AutoCAD Embedded Finite Element Structural Analysis Software for Offshore & Onshore Structure

"X-SEA AutoCAD"

Verification Report of 2-node Frame element (Xframe)

Professor Goangseup Zi Structural Engineering & Mechanics Lab. Department of Civil Engineering Korea University, Seoul, Korea **Title: Straight Cantilever Beam (Linear Static Analysis)**

Problem Description

The beam problem illustrated in Fig.1.1 is analyzed using xframe elements. Four different types of loadings are employed discretely at the free end i.e. extension, in-plane shearing, out-of-plane shearing and twisting moment. The exact displacement for extension, in-plane shear, out-of-plane shear and torsion in the direction of load for the above beam is given below for comparison purpose.

Length L=6.0; Height h=0.2; Thickness t=0.1; E=1.0x10⁷; ν =0.3; Load P=unit force at free end.

Fig.1.1 Straight cantilever beam model (6 Elements, XFrame)

The results obtained from XFRAME are compared with the above analytical solution in Table 1.1.

Problem	Tip load direction	Displacement in direction of load		
		Exact XFrame		
Straight beam	Extension	0.00003	0.000030	
	In-plane shear	0.10800	0.108093	
	Out-of-plane shear	0.43200 0.432093		
	Torsion 0.034243 0.0		0.033343	
Curved beam	In-plane shear	0.08854	0.087346	

Fig.1.2 Straight cantilever beam's extension (6 Elements, XFrame)

Fig.1.3 Straight cantilever beam's in-plane shear (6 Elements, XFrame)

Fig.1.4 Straight cantilever beam's out-of-plane shear (6 Elements, XFrame)

Fig.1.5 Straight cantilever beam's torsion (6 Elements, XFrame)

	XFINASIT Co. LTD
Verification Example of X-SEA AutoCAD	No: Frame Element 002

Title: Curved cantilever beam

Problem Description

The curved beam is analyzed using the frame elements. A single in-plane shear load at tip suggests various combinations of the principal deformation modes. The results are compared with analytical vertical displacement at tip obtained by Negi and Jangid (1997).

Inner radius=4.12; Outer radius=4.32; Arc= 90° ; Thickness=0.1; E= 1.0×10^{7} ; ν =0.25; Load P=unit in-plane shear force at tip; Mesh size 1×6 .

Fig.2.1 Curved cantilever beam model (6 Elements, XFrame)

Table 2.1 Theoretical and XSEA solutions for beam

Problem	Tip load	Displacement in direction of load		
Troblem	direction	Exact	XFRAME	
	Extension	0.00003	0.000030	
Straight- beam 1	In-plane shear	0.10800	0.108093	
2	Out-of-plane shear	0.43200	0.432093	
	Torsion	0.034243	0.033343	
Curved beam	In-plane shear	0.08854	0.087346	

Fig.2.2 Deformation of curved cantilever beam (6 Elements, XFrame)

Title: Column Buckling

Problem Description

The problems of column buckling are analyzed using the xframe elements and comparing the analytical solutions provided by Chen and Lui (1987).

Fig.3.1 Column buckling model (a) Fixed-free column buckling (10 Elements, XFrame)

Fig.3.2 Column buckling model (b) Pinned-ended column buckling (10 Elements, XFrame)

Fig.3.3 Column buckling model (c) Two axial forces cantilever column buckling (10 Elements, XFrame)

Fig.3.4 Column buckling model (d) Continuous member (20 Elements, XFrame)

The present finite element solutions are compared with the analytical results in Table 3.1. The results calculated by XFRAME give a good agreement with reference.

Table 3.1 Critical loads of column buckling problem $(\times 10^8 N)$

Case	Number of elements over length L					
Case	2	4	6	8	10	Exact
(a)	0.112392	0.112295	0.112283	0.112280	0.112278	0.114394
(b)	0.431049	0.426177	0.425566	0.425376	0.425293	0.457577
(c)	0.094146	0.093895	0.093864	0.093854	0.093850	0.095831
(d)	0.263485	0.260890	0.260599	0.260516	0.260481	0.273074

Fig.3.5 Deformation of column buckling (a) Fixed-free column buckling (10 Elements, XFrame)

Fig.3.6 Deformation of Column Buckling (b) Pinned-ended column buckling (10 Elements, XFrame)

Fig.3.7 Deformation of column buckling (c) Two axial forces cantilever column buckling (10 Elements, XFrame)

Fig.3.8 Deformation of column buckling (d) Continuous member (20 Elements, XFrame)

Title: Pin-ended Portal frame

Problem Description

The critical loads for the Portal frame given in Fig.4.1 are calculated using XFRAME element. As the critical loads are different depending on whether the frame is unbraced (sway-permitted case) or braced (sway-prevented case).

