Q1: According to the table below, seven components should be extracted. Because these seven components, which explain 95.73% of the variation, should be sufficient for almost any application.

Eigenvalues of the Correlation Matrix									
	Eigenvalue	Difference	Proportion	Cumulative					
1	8.70254667	6.19412458	0.5802	0.5802					
2	2.50842209	1.22997734	0.1672	0.7474					
3	1.27844475	0.36819826	0.0852	0.8326					
4	0.91024649	0.49023842	0.0607	0.8933					
5	0.42000807	0.13596118	0.0280	0.9213					
6	0.28404689	0.02892347	0.0189	0.9402					
7	0.25512342	0.02662379	0.0170	0.9573					
8	0.22849963	0.06453616	0.0152	0.9725					
9	0.16396347	0.08690972	0.0109	0.9834					
10	0.07705375	0.00884392	0.0051	0.9886					
11	0.06820983	0.01558817	0.0045	0.9931					
12	0.05262166	0.02506849	0.0035	0.9966					
13	0.02755318	0.00929679	0.0018	0.9984					
14	0.01825639	0.01325266	0.0012	0.9997					
15	0.00500372		0.0003	1.0000					

Q2: a)

b) Here is the result of regression. Because "Pr>F" of this model and "Pr>|t|" of variable s are less than 0.005, it is a reliable linear regression model. But the estimated parameter of sodium is -0.06724 which means it affects rating very slightly. Besides, Root MSE is up to 12.95 and Adj R-sq is only 0.1499. These analysis results show that using sodium to predict rating is unreliable.

Q3: a) Here is the result of regression.

These three graphs show that residuals are not follow a normal distribute.

b)
Determined influence of observations by cook's distance.

	ID	Cook's D Influence Statistic	SEX	AGE	MARITAL	EDUCAT	EMPLOY	INCOME	RELIGION	Cat_01	Cat_02	Cat_03	Cat_04	Cat_05	Cat_06
1	73	0.0665827285	1	32	3	2	3	2	4	2	2	3	2	2	2 2
2	289	0.0584056734	2	19	4	2	5	28	1	3	3	3	3	3	3
3	124	0.0437553447	2	18	2	2	3	2	3	3	3	2	3	3	1
4	17	0.0401962438	2	23	1	4	1	8	1	3	3	2	3	3	3
5	189	0.028055287	2	24	1	3	1	13	4	3	3	3	3	3	3 0
6	58	0.0248424486	2	55	2	3	5	23	1	3	3	3	1	1	0
7	99	0.0240708902	1	72	5	2	4	11	1	0	2	3	0	2	0
8	288	0.0233833512	1	61	2	3	1	28	4	2	3	0	0	3	3 0
9	211	0.0180460232	1	47	2	2	7	23	2	0	3	3	0	3	3
10	144	0.0180203356	2	33	2	2	5	20	4	3	3	3	0	3	3
11	80	0.0179728357	2	75	5	2	5	7	1	1	1	2	1	1	1 1
12	182	0.0155149029	2	59	5	3	1	13	1	2	3	2	2	3	3
13	112	0.0145887851	2	79	2	3	4	15	1	3	2	0	0	2	5 0
14	60	0.0143557847	1	20	1	3	1	28	4	2	2	3	2	2	2 2
15	114	0.0136471014	2	51	1	2	5	2	4	3	2	2	0	1	1

Here is the result of new model. Compared to old model, the distribution of "Cook's D" is evener. And residuals are more likely to a normal distribution. This new model is more reliable because "Pr<|t|" of sex is less than 0.05 and Root MSE decreased.

c)
Determined leverage of observations by leverage.

	ID	Leverage	SEX	AGE	MARITAL	EDUCAT	EMPLOY	INCOME	RELIGION	Cat_01	Cat_02	Cat_03	Cat_04	Cat_05	Cat_06
1	121	0.0426035719	1	62 2	2	3	1	65	4	0	0	0	0		0 0
2	222	0.0414811712	2	52 2	2	4	5	65	1	0	1	1	0		0 0
3	234	0.0408098259	2	19 1		4	2	65	1	0	0	0	0		1 0
4	95	0.0401788342	2	21 1		5	2	65	3	1	1	0	0		1 0
5	223	0.0382509592	2	37 2	2	4	2	65	4	0	0	0	0		0 0
6	77	0.0364290448	1	20 1		3	1	65	3	1	0	0	0		0 0
7	162	0.0355001053	1	45 2		5	1	65	1	0	0	0	0		1 (
8	103	0.0343240049	1	37 3	3	6	1	65	4	1	1	2	0		1 0
9	166	0.0342744942	1	36 2		7	1	65	3	0	0	0	0		0 0
10	270	0.0342744942	1	36 3	3	7	1	65	4	0	0	0	0		0 0
11	292	0.0316238026	1	64 2	2	4	1	55	3	0	0	0	0	1	0 1
12	227	0.0315733891	2	89 5	5	7	2	31	1	0	2	2	0	8	2 (
13	168	0.0300588262	2	57 2	2	5	2	55	1	0	0	0	0		0 0
14	49	0.0296321707	2	56 2		6	1	55	4	0	1	0	0		0 0
15	43	0.0267672895	2	47 2	2	6	1	55	1	0	0	0	0		0 0

Here is the result of new model. The model only changed slightly by deleting high leverage observations which means that these high leverage observations affect model slightly.

Q4: I distributed all data to 4 tasks by a prime number and let each task to calculate the sum of customer's age and the number of customers. Here are the results form 4 remote tasks.

Task	Sum of age	Number of customers
A	1416932	25199
В	1408472	25061
С	1405243	25024
D	1389963	24716

Then collect results from tasks and calculate average age. It's 56.2061.