ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

УТВЕРЖДАЮ: Заместитель директора ГУП ВНИИЖТ

> В.М.Богданов 2001г

протокол

ЛАБОРАТОРНЫХ ИСПЫТАНИЙ ФИЗИКО-МЕХАНИЧЕСКИХ И ЗАЩИТНЫХ СВОЙСТВ ПОЛИМЕРНОЙ КОМПОЗИЦИИ ЭЛАКОР-ПУ" ДЛЯ ПРОТИВОКОРРОЗИОННОЙ ЗАЩИТЫ ВНУТРЕННИХ ПОВЕРХНОСТЕЙ ВАГОНОВ – МИНЕРАЛОВОЗОВ

Цель испытаний — оценка физико-механических и защитных свойств лакокрасочного покрытия на основе полимерной композиции "Элакор-ПУ" и возможности ее применения для противокоррозионной защиты внутренних поверхностей вагонов для перевозки минеральных удобрений.

Полимерная композиция "Элакор-ПУ" представляет собой раствор уретанового эластомера в органических растворителях, с технологическими добавками и пигментами.

Изучались:

- физико-механические характеристики покрытия (эластичность (изгиб), прочность при ударе, адгезия);
 - время высыхания полимерной композиции;
- защитные свойства покрытия стойкость к воздействию повышенных влажности и температуры и стойкость к действию агрессивных сред (минеральных удобрений).

Эластичность при изгибе и прочность при ударе определялись по ГОСТ 6806 и ГОСТ 4765, адгезия по ГОСТ 15140, время высыхания по ГОСТ 19007.

Все виды испытаний проводились в соответствии с методикой комплексных испытаний, разработанной ВНИИЖТ с учетом условий эксплуатации вагонов-минераловозов. Физико-механические характеристики покрытия проверялись до и после термостарения, что дает возможность определить динамику изменения свойств покрытий в процессе эксплуатации при достаточно жестких условиях.

Для проведения лабораторных испытаний лакокрасочные материалы наносили на металлические прокатные пластины из стали СтЗХП размером 90x120мм и 100x240мм.

Образцы для испытаний были подготовлены и представлены ООО "ТэоХим".

Образцы для испытаний готовили по следующей технологии:

- 1. Механическая очистка поверхности дробеструйным аппаратом до чистого металла.
 - 2. Обдув воздухом для удаления остаточной пыли.
 - 3. Обезжиривание толуолом.
- 4. Аппретирование (грунтование клеем по металлу "Лей-конат" ТУ 6-14-95-75).

- 5. Нанесение первого слоя композиции "Элакор-ПУ" и сушка при температуре 20±2°C 8 часов.
- 6. Нанесение второго слоя полимерной композиции "Элакор-ПУ" и сушка при температуре $20\pm2^{\circ}\text{C}$ 12 часов.
- 7. Нанесение третьего слоя, состоящего из полимерной композиции "Элакор-ПУ".

Материалы наносили на подложку вручную с помощью кисти. Перед проведением испытаний все образцы с покрытиями выдерживали при комнатной температуре в течение 7 суток.

Система покрытия, использованная для исследований, представляет собой три слоя композиции "Элакор-ПУ" общей толщиной 100-120 мкм.

1. ОПРЕДЕЛЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ПАРАМЕТРОВ.

1.1. ВРЕМЯ ВЫСЫХАНИЯ ПО ГОСТ 19007.

Высыхание – процесс отверждения жидкого материала, то есть превращения его в пленку.

Продолжительность высыхания определяют временем, за которое испытуемый материал, нанесенный на пластину слоем определенной толщины, приобретает требуемую степень высыхания. Предусмотрено семь степеней высыхания от 1 до 7 включительно.

1.2. АДГЕЗИЯ.

Адгезия – способность лакокрасочных покрытий к прочному сцеплению с окрашиваемой поверхностью.

1.2.1 ОПРЕДЕЛЕНИЕ АДГЕЗИИ МЕТОДОМ РЕШЕТЧАТОГО НАДРЕЗА ПО ГОСТ 15140.

Для определения адгезии методом решетчатого надреза на пластинке с покрытием при помощи скальпеля делают по шаблону не менее пяти параллельных и перпендикулярных им надрезов до подложки. Расстояние между надрезами составляет 1мм, при этом образуется решетка из одинаковых квадратов со стороной 1мм.

