同济大学课程考核试卷(A卷) 2009-2010 学年第一学期

命题教师签名:

课名: 概率论与数理统计 课号: 122011 考试考查:考试

此卷选为:期中考试()、期终考试(√)、重考()试卷

:	年级	专业	学号_		姓名	1	壬课教师_	
	题号		 =	四	五	六	七	总分
- 1	得分						!	

(注意:本试卷共7大题,3大张,满分100分.考试时间为120分钟.要求写出解题过程,否则不予计分)

备用数据:

 $\mu_{0.99} = 2.326, t_{0.995}(99) \approx \mu_{0.995} = 2.575, \chi_{0.005}^2(99) = 66.510, \chi_{0.995}^2(99) = 138.987.$

- 一、选择题(20分,每题4分,请将您选的答案填在()内)
- 1、下列结论哪一个不正确
- (A)设A,B为任意两个事件,则 $A \cup B A = B$;
- (B)若 A = B, 则 A, B 同时发生或 A, B 同时不发生;
- (C)若 $A \subset B$, 且 $B \subset A$, 则A = B;
- (D)若 $A \subset B$,则 A-B 是不可能事件.
- 2、 设(X,Y)的联合概率函数为

(C)若A⊂B,且	$B \subset A$, $\bigcup A = B$;	,		ice to me	et U.
(D) 若 $A\subset B$,则	A-B 是不可能事件.		DE N	ice to	tr.
2、 设(X,Y)的	联合概率函数为		假	南水水水	W.
X Y	0	1	2	3	
0	0. 125	0. 25	0. 125	0	

1	0	0. 125	0, 25	0. 125
1	0	0. 125	0. 25	0. 125

()

则 (1) $P(1 \le Y < 3, X \ge 0)$ 等于

 $(A)\frac{5}{8}; \qquad (B)\frac{1}{2}; \qquad (C)\frac{3}{4}; \qquad (D)\frac{7}{8}.$

(2) Z = X + Y 的概率函数为

(A)

Z	0	1	2	3	4
概率	0. 125	0. 375	0. 25	0. 125	0. 125

(B)

Z	1	2	3	4
概率	0. 375	0. 25	0. 25	0. 125

(C)

()

Z	1	2	3	4
概率	0. 125	0. 25	0. 25	0. 375

(D)

Z	0	1	2	3	4
概率	0. 125	0. 25	0. 25	0. 25	0. 125

3、 如果 $EX^2 < \infty$, $EY^2 < \infty$, 且 X 与 Y 满足 <math>D(X+Y) = D(X-Y), 则必有

(A) X 与 Y 独立; (B) X 与 Y 不相关; (C)D(Y)=0; (D)D(X)D(Y)=0.

4、若D(X) = 25, D(Y) = 36, X 与 Y的相关系数 $\rho(X,Y) = 0.4$,

则 X, Y 的协方差 Cov(X, Y) 等于

()

(A)5; (B)10; (C)12; (D)36.

二、(12分)设 X, Y 为随机变量,且 $P(X \ge 0, Y \ge 0) = \frac{3}{7}, P(X \ge 0) = P(Y \ge 0) = \frac{4}{7}$

求 (1) $P(\min(X,Y)<0)$; (2) $P(\max(X,Y)\geq 0)$.

三、(10分)一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人。然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别 袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,

- (1)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯确实是黑人的概率是多大?
- (2) 问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯是白人的概率是多大?

四、(10 分)某商业中心有甲、乙两家影城,假设现有 1600 位观众去这个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且各位观众选择哪家影城是相互独立的。问:影城甲至少应该设多少个座位,才能保证因缺少座位而使观众离影城甲而去的概率小于 0.01. (要求用中心极限定理求解)

五、(16 分)设随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} 2, 0 < x < y < 1 \\ 0, 其它 \end{cases}$$

- (1)分别求 X, Y 的边缘密度函数; (2) 求 $P\left(0 < X < \frac{1}{2} | \frac{1}{2} < Y < \frac{3}{4}\right)$;
- (3)试问: X,Y是否相互独立?请说明理由.
- (3) 求 Z = X + Y 的概率密度函数 $f_z(z)$.

六、 $(14\ eta)$ 某地交通管理部门随机调查了 100 辆卡车,得到它们在最近的一年的行驶里程(单位: $100 {\rm km}$)的数据 x_1,\dots,x_{100} ,有数据算出 x=145,s=24. 假设卡车一年行驶里程服从正态分布 $N\left(\mu,\sigma^2\right)$,分别求 μ 和 σ^2 的置信水平 0.99 的双侧置信区间.

七、(18 分)设 $X_1, X_2 \cdots X_n$ 是取自总体X的简单随机样本. 总体X的密度函数为

$$f(x;\theta) = \begin{cases} \theta e^{\theta} x^{-(\theta+1)}, & x > e \\ 0, & \text{其它} \end{cases}$$
 其中 θ 为未知参数, $0 < \theta < 1$.

- (1) 求 θ 的极大似然估计 $\hat{\theta}$;
- (2) 记 $\alpha = \frac{1}{\theta}$, 求参数 α 的极大似然估计;
- (3) 问:在(2)中求得的 α 的极大似然估计是否为 α 的无偏估计?请说明理由。

同济大学课程考核试卷(A卷) 2009—2010 学年第二学期

命题教师签名:

审核教师签名:

课号: 122011 课名: 概率论与数理统计 考试考查: 考试

此卷选为:期中考试()、期终考试(√)、重考()试卷

年级	专业		学号_		姓名	1	壬课教帅_	
题号	_	11	111	四	五	六	七	总分
得分								

(注意:本试卷共7大题,3大张,满分100分.考试时间为120分钟.要求写出解题过程,否则不予计分)

备用数据: $t_{0.975}(9) = 2.2622$, $\chi^2_{0.025}(9) = 2.7004$, $\chi^2_{0.975}(9) = 19.0228$, $\Phi(2.25) = 0.9878$.

- 一、填空题(18分,每空3分)
- 2、 设一批产品中一、二、三等品各占 60%、30%、10%,现从中随机地取出一件,结果发现取到的这件不是三等品,在此条件下取到的这件产品是一等品的概率为_______,在此条件下取到的这件产品是二等品的概率为_______.
- 3、 设 $X_1, X_2 \cdots X_5$ 独立且服从相同的分布, $X_1 \sim N(0,1)$. $Y = c \frac{(X_1 + X_2 + X_3)^2}{(X_4 + X_5)^2}$. 当常数

 $c = ____$ 时,Y服从自由度为 $____$ 的 F 分布.

二、(12 分)两台机床加工同样的零件,第一机床加工的零件的不合格品率为 5%,第二台机床加工的零件的不合格品率为 8%. 加工出来的零件放在一起,已知第一台机床加工的零件数量是第二台机床加工零件数量的两倍. 现从两台机床加工的零件中随机地抽取了一个零件.

- (1) 求抽到的这个零件是合格品的概率;
- (2) 若已知抽到的这个零件是不合格品,求它是由第二台机床加工的概率.

三、(16 分)设随机变量 (X_1, X_2) 的联合概率函数为

X_1 X_2	0	1	2
0	0. 25	0. 10	0, 30
1	0. 15	0. 15	0, 05

定义随机变量 $Z = \max(X_1, X_2)$.

求(1) X_1 和 X_2 的边缘概率函数;

(2) Z 的概率函数;

(3) (X₁,Z) 的联合概率函数;

(4) E(Z), D(Z)和 $cov(X_1,Z)$.

四、(16分)设随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} \frac{5}{4}(x^2 + y), 0 < y < 1 - x^2 \\ 0, \sharp \, \Xi \end{cases}$$

- (1)分别求 X,Y 的边缘密度函数;
- (2)试问: X,Y是否相互独立? 请说明理由.

(3) 求概率 $P(X+Y \ge 1)$.

五、(12分)假定某电视节目在上海市的收视率为 20%, 有调查公司准备在上海市随机调查 8100 户居民家庭, 记 X 为被调查的 8100 户居民家庭中收看该电视节目的户数.

- (1)用中心极限定理求概率 $P\left(\left|\frac{X}{8100} 0.20\right| \le 0.01\right)$ 的近似值;
- (2)如果调查完成后发现 8100 户居民家庭中有 1458 户收看该电视节目,问: 你会相信该电视节目在上海市的收视率为 20%吗?请说明理由.

六、 $(14 \, \%)$ 设某种材料的抗压强度 X 服从正态分布 $N(\mu, \sigma^2)$, 现对 10 个试验件做抗压试验,

得到试验数据 x_1, x_2, \dots, x_{10} (单位: 公斤/ m^2),并由此算出 $\sum_{i=1}^{10} x_i = 4600, \sum_{i=1}^{10} x_i^2 = 2124100$.

分别求 μ 和 σ 的置信水平 0.95 的双侧置信区间.

七、 $(12\, \mathcal{G})$ 设 $X_1,X_2\cdots X_n$ 是取自总体 X 的简单随机样本. 总体 X 服从正态分布 $N(\mu,\sigma^2)$, 其中 μ,σ^2 均未知. 记 $\theta=E(X^2)$.

- (1) 分别写出 μ , σ^2 的极大似然估计量:
- (2) 求 θ 的极大似然估计量 $\hat{\theta}$;
- (3) 问:heta的极大似然估计量 $\hat{ heta}$ 是否为heta的无偏估计?请说明理由.

同济大学课程考核试卷(A卷) 2010—2011 学年第一学期

命题教师签名:

审核教师签名:

课号: 122011

课名: **概率论与数理统计**

考试考查: 考试

此卷选为:期中考试()、期终考试(√)、重考()试卷

年级	专业_		学号_		_姓名_		任调	!教师	
题号		=	Ξ	四	五	六	七	八	总分
得分	1								

(注意:本试卷共8大题,3大张,满分100分.考试时间为120分钟.除填空题和选择题外要求写出解题过程 否则不予计分)

备用数据:

 $\Phi(1.11) = 0.8665, \Phi(2) = 0.9772, \Phi(1.645) = 0.95.$

 $t_{0.975}(8) = 2.31, \chi_{0.025}^2(8) = 2.18, \chi_{0.975}^2(8) = 17.50$

- 一、填空题(共12分,每小题4分)
- 1、 在区间(0,1) 中随机取出两个实数 X,Y ,记 $A = \{X = Y\}$, $B = \{X \in K, \frac{5}{6}\}$,则

P(A)=_____, P(B)=_____.

