Paul Schrimpf

Amiti and Konings (200 Grieco and

Grieco and McDevitt (2017)

and Jaumandrei (2013)

References

Estimating Production Functions Applications

Paul Schrimpf

UBC Economics 567

January 18, 2022

Paul Schrimpf

Amiti and Konings (200

(2017) Doraszelski

and Jaumandreu (2013)

References

1 Amiti and Konings (2007)

2 Grieco and McDevitt (2017)

3 Doraszelski and Jaumandreu (2013)

Paul Schrimpf

Amiti and Konings (2007)

Grieco and McDevitt (2017)

and Jaumandreu (2013)

References

Section 1

Amiti and Konings (2007)

Amiti and Konings (2007)

Grieco and McDevitt (2017)

and Jaumandrei (2013)

Reference

- Effect of reducing input and output tariffs on productivity
- Reducing output tariffs affects productivity by increasing competition
- Reducing input tariffs affects productivity through learning, variety, and quality effects
- Previous empirical work focused on output tariffs; might be estimating combined effect
- Input tariffs hard to measure; with Indonesian data on plant-level inputs can construct plant specific input tariff

Paul Schrimpf

Amiti and Konings (2007)

Grieco and McDevitt

Doraszelski and Jaumandreu (2013)

References

Trade Liberalization in Indonesia

Table 1-Tariffs in Indonesia, 1991-2001

Industry	Tariff type	1991	1993	1995	1997	1999	2001
31 food	output	20.84	20.50	20.62	19.19	15.95	15.94
	input	13.86	13.60	9.83	8.68	7.12	6.95
32 textile clothing	output	27.35	26.65	20.19	16.53	12.68	9.43
	input	17.59	17.38	13.25	10.76	8.87	6.27
33 wood	output	24.20	24.10	17.95	12.32	9.43	6.91
	input	10.24	10.09	6.52	4.32	3.57	2.90
34 paper	output	21.21	19.76	10.09	7.04	4.31	4.03
	input	17.56	16.30	9.42	6.86	4.81	4.18
35 chemicals	output	15.60	14.93	12.05	10.11	8.31	6.92
	input	11.14	11.05	9.00	7.57	6.26	5.16
36 metal	output	23.04	21.84	10.62	7.46	6.40	5.65
	input	14.81	13.94	9.52	7.95	6.61	5.64
37 machinery	output	11.50	9.72	8.08	7.32	6.85	5.77
	input	9.80	9.94	7.82	7.32	6.88	6.15
38 electrical	output	18.89	18.56	14.69	11.01	7.75	6.69
	input	13.84	13.53	10.25	8.32	7.26	6.26
39 other	output	32.50	31.57	22.11	17.70	14.28	10.98
	input	15.94	15.37	11.25	9.17	7.67	6.17
All	output	20.88	20.29	15.58	12.51	9.76	8.44
	input	13.71	13.40	9.92	8.24	6.91	5.94

Paul Schrimpf

Amiti and Konings (2007)

Grieco and McDevitt (2017)

Doraszelski and Jaumandreu (2013)

Reference

Data and tariff measure

- Indonesian annual manufacturing census of 20+ employee plants 1991-2001, after cleaning 15,000 firms per year
- Input tariffs:
 - Data on tariffs on goods, τ_{jt} , but also need to know inputs
 - 1998 only: have data on inputs, use to construct input weights at industry level, w_{ik}
 - Industry input tariff = $\sum_{j} w_{jk} \tau_{jt}$

Paul Schrimpf

Amiti and Konings (2007)

