Index

A	
Abelian groups	vol.1:p.24
Adjoint operators	vol.1: pp.43 - 44,87,103
Aujoint operators	vol.3: pp.134 - 135
Adjugate matrix	vol.2: pp.120 - 121
Affine spaces	vol.1: p.93
Asymptotically stable	vol.2: p.76
Asymptotically stable	vol.3: pp.82 - 84
	vol.4: p.7
Attracting fixed point	vol.4: p.7 vol.2: p.76
Attracting fixed point	vol.3: pp.83 - 84
Attractiveness	vol.3: pp.83 - 84 vol.3: p.83
Autonomous systems	vol.1: p.7
Autonomous systems B	voi.1 . p.1
Basin boundary	vol.2:p.89
Basin of attraction	vol.2 : p.89
Basis Basis	vol.2: p.89 vol.2: pp.125 - 127
Bifurcation	vol.1: pp.11 - 12,63 - 64
Diffication	vol.4: pp.12 - 13
Bifurcation (fold)	vol.4: pp.12 - 13 vol.4: pp.12 - 13
Bifurcation (transcritical)	vol.4: pp.12 - 15 vol.4: pp.12 - 15
Bifurcation diagram	vol.4: pp.12 - 13 vol.4: pp.12, 15 - 17
Body velocity	vol.4: pp.12, 13 - 17 vol.1: p.38
C	voi.1 . p.30
Carrying capacity	vol.4:p.9
Causal systems	vol.2: p.152
Causai systems	vol.3: pp.3 - 4
Cayley-hamilton theorem	vol.3: pp.3 - 4 vol.2: pp.139 - 140
Cayley-nammon theorem	vol.3: pp.121 - 122
Centroid of area	vol.1: pp.4-6
Characteristic equation	vol.2: pp.77, 138 - 139
Characteristic equation	vol.3: p.37
Column space	vol.2: pp.133 - 134
Complex conjugate transpose	vol.3: pp.40 - 44
Condition number (of a matrix)	vol.3: pp.40 - 44 vol.3: pp.61 - 62
Connection vector field	vol.1: pp.118 - 119
Conservative system	vol.2: pp.89 - 91, 103
Conservative system Conservative vector fields	vol.1: pp.145 - 146
Conserved quantity	vol.2: p.90
Constraint, holonomic	vol.1: pp.76 - 77
Constraint, nonholonomic	vol.1: pp.110 - 117, 135 - 136 vol.1: pp.110 - 117, 135 - 136
Contour	vol.1: pp.110 - 117, 133 - 130 vol.2: pp.91 - 92
Controllability	vol.2: pp.91 - 92 vol.3: p.132
· ·	-
Controllability gramian Convolution	vol.3: p.135
Convolution	vol.3: pp.2-4

	10 444
Convolution (discrete)	vol.3: pp.14, 17
Coordinate transformation matrix	vol.2: pp.128 - 129
	vol.4:p.18
Coordinate vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51 - 54
Corank	vol.2:pp.51-54
Cotangent bundle	vol.1:p.126
Cotangent space	vol.1:p.126
Cotangent vector	vol.1: pp.127 - 130
Cramer's rule	vol.2:p.121
Cross product	vol.1: pp.1-2
Curl (vector)	vol.1: p.145
Curvature (constraint)	vol.1: pp.144 - 145
D	11
Dead zone nonlinearity	vol.2:p.151
Deficient matrix	vol.2: pp.140 - 141
Degenerate matrix	vol.2: p.139
Degrees of freedom	vol.1: p.17
Detectable	vol.3: pp.145 - 146, 149
Determinant	vol.2: pp.78 - 81,115 - 119
Diagonal coordinate form	vol.2: pp.38 - 31,113 - 119 vol.3: pp.38 - 46
-	
Diagonalization	vol.2: pp.142 - 144
D.Q. 1.	vol.3: p.46
Diffeomorphic	vol.1: p.20
Differential-algebraic equations	vol.2: pp.41 - 44,47 - 48
Differential-algebraic equations, differentiation index	vol.2: pp.47 - 48
Differential-algebraic equations, model consistency	vol.2: p.44
Differential-algebraic equations, regularity	vol.2:p.45
Differential-algebraic equations, solution	vol.2:p.44
Dimension (of a vector space)	vol.2: pp.125 - 126
Direct product of two sets	vol.1:p.20
Direct sum	vol.1:p.20
Direct sum of two sets	vol.1:p.125
Directional linearity	vol.1:p.106
Distribution (allowable velocities)	vol.1: pp.112, 148-150
Dot product	vol.2: pp.134 - 135
	vol.3:p.41
E	
Eigenspace	vol.2:p.140
Eigenvalue	vol.2: pp.77, 138 - 145
	vol.3: pp.36 - 45, 56 - 59
Eigenvector	vol.2: pp.76 - 77, 138 - 145
	vol.3: pp.36 - 45
Eigenvector (left)	vol.3: pp.50 - 51
Elementary row operators	vol.2: p.107
Embedding	vol.1: p.96
Equilibrium point	vol.3: pp.1, 5-10, 79-84
Equinorium pome	pp.1, 0 - 10, 13 - 64

