Lecture 1, 4/3/23

Definition 0.1. A field extension $F \subseteq K$ is a field F, which is a subfield of a larger field K.

One way to keep track of how these are related is the <u>degree</u>, [K : F]. This is the dimension of K as a vector space over F.

If this degree is $< \infty$, then we refer to this as a <u>finite extension</u> (we of course do not mean that they are finite as sets)

If $S \subseteq K$, then F(S) is the subfield of K given by $F \cup S$.

F[S] is the sub-ring of K generated by $F \cup S$. These are different in general!

If $S = \{a_1, \ldots, a_n\}$, we use $F(a_1, \ldots, a_n)$ and $F[a_1, \ldots, a_n]$ to denote F(S)/F[S].

If the extension has the form F[a] for some element a, then this is called a <u>simple extension</u>. Here, a is called a primitive element.

An extension $F \subseteq K$ is called <u>algebraic</u> if every $k \in K$ is algebraic over F, meaning is the root of some polynomial in F[x]

Example 0.1.

• $Q \subseteq \mathbb{R}$. This is an infinite extension. Further, it is not an algebraic extension. The hard way to show this is to demonstrate that some element of \mathbb{R} is not algebraic. For example, π, e are real, but transcendental over the rationals.

The easy way is by a simple cardinality argument: Because $\mathbb Q$ is countable, $\overline{\mathbb Q}$ is, but $\mathbb R$ is not

- $\mathbb{R} \subseteq \mathbb{C}$. This is a finite extension. In fact, it is a simple extension, with primitive i.
- $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{5})$. This is algebraic. Of course, $\sqrt{5}$ is a root of $x^5 1$, but what about the other elements of $\mathbb{Q}(\sqrt{5})$?

Consider $\{a+b\sqrt{5}\mid a,b\in\mathbb{Q}\}$. This is a subset of $\mathbb{Q}(\sqrt{5})$, a subring, and a subfield: indeed, consider $\frac{1}{a+b\sqrt{5}}$. The "typical high school trick" is to multiply by the conjugate:

$$\frac{1}{a + b\sqrt{5}} \frac{a - b\sqrt{5}}{a - b\sqrt{5}} = \frac{a - b\sqrt{5}}{a^2 - 5b^2}$$

So $\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}$, as this is a subfield of $Q(\sqrt{5})$ which contains $\sqrt{5}$, so must contain $\mathbb{Q}(\sqrt{5})$. That is,

$$\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\} = \mathbb{Q}[\sqrt{5}]$$

It is easy to see that $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2$

Let $F \subseteq K$ be a field extension, and consider $F[a_1, \ldots, a_n]$.

There exists an evaluation map $\varepsilon : F[X_1, \ldots, X_n] \to K$, given by $\varepsilon(f) = f(a_1, \ldots, a_n)$. ε is a ring homomorphism, so $\operatorname{Im}(\varepsilon)$ is a subring of K. We have $F[a_1, \ldots, a_n] = \operatorname{Im} \varepsilon$ $F(a_1, \ldots, a_n)$ is a quotient field for the ring $F[a_1, \ldots, a_n]$

Let F be a field, x, y be indeterminants which are independent over F. Let $L = F(y)[x]/\langle x^2 - y \rangle$.

We can check that $x^2 - y$ is irreducible in F(y)[x] because it is quadratic, and y has no square roots.

So because this is irreducible, L is a field.

In particular, F(y) embeds in L via the natural map $F(y) \hookrightarrow F(y)[x] \twoheadrightarrow L$. So $F(y) \subseteq L$. This is a degree two extension of F(y).

Proposition 1. If $[K:F] < \infty$, then $F \subseteq K$ is an algebraic extension.

Proof. Let n = [K : F], and let $a \in K$. Look at $1, a, a^2, \ldots, a^n$. This is n + 1 elements in K, so they must be linearly independent over F. So there exists c_0, c_1, \ldots, c_n , not all zero, such that $\sum_{i=0}^n c_i a^i = 0$. Then $f = \sum_{i=0}^n c_i x^i \in F[x]$ is a polynomial to which a is a solution, so a is algebraic.

Theorem 0.1. (*I*)

Let $F \subseteq K$ be a field extension, $a \in K$. Then The Following Are Equivalent (TFAE):

- **1.** a is algebraic over F
- 2. $\dim_F F[a] < \infty$
- **3.** $[F(a):F] < \infty$
- **4.** F(a) = F[a]

Proof. Notice that $3 \Rightarrow 2$ are really saying the same thing. Further, $2+4 \Rightarrow 3$. So if we can connect 1, 2, 4, then 3 will come along for the ride. Therefore, it is enough to show that 1, 2, 4 are equivalent.

$$1 \Rightarrow 2$$

There exists a nonzero $f \in F[x]$ such that f(a) = 0. $f = \sum_{i=0}^{n} c_i x^i$, where $c_n \neq 0$. So $\sum_{i=0}^{n} c_i a^i = 0$, and so $a^n = \sum_{i=0}^{n-1} d_i a^i$, with $d_i \in F$ new coefficients.

Set $V = \sum_{i=0}^{n-1} Fa^i$. Then $a^n \in V$. So

$$a^{n+1} = \sum_{i=0}^{n-1} d_i a^{i+1}$$
$$= \sum_{j=1}^{n-1} d_{j-1} a^j + d_{n-1} a^n$$

But $d_{n-1}a^n = \sum_{i=0}^{n-1} d_{n-1}d_ia^i$.

Induction gets us that $a^j \in V$ for all $j \geq 0$.

So V is closed under multiplication, hence a subring of K.

So V = F[a]. Note $\dim_F F[a] = \dim_F V \le n$, because we used n elements to span in the first place.

$$2 \Rightarrow 4$$

It will be enough to show F[a] is a field.

Let $x \in F[a], x \neq 0$. Define a map $\mu_x : F[a] \to F[a]$, given by $\mu_x(y) = xy$. This is F-linear, and ker $\mu_x = 0$. We have an injective linear transformation from a finite dimensional vector space to itself, so it has to be an isomorphism onto its image. So there exists $x' \in F[a]$ so that $\mu_x(x') = 1$, so x is invertible.

Lecture 2, 4/5/23

We continue the proof.

$$4 \Rightarrow 1$$

If A = 0, we are done. If $A \neq 0$, then $\frac{1}{a} \in F(a) = F[a]$. So $\frac{1}{a} = \sum_{i=1}^{m} c_i a^i$ where each $c_i \in F$. Note $1 = \sum_{i=0}^{m} c_i a^{i+1}$, so a is a root of $-1 + \sum_{i=0}^{m} c_i x^{i+1} = 0$

Thus a is algebraic over F.

Theorem 0.2. Assume a is algebraic over K.

- (i) There exists a unique monic polynomial $p \in F[x]$ such that p(a) = 0 with minimal degree. We call this the minimal polynomial for a over F, and write $p_{a,F}$.
- (ii) p is irreducible.

- (iii) If $g \in F[x]$, g(a) = 0, then $p \mid g$ in F[x].
- (iv) $[F(a):F] = \deg p$
- (v) If $n = \deg p$, then $(1, a, a^2, \dots, a^{n+1})$ is a basis for F(a) over F.
- (vi) Let $\varepsilon: F[x] \to K$, $\varepsilon(f) = f(a)$. This induces an isomorphism of rings $\overline{\varepsilon}: \frac{F[x]}{\langle p \rangle} \to F(a), \overline{\varepsilon}(f + \langle p \rangle) = f(a)$

Proof.

- (i) Since a is algebraic over F, there exists $f \in F[x]$ such that f(a) = 0. Note that we can divide by the leading coefficient to make f monic with a as a root. Find minimal polynomial of this form, and call it p.
 - Uniqueness: Suppose $p' \in F[x]$ is monic, p'(a) = 0 minimal. Then (p-p')(a) = 0. Since $\deg(p-p') < \deg p$, if $p-p' \neq 0$, we have found a monic polynomial with smaller degree than p with a as a root. Contradiction
- (ii) Let $\varepsilon: F[x] \to F(a) = F[a]$ be the evaluation map. ε induces $\overline{\varepsilon}: \frac{F[x]}{\ker \varepsilon} \to F(a)$. Note $\ker \varepsilon = 0$. Since F[x] is a PID, $\ker \varepsilon = \langle q \rangle$ where $0 \neq q \in F[x]$. Without loss of generality, assume q is monic. We know
 - \bullet q is irreducible
 - q(a) = 0
 - When $g \in F[x], g(a) = 0$, then $q \mid g$

Thus, if $g \neq 0$, $\deg(q) \leq \deg(g)$. This implies that q = p.

