Les différents traceurs

et

leurs domaines d'applications

Irène Buvat U494 INSERM Paris

buvat@imed.jussieu.fr

octobre 2001

Plan du cours

- Introduction
- Imagerie cardiaque
 - Repérages anatomiques
 - Imagerie cardiaque SPECT
 - Imagerie cardiaque PET
- Imagerie cérébrale
 - Repérages anatomiques
 - Imagerie cérébrale SPECT
 - Imagerie cérébrale PET
- Imagerie oncologique
 - Généralités
 - Imagerie oncologique SPECT
 - Imagerie oncologique PET
- Divers
 - Scintigraphies pulmonaires
 - Scintigraphies rénales
 - Scintigraphies osseuses
- Bilan
 - Radiotraceurs SPECT
 - Radiotraceurs PET
- Ressources internet

Introduction

- Deux types de radiotraceurs
 - émetteurs de photons gamma
 - émetteurs de positons

- Multiples investigations fonctionnelles possibles
 - perfusion cardiaque, cérébrale, tumorale, pulmonaire
 - métabolisme (e.g., glucose)
 - synthèse de protéines
 - imagerie de récepteurs
 - etc.
- Applications à tous les organes
 - explorations cardiaques
 - explorations cérébrales
 - oncologie
 - explorations rénales
 - explorations pulmonaires
 - etc.

Imagerie cardiaque

- Repérages anatomiques
- Imagerie cardiaque SPECT
 - Radiotraceurs
 - Imagerie de perfusion : cas normal
 - Imagerie de perfusion : infarctus
 - Imagerie de perfusion : ischémie
- Imagerie cardiaque PET
 - Radiotraceurs
 - Notions de base
 - Flux et métabolisme
 - Hibernation
 - Cardiomyopathies
 - Protocoles effort / repos
 - Effet de la charge en glucose

Imagerie cardiaque : repérages anatomiques

Acquisitions

coupe sagittale

• Réorientation

Imagerie cardiaque : exemple de repérage anatomique

coupe transverse au FDG

coupe petit axe après réorientation

Imagerie cardiaque et territoires coronariens

carte polaire (bull's eye map)

Imagerie cardiaque SPECT: radiotraceurs

- Globules rouges marqués au Tc99m (T_{1/2}=6 h, E=140 keV)

 □ fraction d'éjection
- T1201 ($T_{1/2}$ =72,5 h, E=69-83 keV, 135 keV et 167 keV)
 - analogue du potassium
 - fixation régionale proportionnelle au flux sanguin
 - imagerie de perfusion
 - protocoles stress/réinjection :
 - ~2,5 mCi à l'effort, images 10 min après images de redistribution 4h après réinjection de 1,25 mCi et images 10 min après

Ou

- ~2,5 mCi à l'effort, images 10 min après réinjection de 1,25 mCi 4h après et images 10 min après
- imagerie 4 h après réinjection pour évaluation de la viabilité myocardique
- Tc99m sestamibi ou Tc99m tetrofosmine
 - comportement similaire au Tl201
 - imagerie de perfusion
 - plus favorable à l'imagerie
 - protocoles stress/repos:
 - ~8 mCi injecté à l'effort (physique ou pharmacologique), images 30 à 60 min après
 - ~24 mCi injecté 2 à 4 h après, imagerie 30 à 60 min après

Imagerie cardiaque: fraction d'éjection

- Radiotraceur : globules rouges marqués au Tc99m
- Acquisition (planaire ou SPECT) cavitaire synchronisée à l'ECG (gated blood pool)
 - ⇒ une séquence de P images couvrant le cycle cardiaque

- tracé d'une région d'intérêt englobant la cavité et calcul de la courbe activité-temps correspondante

- déduction de la fraction d'éjection définie par : Fraction d'éjection = $100 * (N_{ts} - N_{td}) / N_{ts}$ $\approx 100 * (V_{ts} - V_{td}) / V_{td}$

