Admissible Rules and Beyond

George Metcalfe

Mathematics Institute University of Bern

WARU II, Les Diablerets, February 2015

A First Question

What is an admissible rule?

Two Informal Answers

- (A) "A rule is **admissible** in a system if the set of theorems does not change when the rule is added to the system."
- (B) "A rule is admissible in a system if any substitution sending its premises to theorems, sends its conclusion to a theorem."

Two Informal Answers

- (A) "A rule is **admissible** in a system if the set of theorems does not change when the rule is added to the system."
- (B) "A rule is admissible in a system if any substitution sending its premises to theorems, sends its conclusion to a theorem."

Admissibility in Intuitionistic Logic

The "independence of premises" rule

$$\{\neg p \to (q \lor r)\} \Rightarrow (\neg p \to q) \lor (\neg p \to r)$$

is not derivable in intuitionistic logic, but it is admissible because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $\neg \varphi \rightarrow (\psi \lor \chi)$ is a theorem, so is $(\neg \varphi \rightarrow \psi) \lor (\neg \varphi \rightarrow \chi)$.

Admissibility in Intuitionistic Logic

The "independence of premises" rule

$$\{\neg p \to (q \lor r)\} \Rightarrow (\neg p \to q) \lor (\neg p \to r)$$

is not derivable in intuitionistic logic, but it is admissible because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $\neg \varphi \rightarrow (\psi \lor \chi)$ is a theorem, so is $(\neg \varphi \rightarrow \psi) \lor (\neg \varphi \rightarrow \chi)$.

Admissibility in Intuitionistic Logic

The "independence of premises" rule

$$\{\neg p \rightarrow (q \lor r)\} \Rightarrow (\neg p \rightarrow q) \lor (\neg p \rightarrow r)$$

is not derivable in intuitionistic logic, but it is admissible because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $\neg \varphi \rightarrow (\psi \lor \chi)$ is a theorem, so is $(\neg \varphi \rightarrow \psi) \lor (\neg \varphi \rightarrow \chi)$.

Multiple-Conclusion Rules

The "disjunction property"

$$\{p \lor q\} \Rightarrow \{p, q\}$$

is admissible in intuitionistic logic because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $\varphi \lor \psi$ is a theorem, either φ or ψ is a theorem.

Multiple-Conclusion Rules

The "disjunction property"

$$\{p \lor q\} \Rightarrow \{p, q\}$$

is admissible in intuitionistic logic because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $\varphi \lor \psi$ is a theorem, either φ or ψ is a theorem.

Multiple-Conclusion Rules

The "disjunction property"

$$\{p \lor q\} \Rightarrow \{p, q\}$$

is admissible in intuitionistic logic because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $\varphi \lor \psi$ is a theorem, either φ or ψ is a theorem.

A Splitting of the Notions

The "linearity property"

$$\Rightarrow \{p \rightarrow q, q \rightarrow p\}$$

is admissible in Gödel logic according to...

(A) because adding it to an axiomatization gives no new theorems

but not according to...

(B) because it may be that neither $\varphi \to \psi$ nor $\psi \to \varphi$ is a theorem.

A Splitting of the Notions

The "linearity property"

$$\Rightarrow \{p \rightarrow q, q \rightarrow p\}$$

is admissible in Gödel logic according to...

(A) because adding it to an axiomatization gives no new theorems

but not according to...

(B) because it may be that neither $\varphi \to \psi$ nor $\psi \to \varphi$ is a theorem.

A Splitting of the Notions

The "linearity property"

$$\Rightarrow \{p \rightarrow q, q \rightarrow p\}$$

is admissible in Gödel logic according to...

(A) because adding it to an axiomatization gives no new theorems

but not according to...

(B) because it may be that neither $\varphi \to \psi$ nor $\psi \to \varphi$ is a theorem.

A More Exotic Example

The "Takeuti-Titani density rule"

$$\{((\varphi \to p) \lor (p \to \psi)) \lor \chi\} \Rightarrow (\varphi \to \psi) \lor \chi$$
 where *p* does not occur in φ , ψ , or χ

is admissible in Gödel logic because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $((\varphi \to p) \lor (p \to \psi)) \lor \chi$ is a theorem, $(\varphi \to \psi) \lor \chi$ is a theorem.

A More Exotic Example

The "Takeuti-Titani density rule"

$$\{((\varphi \to p) \lor (p \to \psi)) \lor \chi\} \Rightarrow (\varphi \to \psi) \lor \chi$$
 where *p* does not occur in φ , ψ , or χ

is admissible in Gödel logic because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $((\varphi \to p) \lor (p \to \psi)) \lor \chi$ is a theorem, $(\varphi \to \psi) \lor \chi$ is a theorem.

A More Exotic Example

The "Takeuti-Titani density rule"

$$\{((\varphi \to p) \lor (p \to \psi)) \lor \chi\} \Rightarrow (\varphi \to \psi) \lor \chi$$
where *p* does not occur in φ , ψ , or χ

is admissible in Gödel logic because...

- (A) adding it to an axiomatization gives no new theorems
- (B) if $((\varphi \to p) \lor (p \to \psi)) \lor \chi$ is a theorem, $(\varphi \to \psi) \lor \chi$ is a theorem.

More Generally...

What does it mean for a first-order sentence such as

$$(\exists x)(\forall y)(x \le y)$$
 or $(\forall x)(\exists y)\neg(x \le y)$

to be admissible in a logic or class of algebras?

The Main Question

How can these notions of admissibility be characterized?

References

We take a "first-order" approach as described in

G. Metcalfe. Admissible Rules: From Characterizations to Applications. *Proceedings of WoLLIC 2012*, LNCS 7456, Springer (2012), 56–69.

A "consequence relations" approach is described in

R. lemhoff. A Note on Consequence. Submitted.

References

We take a "first-order" approach as described in

G. Metcalfe. Admissible Rules: From Characterizations to Applications. *Proceedings of WoLLIC 2012*, LNCS 7456, Springer (2012), 56–69.