2、 设随机变量 X 和 Y 相互独立,下表给出了随机变量 (X,Y) 的联合概率函数和边缘概率函数的部分值,试将下表填写完整

X	y_1	<i>y</i> ₂	<i>y</i> ₃	
Y				$P(X=x_i)=p_{i\bullet}$
x_1		0. 25	0. 125	0.5
<i>x</i> ₂				

$$P(Y=y_j)=p_{\bullet j}$$

3、 设随机变量 X,Y 的数学期望均为 5, 方差均为 4. X,Y 的相关系数为 0.5, 则

$$D(X-Y)=$$
_____,由切比雪夫不等式得到 $P(X-Y)\geq 8$ \leq ______.

- 二、选择题(12分,每小题4分,将答案填在()内)
- 1、设0 < P(A) < 1, 0 < P(B) < 1,且 $P(A|\overline{B}) + P(\overline{A}|B) = 1$,则下列选项中必定成立的是()
 - (A) 事件 A 和事件 B 互不相容; (B) 事件 A 是事件 B 的对立事件;
 - (C) 事件 A 和事件 B 不独立 : (D) 事件 A 和事件 B 相互独立 .
- 2. 对任意常数 a,b,(a < b) , 已知随机变量 X 满足 $P(X \le a) = \alpha$, $P(X \ge b) \beta$. 记

$$p = P(a < X \le b)$$
,则下列选项中必定成立的是 ()

(A)
$$p=1-(\alpha+\beta)$$
;

(B)
$$p \ge 1 - (\alpha + \beta)$$
;

(C)
$$p \neq 1-(\alpha+\beta)$$
;

(D)
$$p \le 1 - (\alpha + \beta)$$
.

3、 设随机变量 X_1, X_2, X_3, X_4 相互独立且均服从相同的正态分布,即 $X_1 \sim N(0, \sigma^2)$,

$$\sigma > 0$$
. 则下列随机变量中不服从 χ^2 分布的是 ()

(A)
$$\frac{1}{\sigma^2} \left[X_2^2 + \frac{1}{13} (2X_3 + 3X_4)^2 \right]$$
;

(B)
$$\frac{1}{\sigma^2} \left[\frac{1}{61} (6X_1 + 5X_2)^2 + X_4^2 \right]$$
;

(C)
$$\frac{1}{\sigma^2} \left[\frac{1}{13} (3X_1 + 2X_2)^2 + \frac{1}{45} (4X_3 + 3X_4)^2 \right];$$

(D)
$$\frac{1}{\sigma^2} \left[\frac{1}{5} (2X_1 + X_2)^2 + \frac{1}{25} (4X_3 + 3X_4)^2 \right].$$

三、(10分)在一个袋中有15个相同的乒乓球,球上分别写有1,2,....,15.甲,乙两人先后从袋中不放回地取出一个球. (1)求甲取到的球上的数字是3的倍数的概率;

(2) 若已知甲取到的球上的数字是 3 的倍数, 求乙取到的球上的数字大于甲取到的球上数字的概率.

四、 $(12 \, f)$ 设随机变量 X 和 Y 相互独立且服从相同的分布,X 服从区间[0,2]上的均匀分布,

记
$$Z=|X-Y|$$
.

(1) 求 Z 的密度函数 f(z);

(2)求E(Z)和D(Z).

五、(16分)设随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} k, 0 < x^2 < y < x < 1; \\ 0, 其他 \end{cases}$$

(1)求常数k;

(2)分别求X,Y的边缘密度函数;

(3)求条件密度函数 $f_{r|x}(y|x), f_{x|y}(x|\frac{1}{4})$.

六、(12分)某汽车销售点每天售出的汽车数服从参数为 2 的泊松分布, 若一年 365 天这个销售点都经营汽车销售, 且每天出售的汽车数相互独立, 试用中心极限定理求该汽车销售点一年中售出的汽车数大于 700 辆的概率.

七、 $(12\ f)$ 设某种新型塑料的抗压力 X 服从正态分布 $N(\mu,\sigma^2)$,现对 9 个试验件做压力试验,得到试验数据(单位: 10MPa),并由此算出样本均值和样本方差分别为 $\overline{x}=457,s=36$,分别 求 μ 和 σ 的置信水平 0.95 的双侧置信区间.

八、 $(14 \ \beta)$ 某车间生产了一批产品,现要估计这批产品的不合格率 p,随机抽取了容量为 n 的样本 $X_1, X_2 \cdots, X_n$,这里 $X_i = \begin{cases} 1, \text{取到的第} i$ 件产品为不合格品: 0,取到的第i件产品为合格品。

- (1) 求 p 的极大似然估计量 \hat{p} ;
- (2)问: p 的极大似然估计量 \hat{p} 是否为 p 的无偏估计量? 请说明理由.
- (3) 若抽查了这批产品中的 100 件, 发现其中只有 92 件合格品. 求这批产品的不合格率 p 的极大似然估计值.

同济大学课程考核试卷(A卷) 2010—2011 学年第二学期

命题教师签名:

审核教师签名:

课号: 122011

课名: 概率**论与数理统计**

考试考查:考

试

此卷选为:期中考试()、期终考试(√)、重考()试卷

年级	专业_		学号_		姓名		任调	!教师	
题号	_	=	三	四	五	六	七	八	总分
得分									

(注意: 本试卷共8大题,3大张,满分100分. 考试时间为120分钟. 除填空題和选择题外要求写出解题过程. 否则不予计分)

备用数据:

 $\Phi(0.833) = 0.80 \;, \quad \Phi(1.645) = 0.95 \;, \quad t_{0.95}(9) = 1.8331, \chi^2_{0.05}(9) = 3.325, \chi^2_{0.95}(9) = 16.919 \;.$

- 一、填空题(共18分,每小题6分)

 $P(A \cup B) = \underline{\hspace{1cm}}$

2、 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 5x^4, 0 < x < 1 \\ 0, 其它 \end{cases}$, 则使得 P(X > a) = P(X < a) 成立

的常数 $a = _____, Y = -2 \ln X$ 的密度函数为 $f_{\mathbf{v}}(y) = ______$

3、 设 $X_1,X_2\cdots,X_n$ 相互独立且服从相同的分布, $E(X_1)=1,D(X_1)=3,\overline{X}=rac{1}{n}\sum_{i=1}^nX_i$,则由

- 二、选择题(12分,每小题4分,将答案填在()内)
- 1、对于任意二个随机事件 A,B,则下列选项中必定成立的是 ()
- (A) 若 $AB = \phi$, 则事件 A 和事件 B 相互独立;
- (B) 若P(AB) = 0 ,则事件A与事件B互不相容:
- (C) 若P(A) = 0,则事件A和事件B相互独立:
- (D) 若 $AB \neq \phi$, 则事件 A 和事件 B 不相互独立.
- 2、对于任意二个随机事件 A,B,其中 $P(A) \neq 0$, $P(A) \neq 1$,则下列选项中必定成立的是()
- (A) $P(B|A) = P(B|\overline{A})$ 是 A, B 独立的充分必要条件;
- (B) $P(B|A) = P(B|\overline{A})$ 是 A, B 独立的充分条件非必要条件;
- (C) $P(B|A) = P(B|\overline{A})$ 是 A, B 独立的必要条件非充分条件;
- (D) $P(B|A) = P(B|\overline{A})$ 是 A, B 独立的既非充分条件也非必要条件.
- 3、设随机变量 X 的概率密度函数为 $f(x) = e^{-2|x|}, -\infty < x < \infty$,则 X 的分布函数是()

(A)
$$F(x) = \begin{cases} 0.5e^{2x}, x < 0 \\ 1, x \ge 0 \end{cases}$$
; (B) $F(x) = \begin{cases} 0.5e^{2x}, x < 0 \\ 1 - 0.5e^{-2x}, x \ge 0 \end{cases}$;

(C)
$$F(x) = \begin{cases} 1 - 0.5e^{-2x}, x < 0 \\ 1, x \ge 0 \end{cases}$$
; (D) $F(x) = \begin{cases} 0.5e^{2x}, x < 0 \\ 1 - 0.5e^{-2x}, 1 > x \ge 0 \\ 1, x \ge 1 \end{cases}$

三、(10分)在某外贸公司出口罐头的索赔事件中,有50%是质量问题引起的,有30%是数量短缺问题引起的,有20%是包装问题引起.又已知在质量问题引起的索赔事件中经协商解决的占40%,数量短缺引起的索赔事件中经协商解决的占60%,包装问题引起的索赔事件中经协商解

决的占 75%. 现在该公司遇到一出口罐头的索赔事件.

(1) 求该索赔事件经协商解决的概率;

(2) 若已知该索赔事件最终经协商解决,求该索赔事件不是由于质量问题引起的概率.

五、(14 分)设随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} k(6-x-y), & 0 < x < 2, & 0 < y < 4; \\ 0, \pm \text{id} \end{cases}$$

(1)求常数k;

- (2)分别求 X,Y 的边缘密度函数;
- (3)问: X,Y是否相互独立? 请说明理由; (4)求 $P(X+Y \le 4)$.

四、 $(12 \, f)$ 设随机变量 X 的概率函数为 P(X=-1)=P(X=1)=0.25,P(X=0)=0.5,随

机变量
$$Y$$
服从 $B\left(1,\frac{1}{3}\right)$,且 $P(XY=0)=1$.

- (1) 求(X,Y)的联合概率函数;
- (2) 求 E(XY) 和 cov(X,Y);
- (3)问: X,Y是否相互独立? X,Y是否不相关?请说明理由.

