

Machine Learning (IS ZC464) Session 7:

Linear models for Classification

Classification

- The goal of classification is to take an input vector x and to assign it to one of K discrete classes C_k where k = 1, 2, 3, ..., K
- Examples
 - Email: Spam / Not Spam?
 - Online Transactions: Fraudulent (Yes / No)?
 - Tumor: Malignant / Benign ?

Decision Regions

- Training data is viewed to be plotted in a d-dimensional space where d is the number of features used.
- A test data is also viewed to be mapped in the same space.
- Similarity (or closeness) of the test data from the cluster of training classes is obtained.
- The nearest class is assigned to the test data

Binary Classification

Only two classes

$$y \in \{0, 1\}$$

0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

Example of a Decision Boundary

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Solving Classification Problems

- Require the decision boundaries (or surfaces in hyper dimensional space) to be identified based on the training data.
- The decision boundary may be a line, a polynomial curve or a surface.
- The decision boundary can be represented as a hypothesis $h_{\theta}(x)$

Linearly Separable Non-Face Data

Each face is a point in the n-dimensional

Space. (ORL face data for three persons)

The points in the n-dimensional space cannot be clustered (colorwise) by hyperplanes.

Discriminant Functions

- Represent the decision boundary
- Discriminant functions are obtained by taking a linear function of the input vector (feature vector).
- Define $y(x) = w_0 + w_1x + w_2x + ... + w_Dx$
- Take a simple case

$$y(x) = w_0 + w_1 x$$

- This is the equation of line.
- How does this behave as a decision boundary

Example

- Consider the following training data
- Class 1: <1,2>, <1,1>, <2,1>
- Class 2: <3,3>, 3,4>, <4,3>
- Can view a decision boundary as a line separating two classes
- The equation of the line is

$$x_2 = -x_1 + 1$$

(not using y deliberately as used for target)

Example

- Test vector <4,4>
- Compute $h(x) = x_1 + x_2 1$ as 4+4-1=7
- Since h(x) > 4, then the test data belongs to class 2
- Test vector <2,1.5>
- h(x) = 2+1.5-1 = 2.5 < 4
- Then it belongs to class 1

Define the hypothesis in terms of vector product

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_D \end{bmatrix} \qquad W = \begin{bmatrix} w_0 & w_1 & \cdots & w_D \end{bmatrix}$$

Since y (x) =
$$W_0 + W_1 x + W_2 x + ... + W_D x$$

$$y = W^T X$$

Classification

- If $W^TX \ge 0$, then the vector x belongs to class 2
- W^TX < 0, then the test vector belongs to class
 1

- Class Assignment
- Classify

How to get the best decision boundary?

innovate achieve lead

- Based of experience using training data
- We try to optimize the fitting of the decision boundary.
- If the training data s inappropriate, the classifier is likely to misclassify data.

Binary versus Multi class classification

Binary classification:

Multi-class classification:

Linear versus circular boundaries

Nearest Neighbor Classification

Nearest neighbor: Shortest distance to the mean of the cluster

Face data is nonlinearly separable (Hyper-Surfaces can create boundaries between clusters)

Classification Problem

Given Training Data

What to optimize?

- Given $y(x) = w_0 + w_1x + w_2x + ... + w_Dx$
- Objective 1: Obtain W that gives minimum error of classification OR
- Objective 2: Obtain W that maximizes the separation of the classes
- Visualize the error surface discussed earlier with respect to classification error and find the parameters W that give the least error.

Multiclass classification

- Different targets
- Different thresholds
- Different boundaries

Multi-class classification:

