פקודות MIPS בנקודה צפה Floating-Point Instructions

ארגון המחשב ושפת סף

מרצה: *רועי אש*

פקודות MIPS בנקודה צפה

- סוג זה של פקודות, מטפל בכל הקשור:
 - בתפעול ה- CoProcessor-1
- פקודות התקשורת בין האוגרים של ה CoProcessor-1 פקודות התקשורת בין האוגרים של ה \$\(\\$0-\\$11\), לאוגרים ה"רגילים" של המעבד (\$\\$0-\\$131)

מבנה הפקודות האריתמטיות: (החלוקה דומה ל R-Type)

Opcode 010001	fmt 16/17(s/d)	ft	fs	fd	func
6bit	5bit	5bit	5bit	5bit	6bit

- FMT = The format of the data •
- single precision במצגת זו נתייחס ל •

פקודות ביצוע ל CoProcessor 1 פקודות ביצוע ל (single (עבור 3) אופרנדים 3

הפקודה	מבצעת	דוגמא	מבצעת
add.s fd,fs,ft	fd ← fs+ft	add.s \$f5,\$f6,\$f7	\$f5=\$f6+\$f7
sub.s fd,fs,ft	fd ← fs-ft	sub.s \$f5,\$f6,\$f7	\$f5=\$f6-\$f7
mul.s fd,fs,ft	fd ← fs*ft	mul.s \$f5,\$f6,\$f7	\$f5=\$f6*\$f7
div.s fd,fs,ft	fd←fs/ft	div.s \$f5,\$f6,\$f7	\$f5=\$f6/\$f7

פקודות ביצוע ל CoProcessor 1 פקודות ביצוע ל (single (עבור) אופרנדים 2

הפקודה	מבצעת	דוגמא	מבצעת
abs.s fd,fs	fd ←abs(fs)	abs.s \$f5,\$f6	\$f5=abs(\$f6)
mov.s fd,fs	fd ← fs	mov.s \$f5,\$f6	\$f5=\$f6
neg.s fd,fs	fd← -fs	neg.s \$f5,\$f6	\$f5= -\$f6
sqrt.s fd,fs	fd ←sqrt(fs)	sqrt.s \$f5,\$f6	\$f5=sqrt(\$f6)

פקודות קישור בין ה- CoProcessor 1 ל CPU ל

- פקודות הקישור מעתיקות סיבית סיבית מאוגר
 כללי לאוגר נקודה צפה, ולהיפך.
- <u>לדוגמא</u>: אם היינו רוצים לחלק 5/7 ולקבל תוצאה המיוצגת ע"י מספר עשרוני, כיצד היינו עושים זאת עם האוגרים הרגילים?

פקודות קישור בין ה- CoProcessor 1 ל CPU ל

	הפקודה	מבצעת	דוגמא	מבצעת
mfc1	rt,fs	rt ←fs	mfc1 \$12,\$f12	\$12=\$f12)
mtc1	rt,fs	fs ← rt	mtc1 \$12,\$f12	\$f12=\$12
				AN A

- mfc1=Single Move From Coprocessor 1
- mtc1=Single Move To Coprocessor 1

Load/Store

חישוב הכתובת בזיכרון נעשה כמו ב Iw/sw (עם אוגר בסיס \$10...\$f0...\$f31 אולם CoProcessor 1 אוגר היעד הינו ב

- lwc1 ft, offset(base)
 - ft ← memory[base+offset]

31	26	25 21	20 16	15 0
L	WC1	basa		offset
11	10001	base	n n	onset
	6	5	5	16

- swc1 ft, offset(base)
 - memory[base+offset] ← ft

31 2	6 25	21	20 16	15 0
SWC1		base	ft	offset
111001				
6		5	5	16

שקף 8

Load/Store (pseudo instruction)

I.s \$f5,num

\$f5=the value in "num num+1 mum+2 num+3"

• הסבר: המעבד יפנה למען בזיכרון (RAM), המיוצג ע"י התוית num ויתחיל לקרוא ממנו 4 בתים .(single word)

s.s \$f5,num

the value in "num num+1 mum+2 num+3" =\$f5

• הסבר: המעבד יפנה למען בזיכרון (RAM), המיוצג ע"י התוית num ויתחיל להכניס אליו את ה - 4 בתים הימניים של האוגר singleword). rs

Compare

- הסבר: ב-CPU למדנו פקודות השוואה:
- המכניסות את התשובה- True/False כ- 1/0 בהתאמה לתוך אוגר המטרה (rd)
 - ולפי השוואה עם אוגר זה, היינו יודעים מה לעשות
 - \.או לא. (branch) או לא. לדוגמא, האם להסתעף
 - :CoProcessor 1 לעומת זאת, ב-
 - (בגרסאות MIPS מתקדמות יש יותר מדגל אחד יש דגל
- כלומר סיבית בודדת המקבלת, כמובן, 0 או 1, ונותנתאינדיקציה האם ההשוואה עברה בהצלחה (1) או נכשלה (0)
 - דבר החוסך לנו אוגר, אליו היתה אמורה להכנס אותההאינדיקציה

פקודות ההשוואה(ערך מוכנס לדגל)

• פורמט פקודות ההשוואה הינו:

Floating point comparison ,single (c.x.s) and comparison ,double (c.x.d)

יכול להיות (באמולציה של MIPS הקיימת בשימוש שלנו): •

Equal - eq -

less than or equal – le –

less then - It -

בגרסת MIPS מלאה יש אפשרויות נוספות: ...ge ,gt ,neq

c.lt.s: ← Compare Less Than Single • לדוגמה:

c.lt.s \$f5,\$f6 # \$f5<\$f6? (flag indicator)

- <u>הסבר</u>: אם תנאי ההשוואה מתקיים, הדגל מקבל את הערך 1 ואם לא, הדגל מתאפס.
- מומלץ להשתמש <u>בסמוך</u> לפקודה זו באחת מהפקודות: bc1t ,bc1f כדי לא לאבד בטעות את ערך ההשוואה בדגל (ע"י השוואה נוספת) אחרת, יש לשמור כי לא תהיה השוואה נוספת עד שנשתמש בדגל (זו הסיבה שבגירסאות mips מתקדמות ישנם 8 דגלים)

פקודות הסתעפות

ע"מ לבדוק את הדגל הזה, ישנן 2 פקודות הסתעפות מיוחדות:

Bc1t: ← Branch Coprocessor 1 if <u>True</u> (flag=1)

bc1t address

if the flag indicates 1, branch to the label called: "address".

Bc1f: ← Branch Coprocessor 1 if False (flag=0)

bc1f address

if the flag indicates 0, branch to the label called: "address".

המרות - Convert

- פקודות המתרגמות ערכים מטיפוס נתונים אחד למשנהו בין double ,single/float ,Integer הטיפוסים:
 - לכל צרוף אפשרי של זוג מהנ"ל יש שתי פקודות המרה
- הערך המספרי נשמר (עד כדי דיוק משמאל לנקודה העשרונית)
- cvt.w.s ConVerT Integer from Single

cvt.w.s \$f5,\$f6

takes the single value in reg. \$f6, converts it to integer and puts it into \$f5

cvt.s.w - ConVerT Signle from Integer

cvt.s.w \$f5,\$f6

takes the integer value in reg. \$f6, converts it to single and puts it into \$f5

שימו לב: ההמרות מתבצעות רק בפקודות CoProcessor 1

סיימנו...

?שאלות

