Inclass 16: Decision Tree and Random Forest

[SCS4049] Machine Learning and Data Science

Seongsik Park (s.park@dgu.edu)

School of AI Convergence & Department of Artificial Intelligence, Dongguk University

Decision Tree

Decision tree

馬B. input space ERD→ 可以智可 哲主

- ፣ለቦለ ・Feature 공간을 여러 개의 단순한 영역으로 분할
- · Feature 공간을 분할하는 일련의 규칙들은 tree의 형태로 표현

장점

- · 데이터나 모델에 대한 전제, 가정이 없음
- 간단하기 때문에 이해나 해석이 용이함
- · Classification과 regression에 모두 사용 가능
- · Numeric feature와 categorical feature 모두 처리 가능
- ㆍ스케일링, 중앙화 등 같은 데이터에 대한 전처리 거의 필요 없음
- · 탐색적 데이터 분석(exploratory data analysis)에서 유용

단점

- · 데이터의 회전이나 작은 변화에 매우 민감
- ㆍ 예측 정확도 측면에서 다른 알고리즘보다 떨어지는 경우가 많음
 - = Bagging, boosting, random forests 등을 사용해 정확도 향상

threshold, 713%.

- $0 \quad x^{\ell} \leq 3$
- 3 X2 > 1

$$\chi_1 = 3$$

- $\begin{array}{cccc}
 (1) & \chi_2 & \gtrsim 1 \\
 (2) & \chi_1 & \gtrsim -1
 \end{array}$

Iris dataset

- 50 50 50 = 150
- · 3개의 클래스: iris setosa, iris versicolor, iris virginica
- · 4개의 feature: sepal length/width, petal length/width
- ㆍ 각 클래스별로 50개의 샘플

Decision tree for iris dataset

Decision tree for iris dataset

Gini impurity measure

Gini impurity measure

· 임의의 node i에서 impurity Gi는 다음과 같이 정의

$$G_{i} = 1 - \sum_{k} p_{i,k}^{2} \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array}$$

$$\begin{array}{c} \\ \end{array}\\ \end{array} \\ \begin{array}{c} \\ \end{array}\\ \end{array} \\ \begin{array}{c} \\ \end{array}$$

$$\begin{array}{c} \\ \end{array}\\ \end{array}$$

- · p_{i,k}: node i에서 클래스 k에 속하는 instance의 비율
- · e.g.,

$$G = 1 - \left(\frac{49}{54}\right)^2 - \left(\frac{5}{54}\right)^2 \approx 0.168$$
 (2) sini = 0.168 samples = 54 value = [0, 49, 5]

Information gain measure

Information gain (entropy) measure

 $H + P = [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}]$

• 한 노드에서의 엔트로피

$$H = -\sum_{k} p_{i,k} \log p_{i,k} \tag{3}$$

- · $p_{i,k}$: node i에서 클래스 k에 속하는 instance의 비율
- · e.g.,

Regularization hyperparameters

Decision tree와 과적합(overfitting)

- · Decision tree는 데이터에 대한 가정이 별로 없음
- · Tree growing에 제약을 주지 않으면 과적합되기 쉬움

과적합 방지를 위한 정규화(regularization)

- · Tree growing에 있어 자유도에 제한을 가하는 것
- · Regularization 방법은 알고리즘에 따라 다름

주이길(F101E7 수 음 와변(ivin) 쉬움 평화(상으로 + 1 오텟을

Regularization hyperparameters

Hyperparamter	Default	Description
max_depth min_samples_split min_samples_leaf min_weight_fraction_leaf max_leaf_nodes max_features	none 2 1 0 none none	트리의 최대 깊이 내부 node를 split하기 위한 최소 샘플 수 leaf node가 되기 위한 node 내 샘플 수 min_samples_leaf와 같으나 샘플 수 비율로 표시 leaf node 최대 수 각 node에서 split을 위해 계산하는 최대 feature 수

Instability of decision tree

Decision boundary가 항상 좌표축에 수직 ⇒ 데이터셋의 회전에 민감

Figure 6-7. Sensitivity to training set rotation

Instability of decision tree

데이터의 작은 변화에도 매우 민감

Instability of decision tree

데이터의 작은 변화에도 매우 민감

hase model x ensemble = random forest.