Grieco and McDevitt

Doraszelsk and Jaumandre

References

Summary Statistics

TABLE 3—SUMMARY STATISTICS						
Variable	Observations	Mean	Standard deviation			
Output tariff	170,741	0.159	0.113			
Output tariff, -Output tariff, ->	111,107	-0.037	0.057			
Output tariff, - Output tariff, -1	56,320	-0.106	0.092			
Output tariffOutput tariff	6,089	-0.163	0.116			
Output tariff-3 digit	170,741	0.166	0.138			
Output tariff on the basis of the IO table	170,741	0.110	0.207			
Output weighted tariff	170,741	0.163	0.297			
Input tariff	170,741	0.101	0.062			
Input tariff, -input tariff, -	111,107	-0.018	0.031			
Input tariffinput tariff	56.320	-0.053	0.050			
Input tariff, -input tariff,-a	6.089	-0.082	0.064			
Input tariff-3 digit	120.741	0.129	0.061			
Input tariff on the basis of the IO table-1995	170.741	0.078	0.095			
Input tariff on the basis of the IO table-1998	170.741	0.068	0.078			
Input weighted tariff	170.741	0.099	0.227			
Log real output	170.468	8.160	2.106			
In(TFP)-Olley-Pakes	170,741	1.639	0.671			
In(TFP,)-In(TFP,)-Olley-Pakes	56.320	0.124	0.527			
In(TFP)-OLS	170.741	1.331	0.597			
In(TFP)-no foreign	170,741	1.653	0.665			
In(Value added per worker)	165 025	3,199	1.293			
In(L)	170,740	4.247	1.230			
In(L) In(K)	169.527	7.069	2.275			
In(K/L)	170,740	2.816	1.721			
		7.222				
In(Materials)	170,570	12.969	2.307			
In(Total inputs)	170,570		2.377			
Import share	170,741	0.098	0.250			
$FM = 1$ if import share ≥ 0	170,741	0.207	0.405			
FM_r - FM_{r-2}	111,107	-0.009	0.263			
FM _r -FM _{r-5}	56,320	-0.019	0.341			
FM,-FM,-9	6,089	-0.049	0.408			
High FM*	170,741 170,741	0.102	0.303			
Export share	170,741	0.118	0.297			
FX = 1 if export share > 0	111,107		0.354			
FX,-FX _{r-2}	56,320	-0.010	0.354			
FX,-FX _{r-5}	6,089	-0.046 0.002	0.393			
FX,-FX,-9	170.741	0.002	0.190			
Foreign share	170,741	0.048	0.190			
FF = 1 if foreign share ≥ 0.1	111,107	0.065	0.247			
FF _i -FF _{i-2}	56,320	0.001	0.123			
FF,-FF,-5	6.089	0.002	0.153			
FF,-FF,-9	170,741		0.601			
In(TWI)		-0.737				
In(TWI _c)-In(TWI _{c-5})	56,320 170,741	-0.999 0.148	0.384			
Switch = 1 if firm switches products	170,741	0.148	0.355			
Crisis dummy = 1 if year = 1997 or 1998	170,741	0.198	0.399			
Herfindahl index-4-digit level						
Herf,-Herf,-2	111,107 56.320	-0.002	0.067			
Herf _e -Herf _{e-5}		0.002	0.082			
Herf,-Herf,-9	6,089	-0.016	0.117			
Highly concentrated industry (Herfindahl > 0.25)	170,741	0.053	0.223			
Exit = 1 if firm exits next year	170,741	0.063	0.243			

^{*}High FM indicates importing firms in industries with more than 40 percent of firms.

Paul Schrimpf

Productivity Estimates

Amiti and Konings (2007)

McDeviti (2017)

and Jaumandrei (2013)

Reference

$$y_{it} = \beta_l^k I_{it} + \beta_k^k k_{it} + \beta_m^k m_{it} + \underbrace{tfp_{it}^k}_{\omega_{it} + \epsilon_{it}}$$

- Output measure is revenue ⇒ may confound productivity and markups
- Materials measured as cost ⇒ may confound quality and productivity
- Estimate TFP using Olley-Pakes

Paul Schrimpf

Amiti and Konings (2007)

Grieco and McDevitt (2017)

Doraszelski and Jaumandrei (2013)

