INFORMÁTICA

2º SEMESTRE: CÁLCULO NUMÉRICO CON FORTRAN.

Javier de Vicente: Despacho Depto Mat Aplic y Estadística 3ºPiso

Tutorías:(oficial): Lunes 14:30 - 16:30

Miércoles 14:30 - 16:30

Jueves 14:00 - 16:00

Moddle de la asignatura.

fj.devicente@upm.es

Clases: En principio en el aula. Traed portátiles. (1 por grupo al menos)

ASIGNATURA: CÁLCULO NUMÉRICO con fortran

TEMARIO: (puede haber cambios)

- 1. Sistemas lineales
 - 1. 1. Métodos directos
 - 1. 2. Métodos iterativos
- 2. Cálculo de Autovalores
- 3. Derivación e Integración Numérica.
- 4. Ecuaciones y Sistemas no Lineales.
- 5. Ecuaciones Diferenciales Ordinarias.

Metodología:

Trabajo Colaborativo.

Teoría:

- Conocimientos básicos.
- Complementos propuestos. (Grupos)

Práctica:

- Presentación por grupos ejercicio básico.
- Presentación complementos

Metodología:

Trabajo Colaborativo.

Cada grupo tendrá una nota teórica y al menos 2 prácticas a lo largo del cuatrimestre.

Nota teórica: Presentación **10 min** de un complemento teórico por grupo.

Nota práctica: Explicación de la implementación de un algoritmo.(Aula o en mi despacho)

Metodología:

Trabajo Colaborativo.

Composición de los grupos.

- Madurez
- 4 personas por grupo (14 grupos)
- Nota de grupo (no individual)
- Criterios
 - Claridad
 - Exposición
 - Capacidad de síntesis

A nivel práctico

Todos los programas partirán de un fichero con el código fuente escrito con el editor de texto que prefiráis (Geany)

Será <u>obligatorio</u> utilizar un makefile para compilar el código fuente usando el compilador gfortran

Traducción: Silverfrost/Codeblocks está prohibido.

Este cuatrimestre se estudia cálculo numérico. Doy por hecho que todos manejáis fortran.

TEMARIO:

- 1. Sistemas lineales
 - 1. 1. Métodos directos
 - 1. 2. Métodos iterativos
- 2. Cálculo de Autovalores
- Derivación e Integración Numérica.
- 4. Ecuaciones y Sistemas no Lineales.
- 5. Ecuaciones Diferenciales Ordinarias.

Resolución de sistemas de ecuaciones lineales

Sistema de m ecuaciones con n incognitas

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots & a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots & a_{2n}x_n = b_2 \\ \vdots & & \ddots & & \sum_{j=1}^n a_{ij}x_j = b_i \ i = 1, \dots n \\ a_{n1}x_1 + a_{n2}x_2 + \dots & a_{nn}x_n = b_n \end{cases}$$

Forma matricial

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \quad B = \begin{cases} b_1 \\ b_2 \\ \vdots \\ b_n \end{cases} \quad X = \begin{cases} x_1 \\ x_2 \\ \vdots \\ x_n \end{cases} \quad AX = B$$

Resolución de sistemas de ecuaciones lineales

¿Cómo despejamos el valor de X en la expresión AX = B?

Desde un punto de vista matemático bastará con hallar la inversa de A.

$$AX = B \Rightarrow A^{-1}AX = A^{-1}B \Rightarrow X = A^{-1}B$$

El problema ahora consiste en hallar la inversa de una matriz... ¿Existe siempre?

Compatibilidad de un sistema lineal de ecuaciones. Teorema de Rouche.

Rango(A) \neq Rango(AB) \Leftrightarrow el sistema es incompatible

Rango(A)=Rango(AB) = t \Leftrightarrow el sistema es compatible

Rango(A)=Rango(AB) = t = n \Leftrightarrow el sistema es compatible y determinado (1! solución)

Rango(A)=Rango(AB) = t < n \Leftrightarrow el sistema es compatible e indeterminado (∞ soluciones)

(*n* número de incognitas)

Clasificación de los métodos de resolución:

DIRECTOS

- Gauss
- Gauss-Jordan
- Factorización LU

ITERATIVOS

- Jacobi
- Gauss-Seidel
- Arnoldi

Clasificación de los métodos de resolución:

DIRECTOS

- Gauss
- Gauss-Jordan
- Factorización LU

■ Métodos directos.

Son exactos (no tienen asociado error de truncamiento), y son usados cuando la mayoría de los coeficientes de A son distintos de cero y las matrices no son demasiado grandes.

