

(12)特許協力条約に基づいて公開された国際出願

543098

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年8月26日 (26.08.2004)

PCT

(10) 国際公開番号
WO 2004/072003 A1

(51) 国際特許分類7:
C07C 7/10, 5/00,
15/02, 13/23, 13/263, 11/04, C07F 15/00

阪市立大学内 Osaka (JP). 片山博之 (KATAYAMA, Hiroyuki) [JP/JP]; 〒558-8585 大阪府 大阪市 住吉区 杉本
3-3-138 大阪市立大学内 Osaka (JP).

(21) 国際出願番号:
PCT/JP2004/001589

(74) 代理人: 河備 健二 (KAWABI, Kenji); 〒170-0013 東京都 豊島区 東池袋三丁目 9 番 7 号 東池袋織本ビル
6 階 Tokyo (JP).

(22) 国際出願日:
2004年2月13日 (13.02.2004)

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:
特願2003-38563 2003年2月17日 (17.02.2003) JP
特願2003-157141 2003年6月2日 (02.06.2003) JP

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL,
SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH,
CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU,
MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) 出願人(米国を除く全ての指定国について): 積水化学工業株式会社 (SEKISUI CHEMICAL CO., LTD.)
[JP/JP]; 〒530-8565 大阪府 大阪市 北区西天満2丁目
4番4号 Osaka (JP).

添付公開書類:
— 國際調査報告書

[締葉有]

(54) Title: ZERO-VALENCE TRANSITION METAL COMPLEX AND METHOD OF SYNTHESIZING ORGANOMETALLIC COMPOUND FROM THE SAME AS STARTING MATERIAL

(54) 発明の名称: ゼロ価遷移金属錯体及びこれを出発物質とする有機金属化合物の合成方法

(57) Abstract: A method for effective and inexpensive synthesis of a zero-valence transition metal complex as a starting material for synthesis of a catalyst usable in, for example, production of polyolefins through ring-opening metathesis polymerization of olefins and synthesis of epothilones through ring closing metathesis reaction thereof, and further effective and inexpensive synthesis of an organometallic compound useful as such a catalyst from the zero-valence transition metal complex. In particular, a method of synthesizing zero-valence transition metal complex (C) through reaction between bivalent transition metal complex (A), the bivalent transition metal complex (A) selected from among bivalent ruthenium complexes (A¹) and bivalent osmium complexes (A²), and olefin (B), characterized in that after reaction under reducing conditions, the obtained crude products are subjected to hot extraction with a saturated hydrocarbon as an extraction solvent. Further, there is provided a method of synthesizing an organometallic compound (D) characterized in that the zero-valence transition metal complex (C) is subjected to a one-step reaction with specified compound (D) and neutral ligand (E).

(57) 要約: オレフィンの開環メタセシス重合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロシン類の合成等に利用できる触媒を合成するための、出発原料であるゼロ価遷移金属錯体、及びそのゼロ価遷移金属錯体を用いて触媒として有用な有機金属化合物を、効率よくしかも安価に合成する方法であって、二価ルテニウム遷移金属錯体(A¹)又は二価オスミウム錯体(A²)から選ばれる二価遷移金属錯体(A)とオレフィン(B)とを反応させてゼロ価遷移金属錯体(C)を合成する方法において、反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするゼロ価遷移金属錯体の合成方法、及びその金属錯体(C)に、特定の化合物(D)と中性配位子(E)とを、一工程で反応させることを特徴とする有機金属化合物の合成方法が提供される。

WO 2004/072003 A1

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

ゼロ価遷移金属錯体及びこれを出発物質とする有機金属化合物の合成方法

技術分野

本発明は、ゼロ価遷移金属錯体及びこれを出発物質とする有機金属化合物の合成方法に関し、さらに詳しくは、オレフィンの開環メタセシス重合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒を合成するための、ゼロ価遷移金属錯体、及びこれを出発物質とする触媒として有用な有機金属化合物を、効率よくしかも安価に合成する方法に関する。

背景技術

遷移金属化合物を用いた反応は、その金属錯体の触媒作用によって医薬品などの低分子化合物の合成から、高機能性プラスチックなどの高分子合成まで幅広い分野において活用されている。

例えば、四塩化チタンや三塩化チタンとアルキルアルミニウムからなるチーグラーナッタ触媒によるポリエチレンやポリプロピレンの重合、ジルコノセンとメチルアルミニオキサンからなるカミンスキーチ触媒による均質ポリオレフィンの重合、遷移金属カルベン触媒による有機メタセシス反応等がよく知られている。

最近では、遷移金属カルベン触媒、とりわけ、ルテニウムカルベン触

媒が注目されている。ルテニウムカルベン触媒は、分子中に $R_u = C$ 結合（ルテニウム原子と電荷のない 2 値の炭素原子の結合）を有する化合物であり、特に、 $[(C_1)_2 R_u = C H P h) (P C y_3)_2]$ で代表されるジクロロフェニルカルベンービスー（トリシクロヘキシルホスフイン）ルテニウムが、カリフォルニア インスティチュート オブ テクノロジーのグラップスグループにより開発され、開示されている（例えば、特表平 11-510807 号公報（特許請求の範囲等）、特開平 11-262667 号公報（特許請求の範囲等）参照。）。

この化合物は、水分や酸素の存在下でも失活することなく、メタセシス反応基質中の官能基による影響を受けにくく、優れたメタセシス触媒活性を示すことが明らかとなり、医薬品などに利用できる各種モノマーの閉環メタセシス合成に用いられたり、メタセシス重合に供される代表的なモノマーであるジシクロペンタジエンを始めとするノルボルネン系モノマーから、反応射出成形法などにより金型内で開環重合させることによって、機械的強度、耐熱性、寸法安定性等に優れた成形品を製造したりして、幅広い工業分野で用いられており注目を集めている。

ところが、この触媒は、アルキル金属等と反応して系中で活性化されるのではなく、单一の錯体として活性を示すため、触媒をメタセシス反応性モノマーに加えると即座に反応が開始し、触媒の分散性等が律速となる問題があった。これは、ジシクロペンタジエン等の架橋性のモノマーを重合する際には致命的な問題となることがあり、例えば、プロセス上非常に制約を受けたり、得られた重合体の物性のばらつきにつながる問題が生じた。

これに対しては、トリフェニルホスフィン等を系中に加えて重合を遅延させる方法が一般的に知られているが、この場合、系中にリン等の異物が混入するため製品の安全性に問題があった。

上記問題を解決できる触媒として、 $[(\text{C}_1\text{}_2\text{R}\text{u}=\text{CHSPh})(\text{PCy}_3)_2]$ で代表されるジクロロフェニルチオカルベンービス-(トリシクロヘキシルホスフィン)ルテニウムが提案されている(例えば、特表 2002-506452 号公報(特許請求の範囲等)参照。)。

この触媒の上記化学式において、硫黄原子を酸素原子やイミノ基あるいはホスフィンジイル基で置換した化合物も特表 2002-506452 号公報に開示されている。

この触媒は、非常に優れているが、その合成方法は、例えば、特表 2002-506452 号公報第 52 ページの実施例 1 の a) 及び b) に示されているように、a) の場合は原料自体が $\text{RuCl}_2[\text{P}(\text{C}_6\text{H}_{11})_3]_2$ ($= \text{CH}-\text{C}_6\text{H}_5$) のように複雑な化学構造をしており、この合成に手間がかかり、b) の場合は原料として二塩化ルテニウム(シス、シス-シクロオクタジエン)を使用しており、これ自体は簡単な化学構造であるが、目的物を合成するために、これと複雑な化学構造の 1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンと、トリシクロヘキシルホスフィンをイソプロパノール中で 80°C で 1 時間反応させ、次いで -20°C で 1 時間冷却し、更に 1 モル塩酸ジエチルエーテル溶液を添加し 15 分間攪拌し、更に 1-ヘキシンとフェニルビニルスルフィドを添加しており、高価な原料を多く使用し反応が数工程に分かれて煩雑であり、コスト的に不利である。

