Coursera Final Project Predicting the best location with more potential revenue

RAPHAEL FERREIRA

1. Introduction

1.1 Background

- ▶ A start-up based on Toronto wants to expand to New York. Its core business is delivery: customers wants to receive something from coffee shops, drugstores, pizza places, groceries, for example.
- ▶ Through the app customer demands some product, which it can indicate a specific place or not, and where it wants that product to be delivered. Most of the products are delivered by walk or by bike.
- ▶ So, spatial conditions are very important for such start-up, specially the category of venues that exist in each place, since it represents places where it could have more delivery transactions, and therefore more revenue.

1.2 Problem

- ▶ In order to begin its operations in NY, this start-up, our client, wants to know the best location, which might have more potential to bring deliveries orders to them, and therefore more revenue.
- ▶ They already know its best location in Toronto, but they need to estimate where to start in NY.
- ▶ By the most common type of venue categories in its best location in Toronto, we need to predict the best location in NY, for this first move of our client.

Summary

- This work is divided in two main parts:
 - ▶ Unsupervised/spatial: where we get Foursquare Data and create clusters for Toronto and NY neighborhoods. In Toronto we find our target cluster: Cluster 3 location with venues that are customers of our client
 - Supervised: where we work with data wrangling (categories spatially sorted and transform data into numerical), visualization (threshold for classification) and prediction (LR and Decision Tree Models)

2. Data acquisition and cleaning

2.1 Data Sources

- ► The dataset that we are going to use come from Foursquare, mainly the type of venues and its quantities for each neighborhood in Toronto and NY, so spatial data.
- ▶ The acquisition is made by API that gets the data from Foursquare. Through such data we first create the clusters for Toronto, recognize the most important cluster, then we have data frames that have the 10 most common types of venues for each neighborhood.
- ▶ The same procedure is done for NY. After that we transform such categorical data in numerical in order to predict which cluster in NY might have more revenue potential for our client.

2.2 Data Preparation

- ▶ The data acquisition come as JSON from Foursquare. So, we need to get the venues information for each neighborhood in Toronto and NY, and it is done using latitude and longitude for each neighborhood. After that, it is created data frames that have venues names and their categories.
- Another data frame that contains venue categories for each neighborhood is created, however such data is categorical, and it is transformed in numerical with dummy variables, and the mean of their quantities is calculated.
- After clustering, each neighborhood is labeled with the cluster that it belongs to. So, it is created another data frame for each cluster, containing the 10 most common types of venues (categories) for each neighborhood in that cluster.
- ▶ The final data frame is the number of categories (rows) by most common (columns), in order words, the quantity of categories is spatial ranked, since this was made during the clustering process.
- ▶ In order to train the models, some data preparation is made, splitting the data into training set and test set.

3. Unsupervised: clustering

► Toronto's clusters: we used K-means in this task. 7 clusters were created. And the cluster 3 is our client best cluster.

3. Unsupervised: clustering

NY's clusters: we used K-means in this task as well. 8 clusters were created. But just 3 clusters (2,4 and 8) have a good number of neighborhoods (around 340 in

average)

Counting the numbers of categories in the clusters give us the kind of venues that bring more delivery transactions.

