Assignment 5

Reinforcement Learning: assignment #1

Davide Brinati

Matricola: 771458

a) Define the MDP underling the problem.

- S = {s1, s2, s3, s4, s5, s6, s7}
- A = {Destra, Sinistra}
- T = Matrice di transizione per un processo deterministico, $T(s,a) \rightarrow s'$
 - T(s1, Destra) = s3
 - \circ T(s1, Sinistra) = s2
 - o T(s2, Destra) = s5
 - T(s2, Sinistra) = s4
 - T(s3, Destra) = s7
 - o T(s3, Sinistra) = s6
- R = funzione reward o payoff, R(s)
 - R(s1, Destra) = 0
 - o R(s1, Sinistra) = 0
 - \circ R(s2, Destra) = 0
 - R(s2, Sinistra) = 4
 - o R(s3, Destra) = 3
 - o R(s3, Sinistra) = 2

b) Compute the optimal value function V* using the value iteration algorithm.

Assumiamo che γ = 1, utilizzando l'algoritmo di iterazione del valore avremo che:

- V(s4) = 0
- V(s5) = 0
- V(s6) = 0
- V(s7) = 0

- $V(s2) = max\{4, 0\} = 4$
- $V(s3) = max\{2, 3\} = 3$
- $V(s1) = max\{0 + 4, 0 + 3\} = 4$
- c) Suppose to have an initial policy which chooses equally between right and left at each junction, and assume $\gamma = 0.5$:
- 1. What is the value function V^{π_0} for the initial policy?

La *initial policy* ci da i seguenti risultati:

- A s1 sceglie Destra
- A s2 sceglie Destra
- A s3 sceglie Sinistra

Quindi il valore della funzione V^{π_0} sarà:

- $V_0^{\pi}(s1) = \max\{0 + 0.5*0; 0 + 0.5*2\} = \max\{0, 1\} = 1 \text{ (va a destra)}$
- $V^{\pi}_0(s2) = \max\{4, 0\} = 4 \text{ (va a sinistra)}$
- $V^{\pi_0}(s3) = \max\{2, 3\} = 3 \text{ (va a destra)}$
- 2. What is the improved policy $\pi 1$ based on the value function V^{π}_{0} ? [Policy Improvement]
 - A s1 sceglie di andare a Destra
 - A s2 sceglie di andare a Sinistra
 - A s3 sceglie di andare a Destra
- 3. What is the new value function V_1^{π} ? [Policy Evaluation]
 - $V_1^{\pi}(s1) = \max\{0 + 0.5*4; 0 + 0.5*3\} = \max\{2, 1.5\} = 2 \text{ (va a sinistra)}$
 - $V^{\pi_1}(s2) = \max\{4, 2\} = 4(va \ a \ sinistra)$
 - $V^{\pi_1}(s3) = max\{2, 3\} = 3$ (va a destra)

4. What is the improved policy π 2 based on the value function $V\pi$ 1? [Policy Improvement]

- A s1 sceglie di andare a sinistra
- A s2 sceglie di andare a sinistra
- A s3 sceglie di andare a destra