Approximate Near Neighbor Search: Locality-sensitive Hashing

COMPCSI 753: Algorithms for Massive Data

Ninh Pham

University of Auckland

Outline

- Popular similarity/distance measure
 - Definitions
 - Applications
- Locality-sensitive hashing framework for approximate near neighbor search
 - LSH definition
 - LSH framework for near neighbor search

A common metaphor

- We can present many problems as finding "similar" items or finding near-neighbors in high dimensions.
- Near neighbors search:

 $Source: \underline{https://code.flickr.net/2017/03/07/introducing-similarity-search-at-flickr/net/2017/03/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introducing-search-at-flickr/net/2017/07/introduci$

Distance/similarity measure

- For each application, we need to define a similarity/distance measure to distinguish between
 - Similar and dissimilar objects.
 - Near and far apart objects.
- Popular similarity/distance measures:
 - Jaccard similarity/distance
 - Cosine similarity/distance
 - Hamming distance
 - Euclidean distance (L2)
 - Manhattan distance (L1)

Jaccard similarity/distance

ullet Jaccard similarity of two sets S and T:

$$J(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

• Jaccard distance of two sets S and T: 1 - J(S,T)

• Example:

4 items in intersection

8 items in union

$$J(S,T) = 1/2$$

1 - $J(S,T) = 1/2$

Applications

- Texts/Documents:
 - Present text/documents as a set of shingles
 - Usage: Detect plagiarism, mirror pages, articles from same source
- Recommender system data:
 - Online-purchases: users as sets, items as set elements
 - Netflix: users as sets, movies rated as set elements
 - Usages: Collaborative filtering recommender systems need to compute the similarity between users-users, items-items for accurate recommendation

Applications

- Market basket data:
 - Items as sets, transaction IDs as set elements.
 - Usage: Association rules $X \to Y$ if $J(X,Y) \ge s$.

• Example:

- Bread = $\{1, 2, 4, 5\}$
- Milk = $\{1, 3, 4, 5\}$
- Diapers = $\{2, 3, 4, 5\}$
- Beer = $\{2, 3, 4\}$
- $Eggs = \{2\}$
- $Cola = \{3, 5\}$
- J(Diapers, Beer) = 3/4

```
ID Items
1     {Bread, Milk}
2     {Bread, Diapers, Beer, Eggs}
3     {Milk, Diapers, Beer, Cola}
4     {Bread, Milk, Diapers, Beer}
5     {Bread, Milk, Diapers, Cola}
...     ...
{Diapers, Beer}
     Example of a frequent itemset
```

MinHash [Broder'97]

- Permute the Boolean matrix with a random permutation π
- MinHash function:

 $\mathbf{h}_{\pi}(\mathbf{S})$ = the index of the first row with value 1 of \mathbf{S} (in the permuted order π)

$$h_{\pi}(S) = \min_{\pi} \pi(S)$$

•
$$Pr_{\pi}[h_{\pi}(S) = h_{\pi}(T)] = J(S,T)$$

A	В	C	D
1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Shingles

Documents

Cosine similarity/distance

• Given two points $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_d)$ and $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_d)$ in high-dimensional sphere, i.e. $\|\mathbf{x}\|_2^2 = \|\mathbf{y}\|_2^2 = \mathbf{1}$

$$||x||_2^2 = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2} = 1$$

• Cosine similarity:

$$\cos(\theta_{xy}) = \langle x, y \rangle = \sum_{i=1}^{d} x_i y_i$$
where $0 \le \theta_{xy} \le \pi$

• Cosine distance: $1 - \cos(\theta_{xy})$

Applications

- Texts/Documents:
 - Present texts/documents as a high-dimensional points using term frequency—inverse document frequency (tf-idf).
 - L2 normalization, i.e. normalizing x by $(x_1, ..., x_d) / ||x||_2^2$.
 - Usage: Information retrieval (text search, topic modeling) and most of MinHash applications.
- A tf-idf definition for a corpus of **n** documents:
 - $\mathbf{tf(t, d)} = \frac{\text{number of times term } \mathbf{t} \text{ occur in document } \mathbf{d}}{\text{total number of terms in document } \mathbf{d}}$
 - $idf(t) = log_2 \left(\frac{n}{1 + number of documents where t appears} \right)$
 - tf-idf(t, d) = tf(t, d) * <math>idf(t)

