)	3600	6405.6	0.11698	7348.8	0.039525	2400	2959	5400	235295
p-n=300-e=2400-q=200-d=0.25.4	Feasible	(STM)	3600.1	6399.9	0.54192	7360.9	0.069034	2400	5059	9900	35031
p-n=300-e=2400-q=200-d=0.25.5	Feasible	(U)	3600.1	6440.4	0.029996	7356.3	0.01383	2400	2966	5400	39158
p-n=300-e=2400-q=200-d=0.25.5	Feasible	(I)	3600	6440.4	0.55292	6955	0.011754	2400	5066	9900	44777
p-n=300-e=2400-q=200-d=0.25.5	Feasible	(L)	3600	6440.4	0.23796	6955	0.010338	2400	5066	7500	64862
p-n=300-e=2400-q=200-d=0.25.5	Feasible	(P)	3600.1	6440.4	0.085987	7311.9	0.026465	2400	2966	5400	269602
p-n=300-e=2400-q=200-d=0.25.5	Feasible	(STM)	3600.1	6432.3	0.6609	7289.7	0.053288	2400	5066	9900	30711
o-n=300-e=2400-q=200-d=0.25.6	Feasible	(U)	3600	6395.6	0.036994	7455.1	0.027634	2400	2955	5400	36309
p-n=300-e=2400-q=200-d=0.25.6	Feasible	(I)	3600	6400	0.6599	7006.3	0.025593	2400	5055	9900	40807
o-n=300-e=2400-q=200-d=0.25.6	Feasible	(L)	3600.1	6400	0.31095	7006.3	0.025685	2400	5055	7500	41921
o-n=300-e=2400-q=200-d=0.25.6	Feasible	(P)	3600.1	6400	0.10798	7417.8	0.048409	2400	2955	5400	233421
p-n=300-e=2400-q=200-d=0.25.6	Feasible	(STM)	3600.1	6367.2	0.61191	7374.3	0.043409	2400	5055	9900	36005
o-n=300-e=2400-q=200-d=0.25.7	Feasible	(U)	3600	6240.2	0.01191	7261.5	0.023023	2400	2961	5400	36697
p-n=300-e=2400-q=200-d=0.25.7 p-n=300-e=2400-q=200-d=0.25.7	Feasible	(I)	3600.1	6241.4	0.6459	6862.9	0.023023	2400	5061	9900	29601
o-n=300-e=2400-q=200-d=0.25.7	Feasible	(L)	3600.1	6241.4	0.29795	6862.9	0.023663	2400	5061	7500	41681
o-n=300-e=2400-q=200-d=0.25.7	Feasible	(P)	3600.1	6241.4	0.097985	7221.8	0.040041	2400	2961	5400	343301
o-n=300-e=2400-q=200-d=0.25.7	Feasible	(STM)	3600	6234.1	0.53592	7233.6	0.071681	2400	5061	9900	43523
o-n=300-e=2400-q=200-d=0.25.8	Feasible	(U)	3600	6232.7	0.045993	7261.2	0.0251	2400	2968	5400	38921
p-n=300-e=2400-q=200-d=0.25.8	Feasible	(I)	3600.1	6232.1	0.72989	6856.4	0.025966	2400	5068	9900	32481
o-n=300-e=2400-q=200-d=0.25.8	Feasible	(L)	3600	6232.7	0.20997	6856.4	0.023607	2400	5068	7500	89881
o-n=300-e=2400-q=200-d=0.25.8	Feasible	(P)	3600.1	6232.7	0.12698	7221	0.04256	2400	2968	5400	241371
o-n=300-e=2400-q=200-d=0.25.8	Feasible	(STM)	3600.1	6220	0.54092	7219.4	0.068218	2400	5068	9900	46501
o-n=300-e=2400-q=200-d=0.25.9	Feasible	(U)	3600	6394.6	0.029996	7335.2	0.01778	2400	2972	5400	43381
o-n=300-e=2400-q=200-d=0.25.9	Feasible	(I)	3600.1	6394.6	0.57991	6961.8	0.014078	2400	5072	9900	41011
