

Contrastive Learning and Implementation on Molecules

Yuyang Wang, PhD Candidate
Department of Mechanical Engineering
Carnegie Mellon University
Email: yuyangw@cmu.edu

May 2021

Agenda

- Motivation
- Method
 - Contrastive Learning
 - Molecule Graph Augmentation
 - MolCLR
- ☐ Experimental Results
 - Classification
 - Regression
 - Visualization

Motivation

Motivation

- 1. Hard to represent the molecular information thoroughly. E.g., SMILES, SMART fail to encode the topology information directly
- 2. Enormous magnitude of chemical E.g., the size of potential pharmacologically active molecules is estimated to be in the order of 10^{60}
- 3. Expensive and insufficient labeled data for molecular learning.

Method: MolCLR

Contrastive Learning

- Contrastive Loss is a Self-Supervised Learning strategy which aims at learning representation through <u>contrasting positive data pairs</u> <u>against negative data pairs</u>. Normally, we refer to similar data as positive data pairs, and dissimilar data as negative pairs.
- The goal is to <u>learn a representation</u> which can be transferred easily to various downstream tasks, including classification and regre

Figure 4: Contrastive Learning v.s. Generative/Predictive Learning

Molecule Graph Augmentation

Figure 5: Three molecule graph augmentation strategies. (a) Atom masking: randomly replaces the node feature xv of an atom feature with a mask token m.(b) Bond deletion: randomly deletes the bond between two atoms, so that the they are not directly connected on the graph. (c) Subgraph removal: randomly removes an induced subgraph from the original molecule graph. Within the subgraph, all nodes are masked, and all edges are deleted.

MoICLR

Figure 6: Pipeline of Molecular Contrastive Learning of Representations (MolCLR) via GNNs

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Experimental Results

Classification

Table 1: Test ROC-AUC (%) performance comparison of different models, where the first five models are supervised learning methods and the last three are self-supervised/pre-training methods. Mean and standard deviation on each benchmark are reported.

Dataset # Molecules # Tasks	BBBP	Tox21	ClinTox	HIV	BACE	SIDER	MUV
	2039	7831	1478	41127	1513	1478	93087
	1	12	2	1	1	27	17
RF	71.4±0.0	76.9 ± 1.5	71.3±5.6	78.1±0.6	86.7±0.8	68.4±0.9	63.2±2.3
SVM	72.9±0.0	81.8±1.0	66.9±9.2	79.2 ± 0.0	86.2±0.0	68.2±1.3	67.3±1.3
MGCN	85.0 ± 6.4	70.7 ± 1.6	63.4±4.2	73.8±1.6	73.4±3.0	55.2±1.8	70.2±3.4
D-MPNN	71.2±3.8	68.9 ± 1.3	90.5 ± 5.3	75.0±2.1	85.3±5.3	63.2±2.3	76.2 ± 2.8
HU. et.al	70.8±1.5	78.7±0.4	78.9±2.4	80.2±0.9	85.9±0.8	65.2±0.9	81.4±2.0
N-Gram	91.2±3.0	76.9±2.7	85.5±3.7	83.0 ± 1.3	87.6±3.5	63.2±0.5	81.6±1.9
MolCLR	73.6±0.5	79.8 ± 0.7	93.2 ± 1.7	80.6±1.1	89.0 ± 0.3	68.0 ± 1.1	88.6 ± 2.2

Regression

Table 2: Test performance comparison of different models on regression tasks, where the first five models are supervised learning methods and the last three are self-supervised/pre-training methods. Mean and standard deviation on each benchmark are reported.

Dataset # Molecules # Tasks	FreeSolv	ESOL	Lipo	QM7	QM8
	642	1128	4200	6830	21786
	1	1	1	1	12
RF	2.03±0.22	1.07 ± 0.19 1.068 ± 0.050 1.05 ± 0.06 1.27 ± 0.15 0.98 ± 0.26	0.88 ± 0.04	122.7±4.2	0.042 ± 0.002
GCN [1]	2.900±0.135		0.712 ± 0.049	118.9±20.2	0.021 ± 0.001
SchNet [2]	3.22±0.76		0.91 ± 0.10	74.2 ± 6.0	0.020 ± 0.002
MGCN [3]	3.35±0.01		1.11 ± 0.04	77.6±4.7	0.022 ± 0.002
D-MPNN [4]	2.18±0.91		0.65 ± 0.05	105.8±13.2	0.0143 ± 0.002
N-Gram [5]	2.51±0.19	$1.10\pm0.03 \\ 1.11\pm0.01$	0.88±0.12	125.6±1.5	0.0320 ± 0.003
MolCLR	2.20±0.20		0.65 ± 0.08	87.2 ± 2.0	0.0174\pm0.001

MolCLR Visualization

Figure 7: Two-dimensional t-SNE embedding of the molecular representations learned by MolCLR pre-training. The color of each embedding point indicates its corresponding molecular weight.

MolCLR Visualization

Thanks! Q&A