```
vv := 7
vv2 := 5
K[n_] := If[n == 1, 0, FullSimplify[MangoldtLambda[n] / Log[n]]]
K5[n_] := K[n] (1 - If[Mod[n, vv] = 0, n, 0])
\texttt{K6[n\_]} := \texttt{K[n]} - \texttt{If[Floor[Log[vv, n]]} = \texttt{Log[vv, n], n / Log[vv, n], 0]}
K7[n_] := K[n] - If[Floor[Log[vv, n]] = Log[vv, n], n / Log[vv, n], 0] -
  If[Floor[Log[vv2, n]] = Log[vv2, n], n / Log[vv2, n], 0]
P[n_{-}, 0] = 1;
P[n_{,k_{j}}] := P[n,k] = Sum[K7[j]P[Floor[n/j],k-1],{j,2,n}]
En[n_] := En[n] = Sum[1/(k!) P[n,k], \{k, 0, Log[2, n]\}]
En[n_{,z_{|}} := En[n] = Sum[(z^k)/(k!)P[n,k], \{k, 0, Log[2, n]\}]
en[n_] := En[n] - En[n-1]
LAdd[n_] := Sum[vv^k/k, \{k, 1, Log[vv, n]\}]
LAdda[n_] := Sum[vv2^k/k, \{k, 1, Log[vv2, n]\}]
LAdd2[n_] := Sum[(-1)^k vv^k, \{k, 1, Log[vv, n]\}]
PP[n_{,k_{|}} := PP[n, k] = Sum[1/k-PP[Floor[n/j], k+1], {j, 2, n}]
P[100, 1] + LAdd[100] + LAdda[100]
428
15
DiscretePlot[{P[n, 1]}, {n, 2, 100}]
                                                    100
           20 ••
-10
-15
                          -20
-30
```

ClearAll["Global`*"]

$\texttt{Table}[\{\texttt{n,en}[\texttt{n}]\},\,\{\texttt{n,2,50}\}] \;//\; \texttt{TableForm}$

- - 4
- – б

- - 4

- - б
- 15 4

- 20 -4
- - 6

- - 4
- 26 1
- 28 -6
- - 4

- - 4
- - 6
- - 4

- - 6 - 4

DiscretePlot[En[n], {n, 2, 200}]

$\texttt{Table}[~\{n,~\texttt{En}[n]\,,~\texttt{Mod}[n,~vv]\,\}\,,~\{n,~1,~100\}]~//~\texttt{TableForm}$

1	1	1
2	2	2
3	3	3
4 5 6 7 8	4 0	4
5		5
6	1	6
7	- 5	0
8	- 4	1
9	- 3	2
10	- 7	3
11	- б	4
12	- 5	5
13	- 4	6
14	-10	0
15	-14	1
16	-13	2
17	-12	
18	-11	3 4
19	-10	5
20	-14	6
21	- 20	0
22	-19	1
23	-18	2
24	-17	3
25	-21	4
26	- 20	5
27	-19	6
28	- 25	0
29	- 24	1
30	- 28	2
31	- 27	3
32	- 26	4
33	- 25	5
34	-24	6
35	0	0
36	1	1
		_

37	2	2
38		
	3	3
39	4	4
40	0	5
41	1	6
	- 5	
42		0
43	- 4	1
44	- 3	2
45	- 7	3
	- 6	1
46		4
47	- 5	5
48	- 4	6
49	-10	0
50	-14	1
50		
51	-13	2
52	-12	3
53	-11	4
54	-10	5
55		6
56	-20	0
57	-19	1
58	-18	2
59		3
60	-21	4
61	-20	5
62	-19	6
63	- 25	0
64	-24	1
65	- 28	2
66	- 27	3
67	- 26	4
68	- 25	5
69	-24	6
70	0	0
71	1	1
71 72	2	2
12	2	2
73	3 4	3 4
74	4	4
75	0	5
76	1	6
77	- 5	0
78	- 4	1
79	- 3	2
80	- 7	3
		3 4
81	- 6	4
82	- 5	5
83	- 4	6
84	-10	0
85	-14	1
86	-13	2
87	-12	3
88	-11	4
89	-10	5
90	-14	6
91	-20	0
92	-19	1
	-	

93	-18	2
94	-17	3
95	-21	4
96	- 20	5
97	-19	6
98	- 25	0
99	- 24	1
100	- 28	2

$\label{eq:decomposition} \texttt{DiscretePlot}[\texttt{P}[\texttt{n},\,\texttt{1}]\,\texttt{-}\,\texttt{PP}[\texttt{n},\,\texttt{1}]\,\texttt{+}\,\texttt{LAdd}[\texttt{n}]\,\texttt{+}\,\texttt{LAdda}[\texttt{n}]\,,\,\{\texttt{n},\,\texttt{2},\,\texttt{100}\}]$