decision
tree + E1134

Random Forest

Ensemble learning

Ensemble learning

- 8
- · 한 전문가의 의견 vs. 여러 사람의 의견을 종합
- · 하나의 좋은 예측기 vs. 보통 예측기 집단의 예측

Ensemble learning의 목표

- 여러 다양한 의견을 고려
- · 논리적 과정을 통해 결합
- 결정에 대한 신뢰성을 높임

Ensemble learning

Ensemble을 통한 변동성 축소

- · 분류기들의 오류는 각 샘플에 대해 서로 다른 오류를 발생시키지만, 옳은 분류에 대해서는 일반적으로 일치
- · 여러 분류기 출력을 averaging 하는 것은 오류 요소들이 averaging out 되게 만들어 전체 ensemble 모델의 오류를 감소
- Decision tree와 ensemble learning = random forest
 - · Decision tree는 base model로써의 활용도가 높음
 - · Low computational complexity: 데이터의 크기가 방대해도 빠르게 구축
 - · Nonparametric: 데이터의 분포에 대한 가정이 필요 없음

Ensemble learning: diversity

다음 조건을 만족할 때, ensemble model이 base model보다(우수)

- · Base model이 서로 독립적이고
- · Base model이 무작위로 예측할 때보다 성능이 뛰어난 경우

Ensemble model의 성능을 확보하기 위한 핵심: 다양성과 무작위성

- · 훈련 데이터의 서로 다른 부분집합을 사용 bootstrap 기
- · 사용 가능한 feature의 서로 다른 부분집합을 사용: random subspace

random forest

- = basemodel decision tree

 - = assresation

= boot strap
- accrecation } bagging

- random subspace

Bagging = bootstrap aggregating

Bootstrapping

- ㆍ 각 모델은 서로 다른 학습 데이터셋을 이용
- · 각 데이터셋은 <mark>복원 추출</mark>을 통해 <mark>원래 데이터 수만큼</mark>의 크기를 갖도록 샘플링
- · 개별 데이터셋을 bootstrap set이라 부름

Result aggregating: hard voting

Result aggregating: hard voting

Hard voting, majority voting

Training Ensemble P(y=/1) Prediction population accuracy Model 1 0.80 0.90 Model 3 Model 4 Model 5 1 Model 6 0.12 0.85 0.86 Model 8 0.91 0.69 1 Model 9 0.77 0.71 Model 10

0,1

Hard voting = 1

Result aggregating: soft voting

Soft voting, weighted voting: training accuracy 이용

Ensemble population	Training accuracy	P(y=1)	Prediction		
Model 1	0.80	0.90	1		
Model 2	0.76	88.0	1		
Model 3	Dez	0. 37	0		
Model 4	0.94	0.65	1		
Model 5	0.83	0.75	1		
Model 6	032	0.12	0		
Model 7	0.35	0.86	1		
Model 8	0.91	0.69	1		
Model 9	0.77	0.71	1		
Model 10	0.87	0.64	1		

P(Ensemble = 0) = 0.186 P(Ensemble = 1) = 0.814 Weighted voting = 1

$$P(\text{ensemble} = 1) = \frac{0.80 + 0.76 + 0.94 + 0.83 + \cdots}{0.80 + 0.76 + 0.82 + \cdots + 0.87}$$

Result aggregating: soft voting

Random subspace

원래 변수들 중에서 모델 구축에 쓰일 입력 변수를 무작위로 선택

Random subspace

선택된 입력 변수 중에 분할될 변수를 선택

원래 변수	x1	x2	х3	x4	x5	x6	х7	х8
입력 변수	x1		х3	(x4)			х7	

Random subspace

분할된 노드에서 동일한 과정을 반복

Generalization error

- · 각각의 decision tree는 과적합 되더라도
- · Random forest는 그 수가 충분히 많다면 error가 바운드됨

$$\underbrace{\frac{\bar{\rho}(1-s^2)}{s^2}} \tag{5}$$

- ② decision tree 사이의 평균 상관관계 다양 (%) 수 들는 ③ 올바로 예측한 tree의 수와 잘못 예측한 tree의 수 차이의 평균 수 좋은
- · 개별 tree의 정확도가 높을수록 s가 증가함
- · Bagging과 random subspace로 모델 사이의 상관관계 감소 🔿 👆
- · 개별 tree의 정확도가 높고, 각각의 독립성이 높을수록 전체 성능 증가