Suelen ser algoritmos 'complicados de implementar'

Clasificación de los métodos de resolución:

■ Métodos indirectos o iterativos:

Parten de una solución inicial (mala) y van dando «pasos» buscando la solución correcta

Tienen asociado un error de truncamiento y se usan normalmente para matrices grandes (n>>1000) cuando los coeficientes de A son la mayoría nulos –matrices *sparse*-.

Algoritmos sencillos de implementar que requieren aproximación inicial y que en general no tienen porqué converger (requieren análisis de convergencia previo).

ITERATIVOS

- Jacobi
- Gauss-Seidel
- Arnoldi

Métodos directos: Gauss

Partiendo de la matriz ampliada:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \quad B = \begin{cases} b_1 \\ b_2 \\ \vdots \\ b_n \end{cases} \quad X = \begin{cases} x_1 \\ x_2 \\ \vdots \\ x_n \end{cases} \quad AX = B$$

$$AB = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} | b_1 \\ a_{21} & a_{22} & \dots & a_{2n} | b_2 \\ \vdots & \vdots & \ddots & \vdots | \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} | b_n \end{pmatrix}$$

Consta de dos fases:

- Triangulación (eliminación gaussiana)
- Sustitución

Métodos directos: Gauss

Consta de dos fases:

 Triangulación (eliminación): Mediante operaciones elementales se hacen ceros todos los elementos de la matriz por debajo de la diagonal principal.

$$AB = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} | b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} | b_2 \\ \vdots & \vdots & \ddots & \vdots | \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} | b_n \end{pmatrix} \Rightarrow \overline{AB} = \begin{pmatrix} \overline{a}_{11} & \overline{a}_{12} & \dots & \overline{a}_{1n} | \overline{b}_1 \\ 0 & \overline{a}_{22} & \cdots & \overline{a}_{2n} | \overline{b}_2 \\ \vdots & \vdots & \ddots & \vdots | \vdots \\ 0 & 0 & \cdots & \overline{a}_{nn} | \overline{b}_n \end{pmatrix}$$

Operaciones elementales:

- Multiplicar una fila por un número
- Permutar filas o columnas*
- Cambiar una fila por una combinación lineal de filas que la incluya

Métodos directos: Gauss

Consta de dos fases:

Sustitución: Despejar de modo inverso el valor de las incognitas

$$\overline{AB} = \begin{pmatrix} \overline{a}_{11} & \overline{a}_{12} & \dots & \overline{a}_{1n} | \overline{b}_{1} \\ 0 & \overline{a}_{22} & \dots & \overline{a}_{2n} | \overline{b}_{2} \\ \vdots & \vdots & \ddots & \vdots | \vdots \\ 0 & 0 & \dots & \overline{a}_{nn} | \overline{b}_{n} \end{pmatrix} \Rightarrow \begin{cases} \overline{a}_{11}x_{1} + \overline{a}_{12}x_{2} + \dots & \overline{a}_{1n}x_{n} = \overline{b}_{1} \\ \overline{a}_{22}x_{2} + \dots & \overline{a}_{2n}x_{n} = \overline{b}_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a}_{nn}x_{n} = \overline{b}_{n} \end{pmatrix}$$

$$x_{n} = \frac{\overline{b}_{n}}{\overline{a}_{nn}}; \quad x_{n-1} = \frac{\overline{b}_{n-1} - \overline{a}_{(n-1)n} x_{n}}{\overline{a}_{n-1} - \overline{a}_{n-1}}; \quad \dots \quad x_{1} = \frac{\overline{b}_{1} - \sum_{i=2} \overline{a}_{1i} x_{i}}{\overline{a}_{11}}$$

Métodos directos: Gauss implementación

· Triangulación.

$$\begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 1 & 1 & -1 & | & 1 \\ 2 & 0 & 1 & | & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 0 & -1 & -1 & | & 2 \\ 0 & -4 & 1 & | & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 0 & -1 & -1 & | & 2 \\ 0 & 0 & 5 & | & 4 \end{pmatrix}$$

· Sustitución.

$$x_{3} = \frac{4}{5}$$

$$x_{2} = -\left(2 + \frac{4}{5}\right)$$

$$x_{1} = -1 + 2\left(2 + \frac{4}{5}\right)$$

Métodos directos: Gauss implementación

```
program algebra
    use algebra lineal
    implicit none
    real(8) :: MA(4,4)
    real(8) :: Vb(4) ! Dimensiones definidas
    real(8) :: Vx(4)
    integer :: i, j
    ! Dar valores a la matriz MA y al vector Vb
      . . . . . . . . .
    call Gauss (MA, Vb, Vx)
    write(*,*)
    write(*,'(10f7.3)') Vx
    write(*,*)
    write(*,'(10f7.3)') Matmul(Ma, Vx)
    write(*,'(10f7.3)') Vb
end program
```

