ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ

Государственное автономное образовательное учреждение высшего образования города Москвы «Московский городской педагогический университет» (ГАОУ ВО МГПУ)

Институт цифрового образования Департамент информатики, управления и технологий

Практическая(лабораторная) работа № 3.1 по дисциплине «Платформы Data Engineering»

Выполнил: студент группы <u>БД-251м</u> Направление подготовки/Специальность 38.04.05 - Бизнес-информатика <u>Войт Иван Иванович</u> (Ф.И.О.)

Проверил: Доцент департамента информатики, управления и технологий, доктор экономических наук (ученая степень, звание) Босенко Т.М. (Ф.И.О.)

Москва 2025

Оглавление

Введение	3
Задачи:	3
Описание выбранного варианта	3
Процесс разработки	4
1. Подключение к источнику данных	
2. Создание и подготовка датасета	
3. Разработка чартов	
4. Настройка селекторов	
Заключение	7

Введение

Цель работы: Разработать интерактивный аналитический дашборд для мониторинга и анализа эффективности цепочки поставок с использованием Yandex DataLens.

Задачи:

- Создать дашборд в Yandex DataLens на основе индивидуального варианта
- Реализовать ключевые метрики анализа цепочки поставок
- Применить принципы эффективного дизайна дашбордов
- Обеспечить интерактивность для глубокого анализа данных

Описание выбранного варианта

Тема: Анализ цепочки поставок.

Набор данных: bdt-mba-supply-chain-dataset

Основные метрики: Надежность поставщиков, оборачиваемость запасов, уровень сервиса.

Рекомендуемые визуализации: Матрица рисков, диаграмма Санкея движения товаров, карта поставщиков

Процесс разработки

1. Подключение к источнику данных

В качестве источника данных использовался CSV-файл bdt_mba_supplychain_dataset_2024.csv, содержащий информацию о 500 активах цепочки поставок с следующими полями:

Таблица 1 – Поля источника данных

Asset_ID	Идентификатор актива
Location	Местоположение
Temperature, Vibration	Технические параметры
Last_Maintenance	Дата последнего ТО
Condition_Score -	Оценка состояния
Resource_Utilization	Использование ресурсов
Delivery_Efficiency	Эффективность доставки
Downtime_Hours	Время простоя
Inventory_Level	Уровень запасов
Logistics_Cost	Логистические затраты

2. Создание и подготовка датасета

Все поля были проверены и приведены к корректным типам данных:

- Строковые поля: Asset_ID, Location, Inventory_Level
- Числовые поля: Temperature, Vibration, Condition_Score и др.
- Дата/время: Last Maintenance, Timestamp

Далее были созданы следующие вычисляемые поля:

Риск простоя (Downtime Risk):

Надежность актива (Asset Reliability):

Уровень обслуживания (Service Level):

Эффективность логистики (Logistics Efficiency Ratio):

3. Разработка чартов

Индикаторы ключевых метрик:

- Средняя эффективность доставки: AVG ([Delivery Efficiency])
- Среднее время простоя: AVG ([Downtime_Hours])
- Общие логистические затраты: SUM([Logistics Cost])
- Общее количество активов: COUNT ([Asset ID])

Матрица рисков:

Обоснование выбора - Классическая матрица рисков позволяет оценить активы по двум параметрам - вероятности сбоя (состояние) и воздействию (простой)

Настройка:

X: Condition_Score

Y: Downtime_Hours

Цвет: Риск простоя (Downtime Risk)

Размер точек: Logistics_Cost

Tочки: Asset_ID

Анализ запасов и сервиса (Сводная таблица):

Обоснование выбора - показывает четкое распределение активов между уровнями запасов и сервиса

Настройка:

Строки: Уровень обслуживания (Service Level)

Столбцы: Inventory Level

Показатель: COUNT ([Asset_ID])

Детальный анализ по локациям (Сводная таблица):

Обоснование выбора - предоставляет детализированную информацию по всем локациям

Настройка:

Строки: Location

Показатели: COUNT([Asset_ID]), AVG([Condition_Score]), AVG([Downtime_Hours]), SUM([Logistics_Cost])

4. Настройка селекторов

Для обеспечения интерактивности были добавлены селекторы:

- Уровень риска (Риск простоя)
- Уровень запасов (Inventory_Level)
- Надежность активов
- Уровень сервиса

Заключение

В ходе работы был успешно разработан интерактивный дашборд для анализа цепочки поставок в Yandex DataLens. Основные достижения:

- Реализованы ключевые метрики анализа цепочки поставок через вычисляемые поля
- Создана комплексная визуализация включающая матрицу рисков, анализ запасов и детализацию по локациям
- Обеспечена высокая интерактивность через систему связанных селекторов
- Применены принципы эффективного дизайна для создания понятного и информативного интерфейса

Дашборд позволяет бизнес-пользователям:

- Выявлять проблемные активы через матрицу рисков
- Анализировать зависимость между запасами и уровнем сервиса
- Детализировать анализ по конкретным локациям и категориям
- Принимать обоснованные решения по оптимизации цепочки поставок Работа подтвердила, что Yandex DataLens является эффективным инструментом для быстрого создания операционных дашбордов, особенно для задач мониторинга и тактического анализа.

Ссылки

Дашборд в Yandex DataLens: [https://datalens.ru/z9ib96ihe98wk]

 Git-репозиторий
 с
 pаботой:
 [https://github.com/youngvoyt/DEP

 MGPU/tree/ccc21610617262d270c1bcb984f4a608465f5077/Module03/Lab%203.

<u>1</u>]