После нанесения решетки поверхность очищают кистью от отслоившихся кусочков пленки и оценивают адгезию по четырех бальной шкале. Высшая оценка —1 балл присваивается при гладких краях и отсутствии отслоившихся кусочков покрытия; 2, 3 и 4 балла — при отслаивании до 5, 35 и более 35% поверхности соответственно.

1.2.2 ОПРЕДЕЛЕНИЕ АДГЕЗИИ МЕТОДОМ РЕШЕТЧАТОГО НАДРЕЗА ПО СТАНДАРТУ ISO624.

С целью определения адгезионных характеристик образцы с покрытием выдерживали в течение 5 суток при полном погружении в дистиллированной воде. Затем образцы вынимали, и, собрав оставшуюся воду фильтрованной бумагой, проводили определение адгезии.

Для определения адгезии методом решетчатого надреза на пластинке с покрытием при помощи скальпеля делают по шаблону не менее пяти параллельных и перпендикулярных им надрезов до подложки. Расстояние между надрезами составляет 1 мм, при этом образуется решетка из одинаковых квадратов со стороной 1 мм. После нанесения решетки поверхность очищают кистью от отслоившихся кусочков покрытия, на поверхность приклеивают липкую ленту типа "скотч", отрывают ее и оценивают результаты по четырех бальной шкале как указано в 1.2.1.

1.3. ПРОЧНОСТЬ ПЛЕНКИ ПРИ УДАРЕ ПО ГОСТ 4765.

Сущность метода определения прочности пленки при ударе заключается в определении при помощи прибора У-1а максимальной высоты в сантиметрах, с которой свободно падает на окрашенную металлическую пластину груз весом в 1 кг, не вызывая при этом разрушения защитного покрытия.

1.4. ПРОЧНОСТЬ ПЛЕНКИ ПРИ ИЗГИБЕ (ЭЛАСТИЧНОСТЬ) ПО ГОСТ 6806.

Изгиб покрытия косвенно характеризует его эластичность, то есть свойство, обратное хрупкости. Сущность метода заключается в определении минимального диаметра стержня, на котором при изгибании окрашенной металлической пластины не происходит разрушения покрытия.

1.5. ТЕРМОСТАРЕНИЕ ОБРАЗЦОВ ПО ГОСТ 9.707.

Термостарение проводили путем выдержки высушенных образцов с покрытием в термостате при T=60°C в течение 180 часов. Затем образцы после охлаждения осматриваются и сравниваются с контрольным образцом, не подвергавшимся нагреванию. Покрытие после испытания должно удовлетворять по внешнему виду (ГОСТ 4765) и прочности пленки при изгибе (ГОСТ 6806) и ударе (ГОСТ 4765).

1.6. СТОЙКОСТЬ ПОКРЫТИЯ К ИСТИРАНИЮ.

Изучение стойкости покрытия к абразивному износу (истиранию) проводилось на специальной установке. Образцы с покрытиями размером 100 на 240 мм помещались в металлические стаканы. В объем, образованный образцом и стенками стакана, засыпался абразивный материал, смешанный с минеральными удобрениями в соотношении 1 к 3. В качестве абразива использовали гравий с размером частиц от 3 до 5 мм. Вращение цилиндров с образцами производили со скоростью 50 об/мин. Осмотр образцов и замер толщины покрытия проводили через 120, 240 и 480 часов испытания, при этом сравнивали указанные характеристики до и после испытаний.

Оценка декоративного состояния покрытия проводилась по ГОСТ 9.407, при этом образец визуально сравнивали с контрольным образцом.

2. РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ФИЗИКО-МЕХАНИЧЕСКИХ И ДЕКОРАТИВНЫХ СВОЙСТВ.

Результаты испытаний физико-механических свойств покрытий приведены в таблице 1.

Изменение декоративных свойств покрытия приведены в таблице 2.

Изменение толщины покрытия в процессе истирания приведено в таблице 3.

В результате исследований было установлено, что после 60 суток испытаний у покрытия из композиции "Элакор-ПУ" не ухудшились показатели адгезии и прочности при ударе, что характеризует высокие физико-механические свойства этого материала. Результаты испытаний представлены в таблице 1.

Таблица 1

Физико-механические свойства системы покрытия — композиции «Элакор-ПУ» по загрунтованной "Лейконатом" дробеструйной металлической поверхности.

