Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,
информационн	ые технологии»

Лабораторная работа №6

«Разложение сигналов»

ДИСЦИПЛИНА: «Цифровая обработка сигналов»

Выполнил: студент гр. ИУК4-72Б		(Сафронов Н.С.		
	(подпись)	_	(Ф.И.О.)		
Проверил:		(Тронов К.А.		
	(подпись)	_	(Ф.И.О.)		
Дата сдачи (защиты):					
D ()					
Результаты сдачи (защиты):					
- Балльная	- Балльная оценка:				
- Оценка:					
o Hemm.					

Цель работы: формирование практических навыков разложения сигналов с использованием дискретного преобразования Фурье (ДПФ).

Постановка задачи

- 1. С помощью ДПФ построить АЧХ гармонического сигнала;
- 2. Из спектра сигнала определить частоты основных гармоник сигнала и осуществить фильтрацию этих гармоник с помощью фильтров любого типа, подобрав соответствующие параметры фильтров;
 - 3. В спектральной плоскости отобразить составляющую сигнала;
- 4. Над каждой выделенной составляющей сигнала произвести обратное ДПФ;
 - 5. Построить графики полученных сигналов.

Вариант 14

```
S_1:
       A: 0,2
       ω: 120
       φ: 100
S_2:
       A: 1
       ω: 18
       φ: 0
S_3:
       A: 0,7
       ω: 30
       φ: -60
S_4:
       A: 0,45
       ω: 60
       φ: 40
S = S_1 * (S_2 + S_3) * S_4
```

Листинг программы

```
A_1 =
        0.2;
omega_1 = 120;
phi_1 = 100;
A 2 =
       1;
omega_2 =
           18;
phi_2 = 0;
A 3 =
       0.7;
omega 3 = 30;
phi_3 = -60;
      0.45;
A 4 =
omega_4 = 60;
phi_4 = 40;
```

```
sr = 2500;
step = 1/sr;
t = (0:step:1);
S1 = A_1*sin(2*pi*omega_1*t + phi_1);
S2 = A_2*sin(2*pi*omega_2*t + phi_2);
S3 = A_3*sin(2*pi*omega_3*t + phi_3);
S4 = A_4*sin(2*pi*omega_4*t + phi_4);
S = S1 .* (S2 + S3) .* S4;
N s = length(S);
ft = abs(fft(S));
[pks, locs] = findpeaks(ft);
frequencies = (0:N_s-1)*(sr/N_s);
h = zeros(length(locs) + 1, 1);
h(2) = subplot(length(locs)/2 + 1, 2, 2);
plot(t, S);
h(1) = subplot(length(locs)/2 + 1, 2, 1);
plot(frequencies(1:150), ft(1:150));
n = 4;
for i = 1:length(locs)/2
    [b, a] = butter(n, [locs(i)*0.92/(sr/2) locs(i)*1.08/(sr/2)], 'bandpass');
    f = filter(b, a, S);
    N f = length(f);
    ftf = abs(fft(f));
    frequencies = (0:N_f-1)*(sr/N_f);
    h(i*2 + 1) = subplot(length(locs)/2 + 1, 2, i*2 + 1);
    plot(frequencies(1:150), ftf(1:150))
    ftfi = ifft(ftf);
    h(i*2 + 2) = subplot(length(locs)/2 + 1, 2, i*2 + 2);
    plot(t, ftfi)
end
title(h(1), 'Спектр сигнала')
title(h(2), 'Обратное ДПФ сигнала')
```

Результаты выполнения программы

Рисунок 1 – Результат выполнения работы

Вывод: в ходе выполнения лабораторной работы были получены практические навыки разложения сигналов с использованием дискретного преобразования Фурье.