Applications

- Images:
 - Present an image as a high-dimensional vector, e.g. scale-invariant feature transform (SIFT), deep learning ("image2vec"),...
 - Usage: content-based image retrieval

SimHash [Charikar'02]

- Generate a random Gaussian vector $\mathbf{r} = (\mathbf{r}_1, \dots, \mathbf{r}_d)$ where \mathbf{r}_i is drawn from N(0, 1)
- SimHash function:

$$h_{r}(x) = \begin{cases} 1 \text{ if } \langle x, r \rangle \ge 0 \\ 0 \text{ if } \langle x, r \rangle < 0 \end{cases}$$

Outline

• Popular similarity/distance measure

• Locality-sensitive hashing framework for approximate near neighbor search

r-near neighbor search

- **r**-near neighbor search (**r**NNS) problem:
 - Given a data set $S \subset R^d$, a distance function d(x, y), a distance threshold r, and a query $q \in R^d$, return some point $x \in S$ where $d(x, q) \le r$.

- Other variants:
 - **k**-nearest neighbors search
 - **r**-near neighbor reporting

Problem relaxation

- Randomized **c**-approximation **r**NNS:
 - Given a data set $S \subset R^d$, a distance function d(x, y), parameters r > 0, c > 1, $\delta > 0$, and a query $q \in R^d$, with probability 1δ
 - o If exists $x \in S$ and $d(x, q) \le r$, return some point $x' \in S$ where $d(x', q) \le cr$.
 - o Else, return nothing.

LSH definition

- Definition [Indyk & Motwani'98]:
 - Given a distance function d: U × U → R and positive values r, c, p₁, p₂ where p₁ > p₂, c > 1. A family of functions H is called (r, c, p₁, p₂)-sensitive if for uniformly chosen h ∈ H and all x, y ∈ U:
 - If $d(x, y) \le r$ then $Pr[h(x) = h(y)] \ge p_1$; (similar/near points)
 - If $d(x, y) \ge cr$ then $Pr[h(x) = h(y)] \le p_2$. (dissimilar/far away points)

Exercise

- MinHash is locality-sensitive hashing
 - $Pr_{\pi}[h_{\pi}(S) = h_{\pi}(T)] = J(S,T)$
 - What are the values of $\mathbf{p_1}$, $\mathbf{p_2}$ given \mathbf{r} and \mathbf{cr} ?
- SimHash is locality-sensitive hashing
 - $Pr_r[h_r(x) = h_r(y)] = 1 \theta_{xy} / \pi$
 - What are the values of **p**₁, **p**₂ given **r** and **cr**?

Locality-sensitive hashing framework

- Claim:
 - We can solve the randomized **c**-approximation **r**-near neighbor search in sublinear time using locality-sensitive hashing.
 - Sublinear time: $O(n^{\rho})$, $0 < \rho < 1$ for any query and data set of size n.
- Intuition: Candidate points are points within the same bucket of the query point.

Recap: LSH definition

- Definition [Indyk & Motwani'98]:
 - Given a distance function d: U × U → R and positive values r, c, p₁, p₂ where p₁ > p₂, c > 1. A family of functions H is called (r, c, p₁, p₂)-sensitive if for uniformly chosen h ∈ H and all x, y ∈ U:

- If $d(x, y) \le r$ then $Pr[h(x) = h(y)] \ge p_1$; (similar/near points)
- If $d(x, y) \ge cr$ then $Pr[h(x) = h(y)] \le p_2$. (dissimilar/far away points)

How to make it as small as possible, i.e.

$$p_2 = 1/n$$
.

