

THE COPPERBELT UNIVERSITY SCHOOL OF MATHEMATICS AND NATURAL SCIENCES

CHEMISTRY DEPARTMENT

Test Two for 2020/2021

DATE: May 2021

COURSE: GENERAL CHEMISTRY

COURSE CODE: CH 110

Proposed solutions

TIME ALLOWED: TWO (02) HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. This paper comprises FOUR questions
- 2. Candidates are expected to attempt **ALL** questions.
- 3. Each question carries TWENTY FIVE marks.
- 4. Candidates are reminded to CLEARLY PRESENT their answers.
- 5. All the parts of a question should be answered IN CONTINUATION

Acetaldehyde (Ethanal) has a fruity aroma, and is naturally contained in foods such as fruits and fruit (a) juice. Ethanal (CH3CHO) has the structure shown. Gaseous ethanal burns by H-C-C the equation

 $CH_3CHO(g) + 2\frac{1}{2}O_2(g)$ 'n $2H_2O(g) + 2CO_2(g)$ or

 $CH_3CHO(g) + 2\frac{1}{2}(O=O) 'n 2(O-O) + 2(O=C=O)$

(i) Use the mean bond enthalpy data to calculate the enthalpy change which occurs when all the bonds in the reactants shown in the above equation are broken[5]

 $4 \times C - H = 4 \times 413 =$ [1]

 $1 \times C - C = 1 \times 347$ 347 [1]

[1] $1 \times C = 0 = 1 \times 736 =$ 736

2735

 $2\frac{1}{2} \times 0 = 0 = 2.5 \times 498 = 0$ [1]

[1]

(ii) Calculate the enthalpy change which occurs when all the bonds in the products shown in the above equation are formed [3]

 $4 \times H - O = -4 \times 464$ = -1856[1] $4 \times C - O = -4 \times 736 = -2944$ [1]

 $\Delta H = \sum BE_{(bonds formed)}$ [1]

Hence, calculate the enthalpy change for the complete combustion of ethanal as shown in the (iii) equation above

[1] $\Delta H_{rxn} = \sum BE_{(bonds\ broken)} + \sum BE_{(bonds\ formed)}$

 $\Delta H_{rxn} = 3980 + (-4800)$

[1] $\Delta H_{rxn} = -820 \text{ kJ}$

- The **standard enthalpy of formation** (ΔH_c^0) is the heat change that results when one mole of a (b) compound is formed from its elements in their standard states.
 - Write the equation for standard enthalpy of formation (ΔH_c^0) of calcium hydroxide, Ca(OH) (s) (i)

[3]

 $Ca(s) + H_2(g) + O_2(g) \rightarrow Ca(OH)_2(s)$ 3

Calculate the enthalpy of formation $(\Delta H_{\epsilon}^{0})$ of calcium hydroxide, Ca(OH)₂(s) using the following (ii) balanced thermochemical equations [12]

 $H_2O(I)$ 'n $H_2(g) + \frac{1}{2}O_2(g)$ $\Delta H^0 = +286 \text{ kJ}$

(ii) $C_{e}O(s) + H_{2}O(n) 'n Ca(OH)_{2}(s) \Delta H^{0} = -64 \text{ kJ}$

(iii)
$$Ca(s) + \frac{1}{2}O_2(g)$$
 'n $CaO(s)$ $\Delta H^0 = -634 \text{ kJ}$

• Reverse equation (i)
$$H_2(g) + \frac{1}{2}O_2(g)$$
 'n $H_2O(h)$ $\Delta H^0 = -286 \text{ kJ}$ [3]

• Take equation (ii) as it is
$$CaO(s) + H_2O(1)$$
 'n $Ca(OH)_2(s)$ $\Delta H^0 = -64 \text{ kJ}$ [3]

• Take equation (iii) as it is
$$Ca(s) + \frac{1}{2}O_{s}(s)$$
 'n $CaO(s)$ $\Delta H^{o} = -634 \text{ kJ}$ [3]

• Add the equations
$$Ca(s) + H_2(g) + O_2(g) \rightarrow Ca(OH)_2(s)$$
 $\Delta H_f^0 = -984 \text{ kJ}$ [3]

QUESTION 2. ATOMIC STRUCTURE AND PERIODICITY

[25 MARKS]

- (a) Fill each blank space with an appropriate word in the sentences that follow. [5]
 - (i) Which form of electromagnetic radiation has the longest wavelengths?
 - (ii) How many unpaired electrons are in the orbital notation for the Fe³⁺ ion?

