Übungsblatt 1 zur Kommutativen Algebra

Abgabe bis zum Montag, den 26. Oktober 2015

Aufgabe 1. () Invertierbarkeit und Nilpotenz in Ringen formaler Potenzreihen

Sei A ein Ring. Sei $f = a_0 + a_1 X + a_2 X^2 + \cdots \in A[X]$ eine formale Potenzreihe. Zeige:

- a) Genau dann ist f eine Einheit in A[X], wenn a_0 in A invertierbar ist.
- b) Ist f nilpotent, so sind alle Koeffizienten a_0, a_1, \ldots nilpotent. (Gilt die Umkehrung?)
- c) Ist \mathfrak{m} ein maximales Ideal in $A[\![X]\!]$, so gilt $X \in \mathfrak{m}$, die Kontraktion $\mathfrak{m}_0 := A \cap m$ ist ein maximales Ideal in A und \mathfrak{m} ist das von \mathfrak{m}_0 und X in $A[\![X]\!]$ erzeugte Ideal.
- d) Jedes Primideal von A ist Kontraktion eines Primideals von $A[\![X]\!]$.

Aufgabe 2. () Charakterisierung von Wurzelidealen

Sei $\mathfrak a$ ein Ideal eines Rings. Zeige, dass $\mathfrak a$ genau dann mit seinem Wurzelideal übereinstimmt, wenn $\mathfrak a$ ein Schnitt von Primidealen ist.

Aufgabe 3. () Inhalt von Polynomen

Sei A ein Ring. Sei für ein Polynom $f = a_0 + \cdots + a_m X^m \in A[X]$ sein Wurzelinhalt das Ideal $J(f) := \sqrt{(a_0, \ldots, a_m)}$. Zeige für alle Polynome $f, g \in A[X]$: $J(fg) = J(f) \cap J(g)$.