Characterizing quantum bilocal network scenario with generalized NPA hierarchies

Based on arXiv:2210.09065 [Renou, Xu, Ligthard, 2022]

- Hilbert space $H=H_{\!A}\otimes H_{\!B}\otimes H_{\!C}$ with a shared state τ

- Hilbert space $H=H_A\otimes H_B\otimes H_C$ with a shared state τ
- PVMs $\{A_{a|x}\}, \{B_{b|y}\}, \{C_{c|z}\}$

- Hilbert space $H=H_A\otimes H_B\otimes H_C$ with a shared state τ
- PVMs $\{A_{a|x}\}, \{B_{b|y}\}, \{C_{c|z}\}$
- Born's rule: $p(abc \mid xyz) = \text{Tr}(\tau(A_{a\mid x} \otimes B_{b\mid y} \otimes C_{c\mid z})) = \text{Tr}_{\tau}(A_{a\mid x}B_{b\mid y}C_{c\mid z})$

• Conversely, given $\overrightarrow{P}=\{p(abc\,|\,xyz)\}$, is it compatible with some tripartite Bell experiment?

- Conversely, given $\overrightarrow{P}=\{p(abc\,|\,xyz)\}$, is it compatible with some tripartite Bell experiment?
- I.e does it exist some H, τ , $\{A_{a|x}\}$, ... such that $p(abc \mid xyz) = \ldots$ Is $\overrightarrow{P} \in C_{qa}$?

- Conversely, given $\overrightarrow{P}=\{p(abc\,|\,xyz)\}$, is it compatible with some tripartite Bell experiment?
- I.e does it exist some H, τ , $\{A_{a|x}\}$, ... such that $p(abc \mid xyz) = \ldots$ Is $\overrightarrow{P} \in C_{qa}$?
- Useful for e.g. device-independent quantum cryptography/quantum key distribution etc.

• Inner approximation: calculating all possible \overrightarrow{P} over Hilbert spaces of all dimension, with e.g. gradient-descent.

- Inner approximation: calculating all possible \overrightarrow{P} over Hilbert spaces of all dimension, with e.g. gradient-descent.
- Might miss some important distributions!

- Inner approximation: calculating all possible \overrightarrow{P} over Hilbert spaces of all dimension, with e.g. gradient-descent.
- Might miss some important distributions!
- Outer approximation: NPA hierarchy [Navascués et al., 2008]

• Will sketch, have condition Γ^n , $n \ge 2$, such that $\overrightarrow{P} \in C_{qa} \Longrightarrow \cdots \Longrightarrow \Gamma^4 \Longrightarrow \Gamma^3 \Longrightarrow \Gamma^2$.

• Will sketch, have condition Γ^n , $n \ge 2$, such that $\overrightarrow{P} \in C_{qa} \Longrightarrow \cdots \Longrightarrow \Gamma^4 \Longrightarrow \Gamma^3 \Longrightarrow \Gamma^2$.

• Equivalently, if for some n, Γ^n is not satisfied, then $\overrightarrow{P} \not\in C_{qa}$.

• Will sketch, have condition $\Gamma^n, n \geq 2$, such that $\overrightarrow{P} \in C_{qa} \implies \cdots \implies \Gamma^4 \implies \Gamma^3 \implies \Gamma^2$.

• Equivalently, if for some n, Γ^n is not satisfied, then $\overrightarrow{P} \not\in C_{qa}$.

- Equivalently, if for some n, Γ^n is not satisfied, then $\overrightarrow{P} \not\in C_{qa}$.
- Testing C_{qa} from the outside.

• Suppose state&PVMs s.t. $p(abc \mid xyz) = \text{Tr}_{\tau}(A_{a\mid x}B_{b\mid y}C_{c\mid z})$, easy to calculate $\text{Tr}_{\tau}(A_{a\mid x})$, $\text{Tr}_{\tau}(A_{a\mid x}^{\dagger}C_{c\mid z})$, ...

