Svar och statistik från Quizen, Tenta IX1303, 2021 08 26, del 1

Fråga 1

Vad är avståndet mellan punkterna (-1,-1,-1) och (1,1,1)? ("l.e." betyder längdenheter.)

- a) 12 l.e. b) $2\sqrt{3}$ l.e. c) $2/\sqrt{3}$ l.e. d) $\sqrt{2}/\sqrt{3}$ l.e. e) 2 l.e.

, v	3
a, (Incorrect answer)a	1 respondent
b, (Correct answer)b	61 respondents
c, (Incorrect answer)c	5 respondents
d, (Incorrect answer)d	
e, (Incorrect answer)e	1 respondent

Fråga 2

Vektorerna u = i - 2j + 3k och v = 3i + j - 4k. Beräkna kryssprodukten $u \times v$.

- a) 5i + 13j + 7k b) 3i 2j + k c) -6i + 2j + 13k
- d) 2i 12j 7k e) 2i j + 5k

a, (Correct answer)a	64 respondents
b, (Incorrect answer)b	1 respondent
c, (Incorrect answer)c	
d, (Incorrect answer)d	2 respondents
e, (Incorrect answer)e	1 respondent

Fråga 3

Bestäm arean av triangeln med hörn i punkterna (1,2,0), (1,0,2) och (0,3,1). ("a.e." betyder areaenheter.)

- a) $3\sqrt{2}$ a.e. b) $\sqrt{3}$ a.e. c) 12 a.e. d) $\sqrt{6}$ a.e. e) 9 a.e.

a) 3 v 2 a.e. b) v 3 a.e.	c) 12 a.c. a) vo a.c. c) y a.c.
a, (Incorrect answer)a	9 respondents
b, (Incorrect answer)b	7 respondents
c, (Incorrect answer)c	1 respondent
d, (Correct answer)d	49 respondents
e, (Incorrect answer)e	1 respondent
No Answer	1 respondent

Givet matriserna $A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ och $B = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$. Vad blir $B^T A^T$?

a) 9 b) $\begin{pmatrix} 1 \\ 6 \\ 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 6 & 0 \end{pmatrix}$ d) 7 e) 5

(0)	
a, (Incorrect answer)a	2 respondents
b, (Incorrect answer)b	3 respondents
c, (Incorrect answer)c	
d, (Correct answer)d	62 respondents
e, (Incorrect answer)e	1 respondent

Vad blir produkten $detA \cdot detB$ när matriserna A och B ges av

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 2 & 2 \\ -2 & 1 & 0 \end{pmatrix} \text{och } B = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}?$$

- a) Inte möjlig att bestämma. b) $\begin{pmatrix} 8 & 9 & 7 \\ 5 & 8 & 8 \\ 0 & 3 & -3 \end{pmatrix}$ c) $\begin{pmatrix} 8 & 5 & 0 \\ 9 & 8 & 3 \\ 7 & 8 & -3 \end{pmatrix}$

d) 12 e) -144

a, (Incorrect answer)a	3 respondents
b, (Incorrect answer)b	3 respondents
c, (Incorrect answer)c	1 respondent
d, (Incorrect answer)d	5 respondents
e, (Correct answer)e	56 respondents

Fråga 6

Bestäm inversen, A^{-1} , till matrisen $A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix}$.

- a) $\frac{1}{3}\begin{pmatrix} 7 & 2 & 2\\ -17 & -1 & -4\\ 2 & 1 & 1 \end{pmatrix}$ b) Inte möjlig att bestämma. c) $\frac{1}{2}\begin{pmatrix} 3 & 2 & 1\\ -7 & 2 & 5\\ 0 & 2 & 1 \end{pmatrix}$
- $d) \ \begin{pmatrix} 1 & 3 & -5 \\ 0 & 1 & -1 \\ -2 & -2 & 9 \end{pmatrix} \qquad \qquad e) \ \begin{pmatrix} 1 & 1 & 1 \\ 2 & -2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$

a, (Correct answer)a	54 respondents
b, (Incorrect answer)b	7 respondents
c, (Incorrect answer)c	2 respondents
d, (Incorrect answer)d	4 respondents
e, (Incorrect answer)e	
No Answer,	1 respondent

Fråga 7

Vilka av vektorerna $\boldsymbol{u} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \boldsymbol{v} = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$ och $\boldsymbol{w} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$ är ortogonala?

