A DES model for fire service operation

Ali Pirmohammadi

Jun 2022

Table Of Contents

- Introduction and Problem Description
- The DES Model
- Case Study
- Simulation-Optimization Approach

Introduction and Motivation

Emergency facility location problem has been broadly studied throughout literature.

There are many source of uncertainties involved in problem, for example:

- 1. Uncertainty in **demand** (Time and Location)
- Uncertainty about network situation and unknown travel time
- 3. So called 'Congestion' Problem.

The proposed DES model aims to address the uncertainties and consider the congestion problem in emergency facility problem by:

- 1. It provide decision makers with a handy tool to accurately evaluate decisions for improvement and to assess the system's performance as well.
- 2. It can be **used alongside an optimization model** to better address the complex location problem

Emergency Facility Location Problem

- 1. Units must get to every incidents within standard time.
- 2. Planners aims to locate station and allocate vehicles as to:
 - Maximize the coverage (within standard time) Maximum Covering Problem
 - Minimize the travel time between station and incidents P
 Median Problem
- 3. We might want to focus on standard time in planning phase but at the end of the day **every** incidents must be responded in operation.
- 4. The problem is considered 'Strategic Problems' and due to the enormous costs involved, it is studied as static problem.

Congestion Problem

The DES Model Overview

The DES Model Flow Chart

Assumptions

Notes Behind the Scenes

- 1. The Simulation program is implemented using **Python**.
- 2. The program uses **OOP** capability to implement the logic in a clear way.
- 3. The processes are handled through **asynchronous programming** thanks to the **Simpy** package.
- 4. A single run of the simulation consisted more than 300 vehicles dispatched to 30000 event over a period of one year, which took about 96 seconds to execute using a single core of an Intel Core i7-5550U (5th Gen) with 8 GB of RAM.
- 5. It is assumed that **cooperative operation** are allowed, which means it is not necessary that all the needed units dispatched from a same station. The central department search through nearest available vehicles to send to the incident.
- 6. The model is validated on a 10*10 network with 50, 100 incidents.

Case Study Tehran

- 1. Annually about 30000 fire incidents occur in Tehran.
- 2. Fire Department has **125 station**. Each station has **1 heading** vehicles and **2 tanker** as well.
- 3. Fire department also has **33 ladder** which are located in main station.
- 4. On average, annually there were **20000 secondary fires** and **8000 primary-1 fires** and **2000 primary-2 fires** in recent years.

Case Study Experiment

- 1. In the following experiment the DES model is used as tool to compare performance of different resource configuration.
- 2. 3 configuration are used:
 - Current resource configuration
 - Solution of Optimization Model (Nominal model)
 - Solution of Optimization Model (MiniGap model)
- 3. The experiment for each configuration runs 15 times:
 - 5 different demand scenarios
 - 3 different travel times (Am-Peak, Pm-Peak, Off-Peak)
- 4. Demand scenarios are sampled using proposed method.
- 5. The current database is not used as demand realization because it contain lots of errors; on the other hand, lots of scenarios can be created using proposed sampling method.

Case Study Modeling Arrival - Overview

Case Study Modeling Arrival - Location

$$\widehat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big),$$

Case Study Modeling Arrival - Location

Case Study Modeling Arrival - Time

Case Study Optimization Model

TEAM: Maximize $Z = \sum_{i \in I} a_i y_i$ s.t.

$$MiniGap : Maximize X = \sum_{s,i} (a_{is}y_{is} - a_{is}^*y_{is}^*)$$

$$\sum_{j \in N_i^p} x_j^p \ge y_i, \qquad \text{for all} \qquad i \in I$$

$$\sum_{j \in N_i^s} x_j^s \ge y_i, \qquad \text{for all} \qquad i \in I$$

$$\sum_{j \in J} x_j^p = p^p$$

$$\sum_{j \in J} x_j^s = p^s$$

$$x_j^s \le x_j^p, \qquad \text{for all} \qquad j \in J$$

$$x_j^s, x_j^p = 0, 1, \qquad \text{for all} \qquad j \in J$$

$$y_i = 0, 1, \qquad \text{for all} \qquad i \in I$$

Case Study Results-Utilization

Case Study Results-Coverage

Case Study Results-Number of Traversed Station

Case Study Results-Travel Time

Simulation Modeling

Case Study Results-Zonal Results (Primary-3 Coverage)

Simulation-Optimization Approach Expected Coverage

Maximize
$$\sum_{k=1}^{N} \sum_{j=1}^{M} (1-p) p^{j-1} h_k y_{jk} = \sum_{k} \sum_{j} w_j h_k y_{jk}$$

References

- 1. https://simpy.readthedocs.io
- 2. Scikit-learn: Machine Learning in Python, Pedregosa *et al.*, JMLR 12, pp. 2825-2830, 2011.
- 3. Charles ReVelle, Kathleen Hogan, (1989) The Maximum Availability Location Problem. Transportation Science 23(3):192-200.
- 4. Mark S. Daskin, (1983) A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution. Transportation Science 17(1):48-70.

Simulation Modeling

Thanks!