Pet sale price in the UK

Pets4Homes

Scraping the Data

Scraping the Data


```
▼<div class="vn lj" data-testid="lis
 84c3-331bd295c049"> flex
  <div class="xn">...</div> flex
  ▼<div class="An">
    <div class="Bn" data-testid="ad</pre>
    <a class="Fb En" href="/classif</p>
     -puppies-due-20th-may-2022-heme
     <span class="Gn" data-testid="l</pre>
    <div class="yv" data-testid="li</p>
       flex
    <span class="Hn In">...</span> ==
    <div class="Jn">...</div> flex
   </div>
 </div>
<div class="rc kj" style="--offset</pre>
 <div class="vn lj" data-testid="lis</pre>
```

Scraping the Da

Why do I have to complete a CAPTCHA?

Extragating the EAPTEAN private year are a framulated gross year temperary access to the web property.

What can I do to prever the future?

If you are on a pressure contention. He at blain with other scort on your device to make sure it is marketing.

if you are at an efficient shared network, you co administrator to turn a vice across the network meconing and coinfection bouces.

```
iv class="vn lj" data-testid="lis
  -c3-331bd295c049"> (flex)
  <div class="xn">...</div> flex
  <div class="An">
  \div class="Bn" data-testid="ad
  <a class="Fb En" href="/classif</pre>
    -puppies-due-20th-may-2022-heme
    <span class="Gn" data-testid="l</pre>
  <div class="yv" data-testid="li</p>
     flex
   <span class="Hn In">...</span> ==
  <div class="Jn">...</div> flex
  </div>
  div>
  iv class="rc kj" style="--offset-
```

Scraping the Data

- 1. Use selenium to open each pages individually
- 2. Create new CSV file for each city/region
- 3. Write an alarm with windsound to alert html tag change

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 48781 entries, 0 to 48780
Data columns (total 11 columns):
    Column
                    Non-Null Count Dtype
    Title
                     48781 non-null object
    price
                    48781 non-null float64
    species
                     48781 non-null object
                    48781 non-null object
    age
    gender
                    48781 non-null object
    description
                    48781 non-null object
    seller name
                    48781 non-null object
    seller location 48781 non-null object
    seller type
                    48781 non-null object
    listing type
                    48781 non-null object
 10 pet type
                    48781 non-null object
dtypes: float64(1), object(10)
memory usage: 4.5+ MB
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 48781 entries, 0 to 48780
Data columns (total 11 columns):
    Column
                    Non-Null Count Dtype
    Title
                    48781 non-null object
   price
                    48781 non-null float64
   species
                    48781 non-null object
                    48781 non-null object
    age
    gender
                    48781 non-null object
    description
                    48781 non-null object
   seller name
                    48781 non-null object
    seller location 48781 non-null object
   seller type
                    48781 non-null object
    listing type
                    48781 non-null object
 10 pet type
                    48781 non-null object
dtypes: float64(1), object(10)
memory usage: 4.5+ MB
```

#a quick look of number of unique values df.nunique() executed in 80ms, finished 09:24:53 2022-06-22 Title 37519 price 394 species 438 age 101 gender 139 description 44796 seller name 20520 seller location 1083 seller type listing type pet type 11 dtype: int64

<pre>df['seller_location'].value_counts().tail(50)</pre>				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				
1				

Haverhill

price

df['seller_location'].value_counts().tail(50)

里士满		1
St Helens	1	
Darvel	1	
Renfrew	1	
Irvine	1	
Crieff	1	
Larkhall	1	
Erskine	1	
Bellshill	1	
Troon	1	
Johnstone	1	
Ayr	1	
Лондон	1	
Helensburgh	1	
Άλτον	1	
Chislehurst	1	
West Linton	1	
Corbridge	1	
Barton-upon-Humber	1	
Houghton Le Spring	1	
Belper	1	
Ilkeston	1	
Heanor	1	
Felixstowe	1	
Haverhill	1	

田上:#


```
#examining gender column for unique values
df['gender'].value counts()
executed in 16ms, finished 09:24:53 2022-06-22
unknown
                        11934
Mixed
                         6199
Male
                         3719
1 male
                         2857
Female
                         2796
03 male / 03 female
03 male / 01 female
03 male / 02 female
7 male / 8 female
05 male / 1 female
Name: gender, Length: 139, dtype: int64
```

