Matematiske metoder (MM 529)

Stephan Brandt

Syddansk Universitet, Odense

10. 12. 2013

Linear differential equations

Linear differential equation (LDE)

A linear differential equation of order n is an ordinary differential equation of the form

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-2}(x)y^{(n-2)} + \ldots + a_1(x)y' + a_0(x)y = g(x),$$

where $a_i(x)$ and g(x) are functions (only) depending on x.

Homogeneous/inhomogeneous linear differential equation

A linear differential equation

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-2}(x)y^{(n-2)} + \ldots + a_1(x)y' + a_0(x)y = g(x),$$

is homogeneous, if g(x) = 0 (for every x), otherwise inhomogeneous.

Solution of first order homogeneous linear DEs

First order homogeneous linear differential equation:

$$y' = a(x)y$$

General solution:

$$y = ce^{A(x)},$$

where $c \in \mathbb{R}$ and A'(x) = a(x).

Superposition

Linearity of differentiation:

$$(f(x) + g(x))' = f'(x) + g'(x),$$

 $(c \cdot f(x))' = c \cdot f'(x).$

First order inhomogeneous LDE:

$$y' + a(x)y = g(x).$$

Corresponding homogeneous LDE:

$$y'+a(x)y=0.$$

Let $y_p(x)$ be a solution of the inhomogeneous LDE and $y_h(x), y_H(x)$ be solutions of the corresponding homogeneous LDE. Then $y_h + y_H$ is another solution of the homogeneous LDE and $y_h + y_p$ is another solution of the inhomogeneous LDE.

The general picture, structure of solutions

Inhomogeneous LDE:

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-2}(x)y^{(n-2)} + \ldots + a_1(x)y' + a_0(x)y = g(x),$$

Corresponding homogeneous LDE:

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-2}(x)y^{(n-2)} + \ldots + a_1(x)y' + a_0(x)y = 0,$$

 $y_p(x)$ solution of inhomogeneous LDE.

 $y_h(x), y_H(x)$ solutions of corresponding homogeneous LDE.

Then $y_h + y_H$ is another solution of the homogeneous LDE and therefore $y_h + y_P$ is another solution of the inhomogeneous LDE.

Inhomogeneous LDE:

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-2}(x)y^{(n-2)} + \ldots + a_1(x)y' + a_0(x)y = g(x),$$

Corresponding homogeneous LDE:

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-2}(x)y^{(n-2)} + \ldots + a_1(x)y' + a_0(x)y = 0,$$

 Y_H the set of all solutions of the corresponding homogeneous LDE. y_p any particular solution of the inhomogeneous LDE.

Then $Y_I = \{y_p + y_h : y_h \in Y_H\}$ is the set of solutions of the inhomogeneous LDE.

Problems left:

- How to find all solutions of a homogeneous LDE.
- When to find a particular solution of the inhomogeneous LDE.

General solution inhomogeneous LDE, example

Example: y' = y - x.

Corresponding homogeneous LDE: y' = y.

One particular solution: $y_p = x + 1$ (e.g. guess from the slope field and verify 1 = (x + 1)' = (x + 1) - x = 1).

All solutions of corresponding homogeneous LDE:

 $Y_H = \{ce^x : c \in \mathbb{R}\}$ (solve separable differential equation).

All solutions of inhomogeneous LDE: $Y_I = \{x + 1 + ce^x : c \in \mathbb{R}\}.$

Initial value problem: y(0) = 0: solve $0 = 0 + 1 + ce^0$ for c.

Thus c = -1 and $y(x) = x + 1 - e^x$ is the single solution.

Solving first order inhomogeneous LDEs

First order homogeneous linear differential equation:

$$y' + a(x)y = g(x)$$

General solution of corresponding homogeneous equation:

$$y=ce^{-A(x)},$$

where $c \in \mathbb{R}$ and A'(x) = a(x).