- (iii) See above
- (iv) $\overline{\varepsilon}$ is also an isomorphism of vectors over F. Exercise: If $x \in X + \langle p \rangle$, then $(1, x, x^2, \dots, x^{n+1})$ is a basis for $\frac{F[x]}{\langle p \rangle}$. Thus $(1, a, a^2, \dots, a^{n-1})$ is a basis for F(a) Furthermore, $[F(a):F] = n = \deg p$

Let $F \leq K$ be a field extension, $a \in K$ algebraic over F. If $p \in F[x]$ is monic and irreducible with p(a) = 0, then $p = p_{a,F}$

- (v) See iv
- (vi) See ii

Example 0.2. Let $a = \sqrt[4]{5} \in \mathbb{R}_{>0}$, $p = X^4 - 5 \in \mathbb{Q}[x]$. Since p is irreducible over $\mathbb{Q}[x]$, $p = p_{a,F}$.

Note that p is reducible over $\mathbb{Q}(\sqrt{5})[x]$. In fact, $p_{a,\mathbb{Q}[\sqrt{5}]} = x^2 - \sqrt{5}$. We have the tower of fields:

Let $F \subseteq K \subseteq L$ be a tower of fields. If $a \in L$ is algebraic in F, then a is also algebraic over K. Furthermore, $p_{a,K} \mid p_{a,F}$ in K[x].

Proposition 2. If $f \in F[x]$ is a nonzero polynomial of degree n, then f has at most n roots in n.

Proof. By induction.

n = 0: trivial.

n > 0: if there are no roots, we're okay.

Otherwise, there exists $a \in F$ such that f(a) = 0. So f = (x - alg), for some $g \in F(x)$. $g \neq 0$, $\deg g = n - 1$. Thus g has $\leq n - 1$ roots in F.

Since {roots of f} = {a} \cup {roots of g}, there are $\leq n$ roots of f.

Let $F \subseteq K$ be a field extension. Let $\mathcal{A} = \{a \in K, a \text{ algebraic over } F\}$.

If F is infinite, then $|\mathcal{A}| = |F|$. If F is finite, $|\mathcal{A}|$ is countable.

Let \mathbb{A} denote the complex numbers which are algebraic over \mathbb{Q} . Note $|\mathbb{A}| = |\mathbb{Q}| = \aleph_0$

Lecture 3, 4/7/23

Theorem 0.3. (Tower rule)

Let $F \subseteq K \subseteq L$ be a tower of fields. Then [K : F][L : K] = [L : F].

Proof. If $[K:F] = \infty$ or $[L:K] = \infty$, we are done.

So assume $[K:F]=m, [L:K]=n, m, n < \infty$.

Let $\{b_1, \ldots, b_n\}$ be a basis for L over K, and let $\{a_1, \ldots, a_m\}$ be a basis for K over F.

We claim $\{a_ib_j \mid 1 \le i \le m, 1 \le j \le n\}$ is a basis for L over F.

We check it spans: choose $x \in L$. Note $x = \sum_{j=1}^{n} u_j b_j$, where each $u_j \in K$. Each $u_j = \sum_{i=1}^{m} v_{ij} a_i$, where each $v_{ij} \in F$. Thus $x = \sum_{j=1}^{n} \sum_{i=1}^{m} v_{ij} a_i b_j$

Linear independence: suppose $\sum_{i=1}^{m} \sum_{j=1}^{n} v_{ij} a_i b_j = 0$.

Thus $\sum_{j=1}^{n} v_{ij} a_i = 0$. Thus all $v_{ij} = 0$.

Corollary 0.4. Let $F \subseteq K$ be a field extension, $a_1, \ldots, a_n \in K$ all algebraic over F. Then $F[a_1, ..., a_n] = F(a_1, ..., a_n)$ and $[F(a_1, ..., a_n) : F] < \infty$.

Corollary 0.5. Let $F \subseteq K$ be a field extension.

- (a) If $a,b \in K$ are algebraic over F, then $[F(a):F] \mid [F(a,b):F], [F(b):F] \mid$ $[F(a,b):F], pF(a,b):F] \leq [F(a):F], [F(b):F]$
- (b) $\{a \in K \mid a \text{ algebraic over } F\}$ is a subfield of K.
- (c) If $S \subseteq K$ is a set of elements algebraic over F, then F(S) is algebraic over F.
- (d) Say $K \leq L$ is a field extension. Then L is algebraic over F if and only if L is algebraic over K and K is algebraic over F.

Proof.

Definition 0.2. Let $F \subseteq K$ be a field extension. An F-automorphism of K is any isomorphism $\phi: K \to K$ such that $\phi|_F = \mathrm{Id}_F$.

The Galois group of K over F is $G(K:F) = \{F-\text{automorphisms of } K\}$

Proposition 3. Let $F \subseteq K$ be a field extension, $\phi \in G(K:F)$, f a polynomial in F(x). Then ϕ permutes $\underbrace{\{a \in K \mid f(a) = 0\}}_{R_f}$.

Proof.:

Let $f = \sum_{i=1}^{n} c_i x^i$, wheree $c_i \in F$.

Choose $a \in K$. $\phi(f(a)) = \phi(\sum_{i=1}^n c_i a^i) = \sum_{i=1}^n c_i \phi(a_i) = f(\phi(a))$.

Thus $a \in R_f \iff \phi(a) \in R_f$.

So ϕ restricts mto an injective map $R_f \to R_f$. Thus there is a bijection.

Example 0.3. $\mathbb{R} \subseteq \mathbb{C}$. $\phi \in G(\mathbb{C} : \mathbb{R})$ must permute roots of $x^2 + 1$, so $\phi(i) = \pm i$. ϕ is \mathbb{R} -linear and (1,i) is a basis for \mathbb{C} over \mathbb{R} .

Thus $G(\mathbb{C}:\mathbb{R}) = \{\mathrm{Id}, \overline{-}\}$

Example 0.4. Let $F \subseteq K$ be a field extension of degree 2, char $F \neq 2$.

Chose $a \in K \setminus F$. Note F[a] = F(a) = K. So a is algebraic over F, deg $p_{a,F} = 2$. We know $p_{\alpha,F} = X^2 + bX + c$.

By quadratic formula,

$$a = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

i.e. there is some $r \in K$ such that $r^2 = b^2 - 4ac$ and $a = \frac{-b+r}{2}$.

 $\frac{-b-r}{2}$ is another root of $p_{\alpha,F}$. Since $a \notin F, r \notin F$. So $r \neq 0$, i.e. $r \neq -r$.

Thurs F[r] = F(r) = K. So $p_{\alpha,F} = X^2 - (b^2 - 4c)$.

If $\phi \in \operatorname{Gal}(K:F)$, $\phi(r) = \pm r$.

Thus $|\operatorname{Gal}(K:F)| \leq 2$.

Exercise: $|\operatorname{Gal}(K:F)| = 2$.

Example 0.5. See chapter 2: there exists $F \subseteq K$, [K : F] = 2, char F = 2, $Gal(K : F) = \{e\}$.

Example 0.6. $F = \mathbb{Q}(\zeta) \subseteq K = \mathbb{Q}(\zeta, a), \zeta = e^{\frac{2\pi i}{3}}, a = \sqrt[4]{5} \in \mathbb{R}.$

 ζ is a root of $X^3 - 1 = (X - 1)(X^2 + X + 1)$.

Thus $p_{\zeta,\mathbb{Q}} \mid X^2 + X + 1$. Since $\zeta \notin \mathbb{Q}$, $\deg p_{\alpha,\mathbb{Q}} \mid X^2 + X + 1$.

Since $\zeta \notin \mathbb{Q}$, deg $p_{\zeta,\mathbb{Q}} > 1$. Thus $p_{\zeta,\mathbb{Q}} = X^2 + X + 1$, $[F : \mathbb{Q}] = 2$

Now note a is a root of $X^3 - 5$, which is irreducible.

