	0Q	6Q	12Q	18Q	24Q	30Q
NL-PF-5%	1.90	1.96	1.99	2.12	2.09	2.08
PW-IF- 0%	1.53	1.63	1.71	2.01	1.99	1.91
Lin-KF- 0%	1.49	1.62	1.89	2.10	2.30	2.24
Lin-KF- 5%	1.88	2.01	2.11	2.27	2.28	2.28

Table 1: Sum of the NRMSE across the mean parameter estimates. Columns denote the ZLB duration in the data.

Ptr	Truth	NL-P	F-5%	PW-I	F-0%	Lin-KF-0%		
		0Q	30Q	0Q	30Q	0Q	30Q	
φ_p	100	$152.6 \\ (134.2, 165.8) \\ [0.520]$	187.4 (174.7, 202.7) [0.888]	144.6 (121.1, 157.3) [0.438]	182.2 (169.2, 198.5) [0.841]	$144.7 \\ (125.9, 157.7) \\ [0.442]$	184.4 (168.5, 201.1) [0.876]	
h	0.8	$0.661 \\ (0.618, 0.695) \\ [0.177]$	$0.676 \\ (0.644, 0.714) \\ [0.157]$	$0.640 \\ (0.611, 0.673) \\ [0.200]$	$0.629 \\ (0.596, 0.672) \\ [0.215]$	$0.641 \\ (0.612, 0.676) \\ [0.198]$	$0.630 \\ (0.596, 0.672) \\ [0.214]$	
$ ho_s$	0.8	$0.759 \\ (0.718, 0.797) \\ [0.062]$	$0.809 \\ (0.783, 0.843) \\ [0.028]$	$0.763 \\ (0.728, 0.808) \\ [0.054]$	$0.821 \\ (0.785, 0.856) \\ [0.035]$	$0.760 \\ (0.720, 0.800) \\ [0.059]$	$0.825 \\ (0.795, 0.851) \\ [0.036]$	
$ ho_i$	0.8	$0.783 \\ (0.751, 0.823) \\ [0.032]$	$0.804 \\ (0.753, 0.838) \\ [0.031]$	$0.755 \\ (0.712, 0.790) \\ [0.061]$	$0.763 \\ (0.733, 0.808) \\ [0.050]$	$0.760 \\ (0.727, 0.787) \\ [0.056]$	$0.809 \\ (0.767, 0.852) \\ [0.034]$	
σ_g	0.0050	$0.0032 \\ (0.0023, 0.0039) \\ [0.367]$	$0.0040 \\ (0.0030, 0.0052) \\ [0.230]$	$0.0051 \\ (0.0044, 0.0058) \\ [0.091]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.217]$	$0.0050 \\ (0.0043, 0.0054) \\ [0.074]$	$0.0059 \\ (0.0051, 0.0068) \\ [0.214]$	
σ_s	0.0050	$0.0051 \\ (0.0040, 0.0066) \\ [0.147]$	$0.0051 \\ (0.0039, 0.0062) \\ [0.135]$	$0.0050 \\ (0.0042, 0.0063) \\ [0.133]$	$0.0045 \\ (0.0036, 0.0056) \\ [0.147]$	$0.0050 \\ (0.0043, 0.0064) \\ [0.138]$	$0.0045 \\ (0.0036, 0.0052) \\ [0.151]$	
σ_i	0.0020	$0.0017 \\ (0.0014, 0.0020) \\ [0.165]$	$0.0015 \\ (0.0013, 0.0019) \\ [0.244]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.082]$	$0.0020 \\ (0.0019, 0.0024) \\ [0.091]$	$0.0020 \\ (0.0018, 0.0022) \\ [0.073]$	$0.0019 \\ (0.0017, 0.0022) \\ [0.076]$	
ϕ_{π}	2.0	$\begin{array}{c} 2.048 \\ (1.876, 2.191) \\ [0.064] \end{array}$	$\begin{array}{c} 2.116 \\ (1.939, 2.309) \\ [0.088] \end{array}$	$\begin{array}{c} 2.026 \\ (1.840, 2.155) \\ [0.058] \end{array}$	$ \begin{array}{c} 1.946 \\ (1.771, 2.138) \\ [0.063] \end{array} $	$\begin{array}{c} 2.027 \\ (1.845, 2.154) \\ [0.056] \end{array}$	$ \begin{array}{c} 1.678 \\ (1.464, 1.886) \\ [0.171] \end{array} $	
ϕ_y	0.5	$0.330 \\ (0.212, 0.543) \\ [0.360]$	$0.403 \\ (0.275, 0.617) \\ [0.283]$	$0.332 \\ (0.175, 0.480) \\ [0.409]$	$0.436 \\ (0.273, 0.610) \\ [0.248]$	$0.330 \\ (0.179, 0.478) \\ [0.395]$	$0.271 \\ (0.169, 0.437) \\ [0.465]$	

Table 2: Median, (5%, 95%) credible sets and [NRMSE] of the posterior mean parameter estimates.

