

Semiconductor Detector Materials

Properties of materials used for room temperature semiconductor detectors

Material	Cd _{0.9} Zn _{0.1} Te	CdTe	Ge	Si	GaAs	Hgl ₂	Pbl 2	a-Si	a-Se
Atomic numbers	48, 30, 52	48, 52	32	14	31, 33	80, 53	82, 53	14	34
Average atomic number	49.1	50	32	32	32	62	62.7	14	34
Density ρ (g/cm³)	5.78	5.85	5.33	2.33	5.32	6.4	6.2	2.3	4.3
Band gap E g (eV)	1.572	1.5	0.67	1.12	1.43	2.13	2.32	1.8	2.2
Dielectric Constant	10.9	11	16	11.7	12.8	8.8		11.7	6.6
Pair creation energy E_{pair} (eV)	4.64	4.43	2.95	3.62	4.2	4.2	4.9	4	7
Resistivity $\rho (\Omega cm)$	$3x10^{10}$	10 ⁹	50	< 10 4	10 ⁷	10 13	10 12	10 12	10 12
Electron mobility μ _e (cm ² /Vs)	1000	1100	3900	1400	8000	100	8	1	0.005
Electron lifetime τ_e (s)	$3x10^{-6}$	3x10 ⁻⁶	> 10 ⁻³	> 10 ⁻³	10 ⁻⁸	10 ⁻⁶	10 ⁻⁶	6.8×10 ⁻⁹	10 ⁻⁶
Hole mobility μ _h (cm²/Vs)	50 - 80	100	1900	480	400	4	2	0.005	0.14
Hole lifetime τ_h (s)	10 ⁻⁶	2x10 ⁻⁶	10 ⁻³	2x10 ⁻³	10 ⁻⁷	10 ⁻⁵		4×10 ⁻⁶	10 ⁻⁶
(μτ) _e (cm²/V)	$(3-5) \times 10^{-3}$	3.3×10 ⁻³	>1	>1	8x10 ⁻⁵	10 ⁻⁴	8x10 ⁻⁶	6.8×10 ⁻⁸	5x10 ⁻⁹
(μτ) _h (cm²/V)	$5x10^{-5}$	2x10 ⁻⁴	> 1	≈1	4x10 ⁻⁶	4x10 ⁻⁵		2x10 ⁻⁸	1.4 x 10 ⁻⁷