References

Production Function Estimates

TABLE 2—COEFFICIENTS OF THE PRODUCTION FUNCTION

Industry	Labor		Materials		Capital	
	OLS	OP	OLS	OP	OLS	OP
Food products (311)	0.304	0.273	0.747	0.708	0.058	0.067
Food products, nesa (312)	0.421	0.335	0.494	0.467	0.172	0.132
Beverages (313)	0.965	0.818	0.353	0.346	0.166	0.175
Tobacco (314)	0.159	0.105	0.875	0.875	0.036	0.000
Textiles (321)	0.249	0.212	0.728	0.708	0.058	0.064
Clothing (322)	0.277	0.253	0.743	0.724	0.039	0.070
Leather goods, nesa (323)	0.334	0.321	0.718	0.702	0.026	0.003
Leather footwear (324)	0.392	0.351	0.643	0.619	0.017	0.002
Wood and cork, except furniture (331)	0.296	0.276	0.698	0.677	0.046	0.061
Furniture (332)	0.303	0.285	0.690	0.677	0.052	0.046
Paper and paper products (341)	0.281	0.230	0.739	0.730	0.044	0.018
Printing, publishing, and allied industries (342)	0.419	0.292	0.645	0.657	0.053	0.063
Industrial chemicals (351)	0.312	0.173	0.561	0.497	0.150	0.178
Other chemical products (352)	0.409	0.376	0.641	0.607	0.094	0.121
Rubber products (355)	0.221	0.223	0.717	0.694	0.049	0.045
Plastic products, nesa (356)	0.247	0.203	0.745	0.717	0.049	0.056
Pottery, china, and earthware (361)	0.353	0.377	0.583	0.498	0.145	0.196
Glass and glass products (362)	0.381	0.278	0.668	0.640	0.059	0.120
Cement (363)	0.358	0.251	0.713	0.706	0.062	0.128
Clay products (364)	0.544	0.517	0.422	0.367	0.137	0.115
Other nonmetallic mineral products (369)	0.448	0.364	0.578	0.518	0.164	0.222
Iron and steel industries (371)	0.259	0.248	0.787	0.755	0.015	0.045
Nonferrous metal basic industries (372)	0.364	0.182	0.691	0.664	0.124	0.174
Fabricated metal products, except machinery (381)	0.315	0.285	0.714	0.701	0.040	0.031
Nonelectrical machinery (382)	0.327	0.268	0.693	0.677	0.080	0.044
Electrical machinery (383)	0.289	0.293	0.737	0.713	0.044	0.096
Transport equipment (384)	0.384	0.312	0.671	0.639	0.051	0.143
Professional, scientific, and equipment (385)	0.384	0.312	0.671	0.639	0.051	0.143
Miscellaneous manufacturing (390)	0.390	0.346	0.620	0.589	0.074	0.133

a "nes" refers to "not elsewhere classified."

Reference

Productivity and Tariffs

Estimate relation between TFP and tariffs

$$\begin{split} \log(\textit{TFP}_{it}) = & \gamma_0 + \alpha_i + \alpha_{tl(i)} + \gamma_1(\text{output tariff})_{tk(i)} + \\ & + \gamma_2(\text{input tariff})_{tk(i)} + \epsilon_{it} \end{split} \tag{1}$$

- k(i) = 5-digit (ISIC) industry of plant i
- l(i) = island of plant i
- Explore robustness to:
 - Different productivity measure
 - Specification of 1
 - Endogeneity of tariffs

Estimating Production

Paul Schrimpf

Amiti and Konings (2007)

McDevi (2017)

Doraszelski and Jaumandrei (2013)

References

Productivity and Tariffs

TABLE 4-BASIC RESULTS

		TABLE 4-DAS	IC RESULTS			
Dependent variable: ln(TFP _{ir})	(1)	(2)	(3)	(4)	(5)	(6)
Output tariff,	-0.206*** (0.033)	-0.070* (0.042)	-0.092** (0.043)	-0.096** (0.043)	-0.096** (0.043)	-0.095** (0.043)
Input tariff $_{i}^{k}$		-0.441*** (0.062)	-0.318*** (0.063)	-0.315*** (0.063)	-0.315*** (0.063)	-0.325*** (0.063)
Input tariff $_{i}^{k} \times \mathrm{FM}_{ir}$			-0.914*** (0.086)	-0.899*** (0.086)	-0.896*** (0.086)	
$FM_{ii} = 1$ if import share > 0			0.092*** (0.012)	0.091*** (0.012)	0.089*** (0.012)	
Input tariff, \times import share,						-1.908*** (0.164)
Import share _{ir}						0.233*** (0.024)
$FX_{ii} = 1$ if export share > 0					-0.010** (0.005)	
Export share _{ir}						-0.008 (0.006)
$FF_{ii} = 1$ if foreign share ≥ 0.1					0.070*** (0.017)	
Foreign share,						0.079*** (0.023)
$Exit_{it} = 1$ if firm exits in $t + 1$				-0.040*** (0.004)	-0.040*** (0.004)	-0.040*** (0.004)
Island × year effects Firm fixed effects Observations R-squared	yes yes 170,741 0.80	yes yes 170,741 0.80	yes yes 170,741 0.80	yes yes 170,741 0.80	yes yes 170,741 0.80	yes yes 170,741 0.80

Notes: Robust standard errors corrected for clustering at the firm level in parentheses. If, instead, error terms were corrected for clustering at the industry-year level, all significant variables remain significant with p-values < 0.05, except output tariff in columns 2 through 6 becomes insignificant.

