习 题 8

(A)

- 1. 已知某炼钢厂铁水含碳量服从正态分布 $N(4.55, 0.108^2)$, 现观测了 9 炉铁水, 其平均含碳量为 4.484, 如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为 4.55 ($\alpha = 0.05$).
- 2. 某零件的尺寸方差为 $\sigma^2 = 1.21$, 对一批这类零件检查 6 件的尺寸数据为 (单位: mm):

32.56 29.66 31.64 30.00 31.87 31.03

问这批零件的平均尺寸能否认为是 32.50mm (取 $\alpha = 0.05$).

3. 某批矿砂的 5 个样品中的镍含量, 经测定为 (%):

3. 25 3. 27 3. 24 3. 26 3. 24

设测定值总体服从正态分布,问在 $\alpha = 0.01$ 下能否接受假设:这批矿砂的镍含量的均值为 3.25.

- 4. 已知某种鱼的汞含量 $X \sim N(1,0.3^2)$, 现从养这种鱼的水塘中随机地抽取 10 条,测得这 10 条鱼的平均汞含量为 1.07mg,试问能否认为该水塘中的这种鱼的平均汞含量不超过 1mg ($\alpha = 0.10$).
- 5. 已知初婚年龄服从正态分布,根据对 10 人的调查,初婚的平均年龄为 23.5 岁,标准差是 3 岁,问是否可以认为该地区的初婚年龄已超过 20 岁 (取 $\alpha = 0.05$)?
 - 6. 某产品按规定每包重 10kg, 现从中抽取 6 包进行测量, 得到数据为 (单位: kg):

9.7 10.1 9.8 10.0 10.2 9.6

若包装服从正态分布 $N(\mu, \sigma^2)$, 且 $\sigma^2 = 0.05$, 试问包装的平均重量是否为 10kg.

- 7. 从一批轴料中取 15 件测量其椭圆度, 计算得样本标准差 S = 0.023, 问该批轴料椭圆度的总体方差与规定的 $\sigma^2 = 0.004$ 有无显著差异 ($\alpha = 0.05$, 椭圆度服从正态分布).
 - 8. 从一批保险丝中抽取 10 根实验其融化时间,结果为(单位: ms)

43 65 75 78 71 59 57 69 55 57

若融化时间服从正态分布,问在显著性水平 $\alpha = 0.05$ 下,可否认为融化时间的标准差为 9ms.

9. 有甲、乙两台车床加工同种产品,设产品直径服从正态分布. 现从两车床加工的产品中随机抽取若干件产品测量其直径(单位: mm)得

甲: 20.5 19.8 20.4 19.7 20.1 20.0 19.6 19.9

Z: 19.7 20.8 20.5 19.8 19.4 20.6 19.2

问两车床加工精度有无显著差异 ($\alpha = 0.05$).

10. 已知甲、乙两厂生产的灯泡寿命 X 服从 $N(\mu_1, \sigma^2)$, Y 服从 $N(\mu_2, \sigma^2)$, 且 X, Y 相互独立,现从甲、乙两厂分别抽取样本测得:

甲厂: $n_1 = 50$, x = 1282, $s_1^2 = 6400$;

 $Z\Gamma$: $n_2 = 60$, y = 1208, $s_2^2 = 8836$;

取显著性水平 $\alpha = 0.05$, 试问甲、乙两厂灯泡的平均寿命是否有显著差异.

- 11. 设有两个来自于不同正态总体的样本, m = 4, n = 5, x = 0. 60, y = 2. 25, $s_1^2 =$ 15.07, $s_2^2 = 10.81$, 试检验两个样本是否来自于相同方差的正态总体.
- 12. 测得某种溶液中的水分, 测得 10 个测定值得出 s = 0.037%, 设测定值总体服 从正态分布,总体方差 σ^2 未知. 试在显著性水平 $\alpha = 0.05$ 下,检验假设

$$H_0: \sigma \geqslant 0.04\%$$
, $H_1: \sigma < 0.04\%$

(B)

- 1. 设总体 $X \sim N(\mu, \sigma^2)$, 为把总体期望 μ 与 μ 。作比较 (σ^2 未知), 若拒绝域为 $(t_a(n-1),+\infty)$,则原假设为 H_0 :____;若拒绝域为 $(-\infty,-t_{\frac{a}{2}}(n-1))$ $\bigcup (t_{\frac{a}{2}}(n-1))$ (-1), $+\infty$), 则原假设为 H_0 :____.
 - 2. 假设检验的显著性水平是()
 - A. 犯第一类错误的概率
- B. 犯第一类错误的概率的上界
- C. 犯第二类错误的概率 D. 犯第一类错误的概率的下界
- 3. 有 5 名学生彼此独立地测量被前人认为其面积为 1. 23km²的一块地,得测量值 (单位: km²) 如下:

设测量误差服从正态分布,问在显著性水平 $\alpha = 0.05$ 下,是否有必要修改前人的结果.

