Mecánica Analítica Computacional

Fuerzas de ligadura | Multiplicadores de Lagrange

1. Péndulo rígido ideal

Calcule la tensión de la cuerda con el método de multiplicadores de Lagrange. La restricción es que la pesa se mantiene siempre en $\vec{r} = \ell \hat{\rho}$, ergo la función que expresa esto es $f(\rho) = \rho - \ell = 0$.

2. Cilindro que rueda por un plano inclinado [Marion (e) ex. 7.5]

- a) Encuentre las ecuaciones de movimiento,
- b) la aceleración angular,
- c) y la fuerzas de ligadura.

3. Doble máquina de Atwood [Marion (e) ej. 7.8 y 7-37]

Utilice el método de multiplicadores de Lagrange para encontrar las ecuaciones de movimiento y las tensiones de las cuerdas.

$$\ddot{y}_1 = \frac{2g \left(2m_1m_2 + 2m_1m_3 + m_1m_p - 8m_2m_3 - 3m_2m_p - 3m_3m_p - m_p^2\right)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

$$\ddot{y}_2 = \frac{2g \left(4m_1 + m_p\right) \left(m_2 - m_3\right)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

b) Obtenga las tensiones de ambas cuerdas. Resultado:

Obtenga has tensiones de ambas cuerdas. Resultado:
$$Q_1 = \frac{g\left(32m_1m_2m_3 + 12m_1m_2m_p + 12m_1m_3m_p + 4m_1m_p^2 + 8m_2m_3m_p + 3m_2m_p^2 + 3m_3m_p^2 + m_p^3\right)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

$$Q_2 = \frac{gm_3\left(16m_1m_2 + 4m_1m_p + 4m_2m_p + m_p^2\right)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

$$Q_2 = \frac{gm_3\left(16m_1m_2 + 4m_1m_p + 4m_2m_p + m_p\right)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

Mecánica Analítica Computacional

4. Pesos enlazados por una cuerda [Taylor 7.50]

Una partícula de masa m, situada sobre una mesa horizontal sin fricción, está unida mediante una cuerda ideal de longitud ℓ a otra partícula de masa M. La cuerda pasa por un orificio practicado en la mesa, el cual no presenta rozamiento. La segunda pesa pende vertical con una distancia a la mesa $y = \ell - \rho$, función de la distancia de la primera al hueco, ρ .

a) Asumiendo que θ no es necesariamente constante obtenga las ecuaciones de Lagrange para ρ e y. Resultado:

$$-Mg + M\ddot{y} + \lambda_1 = 0 \qquad \lambda_1 - m\rho\dot{\theta}^2 + m\ddot{\rho} = 0$$

b) Resuelva el sistema para ρ, y y el multiplicador de Lagrange λ_1 encontrando las fuerzas de tensión sobre ambas masas.

Resultado:
$$Q_{\rho} = \frac{Mm\left(g + \rho\dot{\theta}^2\right)}{M + m}$$

5. Partícula deslizando sobre una semi-esfera [Marion (e) ex. 7.10] La partícula de masa m, considerada puntual, desliza sobre una semiesfera de radio R sin fricción.

- a) Encuentre la fuerza de la ligadura. Resultado: $F_{\rho}^{\text{ligadura}} = m \left(-R\dot{\theta}^2 + g\cos(\theta) \right)$
- b) Calcule el ángulo en que la partícula se despega de la semi-esfera. Resultado: $\theta^{\text{despegue}} \approx 48.19^{\circ}$

Para llegar al ángulo de despegue debe resolver la ecuación diferencial a la que arribará tras resolver la problemática de las fuerzas de ligadura, que será $\ddot{\theta} = \frac{g \sin(\theta)}{R}$. Esta expresión es integrable para el recorrido que hace la partícula. Para facilitar esto se intercala por regla de la cadena derivaciones en función de θ en la definición de la aceleración.

$$\ddot{\theta} = \frac{d\dot{\theta}}{dt} = \frac{d\theta}{dt} \frac{d\dot{\theta}}{d\theta} = \dot{\theta} \frac{d\dot{\theta}}{d\theta}$$

Como la partícula parte de $\theta(t=0)=0$ con $\dot{\theta}(t=0)=0$.

$$\ddot{\theta} = \dot{\theta} \frac{d\dot{\theta}}{d\theta} = \frac{g}{R} \sin(\theta)$$

$$\dot{\theta} d\dot{\theta} = \frac{g}{R} \sin(\theta) d\theta$$

$$\int_{0}^{\dot{\theta}_{\text{despegue}}} \dot{\theta} d\dot{\theta} = \frac{g}{R} \int_{0}^{\theta_{\text{despegue}}} \sin \theta d\theta$$

$$\frac{\dot{\theta}^{2}}{2} \Big|_{0}^{\dot{\theta}_{\text{despegue}}} = \frac{g}{R} (-\cos \theta) \Big|_{0}^{\theta_{\text{despegue}}}$$

$$\frac{\dot{\theta}^{2}_{\text{despegue}}}{2} = \frac{g}{R} (-\cos(\theta_{\text{despegue}}) + 1)$$

Con esto hay que substituir $\dot{\theta}^2$ en una expresión de $F_{\rho}^{\text{ligadura}}$, que debe ser nula en el momento de despegue.