Ptr	Truth	0Q	6Q	12Q	18Q	24Q	30Q
			Piecewise	Linear, Inversion	Filter, ME 0%		
$\overline{\varphi_p}$	100	144.6 (121.1, 157.3) [0.438]	153.0 (131.3, 170.7) [0.539]	163.1 (140.8, 185.5) [0.661]	171.3 (153.9, 202.0) [0.761]	180.8 (165.3, 204.1) [0.839]	182.2 (169.2, 198.5) [0.841]
h	0.8	$0.640 \\ (0.611, 0.673) \\ [0.200]$	$0.641 \\ (0.606, 0.676) \\ [0.202]$	$0.634 \\ (0.596, 0.667) \\ [0.211]$	$0.637 \\ (0.611, 0.672) \\ [0.208]$	$0.633 \\ (0.586, 0.670) \\ [0.211]$	$0.629 \\ (0.596, 0.672) \\ [0.215]$
$ ho_s$	0.8	$0.763 \\ (0.728, 0.808) \\ [0.054]$	$0.774 \\ (0.733, 0.809) \\ [0.043]$	$0.806 \\ (0.755, 0.833) \\ [0.029]$	$0.814 \\ (0.783, 0.847) \\ [0.034]$	$0.821 \\ (0.799, 0.847) \\ [0.033]$	$0.821 \\ (0.785, 0.856) \\ [0.035]$
$ ho_i$	0.8	$0.755 \\ (0.712, 0.790) \\ [0.061]$	$0.756 \\ (0.706, 0.798) \\ [0.068]$	$0.757 \\ (0.727, 0.786) \\ [0.056]$	$0.762 \\ (0.683, 0.800) \\ [0.064]$	$0.763 \\ (0.724, 0.806) \\ [0.058]$	$0.763 \\ (0.733, 0.808) \\ [0.050]$
σ_g	0.0050	$0.0051 \\ (0.0044, 0.0058) \\ [0.091]$	$0.0053 \\ (0.0048, 0.0068) \\ [0.129]$	$0.0056 \\ (0.0047, 0.0066) \\ [0.194]$	$0.0057 \\ (0.0051, 0.0079) \\ [0.243]$	$0.0058 \\ (0.0051, 0.0074) \\ [0.245]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.217]$
σ_s	0.0050	$0.0050 \\ (0.0042, 0.0063) \\ [0.133]$	$0.0050 \\ (0.0041, 0.0063) \\ [0.139]$	$0.0048 \\ (0.0039, 0.0058) \\ [0.133]$	$0.0048 \\ (0.0031, 0.0058) \\ [0.182]$	$0.0044 \\ (0.0037, 0.0053) \\ [0.150]$	$0.0045 \\ (0.0036, 0.0056) \\ [0.147]$
σ_i	0.0020	$0.0020 \\ (0.0018, 0.0023) \\ [0.082]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.073]$	$0.0021 \\ (0.0018, 0.0022) \\ [0.067]$	$0.0020 \\ (0.0018, 0.0024) \\ [0.095]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.081]$	$0.0020 \\ (0.0019, 0.0024) \\ [0.091]$
ϕ_{π}	2.0	$\begin{array}{c} 2.026 \\ (1.840, 2.155) \\ [0.058] \end{array}$	$1.954 \\ (1.768, 2.158) \\ [0.070]$	$\begin{array}{c} 2.010 \\ (1.785, 2.164) \\ [0.058] \end{array}$	$1.978 \\ (1.732, 2.225) \\ [0.076]$	$1.953 \\ (1.690, 2.190) \\ [0.081]$	$ \begin{array}{c} 1.946 \\ (1.771, 2.138) \\ [0.063] \end{array} $
ϕ_y	0.5	$0.332 \\ (0.175, 0.480) \\ [0.409]$	$0.331 \\ (0.177, 0.534) \\ [0.371]$	$0.390 \\ (0.236, 0.559) \\ [0.297]$	$0.368 \\ (0.202, 0.521) \\ [0.349]$	$0.396 \\ (0.209, 0.620) \\ [0.288]$	$0.436 \\ (0.273, 0.610) \\ [0.248]$
			Glob	oal, Particle Filter,	ME 5%		
φ_p	100	$152.6 \\ (134.2, 165.8) \\ [0.520]$	$160.5 \\ (143.2, 179.3) \\ [0.619]$	$ \begin{array}{c} 170.6 \\ (153.8, 193.4) \\ \hline [0.732] \end{array} $	180.2 (161.3, 201.4) [0.814]	187.6 (167.0, 204.5) [0.878]	187.4 (174.7, 202.7) [0.888]
h	0.8	$0.661 \\ (0.618, 0.695) \\ [0.177]$	$0.662 \\ (0.611, 0.710) \\ [0.173]$	$0.670 \\ (0.619, 0.706) \\ [0.169]$	$0.678 \\ (0.631, 0.707) \\ [0.161]$	$0.682 \\ (0.637, 0.716) \\ [0.153]$	$0.676 \\ (0.644, 0.714) \\ [0.157]$
$ ho_s$	0.8	$0.759 \\ (0.718, 0.797) \\ [0.062]$	$0.773 \\ (0.741, 0.807) \\ [0.044]$	$0.795 \\ (0.751, 0.823) \\ [0.028]$	$0.801 \\ (0.768, 0.840) \\ [0.031]$	$0.808 \\ (0.780, 0.834) \\ [0.023]$	$0.809 \\ (0.783, 0.843) \\ [0.028]$
$ ho_i$	0.8	$0.783 \\ (0.751, 0.823) \\ [0.032]$	$0.797 \\ (0.746, 0.825) \\ [0.039]$	$0.795 \\ (0.768, 0.825) \\ [0.023]$	$0.808 \\ (0.759, 0.829) \\ [0.028]$	$0.806 \\ (0.757, 0.842) \\ [0.033]$	$0.804 \\ (0.753, 0.838) \\ [0.031]$
σ_g	0.0050	$0.0032 \\ (0.0023, 0.0039) \\ [0.367]$	$0.0031 \\ (0.0023, 0.0041) \\ [0.381]$	$0.0034 \\ (0.0024, 0.0044) \\ [0.341]$	$0.0037 \\ (0.0027, 0.0049) \\ [0.287]$	$0.0038 \\ (0.0027, 0.0047) \\ [0.275]$	$0.0040 \\ (0.0030, 0.0052) \\ [0.230]$
σ_s	0.0050	$0.0051 \\ (0.0040, 0.0066) \\ [0.147]$	$0.0051 \\ (0.0042, 0.0068) \\ [0.146]$	$0.0050 \\ (0.0040, 0.0060) \\ [0.134]$	$0.0052 \\ (0.0034, 0.0064) \\ [0.184]$	$0.0050 \\ (0.0041, 0.0064) \\ [0.121]$	$0.0051 \\ (0.0039, 0.0062) \\ [0.135]$
σ_i	0.0020	$0.0017 \\ (0.0014, 0.0020) \\ [0.165]$	$0.0017 \\ (0.0014, 0.0019) \\ [0.183]$	$0.0016 \\ (0.0014, 0.0019) \\ [0.209]$	$0.0016 \\ (0.0013, 0.0019) \\ [0.241]$	$0.0015 \\ (0.0013, 0.0018) \\ [0.252]$	$ \begin{array}{c} 0.0015 \\ (0.0013, 0.0019) \\ [0.244] \end{array} $
ϕ_{π}	2.0	$\begin{array}{c} 2.048 \\ (1.876, 2.191) \\ [0.064] \end{array}$	$\begin{array}{c} 2.073 \\ (1.867, 2.243) \\ [0.072] \end{array}$	$\begin{array}{c} 2.122 \\ (1.936, 2.329) \\ [0.084] \end{array}$	$\begin{array}{c} 2.119 \\ (1.899, 2.407) \\ [0.095] \end{array}$	$\begin{array}{c} 2.120 \\ (1.844, 2.332) \\ [0.086] \end{array}$	$\begin{array}{c} 2.116 \\ (1.939, 2.309) \\ [0.088] \end{array}$
ϕ_y	0.5	$0.330 \\ (0.212, 0.543) \\ [0.360]$	$0.377 \\ (0.222, 0.615) \\ [0.308]$	$0.403 \\ (0.267, 0.602) \\ [0.271]$	$0.395 \\ (0.256, 0.536) \\ [0.273]$	$0.403 \\ (0.261, 0.608) \\ [0.268]$	$0.403 \\ (0.275, 0.617) \\ [0.283]$

Table 3: Median, (5%, 95%) credible sets and [NRMSE] of the mean posterior estimated parameters.

Ptr	Truth	0Q	6Q	12Q	18Q	24Q	30Q
			Level L	inear, Kalman Fil	ter, ME 5%		
φ_p	100	153.8 (134.0, 165.7) [0.523]	$160.6 \\ (142.0, 179.5) \\ [0.621]$	171.7 (153.7, 198.6) [0.760]	184.4 (163.0, 208.5) [0.841]	193.7 (172.1, 210.9) [0.918]	191.3 (175.3, 204.1) [0.920]
h	0.8	$0.662 \\ (0.618, 0.692) \\ [0.177]$	$0.659 \\ (0.609, 0.707) \\ [0.176]$	$0.671 \\ (0.617, 0.714) \\ [0.169]$	$0.670 \\ (0.626, 0.705) \\ [0.166]$	$0.677 \\ (0.635, 0.710) \\ [0.160]$	$0.668 \\ (0.629, 0.703) \\ [0.168]$
$ ho_s$	0.8	$0.762 \\ (0.716, 0.801) \\ [0.058]$	$0.779 \\ (0.740, 0.812) \\ [0.039]$	$0.800 \\ (0.753, 0.826) \\ [0.027]$	$0.807 \\ (0.779, 0.846) \\ [0.034]$	$0.820 \\ (0.792, 0.847) \\ [0.033]$	$0.823 \\ (0.784, 0.856) \\ [0.040]$
$ ho_i$	0.8	$0.785 \\ (0.752, 0.823) \\ [0.031]$	$0.801 \\ (0.745, 0.830) \\ [0.036]$	$0.812 \\ (0.777, 0.841) \\ [0.029]$	$0.825 \\ (0.779, 0.862) \\ [0.045]$	$0.832 \\ (0.800, 0.879) \\ [0.053]$	$0.843 \\ (0.799, 0.875) \\ [0.058]$
σ_g	0.0050	$ \begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ \hline [0.362] \end{array} $	$0.0032 \\ (0.0025, 0.0041) \\ [0.363]$	0.0036 (0.0027, 0.0045) [0.308]	0.0040 (0.0029, 0.0052) [0.240]	$ \begin{array}{c} 0.0042 \\ (0.0029, 0.0054) \\ \hline [0.222] \end{array} $	$0.0043 \\ (0.0030, 0.0057) \\ [0.204]$
σ_s	0.0050	$0.0052 \\ (0.0040, 0.0067) \\ [0.153]$	0.0051 (0.0042, 0.0068) [0.149]	$ \begin{array}{c} 0.0052 \\ (0.0041, 0.0062) \\ \hline [0.140] \end{array} $	0.0049 (0.0033, 0.0063) [0.177]	$ \begin{array}{c} 0.0047 \\ (0.0039, 0.0059) \\ \hline [0.119] \end{array} $	$0.0047 \\ (0.0037, 0.0061) \\ [0.146]$
σ_i	0.0020	$0.0017 \\ (0.0015, 0.0020) \\ [0.164]$	0.0016 (0.0014, 0.0019) [0.197]	$ \begin{array}{c} 0.0017 \\ (0.0014, 0.0020) \\ \hline [0.172] \end{array} $	$0.0016 \\ (0.0012, 0.0019) \\ [0.217]$	0.0016 (0.0014, 0.0020) [0.194]	$0.0016 \\ (0.0014, 0.0019) \\ [0.196]$
ϕ_{π}	2.0	$\begin{array}{c} 2.059 \\ (1.876, 2.204) \\ [0.061] \end{array}$	$ \begin{array}{c} 1.992 \\ (1.720, 2.211) \\ [0.073] \end{array} $	1.886 (1.670, 2.087) [0.083]	1.834 (1.615, 2.088) [0.114]	$ \begin{array}{c} 1.692 \\ (1.524, 1.925) \\ [0.155] \end{array} $	$ \begin{array}{c} 1.739 \\ (1.521, 1.913) \\ [0.149] \end{array} $
ϕ_y	0.5	$0.341 \\ (0.219, 0.539) \\ [0.353]$	$0.341 \\ (0.205, 0.555) \\ [0.356]$	$0.328 \\ (0.140, 0.539) \\ [0.420]$	$0.296 \\ (0.180, 0.498) \\ [0.430]$	$0.296 \\ (0.195, 0.452) \\ [0.422]$	$0.309 \\ (0.167, 0.467) \\ [0.398]$
			Glob	al, Particle Filter,	ME 5%		
$\overline{\varphi_p}$	100	152.6 (134.2, 165.8) [0.520]	160.5 (143.2, 179.3) [0.619]	170.6 (153.8, 193.4) [0.732]	180.2 (161.3, 201.4) [0.814]	187.6 (167.0, 204.5) [0.878]	187.4 (174.7, 202.7) [0.888]
h	0.8	$0.661 \\ (0.618, 0.695) \\ [0.177]$	$0.662 \\ (0.611, 0.710) \\ [0.173]$	$0.670 \\ (0.619, 0.706) \\ [0.169]$	$0.678 \\ (0.631, 0.707) \\ [0.161]$	$0.682 \\ (0.637, 0.716) \\ [0.153]$	$0.676 \\ (0.644, 0.714) \\ [0.157]$
$ ho_s$	0.8	$0.759 \\ (0.718, 0.797) \\ [0.062]$	$0.773 \\ (0.741, 0.807) \\ [0.044]$	$0.795 \\ (0.751, 0.823) \\ [0.028]$	$0.801 \\ (0.768, 0.840) \\ [0.031]$	$0.808 \\ (0.780, 0.834) \\ [0.023]$	$0.809 \\ (0.783, 0.843) \\ [0.028]$
$ ho_i$	0.8	$0.783 \\ (0.751, 0.823) \\ [0.032]$	$0.797 \\ (0.746, 0.825) \\ [0.039]$	$0.795 \\ (0.768, 0.825) \\ [0.023]$	$0.808 \\ (0.759, 0.829) \\ [0.028]$	$0.806 \\ (0.757, 0.842) \\ [0.033]$	$0.804 \\ (0.753, 0.838) \\ [0.031]$
σ_g	0.0050	$0.0032 \\ (0.0023, 0.0039) \\ [0.367]$	$0.0031 \\ (0.0023, 0.0041) \\ [0.381]$	$0.0034 \\ (0.0024, 0.0044) \\ [0.341]$	$0.0037 \\ (0.0027, 0.0049) \\ [0.287]$	$0.0038 \\ (0.0027, 0.0047) \\ [0.275]$	$0.0040 \\ (0.0030, 0.0052) \\ [0.230]$
σ_s	0.0050	$0.0051 \\ (0.0040, 0.0066) \\ [0.147]$	0.0051 (0.0042, 0.0068) [0.146]	0.0050 (0.0040, 0.0060) [0.134]	$0.0052 \\ (0.0034, 0.0064) \\ [0.184]$	$0.0050 \\ (0.0041, 0.0064) \\ [0.121]$	$0.0051 \\ (0.0039, 0.0062) \\ [0.135]$
σ_i	0.0020	$0.0017 \\ (0.0014, 0.0020) \\ [0.165]$	0.0017 (0.0014, 0.0019) [0.183]	0.0016 (0.0014, 0.0019) [0.209]	0.0016 (0.0013, 0.0019) [0.241]	$0.0015 \\ (0.0013, 0.0018) \\ [0.252]$	$0.0015 \\ (0.0013, 0.0019) \\ [0.244]$
ϕ_{π}	2.0	$ \begin{array}{c} 2.048 \\ (1.876, 2.191) \\ [0.064] \end{array} $	$ \begin{array}{c} 2.073 \\ (1.867, 2.243) \\ [0.072] \end{array} $	2.122 (1.936, 2.329) [0.084]	$ \begin{array}{c} 2.119 \\ (1.899, 2.407) \\ [0.095] \end{array} $	2.120 (1.844, 2.332) [0.086]	2.116 (1.939, 2.309) [0.088]
ϕ_y	0.5	$0.330 \\ (0.212, 0.543) \\ [0.360]$	$0.377 \\ (0.222, 0.615) \\ [0.308]$	$0.403 \\ (0.267, 0.602) \\ [0.271]$	$0.395 \\ (0.256, 0.536) \\ [0.273]$	$0.403 \\ (0.261, 0.608) \\ [0.268]$	$0.403 \\ (0.275, 0.617) \\ [0.283]$

