TABLE I. Time series algebra expression mapping rules.

ID	SQL expression	Time Series Algebra	Explanation
1	T < c	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \in (-\infty, c)\}$	Select elements in T where values are $< c$.
2	T > c	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \in (c, \infty)\}$	Select elements in T where values are $> c$.
3	T = c	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \in [c, c]\}$	Select elements in T where values are $= c$.
4	$T \le c$	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \in (-\infty, c]\}$	Select elements in T where values are $\leq c$.
5	$T \ge c$	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \in [c, \infty)\}$	Select elements in T where values are $\geq c$.
6	$T \neq c$	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \neq c\}$	Select elements in T where values are $\neq c$.
7	true	$T_{vc} = \{(t, v) t \in \mathbb{T}\}$	Select all elements.
8	false	$T_{vc} = \emptyset$	Select no elements.
9	T IS NOT NULL	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \neq null\}$	Select elements in T where values are not null.
10	T IS NULL	$T_{vc} = \{(t, v) t \in \mathbb{T}, v = null\}$	Select elements in T where values are null.
11	T BETWEEN a AND c	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \in [a, c]\}$	Select elements in T where values are between a and c .
12	<i>T</i> IN (a, b, c,)	$T_{vc} = \{(t, v) t \in \mathbb{T}, v \in (a, b, c)\}$	Select elements in T where values are in (a, b, c) .
13	+T	T = +T	Select elements in T where values are $= + v$.
14	-T	T = -T	Select elements in T where values are $= -v$.
15	$T_b + T_c$	$T_a = T_b + T_c$	Adds the values of T_b and T_c .
16	$T_b - T_c$	$T_a = T_b - T_c$	Subtracts the value of T_b from T_c .
17	$T_b * T_c$	$T_a = T_b * T_c$	Multiplies the values of T_b and T_c .
18	T_b/T_c	$T_a = T_b / T_c$	Divides the value of T_b by T_c .
19	$T_b \ mod \ T_c$	$T_a = T_b \bmod T_c$	Returns the remainder after dividing T_b by T_c .
20	T_{bc} AND T_{cc}	$T_{ac} = T_{bc} \cap T_{cc}$	Compute the intersection of T_{bc} and T_{cc} , where T_{bc} and T_{cc} are
20			constraints and T_{ac} is the result.
21	T_{bc} OR T_{cc}	$T_{ac} = T_{bc} \cup T_{cc}$	Compute the union of T_{bc} and T_{cc} .
22	NOT T _{bc}	$T_{ac} = \neg T_{bc}$	Compute the complement of constraint T_{bc} .
23	ABS(T)	T = ABS(T)	Returns the absolute value of T , which is its non-negative magnitude.
24	ACOS(T)	T = ACOS(T)	Computes the inverse cosine of T , returning an angle (in radians) whose
24			cosine is T.
25	ASIN(T)	T = ASIN(T)	Computes the inverse sine of T , returning an angle (in radians) whose sine
23			is T.
26	$\Delta T \Delta N (T)$	$T = \Delta T \Delta N(T)$	Computes the inverse tangent of T , returning an angle (in radians) whose
20	ATAN(T)	T = ATAN(T)	tangent is T.
27	SQRT(T)	T = SQRT(T)	Computes the non-negative square root of <i>T</i> .
28	W_SUM(T)	$T_{ac} = W_SUM(T)$	Calculate the cumulative sum of columns T within the time window.
29	W_COUNT(T)	$T_{ac} = W_COUNT(T)$	Counts the number of rows in the time window.
30	W_AVG(T)	$T_{ac} = W_AVG(T)$	Calculate the arithmetic mean of column T within the time window.
31	W_SPEAD(T)	$T_{ac} = W_SPEAD(T)$	Calculate the extreme difference (the difference between the maximum
J1			and minimum values) of column T within the time window.
32	W_STDDEV_POP(T)	$T_{ac} = W_STDDEV_POP(T)$	Calculate the overall standard deviation (based on the standard deviation
32			of the whole data) of column T within the time window.
33	W_VAR_POP(T)	$T_{ac} = W_{VAR}POP(T)$	Calculate the overall variance, i.e., the square of the overall standard
			deviation, for column T within the time window.

34	$W_{_}MAX(T)$	$T_{ac} = W_MAX(T)$	Returns the maximum value of column T within the time window.
35	$W_MIN(T)$	$T_{ac} = W_MIN(T)$	Returns the minimum value of column T within the time window.
36	W FIRST(T)	$T_{ac} = W_{F}IRST(T)$	Returns the first non-null value of column T in the time window (i
	W_F1R31(1)		chronological order).
37	IAL LACT/T	T — IAL I ACT(T)	Returns the last non-null value of column T in the time window (i
31	W_LAST(T)	$T_{ac} = W_LAST(T)$	chronological order).
38	$T_F_{CSUM}(T)$	$T_{ac} = T_F_CSUM(T)$	Computes the cumulative sum of column T over a time-ordered sequence
39	T_F_DIFF(T)	$T_{ac} = T_F_DIFF(T)$	Computes the discrete difference between the current value of T and is
39			previous value in the time sequence.
40	T F DERIVATIVE(T)	$T_{ac} = T_F_DERIVATIVE(T)$	Computes the rate of change (derivative) of T over time, i.e., the
40	I_F_DERIVATIVE(I)		difference in T divided by the time interval.
41	T E MANG(T)	T - T E MAUC(T)	Computes the moving average (rolling average) of column T over the
41	$T_F_{\mathrm{MAVG}}(T)$	$T_{ac} = T_F_MAVG(T)$	last N time-ordered values.
42	$T_F_{\text{STATECOUNT}}(T)$	$T_{ac} = T_F_STATECOUNT(T)$	Counts the number of consecutive occurrences where column T meets
42			specified condition (e.g., $T >$ threshold) in the time sequence.
43	T. F. CTATED ID ATION (T)	T. T. C.T. ATERMATION (T)	Computes the total duration (in specified time unit, e.g., seconds) during
43	$T_F_{\text{STATEDURATION}}(T)$	$T_{ac} = T_F_STATEDURATION(T)$	which column T satisfies a condition in the time sequence.