Stroke Factors: Classification & Predictive Analytics

Danyang Liu (500936348). Supervisor: Dr. Ceni Babaoglu

3/7/2022

```
#install.packages("RCurl")
#install.packages("MASS")
#install.packages("leaps")

library(RCurl)

## Warning: package 'RCurl' was built under R version 4.1.2

library(MASS)

## Warning: package 'MASS' was built under R version 4.1.2

library(leaps)

## Warning: package 'leaps' was built under R version 4.1.2

Dataset: removed NAs, keep outliers

Converted cat variables into num

Using feature selection to narrow down variables

Read dataset

stroke <- read.csv(file="stroke_1_raw.csv",header=T, sep=",")</pre>
```

Exploratory Analytics and Data Cleaning

```
## $ hypertension
                      : int 0000101000...
## $ heart_disease
                      : int 1010001000...
## $ ever married
                            "Yes" "Yes" "Yes" "Yes" ...
                      : chr
                            "Private" "Self-employed" "Private" "Private" ...
## $ work_type
                      : chr
## $ Residence_type
                      : chr
                            "Urban" "Rural" "Rural" "Urban" ...
                            229 202 106 171 174 ...
## $ avg glucose level: num
                      : chr
                            "36.6" "N/A" "32.5" "34.4" ...
   $ smoking_status
                            "formerly smoked" "never smoked" "never smoked" "smokes" ...
##
                      : chr
   $ stroke
                      : int 111111111...
summary(stroke)
##
         id
                      gender
                                                     hypertension
                                          age
                                     Min. : 0.08
##
              67
                   Length:5110
                                                     Min.
                                                           :0.00000
  1st Qu.:17741
                   Class : character
                                     1st Qu.:25.00
                                                     1st Qu.:0.00000
## Median :36932
                   Mode :character
                                     Median :45.00
                                                     Median :0.00000
## Mean
         :36518
                                     Mean :43.23
                                                    Mean :0.09746
## 3rd Qu.:54682
                                     3rd Qu.:61.00
                                                     3rd Qu.:0.00000
## Max. :72940
                                     Max. :82.00
                                                     Max.
                                                           :1.00000
                                                         Residence_type
## heart disease
                     ever_married
                                        work_type
## Min.
         :0.00000
                     Length:5110
                                       Length:5110
                                                         Length:5110
## 1st Qu.:0.00000
                     Class : character Class : character
                                                         Class : character
## Median :0.00000
                     Mode :character Mode :character Mode :character
## Mean :0.05401
## 3rd Qu.:0.00000
## Max. :1.00000
## avg_glucose_level
                         bmi
                                       smoking_status
                                                             stroke
## Min. : 55.12
                     Length:5110
                                       Length:5110
                                                         Min.
                                                                :0.00000
## 1st Qu.: 77.25
                     Class :character
                                       Class :character
                                                         1st Qu.:0.00000
## Median: 91.89
                     Mode : character
                                       Mode :character
                                                         Median :0.00000
## Mean :106.15
                                                         Mean
                                                                :0.04873
## 3rd Qu.:114.09
                                                          3rd Qu.:0.00000
## Max. :271.74
                                                          Max.
                                                                :1.00000
# Convert 'N/A's (strings) in dataset to NA
is.na(stroke) <- stroke == "N/A"</pre>
# Count number of NAs in dataset
sum(is.na(stroke))
## [1] 201
# Count number of NAs in all columns
colSums(is.na(stroke))
##
                 id
                              gender
                                                           hypertension
                                                   age
##
                  0
##
      heart_disease
                         ever_married
                                             work_type
                                                         Residence_type
##
                                                                      0
## avg_glucose_level
                                 bmi
                                        smoking_status
                                                                 stroke
##
                                 201
                                                                      0
```

```
# Count number of 'Unknown's in all columns
colSums(stroke == "Unknown")
##
                  id
                                gender
                                                              hypertension
                                                     age
##
                   0
##
      heart_disease
                          ever_married
                                               work_type
                                                            Residence_type
##
                                   bmi
## avg_glucose_level
                                          smoking_status
                                                                    stroke
##
                                    NA
                                                    1544
                                                                         0
# Remove first column 'id'; irrelevant to data analysis
stroke <- stroke[2:12]</pre>
# Check attribute levels and convert data types to numeric
# For binary "Yes"/"No" values, "Yes" = 1 and "No" = 2
str(stroke)
## 'data.frame':
                   5110 obs. of 11 variables:
##
   $ gender
                       : chr
                             "Male" "Female" "Male" "Female" ...
## $ age
                       : num 67 61 80 49 79 81 74 69 59 78 ...
## $ hypertension
                     : int 0000101000...
## $ heart_disease
                      : int 1010001000...
## $ ever married
                       : chr "Yes" "Yes" "Yes" "Yes" ...
## $ work_type
                       : chr "Private" "Self-employed" "Private" "Private" ...
## $ Residence_type : chr "Urban" "Rural" "Rural" "Urban" ...
                              229 202 106 171 174 ...
## $ avg_glucose_level: num
                              "36.6" NA "32.5" "34.4" ...
## $ bmi
                       : chr
## $ smoking status
                       : chr "formerly smoked" "never smoked" "never smoked" "smokes" ...
## $ stroke
                       : int 111111111...
unique(stroke$gender)
## [1] "Male"
                "Female" "Other"
stroke$gender <- gsub("Male", 1, stroke$gender)</pre>
stroke$gender <- gsub("Female", 2, stroke$gender)</pre>
stroke$gender <- gsub("Other", 3, stroke$gender)</pre>
stroke$gender <- as.numeric(stroke$gender)</pre>
unique(stroke$gender)
## [1] 1 2 3
unique(stroke$ever_married)
## [1] "Yes" "No"
stroke$ever_married <- gsub("Yes", 1, stroke$ever_married)</pre>
stroke$ever_married <- gsub("No", 0, stroke$ever_married)</pre>
stroke$ever married <- as.numeric(stroke$ever married)</pre>
unique(stroke$ever_married)
```