六、 $(10 \ \mathcal{O})$ 设某出租汽车公司有 3600 辆出租车,每辆车明年需大修的概率为 0.36.各辆车每年 是 否需 要 大修 是 相 互 独 立 的.记 X 表 示 明 年 该 公 司 需 大修 的 车 辆 数.求概率 $P(1272 < X \leq 1320)$ 的近似值.(要求用中心极限定理求解)

七、 $(10\ eta)$ 设某厂生产的运动饮料的体积 X(单位:亳升)服从正态分布 $N(\mu,\sigma^2)$,现随机抽取 10 瓶 这 种 饮 料, 测 得 其 体 积 x_1,x_2,\cdots,x_{10} (单位: 亳升),并 由 此 算 出 $\sum_{i=1}^{10} x_i = 6000, \sum_{i=1}^{10} x_i^2 = 3600144$,分别求 μ 和 σ^2 的置信水平 0.90 的双侧置信区间.

八、(14 分)设 $X_1, X_2 \cdots, X_n$ 是取自总体X的容量为n的样本, X的密度函数为

$$f(x;\lambda) = \begin{cases} \frac{1}{\lambda} e^{-\frac{1}{\lambda}(x-2)}, & x \ge 2\\ 0, & x < 2 \end{cases}, \quad \text{这里 } \lambda > 0 \text{ 为未知参数}.$$

- (1)分别求 λ 的矩估计量和极大似然估计量;
- (2)问: λ 的极大似然估计量 $\hat{\lambda}$ 是否为 λ 的无偏估计量? 请说明理由.

《概率论》试卷1

专	业	学·	号	姓名	任	任课教师	
	题号		=	=	四	五	总分
	-						

(注意:除填空题外,其余题目要求写出解题过程,本试卷共二大张,五大题,满分100分)

备用数据: $\Phi(1) = 0.8413$

- 一、填空(51分)
- 1、 已知 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{9}$, 则事件 A、 $B \cdot C$ 都发生的概率为______; 事件 $A \cdot B \cdot C$ 全不发生的概率为______; 事件 A 不发生且 $B \cdot C$ 都发生的概率为______; 在事件 B 不发生的条件下 C发生的概率为 .
- 2、 在一次试验中,事件 A 发生的概率为 p ,现进行 n 次重复独立试验,则 A 至 少发生一次的概率为;事件 A 至多发生一次的概率为 3、一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后 不再放回,则第二次抽出的是次品的概率为______,在第二次抽出的是 次品的条件下,第一次抽出的是正品的概率为
- 4、 在区间(0, 1)中随机地取两个数,则事件"两数之和小于 $\frac{6}{5}$ "的概率为____.
- 5、 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$, $(\sigma > 0)$, 且关于 γ 的一元二次方程 $y^2 + 4y + X = 0$ 无实根的概率为 $\frac{1}{2}$,则 $\mu =$ _____.
- 6、设(X, Y)服从二维正态分布 $N(1, 1, 4, 4, \rho)$,则 $E(X^2)$ = ; 当X与Y独立时, ρ =
- 已知随机变量 X 的密度函数为 $f_{\nu}(x)$, 令 Y = -2X, 则 Y 的函数密度 $f_{\nu}(\nu) =$
- 8、 设随机变量 X 服从参数为 1 的指数分布,则数学期望 $E(X^2 + X e^{-2X}) =$ ______.

9、 设二维随机变量(X, Y)的联合分布律为

Y	0	1	2
1	. 1/6	1/3	0
2	1/4	1/6	1/12

F(x, v)为(X, Y)的联合分布函数,则F(1.5, 1.5)= , X 的

边缘分布律为 $, X^2+1$ 的分布律为

二、(14分)设随机变量
$$X$$
 的密度函数为 $f(x) = \begin{cases} 1+x & -1 < x \le 0 \\ 1-x & 0 \le x < 1 \end{cases}$,

记随机变量 $Y = \begin{cases} 0, & X < 0 \\ 1, & X \ge 0 \end{cases}$, $Z = \begin{cases} 0, & X < 1/2 \\ 1, & X \ge 1/2 \end{cases}$, 试求:

- (1) X 的分布函数 $F_{x}(x)$; (2) (Y, Z)的联合分布律;
- (3) D(Y+Z).

三、(16 分) 设平面区域 D 由曲线 y=1/x 及直线 y=0 , x=1 , $x=e^2$ 所围成,二维随机变量 (X, Y) 在区域 D 上服从均匀分布,

- (1) 试求(X, Y)的联合密度函数;
- (2) 试求 X 的边缘密度函数 $f_{x}(x)$; Y 的边缘密度函数 $f_{y}(y)$;
- (3) 试问 X 与 Y 是否独立?
- (4) 试求 P(XY > 1/3).

四、(9 分) 一台设备由二大部件构成,在设备运转中这二大部件需要调整的概率分别为0.1、0.2,假设各部件是否需要调整相互独立,以X表示同时需要调整的部件数,试求X的期望与方差.

五、 $(10\ eta)$ 设 X_1 , Λ , X_n , Λ 是一独立同分布的随机变量序列,且 X_i 服从参数为 λ 的泊松分布, $\lambda>0$,记 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$,试求

(1)
$$\lim_{n \to +\infty} P(|\overline{X} - \lambda| < \sqrt{\lambda});$$
 (2) $\lim_{n \to +\infty} P(|\overline{X} - \lambda| < \sqrt{\frac{\lambda}{n}}).$

《概率论》试卷2

专业学号			姓	名	4任课教师				
题号	_	=	Ξ	四	五	六	七	八	总分

(注意:要求写出解题过程,备用数据在卷末。本试卷共三大张,八大题,满分 100 分)

- 一. (12 分) 从 0, 1, 2, Λ , 9这十个数字中任意选出三个不同的数字,记事件 A ={三个数字中不含 0 和 5}, B ={三个数字中不含 0 或 5},试求:
- (1) P(A), P(B);
- (2) P(AB);

(3) $P(B|\overline{A})$.

二.(10分)玻璃杯成箱出售,每箱8只,假设各箱含0,1只残次品的概率相应为0.8,0.2,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看2只,若无残次品,则买下该箱玻璃杯,否则退回,试求顾客买下该箱产品的概率.

三. (14 分) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{2}\cos x, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0, &$ 其余

对 X 独立地重复观察 3 次,用 Y 表示观察值大于 $\frac{\pi}{6}$ 的次数,试求:

- (1) Y 的分布律:
- (2) Y 的分布函数 $F_{\nu}(y)$;
- (3) $E(Y^2)$.

四. (12 分)设随机变量 X 的概率密度函数为 $f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2+2x-1}{2}}$, $-\infty < x < +\infty$,记随机变量 $Y = (X-1)^2$,试求:

- (1) Y 的概率密度函数 $f_Y(y)$;
- (2) E(Y).

五. (16 分) 抛一枚均匀硬币两次,规定硬币的两面中一面为正面,另一面为反面,记 $X_i = \begin{cases} 1, & \text{i 次出现正面;} \\ 0, & \text{i i$ 次出现反面.} \end{cases}$ $i = 1, 2, & \text{$f$ i$ y = X_1 + X_2,}$

- (1) 试求 (X_1, Y) 的联合分布律; (2) 试求关于 X_1 , 关于Y的边缘分布律;
- (3) 问 X_1 与Y是否相关?为什么? (4) 试求 $P(2X_1 \le Y)$.

六. (16 分)设二维随机变量 (X, Y)在边长为 $\sqrt{2}$ cm 的正方形内服从均匀分布,该正方形之对角线为坐标轴,试求:

- (1) (X, Y)的联合密度函数;
- (2) 试求关于X, 关于Y 的边缘密度函数 $f_X(x)$, $f_Y(y)$:
- (3) 问 *X* 与 *Y* 是否独立;
- (4) 试求 $P(X| \leq Y)$.

七. (10 分) 设 X 服从参数为 4 的泊松分布,Y 服从参数为 2 的指数分布,且 $\rho_{XY} = \frac{1}{2}, \ \ \text{试求}.$

- (1) E(XY);
- (2) D(X+Y).

八. $(10 \, \text{分})$ 某保险公司多年的统计资料表明,在索赔户中被盗索赔户占 20%,以 X 表示在随机抽查的 100 个索赔户中因被盗向保险公司索赔的户数,试求被盗索赔户不少于 16 户且不多于 28 户的概率(用中心极限定理解题).

锦辉制作

第1章 随机事件及其概率

(1)排列	$P_m''' = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。
組合公式	$C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。
	加法原理 (两种方法均能完成此事): m+n
	某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n
(2) 加法	种方法来完成,则这件事可由 m+n 种方法来完成。
和乘法原	乘法原理(两个步骤分别不能完成这件事): m×n
理	某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
	种方法来完成,则这件事可由 m×n 种方法来完成。
(0) #	重复排列和非重复排列 (有序)
(3)一些 常见排列	对立事件 (至少有一个)
A5 7631F71	順序问題
(4) 随机	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
试验和随	但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
机事件	验.
10 mm	试验的可能结果称为随机事件。
	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
	如下性质:
	①每进行一次试验,必须发生且只能发生这一组中的一个事件;
(5)基本	②任何事件,都是由这一组中的部分事件组成的。
事件、样本	这样一组事件中的每一个事件称为基本事件,用 00 来表示。
空间和事	基本事件的全体,称为试验的样本空间,用 Ω 表示。
件	一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母
	A , B , C , …表示事件,它们是 Ω 的子集。
	不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件。同理, 必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
	②然季什(11)的概率为 1,则概率为 1 的季什也不一定定必然季什。 ①关系:
	\bigcirc 如果事件 \land 的组成部分也是事件 B 的组成部分,(\land 发生必有事件 B 发生):
	$A \subset B$
	M = D 如果同时有 $A \subset B$, $B \supset A$, 则称事件 A 与事件 B 等价,或称 A 等于 B .
	A=B _a
(6)事件	A、B中至少有一个发生的事件:AU B,或者 A+B。
的关系与	属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可
运算	表示为 $A-AB$ 或者 AB ,它表示 A 发生而 B 不发生的事件。
	$A \cdot B$ 同时发生: $A \cap B$, 或者 $AB \cdot A \cap B=0$, 则表示 $A \cdot B \cdot B \cdot A \cap B \cap$
	称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。