- 4. 某公司产品的次品率过去为 0.02, 今从五批产品中抽取 500 件作为样品送交订货 检验, 经检验有5件次品, 在显著性水平 $\alpha = 0.05$ 下检验, $H_0: p = 0.02$, $H_1: p < 0.02$.
- 5. 某织物强力指标 X 的均值 $\mu_0 = 10600g$, 改进工艺后生产一批织物, 今从中取 30 件,测得x = 10653g,s = 83.62.假设强力指标服从正态分布 $N(\mu, \sigma^2)$ 且 σ^2 未知,问在 显著性水平 $\alpha = 0.05$ 下,新生产织物比过去的织物强力是否提高?
- 6. 为测定新发现的甲、乙两种锌矿石的含锌量,分别抽取容量为9与8的样本, 分析测定后算得两样本均值和方差分别为

$$\Psi: x = 0.23, s_1^2 = 0.1188$$

$$Z: y = 0.269, s_2^2 = 0.1519$$

若甲、乙两矿石的含锌量都服从正态分布,且方差相同,问甲、乙两锌矿的含锌量 是否一样 ($\alpha = 0.05$).

7. 热处理车间工人为提高振动板的硬度,对淬火温度进行试验,在两种淬火温度 中分别测得振动板的硬度如下表所示.

温度 A	85.6	85. 9	85. 9	85. 7	85. 8	85.7	86.0	85. 5	85. 4	85. 5
温度 B	86. 2	85. 7	86.5	86.0	85. 7	85.8	86. 3	86.0	86.0	85. 8

设振动板的硬度服从正态分布, 试问能否认为改变淬火温度对振动板的硬度有显著影响 $(\alpha = 0.05).$

附表 1 标准正态分布表

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du = P(Z \leqslant z)$$

							- 5			
z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0,9265	0. 9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0. 9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0. 9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0. 9881	0.9884	0. 9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

注:表中末行系函数值 $\Phi(3.0),\Phi(3.1),\dots,\Phi(3.9)$.

附表 2 泊松分布表

$$1 - F(x - 1) = \sum_{k=x}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!}$$

x	$\lambda = 0.2$	$\lambda = 0.3$	$\lambda = 0.4$	λ=0.5	$\lambda = 0.6$
0	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
1	0.1812692	0. 2591818	0. 3296800	0. 323469	0. 451188
2	0.0175231	0.0369363	0.0615519	0.090204	0. 121901
3	0.0011485	0.0035995	0.0079263	0.014388	0.023115
4	0.0000568	0.0002658	0.0007763	0.001752	0.003358
5	0.0000023	0.0000158	0.0000612	0.000172	0.000394
6	0.0000001	0.0000008	0.0000040	0.000014	0.000039
7			0.0000002	0.000001	0.000003
x	$\lambda = 0.7$	λ=0.8	λ=0.9	λ=1.0	λ=1.2
0	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
1	0.503415	0.550671	0.593430	0. 632121	0.337373
2	0.155805	0.191208	0, 227518	0. 264241	0. 337373
3	0.034142	0.047423	0.062857	0.080301	0. 120513
4	0.005753	0.009080	0.013459	0. 018988	0.033769
5	0.000786	0.001411	0.002344	0.003660	0.007746
6	0.000090	0.000184	0.000343	0.000594	0.001500
7	0.000009	0.000021	0.000043	0.000083	0.000251
8	0.000001	0.000002	0.000005	0.000010	0.000037
9				0.000001	0.000005
10					0.000001
x	$\lambda = 1.4$	λ=1.6	λ=1.8		
0	1.0000000	1.0000000	1.0000000		
1	0.753403	0.798103	0.834701		
2	0.408167	0.475069	0.537163		
3	0.166502	0.216642	0. 269379	A CONTRACTOR OF THE	
4	0.053725	0.078813	0.108708	de la Pape	4,000
5	0.014253	0.023682	0.036407		
6	0.003201	0.006040	0.010378		
7	0.000622	0.001336	0.002569		
8	0.000107	0.000260	0.000562	the state of the	to the same
9	0.000016	0.000045	0.000110		
10	0.000002	0.000007	0.000019		Larrange La Santa
11		0.000001	0.000003		