卵日本国特許庁(JP)

① 特許出願公告

許 公 報(B2)

平5-73793

@Int. Cl. 3

識別記号

庁內整理番号

密码公告 平成5年(1993)10月15日

C 09 D 175/04

PHN PHP

8620-4 J

C 08 G 18/10

請求項の数 2 (全9頁)

耐チツビング塗料用組成物 60発明の名称

> 创特 頭 平1-54575

期 平2-191686 会公

顧 平1(1989)3月7日 他出

@平2(1990)7月27日

@昭63(1988)10月11日@日本(JP)@特顯 昭63-255659 優先權主張

三洋化成工類 衤 俊 鍅 京都府京都市東山区一権野本町11番地の1 伊発 呀 者

株式会社内

京都府京都市東山区一橋野本町11番地の1 三洋化成工業 ഴ 老 秋 Ш 化発

株式会社内

京都府京都市東山区一橋野本町11番地の1 三洋化成工業 明 Œ 男 你発

株式会社内

三岸化成工桑株式会社 京都府京都市東山区一播野本町11番地の1 の出 顕 人

栄 和 審査官 槶 本

#363-183913 (JP, A) @参考文献 2363-86715 (JP, A) 44.00 特第 昭61-172857 (JP, A) 昭63-301215 (JP, A) 特開

昭58-191778 (JP, A) 特開 昭60-161417 (JP, A) 特開

1

砂特計請求の範囲

イソシアネートを含む有機ポリイソシアネートと ポリオール類とからのイソシアネート基を有する ウレタンプレポリマー(a)のプロック化剤(b)による プロック化ウレタンプレポリマー(1)と、

ポリオキシアルキレンポリアミン①、(ポリ) アルキレンポリアミンのオキシアルキレンエーテ ル②、ポリオキシアルキレンポリアミンのケチミ ン⑧およびポリアミド化合物のケチミン@からな 10 不十分という問題点がある。 る群より選ばれる化合物(2)とからなり、一液性・ 焼付け硬化型であることを特徴とする耐チッピン グ絵料用組成物。

2 ブロツク化剤(b)が、オキシル化合物および/ またはラクタム類である請求項1記載の組成物。 発明の詳細な説明

[産業上の利用分野]

本発明は耐チッピング塗料用組成物に関する。 [従来の技術]

従来、耐チツピング塗料として使用できる一波 20 ツク化剤(b)によるブロツク化ウレタンプレポリマ

型ウレタン塗料としては、トリレンジイソシアネ ートなどの有機ポリイソシアネートを使用したブ ロツク化ウレタンプレポリマーとポリオキシアル キレンポリアミンとからなるものがある(例えば 5 特開昭59-226062号公報)。

2

[発明が解決しようとする問題点]

しかし、この組成物は比較的低温、短時間(た とえば120°C、15分)での加熱処理で充分な密着 性(硬化性)が得られず、また耐チツビング性も

[問題点を解決するための手段]

本発明者らは比較的低温、短時間での加熱処理 で充分な密着性(硬化性)を有し、かつ強装性、 耐チツビング性、貯蔵安定性に優れた強料組成物 15 について鋭意検討した結果、本発明に到遠した。

すなわち本発明は、 α , α , α' , α' ーテトラメ チルキシリレンジイソシアネートを含む有機ポリ イソシアネートとポリオール類とからのイソシア ネート基を有するウレタンプレポリマー(a)のプロ

一(1)と、

ポリオキシアルキレンポリアミン①、(ポリ) アルキレンポリアミンのオキシアルキレンエーテ ル②、ポリオキシアルキレンポリアミンのケチミ ン③およびポリアミド化合物のケチミン④からな 5 メチレングリコール (PTMG) が挙げられる。 る群より選ばれる化合物(2)

とからなり、一液性・焼付け硬化型であることを 特徴とする耐チッピング塗料用組成物である。

本発明において、プトック化ウレタンプレポリ マー(1)としては、α, α, α', α'ーテトラメチル 10 の分子量が通常30~500、好ましくは30~400のジ キシリレンジイソシアネート、[以下TMXDIと もいう。] を含む有機ポリイソシアネートと高分 子ポリオールおよび/または低分子ポリオールか らなる平均官能基数2.01以上のポリオール類とか ら誘導される末端にイソシアネート基を有するウ 15 600、好ましくは40~500の低分子トリオールたと レタンプレポリマーのブロック化物が挙げられ

