

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CURSO DE ENGENHARIA DE TELECOMUNICAÇÕES PROFESSORA: ELEN MACEDO LOBATO

Doto
Data:

Trabalho de PSD (DFT)

1) As duas sequências de oito pontos $x_1[n]$ e $x_2[n]$ mostradas na figura a seguir têm DFT's $X_1[k]$ e $X_2[k]$, respectivamente. Determine a relação entre $X_1[k]$ e $X_2[k]$.

2) Suponha que temos duas sequências de quatro pontos x[n] e h[n], da seguinte forma:

$$x[n] = cos\left(\frac{\pi n}{2}\right)$$
 $n = 0,1,2,3.$

$$h[n] = 2^n$$
 $n = 0,1,2,3.$

- a) Calcule a DFT de quatro pontos X[k].
- b) Calcule a DFT de quatro pontos H[k].
- c) Calcule y[n] = x[n] 4 h[n] (realizando a convolução circular diretamente).
- d) Calcule y[n] do item (c) multiplicando as DFT's de x[n] e h[n] e realizando uma DFT inversa.

3) Dois sinais de comprimento finito, $x_1[n]$ e $x_2[n]$, são esboçados na figura a seguir. Suponha que $x_1[n]$ e $x_2[n]$ sejam nulos fora da região mostrada na figura. Seja $x_3[n]$ a convolução circular de oito pontos de $x_1[n]$ com $x_2[n]$. Determine $x_3[2]$.

4) Na Figura a seguir é mostrada uma sequência de tempo discreto com seis pontos x[n]. Suponha que x[n]=0 fora do intervalo mostrado. O valor de x[4] não é conhecido e é representado como b. Observe que a amostra mostrada como b na figura não está necessariamente na escala. Sejam $X(e^{j\omega})$ a TFTD de x[n] e $X_1[k]$ as amostras de $X(e^{j\omega})$ a cada $\pi/2$, isto é,

$$X_{1}[k] = X(e^{j\omega})\Big|_{\omega = k\pi/2} \qquad 0 \le k \le 3$$

A sequência com quatro pontos $x_1[n]$ que resulta da inversa com quatro pontos de $X_1[k]$ é mostrada a seguir. Com base nessa figura, você pode determinar b de modo único? Caso afirmativo, dê esse valor de b.

5) Na figura a seguir são mostradas duas sequências de comprimento finito $x_1[n]$ e $x_2[n]$. Qual é o menor N tal que a convolução circular de N pontos de $x_1[n]$ e $x_2[n]$ seja igual à convolução linear dessas sequências?

6) Na figura a seguir é mostrada uma sequência x[n] para a qual o valor de x[3] é uma constante desconhecida c.

O valor da amostra com amplitude c não está necessariamente representada na escala. Considere:

$$X_1[k] = X[k]e^{j\frac{2\pi 3k}{5}}$$

Sendo X[k] a DFT de cinco pontos de x[n]. A sequência $x_1[n]$ representada na figura a seguir é a DFT inversa de $X_1[k]$. Qual o valor de c?

- 7) Suponha que tenhamos uma sequência de 1025 pontos de dados (1 a mais do que $N=2^{10}$). Em vez de descartar o valor final, vamos preencher a sequência com zeros até que seu comprimento seja $N=2^{11}$, de modo que possamos usar um algoritmo FFT de raiz 2.
 - a) Quantas multiplicações complexas são necessárias para se computar a DFT usando um algoritmo de FFT raiz 2?

b) Quantas multiplicações complexas seriam necessárias para se computar diretamente a DFT de 1025?

Comente os resultados!!!

8) Considere a sequência de comprimento finito real x[n] mostrada na Figura a seguir

a) Esboce a sequência de comprimento finito y[n] cuja DFT de seis pontos seja

$$Y[k] = W_6^{5k} X[k]$$

sendo X[k] a DFT de seis pontos de x[n].

b) Esboce a sequência de comprimento finito w[n] cuja DFT de seis pontos seja

$$W[k] = Im\{X[k]\}$$

c) Esboce a sequência de comprimento finito q[n] cuja DFT de três pontos seja

$$Q[k] = X[2k + 1], \quad k = 0,1,2.$$

- 9) Faça todas as questões anteriores também no MATLAB.
- 10) Comente os códigos feitos no MATLAB dos dois métodos de convolução fornecido pela professora. Faça testes usando essas funções fornecidas e compare com os resultados das funções cconv e conv.

Sequência de comprimento finito (comprimento N)		TFD de N pontos (comprimento N)
1.	x[n]	X[k]
2.	$x_1[n], x_2[n]$	$X_1[k], X_2[k]$
3.	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
4.	X[n]	$Nx[((-k))_N]$
5.	$x[((n-m))_N]$	$W_N^{km}X[k]$
	$W_N^{-\ell n} x[n]$	$X[((k-\ell))_N]$
7.	$\sum_{m=0}^{N-1} x_1[m] x_2[((n-m))_N]$	$X_1[k]X_2[k]$
	$x_1[n]x_2[n]$	$\frac{1}{N} \sum_{\ell=0}^{N-1} X_1[\ell] X_2[((k-\ell))_N]$
9.	$x^*[n]$	$X^{\circ}[((-k))_N]$
0.	$x^*[((-n))_N]$	$X^{\circ}[k]$
1.	$\mathcal{R}e\{x[n]\}$	$X_{\text{ep}}[k] = \frac{1}{2} \{ X[((k))_N] + X^*[((-k))_N] \}$
2.	$jIm\{x[n]\}$	$X_{\text{op}}[k] = \frac{1}{2} \{ X[((k))_N] - X^*[((-k))_N] \}$
3.	$x_{\text{ep}}[n] = \frac{1}{2} \{ x[n] + x^*[((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$
4.	$x_{\text{op}}[n] = \frac{1}{2} \{x[n] - x^*[((-n))_N]\}$	$j\mathcal{I}m\{X[k]\}$
4s ŗ	propriedades 15-17 aplicam-se apenas quando $x[n]$ é rea	1.
5.	Propriedades de simetria	$\begin{cases} X[k] = X^*[((-k))_N] \\ \mathcal{R}e\{X[k]\} = \mathcal{R}e\{X[((-k))_N]\} \\ \mathcal{I}m\{X[k]\} = -\mathcal{I}m\{X[((-k))_N]\} \\ X[k] = X[((-k))_N] \\ \mathcal{L}[X[k]\} = -\mathcal{L}[X[((-k))_N]] \end{cases}$
6.	$x_{\text{ep}}[n] = \frac{1}{2} \{ x[n] + x[((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$
	$x_{\text{op}}[n] = \frac{1}{2} \{x[n] - x[((-n))_N]\}$	