FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Linguagens Formais e Autômatos - Aula 06 - 1º SEMESTRE/2016

Prof. Luciano Silva

TEORIA: EXPRESSÕES REGULARES

Nossos **objetivos**nesta aula são:

- conhecer o conceito de expressões regulares e sua relação com autômatos finitos
- praticar com expressões regulares

Para esta semana, usamos como referência a **Seção3.2** (**Conjuntos e Expressões Regulares**) do nosso livro da referência básica:

RAMOS, M.V.M., JOSÉ NETO, J., VEJA, I.S. Linguagens Formais: **Teoria, Modelagem e Implementação**. Porto Alegre: Bookman, 2009.

Não deixem de ler esta seção depois desta aula!

TEORIA: EXPRESSÕES REGULARES

- Linguagens regulares, além dos autômatos finitos determinísticos, podem também ser denotadas por **expressões regulares**
- A descrição de linguagens regulares via autômatos finitos determinísticos é chamada abordagem operacional e, com expressões expressões regulares, a abordagem é chamada denotacional

- Dado um alfabeto Σ , uma **expressão regular** (e.r.) sobre Σ , é definida recursivamente por:
 - Øé uma expressão regular
 - εé uma expressão regular
 - o cada símbolo $\sigma \in \Sigma$ é uma expressão regular
 - o se x e y são expressões regulares sobre Σ , então também serão expressões regulares sobre Σ :
 - (x) e (y)
 - x|y (alternação) (x ou y)
 - xy (concatenação) (x seguida de y)
 - x* (Estrela de Kleene) (0 ou mais vezes x)

Notação: $x^+ = xx^*$ (1 ou mais vezes x)

- Dada uma expressão regular r sobre Σ , sempre existirá uma linguagem regular sobre Σ cujas palavras são exatamente aquelas denotadas por r.
 - Exemplos:
 - $r = a(a|b)^* \equiv todas$ as palavras sobre o alfabeto $\Sigma = \{a,b\}$ que começam por a
 - $r = (0|1)*0 \equiv todas$ as palavras sobre o alfabeto $\Sigma = \{0,1\}$ que representam números pares

• Dada uma expressão regular r sobre Σ , é possível produzir um ε -afnd que aceite exatamente as palavras denotadas por r, seguindo-se a tabela de conversão abaixo:

EXERCÍCIO TUTORIADO

(a)	Construa	uma	expressão	regular	sobre	o	alfabeto	Σ ={a,b}	que	reconheça	todas	as
	palavras que tenham o segmento ab:											

(b) Converta a expressão regular encontrada acima para um ϵ -afnd:

•••			
	(a) Construa uma expressão regular sobre o alfabeto Σ ={a,b} que reconheça palavras que tenham um número par de a's:	todas	as
	(b) Converta a expressão regular encontrada acima para um ϵ -afnd:		

PROBLEMA

Expressões regulares são construções muito úteis dentro de interpretadores de comandos para sistemas operacionais (BASH, KORN SHELL, C SHELL, etc). Por exemplo, quando damos o seguinte comando em Linux:

ls *.java

estamos solicitando ao interpretador que liste todos os arquivos cuja extensão seja java. Para denotar tais arquivos, utilizamos a expressão regular *.java.

Construa um ε -afnd capaz de reconhecer nomes de arquivos que tenham a extensão java, tendo como base a expressão regular *.java.

EXERCÍCIOS EXTRA-CLASSE

1. Considere-se o alfabeto Σ = {a,b} . Construa expressões regulares para denotar cada uma das linguagens regulares abaixo:

Linguagem Regular	Expressão Regular
Palavras que tenham somente aa.	
Palavras que iniciam por b, seguido de zero ou mais a's.	
Todas as palavras sobre o alfabeto Σ	
Todas as palavras que tenham o segmento aa.	
Todas as palavras que tenham exatamente dois b's.	
Todas as palavras que terminam com aa ou bb.	
Todas as palavras que não possuem dois a's consecutivos.	

2.	Converta a possível.	expressão	(00)* (10)	para	um	ε-afnd,	simplificando	as	construções	onde	foi