Thus $p_{a,\mathbb{Q}} = X^3 - 5$, $[\mathbb{Q}(a) : \mathbb{Q}] = 3$.

Lecture 4, 4/10/23

Definition 0.3. Let $F \subseteq K$ be a field extension, F[X] a polynomial ring. $f \in F[X]$ splits over K if $f = a_0(X - a_1)(X - a_2) \cdots (X - a_n)$ for $a_i \in K$. 4

Definition 0.4. A splitting field for $S \subseteq F[X]$ over F is a field K containing F such that all $f \in S$ split over K, and K is minimal. In other words, if $F \subseteq E \subseteq K$, and for all $f \in S$, f splits over E, then E = K.

Definition 0.5. F is algebraically closed if every $f \in F[X]$ splits over F.

Definition 0.6. An algebraic closure of F is a field extension K containing F such that $F \subseteq K$ is algebraic and K is algebraically closed.

Theorem 0.6. (Fundamental theorem of algebra)

 \mathbb{C} is algebraically closed.

 \mathbb{C} is an algebraic closure of \mathbb{R} , and is thus a splitting field for $X^2 + 1$ over \mathbb{R} .

Another splitting field for $X^2 + 1$ over \mathbb{Q} is $\mathbb{Q}(i)$.

A splitting field for $X^3 - 2$ over \mathbb{Q} is $\mathbb{Q}(a,\zeta)$, $a = \sqrt[3]{2}$, ζ a root of $X^2 + X + 1$. $X^3 - 2 = (X - a)(X - a\zeta)(X - a\zeta^2)$

Let $F \subseteq K$ be 3 a field extension, F[X] a polynomial ring. Say K is a splitting field for $S \subseteq F[X]$ over F. Define

$$R \stackrel{\text{def}}{=} \{ a \in K \mid f(a) = 0 \text{ for some } f \in S \}$$

Then K = F(R). So K is algebraic over F.

Claim. Suppose K is a splitting field over F for some non-constant $f \in F[X]$. Let a_1, \ldots, a_r be the roots of $f \in K$. Then we know $K = F(a_1, \ldots, a_r)$. Wee claim that $[K : F] \leq (\deg f)!$.

Proof. Let $n = \deg f$. We know $p_{a,F} \mid f$, so $[F(a_1) \mid F] = \deg p_{a_1,F} \leq \deg f = n$.

So $f = (X - a_1)g$, where deg g = n - 1.

The roots of g are $\subseteq \{a_1, \ldots, a_r\}$. Thus $K = F(a_1)(a_1, \ldots, a_r)$.

By induction, $[K: F(a_1)] \leq (n-1)!$.

By the tower rule, $[K:F] \leq n!$.

Claim. Suppose K is algebraically closed. Take L to be the algebraic closure of F in K. Then L is algebraically closed.

Proof. If $f \in L[X]$ is not constant, it has a root $a \in K$. $L \subseteq L(a)$ is algebraic, $F \subseteq L$ is algebraic, so $F \subseteq L$ is algebraic, thus $L(a) \subseteq L$. This implies that f has a root in L.

Say R, S are rings, R[X], S[X] polynomial rings, $\phi: R \to S$ a ring homomorphism. Then there exists a unique ring homomorphism $\tilde{\phi}: R[X] \to S[X]$ such that $\tilde{\phi}|_{R} = \phi$ and $\tilde{\phi}(X) = X$.

Formula:

$$\tilde{\phi}\left(\sum_{i=0}^{d} r_i X^i\right) = \sum_{i=0}^{d} \phi(r_i) X^i$$

Theorem 0.7 (Kronecher's Theorem). Let F be a field, $f \in F[X]$ a non-constant polynomial. Then there exists a field extension $F \subseteq K$ such that f has a root in K, and $[K:F] \leq \deg f$.

Proof. Let p be some irreducible factor of f.

Define $L = F[X]/\langle p \rangle$, which is a field.

Let $h = h + \langle p \rangle$ for $h \in F[X]$.

Define $\phi: F \to L$ by $\phi(c) = \overline{c}$. We have $\tilde{\phi}: F[X] \to L[X]$.

We claim \overline{X} is a root of $\phi(f)$.

 $p = \sum_{i=0}^{n} c_i X^i, c_i \in F.$ Then $\tilde{\phi}(p) = \sum_{i=0}^{m} \overline{c_i} X^i$

$$\tilde{\phi}(p)(\overline{X}) = \sum_{i=0}^{m} \overline{c_i} \overline{X^i}$$

$$= \sum_{i=0}^{m} c_i X^i$$

$$= \overline{p}$$

$$= \overline{0}$$

Thus $\overline{X} \in L$ is a root of $\tilde{\phi}(f)$.

Lecture 5, 4/12/23

We continue the proof.

Choose a set U disjoint from F with $|U| = |L \setminus \phi(F)|$. Say $\beta: U \to L \setminus \phi(F)$ is a bijection.

Extend to a bijection $\beta: F \coprod U \to L$ such that $\beta(a) = \phi(a)$ for all $a \in F$.

Define $+, \cdot$ on $F \coprod U$ by

$$-a + b = \beta^{-1}(\beta(a) + \beta(b))$$
$$-a \cdot b = \beta^{-1}(\beta(a)\beta(b))$$

we need to check new +, \cdot agree with OG on F. We also need to check that $F \coprod U$ is a field. We will do this later.

Define $K = F \coprod U$. Note F is a subfield of K. $\beta : K \to L$ is an isomorphism, $\beta|_F = \phi$.

Define $p = \sum_{i=0}^{m} c_i X^i, c_i \in F$.

$$0 = \tilde{\phi}(p)(\overline{X})$$

$$= \sum_{i=0}^{m} \phi(c_i) \overline{X}^i$$

$$= \sum_{i=0}^{m} \beta(c_i) \beta(\beta^{-1}(\overline{X}))^i$$

$$= \beta \left(\sum_{i=0}^{m} c_i \beta^{-1}(\overline{X})^i \right)$$

$$= \beta(p(\beta^{-1}(\overline{X}))$$

thus $p(\beta^{-1}(\overline{X})) = 0$. $[K : F] = \dim_F K = \dim_F L = \deg p \le \deg f$.

Ordinals

I'm not typing all this up i don't get it

Lecture 6, 4/14/23

Lemma 1 (Extension Lemma). Let $F_1 \subseteq K_1$, $F_2 \subseteq K_2$ be field extensions, $\phi : F_1 \to F_2$ an isomorphism. Let $F_2[X]$ be a polynomial ring, $f_1 \in F_1[X]$ irreducible, $f_2 = \tilde{\phi}(f_1)$, $a_i \in K_i$ a root of f_i . Then ϕ extends to an isomorphism $\theta : F_1(a_1) \to F_2(a_2)$ such that $\theta(a_1) = a_2$.

$$K_1 \qquad K_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(a_1) \xrightarrow{\exists \theta} F(a_2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_1 \xrightarrow{\theta} F_2$$

The proof is in the form of this diagram, I quess:

Proof.

Theorem 0.8. Let F_1, F_2 be fields, $F_2[X]$ a polynomial ring, $S_i \subseteq F_i[X]$, and let $\phi: F_1 \to F_2$ be an isomorphism, where $\phi_1(S_1) = S_2$. Let K_i be a splitting field of S_i over F_i . Then ϕ extends to an isomorphism $K_1 \to K_2$.

$$K_1 \xrightarrow{\cong} K_2$$

$$\subseteq \uparrow \qquad \qquad \uparrow \subseteq$$

$$F_1 \xrightarrow{\phi} F_2$$

Proof. Set $\mathcal{M} = \{(L, \theta) \mid F_1 \subseteq L \subseteq K_1 \text{ a tower, } \theta : L \to K_2 \text{ a homomorphism extending } \phi\}.$ Define $(L_1, \theta_1) \leq (L_2, \theta_2)$ iff $L_1 \subseteq L_2$, $\theta_1 \subseteq \theta_2$

- \leq is a partial ordering of \mathcal{M} .
- $(F_1, \theta) \in \mathcal{M}$.
- If $\{(L_i, \theta_i)\}_{i \in I}$ is a nonempty chain on \mathcal{M} , then

$$\left(\bigcup_{i\in I} L_i, \bigcup_{i\in I} \theta_i\right) \in \mathcal{M}$$

is an upper bound for the chain.

