

$$I(J^P) = \frac{1}{2}(0^-)$$

K⁰ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
497.611 ± 0.013 OUR FI	T Error in	cludes scale fact	or of	1.2.		
497.611±0.013 OUR AVERAGE Error includes scale factor of 1.2.						
$497.607 \pm 0.007 \pm 0.015$	261k	¹ TOMARADZE	14		$\psi(2S) \rightarrow K_{\mathcal{S}}^{0} X$ $e^{+} e^{-} \rightarrow K_{\mathcal{I}}^{0} K_{\mathcal{S}}^{0}$	
$497.583 \pm 0.005 \pm 0.020$	35k	AMBROSINO	07 B	KLOE	$e^+e^- ightarrow~\kappa_L^0\kappa_S^0$	
$497.625 \pm 0.001 \pm 0.031$	655k	LAI			K_L^0 beam	
$497.661\!\pm\!0.033$	3713	BARKOV	87 B	CMD	$e^{+}e^{-} ightarrow K_{L}^{0}K_{S}^{0}$ $e^{+}e^{-} ightarrow K_{L}^{0}K_{S}^{0}$	
497.742 ± 0.085	780	BARKOV	85 B	CMD	$e^+e^- ightarrow~\kappa_L^{ar{0}}\kappa_S^{ar{0}}$	
• • • We do not use the following data for averages, fits, limits, etc. • •						
497.44 ± 0.50		FITCH	67	OSPK	_	
498.9 ± 0.5	4500	BALTAY	66	HBC	K^0 from $\overline{p}p$	
497.44 ± 0.33	2223	KIM	65 B	HBC	K^0 from $\overline{p}p$	
498.1 ± 0.4		CHRISTENS	64	OSPK		
_						

 $^{^{1}\,\}mathrm{Obtained}$ by analyzing CLEO-c data but not authored by the CLEO Collaboration.

$m_{K^0} - m_{K^{\pm}}$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
3.934±0.020 OUR FIT	Error ind	cludes scale factor	of 1.6	5.		
• • • We do not use t	he following	g data for average	s, fits,	limits,	etc. •	• •
3.95 ± 0.21	417	HILL	68 B	DBC	+	$K^+ d \rightarrow K^0 pp$
3.90 ± 0.25	9	BURNSTEIN	65	HBC	_	
3.71 ± 0.35	7	KIM	65 B	HBC	_	$K^- p \rightarrow n \overline{K}{}^0$
5.4 ± 1.1		CRAWFORD	59	HBC	+	
3.9 ± 0.6		ROSENFELD	59	HBC	_	

K⁰ MEAN SQUARE CHARGE RADIUS

<i>VALUE</i> (fm ²)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT		
-0.077±0.010 OUR AVERAGE							
$-0.077 \pm 0.007 \pm 0.011$	5037	ABOUZAID	06	KTEV	$\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$ $\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$		
-0.090 ± 0.021		LAI	03 C	NA48	$K_L^{0} \rightarrow \pi^+\pi^-e^+e^-$		
-0.054 ± 0.026		MOLZON	78		K_{S}^{-} regen. by electrons		
• • We do not use the following data for averages, fits, limits, etc. • • •							
-0.087 ± 0.046		BLATNIK	79		VMD + dispersion relations		
-0.050 ± 0.130		FOETH	69 B		K_S regen. by electrons		

T-VIOLATION PARAMETER IN $K^0-\overline{K}^0$ MIXING

The asymmetry $A_T = \frac{\Gamma(\overline{K^0} \to K^0) - \Gamma(K^0 \to \overline{K^0})}{\Gamma(\overline{K^0} \to K^0) + \Gamma(K^0 \to \overline{K^0})}$ must vanish if T invariance holds.

ASYMMETRY A_T IN $K^0 - \overline{K}^0$ MIXING

VALUE (units 10^{-3})EVTSDOCUMENT IDTECN**6.6±1.3±1.0**640k 1 ANGELOPO... 98ECPLR

^1 ANGELOPOULOS 98E measures the asymmetry $A_T = [\Gamma(\overline{K}_{t=0}^0 \to e^+\pi^-\nu_{t=\tau}) - \Gamma(K_{t=0}^0 \to e^-\pi^+\overline{\nu}_{t=\tau})]/[\Gamma(\overline{K}_{t=0}^0 \to e^+\pi^-\nu_{t=\tau}) + \Gamma(K_{t=0}^0 \to e^-\pi^+\overline{\nu}_{t=\tau})]$ as a function of the neutral-kaon eigentime τ . The initial strangeness of the neutral kaon is tagged by the charge of the accompanying charged kaon in the reactions $p\overline{p} \to K^-\pi^+K^0$ and $p\overline{p} \to K^+\pi^-\overline{K}^0$. The strangeness at the time of the decay is tagged by the lepton charge. The reported result is the average value of A_T over the interval $1\tau_S < \tau < 20\tau_S$. From this value of A_T ANGELOPOULOS 01B, assuming CPT invariance in the $e\pi\nu$ decay amplitude, determine the T-violating as $\Delta S = \Delta S$ conserving parameter (for its definition, see Review below) $4\text{Re}(\epsilon) = (6.2 \pm 1.4 \pm 1.0) \times 10^{-3}$.

