

REC'D	16 MAY 2000
WPO	PCT

AU00/00385

**Patent Office
Canberra**

4

I, KAY WARD, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. PQ 0052 for a patent by COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION, GOODMAN FIELDER LIMITED and GROUPE LIMAGRAIN PACIFIC PTY. LTD. filed on 29 April 1999.

WITNESS my hand this
Eleventh day of May 2000

Kay Ward

KAY WARD
TEAM LEADER EXAMINATION
SUPPORT AND SALES

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Melbourne

IP Australia

Documents received on:

29 APR 1999

Batch No:

Commonwealth Scientific and Industrial Research Organisation AND Goodman Fielder
Limited AND Group Limagrain Pacific Pty. Ltd.

A U S T R A L I A

Patents Act 1990

PROVISIONAL SPECIFICATION

for the invention entitled:

"NOVEL GENES ENCODING WHEAT STARCH SYNTHASES AND USES
THEREFOR"

The invention is described in the following statement:

- 1A -

NOVEL GENES ENCODING WHEAT STARCH SYNTHASES AND USES THEREFOR

FIELD OF THE INVENTION

- 5 The present invention relates generally to isolated nucleic acid molecules encoding wheat starch synthase enzymes and more particularly, to isolated nucleic acid molecules that encode wheat SSII and SSIII enzyme activities. The isolated nucleic acid molecules provide the means for modifying starch content and composition in plants, for example the ratio of amylose:amylopectin in the starch granule of the
- 10 endosperm during the grain-filling phase of endosperm development. The isolated nucleic acid molecules of the present invention also provide the means for screening plant lines to determine the presence of natural and/or induced mutations in starch synthase genes which affect starch content and/or composition. The isolated nucleic acid molecules of the present invention further provide for the screening-assisted
- 15 breeding of plants having desirable starch content and/or composition, in addition to providing for the direct genetic manipulation of plant starch content and/or composition.

GENERAL

- Bibliographic details of the publications numerically referred to in this specification are
- 20 collected at the end of the description.

This specification contains nucleotide and amino acid sequence information (SEQ ID Nos:) prepared using the programme PatentIn Version 2.0, presented herein at the end of the specification. Each nucleotide or amino acid sequence is identified in the

25 sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210>2, etc). The length, type of sequence (DNA, protein (PRT), etc) and source organism for each nucleotide or amino acid sequence are indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide and amino acid sequences (SEQ ID NOs:) referred to in the

30 specification are defined by the information provided in numeric indicator field <400>

- 2 -

followed by the sequence identifier (eg. <400>1, <400>2, etc).

The designation of nucleotide residues referred to herein are those recommended by the IUPAC-IUB Biochemical Nomenclature Commission, wherein A represents
5 Adenine, C represents Cytosine, G represents Guanine, T represents thymine, Y
represents a pyrimidine residue, R represents a purine residue, M represents Adenine
or Cytosine, K represents Guanine or Thymine, S represents Guanine or Cytosine, W
represents Adenine or Thymine, H represents a nucleotide other than Guanine, B
represents a nucleotide other than Adenine, V represents a nucleotide other than
10 Thymine, D represents a nucleotide other than Cytosine and N represents any
nucleotide residue.

The designations for naturally-occurring amino acid residues referred to herein are set
forth in Table I. The designations for a non-limiting set of non-naturally-occurring amino
15 acids is listed in Table 2.

As used herein the term "derived from" shall be taken to indicate that a specified
integer may be obtained from a particular source albeit not necessarily directly from
that source.

20

Throughout this specification, unless the context requires otherwise, the word
"comprise", or variations such as "comprises" or "comprising", will be understood to
imply the inclusion of a stated step or element or integer or group of steps or elements
or integers but not the exclusion of any other step or element or integer or group of
25 steps or elements or integers.

- 3 -

TABLE 1

Amino Acid	Three-letter Code	One-letter Code
5 Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	C
10 Glutamine	Gln	Q
Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	I
15 Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
20 Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V
25 Aspartate/glutamate	Baa	B
Asparagine/glutamine		
Any amino acid as above	Xaa	X

TABLE 2

Non-conventional amino acid	Code	Non-conventional amino acid	Code
5 α -aminobutyric acid	Abu	L-N-methylalanine	Nmala
α -amino- α -methylbutyrate	Mgabu	L-N-methylarginine	Nmarg
aminocyclopropane- carboxylate	Cpro	L-N-methylelasparagine	Nmasn
10 aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcys
aminonorbornyl- carboxylate	Norb	L-N-methylglutamine	Nmgln
cyclohexylalanine	Chexa	L-N-methylglutamic acid	Nmglu
cyclopentylalanine	Cpen	L-N-methylhistidine	Nmhis
15 D-alanine	Dal	L-N-methylleucine	Nmleu
D-arginine	Darg	L-N-methyllysine	Nmlys
D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
D-cysteine	Dcys	L-N-methylnorleucine	Nmnle
D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
20 D-glutamic acid	Dglu	L-N-methylornithine	Nmorn
D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
D-isoleucine	Dile	L-N-methylproline	Nmpro
D-leucine	Dleu	L-N-methylserine	Nmser
D-lysine	Dlys	L-N-methylthreonine	Nmthr
25 D-methionine	Dmet	L-N-methyltryptophan	Nmtrp
D-ornithine	Dorn	L-N-methyltyrosine	Nmtyr
D-phenylalanine	Dphe	L-N-methylvaline	Nmval
D-proline	Dpro	L-N-methylethylglycine	Nmetg
D-serine	Dser	L-N-methyl-t-butylglycine	Nmtbug
30 D-threonine	Dthr	L-norleucine	Nle

- 5 -

	D-tryptophan	Dtrp	L-norvaline	Nva
	D-tyrosine	Dtyr	α -methyl-aminoisobutyrate	Maib
	D-valine	Dval	α -methyl- γ -aminobutyrate	Mgabu
	D- α -methylalanine	Dmala	α -methylcyclohexylalanine	Mchexa
5	D- α -methylarginine	Dmarg	α -methylcyclopentylalanine	Mcpen
	D- α -methylasparagine	Dmasn	α -methyl- α -naphthylalanine	Manap
	D- α -methylaspartate	Dmasp	α -methylpenicillamine	Mpen
	D- α -methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
	D- α -methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
10	D- α -methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
	D- α -methylisoleucine	Dmile	N-amino- α -methylbutyrate	Nmaabu
	D- α -methylleucine	Dmleu	α -naphthylalanine	Anap
	D- α -methyllysine	Dmlys	N-benzylglycine	Nphe
	D- α -methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
15	D- α -methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
	D- α -methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
	D- α -methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
	D- α -methylserine	Dmser	N-cyclobutylglycine	Ncbut
	D- α -methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
20	D- α -methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
	D- α -methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
	D- α -methylvaline	Dmval	N-cyclododecylglycine	Ncdod
	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpro
25	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl) glycine	Nbhm
	D-N-methylcysteine	Dnmcts	N-(3,3-diphenylpropyl) glycine	Nbhe

- 6 -

	D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl) glycine	Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl)glycine	Nser
5	D-N-methylisoleucine	Dnmile	N-(imidazolylethyl)) glycine	Nhis
	D-N-methylleucine	Dnmleu	N-(3-indolylethyl) glycine	Nhtrp
	D-N-methyllysine	Dnmlys	N-methyl- γ -aminobutyrate	Nmgabu
10	N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
	D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	Nmcpen
	N-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
	N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
	N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
15	N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
	D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
	D-N-methyltyrosine	Dnmtyr	N-methyla-naphylalanine	Nmanap
	D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
	γ -aminobutyric acid	Gabu	N-(<i>p</i> -hydroxyphenyl)glycine	Nhtyr
20	L- <i>t</i> -butylglycine	Tbug	N-(thiomethyl)glycine	Ncys
	L-ethylglycine	Etg	penicillamine	Pen
	L-homophenylalanine	Hphe	L- α -methylalanine	Mala
	L- α -methylarginine	Marg	L- α -methylasparagine	Masn
	L- α -methylaspartate	Masp	L- α -methyl- <i>t</i> -butylglycine	Mtbug
25	L- α -methylcysteine	Mcys	L-methylethylglycine	Metg
	L- α -methylglutamine	Mgln	L- α -methylglutamate	Mglu
	L- α -methylhistidine	Mhis	L- α -methylhomo phenylalanine	Mhphe
	L- α -methylisoleucine	Mile	N-(2-methylthioethyl) glycine	Nmet

L- α -methylleucine	Mleu	L- α -methyllysine	Mlys
L- α -methylmethionine	Mmet	L- α -methylnorleucine	Mnle
L- α -methylnorvaline	Mnva	L- α -methylornithine	Morn
L- α -methylphenylalanine	Mphe	L- α -methylproline	Mpro
5 L- α -methylserine	Mser	L- α -methylthreonine	Mthr
L- α -methyltryptophan	Mtrp	L- α -methyltyrosine	Mtyr
L- α -methylvaline	Mval	L-N-methylhomophenylalanine	Nmhph
N-(N-(2,2-diphenylethyl)		N-(N-(3,3-diphenylpropyl)	
10 carbamylmethyl)glycine	Nnbhm	carbamylmethyl)glycine	Nnbhe
1-carboxy-1-(2,2-diphenyl- ethylamino)cyclopropane	Nmbc		

15 Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all
20 combinations or any two or more of said steps or features.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purposes of exemplification only. Functionally-equivalent products, compositions and methods are clearly within the
25 scope of the invention, as described herein.

BACKGROUND TO THE INVENTION

The biosynthesis of the starch granule is a complex process which involves the action of an array of isoforms of enzymes involved in the starch biosynthesis. Following the formation of glucose-1-phosphate, the enzyme activities required for the synthesis of 5 granular starch include ADP glucose pyrophosphorylase (EC 2.7.7.27), starch synthases (EC 2.4.1.21), branching enzymes (EC 2.4.1.18) and debranching enzymes (EC 3.2.1.41 and EC 3.2.1.68) (Mouille *et al.*, 1996). Plants contain isozymes of each of these activities, and the definition of these isoforms and their roles has been conducted through investigation of the properties of the suite of soluble enzymes found 10 in the stroma of the plastid, analysis of the proteins entrapped within the matrix of the starch granule, and mutational studies to identify genes and define linkages between individual genes and their specific roles.

Starch synthases extend regions of α -1,4 glucan through the transfer of the glucosyl 15 moiety of ADPglucose to the non-reducing end of a pre-existing α -1,4 glucan. In addition to GBSS, 3 other classes of starch synthase have been identified in plants, SSI (wheat, Li *et al.*, 1999 and GenBank Accession No. U48227; rice, Baba *et al.*, 1993; potato, Genbank Accession No. STSTASYNT), SSII (pea, Dry *et al.* 1992; potato, Edwards *et al.*, 1995; maize, Harn *et al.* 1998 and GenBank Accession No. 20 U66377) and SSIII (potato, Abel *et al.*, 1996; maize, Gao *et al.*, 1998). In the cereals, the most comprehensively studied species is maize, where in addition to GBSS, cDNAs encoding SSI, SSIIa, and SSIIb have been isolated, and both cDNA and genomic clones for *dull1* have been characterised (Knight *et al.*, 1998; Harn *et al.*, 1998; Gao *et al.*, 1998). In maize, the product of the *du1* gene is known as maize 25 SSII, however this gene is the homologue of potato SSIII.

The proteins within the matrix of the wheat starch granule have been extensively studied (Denyer *et al.*, 1995; Rahman *et al.*, 1995; Takaoka *et al.*, 1997; Yamamori and Endo, 1996) and 60, 75, 85, 100, 104 and 105 kDa protein bands can be 30 visualised following SDS-PAGE. The predominant 60 kDa protein is exclusively

granule-bound and is analogous to the "waxy" granule bound starch synthase (GBSS) gene in maize (Rahman *et al.*, 1995). The combination of three null alleles for this enzyme from each of the wheat genomes (Nakamura *et al.*, 1995) results in the amylose-free "waxy" phenotype found in other species. The 75 kDa starch synthase I 5 (wSSI) is found in both the granule and the soluble fraction of wheat endosperm (Denyer *et al.*, 1995; Li *et al.*, 1999) and has been assigned to chromosomes 7A, 7B and 7D (Yamamori and Endo, 1996; Li *et al.*, 1999). The 85 kDa band contains a class II branching enzyme and an unidentified polypeptide (Rahman *et al.*, 1995). The 100, 104 and 105 kDa proteins of the wheat starch granule (designated Sgp-B1, Sgp- 10 D1 and Sgp-A1 by Yamamori and Endo, 1996) have been shown to be encoded by a homeologous set of genes on the short arm of chromosome 7B, 7A and 7D respectively (Yamamori and Endo, 1996; Takaoka *et al.*, 1997). Denyer *et al.* (1995) concluded on the basis of enzyme activity assays that these proteins were also starch synthases. These genes are referred to hereinafter as the "wheat SSII genes".

15

While GBSS has been established to be essential for amylose synthesis, the remaining starch synthases are thought to be primarily responsible for the elongation of amylopectin chains, although this does not preclude them from also having non-essential roles in amylose biosynthesis. Differences in kinetic properties between 20 isoforms, and the analysis of mutants lacking various isoforms, suggests that each isoenzyme contributes to the extension of specific subsets of the available non-reducing ends. Accordingly, the production of plants that produce improved starches that are modified for particular purposes, for example starches having high or low amylose:amylopectin ratios, requires the availability of genes encoding the various 25 starch synthase isoforms. Moreover, because of species-specific codon usages and variations in the kinetic parameters of these isoforms in different species, the production of modified starches may require the use of genes derived from particular species.

30 In work leading up to the present invention, the inventors sought to modify wheat

- 10 -

starch composition and content, by providing isolated nucleotide sequences encoding the wheat SSII (i.e. wSSII) and wheat SSIII (i.e. wSSIII) isoenzymes, and by introducing these nucleotide sequences into plants using recombinant DNA technology.

5

SUMMARY OF THE INVENTION

The present invention provides isolated nucleic acid molecules encoding the 100, 104 and 105 kDa SSII (Sgp-1) polypeptides of the wheat starch granule matrix, as determined using the SDS/PAGE system of Rahman *et al.* (1995), which polypeptides 10 are equivalent to the 100, 108 and 115 kDa polypeptides described by Yamamori and Endo (1996). The present invention further provides isolated nucleic acid molecules encoding the soluble *dull1*-type wheat starch synthase III polypeptide. Analysis of the polypeptides encoded by these nucleic acid molecules reveals several consensus amino acid sequence motifs (i.e., sequences having at least 25% sequence identity 15 to any one or more of the amino acid sequences selected from the group consisting of (a)KVGGLGDVTS;(b)GHTVEVILPKY;(c) HDWSSAPVAWLKYKEHY; (d) GILNGIDPDIWDPYTD; (e) DVPIVGIITRLTAQKG; (f)NGQVVLLGSA; (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS; and (h)TGGLVDTV) that are highly conserved in wheat starch synthase isoenzymes, in addition to isoenzyme-specific 20 sequences, which sequences possess utility in isolating related starch synthase-encoding sequences and in assaying plants for their expression of one or more starch synthase isoenzymes.

Accordingly, one aspect of the present invention provides an isolated nucleic acid 25 molecule which comprises a sequence of nucleotides which encodes, or is complementary to a nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof selected from the following:

- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or 30 functional subunit thereof which comprises an amino acid sequence which is at

- 11 -

least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>2, <400>4, or <400>6;

- (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>8 or <400>10; and
- (iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:

- (a) KVGGLGDVVTS;
(b) GHTVEVILPKY;
(c) HDWSSAPVAWLKYKEHY;
(d) GILNGIDPDIWDPYTD;
15 (e) DVPIVGIITRLTAQKG;
(f) NGQVVLLGSA;
(g) AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
(h) TGGLVDTV

and wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>2, <400>4, <400>6, <400>8 or <400>10.

In a preferred embodiment, the isolated nucleic acid molecule encodes a starch 25 synthase polypeptide, protein or enzyme having at least about 90% amino acid sequence identity to any one of SEQ ID NOS: <400>2, <400>4, <400>6, <400>8 or <400>10, more preferably having at least about 95% or about 97% or about 99% identity to any one of said amino acid sequences.

30 In an alternative embodiment, the present invention provides an isolated nucleic acid

- 12 -

molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof, wherein said nucleic acid molecule comprises a nucleotide sequence having at least about 85% nucleotide sequence identity to any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: 5 <400>11 to <400>16, or a complementary nucleotide sequence thereto.

In a preferred embodiment, the isolated nucleic acid molecule comprises the nucleotide sequence set forth in any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or is at least about 90% 10 identical, more preferably at least about 95% or 97% or 99% identical to all or a protein-encoding part thereof.

In an alternative embodiment, the present invention provides an isolated nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme 15 molecule or a functional subunit thereof, wherein said nucleic acid molecule comprises a nucleotide sequence that is capable of hybridising under at least moderate stringency hybridisation conditions to at least about 30 contiguous nucleotides derived from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto.

20

A second aspect of the present invention provides a method of isolating a nucleic acid molecule that encodes a starch synthase polypeptide, protein or enzyme having at least about 85% amino acid sequence identity to any one SEQ ID NOS:<400>2, <400>4, <400>6, <400>8 or <400>10 and/or which comprises an amino acid sequence 25 having at least 25% identity to an amino acid sequence selected from the group consisting of:

- (a) KVGGGLGDVVTS;
- (b) GHTVEVILPKY;
- (c) HDWSSAPVAWLKYKEHY;
- 30 (d) GILNGIDPDIWDPYTD;

- (e) DVPIVGIITRLTAQKG;
- (f) NGQVVLLGSA;
- (g) AGSDFIIVPSIFEP CGLTQLVAMRYGS; and
- (h) TGGLVDTV ,

5 said method comprising:

- (i) hybridising a probe or primer comprising at least about 15 contiguous nucleotides in length derived from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto to single-stranded or double-stranded mRNA, cDNA or genomic DNA; and
- (ii) detecting the hybridised mRNA, cDNA or genomic DNA using a detecting means.

Preferably, the detecting means is a reporter molecule covalently attached to the probe 15 or primer molecule or alternatively, a polymerase chain reaction format. Accordingly, the present invention clearly extends to the use of the nucleic acid molecules provided herein to isolate related starch synthase-encoding sequences using standard hybridisation and/or polymerase chain reaction techniques.

- 20 A third aspect of the invention provides an isolated probe or primer comprising at least about 15 contiguous nucleotides in length derived from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto.
- 25 Preferably, the probe or primer comprises a nucleotide sequence set forth in any one of SEQ ID NOS:<400>25 to <400>34.

A fourth aspect of the present invention is directed to an isolated or recombinant starch synthase polypeptide, protein or enzyme, preferably substantially free of conspecific 30 or non-specific proteins, which comprises an amino acid sequence selected from the

following:

- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>2, <400>4, or <400>6;
 - 5 (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>8 or <400>10; and
 - 10 (iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KVGLGDDVTS;
 - 15 (b) GHTVEVILPKY;
 - (c) HDWSSAPVAWLYKEHY;
 - (d) GILNGIDPDIWDPYTD;
 - (e) DVPIVGIITRLTAQKG;
 - (f) NGQVVLLGSA;
 - 20 (g) AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
 - (h) TGGLVDTV
- and wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>2, <400>4, <400>6, <400>8 or <400>10.

A further aspect of the invention provides a method of assaying for the presence or absence of a starch synthase isoenzyme or the copy number of a gene encoding same

30 in a plant, comprising contacting a biological sample derived from said plant with an

- 15 -

isolated nucleic acid molecule derived from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or any one of SEQ ID NOS:<400>25 to <400>34, or a complementary nucleotide sequence thereto for a time and under conditions sufficient for hybridisation to occur and then detecting said

5 hybridisation using a detection means.

The detection means according to this aspect of the invention is any nucleic acid based hybridisation or amplification reaction.

- 10 A further aspect of the present invention utilises the above-mentioned assay method in the breeding and/or selection of plants which express or do not express particular starch sythase isoenzymes or alternatively, which express a particular starch synthase isoenzyme at a particular level in one or more plant tissues. This aspect clearly extends to the selection of transformed plant material which contains one or more of
- 15 the isolated nucleic acid molecules of the present invention.

- A further aspect of the present invention provides a method of modifying the starch content and/or starch composition of one or more tissues or organs of a plant, comprising expressing therein a sense molecule, antisense molecule, ribozyme
- 20 molecule, co-suppression molecule, or gene-targeting molecule having at least about 85% nucleotide sequence identity to any one of any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto for a time and under conditions sufficient for the enzyme activity of one or more starch synthase isoenzymes to be modified.
- 25 This aspect of the invention clearly extends to the introduction of the sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule to isolated plant cells, tissues or organs or organelles by cell fusion or transgenic means and the regeneration of intact plants therefrom.

- 30 A further aspect of the present invention provides an isolated promoter that is operable

- 16 -

in the endosperm of a monocotyledonous plant cell, tissue or organ, and preferably in the endosperm of a monocotyledonous plant cell, tissue or organ. For example, the HMG promoter from wheat, or the maize zein gene promoter are particularly preferred, as is the promoter derived from a starch synthase gene of the present invention, such 5 as a promoter that is linked *in vivo* to any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or any one of SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto.

A still further aspect of the present invention contemplates a transgenic plant 10 comprising an introduced sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule having at least about 85% nucleotide sequence identity to any one of any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto or a genetic construct comprising same, 15 and to plant propagules, cells, tissues, organs or plant parts derived from said transgenic plant that also carry the introduced molecule(s).

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a copy of a photographic representation showing the distribution of wheat 20 endosperm starch synthases between the starch granule and soluble fractions. Lane 1, SDS-PAGE of wheat endosperm starch granule proteins revealed by silver staining; lanes 2-7, immunoblot of wheat endosperm soluble phase and starch granule proteins separated by SDS-PAGE from various developmental stages and probed with an anti-(wheat wSSII peptide) monoclonal antibody. Lanes 2-4 contain proteins from the 25 soluble fraction of wheat endosperm at 15 days post anthesis (Lane 2); 20 days post anthesis (Lane 3); and at 25 days post anthesis (Lane 4). Lanes 5-7 contain proteins from the starch granule of wheat endosperm at 15 days post anthesis (Lane 5); 20 days post anthesis (Lane 6); and at 25 days post anthesis (Lane 7).

30 **Figure 2** is a copy of a schematic representation comparing the nucleotide sequences

of cDNA clones designated wSSIIA, wSSIIB and wSSIID, encoding the starch synthase II polypeptides from wheat, using the PILEUP programme of Devereaux *et al.* (1984).

5 **Figure 3** is a copy of a schematic representation comparing the deduced amino acid sequences of starch synthase II from wheat (wSSIIA, wSSIIB and wSSIID), maize (maizeSSIIa and maizeSSIIb; Harn *et al.*, 1998), pea (peaSSII; Dry *et al.*, 1992) and potato (potatoSSII; van der Leij *et al.*, 1991). Identical amino acid residues among each of these sequences are indicated below the sequences with “*”. The alignments
10 of maize SSIIa with maize SSIIb, and pea SSII and potato SSII are essentially as described in Harn *et al.* (1998) and Edwards *et al.* (1995). All sequences are aligned to position the transit peptide cleavage site below the arrow (↓) between residues 59 and 60 of the wSSIIA sequence. The wSSIIp1 sequence, the sequence of SGP-B1 (peptide3), and of eight conserved regions are annotated and underlined.

15

Figure 4 is a copy of a photographic representation of a northern blot showing the expression of wheat wSSII mRNA in wheat plants. Total RNAs were isolated from leaves pre-anthesis florets and endosperm of the wheat cultivar "Gabo", grown under a photoperiod comprising 16 hours daylength, and at 18 °C during the day, and at 13 °C
20 during the night cycle, and probed with the wSSIIp2 DNA fragment. The source of each RNA is indicated at the top of the Figure as follows: Lane 1, leaf; Lane 2, pre-anthesis florets; Lanes 3-11, endosperm at: 4 days post-anthesis (Lane 3); 6 days post-anthesis (Lane 4); 8 days post-anthesis (Lane 5); 10 days post-anthesis (Lane 6); 12 days post-anthesis (Lane 7); 15 days post-anthesis (Lane 8); 18 days post-
25 anthesis (Lane 9); 21 days post-anthesis (Lane 10); and 25 days post-anthesis (Lane 11).

Figure 5 is a copy of a photographic representation showing the localization of wheat starch synthase II genes on the wheat genome by PCR, using the primers ssIIc, ssIID
30 and ssIIe in the amplification reaction. The nullisomic-tetrasomic genomic DNA of

wheat cv. Chinese Spring was used as template DNA. Lane D, *Triticum tauschii*; Lane AB, Accession line N7DT7B having no 7D chromosome and four copies of the 7B chromosome; Lane AD, Accession line N7BT7A having no 7B chromosome and four copies of the 7A chromosome; Lane BD, Accession line N7AT7B having no 7A 5 chromosome and four copies of the 7B chromosome; Lane ABD, wheat cv. Chinese Spring. PCR products derived from each cDNA clone are labelled. The results indicate that the cDNA clones, wSSIIIB, wSSIIA and wSSIID are derived from the B-, A- and D- genomes of wheat, respectively.

- 10 **Figure 6** is a copy of a photographic representation showing the purification of a wheat SSII genomic clone from the *T. tauschii* var. Strangulata (Accession No. CPI 110799) genomic library. A genomic clone, designated wSSII-8, was identified by hybridisation with the wSSIIP2 probe and purified through successive rounds of selection and hybridisation.

15

- Figure 7** is a copy of a photographic representation showing a Southern blot of BamHI-digested genomic clone DNAs identified in a primary screening using the wSSIIP2 probe, following hybridisation with wSSIIP4 probe DNA which is derived from the 5'-end of the wSSIIA cDNA clone. Lane 8 contains DNA derived from genomic 20 clone wSSII-8 (see Figure 6). Hybridisation of clone wSSII-8 to thw wSSIIP4 probe suggests that this genomic clone contains the promoter region of the wSSII gene.

Figure 8 is a schematic representation comparing the deduced amino acid Sequences of the maize, potato and wheat SSIII polypeptides.

25

- Figure 9** is a copy of a photographic representation showing the purification of a wheat SSIII genomic clone from a *T. tauschii* genomic library. A plaque was identified by hybridisation with a PCR-derived from the wSSIII.B3 gene (a) and purified through successive rounds of selection and hybridisation. The hybridisation of plaques from a 30 third round of plaque purification is shown in (b).

- 19 -

Figure 10 is a copy of a photographic representation showing the expression of wheat wSSIII mRNA in wheat. Total RNAs were isolated from the endosperm of the wheat cultivars Wyuna (Panel a) and Gabo (Panel b) leaves pre-anthesis florets and endosperm of the wheat cultivar "Gabo", grown under a photoperiod comprising 16 hours daylength, and at 18 °C during the day cycle, and at 13 °C during the night cycle, and probed with the wSSIIIp1 DNA fragment derived from wSSIII.B3 cDNA. The source of each RNA is indicated at the top of the Figure as follows: Lane 1, endosperm at: 4 days post-anthesis; Lane 2, endosperm at 6 days post-anthesis; Lane 4, endosperm at 8 days post-anthesis; Lane 4, endosperm at 10 days post-anthesis; 10 Lane 5, endosperm at 12 days post-anthesis; Lane 6, endosperm at 15 days post-anthesis; Lane 7, endosperm at 18 days post-anthesis; Lane 8, endosperm at 21 days post-anthesis; Lane 9, endosperm at 25 days post-anthesis; and Lane 10, endosperm at 31 days post-anthesis (Panel a only). In panel (c), L refers to leaf RNA, and P refers to RNA from pre-anthesis florets derived from the cultivar Gabo.

15

Figure 11 is a schematic representation showing the relationships between the primary amino acid sequences of starch synthases (SS) and glycogen synthase of *E. coli* (GS). The dendrogram was generated by the program PILEUP (Devereaux *et al.*, 1984). The amino acid sequences used for the analysis are those of the wheat SSIIA, 20 wheat SSIIIB, wheat SSIID, and wheat SSIII polypeptides of the present invention compared to the deduced amino acid sequences of wheat GBSS (Clark *et al.*, 1991), wheat SSI (Li *et al.*, 1999), rice GBSS (Okagaki, 1992), rice SSI (Baba *et al.*, 1993), maize GBSS (Kloesgen *et al.*, 1986), maize SSI (Knight *et al.*, 1998), maize SSIIa and maize SSIIb (Harn *et al.*, 1998), maize SSIII (Gao *et al.*, 1998), pea GBSS (Dry *et al.*, 25 1992), pea SSII (Dry *et al.*, 1992), potato GBSS (van der Leij *et al.*, 1991), potato SSI (Genbank accession number: STSTASYNT), potato SSII (Edwards *et al.*, 1995), potato SSIII (Abel *et al.*, 1996), and *E. coli* glycogen synthase (GS) (Kumar *et al.*, 1986). Five groups of enzymes included in the alignment are granule-bound starch synthase (GBSS), starch synthase-I (SSI), starch synthase-II (SSII), starch synthase-III (SSIII) 30 and glycogen synthase (GS).

- 20 -

- Figure 12 is a schematic representation showing the position of conserved regions within cereal starch synthase genes. Comparisons of cereal starch synthases were made based on their deduced amino acid sequences and 8 conserved regions identified. Conserved regions are shown in bold and transit peptides (where defined) 5 in grey. The sequences included in the alignment are the wheat SSII-A1 and wheat SSIII polypeptides of the present invention; wheat GBSS (Ainsworth *et al.*, 1993); wheat SSI (Li *et al.*, 1999); maize SSIIa (Harn *et al.*, 1998); and maize dull-1(Gao *et al.*, 1998).
- 10 Figure 13 is a schematic representation showing the position of conserved amino acid sequences within four wheat starch synthase proteins. The eight highly-conserved regions between the wheat starch synthase polypeptides are underlined and annotated at the top of each group of amino acid sequences. The sequences included in the alignment are the wheat SSII-A1 and wheat SSIII polypeptides of the present 15 invention; wheat GBSS (wGBSS; Yan *et al.*, 1999); wheat SSI (wSSI; Li *et al.*, 1999); wheat SSII (wSS2; SEQ ID NO:<400>4); and wheat SSIII (wSS3; SEQ ID NO:<400>8).

Figure 14 is a copy of a schematic representation of a gene map showing the 20 alignment of fragments 1 to 6 of the genomic SSIII gene (lower line) with the corresponding SSIII cDNA clone (upper line). Raised regions in the genomic clone fragments (lower line) represent protein-encoding regions of the gene.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

- 25 One aspect of the present invention provides an isolated nucleic acid molecule which comprises a sequence of nucleotides which encodes, or is complementary to a nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof selected from the following:
- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or 30 functional subunit thereof which comprises an amino acid sequence set forth

- 21 -

in any one of SEQ ID NOS: <400>2, <400>4, or <400>6; and

(ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence set forth in any one of SEQ ID NOS: <400>8 or <400>10.

5

Alternatively or in addition, the isolated nucleic acid molecule of the present invention encodes a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof and comprises a nucleotide sequence set forth in any one of SEQ ID NOS: <400>1, <400>3, or <400>5.

10

Alternatively or in addition, the isolated nucleic acid molecule of the present invention encodes a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof and comprises a nucleotide sequence set forth in any one of SEQ ID NOS: <400>7 or <400>9.

15

As used herein, the term "starch synthase" shall be taken to refer to any enzymatically-active peptide, polypeptide, oligopeptide, polypeptide, protein or enzyme molecule that is at least capable of transferring a glucosyl moiety from ADP-glucose to an α -1,4-glucan molecule, or a peptide, polypeptide, oligopeptide or polypeptide fragment of 20 such an enzymatically-active molecule.

The term "wheat starch synthase" refers to a starch synthase derived from hexaploid wheat or barley or a progenitor species, or a relative thereto such as the diploid *Triticum tauschii* or other diploid, tetraploid, aneuploid, polyploid, nullisomic, or a 25 wheat/barley addition line, amongst others, the only requirement that the genomic DNA is at least about 80% identical to the genome of a wheat plant as determined by standard DNA melting curve analyses.

The term "starch synthase II" or "wSSII" or similar term shall be taken to refer to a 30 starch synthase as hereinbefore defined that is detectable in the starch granule of a

plant seed endosperm and possesses one or more properties selected from the group consisting of:

- (i) it is immunologically cross-reactive with the wheat starch granule proteins designated Sgp-B1 and/or Sgp-D1 and/or Sgp-A1, having estimated molecular weights of about 85 kDa to about 115 kDa;
- 5 (ii) it is encoded by one of a homeologous set of genes localised on wheat chromosomes 7B or 7A or 7D;
- (iii) it is encoded by a nucleotide sequence that comprises at least about 15 nucleotides in length derived from any one or more of SEQ ID NOS: <400>1, <400>3, or <400>5 or a complementary nucleotide sequence thereto;
- 10 (iv) it is encoded by a nucleotide sequence that is at least about 85% identical to one or more of the nucleotide sequences set forth in SEQ ID NOS: <400>1, <400>3, or <400>5 or a complementary nucleotide sequence thereto;
- (v) it comprises an amino acid sequence having at least about 85% identity to one or more of SEQ ID NOS:<400>2 or <400>4 or <400>6;
- 15 (vi) it comprises at least about 5 contiguous amino acids, preferably at least about 10 contiguous amino acids, more preferably at least about 15 contiguous amino acids, even more preferably at least about 20 contiguous amino acids and still even more preferably at least about 25-50 contiguous amino acids of the amino acid sequences set forth in SEQ ID NOS:<400>2 or <400>4 or <400>6; and
- (vii) it which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KVGGGLGDDVVTS;
 - 25 (b) GHTVEVILPKY;
 - (c) HDWSSAPVAWLKYKEHY;
 - (d) GILNGIDPDIWDPYTD;
 - (e) DVPIVGIITRLTAQKG;
 - (f) NGQVVLLGSA;
 - 30 (g) AGSDFIIVPSIFEPCGLTQLVAMRYGS; and

- 23 -

(h)TGGLVDTV

in addition to any one or more of (i) to (vi).

The term "starch synthase III" or "wSSIII" or similar term shall be taken to refer to a
5 starch synthase as hereinbefore defined that possesses one or more properties
selected from the group consisting of:

- (i) it is encoded by a nucleotide sequence that comprises at least about 15 nucleotides in length derived from any one or more of SEQ ID NOS:<400>7 or <400>9 or any one or more of SEQ ID NOS: <400>11 to <400>16 or a complementary nucleotide sequence thereto;
- 10 (ii) it is encoded by a nucleotide sequence that is at least about 85% identical to one or more of the nucleotide sequences set forth in SEQ ID NOS: <400>7 or <400>9 or any one or more of SEQ ID NOS: <400>11 to <400>16 or a complementary nucleotide sequence thereto; and
- 15 (iii) it comprises an amino acid sequence having at least about 85% identity to one or more of SEQ ID NOS:<400>8 or <400>10;
- (iv) it comprises at least about 5 contiguous amino acids, preferably at least about 10 contiguous amino acids, more preferably at least about 15 contiguous amino acids, even more preferably at least about 20 contiguous amino acids
20 and still even more preferably at least about 25-50 contiguous amino acids of the amino acid sequences set forth in SEQ ID NOS:<400>8 or <400>10;and
- (v) which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KVGGLGDVVTS;
 - 25 (b) GHTVEVILPKY;
 - (c) HDWSSAPVAWLKYKEHY;
 - (d) GILNGIDPDIWDPYTD;
 - (e) DVPIVGIITRLTAQKG;
 - (f) NGQVVLLGSA;
 - 30 (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS; and

- 24 -

(h)TGGLVDTV

in addition to any one or more of (i) to (iv).

In a more preferred embodiment, the WSSII or WSSIII polypeptide encoded by the
5 nucleic acid molecule of the present invention will comprise a substantial contiguous
region of any one of SEQ ID NOS: <400>2, <400>4, <400>6, <400>8 or <400>10 or
<400>17 sufficient to possess the biological activity of a starch synthase polypeptide.

For the purposes of nomenclature, the nucleotide sequence set forth in SEQ ID NO:
10 <400>1 relates to the cDNA molecule encoding the WSSII (i.e. Sgp-B1) polypeptide
of wheat. The amino acid sequence of the corresponding polypeptide is set forth
herein as SEQ ID NO:<400>2. The nucleotide sequence set forth in SEQ ID NO:
<400>3 relates to the cDNA molecule encoding the WSSII (i.e. Sgp-A1) polypeptide
of wheat. The amino acid sequence of the corresponding polypeptide is set forth
15 herein as SEQ ID NO:<400>4. The nucleotide sequence set forth in SEQ ID NO:
<400>5 relates to the cDNA molecule encoding the WSSII (i.e. Sgp-D1) polypeptide
of wheat. The amino acid sequence of the corresponding polypeptide is set forth
herein as SEQ ID NO:<400>6. The nucleotide sequences set forth in SEQ ID NOs:
<400>7 and <400>9 relate, respectively, to full-length and partial cDNA molecules
20 encoding the WSSIII polypeptide of wheat. The amino acid sequences of the
corresponding polypeptides are set forth herein as SEQ ID NOs:<400>8 and <400>10,
respectively. The nucleotide sequences set forth in SEQ ID NOs: <400>11 to <400>16
relates to fragments of the genomic gene encoding the WSSIII polypeptide of wheat,
significant protein-encoding regions of which are described by reference to Table 3
25 and Figure 14.

Preferably, the isolated nucleic acid molecule of the present invention comprises a
sequence of nucleotides which encodes, or is complementary to a nucleic acid
molecule which encodes a wheat starch synthase III polypeptide, protein or enzyme
30 molecule or a functional subunit thereof which comprises an amino acid sequence

which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>8 or <400>10 and more preferably, which additionally comprises which comprises one or more conserved amino acid sequences selected from the group consisting of:

- 5 (a) KVGGLGDVVTS;
- (b) GHTVEVILPKY;
- (c) HDWSSAPVAWLKYKEHY;
- (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;
- 10 (f) NGQVVLLGSA;
- (g) AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
- (h) TGGLVDTV .

- 15 The present invention clearly extends to homologues, analogues and derivatives of the wheat starch synthase II and III genes exemplified by the nucleotide sequences set forth herein as SEQ ID NOs:<400>1, <400>3, <400>5, <400>7, <400>9 and <400>11 to <400>16.
- 20 Preferred starch synthase genes may be derived from a naturally-occurring starch synthase gene by standard recombinant techniques. Generally, a starch synthase gene may be subjected to mutagenesis to produce single or multiple nucleotide substitutions, deletions and/or additions. Nucleotide insertional derivatives of the starch synthase gene of the present invention include 5' and 3' terminal fusions as
25 well as intra-sequence insertions of single or multiple nucleotides. Insertional nucleotide sequence variants are those in which one or more nucleotides are introduced into a predetermined site in the nucleotide sequence although random insertion is also possible with suitable screening of the resulting product. Deletional variants are characterised by the removal of one or more nucleotides from the
30 sequence. Substitutional nucleotide variants are those in which at least one nucleotide

in the sequence has been removed and a different nucleotide inserted in its place. Such a substitution may be "silent" in that the substitution does not change the amino acid defined by the codon. Alternatively, substituents are designed to alter one amino acid for another similar acting amino acid, or amino acid of like charge, polarity, or
5 hydrophobicity.

For the present purpose, "homologues" of a nucleotide sequence shall be taken to refer to an isolated nucleic acid molecule which is substantially the same as the nucleic acid molecule of the present invention or its complementary nucleotide sequence,
10 notwithstanding the occurrence within said sequence, of one or more nucleotide substitutions, insertions, deletions, or rearrangements.

"Analogues" of a nucleotide sequence set forth herein shall be taken to refer to an isolated nucleic acid molecule which is substantially the same as a nucleic acid
15 molecule of the present invention or its complementary nucleotide sequence, notwithstanding the occurrence of any non-nucleotide constituents not normally present in said isolated nucleic acid molecule, for example carbohydrates, radiochemicals including radionucleotides, reporter molecules such as, but not limited to DIG, alkaline phosphatase or horseradish peroxidase, amongst others.

20

"Derivatives" of a nucleotide sequence set forth herein shall be taken to refer to any isolated nucleic acid molecule which contains significant sequence similarity to said sequence or a part thereof. Generally, the nucleotide sequence of the present invention may be subjected to mutagenesis to produce single or multiple nucleotide
25 substitutions, deletions and/or insertions. Nucleotide insertional derivatives of the nucleotide sequence of the present invention include 5' and 3' terminal fusions as well as intra-sequence insertions of single or multiple nucleotides or nucleotide analogues. Insertional nucleotide sequence variants are those in which one or more nucleotides or nucleotide analogues are introduced into a predetermined site in the nucleotide
30 sequence of said sequence, although random insertion is also possible with suitable

screening of the resulting product being performed. Deletional variants are characterised by the removal of one or more nucleotides from the nucleotide sequence. Substitutional nucleotide variants are those in which at least one nucleotide in the sequence has been removed and a different nucleotide or nucleotide analogue 5 inserted in its place.

