ML LECTURE-26

BY
Dr. Ramesh Kumar Thakur
Assistant Professor (II)
School Of Computer Engineering

Divide the given sample data set into two(2) clusters using K means Algorithm by using Euclidean distance. Use Cluster 1 (185, 72) and Cluster 2 (170, 56) as initial cluster centers.

Weight
72
56
60
68
72
77

❖ Ans: Computing the distances from initial cluster centers

xi	Data Point	Distance from cluster-1	Distance from cluster-2	Min Dist	Assigned Cluster
		(185,72)	(170,56)		
X1	(185,72)	0	21.93	0	Cluster-1
X2	(170,56)	21.93	0	0	Cluster-2
Х3	(168,60)	20.81	4.47	4.47	Cluster-2
X4	(179,68)	7.21	15	7.21	Cluster-1
X5	(182,72)	3	20	3	Cluster-1
Х6	(188,77)	5.83	27.66	5.83	Cluster-1

- * The cluster centers are recalculated as follows:-
- Cluster-1 new center = $\{(185+179+182+188)/4, (72+68+72+77)/4\} = (183.5,72.25)$
- \bullet Cluster-2 new center = $\{(170+168)/2, (56+60)/2\} = (169,58)$
- Computing the distances from new cluster centers

xi	Data Point	Distance from cluster-1	Distance from cluster-2	Min Dist	Assigned Cluster
		(183.5,72.25)	(169,58)		
X1	(185,72)	1.52	21.26	1.52	Cluster-1
X2	(170,56)	21.13	2.24	2.24	Cluster-2
Х3	(168,60)	19.76	2.24	2.24	Cluster-2
X4	(179,68)	6.19	14.14	6.19	Cluster-1
X5	(182,72)	1.52	19.10	1.52	Cluster-1
Х6	(188,77)	6.54	26.87	6.54	Cluster-1

- Since there is no reassignment of data points to different clusters so we will stop the algorithm.
- ❖ The Final clusters are as follows:-
- Cluster-1= $\{X1, X4, X5, X6\}$ represented by v1 = (183.5, 72.25)
- \bullet Cluster-2={X2,X3} represented by v2 = (169,58)

- **Ans:**

Product_ID: ID of the product sold

Price: Price of the product (in dollars)

Quantity: Quantity of the product sold

Category: Category of the product (A, B, or C)

We want to use K-means clustering to group the products into three clusters based on their price and quantity. We will use K=3 for the K-means algorithm.

The sales data:

Product_ID	Price	Quantity	Category
1	50	10	A
2	40	8	A
3	60	12	A
4	70	1.5	В
5	80	18	В
6	90	20	C
7	100	22	C
8	110	25	C

❖ Ans:

4 5. a) Apply K-means clustering algorithm on given data for K=2. Use C1(4), C2(12) as initial cluster centers. Data: {2, 3, 4, 10, 11, 12, 20, 25, 30}

Ans:

