Álgebra/Álgebra II Clase 16 - Isomorfismos

FAMAF / UNC

30 de mayo de 2024

Los dos teoremas (los de pp. 3 y 11) que vamos a ver aquí son muy fuertes, en el sentido que dan mucha información por si solos y que además serán de utilidad para estudiar transformaciones inyectivas, suryectivas y biyectivas.

Las demostraciones son elegantes, en el sentido que sólo requieren que razonemos pegando algunas ideas y resultados pero sin trabajar en cuentas largas y tediosas.

Las demostraciones no son difíciles, pero requieren concentración y maduración de ideas y conceptos; hacer ejercicios ayuda a asimilarlos.

El siguiente resultado relaciona las dimensiones del núcleo y la imagen.

Teorema

Sea $T:V\longrightarrow W$ una transformación lineal. Si V es de dimensión finita entonces

$$\dim V = \dim \mathsf{Nu}(T) + \dim \mathsf{Im}(T)$$

Observar que este resultado relaciona en forma general dos subespacios que "viven" en espacios diferentes.

- $\circ \operatorname{Nu}(T) \in V$,
- \circ Im(T) $\in W$.
- \circ Si $n = \dim V$,

tenemos que $n = \dim Nu(T) + \dim Im(T)$ cualquiera sea T.

Demostración

Sea $\{v_1,...,v_k\}$ una base del Nu(T) $(\Rightarrow \dim Nu T = k)$.

Sea $\{v_1,...,v_k,w_1,...,w_m\}$ una base de V obtenida completando la base de Nu(T) $(\Rightarrow \dim V = k+m)$.

Si probamos que $\{T(w_1),...,T(w_m)\}$ es una base de Im(T) el teorema queda demostrado.

Pues, de ser así, deducimos que

$$\begin{aligned} \dim V &= k + m \\ &= |\{v_1, ..., v_k\}| + |\{w_1, ..., w_m\}| \\ &= \dim \mathsf{Nu}(T) + |\{T(w_1), ..., T(w_m)\}| \\ &= \dim \mathsf{Nu}(T) + \dim \mathsf{Im}(T) \end{aligned}$$

Esto lo probaremos en las siguientes pantallas.

Queremos ver que $\{T(w_1),...,T(w_m)\}$ genera Im(T) y es LI.

$$\{T(w_1),...,T(w_m)\}$$
 genera $Im(T)$:

Sea
$$w \in Im(T) \Rightarrow w = T(v)$$
, para algún $v \in V$.

Como
$$v = \mu_1 v_1 + \cdots + \mu_k v_k + \lambda_1 w_1 + \cdots + \lambda_m w_m$$

 \Rightarrow

$$w = T(v) = T(\mu_1 v_1 + \dots + \mu_k v_k + \lambda_1 w_1 + \dots + \lambda_m w_m)$$

$$= \mu_1 \underbrace{T(v_1)}_{0} + \dots + \mu_k \underbrace{T(v_k)}_{0} + \lambda_1 T(w_1) + \dots + \lambda_m T(w_m)$$

$$= \lambda_1 T(w_1) + \dots + \lambda_m T(w_m)$$

Luego $w \in \langle T(w_1), ..., T(w_m) \rangle$.

$$\{T(w_1), ..., T(w_m)\}$$
 es LI:

Sea $\lambda_1, ..., \lambda_m$ tales que

$$\lambda_1 T(w_1) + \dots + \lambda_m T(w_m) = 0 \tag{*}$$

debemos ver que $\lambda_1 = \cdots = \lambda_m = 0$.

Ahora bien

$$T(\lambda_1 w_1 + \cdots + \lambda_m w_m) = \lambda_1 T(w_1) + \cdots + \lambda_m T(w_m) \stackrel{(*)}{=} 0.$$

Es decir
$$\lambda_1 w_1 + \cdots + \lambda_m w_m \in \text{Nu}(T) = \langle v_1, \dots, v_k \rangle$$
.

 \Rightarrow

$$\lambda_1 w_1 + \cdots + \lambda_m w_m = \mu_1 v_1 + \cdots + \mu_k v_k.$$

Luego

$$0 = -\mu_1 \mathbf{v}_1 - \dots - \mu_k \mathbf{v}_k + \lambda_1 \mathbf{w}_1 + \dots + \lambda_m \mathbf{w}_m$$

Dado que $\{v_1, ..., v_k, w_1, ..., w_m\}$ es LI, la igualdad

$$-\mu_1 v_1 - \dots - \mu_k v_k + \lambda_1 w_1 + \dots + \lambda_m w_m = 0$$

implica que

$$\mu_1 = \cdots = \mu_k = \lambda_1 = \cdots = \lambda_m = 0$$

Luego

$$\lambda_1 T(w_1) + \cdots + \lambda_m T(w_m) = 0 \quad \Rightarrow \quad \lambda_1 = \cdots = \lambda_m = 0,$$

y por lo tanto $T(w_1), \ldots, \lambda_m T(w_m)$ es LI.

El siguiente lema es importante por si mismo y además será necesario más adelante.

Lema

Sea
$$A\in\mathbb{R}^{m imes n}$$
 y R la MERF equivalente a A . Entonces
$$\dim\{\text{soluciones del sistema homogéneo }AX=0\}$$

$$\parallel$$

$$|\text{variables libres de }RX=0|.$$

A continuación damos una idea de la demostración.

Idea de la demostración

Sea r el número de filas no nulas de R y k_1, \ldots, k_r las columnas donde aparecen los 1's principales.

Entonces, $k_1 < k_2 < \cdots < k_r$ y el sistema de ecuaciones asociado a R es:

$$\begin{array}{rcl} x_{k_1} & + & \sum_{j \neq k_1, \dots, k_r} b_{1j} x_j & = & 0 \\ x_{k_2} & + & \sum_{j \neq k_1, \dots, k_r} b_{2j} x_j & = & 0 \\ \vdots & & & \vdots & & \vdots \\ x_{k_r} & + & \sum_{j \neq k_1, \dots, k_r} b_{rj} x_j & = & 0 \end{array}$$

Sean $x_{j_1}, x_{j_1}, \ldots, x_{j_{n-r}}$ las n-r variables libres (es decir los x_j con $j \neq k_1, \ldots, k_r$)

Luego,

$$\begin{array}{rcl} x_{k_1} & = & -\sum_{i=1}^{n-r} b_{1j_i} x_{j_i} \\ x_{k_2} & = & -\sum_{i=1}^{n-r} b_{2j_i} x_{j_i} \\ \vdots & & \vdots \\ x_{k_r} & = & -\sum_{i=1}^{n-r} b_{rj_i} x_{j_i} \end{array}$$

Es decir, el subespacio formado por las soluciones de AX = 0, consta de n-uplas (x_1, x_2, \dots, x_n) , donde

$$\circ \ x_k = x_{j_i}$$
, para algún $i = 1, \dots, n-r$, o

$$\circ x_k = \text{c.l. de los } x_{j_i}.$$

Por lo tanto,

$$W = \{ \sum_{i=1}^{n-r} x_{j_i} w_i : x_{j_1}, \dots, x_{j_{n-r}} \in \mathbb{K} \}$$

para algunos w_1, \ldots, w_{n-r} que son Ll.

Luego
$$\dim(W) = n - r$$
.

Definición

Sea $A \in \mathbb{R}^{m \times n}$.

- o El rango fila de A es la dimensión del subespacio de \mathbb{R}^n generado por las filas de A.
- o El rango columna de A es la dimensión del subespacio de \mathbb{R}^m generado por las columnas de A.

Teorema

Sea $A \in \mathbb{R}^{m \times n}$. El rango fila de A es igual al rango columna de A.

Notar que si $n \neq m$, estamos comparando subespacios de distintos espacios vectoriales.

Demostración

Consideremos la transformación lineal $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ dada por la multiplicación por A.

Es decir, T(v) = Av para todo $v \in \mathbb{R}^n$

La demostración consiste en comparar el núcleo y la imagen de \mathcal{T} con los espacios fila y columna de A.

Primero, el espacio columna de A es igual a la imagen de T.

Esto es por la forma en que multiplicamos matrices:

$$A = \begin{bmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_k \\ | & | & & | \end{bmatrix} \Rightarrow T(e_i) = A \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = v_i$$

Luego
$$T(\lambda_1, \ldots, \lambda_n) = T(\sum \lambda_i e_i) = \lambda_1 v_1 + \cdots + \lambda_n v_n$$
 \Rightarrow

 $Im(T) = \langle v_1, \dots, v_n \rangle$. Entonces, rango columna de $A = \dim Im(T)$.

Segundo, por el Corolario 4.4.3 de las Notas (visto en la clase 14) las filas no nulas de la MERF equivalente a A forman una base del espacio fila de A.

Por lo tanto, el rango fila de A es igual a la cantidad de 1's principales de la MERF. O dicho de otro modo,

• Rango fila de A es igual a n menos la cantidad de variables libres. (n es la cantidad de columnas de A.)

Por otro lado, el Nu(T) es igual al conjunto de soluciones de AX=0. Entonces, por el lema anterior,

 \circ dim Nu(T) es igual a la cantidad de variables libres

En resumen: sea r la cantidad de variables libres:

- (1) Rango columna de A es igual a dim Im(T)
- (2) Rango fila de A es igual a n menos la cantidad de variables libres: n-r .
- (3) dim Nu(T) es igual a la cantidad de variables libres: r.
- (4) dim $\mathbb{R}^n = n$.

Por lo tanto, por el teorema de la dimensión,

$$\begin{aligned} \dim(\mathbb{K}^n) &= \dim \operatorname{Nu}(T) + \dim \operatorname{Im}(T) \\ n &= r + \operatorname{rgcol}(A) & (\operatorname{por}(4), (3) \text{ y (1)}) \\ n &= n - \operatorname{rgfil}(A) + \operatorname{rgcol}(A) & (\operatorname{por}(2)) \\ 0 &= -\operatorname{rgfil}(A) + \operatorname{rgcol}(A). \end{aligned}$$

Isomorfismos

Ahora estudiaremoas transformaciones lineales inyectivas, sobreyectivas y biyectivas.

Este tipo de transformaciones nos dan información acerca de dimensiones, generadores y conjuntos LI.

Sea $T: V \rightarrow W$ lineal. Veremos:

- o T es inyectiva \Leftrightarrow Nu $T = 0 \Leftrightarrow$ dim Nu T = 0.
- \circ T inyectiva \Leftrightarrow T de LI es LI.
- o T sobreyectiva \Leftrightarrow T de generadores de V es generadores de W.
- o T biyectiva \Leftrightarrow T de base es base.

Definición (5.3.1 de las Notas)

Sean V, W espacios vectoriales sobre un cuerpo $\mathbb K$ y sea $T:V\to W$ una transformación lineal.

- o T es epimorfismo si T es suryectiva. Es decir si Im(T) = W.
- o T es monomorfismo si T es inyectiva (o 1-1). Es decir, $T(v_1) = T(v_2) \Rightarrow v_1 = v_2$.
- T es un *isomorfismo* si es monomorfismo y epimorfismo (es decir si es inyectiva y suryectiva).

Observación

o T es epimorfismo si y sólo si

T es lineal y
$$\forall w \in W$$
, $\exists v \in V$ tal que $T(v) = w$.

Esto se deduce inmediatamente de la definiciones de función suryectiva y de $\operatorname{Im}(T)$.

T es monomorfismo si y sólo si

$$T$$
 es lineal y $\forall v_1, v_2 \in V : v_1 \neq v_2 \Rightarrow T(v_1) \neq T(v_2)$.

Esto se obtiene aplicando el contrarrecíproco a la definición de función inyectiva.

Proposición

Sea $T:V\to W$ una transformación lineal. Entonces T es monomorfismo si y sólo si $\operatorname{Nu}(T)=0$.

