Week HW 3, Statics analysis

Anas Khmais Hamrouni

February 28, 2025

Task 1:

There are 3 weights with masses $M_1=20$ kg, $M_2=15$ kg, $M_3=10$ kg. They are connected by ideal string. This string goes through two pulleys L,N. When the M_1 weight goes down on 1 meter, the body ABCD shifts on some distance S. The task is to find the distance of this movement according to the ground. Neglect the friction between the floor and ABCD.

Solution:

Since the center of mass remains constant, we equate its initial and final coordinates after displacement S of the body ABCD whose mass is neglected:

$$x_{C1} = x_{C2} \tag{1}$$

$$x_{C1} = \frac{M_1 a + M_2 b + M_3 c}{M_1 + M_2 + M_3} \tag{2}$$

$$x_{C2} = \frac{M_1(a-S) + M_2(b+h-S) + M_3(c+h\cos 60^\circ - S)}{M_1 + M_2 + M_3}$$
(3)

Since $x_{C1} = x_{C2}$

$$M_1a + M_2b + M_3c = M_1(a-S) + M_2(b+h-S) + M_3(c+h\cos 60^\circ - S)$$
 (4)

Expanding and simplifying:

$$M_1a + M_2b + M_3c = M_1a - M_1S + M_2b + M_2h - M_2S + M_3c + M_3h\cos 60^{\circ} - M_3S$$
(5)

Canceling common terms:

$$M_1S + M_2S + M_3S = h(M_2 + M_3\cos 60^\circ) \tag{6}$$

$$S(M_1 + M_2 + M_3) = h(M_2 + M_3 \cos 60^\circ) \tag{7}$$

Solving for S

$$S = \frac{h(M_2 + M_3 \cos 60^\circ)}{M_1 + M_2 + M_3} \tag{8}$$

Given values:

$$h = 1 \text{ m}, \quad M_1 = 20, \quad M_2 = 15, \quad M_3 = 10, \quad \cos 60^\circ = \frac{1}{2}$$
 (9)

Substituting:

$$S = \frac{1 \times (15 + 10 \times \frac{1}{2})}{20 + 15 + 10} \tag{10}$$

$$S = \frac{1 \times (15 + 5)}{45} = \frac{1 \times 20}{45} = \frac{20}{45} = 0.44 \text{ cm}$$
 (11)

Thus, the displacement is **0.44** cm to the left.