EVERTRONICS

瑞旭电子资源

瑞旭电子资源有限公司

Evertronics Resource Co.,LTD

承 认书

APPROVAL SHEET

客户

迈科新能源有限公司

CUSTOMER NAME

McNair New Power Co., Ltd

品名
PartNumber
S-8232ABFT-T2-G
品牌
UDANAIR PN

SEIKO

客户承认签章(CUSTOMER SIGN)

在满满

审查(Check)	业务(Sales)	制图(Draw)
		報告できる。

瑞旭电子资源有限公司 深圳办

Evertronics Resource CO.,LTD Shenzhen Office 地址:深圳宝安区龙华镇和平西路青年城帮园3幢1008室 电话: 0086-755-81703473 传真: 0086-755-81703473

2节用电池保护IC

S-8232系列

S-8232系列是内置了高精度电压检测电路和延迟电路的锂离子可 这种IC最适合在2节用锂离子电池组上使用

- (1) 内置高精度电压检测电路
- 过充电检测电压 3.90 V ±25 mV ~ 4.60 V ±25 mV 5 mV级进对应
- 过充电解除电压 3.60 V ±50 mV ~ 4.60 V ±50 mV 5 mV级进对应
- (过充电解除电压与过充电检测电压的差可在0 V ~ 0.3 V的范围内选择)
- 过放电解除电压 过放电检测电压 1.70 V ±100 mV ~ 3.80 V ±100 mV 50 mV级进对应 1.70 V ±80 mV ~ 2.60 V +80 mV 50 mV级进对应
- (过放电解除电压与过放电检测电压的差可在0 V ~ 1.2 V的范围内选择)
- 过电流检测电压1 0.07 V ±20 mV ~ 0.30 V ±20 mV 5 mV级进对应
- (2) 耐高压元件: 绝对最大额定值 18~
- (3) 宽工作电压范围: $2.0 \, \text{V} \sim 16 \, \text{V}$
- (4) 可通过1个的外接器件的容量来设置过充电检测、过放电检测、过电流检测的延迟时间 (时间比各自为100:10:1)
- (5) 2段的过电流检测 (负载短路时的保护)
- (6) 內置过充电辅助检测电压电路(针对过充电检测电压的故障保险)
- (7) 具有向0 V电池的充电功能 (也可以利用选购件设置为禁止向0 V电池的充电)
- (8) 低消耗电流
- 休眠时 工作时 7.5 µA 典型值 0.2 nA 典型值 0.1 µA 最大值 14.2 µA 最大值 (-40~+85°C) (-40~+85°C)
- (9) 无铅产品