		vol.4: pp.3-4	
Equivalent vector	s w.r.t. functions	vol.1: pp.100 - 101	
Euler-lagrange eq	uation	vol.1:p.136	
Existence and un	iqueness theorem	vol.1:pp.11,13	
		vol.2:p.82	
Exponential map		vol.1: pp.48 - 51, 103 - 10)4
External forces		vol.1:p.1	
F			
Finite escape time	e	vol.4: pp.9-10	
Fold bifurcation		vol.4: pp.12 - 13	
Force couple		vol.1:p.2	
Force couple syste	em	vol.1:p.3	
Forward euler int	egration	vol.2:p.148	
Forward kinemati	ics	vol.1: pp.78, 83 - 84	
Frequency respon	se	vol.3: pp.98, 105	
Frobenius norm		vol.3: pp.62, 102-117	
Fundamental vect	tor field (infinitesimal generators)	vol.1: pp.99 - 100	
G			
Gait generation		vol.1:p.124	
Gaussian eliminat	tion	vol.2: p.104	
Generalized coord	linates	vol.1:p.78	
Geodesics		vol.1: pp.44-46, 51, 96-	99
Globally asympto	tically stable	vol.3:p.93	
Gradient vector fi	ield	vol.1: pp.129 - 130	
Gram schmidt or	thogonality procedure	vol.2:p.137	
Group		vol.1: pp.21, 94-95	
Group invariant v	vectors	vol.1:p.100	
$Group, \ left/right$	action	vol.1: pp.24 - 29, 33, 80, 90	6,137
Group, symmetry		vol.1: pp.108 - 109, 137	
H			
H_{∞} norm		vol.3: pp.108 - 119	
Hartman-grobma	n theorem	vol.2:p.88	
Hermitian matrix		vol.3: p.107	
Heteroclinic traje	ctory	vol.2: p.94	
Holonomic constr	aint	vol.1:pp.76-77	
Homeomorphic		vol.1:p.19	
		vol.2:p.88	
Homogeneity		vol.3:p.1	
Homogeneous equ	nations	vol.2: p.105	
Hurwitz matrix		vol.3: pp.94 - 96	
Hyperbolic fixed	point	vol.2: pp.87 - 88	
Hysteresis		vol.1: pp.66, 70-71	
		vol.2:p.42	
I			
Idempotent		vol.2:p.37	
Image (algebra)		vol.1:p.124	
Impulse response		vol.3: pp.19 - 20, 29 - 30,	36

	Index theory	vol.2: pp.98 - 101
	Induced norm	vol.3: pp.103 - 104
	Infinity norm	vol.3: pp.100 - 101
	Inner product	vol.2: pp.134 - 135
		vol.3: p.41
	Internal forces	vol.1: p.1
	Intersection (spaces)	vol.2: pp.130 - 131
	Invariance	
	Isocline	vol.1: p.139
		vol.2: pp.74,84
,	Isomorphic	vol.1: p.22
J		
	Jacobi-liouville formula	vol.3: p.27
	Jacobian	vol.1: pp.84 - 86
		vol.2: p.85
	Jordan blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78
K		
	K-step observability matrix	vol.3: pp.138 - 139
	Kalman rank test	vol.3: p.136
	Kernel	vol.1: pp.124 - 125
	Kinematic locomotion	vol.1: pp.105 - 107
L		11
	L1 norm	vol.3: pp.100 - 101
	L2 induced gain of a system	vol.3: p.108
	L2 norm	vol.3: pp.100 - 101
	Lagrangian	vol.2: p.45
	Lagrangian multipliers	vol.2: pp.45 - 46
	Lagrangian muniphers	
		vol.3: p.126
	Laplace transform	vol.2: p.147
		vol.3: pp.29 - 33
	Liapunov fixed point	vol.2: p.76
	Lie algebra	vol.1: pp.41, 98 - 100, 103, 151 - 152
	Lie bracket	vol.1: pp.148 - 150
		vol.2: p.1
	Lie groups	vol.1: pp.21, 96 - 99
	Lifted actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
	Limit cycle	vol.3: p.82
		vol.4: pp.10 - 12
	Linear combination	vol.2: p.124
	Linear equations	vol.2: p.104
	Linear independence	vol.2: pp.124 - 125
	Linear time invariance	vol.2: p.152
	Emeal offic fiverrance	vol.3: pp.8 - 9, 17
	Linear transformation	
	Linear transformation	vol.2: pp.131 – 133
	Linearity	vol.3: p.15
	Linearity (mapping)	vol.1: pp.106 - 107
	Linearity (systems)	vol.2: p.152
		vol.3: p.1