Table 4: Median, (5%, 95%) credible sets and [NRMSE] of the mean posterior estimated parameters.

Ptr	Truth	0Q	6Q	12Q	18Q	24Q	30Q
			Piecewise	Linear, Inversion	Filter, ME 0%		
$\overline{\varphi_p}$	100	144.6 (121.1, 157.3) [0.438]	153.0 (131.3, 170.7) [0.539]	163.1 (140.8, 185.5) [0.661]	171.3 (153.9, 202.0) [0.761]	180.8 (165.3, 204.1) [0.839]	182.2 (169.2, 198.5) [0.841]
h	0.8	$0.640 \\ (0.611, 0.673) \\ [0.200]$	$0.641 \\ (0.606, 0.676) \\ [0.202]$	$0.634 \\ (0.596, 0.667) \\ [0.211]$	$0.637 \\ (0.611, 0.672) \\ [0.208]$	$0.633 \\ (0.586, 0.670) \\ [0.211]$	$0.629 \\ (0.596, 0.672) \\ [0.215]$
$ ho_s$	0.8	$0.763 \\ (0.728, 0.808) \\ [0.054]$	$0.774 \\ (0.733, 0.809) \\ [0.043]$	$0.806 \\ (0.755, 0.833) \\ [0.029]$	$0.814 \\ (0.783, 0.847) \\ [0.034]$	$0.821 \\ (0.799, 0.847) \\ [0.033]$	$0.821 \\ (0.785, 0.856) \\ [0.035]$
$ ho_i$	0.8	$0.755 \\ (0.712, 0.790) \\ [0.061]$	$0.756 \\ (0.706, 0.798) \\ [0.068]$	$0.757 \\ (0.727, 0.786) \\ [0.056]$	$0.762 \\ (0.683, 0.800) \\ [0.064]$	$0.763 \\ (0.724, 0.806) \\ [0.058]$	$0.763 \\ (0.733, 0.808) \\ [0.050]$
σ_g	0.0050	$0.0051 \\ (0.0044, 0.0058) \\ [0.091]$	$0.0053 \\ (0.0048, 0.0068) \\ [0.129]$	$0.0056 \\ (0.0047, 0.0066) \\ [0.194]$	$0.0057 \\ (0.0051, 0.0079) \\ [0.243]$	$0.0058 \\ (0.0051, 0.0074) \\ [0.245]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.217]$
σ_s	0.0050	$0.0050 \\ (0.0042, 0.0063) \\ [0.133]$	$0.0050 \\ (0.0041, 0.0063) \\ [0.139]$	$0.0048 \\ (0.0039, 0.0058) \\ [0.133]$	$0.0048 \\ (0.0031, 0.0058) \\ [0.182]$	$0.0044 \\ (0.0037, 0.0053) \\ [0.150]$	$0.0045 \\ (0.0036, 0.0056) \\ [0.147]$
σ_i	0.0020	$0.0020 \\ (0.0018, 0.0023) \\ [0.082]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.073]$	$0.0021 \\ (0.0018, 0.0022) \\ [0.067]$	$0.0020 \\ (0.0018, 0.0024) \\ [0.095]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.081]$	$0.0020 \\ (0.0019, 0.0024) \\ [0.091]$
ϕ_{π}	2.0	$\begin{array}{c} 2.026 \\ (1.840, 2.155) \\ [0.058] \end{array}$	$1.954 \\ (1.768, 2.158) \\ [0.070]$	$\begin{array}{c} 2.010 \\ (1.785, 2.164) \\ [0.058] \end{array}$	$1.978 \\ (1.732, 2.225) \\ [0.076]$	$1.953 \\ (1.690, 2.190) \\ [0.081]$	$ \begin{array}{c} 1.946 \\ (1.771, 2.138) \\ [0.063] \end{array} $
ϕ_y	0.5	$0.332 \\ (0.175, 0.480) \\ [0.409]$	$0.331 \\ (0.177, 0.534) \\ [0.371]$	$0.390 \\ (0.236, 0.559) \\ [0.297]$	$0.368 \\ (0.202, 0.521) \\ [0.349]$	$0.396 \\ (0.209, 0.620) \\ [0.288]$	$0.436 \\ (0.273, 0.610) \\ [0.248]$
			Level L	inear, Kalman Fil	ter, ME 0%		
φ_p	100	$144.7 \\ (125.9, 157.7) \\ [0.442]$	$ \begin{array}{c} 152.8 \\ (134.2, 168.4) \\ [0.544] \end{array} $	164.2 (147.0, 196.6) [0.688]	175.1 (157.1, 204.9) [0.788]	$ \begin{array}{c} 184.6 \\ (165.6, 204.5) \\ \hline [0.872] \end{array} $	184.4 (168.5, 201.1) [0.876]
h	0.8	$0.641 \\ (0.612, 0.676) \\ [0.198]$	$0.639 \\ (0.603, 0.684) \\ [0.200]$	$0.640 \\ (0.601, 0.674) \\ [0.205]$	$0.641 \\ (0.616, 0.673) \\ [0.201]$	$0.636 \\ (0.596, 0.673) \\ [0.205]$	$0.630 \\ (0.596, 0.672) \\ [0.214]$
$ ho_s$	0.8	$0.760 \\ (0.720, 0.800) \\ [0.059]$	$0.777 \\ (0.738, 0.805) \\ [0.042]$	$0.797 \\ (0.758, 0.830) \\ [0.026]$	$0.808 \\ (0.764, 0.843) \\ [0.029]$	$0.818 \\ (0.796, 0.848) \\ [0.033]$	$0.825 \\ (0.795, 0.851) \\ [0.036]$
$ ho_i$	0.8	$0.760 \\ (0.727, 0.787) \\ [0.056]$	$0.769 \\ (0.716, 0.801) \\ [0.054]$	$0.779 \\ (0.750, 0.809) \\ [0.036]$	$0.789 \\ (0.736, 0.840) \\ [0.035]$	$0.789 \\ (0.766, 0.847) \\ [0.031]$	$0.809 \\ (0.767, 0.852) \\ [0.034]$
σ_g	0.0050	$0.0050 \\ (0.0043, 0.0054) \\ [0.074]$	$0.0051 \\ (0.0045, 0.0058) \\ [0.083]$	$0.0054 \\ (0.0048, 0.0066) \\ [0.158]$	$0.0057 \\ (0.0051, 0.0067) \\ [0.171]$	$0.0059 \\ (0.0049, 0.0071) \\ [0.231]$	$0.0059 \\ (0.0051, 0.0068) \\ [0.214]$
σ_s	0.0050	$0.0050 \\ (0.0043, 0.0064) \\ [0.138]$	$0.0049 \\ (0.0042, 0.0062) \\ [0.143]$	$0.0049 \\ (0.0040, 0.0058) \\ [0.115]$	$0.0048 \\ (0.0035, 0.0059) \\ [0.150]$	$0.0044 \\ (0.0038, 0.0053) \\ [0.149]$	$0.0045 \\ (0.0036, 0.0052) \\ [0.151]$
σ_i	0.0020	$0.0020 \\ (0.0018, 0.0022) \\ [0.073]$	$0.0020 \\ (0.0018, 0.0022) \\ [0.071]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.075]$	$0.0020 \\ (0.0016, 0.0022) \\ [0.077]$	$0.0019 \\ (0.0017, 0.0022) \\ [0.078]$	$ \begin{array}{c} 0.0019 \\ (0.0017, 0.0022) \\ [0.076] \end{array} $
ϕ_{π}	2.0	$\begin{array}{c} 2.027 \\ (1.845, 2.154) \\ [0.056] \end{array}$	$ \begin{array}{c} 1.951 \\ (1.712, 2.168) \\ [0.073] \end{array} $	$ \begin{array}{c} 1.848 \\ (1.604, 2.071) \\ [0.099] \end{array} $	$ \begin{array}{c} 1.778 \\ (1.511, 2.039) \\ [0.137] \end{array} $	$ \begin{array}{c} 1.646 \\ (1.419, 1.917) \\ [0.188] \end{array} $	$ \begin{array}{c} 1.678 \\ (1.464, 1.886) \\ [0.171] \end{array} $
ϕ_y	0.5	$0.330 \\ (0.179, 0.478) \\ [0.395]$	$0.316 \\ (0.198, 0.523) \\ [0.406]$	$0.280 \\ (0.112, 0.479) \\ [0.484]$	$0.257 \\ (0.140, 0.430) \\ [0.512]$	$0.239 \\ (0.150, 0.374) \\ [0.515]$	$0.271 \\ (0.169, 0.437) \\ [0.465]$