 - (iv) The maximum number of electrons that can be accommodated in a sublevel for which I = 3 is _____.
 - (v) The ground state electron configuration for arsenic is_____.

ANSWERS:

- (i) Radio Waves
- (ii) 5
- (iii) Error
- (iv) 14
- (v) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^3$

(b)

(i) A line in the spectrum of atomic mercury has a wavelength of 254 nm. When mercury emits a photon of light at this wavelength, what is the frequency of the light? [3]

Ans:

We have the equation
$$C = 9 \times \lambda$$

 $\lambda = 254 \text{ nm}, C = 3 \times 10^8 \text{ m/s}, 9 = ?$
 $\frac{3 \times 10^8}{2.54 \times 10^{10-7}} \text{ S}^{-1} = 1.181 \times 10^{15} \text{ S}^{-1} = 1.181 \times 10^{15} \text{ Hz}$

Note: Equation: IMark; Derivation: IMarks; Answer: I Mark

(ii) Why is it much harder to explain the line spectra of polyelectronic atoms and ions than it is to explain the line spectra of hydrogen and hydrogen-like ions? [2]

Ans: For hydrogen and hydrogen-like (one electron) ions, all orbitals with the same value of n have the same energy. For polyatomic atoms/ ions, the energy of the orbitals also depends on the value of angular momentum (1). Because there are more nondegenerate energy levels for polyatomic atoms/ions as compared with hydrogen, there are many more possible electronic transitions resulting in more

(c)

(i) How many orbitals in an atom can have the designation 5p, $3dz^2$, 4d, n = 5, n = 4? [2.5] 5p = 3; $3dz^2 = 1$; 4d = 5; n = 5 = 25; n = 4 = 16

(ii) Complete the following table using your knowledge of isotopes and ions. [2.5]

Ans:

(S.No.	Symbol AX Z	Atomic Number	Mass Number	Number of Electrons	Number of Protons	Number of Neutrons
1	109 47 Ag	47	109	47	47	62

Note: Each answer carries 0.5 Mark

(d)

(i) Give two examples of elements for each category.

[4]

- a) Noble gases
- b) Halogens
- c) Alkali metals
- d) Alkaline earth metals

Ans:

He; Ne; Ar; Kr; Xe; Rn --- Nobel gases F; Cl; Br; I, At; Ts ----- Halogens Li; Na; K; Rb; Cs; Fr ----- Alkali metals

Be; Mg; Ca; Sr; Ba; Ra ----- Alkaline earth metals

Note: Any two examples from above answer. Each answer carries 0.5 Mark

(ii) Compare the following elements with respect to the characteristics listed below:

[1]

d. Carbon

a. Sodium b. Boron c. Aluminum Which has the largest atomic radius_____.

Which has the largest lonization energy _____

Ans: A & D

Note: Each answer carries 0.5 Mark

(e)

(i) Which elements are most likely to undergo the same kinds of reactions, those in a group or those in a period? Explain your answer. [2]

Ans: Elements are arranged in groups (vertical columns) based on their physical and chemical characteristics. So, those in the same family/group will share the same kinds of reactions.

(ii) This group of the periodic table contains highly reactive nonmetal. Give your answer with correct reason. [2]

Ans: The halogens are group 7 and are the most highly reactive nonmetals since they have 7 valence electrons.

(iii) Among copper, chromium, chlorine and sodium, which one is p-block element?

[1]

Ans: Chlorine

(a) Two elements X and Y occur in the same period and their atoms have two and seven valence electrons respectively. Write down the electronic structure of the most probable compound between X and Y. Will the bond between X and Y be predominantly ionic or covalent?

Answer: XY₂; Ionic [2]

- (b) Predict the geometry of the following molecules using VSEPR theory.
- [3]

- (i) CCI₄
- (ii) AlCl₃
- (iii) H₂Se

Answer: (i)Tetrahedral (ii) Trigonal planar (iii) Bent

- (c) Classify the bonds in the following as ionic, polar covalent or covalent:
- [3]

- (i) HCI
- (ii) NaCl
- (iii) NCI₃

Answer: HCI - Polar covalent, NaCI - Ionic and NCI₃ - Covalent

- (d) List the three possible molecular geometries which have sp³ hybridized orbitals.[3] Answer: Tetrahedral, Trigonal pyramid and Bent
- (e) Use the following data to estimate ΔH_{ϵ}^{o} for potassium chloride.

