An Efficient Algorithm for PAC Mode Estimation

Shubham Anand Jain ² Rohan Shah ¹ Sanit Gupta ¹
Denil Mehta ¹ Inderjeet Nair ¹ Jian Vora ² Sushil Khyalia ¹
Sourav Das ³ Vinay J. Ribeiro ¹ Shivaram Kalyanakrishnan ¹

¹Indian Institute of Technology Bombay

²Stanford University

³University of Illinois Urbana-Champaign

August 2023

What is the **mode** of \mathcal{P} ?

What is the **mode** of \mathcal{P} ? Have to find out by **sampling** \mathcal{P} .

What is the **mode** of \mathcal{P} ? Have to find out by **sampling** \mathcal{P} . Sequence of samples from \mathcal{P} : 3

What is the **mode** of \mathcal{P} ? Have to find out by **sampling** \mathcal{P} . Sequence of samples from \mathcal{P} : 3, 1

What is the **mode** of \mathcal{P} ? Have to find out by **sampling** \mathcal{P} . Sequence of samples from \mathcal{P} : 3, 1, 3

What is the **mode** of \mathcal{P} ? Have to find out by **sampling** \mathcal{P} . Sequence of samples from \mathcal{P} : 3, 1, 3, 4

What is the **mode** of \mathcal{P} ? Have to find out by **sampling** \mathcal{P} . Sequence of samples from \mathcal{P} : 3, 1, 3, 4, 2, 1, 3, ...

What is the **mode** of \mathcal{P} ? Have to find out by **sampling** \mathcal{P} .

Sequence of samples from \mathcal{P} : 3, 1, 3, 4, 2, 1, 3, ...

When can we confidently stop sampling and declare the mode?

4 □ ▶ ◆ 클 ▶ ◆ 를 ▶ ◆ 를 ▶ ♡ 오 ○

2/26

- Ask a node for the result of a hard computation.
- Node returns "Result = ■".

- Ask a node for the result of a hard computation.
- Node returns "Result = ■".
- Should you trust this result?

- Ask a node for the result of a hard computation.
- Node returns "Result = ■".
- Should you trust this result?

- Ask a node for the result of a hard computation.
- Node returns "Result = ■".
- Should you trust this result?

- Ask a node for the result of a hard computation.
- Node returns "Result = ".
- Should you trust this result?

- Ask a node for the result of a hard computation.
- Node returns "Result = ".
- Should you trust this result?

- Assume that most frequently returned result is correct.
- Determine most frequently returned result with sufficient confidence, while minimising number of queries.

Jain et al. (2022) PAC Mode Estimation August 2023

3/26

Election Forecasting

Majority party:

Election Forecasting

Seat	Vote share	Winner
1		
2		
3		
4		
5		
6		
7		
:	:	:
543		
Majority party:		

- Confidently identify winner of each seat by sampling.
- Aggregate wins to predict overall winner.

Overview of Talk

- 1. PAC Formulation
- 2. Solutions for K = 2 classes
- 3. Generalising to $K \ge 2$ classes
- 4. Theoretical guarantees
- 5. Summary and outlook

Overview of Talk

- 1. PAC Formulation
- 2. Solutions for K = 2 classes
- 3. Generalising to $K \ge 2$ classes
- 4. Theoretical guarantees
- 5. Summary and outlook

- Categorical distribution $\mathcal{P} = (p, K)$:
 - $K \geq 2$ classes,
 - probability vector $p = \{p_1, p_2, \dots, p_K\}.$

6/26

Jain et al. (2022) PAC Mode Estimation August 2023

- Categorical distribution $\mathcal{P} = (p, K)$:
 - $K \geq 2$ classes,
 - probability vector $p = \{p_1, p_2, \dots, p_K\}.$
- **Algorithm** \mathcal{L} : Set of sample sequences \rightarrow {Continue, 1, 2, ..., \mathcal{K} }.

