## IN THE CLAIMS

Please amend claims 1, 2, 4-6, 8, 10 and 11 as follows:

1. (Amended) A compound or a physiologically acceptable salt thereof, wherein the compound has the formula:

10320

$$z^1$$
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 

wherein:

R<sub>1</sub> and R<sub>2</sub> are the same or different and are independently H or R;

R is a structural fragment having a saturated or unsaturated linear, branched, or cyclic, skeleton containing one to ten carbon atoms in which the carbon atoms may be optionally substituted with a substituent selected from the group consisting of: -OH; =O;  $-OR_5$ ;  $-O_2CR_5$ , -SH;  $-SR_5$ ;  $-SOCR_5$ ;  $-NH_2$ ;  $-NHR_5$ ;  $-NH(R_5)_2$ ;  $-NHCOR_5$ ;  $NRCOR_5$ ; -I; -Br; -CI; -F; -CN;  $-CO_2H$ ;  $-CO_2R_5$ ; -CHO;  $-COR_5$ ;  $-CONH_2$ ;  $-CONHR_5$ ;  $-CON(R_5)_2$ ; -COSH;  $-COSR_5$ ;  $-NO_2$ ;  $-SO_3H$ ;  $-SOR_5$ ; and  $-SO_2R_5$ , wherein  $R_5$  is a linear, branched or cyclic, one to ten carbon saturated or unsaturated alkyl group;

R<sub>3</sub> and R<sub>4</sub> are different and are independently selected from the groups consisting of OH,

10321 (a)

A)

10575626v1

and

$$(b)$$
  $-O-Z-Ar$ 

wherein,

 $Z^1$  and Z are linear or branched, saturated or unsaturated, one to ten carbon fragments optionally substituted with Y;

Ar is a monocyclic, bicyclic or tricyclic, fully or partially aromatic system containing five or six membered carbocyclic or, oxygen, nitrogen or sulphur containing heterocyclic rings, optionally substituted with R or Y;

Y is selected from the group consisting of: H; =O, -OH; -OR; -O<sub>2</sub>CR; -SH; -SR; -SOCR; -NH<sub>2</sub>; -NHR; -NH(R)<sub>2</sub>; -NHCOR; NRCOR; -I; -Br; -Cl; -F; -CN- -CO<sub>2</sub>H; -CO<sub>2</sub>R; -CHO; -COR; -CONH<sub>2</sub>; -CONH<sub>2</sub>; -CONH<sub>2</sub>; -CONH<sub>2</sub>; -COSH; -COSR; -NO<sub>2</sub>; -SO<sub>3</sub>H; -SOR; -SO<sub>2</sub>R; and, -O-;

W is H or R;

with the provisos that when W is H,  $R_2$  is not H; when  $R_2$  is  $CH_3$ , W is not n-propyl; and, one of  $R_3$  and  $R_4$  is (a) or (b) and another of  $R_3$  and  $R_4$  is OH.

2. (Amended) The compound or physiologically acceptable salt thereof of claim 1 having stereoisomeric form I.

$$Z^{1}$$
 $R_{1}$ 
 $R_{2}$ 
 $W$ 

I

33

10330

J. 6. 15.



wherein:

a single, double or triple bond exists between one or more of: C-2 and C-3; C-3 and C-4; C-4 and C-5; and, C-5 and C-6;

X is NH<sub>2</sub>, NHR, NR<sub>2</sub>, OH, OR, SH, SR, H, or CF<sub>3</sub>:

R is a structural fragment having a saturated or unsaturated linear, branched, or cyclic, skeleton containing one to ten carbon atoms in which the carbon atoms may be optionally substituted with a substituent selected from the group consisting of: -OH; =O; -OR5; -O2CR5, -SH; -SR<sub>5</sub>; -SOCR<sub>5</sub>; -NH<sub>2</sub>; -NHR<sub>5</sub>; -NH(R<sub>5</sub>)<sub>2</sub>; -NHCOR<sub>5</sub>; NRCOR<sub>5</sub>; -I; -Br; -Cl; -F; -CN; - $CO_2H$ ;  $-CO_2R_5$ ; -CHO;  $-COR_5$ ;  $-CONH_2$ ;  $-CONHR_5$ ;  $-CON(R_5)_2$ ; -COSH;  $-COSR_5$ ;  $-NO_2$ ; -COSH;  $-COSR_5$ ; -COSH;  $-COSR_5$ ; -COSH;  $SO_3H$ ;  $-SOR_5$ ; and  $-SO_2R_5$ , wherein  $R_5$  is a linear, branched or cyclic, one to ten carbon saturated or unsaturated alkyl group;

 $R_1$  and  $R_2$  are the same or different and are independently H or R; R<sub>3</sub> and R<sub>4</sub> are different and are selected from the group consisting of: OH,

(a)

and

(b)

—Z—Ar



wherein, Z is a linear or branched, saturated or unsaturated, one to ten carbon fragment optionally substituted with Y;

Ar is a monocyclic, bicyclic or tricyclic, fully or partially aromatic system containing five or six membered carbocyclic or, oxygen, nitrogen or sulphur containing heterocyclic rings, optionally substituted with R or Y;

Y is selected from the group consisting of: H; =O, -OH; -OR; -O<sub>2</sub>CR; -SH; -SR; -SOCR; -NH<sub>2</sub>; -NHR; -NH(R)<sub>2</sub>; -NHCOR; NRCOR; -I; -Br; -Cl; -F; -CN- -CO<sub>2</sub>H; -CO<sub>2</sub>R; -CHO; -COR; -CONH<sub>2</sub>; -CONHR; -CON(R)<sub>2</sub>; -COSH; -COSR; -NO<sub>2</sub>; -SO<sub>3</sub>H; -SOR; -SO<sub>2</sub>R; and, -O-;

with the proviso that one of R<sub>3</sub> and R<sub>4</sub> is (a) or (b), and another of R<sub>3</sub> and R<sub>4</sub> is OH.

5. (Amended) The compound or physiologically acceptable salt thereof of claim 4 having structure II

$$X \xrightarrow{Q} X \xrightarrow{R_1} \xrightarrow{R_2} X$$

II

35

D





$$X$$
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 

Ш

- 8. (Amended) The compound or physiological salt thereof of claim 4, wherein R<sub>3</sub> is
  (a).
  - 10. (Amended) The compound or physiological salt thereof of claim 4, wherein R<sub>3</sub> at C<sub>7</sub> is (a) and R<sub>4</sub> at C<sub>9</sub> is OH.
  - 11. (Amended) The compound or physiological salt thereof of claim 4, wherein R<sub>3</sub> at C<sub>7</sub> is OH and R<sub>4</sub> at C<sub>9</sub> is (a).