Linear Algebra

[KOMS120301] - 2023/2024

14.3 - Diagonalisasi

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 14 (November 2023)

Tujuan pembelajaran

Setelah perkuliahan ini, Anda diharapkan mampu:

- menjelaskan konsep diagonalisasi pada matriks persegi, dan mengapa diagonalisasi berguna dalam Aljabar Linier;
- menganalisis sifat-sifat matriks yang dapat didiagonalisasi;
- melakukan diagonalisasi pada matriks persegi (jika memungkinkan).

Bagian 1: Diagonalisasi

Bisakah Anda mengingat definisi matriks diagonal?

Definisi diagonalisasi

Diagonalisasi matriks adalah proses mengambil matriks persegi dan mengubahnya menjadi matriks diagonal yang memiliki sifat dasar yang sama dengan matriks dasarnya.

Definisi

Misalkan A dan P adalah matriks $n \times n$, sehingga P dapat dibalik. Diagonalisasi dari A adalah proses transformasi:

$$A \rightarrow P^{-1}AP$$

Matriks persegi A dikatakan dapat didiagonalisasi jika terdapat matriks P s.t yang dapat dibalik. $P^{-1}AP$ adalah matriks diagonal. Dalam hal ini, matriks P dikatakan diagonalisasi A.

Motivasi kegunaan diagonalisasi (1)

Mengapa kita memerlukan dasar seperti itu?

→ Secara kasar, jika kita mempunyai bentuk diagonal, **banyak properti** dapat dipelajari dengan lebih mudah.

Nanti kita akan melihat sifat-sifat matriks apa yang dipertahankan dengan diagonalisasi.

Definisi

Similarity invariant adalah properti apa pun yang dipertahankan oleh transformasi kesamaan.

Motivasi kegunaan diagonalisasi (2)

Contoh (Determinan adalah sebuah similarity invariant)

Matriks A dan $P^{-1}AP$ memenuhi:

$$\det(A) = \det(P^{-1}AP)$$

Proof:

$$det(P^{-1}AP) = det(P^{-1}) det(A) det(P)$$
$$= \frac{1}{det(P)} det(A) det(P)$$
$$= det(A)$$

Bisakah Anda mengusulkan properti lain yang merupakan invarian kesamaan?

Coba periksa properti berikut:

- ukuran matriks
- invers
- rank
- nulitas
- trace
- polinomial karakteristik
- nilai eigen

Similarity invariant

Table 1. Similarity invariant

Fig/similarity.png

Pertanyaan motivasi

Bagaimana menemukan basis untuk \mathbb{R}^n yang terdiri dari vektor eigen dari matriks A berukuran $n \times n$?

Matriks similar

Misalkan A dan B adalah matriks persegi. Kemudian kita katakan bahwa A mirip dengan B jika terdapat matriks yang dapat dibalik P s.t. $B = P^{-1}AP$.

Lemma

Jika A mirip dengan B, maka B mirip dengan A.

Proof:

Karena $B = P^{-1}AP$, maka $PBP^{-1} = A$.

Definisikan $Q = P^{-1}$. Maka Q adalah matriks diagonal, dan:

$$Q^{-1}BQ = PBP^{-1} = A$$

Menentukan apakah suatu matriks dapat didiagonalisasi & menemukan matriks P yang melakukan diagonalisasi

Teorema (1)

Jika A adalah matriks $n \times n$, pernyataan berikut adalah ekuivalen.

- A dapat didiagonalisasi.
- A memiliki n vektor eigen independen linier.

Teorema (2)

- **1** Jika $\lambda_1, \lambda_2, \ldots, \lambda_k$ adalah nilai eigen berbeda dari matriks A, dan jika v_1, v_2, \ldots, v_k adalah vektor eigen yang bersesuaian, maka $\{v_1, v_2, \ldots, v_k\}$ adalah himpunan bebas linier.
- **2** Matriks $n \times n$ dengan n nilai eigen berbeda dapat didiagonalisasi.

Apa yang Teorema 1 & 2 katakan tentang matriks yang dapat didiagonalisasi, dan matriks yang melakukan diagonalisasi?

- Teorema 1 \rightarrow perlu mencari n vektor eigen bebas linier untuk mendiagonalisasi matriks A.
- Teorema 2 \rightarrow vektor seperti itu mungkin saja terjadi menjadi vektor egien dari A (jika ada n vektor eigen berbeda).

Apa yang Teorema 1 & 2 katakan tentang matriks yang dapat didiagonalisasi, dan matriks yang melakukan diagonalisasi?

- Teorema 1 \rightarrow perlu mencari n vektor eigen bebas linier untuk mendiagonalisasi matriks A.
- Teorema 2 \rightarrow vektor seperti itu mungkin saja terjadi menjadi vektor egien dari A (jika ada n vektor eigen berbeda).
- \Rightarrow Matriks $(n \times n)$ A adalah dapat didiagonalkan (diagonalizable) jika A memiliki n nilai eigen yang berbeda.
- ⇒ Sekarang, bagaimana cara mendiagonalisasi *A*?