一用途

锂离子可充电池电池组

■ 封装

8-Pin TSSOP		封装名
FT008-A	封装图面	
FT008-E	卷带图面	图面号码
, FT008-E	带卷图面	

精工电子有限公司

2节用电池保护IC S-8232系列

Rev.5.0_00

植图

备注 CO端子为CMOS输出,Nch晶体管连接了电阻(RCOL) 因此,从CO端子输出"Low"的时候,阻抗会变高,有关阻抗值,请参阅电气特性。

Rev.5.0_00 2节用电池保护IC S-8232系列

■ 产品型号的构成

*1. 请参阅带卷图

2. 产品名目录

			表1 (1/2)				
型性ない。 15日	过充电检测电压	过充电解除电压	过放电检测电压	过放电解除电压	过电流检测电压	过充电检测	何0 V电池
11 12 12 12 12 12 12 12 12 12 12 12 12 1	V _{CU}	V _{CD}	V _{DD}	V _{DU}	V _{IQV}	に3=0.22 µF)	充电功能
S-8232AAFT-T2-G	4.25 V ±25 mV	4.05 V ±50 mV	2.40 V ±80 mV	2.40 V ±80 mV 3.00 V ±100 mV 0.150 V ±20 mV	0.150 V ±20 mV	1.0 s	미能
S-8232ABFT-T2-G	4.35 V ±25 mV	4.15 V ±50 mV	2.30 V ±80 mV 3.00 V ±100 mV 0.300 V ±20 mV	3.00 V ±100 mV	0.300 V ±20 mV	1.0 s	可能
S-8232ACFT-T2-G	4.35 V ±25 mV	4.15 V ±50 mV	2.30 V ±80 mV 3.00 V ±100 mV 0.300 V ±20 mV	3.00 V ±100 mV	0.300 V ±20 mV	1.0 s	禁止
S-8232AEFT-T2-G	4.35 V ±25 mV	4.28 V ±50 mV	2.15 V ±80 mV 2.80 V ±100 mV 0.100 V ±20 mV	2.80 V ±100 mV	0.100 V ±20 mV	1.0 s	可能
S-8232AFFT-T2-G	4.25 V ±25 mV	4.05 V ±50 mV	2.30 V ±80 mV 2.70 V ±100 mV 0.300 V ±20 mV	2.70 V ±100 mV	0.300 V ±20 mV	1.0 s	可能
S-8232AGFT-T2-G	4.25 V ±25 mV	4.05 V ±50 mV	2.20 V ±80 mV	2.20 V ±80 mV 2.40 V ±100 mV 0.200 V ±20 mV	0.200 V ±20 mV	1.0 s	可能
S-8232AHFT-T2-G	4.25 V ±25 mV	4.05 V ±50 mV	2.20 V ±80 mV 2.40 V ±100 mV 0.300 V ±20 mV	2.40 V ±100 mV	0,300 V ±20 mV	1.0 s	믜뺥
S-8232AIFT-T2-G	4.325 V ±25 mV	4.325 V ±25 mV 4.325 V ±25 mV 11.2		2.40 V ±80 mV 3.00 V ±100 mV 0.300 V ±20 mV	0.300 V ±20 mV	1.0 s	滌
S-8232AJFT-T2-G	4.25 V ±25 mV	4.05 V ±50 mV	2.40 V ±80 mV	2.40 V ±80 mV 3.00 V ±100 mV 0.150 V ±20 mV	0.150 V ±20 mV	1.0 s	滌
S-8232AKFT-T2-G	4.20 V ±25 mV	4.00 V ±50 mV	2.30 V ±80 mV	2.90 V ±100 mV 0.200 V ±20 mV	0.200 V ±20 mV	1.0 s	믜뺥
S-8232ALFT-T2-G	4.30 V ±25 mV 4.05 V ±50 mV	4.05 V ±50 mV	2.00 V ±80 mV	2.00 V ±80 mV 3.00 V ±100 mV 0.200 V ±20 mV	0.200 V ±20 mV	1.0 s	可能
S-8232AMFT-T2-G	4.19 V ±25 mV	4.19 V ±25 mV 4.19 V±25 mV 1	2.00 V ±80 mV	2.00 V ±80 mV 3.00 V ±100 mV 0.190 V ±20 mV	0.190 V ±20 mV	1.0 s	可能
S-8232ANFT-T2-6	4.325 V ±25 mV	4 325 V ±25 mV ¹¹³	4.325 V ±25 mV 4.325 V ±25 mV 113 2.40 V ±80 mV 3.00 V ±100 mV 0.300 V ±20 mV	3.00 V ±100 mV	0.300 V ±20 mV	1.0 s	滌
S-8232AOFT-T2-	4.30 V ±25 mV	4.05 V ±50 mV	2.00 V ±80 mV 3.00 V ±100 mV 0.230 V ±20 mV	3.00 V ±100 mV	0.230 V ±20 mV	1.0 s	可能
S-8232APFT-T2-0	4.28 V ±25 mV	4.05 V ±50 mV	2.30 V ±80 mV	30 V ±80 mV 2.90 V ±100 mV 0.100 V ±20 mV	0.100 V ±20 mV	1.0 s	禁止
S-8232ARFT-T2-G	4.325 V ±25 mV	4.325 V ±25 mV 113	4.325 V ±25 mV 4.325 V ±25 mV " 3 2.00 V ±80 mV 2.50 V ±100 mV 0.300 V ±20 mV	2.50 V ±100 mV	0.300 V ±20 mV	1.0 s	滌斤
S-8232ASFT-T2-G*	4.295 V ±25 mV	4.295 V ±25 mV 4.20 V ±50 mV 3	2.30 V ±80 mV	3.00 V ±100 mV 0.300 V ±20 mV	0.300 V ±20 mV	1.0 s	禁止
S-8232ATFT-T2-G	4.125 V ±25 mV	4.125 V ±25 mV 4.125 V ±25 mV 1		2.00 V ±80 mV 3.00 V ±100 mV 0 190 V ±20 mV	0 190 V ±20 mV	1.0 s	可能
S-8232AUFT-T2-G	4.30 V ±25 mV	4.1 V ±50 mV	2 40 V ±80 mV	2.40 V ±80 mV 3.00 V ±100 mV 0.200 V ±20 mV	0.200 V ±20 mV	1.0 s	滌
S-8232AVFT-T2-G	4.30 V ±25 mV	4.05 V ±50 mV	2.00 V ±80 mV	2.00 V ±80 mV 3.00 V ±100 mV 0.300 V ±20 mV	0.300 V ±20 mV	1.0 s	可能
S-8232AWFT-T2-G	4.35 V ±25 mV	4.15 V ±50 mV	2 30 V ±80 mV	2.30 V ±80 mV 3.00 V ±100 mV 0.150 V ±20 mV	0.150 V ±20 mV	1.0 s	滌
S-8232AXFT-T2-G	4.325 V ±25 mV	4.325 V ±25 mV 4.200 V ±50 mV	2.30 V ±80 mV	3.00 V ±100 mV 0.20 V	0.20 V +20 mV	1.0 s	滌止
S-8232AYFT-T2-G	4.30 V ±25 mV	4.05 V ±50 mV	2.00 V ±80 mV	2.00 V ±80 mV	0.20 V ±20 mV	1.0 s	可能
S-8232AZFT-T2-G	4.30 V ±25 mV	4.05 V ±50 mV	2.30 V ±80 mV	2.30 V ±80 mV	0.20 V ±20 mV	1.0 s	可能

精工电子有限公司

2节用电池保护IC S-8232系列

	14 H			_				
			女 (212)	14				
				11				
Rev.5.0_00	Re						S-8232系列	S-82

			3×1 (2/2)				
## ## / ## ## ## ## ## ## ##	过充电检测电压	过充电检测电压 过充电解除电压 过放电检测电压 过放电解除电压 过电流检测电压	过放电检测电压	过放电解除电压	过电流检测电压	过充电检测	歯0∨患;慢
日本人様日	Vcu	V _{CD}	V _{DD}	V _{Du}	V _{IOV}	低达期间 (cu (C3=0.22 µF)	充电功能
-8232NAFT-T2-G	4.325 V ±25 mV	S-8232NAFT-T2-G $ 4.325 \text{ V} \pm 25 \text{ mV} 4.325 \text{ V} \pm 25 \text{ mV}$	2.40 V ±80 mV	2.40 V ±80 mV 3.00 V ±100 mV 0.15 V ±20 mV	0.15 V ±20 mV	1.0 s	禁止
-8232NCFT-T2-G	4.275 V ±25 mV	S-8232NCFT-T2-G 4.275 V ±25 mV 4.05 V ±50 mV 2.20 V ±80 mV 3.00 V ±100 mV 0.20 V ±20 mV	2.20 V ±80 mV	3.00 V ±100 mV	0.20 V ±20 mV	1.0 s	滌
S-8232NDFT-T2-G	4.35 V ±25 mV	4.35 V ±25 mV 4.15 V ±50 mV 2.30 V ±80 mV 2.30 V ±80 mV 0.15 V ±20 mV	2.30 V ±80 mV	2.30 V ±80 mV	0.15 V ±20 mV	1.0 s	到能
-8232NEFT-T2-G	4.35 V±25 mV	S-8232NEFT-T2-G 4.35 V±25 mV 4.15 V±50 mV 2.30 V±80 mV 3.00 V±100 mV 0.23 V±20 mV	2.30 V±80 mV	3.00 V±100 mV	0.23 V±20 mV	1.0 s	湖恒
S-8232NFFT-T2-G	4.325 V±25 mV	4.325 V±25 mV 4.1 V±50 mV	2.30 V±80 mV	2.30 V±80 mV 2.90 V±100 mV 0.21 V±20 mV	0.21 V±20 mV	1.0 s	排
-8232NGFT-T2-C	4.35 V±25 mV	S-8232NGFT-T2-C 4.35 V±25 mV 4.15 V±50 mV 2.60 V±80 mV 3.00 V±100 mV 0.30 V±20 mV	2.60 V±80 mV	3.00 V±100 mV	0.30 V±20 mV	1.0 s	可能
S-8232NHFT-T2-G	4.28 V±25 mV	4.28 V±25 mV 4.05 V±50 mV	2.30 V±80 mV	2.30 V±80 mV 2.90 V±100 mV 0.11 V±20 mV	0.11 V±20 mV	1.0 s	禁
S-8232NIFT-T2-G	4.25 V±25 mV	4.25 V±25 mV 4.05 V±50 mV 2.50 V±80 mV 3.00 V±100 mV 0.15 V±20 mV	2.50 V±80 mV	3.00 V±100 mV	0.15 V±20 mV	1.0 s	拉萘
S-8232NJFT-T2-G	4.28 V±25 mV	4.05 V±50 mV	2.30 V±80 mV	2.30 V±80 mV 2.90 V±100 mV 0.11 V±20 mV	0.11 V±20 mV	1.0 s	可能
S-8232NKFT-T2-G	4.35 V±25 mV	4.15 V±50 mV	2.30 V±80 mV	4.15 V±50 mV 2.30 V±80 mV 2.30 V±80 mV 0.12 V±20 mV	0.12 V±20 mV	1.0 s	可能
	4 30 (1.05 1)		3 30 V+80 mV	300 14400	4.30 V±25 mV 4.05 V±50 mV 2.30 V±80 mV 3 00 V±100 mV 0 23 V+20 mV	100	미

