Lead Case Study

An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.

The company markets its courses on several websites and search engines like Google. Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos. When these people fill up a form providing their email address or phone number, they are classified to be a lead. Moreover, the company also gets leads through past referrals. Once these leads are acquired, employees from the sales team start making calls, writing emails, etc. Through this process, some of the leads get converted while most do not. The typical lead conversion rate at X education is around 30%.

There are a lot of leads generated in the initial stage, but only a few of them come out as paying customers. In the middle stage, you need to nurture the potential leads well (i.e. educating the leads about the product, constantly communicating etc.) in order to get a higher lead conversion.

X Education has appointed you to help them select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires you to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

In [1]:

```
#importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import StandardScaler
```

In [2]:

```
lead=pd.read_csv('D:/task/Leads.csv')
lead.head()
```

Out[2]:

	Prospect ID	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	F Vi
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	660737	API	Olark Chat	No	No	0	0.0	0	
1	2a272436- 5132-4136- 86fa- dcc88c88f482	660728	API	Organic Search	No	No	0	5.0	674	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	660727	Landing Page Submission	Direct Traffic	No	No	1	2.0	1532	
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	660719	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	
4	3256f628- e534-4826- 9d63- 4a8b88782852	660681	Landing Page Submission	Google	No	No	1	2.0	1428	

5 rows × 37 columns

In [4]:

#checking total rows and cols in dataset
lead.shape

Out[4]:

(9240, 37)

In [5]:

#basic data check lead.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9240 entries, 0 to 9239 Data columns (total 37 columns):

Data	COLUMNIS (COCAL 37 COLUMNIS).		
#	Column	Non-Null Count	
0	Prospect ID	9240 non-null	object
1	Lead Number	9240 non-null	int64
2	Lead Origin	9240 non-null	object
3	Lead Source	9204 non-null	object
4	Do Not Email	9240 non-null	object
5	Do Not Call	9240 non-null	object
6	Converted	9240 non-null	int64
7	TotalVisits	9103 non-null	float64
8	Total Time Spent on Website	9240 non-null	int64
9	Page Views Per Visit	9103 non-null	float64
10	Last Activity	9137 non-null	object
11	Country	6779 non-null	object
12	Specialization	7802 non-null	object
13	How did you hear about X Education	7033 non-null	object
14	What is your current occupation	6550 non-null	object
15	What matters most to you in choosing a course	6531 non-null	object
16	Search	9240 non-null	object
17	Magazine	9240 non-null	object
18	Newspaper Article	9240 non-null	object
19	X Education Forums	9240 non-null	object
20	Newspaper	9240 non-null	object
21	Digital Advertisement	9240 non-null	object
22	Through Recommendations	9240 non-null	object
23	Receive More Updates About Our Courses	9240 non-null	object
24	Tags	5887 non-null	object
25	Lead Quality	4473 non-null	object
26	Update me on Supply Chain Content	9240 non-null	object
27	Get updates on DM Content	9240 non-null	object
28	Lead Profile	6531 non-null	object
29	City	7820 non-null	object
30	Asymmetrique Activity Index	5022 non-null	object
31	Asymmetrique Profile Index	5022 non-null	object
32	Asymmetrique Activity Score	5022 non-null	float64
33	Asymmetrique Profile Score	5022 non-null	float64
34	I agree to pay the amount through cheque	9240 non-null	object
35	A free copy of Mastering The Interview	9240 non-null	object
36	Last Notable Activity	9240 non-null	object
	es: float64(4), int64(3), object(30)		3
	ry usage: 2.6+ MB		

In [6]:

```
lead.describe()
```

Out[6]:

	Lead Number	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Asymmetrique Activity Score	Asy Pr
count	9240.000000	9240.000000	9103.000000	9240.000000	9103.000000	5022.000000	5(
mean	617188.435606	0.385390	3.445238	487.698268	2.362820	14.306252	
std	23405.995698	0.486714	4.854853	548.021466	2.161418	1.386694	
min	579533.000000	0.000000	0.000000	0.000000	0.000000	7.000000	
25%	596484.500000	0.000000	1.000000	12.000000	1.000000	14.000000	
50%	615479.000000	0.000000	3.000000	248.000000	2.000000	14.000000	
75%	637387.250000	1.000000	5.000000	936.000000	3.000000	15.000000	
max	660737.000000	1.000000	251.000000	2272.000000	55.000000	18.000000	

In [7]:

```
#check for duplicates
sum(lead.duplicated(subset = 'Prospect ID')) == 0
```

Out[7]:

True

In [8]:

```
#check for duplicates
sum(lead.duplicated(subset = 'Lead Number')) == 0
```

Out[8]:

True

Data Cleaning

In [9]:

```
#dropping Lead Number and Prospect ID since they have all unique values
lead.drop(['Prospect ID', 'Lead Number'], 1, inplace = True)
```

In [10]:

```
#Converting 'Select' values to NaN.
lead = lead.replace('Select', np.nan)
```

In [11]:

#checking null values in each rows

lead.isnull().sum()

Out[11]:

Lead Origin Lead Source	0 36
Do Not Email	0
Do Not Call	0
Converted	0
TotalVisits	137
Total Time Spent on Website	0
Page Views Per Visit	137
Last Activity	103
Country	2461
Specialization	3380
How did you hear about X Education	7250
What is your current occupation	2690
What matters most to you in choosing a course	2709
Search	0
Magazine	0
Newspaper Article	0
X Education Forums	0
Newspaper	0
Digital Advertisement	0
Through Recommendations	0
Receive More Updates About Our Courses	0
Tags	3353
Lead Quality	4767
Update me on Supply Chain Content	0
Get updates on DM Content	0
Lead Profile	6855
City	3669
Asymmetrique Activity Index	4218
Asymmetrique Profile Index	4218
Asymmetrique Activity Score	4218
Asymmetrique Profile Score	4218
I agree to pay the amount through cheque	0
A free copy of Mastering The Interview	0
Last Notable Activity	0
dtype: int64	

In [12]:

```
#checking percentage of null values in each column
round(100*(lead.isnull().sum()/len(lead.index)), 2)
```

Out[12]:

```
Lead Origin
                                                    0.00
Lead Source
                                                    0.39
Do Not Email
                                                    0.00
Do Not Call
                                                    0.00
Converted
                                                    0.00
TotalVisits
                                                    1.48
Total Time Spent on Website
                                                    0.00
Page Views Per Visit
                                                    1.48
Last Activity
                                                    1.11
                                                   26.63
Country
Specialization
                                                   36.58
                                                   78.46
How did you hear about X Education
What is your current occupation
                                                   29.11
What matters most to you in choosing a course
                                                   29.32
Search
                                                    0.00
                                                    0.00
Magazine
Newspaper Article
                                                    0.00
X Education Forums
                                                    0.00
Newspaper
                                                    0.00
Digital Advertisement
                                                    0.00
Through Recommendations
                                                    0.00
Receive More Updates About Our Courses
                                                    0.00
                                                   36.29
Tags
Lead Quality
                                                   51.59
Update me on Supply Chain Content
                                                    0.00
Get updates on DM Content
                                                    0.00
Lead Profile
                                                   74.19
City
                                                   39.71
Asymmetrique Activity Index
                                                   45.65
Asymmetrique Profile Index
                                                   45.65
Asymmetrique Activity Score
                                                   45.65
Asymmetrique Profile Score
                                                   45.65
I agree to pay the amount through cheque
                                                    0.00
A free copy of Mastering The Interview
                                                    0.00
Last Notable Activity
                                                    0.00
dtype: float64
```

In [13]:

```
#dropping cols with more than 45% missing values

cols=lead.columns

for i in cols:
    if((100*(lead[i].isnull().sum()/len(lead.index))) >= 45):
        lead.drop(i, 1, inplace = True)
```

In [14]:

```
#checking null values percentage
round(100*(lead.isnull().sum()/len(lead.index)), 2)
```

Out[14]:

Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	1.11
Country	26.63
Specialization	36.58
What is your current occupation	29.11
What matters most to you in choosing a course	29.32
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	36.29
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
City	39.71
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	

Categorial value

In [15]:

#checking value counts of Country column

lead['Country'].value_counts(dropna=False)

Out[15]:

