HOJA TRABAJO I

Estado	En curso	
Avance	40	
Fecha entrega	@21 de julio de 2025	

EBER JARED GUERRA COY 1136617

SERIE I

- ISP Tier
 - Que es? **y** ¿Para que sirve?
 - Es una clasificación de proveedores acceso a servicios de de internet
 - ¿Cuántos niveles existen?
 - Existen 3 niveles
 - Tier 1 (Backbone Providers)
 - Tier 2 (Proveedores intermedios)
 - Tier 3 (Proveedores de última milla)
 - ¿Porque es importante?
 - Ellos son los que permiten que exista la comunicación a nivel global, debido a que cada uno maneja las redes

• ¿Que diferencia hay entre niveles?

- El primer nivel son los que tienen la mayor cantidad de redes de comunicación y transmisión de datos,
- El segundo nivel tiene sus propias redes pero pagan por las redes a las que no llegan,
- El último nivel se encarga de distribuir a puntos lejanos como aldeas no tienen ninguna red (solo distribuyen)

• Diagrama (Pendiente)

• Organizaciones

NOMBRE	¿QUÉ HACEN?	¿CUÁL ES SU ROL?
Internet Standard	Es un termino que se utiliza para definir estándares técnicos, que se comunica en diferentes	Definen los estándares de comunicación en internet

	organizaciones que definen estos estándares.	
IEEE	El (Institute Of Electrical And Electronics Engenieers) desarrollan estándares físicos y de enlace de datos	Están enfocados en Wi-Fi, Bluethooth, Ethernet, Control de Plantas, en las arquitecturas de computadoras
IETF	Internet Engineering Task Force	Permite que existan estándares que permitan la comunicación en Diferentes Países de manera bi-direccional

• Medio de Transmisión

TIPO	CARACTERÍSTICAS	CAPACIDADES DE TRANSMISIÓN	AMBIENTE DE USO RECOMENDADO	TIPO DE TECNOLOGÍA
Guiados	Canal Físico definido, protección contra interferencia, mayor seguridad, necesita de instalación, alto ancho de banda	Fibra óptica (1 a 10) Gbps hasta 2KM, Cable coaxial (10 a 100) Mbsp hasta 500 M	Fibra óptica necesita protegerse ante quiebres, puede instalarse bajo tierra o aérea, Ideal en zonas industriales. Cable Coaxial debe de evitar cables de tensión, recubierto de PVC	Fibra óptica en redes empresariales o datacenter. Cable Coaxial en TV o Redes de internet antiguas
No guiados	Transmisión por ondas o electromagnéticas	Satélite Internet 10Mbps a 1 Gbps con cobertura global, Wi-Fi 100 Mbps a 10Gbps.	Wi-Fi paredes delgadas, espacio con poca interferencia, temperatura y ambiente estándar. Satelite depende del clima, es preferible un cielo despejado	Wi-Fi para empresas o hogares, Satélite para lugares que sin convertir de Wi-Fi

Conceptos (Parte A)

o Packet Lost

¿Qué es? y ¿Cómo se aplica en redes?

Es un pequeño de bloque de datos que se transmite en la red y se no llega a su destino. Afecta en la comunicación en atrasos, perdida de calidad en (Streams). En Redes existe diferente de software para identificar donde se pierden o cual es la causa.

Jitter

¿Qué es? y ¿Cómo se aplica en redes?

Es la variación de tiempo total que cada paquete es transmitido. Es utilizado para mejorar la calidad en llamadas, conferencias.

Round Trip

¿Qué es? y ¿Cómo se aplica en redes?

Es el tiempo en que un paquete llega y regresa al punto de inicio. Se utiliza para detectar la latencia, ajustar protocolos y controlar el tiempo de espera

Throughput

¿Qué es? y ¿Cómo se aplica en redes?

Es la cantidad real de paquetes que se transmite en internet y es utilizado para determinar que tan eficiente es la red en la transmisión de datos

o Traceroute

¿Qué es? y ¿Cómo se aplica en redes?

Permite conocer la ruta que siguen los paquetes desde el punto A hasta el B

Conceptos (Parte B)

o 802.1

¿Qué es? y ¿Cómo se aplica en redes?

• Es un estándar establecido para redes (LAN/ MAN) por la IEEE

 Se enfoca en aspectos de interconexión y gestión de redes, en el nivel 2 de capa del modelo OSI

0 802.11

¿Qué es? y ¿Cómo se aplica en redes?

- Define estándares para redes Wi-Fi
- Describe como los dispositivos se comunican sin utilizar cables
- Se enfoca en la capa de enlace de datos y capa física
- · Estándares de seguridad

0 802.16

¿Qué es? y ¿Cómo se aplica en redes?

