Методы решения игр с неполной информацией (на примере игры "сороконожка")

студент: Габдрахманова Л.И. научный руководитель к.ф-м.н. Бондаренко А.А.

Москва, 2020

Цели и задачи работы

- Рассмотреть сильное секвенциальное равновесие в классической версии игры "Сороконожка" длины 4
- Реализовать программу, вычисляющую вероятности завершения в каждом узле игры для различных длин и различных вариаций игры
 - Классическая игра "Сороконожка"
 - Игра "Сороконожка"с постоянной ценой
 - Игра "Сороконожка"для трех игроков
- Визуализировать и рассмотреть динамику первых шагов для решений в каждой игре

Актуальность

Рис.: Схема 4-х-звенной игры

Маккельви и Полфри в своей работе 1992 года показали 1 , что более 60% игроков останавливались на 3 или на 4 ходе из 7 возможных в проводимых ими экспериментах.

¹McKelvey R. D., Palfrey T. R. An experimental study of the centipede game //Econometrica: Journal of the Econometric Society. – 1992. – C. 803-836.

Секвенциальное равновесие

Рис.: Схема игры длины 4

слабое секвенциальное равновесие: $\alpha=0$ $\tau=0$, $\sigma=0$, $\mu=0$ сильное секвенциальное равновесие: (рассматривались $\beta<\frac{1}{7}$) $\mu=\frac{1}{7}, \sigma=1/7, \tau=6\beta/(1-\beta)$

вывод: сильное секв. равновесие с lpha=1 существует при $eta>rac{1}{49}$

Равновесие дискретного отклика

Рис.: Схема 4-х-звенной игры

 $p_i = \mathbb{P}\{u_i + arepsilon_i = \max(u_j + arepsilon_i)\}$ - вероятность, что i-я стратегия для данного игрока окажется наилучшей.

На практике используется логистическая функция дискретного отклика²

$$p_{s_i} = \frac{e^{\lambda u_i(s_i, \sigma_{-i})}}{\sum_{s' \in S_i} e^{\lambda u_i(s'_i, \sigma_{-i})}}$$

при $\lambda o 0$ - случайный выбор хода

при $\lambda o \infty$ - однозначный рациональный выбор

²Захаров, А. В. Теория игр в общественных науках 2015г — 304 с. → 💂 🔊 ५ с.

РДО Описание программы

Algorithm 1 Probability completion

Require: λ-параметр распределения, n-число узлов, step - текущий шаг, player1, player2 - массивы (списки) выигрышей первого и второго игрока соотвественно;

Ensure: p - вероятность завершения игры на текущем шаге при заданном распределении в данной игре;

```
1: if step = n - 1 and n - четное then
```

2:
$$p = \frac{1}{1 + exp\lambda(player2[n] - player2[n-1])}$$

3: else if
$$step = n-1$$
 and n - нечетное ${\bf then}$

4:
$$p = \frac{1}{1 + exp\lambda(player1[n] - player1[n-1])}$$

5: else

11-

13-

$$result = player1[n]$$

9:
$$result = player2[n]$$

10: for
$$i = n \dots (step + 1)$$
 do

$$proba = Probability \ completion(\lambda, n, i-1, player \ 1, player \ 2)$$

12:
$$result = result \cdot (1 - proba)$$

$$14: \hspace{1.5cm} result = result + proba \cdot player_1[i-1]$$

$$16: \qquad result = result + proba \cdot player_2[i-1]$$

18:
$$p = \frac{1}{1 + exp\lambda(result - player_1[step])}$$

20:
$$p = \frac{1}{1 + exp\lambda(result - player_2[step])}$$

РДО Визуализация классической версии

Рис.: Зависимость вероятности завершения игры от λ для длины n=4

Рис.: Зависимость вероятности завершения игры от λ для длины n=6

РДО Визуализация классической версии

Рис.: Зависимость вероятности завершения игры от λ для длины n=8

Рис.: Зависимость вероятности завершения игры от λ для длины n=100

РДО Визуализация классической версии

Рис.: Зависимость вероятности завершения игры от λ на первом шаге

Рис.: Зависимость вероятности завершения игры от λ на четвертом шаге

РДО Версия игры с постоянной ценой

Игра, в которой суммарный выигрыш обоих игроков остается постоянным в каждый момент времени, главным образом отличается от классической сороконожки тем, что в ней игрок не может сделать выбор в пользу невыгодной для него стратегии в целях улучшения общего благосостояния.