^{***} Significant at, or below, 1 percent.

** Significant at, or below, 5 percent.

^{*} Significant at, or below, 3 percent.

Paul Schrimpf

Amiti and Konings (2007)

Grieco and McDevitt (2017)

and Jaumandreu (2013)

Reference

Results

- Input tariffs have larger effect than output, $\hat{\gamma}_1\approx -0.07$, $\hat{\gamma}_2\approx -0.44$
- Robust to:
 - Productivity measure
 - Tariff measure
 - Including/excluding Asian financial crisis
- Less robust to instrumenting for tariffs
 - Qualitatively similar, but larger coefficient estimates
- Explore channels for productivity change
 - Markups (maybe), product switching/addition (no), foreign ownership (no), exporters (no)

Paul Schrimpf

Amiti and Konings (2007)

Grieco and McDevitt (2017)

Doraszelski and Jaumandrei (2013)

References

Section 2

Grieco and McDevitt (2017)

Paul Schrimpf

Amiti and Konings (2007

Grieco and McDevitt (2017)

Doraszelski and Jaumandrei (2013)

References

Grieco and McDevitt (2017)

```
https://www.ftc.gov/sites/default/files/documents/public_events/fifth-annual-microeconomics-conference/grieco-p_0.pdf
```

References

Model details

- Timing:
 - ① Quality chosen $q_{it} = q(k_{it}, \ell_{it}, x_{it}, \omega_{i,t-b})$
 - 2 Production occurs, ω_{it} revealed to firm
 - 3 Hiring chosen $\ell_{i,t+1} \ell_{it} = h_{it} = h(k_{it}, \ell_{it}, x_{it}, \omega_{it})$
- ω follows Markov process:

$$\begin{split} & \mathbb{E}[\omega_{i,t-b}|\mathcal{I}_{i,t-b}] = \mathbb{E}[\omega_{i,t-b}|\omega_{i,t-1}] \ \& \ \mathbb{E}[\omega_{it}|\mathcal{I}_{i,t}] = \mathbb{E}[\omega_{it}|\omega_{i,t-b}] \\ & \text{and} \ \omega_{it} = \mathbb{E}[\omega_{it}|\omega_{i,t-1}] + \eta_{it} = g(\omega_{i,t-1}) + \eta_{it} \end{split}$$

Paul Schrimpf

Amiti and Konings (20)

Grieco and McDevitt (2017)

and Jaumandrei (2013)

Reference

Moment conditions

 \bullet Control function assumption: hiring is a monotonic function of ω

$$h_{it} = h(k_{it}, \ell_{it}, x_{it}, \omega_{it})$$

SO

$$\omega_{it} = h^{-1}(k_{it}, \ell_{it}, x_{it}, h_{it})$$

• Substitute into production function:

$$y_{it} = \alpha_q q_{it} + \beta_k k_{it} + \beta_\ell \ell_{it} + h^{-1}(k_{it}, \ell_{it}, x_{it}, h_{it}) + \epsilon_{it}$$

$$y_{it} = \alpha_q q_{it} + \Phi(k_{it}, \ell_{it}, x_{it}, h_{it}) + \epsilon_{it}$$

• Evolution of ω

$$\omega_{it} = y_{it} - \alpha_q q_{it} - \beta_k k_{it} - \beta_\ell \ell_{it} - \epsilon_{it} = g(\omega_{i,t-1}) + \xi_{it}$$

= $q(\Phi(k_{it-1}, \ell_{it-1}, x_{it-1}, h_{it-1}) - \beta_\ell \ell_{it-1} - \beta_k k_{it-1}) + \xi_{it}$

Moment conditions:

$$\begin{split} & & \quad \mathsf{E}[\epsilon_{it}|q_{it},k_{it},\ell_{it},x_{it},h_{it}] = 0 \\ & \quad \mathsf{E}[\xi_{it}|k_{it},\ell_{it},x_{it},k_{it-1},\ell_{it-1},x_{it-1}] = 0 \end{split}$$