Imagerie cardiaque de perfusion SPECT : normal

• Images de perfusion normales au Tc99m sestamibi petit axe

grand axe horizontal

Imagerie cardiaque de perfusion SPECT : infarctus

- Tc99m sestamibi
- Défaut de perfusion irréversible en paroi inférieure
- ⇒ infarctus

petit axe

grand axe horizontal

Imagerie cardiaque de perfusion SPECT : ischémie

- Tc99m sestamibi
- Défaut de perfusion réversible en paroi latérale
- ⇒ ischémie

petit axe

grand axe horizontal

Imagerie cardiaque PET: radiotraceurs

- NH3 : ammoniaque marqué à l'azote 13 (N13) ($T_{1/2} = 10,0$ min)
 - mesure du flux sanguin : passage du compartiment vasculaire au compartiment tissulaire par transport actif (pompe sodium-potassium) et diffusion passive
 - > traceur de perfusion régionale
 - rapide élimination sanguine
 - rétention tissulaire élevée
 - images bien contrastées
- H_2O15 : eau marquée à l'Oxygène 15 ($T_{1/2} = 2,2 \text{ min}$)
 - traceur de perfusion régionale
 - fraction d'extraction proche de 100% dans le myocarde et non affectée par le métabolisme
 - inconvénient : forte concentration dans les compartiments vasculaires, dans les cavités cardiaques et les poumons
 - qualité d'images moindre
- FDG : fluorodéoxyglucose marqué au Fluor 18 ($T_{1/2} = 109$ min)
 - étude du métabolisme glucidique régional du myocarde
 - > traceur de viabilité myocardique

Imagerie cardiaque PET: notions de base

fixation = flux sanguin (e.g., NH3) ou métabolisme (FDG)

hypofixation régionale (région septale supérieure) e.g., hypoperfusion

Imagerie cardiaque PET: flux et métabolisme

métabolisme normal

défaut de perfusion régional

hypo métabolisme régional

- défauts concordants (matched defects)
- tissu non viable dans la région altérée
 - ⇒ revascularisation inutile

défaut de perfusion régional

hyper métabolisme régional

- défauts discordants (mismatched defects)
- tissu viable dans la région altérée
- ⇒ revascularisation prometteuse

Flux et métabolisme en PET : exemple

défauts de perfusion

hypo métabolisme régional

- défauts concordants (matched defects)
- tissu non viable dans la région altérée revascularisation inutile

défauts de perfusion

hyper métabolisme régional

- défauts discordants (mismatched defects)
- tissu viable dans la région altérée
- ⇒ revascularisation prometteuse

Imagerie cardiaque PET: phénomène d'hibernation

- perfusion normale mais métabolisme accru :
- région hibernante suite à un épisode d'hypoperfusion régionale

Imagerie cardiaque PET: cardiomyopathies

• Diagnostic différentiel

flux normal mais myocarde dilaté

métabolisme normal mais myocarde dilaté

- cardiomyopathie dilatée idiopathique
- ⇒ transplantation cardiaque

défauts de perfusion régionaux

métabolisme normal mais myocarde dilaté

- cardiomyopathie dilatée ischémique
- ⇒ revascularisation potentiellement utile

Cardiomyopathies en PET: exemples

perfusion relativement homogène

ventricule gauche dilaté

- ⇒ cardiomyopathie dilatée idiopathique
 ⇒ traitement potentiel : transplantation cardiaque

métabolisme glucidique persistant

- cardiomyopathie dilatée ischémique
- ⇒ revascularisation envisageable

Imagerie cardiaque PET: études effort / repos

- Effort
 - effort physique (bicyclette, tapis)
 - effort pharmacologique (dobutamine)

effort : défaut de perfusion régional

- défaut induit par l'effort
- → petite sténose

• Exemple

Etudes effort / repos : cartes polaires

Imagerie cardiaque PET : effet de la charge en glucose

• Images FDG: utilisation du glucose

après absorption de glucose

- fuel métabolique principal du myocarde = acides gras
- à jeun :
- ⇒ tissus anormaux (ischémiques mais viables) : acides gras non métabolisés ⇒ utilisation du glucose importante
- après absorption de glucose :
- ⇒ tissus sains : métabolisme des acides gras et du glucose
- ⇒ tissus anormaux : acides gras non métabolisés ⇒ utilisation du glucose (plus ou moins importante par rapport à celle des tissus normaux)
- ⇒ examens le plus souvent réalisés après absorption de glucose

