

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia "Galileo Galilei" Corso di Laurea in Fisica

Tesi di Laurea

Relativistic non-ideal flows

Relatore Laureando

Prof. Roberto Turolla Jacopo Tissino

Anno Accademico 2018/2019

Stuff emits radiation when it falls into a black hole. I'd like to see exactly how much of it.

1 Notational preface

I will use greek indices (μ , ν , ρ ...) to denote 4-dimensional indices ranging from 0 to 3, and latin indices (i, j, k...) to denote 3-dimensional indices ranging from 1 to 3.

I will use the "mostly plus" metric for flat Minkowski space-time, $\eta_{\mu\nu}={\rm diag}(-,+,+,+)$: therefore four-velocities will have square norm $u^{\mu}u_{\mu}=-1$. I will use Einstein summation convention: if an index appears multiple times in the same monomial, it is meant to be summed over

Take a diffeomorphism $x \to y$, with Jacobian matrix $\partial y^{\mu}/\partial x^{\nu}$. The indices of contravariant vectors, trasforming as

$$V^{\mu} \to \left(\frac{\partial y^{\mu}}{\partial x^{\nu}}\right) V^{\nu} \tag{1.1}$$

will be denoted as upper indices, while the indices of covariant vectors, trasforming as

$$V_{\mu} \rightarrow \left(\frac{\partial x^{\nu}}{\partial y^{\mu}}\right) V_{\nu}$$
 (1.2)

will be denoted as lower indices; the same applies to higher rank tensors.

Unless otherwise specified, I will work in geometrized units, where c = G = 1.

Take a tensor with many indices, T_{IJ} , where I is shorthand for the n indices $\mu\nu\rho\dots$ and the same applies to J. These indices can be symmetrized and antisymmetrized, and I will use the following conventions:

$$T_{(I)J} = \frac{1}{n!} \sum_{\sigma \in S_n} T_{\sigma(I)J} \tag{1.3}$$

$$T_{[I]J} = \frac{1}{n!} \sum_{\sigma \in S_n} \operatorname{sign} \sigma T_{\sigma(I)J}$$
(1.4)

where $S_n \ni \sigma$ is the group of permutations of n elements, and sign σ is 1 if σ is an even permutation (it can be obtained in an even number of pair swaps) and -1 otherwise.

2 Useful formulas

2.1 Nobili

Tensor calculus The covariant derivative keeps account of the shifting of the basis vectors:

$$\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + \Gamma^{\nu}_{\alpha\mu}A^{\alpha} \tag{2.1}$$

The rank-3 objects Γ are called Christoffel symbols. They are not tensors! they depend on the choice of basis e_{α} , and they satisfy $\nabla_{\mu}e_{\alpha}=\Gamma^{\nu}_{\mu\alpha}e_{\nu}$.

If we have the metric, they can be calculated as:

$$\Gamma^{\mu}_{\nu\rho} = \frac{1}{2} g^{\mu\alpha} \Big(\partial_{\rho} g_{\alpha\nu} + \partial_{\nu} g_{\alpha\rho} - \partial_{\alpha} g_{\nu\rho} \Big)$$
 (2.2)

This also tells us that they are symmetric in the lower two indices: $\Gamma^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\rho\nu}$.

The divergence of a vector field A^{μ} can be calculated as:

$$\nabla_{\mu}A^{\mu} = \frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}A^{\mu}\right) \tag{2.3}$$

where g is the determinant of the metric.

We can also define the Dalambertian operator $\Box = \nabla_{\mu} \nabla^{\mu} = \nabla_{\mu} \partial^{\mu}$, which can only act on scalars, and it does so like:

$$\Box A = \nabla_{\mu}(\partial^{\mu}A) = \frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}\partial^{\mu}A\right) \tag{2.4}$$

If we differentiate and antisymmetryze (so, take the rotor of) an antisymmetric tensor $F_{[\mu\nu]}$, the Christoffel symbols cancel:

$$\nabla_{[\mu} F_{\nu\rho]} = \partial_{[\mu} F_{\nu\rho]} \tag{2.5}$$

The derivative with respect to proper time is $\frac{d}{d\tau} = u^{\mu} \partial_{\mu}$.