TMXDIを含む有機ポリイソシアネートにおい て、TMXDIとしては0-、m-、p-体および **TMXDIである。**

TMXDI以外の有機ポリイソシアネートとして は、脂肪族ポリイソシアネート[ヘキサメチレン ジィソシアネート (HD!)、ヘキサメチレンイソ シアヌレート、リジンジイソシアネートなど]、25 轍、そのエステルもしくはハライドと低分子ポリ 脂環式ポリイソシアネート [水添ジフエニルメタ ンジィソシアネート (水添MDI)、イソホロンジ イソシアネート (IPDI)、イソホロンイソシアヌ シート、シクロヘキサンジイソシアネート (CHDI)、水素化トリレンジイソシアネート、水 30 ジカルボン酸(テレフタル酸、イソフタル酸な 歯化キシリレンジイソシアネートなど】 芳香鮗 ポリイソシアネート [トリレンジイソシアネート (TDI)、トリレンイソシアヌレート、ジフエニル メタンジイソシアネート (MDI)、ナフチレンジ イソシアネート、キシリレンジイソシアネートな 35 オールの項で配載したものが挙げられ、好ましい と1 およびこれらの二種以上の混合物が挙げられ

有機ポリイソシアネート中のTMXDIの量は通 常50電量%以上、好ましくは60%以上である。

が通常500~3000の高分子ポリオールが挙げられ

上紀高分子ポリオールとしてはポルエーテルポ リオール、ポリエステルボリオール、ポリマーボ

リオール、ポリカーポネートポリオールおよびこ れらの二種以上の混合物が挙げられる。

ポリエーテルポリオールとしてはテトラヒドロ フランの開環重合で得ることができるポリテトラ ポリテトラメチレングリコールについては特別昭 58-11518号公報に記載されている。また低分子 ポリオールのアルキレンオキサイド付加物も使用 できる。低分子ポリオールとしては、水酸蒸当り オールたとえばエチレングリコール、プロピレン グリコール、1, 4ープタンジオール、1, 6-ヘキサンジオールおよび3ーメチルー1,5ーペ ンタンジオール:水酸基当りの分子量が通常30~ えばグリセリン、トリメチロールプロバン、およ びこれらの二種以上の混合物などが挙げられる。 アルキシンオキサイドとしては、エチレンオキサ イド、プロピレンオキサイド、1,2-,1,3 これらの混合物が挙げられる。好ましくはmー 20 ーまたは2, 3ープチレンオキサイド、テトラヒ ドロフラン、スチレンオキサイド、エピクロルヒ ドリンとよびこれらの二種以上の連合物などが挙 げられる。

ポリエステルポリオールとしては、ジカルボン オールとを重縮合させることにより得られるポリ エステルポリオールが挙げられる。ジカルポン酸 としては脂肪旋ジカルボン酸(アジピン酸、セバ チン酸、マレイン酸、ダイマー酸など)、芳香族 ど) およびそれらの無水物が挙げられる。ジカル ポン酸のうちで好ましいものは脂肪族ジカルポン 酸であり、とくに好ましいものはアジピン酸であ る。低分子ポリオールとしてはポリエーテルポリ ものはエチレングリコールおよび 1。 4ープタン ジオールである。またラクトン類(εーカブロラ クトンなど)を低分子ポリオール(エチレングリ コールなど)の存在下、開環重合させて得られる 高分子ポリオールとしては水酸基当りの分子量 40 ポリラクトンポリオールたとえばポリカプロラク トンジオール(PCL)も使用できる。

> ポリマーポリオールは特開昭55-118948号公報 記載のものが使用できる。

ポリカーボネートポリオールとしては前起低分

子ポリオール (2~3個のアルコール) と炭酸ジ エステル (ジメチルカーポネート、ジエチルカー ポネートなど)より得られるものが挙げられる。

高分子ポリオールのうち、好ましいものはポリ テトラメチレングリコールおよびポリエステルポ 5 ルケトンなど) およびこれらの二種以上の混合溶 リオール (とくにポリエチレンアジペートジオー ルおよびポリカプロラムトンポリオール) であ

