- 1. Prove that $T(n) = 3n^3 + 2n^2 + n + 90$ is both $O(n^3)$ and $O(n^4)$.
 - Determine the asymptotic relationship between $f(n) = n \ln(3n)$ and $g(n) = 3n^2$ using limit rule.

2. Let T(n) = f(n)g(n) + h(n) be a function defined on three running time functions, where f(n) is $\Theta(\sqrt{n})$; g(n) is $\Omega(\log n^n)$ and h(n) is $O(n^3)$. Show that T(n) is $\Omega(n^{3/2} \log n)$.

	What is the minimum and maximum number of comparisons needed when merging two nonempty sorted lists of size n into a single list?
	Determine the order of the list after partitioning 23, 20, 6, 17, 13, 25, 14, assume you have a way to take the median of the list as the pivot.
ó .	Consider the following maximum heap: 39, 20, 37, 18, 6, 32, 13, 3, 14.
	1. insert 25 to the heap.
	2. delete 39 from the heap.

6. Given the binary search tree below:

Describe the process and the outcome of the following deletion operations on the above BST.

- 1. Delete node 48 in the tree.
- 2. Delete node 16 in the tree.
- 3. Delete node 12 in the tree by using the minimum key in the right subtree.
- 4. Delete node 12 in the tree by using the maximum key in the left subtree.

7. Consider the following digraph G:

- 1. What is the order and size of G?
- 2. Identify all sources and sinks in G.
- 3. Write down the adjacency matrix representation of G.
- 4. Consider the vertex sequence 0, 2, 1, 3, 4, 5, is it a walk, path or cycle?
- 5. Give the distance of the following pairs of nodes, d(0,1), d(0,3) and d(5,6)

8.	Consider the adjacency list of a digraph G below:
	0: 1 2
	1: 2
	2: 1 3 4
	3: 4
	4:
	1. Draw the digraph G.
	2. Draw the sub-digraph induced by {1, 2, 3}.
	3. Draw the underlying graph of G.