§3. Замечательные пределы

Первый замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

► На окружности радиуса r=1 возьмём дугу AB с центральным углом, радианная мера которого равна x, $0 < x < \pi/2$ (рис. 3.1) и рассмотрим треугольники OAB, OAC, а также сектор OAB. Для их площадей выполняется неравенство: $S_{\Delta OAB} < S_{\text{сект.}OAB} < S_{\Delta OAC}$. Использовав известные формулы для площадей этих фигур, приходим к соотношению:

$$\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\operatorname{tg}x,$$

поделив все члены которого на $\frac{1}{2}\sin x$, получим:

 $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$. Перейдём в этом неравенстве к обратным величинам:

$$1 > \frac{\sin x}{x} > \cos x, \ 0 < x < \pi/2.$$
 (3.1)

Функции $\frac{\sin x}{x}$ и $\cos x$ – чётные, поэтому неравенство (3.1) остаётся справедливым и для $\forall x \in (-\pi/2, 0)$. Итак, замечательного показано, что неравенство (3.1) выполняется для $\forall x \in (-\pi/2, 0) \cup (0, \pi/2)$.

Так как $\lim_{x\to 0} 1 = 1$, $\lim_{x\to 0} \cos x = 1$ (пример 1.2), то из теоремы о сжатой функции

(теорема 2.3) следует, что
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
. ◀

Замечание 3.1. В процессе доказательства первого замечательного предела доказано неравенство $\frac{1}{2}\sin x < \frac{1}{2}x$ или $\sin x < x$ для $0 < x < \pi/2$. Его можно записать в виде: $|\sin x| < |x|$. Легко убедиться в том, что последнее неравенство верно и для $-\pi/2 < x < 0$. Для $|x| \ge \pi/2$ оно очевидно, так как $|\sin x| \le 1$, $\pi/2 > 1$. Итак, $|\sin x| < |x|$ для $\forall x \ne 0$.

Следствия из первого замечательного предела:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}, \quad \lim_{x \to 0} \frac{\tan x}{x} = 1, \quad \lim_{x \to 0} \frac{\arcsin x}{x} = 1, \quad \lim_{x \to 0} \frac{\arctan x}{x} = 1.$$

Первые два из этих пределов будут вычислены ниже в примерах 3.1, 3.2, а последние два будут вычислены в главе 4.

Пример 3.1. Показать, что $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$.

 $=\lim_{u\to 0}\frac{\sin^2 u}{u^2}=1$ (первый замечательный предел), поэтому $\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2}$.

Пример 3.2. Показать, что $\lim_{x\to 0} \frac{\text{tg}x}{x} = 1$.

 $ightharpoonup rac{ ext{tg}x}{x} = rac{ ext{sin}x}{x} / ext{cos}x$. Так как $\lim_{x\to 0} rac{ ext{sin}\,x}{x} = 1$ (первый замечательный предел) и $\lim_{x\to 0} \cos x = 1$ (пример 1.2), то $\lim_{x\to 0} rac{ ext{tg}x}{x} = 1$ по теореме 2.2. ◀

Пример 3.3. Вычислить $\lim_{x\to 0} \frac{\sin 2x}{\tan 3x}$

▶ $\frac{\sin 2x}{\tan 3x} = \frac{\sin 2x}{2x} \cdot \frac{3x}{\tan 3x} \cdot \frac{2x}{3x}$. Имеем $\lim_{x\to 0} \frac{\sin 2x}{2x} = |2x = u| = \lim_{u\to 0} \frac{\sin u}{u} = 1$ (1-й замечательный предел). Аналогично получим $\lim_{x\to 0} \frac{3x}{\tan 3x} = 1$. Отсюда $\lim_{x\to 0} \frac{\sin 2x}{\tan 3x} = \frac{2}{3}$ (теорема 2.2). ◀

Второй замечательный предел: $\lim_{x\to\infty} (1+1/x)^x = e$ или $\lim_{x\to 0} (1+x)^{1/x} = e$.