Table 5: Median, (5%, 95%) credible sets and [NRMSE] of the mean posterior estimated parameters.

Ptr	Truth	0Q	6Q	12Q	18Q	24Q	30Q
		No 1	misspecification,	Piecewise Linear,	Inversion Filter,	ME 0%	
φ_p	100	93.9 (81.8, 108.3) [0.105]	$96.5 \\ (81.8, 114.7) \\ [0.115]$	98.8 (88.6, 116.6) [0.095]	$ \begin{array}{c} 107.8 \\ (92.7, 119.2) \\ \hline [0.114] \end{array} $	$ \begin{array}{c} 108.4 \\ (90.5, 123.0) \\ \hline [0.136] \end{array} $	110.3 (95.3, 125.1) [0.148]
h	0.8	$0.793 \\ (0.755, 0.816) \\ [0.024]$	$ \begin{array}{c} 0.793 \\ (0.761, 0.824) \\ [0.026] \end{array} $	$ \begin{array}{c} 0.793 \\ (0.765, 0.821) \\ [0.022] \end{array} $	$ \begin{array}{c} 0.793 \\ (0.760, 0.825) \\ [0.025] \end{array} $	$ \begin{array}{c} 0.798 \\ (0.765, 0.816) \\ [0.020] \end{array} $	$0.794 \\ (0.770, 0.820) \\ [0.021]$
$ ho_s$	0.8	0.808 (0.758, 0.849) [0.037]	$0.811 \\ (0.773, 0.856) \\ [0.034]$	$0.819 \\ (0.755, 0.861) \\ [0.043]$	0.830 (0.788, 0.863) [0.046]	$0.833 \\ (0.797, 0.862) \\ [0.046]$	$0.835 \\ (0.798, 0.874) \\ [0.056]$
$ ho_i$	0.8	$0.795 \\ (0.766, 0.822) \\ [0.023]$	$0.798 \\ (0.753, 0.820) \\ [0.029]$	$0.791 \\ (0.754, 0.818) \\ [0.029]$	$0.796 \\ (0.766, 0.825) \\ [0.023]$	$0.791 \\ (0.762, 0.828) \\ [0.028]$	$0.791 \\ (0.735, 0.818) \\ [0.032]$
σ_g	0.0050	$0.0050 \\ (0.0044, 0.0056) \\ [0.082]$	$0.0049 \\ (0.0043, 0.0060) \\ [0.101]$	$0.0050 \\ (0.0043, 0.0059) \\ [0.101]$	$0.0051 \\ (0.0044, 0.0060) \\ [0.090]$	$0.0051 \\ (0.0041, 0.0058) \\ [0.093]$	$0.0051 \\ (0.0043, 0.0061) \\ [0.110]$
σ_s	0.0050	$0.0049 \\ (0.0039, 0.0060) \\ [0.165]$	$0.0050 \\ (0.0042, 0.0062) \\ [0.128]$	$0.0049 \\ (0.0040, 0.0072) \\ [0.178]$	$0.0046 \\ (0.0038, 0.0060) \\ [0.155]$	$0.0047 \\ (0.0039, 0.0058) \\ [0.136]$	$0.0047 \\ (0.0034, 0.0057) \\ [0.168]$
σ_i	0.0020	$0.0020 \\ (0.0017, 0.0022) \\ [0.069]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.072]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.073]$	$0.0020 \\ (0.0017, 0.0023) \\ [0.083]$	$0.0021 \\ (0.0018, 0.0023) \\ [0.085]$	$0.0020 \\ (0.0016, 0.0022) \\ [0.098]$
ϕ_{π}	2.0	$ \begin{array}{c} 1.968 \\ (1.738, 2.142) \\ [0.064] \end{array} $	$ \begin{array}{c} 1.938 \\ (1.588, 2.158) \\ [0.087] \end{array} $	$ \begin{array}{c} 1.941 \\ (1.709, 2.144) \\ [0.073] \end{array} $	$ \begin{array}{c} 1.885 \\ (1.649, 2.085) \\ [0.085] \end{array} $	$ \begin{array}{c} 1.874 \\ (1.614, 2.069) \\ [0.097] \end{array} $	$ \begin{array}{c} 1.811 \\ (1.582, 2.063) \\ [0.123] \end{array} $
ϕ_y	0.5	$0.460 \\ (0.296, 0.631) \\ [0.212]$	$0.504 \\ (0.329, 0.648) \\ [0.199]$	$0.523 \\ (0.353, 0.729) \\ [0.244]$	$0.550 \\ (0.392, 0.749) \\ [0.238]$	$0.538 \\ (0.373, 0.718) \\ [0.247]$	$0.520 \\ (0.317, 0.729) \\ [0.228]$
Σ		[0.782]	[0.792]	[0.856]	[0.860]	[0.889]	[0.985]
		N	No misspecificatio	n, Level Linear, F	Kalman Filter, ME	E 0%	
φ_p	100	$92.6 \\ (82.1, 107.2) \\ [0.108]$	$96.5 \\ (80.5, 116.2) \\ [0.118]$	$104.1 \\ (83.5, 121.6) \\ [0.119]$	$110.1 \\ (92.4, 125.1) \\ [0.140]$	$112.2 \\ (95.2, 131.4) \\ [0.175]$	$ \begin{array}{c} 121.4 \\ (101.3, 136.9) \\ [0.226] \end{array} $
h	0.8	$0.793 \\ (0.754, 0.816) \\ [0.023]$	$0.793 \\ (0.761, 0.824) \\ [0.026]$	$0.793 \\ (0.764, 0.822) \\ [0.022]$	$0.794 \\ (0.755, 0.822) \\ [0.025]$	$0.795 \\ (0.768, 0.817) \\ [0.020]$	$0.792 \\ (0.770, 0.815) \\ [0.021]$
$ ho_s$	0.8	$0.808 \\ (0.756, 0.836) \\ [0.036]$	$0.811 \\ (0.774, 0.852) \\ [0.033]$	$0.827 \\ (0.764, 0.867) \\ [0.047]$	$0.836 \\ (0.798, 0.874) \\ [0.051]$	$0.841 \\ (0.810, 0.869) \\ [0.058]$	$0.853 \\ (0.813, 0.883) \\ [0.072]$
$ ho_i$	0.8	$0.795 \\ (0.764, 0.821) \\ [0.022]$	$0.807 \\ (0.768, 0.829) \\ [0.024]$	$0.813 \\ (0.771, 0.841) \\ [0.028]$	$0.820 \\ (0.795, 0.853) \\ [0.034]$	$0.828 \\ (0.804, 0.865) \\ [0.047]$	$0.834 \\ (0.806, 0.863) \\ [0.050]$
σ_g	0.0050	$0.0049 \\ (0.0045, 0.0056) \\ [0.079]$	$0.0048 \\ (0.0042, 0.0060) \\ [0.098]$	$0.0050 \\ (0.0043, 0.0058) \\ [0.091]$	$0.0050 \\ (0.0043, 0.0056) \\ [0.078]$	$0.0050 \\ (0.0041, 0.0057) \\ [0.087]$	$0.0050 \\ (0.0041, 0.0057) \\ [0.092]$
σ_s	0.0050	$0.0050 \\ (0.0039, 0.0060) \\ [0.161]$	$0.0049 \\ (0.0041, 0.0061) \\ [0.121]$	$0.0047 \\ (0.0038, 0.0067) \\ [0.172]$	$0.0045 \\ (0.0037, 0.0061) \\ [0.168]$	$0.0044 \\ (0.0037, 0.0054) \\ [0.156]$	$0.0043 \\ (0.0031, 0.0052) \\ [0.208]$
σ_i	0.0020	$0.0020 \\ (0.0017, 0.0022) \\ [0.069]$	$0.0019 \\ (0.0018, 0.0022) \\ [0.071]$	$0.0020 \\ (0.0018, 0.0022) \\ [0.070]$	$0.0019 \\ (0.0017, 0.0021) \\ [0.089]$	$0.0020 \\ (0.0017, 0.0021) \\ [0.080]$	$0.0019 \\ (0.0016, 0.0021) \\ [0.104]$
ϕ_{π}	2.0	$1.954 \\ (1.722, 2.158) \\ [0.066]$	$1.936 \\ (1.660, 2.130) \\ [0.078]$	$ \begin{array}{c} 1.889 \\ (1.651, 2.090) \\ [0.093] \end{array} $	$1.767 \\ (1.578, 2.002) \\ [0.136]$	$1.707 \\ (1.583, 1.912) \\ [0.151]$	$1.605 \\ (1.417, 1.841) \\ [0.204]$
ϕ_y	0.5	$0.463 \\ (0.324, 0.635) \\ [0.213]$	$0.486 \\ (0.309, 0.656) \\ [0.212]$	$0.504 \\ (0.328, 0.656) \\ [0.202]$	$0.490 \\ (0.390, 0.681) \\ [0.198]$	$0.486 \\ (0.322, 0.625) \\ [0.197]$	$0.469 \\ (0.316, 0.658) \\ [0.207]$
Σ		[0.778]	[0.782]	[0.845]	[0.919]	[0.972]	[1.184]