そこで、本発明者らは、この触媒として用いられる $RuC1_2[P(C_6H_{11})_3]_2$ (=CH-S-) のようなヘテロカルベン錯体の合成法について、研究を進め、従来の合成法であるビニル交換によるヘテロカルベン錯体の合成法の代替法として、比較的に簡単な化学構造である出発物質を用いて、効率よくしかも安価に合成する方法を提案した（特開2003-286295号公報参照。）。

ところが、上記の比較的簡単な化学構造の出発物質であるゼロ価の遷移金属錯体、例えばルテニウム（シメン）（1, 5-シクロオクタジエン）錯体を工業的に合成する際に、収率が上がらないという問題点がある。また、その収率を上げるために、抽出工程を何度も繰り返す必要があるが、抽出工程が増え、工程が煩雑になり、コスト的に不利という問題点がある。

本発明の目的は、上記問題点に鑑み、オレフィンの閉環メタセシス重合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒を合成するための、出発原料であるゼロ価遷移金属錯体、及びそのゼロ価遷移金属錯体を用いて触媒として有用な有機金属化合物を、効率よくしかも安価に合成する方法を提供することにある。

発明の開示

本発明者らは、従来の有機金属化合物、例えばゼロ価遷移金属錯体の合成方法のもつ問題点を解決すべく、鋭意研究を重ねた結果、目的生成

物を含む合成反応粗生成固体について、抽出溶媒である飽和炭化水素で熱抽出処理を行うことにより、目的生成物であるゼロ価遷移金属錯体を効率よく、しかも高収率でかつ安価に合成することができるを見出し、本発明を完成するに至った。

すなわち、本発明の第1の発明によれば、二価ルテニウム錯体（A¹）又は二価オスミウム錯体（A²）から選ばれる二価遷移金属錯体（A）とオレフィン（B）とを反応させてゼロ価遷移金属錯体（C）を合成する方法において、反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

また、本発明の第2の発明によれば、第1の発明において、前記二価遷移金属錯体（A）は、アレーンル二価テニウム錯体又はアレーン二価オスミウム錯体であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

さらに、本発明の第3の発明によれば、第2の発明において、前記アレーンは、炭素数1～20のアルキル置換ベンゼン環であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

本発明の第4の発明によれば、第2の発明において、前記二価ルテニウム錯体（A¹）は、シメンルテニウムジクロライド錯体であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

また、本発明の第5の発明によれば、第1の発明において、前記オレフィン（B）は、環状ポリエンであることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

さらに、本発明の第6の発明によれば、第5の発明において、前記環状ポリエンは、環状ジエンであることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

本発明の第7の発明によれば、第1の発明において、前記反応は、アルコール溶媒の存在下で還元剤として金属単体又は金属化合物を用いて行われることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

また、本発明の第8の発明によれば、第7の発明において、前記金属化合物は、ナトリウム化合物であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

さらに、本発明の第9の発明によれば、第1の発明において、前記熱抽出処理は、30°C以上で行われることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

また、本発明の第10の発明によれば、第1の発明において、前記抽出溶媒は、ヘキサン、ヘプタン又はシクロヘキサンから選ばれる少なくとも一種の飽和炭化水素であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

さらに、本発明の第11の発明によれば、第4の発明において、前記ゼロ価遷移金属錯体は、ルテニウム(シメン)(1,5-シクロオクタジエン)であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

一方、本発明の第12の発明によれば、第1~11のいずれかの発明のゼロ価遷移金属錯体の合成方法で得られたゼロ価遷移金属錯体(C)

に、さらに、下記の一般式（1）で示される化合物（D）と中性配位子（E）とを、一工程で反応させることを特徴とする有機金属化合物の合成方法が提供される。

[式中、 R^1 は、水素原子、炭素数1～20のアルキル基、炭素数2～20のアルケニル基、又は炭素数6～20のアリール基を表し、これらはさらに炭素数1～5のアルキル基、カルボキシ基、炭素数1～5のアルコキシ基、炭素数1～5のアルケニルオキシ基、炭素数6～10のアリールオキシ基、炭素数1～6のアルキルシリル基、炭素数6～10のアリールシリル基、炭素数1～7のアシル基、ヒドロキシ基、炭素数0～10のアミノ基、ハロゲン原子、ニトロ基、アセチル基、又はアセトキシ基で置換されていてもよく、 Y^1 は、カルコゲン原子、或いは次の式（2）：

で表される窒素含有基又は次の式（3）：

(3)

で表されるリン含有基を表し、X¹は、ハロゲン原子を表す。ただし、上記式中、R²及びR³は、R¹と同義であり、R¹、R²あるいはR³はいずれかが互いに結合していてもよい。】

また、本発明の第13の発明によれば、第12の発明において、R²は、水素原子であることを特徴とする有機金属化合物の合成方法が提供される。

さらに、本発明の第14の発明によれば、第12の発明において、R¹又はR³は、フェニル基、又は炭素数1～5のアルキル基、カルボキシ基、炭素数1～5のアルコキシ基、炭素数1～5のアルケニルオキシ基、炭素数6～10のアリールオキシ基、炭素数1～6のアルキルシリル基、炭素数6～10のアリールシリル基、炭素数1～7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であることを特徴とする有機金属化合物の合成方法が提供される。

本発明の第15の発明によれば、第12の発明において、Y¹は、酸素原子、硫黄原子又はセレン原子であることを特徴とする有機金属化合物の合成方法が提供される。

また、本発明の第16の発明によれば、第12の発明において、中性

配位子（E）は、3級ホスフィン又はイミダゾリウム-2-イリデン化合物であることを特徴とする有機金属化合物の合成方法が提供される。

さらに、本発明の第17の発明によれば、第12の発明において、有機金属化合物は、下記の一般式（4）で表される化合物であることを特徴とする有機金属化合物の合成方法が提供される。

（式中、Mは、ルテニウム又はオスミウム元素を表し、R¹、R²、Y¹及びX¹は、それぞれ前述と同義である。また、L¹は、同一又は異なった中性電子供与体を表す。）

本発明の第18の発明によれば、第17の発明において、R²は、水素原子であることを特徴とする有機金属化合物の合成方法が提供される。

また、本発明の第19の発明によれば、第17の発明において、R¹又はR³は、フェニル基、又は炭素数1～5のアルキル基、カルボキシ基、炭素数1～5のアルコキシ基、炭素数1～5のアルケニルオキシ基、炭素数6～10のアリールオキシ基、炭素数1～6のアルキルシリル

基、炭素数 6 ~ 10 のアリールシリル基、炭素数 1 ~ 7 のアシル基、ヒドロキシ基、炭素数 10 以下のアミノ基、ハロゲン原子、ニトロ基及びアセチル基からなる群から選ばれる少なくとも 1 個の置換基によって置換されたフェニル基であることを特徴とする有機金属化合物の合成方法が提供される。

さらに、本発明の第 20 の発明によれば、第 17 の発明において、Y¹は、酸素原子、硫黄原子又はセレン原子であることを特徴とする有機金属化合物の合成方法が提供される。

本発明の第 21 の発明によれば、第 17 の発明において、有機金属化合物は、ジクロロ [ビストリシクロヘキシルホスフィノ] フェニルチオメチノルテニウムであることを特徴とする有機金属化合物の合成方法が提供される。

また、本発明の第 22 の発明によれば、第 17 の発明において、有機金属化合物は、ビニルヘテロ化合物又はビニル化合物の不純物を含まないことを特徴とする有機金属化合物の合成方法が提供される。

本発明は、上記した如く、二価ルテニウム錯体 (A¹) 又は二価オスミウム錯体 (A²) から選ばれる二価遷移金属錯体 (A) とオレフイン (B) とを反応させてゼロ価遷移金属錯体 (C) を合成する方法において、反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするゼロ価遷移金属錯体の合成方法などに係るものであるが、その好ましい態様として、次のものが包含される。