- *2. 最终过充电倍率为1.11倍,其他为1.25倍。*3. 无最终过充电功能。*4. 请参阅工作说明*2 (过充电检测/解除滞后有、最终过充电功能无、向0 V电池充电功能禁止)
- 备注1. 用户需要上述检测电压以外的产品时,请向本公司营业部咨询。 2. 过效电检测电压可在1.7~3.0 V的范围中设置。但是,过放电检测电压在2.6 V以上时会如表2所示产生对过充电检测电压、过充电解除电压的限制。

0~0.10 V	3.90~4.50 V	1.70~3.00 V
0~0.20 V	3.90~4.60 V	1.70~2.80 V
0~0.30 ∨	3.90~4.60 V	1.70~2.60 V
过充电检测电压与 过充电解除电压的差	过充电检测电压	过放电检测电压

精工电子有限公司

2节用电池保护IC S-8232系列

■ 引脚排列图

		图2					CO 1 3 6 1 ICT		SENS 1 1 0 8 1 VCC		Top view	8-Pin TSSOP	
8	7	6	(J)	-	Δ.	(ω	,	v	-	_	端子編号	
VCC	<u>ج</u>	ICT	VSS	44	Ś		3		3	0.1	S II N	端子名	
正电源输入端子	中点电源输入端子	检测延迟用的容量连接端子	負电源输入端子	(过电流检测端子)	VSS-VM间的电压检测端子	(CMOS輸出)	充电控制用FET门极连接端子	(CMOS輸出)	放电控制用FET门极连接端子	(过充电、过放电检测端子)	VC-SENS间的电压检测端子	内容	表3

■ 绝对最大额定值

		**4	(除特殊注明以外: Ta=25°C)	Га=25°С)
项目	유건	适用端子	额定值	单位
VCC-VSS间输入电压	V _{DS}	VCC	V _{SS} -0.3-V _{SS} +18	<
SENS输入端子电压	V_{SENS}	SENS	V _{ss} -0.3-V _{cc} +0.3	<
延迟容量连接端子电压	V _{IC1}	ICT	Vss-0.3-Vcc+0.3	<
VN 输入端子电压	V _{VM}	M	V _{cc} -18~V _{cc} +0.3	<
DC輸出端子电压	Voc	00	V _{SS} -0.3-V _{CC} +0.3	<
CO輸出端子电压	Vco	CO	V _{VM} -0.3-V _{CC} +0.3	<
容许功耗	Po	1	300	mW
工作温度范围	Торя		-40 ~ +85	ငိ
保存温度范围	Tsig	Ì	-40 ~ +125	၁°

注意。绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值、 有可能造成产品劣化等物理性损伤。

■ 电气特性

2节用电池保护IC S-8232系列

Rev.5.0_00

项目检测电压	윤	条件 80~4 60 V可 個數	最小值	典型值	最大值	의 무늬를	T # 3
过充电检测电压1.2	V _{си12}	3.90~4.60 V可调整	V _{CU12} -0.025	Vcu1.2	V _{CU1,2} +0.025	.025),025 V
最终过充电检测电压1.2	V _{СОвиж12}	V _{CU1,2} ×1.25	V _{cu1,2} ×1.21	V _{CU1,2} ×1.25	V _{CU1,2}	V _{CU1,2} ×1.29	×1.29 V
V _{CU1 2} ×1.25或者为1 11 1	V _{CUaux1,2}	V _{CU1,2} ×1.11	V _{CU1,2} ×1.07	V _{CU1,2} ×1.11	V _{CU1.2}	V _{CU1.2} ×1.15	×1.15 V
过充电解除电压1,2	V _{CD1.2}	3.60~4.60 V可调整	V _{CD1.2} -0.050	V _{CD1,2}	V _{CD1.2}	V _{CD1.2} +0.050	+0.050 V
过放电检测电压1,2	V _{D01,2}	1.70~2.60 V可调整	V _{DD1.2} -0.080	V _{DD1.2}	V _{DD1,2}	V _{DD1,2} +0.080	+0.080 V
过放电解除电压1,2	V _{DU1,2}	1.70~3.80 V可调整	V _{DU1.2} -0.100	V _{DU1.2}	V _{DU1}	V _{DU1,2} +0.100	₂ +0.100 V
过电流检测电压1	Viovi	0.07~0.30 V可调整	V _{IOV1} -0.020	V _{IOV1}	\ \o	V _{10V1} +0.020	/₁+0.020 V
过电流检测电压2	V _{10V2}	负载短路, Vcc基准	-1.57	-1.20		-0.83	−0.83 V
检测电压温度係数1.2	Tcoe1	Ta=-40~85 °C	-0.6	0.0		+0.6	+0.6 mV/°C
检测电压温度係数2 "3	Тсоға	Ta=-40~85 °C	-0.24	-0.05		0	
延迟时间(C3=0.22 μF)	- 1						
过充电检测延迟时间1,2	t _{CU1.2}	· 1.0 s	0.73	1.00		1.35	1.35 s
过放电检测延迟时间1,2	t _{0D1.2}	0.1s	68	100		138	138 ms
过电流检测延迟时间1	t _{IOV1}	0.01 s	6.7	10		13.9	13.9 ms
輸入电压					1		
くのでくらの道書へも行	VDS.	也的最大的走国	-0.0		\vdash	io	10
VCC-VSS间T作曲乐"	Vneno	小學型型子學	20		_	5	50
消耗电流				2	ı		
通常工作消耗电流	lope	V1=V2=3.6 V	2.1	7.5		12.7	12.7 µA
休眠时消耗电流	NOdj	V1=V2=1.5 V	0	0.0002		0.04	0.04 µA
输出电压					- 1		
DO"H"电压	V _{во(н)}	l _{out} =10 μA	V _{cc} -0.05	V _{cc} -0.003		Vcc	V _{cc} v
DO"L"电压	V _{DO(L)}	l _{out} =10 μΑ	V _{SS}	V _{ss} +0.003		V _{ss} +0.05	V _{SS} +0.05 V
CO"H"电压	V _{СО(Н)}	l _{out} ≃10 μΑ	V _{cc} -0.15	V _{cc} -0.019		Vcc	V _{cc} v
CO端子内部电阻							
VSS-CO间内部电阻	Rcol	V _{CO} -V _{SS} =9.4 V	0.29	0.60		1.44	1.44 MΩ
VM内部电阻							
VCC-VM间内部电阻	R _{VCM}	V _{cc} -V _{VM} =0.5 V	105	240		575	575 κΩ
VSS-VM间内部电阻	RvsM	V _{VM} -V _{SS} =1.1 V	511	597		977	
向0 V电池充电功能	•						
向0 V充电开始电压	V _{OCHA}	向0 V充电功能可能	0.38	0.75		1.12	1.12 V
	-	むついな 中 14-6** -	0.32	0 88		1 44	1.44