- Suppose state&PVMs s.t. $p(abc \mid xyz) = \text{Tr}_{\tau}(A_{a\mid x}B_{b\mid y}C_{c\mid z})$, easy to calculate $\text{Tr}_{\tau}(A_{a\mid x})$, $\text{Tr}_{\tau}(A_{a\mid x}^{\dagger}C_{c\mid z})$, ...
- Put them into a moment matrix Γ^2 , indexed by $1, A_{a|x}, A_{a|x}, A_{a'|x'}, \dots$ (up to length 2).

- Suppose state&PVMs s.t. $p(abc \mid xyz) = \text{Tr}_{\tau}(A_{a\mid x}B_{b\mid y}C_{c\mid z})$, easy to calculate $\text{Tr}_{\tau}(A_{a\mid x})$, $\text{Tr}_{\tau}(A_{a\mid x}^{\dagger}C_{c\mid z})$, ...
- Put them into a moment matrix Γ^2 , indexed by $1, A_{a|x}, A_{a|x}, A_{a'|x'}, \dots$ (up to length 2).

- Suppose state&PVMs s.t. $p(abc \mid xyz) = \text{Tr}_{\tau}(A_{a\mid x}B_{b\mid y}C_{c\mid z})$, easy to calculate $\text{Tr}_{\tau}(A_{a\mid x})$, $\text{Tr}_{\tau}(A_{a\mid x}^{\dagger}C_{c\mid z})$, ...
- Put them into a moment matrix Γ^2 , indexed by $1, A_{a|x}, A_{a|x}, A_{a|x}, \dots$ (up to length 2).

Rule:

$$\Gamma_{B_{b|y},B_{b|y}} = \operatorname{Tr}_{\tau}(B_{b|y}^{\dagger}B_{b|y}) = \operatorname{Tr}_{\tau}(B_{b|y}) = \operatorname{Tr}_{\tau}(\operatorname{Id}^{\dagger} \cdot B_{b|y}) = \Gamma_{1,B_{b|y}}$$

• Zoom out to length 2 $\Gamma_{A_{a|x}B_{b|y},C_{c|z}} = \operatorname{Tr}_{\tau}((A_{a|x}B_{b|y})^{\dagger}C_{c|z}) = \operatorname{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z}) = p(abc \mid xyz)$

Zoom out to length 2

$$\Gamma_{A_{a|x}B_{b|y},C_{c|z}} = \text{Tr}_{\tau}((A_{a|x}B_{b|y})^{\dagger}C_{c|z}) = \text{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z}) = p(abc \mid xyz)$$

Zoom out to length 2

$$\Gamma_{A_{a|x}B_{b|y},C_{c|z}} = \text{Tr}_{\tau}((A_{a|x}B_{b|y})^{\dagger}C_{c|z}) = \text{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z}) = p(abc \mid xyz)$$

• Γ^2 is semidefinite positive, symmetric, satisfies many linear constraints...

• Longer indices, such as $A_{a|x}B_{b|y}C_{c|z}$, of length 3, to get a bigger matrix Γ^3 .

• Longer indices, such as $A_{a|x}B_{b|y}C_{c|z}$, of length 3, to get a bigger matrix Γ^3 .

• Longer indices, such as $A_{a|x}B_{b|y}C_{c|z}$, of length 3, to get a bigger matrix Γ^3 .

• Containing Γ^2 as a submatrix: $\Gamma^3 \implies \Gamma^2$.

• Longer indices, such as $A_{a|x}B_{b|y}C_{c|z}$, of length 3, to get a bigger matrix Γ^3 .

- Containing Γ^2 as a submatrix: $\Gamma^3 \implies \Gamma^2$.
- Repeat to get $\Gamma^2, \Gamma^3, \Gamma^4...$ A hierarchy of moment matrices.

NPA hierarchy is necessary

NPA hierarchy is necessary

• If $\overrightarrow{P} \in C_{qa}$, then for every n there exists compatible moment matrix Γ^n .

NPA hierarchy is necessary

- If $\overrightarrow{P} \in C_{qa}$, then for every n there exists compatible moment matrix Γ^n .
- If \overrightarrow{P} does not admit Γ^n for some n, then $\overrightarrow{P} \not\in C_{qa}$.