Table 6: Median, (5%, 95%) credible sets and [NRMSE] of the mean posterior estimated parameters. Σ is the sum of NRMSE.

Ptr	Truth	NL-PF- $2%$		PW-I	F-0%	Lin-KF-2%		
		0Q	30Q	0Q	30Q	0Q	30Q	
$\overline{\varphi_p}$	100	151.8 (133.5, 165.3) [0.513]	192.4 (176.5, 207.1) [0.925]	144.6 (121.1, 157.3) [0.438]	182.2 (169.2, 198.5) [0.841]	152.5 (133.3, 165.3) [0.514]	194.3 (177.8, 209.3) [0.957]	
h	0.8	$0.656 \\ (0.617, 0.685) \\ [0.182]$	$0.667 \\ (0.641, 0.707) \\ [0.167]$	$0.640 \\ (0.611, 0.673) \\ [0.200]$	$0.629 \\ (0.596, 0.672) \\ [0.215]$	$0.656 \\ (0.619, 0.687) \\ [0.183]$	$0.656 \\ (0.624, 0.697) \\ [0.181]$	
$ ho_s$	0.8	$0.757 \\ (0.715, 0.795) \\ [0.064]$	$0.807 \\ (0.782, 0.839) \\ [0.025]$	$0.763 \\ (0.728, 0.808) \\ [0.054]$	$0.821 \\ (0.785, 0.856) \\ [0.035]$	$0.760 \\ (0.717, 0.798) \\ [0.059]$	$0.821 \\ (0.788, 0.853) \\ [0.036]$	
$ ho_i$	0.8	$0.766 \\ (0.732, 0.801) \\ [0.048]$	$0.790 \\ (0.748, 0.831) \\ [0.034]$	$0.755 \\ (0.712, 0.790) \\ [0.061]$	$0.763 \\ (0.733, 0.808) \\ [0.050]$	$0.770 \\ (0.734, 0.801) \\ [0.045]$	$0.829 \\ (0.776, 0.862) \\ [0.044]$	
σ_g	0.0050	$0.0038 \\ (0.0031, 0.0043) \\ [0.253]$	$0.0042 \\ (0.0035, 0.0052) \\ [0.176]$	$0.0051 \\ (0.0044, 0.0058) \\ [0.091]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.217]$	$0.0038 \\ (0.0031, 0.0043) \\ [0.252]$	$0.0045 \\ (0.0036, 0.0058) \\ [0.152]$	
σ_s	0.0050	$0.0051 \\ (0.0039, 0.0065) \\ [0.147]$	$0.0051 \\ (0.0040, 0.0061) \\ [0.130]$	$0.0050 \\ (0.0042, 0.0063) \\ [0.133]$	$0.0045 \\ (0.0036, 0.0056) \\ [0.147]$	$0.0052 \\ (0.0041, 0.0065) \\ [0.153]$	$0.0048 \\ (0.0038, 0.0058) \\ [0.132]$	
σ_i	0.0020	$0.0019 \\ (0.0017, 0.0021) \\ [0.102]$	$0.0017 \\ (0.0016, 0.0021) \\ [0.142]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.082]$	$0.0020 \\ (0.0019, 0.0024) \\ [0.091]$	$0.0019 \\ (0.0017, 0.0021) \\ [0.101]$	$0.0017 \\ (0.0016, 0.0020) \\ [0.137]$	
ϕ_{π}	2.0	$\begin{array}{c} 2.024 \\ (1.837, 2.161) \\ [0.061] \end{array}$	$\begin{array}{c} 2.127 \\ (1.956, 2.309) \\ [0.089] \end{array}$	$\begin{array}{c} 2.026 \\ (1.840, 2.155) \\ [0.058] \end{array}$	$ \begin{array}{c} 1.946 \\ (1.771, 2.138) \\ [0.063] \end{array} $	$\begin{array}{c} 2.033 \\ (1.856, 2.175) \\ [0.058] \end{array}$	$ \begin{array}{c} 1.701 \\ (1.512, 1.909) \\ [0.162] \end{array} $	
ϕ_y	0.5	$0.308 \\ (0.182, 0.481) \\ [0.418]$	$0.377 \\ (0.243, 0.596) \\ [0.319]$	$0.332 \\ (0.175, 0.480) \\ [0.409]$	$0.436 \\ (0.273, 0.610) \\ [0.248]$	$0.308 \\ (0.182, 0.490) \\ [0.407]$	$0.265 \\ (0.144, 0.395) \\ [0.480]$	
\sum		[1.788]	[2.007]	[1.527]	[1.906]	[1.772]	[2.280]	

Table 7: Median, (5%, 95%) credible sets and [NRMSE] of the mean posterior estimated parameters. Σ is the sum of the NRMSE.

