DMIA TRENDS

PLAN

- Backprop
- Embeddings
- RNN
- LSTM, GRU
- Recurrent generative models

Embeddings

- Frequency based Embedding
 - Count Vector
 - TF-IDF Vector
 - Co-Occurrence Vector
- Prediction based Embedding

Embeddings

- Frequency based Embedding
 - Count Vector
 - TF-IDF Vector
 - Co-Occurrence Vector
- Prediction based Embedding

Word2Vec

Word2Vec

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Word2Vec

$$p(w_h|w_i) = \frac{exp(s(v_i, v_h))}{\sum_{w=1}^{W} exp(s(v_w, v_i))}$$
• w_h -- hypothetically context word for a given focus word w_i
• v_i and v_h input-word and hypothesis-word vector representations (for w_i , w_h)
• $s(v_i, v_h) = v_h^T \cdot v_i$

- w_i -- input focus word
- w_h -- hypothetically context word for a given focus word w_i

- W is the number of words in vocabulary

CBOW (Continuous bag of words)

$$E = -log \ p(w_h \mid w_1, \ w_2, \ \dots, \ w_c)$$

Skip-Gram

$$AverageLogProbability = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} log \ p(w_{t+j}|w_t)$$

- where c is a context length.
- w_t -- focus word

Feedforward

$$h_t = f(x_t + h_{t-1})$$

$$f(x_t, h_{t-1}) = n(W_x x_t + W_h h_{t-1} + b)$$

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM peep-hole connections

$$f_{t} = \sigma \left(W_{f} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{f} \right)$$

$$i_{t} = \sigma \left(W_{i} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \cdot [C_{t}, h_{t-1}, x_{t}] + b_{o} \right)$$

LSTM: A Search Space Odyssey https://arxiv.org/pdf/1503.04069.pdf

LSTM peep-hole connections

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

GRU

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict.

(PJS)[http://www.humah.yahoo.com/guardian.cfm/7754800786d17551963s89.htm

```
<page>
<title>Antichrist</title>
<id>865</id>
<revision>
  <id>15900676</id>
  <timestamp>2002-08-03T18:14:12Z</timestamp>
  <contributor>
   <username>Paris</username>
   <id>23</id>
  </contributor>
  <minor/>
  <comment>Automated conversion</comment>
  <text xml:space="preserve">#REDIRECT [[Christianity]]</text>
</revision>
</page>
```

For $\bigoplus_{n=1,\dots,m}$ where $\mathcal{L}_{m\bullet}=0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X,U is a closed immersion of S, then $U\to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparisoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x,x',s''\in S'$ such that $\mathcal{O}_{X,x'}\to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i>0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F}=U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

$$Arrows = (Sch/S)_{fppf}^{opp}, (Sch/S)_{fppf}$$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, étale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{Proj}_X(\mathcal{A}) = \operatorname{Spec}(B)$ over U compatible with the complex

$$Set(A) = \Gamma(X, \mathcal{O}_{X, \mathcal{O}_{X}}).$$

When in this case of to show that $Q \to C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

(1)
$$f$$
 is locally of finite type. Since $S = \operatorname{Spec}(R)$ and $Y = \operatorname{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,...,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{x_0,\dots,0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that $\mathfrak p$ is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.


```
* Increment the size file of the new incorrect UI_FILTER group information
  of the size generatively.
static int indicate_policy(void)
 int error;
 if (fd == MARN_EPT) {
   * The kernel blank will coeld it to userspace.
  if (ss->segment < mem_total)</pre>
   unblock graph and set blocked();
  else
   ret = 1;
  goto bail;
```