Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Кафедра информационных систем и программной инженерии

Методы и программные средства вычислений

Методические указания к лабораторным работам

Составитель: С.Ю. КИРИЛЛОВА

Лабораторная работа № 2 ПОГРЕШНОСТИ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ. ТЕОРИЯ ВОЗМУЩЕНИЙ

1. Цель работы

Учитывая распространенность систем линейных алгебраических уравнений (ибо часто именно к ним сводится на определенном этапе процесс математического моделирования), в работе рассматривается подход к количественной оценке степени неопределенности этих задач. Знание таких характеристик позволяет обоснованно судить о корректности моделей, грамотно подбирать методы и строить алгоритмы, правильно трактовать полученные результаты.

2. Основные сведения и примеры

Теоретический материал. Пусть рассматривается система линейных алгебраических уравнений (СЛАУ)

В матричной форме записи она имеет вид Ax = b. Будем предполагать, что матрица системы A задана и является невырожденной. Известно, что в этом случае решение системы существует, единственно и устойчиво по входным данным. Обозначим через $\mathbf{x} = (x_1, x_2, ..., x_m)^{\mathrm{T}}$ точное решение СЛАУ, а через $\mathbf{x}^* = (x_1^*, x_2^*, ..., x_m^*)^{\mathrm{T}}$ - приближенное решение системы. Для количественной характеристики вектора погрешности $\mathbf{e} = \mathbf{x} - \mathbf{x}^*$ введем понятие нормы.

Нормой вектора x называется число ||x||, удовлетворяющее трем аксиомам:

- 1) $\|x\| \ge 0$, причем $\|x\| = 0$ тогда и только тогда, когда x = 0;
- 2) $\|\alpha x\| = |\alpha| \cdot \|x\|$ для любого вектора x и любого числа α ;
- 3) $||x + y|| \le ||x|| + ||y||$ для любых векторов x и y.

Наиболее употребительными являются следующие три нормы:

$$\|\mathbf{x}\|_{1} = \sum_{i=1}^{m} |x_{i}|, \qquad \|\mathbf{x}\|_{2} = \sqrt{\sum_{i=1}^{m} |x_{i}|^{2}}, \qquad \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le m} |x_{i}|.$$

Абсолютная и относительная погрешности вектора вводятся с помощью формул:

$$\Delta(x^*) = ||x - x^*||$$
 $U = \delta(x^*) = \frac{||x - x^*||}{||x||}$

Нормой матрицы A называется величина $\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$. Введенная норма обладает свойствами, аналогичными свойствам нормы вектора:

- 1) $\|A\| \ge 0$, причем $\|A\| = 0$ тогда и только тогда, когда A = 0;
- 2) $\|\alpha A\| = |\alpha| \cdot \|A\|$ для любой матрицы A и любого числа α ;
- 3) $\|A + B\| \le \|A\| + \|B\|$ для любых матриц A и B;
- $4) \|\boldsymbol{A} \cdot \boldsymbol{B}\| \leq \|\boldsymbol{A}\| \cdot \|\boldsymbol{B}\|.$

Каждой из векторных норм соответствует своя подчиненная норма матрицы:

$$\|A\|_{1} = \max_{j} \sum_{i=1}^{m} |a_{ij}|, \qquad \|A\|_{2} = \sqrt{\lambda_{\max}(AA^{T})}, \qquad \|A\|_{\infty} = \max_{i} \sum_{j=1}^{m} |a_{ij}|.$$

В оценках вместо нормы $\|A\|_2$ используется евклидова норма матри-

цы
$$\|A\|_e = \sqrt{\sum_{i=1}^m \sum_{j=1}^m a_{ij}^2}$$
, так как $\|A\|_2 \le \|A\|_e$.

Абсолютная и относительная погрешности матрицы вводятся аналогично погрешностям вектора с помощью формул:

$$\Delta(A^*) = ||A - A^*||$$
 $\Pi = \delta(A^*) = \frac{||A - A^*||}{||A||}.$

Пример 2.1. Вычислить нормы вектора
$$\boldsymbol{b} = \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix}$$
 и матрицы

$$\mathbf{A} = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 5 & 4 \\ 7 & 10 & -10 \end{pmatrix}.$$

Решение. Вычислим нормы вектора: $\|\boldsymbol{b}\|_1 = 7$, $\|\boldsymbol{b}\|_2 = \sqrt{9+16} = 5$, $\| \boldsymbol{b} \|_{\infty} = 4$.