Covariant acceleration is defined as:

$$a^{\nu} = u^{\mu} \nabla_{\mu} u^{\nu} \tag{2.6}$$

Curvature The curvature of spacetime is fully described by the Riemann curvature tensor, which is a fourth rank tensor: for any generic vector V^{μ} ,

$$R^{\mu}_{\nu\rho\sigma}V^{\nu} \stackrel{\text{def}}{=} [\nabla_{\rho}, \nabla_{\sigma}]V^{\mu} \tag{2.7}$$

It can be calculated using the Christoffel symbols, and while they are not tensors $R^{\mu}_{\nu\rho\sigma}$ is one. This result follows by direct computation from formula (2.7).

$$R^{\mu}_{\nu\rho\sigma} = \partial_{\rho}\Gamma^{\mu}_{\nu\sigma} - \partial_{\sigma}\Gamma^{\mu}_{\nu\rho} + \Gamma^{\mu}_{\rho\lambda}\Gamma^{\lambda}_{\sigma\nu} - \Gamma^{\mu}_{\sigma\lambda}\Gamma^{\lambda}_{\rho\nu}$$
 (2.8)

The Christoffel symbols can be nonzero if we choose certain coordinates even for flat spacetime, but the Riemann tensor is zero iff the spacetime is flat.

Geodesics If we have a path $x^{\mu}(\lambda)$, we would like to see if it is a geodesic, that is, if it is stationary with respect to path length. To do this we can stationarize the action corresponding to the lagrangian $\mathcal{L}(x,\dot{x}) = g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}$ (where we use $\dot{x} = \mathrm{d}x/\mathrm{d}\lambda$). The Lagrange equations then are:

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0 \tag{2.9}$$

Where Γ are the Christoffel symbols, which can be calculated by differentiating the metric, as shown in (2.2). \mathcal{L} is an integral of these Lagrange equations.

If the parameter λ is taken to be the proper time s, then the equation is

$$\frac{\mathrm{d}u^{\mu}}{\mathrm{d}s} + \Gamma^{\mu}_{\nu\rho}u^{\nu}u^{\rho} = 0 \tag{2.10}$$

Notice that this is equivalent to the covariant acceleration (2.6) being zero.

Fermi-Walker transport Take a general vector field $V^{\mu}(s)$ defined along a curve, with its tangent vector u^{μ} whose covariant acceleration is a^{μ} . Then we say that V^{μ} is transported according to Fermi-Walker iff it satisfies

$$\dot{V}^{\mu} = u^{\nu} \nabla_{\nu} V^{\nu} = V_{\rho} (u^{\mu} a^{\rho} - a^{\mu} u^{\rho}) \tag{2.11}$$

This condition is always satisfied by $V^{\mu}=u^{\mu}$, since $a^{\mu}u_{\mu}=0$, whether or not the curve is a geodesic. The tangent vector is *parallel* transported only for geodesics.

Tetrads and projectors We want to work in a reference in which the velocity u^{μ} is purely timelike. This can always be found by the equivalence principle. Such a reference can be completed into what is called a tetrad, for which the metric becomes the Minkowski metric in a neighbourhood of the point we consider.

We call the velocity $u^{\mu} = V^{\mu}_{(0)}$, and add to it three other vectors $V^{\mu}_{(i)}$ such that

$$g_{\mu\nu}V^{\mu}_{(\alpha)}V^{\nu}_{(\beta)} = \eta_{(\alpha)(\beta)}$$
 (2.12)

where the brackets around the indices denote the fact that they label four vectors, not the components of a tensor.

We can choose the vectors $V_{(i)}^{\mu}$ so that they are Fermi-Walker transported along the worldline defined by u^{μ} : this allows us to find the relativistic equivalent of a nonrotating frame of reference.