Concatenate several hash functions

- Define a hash function $g(x) = (h_1(x), h_2(x), ..., h_k(x))$ where h_i , $1 \le i \le k$, are chosen independently and randomly from a LSH family H.
 - If $d(x, y) \le r$ then $Pr[g(x) = g(y)] \ge (p_1)^k$ (similar/near points)
 - If $d(x, y) \ge cr$ then $Pr[g(x) = g(y)] \le (p_2)^k$ (dissimilar/far away points)
- Set $k = log(n) / log(1/p_2)$, we have
 - $(p_2)^k = (p_2)^{\log(n)/\log(1/p^2)} = 1/n$
 - $(p_1)^k = (p_1)^{\log(n)/\log(1/p^2)} = 1/n^\rho \text{ where } 0 < \rho = \frac{\log(1/p^1)}{\log(1/p^2)} < 1$

LSH framework intuition

- Similar points:
 - If $d(x, y) \le r$ then $Pr[g(x) = g(y)] \ge 1/n^{\rho}$
 - If there is a similar point, i.e. $d(x, q) \le r$, in expectation, we need to check \mathbf{n}^{ρ} points to find a similar point in our bucket.
- Dissimilar points:
 - If $d(x, y) \ge cr$ then $Pr[g(x) = g(y)] \le 1/n$
 - Since we have **n** points, in expectation, only 1 dissimilar point is in the same bucket of query.

LSH framework intuition

- Similar points:
 - If $d(x, y) \le r$ then $Pr[g(x) = g(y)] \ge 1/n^{\rho}$
 - If there is a similar point, i.e. $d(x, q) \le r$, in expectation, we need to check \mathbf{n}^{ρ} points to find a similar point in our bucket.

How to get n^{ρ} points?

- Dissimilar points:
 - If $d(x, y) \ge cr$ then $Pr[g(x) = g(y)] \le 1/n$
 - Since we have **n** points, in expectation, only 1 dissimilar point is in the same bucket of query.

No worries on dissimilar points

LSH framework intuition

- Similar points:
 - If $d(x, y) \le r$ then $Pr[g(x) = g(y)] \ge 1/n^{\rho}$
 - If there is a similar point, i.e. $d(x, q) \le r$, in expectation, we need to check \mathbf{n}^{ρ} points to find a similar point in our bucket.

Use $L = n^{\rho}$ hash tables

- Dissimilar points:
 - If $d(x, y) \ge cr$ then $Pr[g(x) = g(y)] \le 1/n$
 - Since we have **n** points, in expectation, only 1 dissimilar point is in the same bucket of query.

In expectation, less than $L = n^{\rho}$ points

LSH framework: Hash tables construction

Space usage: O(nL + dn)

 $g(x) = (h_1(x), h_2(x), ..., h_k(x))$ where $h_i \in H$

Prob. collision of near points: $1/n^{\rho}$

Prob. collision of far away points: 1/n

LSH framework: Hash tables construction

Preprocessing:

- 1) Choose L hash function g_j , $1 \le j \le L$, by setting g_j = $(h_{1,j}, h_{2,j}, ..., h_{k,j})$ where $h_{i,j}$, $1 \le i \le k$, are chosen independently and randomly from the LSH family H.
- 2) Construct L hash tables, where each hash table T_j , $1 \le j \le L$, contains the data set S hashed using the hash function g_i .
- Complexity:
 - Space usage: O(nL + dn)
 - Time: O(dknL) with the assumption that the evaluation of h(x) takes O(d) time.

LSH framework: Hash tables lookup

Important:

We interrupt search after finding first $L' = 2n^{\rho}$ points, including duplicates.

LSH framework: Hash tables lookup

• Query for a point **q**:

```
For each j = 1, 2, ..., L
```

- 1) Retrieve the points from the bucket $g_j(q)$ in the T_j hash table.
- 2) For each of the reported point x
 - 2.1) Compute the distance d(x, q).
 - 2.2) If $d(x, q) \le cr$, return x and stop.
- 3) Stop as soon as the number of reported points is more than L'.
- Complexity:
 - Time: O(dkL + dL') with the assumption that the evaluation of h(q) takes O(d) time.