Reference

Estimation

1 Estimate, α_q , Φ from

$$y_{it} = \alpha_q q_{it} + \Phi(k_{it}, \ell_{it}, x_{it}, h_{it}) + \epsilon_{it}$$

by semiparametric regression

- 2 Estimate β_k , β_ℓ
 - Let $\omega(\beta)_{it} = \hat{\Phi}(k_{it}, \ell_{it}, x_{it}, h_{it}) \beta_k k_{it} \beta_\ell \ell_{it}$
 - For each β estimate g()

$$y_{it} - \hat{\alpha}q_{it} - \beta_k k_{it} - \beta_\ell \ell_{it} = g(\omega(\beta)_{it-1}) + \underbrace{\xi_{it} + \epsilon_{it}}_{\equiv \eta_{it}(\beta)}$$

by nonparametric regression

• Minimize empirical moment condition for η

$$\hat{\beta} = \arg\min(\frac{1}{NT} \sum_{it} k_{it} \eta_{it}(\beta))^2 + (\frac{1}{NT} \sum_{it} \ell_{it} \eta_{it}(\beta))^2$$

Paul Schrimpf

Amiti and Konings (200

Grieco and McDevitt (2017)

and Jaumandrei (2013)

Reference

- Should hemoglobin level be controlled for when measuring quality?
 - Anemia (low hemoglobin) is risk-factor for infection
 - Anemia can be treated through diet, iron supplements (pills or IV), EPO, etc
 - Are dialysis facilities responsible for this treatment?
 - In 2006-2014 data average full-time dieticiens = 0.5, average part-time = 0.6

Paul Schrimpf

Amiti and Konings (200

Grieco and McDevitt (2017)

Doraszelski and Jaumandreu (2013)

Reference

Measurement error

• Simplified setup:

$$y = \alpha \tilde{q} + \epsilon$$

 $ilde{q}$ unobserved, observe $q = ilde{q} + \epsilon^q$ with $\mathsf{E}[\epsilon^q | ilde{q} = \mathsf{0}]$

- Then plim $\hat{\alpha}^{OLS} = \alpha \frac{\text{Var}(\tilde{q})}{\text{Var}(\tilde{q}) + \text{Var}(\epsilon^q)}$
- If $d=d(\tilde{q})+\epsilon^d$ with ${\sf E}[\epsilon^d|\tilde{q}]={\sf 0}$ and ${\sf E}[\epsilon^d\epsilon^q]={\sf 0}$, then

$$\operatorname{plim} \hat{\alpha}^{IV} = \alpha$$

- Is $E[\epsilon^d \epsilon^q] = 0$ a good assumption?
 - Paper argues $\mathsf{E}[\epsilon^d \epsilon^q] = \mathit{O}(1/(\mathsf{patients}\;\mathsf{per}\;\mathsf{facility}))$

Paul Schrimpf

Amiti and Konings (2007

Grieco and McDevitt (2017)

Doraszelski and Jaumandrei (2013)

Reference

• Estimation details:

Step 1: Estimate α_q

$$y_{jt}\hat{E}[y|h_{jt},i_{jt},k_{jt},\ell_{jt},x_{jt}] = \alpha_q(qjt - \hat{E}[q|h_{jt},i_{jt},k_{jt},\ell_{jt},x_{jt}]) + \epsilon_{jt}$$

- Drop observations with $h_{jt} = 0$ (not invertible)
- Okay here, because selecting on ω , and residual, ϵ_{jt} is uncorrelated with ω
- Problematic in last step? No, see footnote 49

Step 2: Estimate β_k , β_ℓ from

$$y_{jt} + \hat{\alpha}_q + \beta_k k_{jt} + \beta_\ell \ell_{jt} = g(\hat{\omega}_{jt-1}(\beta)) + \eta_{jt} + \epsilon_{jt}$$

- Only have $\hat{\omega}_{jt-1}(\beta)$ when $h_{jt-1} \neq 0$, okay because ϵ_{jt} and η_{jt} are uncorrelated with ω_{jt-1} , would be problem if using $\hat{\omega}_{it}$
- Nothing about selection number of centers, 4270, vs center-years, 18295, implies there must be entry and exit

Paul Schrimpf

Amiti and Konings (2007

Grieco and McDevitt (2017)

Doraszelski and Jaumandrei (2013)

Reference

Results

- Estimate implications:
 - Holding inputs constant, reducing infections by one per year requires reducing output by 1.5 patients
 - Cost of treatment \approx \$50,000, so one infection \approx \$75,000
 - Holding output constant, reducing infections by one per year requires hiring 1.8 more staff
 - Cost of staff \approx \$42,000, so one infection \approx \$75,000

Paul Schrimpf

Amiti and Konings (2007)