Table 1. Neighborhood and Venues in Toronto's cluster 3

10th Most Common Venu	5th Most Common Venue	8th Most Common Venue	7th Most Common Venue	6th Most Common Venue	5th Most Common Venue	4th Most Common Venue	3rd Most Common Venue	2nd Most Common Venue	1st Most Common Venue	Neighbourhood	
Dog Ru	Drugstore	Eastern European Restaurant	Electronics Store	Empanada Restaurant	Event Space	Dessert Shop	Yoga Studio	Bar	Construction & Landscaping	Highland Creek,Rouge Hill,Port Union	1
Eastern European Restaurar	Tech Startup	Spa	Rental Car Location	Intersection	Medical Center	Pizza Place	Breakfast Spot	Mexican Restaurant	Electronics Store	Guildwood, Morningside, West Hill	2
Dog Ru	Diner	Bank	Athletics & Sports	Thai Restaurant	Fried Chicken Joint	Hakka Restaurant	Bakery	Lounge	Caribbean Restaurant	Cedarbrae	4
Cuban Restaura	Creperie	Soccer Field	Bus Station	Metro Station	Fast Food Restaurant	Intersection	Park	Bakery	Bus Line	Clairles, Golden Mile, Oskridge	7
Dine	Discount Store	Dog Run	Drugstore	Eastern European Restaurant	Electronics Store	Empanada Restaurant	Yoga Studio	American Restaurant	Motel	Cliffcrest,Cliffside,Scarborough Village West	8
Discount Stor	Dog Run	Drugstore	Eastern European Restaurant	Electronics Store	Deli / Bodega	Café	Skating Rink	General Entertainment	College Stadium	Birch Cliff,Cliffside West	9
Dog Ru	Drugstore	Eastern European Restaurant	Electronics Store	Deli / Bodega	Chinese Restaurant	Vietnamese Restaurant	Pet Store	Latin American Restaurant	Indian Restaurant	Dorset Park, Scarborough Town Centre, Wexford He	10
Eastern European Restaurar	Electronics Store	Empanada Restaurant	Yoga Studio	Breakfast Spot	Auto Garage	Bakery	Sandwich Place	Shopping Mall	Middle Eastern Restaurant	Maryvale, Wexford	11
Dog Ru	Drugstore	Eastern European Restaurant	Electronics Store	Empanada Restaurant	Department Store	Lounge	Sandwich Place	Chinese Restaurant	Breakfast Spot	Aginosurt	12
Dine	Discount Store	Drugstore	Eastern European Restaurant	Dance Studio	Yoga Studio	Dog Run	Pool	Mediterranean Restaurant	Golf Course	Hilcrest Village	17
Candy Stor	Department Store	Bakery	Fast Food Restaurant	Burger Joint	Juice Bar	Shopping Mall	Smoothie Shop	Movie Theater	Tea Room	Fairview/Henry Farm,Oriole	18
Dog Ru	Drugstore	Eastern European Restaurant	Electronics Store	Empanada Restaurant	Department Store	Japanese Restaurant	Bank	Chinese Restaurant	Café	Bayview Village	19
Japanese Restaurar	Steakhouse	Fast Food Restaurant	Shopping Mall	Plaza	Movie Theater	Indonesian Restaurant	Pet Store	Café	Ramen Restaurant	Willowdale South	22
Drugstor	Eastern European Restaurant	Electronics Store	Empanada Restaurant	Department Store	Caribbean Restaurant	Japanese Restaurant	Baseball Field	Gym / Fitness Center	Café	Don Mills North	26
Clothing Stor	Sporting Goods Shop	Asian Restaurant	Bike Shop	Beer Store	Discount Store	Japanese Restaurant	Italian Restaurant	Dim Sum Restaurant	Gym	Flemingdon Park, Don Mills South	27
Dog Ru	Drugstore	Eastern European Restaurant	Electronics Store	Empanada Restaurant	Yoga Studio	Home Service	Baseball Field	Korean Restaurant	Food Truck	Downsview Central	32
Dance Studi	Furniture / Home Store	Park	Beer Store	Skating Rink	Bus Stop	Curling Ice	Cosmetics Shop	Athletics & Sports	Pharmacy	Woodbine Heights	36
Discount Stor	Dog Run	Drugstore	Eastern European Restaurant	Dance Studio	Yoga Studio	Pub	Trail	Health Food Store	Other Great Outdoors	The Beaches	37
Smoothie Sho	Burger Joint	Restaurant	Clothing Store	Coffee Shop	Liquor Store	Fish & Chips Shop	Grocery Store	Sushi Restaurant	Gym	Leaside	38
Intersectio	Supermarket	Burger Joint	Sandwich Place	Discount Store	Pizza Place	Pharmacy	Housing Development	Yoga Studio	Indian Restaurant	Thorncliffe Park	39
Yoga Studi	Pub	Pizza Place	Cosmetics Shop	Dessert Shop	Fruit & Vegetable Store	Browery	Italian Restaurant	Ice Cream Shop	Greek Restaurant	The Danforth West, Riverdale	41
Pu	Park	Movie Theater	Liquor Store	Fast Food Restaurant	Italian Restaurant	Fish & Chips Shop	Ice Cream Shop	Sushi Restaurant	Gym	The Beaches West, India Bazsar	42
Art Galler	American Restaurant	Grocery Store	Sandwich Place	Clothing Store	Park	Food & Drink Shop	Hotel	Breakfast Spot	Gym	Davisville North	45
Thai Restaurar	Café	Sandwich Place	Seafood Restaurant	Pizza Place	Coffee Shop	Park	Sushi Restaurant	Italian Restaurant	Dessert Shop	Davisville	47
Pu	Diner	Jewelry Store	Japanese Restaurant	Italian Restaurant	Indian Restaurant	Gastropub	Taiwanese Restaurant	Pet Store	Callé	Cabbagetown,St. James Town	51
Dance Studi	Ramen Restaurant	Restaurant	Salon / Barbershop	Diner	Juice Bar	Bookstore	Breakfast Spot	Theme Restaurant	Tea Room	Church and Wellesley	52
Movie Theate	Pizza Place	Plaza	Theater	Thai Restaurant	Burrito Place	Tea Room	Ramen Restaurant	Burger Joint	Café	Ryerson, Garden District	54
Churc	Cosmetics Shop	Creperie	Middle Eastern Restaurant	Italian Restaurant	Food Truck	BBQ Joint	Japanese Restaurant	Gastropub	Coffee Shop	St. James Town	55
Breakfast Spo	French Restaurant	Thai Restaurant	Fish Market	Steakhouse	Seafood Restaurant	Liquor Store	Museum	Coffee Shop	Farmers Market	Berczy Park	56
Seafood Restaurar	Food Court	Asian Restaurant	Plaza	Hotel	Bar	Speakeasy	Pizza Place	Coffee Shop	Steakhouse	Adelaide,King,Richmond	58
Cal	Skating Rink	Bakery	Deli / Bodega	Salad Place	Supermarket	Sporting Goods Shop	Bubble Tea Shop	Plaza	Hotel	Harbourfront East, Toronto Islands, Union Station	59
Deli / Bodeo	Pub	Bakery	Restaurant	Japanese Restaurant	Beer Bar	Hotel	Gym	Callé	Coffee Shop	Design Exchange Toronto Dominion Centre	60