[4]

 $K(s) + \frac{1}{2}CI_2$ 'n KCI(s)

Lattice energy: -690 kJ/mol lonization energy for K: 419 kJ/mol Electron Affinity of Cl: -349 kJ/mol

Bond energy of Cl_2 : 239 kJ/mol

Enthalpy of sublimation for K: 64 kJ/mol

Answer:

Sublimation of K(s): K(s) 'n K(g) $\triangle H_1 = 64 \text{ kJ}$ Ionization of K(g): K(g) 'n K'(g) + e- $\triangle H_2 = 419 \text{kJ}$

Bond breaking of $\frac{1}{2}$ Cl₂: $\frac{1}{2}$ Cl₂(g) 'n Cl(g) $\triangle H_3 = 239/2 = 119.5$ kJ Electron Affinity of Cl: Cl(g) + e- 'n Cl⁻(g) $\triangle H_4 = -349$ kJ

Lattice energy: $K^{\dagger}(g) + CI^{\dagger}(g)$ 'n NaCl(s) $\triangle H_5 = -690 \text{ kJ}$

 $\triangle H_{\epsilon}^{o} = \triangle H_{1} + \triangle H_{2} + \triangle H_{3} + \triangle H_{4} + \triangle H_{5}$

 $H_{c}^{\circ} = 64 + 419 + 119.5 + (-349) + (-690)$

H_c = -436.5 kJ/mol

- (f) For each of the following molecules: PF₃ and COCl₂:
 - (i) Draw the Lewis Structure.

[2]

(ii) Determine the geometry of the molecule.

[2] [2]

(iii) Sketch the molecule to show the dipoles.(iv) Indicate if the molecule is polar or non polar.

[2]

Answer:

(i) Structure for PF₃

(ii) PF₃: Trigonal pyramidal

COCl₂: Trigonal planar

Sketch for COCl₂

COCl₂: Polar

Structure of COCl₂

(iii) Sketch for PF₃

(iv) PF₃: Polar

(v) PF₃: one pair COCl₂: zero pair

QUESTION 4. ORGANIC CHEMISTRY

[25 MARKS]

- (a) How many carbon-carbon sigma bonds are present in each of the following molecules? [3]
 - (i) 2-butyne,
 - (ii) anthracene (that is, three fused benzene rings in a straight line), as shown below

(iii) 2,3-dimethylpentane

Answer: Source - Chung Question 24.50

- (i) The butyne structure is $CH_3 C \equiv C CH_3$ has 3 carbon-carbon sigma bonds,[1]
- (ii) The anthracene structure given above in (ii) has 16 carbon-carbon sigma bonds [1]
- (iii) The structure of 2,3-dimethylpentane given below has 6 carbon-carbon sigma bonds $CH_{x} CH(CH_{x}) CH(CH_{x}) CH_{x} CH_{x}$ [1]
- (b) Cholesterol is a major component of gallstones, and it is believed that the cholesterol level in the blood is a contributing factor in certain types of heart disease. From the following structure of the compound, predict its reaction with (a) Br_2 , (b) H_2 (in the presence of a Pt catalyst), (c) CH_3COOH [8]

Answer: Source - Chung Example 24.5

There are two functional groups in cholesterol: the hydroxyl group and the carbon-carbon double bond. [2]

(i) The reaction with bromine results in the addition of bromine to the double-bonded carbons, which become single-bonded [1] as shown in the figure below [1]

(ii) This is a hydrogenation reaction. Again, the carbon-carbon double bond is converted to a carbon-carbon single bond. [1] as shown in the figure below [1]

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

(iii) The acid reacts with the hydroxyl group to form an ester and water [1] as shown in the figure below [1]

(c) Classify each of the following molecules according to their functional groups [7]

(i) $CH_3 - O - CH_2 - CH_3$ Ether

(ii) $CH_3 - CH_2 - NH_2$ Amine

(iii) CH₃ - CH₂ - CHO Aldehyde

(iv) $CH_3 - CO - CH_2 - CH_3$ Ketone

 $\text{(v)} \qquad \qquad \text{HCO}_2\text{H} \qquad \qquad \text{Carboxylic acid}$

