Material ; magnetiska fölt			
Ferromagnesska: Ur»1			
Järn, nickel, kobalt			
Para magnetiska: //r >==================================			
Repelleras av magnetiska fält.			
Superkonduktorer Anvands i supra Ledare			
Kol, koppar, vanen, plast			
Farraday's Lag Pree: 5 vid på och avslag av brytaren fonns en strom i slinga 2. Detta pga transiens".			
Lentz lag: Den inducerade Strömmen autar alltid den rilutning vilken Motverkar magnerföltat. i slinga 2 Hur Stor Strömmen kommer bli bear på hur snabb förändringen år i slinga 1 och hur stor Its arean är för slinga 2.			
Elebor magneriskt flode			
Om vi antor att detta är en vajer kommer vi inducera en ström i den			
BOYE Faraday's Faraday's FEID : -d SBJA			
CHECKPOINT			
Clockwise.) Checkpoint The magnetic field through a wire loop is The pointed upwards and ancroasing with time. The pointed upwards and ancroasing with time. The induced current in the coal is 1. Clockwise as seen from the top 2. Counterclockwise $\frac{d\vec{B}}{dt} > 0$			

<u>Siälvinduktans</u>		
ФВ°LI Faroday => E=-LdI En Spole med konse	ant Ström kommer inte ha någon	sjölvinduktans.
∕sjálv induktans		
CHECKPOINT	1. Bah Löbar	
Checkpoint When you insert the iron core what happens? 1.B Increases so L does too 2.B Decreases so L does too 3.B Increases so L Decreases 4.B Decreases so L Increases	The moments in the material align with the external field, increasing the B field, and hence increasing the flux through the coil and thus its	$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$
	increasing the nux university inductance	$\mathcal{E} = -\frac{d}{dt} \Big(BA \cos \theta \Big)$
	One more way to induce (more) EMF	
Amperes lag deluxe: 9BJS=10. Ienc 10.6 JE Maxwell Equations		
(Gauss's Law) 1. $\oint \vec{E} \cdot d\vec{A} = G_0$ 2. $\oint \vec{B} \cdot d\vec{A} = 0$ 3. $\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_g}{dt}$ (Faraday's Law)		
$3.\oint_{c} \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{\theta}}{dt}$ (Faraday's Law) $4.\oint_{c} \vec{B} \cdot d\vec{s} = \int_{0}^{d} I_{out} + \mu_{0} \mathcal{E}_{0} \frac{d\Phi_{E}}{dt}$ (Ampere-Maxwell Law)		
Elektromagnetiska Vågor		
$P = \frac{h}{\lambda}$ h= Planck's konstant		
$\lambda = \frac{\zeta}{P}$	Ursõluta avsalunaden i	av enteckningar, men det har var trebyt.