Demostración

 (\Rightarrow) Debemos ver que $T(v) = 0 \Rightarrow v = 0$.

$$T(v) = 0 \land T(0) = 0 \stackrel{T \text{ mono}}{\Longrightarrow} v = 0.$$

 (\Leftarrow) Sean $v_1, v_2 \in V$ tal que $T(v_1) = T(v_2)$. Entonces

$$0 = T(v_1) - T(v_2) \stackrel{T \text{ lineal}}{=} T(v_1 - v_2) \quad \Rightarrow \quad v_1 - v_2 \in \mathsf{Nu}(T) = \{0\}.$$

Luego, $v_1 - v_2 = 0$, es decir $v_1 = v_2$.

Observación

Sea $T: V \rightarrow W$ transformación lineal,

- (1) T es epimorfismo $\Leftrightarrow \operatorname{Im}(T) = W \Leftrightarrow \dim \operatorname{Im}(T) = \dim W$.
- (2) T es monomorfismo $\Leftrightarrow Nu(T) = 0 \Leftrightarrow dim Nu(T) = 0$.

Proposición

Sea $T: V \rightarrow W$ transformación lineal. Entonces,

- (1) T es monomorfismo si y sólo si T de un conjunto Ll es Ll.
- (2) T es epimorfismo si y sólo si T de un conjunto de generadores de V es un conjunto de generadores de W.

En las próximas pantallas veremos la demostración.

(1)
$$(\Rightarrow)$$
 Sea $\{v_1,\ldots,v_n\}$ LI en V y $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$ tales que

$$\lambda_1 T(v_1) + \cdots + \lambda_n T(v_n) = 0.$$

Debemos probar que $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

$$0 = \lambda_1 T(v_1) + \dots + \lambda_n T(v_n) \qquad \text{(hipótesis)}$$

$$= T(\lambda_1 v_1 + \dots + \lambda_n v_n) \qquad \text{(linealidad de } T)$$

$$\Rightarrow \lambda_1 v_1 + \dots + \lambda_n v_n = 0 \qquad (T \text{ mono})$$

$$\Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0 \qquad (\{v_1, \dots, v_n\} \text{ LI})$$

Por lo tanto, $T(v_1), \ldots, T(v_n)$ son LI.

(1) (
$$\Leftarrow$$
) Si Nu $T=0 \Rightarrow T$ es mono (proposición p. 19)

Veamos, entonces, que Nu T=0, es decir: $T(v)=0 \Rightarrow v=0$.

Probemos el contrarecíproco: $v \neq 0 \Rightarrow T(v) \neq 0$

$$v \neq 0 \Rightarrow v \text{ es LI}$$

 $\Rightarrow T(v) \text{ es LI}$ (hipótesis)
 $\Rightarrow T(v) \neq 0$.

Luego

$$(v \neq 0 \Rightarrow T(v) \neq 0) \Rightarrow (T(v) = 0 \Rightarrow v = 0)$$

 $\Rightarrow \text{Nu}(T) = 0$
 $\Rightarrow T \text{ es mono.}$

(2) (
$$\Rightarrow$$
) Sea $V = \langle v_1, \dots, v_n \rangle$ y $w \in W$.

Debemos ver que $w \in \langle T(v_1), \dots, T(v_n) \rangle$

Como T es epimorfismo, existe $v \in V$ tal que T(v) = w.

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n$$
 $(v_1, \dots, v_n \text{ genera } V)$
 \Downarrow
 $T(v) = T(\lambda_1 v_1 + \dots + \lambda_n v_n)$ $(\text{aplicamos } T)$
 $= \lambda_1 T(v_1) + \dots + \lambda_n T(v_n)$ $(T \text{ lineal})$
 \Downarrow
 $w = \lambda_1 T(v_1) + \dots + \lambda_n T(v_n)$ $(w = T(v))$
 \Downarrow
 $w \in \langle T(v_1), \dots, T(v_n) \rangle.$

(2) (\Leftarrow) Debemos ver que: $w \in W \Rightarrow$ existe $v \in V$ tal que w = T(v).