[1] 1 0

```
unique(stroke$work_type)
## [1] "Private"
                        "Self-employed" "Govt_job"
                                                           "children"
## [5] "Never worked"
stroke$work_type <- gsub("Private", 1, stroke$work_type)</pre>
stroke$work_type <- gsub("Self-employed", 2, stroke$work_type)</pre>
stroke$work_type <- gsub("Govt_job", 3, stroke$work_type)</pre>
stroke$work_type <- gsub("children", 4, stroke$work_type)</pre>
stroke$work_type <- gsub("Never_worked", 5, stroke$work_type)</pre>
stroke$work_type <- as.numeric(stroke$work_type)</pre>
unique(stroke$work_type)
## [1] 1 2 3 4 5
unique(stroke$Residence_type)
## [1] "Urban" "Rural"
stroke$Residence_type <- gsub("Urban", 1, stroke$Residence_type)</pre>
stroke$Residence_type <- gsub("Rural", 2, stroke$Residence_type)</pre>
stroke$Residence_type <- as.numeric(stroke$Residence_type)</pre>
unique(stroke$Residence_type)
## [1] 1 2
stroke$bmi <- as.numeric(stroke$bmi)</pre>
unique(stroke$smoking_status)
## [1] "formerly smoked" "never smoked"
                                              "smokes"
                                                                  "Unknown"
stroke$smoking_status <- gsub("formerly smoked", 1, stroke$smoking_status)</pre>
stroke$smoking_status <- gsub("never smoked", 2, stroke$smoking_status)</pre>
stroke$smoking_status <- gsub("smokes", 3, stroke$smoking_status)</pre>
stroke$smoking_status <- gsub("Unknown", 4, stroke$smoking_status)</pre>
stroke$smoking_status <- as.numeric(stroke$smoking_status)</pre>
unique(stroke$smoking_status)
## [1] 1 2 3 4
# Check that all attributes are now numeric data types
str(stroke)
```

```
## 'data.frame':
                   5110 obs. of 11 variables:
                     : num 1212211222...
##
   $ gender
## $ age
                      : num 67 61 80 49 79 81 74 69 59 78 ...
## $ hypertension
                            0 0 0 0 1 0 1 0 0 0 ...
                      : int
   $ heart disease
                      : int
                             1 0 1 0 0 0 1 0 0 0 ...
## $ ever married
                      : num 1 1 1 1 1 1 1 0 1 1 ...
## $ work_type
                      : num
                             1 2 1 1 2 1 1 1 1 1 ...
##
   $ Residence_type
                      : num
                             1 2 2 1 2 1 2 1 2 1 ...
   $ avg_glucose_level: num
                             229 202 106 171 174 ...
## $ bmi
                             36.6 NA 32.5 34.4 24 29 27.4 22.8 NA 24.2 ...
                      : num
## $ smoking_status
                      : num 1 2 2 3 2 1 2 2 4 4 ...
##
   $ stroke
                      : int 1 1 1 1 1 1 1 1 1 1 ...
# Deal with NAs
# Method 1: remove NAs
stroke_noNAs <- stroke[complete.cases(stroke), ]</pre>
# Deal with outliers
# Did not remove outliers
# Examine correlations between all Independent Variables
cor(stroke_noNAs[1:10])
##
                          gender
                                         age hypertension heart_disease
## gender
                     1.000000000 0.02981661 -0.021978158 -0.083013859
                     0.029816612 1.00000000 0.274424873
## age
                                                           0.257122776
## hypertension
                    -0.021978158  0.27442487  1.000000000
                                                           0.115990991
## heart_disease
                    -0.083013859 0.25712278 0.115990991
                                                            1.00000000
                                                           0.111245121
## ever_married
                     0.035542943  0.68078165  0.162406260
## work_type
                    -0.071262910 -0.41534434 -0.073404033 -0.054926544
## Residence_type
                    -0.003755064 -0.01094811 0.001074146
                                                           0.002361744
## avg_glucose_level -0.052612931 0.23583816 0.180542699
                                                           0.154525119
## bmi
                     0.025657719 0.33339800 0.167810584
                                                           0.041357443
## smoking_status
                    -0.040065223 -0.38667582 -0.132831660 -0.071396924
##
                    ever_married
                                   work_type Residence_type avg_glucose_level
## gender
                     0.035542943 -0.07126291 -0.0037550644
                                                                -0.052612931
                     0.680781652 -0.41534434 -0.0109481144
## age
                                                                 0.235838155
## hypertension
                     0.180542699
## heart_disease
                     0.111245121 -0.05492654
                                             0.0023617439
                                                                 0.154525119
## ever_married
                     1.000000000 -0.37780605 -0.0049891711
                                                                 0.151377377
## work_type
                    -0.377806049 1.00000000 -0.0130835508
                                                                -0.063151561
## Residence_type
                    -0.004989171 -0.01308355
                                             1.0000000000
                                                                 0.007616542
## avg_glucose_level 0.151377377 -0.06315156
                                               0.0076165420
                                                                 1.000000000
## bmi
                     0.341694652 -0.34724139
                                              0.0001224412
                                                                 0.175502176
## smoking_status
                    -0.310702330 0.31330828 -0.0027191093
                                                                -0.108983692
##
                              bmi smoking_status
## gender
                     0.0256577189
                                    -0.040065223
                     0.3333979952
                                    -0.386675819
## age
## hypertension
                     0.1678105844
                                    -0.132831660
## heart_disease
                     0.0413574429
                                    -0.071396924
## ever married
                     0.3416946516
                                    -0.310702330
## work_type
                    -0.3472413855
                                     0.313308284
## Residence_type
                                    -0.002719109
                     0.0001224412
## avg_glucose_level 0.1755021761
                                    -0.108983692
```

```
## bmi 1.000000000 -0.235739765
## smoking_status -0.2357397646 1.000000000
```