低分子ポリオールとしてはポリエーテルポリオ ールの項で記載したもの、それらのアルキレンオ *10* キシドの低モル付加物(低分子量のもの)、低分 子母のポリカブロラクトンポリオールおよびこれ らの二種以上の混合物が挙げられる。これらのう ち好ましいものはエチレングリコール、トリメチ ロールプロパン、それらのアルキレンオキシド低 15 好な密着性が得難い。また、このブレボリマーの モル付加物および低分子墨のポリカブロラクトン ポリオールである。

平均官能基数2.01以上のポリオールの例として は日永酸基当りの分子量が500~3000の二階能商 分子ポリオールおよび水酸基当りの分子屋が40~ 20 合物 [アセトオキシム、ケトオキシムたとえばメ 500の低分子トリオールからなるポリオールおよ び回水酸基当りの分子量が500~2500の三官能高 分子ポリオールおよび水酸基当りの分子量が30~ 400の低分子ジオールからなるポリオール、11水 酸基当りの分子量が300~500の二官能ポリオール 25 ど);活性メチレン化合物[マコン酸ジエステム および水酸基当りの分子量が40~500のトリオー ルからなるポリオールおよび川水酸基当りの分子 量が300~500の三官能ポリオールおよび水酸基当 りの分子量が30~300のジオールからなるポリオ ールが挙げられる。

シソシアネート基を有するウレタンプレポリマ ーfalにおいて、有機ポリイソシアネートとポルオ ール類のNQO/OH当量比は通常1.3~3.0、好ま しくは1.5~2.2である。プレポリマー生成反応を 行うに際し、反応を促進させるために公知の重合 35 アニリド、アクリルアマイド、ダイマー酸アミド 用触媒たとえばジプチルスズジラウレート、第一 スズオクトエート、スタナスオクトエートなどの 有機金属化合物、トリエチレンジアミン、トリエ チルアミン、1,8ージアザピシクロ[5,4, 0] ウンデセンー7などの第三級アミン系化合物 40 を使用することも可能である。

反応は通常、溶媒の存在下でおこなう。溶媒は 一般にこの目的で使用されるものはすべつ有効 で、溶剤としては、たとえば、芳香族炭化水素

(トルエン、キシレン、トリメチルペンゼンな ど)、エステル系 (酢酸エチル、酢酸プチルな ど)、エーテル系(ジオキサン、セロソルプアセ テートなど)、ケトン系 (アセトン、メチルエチ 媒を挙げることができる。

反応温度は通常40~140°C、好ましくは60~120 ℃である。反応時間は通常3~10時間、好ましく は5~8時間である。

得られたイソシアネート基を有するウレタンプ レポリマー(a)の分子量は通常500~10000、好まし くは700~8000である。分子量が500未満の場合は 樹脂が硬くてもろくなるため耐チツビング性に好 ましくない影響を与え、10000を越えた場合は良 NC0%は通常1~20%、好ましくは2~15%で

ブロツク化ウレタンプレポリマー(1)を得るため 使用されるプロック化剤的としては、オキシム化 チルエチルケトオキシム(MEKオキシム)、メチ ルイソプチルケトオキシム(MIBKオキシムな ど)など];ラクタム類(εーカプロラクタム、 8ーパレロラクタム、アープチロラクタムな (マロン酸ジェチルなど)、アセチルアセトン、ア セト酢酸エステル (アセト酢酸エチルなど) な ど]; フェノール類(フエノール、mークレゾー ルなど): アルコール (メタノール、エタノール、 30 nープタノールなど); 水酸基含有エーテル (メ チルセロソルブ、ブチルセコソルブなど): 水酸 基含有エステル(乳酸エチル、乳酸アミルな ど);メルカプタン額(プチルメルカプタン、へ キシルメルカブタンなど);酸アミド類(アセト など);イミダゾール類(イミダゾール、2ーエ チルイミダゾールなど);酸イミド類(コハク酸 イミド、フタル酸イミドなど) およびこれらの二 種以上の混合物が挙げられる。

これらのうちで好ましいものは、オキシム化合 物、ラクタム類およびこれらの併用であり、特に 好ましいものは、MEKオキシムおよび/または モーカプロラクタムである。

これらのうちで比較的低温焼付けに好適なプロ

ック化剤はイソシアネートの種類により異なるが イソシアネート基を再生する解離温度が一般に50 ~100℃の範囲内にあるものである。

プロック化剤は上記反応の任意の段階で添加し 反応させ、プロック化ウレタンプレポリマー(1)を 5 合物があげられる。 得ることができる。添加方法としては所定の重合 終了時に添加するか、或は、重合初期に添加する かまたは重合初期に一部添加し、重合終了時に登 部を添加するなどの方法が可能である。好ましく は、重合終了時に添加する方法である。