- a) Inga
- b) **u** och **v**
- c) \boldsymbol{u} och \boldsymbol{v} , samt \boldsymbol{u} och \boldsymbol{w}

- d) \boldsymbol{v} och \boldsymbol{w}
- e) Alla

-,	
a, (Incorrect answer)a	10 respondents
b, (Incorrect answer)b	3 respondents
c, (Incorrect answer)c	6 respondents
d, (Incorrect answer)d	6 respondents
e. (Correct answer)e	43 respondents

Vektorerna $u=\binom{2}{1}$, $v=\binom{-2}{4}$ utgör en ortogonal bas i \mathbb{R}^2 . Vad blir $w=\binom{-4}{3}$ uttryckt som en linjär kombination av dessa basvektorer?

a)
$$w = -\frac{2}{3}u + \frac{3}{4}v$$
 b) $w = -u + 3v$ c) $w = -u + v$

b)
$$w = -u + 3v$$

c)
$$\mathbf{w} = -\mathbf{u} + \mathbf{v}$$

d) =
$$2u + \frac{1}{3}u$$

d) =
$$2u + \frac{1}{3}v$$
 e) $w = \frac{4}{3}u - \frac{3}{2}v$

3	3 2
a, (Incorrect answer)a	4 respondents
b, (Incorrect answer)b	4 respondents
c, (Correct answer)c	56 respondents
d, (Incorrect answer)d	1 respondent
e, (Incorrect answer)e	3 respondents

Fråga 9

Bestäm den ortogonala projektionen av $\mathbf{y} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$ på vektorn $\mathbf{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.

a)
$$\binom{2}{1}$$

- a) $\binom{2}{1}$ b) $\binom{8}{4}$ c) $\binom{-1}{1}$ d) $\binom{4}{7}$ e) $\binom{-1}{2}$

a, (Incorrect answer)a	4 respondents
b, (Correct answer)b	55 respondents
c, (Incorrect answer)c	2 respondents
d, (Incorrect answer)d	4 respondents
e, (Incorrect answer)e	3 respondents

Fråga 10

Vilken av uppsättningarna basvektorer a-e) utgör ett ON- (ortonormerat)

$$a) \ \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \frac{\sqrt{2}}{3} \begin{pmatrix} 0 \\ 1/3 \\ 1/3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \qquad b) \ \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \qquad c) \ \left\{ \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

b)
$$\left\{\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\\0\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right\}$$

c)
$$\left\{\frac{1}{3} \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right\}$$

d)
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \frac{2}{\sqrt{3}} \begin{pmatrix} 0\\1/3\\1/3 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
 e) $\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$

e)
$$\left\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\right\}$$

(1) (1)	
a, (Incorrect answer)a	3 respondents
b, (Correct answer)b	58 respondents
c, (Incorrect answer)c	2 respondents
d, (Incorrect answer)d	2 respondents
e, (Incorrect answer)e	3 respondents

Två baser är givna, $A = \{a_1, a_2\}$ och $B = \{b_1, b_2\}$, där vektorerna ges av $a_1 = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$, $a_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, $b_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ och $b_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Hur ser basbytesmatrisen från basen A till B ut?

a)
$$\begin{pmatrix} -1 & 1 \\ 8 & -5 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ c) $\begin{pmatrix} -1 & 8 \\ 1 & -5 \end{pmatrix}$

b)
$$\begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

c)
$$\begin{pmatrix} -1 & 8 \\ 1 & -5 \end{pmatrix}$$

d)
$$\begin{pmatrix} -2 & 1 \\ 3 & -2 \end{pmatrix}$$
 e) $\begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$

e)
$$\begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$

a, (Incorrect answer)a	23 respondents
b, (Incorrect answer)b	12 respondents
c, (Incorrect answer)c	7 respondents
d, (Incorrect answer)d	10 respondents
e, (Correct answer)e	16 respondents

Fråga 12

Vilket av följande påståenden är falskt, där A är en $(m \times n)$ -matris?

- Nollrummet, eller kärnan, är ett vektorrum.
- Kolumnrummet till A finns i \mathbb{R}^m . b)
- c) Kolumnrummet till A utgörs av lösningarna till Ax = b.
- d) Kärnan till en linjär transform finns i \mathbb{R}^n .
- Nollrummet till A utgörs av all lösningar till den homogena ekvationen Ax = 0.

a, (Incorrect answer)a	11 respondents
b, (Incorrect answer)b	32 respondents
c, (Correct answer)c	8 respondents
d, (Incorrect answer)d	14 respondents
e, (Incorrect answer)e	3 respondents

Fråga 13

Vilket av följande påståenden är falskt då A är en (5 × 6)-matris?