It is useful to project tensors onto the space-like and time-like subspaces defined by our tetrad (and we wish to do so in a coordinate-independent manner, so just taking the 0th and i-th components in the tetrad will not suffice). We therefore define the projectors:

$$h_{\mu\nu} = u_{\mu}u_{\nu} + g_{\mu\nu} \qquad \pi_{\mu\nu} = -u_{\mu}u_{\nu}$$
 (2.13)

respectively onto the space- and time-like subspaces.

Metrics The simplest physically relevant one is the Schwarzschild metric. It describes a spherically symmetric object of mass M, in spherical coordinates. Defining $\Phi = -M/r$, we have:

$$ds^{2} = -(1+2\Phi) dt^{2} + \frac{1}{1+2\Phi} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi \right)$$
 (2.14)

or, equivalently,

$$g_{\mu\nu} = \operatorname{diag}\left(-(1+2\Phi), \frac{1}{1+2\Phi}, r^2, r^2 \sin^2\theta\right)$$
 (2.15)

We can see that it approaches the flat metric $\eta_{\mu\nu}={\rm diag}\,(-,+,+,+)$ in the limit $M\to 0$. Its determinant is $g=-r^4\sin^2\theta$.

Fluid mechanics In usual relativistic single-body mechanics, we use the 4-velocity u^{μ} and the corresponding 4-momentum $p^{\mu} = mu^{\mu}$. The 0-th component of this vector is the energy of the body, while the *i*-th components are its momentum: we then have $p^{\mu}p_{\mu} = m^2 = E^2 - |p|^2$.

When dealing with a continuum, we will have a certain density of particles per unit of volume, we call this n. The current of particles is then $N^{\mu} = nu^{\mu}$. If these particles have a certain rest mass m_0 , we can then define the vector $\rho_0 u^{\mu} = m_0 n u^{\mu} = m_0 N^{\mu}$.

This satisfies a conservation equation: $\nabla_{\mu}(\rho_0 u^{\mu}) = 0$.

Particles in a fluid can have three kinds of energy we concern ourselves with: mass, kinetic energy and other forms of energy (thermal, chemical, nuclear...). We can always perform a change of coordinates to bring us to a frame in which the kinetic energy is zero. We write the sum of the other two forms of energy as $\rho = \rho_0(1 + \epsilon)$. So, ϵ is the ratio of the internal non-mass energy to the mass.

Now, the vector ρu^{μ} describes the flux of energy. We can then write the equation for the conservation of momentum:

$$f^{\mu} = \nabla_{\nu}(\rho u^{\mu} u^{\nu}) \tag{2.16}$$

Ideal fluids They are fluids with $\eta = \xi = \kappa = 0$, that is, without viscosity (neither compressive nor shear) nor heat transmission. They are described by the following stress-energy tensor:

$$T^{\mu\nu} = \rho u^{\mu} u^{\nu} + p h^{\mu\nu} \tag{2.17}$$

Spherical accretion We work with the Schwarzschild metric (2.14); we treat a fluid with 4-velocity u^{μ} in spherical coordinates, since the problem we are looking at is stationary and spherically symmetric the velocity is:

$$u^{\mu} = \begin{pmatrix} \gamma^2/y \\ yv \\ 0 \\ 0 \end{pmatrix} \tag{2.18}$$

where we define the Lorentz factor as usual, $\gamma = \left(1 - v^2\right)^{-1/2}$, and $y = \gamma \sqrt{1 + 2\Phi}$.

The conservation of mass holds: if ρ_0 is the rest mass density of the fluid, we must have $\nabla_{\mu}(\rho_0 u^{\mu}) = 0$. This, using the formula for covariant divergence (2.3), yields:

$$\frac{\mathrm{d}}{\mathrm{d}r}\Big(\rho_0 y v r^2\Big) = 0 \tag{2.19}$$

In the newtonian limit both γ and y approach 1; also, the infalling mass rate \dot{M} at a certain radius is $\rho_0(r)v(r)4\pi r^2$. Then, by continuity to the newtonian limit, the quantity which is constant wrt the radius must be $\dot{M}/(4\pi)$.

