MACHINE LEARNING FOR HEALTHCARE

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER - VII

Subject Code	: 20AM47XX	Credits	: 03
Hours / Week	: 03 Hours	Total Hours	: 39 Hours
L-T-P-S	: 3-0-0-0		

Course Learning Objectives:

This course will enable students to:

- 1. Summarize the different types of medical data and its Medical Standards, Challenges.
- **2. Explain** the different techniques to handle the image and clinical data.
- **3. Apply** Modelling techniques, Reinforcement Learning and Natural LanguageProcessing for healthcare data.
- **4. Utilize** the suitable Machine Learning and Deep Learning algorithms for various typesof healthcare applications.
- **5. Get the idea** to build a chatbot and develop a project using the appropriate case study in the healthcare.

Teaching-Learning Process (General Instructions)

These are sample new pedagogical methods that teachers can use to accelerate the attainment of the various course outcomes.

- 1. **Lecture method** means it includes not only the traditional lecture method but a different *type of teaching method* that may be adopted to develop the course outcomes.
- 2. *Interactive Teaching:* Adopt Active learning that includes brainstorming, discussing, group work, focused listening, formulating questions, note-taking, annotating, and roleplaying.
- 3. Show *Video/animation* films to explain the functioning of various concepts.
- 4. Encourage *Collaborative* (Group Learning) Learning in the class.
- 5. Discuss how every *concept can be applied to the real world* and when that's possible, it helps improve the student's understanding.

UNIT – I 08 Hours

Knowing Healthcare Industry: Introduction to healthcare informatics, Introduction to Machine Learning and Deep Learning in Healthcare, Medical Standards and Coding Types, Health Level Seven (HL7;) Global Healthcare Challenges and Trends; Past-Present-Future of AI&ML in Healthcare, Electronic Medical Records (EMR), Electronic Health Records (EHR) - Dataflow of EHR, Difference between EHR and EMR.

UNIT – II	08 Hours

Advanced Analytics in Health Care: Overview of Clinical Data, Data Types; Data handling techniques – Imputation technique for handling missing data; Synthetic Minority Oversampling Technique for handling imbalanced data, Different types of Data Analysis techniques, Risk Stratification; Survival Modelling; Disease progression Modelling.

UNIT – III	08 Hours

Medical Image Diagnostics and its Preprocessing: Biomedical Imaging Modalities - Computed Tomography, Magnetic Resonance Imaging, Positron Emission Tomography; Biomedical Signal: Electrocardiogram (ECG), Electroencephalogram (EEG), Segmentation - Thresholding and Region based Segmentation, Image Registration; ML applications in medical Ology space (Cardiology, oncology).

UNIT - IV 08 Hours

AI/ML and NLP for healthcare: Automating clinical workflow, Regulation of AI/ML, Challenges in deploying ML model, NLP for Healthcare, Re-enforcement learning in healthcare applications, Wearable devices and Medical Bots.

UNIT - V 07 Hours

Applications of Machine learning models (Linear regression, SVM, Random Forest) and Deeplearning models (CNN, RNN....) for the Healthcare area (Case study)

Course Outcomes:

At the end of the course the student will be able to:

- 1. Explain the different types of medical data and its Medical Standards, Challenges.
- 2. **Utilize** the appropriate techniques to handle the image and clinical data.
- 3. **Make use of the** Modelling techniques, Reinforcement Learning and Natural Language Processing for various healthcare applications
- **4. Apply** the suitable Machine Learning and Deep Learning algorithms for various typesof healthcare applications.
- 5. **Build** a chatbot and develop a project using the appropriate case study in thehealthcare.

				Ta	ble:	Mapp	ing Lev	els o	f CO	s to PO	s / PS	0s			
COs											PSOs	3			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	Engineering knowledge	Problem analysis	Design	Conduct investigations of complex problems	tool usage	The engineer and society	Environment and sustainability	Ethics	team work	Communication	Life-long learning	Project management and finance	Apply the principal concepts of AI	Apply the knowledge gained pertaining to data storage, data	develop, and test principles of Al concepts on Intelligent Systems
CO1	2	1	-	-	-	•	ı	-	2	2	-	-	2	2	2
CO2	3	2	-	-	1	-	1	-	2	2	-	-	2	2	2
CO3	3	2	-	-	1	-	-	-	2	2	-	-	2	2	2
CO4	3	2	-	-	1	-	•	-	2	2	-	-	2	2	2
CO5	3	3	2	-	1	-	-	-	2	2	-	-	2	2	2

CO5 3 3 2 - 1 2 2 2	2

3: Substantial (High)

2: Moderate (Medium)

1: Poor (Low)

TEXT BOOKS:

- 1. SumeetDua, U. RajendraAcharya, PrernaDua, Machine Learning in Healthcare nformatics, Intelligent Systems Reference Library 56, Springer Nature 2014.
- 2. Sergio Consoli, Diego ReforgiatoRecupero, Milan Petkovic, Data Science for Healthcare Methodologies and Applications.

REFERENCE BOOKS:

- 1. Thomas M. Deserno, Fundamentals of Bio-Medical Image processing, Biological and Medical Physics, Biomedical Engineering, Springer, ISBN 978-3-642-15816-2, 2011.
- 2. Silberschatz, Korth and Sudharshan: "Database System Concepts", Seventh Edition, Mc-GrawHill, 2019.
- 3. C.J. Date, A. Kannan, S. Swamynatham: "An Introduction to Database Systems", Eight Edition, Pearson Education, 2012.

E-Resources:

- 1. https://stellar.mit.edu/S/course/HST/sp19/HST.956/
- 2. https://www.coursera.org/learn/fundamental-machine-learning-healthcare.
- 3. https://www.coursera.org/learn/introduction-clinical-data

Activity Based Learning (Suggested Activities in Class)

- 1. Group discussion on different Health Care Problems.
- 2. Collaborative Activity is minor project development with a team of 4 students.