vol.1:pp.10-11
vol.2: pp.84 - 85
vol.3: pp.1, 7-10
vol.4: pp.5-8
vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
vol.1:p.104
vol.4:p.9
vol.4:p.12
vol.2:p.88
vol.3: pp.85 - 96, 117 - 119, 124 - 126
vol.1: pp.17-19,93
vol.1: pp.76-78
vol.1:p.20
vol.1:p.93
vol.2:p.89
vol.1:p.93
vol.3:pp.53,56
vol.3:p.20
vol.2: pp.111, 118-120
vol.2: pp.115 - 119
vol.3: pp.26 - 27, 36
vol.2: pp.110 - 115
vol.2:p.111
vol.2:p.106
vol.3:p.27
vol.2:p.152
vol.3:p.4
vol.3: pp.127 - 129, 133 - 136
vol.3: pp.41 - 45, 51
vol.3: pp.35 - 45, 51
vol.2:p.44
vol.3: pp.109 - 115
vol.1:p.21
vol.1: pp.138 - 140
vol.1:p.13
vol.1: pp.34 - 38, 46 - 47
vol.3:p.93
vol.3:p.22
vol.2:p.76
vol.3:p.35
vol.1: pp.131 - 134
vol.1:p.147
vol.1: pp.145 - 147
vol.1: pp.110 - 117, 135 - 136
vol.3: pp.36-46

Nullcline	vol.2:p.84
Nullity	vol.2:p.134
Nullspace	vol.2: pp.132 - 134
O	
Observability	vol.3: pp.136 - 139
Observer based controller	vol.3: pp.148 - 149
One-form	vol.1: pp.125, 127-129
Optimal frame	vol.1:p.83
Orthogonal compliment	vol.2: pp.137 - 138
Orthogonal set	vol.2:p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal basis	vol.2:p.136
Outer product	vol.2:p.136
Output feedback design	vol.3:p.147
Overdetermined system	vol.2:pp.19,41
P	
P norm	vol.3: pp.100 - 102
Parallel linkage mechanisms	vol.3: pp.59 - 60
Pbh test	vol.3: p.136
Pendulum	vol.4: pp.7 - 8
Pfaffian constraint	vol.1: pp.111 - 117
Phase (angle)	vol.2: p.61
Phase coordinate form	vol.3:p.6
Phase drift	vol.2: p.68
Phase lock	vol.2: p.67
Phase portrait	vol.1: pp.7 - 9
•	vol.2: pp.74, 83
	vol.3: p.35
	vol.4: pp.5, 17-19
Pitchfork bifurcation	vol.4: pp.12, 15-17
Poles (transfer function)	vol.2: p.147
,	vol.3: pp.58 - 59
Position trajectory	vol.1: p.105
Positive definite matrix	vol.3: p.87
Positive semidefinite matrix	vol.3: p.125
Potentials	vol.1:p.17
Power spectral density	vol.3: pp.116 - 119
Preimage (algebra)	vol.1: p.124
Principally kinematic system	vol.1: p.139
Principle minors	vol.3: p.88
Principle of least action	vol.1: pp.131 - 133
Projection operator	vol.2: p.37
Q	000.2 · p.01
Quadratic programming	vol.3: pp.125 - 126
R	001.0 . pp.120 120
Radially unbounded	vol.3:p.89
Range (matrix)	vol.2 : pp.132 - 133
realize (matrix)	$000.2 \cdot pp.132 - 133$