A "consequence relations" approach is described in

R. lemhoff. A Note on Consequence. Submitted.

First-Order Logic

Assume the usual terminology of **first-order logic with equality**, using the symbols \forall , \exists , \Box , \Box , \Rightarrow , \sim , 0, 1, and \approx .

Fix an algebraic language \mathcal{L} with terms $\mathsf{Tm}(\mathcal{L})$ and sentences $\mathsf{Sen}(\mathcal{L})$.

For sets of \mathcal{L} -equations Γ and Δ , denote by $\Gamma \Rightarrow \Delta$ the \mathcal{L} -clause

$$(\forall \bar{x})(\sqcap \Gamma \Rightarrow \sqcup \Delta)$$

called an \mathcal{L} -quasiequation if $|\Delta|=1$ and a positive \mathcal{L} -clause if $\Gamma=\emptyset$.

First-Order Logic

Assume the usual terminology of **first-order logic with equality**, using the symbols \forall , \exists , \Box , \Box , \Rightarrow , \sim , 0, 1, and \approx .

Fix an algebraic language $\mathcal L$ with terms $\mathsf{Tm}(\mathcal L)$ and sentences $\mathsf{Sen}(\mathcal L)$.

For sets of \mathcal{L} -equations Γ and Δ , denote by $\Gamma\Rightarrow\Delta$ the \mathcal{L} -clause

$$(\forall \bar{x})(\sqcap \Gamma \Rightarrow \sqcup \Delta)$$

called an \mathcal{L} -quasiequation if $|\Delta|=1$ and a positive \mathcal{L} -clause if $\Gamma=\emptyset$.

First-Order Logic

Assume the usual terminology of **first-order logic with equality**, using the symbols \forall , \exists , \Box , \Box , \Rightarrow , \sim , 0, 1, and \approx .

Fix an algebraic language $\mathcal L$ with terms $\mathsf{Tm}(\mathcal L)$ and sentences $\mathsf{Sen}(\mathcal L)$.

For sets of $\mathcal{L}\text{-equations }\Gamma$ and Δ , denote by $\Gamma\Rightarrow\Delta$ the $\mathcal{L}\text{-clause}$

$$(\forall \bar{x})(\sqcap \Gamma \Rightarrow \sqcup \Delta)$$

called an \mathcal{L} -quasiequation if $|\Delta| = 1$ and a positive \mathcal{L} -clause if $\Gamma = \emptyset$.

Admissibility Algebraically

Let $\mathbf{Tm}(\mathcal{L})$ denote the **term algebra of** \mathcal{L} , and consider a class of \mathcal{L} -algebras K and a set of \mathcal{L} -equations Γ .

A K-unifier of Γ is a homomorphism σ : $\mathbf{Tm}(\mathcal{L}) \to \mathbf{Tm}(\mathcal{L})$ such that

$$K \models \sigma(s) \approx \sigma(t)$$
 for all $s \approx t \in \Gamma$.

We say that an \mathcal{L} -clause $\Gamma \Rightarrow \Delta$ is K-admissible if

 σ is a K-unifier of $\Gamma \implies \sigma$ is a K-unifier of some $s \approx t \in \Delta$.

Admissibility Algebraically

Let $\mathbf{Tm}(\mathcal{L})$ denote the **term algebra of** \mathcal{L} , and consider a class of \mathcal{L} -algebras K and a set of \mathcal{L} -equations Γ .

A K-unifier of Γ is a homomorphism $\sigma \colon \mathbf{Tm}(\mathcal{L}) \to \mathbf{Tm}(\mathcal{L})$ such that

$$K \models \sigma(s) \approx \sigma(t)$$
 for all $s \approx t \in \Gamma$.

We say that an \mathcal{L} -clause $\Gamma \Rightarrow \Delta$ is K-admissible if

 σ is a K-unifier of $\Gamma \implies \sigma$ is a K-unifier of some $s \approx t \in \Delta$.

Admissibility Algebraically

Let $\mathbf{Tm}(\mathcal{L})$ denote the **term algebra of** \mathcal{L} , and consider a class of \mathcal{L} -algebras K and a set of \mathcal{L} -equations Γ .

A K-unifier of Γ is a homomorphism $\sigma \colon \mathbf{Tm}(\mathcal{L}) \to \mathbf{Tm}(\mathcal{L})$ such that

$$K \models \sigma(s) \approx \sigma(t)$$
 for all $s \approx t \in \Gamma$.

We say that an \mathcal{L} -clause $\Gamma \Rightarrow \Delta$ is K-admissible if

 σ is a K-unifier of $\Gamma \implies \sigma$ is a K-unifier of some $s \approx t \in \Delta$.

An Algebraic Characterization

For any class of \mathcal{L} -algebras K and an \mathcal{L} -clause $\Gamma \Rightarrow \Delta$,

$$\Gamma \Rightarrow \Delta$$
 is K-admissible \Leftrightarrow $\mathbf{F}_{\mathsf{K}} \models \Gamma \Rightarrow \Delta$

$$\Leftrightarrow$$

$$\mathbf{F}_{\mathsf{K}} \models \Gamma \Rightarrow \Delta$$

where \mathbf{F}_{K} is the **free algebra** of K on countably many generators.

But what about notion (A)

"A rule is **admissible** in a system if the set of theorems does not change when the rule is added to the system." ?

Reformulating, consider...

the "system" as a class of \mathcal{L} -algebras K

the "rule" as a first-order ${\mathcal L}$ -sentence arphi

the "theorems" as a set of \mathcal{L} -sentences Σ

But what about notion (A)

"A rule is **admissible** in a system if the set of theorems does not change when the rule is added to the system."