その添加量は、重合終了時に添加する場合は、 NOOプレポリマーの遊離イソシアネート基に対 して通常1当量以上、2当量未満、好ましくは 1.05~1.5当量である。またブロック化剤を途中 の当量からポリオール類の当量を引いたものとフ ロック化剤をほぼ当量使用するのが好ましい。

プロック化剤を添加する場合の反応温度は、通 **倉、50~150℃である。反応に際し公知のウレク** ン 厳合用触媒を添加して反応を促進することも可 20 能である。

またプロック化ウレタンプレポリマーは二種以料

*上併用してもよくたとえばプロック化剤として MEKオキシムよりなるプロック化ウレタンプレ ポリマーとプロック化剤としてεーカプロラクタ ムよりなるプロツク化ウレタンプレポリマーの混

本発明におけるボイオキシアルキレンポリアミ ン①としては、例えばエチレングリコール、プロ ピレングリコール、ジエチレングリコール、グリ セリン、トリメチロールプロパン、エチレンジア 10 ミン、などの開始剤にアルキレンオキサイド(例 えばエチレンオキサイド、プロゼレンオキサイ ド、1, 2-1, 3-または2, 3-プチレンオ キサイド、テトラヒドロフラン、スチレンオキサ イド、エピクロロヒドリンおよびこれらの二種以 で加える場合、原料ポリイソシアネートのNCO 15 上の混合物など)を付加重合して得られるポリオ・ キシアルキレンジオール、トリオール、テトラオ ールなどのポリエーテルポリオールを、例えばア ンモノリシスなどによつて末端の水酸基をアミノ 基にかえたものが挙げられる。

> ポリオキシアルキレンポリアミンの具体例とし ては、例えばポリプロピレングリコールまたはト リオールから誘導された一般式

[式中、nは約2~50である。] または

[式中、x+y+zは約3~50である。] で表されるポリオキシプロピレンポリアミンなど 35 ン、トリプロピレンテトラミンなど)、(ポリ) シ があげられる。

本発明において、(ポリ) アルキレンポリアミ ンのオキシアルキレンエーテル②における(ボ 」り) アルキレンポリアミンとしては、ジエタノー レンポリアミン(例えばエチレンジアミン、ジエ チレントリアミン、トリエチレンテトラミン、テ トラエチレンペンタミン、ペンタエチレンヘキサ ミンなど)、(ポリ) プロピレンポリアミン (例え

ぼプロピレンジアミン、ジプロピレントリアミ クロアルキレンポリアミン(例えば 1、8ーヮー メタンジアミン、イソホロンジアミン、ジアミノ シクロヘキサン、4,4ーメチレンピスジシクロ ヘキシルアミン、1,3ービス(アミノメチル) ルアミン、トリエタノールアミン、(ポリ) エチ 40 シクロヘキサンなど) が挙げられる。これらの 内、好ましいものは、トリエタノールアミン、エ チレンジアミン、ジエチレントリアミン、ジブロ ピレントリアミンである。 これらのポリアルキレ ンポリアミンは2種以上併用してもよい。

(ポリ) アルキレンポリアミンのオキシアルキ レンエーテル②としては、この(ポリ)アルキレ ンポリアミンのアルキレンオキサイド付加物があ げられる。アルキレンオ中サイドとしては、前述 ①で述べたものが挙げられる。アルキレンオキサ 5 イドは単独でも2種以上併用してもよく、後者の 場合はブロック付加でもランダム付加でも両者の 混合系でもよい。 アルキレンオキサイドのうち好 ましいものはエチレンオキサイド、プロピレンオ キサイドおよびこれらの併用である。この(ボ 10 くは1/0.5~1.5である。活性水素が0.1未満また リ) アルキレンポリアミンのオキシアルキレンエ ーテルの水酸基あたりの分子量は、通常30以上、 好ましくは60~500である。

ポリオキシアルキレンボリアミンのケチミン® ては前述のポリオキシプロピレンジアミン、ポリ オキシブロビレントリアミンなどがあげられる。 ポリアミド化合物のケチミン国において、ポリア ミド化合物としては、エポキシ樹脂硬化剤として 融からなる少なくとも 2種とポリアミン類とを反 応させて得られるボリアミンド化合物が挙げられ ъ.