	Ω -A 称为事件 A 的逆事件,或称 A 的对立事件,记为 \overline{A} 。它表示 A 不发生
	的事件。互斥未必对立。
	②运算:
	结合率: A(BC)=(AB)C AU(BUC)=(AUB)UC
	分配率: (AB) UC=(AUC) ∩ (BUC) (AUB) ∩C=(AC) U (BC)
	<u> </u>
	德摩根率: $\stackrel{\circ}{\underset{i=1}{\bigcap}} A_i = \stackrel{\circ}{\underset{i=1}{\bigcap}} \overline{A_i}$
	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若搞
	足下列三个条件:
	$ \begin{array}{ccc} 1 & 0 \leqslant P(\Lambda) \leqslant 1, \\ 2^{\circ} & P(\Omega) = 1 \end{array} $
(7) 概率	3° 对于两两互不相容的事件 A1, A2, ····有
的公理化	
定义	$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$
	常称为可列(完全)可加性。
_	则称 P(A) 为事件 A 的概率。
	$1^{\circ} \Omega = \{\omega_1, \omega_2 \cdots \omega_n\},$
	$2^{\bullet} P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n}.$
l	<i>"</i>
(8) 古典	
概型	$P(A) = \{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$
ļ	'm A所包含的基本事件数
	$=\frac{m}{n}=A$ 所包含的基本事件数 基本事件总数
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀。同时样本空
	间中的每一个基本事件可以使用一个有界区域来描述, 则称此随机试验为几何
(9) 几何	概型。对任一事件 A,
概型	I(A)
	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。
, , , , , , , , , , , , , , , , , , , ,	P(A+B)=P(A)+P(B)-P(AB)
公式	当 P(AB)=0 时, P(A+B)=P(A)+P(B)
(11) 30234	P (A-B) =P (A) -P (AB) 当 B ⊂ A 时,P (A-B) =P (A) -P (B)
公式	
	当 A=Ω时, P(B)=1- P(B)
	定义 设 A、B 是两个事件,且 $P(A)>0$,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事
(12) 条件	
極率	件 B 发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。
	- (/
	条件概率是概率的一种,所有概率的性质都适合于条件概率。

概率论与敦理等	(计公式(全)
	例如 P(Ω/B)=1⇒P(B/A)=1-P(B/A)
	乘法公式: $P(AB) = P(A)P(B/A)$
(13) 乘法	更一般地,对事件 A ₁ , A ₂ , ···A _n ,若 P(A ₁ A ₂ ···A _{n-1})>0,则有
公式	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
	A_{n-1}).
	①两个事件的独立性
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$, 则称事件 $A \setminus B$ 是相互独立的。
	若事件 $A \setminus B$ 相互独立,且 $P(A) > 0$,则有
	P(AB) P(A)P(B)
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
	若事件 A、B相互独立,则可得到 A 与 B、A 与 B 、 A 与 B 也都相互独
(14) 独立	泣.
性	必然事件 Ω 和不可能事件 0 与任何事件都相互独立。
	0与任何事件都互斥。
	②多个事件的独立性
	设 ABC 是三个事件,如果満足两两独立的条件, P(AB)=P(A)P(B), P(BC)=P(B)P(C), P(CA)=P(C)P(A)
	并且同时満足 P(ABC)=P(A)P(B)P(C)
	那么A、B、C相互独立。
	对于n个事件类似。
	设事件 B1, B2, · · · , Bn 滿足
	$[\cdot B_1, B_2, \dots, B_n]$ 两两互不相容, $P(B_i) > 0 (i = 1, 2, \dots, n)$
(15) 全概	7
公式	$A \subset \bigcup_{i=1}^{\infty} B_i$
	2° (=) , 则有
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_n)P(A \mid B_n)$
	设事件 B1, B2,, Bn 及 A 满足
	以事件 B_1 , B_2 ,, B_n 两两互不相容, $P(Bi)>0$, $i=1, 2,, n$,
	$A \subset \bigcup_{i=1}^{n} B_{i} P(A) > 0$
	·
(16) 贝叶	则 D(P)D(A(P)
斯公式	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{n}$, i=1, 2, ···n•
7144	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{i=1}^{n} P(B_i)P(A/B_i)}, i=1, 2, \dots n_*$
	/-! 此公式即为贝叶斯公式。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
	7),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了
	"由果朝因"的推断。
	我们作了"次试验,且满足
(17) 伯努	◆ 每次试验只有两种可能结果, A 发生或 A 不发生;
利概型	◆ n 次试验是重复进行的,即 A 发生的概率每次均一样;
们例至	A COMPACE CALIFORNIA OF THE CALIFORNIA TO THE CALIFORNIA THE CALIF

否是互不影响的。 这种试验称为伯努利概型,或称为n 重伯努利试验。 用 p 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为 1-p=q ,用 $P_n(k)$ 表示 n 重伯努利试验中 A 出现 $k(0 \le k \le n)$ 次的概率, $P_n(k) = C_n^k p^k q^{n-k} , \quad k=0,1,2,\cdots,n$

第二章 随机变量及其分布

概率论与数理统计 公式 (全)

(1) 离散	设高散型随机变量 X 的可能取值为 $X_{k}(k=1,2,\cdots)$ 且取各个值的概率,即率
型随机变	**
量的分布	$P(X=x_k)=p_k, k=1, 2, \cdots,$
律	则称上式为高散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:
	$X \longrightarrow X_1, X_2, \cdots, X_k, \cdots$
	$\frac{X}{P(X=x_1)} \left(\frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots} \right)$
	显然分布律应满足下列条件:
	(1) $p_k \ge 0$, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$.
(2) 连续	设 $F(x)$ 是随机变量 X 的分布函数,若存在非负函数 $f(x)$,对任意实数 x 。有
型随机变	
量的分布	$F(x) = \int_{-\infty}^{x} f(x) dx$
密度	则称 X 为连续型随机变量。 $f^{(x)}$ 称为 X 的概率密度函数或密度函数,简称概率密度。
	密度函数具有下面 4 个性质:
	$f(x) \geq 0$
	$\int_{-\infty}^{+\infty} f(x)dx = 1$
(3) 高散 与连续型	$P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$
随机变量 的关系	积分元 $f(x)dx$ 在连续型随机变量理论中所起的作用与 $P(X=x)=p$ 在寓
	散型随机变量理论中所起的作用相类似。

献争论与叙述	表计 公式(全)	物序制作
(4) 分布	设义为随	机变量, x 是任意实勤, 则函数
函数	F(x) = F	$P(X \le x)$
	称为随机变量	X 的分布函数,本质上是一个累积函数。
	P(a < X	$\leq b$) = $F(b) - F(a)$ 可以得到 X 落入区间 $\{a,b\}$ 的概率。分布
	函数 F(x) 表	示随机变量落入区间(- ∞,x]内的概率。
	分布函数	具有如下性质:
	ι• 0≤	$F(x) \le 1, -\infty < x < +\infty;$
	2° F(:	x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$;
	3° F(-	$-\infty$) = $\lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;
	4° F((x+0) = F(x),即 $F(x)$ 是右连续的;
	5* P ($X = x) = F(x) - F(x - 0) \cdot$
	对于离散型随	机变量, $F(x) = \sum_{x_k \le x} p_k$;
	对于连续型随	机变量. $F(x) = \int_{-\infty}^{x} f(x)dx$.
(5) 八大 分布	0-1 分布	P(X=1)=p, P(X=0)=q
	二项分布	在n重贝努里试验中,设事件 A 发生的概率为 p。事件 A 发生
	78	的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,…,n。
		$P(X=k) = P_n(k) = C_n^k p^k q^{n-k} , $ 其 中
		$q = 1 - p, 0$
		则称随机变量 X 服从参数为 n , p 的二项分布。记为
		$X \sim B(n, p)$.
		当 $n=1$ 时, $P(X=k)=p^kq^{1-k}$, $k=0.1$,这就是 (0-1) 分
		布,所以 (0-1) 分布是二项分布的特例。

似乎化づ取理	就订 公式(全)	707年間17年
	泊松分布	设随机变量 X 的分布律为
		$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0. k = 0,1,2,$
		则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或
		者 P(l)。 泊松分布为二项分布的极限分布(np=l),n→∞)。
	超几何分布	$P(X = k) = \frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, 2 \cdots, l$ $l = \min(M, n)$
		随机变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。
	几何分布	$P(X = k) = q^{k-1} p, k = 1, 2, 3, \dots$, 其中 p≥0. q=1-p.
		随机变量 X 服从参数为 p 的几何分布, 记为 G(p)。
	均匀分布	设施机变量 X 的值只落在 $[a,b]$ 内,其密度函数 $f(x)$ 在 $[a,b]$
		上为常数 $\frac{1}{b-a}$,即
		$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & 其他. \end{cases}$
	, ·	则称随机变量 X 在[a, b]上服从均匀分布,记为 X~U(a, b)。 分布函数为
		0, x <a, x-a</a,
		$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & x > b. \end{cases}$
		1, x>b.
		当 a≤x ₁ <x<sub>2≤b 时, X 幕在区间 (^X₁, ^X₂) 内的概率为</x<sub>
	· · · · · · · · · · · · · · · · · · ·	$P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a}$.