The present invention extends to the isolated nucleic acid molecule when integrated into the genome of a cell as an addition to the endogenous cellular complement of starch synthase genes, irrespective of whether or not the introduced nucleotide 10 sequence is translatable or non-translatable to produce a polypeptide. The present invention clearly contemplates the introduction of additional copies of starch synthase genes into plants, particularly wheat plants, in the antisense orientation to reduce the expression of particular wheat starch synthase genes. As will be known to those skilled in the art, such antisense genes are non-translatable, notwithstanding that they can 15 be expressed to produce antisense mRNA molecules.

The said integrated nucleic acid molecule may, or may not, contain promoter sequences to regulate expression of the subject genetic sequence.

20 Accordingly, the present invention clearly encompasses preferred homologues, analogues and derivatives that comprise a sequence of nucleotides which encodes, or is complementary to a nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof selected from the following:

- 25 (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>2, <400>4, or <400>6;
- (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at 30

least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>8 or <400>10; and

(iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:

- (a) KVGGLGDVVTS;
- (b) GHTVEVILPKY;
- (c) HDWSSAPVAWLYKEHY;
- 10 (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;
- (f) NGQVVLLGSA;
- (g) AGSDFIIVPSIFEPGGLTQLVAMRYGS; and
- (h) TGGLVDTV

15 and wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>2, <400>4, <400>6, <400>8 or <400>10.

20 Preferably, the isolated nucleic acid molecule encodes a starch synthase polypeptide, protein or enzyme that comprises two, more preferably three, more preferably four, more preferably five, more preferably six, more preferably seven and even more preferably eight of the conserved amino acid motifs listed *supra*. Even more preferably, the said amino acid motifs are located in a relative configuration such as that shown
25 for the wheat SSII or wheat SSIII polypeptides listed in Figure 13 herein.

In a preferred embodiment, the isolated nucleic acid molecule encodes a starch synthase polypeptide, protein or enzyme having at least about 90% amino acid sequence identity to any one of SEQ ID NOS:<400>2, <400>4, <400>6, <400>8 or
30 <400>10, more preferably having at least about 95% or about 97% or about 99%

identity to any one of said amino acid sequences.

In an alternative embodiment, the present invention provides an isolated nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme 5 molecule or a functional subunit thereof, wherein said nucleic acid molecule comprises a nucleotide sequence having at least about 85% nucleotide sequence identity to any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a degenerate nucleotide sequence thereto or a complementary nucleotide sequence thereto.

10

By "degenerate nucleotide sequence" is meant a nucleotide sequence that encodes a substantially identical amino acid sequence as a stated nucleotide sequence.

In a preferred embodiment, the isolated nucleic acid molecule comprises the 15 nucleotide sequence set forth in any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or is at least about 90% identical, more preferably at least about 95% or 97% or 99% identical to all or a protein-encoding part thereof.

20 In an alternative embodiment, preferred homologues, analogues and derivatives of the nucleic acid molecule of the present invention encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof and comprises a nucleotide sequence that is capable of hybridising under at least moderate stringency hybridisation conditions to at least about 30 contiguous nucleotides derived 25 from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto.

For the purposes of defining the level of stringency, a low stringency is defined herein as being a hybridisation and/or a wash carried out in 6xSSC buffer, 0.1% (w/v) SDS 30 at 28°C. Generally, the stringency is increased by reducing the concentration of SSC

- 30 -

buffer, and/or increasing the concentration of SDS and/or increasing the temperature of the hybridisation and/or wash. A moderate stringency comprises a hybridisation and/or a wash carried out in 0.2 x SSC-2 x SSC buffer, 0.1% (w/v) SDS at 42°C to 5 65°C, while a high stringency comprises a hybridisation and/or a wash carried out in 0.1xSSC-0.2 x SSC buffer, 0.1% (w/v) SDS at a temperature of at least 55°C. Conditions for hybridisations and washes are well understood by one normally skilled in the art. For the purposes of further clarification only, reference to the parameters affecting hybridisation between nucleic acid molecules is found in pages 2.10.8 to 2.10.16. of Ausubel *et al.* (1987), which is herein incorporated by reference.

10

Those skilled in the art will be aware of procedures for the isolation of further wheat starch synthase genes to those specifically described herein or homologues, analogues or derivatives of said genes, for example further cDNA sequences and genomic gene equivalents, when provided with one or more of the nucleotide 15 sequences set forth in SEQ ID NOS: <400>1, <400>3, <400>5, <400>7, <400>9, or <400>11 to <400>16. In particular, amplifications and/or hybridisations may be performed using one or more nucleic acid primers or hybridisation probes comprising at least 10 contiguous nucleotides and preferably at least about 20 contiguous nucleotides or 50 contiguous nucleotides derived from the nucleotide sequences set 20 forth herein, to isolate cDNA clones, mRNA molecules, genomic clones from a genomic library (in particular genomic clones containing the entire 5' upstream region of the gene including the promoter sequence, and the entire coding region and 3'-untranslated sequences), and/or synthetic oligonucleotide molecules, amongst others. The present invention clearly extends to such related sequences.

25

Accordingly, a second aspect of the present invention provides a method of isolating a nucleic acid molecule that encodes a starch synthase polypeptide, protein or enzyme having at least about 85% amino acid sequence identity to any one SEQ ID NOS:<400>2, <400>4, <400>6, <400>8 or <400>10 and/or which comprises a 30 conserved amino acid sequence having at least 25% identity to an amino acid

sequence selected from the group consisting of:

- (a) KVGGGLGDDVWTS;
- (b) GHTVEVILPKY;
- (c) HDWSSAPVAWLYKEHY;
- 5 (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;
- (f) NGQVVLLGSA;
- (g) AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
- (h) TGGLVDTV,

10 said method comprising:

- (i) hybridising a probe or primer comprising at least about 15 contiguous nucleotides in length derived from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto to single-stranded or double-stranded mRNA, cDNA or genomic DNA; and
- 15 (ii) detecting the hybridised mRNA, cDNA or genomic DNA using a detecting means.

Preferably, the detecting means is a reporter molecule covalently attached to the probe
20 or primer molecule or alternatively, a polymerase chain reaction format.

An alternative method contemplated in the present invention involves hybridising two nucleic acid "primer molecules" to a nucleic acid "template molecule" which comprises a related starch synthase gene or related starch synthase genetic sequence or a functional part thereof, wherein the first of said primers comprises contiguous nucleotides derived from any one or more of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16 and the second of said primers comprises contiguous nucleotides complementary to any one or more of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to 25 <400>16. Specific nucleic acid molecule copies of the template molecule are amplified
30 <400>16. Specific nucleic acid molecule copies of the template molecule are amplified

enzymatically in a polymerase chain reaction, a technique that is well known to one skilled in the art.

In a preferred embodiment, each nucleic acid primer molecule is at least 10
5 nucleotides in length, more preferably at least 20 nucleotides in length, even more
preferably at least 30 nucleotides in length, still more preferably at least 40 nucleotides
in length and even still more preferably at least 50 nucleotides in length.

Furthermore, the nucleic acid primer molecules consists of a combination of any of the
10 nucleotides adenine, cytidine, guanine, thymidine, or inosine, or functional analogues
or derivatives thereof which are at least capable of being incorporated into a
polynucleotide molecule without having an inhibitory effect on the hybridisation of said
primer to the template molecule in the environment in which it is used.

15 Furthermore, one or both of the nucleic acid primer molecules may be contained in an
aqueous mixture of other nucleic acid primer molecules, for example a mixture of
degenerate primer sequences which vary from each other by one or more nucleotide
substitutions or deletions. Alternatively, one or both of the nucleic acid primer
molecules may be in a substantially pure form.

20

The nucleic acid template molecule may be in a recombinant form, in a virus particle,
bacteriophage particle, yeast cell, animal cell, or a plant cell. Preferably, the nucleic
acid template molecule is derived from a plant cell, tissue or organ, in particular a cell,
tissue or organ derived from a wheat or barley plant or a progenitor species, or a
25 relative thereto such as the diploid *Triticum tauschii* or other diploid, tetraploid,
aneuploid, polyploid, nullisomic, or a wheat/barley addition line, amongst others.

Those skilled in the art will be aware that there are many known variations of the basic
polymerase chain reaction procedure, which may be employed to isolate a related
30 starch synthase gene or related starch synthase genetic sequence when provided with

the nucleotide sequences set forth herein. Such variations are discussed, for example, in McPherson *et al* (1991). The present invention extends to the use of all such variations in the isolation of related starch synthase genes or related starch synthase genetic sequences using the nucleotide sequences embodied by the present invention.

5

As exemplified herein, the present inventors have isolated several wheat starch synthase genes using both hybridisation and polymerase chain reaction approaches, employing novel probes and primer sequences to do so.

- 10 Accordingly, a third aspect of the invention provides an isolated probe or primer comprising at least about 15 contiguous nucleotides in length derived from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto.
- 15 Preferably, the probe or primer comprises a nucleotide sequence set forth in any one of SEQ ID NOS:<400>25 to <400>34.

The isolated nucleic acid molecule of the present invention may be introduced into and expressed in any cell, for example a plant cell, fungal cell, insect cell, animal cell, yeast 20 cell or bacterial cell. Those skilled in the art will be aware of any modifications which are required to the codon usage or promoter sequences or other regulatory sequences, in order for expression to occur in such cells.

A further aspect of the invention provides a method of assaying for the presence or 25 absence of a starch synthase isoenzyme or the copy number of a gene encoding same in a plant, comprising contacting a biological sample derived from said plant with an isolated nucleic acid molecule derived from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or any one of SEQ ID NOS: <400>11 to <400>16, or any one of SEQ ID NOS:<400>25 to <400>34, or a complementary nucleotide sequence 30 thereto for a time and under conditions sufficient for hybridisation to occur and then

detecting said hybridisation using a detection means.

The detection means according to this aspect of the invention is any nucleic acid based hybridisation or amplification reaction.

5

The hexaploid nature of wheat prevents the straightforward identification of starch synthase allelic variants by hybridisation using the complete starch synthase-encoding sequence, because the similarities between the various alleles generally results in significant cross-hybridisation. Accordingly, sequence-specific hybridisation probes are

- 10 required to distinguish between the various alleles. Similarly, wherein PCR is used to amplify specific allelic variants of a starch synthase gene, one or more sequence-specific amplification primers are generally required. As will be apparent from the amino acid sequence comparisons provided herein, such as in Figures 3 and 13, non-conserved regions of particular wheat starch synthase polypeptides are particularly
- 15 useful for the design of probes and primers that are capable of distinguishing between one or more starch synthase polypeptide isoenzyme or allelic variant. The present invention clearly contemplates the design of such probes and primers based upon the sequence comparisons provided herein.

- 20 In the performance of this embodiment of the present invention, the present inventors particularly contemplate the identification of wheat starch synthase null alleles or alternatively, mutations wherein specific amino acids are inserted or deleted or substituted , compared to one or more of the wheat SSII or SSIII alleles disclosed herein. Such null alleles and other allelic variants are readily identifiable using PCR
- 25 screening which employs amplification primers based upon the nucleotide and amino acid sequences disclosed herein for SSII and/or SSIII. Once identified, the various mutations can be stacked or pyramided into one or more new wheat lines, such as by introgression and/or standard plant breeding and/or recombinant approaches (eg. transformation, transfection, etc) thereby producing a novel germplasm which exhibits
- 30 altered starch properties compared to existing lines. DNA markers based upon the

nucleotide and amino acid sequences disclosed herein for SSII and/or SSIII can be employed to monitor the stacking of genes into the new lines and to correlate the presence of particular genes with starch phenotypes of said lines.

- 5 In this regard, a significant advantage conferred by the present invention is the design of new DNA markers that reveal polymorphisms such as, for example, length polymorphisms, restriction site polymorphisms, and single nucleotide polymorphisms, amongst others, between wheat starch synthases and, in particular, between wheat GBSS and/or SSI and/or SSII and/or SSIII, or between allelic variants of one or more
10 of said starch synthases, that can be used to identify the three genomes of hexaploid wheats (i.e., the A, B and D genomes).

Preferably, such DNA markers are derived from the intron region of a starch synthase gene disclosed herein, more preferably the wheat SSII and/or the wheat SSIII gene.

- 15 Those skilled in the art will be aware that such regions generally have a higher degree of variation than in the protein-encoding regions and, as a consequence, are particularly useful in identifying specific allelic variants of a particular gene, such as allelic variants contained in any one of the three wheat genomes, or alternatively or in addition, for the purpose of distinguishing between wheat GBSS, SSI, SSII or SSIII
20 genes.

- A further approach contemplated by the present inventors is the design of unique isoenzyme-specific and/or allele-specific peptides based upon the amino acid sequence disclosed herein as SEQ ID NOS:<400>2 and/or <400>4 and/or <400>6
25 and/or <400>8 and/or <400>10, which peptides are then used to produce polyclonal or monoclonal antibodies by conventional means. Alternatively, the genes encoding these polypeptides or unique peptide regions thereof can be introduced in an expressible format into an appropriate prokaryotic or eukaryotic expression system, where they can be expressed to produce the isoenzyme-specific and/or allele-specific
30 peptides for antibody production. Such antibodies may also be used as markers for the

purpose of both identifying parental lines and germplasms and monitoring the stacking of genes in new lines, using conventional immunoassays such as, for example, ELISA and western blotting.

- 5 A further aspect of the present invention utilises the above-mentioned nucleic acid based assay method in the breeding and/or selection of plants which express or do not express particular starch synthase isoenzymes or alternatively, which express a particular starch synthase isoenzyme at a particular level in one or more plant tissues. This aspect clearly extends to the selection of transformed plant material which
10 contains one or more of the isolated nucleic acid molecules of the present invention.

Yet another aspect of the present invention provides for the expression of the nucleic acid molecule of the present invention in a suitable host (e.g. a prokaryote or eukaryote) to produce full length or non-full length recombinant starch synthase gene
15 products.

Hereinafter the term "starch synthase gene product" shall be taken to refer to a recombinant product of a starch synthase gene of the present invention.

- 20 Preferably, the recombinant starch synthase gene product comprises an amino acid sequence having the catalytic activity of a starch synthase polypeptide or a functional mutant, derivative part, fragment, or analogue thereof.

In a particularly preferred embodiment of the invention, the recombinant starch
25 synthase gene product is selected from the following:

- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>2, <400>4, or <400>6;
30 (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or

functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>8 or <400>10; and

(iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:

- (a) KVGGGLGDVVTS;
- (b) GHTVEVILPKY;
- 10 (c) HDWSSAPVAWLKYKEHY;
- (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;
- (f) NGQVVLLGSA;
- (g) AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
- 15 (h) TGGLVDTV

and which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: <400>2, <400>4, <400>6, <400>8 or <400>10.

20 Accordingly, the present invention clearly extends to homologues, analogues and derivatives of the amino acid sequences set forth herein as SEQ ID NOS: <400>2, <400>4, <400>6, <400>8 and <400>10.

In the present context, "homologues" of an amino acid sequence refer to those 25 polypeptides, enzymes or proteins which have a similar catalytic activity to the amino acid sequences described herein, notwithstanding any amino acid substitutions, additions or deletions thereto. A homologue may be isolated or derived from the same or another plant species as the species from which the polypeptides of the invention are derived.

- 38 -

"Analogues" encompass polypeptides of the invention notwithstanding the occurrence of any non-naturally occurring amino acid analogues therein.

"Derivatives" include modified peptides in which ligands are attached to one or more 5 of the amino acid residues contained therein, such as carbohydrates, enzymes, proteins, polypeptides or reporter molecules such as radionuclides or fluorescent compounds. Glycosylated, fluorescent, acylated or alkylated forms of the subject peptides are particularly contemplated by the present invention. Additionally, derivatives of an amino acid sequence described herein which comprises fragments 10 or parts of the subject amino acid sequences are within the scope of the invention, as are homopolymers or heteropolymers comprising two or more copies of the subject polypeptides. Procedures for derivatizing peptides are well-known in the art.

Substitutions encompass amino acid alterations in which an amino acid is replaced 15 with a different naturally-occurring or a non-conventional amino acid residue. Such substitutions may be classified as "conservative", in which an amino acid residue contained in a starch synthase gene product is replaced with another naturally-occurring amino acid of similar character, for example Gly↔Ala, Val↔Ile↔Leu, Asp↔Glu, Lys↔Arg, Asn↔Gln or Phe↔Trp↔Tyr.

20

Substitutions encompassed by the present invention may also be "non-conservative", in which an amino acid residue which is present in a starch synthase gene product described herein is substituted with an amino acid with different properties, such as a naturally-occurring amino acid from a different group (eg. substituted a charged or 25 hydrophobic amino acid with alanine), or alternatively, in which a naturally-occurring amino acid is substituted with a non-conventional amino acid.

Non-conventional amino acids encompassed by the invention include, but are not limited to those listed in Table 2.

30

Amino acid substitutions are typically of single residues, but may be of multiple residues, either clustered or dispersed.

- Amino acid deletions will usually be of the order of about 1-10 amino acid residues,
- 5 while insertions may be of any length. Deletions and insertions may be made to the N-terminus, the C-terminus or be internal deletions or insertions. Generally, insertions within the amino acid sequence will be smaller than amino- or carboxy-terminal fusions and of the order of 1-4 amino acid residues.
- 10 A homologue, analogue or derivative of a starch synthase gene product as referred to herein may readily be made using peptide synthetic techniques well-known in the art, such as solid phase peptide synthesis and the like, or by recombinant DNA manipulations. Techniques for making substituent mutations at pre-determined sites using recombinant DNA technology, for example by M13 mutagenesis, are also well-
- 15 known. The manipulation of nucleic acid molecules to produce variant peptides, polypeptides or proteins which manifest as substitutions, insertions or deletions are well-known in the art.

- The starch synthase gene products described herein may be derivatized further by the
- 20 inclusion or attachment thereto of a protective group which prevents, inhibits or slows proteolytic or cellular degradative processes. Such derivatization may be useful where the half-life of the subject polypeptide is required to be extended, for example to increase the amount of starch produced in the endosperm or alternatively, to increase the amount of protein produced in a bacterial or eukaryotic expression system.
- 25 Examples of chemical groups suitable for this purpose include, but are not limited to, any of the non-conventional amino acid residues listed in Table 2, in particular a D-stereoisomer or a methylated form of a naturally-occurring amino acid listed in Table 1. Additional chemical groups which are useful for this purpose are selected from the list comprising aryl or heterocyclic N-acyl substituents, polyalkylene oxide moieties,
- 30 desulphatohirudin mutoeins, alpha-mutoeins, alpha-aminophosphonic acids, water-

soluble polymer groups such as polyethylene glycol attached to sugar residues using hydrazone or oxime groups, benzodiazepine dione derivatives, glycosyl groups such as beta-glycosylamine or a derivative thereof, isocyanate conjugated to a polyol functional group or polyoxyethylene polyol capped with diisocyanate, amongst others.

- 5 Similarly, a starch synthase gene product or a homologue, analogue or derivative thereof may be cross-linked or fused to itself or to a protease inhibitor peptide, to reduce susceptibility of said molecule to proteolysis.

In a particularly preferred embodiment, the percentage similarity to in any one of SEQ

- 10 ID NOS: <400>2, <400>4, <400>6, <400>8 or <400>10 is at least about 90%, more preferably at least about 95%, even more preferably at least about 97% and even more preferably at least about 98%, or about 99% or 100%.

- In a related embodiment, the present invention provides a "sequencably pure" form of
15 the amino acid sequence described herein. "Sequencably pure" is hereinbefore described as substantially homogeneous to facilitate amino acid determination.

- In a further related embodiment, the present invention provides a "substantially homogeneous" form of the subject amino acid sequence, wherein the term
20 "substantially homogeneous" is hereinbefore defined as being in a form suitable for interaction with an immunologically interactive molecule. Preferably, the polypeptide is at least 20% homogeneous, more preferably at least 50% homogeneous, still more preferably at least 75% homogeneous and yet still more preferably at least about 95-100% homogenous, in terms of activity per microgram of total protein in the protein
25 preparation.

- To produce the recombinant polypeptide of the present invention, the coding region of a starch synthase gene described herein or a functional homologue, analogue or derivative thereof is placed operably in connection with a promoter sequence in the
30 sense orientation, such that a starch synthase gene product is capable of being

expressed under the control of said promoter sequence.

In the present context, the term "in operable connection with" means that expression of the isolated nucleotide sequence is under the control of the promoter sequence with 5 which it is connected, regardless of the relative physical distance of the sequences from each other or their relative orientation with respect to each other.

Reference herein to a "promoter" is to be taken in its broadest context and includes the transcriptional regulatory sequences of a classical genomic gene, including the TATA 10 box which is required for accurate transcription initiation, with or without a CCAAT box sequence and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner. A promoter is usually, but not necessarily, positioned upstream or 5', of a structural gene, the expression of which 15 it regulates. Furthermore, the regulatory elements comprising a promoter are usually positioned within 2 kb of the start site of transcription of the gene.

In the present context, the term "promoter" is also used to describe a synthetic or fusion molecule, or derivative which confers, activates or enhances expression of a 20 structural gene or other nucleic acid molecule, particularly in a plant cell and more preferably in a wheat plant or other monocotyledonous plant cell, tissue or organ. Preferred promoters may contain additional copies of one or more specific regulatory elements, to further enhance expression and/or to alter the spatial expression and/or temporal expression. For example, regulatory elements which confer copper 25 inducibility may be placed adjacent to a heterologous promoter sequence, thereby conferring copper inducibility on the expression of said molecule.

Those skilled in the art will be aware that in order to obtain optimum expression of the starch synthase gene of the present invention, it is necessary to position said gene in 30 an appropriate configuration such that expression is controlled by the promoter

sequence. Promoters are generally positioned 5' (upstream) to the genes that they control. In the construction of heterologous promoter/structural gene combinations it is generally preferred to position the promoter at a distance from the gene transcription start site that is approximately the same as the distance between that promoter and
5 the gene it controls in its natural setting, i.e., the gene from which the promoter is derived. As is known in the art, some variation in this distance can be accommodated without loss of promoter function. Similarly, the preferred positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control is defined by the positioning of the element in its natural setting, i.e., the genes from
10 which it is derived. Again, as is known in the art, some variation in this distance can also occur.

Examples of promoters suitable for expressing the starch synthase gene of the present invention include viral, fungal, bacterial, animal and plant derived promoters capable
15 of functioning in prokaryotic or eukaryotic cells. Preferred promoters are those capable of regulating the expression of the subject starch synthase genes in plants cells, fungal cells, insect cells, yeast cells, animal cells or bacterial cells, amongst others. Particularly preferred promoters are capable of regulating expression of the subject nucleic acid molecules in monocotyledonous plant cells. The promoter may regulate
20 the expression of the said molecule constitutively, or differentially with respect to the tissue in which expression occurs or, with respect to the developmental stage at which expression occurs, or in response to external stimuli such as physiological stresses, or plant pathogens, or metal ions, amongst others.
25 Accordingly, strong constitutive promoters are particularly preferred for the purposes of the present invention.

Examples of preferred promoters include the bacteriophage T7 promoter, bacteriophage T3 promoter, SP6 promoter, *lac* operator-promoter, *tac* promoter, SV40
30 late promoter, SV40 early promoter, RSV-LTR promoter, CMV IE promoter, CaMV 35S

promoter, SCSV promoter, SCBV promoter and the like.

Particularly preferred promoters operable in plant cells include, for example the CaMV 35S promoter, and the SCBV promoter. Those skilled in the art will readily be aware
5 of additional promoter sequences other than those specifically described.

- In a particularly preferred embodiment, the promoter may be derived from a genomic starch synthase gene. Preferably, the promoter sequence comprises nucleotide sequences that are linked *in vivo* to nucleotide sequences set forth in any one of SEQ
10 ID NOs: <400>1, <400>3, <400>5, <400>7, <400>9, or any one of SEQ ID NOs: <400>11 to <400>16. By "linked *in vivo*" means that the promoter is present in its native state in the genome of a wheat plant where it controls expression of the starch synthase gene of the present invention.
- 15 Conveniently, genetic constructs are employed to facilitate expression of a starch synthase genetic sequence of the present invention or a functional derivative, part, homologue, or analogue thereof. To produce a genetic construct, the starch synthase gene of the invention is inserted into a suitable vector or episome molecule, such as a bacteriophage vector, viral vector or a plasmid, cosmid or artificial chromosome
20 vector which is capable of being maintained and/or replicated and/or expressed in the host cell, tissue or organ into which it is subsequently introduced. The said genetic construct comprises the subject nucleic acid molecule placed operably under the control of a promoter sequence and optionally, a terminator sequence.
- 25 The term "terminator" refers to a DNA sequence at the end of a transcriptional unit which signals termination of transcription. Terminators are 3'-non-translated DNA sequences containing a polyadenylation signal, which facilitates the addition of polyadenylate sequences to the 3'-end of a primary transcript. Terminators active in bacteria, yeasts, animal cells and plant cells are known and described in the literature.
30 They may be isolated from bacteria, fungi, viruses, animals and/or plants.

Examples of terminators particularly suitable for use in expressing the nucleic acid molecule of the present invention in plant cells include the nopaline synthase (NOS) gene terminator of *Agrobacterium tumefaciens*, the terminator of the Cauliflower mosaic virus (CaMV) 35S gene, and the *zein* gene terminator from *Zea mays*.

5

Genetic constructs will generally further comprise one or more origins of replication and/or selectable marker gene sequences.

The origin of replication can be functional in a bacterial cell and comprise, for example,

- 10 the pUC or the ColE1 origin. Alternatively, the origin of replication is operable in a eukaryotic cell, tissue and more preferably comprises the 2 micron ($2\mu\text{m}$) origin of replication or the SV40 origin of replication.

As used herein, the term "selectable marker gene" includes any gene which confers

- 15 a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells which are transfected or transformed with a genetic construct of the invention or a derivative thereof.

Suitable selectable marker genes contemplated herein include the ampicillin-resistance

- 20 gene (Amp $'$), tetracycline-resistance gene (Tc $'$), bacterial kanamycin-resistance gene (Kan $'$), the zeocin resistance gene (Zeocin is a drug of bleomycin family which is trademark of InVitrogen Corporation), the AUR I -C gene which confers resistance to the antibiotic aureobasidin A, phosphinothricin-resistance gene, neomycin phosphotransferase gene (*nptII*), hygromycin-resistance gene, β -glucuronidase (GUS) gene, chloramphenicol acetyltransferase (CAT) gene, green fluorescent protein-encoding gene or the luciferase gene, amongst others. Those skilled in the art will be aware of other selectable marker genes useful in the performance of the present invention and the subject invention is not limited by the nature of the selectable marker gene.

Usually, an origin of replication or a selectable marker gene suitable for use in bacteria is physically-separated from those genetic sequences contained in the genetic construct which are intended to be expressed or transferred to a eukaryotic cell, or integrated into the genome of a eukaryotic cell.

5

Standard methods can be used to introduce genetic constructs into a cell, tissue or organ for the purposes of modulating gene expression. Particularly preferred methods suited to the introduction of synthetic genes and genetic constructs comprising same to eukaryotic cells include liposome-mediated transfection or transformation, 10 transformation of cells with attenuated virus particles or bacterial cells and standard procedures for the transformation of plant and animal cells, tissues, organs or organisms. Any standard means may be used for their introduction including cell mating, transformation or transfection procedures known to those skilled in the art or described by Ausubel *et al.* (1992).

15

In a further embodiment of the present invention, the starch synthase genes of the present invention and genetic constructs comprising same are adapted for integration into the genome of a cell in which it is expressed. Those skilled in the art will be aware that, in order to achieve integration of a genetic sequence or genetic construct into the 20 genome of a host cell, certain additional genetic sequences may be required. In the case of plants, left and right border sequences from the T-DNA of the *Agrobacterium tumefaciens* Ti plasmid will generally be required.

The invention further contemplates increased starch and/or modified starch 25 composition in transgenic plants expressing the nucleic acid molecule of the invention in the sense orientation such that the activity of one or more starch synthase isoenzymes is increased therein. By increasing the level of one or more starch synthase isoenzymes, the deposition of starch in the amyloplast or chloroplast is increased and/or a modified starch granule structure is produced and/or starch 30 composition is modified and/or the amylose/amyllopectin ratio is altered in the plant.

Wherein it is desired to increase the synthesis of a particular starch synthase isoenzyme in a plant cell, the coding region of a starch synthase gene is placed operably behind a promoter, in the sense orientation, such that said starch synthase is expressed under the control of said promoter sequence. In a preferred embodiment,
5 the starch synthase genetic sequence is a starch synthase genomic sequence, cDNA molecule or protein-coding sequence.

Wherein it is desirable to reduce the level of a particular starch synthase isoenzyme in a plant cell, the nucleic acid molecule of the present invention can be expressed in
10 the antisense orientation, as an antisense molecule or a ribozyme molecule, under the control of a suitable promoter.

Alternatively, the nucleic acid molecule of the present invention may also be expressed in the sense orientation, in the form of a co-suppression molecule, to reduce the level
15 of a particular starch synthase isoenzyme in a plant cell. As will be known to those skilled in the art, co-suppression molecules that comprise inverted repeat sequences of a target nucleic acid molecule provide optimum efficiency at reducing expression of said target nucleic acid molecule and, as a consequence, the present invention clearly contemplates the use of inverted repeat sequences of any one or more of the starch
20 synthase genetic sequences exemplified herein, or inverted repeat sequences of a homologue, analogue or derivative of said starch synthase genetic sequences, to reduce the level of a starch synthase isoenzyme in a plant.

The expression of an antisense, ribozyme or co-suppression molecule comprising a
25 starch synthase gene in a cell such as a plant cell, fungal cell, insect cell, animal cell, yeast cell or bacterial cell, may also increase the availability of carbon as a precursor for a secondary metabolite other than starch (e.g. sucrose or cellulose). By targeting the endogenous starch synthase gene, expression is diminished, reduced or otherwise lowered to a level that results in reduced deposition of starch in the amyloplast or
30 chloroplast and/or leads to modified starch granule structure and/or composition

and/or altered amylose/amylopectin ratio.

Accordingly, a further aspect of the present invention provides a method of modifying the starch content and/or starch composition of one or more tissues or organs of a
5 plant, comprising expressing therein a sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule having at least about 85% nucleotide sequence identity to any one of any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or any one of SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto for a time and under conditions
10 sufficient for the enzyme activity of one or more starch synthase isoenzymes to be modified. This aspect of the invention clearly extends to the introduction of the sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule to isolated plant cells, tissues or organs or organelles by cell fusion or transgenic means and the regeneration of intact plants therefrom.

15

Co-suppression is the reduction in expression of an endogenous gene that occurs when one or more copies of said gene, or one or more copies of a substantially similar gene are introduced into the cell, preferably in the form of an inverted repeat structure.

20 The present inventors have discovered that the genetic sequences disclosed herein are capable of being used to modify the level of starch when expressed, particularly when expressed in plants cells. Accordingly, the present invention clearly extends to the modification of starch biosynthesis in plants, in particular wheat or barley plants or a progenitor plant species, or a relative thereto such as the diploid *Triticum tauschii*
25 or other diploid, tetraploid, aneuploid, polyploid, nullisomic, or a wheat/barley addition line, amongst others.

In particular, the present invention contemplates decreased starch production and/or modified starch composition in transgenic plants expressing the nucleic acid molecule
30 of the invention in the antisense orientation or alternatively, expressing a ribozyme or

co-suppression molecule comprising the nucleic acid sequence of the invention such that the activity of one or more starch synthase isoenzymes is decreased therein.

5

In the context of the present invention, an antisense molecule is an RNA molecule which is transcribed from the complementary strand of a nuclear gene to that which is normally transcribed to produce a "sense" mRNA molecule capable of being translated into a starch synthase polypeptide. The antisense molecule is therefore 10 complementary to the mRNA transcribed from a sense starch synthase gene or a part thereof. Although not limiting the mode of action of the antisense molecules of the present invention to any specific mechanism, the antisense RNA molecule possesses the capacity to form a double-stranded mRNA by base pairing with the sense mRNA, which may prevent translation of the sense mRNA and subsequent synthesis of a 15 polypeptide gene product.

Ribozymes are synthetic RNA molecules which comprise a hybridising region complementary to two regions, each of at least 5 contiguous nucleotide bases in the target sense mRNA. In addition, ribozymes possess highly specific endoribonuclease 20 activity, which autocatalytically cleaves the target sense mRNA. A complete description of the function of ribozymes is presented by Haseloff and Gerlach (1988) and contained in International Patent Application No. WO89/05852.

The present invention extends to ribozyme which target a sense mRNA encoding a 25 native starch synthase gene product, thereby hybridising to said sense mRNA and cleaving it, such that it is no longer capable of being translated to synthesise a functional polypeptide product.

According to this embodiment, the present invention provides a ribozyme or antisense 30 molecule comprising at least 5 contiguous nucleotide bases derived from any one of

SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or any one of SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto or a homologue, analogue or derivative thereof, wherein said antisense or ribozyme molecule is able to form a hydrogen-bonded complex with a sense mRNA encoding 5 a starch synthase gene product to reduce translation thereof.

In a preferred embodiment, the antisense or ribozyme molecule comprises at least 10 to 20 contiguous nucleotides derived from any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or any one of SEQ ID NOS: <400>11 to <400>16, or a 10 complementary nucleotide sequence thereto or a homologue, analogue or derivative thereof. Although the preferred antisense and/or ribozyme molecules hybridise to at least about 10 to 20 nucleotides of the target molecule, the present invention extends to molecules capable of hybridising to at least about 50-100 nucleotide bases in length, or a molecule capable of hybridising to a full-length or substantially full-length mRNA 15 encoded by a starch synthase gene.

Those skilled in the art will be aware of the necessary conditions, if any, for selecting or preparing the antisense or ribozyme molecules of the invention.

- 20 It is understood in the art that certain modifications, including nucleotide substitutions amongst others, may be made to the antisense and/or ribozyme molecules of the present invention, without destroying the efficacy of said molecules in inhibiting the expression of a starch synthase gene. It is therefore within the scope of the present invention to include any nucleotide sequence variants, homologues, analogues, or 25 fragments of the said gene encoding same, the only requirement being that said nucleotide sequence variant, when transcribed, produces an antisense and/or ribozyme molecule which is capable of hybridising to a sense mRNA molecule which encodes a starch synthase gene product.
- 30 Gene targeting is the replacement of an endogenous gene sequence within a cell by

- 50 -

a related DNA sequence to which it hybridises, thereby altering the form and/or function of the endogenous gene and the subsequent phenotype of the cell. According to this embodiment, at least a part of the DNA sequence defined by any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or any one of SEQ ID NOS: 5 <400>11 to <400>16 may be introduced into target cells containing an endogenous gene that encodes a particular starch synthase isoenzyme, thereby replacing said endogenous gene. According to this embodiment, the polypeptide product of the gene targeting molecule generally encodes a starch synthase isoenzyme that possesses different catalytic activity to the polypeptide product of the endogenous gene, 10 producing in turn modified starch content and/or composition in the target cell.

The present invention extends to genetic constructs designed to facilitate expression of a sense molecule, an antisense molecule, ribozyme molecule, co-suppression molecule, or gene targeting molecule of the present invention. The requirements for 15 expressing such molecules are similar to those for expressing a recombinant polypeptide as described *supra*.

The present invention further extends to the production and use of starches produced by the application of the novel genes described herein.

20

Starch hydrolysates or undegraded starches are both useful in industry and, as a consequence, the present invention is useful in applications relating to the use of both starch hydrolysates and undegraded starches. By "starch hydrolysates" is meant the glucose and glucan components that are obtainable by the enzymatic or chemical 25 degradation of starch in chemical modifications and processes, such as fermentation.

For example, starch produced by plants expressing the sense, antisense, co-suppression, gene-targetting or ribozyme molecules of the present invention may exhibit modified viscosities and/or gelling properties of its glues when compared to 30 starch derived from wild-type plants. Native starches produced by the performance of

the inventive method are useful as an additive in the following: (i) foodstuffs, for the purpose of increasing the viscosity or gelling properties of food; (ii) in non-foodstuffs, such as an adjuvant or additive in the paper and cardboard industries, for retention or as a size filler, or as a solidifying substance or for dehydration, or film coating,
5 amongst others; (iii) in the adhesive industry as pure starch glue, as an additive to synthetic resins and polymer dispersions, or as an extenders for synthetic adhesives; (iv) in the textile and textile care industries to strengthen woven products and reduce burring or to thicken dye pastes; (v) in the building industry, such as a binding agent in the production of gypsum plaster boards, or for the deceleration of the sizing
10 process; (vi) in ground stabilization or for the temporary protection of ground particles against water in artificial earth shifting; (vii) as a wetting agent in plant protectants and fertilizers; (viii) as a binding agent in drugs, pharmaceuticals and medicated foodstuff such as vitamins, etc; (ix) as an additive in coal and briquettes; (xi) as a flocculent in the processing of coal ore and slurries; (xii) as a binding agent in casting processes
15 to increase flow resistance and improve binding strength; and (xiii) to improve the technical and optical quality of rubber and plastic products. Additional applications are not excluded.

A further aspect of the present invention provides an isolated promoter that is operable
20 in the endosperm of a monocotyledonous plant cell, tissue or organ, and preferably in the endosperm of a monocotyledonous plant cell, tissue or organ. According to this embodiment, it is preferred that the promoter is derived from a starch synthase gene of the present invention, such as a promoter that is linked *in vivo* to any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or any one of SEQ ID NOS:
25 <400>11 to <400>16, or a complementary nucleotide sequence thereto.

In a particularly preferred embodiment, the promoter comprises a nucleotide sequence derivable from the 5'-upstream region of SEQ ID NO:<400>11 or a complementary nucleotide sequence thereto, an more preferably comprises nucleotides 1 to about 287
30 of SEQ ID NO:<400>11 or nucleotides 1 to about 287 of SEQ ID NO:<400>11 or a

complementary nucleotide sequence thereto. The present invention clearly extends to promoter sequences that comprise further nucleotide sequences in the region upstream of the stated nucleotide sequence that are linked *in vivo* to said nucleotide sequence in the wheat genome.

5

In a related embodiment, the promoter sequence of the present invention will further comprise an exon sequence derived from a starch synthase gene, for example nucleotides 260 to 385 of SEQ ID NO:<400>11 or a complementary nucleotide sequence thereto. Those skilled in the art will be aware that the inclusion of such 10 nucleotide sequences may increase the expression of a heterologous structural gene, the expression of which is controlled thereby.

The present invention further extends to the expression of any structural gene operably under the control of the starch synthase promoter sequence exemplified herein or a 15 functional homologue, analogue or derivative of said promoter sequence.

As with other embodiments described herein for expression in cells, a genetic construct may be employed to effect said expression and the present invention clearly extends to said genetic constructs.

20

The polypeptide encoded by the structural gene component may be a reporter molecule which is encoded by a gene such as the bacterial β-glucuronidase gene or chloramphenicol acetyltransferase gene or alternatively, the firefly luciferase gene. Alternatively, wherein it is desirable to alter carbon partitioning within the endosperm, 25 the polypeptide may be an enzyme of the starch sucrose biosynthetic pathways. Preferably, the promoter sequence is used to regulate the expression of one or more of the starch synthase genes of the present invention or a sense, antisense, ribozyme, co-suppression or gene-targetting molecule comprising or derived from same.

30 Recombinant DNA molecules carrying the aforesaid nucleic acid molecule of the

present invention or a sense, antisense, ribozyme, gene-targetting or co-suppression molecule and/or genetic construct comprising same, may be introduced into plant tissue, thereby producing a "transgenic plant", by various techniques known to those skilled in the art. The technique used for a given plant species or specific type of plant
5 tissue depends on the known successful techniques. Means for introducing recombinant DNA into plant tissue include, but are not limited to, transformation (Paszkowski *et al.*, 1984), electroporation (Fromm *et al.*, 1985), or microinjection of the DNA (Crossway *et al.*, 1986), or T-DNA-mediated transfer from *Agrobacterium* to the plant tissue. Representative T-DNA vector systems are described in the following
10 references: An *et al.*(1985); Herrera-Estrella *et al.* (1983a,b); Herrera-Estrella *et al.* (1985). Once introduced into the plant tissue, the expression of the introduced gene may be assayed in a transient expression system, or it may be determined after selection for stable integration within the plant genome. Techniques are known for the
15 *in vitro* culture of plant tissue, and in a number of cases, for regeneration into whole plants. Procedures for transferring the introduced gene from the originally transformed plant into commercially useful cultivars are known to those skilled in the art.