(1) 第1の発明において、二価オスミウム錯体 (A^2) は、シメンオスミウムジクロライド錯体であることを特徴とするゼロ価遷移金属錯体の合成方法。

(2) 第9又は10の発明において、前記熱抽出処理は、抽出溶媒（抽出剤）がヘキサンであり、且つ30～60°Cで行われることを特徴とするゼロ価遷移金属錯体の合成方法。

(3) 第9又は10の発明において、前記熱抽出処理は、抽出溶媒（抽出剤）がヘプタンであり、且つ30～90°Cで行われることを特徴とするゼロ価遷移金属錯体の合成方法。

発明を実施するための最良の形態

以下、本発明のゼロ価遷移金属錯体 (C) や、そのゼロ価遷移金属錯体を出発原料として得られる触媒として有用な有機金属化合物の合成方法について、各項目毎に詳細に説明する。

先ず、本発明のゼロ価遷移金属錯体の合成方法は、二価ルテニウム錯体 (A^1) 又は二価オスミウム錯体 (A^2) から選ばれる二価遷移金属錯体 (A) とオレフィン (B) とを反応させてゼロ価遷移金属錯体 (C) を合成する方法において、反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするものである。

1. 二価遷移金属錯体 (A)

本発明のゼロ価遷移金属錯体の合成方法において、用いられる二価遷移金属錯体 (A) は、二価ルテニウム錯体 (A^1) 又は二価オスミウム

錯体 (A^2) であって、本発明の目的生成物であるゼロ価遷移金属錯体 (C) の原料の一つであり、ゼロ価遷移金属錯体 (C) 中の中心金属をもたらす役割を果たす。

本発明の合成方法では、二価ルテニウム錯体 (A^1) や二価オスミウム錯体 (A^2) という原子価が多価のものから、原子価がゼロ価の錯体を合成することから還元条件下で反応させないと、目的物が收率よく得ることができない。

二価遷移金属錯体 (A) 、すなわち二価ルテニウム錯体や二価オスミウム錯体の有する配位子に関しては、遷移金属錯体を形成するものであれば、特に限定されないが、生成物の安定性等の面からアレーン配位子を少なくとも一つ以上有することが望ましい。

ここでいうアレーン配位子とは、ベンゼン環に代表される芳香環を持つ化合物がその芳香環状のパイ電子を用いて配位している配位子のことであり、そのアレーン配位子としては、ベンゼン環、置換ベンゼン環、ナフタレン、シクロペンタジエンアニオン等が望ましく、より好ましいのは置換ベンゼン環である。

置換ベンゼン環としては、炭素数 1 ~ 20 のアルキル置換ベンゼン環やエステル等の極性基置換ベンゼン環が好ましく、具体的には、トルエン、キシレン、クメン、シメン、ヘキサメチルベンゼン、安息香酸エチルなどが挙げられる。これらの中でも、シメンが生成物の安定性、コスト、收率の面から最も好ましい。

二価ルテニウム錯体 (A^1) の具体的なものとして、例えば、シメンルテニウムジクロライド錯体、ベンゼンルテニウムジクロライド錯体、

ヘキサメチルベンゼンルテニウムジクロライド錯体、安息香酸エチルルテニウムジクロライド錯体、クメンルテニウムジクロライド錯体、ナフタレンルテニウムジクロライド錯体などが挙げられ、好ましくはシメンルテニウムジクロライド錯体、ベンゼンルテニウムジクロライド錯体などである。

また、二価オスミウム錯体 (A^2) の具体的なものとして、例えば、シメンオスミウムジクロライド錯体、ベンゼンオスミウムジクロライド錯体、ヘキサメチルベンゼンオスミウムジクロライド錯体、安息香酸エチルオスミウムジクロライド錯体、クメンオスミウムジクロライド錯体、ナフタレンオスミウムジクロライド錯体などが挙げられ、好ましくはシメンオスミウムジクロライド錯体、ベンゼンオスミウムジクロライド錯体などである。

2. オレフィン (B)

本発明の目的生成物であるゼロ価遷移金属錯体 (C) は、錯体の安定性、反応性の両面から、アレーン配位子とオレフィン配位子とをあわせて用いられることが望ましい。そのために、本発明の合成方法では、ゼロ価遷移金属錯体 (C) の原料の一つとして、オレフィン (B) が用いられる。

オレフィン配位子として用いられるオレフィン (B) は、エチレン等のモノオレフィン、ブタジエン、シクロヘキサジエン等のジエン、シクロオクタトリエン等のトリエンが挙げられる。モノオレフィンの場合は、飽和電子数の関係から二分子配位することが望ましい。

さらに、ゼロ価遷移金属錯体の安定性と反応性の両面から、より望ましくは環状ポリエンが挙げられる。具体的には、1, 3-シクロヘキサジエン、1, 4-シクロヘキサジエン、1, 3-シクロオクタジエン、1, 5-シクロオクタジエン、 α -テルピネン、或いはこれら環状オレフィンの置換体等の環状ジエンや、1, 3, 5-シクロオクタトリエン、1, 3, 5-シクロヘプタトリエン等の環状トリエンなどが挙げられる。これらの中でも、錯体の安定性の面から環状ジエンがより好ましく、中でも1, 5-シクロオクタジエンがコスト、目的生成物（錯体）の安定性、収率の面から最も好ましい。

3. ゼロ価遷移金属錯体（C）の合成方法

本発明の合成方法では、前述したように、二価ルテニウム錯体（A¹）や二価オスミウム錯体（A²）という原子価が多価のものと、オレフィン（B）とから、原子価がゼロ価の錯体を合成することから、還元条件下で合成反応させないと、目的生成物を収率よく得ることができない。

還元条件下の状態を作るに当たっては、金属化合物を還元剤として用い、反応をアルコール溶媒中で行うことが望ましい。還元剤となる金属化合物は、具体的に亜鉛や典型元素を含むものが望ましく、中でもナトリウムを含有する化合物が、取扱やコストの面から望ましい。さらに、具体的なものとしては、炭酸ナトリウム、炭酸水素ナトリウムなどが挙げられる。

そして、効率的な還元反応を行うために、還元剤としてのナトリウム

含有化合物を、ルテニウム又はオスミウムに対して、1当量以上用いるのが望ましい。反面、過剰の還元剤は、反応終了後の除去やコストの面から好ましくないため、還元剤のナトリウム化合物としては、ルテニウム又はオスミウムに対して、0.5～1.0当量が望ましく、さらには1～5当量が望ましい。

また、還元条件を与えるアルコールとしては、反応条件において液体であれば特に制限はないが、メタノール、エタノール、イソプロピルアルコール等がコストや取扱等の面から望ましい。

さらに、反応条件としては、アルコール還流下で、例えばエタノールであれば約90℃で加熱された還流条件下で、反応時間が1～20時間であり、反応の効率を上げるために、攪拌を伴うのが望ましい。

本発明では、合成反応終了後の溶液、或いは目的生成物を含む合成反応の粗生成固体から、還元剤や副生物を取り除く必要がある。その際、合成反応の粗生成固体について、熱抽出処理を行うことにより、目的生成物を高収率で得ることができる。

尚、合成反応終了後の溶液から、目的生成物を含む合成反応の粗生成固体を分離する方法は、通常の固液分離方法、例えば液相のエバボレーション（又はろ過）による方法にて実施される。また、還元剤や副生物の一部が沈殿として存在している反応溶液を、そのままエバボレーションして得られた粘土状の個体から目的生成物を熱抽出してもよい。すなわち、合成反応終了後の溶液に対して固体と液体を分離する操作を行わずに、すべてを一度固体化したものから、目的生成物を熱抽出してもよい。

