DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

2/4/2013

Duração: 90 minutos

Teste de Análise Matemática EE - versão A

Nome:	Nr.:	Curso:

GRUPO I (7 valores)

Em cada uma das perguntas seguintes, assinale a resposta correcta no quadrado correspondente. Cada resposta correcta vale 1 valor.

1. Qual das seguintes expressões representa a curva \mathcal{C} na figura, percorrida a partir do ponto (-2,0) e com fim no ponto (2,0)?

$$r(t) = (3\cos t, 2\sin t), \ t \in [0, \pi]$$

$$r(t) = (2\cos(\pi - t), 3\sin(\pi - t)), \ t \in [0, \pi]$$

$$r(t) = (2\cos t, 3\sin t), \ t \in [0, \pi]$$
Nonhuma das anteriores

Nenhuma das anteriores.

2. Qual dos conjuntos abaixo representa o domínio da função vetorial $\vec{r}(t) = (\ln(t+1), \frac{1}{t})$?

$$D=]-1,+\infty[$$

$$D =]-1, +\infty[\setminus\{0\}$$

$$D=\mathbb{R}\backslash\{0\}$$

Nenhum dos anteriores.

3. Considere a curva $\mathcal C$ representada pela função vetorial $\vec r(t) = (t^2+t)\vec e_1 + (t^3-1)\vec e_2$. Qual dos vetores é tangente à curva no instante t=0?

(0,-1)

(0,0)

(1,0) (1,0)

Nenhum dos anteriores

4. Considere a função real de duas variáveis reais, $f(x,y) = \sqrt{x+y} \cdot \ln(x^2+y^2-1)$. Qual destes domínios planos representa o domínio de f? 42-x 1 x244521

Nenhuma das anteriores.

5. Qual destas funções reais de duas variáveis reais tem por domínio $\mathbb{R}^?$

$$f(x,y) = \begin{cases} \frac{1}{x^2 - y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

$$f(x,y) = \frac{1}{x^2 + y^2}$$

$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

Nenhuma das anteriores.

6. Considere a função real de duas variáveis reais definida no seu domínio, $f(x,y) = \frac{xy}{x^2+y^2}$ e o $\lim_{(x,y)\to(0,0)} f(x,y)$. Indique qual a afirmação verdadeira:

Existe
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 e é igual a zero .

Não existe
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 pois $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right) \neq \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$.

Não existe
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 pois $\lim_{(x,y)\to(0,0)} f(x,y)$ depende do valor de k .

Nenhuma das anteriores.

e o ponto (0,0). Indique qual a afirmação verdadeira:

$$f$$
 é contínua em $(0,0)$.

$$f$$
 não é contínua em $(0,0)$ porque não existe $\lim_{(x,y)\to(0,0)} f(x,y)$.

$$f$$
 não é contínua em $(0,0)$ porque existe $\lim_{(x,y)\to(0,0)} f(x,y)$ mas $\lim_{(x,y)\to(0,0)} f(x,y) \neq f(0,0)$.

Nenhuma das anteriores.

GRUPO II (13 valores)

Apresente todos os cálculos efectuados.

1. Considere a função vetorial que define uma curva em \mathbb{R}^3 , $\vec{r}(t) = \sin^2 t \cdot \vec{a} + \cos^2 t \cdot \vec{b} + \vec{c}$ onde $\vec{a} = \vec{e}_2$, $\vec{b} = \vec{e}_3$, $\vec{c} = 2\vec{e}_1 - 3\vec{e}_2$. Escreva a função à custa das suas componentes.

$$\vec{R}(t) = \sec^2 t (\vec{e_2}) + \cos^2 t (\vec{e_3}) + 2\vec{e_1} - 3\vec{e_2}$$

$$\vec{R}(t) = z\vec{e_1} + (\sec^2 t - 3)\vec{e_2} + \cos^2 t \vec{e_3}$$

$$\vec{R}(t) = (z, \sec^2 t - 3, \cos^2 t)$$

- 2. Considere a função vetorial $\vec{r}(t) = (t^2 t, \sin t)$.
 - (a) Determine $\vec{r}'(t)$.

(b) Determine a equação da reta tangente à curva representada por $\vec{r}(t)$ no instante t=0.

$$\overrightarrow{R}^{(0)}(0) = (-1,1)$$

$$\vec{R}(0) = (0,0)$$

$$R(0) = (0,0)$$

$$(x,y) = R(0,0) + t R'(0,0), t \in \mathbb{R}$$
of neterial $-D(x,y) = (0,0) + t(-1,1), t \in \mathbb{R}$

$$(x,y) = (-t,t), t \in \mathbb{R}$$

(c) Determine os instantes em que o vetor tangente à curva representada por $\vec{r}(t)$ é um vetor vertical $\vec{r}(t)$

$$\vec{R}'(t) = (zt-9, \cos t)$$
 $zt-9 = 0 = 0 = 1/2$

No enstente
$$t=1/2$$
, isto \bar{e} , to posto $\bar{R}(\frac{1}{2})=(\frac{1}{4}-\frac{1}{2}, \frac{1}{2}, \frac{1}{2})=(-\frac{1}{4}, \frac{1}{2}, \frac{1}{2})$

Considere a função real de duas variáveis
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$
.

(a) Estude a continuidade da função f no seu domínio.

(b) Determine $f'_y(0,0)$, se existir.