

Etude de la surfusion à l'aide d'un module thermoélectrique

Problématique:

Dans quelles conditions et par quelles optimisations un module Peltier peut-il générer un refroidissement suffisant et contrôlé pour induire la surfusion de l'eau?

Sommaire

01

La surfusion

Application à l'eau

Phénomène de surfusion

Evolution de la température en fonction du temps

Source : aquaportail.com

Phénomène de surfusion

Evolution de l'énergie potentielle en fonction de l'état de l'espèce considérée

Un état métastable correspond à un minimum local d'énergie potentielle

Energie d'activation

Equilibre thermodynamique (minimum global)

Son utilisation

Peltier: création d'une différence de températures à partir d'un courant.

Seebeck: création d'un courant à partir d'une différence de température.

Utilisation:

Refroidissement électronique et réfrigération (glacière)

Schéma du module Peltier

Théorie

Hypothèses:

- Les parois latérales des deux barreaux semi-conducteurs sont supposées adiabatiques.
- Problème est unidimensionnel
- En régime stationnaire

Bilan (source froide):

On considère ici $\overrightarrow{J_a} = \varepsilon \overrightarrow{TJ_e}$ pendant la durée dt :

- ullet reçoit un transfert thermique $J_{qn} \Sigma dt = arepsilon_n T_f J_e \Sigma dt$ du barreau de type n par lequel le courant entre
- cède un transfert thermique $J_{qp} \sum dt = \varepsilon_p T_f J_e \sum dt$ au barreau de type p par lequel le courant sort.

$$J_{qn}=$$
 densité de flux thermique issue du semi conducteur n $\varepsilon_n=$ pouvoir thermoélectrique du semi conducteur n $\Sigma=$ La surface de la face froide

Théorie

Ceci correspond à une puissance algébriquement reçue :

$$P_P^F = (\varepsilon_n - \varepsilon_p) T_F I$$

De même :

$$P_{P}^{C} = (\varepsilon_{n} - \varepsilon_{n})T_{C}I$$

Bilan Global:

$$P_E = P_P^F + P_P^C = (\varepsilon_p - \varepsilon_n)(T_C - T_F)I$$

Ainsi on retrouve le rendement de Carnot d'une machine frigorifique :

$$e = \frac{-P_P^F}{P_E} = \frac{T_F}{(T_C - T_F)}$$

$$T_F = 268 \text{K } (-5^\circ)$$

 $T_C = 293 \text{K } (20^\circ)$

e = 10,7

Théorie

On réalise un bilan en prenant en compte :

- l'effet Peltier
- l'effet Joules
- la conduction thermique dans les barreaux n et p

A l'aide d'un bilan du premier principe, de la loi de Fourier et des relations entre J_E et J_q :

$$P_F = (T_C - T_F)G + \frac{1}{2}RI^2 + (\varepsilon_n - \varepsilon_p)T_FI$$

Bilan global:

$$P_E = P_C + P_F = (\varepsilon_n - \varepsilon_n)(T_c - T_F)I + RI^2$$

Le rendement :

e rendement :
$$e = -\frac{P_F}{P_E} = \frac{(T_C - T_F)G + \frac{1}{2}RI^2 + (\varepsilon_n - \varepsilon_p)T_FI}{(\varepsilon_n - \varepsilon_n)(T_C - T_F)I + RI^2}$$

$$T_F = 268 \text{K (} -5^{\circ}\text{)}$$

 $T_C = 293 \text{K (} 20^{\circ}\text{)}$
 $R = 5,2m\Omega$

 $G = 12mW.K^{-1}$

$$e = 0.78$$

Performance du système

COP théorique sans pertes	COP théorique	COP réel
COP = 10,7	COP = 0,78	COP = 0,5

Tension de fonctionnement	12V
Tension de fonctionnement maximale	15V
Plage de courant de fonctionnement	3-6A

Expériences

Module Peltier

Pas de

21°

02

Dissipateur thermique

Ventilateur

2 Ampères, 6 volts, pas d'eau, dissipateur + ventilateur

Pas de surfusion possible

03

Tube dissipateur en cuivre

Récipient de refroidissement

Ventilateurs

Montage pour refroidissement de l'eau

Isolement polystyrène

Optimisation

Système [récipient en aluminium + eau]

$$\begin{aligned} Q_{eau} &= m_{eau} c_{eau} \Delta T_{eau} \\ Q_{alu} &= m_{elu} c_{alu} \Delta T_{eau} \\ Q_{total} &= Q_{eau} + Q_{alu} \end{aligned}$$

Par la loi de Fourier:

$$\Phi_{pol} = \lambda_{pol} \frac{\Delta T_{eau}}{e} \Sigma$$

Donc:

$$P_C = \frac{Q_{total}}{\Delta t} + \Phi_{pol}$$

Optimisation

Pour une différence de température de 31° Une puissance de 19W

La documentation du constructeur recommande I compris en 3A et 4 A.

3,2 Ampères, 12 Volts et 30g d'eau

Il y a surfusion

Avec isolation

4 A et 12 V

Ti = 24°C

Rapidité : $t = 510 \, \text{s}$

Influence

Isolation sur la rapidité

Sans isolation

4 A et 12V

 $Ti = 24^{\circ}$

Rapidité : $t = 610 \, \text{s}$

Incertitudes

Moyenne:

$$\bar{T} = \frac{1}{N} \sum T_i = -3.77^\circ$$

Ecart type:

$$u(T) = \sigma = \sqrt{\frac{1}{N-1} \sum (T_i - \bar{T})^2} = 0.92^{\circ}$$

Incertitude type (95%):

$$U(T) = 2 \times \sigma = 1.84^{\circ}$$

$$T = -3,77 \pm 1,84^{\circ}$$

N = 18

06 Conclusion

Problématique:

Dans quelles conditions et par quelles optimisations un module Peltier peut-il générer un refroidissement suffisant et contrôlé pour induire la surfusion de l'eau ?

Utilisation fonctionelle

Le module Peltier permet d'obtenir les conditions suffisantes pour atteindre la surfusion.

A certaines conditions

Une isolement suffisant, une diffusion de la chaleur chaude, une température extérieure minimale, un courant optimal.

Problème

Les rendements réels de l'ordre de 0,5, ne permettent pas une utilisation à grande échelle ou un refroidissement parfaitement contrôlé.

D-----(4

Annexe

$$R = \frac{L}{\Sigma} \left(\frac{1}{\gamma_n} + \frac{1}{\gamma_p} \right)$$

 $\gamma_{n/p} = Conductivité$ électrique du semi conducteur n ou p L = Longeur du barreau

$$G = \frac{\sum}{L} \left(\lambda_n + \lambda_p \right)$$

 $\lambda_n = {\sf Conductivit\'e}$ thermique du semi conducteur n ou p

$$R = 5.2m\Omega$$
 $G = 12mW.K^{-1}$

$$L = 5mm. \ \Sigma = 25mm^2$$

Schéma électrique du système d'acquisition

