Image Interpolation & Superresolution (I)

Dr. Xiqun Lu

College of Computer Science

Zhejiang University

Pixel Replication

• To increase the number of pixels in an image, but without adding any data or detail.

Interpolated Results (I)

Input image 256 × 256

Output high-resolution image 512×512

Interpolated Results (II)

Input image 256 \times 256

Output high-resolution image 512×512

Bilinear Interpolation

• To use distance-weighted average of the some nearest pixel values to estimate a new pixel value.

The interpolated value at C is

$$f(x_0+d) = \frac{f(x_1)-f(x_0)}{x_1-x_0} \cdot d + f(x_0)$$

Interpolated Results (I)

Input image 256 × 256

Output high-resolution image 512×512

Interpolated Results (II)

Input image 256×256

Output high-resolution image 512×512

Thank You!

Dr. Xigun Lu xqlu@zju.edu.cn