The user manual for StrataTrapper software

Authors: Samuel Krevor (PI), Senyou An 2023.06.08

The purpose of the software:

Accurately considering the heterogeneity, particularly the capillary pressure heterogeneity, in reservoir characterisation, which is utilized for multiphase flow simulation.

The source of the software:

Github project (s.an@imperial.ac.uk)

The version of StrataTrapper:

StrataTrapper for Windows system.

Pre-installed the software:

Image Processing Toolbox in Matlab.

Optimization Toolbox in Matlab.

Steps to run StrataTrapper

As following algrothm

Input : The fluid properties in Fluid_transport_properties.mat
The structure and petrophysical properties in A_input.txt
The specific relations from report stored in A_input_report.m

Output: The upscalled model for simulation

- 1 Load reservoir & petrophysical properties. Define upscaling, and do the interpolation.
 A1_1_Generate_global_parameters .m
- 2 Generate the correlated porosity field (Figure. 1) in the fine-scale grid, which is utilized to calculate the permeability distribution (Figure. 2), as well as derive the entry capillary pressure field (Figure. 3) using the Leverett-J function. A2_1_Gene_data_stru_fine.m
- 3 Polygon transect fitting to reveal on-site geo-structure. A2_1_Gene_shift_structure_fine2.m
- 4 Construct the data structure and calculate the porosity distribution in the upscaled gid (Figure. 4). A2_2_Generate_data_structure_upscaled.m
- 5 for $k \in all\ coarse\ cells\ do$
 - **for** $i = 1 \cdots n$ (All aimed saturation points) **do**

Calculate capillary pressure (P_c) at $S_{w,aim}$ using the Brooks-Corey equation with average entry pressure in the coarse cell. Set P_c as the initial guess for the macroscopic boundary pressure, P_b . And define an initial S_w .

while
$$(S_{w,aim}^i - S_w) > E_{thresh}$$
 do

Perform Macroscopic Invasion Percolation (MIP): the local system is invaded with non-wetting phase at P_b starting from the boundary cells and working inwards. A fine-scale cell is invaded if 1) it is connected to a cell which is connected to the boundary and 2) P_b is greater than the cell's entry pressure.

Once all accessible cells are invaded, calculate the upscaled S_w (the fine-scale saturation distribution is inverted from the fine-scale capillary pressure distribution. The upscaled saturation is volume averaging one).

Update P_b based on the updated S_w .

end

The fine-scale relative permeability distribution is calculated using the known fine-scale saturation. *A3_1_Perform_MIP_upscaling.m*

end

8

10

12

13

14

15

16

Simulate the single-phase flow in each direction using the fine-scale system. CMG based. A4_1.m & A4_2.m (6 hours, 750 cells)

The macroscopic relative permeability at each phase saturation is calculated with Darcy's Law. The data points are subsequently fitted with a functional form.

A4_3_Post_process_single_phase_files.m

Figure 1. The correlated porosity field in fine-scale grid

Figure 2. The correlated absolute permeability field in fine-scale grid

Correlated absolute permeability

Correlated entry capillary pressure

Figure 3. The correlated absolute permeability field in fine-scale grid

Upscaled correlated porosity

Figure 4. The upscaling of correlated porosity field

Upscaled capillary pressure in each block

Figure 5. Upscaled capillary pressure curve in each block

Upscaled relative permeability

Figure 6. Directionally upscaled relative permeability in coarsen cells