

VietNam National University University of Engineering and Technology

CMOS TECHNOLOGY FOR VLSI IMPLEMENTATION

TS. Nguyễn Kiêm Hùng

Email: kiemhung@vnu.edu.vn

Laboratory for Smart Integrated Systems

Objectives

- In this lecture you will be introduced to:
 - How transistors operate and form simple switches
 - CMOS logic gates
 - Basic characteristics of electronic circuits
 - CMOS Fabrication

Outline

- MOS Transistors
- NMOS vs. CMOS Logic Circuits
- MOS Logic Circuits
- CMOS Fabrication and Layout
- Summary

Review: Digital System Example

Structure of Computer

- Motherboard
- Power Supply
- Slots & daughter boards
- ICs (Integrated Circuits)

Review: Digital System Example

- Structure of a IC
 - Include several Sub-circuits
 - arithmetic operations, store data,
 or control the flow of data
 - Logic circuit comprises a network of connected *logic* gates
 - logic gate performs a very simple function
 - Logic gates are built with transistors
 - Transistors are implemented by fabricating various layers of material on a silicon chip

A Metal-Oxide-Semiconductor (MOS) structure

- superimposing several layers of conducting and insulating materials
- chemical processing steps: oxidation of the silicon, selective introduction of dopants, and deposition and etching of metal wires and contacts

nMOS transistor (a) and pMOS transistor (b)

- Four terminals: gate, source, drain, body
- Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS) capacitor
 - Even though gate is no longer made of metal*

^{*} Metal gates are returning today!

- Body is usually tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

- When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Power Supply Voltage

- GND = 0 V
- In 1980's, $V_{DD} = 5V$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$

Transistor symbols and Switch-level models

(b) NMOS transistor

(c) Simplified symbol for an NMOS transistor

Drain — Source

Substrate (Body)

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

nMOS Transistor

 $V_S = 0 \text{ V}$

pMOS Transistor

Pass transistor

(d)

g = 0Input g = 1 Output s⊸**v**o-d 0 → strong 0 nMOS g = 1 g = 1 1 → → degraded 1 s -->--d (b) (a) (c) g = 0s_•_• d 0 → → degraded 0 pMOS g = 1 g = 0 1**→→**∽strong 1 s_**v** o d

Pass transistor strong and degraded outputs

(f)

(e)

Transmission gate

$$g = 0$$
, $gb = 1$
 $a \multimap b$
 $g = 1$, $gb = 0$
 $a \multimap b$
(b)

Input Output
$$g = 1, gb = 0$$

$$0 \longrightarrow strong 0$$

$$g = 1, gb = 0$$

$$1 \longrightarrow strong 1$$
(c)

(d)

Transmission gate

Inverting gate: fully restored

Bad non-inverting buffer

Inverter schematic (a) and symbol (b)

 Solution for building non-inverting gates

Various implementations of a CMOS 4-input AND gate

Outline

- MOS Transistors
- NMOS vs. CMOS Logic Circuits
- MOS Logic Circuits
- CMOS Fabrication and Layout
- Summary

NMOS vs. CMOS LOGIC CIRCUITS

- Pull-down Network (PDN): composed of <u>NMOS transistors</u> in series (or parallel)
- Pull-up Network (PUN): composed of <u>PMOS transistors</u> in parallel (or series)
- PDN and PUN networks are complements of each other, have equal numbers of transistors:
 - either the PDN pulls V_f down to Gnd or the PUN pulls V_f up to VDD

Outputs of CMOS LOGIC CIRCUITS

- High impedance or floating Z output: when both pull-up and pull-down are OFF
 - Importance in multiplexers, memory elements, and tristate bus drivers
- Contention (or Crowbarred) X level: when both pull-up and pull-down are simultaneously turned ON
 - o indeterminate output level
 - dissipates static power
 - is usually an unwanted condition

Output states of CMOS gates

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z	1
Pull-down ON	0	Contention (X)

Structure of a CMOS circuit

Outline

- MOS Transistors
- NMOS vs. CMOS Logic Circuits
- CMOS Logic Circuits
- CMOS Fabrication and Layout
- Summary

• Inverter: Y = A

Inverter truth table

Symbol (a) and (b) Inverter schematic

• 2-input NAND Gate: $Y = A \cdot B$

Α	В	Υ
0	0	
0	1	
1	0	
1	1	-

k-input NAND Gate:

- k series nMOS transistors
- k parallel pMOS transistor:

3-input NAND gate schematic

2-iput NOR Gate:

Α	В	Υ	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

$$Y = \overline{A + B}$$

QUIZ

Sketch a k-input CMOS NOR gate?

