Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по радиотехническим сигналам и цепям N_2 23

Длинные линии

Автор:

Баранников Андрей Б01-001

Долгопрудный, 2021

1 Измерение параметров линии

- 1. Длина кабеля $l = 6 \, \mathrm{M}$
- 2. Входная частота $f_0=1$ МГц, входное напряжение e=2 В. Сначала устанавливаем внутреннее сопротивление элементов цепи. Получаем сопротивление $R_s=50$ Ом. Измеряем R_0 при коротком замыкании: u=0.5 В. Тогда: $R_0=R_s\frac{u}{\sqrt{e^2-u^2}}\simeq 12.9$ Ом Измеряем R_0 при холостом ходе, внешняя нагрузка $R_s=300$ Ом: u=1.6 В. Тогда: $R_0=R_s\frac{u}{\sqrt{e^2-u^2}}=400$ Ом

По итогу: $R_0|_{R_t=0}=12.9 \text{ Om}; R_0|_{R_t=\infty}=400 \text{ Om}$

3. Волновое сопротивление:

$$\omega = \sqrt{\frac{L}{C}} = \sqrt{R_0|_{R_l=0}R_0|_{R_l=\infty}} = \sqrt{12.0 \text{ Om} \cdot 400 \text{ Om}} \simeq 71.83 \text{ Om}$$

Скорость распространения волны:

$$v = \frac{1}{\sqrt{LC}} = \frac{2\pi f l}{\arctan\frac{R_0|_{R_l=0}}{\omega}} \simeq 2\pi f l \frac{\omega}{R_0|_{R_l=0}} = 2\pi \cdot 1 \text{ Мгц} \cdot 6 \text{ м} \cdot \frac{71,83 \text{ Ом}}{12,0 \text{ Ом}} \simeq 2,1 \cdot 10^8 \frac{\text{M}}{\text{c}}$$

Погонная емкость:

$$C = \frac{1}{\omega v} = \frac{1}{71,83 \text{ Om} \cdot 2,1 \cdot 10^{8} \frac{\text{M}}{c}} \simeq 6,63 * 10^{-11} \frac{\Phi}{\text{M}}$$

Погонная индуктивность:

$$L = \frac{\omega}{v} = \frac{71,83 \text{ OM}}{2,1 \cdot 10^8 \frac{\text{M}}{c}} \simeq 34,2 * 10^{-8} \frac{\Gamma_{\text{H}}}{\text{M}}$$

4. Исследуем резонансный пик на частоте $f_{0 \text{ теор}} = \frac{v}{4l} \simeq 8.75 \text{М} \Gamma$ ц. Берем дополнительное сопротивление $R_s=3$ кОм. Напряжение источника u=2 В. Выходное напряжение e=1 В.

Резонанс найден на частоте $f_o = 8.5 \text{ M}$ Гц.

Эквивалентное сопротивление $R_0=R_s \frac{e}{u-e}=3$ кОм

Ширина двухсторонней полосы пропускания по уровню 0.7: $\Delta f = 525 \ \mathrm{kFu}$

5. Погонное сопротивление:

$$R = \frac{\omega^2}{R_0 l} \simeq 0.29 \frac{\rm O_M}{\rm M}$$

Теоретическая формула для добротности:

$$Q = \frac{\pi}{4} \frac{\omega}{RI} = 32,42$$

На практике:

$$Q = \frac{f_0}{\Delta f} (1 + \frac{R_0}{R_s}) \simeq 32{,}38$$

2 Исследование переходных процессов

Теория

1. Вывод переходной характеристики фазовращателя

$$x(t) = \theta(t) \Rightarrow X(p) = \frac{1}{p}$$

$$Y(p) = \rho_l(p)X(p) = \frac{1 - pC\omega}{1 + pC\omega} \cdot \frac{1}{p} = \frac{A}{1 + pC\omega} + \frac{B}{p} =$$