o-n=300-e=2400-q=200-d=0.25.9	Feasible	(L)	3600	6394.6	0.28396	6961.8	0.012018	2400	5072	7500	63754
o-n=300-e=2400-q=200-d=0.25.9	Feasible	(P)	3600	6394.6	0.077988	7292	0.028085	2400	2972	5400	336376
o-n=300-e=2400-q=200-d=0.25.9	Feasible	(STM)	3600.1	6393	0.60891	7274.8	0.054593	2400	5072	9900	43483
o-n=300-e=2400-q=200-d=0.25.10	Feasible	(U)	3600.1	6862.2	0.00891	7760.4	0.013331	2400	2966	5400	53022
		(-)					0.020002				
o-n=300-e=2400-q=200-d=0.25.10	Feasible	(I)	3600	6862.2	0.6469	7328.4	0.012062	2400	5066	9900	35296
o-n=300-e=2400-q=200-d=0.25.10	Feasible	(L)	3600.1	6862.2	0.30195	7328.4	0.010729	2400	5066	7500	65678
o-n=300-e=2400-q=200-d=0.25.10	Feasible	(P)	3600	6862.2	0.081988	7703.7	0.026164	2400	2966	5400	310721
p-n=300-e=2400-q=200-d=0.25.10	Feasible	(STM)	3600.1	6858.4	0.57191	7708.6	0.042441	2400	5066	9900	40177
o-n=300-e=2400-q=200-d=0.25.11	Feasible	(U)	3600	6366.5	0.036994	7414.6	0.025319	2400	2959	5400	38246
o-n=300-e=2400-q=200-d=0.25.11	Feasible	(I)	3600.1	6366.5	0.74289	6997.5	0.02494	2400	5059	9900	24063
o-n=300-e=2400-q=200-d=0.25.11	Feasible	(L)	3600.1	6366.1	0.35695	6997.5	0.022876	2400	5059	7500	56301
o-n=300-e=2400-q=200-d=0.25.11	Feasible	(P)	3600.1	6366.5	0.083987	7376	0.0393	2400	2959	5400	239795

group	formulation	optimal	feasible	Table w	rith Means ar time_d	nd Standard D	eviations - All I relax_time_d	Instances nodes	nodes_d	gap	gap_d	gap_improvement
p-n=50-e=400-q=200-d=0.25	(U)	20	0	2.687	2.0333	0.0026997	0.00071393	590.5	349.84	4.6138e-05	3.5517e-05	0.13194
p-n=50-e=400-q=200-d=0.25	(I)	20	ő	5.2338	2.1977	0.041544	0.0078311	634.6	186.06	3.0721e-05	3.3062e-05	0.063234
p-n=50-e=400-q=200-d=0.25	(L)	20	ő	3.427	1.428	0.021497	0.0038399	667.7	194.61	3.0695e-05	3.5334e-05	0.063234
p-n=50-e=400-q=200-d=0.25	(P)	20	ő	2.8201	1.3897	0.007049	0.001071	1193	696.82	5.3228e-05	3.6246e-05	0.12333
p-n=50-e=400-q=200-d=0.25	(STM)	20	ő	154.87	137.41	0.076788	0.011603	29231	32279	9.6067e-05	5.984e-06	0.12369
p-n=100-e=800-q=200-d=0.25	(U)	20	ő	135.83	237.92	0.006749	0.0011345	11557	17477	9.1234e-05	1.1793e-05	0.14244
p-n=100-e=800-q=200-d=0.25	(I)	20	0	241.1	549.31	0.12043	0.025664	20918	48786	9.3693e-05	7.4764e-06	0.075099
p-n=100-e=800-q=200-d=0.25	(L)	20	ő	159.08	355.12	0.056891	0.01273	21257	46207	9.3886e-05	1.079e-05	0.075099
p-n=100-e=800-q=200-d=0.25	(P)	19	ĭ	457.01	900.78	0.018847	0.0031503	1.8169e+05	3.6754e+05	0.000321	0.00096732	0.13605