Reformulating, consider...

the "system" as a class of \mathcal{L} -algebras K

the "rule" as a first-order ${\cal L}$ -sentence arphi

the "theorems" as a set of \mathcal{L} -sentences Σ

But what about notion (A)

"A rule is **admissible** in a system if the set of theorems does not change when the rule is added to the system."

Reformulating, consider...

the "system" as a class of \mathcal{L} -algebras K

the "rule" as a first-order $\mathcal L$ -sentence arphi

the "theorems" as a set of \mathcal{L} -sentences Σ

But what about notion (A)

"A rule is **admissible** in a system if the set of theorems does not change when the rule is added to the system."

Reformulating, consider...

the "system" as a class of \mathcal{L} -algebras K

the "rule" as a first-order $\mathcal L$ -sentence φ

the "theorems" as a set of $\mathcal L$ -sentences Σ ,

But what about notion (A)

"A rule is **admissible** in a system if the set of theorems does not change when the rule is added to the system." ?

Reformulating, consider...

the "system" as a class of \mathcal{L} -algebras K

the "rule" as a first-order $\mathcal L$ -sentence φ

the "theorems" as a set of \mathcal{L} -sentences Σ ,

But what about notion (A)

"A rule is **admissible** in a system if the set of theorems does not change when the rule is added to the system." ?

Reformulating, consider...

the "system" as a class of \mathcal{L} -algebras K

the "rule" as a first-order $\mathcal L$ -sentence φ

the "theorems" as a set of \mathcal{L} -sentences Σ ,

Preserving Sentences

Definition

For a class of \mathcal{L} -algebras K and $\Sigma \subseteq Sen(\mathcal{L})$, we set

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \{ \psi \in \Sigma : \mathsf{K} \models \psi \}$$

and say that $\varphi \in \operatorname{Sen}(\mathcal{L})$ preserves Σ in K if

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \operatorname{Th}_{\Sigma}(\{\mathbf{A} \in \mathsf{K} : \mathbf{A} \models \varphi\}).$$

If $\Theta \subseteq Sen(\mathcal{L})$ axiomatizes K, then φ preserves Σ in K if for all $\psi \in \Sigma$:

$$\Theta \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\varphi\} \models \psi$$

Preserving Sentences

Definition

For a class of \mathcal{L} -algebras K and $\Sigma \subseteq Sen(\mathcal{L})$, we set

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \{ \psi \in \Sigma : \mathsf{K} \models \psi \}$$

and say that $\varphi \in \operatorname{Sen}(\mathcal{L})$ preserves Σ in K if

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \operatorname{Th}_{\Sigma}(\{\mathbf{A} \in \mathsf{K} : \mathbf{A} \models \varphi\}).$$

If $\Theta \subseteq Sen(\mathcal{L})$ axiomatizes K, then φ preserves Σ in K if for all $\psi \in \Sigma$:

$$\Theta \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\varphi\} \models \psi$$

Preserving Sentences

Definition

For a class of \mathcal{L} -algebras K and $\Sigma \subseteq Sen(\mathcal{L})$, we set

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \{ \psi \in \Sigma : \mathsf{K} \models \psi \}$$

and say that $\varphi \in Sen(\mathcal{L})$ **preserves** Σ **in** K if

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \operatorname{Th}_{\Sigma}(\{\mathbf{A} \in \mathsf{K} : \mathbf{A} \models \varphi\}).$$

If $\Theta \subseteq \text{Sen}(\mathcal{L})$ axiomatizes K, then φ preserves Σ in K if for all $\psi \in \Sigma$:

$$\Theta \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\varphi\} \models \psi$$

Preserving Sentences

Definition

For a class of \mathcal{L} -algebras K and $\Sigma \subseteq Sen(\mathcal{L})$, we set

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \{ \psi \in \Sigma : \mathsf{K} \models \psi \}$$

and say that $\varphi \in Sen(\mathcal{L})$ preserves Σ in K if

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \operatorname{Th}_{\Sigma}(\{\mathbf{A} \in \mathsf{K} : \mathbf{A} \models \varphi\}).$$

If $\Theta \subseteq Sen(\mathcal{L})$ axiomatizes K, then φ preserves Σ in K if for all $\psi \in \Sigma$:

$$\Theta \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\varphi\} \models \psi$$

Preserving Sentences

Definition

For a class of \mathcal{L} -algebras K and $\Sigma \subseteq Sen(\mathcal{L})$, we set

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \{ \psi \in \Sigma : \mathsf{K} \models \psi \}$$

and say that $\varphi \in Sen(\mathcal{L})$ preserves Σ in K if

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \operatorname{Th}_{\Sigma}(\{\mathbf{A} \in \mathsf{K} : \mathbf{A} \models \varphi\}).$$

If $\Theta \subseteq Sen(\mathcal{L})$ axiomatizes K, then φ preserves Σ in K if for all $\psi \in \Sigma$:

$$\Theta \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\varphi\} \models \psi$$

Preserving Sentences

Definition

For a class of \mathcal{L} -algebras K and $\Sigma \subseteq Sen(\mathcal{L})$, we set

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \{ \psi \in \Sigma : \mathsf{K} \models \psi \}$$

and say that $\varphi \in Sen(\mathcal{L})$ preserves Σ in K if

$$\operatorname{Th}_{\Sigma}(\mathsf{K}) = \operatorname{Th}_{\Sigma}(\{\mathbf{A} \in \mathsf{K} : \mathbf{A} \models \varphi\}).$$

If $\Theta \subseteq Sen(\mathcal{L})$ axiomatizes K, then φ preserves Σ in K if for all $\psi \in \Sigma$:

$$\Theta \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\varphi\} \models \psi.$$

Theorem

The following are equivalent for any \mathcal{L} -quasiequation φ :

- (i) φ is K-admissible
- (ii) $\mathbf{F}_{\mathsf{K}} \models \varphi$
- (iii) φ preserves \mathcal{L} -equations in K
- (iv) $K \subseteq \mathbb{V}(\{A \in K : A \models \varphi\}),$
- (v) each $\mathbf{B} \in K$ is a homomorphic image of an $\mathbf{A} \in K$ such that $\mathbf{A} \models \varphi$.