▶Докажем сначала, что $\lim_{x \to +\infty} (1+1/x)^x = e$. Так как $x \to +\infty$, то можно считать, что x > 0. Пусть n = [x], где [x] — целая часть числа x, имеем $n \le x < n+1$ или $\frac{1}{n} \ge \frac{1}{x} > \frac{1}{n+1}$, отсюда $1 + \frac{1}{n+1} < 1 + \frac{1}{x} \le 1 + \frac{1}{n}$, возведём члены последнего неравенства в степени n, x, n+1: $\left(1 + \frac{1}{n+1}\right)^n < \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^{n+1}$. Если $x \to +\infty$, то и $n \to +\infty$. Вычислим пределы крайних членов последнего соотношения:

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to +\infty} \frac{(1+1/(n+1))^{n+1}}{1+1/(n+1)} = \frac{\lim_{n \to +\infty} (1+1/(n+1))^{n+1}}{\lim_{n \to +\infty} (1+1/(n+1))} = \frac{e}{1} = e,$$

$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^{n+1} = \lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n \left(1+\frac{1}{n}\right) = \lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n \cdot \lim_{n\to+\infty} \left(1+\frac{1}{n}\right) = e \cdot 1 = e.$$

Отсюда следует: $\lim_{x\to +\infty} (1+1/x)^x = e$ (теорема о сжатой функции (теорема 2.3)).

Доказывая равенство $\lim_{x\to -\infty} (1+1/x)^x = e$, перейдём к новой переменной y:

$$x = -(y+1) \cdot \text{Имеем: } \lim_{x \to -\infty} (1+1/x)^x = \lim_{y \to +\infty} \left(1 - \frac{1}{y+1}\right)^{-(y+1)} = \lim_{y \to +\infty} \left(\frac{y+1-1}{y+1}\right)^{-(y+1)} = \lim_{y \to +\infty} \left(\frac{y}{y+1}\right)^{-(y+1)} = \lim_{y \to +\infty} \left(\frac{y}{y+1}\right)^{-(y+1)} = \lim_{y \to +\infty} \left(\frac{y+1}{y}\right)^y \left(\frac{y+1}{y}\right) = \lim_{y \to +\infty} \left(1 + \frac{1}{y}\right)^y \left(\frac{y+1}{y}\right) = e \cdot 1 = e.$$

Объединяя оба случая, окончательно получаем $\lim_{x\to\infty} (1+1/x)^x = e$.

Равенство $\lim_{x\to 0} (1+x)^{1/x} = e$ обосновывается с помощью замены переменной: 1/x = y. ◀

Следствия из второго замечательного предела

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1, \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1, \quad \lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \mu, \ \mu \in \mathbf{R}.$$

Эти пределы будут вычислены в главе 4.

Замечание 3.2. Во всех вышеприведённых пределах x можно заменить любой функцией, стремящейся к нулю.

Пример 3.4. Вычислить $\lim_{x\to 0} \frac{\sqrt[3]{8+x}-2}{\ln(1-3x)}$.

$$\frac{\sqrt[3]{8+x}-2}{\ln(1-3x)} = 2 \cdot \frac{(1+x/8)^{1/3}-1}{\ln(1-3x)} = 2 \cdot \frac{(1+x/8)^{1/3}-1}{x/8} \cdot \frac{-3x}{\ln(1-3x)} \cdot \frac{x/8}{-3x}$$
. Where Moreover the state of the sta

$$\lim_{x \to 0} \frac{(1+x/8)^{1/3} - 1}{x/8} = \frac{1}{3}, \ \lim_{x \to 0} \frac{-3x}{\ln(1-3x)} = 1 \quad \text{if} \quad \lim_{x \to 0} \frac{\sqrt[3]{8+x} - 2}{\ln(1-3x)} = 2 \cdot \frac{1}{3} \cdot 1 \cdot \frac{1}{-24} = -\frac{1}{36}$$

(следствия из 2-го замечательного предела и теорема 2.2). ◀