p-n=100-e=800-q=200-d=0.25	(STM)	3	17	3208.7	941.67	0.24306	0.067549	1.8318e+05	53484	0.024546	0.016337	0.10617
p-n=150-e=1200-q=200-d=0.25	(U)	14	6	1593.8	1447.9	0.011398	0.0012803	59394	47133	0.0022856	0.0038849	0.15237
p-n=150-e=1200-q=200-d=0.25	(I)	14	6	1602.2	1408.7	0.22412	0.042958	63755	51891	0.0019984	0.0031843	0.08603
p-n=150-e=1200-q=200-d=0.25	(L)	14	6	1599.5	1518.5	0.10218	0.013431	1.4071e+05	1.3205e+05	0.0019178	0.0033899	0.08612
p-n=150-e=1200-q=200-d=0.25	(P)	7	13	2821.1	1155.2	0.033895	0.0046241	6.7861e+05	2.7626e+05	0.01016	0.0098134	0.13674
p-n=150-e=1200-q=200-d=0.25	(STM)	0	20	3600	0.025377	0.41464	0.10025	1.1757e+05	19668	0.044678	0.015071	0.098685
p-n=200-e=1600-q=200-d=0.25	(U)	4	16	3196.9	917.62	0.018697	0.0041836	59266	19470	0.0078968	0.0057638	0.14443
p-n=200-e=1600-q=200-d=0.25	(I)	5	15	3136.5	913.44	0.36324	0.099485	72103	22259	0.005995	0.005009	0.080849
p-n=200-e=1600-q=200-d=0.25	(L)	7	13	2854.5	1178.5	0.17017	0.03772	1.2111e+05	57123	0.005442	0.0053618	0.081435
p-n=200-e=1600-q=200-d=0.25	(P)	0	20	3600	0.016583	0.045393	0.00989	5.4701e+05	1.08e+05	0.020058	0.0085813	0.12426
p-n=200-e=1600-q=200-d=0.25	(STM)	0	20	3600.1	0.031918	0.73964	0.23134	76246	21517	0.05011	0.012974	0.093351
p-n=250-e=2000-q=200-d=0.25	(U)	0	20	3600.1	0.031918	0.024196	0.0042491	45108	10303	0.014595	0.0048502	0.141
p-n=250-e=2000-q=200-d=0.25 p-n=250-e=2000-q=200-d=0.25	(I)	0	20	3600.1	0.021512	0.47703	0.08519	51020	15616	0.013075	0.0048302	0.078619
p-n=250-e=2000-q=200-d=0.25 p-n=250-e=2000-q=200-d=0.25	(L)	0	20	3600.1	0.021312	0.24231	0.067887	98793	39564	0.013073	0.0054001	0.079727
p-n=250-e=2000-q=200-d=0.25 p-n=250-e=2000-q=200-d=0.25	(E) (P)	0	20	3600	0.016086	0.06559	0.014383	3.853e+05	83330	0.029744	0.0068709	0.079727
p-n=250-e=2000-q=200-d=0.25 p-n=250-e=2000-q=200-d=0.25	(STM)	0	20	3600.1	0.032936	0.43313	0.07126	52276	9862	0.061102	0.0008709	0.087201
p-n=250-e=2000-q=200-d=0.25 p-n=300-e=2400-q=200-d=0.25	(U)	0	20	3600.1	0.032936	0.033145	0.0052648	38431	6113.3	0.020039	0.0068283	0.13471
p-n=300-e=2400-q=200-d=0.25 p-n=300-e=2400-q=200-d=0.25	(I)	0	20	3600.1	0.035903	0.63295	0.10474	35690	10040	0.018587	0.0074876	0.13471
p-n=300-e=2400-q=200-d=0.25 p-n=300-e=2400-q=200-d=0.25	(L)	0	20	3600.1	0.019615	0.29785	0.04819	60948	15510	0.016836	0.0074876	0.075436
p-n=300-e=2400-q=200-d=0.25	(P)	0	20	3600.1	0.019013	0.092986	0.017544	2.8318e+05	49864	0.035451	0.0086391	0.073430