Effet de la charge en glucose : exemple

• A jeun

faible consommation de glucose dans les régions normales

• Après absorption de glucose

consommation de glucose réduite dans les régions ischémiques

forte consommation de glucose dans les régions normales

Imagerie cérébrale

- Repérages anatomiques
- Imagerie cérébrale SPECT
 - Radiotraceurs
 - Imagerie de perfusion : cas normal
 - Imagerie de perfusion : syndrome de fatigue chronique
 - Imagerie de perfusion : dépression
 - Imagerie de récepteurs
- Imagerie cérébrale PET
 - Radiotraceurs
 - Imagerie de perfusion cérébrale
 - Imagerie métabolique : cas normal
 - Imagerie métabolique : activation cérébrale
 - Imagerie métabolique : maladie d'Alzeihmer
 - Imagerie métabolique et de récepteurs : maladie de Parkinson

Imagerie cérébrale : orientations des coupes

coupes transaxiales

coupes sagitales

coupes coronales

Imagerie cérébrale : repérage anatomique

lobes cérébraux

Imagerie cérébrale SPECT : généralités

- Imagerie de perfusion cérébrale
 - accumulation du traceur proportionnelle au taux d'arrivée du sang dans la région considérée (ml/min/100g)
 - principaux traceurs :I123 IMP (iodoemphétamine)

Tc99m HMPAO (hexaméthylpropylène amine oxime)

- > traversent la barrière hématoencéphalique
- applications : dépressions, abus de substance, démences, épilepsie, maladies vasculaires cérébrales, tumeurs, etc.
- Imagerie des récepteurs
 - récepteurs dopaminergiques, de la sérotonine, etc.
 - marquage à l'I123

Imagerie cérébrale : notions de base SPECT

Tc99m HMPAO SPECT : imagerie de perfusion cérébrale

- symétrie gauche / droite des fixations
- fixation importante dans ma matière grise corticale : lobes frontaux, pariétaux, temporaux, occipitaux
- fixation importante dans le thalamus
- fixation moindre dans la matière blanche corticale et les ventricules

SPECT cérébral et syndrome de fatigue chronique

Tc99m HMPAO SPECT : imagerie de perfusion cérébrale

défauts de perfusion importants dans les lobes temporaux et pariétaux

⇒ après traitement, restauration de la symétrie de fixation du traceur

SPECT cérébral et dépression

Tc99m HMPAO SPECT : imagerie de perfusion cérébrale

⇒ perfusion réduite de façon bilatérale dans le cortex frontal/temporal

Imagerie de récepteurs en SPECT cérébral

Imagerie des récepteurs dopaminergiques D2 avec l'I123-BZM (iodobenzamide marquée à l'I-123)

sujet normal : fixation sur les récepteurs dopaminergiques D2 dans les noyaux caude et putamen

fixation sur les récepteurs dopaminergiques D2 réduite dans les cas de pertes de neurones, e.g. dans la maladie de Huntington, ou si les récepteurs sont inhibés par une médication neuroleptique ou antipsychotique

Imagerie cérébrale PET : généralités

- Imagerie de perfusion cérébrale
 - H_2O15 : eau marquée à l'Oxygène 15 ($T_{1/2} = 2,2$ min)
 - CO₂ marqué à l'O15
- Imagerie métabolique
 - métabolisme du glucose : fluorodéoxyglucose marqué au Fluor 18 ($T_{1/2} = 109 \text{ min}$)
 - métabolisme de l'Oxygène par O15
- Imagerie des récepteurs
 - dopamine marquée au Fluor 18 : fluoro-DOPA (F-DOPA)
 - raclopride marqué au Carbone 11 ($T_{1/2} = 20,4$ min)