India	6492
NaN	2461
United States	69
United Arab Emirates	53
Singapore	24
Saudi Arabia	21
United Kingdom	15
Australia	13
Qatar	10
Hong Kong	7
Bahrain	7
Oman	6
France	6
unknown	5
Nigeria	4
South Africa	4
Kuwait	4
Canada	4
Germany	4
Sweden	3
Uganda	2
Philippines	2
Netherlands	2 2 2 2 2 2 2 2 2 2
China	2
Ghana	2
Italy	2
Bangladesh	2
Asia/Pacific Region	2
Belgium	2
Indonesia	1
Kenya	1
Denmark	1
Switzerland	1
Liberia	1
Tanzania	1
Vietnam	1
Sri Lanka	1
Russia	1
Malaysia	1
Name: Country, dtype:	_
wame. country, acype.	111CO4

In [16]:

```
#plotting spread of Country columnn
plt.figure(figsize=(15,5))
s=sns.countplot(lead.Country, hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [17]:

```
# Since India is the most common occurrence among the non-missing values we can impute all m
lead['Country'] = lead['Country'].replace(np.nan,'India')
```

In [18]:

```
#plotting spread of Country columnn after replacing NaN values

plt.figure(figsize=(15,5))
s=sns.countplot(lead.Country, hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [19]:

```
#creating a list of columns to be droppped
cols_to_drop=['Country']
```

In [20]:

```
#checking value counts of "City" column
lead['City'].value_counts(dropna=False)
```

Out[20]:

NaN	3669
Mumbai	3222
Thane & Outskirts	752
Other Cities	686
Other Cities of Maharashtra	457
Other Metro Cities	380
Tier II Cities	74
Name: City, dtype: int64	

In [21]:

```
lead['City'] = lead['City'].replace(np.nan,'Mumbai')
```

In [22]:

```
#plotting spread of City columnn after replacing NaN values

plt.figure(figsize=(10,5))
s=sns.countplot(lead.City, hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [23]:

```
#checking value counts of Specialization column
lead['Specialization'].value_counts(dropna=False)
```

Out[23]:

NaN	3380
Finance Management	976
Human Resource Management	848
Marketing Management	838
Operations Management	503
Business Administration	403
IT Projects Management	366
Supply Chain Management	349
Banking, Investment And Insurance	338
Media and Advertising	203
Travel and Tourism	203
International Business	178
Healthcare Management	159
Hospitality Management	114
E-COMMERCE	112
Retail Management	100
Rural and Agribusiness	73
E-Business	57
Services Excellence	40
Name: Specialization, dtype: int64	

In [24]:

```
# Lead may not have mentioned specialization because it was not in the list or maybe they a
# and don't have a specialization yet. So we will replace NaN values here with 'Not Specifi
lead['Specialization'] = lead['Specialization'].replace(np.nan, 'Not Specified')
```

In [25]:

```
#plotting spread of Specialization columnn

plt.figure(figsize=(15,5))
s=sns.countplot(lead.Specialization, hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [26]:

In [27]:

```
#visualizing count of Variable based on Converted value

plt.figure(figsize=(15,5))
s=sns.countplot(lead.Specialization, hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [28]:

#What is your current occupation
lead['What is your current occupation'].value_counts(dropna=False)

Out[28]:

Unemployed	5600
NaN	2690
Working Professional	706
Student	210
Other	16
Housewife	10
Businessman	8

Name: What is your current occupation, dtype: int64

In [29]:

```
#imputing Nan values with mode "Unemployed"
lead['What is your current occupation'] = lead['What is your current occupation'].replace(n
```

In [30]:

```
#checking count of values
lead['What is your current occupation'].value_counts(dropna=False)
```

Out[30]:

unempioyea	8290
Working Professional	706
Student	210
Other	16
Housewife	10
Businessman	8

Name: What is your current occupation, dtype: int64

In [31]:

```
#visualizing count of Variable based on Converted value
s=sns.countplot(lead['What is your current occupation'], hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [32]:

#checking value counts

lead['What matters most to you in choosing a course'].value_counts(dropna=False)

Out[32]:

Better Career Prospects	6528
NaN	2709
Flexibility & Convenience	2
Other	1

Name: What matters most to you in choosing a course, dtype: int64

In [33]:

```
#replacing Nan values with Mode "Better Career Prospects"

lead['What matters most to you in choosing a course'] = lead['What matters most to you in c
```

In [34]:

```
s=sns.countplot(lead['What matters most to you in choosing a course'], hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [35]:

#checking value counts of variable
lead['What matters most to you in choosing a course'].value_counts(dropna=False)

Out[35]:

Better Career Prospects 9237 Flexibility & Convenience 2 Other 1

Name: What matters most to you in choosing a course, dtype: int64

In [36]:

#Here again we have another Column that is worth Dropping. So we Append to the cols_to_drop cols_to_drop.append('What matters most to you in choosing a course') cols_to_drop

Out[36]:

['Country', 'What matters most to you in choosing a course']

In [37]:

```
#checking value counts of Tag variable
lead['Tags'].value_counts(dropna=False)
```

Out[37]:

NaN	3353
Will revert after reading the email	2072
Ringing	1203
Interested in other courses	513
Already a student	465
Closed by Horizzon	358
switched off	240
Busy	186
Lost to EINS	175
Not doing further education	145
Interested in full time MBA	117
Graduation in progress	111
invalid number	83
Diploma holder (Not Eligible)	63
wrong number given	47
opp hangup	33
number not provided	27
in touch with EINS	12
Lost to Others	7
Want to take admission but has financial problems	6
Still Thinking	6
Interested in Next batch	5
In confusion whether part time or DLP	5
Lateral student	3
University not recognized	2
Shall take in the next coming month	2
Recognition issue (DEC approval)	1
Name: Tags, dtype: int64	

In [38]:

```
#replacing Nan values with "Not Specified"
lead['Tags'] = lead['Tags'].replace(np.nan,'Not Specified')
```

In [39]:

```
plt.figure(figsize=(15,5))
s=sns.countplot(lead['Tags'], hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [40]:

In [41]:

```
#checking percentage of missing values
round(100*(lead.isnull().sum()/len(lead.index)), 2)
```

Out[41]:

Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
	0.00
Total Time Spent on Website	
Page Views Per Visit	1.48
Last Activity	1.11
Country	0.00
Specialization	0.00
What is your current occupation	0.00
What matters most to you in choosing a course	0.00
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	0.00
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
City	0.00
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	0.00
utype, itoato4	

In [42]:

```
#checking value counts of Lead Source column
lead['Lead Source'].value_counts(dropna=False)
```

Out[42]:

```
Google
                      2868
Direct Traffic
                      2543
Olark Chat
                      1755
Organic Search
                      1154
Reference
                       534
Welingak Website
                       142
Referral Sites
                       125
Facebook
                        55
NaN
                        36
                         6
bing
google
                         5
Click2call
                         4
Live Chat
                         2
Press Release
                         2
Social Media
                         2
NC EDM
                         1
welearnblog_Home
                         1
Pay per Click Ads
                         1
blog
                         1
WeLearn
                         1
                         1
testone
youtubechannel
```

Name: Lead Source, dtype: int64

In [43]:

```
#replacing Nan Values and combining low frequency values
lead['Lead Source'] = lead['Lead Source'].replace(np.nan,'Others')
lead['Lead Source'] = lead['Lead Source'].replace('google', 'Google')
lead['Lead Source'] = lead['Lead Source'].replace('Facebook', 'Social Media')
lead['Lead Source'] = lead['Lead Source'].replace(['bing','Click2call','Press_Release',
                                                           'youtubechannel', 'welearnblog_Home', 'WeLearn', 'blog', 'Pay per Click Ads',
                                                          'testone','NC_EDM'] ,'Others')
```

In [44]:

```
#visualizing count of Variable based on Converted value
plt.figure(figsize=(15,5))
s=sns.countplot(lead['Lead Source'], hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [45]:

Last Activity:

lead['Last Activity'].value_counts(dropna=False)

Out[45]:

Email Opened 3	437
SMS Sent 2	745
Olark Chat Conversation	973
Page Visited on Website	640
Converted to Lead	428
Email Bounced	326
Email Link Clicked	267
Form Submitted on Website	116
NaN	103
Unreachable	93
Unsubscribed	61
Had a Phone Conversation	30
Approached upfront	9
View in browser link Clicked	6
Email Received	2
Email Marked Spam	2
Resubscribed to emails	1
Visited Booth in Tradeshow	1
Name: Last Activity, dtype: int64	-

In [46]:

In [47]:

```
# Last Activity:
lead['Last Activity'].value_counts(dropna=False)
```

Out[47]:

Email Opened	3437
SMS Sent	2745
Olark Chat Conversation	973
Page Visited on Website	640
Converted to Lead	428
Email Bounced	326
Others	308
Email Link Clicked	267
Form Submitted on Website	116
Name: Last Activity, dtype:	int64

In [48]:

```
#Check the Null Values in All Columns:
round(100*(lead.isnull().sum()/len(lead.index)), 2)
```

Out[48]:

Lead Origin	0.00
Lead Source	0.00
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	0.00
Country	0.00
Specialization	0.00
What is your current occupation	0.00
What matters most to you in choosing a course	0.00
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	0.00
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
City	0.00
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	

In [49]:

#Drop all rows which have Nan Values. Since the number of Dropped rows is less than 2%, it lead = lead.dropna()

In [50]:

```
#Checking percentage of Null Values in All Columns:
round(100*(lead.isnull().sum()/len(lead.index)), 2)
```

Out[50]:

Lead Origin	0.0
Lead Source	0.0
Do Not Email	0.0
Do Not Call	0.0
Converted	0.0
TotalVisits	0.0
Total Time Spent on Website	0.0
Page Views Per Visit	0.0
Last Activity	0.0
Country	0.0
Specialization	0.0
What is your current occupation	0.0
What matters most to you in choosing a course	0.0
Search	0.0
Magazine	0.0
Newspaper Article	0.0
X Education Forums	0.0
Newspaper	0.0
Digital Advertisement	0.0
Through Recommendations	0.0
Receive More Updates About Our Courses	0.0
Tags	0.0
Update me on Supply Chain Content	0.0
Get updates on DM Content	0.0
City	0.0
I agree to pay the amount through cheque	0.0
A free copy of Mastering The Interview	0.0
Last Notable Activity	0.0
dtype: float64	

In [51]:

```
#Lead Origin
lead['Lead Origin'].value_counts(dropna=False)
```

Out[51]:

Landing Page Submission	4886
API	3578
Lead Add Form	608
Lead Import	31
Name: Lead Origin, dtype:	int64

In [52]:

```
#visualizing count of Variable based on Converted value

plt.figure(figsize=(8,5))
s=sns.countplot(lead['Lead Origin'], hue=lead.Converted)
s.set_xticklabels(s.get_xticklabels(),rotation=90)
plt.show()
```


In [53]:

```
#Do Not Email & Do Not Call
#visualizing count of Variable based on Converted value

plt.figure(figsize=(15,5))

ax1=plt.subplot(1, 2, 1)
ax1=sns.countplot(lead['Do Not Call'], hue=lead.Converted)
ax1.set_xticklabels(ax1.get_xticklabels(),rotation=90)

ax2=plt.subplot(1, 2, 2)
ax2=sns.countplot(lead['Do Not Email'], hue=lead.Converted)
ax2.set_xticklabels(ax2.get_xticklabels(),rotation=90)
plt.show()
```


In [54]:

```
#checking value counts for Do Not Call
lead['Do Not Call'].value_counts(dropna=False)
```

Out[54]:

No 9101 Ves 2

Name: Do Not Call, dtype: int64

In [55]:

```
#checking value counts for Do Not Email
lead['Do Not Email'].value_counts(dropna=False)
```

Out[55]:

No 8379 Yes 724

Name: Do Not Email, dtype: int64

```
In [56]:
cols_to_drop.append('Do Not Call')
cols_to_drop
Out[56]:
['Country', 'What matters most to you in choosing a course', 'Do Not Call']
In [57]:
lead.Search.value_counts(dropna=False)
Out[57]:
No
       9089
Yes
         14
Name: Search, dtype: int64
In [58]:
lead.Magazine.value_counts(dropna=False)
Out[58]:
No
      9103
Name: Magazine, dtype: int64
In [59]:
lead['Newspaper Article'].value_counts(dropna=False)
Out[59]:
       9101
No
Name: Newspaper Article, dtype: int64
In [60]:
lead['X Education Forums'].value_counts(dropna=False)
Out[60]:
       9102
No
Name: X Education Forums, dtype: int64
In [61]:
lead['Newspaper'].value_counts(dropna=False)
Out[61]:
       9102
No
Yes
Name: Newspaper, dtype: int64
```

```
In [62]:
lead['Digital Advertisement'].value_counts(dropna=False)
Out[62]:
No
       9099
Yes
Name: Digital Advertisement, dtype: int64
In [63]:
lead['Through Recommendations'].value_counts(dropna=False)
Out[63]:
No
       9096
Yes
Name: Through Recommendations, dtype: int64
In [64]:
lead['Receive More Updates About Our Courses'].value_counts(dropna=False)
Out[64]:
      9103
No
Name: Receive More Updates About Our Courses, dtype: int64
In [65]:
lead['Update me on Supply Chain Content'].value_counts(dropna=False)
Out[65]:
No
      9103
Name: Update me on Supply Chain Content, dtype: int64
In [66]:
lead['Get updates on DM Content'].value_counts(dropna=False)
Out[66]:
      9103
No
Name: Get updates on DM Content, dtype: int64
In [67]:
lead['I agree to pay the amount through cheque'].value_counts(dropna=False)
Out[67]:
No
Name: I agree to pay the amount through cheque, dtype: int64
```

In [68]:

```
lead['A free copy of Mastering The Interview'].value_counts(dropna=False)
```

Out[68]:

No 6215 Yes 2888

Name: A free copy of Mastering The Interview, dtype: int64

In [69]:

In [70]:

```
#checking value counts of last Notable Activity
lead['Last Notable Activity'].value_counts()
```

Out[70]:

Modified	3270		
Email Opened	2827		
SMS Sent	2172		
Page Visited on Website	318		
Olark Chat Conversation	183		
Email Link Clicked	173		
Email Bounced	60		
Unsubscribed	47		
Unreachable	32		
Had a Phone Conversation	14		
Email Marked Spam	2		
Resubscribed to emails	1		
Approached upfront	1		
Email Received	1		
View in browser link Clicked	1		
Form Submitted on Website 1			

Name: Last Notable Activity, dtype: int64

In [72]:

In [73]:

```
plt.figure(figsize = (14,5))
ax1=sns.countplot(x = "Last Notable Activity", hue = "Converted", data = lead)
ax1.set_xticklabels(ax1.get_xticklabels(),rotation=90)
plt.show()
```


In [74]:

```
#checking value counts for variable
lead['Last Notable Activity'].value_counts()
```

Out[74]:

Modified	3270
Email Opened	2827
SMS Sent	2172
Page Visited on Website	318
Olark Chat Conversation	183
Email Link Clicked	173
Other_Notable_activity	160

Name: Last Notable Activity, dtype: int64

In [75]:

```
#list of columns to be dropped cols_to_drop
```

Out[75]:

```
['Country',
  'What matters most to you in choosing a course',
  'Do Not Call',
  'Search',
  'Magazine',
  'Newspaper Article',
  'X Education Forums',
  'Newspaper',
  'Digital Advertisement',
  'Through Recommendations',
  'Receive More Updates About Our Courses',
  'Update me on Supply Chain Content',
  'Get updates on DM Content',
  'I agree to pay the amount through cheque']
```

In [76]:

```
#dropping columns
lead = lead.drop(cols_to_drop,1)
lead.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9103 entries, 0 to 9239
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	Lead Origin	9103 non-null	object
1	Lead Source	9103 non-null	object
2	Do Not Email	9103 non-null	object
3	Converted	9103 non-null	int64
4	TotalVisits	9103 non-null	float64
5	Total Time Spent on Website	9103 non-null	int64
6	Page Views Per Visit	9103 non-null	float64
7	Last Activity	9103 non-null	object
8	Specialization	9103 non-null	object
9	What is your current occupation	9103 non-null	object
10	Tags	9103 non-null	object
11	City	9103 non-null	object
12	A free copy of Mastering The Interview	9103 non-null	object
13	Last Notable Activity	9103 non-null	object
<pre>dtypes: float64(2), int64(2), object(10)</pre>			