G

2节用电池保护IC S-8232系列

			溃6		(除特殊注明以外:	担以学		Ta=20~70°C)
项目	유건	条件	最小值	典型值	最大值	単位		测定电路
检测电压								
过充电检测电压1.2	V _{CU12}	3.90~4.60 V可调整	V _{cu12} -0.045	V _{CU1.2}	V _{CU1,2} +0.040	<	1.2	_
最终过充电检测电压1.2	V _{CUaux1,2}		V _{CU1 2} ×1.19	V _{CU1,2} ×1.25	V _{Cu1,2} ×1.31	<	1.2	
Vcun2×1.25或者为1.11"	V _{CUaux1.2}		V _{CU1 2} ~1.05	V _{CU1,2} ×1.11	V _{CU1.2} ×1.17	<	1,2	
过充电解除电压1.2	V _{CD1,2}	3.6	V _{CD1,2} -0.070	V _{CD1.2}	V _{CD1,2} +0.065	<	1.2	_
过放电检测电压1.2	V _{DD12}	1.70~2.60 V可调整	V _{DD1 2} -0.100	V _{DD1.2}	V _{DD1,2} +0.095	<	1,2	-
过放电解除电压1.2	V _{DU1,2}	1.70~3.80 V可调整	V _{Du1,2} -0.120	V _{DU1.2}	V _{DU1,2} +0.115	<	1,2	-
过电流检测电压1	V _{IOV1}	0.07~0.30 V可调整	V _{IOV1} -0.029	V _{IOV1}	V _{IOV1} +0.029	<	ω	
过电流检测电压2	V _{IOV2}	负载短路, Vcc基准	-1.66	-1.20	-0.74	<	З	_
检测电压温度係数1.2	τ_{coe}	Ta=-40~85 °C	-0.6	0.0		mV/°C		1
检测电压温度係数2 3	T_{CDE2}	Ta=-40~85°C	-0.24	-0.05	0	mV/°C	1	1
延迟时间(C3=0.22 µF)								
过充电检测延迟时间1,2	t _{CU1.2}	1.0 s	0.60	1.00	1.84	S	8,9	Ç1
过放电检测延迟时间1.2	t _{001.2}	0.1 s	67	100	140	SIT	8.9	51
过电流检测延迟时间1	1,001	0.01 s	6.5	10	14.5	BS	10	5
输入电压								
VCC-VSS间输入电压	Vos	绝对最大额定值	-0.3		18	<		1
工作电压								
VCC-VSS间上作电压 4	VESOP	输出原理确定	2.0		16	<		
消耗电流								
通常工作消耗电流	OPE	V1=V2=3.6 V	1.9	7.5	13.8	JJA	4	2
休眠时消耗电流	NOri	V1=V2=1.5 V	0	0.0002	0.06	UA	4	2
輸出电压						-		
DO"H"电压	V _{DO(H)}	l _{ou} =10 µA	V _{CC} -0.14	V _{cc} -0.003	· Vcc	<	6	ω
DO"L"电压	V _{DOIL)}	l _{out} =10 μA	V_{SS}	V _{ss} +0.003	V _{SS} +0.14	<	6	ω
CO"H"电压	V _{со(н)}	l _{out} =10 μA	V _{cc} −0.24	V _{cc} -0.019	Vcc	<	7	4
CO端子内部电阻							-	
VSS-CO间内部电阻	R _{COL}	V _{CO} -V _{SS} =9.4 V	0.24	0.60	1.96	MΩ	7	4
VM内部电阻								
VCC-VM间内部电阻	RVCM	V _{cc} -V _{VM} =0.5 V	86	240	785	£	5	2
VSS-VM间内部电阻	RvsM	V _{VM} -V _{SS} =1.1 V	418	597	1332	5	5	2
向0 V电池充电功能								
向0 V充电开始电压	V _{OCHA}	向0 V充电功能可能	0.29	0.75	1.21	<	-1	6
向0 V充电禁止电压1.2	Voinh1,2	向0 V充电功能禁止	0.23	0.88	1.53	<	12.13	6

- 九旦允电滞后的产品的最终过充电检测电压为过充电检测电压的1.11倍。其他的为1.25倍电压温度係数1表示过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压电压温度係数2表示过电流检测电压、 工作电压表示DO、CO的逻辑已经成立

