Date Due :		
	80%	Α
	70%	В

1.1

Assessed Homework Atomic Structure

%

C

D

Ε

U

60%

50%

40%

Below

48

1.	(a)	Give	the relative charge and relative mass of an electron.	
		Rela	tive charge	
		Rela	tive mass	(2)
	(b)	Isoto	opes of chromium include ⁵⁴ Cr and ⁵² Cr	(-)
		(i)	Give the number of protons present in an atom of ⁵⁴ Cr	
		(ii)	Deduce the number of neutrons present in an atom of ⁵² Cr	
		(iii)	Apart from the relative mass of each isotope, what else would need to be known for the relative atomic mass of chromium to be calculated?	
				(3)
	(c)		der to obtain a mass spectrum of a gaseous sample of chromium, the sample t first be ionised.	
		(i)	Give two reasons why it is necessary to ionise the chromium atoms in the sample.	
			Reason 1	
			Reason 2	
		(ii)	State what is adjusted so that each of the isotopes of chromium can be detected in turn.	
		(iii)	Explain how the adjustment given in part (c)(ii) enables the isotopes of	
		(111)	chromium to be separated.	
				F 41
				[4]

(Total 9 marks)

2.	(a)	Complete the following table
----	-----	------------------------------

	Relative mass	Relative charge
Proton		
Electron		

(b)		tom of element Q contains the same number of neutrons as are found in an of ²⁷ A1. An atom of Q also contains 14 protons.			
	(i)	Give the number of protons in an atom of ²⁷ A1.			
	(ii)	Deduce the symbol, including mass number and atomic number, for this atom of element ${\bf Q}.$			
			(3)		
(c)	Defir	ne the term relative atomic mass of an element.			

(d) The table below gives the relative abundance of each isotope in a mass spectrum of a sample of magnesium.

m/z	24	25	26
Relative abundance (%)	73.5	10.1	16.4

Use the data above to calculate the relative atomic mass of this magnesium.	sample of
Give your answer to one decimal place.	

(2)

(2)

(e)	State how the relative molecular mass of a covalent compound is obtained from its mass spectrum.	
	(Total 1	(0 mark
(a)	One isotope of sodium has a relative mass of 23.	
	(i) Define, in terms of the fundamental particles present, the meaning of the term isotopes.	n
	(ii) Explain why isotopes of the same element have the same chemical properties	es.
		. (
(b)	Give the electronic configuration, showing all sub-levels, for a sodium atom.	,
(c)	Explain why chromium is placed in the d block in the Periodic Table.	(
		 (
(d)	An atom has half as many protons as an atom of ²⁸ Si and also has six fewer neutrons than an atom of ²⁸ Si. Give the symbol, including the mass number and th atomic number, of this atom.	
	(Total	 (7 mark
	seous sample of chromium can be analysed in a mass spectrometer. Before ection, the chromium atoms are ionised and then accelerated.	
(a)	Describe briefly how positive ions are formed from gaseous chromium atoms in a mass spectrometer.	

10.1 Atomic Structure Assessed Homework	
---	--

		used in a mass	spectron	neter to a	ccelerate t	the positiv	e ions?		
(c)	What is	used in a mass	spectron	neter to d	eflect the p	positive io	ns?		
(d)	to calcu	iss spectrum of a late the relative simal places.							
	two dec	m/z		50	52	53	54		
		Relative abund %	lance /	4.3	83.8	9.5	2.4		
								<u> </u>	
									••
									••
								(Total	 6 m
(a)		rms of sub-level nd of the nitride		-	te electror	nic configu	ıration of	·	
(a)	N, a	nd of the nitride	ion, N ³ –.					the nitroger	n ato
(a)	N, a		ion, N ³ –.					the nitroger	n ato
	N, an N	nd of the nitride	ion, N ³ –.					the nitroger	n ato
(a) (b)	N, an N	nd of the nitride	ion, N ³ –.	rations for	the metal	s sodium :	and iron.	the nitroger	n ato
	N, an N	nd of the nitride	c configur	rations for m 1s ²	the metal	s sodium	and iron.	the nitroger	n ato
	N, an N	nd of the nitride	c configur of sodium	rations for m 1s ²	the metals	s sodium	and iron.	the nitroger	n ato
(b)	N, an N	ete the electronic nic configuration ete the following	c configur of sodium of iron electronic	rations for m 1s ² c configur	the metals	s sodium	and iron.	the nitroger	n ato

10.1		ic Structure Assessed Homework Cive the electronic configuration of the F= ion in terms of levels and sub-levels	
	(d)	Give the electronic configuration of the F ⁻ ion in terms of levels and sub-levels.	
			(1)
	(e)	Complete the following to show the electronic configuration of silicon.	
		1s ² 2s ²	
		(Total 8 r	(1) narks)
6.		values of the first ionisation energies of neon, sodium and magnesium are 2080, 494 736 kJ mol ⁻¹ , respectively.	
	(a)	Explain the meaning of the term first ionisation of an atom.	
			(2)
	(b)	Write an equation to illustrate the process occurring when the second ionisation energy of magnesium is measured.	
			(2)
	(c)	Explain why the value of the first ionisation energy of magnesium is higher than that of sodium.	
			(2)
	(d)	Explain why the value of the first ionisation energy of neon is higher than that of	(2)
		sodium.	
		(Total 8 r	(2) narks)