(vi) $CH_3 - CH_2 - CH_2 - OH$ Alcohol

(vii) Ph - CH, - CH(NH,)CO, H (where Ph is phenyl group) Amino acid

Answer: Source - Chung Question 24.36 [I mark each answer]

(d) Discuss how you can determine compounds might be alkanes, cycloalkanes, alkenes, or alkynes, without drawing their formulas: (i) C_6H_{12} , (ii) C_4H_6 , (iii) C_5H_{12} , (iv) C_7H_{14} , (v) C_3H_4

[5]

Answer - Source Chung Question 24.16

No.	½ marl	k per cell
NO.	General formula	Compound class
(i)	C_nH_{2n}	Alkene or cycloalkane

(ii)	C_nH_{2n-2}	Alkyne
(iii)	C_nH_{2n+2}	Alkane
(iv)	Like (i)	Alkene or cycloalkane
(v)	Like (ii)	Alkyne

(e) State whether it is true or false that the molecule I - CBr_2 - CH_2 - CH_3 is chiral? [1] Justify your answer [1]

Answer: Source - Chung

False [1]. It has no asymmetric carbon atom, that is, a carbon atom bonded to four different functional groups. [1]

TABLE OF FUNDAMENTAL

Average Bond Energy of selected covalent bonds									
Bond	Bond Energy (kJ mol ⁻¹)								
$N \equiv N$	944								
H – H	436								
C - H	413								
C - C	347								
C = 0	7360								
0 = 0	4980								

CONSTANTS

Quantity	Symbol	Value	Power of ten	<u>Units</u>	
Speed of light	С	2.9979	10 ⁸	m s ⁻¹	
Elementary charge	E	1.602	10 ⁻¹⁹	С	
Faraday's constant	F=NAe	9.6485	104	C mol ⁻¹	
Boltzmann's constant	К	1.380 65	10 ⁻²³	J K ⁻¹	
Gas constant	R=N _A k	8.314 47		J K ⁻¹ mol ⁻¹	
		8.314 47	10 ⁻²	L bar K ⁻¹ mol ⁻¹	
		8.205 74	10-2	L atm K ⁻¹ mol ⁻¹	
		6.236 37	10	L Torr K ⁻¹ mol ⁻¹	
Planck's constant	Н	6.626 08	10 ⁻³⁴	Js	
Avogadro's constant	N _A	6.022 14	10 ²³	mol ⁻¹	
Atomic mass unit	m _u	1.660 54	10 ⁻²⁷	Kg	
Mass					
Electron	m _e	9.109 38	10 ⁻³¹	Kg	
Proton	m _p	1.672 62	10 ⁻²⁷	Kg	
Neutron	m _n	1.674 93	10 ⁻²⁷	kg	
Rydeberg constant	R _H	1.097 37	107	m ⁻¹	
1 atm = 76	60 mmHg = 760 Torr =	1.01325 x 10 ⁵ Nm ⁻²	= 1.01325 x10 ⁵ Pa= 1.01	325 bar	

The Periodic Table

1	2											3	4	5	6	7	0
1					mic												2
Н				Nun	nber												He
1.01											_						4.00
3	4											5	6	7	8	9	10
Li	Be			Elen	nent							В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
				Atomi	c Mass												
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	s	CI	Ar
22.9	24.31											26.98	28.0	30.9	32.0	35.45	39.9
9													9	7	6		5
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.0	44.9	47.9	50.9	52.0	54.9	55.8	58.9	58.71	63.5	65.37	69.72	72.5	74.92	78.9	79.90	83.8
0	8	6	0	4	0	4	5	3		5			9		6		0
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	1	Xe
85.4	87.62	88.9	91.22	92.91	95.9	98.9	101.0	102.9	106.4	107.8	112.4	114.82	118.6	121.75	127.6	126.90	131.3
7		1			4	1	7	1	2	7	0		9		0		0
55	56	57 †	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.	137.3	138.	178.4	180.9	183.8	186.	190.	192.2	195.0	196.9	200.5	204.3	207.1	208.9	(210)	(210)	(222)
91	4	91	9	5	5	21	21	2	9	7	9	7	9	8			
87	88	89 ‡	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
(223	(226)	(227)	(261)	(262)	(266)	(264	(277)	(268)	(281)	(272)	(285)	(284)	(289)	(288)	(291)	(Unknow	(294)
))										n)	

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	u	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)