Indian Institute of Technology Roorkee MAN-001(Mathematics-1): B. Tech. I Year Autumn Semester: 2018-19 Tutorial Sheet-7: Gamma and Beta Functions

1. Evaluate: (i) $\Gamma(7)$, (ii) $\Gamma(\frac{7}{2})$.

2. Show that (i) $\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right) = \frac{2}{\sqrt{3}}\pi;$ (ii) $\Gamma\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}\Gamma(2m+1)}{2^{2m}\Gamma(m+1)};$

(iii) $2^{2m-1}\Gamma(m)\Gamma\left(m+\frac{1}{2}\right)=\sqrt{\pi}\;\Gamma(2m),\;\; m\; \text{is an integer in both (ii) and(iii)}.$

3. For s>0, p>0, show that (i) $\int_0^\infty x^{p-1}e^{-sx}dx = \Gamma(p)/s^p$ (ii) $\int_0^\infty e^{-s^2x^2}dx = \sqrt{\pi}/2s$.

4. Show That $\Gamma(p) = \int_0^1 (\log(1/y))^{p-1} dy$, p > 0; using this evaluate $\int_0^1 (\log(1/y))^{-1/2} dy$.

5. Show that for integer m > -1, n > 0,

$$\int_0^1 x^m (\log x)^n dx = \frac{(-1)^n n!}{(m+1)^{n+1}}$$

6. Show that for c > 1,

$$\int_0^\infty \frac{x^c}{c^x} dx = \frac{\Gamma(c+1)}{(\log c)^{c+1}}.$$

7. Show that for r > -1,

$$\int_0^\infty x^r e^{-s^2 x^2} dx = \frac{1}{2 \, s^{r+1}} \Gamma(\frac{r+1}{2}).$$

8. Using reflection property show that

$$\int_0^{\pi/2} \tan^n \theta \ d\theta = \frac{\pi}{2} \sec \frac{n\pi}{2}.$$

9. Prove the following:

(i) $B(x,y) = 2 \int_0^{\pi/2} \sin^{2x-1}\theta \cos^{2y-1}\theta d\theta$, (ii) $B(x,y) = \int_0^\infty \frac{t^{x-1}}{(1+t)^{x+y}} dt$,

(iii) B(x,y) = B(x+1,y) + B(x,y+1), (iv) $\frac{1}{x+y}B(x,y) = \frac{1}{x}B(x+1,y) = \frac{1}{y}B(x,y+1)$,

(v) $\int_0^1 t^{m-1} (1-t^2)^{n-1} dt = \frac{1}{2} B\left(\frac{m}{2}, n\right),$ (vi) $\int_0^1 (1-t^6)^{-1/6} dt = \frac{\pi}{2}.$

10. Show that, for any positive integer m

B(m, m) =
$$\frac{\sqrt{\pi}\Gamma(m)}{2^{2m-1}\Gamma(m+1/2)}$$

11. Evaluate following integrals in terms of Gamma or Beta functions;

(i) $\int_0^\infty e^{-x^4} dx$, (ii) $\int_0^\infty x^{-7/4} e^{-\sqrt{x}} dx$, (iii) $\int_0^1 x^5 (1-x^3)^{10} dx$,

(iv) $\int_0^1 \frac{(1-x^4)^{3/4}}{(1+x^4)^2} dx$, (v) $\int_0^a x^9 \sqrt[3]{(a^6-x^6)} dx$, (vi) $\int_0^a x^3 (a^5-x^5)^3 dx$.

ANSWERS:

- 1. (i) 720, (ii) $\frac{15}{8}\sqrt{\pi}$ 4. $\sqrt{\pi}$
- 11. (i) $\Gamma(\frac{5}{4})$,
- (ii) $\frac{8}{3}\sqrt{\pi}$,
- (iii) $\frac{1}{3}$ B(2, 11) = $\frac{1}{396}$,
- (iv) $\frac{1}{4.2^{1/4}}$ B $\left(\frac{1}{4}, \frac{7}{4}\right)$,
- $(\mathsf{V})\,\frac{a^6}{6}\,\,\mathsf{B}\left(\frac{5}{3},\frac{4}{3}\right)$
- (vi) $\frac{a^{19}}{65}$ B $\left(\frac{4}{5}, 4\right)$.