NPA hierarchy is necessary

- If $\overrightarrow{P} \in C_{qa}$, then for every n there exists compatible moment matrix Γ^n .
- If \overrightarrow{P} does not admit Γ^n for some n, then $\overrightarrow{P} \not\in C_{qa}$.
- Semidefinite program (SDP): checking if Γ^n exists can be done with computers!

• What if \overrightarrow{P} admits all Γ^n ? I.e. what is the limit $\lim_{n\to\infty}\Gamma^n$?

• Can we say $\lim_{n\to\infty}\Gamma^n=C_{qa}$?

• Theorem: If \overrightarrow{P} admits Γ^n for all $n\to\infty$, then $\overrightarrow{P}\in C_{qc}$ the commutator quantum distribution:

- Theorem: If \overrightarrow{P} admits Γ^n for all $n\to\infty$, then $\overrightarrow{P}\in C_{qc}$ the commutator quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ

- Theorem: If \overrightarrow{P} admits Γ^n for all $n\to\infty$, then $\overrightarrow{P}\in C_{qc}$ the commutator quantum distribution:
 - 1. A global Hilbert space H with pure density operator au
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute

- Theorem: If \overrightarrow{P} admits Γ^n for all $n\to\infty$, then $\overrightarrow{P}\in C_{qc}$ the commutator quantum distribution:
 - 1. A global Hilbert space H with pure density operator au
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute
 - 3. $p(abc \mid xyz) = \operatorname{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z})$

- Theorem: If \overrightarrow{P} admits Γ^n for all $n\to\infty$, then $\overrightarrow{P}\in C_{qc}$ the commutator quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute
 - 3. $p(abc \mid xyz) = \operatorname{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z})$
- Tensor C_{qa} vs commutator C_{qc} ? Known as Tsirelson's problem.

- Theorem: If \overrightarrow{P} admits Γ^n for all $n\to\infty$, then $\overrightarrow{P}\in C_{qc}$ the commutator quantum distribution:
 - 1. A global Hilbert space H with pure density operator au
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute
 - 3. $p(abc \mid xyz) = \operatorname{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z})$
- Tensor C_{qa} vs commutator C_{qc} ? Known as Tsirelson's problem.
- $A_{a|x} \otimes id_{BC}$ commutes with $id_{AB} \otimes C_{c|z}$, so $C_{qa} \subset C_{qc}$.

- Theorem: If \overrightarrow{P} admits Γ^n for all $n\to\infty$, then $\overrightarrow{P}\in C_{qc}$ the commutator quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute
 - 3. $p(abc \mid xyz) = \operatorname{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z})$
- Tensor C_{qa} vs commutator C_{qc} ? Known as Tsirelson's problem.
- $A_{a|x} \otimes id_{BC}$ commutes with $id_{AB} \otimes C_{c|z}$, so $C_{qa} \subset C_{qc}$.
- We know $C_{qa} \subsetneq C_{qc}$ [Ji et al., 2021], but they do agree in finite dimension [Fritz, 2012].

- A hierarchy Γ^n converges to commutator quantum model C_{qc} from the outside.

- A hierarchy Γ^n converges to commutator quantum model C_{qc} from the outside.
- In finite dimension, it converges to the usual quantum model with tensor product $C_{\it qa}$.

- A hierarchy Γ^n converges to commutator quantum model C_{qc} from the outside.
- In finite dimension, it converges to the usual quantum model with tensor product $C_{\it qa}$.
- Each step can be solved by computers via SDP.

Quantum bilocal scenario

Quantum bilocal scenario

• The simplest network scenario beyond the Bell scenario.

Quantum bilocal scenario

- The simplest network scenario beyond the Bell scenario.
- Entanglement swapping [Branciard et al., 2012], real quantum theory can be falsified experimentally [Renou et al., 2021], etc.