Compute hash values

Compute actual distance with **L'** points

Analysis

- Parameter settings:
 - $k = log(n) / log(1/p_2)$

• $0 < \rho = \frac{\log(1/p1)}{\log(1/p2)} < 1$

Prob. collision of near points: 1/n

Prob. collision of far away points: 1/n

- $L = n^{\rho}$ hash tables
- Check $L' = 2L = 2n^{\rho}$ points for computing actual distance
- Complexity:
 - Preprocessing:
 - o Space usage: O(nL + dn)
 - o Time: $O(dkn^{1+\rho})$ with the assumption that the evaluation of h(x) takes O(d) time.
 - Query:
 - o Sublinear time: $O(dkn^{\rho} + dn^{\rho})$ with the assumption that the evaluation of h(q) takes O(d) time.

Recap: Problem relaxation

- Randomized **c**-approximation **r**NNS:
 - Given a data set $S \subset R^d$, a distance function d(x, y), parameters r > 0, c > 1, $\delta > 0$, and a query $q \in R^d$, with probability 1δ
 - o If exists $x \in S$ and $d(x, q) \le r$, return some point $x' \in S$ where $d(x', q) \le cr$.
 - o Else, return nothing.

Correctness

- We need to show that, with probability 1 δ :
 - Case 1: If exists $x \in S$ and $d(x, q) \le r$, there exists a hash table T_j such that $g_j(x) = g_j(q)$ for some $1 \le j \le L$. This means that we can find x.
 - Case 2: The total number of collisions from far away points is at most 2L. This means that after checking 2L points, we are certain that all points are far away from q more than cr.

Correctness: Case 1

- Observation: If $d(x, q) \le r$, then
 - Prob. **x** colliding with **q** in any hash table: $\geq 1/n^{\rho}$

```
(1-1/x)^x \approx 1/e
```

- Prob. x not colliding with q in any hash table: $\leq 1 1/n^{\rho}$
- Prob. x not colliding with q in all L hash tables: $\leq (1 1/n^{\rho})^{L}$
- Prob. \mathbf{x} not colliding with \mathbf{q} in all \mathbf{L} hash tables: $1/\mathbf{e}$ with $\mathbf{L} = \mathbf{n}^{\rho}$
- Prob. ${\bf x}$ colliding with ${\bf q}$ in at least 1 hash tables: 1 1/e with ${\bf L}={\bf n}^{\rho}$
- With prob. 1-1/e, any near point \mathbf{x} will collide with \mathbf{q} in at least 1 hash table. This means that we can find \mathbf{x} .

Correctness: Case 2

- Observation:
 - Maximum number of far away points: n
 - If $d(x, q) \ge cr$, then $Pr[h(x) = h(q)] \le 1/n$. Hence, in expectation, we have at most 1 far away point collide with q in each hash table.
 - E [number of far away points] \leq L.

- Using Markov's inequality:
 - Let X be the number of far away points collided with q in L tables.
 - Pr $[X \ge 2L] \le \frac{E[X]}{2L} \le 1/2$
- With prob. 1/2, after checking all first L' = 2L points far away from q, we are certain that all points are far away. Hence, return nothing.

Correctness

• Probability both case 1 and case 2 hold is at least:

$$1 - ((1 - 1/2) + (1 - (1 - 1/e))) = 1/2 - 1/e$$

Prob. case 2 fails

Prob. case 1 fails

- Theorem: There exists a sublinear algorithm to answer the c-approximate rNNS with probability 1/2 1/e.
- Boosting the accuracy: By repeating the LSH algorithm $O(1/\delta)$ times, we can amplify the probability of success in at least 1 trial to 1 δ for any $\delta > 0$.

Practical algorithm

• Query for a point **q**:

```
For each j = 1, 2, ..., L
```

- 1) Retrieve the points from the bucket $g_i(q)$ in the T_i hash table.
- 2) For each of the reported point x
 - 2.1) Compute the distance d(x, q).
 - 2.2) If $d(x, q) \le r$, return x.
 - 2.3) Update the k-nearest neighbors with the returned x.
- We cannot have sublinear theoretical guarantee but the accuracy is much higher. In practice, it can run in sublinear time in many of data sets.