T-359 P.005/012 F-674 03:08PM FROM-10-11-05

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

b)

Claim 1 (original): A mass media storage system comprising:

a housing contained within a principal enclosure and comprised of a plurality of a)

drives, the housing comprising an upper and a lower set of guide rail trays, each

of the plurality of drives secured within a drive shuttle, each drive shuttle adapted for insertion between an unoccupied pair of upper and lower guide rail trays; and

one or more heater elements each operatively coupled proximate to one of the

plurality of drives via the guide rail trays.

Claim 2 (original): The system of claim 1, wherein the housing comprises a drive pack.

Claim 3 (original): The system of claim 1, wherein the one or more heater elements are located

proximate to one of an upper surface and a lower surface of the drives.

Claim 4 (original): The system of claim 1, wherein each of the one or more heater elements is

operatively coupled to an outer planar side of one of the guide rail trays.

Claim 5 (original): The system of claim 4, wherein each of the one or more heater elements has

a length and width equal to the length and width of an outer planar side of one of the guide rail

trays.

Claim 6 (original): The system of claim 4, wherein each of the one or more heater elements is

adapted to attach to the outer planar side of one of the guide rail trays utilizing wide thermal

range glue.

Claim 7 (original): The system of claim 1, wherein each of the one or more heater elements

comprises one of the guide rail trays.

T-359 P.006/012 F-674

10-11-05 03:08PM FROM-

Claim 8 (original): The system of claim 1, wherein each of the one or more heater elements comprises a thermally conductive, electrically nonconductive, wide thermal range material.

Claim 9 (original): The system of claim 1, wherein each of the one or more heater elements is operatively coupled to a corresponding power field effect transistor.

Claim 10 (original): The system of claim 9, wherein the housing includes a drive circuit having electrical components and connectors operatively coupled to each of the plurality of drives and each of the power field effect transistors, the drive circuit adapted to provide power individually to each of the plurality of drives and to each of the one or more heater elements.

Claim 11 (original): The system of claim 10, wherein the housing includes an enclosure circuit operatively contained within the principal enclosure, the enclosure circuit operatively connected to the drive circuit and adapted to operatively control each heater element and each of the plurality of drives.

Claim 12 (original): A mass data storage apparatus comprising:

- a) a principal enclosure including one or more fans;
- a drive pack contained within the principal enclosure and comprised of a plurality of drives; and
- c) one or more heater elements each operatively coupled proximate to one of the plurality of drives; and
- d) an enclosure circuit operatively contained within the principal enclosure, the enclosure circuit adapted to operatively control each of the heater elements and each of the fans.

Claim 13 (original): The apparatus of claim 12, wherein each of the one or more fans are forced air convection fans located in a posterior region of the principal enclosure.

Claim 14 (original): The apparatus of claim 12, wherein the drive pack is comprised of a housing, the housing comprising an upper and a lower set of guide rail trays.

T-359 P.007/012 F-674

10-11-05 03:08PM FROM-

Claim 15 (original): The apparatus of claim 14, wherein each of the plurality of drives is secured within a drive shuttle, each drive shuttle adapted for insertion between an unoccupied pair of the upper and lower set of guide rail trays.

Claim 16 (original): The apparatus of claim 14, wherein each of the one or more heater elements is operatively coupled to an outer planar side of one of the guide rail trays.

Claim 17 (original): The apparatus of claim 14, wherein each of the one or more heater elements comprises one of the guide rail trays.

Claim 18 (original): The apparatus of claim 12, wherein the enclosure circuit comprises a plurality of electrical connectors and one or more processors operatively coupled to the drive pack, at least one of the one or more processors adapted to control the operation of one or more of the drives and one or more of the heater elements.

Claim 19 (original): The assembly of claim 18, wherein at least one of the processors includes internally programmed operation code, the code involving operations for the at least one processor in order to maintain a correct operating temperature for one or more of the plurality of drives when an initial starting temperature is outside of a range of temperatures required for reliable operation of the drives.

Claim 20 (original): The assembly of claim 19, wherein the code includes a pulse width modulated heating program.

Claim 21 (original): The assembly of claim 19, wherein the code includes feedback-based processor management of power to the one or more heating elements and to the one or more fans based on one or more temperature sensors operatively coupled within the drive pack, the sensors adapted to be operatively coupled to and monitored by the at least one processor.

Claim 22 (original): The assembly of claim 19, wherein the code includes feedback-based processor management of power to each of the plurality of drives based on one or more temperature sensors operatively coupled within the drive pack, the sensors adapted to be operatively coupled to and monitored by the at least one processor.