•
$$H=H_A\otimes H_{B_L}\otimes H_{B_R}\otimes H_C$$
, $\tau=\rho_{AB_L}\otimes \sigma_{B_RC}$

•
$$H = H_A \otimes H_{B_L} \otimes H_{B_R} \otimes H_C$$
, $\tau = \rho_{AB_L} \otimes \sigma_{B_RC}$

• PVMs
$$\{A_{a|x}\}, \{B_{b|y}\}, \{C_{c|z}\}$$
, s.t. $[A_{a|x}, \sigma] = [\rho, C_{c|z}] = 0$

- $H = H_A \otimes H_{B_L} \otimes H_{B_R} \otimes H_C$, $\tau = \rho_{AB_L} \otimes \sigma_{B_RC}$
- PVMs $\{A_{a|x}\}, \{B_{b|y}\}, \{C_{c|z}\}$, s.t. $[A_{a|x}, \sigma] = [\rho, C_{c|z}] = 0$
- Alice and Charlie are independent: ${\rm Tr}_{\tau}(A_{a|x}C_{c|z})={\rm Tr}_{\tau}(A_{a|x}){\rm Tr}_{\tau}(C_{c|z})$, similarly for any products of $A_{a|x}$, $C_{c|z}$.

• We have $Q_{bilocal} \subsetneq C_{qa}$

- We have $Q_{bilocal} \subsetneq C_{qa}$
- Bilocal scenario is always Bell (let $\tau = \rho \otimes \sigma$).

- We have $Q_{bilocal} \subsetneq C_{qa}$
- Bilocal scenario is always Bell (let $\tau = \rho \otimes \sigma$).
- Converse is not true, e.g. GHZ state cannot be separate. In fact, $Q_{bilocal}$ is not convex.

Bilocal scenario $\mathcal{Q}_{bilocal}$ vs NPA hierarchy

Bilocal scenario $Q_{bilocal}$ vs NPA hierarchy

- Already an outer approximation to C_{qa} , standard NPA hierarchy is too unrestricted for $Q_{bilocal}$.

Bilocal scenario $Q_{bilocal}$ vs NPA hierarchy

- Already an outer approximation to C_{qa} , standard NPA hierarchy is too unrestricted for $Q_{bilocal}$.
- More constraint/stronger tests are needed. Adding more constraints?

Bilocal scenario $Q_{bilocal}$ vs NPA hierarchy

- Already an outer approximation to C_{qa} , standard NPA hierarchy is too unrestricted for $Q_{bilocal}$.
- More constraint/stronger tests are needed. Adding more constraints?
- $\operatorname{Tr}_{\tau}(A_{a|x}C_{c|z}) = \operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Tr}_{\tau}(C_{c|z})$ and any product of A, C!

• Given bilocal $\overrightarrow{P} \in Q_{bilocal}$, we get a moment matrix $\widetilde{\Gamma}^n$ for any n the usual way. Almost the same as standard Γ^n .

- Given bilocal $\overrightarrow{P} \in Q_{bilocal}$, we get a moment matrix $\widetilde{\Gamma}^n$ for any n the usual way. Almost the same as standard Γ^n .
- But for bilocal, also have factorisation constraints: e.g. $\tilde{\Gamma}^n_{A_{a|x},C_{c|z}} = \mathrm{Tr}_{\tau}(A_{a|x}C_{c|z}) = \mathrm{Tr}_{\tau}(A_{a|x})\mathrm{Tr}_{\tau}(C_{c|z}) = \tilde{\Gamma}^n_{A_{a|x},1} \cdot \tilde{\Gamma}^n_{1,C_{c|z}}$ and arbitrary products.

- Given bilocal $\overrightarrow{P} \in Q_{bilocal}$, we get a moment matrix $\widetilde{\Gamma}^n$ for any n the usual way. Almost the same as standard Γ^n .
- But for bilocal, also have factorisation constraints: e.g. $\tilde{\Gamma}^n_{A_{a|x},C_{c|z}} = \mathrm{Tr}_{\tau}(A_{a|x}C_{c|z}) = \mathrm{Tr}_{\tau}(A_{a|x})\mathrm{Tr}_{\tau}(C_{c|z}) = \tilde{\Gamma}^n_{A_{a|x},1} \cdot \tilde{\Gamma}^n_{1,C_{c|z}}$ and arbitrary products.
- Define $\tilde{\Gamma}^n = \Gamma^n$ + factorisation constraints

• New hierarchy $\tilde{\Gamma}^n = \Gamma^n$ + factorisation constraints.

- New hierarchy $\tilde{\Gamma}^n = \Gamma^n$ + factorisation constraints.
- If $\overrightarrow{P} \in Q_{bilocal}$, then for all n there exists a compatible $\widetilde{\Gamma}^n$.

- New hierarchy $\tilde{\Gamma}^n = \Gamma^n$ + factorisation constraints.
- If $\overrightarrow{P} \in Q_{bilocal}$, then for all n there exists a compatible $\widetilde{\Gamma}^n$.
- If \overrightarrow{P} does not admit $\widetilde{\Gamma}^n$ for some n, then $\overrightarrow{P} \not\in Q_{bilocal}$.

- New hierarchy $\tilde{\Gamma}^n = \Gamma^n$ + factorisation constraints.
- If $\overrightarrow{P} \in Q_{bilocal}$, then for all n there exists a compatible $\widetilde{\Gamma}^n$.
- If \overrightarrow{P} does not admit $\widetilde{\Gamma}^n$ for some n, then $\overrightarrow{P} \not\in Q_{bilocal}$.
- But nonlinear, it is *not* SDP!

Is factorisation hierarchy sufficient?

Is factorisation hierarchy sufficient?

• What is $Q'_{bilocal} = lim_{n \to \infty} \tilde{\Gamma}^n$?

Is factorisation hierarchy sufficient?

- What is $Q'_{bilocal} = lim_{n \to \infty} \tilde{\Gamma}^n$?
- Can we say $Q_{bilocal}' = Q_{bilocal}$? Analogous to C_{qa} vs C_{qc} ?

• Main Theorem: If \overrightarrow{P} admits $\widetilde{\Gamma}^n$ for all $n \to \infty$, then $\overrightarrow{P} \in Q'_{bilocal}$ the projector bilocal quantum distribution:

- Main Theorem: If \overrightarrow{P} admits $\widetilde{\Gamma}^n$ for all $n\to\infty$, then $\overrightarrow{P}\in Q'_{bilocal}$ the projector bilocal quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ ;

- Main Theorem: If \overrightarrow{P} admits $\widetilde{\Gamma}^n$ for all $n\to\infty$, then $\overrightarrow{P}\in Q'_{bilocal}$ the projector bilocal quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ ;
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute;

- Main Theorem: If \overrightarrow{P} admits $\widetilde{\Gamma}^n$ for all $n\to\infty$, then $\overrightarrow{P}\in Q'_{bilocal}$ the projector bilocal quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ ;
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute;
 - 3. $p(abc | xyz) = \text{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z});$

- Main Theorem: If \overrightarrow{P} admits $\widetilde{\Gamma}^n$ for all $n\to\infty$, then $\overrightarrow{P}\in Q'_{bilocal}$ the projector bilocal quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ ;
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute;
 - 3. $p(abc | xyz) = \text{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z});$
 - 4. Projectors ρ , σ on H such that $\tau = \rho \cdot \sigma = \sigma \cdot \rho$;

- Main Theorem: If \overrightarrow{P} admits $\widetilde{\Gamma}^n$ for all $n\to\infty$, then $\overrightarrow{P}\in Q'_{bilocal}$ the projector bilocal quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ ;
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute;
 - 3. $p(abc | xyz) = \text{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z});$
 - 4. Projectors ρ , σ on H such that $\tau = \rho \cdot \sigma = \sigma \cdot \rho$;
 - 5. $[A_{a|x}, \sigma] = [\rho, C_{c|z}] = 0.$

- Main Theorem: If \overrightarrow{P} admits $\widetilde{\Gamma}^n$ for all $n\to\infty$, then $\overrightarrow{P}\in Q'_{bilocal}$ the projector bilocal quantum distribution:
 - 1. A global Hilbert space H with pure density operator τ ;
 - 2. PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute;
 - 3. $p(abc | xyz) = \text{Tr}_{\tau}(A_{a|x}B_{b|y}C_{c|z});$
 - 4. Projectors ρ , σ on H such that $\tau = \rho \cdot \sigma = \sigma \cdot \rho$;
 - 5. $[A_{a|x}, \sigma] = [\rho, C_{c|z}] = 0.$
- Bilocal Tsirelson: [Ligthart and Gross, 2023], shows that $Q_{bilocal}^{\prime}$ agrees $Q_{bilocal}$ in finite dimension

• A hierarchy $\tilde{\Gamma}^n$ converges to projector bilocal quantum $Q'_{bilocal}$ from the outside.