- Categorical distribution $\mathcal{P} = (p, K)$:
 - K > 2 classes,
 - probability vector $p = \{p_1, p_2, \dots, p_K\}.$
- Algorithm \mathcal{L} : Set of sample sequences \rightarrow {Continue, 1, 2, ..., \mathcal{K} }.
- Require algorithm $\mathcal L$ that
 - for every categorical distribution $\mathcal P$ with a unique mode,
 - for every mistake probability $\delta > 0$,

stops and declares the mode of ${\cal P}$ with probability at least $1-\delta.$

- Categorical distribution $\mathcal{P} = (p, K)$:
 - K > 2 classes.
 - probability vector $p = \{p_1, p_2, \dots, p_K\}.$
- **Algorithm** \mathcal{L} : Set of sample sequences \rightarrow {Continue, 1, 2, ..., \mathcal{K} }.
- Require algorithm $\mathcal L$ that
 - for every categorical distribution P with a unique mode,
 - for every mistake probability $\delta > 0$,

stops and declares the mode of ${\cal P}$ with probability at least $1-\delta.$

• **Prefer** δ -correct algorithm with low sample complexity.

Overview of Talk

- 1. PAC Formulation
- 2. Solutions for K = 2 classes
- 3. Generalising to $K \ge 2$ classes
- 4. Theoretical guarantees
- 5. Summary and outlook

Solving the K = 2 Special Case

• Have to ascertain whether $p_1 > 0.5$ or $p_1 < 0.5$ based on samples 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1 ...

Solving the K = 2 Special Case

- Have to ascertain whether $p_1 > 0.5$ or $p_1 < 0.5$ based on samples 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1 . . .
- Maintain lower confidence bound LCB and upper confidence bound UCB on p_1 , stop if LCB > 0.5 or UCB < 0.5.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

• After t samples, let \hat{p}_1^t be the empirical fraction of class 1.

• After t samples, let \hat{p}_1^t be the empirical fraction of class 1.

• Note that the stopping time is random.

August 2023

Some Baselines

Using Hoeffding's Inequality.

$$LCB(t), UCB(t) = \hat{\rho}_1^t \pm \beta(t, \delta),$$

$$\beta(t, \delta) = \sqrt{\frac{1}{2t} \ln\left(\frac{kt^{\alpha}}{\delta}\right)}.$$

Some Baselines

Using Hoeffding's Inequality.

$$\begin{split} \textit{LCB}(t), \textit{UCB}(t) &= \hat{\rho}_1^t \pm \beta(t, \delta), \\ \beta(t, \delta) &= \sqrt{\frac{1}{2t} \ln \left(\frac{kt^{\alpha}}{\delta}\right)}. \end{split}$$

• Using Empirical Bernstein bound (A_1 algorithm (Shah et al., 2020)).

$$\begin{aligned} \textit{LCB}(t), \textit{UCB}(t) &= \hat{\rho}_1^t \pm \beta(t, \delta), \\ \beta(t, \delta) &= \sqrt{\frac{2V^t \ln(4t^2/\delta)}{t}} + \frac{7\ln(4t^2/\delta)}{3(t-1)}, \end{aligned}$$

where V^t is the empirical variance.

Some Baselines

Using Hoeffding's Inequality.

$$\begin{split} \textit{LCB}(t), \textit{UCB}(t) &= \hat{\rho}_1^t \pm \beta(t, \delta), \\ \beta(t, \delta) &= \sqrt{\frac{1}{2t} \ln \left(\frac{kt^{\alpha}}{\delta}\right)}. \end{split}$$

• Using Empirical Bernstein bound (A_1 algorithm (Shah et al., 2020)).

$$\begin{aligned} \textit{LCB}(t), \textit{UCB}(t) &= \hat{\rho}_1^t \pm \beta(t, \delta), \\ \beta(t, \delta) &= \sqrt{\frac{2V^t \ln(4t^2/\delta)}{t}} + \frac{7\ln(4t^2/\delta)}{3(t-1)}, \end{aligned}$$

where V^t is the empirical variance.