Numerical Attributes

memory usage: 1.4+ MB

In [77]:

```
#Check the % of Data that has Converted Values = 1:
Converted = (sum(lead['Converted'])/len(lead['Converted'].index))*100
Converted
```

Out[77]:

38.02043282434362

In [78]:

```
#Checking correlations of numeric values
# figure size
plt.figure(figsize=(10,8))
# heatmap
sns.heatmap(lead.corr(), cmap="YlGnBu", annot=True)
plt.show()
```


In [79]:

```
#visualizing spread of variable

plt.figure(figsize=(6,4))
sns.boxplot(y=lead['TotalVisits'])
plt.show()
```


In [80]:

```
lead['TotalVisits'].describe(percentiles=[0.05,.25, .5, .75, .90, .95, .99])
```

Out[80]:

count	9103.000000
mean	3.445238
std	4.854853
min	0.000000
5%	0.000000
25%	1.000000
50%	3.000000
75%	5.000000
90%	7.000000
95%	10.000000
99%	17.000000
max	251.000000

Name: TotalVisits, dtype: float64

In [82]:

```
#Outlier Treatment: Remove top & bottom 1% of the Column Outlier values

Q3 = lead.TotalVisits.quantile(0.99)
lead = lead[(lead.TotalVisits <= Q3)]
Q1 = lead.TotalVisits.quantile(0.01)
lead = lead[(lead.TotalVisits >= Q1)]
sns.boxplot(y=lead['TotalVisits'])
plt.show()
```


In [86]:

lead.shape

Out[86]:

(8929, 14)

In [87]:

```
#checking percentiles for "Total Time Spent on Website"
lead['Total Time Spent on Website'].describe(percentiles=[0.05,.25, .5, .75, .90, .95, .99]
```

Out[87]:

count	8929.000000
mean	476.246612
std	543.335243
min	0.000000
5%	0.000000
25%	4.000000
50%	239.000000
75%	905.000000
90%	1368.000000
95%	1552.000000
99%	1836.440000
max	2272.000000

Name: Total Time Spent on Website, dtype: float64

In [88]:

```
#visualizing spread of numeric variable

plt.figure(figsize=(6,4))
sns.boxplot(y=lead['Total Time Spent on Website'])
plt.show()
```


In [89]:

```
#checking spread of "Page Views Per Visit"
lead['Page Views Per Visit'].describe()
```

Out[89]:

count	8929.000000
mean	2.303194
std	1.993860
min	0.000000
25%	1.000000
50%	2.000000
75%	3.000000
max	13.000000

Name: Page Views Per Visit, dtype: float64

In [90]:

```
#visualizing spread of numeric variable

plt.figure(figsize=(6,4))
sns.boxplot(y=lead['Page Views Per Visit'])
plt.show()
```


In [92]:

```
#Outlier Treatment: Remove top & bottom 1%

Q3 = lead['Page Views Per Visit'].quantile(0.99)
lead = lead[lead['Page Views Per Visit'] <= Q3]
Q1 = lead['Page Views Per Visit'].quantile(0.01)
lead = lead[lead['Page Views Per Visit'] >= Q1]
sns.boxplot(y=lead['Page Views Per Visit'])
plt.show()
```


In [93]:

lead.shape

Out[93]:

(8878, 14)

In [94]:

```
#checking Spread of "Total Visits" vs Converted variable
sns.boxplot(y = 'TotalVisits', x = 'Converted', data = lead)
plt.show()
```


In [95]:

```
#checking Spread of "Total Time Spent on Website" vs Converted variable
sns.boxplot(x=lead.Converted, y=lead['Total Time Spent on Website'])
plt.show()
```


In [96]:

```
#checking Spread of "Page Views Per Visit" vs Converted variable
sns.boxplot(x=lead.Converted,y=lead['Page Views Per Visit'])
plt.show()
```


In [97]:

```
round(100*(lead.isnull().sum()/len(lead.index)),2)
```

Out[97]:

Lead Origin	0.0
Lead Source	0.0
Do Not Email	0.0
Converted	0.0
TotalVisits	0.0
Total Time Spent on Website	0.0
Page Views Per Visit	0.0
Last Activity	0.0
Specialization	0.0
What is your current occupation	0.0
Tags	0.0
City	0.0
A free copy of Mastering The Interview	0.0
Last Notable Activity	0.0
dtype: float64	

Dummy Variables

In [99]:

```
#getting a list of categorical columns

cat_cols= lead.select_dtypes(include=['object']).columns
cat_cols
```

Out[99]:

In [100]:

```
# List of variables to map

varlist = ['A free copy of Mastering The Interview','Do Not Email']

# Defining the map function
def binary_map(x):
    return x.map({'Yes': 1, "No": 0})

# Applying the function to the housing list
lead[varlist] = lead[varlist].apply(binary_map)
```

In [102]:

In [103]:

```
dummy = pd.get_dummies(lead['Specialization'], prefix = 'Specialization')
dummy = dummy.drop(['Specialization_Not Specified'], 1)
lead = pd.concat([lead, dummy], axis = 1)
```

In [104]:

```
dummy = pd.get_dummies(lead['Lead Source'], prefix = 'Lead Source')
dummy = dummy.drop(['Lead Source_Others'], 1)
lead = pd.concat([lead, dummy], axis = 1)
```

In [105]:

```
dummy = pd.get_dummies(lead['Last Activity'], prefix = 'Last Activity')
dummy = dummy.drop(['Last Activity_Others'], 1)
lead = pd.concat([lead, dummy], axis = 1)
```

In [106]:

```
dummy = pd.get_dummies(lead['Last Notable Activity'], prefix = 'Last Notable Activity')
dummy = dummy.drop(['Last Notable Activity_Other_Notable_activity'], 1)
lead = pd.concat([lead, dummy], axis = 1)
```

In [107]:

```
dummy = pd.get_dummies(lead['Tags'], prefix = 'Tags')
dummy = dummy.drop(['Tags_Not Specified'], 1)
lead = pd.concat([lead, dummy], axis = 1)
```

In [108]:

```
#dropping the original columns after dummy variable creation
lead.drop(cat_cols,1,inplace = True)
```

In [109]:

```
lead.head()
```

Out[109]:

	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	What is occupatio
0	0	0.0	0	0.0	0	0	0	
1	0	5.0	674	2.5	0	0	0	
2	1	2.0	1532	2.0	1	0	0	
3	0	1.0	305	1.0	1	0	0	
4	1	2.0	1428	1.0	1	0	0	

5 rows × 57 columns

Train Test

In [110]:

```
from sklearn.model_selection import train_test_split

# Putting response variable to y
y = lead['Converted']

y.head()

X=lead.drop('Converted', axis=1)
```

In [111]:

```
# Splitting the data into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, ra
```

In [112]:

X_train.info()

<class 'pandas.core.frame.dataframe'=""></class>						
Int64Index: 6214 entries, 1233 to 5879						
Data columns (total 56 columns):	New No.11 Count	D				
# Column	Non-Null Count	D				
type		_				
0 TotalVisits	6214 non-null	f				
loat64						
1 Total Time Spent on Website	6214 non-null	i				
nt64	6214 non-null	f				
2 Page Views Per Visit loat64	6214 NON-NULL	Т				
3 Lead Origin_Landing Page Submission	6214 non-null	u				
int8						
4 Lead Origin_Lead Add Form	6214 non-null	u				
int8						
5 Lead Origin_Lead Import	6214 non-null	u				
int8	6244					
6 What is your current occupation_Housewife int8	6214 non-null	u				
7 What is your current occupation_Other	6214 non-null	u				
int8	OZI- HOH HOII	u				
8 What is your current occupation_Student	6214 non-null	u				
int8						
9 What is your current occupation_Unemployed	6214 non-null	u				
int8						
10 What is your current occupation_Working Professional	6214 non-null	u				
int8	C214 man mull					
<pre>11 City_Other Cities int8</pre>	6214 non-null	u				
12 City_Other Cities of Maharashtra	6214 non-null	u				
int8	ozzi non nazz	ŭ				
13 City_Other Metro Cities	6214 non-null	u				
int8						
14 City_Thane & Outskirts	6214 non-null	u				
int8						
15 City_Tier II Cities	6214 non-null	u				
<pre>int8 16 Specialization_Banking, Investment And Insurance</pre>	6214 non-null	u				
int8	0214 11011-11011	u				
17 Specialization_Business Administration	6214 non-null	u				
int8						
<pre>18 Specialization_E-Business</pre>	6214 non-null	u				
int8						
19 Specialization_E-COMMERCE	6214 non-null	u				
int8	6244 11					
20 Specialization_International Business int8	6214 non-null	u				
21 Specialization_Management_Specializations	6214 non-null	u				
int8	ozzi non nazz	<u>.</u>				
22 Specialization_Media and Advertising	6214 non-null	u				
int8						
23 Specialization_Rural and Agribusiness	6214 non-null	u				
int8						
24 Specialization_Services Excellence	6214 non-null	u				
int8						