$$Ap + B + pC\omega B = 1 - pC\omega \Rightarrow B = 1; \quad A = -2C\omega$$

$$\boxed{ \boxed{ }} \frac{-2C\omega}{1+pC\omega} + \frac{1}{p} = \theta(t) - 2\theta(t)e^{-\frac{t}{C\omega}}$$

$$Y(p) = L(y(t)) = L(\theta(t)) - 2L(\theta(t) \cdot e^{-\frac{t}{C\omega}})$$

$$h_{ab}(t) = y(t) = \theta(t) - 2\theta(t) \cdot e^{-\frac{t}{C\omega}} = \theta(t)(1 - 2e^{-\frac{t}{C\omega}})$$

Задания

1. Согласованная линия

На схеме уже устанавлено $R_s=R_l=50$ Ом. Видим, что падающая волна распространилась только через время $\tau=10$ нс. Установившиеся значения: $v(u)=i(l)\omega=0.5$ В. V=1 В. При этом мощность: $P\omega=v(u)i(l)\omega=0.25=\frac{V^2}{4R_s}$

Рис. 1: График для согласованной линии

2. Рассогласованный источник

Рассогласовываем нагрузку источника: $R_s = \frac{\omega}{3}; \ \rho_s = -\frac{1}{2}.$ При этом мощность:

$$P\omega = v(u)i(l)\omega = 0.75 * 0.75 = 0.5625 = \frac{V^2}{4R_s}\omega(1-\rho_s^2)$$

Теперь ставим: $R_s = 3\omega; \ \rho_s = \frac{1}{2}.$ При этом мощность:

$$P\omega = v(u)i(l)\omega = 0.25 * 0.25 = 0.0625 = \frac{V^2}{4R_s}\omega(1 - \rho_s^2)$$

Рис. 2: График для рассогласованного источника

3. Рассогласованная нагрузка

Варьируем R_l . Наблюдаем, что установление происходит за две 'ступеньки': 1) волна прошла через длинный провод. 2) волна отразилась обратно. Таблица с измерениями:

R_l	0	$\frac{\omega}{3}$	3ω	$50k \simeq \infty$
$ ho_l$	-1	$-\frac{1}{2}$	$\frac{1}{2}$	1
$(v+i\omega)/2$, B	0.5	0.5	0.5	0.5
$(v-i\omega)/2$, B	-0.5	-0.25	0.25	0.5
v, B	0	0.25	0.75	1
$i\omega, \mathrm{B}$	1	0.75	0.25	0

Рис. 3: График при $R_l = \frac{\omega}{3}$

4. Рассогласованные источник и нагрузка

Проведу наблюдения при разных значениях R_l и R_s :

$R_s; R_l(O_M)$	50/3;0	50/3;50k	150; 0	150;50k	0;0	0;5	0;500	0;50k
$ ho_s ho_l$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	1	-0.8	0.8	1
$(v+i\omega)/2$, B	1.5	0.5	0.1667	0.5	∞	5	0.5556	1 или 0
$(v-i\omega)/2$, B	-1.5	0.5	-0.1667	0.5	$-\infty$	-4	0.4444	1 или 0
v, B	0	1	0	1	1;0	1	1	$1; 1 \pm 1$
$i\omega, B$	3	0	0.3333	0	∞	9	0.1111	±1;0

5. Ёмкостная наргузка

По графикам переходного процесса найдем постоянную времени. За это время ток уменьшается до уровня $\frac{1}{e}$. Получаем $\tau \simeq 5$ нс. Это значение согласуется с формулой $\tau = \omega C$.

При
$$R_s=50$$
: $A=0.5;\ B=0.5;\ v=1;\ i\omega=0$. При $R_s=50/3$ аналогично.

Отдельно рассмотрим случай $R_s = 0$. Дело в том, что графики трудно анализируемой формы, однако можно заметить, что они периодичны с периодом T = 60 нс. Установившихся значений определить нельзя, потому что они и не устанавливаются.

Рис. 4: График при $R_s=0$