In general, plants are regenerated from transformed plant cells or tissues or organs on hormone-containing media and the regenerated plants may take a variety of forms,
20 such as chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., a transformed root stock grafted to an untransformed scion in citrus species). Transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first
25 generation (or T1) transformed plants may be selfed to give homozygous second generation (or T2) transformed plants, and the T2 plants further propagated through classical breeding techniques.

Accordingly, a still further aspect of the present invention contemplates a transgenic
30 plant comprising an introduced sense molecule, antisense molecule, ribozyme

- 54 -

molecule, co-suppression molecule, or gene-targeting molecule having at least about 85% nucleotide sequence identity to any one of any one of SEQ ID NOS: <400>1, <400>3, <400>5, <400>7 or <400>9 or any one of SEQ ID NOS: <400>11 to <400>16, or a complementary nucleotide sequence thereto or a genetic construct comprising
5 same.

The present invention further extends to those plant parts, propagules and progeny of said transgenic plant or derived therefrom, the only requirement being that said propagules and progeny also carry the introduced nucleic acid molecule(s).

10

The present invention is further described by reference to the following non-limiting examples.

15

EXAMPLE 1

Plant material

Genetic stocks of hexaploid bread wheat *Triticum aestivum* cv. Chinese Spring with various chromosome additions and deletions were kindly supplied by Dr E. Lagudah (CSIRO Plant Industry, Canberra) and derived from stocks described in Sears and
20 Miller (1985). The hexaploid (*Triticum aestivum*) wheats cv Gabo and cv Wyuna were grown in controlled growth cabinet conditions (18 °C day and 13° C night, with a photoperiod of 16 h). Wheat leaves and florets prior to anthesis, and endosperm were collected over the grain filling period, immediately frozen in liquid nitrogen and stored at -80°C until required.

25

EXAMPLE 2

Gel Electrophoresis, Antibodies and Immunoblotting

Monoclonal antibodies against the Sgp-1 proteins, and their use in the immunoblotting of SDS-PAGE gels have been described previously (Rahman *et al.*, 1995).

30

- 55 -

EXAMPLE 3

Preparation of total RNA from wheat

Total RNA was isolated from the leaf, floret and endosperm tissues of wheat essentially as described by Higgins *et al.* (1976) or Rahman *et al.* (1998). RNA was 5 quantified by UV absorption and by separation in 1.4% (w/v) agarose-formaldehyde gels which were then visualised under UV light after staining with ethidium bromide.

EXAMPLE 4

Construction and screening of cDNA libraries

- 10 A first cDNA library, an expression cDNA library of wheat endosperm, was constructed from mRNA isolated from wheat cv Chinese Spring. RNA from 5, 7, 9, 11 and 13 days after anthesis was pooled and random primers were used for the first strand of cDNA synthesis. Monoclonal antibodies against 100 -105 kDa proteins in wheat starch granules (Rahman *et al.*, 1995) were used for immunoscreening of the expression 15 cDNA library.

A second cDNA library was constructed from the endosperm mRNA of the hexaploid *Triticum aestivum* cultivar Wyuna, 8 - 12 days after anthesis, as described by Rahman *et al.* (1997). This library was screened with a 85-bp cDNA fragment, wSSIIP1, which 20 was obtained by immunoscreening of the expression cDNA library as described above. The wSSIIP1 probe corresponded to nucleotide positions 988 to 1072 of wSSIIB (SEQ ID NO:<400>1) at the hybridisation conditions as described earlier (Rahman *et al.*, 1998).

- 25 A third cDNA library was constructed from RNA from the endosperm of the hexaploid *Triticum aestivum* cultivar Rosella as described by Rahman *et al.* (1997). This library was screened with a 347-bp cDNA fragment, wSSIIP1 for the first screening and a 478-bp cDNA fragment wSSIIP3 for the second screening (PLEASE ADVISE-nucleotides 2469 to 2947 of SEQ ID NO:<400>7) using the hybridisation conditions 30 described herein.

- 56 -

EXAMPLE 5

Construction and screening of *Triticum tauschii* genomic library

The genomic library used in this study, prepared from *Triticum tauschii*, var strangulata, (Accession Number CPI 110799), has been described in Rahman *et al.*, 5 (1997). Of all the accessions of *T. tauschii* surveyed, DNA marker analysis suggests that the genome of CPI 110799 is the most closely related to the D genome of hexaploid wheat (Lagudah *et al.*, 1991).

Hybridisations were carried out in 25% formamide, 6 x SSC, 0.1% SDS at 42°C for 16 10 hours, then filters were washed 3 times using 2 x SSC containing 0.1% SDS at 65°C for 1 hour per wash.

For the isolation of a genomic wSSII clone, the probe comprised the PCR-derived DNA fragment wSSIIP2 and positive-hybridising plaques were digested using the restriction 15 enzyme *Bam*HI, separated on a 1% agarose gel, transferred to nitrocellulose membrane and hybridised to probe wSSIIP4 comprising nucleotides 1 to 367 of the wSSIIA cDNA clone, using the conditions described by Rahman *et al.* (1997).

For the isolation of a genomic wSSIII clone, plaques hybridising to the PCR-derived 20 DNA fragment wSSIIIP1 from clone wSSIII.B3 (i.e. nucleotides 3620 to 3966 of SEQ ID NO:<400>7) were selected and re-screened until plaque-purified.

EXAMPLE 6

25 DNA sequencing and analysis

DNA sequencing was performed using the automated ABI system with dye terminators as described by the manufacturers. DNA sequences were analysed using the GCG suite of programs (Devereaux *et al.*, 1984).

- 57 -

EXAMPLE 7

DNA and RNA analysis

DNA was isolated and analysed as previously described (Maniatis *et al.*, 1982; Rahman *et al.*, 1998). Approximately 20 µg of DNA was digested with restriction enzymes *Bam*HI, *Dra*I and *Eco*RI, separated on a 1% agarose gel and transferred to reinforced nitrocellulose membranes (BioRad) and hybridised with ³²P-labelled DNA probe, either wSSIIIp1, corresponding to nucleotides 3620 to 3966 of the wheat SSIII gene, or alternatively, with the entire wSSII cDNA clone. DNA fragment probes were labelled with the Rapid Multiprime DNA Probe Labelling Kit (Promega).

10

The hybridisation and wash conditions were performed as described in Rahman *et al.* (1997). For RNA analysis, 10 µg of total RNA was separated in a 1.4% agarose-formaldehyde gel and transferred to a Hybond N+ membrane (Amersham), and hybridised with cDNA probe at 42°C as previously described by Khandjian *et al.*, 15 (1987) or Rahman *et al.*, (1998). After washing for 30 minutes at 65°C with 2x SSC, 0.1% SDS; followed by three washes of 40 minutes at 65°C with 0.2x SSC, 1% SDS, the membranes were visualised by overnight exposure at -80°C with Kodak MR X-ray film.

20

EXAMPLE 8

Expression of wheat Sgp-1 polypeptides in the wheat endosperm

The development and use of monoclonal antibodies to the Sgp-1 proteins has been described previously (Rahman *et al.*, 1995). These antibodies were used by the 25 present inventors to characterise the expression and localisation of the Sgp-1 proteins.

The proteins found in the matrix of the wheat starch granule are shown in Figure 1, lane1. The remaining lanes show an immunoblot of proteins from the soluble phase (Figure 1; lanes 2-4) and the starch granule (Figure 1; lanes 5-7), respectively, 30 following SDS-PAGE. In addition to cross-reactivity with the 100-105 kDa proteins, a

weak cross-reaction with a 50 kDa protein in both the granule and the soluble fractions were observed (Figure 1). The Sgp-1 polypeptides are present in the starch granule throughout endosperm development (Figure 1; lanes 5-7, also see Rahman et al., 1995). However, as the endosperms matures, there is a reduction in the amount of 5 Sgp-1 protein found in the soluble fraction. Lane 4 shows that by 25 days after anthesis, the level of these proteins in the soluble fraction is substantially reduced. This observation is consistent with previous results from Rahman et al., (1995), who suggested that the Sgp-1 proteins were exclusively granule bound based on studies of granules from endosperm in mid-late stages endosperm development, however, 10 these results suggest that the partitioning of these proteins between the granule and the soluble phase changes during development.

EXAMPLE 9

Isolation of cDNA clones encoding wheat starch synthase II (wSSII) proteins

15 Monoclonal antibodies against Sgp-1 polypeptides (Rahman et al., 1995) were used to probe the expression library described in Example 4 (i.e. the first cDNA library). Three immunoreactive plaques were identified and sequenced. One clone, designated wSSIIp1, contained an 85-bp cDNA insert with homology to maize SSIIa (Harn et al., 1998).

20

DNA from the wSSIIp1 clone was used as a probe in the hybridisation screening of the second cDNA library, prepared from *Triticum aestivum* cultivar Wyuna endosperm RNA as described in Example 4. Ten hybridising cDNA clones were selected and sequenced. On the basis of the DNA sequences obtained, the 10 cDNA clones can be 25 classified into three groups. Group 1 contains 7 cDNA clones, group 2 contains 2 cDNA clones and group 3 contains 1 cDNA clone.

The longest clone from group 1 (designated wSSIIIB) is 2939 bp in length (SEQ ID NO:<400>1) and encodes a 798 -amino acid polypeptide starting at nucleotide 176 30 and terminating at nucleotide 2572 (SEQ ID NO:<400>2).

The longest clone from group 2 (designated wSSI_{IA}) is 2807 bp in length (SEQ ID NO:<400>3) and encodes a 799 -amino acid polypeptide starting at nucleotide 89 and terminating at nucleotide 2488 (SEQ ID NO:<400>4).

- 5 The cDNA from group 3 is a partial cDNA clone (designated wSSI_{ID}), which is 2107 bp in length (SEQ ID NO:<400>5) and encodes a 597 -amino acid polypeptide starting at nucleotide 1 and terminating at nucleotide 1794 (SEQ ID NO:<400>6). The encoded polypeptide is approximately a 200 amino acid residues shorter than that of polypeptides encoded by longest clones of group 1 or 2 clones, respectively (Figure 10 2).

Comparison of the three cDNA clones, wSSI_{IB}, wSSI_{IA} and wSSI_{ID} shows that they share 95.7% to 96.6% identity at amino acid level, with variation at 44 amino acid positions between the three sequences (Figure 3). Of the 44 amino acid changes 15 between these sequences, 31 changes occur in the N-terminal region (residues 1 to 300), 10 changes occur in the central region (residues 301 to 729) and 3 changes occur in the C-terminal region (residues 730 to 799). The wSSI_{IA} polypeptide (799 amino acid residues) and wSSI_{IB} polypeptide (798 amino acid residues) sequences differ in length by a single amino acid residue, due to the deletion of Asp-69 from the 20 wSSI_{IB} polypeptidesequence.

A comparison of the nucleotide sequences of the wSSI_{IA}, wSSI_{IB} and wSSI_{ID} cDNA clones with the nucleotide sequence of the wSSI_{IP1} cDNA obtained by immunoscreening confirms that the wSSI_{IP1} sequence is found in each cDNA. The 25 peptide encoded by the wSSI_{IP1} cDNA clone corresponds to amino acid residues in the region from residue 272 to residue 298 of the wSSI_{IA} polypeptide, and to amino acid residues in the region from residue 271 to residue 297 of the wSSI_{IB} polypeptide (see Figure 3). Thus, the peptide epitope encoded by wSSI_{IP1} that reacts with the anti-Sgp-1 monoclonal antibodies can therefore be localised to this region of the 30 wSSI_{IA} and wSSI_{IB} polypeptides and to the corresponding region of the wSSI_{ID}

- 60 -

polypeptide.

Notwithstanding that a region having about 63% amino acid sequence identity to the peptide epitope encoded by clone wSSIIp1 is found in the maize SSIIa polypeptide 5 (Figure 3), the degree of amino acid conservation between maize and wheat sequences in this region of the polypeptide is insufficient for immunological cross-reactivity to occur between these species using the monoclonal antibodies to the wheat Sgp-1 proteins described by Rahman *et al.* (1995). Additionally, this peptide epitope is not found in granule-bound starch synthases, SSI, or SSIII (data not shown).

10

The wSSIIB cDNA (SEQ ID NO:<400>1) encodes an amino acid sequence comprising the peptide motif AAGKKDAGID (SEQ ID NO:<400>18) between residues 60 and 69 of SEQ ID NO:<400>2 (Figure 3) which, with the exception of the second residue, is identical to the N-terminal of the 100 kDa (A^T/_LGKKDAGID: SEQ ID NOs:<400>19 and 15 20) protein (Sgp-B1) from the wheat starch granule (note that the sequence given in Rahman *et al.*, 1995 (A^T/_LGKKDAL: SEQ ID NOs:<400>21 and 22) has been revised following further amino acid sequence analysis).

The wSSIIIA cDNA clone (SEQ ID NO:<400>3) encodes an amino acid sequence 20 comprising the peptide motif AAGKKDARVDDAA (SEQ ID NO: <400>23) at residues 60 to 73 of SEQ ID NO:<400>4, which is about 66% identical to the N-terminal amino acid sequence (i.e. ALGKKDAGIVDGA: SEQ ID NO: <400>24) of the 104 kDa and 105 kDa starch granule proteins, Sgp-D1 and Sgp-A1 respectively, as determined by sequence analysis of isolated protein (Rahman *et al.*, 1995).

25

Furthermore, Takaoka *et al.* (1997) reported the amino acid sequences of 3 polypeptides obtained from sequencing starch granule proteins derived from the Sgp-1 proteins. Peptide 3 described by Takaoka *et al.* (1997) corresponds to amino acid residues 378 to 387 of the amino acid sequence of the wSSIIIA cDNA (SEQ ID 30 NO:<400>4; Figure 3). Peptides 1 and 2 described by Takaoka *et al.* (1997) could not

- 61 -

be detected in the amino acid sequences of the wSSII cDNA clones of the present invention, however peptide 1 of Takaoka *et al.* (1997) can be found in the amino acid sequences of SSI from maize, rice, wheat and potato (data not shown).

- 5 Denyer *et al.* (1995) demonstrated that the Sgp-1 proteins possess starch synthase activity and, as a consequence, the wSSIIB, wSSIA and wSSIID cDNA clones encode starch synthase enzymes that are differentially expressed in a developmentally-regulated manner in both the soluble and granule-bound fractions of the endosperm (Figure 1). Based on the nomenclature suggested by Harn *et al.* (1998), it is
- 10 appropriate to describe the Sgp-1 proteins as "starch synthases" rather than "granule-bound starch synthases".

EXAMPLE 10

15 **Analysis of wheat starch synthase II mRNA expression**

The mRNA for wheat starch synthase II could be detected in leaves, pre-anthesis florets and endosperm of wheat when total RNAs isolated from these tissue were probed with a PCR probe, wSSIIp2, corresponding to nucleotide positions 1435 to 1835 bp of wSSIIB-cDNA (SEQ ID NO:<400>1; Figure 4). Unlike wSSI, which could

- 20 not be detected in wheat leaves derived from plants grown under the same conditions, wSSII genes are highly-expressed in the leaves (Figure 4, lane 1), and expressed at an intermediate level in pre-anthesis florets (Figure 4, lane 2), and at much lower levels in developing wheat endosperm cells (Figure 4, lanes 3-11). In contrast, the maize SSIIa is expressed predominantly in the endosperm, whilst the maize SSIIb is detected
- 25 mainly in the leaf, albeit at low levels (Harn *et al.*, 1998).

The wSSII mRNA was detectable in the endosperm 6 days after anthesis and mRNA levels increase between 8 and 18 days post-anthesis, after which time levels of mRNA decline.

Southern blotting experiments in wheat demonstrated that the wSSIIp2 probe used detected only a single copy of the SSII gene in each genome (data not shown). Thus, it is unlikely that this probe cross-hybridised with mRNAs encoded by genes other than wSSII.

5

EXAMPLE 11

Chromosomal localization of the wheat wSSII genes.

10 I. Amplification of specific cDNA regions of wheat starch synthase II using PCR

Two PCR products, wSSIIp2 and wSSIIp3 were amplified from the cDNA clone wSSIIIB and used for the northern hybridisation and Southern hybridisation, respectively.

The primers ssIIa (5' TGTTGAGGTTCCATGGCACGTTTC 3': SEQ ID NO: <400>25) 15 and ssIIb (5' AGTCGTTCTGCCGTATGATGTCG 3': SEQ ID NO: <400>26) were used to amplify the cDNA fragment wSSIIp2 (i.e. nucleotide positions 1435 to 1835 of SEQ ID NO:<400>1).

The primers ssIIc (5' CCAAGTACCAAGTGGTGAACGC 3': SEQ ID NO: <400>27) and 20 ssIId (5' CGGTGGGATCCAACGGCCC 3': SEQ ID NO: <400>28) were used to amplify the cDNA fragment wSSIIp3 (i.e. nucleotide positions 2556 to 2921 of SEQ ID NO:<400>1).

The amplification reactions were performed using a FTS-1 thermal sequencer (Corbett, 25 Australia) for 1 cycle of 95°C for 2 minutes; 35 cycles of 95°C for 30 seconds, 60°C for 1 minutes, 72°C for 2 minutes and 1 cycle of 25°C for 1 minute.

II. PCR and nucleotide sequence analysis of 3' sequences of wheat SSII genes

Genomic DNA was extracted from wild-type Chinese Spring wheat, and from three 30 nullisomic-tetrasomic lines of chromosome 7 of Chinese Spring wheat, and from

- 63 -

Triticum tauschii (var strangulata, accession number CPI 100799), and used as a template for the amplification and nucleotide sequence analysis of wheat SSII genes.

RFLP analysis of *Bam*HI and *Eco*RI restricted DNA from each wheat or *T. Tauschii* line 5 was carried out using the wSSIIp3 fragment as a probe. Three hybridising bands were obtained which could be assigned to chromosomes 7A, 7B and 7D, respectively (data not shown). This analysis indicates that there is a single copy of the wSSII gene in each genome in hexaploid wheat, consistent with the findings of Yamamori and Endo (1996) who located the SGP-A1, B1 and D1 proteins to the short arm of chromosome 10 7.

PCR analysis was used to assign each of the cDNA clones to the individual wheat genomes. A single 365 bp PCR fragment was obtained from nullisomic-tetrasomic genomic DNA of Chinese Spring when primers ssIIc and ssIId were used for the PCR 15 amplification (Figure 5, right panel). This PCR product is obtained only from lines bearing the B genome. The fragment was cloned and sequenced and shown to be identical to a 365 bp region of the wSSIIB cDNA. An identical fragment is obtained by PCR amplification of the wSSIIB cDNA clone, but not by amplification of the wSSIIA or wSSIID clones, supporting the conclusion that the wSSIIB cDNA is the product of 20 a gene located on chromosome 7 of the B genome of hexaploid wheat.

Two PCR products were also amplified from nullisomic-tetrasomic genomic DNA of Chinese Spring using the primers ssIIc and ssIle (Figure 5, left panel). One PCR fragment, approximately 350 bp is only amplified when the A genome is present, and 25 a second 322 bp product is only amplified when the D-genome is present. The 350 and 322 bp PCR products were also cloned and sequenced and shown to be identical to the wSSIIA and wSSIID cDNAs, respectively, supporting the conclusion that the wSSIIA and wSSIID cDNAs are the products of genes located on chromosomes 7A and 7D, respectively.

EXAMPLE 12

Isolation of genomic wSSII clones

Screening of a genomic library from the D-genome donor of wheat, *T. tauschii*, was performed as described in Example 5, using the the PCR-derived DNA fragment 5 wSSIIp2 as a hybridisation probe. Figure 6 shows an example of a plaque lift showing the positive-hybridising clone wSSII-8, a putative *T. tauschii* homologue of the wSSII gene.

Positive-hybridising plaques were digested using the restriction enzyme *Bam*HI, 10 separated on a 1% agarose gel, transferred to nitrocellulose membrane and hybridised to probe wSSIIp4 comprising nucleotides 1 to 367 of the wSSIIA cDNA clone, using the conditions described by Rahman *et al.* (1997). As shown in Figure 7,clone wSSII-8 also hybridises strongly to this probe, confirming its identity as a genomic wSSII gene. Furthermore, in light of the fact that the wSSIIp4 probe comprises the 5'-end of the 15 cDNA clone, it is likely that genomic clone wSSII-8 comprises the promoter region of the wSSII gene.

- 65 -

EXAMPLE 13

Cloning of specific cDNA regions of wheat starch synthase III using RT-PCR
PCR primers were used to amplify sequences of starch synthase III from wheat endosperm cDNA. The design of PCR primers was based on the sequences of starch 5 synthase III from potato and the *du1* starch synthase III gene of maize.

First-strand cDNAs were synthesised from 1 µg of total RNA (derived from endosperm of the cultivar Rosella, 12 days after anthesis) as described by Maniatis *et al.* (1982), and then used as templates to amplify two specific cDNA regions, wSSIIIp1 and 10 wSSIIIp2, of wheat starch synthase III by PCR.

The primers used to obtain the cDNA clone wSSIIIp1 were as follows:

Primer wSS3pa (5' GGAGGTCTTGGTGATGTTGT 3': SEQ ID NO: <400>29); and
Primer wSS3pb (5' CTTGACCAATCATGGCAATG 3': SEQ ID NO: <400>30).

15

The primers used to obtain the cDNA clone wSSIIIp2 were as follows:

Primer wSS3pc (5' CATTGCCATGATTGGTCAAG 3': SEQ ID NO: <400>31); and
Primer wSS3pd (5' ACCACCTGTCCGTTCCGTTGC 3': SEQ ID NO: <400>32).

20 The amplified clones wSSIIIp1 and wSSIIIp2 were used as probes to screen the third cDNA library and *T. tauschii* genomic DNA library as described in Example 4.

A further probe designated wSSIIIp3 was used for screening the third cDNA library, as described in Example 4. Probe wSSIIIp3 was amplified by PCR from a cDNA clone 25 produced from the first screening using the following amplification primers:
Primer wSS3pe (5' GCACGGTCTATGAGAACAAATGGC 3': SEQ ID NO:<400>33); and
Primer wSS3pf (5' TCTGCATACCACCAATCGCCG 3': SEQ ID NO: <400>34).

The amplification reactions were performed using a FTS-1 or FTS4000 thermal 30 sequencer (Corbett, Australia) for 1 cycle of 95°C for 2 minutes; 35 cycles of 95°C for

30 seconds, 60°C for 1 minutes, 72°C for 2 minutes and 1 cycle of 25°C for 1 minute.

Amplified sequences of the expected length were obtained, cloned and sequenced, and shown to contain DNA sequences highly homologous to the maize and potato SSIII genes. PCR fragments were subsequently used to probe a wheat cDNA library by DNA hybridisation and 8 positive clones were obtained, including one 3 kb cDNA. A region from the 5' end of this cDNA was amplified by PCR and used a probe for a second round of screening the cDNA library, obtaining 8 cDNA clones. Of these, one cDNA was demonstrated to be full length (wSSIII.B3, 5.36 kb insert). The sequence of the 5.36 kb wSSIII.B3 cDNA clone is given in SEQ ID NO:<400>7.

- Sequencing of the 8 cDNA clones obtained from the second round screening of the wheat cDNA library revealed that there were at least 2 classes of cDNA encoding SSIII present, possibly being encoded by homeologous genes on different wheat genomes.
- The sequence of a representative of this second class of cDNA clones, wSSIII.B1, is shown in SEQ ID NO:<400>9. The 3664 bp clone wSSIII.B1 is not full length, spanning only the region from nucleotides 1690 to 5363 of the homeologous clone wSSIII.B3, with an open reading frame between nucleotide positions 1 and 3180.
- An open reading frame is found between the ATG translation start codon at position 29 and the stop codon at position 4921 of the cDNA clone wSSIII.B3 (SEQ ID NO:<400>7). The amino acid sequence deduced from this open reading frame is shown in SEQ ID NO:<400>8.
- An alignment of the deduced amino acid sequences of SSIII from maize, potato and wheat is shown in Figure 8. There is 56.6% identity between the maize SSIII and wheat wSSIII.B3 sequences at the amino acid level.

The C-terminal domain of starch synthases comprise the catalytic domain, and a characteristic amino acid sequence motif KVGGGLGDVVTSLSRRAVQDLGHNVEV (SEQ

ID NO:<400> 35) in maize, or alternatively KVGGGLGDVVTSLSRAlQDLGHTVEV (SEQ ID NO: <400>36) in wheat, marking the first conserved region in the C-terminal domain.

- 5 The amino acid identity between maize dull1 and wSSIII.B3 in the N-terminal region (i.e. amino acids 1 to 600 in Figure 8) is only 32.2%; whilst the amino acid identity in the central region (i.e. amino acids 601 to 1248 in Figure 8) is 68.4%; and in the C-terminal region (i.e. amino acids 1249 to 1631 in Figure 8) is 84.6%. Accordingly, the SSIII starch synthases are much more highly conserved between maize and wheat in
- 10 the region comprising the catalytic domain of the proteins.

EXAMPLE 14

Isolation of genomic clones for SSIII

Screening of a genomic library from the D-genome donor of wheat, *T. tauschii*,
15 identified a number of clones which hybridised to the wSSIII PCR fragment. Positive plaques in the genomic library were selected as those hybridising with a probe that had been generated by PCR (amplifying between nucleotide positions 3620 to 3966) from the SSIII cDNA as template. The primer sequences used were as follows:
wSS3pa (5' GGAGGTCTTGGTGATGTTGT 3': SEQ ID NO: <400>29); and
20 wSS3pb (5' CTTGACCAATCATGGCAATG 3' : SEQ ID NO: <400>30).

Hybridisation was carried out in 25% formamide, 6 x SSC, 0.1% SDS at 42 °C for 16 hour, then washed three times with 2 x SSC containing 0.1% SDS at 65 °C, for 1 hour per wash. Figure 9 shows an example of a plaque lift showing positive and negative
25 hybridisations for plaques containing the *T. tauschii* homologue of the wSSIII.B3 gene.

DNA was isolated from positive-hybridising λ clones using methods described by Maniatis *et al.* Briefly, DNA was digested using *Bam*HI or *Bgl*II and sub-cloned in to the vector pJKKmfm. DNA sequencing was performed using the automated ABI system
30 with dye terminators as described by the manufacturers. DNA sequences were

- 68 -

analysed using the GCG suite of programs (Devereaux *et al.*, 1984).

Nucleotide sequences of the genomic SSIII clone from *T. tauschii* are provided herein as 6 contiguous sequences designated fragments 1 to 6 (SEQ ID

5 NOs:<400>11 to <400>16, respectively). Table 3 defines the relative positions of these fragments with respect to the SSIII cDNA and describes the positions of exons. Figure 1 shows this information schematically.

10

EXAMPLE 15

Analysis of wheat starch synthase III mRNA expression

Figure 10 shows the expression of wSSIII mRNA during endosperm development in two wheat varieties grown under defined environmental conditions. The expression of the gene is seen very early in endosperm development in both cultivars, 4 days
15 after anthesis (Figure 10, panels a and b). Expression in the leaf of the variety Gabo is very weak (Figure 10, panel c, Lane L) whereas strong expression is seen in pre-anthesis florets (Figure 10, panel c, Lane P).

TABLE 3
Summary of the Wheat Starch Synthase III Genomic Sequence

Fragment in genomic DNA clone	Length (bp)	Features in SEQ ID NO:<400>11 to <400>16	Corresponding region in cDNA sequence
5 Fragment 1 (SEQ ID NO:<400>11)	728	Translation start codon (nucleotides 287 to 289);	
		Exon 1.1 (nucleotides 260 to 385).	Exon 1.1: nucleotides 1 to 126
Fragment 2 (SEQ ID NO:<400>12)	2446	Exon 2.1 (nucleotides 1 to 1938);	Exon 2.1: nucleotides 1008 to 2948;
		Exon 2.2 (nucleotides 2197 to 2418).	Exon 2.2: nucleotides 2949 to 3171
Fragment 3 (SEQ ID NO:<400>13)	1032	Exon 3.1 (nucleotides 310 to 580)	Exon 3.1: nucleotides 3172 to 3440
Fragment 4 (SEQ ID NO:<400>14)	892	Exon 4.1 (nucleotides 678 to 853)	Exon 4.1: nucleotides 3441 to 3616
Fragment 5 (SEQ ID NO:<400>15)	871	Partial Exon 5.1 (nucleotides 1 to 29)	Exon 5.1: nucleotides 3908 to 3937 (partial)
		Exon 5.2 (nucleotides 293 to 463)	Exon 5.2: nucleotides 3938 to 4108
		Exon 5.3 (nucleotides 589 to 695)	Exon 5.3: nucleotides 4109 to 4215
15 Fragment 6 (SEQ ID NO:<400>16)	1583	Exon 6.1 (nucleotides 471 to 653);	Exon 6.1: nucleotides 4238 to 4420
		Exon 6.2 (nucleotides 770 to 902);	Exon 6.2: nucleotides 4421 to 4552
		Exon 6.3 (nucleotides 999 to 1110);	Exon 6.3: nucleotides 4553 to 4664
		Exon 6.4 (nucleotides 1201 to 1328);	Exon 6.4: nucleotides 4665 to 4793
		Partial Exon 6.5 (nucleotides 1408 to 1583);	Exon 6.5: nucleotides 4794 to 4966 (partial)
		Translation stop codon (nucleotides 1536 to 1538)	

EXAMPLE 16

Amino acid sequence comparisons between wheat SSII and SSIII polypeptides

5 Amino acid sequence comparisons between wheat BSSS, SSI, SSII and SSIII polypeptides, as indicated in Figure 13, reveals eight highly-conserved domains. The amino acid sequences of these domains are represented in the wheat SSIII amino acid sequence by the following sequence motifs:

- (a) Region1: KVGGGLGDVVTS;
- 10 (b) Region 2: GHTVEVILPKY;
- (c) Region 3: HDWSSAPVAWLKYKEHY;
- (d) Region 4: GILNGIDPDIWDPYTD;
- (e) Region 5: DVPIVGIITRLTAQKG;
- (f) Region 5a: NGQVVLLGSA;
- 15 (g) Region 6: AGSDFIIVPSIFEPGCLTQLVAMRYGS; and
- (h) Region 7: TGGLVDTV.

As shown in Table 4 below, there is at least about 25% amino acid sequence identity, preferably at least about 30% amino acid sequence identity, more 20 preferably at least about 35% amino acid sequence identity, more preferably at least about 40% amino acid sequence identity, more preferably at least about 45% amino acid sequence identity, more preferably at least about 50% amino acid sequence identity, more preferably at least about 55% amino acid sequence identity, more preferably at least about 60% amino acid sequence identity, more 25 preferably at least about 65% amino acid sequence identity, more preferably at least about 70% amino acid sequence identity, more preferably at least about 75% amino acid sequence identity, more preferably at least about 80% amino acid sequence identity, more preferably at least about 85% amino acid sequence identity, more preferably at least about 90% amino acid sequence identity and 30 even more preferably at least about 95% amino acid sequence identity between the

- 71 -

amino acid sequences of plant starch synthase enzymes, in particular wheat starch synthases.

TABLE 4

5 **Identities between conserved motifs of plant starch synthases**

	Conserved Region	Number of conserved residues between wheat starch synthases	Number of conserved residues between wheat SSII and SSIII polypeptides
10	Region1: KVGGGLGDVVTS	6/11 residues	6/11 residues
	Region 2: GHTVEVILPKY	6/11 residues	6/11 residues
	Region 3: HDWSSAPVAWLKYKEHY	4/16 residues	5/16 residues
	Region 4: GILNGIDPDIWDPYTD	7/16 residues	8/16 residues
	Region 5: DVPIVGIITRLTAQKG	8/16 residues	10/16 residues
	Region 5a: NGQVVLLGSA	4/10 residues	4/10 residues
	Region 6: AGSDFIIVPSIFEPCGLT QLVAMRYGS	15/27 residues	17/27 residues
20	Region 7: TGGLVDTV	5/9 residues	5/9 residues

25

The most conserved regions of the wheat SSII and SSIII polypeptides are a region of 6 or 7 identical amino acids in Region 1 (Table 4; Figure 13) and a region of 8 or

- 72 -

9 identical amino acids in Region 6 (Table 4; Figure 13). The lowest regions of identity are found in regions 3 and 5a.

5

EXAMPLE 17

Discussion

- Early work on the Sgp-1 starch synthase proteins (Denyer *et al.*, 1995; Rahman *et al.*, 1995) was based on the localisation of these proteins in the wheat starch granule, and no definitive conclusion concerning their presence or absence in soluble extracts of the wheat endosperm was presented. We have now demonstrated that a monoclonal antibody against the Sgp-1 proteins cross reacts strongly with those starch synthase proteins having apparent molecular weights of 100-105 kDa in soluble extracts, however, the appearance of these proteins in soluble extracts is dependant on the developmental stage of the endosperm material. Whilst the proteins can be detected in the soluble phase in early to mid endosperm development, little or no soluble protein remains in late endosperm development (Figure 1). This observation accounts for the failure of Rahman *et al.* (1995) to detect the protein in soluble extracts in a previous report.
- Based upon the localisation of the Sgp-1 starch synthase proteins in the wheat endosperm, the following nomenclature is suggested for wheat starch synthase enzymes: wGBSS for the 60 kDa granule bound starch synthase (Wx); wSSI for the 75 kDa starch synthase I (Sgp-3); wSSII for the 100 - 105 kDa proteins (Sgp-1); and wSSIII for a soluble high molecular starch synthase.
- The present invention provides cDNA clones encoding the wSSII and wSSIII polypeptides and the corresponding genomic clones.
- The wSSIII cDNA clone described herein is clearly related to the maize and potato SSIII polypeptides.

Comparison of the amino acid sequences of all available starch synthases with the deduced amino acid sequences of the three wSSII cDNA clones of the present invention (i.e. wSSIIIB, wSSIIA and wSSIID) was conducted using PILEUP analysis (Devereaux *et al.*, 1984) and data are presented as a dendrogram (Figure 11). The sequence of the glycogen synthase of *E. coli* was also included. Based upon their amino acid similarities, four classes of plant starch synthases can be defined:

5 GBSS, SSI, SSII and SSIII.

Based upon sequence identities and the function of the Sgp-1 proteins in wheat,

10 the wSSIIIB, wSSIIA and wSSIID cDNA clones are members of the starch synthase II (SSII) group and are more similar in sequence to maize SSIIa than maize SSIIb. Table 5 shows that levels of identity at the amino acid level between the wSSII sequences, as determined using the BESTFIT programme in GCG (Devereaux *et al.*, 1984), and other class II starch synthases range from 70% identity with potato

15 SSII to 85% identity with maize SSIIa. Both wSSIIIB and wSSIID showed significantly higher homology to maize SSIIa than wSSIIA.

TABLE 5

	wSSII-A	wSSII-B	wSSII-D
20 wSSI-A	100%		
wSSII-B	95.9%	100%	
wSSII-D	96.3%	96.7%	100%
maize SSIIa	76.1%	85.2%	84.7%
maize SSIIb	76.3%	76.7%	75.9%
25 pea SSII	72.0%	72.2%	71.8%
potato SSII	70.9%	71.1%	70.3%

Whilst the evidence is compelling that the wSSIIA, wSSIIIB and wSSIID cDNAs encode the Sgp-A1, Sgp-B1 and Sgp-D1 proteins of the wheat starch granule,

30 molecular weights calculated from the deduced amino acid sequences of the clones

are considerably lower than estimates obtained from SDS-PAGE. The molecular weight of the precursor wSSIIA protein is 87,229 Da, and the mature protein 81,164 Da, yet the estimated molecular weight in our experience is 105 kDa. The assignment of the wSSIIA cDNA to the A-genome of wheat is demonstrated in

- 5 Figure 5, and the assignement of the 105 kDa protein to the A-genome in Denyer *et al.* (1995) and Yamamori and Endo (1996). Similarly, the molecular weight of the wSSIIB protein is 86,790 Da and the mature protein 80,759 Da, yet the molecular weight of the Sgp-B1 protein is estimated to be 100 kDa. No comparison can be made of the wSSIID sequences as a full length cDNA clone was not obtained. The
10 wSSIIA and wSSIIB amino acid sequences differ by just a single amino acid residue, yet there is an apparent difference of 5 kDa in molecular weight when estimated by SDS-PAGE. Several possibilities can be advanced to account for this apparent discrepancy in molecular weights. Firstly, the wSSII proteins may not migrate in SDS-PAGE in accordance with their molecular weight because they
15 retain some conformation under the denaturing conditions used. Secondly, the proteins may be glycosylated. It is also possible that the proteins may be non-covalently linked to starch through a high affinity starch binding site which survives denaturation and SDS-PAGE. Differences between the apparent molecular weights and those calculated from the deduced amino acid sequences will have to be
20 defined in establishing the relationship between the wSSII proteins and proteins encoded by the analogous SSII genes of other species.

The catalytic domain of the starch synthases is found at the C-terminal end of the protein (Gao *et al.*, 1998; Harn *et al.*, 1998). Harn *et al.* (1998) identified 7
25 conserved regions among SSIIa, SSIIb, SSI and GBSS sequences.

We have identified include an additional conserved region (designated region 5a in Figure 3 and Figure 12) comprising the amino acid sequence motif DVQLVMLGTG. Comparison of the wSSII sequences of the present invention with differing isoforms
30 of starch synthases (GBSS, SS1, SSII and SSIII) identified a total of 8 regions of

the deduced amino acid sequences which were conserved amongst starch synthases from each class. Figure 12 shows an alignment of plant starch synthase sequences, in which the position of the first homologous region is used as the basis of the alignment. This first homologous region contains the consensus motif KXGG
5 which is believed to be present in the ADPglucose binding site of starch and glycogen synthases (Furukawa *et al.*, 1990).

The conservation of eight peptide regions among the 4 classes of starch synthases is striking, in terms of their sequence homologies and their alignment. The major
10 differences in structure between the classes of genes are found in the length of the N-terminal region between the transit peptide and the first conserved region. At one extreme, the GBSS genes have a very short N-terminal arm, whereas the *du1* starch synthase contains a very long N-terminal extension containing several distinct regions (Figure 12). The wSSII genes contain an N-terminal extension
15 which is longer than either GBSS,SSI, or SSIb, and slightly longer than the maize SSIIa gene (Figure 12). Analysis of the wheat SSII genes shows that there is a motif, PVNGENK, which is repeated. The area surrounding the repeated PVNGENK motif is not homologous to maize SSIIa and the insertion of this region is responsible for the difference in length between the wheat SSII and maize SSIIa
20 genes. In pea and potato SSII polypeptides, a PPP motif (Figure 3; residues 251-253 and 287-289 respectively) has been suggested to mark the end of the N-terminal region and to facilitate the flexibility of an "N-terminal arm". This motif is not found in either the maize or wheat SSII sequences.

25 The generation of a wheat line combining null alleles at each of the three wSSII loci, wSSIIA, wSSIIB and wSSIID, has been reported recently by Yamamori (1998). In this triple null line, the large starch granules were reported to be mostly deformed and a novel starch with high blue value was observed when stained with iodine, indicating that wSSII is a key enzyme for the synthesis of starch in wheat. Further
30 analysis of the starch derived from this triple null mutant is in progress.

Mutations in starch synthases are known in three other species. In pea, mutation in SSII gives rise to starch with altered granule morphology and an amylopectin which yields an oligosaccharide distribution with reduced chain length on debranching, compared to the wild type (Craig *et al.*, 1998). A similar mutation in a gene

5 designated SSII is known in *Chlamydomonas* (the *sta-3* mutation) and similar effects on granule morphology and amylopectin structure are observed (Fontaine *et al.*, 1993). In maize, two mutations affecting starch synthases are known. First, the *dull1* mutation has been shown to be caused by a lesion within the *du1* SSIII-type starch synthase gene (Gao *et al.*, 1998). A second mutation, the *sugary-2* mutation

10 yields a starch with reduced amylopectin chain lengths on debranching (this mutation co-segregates with the SSIIa locus (Harn *et al.*, 1998) although direct evidence that the *sugary-2* mutation is caused by a lesion in the SSIIa gene is lacking). In the SSII mutants of each of these species, amylose biosynthesis capacity is retained, suggesting different roles in amylose and amylopectin

15 synthesis for the GBSS and SSII genes. Given the conservation in overall organisation of the GBSS and SSII genes (see Figures 11 and 12), when an alignment is made based on the KTGGGL motif of the first conserved region, this focuses attention on the role(s) of the N-terminal region in defining substrate specificity and the localisation of the proteins as the N-terminal region is the major

20 area of divergence between the 4 classes of starch synthases. However, it is premature to exclude the influence of more subtle mutations in central and C-terminal regions of the gene.

