

INECUACIONES

INECUACIONES

INECUACIÓN: Es toda desigualdad condicional que contiene una o mas cantidades llamadas variables y que sólo es verdadera para determinados valores de dichas variables.

Las inecuaciones son de la forma P(x) > 0 P(x) < 0

La solución de una inecuación es el conjunto de todos los números reales, cada uno de los cuales al reemplazarse en lugar de la variable "x" hace verdadera la desigualdad

INECUACIONES CUADRÁTICAS

Es una desigualdad condicional que tiene la forma

$$P(x) = ax^2 + bx + c > 0$$

$$Q(x) = ax^2 + bx + c < 0$$
 $a, b, c \in \Re$, $a \ne 0$

MÉTODOS DE SOLUCIÓN:

METODO DE FACTORIZACION

Este método se usa cuando el término $ax^2 + bx + c$ se puede factorizar. Descomponiendo dicho trinomio en sus respectivos factores para luego aplicar los teoremas:

$$a.b > 0 \longleftrightarrow (a > 0 \land b > 0) \lor (a < 0 \land b < 0)$$

 $a.b < 0 \longleftrightarrow (a > 0 \land b < 0) \lor (a < 0 \land b > 0)$

Ejemplo: Resolver $3x^2 + 11x + 6 < 0$

MÉTODOS DE SOLUCIÓN:

MÉTODO DE COMPLETAR EL CUADRADO

Consiste en transformar el trinomio $P(x) = ax^2 + bx + c$ a la forma $P(x) = a(x+d)^2 + k$

a fin de usar

$$a^{2} > b \longleftrightarrow b \ge 0 \land \left(a > \sqrt{b} \lor a < -\sqrt{b}\right)$$
$$a^{2} < b \longleftrightarrow b \ge 0 \land \left(-\sqrt{b} < a < \sqrt{b}\right)$$

Ejemplo: Resolver $3x^2 - 4x - 5 > 0$

MÉTODO DE LOS PUNTOS CRÍTICOS

Dada una función de segundo o mayor orden se procede de la siguiente manera:

- Se factoriza la expresión dada
- Se determina los puntos críticos igualando cada factor a cero
- Ubicamos los puntos críticos en la recta real.
- Determinamos los intervalos de variación.
- Se analiza el signo de cada intervalo, según sea el signo de la desigualdad se eligen él o los intervalos que forman el conjunto solución.
- Si P(x) > 0 la solución lo forman los intervalos de signo positivo Si P(x) < 0 la solución lo forman los intervalos de signo negativo

INECUACIONES RACIONALES:

polinomios

Es una desigualdad de la forma
$$\frac{P(x)}{Q(x)} > 0$$
 $\frac{P(x)}{Q(x)} < 0$ donde P(x) y Q(x) son polinomies

CASO I: Inecuaciones racionales de la forma

$$\frac{ax+b}{cx+d} > 0 \qquad \frac{ax+b}{cx+d} < 0$$

por el teorema: $a < 0 \rightarrow a^{-1} < 0$ $a > 0 \rightarrow a^{-1} > 0$

$$a > 0 \to a^{-1} > 0$$

Podemos afirmar que cx + d tendrá el mismo signo que $\frac{1}{cx + d}$

por lo que podemos escribir la

siguiente inecuación equivalente

$$\frac{ax+b}{cx+d} < 0 \Rightarrow (ax+b)(cx+d) < 0$$

$$\mathbf{EJERCICIO} \ \mathbf{01:} \frac{3x-2}{x+1} < \frac{4}{x-2}$$

$$\frac{x+5}{x-6} \le \frac{x-1}{x-3}$$

EJERCICIO 03: $\frac{7}{x-4} + \frac{1}{x+2} \ge -2$

CASO II: Inecuaciones racionales de la forma

$$\frac{ax^2 + bx + c}{a'x^2 + b'x + c'} > 0 \qquad \frac{ax^2 + bx + c}{a'x^2 + b'x + c'} < 0$$

en cualquiera de los dos trinomios puede ocurrir:

A) Que el $\Delta = b^2 - 4ac = 0$ es decir que el trinomio tenga solución doble. En este caso el trinomio tiene sigo fijo $\forall x \in \Re$ que se considera positivo por lo que se puede prescindir de él

B) Que el $\Delta = b^2 - 4ac < 0$ es decir que el trinomio no tiene solución real por lo que tendrá signo fijo que se considera positivo $\forall x \in \Re$ por lo que se puede prescindir de él.

EJERCICIO 01: $\frac{x}{x-1} > \frac{2x}{x+1} - \frac{x-1}{x}$

EJERCICIO 02:
$$\frac{3}{x-1} + \frac{1}{x+1} \ge \frac{3}{x}$$

EJERCICIO 03:
$$\frac{2x-1}{x+1} + \frac{3x-1}{x+2} \le 4 + \frac{x-7}{x-1}$$