Attendance: 10%, Continuous evaluation: 70%, Viva-20%

Assignment No. 5

- i. Download and install TensorFlow from https://www.tensorflow.org/install/install_sources or using command sudo-pip install tensorflow alternatively the Keras library can be used.
- ii. Download MNIST dataset (contains class labels for digits 0-9). using the command:

import tensorflow as tf
data = tf.contrib.learn.datasets.mnist.load_mnist()

or

<u>from keras.datasets import mnist</u> (x_train, y_train), (x_test, y_test) = mnist.load_data()

iii. Reduce the training size by 1/10 if computation resources are limited. Define radial basis function (RBF) as

def RBF(x, c, s):

return np.exp(-np.sum((x-c)**2, axis=1)/(2*s**2)) where, x is the actual value, c is centre (assumed as mean) and s is the standard deviation.

Converted 28*28 image into 32*32 using rbf and store the new dataset with the labels. Split the dataset as 80% training and 10% validation and 10% test.

iv. Now run the fully connected network after flattening the data by changing the number the hyper-parameters use adam optimizer(learning rate = 0.001) and categorical cross-entropy loss:

Hidden Layers	Activation Function	Hidden Neurons
1	Sigmoid	[16]
2	Sigmoid	[16, 32]
3	Sigmoid	[16, 32, 64]

Try all the possible combinations.

v. Now run the network by changing the number the Activation Function hyper-parameters:

Hidden Layers	Activation Function	Hidden Neurons
3	Sigmoid	[16, 32 , 64]
3	Tanh	[16, 32 , 64]
3	Relu	[16, 32 , 64]

vi. Now run the network by changing the number the Dropout hyper-parameters:

Hidden Layers	Activation Function	Hidden Neurons	Dropout
3	Relu	[16, 32 , 64]	0.9
3	Relu	[16, 32 , 64]	0.75
3	Relu	[16, 32 , 64]	0.5
3	Relu	[16, 32 , 64]	0.25
3	Relu	[16, 32 , 64]	0.10

- vii. Plot the graph for loss vs epoch and accuracy(train, validation accuracy) vs epoch for all the above cases. Point out the logic in the report.
- viii. With the best set hyperparameter from above run vary the Adam Optimizer learning rate [0.01, 0.001, 0.005, 0.0001, 0.0005]. Print the time to achieve the best validation accuracy (as reported before from all run) for all these five run.
- ix. Create five image(size 28*28) containing a digit of your won handwriting and test whether your trained classifier is able to predict it or not.

Submit a report with results.