Serial No.: 10/807,522

10-11-05 03:08PM FROM- T-359 P.008/012 F-674

Claim 23 (original): The apparatus of claim 12, wherein the drive pack includes a drive circuit having electrical components and connectors operatively coupled to each of the plurality of drives, the drive circuit adapted to provide power individually to each of the plurality of drives and to each of the one or more heater elements, the drive circuit operatively coupling the enclosure circuit to the drive pack.

Claim 24 (original): The apparatus of claim 23, wherein the drive circuit is operatively coupled to a plurality of power field effect transistors, where each of the power field effect transistors is operatively coupled to corresponding heater elements.

Claim 25 (original): The apparatus of claim 12, wherein each of the one or more fans is operatively coupled to a power field effect transistor that is operatively coupled to the enclosure circuit, where at least one processor adapted to individually control the operation of the one or more fans.

Claim 26 (currently amended): A method of achieving a correct operating temperature for heating one or more of a plurality of drives within a drive pack contained within a principal enclosure when an initial starting temperature is outside of a range of temperatures required for reliable operation of the drives comprising:

- a) monitoring the status of the plurality of drives;
- b) determining whether all criteria are met to start heat phase;
- c) engaging the heat phase if all the criteria are met; and
- d) determining whether the heat phase should be terminated.

Claim 27 (original): The method of 26, further comprising the step of programming at least one processor included on an enclosure circuit contained within the principal enclosure with code including a pulse width modulated heating program which includes feedback-based processor management of power to one or more heating elements operatively coupled proximate to the plurality of drives within the drive pack and to one or more fans operatively coupled within the principal enclosure.

Serial No.: 10/807,522

T-359 P.009/012 F-674

10-11-05 03:09PM FROM-

Claim 28 (original): The method of claim 26, wherein the step of monitoring the status of the plurality of drives further comprises monitoring whether the drive pack is present and determining whether the drive pack is outside of a range of temperatures required for reliable operation of the drives.

Claim 29 (original): The method of claim 27, wherein the step of monitoring the status of the plurality of drives further comprises calling up a drive pack services routine within the programmed code within the processor to perform the status monitoring function.

Claim 30 (original): The method of claim 26, wherein the step of determining whether all criteria are met to start heat phase further comprises determining whether the user has aborted starting the heat phase, determining whether temperature sensors meant for monitoring the drive pack temperatures are failing, determining whether the minimum temperatures have been achieved, and determining whether the heating option has been installed.

Claim 31 (original): The method of claim 30, wherein the step of determining whether all criteria are met to start heat phase further comprises calling up a heat phase control routine within the programmed code within the processor to perform the criteria determining function.

Claim 32 (original): The method of claim 26, wherein the step of engaging the heat phase if all the criteria are met further comprises determining the appropriate pulse width modulation levels, providing the operating instruction for the one or more heater elements and the one or more fans, and determining whether the pulse width modulation level should be advanced.

Claim 33 (original): The method of claim 32, wherein the step of engaging the heat phase if all the criteria are met further comprises calling up a heat phase control routine within the programmed code within the processor to perform the criteria determining function.

Claim 34 (original): The method of claim 26, wherein the step of engaging the heat phase if all the criteria are met further comprises initializing and controlling the heater hardware and executing a "seed" based pulse width modulation algorithm in operating the heater hardware.

Serial No.: 10/807,522

03:09PM P.010/012 F-674 10-11-05 FROM-T-359

Claim 35 (original): The method of claim 34, wherein the step of engaging the heat phase if all the criteria are met further comprises calling up a heater-pulse width modulation routine within

the programmed code within the processor to perform the criteria determining function.

Claim 36 (original): The method of claim 26, wherein the step of engaging the heat phase if all

the criteria are met further comprises initializing and controlling the fan hardware and executing

a "seed " based pulse width modulation algorithm in operating the fan hardware.

Claim 37 (original): The method of claim 36, wherein the step of engaging the heat phase if all

the criteria are met further comprises calling up a fan-pulse width modulation routine within the

programmed code within the processor to perform the criteria determining function.

Claim 38 (original): The method of claim 26, wherein the step of determining whether the heat

phase should be terminated further determining whether the temperature set-point has been

exceeded or determining whether the time duration has elapsed.

Claim 39 (original): The method of claim 38, wherein the step of determining whether the heat

phase should be terminated further comprises calling up a heat phase control routine within the

programmed code within the processor to perform the criteria determining function.

Claim 40 (original): A computer readable medium comprising the instructions for performing

the method of claim 26.

Claim 41 (new): The method of claim 26, wherein the engaging step further involves achieving

a correct operating temperature for the one or more drives when an initial starting temperature is

outside of a range of temperatures required for reliable operation of the drives.