0/13/2020			Lead Case Study - Jupyter Notebook		
25 int8	Speci	ialization_Travel and Tourism	6214	non-null	u
26 int8	Lead	Source_Direct Traffic	6214	non-null	u
27 int8	Lead	Source_Google	6214	non-null	u
28 int8	Lead	Source_Live Chat	6214	non-null	u
29	Lead	Source_Olark Chat	6214	non-null	u
int8 30	Lead	Source_Organic Search	6214	non-null	u
int8 31	Lead	Source_Reference	6214	non-null	u
int8 32	Lead	Source_Referral Sites	6214	non-null	u
int8 33	Lead	Source_Social Media	6214	non-null	u
int8 34	Lead	Source_Welingak Website	6214	non-null	u
int8 35	Last	Activity_Converted to Lead	6214	non-null	u
int8 36	Last	Activity_Email Bounced	6214	non-null	u
int8 37	Last	Activity_Email Link Clicked	6214	non-null	u
int8 38	Last	Activity_Email Opened	6214	non-null	u
int8 39	Last	Activity_Form Submitted on We	bsite 6214	non-null	u
int8 40	Last	Activity_Olark Chat Conversat	ion 6214	non-null	u
int8 41	Last	Activity_Page Visited on Webs	ite 6214	non-null	u
int8 42 int8	Last	Activity_SMS Sent	6214	non-null	u
43 int8	Last	Notable Activity_Email Link C	licked 6214	non-null	u
44	Last	Notable Activity_Email Opened	6214	non-null	u
int8 45	Last	Notable Activity_Modified	6214	non-null	u
int8 46 int8	Last	Notable Activity_Olark Chat Co	onversation 6214	non-null	u
47	Last	Notable Activity_Page Visited	on Website 6214	non-null	u
48 int8	Last	Notable Activity_SMS Sent	6214	non-null	u
49 int8	Tags_	_Busy	6214	non-null	u
50 int8	Tags_	_Closed by Horizzon	6214	non-null	u
51 int8	Tags_	_Interested in other courses	6214	non-null	u
52 int8	Tags_	_Lost to EINS	6214	non-null	u
53 int8	Tags_	_Other_Tags	6214	non-null	u
54 int8	Tags_	_Ringing	6214	non-null	u
55	Tags_	_Will revert after reading the	email 6214	non-null	u

int8

dtypes: float64(2), int64(1), uint8(53)

memory usage: 515.8 KB

Scaling

In [113]:

```
#scaling numeric columns
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
num_cols=X_train.select_dtypes(include=['float64', 'int64']).columns
X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
X_train.head()
```

Out[113]:

	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	What is you occupation_H
1233	-1.130693	-0.871154	-1.193107	0	0	0	
6078	-1.130693	-0.871154	-1.193107	0	0	0	
6404	-0.010992	-0.743835	0.402109	1	0	0	
4409	-1.130693	-0.871154	-1.193107	0	1	0	
1927	-1.130693	-0.871154	-1.193107	0	0	0	

5 rows × 56 columns

Model Building

In [114]:

```
import statsmodels.api as sm
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()

from sklearn.feature_selection import RFE
rfe = RFE(logreg, 15)  # running RFE with 15 variables as output
rfe = rfe.fit(X_train, y_train)
```

In [115]:

```
rfe.support_
```

Out[115]:

```
array([False, True, False, False, True, False, True, False, False, True, False, True, False, True, Tr
```

In [116]:

```
list(zip(X_train.columns, rfe.support_, rfe.ranking_))
```

Out[116]:

```
[('TotalVisits', False, 22),
 ('Total Time Spent on Website', True, 1),
 ('Page Views Per Visit', False, 21),
 ('Lead Origin_Landing Page Submission', False, 2),
 ('Lead Origin_Lead Add Form', True, 1),
 ('Lead Origin_Lead Import', False, 25),
 ('What is your current occupation_Housewife', False, 23),
 ('What is your current occupation_Other', False, 29),
 ('What is your current occupation Student', False, 7),
 ('What is your current occupation_Unemployed', False, 6),
 ('What is your current occupation_Working Professional', False, 16),
 ('City_Other Cities', False, 33),
 ('City_Other Cities of Maharashtra', False, 38),
 ('City_Other Metro Cities', False, 31),
 ('City_Thane & Outskirts', False, 41),
 ('City_Tier II Cities', False, 26),
 ('Specialization_Banking, Investment And Insurance', False, 30),
 ('Specialization_Business Administration', False, 40),
 ('Specialization_E-Business', False, 37),
 ('Specialization_E-COMMERCE', False, 34),
 ('Specialization_International Business', False, 17),
 ('Specialization_Management_Specializations', False, 35),
 ('Specialization_Media and Advertising', False, 36),
 ('Specialization_Rural and Agribusiness', False, 32),
 ('Specialization_Services Excellence', False, 15),
 ('Specialization_Travel and Tourism', False, 14),
 ('Lead Source_Direct Traffic', False, 11),
 ('Lead Source_Google', False, 13),
 ('Lead Source_Live Chat', False, 42),
 ('Lead Source_Olark Chat', True, 1),
 ('Lead Source_Organic Search', False, 12),
 ('Lead Source_Reference', False, 9),
 ('Lead Source_Referral Sites', False, 10),
 ('Lead Source_Social Media', False, 24),
 ('Lead Source_Welingak Website', True, 1),
 ('Last Activity_Converted to Lead', False, 27),
 ('Last Activity_Email Bounced', False, 4),
 ('Last Activity Email Link Clicked', False, 18),
 ('Last Activity_Email Opened', False, 20),
 ('Last Activity_Form Submitted on Website', False, 19),
 ('Last Activity_Olark Chat Conversation', True, 1),
 ('Last Activity_Page Visited on Website', False, 28),
 ('Last Activity_SMS Sent', True, 1),
 ('Last Notable Activity_Email Link Clicked', True, 1),
 ('Last Notable Activity_Email Opened', False, 39),
 ('Last Notable Activity_Modified', True, 1),
 ('Last Notable Activity_Olark Chat Conversation', False, 5),
 ('Last Notable Activity_Page Visited on Website', False, 8),
 ('Last Notable Activity_SMS Sent', True, 1),
 ('Tags_Busy', False, 3),
 ('Tags_Closed by Horizzon', True, 1),
 ('Tags_Interested in other courses', True, 1),
 ('Tags Lost to EINS', True, 1),
 ('Tags_Other_Tags', True, 1),
```

```
5/13/2020
                                          Lead Case Study - Jupyter Notebook
   ('Tags_Ringing', True, 1),
   /'Taac Will navant after reading the email! True 111
  In [117]:
  #list of RFE supported columns
  col = X_train.columns[rfe.support_]
  col
  Out[117]:
  Index(['Total Time Spent on Website', 'Lead Origin_Lead Add Form',
         'Lead Source_Olark Chat', 'Lead Source_Welingak Website',
         'Last Activity_Olark Chat Conversation', 'Last Activity_SMS Sent',
         'Last Notable Activity_Email Link Clicked',
         'Last Notable Activity_Modified', 'Last Notable Activity_SMS Sent',
         'Tags Closed by Horizzon', 'Tags Interested in other courses',
         'Tags_Lost to EINS', 'Tags_Other_Tags', 'Tags_Ringing',
         'Tags Will revert after reading the email'],
        dtype='object')
  In [118]:
  X_train.columns[~rfe.support_]
  Out[118]:
  Index(['TotalVisits', 'Page Views Per Visit',
         'Lead Origin Landing Page Submission', 'Lead Origin Lead Import',
         'What is your current occupation_Housewife',
         'What is your current occupation_Other',
         'What is your current occupation_Student',
         'What is your current occupation_Unemployed',
         'What is your current occupation_Working Professional',
         'City_Other Cities', 'City_Other Cities of Maharashtra',
         'City_Other Metro Cities', 'City_Thane & Outskirts',
         'City_Tier II Cities',
         'Specialization_Banking, Investment And Insurance',
         'Specialization_Business Administration', 'Specialization_E-Busines
  s',
         'Specialization_E-COMMERCE', 'Specialization_International Business',
         'Specialization_Management_Specializations',
         'Specialization Media and Advertising',
         'Specialization_Rural and Agribusiness',
         'Specialization_Services Excellence',
         'Specialization_Travel and Tourism', 'Lead Source_Direct Traffic',
         'Lead Source Google', 'Lead Source Live Chat',
         'Lead Source_Organic Search', 'Lead Source_Reference',
         'Lead Source_Referral Sites', 'Lead Source_Social Media',
         'Last Activity_Converted to Lead', 'Last Activity_Email Bounced',
         'Last Activity_Email Link Clicked', 'Last Activity_Email Opened',
         'Last Activity_Form Submitted on Website',
         'Last Activity Page Visited on Website',
         'Last Notable Activity Email Opened',
```