• "Self-normalised" inequality to avoid naïve union bound over t. KL-SN, Garivier (2013).

Jain et al. (2022) PAC Mode Estimation August 2023 10 / 26

• Introduced by Waudby-Smith and Ramdas (2020).

- Introduced by Waudby-Smith and Ramdas (2020).
- Let us maintain a belief π on p_1 , starting with uniform prior $\pi^0(q) = 1$ for $q \in [0, 1]$.

- Introduced by Waudby-Smith and Ramdas (2020).
- Let us maintain a belief π on p_1 , starting with uniform prior $\pi^0(q) = 1$ for $q \in [0, 1]$.
- Bayesian update on receiving sample $x^t \in \{1, 2\}$:

$$\pi^{t}(q) = \frac{\pi^{t-1}(q) \cdot (q)^{\mathbf{1}[x^{t}=1]} \cdot (1-q)^{\mathbf{1}[x^{t}=2]}}{\int_{\rho=0}^{1} \pi^{t-1}(\rho) \cdot (\rho)^{\mathbf{1}[x^{t}=1]} \cdot (1-\rho)^{\mathbf{1}[x^{t}=2]} d\rho}.$$

- Introduced by Waudby-Smith and Ramdas (2020).
- Let us maintain a belief π on p_1 , starting with uniform prior $\pi^0(q) = 1$ for $q \in [0, 1]$.
- Bayesian update on receiving sample $x^t \in \{1, 2\}$:

$$\pi^{t}(q) = \frac{\pi^{t-1}(q) \cdot (q)^{\mathbf{1}[x^{t}=1]} \cdot (1-q)^{\mathbf{1}[x^{t}=2]}}{\int_{\rho=0}^{1} \pi^{t-1}(\rho) \cdot (\rho)^{\mathbf{1}[x^{t}=1]} \cdot (1-\rho)^{\mathbf{1}[x^{t}=2]} d\rho}.$$

• The Prior-Posterior-Ratio is given by

$$R^t(q) \stackrel{\text{def}}{=} \frac{\pi^0(q)}{\pi^t(q)}.$$

The Prior-Posterior-Ratio is given by

$$R^t(q) \stackrel{\text{def}}{=} \frac{\pi^0(q)}{\pi^t(q)}.$$

Define the confidence set

$$C^t \stackrel{\mathsf{def}}{=} \left\{ q : R^t(q) < rac{1}{\delta}
ight\}.$$

The Prior-Posterior-Ratio is given by

$$R^t(q) \stackrel{\text{def}}{=} \frac{\pi^0(q)}{\pi^t(q)}.$$

Define the confidence set

$$C^t \stackrel{\mathsf{def}}{=} \left\{ q : R^t(q) < \frac{1}{\delta}
ight\}.$$

• We have the "anytime" guarantee that

$$\mathbb{P}\{ \exists t \geq 0 : p_1 \notin C^t \} \leq \delta.$$

The Prior-Posterior-Ratio is given by

$$R^t(q) \stackrel{\text{def}}{=} \frac{\pi^0(q)}{\pi^t(q)}.$$

Define the confidence set

$$C^t \stackrel{\mathsf{def}}{=} \left\{ q : R^t(q) < \frac{1}{\delta}
ight\}.$$

• We have the "anytime" guarantee that

$$\mathbb{P}\{ \exists t \geq 0 : p_1 \notin C^t \} \leq \delta.$$

• Proof by establishing that $R^t(p_1)$ is a martingale, then applying Ville's inequality on nonnegative supermartingales.

• The Prior-Posterior-Ratio is given by

$$R^t(q) \stackrel{\text{def}}{=} \frac{\pi^0(q)}{\pi^t(q)}.$$

Define the confidence set

$$C^t \stackrel{\mathsf{def}}{=} \left\{ q : R^t(q) < \frac{1}{\delta}
ight\}.$$

• We have the "anytime" guarantee that

$$\mathbb{P}\{\exists t \geq 0 : p_1 \notin C^t\} \leq \delta.$$

- Proof by establishing that $R^t(p_1)$ is a martingale, then applying Ville's inequality on nonnegative supermartingales.
- Method more generally applicable, even for estimating multiple parameters simultaneously.

