Modeling and Designing Database

UML Data Modeling

How to represent data for application

- 1. Relational model (tables)
- 2. XML
- 3. Graphes
 - (a) Entity-Relationship Model (E/R)
 - (b) Unified Modeling Language (UML)

Both can be translated to relations automatically (or semi-automatically)

Unified Modeling Language (UML)

- 1. Classes
- 2. Associations
- 3. Association Classes
- 4. Subclasses
- 5. Composition & Aggregation

Classes

Name, attributes, methods For data modeling: add primary key, delete methods

Unified Modeling Language (UML)

- 1. Classes
- 2. Associations
- 3. Association Classes
- 4. Subclasses
- 5. Composition & Aggregation

Associations

Relationships between objects of two classes

Multiplicity of Associations

Each object of class ${\cal C}_1$ is related to at least m and at most n objects of class ${\cal C}_2$

special

 $0 \dots *$ $1 \dots 1$ (default)
Complete

Unified Modeling Language (UML)

- 1. Classes
- 2. Associations
- 3. Association Classes
- 4. Subclasses
- 5. Composition & Aggregation

UML Data Modeling: Association Classes

Relationships between objects of two classes, with attributes on relationships

Association Classes: Self-Associations

UML Data Modeling: Subclasses

Relationships between objects of two classes, with attributes on relationships

UML Data Modeling: Subclasses

Superclass = Generalization
Subclass = Specialization
Incomplete (Partial) vs. Complete
Disjoint (Exclusive) vs. Overlapping

UML Data Modeling: Composition & Aggregation Objects of one class belong to objects of another class

Designing Database

The same set of information can be captured by defferent schemas.

The same set of information can be captured into defferent schemas.

but some schemas are better than others

Database for students applying to French Universities

123 Marc lives in Nancy applies to Paris-Sorbonne, U-Lille and Lyon-I has bac 15/20

sID	Name	Adress	Bac	University
שונ	INAIIIC	/ \u1\u33	Duc	o management

Problem on this schema (anomalies):

- 1. Redundancy
- 2. Update anomaly
- 3. Deletion anomaly

How to solve this problem?

A_1	A_2	A_3	A_4	A_5
1	2	1	1	1
1	2	1	2	3
3	6	1	1	1
1	2	1	3	4

How to solve this problem?

A_1	A_2	A_3	A_4	A_5
1	2	1	1	1
1	2	1	2	3
3	6	1	1	1
1	2	1	3	4

Ī	A_1	A_2
	1	2
7	3	6

A_3	A_4	A_5
1	1	1 3 4
1	2	3
1	3	4

Functional Dependency

 $A \rightarrow B$ we read it: B functionally depends on A

А	В	С

Exercise

Consider relation R(A,B,C,D,E) with functional dependencies: $A,B\to C$ and $C\to D$ and $B,D\to E,$

Which of the following sets of attributes does not functionally determine E?

- 1. A,B
- 2. A,B,C
- 3. B,C
- 4. C

Closure of Attributes

Given relation, FDs, set of attributes \overline{A} Find all B such that $\overline{A} \to B$ Closure of t \overline{A} is \overline{A}^+

Boyce-Codd normal form

A relation (table) is called Boyce-Codd normal fom if for any $A_1,A_2,\ldots A_n\to B_1,B_2,\ldots B_m$ $A_1,A_2,\ldots A_n$ is a key

That is: $A_1, A_2, \dots A_n$ determines the whole tuble

 $\mathsf{Bac} \to \mathsf{Rating}$

S-id \rightarrow Name, adress, Bac

U-id $\rightarrow U$ -Name, U-city

U-Name, U-city \rightarrow U-id

 $\mathsf{Bac} \to \mathsf{Rating}$ $\mathsf{S}\text{-id} \to \mathsf{Name}$, adress, Bac $\mathsf{U}\text{-id} \to \mathsf{U}\text{-Name}$, $\mathsf{U}\text{-city}$ $\mathsf{U}\text{-Name}$, $\mathsf{U}\text{-city} \to \mathsf{U}\text{-id}$

What is are the keys on this relation?

What is are the keys on this relation?

 $\mathsf{Bac} \to \mathsf{Rating}$ $\mathsf{S}\text{-id} \to \mathsf{Name}$, adress, Bac $\mathsf{U}\text{-id} \to \mathsf{U}\text{-Name}$, $\mathsf{U}\text{-city}$ $\mathsf{U}\text{-Name}$, $\mathsf{U}\text{-city} \to \mathsf{U}\text{-id}$

Is this relation in Boyce-Codd normal form?

Exercises

Consider the relation R(A,B,C,D,E) and suppose we have the functional dependencies $A,B\to C$ and $A,E\to D$ and $D\to B$. Determine of the keys for R?

BCNF decomposition algorithm

Input: relation R + FDs for R

Output: decomposition of R into BCNF relations with lossless join

- 1. Compute keys for R
- 2. Repeat until all relations are in BCNF:
 - (a) Pick any R with $A \rightarrow B$ that violates BCNF
 - (b) Decompose R into $R_1(A,B)$ and R_2 (A, rest)
 - (c) Compute FDs and keys for R_1 and R_2

Is BCNF always good?

Apply(S-id, U-id, hoppy)

Is BCNF always good?

Apply(S-id, U-id, hoppy)

- 1. Functional dependency ?
- 2. Keys?
- 3. BCNT
- 4. Is it a good design?

Multivalued dependency

Relation
$$R(A, B, C)$$

 $A \rightarrow B$ if

for all
$$L_1, L_2$$
 in R with $R_1[A] = R_2[A]$, then

there exists L_3 in R such that $R_3[A] = R_1[A]$ and $R_3[B] = R_1[B]$ and $R_3[C] = R_2[C]$

4th Normal form

A realation is in 4th normal form, if for any $A \twoheadrightarrow B$, we have that A is a key

Apply(S-id, U-id, hoppy) + condition

It is BCNF, but not 4 NF

(S-id, U-id)

(S-id, hoppy)

Bad points of BCNF and 4 NF

- 1. Over-decomposition
- 2. Query workload

Consider a relation R(A,B,C,D). For which of the following sets of FDs is R in Boyce-Codd Normal Form

$$A o B$$
 and $B o C$ and $C o D$ and $D o A$ $C o B$ and $D o A$ and $C o D$ and $A o C$