We also have the Euler equation:

$$(p+\rho)a^{\mu} = -h^{\mu\nu}\partial_{\nu}p\tag{2.20}$$

The only interesting component of this is the radial one, so we need to calculate $a^1=u^\mu\nabla_\mu u^1=du^1/d\tau+\Gamma^1_{\mu\nu}u^\mu u^\nu$. To do this we will need the Schwarzschild Christoffel coefficients:

$$\Gamma_{\mu\nu}^{1} = \begin{bmatrix} -\frac{2M(\frac{M}{r} - \frac{1}{2})}{r^{2}} & 0 & 0 & 0\\ 0 & \frac{2M(\frac{M}{r} - \frac{1}{2})}{r^{2}(-\frac{2M}{r} + 1)^{2}} & 0 & 0\\ 0 & 0 & 2r(\frac{M}{r} - \frac{1}{2}) & 0\\ 0 & 0 & 0 & 2r(\frac{M}{r} - \frac{1}{2})\sin^{2}(\theta) \end{bmatrix}$$
(2.21)

while the proper-time derivative is $d/d\tau = u^{\mu}\partial_{\mu} = yv\partial_{1}$.

And the equation for the variation of the total internal energy, which holds for ideal fluids at constant entropy:

$$\frac{\mathrm{d}\rho}{\mathrm{d}\tau} = \frac{p + \rho}{\rho_0} \frac{\mathrm{d}\rho_0}{\mathrm{d}\tau} \tag{2.22}$$

From these we can show that the quantity $\gamma h \sqrt{1+2\Phi}$ (where $h=(p+\rho)/\rho_0$ is the specific enthalpy), is a constant of motion. In the nonrelativistic, weak-field limit this becomes

$$\gamma h \sqrt{1+2\Phi} \approx \frac{p}{\rho_0} + \frac{v^2}{2} - \frac{M}{r} + \epsilon = \text{const}$$
 (2.23)

2.2 Taub

This section summarizes my study of A. H. Taub's review of relativistic fluid dynamics, [Tau78].

Nonrelativistic Nonrelativistic fluid mechanics are described by the equations:

$$\partial_t \rho + \partial_i (\rho v^i) = 0 \tag{2.24a}$$

$$\rho\left(\partial_t v^i + v^j \partial_j v^i\right) = \partial_j T^{ij} \tag{2.24b}$$

$$\rho \partial_t E + v^i \partial_i E = \partial_i \left(T^{ij} v_j + \kappa \partial^i T \right) \tag{2.24c}$$

where ρ is the density of the fluid, v^i are the components of its velocity, T^{ij} is the stress tensor (or, equivalently, the space-like components of the energy-momentum tensor), E is the energy of the fluid, κ is the thermal conductivity, T is the temperature of the fluid.

The nonrelativistic stress tensor can be written as:

$$T_{ij} = -(p + \xi \partial_k v^k) \delta_{ij} + \eta \partial_{(i} v_{j)}$$
(2.25)

where p is the (isotropic) pressure, η the viscosity, ξ is the compression viscosity. We are assuming that the normal stresses are only those exerted by pressure, so the diagonal terms T_{ii} (not summed) must just be -p. So, the term $-\xi \partial_k v^k$ must equal $\eta \partial_{(i} v_{i)} = 2\eta \partial_i v_i$ (not summed). Therefore, by isotropy, $\xi = 2\eta/3$.

Note that we are working in Euclidean 3D space, so the metric is the identity and upper and lower indices are equivalent.

The energy is a sum of kinetic and specific energy:

$$E = v^i v_i / 2 + \varepsilon \tag{2.26}$$

where ε is the specific energy (of a type that is different from kinetic) per unit mass.

