Compiler course

Chapter 3 Lexical Analysis

Outline

- Role of lexical analyzer
- Specification of tokens
- Recognition of tokens
- Lexical analyzer generator
- Finite automata
- Design of lexical analyzer generator

The role of lexical analyzer

Why to separate Lexical analysis and parsing

- Simplicity of design
- 2. Improving compiler efficiency
- 3. Enhancing compiler portability

Tokens, Patterns and Lexemes

- A token is a pair a token name and an optional token value
- A pattern is a description of the form that the lexemes of a token may take
- A lexeme is a sequence of characters in the source program that matches the pattern for a token

Example

Token	Informal description	Sample lexemes
if	Characters i, f	if
else	Characters e, l, s, e	else
comparison	< or > or <= or >= or !=	<=, !=
id	Letter followed by letter and digits	pi, score, D2
number	Any numeric constant	3.14159, 0, 6.02e23
literal	Anything but "sorrounded by "	"core dumped"

printf("total = $\%d\n$ ", score);

Attributes for tokens

- E = M * C ** 2
 - <id, pointer to symbol table entry for E>
 - <assign-op>
 - <id, pointer to symbol table entry for M>
 - <mult-op>
 - <id, pointer to symbol table entry for C>
 - <exp-op>
 - <number, integer value 2>

Lexical errors

- Some errors are out of power of lexical analyzer to recognize:
 - fi (a == f(x)) ...
- However it may be able to recognize errors like:
 - d = 2r
- Such errors are recognized when no pattern for tokens matches a character sequence

Error recovery

- Panic mode: successive characters are ignored until we reach to a well formed token
- Delete one character from the remaining input
- Insert a missing character into the remaining input
- Replace a character by another character
- Transpose two adjacent characters

Input buffering

- Sometimes lexical analyzer needs to look ahead some symbols to decide about the token to return
 - In C language: we need to look after -, = or < to decide what token to return
 - In Fortran: DO 5 I = 1.25
- We need to introduce a two buffer scheme to handle large look-aheads safely

Sentinels

```
M eof * C * * 2 eof
Switch (*forward++) {
   case eof:
          if (forward is at end of first buffer) {
                     reload second buffer;
                     forward = beginning of second buffer;
          else if {forward is at end of second buffer) {
                     reload first buffer;\
                     forward = beginning of first buffer;
          else /* eof within a buffer marks the end of input */
                     terminate lexical analysis;
          break;
   cases for the other characters;
```

Specification of tokens

- In theory of compilation regular expressions are used to formalize the specification of tokens
- Regular expressions are means for specifying regular languages
- Example:
 - Letter_(letter_ | digit)*
- Each regular expression is a pattern specifying the form of strings

Regular expressions

- ϵ is a regular expression, $L(\epsilon) = \{\epsilon\}$
- If a is a symbol in Σthen a is a regular expression, L(a)= {a}
- (r) | (s) is a regular expression denoting the language
 L(r) U L(s)
- (r)(s) is a regular expression denoting the language L(r)L(s)
- (r)* is a regular expression denoting (L9r))*
- (r) is a regular expression denting L(r)

Regular definitions

```
d1 -> r1d2 -> r2...dn -> rn
```

• Example:

```
letter_ -> A | B | ... | Z | a | b | ... | Z | _ digit -> o | 1 | ... | 9 id -> letter_ (letter_ | digit)*
```

Extensions

- One or more instances: (r)+
- Zero of one instances: r?
- Character classes: [abc]
- Example:
 - letter_ -> [A-Za-z_]
 - digit -> [0-9]
 - id -> letter_(letter|digit)*

Recognition of tokens

 Starting point is the language grammar to understand the tokens:

```
stmt -> if expr then stmt
| if expr then stmt else stmt
| \varepsilon
| expr -> term relop term
| term
| term
| number
```

Recognition of tokens (cont.)

