

PREDICTING DIABETES

Sami Chowdhury, Yiannis Pagkalos, Lauren Christiansen, Mei Kam Bharadwaj , Dhwani Patel

Table of contents

O1Executive
Summary

Goals and Questions

Data Collection and Cleanup

Approach/Issues and Resolution

Results/ Conclusion

Potential Next Steps

 Our project goal was to determine how key datapoints (BMI, high blood pressure, cholesterol, stroke, heart disease/attack, physical activity level, general health level, physical health level, difficulty walking scale, age, education level, income level) relate to the diagnosis of diabetes in different patients.

 We used this underlying data to create and train machine learning models to easily predict whether a patient would be diagnosed.

GOALS/QUESTIONS

Our aim was to identify and utilize the most impactful datapoints (e.g., BMI, blood pressure, cholesterol, lifestyle factors) to improve our model's accuracy and reliability on predicting a diabetes diagnosis.

Questions:

- 1. Which dataset is best to train our model (number of features, rows and quality)?
- 2. Which features are most strongly correlated to diabetes diagnoses, and how do they contribute to the model's predictions?
- 3. What are the models that will produce the best accuracy scores?
- 4. How can we finetune the selected models to amplify accuracy scores?

DATA COLLECTION / CLEAN UP

- Collected at the following Kaggle link by Alex Teboul
- Obtained from the Behavioral Risk Factor Surveillance System (BRFSS), an annual telephone survey that is collected annually by the CDC.
- The features are either questions asked of participants or variables calculated based on their responses. The dataset includes the following:
 - ['Diabetes_binary', 'HighBP', 'HighChol', 'CholCheck', 'BMI', 'Smoker', 'Stroke', 'HeartDiseaseorAttack', 'PhysActivity', 'Fruits', 'Veggies', 'HvyAlcoholConsump', 'AnyHealthcare', 'NoDocbcCost', 'GenHlth', 'MentHlth', 'PhysHlth', 'DiffWalk', 'Sex', 'Age', 'Education', 'Income']

APPROACH

- Data was already balanced, cleaned for nulls (Kaggle included both balanced and unbalanced versions of the data)
- Required encoding of a few set features (BMI condensed to scientific classifications from Underweight to Obesity 3, and initially also encoded AGE, INCOME, EDUCATION)
- In the end, we only encoded BMI and kept the original groupings of AGE,
 INCOME, and EDUCATION as this ended up producing better results
- Initially we did not remove features that were not strongly correlated to the results. Eventually removing those improved our model performance.
- Data was scaled since we had many ordinal encoders, all categorical and ordered
- Finally, we run GridSearchCV for all the models to further optimize performance by identifying model parameters that could help

Given the nonlinear classification of the data, we experimented with the following models below. After all optimizations the following results were achieved:

Decision Tree: 74.5%

KNeighborsClassifier: 73.9%

• Logistic Regression: 75.2%

• RandomForestClassifier: 75.4%

XGBClassifier: 75.6%

	Diabetes_binary
Diabetes_binary	1.000000
HighBP	0.381516
HighChol	0.289213
CholCheck	0.115382
BMI	0.293373
Smoker	0.085999
Stroke	0.125427
HeartDiseaseorAttack	0.211523
PhysActivity	-0.158666
Fruits	-0.054077
Veggies	-0.079293
HvyAlcoholConsump	-0.094853
AnyHealthcare	0.023191
NoDocbcCost	0.040977
GenHlth	0.407612
MentHlth	0.087029
PhysHlth	0.213081
DiffWalk	0.272646
Sex	0.044413
Age	0.278738
Education	-0.170481
Income	-0.224449

- The biggest improvements were achieved in the Decision Tree and the Random Forest model after the GridSearch optimization
- Interestingly, KNN and LGR models performed slightly worse after we ungrouped the Age, Education and Income categories.
- Similarly, XBoost performed better before GridSearch but only marginally.

DECISION TREE

	Predicted 0	Predicted 1	Accuracy	<u>y: 0.67</u> ore: 0.67
Actual 0	6240	2607		core: 0.93
Actual 1	3246	5580		
Classifica	tion Report			
	precisi	on recal	ll f1-score	support
0	0.0 0.	66 0.7	71 0 . 68	8847
1	0 0.	68 0.6	63 0.66	8826
200112			0 67	17673
accura	icy		0.67	
macro a	ıvg 0.	67 0.6	67 0. 67	17673
weighted a	vg 0.	67 0.6	67 0. 67	17673