精工电子有限公司

2节用电池保护IC S-8232系列

Rev.5.0_00

项目 检测电压 过充电检测电压1.2 过充电检测电压1.2 V _{CU1,2} ×1.25或者为1.11 ⁻¹ 过充电解除电压1.2 过放电检测电压1.2 过放电检测电压1.2	12 号 V _{CU1 2} V _{CUaux 1,2} V _{CD1 2} V _{CD1 2} V _{CD1 2} V _{DD1,2}	※件 3.90~4.60 V可調整 V _{Cut2} ×1.25 V _{Cut2} ×1.11 3.60~4.60 V可調整 1.70~2.60 V可調整	表7 最小值 最小值 Vcu12~0.055 Vcu12×1.19 Vcu12×1.05 Vcu12×1.05 Vcu12~0.080 Vcu12~0.110 Vcu12~0.110	典型値 Vcur2×1.25 Vcur2×1.11 Vcn2×1.11 Vcn2×1.11	(除特殊注明以外: Ta=-40-85°C 最大値 単位 測定条件 測定电路 V _{Cun 2} +0 0.45 V 1.2 1 V _{Cun 2} +131 V 1.2 1 V _{Cun 2} +0.100 V 1.2 1		以外: Ta=-40-85°C) 単位 測定条件 測定电路 V 1.2 1 V 1.2 1
过电流检测电压2 检测电压温度係数1 *2	V _{IOV2}	负载短路, Vcc基准 Ta=-40~85°C	-1.70 -0.6	-1.20 0.0	-0.71		3 5 7
检测电压温度係数2"。	T _{COE2}	Ta=-40~85°C	-0.24	-0.05	0.0		mV/°C
延迟时间(C3=0.22 μF) 过充电检测延迟时间1,2	Cu12	1.0 s	0.55	100			,
过放电检测延迟时间1,2	too12	0.1 s	67	100	2.06		ms s
过电流检测延迟时间1	tova	0.01 s	6.3	10	14.7		ms
VCC-VSS间输入电压	V _{DS}	绝对最大额定值	-0.3		18		<
1 1							
VCC-VSS间工作电压" 消耗电流	Vosop	输出原理确定	2.0		16		<
通常工作消耗电流	OPE	V1=V2=3.6 V	1.8	7.5	14.2		μA
体眠时消耗电流 输出电压	PDN	V1=V2=1.5 V	0	0.0002	0.10		μA
DO"H"电压	V _{DO(H)}	ί _{ου!} =10 μΑ	V _{cc} -0.17	V _{CC} -0.003	Vcc		<
DO"L"电压	VDO(L)	l _{out} =10 μA	Vss	V _{ss} +0.003	V _{SS} +0.17		<
CO端子内部电阻	V _{CO(H)}	l _{out} =10 µA	V _{cc} -0.27	Vcc-0.019	V _{CC}		<
VSS-CO间内部电阻	R _{COL}	V _{co} -V _{ss} =9.4 V	0.22	0.60	2.20	_	ΩMΩ
VM内部电阻							
VCC-VM间内部电阻	R _{VCM}	V _{CC} V _{VM} =0.5 V	79	240	878		kΩ
VSS-VM间内部电阻	R _{VSM}	V _{VM} -V _{SS} =1.1 V	387	597	1491		Š
同0 V电池充电功能 同0 V充电开始电压	V _N H.	一份() V在由功能可能	96.0	0.75	105		
±1.2	-	向0 V存由功能禁止	0.20	0.88	1.57		< -

* * * * * 无过充电滞后的产品的最终过充电检测电压为过充电检测电压的1.11倍,其他的为1.25倍。电压温度係数1表示过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压电压温度係数2表示过电流检测电压。 工作电压表示DO、CO的逻辑已经成立。

œ

Rev. 5.0 .00

2节用电池保护IC S-8232系列

■ 測定电路

(1) 测定条件1 测定电路1

通常状态下、在S1=OFF、V1=V2=3.6 V、V3=0 V设置后、V1从3.6 V开始缓慢提升到CO="L"时V1的电压即为过充电检测电压1(V_{CO1})。之后、V1缓慢降低到CO="H"时V1的电压即为过充电解除电压1(V_{CO1})。再接度、V1缓慢降低到DO="L"时V1的电压即为过放电检测电压1(V_{CO1})。之后、V1缓慢提升到DO="H"时V1的电压即为过放电格测电压1(V_{CO1})。

通常状者下,在S1=ON、V1=V2=3.6 V、V3=0 V设置后,V1从3.6 V开始缓慢提升到CO="L"时V1的电压即为最终过充电检测电压1(Vcusuri)。

(2) 测定条件2 测定电路1

通常状态下,在S1=OFF、V1=V2=3.6 V、V3=0 V设置后、V2从3.6 V开始缓慢提升到C0="L"时V2的电压即为过充电检测电压2(Vco2),之后、V2缓慢降低到C0="H"时V2的电压即为过充电解除电压2(Vco2)。再接看、V2缓慢降低到D0="L"时V2的电压即为过放电检测电压2(Voo2)。之后、V2缓慢提升到D0="H"时V2的电压即为过放电检测电压2(Voo2)。

通常状态下,在S1=ON、V1=V2=3.6 V,V3=0 V设置后,V2从3.6 V开始缓慢提升到CO="L"时V2的电压即为最终过充电检测电压2(V_{Cutav2})。

(3) 测定条件3 测定电路1

在通常状态下、设置S1=0N、V1=V2=3.6 V、V3=0 V:V3以10 μs以下的速度上升到DO="t"时的V3-(V1+V2) 电压即为过电流检测电压2(V_{lov2})。

(4) 测定条件4 测定电路2

通常状态下。在S1=ON、V1=V2=3.6 V、V3=0 V设置后的消耗电流I1即为通常状态消耗电流(lopt)过放电状态下。在S1=OFF、V1=V2=1.5 V设置后的消耗电流II即为休眠时消耗电流(lppv).

(5) 测定条件5 测定电路2

过放电状态下,在S1=ON、V1=V2=1.5 V、V3=2.5 V设置后,(V1+V2-V3)//2即为VCC-VM间内部电阻 (RVCM)

过电流状态下,在S1=0N、V1=V2=3.5 V、V3=1.1 V设置后,V3/I2即为VSS-VM间内部电阻(RVSM)。

(6) 测定条件6 测定电路3

通常状态下,在S1=ON、S2=OFF,V1=V2=3.5 V。V3=0 V设置后,V4=0 V开始缓慢提升,11=10 µA流经时的V4电压即为DO"H"电压(V5o(n)。

过电流线容下,在S1=0FF、S2=0N、V1=V2=3.6 V、V3=0.5 V设置后、V5=0 V开始缓慢提升。I2=10 μA 流经时的V5电压即为DO"L"电压(V6o(L))。

精工电子有限公司

9

10

2节用电池保护IC S-8232系列

Rev.5.0_00

(7) 测定条件7 测定电路4

通常状态下,在S1=ON、S2=OFF、V1=V2=3.6 V、V3=0 V设置后、V4=0 V开始缓慢提升,I1=10 µA流验时的V4电压即为CO"H"电压(V_{50/H)}).