Dimensionality Reduction

```
# Feature selection - see best combo of attributes
subsets <- regsubsets(stroke~gender+age+hypertension+heart_disease+ever_married+work_type+Residence_typ</pre>
sub.sum <- summary(subsets)</pre>
as.data.frame(sub.sum$outmat)
##
           gender age hypertension heart_disease ever_married work_type
## 1
     (1)
## 2 (1)
## 3 (1)
## 4 (1)
## 5 (1)
## 6 (1)
## 7 (1)
## 8 (1)
##
           Residence_type avg_glucose_level bmi smoking_status
## 1 (1)
## 2 (1)
                                          *
## 3 (1)
## 4 (1)
## 5 (1)
## 6 (1)
## 7
     (1)
## 8 (1)
# In order of importance:
# age (8x*), avg_glucose_level (7x*), heart_disease (6x*), hypertension(5x*), ever_married (4x*), bmi (
# Normalize continuous numeric variables
# Such as age, avg_blood_glucose, and bmi
# Using z-score methods
stroke_noNAs$age <- (stroke_noNAs$age - mean(stroke_noNAs$age))/sd(stroke_noNAs$age)
stroke_noNAs$avg_glucose_level <- (stroke_noNAs$avg_glucose_level - mean(stroke_noNAs$avg_glucose_level
stroke_noNAs$bmi <- (stroke_noNAs$bmi - mean(stroke_noNAs$bmi))/sd(stroke_noNAs$bmi)</pre>
```