③のケチミンは上記に例示したポリオキシアル キレンポリアミンとケトンとの反応物であり、④ 25 バリウム、タルク、アルミナ、シリカ、バライ のケチミンは上記に例示したポリアミド化合物と ケトンとの反応物であるが、③、④の各ケチミン を形成するケトンとしては、たとえばアセトン、 メチルエチルケトン、メチルプロピルケトン、メ **チルイソプロビルケトン、メチルイソプチルケト 30 塩化ビニル樹脂、フェノール樹脂、ケトン樹脂、** ンジエチルケトン、ジプロピルケトン、ジイソブ ロピルケトン、ジプチルケトン、ジイソプチルケ トンなどが挙げられる。好ましくはメチルイソブ **チルケトンである。**

り製造できる。上記総合反応は通常、吸水剤の存 在下に水分を留出させながら行う。具体的にほポ リアミンと化学当量論的に過剰のケトンを加え、 かつ適当な溶媒(トルエン、キシレンなど)を添 加した後に加熱、遊流下、水分を分離しながら脱 40 ブロツク化されたイソシアネート基を育するウレ 水総合を行い、必要により過剰のケトンおよび溶 媒を取り出すことにより製造できる。

①~④からなる群より選ばれる化合物(2)は、ブ ロツク化ウレタンブレポリマー[1]に対する硬化剤

成分である。(1)と位との加熱時の反応を促進する ことにより塗料適用時の加熱処理温度を低下また は時間を短縮する目的で、通常用いられる触媒 (例えばオクチル酸鉛、オクチル触スズなどの有 **機会属化合物、トリエチレンジアミン、トリエチ** ルアミンなどの第3級アミン化合物など)を併用 することも可能である。本発明においてブロック 化ウレタンプレポリマー(1)と化合物(2)のNCO/ 活性水素の当量比は、通常1/01~2、好まし は2より大では硬化が不十分または耐チッピング 性が不良となる。

該化合物(2)は単独で使用してもよく、また二種 以上併用してもよい。①と⑧を併用することによ において、ボリオキシアルキレンポリアミンとし おり、塗装性を向上させることができる。また、② と③を併用することにより硬化性と勉強性を向上 させることができる。

本発明の組成物には必要により顔料、充塡剤お よび密媒を配合することができる。顔料としては 公知である、重合脂肪酸、一塩基酸および二塩基 20 酸化チタン、カーポンプラツク、ペンガラ、オキ サイドエローなどの無機額料およびフタロシアニ ンブルー、フタロシアニングリーンなどの有機額 科が挙げられる。

> 充塡剤としてはクレー、炭酸カルシウム、硫酸 ト、ヒル石、白土などが挙げられる。

また溶媒としてはウレタンブレポリマー製造時 に使用した溶媒と同様のものが使用できる。

本発明の組成物はまた必要により繊維素誘導体 合成ゴム、不飽和ポリエステル樹脂、エポキシ樹 脂、メラミン樹脂、尿素樹脂、ロジン樹脂などの 天然樹脂または合成樹脂;レベリング剤、タレ防 止剤、満泡剤、界面活性剤、硬化促進剤、ハジ防 ケチミンはポリアミンとケトンの脱水輪合によ 35 止剤、顔料分散剤、帯電防止剤などの各種助剤な どを使用することもできる。

> 本発明の組成物の処方の一例を示すと、たとえ ば下記の通りである。(%は組成物の重量基準で ある。)

タンプレポリマー(エ)

通常20~90%(好ましくは30~70%) 化合物2[①~④から選択]

通常1~40%(好ましくは2~30%)

顔料および充壌剤

通常5~80% (好ましくは10~60%) 溶 媒 通常10~70% (好ましくは20~50%) その他の配合剤

通常1~20% (好ましくは1~10%) 本発明の組成物は公知の方法で製造することが できる。たとえば上記各成分を通常の混合装置 (ディスパー、三本ロール、ポールミル、スチー ルミル、ペプルミル、アトライター、サンドミ ル、サンドグラインダー、ロールミル、ボツトミ 10 軒と同様な方法で塗装される。 ル、羽椒付高速提件機など)を用いて混合し、一 被途料化することにより得られる。