过充电状态下、在S1=OFF、S2=ON、V1=V2=4.7 V、V3=0 V、V5=9.4 V设置后,V5//2即为VSS-CO间内部电阻(RCOL)。

(8) 测定条件8 测定电路5

通常状态下,在V1=V2=3.6 V. V3=0 V设置后,V1的电压缓慢提升到过充电检测电压1(V_{cu1})-0.2 V为止: 从这种状态开始瞬间(10 ps以内)提升V1到V_{cu1}+0.2 V. 从V1变为V_{cu1}+0.2 V开始到CO变为"L"为止的时间即 为过充电检测延迟时间1(t_{cu1})。

通常状态下,在V1=V2=3.6 V,V3=0 V设置后,V1的电压缓慢下降到过放电检测电压1(Vppn)+0.2 V为止,从这种状态开始瞬间(10 ps以内)降低V1到Vppr-0.2 V,从V1变为V_{c01}-0.2 V开始到DO变为"L"为止的时间即为过放电检测延迟时间1(tpp1)。

(9) 测定条件9 测定电路5

通常状态下,在V1=V2=3.6 V,V3=0 V设置后,V2的电压缓慢提升到过充电检测电压2(V_{CU2})-0.2 V为止,从这种状态开始瞬间(10 µs以内)提升V2到V_{CU2}+0.2 V,从V2变为V_{CU2}+0.2 V开始到CO变为"L" 为止的时间 即为过充电检测延迟时间2(t_{CU2})。

通常状态下,在V1=V2=3.6 V:V3=0 V设置后,V2的电压缓慢下降到过放电检测电压2(Vpos)+0.2 V为止:从这种状态开始瞬间(10 µs以内)降低V2到Vpos-0.2 V,从V2变为Vpos-0.2 V开始到DO变为"L"为止的时间即为过放电检测延迟时间2(vpos)

(10) 測定条件10 測定电路5

通常状态下、在V1=V2=3.6 V、V3=0 V设置后、V3从0 V开始瞬间(10 ps以内)提升到V3=0.5 V、从V3变为0.5 V时开始到DO变为"L"为止的时间即为过电流检测延迟时间1(hova)

(11) 测定条件11 测定电路6

在V1=V2=0 V、V3=2 V设置后的状态下,V3缓慢下降。CO变为"L"(Vvx;-0.3 V以下)时的V3电压即为向0 V 电池充电开始电压(Vocнx)

在V1=0 V、V2=3.6 V、V3=12 V设置后的状态下、V1缓慢提升、CO变为"H"(V_{VM}-0.3 V以上)时的V1电压刷为向0 V电池充电禁止电压1(V₀₁₀₄₄₁)。

(13) 测定条件13 测定电路6

(12) 測定条件12 測定电路6

在V1=3.6 V、V2=0 V、V3=12 V设置后的状态下、V2缓慢提升、CO变为"H"(V_{MP}-0.3 V以上)时的V2电压即为向0 V电池充电禁止电压2(V_{MMP2})。

精工电子有限公司

Rev 5 0 od 2节用电池保护IC S-8232系列

S-8232 系列

C3=0 22 µF

丞3

測定电路5

精工电子有限公司

.≝. **(**

2节用电池保护IC S-8232系列

Rev.5.0 00

工作说明

通常状态 卫士 基常状态 卫士 本化同以监视被串联连接的2个电池的各种电压与放电电流,控制充放电。2个电池电压的总数在过效电检测电压(Voot.2)以上并且在过充电检测电压(Voot.2)以下、流经电池的电流在所定值以下(VM端子的电压在过电电流检测电压1以下)的情况下,充电用的FET与放电用的FET的双方变为ON,可自由地进行充放电一这种电流检测电压1以下)的情况下,充电用的FET与放电用的FET的双方变为ON,可自由地进行充放电一这种状态称为通常状态。在通常状态下、VM端子与VSS端子之间通过RVSM的电阻而被短路。

过电流状态

在通常状态的放电中,放电电流在所定值以上(VM端子的电压在过电流检测电压1以上),并且这种状态保持在过电流检测延迟时间(tovr)以上的情况下,放电用FET变为OFF,放电被停止。这种状态称为过电流状态,在过电流状态下,VM端子与VSS端子之间通过RVSM的电阻而被短路。另外,充电用FET变为OFF、在浓电用的ET变为OFF、连接了负载的时候,VM端子的电压变为Vcc电位。

从过电流状态的恢复,通过解除负载等手段,EB-端子与EB+端子之间(参阅图7的连接例)的阻抗在200 MQ以上时进行,解除了负载。因为VM端子与VSS端子之间通过RVSM的电阻被短路的缘故,恢复同Vss电位。 本IC在检测到VM端子电位回到过电流检测电压1(Viovi)以下时,恢复同通常状态。

过充电状态

过充电状态的检测有以下的2种情况

- ① 在通常状态的充电中,任意1个电池的电压超过过充电检测电压(Vcm2),且这种状态级特在过充电检测延迟时间(tcm2)以上的情况下,充电用的FET变为OFF,充电被停止。这种状态称为过充电状态。在过充电状态下、VM端子与VSS端子之间通过RVSM的电阻而被短路。
- ② 即使在过充电检测超迟时间(t_{ctr.2})以下,任意1个电池的电压超过最终过充电检测电压(V_{ctran1.2})的情况下,充电用的FET变为OFF,充电披停止。这种状态称为过充电状态、在过充电状态下。VM端子与VSS端子之间通过RVSM的电阻而被短路。

最终过充电检测电压(Vculum 2)的值与过充电检测电压(Vcu12)的设置值相联动,按照以下的公式被自动地决定。

Vcuaux1.2[V]=1.25×Vcu1.2[V] 或者为 Vcuaux1.2[V]=1.11×Vcu1.2[V]

过充电状态的解除有以下的2种情况。

- ① 超过过充电检测电压(Vcor2)的电池电压,下降到过充电解除电压(Vcor2)以下时,充电用的FET变为ON,恢复到通常状态。
- ② 超过过充电检测电压(V_{cur2})的电池电压。即使是在过充电解除电压(V_{cur2})以上,只要取掉充电器而连接负载开始放电时。充电用的FET变为ON、恢复到通常状态。

解除工作的机械原理为、在连接负载开始放电之后、因为放电电流经充电用FET的内部寄生二级管流流入的缘故。在瞬间VM端子从VSS端子开始上升约0.6 V(只有二极管的VF电压),IC通过检测这个电压力过电流检测电压1(Viovi))解除过无电状态而回到通常状态。

过放电状态

在通常状态的放电中,任意1个电池的电压在过放电检测电压(Voor 2)以下,且此种状态保持在过效电检测证这时间(toor 2)以上的情况下,放电用的FET变为OFF,放电被停止,这种状态称为过放电状态。放电用的FET变为OFF时,VM端子电压变为Voc电位,IC的消耗电流在体眼时消耗电流(Ieon)以下。这种状态称为休眠状态,在过放电状态以及休眠状态下,VM端子与VCC端子之间通过RVCM的电阻而被短路,

