

TD 5 : Méthodes énergétiques

L'énergie de déformation associée au cisaillement est négligée pour tous les exercices. On suppose que le plan (O, \vec{x}, \vec{y}) est un plan de symétrie pour toutes les poutres.

Exercice 1 : (Théorème de Castigliano)

Retrouver le résultat de la flèche v_A de l'exercice 2 (cas 2) du TD3 à l'aide du théorème de Castigliano.

Exercice 2 : (Théorème de Castigliano)

Retrouver le résultat de la flèche v_B de l'exercice 3 (cas 1) du TD3 à l'aide du théorème de Castigliano.

Exercice 3 : (Théorème de la charge fictive)

Retrouver la rotation de la section droite en $O\left(\omega_O = \omega_z(0)\right)$ et le déplacement vertical en $B\left(v_B = u_y(2\ell)\right)$ de l'exercice 5 du TD3 à l'aide du théorème de la charge fictive.

Exercice 4: Etude d'une poutre hyperstatique

On considère une poutre élastique [OA] rectiligne (module d'Young E, section S, moment quadratique $I \equiv I_{Gz}$), de longueur ℓ encastrée en O(x=0) avec rotule en $A(x=\ell)$ et en appui mobile le long d'un plan formant un angle α avec l'axe horizontal. Une densité linéique de force $\vec{p} = -p \ \vec{y}$ est uniformément répartie sur toute la poutre.

- 1) Retrouver la résultante de liaison en A du cas 1 du TD4 à l'aide du théorème de Ménabréa.
- 2) Pour $\alpha = 0$, déterminer la flèche au milieu de la poutre à l'aide du théorème de la charge fictive.

On considère désormais un appui élastique en A de raideur k tel qu'en absence de chargement cet appui élastique n'exerce aucun effort sur la poutre.

3) Déterminer la nouvelle valeur de l'action de liaison en A ainsi que le déplacement vertical du point A.

Pour les exercices suivants, à l'aide des méthodes énergétiques :

Exercice supplémentaire 1 :

En déduire la rotation de la section droite en B ($\omega_B = \omega_z(\ell)$) et le déplacement vertical en O ($v_O = u_y(0)$).

Exercice supplémentaire 2 :

En déduire le déplacement vertical en A $(v_A=u_y(3\ell))$ et la rotation de la section droite en B $(\omega_B=\omega_z(2\ell))$.

Exercice supplémentaire 3:

En déduire le déplacement vertical en A $(v_A = u_y(4\ell))$ et la rotation de la section droite en C $(\omega_C = \omega_z(\ell))$.