Рис.: Схема игры с постоянной суммой с 6 шагами

РДО Визуализация игры с постоянной ценой

Рис.: Зависимость вероятности завершения игры от λ для игры с завершения игры от λ для постоянной суммой длины б

Рис.: Зависимость вероятности классической игры длины б

РДО Игра с тремя участниками

Два варианта игры с тремя участниками длины 9:

Первый вариант игры почти не отличается от классической версии

Во втором варианте добавлено перемешивание игроков после 3 и 6 узлов

Рис.: Схема игры с 3 игроками

РДО Визуализация игры с тремя участниками

Рис.: Зависимость завершения игры на данном шаге от λ для игры длины 9 с 3 игроками с перемешиванием

Рис.: Зависимость завершения игры на данном шаге от λ для классической игры длины 9 с 3 игроками

РДО Определение параметра λ с помощью эксперимента

Таблица: Постановка экспериментов

Номер эксперимента	количество участников	всего игр	большой выигрыш	
1 (PCC)	20	100	нет	
2 (PCC)	18	81	нет	
3 (CIT)	20	100	нет	
4 (CIT)	20	100	да	

Таблица: Количество завершений игры в каждом узле

Номер эксперимента	<i>n</i> ₁	n ₂	n ₃	n ₄	<i>n</i> ₅
1 (PCC)	6	26	44	20	4
2 (PCC)	8	31	32	9	1
3 (CIT)	6	43	28	14	9
4 (CIT)	15	37	32	11	5

Таблица: Вероятность завершения в каждом узле

Номер эксперимента		p 2	p 3	<i>p</i> ₄
1 (PCC)		0.28	0.65	0.83
2 (PCC)	0.1	0.42	0.76	0.9
3 (CIT)	0.06	0.46	0.55	0.61
Усреднение по экспериментам 1-3	0.07	0.38	0.65	0.75
4 (CIT)	0.15	0.44	0.67	0.69

Richard D. McKelvey and Thomas R. Palfrey An Experimental Study of the Centipede Game Econometrica

РДО Определение параметра λ с помощью эксперимента

Рис.: Целевая функция метода наименьших квадратов для классической сороконожки с 4 шагами и усреднения результатов первого, второго и третьего экспериментов

РДО Определение параметра λ с помощью эксперимента

Рис.: Найденные из экспериментов λ^* для классической игры "сороконожка" длины 4

Рис.: Найденное из экспериментов λ^* для классической игры "сороконожка" длины 4 с повышенными выигрышами

Результаты

- Рассмотрено сильное секвенциальное равновесие в классической версии игры "Сороконожка" длины 4
- Реализована программа, вычисляющая вероятности завершения в каждом узле игры для различных длин и различных вариаций игры:
 - Классическая игра "Сороконожка"
 - Игра "Сороконожка"с постоянной ценой
 - Игра "Сороконожка"для трех игроков
- Проанализирована динамика первых шагов для решений в каждой игре

Спасибо за внимание

Пусть Γ - игра в развернутой форме, h - информационное множество в этой игре. Назовем верой μ_h распределение вроятностей на вершинах, входящих в h. Обозначим через $\mu=(\mu_h)$ систему вер в игре Γ - распределение вероятностей для всех информационных множеств.

Пусть Γ - игра в развернутой форме, σ - профиль поведенческих стратегий в этой игре. Пусть μ - система вер. Будем говорить, что μ слабо согласована с σ , если для всех информационных множеств h таких, что при σ существует положительная вероятность попадания игры в h, и для всех вершин $a \in h$ верно следующее:

$$\mu_h(a) = \frac{P(a|\sigma)}{P(h|\sigma)},\tag{1}$$

где $P(a|\sigma)$ - вероятность того, что траектория игры пройдет через вершину $a,\ P(h|\sigma) = \sum_{b \in h} P(b|\sigma)$ - вероятность того, что таректория игры пройдет через информационное множество h. Пусть σ - профиль поведенческих стратегий, μ - система вер. Пусть h - информационное множество в котором игрок i делает ход. Обозначим через $u_{i,h}(\sigma|\mu_h)$ ожидаемый выигрыш игрока i при условии, что игра достигла множества h. Эта величина равна сумме выигрышей данного игрока во всех вершинах информационного множества h. помноженной на вероятности оказаться в этих вершинах, определяемые $\mu_h.$ Будем говорить, что σ_i секвенциально рациональна относительно $\mu.$ если для всех σ_i' мы имеем $u_{i,h}(\sigma_i,\sigma_{-i}|\mu_h) \geq u_{i,h}(\sigma_i',\sigma_{-i}|\mu_h).$ Можно дать следующее определение равновесия.

