Machine Learning project

Team members: Jack, Harry & Abhishek

Homesite problem: Predicting Quote conversion

- Homesite sells Home-insurance to home buyers in United States
- Insurance quotes are offered to customers based on several factors

What Homesite knows

- Customer's geographical, personal, Financial Information & HomeOwnership details
- Quote for every customer

What Homesite Doesn't know:

Customer's **likelihood** of buying that Insurance contract

mesite

Data shared: Training & Test

Task:

Binary classification

Training set:

261k rows, 298 predictors, 1 Binary response

Test set:

200k rows, 298 columns

Predictors:

Customer Activity, Geography, Personal, property & Coverage

Response:

Customer Conversion

What's good about Homesite data:

- 296 variables don't have NA's or bad data entry points
- Not many Levels in Nominal variables
- Plenty of binary variables
- Plenty of ordinal variables
- No unbalanced variables
- No missing values
- No Textual columns

Data cleaning steps

Gradient Boosting (Iterative corrections)

Learning from past mistakes

Could get nearly 0 training error

Weighted scoring of multiple trees

Hard to tune, as there are too many parameters to adjust

Often overfit and hard to decide the stopping point

Random Forests (Majority wins)

Handles missing data

Handles redundancy easily

Reduces variations in results

Produces Out of Bag error rate

Produces De-correlated trees

Random subspace & split

Bias sometimes Increases as Trees are shallower

Gradient Boosting + Random Forest

Handles missing data

Handles redundancy easily

Reduces variations in results

Produces Out of Bag error rate

Produces De-correlated trees

Random subspace & split

Does not overfit

Little bias, due to correction

Easy to tune

Quite slow and Computationally expensive. Optimizing these constraints could be an excellent area for research

Calculating AUC

ID	True class	Predicted probability	
1	1	.8612	
2	0	.2134	
3	0	.1791	
4	0	.1134	
5	1	.7898	
6	0	.0612	

kaggle

AUC

0.4

False positive rate (1 - Specificity)

0.6

0.8

War for the highest AUC

\$20,000 • 627 teams

Homesite Quote Conversion

Merger and 1st Submission Deadline

Mon 9 Nov 2015

Mon 8 Feb 2016 (2 months to go)

Dashboard ▼

Public Leaderboard - Homesite Quote Conversion

This leaderboard is calculated on approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different.

Our Score *AUC* = .9645

#	∆6d	Team Name * in the money	Score ②	Entries	Last Submission UTC (Best – Last Submission)
1	_	clustifier *	0.96920	73	Tue, 01 Dec 2015 07:21:47 (-2.2d)
2	_	Dmitry Larko *	0.96903	18	Wed, 02 Dec 2015 15:02:03
3	_	Victor *	0.96895	21	Tue, 01 Dec 2015 12:52:38
4	↑4	Ivanhoe	0.96860	69	Fri, 04 Dec 2015 03:56:01 (-0.1h)
5	↑51	MrOoijer	0.96856	81	Fri, 04 Dec 2015 00:20:01 (-12h)
6	↑40	Daniel FG	0.96855	6	Sun, 29 Nov 2015 22:38:52
7	↑2	PierreNowak	0.96852	45	Wed, 02 Dec 2015 11:27:37

What we have already employed

- Categorical to Continuous conversion
- Continuous to Ordinal conversion
- Variable bucketing
- SVM / Logistic Regression
- Random Forest/ Trees
- Lasso / Ridge / Elastic Net
- Gradient Boosting
- Multicollinearity elimination
- Outlier treatment
- K-Fold Cross validation

What we look forward to use

- Imputation for NA's
- Model tuning
- Variable transformation
- Most importantly, Your

Suggestions

THANK YOU

