Introduction to Ray for distributed & machine learning in Python

Jules S. Damji, Ray Team @Anyscale

X: @2twitme

LinkedIn: https://www.linkedin.com/in/dmatrix/

A quick poll...

\$whoami

- Lead Developer Advocate, Anyscale & Ray Team
- Sr. Developer Advocate, Databricks, Apache Spark/MLflow Team
- Led Developer Advocacy, Hortonworks
- Held SWE positions:
 - Sun Microsystems
 - Netscape
 - o @Home
 - Loudcloud/Opsware
 - Verisign

A few important URLs

Keep these URLs open in a browser tab:

- GitHub Learning Material: https://bit.ly/devaiworld23
- Ray Documentation: https://bit.ly/ray-core-docs

Today's agenda

- Why & What's Ray & Ray Ecosystem
- Ray Architecture & Components
- Ray Core Design & Scaling Patterns & APIs
- Modules [1]: Hands-on in class
- Wrap up...

Why Ray + What's Ray

Why Ray?

Machine learning is pervasive

Distributed computing is a necessity

Python is the default language for DS/ML

Blessings of scale

The blessings of scale

Al training runs, estimated computing resources used

Floating-point operations, selected systems, by type, log scale

Sources: "Compute trends across three eras of machine learning", by J. Sevilla et al., arXiv, 2022; Our World in Data

Blessings of scale

Computation used to train notable artificial intelligence systems Computation is measured in total petaFLOP, which is 10¹⁵ floating-point operations¹.

Source: Epoch (2023)

OurWorldInData.org/artificial-intelligence • CC BY

Note: Computation is estimated based on published results in the Al literature and comes with some uncertainty. The authors expect most of these estimates to be correct within a factor of 2, and a factor of 5 for recent models for which relevant numbers were not disclosed, such as GPT-4

1. Floating-point operation: A floating-point operation (FLOP) is a type of computer operation. One FLOP is equivalent to one addition, subtraction, multiplication, or division of two decimal numbers

- Model size are getting larger
- Model size is exponentially increasing.
- Models are too large to into a single GPU.
- We need to shard the models across multiple GPUs for training
 - e.g. ZeRO, Model Parallel, Pipeline Parallel

BERT(2019): 336M params(1.34GB)

Llama-2 (2023): 70B params(280GB) ~20x

GPT-4: ~1800B >5.000x

Supply demand-problem

Supply demand-problem

No way out but to distribute!

Python DS/ML Ecosystem

What's Ray?

- A simple/general-purpose library for distributed computing
- An ecosystem of Python Ray Al libraries (for scaling ML & more)
- Runs on laptop, public cloud, K8s, on-premise
- Easy to install and get started pip install ray[default]

A layered cake of functionality and capabilities for scaling ML workloads

A layered cake and ecosystem

A Layered Cake and Ecosystem

Al libraries

Ray architecture & components

Anatomy of a Ray cluster

Anatomy of a Ray worker process

Ray workers interact with other Ray processes through the CoreWorker library.

Lifetime of a Ray task ...

The process that submits a task is considered to be the owner of the result and is responsible for acquiring resources from a raylet to execute the task. Here, the driver owns the result of `A`, and `Worker 1` owns the result of `B`.

Lifetime of a Ray object ...

Distributed memory management in Ray. Workers can create and get objects. The owner is responsible for determining when the object is safe to release.

Lifetime of a Ray Actor ...

Unlike task submission, which is fully decentralized and managed by the owner of the task, actor lifetimes are managed centrally by the GCS service.

Actor creation sequence ...

Actor creation tasks are scheduled through the centralized GCS service.

Ray core design & scaling patterns

Ray basic design pattern

- Ray Parallel Tasks
 - Functions as stateless units of execution.
 - Functions distributed across the cluster as tasks
- Ray Objects as Futures
 - Distributed (immutable objects) store in the cluster
 - Fetched when materialized
 - Enable massive asynchronous parallelism
- Ray Actors
 - Stateful service on a cluster
 - Enable Message passing
 - Patterns for Parallel Programming
 - Ray Distributed Library Integration Patterns

Scaling design patterns

Batch Training / Inference

AutoML

Batch Tuning

Different data / Same function

Same data / Different function

Different data / Same function

Python → Ray API


```
Task
                                                                           Distributed
 def f(x):
                                                @ray.remote
 # do something with x:
                                                def f(x):
                                                                                                Node
                                                                                                                   Node
   y = ...
                                                # do something with x:
   return y
                                                   y = ...
 v = f(x)
                                                   return y
                                                v_ref= f.remote(x)
 class Cls():
                                                                           Distributed
                                                  @ray.remote
   def
                                                  class Cls():
                             Actor
                                                                                                           •••
 __init__(self, x):
                                                    def
                                                                                                                   Node
                                                                                                Node
   def f(self, a):
                                                  __init__(self, x):
                                                    def f(self, a):
   def g(self, a):
                                                   def g(self, a):
                                                  cls = Cls.remote()
                                                  cls.f.remote(a)
import numpy as np
                          Distributed
a= np.arange(1, 10e6)
                                                   import numpy as np
                                                                             Distributed
b = a * 2
                          immutable
                                                   a = np.arange(1, 10e6)
                                                                                                  а
                                                                                                             •••
                                                   obj_a = ray.put(a)
                          object
                                                   b = ray.get(obj_a) * 2
                                                                                                                     Node
                                                                                                   Node
```


