Friday, August 22, 2025 11:57 AM

# Question 1 [10 marks]

#### Use pumping lemma and prove following languages are not regular

- 1.  $L1 = \{w \in \{0, 1\}^* : 0^x 1^{y+1} 0^z \text{ where } x = y \text{ and } x, y, z \ge 0\}$
- II.  $L2 = \{w \in \{0, 1\}^* : ww^k, where w \text{ is a string and } R \text{ denoting reversed string} \}$

# Conditions:

= 0 P+" 1 P+1 0 F E L

### Question 2 [20 marks]

Let  $\Sigma = \{0,1\}$  . Consider the following languages. Recall that for a string w,|w| denotes the length of w

$$L1 = \{w \in \Sigma^* : w \text{ is an even length palindrome}\}$$
  $L2 = \{w \in \Sigma^* : \text{length of } w \text{ is even}\}$ 

$$L3 = \{x11y : x, y \in L2, |x| = |y|\}$$

$$L4 = L1 \cap L3$$

Now solve the following problems.

#### (a) Give a context-free grammar for the language L4.

(b) Convert the following regular expressions into context free grammar.

Let 
$$\Sigma = \{0, 1\}$$
. Consider the following languages over  $\Sigma$ :

$$L1 = \{ w \in \Sigma^* : w \text{ starts and ends with the same symbol } \}$$

$$L2 = \{ w \in \Sigma^* : length \ of \ w \ is \ odd \ and \ w \ contains "11" \ as \ a \ substring \}$$

$$L3 = \{ w \in \Sigma^* : w \text{ is a palindrome and has odd length } \}$$

$$L4 = \{ w \in \Sigma^* : w \text{ has exactly three 1 's } \}$$

$$L5 = L1 \cap L4$$

Answer the following:

(c) Give a context-free grammar for L2.

(d) Give a context-free grammar for  $L2 \cap L3$ . (e) Give a context-free grammar for the language L5.

b) I) 
$$a^*b + a(b^* + a^*b)$$
 II)  $(a^* + b)bb(b^* + a)^*$ 
 $S \rightarrow X | aB | aX$   $S \rightarrow A \times Y | b \times Y$ 
 $\times \rightarrow Ab$   $A \rightarrow aA | \epsilon$ 
 $A \rightarrow aA | \epsilon$ 
 $B \rightarrow bB | b$ 
 $Y \rightarrow BY | aY | \epsilon$ 

c) 
$$S \rightarrow O \times II \times |I \times II \times |X \times II \times O$$
  
 $X \rightarrow O O \times |O I \times |I O \times |I \times |E$ 

$$||A|| |o||$$

$$A \to 00A00 | 01A10 | 10A01 |$$

$$X \to II$$

$$Q \to XAX | III$$

e) 
$$S \rightarrow |A| |OBIBIBIBO$$
  
 $A \rightarrow OA |AO| |I$   
 $B \rightarrow OB| \epsilon$ 

Sunday, September 7, 2025 1:32 PM

# Question 3[3+3+3+1 marks = 10]

Take a look at the grammar below and solve the following problems.

$$A \rightarrow 1A \mid 1C \mid 0B \mid 00A$$
  
 $B \rightarrow 0A \mid 1B \mid 00B$   
 $C \rightarrow 0C0 \mid 0C1 \mid 1C0 \mid 1C1 \mid \epsilon$ 

- (a) Give a leftmost derivation for the string 01011001.
- (b) Sketch the parse tree corresponding to the derivation you gave in (a).
- (c) Demonstrate that the given grammar is ambiguous by showing two more parse trees (apart from the one you already found in (b)) for the same string.
- (d) Find a string w of length six such that w has exactly one parse tree in the grammar above.







4) 011101

Sunday, September 7, 2025 3:08 PM

### Question 4 [10 marks]

Question A: Let  $\Sigma = \{a, b\}$ . Consider the following languages.  $LI = \{w \mid w \text{ is a palindrome and the length of } w \text{ is odd}\}$  $L2 = \{w \mid w = x0y : x, y \in \text{ any positive length string, } |x| = |y|\}$ 

- (a) Give the state diagram of a pushdown automaton that recognizes L1.
- (b) Give the state diagram of a pushdown automaton that recognizes L2.
- (c) Give the state diagram of a pushdown automaton that recognizes L1∩L2.

**Question B:** Let  $\Sigma = \{0, 1\}$ . Consider the following language.  $L = \{x \neq y : x, y \in \Sigma^*, \text{ and the number of occurrences of } 0 \text{ in } x \text{ is equal to the number of occurrences of } 10 \text{ in } y\}$ 

Solve the following problems.

- (a) Find all strings  $w \in L$  such that w starts with 110110# and has a length of 10.
- (b) Give the state diagram of a pushdown automaton that recognizes L.

B.