本発明の組成物は無処理の飲板面あるいは化成 処理された鉄板面に直接にまたは亜鉛メソキされ た鉄板の変面に直接にまたはアニオン電着塗装面 15 もしくはカチオン電着塗装面などの表面に任意の 方法で強装される。

途装はエアースプレー塗装機、エアーレススプ レー塗装機、ホフトエアーレススプレー塗装機な どを用いて行うことができる。エアースプレー第 20 **装機は必要な膜厚を得るのに時間を要するため、** エアーレススプレー塗装機を用いるのが好まし い。エアーレススプレー塗装機の場合ストローク 速度にもよるが通常1ストロークないし2ストロ ークで必要な膜厚を得ることができる。刷毛塗 25 ソシアネート259部、ポリテトラメチレングリコ り、ニーラー塗り、ヘラ付け塗りなどは、補修や 複雑な部位に塗布する際に利用できる。

本発明の組成物の焼付温度は通常90℃以上、好 ましくは100~170℃、特に好ましくは、110~150 でである。旅付時間は通常120分以内、好ましく 30 に3時間反応させNCO%が8.9%(固形分換算) は、10~60分である。

本発明の組成物により形成される乾燥膜厚は通 常30~500g、好ましくは50~350gである。 膜厚 が30世未満では、耐チツビング性が不十分であり 一方500µを越えるとワキ、ダレなどの不具合が 35 生じやすくなる。

本発明の組成物により形成される塗膜の上に通 常中競り強料が塗装され、さらに上塗り塗料が流 袋される。

の場合であつてもウエット・オン・ウエットで塗 装することができるし、また硬化乾燥であつても 途抜することができる。(ドライ・オン・ウエツ F)a

中途り塗装は、上筒り塗膜の光沢の向上や塗膜 面の知い凹凸を埋めるために使用することがで き、通常エポキシ樹脂系塗料、メラミンアルキツ ド樹脂系塗料などが使用される。塗装法としては 5 吹付塗装法、静電塗装法などが挙げられる。また 中塗り塗装は、省略される場合もある。

また上盤り塗料は、突観を目的として使用する ことができ通常メラミンアルキツド砒脂塗料、熱 硬化型アクリル樹脂塗料などが使用され中塗り塗

前記のようにして通常の中強り塗料をウエツ ト・オン・ウエットで塗装したのち、なんらの予 備乾燥を経ることなく約120~170℃の通常の焼付 温度にて硬化乾燥させることもできる。

本発明の組成物は下地塗装の硬化乾燥後の塗膜 上に適用するほか中塗り塗料硬化塗膜や上塗り塗 料硬化強膜上などあらゆる工程で用いることがで きる。

「実施例〕

以下実施例により本発明をさらに説明するが本 発明はこれに限定されるものではない。

突施例中の部は重量部を示す。

実施例 1

α, α, α, α, - サトラメチルキシリレンジイ ール (分子量=1000) 212部、トリメチロールブ ロバン28部、カルビトールアセテート400部を、 窒素気流下、80~100℃で5時間反応させ、次い でジプチルチンジラウレート0.1部を加え、さら のウレタンプレポリマーを得た。次いでMEKオ キシム101部を添加しさらに60~80℃で3時間反 応させた後、赤外吸収スペクトルによりイソシア ネート基が消失していることを確認した。

かくして箇形分60%のブロック化されたイソシ アネート基を有するウレタンプレポリマー溶液を 得た。このプロック化されたイソシアネート基を 有するウレタンプレポリマー熔液を用いて以下の 配合割合で耐ナツビング逸料組成物を作成した。 中塗り塗料の塗装は、本発明の組成物が未乾燥 め プロック化されたイソシアネート基を有するウレ 100部

タンプレポリマー溶液 ポリオキシプロビレントリアミン(分子鼠約450) (ジェフアーミンTー408(三并テキサコケミカル 16部 (健網

80部 炭酸カルシウム チタン白 5部 カーポンプラック 1部 芳香族系石油ナフサ (沸点範囲100~200℃) 30部

次にエポキシ系カチオン電碧塗料を電着塗装後 5 焼付け硬化した防銹下塗り強膜を形成せしめた鋼 板【以下、電差塗装板ともいう】に上記耐チツビ ング登料組成物をエアレス塗装機にて乾燥後の膜 厚が200mとなるように塗扱し、120℃×15分の条 件で焼付け硬化を行った。

