30.05.22

Note 1

9a902d381d8f4e4fh5ff8c1e77h38c57

Пусть G — непустое множество. «Спо Отображение вида

$$G \times G \to G$$

 $_{
m B}$ называется $_{
m BC}$ бинарной операцией на множестве $G_{
m B}$

Note 2

6fdd3ac4b4f644cea3704bcc79918836

Пусть $\{(c): G-$ непустое множество,(c): G- бинарная операция на G. $(c): Пара <math>(G, \circ)$ называется $\{(c): Группой, (c): G-$ она удовлетворяет аксиомам группы.(c): G- она удовлетворяет аксиомам группы.(c): G-

Note 3

827b57c3950c42b28e381d37a49ddf39

Сколько утверждений представлено в наборе аксиом из определения группы (G, \circ) ?

Три.

Note 4

f526d0257921478ca77a37b97abb9d06

Какова первая аксиома в наборе аксиом из определения группы (G,\circ) ?

Операция ∘ ассоциативна.

Note 5

ce2298302937453e87e0cf850f17af90

Какова вторая аксиома в наборе аксиом из определения группы (G,\circ) ?

Для операции ∘ существует нейтральный элемент.

Note 6

9f917456f2bf4fe6bf4e35f8042c9499

Пусть (G,\circ) — группа, $\{(c4:a\in G.)\}$ $\{(c2:a)$ Элемент $\tilde{a}\in G\}$ называется $\{(c3:a)$ Обратным к a, $\{(c4:a)\}$ если $\{(c4:a)\}$

$$a \circ \tilde{a} = \tilde{a} \circ a = e$$
.

}}

Note 8

13c9853893a445d9a33db6823c3a5146

Какова третья аксиома в наборе аксиом из определения группы (G, \circ) ?

 $\forall a \in G$ существует обратный к a элемент.

Note 9

ba5e27ac8a9481eac4302c3159a659

Пусть (G, \circ) — группа, $a \in G$. (СС) Обратный элемент к a обычно обозначают (СС) a^{-1} .

Note 10

9f4da30e71b1403a998b7c3fdf192252

 $\{(c)^2M$ ножество всех невырожденных $n \times n$ матриц над полем $F_{\|}$ вместе с $\{(c)^2, (c)^2\}$ общей линейной группой.

Note 11

27a09e6a00d14e859d7ad1d78a4f74a3

 $\{e^{2n}$ Общая линейная группа из n imes n матриц над полем $F\}$ обозначается $\{e^{2n}$ $\mathrm{GL}(n,F).\}$

Note 12

809c8a8f790e4a2a998a4a8038c03971

Группа (G,\circ) называется (са:абелевой,)) если (са:операция \circ коммутативна.)

Note 13

e59ac970ec54461083354dae9eeb4047

Может ли группа иметь несколько нейтральных элементов?

Нет, нейтральный элемент единственен.

Note 14

13fee55238844118889a790b6e0c7e37

Пусть (G, \circ) — группа. Тогда если e и e' — нейтральные элементы для \circ , то e=e'. В чём основная идея доказательства?

Рассмотреть $e \circ e'$.

Note 15

afa616033db44caa8d30131bb00173b

Пусть (G, \circ) — группа, $a \in G$. Может ли в G существовать несколько элементов, обратных к a?

Нет, обратный элемент единственен.

Note 16

9f4dcde939af46639169bda602d721c5

Пусть (G,\circ) — группа, $a\in G$. Тогда если a^{-1} и \tilde{a} — обратные элементы к a, то $\tilde{a}=a^{-1}$. В чём основная идея доказательства?

Представить \tilde{a} как $\tilde{a} \circ (a \circ a^{-1})$.

Note 17

3db3d03590c84407bfb64b2a80b0e1c5

Пусть (G, \circ) — группа, $\{(c2:a, b \in G_*)\}$ Тогда

$$(a \circ b)^{-1} = \{\{c1:: b^{-1} \circ a^{-1}.\}\}$$

Note 18

10144a83e52a4f5cbf0f96c818e229a5

Пусть (G,\circ) — группа, (G,\circ) — Тогда (G,\circ) — называется (G,\circ) — подгруппой группы (G,\circ) — если (G,\circ) является группой.

Пусть (G,\circ) — группа, $H\subset G$. Выражение " (H,\circ) является подгруппой (G,\circ) " обозначается

$$(H, \circ) \leqslant (G, \circ).$$

Note 20

bd4835b2c522436fac41030bf6b13a66

Пусть (G,\circ) — группа, {{c4::}} $a\in G$,}} {{c3::}} $n\in\mathbb{N}$.}}

$$\{\{c2::a^n\}\}\stackrel{\mathrm{def}}{=} \{\{c1::\underbrace{a\circ\cdots\circ a}_{n\ \mathrm{pas}}.\}\}$$

Note 21

2e41bce96a5249ca9d372d04f772b9b4

Пусть (G, \circ) — группа, {{c2::} $a \in G$.}}

$$a^0 \stackrel{\mathrm{def}}{=} \{\{c1::e.\}\}$$

Note 22

2cfa92bf39b847d4aa21d381a0d2c428

Пусть (G, \circ) — группа, $a \in G$, $n \in \mathbb{N}$.

$$\{\{{\rm c2::}a^{-n}\}\} \stackrel{\rm def}{=} \{\{{\rm c1::} \left(a^{-1}\right)^n.\}\}$$

Note 23

3994ad9b38154ec081e7042011939b50

Пусть (G,\circ) — группа, $\{(c3:a\in G.)\}$ $\{(c2:\Pi)$ Порядком элемента $a\}\}$ называется $\{(c1:n)$ ибо

$$\min \left\{ n \in \mathbb{N} \mid a^n = e \right\}.$$

либо ∞ , если таких n не существует.

Note 24

78e264e39e824819ace538828da51d7c

Пусть (G,\circ) — группа, $a\in G$. «с²-Порядок элемента a» обозначается «с¹-ord a.»

Пусть (G,\circ) — группа, (св. $a\in G$.)) (св. Множество $\{a^k\mid k\in\mathbb{Z}\}$ с операций \circ)) называется (св. подгруппой (G,\circ) , порождённой элементом a.))

Note 26

fd96a89fdb1b45559782a7213101e400

Пусть (G,\circ) — группа, $a\in G$. Подгруппа (G,\circ) , порождённая элементом a, обозначается $a\in A$.

Note 27

54a6a6775d1940b09be51518008fabdc

Пусть (G,\circ) — группа, $a\in G$. Тогда если постот $a<\infty$, то

$$\text{\{c3::}\langle a\rangle\text{\}\}}\simeq\text{\{c1::}\mathbb{Z}_{\mathrm{ord}\,a}.\text{\}}$$

Note 28

d83fe9abbfca4fc99b99e08866cc83a9

Пусть (G,\circ) — группа, $a\in G$. Тогда если (селота $a=\infty$,)) то

{{c3::
$$\langle a \rangle$$
}} \simeq {{c1:: \mathbb{Z} .}}