Theorem

The following are equivalent for any \mathcal{L} -quasiequation φ :

- (i) φ is K-admissible
- (ii) $\mathbf{F}_{\mathsf{K}} \models \varphi$
- (iii) φ preserves \mathcal{L} -equations in K
- (iv) $K \subseteq \mathbb{V}(\{A \in K : A \models \varphi\})$, and if K is a quasivariety
- $\text{(v)} \ \ \textit{each} \ \textbf{B} \in \textbf{K} \ \textit{is a homomorphic image of an} \ \textbf{A} \in \textbf{K} \ \textit{such that} \ \textbf{A} \models \varphi.$

Theorem

The following are equivalent for any \mathcal{L} -quasiequation φ :

- (i) φ is K-admissible
- (ii) $\mathbf{F}_{\mathsf{K}} \models \varphi$
- (iii) φ preserves \mathcal{L} -equations in K
- (iv) $K \subseteq \mathbb{V}(\{\mathbf{A} \in K : \mathbf{A} \models \varphi\})$,

and if K is a quasivariety,

 $\text{(v)} \ \ \text{each} \ \textbf{B} \in \mathsf{K} \ \text{is a homomorphic image of an } \textbf{A} \in \mathsf{K} \ \text{such that } \textbf{A} \models \varphi.$

Theorem

The following are equivalent for any \mathcal{L} -quasiequation φ :

- (i) φ is K-admissible
- (ii) $\mathbf{F}_{\mathsf{K}} \models \varphi$
- (iii) φ preserves \mathcal{L} -equations in K
- (iv) $K \subseteq \mathbb{V}(\{\mathbf{A} \in K : \mathbf{A} \models \varphi\})$,

and if K is a quasivariety,

(v) each $\mathbf{B} \in \mathsf{K}$ is a homomorphic image of an $\mathbf{A} \in \mathsf{K}$ such that $\mathbf{A} \models \varphi$.

Preserving Positive Clauses

Theorem

The following are equivalent for any \mathcal{L} -clause φ :

- (i) φ is K-admissible
- (ii) $\mathbf{F}_{\mathsf{K}} \models \varphi$
- (iii) φ preserves positive \mathcal{L} -clauses in K
- (iv) $K \subseteq \mathbb{U}^+(\{\mathbf{A} \in K : \mathbf{A} \models \varphi\}),$
- and if K is a universal class,
- $\text{(v)} \ \ \textit{each} \ \textbf{B} \in \mathsf{K} \ \textit{is a homomorphic image of an } \textbf{A} \in \mathsf{K} \ \textit{such that } \textbf{A} \models \varphi.$

Preserving Positive Clauses

Theorem

The following are equivalent for any \mathcal{L} -clause φ :

- (i) φ is K-admissible
- (ii) $\mathbf{F}_{\mathsf{K}} \models \varphi$
- (iii) φ preserves positive \mathcal{L} -clauses in K
- (iv) $K \subseteq \mathbb{U}^+(\{\mathbf{A} \in K : \mathbf{A} \models \varphi\}),$
- and if K is a universal class,
- (v) each $\mathbf{B} \in \mathbf{K}$ is a homomorphic image of an $\mathbf{A} \in \mathbf{K}$ such that $\mathbf{A} \models \varphi$.

Preserving Positive Clauses

Theorem

The following are equivalent for any \mathcal{L} -clause φ :

- (i) φ is K-admissible
- (ii) $\mathbf{F}_{\mathsf{K}} \models \varphi$
- (iii) φ preserves positive \mathcal{L} -clauses in K
- (iv) $K \subseteq \mathbb{U}^+(\{\mathbf{A} \in K : \mathbf{A} \models \varphi\})$,

and if K is a universal class,

(v) each $\mathbf{B} \in K$ is a homomorphic image of an $\mathbf{A} \in K$ such that $\mathbf{A} \models \varphi$.

Preserving Clauses

Theorem

The following are equivalent for any $\varphi \in Sen(\mathcal{L})$:

- (i) φ preserves \mathcal{L} -clauses in K
- (ii) $K \subseteq \mathbb{U}(\{\mathbf{A} \in K : \mathbf{A} \models \varphi\}),$

and if K is an elementary class,

(iii) each $B \in K$ embeds into an $A \in K$ such that $A \models \varphi$.

Preserving Clauses

Theorem

The following are equivalent for any $\varphi \in Sen(\mathcal{L})$:

- (i) φ preserves \mathcal{L} -clauses in K
- (ii) $K \subseteq \mathbb{U}(\{\mathbf{A} \in K : \mathbf{A} \models \varphi\})$,

and if K is an elementary class,

(iii) each $B \in K$ embeds into an $A \in K$ such that $A \models \varphi$.

Example

For the variety BA of **Boolean algebras** in a language \mathcal{L}_{Bool} ,

$$\varphi = (\forall x)((x \approx \bot) \sqcup (x \approx \top))$$

preserves $\mathcal{L}_{\text{Bool}}$ -equations in BA, but $\mathbf{F}_{\text{BA}} \not\models \varphi$.

Note that $\neg \varphi$, equivalent to

$$(\exists x)(\neg(x\approx\bot)\sqcap\neg(x\approx\top)),$$

also preserves \mathcal{L}_{Bool} -equations in BA.

Example

For the variety BA of **Boolean algebras** in a language \mathcal{L}_{Bool} ,

$$\varphi = (\forall x)((x \approx \bot) \sqcup (x \approx \top))$$

preserves $\mathcal{L}_{\text{Bool}}$ -equations in BA, but $\mathbf{F}_{\text{BA}} \not\models \varphi$.