Métodos directos: Gauss implementación

```
module algebra lineal
implicit none
contains
 subroutine Gauss (A, b, x)
! Argumentos de la subrutina
real(8), intent(in) :: A(:,:)
real(8), intent(in) :: b(:) !| Dimensiones asumidas
real(8), intent(inout) :: x(:)
                                   -1.1
 ! variables locales
                     :: m ! Dimension del problema A(m,m) b(m) X(m)
integer
real(8), allocatable :: Ab(:,:) ! Matriz ampliada. Dimension depende de m
real(8) :: h
integer :: i, j, k
m = size(A, 1)
allocate (Ab (m, m+1))
Ab(1:m, 1:m) = A
Ab(1:m,m+1) = b
```

.....

Métodos directos: Gauss implementación

Triangulación.

```
module algebra lineal
implicit none
contains
 subroutine Gauss(A, b, x)
Ab(1:m,1:m) = A
Ab(1:m,m+1) = b
! Etapa triangulación
do i = 1, m-1
   if (abs(Ab(i,i)) < epsilon(1.d0)) stop "Cero en la diagonal"</pre>
   do k = i+1, m
                                             ! filas por debajo
      h = Ab(k,i)/Ab(i,i)
                                             ! Factor que multiplica la fila i
      Ab(k,:) = Ab(k,:) - h*Ab(i,:)
  enddo
enddo
! Fin Triangulación
```

•••••

Métodos directos: Gauss implementación

Sustitución.

```
module algebra lineal
implicit none
contains
 subroutine Gauss(A, b, x)
! Fin Triangulación
! Etapa sustitución
do i = m, 1, -1
 h = Ab(i,m+1) ! Guardo en h el valor de la columna ampliada
  do j = i+1, m
     h = h-Ab(i,j)*x(j)! Resto los productos de x's ya calculados
  enddo
  x(i) = h/Ab(i,i)! Divido por la diagonal
enddo
end subroutine Gauss
end module
```

Métodos directos: Gauss Ejemplo

```
program algebra
    use algebra lineal
    implicit none
     real(8) :: MA(4,4) !
     real(8) :: Vb(4) ! Dimensiones definidas
     real(8) :: Vx(4)
                                                                x_1 + x_2 - x_3 = 1
     integer :: i, ]
                                                                x_1 - x_2 + x_4 = 1
    MA = 1.d0
                                                               -x_1 + x_3 + x_4 = 1
    do i = 1,3
       MA(i, 4-i) = -1.d0
                                                                x_2 + x_3 - x_4 = 1
      MA(i, 5-i) = 0
    enddo
    MA(4,1) = 0
                                                               \begin{pmatrix} 1 & 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 & 1 \\ -1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & -1 & 1 \end{pmatrix}
    MA(4,4) = -1.d0
    Vb = (/1, 1, 1, 1/)
     call Gauss (MA, Vb, Vx)
```

Métodos directos: Gauss. Ejemplo

$$x_1 + x_2 - x_3 = 1$$

 $x_1 - x_2 + x_4 = 1$
 $-x_1 + x_3 + x_4 = 1$
 $x_2 + x_3 - x_4 = 1$

Triangulación.

```
C:\Users\uss\Javier\Trabajo\Informatica 16-17\2ºCuatrimestre\
1.000 1.000 -1.000 0.000 1.000
1.000 -1.000 0.000 1.000
-1.000 0.000 1.000 1.000
0.000 1.000 1.000 1.000
```

```
C:\Users\uss\Javier\Trabajo\Informatica 16-17\2ºCuatrimestre\
1.000 1.000 -1.000 0.000 1.000
1.000 -1.000 0.000 1.000
-1.000 0.000 1.000 1.000
0.000 1.000 -1.000 1.000
1.000 1.000 1.000 1.000
0.000 1.000 -1.000 0.000
1.000 0.000 -2.000 1.000 0.000
0.000 0.000 0.500 1.500 2.000
0.000 0.000 0.000 -5.000 -5.000
```

Sustitución.

