ICS 434 Advanced Database Systems

Dr. Abdallah Al-Sukairi sukairi@kfupm.edu.sa

Second Semester 2003 - 2004 (032)

King Fahd University of Petroleum & Minerals Information & Computer Science Department

Outline

- The Relational Data Model: Version 2
- 2. Advanced Data Modeling
- 3. Client-Server Architecture
- 4. Client-Server Databases & Tools
- Databases on the Web
- 6. The System Catalog
- 7. Query Processing and Optimization
- 8. Transaction Processing
- 9. Concurrency Control
- 10. Recovery
- 11. Administration & Security
- 12. Distributed Databases
- 13. Database Replication
- 14. Object-Oriented Databases
- 15. Data Warehousing and Data Mining
- 16. Other Emerging Database Technologies

3. Client-Server Architecture

Classification of DBMSs

- Mainframe (host-based) DBMSs
- PC-Based DBMSs
 - □ Single user
 - □ File/Server
- Client-Server Database Systems
- Distributed DBMSs

Mainframe (Host-Based) DBMSs

- Multi-user environment
- Information sharing
- Centralized data management
- Sophisticated administration and security features
- Advanced operating system features

PC-Based DBMSs

- Graphical User Interface (GUI)
- Ease of use
- Outstanding price/performance ratio
- Advanced communication
- Individual environment
- Increasingly powerful hardware and software
- RISC-based workstations
- Multiprocessing systems

File/Server

Multi-User (LAN version)

File/server vs. Client-Server

User station Server

select students with GPA > 3.0

Why Client-Server?

- Mainframe Computing
- Desktop Computing
- Client-Server computing combines the benefits of both worlds
- Downsizing trend
- Scalability
- Openness
- Enterprise-wide computing model

... Why Client-Server?

- A form of distributed processing
- Hardware
 - □ LAN
 - □ Back-end Server
 - □ Front-end station
- Software
 - Communication software
 - Back-end software
 - □ Front-end tool
- Applications
 - □ Client-Server Databases
 - □ E-mail software
 - □ GroupWare

Client-Server Database Model

Components of Data-Intensive Systems

- Three separate types of functionality:
- Data management
- Application logic
- Presentation
- The system architecture determines whether these three components reside on a single system ("tier) or are distributed across several tiers

Single-Tier Architectures

- All functionality combined into a single tier, usually on a mainframe
 - □ User access through dumb terminals
- Advantages:
 - □ Easy maintenance and administration
- Disadvantages:
 - □ Today, users expect graphical user interfaces.
 - Centralized computation of all of them is too much for a central system

Client-Server Architectures

- Work division: Thin client
 - □ Client implements only the graphical user interface
 - □ Server implements business logic and data management
- Work division: Thick client
 - ☐ Client implements both the graphical user interface and the business logic
 - □ Server implements data management

Components of Client/Server Architecture

- Client
 - □ Front-end application
- Server
 - □ Back-end application

... Client-Server Architectures

- Disadvantages of thick clients
 - □ No central place to update the business logic
 - Security issues: Server needs to trust clients
 - Access control and authentication needs to be managed at the server
 - > Clients need to leave server database in consistent state
 - One possibility: Encapsulate all database access into stored procedures
 - □ Does not scale to more than several 100s of clients
 - > Large data transfer between server and client
 - More than one server creates a problem: x clients, y servers: x*y connections

The Three Layers

- Presentation tier
 - Primary interface to the user
 - □ Needs to adapt to different display devices (PC, PDA, cell phone, voice access?)
- Middle tier
 - ☐ Implements business logic (implements complex actions, maintains state between different steps of a workflow)
 - □ Accesses different data management systems
- Data management tier
 - □ One or more standard database management systems

The Three-Tier Architecture

Presentation tier

Client Program (Web Browser)

Middle tier

Application Server

Data management tier

Database System

Three-Tier Client/Server Architecture

Advantages of the Three-Tier Architecture

- Heterogeneous systems
 - □ Tiers can be independently maintained, modified, and replaced
- Thin clients
 - □ Only presentation layer at clients (web browsers)
- Integrated data access
 - Several database systems can be handled transparently at the middle tier
 - Central management of connections
- Scalability
 - □ Replication at middle tier permits scalability of business logic
- Software development
 - □ Code for business logic is centralized
 - Interaction between tiers through well-defined APIs: Can reuse standard components at each tier

Example 1: Airline reservations

- Build a system for making airline reservations
- What is done in the different tiers?
- Database System
 - □ Airline info, available seats, customer info, etc.
- Application Server
 - Logic to make reservations, cancel reservations, add new airlines, etc.
- Client Program
 - □ Log in different users, display forms and human-readable output

Example 2: Course Enrollment

- Build a system using which students can enroll in courses
- Database System
 - □ Student info, course info, instructor info, course availability, prerequisites, etc.
- Application Server
 - □ Logic to add a course, drop a course, create a new course, etc.
- Client Program
 - □ Log in different users (students, staff, faculty), display forms and human-readable output

Client/Server DBMS Functions

- Transparent data access to multiple, heterogeneous clients
- Allow client requests to the database server over network
- Process client data requests at local server
- Send only SQL results to clients over network

Summary: Advantages of Client/Server Systems

- Lower network traffic
- Improved processing distribution
- Thinner clients
- Greater processing transparency
- Increased network, hardware, and software transparency
- Improved security
- Decreased costs
- Increased scalability