PPR Martingale Confidence Sequences: Illustration

PPR-Bernoulli Stopping Rule

• For our K=2 case, the belief distribution π^t is Beta.

Jain et al. (2022) PAC Mode Estimation August 2023 14 / 26

PPR-Bernoulli Stopping Rule

- For our K=2 case, the belief distribution π^t is Beta.
- Let $\operatorname{first}(t) \in \{1,2\}$ denote the more frequent class in the data, and $\operatorname{second}(t) \in \{1,2\}$ the other class. Let s_i^t be the number of occurrences of class $i \in \{1,2\}$. We obtain this stopping rule.

PPR-Bernoulli Stopping Rule

- For our K=2 case, the belief distribution π^t is Beta.
- Let $\operatorname{first}(t) \in \{1,2\}$ denote the more frequent class in the data, and $\operatorname{second}(t) \in \{1,2\}$ the other class. Let s_i^t be the number of occurrences of class $i \in \{1,2\}$. We obtain this stopping rule.

PPR-Bernoulli: Stop, declare first(t) as mode iff Beta $\left(\frac{1}{2}; s_{\mathsf{first}(t)}^t + 1, s_{\mathsf{second}(t)}^t + 1\right) \leq \delta$.

Comparison of Stopping Rules for K = 2

Comparison of Stopping Rules for K = 2

$$p_1 = 0.65$$

15 / 26

Overview of Talk

- 1. PAC Formulation
- 2. Solutions for K = 2 classes
- 3. Generalising to $K \ge 2$ classes
- 4. Theoretical guarantees
- 5. Summary and outlook

3, 1, 3, 4, 2, 1, 3, 2, 4, 3, 3, 1, 2, 3, ...

17 / 26

Jain et al. (2022) PAC Mode Estimation August 2023

1-versus-rest approach

- For each class i, estimate underlying probability p_i.
- Stop and declare i as mode if LCB on p_i exceeds UCB on p_j for all $j \neq i$.

1-versus-rest approach

- For each class i, estimate underlying probability p_i.
- Stop and declare i as mode if LCB on p_i exceeds UCB on p_j for all $j \neq i$.

1-versus-1 approach

- For each pair of classes (i,j), estimate $q_{ij} = \frac{p_i}{p_i + p_i}$.
- Stop and declare i as mode if for all $j \neq i$, q_{ij} confidently exceeds 0.5.

1-versus-rest approach

- For each class i, estimate underlying probability p_i.
- Stop and declare i as mode if LCB on p_i exceeds UCB on p_j for all $j \neq i$.

1-versus-1 approach

- For each pair of classes (i,j), estimate $q_{ij} = \frac{p_i}{p_i + p_i}$.
- Stop and declare i as mode if for all $j \neq i$, q_{ij} confidently exceeds 0.5.

1-versus-1 appears to waste samples, but ...

Empirical Comparison: 1vr and 1v1

Sample complexity

Distribution	K	Туре	\mathcal{A}_1	KL-SN	PPR
\mathcal{P}_1 : .5, .25 $ imes$ 2	3	1vr 1v1	$1344{\pm}20$ $1158{\pm}19$	418±14 346±13	$262{\pm}12$ 218 \pm 11
P_2 : .4, .2 × 3	4	1vr 1v1	$^{1919\pm29}_{1516\pm24}$	$632{\pm}18$ $468{\pm}15$	$397{\pm}15$ 298 ${\pm}13$
\mathcal{P}_3 : .2, .1 $ imes$ 8	9	1vr 1v1	5082±51 3340±43	1900±42 1138±31	1201±29 789 ± 28
\mathcal{P}_4 : .1, .05 $ imes$ 18	19	1vr 1v1	12015±129 7352±88	$4686{\pm}81$ 2554 ${\pm}57$	$2850{\pm}55$ $1840{\pm}53$
\mathcal{P}_5 : .35, .33, .12, .1 × 2	5	1vr 1v1	155277±2356 117988±2078	63739±2238 47205±1291	38001±1311 33660 ± 1125
\mathcal{P}_6 : .35, .33, .04 × 8	10	1vr 1v1	$\begin{array}{c} 158254{\pm}2442 \\ 121150{\pm}2183 \end{array}$	$66939{\pm}2241$ $49576{\pm}1341$	41963±1330 36693 ± 1185

• We stop when some class i beats all classes $j \neq i$.

