

Übung 06: Kombinatorische Schaltungen

Einführung in die Rechnerarchitektur

Michael Morandell

School of Computation, Information and Technology Technische Universität München

25. - 31. November 2024

Mitschriften & Infos

Montags:

https://zulip.in.tum.de/#narrow/stream/2668-ERA-Tutorium---Mo-1000-4

Donnerstags:

https://zulip.in.tum.de/#narrow/stream/2657-ERA-Tutorium—Do-1200-2

Website: https://home.in.tum.de/ momi/era/

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

Inhaltsübersicht

- Quiz
- Wiederholung
- Tutorblatt
 - □ Digitaler Schaltungssimulator
 - Wahrheitstabelle
 - Boolesche Algebra
 - ☐ Funktionale Vollständigkeit
 - Arithmetische Schaltung

Zitat der Woche

"Flugzeuge stürzen ab, weil irgendein Depp irgendwas falsch codiert oder falsch implementiert oder falsch programmiert hat."

- Prof. Dr. Robert Wille

Quelle: Lecture: November 18. 2024 (tum.live)

Motivation

Boolesche Funktionen

AND-Gatter

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

NOT-Gatter

A	$\neg A$
0	1
1	0

Boolesche Funktionen

XOR-Gatter (Antivalenz)

$$A = A \oplus B$$

$$\begin{array}{c|cccc} A & B & A \oplus B \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

XNOR-Gatter (Äquivalenz)

A	B	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Implikation

A	B	$A \rightarrow B$	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Schaltungssymbole

freie Symbole	Schaltsymbole nach DIN 40 700 Teil 14		amerikanische Symbole	logische Darstellung
	seit 1976 bis 1976			
: UND —	<u>:</u> &			$\mathbf{x}_1 \wedge \wedge \mathbf{x}_n$
ODER	<u>·</u> ≥1		=======================================	$x_1 \lor \lor x_n$
Anti- valenz	<u>:</u> = 1	<u> </u>	-	$X_1 \neq \neq X_n$
: NAND —	<u>:</u> &		<u>:</u>	$\boxed{ \overline{x_1 \wedge x_2 \wedge \wedge x_n} }$
NOR —	· ≥1		-	$\boxed{ \overline{x_1 \vee x_2 \vee \vee x_n} }$
- Negation -	1 -	— <u></u>		$\bar{\mathbf{x}}_1$

Definitionen

Funktionale Vollständigkeit

Eine Menge \mathcal{F} boolescher Funktionen heißt funktional vollständig, falls alle booleschen Funktionen als Kombination von $f_i \in \mathcal{F}$ darstellbar sind. Beispiel: $\{\land, \neg\}$

Dualität

Gegeben eine boolesche Formel f, erhält man den dazugehörigen dualen Ausdruck f^D durch Ersetzung: $\{0 \mapsto 1; 1 \mapsto 0; \land \mapsto \lor; \lor \mapsto \land\}$. Es gilt $f \Leftrightarrow f^D$.

¹ Aussage lediglich über Wahrheitsgehalt der Formeln, nicht über Erfüllbarkeitsäquivalenz

Gesetze der booleschen Algebra

- Identität: x + 0 = x, $x \cdot 1 = x^{-1}$
- Idempotenz: x + x = x, $x \cdot x = x$
- Komplementärgesetz: $x + \overline{x} = 1$, $x \cdot \overline{x} = 0$
- Involution: $\overline{\overline{x}} = x$
- De Morgan: $\overline{x+y} = \overline{x} \cdot \overline{y}$ und $\overline{x \cdot y} = \overline{x} + \overline{y}$
- Absorption: $x + (x \cdot y) = x$, $x \cdot (x + y) = x$
- Distributivität: $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ und $x + (y \cdot z) = (x+y) \cdot (x+z)$

¹ In ERA werden sowohl die Schreibweisen \land/\lor als auch $\cdot/+$ akzeptiert, solange sie einheitlich verwendet werden.

Halbaddierer

- Addiert zwei 2-Bit Zahlen A, B
- \blacksquare Gibt die Summe ha_1 und ha_0 aus

A	B	ha_1	ha_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- \blacksquare => $ha_0 = A \oplus B$
- \blacksquare => $ha_1 = A \wedge B$

Volladdierer

- Addiert zwei 2-Bit Zahlen A, B mit einem Eingangsübertrag C
- Gibt die Summe fa_1 und fa_0 aus

A	B	C	fa_1	fa_0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Volladdierer Schaltkreis

Carry Ripple Addierer

- Addiert zwei n-Bit Zahlen a, b mit einem Eingangsübertrag c_{-1}
- lacksquare Gibt die Summe s und den Übertrag c_{n-1} aus

Fragen?

Bis zum nächsten Mal;)

Folien inspiriert von Niklas Ladurner und Prof. Dr. Robert Wille