Note that $\neg \varphi$, equivalent to

$$(\exists x)(\neg(x\approx\bot)\sqcap\neg(x\approx\top)),$$

also preserves \mathcal{L}_{Bool} -equations in BA.

Beyond Clauses

The **Skolem form** $\operatorname{sk}(\varphi)$ of a prenex $\varphi \in \operatorname{Sen}(\mathcal{L})$ results by repeating

$$(\forall \bar{x})(\exists y)\varphi(\bar{x},y) \qquad \Longrightarrow \qquad (\forall \bar{x})\varphi(\bar{x},f(\bar{x})) \qquad \textit{f new}.$$

Then for any $\Theta \cup \{\psi\} \subseteq \mathsf{Sen}(\mathcal{L})$:

$$\Theta \cup \{\varphi\} \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\mathsf{sk}(\varphi)\} \models \psi$$

Beyond Clauses

The **Skolem form** $\operatorname{sk}(\varphi)$ of a prenex $\varphi \in \operatorname{Sen}(\mathcal{L})$ results by repeating

$$(\forall \bar{x})(\exists y)\varphi(\bar{x},y) \Longrightarrow (\forall \bar{x})\varphi(\bar{x},f(\bar{x})) \qquad f \text{ new}.$$

Then for any $\Theta \cup \{\psi\} \subseteq \operatorname{Sen}(\mathcal{L})$:

$$\Theta \cup \{\varphi\} \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\mathsf{sk}(\varphi)\} \models \psi$$

Beyond Clauses

The **Skolem form** $sk(\varphi)$ of a prenex $\varphi \in Sen(\mathcal{L})$ results by repeating

$$(\forall \bar{x})(\exists y)\varphi(\bar{x},y) \implies (\forall \bar{x})\varphi(\bar{x},f(\bar{x})) \qquad f \text{ new}.$$

Then for any $\Theta \cup \{\psi\} \subseteq \mathsf{Sen}(\mathcal{L})$:

$$\Theta \cup \{\varphi\} \models \psi \quad \Leftrightarrow \quad \Theta \cup \{\mathsf{sk}(\varphi)\} \models \psi.$$

Preservation under Skolemization

Let K be a class of \mathcal{L} -algebras, \mathcal{L}' an extension of \mathcal{L} , and K' the class of \mathcal{L}' -algebras whose \mathcal{L} -reducts are in K.

Theorem

The following are equivalent for any $\Sigma \cup \{\varphi\} \subseteq \operatorname{Sen}(\mathcal{L})$

- (1) φ preserves Σ in K
- (2) $sk(\varphi) \in Sen(\mathcal{L}')$ preserves Σ in K'.

Preservation under Skolemization

Let K be a class of \mathcal{L} -algebras, \mathcal{L}' an extension of \mathcal{L} , and K' the class of \mathcal{L}' -algebras whose \mathcal{L} -reducts are in K.

Theorem

The following are equivalent for any $\Sigma \cup \{\varphi\} \subseteq Sen(\mathcal{L})$:

- (1) φ preserves Σ in K
- (2) $sk(\varphi) \in Sen(\mathcal{L}')$ preserves Σ in K'.

For a class of algebras K, we often seek a "distinguished subclass" $K' \subseteq K$ such that for all equations (quasiequations, etc.) φ ,

$$\mathsf{K}' \models \varphi \quad \Leftrightarrow \quad \mathsf{K} \models \varphi.$$

For example:

- Boolean algebras and the two-element Boolean algebra
- modal algebras and perfect modal algebras
- Gödel algebras and dense Gödel chains
- ullet lattice-ordered groups and automorphisms of $\mathbb R$.

Algebraically, we want to establish $\mathbb{V}(\mathsf{K}) = \mathbb{V}(\mathsf{K}') \ (\mathbb{Q}(\mathsf{K}) = \mathbb{Q}(\mathsf{K}'),$ etc.).

For a class of algebras K, we often seek a "distinguished subclass" $K'\subseteq K$ such that for all equations (quasiequations, etc.) φ ,

$$\mathsf{K}' \models \varphi \quad \Leftrightarrow \quad \mathsf{K} \models \varphi.$$

For example:

- Boolean algebras and the two-element Boolean algebra
- modal algebras and perfect modal algebras
- Gödel algebras and dense Gödel chains
- ullet lattice-ordered groups and automorphisms of $\mathbb R$.

Algebraically, we want to establish $\mathbb{V}(\mathsf{K}) = \mathbb{V}(\mathsf{K}') \ (\mathbb{Q}(\mathsf{K}) = \mathbb{Q}(\mathsf{K}'),$ etc.).

For a class of algebras K, we often seek a "distinguished subclass" $K'\subseteq K$ such that for all equations (quasiequations, etc.) φ ,

$$\mathsf{K}' \models \varphi \quad \Leftrightarrow \quad \mathsf{K} \models \varphi.$$

For example:

- Boolean algebras and the two-element Boolean algebra
- modal algebras and perfect modal algebras
- Gödel algebras and dense Gödel chains
- ullet lattice-ordered groups and automorphisms of $\mathbb R$.

Algebraically, we want to establish $\mathbb{V}(\mathsf{K}) = \mathbb{V}(\mathsf{K}') \ (\mathbb{Q}(\mathsf{K}) = \mathbb{Q}(\mathsf{K}'), \, \text{etc.}).$

For a class of algebras K, we often seek a "distinguished subclass" $K' \subseteq K$ such that for all equations (quasiequations, etc.) φ ,

$$\mathsf{K}' \models \varphi \quad \Leftrightarrow \quad \mathsf{K} \models \varphi.$$

For example:

- Boolean algebras and the two-element Boolean algebra
- modal algebras and perfect modal algebras
- Gödel algebras and dense Gödel chains
- lattice-ordered groups and automorphisms of \mathbb{R} .

