How the Ethereum blockchain works, for analytics

Shahan Khatchadourian ConsenSys March 7, 2017

Outline

- 1. Ethereum **Protocol Stack**
- 2. Creating and updating **account** state
- 3. Creating and updating **contract** state
- 4. **Peer** activity and **block creation**
- 5. Data of the blockchain
- 6. Ethereum Improvement Proposals (EIPs)
- 7. Interesting social events
- 8. Challenges

Enterprise Ethereum Protocol Stack

trustless: cryptography

de-centralized: peer-to-peer

flexible: can run code

immutable: state can change but history is kept

Updating account state on the Ethereum blockchain

Updating contract state on the Ethereum blockchain

Peer activity and block creation

Clients propagate transactions throughout the network.

Miners create blocks of transactions: requires lots of electricity and computational power (GPUs > CPUs; ASICs cannot be used for now).

- 1. Choose the transactions that go into a block
 - pick in order of decreasing gas payout (gas is credited to the miner)
- 2. Do some heavy computation for an appropriate value
- 3. If an appropriate value is found, send it to network with a small verifiable proof
- 4. The network verifies and accepts the block, miner is rewarded (+gas payout)
 - Adds block to a sequential chain (forks are to be avoided because branches are incompatible)
- 5. Repeat

Data of the blockchain

- Account balances
- Contract balances
 - Software token balances, e.g., ERC20
- Account and contract transactions
 - Value transactions
 - Gas usage
 - Code execution (hard)
- Block creation rate, hash power, difficulty
- Number of accounts created

Ethereum Improvement Proposals (EIPs)

Proposals for updating the public Ethereum protocol with bug fixes, new features, resolving exploits, and even resolving socially contentious issues. https://github.com/ethereum/EIPs

Proposal to resolve cost of Input/Output operations (they did not use much gas relative to the performance cost), https://github.com/ethereum/EIPs/issues/150

Proposal to hard fork:

https://github.com/TheDAO/EIPs/blob/master/EIPS/eip-2.mediawiki

A hard form fork indicates a significant change to client software (that everyone on the network runs) and proceeds if there is approval by a majority of miners on the network. Those not in the majority end up forming their own (incompatible) chain.

Interesting 'social' events

The DAO: the most successful crowdfunding in history in which over 28 days the social contract application received \$150M from 11,000 contributions,

BUT developers introduced a bug and someone conducted a heist successfully

However; recovery of funds was "successful". After the heist was discovered, a proposal to 'steal back' the money via a hard fork to filter for specific accounts used in the heist.

Challenges

Exact number of machines/miners at the instance a block is mined is unknown

- Perhaps it can be inferred from the hashpower, or the number of reward addresses
- Perhaps rewards address can also be correlated with percentage of rewards earned by mining pools

Contract execution details require understanding of instruction codes:

no easy way to 'replay' transactions and log the instructions

Conclusion

- Public chain has around 3.5 million blocks, around 20GB (via client)
- Public chain value estimated at > \$1bn
- The only public chain that has a high value and has interesting properties such as smart contracts
- Continues to grow, increasing enterprise adoption