By Zorn's lemma, there exists a maximal $(M, \psi) \in \mathcal{M}$

$$K_{1} \xrightarrow{\cong} K_{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \xrightarrow{\psi} M' = \psi(M)$$

$$\subseteq \uparrow \qquad \qquad \uparrow \subseteq$$

$$F_{1} \xrightarrow{\phi} F_{2}$$

Towards contradiction, suppose $M \subsetneq K_1$

Then there exists some $g \in S_1$ which does not split over M. In M[X], there exists an irreducible factor $f \mid g$ such that $\deg f \geq 2$

g splits over K, so f splits over K.

Thus f has a root $a_1 \in K_1$.

 $\tilde{\psi}(f) \in M'$ is irreducible, has a root $a_2 \in K_2$, because $\tilde{\psi}(f) \mid \tilde{\psi}(g) = \tilde{\phi}(g)$ in M'[X]. By Extension Lemma, ψ extends to an isomorphism $\theta : M(a_1) \to M'(a_2)$.

Now $(M(a_2), \theta) \in \mathcal{M}$, contradicting that (M, ψ) is the maximal element.

Corollary 0.9. Let F_1, F_2 be fields, $\phi : F_1 \to F_2$ an isomorphism, K_i an algebraic closure of F_i . Then ϕ extends to an isomorphism $K_1 \to K_2$.

Proof. Observe that K_i is a splitting field for $S_i = F_i[X]$ over F_i . $\tilde{\phi}(S_1) = S_2$. Apply the previous theorem.

Example 0.7. $K = \mathbb{Q}(a,\zeta) \subset \mathbb{C}$, $a = \sqrt[3]{5}$, $\zeta = \text{a root of } X^2 + X + 1$. Roots of $X^3 - 5 : a, a\zeta, a\zeta^2$ Roots of $X^2 + X + 1 : \zeta, \zeta^2$

$$K = \mathbb{Q}(a,\zeta) = \mathbb{Q}(a\zeta,\zeta) = \mathbb{Q}(a\zeta^{2},\zeta)$$

$$\begin{vmatrix} 2 & & | 2 & | 2 \\ \mathbb{Q}(a\zeta) & & \mathbb{Q}(a\zeta^{2}) \end{vmatrix}$$

$$\mathbb{Q}(a\zeta) = \mathbb{Q}(a\zeta^{2})$$

 $K = \mathbb{Q}(a,\zeta) = \mathbb{Q}(a\zeta,\zeta) = \mathbb{Q}(a\zeta^2,\zeta)$

i = 0, 1, 2, there exists \mathbb{Q} -automorphism $\phi_i : \mathbb{Q}(a) \to \mathbb{Q}(a, \zeta^i)$ such that $\phi_i(a) = a\zeta^i$. ϕ_i extends to $\phi_{ij} : K \to K$ such that $\phi_{ij}(\zeta) = \zeta^j$

Lecture 7, 4/17/23

Exercise: $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, \sqrt{5}) : \mathbb{Q}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Let $a = e^{\frac{2}{5}\pi i}$. $\operatorname{Gal}(\mathbb{Q}(a) : \mathbb{Q}) \cong \mathbb{Z}_4$

Definition 0.7.

• Let $H \leq \operatorname{Gal}(K:F)$. Then define

$$\operatorname{Fix}_K(H) \stackrel{\text{def}}{=} \{ k \in K \mid h(k) = k \text{ for all } h \in H \}$$

This will be an intermediate field.

• Let $F \subseteq K$ be a field extension. Then we define

$$Intermed(F \subseteq K) \stackrel{\text{def}}{=} \{ fields \ L \mid F \subseteq L \subseteq K \}$$

$$\operatorname{SubGal}(K \supseteq F) \stackrel{\text{def}}{=} \{ \operatorname{subgroups of } \operatorname{Gal}(K : F) \}$$

We have $\mathscr{F}: \operatorname{SubGal} \to \operatorname{Intermed}, H \mapsto \operatorname{Fix}_K(H), \mathscr{G}: \operatorname{Intermed} \to \operatorname{SubGal}, L \mapsto \operatorname{Gal}(K:L).$

• $L \in \text{Intermed is } \underline{\text{closed}} \text{ if } \mathscr{F}(\mathscr{G}(L)) = L. \text{ It is } \underline{\text{stable}} \text{ if } \phi(L) \subseteq L \text{ for all } \phi \in \mathrm{Gal}(K:F). \ H \in \underline{\text{SubGal is } \underline{\text{closed}}} \text{ if } \mathscr{G}(\mathscr{F}(H)) = H$

If L is stable, $\phi(L) \subseteq L$, $\phi^{-1}(L) \subset L$ for all $\phi \in \operatorname{Gal}(K : F)$, so $\phi(L) = L$. We have restriction map $\rho : \operatorname{Gal}(K : F) \to \operatorname{Gal}(L : F)$, $\rho(\phi) = \phi|_L$. We have $\ker(\rho) = \operatorname{Gal}(K : L)$

Proposition 4.

- 1. \mathscr{F} and \mathscr{G} preserve inclusions.
- **2.** (a) $L \subseteq \mathscr{FG}(L)$ and $\mathscr{G}(L) = \mathscr{FFG}(L)$ for all $L \in Intermed$
 - (b) $H \subseteq \mathscr{GF}(H)$ and $\mathscr{F}(H) = \mathscr{FGF}(H)$ for all $H \in \operatorname{SubGal}$
- **3.** (a) $L \in \text{Intermed}$ is closed iff $L \in \text{Im}(\mathscr{F})$
 - (b) $H \in \text{SubGal}$ is closed iff $H \in \text{Im}(\mathscr{G})$
- **4.** \mathscr{G} and \mathscr{F} restrict to inverse bijections.

So there is a bijection between $\{closed\ L \in Intermed\}$ and $\{closed\ subgroups\}$

Proposition 5.

1. Let $E \subseteq L$ in Intermed such that $[L:E] < \infty$. Then

- (a) $[\mathscr{G}(E):\mathscr{G}(L)]\subseteq [L:E]$
- (b) If E is closed, then so is L, and a becomes an equality.
- **2.** Let $H \subseteq J$ in SubGal such that $[J:H] < \infty$.
 - (a) $[\mathscr{F}(H):\mathscr{F}(G)] \leq [J:H]$
 - (b) If H is closed, so is J, and a is an equality

Proof.

1. (a) $L = E(a_1, ..., a_m)$. Induct on m.

For m = 1, L = E(a). Since $[L : E] < \infty$, a is algebraic over E. So it has minimal polynomial $p = p_{a,E}$.

The number of roots of p in K is less than or equal to $\deg p = [L : E]$.

We need to show $[\mathscr{G}(E),\mathscr{G}(L)] \leq \text{number of roots of } p \text{ in } K.$

$$H = \mathcal{G}(L), J = \mathcal{G}(E).$$

 $\phi_1(H), \cdots, \phi_n(H)$ are distinct left cosets of H in J.

for $i \neq j$, $\phi_i(H) \neq \phi_j(H)$, so $\phi_j^{-1}\phi_i(a) \neq a$, so $\phi_i(a) \neq \phi_j(a)$.

 ϕ_i permutes roots of p in K, so $\phi_i(a)$ =a root of p.

Therefore $\phi_1(a), dots, \phi_n(a)$ are n distinct roots of p in K.

Thus $[J:H] = n \le \text{number of roots of } p \text{ in } K \le \deg p = [L:E]$

For m > 1, let $M = E(a_1, \ldots, a_{m-1})$, $L = M(a_m)$. Then $[\mathscr{G}(E) : \mathscr{G}(M)] \leq [M : E]$, $[\mathscr{G}(M) : \mathscr{G}(L)] \leq [L : M]$. So $[\mathscr{G}(E) : \mathscr{G}(L)] \leq [L : E]$

2. (a) $n = [J:H], \phi_1(H), \dots, \phi_n(H)$ are distinct left cosets of H in J.

So
$$E = \mathscr{F}(J) \subseteq L = \mathscr{F}(H)$$
.

Suppose [L:E] > n.

Then there exists $a_1, \ldots, a_{n+1} \in L$, linearly independent over E.