Пара (σ,μ) является слабо секвенциальным равновесием, если σ секвенциально рациональна относительно μ и μ слабо согласована с σ .

Назовем σ вполне смешанным профилем стратегий, если в каждом информационном множестве каждое действие реализуется с положительной вероятностью. Для такого σ уравнение 2 определяет веру для каждого информационного множества. Пусть σ - профиль поведенческих стратегий. Будем говорить, что система вер μ является сильно согласованной с σ , если существует последовательность вполне смешанных профилей $\sigma^n \to \sigma$, таких, что $\mu^n \to \mu$, где μ^k - система вер, слабо согласованная с профилем стратегий σ^k .

Пара (σ,μ) является сильно секвенциальным равновесием или просто секвенциальным равновесием, если σ секвенциально рациональна относительно μ и μ сильно согласована с σ .

Рассмотрим конечную игру с п игроками в нормальной форме. Определим множство $N=\{1\dots n\}$ игроков, и для каждого игрока $i\in N$ множество стратегий $S_i=\{s_{i1}\dots s_{iJ_i}\}$, состоящее из J_i чистых стратегий. Для каждой $i\in N$ определим функцию выигрыша $u_i:S\to\mathbb{R}$, где $S=\prod_{i\in N}S_i$.

Пусть Δ_i будет множеством вероятностных мер S_i . Элементы Δ_i имеют вид $p_i: S_i \to \mathbb{R}$, где $\sum_{s_{ij} \in S_i} p_i(s_{ij}) = 1$, и $p_i(s_{ij}) \geq 0$ для каждого $s_{ij} \in S_i$. Мы используем обозначение $p_{ij} = p_i(s_{ij})$. Таким образом Δ_i это изоморфный J_i многомерный симплекс $\Delta_i = \{p_i = (p_{i1}, \dots, p_{iJ_i}): \sum_j p_{ij} = 1, p_{ij} \geq 0\}$. Обозначим $\Delta = \prod_{i \in N} \Delta_i$ и $J = \sum_{i \in N} J_i$ Обозначим точки из Δ как $p = (p_1, \dots, p_n)$, где $p_i = (p_{i1}, \dots, p_{iJ_i}) \in \Delta_i$.

Мы используем обозначение s_{ij} чтобы определить стратегию $p_i \in \Delta_i$ с $p_{ij} = 1$. Также мы используем укороченное обозначение $p = (p_i, p_{-i})$. Следовательно, обозначение (s_{ii}, p_{-i}) представляет стратегию, где игрок i выбирает чистую стратегию s_{ii} , а другие игроки выбирают их компоненты вектора р. Функция выигрыша обобщается на область определения Δ по

правилу $u_i(p) = \sum_{s \in S} p(s)u_i(s)$, где $p(s) = \prod_{i \in N} p_i(s_i)$. Вектор $p=(p_1,\ldots,p_n)\in\Delta$ является равновесием Нэша, если для всех $i \in N$ и для всех $p_i' \in \Delta_i, u_i(p_i', p_{-i}) \leq u_i(p)$.

Пишем $X_i = \mathbb{R}^{J_i}$ для представления простанства всех возможных выигрышей для стратегий, которые игрок і может выбрать,