A REVIEW GOES HERE - Check our WWW List of Reviews

CP-VIOLATION PARAMETERS

$Re(\epsilon)$

 VALUE (units 10⁻³)
 DOCUMENT ID
 TECN

 1.596±0.013
 1 AMBROSINO 06H KLOE

• • • We do not use the following data for averages, fits, limits, etc. • •

 1.664 ± 0.010 2 LAI 05A NA48

 2 LAI 05A values are obtained through unitarity (Bell-Steinberger relations), improving determination of η_{000} and combining other data from PDG 04 and APOSTOLAKIS 99B.

CPT-VIOLATION PARAMETERS

In K^0 - \overline{K}^0 mixing, if *CP*-violating interactions include a *T* conserving part then

$$\begin{aligned} |\kappa_{S}\rangle &= [|\kappa_{1}\rangle + (\epsilon + \delta)|\kappa_{2}\rangle]/\sqrt{1 + |\epsilon + \delta|^{2}} \\ |\kappa_{L}\rangle &= [|\kappa_{2}\rangle + (\epsilon - \delta)|\kappa_{1}\rangle]/\sqrt{1 + |\epsilon - \delta|^{2}} \end{aligned}$$

where

$$\begin{aligned} |\kappa_1\rangle &= [|\kappa^0\rangle + |\overline{\kappa}^0\rangle]/\sqrt{2} \\ |\kappa_2\rangle &= [|\kappa^0\rangle - |\overline{\kappa}^0\rangle]/\sqrt{2} \end{aligned}$$

and

$$|\overline{\kappa}^0\rangle = CP|\kappa^0\rangle.$$

The parameter δ specifies the *CPT*-violating part.

 $^{^1}$ AMBROSINO 06H uses Bell-Steinberger relations with the following measurements: B($K_L^0 \to \pi^+\pi^-$) in AMBROSINO 06F, B($K_S^0 \to \pi^0\pi^0\pi^0$) in AMBROSINO 05B, the K_S^0 -semileptonic charge asymmetry in AMBROSINO 06E, and K^0 -semileptonic results in ANGELOPOULOS 98F.

Estimates of δ are given below assuming the validity of the $\Delta S = \Delta Q$ rule. See also THOMSON 95 for a test of CPT-symmetry conservation in K^0 decays using the Bell-Steinberger relation.

REAL PART OF δ

A nonzero value violates CPT invariance.

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
2.51± 2.25		$^{ m 1}$ ABOUZAID	11	KTEV	
• • • We do not use th	e following	data for averages	, fits,	limits, e	etc. • • •
2.3 ± 2.7		² AMBROSINO	06н	KLOE	
2.4 ± 2.8		³ APOSTOLA	99 B	RVUE	
$2.9~\pm~2.6~\pm0.6$	1.3M	⁴ ANGELOPO		CPLR	
180 ± 200	6481	⁵ DEMIDOV	95		$K_{\ell 3}$ reanalysis

¹ ABOUZAID 11 uses Bell-Steinberger relations.

IMAGINARY PART OF δ

A nonzero value violates CPT invariance.

VALUE (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMENT
$-$ 1.5 \pm 1.6		¹ ABOUZAID	11 KTEV	
• • • We do not use the fo	ollowing da	ta for averages, fits,	, limits, etc.	• • •
$0.4\pm$ 2.1		² AMBROSINO (06н KLOE	
$-~~0.2\pm~~2.0$		³ LAI (05A NA48	
$2.4\pm$ 5.0		⁴ APOSTOLA 9		
$-$ 90 \pm 290 \pm 100	1.3M	⁵ ANGELOPO 9		
2100 ± 3700	6481	⁶ DEMIDOV	95	$K_{\ell 3}$ reanalysis
a .				

¹ABOUZAID 11 uses Bell-Steinberger relations.

² AMBROSINO 06H uses Bell-Steinberger relations with the following measurements: ${\sf B}({\cal K}^0_L\to\pi^+\pi^-)$ in AMBROSINO 06F, ${\sf B}({\cal K}^0_S\to\pi^0\pi^0\pi^0)$ in AMBROSINO 05B, the ${\cal K}^0_S$ -semileptonic charge asymmetry in AMBROSINO 06E, and ${\cal K}^0$ -semileptonic results in ANGELOPOULOS 98F.