<u>GridSearchCV</u>

	Predicted 0	Predicted 1		y: 0.745	
Actual 0s	6336	2511		ore: 0.745	_
Actual 1s	1995	6831	Train S	core: 0.74	5
Classificat	tion Report				
	precisio	on recall	f1-score	support	
0.	.0 0.7	76 0.72	0.74	8847	
1.	.0 0.7	73 0.77	0.75	8826	
accura	су		0.75	17673	
macro a	vg 0.7	75 0.75	0.74	17673	
weighted a	vg 0.7	75 0.75	0.74	17673	
{'max_depthest score		_samples_lea	f': 1, 'min	_samples_spl:	it': 2}

No parameters specified

Key Observations:

- Balanced Performance: The performance metrics for both classes are relatively balanced. However, class 1 shows slightly better recall (0.77) than class θ (0.72), indicating the model is better at identifying true positives for class 1.
- 2. Accuracy vs. Training Score: The test accuracy (0.745) matches the training score (0.745), suggesting no overfitting or underfitting.
- 3. Potential for Improvement:
 - Recall for class 0 (0.72) could be improved to reduce false negatives.
 - Overall accuracy and macro averages (~0.75) are moderate; further improvement might involve exploring feature engineering or fine-tuning hyperparameters.

	Predicted 0	Predicted 1		y: 0.739
Actual 0s	6239	2608		ore: 0.739 core: 0.763
Actual 1s	1997	6829		
	precisi	on recall	f1-score	support
	precisi		f1-score	support
0.		on recall		support 8847
0. 1.	.0 0.	on recall 76 0.71	0.73	
	.0 0.	on recall 76 0.71	0.73	8847
	.0 0.	on recall 76 0.71	0.73	8847
1.	.0 0. .0 0.	on recall 76 0.71	0.73 0.75 0.74	8847 8826

- Training and Test scores converged as k increased
- k=15 seems the best choice for this dataset
- For k=15 accuracy= 73.9%

<u>GridSearchCV</u>

	Predicted 0	Predicted 1	3				
Actual 0s	6239	2608		icy: 0.739 score: 0.73	39		
Actual 1s	1997	6829	Train	Score: 0.7	763		
Classificat							
	precisio	on recall	f1-score	support			
0.	0 0.7	76 0.71	0.73	8847			
1.	0 0.7	72 0.77	0.75	8826			
2001120	•••		0.74	17673			
accurac							
macro av	/g 0.7	74 0.74	0.74	17673			
weighted av	/g 0.7	74 0.74	0.74	17673			
{'algorithm		'metric': 'e	euclidean',	'n_neighbor	rs': 15,	'weights':	'uniform'}

LOGISTIC REGRESSION

Confusion Matrix Predicted 0 Predicted 1 Actual 0s 6513 2334 Train Score: 0.745 Actual 1s 2045 6781 Classification Report recall f1-score precision support 8847 0.0 0.76 0.74 0.75 0.74 0.77 0.76 8826 1.0 0.75 17673 accuracy macro avq 0.75 0.75 0.75 17673 weighted avg 0.75 0.75 0.75 17673

<u>GridSearchCV</u>

Pr	edicted 0	Predicted 1		cy: 0.752		
Actual 0s	6513	2334		core: 0.' Score: 0		
Actual 1s	2045	6781	110111	00010.0	. 7 10	
Classificatio	on Report					
	precisio	n recall	f1-score	support		
0.0	0.7	6 0.74	0.75	8847		
1.0	0.7	4 0.77	0.76	8826		
accuracy			0.75	17673		
macro avg	0.7	5 0.75	0.75	17673		
weighted avg	0.7	5 0.75	0.75	17673		
{'C': 0.1, 'n	max_iter':	100, 'penal	ty': 'l2',	'solver':	'liblinear'}	
best score 0.	.744					

random_state=1, max_iter=100

- The model performs similarly for both classes, with a slight edge in recall for class 1.
- Precision and recall are balanced, as reflected in the F1-scores for both classes.
- The accuracy (75.2%) shows the model is moderately good but could be improved, especially for imbalanced errors like reducing false positives/negatives.
- The consistency between the training score (74.5%) and test score (75.2%) suggests the model generalizes well and avoids overfitting.

