Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau

Prof. Dr. Thomas Carraro Dr. Frank Gimbel Janna Puderbach

Mathematik II

WT 2022

Hörsaalübung 4

1

Extremwertaufgabe und Taylor

Aufgabe 4.1: Stationäre Punkte

Gegeben sei die Funktion

$$f(x,y) = x^3 + x^2y - y^2 - 4y.$$

Finde alle stationären Punkte und bestimme, ob sie lokale Minima, Maxima oder Sattelpunkte sind.

Lösung 4.1:

Die stationären Punkte sind die Lösungen des folgenden Gleichungssystems

$$\frac{\partial}{\partial x}f(x,y) = 0 \qquad \Rightarrow \qquad x(3x+2y) = 0$$
$$\frac{\partial}{\partial y}f(x,y) = 0 \qquad \Rightarrow \qquad x^2 - 2y - 4 = 0$$

Die erste Gleichung ist für x=0 und für 3x+2y=0 erfüllt, d.h. wenn x=0 oder wenn $y=-\frac{3}{2}x$. In beiden Fällen wird der y-Wert durch die zweite Gleichung im System bestimmt.

- 1. Fall x = 0: Aus der zweiten Gleichung ergibt sich 0 2y 4 = 0, d.h. y = -2. Der erste kritische Punkt ist $P_1 = (0, -2)$.
- 2. Fall $y=-\frac{3}{2}x$. Setzt man dies in die zweite Gleichung ein, erhält man $x^2-2(-\frac{3}{2}x)-4=0$. Dies ergibt

$$x^{2} + 3x - 4 = 0 \longrightarrow (x - 1)(x + 4) = 0.$$

Die Lösungen sind x=1 und x=-4. Die beiden weiteren kritischen Punkte sind dann: $\mathbf{P}_2=(1,-\frac{3}{2})$ und $\mathbf{P}_3=(-4,6)$.

Zusammengefasst lauten die drei kritischen Punkte

$$P_1 = (0, -2),$$
 $P_2 = (0, -\frac{3}{2}),$ $P_3 = (-4, 6).$

Die Hessische Matrix ist:

$$H = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{xy}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 6x + 2y & 2x \\ 2x & -2 \end{pmatrix}.$$

Charakterisierung der stationären Punkte:

$$\begin{aligned} \boldsymbol{P}_1 &= \begin{pmatrix} 0 \\ -2 \end{pmatrix}, & \begin{pmatrix} -4 & 0 \\ 0 & -2 \end{pmatrix}, & h_{11} < 0, \det(H) = 8 > 0 \to \text{Maximum} \\ \boldsymbol{P}_2 &= \begin{pmatrix} 1 \\ -\frac{3}{2} \end{pmatrix}, & \begin{pmatrix} 3 & 2 \\ 2 & -2 \end{pmatrix}, & h_{11} > 0, \det(H) = -10 < 0 \to \text{Sattelpunkt } \boldsymbol{P}_3 &= \begin{pmatrix} -4 \\ 6 \end{pmatrix}, \end{aligned}$$

Aufgabe 4.2: Taylor 2D

Man bestimme das Taylor-Polynom vom zweiten Grad der Funktion im Punkt (0,1)

$$f(x,y) = \cosh(x)y^2.$$