- Define estándares para redes inalámbricas con un ancho de banda con un mayor alcance
- Acceso a internet en lugares donde no hay acceso a cableado
- Conexiones de ultima milla
- Rango de 5 a 15 Km
- WiMAX

0 802.3

¿Qué es? y ¿Cómo se aplica en redes?

- Estándar de conexión mas utilizada (Ethernet)
- Como se debe de comunicar a través de cable
- Es utilizado en:
 - Oficinas
 - Datacenter
 - Casas

SERIE II

Comandos

Ipconfig (Windows) | Ifconfig (MacOS)

```
/Users/eber.g/.zshenv:export:1: not valid in this context: Workbooks.app/Contents/SharedSupport/path-bin

- giticmatca) 33 files changed, 114 insertions(+), 461 deletions(-) (8.848s)

- giticmatca) 33 files changed, 114 insertions(+), 461 deletions(-) (8.848s)

- giticmatca) 33 files changed, 114 insertions(+), 461 deletions(-) (8.848s)

- giticmatca) 33 files changed, 114 insertions(+), 461 deletions(-) (8.848s)

- giticmatca) 33 files changed, 114 insertions(+), 461 deletions(-) (8.848s)

- giticmatca) 33 files changed, 114 insertions(-) (8.848s)

- giticmatca) 44 insertions(-) 45 insertions(
```

- ¿Qué hace?
 - o Configurar y administrar las interfaces de red
- ¿Cómo se utiliza? y ¿Qué información proporciona?
 - Para saber la IP de WIFI

ipconfig getifaddr en0

Para saber la IP de Ethernet

ipconfig getifaddr en1

• ¿Cómo obtener Ayuda?

man ifconfig

- ¿Cuándo es útil?
 - Para saber la IP que tenemos asignada

Netstat (Windows | MacOS)

```
        netstat

        Active Internet connections
        Foreign Address
        (state)

        Proto Recv-Q Send-Q Local Address
        85.41.117.44 bc...https
        STABLISHED

        tcp4
        9
        192.168.1.11.4438
        85.41.117.34 bc...https
        SSTABLISHED

        tcp4
        9
        192.168.1.11.4443
        85.41.117.34 bc...https
        ESTABLISHED

        tcp4
        9
        192.168.1.11.40434
        85.41.117.34 bc...https
        ESTABLISHED

        tcp6
        9
        167.168.1.11.40436
        85.41.117.34 bc...https
        ESTABLISHED

        tcp6
        9
        168.18.10.3061
        85.41.117.34 bc...https
        ESTABLISHED

        tcp6
        9
        102.168.1.11.3036
        respectively 172.52.13.https
        ESTABLISHED

        tcp6
        9
        102.168.1.11.57789
        249.195.120.34.b.43
        ESTABLISHED

        tcp6
        9
        2800.998.12207.36f.5282.7 2664.7408.4480::.443
        ESTABLISHED

        tcp6
        9
        2800.998.12207.36f.5282.7 2664.7408.4480::.443
        ESTABLISHED

        tcp6
        9
        2800.998.12207.36f.5282.7 2664.7408.4480::.443
        ESTABLISHED

        tcp6
        0
        2800.998.12207.36f.5282.7 2664.7408.4480::..443</t
```

- ¿Qué hace?
 - o Manipular la tabla de enrolamiento de la pc
- ¿Cómo se utiliza? y ¿Qué información proporciona?
 - Saber que puertos están disponibles

```
netstat -an | grep LISTEN
```

• ¿Cómo obtener Ayuda?

man netstat

- ¿Cuándo es útil?
 - Para diagnosticar
 - Ver el camino del paquete hacia los dispositivos

```
Ping ( Windows | MacOS )
```

```
~ git:(master) 33 files changed, 114 insertions(+), 461 deletions(-)
ping google.com
PING google.com (172.217.2.206): 56 data bytes
64 bytes from 172.217.2.206: icmp_seq=0 ttl=118 time=29.985 ms
64 bytes from 172.217.2.206: icmp_seq=1 ttl=118 time=29.455 ms
64 bytes from 172.217.2.206: icmp_seq=2 ttl=118 time=30.392 ms
64 bytes from 172.217.2.206: icmp_seq=3 ttl=118 time=29.259 ms
64 bytes from 172.217.2.206: icmp_seq=4 ttl=118 time=29.259 ms
64 bytes from 172.217.2.206: icmp_seq=5 ttl=118 time=49.641 ms
64 bytes from 172.217.2.206: icmp_seq=6 ttl=118 time=49.641 ms
64 bytes from 172.217.2.206: icmp_seq=6 ttl=118 time=29.2087 ms
```

