

Reinforcement Learning

Glauco Fleury @s/linkedin

Presença

- Linktree: Presente na bio do nosso instagram
- Presença ficará disponível até 1 hora antes da próxima aula
- É necessário 70% de presença para obter o certificado

Material

- Lembrete:
 - leiam a apostila das aulas para um entendimento mais amplo e completo

Presença

Aprendizado por Diferença Temporal (TD)

Definição de TD

- Considerada a ideia mais central e inovadora do Aprendizado por Reforço
- É uma combinação de ideias de Monte Carlo (MC) e
 Programação Dinâmica (DP)
- Todos os métodos (TD, MC, DP) usam a estrutura da Iteração de Política Generalizada (GPI)
- A principal diferença entre eles está em como resolvem o problema de predição

O Melhor de Dois Mundos

Dos métodos de Monte Carlo (MC), o TD herda:

- A capacidade de ser livre de modelo (model-free)
- Aprende diretamente da experiência bruta, sem conhecer a dinâmica do ambiente

Da Programação Dinâmica (DP), o TD herda:

- A capacidade de fazer bootstrapping (aprender um palpite a partir de outro)
- Atualiza estimativas com base em outras estimativas,
 sem esperar o fim do episódio

TD Prediction

No Monte Carlo, atualizamos o valor de um estado baseado nos **retornos** observados para ele:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big]$$

Ou seja, precisamos chegar **no fim do episódio** para poder atualizar o valor dos estados, já que o retorno é a soma de **todas** as recompensas futuras

a: parâmetro stepsize

TD Prediction

No TD, nós não precisamos fazer essa espera. Apenas olhamos **alguns passos na frente**. No caso mais simples de TD, olhando somente um passo à frente, temos:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

Assim, podemos atualizar a função valor imediatamente seguindo uma transição de estado e durante o episódio

TD Prediction

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

Como atualizamos a função valor de cada estado a partir da função valor de outros estados, temos **bootstrapping**. A diferença entre MC e TD é então o alvo das estimativas:

Em MC:
$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

Em TD:
$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

V

TD Prediction

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0,1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      A \leftarrow \text{action given by } \pi \text{ for } S
       Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
       S \leftarrow S'
   until S is terminal
```


Vantagens dos Métodos TD

vs. Programação Dinâmica (DP):

 Não exigem um modelo do ambiente (são model-free), aprendendo diretamente da experiência

vs. Monte Carlo (MC):

- São online e incrementais: atualizam o valor a cada passo de tempo, sem esperar o fim do episódio
- Muito mais eficientes em tarefas com episódios longos ou em tarefas contínuas (que não têm fim)

TD: Confiável e Rápido

A convergência é garantida?

• **Sim.** Foi provado matematicamente que o TD(0) - forma mais simples de TD - converge para a função de valor verdadeira (v_{π}) .

Qual método é mais eficiente (TD vs. MC)?

- Teoricamente: É uma questão em aberto, sem uma prova matemática definitiva.
- Na prática: Em tarefas com aleatoriedade (estocásticas),
 o TD geralmente converge mais rápido.

DP vs MC vs TD

Critério	Programação Dinâmica (DP)	Monte Carlo (MC)	Diferença Temporal (TD)
Exige Modelo do Ambiente?	Sim	Não	Não
Faz Bootstrapping?	Sim	Não	Sim
Tipo de Aprendizado	Offline	Offline	Online e Incremental
Atualização do Valor	Baseado em Sucessores Diretos	Ao final do episódio (retorno completo)	A cada passo (recompensa + próximo estado)

Otimalidade do TD(0)

Na prática:

 Métodos TD geralmente convergem mais rápido que os de Monte Carlo (MC) em tarefas estocásticas.

Por que isso ocorre?

- Para entender o motivo dessa eficiência, analisamos os métodos em Treinamento em Lote (Batch Updating)
- Treinamento em Lote: o algoritmo aprende repetidamente com um conjunto fixo de experiências até as estimativas convergirem

Desempenho no treinamento

Evidências empíricas:

 Sob treinamento em lote, TD(0) obtém menores erros do que o método Monte Carlo (MC).

Como?

 Como o TD(0) pode ser melhor que o método que já encontra a solução "ótima" dos dados?

Solução MC: Foco nos dados

Caminho:

Não ter viés, mas obter aproximações mais lentas de V(s)

Convergência:

 Método MC converge para V(s), média amostral dos retornos experienciados após visitar cada estado.

Resultado:

 Maior fidelidade aos dados. Ajustando ao que foi observado nas experiências.

Solução TD(0): Foco no ambiente

Caminho:

 Encontrar parâmetros que melhor adequem o meio ao MDP (MLE), com estimativas enviesadas

Convergência:

- Aprender o modelo: constrói o modelo de máxima semelhança (maximum-likelihood model) a partir dos dados.
- Resolver o modelo: calcular o valor que seria correto para o modelo.

Resultado:

• Maior fidelidade ao ambiente. Já que o modelo tenta espelhar o ambiente, tem melhor resultado com dados diferentes do treino.

Exemplo

Dados do Lote:

- 8 episódios:
 - o 1: A, 0, B, 0
 - 2 ~ 7: B, 1
 - 0 8: B, 0

Valor de B:

Média dos valores. V(B) = 6/8 = 3/4

Valor de A:

Qual o valor ótimo de V(A)?

Modelo máxima semelhança

Exemplo

Monte Carlo (MC):

$$V(A) = 0$$

Justificativa:

- O único episódio que começou em A terminou em 0, portanto,
 V(A) = 0.
- Assim, acerta perfeitamente o caso 1.

Solução TD(0):

$$V(A) = 3/4$$

Justificativa:

- A sempre transita para B (combase no modelo) e, como V(B) = 3/4, V(A) = 3/4.
- Resposta correta para o modelo mais provável do ambiente.

TD(0): Maior eficiência

Por que o TD é, geralmente, mais eficiente?

Generalização:

 O algoritmo busca a estrutura do problema ao invés de acertar aos dados, resultando em uma melhor generalização para dados futuros.

Eficiência:

 Pela análise em lote, TD apresenta melhor eficiência do que MC. A cada atualização, a estimativa se aproxima do valor mais correto.

Viabilidade:

 Menos custosa computacionalmente. Mais viável de se aproximar da solução de certeza-equivalência.

Algoritmos de TD

Sarsa

- Sarsa é um algoritmo on-policy
- Target: $r_{t+1} + \gamma Q(s_{t+1}, a_{t+1})$
- 2 parâmetros:
 - step-size (se muito alto, vira MC)
 - alpha
- mais "seguro" no contexto geral da GPI

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

V

Sarsa

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
   Repeat (for each step of episode):
      Take action A, observe R, S'
      Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy)
      Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]
      S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Q-Learning

- Q-Learning é um algoritmo off-policy
 - utilizamos a política exploratória para descobrir as funções ação-valor da gananciosa
- Target: $r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a)$
- os mesmos 2 parâmetros do Sarsa
- menos "seguro" no contexto geral da GPI
- busca o caminho mais óptimo possível de forma gulosa

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

V

Q-Learning

```
Initialize Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S';
until S is terminal
```


Expected-Sarsa

- Expected-Sarsa é um algoritmo on-policy
- Ideia: reduzir variância do Sarsa com valor esperado
- Target: $r_{t+1} + \gamma \sum_{a} \pi(a \mid s_{t+1}) Q(s_{t+1}, a)$
- os mesmos 2 parâmetros do Sarsa
- Intermediário entre Sarsa e Q-Learning
 - o incorpora aleatoriedade, mas nem tanto

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \sum_{a} \pi(a \mid s_{t+1}) Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

Double Learning

Viés de Maximização

- É a superestimação dos valores reais.
- Q-Learning: utiliza a mesma estimativa para escolher e avaliar.

Corrigindo o problema

O Double Learning utiliza dois estimadores diferentes.

$$Q_1(s,a) \leftarrow Q_1(s,a) + \alpha \left[r + \gamma \cdot Q_2 \left(s', \arg \max_{a'} Q_1(s',a') \right) - Q_1(s,a) \right]$$

Double Learning

- a cada episódio, há 50% de chance de se atualizar a função ação-valor A, e 50% de fazê-lo para B
- ação escolhida p/greedy policy: soma de Qa e de Qb

Prática

- © data.icmc
- /c/DataICMC
- (7) /icmc-data
- V data.icmc.usp.br

obrigado!