Соответствующие нормы матрицы:
$$\|A\|_1 = \max(10,15,17) = 17 \,, \quad \|A\|_e = \sqrt{304} \approx 17.4 \,, \quad \|A\|_\infty = \max(4,11,27) = 27 \,.$$

Пример 2.2. Вычисление норм вектора и матрицы в среде MathCAD.

Решение. Встроенных функций для вычисления норм вектора нет. Евклидову норму вектора $||v||_2$ можно вычислить как модуль вектора -|v|, а для вычисления max-нормы вектора $\|\mathbf{v}\|_{\infty}$ удобно воспользоваться встроенной функцией *max(v)* пакета MathCAD, возвращающей максимальную компоненту вектора v. Для вычисления норм матрицы в MathCAD есть специальные встроенные функции.

$$b := \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix} \qquad |b| = 5$$

$$b := \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix} \qquad |b| = 5$$

$$A := \begin{pmatrix} -1 & 0 & 3 \\ 2 & 5 & 4 \\ 7 & 10 & -10 \end{pmatrix} \qquad \text{norm1(A)} = 17 \qquad \text{norme(A)} = 17.436 \qquad \text{normi(A)} = 27$$

Теоретический материал. Обусловленность задачи. Так же как и другие задачи, задача вычисления решения системы может быть как хорошо обусловленной, так и плохо обусловленной.

Теорема об оценке погрешности решения по погрешностям входных ∂ анных. Пусть x - решение системы Ax = b, а x^* - решение системы $\boldsymbol{A}^*\boldsymbol{x}^* = \boldsymbol{b}^*$. Тогда $\delta(\boldsymbol{x}^*) \leq cond(\boldsymbol{A}) \cdot (\delta(\boldsymbol{b}^*) + \delta(\boldsymbol{A}^*))$, где $cond(\mathbf{A}) = \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|$ — относительное число обусловленности системы.

Если число обусловленности больше 10, то система является плохо обусловленной, так как возможен сильный рост погрешности результата.

Пример 2.3. Исследуйте и, если решение существует, найдите по формулам Крамера решение системы:

$$\begin{cases} x1 - x2 + x3 = 3, \\ 2x1 + x2 + x3 = 11, \\ x1 + x2 + 2x3 = 8. \end{cases}$$

Решение:

- 1. Установите режим автоматических вычислений, пометив строку *Automatic Calculation* в меню *Math*.
- 2. Присвойте переменной ORIGIN значение, равное 1. Значение этой переменной определяет номер первой строки (столбца) матрицы. По умолчанию в MathCAD нумерация начинается с 0.

ORIGIN:=1

3. Введите матрицу системы:

$$A := \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

4. Введите вектор-столбец свободных членов:

$$b := \begin{pmatrix} 3 \\ 11 \\ 8 \end{pmatrix}$$

5. Вычислите определитель матрицы системы:

$$\Delta := |A|$$
 $\Delta = 5$

6. Вычислите определители матриц, полученных из матрицы системы заменой i-го столбца столбцом свободных членов:

$$\Delta 1 := \begin{vmatrix} 3 & -1 & 1 \\ 11 & 1 & 1 \\ 8 & 1 & 2 \end{vmatrix} \qquad \Delta 2 := \begin{vmatrix} 1 & 3 & 1 \\ 2 & 11 & 1 \\ 1 & 8 & 2 \end{vmatrix} \qquad \Delta 3 := \begin{vmatrix} 1 & -1 & 3 \\ 2 & 1 & 11 \\ 1 & 1 & 8 \end{vmatrix}$$

$$\Delta 1 = 20 \qquad \qquad \Delta 2 = 10 \qquad \qquad \Delta 3 = 5$$

7. Найдите решение системы по формулам Крамера:

$$x1 := \frac{\Delta 1}{\Delta}$$
 $x2 := \frac{\Delta 2}{\Delta}$ $x3 := \frac{\Delta 3}{\Delta}$ $x1 = 4$ $x2 = 2$ $x3 = 1$