概率论与数理统计 公式(全)	市 声刺作
指數分布	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$
	其中 $\lambda>0$,则称随机变量 x 服从参数为 λ 的指数分布。 x 的分布函数为 $F(x)=\left\{ egin{array}{ll} 1-e^{-\lambda x}, & x\geq 0, \\ 0, & x<0. \end{array} \right.$
	0, $x<0$ 。 记住积分公式: $\int_{0}^{+\infty} x^{n}e^{-x}dx = n!$
正态分布	设随机变量 X 的密度函数为 $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$ 其中 μ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 μ 、 σ
	的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。 $f^{(x)}$ 具有如下性质: $f^{(x)}$ 的图形是关于 $f^{(x)}$ 的图形是关于 $f^{(x)}$ 的图形是关于
	2° 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$ 为最大值; 者 $X \sim N(\mu, \sigma^2)$,则 X 的分布函數为 $F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\pi}^{x} e^{\frac{(t-\mu)^2}{2\sigma^2}} dt$
	参数 $\mu=0$ 、 $\sigma=1$ 时的正态分布称为标准正态分布,记为 $X\sim N(0,1)$,其密度函数记为 $ \varphi(x)=\frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}} $, $-\infty < x < +\infty$,
	分布函数为 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt$ $\Phi(x)$ 是不可求积函数,其函数值,已编制成表可供查用。 $\Phi(-x) = 1 - \Phi(x)$ 且 $\Phi(0) = \frac{1}{2}$
	如果 $X \sim N(\mu, \sigma^2)$,则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$ 。 $P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$

概率论与数理	(金) (金)	锦辉制作
(6) 分位 數	下分位表: P	$P(X \leq \mu_{\alpha}) = \alpha :$
	上分位表: P	$P(X > \mu_{\alpha}) = \alpha$.
(7) 函数 分布	离散型	已知 X 的分布列为 $ \frac{X}{P(X=x_i)} \begin{vmatrix} x_1, & x_2, & \cdots, & x_n, & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \end{vmatrix} $ Y = $g(X)$ 的分布列 $(y_i = g(x_i)$ 互不相等)如下: $ \frac{Y}{P(Y=y_i)} \begin{vmatrix} g(x_1), & g(x_2), & \cdots, & g(x_n), & \cdots \\ p_1, & \cdots, & p_n, & \cdots \end{vmatrix} $ 者有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。
	连续型	先利用 X 的概率密度 $f_x(x)$ 写出 Y 的分布函数 $F_y(y) = P(g(X) \le y)$, 再利用变上下限积分的求导公式求出 $f_y(y)$ 。

第二音 一维随机亦器及其公布

(1)联合 分布	离散型	如果二维	如果二维随机向量																													
		个有序对 (x,	个有序对 (x, y),则称 5 为离散型随机量。																													
		设	设 $\xi = (X, Y)$ 的所有可能取值为 $(x_i, y_j)(i, j = 1, 2, \cdots)$.																													
		且事件{ ξ = (x	(, <i>y</i> ,)}	的概率为	p _{is} ,称																											
		$P\{(X,Y)\}$	$P\{(X,Y)=(x_i,y_j)\}=p_{ij}(i,j=1,2,\cdots)$																													
		为 ξ = (X, Y) 的分布律或称为 X 和 Y 的联合分布律。联合分																														
		布有时也用下	布有时也用下面的概率分布表来表示:																													
				X Y	JY1	y 2	•••	y 1	•••																							
		X _I	Pп	P12	•••	Pıj	•••																									
		Х2	P21	P22	•••	p_{2j}																										
			:	:		:	:																									
																											X,	Pii		•••	p _y	•••
		:	:	:		:	:																									
		这里 p _{ij} 具有 (1) p _{ij} ≥0 ((2) ∑∑	i, j=1,2			•																										

概率论与數理等	免计 公式 (全)	锦弄制作		
	连续型	对于二维随机向量 &=(X,Y),如果存在非负函数		
		$f(x,y)(-\infty < x < +\infty, -\infty < y < +\infty)$,使对任意一个其邻边		
		分别平行于坐标轴的矩形区域 D. 即 D={(X, Y) a <x<b, c<y<d}<br="">有</x<b,>		
		$P\{(X,Y)\in D\}=\iint\limits_{D}f(x,y)dxdy,$		
		则称 ξ 为连续型随机向量;并称 $f(x,y)$ 为 $\xi=(X,Y)$ 的分布		
		密度或称为 X 和 Y 的联合分布密度。		
		(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$		
(2) 二维 随机变量 的本质	$\xi(X=x,Y=$	$(y) = \xi(X = x \cap Y = y)$		
(3) 联合	设 (X, Y) 为	二维随机变量,对于任意实数 x, y, 二元函数		
分布函数		$F(x,y) = P\{X \le x, Y \le y\}$		
	称为二维随机向量(X, Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函数。			
	分布函数是一个以全平面为其定义域。以事件			
	$\{(\omega_1,\omega_2) -\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函			
	数。分布函数	数。分布函数 F(x, y) 具有以下的基本性质:		
	(1) 0≤ <i>F</i> (:	$(x,y) \leq 1;$		
	(2) F(x, y) 分別对 x 和 y 是非减的,即 当 x ₂ >x _i 时,有 F(x ₂ , y) ≥ F(x ₁ , y); 当 y ₂ >y ₁ 时,有 F(x, y ₂) ≥ F(x, y ₁); (3) F(x, y) 分別对 x 和 y 是右连续的,即			
	F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);			
	(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$			
	(5) 对于x ₁ < x ₂ , y ₁ < y ₂ ,			
	$F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$			
(4) 离散型 与连续型的关系	P(X=x, Y)	$Y = y \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dxdy$		
エルノル	L			

板率论与数理组	统计 公式 (全)	锦辉制作
(5) 边缘	离散型	X 的边缘分布为
分布		$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij}(i, j = 1, 2, \dots);$
		Y的边缘分布为
		$P_{\bullet j} = P(Y = y_j) = \sum_{i} p_{ij}(i, j = 1, 2, \dots)$
	连续型	X的边缘分布密度为
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$
		Y的边缘分布密度为
		$f_{\gamma}(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
(6)条件 分布	离散型	在已知 X=x, 的条件下,Y 取值的条件分布为
ער גע		$P(Y=y_j \mid X=x_i) = \frac{p_y}{p_{i*}};$
		在已知 Y=y,的条件下,X 取值的条件分布为
		$P(X=x_i \mid Y=y_j) = \frac{p_{ij}}{p_{*j}},$
	连续型	在已知 Y=y 的条件下,X 的条件分布密度为
		$f(x \mid y) = \frac{f(x,y)}{f_Y(y)};$
		在已知 X=x 的条件下,Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_x(x)}$
(7)独立	一般型	$F(X,Y)=F_{x}(x)F_{y}(y)$
性	高散型	$p_{ij} = p_{i \bullet} p_{\bullet j}$
		有零不独立
	连续型	$f(x, y) = f_x(x) f_y(y)$
		直接判断,充要条件:
	1	①可分离变量
		②正概率密度区间为矩形
	二维正态分 布	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{z-\mu_1}{\sigma_1}\right)^2 \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}\left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$
		$ \begin{array}{c} 2\pi\sigma,\sigma,\sqrt{1-\rho^2} \\ \rho=0 \end{array} $
	随机变量的	·
	函数	h (X ₁ , X ₂ , ····X ₄) 和 g (X ₄ , ····X ₄) 相互独立。
	1	

特例: 若 X 与 Y 独立, 则: h (X) 和 g (Y) 独立。 例如: 若 X 与 Y 独立, 则: 3X+1 和 5Y-2 独立。

锦辉制作

概率论与教理组	E计 公式 (全)			
(8) 二维	设随机向量 (X, Y) 的分布密度函数为			
均匀分布	$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$			
	其中 S ₀ 为区域 D 的面积,则称 (X, Y) 服从 D 上的均匀分布,记为 (X, Y) ~ U (D)。 例如图 3.1、图 3.2 和图 3.3。			
(9) 二维	设随机向量 (X, Y) 的分布密度函数为			
正态分布	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$			
	其中 $\mu_1,\mu_2,\sigma_1>0,\sigma_2>0,$ ρ <1是 5 个参数,则称 (X, Y) 服从二维正态分			
	布,			
	记为 $(X, Y) \sim N (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho).$			
	由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布。			
	$\mathbb{P} X \sim N (\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$			
	但是若 $X \sim N$ (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$, (X, Y) 未必是二维正态分布。			
(10)函数 分布	$Z=X+Y$ 根据定义计算: $F_Z(z)=P(Z \le z)=P(X+Y \le z)$			
	对于连续型, $f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$			
	两个独立的正态分布的和仍为正态分布 ($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。			
	n 个相互独立的正态分布的线性组合,仍服从正态分布。			
	$\mu = \sum_{i} C_{i} \mu_{i} , \qquad \sigma^{2} = \sum_{i} C_{i}^{2} \sigma_{i}^{2}$			