The cloning of the wSSII and wSSIII cDNAs and genomic clones described herein

25 provides useful tools for the further study of the roles of the starch synthases in wheat. Firstly, they provide a source of markers which can be used to recover and combine null or divergent alleles. Secondly, genetic manipulation of wheat by gene suppression or over-expression can be carried out, and the genes may be used for overexpression in other species. The promoter regions of these genes are also

30 useful in regulating the expression of starch synthase genes and other

- 77 -

heterologous genes in the developing wheat endosperm and in pre-anthesis florets of wheat.

REFERENCES

1. Ausubel, F. M., Brent, R., Kingston, RE, Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (1987). In: Current Protocols in Molecular Biology. Wiley Interscience (ISBN 047150338).
- 5 2. Abel GJW, Springer F, Willmitzer L, Kossmann J (1996) Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (*Solanum tuberosum* L.). *Plant J* **10**: 981-991.
3. Ainsworth C, Clark J, Balsdon J (1993) Expression, organisation and structure of the genes encoding the waxy protein (granule-bound starch synthase)
- 10 in wheat. *Plant Mol Biol* **22**: 67-82.
4. Baba T, Nishihara M, Mizuno K, Kawasaki T, Shimada H, Kobayabashi E, Ohnishi S, Tanaka K, Arai Y (1993) Identification, cDNA cloning, and Gene Expression of Soluble Starch Synthase in Rice (*Oryza sativa* L.) Immature Seeds. *Plant Physiol* **103**: 565-573.
- 15 5. Craig J, Lloyd JR, Tomlinson K, Barber L, Edwards A, Wang TL, Martin C, Hedley CL, Smith AM (1998) Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. *Plant Cell* **10**: 413-426.
6. Denyer K, Hylton CM, Jenner CF, Smith AM (1995) Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat
- 20 endosperm. *Planta* **196**: 256-265.
7. Devereaux, J, Haeblerli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. *Nucleic Acids Res* **12**: 387-395.
8. Dry I, Smith A, Edwards A, Bhattacharyya M, Dunn P, Martin C (1992)
- 25 Characterisation of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organ of pea and potato. *Plant J* **2**: 193-202.
9. Edwards A, Marshall J, Sidebottom C, Visser RGF, Smith AM, Martin C (1995) Biochemical and molecular characterization of a novel starch synthase from
- 30 potato tubers. *Plant J* **8**: 283-294.

10. Fontaine T, D'Hulst C, Maddelein M-L, Routier F, Pépin TM, Decq A, Wieruszkeski J-M, Delrue B, Van den Koornhuyse N, Bossu J-P, Fournet B, Ball S (1993) Toward an understanding of the biogenesis of the starch granule. Evidence that *Chlamydomonas* soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin. *J Biol Chem* **22**: 16223-16230.
11. Furukawa K, Tagaya M, Inouye M, Preiss J, Fukui T (1990) Identification of lysine 15 at the active site in *Escherichia coli* glycogen synthase. *J Biol Chem* **265**: 2086-2090.
- 10
12. Gao M, Wanat J, Stinard PS, James MG, Myers AM (1998) Characterization of dull1, a maize gene coding for a novel starch synthase. *Plant Cell* **10**: 399-412.
- 15
13. Harn C, Knight M, Ramakrishnan A, Guan H, Keeling PL, Wasserman BP (1998) Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. *Plant Mol Biol* **37**: 639-649.
14. Kloesgen RB, Gierl A, Schwarz-Sommer ZS, Saedler H (1986) Molecular analysis of the waxy locus of *Zea mays*. *Mol Gen Genet* **203**: 237-244.
- 20
15. Knight ME, Harn C, Lilley CER, Guan H, Singletary G W, MuForster C, Wasserman BP, Keeling PL (1998) Molecular cloning of starch synthase I from maize (W64) endosperm and expression in *Escherichia*. *Plant J* **14**: 613-622.
- 25
16. Kumar A, Larsen CE, Preiss J (1986) Biosynthesis of bacterial glycogen: Primary structure of *Escherichia coli* ADP-glucose:alpha-1,4-glucan, 4-glucosyltransferase as deduced from the nucleotide sequence of the *g/gA* gene. *J Biol Chem* **261**: 16256-16259.
- 30
17. Li Z, Rahman S, Kosar-Hashemi B, Mouille G, Appels R Morell, MK (1999)

- 80 -

Cloning and characterisation of a gene encoding wheat starch synthase I. Theor Appl Genet: *In press.*

18. Mouille G, Maddelein M-L, Libessart N, Talaga P, Decq A, Delrue B Ball, S
5 (1996). Preamylopectin processing: A mandatory step for starch biosynthesis in
plants. *Plant Cell* **8**: 1353-1366.
19. Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995)
Production of waxy (amylose-free) wheats. *Mol Gen Genet* **248**: 253-259.
10
20. Okagaki, RJ (1992) Nucleotide sequence of a long cDNA from the rice waxy
gene. *Plant Mol Biol* **19**: 513-516.
21. Ozbum, J.L., Hawker, J.S. and Preiss, J. (1971) Adensine diphosphoglucose-
15 starch glucosyltransferases from developing kernels of waxy maize. *Plant
Physiology* **48**: 765-769
22. Ozbum, J.L., Hawker, J.S., Greenberg, E., Lammel, C., Preiss, J. and Lee,
E.Y.C.(1973) Starch synthetase, phosphorylase, ADPglucose pyrophosphorylase,
and UDPglucose pyrophosphorylase in developing maize kernels. *Plant Physiology*
20 **51**: 1-5.
23. Pollock, C. and Preiss, J.(1980) The citrate-stimulated starch synthase of
starchy maize kernels: purification and properties. *Arch Biochem Biophys* **204**:
578-588.
24. Rahman S, Abrahams S, Abbott D, Mukai Y, Samuel M, Morell M, Appels R
25 (1997) A complex arrangement of genes at a starch branching enzyme I locus in D-
genome donor of wheat. *Genome* **40**: 465-474.
25. Rahman S, Kosar-Hashemi B, Samuel M, Hill A, Abbott DC, Skerritt JH,
Preiss J, Appels R, Morell M (1995) The major proteins of wheat endosperm starch
granules. *Aust J Plant Physiol* **22**: 793-803.

26. Rahman S, Li Z, Abrahams S, Abbott D, Appels R, Morell M (1998) Characterisation of a gene encoding wheat endosperm starch branching enzyme-I. *Theor Appl Genet* **98**: *In press*.
27. Sears ER, Miller TG (1985) The history of Chinese spring wheat. *Cereal Res Comm* **13**: 261-263.
28. Takaoka M, Watanabe S, Sassa H, Yamamori M, Nakamura T, Sasakuma T, Hirano H (1997) Structural characterisation of high molecular weight starch granule-bound proteins in wheat (*Triticum aestivum* L.). *J Agric Food Chem* **45**: 2929-2934.
29. van der Leij FR, Visser RGF, Ponstein AS, Jacobsen E, Feenstra WJ (1991) Sequence of the structural gene for granule bound starch synthase of potato (*Solanum tuberosum* L.) and evidence for a single point deletion in the *amf* allele. *Mol Gen Genet* **228**: 240-248.
30. Yamamori M, Endo TR (1996) Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. *Theor Appl Genet* **93**: 275-281.
31. Yamamori M (1998) Selection of a wheat lacking a putative enzyme for starch synthesis, SGP-1 *Proc 9th Int Wheat Gen Symp* **4**, 300-302.

- 1 -

SEQUENCE LISTING

```

<110> COMMONWEALTH SCIENTIFIC AND INDUSTRIAL ORGANISATION
<120> NOVEL GENES ENCODING WHEAT STARCH SYNTHASES AND USES THEREFOR
<130> p:\oper\mro\pi-wss.prv

<140>
<141>

<160> 36

<170> PatentIn Ver. 2.0

<210> 1
<211> 2939
<212> DNA
<213> Triticum aestivum

<220>
<221> CDS
<222> (176)..(2572)

<400> 1
atttccttcgg cctgaccccg tgcgttacc ccacacagag cacactccag tccagtccag 60
cccactgccc cgctactccc cactcccact gccaccacct ccgcctgcgc cgcgctctgg 120
gcggaccaac ccgcgcatcg tatcacgatc acccaccccg atccggccg ccgcc atg 178
Met
      1

tcg tcg gcg gtc gcg tcc gcc gcg tcc ttc ctc gcg ctc gcg tcc gcc 226
Ser Ser Ala Val Ala Ser Ala Ser Phe Leu Ala Leu Ala Ser Ala
      5          10           15

tcc ccc ggg aga tca cgg agg acg agg gtg agc gcg tcg cca ccc 274
Ser Pro Gly Arg Ser Arg Arg Arg Thr Arg Val Ser Ala Ser Pro Pro
      20         25           30

cac acc ggg gct ggc agg ttg cac tgg ccg ccg tcg ccg cag cgc 322
His Thr Gly Ala Gly Arg Leu His Trp Pro Pro Ser Pro Pro Gln Arg
      35         40           45

acg gct cgc gac gga gcg gtg gcc gcg cgc gcc ggg aag aag gac 370
Thr Ala Arg Asp Gly Ala Val Ala Ala Arg Ala Ala Gly Lys Lys Asp
      50         55           60           65

gcg ggg atc gac gac gcc gcg ccc gcg agg cag ccc cgc gca ctc cgc 418
Ala Gly Ile Asp Asp Ala Ala Pro Ala Arg Gln Pro Arg Ala Leu Arg
      70         75           80

ggt ggc gcc gcc acc aag gtt gcg gag cgg agg gat ccc gtc aag acg 466
Gly Gly Ala Ala Thr Lys Val Ala Glu Arg Arg Asp Pro Val Lys Thr
      85         90           95

ctc gat cgc gac gcc gcg gaa ggt ggc gcg ccg tcc ccg ccg gca cgc 514
Leu Asp Arg Asp Ala Ala Glu Gly Ala Pro Ser Pro Pro Ala Pro
      100        105          110

agg cag gag gac gcc cgt ctg ccg acg atg aac ggc atg ccg gtg aac 562
Arg Gln Glu Asp Ala Arg Leu Pro Ser Met Asn Gly Met Pro Val Asn
      115        120          125

```

- 2 -

ggt gaa aac aaa tct acc ggc ggc ggc ggc act aaa gac agc ggg Gly Glu Asn Lys Ser Thr Gly Gly Gly Ala Thr Lys Asp Ser Gly 130 135 140 145	610
ctg ccc gca ccc gca cgcc gcg ccc cag ccg tcg agc cag aac aga gta Leu Pro Ala Pro Ala Arg Ala Pro Gln Pro Ser Ser Gln Asn Arg Val 150 155 160	658
ccg gtg aat ggt gaa aac aaa gct aac gtc gcc tcg ccg acg agc Pro Val Asn Gly Glu Asn Lys Ala Asn Val Ala Ser Pro Pro Thr Ser 165 170 175	706
ata gcc gag gtc gcg gct ccg gat ccc gca gct acc att tcc atc agt Ile Ala Glu Val Ala Ala Pro Asp Pro Ala Ala Thr Ile Ser Ile Ser 180 185 190	754
gac aag gcg cca gag tcc gtt gtc cca gcc gag aag gcg ccg ccg tcg Asp Lys Ala Pro Glu Ser Val Val Pro Ala Glu Lys Ala Pro Pro Ser 195 200 205	802
tcc ggc tca aat ttc gtg ccc tcg gct tct gct ccc ggg tct gac act Ser Gly Ser Asn Phe Val Pro Ser Ala Ser Ala Pro Gly Ser Asp Thr 210 215 220 225	850
gtc agc gac gtg gaa ctt gaa ctg aag aag ggt gcg gtc att gtc aaa Val Ser Asp Val Glu Leu Glu Leu Lys Lys Gly Ala Val Ile Val Lys 230 235 240	898
gaa gct cca aac cca aag gct ctt tcg ccg ccc gca gca ccc gct gta Glu Ala Pro Asn Pro Lys Ala Leu Ser Pro Pro Ala Ala Pro Ala Val 245 250 255	946
caa caa gac ctt tgg gac ttc aag aaa tac att ggt ttc gag gag ccc Gln Gln Asp Leu Trp Asp Phe Lys Lys Tyr Ile Gly Phe Glu Glu Pro 260 265 270	994
gtg gag gcc aag gat gat ggc cgg gct gtt gca gat gat gcg ggc tcc Val Glu Ala Lys Asp Asp Gly Arg Ala Val Ala Asp Asp Ala Gly Ser 275 280 285	1042
ttc gaa cac cac cag aat cac gat tcc ggg cct ttg gca ggg gag aac Phe Glu His His Gln Asn His Asp Ser Gly Pro Leu Ala Gly Glu Asn 290 295 300 305	1090
gtc atg aac gtg gtc gtg gct gct gaa tgt tct ccc tgg tgc aaa Val Met Asn Val Val Val Ala Ala Glu Cys Ser Pro Trp Cys Lys 310 315 320	1138
aca ggt ggt ctt gga gat gtt gcc ggt gct ttg ccc aag gct ttg gcg Thr Gly Leu Gly Asp Val Ala Gly Ala Leu Pro Lys Ala Leu Ala 325 330 335	1186
aag aga gga cat cgt gtt atg gtt gtg gta cca agg tat ggg gac tat Lys Arg Gly His Arg Val Met Val Val Pro Arg Tyr Gly Asp Tyr 340 345 350	1234
gag gaa gcc tac gat gtc gga gtc cga aaa tac tac aag gct gct gga Glu Glu Ala Tyr Asp Val Gly Val Arg Lys Tyr Tyr Lys Ala Ala Gly 355 360 365	1282
cag gat atg gaa gtg aat tat ttc cat gct tat atc gat gga gtt gat Gln Asp Met Glu Val Asn Tyr Phe His Ala Tyr Ile Asp Gly Val Asp 370 375 380 385	1330

- 3 -

ttt gtg ttc att gac gct cct ctc ttc cga cac cgc cag gaa gac att Phe Val Phe Ile Asp Ala Pro Leu Phe Arg His Arg Gln Glu Asp Ile 390 395 400	1378
tat ggg ggc agc aga cag gaa att atg aag cgc atg att ttg ttc tgc Tyr Gly Ser Arg Gln Glu Ile Met Lys Arg Met Ile Leu Phe Cys 405 410 415	1426
aag gcc gct gtc gag gtt cca tgg cac gtt cca tgc ggc ggt gtc cct Lys Ala Ala Val Glu Val Pro Trp His Val Pro Cys Gly Gly Val Pro 420 425 430	1474
tat ggg gat gga aat ctg gtg ttt att gca aat gat tgg cac acg gca Tyr Gly Asp Gly Asn Leu Val Phe Ile Ala Asn Asp Trp His Thr Ala 435 440 445	1522
ctc ctg cct gtc tat ctg aaa gca tat tac agg gac cat ggt ttg atg Leu Leu Pro Val Tyr Leu Lys Ala Tyr Arg Asp His Gly Leu Met 450 455 460 465	1570
cag tac act cgg tcc att atg gtg ata cat aac atc gct cac cag ggc Gln Tyr Thr Arg Ser Ile Met Val Ile His Asn Ile Ala His Gln Gly 470 475 480	1618
cgt ggc cca gta gat gag ttc ccg ttc acc gag ttg cct gag cac tac Arg Gly Pro Val Asp Glu Phe Pro Phe Thr Glu Leu Pro Glu His Tyr 485 490 495	1666
ctg gaa cac ttc aga ctg tac gac ccc gtg ggt ggt gaa cac gcc aac Leu Glu His Phe Arg Leu Tyr Asp Pro Val Gly Gly Glu His Ala Asn 500 505 510	1714
tac ttc gcc ggc ctg aag atg gcg gac cag gtt gtc gtc gtg agc Tyr Phe Ala Ala Gly Leu Lys Met Ala Asp Gln Val Val Val Val Ser 515 520 525	1762
ccg ggg tac ctg tgg gag ctg aag acg gtg gag ggc ggc tgg ggg ctt Pro Gly Tyr Leu Trp Glu Leu Lys Thr Val Glu Gly Gly Trp Gly Leu 530 535 540 545	1810
cac gac atc ata cgg cag aac gac tgg aag acc cgc ggc atc gtg aac His Asp Ile Ile Arg Gln Asn Asp Trp Lys Thr Arg Gly Ile Val Asn 550 555 560	1858
ggc atc gac aac atg gag tgg aac ccc gag gtg gac gtc cac ctc aag Gly Ile Asp Asn Met Glu Trp Asn Pro Glu Val Asp Val His Leu Lys 565 570 575	1906
tcg gac ggc tac acc aac ttc tcc ctg ggg acg ctg gac tcc ggc aag Ser Asp Gly Tyr Thr Asn Phe Ser Leu Gly Thr Leu Asp Ser Gly Lys 580 585 590	1954
cgg cag tgc aag gag gcc ctg cag cgg gag ctg ggc ctg cag gtc cgc Arg Gln Cys Lys Glu Ala Leu Gln Arg Glu Leu Gly Leu Gln Val Arg 595 600 605	2002
ggc gac gtg ccg ctg ctc ggc ttc atc ggg cgc ctg gac ggg cag aag Gly Asp Val Pro Leu Leu Phe Ile Gly Arg Leu Asp Gly Gln Lys 610 615 620 625	2050
ggc gtg gag atc atc gcg gac gcg atg ccc tgg atc gtg agc cag gac Gly Val Glu Ile Ile Ala Asp Ala Met Pro Trp Ile Val Ser Gln Asp 630 635 640	2098
gtg cag ctg gtc atg ctg ggc acc ggg cgc cac gac ctg gag ggc atg	2146

- 4 -

Val Gln Leu Val Met Leu Gly Thr Gly Arg His Asp Leu Glu Gly Met			
645	650	655	
ctg cgg cac ttc gag cgg gag cac cac gac aag gtg cgc ggg tgg gtg		2194	
Leu Arg His Phe Glu Arg Glu His His Asp Lys Val Arg Gly Trp Val			
660	665	670	
ggg ttc tcc gtg cgg ctg gcg cac cgg atc acg gcc ggc gcc gac gcg		2242	
Gly Phe Ser Val Arg Leu Ala His Arg Ile Thr Ala Gly Ala Asp Ala			
675	680	685	
ctc ctc atg ccc tcc cgg ttc gag ccg tgc gga ctg aac cag ctc tac		2290	
Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln Leu Tyr			
690	695	700	705
gcc atg gcc tac ggc acc gtc ccc gtc gtg cat gcc gtc ggt ggc ctg		2338	
Ala Met Ala Tyr Gly Thr Val Pro Val Val His Ala Val Gly Gly Leu			
710	715	720	
agg gac acc gtg ccg ccg ttc gac ccc ttc aac cac tcc ggg ctc ggg		2386	
Arg Asp Thr Val Pro Pro Phe Asp Pro Phe Asn His Ser Gly Leu Gly			
725	730	735	
tgg acg ttc gac cgc gca gag gcg cag aag ctg atc gag gcg ctc ggg		2434	
Trp Thr Phe Asp Arg Ala Glu Ala Gln Lys Leu Ile Glu Ala Leu Gly			
740	745	750	
cac tgc ctc cgc acc tac cgg gac tac aag gag agc tgg agg ggg ctc		2482	
His Cys Leu Arg Thr Tyr Arg Asp Tyr Lys Glu Ser Trp Arg Gly Leu			
755	760	765	
cag gag cgc ggc atg tcg cag gac ttc agc tgg gag cat gcc ggc aag		2530	
Gln Glu Arg Gly Met Ser Gln Asp Phe Ser Trp Glu His Ala Ala Lys			
770	775	780	785
ctc tac gag gac gtc ctc aag gcc aag tac cag tgg tga		2572	
Leu Tyr Glu Asp Val Leu Val Lys Ala Lys Tyr Gln Trp			
790	795		
acgcttagctg ctggccggc cagccccgca tgcgtgcattg acaggatgga attgcgcatt	2632		
gcccacgcag gaaggtgcca tggagcgccg gcatccgcga agtacagtga catgaggtgt	2692		
gtgtggttga gacgctgatt ccgatcttgtt ccgtacgcaga gtagagcgaa ggttaggaaag	2752		
cgctccctgt tacaggtata tggaaatgtt gttaacttgg tattgttaatt tgttatgttg	2812		
tgtgcattat tacagagggc aacgatctgc gcccgcac cggcccaact gttggccgg	2872		
tcgcacagca gccgttggat ccgaccgcct gggccgttgg atcccaccga aaaaaaaaaa	2932		
aaaaaaaa		2939	
<210> 2			
<211> 798			
<212> PRT			
<213> Triticum aestivum			
<400> 2			
Met Ser Ser Ala Val Ala Ser Ala Ala Ser Phe Leu Ala Leu Ala Ser			
1	5	10	15
Ala Ser Pro Gly Arg Ser Arg Arg Arg Thr Arg Val Ser Ala Ser Pro			
20	25	30	

- 5 -

Pro	His	Thr	Gly	Ala	Gly	Arg	Leu	His	Trp	Pro	Pro	Ser	Pro	Pro	Gln
35						40								45	
Arg	Thr	Ala	Arg	Asp	Gly	Ala	Val	Ala	Ala	Arg	Ala	Ala	Gly	Lys	Lys
50						55								60	
Asp	Ala	Gly	Ile	Asp	Asp	Ala	Ala	Pro	Ala	Arg	Gln	Pro	Arg	Ala	Leu
65						70					75			80	
Arg	Gly	Gly	Ala	Ala	Thr	Lys	Val	Ala	Glu	Arg	Arg	Asp	Pro	Val	Lys
					85				90					95	
Thr	Leu	Asp	Arg	Asp	Ala	Ala	Glu	Gly	Gly	Ala	Pro	Ser	Pro	Pro	Ala
					100				105					110	
Pro	Arg	Gln	Glu	Asp	Ala	Arg	Leu	Pro	Ser	Met	Asn	Gly	Met	Pro	Val
					115			120				125			
Asn	Gly	Glu	Asn	Lys	Ser	Thr	Gly	Gly	Gly	Gly	Ala	Thr	Lys	Asp	Ser
					130			135				140			
Gly	Leu	Pro	Ala	Pro	Ala	Arg	Ala	Pro	Gln	Pro	Ser	Ser	Gln	Asn	Arg
145						150					155				160
Val	Pro	Val	Asn	Gly	Glu	Asn	Lys	Ala	Asn	Val	Ala	Ser	Pro	Pro	Thr
						165				170				175	
Ser	Ile	Ala	Glu	Val	Ala	Ala	Pro	Asp	Pro	Ala	Ala	Thr	Ile	Ser	Ile
						180				185				190	
Ser	Asp	Lys	Ala	Pro	Glu	Ser	Val	Val	Pro	Ala	Glu	Lys	Ala	Pro	Pro
						195			200					205	
Ser	Ser	Gly	Ser	Asn	Phe	Val	Pro	Ser	Ala	Ser	Ala	Pro	Gly	Ser	Asp
						210			215				220		
Thr	Val	Ser	Asp	Val	Glu	Leu	Glu	Leu	Lys	Lys	Gly	Ala	Val	Ile	Val
225						230			235				240		
Lys	Glu	Ala	Pro	Asn	Pro	Lys	Ala	Leu	Ser	Pro	Pro	Ala	Ala	Pro	Ala
						245			250				255		
Val	Gln	Gln	Asp	Leu	Trp	Asp	Phe	Lys	Lys	Tyr	Ile	Gly	Phe	Glu	Glu
						260			265				270		
Pro	Val	Glu	Ala	Lys	Asp	Asp	Gly	Arg	Ala	Val	Ala	Asp	Asp	Ala	Gly
						275			280				285		
Ser	Phe	Glu	His	His	Gln	Asn	His	Asp	Ser	Gly	Pro	Leu	Ala	Gly	Glu
						290			295				300		
Asn	Val	Met	Asn	Val	Val	Val	Val	Ala	Ala	Glu	Cys	Ser	Pro	Trp	Cys
305						310				315				320	
Lys	Thr	Gly	Gly	Leu	Gly	Asp	Val	Ala	Gly	Ala	Leu	Pro	Lys	Ala	Leu
						325			330				335		
Ala	Lys	Arg	Gly	His	Arg	Val	Met	Val	Val	Val	Pro	Arg	Tyr	Gly	Asp
						340			345				350		
Tyr	Glu	Glu	Ala	Tyr	Asp	Val	Gly	Val	Arg	Lys	Tyr	Tyr	Lys	Ala	Ala
						355			360				365		
Gly	Gln	Asp	Met	Glu	Val	Asn	Tyr	Phe	His	Ala	Tyr	Ile	Asp	Gly	Val

- 6 -

370	375	380
Asp Phe Val Phe Ile Asp Ala Pro Leu Phe Arg His Arg Gln Glu Asp		
385	390	395
Ile Tyr Gly Gly Ser Arg Gln Glu Ile Met Lys Arg Met Ile Leu Phe		
405	410	415
Cys Lys Ala Ala Val Glu Val Pro Trp His Val Pro Cys Gly Gly Val		
420	425	430
Pro Tyr Gly Asp Gly Asn Leu Val Phe Ile Ala Asn Asp Trp His Thr		
435	440	445
Ala Leu Leu Pro Val Tyr Leu Lys Ala Tyr Tyr Arg Asp His Gly Leu		
450	455	460
Met Gln Tyr Thr Arg Ser Ile Met Val Ile His Asn Ile Ala His Gln		
465	470	475
Gly Arg Gly Pro Val Asp Glu Phe Pro Phe Thr Glu Leu Pro Glu His		
485	490	495
Tyr Leu Glu His Phe Arg Leu Tyr Asp Pro Val Gly Gly Glu His Ala		
500	505	510
Asn Tyr Phe Ala Ala Gly Leu Lys Met Ala Asp Gln Val Val Val Val		
515	520	525
Ser Pro Gly Tyr Leu Trp Glu Leu Lys Thr Val Glu Gly Gly Trp Gly		
530	535	540
Leu His Asp Ile Ile Arg Gln Asn Asp Trp Lys Thr Arg Gly Ile Val		
545	550	560
Asn Gly Ile Asp Asn Met Glu Trp Asn Pro Glu Val Asp Val His Leu		
565	570	575
Lys Ser Asp Gly Tyr Thr Asn Phe Ser Leu Gly Thr Leu Asp Ser Gly		
580	585	590
Lys Arg Gln Cys Lys Glu Ala Leu Gln Arg Glu Leu Gly Leu Gln Val		
595	600	605
Arg Gly Asp Val Pro Leu Leu Gly Phe Ile Gly Arg Leu Asp Gly Gln		
610	615	620
Lys Gly Val Glu Ile Ile Ala Asp Ala Met Pro Trp Ile Val Ser Gln		
625	630	640
Asp Val Gln Leu Val Met Leu Gly Thr Gly Arg His Asp Leu Glu Gly		
645	650	655
Met Leu Arg His Phe Glu Arg Glu His His Asp Lys Val Arg Gly Trp		
660	665	670
Val Gly Phe Ser Val Arg Leu Ala His Arg Ile Thr Ala Gly Ala Asp		
675	680	685
Ala Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln Leu		
690	695	700
Tyr Ala Met Ala Tyr Gly Thr Val Pro Val Val His Ala Val Gly Gly		
705	710	720

- 7 -

Leu Arg Asp Thr Val Pro Pro Phe Asp Pro Phe Asn His Ser Gly Leu
 725 730 735

Gly Trp Thr Phe Asp Arg Ala Glu Ala Gln Lys Leu Ile Glu Ala Leu
 740 745 750

Gly His Cys Leu Arg Thr Tyr Arg Asp Tyr Lys Glu Ser Trp Arg Gly
 755 760 765

Leu Gln Glu Arg Gly Met Ser Gln Asp Phe Ser Trp Glu His Ala Ala
 770 775 780

Lys Leu Tyr Glu Asp Val Leu Val Lys Ala Lys Tyr Gln Trp
 785 790 795

<210> 3

<211> 2800

<212> DNA

<213> Triticum aestivum

<220>

<221> CDS

<222> (89) .. (2488)

<400> 3

gctgccacca cctccgcctg cgccgcgctc tggcgagg accaaccgc gcatcgta 60

atcgcccccc	ccgatcccgg	ccgcgcgc	atg	tcg	tcg	gct	gct	tcc	gcc	112
			Met	Ser	Ser	Ala	Val	Ala	Ser	Ala
			1						5	

gcg	tcc	ttc	ctc	gct	gtc	gcc	tcc	ccc	ggg	aga	tca	cgc	agg	160	
Ala	Ser	Phe	Leu	Ala	Leu	Ala	Ser	Ala	Ser	Pro	Gly	Arg	Ser	Arg	Arg
10															
								15		20					

cg	gct	agg	gtg	agc	gct	ccg	cca	ccc	cac	gcc	ggg	gcc	ggc	agg	ctg	208
Arg	Ala	Arg	Val	Ser	Ala	Pro	Pro	Pro	His	Ala	Gly	Ala	Gly	Arg	Leu	
25								30		35				40		

cac	tgg	ccg	tgg	ccg	cag	cgc	acg	gct	cgc	gac	gga	ggt	gtg	256	
His	Trp	Pro	Pro	Trp	Pro	Pro	Pro	Gln	Arg	Thr	Ala	Arg	Asp	Gly	Val
45										50		55			

gcc	gct	cg	gcc	gg	aag	aag	gac	gct	gac	304						
Ala	Ala	Arg	Ala	Ala	Gly	Lys	Asp	Ala	Arg	Val	Asp	Asp	Asp	Ala		
60								65			70					

gct	tcc	gct	agg	cag	ccc	cg	gca	cg	cgc	ggt	gg	gcc	gcc	acc	aag	352
Ala	Ser	Ala	Arg	Gln	Pro	Arg	Ala	Arg	Arg	Gly	Gly	Ala	Ala	Thr	Lys	
75								80		85						

gta	gct	cg	gg	ag	gat	cc	gta	aag	ac	ctc	gat	cgc	gac	gcc	gct	400
Val	Ala	Glu	Arg	Arg	Asp	Pro	Val	Lys	Thr	Leu	Asp	Arg	Asp	Ala	Ala	
90								95		100						

gaa	ggt	gg	cg	cc	gca	cc	cg	gca	cc	gg	ca	gac	gac	gac	gac	448
Glu	Gly	Gly	Ala	Pro	Ala	Pro	Pro	Ala	Pro	Arg	Gln	Asp	Ala	Ala	Arg	
105								110		115		120				

cca	ccg	agt	atg	aac	ggc	ac	ccg	gtg	aa	gg	aa	aa	tct	acc	496	
Pro	Pro	Ser	Met	Asn	Gly	Thr	Pro	Val	Asn	Gly	Glu	Asn	Lys	Ser	Thr	
125								130		135						

ggc	ggc	ggc	ggc	g	cc	acc	aaa	gac	agc	ggg	ctg	ccc	gca	ccc	gca	454
-----	-----	-----	-----	---	----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

- 8 -

Gly	Gly	Gly	Gly	Ala	Thr	Lys	Asp	Ser	Gly	Leu	Pro	Ala	Pro	Ala	Arg	
140																150
gcg ccc cat ccg acc cag aac aga gta cca gtg aac ggt gaa aac															592	
Ala	Pro	His	Pro	Ser	Thr	Gln	Asn	Arg	Val	Pro	Val	Asn	Gly	Glu	Asn	
155																165
aaa gct aac gtc gcc tcg ccg acg agc ata gcc gag gtc gtg gct															640	
Lys	Ala	Asn	Val	Ala	Ser	Pro	Pro	Thr	Ser	Ile	Ala	Glu	Val	Val	Ala	
170																175
ccg gat tcc gca gct acc att tcc atc agt gac aag gcg ccg gag tcc															688	
Pro	Asp	Ser	Ala	Ala	Thr	Ile	Ser	Ile	Ser	Asp	Lys	Ala	Pro	Glu	Ser	
185																190
gtt gtc cca gcc gag aag ccg ccg tcg tcc ggc tca aat ttc gtg															736	
Val	Val	Pro	Ala	Glu	Lys	Pro	Pro	Ser	Ser	Gly	Ser	Asn	Phe	Val		
205																210
gtc tcg gct tct gct ccc agg ctg gac att gac agc gat gtt gaa cct															784	
Val	Ser	Ala	Ser	Ala	Pro	Arg	Leu	Asp	Ile	Asp	Ser	Asp	Val	Glu	Pro	
220																225
gaa ctg aag aag ggt gcg gtc atc gtc gaa gaa gct cca aac cca aag															832	
Glu	Leu	Lys	Lys	Gly	Ala	Val	Ile	Val	Glu	Glu	Ala	Pro	Asn	Pro	Lys	
235																240
gct ctt tcg ccg cct gca gcc ccc gct gta caa gaa gac ctt tgg gac															880	
Ala	Leu	Ser	Pro	Pro	Ala	Ala	Pro	Ala	Val	Gln	Glu	Asp	Leu	Trp	Asp	
250																255
ttc aag aaa tac att ggc ttc gag gag ccc gtg gag gcc aag gat gat															928	
Phe	Lys	Lys	Tyr	Ile	Gly	Phe	Glu	Glu	Pro	Val	Glu	Ala	Lys	Asp	Asp	
265																270
ggc tgg gct gtt gca gat gat gcg ggc tcc ttt gaa cat cac cag aac															976	
Gly	Trp	Ala	Val	Ala	Asp	Asp	Ala	Gly	Ser	Phe	Glu	His	His	Gln	Asn	
285																290
cat gat tcc gga cct ttg gca ggg gag aac gtc atg aac gtg gtc gtc															1024	
His	Asp	Ser	Gly	Pro	Leu	Ala	Gly	Glu	Asn	Val	Met	Asn	Val	Val	Val	
300																305
gtg gct gaa tgt tct ccc tgg tgc aaa aca ggt ggt ctt gga gat															1072	
Val	Ala	Ala	Glu	Cys	Ser	Pro	Trp	Cys	Lys	Thr	Gly	Gly	Leu	Gly	Asp	
315																320
gtt gcc ggt gct ttg ccc aag gct ttg gcg aag aga gga cat cgt gtt															1120	
Val	Ala	Gly	Ala	Leu	Pro	Lys	Ala	Leu	Ala	Lys	Arg	Gly	His	Arg	Val	
330																335
atg gtt gtg gta cca agg tat ggg gac tat gag gaa gcc tac gat gtc															1168	
Met	Val	Val	Val	Pro	Arg	Tyr	Gly	Asp	Tyr	Glu	Glu	Ala	Tyr	Asp	Val	
345																350
gga gtc cga aaa tac tac aag gct gct gga cag gat atg gaa gtg aat															1216	
Gly	Val	Arg	Lys	Tyr	Tyr	Lys	Ala	Ala	Gly	Gln	Asp	Met	Glu	Val	Asn	
365																370
tat ttc cat gct tat atc gat gga gtt gat ttt gtg ttc att gac gct															1264	
Tyr	Phe	His	Ala	Tyr	Ile	Asp	Gly	Val	Asp	Phe	Val	Phe	Ile	Asp	Ala	
380																385
cct ctc ttc cga cac cgc cag gaa gac att tat ggg ggc agc aga cag															1312	
Pro	Leu	Phe	Arg	His	Arg	Gln	Glu	Asp	Ile	Tyr	Gly	Ser	Arg	Gln		

- 9 -

395	400	405	
gaa att atg aag cgc atg att ttg ttc tgc aag gcc gct gtc gag gtt Glu Ile Met Lys Arg Met Ile Leu Phe Cys Lys Ala Ala Val Glu Val	410	415	1360
420			
cct tgg cac gtt cca tgc ggc ggt gtc cct tat ggg gat gga aat ctg Pro Trp His Val Pro Cys Gly Gly Val Pro Tyr Gly Asp Gly Asn Leu	425	430	1408
440			
gtg ttt att gca aat gat tgg cac acg gca ctc ctg cct gtc tat ctg Val Phe Ile Ala Asn Asp Trp His Thr Ala Leu Leu Pro Val Tyr Leu	445	450	1456
455			
aaa gca tat tac agg gac cat ggt ttg atg cag tac act cgg tcc att Lys Ala Tyr Tyr Arg Asp His Gly Leu Met Gln Tyr Thr Arg Ser Ile	460	465	1504
470			
atg gtg ata cat aac atc gcg cac cag ggc cgt ggc cca gta gat gaa Met Val Ile His Asn Ile Ala His Gln Gly Arg Gly Pro Val Asp Glu	475	480	1552
485			
ttc ccg ttc acc gag ttg cct gag cac tac ctg gaa cac ttc aga ctg Phe Pro Phe Thr Glu Leu Pro Glu His Tyr Leu Glu His Phe Arg Leu	490	495	1600
500			
tac gac ccc gtg ggt ggt gag cac gac aac tac ttc gcc gcc ggc ctg Tyr Asp Pro Val Gly Gly Glu His Ala Asn Tyr Phe Ala Ala Gly Leu	505	510	1648
520			
aag atg gcg gac cag gtt gtc gtg agc ccc ggg tac ctg tgg gag Lys Met Ala Asp Gln Val Val Val Ser Pro Gly Tyr Leu Trp Glu	525	530	1696
535			
ctc aag acg gtg gag ggc ggc tgg ggg ctt cac gac atc ata cgg cag Leu Lys Thr Val Glu Gly Trp Gly Leu His Asp Ile Ile Arg Gln	540	545	1744
550			
aac gac tgg aag acc cgc ggc atc gtc aac ggc atc gac aac atg gag Asn Asp Trp Lys Thr Arg Gly Ile Val Asn Gly Ile Asp Asn Met Glu	555	560	1792
565			
tgg aac ccc gag gtg gac gtc cac ctc aag tcg gac ggc tac acc aac Trp Asn Pro Glu Val Asp Val His Leu Lys Ser Asp Gly Tyr Thr Asn	570	575	1840
580			
ttc tcc ctg ggg acg ctg gac tcc ggc aag cgg cag tgc aag gag gcc Phe Ser Leu Gly Thr Leu Asp Ser Gly Lys Arg Gln Cys Lys Glu Ala	585	590	1888
600			
ctg cag cgc gag ctg ggc ctg cag gtc cgc gcc gac gtg ccg ctg ctc Leu Gln Arg Glu Leu Gly Leu Gln Val Arg Ala Asp Val Pro Leu Leu	605	610	1936
615			
ggc ttc atc ggc cgc ctg gac ggg cag aag ggc gtg gag atc atc gcg Gly Phe Ile Gly Arg Leu Asp Gly Gln Lys Gly Val Glu Ile Ile Ala	620	625	1984
630			
gac gcc atg ccc tgg atc gtg agc cag gac gtg cag ctg gtc atg ctg Asp Ala Met Pro Trp Ile Val Ser Gln Asp Val Gln Leu Val Met Leu	635	640	2032
645			
ggc acc ggc cgc cac gac ctg gag agc atg ctg cgg cac ttc gag cgg Gly Thr Gly Arg His Asp Leu Glu Ser Met Leu Arg His Phe Glu Arg	650	655	2080
660			

- 10 -

gag cac cac gac aag gtg cgc ggg tgg gtg ggg ttc tcc gtg cgc ctg Glu His His Asp Lys Val Arg Gly Trp Val Gly Phe Ser Val Arg Leu 665 670 675 680	2128
gcg cac cg ^g atc acg gc ^g ggc gcc gac gc ^g ctc ctc atg ccc tcc cg ^g Ala His Arg Ile Thr Ala Gly Ala Asp Ala Leu Leu Met Pro Ser Arg 685 690 695	2176
ttc gag cc ^g tgc ggg ttg aac cag ctt tac gcc atg gcc tac gg ^g acc Phe Glu Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met Ala Tyr Gly Thr 700 705 710	2224
gtc ccc gtc gtg cac gcc gtc ggg gtg agg gac acc gtg cc ^g cc ^g Val Pro Val Val His Ala Val Gly Gly Val Arg Asp Thr Val Pro Pro 715 720 725	2272
ttc gac ccc ttc aac cac tcc ggc ctc ggg tgg acg ttc gac cgc gcc Phe Asp Pro Phe Asn His Ser Gly Leu Gly Trp Thr Phe Asp Arg Ala 730 735 740	2320
gag gc ^g cac aag ctg atc gag gc ^g ctc ggg cac tgc ctc cgc acc tac Glu Ala His Lys Leu Ile Glu Ala Leu Gly His Cys Leu Arg Thr Tyr 745 750 755 760	2368
cg ^g gac tac aag gag agc tgg agg ggc ctc cag gag cgc gg ^g atg tcg Arg Asp Tyr Lys Glu Ser Trp Arg Gly Leu Gln Glu Arg Gly Met Ser 765 770 775	2416
cag gac ttc agc tgg gag cat gcc gcc aag ctc tac gag gac gtc ctc Gln Asp Phe Ser Trp Glu His Ala Ala Lys Leu Tyr Glu Asp Val Leu 780 785 790	2464
ctc aag gcc aag tac cag tgg tga acgctagctg ctagccgctc cagccccca Leu Lys Ala Lys Tyr Gln Trp 795 800	2518
tgcgtgcatg catgagaggg tggaactgc ^g cattgcgc ^{cc} gcaggaacgt gccatccttc tcgatggag cgccggcatc cg ^g gaggtgc agt ^g acatga gaggtgtgtg tgg ^{tt} gagac gctgattccg atctcgatct ggtccgtagc agagtagagc ggacgttaggg aagcgctcct tgttg ^{tt} caggt atatggaa ^t gttgtcaact tgg ^{tt} attgtta gtttgctatg ttgtatgcgt tattacaatg ttgttactta ttctt ^{tt} taa aaaaaaaaa aa	2578 2638 2698 2758 2800
<210> 4 <211> 799 <212> PRT <213> Triticum aestivum	
<400> 4 Met Ser Ser Ala Val Ala Ser Ala Ala Ser Phe Leu Ala Leu Ala Ser 1 5 10 15	
Ala Ser Pro Gly Arg Ser Arg Arg Ala Arg Val Ser Ala Pro Pro 20 25 30	
Pro His Ala Gly Ala Gly Arg Leu His Trp Pro Pro Trp Pro Pro Gln 35 40 45	
Arg Thr Ala Arg Asp Gly Gly Val Ala Ala Arg Ala Ala Gly Lys Lys 50 55 60	