Métodos directos: Gauss. Ejemplo

$$x_1 + x_2 - x_3 = 1$$

 $x_1 - x_2 + x_4 = 1$
 $-x_1 + x_3 + x_4 = 1$
 $x_2 + x_3 - x_4 = 1$

Sustitución.

```
mogram algebra

...
    call Gauss(MA, Vb, Vx)

    write(*,*) 'Solución'
    write(*,'(10f7.3)') Vx
    write(*,*) 'Comprobación'
    write(*,'(10f7.3)') Matmul(Ma, Vx)
    write(*,'(10f7.3)') Vb
end program
```

```
Símbolo del sistema - prog

C:\Users\uss\Javier\Trabajo\Informatica 16-17\2ºCuatrimestre\
1.000 1.000 -1.000 0.000 1.000
1.000 -1.000 0.000 1.000
-1.000 0.000 1.000 1.000
0.000 1.000 1.000 1.000
```

```
Símbolo del sistema
C:\Users\uss\Javier\Trabajo\Informatica 16-17\2ºCuatrimestre\
 1.000 1.000 -1.000 0.000
                                 1.000
 1.000 -1.000 0.000 1.000
                                 1.000
-1.000 0.000 1.000 1.000
                                 1.000
 0.000 1.000 1.000 -1.000
                                 1.000
 1.000 1.000 -1.000 0.000 1.000
 0.000 -2.000 1.000 1.000 0.000
 0.000 0.000 0.500 1.500 2.000
 0.000 0.000 0.000 -5.000 -5.000
Soluci | n
 1.000 1.000 1.000 1.000
Comprobaci | n
              1.000 1.000
 1.000 1.000
              1.000
                    1.000
```

Métodos directos: Gauss. Problemas

 El método de Gauss lleva asociado problemas de redondeo al operar con aritmética no exacta.

$$\begin{pmatrix}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\
\frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10}
\end{pmatrix}
\begin{pmatrix}
x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5
\end{pmatrix} = \begin{pmatrix}
1 \\ 1 \\ 1 \\ 1 \\ 1
\end{pmatrix}
\Rightarrow \overline{AB} = \begin{pmatrix}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & 1 \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & 1 \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & 1 \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & 1 \\
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} & 1
\end{pmatrix}$$

Métodos directos: Gauss. Problemas

 El método de Gauss lleva asociado problemas de redondeo al operar con aritmética no exacta.

$$\overline{AB} = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & 1\\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & 1\\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & 1\\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & 1\\ \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} & 1 \end{pmatrix}$$
Simple precisión
$$X = (30.25 - 422.860 - 1689.68 - 2532.58 - 1265.55)$$
Doble precisión
$$X = (30 - 420 - 1680 - 2520 - 1260)$$

Métodos directos: Gauss. Problemas

Triangularización:

```
! Fliminación Gaussiana
    if (Ab(i,i) == 0 ) stop | "Matriz con ceros en la diagonal en el proceso"
    ! Fila k por debajo de la i
    do k = i+1, n
        ! Cálculo del elemento multiplicador por fila
        h = -Ab(k,i)/Ab(i,i)
        ! Columna j a partir de la diagonal
        do j = i, n+1
            Ab(k,j) = Ab(k,j) + h*Ab(i,j)
        enddo
    enddo
enddo
```

La existencia de ceros en la diagonal se puede solucionar en algunas ocasiones mediante la elección de un pivote.

Métodos directos: Gauss. Problemas

Triangularización + Pivote:

Pivote parcial: Se intercambia la fila por aquella que cumple:

$$\left|a_{li}\right| = \max\left\{\left|a_{k,i}\right|, k = i+1, n\right\}$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 5 \\
0 & 2 & 0 & 7 & 0 \\
0 & -5 & 1 & 1 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 5 \\
0 & 2 & 0 & 7 & 0 \\
0 & -5 & 1 & 1 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 5 \\
0 & 2 & 0 & 7 & 0 \\
0 & -5 & 1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & -5 & 1 & 1 & 1 \\
0 & 2 & 0 & 7 & 0 \\
0 & 0 & 0 & -1 & 5
\end{pmatrix}$$

Métodos directos: Gauss. Problemas

• Triangularización + Pivote:

Pivote total: Se intercambia la fila por aquella que contiene:

$$\begin{vmatrix} a_{li} | = \max \left\{ \begin{vmatrix} a_{kj} \end{vmatrix}, k, j = i+1, n \right\}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 5 \\ 0 & 2 & 0 & 7 & 0 \\ 0 & -5 & 1 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 5 \\ 0 & 2 & 0 & 7 & 0 \\ 0 & -5 & 1 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 5 \\ 0 & 2 & 0 & 7 & 0 \\ 0 & -5 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 2 & 0 & 7 & 0 \\ 0 & 0 & 0 & -1 & 5 \\ 0 & 0 & 0 & -1 & 5 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 1 & 1 & -5 & 1 \end{pmatrix}$$

• El vector solución tiene componentes: $\vec{X} = \{x_1, x_4, x_3, x_2\}$

Métodos directos: Gauss-Jordan

Una vez conseguida la matriz triangular usando Gauss, se continua hasta convertir la matriz en unidad.