Fig.4.1 Pin-ended portal frame model-Sway permitted (30 Elements, XFrame)

Fig.4.2 Pin-ended portal frame model-Sway prevented (30 Elements, XFrame)

Table 4.1 Comparison of critical loads of pin-ended portal frame (×108N)

Case	Analytical solution	XFRAME
Sway-permitted	0.084379	0.080597
Sway-prevented	0.598073	0.542330

Fig.4.3 Deformation of Pin-ended Portal frame-Sway permitted case (30 Elements, XFrame)

Fig. 4.4 Deformation of pin-ended portal frame-Sway prevented case (30 Elements, XFrame)

Verification Example of X-SEA AutoCAD

No: Frame Element 005

Title: Cantilever beam under uniformly distributed load

Problem Description

The cantilever beam shown in Fig. 5.1 is subjected to uniformly distributed load is modeled using ten beam elements to test for nonlinear analysis. The purpose of this example is to compare the large displacement results of XFRAME with those obtained by NONSAP (Bathe et al., 1974)

Length = 10.0; h = 1.0; b = 1.0; E = 1.2×10^4 ; $\nu = 0.2$;

Fig.5.1 Cantilever beam under uniformly distributed load model (10 Elements, XFrame)

Fig.5.2 Load-displacement relationship of cantilever beam under uniformly distributed load

Fig.5.3 Deformation of cantilever beam under uniformly distributed load (10 Elements, XFrame)

Title: Cantilever beam under end load

Problem Description

In this cantilever analysis subjected to the concentrated tip load, the objective was to demonstrate the effects of aspect ratio in the geometrically nonlinear range for beam and frame analysis.

Length = 100; h = 0.2; b = 12; E =
$$2 \times 10^6$$
; $v = 0.3$;

Fig.6.1 Cantilever beam under end load model (10 Elements, XFrame)

Fig.6.2 Load-displacement relationship of cantilever beam under end load (10 Elements, XFrame)

Fig.6.3 Deformation of cantilever beam under end load (10 Elements, XFrame)

Title: Williams toggle frame

Problem Description

Williams solved the frame problem shown in Fig.7.1 analytically and compared the results with experimental observations. Wood and Zienkiewicz (1977) also idealized this frame using total Lagrangian formulation.

Fig.7.1 Williams Toggle Frame Model (10 Elements, XFrame)

Fig.7.2 Load-Deflection curve of Williams Toggle problem

Fig.7.3 Deformation of Williams Toggle frame (10 Elements, XFrame)

Title: Lee's elastic frame

Problem Description

Lee's frame along with its geometrical and material properties is shown in Fig.8.1. The frame was modeled with twenty elements. For the loaded node two equilibrium paths are plotted, showing the relationship between load P and vertical and horizontal displacements.

Fig.8.1 Lee's elastic frame model (10 Elements, XFrame)

Fig.8.2 Nonlinear load and X-displacement relationship of Lee's frame

Fig.8.3 Nonlinear load and Y-displacement relationship of Lee's frame

Fig.8.4 Vertical deformation of Lee's elastic frame model result (10 Elements, XFrame)

Fig.8.5 Horizontal deformation of Lee's elastic frame model result (10 Elements, XFrame)

Title: Static instability analysis of Framed Dome

Problem Description

The framed dome problem illustrates the nonlinear static analysis of space frames under two different loading conditions. The first loading case considered is that of a single concentrated load at the crown point. The loading second system consists of concentrated vertical loads of equal magnitude P at the crown point and also at the end points of the horizontal members.

Fig.9.1 Framed dome model under load case 1 (72 Elements, XFrame)

Fig. 9.2 Framed dome model under load case 2 (72 Elements, XFrame)

Fig.9.3 Load-Deflection curves for vertical displacement under load case 1

Fig.9.4 Deformation of framed dome model under load case 1 (72 Elements, XFrame)

 ${\bf Fig. 9.5\ Load-Deflection\ curves\ for\ vertical\ displacement\ under\ load\ case\ 2}$

Fig.9.6 Deformation of framed dome model under load case 2 (72 Elements, XFrame)

Title: Lee's elasto-plastic frame

Problem Description

The final example deals with the elasto-plastic behavior of Lee's frame subjected to point load at node 1SHELL ELEMENT15 Dr. KiDu Kim3. This problem was previously analyzed by Park and Lee (1996). The geometrical and material data for themembers, which are identical, is given in Fig. 10.1.

