Numeration Systems

Numeration systems – Overview

- Numbers and symbols
 - Types of real numbers
 - How did these evolve?
- Digital and Analogue
 - Representing measurements
- Representing numbers
 - Basis of Decimal system
 - Binary Numbers
- Converting Decimal to Binary

Numbers and Symbols

- Different types of number systems
- serve different purposes in quantifying things in the real world
- E.g Resistor value
- Whole numbers 1,2, 3, 4, 5, 6, 7, 8, 9, 10.....

• Integers-4,-3,-2,-1,0,1,2,3,4,.....

Numbers and Symbols

• Rational numbers – can be written as a fraction, i.e. ratio of two integers

Numbers and Symbols

Irrational numbers

$$\pi = 3.1415927...$$

$$e = 2.718281828...$$

Methods of Representing Digital or Analog measurements

Numbers and Measurements

Example from the book "Lessons in electric circuits "
Two ways to represent the money raised during a fundraiser

\$35,955.38

Digital representation

What if we add 1c?

Digital vs Analog

Slide Rule

WIRED Slide Rule Still Rules

Robert Miles (left), a retired Purdue University civil engineering professor and a Purdue alumnus, and James Alleman, a current Purdue civil engineering professor, hold a 7-foot-long slide rule in front of an exhibit they created that contains about 200 of the pre-digital computational devices. The permanent exhibit is on display in the university's Potter Engineering Center and includes slide rules from astronauts Neil Armstrong and Jerry Ross. PURDUE NEWS SERVICE/DAVID UMBERGER

Digital?

Abacus

Each bead symbolizes a numerical quantity

Origins of First Wearable Computer?

Irrational numbers

Analog representations can in theory be used to represent irrational numbers

Slide rule – nudge dial to correct place

Digital representation?

Abacus – need additional bars to increase significant digits (infinite number of bars in theory)

Analog Vs Digital

Analog	Digital
Intuitively understood	Requires training to interpret
Infinitely divisible	Discrete
Prone to errors of precision	Absolute precision

Taking analogue measurements

- Need reference as a standard to compare to
- Use number systems to provide this

Number systems have developed to quantify measurements and represent them symbolically

First Number Symbols

Hash/tally marks on stones or sticks

Other tally systems

Public Domain, https://commons.wikimedia.org/w/index.php?curid=756272

Numeration systems

- Roman Numerals
- 7 symbols or "ciphers"
- I, V, X, L, C, D, M

$$I = 1$$

$$V = 5$$

$$X = 10$$

$$L = 50$$

$$C = 100$$

$$D = 500$$

$$M = 1000$$

Numeration systems – Roman Numerals

$$XXV = 10 + 10 + 5 = 25$$

Roman Numerals

If cipher has a number equal or less to the right -> add the values i.e. XX = 20, XI = 11

If the cipher to the right is larger then this means "less than" i.e. XL = 10 less than 50 = 40; or XC = 90;

Question

Year 2021 would be written MMXXI (1000 + 1000 + 10 + 10 + 1)

How would you write 1999?

Solution

Year 2021 would be MMXXI, How would you write 1999?

MCMXCIX

Numeration systems – cipher position

			I		
1 7	11 ∢٣	21 ≪ ₹	31 ⋘ ₹	41 4 7	51 4
2 YY	12 ∢™	22 « TY	32 ⋘™	42 XY	52 A TT
3 777	13 < ???	23 4 TYY	33 ((()))	43 4777	53 XYYY
4	14 🗸 👺	24 44 797	34 444 797	44 🏕 👺	
5 XX	15 < ???	25 ₩₩	35 ₩₩	45	54 🚓 🐯
	\ \ \ \ \ \				55 4
6 FFF	16 ₹₹ ₹	26 ≪₹₹ ₹	36 ⋘∰	46	56 A
7 ***	17 ₹₹	27 🕊	37 ⋘♥	47 🏕 🐯	
8 ₩	18 ∢₩	28 ⋘₩	38 ⋘₩	48 🏕 ₩	57 🛠 🐯
9	19 🗸 🗱	29 44 🇱	39 ₩₩	49 🐼 🇱	58 餐₩
'''	'''				×.
10 🕊	20 €€	30 444	40	50 🌉	59 Æ

1 and 60 have same symbol Position decides weighting

Decimal systems – cipher position and weighting

What if we have 2 ciphers?

•0

•1

 What would the weighting be of each cipher position?

• Just like the decimal system the ciphers are arranged from right-toleft but in this case each place changes by a factor of 2

0	0
1	1
10	2
11	3
100	4
LO1	5

Lets look at the binary number 111₂

$$1 1 1 (1 x 4) + (1 x 2) + (1 x 1)$$

$$111_2 = 7_{10}$$

Lets look at the binary number 11010₂

$$1 1 0 1 0 (1 x 16) + (1 x 8) + (0 x 4) + (1 x 2) + (0 x 1)$$

$$=16+8+2=26$$
 $11010_2 = 26_{10}$

Question?

What is the decimal value of 10101₂?

Question?

What is the decimal value of 10101₂?

Binary vs Decimal

Binary	Decimal
0	0
1	1
01	2
10	3
11	4
100	5
101	6
111	7
1000	8
1001	9

Binary	Decimal	
1010	10	
1011	11	
1100	12	
1101	13	5 bits
1110	14	
1111	15	2 digit
10000	16	
10001	17	
10010	18	
10011	19	

digits

Range of number system?

• If there is a limit on the number of positions for ciphers, then what is the maximum value we can represent?

Cipher positions and range

• 5 digits in decimal (base 10)
Largest number we can represent is 99 999, range is 0 up to 99999, i.e. 100 000 or 10⁵ integer values

- 5 bits in binary (base 2)
- Largest value is 11111 (or 31_{10}) with range of 0 to 31
- 32 or 2⁵ integer values

Question

• 8 bits in binary (base 2)

• What is the maximum range?

Why use the binary system?

- Electronically represent '0' or '1' if current is flowing or not
- Bit represented if current is on or off
- Switch from ON/OFF state

 To increase bits we need to add additional circuit

Convert binary to decimal

Convert 11001101₂ to decimal

1	1	0	0	1	1	0	1
128	64	32	16	8	4	2	1

weighting

Most significant bit

Least significant bit

$$(1) 128_{10} + (1) 64_{10} + 0 (32_{10}) + 0 (16_{10}) + (1) 8_{10} + 1 (4)_{10} + 0 (2)_{10} + 1 (1)_{10} = 205_{10}$$

Convert binary to decimal

What about fractions?

- Similar to how we use the decimal point
- Called a "binary point", follows same principle
- Each point to right is half the value of the one to the left

• So the the first three places past the binary point are ½ , ¼ and 1/8 or 2^{-1} , 2^{-2} , 2^{-3}

Convert binary to decimal

Example

Convert 101.011₂ to decimal

1	0	1	•	0	1	1
4	2	1	•	1/2	1/4	1/8

$$4_{10} + 1_{10} + 0.25_{10} + 0.125_{10} = 5.375_{10}$$

Question

• Convert 11.101 to decimal?

Other number systems

Lots of 0's and 1's are difficult for us to work with

Other number systems, multiples of base 2
Easier to use, can be converted to binary

Octal – Base 8 Hexadecimal – Base 16

Summary

- Use of digital and analogue systems for measurements
- Numbers and numeration systems
 - Types of ciphers
 - Position of ciphers
 - Range of values
- Decimal system and binary system
 - Weighting system
 - Conversion from binary to decimal
 - Representing fractions