p-n=300-e=2400-q=200-d=0.25 p-n=300-e=2400-q=200-d=0.25	(STM)	0	20	3600.1	0.035355	0.57911	0.075636	39192	5549.3	0.064629	0.013151	0.082057
p-n=300-c=2400-q=200-d=0.20	(5111)	Ü	20	3000.1	0.000000	0.07511	0.010000	00102	0040.0	0.004023	0.013101	0.002001
			m 11	141 35	1.04	1.0	0 1 1 1 1					
group	formulation	optimal	feasible	vith Means time	and Standar time_d	d Deviations - relax_time	relax_time_d	thin the time li	mit nodes_d	gap	gap_d	gap_improvement
p-n=50-e=400-q=200-d=0.25	(U)	20	0	2.687	2.0333	0.0026997	0.00071393	590.5	349.84	4.6138e-05	3.5517e-05	0.13194
p-n=50-e=400-q=200-d=0.25	(I)	20	Õ	5.2338	2.1977	0.041544	0.0078311	634.6	186.06	3.0721e-05	3.3062e-05	0.063234
p-n=50-e=400-q=200-d=0.25	(L)	20	0	3.427	1.428	0.021497	0.0038399	667.7	194.61	3.0695e-05	3.5334e-05	0.063234
p-n=50-e=400-q=200-d=0.25	(P)	20	Õ	2.8201	1.3897	0.007049	0.001071	1193	696.82	5.3228e-05	3.6246e-05	0.12333
p-n=50-e=400-q=200-d=0.25	(STM)	20	Õ	154.87	137.41	0.076788	0.011603	29231	32279	9.6067e-05	5.984e-06	0.12369
p-n=100-e=800-q=200-d=0.25	(U)	20	0	135.83	237.92	0.006749	0.0011345	11557	17477	9.1234e-05	1.1793e-05	0.14244
p-n=100-e=800-q=200-d=0.25	(I)	20	0	241.1	549.31	0.12043	0.025664	20918	48786	9.3693e-05	7.4764e-06	0.075099
p-n=100-e=800-q=200-d=0.25	(L)	20	0	159.08	355.12	0.056891	0.01273	21257	46207	9.3886e-05	1.079e-05	0.075099
p-n=100-e=800-q=200-d=0.25	(P)	19	0	291.59	553.92	0.018997	0.0031618	1.1477e + 05	2.2943e + 05	9.9079e-05	1.6361e-06	0.13381
p-n=100-e=800-q=200-d=0.25	(STM)	3	0	990.96	354.13	0.21163	0.019186	92531	29825	9.9784e-05	2.383e-07	0.10657
p-n=150-e=1200-q=200-d=0.25	(U)	14	0	734.06	728.43	0.011284	0.0012203	38943	38699	9.8843e-05	1.3226e-06	0.14664
p-n=150-e=1200-q=200-d=0.25	(I)	14	0	746	625.38	0.21525	0.04545	35882	29481	9.9556e-05	4.1919e-07	0.082315
p-n=150-e=1200-q=200-d=0.25	(L)	14	0	742.13	918.48	0.098985	0.01321	76368	99739	9.9623e-05	5.47e-07	0.083104
p-n=150-e=1200-q=200-d=0.25	(P)	7	0	1374.4	769.97	0.034852	0.0051932	3.6361e + 05	1.7558e + 05	8.5668e-05	3.4974e-05	0.12992
p-n=200-e=1600-q=200-d=0.25	(U)	4	0	1584.2	979.5	0.020997	0.0053377	58528	35893	9.9649e-05	3.9293e-07	0.13967
p-n=200-e=1600-q=200-d=0.25	(I)	5	0	1745.9	871.27	0.36734	0.059937	50447	24162	9.9845e-05	1.7243e-07	0.07254
p-n=200-e=1600-q=200-d=0.25	(L)	7	0	1469.8	1009.3	0.16012	0.020396	82951	67227	9.9814e-05	1.3908e-07	0.074023
								within the time				
group	formulation	optimal	feasible	time	time_d	relax_time	relax_time_d		nodes_d	gap	gap_d	gap_improvement