- 11 -

Asp Ala Arg Val Asp Asp Asp Ala Ala Ser Ala Arg Gln Pro Arg Ala		
65	70	75
80		
Arg Arg Gly Gly Ala Ala Thr Lys Val Ala Glu Arg Arg Asp Pro Val		
85	90	95
Lys Thr Leu Asp Arg Asp Ala Ala Glu Gly Gly Ala Pro Ala Pro Pro		
100	105	110
Ala Pro Arg Gln Asp Ala Ala Arg Pro Pro Ser Met Asn Gly Thr Pro		
115	120	125
Val Asn Gly Glu Asn Lys Ser Thr Gly Gly Gly Ala Thr Lys Asp		
130	135	140
Ser Gly Leu Pro Ala Pro Ala Arg Ala Pro His Pro Ser Thr Gln Asn		
145	150	155
160		
Arg Val Pro Val Asn Gly Glu Asn Lys Ala Asn Val Ala Ser Pro Pro		
165	170	175
Thr Ser Ile Ala Glu Val Val Ala Pro Asp Ser Ala Ala Thr Ile Ser		
180	185	190
Ile Ser Asp Lys Ala Pro Glu Ser Val Val Pro Ala Glu Lys Pro Pro		
195	200	205
Pro Ser Ser Gly Ser Asn Phe Val Val Ser Ala Ser Ala Pro Arg Leu		
210	215	220
Asp Ile Asp Ser Asp Val Glu Pro Glu Leu Lys Lys Gly Ala Val Ile		
225	230	235
240		
Val Glu Glu Ala Pro Asn Pro Lys Ala Leu Ser Pro Pro Ala Ala Pro		
245	250	255
Ala Val Gln Glu Asp Leu Trp Asp Phe Lys Lys Tyr Ile Gly Phe Glu		
260	265	270
Glu Pro Val Glu Ala Lys Asp Asp Gly Trp Ala Val Ala Asp Asp Ala		
275	280	285
Gly Ser Phe Glu His His Gln Asn His Asp Ser Gly Pro Leu Ala Gly		
290	295	300
Glu Asn Val Met Asn Val Val Val Ala Ala Glu Cys Ser Pro Trp		
305	310	315
320		
Cys Lys Thr Gly Gly Leu Gly Asp Val Ala Gly Ala Leu Pro Lys Ala		
325	330	335
Leu Ala Lys Arg Gly His Arg Val Met Val Val Val Pro Arg Tyr Gly		
340	345	350
Asp Tyr Glu Glu Ala Tyr Asp Val Gly Val Arg Lys Tyr Tyr Lys Ala		
355	360	365
Ala Gly Gln Asp Met Glu Val Asn Tyr Phe His Ala Tyr Ile Asp Gly		
370	375	380
Val Asp Phe Val Phe Ile Asp Ala Pro Leu Phe Arg His Arg Gln Glu		
385	390	395
400		
Asp Ile Tyr Gly Ser Arg Gln Glu Ile Met Lys Arg Met Ile Leu		

- 12 -

405

410

415

Phe Cys Lys Ala Ala Val Glu Val Pro Trp His Val Pro Cys Gly Gly
 420 425 430

Val Pro Tyr Gly Asp Gly Asn Leu Val Phe Ile Ala Asn Asp Trp His
 435 440 445

Thr Ala Leu Leu Pro Val Tyr Leu Lys Ala Tyr Tyr Arg Asp His Gly
 450 455 460

Leu Met Gln Tyr Thr Arg Ser Ile Met Val Ile His Asn Ile Ala His
 465 470 475 480

Gln Gly Arg Gly Pro Val Asp Glu Phe Pro Phe Thr Glu Leu Pro Glu
 485 490 495

His Tyr Leu Glu His Phe Arg Leu Tyr Asp Pro Val Gly Gly Glu His
 500 505 510

Ala Asn Tyr Phe Ala Ala Gly Leu Lys Met Ala Asp Gln Val Val Val
 515 520 525

Val Ser Pro Gly Tyr Leu Trp Glu Leu Lys Thr Val Glu Gly Gly Trp
 530 535 540

Gly Leu His Asp Ile Ile Arg Gln Asn Asp Trp Lys Thr Arg Gly Ile
 545 550 555 560

Val Asn Gly Ile Asp Asn Met Glu Trp Asn Pro Glu Val Asp Val His
 565 570 575

Leu Lys Ser Asp Gly Tyr Thr Asn Phe Ser Leu Gly Thr Leu Asp Ser
 580 585 590

Gly Lys Arg Gln Cys Lys Glu Ala Leu Gln Arg Glu Leu Gly Leu Gln
 595 600 605

Val Arg Ala Asp Val Pro Leu Leu Gly Phe Ile Gly Arg Leu Asp Gly
 610 615 620

Gln Lys Gly Val Glu Ile Ile Ala Asp Ala Met Pro Trp Ile Val Ser
 625 630 635 640

Gln Asp Val Gln Leu Val Met Leu Gly Thr Gly Arg His Asp Leu Glu
 645 650 655

Ser Met Leu Arg His Phe Glu Arg Glu His His Asp Lys Val Arg Gly
 660 665 670

Trp Val Gly Phe Ser Val Arg Leu Ala His Arg Ile Thr Ala Gly Ala
 675 680 685

Asp Ala Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln
 690 695 700

Leu Tyr Ala Met Ala Tyr Gly Thr Val Pro Val Val His Ala Val Gly
 705 710 715 720

Gly Val Arg Asp Thr Val Pro Pro Phe Asp Pro Phe Asn His Ser Gly
 725 730 735

Leu Gly Trp Thr Phe Asp Arg Ala Glu Ala His Lys Leu Ile Glu Ala
 740 745 750

- 13 -

Leu Gly His Cys Leu Arg Thr Tyr Arg Asp Tyr Lys Glu Ser Trp Arg
755 760 765

Gly Leu Gln Glu Arg Gly Met Ser Gln Asp Phe Ser Trp Glu His Ala
770 775 780

Ala Lys Leu Tyr Glu Asp Val Leu Leu Lys Ala Lys Tyr Gln Trp
785 790 795

<210> 5

<211> 2107

<212> DNA

<213> Triticum aestivum

<220>

<221> CDS

<222> (1)...(1794)

<400> 5

cca gct gag aag acg ccg ccg tcg tcc ggc tca aat ttc gag tcc tcg	48
Pro Ala Glu Lys Thr Pro Pro Ser Ser Gly Ser Asn Phe Glu Ser Ser	
1 5 10 15	

gcc tct gct ccc ggg tct gac act gtc agc gac gtg gaa caa gaa ctg	96
Ala Ser Ala Pro Gly Ser Asp Thr Val Ser Asp Val Glu Gln Glu Leu	
20 25 30	

aag aag ggt gcg gtc gtt gtc gaa gaa gct cca aag cca aag gct ctt	144
Lys Lys Gly Ala Val Val Glu Glu Ala Pro Lys Pro Lys Ala Leu	
35 40 45	

tcg ccg cct gca gcc ccc gct gta caa gaa gac ctt tgg gat ttc aag	192
Ser Pro Pro Ala Ala Pro Ala Val Gln Glu Asp Leu Trp Asp Phe Lys	
50 55 60	

aaa tac att ggt ttc gag gag ccc gtg gag gcc aag gat gat ggc cgg	240
Lys Tyr Ile Gly Phe Glu Glu Pro Val Glu Ala Lys Asp Asp Gly Arg	
65 70 75 80	

gct gtc gca gat gat gcg ggc tcc ttt gaa cac cac cag aat cac gac	288
Ala Val Ala Asp Asp Ala Gly Ser Phe Glu His His Gln Asn His Asp	
85 90 95	

tcc gga cct ttg gca ggg gag aat gtc atg aac gtg gtc gtc gtg gct	336
Ser Gly Pro Leu Ala Gly Glu Asn Val Met Asn Val Val Val Ala	
100 105 110	

gct gag tgt tct ccc tgg tgc aaa aca ggt ggt ctg gga gat gtt gcg	384
Ala Glu Cys Ser Pro Trp Cys Lys Thr Gly Gly Leu Gly Asp Val Ala	
115 120 125	

ggt gct ctg ccc aag gct ttg gca aag aga gga cat cgt gtt atg gtt	432
Gly Ala Leu Pro Lys Ala Leu Ala Lys Arg Gly His Arg Val Met Val	
130 135 140	

gtg gta cca agg tat ggg gac tat gaa gaa cct acg gat gtc gga gtc	480
Val Val Pro Arg Tyr Gly Asp Tyr Glu Glu Pro Thr Asp Val Gly Val	
145 150 155 160	

cga aaa tac tac aag gct gct gga cag gat atg gaa gtt aat tat ttc	528
Arg Lys Tyr Tyr Lys Ala Ala Gly Gln Asp Met Glu Val Asn Tyr Phe	
165 170 175	

cat gct tat atc gat gga gtt gat ttt gtg ttc att gac gct cct ctc	576
---	-----

- 14 -

His Ala Tyr Ile Asp Gly Val Asp Phe Val Phe Ile Asp Ala Pro Leu			
180	185	190	
ttc cga cac cga gag gaa gac att tat ggg ggc agc aga cag gaa att		624	
Phe Arg His Arg Glu Glu Asp Ile Tyr Gly Ser Arg Gln Glu Ile			
195	200	205	
atg aag cgc atg att ttg ttc tgc aag gcc gct gtt gag gtt cca tgg		672	
Met Lys Arg Met Ile Leu Phe Cys Lys Ala Ala Val Glu Val Pro Trp			
210	215	220	
cac gtt cca tgc ggc ggt gtc cct tat ggg gat gga aat ctg gtg ttt		720	
His Val Pro Cys Gly Val Pro Tyr Gly Asp Gly Asn Leu Val Phe			
225	230	235	240
att gca aat gat tgg cac acg gca ctc ctg cct gtc tat ctg aaa gca		768	
Ile Ala Asn Asp Trp His Thr Ala Leu Leu Pro Val Tyr Leu Lys Ala			
245	250	255	
tat tac agg gac cat ggt ttg atg cag tac act cgg tcc att atg gtg		816	
Tyr Tyr Arg Asp His Gly Leu Met Gln Tyr Thr Arg Ser Ile Met Val			
260	265	270	
ata cat aac atc gct cac cag ggc cgt ggc cct gta gat gaa ttc ccg		864	
Ile His Asn Ile Ala His Gln Gly Arg Gly Pro Val Asp Glu Phe Pro			
275	280	285	
ttc acc gag ttg cct gag cac tac ctg gaa cac ttc aga ctg tac gac		912	
Phe Thr Glu Leu Pro Glu His Tyr Leu Glu His Phe Arg Leu Tyr Asp			
290	295	300	
ccc gtg ggt ggt gaa cac gcc aac tac ttc gcc ggc ctg aag atg		960	
Pro Val Gly Gly Glu His Ala Asn Tyr Phe Ala Ala Gly Leu Lys Met			
305	310	315	320
gcg gac cag gtt gtc gtg gtg agc ccc ggg tac ctg tgg gag ctg aag		1008	
Ala Asp Gln Val Val Val Ser Pro Gly Tyr Leu Trp Glu Leu Lys			
325	330	335	
acg gtg gag ggc tgg ggg ctt cac gac atc ata cgg cag aac gac		1056	
Thr Val Glu Gly Trp Gly Leu His Asp Ile Ile Arg Gln Asn Asp			
340	345	350	
tgg aag acc cgc ggc atc gtc aac ggc atc gac aac atg gag tgg aac		1104	
Trp Lys Thr Arg Gly Ile Val Asn Gly Ile Asp Asn Met Glu Trp Asn			
355	360	365	
ccc gag gtg gac gcc cac ctc aag tcg gac ggc tac acc aac ttc tcc		1152	
Pro Glu Val Asp Ala His Leu Lys Ser Asp Gly Tyr Thr Asn Phe Ser			
370	375	380	
ctg agg acg ctg gac tcc ggc aag cgg cag tgc aag gag ggc ctg cag		1200	
Leu Arg Thr Leu Asp Ser Gly Lys Arg Gln Cys Lys Glu Ala Leu Gln			
385	390	395	400
cgc gag ctg ggc ctg cag gtc cgc gcc gac gtg ccg ctg ctc ggc ttc		1248	
Arg Glu Leu Gly Leu Gln Val Arg Ala Asp Val Pro Leu Leu Gly Phe			
405	410	415	
atc ggc cgc ctg gac ggg cag aag ggc gtg gag atc atc gcg gac gcc		1296	
Ile Gly Arg Leu Asp Gly Gln Lys Gly Val Glu Ile Ile Ala Asp Ala			
420	425	430	
atg ccc tgg atc gtg agc cag gac gtg cag ctg gtg atg ctg ggc acc		1344	
Met Pro Trp Ile Val Ser Gln Asp Val Gln Leu Val Met Leu Gly Thr			

- 15 -

435	440	445	
ggg cgc cac gac ctg gag agc atg ctg cag cac ttc gag cg _g gag cac Gly Arg His Asp Leu Glu Ser Met Leu Gln His Phe Glu Arg Glu His			1392
450	455	460	
cac gac aag gtg cgc ggg tgg gtg ggg ttc tcc gtg cgc ctg gc _g cac His Asp Lys Val Arg Gly Trp Val Gly Phe Ser Val Arg Leu Ala His			1440
465	470	475	480
cg _g atc acg gcg ggg gcg gac gcg ctc ctc atg ccc tcc cgg ttc gtg Arg Ile Thr Ala Gly Ala Asp Ala Leu Leu Met Pro Ser Arg Phe Val			1488
485	490	495	
ccg tgc ggg ctg aac cag ctc tac gcc atg gcc tac ggc acc gtc ccc Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met Ala Tyr Gly Thr Val Pro			1536
500	505	510	
gtc gtg cac gcc gtc ggc ggc ctc agg gac acc gtc ccc ccg ttc gac Val Val His Ala Val Gly Gly Leu Arg Asp Thr Val Pro Pro Phe Asp			1584
515	520	525	
ccc ttc aac cac tcc ggg ctc ggg tgg acg ttc gac cgc gcc gag gc _g Pro Phe Asn His Ser Gly Leu Gly Trp Thr Phe Asp Arg Ala Glu Ala			1632
530	535	540	
cac aag ctg atc gag gc _g ctc ggg cac tgc ctc cgc acc tac cga gac His Lys Leu Ile Glu Ala Leu Gly His Cys Leu Arg Thr Tyr Arg Asp			1680
545	550	555	560
ttc aag gag agc tgg agg gcc ctc cag gag gc _g atg tcg cag gac Phe Lys Glu Ser Trp Arg Ala Leu Gln Glu Arg Gly Met Ser Gln Asp			1728
565	570	575	
ttc agc tgg gag cac gcc gcc aag ctc tac gag gac gtc ctc gtc aag Phe Ser Trp Glu His Ala Ala Lys Leu Tyr Glu Asp Val Leu Val Lys			1776
580	585	590	
gcc aag tac cag tgg tga acgctagctg ctagccgctc cagccccca Ala Lys Tyr Gln Trp			1824
595			
tgcgtgcattg acaggatgga actgcattgc gcacgcagga aagtgcattg gagcgccggc			1884
atccgcgaag tacagtgaca tgaggtgtgt gtgggtgaga cgctgattcc aatccggccc			1944
gtagcagagt agagcggagg tatatggaa tcttaacttg gtattgtat ttgttatgtt			2004
gtgtgcatta ttacaatgtt gttacttatt cttgttaagt cggaggccaa gggcgaaagc			2064
tagctcacat gtctgatgga tgcaaaaaaaa aaaaaaaaaaaa aaa			2107
 <210> 6			
<211> 597			
<212> PRT			
<213> Triticum aestivum			
 <400> 6			
Pro Ala Glu Lys Thr Pro Pro Ser Ser Gly Ser Asn Phe Glu Ser Ser			
1	5	10	15
Ala Ser Ala Pro Gly Ser Asp Thr Val Ser Asp Val Glu Gln Glu Leu			
20	25	30	

- 16 -

Lys	Lys	Gly	Ala	Val	Val	Val	Glu	Glu	Ala	Pro	Lys	Pro	Lys	Ala	Leu
35						40							45		
Ser	Pro	Pro	Ala	Ala	Pro	Ala	Val	Gln	Glu	Asp	Leu	Trp	Asp	Phe	Lys
50						55							60		
Lys	Tyr	Ile	Gly	Phe	Glu	Glu	Pro	Val	Glu	Ala	Lys	Asp	Asp	Gly	Arg
65						70					75			80	
Ala	Val	Ala	Asp	Asp	Ala	Gly	Ser	Phe	Glu	His	His	Gln	Asn	His	Asp
						85				90			95		
Ser	Gly	Pro	Leu	Ala	Gly	Glu	Asn	Val	Met	Asn	Val	Val	Val	Ala	
						100			105				110		
Ala	Glu	Cys	Ser	Pro	Trp	Cys	Lys	Thr	Gly	Gly	Leu	Gly	Asp	Val	Ala
						115			120				125		
Gly	Ala	Leu	Pro	Lys	Ala	Leu	Ala	Lys	Arg	Gly	His	Arg	Val	Met	Val
						130			135				140		
Val	Val	Pro	Arg	Tyr	Gly	Asp	Tyr	Glu	Glu	Pro	Thr	Asp	Val	Gly	Val
						145			150				155		160
Arg	Lys	Tyr	Tyr	Lys	Ala	Ala	Gly	Gln	Asp	Met	Glu	Val	Asn	Tyr	Phe
						165			170				175		
His	Ala	Tyr	Ile	Asp	Gly	Val	Asp	Phe	Val	Phe	Ile	Asp	Ala	Pro	Leu
						180			185				190		
Phe	Arg	His	Arg	Glu	Glu	Asp	Ile	Tyr	Gly	Gly	Ser	Arg	Gln	Glu	Ile
						195			200				205		
Met	Lys	Arg	Met	Ile	Leu	Phe	Cys	Lys	Ala	Ala	Val	Glu	Val	Pro	Trp
						210			215				220		
His	Val	Pro	Cys	Gly	Gly	Val	Pro	Tyr	Gly	Asp	Gly	Asn	Leu	Val	Phe
						225			230				235		240
Ile	Ala	Asn	Asp	Trp	His	Thr	Ala	Leu	Leu	Pro	Val	Tyr	Leu	Lys	Ala
						245			250				255		
Tyr	Tyr	Arg	Asp	His	Gly	Leu	Met	Gln	Tyr	Thr	Arg	Ser	Ile	Met	Val
						260			265				270		
Ile	His	Asn	Ile	Ala	His	Gln	Gly	Arg	Gly	Pro	Val	Asp	Glu	Phe	Pro
						275			280				285		
Phe	Thr	Glu	Leu	Pro	Glu	His	Tyr	Leu	Glu	His	Phe	Arg	Leu	Tyr	Asp
						290			295				300		
Pro	Val	Gly	Gly	Glu	His	Ala	Asn	Tyr	Phe	Ala	Ala	Gly	Leu	Lys	Met
						305			310				315		320
Ala	Asp	Gln	Val	Val	Val	Val	Ser	Pro	Gly	Tyr	Leu	Trp	Glu	Leu	Lys
						325			330				335		
Thr	Val	Glu	Gly	Gly	Trp	Gly	Leu	His	Asp	Ile	Ile	Arg	Gln	Asn	Asp
						340			345				350		
Trp	Lys	Thr	Arg	Gly	Ile	Val	Asn	Gly	Ile	Asp	Asn	Met	Glu	Trp	Asn
						355			360				365		
Pro	Glu	Val	Asp	Ala	His	Leu	Lys	Ser	Asp	Gly	Tyr	Thr	Asn	Phe	Ser
						370			375				380		

- 17 -

Leu	Arg	Thr	Leu	Asp	Ser	Gly	Lys	Arg	Gln	Cys	Lys	Glu	Ala	Leu	Gln
385					390				395						400
Arg	Glu	Leu	Gly	Leu	Gln	Val	Arg	Ala	Asp	Val	Pro	Leu	Leu	Gly	Phe
						405			410						415
Ile	Gly	Arg	Leu	Asp	Gly	Gln	Lys	Gly	Val	Glu	Ile	Ile	Ala	Asp	Ala
						420			425						430
Met	Pro	Trp	Ile	Val	Ser	Gln	Asp	Val	Gln	Leu	Val	Met	Leu	Gly	Thr
						435			440						445
Gly	Arg	His	Asp	Leu	Glu	Ser	Met	Leu	Gln	His	Phe	Glu	Arg	Glu	His
						450			455						460
His	Asp	Lys	Val	Arg	Gly	Trp	Val	Gly	Phe	Ser	Val	Arg	Leu	Ala	His
						465			470						480
Arg	Ile	Thr	Ala	Gly	Ala	Asp	Ala	Leu	Leu	Met	Pro	Ser	Arg	Phe	Val
						485			490						495
Pro	Cys	Gly	Leu	Asn	Gln	Leu	Tyr	Ala	Met	Ala	Tyr	Gly	Thr	Val	Pro
						500			505						510
Val	Val	His	Ala	Val	Gly	Gly	Leu	Arg	Asp	Thr	Val	Pro	Pro	Phe	Asp
						515			520						525
Pro	Phe	Asn	His	Ser	Gly	Leu	Gly	Trp	Thr	Phe	Asp	Arg	Ala	Glu	Ala
						530			535						540
His	Lys	Leu	Ile	Glu	Ala	Leu	Gly	His	Cys	Leu	Arg	Thr	Tyr	Arg	Asp
						545			550						560
Phe	Lys	Glu	Ser	Trp	Arg	Ala	Leu	Gln	Glu	Arg	Gly	Met	Ser	Gln	Asp
						565			570						575
Phe	Ser	Trp	Glu	His	Ala	Ala	Lys	Leu	Tyr	Glu	Asp	Val	Leu	Val	Lys
						580			585						590
Ala	Lys	Tyr	Gln	Trp											
					595										

<210> 7
<211> 5352
<212> DNA
<213> Triticum aestivum

<220>
<221> CDS
<222> (29)..(4921)

<400> 7
cggcacgagg ttttagtaggt tccggaa atg gag atg tct ctc tgg cca cg 52
Met Glu Met Ser Leu Trp Pro Arg
1 5

agc ccc ctg tgc cct cgg agc agg cag ccg ctc gtc gtc gtc cg 100
Ser Pro Leu Cys Pro Arg Ser Arg Gln Pro Leu Val Val Val Arg Pro
10 15 20

gcc ggc cgc ggc ctc acg cag cct ttt ttg atg aat ggc aga tt 148
Ala Gly Arg Gly Gly Leu Thr Gln Pro Phe Leu Met Asn Gly Arg Phe
25 30 35 40

- 18 -

act cga agc agg acc ctt cga tgc atg gta gca agt tca gat cct cct		196	
Thr Arg Ser Arg Thr Leu Arg Cys Met Val Ala Ser Ser Asp Pro Pro			
45	50	55	
aat agg aaa tca aga agg atg gta cca cct cag gtt aaa gtc att tct		244	
Asn Arg Lys Ser Arg Arg Met Val Pro Pro Gln Val Lys Val Ile Ser			
60	65	70	
tct aga gga tat acg aca aga ctc att gtt gaa cca agc aac gag aat		292	
Ser Arg Gly Tyr Thr Arg Leu Ile Val Glu Pro Ser Asn Glu Asn			
75	80	85	
aca gaa cac aat aat cgg gat gaa gaa act ctt gat aca tac aat gcg		340	
Thr Glu His Asn Asn Arg Asp Glu Glu Thr Leu Asp Thr Tyr Asn Ala			
90	95	100	
cta tta agt acc gag aca gca gaa tgg aca gat aat aga gaa gcc gag		388	
Leu Leu Ser Thr Glu Thr Ala Glu Trp Thr Asp Asn Arg Glu Ala Glu			
105	110	115	120
act gct aaa gcg gac tcg tcg caa aat gct tta agc agt tct ata att		436	
Thr Ala Lys Ala Asp Ser Ser Gln Ala Leu Ser Ser Ser Ile Ile			
125	130	135	
ggg gaa gtg gat gtg gcg gat gaa gat ata ctt gcg gct gat ctg aca		484	
Gly Glu Val Asp Val Ala Asp Glu Asp Ile Leu Ala Ala Asp Leu Thr			
140	145	150	
gtg tat tca ttg agc agt gta atg aag aag gaa gtg gat gca gcg gac		532	
Val Tyr Ser Leu Ser Ser Val Met Lys Lys Glu Val Asp Ala Ala Asp			
155	160	165	
aaa gct aga gtt aaa gaa gac gca ttt gag ctg gat ttn gcc agc act		580	
Lys Ala Arg Val Lys Glu Asp Ala Phe Glu Leu Asp Xaa Ala Ser Thr			
170	175	180	
aca ttg aga agt gtg ata gta gat gtg atg gat cat aan tgg gac tgt		628	
Thr Leu Arg Ser Val Ile Val Asp Val Met Asp His Xaa Trp Asp Cys			
185	190	195	200
caa gag aca ttg aga agt gtg ata gta gat gtg atg gat cat aat ggg		676	
Gln Glu Thr Leu Arg Ser Val Ile Val Asp Val Met Asp His Asn Gly			
205	210	215	
act gta caa gag aca ttg aga agt gtg ata gta gat gtg atg gat gat		724	
Thr Val Gln Glu Thr Leu Arg Ser Val Ile Val Asp Val Met Asp Asp			
220	225	230	
gcg gcg gac aaa gct aga gtt gaa gaa gac gta ttt gag ctg gat ttg		772	
Ala Ala Asp Lys Ala Arg Val Glu Glu Asp Val Phe Glu Leu Asp Leu			
235	240	245	
tca gga aat att tca agc agt gcg acg acc gtg gaa cta gat gcg gtt		820	
Ser Gly Asn Ile Ser Ser Ala Thr Thr Val Glu Leu Asp Ala Val			
250	255	260	
gac gaa gtc ggg cct gtt caa gac aaa ttt gag gcg acc tca tca gga		868	
Asp Glu Val Gly Pro Val Gln Asp Lys Phe Glu Ala Thr Ser Ser Gly			
265	270	275	280
aat gtt tca aac agt gca acg gta cgg gaa gtg gat gca agt gat gaa		916	
Asn Val Ser Asn Ser Ala Thr Val Arg Glu Val Asp Ala Ser Asp Glu			
285	290	295	

- 19 -

gct ggg aat gat caa ggc ata ttt aga gca gat ttg tca gga aat gtt Ala Gly Asn Asp Gln Gly Ile Phe Arg Ala Asp Leu Ser Gly Asn Val 300 305 310	964
ttt tca agc agt aca aca gtg gaa gtg ggt gca gtg gat gaa gct ggg Phe Ser Ser Ser Thr Thr Val Glu Val Gly Ala Val Asp Glu Ala Gly 315 320 325	1012
tct ata aag gac agg ttt gag acg gat tcg tca gga aat gtt tca aca Ser Ile Lys Asp Arg Phe Glu Thr Asp Ser Ser Gly Asn Val Ser Thr 330 335 340	1060
agt gcg ccg atg tgg gat gca att gat gaa acc gtg gct gat caa gac Ser Ala Pro Met Trp Asp Ala Ile Asp Glu Thr Val Ala Asp Gln Asp 345 350 355 360	1108
aca ttt gag gcg gat ttg tcg gga aat gct tca agc tgc gca aca tac Thr Phe Glu Ala Asp Leu Ser Gly Asn Ala Ser Ser Cys Ala Thr Tyr 365 370 375	1156
aga gaa gtg gat gat gtg gtg gat gaa act aga tca gaa gag gaa aca Arg Glu Val Asp Asp Val Val Asp Glu Thr Arg Ser Glu Glu Glu Thr 380 385 390	1204
ttt gca atg gat ttg ttt gca agt gaa tca ggc cat gag aaa cat atg Phe Ala Met Asp Leu Phe Ala Ser Glu Ser Gly His Glu Lys His Met 395 400 405	1252
gca gtg gat tat gtg ggt gaa gct acc gat gaa gaa gag act tac caa Ala Val Asp Tyr Val Gly Glu Ala Thr Asp Glu Glu Glu Thr Tyr Gln 410 415 420	1300
cag caa tat cca gta ccg tct tca ttc tct atg tgg gac aag gct att Gln Gln Tyr Pro Val Pro Ser Ser Phe Ser Met Trp Asp Lys Ala Ile 425 430 435 440	1348
gct aaa aca ggt gta agt ttg aat cct gag ctg cga ctt gtc agg gtt Ala Lys Thr Gly Val Ser Leu Asn Pro Glu Leu Arg Leu Val Arg Val 445 450 455	1396
gaa gaa caa ggc aaa gta aat ttt agt gat aaa aaa gac ctg tca att Glu Glu Gln Gly Lys Val Asn Phe Ser Asp Lys Lys Asp Leu Ser Ile 460 465 470	1444
gat gat tta cca gga caa aac caa tcg atc att ggt tcc tat aaa caa Asp Asp Leu Pro Gly Gln Asn Gln Ser Ile Ile Gly Ser Tyr Lys Gln 475 480 485	1492
gat aaa tca att gct gat gtt gcg gga ccg acc caa tca att ttt ggt Asp Lys Ser Ile Ala Asp Val Ala Gly Pro Thr Gln Ser Ile Phe Gly 490 495 500	1540
tct agt aaa caa cac ccg tca att gtt gct ttc ccc aaa caa aac cag Ser Ser Lys Gln His Arg Ser Ile Val Ala Phe Pro Lys Gln Asn Gln 505 510 515 520	1588
tca att gtt agt gtc act gag caa aag cag tcc ata gtt gga ttc cgt Ser Ile Val Ser Val Thr Glu Gln Lys Gln Ser Ile Val Gly Phe Arg 525 530 535	1636
agt caa gat ctt tcg gct gtt agt ctc cct aaa caa aac gta cca att Ser Gln Asp Leu Ser Ala Val Ser Leu Pro Lys Gln Asn Val Pro Ile 540 545 550	1684
gtt ggg tac gtc gag aga ggg tca aac naa aag caa gtt cct gtt gtt	1732

- 20 -

Val Gly Tyr Val Glu Arg Gly Ser Asn Xaa Lys Gln Val Pro Val Val			
555	560	565	
gat aga cag gat gca ttg tat gtg aat gga ctg gaa gct aag gag gga			1780
Asp Arg Gln Asp Ala Leu Tyr Val Asn Gly Leu Glu Ala Lys Glu Gly			
570	575	580	
gat cac aca tcc gag aaa act gat gag gat gcg ctt cat gta aag ttt			1828
Asp His Thr Ser Glu Lys Thr Asp Glu Asp Ala Leu His Val Lys Phe			
585	590	595	600
aat gtt gac aat gtg ttg cgg aag cat cag gca gat aga acc caa gca			1876
Asn Val Asp Asn Val Leu Arg Lys His Gln Ala Asp Arg Thr Gln Ala			
605	610	615	
gtg gaa aag aaa act tgg aag aaa gtt gat gag gaa cat ctt tac atg			1924
Val Glu Lys Lys Thr Trp Lys Val Asp Glu Glu His Leu Tyr Met			
620	625	630	
act gaa cat cag aaa cgt gct gcc gaa gga cag atg gta gtt aac gag			1972
Thr Glu His Gln Lys Arg Ala Ala Glu Gly Gln Met Val Val Asn Glu			
635	640	645	
gat gag ctt tct ata act gaa att gga atg ggg aga ggt gat aaa att			2020
Asp Glu Leu Ser Ile Thr Glu Ile Gly Met Gly Arg Gly Asp Lys Ile			
650	655	660	
cag cat gtg ctt tct gag gaa gag ctt tca tgg tct gaa gat gaa gtg			2068
Gln His Val Leu Ser Glu Glu Leu Ser Trp Ser Glu Asp Glu Val			
665	670	675	680
cag tta att gag gat gat gga caa tat gaa gtt gac gag acc tct gtg			2116
Gln Leu Ile Glu Asp Asp Gly Gln Tyr Glu Val Asp Glu Thr Ser Val			
685	690	695	
tcc gtt aac gtt gaa caa gat atc cag ggg tca cca cag gat gtt gtg			2164
Ser Val Asn Val Glu Gln Asp Ile Gln Gly Ser Pro Gln Asp Val Val			
700	705	710	
gat ccg caa gca cta aag gtg atg ctg caa gaa ctc gct gag aaa aat			2212
Asp Pro Gln Ala Leu Lys Val Met Leu Gln Glu Leu Ala Glu Lys Asn			
715	720	725	
tat tcg atg agg aac aag ctg ttt gtt ttt cca gag gta gtg aaa gct			2260
Tyr Ser Met Arg Asn Lys Leu Phe Val Phe Pro Glu Val Val Lys Ala			
730	735	740	
gat tca gtt att gat ctt tat tta aat cgt gac cta aca gct ttg gcg			2308
Asp Ser Val Ile Asp Leu Tyr Leu Asn Arg Asp Leu Thr Ala Leu Ala			
745	750	755	760
aat gaa ccc gat gtc gtc atc aaa gga gca ttc aat ggt tgg aaa tgg			2356
Asn Glu Pro Asp Val Val Ile Lys Gly Ala Phe Asn Gly Trp Lys Trp			
765	770	775	
agg ctt ttc act gaa aga ttg cac aag agt gac ctt gga ggg gtt tgg			2404
Arg Leu Phe Thr Glu Arg Leu His Lys Ser Asp Leu Gly Gly Val Trp			
780	785	790	
tgg tct tgc aaa ctg tac ata ccc aag gag gcc tac aga tta gac ttt			2452
Trp Ser Cys Lys Leu Tyr Ile Pro Lys Glu Ala Tyr Arg Leu Asp Phe			
795	800	805	
gtg ttc ttc aac ggt cgc acg gtc tat gag aac aat ggc aac aat gat			2500
Val Phe Asn Gly Arg Thr Val Tyr Glu Asn Asn Gly Asn Asn Asp			

- 21 -

810	815	820	
ttc tgt ata gga ata gaa ggc act atg aat gaa gat ctg ttt gag gat Phe Cys Ile Gly Ile Glu Gly Thr Met Asn Glu Asp Leu Phe Glu Asp 825 830 835 840			2548
ttc ttg gtt aaa gaa aag caa agg gag ctt gag aaa ctt gcc atg gaa Phe Leu Val Lys Glu Lys Gln Arg Glu Leu Glu Lys Leu Ala Met Glu 845 850 855			2596
gaa gct gaa agg agg aca cag act gaa gaa cag cgg cga aga aag gaa Glu Ala Glu Arg Arg Thr Gln Thr Glu Glu Gln Arg Arg Arg Lys Glu 860 865 870			2644
gca agg gct gca gat gaa gct gtc agg gca caa gcg aag gcc gag ata Ala Arg Ala Ala Asp Glu Ala Val Arg Ala Gln Ala Lys Ala Glu Ile 875 880 885			2692
gag atc aag aag aaa aaa ttg caa agt atg ttg agt ttg gcc aga aca Glu Ile Lys Lys Lys Leu Gln Ser Met Leu Ser Leu Ala Arg Thr 890 895 900			2740
tgt gtt gat aat ttg tgg tac ata gag gct agc aca gat aca aga gga Cys Val Asp Asn Leu Trp Tyr Ile Glu Ala Ser Thr Asp Thr Arg Gly 905 910 915 920			2788
gat act atc agg tta tat tat aac aga aac tcg agg cca ctt gcg cat Asp Thr Ile Arg Leu Tyr Tyr Asn Arg Asn Ser Arg Pro Leu Ala His 925 930 935			2836
agt act gag att tgg atg cat ggt ggt tac aac aat tgg aca gat gga Ser Thr Glu Ile Trp Met His Gly Gly Tyr Asn Asn Trp Thr Asp Gly 940 945 950			2884
ctc tct att gtt gaa agc ttt gtc aag tgc aat gac aaa gac ggc gat Leu Ser Ile Val Glu Ser Phe Val Lys Cys Asn Asp Lys Asp Gly Asp 955 960 965			2932
tgg tgg tat gca gat gtt att cca cct gaa aag gca ctt gtg ttg gac Trp Trp Tyr Ala Asp Val Ile Pro Pro Glu Lys Ala Leu Val Leu Asp 970 975 980			2980
tgg gtt ttt gct gat ggg cca gct ggg aat gca agg aac tat gac aac Trp Val Phe Ala Asp Gly Pro Ala Gly Asn Ala Arg Asn Tyr Asp Asn 985 990 995 1000			3028
aat gct cga caa gat ttc cat gct att ctt ccg aac aac aat gta acc Asn Ala Arg Gln Asp Phe His Ala Ile Leu Pro Asn Asn Val Thr 1005 1010 1015			3076
gag gaa ggc ttc tgg gcg caa gag gag caa aac atc tat aca agg ctt Glu Glu Gly Phe Trp Ala Gln Glu Glu Gln Asn Ile Tyr Thr Arg Leu 1020 1025 1030			3124
ctg caa gaa agg aga gaa aag gaa acc atg aaa aga aag gct gag Leu Gln Glu Arg Arg Glu Lys Glu Glu Thr Met Lys Arg Lys Ala Glu 1035 1040 1045			3172
aga agt gca aat atc aaa gct gag atg aag gca aaa act atg cga agg Arg Ser Ala Asn Ile Lys Ala Glu Met Lys Ala Lys Thr Met Arg Arg 1050 1055 1060			3220
ttt ctg ctt tcc cag aaa cac att gtt tat acc cga acc gnc ttg aaa Phe Leu Leu Ser Gln Lys His Ile Val Tyr Thr Arg Thr Xaa Leu Lys 1065 1070 1075 1080			3268