3 APOSTOLAKIS 99B assumes only unitarity and combines CPLEAR and other results.

⁴ ANGELOPOULOS 98F use ΔS = ΔQ . If ΔS = ΔQ is not assumed, they find Re δ =(3.0 \pm $3.3 \pm 0.6) \times 10^{-4}$.

⁵ DEMIDOV 95 reanalyzes data from HART 73 and NIEBERGALL 74.

² AMBROSINO 06H uses Bell-Steinberger relations with the following measurements: B($K_L^0 \to \pi^+\pi^-$) in AMBROSINO 06F, B($K_S^0 \to \pi^0\pi^0\pi^0$) in AMBROSINO 05B, the κ_{S}^{0} -semileptonic charge asymmetry in AMBROSINO 06E, and κ^{0} -semileptonic results

in ANGELOPOULOS 98F.

³ LAI 05A values are obtained through unitarity (Bell-Steinberger relations), improving determination of η_{000} and combining other data from PDG 04 and APOSTÓLAKIS 99B.

⁴APOSTOLAKIS 99B assumes only unitarity and combines CPLEAR and other results.

⁵ If $\Delta S = \Delta Q$ is not assumed, ANGELOPOULOS 98F finds Im $\delta = (-15 \pm 23 \pm 3) \times 10^{-3}$.

 $^{^6}$ DEMIDOV 95 reanalyzes data from HART 73 and NIEBERGALL 74.

Re(y)

A non-zero value would violate CPT invariance in $\Delta S = \Delta Q$ amplitude. Re(y) is the

following combination of
$$K_{e3}$$
 decay amplitudes:
$$\operatorname{Re}(\mathbf{y}) = \operatorname{Re}\left(\begin{array}{cc} \frac{A(\overline{K}^0 \to \mathbf{e}^-\pi^+\overline{\nu}_e)^* - A(K^0 \to \mathbf{e}^+\pi^-\nu_e)}{A(\overline{K}^0 \to \mathbf{e}^-\pi^+\overline{\nu}_e)^* + A(K^0 \to \mathbf{e}^+\pi^-\nu_e)} \end{array}\right)$$

$$\frac{\textit{VALUE} \ (\text{units}\ 10^{-3})}{\textbf{0.4\pm2.5}} \qquad \frac{\textit{EVTS}}{13k} \qquad \frac{\textit{DOCUMENT ID}}{1} \qquad \frac{\textit{TECN}}{\text{KLOE}}$$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$0.3\pm3.1$$
 APOSTOLA... 99B CPLR

$Re(x_{-})$

A non-zero value would violate CPT invariance in decay amplitudes with $\Delta S \neq \Delta Q$. x_, used here to define Re(x_), and x₊, used below in the $\Delta S = \Delta Q$ section are

the following combinations of
$$K_{e3}$$
 decay amplitudes:
$$\mathbf{x}_{\pm} = \frac{1}{2} \Big(\frac{A(\overline{K}^0 \to \pi^- \, \mathbf{e}^+ \, \nu_e)}{A(K^0 \to \pi^- \, \mathbf{e}^+ \, \nu_e)} \pm \frac{A(K^0 \to \pi^+ \, \mathbf{e}^- \overline{\nu}_e)^*}{A(\overline{K}^0 \to \pi^+ \, \mathbf{e}^- \overline{\nu}_e)^*} \Big).$$

• • • We do not use the following data for averages, fits, limits, etc. • •

$$-0.8\pm~2.5$$
 13k 2 AMBROSINO 06E KLOE 3 APOSTOLA... 99B CPLR Strangeness tagged ANGELOPO... 98F CPLR Strangeness tagged

$|m_{K0} - m_{\overline{K0}}| / m_{\text{average}}$

A test of CPT invariance. "Our Evaluation" is described in the "Tests of Conservation Laws" section. It assumes CPT invariance in the decay and neglects some contributions from decay channels other than $\pi\pi$.

• • • We do not use the following data for averages, fits, limits, etc. • •

$$(-3 \pm 4) \times 10^{-18}$$
 1 ANGELOPO... 99B RVUE

 $^{^1}$ They use the PDG 04 for the \mathcal{K}_L^0 semileptonic charge asymmetry and PDG 04 (CP review, CPT NOT ASSUMED) for $Re(\epsilon)$.

 $^{^2}$ Constrained by Bell-Steinberger (or unitarity) relation.

 $^{^{}m 1}$ AMBROSINO 06H uses Bell-Steinberger relations with the following measurements: ${\sf B}({\sf K}^0_L \to \pi^+\pi^-)$ in AMBROSINO 06F, ${\sf B}({\sf K}^0_S \to \pi^0\pi^0\pi^0)$ in AMBROSINO 05B, the κ_S^0 -semileptonic charge asymmetry in AMBROSINO 06E, and κ^0 -semileptonic results in ANGELOPOULOS 98F. ² Uses PDG 04 for the κ_L^0 semileptonic charge asymmetry and Re(δ) from CPLEAR,

ANGELOPOULOS 98F.