Imagerie de perfusion cérébrale : cas normal

image H₂O15 d'un sujet sain

- mesure possible du flux sanguin cérébral
- ⇒ études d'activation cérébrale

MN4 : Les principaux radiotraceurs et leurs applications - Irène Buvat - octobre 2001 - 33

Imagerie cérébrale FDG PET: cas normal

FDG PET d'un sujet sain

- cortex délimité en rouge : hétérogénéité normale du métabolisme glucidique cortical
- symétrie gauche / droite des fixations
- similarité des fixations antérieures / postérieures

Imagerie cérébrale fonctionnelle : PET FDG

sujet au repos

stimulation auditive

⇒ cortex auditif

stimulation visuelle

⇒ cortex visuel primaire

PET FDG et maladie d'Alzeihmer

sujet sain

sujet atteint

- hypométabolisme précoce dans les lobes pariétaux et temporaux
- ⇒ atteinte plus tardive du lobe frontal
- cortex sensorimoteur primaire et cortex visuel primaire relativement préservés

nouveau-né

similarité métabolique (et comportementale) à l'exception du cortex visuel

PET FDG et F-DOPA: maladie de Parkinson

- fixation de F-DOPA diminuée dans les putamens
- ⇒ diagnostic différentiel des démences à partir de la combinaison d'un examen FDG et d'un examen F-DOPA

Imagerie oncologique

- Repérages anatomiques
- Imagerie oncologique monophotonique (planaire et SPECT)
 - Radiotraceurs
 - Scintigraphie osseuse corps entier
 - Scintigraphie MIBG
 - Scintigraphie au gallium 67
- Imagerie oncologique PET
 - Radiotraceurs
 - Exemples de bilan d'extension
 - Rôle en imagerie diagnostique
 - Rôle en suivi thérapeutique

Imagerie oncologique monophotonique : généralités

- Scintigraphies osseuses corps entier planaires ou SPECT au Tc99m-HDP
 - ⇒ bilan d'extension tumorale
- Nombreux traceurs spécifiques à la détection de tumeurs particulières
 - I131 MIBG, I123 MIBG
 - Gallium 67
 - Tc99m sestamibi (e.g., cancer du sein) etc.
- Rôle pour le diagnostic et le suivi thérapeutique
 - détection de métastases osseuses
 - acquisitions répétées au cours du temps pour caractériser l'évolution de l'extension tumorale

Scintigraphie planaire corps entier

- Traceur : Tc99m-HDP : diphosphonate technétié
- Cancer des poumons et douleur à la hanche droite
- Pas d'anomalies au scanner

détection d'une métastase osseuse

Scintigraphie MIBG

- Traceur : I123 ou I131 MIBG (metaiodobenzylguanidine)
- Utilisé pour le diagnostic des phéochromocytomes (tumeur rare de la médullosurrénale ou d'autres ganglions sympathiques qui sécrètent des catécholamines) et neuroblastomes (tumeur du système nerveux sympathique avec tumeur primitive située en différents sites anatomiques abdomen 65%, thorax 19%)

phéochromocitome

Scintigraphie au Gallium 67

- Ga 67 ($T_{1/2} = 78 \text{ h}$): analogue de l'ion ferrique utilisé sous forme soluble de citrate de Gallium
- Tumeurs fixant le gallium : lymphomes Hodgkiniens et non- Hodgkiniens, cancer des poumons, mélanome malin, cancer du testicule, etc.

→ mélanome malin métastatique

Imagerie oncologique PET: généralités

- Imagerie métabolique au fluorodéoxyglucose marqué au Fluor 18
 - ⇒ accroissement de la glycolyse = indicateur biochimique de malignité
- Imagerie corps entier
 - ⇒ bilan d'extension avec détection potentielle des tumeurs primaires et des métastases
- Rôle pour le diagnostic et le suivi thérapeutique
 - détection de métastases à distance de la tumeur primaire
 - acquisitions répétées au cours du temps pour la caractérisation de l'évolution de l'atteinte tumorale sous thérapie

