Logic Optimization:

Tabular Method

(Quine-McCluskey)

Virendra Singh

Professor

Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CS-226: Digital Logic Design

Lecture 16-A: 22 February 2021 CADSL

Quine-McCluskey

Willard V. O. Quine 1908 – 2000

Edward J. McCluskey 1929 -- 2016

Quine-McCluskey Tabular Minimization Method

- W. V. Quine, "The Problem of Simplifying Truth Functions," American Mathematical Monthly, vol. 59, no. 10, pp. 521-531, October 1952.
- E. J. McCluskey, "Minimization of Boolean Functions," Bell System Technical Journal, vol. 35, no. 11, pp. 1417-1444, November 1956. ✓

$$\frac{10}{ab} + \frac{11}{ab} = \frac{1}{a}$$

Q-M Tabular Minimization

Minimizes functions with many variables.

- Begin with minterms:
 - Step 1: Tabulate minterms in groups of increasing number of true variables.
 - Step 2: Conduct <u>linear searches</u> to identify all prime implicants (PI).

 - Step 4: Tabulate non-essential PI's vs. minterms not covered by EPI's. Select minimum number of PI's to cover all minterms.
- MSOP contains all EPI's and selected non-EPI's.

$F(A,B,C,D) = \sum m(2,4,6,8,9,10,12,13,15)$

• Q-M Step 1: Group minterms with 1 true

variable, 2 true variables, etc.

				(46)	0110
	Minterm	ABCD	Groups		0-10
	2	0010)	Y	
	4	0100	1: single 1	x (5,9)	5010 X
Gp1	8	1000			601D
	6	0110		(2,19)	1010
Gp2	9	1001	0. 5.00 420		-010
	10	1010	2: two 1's	(D 12)	6610 V
	12	1100	J	(2,13)	1100 X
Gp 3	13	1101	3: three 1's	(4,6)	0100
Gp3 Gp4	15	1111	4: four 1's		0110
,					01-0

Q-M Step 2

- Find all implicants by combining minterms, and then combining products that differ in a single variable: For example,
 0 / 0
 0 / 0
 - 2 and 6, or \overline{A} \overline{B} \overline{C} \overline{D} and \overline{A} \overline{B} \overline{C} \overline{D} \rightarrow \overline{A} \overline{C} \overline{D} , written as 0-1 0.
- Try combining a minterm (or product) with all minterms (or products) listed below in the table.
- Include resulting products in the next list.
- If minterm (or product) does not combine with any other, mark it as PI. V
- Check the minterm (or product) and repeat for all other minterms (or products).

Step 2 Executed on Example

	(J~1mp	2-mplians					
L	ist 1 /		List 2			List 3/		
Minterm	ABCD	PI?	Minterms	ABCD	PI?	Minterms	ABCD	PI?
2 🗸	0010	X	2, 6 v	0-10	PI_2	8,9,12,13	1-0-	PI_1
4 🗸	0100	X	2,10 V	-010	PI_3			
8 🗸	1000	X	4,6 🗸	01-0	PI_4			
6 🗸	0110	X	4,12	-100	PI_5			
9 🗸	1001	X	8,9 🗸	100-	X			
10 🗸	1010	X	8,10 🤘	10-0	PI_6			
12 √	1100	X	8,12 ~	1 -00	Χ .			
13 🗸	1101	X	9,13 🗸	1-01	X			
15 V	1111	X	12,13 _{\(\cup\)}	/110-	X			
			13,15	11-1	PI_7			

Cep1

Minimize (#P2)

8

Step 3: Identify EPI's

							1	/	V
Covered by EPI \rightarrow				X	X		X	X	Х
Minterms →	2	4	6	8	9	10	12	13	15
PI_1 is EPI				X			X	X	
PI_2	X		X						
PI_3	X					X			
PI_4		X	X						
PI_5		X					X		
PI_6				X		X			
PI_7 is EPI								X	$\left(\overrightarrow{x} \right)$
	*	*	7 1	x= \$	2, 4,	2	103 L		
EPI = { PI-	1. F) <u>T</u> - '	7 (° `	-	اردها ۲ م			ralle	۲· U

CADSL

Step 4: Cover Remaining Minterms

	Remaining minterms →	2	4	6	10
X2 -	PI_2	X		χ×	
×3 ->	PI_3	X			Χ-
X4 -	PI_4		X	X	
705-7	PI_5		X		
X6 -	- PI_6				Χ.

Integer linear program (ILP), available from MATLAB and other sources: Define integer {0,1} variables, xk = 1, select PI_k;

xk = 0, do not select PI_k .

Minimize $\sum_{k} xk$, subject to constraints:

A solution is $x^3 = x^4 = 1$, $x^2 = x^5 = x^6 = 0$, or select PI_3, PI_4

 $x^2 + x^3 \ge 1$

Linear Programming (LP)

- A mathematical optimization method for problems where some "cost" depends on a large number of variables.
- An easy to understand introduction is:
 - S. I. Gass, An Illustrated Guide to Linear Programming, New York: Dover Publications, 1970.
- Very useful tool for a variety of engineering design problems.
- Available in software packages like MATLAB.

Step 4: Cover Remaining Minterms

	Remaining minterms →	2	4	6	10
2-	→ PI_2	X		X	
P -	- PI_3	X			X
V-	PI_4		X	X	
8 -	PI_5		X		
n -	- PI_6				X

Patrick's Method (All mon terms must be covered

2 AP

$$4. \text{ FAS}$$
 $(X+B).(Y+S)(X+F)(B+\eta) = 1$
 6 A+F
 10 P+N SOP terms

Q-M MSOP Solution and Verification

$$F(A,B,C,D) = PI_1 + PI_3 + PI_4 + PI_7$$

$$= 1-0- + -010 + 01-0 + 11-1$$

$$= A C + B C D + A B D + A B D$$

See Karnaugh map.

Non-EPI's not in MSOP

CADSL

Minimized Circuit

QM Minimizer on the Web

http://quinemccluskey.com/

Thank You