Пример 2.4. Решите как матричное уравнение Ax=b систему линейных уравнений:

$$\begin{cases} y1 + 2y2 + 3y3 = 7, \\ y1 - 3y2 + 2y3 = 5, \\ y1 + y2 + y3 = 3. \end{cases}$$

Решение:

- 1. Установите режим автоматических вычислений, пометив строку *Automatic Calculation* в меню *Math*.
 - 2. Присвойте переменной *ORIGIN* значение, равное 1. ORIGIN:=1

3. Введите матрицу системы и матрицу-столбец свободных членов:

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 1 & -3 & 2 \\ 1 & 1 & 1 \end{pmatrix} \qquad b := \begin{pmatrix} 7 \\ 5 \\ 3 \end{pmatrix}$$

4. Вычислите решение системы по формуле $y = A^{-1} \cdot b$, предварительно вычислив определитель матрицы системы:

$$\Delta := |A|$$
 $\Delta = 9$ $y := A^{-1} \cdot b$ $y = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$

5. Проверьте правильность решения умножением матрицы системы на вектор-столбец решения:

$$A \cdot y - b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

6. Найдите решение системы с помощью функции *lsolve* и сравните результаты вычислений:

$$y :=$$
 Is olve(A,b) $y = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$

3. Задачи к работе

Задача 2.1. Дана система уравнений Ax=b порядка n. Исследовать зависимость погрешности решения x от погрешностей правой части системы b.

Порядок решения:

- 1. Задать матрицу системы A и вектор правой части b. Используя встроенную функцию lsolve(A, b) пакета MathCAD, найти решение x системы Ax = b с помощью метода Гаусса.
- 2. С помощью встроенной функции condi(A) пакета MathCAD вычислить число обусловленности матрицы A.
- 3. Принимая решение \boldsymbol{x} , полученное в п. 1, за точное, вычислить вектор $\boldsymbol{d} = (d_1,...,d_n)^T$, $d_i = \frac{||\boldsymbol{x}-\boldsymbol{x}^i||_\infty}{||\boldsymbol{x}||_\infty}$, $i{=}1,...,n$, относительных погрешностей решений \boldsymbol{x}^i систем $\boldsymbol{A}\boldsymbol{x}^i{=}\boldsymbol{b}^i$, $i{=}1,...,n$, где компоненты векторов \boldsymbol{b}^i вычисляются по формулам: $b_k^i = \begin{cases} b_k + \Delta, & k = i, \\ b_k, & k \neq i, \end{cases}$, $k{=}1,...,n$

(Δ – произвольная величина погрешности).

- 4. На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- 5. Оценить теоретически погрешность решения x^m по формуле: $\delta(x^m) \le cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

Замечание. Функция condi(A) возвращает число обусловленности матрицы A, основанное на ∞ -норме.

Задача 2.2. Для системы уравнений Ax=b из задачи 2.1 исследовать зависимость погрешности решения системы от погрешностей коэффициентов матрицы A (аналогично задаче 2.1). Теоретическая оценка погрешности в этом случае имеет вид: $\delta(x^*) \leq cond(A) \cdot \delta(A^*)$, где x^* - решение системы с возмущенной матрицей A^* .

Задача 2.3. Дана матрица A. Найти число обусловленности матрицы, используя вычислительный эксперимент.

Порядок решения:

1. Выбрать последовательность линейно независимых векторов $\boldsymbol{b}^i, i=1,...,k$. Решить k систем уравнений $\boldsymbol{A}\boldsymbol{x}\stackrel{i}{=}\boldsymbol{b}\stackrel{i}{,}$ i=1,...,k, используя встроенную функцию *lsolve* пакета MathCAD.

- 2. Для каждого найденного решения \boldsymbol{x}^i вычислить отношение $\frac{\parallel \boldsymbol{x}^i \parallel}{\parallel \boldsymbol{b}^i \parallel}$, i=1,...,k.
- 3. Вычислить норму матрицы A^{-1} по формуле $||A^{-1}|| \approx \max_{1 \le i \le k} \frac{||x^i||}{||b^i||}$, вытекающей из неравенства $||x|| \le ||A^{-1}|| \cdot ||b||$.
- 4. Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \parallel A \parallel \cdot \parallel A^{-1} \parallel$.