- We stop when some class i beats all classes $j \neq i$.
- When we stop, clearly i must be first(t).

- We stop when some class i beats all classes $j \neq i$.
- When we stop, clearly i must be first(t).
- If first(t) beats all $j \neq \text{first}(t)$, then first(t) must beat second(t), and vice versa).

- We stop when some class i beats all classes $j \neq i$.
- When we stop, clearly i must be first(t).
- If first(t) beats all $j \neq \text{first}(t)$, then first(t) must beat second(t), and vice versa).
- It is sufficient for us check whether first(t) beats second(t)!

- We stop when some class i beats all classes $j \neq i$.
- When we stop, clearly i must be first(t).
- If first(t) beats all $j \neq \text{first}(t)$, then first(t) must beat second(t), and vice versa).
- It is sufficient for us check whether first(t) beats second(t)!

PPR-1v1: Stop and declare first(t) as mode iff Beta $\left(\frac{1}{2}; s_{\mathsf{first}(t)}^t + 1, s_{\mathsf{second}(t)}^t + 1\right) \leq \frac{\delta}{K-1}$.

- We stop when some class i beats all classes $j \neq i$.
- When we stop, clearly i must be first(t).
- If first(t) beats all $j \neq \text{first}(t)$, then first(t) must beat second(t), and vice versa).
- It is sufficient for us check whether first(t) beats second(t)!

PPR-1v1: Stop and declare first(
$$t$$
) as mode iff Beta $\left(\frac{1}{2}; s_{\mathsf{first}(t)}^t + 1, s_{\mathsf{second}(t)}^t + 1\right) \leq \frac{\delta}{K-1}$.

• Computationally light compared to PPR-1vr, and other KL-divergence-based rules (which have to perform a numerical computation at each step).

Overview of Talk

- 1. PAC Formulation
- 2. Solutions for K = 2 classes
- 3. Generalising to $K \ge 2$ classes
- 4. Theoretical guarantees
- 5. Summary and outlook

Asymptotic Optimality

• Lower bound [Shah et al., 2020]: Any δ -correct algorithm requires at least LB(\mathcal{P}, δ) samples in expectation, where

$$\mathsf{LB}(\mathcal{P}, \delta) \stackrel{\mathsf{def}}{=} \sup_{\mathcal{P}' : \mathsf{mode}(\mathcal{P}') \neq \mathsf{mode}(\mathcal{P})} \frac{1}{\mathsf{KL}(\mathcal{P}||\mathcal{P}')} \ln \left(\frac{1}{2.4\delta} \right).$$

Asymptotic Optimality

• Lower bound [Shah et al., 2020]: Any δ -correct algorithm requires at least LB(\mathcal{P}, δ) samples in expectation, where

$$\mathsf{LB}(\mathcal{P}, \delta) \stackrel{\mathsf{def}}{=} \sup_{\mathcal{P}' : \mathsf{mode}(\mathcal{P}') \neq \mathsf{mode}(\mathcal{P})} \frac{1}{\mathsf{KL}(\mathcal{P}||\mathcal{P}')} \ln \left(\frac{1}{2.4\delta} \right).$$

• **PPR-1v1 upper bound**: Let $\tau(\mathcal{P}, \delta)$ be the expected stopping time of PPR-1v1 on \mathcal{P} when run with mistake probability δ . Then,

$$\lim_{\delta \to 0} \frac{\tau(\mathcal{P}, \delta)}{\mathsf{LB}(\mathcal{P}, \delta)} = 1.$$