Diagonalización

$$\overline{AB} = \begin{pmatrix} \overline{a}_{11} & \overline{a}_{12} & \dots & \overline{a}_{1n} & \overline{b}_{1} \\ 0 & \overline{a}_{22} & \dots & \overline{a}_{2n} & \overline{b}_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \overline{a}_{nn} & \overline{b}_{n} \end{pmatrix} \Rightarrow \overline{\overline{AB}} = \begin{pmatrix} \overline{a}_{11} & 0 & \dots & 0 & \overline{b}_{1} \\ 0 & \overline{a}_{22} & \dots & 0 & \overline{b}_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \overline{a}_{nn} & \overline{b}_{n} \end{pmatrix}$$

```
do i = n,2,-1
do j=i-1,1,-1
m = AB(j,i)/AB(i,i)AB(j,n+1) = AB(j,n+1) - AB(i,n+1)*menddo
enddo
```

Métodos directos: Gauss-Jordan

Una vez conseguida la matriz triangular usando Gauss, se continua hasta convertir la matriz en unidad.

Unidad

$$\overline{\overline{AB}} = \begin{pmatrix}
\overline{a}_{11} & 0 & \dots & 0 & | \overline{b}_{1} \\
0 & \overline{a}_{22} & \dots & 0 & | \overline{b}_{2} \\
\vdots & \vdots & \ddots & \vdots & | \vdots \\
0 & 0 & \dots & \overline{a}_{nn} & | \overline{b}_{n}
\end{pmatrix} \Rightarrow \overline{\overline{AB}} = \begin{pmatrix}
1 & 0 & \dots & 0 & | \overline{b}_{1} \\
0 & 1 & \dots & 0 & | \overline{b}_{2} \\
\vdots & \vdots & \ddots & \vdots & | \vdots \\
0 & 0 & \dots & 1 & | \overline{b}_{n}
\end{pmatrix}$$

```
do i = 1,n

X(i)= AB(i,n+1)/AB(i,i)
enddo
```

Métodos directos: Práctica por grupos para presentar en clase

Implementar los métodos explicados en clase en un módulo llamado algebra_lineal.

Incluir el pivote parcial para evitar ceros en la diagonal.

Resolved los sistemas $Ax = b_i$ por el método de Gauss

$$A = \begin{pmatrix} 1 & -2 & 1 & 1 \\ -2 & 4 & 0 & -1 \\ 1 & 1 & -1 & 1 \\ -1 & 0 & 0 & 3 \end{pmatrix} \quad y \ b_i = \begin{pmatrix} \frac{i}{2}, \frac{i}{3}, \frac{i}{5}, \frac{i}{7} \end{pmatrix} \ i = 1, \dots, 20$$

Complementos teóricos. Para presentar por un grupo en la próxima clase

1.- Aplicaciones de los métodos de resolución de sistemas lineales

Cálculo de la matriz inversa:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \implies \zeta A^{-1}?$$

Cálculo del determinante:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \implies \zeta |A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} ?$$

1.- Aplicaciones de los métodos de resolución de sistemas lineales

Problema de interpolación: Dados n+1 puntos (x_0,y_0) , (x_1,y_1) ,..., (x_n,y_n) , hallar un polinomio de grado n

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

que pase por estos puntos, esto es que $p_n(x_i) = y_i$, para $n=0,1,2,\ldots,n$

Para probar la existencia de este polinomio se pueden considerar sus coeficientes $(a_0, a_1, a_2, ..., a_n)$ como incógnitas a determinar en las n+1 ecuaciones $p_n(x_i) = y_i$, para n=0,1,2, ...,n, ya que los (x_i, y_i) son números ya conocidos como datos del problema. Aparece pues el sistema de n+1 ecuaciones con n+1 incógnitas

$$a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0$$

 $a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1$
...
$$a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_n$$

Hallad el polinomio de grado 15 que pasa por los siguientes 16 puntos:

```
(-1.00000, 0.16101); (-0.86667, -0.32502); (-0.73333, -0.65284); (-0.60000, 0.02181); (-0.46667, 0.99687)
(-0.33333, 0.00692); (-0.20000, -0.75183); (-0.06667, -0.23645); (0.06667, 0.23645); (0.20000, 0.75183)
(0.33333, -0.00692); (0.46667, -0.99687); (0.60000, -0.02181); (0.73333, 0.65284); (0.86667, 0.32502); (1.00000, -0.16101)
```