Sea $\{v_1, \ldots, v_n\}$ una base de V.

Por hipótesis $T(v_1), \ldots, T(v_n)$ generan W.

Es decir dado cualquier $w \in W$, existen $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tales que

$$w = \lambda_1 T(v_1) + \cdots + \lambda_n T(v_n),$$

y por lo tanto

$$w = \lambda_1 T(v_1) + \dots + \lambda_n T(v_n)$$

= $T(\lambda_1 v_1 + \dots + \lambda_n v_n)$ (T lineal)
= $T(v)$,

con

$$v = \lambda_1 v_1 + \cdots + \lambda_n v_n$$
.

Corolario

Sea $T:V\to W$ transformación lineal. Entonces T es un isomorfismo si y solo si T de una base de V es una base de W.

Demostración

(⇒) Sea $\mathcal B$ base de V. Como T es isomorfismo, T es mono y epi, luego por proposición de p. 20, $T(\mathcal B)$ es LI y genera W, es decir, es base de W. (⇐) Sea $\mathcal B$ base de V y $T:V\to W$ transformación lineal tal que $T(\mathcal B)$ es base. Por lo tanto, manda un conjunto LI a un conjunto LI y un conjunto de generadores de V a un conjunto de generadores de W. Por proposición de p. 20, T es mono y epi, por lo tanto T es un isomorfismo.

Corolario

Sean V y W dos \mathbb{K} -espacios vectoriales de dimensión finita tal que V es isomorfo a W. Entonces $\dim(V) = \dim(W)$.

Recordar que si una función es biyectiva entonces se puede definir la función inversa.

Teorema

Sea $T:V\longrightarrow W$ un isomorfismo. Entonces la función inversa

$$T^{-1}:W\longrightarrow V$$

es también un isomorfismo.

Es decir, T^{-1} es una transformación lineal biyectiva.

Demostración

Sean $w_1, w_2 \in W$, $\lambda \in \mathbb{K}$, probemos que

$$T^{-1}(w_1 + \lambda w_2) = T^{-1}(w_1) + \lambda T^{-1}(w_2).$$

Sean
$$v_i = T^{-1}(w_i) \Rightarrow T(v_i) = w_i$$
.

$$T^{-1}(w_1 + \lambda w_2) = T^{-1}(T(v_1) + \lambda T(v_2))$$
 $(w_i = T(v_i))$
 $= T^{-1}(T(v_1 + \lambda v_2))$ $(T \text{ lineal})$
 $= (T^{-1} \circ T)(v_1 + \lambda v_2)$ $(\text{def de } \circ)$
 $= v_1 + \lambda v_2$ $(T^{-1} \circ T = \text{Id})$
 $= T^{-1}(w_1) + \lambda T^{-1}(w_2)$. $(v_i = T^{-1}(w_i))$

Teorema

Sea $T:V\longrightarrow W$ una transformación lineal con dim $V=\dim W$. Entonces las siguientes afirmaciones son equivalentes

- (1) T es un isomorfismo.
- (2) T es monomorfismo.
- (3) T es epimorfismo.
- (4) $\{v_1,...,v_n\}$ base de $V \Rightarrow \{T(v_1),...,T(v_n)\}$ base de W.

Vamos a probar

$$\circ (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1),$$

$$\circ \ (1) \Rightarrow (4) \ \land \ (4) \Rightarrow (1)$$

Del primer ítem obtenemos $(1) \Leftrightarrow (2) \Leftrightarrow (3)$.

Del segundo ítem obtenemos $(1) \Leftrightarrow (4)$.

Luego
$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$$
.

Demostración

- $(1) \Rightarrow (2)$. Obvio, de la definición de iso.
- $(2) \Rightarrow (3)$. Usaremos el teorema de la dimensión del núcleo y la imagen:

$$T$$
 mono \Rightarrow dim Nu $T=0$ (proposición de p. 19)
 \Rightarrow dim Im $T=\dim V=\dim W$ (teorema de la dimensión)
 \Rightarrow Im $T=W$
 \Rightarrow T epi

T epi y T mono $\Rightarrow T$ iso.