 $X = \prod_{i=1}^n X_i$. Определим функцию $\overline{u}: \Delta \to X$ как

$$\overline{u}(p) = (\overline{u}_1(p), \ldots, \overline{u}_n(p)),$$

где

$$\overline{u}_{ij}(p) = u_i(s_{ij}, p_{-i})$$

Далее мы определим равновесие дискретного отклика как статическую версию равновесия Нэша, где выигрыш каждого участника в результате каждого действия подвержен случайной ошибке. А именно, для каждого i и для каждого $j \in \{1, \dots, J_i\}$, и для любого $p \in \Delta$ определим

$$\hat{u}_{ij}(p) = \overline{u}_{ij}(p) + \varepsilon_{ij}$$

Вектор i-го игрока, $\varepsilon=(\varepsilon_{i1},\dots,\varepsilon_{iJ_i})$, распределен согласно совместному распределению с плотностью вероятности $f_i(\varepsilon_i)$. Предельное распределение f_i существует для каждого ε_{ij} и $\mathbb{E}(\varepsilon_i)=0$. Назовем $f=(f_1,\dots,f_n)$ допустимой, если f_i удовлетворяют свойствам выше для всех i. Наше предположение о поведении игроков заключется в том, что каждый игрок выбирает такое дейсвтвие j, что $0_{ij} \ge 0_{ij} \forall k=1,\dots,J_i$. Учитывая это правило принятия решений (i выбирает действие j, если u_{ij} максимальна), для любой заданной \overline{u} и f подразумевается вероятностное распредление наблюдаемых действий i и гроков, вызванных вероятностных распредлением вектора наблюдаемых ошибок, ε . Формально, для любой $\overline{u}=(\overline{u}_1,\dots,\overline{u}_n)$ с $\overline{u}_i\in R^{J_i}$ для каждого i, мы определяем множество i-откликов $R_{ij} \subseteq \mathbb{R}^{J_i}$ кая каждого i, мы определяем множество i-откликов $R_{ij} \subseteq \mathbb{R}^{J_i}$ кая

$$R_{ij}(\overline{u}_i) = \{ \varepsilon \in R^{J_i} | \overline{u}_{ij} + \varepsilon_{ij} \ge \overline{u}_{ik} + \varepsilon_{ik} \forall k = 1, \dots, J_i \}$$

При данном p, каждое множество $R_{ij}(\overline{u}_i(p))$ определяет множество ошибок, которые ведут к выбору игроком i действия j. Наконец, положим

$$\sigma_{ij}(\overline{u}_{ij}) = \int_{R_{ij}(\overline{u}_i)} f(\varepsilon) d\varepsilon$$

равное вероятности, что игрок i выберет стратегию j, при данном \overline{u} . Затем определим для любой допустимой f и для игры $\Gamma=(N,S,u)$ равновесие дискретного отклика как вектор $\pi\in\Delta$, такой, что $\pi_{ij}=\int_{Rij(\overline{u}_i)}f(\varepsilon)d\varepsilon$, гле $\overline{u}=\overline{u}(\pi)$. Формально, Пусть $\Gamma=(N,S,u)$ - игра в нормальной форме и пусть f- допустимая функция. Равновесие дискретного отклика - любая $\pi\in\Delta$ такая, что для всех $i\in N,1\leq j\leq J_i,\,\pi_{ij}=\sigma_{ij}(\overline{u}_i(\pi))$

Результаты

- Значение параметра $\lambda=0$ соответствует полностью произвольному поведению игроков в любых вершинах, $\lambda=\infty$ соответствует безошибочной игре, когда взятие выигрыша и выход из игры происходит с вероятностью 1 в каждой вершине игры. Были построены заивимости завершения игры от λ для различных вариаций игры "сороконожка"
- Было выявлено качественное отличие равновесия игры с постоянной суммой от классическойи, которое заключается в том, что все вероятности завершения игры представляют собой монотонные функции от параметра λ . Это означает, что при любых $\lambda>0$ вероятность завершения игры больше вероятности продолжения. Этот факт хорошо согласуется с реальным поведением, в силу того что в этой игре исключается одна из мотиваций передачи хода увеличение суммарного выигрыша.

Результаты

 В игре сороконожка для 3 игроков и 9 шагов графики. зависимсостей вероятностей от параметра монотонно и довольно быстро возрастают, за исключением совсем маленьких λ . В работе рассмотрены два варианта игры с тремя участниками. Первый вариант игры почти не отличается от классической версии. Во втором варианте добавлено случайное перераспределение номерой игроков. Сравнение равновесий показывает, что при перераспределении ходов между игроками при $\lambda>0.12$ завершение игры на следующем шаге менее вероятно, чем на предыдущем, чего не наблюдается для первого варианта игры, аналогичное поведение кривых наблюдается и перед 6 шагом.