- 22 -

tac gtg ccc gga acc aca gtg gat gtg cta tac aat ccc tct aac aca Tyr Val Pro Gly Thr Thr Val Asp Val Leu Tyr Asn Pro Ser Asn Thr 1085 1090 1095	3316
gtg cta aat gga aag tcg gag ggt tgg ttt aga tgc tcc ttt aac ctt Val Leu Asn Gly Lys Ser Glu Gly Trp Phe Arg Cys Ser Phe Asn Leu 1100 1105 1110	3364
tgg atg cat tca agt ggg gca ttg cca ccc cag aag atg gtg aaa tca Trp Met His Ser Ser Gly Ala Leu Pro Pro Gln Lys Met Val Lys Ser 1115 1120 1125	3412
ggg gat ggg ccg ctc tta aaa gca aca gtt gat gtt cca ccg gat gcc Gly Asp Gly Pro Leu Leu Lys Ala Thr Val Asp Val Pro Pro Asp Ala 1130 1135 1140	3460
tat atg atg gac ttt gtt ttc tcc gag tgg gaa gat ggg atc tat Tyr Met Met Asp Phe Val Phe Ser Glu Trp Glu Glu Asp Gly Ile Tyr 1145 1150 1155 1160	3508
gac aac agg aat ggg atg gac tat cat att cct gtt tct gat tca att Asp Asn Arg Asn Gly Met Asp Tyr His Ile Pro Val Ser Asp Ser Ile 1165 1170 1175	3556
gaa aca gag aat tac atg cgt att atc cac att gcc gtt gag atg gcc Glu Thr Glu Asn Tyr Met Arg Ile Ile His Ile Ala Val Glu Met Ala 1180 1185 1190	3604
ccc gtt gca aag gtt gga ggt ctt ggg gat gtt gtt aca agt ctt tca Pro Val Ala Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser 1195 1200 1205	3652
cgt gcc att caa gat cta gga cat act gtc gag gtt att ctc ccg aag Arg Ala Ile Gln Asp Leu Gly His Thr Val Glu Val Ile Leu Pro Lys 1210 1215 1220	3700
tac gac tgt ttg aac caa agc agt gtc aag gat tta cat tta tat caa Tyr Asp Cys Leu Asn Gln Ser Ser Val Lys Asp Leu His Leu Tyr Gln 1225 1230 1235 1240	3748
agt ttt tct tgg ggt ggt aca gaa ata aaa gta tgg gtt gga cga gtc Ser Phe Ser Trp Gly Gly Thr Glu Ile Lys Val Trp Val Gly Arg Val 1245 1250 1255	3796
gaa gac ctg acc gtt tac ttc ctg gaa cct caa aat ggg atg ttt ggc Glu Asp Leu Thr Val Tyr Phe Leu Glu Pro Gln Asn Gly Met Phe Gly 1260 1265 1270	3844
gtt gga tgt gta tat gga agg aat gat gac cgc aga ttt ggg ttc ttc Val Gly Cys Val Tyr Gly Arg Asn Asp Asp Arg Arg Phe Gly Phe Phe 1275 1280 1285	3892
tgt cat tct gct cta gag ttt atc ctc cag aat gaa ttt tct cca cat Cys His Ser Ala Leu Glu Phe Ile Leu Gln Asn Glu Phe Ser Pro His 1290 1295 1300	3940
ata ata cat tgc cat gat tgg tca agt gct ccg gtc gcc tgg cta tat Ile Ile His Cys His Asp Trp Ser Ser Ala Pro Val Ala Trp Leu Tyr 1305 1310 1315 1320	3988
aag gaa cac tat tcc caa tcc aga atg gca agc act cgg gtt gta ttt Lys Glu His Tyr Ser Gln Ser Arg Met Ala Ser Thr Arg Val Val Phe 1325 1330 1335	4036

- 23 -

acc atc cac aat ctt gaa ttt gga gca cat tat att ggt aaa gca atg Thr Ile His Asn Leu Glu Phe Gly Ala His Tyr Ile Gly Lys Ala Met 1340 1345 1350	4084
aca tac tgt gat aaa gcc aca act gtt tct cct aca tat tca agg gac Thr Tyr Cys Asp Lys Ala Thr Thr Val Ser Pro Thr Tyr Ser Arg Asp 1355 1360 1365	4132
gtg gca ggc cat ggc gcc att gct cct cat cgt gag aaa ttc tac ggc Val Ala Gly His Gly Ala Ile Ala Pro His Arg Glu Lys Phe Tyr Gly 1370 1375 1380	4180
att ctc aat gga att gat cca gat atc tgg gat ccg tac act gac aat Ile Leu Asn Gly Ile Asp Pro Asp Ile Trp Asp Pro Tyr Thr Asp Asn 1385 1390 1395 1400	4228
ttt atc ccg gtc cct tat act tgt gag aat gtt gtc gaa ggc aag aga Phe Ile Pro Val Pro Tyr Thr Cys Glu Asn Val Val Glu Gly Lys Arg 1405 1410 1415	4276
gct gca aaa agg gcc ttg cag cag aag ttt gga tta cag caa act gat Ala Ala Lys Arg Ala Leu Gln Gln Lys Phe Gly Leu Gln Gln Thr Asp 1420 1425 1430	4324
gtc cct att gtc gga atc atc acc cgt ctg aca gcc cag aag gga atc Val Pro Ile Val Gly Ile Ile Thr Arg Leu Thr Ala Gln Lys Gly Ile 1435 1440 1445	4372
cac ctc atc aag cac gca att cac cga act ctc gaa agc aac gga cat His Leu Ile Lys His Ala Ile His Arg Thr Leu Glu Ser Asn Gly His 1450 1455 1460	4420
gtg gtt ttg ctt ggt tca gct cca gat cat cga ata caa ggc gat ttt Val Val Leu Leu Gly Ser Ala Pro Asp His Arg Ile Gln Gly Asp Phe 1465 1470 1475 1480	4468
tgc aga ttg gcc gat gct ctt cat ggt gtt tac cat ggt agg gtg aag Cys Arg Leu Ala Asp Ala Leu His Gly Val Tyr His Gly Arg Val Lys 1485 1490 1495	4516
ctt gtt cta acc tat gat gag cct ctt tct cac ctg ata tac gct ggc Leu Val Leu Thr Tyr Asp Glu Pro Leu Ser His Leu Ile Tyr Ala Gly 1500 1505 1510	4564
tcg gac ttc ata att gtt cct tca atc ttc gaa ccc tgt ggc tta aca Ser Asp Phe Ile Ile Val Pro Ser Ile Phe Glu Pro Cys Gly Leu Thr 1515 1520 1525	4612
caa ctt gtt gcc atg cgt tat gga tcg atc cct ata gtt cgg aaa act Gln Leu Val Ala Met Arg Tyr Gly Ser Ile Pro Ile Val Arg Lys Thr 1530 1535 1540	4660
gga gga ctt cac gac aca gtc ttc gac gta gac aat gat aag gac cgg Gly Gly Leu His Asp Thr Val Phe Asp Val Asp Asn Asp Lys Asp Arg 1545 1550 1555 1560	4708
gct cgg tct ctt ggt ctt gaa cca aat ggg ttc agt ttc gac gga gcc Ala Arg Ser Leu Gly Leu Glu Pro Asn Gly Phe Ser Phe Asp Gly Ala 1565 1570 1575	4756
gac agc aat ggc gtg gat tat gcc ctc aac aga gca atc ggc gct tgg Asp Ser Asn Gly Val Asp Tyr Ala Leu Asn Arg Ala Ile Gly Ala Trp 1580 1585 1590	4804
ttc gat gcc cgt gat tgg ttc cac tcc ctg tgt aag agg gtc atg gag	4852

- 24 -

Phe Asp Ala Arg Asp Trp Phe His Ser Leu Cys Lys Arg Val Met Glu			
1595	1600	1605	
caa gac tgg tcg tgg aac cgg ccc gca ctg gac tac att gaa ttg tac			4900
Gln Asp Trp Ser Trp Asn Arg Pro Ala Leu Asp Tyr Ile Glu Leu Tyr			
1610	1615	1620	
cat gcc gct cga aaa ttc tga cacccaaactg aaccaatgac aagaacaago			4951
His Ala Ala Arg Lys Phe			
1625	1630		
gcattgtggg atcgactagt catacagggc tgtgcagatc gtcttgcttc agtttagtgcc			5011
ctcttcagtt agttccaaggc gcactacagt cgtacatagc tgaggatcct cttgcctcct			5071
accaggggga acaaaggcaga aatgcatgag tgcattggga agacttttat gtatattgtt			5131
aaaaaaaaattt cctttcttt tccttccctg cacctggaaa tggtaagcg catcgccgag			5191
ataagaaccg cagtgacatt ctgtgagtag ctttgtatat tctctcatct tgtgaaaact			5251
aatgttcatg ttaggctgtc tgatcatgtg gaagctttgt tatatgttac ttatggtata			5311
catcaatgat atttacattt gtggaaaaaa aaaaaaaaaa a			5352

<210> 8
<211> 1630
<212> PRT
<213> Triticum aestivum

<400> 8
Met Glu Met Ser Leu Trp Pro Arg Ser Pro Leu Cys Pro Arg Ser Arg
1 5 10 15

Gln Pro Leu Val Val Val Arg Pro Ala Gly Arg Gly Gly Leu Thr Gln
20 25 30

Pro Phe Leu Met Asn Gly Arg Phe Thr Arg Ser Arg Thr Leu Arg Cys
35 40 45

Met Val Ala Ser Ser Asp Pro Pro Asn Arg Lys Ser Arg Arg Met Val
50 55 60

Pro Pro Gln Val Lys Val Ile Ser Ser Arg Gly Tyr Thr Thr Arg Leu
65 70 75 80

Ile Val Glu Pro Ser Asn Glu Asn Thr Glu His Asn Asn Arg Asp Glu
85 90 95

Glu Thr Leu Asp Thr Tyr Asn Ala Leu Leu Ser Thr Glu Thr Ala Glu
100 105 110

Trp Thr Asp Asn Arg Glu Ala Glu Thr Ala Lys Ala Asp Ser Ser Gln
115 120 125

Asn Ala Leu Ser Ser Ser Ile Ile Gly Glu Val Asp Val Ala Asp Glu
130 135 140

Asp Ile Leu Ala Ala Asp Leu Thr Val Tyr Ser Leu Ser Ser Val Met
145 150 155 160

Lys Lys Glu Val Asp Ala Ala Asp Lys Ala Arg Val Lys Glu Asp Ala
165 170 175

- 25 -

Phe	Glu	Leu	Asp	Xaa	Ala	Ser	Thr	Thr	Leu	Arg	Ser	Val	Ile	Val	Asp
				180					185				190		
Val	Met	Asp	His	Xaa	Trp	Asp	Cys	Gln	Glu	Thr	Leu	Arg	Ser	Val	Ile
	195					200				205					
Val	Asp	Val	Met	Asp	His	Asn	Gly	Thr	Val	Gln	Glu	Thr	Leu	Arg	Ser
	210					215				220					
Val	Ile	Val	Asp	Val	Met	Asp	Asp	Ala	Ala	Asp	Lys	Ala	Arg	Val	Glu
	225				230				235			240			
Glu	Asp	Val	Phe	Glu	Leu	Asp	Leu	Ser	Gly	Asn	Ile	Ser	Ser	Ser	Ala
	245					250				255					
Thr	Thr	Val	Glu	Leu	Asp	Ala	Val	Asp	Glu	Val	Gly	Pro	Val	Gln	Asp
	260					265				270					
Lys	Phe	Glu	Ala	Thr	Ser	Ser	Gly	Asn	Val	Ser	Asn	Ser	Ala	Thr	Val
	275					280				285					
Arg	Glu	Val	Asp	Ala	Ser	Asp	Glu	Ala	Gly	Asn	Asp	Gln	Gly	Ile	Phe
	290					295				300					
Arg	Ala	Asp	Leu	Ser	Gly	Asn	Val	Phe	Ser	Ser	Ser	Thr	Thr	Val	Glu
	305				310				315			320			
Val	Gly	Ala	Val	Asp	Glu	Ala	Gly	Ser	Ile	Lys	Asp	Arg	Phe	Glu	Thr
	325					330				335					
Asp	Ser	Ser	Gly	Asn	Val	Ser	Thr	Ser	Ala	Pro	Met	Trp	Asp	Ala	Ile
	340					345				350					
Asp	Glu	Thr	Val	Ala	Asp	Gln	Asp	Thr	Phe	Glu	Ala	Asp	Leu	Ser	Gly
	355					360				365					
Asn	Ala	Ser	Ser	Cys	Ala	Thr	Tyr	Arg	Glu	Val	Asp	Asp	Val	Val	Asp
	370					375				380					
Glu	Thr	Arg	Ser	Glu	Glu	Glu	Thr	Phe	Ala	Met	Asp	Leu	Phe	Ala	Ser
	385				390				395			400			
Glu	Ser	Gly	His	Glu	Lys	His	Met	Ala	Val	Asp	Tyr	Val	Gly	Glu	Ala
	405					410				415					
Thr	Asp	Glu	Glu	Glu	Thr	Tyr	Gln	Gln	Gln	Tyr	Pro	Val	Pro	Ser	Ser
	420					425				430					
Phe	Ser	Met	Trp	Asp	Lys	Ala	Ile	Ala	Lys	Thr	Gly	Val	Ser	Leu	Asn
	435					440				445					
Pro	Glu	Leu	Arg	Leu	Val	Arg	Val	Glu	Glu	Gln	Gly	Lys	Val	Asn	Phe
	450					455				460					
Ser	Asp	Lys	Lys	Asp	Leu	Ser	Ile	Asp	Asp	Leu	Pro	Gly	Gln	Asn	Gln
	465					470				475			480		
Ser	Ile	Ile	Gly	Ser	Tyr	Lys	Gln	Asp	Lys	Ser	Ile	Ala	Asp	Val	Ala
	485					490				495					
Gly	Pro	Thr	Gln	Ser	Ile	Phe	Gly	Ser	Ser	Lys	Gln	His	Arg	Ser	Ile
	500					505				510					
Val	Ala	Phe	Pro	Lys	Gln	Asn	Gln	Ser	Ile	Val	Ser	Val	Thr	Glu	Gln
	515					520				525					

- 26 -

Lys Gln Ser Ile Val Gly Phe Arg Ser Gln Asp Leu Ser Ala Val Ser
 530 535 540

Leu Pro Lys Gln Asn Val Pro Ile Val Gly Tyr Val Glu Arg Gly Ser
 545 550 555 560

Asn Xaa Lys Gln Val Pro Val Val Asp Arg Gln Asp Ala Leu Tyr Val
 565 570 575

Asn Gly Leu Glu Ala Lys Glu Gly Asp His Thr Ser Glu Lys Thr Asp
 580 585 590

Glu Asp Ala Leu His Val Lys Phe Asn Val Asp Asn Val Leu Arg Lys
 595 600 605

His Gln Ala Asp Arg Thr Gln Ala Val Glu Lys Thr Trp Lys Lys
 610 615 620

Val Asp Glu Glu His Leu Tyr Met Thr Glu His Gln Lys Arg Ala Ala
 625 630 635 640

Glu Gly Gln Met Val Val Asn Glu Asp Glu Leu Ser Ile Thr Glu Ile
 645 650 655

Gly Met Gly Arg Gly Asp Lys Ile Gln His Val Leu Ser Glu Glu Glu
 660 665 670

Leu Ser Trp Ser Glu Asp Glu Val Gln Leu Ile Glu Asp Asp Gly Gln
 675 680 685

Tyr Glu Val Asp Glu Thr Ser Val Ser Val Asn Val Glu Gln Asp Ile
 690 695 700

Gln Gly Ser Pro Gln Asp Val Val Asp Pro Gln Ala Leu Lys Val Met
 705 710 715 720

Leu Gln Glu Leu Ala Glu Lys Asn Tyr Ser Met Arg Asn Lys Leu Phe
 725 730 735

Val Phe Pro Glu Val Val Lys Ala Asp Ser Val Ile Asp Leu Tyr Leu
 740 745 750

Asn Arg Asp Leu Thr Ala Leu Ala Asn Glu Pro Asp Val Val Ile Lys
 755 760 765

Gly Ala Phe Asn Gly Trp Lys Trp Arg Leu Phe Thr Glu Arg Leu His
 770 775 780

Lys Ser Asp Leu Gly Gly Val Trp Trp Ser Cys Lys Leu Tyr Ile Pro
 785 790 795 800

Lys Glu Ala Tyr Arg Leu Asp Phe Val Phe Phe Asn Gly Arg Thr Val
 805 810 815

Tyr Glu Asn Asn Gly Asn Asn Asp Phe Cys Ile Gly Ile Glu Gly Thr
 820 825 830

Met Asn Glu Asp Leu Phe Glu Asp Phe Leu Val Lys Glu Lys Gln Arg
 835 840 845

Glu Leu Glu Lys Leu Ala Met Glu Glu Ala Glu Arg Arg Thr Gln Thr
 850 855 860

Glu Glu Gln Arg Arg Lys Glu Ala Arg Ala Ala Asp Glu Ala Val

- 27 -

865	870	875	880
Arg Ala Gln Ala Lys Ala Glu Ile Glu Ile Lys Lys Lys Lys Leu Gln			
885	890	895	
Ser Met Leu Ser Leu Ala Arg Thr Cys Val Asp Asn Leu Trp Tyr Ile			
900	905	910	
Glu Ala Ser Thr Asp Thr Arg Gly Asp Thr Ile Arg Leu Tyr Tyr Asn			
915	920	925	
Arg Asn Ser Arg Pro Leu Ala His Ser Thr Glu Ile Trp Met His Gly			
930	935	940	
Gly Tyr Asn Asn Trp Thr Asp Gly Leu Ser Ile Val Glu Ser Phe Val			
945	950	955	960
Lys Cys Asn Asp Lys Asp Gly Asp Trp Trp Tyr Ala Asp Val Ile Pro			
965	970	975	
Pro Glu Lys Ala Leu Val Leu Asp Trp Val Phe Ala Asp Gly Pro Ala			
980	985	990	
Gly Asn Ala Arg Asn Tyr Asp Asn Asn Ala Arg Gln Asp Phe His Ala			
995	1000	1005	
Ile Leu Pro Asn Asn Asn Val Thr Glu Glu Gly Phe Trp Ala Gln Glu			
1010	1015	1020	
Glu Gln Asn Ile Tyr Thr Arg Leu Leu Gln Glu Arg Arg Glu Lys Glu			
025	1030	1035	1040
Glu Thr Met Lys Arg Lys Ala Glu Arg Ser Ala Asn Ile Lys Ala Glu			
1045	1050	1055	
Met Lys Ala Lys Thr Met Arg Arg Phe Leu Leu Ser Gln Lys His Ile			
1060	1065	1070	
Val Tyr Thr Arg Thr Xaa Leu Lys Tyr Val Pro Gly Thr Thr Val Asp			
1075	1080	1085	
Val Leu Tyr Asn Pro Ser Asn Thr Val Leu Asn Gly Lys Ser Glu Gly			
1090	1095	1100	
Trp Phe Arg Cys Ser Phe Asn Leu Trp Met His Ser Ser Gly Ala Leu			
105	1110	1115	1120
Pro Pro Gln Lys Met Val Lys Ser Gly Asp Gly Pro Leu Leu Lys Ala			
1125	1130	1135	
Thr Val Asp Val Pro Pro Asp Ala Tyr Met Met Asp Phe Val Phe Ser			
1140	1145	1150	
Glu Trp Glu Glu Asp Gly Ile Tyr Asp Asn Arg Asn Gly Met Asp Tyr			
1155	1160	1165	
His Ile Pro Val Ser Asp Ser Ile Glu Thr Glu Asn Tyr Met Arg Ile			
1170	1175	1180	
Ile His Ile Ala Val Glu Met Ala Pro Val Ala Lys Val Gly Gly Leu			
185	1190	1195	1200
Gly Asp Val Val Thr Ser Leu Ser Arg Ala Ile Gln Asp Leu Gly His			
1205	1210	1215	

- 28 -

Thr Val Glu Val Ile Leu Pro Lys Tyr Asp Cys Leu Asn Gln Ser Ser
 1220 1225 1230
 Val Lys Asp Leu His Leu Tyr Gln Ser Phe Ser Trp Gly Gly Thr Glu
 1235 1240 1245
 Ile Lys Val Trp Val Gly Arg Val Glu Asp Leu Thr Val Tyr Phe Leu
 1250 1255 1260
 Glu Pro Gln Asn Gly Met Phe Gly Val Gly Cys Val Tyr Gly Arg Asn
 265 1270 1275 1280
 Asp Asp Arg Arg Phe Gly Phe Cys His Ser Ala Leu Glu Phe Ile
 1285 1290 1295
 Leu Gln Asn Glu Phe Ser Pro His Ile Ile His Cys His Asp Trp Ser
 1300 1305 1310
 Ser Ala Pro Val Ala Trp Leu Tyr Lys Glu His Tyr Ser Gln Ser Arg
 1315 1320 1325
 Met Ala Ser Thr Arg Val Val Phe Thr Ile His Asn Leu Glu Phe Gly
 1330 1335 1340
 Ala His Tyr Ile Gly Lys Ala Met Thr Tyr Cys Asp Lys Ala Thr Thr
 345 1350 1355 1360
 Val Ser Pro Thr Tyr Ser Arg Asp Val Ala Gly His Gly Ala Ile Ala
 1365 1370 1375
 Pro His Arg Glu Lys Phe Tyr Gly Ile Leu Asn Gly Ile Asp Pro Asp
 1380 1385 1390
 Ile Trp Asp Pro Tyr Thr Asp Asn Phe Ile Pro Val Pro Tyr Thr Cys
 1395 1400 1405
 Glu Asn Val Val Glu Gly Lys Arg Ala Ala Lys Arg Ala Leu Gln Gln
 1410 1415 1420
 Lys Phe Gly Leu Gln Gln Thr Asp Val Pro Ile Val Gly Ile Ile Thr
 425 1430 1435 1440
 Arg Leu Thr Ala Gln Lys Gly Ile His Leu Ile Lys His Ala Ile His
 1445 1450 1455
 Arg Thr Leu Glu Ser Asn Gly His Val Val Leu Leu Gly Ser Ala Pro
 1460 1465 1470
 Asp His Arg Ile Gln Gly Asp Phe Cys Arg Leu Ala Asp Ala Leu His
 1475 1480 1485
 Gly Val Tyr His Gly Arg Val Lys Leu Val Leu Thr Tyr Asp Glu Pro
 1490 1495 1500
 Leu Ser His Leu Ile Tyr Ala Gly Ser Asp Phe Ile Ile Val Pro Ser
 505 1510 1515 1520
 Ile Phe Glu Pro Cys Gly Leu Thr Gln Leu Val Ala Met Arg Tyr Gly
 1525 1530 1535
 Ser Ile Pro Ile Val Arg Lys Thr Gly Gly Leu His Asp Thr Val Phe
 1540 1545 1550
 Asp Val Asp Asn Asp Lys Asp Arg Ala Arg Ser Leu Gly Leu Glu Pro
 1555 1560 1565

- 29 -

Asn Gly Phe Ser Phe Asp Gly Ala Asp Ser Asn Gly Val Asp Tyr Ala
 1570 1575 1580

Leu Asn Arg Ala Ile Gly Ala Trp Phe Asp Ala Arg Asp Trp Phe His
 585 1590 1595 1600

Ser Leu Cys Lys Arg Val Met Glu Gln Asp Trp Ser Trp Asn Arg Pro
 1605 1610 1615

Ala Leu Asp Tyr Ile Glu Leu Tyr His Ala Ala Arg Lys Phe
 1620 1625 1630

<210> 9

<211> 3621

<212> DNA

<213> Triticum aestivum

<220>

<221> CDS

<222> (1)..(3180)

<400> 9

gat gca ttg tat gtg aat gga ctg gaa gct aag gag gga gat cac aca	48
Asp Ala Leu Tyr Val Asn Gly Leu Glu Ala Lys Glu Gly Asp His Thr	
1 5 10 15	

tcc gag aaa act gat gag gat gcg ctt cat gta aag ttt aat gtt gac	96
Ser Glu Lys Thr Asp Glu Asp Ala Leu His Val Lys Phe Asn Val Asp	
20 25 30	

aat gtg ttg cgg aag cat cag gca gat aga acc caa gca gtg gaa aag	144
Asn Val Leu Arg Lys His Gln Ala Asp Arg Thr Gln Ala Val Glu Lys	
35 40 45	

aaa act tgg aag aaa gtt gat gag gaa cat ctt tac atg act gaa cat	192
Lys Thr Trp Lys Val Asp Glu Glu His Leu Tyr Met Thr Glu His	
50 55 60	

cag aaa cgt gct gcc gaa gga cag atg gta gtt aac gag gat gag ctt	240
Gln Lys Arg Ala Ala Glu Gly Gln Met Val Val Asn Glu Asp Glu Leu	
65 70 75 80	

tct ata act gaa att gga atg ggg aga ggt gat aaa att cag cat gtg	288
Ser Ile Thr Glu Ile Gly Met Gly Arg Gly Asp Lys Ile Gln His Val	
85 90 95	

ctt tct gag gaa gag ctt tca tgg tct gaa gat gaa gtg cag tta att	336
Leu Ser Glu Glu Leu Ser Trp Ser Glu Asp Glu Val Gln Leu Ile	
100 105 110	

gag gat gat gga caa tat gaa gtt gac gag acc tct gtg tcc gtt aac	384
Glu Asp Asp Gly Gln Tyr Glu Val Asp Glu Thr Ser Val Ser Val Asn	
115 120 125	

gtt gaa caa gat atc cag ggg tca cca cag gat gtt gtg gat ccg caa	432
Val Glu Gln Asp Ile Gln Gly Ser Pro Gln Asp Val Val Asp Pro Gln	
130 135 140	

gca cta aag gtg atg ctg caa gaa ctc gct gag aaa aat tat tcg atg	480
Ala Leu Lys Val Met Leu Gln Glu Leu Ala Glu Lys Asn Tyr Ser Met	
145 150 155 160	

agg aac aag ctg ttt gtt ttt cca gag gta gtg aaa gct gat tca gtt	528
---	-----

- 30 -

Arg Asn Lys Leu Phe Val Phe Pro Glu Val Val Lys Ala Asp Ser Val			
165	170	175	
att gat ctt tat tta aat cgt gac cta aca gct ttg gcg aat gaa ccc	576		
Ile Asp Leu Tyr Leu Asn Arg Asp Leu Thr Ala Leu Ala Asn Glu Pro			
180	185	190	
gat gtc gtc atc aaa gga gca ttc aat ggt tgg aaa tgg agg ctt ttc	624		
Asp Val Val Ile Lys Gly Ala Phe Asn Gly Trp Lys Trp Arg Leu Phe			
195	200	205	
act gaa aga ttg cac aag agt gac ctt gga ggg gtt tgg tgg tct tgc	672		
Thr Glu Arg Leu His Lys Ser Asp Leu Gly Gly Val Trp Trp Ser Cys			
210	215	220	
aaa ctg tac ata ccc aag gag gcc tac aga tta gac ttt gtg ttc ttc	720		
Lys Leu Tyr Ile Pro Lys Glu Ala Tyr Arg Leu Asp Phe Val Phe Phe			
225	230	235	240
aac ggt cgcc acg gtc tat gag aac aat ggc aac aat gat ttc tgt ata	768		
Asn Gly Arg Thr Val Tyr Glu Asn Asn Gly Asn Asn Asp Phe Cys Ile			
245	250	255	
gga ata gaa ggc act atg aat gaa gat ctg ttt gag gat ttc ttg gtt	816		
Gly Ile Glu Gly Thr Met Asn Glu Asp Leu Phe Glu Asp Phe Leu Val			
260	265	270	
aaa gaa aag caa agg gag ctt gag aaa ctt gcc atg gaa gaa gct gaa	864		
Lys Glu Lys Gln Arg Glu Leu Glu Lys Leu Ala Met Glu Glu Ala Glu			
275	280	285	
agg agg aca cag act gaa gaa cag cgg cga aga aag gaa gca agg gct	912		
Arg Arg Thr Gln Thr Glu Gln Arg Arg Arg Lys Glu Ala Arg Ala			
290	295	300	
gca gat gaa gct gtc agg gca caa gcg aag gcc gag ata gag atc aag	960		
Ala Asp Glu Ala Val Arg Ala Gln Ala Lys Ala Glu Ile Glu Ile Lys			
305	310	315	320
aag aaa aaa ttg caa agt atg ttg agt ttg gcc aga aca tgg gtt gat	1008		
Lys Lys Lys Leu Gln Ser Met Leu Ser Ala Arg Thr Cys Val Asp			
325	330	335	
aat ttg tgg tac ata gag gct agc aca gat aca aga gga gat act atc	1056		
Asn Leu Trp Tyr Ile Glu Ala Ser Thr Asp Thr Arg Gly Asp Thr Ile			
340	345	350	
agg tta tat tat aac aga aac tcg agg cca ctt gcg cat agt act gag	1104		
Arg Leu Tyr Tyr Asn Arg Asn Ser Arg Pro Leu Ala His Ser Thr Glu			
355	360	365	
att tgg atg cat ggt ggt tac aac aat tgg tca gat gga ctc tct att	1152		
Ile Trp Met His Gly Gly Tyr Asn Asn Trp Ser Asp Gly Leu Ser Ile			
370	375	380	
gtt gaa agc ttt gtc aag tgc aat gac aaa gac ggc gat tgg tgg tat	1200		
Val Glu Ser Phe Val Lys Cys Asn Asp Lys Asp Gly Asp Trp Trp Tyr			
385	390	395	400
gca gat gtt att cca cct gaa aag gca ctt gtg ttg gac tgg gtt ttt	1248		
Ala Asp Val Ile Pro Pro Glu Lys Ala Leu Val Leu Asp Trp Val Phe			
405	410	415	
gct gat ggg cca gct ggg aat gca agg aac tat gac aac aat gct cga	1296		
Ala Asp Gly Pro Ala Gly Asn Ala Arg Asn Tyr Asp Asn Ala Arg			

- 31 -

420	425	430	
caa gat ttc cat gct att ctt ccg aac aac aat gta acc gag gaa ggc Gln Asp Phe His Ala Ile Leu Pro Asn Asn Asn Val Thr Glu Glu Gly 435	440	445	1344
ttc tgg gcg caa gag gag caa aac atc tat aca agg ctt ctg caa gaa Phe Trp Ala Gln Glu Glu Gln Asn Ile Tyr Thr Arg Leu Leu Gln Glu 450	455	460	1392
agg aga gaa aag gaa acc atg aaa aga aag gct gag aga agt gca Arg Arg Glu Lys Glu Glu Thr Met Lys Arg Lys Ala Glu Arg Ser Ala 465	470	475	1440
aat atc aaa gct gag atg aag gca aaa act atg cga agg ttt ctg ctt Asn Ile Lys Ala Glu Met Lys Ala Lys Thr Met Arg Arg Phe Leu Leu 485	490	495	1488
tcc cag aaa cac att gtt tat acc cga acc gnc ttg aaa tac gtg ccc Ser Gln Lys His Ile Val Tyr Thr Arg Thr Xaa Leu Lys Tyr Val Pro 500	505	510	1536
gga acc aca gtg gat gtg cta tac aat ccc tct aac aca gtg cta aat Gly Thr Thr Val Asp Val Leu Tyr Asn Pro Ser Asn Thr Val Leu Asn 515	520	525	1584
gga aag tcg gag ggt tgg ttt aga tgc tcc ttt aac ctt tgg atg cat Gly Lys Ser Glu Gly Trp Phe Arg Cys Ser Phe Asn Leu Trp Met His 530	535	540	1632
tca agt ggg gca ttg cca ccc cag aag atg gtg aaa tca ggg gat ggg Ser Ser Gly Ala Leu Pro Pro Gln Lys Met Val Lys Ser Gly Asp Gly 545	550	555	1680
ccg ctc tta aaa gca aca gtt gat gtt cca ccg gat gcc tat atg atg Pro Leu Leu Lys Ala Thr Val Asp Val Pro Pro Asp Ala Tyr Met Met 565	570	575	1728
gac ttt gtt ttc tcc gag tgg gaa gaa gat ggg atc tat gac aac agg Asp Phe Val Phe Ser Glu Trp Glu Glu Asp Gly Ile Tyr Asp Asn Arg 580	585	590	1776
aat ggg atg gac tat cat att cct gtt tct gat tca att gaa aca gag Asn Gly Met Asp Tyr His Ile Pro Val Ser Asp Ser Ile Glu Thr Glu 595	600	605	1824
aat tac atg cgt att atc cac att gcc gtt gag atg gcc ccc gtt gca Asn Tyr Met Arg Ile Ile His Ile Ala Val Glu Met Ala Pro Val Ala 610	615	620	1872
aag gtt gga ggt ctt ggg gat gtt gtt aca agt ctt tca cgt gcc att Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser Arg Ala Ile 625	630	635	1920
caa gat cta gga cat act gtc gag gtt att ctc ccg aag tac gac tgt Gln Asp Leu Gly His Thr Val Glu Val Ile Leu Pro Lys Tyr Asp Cys 645	650	655	1968
ttg aac caa agc agt gtc aag gat tta cat tta tat caa agt ttt tct Leu Asn Gln Ser Ser Val Lys Asp Leu His Leu Tyr Gln Ser Phe Ser 660	665	670	2016
tgg ggt ggt aca gaa ata aaa gta tgg gtt gga cga gtc gaa gac ctg Trp Gly Gly Thr Glu Ile Lys Val Trp Val Gly Arg Val Glu Asp Leu 675	680	685	2064

- 32 -

acc gtt tac ttc ctg gaa cct caa aat ggg atg ttt ggc gtt gga tgt Thr Val Tyr Phe Leu Glu Pro Gln Asn Gly Met Phe Gly Val Gly Cys 690 695 700	2112
gta tat gga agg aat gat gac cgc aga ttt ggg ttc ttc tgt cat tct Val Tyr Gly Arg Asn Asp Asp Arg Arg Phe Gly Phe Phe Cys His Ser 705 710 715 720	2160
gct cta gag ttt atc ctc cag aat gaa ttt tct cca cat ata ata cat Ala Leu Glu Phe Ile Leu Gln Asn Glu Phe Ser Pro His Ile Ile His 725 730 735	2208
tgc cat gat tgg tca agt gct ccg gtc gcc tgg cta tat aag gaa cac Cys His Asp Trp Ser Ser Ala Pro Val Ala Trp Leu Tyr Lys Glu His 740 745 750	2256
tat tcc caa tcc aga atg gca agc act cgg gtt gta ttt acc atc cac Tyr Ser Gln Ser Arg Met Ala Ser Thr Arg Val Val Phe Thr Ile His 755 760 765	2304
aat ctt gaa ttt gga gca cat tat att ggt aaa gca atg aca tac tgt Asn Leu Glu Phe Gly Ala His Tyr Ile Gly Lys Ala Met Thr Tyr Cys 770 775 780	2352
gat aaa gcc aca act gtt tct cct aca tat tca agg gac gtg gca ggc Asp Lys Ala Thr Thr Val Ser Pro Thr Tyr Ser Arg Asp Val Ala Gly 785 790 795 800	2400
cat ggc gcc att gct cct cat cgt gag aaa ttc tac ggc att ctc aat His Gly Ala Ile Ala Pro His Arg Glu Lys Phe Tyr Gly Ile Leu Asn 805 810 815	2448
gga att gat cca gat atc tgg gat ccg tac act gac aat ttt atc ccg Gly Ile Asp Pro Asp Ile Trp Asp Pro Tyr Thr Asp Asn Phe Ile Pro 820 825 830	2496
gtc cct tat act tgt gag aat gtt gtc gaa ggc aag agg gct gca aaa Val Pro Tyr Thr Cys Glu Asn Val Glu Gly Lys Arg Ala Ala Lys 835 840 845	2544
agg gcc ttg cag cag aag ttt gga tta cag caa act gat gtc cct att Arg Ala Leu Gln Gln Lys Phe Gly Leu Gln Gln Thr Asp Val Pro Ile 850 855 860	2592
gtc gga atc atc acc cgt ctg aca gca cag aag gga atc cac ctc atc Val Gly Ile Ile Thr Arg Leu Thr Ala Gln Lys Gly Ile His Leu Ile 865 870 875 880	2640
aag cac gca att cac cga acc ctc gag agc aat gga caa gtg gtt ttg Lys His Ala Ile His Arg Thr Leu Glu Ser Asn Gly Gln Val Val Leu 885 890 895	2688
ctt ggt tca gct cca gat cat cga ata caa ggc gat ttt tgc aga ttg Leu Gly Ser Ala Pro Asp His Arg Ile Gln Gly Asp Phe Cys Arg Leu 900 905 910	2736
gcc gat gct ctt cac ggt gtt tac cat ggt agg gtg aag ctt gtt cta Ala Asp Ala Leu His Gly Val Tyr His Gly Arg Val Lys Leu Val Leu 915 920 925	2784
acc tac gat gag cct ctt tct cac ctg ata tac gct ggc tcc gac ttc Thr Tyr Asp Glu Pro Leu Ser His Leu Ile Tyr Ala Gly Ser Asp Phe 930 935 940	2832

- 33 -

att att gtc cct tca atc ttt gaa ccc tgt ggc tta aca caa ctt gtt		2880
Ile Ile Val Pro Ser Ile Phe Glu Pro Cys Gly Leu Thr Gln Leu Val		
945	950	955
		960
gcc atg cgt tat gga tcg atc cct ata gtt cgaa aaa acc gga gga ctt		2928
Ala Met Arg Tyr Gly Ser Ile Pro Ile Val Arg Lys Thr Gly Gly Leu		
965	970	975
tac gac act gtc ttc gac gta gac aat gat aag gac cgaa gct cgaa tct		2976
Tyr Asp Thr Val Phe Asp Val Asp Asn Asp Lys Asp Arg Ala Arg Ser		
980	985	990
ctt ggt ctt gaa cca aat ggg ttc agt ttc gac gga gcc gac agc aat		3024
Leu Gly Leu Glu Pro Asn Gly Phe Ser Phe Asp Gly Ala Asp Ser Asn		
995	1000	1005
ggc gtg gat tat gcc ctc aac aga gca atc ggc gct tgg ttc gat gcc		3072
Gly Val Asp Tyr Ala Leu Asn Arg Ala Ile Gly Ala Trp Phe Asp Ala		
1010	1015	1020
cgt gat tgg ttc cac tcc ctg tgt aag agg gtc atg gag caa gac tgg		3120
Arg Asp Trp Phe His Ser Leu Cys Lys Arg Val Met Glu Gln Asp Trp		
1025	1030	1035
1040		
tcg tgg aac cgg cct gca ctg gac tac att gaa ttg tac cat gcc gct		3168
Ser Trp Asn Arg Pro Ala Leu Asp Tyr Ile Glu Leu Tyr His Ala Ala		
1045	1050	1055
cga aaa ttc tga caccaactg aaccaatggc aagaacaagc gcattgtggg		3220
Arg Lys Phe		
1060		
atcgactaca gtcatacagg gctgtcaga tcgtcttgct tcagtttagtgccttcag		3280
ttagttccaa gcgcactaca gtcgtacata gctgaggatc ctcttcgcctc ctccaccagg		3340
ggaaacaaag cagaaatgca taagtgcatt gggaaagactt ttatgtatat tgtaaattt		3400
ttcctttct tttccttccc tgcacctgga aatggtaag cgcacgcgg agataagaac		3460
cacagtaaca ttctgtgagt agctttgtat attctctcat cttgtaaaaa ctaatgtgca		3520
tgttaggctc tctgatcatg tggaaagctt gttatatgtt acttatggtt atatggata		3580
catcaatgat attcacattt gtggaaaaaaa aaaaaaaaaa a		3621
<210> 10		
<211> 1059		
<212> PRT		
<213> Triticum aestivum		
<400> 10		
Asp Ala Leu Tyr Val Asn Gly Leu Glu Ala Lys Glu Gly Asp His Thr		
1	5	10
		15
Ser Glu Lys Thr Asp Glu Asp Ala Leu His Val Lys Phe Asn Val Asp		
20	25	30
Asn Val Leu Arg Lys His Gln Ala Asp Arg Thr Gln Ala Val Glu Lys		
35	40	45
Lys Thr Trp Lys Lys Val Asp Glu Glu His Leu Tyr Met Thr Glu His		
50	55	60

- 34 -

Gln	Lys	Arg	Ala	Ala	Glu	Gly	Gln	Met	Val	Val	Asn	Glu	Asp	Glu	Leu
65					70				75			80			
Ser	Ile	Thr	Glu	Ile	Gly	Met	Gly	Arg	Gly	Asp	Lys	Ile	Gln	His	Val
				85					90			95			
Leu	Ser	Glu	Glu	Leu	Ser	Trp	Ser	Glu	Asp	Glu	Val	Gln	Leu	Ile	
				100				105			110				
Glu	Asp	Asp	Gly	Gln	Tyr	Glu	Val	Asp	Glu	Thr	Ser	Val	Ser	Val	Asn
				115				120			125				
Val	Glu	Gln	Asp	Ile	Gln	Gly	Ser	Pro	Gln	Asp	Val	Val	Asp	Pro	Gln
				130			135			140					
Ala	Leu	Lys	Val	Met	Leu	Gln	Glu	Leu	Ala	Glu	Lys	Asn	Tyr	Ser	Met
				145			150			155			160		
Arg	Asn	Lys	Leu	Phe	Val	Phe	Pro	Glu	Val	Val	Lys	Ala	Asp	Ser	Val
				165			170			175					
Ile	Asp	Leu	Tyr	Leu	Asn	Arg	Asp	Leu	Thr	Ala	Leu	Ala	Asn	Glu	Pro
				180			185			190					
Asp	Val	Val	Ile	Lys	Gly	Ala	Phe	Asn	Gly	Trp	Lys	Trp	Arg	Leu	Phe
				195			200			205					
Thr	Glu	Arg	Leu	His	Lys	Ser	Asp	Leu	Gly	Gly	Val	Trp	Trp	Ser	Cys
				210			215			220					
Lys	Leu	Tyr	Ile	Pro	Lys	Glu	Ala	Tyr	Arg	Leu	Asp	Phe	Val	Phe	Phe
				225			230			235			240		
Asn	Gly	Arg	Thr	Val	Tyr	Glu	Asn	Asn	Gly	Asn	Asn	Asp	Phe	Cys	Ile
				245			250			255					
Gly	Ile	Glu	Gly	Thr	Met	Asn	Glu	Asp	Leu	Phe	Glu	Asp	Phe	Leu	Val
				260			265			270					
Lys	Glu	Lys	Gln	Arg	Glu	Leu	Glu	Lys	Leu	Ala	Met	Glu	Glu	Ala	Glu
				275			280			285					
Arg	Arg	Thr	Gln	Thr	Glu	Glu	Gln	Arg	Arg	Arg	Lys	Glu	Ala	Arg	Ala
				290			295			300					
Ala	Asp	Glu	Ala	Val	Arg	Ala	Gln	Ala	Lys	Ala	Glu	Ile	Glu	Ile	Lys
				305			310			315			320		
Lys	Lys	Lys	Leu	Gln	Ser	Met	Leu	Ser	Leu	Ala	Arg	Thr	Cys	Val	Asp
				325			330			335					
Asn	Leu	Trp	Tyr	Ile	Glu	Ala	Ser	Thr	Asp	Thr	Arg	Gly	Asp	Thr	Ile
				340			345			350					
Arg	Leu	Tyr	Tyr	Asn	Arg	Asn	Ser	Arg	Pro	Leu	Ala	His	Ser	Thr	Glu
				355			360			365					
Ile	Trp	Met	His	Gly	Gly	Tyr	Asn	Asn	Trp	Ser	Asp	Gly	Leu	Ser	Ile
				370			375			380					
Val	Glu	Ser	Phe	Val	Lys	Cys	Asn	Asp	Lys	Asp	Gly	Asp	Trp	Trp	Tyr
				385			390			395			400		
Ala	Asp	Val	Ile	Pro	Pro	Glu	Lys	Ala	Leu	Val	Leu	Asp	Trp	Val	Phe
				405			410			415					

