

MA 406 General Topology

Notes By: Aryaman Maithani

Spring 2020-21

Lecture 1 (07-01-2021)

07 January 2021 15:04

Det. A topology on a set X is a collection T of subsets of X having the following properties:

- (1) \$\psi\$ and \$X\$ are in \$\mathcal{T}\$.
- (2) The union of the elements of any subcollection of J is in T.
- (3) The intersection of the elements of any finite subcollection of T is in T.

Any $V \in J$ is called an open set of X w.r.t. J. The poir (X, T) or just the set X is called a topological space.

Can reconcile the above with open set in R, or in general, any metric space X. That can be seen as a motivation for the definition.

Examples

- (1) $X = \{a, b, c\}$ $J_1 = \{ \beta, \{a\}, \{b\}, \{a, b\}, X\} \rightarrow (an be seen (fairly easily))$ $J_2 = \{ \beta, X\}$ that this is a topology frivial (pur intended, cf. next example)
- (2) If X is any set, the collection of all subsets of X is a topology on X, it is called the discrete topology. (J = P(X), that is)

The collection { \$1, X} is also a topology on X called the indiscrete topology or trivial topology.

(3) Let X be a set. Let

Then, It is a topology on X, called the finite complement topology on X. $\phi \in T_f$ is clear. $X \in I_f$ since $|X| \times |x| = 0 < \infty$.

Let $\{ V_{\alpha} \}_{\alpha \in \Lambda}$ be sets in T_f . PLOG, $V_{\alpha} \neq \emptyset$ $\forall \alpha$.

Note X \ (U Ux) = x \cap (UUa)^c

 $= \bigcap_{\alpha} (U_{k}^{c})$

Note that each U_x^c is finite. $(U_x \neq 6)$ Thus, the above intersection is finite.

· Similarly, for finite unions, again reduce it to $\bigcup_{i=1}^{\infty} (U_i^c)$ and conclude as earlier.

(Here, if some Vi were \$, then so would be the intersection.)

(If X is finite, the II = P(X). Thus, we get discrete.)

Let X be a set. Let Ic be the collection of subsets such that XIV is either countable or all of X. Called the co-countable topology. (Generalising the previous)

Def! Suppose that I and I' are two topologies on a given set X.

If I' > I, we say that I' is finer than I and that I is coarsen than I! If J' ? I, then the above is strictly finer and strictly

coarser, respectively. The above gives us a way to compare two topogres) Example We have the usual topology on R. Strictly coasa We also have the discrete topology on R. than this If X is a set, a basis for a topology on X is a collection B of subsets of x (called basis elements) (1) for each $x \in X$, $\exists B \in \mathcal{B}$ s.t. $z \in \mathcal{B}$. (2) if $z \in B$, $\cap B_2$ for some B_1 , $B_2 \in \mathbb{R}$, then $\exists B_3 \in \mathcal{B}$ s.t. $x \in \mathcal{B}_3 \subset \mathcal{B}_1 \cap \mathcal{B}_2$. Note that in the above, B is just some collection of subsets of X satisfying (1) & (2). No topology is mentioned EXAMPLES We now get a topology out of a basis: Det? If B is a basis for a topology on x, the topology I generated by B is described as follows: A subset U of X is said to be open if for every $z \in U$, there exists $B \in \mathbb{R}$ s.t. z E B C U.

 $z \in B \subset U$. (By "open" in above, we mean element of au. Same thing for what we see in the proof below.)

Examples (1) & (2) - gives standard topology on R2

(3) -> gives discrete topology on X.

We still have to show that it is topology.

Proof.

. $\beta \in J$ vacuously $X \in J$ since given any $x \in X$, $JB \in B$ set $z \in B$. BC X is by definition.

· Let [Wi]ae 1+0 be open. Let U:= U Vx.
Fin xoE 1.

Let $x \in U$ be arbitrary. Then, $x \in V_{X_0} \leftarrow open$

BE BSI REBCU. CU.

∴ UEJ.

· Let U, and Uz be open. Put U:= 4 n Uz.

Let z E V.

Then $z \in U$ and $z \in U_z$ $\exists \beta, \in B$ $\exists \beta \in B$ $\exists \beta \in B$ $\exists \beta \in B$ $\exists \beta \in B$

 $\therefore 2 \in \beta, \cap \beta_2 \subset \nu_1 \cap \nu_2$

 $\exists B_3 \in \mathcal{B}$ site $z \in \mathcal{B}_3 \subset \mathcal{B}$, $n \mathcal{B}_2 \subset \mathcal{U}_1 \cap \mathcal{U}_2 = \mathcal{U}$.

> UE J.

By induction, any finite intersection is in J. \square $\bigcap_{i=1}^{n} U_i = U_n \cap \left(\bigcap_{i=1}^{n-1} U_i\right).$

Lecture 2 (11-01-2021)

11 January 2021 15:31

Lemma! Let B be a basis and I the topology generated by B. Then, I is the collection of all unions of elements of B.

Note that & is empty union.

hof. Given {vx} cB, it is clear that UVa ∈ I since I is a topology and Un are open. (By def:)

Conversely, let UEJ. Given any $n \in U$, $\exists B_2 \in B_2 \in B_2$. $2 \in B_2 \subset U$. (By def' of J.)

 $\bigcup g_n = 0.$ Thus, (E) since Bn CU

(2) Fach nev is in Bn.

(Note that if U = 6, the last union is the empty union!)

The above gives us a way of entracting a basis B

if we are abready given a topology T.

