National University of Computer and Emerging Sciences Lahore Campus

Quantum Computing		Sessional-II Ex	Sessional-II Exam	
(CS4084) Date: April 3 nd 2024 Course Instructor(s)		, ,	1 26 7	
Dr. Faisal Aslam				
Roll No	 Section	Student Signature		
Do not write below this line				
Attempt all the questions. Using calculator is not allowed Cheat sheet(s) are not allowed				

National University of Computer and Emerging Sciences

1. Write $5e^{\frac{5i\pi}{2}}$ in a) Cartesian form and b) in Modulus-argument form. [2+2 Marks]

Solution:

Note: Our complex number lies in the first quadrant. Thus, everything is very simple.

- a) Cartesian form: 5i
- b) Modulus-argument form: $5(\cos(\frac{5\pi}{2}) + i\sin(\frac{5\pi}{2}))$.
- 2. Given a controlled Hadamard gate, what will be its output given its control bit is $|-\rangle$ and input bit is $|+\rangle$. [5 Marks]

Solution:

The controlled Hadamard gate, often denoted as C-H, applies a Hadamard gate to the target qubit only if the control qubit is in the state $|1\rangle$, otherwise it leaves the target qubit unchanged.

We can first simplify our input

$$\begin{aligned} |+-\rangle &= \frac{|0\rangle + |1\rangle}{\sqrt{2}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &= \frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2} \end{aligned}$$

Now we apply Hadamard gate on the second qubit whenever the first qubit is 1.

$$\frac{\left|00\right\rangle - \left|01\right\rangle + \left|1\right\rangle \left|H0\right\rangle - \left|1\right\rangle \left|H1\right\rangle}{2} = \frac{\left|00\right\rangle - \left|01\right\rangle + \left|1\right\rangle \left|+\right\rangle - \left|1\right\rangle \left|-\right\rangle}{2}$$

3. Prove that the rows of a unitary matrix are orthonormal. Show all of your proof steps. [3 Marks]

Solution:

A matrix U is unitary if its conjugate transpose (also known as the adjoint) U^{\dagger} is equal to its inverse, i.e., $U^{\dagger} = U^{-1}$.

Now, to prove that the rows of U are orthonormal, we need to show two things:

- 1. Each row vector has a magnitude of 1.
- 2. Each pair of row vectors are orthogonal to each other.

Lets rows of the unitary matrix U are $r_1, r_2, \dots r_n$. Then we have

$$U.U^{\dagger} = I$$

$$\begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ \vdots \\ r_n \end{pmatrix} \begin{pmatrix} r_1^* & r_2^* & r_3^* & \cdots & r_n^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$\begin{pmatrix} r_1 r_1^* & r_1 r_2^* & r_1 r_3^* & \cdots & r_1 r_n^* \\ r_2 r_1^* & r_2 r_2^* & r_2 r_3^* & \cdots & r_2 r_n^* \\ r_3 r_1^* & r_3 r_2^* & r_3 r_3^* & \cdots & r_3 r_n^* \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ r_n r_1^* & r_n r_2^* & r_n r_3^* & \cdots & r_n r_n^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This shows that $\langle r_i|r_i\rangle=1$ so the rows are normalized. Moreover $\langle r_i|r_j\rangle=0, i\neq j$ hence the rows are orthogonal.

This completes the proof.

4. Quantum Fourier transform: Given your input $|1101\rangle$ is phase shifted twice [Hint: $1, \omega_4^2, \omega_4^4, \omega_4^6$] and then given to the inverse of the quantum Fourier transform matrix QFT^{-1} , what will be your output? Show your working clearly. [5 Marks]

Solution:

Our input is $\omega_{16}^{10} |13\rangle$. So the result will be 13 column of QFT^{-1} multiplied by the ω_{16}^{10} . That is

$$= \sum_{i=0}^{15} \omega_{16}^{-13 \times i} \times \omega_{16}^{10}$$

5. Simon's Algorithm: Given a function $f: \{0,1\}^3 \to \{0,1\}^3, f(x) = f(x \oplus s)$, and s = 110. We construct a circuit for $U_f |x\rangle |000\rangle = |x\rangle |f(x)\rangle$. We give the circuit input the equal superposition of x and measure the second register. Given that our measurement of the second register is f(101) = 111, what is the content of the first register? [2 Marks]

Solution:

The contents of first registers will be all the inputs that can produce 111 in equal superposition:

$$= \frac{|101\rangle + |101 \bigoplus 110\rangle}{\sqrt{2}}$$
$$= \frac{|101\rangle + |011\rangle}{\sqrt{2}}$$

- 6. **Period Finding Algorithm**: Given a function $f: \{0,1\}^4 \to \{0,1\}^4, f(x) = x \mod 4$.
 - (a) We construct a circuit for $U_f |x\rangle |0000\rangle = |x\rangle |f(x)\rangle$. We give the circuit input the equal superposition of x and measure the second register. Given that our measurement of the second register is f(1011), what is the content of the first register? [3 Marks] Solution:

$$\frac{|3\rangle + |7\rangle + |11\rangle + |15\rangle}{2}$$

(b) Subsequently, we apply quantum Fourier transform on the content of first register. Then what is the period of the resultant function? [2 Marks] Solution:

$$\frac{2^n}{r} = \frac{16}{4} = 4$$

7. **Deutsch-Jozsa Algorithm**: Discuss in a sentence or two why Deutsch-Jozsa will not work if the circuit initial state is $|0^n\rangle |0\rangle$ instead of $|0^n\rangle |1\rangle$. [2 Marks]

Solution:

The Deutsch-Jozsa algorithm relies on phase kickback which is made possible because the second qubit was $|1\rangle$. If the input is $|0^n0\rangle$ then there will be no phase kickback and we will not be able to distinguish between even and odd functions.