There exists $(\phi_i(a_j)) = n \times (n+1)$ matrix over K.

Lecture 8, 4/19/23

We continue the proof

- **1.** (a) Done
 - (b) Consider the tower $F \subseteq E \subseteq L \subseteq K$, where $[L:E] < \infty$.

$$E = \mathscr{F}\mathscr{G}(E).$$

$$[L:E] = [L:\mathscr{FG}(E) \leq [\mathscr{FG}(L):\mathscr{FG}(E)]$$

By 1a,
$$[\mathscr{G}(E):\mathscr{G}(L)] \leq [L:E]$$
.
By 2a, $[\mathscr{F}\mathscr{G}(L):\mathscr{F}\mathscr{G}(E)] \leq [\mathscr{G}(E),\mathscr{G}(L)]$.
Thus

$$\begin{split} [L:E] &\leq [\mathscr{FG}(L):\mathscr{FG}(E)] \\ &\leq [\mathscr{G}(E):\mathscr{G}(L)] \\ &\leq [L:E] \end{split}$$

So these inequalities are actually all equalities.

Therefore $[\mathscr{G}(E):\mathscr{G}(L)]=[L:E].$

$$[\mathscr{FG}(L):E]=[\mathscr{FG}(L):\mathscr{FG}(E)]=[L:E]$$

By linear algebra, $\mathscr{FG}(L) = L$

2. (a) So we have our $n \times (n+1)$ matrix A over K. We have a linear transformation $K^{n+1} \to K$, $x \mapsto (Ax^T)^T$

$$|A\rangle \neq \{0\}$$

Chose $b \in \ker(A), b \neq 0$, where $b = (b_1, \dots, b_n)$ with $|\{b_i \mid b_i \neq 0\}|$ minimal.

 $\sum_{i=0}^{n+1} \phi_i(a_j)b_j = 0 \text{ for all } i..$

It is okay to permute js, so without loss of generality, $g = (b_1, \ldots, b_k, 0, \ldots, 0)$ where $b_1, \ldots, b_k \neq 0$.

Without loss of generality, suppose $b_1 = 1$

We claim there exists ℓ such that $b_{\ell} \notin \mathcal{F}(J)$.

If all $b_j \in \mathscr{F}(J)$, then $\phi_i(b_j) = b_j$ for all i, j.

Now for all
$$i$$
, $0 = \sum_{j} \phi_i(a_j)b_j = \sum_{j} \phi_i(a_j)\phi_i(b_j) = \sum_{i} (\sum_{j} a_j b_j)$

Thus $\sum_{j} a_{j}b_{j} = 0$ for all j, as this is in both $\mathscr{F}(H), \mathscr{F}(J)$

This contradicts the linear independence of $a_i s$ over $\mathcal{F}(J)$.

Thus there exists $\ell \in \{2, ..., k\}$ such that $b_{\ell} \notin \mathcal{F}(J)$.

Permute j = 2, ..., k to get $\ell = 2$.

Now
$$b = \{1, \underbrace{b_2}_{\notin \mathscr{F}(J)}, \dots, b_j, 0, \dots, 0\}$$

Thus there exists $\phi \in J$ such that $\phi(b_2) \neq b_2$.

So $\phi\phi_1(H),\ldots,\phi\phi_n(H)$ is another list of distinct left cosets of H in J.

Thus there exists $\pi \in S_n$ such that $\phi \phi_j(H) = \phi_{\pi(j)}(H)$ for all j.

$$\sum_{j} \phi_{\pi(i)}(a_j)\phi(b_j) = \sum_{j} \phi\phi_i(a_j)\phi(b_j) = 0 \text{ for all } i.$$

Chose $b' = (1, \phi(b_2), \dots, \phi(b_k), 0, \dots, 0)$ in ker A', where $A' = (\phi_{\pi(i)}(a_j))$.

 $\ker A' = \ker A$, so $b' \in \ker A$.

Thus
$$c = b - b' = (0, \underbrace{b_2 - \phi(b_2)}_{\neq 0}, \dots, b_k - \phi(b_k), 0, \dots, 0) \in \ker(A)$$

This contradicts the minimality of k.

(b) Analagous to 1b

Corollary 0.10.

- (a) All finite subgroups of Gal(K : F) are closed.
- (b) $[K:F] < \infty$ implies $|\operatorname{Gal}(K:F)| \le [K:F]$ is finite
- (c) $[K:F] < \infty$ implies \mathscr{F} is injective and \mathscr{G} is surjective.

Proof. $\{ \mathrm{Id}_K \} = \mathscr{G}(K) \text{ closed. For all } H \in \mathrm{Gal}(K:F), H = \mathscr{G}^{-1}\mathscr{F}(H).$

Proposition 6.

- (a) $L \in \text{Intermed } stable \ implies \ that \ Gal(K:L) \ is \ a \ normal \ subgroup \ of \ Gal(K:F)$
- (b) H a normal subgroup of Gal(K:F) implies $\mathscr{F}(H) \in Intermed$ is stable.

Proof.

(a) $\theta \in \text{Gal}(K : L), \phi \in \text{Gal}(K : F).$ $\theta(x) = x$ for all $x \in L$. Since we have stability, $\phi(x) \in L$ for all $x \in L$.

$$\Rightarrow \theta \phi(x) = \phi(x)$$
$$\Rightarrow \phi^{-1}\theta \phi(x) = x$$
$$\Rightarrow \phi^{-1}\theta \phi \in \text{Gal}(K:F)$$

(b) $\phi \in H$, so $\phi(x) = x$ for all $x \in \mathcal{F}(H)$. Say $\theta \in \text{Gal}(K : F)$. By normality of H, $\theta^{-1}\phi\theta \in H$.

$$\Rightarrow \theta^{-1}\phi\theta(x) = x \qquad \forall x \in \mathscr{F}(H)$$

$$\Rightarrow \phi\theta(x) = \theta(x) \qquad \forall x \in \mathscr{F}(H), \phi \in H$$

$$\Rightarrow \theta(x) \in \mathscr{F}(H) \qquad \forall x \in \mathscr{F}(H)$$

Lecture 10, 4/21/23

Definition 0.8. A field extension $F \subseteq K$ is <u>Galois</u> if $F = \operatorname{Fix}_K \operatorname{Gal}(K : F)$

Theorem 0.11 (Little Theorem of Galois Theory). Let $F \subseteq K$ be a field extension, $[K:F] < \infty$. Then the following are equivalent:

- **1.** $F \subseteq K$ is Galois
- **2.** \mathscr{F},\mathscr{G} are inverse bijections
- **3.** $|\operatorname{Gal}(K:F)| = [K:F]$

If so, for all $L \in \text{Intermed}$, $L \subseteq K$ is Galois.

Proof. $[K:F] < \infty$ implies Gal(K:F) finite. So all $H \in SubGal$ are closed.

 $1 \Rightarrow 2$

Galois $\implies F$ closed. So by prop, all $L \in$ Intermed are closed.

 $2 \Rightarrow 3$

 $F = \mathscr{F}\mathscr{G}(F) \implies F$ closed. So by prop,

$$|\operatorname{Gal}(K:F)| = |\mathscr{G}(F) : \{\operatorname{Id}_K\}]$$
$$= |\mathscr{G}(F) : \mathscr{G}(K)]$$
$$= [K:F]$$

 $3 \Rightarrow 1$

 $F \subseteq \mathscr{FG}(F) \subseteq K$.

$$[K : F] \ge [K : \mathscr{FG}(F)]$$

$$= [\mathscr{F}(\{\mathrm{Id}_K\}) : \mathscr{FG}(F)]$$
by prop = $[\mathscr{G}(F) : \{\mathrm{Id}_K\}]$
by def = $|\mathrm{Gal}(K : F)|$
by assumption = $[K : F]$

Thus $[K:F] = [K:\mathscr{FG}(F)]$. So $[\mathscr{FG}(F):F] = 1$, i.e. $\mathscr{FG}(F) = F$.

If we have 1-3, then L closed, so $L = \mathscr{FG}(L) = \operatorname{Fix}_K \operatorname{Gal}(K : L)$. Thus $L \subseteq K$ is Galois.

Example 0.8. $F \subseteq K, [K:F] = 2, \operatorname{char} F \neq 2 \implies F \subseteq K$ Galois

Reason: $|\operatorname{Gal}(K:F)| = 2$.