Asymptotic Optimality

• Lower bound [Shah et al., 2020]: Any δ -correct algorithm requires at least LB(\mathcal{P}, δ) samples in expectation, where

$$\mathsf{LB}(\mathcal{P}, \delta) \stackrel{\mathsf{def}}{=} \sup_{\mathcal{P}' : \mathsf{mode}(\mathcal{P}') \neq \mathsf{mode}(\mathcal{P})} \frac{1}{\mathsf{KL}(\mathcal{P}||\mathcal{P}')} \ln \left(\frac{1}{2.4\delta} \right).$$

• **PPR-1v1 upper bound**: Let $\tau(\mathcal{P}, \delta)$ be the expected stopping time of PPR-1v1 on \mathcal{P} when run with mistake probability δ . Then,

$$\lim_{\delta \to 0} \frac{\tau(\mathcal{P}, \delta)}{\mathsf{LB}(\mathcal{P}, \delta)} = 1.$$

• Proof uses probability, functions, some results from Garivier and Kaufmann (2016) (who obtain similar result for PAC bandits).

←□ → ←団 → ←필 → ←필 → ←필 → ○

Asymptotic Optimality (continued)

Result from \mathcal{P}_3

- Let $X = x^1, x^2, \dots$ be an infinite sequence of samples from \mathcal{P} .
- For algorithm L, let T(L,X) denote the stopping time of L on X.
- Define algorithm L_1 to uniformly dominate algorithm L_2 if for every sequence X, $\delta \in (0,1)$,

$$T(L_2,X)<\infty \implies T(L_1,X)\leq T(L_2,X).$$

• Hoeffding-1v1 uniformly dominates Hoeffding-1vr.

Hoeffding-1v1 uniformly dominates Hoeffding-1vr.

• A_1 -1v1 uniformly dominates A_1 -1vr.

- Hoeffding-1v1 uniformly dominates Hoeffding-1vr.
- A_1 -1v1 uniformly dominates A_1 -1vr.
- ullet PPR-1v1 uniformly dominates \mathcal{A}_1 -1v1.

- Hoeffding-1v1 uniformly dominates Hoeffding-1vr.
- A_1 -1v1 uniformly dominates A_1 -1vr.
- PPR-1v1 uniformly dominates A_1 -1v1.
- Does PPR-1v1 uniformly dominate PPR-1vr?

- Hoeffding-1v1 uniformly dominates Hoeffding-1vr.
- A_1 -1v1 uniformly dominates A_1 -1vr.
- PPR-1v1 uniformly dominates A_1 -1v1.
- Does PPR-1v1 uniformly dominate PPR-1vr? Yet a conjecture!

- Hoeffding-1v1 uniformly dominates Hoeffding-1vr.
- A_1 -1v1 uniformly dominates A_1 -1vr.
- PPR-1v1 uniformly dominates A_1 -1v1.
- Does PPR-1v1 uniformly dominate PPR-1vr? Yet a conjecture!
- These proofs done by showing

 L_2 terminates on $X \implies L_1$ terminates on X.

Overview of Talk

- 1. PAC Formulation
- 2. Solutions for K = 2 classes
- 3. Generalising to $K \ge 2$ classes
- 4. Theoretical guarantees
- 5. Summary and outlook

Concluding Notes

- Have addressed PAC mode estimation problem.
- PPR an elegant approach to handle random stopping time.
- 1v1 outperforms 1vr to generalise to $K \ge 2$ classes.
- PPR-1v1 simple, asymptotically optimal, efficient in practice.
- Flexible to apply in practice, validated on two distinct applications.
- Code base released along with AISTATS 2022 paper.
- Conjecture on PPR-1v1 termination preceding PPR-1vr termination remains unresolved.
- Can PPR help in bandits, too?
- Do you have a practical application of mode estimation?

Jain et al. (2022) PAC Mode Estimation August 2023 26 / 26