³ Constrained by Bell-Steinberger (or unitarity) relation.

 $^{
m 1}$ ANGELOPOULOS 99B assumes only unitarity and combines CPLEAR and other results.

$$(\Gamma_{K^0} - \Gamma_{\overline{K}^0})/m_{\text{average}}$$

A test of CPT invariance.

 $(7.8\pm8.4)\times10^{-18}$ ¹ ANGELOPO... 99B RVUE

TESTS OF $\Delta S = \Delta Q$ RULE

$Re(x_{+})$

A non-zero value would violate the $\Delta S=\Delta Q$ rule in CPT conserving transitions. x_+ is defined above in the $Re(x_{-})$ section.

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN
$-0.9\pm$ 3.0 OUR AVE	RAGE			
-2 ± 10		$^{ m 1}$ BATLEY	07 D	NA48
$-0.5 \pm \ 3.6$	13k	² AMBROSINO		
-1.8 ± 6.1		³ ANGELOPO	98D	CPLR

 $^{^1}$ Result obtained from the measurement $\Gamma({\cal K}^0_{\varsigma}\to~\pi\,e\,\nu)~/~\Gamma({\cal K}^0_I\to~\pi\,e\,\nu)=0.993\pm0.34,$ neglecting possible *CPT* non-invariance and using PDG 06 values of B($K_L^0 o \pi e
u$) = 0.4053 ± 0.0015 , $\tau_L = (5.114 \pm 0.021) \times 10^{-8}$ s and $\tau_S = (0.8958 \pm 0.0005) \times 10^{-10}$ s. ${}^{2}\operatorname{Re}(x_{+})$ can be shown to be equal to the following combination of rates:

$$\text{Re}(\mathsf{x}_+) = \frac{1}{2} \; \frac{\Gamma(\mathcal{K}_S^0 \to \pi \, e \, \nu) - \Gamma(\mathcal{K}_L^0 \to \pi \, e \, \nu)}{\Gamma(\mathcal{K}_S^0 \to \pi \, e \, \nu) + \Gamma(\mathcal{K}_L^0 \to \pi \, e \, \nu)}$$
 which is valid up to first order in terms violating CPT and/or the $\Delta S = \Delta Q$ rule.

K⁰ REFERENCES

¹ ANGELOPOULOS 99B assumes only unitarity and combines CPLEAR with other results. Correlated with $(m_{K0} - m_{\overline{K}0}) / m_{\text{average}}$ with a correlation coefficient of -0.95.

³Obtained neglecting *CPT* violating amplitudes.

ANGELOPO ANGELOPO Also DEMIDOV From YAF	95	PL B444 43 PL B444 52 EPJ C22 55 PAN 58 968 41.	 A. Angelopoulos et al. A. Angelopoulos et al. A. Angelopoulos et al. V. Demidov, K. Gusev, E. Shabal 	(CPLEAR Collab.) (CPLEAR Collab.) (CPLEAR Collab.) (in (ITEP)
THOMSON	95	PR D51 1412	G.B. Thomson, Y. Zou	(RUTG)
BARKOV	87B	SJNP 46 630	L.M. Barkov <i>et al.</i>	(NOVO)
		Translated from	YAF 46 1088.	,
BARKOV	85B	JETPL 42 138	L.M. Barkov <i>et al.</i>	(NOVO)
			ZETFP 42 113.	
BLATNIK	79	LNC 24 39	S. Blatnik, J. Stahov, C.B. Lang	(TUZL, GRAZ)
MOLZON	78	PRL 41 1213	W.R. Molzon <i>et al.</i>	(EFI+)
NIEBERGALL	74	PL 49B 103	F. Niebergall <i>et al.</i>	(CERN, ORSAY, VIEN)
HART	73	NP B66 317	J.C. Hart et al.	(CAVE, RHEL)
FOETH	69B	PL 30B 276	H. Foeth <i>et al.</i>	(AACH, CERN, TORI)
HILL	68B	PR 168 1534	D.G. Hill et al.	(BNL, CMU)
FITCH	67	PR 164 1711	V.L. Fitch et al.	` (PRIN)
BALTAY	66	PR 142 932	C. Baltay <i>et al.</i>	(YALE, BNL)
BURNSTEIN	65	PR 138 B895	R.A. Burnstein, H.A. Rubin	` (UMD)
KIM	65B	PR 140 B1334	J.K. Kim, L. Kirsch, D. Miller	(COLU)
CHRISTENS	64	PRL 13 138	J.H. Christenson et al.	(PRIN)
CRAWFORD	59	PRL 2 112	F.S. Crawford et al.	`(LRL)
ROSENFELD	59	PRL 2 110	A.H. Rosenfeld, F.T. Solmitz, R.I	