- ¿Qué hace?
 - Verifica si existe conectividad de un dispositivo a otro

• ¿Cómo se utiliza?

```
ping <IP/HOSTNAME>
```

- · ¿Qué información proporciona?
 - Tamaño del paquete
 - o Dirección IP del Host
 - Tiempo de respuesta
 - Si hay comunicación
- ¿Cómo obtener Ayuda?

man ping

- ¿Cuándo es útil?
 - Verifica si esta disponible el dispositivo en la red
 - Es mas útil Telnet

Tracert (Windows) | traceroute (MacOS)

```
~ git:(master) 33 files changed, 114 insertions(+), 461 deletions(-) traceroute google.com
traceroute to google.com (142.250.217.238), 64 hops max, 52 byte packets
1 10.203.7.254 (10.203.7.254) 4.166 ms 3.366 ms 3.590 ms
2 172.19.179.253 (172.19.179.253) 4.760 ms 10.837 ms 3.059 ms
3 168.232.76.1 (168.232.76.1) 3.653 ms
241.173.209.181.static.intelnet.net.gt (181.209.173.241) 2.741 ms
168.232.76.1 (168.232.76.1) 3.573 ms
4 10.0.0.23 (10.0.0.23) 14.359 ms
10.31.69.233 (10.31.69.233) 11.669 ms
10.00.23 (10.00.23) 6.551 ms
```

- ¿Qué hace?
 - Ver la ruta en la que los paquetes son siguen desde que salen del dispositivo y llegan al destino
- ¿Cómo se utiliza? y ¿Qué información proporciona?
 - Se verifica cada linea (salto), si todos los demás saltos tiene un asterisco es que hay un bloqueo
- ¿Cómo obtener Ayuda?
- · ¿Cuándo es útil?
 - Identificar si hay bloqueos

- Si hay muchas rutas vemos que hay una ineficiencia
- Permite verificar si desde si desde dispositivos conectados a la red donde debería de haber una comunicación directa existen muchos saltos
 - Un servidor de Base de datos y un servidor con API, conectados en una RED con mas componentes

Nslookup (Windows | MacOS)

```
~ git:(master) 33 files changed, 114 insertions(+), 461 deletions(-) (0.11s)
nslookup google.com

Server: 172.19.177.101
Address: 172.19.177.101#53

Non-authoritative answer:
Name: google.com
Address: 142.250.217.238

Description: A O Shall A Shall A O Sha
```

- ¿Qué hace?
 - Traduce un nombre de dominio a IP
- ¿Cómo se utiliza?

```
//nslookup google.com
nslookup <NOMBRE_DOMINIO>
```

- ¿Qué información proporciona?
 - Las IP asociadas a este DNS
 - También nos dice el Non-Authoritative que el DNS es recibido es respuesta de otro DNS
- ¿Cómo obtener Ayuda?

man nslookup

¿Cuándo es útil?

- Ver que el DNS este respondiendo
- Verificar que el DNS este resolviendo de manera correcta


```
~ glt:(master) 33 files changed, 114 insertions(+), 461 deletions(-) (0.064s)

arp -a

? (10.203.7.254) at 9c:57:ad:d0:c0:51 on en0 ifscope [ethernet]

mdns.mcast.net (224.0.0.251) at 1:0:5e:0:0:fb on en0 ifscope permanent [ethernet]

□ ~ ② master □ 33*+114-461

ping google.com

□ A ♀ Shell □ ⊕ □ auto (claude 4 sonnet) ∨
```

- ¿Qué hace?
 - Asociar direcciones IP a direcciones físicas MAC
- ¿Cómo se utiliza?

```
arp -a
```

- ¿Qué información proporciona?
 - o Dispositivos conectados a la Red Local y su IP
- ¿Cómo obtener Ayuda?

```
man arp
```

- ¿Cuándo es útil?
 - Para que dos dispositivos conectados dentro de una misma red puedan identificarse y comunicarse capa 2 nivel OSI
 - Controlar acceso a los dispositivos a la red
 - Detectar intrusos conectados a la red

Whoami (Windows | MacOS)

- ¿Qué hace?
 - Quien soy yo
 - Dice con que usuario estas conectado al dispositivo
- ¿Cómo se utiliza?

Whoami

- ¿Qué información proporciona?
 - Nombre del usuario actual
- ¿Cómo obtener Ayuda?

man whoami

- ¿Cuándo es útil?
 - Saber con que usuario estoy trabajando