$Z=\max,\min(X_1,X_2,\cdots X_n)$ 若 $X_1,X_2,\cdots X_n$ 相 互 独 立 , 其 分 布 函 數 分 别 为 $F_{s_1}(x)$, $F_{s_2}(x)\cdots F_{s_n}(x)$, 则 $Z=\max,\min(X_1,X_2,\cdots X_n)$ 的分布 函 数 为 : $F_{\max}(x)=F_{s_1}(x)\circ F_{s_1}(x)\cdots F_{s_n}(x)$ 设 $T=\sum_{i=1}^n X_i^2$ 设 $T=\sum_{i=1}^n X_i^2$ 我们称随机变量 $T=\sum_{i=1}^n X_i^2$ 我们称随机交量 $T=\sum_{i=1}^n X_i^2$ 我们就可以证明的证明的证明的证明的证明的证明的证明的证明的证明的证明的证明的证明的证明的证	一条一个一个一个	MANAGERATIC
函数为: $F_{\max}(x) = F_{x_1}(x) \bullet F_{x_1}(x) \cdots F_{x_n}(x)$ $F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_1}(x)] \cdots [1 - F_{x_n}(x)]$		若 X1, X2 ··· X 相互独立,其分布函数分别为
$F_{\max}(x) = F_{s_i}(x) \bullet F_{s_i}(x) \cdots F_{s_k}(x)$ $F_{\min}(x) = 1 - [1 - F_{s_i}(x)] \bullet [1 - F_{s_i}(x)] \cdots [1 - F_{s_k}(x)]$ 设 n 个随机变量 X_1, X_2, \cdots, X_s 相互独立,且服从标准正态分布,可以证明它们的平方和 $W = \sum_{i=1}^n X_i^2$ 我们称随机变量 W 服从自由度为 n 的 χ^2 分布,记为 $\Psi = \chi^2$ (n), 所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。 χ^2 分布满足可加性,设 $Y_i - \chi^2(n_i),$ 则 $Z = \sum_{i=1}^k Y_i \sim \chi^2(n_1 + n_2 + \cdots + n_k).$ ①分布 设 X. Y 是两个相互独立的随机变量,且 $X \sim N(0,1), Y \sim \chi^2(n),$ 可以证明函数 $T = \frac{X}{\sqrt{Y/n}}$		$F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 Z=max,min(X ₁ ,X ₂ ,···X _n)的分布
$F_{\min}(x) = 1 - [1 - F_{x_i}(x)] \bullet [1 - F_{x_i}(x)] \cdots [1 - F_{x_i}(x)]$ $\chi^2 分 \pi$ 设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分 布,可以证明它们的平方和 $W = \sum_{i=1}^n X_i^2$ 我们称随机变量 W 服从自由度为 n 的 χ^2 分 布,记为 $\Psi = \chi^2$ (n), 所谓自由度是指独立正态随机变量的个数。它是随机变量分布中的一个重要参数。 $\chi^2 分 \pi 满足可加性,设$ $Y_i - \chi^2 (n_i),$ 则 $Z = \sum_{i=1}^k Y_i \sim \chi^2 (n_1 + n_2 + \cdots + n_k).$ ① 分		函数为:
χ^2 分布 设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和 $W = \sum_{i=1}^n X_i^2$ 我们称随机变量 N 服从自由度为 n 的 χ^2 分布,记为 $V \sim \chi^2$ (n) , 所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。 χ^2 分布满足可加性:设 $Y_i - \chi^2(n_i),$ 则 $Z = \sum_{i=1}^k Y_i \sim \chi^2(n_1 + n_2 + \cdots + n_k).$ ① 分布 设 X 、 Y 是两个相互独立的随机变量,且 $X \sim N(0,1), Y \sim \chi^2(n),$ 可以证明函数 $T = \frac{X}{\sqrt{Y/n}}$		$F_{\max}(x) = F_{x_1}(x) \bullet F_{x_1}(x) \cdots F_{x_n}(x)$
π . 可以证明它们的平方和 $W = \sum_{i=1}^{n} X_i^2$ 我们称随机变量 W 服从自由度为 n 的 χ^2 分布,记为 $\Psi \sim \chi^2$ (n), 所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。 χ^2 分布满足可加性: 设 $Y_i - \chi^2 (n_i),$ 则 $Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$ 1 分布		$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$
$W = \sum_{i=1}^{n} X_i^2$ 我们称随机变量 W 服从自由度为 n 的 χ^2 分布,记为 W $\sim \chi^2$ (n), 所谓自由度是指独立正志随机变量的个数,它是随机变量分布中的一个重要参数。 $\chi^2 $	χ ² 分布	设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分
我们称随机变量 W 服从自由度为 n 的 χ^2 分布, 记为 W $\sim \chi^2$ (n),所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。 χ^2 分布满足可加性: 设 $Y_i - \chi^2(n_i),$ 则 $Z = \sum_{i=1}^k Y_i \sim \chi^2(n_1 + n_2 + \dots + n_k).$ ①分布 设 X. Y 是两个相互独立的随机变量,且 $X \sim N(0,1), Y \sim \chi^2(n),$ 可以证明函数 $T = \frac{X}{\sqrt{Y/n}}$		布,可以证明它们的平方和
所谓自由度是指独立正志随机变量的个数,它是随机变量分布中的一个重要参数。 $\chi^2 分布满足可加性: 设 $ $Y_i - \chi^2(n_i),$ 则 $Z = \sum_{i=1}^k Y_i \sim \chi^2(n_1 + n_2 + \dots + n_k).$ l		$W = \sum_{i=1}^{n} X_i^2$
分布中的一个重要参数。 $\chi^2 分布满足可加性: 设$ $Y_i - \chi^2(n_i),$ 则 $Z = \sum_{l=1}^{L} Y_i \sim \chi^2(n_1 + n_2 + \dots + n_k).$ t 分布		我们称随机变量 W 服从自由度为 n 的 χ² 分布, 记为 W ~ χ²(n),
$Y_i - \chi^2(n_i),$ 則 $Z = \sum_{i=1}^k Y_i \sim \chi^2(n_1 + n_2 + \dots + n_k).$ I 分布 设 X . Y 是两个相互独立的随机变量,且 $X \sim N(0,1), Y \sim \chi^2(n),$ 可以证明函数 $T = \frac{X}{\sqrt{Y/n}}$		
則 $Z = \sum_{i=1}^k Y_i \sim \chi^2(n_1 + n_2 + \dots + n_k).$ I 分布 设 X . Y 是两个相互独立的随机变量。且 $X \sim N(0,1), Y \sim \chi^2(n),$ 可以证明函数 $T = \frac{X}{\sqrt{Y/n}}$		χ ² 分布満足可加性: 设
$Z=\sum_{i=1}^k Y_i\sim \chi^2(n_1+n_2+\cdots+n_k).$ 设 X. Y 是两个相互独立的随机变量,且 $X\sim N(0,1),Y\sim \chi^2(n),$ 可以证明函数 $T=\frac{X}{\sqrt{Y/n}}$		$Y_i - \chi^2(n_i),$
t 分布 设 X . Y 是两个相互独立的随机变量。且 $X \sim N(0,1), Y \sim \chi^2(n),$ 可以证明函数 $T = \frac{X}{\sqrt{Y/n}}$		则
$X \sim N(0,1), Y \sim \chi^2(n),$ 可以证明函数 $T = \frac{X}{\sqrt{Y/n}}$		$Z = \sum_{i=1}^{k} Y_{i} \sim \chi^{2}(n_{1} + n_{2} + \cdots + n_{k}).$
可以证明函数 $T = \frac{X}{\sqrt{Y/n}}$	ι分布	设 X. Y 是两个相互独立的随机变量,且
$T = \frac{X}{\sqrt{Y/n}}$		$X \sim N(0,1), Y \sim \chi^{2}(n),$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		可以证明函数
我们称随机变量 T 服从自由度为 n 的 t 分布,记为 T~t(n)。		$T = \frac{X}{\sqrt{Y/n}}$
		我们称随机变量 T 服从自由度为 n 的 t 分布,记为 T~t(n)。
$t_{1-\alpha}(n) = -t_{\alpha}(n)$		$t_{1-\alpha}(n) = -t_{\alpha}(n)$

F分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立,	可以证明
	$F = \frac{X/n_1}{Y/n_2}$	
	我们称随机变量 F 服从第一个自由度为 n _i ,第二个的 F 分布,记为 F~f(n _i , n ₂).	自由度为 n ₂
	$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$	

第四章 随机变量的数字特征

(1)		离散型	连续型
一维	期望	设 X 是离散型随机变量,其分布	设 X 是连续型随机变量,其概率密
随机	期望就是平均值	律为 P(X=x,)=p,	度为 f(x),
变 量		$+ y_i + (y_i - y_i) - y_i$	+40
的数		k=1, 2, •••, n,	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
字特		<u> </u>	~
征		$E(X) = \sum_{k=1}^{n} x_k p_k$	(要求绝对收敛)
		#=1	
1		(要求绝对收敛)	
	函数的期望	Y=g (X)	Y=g(X)
		$E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$E(Y) = \int_{0}^{+\infty} g(x)f(x)dx$
		X=1	
ŀ	方差		+œ
1	$D(X) = E[X - E(X)]^{2},$	$D(X) = \sum [x_k - E(X)]^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$
	标准差	<u>k</u>	
	$\sigma(X) = \sqrt{D(X)} \; ,$		

概率论与	5数理统计 公式 (全)		锦辉制作
·	矩	①对于正整数 k, 称随机变量 X	①对于正整数 k, 称随机变量 X 的
		的 k 次幂的數学期望为 X 的 k	k 次幂的数学期望为 X 的 k 阶原点
		阶原点矩,记为 v _i ,即	矩,记为 v _i , 即
		$v_k=E(X^k)=\sum_i x_i^k p_i,$	$v_{i}=E(X^{i})=\int_{-\infty}^{+\infty}x^{k}f(x)dx,$
		k=1, 2, ···.	k=1, 2, ···.
		②对于正整数 k, 称随机变量 X 与 E (X) 差的 k 次幂的数学期	②对于正整数 k,称随机变量 X 与 E (X) 差的 k 次幂的数学期望为 X
		塑为 X 的 k 阶中心矩,记为 μ_k ,	的 k 阶中心矩,记为 μ_k , 即
		即	$\mu_k = E(X - E(X))^k$
		$\mu_k = E(X - E(X))^k$	
		$= \sum_{i} (x_{i} - E(X))^{k} p_{i} ,$ $k=1, 2, \dots.$	$=\int_{-\infty}^{+\infty}(x-E(X))^k f(x)dx,$
		k=1, 2, ···.	k=1, 2, ···.
	切比雪夫不等式	设随机变量 X 具有数学期望 E (X) = μ , 方差 D (X) = σ², 则对于
		任意正数 ε ,有下列切比雪夫不	等式
	·	$ P(X-\mu \geq\varepsilon)\leq\frac{\sigma^2}{\varepsilon^2}$	
		切比雪夫不等式给出了在未知X	的分布的情况下,对概率
		P(X)	$-\mu \geq \varepsilon$)
	,	的一种估计,它在理论上有重要	意义。
(2)	(1) E(C)=C		
期望	(2) E(CX)=CE(X)		
的性质	(3) E(X+Y)=E(X)+E(Y)	$E(\sum_{i=1}^{n} C_{i} X_{i}) = \sum_{i=1}^{n} C_{i} E(X_{i})$	
	(4) E(XY)=E(X) E(Y)	,充分条件: X和 Y 独立; 充要条件: X和 Y 不相关。	
(3)	(1) D(C)=0; E(C)=C		
方差	(2) D(aX)=a²D(X);	E(aX) = aE(X)	1
的性	(3) $D(aX+b) = a^2D(X)$	E(aX+b)=aE(X)+b	j
质	(4) $D(X) = E(X^2) - E^2(X^2)$)	
	(5) D(X±Y)=D(X)+D	(Y),充分条件: X 和 Y 独立; 充要条件: X 和 Y 不相关。	
	D(X±Y)=D(X)+	$D(Y) \pm 2E[(X-E(X))(Y-E(Y))], \exists$	条件成立。
	而 E(X+Y)=E(X)	+E(Y), 无条件成立。	
(4)		期望	方差
常 见 分 布	0-1 分布 B(l, p)	p	p(1-p)