Algebraically, we want to establish $\mathbb{V}(K) = \mathbb{V}(K')$ ($\mathbb{Q}(K) = \mathbb{Q}(K')$, etc.).

For a class of algebras K, we often seek a "distinguished subclass" $K'\subseteq K$ such that for all equations (quasiequations, etc.) φ ,

$$\mathsf{K}' \models \varphi \quad \Leftrightarrow \quad \mathsf{K} \models \varphi.$$

For example:

- Boolean algebras and the two-element Boolean algebra
- modal algebras and perfect modal algebras
- Gödel algebras and dense Gödel chains
- lattice-ordered groups and automorphisms of R.

Algebraically, we want to establish $\mathbb{V}(K) = \mathbb{V}(K')$ ($\mathbb{Q}(K) = \mathbb{Q}(K')$, etc.).

For a class of algebras K, we often seek a "distinguished subclass" $K' \subseteq K$ such that for all equations (quasiequations, etc.) φ ,

$$\mathsf{K}' \models \varphi \quad \Leftrightarrow \quad \mathsf{K} \models \varphi.$$

For example:

- Boolean algebras and the two-element Boolean algebra
- modal algebras and perfect modal algebras
- Gödel algebras and dense Gödel chains
- lattice-ordered groups and automorphisms of \mathbb{R} .

Algebraically, we want to establish $\mathbb{V}(\mathsf{K}) = \mathbb{V}(\mathsf{K}') \ (\mathbb{Q}(\mathsf{K}) = \mathbb{Q}(\mathsf{K}'),$ etc.).

For a class of algebras K, we often seek a "distinguished subclass" $K' \subseteq K$ such that for all equations (quasiequations, etc.) φ ,

$$\mathsf{K}' \models \varphi \quad \Leftrightarrow \quad \mathsf{K} \models \varphi.$$

For example:

- Boolean algebras and the two-element Boolean algebra
- modal algebras and perfect modal algebras
- Gödel algebras and dense Gödel chains
- lattice-ordered groups and automorphisms of \mathbb{R} .

Algebraically, we want to establish $\mathbb{V}(\mathsf{K}) = \mathbb{V}(\mathsf{K}') \ (\mathbb{Q}(\mathsf{K}) = \mathbb{Q}(\mathsf{K}'),$ etc.).

Question. How can we prove that φ **preserves** Σ **in** K?

An Answer.

(a) Give a **proof system** that checks for a given $\psi \in \Sigma$ whether

$$\operatorname{Th}(\mathsf{K}) \cup \{\varphi\} \models \psi.$$

Question. How can we prove that φ **preserves** Σ **in** K?

An Answer.

(a) Give a **proof system** that checks for a given $\psi \in \Sigma$ whether

$$\mathrm{Th}(\mathsf{K}) \cup \{\varphi\} \models \psi.$$

Question. How can we prove that φ **preserves** Σ **in** K?

An Answer.

(a) Give a **proof system** that checks for a given $\psi \in \Sigma$ whether

$$\mathrm{Th}(\mathsf{K}) \cup \{\varphi\} \models \psi.$$

Question. How can we prove that φ **preserves** Σ **in** K?

An Answer.

(a) Give a **proof system** that checks for a given $\psi \in \Sigma$ whether

$$\mathrm{Th}(\mathsf{K}) \cup \{\varphi\} \models \psi.$$

Axioms

$$\frac{1}{s \leq s}$$
 (ID)

$$\frac{s \leq u \quad u \leq t}{s \leq t} \text{ (CUT)}$$

Left rules

$$\frac{s_i \le t}{s_1 \land s_2 \le t} (\land \Rightarrow)_i (i = 1, 2)$$

$$\frac{t \le s_i}{t \le s_1 \lor s_2} \ (\Rightarrow \lor)_i \ (i = 1, 2)$$

$$\frac{s_1 \le t \quad s_2 \le t}{s_1 \lor s_2 \le t} \ (\lor \Rightarrow)$$

$$\frac{t \le s_1 \quad t \le s_2}{t \le s_1 \land s_2} \ (\Rightarrow \land)$$

- (a) $\vdash_{GLat} s \leq t \Leftrightarrow Lat \models s \leq t$
- (b) GLat admits cut-elimination.

Axioms

Cut rule

$$\frac{1}{s < s}$$
 (ID)

$$\frac{s \leq u \quad u \leq t}{s \leq t} \text{ (CUT)}$$

Left rules

Right rules

$$\frac{s_i \le t}{s_1 \land s_2 \le t} (\land \Rightarrow)_i (i = 1, 2)$$

$$\frac{t \le s_i}{t \le s_1 \lor s_2} \ (\Rightarrow \lor)_i \ (i = 1, 2)$$

$$\frac{s_1 \le t \quad s_2 \le t}{s_1 \lor s_2 \le t} \ (\lor \Rightarrow)$$

$$\frac{t \le s_1 \quad t \le s_2}{t \le s_1 \land s_2} \ (\Rightarrow \land)$$

- (a) $\vdash_{GLat} s \leq t \Leftrightarrow Lat \models s \leq t$.
- (b) GLat admits cut-elimination.

Axioms

$$\frac{1}{s < s}$$
 (ID)

$$\frac{\mathtt{S} \leq u \quad u \leq t}{\mathtt{S} \leq t} \ \ \scriptscriptstyle{\text{(CUT)}}$$

Left rules

$$\frac{s_i \leq t}{s_1 \wedge s_2 \leq t} (\land \Rightarrow)_i (i = 1, 2)$$

$$\frac{t \leq s_i}{t \leq s_1 \vee s_2} \ (\Rightarrow \lor)_i \ (i = 1, 2)$$

$$\frac{s_1 \le t \quad s_2 \le t}{s_1 \lor s_2 \le t} \ (\lor \Rightarrow)$$

$$\frac{t \le s_1 \quad t \le s_2}{t \le s_1 \land s_2} \ (\Rightarrow \land)$$

- (a) $\vdash_{GLat} s \le t \Leftrightarrow Lat \models s \le t$.
- (b) GLat admits cut-elimination.