dtype='object')

'Last Notable Activity Olark Chat Conversation',

'Last Notable Activity_Page Visited on Website', 'Tags_Busy'],

In [119]:

```
#model 1
X_train_sm = sm.add_constant(X_train[col])
logm1 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm1.fit()
res.summary()
```

Out[119]:

Generalized Linear Model Regression Results

ns:	No. Observations:	Converted	Dep. Variable:	
als:	Df Residuals:	GLM	Model:	
del:	Df Model:	Binomial	Model Family:	
ale:	Scale:	logit	Link Function:	
od:	Log-Likelihood:	IRLS	Method:	
ce:	Deviance:	Tue, 12 May 2020	Date:	
ni 2: 8.	Pearson chi2:	11:47:07	Time:	

No. Iterations: 24

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-1.7560	0.100	-17.622	0.000	-1.951	-1.561
Total Time Spent on Website	1.0556	0.061	17.441	0.000	0.937	1.174
Lead Origin_Lead Add Form	1.8910	0.425	4.446	0.000	1.057	2.725
Lead Source_Olark Chat	1.4277	0.149	9.558	0.000	1.135	1.720
Lead Source_Welingak Website	24.7394	1.8e+04	0.001	0.999	-3.53e+04	3.54e+04
Last Activity_Olark Chat Conversation	-0.7773	0.229	-3.388	0.001	-1.227	-0.328
Last Activity_SMS Sent	1.4249	0.230	6.187	0.000	0.974	1.876
Last Notable Activity_Email Link Clicked	-1.0993	0.427	-2.573	0.010	-1.937	-0.262
Last Notable Activity_Modified	-1.2409	0.161	-7.704	0.000	-1.557	-0.925
Last Notable Activity_SMS Sent	0.7837	0.261	2.998	0.003	0.271	1.296
Tags_Closed by Horizzon	7.0777	1.023	6.920	0.000	5.073	9.082
Tags_Interested in other courses	-1.8582	0.405	-4.585	0.000	-2.653	-1.064
Tags_Lost to EINS	5.5441	0.604	9.172	0.000	4.359	6.729
Tags_Other_Tags	-2.6260	0.228	-11.533	0.000	-3.072	-2.180
Tags_Ringing	-3.5673	0.243	-14.661	0.000	-4.044	-3.090
Tags_Will revert after reading the email	4.5287	0.192	23.572	0.000	4.152	4.905

In [121]:

```
#model 2
X_train_sm = sm.add_constant(X_train[col])
logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

Out[121]:

Generalized Linear Model Regression Results

Dep. Variable: Converted No. Observations: 6214 Model: **GLM Df Residuals:** 6198 Model Family: Binomial Df Model: 15 **Link Function:** 1.0000 logit Scale: Method: **IRLS** Log-Likelihood: -1222.7 **Date:** Tue, 12 May 2020 Deviance: 2445.3 Pearson chi2: 8.75e+03 Time: 11:49:07

No. Iterations: 24

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
const	-1.7560	0.100	-17.622	0.000	-1.951	-1.561
Total Time Spent on Website	1.0556	0.061	17.441	0.000	0.937	1.174
Lead Origin_Lead Add Form	1.8910	0.425	4.446	0.000	1.057	2.725
Lead Source_Olark Chat	1.4277	0.149	9.558	0.000	1.135	1.720
Lead Source_Welingak Website	24.7394	1.8e+04	0.001	0.999	-3.53e+04	3.54e+04
Last Activity_Olark Chat Conversation	-0.7773	0.229	-3.388	0.001	-1.227	-0.328
Last Activity_SMS Sent	1.4249	0.230	6.187	0.000	0.974	1.876
Last Notable Activity_Email Link Clicked	-1.0993	0.427	-2.573	0.010	-1.937	-0.262
Last Notable Activity_Modified	-1.2409	0.161	-7.704	0.000	-1.557	-0.925
Last Notable Activity_SMS Sent	0.7837	0.261	2.998	0.003	0.271	1.296
Tags_Closed by Horizzon	7.0777	1.023	6.920	0.000	5.073	9.082
Tags_Interested in other courses	-1.8582	0.405	-4.585	0.000	-2.653	-1.064
Tags_Lost to EINS	5.5441	0.604	9.172	0.000	4.359	6.729
Tags_Other_Tags	-2.6260	0.228	-11.533	0.000	-3.072	-2.180
Tags_Ringing	-3.5673	0.243	-14.661	0.000	-4.044	-3.090
Tags_Will revert after reading the email	4.5287	0.192	23.572	0.000	4.152	4.905

In [122]:

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [124]:

```
#e VIFs
vif = pd.DataFrame()
vif['Features'] = X_train[col].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[124]:

	Features	VIF
8	Last Notable Activity_SMS Sent	6.55
5	Last Activity_SMS Sent	6.44
7	Last Notable Activity_Modified	2.07
1	Lead Origin_Lead Add Form	1.83
2	Lead Source_Olark Chat	1.66
14	Tags_Will revert after reading the email	1.62
4	Last Activity_Olark Chat Conversation	1.59
0	Total Time Spent on Website	1.43
3	Lead Source_Welingak Website	1.30
9	Tags_Closed by Horizzon	1.24
12	Tags_Other_Tags	1.17
10	Tags_Interested in other courses	1.13
13	Tags_Ringing	1.12
11	Tags_Lost to EINS	1.05
6	Last Notable Activity_Email Link Clicked	1.04

In [125]:

```
col = col.drop('Last Notable Activity_SMS Sent',1)
```

In [126]:

```
#BUILDING MODEL #3
X_train_sm = sm.add_constant(X_train[col])
logm3 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm3.fit()
res.summary()
```

Out[126]:

Generalized Linear Model Regression Results

Converted No. Observations: Dep. Variable: 6214 GLM **Df Residuals:** 6199 Model: Model Family: Binomial Df Model: 14 **Link Function:** Scale: 1.0000 logit Method: **IRLS** Log-Likelihood: -1227.2 Date: Tue, 12 May 2020 Deviance: 2454.4 Time: 11:51:22 Pearson chi2: 9.04e+03

No. Iterations: 24

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-1.7021	0.097	-17.532	0.000	-1.892	-1.512
Total Time Spent on Website	1.0529	0.060	17.441	0.000	0.935	1.171
Lead Origin_Lead Add Form	1.8664	0.428	4.360	0.000	1.027	2.705
Lead Source_Olark Chat	1.4306	0.148	9.642	0.000	1.140	1.721
Lead Source_Welingak Website	24.7531	1.79e+04	0.001	0.999	-3.51e+04	3.51e+04
Last Activity_Olark Chat Conversation	-0.6650	0.227	-2.928	0.003	-1.110	-0.220
Last Activity_SMS Sent	2.0193	0.118	17.096	0.000	1.788	2.251
Last Notable Activity_Email Link Clicked	-1.1785	0.431	-2.737	0.006	-2.022	-0.335
Last Notable Activity_Modified	-1.5512	0.129	-12.010	0.000	-1.804	-1.298
Tags_Closed by Horizzon	7.2593	1.023	7.094	0.000	5.254	9.265
Tags_Interested in other courses	-1.8069	0.406	-4.452	0.000	-2.602	-1.011
Tags_Lost to EINS	5.6750	0.606	9.360	0.000	4.487	6.863
Tags_Other_Tags	-2.5775	0.225	-11.433	0.000	-3.019	-2.136
Tags_Ringing	-3.4728	0.239	-14.534	0.000	-3.941	-3.005
Tags_Will revert after reading the email	4.6031	0.194	23.734	0.000	4.223	4.983