- 35 -

Ala Asp Gly Pro Ala Gly Asn Ala Arg Asn Tyr Asp Asn Asn Ala Arg
 420 425 430

 Gln Asp Phe His Ala Ile Leu Pro Asn Asn Asn Val Thr Glu Glu Gly
 435 440 445

 Phe Trp Ala Gln Glu Glu Gln Asn Ile Tyr Thr Arg Leu Leu Gln Glu
 450 455 460

 Arg Arg Glu Lys Glu Glu Thr Met Lys Arg Lys Ala Glu Arg Ser Ala
 465 470 480

 Asn Ile Lys Ala Glu Met Lys Ala Lys Thr Met Arg Arg Phe Leu Leu
 485 490 495

 Ser Gln Lys His Ile Val Tyr Thr Arg Thr Xaa Leu Lys Tyr Val Pro
 500 505 510

 Gly Thr Thr Val Asp Val Leu Tyr Asn Pro Ser Asn Thr Val Leu Asn
 515 520 525

 Gly Lys Ser Glu Gly Trp Phe Arg Cys Ser Phe Asn Leu Trp Met His
 530 535 540

 Ser Ser Gly Ala Leu Pro Pro Gln Lys Met Val Lys Ser Gly Asp Gly
 545 550 560

 Pro Leu Leu Lys Ala Thr Val Asp Val Pro Pro Asp Ala Tyr Met Met
 565 570 575

 Asp Phe Val Phe Ser Glu Trp Glu Glu Asp Gly Ile Tyr Asp Asn Arg
 580 585 590

 Asn Gly Met Asp Tyr His Ile Pro Val Ser Asp Ser Ile Glu Thr Glu
 595 600 605

 Asn Tyr Met Arg Ile Ile His Ile Ala Val Glu Met Ala Pro Val Ala
 610 615 620

 Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser Arg Ala Ile
 625 630 640

 Gln Asp Leu Gly His Thr Val Glu Val Ile Leu Pro Lys Tyr Asp Cys
 645 650 655

 Leu Asn Gln Ser Ser Val Lys Asp Leu His Leu Tyr Gln Ser Phe Ser
 660 665 670

 Trp Gly Gly Thr Glu Ile Lys Val Trp Val Gly Arg Val Glu Asp Leu
 675 680 685

 Thr Val Tyr Phe Leu Glu Pro Gln Asn Gly Met Phe Gly Val Gly Cys
 690 695 700

 Val Tyr Gly Arg Asn Asp Asp Arg Arg Phe Gly Phe Phe Cys His Ser
 705 710 720

 Ala Leu Glu Phe Ile Leu Gln Asn Glu Phe Ser Pro His Ile Ile His
 725 730 735

 Cys His Asp Trp Ser Ser Ala Pro Val Ala Trp Leu Tyr Lys Glu His
 740 745 750

 Tyr Ser Gln Ser Arg Met Ala Ser Thr Arg Val Val Phe Thr Ile His

- 36 -

755	760	765		
Asn	Leu	Glu		
Phe	Gly	Ala		
His	Tyr	Ile		
Ile	Gly	Lys		
Met	Thr	Tyr		
Cys				
770	775	780		
Asp	Lys	Ala		
Thr	Thr	Val		
Val	Ser	Pro		
Thr	Tyr	Ser		
Ser	Arg	Asp		
Arg	Asp	Val		
Ala	Gly			
785	790	795	800	
His	Gly	Ala		
Ile	Ala	Pro		
Ala	Arg	Glu		
His	Phe	Tyr		
Gly	Ile	Leu		
Ile	Asn			
805	810	815		
Gly	Ile	Asp		
Ile	Asp	Pro		
Asp	Ile	Trp		
Ile	Trp	Asp		
Asp	Pro	Tyr		
Pro	Tyr	Thr		
Tyr	Asp	Asn		
Asn	Phe	Ile		
Phe	Ile	Pro		
820	825	830		
Val	Pro	Tyr		
Tyr	Thr	Cys		
Cys	Glu	Asn		
Asn	Val	Val		
Val	Glu	Gly		
Gly	Lys	Arg		
Arg	Ala	Ala		
Ala	Gly	Lys		
835	840	845		
Arg	Ala	Leu		
Leu	Gln	Gln		
Gln	Lys	Phe		
Lys	Phe	Gly		
Gly	Leu	Gln		
Leu	Gln	Gln		
Gln	Thr	Asp		
Thr	Asp	Val		
Asp	Pro	Ile		
Ile	Arg	Pro		
Pro	Ile	His		
His	Arg	Thr		
Arg	Thr	Leu		
Leu	Glu	Ser		
Glu	Ser	Asn		
Asn	Gly	Gly		
Gly	Gly	Gln		
Gln	Val	Val		
Val	Val	Leu		
Leu	850	860		
Val	865	870	875	880
Arg	His	Ala		
Ala	Ile	His		
Ile	Arg	Thr		
His	Arg	Leu		
Arg	Leu	Glu		
Leu	Glu	Ser		
Glu	Ser	Asn		
Asn	Gly	Gly		
Gly	Gly	Gln		
Gln	Val	Val		
Val	885	890	895	
Leu	Gly	Ser		
Ser	Ala	Pro		
Ala	Pro	Asp		
Pro	Asp	His		
His	Arg	Ile		
Arg	Ile	Gln		
Ile	Gly	Asp		
Gly	Asp	Phe		
Asp	Phe	Cys		
Phe	Cys	Arg		
Cys	Arg	Leu		
Leu	900	905	910	
Ala	Asp	Ala		
Ala	Leu	His		
Leu	Gly	Val		
Gly	Val	Tyr		
Val	Tyr	His		
Tyr	His	Gly		
Gly	Arg	Val		
Arg	Val	Lys		
Lys	Leu	Val		
Leu	915	920	925	
Thr	Tyr	Asp		
Asp	Glu	Pro		
Pro	Leu	Ser		
Leu	Ser	His		
Ser	Ile	Tyr		
Ile	Tyr	Ala		
Ala	Gly	Ser		
Gly	Ser	Asp		
Asp	Phe			
Phe				
930	935	940		
Ile	Ile	Val		
Val	Pro	Ser		
Ile	Phe	Glu		
Phe	Glu	Pro		
Glu	Pro	Cys		
Pro	Cys	Gly		
Cys	Gly	Leu		
Gly	Leu	Thr		
Leu	Thr	Gln		
Thr	Gln	Leu		
Gln	Leu	Val		
Leu	945	950	955	960
Ala	Met	Arg		
Arg	Tyr	Gly		
Tyr	Ser	Ile		
Ser	Ile	Pro		
Ile	Pro	Ile		
Pro	Ile	Val		
Ile	Val	Arg		
Val	Arg	Lys		
Arg	Lys	Thr		
Thr	Gly	Gly		
Gly	Gly	Leu		
Leu	965	970	975	
Tyr	Asp	Thr		
Asp	Thr	Val		
Thr	Val	Phe		
Phe	Asp	Asp		
Asp	Asp	Asn		
Asn	Asp	Lys		
Lys	Asp	Asp		
Asp	Asp	Arg		
Arg	Ala	Arg		
Arg	Arg	Ser		
Ser	980	985	990	
Leu	Gly	Leu		
Leu	Glu	Pro		
Glu	Pro	Asn		
Pro	Asn	Gly		
Asn	Gly	Phe		
Gly	Phe	Asp		
Asp	Asp	Gly		
Gly	Gly	Ala		
Ala	Asp	Asp		
Asp	Asp	Ser		
Ser	Asn			
995	1000	1005		
Gly	Val	Asp		
Val	Asp	Tyr		
Asp	Tyr	Ala		
Tyr	Ala	Leu		
Ala	Leu	Asn		
Leu	Asn	Arg		
Asn	Arg	Ala		
Arg	Ala	Ile		
Ile	Ile	Gly		
Gly	Gly	Ala		
Ala	Trp	Phe		
Trp	Phe	Asp		
Asp	Ala			
1010	1015	1020		
Arg	Asp	Trp		
Asp	Trp	Phe		
Phe	His	Ser		
His	Ser	Leu		
Leu	Cys	Lys		
Cys	Lys	Arg		
Arg	Val	Met		
Met	Glu	Gln		
Glu	Gln	Asp		
Gln	Asp	Trp		
Asp	Trp			
025	1030	1035	1040	
Ser	Trp	Asn		
Asn	Arg	Pro		
Arg	Pro	Ala		
Pro	Ala	Leu		
Leu	Leu	Tyr		
Tyr	Ile	Glu		
Ile	Glu	Leu		
Leu	Leu	Tyr		
Tyr	His	Ala		
His	Ala			
1045	1050	1055		
Arg	Lys	Phe		

<210> 11
<211> 728
<212> DNA
<213> Triticum sp.
<400> 11

- 37 -

gatcttgaac ggcacgtgaa agacttgtaa caacatcccc gagacacctca acctatgaga 60
tcatcgatca tgacagagca tagtattatg gcataaatg aaaaaaaaggc ataagggtat 120
gagatctcca cgccagagcg ttgtattcca attttagttc tttccccgtg aggaggggag 180
gctaggcggg cgaggcagag gggatagggc agtcggcgct gcgtggtgga ctgactggtg 240
tggtgggtgg tgggtttgc gggcggttt tagtaggttc ccggaaatgg agatggctct 300
ccggccacgg agccctctgt gccctteggag cagtcagccg ctcgtcgtcg tccggccggc 360
cggccgcggc ggccggctcg cgcaggtacg ggtgattatg gttcttgatt cggtcggttc 420
acggaatgtt gttttagttt gttctgtccc gggtcagggtt catagtgatt ttattccgca 480
aaaaaaaaaaag gtttatagtg attttgattt ctttcatctc gggAACATTt ttatatctgg 540
gagtcaaagg gcattggtt tgatttgcatt gggAACATA ttggttattt attaatgtgg 600
tgagctggaa ttcaactgc taaaacgac gtgattttaa ttgctggaaag aggtaaagaa 660
catgaattct tgttatattt gttaaaaaaaaa atccctgtt ctacgtttc aatctgcatt 720
atcatgga 728

<210> 12
<211> 2446
<212> DNA
<213> Triticum sp.

<400> 12
gtgggtctat aaaagacagg tttgagcgga ttcgtcagga aatgtttcaa caagtgcgac 60
gatgtggat gcaatttgcatt aaaccgtggc ttgatcaaga cgcaggtacg gcggtttgt 120
cgggaaatgc ttcaagctgc ggcacataca gagaagtggc tgatgtggtg gatgaaacta 180
gatcagaaga gggAACATTt gcgatggatt tgtttgcatt tgaatcaggc catgagaaac 240
atatggcagt ggcattatgtg ggtgaagcta ccgtatgcaga agagacttac caacagcaat 300
atccagtacc gtcttcattt tctatgtggg acaaggctat tgctaaaaca ggtgttaagtt 360
tgaatcctga gctgcgactt gtcagggtt aagaacaagg caaagtaaat ttttagtgata 420
aaaaagaccc gtcattttat gatttaccat gacaaaacca atcgatcatt ggttccctata 480
aacaagataa atcaatttgcatt gatgttgcgg gaccgaccac atcaattttt ggttcttagta 540
aacaacaccg gtcattttat gctttccca aacaaaacca gtcattttat agtgcactg 600
agcaaaagca gtccatagtt ggattccgtt gtcaggatct ttcggctgtt agtctcccta 660
aacaacaccg accaattttat ggtacgtcga gagagggtca aacaaagcaa gttccctgtt 720
ttgatagaca ggtatgcgtt tatgtgaatg gactggaaac taaggagggg gatcacat 780
ccgagaaaaac cgatgaggat gtgcattatg taaaattttaa ttttgacat gttttgcgg 840
agcatcaggc agatagaacc caagcgtgg aaacgataac ttggaaagaaa gttgtatgagg 900
aacatctta catgactgaa catcagatag gtgcgtccga aggacagatg gtagttaacg 960

- 38 -

aggatgagct ttctataact gaaattggaa tggggagagg tgataaaatt cagcatgtgc 1020
 tttctgagga agagcttca tggtctgaag atgaagtgc aatgatggac 1080
 aatatgaagt tcatgagacc tctgtgtccg ttaacgttga acaagatatac caggggtcac 1140
 cacaggatgt tgtggatccg caagcactaa aggtgatgct gcaagaactc gctgagaaaa 1200
 attattcgat gaggaacaag ctgtttgtt ttccagaggt agtggaaatc gattcagtt 1260
 ttgatctta ttcaatcgt gacctaacag ctggcgaa tgaacccat gttgtcatca 1320
 aaggagcatt caatggttgg aaatggaggc tttcactga aagattgc aagagtgacc 1380
 ttggaggggt ttgggtgtct tgcaaactgt acataccaa ggaggcctac agattagact 1440
 ttgtgttctt caacggtcgc acggctatg agaacaatgg caacaatgtat 1500
 gaatagaagg cactatgaat gaagatctgt ttgaggattt ctggtaaaa gaaaagcaaa 1560
 gggagcttga gaaacttgcc atggaagaag ctgaaaggag gacacagact gaagaacagc 1620
 ggcgaagtaa ggaagcaagg gctgcagatg aagctgtcag ggcacaagcg aaggccgaga 1680
 tagagatcaa gaacaaaaaa ttgcagagta tggtagttt ggccagaaca tggtagtata 1740
 atttgtggta cataaggactc agcacagata caagcggaga tactatcagg ttatactata 1800
 acagaaactc gaggccactt gcgcatacgtt ctgagattt gatgcattt ggttacaaca 1860
 attggtcaga tggactctct attgttggaa gctttgtcaa gtgcataatgc agagacggcg 1920
 attgggtggta tgcagatggt acgacaccc tcacccatgtt cataaggcaaa cattgtttt 1980
 attttttttt ttgaggaaac atttggggattt attcttagcat aatgctccta caaatatggc 2040
 atgaatttcc ttgttttattt gatgtcatga gaaagtattt tattaactcg aaggccatgg 2100
 aagctcaaca ttaccatag acagacgctt aaagatcatt tggatccgtt ggttacaaca 2160
 tggatgtaa tacctgtctt ttctctatgtt gtacagttt tccacctgaa aaagcacttg 2220
 tggatgtttttt gatggccatgtt ctggaaatgc aagggactat gacaacaatg 2280
 ctcgacaaga ttccatgtt attcttccaa acaacaatgtt aaccggggaa ggcttctggg 2340
 tgcaagagga gcaaaacatc tatacaaggc ttctgcaaga aaggagagaa aaggaagaaaa 2400
 ccatgaaaag aaaggtgagt tgcaacaaaaa tctttgcata tagatc 2446

<210> 13
 <211> 1032
 <212> DNA
 <213> Triticum sp.

<400> 13
 gatctctata attttggcag ttaacccctg agtggatggca aatataattcc ctggatgtcta 60
 ttttccaaat tcaaaatgca tggatgttccatg caagcttatac caaaaatcact tgataatata 120
 ccaatcacaataa cataacttttgc ttaccataa gaacattcctt acttaaaaatt tgcaaggtaa 180
 ctcccttgc aggctggttg gcttggatggta taactggcaaa ttaacaaaga aaagatataat 240

- 39 -

ctgatgtttg gaacaaaaca tatgatcagg gttgtttggg ttgactcatg ttcctttta 300
 cctacacagg ctgagagaag tgcaaatac aaagctgaga tgaaggcaaa aactatgcga 360
 aggttctgc tttcccgaaaa acacattgtt tataccgaac cgcttgaat acgtgccgga 420
 accacagtgg atgtgctata caatccctc aacacagtgc taaatggaaa gccggaggtt 480
 tggtttagat gctctttaa cctttggatg catccaagtg gagcattgcc accccagaag 540
 atggtaaat caggggatgg gccgctctta aaagccacag gtttattgcg ttattacatc 600
 actgttatta gtatataatat aaccatttt atgcaatcaa tagagtcaag tgcaactaat 660
 gatgcacaga taggatcaca tcattaggag aatgatgtga tggacaagac ccaatcctaa 720
 gcatagcaca agatcgtgta gttcggtcgc tagagcttt ctaatgtcaa gtatcattc 780
 cttagaccat gagattgtgc aactcccgga tatecttagga gtgctttggg tgtatcaa 840
 gtcacaacgt aactgggtga ctataaaggt gcactacagg tatctccgaa agtttctgtt 900
 gggttggcac gaatcgagac tgggatttg cactccgtat gacggagagg tatctttggg 960
 cccactcggt aatgcatcat cataatgagc tcaatgtgac taaggagtta gccacgggat 1020
 cgagaattcc cg 1032

<210> 14
 <211> 892
 <212> DNA
 <213> *Triticum* sp.

<400> 14
 aatatttctt gttctattat tggtaataat tagctagttt aatgccataa gcccataaca 60
 gatatgcaac tactccctcc aatccatatt acttgtcgca actttggtac aacttttagta 120
 caaagttata ctaaagctgt gacaagtaat atggaccgga gggagtagta tataagctt 180
 tagctttt gagaccgagt gtctgctgg gtggctagct ggagcgggct gaagtgcctt 240
 caggcacctc ttctctaaaa aaaagtgtt gcagcccccc cgccccctcc atagggttag 300
 tggtcacctt tcttctaaa aattatggca ccaagggaaa ttctcggctg gtcgagctt 360
 tagctatttt ttctggcggt gaatggagc gtcttctgt ataaggccta taggcttact 420
 ttgatataata ttgtgaagtc acttaagcct tgtaaaacg tagaaactta gttccgcaac 480
 ttggccaaat ccctgttaaa ttggttact gtgtactaga tgcacatcgatg ggcgcagagtc 540
 ccggggggta ataaagcttc cattttctac aatgaagtta attatcctac ttgccttgta 600
 attactgagt acaatacaga gcaccgaaaa gctgtatcct tcctacttcc ttatgtttat 660
 ctgtgttcct tgcgttagtta atgttccacc ggtgcctat atgatggact ttgtttctc 720
 cgagtggaa gaagatggaa tctatgacaa caggaatggg atggactatc atattcctgt 780
 ttctgattca attgaaacag agaattacat gcgtattatc cacattgccg ttgagatggc 840
 ccccggttgc aaggttaatat aattctaagg ctgtttctt tgatgcgagg cg 892

- 40 -

<210> 15
<211> 871
<212> DNA
<213> Triticum sp.

<400> 15
agtttatcct ccagaatgaa tttttccag tacgtattat tttagaatact agcggtatat 60
tgacttttc tttgtgagac tacactttct tgtttaccat tccagtgcac catgttcaa 120
atcttgtatt cagcgcgtta ct当地tactact agcttatttg gtgcatttgt 180
gttcccttc ctactctact atctgaatgc tacttgtgtt ttgc当地aacag ttgcttctt 240
atccccctcc atttctcagt taaaaaaaact tgc当地tgc当地 ttcaacgtgac agcatataat 300
acattgccat gattggtcaa gtgctccggt cgccctggcta tataaggAAC actattccca 360
atccagaatg gcaaggactc gggttgtatt taccatccac aatcttgaat ttggaggaca 420
ttatatttgtt aaagcaatga catactgtga taaagccaca actgtgagtg ccttactgtc 480
ttgtaatttt taatcttct gtttggcgca cagaaaatct tccacatttt acagaatcat 540
gttcttgtt tttgtacgtt ttcaactatt tccacccaaa ct当地ttaggt ttctcctaca 600
tattcaaggg acgtggcagg ccatggtgc当地 attgctcctc atcgtgagaa attctacggc 660
attctcaatg gaattgatcc agatatctgg gatccctgatt gccaacatgc tggttggtcg 720
tctcgaggc当地 tttacattgc tggtgcttt taccccgact ttctggcgtg aatgatggag 780
taatacgtga aaacattaat tctttctca acaaggAAC gacaaacgc当地 cgagattgcc 840
tcctacctgg ct当地ggactt gaaagaactg g 871

<210> 16
<211> 1592
<212> DNA
<213> Triticum sp.

<400> 16
cgggaaattct cgtatcccgtg gcttaactcct tagtcacatt gagctcatta tgatgtatgc 60
ttaccgagtg ggcccaaaga tacctctccg tcatacggag tgacaaaatcc cagtctcgat 120
tcgtgccaac ccaacagaaa ct当地tggaga tacctgttagt gcacctttat agtcacccag 180
ttacgttgc当地 acatTTGATA cacccaaAGC actcctacga tatccggag ttgc当地atc 240
tc当地ggctca aggAAATGAT acttgacatt agaaaAGCTC tagc当地acga actacacgt 300
cttgc当地at gcttaggatt gggcttgc当地 catcacatca ttctcctaat gatgtatcc 360
atacactgac aatTTTatcc cggtaaccaga tttttccca gagtgcaagt agatataac 420
caaggccaca gatagTTTA tgcttaacta tggttcat actacttc当地 gtc当地tata 480
cttgc当地at tggttgc当地 ggcaagagag ctgcaaaaag ggc当地tgc当地 cagaaggTTG 540
gattacagca aactgtatgc cctattgtcg gaatcatc当地 cctgac当地 gccc当地agg 600
gaatccaccc catcaaggc当地 gcaattcacc gaaccctc当地 aagcaacgg当地 caggttcatc 660

- 41 -

atcccttgt aacgaataaa catcaaacgt tttgttata aaaagttgct tactatttg 720
 ttttgttac ttcaaaacaa aagtctgaaa atgaagtgtt tggttcctag gtggtttgc 780
 ttggttcagc tccagatcat cgaataacaag gcgatttttgc agattggcc gatgctcttc 840
 acgggttttca ccacggtagg gtgaagcttgc ttctaaccata cgatgagcct ctttctcacc 900
 tggtagctc caatatccta cacaccatct agccagccct tcattatggg agctggagac 960
 tactttataa tttaggttga tgatcgatca tgctgcagat atacgctggc tccgacttca 1020
 ttattgtccc ttcaatcttc gaaccctgtg gcttaacaca acttggcc atgcgttatg 1080
 gatcgatccc tatagttcgg aaaaccggag gtgtgtgact atttctctcc attatgctgc 1140
 actgatttgc atatgtcgag ctgttggaca tgaatggaa actatcctt ggtatcgac 1200
 gactttacga cactgtcttc gacgtagaca atgataagga ccgggctcgg tctcttggc 1260
 ttgaaccaa tggttcagt ttgcacggag ccgacagcaa cggcgtggat tatgccctca 1320
 acaggcaagt atcgttcctc aattagccct gaattcagca gtagtgcgttgc 1380
 ttgcatgttc catacctcat ttcaagacaa tcggcgcttgc gttcgatgcc cgtgattgg 1440
 tccactccct gtgtaaaggagg gtcatgaaac aagactggc atggAACCGG cccgactgg 1500
 actacattga attgtaccat gccgctcgaa aattctgaca cccaactgaa ccaatggcaa 1560
 gaacaagcgc attgtggat cgagaattcc cg 1592

<210> 17

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 17

Asp	Val	Gln	Leu	Val	Met	Leu	Gly	Thr	Gly
1					5				10

<210> 18

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 18

Ala	Ala	Gly	Lys	Lys	Asp	Ala	Gly	Ile	Asp
1					5				10

<210> 19

<211> 10

<212> PRT

<213> Artificial Sequence

- 42 -

<220>
<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 19
Ala Thr Gly Lys Lys Asp Ala Gly Ile Asp
1 5 10

<210> 20
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 20
Ala Leu Gly Lys Lys Asp Ala Gly Ile Asp
1 5 10

<210> 21
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 21
Ala Thr Gly Lys Lys Asp Ala Leu
1 5

<210> 22
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 22
Ala Leu Gly Lys Lys Asp Ala Leu
1 5

<210> 23
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 23
Ala Ala Gly Lys Lys Asp Ala Arg Val Asp Asp Ala Ala
1 5 10

<210> 24
<211> 13
<212> PRT
<213> Artificial Sequence

- 43 -

<220>
<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 24
Ala Leu Gly Lys Lys Asp Ala Gly Ile Val Asp Gly Ala
1 5 10

<210> 25
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PRIMER

<400> 25
tggtaggtt ccatggcacg ttc 23

<210> 26
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PRIMER

<400> 26
atcggttctg ccgttatgtg tcg 23

<210> 27
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PRIMER

<400> 27
ccaagttacca gtggtaaacg c 21

<210> 28
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PRIMER

<400> 28
cggtggatc caacggccc 19

<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PRIMER

<400> 29

- 44 -

ggagggtcttg gtgatgttgt	20
<210> 30	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PRIMER	
<400> 30	
cttgaccaat catggcaatg	20
<210> 31	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PRIMER	
<400> 31	
cattgccatg attggtcaag	20
<210> 32	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PRIMER	
<400> 32	
accacacctgtc cgttccgttg c	21
<210> 33	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PRIMER	
<400> 33	
gcacggctca tgagaacaat ggc	23
<210> 34	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PRIMER	
<400> 34	
tctgcataacc accaatcgcc g	21
<210> 35	
<211> 25	

- 45 -

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 35

Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser Arg Ala Val
1 5 10 15

Gln Asp Leu Gly His Asn Val Glu Val
20 25

<210> 36

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PEPTIDE MOTIF

<400> 36

Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser Arg Ala Ile
1 5 10 15

Gln Asp Leu Gly His Thr Val Glu Val
20 25

1/24

FIGURE 1

wSSIIB	ATTCCTCGG CCTGACCCCG TGCGTTACC CCACACAGAG CACACTCCAG	50
wSSIID	~~~~~	~~~~~
wSSIIIA	~~~~~	~~~~~
wSSIIB	TCCAGTCCAG CCCACTGCCG CGCTACTCCC CACTCCCACT GCCACCACCT	100
wSSIID	~~~~~	~~~~~
wSSIIIA	~~~~~	GCT GCCACCACCT
wSSIIB	CCGCCTGCGC CGCGCTCTGG GCGGACCAAC CCGCGCATCG TATCACGATC	150
wSSIID	~~~~~	~~~~~
wSSIIIA	CCGCCTGCGC CGCGCTCTGG GCGGAGGACC AACCCGCGCA TCGTACCATC	
wSSIIB	ACCCACCCCG ATCCCGGCCG CCGCCATGTC GTCGGCGGTC GCGTCCGCCG	200
wSSIID	~~~~~	~~~~~
wSSIIIA	CCCCGCCCCG ATCCCGGCCG CCGCCATGTC GTCGGCGGTC GCGTCCGCCG	
wSSIIB	CGTCCTTCCT CGCGCTCGCG TCCGCCTCCC CCGGGAGATC ACGGAGGAGG	250
wSSIID	~~~~~	~~~~~
wSSIIIA	CGTCCTTCCT CGCGCTCGCC TCCGCCTCCC CCGGGAGATC ACGCAGGCGG	
wSSIIB	ACGAGGGTGA GCGCGTCGCC ACCCCACACC GGGGCTGGCA GGTTGCACTG	300
wSSIID	~~~~~	~~~~~
wSSIIIA	GCGAGGGTGA GCGGCCGCC ACCCCACGCC GGGGCCGGCA GGCTGCACTG	
wSSIIB	GCCGCCGTGCG CCGCCGCAGC GCACGGCTCG CGACGGAGCG GTGGCCGCGC	350
wSSIID	~~~~~	~~~~~
wSSIIIA	GCCGCCGTGG CCGCCGCAGC GCACGGCTCG CGACGGAGGT GTGGCCGCGC	
wSSIIB	GCGCCGCCGG GAAGAAGGAC GCGGGGAT.. CGACGACGC CGCGCCCGCG	400
wSSIID	~~~~~	~~~~~
wSSIIIA	GCGCCGCCGG GAAGAAGGAC GCGAGGGTCG ACGACGACGC CGCGTCCCGCG	
wSSIIB	AGGCAGCCCC GCGCACTCCG CGGTGGCGCC GCCACCAAGG TTGCGGAGCG	450
wSSIID	~~~~~	~~~~~
wSSIIIA	AGGCAGCCCC GCGCACGCCG CGGTGGCGCC GcCACCAAGG TCGCGGAGCG	
wSSIIB	GAGGGATCCC GTCAAGACGC TCGATCGCGA CGCCGCGGAA GGTGGCGCGC	500
wSSIID	~~~~~	~~~~~
wSSIIIA	GAGGGATCCC GTCAAGACGC TCGATCGCGA CGCCGCGGAA GGTGGCGCGC	
wSSIIB	CGTCCCCGCC GGCACCGAGG CAGGAGGAGC CCCGTCTGCC GAGCATGAAC	550
wSSIID	~~~~~	~~~~~
wSSIIIA	CGGCACCGCC GGCACCGAGG CAGGACGCCG CCCGTCCaCC GAGTATGAAC	

FIGURE 2-1

	551	600
wSSIIIB	GGCATGCCGG	TGAACGGTGA AAACAAATCT ACCGGCGGCG GCGGCAC
wSSIID	-----	-----
wSSIIIA	GGCACGCCGG	TGAACGGTGA GAACAAATCT ACCGGCGGCG GCGGCAC
	601	650
wSSIIIB	TAAAGACAGC	GGGCTGCCCG CACCCGCACG CGCGCCCCAG CGTCGAGCC
wSSIID	-----	-----
wSSIIIA	CAAAGACAGC	GGGCTgcCCG CACCCGcACG CGCGCCCCAT cCGTCGAcCC
	651	700
wSSIIIB	AGAACAGAGT	ACCGGTGAAT GGTGAAAACA AAGCTAACGT CGCCTGCCG
wSSIID	-----	-----
wSSIIIA	AgAACAGAGT	ACCAGTGAAC GGTGAAAACA AAGCTAACGT CGCCTGCCG
	701	750
wSSIIIB	CCGACGAGCA	TAGCCGAGGT CGCGGCTCCG GATCCCGCAG CTACCATTTC
wSSIID	-----	-----
wSSIIIA	CCGACGAGCA	TAGCCGAGGT CGTGGCTCCG GATTCCCGCAG CTACCATTTC
	751	800
wSSIIIB	CATCAGTGAC	AAGGCGCCAG AGTCCGTTGT CCCAGCCGAG AAGGcgccgc
wSSIID	-----	-----
wSSIIIA	CATCAGTGAC	AAGGCGCCGG AGTCCGTTGT CCCAGCCGAG AAGCCGCCG
	801	850
wSSIIIB	CGtCgtcCgg	CtcAAATTtTc gtgCcCtCgg cttctGctCc cggGtctGAC
wSSIID	CGTCGTCCGG	CTCAAATTTC GAGTCCTCGG CCTCTGCTCC CGGGTCTGAC
wSSIIIA	CGTCGTCCGG	CTCAAATTTC GTGgTCTCGG CTTCTGCTCC CAGGCTGGAC
	851	900
wSSIIIB	actgtCaGCG	acGtGGaact TgaActGAAG aAGGGtgCgg tCattgTcaA
wSSIID	ACTGTCAGCG	ACGTGGAACA AGAACTGAAG AAGGGTGCAG TCAGTGTGCA
wSSIIIA	ATTGACAGCG	ATGTTGAACC TGAACTGAAG AAGGGTGCAG TCATCGTCA
	901	950
wSSIIIB	aGAAGcTcCa	aaCcCaAaGG CTCTTCGCCC GCCCCGAGCA CCCGCTGTAC
wSSIID	AGAAGCTCCA	AAGCCAAAGG CTCTTCGCCC GCCTGCAGC CCCCCTGTAC
wSSIIIA	AGAAGCTCCA	AACCCAAAGG CTCTTCGCCC GCCTGCAGC CCCCCTGTAC
	951	1000
wSSIIIB	AACAAGACCT	TTGGGACTTC AAGAAATACA TTGGTTTCGA GGAGCCCGTG
wSSIID	AAgAAGACCT	TTGGGATTC AAGAAATACA TTGGTTTCGA GGAGCCCGTG
wSSIIIA	AAGAAGACCT	TTGGGACTTC AAGAAATACA TTGGCTTCGA GGAGCCCGTG
	1001	1050
wSSIIIB	GAGGCCAAGG	ATGATGGCCG GGCTGTTGCA GATGATGCAG GCTCCTTCGA
wSSIID	GAGGCCAAGG	ATGATGGCCG GGCTGTcGCA GATGATGCAG GCTCCTTtGA
wSSIIIA	GAGGCCAAGG	ATGATGGCTG GGCTGTTGCA GATGATGCAG GCTCCTTTGA
	1051	1100
wSSIIIB	ACACCACCAAG	AATCACGATT CCGGGCCTTT GGCAGGGGAG AACGTCATGA
wSSIID	ACACCACCAAG	AATCACGAcT CCGGAcCTTT GGCAGGGGAG AAtGTCATGA
wSSIIIA	ACATCACCAAG	AACCATGATT CCGGACCTTT GGCAGGGGAG AACGTCATGA

FIGURE 2-2

	1101	1150
wSSIIB	ACGTGGTCGT CGTGGCTGCT GAATGTTCTC CCTGGTGCAA AACAGGTGGT	
wSSIID	ACGTGGTCGT CGTGGCTGCT GAgGTTCTC CCTGGTGCAA AACAGGTGGT	
wSSIIA	ACGTGGTCGT CGTGGCTGCT GAATGTTCTC CCTGGTGCAA AACAGGTGGT	
	1151	1200
wSSIIB	CTTGGAGATG TTGCCGGTGC TTTGCCCAAG GCTTGGCGA AGAGAGGACA	
wSSIID	CTgGGAGATG TTGCGGGTGC TcTGCCCAAG GCTTGGCGA AGAGAGGACA	
wSSIIA	CTTGGAGATG TTGCCGGTGC TTTGCCCAAG GCTTGGCGA AGAGAGGACA	
	1201	1250
wSSIIB	TCGTGTTATG GTTGTGGTAC CAAGGTATGG GGACTATGAG GAAGCCTACG	
wSSIID	TCGTGTTATG GTTGTGGTAC CAAGGTATGG GGACTATGAGa GAACCTACGg	
wSSIIA	TCGTGTTATG GTTGTGGTAC CAAGGTATGG GGACTATGAG GAAGCCTACG	
	1251	1300
wSSIIB	ATGTCGGAGT CCGAAAATAC TACAAGGCTG CTGGACAGGA TATGGAAGTG	
wSSIID	ATGTCGGAGT CCGAAAATAC TACAAGGCTG CTGGACAGGA TATGGAAGTG	
wSSIIA	ATGTCGGAGT CCGAAAATAC TACAAGGCTG CTGGACAGGA TATGGAAGTG	
	1301	1350
wSSIIB	AATTATTTCC ATGCTTATAT CGATGGAGTT GATTTTGTGT TCATTGACGC	
wSSIID	AATTATTTCC ATGCTTaTAT CGATGGAGTT GATTTTGTGT TCATTGACGC	
wSSIIA	AATTATTTCC ATGCTTATAT CGATGGAGTT GATTTTGTGT TCATTGACGC	
	1351	1400
wSSIIB	TCCTCTCTTC CGACACCGCC AGGAAGACAT TTATGGGGC AGCAGACAGG	
wSSIID	TCCTCTCTTC CGACACCGAG AGGAAGACAT TTATGGGGC AGCAGACAGG	
wSSIIA	TCCTCTCTTC CGACACCGCC AGGAAGACAT TTATGGGGC AGCAGACAGG	
	1401	1450
wSSIIB	AAATTATGAA GCGCATGATT TTGTTCTGCA AGGCCGCTGT CGAGGTTCCA	
wSSIID	AAATTATGAA GCGCATGATT TTGTTCTGCA AGGCCGCTGT TGAGGTTCCA	
wSSIIA	AAATTATGAA GCGCATGATT TTGTTCTGCA AGGCCGCTGT CGAGGTTCC	
	1451	1500
wSSIIB	TGGCACGTTTC CATGCGGC GG TGCCCTTAT GGGGATGGAA ATCTGGTGT	
wSSIID	TGGCACGTTTC CATGCGGC GG TGCCCTTAT GGGGATGGAA ATCTGGTGT	
wSSIIA	TGGCACGTTTC CATGCGGC GG TGCCCTTAT GGGGATGGAA ATCTGGTGT	
	1501	1550
wSSIIB	TATTGCAAAT GATTGGCACA CGGCACCTC GCCTGTCTAT CTGAAAGCAT	
wSSIID	TATTGCAAAT GATTGGCACA CGGCACCTC GCCTGTCTAT CTGAAAGCAT	
wSSIIA	TATTGCAAAT GATTGGCACA CGGCACCTC GCCTGTCTAT CTGAAAGCAT	
	1551	1600
wSSIIB	ATTACAGGGA CCATGGTTG ATGCAGTACA CTCGGTCCAT TATGGTGATA	
wSSIID	ATTACAGGGA CCATGGTTG ATGCAGTACA CTCGGTCCAT TATGGTGATA	
wSSIIA	ATTACAGGGA CCATGGTTG ATGCAGTACA CTCGGTCCAT TATGGTGATA	
	1601	1650
wSSIIB	CATAACATCG CTCACCAGGG CGGTGGCCCA GTAGATGAGT TCCC GTT CAC	
wSSIID	CATAACATCG CTCACCAGGG CGGTGGCCCT GTAGATGAAT TCCC GTT CAC	
wSSIIA	CATAACATCG CGCACCAAGGG CGGTGGCCCA GTAGATGAAT TCCC GTT CAC	

