CLAIMS

What is claimed is:

1	1. A method for transmitting information over a wireless netwo	rk,	
2	comprising:		
3	converting incoming wireless signals to intermediate frequency (IF)		
4	signals;		
5	transmitting the converted IF signals over a wired network;		
6	retrieving the transmitted IF signals from the wired network; and		
7	converting the retrieved IF signals to digital data that can be routed	to a	
8	destination.		
1	2. The method of claim 1, wherein the converting of the incomi	ıg	
2	wireless signals includes converting radio frequency (RF) signals to IF sign	als.	
1	3. The method of claim 1, wherein the wired network includes		
2	alternating current (AC) wiring.		
1	4. The method of claim 3, wherein the IF signals are baseband		
2	signals.		
1	5. The method of claim 1, wherein the destination is at least one	of a	
2	gateway and server.		
1	6. An Access Point comprising:		
2	a radio frequency (RF) up/down converter to convert RF signals to		
3	intermediate frequency (IF) analog signals; and		
4	an IF module to transmit the IF analog signals over a wired		
5	communication link for subsequent conversion into digital data at the		
6	destination.		
1	7. The Access Point of claim 6, wherein the wired communication	n	
2	link is alternating current (AC) électrical wiring.		
1	8. The Access Point of claim 6, wherein the wired communication	n	
2	link is a twisted pair telephone line.		
1	9. The Access Point of claim 6 further comprising an antenna to		
2	receive the RF signals.		

003927.P003 -10- WWS/crr

1	10. An Access Fount comprising:	
2	a first software module operating as an up/down converter to convert	
3	wireless signals to intermediate frequency (IF) analog signals; and	
4	a second software module operating in conjunction with the first	
5	software module to transmit the IF analog signals over a wired communication	
6	link for subsequent conversion into digital data at the destination.	
1	11. The Access Point of claim 10, wherein the wired communication	
2	link is alternating current (AC) electrical wiring.	
1	12. The Access Point of claim 10, wherein the wired communication	
2	link is a twisted pair telephone line.	
1	13. The Access Point of claim 10 further comprising an antenna to	
2	receive the RF signals.	
1	14. The Access Point of claim 10, wherein the up/down converter is	
2	radio frequency (RF) up/down converter to convert RF signals into the IF	
3	analog signals.	
1	15. An intermediary unit comprising:	
2	a connector coupled to a wired communication link;	
3	an intermediary frequency (IF) module to receive incoming IF signals	
4	over the wired communication link; and	
5	an IF-to-Digital converter to convert the incoming IF signals to digital	
6	data and format the digital data according to a format associated with a digital	
7	communication link.	
1	16. The intermediary unit of claim 15, wherein the connector is an	
2	electrical plug based on the wired communication link being electrical wiring.	
1	17. The intermediary unit of claim 15, wherein the connector is a	
2	telephone plug for insertion into a telephone jack based on the wired	
3	communication link being a telephone line.	
1	18. The intermediary unit of claim 15, wherein the IF-to-Digital	
2	converter formats the digital data according to an Ethernet format based on the	
3	digital communication link being an Ethernet communication link.	
1	19. An intermediary unit comprising:	

003927.P003 -11- WWS/crr

2	a connector coupled to a wired communication link;
3	an IF-to-Digital converter to receive incoming digital data sent over a
4	digital communication link, and convert the incoming digital data to IF signals,
5	and
6	an intermediary frequency (IF) module to send the IF signals over the
7	wired communication link to a wired network.
1	20. The intermediary unit of claim 19, wherein the connector is an
2	electrical plug based on the wired communication link being electrical wiring.
1	21. The intermediary unit of claim 19, wherein the connector is a
2	telephone plug for insertion into a telephone jack based on the wired
3	communication link being a telephone line.
1	22. A method for transmitting information over a wireless network,
2	comprising:
3	converting incoming digital data to intermediate frequency (IF) signals;
4	transmitting the converted IF signals over a wired network;
5	retrieving the transmitted IF signals from the wired network; and
6	converting the retrieved IF signals to wireless signals that can be routed
7	to a wireless unit.
1	23. The method of claim 22, wherein the converting of the retrieved
2	IF signals includes converting the retrieved IF signals to radio frequency (RF)
3	signals.
1	24. The method of claim 22, wherein the wired network includes
2	alternating current (AC) wiring

003927.P003 -12- WWS/crr