Ptr	Truth	NL-PF- $10%$		PW-I	F-0%	Lin-KF-10%		
		0Q	30Q	0Q	30Q	0Q	30Q	
$\overline{\varphi_p}$	100	150.2 (132.6, 163.8) [0.503]	182.3 (168.6, 197.3) [0.831]	144.6 (121.1, 157.3) [0.438]	182.2 (169.2, 198.5) [0.841]	151.4 (133.8, 162.1) [0.506]	184.9 (172.1, 201.7) [0.863]	
h	0.8	$0.665 \\ (0.614, 0.696) \\ [0.174]$	$0.683 \\ (0.645, 0.720) \\ [0.149]$	$0.640 \\ (0.611, 0.673) \\ [0.200]$	$0.629 \\ (0.596, 0.672) \\ [0.215]$	$0.667 \\ (0.613, 0.693) \\ [0.173]$	$0.676 \\ (0.638, 0.711) \\ [0.157]$	
$ ho_s$	0.8	$0.760 \\ (0.718, 0.791) \\ [0.060]$	$0.810 \\ (0.786, 0.850) \\ [0.031]$	$0.763 \\ (0.728, 0.808) \\ [0.054]$	$0.821 \\ (0.785, 0.856) \\ [0.035]$	$0.763 \\ (0.718, 0.798) \\ [0.057]$	$0.824 \\ (0.786, 0.859) \\ [0.044]$	
$ ho_i$	0.8	$0.806 \\ (0.770, 0.838) \\ [0.027]$	$0.811 \\ (0.761, 0.846) \\ [0.033]$	$0.755 \\ (0.712, 0.790) \\ [0.061]$	$0.763 \\ (0.733, 0.808) \\ [0.050]$	$0.804 \\ (0.771, 0.837) \\ [0.026]$	$0.855 \\ (0.817, 0.887) \\ [0.071]$	
σ_g	0.0050	$0.0027 \\ (0.0020, 0.0035) \\ [0.463]$	$0.0039 \\ (0.0025, 0.0050) \\ [0.282]$	$0.0051 \\ (0.0044, 0.0058) \\ [0.091]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.217]$	$0.0028 \\ (0.0020, 0.0036) \\ [0.456]$	$0.0041 \\ (0.0025, 0.0057) \\ [0.263]$	
σ_s	0.0050	$0.0050 \\ (0.0041, 0.0065) \\ [0.139]$	$0.0050 \\ (0.0037, 0.0061) \\ [0.145]$	$0.0050 \\ (0.0042, 0.0063) \\ [0.133]$	$0.0045 \\ (0.0036, 0.0056) \\ [0.147]$	$0.0051 \\ (0.0041, 0.0065) \\ [0.142]$	$0.0047 \\ (0.0036, 0.0060) \\ [0.165]$	
σ_i	0.0020	$0.0016 \\ (0.0012, 0.0018) \\ [0.246]$	$0.0013 \\ (0.0011, 0.0017) \\ [0.342]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.082]$	$0.0020 \\ (0.0019, 0.0024) \\ [0.091]$	$0.0016 \\ (0.0012, 0.0018) \\ [0.243]$	$0.0015 \\ (0.0013, 0.0018) \\ [0.250]$	
ϕ_{π}	2.0	$\begin{array}{c} 2.072 \\ (1.894, 2.214) \\ [0.066] \end{array}$	$\begin{array}{c} 2.100 \\ (1.922, 2.282) \\ [0.082] \end{array}$	$\begin{array}{c} 2.026 \\ (1.840, 2.155) \\ [0.058] \end{array}$	$ \begin{array}{c} 1.946 \\ (1.771, 2.138) \\ [0.063] \end{array} $	$\begin{array}{c} 2.074 \\ (1.897, 2.224) \\ [0.064] \end{array}$	$ \begin{array}{c} 1.752 \\ (1.572, 1.917) \\ [0.139] \end{array} $	
ϕ_y	0.5	$0.405 \\ (0.263, 0.588) \\ [0.270]$	$0.452 \\ (0.303, 0.659) \\ [0.235]$	$0.332 \\ (0.175, 0.480) \\ [0.409]$	$0.436 \\ (0.273, 0.610) \\ [0.248]$	$0.408 \\ (0.269, 0.585) \\ [0.267]$	$0.369 \\ (0.224, 0.549) \\ [0.295]$	
\sum		[1.948]	[2.130]	[1.527]	[1.906]	[1.936]	[2.248]	

Table 8: Median, (5%, 95%) credible sets and [NRMSE] of the mean posterior estimated parameters. Σ is the sum of the NRMSE.

Ptr	Truth	NL-PF-2%		NL-P	F-5%	NL-PF-10%	
		0Q	30Q	0Q	30Q	0Q	30Q
$\overline{\varphi_p}$	100	151.8 (133.5, 165.3) [0.513]	192.4 (176.5, 207.1) [0.925]	152.6 (134.2, 165.8) [0.520]	187.4 (174.7, 202.7) [0.888]	150.2 (132.6, 163.8) [0.503]	182.3 (168.2, 193.0) [0.824]
h	0.8	$0.656 \\ (0.617, 0.685) \\ [0.182]$	$0.667 \\ (0.641, 0.707) \\ [0.167]$	$0.661 \\ (0.618, 0.695) \\ [0.177]$	$0.676 \\ (0.644, 0.714) \\ [0.157]$	$0.665 \\ (0.614, 0.696) \\ [0.174]$	$0.683 \\ (0.647, 0.720) \\ [0.148]$
ρ_s	0.8	$0.757 \\ (0.715, 0.795) \\ [0.064]$	$0.807 \\ (0.782, 0.839) \\ [0.025]$	$0.759 \\ (0.718, 0.797) \\ [0.062]$	$0.809 \\ (0.783, 0.843) \\ [0.028]$	$0.760 \\ (0.718, 0.791) \\ [0.060]$	$0.806 \\ (0.784, 0.848) \\ [0.029]$
$ ho_i$	0.8	$0.766 \\ (0.732, 0.801) \\ [0.048]$	$0.790 \\ (0.748, 0.831) \\ [0.034]$	$0.783 \\ (0.751, 0.823) \\ [0.032]$	$0.804 \\ (0.753, 0.838) \\ [0.031]$	$0.806 \\ (0.770, 0.838) \\ [0.027]$	$0.811 \\ (0.761, 0.846) \\ [0.033]$
σ_g	0.0050	$0.0038 \\ (0.0031, 0.0043) \\ [0.253]$	$0.0042 \\ (0.0035, 0.0052) \\ [0.176]$	$0.0032 \\ (0.0023, 0.0039) \\ [0.367]$	$0.0040 \\ (0.0030, 0.0052) \\ [0.230]$	$0.0027 \\ (0.0020, 0.0035) \\ [0.463]$	$0.0039 \\ (0.0025, 0.0050) \\ [0.286]$
σ_s	0.0050	$0.0051 \\ (0.0039, 0.0065) \\ [0.147]$	$0.0051 \\ (0.0040, 0.0061) \\ [0.130]$	$0.0051 \\ (0.0040, 0.0066) \\ [0.147]$	$0.0051 \\ (0.0039, 0.0062) \\ [0.135]$	$0.0050 \\ (0.0041, 0.0065) \\ [0.139]$	$0.0050 \\ (0.0037, 0.0061) \\ [0.142]$
σ_i	0.0020	$0.0019 \\ (0.0017, 0.0021) \\ [0.102]$	$0.0017 \\ (0.0016, 0.0021) \\ [0.142]$	$0.0017 \\ (0.0014, 0.0020) \\ [0.165]$	$0.0015 \\ (0.0013, 0.0019) \\ [0.244]$	$0.0016 \\ (0.0012, 0.0018) \\ [0.246]$	$0.0013 \\ (0.0011, 0.0017) \\ [0.336]$
ϕ_{π}	2.0	$\begin{array}{c} 2.024 \\ (1.837, 2.161) \\ [0.061] \end{array}$	$\begin{array}{c} 2.127 \\ (1.956, 2.309) \\ [0.089] \end{array}$	$\begin{array}{c} 2.048 \\ (1.876, 2.191) \\ [0.064] \end{array}$	2.116 (1.939, 2.309) [0.088]	$\begin{array}{c} 2.072 \\ (1.894, 2.214) \\ [0.066] \end{array}$	$\begin{array}{c} 2.100 \\ (1.918, 2.284) \\ [0.083] \end{array}$
ϕ_y	0.5	0.308 (0.182, 0.481) [0.418]	$0.377 \\ (0.243, 0.596) \\ [0.319]$	$0.330 \\ (0.212, 0.543) \\ [0.360]$	$0.403 \\ (0.275, 0.617) \\ [0.283]$	$0.405 \\ (0.263, 0.588) \\ [0.270]$	$0.452 \\ (0.302, 0.670) \\ [0.240]$
Σ		[1.788]	[2.007]	[1.895]	[2.084]	[1.948]	[2.120]

Table 9: Median, (5%, 95%) credible sets and [NRMSE] of the mean parameter estimates. Σ is the NRMSE sum.

