Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto

Relatório Preliminar Projeto Final

Sistemas Embebidos

Trabalho realizado por:

- Bruno Rodrigues, 1201672
- Pedro Costa, 1201576

Docente:

- Ricardo Abílio Leite Falcão Correia Gonçalves
- Rui Miguel Monteiro De Brito

Índice

1.	Introdução	. 1
2.	Descrição do projeto	2
3.	Diagrama de ligações	3
4.	Máquina de estados do funcionamento base	4
5.	Lista de material	5
6.	Calendarização	6

Índice de Figuras

Figura 1 - Ligação entre RS232 e XMC 4200	3
Figura 2 - Ligação do Device ao Display	3
Figura 3 - Máquina de estado exemplo do projeto	4
Figura 4 - Calendarização base do projeto	6

1. Introdução

No contexto da unidade curricular de Sistemas Embebidos, foi proposto a realização de um relatório preliminar sobre o projeto final.

O presente relatório tem por objetivo descrever, detalhadamente, o projeto a nível de funcionalidades, um esquema de todas as ligações, bem como as portas a utilizar, uma máquina de estados do funcionamento base, a lista do material a ser utilizado para o desenvolvimento do projeto, e uma calendarização que inclua todos os passos necessários para a execução do mesmo. Para fazer esta calendarização usaremos Diagramas de Gantt. Essencialmente iremos descrever passo a passo o nosso trabalho neste projeto desde o seu planeamento até à sua apresentação.

O projeto terá três fases: (1) Planeamento, (2) Teste de tecnologias e (3) a Implementação do projeto final.

2. Descrição do projeto

O projeto final irá consistir numa central de programação.

O grupo de trabalho deve criar um protocolo de comunicação, que permite o controlo do estado e luminosidade de LED´S, e passe a informação para um display. Esta informação deverá ser controlada através de uma comunicação por fios, para o caso, será utilizada a comunicação RS232.

Neste projeto iremos conseguir controlar o estado de determinado LED através de uma interação com o utilizador. Além disso, o utilizador poderá também controlar a luminosidade do LED. Essas mudanças serão visualizadas também através de um display.

3. Diagrama de ligações

Figura 1 - Ligação entre RS232 e XMC 4200

Figura 2 - Ligação do Device ao Display

4. Máquina de estados do funcionamento base

Inicialmente, a máquina estará à espera de um input para poder realizar as funções feitas pelo grupo.

Estas funções terão como objetivo, a comunicação entre o nosso computador e o RS232, como descrito mais acima no relatório.

Supondo que teremos três LED'S ligados simultaneamente, e o objetivo passará por ligar um deles, o utilizador deverá escrever "ligar x", sendo x o número do LED a querer ligar, dentro das opções possíveis (1 a 3). Se o utilizador escrever mal a função, como por exemplo "liar 3", o programa deverá ser responsável por apresentar uma mensagem de erro. Após esta mensagem o programa voltará a estar à espera de um input.

Figura 3 - Máquina de estado exemplo do projeto

Nesta máquina de estados, vemos uma possível solução para o nosso projeto, em que conseguiremos controlar o estado do LED, ou seja, ligar ou desligar o mesmo. Contudo, a máquina não é muito específica pois poderemos controlar o LED por ordem diferente à que se encontra na figura acima.

5. Lista de material

Neste projeto iremos utilizar alguns materiais cedidos pelo Departamento de Engenharia Eletrotécnica do Instituto Superior de Engenharia do Porto assim como alguns objetos pessoais.

- MikroE RS232 click;
- Display;
- LED'S Amarelos de Pisca 5mm;
- LED'S Amarelos 5mm;
- Fios Dupont;
- XMC 4200 Platform2GO;
- Breadboard.

6. Calendarização

Diagrama de Gantt	2022										
ı		Abril				Maio				Junho	
Tarefas	S1	S2	23	S4	S1	S2	S3	S4	S1	S2	
Planeamento											
Relatório Preliminar											
Teste de tecnologias											
Leitura de dados do UART no Micrium											
Teste do protocolo de comunicação entre a Placa e RS232											
Implementação e teste dos requisitos definidos											
Teste do funcionamento do display											
Implementação dos requisitos e teste do display											
Projeto Final											
Entrega e apresentação											

Figura 4 - Calendarização base do projeto

O grupo delineou uma possível calendarização, porém poderemos adiantar ou mesmo atrasar tarefas, ao realizarmos o projeto.