Fig.10.1 Lee's elastic frame model (10 Elements, XFrame)

Fig. 10.2 Nonlinear load and X-displacement relationship of Lee's elasto-plastic frame

Fig. 10.3 Nonlinear load and Y-displacement relationship of Lee's elasto-plastic frame

Verification Example of X-SEA AutoCAD

No: Frame Element 011

Title: Frame Element Numerical Examples-1

Problem Description

Beam is supported and loaded as follows.

E=199.96GPa; v=0.03.

Geometric property

Fig.11.1 Frame model-1 (20 Elements, XFrame)

Fig.11.2 Displacement of beam in y direction (20 Elements, XFrame)

Table 11.1 Displacement at node 2 and 3

Element type	Noo	de 2	Node 3		
Element type	U (mm)	$R_{z}\left(rad\right)$	U (mm)	V (mm)	$R_z(rad)$

Reference	0.24E-01	-0.88E-03	0.46E-01	-0.1915E+02	-0.53E-02
XSEA	0.2358E-01	-0.8841E-03	0.4568E-01	-0.1916E+02	-0.5304E-02

Table 11.2 Reaction at node 1

Element type $F_x(N)$		$F_y(N)$	M _z (N·mm)	
Reference	-0.36E+04	-0.33E+04	-0.88E+07	
XSEA	-0.3536E+04	-0.3315E+04	-0.8839E+07	

	XFINASIT Co. LTD
Verification Example of X-SEA AutoCAD	No: Frame Element 012

Title: Frame Element Numerical Examples-2

Problem Description

Beam is supported and loaded as follows.

E=199.96GPa; v=0.03.

Geometric property

Fig.12.2 Displacement of beam in y direction (20 Elements, XFrame)

Table 12.1 Displacement at node 2

Element type	R _z (rad)
Reference	0.1786E-02
XSEA	0.1786E-02

Table 12.2 Reaction at node 1

Element type	Noc	de 1	Noc	le 3
	$\mathbf{F}_{\mathbf{y}}\left(\mathbf{N}\right)$	$M_z(N\cdot mm)$	$\mathbf{F}_{\mathbf{y}}\left(\mathbf{N}\right)$	$M_z(N\cdot mm)$
Reference	0.67E+04	0.1786E+08	-0.429E+04	0.714E+07
XSEA	0.6696E+04	0.1786E+08	-0.4286E+04	0.7143E+07

XFINASIT Co. LTD

No: Frame Element 013

Title: Frame Element Numerical Examples-3

Problem Description

Beam is supported and loaded as follows.

Fig.13.1 Frame model-3 (20 Elements, XFrame)

Fig.13.2 Displacement of beam in X direction (20 Elements, XFrame)

Fig.13.3 Displacement of beam in Y direction (20 Elements, XFrame)

Table 13.1 Displacement at node 2

Element type	U (mm)	V (mm)	\mathbf{R}_{z} (rad)
Reference	0.4414	-0.3998	0.1690E-02
XSEA	0.4416	-0.4000	0.1695E-02

	XFINASIT Co. LTD
Verification Example of X-SEA AutoCAD	No: Frame Element 014

Title: Frame Element Numerical Examples-4

Problem Description

Beam is supported and loaded as follows.

Fig.14.1 Frame model-4 (20 Elements, XFrame

Fig.14.2 Displacement of beam in y direction (20 Elements, XFrame)

Table 14.1 Displacement at node 2

Element type	element type U (mm)		$R_z(rad)$	
Reference	0.9982	-0.4996E+01	-0.5340E-03	
XSEA	0.9953	-0.4983E+01	-0.5344E-03	

Table 14.2 Reaction at node 1 and 3

Element Node 1			Node 3			
type	$\mathbf{F}_{\mathbf{x}}\left(\mathbf{N}\right)$	$\mathbf{F}_{\mathbf{y}}(\mathbf{N})$	M _z (N·mm)	$\mathbf{F}_{\mathbf{x}}\left(\mathbf{N}\right)$	$\mathbf{F}_{\mathbf{y}}(\mathbf{N})$	M _z (N·mm)
Reference	0.1310E+06	0.5540E+05	0.1343E+08	-0.1497E+06	0.2270E+05	-0.4541E+08
XSEA	0.1305E+06	0.5568E+05	0.1337E+08	-0.1493E+06	0.2267E+05	-0.4536E+08

	XFINASIT Co. LTD
Verification Example of X-SEA AutoCAD	No: Frame Element 015

Title: Frame Element Numerical Examples-5

Problem Description

Beam is supported and loaded as follows.

E=199.96GPa; v=0.03.

