- 1. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that the euality $f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$ holds for all $x, y \in \mathbb{R}$. (Here $\lfloor z \rfloor$ denotes the greatest integer less than or equal to z.)
- 2. Let *I* be the incentre of triangle *ABC* and let Γ be its circumcircle. Let the line *AI* intersect Γ again at *D*. Let *E* be a point on the arc \overline{BDC} and *F* a point on the side *BC* such that $\angle BAF = \angle CAE \angle \frac{1}{2} \angle BAC$. Finally, let *G* be the midpoint of the segment *IF*. Prove that the lines *DG* and *EI* intersect on Γ .
- 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g:\mathbb{N} \to \mathbb{N}$ such that (g(m) + n)(m + g(n)) is a perfect square for all $m, n \in \mathbb{N}$.
- 4. Let P be a point inside the triangle ABC. The lines AP, BP and CP intersect the circumcircle Γ of triangle ABC again at the points K, L and M respectively. The tangent to Γ at C intersects the line AB at S. Suppose that SC = SP. Prove that MK = ML.
- 5. In each of six boxes B_1 , B_2 , B_3 , B_4 , B_5 , B_6 there is initially one coin. There are two types of operation allowed:
 - Type 1: Choose a nonempty box B_j with $1 \le j \le 5$. Remove one coin from B_j and add two coins to B_{j+1} .
 - Type 2: Choose a nonempty box B_k with $1 \le k \le 4$. Remove one coin from B_k and exchange the contents of (possible empty) boxes B_{k+1} and B_{k+2} . Determine whether there is a finite sequence of such operations that results in boxes B_1 , B_2 , B_3 , B_4 , B_5 being empty and box B_6 containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{(b^c)}$.)
- 6. Let $a_1, a_2, a_3,...$ be a sequence of positive real numbers. Suppose that for some positive integer s, we have $a_n = max\{a_k + a_{n-k} | 1 \le k \le n-1\}$ for all n > s. Prove that there exist positive integers l and N, with $l \le s$ and such that $a_n = a_l + a_{n-l}$ for all $n \le N$.