Axioms

$$\frac{1}{s < s}$$
 (ID)

$$\frac{s \leq u \quad u \leq t}{s \leq t} \text{ (CUT)}$$

Left rules

$$\frac{s_i \leq t}{s_1 \land s_2 \leq t} \ (\land \Rightarrow)_i \ (i = 1, 2)$$

$$\frac{t \leq s_i}{t \leq s_1 \vee s_2} \ (\Rightarrow \vee)_i \ (i = 1, 2)$$

$$\frac{s_1 \le t \quad s_2 \le t}{s_1 \lor s_2 \le t} \ (\lor \Rightarrow)$$

$$\frac{t \le s_1 \quad t \le s_2}{t \le s_1 \land s_2} \ (\Rightarrow \land)$$

- (a) $\vdash_{GLat} s \le t \Leftrightarrow Lat \models s \le t$.
- (b) GLat admits cut-elimination.

Example: Boundedness in Lattices

The following \mathcal{L}_{Lat} -sentence expresses **boundedness**:

$$\varphi_{\mathsf{BD}} = (\exists x)(\exists y)(\forall z)((x \leq z) \sqcap (z \leq y)).$$

Skolemizing, we obtain

$$(\forall z)((\bot \leq z) \sqcap (z \leq \top)).$$

We consider GLat extended with the rules:

$$\overline{\bot \leq t} \stackrel{(\bot \Rightarrow)}{=} \quad \text{and} \quad \overline{s \leq \top} \stackrel{(\Rightarrow \top)}{=}.$$

- (a) φ_{BD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{A \in Lat : A \text{ is bounded}\})$.

Example: Boundedness in Lattices

The following \mathcal{L}_{Lat} -sentence expresses **boundedness**:

$$\varphi_{\mathsf{BD}} = (\exists x)(\exists y)(\forall z)((x \leq z) \sqcap (z \leq y)).$$

Skolemizing, we obtain

$$(\forall z)((\bot \leq z) \sqcap (z \leq \top)).$$

We consider GLat extended with the rules:

$$\overline{\perp \leq t} \stackrel{(\perp \Rightarrow)}{=} \quad \text{and} \quad \overline{s \leq \top} \stackrel{(\Rightarrow \top)}{=}.$$

- (a) φ_{BD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{A \in Lat : A \text{ is bounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses **boundedness**:

$$\varphi_{\mathsf{BD}} = (\exists x)(\exists y)(\forall z)((x \leq z) \sqcap (z \leq y)).$$

Skolemizing, we obtain

$$(\forall z)((\bot \leq z) \sqcap (z \leq \top)).$$

We consider GLat extended with the rules:

$$\overline{\perp \leq t}$$
 (\rightarrow) and $\overline{s} \leq \overline{\perp}$ ($\Rightarrow \overline{\perp}$).

- (a) φ_{BD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{\mathbf{A} \in \mathsf{Lat} : \mathbf{A} \text{ is bounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses **boundedness**:

$$\varphi_{\mathsf{BD}} = (\exists x)(\exists y)(\forall z)((x \leq z) \sqcap (z \leq y)).$$

Skolemizing, we obtain

$$(\forall z)((\bot \leq z) \sqcap (z \leq \top)).$$

We consider GLat extended with the rules:

$$\overline{\perp \leq t}$$
 (\rightarrow) and $\overline{s} \leq \overline{\perp}$ ($\Rightarrow \overline{\perp}$).

- (a) φ_{BD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{A \in Lat : A \text{ is bounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses **boundedness**:

$$\varphi_{\mathsf{BD}} = (\exists x)(\exists y)(\forall z)((x \leq z) \sqcap (z \leq y)).$$

Skolemizing, we obtain

$$(\forall z)((\bot \leq z) \sqcap (z \leq \top)).$$

We consider GLat extended with the rules:

$$\overline{\perp \leq t}$$
 (\rightarrow) and $\overline{s} \leq \overline{\perp}$ ($\Rightarrow \overline{\perp}$).

- (a) φ_{BD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{\mathbf{A} \in \text{Lat} : \mathbf{A} \text{ is bounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses **unboundedness**:

$$\varphi_{\mathsf{UNBD}} = (\forall x)(\exists y)(\exists z)(\neg(x \leq y) \sqcap \neg(z \leq x)).$$

Skolemizing, we obtain

$$(\forall x)(\neg(x\leq\downarrow x)\sqcap\neg(\uparrow x\leq x)).$$

We consider GLat extended with the rules:

$$\frac{u \le \downarrow u}{s \le t} \stackrel{(\le \downarrow)}{} \quad \text{and} \quad \frac{\uparrow u \le u}{s \le t} \stackrel{(\uparrow \le)}{}.$$

- (a) φ_{UNBD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{\mathbf{A} \in \mathsf{Lat} : \mathbf{A} \text{ is unbounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses **unboundedness**:

$$\varphi_{\mathsf{UNBD}} = (\forall x)(\exists y)(\exists z)(\neg(x \leq y) \sqcap \neg(z \leq x)).$$

Skolemizing, we obtain

$$(\forall x)(\neg(x\leq\downarrow x)\sqcap\neg(\uparrow x\leq x)).$$

We consider GLat extended with the rules:

$$\frac{u \le \downarrow u}{s \le t} \ (\le \downarrow) \qquad \text{and} \qquad \frac{\uparrow u \le u}{s \le t} \ (\uparrow \le).$$

- (a) φ_{UNBD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{\mathbf{A} \in \mathsf{Lat} : \mathbf{A} \text{ is unbounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses **unboundedness**:

$$\varphi_{\mathsf{UNBD}} = (\forall x)(\exists y)(\exists z)(\neg(x \leq y) \sqcap \neg(z \leq x)).$$