 $F = \mathbb{Q} \subseteq K = \mathbb{Q}(a,\zeta) \subseteq \mathbb{C}, \ a = \sqrt[3]{2} \in \mathbb{R}, \zeta = \text{root of } X^2 + X + 1$

There exists $\phi_{ij} \in \text{Gal}(K : F)$ such that $\phi_{ij}(a) = a\zeta^i$ (i = 0, 1, 2) and $\phi_{ij}(\zeta) = \zeta^j$ (j = 1, 2)

Therefore $|\operatorname{Gal}(K:F)| = 6 = [K:F].$

For all $L \in Intermed, L \subseteq K$ is Galois.

 $F \subseteq \mathbb{Q}(a)$ is not Galois.

Lemma 2. Let $F \subseteq K$ be Galois, $f \in F[X]$ an irreducible polynomial with a root in K. Then f splits over K and has no multiple roots.

Proof. Without loss of generality, suppose f is monic.

Say $a_i \in K$ is a root of f.

Let a_1, a_2, \ldots, a_r be the distinhet roots of f in K.

Set $g = (X - a_1)(X - a_2) \cdots (X - a_r) \in K[X]$.

We claim $g \in F[X]$.

Let $\phi \in G = Gal(K : F)$.

 ϕ permutes $\{a_1,\ldots,a_r\}$

 $\tilde{\phi}(g) = g$ so $\phi(c_i) = c_i$ for all coefficients c_i of g.

Thus all $c_i \in \text{Fix}_K(F) = F_1$, i.e. $g \in F[X]$.

Let $f = p_{a_1,F}$.

 $g(a_1) = 0 \implies f \mid g$.

 $\deg(g) = r \le \deg(f).$

Thus f = g

Corollary 0.12. Let $F \subseteq L \subseteq K$ be a tower fo fields. If L is algebraic over V and Galois over F, then L is stable.

Proof. Chose $a \in L$, $\phi \in \text{Gal}(K : F)$. $p_{a,F} \in F[X]$ is irreducible, with a as a root. By lemma, $p_{a,F}$ splits over L. So all rotos of $p_{a,F}$ in K are in L. ϕ sends a to a root of $p_{a,F}$. Thus $\phi(a) \in L$.

Theorem 0.13 (Main Theorem of Galois Theory). Let $F \subseteq K$ be a Galois field extension, $[K:F] < \infty$. Then

1. There exist inverse bijections

$$\{intermediate\ fields\ of\ F\subseteq \overbrace{K\}} \quad \underbrace{\{subgroups\ of\ \mathrm{Gal}(K:F)\}}_{\mathscr{G}}$$

such that $\mathscr{G}(L) = \operatorname{Gal}(K : L), \mathscr{F}(H) = \operatorname{Fix}_K(H).$

- **2.** If $E \subseteq L$ are intermediate fields, $[\mathscr{G}(E) : \mathscr{G}(L)] = [L : E]$.
- **3.** If $H \leq J \leq \operatorname{Gal}(K : L)$, $[\mathscr{F}(H) : \mathscr{F}(J)] = [J : H]$.
- **4.** For all intermediate fields $L, L \subseteq K$ is Galois, and

$$F \subseteq L \ Galois \iff L \ is \ stable \iff \operatorname{Gal}(K:L) \ is \ a \ normal \ subgroup \ \operatorname{Gal}(K:F)$$

$$If \ so, \ \operatorname{Gal}(K:F) \ \operatorname{Gal}(K:L) \cong \operatorname{Gal}(L:F)$$

Lecture 11, 4/24/23

Proof. We will now prove the Main Theorem of Galois Theory.

Part 1 follows from the Little theorem. This implies all intermediate fields are closed and all subgroups of Gal(K : F) are closed.

2 and 3 follow from prop 5 on page 13 of this document.

Now for 4.

By the Little Theorem, $L \subseteq K$ is Galois.

By a previous prop, we know $F \subseteq L$ is Galois iff L is stable. By another one, we know $L = \mathscr{FG}(L)$ is stable iff $\operatorname{Gal}(K:L) \preceq \operatorname{Gal}(K:F)$

Assume L is stable, let $a \in L \setminus F$. $F \subseteq K$ Galois implies there exists $\phi \in \operatorname{Gal}(K : F)$ such that $\phi(a) = a$.

By stability, ϕ restricts to a map in Gal(L:F) and $\phi|_{L}(a) \neq a$.

Thus $F \subseteq L$ is Galois.

The last step is left as an exercise.

Definition 0.9. For F a field, F[X] a polynomial ring, $f \in F[X]$.

• Let $F \subseteq K$ be a field extension. We say that $a \in K \setminus F$ is a multiple root of f if $(X - a)^2 \mid f$ in K[X].

As an exercise, suppose that $K \subseteq L$ is a field extension, $f, g \in K[X]$ polynomials. Then $f \mid g$ in K[X] iff $f \mid g$ in L[X].

- a is a simple root of f if it's not a multiple root.
- If f is irreducible, then f is separable over F if f has no multiple roots in any extension field.
- If f arbitrary, f is separable over F if all irreducible factors of f are separable over F.

Now let $F \subseteq K$ be a field extension.

- Suppose $a \in K$ is algebraic over F. Then a is separable over F if $p_{a,F}$ is separable over F.
- Let $F \subseteq K$ be algebraic. $F \subseteq K$ is separable if each $a \in K$ is separable over F.
- $F \subseteq K$ is <u>normal</u> if each polynomial over F with a root in K splits over K.

Note: $F \subseteq K$ a field extension. If $F \subseteq K$ is algebraic and Galois, it is separable and normal.

Example 0.9. Let [K:F]=2. If char $F\neq 2$, then K is separable over F.

Say $a \in K$, $p_{a,F} = X^2 + bX + c$.

 $a^2 + ba + c = 0.$

Suppose $p_{a,F} = (X - d)^2 = X^2 - 2d + d^2$.

Then $-2d = b \in F$, so $d \in F$. Contradiction.

Thus [K:F]=2 implies $F\subseteq K$ is normal.

Definition 0.10. Let R be a ring, and $f \in R[X]$ a polynomial.

 $f = \sum_{i=0}^{n} r_i X^i, r_i \in R.$ Define $f' = \sum_{i=1}^{n} i r_i X^{i-1}$, the <u>formal derivative</u>.

Exercise: show the product rule holds. That is, (fg)' = f'g + fg'.

Lecture 12, 4/26/23

Separability criterion

Theorem 0.14. Let F be a field, $f \in F[X]$ a polynomial.

- (a) f has no multiple roots in any extension field iff gcd(f, f') = 1
- (b) If f is irreducible, then f is separable over F iff $f' \neq 0$.

Exercise: for $f, g \in F[X] \subseteq K[X]$, gcd(f, g) = 1 in F[X] iff gcd(f, g) = 1 in K[X].

Proof.

(a) \Rightarrow Suppose $gcd(f, f') \neq 1$. There exists $g \in F[X]$ of degree at least 1 such that $g \mid f$ and $g \mid f'$.

Let $K \supseteq F$ be a splitting field for g.

Let $a \in K$ be a root of g. Thus f = (X - a)h in K[X], f' = h + (X - a)h'. $(X - a) \mid g, g \mid f'$ implies $(X - a) \mid h$.

So $(X-a)^2 \mid f$ in K[X].

 \Leftarrow Suppose f has a multiple root a in an extension field K.

$$f = (X - a)^2 g, g \in K[X].$$

$$f' = 2(X - a)g + (X - a)^2g'.$$

Thus $(X - a) \mid f' \implies \gcd(f, f') = 1$.

- (b) \Rightarrow Since f is separable, gcd(f, f') = 1 by (a). Thus $f' \neq 0$.
 - \Leftarrow Suppose f is not separable. Then $g = \gcd(f, f') \neq 1$ by (a).

So deg $g \ge 1$, $g \mid f, g \mid f'$.

Since f is irreducible, g is a scalar times f.

So $\deg f = \deg g \leq \deg f < \deg g$. Unless f' = 0, this is a contradiction.

So f' = 0.

Corollary 0.15. If char F = 0, all polynomials over F are separable. Therefore, all algebraic field extensions of F are separable.