Grieco and McDevitt (2017)

Doraszelski and Jaumandrei (2013)

Reference

- Would like to see some results related to productivity dispersion e.g.
 - Decompose variation in infection rate into: productivity variation, incentive variation, quality-quantity choices, and random shocks
 - Compare strengthening incentives vs closing least productive facilities as policies to increase quality

Paul Schrimpf

Amiti and Konings (2007)

Grieco an McDevitt (2017)

Doraszelski and Jaumandreu (2013)

References

Section 3

Doraszelski and Jaumandreu (2013)

Paul Schrimpf

Amiti and Konings (200

McDevitt (2017)

Doraszelski and Jaumandreu (2013)

Reference

Overview

- Estimable model of endogenous productivity, which combines:
 - Knowledge capital model of R&D
 - OP & LP productivity estimation
- Application to Spanish manufacturers focusing on R&D
 - Large uncertainty (20%-60% or productivity unpredictable)
 - Complementarities and increasing returns
 - Return to R&D larger than return to physical capital investment

References

Model (simplified) 1

• Cobb-Douglas production:

$$y_{it} = \beta_l I_{it} + \beta_k k_{it} + \omega_{it} + \epsilon_{it}$$

• Controlled Markov process for productivity, $p(\omega_{it+1}|\omega_{it}, r_{it})$,

$$\omega_{it} = g(\omega_{it-1}, r_{it-1}) + \xi_{it}$$

- Labor flexible and non-dynamic
- Value function

$$V(k_{t}, \omega_{t}, u_{t}) = \max_{i,r} \Pi(k_{t}, \omega_{t}) - C_{i}(i, u_{t}) - C_{r}(r, u_{t}) + \frac{1}{1 + \rho} \mathbb{E}[V(k_{t+1}, \omega_{t+1}, u_{t+1}) | k_{t}, \omega_{t}, i, r, u_{t}]$$

Paul Schrimpf

Amiti and Konings (2007

McDevitt (2017)

and Jaumandreu (2013)

References

Model (simplified) 2

- u scalar or vector valued shock
- u not explicitly part of model, but identification discussion (especially p10 and footnote 6) implicitly adds it
 - *u* independent of? *k*, *l*? across time?
- Control function incorporating Cobb-Douglas assumption (and perfect competition):

$$\omega_{it} = h(I_{it}, k_{it}, w_{it} - p_{it}; \beta) = \lambda_0 + (1 - \beta_l)I_{it} - \beta_k k_{it} + (w_{it} - p_{it})$$

· Form moments based on

$$y_{it} = \beta_i I_{it} + \beta_k k_{it} + g(h(I_{it-1}, k_{it-1}, w_{it-1} - p_{it-1}; \beta), r_{it-1}) + \xi_{it} + \epsilon_i$$

- No collinearity because:
 - Parametric h
 - Variation in k, r due to u
- Estimated model adds

Paul Schrimpf

Amiti and Konings (200)

Grieco and McDevitt (2017)

Doraszelski and Jaumandreu (2013)

References

Model (simplified) 3

- Material input instead of labor for control function
- h based on imperfect competition
- Comparison to OP, LP, ACF

Paul Schrimpf

Amiti and Konings (200)

McDevitt (2017)

Doraszelski and Jaumandreu (2013)

Reference

Results

- Look at tables and figures
- Large uncertainty (20%-60% or productivity unpredictable)
- Complementarities and increasing returns
- Return to R&D larger than return to physical capital

Paul Schrimpf

Amiti and Konings (2007)

McDevitt (2017)

Doraszelski and Jaumandrei (2013)

References

Amiti, Mary and Jozef Konings. 2007. "Trade Liberalization, Intermediate Inputs, and Productivity: Evidence from Indonesia." *The American Economic Review* 97 (5):pp. 1611–1638. URL

http://www.jstor.org/stable/30034578.

- Doraszelski, Ulrich and Jordi Jaumandreu. 2013. "R&D and Productivity: Estimating Endogenous Productivity." *The Review of Economic Studies* 80 (4):1338-1383. URL http://restud.oxfordjournals.org/content/80/4/1338.abstract.
- Grieco, Paul L. E. and Ryan C. McDevitt. 2017. "Productivity and Quality in Health Care: Evidence from the Dialysis Industry." *The Review of Economic Studies* 84 (3):1071–1105. URL http://dx.doi.org/10.1093/restud/rdw042.