Sequence Profiles

by Ahmet Sacan

Multiple alignment

```
VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWESNG--
```

conserved region

conserved residues

conserved pattern hydrophobic - x - C - ... - W

PSSM: Position-Specific-Scoring-Matrix

$$f_{u,a} = \frac{n_{u,a}}{N_{seq}}$$

- $n_{u,a}$: number of residues of type a at column u
- N_{seq} : number of sequences

PSSM: Position-Specific-Scoring-Matrix

Pseudo-counts

protein1:	Α	R	S	N	С	P	_	-	Α	Α
protein2:	Α	R	S	N	С	-	1	ı	Т	Α
protein3:	L	R	C	N	С	P	G	C	Т	Α
protein4:	L	R	l	D	С	С	G	C	Α	Α
protein5:	I	R	С	D	G	С	G	С	Т	Α
fakeprotein A:	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
fakeprotein R:	R	R	R	R	R	R	R	R	R	R
fakeprotein N:	N	N	N	N	N	N	N	N	N	N
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

Correct for lack of or bias in data

Use pseudocounts:

$$f'_{u,a} = \frac{n_{u,a} + 1}{N_{seq} + 20}$$

Use pseudocounts by background frequencies

$$f'_{u,a} = \frac{n_{u,a} + \beta p_a}{N_{seq} + \beta}$$

- Lower the contribution of pseudocounts or substitution matrix if there is enough data.
- Use a substitution matrix

$$f'_{u,a} = \sum_{b} f_{u,b} s_{a,b}$$

- Weight the sequence contributions
 - Lower the weights of highly similar sequences

Representing profiles using logos

Entropy (uncertainty) in a column c:

$$H_c = -\sum_{a} f_{c,a} \log_2(f_{c,a})$$

Information

$$I_c = \log_2 20 - H_c$$

· Contribution of a residue a

$$I_{c,a} = f_{c,a}I_u$$

Sequence Logo Example

$$H_1 = -(f_A * \log_2 f_A + f_L * \log_2 f_L + f_I * \log_2 f_I)$$

$$= -(0.4 * \log_2 0.4 + 0.4 * \log_2 0.4 + 0.2 * \log_2 0.2)$$

$$= 1.52$$

$$I_1 = \log_2 20 - H_1 = 2.8$$

Prosite patterns

- [AC]-x-V-x(4)-{ED}
 - [Ala or Cys]-any-Val-any-any-any-any-{any but Glu or Asp}
- $\langle A-x-[ST](2)-x(0,1)-V$
 - Nterminal Ala-any-[Ser or Thr]-[Ser or Thr]-(any or none)-Val

Prosite	Regular Expression					
x	•	any character				
[ALT]	[ALT]	any of A, L, or T				
{AM}	[^AM]	anything but A or M				
A(3)	A{3}	AAA				
A(2,4)	A{2,4}	AA, or AAA, or AAAA				
< A	^A	A at the N-terminus				
A>	A\$	A at the C-terminus				

- $M_{1,P} = 0.9$, $M_{4,N} = 0.2$
- Path probability = 0.7*0.9*0.1*0.2*0.3*0.2*0.5 = 3.8e-04
- Sequence produced: PN

HMM questions

- What is the most likely path?
- What is the probability of a sequenced being produced?
- How do we construct the HMM and identify its parameters?

HMM answers

- Dynamic programming: Probability of a node can be decomposed into probabilities of transitioning into it from previous states.
- The most likely path
 - Viterbi algorithm
 - max() of each previous path

Viterbi Algorithm

 H_{M_3} , most likely path into M3:

$$\max \begin{cases} H_{D_2} * T_{D_2 \to M_3} \\ H_{M_2} * T_{M_2 \to M_3} \\ H_{I_2} * T_{I_2 \to M_3} \end{cases}$$

HMM answers

- · The probability of a sequence to be emitted
 - Forward (or Backward) algorithm
 - sum() of previous paths
- HMM parameters can be estimated from unaligned sequences
 - Baum-Welch expectation maximization algorithm

Aligning families

- Two HMMs can be aligned
 - COACH, HHSEARCH programs

Aligning families

- Two PSSMs can be compared using Pearson correlation coefficient
 - -LAMA program

```
OXDA_FUSSO 319 LDDETWIVHNYGHSGWGYQGSYGCAENVVQLVD
OXDD_BOVIN 294 DSRRLPVVHHYGHGSGGIAMHWGTALEATRLVN
OXDA_HUMAN 299 GPSNTEVIHNYGHGGYGLTIHWGCALEAAKLFG
OXDA_MOUSE 297 GSSSAE<mark>V</mark>IHNYGHGGYGLTIHWGCAMEAANLFG
OXDA_PIG 299 GSSNTEVIHNYGHGGYGLTIHWGCALEVAKLFG 331
OXDA RABIT 299 GPSKTEVIHNYGHGGYGLTIHWGCALEAAKLFG
DHSA_BACSU 229 GEFIQIHPTAIPGDDKLRLMSESARGEGGRVWT
DHSA_ECOLI 234 QDMEMWQFHPTGIAGAGVLVTEGCRGEGGYLLN
FRDA_WOLSU 249 GNMEAVQFHPTPLFPSGILLTEGCRGDGGILRR
DHSA_BOVIN 289 QDLEFVQFHPTGIYGAGCLITEGCRGEGGILIN
                Q D M E F V Q F H P T G I Y G A G C L I T E G A R G E G G Y L V N
DHSA_RICPR 238
                QDLEFVQFHPSGIYGSGCLITEGARGEGGFLVN
DHSA_YEAST 279
FRDA_ECOLI 224 RDMEFVQYHPTGLPGSGILMTEGCRGEGGILVN
                 RDMEFVQYHPTGLPGSGILMTEGCRGEGGI
FRDA PROVU 225
```


Summary

- Sequence profiles obtained from multiple sequence alignments
- Sequence logos and Prosite patterns are easy to interpret
- HMM more accurate for evaluating family membership