Geometric property

Fig.15.1 Frame model-5 (20 Elements, XFrame)

Fig.15.2 Displacement of beam in Z direction (20 Elements, XFrame)

Table 15.1 Displacement at node 2

Element type	W (mm)	$\mathbf{R}_{\mathbf{x}}(\mathbf{rad})$	$\mathbf{R}_{\mathbf{y}}(\mathbf{rad})$
Reference	-0.2237E+02	0.4195E-03	0.5931E-03
XSEA	-0.2239E+02	0.4197E-02	0.5932E-02

Table 15.2 Reaction at node 1 and 3

Element Node 1		Node 3				
type	$\mathbf{F_{z}}\left(\mathbf{N}\right)$	$\mathbf{M}_{\mathbf{x}}(\mathbf{N})$	$\mathbf{M}_{\mathbf{y}}(\mathbf{N}\cdot\mathbf{mm})$	$\mathbf{F}_{\mathbf{z}}\left(\mathbf{N}\right)$	$\mathbf{M}_{\mathbf{x}}(\mathbf{N})$	$\mathbf{M}_{\mathbf{y}}(\mathbf{N}\cdot\mathbf{mm})$
Reference	0.5250E+04	-0.4194E+08	-0.1711E+05	0.1474E+05	-0.6450E+04	-0.3621E+08
XSEA	0.5247E+04	-0.4197E+08	-0.2159E+05	0.1474E+05	-0.8148E+04	-0.3624E+08

No: Frame Element 016

Title: Frame Element Numerical Examples-6

Problem Description

Beam is supported and loaded as follows.

E=199.96GPa; v=0.03.

Geometric property

Fig.16.1 Frame model-6 (20Elements, XFrame)

Fig.16.2 Displacement of beam in Y direction (20Elements, XFrame)

Table 16.1 Displacement at node 2 and 3

Element	Node 2	Node 3		
type	R_z (rad)	V (mm)	$R_z(rad)$	
Reference	-0.1372E-02	-0.8577E+01	-0.4117E-02	
XSEA	-0.1372E-02	-0.8579E+01	-0.4118E-02	

Table 16.2 Reaction at node 1

Element	Node 1			
type	$\mathbf{F}_{\mathbf{y}}\left(\mathbf{N}\right)$ $\mathbf{M}_{\mathbf{x}}\left(\mathbf{N}\right)$			
Reference	0.54687E+05	0.39062E+08		
XSEA	0.54688E+05	0.39063E+08		

	XFINASIT Co. LTD
Verification Example of X-SEA AutoCAD	No: Frame Element 017

Title: Frame Element Numerical Examples-7

Problem Description

Beam is supported and loaded as follows.

Fig.17.1 Frame model-7 (20Elements, XFrame)

Fig.17.2 Displacement of beam in X direction (20Elements, XFrame)

Fig.17.3 Displacement of beam in Y direction (20Elements, XFrame)

Table 17.1 Displacement at node 2

Element type U (in (m))		V (in (m))	R _Z (rad)	
Reference	-0.2845E-03	-0.16359E-02	0.17815E-03	
XSEA	0	-0.1722E-02 (-4.3750E-05)	0.18758E-03	

Table 17.2 Reaction at node 1 and 3

Element	Node 1			Node 3		
type	F _x (lbf) (N)	F _y (lbf) (N)	M _z (lbf·in) (N·m)			M _z (lbf·in) (N·m)
Reference	0.5443E+03	0.4524E+04	0.1024E+06	-0.5443E+03	0.3476E+04	0.1930E+05
XSEA	0.5540E+03 (2.4643E+03)	0.4605E+04 (2.0483E+04)	0.1042E+06 (1.1770E+04)	-0.5540E+03 (-2.4643E+03)	0.3538E+04 (1.5740E+04)	0.1964E+05 (2.2190E+03)

XFINASIT Co. LTD

No: Frame Element 018

Title: Frame Element Numerical Examples-8

Problem Description

Beam is supported and loaded as follows.

E=199.96GPa; v=0.03.

Geometric property

Fig.18.1 Frame model-8 (20Elements, XFrame)

Fig.18.2 Displacement of beam in Y direction (20Elements, XFrame)

Table 18.1 Reaction at node 1, 2

Element	Reaction F _y (N)	
type	Node1	Node 2
Reference	0.7375E+04	0.9625E+04
XSEA	0.7375E+04	0.9625E+04

XFINASIT Co. LTD

No: Frame Element 019

Title: Validation of the proposed spring supported boundary element

Problem Description

Beam is supported and loaded as follows.

Fig.19.1 Frame model-8 (20Elements, XFrame)

Fig.19.2 Displacement of beam in Y direction (20Elements, XFrame)

Table 19.1 Reaction at end node

Element type	Displacement (m)	Rotation (rad)
Reference	-0.01740	-0.00747
XSEA	-0.01875	-0.00803

XFINASIT Co. LTD