从休眠状态的解除,可通过连接充电器,使VCC-VM间电压差变为过电流检测电压2(V_{lov2})以上时而进行 从这种状态开始,接着电池的电压变为过放电解除电压(V_{lov3})以上时,从过放电状态恢复回通常状态

Rev.5.0_00 2节用电池保护IC S-8232系列

有关延迟电路

过充电检测延迟时间(t_{cu1.2}),过放电检测延迟时间(t_{DD1.2})、过电流检测延迟时间1(t_{lov1}) 由于外接电容量(C3) 而产生变化。因为可通过1个的容量来设置各种延迟时间,延迟时间按如下的比例而联动

过充电延迟时间:过放电延迟时间:过电流延迟时间=100:10:1

另外,各种延迟时间依照以下的公式可以计算求出, 过放电检测延迟时间 过电流检测延迟时间 过充电检测延迟时间 t_{ioν1} [s]=延迟係数 (0.02864、 0.04545、 0.06682)×C3 [μF] top [s]=延迟係数 (0.3045、 tou [s]=延迟係数 (2.500、 最小值 (-40~+85 °C) 0.4545 典型值 4.545 最大值 0.6409)×C3 [µF] 9.364)×C3 [µF]

向0 V电池充电功能可能"

被连接的双方的电池通过自我放电从变为0 V的状态开始,可以进行充电的功能。通过连接了充电器,VCC-VM之间印加了向0 V充电开始电压(Vachae)以上的电压,充电用FET的门极固定为Vac电位。由于充电器电压,充电用FET变为ON,开始充电,由于充电器电压,充电用FET变为ON,开始充电, 超级. (p)以上时,回到通常状态 :电用FET变为OFF,充电电流经放电用FET的内部寄生二极管而流入:电池电压变为过放电解除电

向0 V电池充电功能禁止"3

被连接的任意一方的电池通过自我放电从变为0 V的状态开始,禁止充电的功能

但是,双方电池的电压总数不足于VCC-VSS间工作电压的最小值 $(V_{DSOP,mn})$ 时,任意一方的电池电压即使在向0 V充电禁止电压1、 $2(V_{OINH},2)$ 以下,也有被充电的情况发生,务请注意。双方的电池电压的总数达到了 党电 仟意一方的电池电压在向0 V充电禁止电压1、2(Volunt 2)以下时,充电用FET的门极固定为EB-电位、禁止 VCC-VSS间工作电压的最小值(Vpsopmin)时,充电被禁止。 只有双方电池的电压变为向0 V充电禁止电压1、2(Voluh1,2)以上时,可以进行充电。

另外,使用选购件的情况下,充电控制用FET的门极与源极间需要4.7 Ms2的电阻。(参阅图7)

- 第一次开始连接电池时,有不能进入通常状态(不是放电可能状态)的情况发生。这时,一旦将VM端子设置 为Vss电压(使VM端子与VSS端子短路,或者连接充电器),就可恢复到通常状态
- ۸, 有关设置为过充电检测:解除滞后有、最终过充电功能无、向0 V电池充电功能禁止的产品(选择指南的型 在电池电压为过充电解除电压(V_{COT} 2)以上,过充电检测电压($V_{COT,2}$)以下的通常状态下,通过连接过负载 用上没有问题 号名称/项目的栏上标有*4印的产品),可观测到其他的设置产品所没有的如以下所示的工作,在实际的使
- 也有不推荐被完全放电的电池再一次充电的锂离子电池。因为依靠所使用的锂离子电池的特性,所以在决 复到通常状态(参阅过充电状态工作说明),因此在使用上并没有障碍 也有变为过充电状态的情况发生。但是,之后,只要连接了负载开始放电、充电用的FET变为ON就可恢 变为过电流状态,从这种状态开始、解除了过负载、原本可恢复回通常状态、因为充电用FET变为OFF
- ,* 定向OV电池充电功能可能、禁止之时,有关电池的详情,请务必向电池生产厂家确认

S-8232系列 2节用电池保护IC

Rev.5.0_00

■ 工作时序图

11. ①: 通常状态 ②: 过充电状态 ③: 过放电状态 ④: 过电流状态

备注 先电器表示定电流充电

霽

精工电子有限公司

4

ಪ

Rev.5.0_00 2. 过放电检测

2节用电池保护IC S-8232系列

*1、00: 通案状态 Ø2. 对宽电状态 Ø3. 过低电块态 Ø3. 过低电块态 Ø3. 发电器表示资单实允单 参注:发电器表示资单实允单

逊5

施 ⊕&.3:

2节用电池保护IC S-8232系列

35

精工电子有限公司

6

₹6

①: 適常状态
 ②: 过克电状态
 ④: 过放电状态
 ④: 过电流状态

×8.

超比 长小

EE IS Tovo 9

< 1₀V1 Θ

备注 充电器表示定电流充电

Rev.5.0_00

精工电子有限公司

ev.5.0_00

2节用电池保护IC S-8232系列

**** 外接元器件参数

能禁止的情况下请连接				充电禁止		
(4.7 MΩ) (1 MΩ) (10 MΩ) 降低电阻值会增加消耗电流。只有向0 V充电功	(10 MΩ)	(1 MΩ)	(4.7 MΩ)	向0 V电池	明串	R5
能停止放电。"					1	
在300 Ω以下时,充电器的逆连接时有可能不	5 kΩ	300 Ω	1 KS	充电器逆连接对策	·····································	23
请注意容量的泄漏电流。"	1 µF	0 µF	0.22 µF	设置延迟时间	俗皿	C3
=R1 最小值 =R1 最大值 请设置与R1,2相同的值	=R1 最大值	-R1 最小值	1 kΩ	ESD对策	田田	R4
	1 µF	0 µF	0.22 µF	电源变动对策	[A] 	C2
Prince Control of the	1 KD	300 Ω	1 KΩ	ESD対策	調車	R2
	1 µF	0 μF	0.22 µF	电源变动对策	常	C1
	1 KΩ	300 Ω	1 KΩ	ESD对策	田畑	R.
					MOSFET	
	1		1	充电控制	Nch	FET2
A CALL Y					MOSFET	
1	i	i		放电控制	Nch	FET1
备注	最大值	最小值	典型值	目的	部件	i Çi
>	× / CHH - 1 / / X	3,0	د ا			j