- Om A har 4 pivot-kolumner så blir $dim(Nul\ A) = 2$.
- Summan av dimensionerna för radrummet och nollrummet för A är lika med antalet rader i A.
- c) För A gäller $Col A = \mathbb{R}^5$.
- Dimensionen av nollrummet för A är samma som antalet kolumner hos A som inte är pivot-kolumner.
- Om nollrummet hos A har 4 dimensioner, så är $dim(Col\ A)=2$.

a, (Incorrect answer)a	6 respondents
b, (Correct answer)b	25 respondents
c, (Incorrect answer)c	22 respondents
d, (Incorrect answer)d	6 respondents
e, (Incorrect answer)e	9 respondents

Fråga 14

Vad gör den linjära transformen i \mathbb{R}^2 som representeras av matrisen $\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$, när 0 < a < 1?

- a) Skjuvning av en figur vertikalt längs negativa y-axeln.
- b) Trycker ihop en figur åt vänster längs x-axeln.

- Vrider en bild i planet $2\pi a$ (radianer) motsols. c)
- Trycker ihop en figur vertikalt längs y-axeln.
- Projicerar en figur på y-axeln, nerskalad med faktorn a.

a, (Incorrect answer)a	1 respondent
b, (Incorrect answer)b	10 respondents
c, (Incorrect answer)c	6 respondents
d, (Correct answer)d	48 respondents
e, (Incorrect answer)e	3 respondents

År 2020 har en stad har en befolkning på 100 000 människor, som fördelar sig så att 40 000 bor i centrum och 60 000 bor i förorter. Man vet att varje år flyttar 10% från centrum till förort, medan 20% flyttar åt andra hållet. Vektorn b_i anger antalet personer som bor i centrum och förorter vid året i, $b_i = \begin{pmatrix} x_{centrum} \\ x_{förort} \end{pmatrix}$. Hur kan en transform se ut, som beskriver hur fördelningen av människor ändras

a)
$$b_1 = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix} b_0$$

b)
$$\mathbf{b_0} = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix} \mathbf{b}$$

a)
$$b_1 = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix} b_0$$
 b) $b_0 = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix} b_1$ c) $b_1 = \begin{pmatrix} 0.1 & 0.8 \\ 0.9 & 0.2 \end{pmatrix} b_0$ d) $b_1 = \begin{pmatrix} 0.2 & 0.8 \\ 0.9 & 0.1 \end{pmatrix} b_0$

d)
$$b_1 = \begin{pmatrix} 0.2 & 0.8 \\ 0.9 & 0.1 \end{pmatrix} b_0$$

e)
$$\boldsymbol{b_0} = \begin{pmatrix} 0.2 & 0.9 \\ 0.8 & 0.1 \end{pmatrix}^{-1} \boldsymbol{b_1}$$

a, (Correct answer)a	46 respondents
b, (Incorrect answer)b	10 respondents
c, (Incorrect answer)c	6 respondents
d, (Incorrect answer)d	3 respondents
e, (Incorrect answer)e	3 respondents

Fråga 16

Minsta kvadratanpassing är ett mycket vanligt sätt att approximera ett matematiskt uttryck till en uppsättning data. För ett inkonsistent system Ax = b, där A är en $m \times n$ -matris, kan man med denna metod hitta ett x som minimerar felet $\| \boldsymbol{b} - A \boldsymbol{x} \|$. Vilket av följande påståenden om minsta kvadratmetoden är

- För ett system i \mathbb{R}^2 minimerar metoden avståndet i y-led mellan a) datapunkter (x,y) och det approximerade uttrycket.
- Varje minsta kvadratlösning till $A \boldsymbol{x} = \boldsymbol{b}$ satisfierar ekvationen $A^T A \mathbf{x} = A^T \mathbf{b}.$
- Matrisen $A^T A$ är inte inverterbar.
- d) Metoden kan användas för att approximera linjära och även icke linjära samband.
- Ekvationen Ax = b har en unik minsta kvadratlösning för varje b i \mathbb{R}^m om kolumnerna i A är linjärt oberoende.

a, (Incorrect answer)a	6 respondents
b, (Incorrect answer)b	5 respondents
c, (Correct answer)c	26 respondents
d, (Incorrect answer)d	21 respondents
e, (Incorrect answer)e	10 respondents