Proof. If char F = 0, then there is no \mathbb{Z} -torsion, so the formal derivative can't possibly be zero unless the degree of f is 0.

Theorem 0.16. Let $F \subseteq K$ be an algebraic field extension. Then the following are equivalent:

- **1.** $F \subseteq K$ is Galois
- **2.** $F \subseteq K$ is separable and K is a splitting field over F for some set of polynomials in F[X].
- **3.** K is a splitting field over F for some set of separable polynomials in F[X].

Proof.

$$(1) \Rightarrow (2)$$

Already done.

$$(2) \Rightarrow (3)$$

Let K be a splitting field over F for a set of polynomials $S \subseteq F[X]$. Let S' be a collection of all the monic irreducible polynomial factors in S. Clearly, K is also a splitting field of S' over F.

 $f \in S^1$ splits over K, implying f has a root $a \in K$.

 $f = p_{a,F}$, so $F \subseteq K$ implies f separable over F.

$$(3) \Rightarrow (1)$$

Let K be a splitting field over F for some set S of separable polynomials.

Stepq 1: $[K:F] < \infty$.

For n = 1, this is trivial.

Suppose n > 1. Then $F \subseteq K \Rightarrow$ the polynomials cannot all split over F.

So there exists $g \in S$ that does not split over F.

Thus, g has a monic irreducible factor $f \in F[X]$ such that deg $f \geq 2$.

Let $a \in K$ be a root of f.

Thus $f = p_{a,F}, a \neq F$.

 $L = F(a) \supseteq F$.

So [K:L] < n by the tower rule.

This implies

- **1.** K is a splitting field for S over L.
- **2.** All polynomials in S are separable over L.

By induction, this implies that $L \subseteq K$ is Galois.

So |Gal(K : L)| = [K : L].

Let G = Gal(K : F), H = Gal(K : L).

|G| = |H|[G:H].

[K:F] = [K:L][L:F].

 $[L:F] = \deg p_{a,F} = \deg f = m.$

By prop 5 on page 13, we know $[G:H] \leq [L:F]$.

f has m distinct roots in K, say a_1, \ldots, a_m .

By the Extension Lemma, there exist F-automorphisms $\phi_i : F(a) \to F(a_i)$ such that $\phi_i(a) = a_i$.

Let K be a splitting field for S over F(a) and $F(a_i)$.

By uniqueness of splitting fields, there exists isomorphisms $\psi_i: K \to K$ extending ϕ_i . $\psi_i \in G$.

$$\psi_j^{-1}\psi_i(a) = \psi_j^{-1}(a_i) \neq \psi_j^{-1}(a_j) =$$

Thus $\psi_i^{-1}\psi_i \notin H$ if $i \neq j$.

So $\psi_i H \neq \psi_i H$.

Thus $[G:H] \geq m$.

So [G:H]=m, i.e. |G|=[K:F], so $F\subseteq K$ is Galois.

Lecture 14, 4/28/23

We continue the proof.

For $(3) \Rightarrow (1)$, we have shown step 1, $[K:F] < \infty$.

Now for step 2: [K : F] arbitrary.

Let K = F(R), where $R = \{\text{all roots in } K \text{ of polynomials in } S\} = \bigcup_{\text{finite } T \subseteq S} R_T = \{\text{all roots in } K \text{ of polynomials in } T\}$

 $K = \bigcup_{\text{finite } T \subseteq S} F(R_T).$

 $F(R_T)$ is a splitting field for T over F.

Thus $[F(R_T):F]<\infty$.

By step 1, $F(R_T)$ is Galois over F.

Look at $a \in K \setminus F$.

There exists a finite set $T \subseteq S$ such that $a \in F(R_T)$.

There exists $\phi \in \operatorname{Gal}(F(R_T):F)$ such that $\phi(a)=a$.

K is a splitting field for S over $F(R_T)$.

By uniqueness of splitting fields, ϕ extends to an isomorphism $\psi: K \to K$.

 $\psi \in \operatorname{Gal}(K:F), \psi(a) = \phi(a) \neq a.$

Thus $F \subseteq K$ is Galois.

Theorem 0.17. Let $F \subseteq K$ be an algebraic field extension. Let \overline{K} be an algebraic closure of K. The following are equivalent:

- **1.** $F \subseteq K$ normal
- **2.** K is a splitting field for some set S of polynomials over F.
- **3.** K is a stable intermediate field of $F \subseteq \overline{K}$.

Proof.

$$(1) \Rightarrow (2)$$

$$S = \{ p_{a,F} \mid a \in K \}.$$

By normality, all $p_{a,F}$ split over K. $K = \{\text{roots of } p \in S \text{ in } K\}$.

Therefore K is a splitting field for S over F.

$$(2) \Rightarrow (3)$$

Let $\phi \in \operatorname{Gal}(\overline{K} : F)$.

Let K = F(R), where $R = \{\text{roots in } K \text{ of } f \in S\}$.

For all $f \in S$, ϕ permutes roots of f in K.

Therefore $\phi(R) \subseteq R$, implying $\phi(K) \subseteq F(R) = K$.

$$(3) \Rightarrow (1)$$

Let $f \in F[X]$ be irreducible with a root $a \in K$. We want to show f splits over \overline{K} .

Let a_1, \ldots, a_r be the roots of f in \overline{K} .

For all i, $p_{a,F}$ =constant times $f = p_{a_i,F}$.

By the Extension Lemma, there exists F-isomorphism $\phi_i: F(a) \to F(a_i)$ such that $\phi_i(a) = a_i$.

Since \overline{K} is an algebraic closure of F, it is also an algebraic closure of F(a) and $F(a_i)$.

By uniqueness of algebraic closures, ϕ_i extends to an isomorphism $\psi_i : \overline{K} \to K$, $\phi_i \in \operatorname{Gal}(\overline{K} : F)$

By stability, $\psi_i(K) \subseteq K$, implying $a_i \in K$.

Thus f splits over K, i.e. $F \subseteq K$ is normal.

Theorem 0.18. Let $F \subseteq K$ be an aglebraic field extension. $F \subseteq K$ is Galois iff it is both separable and normal.

Proof. Previous 2 theorems.

Definition 0.11. Let $F \subseteq K$ be an algebraic field extension. A <u>normal closure of K over F is an extension field $L \supseteq K$ such that</u>

- $F \subseteq L$ is normal.
- L is minimal.

Theorem 0.19. Let $F \subseteq K$ be an algebraic field extension.

- **1.** There exists a normal closure L for F over K, and $F \subseteq L$ is algebraic.
- 2. L is unique up to K-isomorphim.
- **3.** If $[K : F] < \infty$, then $[L : F] < \infty$.
- **4.** If $F \subseteq K$ is separable, then $F \subseteq L$ is Galois.

Proof. exercise

Definition 0.12. A field F is <u>perfect</u> if every algebraic extension field of F is separable over F.

Example 0.10. Anything with char F = 0 is perfect. $\mathbb{F}_2(Y)$ is not perfect, and indeed $\mathbb{F}_p(Y)$ is not perfect for any prime p.

Example 0.11. Any finite field is perfect. Say F a field, char F = p > 0. $F \to F$, $a \mapsto a^p$, the Frobenius map on F.

Lecture 14, 5/1/23

Frobenius map: $\phi_F: F \to F$, $f(x) = x^p$.

Theorem 0.20. Let F be a field. Then the following are equivalent:

- **1.** F is perfect
- **2.** All extension fields of finite degree over F are separable over F.
- **3.** Every irreducible polynomial in F[X] is separable over F.
- **4.** Either char F = 0, or char F = p, and ϕ_F is surjective.

Proof.

$$(1) \Rightarrow (2)$$

Done

$$(2) \Rightarrow (3)$$

Chose $p \in F[X]$ irreducible. Then there exists an extension field $K = F(a) \supseteq F$ such that $[K : F] < \infty, p(a) = 0$.

 $K \supseteq F$ is separable, so $p = p_{a,F}$ is separable over F.

$$(3) \Rightarrow (1)$$

Done

$$(4) \Rightarrow (3)$$

Assume char F = p > 0.

Choose $f \in F[X]$ irreducible. Suppose f is not separable over F.

