Module: INT102 Assignment 2

1. Assessment

The tasks contribute 10% to the overall assessment of INT102.

2. Submission

Please complete the assessment tasks and submit a pdf file via LM.

3. Deadline

12-May- 2023, Friday 17:30.

Question 1

12345

- 1. Given a pattern AGTAA, create a shift table for letters A, G, C, T. (4)
- 2. Apply Horspool's algorithm to search the pattern in text AGCCGTGC, what is the number of comparisons. (10)

Question 2

For the following graph, run Bellman-ford algorithm to find all shortest paths from vertex a. for the following graph. (16)

Question 3

- 1. Using dynamic programming, fill the table in computing the length of the Longest Common Subsequence between sequences of GAGT and AGACCT. (10)
- 2. Based on the table, find a longest common subsequence of GAGT and AGACCT. (5)

W 8

Question 4

Using a gap penalty of d=-1 and scoring matrix as below

	A	C	G	Т
A	1	-3	-2	-3
C	-3	1	-3	-2
G	-2	-3	1	-3
Т	-3	-2	-3	1

- 1. Optimal global alignment (15)
- a. Using dynamic programming, fill in the table in computing the score of the optimal global alignment of GAGT and ACATGT.
 - b. Based on the table, find all the optimal global alignments of GAGT and ACATGT.
- 2. Optimal local alignment (15)
- a. Using dynamic programming, fill in the table in computing the score of the optimal local alignment of GAGT and ACATGT
 - b. Based on the table, find all the optimal local alignments of GAGT and ACATGT.

Question 5

Apply the branch-and-bound algorithm to solve the travelling salesman problem for the (10) following complete graph.

Question 6

Which of the following statements do not contradict the current state of our knowledge about the complexity classes P, NP, and NPC (NP-complete problems)?

1.
$$P = NP = NPC$$

2.
$$P = NP \text{ but } NPC \subset NP$$
 (3)

3.
$$P \neq NP$$
, $NP = P \cup NPC$ and $P \cap NPC = \{\}$

4.
$$P \neq NP, P \cap NPC \neq \{\}$$

5.
$$P \neq NP, P \cap NPC = \{\}$$