Assumption: A solution of the inhomogeneous equation has the form ("variation of constants")

$$y = k(x)e^{-A(x)}.$$

Then

$$k'(x)e^{-A(x)} - k(x)A'(x)e^{-A(x)} + a(x)k(x)e^{-A(x)} = y' + a(x)y = g(x),$$

and

$$k'(x)e^{-A(x)} = g(x).$$

Solving first order inhomogeneous LDEs

First order homogeneous linear differential equation:

$$y' + a(x)y = g(x).$$

Assumption: A solution of the inhomogeneous equation has the form ("variation of constants")

$$y = k(x)e^{-A(x)}.$$

Then

$$k'(x)e^{-A(x)} = g(x)$$

hence

$$k(x) = \int g(x)e^{A(x)} dx.$$

General solution of inhomogeneous equation:

$$y = k(x)e^{-A(x)} + ce^{-A(x)},$$

where $c \in \mathbb{R}$, A'(x) = a(x), and $k(x) = \int g(x)e^{A(x)} dx$.

Second order LDEs

Second order inhomogeneous linear differential equation:

$$y'' + a(x)y' + b(x)y = g(x).$$

Structure of solutions:

All functions y of the form

$$y=y_p+y_h,$$

where y_p is one particular solution of the inhomogeneous equation and $y_h \in Y_H$, the set of solutions of the corresponding homogeneous differential equation

$$y'' + a(x)y' + b(x)y = 0.$$

Problems left:

- How to find all solutions of a homogeneous LDE.
- 2 How to find one solution of the inhomogeneous LDE.

Second order LDEs with constant coefficients

Second order linear differential equation:

$$y'' + a(x)y' + b(x)y = g(x).$$

Finding all solutions in general quite complicated.

Easier special case:

Second order linear differential equations with constant coefficients:

$$y'' + ay' + by = g(x)$$
, $a, b \in \mathbb{R}$ (constant coefficients).

Corresponding homogeneous equation.

$$y'' + ay' + by = 0.$$

Assumption: Solution has the form $y=e^{\lambda x}$ for some λ . Then $v'=\lambda e^{\lambda x}$ and $v''=\lambda^2 e^{\lambda x}$ and

$$0 = \lambda^2 e^{\lambda x} + a\lambda e^{\lambda x} + be^{\lambda x} = (\lambda^2 + a\lambda + b)e^{\lambda x}.$$

Since $e^{\lambda x} > 0$ for all x, we have $\lambda^2 + a\lambda + b = 0$.

$$y'' + ay' + by = 0.$$

Assumption: Solution has the form $y=e^{\lambda x}$ for some λ . Then λ must be a zero of the polynomial

$$p(\lambda) = \lambda^2 + a\lambda + b = 0.$$

 $p(\lambda)$ characteristic polynomial of the homogeneous LDE. If $\lambda \in \mathbb{R}$ is a zero of the characteristic polynomial, then $y=e^{\lambda x}$ is a solution of the homogeneous LDE, since

$$y'' + ay' + by = (\lambda^2 + a\lambda + b)e^{\lambda x} = 0.$$

$$y'' + ay' + by = 0.$$

Characteristic polynomial

$$p(\lambda) = \lambda^2 + a\lambda + b.$$

For a real zero λ of p, $y=e^{\lambda x}$ is one solution of corresponding homogeneous LDE. How to find all solutions? Three cases:

- **1** p has two different zeroes $\lambda_1 \neq \lambda_2 \in \mathbb{R}$.
- **2** p has a double zero $\lambda \in \mathbb{R}$.
- **1** p has two complex zeroes $\lambda, \overline{\lambda} \in \mathbb{C} \setminus \mathbb{R}$.

$$y'' + ay' + by = 0.$$

First case: $p(\lambda) = \lambda^2 + a\lambda + b$ has two different zeroes $\lambda_1 \neq \lambda_2 \in \mathbb{R}$.

Then $y_1 = e^{\lambda_1 x}$ and $y_2 = e^{\lambda_2 x}$ are both solutions.

By linearity, $y = c_1y_1 + c_2y_2$ is a solution for any $c_1, c_2 \in \mathbb{R}$, and all solutions can be written in this form.

Example:

$$y'' + y' - 6y = 0.$$

Characteristic polynomial: $p(\lambda) = \lambda^2 + \lambda - 6 = (\lambda + 3)(\lambda - 2)$ has zeroes $\lambda_1 = -3$ and $\lambda_2 = 2$.

General solution: $y = c_1 e^{-3x} + c_2 e^{2x}$, $c_1, c_2 \in \mathbb{R}$.

$$y'' + ay' + by = 0.$$

Second case: $p(\lambda) = \lambda^2 + a\lambda + b$ has a double zero $\lambda \in \mathbb{R}$. Then $y_1 = e^{\lambda x}$ is a solution, and $y = c_1 y_1$, $c_1 \in \mathbb{R}$ are further solutions. One more structurally different solution needed: $y_2 = x e^{\lambda x}$ is a solution, since $y_2' = (\lambda x + 1) e^{\lambda x}$ and $y_2'' = (\lambda^2 x + 2\lambda) e^{\lambda x}$. $y_2'' + a y_2' + b y_2 = e^{\lambda x} [(\lambda^2 + a\lambda + b)x + 2\lambda + a] = 0$. General solution $y = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$, $c_1, c_2 \in \mathbb{R}$. Example:

$$y''+2y'+y=0.$$

Characteristic polynomial: $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$ has the double zero $\lambda = -1$.

General solution: $y = c_1 e^{-x} + c_2 x e^{-x}$, $c_1, c_2 \in \mathbb{R}$.

$$y'' + ay' + by = 0.$$

Third case: $p(\lambda) = \lambda^2 + a\lambda + b$ has a zero $\lambda = p + iq \in \mathbb{C} \setminus \mathbb{R}$, then the conjugate complex number $\overline{\lambda}$ is another zero.

Then $y = e^{\lambda x}$ is a complex solution function, but we need two structurally different real solution functions:

Approach: Split up the function into its real and its imaginary part: $y = e^{\lambda x} = y_1 + iy_2$, where $y_1(x)$ and $y_2(x)$ are real functions.

We know:

$$0 = (e^{\lambda x})'' + a(e^{\lambda x})' + be^{\lambda x} = y_1'' + ay_1' + by_1 + i(y_2'' + ay_2' + by_2),$$
 therefore y_1 and y_2 are both (real) solutions of the differential equation.

Finding real and complex part of $y = e^{(p+iq)x}$: $e^{(p+iq)x} = e^{px} \cdot e^{iqx} = e^{px}(\cos qx + i\sin qx) = e^{px}\cos qx + ie^{px}\sin qx$.

Real part: $y_1(x) = e^{px} \cos qx$, imaginary part $y_2(x)e^{px} \sin qx$. General solution $y = c_1 e^{px} \cos qx + c_2 e^{px} \sin qx$, $c_1, c_2 \in \mathbb{R}$.

$$y'' + ay' + by = 0.$$

Third case: $p(\lambda) = \lambda^2 + a\lambda + b$ has a zero $\lambda = p + iq \in \mathbb{C} \setminus \mathbb{R}$, Finding real and imaginary part of complex solution function $y = e^{(p+iq)x}$:

$$e^{(p+iq)x} = e^{px} \cdot e^{iqx} = e^{px}(\cos qx + i\sin qx) = e^{px}\cos qx + ie^{px}\sin qx.$$

Real part: $y_1(x)=e^{px}\cos qx$, imaginary part $y_2(x)=e^{px}\sin qx$. General solution $y=c_1e^{px}\cos qx+c_2e^{px}\sin qx$, $c_1,c_2\in\mathbb{R}$. Example:

$$y''+y=0.$$

Characteristic polynomial: $p(\lambda) = \lambda^2 + 1 = (\lambda - i)(\lambda + i)$. Complex solution function: $y = e^{ix} = \cos x + i \sin x$. General solution: $y = c_1 \cos x + c_2 \sin x$, $c_1, c_2 \in \mathbb{R}$.