ИСХОДНЫЕ ДАННЫЕ К ЗАДАЧАМ

К задаче 2.1

Компоненты вектора $m{b}$ во всех вариантах задаются формулой $b_i=N$, $i=1,\dots,n$; коэффициенты $c=c_{ij}=0.1Nij$, $i,j=1,\dots,n$; N - номер варианта.

<u>bupnania.</u>					
Вариант	n	a_{ij}	Вариант	n	a_{ij}
1	6	$\frac{15}{4 \cdot c^5 + 6 \cdot c + 1}$	11	4	$\frac{1}{67+c^4}$
2	6	$\frac{125}{(4+c\cdot 0.25)^6}$	12	4	$\frac{111}{c^4 + 13 + 3c}$
3	6	$\frac{12}{4c+4}$	13	5	$\frac{1}{(1+c)^3}$
4	7	$\frac{55}{c^2 + 3 \cdot c + 100}$	14	7	$\frac{1.5}{0.001c^3 - 2.5c}$
5	7	$\frac{135}{\left(2+0.3\cdot c\right)^5}$	15	6	$\frac{88.5}{c + 0.03c^2}$
6	7	$\frac{3}{c^4 - 4 \cdot c^3}$	16	5	$\frac{100}{(3+0.3\cdot c)^5}$
7	6	$\frac{256}{(5+c\cdot 0.256)^5}$	17	4	$\frac{115}{3c+4c^3}$
8	6	$\frac{1}{\sqrt{c^2 + 0.58 \cdot c}}$	18	5	$\frac{123}{2c^3 + 5c^2}$
9	5	$\frac{3}{(1+c)^2}$	19	5	$\frac{100}{(11+c)^5}$
10	5	$\sin\!\left(\frac{c}{8}\right)$	20	6	$\cos\left(\frac{c}{25}\right)$

Окончание таблицы

Вариант	n	a_{ij}	Вариант	n	a_{ij}
21	6	$\frac{1000}{3c^2 + c^3}$	26	5	$\frac{31}{\sqrt{c^2 + 6c}}$
22	5	$\frac{150}{13c^3 + 777c}$	27	6	$\frac{350}{(5+0.35c)^3}$
23	5	$\frac{11.7}{\left(1+c\right)^7}$	28	5	$\frac{500}{\left(8\cdot c - 5\right)^2}$
24	4	$\frac{159}{10c^3 + c^2 + 25}$	29	6	$\frac{10}{0.3c^3 + 10c}$
25	5	$\frac{321}{\left(1+c\right)^6}$	30	5	$\frac{1}{0.4c^3 + 20c}$

К задаче 2.3

Вариант	<u>ада 16—2.3</u> А	Вариант	A				
Бариант							
1	1 2 3 4 5	5	1 1 1 1 1				
	1 1 2 3 4		16 8 4 2 1				
	1 2 1 2 3		81 27 9 3 1				
	1 3 2 1 2		256 64 16 4 1				
	1 4 3 2 1		625 125 25 5 1				
2	3 1 0 0 0	6	611 196 -192 407				
	1 2 1 0 0		196 899 113 -192				
	0 1 1 1 0		-192 113 899 196				
	0 0 1 0 1		407 -192 196 611				
	0 0 0 1 1						
3	1 1 1 1 1	7	1 0.5 0.333 0.25 0.2				
	1 2 3 4 5		0.5 0.333 0.25 0.2 0.167				
	1 3 6 10 15		0.333 0.25 0.2 0.167 0.143				
	1 4 10 20 35		0.25 0.2 0.167 0.143 0.125				
	1 5 15 35 70		0.2 0.167 0.143 0.125 0.111				
4	1 1 1 1	8	1 1 1 1				
	8 4 2 1		1 2 3 4				
	27 9 3 1		1 3 6 10				
	64 16 4 1		1 4 4 20				

4. Контрольные вопросы

- 1. Что понимается под абсолютной и относительной погрешностями приближенного вектора?
- 2. Как оценивается точность решения СЛАУ с приближенными значениями свободных членов?
- 3. Как оценивается точность решения СЛАУ с приближенными значениями матрицы коэффициентов?

- 4. Что такое число обусловленности матрицы?
- 5. Как вычисляются векторные нормы?
- 6. Как вычисляются матричные нормы?