```
#examining gender column for unique values
df['gender'].value_counts()
```

executed in 16ms, finished 09:24:53 2022-06-22

03 male / 02 female 7 male / 8 female 05 male / 1 female

unknown	11934
Mixed	6199
Male	3719
1 male	2857
Female	2796
03 male / 03 female	1
03 male / 01 female	1

Name: gender, Length: 139, dtype: int64

Mixed 20614
unknown 11934
Male 8850
Female 7085
Mare 139
Gelding 117
Stallion 42
Name: gender, dtype: int64

#examining gender column for unique
df['gender'].value_counts()

executed in 16ms, finished 09:24:53 2022-06-22

unknown	11934	
Mixed	6199	
Male	3719	
1 male	2857	
Female	2796	
03 male / 03 female	1	
03 male / 01 female	1	
03 male / 02 female	1	
7 male / 8 female	1	
05 male / 1 female	1	
Name: gender, Length:	139, dtype: int64	

Mixed 20614 unknown 11934 Male 8850 Female 7085 Mare 139 Gelding 117 Stallion 42

Name: gender, dtype: int64

```
#checking age column
                                                             df['age'].value_counts().tail(20)
                                                             executed in 14ms, finished 09:25:42 2022-06-22
                                                             2001
                                                             16 years
                                                             2000
                                                             Due in 6 weeks
                                                             2003 years
                                                             Due in 6 days
df['age'].str.startswith('Due').value counts()
                                                             18 years
                                                             2004 years
executed in 27ms, finished 09:25:54 2022-06-22
                                                             20 years
False
       48636
                                                             2002 years
True
           145
                                                             1998
Name: age, dtype: int64
                                                             2000 years
                                                             24 years
                                                             Due in 7 weeks
                                                            42 years
                                                             1999
                                                            66 years
                                                             2019 years
                                                             23 years
                                                             17 years
                                                             Name: age, dtype: int64
```


1. Correlation rather low

2. Majority of listing is not even 1 years old

	price	year
price	1.000000	-0.106195
year	-0.106195	1.000000

	price	year
count	41664.000000	41664.000000
mean	656.732335	0.946517
std	805.959946	1.722896
min	0.000000	0.000000
25%	100.000000	0.153846
50%	392.500000	0.250000
75%	1000.000000	1.000000
max	22000.000000	66.000000

Standard Deviation of Price

High or Low

• Median is 392.5

Logistics regression

With only pet type as variables

- the cv score is 0.7921409736053113
- the training score is 0.7921409957481826
- the test score is 0.79016

Logistics regression

With more variables such as seller type, listing type, species or breed and gender:

- the cv score is 0.8982305867213576
- the training score is 0.9030311342751337
- the test score is 0.90024

NLP Model

- Use description text to predict price class RandomForestClassifier(Max_features=300, n_estimators=10)
- Extremely resource intensive

The winner was Random Forest

- the cv score is 0.8650048197933474
- the training score is 0.993553696337950 and the classification report:
- the test score is 0.8676

and the class	Titcacton reb	or c.		
	precision	recall	f1-score	support
lower price	0.94	0.97	0.96	20832
higher price	0.97	0.94	0.96	20832
accuracy			0.96	41664
macro avg	0.96	0.96	0.96	41664
weighted avg	0.96	0.96	0.96	41664

Price Prediction

Ridge	0.5222435083569612
Lasso	0.5228068232308152
Elastic Net	0.5229001110885271
Decision Tree	0.48605925061713284
Bagging	0.5166823132596303
Random Forest	0.49772672687446845
Ada Boost	0.3907683994473204
Gradient Boost	0.5316628271074635
Neural Net	0.5190056431272434

Number of entries and standard deviation

Comparison with and without dogs

Ridge	0.5222435083569612	0.36572695566832564	0.5310472091257473
Lasso	0.5228068232308152	0.36599877497114514	0.5306347297197616
Elastic Net	0.5229001110885271	0.3661667051768921	0.5323566954322898
Decision Tree	0.48605925061713284	0.32012757192481567	0.5017390665146342
Bagging	0.5166823132596303	0.3481304115715217	0.5681024881252817
Random Forest	0.49772672687446845	0.2989360623029004	0.5654032982753289
Ada Boost	0.3907683994473204	0.1855568664582719	0.2092885634699999
Gradient Boost	0.5316628271074635	0.3697957086680038	0.5869383815391225
Neural Net	0.5190056431272434	0.3623905748734906	0.5219623002989864

Prediction from best model

- Rather terrible
- Model tends to overestimate the value
- When it doesn't, it underestimate by a lot
- Especially prominent for dogs

```
count
         41664.000000
            -0.165941
mean
std
           471.110310
min
        -16601.398979
25%
           -76,769833
50%
            39.695575
75%
           143,470811
          5602,940704
max
```

Name: Gboost_difference, dtype: float64

Conclusion

- The age of the animal hardly affect price
- Most listing are animals under one year old
- Predicting sale price accurately is difficult
- More should be done in cleaning the data
- Convert location data to counties
- Multiclass regression model is perhaps better approach to the problem