Skolemizing, we obtain

$$(\forall x)(\neg(x\leq\downarrow x)\sqcap\neg(\uparrow x\leq x)).$$

We consider GLat extended with the rules:

$$\frac{u \leq \downarrow u}{s \leq t} \ \text{(support} \ \text{and} \ \frac{\uparrow u \leq u}{s \leq t} \ \text{(height} \ \text{(height}).$$

- (a) φ_{UNBD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{\mathbf{A} \in \mathsf{Lat} : \mathbf{A} \text{ is unbounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses **unboundedness**:

$$\varphi_{\mathsf{UNBD}} = (\forall x)(\exists y)(\exists z)(\neg(x \leq y) \sqcap \neg(z \leq x)).$$

Skolemizing, we obtain

$$(\forall x)(\neg(x\leq\downarrow x)\sqcap\neg(\uparrow x\leq x)).$$

We consider GLat extended with the rules:

$$\frac{u \le \downarrow u}{s \le t} \stackrel{(\le \downarrow)}{\qquad} \text{and} \qquad \frac{\uparrow u \le u}{s \le t} \stackrel{(\uparrow \le)}{\sim}.$$

- (a) φ_{UNBD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{\mathbf{A} \in \text{Lat} : \mathbf{A} \text{ is unbounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses **unboundedness**:

$$\varphi_{\mathsf{UNBD}} = (\forall x)(\exists y)(\exists z)(\neg(x \leq y) \sqcap \neg(z \leq x)).$$

Skolemizing, we obtain

$$(\forall x)(\neg(x\leq\downarrow x)\sqcap\neg(\uparrow x\leq x)).$$

We consider GLat extended with the rules:

$$\frac{u \le \downarrow u}{s \le t} \stackrel{(\le \downarrow)}{\qquad} \text{and} \qquad \frac{\uparrow u \le u}{s \le t} \stackrel{(\uparrow \le)}{\sim}.$$

- (a) φ_{UNBD} preserves \mathcal{L}_{Lat} -equations in Lat.
- (b) Lat = $\mathbb{V}(\{\mathbf{A} \in \mathsf{Lat} : \mathbf{A} \text{ is unbounded}\})$.

The following \mathcal{L}_{Lat} -sentence expresses linearity and density:

$$\varphi_{\mathrm{DC}} = (\forall x)(\forall y)(\exists z)(((x \leq y) \sqcup (y \leq x)) \sqcap (((x \leq z) \sqcup (z \leq y)) \Rightarrow (x \leq y))).$$

Skolemizing, we obtain:

$$(\forall x)(\forall y)(((x \leq y) \sqcup (y \leq x)) \sqcap (((x \leq d(x,y)) \sqcup (d(x,y) \leq y)) \Rightarrow (x \leq y))).$$

- (a) φ_{DC} preserves \mathcal{L} -equations in the variety G of Gödel algebras.
- (b) $G = V(\{A \in G : A \text{ is linearly and densely ordered}\}).$

The following \mathcal{L}_{Lat} -sentence expresses **linearity** and **density**:

$$\varphi_{\mathrm{DC}} = (\forall x)(\forall y)(\exists z)(((x \leq y) \sqcup (y \leq x)) \sqcap (((x \leq z) \sqcup (z \leq y)) \Rightarrow (x \leq y))).$$

Skolemizing, we obtain:

$$(\forall x)(\forall y)(((x \leq y) \sqcup (y \leq x)) \sqcap (((x \leq d(x,y)) \sqcup (d(x,y) \leq y)) \Rightarrow (x \leq y))).$$

- (a) φ_{DC} preserves \mathcal{L} -equations in the variety G of Gödel algebras.
- (b) $G = V(\{A \in G : A \text{ is linearly and densely ordered}\}).$

The following \mathcal{L}_{Lat} -sentence expresses **linearity** and **density**:

$$\varphi_{\mathrm{DC}} = (\forall x)(\forall y)(\exists z)(((x \leq y) \sqcup (y \leq x)) \sqcap (((x \leq z) \sqcup (z \leq y)) \Rightarrow (x \leq y))).$$

Skolemizing, we obtain:

$$(\forall x)(\forall y)(((x \leq y) \sqcup (y \leq x)) \sqcap (((x \leq d(x,y)) \sqcup (d(x,y) \leq y)) \Rightarrow (x \leq y))).$$

- (a) φ_{DC} preserves \mathcal{L} -equations in the variety G of Gödel algebras.
- (b) $G = V(\{A \in G : A \text{ is linearly and densely ordered}\}).$

The following \mathcal{L}_{Lat} -sentence expresses linearity and density:

$$\varphi_{\mathrm{DC}} = (\forall x)(\forall y)(\exists z)(((x \leq y) \sqcup (y \leq x)) \sqcap (((x \leq z) \sqcup (z \leq y)) \Rightarrow (x \leq y))).$$

Skolemizing, we obtain:

$$(\forall x)(\forall y)(((x \leq y) \sqcup (y \leq x)) \sqcap (((x \leq d(x,y)) \sqcup (d(x,y) \leq y)) \Rightarrow (x \leq y))).$$

- (a) φ_{DC} preserves \mathcal{L} -equations in the variety G of Gödel algebras.
- (b) $G = V(\{A \in G : A \text{ is linearly and densely ordered}\}).$

Concluding Remarks

- Differing notions of admissibility can be presented and compared in a first-order framework.
- Establishing the admissibility of a rule (e.g., by elimination) can be used to determine properties of classes of algebras.

Concluding Remarks

- Differing notions of admissibility can be presented and compared in a first-order framework.
- Establishing the admissibility of a rule (e.g., by elimination) can be used to determine properties of classes of algebras.

Concluding Remarks

- Differing notions of admissibility can be presented and compared in a first-order framework.
- Establishing the admissibility of a rule (e.g., by elimination) can be used to determine properties of classes of algebras.