Exercise: $f = g(X^p)$ for some $g \in F[X]$.

$$g = \sum_{i=0}^{n} c_i X^i, c_i \in F.$$

there exists $b_i \in F$ such that $b_i^p = c_i$.

Thus,

$$f = g(X^p)$$

$$= \sum_{i=0}^{n} c_i X^{pi}$$

$$= \sum_{i=0}^{n} b_i^p X^{pi}$$

$$= \left(\sum_{i=0}^{n} b_i X^i\right)^p$$

This contradicts that F is irreducible. Thus f is separable.

Corollary 0.21. Any finite field is perfect.

Lemma 3. Let F be any field. Then any finite subgroup $G \subseteq F^*$ is cyclic.

Proof. Since G is abelian, G is a direct product of its Sylow subgroups, which must all be normal.

By the Chinese Remainder Theorem, it is enough to show all Sylow subgroups are cyclic.

Without loss of generality, G is in a p-group for some prime p.

 $M = \{m \ge 0 \mid p^m = \text{ order of an element in } G\}.$

 $n = \max(M)$, so there exists $x \in G$ such that $|x| = p^n$.

For all $g \in G$, $|g| | p^n$, so $g^{p^n} = 1$.

Therefore all $q \in G$ are roots of $X^{p^n} - 1$.

So $|G| \leq p^n$, implying $G = \langle x \rangle$

Corollary 0.22. Any extensions of finite fields is simple.

Proof. Say $F \subseteq K$ is an extension of finite fields. $K^{\times} = \langle x \rangle$ for some $x \in K$. Thus K = F(x).

Theorem 0.23. (Steinitz's Theorem)

Let $F \subseteq K$ be a field extension, $[K : F] < \infty$. Then following are equivalent:

- **1.** $K \supseteq F$ is simple.
- **2.** There exist only finitely many intermediate fields of $F \subseteq K$.

Proof.
$$(1) \Rightarrow (2)$$

K = F(a) for some $a \in K$. Let $\mathscr{L} = \text{Intermed}(F \subseteq K)$, $\mathscr{P} = \{\text{monic polynomials in } K[X] \text{ that divide } p_{a,F} \}$.

Define $\mu: \mathcal{L} \to \mathscr{P}$ by $\mu(L) = p_{a,L}$.

We claim μ is injective.

To prove this claim, we prove if $L \in \mathcal{L}$, then $L = F(\text{coefficients of } p_{a,L})$.

Say $p_{a,L} = \sum_{i=0}^{n} c_i X^i, c_i \in L.$

Let $L' = F(c_0, \ldots, c_n) \subseteq L$.

 $p_{a,L'} \mid p_{a,L} \text{ in } L'[X].$

 $p_{a,L} \mid p_{a,L'} \text{ in } L[X].$

Thus $p_{a,L} = p_{a,L'}$.

 $[K:L] = [L(a):L] = \deg p_{a,L} = \deg p_{a,L'} = [L'(a):L'] = [K:L'].$

By the tower rule, [L:F] = [L':F], i.e. L = L'.

This implies that μ is injective.

Thus \mathcal{L} is finite.

$$(2) \Rightarrow (1)$$

Without loss of generality, suppose K is infinite.

So F must be infinite. Let $K = F(a_1, \ldots, a_m)$. Suppose $F \subseteq K$ is not simple.

Choose i < m minimal such that $F(a_1, \ldots, a_{i+1})$ is not simple over F.

Then $F(a_1, \ldots, a_i) = F(a)$ for some a.

 $F(a_1, \ldots, a_i, a_{i+1}) = F(a, b)$ where $b = a_{i+1}$.

For all $c \in F$, set $L_c = F(a + cb)$.

Claim: $L_c \neq L_{c'}$ when $c \neq c'$.

Why? Suppose $F(a+cb) = L_c = L_{c'} = F(a+c'b)$.

Then $a + c'b \in F(a + cb)$, so $(c - c')b \in L_c$.

 $c - c' \in F$, so $b \in L_c$.

Thus $a \in L_c$.

So $L_c = F(a, b)$

contradiction

Thus we have infintely many intermediate fields, a contradiction.

Lecture ?????, 5/3/23

Corollary 0.24. Let $F \subseteq K$ be a seperable field extension with $[K : F] < \infty$. Then $F \subseteq K$ has to be a simple extension.

Proof. Let L be a normal closure for K over F. $[L:F] < \infty$, so L is Galois over F. So {intermed fields of $F \subseteq L$ } is in bijection with { subgroups of Gal(L:F)}

So there are only finitely many intermediate fields for $F \subseteq K$. So by Steinitz, we are done.

Let F be a finite field.

- char F = p > 0, so the prime field of F is isomorphic to \mathbb{F}_p .
- If $n = [F : \mathbb{F}_p]$, then $F \cong \mathbb{F}_p^n$ as vector spaces, so $|F| = p^n$.
- ϕ_F is an \mathbb{F}_p -automorphism of F, with ϕ_F given by $x \mapsto x^p$.
- F is perfect, because ϕ_F is surjective.
- F^* is cyclic.

How can we build fields of order p^2 ? Well, we can adjoin the root of a quadratic. For p=2, consider $X^2+X+1\in \mathbb{F}_2[X]$. For $p=3,\,X^2+1\in \mathbb{F}_3[X]$. For $p=5,\,X^2+2\in \mathbb{F}_2[X]$.

Indeed for any odd p, $\{x^2 \mid x \in \mathbb{F}_p^*\} \subsetneq \mathbb{F}_p$. So there is some $k \in \mathbb{F}_p^*$ such that $X^2 - k \in \mathbb{F}_p[X]$ is irreducible.

Look at $g = X^{p^n} - X \in \mathbb{F}_p$, g' = -1. Then gcd(g, g') = 1, so g is separable over \mathbb{F}_p . Likewise for $f = X^{p^{n-1}} - 1$.

Theorem 0.25. Let p be a prime, $n \in \mathbb{N}$. Assume there exists a field F of order p^n . Then

- **1.** F is a splitting field over \mathbb{F}_p of X^{p^n-X} or $X^{p^n-1}-1$. $\mathbb{F}_p\subseteq F$ is Galois, $\mathrm{Gal}(F:\mathbb{F}_p)=\langle \phi_F\rangle$, $[F:\mathbb{F}_p]=n$.
- **2.** Let $K \supseteq F$ be an extension field of finite degree. Then $|K| = p^{dn}$, $F \subseteq K$ Galois, $\operatorname{Gal}(K : F) = \langle \phi_K^n \rangle$

Proof. char F = p, $[F : \mathbb{F}_p] = n$.

1. $|F^*| = p^n - 1$, $a^{p^n} = 1$ for all $a \in F^*$, so $a^{p^n} = a$ for all $a \in F$.

So all $a \in F$ are roots of $g = X^{p^n} - X \in \mathbb{F}_p[X]$.

So g splits over F and is separable over \mathbb{F}_p . This tells us that F is a splitting field for g over \mathbb{F}_p . Therefore F is Galois over \mathbb{F}_p .

$$|\operatorname{Gal}(F:\mathbb{F}_p)| = n, \ \phi_F: x \mapsto x^p, \ \phi_F^n: x \mapsto x^{p^n}, \ \text{so} \ \phi_F^n = \operatorname{Id}_F.$$

For $1 \le j < n$:

$$\{a \in F \mid \phi_f^j(a) = a\} = \underbrace{\{\text{roots in } F \text{ of } X^{p^j} = X\}}_{\text{size } \leq p^j < |F|}$$

so $\phi_F^j \neq \mathrm{Id}_F$, so $|\phi_F| = n$ and $\mathrm{Gal}(F : \mathbb{F}_p) = \langle \phi_F \rangle$.

2. $|K| = |F|^d = p^{dn}$. $\mathbb{F}_p \subseteq K$ is Galois by 1, so $F \subseteq K$ is Galois.

So $|\operatorname{Gal}(K:F)| = d. \ \phi_K: K \to K, x \mapsto x^p.$

For all $a \in F$, $a = a^{p^n} = \phi_K^n(a)$, so $\phi_F^n \in \operatorname{Gal}(K : F)$, and $|\phi_K| = nd$, so $|\phi_K^n| = d = |\operatorname{Gal}(K : F :)|$, so it follows that $\operatorname{Gal}(K : F) = \langle \phi_K^n \rangle$