Validation and Verification of a RNAS Solver with the Space-Time Gradient Method for the TUDa-GLR-Open Stage Transonic Axial Compressor

Boqian Wang, Dingxi Wang
School of Power and Energy, Northwestern Polytechnical University
GPPS CFD Workshop, Xi'an, Shaanxi
15th December, 2021

CONTENT

- 1 / Solver introduction
- 2 / Mesh configuration and numerical settings
- 3 / Results
 - ① Overall performance
 - ② Radial profiles
 - 3 Casing static pressure
 - 4 Unsteady flows
- 4 / Conclusion

1. Solver introduction

TurboXD¹⁻⁴ — an inhouse RANS solver

Method/model	Note		
Finite volume approach	Cell centre		
Turbulence model	Spalart-Allmaras		
Spatial discretization	JST scheme with scaled numerical dissipation		
Time integration in pseudo time	Hybrid five-stage Runge-Kutta method / Local time stepping		
Residual smoother	LU-SGS method		
Multigrid method	V type multi-grid method		
	Steady: Mixing-plane approach		
Multi-row analysis	Unsteady: (1)Space-time gradient method ⁴ /sliding plane method (the ninth order difference scheme is used for time discretization) (2)Time domain harmonic balance method/time and space mode decomposition and match method ³		

^{1.} Wang D X, Huang X. Solution stabilization and convergence acceleration for the harmonic balance equation system. *Journal of Engineering for Gas Turbines and Power* 2017, 139(9).

^{2.} Huang X, Wu H, Wang D. Implicit solution of harmonic balance equation system using the LU-SGS method and one-step Jacobi/Gauss-Seidel iteration. *International Journal of Computational Fluid Dynamics* 2018;32(4-5):218–32.

^{3.} Wang D, Huang X. A complete rotor–stator coupling method for frequency domain analysis of turbomachinery unsteady flow. Aerospace Science and Technology, 2017;70:367-77.

^{4.} Wang B, Wang D, Mohammad R and Huang X. Revisiting the Space-Time Gradient Method: A Time-clocking Perspective, High Order Difference Time Discretization and Comparison with the Harmonic Balance Method. *Chinese Journal of Aeronautics* (accepted).

2.1 Mesh configuration

Row	Number of grid points ($A*C*R = Total$)
1	249*53*73 = 0.96 million
2	169*53*73 = 0.65 million

Blade to blade view (50% span)

2.2 Numerical settings

Inlet boundary (ME15) conditions: Pt, Tt, absolute flow angle, relative flow angle

Ideal gas model → Pt = 101325 Pa, Tt = 288.15 K ← Ambient parameters (ME03)

Performance map is obtained by increasing the back pressure

3.1 Performance maps

Improved pressure ratio and stall margin by the STG method

3.2 Radial profiles at stator exit (100% design speed)

Method	Mass	$\Pi_{\rm t,30-15}$	$\eta_{is,30\text{-}15}$
EXP	16.2130	1.2828	0.7051
MP	16.2050	1.2836	0.6871
STG	16.2025	1.2828	0.6912

Peak Efficiency

3.2 Radial profiles at stator exit (100% design speed)

Method	Mass	$\Pi_{\rm t, 30-15}$	$\eta_{is,30\text{-}15}$
EXP	14.09	1.5633	0.78693
STG	14.2205	1.5632	0.8172

Experiment ID 8

Method	Mass	$\Pi_{\rm t, 30-15}$	$\eta_{is,30\text{-}15}$
EXP	13.385	1.5567	0.74667
STG	14.1315	1.5629	0.8131

Near Stall (Experiment ID 9)

3.2 Radial profiles at stator exit (65% design speed)

Method	Mass	$\Pi_{\rm t, 30-15}$	$\eta_{is,30\text{-}15}$
EXP	16.2130	1.2828	0.7051
MP	16.2050	1.2836	0.6871
STG	16.2025	1.2828	0.6912

Peak Efficiency

3.3 Radial profiles at rotor exit (100% design speed)

Method	Mass	$\Pi_{\rm t, 30-15}$	$\eta_{is,30\text{-}15}$
EXP	16.0000	1.4909	0.8692
MP	15.9255	1.4905	0.8601
STG	15.7630	1.4911	0.8597

Peak Efficiency

3.4 Casing static pressure (100% design speed)

Pressure over the rotor tip region at 99.9% blade span (STG time averaged solution)

3.5 Unsteady flows (100% design speed)

Entropy contours at 50% blade span

4 Conclusion

- 1 The results obtained by TurboXD has very good quantitative agreement with the experimental data
- 2 Compared with the steady analyses, the proposed STG method can obtain a larger stall margin and improve the solution accuracy
- 3 The STG method can predict blade row interaction unsteady flow field

Thanks for your attention