その合成反応の粗生成固体から、目的生成物であるゼロ価遷移金属錯体を熱抽出する条件は、抽出温度としては、30°C以上が望ましく、好ましくは40°C以上である。上限の温度としては、用いる抽出溶媒の沸点や分配係数、物質移動速度に影響され、適宜設定される。通常は、抽出溶媒の沸点より約10°C程度低い温度である。但し、温度が上昇すれば、拡散速度（固体内部への拡散など）が上昇するが、他方、溶剤の沸点、装置上或いは溶質の安定性などから制限がある。また、抽出時間としては、10分～5時間、好ましくは30分～3時間である。抽出温度が30°C未満では、抽出効率が悪く、且つ、抽出時間が大幅に長くなるので工業的でない。抽出処理においては、抽出効率（又は接触効率）を上げるために、攪拌を行ってもよい。

さらに、抽出溶媒（抽出剤）としては、原料に含まれるアニオン性の化合物が副生物に含まれるため、それらの副生物や不純物を溶かさないで、同時に目的生成物であるゼロ価遷移金属錯体を溶かす、溶解度と選択性の大きい飽和炭化水素が好ましい。その飽和炭化水素としては、ヘキサン（沸点：68.7°C）、ヘプタン（沸点：98.4°C）、シクロヘキサン（沸点：80°C）等が最も好ましい。

また、これら一連の合成反応又はこれに伴う熱抽出処理は、ゼロ価錯体に対して、酸素などの活性の高い化合物を遮断した不活性ガス雰囲気下で行うのが望ましい。

本発明の合成方法を用いた場合には、目的生成物として、ルテニウム（シメン）（1,5-シクロオクタジエン）錯体を得る反応が、收率、錯体の安定性、コストの面から最も好ましい反応といえる。

4. ゼロ価遷移金属錯体 (C)

本発明の合成方法で得られたゼロ価遷移金属錯体 (C) は、オレフィンの開環メタセシス重合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒を合成するための、出発原料として用いられ、その触媒（有機金属化合物）中の中心金属をもたらす役割を果たす。

ゼロ価遷移金属錯体 (C) の中心金属としては、遷移金属錯体を形成するものであれば、特に限定されないが、VIA族、VIIA族、VIIIB族、又はIIB族の遷移金属であることが好ましい。これらの中でも、反応性、有用性等の面から、本発明においては、特にルテニウム又はオスミウムであることが望ましい。

本発明のゼロ価遷移金属錯体 (C) の合成方法においては、原料の二価遷移金属錯体 (A) として、ルテニウム又はオスミウムの二価錯体を用いるものであるが、上記の遷移金属の二価錯体を用いることもできる。

ゼロ価遷移金属錯体 (C) に用いられる配位子としては、通常、遷移金属錯体を形成するものであれば、特に限定されない。こうした配位子の中でも、ゼロ価錯体の遷移金属錯体 (C) の場合は、アレーン（芳香族炭化水素）配位子とオレフィン配位子とをあわせ使用することが、錯体の安定性、反応性の両面から望ましい。そのために、本発明の合成方法では、前述したように、原料としての二価遷移金属錯体 (A) は、アレーン二価ルテニウム錯体又はアレーン二価オスミウム錯体が用いられ

、また、原料として、オレフィン配位子となるオレフィン（B）が用いられる。

ゼロ価遷移金属錯体（C）は、二価遷移金属錯体（A）とオレフィン（B）の選択により、適宜合成され、例えば、下記のものが挙げられる。但し、（）内の数字は、価数を示し、[]内は化学式を示す。

1. $(\eta^6\text{-ベンゼン}) (\eta^4-1, 3\text{-シクロヘキサジエン})$ ルテニウム（0）、 $[\text{Ru}(\eta^6\text{-C}_6\text{H}_6)(\eta^4-1, 3\text{-C}_6\text{H}_8)]$
2. $(\eta^6\text{-ベンゼン}) (\eta^4-1, 5\text{-シクロオクタジエン})$ ルテニウム（0）、 $[\text{Ru}(\eta^6\text{-C}_6\text{H}_6)(\eta^4-1, 5\text{-C}_8\text{H}_{12})]$
3. $(\eta^6\text{-シメン}) (\eta^4-1, 5\text{-シクロオクタジエン})$ ルテニウム（0）、 $[\text{Ru}\{\eta^6\text{-CH(CH}_3)_2\text{C}_6\text{H}_4\text{CH}_3\}(\eta^4-1, 5\text{-C}_8\text{H}_{12})]$
4. $(\eta^6\text{-ナフタレン}) (\eta^4-1, 5\text{-シクロオクタジエン})$ ルテニウム（0）、 $[\text{Ru}(\eta^6\text{-C}_{10}\text{H}_8)(\eta^4-1, 5\text{-C}_8\text{H}_{12})]$
5. $(\eta^6\text{-シメン}) (\eta^4-\alpha\text{-テルピネン})$ ルテニウム（0）、 $[\text{Ru}(\eta^6\text{-CH(CH}_3)_2\text{C}_6\text{H}_4\text{CH}_3)(\eta^4-\alpha\text{-Terpine})]$
6. $(\eta^6\text{-シメン})$ ビス（エチレン）ルテニウム（0）、 $[\text{Ru}\{\eta^6\text{-CH(CH}_3)_2\text{C}_6\text{H}_4\text{CH}_3\}(C_2\text{H}_4)_2]$
7. $(\eta^6\text{-シメン}) (\eta^4-1, 3\text{-シクロヘキサジエン})$ ルテニウム（0）、 $[\text{Ru}\{\eta^6\text{-CH(CH}_3)_2\text{C}_6\text{H}_4\text{CH}_3\}(\eta^4-1, 3\text{-C}_6\text{H}_8)]$

8. (η^6 -安息香酸エチル) (η^4-1 , 5-シクロオクタジエン) ルテニウム(0)、[Ru{ $\eta^6-C_6H_5COOEt$ } (η^4-1 , 5- C_8H_{12})]
9. (η^6 -ヘキサメチルベンゼン) (η^4-1 , 5-シクロオクタジエン) ルテニウム(0)、[Ru{ $\eta^6-C_6Me_6$ } (η^4-1 , 5- C_8H_{12})]
10. (η^6 -ベンゼン) (η^4-1 , 3-シクロヘキサジエン) オスミウム(0)、[Os($\eta^6-C_6H_6$) (η^4-1 , 3- C_6H_8)]
11. (η^6 -ベンゼン) (η^4-1 , 5-シクロオクタジエン) オスミウム(0)、[Os($\eta^6-C_6H_6$) (η^4-1 , 5- C_8H_{12})]
12. (η^6 -シメン) (η^4-1 , 5-シクロオクタジエン) オスミウム(0)、[Os{ $\eta^6-CH(CH_3)_2C_6H_4CH_3$ } (η^4-1 , 5- C_8H_{12})]
13. (η^6 -ナフタレン) (η^4-1 , 5-シクロオクタジエン) オスミウム(0)、[Os($\eta^6-C_{10}H_8$) (η^4-1 , 5- C_8H_{12})]
14. (η^6 -シメン) ($\eta^4-\alpha$ -テルピネン) オスミウム(0)、[Os($\eta^6-CH(CH_3)_2C_6H_4CH_3$) ($\eta^4-\alpha$ -Terpine)]
15. (η^6 -シメン) ビス(エチレン) オスミウム(0)、[Os{ $\eta^6-CH(CH_3)_2C_6H_4CH_3$ } (C_2H_4)₂]
16. (η^6 -安息香酸エチル) (η^4-1 , 5-シクロオクタジエン) オスミウム(0)、[Os{ $\eta^6-C_6H_5COOEt$ } (η^4-1 , 5- C_8H_{12})]

17. (η^6 -ヘキサメチルベンゼン) (η^4 -1, 5-シクロオクタジエン) オスミウム(0)、[Os{ η^6 -C₆M_e₆}(η^4 -1, 5-C₈H₁₂)]

