

# Federated Learning Predicting the Next Node In Action Flows

Daniel Lopes - IST, ULisboa Professor Luís Rodrigues - INESC-ID, IST, ULisboa Ioão Nadkarni, Filipe Assunção, Miguel Lopes - OutSystems



### **Overview**

- Context and Motivation
- Federated Learning
- Personalized Federated Learning
- Experimental Study

### **OutSystems Service Studio - Action Flows**

- Action Flows represent the application logic
- Action Flows modelled as graphs:
  - Nodes -> actions
  - Edges -> flow
- Objective -> Predict the attribute "kind" of the next node
  - For recommendation of next actions



### **OutSystems Service Studio - Action Flows**

- Action Flows represent the application logic
- Action Flows modelled as graphs:
  - Nodes -> actions
  - Edges -> flow
- Objective -> Predict the attribute "kind" of the next node
  - For recommendation of next actions



### **Local vs Centralized Models**

- Model based in Graph Neural Networks (GNNs)
- Local Model -> data of a single client
  - Clients might not have enough data
- Centralized Model -> data of all clients
  - Model is the same for all clients -> Predictions not personalized
  - Clients share data -> Privacy concerns

|          | Number of Action<br>Flows | Accuracy (%)<br>Local Model | Accuracy (%)<br>Centralized Model |
|----------|---------------------------|-----------------------------|-----------------------------------|
| Client A | 47,711                    | 75.41                       | 65.79                             |
| Client B | 60                        | 24.14                       | 58.62                             |

### **Motivation**

- Use data from several clients
- Personalize the models for each client
- Maintain the same level of performance
- Ensure privacy of the client data

- Machine Learning decentralized approach
- FedAvg is the base algorithm









- Machine Learning decentralized approach
- FedAvg is the base algorithm
  - Server sends the global model to the clients



- Machine Learning decentralized approach
- FedAvg is the base algorithm
  - Server sends the global model to the clients
  - Clients calculate the updates to the global model



- Machine Learning decentralized approach
- FedAvg is the base algorithm
  - Server sends the global model to the clients
  - Clients calculate the updates to the global model
  - Clients send the updates to the server



- Machine Learning decentralized approach
- FedAvg is the base algorithm
  - Server sends the global model to the clients
  - Clients calculate the updates to the global model
  - Clients send the updates to the server
  - Server aggregates the updates
    - Obtain the new global model



Data Partitioning:



Data Partitioning:

**Data Subject** 

**Data Features** 





Communication Architecture:

#### **Centralized**



**Global Model** 

Maintained by the server

#### **Decentralized**



Manipulated by the clients

Communication Architecture:



#### **Decentralized**



Manipulated by the clients

**Global Model** 

• Scale of the federation:

**Number of Clients** 

**Computational Power** 

**Communications** 



Scale of the federation:

**Communications** 



## **Cross-Device** Client A Client B Many Scarce Not always reliable

### **Federated Learning Applications**

#### **Smartphones**



Autonomous Vehicles



#### **Healthcare**



Financial Fraud



#### IoT



#### **Industry**



### Federated Learning - Challenges

- Client Heterogeneity
- Security Concerns
  - Ensure no attacker can bias the model
- Privacy Concerns
  - Ensure no sensitive information can be obtained from updates
- Data Heterogeneity
  - How to personalize the model to each client

# Personalized Federated Learning

### **Personalization Techniques**

#### **Meta-Learning**



#### **Clustering**



#### Multi-task Learning



# Parameter Decoupling



### **Personalization Techniques**

#### **Meta-Learning**



#### **Clustering**



#### Multi-task Learning





### **Parameter Decoupling**

- Body or representation:
  - Extracts the properties of the data
- Head or classifier:
  - Classifies data from its properties



# **Algorithms**







<sup>[1]</sup> Communication-Efficient Learning of Deep Networks from Decentralized Data (McMahan et. al. 2016)

<sup>[2]</sup> Think locally, act globally: Federated learning with local and global representations (Liang et. al. 2020)

<sup>[3]</sup> Exploiting shared representations for personalized federated learning (Collins et. al. 2021)

### **Algorithms - Global Part**







<sup>[1]</sup> Communication-Efficient Learning of Deep Networks from Decentralized Data (McMahan et. al. 2016)

<sup>[2]</sup> Think locally, act globally: Federated learning with local and global representations (Liang et. al. 2020)

<sup>[3]</sup> Exploiting shared representations for personalized federated learning (Collins et. al. 2021)

### **Algorithms - Local Part**





<sup>[1]</sup> Communication-Efficient Learning of Deep Networks from Decentralized Data (McMahan et. al. 2016)

<sup>[2]</sup> Think locally, act globally: Federated learning with local and global representations (Liang et. al. 2020)

<sup>[3]</sup> Exploiting shared representations for personalized federated learning (Collins et. al. 2021)

# **Algorithms - Local Training**



<sup>[1]</sup> Communication-Efficient Learning of Deep Networks from Decentralized Data (McMahan et. al. 2016)

<sup>[2]</sup> Think locally, act globally: Federated learning with local and global representations (Liang et. al. 2020)

<sup>[3]</sup> Exploiting shared representations for personalized federated learning (Collins et. al. 2021)

# **Experimental Study**

## **Experimental Study**

- Performance of the algorithm compared with:
  - Local Models
  - Centralized Model
- Accuracy is the performance metric
- Cloud AWS with 33 clients
  - Chosen based on the quantity of actions flows

### **Experimental Study**

#### 30 communication rounds:

- Clients participate in every round
- 1 local training round (FedAvg and LG-FedAvg)
- 1 local training round for the body and 1 for the head (FedRep)

#### 3 types of clients:

- Small Clients until 5300 data points (until the 25th-percentile)
- o Intermediate Clients between 5300 and 31700 data points (from 25th to 75th-percentile)
- Big Clients above 31700 data points

### **Small Clients**



### **Small Clients**



### **Small Clients**



### **Intermediate Clients**



### **Intermediate Clients**



### **Intermediate Clients**



# **Big Clients**



## **Big Clients**



### **Summary of Results**

#### • Small Clients:

- Best Federated Algorithm-> FedAvg
- Best Models -> FedAvg, Centralized
- Collaboration is key

#### • Intermediate and Big Clients:

- Best Federated Algorithm -> LG-FedAvg
- Best Models -> LG-FedAvg, Local
- Personalizing the body preferable







### **Conclusion**

- FL is a Decentralized ML approach
  - Clients collaboratively train a model
  - Clients do not share their data
- No ideal strategy
  - Clients with less data -> no personalization
  - Clients with more data -> body personalization
- Future Work
  - Combine FedAvg and LG-FedAvg