The next step is to formalize the patterns:

```
digit -> [o-9]
Digits -> digit+
number -> digit(.digits)? (E[+-]? Digit)?
letter -> [A-Za-z_]
id -> letter (letter|digit)*

If -> if

Then -> then

Else -> else

Relop -> < | > | <= | >= | = | <>
```

We also need to handle whitespaces:

```
ws -> (blank | tab | newline)+
```

Transition diagrams

Transition diagram for relop

Transition diagrams (cont.)

Transition diagram for reserved words and identifiers

Transition diagrams (cont.)

Transition diagram for unsigned numbers

Transition diagrams (cont.)

Transition diagram for whitespace

Architecture of a transitiondiagram-based lexical analyzer

```
TOKEN getRelop()
   TOKEN retToken = new (RELOP)
   while (1) {
                        /* repeat character processing until a
                                     return or failure occurs */
   switch(state) {
            case o: c= nextchar();
                          if (c == '<') state = 1;
                          else if (c == '=') state = 5;
                          else if (c == '>') state = 6;
                          else fail(); /* lexeme is not a relop */
                          break;
            case 1: ...
            case 8: retract();
                         retToken.attribute = GT;
                         return(retToken);
```

Lexical Analyzer Generator - Lex

Structure of Lex programs

```
declarations
%%
translation rules
%%
auxiliary functions
```

Example

```
%{
   /* definitions of manifest constants
   LT, LE, EO, NE, GT, GE,
   IF, THEN, ELSE, ID, NUMBER, RELOP */
%}
/* regular definitions
delim
            [ \t \]
            {delim}+
WS
letter
            [A-Za-z]
digit
            [0-9]
            {letter}({letter}|{digit})*
id
            \{digit\}+(\.\{digit\}+)?(E[+-]?\{digit\}+)?
number
%%
            {/* no action and no return */}
\{ws\}
if
            {return(IF);}
then
            {return(THEN);}
            {return(ELSE);}
else
{id}
            {yylval = (int) installID(); return(ID); }
            {yylval = (int) installNum(); return(NUMBER);}
{number}
```

```
Int installID() {/* funtion to install the
    lexeme, whose first character is
    pointed to by yytext, and whose
    length is yyleng, into the symbol
    table and return a pointer thereto
    */
}
Int installNum() { /* similar to
    installID, but puts numerical
    constants into a separate table */
}
```

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow^{input} state

Finite Automata

Transition

$$S_1 \rightarrow^a S_2$$

Is read

In state s₁ on input "a" go to state s₂

- If end of input
 - If in accepting state => accept, othewise => reject
- If no transition possible => reject

Finite Automata State Graphs • A state

· The start state

An accepting state

· A transition

A Simple Example • A finite automaton that accepts only "1"

 A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

• A finite automaton accepting any number of 1's

- A finite automaton accepting any number of i's followed by a single o
- Alphabet: {0,1}

• Check that "1110" is accepted but "110..." is not

And Another Example • Alphabet {0,1}

- What language does this recognize?

And Another Example

Alphabet still { o, 1 }

- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves• Another kind of transition: ε-moves

 Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- *Finite* automata have *finite* memory
 - Need only to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- Input: 1 0 1
- · Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

 For a given language the NFA can be simpler than the DFA

· DFA can be exponentially larger than NFA

Regular Expressions to Finite

Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

For input a

Regular Expressions to NFA (2)

For AB

For A | B

Regular Expressions to NFA (3)

• For A*

Example of RegExp -> NFA conversion

Consider the regular expression

$$(1 | 0)*1$$

• The NFA is

Next

NFA to DFA. The Trick

- Simulate the NFA
- Each state of resulting DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ϵ -moves from NFA start state
- Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - considering ε-moves as well

NFA -> DFA Example

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states ?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
 - $2^{N} 1 =$ finitely many, but exponentially many

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbols"
 - For every transition $S_i \rightarrow a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state
 S_k
 - Very efficient

Table Implementation of a DFA

	0	1
5	۲	C
Т	Τ	C
U	Т	U

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex or jflex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

Readings

• Chapter 3 of the book