上記のゼロ価遷移金属錯体(C)のうち、錯体の安定性や製造コストの面から好ましいのは、(η^6 -ベンゼン) (η^4 -シクロヘキサジエン) ルテニウム(0)、(η^6 -ベンゼン) (η^4 -1, 5-シクロオクタジエン) ルテニウム(0)、(η^6 -シメン) (η^4 -1, 5-シクロオクタジエン) ルテニウム(0)、(η^6 -ナフタレン) (η^4 -1, 5-シクロオクタジエン) ルテニウム(0)、(η^6 -安息香酸エチル) (η^4 -1, 5-シクロオクタジエン) ルテニウム(0)などであり、より好ましいのは(η^6 -ベンゼン) (η^4 -1, 5-シクロオクタジエン) ルテニウム(0)、(η^6 -シメン) (η^4 -1, 5-シクロオクタジエン) ルテニウム(0)である。

本発明の合成方法で得られたゼロ価遷移金属錯体(C)は、前述したように、触媒として用いられる有機金属化合物、例えば、RuCl₂[P(C₆H₁₁)₃]₂(=CH-S-R)のようなヘテロカルベン錯体の合成法において、出発原料として、好適に用いられる。

5. 化合物(D)

本発明に係るゼロ価遷移金属錯体(C)の実施態様の一つとして、上記の触媒として用いられる有機金属化合物、例えばヘテロカルベン錯体

の合成法における出発原料が挙げられ、その有機金属化合物の合成方法は、本発明の合成方法で得られたゼロ価遷移金属錯体（C）に、さらに、下記の一般式（1）で示される化合物（D）と中性配位子（E）とを、一工程で反応させることを特徴とするものである。

そして、本発明に用いられる化合物（D）とは、触媒として有用な有機金属化合物の原料の一つであり、有機金属化合物中の金属に直接結合するハロゲン原子等のアニオン性配位子と、有機金属化合物中のカルベン（電荷のない二価の炭素原子）に直接結合するフェニルチオ基、フェニルエーテル基等の電子供与性基とをもたらす役割を果たす。

式（1）中、 R^1 は、水素原子、炭素数1～20のアルキル基、炭素数2～20のアルケニル基、又は炭素数6～20のアリール基を表し、これらはさらに炭素数1～5のアルキル基、カルボキシ基、炭素数1～5のアルコキシ基、炭素数1～5のアルケニルオキシ基、炭素数6～10のアリールオキシ基、炭素数1～6のアルキルシリル基、炭素数6～10のアリールシリル基、炭素数1～7のアシル基、ヒドロキシ基、炭素数0～10のアミノ基、ハロゲン原子、ニトロ基、アセチル基、又はアセトキシ基で置換されていてもよく、 Y^1 は、カルコゲン原子、或いは次の式（2）：

(2)

で表される窒素含有基又は次の式（3）：

(3)

で表されるリン含有基を表し、X¹は、ハロゲン原子を表す。ただし、上記式中、R²及びR³は、R¹と同義であり、R¹、R²あるいはR³はいずれかが互いに結合していてもよい。

本発明に係る化合物（D）は、上記一般式（1）で該当するものであれば、特に限定されないが、式中のR²が水素原子である化合物が好ましく、さらには、式中のR¹、R³がフェニル基、又は炭素数1～5のアルキル基、カルボキシ基、炭素数1～5のアルコキシ基、炭素数1～5のアルケニルオキシ基、炭素数6～10のアリールオキシ基、炭素数1～6のアルキルシリル基、炭素数6～10のアリールシリル基、炭素数1～7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基、及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であって、かつY¹が酸素原子、硫黄原子、又はセレン原子である化合物が、反応性、有用性等の面から特に好ましい。

本発明において使用する化合物(D)の具体例としては、例えば、下記のものが挙げられる。但し、[]内は化学式を示す。

1. ジクロロメチルフェニルスルフィド、[Ph-S-CHCl₂]
2. ジクロロメチルフェニルセレニド、[Ph-Se-CHCl₂]
3. ジクロロメチルフェニルホスфин、[Ph-PH-CHCl₂]
4. ジクロロメチルフェニルアミン、[Ph-NH-CHCl₂]
5. (フェニルジクロロメチル)フェニルスルフィド、[Ph-S-C(Ph)Cl₂]
6. ジクロロメチル-p-トリルスルフィド、[p-trityl-S-CHCl₂]
7. ジクロロメチル-p-クロロフェニルスルフィド、[p-Cl-Phe-S-CHCl₂]
8. ジクロロメチル-p-メトキシフェニルスルフィド、[p-MeO-Phe-S-CHCl₂]
9. ジクロロメチルベンジルスルフィド、[Benzyl-S-CHCl₂]
10. ジクロロメチルイソプロピルスルフィド、[i-Pr-S-CHCl₂]
11. N-ジクロロメチルカルバゾール、

12. N-ジクロロメチルピロリジノン、

13. N-ジクロロメチルフタルイミド、

14. N-ジクロロメチルピロリジン、

6. 中性配位子 (E)

本発明において用いられる中性配位子 (E) とは、中性電子供与体のことであり、触媒として有用な有機金属化合物の原料の一つであり、有機金属化合物中の金属に直接配位する中性配位子をもたらす役割を果たす。

中性配位子 (E) としては、中性電子供与体であれば何を用いてもよいが、好ましくは三級ホスフィン又はイミダゾリウム-2-イリデン化合物である。

三級ホスフィンとしては、式： $\text{PR}^6\text{R}^7\text{R}^8$ で表されるホスフィンが挙げられる。

ここで、 R^6 、 R^7 及び R^8 は、それぞれ独立して $\text{C}_1 \sim \text{C}_{20}$ のアルキル基、又は $\text{C}_6 \sim \text{C}_{20}$ のアリール基を表し、好ましくはメチル基、エチル基、イソプロピル基、*t*-ブチル基、シクロヘキシル基、フェニル基、又は置換フェニル基の中から選ばれ、重複して選ぶことも可能である。

また、三級ホスフィンとしてビスホスフィンのような二座配位型のホスフィンを用いることも可能である。

本発明において用いる三級ホスフィンの具体例としては、例えば、以下の中のものが挙げられる。但し、[] 内は化学式を示す。

1. トリシクロペンチルホスフィン、 $[P(C_5H_9)_3]$
2. トリシクロヘキシリホスフィン、 $[P(C_6H_{11})_3]$
3. トリエチルホスフィン、 $[P(C_2H_5)_3]$
4. トリメチルホスフィン、 $[P(CH_3)_3]$
5. トリイソプロピルホスフィン、 $[P\{CH(CH_3)_2\}_3]$
6. トリプロピルホスフィン、 $[P(CH_2CH_2CH_3)_3]$
7. トリブチルホスフィン、 $[P(CH_2CH_2CH_2CH_3)_3]$
8. トリフェニルホスフィン、 $[PPh_3]$
9. エチレンビス(ジフェニルホスフィン)、 $[Ph_2PCH_2CH_2PPh_2]$
10. エチレンビス(ジイソプロピルホスフィン)、 $[((CH_3)_2CH)_2PCH_2CH_2P(CH(CH_3)_2)]$
11. エチレンビス(ジシクロペンチルホスフィン)、 $[(C_5H_9)_2PCH_2CH_2P(C_5H_9)_2]$
12. エチレンビス(ジシクロヘキシリホスフィン)、 $[(C_6H_{11})_2PCH_2CH_2P(C_6H_{11})_2]$

また、イミダゾリウム-2-イリデン化合物としては、イミダゾリン-2-イリデン誘導体、4, 5-ジヒドロイミダゾリン-2-イリデン誘導体などが好ましく、具体的には、N', N' -ジメシチルイミダゾリン-2-イリデン配位子やN', N' -ジメシチル-4, 5-ジヒド

ロイミダゾリン-2-イリデン配位子が挙げられる。

7. 有機金属化合物とその製法

触媒として有用な本発明に係る有機金属化合物は、ゼロ価の遷移金属錯体（C）からなる出発物質に、前述の一般式（1）で示される化合物（D）と中性配位子（E）とを一工程で反応させる製法によって製造される。