- A hierarchy $\tilde{\Gamma}^n$ converges to projector bilocal quantum $Q'_{bilocal}$ from the outside.
- $Q_{bilocal}^{\prime}$ is equivalent to standard bilocal quantum model $Q_{bilocal}$ in finite dimension.

- A hierarchy $\tilde{\Gamma}^n$ converges to projector bilocal quantum $Q'_{bilocal}$ from the outside.
- $Q_{bilocal}^{\prime}$ is equivalent to standard bilocal quantum model $Q_{bilocal}$ in finite dimension.
- Not SDP, cannot be solved by computers.

Scalar extension: linearise the hierarchy

Problem: factorisation constraints are not linear.

[Pozas-Kerstjens et al., 2019] introduces the original scalar extension:

Scalar extension: linearise the hierarchy

Problem: factorisation constraints are not linear.

[Pozas-Kerstjens et al., 2019] introduces the original scalar extension:

• New commutative variables to Alice: $\kappa_{A_{a|x}} = \mathrm{Tr}_{\tau}(A_{a|x})\mathrm{Id}$

Scalar extension: linearise the hierarchy

Problem: factorisation constraints are not linear.

[Pozas-Kerstjens et al., 2019] introduces the original scalar extension:

• New commutative variables to Alice: $\kappa_{A_{a|x}} = {\rm Tr}_{\tau}(A_{a|x}){\rm Id}$

$$\begin{array}{c} \mathbb{I} & A_{a|x} & \cdots & \kappa_{A_{a|x}} & \kappa_{A_{a|x}A_{a'|x'}} & \cdots \\ \mathbb{I} & & & & \\ (A_{a|x})^{\dagger} & & & \\ (B_{b|y})^{\dagger} & & & \\ (C_{c|z})^{\dagger} & & & & \\ (A_{a|x}A_{a'|x'})^{\dagger} & & & \\ (A_{a|x}B_{b|y})^{\dagger} & & & & \\ \cdots & & & & \\ \end{array}$$
 we commutative variables to Alice: $\kappa_{A_{a|x}} = \operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Id}$

• New commutative variables to Alice: $\kappa_{A_{a|x}} = {\rm Tr}_{\tau}(A_{a|x}){\rm Id}$

- New commutative variables to Alice: $\kappa_{A_{a|x}} = \mathrm{Tr}_{\tau}(A_{a|x})\mathrm{Id}$
- Then $\operatorname{Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z}) = \operatorname{Tr}_{\tau}(\operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Id} \cdot C_{c|z}) = \operatorname{Tr}_{\tau}(A_{a|x}) \cdot \operatorname{Tr}_{\tau}(C_{c|z})$

- New commutative variables to Alice: $\kappa_{A_{a|x}} = \mathrm{Tr}_{\tau}(A_{a|x})\mathrm{Id}$
- Then $\operatorname{Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z}) = \operatorname{Tr}_{\tau}(\operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Id} \cdot C_{c|z}) = \operatorname{Tr}_{\tau}(A_{a|x}) \cdot \operatorname{Tr}_{\tau}(C_{c|z})$
- Hence, factorisation constraints should be imposed via letting ${\rm Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z})={\rm Tr}_{\tau}(A_{a|x}C_{c|z})$?

- New commutative variables to Alice: $\kappa_{A_{a|x}} = \mathrm{Tr}_{\tau}(A_{a|x})\mathrm{Id}$
- Then $\operatorname{Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z}) = \operatorname{Tr}_{\tau}(\operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Id} \cdot C_{c|z}) = \operatorname{Tr}_{\tau}(A_{a|x}) \cdot \operatorname{Tr}_{\tau}(C_{c|z})$
- Hence, factorisation constraints should be imposed via letting ${\rm Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z})={\rm Tr}_{\tau}(A_{a|x}C_{c|z})$?