	Адгезия, балл	Эластичность, мм	Удар, см			
Наименование	До/После испыта-	До/После испытаний	До/После испытаний			
системы покры-	ний (во всех сре-	(во всех средах и	(во всех средах и			
РИЯ	дах и термостаре-	термостарения)	термостарения)			
	ния)					
"Элакор-ПУ"						
3 слоя	1/1	1/1	50/50			

Таблица 2 Изменение декоративных свойств покрытия в процессе истирания.

Характеристика свойств покрытия через 480 часов испытаний.					
с суперфосфатом простым	с хлористым калием				
Изменений нет.	Изменений нет.				
	с суперфосфатом простым				

Таблица 3 Изменение толщины покрытия в процессе истирания.

Наименование системы покры-	Первоначаль- ная толщина	Оставшаяся толщина покрытия, мкм, через 48 часов испытаний					
РИТ	покрытия, мкм	с суперфосфатом простым	с хлористым калием				
"Элакор-ПУ" 3 слоя	120	120	120				

Отмечено, что при испытании на истирание материал отличается высокой прочностью, толщина покрытия после испытаний не изменилась. Результаты испытания представлены в таблице 3.

Не ухудшились и декоративные свойства покрытия после воздействия минеральных удобрений, что видно из таблицы 2.

Было установлено, что время высыхания покрытия до степени 3 при температуре 18-20°C составляет 4 часа.

3. УСКОРЕННЫЕ ИСПЫТАНИЯ ЗАЩИТНЫХ СВОЙСТВ ПОКРЫТИЯ.

3.1. СТОЙКОСТЬ К ПОВЫШЕННОЙ ВЛАЖНОСТИ И ТЕМПЕРАТУРЕ.

Определение стойкости покрытий к условиям повышенной влажности (100%) и повышенной температуре (28-35°С) проводили в гидростатической камере, имитирующей условия эксплуатации во влажном климате при отсутствии солнечного облучения. Режим работы камеры следующий:

2 часа — подъем температуры от комнатной до 28-35°С, 6 часов — выдержка образцов при 28-35 °С, 3 часа — снижение температуры до комнатной, 13 часов — выдержка при комнатной температуре. Относительная влажность при всех режимах составляла около 100%.

3.2. СТОЙКОСТЬ К ДЕЙСТВИЮ АГРЕССИВНЫХ СРЕД – МИНЕРАЛЬНЫХ УДОБРЕНИЙ.

С целью исследования стойкости покрытий к действию минеральных удобрений использовали следующие удобрения:

- Сульфат аммония (NH₄)₂SO₄
- Суперфосфат простой Са(НРО₄)₂
- Аммиачная селитра NH₃NO₂
- Хлористый калий КСІ

Испытания проводили следующим образом: удобрение насыпали в емкость, в которую помещали в вертикальном положении испытуемые образцы с нанесенными с двух сторон защитными покрытиями.

Минеральное удобрение постоянно увлажняли дистиллированной водой.

4. РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ЗАЩИТНЫХ СВОЙСТВ.

Защитные свойства покрытия в период испытаний оценивали по 6-балльной системе в соответствии с ГОСТ 9.407.

Покрытие считали выдержавшим испытания при условии, что его защитные свойства полностью сохраняются в течении 60 суток испытаний и состояние покрытия оценивается баллом 1 по ГОСТ 9.407, то есть, отсутствуют точки коррозии, пузыри, отслаивание.

Результаты испытаний защитных свойств представлены в таблице 4.

Как следует из данных таблицы 4 покрытие из трех слоев полимерной композиции "Элакор-ПУ" нанесенное по дробеструйной металлической поверхности аппретированной "Лейконатом", имеет высокие защитные свойства: через 60 суток испытаний в гидростате и при погружении в минеральные удобрения состояние покрытия не изменилось и оценивалось баллом 1.

Таблица 4 Защитные свойства исследуемой системы покрытий. Оценка состояния исследуемой системы покрытий в баллах через 30, 45 и 60 суток после начала испытаний.

			Толиг	иерна	я ком	ипози	ция "	Элакс	р-ПУ	" , три	1 СЛОЯ	1		
			Постоянное погружение в увлажненные минеральные удоб-											
Ги,	дрост	ат	рения											
			(NI	$H_4)_2S$	O_{4}	$Ca(HPO_4)_2$ NH_3NO_2		O_2	KCI					
			7/2		4,2		1,72	0 2						
30	45	60	30	45	60	30	45	60	30	45	60	30	45	60
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1