そのため、上記有機金属化合物としては、上記の製法で得られるものであれば、特に限定されるものではないが、下記の一般式（4）で表される化合物が好ましい。

ここで、式中、Mは遷移金属元素を表し、R¹、R²、Y¹及びX¹は、それぞれ前述と同義である。また、L¹は、それぞれ同一又は異なった中性電子供与体を表す。

これらの有機金属化合物の中でも、反応性、有用性等の面から、特に式中のMがルテニウム又はオスミウムで、R²が水素原子で、R¹がフェ

ニル基、あるいは炭素数1～5のアルキル基、カルボキシ基、炭素数1～5のアルコキシ基、炭素数1～5のアルケニルオキシ基、炭素数6～10のアリールオキシ基、炭素数1～6のアルキルシリル基、炭素数6～10のアリールシリル基、炭素数1～7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基、及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基で、Y¹が酸素原子、硫黄原子又はセレン原子である有機金属化合物が最適である。

さらに、生成物の安定性、有用性、コストの面から、Mがルテニウム、R²が水素原子、X¹が塩素、Y¹が硫黄又はセレン、R¹がフェニル基又は上記の置換フェニル基であるものが特に好ましい。

なお、Y¹が硫黄、セレン、窒素等のヘテロ元素である場合は、それらの元素によるπ供与性から、得られる有機金属化合物は、熱安定性に優れたものとなり、その結果、高温での反応が可能となるため、高収率で目的物を得ることができるという利点がある。

本発明に係る有機金属化合物の製法の特徴の一つとして、一般式(1)で示される化合物(D)を反応試薬として用いるが、該化合物は、熱や光に対して安定な化合物であるため、様々な合成条件下で反応を行うことが可能である。

本発明に係る有機金属化合物の製法は、通常、溶媒中に上記した三つの原料(C)、(D)、(E)を加え、必要に応じて攪拌し、反応温度を−78℃～150℃の範囲、より好ましくは−10℃～110℃の範囲に調整し、窒素雰囲気で一工程で反応させ、反応終了後、エバポレー

ションにて溶媒を除去し得られた固体を回収、洗浄して錯体を単離することによって行われる。

上記溶媒としては、特に限定されないが、溶解度の点からトルエン、ベンゼン、塩化メチレン、クロロホルム、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、ジエチルエーテル、アセトニトリル等が望ましい。

なお、有機金属化合物の製法では、上記した原料を加えるだけで反応は進行するため、還元剤を加える必要はない。

また、洗浄する溶媒としては、錯体を分解しない溶媒であれば何でも良いが、錯体よりも不純物に対して溶解度の高い溶媒が望まれる。具体的にはヘキサン、ペンタン等の飽和炭化水素やアルコール系溶媒が望ましいが、錯体の構造によっては溶解してしまい、洗浄効果を上げることで收率の低下を招く可能性がある。そのような場合は洗浄溶媒を冷却することが望ましい。

特に中性配位子（E）が飽和炭化水素基を有する場合は、錯体の溶解性が高いため、冷却したヘキサン、ペンタン、メタノール等で洗浄することで收率を損なうことなく純度の高い生成物を得ることが出来る。

洗浄液の温度としては、融点～0℃が望ましく、ドライアイスで冷却が可能な-78℃～0℃が実用上望ましい。

実施例

次に、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではなく、本発明の技術思想を利用す

る実施態様は、全て本発明の範囲に含まれるものである。

[実施例 1]

500 ml のシュレンクフラスコを窒素置換して、シメンルテニウムジクロライド錯体を 15 g (Ru : 49 mmol) とり、蒸留エタノール (乾燥剤 Mg) 150 ml を加えた。1, 5-シクロオクタジエンを 50 ml (407 mmol) シリンジで加えた。そこに、炭酸ナトリウム 15 g (141 mmol) を加えエタノール還流下 (加熱温度 : 90 °C) で反応させた。

12 時間攪拌後、エバポレーションすることで揮発成分を取り除き、茶色の固体を回収した。

その固体に、ヘキサン 100 ml を加えて、40 °C で 1 時間、加熱及び攪拌した。溶液を濾過し、更に濾別された残渣をヘキサン 20 ml で洗浄濾過した。こうして得られた褐色の溶液をエバポレーションして、茶褐色の固体を回収した。

NMR により、目的生成物、すなわちゼロ価の遷移金属錯体であるルテニウム (シメン) (1, 5-シクロオクタジエン) 錯体 [別名 : Ru (η^6 -p-シメン) (η^4 -1, 5-シクロオクタジエン)] であることを確認した。その収量は 15.3 g で、収率は 91 % であった。

[実施例 2]

100 ml のシュレンクフラスコを窒素置換して、シメンルテニウムジクロライド錯体を 1.53 g (Ru : 5 mmol) とり、蒸留エタノ

ール（乾燥剤M g）50m lを加えた。1，5-シクロオクタジエンを5m l（40.7mm o l）シリンジで加えた。そこに炭酸ナトリウム1.5g（14.1mm o l）を加えエタノール還流下で反応させた。

3時間攪拌後、エバボレーションすることで揮発成分を取り除き、茶色の固体を回収した。

その固体に、ヘキサン100m lを加えて、40°Cで1時間、加熱及び攪拌した。溶液を濾過し、更に濾別された残渣をヘキサン20m lで洗浄濾過した。こうして得られた褐色の溶液をエバボレーションして、茶褐色の固体を回収した。

NMRにより、目的生成物、すなわちゼロ価の遷移金属錯体であるルテニウム（シメン）（1，5-シクロオクタジエン）錯体〔別名：Ru（η⁶-p-シメン）（η⁴-1，5-シクロオクタジエン）〕であることを確認した。その収量は1.52gで、収率は89%であった。その合成結果を表1に示す。

[実施例3]

オレフィン（B）として、1，3-シクロヘキサジエンを用いること以外は、実施例2と同様に実験を行った。その合成結果を表1に示す。

[実施例4]

オレフィン（B）として、エチレンを用い、反応をエチレンバブリング下で行う以外は、実施例2と同様に実験を行った。その合成結果を表1に示す。

[実施例 5]

二価遷移金属錯体（A）として、（ η^6 -ヘキサメチルベンゼン）ルテニウムジクロライド（II）を用いること以外は、実施例2と同様に実験を行った。その結果を表1に示す。

[実施例 6]

二価遷移金属錯体（A）として、（ η^6 -ベンゼン）ルテニウムジクロライド（II）を用いること以外は、実施例2と同様に実験を行った。その結果を表1に示す。

[実施例 7]

オレフィン（B）として、1, 3-シクロヘキサジエンを用いること以外は、実施例6と同様に実験を行った。その結果を表1に示す。

[実施例 8]

二価遷移金属錯体（A）として、（ η^6 -安息香酸エチル）ルテニウムジクロライド（II）を用いること以外は、実施例2と同様に実験を行った。その結果を表1に示す。

[実施例 9]

二価遷移金属錯体（A）として、（ η^6 -p-シメン）オスミウムジクロライド（II）を用いること以外は、実施例2と同様に実験を行っ

た。結果を表1に示す。

表1

	二価錯体(A)	オレフィン(B)	ゼロ価遷移 金属錯体(C)	収率 (%)
実施例2	(1)	(イ)	(a)	89
実施例3	(1)	(ロ)	(b)	61
実施例4	(1)	(ハ)	(c)	66
実施例5	(2)	(イ)	(d)	85
実施例6	(3)	(イ)	(e)	66
実施例7	(3)	(ロ)	(f)	61
実施例8	(4)	(イ)	(g)	78
実施例9	(5)	(イ)	(h)	88

二価錯体(A)

- (1): (η^6 -p-シメン)ルテニウムジクロライド(II)
- (2): (η^6 -ヘキサメチルベンゼン)ルテニウムジクロライド(II)
- (3): (η^6 -ベンゼン)ルテニウムジクロライド(II)
- (4): (η^6 -安息香酸エチル)ルテニウムジクロライド(II)
- (5): (η^6 -p-シメン)オスミウムジクロライド(II)

オレフィン(B)

- (イ) 1, 5-シクロオクタジエン
- (ロ) 1, 3-シクロヘキサジエン
- (ハ) エチレン

ゼロ価遷移金属錯体(C)