- New commutative variables to Alice: $\kappa_{A_{a|x}} \neq \operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Id}$
- Then $\operatorname{Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z}) = \operatorname{Tr}_{\tau}(\operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Id} \cdot C_{c|z}) = \operatorname{Tr}_{\tau}(A_{a|x}) \cdot \operatorname{Tr}_{\tau}(C_{c|z})$
- Hence, factorisation constraints should be imposed via letting ${\rm Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z})={\rm Tr}_{\tau}(A_{a|x}C_{c|z})$?

- New commutative variables to Alice: $\kappa_{A_{a|x}} \neq \operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Id}$
- Then But we have a fix! $\operatorname{Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z}) = \operatorname{Tr}_{\tau}(\operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Id} \cdot C_{c|z}) = \operatorname{Tr}_{\tau}(A_{a|x}) \cdot \operatorname{Tr}_{\tau}(C_{c|z})$
- Hence, factorisation constraints should be imposed via letting ${\rm Tr}_{\tau}(\kappa_{A_{a|x}}C_{c|z})={\rm Tr}_{\tau}(A_{a|x}C_{c|z})$?

Scalar extension: on the carpet

Scalar extension: on the carpet

• Need new commutative variables: $\kappa_{A_{a|x}}$, $\kappa_{A_{a|x}B_{b|y}}$, $\kappa_{A_{a|x}A_{a'|x'}C_{c|z}}$...

Scalar extension: on the carpet

- Need new commutative variables: $\kappa_{A_{a|x}}$, $\kappa_{A_{a|x}B_{b|y}}$, $\kappa_{A_{a|x}A_{a'|x'}C_{c|z}}$...
- Need more complicated constraints

Scalar extension: on the carpet

- Need new commutative variables: $\kappa_{A_{a|x}}$, $\kappa_{A_{a|x}B_{b|y}}$, $\kappa_{A_{a|x}A_{a'|x'}C_{c|z}}$...
- Need more complicated constraints
- A convergent scalar extension hierarchy Ω^n to $Q'_{bilocal}$

- Two hierarchies, $\tilde{\Gamma}^n$ and Ω^n , both converge to projector commutator model $Q'_{bilocal}$ from the outside.
- In finite dimension, they both characterise the standard QM bilocal network correlations.

- Two hierarchies, $\tilde{\Gamma}^n$ and Ω^n , both converge to projector commutator model $Q'_{bilocal}$ from the outside.
- In finite dimension, they both characterise the standard QM bilocal network correlations.
- Scalar extension hierarchy Ω^n is SDP.

 Our first draft motivate the following two, which in turn help us fix a mistake:

- Our first draft motivate the following two, which in turn help us fix a mistake:
- [Ligthart and Gross, 2023] show bilocal Tsirelson's problem and provide another convergent hierarchy based on polarisation technique.

- Our first draft motivate the following two, which in turn help us fix a mistake:
- [Ligthart and Gross, 2023] show bilocal Tsirelson's problem and provide another convergent hierarchy based on polarisation technique.
- [Klep et al., 2023] from theory of noncommutative polynomials.
 They prove scalar extension in more generality as state polynomials.

- Our first draft motivate the following two, which in turn help us fix a mistake:
- [Ligthart and Gross, 2023] show bilocal Tsirelson's problem and provide another convergent hierarchy based on polarisation technique.
- [Klep et al., 2023] from theory of noncommutative polynomials.
 They prove scalar extension in more generality as state polynomials.
- Together, bilocal network scenario (actually, stars) can be completely characterized in the C^* -algebraic/Heisenberg picture.

- Our first draft motivate the following two, which in turn help us fix a mistake:
- [Ligthart and Gross, 2023] show bilocal Tsirelson's problem and provide another convergent hierarchy based on polarisation technique.
- [Klep et al., 2023] from theory of noncommutative polynomials.
 They prove scalar extension in more generality as state polynomials.
- Together, bilocal network scenario (actually, stars) can be completely characterized in the C^* -algebraic/Heisenberg picture.
- But, more general networks remain open. Quantum inflation [Wolfe et al., 2021]?