PRELIM 2

VERSION	۱: D	ELT	A-2
---------	------	-----	-----

NAME:

- 1. Prelim 2 has two problems and is worth a total of 50 points.
- 2. You may use your course notes (on the computer, iPad, etc., or paper) or other course materials, e.g., discussion problems, to formulate your solutions.
- 3. Do not consult with any other person regarding the prelim (except the TAs or JV), or use *any form of electronic communication* to discuss the prelim questions. Violation of this policy will result in a ZERO for the prelim.
- 4. Do not consult the interwebs to search for the prelim questions/solutions. Violation of this policy will result in a ZERO for the prelim.
- 5. Show your work and state all assumptions or simplifications.
- 6. Good luck!

Figure 1: Pressure (kPa) versus composition $(x_1 \text{ or } y_1)$ for a binary mixture of Acetone(1)/Water(2) computed assuming ideal liquid and vapor phases.

1. (25 points) Cornell Inc. was hired to design a flash separation process for a binary $(\mathcal{M}=2)$ mixture of Acetone(1)/Water(2). The engineering team has been asked to do initial design calculations using an ideal Pxy diagram (Fig. 1).

Let the saturation pressure of component *i* be described by the Antoine equation:

$$\ln\left(P_i^{sat}\right) = A_i - \frac{B_i}{C_i + T} \tag{1}$$

where P_i^{sat} has units of kPa and the temperature T has units of ${}^{\circ}C$. The Antoine parameters are given by:

Table 1: Antoine parameters for the Acetone/Water flash problem.

Species	Α	В	C
Acetone	14.31	2756.22	228.06
Water	16.39	3885.7	230.17

Assumptions: (i) the Flash drum operates at steady-state; (ii) vapor-liquid equilibrium occurs everywhere inside the drum at some (T,P); (iii) treat both the vapor and liquid phases as ideal; (iv) the Flash drum is well-mixed; (v) a single liquid feed

(stream 1) enters, and a vapor (stream 2) and liquid (stream 3) exit the drum; (vi) R = 8.314×10^{-2} L bar K⁻¹ mol⁻¹.

- a) (3 points) What temperature T (°C) is the Flash drum operating at? (place your estimated temperature in Table 2).
- b) (20 points) Graphically estimate the exit composition and compute the missing values in Table 2 assuming the Flash drum operates at P = 150 kPa with an input feed rate of \dot{F} = 10 mol/t and z_1 = 0.64.
- c) (2 points) Check your graphical composition estimates by computing the residual ϵ from the pressure expression:

$$\epsilon \equiv x_1 P_1^{sat} + x_2 P_2^{sat} - P \tag{2}$$

If $abs(\epsilon) > 5\%$, then recompute your values for part b (and update your values in Table 2).

Table 2: State table for the Pxy flash problem.

Stream	State	T (°C)	$\dot{n}_{s,T}$ (mol/t)	$x_1 \text{ or } y_1$	$x_2 \text{ or } y_2$	P (kPa)
1	L	N/A	10	0.64	0.36	N/A
2	V					
3	L					

Figure 2: Temperature (${}^{\circ}C$) versus composition (x_1 or y_1) for a binary mixture of Acetone(1)/Water(2) computed assuming ideal liquid and vapor phases (solid lines) and measured experimentally (dashed lines).

2. (25 points) Cornell Inc. was hired to design a flash separation process for a binary $(\mathcal{M}=2)$ mixture of Acetone(1)/Water(2). The engineering team performed initial design calculations assuming an ideal liquid and vapor phase, a drum temperature of T = 70°C and z_1 = 0.64 (Fig. 2).

Let the saturation pressure of component *i* be described by the Antoine equation:

$$\ln\left(P_i^{sat}\right) = A_i - \frac{B_i}{C_i + T} \tag{3}$$

5

where P_i^{sat} has units of kPa and the temperature T has units of ${}^{\circ}C$. The Antoine parameters are given by:

Table 3: Antoine parameters for the Acetone/Water flash problem.

Species	Α	В	С
Acetone	14.31	2756.22	228.06
Water	16.39	3885.7	230.17

Assumptions: (i) the Flash drum operates at steady-state; (ii) vapor-liquid equilibrium occurs everywhere inside the drum at some (T,P); (iii) treat both the vapor

and liquid phases as ideal (unless using experimental data); (iv) the Flash drum is well-mixed; (v) a single liquid feed (stream 1) enters, and a vapor (stream 2) and liquid (stream 3) exit the drum; (vi) $R = 8.314 L kPa K^{-1} mol^{-1}$.

- a) (2 points) Using the ideal data, what pressure is the Flash drum operating at? (place your estimated pressure value in Table 4).
- b) (12 points) Estimate the missing values in Table 4 assuming an ideal system, with an input feed rate of \dot{F} = 10 mol/t and composition z_1 = 0.64.
- c) (10 points) When presenting your design, the client revealed the actual Pxy behavior for this mixture (Fig. 2, dashed lines). Recompute the missing values in Table 5 for the actual system.

Table 4: Ideal state table for the Acetone/Water Txy flash problem.

Stream	State	P (kPa)	$\dot{n}_{s,T}$ (mol/t)	$x_1 \text{ or } y_1$	$x_2 \text{ or } y_2$	T (°C)
1	L	N/A	10	0.64	0.36	N/A
2	V					70.0
3	L		7.1	0.55		70.0

Table 5: Actual state table for the Acetone/Water Txy flash problem.

Stream	State	$\dot{n}_{s,T}$ (mol/t)	$x_1 \text{ or } y_1$	x_2 or y_2	T (°C)
1	L	10	0.64	0.36	N/A
2	V		0.72		70.0
3	L				70.0