Relativistic The dynamics of the fluid are described by the conservation of the stress-energy tensor $\nabla_{\mu}T^{\mu\nu}=0$ and the conservation of mass $\nabla_{\mu}(\rho u^{\mu})=0$.

Any stress-energy tensor can be decomposed in its space and time-like parts in the local rest frame of the fluid:

$$T_{\mu\nu} = w u_{\mu} u_{\nu} + w_{\mu} u_{\nu} + u_{\mu} w_{\nu} + w_{\mu\nu} \tag{2.27}$$

where

$$w = T_{\mu\nu} u^{\mu} u^{\nu} = \rho_0 (1 + \varepsilon) \tag{2.28a}$$

$$w_{\mu} = T_{\nu\sigma}h_{\mu}^{\sigma}u^{\nu} = -\kappa h_{\mu}^{\sigma}(\partial_{\sigma}T + Ta_{\sigma})$$
(2.28b)

$$w_{\mu\nu} = T_{\rho\sigma}h^{\rho}_{\mu}h^{\sigma}_{\nu} = (p - \xi\theta)h_{\mu\nu} - 2\eta\sigma_{\mu\nu} \tag{2.28c}$$

with $\theta = \nabla_{\mu}u^{\mu}$, a_{μ} is the covariant acceleration, $\sigma_{\sigma\tau} = 1/2\Big(\nabla_{\mu}u_{\nu} + \nabla_{\mu}u_{\nu}\Big)h_{\sigma}^{\mu}h_{\tau}^{\nu} - 1/3\theta h_{\sigma\tau}$, and as in the nonrelativistic section η is the viscosity, ξ is the compression viscosity, κ is the thermal conductivity, T is the temperature field, p is the pressure, ρ_{0} is the rest mass density while $\rho = \rho_{0}(1+\varepsilon)$ is the rest energy.

3 Nobili, Turolla, Zampieri

See [NTZ91].

The cooling function $\Lambda(T)$ is defined by the following relation, which describes the variation in the energy density by radiative processes:

$$\frac{\mathrm{d}U}{\mathrm{d}t} = n_b^2 \left(\Gamma(T) - \Lambda(T) \right) \tag{3.1}$$

where U is the energy density (measured in erg cm⁻³), n_b is the baryon density (measured in cm⁻³), while Γ and Λ are the heating and cooling functions, both measured in erg cm³ s⁻¹, see [GH12, equation 1].

The cooling function of the infalling gas is

Figure 1: Cooling function graph.

$$\Lambda(T) = \left(\left(1.42 \times 10^{-27} T^{1/2} \left(1 + 4.4 \times 10^{-10} T \right) + 6.0 \times 10^{-22} T^{-1/2} \right)^{-1} + 10^{25} \left(\frac{T}{1.5849 \times 10^4 \,\mathrm{K}} \right)^{-12} \right)^{-1} \,\mathrm{erg} \,\mathrm{cm}^{-3} \,\mathrm{s}^{-1}$$
(3.2)

The version of this equation in Stellingwerf and Buff is similar: the first constant is 2.4×10^{-27} instead of 1.42×10^{-27} , and the factor $\left(1 + 4.4 \times 10^{-10}T\right)$ is just 1.

4 Thorne's PSTF moment formalism

Following [Tho81].

Given any tensor $A^{\mu_1...\mu_k}$ we can use the tensor $h^{\mu\nu}$ to project it into the space-like subspace defined by the velocity u^{μ} :

$$A^{\mu_1...\mu_k} \to (A^{\mu_1...\mu_k})^P = \left(\prod_i h_{\nu_i}^{\mu_i}\right) A^{\nu_1...\nu_k}$$
(4.1)

Then, we can take the symmetric part of any (?) tensor as outlined in 'Notational preface' on page 2:

$$A^{\mu_1...\mu_k} \to (A^{\mu_1...\mu_k})^S = A^{(\mu_1...\mu_k)}$$
(4.2)

