

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT - II Vector Calculus

		Tutorial Sheet - 3	
Sl.No.		Questions	Answer
		Part – A	
1			$[-2ab^2]$
	- 0	here $\overrightarrow{F} = (x^2 + y^2) \overrightarrow{i} - 2xy \overrightarrow{j}$ the curve C is the rectangle in the ed by $x = 0$, $x = a$, $y = b$ and $y = 0$.	
2	Verify Stoke's the of a cube $x = 0$,	-4	
3	Verify Stoke's the	π	
4	Verify Stoke's theorem for $\overrightarrow{F} = (x^2 + y^2)\overrightarrow{i} - 2xy\overrightarrow{j}$ taken round the rectangle bounded by $x = \pm a$, $y = 0$ and $y = b$.		$[-4ab^2]$
5	$x^2 + y^2 = 1.$	heorem in a plane for the $\int_C (x-2y) dx + x dy$ taken around the circle	$_3\pi$
		Part – B	
6	Using Stoke's the and S is the surf	Part – B corem to evaluate $\int \int (\nabla \times \overrightarrow{F}) \cdot \hat{n} ds$ where $\overrightarrow{F} = y \overrightarrow{i} + (x - 2xz) \overrightarrow{j} xz \overrightarrow{k}$ face of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy -plane. (Answer	0
7		vergence theorem for $\overrightarrow{F} = x^2 \overrightarrow{i} + z \overrightarrow{j} + yz \overrightarrow{k}$ over the cube formed ± 1 and $z = \pm 1$.	0
8	Using Stoke's th	eorem evaluate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where $\overrightarrow{F} = \sin(x-y)\overrightarrow{i} - \cos x\overrightarrow{j}$ where C of the triangle where vertices are $(0,0)$, $(\frac{\pi}{2},0)$ and $(\frac{\pi}{2},1)$. (Answer	$\left[\frac{\pi}{4} + \frac{2}{\pi}\right]$
9.	Apply Gauss div	regence theorem to evaluate $\int \int ((x^3 - yz)dydz - 2x^2ydzdx + zdxdy)$ of a cube bounded by the co-ordinate plane $x = y = z = a$.	$a^2\left[\frac{a^3}{3} + a\right]$
10		regence theorem for $\overrightarrow{F} = (x^2 - yz)\overrightarrow{i} + (y^2 - zx)\overrightarrow{j} + (z^2 - xy)\overrightarrow{k}$ ectangular parallelopiped $0 \le x \le a, \ 0 \le y \le b$ and $0 \le z \le c$.	abc(a+b+c)