奖施例 2

爽施例1のプロック化されたイソシアネート基 を有するウレタンプレポリマー溶液を用いて以下 の配合割合で耐チッピング強料組成物を作成し た。

プロック化されたイソシアネート基を有するウレ タンプレポリマー 100部 ジエチレントリアミンのPO付加物(分子量=

9部 400) 炭酸カルシウム

5部 チタン白 カーボンプラツク 1 部

芳香族系石油ナフサ (沸点範囲100~200℃) 30部 この耐チッピング強料組成物を褒施例1と同様 の方法で焼付け硬化させた。

爽施例 3

実施例Iのプロツク化されたイソシアネート基 を有するウレタンブレポリマー熔液を用いて以下 の配合割合で耐チッピング燃料組成物を作成し

プロック化されたイソシアネート基を有するウレ タンプレポリマー 100部 ポリオキシブロピレントリアミン(分子最約450)。 とメチルイソプチルケトンからのケチミン(全ア

ミン価248) 80部 炭酸カルシウム

チタン白 5 83 カーポンプラツク I AR

芳香族系石油ナフサ (沸点範囲100~200℃) 30部 の方法で焼付け硬化させた。

寒筋例 4

α, α, α, αーテトラメチルキシリシンジイ ソシアネート210部、ポリカプロラクトンジオー

ル (分子量=1000) 287部、ポリカブロラクトン トリオール (分子量=300) 29部およびカルビト ールアセテート400部を、実施例1と同様の操作 で反応させNCO%が3.9%(圏形分換算)のウレ タンプレポリマーを得た。次いでMEKオキシム 74部を添加し実施例 1 と同様の操作で反応させブ ロック化ウレタンプレポリマー(A)を得た。

また上記と同じウレタンプレポリマーにεーカ プロラクタム97部を添加し100℃で3時間反応さ 10 せてプロック化ウレタンプレポリマーIDEを得た。

上紅MおよびGIのプロック化ウレタンプレポリ マーを1/1(重量比)で混合してプロック化ウ レタンプレポリマー溶液心を得た。これを用いて 以下の配合割合で耐チッピング塗料組成物を作成 25 L.C.

ブロツク化ウレタンプレポリマー溶液KI ポリオキシプロピレントリアミン(分子量約450) (ジェフアーミンT-403(三井テキサコケミカル 7部 (機機)

80部 20 ジエチレントリアミンとメチルイソプチルケトン からのケチミン(全アミン価約280) 9部 炭酸カルシウム 80X

チタン臼 5部 カーボンプラック 1部

25 芳香族系石油ナフサ (辨点範囲100~200℃) 30部 この耐チッピング塗料組成物を実施例1と同様 の方法で焼付け硬化をさせた。

比較例 1

実施例1のa, a, a, dーテトラメチルキシ 30 リレンジイソシアネートをトリレンジイソシアネ ートに代えた以外は、実施例しと同様に実施し (ただし、トリレンジイソシアネートの反応温度 は70~80℃とした。)、ブロック化されたイソシア ネート基を有するウレタンプレポリマー溶液を得 24部 35 た。このブロック化されたイソシアネート基を有 するウレタンブレポリマー溶液を用いて実施例1 と同様に、耐チツビング強料組成物を作成し、同 様に焼付け硬化した。なお、ブロツク化されたイ ソシアネート基を有するウレタンプレポリマー溶 この耐チッピング塗料組成物を実施例 1と同様 40 液および耐チッピング組成物の割合は各々以下の 通りである。

> 【プロツク化されたイソシアネート基を存するウ レタンプレポリマー溶液]

トリレンジイソシアネート

210部

ポリテトラメチレングリコール (分子量=1000)

242部

トリメチロールプロパン 32E

400部 カルピトールアセテート

116部 5 メチルエチルケトオキシム

「耐チッピング組成物]

プロック化されたイソシアネート基を有するウレ 100部 タンプレポリマー

ポリオキシプロピレントリアミン(分子量約450) (ジェファーミンT-403(三井テキサコケミカル 10 密着性(ゴパン目安)