p-n=100-e=800-q=200-d=0.25	(P)	0	1	3600	0	0.015998	0	1.4531e + 06	0	0.0045375	0	0.17857
p-n=100-e=800-q=200-d=0.25	(STM)	0	17	3600	0.022873	0.24861	0.071401	1.9917e + 05	38762	0.028859	0.013781	0.1061
p-n=150-e=1200-q=200-d=0.25	(U)	0	6	3600	0.0089753	0.011665	0.001374	1.0711e+05	25641	0.007388	0.0036216	0.16573
p-n=150-e=1200-q=200-d=0.25	(I)	0	6	3600.1	0.042687	0.2448	0.026838	1.2879e + 05	30086	0.006429	0.0023991	0.094698
p-n=150-e=1200-q=200-d=0.25	(L)	0	6	3600	0.022669	0.10965	0.010701	2.9085e + 05	52074	0.0061603	0.0035485	0.093157
p-n=150-e=1200-q=200-d=0.25	(P)	0	13	3600	0.014595	0.03338	0.0041971	8.4822e+05	1.3645e + 05	0.015585	0.0080052	0.14041
p-n=150-e=1200-q=200-d=0.25	(STM)	0	20	3600	0.025377	0.41464	0.10025	1.1757e + 05	19668	0.044678	0.015071	0.098685
p-n=200-e=1600-q=200-d=0.25	(U)	0	16	3600	0.019325	0.018122	0.0036199	59451	12312	0.0098461	0.0047464	0.14562
p-n=200-e=1600-q=200-d=0.25	(I)	0	15	3600	0.015434	0.36188	0.10951	79322	16049	0.00796	0.0042436	0.083619
p-n=200-e=1600-q=200-d=0.25	(L)	0	13	3600	0.027022	0.17559	0.043373	1.4165e + 05	37156	0.0083185	0.0045373	0.085427
p-n=200-e=1600-q=200-d=0.25	(P)	0	20	3600	0.016583	0.045393	0.00989	5.4701e + 05	1.08e + 05	0.020058	0.0085813	0.12426
p-n=200-e=1600-q=200-d=0.25	(STM)	0	20	3600.1	0.031918	0.73964	0.23134	76246	21517	0.05011	0.012974	0.093351
p-n=250-e=2000-q=200-d=0.25	(U)	0	20	3600	0.019046	0.024196	0.0042491	45108	10303	0.014595	0.0048502	0.141
p-n=250-e=2000-q=200-d=0.25	(I)	0	20	3600.1	0.021512	0.47703	0.08519	51020	15616	0.013075	0.0054661	0.078619
p-n=250-e=2000-q=200-d=0.25	(L)	0	20	3600	0.021089	0.24231	0.067887	98793	39564	0.011989	0.0054008	0.079727
p-n=250-e=2000-q=200-d=0.25	(P)	0	20	3600	0.016086	0.06559	0.014383	3.853e + 05	83330	0.029744	0.0068709	0.11777
p-n=250-e=2000-q=200-d=0.25	(STM)	0	20	3600.1	0.032936	0.43313	0.07126	52276	9862	0.061102	0.0093015	0.087201
p-n=300-e=2400-q=200-d=0.25	(U)	0	20	3600	0.023125	0.033145	0.0052648	38431	6113.3	0.020039	0.0068283	0.13471
p-n=300-e=2400-q=200-d=0.25	(I)	0	20	3600.1	0.035903	0.63295	0.10474	35690	10040	0.018587	0.0074876	0.073613
p-n=300-e=2400-q=200-d=0.25	(L)	0	20	3600.1	0.019615	0.29785	0.04819	60948	15510	0.016836	0.0070785	0.075436
p-n=300-e=2400-q=200-d=0.25	(P)	0	20	3600	0.021	0.092986	0.017544	2.8318e + 05	49864	0.035451	0.0086391	0.1115
p-n=300-e=2400-q=200-d=0.25	(STM)	0	20	3600.1	0.035355	0.57911	0.075636	39192	5549.3	0.064629	0.013151	0.082057