Uniwersytet Ekonomiczny w Katowicach Katedra Uczenia Maszynowego

Jan Kozak

Systemy uczące się (drzewa decyzyjne ID3 / C4.5)

Spis treści

1	Informacje wstępne – drzewo decyzyjne, jako reprezenta-							
	cja wiedzy	1						
	1.1 Przykładowe tabele decyzyjne	1						
	1.2 Przygotowanie tabeli decyzyjnej							
2	Entropia	3						
	2.1 Wyznaczenie entropii	3						
	2.2 Entropia według klas decyzyjnych	4						
3 Funkcja informacji								
4	Przyrost informacji	9						
5	Zrównoważony przyrost informacji	11						
6	Obliczenia dla przykładowej tabeli 1							
$egin{array}{cccccccccccccccccccccccccccccccccccc$	Kolejne poziomy drzewa decyzyjnego	15						
	7.1 Rekurencyjne budowanie kolejnych poziomów	16						
	7.2 Koniec budowy drzewa decyzyjnego	16						
	7.3 Wizualizacia drzewa decyzyinego	17						

Informacje wstępne – drzewo decyzyjne, jako reprezentacja wiedzy

W kolejnych częściach dokumentu przedstawiony jest przykład budowy drzewa decyzyjnego ID3 / C4.5 wykonany na podstawie źródła:

www.mimuw.edu.pl/~awojna/SID/referaty/strzelczak/c4_5Main.html

1.1 Przykładowe tabele decyzyjne

W poniższych obliczeniach zaprezentowane są wyniki dla danych testowych giełda zapisanych w tabeli 1.1 oraz spreparowanych danych testowych zapisanych w tabeli 1.2.

Tabela 1.1: Tabela decyzyjna danych giełdowych (gielda.txt)

	Atryl	Decyzja		
	a_1	a_2	a_3	d
x_1	old	yes	swr	down
x_2	old	no	swr	down
x_3	old	no	hwr	down
x_4	mid	yes	swr	down
x_5	mid	yes	hwr	down
x_6	mid	no	hwr	up
x_7	mid	no	swr	up
x_8	new	yes	swr	up
x_9	new	no	hwr	up
x_{10}	new	no	swr	up

Tabela 1.2: Tabela decyzyjna danych testowych (testowaTabDec.txt)

	Atr	ybut	Decyzja		
	a_1	a_2	a_3	a_4	d
$\overline{x_1}$	0	1	0	1	0
x_2	1	1	0	1 1	0
x_3	2	2	0	1	1
x_4	2	2	1	0	2
x_5	2	2	0	0	1
x_6	1	2	0	1	0
x_7	2	1	1	1	2
x_8	0	0	1	0	1
x_9	0	0	0	0	1

1.2 Przygotowanie tabeli decyzyjnej

W początkowej fazie przygotowania algorytmu należy przygotować implementację, która pozwala na:

1. Wczytanie danych zapisanych w pliku tekstowym i odpowiadającym tabeli decyzyjnej (z jednym atrybutem decyzyjnym znajdującym się na końcu).

Wersja podstawowa: wartości atrybutów, to 0 i 1. Atrybuty oddzielone spacją.

Wersje rozszerzone: wartości, to dowolne liczby całkowite, liczby rzeczywiste, literały. Atrybuty oddzielone dowolnym symbolem (np. z ograniczonego zestawu).

- 2. Obliczenie możliwej liczby wartości każdego atrybutu.
- 3. Obliczenie wystąpień każdej wartości każdego atrybutu.

Entropia

2.1 Wyznaczenie entropii

$$I(P) = -(p_1 \cdot log_2(p_1) + p_2 \cdot log_2(p_2) + \dots + p_n \cdot log_2(p_n)), \tag{2.1}$$

gdzie $p_1 \dots p_n$ to wartości prawdopodobieństwa wystąpień każdego z elementów (w tym przypadku każdej z wartości atrybutu decyzyjnego).

Entropia jest miarą nieuporządkowania, im wyższa wartość entropii, tym większe nieuporządkowanie i odwrotnie. Przykładowe wartości entropii, dla różnych prawdopodobieństw są następujące:

- P = (1, 0; 0, 0), czyli $p_1 = 1, 0; p_2 = 0, 0;$, to I(P) = 0, 0;
- P = (0, 9; 0, 1), to I(P) = 0,4689955935892812;
- P = (0, 8; 0, 2), to I(P) = 0,7219280948873623;
- P = (0,7;0,3), to I(P) = 0.8812908992306927;
- P = (0, 6; 0, 4), to I(P) = 0,9709505944546686;
- P = (0, 5; 0, 5), to I(P) = 1, 0;

Należy pamiętać, że maksymalna wartość entropii (najgorsze przypadki) jest zależna dla liczby parametrów (przypadków, prawdopodobieństw), co nie pozostaje bez znaczenia przy dalszych etapach budowy drzewa decyzyjnego. Jest to w zasadzie $log_2(n)$ dla n ze wzoru (2.1). Nie ma konieczności wyznaczania tych wartości, jednak są one następujące:

- n = 2, to 1,0;
- n = 3, to 1,584962500721156;

- n = 4, to 2,0;
- n = 5, to 2,321928094887362;
- n = 6, to 2,584962500721156;
- n = 7, to 2,807354922057604;
- n = 8, to 3,0;

2.2 Entropia według klas decyzyjnych

Entropię według klas decyzyjnych Info(T) (T, to tabela decyzyjna) wyznacza się na podstawie wystąpień każdej z klasy decyzyjnych (wystąpień każdej wartości atrybutu decyzyjnego).

Wystąpienia te determinują prawdopodobieństwo wystąpienia danej klasy, dlatego wprost wyznaczana jest entropia na podstawie wzoru (2.1), czyli Info(T) = I(P). W tym przypadku P przyjmuje wartości:

$$P = \left(\frac{C_1}{|T|}, \frac{C_2}{|T|}, \cdots, \frac{C_k}{|T|}\right),\tag{2.2}$$

gdzie |T|, to liczba obiektów w tabeli decyzyjnej; k, to liczba klas decyzyjnych (możliwych wartości atrybutu decyzyjnego); $C_1 \dots C_k$, to liczba wystąpień kolejnych wartości klas decyzyjnych.

Posiadając te wartości możliwe jest wyznaczenia entropii dla klas decyzyjnych, czyli informacji o zbiorze danych (wzór 2.3).

$$Info(T) = I\left(\frac{C_1}{|T|}, \frac{C_2}{|T|}, \cdots, \frac{C_k}{|T|}\right)$$
(2.3)

Dla przykładowej tabeli decyzyjnej dotyczącej giełdy (tab. 1.1) występują dwie klasy decyzyjne: down (5 razy) i up (5 razy), w związku z czym |T| = 10, a Info(T) następujące:

$$Info(T) = I\left(\frac{5}{10}, \frac{5}{10}\right) = 1, 0$$

Natomiast dla danych testowych (tab. 1.2) występują trzy klasy decyzyjne: 0 (3 razy), 1 (4 razy) i 2 (2 razy), w związku z czym |T|=9, a Info(T) następujące:

$$Info(T) = I\left(\frac{3}{9}, \frac{4}{9}, \frac{2}{9}\right) = 1,5304930567574824$$