Out[1]:

	COMP	LOC	WMC	DIT	NOC
0	org.apache.tools.ant.util.regexp.JakartaRegexp	-0.455390	-0.644382	-0.660476	-0.14192
1	org.apache.tools.ant.taskdefs.GUnzip.java	-0.403774	-0.569526	-0.660476	-0.14192
2	org. a pache. tools. ant. task defs. condition. Equals	-0.201800	-0.045537	0.654215	-0.14192
3	org.apache.tools.ant.task defs.optional.ccm.CCM	-0.628190	-0.794093	-0.660476	-0.14192
4	org.apache.tools.ant.listener.Log4jListener.java	-0.107546	-0.270104	0.654215	-0.14192

```
In [82]:
```

```
#ant19_input_features=["CA", "AMC", "MOA", "CAM", "MaX_CC", "DIT", "CE", "NOC",
#ant19_input_features=["CA", "AMC", "MOA", "CAM", "MaX_CC", "DIT", "CE", "NOC",
#ant19_input_features=["CA", "AMC", "MOA", "CAM", "MaX_CC", "DIT", "CE", "NOC",
#ant19_input_features=["CA", "AMC", "MOA", "CAM", "MaX_CC", "DIT", "CE", "NOC"]
#ant19_input_features=["CA", "AMC", "MOA", "CAM", "MaX_CC", "DIT", "CE"]
#ant19_input_features=["CA", "AMC", "MOA", "CAM", "MaX_CC", "DIT"]
#ant19_input_features=["CA", "AMC", "MOA", "CAM"] #optimal
#ant19_input_features=["CA", "AMC", "MOA"]
#ant19_input_features=["CA", "AMC", "CAM"]
#ant19_input_features=["CA", "AMC", "CAM"]
#ant19_input_features=["CA", "MOA", "CAM"]
#ant19_input_features=["CA", "MOA", "CAM"]
#ant19_input_features=["CA", "MOA", "CAM"]
#ant19_input_features=["CA", "MOA", "CAM"]
X = ds[ant19_input_features] # Features
```

y = ds.Sum_Churn # Target variable

Optimization terminated successfully.

Current function value: 0.620268

Iterations 5

Out[83]:

Logit Regression Results

Dep. Variable:	Sum_Churn	No. Observations:	724
Model:	Logit	Df Residuals:	719
Method:	MLE	Df Model:	4
Date:	Wed, 17 Apr 2024	Pseudo R-squ.:	0.09592
Time:	13:35:29	Log-Likelihood:	-449.07
converged:	True	LL-Null:	-496.72
Covariance Type:	nonrobust	LLR p-value:	9.894e-20

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0361	0.091	-0.395	0.693	-0.215	0.143
CA	0.7932	0.322	2.463	0.014	0.162	1.424
AMC	0.8313	0.337	2.468	0.014	0.171	1.492
MOA	0.3638	0.144	2.535	0.011	0.083	0.645
CAM	-0.5704	0.098	-5.793	0.000	-0.763	-0.377

In [84]:

#odds ratio

import numpy as np
np.exp(smlog.params)

0.964558

Out[84]: const

CA 2.210560 AMC 2.296402 MOA 1.438850 CAM 0.565287 dtype: float64

```
In [85]: #calculate Variance Inflation Factor
    from statsmodels.stats.outliers_influence import variance_inflation_fact
    vif_scores = pd.DataFrame()
    vif_scores["Attribute"] = X.columns

# calculating VIF for each feature
    vif_scores["VIF Scores"] = [variance_inflation_factor(X.values, i) for i
    display(vif_scores)
```

	Attribute	VIF Scores
0	CA	1.015828
1	AMC	1.064606
2	MOA	1.272112
3	CAM	1.305850

beforell=-449.07

```
LR = likelihood_ratio(afterll,beforell)
p = chi2.sf(LR, 1) # 1 DoF coz diff between variable in model

print(LR)
print(p)
```

- 6.680000000000064
- 0.0097500624568861

```
In [ ]: ▶
```

In []:	M	
In []:	H	