- (a): (η^6 -p-シメン)(1, 5-シクロオクタジエン)ルテニウム(O)
- (b): (η^6 -p-シメン)(1, 3-シクロヘキサジエン)ルテニウム(O)
- (c): (η^6 -p-シメン)(ビスエチレン)ルテニウム(O)
- (d): (η^6 -ヘキサメチルベンゼン)(1, 5-シクロオクタジエン)ルテニウム(O)
- (e): (η^6 -ベンゼン)(1, 5-シクロオクタジエン)ルテニウム(O)
- (f): (η^6 -ベンゼン)(1, 3-シクロヘキサジエン)ルテニウム(O)
- (g): (η^6 -安息香酸エチル)(1, 5-シクロオクタジエン)ルテニウム(O)
- (h): (η^6 -p-シメン)(1, 5-シクロオクタジエン)オスミウム(O)

[評価結果]

実施例1、2では、収率が約90%程度の高収率であり、満足できる

結果であった。また、各種二価遷移金属錯体（A）やオレフィン（B）を用いた実施例3～9においても、良好な収率が得られた結果であった。

[実施例10、11]

還元剤である炭酸ナトリウムの当量数を変えたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

[実施例12]

還元剤として、亜鉛粉末を用いたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

[実施例13]

抽出温度を50°Cにしたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

[実施例14]

抽出溶媒をヘプタンにしたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

[比較例1]

抽出温度を25°Cにしたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

[比較例 2]

抽出溶媒を THF にしたこと以外は、実施例 2 と同様に実験を行った。結果を表 2 に示す。

[比較例 3]

抽出溶媒をベンゼンにしたこと以外は、実施例 2 と同様に実験を行った。結果を表 2 に示す。

表 2

	還元剤(当量/Ru)	抽出温度 (°C)	抽出溶媒	収率 (%)
実施例2	炭酸ナトリウム(2.8)	40	ヘキサン	89
実施例10	炭酸ナトリウム(1.0)	40	ヘキサン	65
実施例11	炭酸ナトリウム(5.0)	40	ヘキサン	89
実施例12	亜鉛(5.0)	40	ヘキサン	61
実施例13	炭酸ナトリウム(2.8)	50	ヘキサン	89
実施例14	炭酸ナトリウム(2.8)	40	ヘプタン	88
比較例1	炭酸ナトリウム(2.8)	25	ヘキサン	46
比較例2	炭酸ナトリウム(2.8)	40	THF	分解
比較例3	炭酸ナトリウム(2.8)	40	ベンゼン	不純物あり

[評価結果]

実施例 1、2 では、収率が約 90 % 程度の高収率であり、満足できる結果であった。特に、実施例 2 / 比較例 1 の対比では、ゼロ値の遷移金属錯体のヘキサンでの抽出を、室温 (25 °C) で 1 時間にに対して、40 °C で 1 時間で行うことにより、収率は 46 % が 89 % まで向上した。

また、抽出溶媒として極性の高いTHFを用いた場合（比較例2）は、錯体の分解が確認され、また、ベンゼンを用いた場合（比較例3）は、他の成分の抽出が確認されたのに対し、ヘキサンやヘプタンといった飽和炭化水素を用いた場合には、効率よく目的物が抽出されることが確認された。さらに、還元剤として炭酸ナトリウムは、2.8当量で高収率の目的生成物が得られ、5当量に増やしてもあまりその効果が得られないことが確認された。

[実施例15～22]

実施例2～9の手法によって合成されたゼロ価の遷移金属錯体（C）

0.006モルに対して、中性配位子（E）0.012モルおよび式：
 $R^1Y^1CHCl_2$ の化合物（D）0.006モルを加え、トルエン20gとともに1.00mlのフラスコ中で窒素気流下、60°Cで12時間反応させた。反応終了後、エバボレーションにて、溶媒を除去し得られた固体を回収、-40°Cのメタノールで洗浄して有機金属化合物を単離した。有機金属化合物の合成に用いたゼロ価遷移金属錯体（C）、化合物（D）、中性配位子（E）の概要と、それらの結果を表3に示す。

表 3

	ゼロ価遷移 金属錯体(C)	中性配位子 (E)	R ¹	Y ¹	収率(1) (%)	収率(2) (%)	生成物
実施例15	(a)	PCy ₃	Ph	S	91	81	式(i)
実施例16	(a)	PiPr ₃	Ph	S	88	78	式(ii)
実施例17	(a)	PCy ₃	tol	S	87	77	式(iii)
実施例18	(a)	PCy ₃	Ph	Se	82	73	式(iv)
実施例19	(b)	PCy ₃	Ph	S	68	41	式(i)
実施例20	(e)	PCy ₃	Ph	S	74	49	式(i)
実施例21	(f)	PCy ₃	Ph	S	87	53	式(i)
実施例22	(h)	PCy ₃	Ph	S	65	57	式(v)

ゼロ価遷移金属錯体

- (a): (η^6 -p-シメン)(1, 5-シクロオクタジエン)ルテニウム(O)
 (b): (η^6 -p-シメン)(1, 3-シクロヘキサジエン)ルテニウム(O)
 (e): (η^6 -ベンゼン)(1, 5-シクロオクタジエン)ルテニウム(O)
 (f): (η^6 -ベンゼン)(1, 3-シクロヘキサジエン)ルテニウム(O)
 (h): (η^6 -p-シメン)(1, 5-シクロオクタジエン)オスミウム(O)

中性配位子

PCy₃: トリシクロヘキシルホスфин
 PiPr₃: トライソプロピルホスфин

R¹

tol: p-Me-Ph基

収率(1): ゼロ価遷移金属錯体(C)から生成物を得た収率

収率(2): 二価錯体(A)からのトータルの収率

尚、実施例 15 ~ 22 で得られた有機金属化合物の化学式 [(i) ~ (v)] を以下に示す。

式(i)

式(ii)

[評価結果]

表3に示されるように、各ゼロ価遷移金属錯体を用いて、チオカルベン錯体が効率良く合成されることが確認された。特にゼロ価遷移金属錯体として、p-シメン1, 5シクロオクタジエンルテニウム錯体を用いたとき、もとの原料であるp-シメンルテニウムジクロライドから81%という高収率でチオカルベン錯体が得られることが確認された。

産業上の利用可能性

本発明のゼロ価遷移金属錯体の合成方法に従うと、二価ルテニウム錯体(A¹)又は二価オスミウム錯体(A²)から選ばれる二価遷移金属錯体(A)と、オレフィン(B)とから、ゼロ価遷移金属錯体(C)を非常に高い収率で、しかも安価に得ることができ、工業的なゼロ価遷移金属錯体(C)の製造方法として好適である。

また、本発明の合成方法で得られたゼロ価遷移金属錯体は、ジシクロペントアジエンの様な分子内に歪みのあるオレフィンの開環メタセシス重

合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒として有用な有機金属化合物、例えばヘテロカルベン錯体の合成法における出発原料として、好適に用いることができる。

さらに、本発明に係る有機金属化合物の合成方法では、従来法では不純物として同伴する恐れのあるビニルヘテロ化合物、若しくは交換されたビニル化合物が系中に共存する可能性は全くなく、反応溶液から活性の高い有機金属化合物を簡便に単離することができ、これを重合触媒として用いノルボルネン系モノマーを重合すると、重合収率が非常に高い効果がある。

