От $M_0 \times g$ следва, те кардинатите гі удавленью ряват уравнемието на g (казано то друг натин - анулира тамнана на g - $\ell(x_0,y_0)=0$). $\Rightarrow a.\frac{x_1-\lambda x_1}{1-\lambda}+b\frac{y_1-\lambda y_2}{1-\lambda}+c=0 =>$ (ax_1+by_1+c) $-\lambda$ (ax_2+by_2+c) $=0 \Rightarrow \lambda=\frac{\ell(x_1,y_1)}{\ell(x_2,y_2)} \Rightarrow \ell(x_1,y_1)\ell(x_2,y_2)<0$. Ознатаване $c.\lambda=\frac{\ell(x_1,y_1)}{\ell(x_2,y_2)}$. Тогава тотката M_0 c. кардинати M_0 $\left(\frac{x_1-\lambda x_2}{1-\lambda},\frac{y_1-\lambda y_2}{1-\lambda}\right)$ леши на травата g, тогі като удовлетворява уравнението $ii-a.\frac{x_1-\lambda x_2}{1-\lambda}+b.\frac{y_1-\lambda y_2}{1-\lambda}+c=\frac{1}{1-\lambda}\left[\ell(x_1,y_1)-\lambda\ell(x_2,y_2)\right]=0$. Ознатаваме $c.x_0=\frac{x_1-\lambda x_2}{1-\lambda}-c.y_0=\frac{y_1-\lambda y_2}{1-\lambda}$.

Средните теореми дават необходими и дестатоский усло. 11.5. виз трава д да тринодиеми на сиот прави.

Теорема 2. Нека правите д, и д. се преситат в токката Мо. Тогава правата д минава през токката Мо токо тогава, когато поминонот на д е ненулева минейна комбиначумя на томиномите на д и д г. Зоказательно. Нека д $(M_2 = M_0(x_0, y_0)) = 0$ могруматите на $(M_2 = M_0(x_0, y_0)) = 0$ м $(M_2 =$

когато $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = 0$, коемо е изпълнено тано тогава , когто = 0

В сипа е перемаг. Нека д, и д² са две успоредни прови. Тогава правата д е успоредна на д, и д² тогно тогава, кога то поиноным на д е минейна комбинацем на попиномите на д, и д². Воказателство. От д, $11g_2 \Rightarrow 3k \neq 0$ токово, те а² = ka_1 и b_2 = kb_1 . От $g_1 \neq g_2 \Rightarrow C_2 \neq kc_1$. Нека l е минейна комбинация на l_1 и $l_2 - l(x,y) = \lambda l_1(x,y) + \mu l_1 l_2$. Тогава $l(x,y) = (\lambda + \mu k)a_1 x + (\lambda + \mu k)b_1 y + \lambda c_1 + \mu c_2$, $(\lambda + \mu k)a_0 x + (\lambda + \mu k)b_1 y + \lambda c_1 + \mu c_2$, $(\lambda + \mu k)a_0 x + (\lambda + \mu k)b_1 y + \lambda c_1 + \mu c_2$, $(\lambda + \mu k)a_0 x + (\lambda + \mu k)b_1 y + \lambda c_1 + \mu c_2$, $(\lambda + \mu k)a_0 x + (\lambda + \mu k)b_1 y + \lambda c_1 + \mu c_2$, $(\lambda + \mu k)a_0 x + (\lambda + \mu k)b_1 y + \lambda c_1 + \mu c_2$, $(\lambda + \mu k)a_0 x + (\lambda + \mu k)a_1 x + \lambda c_1 + \mu c_2$, $(\lambda + \mu k)a_1 x + \lambda c_1 x +$