	0Q	6Q	12Q	18Q	24Q	30Q
		Level Linear, Ka	alman Filter, ME	E 0% (1 core)		
Seconds per draw	0.002 (0.002, 0.004)	0.002 (0.001, 0.003)	0.002 (0.001, 0.003)	0.002 (0.001, 0.003)	0.002 (0.001, 0.003)	0.002 (0.001, 0.003)
Hours per dataset	$0.044 \\ (0.044, 0.089)$	$0.044 \\ (0.022, 0.067)$	$0.044 \\ (0.022, 0.067)$	$0.044 \\ (0.022, 0.067)$	$0.044 \\ (0.022, 0.067)$	$0.044 \\ (0.022, 0.067)$
	Pie	ecewise Linear, I	nversion Filter, I	ME 0% (1 core)		
Seconds per draw	0.034 (0.031, 0.040)	0.039 $(0.035, 0.046)$	0.062 (0.044, 0.084)	0.058 (0.039, 0.080)	0.093 $(0.055, 0.141)$	0.098 $(0.051, 0.135)$
Hours per dataset	$0.767 \\ (0.689, 0.889)$	$0.867 \\ (0.778, 1.022)$	$1.378 \\ (0.978, 1.866)$	$ \begin{array}{c} 1.289 \\ (0.867, 1.778) \end{array} $	$\begin{array}{c} 2.077 \\ (1.222, 3.133) \end{array}$	$\begin{array}{c} 2.177 \\ (1.133, 3.000) \end{array}$
		Global, Partic	le Filter, ME 5%	(16 cores)		
Seconds per draw	6.5 (6.1, 7.9)	7.0 (6.5, 8.5)	7.9 (6.7, 8.9)	8.0 (7.0, 9.2)	8.4 (7.1, 9.4)	8.2 (7.5, 9.5)
Hours per dataset	$144.5 \\ (134.9, 176.5)$	$156.6 \\ (143.8, 189.3)$	$176.0 \\ (148.0, 196.7)$	$ \begin{array}{c} 178.8 \\ (155.2, 204.3) \end{array} $	$187.5 \\ (157.6, 208.2)$	$182.5 \\ (167.6, 210.7)$

Table 10: Median, (5%, 95%) credible sets estiation times.

Ptr	Truth	NL-	PF-5%	PW-I	F-0%	Lin-K	F-0%
		0Q	30Q	0Q	30Q	0Q	30Q
$\overline{\text{mean}(y^g)}$	0.058	$0.026 \\ (0.021, 0.035) \\ [0.031]$	$0.034 \\ (0.027, 0.043) \\ [0.024]$	$0.023 \\ (0.018, 0.030) \\ [0.035]$	$0.030 \\ (0.022, 0.038) \\ [0.028]$	$0.024 \\ (0.018, 0.032) \\ [0.035]$	$ \begin{array}{c} 0.038 \\ (0.030, 0.056) \\ [0.020] \end{array} $
$\operatorname{mean}(\pi)$	1.388	$\begin{array}{c} 2.073 \\ (2.029, 2.091) \\ [0.681] \end{array}$	$ \begin{array}{c} 1.969 \\ (1.870, 2.021) \\ [0.577] \end{array} $	$ \begin{array}{c} 2.139 \\ (2.134, 2.143) \\ [0.751] \end{array} $	$ \begin{array}{c} 2.134 \\ (2.126, 2.141) \\ [0.745] \end{array} $	$\begin{array}{c} 2.142 \\ (2.137, 2.147) \\ [0.754] \end{array}$	$\begin{array}{c} 2.144 \\ (2.137, 2.153) \\ [0.757] \end{array}$
mean(i)	2.259	3.139 (3.075, 3.166) [0.873]	$\begin{array}{c} 2.983 \\ (2.836, 3.065) \\ [0.719] \end{array}$	3.277 (3.264, 3.308) [1.021]	$\begin{array}{c} 3.315 \\ (3.291, 3.350) \\ [1.058] \end{array}$	$\begin{array}{c} 3.267 \\ (3.259, 3.275) \\ [1.007] \end{array}$	3.267 (3.254, 3.284) [1.008]
$std(y^g)$	3.265	$\begin{array}{c} 2.377 \\ (2.184, 2.692) \\ [0.875] \end{array}$	$\begin{array}{c} 2.741 \\ (2.452, 3.044) \\ [0.557] \end{array}$	$\begin{array}{c} 2.487 \\ (2.265, 2.793) \\ [0.774] \end{array}$	$\begin{array}{c} 2.844 \\ (2.558, 3.133) \\ [0.452] \end{array}$	$\begin{array}{c} 2.479 \\ (2.247, 2.763) \\ [0.787] \end{array}$	$\begin{array}{c} 3.255 \\ (2.945, 3.704) \\ [0.222] \end{array}$
$\operatorname{std}(\pi)$	1.578	$ \begin{array}{c} 1.022 \\ (0.900, 1.145) \\ [0.559] \end{array} $	$\begin{array}{c} 1.263 \\ (1.142, 1.406) \\ [0.318] \end{array}$	$\begin{array}{c} 1.065 \\ (0.949, 1.188) \\ [0.515] \end{array}$	$ \begin{array}{c} 1.281 \\ (1.178, 1.438) \\ [0.293] \end{array} $	$ \begin{array}{c} 1.057 \\ (0.943, 1.177) \\ [0.526] \end{array} $	$ \begin{array}{c} 1.388 \\ (1.245, 1.559) \\ [0.209] \end{array} $
std(i)	1.964	$ \begin{array}{c} 1.444 \\ (1.310, 1.678) \\ [0.515] \end{array} $	$ \begin{array}{c} 1.786 \\ (1.687, 1.906) \\ [0.185] \end{array} $	$ \begin{array}{c} 1.579 \\ (1.456, 1.832) \\ [0.388] \end{array} $	$ \begin{array}{c} 1.902 \\ (1.758, 2.136) \\ [0.110] \end{array} $	$ \begin{array}{c} 1.580 \\ (1.466, 1.899) \\ [0.382] \end{array} $	$ \begin{array}{c} 1.703 \\ (1.571, 1.884) \\ [0.270] \end{array} $
$skew(y^g)$	-0.280	$0.087 \\ (0.077, 0.099) \\ [0.368]$	$0.085 \\ (0.069, 0.102) \\ [0.366]$	$0.052 \\ (0.046, 0.059) \\ [0.332]$	$0.054 \\ (0.044, 0.064) \\ [0.334]$	$0.052 \\ (0.044, 0.060) \\ [0.332]$	$0.066 \\ (0.059, 0.077) \\ [0.347]$
$skew(\pi)$	-0.343	$ \begin{array}{c} 0.036 \\ (-0.024, 0.063) \\ [0.373] \end{array} $	$\begin{array}{c} -0.098 \\ (-0.162, -0.014) \\ [0.253] \end{array}$		$ \begin{array}{c} -0.018 \\ (-0.066, 0.002) \\ [0.322] \end{array} $	$0.021 \\ (0.013, 0.025) \\ [0.363]$	$0.026 \\ (0.017, 0.033) \\ [0.369]$
skew(i)	0.547	$0.081 \\ (0.050, 0.151) \\ [0.460]$	$0.205 \\ (0.148, 0.287) \\ [0.338]$	$0.111 \\ (0.078, 0.190) \\ [0.431]$	$0.211 \\ (0.164, 0.297) \\ [0.331]$	$0.029 \\ (0.022, 0.036) \\ [0.518]$	$0.027 \\ (0.022, 0.034) \\ [0.520]$
$AC(y^g)$	0.567	$0.362 \\ (0.333, 0.399) \\ [0.203]$	$0.421 \\ (0.381, 0.443) \\ [0.150]$	$0.367 \\ (0.333, 0.399) \\ [0.200]$	$0.401 \\ (0.362, 0.421) \\ [0.172]$	$0.363 \\ (0.331, 0.396) \\ [0.204]$	$0.405 \\ (0.365, 0.430) \\ [0.165]$
$AC(\pi)$	0.845	$0.675 \\ (0.640, 0.712) \\ [0.170]$	$0.734 \\ (0.708, 0.755) \\ [0.111]$	$0.681 \\ (0.651, 0.722) \\ [0.164]$	$0.753 \\ (0.732, 0.772) \\ [0.093]$	$0.677 \\ (0.649, 0.714) \\ [0.167]$	$0.739 \\ (0.718, 0.759) \\ [0.107]$
AC(i)	0.904	$0.854 \\ (0.813, 0.881) \\ [0.056]$	$0.902 \\ (0.879, 0.924) \\ [0.013]$	$0.838 \\ (0.801, 0.858) \\ [0.070]$	$0.881 \\ (0.851, 0.897) \\ [0.030]$	$0.837 \\ (0.801, 0.861) \\ [0.070]$	$0.875 \\ (0.853, 0.891) \\ [0.031]$

Table 11: Median, (5%, 95%) credible sets and [NRMSE] of moments.

