Fenwick Trees

By Mark Galloway

Overview

- Motivation
- The Fenwick Tree
- Applications
- Example
- Source Code
- Time Complexity

Motivation: Cumulative Frequencies

- We want to store and query a range of frequencies
 - eg/ test scores of 11 students
 - o range [1, 10]

- We want to perform Range Sum Query (RSQ) operations on this data
 - RSQ(1.. 10) = the cumulative frequency of all scores
 - RSQ(1..5) = the cumulative frequency of scores <= 5
 - RSQ(8..10) = the number of A's received

Motivation: Cumulative Frequencies

- Naive Implementation: An array
 - \circ m = [2, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9]
 - \circ f = [0, 1, 1, 2, 4, 7, 9, 10, 11, 11]

RSQ(1) = 0RSQ(1..5) = 4

- Runtime Analysis
 - This is O(N) per query. We can do better.

Formal Definition

A Fenwick tree or binary indexed tree is a data structure providing efficient methods for calculation and manipulation of the cumulative sums of a table of values.

Fenwick Trees provide a method to query the running total at any index, in addition to allowing changes to the underlying value table and having all further queries reflect those changes.

History

- Proposed by Peter Fenwick in 1994
 - University of Auckland, New Zealand
- Also called Binary Indexed Tree (BIT)

 Originally designed for dynamic arithmetic data compression

BIT Applications

- Arithmetic Coding
 - Used in lossless data compression

- Dynamic Cumulative Frequency Tables
 - Range Sum Query

Implementation

Implemented as a flat array

 Each index contains a pre-calculated sum of a subsection of the table. Combining sums in an upward traversal to the root provides the desired range sum.

 The index of a vertex's parent or child is calculated through bitwise operations on the binary representation of its index

Example

N	1	2	3	4	5	6	7
F	5	1	15	11	52	28	0
CF	5	6	21	32	84	112	112

Example

N	1	2	3	4	5	6	7
F	5	1	15	11	52	28	0
CF	5	6	21	32	84	112	112

BIT Operations: rsq(b)

```
Let LSB = Least Significant Bit
Let b be an index <= N
Let b' = b - LSB(b)
```

$$rsq(a, b) = rsq(b) - rsq(a)$$

Example: rsq

Example: rsq

BIT Operations: update(b,v)

Let LSB = Least Significant Bit Let b be an index <= N Let b' = b + LSB(b)

Let v = a frequency increment/decrement

update(b, v) = update(b, v), update(b', v) ... update(bⁱ, v)

where bi + LSB(b') would exceed N.

eg/ update(1,5)

eg/update(1,5)

= update(001, 5)

eg/update(1,5)

= update(001, 5), update(010, 5)

eg/update(1,5)

= update(001, 5), update(010, 5), update(100, 5)

1000 > N, so we have reached the root

N	1	2	3	4	5	6	7
F	10	1	15	11	52	28	0
CF	10	11	26	37	89	117	117

update(1, 10)

update(1, 10) update(2, 1)

update(1, 10) update(2, 1) update(3, 15)

update(1, 10) update(2, 1) update(3, 15) update(4, 11)

Source Code

```
8 #define LSOne(S) (S & (-S))
  class FenwickTree {
  private:
    vi ft;
  public:
     FenwickTree() {}
    // initialization: n + 1 zeroes, ignore index 0
     FenwickTree(int n) { ft.assign(n + 1, 0); }
     int rsq(int b) {
                                                         // returns RSQ(1, b)
       int sum = 0; for (; b; b -= LSOne(b)) sum += ft[b];
       return sum; }
     int rsq(int a, int b) {
                                                         // returns RSQ(a, b)
       return rsq(b) - (a == 1 ? 0 : rsq(a - 1)); }
     // adjusts value of the k-th element by v (v can be +ve/inc or -ve/dec)
     void adjust(int k, int v) {
                                 // note: n = ft.size() - 1
       for (; k < (int)ft.size(); k += LSOne(k)) ft[k] += v; }</pre>
29 };
```

Runtime Complexity

Construction	O(M log N)		
Query	O(log N)		
Point Update	O(log N)		

Note:

N is the array size.

M is the number of data points.

Runtime Proof: Query

 A base 10 number N is represented by at most log(N) bits. Assume N is the largest index in our BIT. Let there be an index B <= N.

A query to index B must also query index B', B", B", while Bⁱ > 0. N has at most log(N) bits so this can take at most log(N) operations.

Runtime Proof: Update

 A base 10 number N is represented by at most log(N) bits. Assume N is the largest index in our BIT. Let there be an index B <= N.

An update to index B must also update index B', B", B", until Bⁱ > N. N has at most log(N) bits so this can take at most log(N) operations.

Conclusion

- The Fenwick Tree
 - Supports RSQ and update operations
 - O(N) space complexity
 - O(log N) time complexity
 - Very clever use of bitwise indexing

References

- Peter M. Fenwick (1994). "A new data structure for cumulative frequency tables"
 - http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8917
- Competitive Programming 3
 - https://sites.google.com/site/stevenhalim/
- Wikipedia
 - http://en.wikipedia.org/wiki/Fenwick_tree
- Stack Exchange
 - http://cs.stackexchange.com/questions/10538/bit-what-is-the-intuitionbehind-a-binary-indexed-tree-and-how-was-it-thought-a

Questions?