	Range of entrainment	vol.2: pp.68 - 69
	Rank	vol.2: pp.51, 53 - 54, 132 - 134
	Reachability	vol.3: pp.120 - 126, 130, 132
	Reachability gramian	vol.3: pp.124 - 129, 133 - 135
	Reaction force	vol.1: p.4
	Realization theory	vol.2: p.149
	Reconstruction equation	vol.1: pp.114 - 123, 138
	Region of attraction	vol.4: p.15
	Regular control problem	vol.2: p.45
	Resolvent	vol.3: pp.17 - 18, 30, 36
	Resonance	vol.3: p.50
	Reversible system	vol.2: pp.92 - 95
	Rigid body	vol.1: p.23
	Rigid body, left lifted action	vol.1: pp.38 - 41
	Rigid body, right lifted action	vol.1: pp.41 - 43
	Routh-hurwitz criterion	vol.3: pp.77 - 80
	Row echelon form	vol.2: p.107
	Row space	vol.2: p.134
	Runge-kutta method	vol.2: p.83
S	~	-
	Saddle connection	vol.2: p.94
	Saddle node	vol.4: p.19
	Semidirect product of two sets	vol.1:p.24
	Separatrix	vol.2: p.89
	Shape trajectory	vol.1:p.105
	Shift operator	vol.3: pp.1-2
	Signal norms	vol.3: pp.96 - 104
	Similar matrices	vol.2:p.142
	Singular matrix	vol.2: pp.41 - 42, 51, 110, 122
	Singular value decomposition	vol.3: pp.104 - 110, 128 - 129
	Singular vectors	vol.3: p.106
	Sink node	vol.4: p.19
	Small-gain theorem	vol.3: pp.109 - 114
	Solution, differential-algebraic equations	vol.2: p.44
	Source node	vol.4: p.19
	Span	vol.2: pp.124 - 125
	Spatial velocity	vol.1: pp.43, 85
	Special euclidean group	vol.1: p.23
		vol.2: pp.1-2
	Special orthogonal group, $so(n)$	vol.1:p.22
		vol.2: pp.1-2
	Stability	vol.3: pp.80 - 84
		vol.4:p.5
	Stabilizable	vol.3: pp.141 - 143, 149
	Stable	vol.2:p.76
		vol.3: pp.53 - 59, 91 - 94
		vol.4:p.5

State estimator controller	vol.3: pp.144 - 147
State feedback controller	vol.3: pp.144 - 144 vol.3: pp.140 - 144
State space model	vol.2: pp.147 - 150
State space model	vol.3: p.5
State transition matrix	vol.3: pp.11 - 13
State vector	vol.2: pp.147 - 149
State vector	vol.3: p.5
Strain energy	vol.2: pp.5 - 7
Structural stability	vol.2:pp.88
Subcritical pitchfork bifurcation	vol.4: p.17
Subspace	vol.2: pp.129 - 130
Sum (spaces)	vol.2: pp.130 - 131
Supercritical pitchfork bifurcation	vol.4: pp.15 - 16
Superposition	vol.3: pp.1, 13
Supremum	vol.3:p.98
Symmetric matrix	vol.2: p.144
·	vol.3: pp.86 - 96
Symmetry	vol.1: pp.108 - 109, 131
System norms	vol.3: pp.99 - 120
T	
Tangent spaces	vol.1: pp.29 - 30
Taylor series expansion	vol.3: pp.7 - 8
	vol.4:p.6
Tensor product	vol.1:p.20
Time invariance	vol.2:p.152
	vol.3:pp.1-4
Time-reversal symmetry	vol.2: pp.92 - 93
Toeplitx matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Traction	vol.3: pp.60 - 61
Transcritical bifurcation	vol.4:pp.12-15
Transfer function	vol.2: pp.146 - 147, 150
	vol.3: pp.18 - 20, 36, 52
Transmission	vol.3:p.61
U	
Underactuated robotic mechanisms	vol.3: pp.59 - 77
Underactuated system	vol.1:p.104
Underdetermined system	vol.2:pp.19,41
Unitary diagonal coordinate transformation	vol.3: pp.38 - 43,50
Unstable	vol.2:p.76
V	
Van der pol oscillator	vol.4: pp.11 - 12
Variance amplication	vol.3:p.117
Variations of constants formula	vol.3: pp.24, 54
Varignon's theorem	vol.1: p.1
Vector field	vol.1: pp.30 - 31
	vol.2:p.74

Vector mapping	vol.2:p.127
Vector space	vol.2: pp.122 - 123
Vertical space	vol.1:p.125
Virtual work	vol.3: pp.63 - 64
W	
White-in-time gaussian processes	vol.3: pp.115 - 119
Work (mechanical)	vol.1:p.145
Z	
Z-transform	vol.3:pp.14-22
Zero set	vol.1: pp.76, 110-111
Zeros (transfer function)	vol.2:p.147