Fubini's Thm

Let $Q = A \times B$, $A \subseteq \mathbb{R}^k$, $B \subseteq \mathbb{R}^k$ are boxes

Let $f : Q \to \mathbb{R}$ bdd

If f is inttble over Q, then $\pi \longmapsto \int_B f(x,y) dy$ and $\pi \longmapsto \int_B f(x,y) dy$ are intble over A and $\int_Q f = \int_A \int_B f(x,y) dy dx$ $= \int_A \int_B f(x,y) dy dy$

If Let $\overline{I}(x) = \int_{\mathcal{B}} f(x,y) \, dy$ and $\overline{I}(x) = \int_{\mathcal{B}} f(x,y) \, dy$ Let P be a partition of Q Write $P = (P_A, P_B)$ where PADEB are partitions Let R be a subbox of P of A be B respectively So \exists subbox R_A of A, R_B of B s.t. $R_A \times R_B = R$ Fix $x_B \in R_A$ we have $m_R(f) \leq \inf_{y \in R_B} f(x_0, y) = m_R f(x_0, y)$

Similarly we have $L(f,P) \leq L(I,P_A) \leq L(I,$

Integral over bunded sets.

Def Let $S \subseteq \mathbb{R}^n$ be bdd. and $f: S \rightarrow \mathbb{R}$ be bdd.

Define $f_S(x) = \begin{cases} f(x), & \text{if } x \in S \\ 0, & \text{else} \end{cases}$ Choose a box $G \supseteq S$ Define: $\int_S f(x) \, dx = \int_G f_S(x) \, dx$ provided that,

Last integral exists.

This is well-defined thanks to: f supported on A means $f(x) \neq 0$ iff $x \in A$ Let Q, Q' be two (closed) boxes in R^1 Let $f: R^n \to R$ be supported on $Q \cap Q'$ Then f inthle over $Q \iff inthle$ over Q' and $\int_{Q} f = \int_{Q'} f$

If It suffices to assume $Q \subseteq Q'$ Lif not, find $Q'' \supseteq Q, Q'$. Ry we proved it for set containing another set, we can note that $\int_{Q} f = \int_{Q'} f$ $\int_{Q'} f = \int_{Q'} f$ FLE assume $Q \subseteq Q'$ Suppose f is introle over QWrite $Q = I_1 \times I_2 \times ... \times I_n$ $Q' = I_1' \times I_2' \times ... \times I_n' \longrightarrow I_k \subseteq I_k'$ Given E > 0, pick a partition P of Q with $U(f_1P) - U(f_1P) \subset E$ If $P = (P_1, ..., P_n)$ Define $P' = (P_1', ..., P_n')$, a partition of Q'by letting P_1' be P_1' with the endpto of I_1' added in

Note $U(f_1P) = U(f_1P')$ Q' = Q'Since f = 0 on new subboxes Q' = 0 intole on Q' Q' = Q' Q' = Q'Since f = 0 on new subboxes Q' = 0 intole on Q'

Conversely

Soy f is intalle over Ω' let P' be a porthalm of Ω' Let $\widetilde{P'}$ be obtained by setting $\widetilde{Pi'}$ to be Pi' plus

the end plus of Ilet P be the associated porthalm of Ω Note $L(f, P') \leq L(f, \widetilde{P'}) = L(f, P) \leq u(f, P')$ $= u(f, \widetilde{P'}) \leq u(f, P')$

1

Thm Properties of integrals

Let $S \subseteq \mathbb{R}^n$ be bdd.

f,s: $S \rightarrow \mathbb{R}$ intble

- \Rightarrow (a) Linearity \forall ceIR, f+cg is intble and $\int_{S} (f+cg) = \int_{S} f+c\int_{S} g$
 - (b) M(x) = max(fox), gov) & mcx0 = min(fox), gov) are inthle
 - (c) if $f(x) \leq g(x) \ \forall x \in S$ $\implies \int_S f \leq \int_S g$
 - (d) |f| is inthe & $|\int_S f| \leq \int_S |f|$
 - (e) Monotonicity Let $T \subseteq S$ If nonnegbive f is intole on $T \otimes S$ $\implies \int_{T} f \leq \int_{S} f$

(f) Additivity If f is intolle on Si &S2

it is intolle on Si US2 and Si NS2

and $\int_{S_1 US2} f = \int_{S_1} f + \int_{S_2} f - \int_{S_1 NS2} f$

(g) Let $S_1, ..., S_n$ be bdd. subsets of \mathbb{R}^n Assume $m(S_i \cap S_i) = 0$, $f \mid \neq j$ $\implies f \text{ is intable over } US_n \text{ and}$ $\int_{US_n} f = \sum_{n} \int_{S_n} f$ $\sum_{n} f = \sum_{n} \int_{S_n} f \int_{S_n}$

Pf Some hw some exercise Rnk. f is intitle on S () m(Dfs) =0