FIGURE 2-3

	1651	1700
wSSIIB	CGAGTTGCCT GAGCACTACC TGGAACACTT CAGACTGTAC GACCCCGTGG	
wSSIID	CGAGTTGCCT GAGCACTACC TGGAACACTT CAGACTGTAC GACCCCGTGG	
wSSIIA	CGAGTTGCCT GAGCACTACC TGGAACACTT CAGACTGTAC GACCCCGTGG	
	1701	1750
wSSIIB	GTGGTGAACA CGCCAAC TAC TTGCGCCGCG GCCTGAAGAT GGCGGACCA	
wSSIID	GTGGTGAACA CGCCAAC TAC TTGCGCCGCG GCCTGAAGAT GGCGGACCA	
wSSIIA	GTGGTGAGCA CGCCAAC TAC TTGCGCCGCG GCCTGAAGAT GgCGGACCA	
	1751	1800
wSSIIB	GTTGTCGTG TGAGCCCCGG GTACCTGTGG GAGCTGAAGA CGGTGGAGGG	
wSSIID	GTTGTCGTG TGAGCCCCGG GTACCTGTGG GAGCTGAAGA CGGTGGAGGG	
wSSIIA	GTTGTCGTG TGAGCCCCGG GTACCTGTGG gAGCTCAAGA CGGTGGAGGG	
	1801	1850
wSSIIB	CGGCTGGGGG CTTCACGACA TCATACGGCA GAACGACTGG AAGACCCGCG	
wSSIID	CGGCTGGGGG CTTCACGACA TCATACGGCA GAACGACTGG AAGACCCGCG	
wSSIIA	CGGCTGGGGG CTTCACGACA TCATACGGCA GAACGACTGG AAGACCCGCG	
	1851	1900
wSSIIB	GCATCGTGAA CGGCATCGAC AACATGGAGT GGAACCCCCGA GGTGGACGTC	
wSSIID	GCATCGTCAA CGGCATCGAC AACATGGAGT GGAACCCCCGA GGTGGACGCC	
wSSIIA	GCATCGTCAA CGGCATCGAC AACATGGAGT GGAACCCCCGA GGTGGACGTC	
	1901	1950
wSSIIB	CACCTCAAGT CGGACGGCTA CACCAACTTC TCCCTGGGGGA CGCTGGACTC	
wSSIID	CACCTCAAGT CGGACGGCTA CACCAACTTC TCCCTGAGGA CGCTGGACTC	
wSSIIA	CACCTCAAGT CGGACGGCTA CACCAACTTC TCCCTGGGGGA CGCTGGACTC	
	1951	2000
wSSIIB	CGGCAAGCGG CAGTGCAGG AGGCCCTGCA GCGGGAGCTG GGCCTGCAGG	
wSSIID	CGGCAAGCGG CAGTGCAGG AGGCCCTGCA GCGCGAGCTG GGCCTGCAGG	
wSSIIA	CGGCAAGCGG CAGTGCAGG AGGCCCTGCA GCGCGAGCTG GGCCTGCAGG	
	2001	2050
wSSIIB	TCCGCGGCGA CGTGGCGCTG CTCGGCTTCA TCGGGCGCCT GGACGGGCAG	
wSSIID	TCCGCGGCGA CGTGGCGCTG CTCGGCTTCA TCGGGCGCCT GGACGGGCAG	
wSSIIA	TCCGCGGCGA CGTGGCGCTG CTCGGCTTCA TCGGGCGCCT GGACGGGCAG	
	2051	2100
wSSIIB	AAGGGCGTGG AGATCATCGC GGACGCGATG CCCTGGATCG TGAGCCAGGA	
wSSIID	AAGGGCGTGG AGATCATCGC GGACGCCATG CCCTGGATCG TGAGCCAGGA	
wSSIIA	AAGGGCGTGG AGATCATCGC GGACGCCATG CCCTGGATCG TGAGCCAGGA	
	2101	2150
wSSIIB	CGTGCAGCTG GTCATGCTGG GCACCGGGCG CCACGACCTG GAGGGCATGC	
wSSIID	CGTGCAGCTG GTGATGCTGG GCACCGGGCG CCACGACCTG GAGAGCATGC	
wSSIIA	CGTGCAGCTG GTCATGCTGG GCACCGGGCG CCACGACCTG gAGAGCATGC	
	2151	2200
wSSIIB	TGCGGCACCTT CGAGCGGGAG CACCAAGACA AGGTGCGCGG GTGGGTGGGG	
wSSIID	TGCGGCACCTT CGAGCGGGAG CACCAAGACA AGGTGCGCGG GTGGGTGGGG	
wSSIIA	TgCGGCACCTT CGAGCGGGAG CACCAAGACA AGGTGCGCGG gTGCGGTGGGG	

FIGURE 2-4

	2201	2250
wSSIIB	TTCTCCGTGC GGCTGGCGCA CCGGATCACG GCCGGCGCCG ACGCGCTCCT	
wSSIID	TTCTCCGTGC GCCTGGCGCA CCGGATCACG GCGGGGGCGG ACGCGCTCCT	
wSSIIA	TTCTCCGTgc GcctGGCGCA CCGGATCACG GCGGGCGCCG ACGCGCTCcT	
	2251	2300
wSSIIB	CATGCCCTCC CGGTTCGAGC CGTGCGGACT GAACCAGCTC TACGCCATGG	
wSSIID	CATGCCCTCC CGGTTCGTGC CGTGCGGGCT GAACCAGCTC TACGCCATGG	
wSSIIA	CATGCCCTCC CGGTTCGAgC CGTGCGGGTT GAACCAGCTt TACGCCATGG	
	2301	2350
wSSIIB	CCTACGGCAC CGTCCCCGTC GTGCATGCCG TCGGTGGCCT GAGGGACACC	
wSSIID	CCTACGGCAC CGTCCCCGTC GTGCACGCCG TCGGCGGCCT CAGGGACACC	
wSSIIA	CCTACGGCAC CGTCCCCGTC GTGCACGCCG TCGGCGGGGT GAGGGACACC	
	2351	2400
wSSIIB	GTGCCGCCGT TCGACCCCTT CAACCACTCC GGGCTCGGGT GGACGTTCGA	
wSSIID	GTGCCGCCGT TCGACCCCTT CAACCACTCC GGGCTCGGGT GGACGTTCGA	
wSSIIA	GTGCCGCCGT TCGACCCCTT CAACCACTCC GGcCTCGGGT GGACGTTCGA	
	2401	2450
wSSIIB	CCGCGCAGAG GCGCAGAAGC TGATCGAGGC GCTCGGGCAC TGCCTCCGCA	
wSSIID	CCGCGCCGAG GCGCACAAAGC TGATCGAGGC GCTCGGGCAC TGCCTCCGCA	
wSSIIA	CCGCGCCGAG GCGCACAAAGC TGATCGAGGC GCTCGGGCAC TGCCTCCGCA	
	2451	2500
wSSIIB	CCTACCGGGA CTACAAGGAG AGCTGGAGGG GGCTCCAGGA GCGCGGCATG	
wSSIID	CCTACCGAGA CTTCAAGGAG AGCTGGAGGG CCCCTCCAGGA GCGCGGCATG	
wSSIIA	CCTACCGGGA CTACAAGGAG AGCTGGAGGG GcCTCCAGGA GCGCGGCATG	
	2501	2550
wSSIIB	TCGCAGGACT TCAGCTGGGA GCATGCCGCC AAGCTCTACG AGGACGTCCT	
wSSIID	TCGCAGGACT TCAGCTGGGA GCACGCCGCC AAGCTCTACG AGGACGTCCT	
wSSIIA	TCGCAGGACT TCAGCTGGGA GCATGCCGCC AAGCTCTACG AGGACGTCCT	
	2551	2600
wSSIIB	CGTCAAGGCC AAGTACCAAGT GGTGAACGCT AGCTGCTAGC CGGTCCAGCC	
wSSIID	CGTCAAGGCC AAGTACCAAGT GGTGAACGCT AGCTGCTAGC CGCTCCAGCC	
wSSIIA	CcTCAAGGCC AAGTACCAAGT GGTGAACGCT AGCTGCTAGC CGcTCCAGCC	
	2601	2650
wSSIIB	CCGCATGCG. ... TGCATGA CAGGATGGAA TTGCGCATTG CGCACGCAGG	
wSSIID	CCGCATGCG. ... TGCATGA CAGGATGGAA CT..GCATTG CGCACGCAGG	
wSSIIA	CCGCATGCGT GCATGcatgA gAGGgtGGAA cTGCAGCATTG CGCcCGCAGG	
	2651	2700
wSSIIB	AAGGTGCCATGGAGCGCCG GCATCCGCGA AGTACAGTGA	
wSSIID	AAAGTGCCATGGAGCGCCG GCATCCGCGA AGTACAGTGA	
wSSIIA	AAcGTGCCAT ctttcgtat gGGAGCGCCG GCATCCGCGA gGTgCAGTGA	
	2701	2750
wSSIIB	CAT..GAGGT GTGTGTGGTT GAGACGCTGA TTC.....C GATCTGGTCC	
wSSIID	CAT..GAGGT GTGTGTGGTT GAGACGCTGA TTC.....C AATCCGGCCC	
wSSIIA	CATGAGAGGT GTGTGTGGTT GAGACGCTGA TTCCGATCTc gatctGGTCC	

FIGURE 2-5

7/24

	2751	2800
wssiiib	GTAGCAGAGT AGAGCGGAGG TAGGGAAGCG CTCCTTGTta CAGGTATATG	
wssiid	GTAGCAGAGT AGAGCGGAGG TATATGGAA TCTTAACTTG GTATTGTAAT	
wssiiia	GTAGCAGAGT AGAGCGGAcG TAGGGAAGCG CTCCTTGTtg CAGGTATATG	
	2801	2850
wssiiib	GGAATGTTGT TAACCTGGTA TTGTAATTG TTATGTTGTG TGCATTATTA	
wssiid	TTGTTATGTT GTGTGCATTA TTACAATGTT GTTACTTATT CTTGTTAAGT	
wssiiia	GGAATGTTGT cAACCTGGTA TTGTAgtTTTG ctATGTTGTa TGCgTTATTA	
	2851	2900
wssiiib	CAGAGGGCAA CGATCTGCGC CGGCGCACCG GCCCAACTGT TGGGCCGGTC	
wssiid	CGGAGGGCAA GGGCGAAAGC TAGCTCACAT GTCTGATGGA TGCAAAAAAA	
wssiiia	caatgttgtt acttattctt gtTAAAAAAA AAAAAAAA AAAA~~~~~	
	2901	2950
wssiiib	GCACAGCAGC CGTTGGATCC GACCGCCTGG GCCGTTGGAT CCCACCGAAA	
wssiid	AAAAAAAAAA AAA~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~	
wssiiia	~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~	
	2951 2965	
wssiiib	AAAAAAAAAA AAAAAA	
wssiid	~~~~~ ~~~~~	
wssiiia	~~~~~ ~~~~~	

FIGURE 2-6

WSSIIA 1 MSSAVASAAS ---FLALASA SP-GRSRRRA RVSAPPHAG AGRL---HW PPWPP-QRTA 51
 WSSIIB 1 *****S***** ---*****T ****S***T* *****S-----** **S**-***** 51
 WSSIID -----
 ZSSIIA 1. ****AV*SS* STF*****G***** **GSS*F*T* --S*SFAFWA **S**RAPRD 57
 ZSSIIB 1 *PG*-I*SS* SAFL*PV**S ***R***G S*G*ALRSY* YSGAELRL** ARRG*P*DGS* 56
 PEASSII 1 *MLSLG*D*T VLP*H*KNLK FTPKL*TLNG --DLAFSKGL GVGRLNCGSV -----R 49
 POTSSII 10 PVNFIFCDFY VMENSI*LHS GNQFHPNLPL ---LALRPKK LSLIHGSSRE -----Q 57

↓ Transit peptide cleavage site

WSSIIA. 52 RDGGVAARAA GKKDARVDDD AASAROPRAR RGGAATKVAE RRDPVKTLDR DAAEGGAPAP 111
 WSSIIB 52 ***A*****G*****L*****P*****L *****S*****S*****S*****S* 110
 WSSIID -----
 ZSSIIA 58 AALVR*EAE* *G****PERS GDA**L****NA*SK *** 97
 ZSSIIB 57 -ASVR**A*P AGG----- 68
 PEASSII 50 LNHKQHV**V **SFGADENG DG*EDDVVNA TIEKSK**LA LQRELIQQIA ERKKLVSSID 109
 POTSSII 58 MWRNQRVK*T *ENSGEAA-S *DESNDALQV TIEKSK**LA MQQDLLQQIA ERRKVVSSIK 116

WSSIIA 112 PAPRQDAARP PSMNGTPVNG ENKSTGGGGA TKDSGLPAPA RAPHYSTQNR VPVNGENKAN 171
 WSSIIB 111 *****ED**L *****M*****M*****S*****Q*****S*****S*****S***** 170
 WSSIID -----
 ZSSIIA 98 -----LQPVG RYG*ATGNT* *TGAA*C**A ALADV*I*SI 132
 ZSSIIB 69 -----ESEEAAKSS SSSQAGAVQG STAKAVDS*S 97
 PEASSII 110 SDSIPGLEGN GVSYESSEKS LSR-----DS*P QKGSSSSGSA 146
 POTSSII 117 S----SL*NA KGYTDGGSGS LSDVDIPDVD KDYNVTVPST A*TGIDVDK NTPPAISHDF 172

WSSIIA 172 VASPPTSIAE VVAPDSAATI SISDKAPESV VPAEKPPPSS GSNFVVSASA PRLDIDSDV 231
 WSSIIB 171 *****A*****P*****A*****P*****P*****P*****GS*TV**** 230
 WSSIID 203 -----T*****ES*****GS*TV**** 231
 ZSSIIA 134 **A*****VK FP**GYRMIL PSG*I***T* L**P**--LH E*PA*DGD*N --GIAPPT** 188
 ZSSIIB 99 PPN*L**APK QSQSAAMQNG TSGGSSASTA A*VSG*KADH P*AP*TKREI DASAVKPEPA 158
 PEASSII 147 *ETKR--WHC FQO----LC RSKETETWA* SSVGINQGFD EIEKKND*VK ASSKLHFNEQ 199
 POTSSII 173 *E*KREIKRD LADERAPPLS RS*IT*SSQI SSTVSSK--R TL*VPPETPK SSQETLL**N 230

WSSIIp1 Region

WSSIIA 232 PELKKGAVIV EEAPNPKALS PPAAPAVQED LWDFKKYIGF EEPVEAKDDG WAVADDAGSF 291
 WSSIIB 231 L*****K*****Q*****S*****R*****R*****R*****R*****R***** 290
 WSSIID 232 Q*****V*****K*****S*****S*****S*****S*****S*****S***** 291
 ZSSIIA 189 -----L***A T*****D*****S RVG***** 224
 ZSSIIB 159 GDDARPVESI -----I A***D***A-A*P*T**AAS 188
 PEASSII 200 IKN*LYERPD TKDIS--SSI R-----TSSL KFENPEGANE PSSKEV*NEA 242
 POTSSII 231 SRKSLVD*PG KKIQSMPYSL R-----ESSAS HVEQRNENLE GSS*EANEET 277

	Region 1	Region 2
WSSIIA.	292 EHHQNHD--S GPLAGENVMN VVVVAAECSP WCKTGGLGDV AGALPKALAK	RGHRYMVVVP 349
WSSIIB	291 *****S*****P*****S*****S*****R*****S*****R*****S***** 348	
WSSIID	292 *****S*****S*****S*****S*****S*****S*****S*****S***** 349	
ZSSIIA	225 **YGDN*---I*****S*****V*****R***** 282	
ZSSIIB	189 APYDRE*NEP *****P*****S*****A* F*****V*****R***** 248	
PEASSII	243 *NFESGGEKP P*****T*****IIL*S***A* S*****S*****R***** 302	
POTSSII	278 *DPV*I*EKP P*****T*****IIL*S***A* S*****S*****R***** 337	

9/24

Sgp-1 Peptide 3

WSSIIIA	350	<u>RYGDYEEAYD</u> VGVRKYYKAA GQDMEVNYFH <u>AYIDGVDFVF</u> IDAPLFRHRQ EDIYGGSRQE	409
WSSIIB	349	*****PT* *****F* ***I***** ***L***** *F***** E *****E	408
WSSIID	350	*****PT* *****F* ***I***** ***L***** *F***** E *****E	409
ZSSIIIA	283	*****V**F* **I***** ***L***** *F***** D*****	342
ZSSIIIB	249	***E*A**R* L***RR***V* ***S**T*** S***** VE**P***H NN*****E*LD	308
PEASSII	303	H**N*A**H* I*****R***V* *****T*** T*****I** **S*I**NLE SN*****N*LD	362
POTSSII	338	**DN*P*PQ* S*****I**VD ***VD*T**Q *LLMDC**** *HSHM***IG NN*****N*VD	397

Region 3

WSSIIIA	410	IMKRMILFCK AAEVPWHVP CGGVPYGDGN LVFIANDWHT <u>ALLPVYLKAY</u> YRDHGLMQYT	469
WSSIIB	409	*****PT* *****F* ***I***** ***L***** *F***** E *****E	468
WSSIID	410	*****PT* *****F* ***I***** ***L***** *F***** E *****E	469
ZSSIIIA	343	*****V*****C***** ***C***** ***C***** ***C*****	402
ZSSIIIB	309	*L*****Y* ***TV***** Q*****I***** ***N*****A	368
PEASSII	363	*LR***V***** IC***** ***IC***** ***IC*****	422
POTSSII	398	*L*****V***** I*****C***** ***C***** A***** N*I*N**	457

WSSIIIA	470	RSIMVIHNIA HQGRGPVDEF PFTELPEHYL EHFRLYDPVG GEHANYFAAG LKMADQVVVV	529
WSSIIB	469	*****PT* *****F* ***I***** ***L***** *F***** E *****E	528
WSSIID	470	*****PT* *****F* ***I***** ***L***** *F***** E *****E	529
ZSSIIIA	404	**VL***** *YMD***** Q*****E***** I*****R***** R*****T*	462
ZSSIIIB	369	**VL***** D***** VNFD***** I*****D***** K*****NI***** D*****S*****V*****	428
PEASSII	423	**VL***** ED***** NTVD*SGN** DL*****KM***** F*****I***** T*****RI*****	482
POTSSII	458	**VL***** LED***** SYVD***P***M DP*****K***** F*****I***** T*****R*****T*	517

Region 4

WSSIIIA	530	SPGYLWELKT VEGGWGLHD I IRQNDWKTRG <u>JVN</u> GIDNMEW NPEVDVHLK- SDGYTNFSLG	588
WSSIIB	529	*****PT* *****F* ***I***** ***L***** *F***** E *****E	587
WSSIID	530	*****PT* *****F* ***I***** ***L***** *F***** E *****E	588
ZSSIIIA	463	*R*****S***** IN***** H*****O***** K*****R***** R*****Y*****E	521
ZSSIIIB	429	N*****M***** S*****LQ***** N*****MS***** A*****H***** D*****Y*****T*	487
PEASSII	483	H*****A***** S*****N***** NES*****F***** V*****TKD***** Q*****F*****A*****Y*****T*****	541
POTSSII	518	H*****S***** SQ*****Q***** NE*****LQ***** H*****TK***** L*****PR M*****Y*****D	577

Region 5

WSSIIIA	589	TLDGKROCK EALQRELGLQ VRADVPLLGF <u>I</u> GRILDGOKGV EIIADAMPWI VSQDVOLVML	648
WSSIIB	588	*****PT* *****F* ***I***** ***L***** *F***** E *****E	647
WSSIID	588	*****PT* *****F* ***I***** ***L***** *F***** E *****E	648
ZSSIIIA	522	**A*****E A*****D***** D*****G***** AG*****	581
ZSSIIIB	488	T*****A***** Q*****D***** I*****H***** D*****I*****H***** AG*****	547
PEASSII	542	QT*****A*****P E*****IIS***** H*****DL*****E*****I*****M M*****H*****	601
POTSSII	578	QT*****P***** A*****K*****P D*****J***** P*****DL*****E*****V*****M MG*****	637

Region 5a

WSSIIIA	649	GTGRHDLES M LRHF E REHH D KVRGWVGFSV RLAHRITAGA DALI MPSREE PCGLNOLYAM	708
WSSIIB	648	*****G*****G*****	707
WSSIID	649	*****Q*****Q*****	708
ZSSIIIA	582	A*****R* Q*****L*****PN PM*****S***** V*****Y*****	641
ZSSIIIB	548	A*****D* R*****S*****S* A*****P*****P***** I*****L*****	607
PEASSII	602	A*****Q* KE**AQ*C* I*****S***** KM*****S I*****L*****	661
POTSSII	638	R*****Q* Q*****CQ*N* I*****KTS***** I*****A*****	697

FIGURE 3-2

10/24

Region 7							
WSSIIA	709	<u>A</u> YGTVPVVHA	<u>V</u> GGVRD T VPP	FDPFNHSGLG	WTSDRAEAHK	LTEALGHCLR	TYRDYKESWR 768
WSSIIB	708	*****	***L*****	*****	*****Q*	*****	***** 767
WSSIID	709	*****	***L*****	*****	*****	*****	****F***** 768
ZSSIIA	642	*****	***L*****A*	****GDA***	*****N*	****R***D	***K*G***K 701
ZSSIIB	608	*****	***L*****A*	****DT***	*****NR	M*D**S***T	***N***** 667
PEASSII	662	G*****G	***L*****Q*	*N**DE**V*	*****N*	*MA**WN**L	**K***K**E 721
POTSSII	698	K***I*****	***L*****Q*	***LMSQDW*	GPS*****SQ	**PRIRN**L	***E***K***E 757
WSSIIA	769	GLQERGMSQD	FSWEHAAKLY	EDVLLKAKYQ	W	799	
WSSIIB	768	*****	*****	****V*****	*	798	
WSSIID	769	*****	*****	****V*****	*	799	
ZSSIIA	702	S**A*****	L**D***E**	****V*****	*	732	
ZSSIIB	668	ACRA***AE*	L**D***V**	****V*****	*	698	
PEASSII	722	*I*****	L**DN**QQ*	*E***VA****	*	752	
POTSSII	759	*I*T*C*T**	L**DN**QN*	*E***IA****	*	788	

FIGURE 3-3

11/24

FIGURE 4

FIGURE 5

13/24

FIGURE 6

14/24

1 2 3 4 5 6 7 8 9 10 M

FIGURE 7

15/24

1	50
maizeSSIII	MEMVLRSQSP LCLRSGPVLI FRPTVAGGGG GTOSLLRTTR FARRVIRCV
potatoSSIII	----- ----- ----- ----- ----- ----- -----
wheatSSIII	MEMSLWPRSP LCPRSQRPLV V.VRPAGRGG LTQPFLMNGR FTRSRTLRCM
51	100
maizeSSIII	VASPGCPNRK S.RTASPNVK VAAYSNYAPR LLVESSSKKS EHHDSSRHRE
potatoSSIII	----- ----- ----- ----- ----- -----
wheatSSIII	VASSDPPNRK SRRMVPPQVK VISSRGYTRR LIVEPSNENT EHNNRD...E
101	150
maizeSSIII	ETIDTYNGLS GSDAAELTSN RDVEIEVDLQ HISEEELPGK VSINASLGEM
potatoSSIII	----- ----- ----- ----- ----- -----
wheatSSIII	ETLDTYNALL STETAEWTDN REAE.....TAKADSSQN ALSSSIIGEV
151	200
maizeSSIII	ETVDEAEVEE DKFEVDTSGI VLNVAVREV DPKDEHNAKD VFVVDSSTGA
potatoSSIII	----- ----- ----- ----- ----- -----
wheatSSIII	DVADEDILAA DLTIVYSLSSV MKKEVDAADK ARVKE....D AFELDXASTT
201	250
maizeSSIII	PDNAAVEEVV DEAEVEEDMV DVDIRGLDLN NATIEEIDL MEEALLENFDV
potatoSSIII	----- ----- ----- ----- ----- -----
wheatSSIII	LRSVIVDVMD HXWDCQETLR SVIVDVMDHN GTVQETLRSV IVDVMDDAAD
251	300
maizeSSIII	DSPGNASSGR TYGGVDELGE LPSTSVCIA INGKRRSLKP KPLPIVRFQE
potatoSSIII	----- ----- ----- ----- ----- -----
wheatSSIII	KARVEEDVFE LDLSGNISSS ATTVELDAVD EVGPVQDKFE ATSSGNVSNS
301	350
maizeSSIII	QEIQIVLSIVD EEGLIASSCE .EGQPVVDYD KQEENSTAFD EQKQLTDDFP
potatoSSIII	----- ----- ----- ----- ----- -----
wheatSSIII	ATVREVDASD EAGNDQGIFR ADLSGNVFSS STTVEVGAVD EAGSIKDRFE
351	400
maizeSSIII	EEGISIVHFP EPNNNDIVGSS KFLEQKQELD GSYKQDRSTT GLHEQDQSUV
potatoSSIII	----- ----- ----- ----- ----- -----
wheatSSIII	TDSSGNVSTS APMWDAIDET VADQDTFEAD LSGNASSCAT YREVDDVVDE
401	450
maizeSSIII	SSHGQDKSIV GVPQQIQYND QSIAGSHRQD QSIAGAPEQI QSVAGYIKPN
potatoSSIII	----- ----- ----- ----- ----- -----
wheatSSIII	TRSEEETFAM DL....FAS ESGHEKHMAV DYVGEATDEE ETYQQQYPVP
451	500
maizeSSIII	QSIVGCKQH ELIYPEPKKI ESIISYNEID QSIVGSH.KQ DKSVVSVPEQ
potatoSSIII	RSLSCTSVSN AITHLKIKPI LGFVSHGTT S LSVQSSSWRK DGMVTGVFS
wheatSSIII	SSFSMWDKAI AKTGVSLNPE LRLVRVEE.. QGKVNFSDDKK DLSIDDLPGQ
501	550
maizeSSIII	IQSIVSHSKP NQSTVDSYRQ AESIIGVPEK VQSITSYDKL DQSIVGSLKQ
potatoSSIII	ICANFSGRRR RKVSTPRSQG SSPKGFPVRK PSGMSTQRKV QKS.NGDKES

FIGURE 8-1

16/24

wheatSSIII	NQSIIGSYKQ DKSIADVAGP TQSIFGSSKQ HRSIVAFPKQ	
	551		600
maizeSSIII	DEPIISVPEK IGSIVHYTKP NQSIVGLPKQ QQSIVHIVEP KQSIDGFPKQ		
potatoSSIII	KSTSTSKESE ISNQKTVEAR VETSSDDTKG VVRDHKFLED EDEINGSTKS		
wheatSSIII	NQSIVSVTEQ KQSIVGFRSQ DLSAVSLPKQ NVPIVGYVER GSNXKQVPVV		
	601		650
maizeSSIII	.DLSIVGISN EFQTKQLATV GTHDGLLMKG VEAKE TSQKT EGDTLQATFN		
potatoSSIII	ISMSPRVSS QFVESEETGG DDKDAVKLNK SKRSEES... .GFIIDS VIR		
wheatSSIII	DRQDALYVNG LEA KEGDHTSEKT DEDALHVKN		
	651		700
maizeSSIII	VDNLSQKQEG LTKEADEITI IEKINDEDLV MIEEQKSIAM NEEQTIVTEE		
potatoSSIII	EQSGSQGETN ASSKGSH.AV GTKLYEILQV DVEPQQ... L KENNAGNVEY		
wheatSSIII	VDNVLRKHQA DRTOAVEKKT WKKVDEEHLY MTEHQKRAA. .EGQMVVNED		
	701		750
maizeSSIII	DIPMAKVEIG IDKAKFL.HL LSEEESWDE NEVGIIIEADE QEVDETSMS		
potatoSSIII	KGPVASKLLE ITKASDVEHT ESNEIDDLD NSFFKSDLIE EDEPLAAGTV		
wheatSSIII	ELSIT.. EIG MGRGDKIQHV LSEEELSWSE DEVQLIEDDG QEVDETSVS		
	751		800
maizeSSIII	.. TEQDIQES PNDDLDPQAL WSMLQELAEK NYSLGNKLFT YPDVLKADST		
potatoSSIII	.. ETGDSSLN LRLEMEANLR RQAIERLAEE NLLQGIRLFC FPEVVKPDDED		
wheatSSIII	VNVEQDIQGS PQDVVDPQAL KVMLQELAEK NYSMRNKLTV FPEVVKADSV		
	801		850
maizeSSIII	IDLYFNRDLS AVANE PDVLI KGAFNGWKWR FFTEKLHKSE LAGDWCCCKL		
potatoSSIII	VEIFLNRGLS TLKNESDVLI MGAFNEWRYR SFTTRLTEH LNGDWWSCCI		
wheatSSIII	IDLYLNRDLT ALANE PDVVI KGAFNGWKWR LFTERLHKSD LGGVVWSCKL		
	851		900
maizeSSIII	YIPKQAYRMD FVFFNGHTVY ENNNNNDFVI QIESTMDENL FEDFLAEEKQ		
potatoSSIII	HVPKEAYRAD FVFFNGQDVY DNNDGNDFSI TVKGGMQIID FENFLLEEKW		
wheatSSIII	YIPKAYRLD FVFFNGRTVY ENNGNNDFCI GIEGTMNEDL FEDFLVKEKQ		
	901		950
maizeSSIII	RELENLANEE AERRRQTDEQ RRMEEERAAD KADRVQAKVE VETKKNLCLN		
potatoSSIII	REQEKLAKEQ AERERLAEEQ RRREA KAEI EADRAQAKEE AAKKKVLRE		
wheatSSIII	RELEKLAMEE AERRTQTEEQ RRRKEARAAD EAVRAQAKAE IEIKKKLQS		
	951		1000
maizeSSIII	VLGLARAPVD NLWYIEPITT GQEATVRLYY NINSRPLVHS TEIWMHGGYN		
potatoSSIII	LMVKATKTRD ITWYIEPSEF KCEDKVRLYY NKSSGPLSHA KDLWIHGGYN		
wheatSSIII	MLSLARTCVD NLWYIEASTD TRGDTIRLYY NRNSRPLAHS TEIWMHGGYN		
	1001		1050
maizeSSIII	NWIDGLSFAE RLVHHHDKDC DWWFADVVVP ERTYVLDWVF ADGPPGSARN		
potatoSSIII	NWKDGLSIVK KLVKSERIDG DWYWTEVVIP DQALFLDWVF ADGPPKHAIA		
wheatSSIII	NWXDGLSIVE SFVKCNDKDQ DWYWADVIIP EKALVLDWVF ADGPAGNARN		
	1051		1100
maizeSSIII	YDNNGGHDFH ATLP.NNMTE EEWYMEEEQR IYTRLQQERR EREEA IKRKA		
potatoSSIII	YDNNNHRQDFH AIVP.NHIE ELYWVEEEHQ IFKTLQERR LREAAMRAKV		
wheatSSIII	YDNNNARQDFH AILPNNNVTE EGFWAQEEQN IYTRLQQERR EKEETMKRKA		
	1101		1150

FIGURE 8-2

maizeSSIII	ERNAKMKMKAEM KEKTMRMFLV SQKHIVYTE. PLEIHAGTTI DVLYNPSNTV
potatoSSIII	EKTALLKTET KERTMKSFL SQKHVVYTE. PLDIQAGSSV TVYYNPANTV
wheatSSIII	ERSANIKAM KAKTMRRFL SQKHIVYTRT XLKYVPGTTV DVLYNPSNTV
	1151 1200
maizeSSIII	LTGKPEVWFR CSFNRWMYPG GVLPPQKMVQ AENGSHLKAT VYVPRDAYMM
potatoSSIII	LNGKPEIWFR CSFNRWTHRL GPLPPQKMSP AENGTHVRAT VKVPLDAYMM
wheatSSIII	LNGKSEGWFR CSFNLWMHSS GALPPQKMVK SGDGPLLKAT VDVPPDAYMM
	1201 1250
maizeSSIII	DFVFSESEEG GIYDNRNGLD YHIPVFGSIA KEPPMHIVHI AVEMAPIAKV
potatoSSIII	DFVFSEREDG GIFDNKSGMD YHIPVFGGVA KEPPMHIVHI AVEMAPIAKV
wheatSSIII	DFVFSEWEED GIYDNRNGMD YHIPVSDSIE TENYMRIIHI AVEMAPVAKV
	1251 1300
maizeSSIII	GGLGDVVTS SRAVQDLGHN VEVILPKYGC LNLSNVKNLQ IHQSFSWGGS
potatoSSIII	GGLGDVVTS SRAVQDLHNH VDIILPKYDC LKMNNVKDFR FHKNYFWGGT
wheatSSIII	GGLGDVVTS SRAIQDLGHT VEVILPKYDC LNQSSVKDLH LYQSFSWGGS
	1301 1350
maizeSSIII	EINVWRGLVE GLCVYFLEPQ NGMFGVGYVY G.RDDDRREFG FFCRSALEFL
potatoSSIII	EIKVWFKGVE GLSVYFLEPQ NGLFSKGCVY GCSNDGERFG FFCHAALEFL
wheatSSIII	EIKVWVGRVE DLTJVYFLEPQ NGMFGVGCVY G.RNDDDRREFG FFCHSALEFI
	1351 1400
maizeSSIII	LQSGSSPNII HCHDWSSAPV AWLHKENYAK SSLANARVVF TIHNLEFGAH
potatoSSIII	LQGGFSPDII HCHDWSSAPV AWLFKEQYTH YGLSKSRIVF TIHNLEFGAD
wheatSSIII	LQNEFSPHII HCHDWSSAPV AWLYKEHYSQ SRMASTRVVF TIHNLEFGAH
	1401 1450
maizeSSIII	HIGKAMRYCD KATTVSNTYS KEVSGHGAIV PHLGKFYGIL NGIDPDIWDP
potatoSSIII	LIGRAMTNAD KATTVSPTYS QEVSGNPVIA PHLHKFHGIV NGIDPDIWDP
wheatSSIII	YIGKAMTYCD KATTVSPTYS RDVAGHGAIA PHREKFYGYL NGIDPDIWDP
	1451 1500
maizeSSIII	YNDNFIPVHY TCENVVEGKR AAKRALQQKF GLQQIDVPVV GIVTRLTAQK
potatoSSIII	LNDKFIPIPY TSENVVEGKT AAKEALQRKL GLKQADLPLV GIITRLTHQK
wheatSSIII	YTDNFIPVHY TCENVVEGKX AAKRALQQKF GLQQTDVPIV GIITRLTAQK
	1501 1550
maizeSSIII	GIHLIKHAIH RTLERNGQVV LLGSAPDSRI QADFVNLANL LHGVNHGQVR
potatoSSIII	GIHLIKHAIW RTLERNGQVV LLGSAPDPRV QNNFVNLANQ LHSKYNDRAR
wheatSSIII	GIHLIKHAIH RTLESNGQVV LLGSAPDHRI QGDFCRLADA LHGVYHGRVK
	1551 1600
maizeSSIII	LSLTYDEPLS HLIYAGSDFI LVPSIFEPCG LTQLVAMRYG TIPIVRKTGG
potatoSSIII	LCLTYDEPLS HLIYAGADFI LVPSIFEPCG LTQLTAMRYG SIPVVRKTGG
wheatSSIII	LVLTYDEPLS HLIYAGSDFI IVPSIFEPCG LTQLVAMRYG SIPIVRKTGG
	1601 1650
maizeSSIII	LFDTVFDVDN DKERARDRGL EPNGFSFDGA DSNGVDYALN RAISAWFDAR
potatoSSIII	LYDTVFDVDH DKERAQQCGL EPNGFSFDGA DAGGVDYALN RALSAWYDGR
wheatSSIII	LXDTVFDVDN DKDRARSLGL EPNGFSFDGA DSNGVDYALN RAIGAWFDAR
	1651 1686
maizeSSIII	SWFHSLCKRV MEQDWWSNRP ALDYIELYRS ASKL*~
potatoSSIII	DWFNSLCKQV MEQDWWSNRP ALDYLELYHA ARKLE*
wheatSSIII	DWFHSLCKRV MEQDWWSNRP ALDYIELYHA ARKF*~

FIGURE 8-3

18/24

(a)

(b)

FIGURE 9

19/24

(a) Wyuna

(a) Gabo

(C) Gabo

FIGURE 10

FIGURE 11

GS

21/24

FIGURE 12

	Region 1			Region 2			Region 3			Region 4			Region 5			Region 6			Region 7								
	19	20	30	40	50	60	70	80	90	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360
wGBSS	81	FVGAEPAWNS	KTGCLGDLIGL	GLPPAMAANG	HRRVAVISPRX	DQYKDAWDT-	---	SUVSE	IKVVDKXVERV	RYFHCYKRGV	DRVFDHPCP	170															
wSS1	144	-*TG*A**YA	*S*****VC*	S***I*L**R*	*****WM***	LNGSSIDKNYA	KALYTGRHKIK	*P*EGGSHE*	TF**E*RDN*	*W*****SY	233																
wSS2	314	-A**CS**C	*****VA*	A**K*L**KR*	*****VV***	GD*EE*Y*V-	---	G*RKY	Y*LAGQDME*	N***A*ID**	*F**I*I*L*	403															
wSS3	1187	-IAV***VA	*V*****VYT	S*SR*IQDL*	*T*E**L*K*	*CLNQSSVTK-	---	-DIHLQSQFS	WGGTEI*VW*	G**BDLTYY*	1276																
wGBSS	171	JEKVRGKTKE	KIYGDD*GTD	YEDNQQRFLS	LCQAALEVPR	IINLDNNPYF	SGPYGEDD*V	VCDNDWTGLL	ACYLKSNYQS	NGTYRAAKVA	260																
wSS1	234	-HRPGSLYGD	-----NFGA	FG* * F*YT*	* * Y**C*A*L	* * E*GRGYI*G	QN-----CM*	*V*****AS*V	PVLAFAK*RP	Y*V**DSRST	323																
wSS2	404	RHRQEDIYGS	-----S	RQEIMK*MI*	F*K**V***W	HVPCCGGV**G	D*-----NL**	IA*****A**	PV****AY*RD	H*IMQYTRSI	493																
wSS3	1277	**PQN*MFGV	-----GCVV	GRNDDR**GF	F*HS***-P	* * QNEFS*H-	-----II	H*H**SSAPV	*WLY*EH*SQ	-SRMASTR*V	1366																
wGBSS	261	FCIHNISYQG	RFSFDDRAQL	NLPD-----R	EKSSEDFIDG	YDKPVTEGRKI	NMMKAGILQA	DKLTVSPYY	ABELISGEAR	GCEDLNIMRL	350																
wSS1	324	LV***LAH**	LEPASTYPD*	G**PEWYGAL	BWVTPEMARR	HALDKGEAVN	FLKG*VVTAD	RI*TVSQG*S	W*VTTAEGQQ	*LNELLSS*K	413																
wSS2	494	MV***AH**	*GPV*E*PFT	E*-----	-BHYLEHPRR	* * PVGGEHAN	YFAAGLKNAD	QV*VVSPG*L	W*LKTVBGGW	*LHDIIQRNQD	583																
wSS3	1367	*T***L-BF*	AHYIGKAATY	CDK-----	-----	-----	-----	-----	-----	-----	1456																
wGBSS	351	TGTTIYNGM	DYSENDDPKD	KFLAVNTYDIT	TALEGKALNK	EALEGKALNK	EALQARYGLP	VDRKVPLVAF	IGRLEBOKGP	DYMIASIPETI	440																
wSS1	414	SVLNG***I	*IND*N*T*	*C*PHH*SV-	-----	DD*S***KC*	AB**K*L***	*RED***IG*	***DX***I	*LIKMA***-	503																
wSS2	584	WKTRG***I	*NM*+N*EV*	VH*KSDGTYN	-----	FSLG TLDS***RQC*	*+++R*L***Q	*PAD***LG*	***DG***V	EIIADAM*W*	673																
wSS3	1457	ERFYG***I	*PDI***YT*	N*IP*P*TCE	-----	NVVEG*	* *AKRALQQ*	FG***QT-----	-----	-HL*KHAIR	1546																
wGBSS	441	LKEEDYQVLL	LGTGKKFFER	LLKSIREKEF	SKYRAVYRFN	-----	-APLA	HOMTBGADVL	AVTSREBPCG	LIOLOGMYG	TPCACASTGG	530															
wSS1	504	*MR***F*M	**S*DPI**G	WAT*T*SSYK	D*F*GM*G*S	-----	-V*VS	*RIT***C*I	IMP***	*N***YA*Q**	*VPUVHG***	593															
wSS2	674	V-SO***L*M	****RHDL*S	N*RHF*REHH	D***GW*G*S	-----	-VR**	*FIT***A	JMP***	*N***YA*Z**	*VPUVHAV***	763															
wSS3	1547	TL*SNG*Y**	**SAPDHRIQ	GDFCRLLADAL	FG*YHGRVRL	-VLTYDE**S	*LTY*S*FI	LIPI*I***	*T*VY*	***SIPIVRK***	1636																

FIGURE 13-1

Region 7 (Continued)		Region 8				Region 9				Region 10			
		460	470	480	490	500	510	520	530	540			
wGBSS	531	LVDTIVEGKT	GFMGRLSYD	CNVVBPAADV	KVTTLKRAY	KVVGTPAYHE	MVKNCM1QDL	SMKGPAKNN	DVLLELGVEG	SIEPGIVGBBI	620		
wSS1	594	*R**-**TEN	-	--PEFGAKGEE	GTGMWFSPLT	VDKMLN* LRT	AMSTFREHKP	**E*J*M*RGM	TKDHTWDHAA	EQYEQIF*WA	683		
wSS2	764	VR**-*PPFD	-	--PFNHSGLG	--w*FD*E	AHKLIB* LGH	CLRTTYDKKE	**R*LQERGM	SQDFSWEHAA	KLYED*LLKA	853		
wSS3	1637	****-*FDVD	NDKDRAR*LG	LPNGFSRDG	ADSNNGVDY* L	RDKFHSCLKR	VMEQDWSNR	PA*DIELYH	ARKF*	1726		
		550	560	570	580	590	600	610	620	630			
wGBSS	621	APLAMENVA	A P*			
wSS1	684	FYDQPYTM			
wSS2	854	KYQW			
wSS3	1727					

FIGURE 13-2

FIGURE 14