Algoritma untuk mendiagonalisasi suatu matriks

A Procedure for Diagonalizing an $n \times n$ Matrix

- Step 1. Determine first whether the matrix is actually diagonalizable by searching for n linearly independent eigenvectors. One way to do this is to find a basis for each eigenspace and count the total number of vectors obtained. If there is a total of n vectors, then the matrix is diagonalizable, and if the total is less than n, then it is not.
- Step 2. If you ascertained that the matrix is diagonalizable, then form the matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$ whose column vectors are the *n* basis vectors you obtained in Step 1.
- Step 3. $P^{-1}AP$ will be a diagonal matrix whose successive diagonal entries are the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ that correspond to the successive columns of P.

Contoh 1: Menemukan matriks *P* yang mendiagonalisasi matriks *A*

Kita ingin mencari matriks P yang mendiagonalisasi matriks

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Solusi:

- Karena A berukuran 3×3 , periksa dulu apakah A memiliki 3 nilai eigen yang berbeda.
- ② Jika ya, carilah basis $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ untuk eigenspace A.
- **3** Buat matriks $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]$.
- Periksa apakah $P^{-1}AP = D$ dengan D adalah matriks diagonal dengan entri diagonal adalah nilai eigen A.

Contoh 1 (cont.)

1. Anda harus mendapatkan persamaan karakteristik berikut A:

$$(\lambda - 1)(\lambda - 2)^2 = 0$$

2. Temukan basis dari ruang eigen:

3. Matriks yang mendiagonalisasi A adalah:

$$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

4. Kita memverifikasi bahwa:

$$P^{-1}AP = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = D$$

Contoh 2: Matriks yang tidak dapat didiagonalisasi

Tunjukkan bahwa matriksnya:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$
 is not diagonalizable.

Contoh 2: Matriks yang tidak dapat didiagonalisasi

Tunjukkan bahwa matriksnya: $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$ is not diagonalizable.

Solusi:

Polinomial karakteristik A adalah:

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ -1 & \lambda - 2 & 0 \\ 3 & -5 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2)^2$$

Nilai eigen yang berbeda adalah: $\lambda_1 = 1$ dan $\lambda_2 = 2$.

Kita akan menemukan basis untuk eigenspace A.

Contohe 2 (cont.)

Untuk $\lambda = 1$

Selesaikan:

$$(\lambda I - A)\mathbf{x} = \mathbf{0} \iff \begin{bmatrix} 1 - 1 & 0 & 0 \\ -1 & 1 - 2 & 0 \\ 3 & -5 & 1 - 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 0 & 0 & 0 \\ -1 & -1 & 0 \\ 3 & -5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Kita dapat menurunkan sistem persamaan:

$$\begin{cases} -x_1 - x_2 = 0 \\ 3x_1 - 5x_2 - x_3 = 0 \end{cases}$$

dimana hasilnya:
$$x_1=t,\ x_2=-t,\ x_3=8t,$$
 atau memiliki basis: $\begin{bmatrix} 1\\-1\\8 \end{bmatrix}$.

Contoh 2 (cont.)

Untuk $\lambda = 2$

Selesaikan:

$$(\lambda I - A)\mathbf{x} = \mathbf{0} \iff \begin{bmatrix} 2 - 1 & 0 & 0 \\ -1 & 2 - 2 & 0 \\ 3 & -5 & 2 - 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 3 & -5 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Kita dapat menurunkan sistem persamaan:

$$\begin{cases} x_1 &= 0 \\ -x_1 &= 0 \\ 3x_1 - 5x_2 = 0 \end{cases}$$

dimana hasilnya: $\mathit{x}_1 = 0, \ \mathit{x}_2 = 0, \ \mathit{x}_3 = t$ dengan $t \in \mathbb{R} \setminus \{0\}$, atau

memiliki basis: $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Contoh 2 (cont.)

Oleh karena itu, basis ruang eigen matriks
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$

adalah
$$\left\{ \begin{bmatrix} 1\\-1\\8 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

Karena ukuran matriks A adalah 3×3 , dan hanya terdapat dua vektor basis, maka A tidak dapat didiagonalisasi.

Latihan

Apakah matriks berikut dapat didiagonalisasi?

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

Jadi...apa yang dapat Anda simpulkan tentang vektor eigen dan nilai eigen?

Vektor eigen mewakili...

Nilai eigen mewakili...

Bagian 2: Penerapan vektor eigen

Penerapan vektor eigen

- https://www.quora.com/ Why-are-eigenvectors-and-eigenvalues-important
- https://vitalflux.com/ why-when-use-eigenvalue-eigenvector/

bersambung...