請求の範囲

1. 二価ルテニウム錯体（A¹）又は二価オスミウム錯体（A²）から選ばれる二価遷移金属錯体（A）とオレフィン（B）とを反応させてゼロ価遷移金属錯体（C）を合成する方法において、
反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするゼロ価遷移金属錯体の合成方法。
2. 前記二価遷移金属錯体（A）は、アレーン二価ルテニウム錯体又はアレーン二価オスミウム錯体であることを特徴とする請求項1に記載のゼロ価遷移金属錯体の合成方法。
3. 前記アレーンは、炭素数1～20のアルキル置換ベンゼン環であることを特徴とする請求項2に記載のゼロ価遷移金属錯体の合成方法。
4. 前記二価ルテニウム錯体（A¹）は、シメンルテニウムジクロライド錯体であることを特徴とする請求項2に記載のゼロ価遷移金属錯体の合成方法。
5. 前記オレフィン（B）は、環状ポリエンであることを特徴とする請求項1に記載のゼロ価遷移金属錯体の合成方法。
6. 前記環状ポリエンは、環状ジエンであることを特徴とする請求項5に記載のゼロ価遷移金属錯体の合成方法。
7. 前記反応は、アルコール溶媒の存在下で還元剤として金属単体又は金属化合物を用いて行われることを特徴とする請求項1に記載のゼロ

価遷移金属錯体の合成方法。

8. 前記金属化合物は、ナトリウム化合物であることを特徴とする請求項 7 に記載のゼロ価遷移金属錯体の合成方法。

9. 前記熱抽出処理は、30°C以上で行われることを特徴とする請求項 1 に記載のゼロ価遷移金属錯体の合成方法。

10. 前記飽和炭化水素は、ヘキサン、ヘプタン又はシクロヘキサンから選ばれる少なくとも一種であることを特徴とする請求項 1 に記載のゼロ価遷移金属錯体の合成方法。

11. 前記ゼロ価遷移金属錯体は、ルテニウム(シメン)(1,5-シクロオクタジエン)であることを特徴とする請求項 4 に記載のゼロ価遷移金属錯体の合成方法。

12. 請求項 1 ~ 11 のいずれかに記載の合成方法で得られたゼロ価遷移金属錯体(C)に、さらに、下記の一般式(1)で示される化合物(D)と中性配位子(E)とを、一工程で反応させることを特徴とする有機金属化合物の合成方法。

[式中、R¹は、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、又は炭素数6~20のアリール基を表し、これらはさらに炭素数1~5のアルキル基、カルボキシ基、炭素数1~5のアルコキシ基、炭素数1~5のアルケニルオキシ基、炭素数6~10のアリールオキシ基、炭素数1~6のアルキルシリル基、炭素数6~10の

アリールシリル基、炭素数 1 ~ 7 のアシル基、ヒドロキシ基、炭素数 0 ~ 10 のアミノ基、ハロゲン原子、ニトロ基、アセチル基、又はアセトキシ基で置換されていてもよく、Y¹は、カルコゲン原子、或いは次の式（2）：

で表される窒素含有基又は次の式（3）：

で表されるリン含有基を表し、X¹は、ハロゲン原子を表す。ただし、上記式中、R²及びR³は、R¹と同義であり、R¹、R²あるいはR³はいずれかが互いに結合していてもよい。】

13. R²は、水素原子であることを特徴とする請求項12に記載の有機金属化合物の合成方法。

14. R¹又はR³は、フェニル基、又は炭素数1~5のアルキル基、カルボキシ基、炭素数1~5のアルコキシ基、炭素数1~5のアルケニルオキシ基、炭素数6~10のアリールオキシ基、炭素数1~6のアルキルシリル基、炭素数6~10のアリールシリル基、炭素数1~7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニ

トロ基及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であることを特徴とする請求項1-2に記載の有機金属化合物の合成方法。

15. Y^1 は、酸素原子、硫黄原子又はセレン原子であることを特徴とする請求項1-2に記載の有機金属化合物の合成方法。

16. 中性配位子(E)は、3級ホスフィン又はイミダゾリウム-2-イリデン化合物であることを特徴とする請求項1-2に記載の有機金属化合物の合成方法。

17. 有機金属化合物は、下記の一般式(4)で表される化合物であることを特徴とする請求項1-2に記載の有機金属化合物の合成方法。

(式中、Mは、ルテニウム又はオスミウム元素を表し、 R^1 、 R^2 、 Y^1 及び X^1 は、それぞれ前述と同義である。また、 L^1 は、同一又は異なる中性電子供与体を表す。)

18. R^2 は、水素原子であることを特徴とする請求項1-7に記載の有機金属化合物の合成方法。

19. R^1 又は R^3 は、フェニル基、又は炭素数1～5のアルキル基、カルボキシ基、炭素数1～5のアルコキシ基、炭素数1～5のアルケニルオキシ基、炭素数6～10のアリールオキシ基、炭素数1～6のアルキルシリル基、炭素数6～10のアリールシリル基、炭素数1～7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であることを特徴とする請求項17に記載の有機金属化合物の合成方法。

20. Y^1 は、酸素原子、硫黄原子又はセレン原子であることを特徴とする請求項17に記載の有機金属化合物の合成方法。

21. 有機金属化合物は、ジクロロ[ビストリシクロヘキシルホスフイノ]フェニルチオメチノルテニウムであることを特徴とする請求項17に記載の有機金属化合物の合成方法。

22. 有機金属化合物は、ビニルヘテロ化合物又はビニル化合物の不純物を含まないことを特徴とする請求項17に記載の有機金属化合物の合成方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/001589

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C07C7/10, 5/00, 15/02, 13/23, 13/263, 11/04. C07F15/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C07C7/10, 5/00, 15/02, 15/24, 13/16-13/277, 11/04,
C07F15/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAPLUS (STN), REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GB 2114149 A (Imperial Chemical Industries PLC), 17 August, 1983 (17.08.83), (Family: none)	1-11
A	PERTICI, Paolo et al., A new synthetic method for the preparation of cyclo-olefin ruthenium complex., Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, No.10, (1980), pages 1961 to 1964	1-11
A	WO 96/04289 A1 (CALIFORNIA INSTITUTE OF TECHNOLOGY), 15 February, 1996 (15.02.96), & JP 9-512828 A & JP 11-262667 A & EP 773948 A1 & US 5710298 A	12-22

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
05 March, 2004 (05.03.04)

Date of mailing of the international search report
23 March, 2004 (23.03.04)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/001589

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WP 97/06185 A1 (CALIFORNIA INSTITUTE OF TECHNOLOGY), 20 February, 1997 (20.02.97), & JP 11-510807 A & EP 842200 A1 & US 5831108 A	12-22
A	WO 99/00396 A (CIBA SPECIALTY CHEMICALS HOLDING INC.), 07 January, 1999 (07.01.99), & JP 2002-506452 A & EP 993465 A1 & US 6407190 B1	12-22
P,A	JP 2003-286295 A (Sekisui Chemical Co., Ltd.), 10 October, 2003 (10.10.03), (Family: none)	12-22

国際調査報告

国際出願番号 PCT/JP2004/001589

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C1' C07C7/10, 5/00, 15/02, 13/23, 13/263, 11/04,
C07F15/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C1' C07C7/10, 5/00, 15/02, 15/24, 13/16-13/277, 11/04,
C07F15/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

CAPLUS (STN), REGISTRY (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	GB 2114149 A (Imperial Chemical Industries PLC) 1983. 08. 17 (ファミリーなし)	1-11
A	PERTICI, Paolo et al., A new synthetic method for the preparation of cyclo-olefin ruthenium complexes., Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, No. 10 (1980) p. 1961-p. 1964	1-11

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

05. 03. 2004

国際調査報告の発送日

23. 3. 2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

藤森 知郎

4H 9357

電話番号 03-3581-1101 内線 3443

C(続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO 96/04289 A1 (CALIFORNIA INSTITUTE OF TECHNOLOGY) 1996. 02. 15 & JP 9-512828 A & JP 11-262667 A & EP 773948 A1 & US 5710298 A	12-22
A	WO 97/06185 A1 (CALIFORNIA INSTITUTE OF TECHNOLOGY) 1997. 02. 20 & JP 11-510807 A & EP 842200 A1 & US 5831108 A	12-22
A	WO 99/00396 A (CIBA SPECIALTY CHEMICALS HOLDING INC.) 1999. 01. 07 & JP 2002-506452 A & EP 993465 A1 & US 6407190 B1	12-22
PA	JP 2003-286295 A (積水化学工業株式会社) 2003. 10. 10 (ファミリーなし)	12-22