Namely, pick any subsolvection B (T such that I

is precisely the collection of all unions of elements of B.

Lemma 2. Let B and B' be bases for the topologies I and I', respectively, on X. TFAE:

- (i) J' is finer than J. (recall this means T(J')(ii) for each $z \in x$ and each basis element $B \in B$ containing z, $\exists B' \in B'$ s.t. $z \in B' \in B$.

 $\frac{1}{100}$ (i) \Rightarrow (ii) Let $x \in X$ and $B \in B$ be arbitrary. Note that B is open in (X, J), i.e., B & J. Note that B is open in (XJ), i.e., BET.

Thus, BEJ'.

Since B is open in J', JB'EB' s.t. ZEB'CB.

(Defin of top. generated.)

(ii) \Rightarrow (i) Suppose $U \in T$. We show that $U \in J'$.

Let $z \in U$. By def of T, $J \in B \in B$ s. $f : z \in B \subset U$.

By (ii), $J \in B' \in B'$ s. $f : z \in B' \subset B \subset U$.

Since n was arbit, we see that $u \in J'$. (By def of J') Thus, $J \subset J'$.

Lemma 3. Let X be a topological space. Suppose C is a collection of open sets of X s.t. for each open set $U \subset X$ and each $x \in U$, $\exists C \in C$ s.t. $x \in C \subset U$.

Then C is a basis for the topology.

Roof. Showing C is a basis.

- (i) Given any x EX, X is an open set containing X.

 Thus, by hypothesis, $\exists C \in \mathcal{C}$ s. $\in \mathcal{C}$.
- (ii) Let C_1 , $(z \in C \text{ s.t. } x \in C_1 \cap C_2$. Note that C_1 , C_2 are open and hence, $C_1 \cap C_2$ is open. By hypothesis, $FC_3 \in C$ s.t. $x \in C_3 \subset C_1 \cap C_2$.

Thus, e satisfies both properties of a topology.

· C generates the topology.

Let J denote the topology of X. Let J' be the topology generated by E.

Let UEJ', then U is some union of elements of C. but elements of E are clements of I and thus, UEJ. Thus, J'CJ. Conversely, let UEJ. for each $x \in U$, $\exists G_1 \in C \to C$. As earlier, U = U Cn & J. Thus, JCJ'. Let B be the collection of all bounded intervals. B = { (a, b) : -60< a < b < 60}. B is a basis and the topology generated by B is called the standard topology on R. If B' is the collection of all half open intervals of the form Ia, b), then B' is also a basis and the topology generated by B' is called the lower limit topology on R. Lemma 4. The lower limit topology is strictly finer than the standard Proof. Let J denote the exampland topology and J' the lower limit. " J G J'. Let (9,6) be an arbit basis element and let 2 + (a,b).

	Then, [2, b) is a basis element for J'2
	2 E[2, b) C (a, b).
	Thus, JCJ, by Lemma 2.
) 3 3 3, 3 3
	· J' = J. Note that [0, 1) ET.
	but ainen OF [8, 1) there is no (a,b)30
	but given $0 \in [0, 1)$, there is no (a,b) 30 $(a,b) \subset [0, 1)$.
Defn	A sub-basis of for a topology is a collection of subsets of X
	is have the in it
	(Note that we had a six of the Cult to the total and)
	A subbasis S for a topology is a collection of subsets of X whose union is X. (Note that no topology given so far. Similar to what we saw for) basis.
	The topology generated by the subbasis S is defined to be the collection of all unions of finite intersections of elements of S.
	the hopotogy generated by the sub basis is defined to
	be the collection of all unions of finite intersections of
	elements of S.
	We need to show that the topology defined above is actually
	a basis
	let B be the collection of finite intersections of elements of S. We show B is a basis. This suffices. Why?)
	elements of (We show B is a bossis. This sulling Why?)
	lemma !!
	(i) Let 2 Ex Trun, 3 SE S st 2 ES (US=X) But SEB.
	or con
	BUT DE YS.
	(1) let B_1 , B_2 $\in B$ and $x \in B_1 \cap B_2$.
	(ii) let B_1 , $B_2 \in B$ and $x \in B_1 \cap B_2$. But note that $B_1 \cap B_2 \in B$. (Liky?)
	Thus, both the conditions are satisfied.
	V
Remark	The standard topology of R is also called the order topology

Notes Page 9

on K, because of the order relation of R. (We will see this in general, later.) Def! Let X and Y be topological spaces. The product topology on XXY is the topology having as basis the collection B of all sets of the form UXV, where U=X and VCV V c y are open (Open in the respective topologies, i.e.) Note that B is a basis because: (i) X×Y is itself a basis element (ii) $U \times V$, $U' \times V' \in \mathcal{B} \Rightarrow (U \times U) \cap (U' \times V') = (U \cap U') \times (V \cap V') \in \mathcal{B}$ intersection of Bitself won't be the topology. (In general) B is a basis for a topology Ir on X, and C for Jy on Y, then the collection Thm S. J. $\mathcal{D} = \{ B \times C : B \in B, C \in e \}$ is a basis for the product topology of X×Y. front. We check that te hypotheses of Lemma 3 are entisfied. Let WC X×Y be open and (a, y) ∈ W. Then, by def of prod. top., I U & Jx, V & Jy s.t. $(x, y) \in U \times V \subset W$

Since B is a basis for Jr, JBEB st. REBCU.

11 J CE C st. y & C C V. $\Rightarrow (x,y) \in \mathbb{B} \times C \subset U \times V \subset W.$