Use as operaçols usuals mos exercicios abaixo:

- 1- brove as seguintes propriedades de espaço vetarial para o espaço das funções F(IR, IR).
- a) elemento mentro: Existe $Z \in F(IR,IR)$ tal que $f \oplus Z = f$ qualquer que seja $f \in F(IR,IR)$.
 - b) oposto: lara cada $f \in F(IR,IR)$ ediste $W_g \in F(IR,IR)$ tal que $f \oplus W_g = Z$.
- $a Sija F = \{ (\frac{x}{2}) \in \mathbb{R}^3; x + 2y + cos(z) = 0 \}.$ $F \in \text{um espaço octorial?}$

Resolução:

1. a) Queremos mostrar que $\exists Z \in F(IR,IR)$ tal que $f \oplus Z = f$ $\forall f \in F(IR,IR)$.

Tomemos como candidata a Z a função $g: IR \rightarrow IR$ tal que g(x) = 0 $\forall x \in IR$.

From the state of the state of

= f(x) + 0 = f(x)Dely Leg Depropried to de IR

analguer que sija X E IR.

Rogo $f \oplus g$ & f tem melmo domínio, conta-domínio e $(f \oplus g)(x) = f(x)$ $\forall x \in IR$ l'ortanto $f \oplus g = f$.

Como f foi escolhida arbitrariamente temos que $f \oplus g = f$ $\forall f \in F(IR, IR)$. Portanto existe um vetor elemento mentro em F(IR,IR), basta tomar Z = g.

b) Tomemos como condidata a suy de uma punção $f: IR \to IR$ qualquer Lada a punção $g: IR \to IR$ tal que $g(x) = -f(x) \ \forall \ x \in IR$

Alussa forma $f \oplus g : IR \rightarrow IR \quad \text{i tal que } (f \oplus g)(x) = f(x) + g(x) = g(x) + f(x) = g(x) + g(x) g(x) + g(x) + g(x) = g(x) + g(x)$

Qualquer que sija XEIR.

Como $f \oplus g$ e Z tem melmo domínio e contradomínio e $(f \oplus g)(x) = Z(x)$ $\forall x \in IR$, temos que $f \oplus g = Z$ lle seja g satistas os requisitos de W_f ; e portanto tal W_f existe. Como f foi arbitrária, temos que exite W_f para cada $f \in F(IR,IR)$ e portanto a propriedade está demonstrada.

2-barnes fazer & elercício de 4 maneiras dijunts:

a) Timos que $\binom{9}{7/2}$ & F pois $0+2\cdot 0+\cos(\frac{7}{2})=0$ e $\binom{4}{7}$ & F pois $1+2\cdot 0+\cos(\frac{11}{7})=0$.

Como a poma usual de \mathbb{R}^3 mos daria que (9) $(\frac{1}{9}) \oplus (\frac{1}{7}) = (\frac{1}{3}) \oplus (\frac{1}{9}) \oplus (\frac$

b) Labemos que todo subespaço contem o elemento neutro do espaço. Como (8) é o elemento neutro de IR3 mas (8) & F, pois 0+20+cos(0) = 1 ≠ 0 timos que Fraõo é um subespaço e portanto não é um espaço vetorial.

c) como
$$\binom{8}{N_{th}} \in F$$
, pois $0+2\cdot 0+\cos(\frac{\pi}{2})=0$ e $\binom{\frac{1}{2}}{N_{th}} \in F$, pois $1+2\cdot 0+\cos(\pi)=0$ mas

$$\begin{pmatrix} \hat{q}_{12} \end{pmatrix} \oplus \begin{pmatrix} \hat{t} \\ \hat{q} \end{pmatrix} = \begin{pmatrix} \hat{t} \\ \hat{q} \end{pmatrix} \notin F$$
, pos $1+2\cdot 0 + \cos(\frac{3F}{2}) = 1 \neq 0$,

timos que Finão é um subespago e consequentemento mão é um espaço vectorial.

d)
$$\binom{\circ}{N_{2}} \in F$$
, pais $0+2.0+\cos(\frac{N_{2}}{2})=0$, max $40\binom{\circ}{F_{1/2}} = \binom{\circ}{2N} \notin F$, pais $0+2.0+\cos(2N)=1\neq 0$.

Logo F mão é um subespaço e consequentemente mão é um espaço vetorial.