Ray Task

```
remotely executed in a cluster
 A function
@ray.remote(num_cpus=3)
                                           f(1, 2)
def f(a, b):
                                                     f(2, 3)
  return a + b
                                                     f(3, 4)
f.remote(1, 2) # returns 3
f.remote(2, 3) # returns 5
f.remote(3, 4) # returns 7
                                                  f(4, 5)
f.remote(4, 5) # returns 9
```

Result = 3

Result = 5

➤ Result = 7

Result = 9

Ray Actor

```
A class remotely executed in a cluster
```

```
@ray.remote(num_gpus=4)
class HostActor:
   def __init__(self):
       self.model = load model("s3://model checkpoint")
       self.num_devices = os.environ["CUDA_VISIBLE_DEVICES"]
   def inference(self, data):
        return self.model(data)
   def f(self, output):
       return f"{output} {self.num devices}"
actor = HostActor.remote() # Create an actor
actor.f.remote("hi") # returns "hi 0,1,2,3"
actor.inference(input) # returns predictions...
```


Function → Task

Class → Actor

```
@ray.remote
def read array(file):
   # read ndarray "a"
    # from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read array.remote(file1)
id2 = read array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)
```

```
@ray.remote(num gpus=1)
class Counter(object):
    def __init__(self):
    self.value = 0
    def inc(self):
         self.value += 1
         return self.value
c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()
```


Task API

```
Node 1
                                                                                   Node 2
@ray.remote
def read_array(file):
    # read ndarray "a"
    # from "file"
      return a
                                                               (read_array)
@ray.remote
def add(a, b):
      return np.add(a, b)
id1 = read array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
                                                          Return id1 (future) immediately,
sum = ray.get(id)
                                                           before read_array() finishes
```


Task API

```
@ray.remote
                                                           Node 1
                                                                            Node 2
def read_array(file):
    # read ndarray "a"
     # from "file"
     return a
                                                                            (read_array)
                                                            read_array
@ray.remote
def add(a, b):
                                                                              id2
     return np.add(a, b)
                                                                   id1
id1 = read_array.remote(file1)
                                                                 Dynamic task graph:
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
                                                                    build at runtime
sum = ray.get(id)
```


Task API

```
Node 1
                                                                          Node 2
@ray.remote
def read_array(file):
    # read ndarray "a"
     # from "file"
     return a
                                                                           (read_array)
                                                          read_array
@ray.remote
def add(a, b):
                                                                id1
                                                                            id2
     return np.add(a, b)
                                                                              Node 3
id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
                                                                       add
sum = ray.get(id) ____ ray.get() block until
                                                                        id
                            result available
```


Distributed objects

Distributed object store

```
a = read_array(file1)
b = read_array(file2)
                                                                          Shared object
                                                       b
                                                                  S
                                                                          store
a_x = ray.put(a)
b x = ray.put(b)
                                                sum()
s_x = sum.remote(a_x, b_x)
val = ray.get(s x)
print(val)
```


Who's using Ray

Sample of Companies Who Use Ray in their Machine Learning Platform

Hugging Face CO: here

27,000+ GitHub stars

870+ Community Contributors

5,000+ Repositories Depend on Ray

1,000+ **Organizations Using Ray**

Let's go with Ray

Recap: Today we learned...

- Why Ray & What's Ray Ecosystem
 - Architecture components
 - Role in distributed systems
- A Ray Design & Scaling Patterns & APIs
 - Ray Tasks, Actors, Objects

Sneak Peek: Self-Paced Ray & Anyscale Training

- Online at <u>training.anyscale.com</u>
- Preview special technical content releases from the whole team!

Ray Education GitHub

Access bonus notebooks and scripts about Ray.

Ray documentation

API references and user guides.

<u>Anyscale Blogs</u>

Real world use cases and announcements.

YouTube Tutorials

Video walkthroughs about learning LLMs with Ray.

Resources

- How to fine tune and serve LLMs simply, quickly and cost effectively using Ray + DeepSpeed + HuggingFace
- Get started with DeepSpeed and Ray
- Training 175B Parameter Language Models at 1000 GPU scale with Alpa and Ray
- Fast, flexible, and scalable data loading for ML training with Ray Data
- Ray Serve: Tackling the cost and complexity of serving AI in production
- Scaling Model Batch Inference in Ray: Using Actors, ActorPool, and Ray Data
- <u>Fine-Tuning Llama-2: A Comprehensive Case Study for Tailoring Models to Unique Applications</u> (part-1)
- Fine-Tuning LLMs: LoRA or Full-Parameter? An in-depth Analysis with Llama 2 (part-2)

Thank you!

Any questions?