Classification

Predictive Analytics: Logistic Regression

```
# Split dataset into 70% training, 30% testing sets
stroke_index1 <- sample(1:nrow(stroke_noNAs), 0.7 * nrow(stroke_noNAs))

# Assign selected sample as training set
# Assign leftover dataset as test set
train.set1 <- stroke_noNAs[stroke_index1,]</pre>
```

```
test.set1 <- stroke_noNAs[-stroke_index1,]</pre>
# Logistic regression model for prediction
# Using only the top 4 features based on feature selection: age, avg_glucose_level, heart_disease, hype
glm_model1 <- glm(formula = stroke~age+avg_glucose_level+heart_disease+hypertension, data = train.set1,
summary(glm_model1)
##
## glm(formula = stroke ~ age + avg_glucose_level + heart_disease +
       hypertension, family = "binomial", data = train.set1)
##
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
                                        3.5772
## -1.1426 -0.2981 -0.1622 -0.0787
##
## Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -4.22842
                                 0.17650 -23.957 < 2e-16 ***
                      1.52506
                                 0.14816 10.293 < 2e-16 ***
## age
## avg_glucose_level 0.20291
                                 0.06618
                                           3.066 0.00217 **
## heart_disease
                      0.54195
                                 0.23457
                                           2.310 0.02087 *
                                           2.398 0.01649 *
## hypertension
                      0.49880
                                 0.20803
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1238.95 on 3435 degrees of freedom
## Residual deviance: 980.37 on 3431 degrees of freedom
## AIC: 990.37
## Number of Fisher Scoring iterations: 7
Evaluation Metrics
predicted1 <- predict(glm_model1, test.set1, type = "response")</pre>
# Setting 0.5 as threshold - binary prediction
predicted_class1 <- ifelse(predicted1 >= 0.5, "Stroke", "No Stroke")
ConfusionMatrix1 <- table(actual = test.set1$stroke, predicted = predicted_class1)</pre>
ConfusionMatrix1
##
         predicted
```

Abysmal predictions using only feature selection and logistic regression applied to dataset with NAs removed (from BMI column) and outliers retained. No strokes are predicted at all

actual No Stroke

1415

58

0

1

##

##