- $(1) \Rightarrow (4)$. Sea $\{v_1, \ldots, v_n\}$ una base de V.
- Entonces $\{v_1, \ldots, v_n\}$ es LI y genera V.

Proposición de p. 20
$$\Rightarrow$$
 $\{T(v_1), \ldots, T(v_n)\}$ es LI $\{T(v_1), \ldots, T(v_n)\}$ genera W .

Por lo tanto $\{T(v_1), \ldots, T(v_n)\}$ es una base de W.

- $(4) \Rightarrow (1)$. Como T de una base es una base, entonces
 - o T de un conjunto LI es un conjunto LI,
 - \circ T de un conjunto de generadores de V es un conjunto de generadores de W.

Por lo tanto, por proposición de p. 20, ${\cal T}$ es monomorfismo y epimorfismo.

Luego T es un isomorfismo.

Definición

Dos espacios vectoriales V y W se dicen *isomorfos*, en símbolos $V\cong W$, si existe un isomorfismo $T:V\longrightarrow W$

Corolario (del teorema de p. 28)

Sean V y W espacios de vectoriales dimensión finita. Entonces

$$\dim V = \dim W \quad \Rightarrow \quad V \cong W.$$

ldea de la demostración

Si
$$\mathcal{B} = \{v_1, \dots, v_n\}$$
 una base de V y $\mathcal{B}' = \{w_1, \dots, w_n\}$ una base de W

$$T: \mathcal{B} \to \mathcal{B}'$$
 definida por $T(v_i) = w_i$,

se puede extender a un isomorfismo $T: V \to W$.

Ejemplo

Recordemos:

$$\mathbb{K}_n[x] = \{a_0 + a_1x + \cdots + a_{n-1}x^{n-1} : a_0, a_1, \dots, a_{n-1} \in \mathbb{K}\}.$$

Entonces,

$$\mathbb{K}_n[x] \cong \mathbb{K}^n$$
.

Demostración

Es consecuencia inmediata del corolario anterior, pues ambos tienen dimensión n.

Explícitamente, $1, x, \ldots, x^{n-1}$ es base de $\mathbb{K}_n[x]$ y sea e_1, \ldots, e_n la base canónica de \mathbb{K}^n , entonces un isomorfismo de $\mathbb{K}_n[x]$ a \mathbb{K}^n viene dado por la única transformación lineal $\mathcal{T}: \mathbb{K}_n[x] \to \mathbb{K}^n$ tal que

$$T(x^i) = e_{i+1}, \qquad i = 0, \dots, n-1.$$

Resultados MI 1 (a tener en cuenta)

Sea $T:V\longrightarrow W$ una transformación lineal con $V,\ W$ de dimensión finita.

- $\circ \{v_1,...,v_k\}$ genera $V \Rightarrow \{T(v_1),...,T(v_k)\}$ genera Im(T).
- $\circ \ \operatorname{dim} V = \operatorname{dim} \operatorname{Nu}(T) + \operatorname{dim} \operatorname{Im}(T).$
- $\circ \ T \ \mathsf{mono} \Leftrightarrow \mathsf{Nu}(T) = 0.$
- \circ T mono \Leftrightarrow T de LI es LI.
- \circ T epi \Leftrightarrow T(generadores de V) = generadores de W.
- o T iso $\Leftrightarrow T(\mathsf{base} \; \mathsf{de} \; V) = \mathsf{base} \; \mathsf{de} \; W.$

Resultados MI 2 (a tener en cuenta)

Si $T:\mathbb{R}^n o \mathbb{R}^m$, sea A la matriz m imes n asociada a A y R una MRF de A.

- $Nu(T) = \{x : Ax = 0\}, Im(T) = \{b : Ax = b, algún x\}.$
- \circ rango fila de A = rango columna de A.
- \circ |filas no nulas de R| = rg-fil A = rg-col A = dim Im(A).
- o dim Nu(A) = |variables| libres de RX = 0| = n-rg-fil A.