Ptr	Truth	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6
			Glob	al, Particle Filter,	ME 5%		
$\overline{arphi_p}$	100	152.6 (134.2, 165.8) [0.520]	160.0 (143.2, 175.5) [0.612]	170.1 (152.3, 182.4) [0.696]	181.6 (166.1, 192.9) [0.810]	185.9 (173.9, 203.0) [0.874]	192.2 (178.1, 209.1) [0.930]
h	0.8	$0.661 \\ (0.618, 0.695) \\ [0.177]$	$0.660 \\ (0.611, 0.710) \\ [0.175]$	$0.668 \\ (0.628, 0.696) \\ [0.171]$	$0.670 \\ (0.623, 0.716) \\ [0.164]$	$0.681 \\ (0.651, 0.714) \\ [0.152]$	$0.683 \\ (0.644, 0.712) \\ [0.150]$
$ ho_s$	0.8	$0.759 \\ (0.718, 0.797) \\ [0.062]$	$0.773 \\ (0.741, 0.807) \\ [0.044]$	$0.794 \\ (0.749, 0.829) \\ [0.031]$	$0.801 \\ (0.775, 0.839) \\ [0.026]$	$0.804 \\ (0.779, 0.834) \\ [0.021]$	$0.815 \\ (0.794, 0.843) \\ [0.030]$
$ ho_i$	0.8	$0.783 \\ (0.751, 0.823) \\ [0.032]$	$0.799 \\ (0.746, 0.824) \\ [0.038]$	$0.797 \\ (0.761, 0.829) \\ [0.024]$	$0.802 \\ (0.755, 0.827) \\ [0.032]$	$0.806 \\ (0.753, 0.842) \\ [0.032]$	$0.803 \\ (0.757, 0.834) \\ [0.029]$
σ_g	0.0050	$\begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ [0.367] \end{array}$	$0.0031 \\ (0.0023, 0.0041) \\ [0.383]$	$0.0034 \\ (0.0025, 0.0044) \\ [0.344]$	$0.0036 \\ (0.0027, 0.0045) \\ [0.301]$	$0.0038 \\ (0.0027, 0.0047) \\ [0.271]$	$0.0043 \\ (0.0030, 0.0054) \\ [0.208]$
σ_s	0.0050	$0.0051 \\ (0.0040, 0.0066) \\ [0.147]$	$0.0051 \\ (0.0042, 0.0068) \\ [0.146]$	$0.0050 \\ (0.0039, 0.0066) \\ [0.164]$	$0.0050 \\ (0.0037, 0.0064) \\ [0.153]$	$0.0051 \\ (0.0040, 0.0065) \\ [0.135]$	$0.0051 \\ (0.0039, 0.0059) \\ [0.127]$
σ_i	0.0020	$\begin{array}{c} 0.0017 \\ (0.0014, 0.0020) \\ [0.165] \end{array}$	$\begin{array}{c} 0.0017 \\ (0.0014, 0.0019) \\ [0.183] \end{array}$	$0.0016 \\ (0.0013, 0.0019) \\ [0.217]$	$0.0015 \\ (0.0013, 0.0019) \\ [0.249]$	$0.0016 \\ (0.0012, 0.0019) \\ [0.239]$	$0.0015 \\ (0.0013, 0.0018) \\ [0.241]$
ϕ_{π}	2.0	$\begin{array}{c} 2.048 \\ (1.876, 2.191) \\ [0.064] \end{array}$	$\begin{array}{c} 2.087 \\ (1.895, 2.270) \\ [0.073] \end{array}$	$ \begin{array}{c} 2.087 \\ (1.899, 2.274) \\ [0.076] \end{array} $	$\begin{array}{c} 2.139 \\ (1.950, 2.328) \\ [0.091] \end{array}$	$\begin{array}{c} 2.125 \\ (1.931, 2.416) \\ [0.096] \end{array}$	$\begin{array}{c} 2.101 \\ (1.928, 2.332) \\ [0.088] \end{array}$
ϕ_y	0.5	$0.330 \\ (0.212, 0.543) \\ [0.360]$	$0.384 \\ (0.222, 0.634) \\ [0.305]$	$0.390 \\ (0.242, 0.571) \\ [0.286]$	$0.399 \\ (0.256, 0.602) \\ [0.297]$	$0.415 \\ (0.285, 0.576) \\ [0.241]$	$0.403 \\ (0.275, 0.617) \\ [0.270]$
Σ		[1.895]	[1.960]	[2.011]	[2.124]	[2.062]	[2.072]
			Piecewise 1	Linear, Inversion	Filter, ME 0%		
φ_p	100	$144.6 \atop (121.1, 157.3) \\ [0.438]$	$153.0 \\ (131.7, 169.1) \\ [0.538]$	$160.1 \\ (140.8, 177.3) \\ [0.612]$	$174.8 \\ (155.6, 185.5) \\ [0.739]$	$182.1 \\ (170.5, 203.1) \\ [0.836]$	$189.5 \\ (169.9, 205.0) \\ [0.899]$
h	0.8	$0.640 \\ (0.611, 0.673) \\ [0.200]$	$0.635 \\ (0.591, 0.676) \\ [0.204]$	$0.631 \\ (0.605, 0.669) \\ [0.212]$	$0.634 \\ (0.577, 0.675) \\ [0.212]$	$0.639 \\ (0.598, 0.670) \\ [0.207]$	$0.630 \\ (0.596, 0.668) \\ [0.212]$
$ ho_s$	0.8	$0.763 \\ (0.728, 0.808) \\ [0.054]$	$0.774 \\ (0.733, 0.809) \\ [0.043]$	$0.806 \\ (0.755, 0.833) \\ [0.030]$	$0.813 \\ (0.779, 0.847) \\ [0.032]$	$0.817 \\ (0.792, 0.841) \\ [0.027]$	$0.828 \\ (0.793, 0.855) \\ [0.041]$
$ ho_i$	0.8	$0.755 \\ (0.712, 0.790) \\ [0.061]$	$0.756 \\ (0.706, 0.798) \\ [0.068]$	$0.755 \\ (0.725, 0.783) \\ [0.061]$	$0.756 \\ (0.697, 0.800) \\ [0.066]$	$0.769 \\ (0.730, 0.808) \\ [0.051]$	$0.764 \\ (0.733, 0.808) \\ [0.050]$
σ_g	0.0050	$0.0051 \\ (0.0044, 0.0058) \\ [0.091]$	$0.0052 \\ (0.0048, 0.0061) \\ [0.115]$	$0.0055 \\ (0.0047, 0.0070) \\ [0.198]$	$0.0057 \\ (0.0050, 0.0079) \\ [0.229]$	$0.0057 \\ (0.0051, 0.0067) \\ [0.209]$	$0.0061 \\ (0.0053, 0.0074) \\ [0.268]$
σ_s	0.0050	$0.0050 \\ (0.0042, 0.0063) \\ [0.133]$	$0.0050 \\ (0.0041, 0.0063) \\ [0.141]$	$0.0047 \\ (0.0034, 0.0059) \\ [0.163]$	$0.0046 \\ (0.0033, 0.0058) \\ [0.164]$	$0.0047 \\ (0.0037, 0.0056) \\ [0.125]$	$0.0044 \\ (0.0036, 0.0056) \\ [0.160]$
σ_i	0.0020	$0.0020 \\ (0.0018, 0.0023) \\ [0.082]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.075]$	$0.0021 \\ (0.0018, 0.0024) \\ [0.090]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.075]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.080]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.088]$
ϕ_{π}	2.0	$\begin{array}{c} 2.026 \\ (1.840, 2.155) \\ [0.058] \end{array}$	$1.958 \\ (1.768, 2.158) \\ [0.071]$	$1.984 \\ (1.732, 2.164) \\ [0.068]$	$1.965 \\ (1.689, 2.190) \\ [0.070]$	$1.977 \\ (1.738, 2.229) \\ [0.071]$	$ \begin{array}{c} 1.951 \\ (1.756, 2.138) \\ [0.071] \end{array} $
ϕ_y	0.5	$0.332 \\ (0.175, 0.480) \\ [0.409]$	$0.339 \\ (0.177, 0.547) \\ [0.363]$	$0.359 \\ (0.201, 0.523) \\ [0.334]$	$0.364 \\ (0.202, 0.621) \\ [0.348]$	$0.425 \\ (0.245, 0.610) \\ [0.251]$	$0.439 \\ (0.258, 0.575) \\ [0.256]$
Σ		[1.527]	[1.618]	[1.767]	[1.935]	[1.857]	[2.044]

Table 12: Median, (5%, 95%) credible sets and [NRMSE] of the mean posterior estimated parameters. Column number refers to quantile of the summed notional rate below 0.