佛学化-	東埋就计 公式(全)		7年7年17年	像争化与叙理就订 公八	(全) 10月1日
的 期 望 和	二項分布 B(n, p)	np	np(1 – p)	协方差	对于随机变量 X 与 Y, 称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的协方
方差	泊松分布 P(1)	λ	λ		差或相关矩,记为 σ_{XY} 或 $\operatorname{cov}(X,Y)$,即
	几何分布 G(p)	$\frac{1}{p}$	$\frac{1-p}{p^2}$		$\sigma_{XT} = \mu_{11} = E[(X - E(X))(Y - E(Y))].$ 与记号 σ_{XT} 相对应,X 与 Y 的方差 D(X) 与 D(Y) 也可分别记为 σ_{XX}
	超几何分布 $H(n, M, N)$	nM N	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$		与 σ_m .
	均匀分布 <i>U(a,b</i>)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	相关系数	对于随机变量 X 与 Y ,如果 D $(X)>0$, $D(Y)>0$,则称 $\frac{\sigma_{XY}}{\sqrt{D(X)}\sqrt{D(Y)}}$
	指数分布 e(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		为 X 与 Y 的相关系数,记作 $ ho_{XY}$ (有时可简记为 $ ho$)。
	正态分布 N(μ,σ ²)	μ	σ^2		ρ ≤1.当 ρ =1 时,称 X 与 Y 完全相关; P(X = aY + b) = 1
	χ ² 分布	n	2n		$\hat{\mathbf{E}}$ 定相关,当 $\rho=\mathbf{i}$ 时($a>0$), $\hat{\mathbf{E}}$ 负相关,当 $\rho=-\mathbf{i}$ 时($a<0$),
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$		$\Delta = -\mathbf{l}$ 负相关,当 $\rho = -\mathbf{l}$ 时($a < 0$),
(5) 二维 随机	期望	$E(X) = \sum_{i=1}^{n} x_{i} p_{i \bullet}$ $E(Y) = \sum_{i=1}^{n} y_{j} p_{\bullet j}$	$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$		而当 ρ = 0 时,称 X 与 Y 不相关。 以下五个命题是等价的:
变量 的 数字特		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$		
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =		③E(XY)=E(X)E(Y); ⑥D(X+Y)=D(X)+D(Y); ⑤D(X-Y)=D(X)+D(Y).
		$\sum_{i}\sum_{j}G(x_{i},y_{j})p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x,y) f(x,y) dxdy$	协方差矩阵	$\begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix}$
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$	混合矩	对于随机变量 X 与 Y , 如果有 $E(X^kY^l)$ 存在。则称之为 X 与 Y 的
		$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{\bullet j}$	$D(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f_X(x) dx$ $D(Y) = \int_{-\infty}^{\infty} [y - E(Y)]^2 f_Y(y) dy$		k+/ 阶混合原点矩,记为Vk; k+/ 阶混合中心矩记为;
		<u> </u>			$u_{kl} = E[(X - E(X))^k (Y - E(Y))^l].$
				协方(ii) cov((X, Y) = cov (Y, X); aX, bY) = ab cov (X, Y); $X_1 + X_2, Y) = cov (X_1, Y) + cov (X_2, Y)$;
					(X, Y) = E(XY) - E(X) E(Y).

(7) 独立	(i)	若随机变量 X 与 Y 相互独立,则 $\rho_{XY}=0$,反之不真。
和 不相关	(ii)	若 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$),
,		則 X 与 Y 相互独立的充要条件是 X 和 Y 不相关。

第五章 大数定律和中心极限定理

(1) 大数定律X → µ	切比雪大定律	设随机变量 X ₁ , X ₂ , ····相互独立,均具有有限方差,且被同一常数 C 所界: D (X_i) 〈C(i=1,2,···),则对于任意的正数 ϵ ,有 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \epsilon\right) = 1.$ 特殊情形: 若 X ₁ , X ₂ , ····具有相同的数学期望 E (X ₁) = μ ,则上式成为 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \epsilon\right) = 1.$
	伯努利 大数定 律	设 μ 是 μ 次独立试验中事件 μ 发生的次数, μ 是事件 μ 在每次试验中发生的概率,则对于任意的正数 μ ,有 $\lim_{n\to\infty}P\left(\frac{\mu}{n}-p\right <\varepsilon\right)=1.$ 伯努利大数定律说明,当试验次数 μ 很大时,事件 μ 发生的频率与概率有较大判别的可能性很小,即 $\lim_{n\to\infty}P\left(\frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$ 这就以严格的数学形式描述了频率的稳定性。
	辛钦大数定律	设 χ_1 , χ_2 ,, χ_n ,是相互独立同分布的随机变量序列,且 ϵ (χ_n) = μ , 则对于任意的正数 ϵ 有 $\lim_{n\to\infty}P\left(\left \frac{1}{n}\sum_{i=1}^nX_i-\mu\right <\epsilon\right)=1.$

, m-1,0 7,2-2,77 =		
(2) 中心极限定	列维一	设随机变量 X1,X2,···相互独立,服从同一分布,且具有 │
理	林德伯	相同的数学期望和方差:
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	格定理	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \cdots)$,则随机变量
		$Y_{n} = \frac{\sum_{k=1}^{N} X_{k} - n\mu}{\sqrt{n}\sigma}$
		的分布函數 F _a (x) 对任意的实数 x,有
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
		此定理也称为独立同分布的中心极限定理。
	棣莫弗 一拉普	设随机变量 X _n 为具有参数 n, p(0 <p<1)的二项分布,则对于< th=""></p<1)的二项分布,则对于<>
	拉斯定	任意实数 x, 有
	理	$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
(3) 二项定理	若主	$\beta N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变).则
,		$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$
	超几何分	}布的极限分布为二项分布。
(4) 泊松定理	若当	$ in → ∞$ 时, $np → \lambda > 0$,则
		$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty)$.
	其中 k=6), 1, 2, ···, n, ···•
	二项分7	F的极限分布为泊松分布。

概率论与数理统计 公式 (全)

第六章 样本及抽样分布

(1) 數理	总体	在數理统计中,常把被考察对象的某一个(或多个)指标的全	
统计的基		体称为总体(或母体)。我们总是把总体看成一个具有分布的随	
本概念		机变量 (或随机向量)。	
1	个体	总体中的每一个单元称为样品(或个体)。	

中所含的样品敷称为样本容量,一般用 n 表示。在一般情况下总是把样本看成是 n 个相互独立的且与总体有相同分布的确立变量,这样的样本称为简单随机样本。在还指任一次抽取的原果时, x_1,x_2,\cdots,x_n 表示 n 个人具体的数值(样本值)。我们称之为样本的两重性。 样本函數和	概率论与数理统计 公式(全)	锦声制作
总是把样本看成是 n 个相互独立的且与总体有相同分布的脑变量。这样的样本称为简单随机样本。在泛指任一次抽取的思想时, x_1, x_2, \cdots, x_n 表示 n 个人操体的数值(样本值)。我们称之为样本的两重性。 样本函数和	样本	我们把从总体中抽取的部分样品 x1, x2, ···, x, 称为样本。样本
要量. 这样的样本称为简单随机样本。在泛指任一次抽取的。果时. x_1, x_2, \cdots, x_n 表示 n 个人具体的数值(样本值)。:		中所含的样品数称为样本容量,一般用 n 表示。在一般情况下,
果时, x_1, x_2, \cdots, x_n 表示 n 个随机变量(样本);在具体的一般取之后, x_1, x_2, \cdots, x_n 表示 n 个人具体的数值(样本值)。第 们称之为样本的两重性。		总是把样本看成是 n 个相互独立的且与总体有相同分布的随机
抽取之后, x_1, x_2, \cdots, x_n 表示 $n \circ \Lambda$ 具体的数值(样本值)。 第 η 预之为样本的两重性。		变量,这样的样本称为简单随机样本。在泛指任一次抽取的结
		果时, x ₁ ,x ₂ ,····,x _n 表示 n 个随机变量 (样本); 在具体的一次
样本函數和 统计量		抽取之后, x_1, x_2, \dots, x_n 表示 n • 个具体的数值 (样本值)。我
療计量 $\phi = \varphi$ (x_1, x_2, \dots, x_n) 为样本函数、其中 φ 为一个连续函数。如果 φ 中不包含任何:知参数、则称 φ (x_1, x_2, \dots, x_n) 为一个统计量。		们称之为样本的两重性。
为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何的知多数,则称 φ (x_1, x_2, \cdots, x_n)为一个统计量。 常见统计量 及其性质	1	设x ₁ ,x ₂ ,···,x _n 为总体的一个样本,称
知參數,則称 φ (x_1, x_2, \dots, x_n) 为一个统计量。 常见统计量 及其性质		$\varphi = \varphi \qquad (x_1, x_2, \dots, x_n)$
常见统计量 及其性质		为样本函数, 其中φ为一个连续函数。如果φ中不包含任何未
及其性质		知参数、则称φ(x ₁ ,x ₂ ,···,x _n)为一个统计量。
样本方差 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$ 样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}.$ 样本 k 阶 原 点矩 $M_{k} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}, k = 1, 2, \cdots.$ 样本 k 阶 中 心 矩 $M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}, k = 2, 3, \cdots.$ $E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^{2}}{n},$	常见统计量	_ 1 #
$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$ 样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}.$ 样本 k 阶 原 点矩 $M_{k} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}, k = 1, 2, \cdots.$ 样本 k 阶 中心矩 $M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}, k = 2, 3, \cdots.$ $E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^{2}}{n},$	及其性质	样本均值
样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$ 样本 k 阶 原 点矩 $M_k = \frac{1}{n} \sum_{i=1}^{n} x_i^k, k = 1, 2, \cdots.$ 样本 k 阶 中 心 矩 $M_k' = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^k, k = 2, 3, \cdots.$ $E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$		
样本 k 阶原点矩 $M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots.$ 样本 k 阶中心矩 $M_k' = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k, k = 2, 3, \cdots.$ $E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$		$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$
$M_{k} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}, k = 1, 2, \cdots$ 样本 k 阶中心矩 $M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}, k = 2, 3, \cdots$ $E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^{2}}{n},$		样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$
样本 k 阶中心矩 $M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}, k = 2,3,\cdots.$ $E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^{2}}{n},$		样本 k 阶原点矩
$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}, k = 2,3,\cdots.$ $E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^{2}}{n},$		$M_k = \frac{1}{n} \sum_{i=1}^{n} x_i^k, k = 1, 2, \cdots$
$E(\overline{X}) = \mu$, $D(\overline{X}) = \frac{\sigma^2}{n}$,		样本 k 阶中心矩
		$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}, k = 2,3,\cdots.$
$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n}\sigma^2,$		$E(\overline{X}) = \mu$, $D(\overline{X}) = \frac{\sigma^2}{n}$,
l t l		$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n}\sigma^2,$
其中 $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为二阶中心矩。		其中 $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为二阶中心矩。

