CMPE 185 Autonomous Mobile Robots

Navigation and Control

Dr. Wencen Wu

Computer Engineering Department

Control

- Suppose we have a plan:
 - "Hey robot! Move north one meter, then east one meter, then north again for one meter."
- How do we execute this plan?
 - How do we go exactly one meter?
 - How do we go exactly north?

How do we control the robots?

Control Architectures

- Today, most robots control systems have a mixture of planning and behavior-based control strategies
- To implement these strategies, a control architecture is used
- Control architectures should consider:
 - Code Modularity
 - Allows programmers to interchange environment types sensors, path planners, propulsion, etc.

Localization

 Embed specific navigation functions within modules to allow different levels of control (e.g., from task planning to wheel velocity control)

Control Architectures – Decomposition

 Decomposition allows us to modularize our control system based on different axes:

Temporal Decomposition

 Facilitates varying degrees of real-time processes

Control Decomposition

 Defines how modules should interact: serial or parallel?

Global

knowledge, map

See-think-act Model of Mobile Robots

 An example of a control decomposition using a mixture of serial and parallel approaches

Recall: Mobile Robot Kinematics – Two Models

Two models

How to design *v* and *w* so that the robot can follow a given trajectory?

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = w \end{cases}$$

Design for this model!

$$\begin{cases} \dot{x} = \frac{r}{2}(\dot{\varphi}_1 + \dot{\varphi}_2)\cos\theta \\ \dot{y} = \frac{r}{2}(\dot{\varphi}_1 + \dot{\varphi}_2)\sin\theta \\ \dot{\theta} = \frac{r}{2L}(\dot{\varphi}_2 - \dot{\varphi}_1) \end{cases}$$

Implement this model

The Basic Building Blocks

- **State** = Representation of what the system is currently doing
- **Dynamics** = Description of how the state changes
- *Reference* = What we want the system to do
- Output = Measurement of (some aspects of the) system
- Input = Control signal
- Feedback = Mapping from outputs to inputs
 Control Theory = How to pick the input signal u?

Open-loop

- If I command the motors to "full power" for three seconds, the robot probably will go forward one meter
- Open-loop system with
 - Reference R
 - Control U
 - Disturbance W

Recall: Errors in odometry reading

Closed-loop

- Use real-time information about system performance to improve system performance
- Closed-loop system with
 - Reference *R*
 - Control *U*
 - Disturbance W
 - Sensor noise V

- Types:
 - Bang Bang
 - PID

Feedback Control System Basic Ingredients

• Component block diagram

Reference

Controller

Sensor

Noise

Disturbance

Plant

Process

Output

- Regulating control: maintain a fixed output
- Servo control: follow a changing reference
- so that the system
 - is stable (e.g., bounded-input-bounded-output)
 - rejects disturbances
 - is robust to parameter changes

Control System: Example

Automobile cruise control

Open-Loop Step Response

• Let m = 1, b = 10, k = 20, F = 1

Time-Domain Specifications

- Rise time t_r : how fast the system reacts to a change in its input
- Setting time t_s: how fast the system's transient decays
- Overshoot M_p : How far the response grows beyond its final value during transients
- Peak time t_p : How far the response reaches the peak value

Figure: Definitions of time-domain specifications.

Dynamic Models

- Effective control strategies rely on predictive models
- Discrete time:

$$x_{k+1} = f(x_k, u_k)$$
 \leftarrow Difference equation

Example: clock

$$x_{k+1} = x_k + 1$$

Discrete Time Clock

Dynamic Models

- Laws of Physics are all in continuous time
- Instead of "next" state, we need derivatives w.r.t. time
- Continuous time:

$$\frac{dx}{dt} = f(x, u) \sim \dot{x} = f(x, u)$$
 C Differential equation

Example: clock $\dot{x} = 1$

Continuous Time Clock

Dynamic Models

- Effective control strategies rely on predictive models
- For the unicycle model:

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = w \end{cases}$$

- In implementation, everything is discrete/sampled!
- From time step *k* to time step *k*+ 1, the position changes to

$$\begin{cases} x_{k+1} = x_k + v\Delta t \cos \theta_k \\ y_{k+1} = y_k + v\Delta t \sin \theta_k \\ \theta_{k+1} = \theta_k + w\Delta t \end{cases}$$
 v, w: control input!

• Thank You!