19部 808 炭酸カルシウム

5部 チタン臼 カーポンプラツク 1部

比較例 2

比較例1のプロック化剤をMEKオキシムから **をカプロラクタムに代えた以外は比較例1と同様** の方法でブロック化されたイソシアネート基を有 **ξカプロラクタムのプロツク化の温度は80~100** ℃とした)。このブロック化されたイソシアネー ト基を有するウレタンプレポリマー溶液を用いて 実施例1と同様の方法で、耐チッピング塗料組成 物を作成し、同様に焼付けを行つたが、硬化に至 25 後)で耐チツピング塗料組成物を塗布焼き付けた らなかつた。

なお、プロツク化されたイソシアネート基を有 するウレタンプレポリマー溶液および耐チツピン グ組成物の割合は各々以下の通りである。

レタンプレポリマー溶液】

210部 トリレンジイソシアネート

ポリテトラメチレングリコール(分子量=1000)

242部

150部

80部

トリメチロールプロパン

422部 カルビトールアセテート

もーカブロラクタム

[耐チツピング組成物]

炭酸カルシウム

プロック化されたイソシアネート基を有するウレ 100部 40 タンプレポリマー ポリオキシプロピレントリアミン(分子崖約450) (ジェフアーミンT-403(三井テキサコケミカル 18部

(建株)

16

5部 チタン白 18 カーポンプラツク

芳香族系石油ナフサ (沸点範囲100~200℃) 30部

試験例 1

実施例1~4および比較例1で得られた耐チツ ピング敵料組成物の焼付け塗膜の密着性、塗装 性、耐チッピング性、貯蔵安定性、の評価結果を 表一1に示す。

塗膜試験方法

100×100×0.8mmの電着塗装板に200μ厚(乾燥 後) で耐チッピング強料組成物を塗布焼き付けた 試料に1mm角のクロスカット(面積:1cfl)をい れる。次いでセロテーブにて剝離テストを行い、 芳香族系石油ナフサ (沸点範囲100~200℃) 30部 15 密着・残留する 1 mm 角塗膜の数を調べた。表示は 分子に残留数を、分母にはじめにクロスカツトし た数を示した。

建装性

塗料組成物をエアレススプレーを用い200μの するウレタンプレポりマー溶液を存た(ただし、*20* - 膜厚になるように電着塗装板に吹き付け120℃× 15分娩付けた後、硬化塗瞧の外観(フクレ、ワキ など)を躓ぺた。

耐チッピング性

100×100×0.8mmの電着塗装板に200μ厚(乾燥 試料に、さらに通常用いられる中塗り塗料(メラ ミン・アルキッド樹脂)を塗装し焼き付けた後 (中塗り乾燥膜厚:30μ、焼付け条件:140℃×20 分)、JIS B-1181に規定する3種-M-4形状 [ブロック化されたイソシアネート基を有するウ 80 の鉄六角ナットを2mの高さから管径20mの筒を 通してナットの落下方向に対して45°の角度を有 する各試糾板上に落下せしめ、塗膜のキズが金髯 面に強するまでの落下ナットの総重量を表一1に 示した。

32部 35 貯蔵安定性

耐チッピング逸科組成物を40℃×10日間貯蔵 し、貯蔵前後の強料の粘度増加率(%)を調査し た。

爱

試験 項目	密着性	強装性	耐チツピン グ性(lg)	貯蔵安 定性
実施例(100/ 100	良好	36	18

試験 項目	密 律	塗装性	耐チッピン グ性(kg)	貯蔵安 定性
赛 整	100/ 100	良好	31	10
夹施例3	100/ 100	良好	34	12
実施 例 4	100/ 100	良好	40	10
比較例1	100/ 100	フクレ・ ワキ発生	17	3日で ゲル化

[発明の効果]

本発明の耐チッピング塗料組成物は従来のものに比べて低温、短時間で下地の電着塗膜に対し、

18

密着・硬化し、かつ塗装性、耐チッピング性および貯蔵安定性に優れている。そのため車両などに 適用した場合優れた防錆性を発揮する。

また、従来プロック化されたイソシアネート基 5 を有するウレタンプレポリマーとポリオール組成 物およびモノアルコールからなる一液樹脂組成物 も知られているが、低温硬化性および強装性の点 で不十分であった。しかし、本発明の組成物はこ れらの点でも優れている。

10 上記効果を奏することから本発明の耐チッピン グ합料は生産性向上が期待できる防糖塗料として 自動草用などにとくに有用である。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

BADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.