Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales **Álgebra Lineal - LCC, LM, PM - 2023**

Parcial 2 - 01/05/2023

Nombre: Legajo: Carrera:

- 1. Sea la matriz $A = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$
 - (a) Pruebe que la matriz A define un producto interno en \mathbb{R}^3 como sigue: $\langle x,y\rangle:=xAy^t$.
 - (b) Sea $W = span\{(1, -1, 0), (0, 1, -1)\} \subset \mathbb{R}^3$. Halle una base ortonormal $B = \{w_1, w_2, w_3\}$ de \mathbb{R}^3 tal que $W = span\{w_1, w_2\}$.
 - (c) Sea $v = (2,2,3) \in \mathbb{R}^3$. Halle la proyección $p_{W^{\perp}}(v)$ del vector v en el subespacio W^{\perp} .
 - (d) Halle el vector de W más cercano a v. Ayuda: recuerde que $d(v, W) = ||v p_W(v)||$.
- 2. Sea la transformación lineal $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ definida en la base canónica $\mathcal{E} = \{1, x, x^2\}$ según T(1) = 3 x, T(x) = 4x y $T(x^2) = -x 3x^2$. Sea A la matriz de la transformación lineal T con respecto a la base canónica $\mathcal{E}: A = [T]_{\mathcal{E}}$.
 - (a) Sin hacer ningún cálculo, ¿puede hallar un autovalor de T y un autovector asociado a ese autovalor?
 - (b) Calcule el polinomio característico de T.
 - (c) Calcule los autovalores de T y sus autoespacios asociados.
 - (d) Pruebe que T es diagonalizable. Exhiba una base \mathcal{B} de $\mathbb{R}_2[x]$ formada por autovectores de T.
 - (e) Halle una matriz diagonal $D \in \mathbb{R}^{3\times 3}$, semejante a A. Si escribimos $D = PAP^{-1}$, P es una matriz de cambio de bases en \mathbb{R}^3 . Indique cuáles son esas bases y cuál es la matriz P.
 - (f) Sin calcularlo, ¿puede indicar cuál es el polinomio minimal de T?
- 3. Indique si las siguientes afirmaciones son verdaderas o falsas **justificando** adecuadamente su respuesta.
 - (a) Sea V un espacio vectorial con producto interno. Si $u, v \in V$ son tales que $||u|| = ||v|| = \langle u, v \rangle = 1$, entonces u = v.
 - (b) Sea V un espacio vectorial y sea $T \in L(V)$ tal que ran(T) = 1. Entonces existe $u \in Im(T)$ autovector de T tal que $Im(T) = span\{u\}$.
 - (c) Sea V un espacio unitario. Sea $u \in V$ fijo, $u \neq \overline{0}$. Definimos $\Phi_u : V \to \mathbb{C}$ por $\Phi_u(v) = \langle u, v \rangle$. Entonces Φ_u es una transformación lineal.