Imagerie oncologique PET: imagerie corps entier

• PET FDG corps entier

Détection de la tumeur primaire et des métastases

Imagerie oncologique PET: bilan d'extension

- PET FDG corps entier
- Cancer du sein

PET FDG: valeur diagnostique

• Cancer de la langue

image IRM négative

hypermétabolisme local tumeur

PET FDG: suivi thérapeutique

• Imagerie diagnostique

hypermétabolisme local tumeur

• Après 10 semaines de radiothérapie

restauration de la symétrie de captation du radiotraceur

- Scintigraphies pulmonaires ventilation / perfusion
- Scintigraphies rénales
- Scintigraphies osseuses pour la détection de fractures
- etc.

Scintigraphie de perfusion pulmonaire

- radiotraceur = macroagrégats d'albumine marqués (30 à 40 μ de diamètre) diffusant dans les artérioles et les capillaires pulmonaires
 - ⇒ tracage du flux sanguin dans les artères pulmonaires

→ Perfusion normale

Embolie pulmonaire

Scintigraphie rénale

• Radiotraceur : Tc99m MAG3 après administration d'inhibiteur de l'enzyme de conversion de l'angiotensine (ACE) (captopril ou enalapril)

- rétention du radiopharmaceutique par le rein gauche
- > hypertension rénovasculaire

Scintigraphie osseuse et détection de fractures

• Radiotraceur : Tc99m-HDP : diphosphonate technétié

détection de fracture du métatarse non visible à la radiographie X

Bilan SPECT (1)

- Thyroïde
 - Pertechnetate Tc99m pour nodules et goitres
 - I123 pour hypothyroïdie
- Parathyroïde
 - Tl201 pour adénomes
- Squelette osseux
 - Diphosphonates Tc-99m pour métastases, rhumatologie
- Myocarde
 - Tl201 pour insuffisance coronaire
 - Isonitriles Tc99m pour insuffisance coronaire
 - Acides gras I123 pour réserve métabolique post infarctus
- Myocarde
 - Tl201 pour insuffisance coronaire
 - Isonitriles Tc99m pour insuffisance coronaire
 - Acides gras I123 pour réserve métabolique post infarctus

Bilan SPECT (2)

- Perfusion pulmonaire
 - Macroagrégats ou microsphères Tc99m pour embolie
- Ventilation pulmonaire
 - Xénon 133, Kripton 81m, aérosols Tc99m pour embolie
- Reins
 - DMSA ou DTPA Tc99m pour insuffisance rénale
 - MAG3 Tc99m pour hypertension
 - Hippuran I123 pour uropathies
- Foie
 - EIDA Tc99m pour surveillance de greffe, cholécystite
- Infectieux
 - Ga67 (non spécifique)
- Cerveau
 - HMPAO Tc99m pour épilepsie, démence, ictus
- Surrénales
 - MIBG I123 ou I131 pour neuroblastomes, phéochromocitomes

Bilan PET

- Imagerie métabolique (cardiaque, cérébrale, tumorale)
 - Fluor 18 FDG
 - Oxygène 15
- Flux sanguin
 - ammoniaque NH3 marqué à l'Azote 13
 - eau marquée à l'Oxygène 15
- Volume sanguin
 - dioxyde de carbone marqué à l'Oxygène 15
 - MAG3 Tc99m pour hypertension
 - Hippuran I123 pour uropathies
- Synthèse protéique et métabolisme tumorale
 - acides aminés marqués au Carbone 11
- Métabolisme myocardique
 - palmipate marqué au Carbone 11
- Récepteurs
 - Fluoro DOPA
 - raclopride marqué au Carbone 11
- etc.

Ressources Internet

Ce cours a été réalisé notamment grâce à :

- http://brighamrad.harvard.edu/education/online/BrainSPECT/Contents.html
- http://brighamrad.harvard.edu/education/online/Cardiac/Contents.html
- http://www.chru-lille.fr/med_nucleaire/index.htm
- http://www.crump.ucla.edu/lpp/lpphome.html
- http://gamma.wustl.edu/home.html