

VGG16

GOOLENET (IDEAS)

- We need to go deeper
 - Vanishing gradient
- 1x1 Convolution
 - Dimension reduction
- Inception module
- Global Average Pooling
- Auxiliary Classifiers

GOOGLENET (INCEPTION MODULE)

GOOGLENET

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3\times3/2$	$28 \times 28 \times 192$	0								
inception (3a)		$28{\times}28{\times}256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	$14 \times 14 \times 480$	0								
inception (4a)		$14{\times}14{\times}512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14{\times}14{\times}512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14{\times}14{\times}528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		$1\times1\times1000$	0								

RESNET (RESIDUAL BLOCK)

RESNET

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer conv1 112×112 $7\times7, 64, \text{ stride 2}$ conv2_x 56×56 $\begin{bmatrix} 3\times3, 64\\ 3\times3, 64 \end{bmatrix} \times 2 \begin{bmatrix} 3\times3, 64\\ 3\times3, 64 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 64\\ 3\times3, 64\\ 1\times1, 256 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 164\\ 3\times3, 64\\ 1\times1, 256 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 128\\ 3\times3, 128\\ 1\times1, 512 \end{bmatrix} \times 4 \begin{bmatrix} 1\times1, 128\\ 3\times3, 128\\ 1\times1, 512 \end{bmatrix} \times 4 \begin{bmatrix} 1\times1, 128\\ 3\times3, 128\\ 1\times1, 512 \end{bmatrix} \times 4 \begin{bmatrix} 1\times1, 128\\ 3\times3, 128\\ 1\times1, 512 \end{bmatrix} \times 4 \begin{bmatrix} 1\times1, 128\\ 3\times3, 128\\ 1\times1, 512 \end{bmatrix} \times 4 \begin{bmatrix} 1\times1, 256\\ 3\times3, 256\\ 1\times1, 1024 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 256\\ 3\times3, 256\\ 1\times1, 1024 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 256\\ 3\times3, 256\\ 1\times1, 1024 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 512\\ 3\times3, 512\\ 1\times1, 2048 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 512\\ 3\times3, 512\\ 1\times1, 2048 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 512\\ 3\times3, 512\\ 1\times1, 2048 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 512\\ 3\times3, 512\\ 1\times1, 2048 \end{bmatrix} \times 3 \begin{bmatrix} 1\times1, 2048\\ 1\times1, 2048 \end{bmatrix} \times $	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	conv1	112×112	7×7, 64, stride 2									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	conv2_x	56×56	3×3 max pool, stride 2									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	3×3, 64 ×3	3×3, 64 ×3	3×3, 64 ×3					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	3×3, 128 ×4	3×3, 128 ×4	3×3, 128 ×8					
	conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	3×3, 256 ×6	3×3, 256 ×23	3×3, 256 ×36					
1×1 average pool, 1000-d fc, softmax	conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	3×3, 512 ×3					
		1×1	average pool, 1000-d fc, softmax									

- Significant reduction in number of parameters. (same depth)
- Lightweight deep neural network
- Depthwise separable convolution
 - Depthwise convolution
 - Pointwise convolution

MOBILENET (CONVOLUTION)

• We can separate dimensions:

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} . \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

- From 9 parameters to 6 parameters
- Lower operations
- We can apply this for depth to

Example:

- 512*512 input image
- 3*3 filters
- 64 input depth
- 128 output depth
- Params:
 - Normal \Rightarrow 73,728
 - MobileNet => 704
- Operations:
 - Normal => 38.65e9
 - MobileNet => 4.59e9

MOBILENET

Semantic Segmentation

U-NET OPERATIONS

- Convolution
- Pooling (down sampling)
 - Lose "WHERE" information
 - We need "WHERE" and "WHAT" information both
- Up sampling
 - Transpose Convolution (deconvolution)
 - Convolution with fraction stride
- Skip connection

TRANSPOSE CONVOLUTION

- For matrices we know:
 - $A_{1*100}.B_{100*3} = C_{1*3}$
 - \bullet $C_{1*3}.B_{3*100}^T = D_{1*100}$
- We write convolution as dot product and
- Then write it the other way around

CONVOLUTION AS DOT PRODUCT

TRANSPOSE CONVOLUTION

U-NET ARCHITECTURE

Object Detection

RETINANET

- Focal loss
 - $FL(p_t) = -(1 p_t)^{\gamma} \log(p_t)$
 - Lower weight to easy samples
 - Focus training on hard negatives
- Non maximum suppression

$$p_t = \begin{cases} p & \text{if } y = 1 \\ 1 - p & \text{if } y = 0 \end{cases}$$

FURTHER READING

- LeNet
- AlexNet
- ZFNet
- Mask R-CNN
- YOLO (You Only Look Once)
- SSD (Single Shot Detector)

- Verification
- Identification

- Each identity is a class
- We need lots of images for each person
- Its not easy to add one person
- Solution -> one shot learning

SIAMESE NETWORK

DISCRIMINATIVE VS SEPARABLE

TRIPLET LOSS

TRIPLET LOSS

- $L(a, p, n) = \max(0, D(a, p) D(a, n) + margin)$
- D is distance
- D could be L2 distance
- D could be (1 cosine similarity)

PROBLEMS WITH TRIPLET LOSS

- Most triplet has no information
- We can choose hard negative
- Noisy data and mislabeled data
- Computation is time consuming
- We can choose farthest positive and nearest negative from batch
- We need large batch-size (for example 1000)
- Memory bottleneck

- We can use classification to train model
- Try to hold feature vector of each class near each other
- Force model to shape feature vectors as sphere
- This feature space will be discriminative

CENTER LOSS

$$\mathcal{L}_{s} = -\sum_{i=1}^{m} \log \left(\frac{e^{W_{y_{i}}^{T} x_{i} + b_{y_{i}}}}{\sum_{j=1}^{n} e^{W_{j}^{T} x_{i} + b_{j}}} \right)$$

$$\mathcal{L}_C = rac{1}{2} \sum_{i=1}^m \|oldsymbol{x}_i - oldsymbol{c}_{y_i}\|_2^2$$

$$\mathcal{L} = \mathcal{L}_S + \lambda \mathcal{L}_C$$

$$= -\sum_{i=1}^m \log \frac{e^{W_{y_i}^T \boldsymbol{x}_i + b_{y_i}}}{\sum_{j=1}^n e^{W_j^T \boldsymbol{x}_i + b_j}} + \frac{\lambda}{2} \sum_{i=1}^m \|\boldsymbol{x}_i - \boldsymbol{c}_{y_i}\|_2^2$$

- Just Softmax loss
 - Separable
 - not discriminative
- Just Center loss
 - all feature vectors will be same
- Softmax loss => between-class variation
- Center loss => inter-class similarity

Softmax loss

$$\mathcal{L}_{S} = -\sum_{i=1}^{m} \log \frac{e^{W_{y_{i}}^{T} x_{i} + b_{y_{i}}}}{\sum_{j=1}^{n} e^{W_{j}^{T} x_{i} + b_{j}}}$$

Center loss

$$\mathcal{L}_C = rac{1}{2} \sum_{i=1}^m \|oldsymbol{x}_i - oldsymbol{c}_{y_i}\|_2^2$$

CENTER LOSS + CROSS ENTROPY FEATURE SPACE