RANDOM FOREST

Accuracy: 0.742 Predicted 0 Predicted 1 Test score: 0.742 Actual 0s 6393 2454 Train Score: 0.735 Actual 1s 2112 6714 Classification Report precision recall f1-score support 0.0 0.72 8847 0.75 0.74 1.0 0.73 0.76 0.75 8826 0.74 17673 accuracy macro avg 0.74 0.74 0.74 17673 weighted avg 0.74 0.74 0.74 17673

random state=1, n estimators=500, max depth=3

<u>GridSearchCV</u>

	Predicted 0	Predicted 1	Accuracy	
Actual 0s	6351	2496		re: 0.754 ore: 0.776
Actual 1s	1855	6971	114111 50	010. 01770
Classificat	ion Report precisio	on recall	f1-score	support
0.	0 0.7	77 0.72	0.74	8847
1.	0 0.7	74 0.79	0.76	8826
accurac	-		0.75	17673
macro av	3			17673
weighted av	g 0.7	76 0.75	0.75	17673
-	-	estimators':		

- Class 0 (Negative) Performance: Precision (0.77) is higher than recall (0.72), meaning the model predicts negatives more cautiously but misses some actual negatives.
- The train score (0.776) is slightly higher than the test score (0.754), which may indicate slight overfitting but nothing significant.

Pr	edicted 0 P	redicted 1	7 caura au	0 756
Actual 0s	6322	2525	Accuracy: Test scor	
Actual 1s	1782	7044	Train Sco	ore: 0.754
Classificati	on Report			
	precision	recall	f1-score	support
0.0	0.78	0.71	0.75	8847
1.0	0.74	0.80	0.77	8826
accuracy			0.76	17673
macro avg	0.76	0.76	0.76	17673
weighted avg	0.76	0.76	0.76	17673

Gri	dSe	arc	hCV	
<u> </u>	<u> </u>	uru		

		<u> </u>		
Р	redicted 0	Predicted 1		
Actual 0s	6317	2530	Accura	cy: 0.755
Actual 1s	1798	7028	Test s	core: 0.755
			Train	Score: 0.752
Classificati	on Report			
	precisio	n recall	f1-score	support
0.0	0.7	8 0.71	0.74	8847
1.0	0.7	4 0.80	0.76	8826
accuracy			0.76	17673
macro avg	0.7	6 0.76	0.75	17673
weighted avg	0.7	6 0.76	0.75	17673
{'learning_r	ate': 0.2,	'max_depth	': 3, 'n_es	timators': 100
best score 0	.748			

xgb_model = XGBClassifier(random_state=1,

learning rate=0.05, n estimators=1000, max depth=3)

- Class 1 (Positive) Performance: Higher recall (0.80) than precision (0.74), meaning the model is better at identifying positive cases but has more false positives.
- Class 0 (Negative) Performance: Higher precision (0.78) than recall (0.71), indicating the model is better at predicting 0s when it does, but misses some actual 0s.
- The train and test scores are close (Train: 0.754, Test: 0.756), indicating the model generalizes well and is not overfitting.

POTENTIAL NEXT STEPS

- We could explore more datasets that include health indicators such as HbA1C (hemoglobin A1C) and fast blood sugar test (FBS).
 - HbA1C test measures the average blood sugar (glucose) level over the past 60-90 days.
 A fasting blood sugar test measures the blood sugar levels first thing in the morning before the patient breaks their fast.
 - If the patient's blood sugar is high, then it indicates that patient has difficulties breaking down sugar in their body.
- +
- It is best to look at a dataset that includes both HbA1C and FBS data. HbA1C tests are less sensitive compared to the FBS test, but provides a more comprehensive story on the patient's blood sugar over a period of months.
- In practice, both tests are used in the office to get a more accurate diagnosis of diabetes.
- We could experiment with more models and/or model parameter tuning

Columns

Column Descriptions

- 1. Diabetes_binary: 0 = no diabetes 1 = prediabetes or diabetes
- 2. HighBP: 0 = no high BP 1 = high BP
- 3. HighChol: 0 = no high cholesterol 1 = high cholesterol
- 4. CholCheck: 0 = no cholesterol check in 5 years 1 = yes cholesterol check in 5 years
- 5. BMI: Body Mass Index

BMI CLASSIFICATION


```
BMI
def BMI classification(x):
    if x < 18.5:
        return "Underweight"
    elif x > 18.5 and x <=24.9:
        return "Normal"
    elif x > 24.9 and x <= 29.9:
        return "Overweight"
    elif x > 29.9 and x <= 34.9:
        return "Obesity 1"
    elif x > 34.9 and x <= 39.9:
        return "Obesity 2"
    elif x > 39.9:
        return "Obesity 3"
diabetes_df['BMI'] = diabetes_df['BMI'].apply(BMI_classification)
diabetes_df['BMI'].value_counts()
BMI
Overweight
               24135
Obesity 1
               17301
Normal
               14460
Obesity 2
                8112
                6031
Obesity 3
Underweight
                 653
Name: count, dtype: int64
```


