Prüfungsteilnehmer	Prüfungstermin	Einzelprüfungsnummer
Kennzahl:	Ewiihiahu	
	Frühjahr	46113
Kennwort:	2000	40113
Arbeitsplatz-Nr.:		

Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben -

Fach: Informatik (nicht vertieft studiert)

Einzelprüfung: Theoretische Informatik

Anzahl der gestellten Themen (Aufgaben): 2

Anzahl der Druckseiten dieser Vorlage: 3

Bitte wenden!

Thema Nr. 1

Sämtliche Teilaufgaben sind zu bearbeiten!

Teilaufgabe 1:

Gegeben sei die Grammatik Γ mit der Menge $\{a,b,c\}$ von Terminalzeichen, der Menge $\{S,A,B,C\}$ von Nicht-Terminalzeichen, dem Startsymbol S und den Produktionsregeln

(ϵ bezeichne das leere Wort.) $\mathcal{L}(\Gamma)$ sei die von Γ erzeugte Sprache.

- a) Beweisen Sie:
 - a1) aaabb $\in \mathcal{L}(\Gamma)$.
 - a2) c kommt in jedem Wort von $\mathcal{L}(\Gamma)$ höchstens zweimal vor.
 - a3) Ist $w \in \mathcal{L}(\Gamma)$ ein Wort, das genau ein c enthält, so enthält w genau ein a oder genau ein b.
- b) Geben Sie einen nicht-deterministischen endlichen Automaten an, der genau die Elemente von $\mathcal{L}(\Gamma)$ akzeptiert!

Teilaufgabe 2:

Sei $L = \{a^nbc^{2n} \mid n \in \mathbb{N}_0\}$ eine Sprache über dem Alphabet $\{a,b,c\}$. Beweisen Sie:

- a) L ist nicht regulär.
- b) L ist kontext-frei.

Teilaufgabe 3:

Die Funktionen $f: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ und $g: \mathbb{N}_0 \to \mathbb{N}_0$ seien definiert durch:

$$f(n,m) = \begin{cases} n-m, & \text{falls } n \ge m \\ m-n & \text{sonst,} \end{cases} \quad \text{und} \quad g(n) = \begin{cases} \sqrt{n}, & \text{falls } \sqrt{n} \in \mathbb{N}_0 \\ \text{undefiniert sonst.} \end{cases}$$

Beweisen Sie:

- a) f ist primitiv-rekursiv.
- b) g ist partiell-rekursiv.

Hinweis: Sie dürfen ohne Beweis voraussetzen, dass die arithmetischen Grundfunktionen Addition, Subtraktion und Multiplikation primitiv-rekursiv sind!

Thema Nr. 2

Sämtliche Teilaufgaben sind zu bearbeiten!

Teilaufgabe 1:

- a) Gegeben ist eine formale Grammatik $G = (S, \Sigma, P, s_0)$. Welche Bedingungen müssen die Produktionen Perfüllen, damit die Grammatik
 - i) rechtslinear, ii) kontextfrei, iii) kontextsensitiv ist?

Die von G erzeugte Sprache wird mit L(G) bezeichnet. L(G) heißt "vom Typ 3", wenn G rechtslinear ist, "vom Typ 2", wenn G kontextfrei ist und "vom Typ 1", wenn G kontextsensitiv ist.

- b) Charakterisieren Sie Sprachen vom Typ 3 und vom Typ 2 mit Hilfe von Automatentypen!
- c) Gegeben sei die Grammatik $\mathcal{G} = (\{A, B\}, \{0, 1\}, P, A)$ mit $P = \{A \rightarrow 0B, B \rightarrow 01B, B \rightarrow 10B, B \rightarrow 1\}.$
 - i) Geben Sie einen regulären Ausdruck mit Sprache L(G) an!
 - ii) Konstruieren Sie einen nichtdeterministischen endlichen Automaten, der die Sprache L(G) akzeptiert!
 - iii) Konstruieren Sie einen minimalen deterministischen endlichen Automaten, der die Sprache L(G) akzeptiert!
- d) Geben Sie eine Typ 2-Sprache L2 an, die nicht vom Typ 3 ist, zusammen mit einer kontextfreien Grammatik, die L2 erzeugt!
- e) Geben Sie eine Typ 1-Sprache £1 an, die nicht vom Typ 2 ist, zusammen mit einer kontextfreien Grammatik, die £1 erzeugt!

Teilaufgabe 2:

Gegeben sei die folgende Funktionsdefinition:

function f(n: Nat) : Nat;if n = 0 then 0 else n+f(n-1) end;

a) Wie lautet das zur obigen Definition gehörige Funktional $\Phi: [N^{\perp} \to N^{\perp}] \to [N^{\perp} \to N^{\perp}]$? Zeigen Sie, dass die Funktion

$$g: \mathbb{N}^{\perp} \to \mathbb{N}^{\perp} \quad \text{mit } g(n) = n^*(n+1)/2 \text{ falls } n \neq \perp, \ g(\perp) = \perp,$$

ein Fixpunkt von Φ ist! (Hierbei bezeichnet N^{\perp} die Menge der natürlichen Zahlen erweitert um das Element \perp .)

b) Beweisen Sie durch Induktion, dass für alle natürlichen Zahlen n gilt: f(n) = n*(n+1)/2.