似平化与蚁 理3	元打 公八(宝)	TRAFTE
(2) 正态 总体下的	正态分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
四大分布		本函数
		$u^{\frac{def}{\sigma}}\frac{\overline{x}-\mu}{\sigma/\sqrt{n}}\sim N(0,1).$
	t分布	设 x_1,x_2,\cdots,x_n 为来自正态总体 $N(\mu,\sigma^2)$ 的一个样本,则样
		本函數
		$t^{\frac{def}{n}}\frac{\overline{x}-\mu}{s/\sqrt{n}}\sim t(n-1),$
		其中 t(n-1)表示自由度为 n-1 的 t 分布。
	χ²分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$w^{\frac{\det}{def}}\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。
	F分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		y_1,y_2,\cdots,y_n 为来自正态总体 $N(\mu,\sigma_2^2)$ 的一个样本,则样本
	,	函数
		$F^{\frac{def}{2}} \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$
		其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$
: :		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 , 第二自由度为
		n ₂ -1的F分布。
(3) 正态总体下分	— ※ 与 S² 独立	
布的性质		
		A. A

第七章 参数估计

概率论与:	散理统 计公	式(全) 物件制作	
(1)点 估计	矩估计	设总体 X 的分布中包含有未知数 $ heta_1, heta_2, \cdots, heta_m$,则其分布函数可以表成	
		$F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $\nu_k=E(X^k)(k=1,2,\cdots,m)$ 中也	
		包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$, 即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。又设	
		x ₁ , x ₂ , ···, x _n 为总体 X 的 n 个样本值,其样本的 k 阶原点矩为	
		$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} (k=1,2,\cdots,m).$	
		这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩" 的原则建立方程,即有	
		$\left[v_1(\hat{\theta_1},\hat{\theta_2},\dots,\hat{\theta_m})=\frac{1}{n}\sum_{i=1}^n x_i,\right]$	
		$v_{2}(\hat{\theta}_{1},\hat{\theta}_{2},\cdots,\hat{\theta}_{m}) = \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2},$	
		$v_m(\hat{\theta}_1,\hat{\theta}_2,\dots,\hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m.$	
		由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{ heta_1},\hat{ heta_2},\cdots,\hat{ heta_m})$ 即为参数	
		$(\theta_1, \theta_2, \cdots, \theta_m)$ 的矩估计量。	
		$ au\hat{ heta}$ 为 $ heta$ 的矩估计, $g(x)$ 为连续函数,则 $g(\hat{ heta})$ 为 $g(\theta)$ 的矩估计。	

	ATT A. Ast	We have the contract and the second
	极大似	当总体 X 为连续型随机变量时,设其分布密度为
	然估计	$f(x;\theta_1,\theta_2,\dots,\theta_m)$, 其中 $\theta_1,\theta_2,\dots,\theta_m$ 为未知参数。又设
		x ₁ ,x ₂ ,,x _n 为总体的一个样本. 称
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数,简记为 La. 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P\{X=x\}=p(x;\theta_1,\theta_2,\cdots,\theta_m)$. 则称
		$L(x_1,x_2,\dots,x_n;\theta_1,\theta_2,\dots,\theta_m) = \prod_{i=1}^n p(x_i;\theta_1,\theta_2,\dots,\theta_m)$
		为样本的似然函数。
		若似然函数 $L(x_1,x_2,\cdots,x_n;\theta_1,\theta_2,\cdots,\theta_m)$ 在 $\hat{\theta}_1,\hat{\theta}_2,\cdots,\hat{\theta}_m$ 处取
		到最大值.则称 $\hat{ heta}_1,\hat{ heta}_2,\cdots,\hat{ heta}_n$ 分别为 $ heta_1, heta_2,\cdots, heta_n$ 的最大似然估计值。
		相应的统计量称为最大似然估计量。
		$\frac{\partial \ln L_n}{\partial \theta_i}\bigg _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \dots, m$
	,	若 $\hat{m{ heta}}$ 为 $m{ heta}$ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{m{ heta}})$ 为 $g(m{ heta})$ 的极大似然估计。
(2)估 计量的	无偏性	设 $\hat{\theta}=\hat{\theta}(x_1,x_2,\cdots,x_n)$ 为未知参数 θ 的估计量。若 $E=(\hat{\theta})=\theta$,则称
评选标 准		$\hat{ heta}$ 为 $ heta$ 的无偏估计量。
		$E(\overline{X}) = E(X), E(S^2) = D(X)$
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, \dots, x_n)$ 是未知参数 θ
		的两个无偏估计量。若 $D(\hat{ heta}_1) < D(\hat{ heta}_2)$,则称 $\hat{ heta}_1$ 比 $\hat{ heta}_2$ 有效。

概率论与	散理统计 公	式 (全)	御料制作
	一致性	设 $\hat{ heta}$,是 $ heta$ 的一串估计量,如果	
		$\lim_{n\to\infty}P($	$\hat{\theta}_n - \theta \mid > \varepsilon$) = 0,
		则称 $\hat{m{ heta}}_*$ 为 $m{ heta}$ 的一致估计量(或	
			$0 \to 0 (n \to \infty)$, 則 $\hat{\theta}$ 为 θ 的一致估计。
		只要总体的 E(X)和 D(X)存在, 应总体的一致估计量。	一切样本矩和样本矩的连续函数都是相
(3)区 间估计	置信区 间和置	设总体 X 含有一个特估的未知4	\Rightarrow 数 $ heta$ 。如果我们从样本 x_1,x_2,\cdots,x_n 出
	信度	发,找出两个统	$\forall \blacksquare \theta_1 = \theta_1(x_1, x_{,2}, \cdots, x_n) = $
		$\theta_2 = \theta_2(x_1, x_2, \dots, x_n) (\theta_1 + \theta_2)$	$< heta_2$),使得区间 $[heta_1, heta_2]$ 以
		1-α(0<α<1)的概率包含这·	个特估 参数 θ、即
		$P\{\theta_{i} \leq$	$\theta \leq \theta_2 \} = 1 - \alpha,$
		那么称区间 $[\theta_1, \theta_2]$ 为 θ 的置信	該区间, 1-α为该区间的置信度(或量
		信水平)。	
	单正态 总体的	, -	$\Gamma(\mu,\sigma^2)$ 的一个样本,在置信度为 $1-lpha$
	期望和方差的	1 6. 拨心李确宏以对决"双管强	区间 $[heta_1, heta_2]$ 。具体步骤如下:
	区间估计	(i)选择样本函数; (ii)由置信度1-α,查表找	·分位数:
		(iii) 导出置信区间[θ_1, θ_2]。	
	4	已知方差,估计均值	(i) 选择样本函数
			$u = \frac{\overline{x-\mu}}{\sigma_0 / \sqrt{n}} \sim N(0,1).$
			(i i) 查表找分位數
			$P\left(-\lambda \leq \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$
			(iii) 导出置僧区间
			$\left[\bar{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \bar{x} + \lambda \frac{\sigma_0}{\sqrt{n}}\right]$
L	1		1

「公式(宝)	भारत मुख्या ह
未知方差,估计均值	(i) 选择样本函数 _
	$t=\frac{x-\mu}{S/\sqrt{n}}\sim t(n-1).$
	(ii)查表找分位數
	$P\left(-\lambda \leq \frac{\bar{x} - \mu}{S/\sqrt{n}} \leq \lambda\right) = 1 - \alpha.$
	(iii) 导出置信区间
	$\left[\overline{x} - \lambda \frac{S}{\sqrt{n}}, \overline{x} + \lambda \frac{S}{\sqrt{n}}\right]$
方差的区间估计	(i)选择样本函数
	$w=\frac{(n-1)S^2}{\sigma^2}\sim \kappa^2(n-1).$
	(ii) 查表找分位數
	$P\left(\lambda_1 \leq \frac{(n-1)S^2}{\sigma^2} \leq \lambda_2\right) = 1 - \alpha.$
	(iii) 导出σ的置信区间
	$\left[\sqrt{\frac{n-1}{\lambda_2}}S,\sqrt{\frac{n-1}{\lambda_1}}S\right]$
	未知方差,估计均值