- Tristate Buffer:
 - Tristate buffer produces Z when not enabled

EN	Α	Υ
0	0	
0	1	
1	0	
1	1	

Tristate Buffer:

- Transmission Gate acts as tristate buffer
- Advantage: Only two transistors
- Drawback: Nonstoring output level is not driven from V_{DD} or GND
 - > Noise on A is passed on to Y

Tristate Inverter:

- Application: To allow multiple units to drive a common bus
- Drawback: Delay between different EN signals switching can cause contention

Multiplexer:

• 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Multiplexer:

- $-Y = SD_1 + \overline{S}D_0$ (too many transistors)
- How many transistors are needed?

Multiplexer:

- Non-storing MUX uses two transmission gates
 - Only 4 transistors

- Inverting Multiplexer:
 - Use a pair of tristate inverters

- Sequential Circuits: have memory, their outputs depend on both current and previous inputs.
 - Examples: latches and flip-flops

Control of an alarm system

A simple memory element

D Latch:

- When CLK = 1, latch is transparent
 - > D flows through to Q like a buffer
- When CLK = 0, the latch is opaque
 - > Q holds its old value independent of D
- a.k.a. transparent latch or level-sensitive latch

- D Latch:
 - Use a MUX and two inverters

- D Latch:
 - Operation

MOS LOGIC CIRCUITS

Flip-Flops:

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

MOS LOGIC CIRCUITS

Flip-Flops:

 Combining between one negative-sensitive D latch and one positivesensitive D latch

MOS LOGIC CIRCUITS

- Flip-Flops:
 - Operation: triggered by positive-edge clock

Outline

- MOS Transistors
- NMOS vs. CMOS Logic Circuits
- MOS Logic Circuits
- CMOS Fabrication and Layout
- Summary

- CMOS transistors are fabricated on silicon wafer with set of masks
- Photolithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and crosssection of wafer in a simplified manufacturing process

- Cross-section and corresponding schematic of an inverter
 - p-type substrate
 - An n-well is diffused (khuếch tán) into the substrate to create n-type body of pMOS transistor.

- Cross-section and corresponding schematic of an inverter
 - Substrate must be tied to GND and n-well to VDD
 - Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
 - Use heavily doped well and substrate contacts / taps

- The fabrication sequence consists of a series of steps in which layers
 of the chip are defined through a process called photolithography
 (quang khắc):
 - Etching (Ăn mòn)
 - Doping (pha tạp): Diffusion (khuyếch tán) or Ion Implantation (Cấy ion)
 - Oxidation
 - Deposition techniques (*phương pháp tạo màng mỏng*): chemical vapor deposition (*Kết tủa hóa trong pha hơi*), ...

 Masks specify where the components (i.e. Transistors and wires) will be manufactured on the chip.

The inverter could be defined by a hypothetical set of six

masks:

- n-well,
- polysilicon,
- n+ diffusion,
- p+ diffusion,
- contacts,
- and metal.

Fabrication

- Chips are built in huge factories called fabs
- Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- Grow SiO₂ on top of Si wafer
 - -900 1200 C with H₂O or O₂ in oxidation furnace

SiO₂ p substrate

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

CMOS Fabrication and Layout

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch

- Etch oxide with hydrofluoric (HF) acid
 - Only attacks oxide where photoresist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so photoresist doesn't melt in next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implantation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF acid
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

n well p substrate

Polysilicon

- Deposit very thin layer of gate oxide
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

Use same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion cont.

Strip off oxide to complete patterning step

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metalization

- Sputter aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

Fabrication and Package

- Tapeout final layout
- Fabrication
 - 6, 8, 12" wafers
 - Cut into individual dice
- A single dust particle or wafer defect kills a die

Fabrication and Package

Packaging

Bond gold wires from die I/O pads to package

Test that chip operates

- Design errors
- Manufacturing errors

Outline

- MOS Transistors
- NMOS vs. CMOS Logic Circuits
- MOS Logic Circuits
- CMOS Fabrication and Layout

Summary

- Concepts and applications of MOS Transistors in digital designs
 - MOS transistors are stacks of gate, oxide, silicon
 - Act as electrically controlled switches
 - Build logic gates out of switches
- MOS Logic Circuits
 - NMOS Vs. CMOS
 - Basic CMOS logic Circuits
- CMOS Layout and Fabrication
 - Draw masks to specify layout of transistors