We can select the trace-free part of a projected, symmetric tensor by

$$A^{\mu_{1}...\mu_{k}} \to (A^{\mu_{1}...\mu_{k}})^{TF} = \sum_{i=0}^{\lfloor k/2 \rfloor} (-1)^{i} \frac{k!(2k-2i-1)!!}{(k-2i)!(2k-1)!!(2i)!!} h^{(\alpha_{1}\alpha_{2}} \dots h^{\alpha_{2i-1}\alpha_{2i}} A^{\alpha_{2i+1}...\alpha_{k})\beta_{1}...\beta_{i}} \beta_{1}...\beta_{i}$$
(4.3)

To see what this is doing, let us consider its action on a rank-two tensor:

$$A^{\mu\nu} \to A^{\mu\nu} - \frac{1}{3} h^{\mu\nu} A^{\rho}_{\rho} \tag{4.4}$$

Now, let us consider all the unit vectors n^{μ} in the space normal to the velocity, which have $n_{\mu}u^{\mu}=0$ and $n^{\mu}n_{\mu}=1$. They span a three-dimensional sphere.

If we have a function $F: S^2 \to \mathbb{R}$, we can decompose it into harmonics as such:

$$F(n) = \sum_{k=0}^{\infty} \mathscr{F}_{\alpha_1 \dots \alpha_k} \prod_{i=0}^{k} n^{\alpha_i}$$
(4.5)

Where the PTSF moments $\mathscr{F}_{\alpha_1...\alpha_k}$ can be computed as

$$\mathscr{F}_{\alpha_1...\alpha_k} = \frac{(2k+1)!!}{4\pi k!} \left(\int F \prod_{i=0}^k n^{\alpha_i} d\Omega \right)^{TF}$$
(4.6)

Now, consider a photon, whose trajectory in spacetime is parametrized as $\gamma(\xi)$, with a choice of ξ such that the photon's momentum is

$$p = \frac{\mathrm{d}}{\mathrm{d}\xi} \tag{4.7}$$

Now, our observer has a timelike velocity u^{μ} . We can find a spacelike vector n^{μ} corresponding to the space-like part of the movement of the photon, or

$$p^{\mu} = (-u^{\nu}p_{\nu})(u^{\mu} + n^{\mu}) \tag{4.8}$$

Now, we define a parameter *l* which corresponds to the space distance the photon moved through in this frame (this is *not* covariant!)

$$l = \int (-u^{\nu} p_{\nu}) \,\mathrm{d}\xi \tag{4.9}$$

now, d/dl is parallel to p but it has different length, in fact since $dl/d\xi = (-u^{\nu}p_{\nu})$ it is d/dl = u + n.

Bibliography

- [Tau78] A H Taub. "Relativistic Fluid Mechanics". In: *Annual Review of Fluid Mechanics* 10.1 (1978), pp. 301–332. URL: https://doi.org/10.1146/annurev.fl.10.010178.001505.
- [Tho81] Kip S. Thorne. "Relativistic radiative transfer: moment formalisms". In: Monthly Notices of the Royal Astronomical Society 194.2 (Feb. 1981), pp. 439–473. ISSN: 0035-8711. DOI: 10.1093/mnras/194.2.439. eprint: http://oup.prod.sis.lan/mnras/article-pdf/194/2/439/3033490/mnras194-0439.pdf. URL: https://doi.org/10.1093/mnras/194.2.439.
- [NTZ91] L. Nobili, R. Turolla, and L. Zampieri. "Spherical accretion onto black holes A complete analysis of stationary solutions". In: *ApJ* 383 (Dec. 1991), pp. 250–262. DOI: 10.1086/170781.
- [GH12] Nickolay Y. Gnedin and Nicholas Hollon. "Cooling and heating functions of photoionized gas". In: *The Astrophysical Journal Supplement Series* 202.2 (Sept. 2012), p. 13. doi: 10.1088/0067-0049/202/2/13. URL: https://doi.org/10.1088%2F0067-0049%2F202%2F2%2F13.