In [127]:

```
# Create a dataframe that will contain the names of all the feature variables and their res
vif = pd.DataFrame()
vif['Features'] = X_train[col].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[127]:

	Features	VIF
1	Lead Origin_Lead Add Form	1.83
2	Lead Source_Olark Chat	1.65
7	Last Notable Activity_Modified	1.64
13	Tags_Will revert after reading the email	1.56
4	Last Activity_Olark Chat Conversation	1.55
5	Last Activity_SMS Sent	1.50
0	Total Time Spent on Website	1.43
3	Lead Source_Welingak Website	1.30
8	Tags_Closed by Horizzon	1.23
11	Tags_Other_Tags	1.15
9	Tags_Interested in other courses	1.11
12	Tags_Ringing	1.10
10	Tags_Lost to EINS	1.05
6	Last Notable Activity_Email Link Clicked	1.03

In [128]:

```
# Getting the Predicted values on the train set
y_train_pred = res.predict(X_train_sm)
y_train_pred[:10]
```

Out[128]:

```
1233
        0.060663
6078
        0.060663
6404
        0.045500
4409
        0.014404
1927
        0.979818
        0.696494
1969
        0.113653
7413
7097
        0.005548
327
        0.978739
        0.203400
6215
dtype: float64
```

In [129]:

```
y_train_pred = y_train_pred.values.reshape(-1)
y_train_pred[:10]
```

Out[129]:

```
array([0.06066318, 0.06066318, 0.04550008, 0.01440366, 0.97981785, 0.69649364, 0.11365324, 0.00554797, 0.97873938, 0.20339953])
```

In [130]:

```
y_train_pred_final = pd.DataFrame({'Converted':y_train.values, 'Converted_prob':y_train_pre
y_train_pred_final['Prospect ID'] = y_train.index
y_train_pred_final.head()
```

Out[130]:

	Converted	Converted_prob	Prospect ID
0	0	0.060663	1233
1	0	0.060663	6078
2	0	0.045500	6404
3	0	0.014404	4409
4	1	0.979818	1927

In [131]:

```
y_train_pred_final['Predicted'] = y_train_pred_final.Converted_prob.map(lambda x: 1 if x >
# Let's see the head
y_train_pred_final.head()
```

Out[131]:

	Converted	Converted_prob	Prospect ID	Predicted
0	0	0.060663	1233	0
1	0	0.060663	6078	0
2	0	0.045500	6404	0
3	0	0.014404	4409	0
4	1	0.979818	1927	1

In [132]:

```
from sklearn import metrics

# Confusion matrix
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.Predi
print(confusion)
```

```
[[3715 157]
[ 304 2038]]
```

```
In [133]:
```

```
# Let's check the overall accuracy.
print(metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.Predicted))
```

0.9258126810428066

In [134]:

```
TP = confusion[1,1] # true positive
TN = confusion[0,0] # true negatives
FP = confusion[0,1] # false positives
FN = confusion[1,0] # false negatives
```

In [135]:

```
# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
```

Out[135]:

0.8701964133219471

In [136]:

```
# Let us calculate specificity
TN / float(TN+FP)
```

Out[136]:

0.9594524793388429

In [137]:

```
# Calculate False Postive Rate - predicting conversion when customer does not have convert
print(FP/ float(TN+FP))
```

0.04054752066115702

In [138]:

```
# positive predictive value
print (TP / float(TP+FP))
```

0.9284738041002278

In [139]:

```
# Negative predictive value
print (TN / float(TN+ FN))
```

0.9243592933565563

Plotting ROC Curve

In [141]:

In [142]:

```
fpr, tpr, thresholds = metrics.roc_curve( y_train_pred_final.Converted, y_train_pred_final.
```

In [143]:

```
draw_roc(y_train_pred_final.Converted, y_train_pred_final.Converted_prob)
```


In [144]:

```
# Let's create columns with different probability cutoffs
numbers = [float(x)/10 for x in range(10)]
for i in numbers:
    y_train_pred_final[i] = y_train_pred_final.Converted_prob.map(lambda x: 1 if x > i else
y_train_pred_final.head()
```

Out[144]:

	Converted	Converted_prob	Prospect ID	Predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	(
0	0	0.060663	1233	0	1	0	0	0	0	0	0	0	0	
1	0	0.060663	6078	0	1	0	0	0	0	0	0	0	0	
2	0	0.045500	6404	0	1	0	0	0	0	0	0	0	0	
3	0	0.014404	4409	0	1	0	0	0	0	0	0	0	0	
4	1	0.979818	1927	1	1	1	1	1	1	1	1	1	1	
4														•

Optimal cutoff

In [146]:

```
# Now let's calculate accuracy sensitivity and specificity for various probability cutoffs.
cutoff_df = pd.DataFrame( columns = ['prob', 'accuracy', 'sensi', 'speci'])
from sklearn.metrics import confusion_matrix
# TP = confusion[1,1] # true positive
# TN = confusion[0,0] # true negatives
# FP = confusion[0,1] # false positives
# FN = confusion[1,0] # false negatives
num = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
for i in num:
    cm1 = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final[i] )
    total1=sum(sum(cm1))
    accuracy = (cm1[0,0]+cm1[1,1])/total1
    speci = cm1[0,0]/(cm1[0,0]+cm1[0,1])
    sensi = cm1[1,1]/(cm1[1,0]+cm1[1,1])
    cutoff_df.loc[i] =[ i ,accuracy,sensi,speci]
print(cutoff df)
```

```
prob
          accuracy
                       sensi
                                 speci
     0.0 0.376891
                    1.000000 0.000000
0.0
0.1
     0.1
         0.837947
                    0.969684 0.758264
0.2
     0.2 0.897490
                    0.948335 0.866736
     0.3
          0.918249
                    0.912468 0.921746
0.3
     0.4 0.921950 0.889838 0.941374
0.4
     0.5 0.925813 0.870196 0.959452
0.5
     0.6 0.926617
                    0.851836 0.971849
0.6
0.7
     0.7
          0.911651
                    0.797182
                             0.980888
0.8
     0.8 0.902639
                    0.766012 0.985279
0.9
     0.9 0.883972 0.707942 0.990444
```

In [147]:

```
# Let's plot accuracy sensitivity and specificity for various probabilities.
cutoff_df.plot.line(x='prob', y=['accuracy','sensi','speci'])
plt.show()
```


In [148]:

```
#### From the curve above, 0.3 is the optimum point to take it as a cutoff probability.

y_train_pred_final['final_Predicted'] = y_train_pred_final.Converted_prob.map( lambda x: 1

y_train_pred_final.head()
```

Out[148]:

	Converted	Converted_prob	Prospect ID	Predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	(
0	0	0.060663	1233	0	1	0	0	0	0	0	0	0	0	
1	0	0.060663	6078	0	1	0	0	0	0	0	0	0	0	
2	0	0.045500	6404	0	1	0	0	0	0	0	0	0	0	
3	0	0.014404	4409	0	1	0	0	0	0	0	0	0	0	
4	1	0.979818	1927	1	1	1	1	1	1	1	1	1	1	
4														•

```
In [149]:
```

```
y_train_pred_final['Lead_Score'] = y_train_pred_final.Converted_prob.map( lambda x: round(x
y_train_pred_final[['Converted','Converted_prob','Prospect ID','final_Predicted','Lead_Scor
```

Out[149]:

	Converted	Converted_prob	Prospect ID	final_Predicted	Lead_Score
0	0	0.060663	1233	0	6
1	0	0.060663	6078	0	6
2	0	0.045500	6404	0	5
3	0	0.014404	4409	0	1
4	1	0.979818	1927	1	98

In [150]:

```
# Let's check the overall accuracy.
metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.final_Predicted)
```

Out[150]:

0.9182491149018346

In [151]:

```
confusion2 = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.fina
confusion2
```

Out[151]:

```
array([[3569, 303], [ 205, 2137]], dtype=int64)
```

In [152]:

```
TP = confusion2[1,1] # true positive
TN = confusion2[0,0] # true negatives
FP = confusion2[0,1] # false positives
FN = confusion2[1,0] # false negatives
```

In [153]:

```
# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
```

Out[153]:

0.912467976088813

```
In [154]:
# Let us calculate specificity
TN / float(TN+FP)
Out[154]:
0.921745867768595
In [155]:
# Calculate False Postive Rate - predicting conversion when customer does not have convert
print(FP/ float(TN+FP))
0.07825413223140495
In [156]:
# Positive predictive value
print (TP / float(TP+FP))
0.8758196721311475
In [157]:
# Negative predictive value
print (TN / float(TN+ FN))
0.9456809750927399
In [158]:
#Looking at the confusion matrix again
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.final
confusion
4 ■
Out[158]:
array([[3569, 303],
       [ 205, 2137]], dtype=int64)
In [159]:
##### Precision
TP / TP + FP
confusion[1,1]/(confusion[0,1]+confusion[1,1])
Out[159]:
```

0.8758196721311475

```
In [160]:
```

```
##### Recall
TP / TP + FN
confusion[1,1]/(confusion[1,0]+confusion[1,1])
```

Out[160]:

0.912467976088813

In [161]:

```
from sklearn.metrics import precision_score, recall_score
```

In [162]:

```
precision_score(y_train_pred_final.Converted , y_train_pred_final.final_Predicted)
```

Out[162]:

0.8758196721311475

In [163]:

```
recall_score(y_train_pred_final.Converted, y_train_pred_final.final_Predicted)
```

Out[163]:

0.912467976088813

In [164]:

```
from sklearn.metrics import precision_recall_curve
```

In [165]:

```
y_train_pred_final.Converted, y_train_pred_final.final_Predicted
p, r, thresholds = precision_recall_curve(y_train_pred_final.Converted, y_train_pred_final.
```

In [166]:

```
plt.plot(thresholds, p[:-1], "g-")
plt.plot(thresholds, r[:-1], "r-")
plt.show()
```


In [167]:

```
#scaling test set
num_cols=X_test.select_dtypes(include=['float64', 'int64']).columns

X_test[num_cols] = scaler.fit_transform(X_test[num_cols])

X_test.head()
```

Out[167]:

	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	What is you occupation_H
1103	0.713461	1.713072	1.424441	1	0	0	
3775	-1.130765	-0.881876	-1.192363	0	0	0	
3228	0.344615	1.528111	0.901080	1	0	0	
5575	-1.130765	-0.881876	-1.192363	0	1	0	
3871	-1.130765	-0.881876	-1.192363	0	0	0	

5 rows × 56 columns

In [169]:

```
X_test = X_test[col]
X_test.head()
```

Out[169]:

		Total Time Spent on Website	Lead Origin_Lead Add Form	Lead Source_Olark Chat	Lead Source_Welingak Website	Last Activity_Olark Chat Conversation	Last Activity_SMS Sent	L Act L
_	1103	1.713072	0	0	0	0	1	
	3775	-0.881876	0	1	0	1	0	
	3228	1.528111	0	0	0	0	1	
	5575	-0.881876	1	0	0	0	0	
	3871	-0.881876	0	1	0	0	0	

In [170]:

```
X_test_sm = sm.add_constant(X_test)
```

predictions of test

In [171]:

```
y_test_pred = res.predict(X_test_sm)
```

In [172]:

```
y_test_pred[:10]
```

Out[172]:

1103	0.998800
3775	0.005362
3228	0.872815
5575	0.034166
3871	0.231487
948	0.976854
8836	0.056412
8512	0.005362
8548	0.016591
2126	0.992924
dtype:	float64

```
In [173]:
```

```
# Converting y_pred to a dataframe which is an array
y_pred_1 = pd.DataFrame(y_test_pred)
```

In [174]:

```
# Let's see the head
y_pred_1.head()
```

Out[174]:

0

1103 0.998800

3775 0.005362

3228 0.872815

5575 0.034166

3871 0.231487

In [175]:

```
# Converting y_test to dataframe
y_test_df = pd.DataFrame(y_test)
```

In [176]:

```
# Putting CustID to index
y_test_df['Prospect ID'] = y_test_df.index
```

In [177]:

```
# Removing index for both dataframes to append them side by side
y_pred_1.reset_index(drop=True, inplace=True)
y_test_df.reset_index(drop=True, inplace=True)
```

In [178]:

```
# Appending y_test_df and y_pred_1
y_pred_final = pd.concat([y_test_df, y_pred_1],axis=1)
```

In [179]:

```
y_pred_final.head()
```

Out[179]:

	Converted	Prospect ID	0
0	1	1103	0.998800
1	0	3775	0.005362
2	0	3228	0.872815
3	0	5575	0.034166
4	0	3871	0.231487

In [180]:

```
# Renaming the column
y_pred_final= y_pred_final.rename(columns={ 0 : 'Converted_prob'})
```

In [181]:

```
y_pred_final.head()
```

Out[181]:

	Converted	Prospect ID	Converted_prob
0	1	1103	0.998800
1	0	3775	0.005362
2	0	3228	0.872815
3	0	5575	0.034166
4	0	3871	0.231487

In [182]:

```
# Rearranging the columns
y_pred_final = y_pred_final[['Prospect ID','Converted','Converted_prob']]
y_pred_final['Lead_Score'] = y_pred_final.Converted_prob.map( lambda x: round(x*100))
```

In [183]:

```
# Let's see the head of y_pred_final
y_pred_final.head()
```

Out[183]:

	Prospect ID	Converted	Converted_prob	Lead_Score
0	1103	1	0.998800	100
1	3775	0	0.005362	1
2	3228	0	0.872815	87
3	5575	0	0.034166	3
4	3871	0	0.231487	23

In [184]:

```
y_pred_final['final_Predicted'] = y_pred_final.Converted_prob.map(lambda x: 1 if x > 0.3 el
```

In [185]:

```
y_pred_final.head()
```

Out[185]:

	Prospect ID	Converted	Converted_prob	Lead_Score	final_Predicted
0	1103	1	0.998800	100	1
1	3775	0	0.005362	1	0
2	3228	0	0.872815	87	1
3	5575	0	0.034166	3	0
4	3871	0	0.231487	23	0

In [186]:

```
# Let's check the overall accuracy.
metrics.accuracy_score(y_pred_final.Converted, y_pred_final.final_Predicted)
```

Out[186]:

0.926051051051051

In [187]:

```
confusion2 = metrics.confusion_matrix(y_pred_final.Converted, y_pred_final.final_Predicted
confusion2
```

Out[187]:

```
In [188]:
```

```
TP = confusion2[1,1] # true positive
TN = confusion2[0,0] # true negatives
FP = confusion2[0,1] # false positives
FN = confusion2[1,0] # false negatives
```

In [189]:

```
# Let us calculate specificity
TN / float(TN+FP)
```

Out[189]:

0.927007299270073

In [190]:

```
precision_score(y_pred_final.Converted , y_pred_final.final_Predicted)
```

Out[190]:

0.8871119473189087

In [191]:

```
recall_score(y_pred_final.Converted, y_pred_final.final_Predicted)
```

Out[191]:

0.9245098039215687

observation After running the model on the Test Data these are the figures we obtain:

Accuracy: 92% Sensitivity: 91% Specificity: 93%

observation

After running the model on the Test Data these are the figures we obtain:

Accuracy: 92.78% Sensitivity: 91.98% Specificity: 93.26%

Train Accuracy: 92% Sensitivity: 91% Specificity: 92%

```
Test Accuracy : 92% Sensitivity : 91% Specificity : 93%
```

#test Accuracy: 92.78% Sensitivity: 91.98% Specificity: 93.26%

The Model seems to predict the Conversion Rate very well and we should be able to give the CEO confidence in making good calls based on this model