**

- 11. 请设置与R1相同的值。R4的电阻值偏大会导致过充电检测电压的上升
- 例如,在R4处连接了10 K3的电阻的情况下,过充电检测电压最大可上升20 mV。 *2. 过充电检测延迟时间(tcu),过放电检测延迟时间(tcu),过电流检测延迟时间(tcv),可通过1个电容的容量值(C3)
- نث 设置R3在300 Q以下时,由于充电器的逆连接在IC内部流入客许功耗以上的电流,有导致IC损坏的危险。 R3的电阻值编大会导致过电流检测电压(V_{lov1})的上升:由于R3、V_{lov1}变为(R3+R_{vm})/R_{vm}×V_{lov1}· 例如,在R3处连接了50 kΩ的电阻的情况下,过电流检测电压1(V_{IOV1}=0.100 V)最大为0.113 V。
- Å 。在R5处为了禁止向0 V电池的充电需要连接4.7 MΩ的电阻。连接4.7 MΩ以下的电阻会导致消耗电流值变大。 请连接只有使用向0 V充电功能禁止的类型的产品时

湖山 上述参数有可能不经预告而作更改

对上述连接例以外的电路末作动作确认,而且上述电池保护 IC 的连接例以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

精工电子有限公司

S-8232系列 2节用电池保护IC

Rev.5.0_00

注意事项

• 由于各检测延迟用容量为共通,在过电流检测延迟结束时,任意一个电池的电压在过放电检测电压以下的 情况下,有利用10 ms(最小值)的延迟时间来检测过放电的情况发生。(参阅图8)

【原因】

这是因为在检测过电流往延迟容量储存充电的途中,过电流被解除。至少任意一个电池的电压在过放 电检测电压以下的情况下,由于过电流检测,往延迟用容量的充电并未完全摆脱的时候,由于过放电 而导致储存充电所发生的現象。

【观察】

电池电压在很接近过放电检测电压的状态下发生过电流,再接着这个过电流在延迟时间(10 ms)内停止,并且只有电池电压不能恢复为过放电检测电压以上的情况下可能发生,在这种状态下,电池容量减少得十分厉害、保持这种状况即使进入过放电状态、在很短时间内又要开始充电,因此,电池组的1使用周期的使用时间不会极端地变得很短。

• 任意一个电池的电压在过放电检测电压以下,且另一方的电池进行过充电检测的情况下、有无延迟时间 而进行过充电检测的情况发生。(参阅图9)

理由是各种检测延迟用容量为共通的缘故。因为一方的电池在检测过放电,延迟容量已经储存了电荷 这种状态下另一方的电池如果检测过充电,会导致无远迟而检测过充电的情况发生。

变得很大,可通过立即停止另一方的电池的充电而使电压差变小。通过此手段可以提高电池组的安全 性,不会损害特性。 这种现象在至少1个的电池处于过放电的电池组被充电时可能发生。 在这种状态下,2节的电池电压差

18

17

Rev.5.0_00

2节用电池保护IC S-8232系列

 在检测了过电流之后、长期保持连接负载的状态、即使因为电池的自我消耗电流或本IC的消耗电流等导致电池电压降低到过效电检测电压以下。在连接负载的期间不进行过效电检测。因此、保持连接负载的状态。即使电池电压变为过效电检测电压以下、本IC的消耗电流会以通常状态消耗电流(loee)的状态而推 移. (参阅图10)

59 ## ##	## M <	*#00 * 1	活無無法	出事業長のより
大學像茶戶這分數的社会 大學像茶戶這分數的社会 图 10			東京東京の大学のでは、 東京東京の大学のでは、 東京では 東京では、 東京では 東京では、 東京では、 東京では、 東京では、 東京では、 東京では、 東京では、 東京では、 東京では、 東京では、 東京でも 東京でも 東京では 東京でも 東京では 東京でも 東京でも 東京でも 東京でも 東京でも 東京でも 東京でも 東京でも	电路电阻电压 医腹腔 医皮肤 医甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基

【原图】 由,过电流检测针对过放电检测极优先的缘故,因此在过电流检测状态下电池电压即使下降到过放电由,过电流检测电压以下,在过电流被解除为止(解除负载为止)不进行过放电检测。

检测了过电流之后,只要有一次解除了负载,过电流标解除进入检测过放电的状态。 另外、如果没有长期连接负载的状态,本IC的消耗电流比典型值 7.5 µA小的缘故,不会有电池电压极 端地降下的情况发生,

本IC虽內置防静电保护电路,但请不要对IC印加超过保护电路性能的过大静电

使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC 产品在内的制品发生专利到粉时,本公司概不承担相应责任。

2节用电池保护IC S-8232系列

1. 检测电压的温度特性 过充电检测电压1 温度依靠性

过充电检测电压2 温度依靠性

Rev.5.0_00

|各种特性数据

过充电解除电压1 温度依靠性

Ş

-20

20

60

8

80

100

Ta(°C) 40

过充电解除电压2 温度依靠性

最终过充电检测电压1 温度依靠性

最终过充电检测电压2 温度依靠性

精工电子有限公司

19

精工电子有限公司

20

延迟时间的温度特性 过充电检测时间 温度依靠性

过放电检测时间 温度依靠性

C3=0.22 [µF]

C3=0.22 [µF]

过放电解除电压1 温度依靠性

V_{DJ1}=2.60 [V]

t_{CU} (s)

T_{DD} (ms)

40

-20

0

20 Ta(°C)

40

60

80

100

4

-20

20 Ta(°C) 40

60

8 Ē V_{DU1} (V)

5

40

-20

20 Ta(°C)

40

g

80

100

过电流检测电压1 温度依靠性

过电流检测电压2 温度依靠性

/_{FW2}=1.20 [V] (V₆₀ 基准)

V_{ICV1} (V)

 $V_{10V2}\left(V\right)$

-1.20 -1.15 -1.10

5

23 0

20

40

8

80

100

-1 30

-20

0

20 40 Ta(°C)

66

90

100

Ta(°C)

注意 利用S-8232系列的应用电路,请在充分考虑安全的基础上进行设计。

精工电子有限公司

22

2节用电池保护IC S-8232系列

消耗电流的温度特性 通常工作时消耗电流 温度依靠性

休眠时消耗电流 温度依靠性

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等图第三者的工业所有权而引发之诸问题。本公司不承担其责任。另外、应用电路示例为产品之代表性应用说明,非保证批量生产之设计。 本资料所记载产品、如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时、基于该法律、需得到日本国政府之出口许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等。请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。