Table 2. Toronto's cluster 3 category frequencies

CIULS	categ	
23.0	Café	33
18.0	Coffee Shop	42
16.0	Eastern European Restaurant	62
14.0	Restaurant	138
14.0	Dog Run	60
13.0	Bakery	15
13.0	Electronics Store	63
13.0	Drugstore	61
12.0	Yoga Studio	169
12.0	Italian Restaurant	104
12.0	Bar	17
11.0	Discount Store	59
10.0	Gym	90
10.0	Pub	135
9.0	Japanese Restaurant	105

 Data visualization: Café, Coffe Shop, Restaurants, Bakery – food delivery. But other kind of venues are also importat: Gym, Drug

 Descriptive Statistics: data is concentrated around 3 (venues per category), but there many outliers such as Café, Coffee Shops and Restaurants

50	clot3
count	170.000000
mean	3.294118
std	3.736351
min	1.000000
25%	1.000000
50%	2.000000
75%	4.000000
max	23.000000
IIIdA	25.000000

▶ Data visualization: NY cluster 2 seems to be more similar with Toronto cluster 3

5. Methodology

5.1 Models

- We decided to use two kind of models (machine learning): logistic regression and decision tree.
- ▶ We created the "y" variable for Toronto's cluster 3 with threshold in 3: if a category venue has a frequency higher than 3, that it is a potential client to our client (a good proxy for delivery transactions: places with certain type of venues have more delivery transactions than others).
- ▶ Therefore, we have a classification problem. Two type of models will help us in compare results from the training and testing part, as well the prediction part, when we classify the NY 3 clusters in order to verify which has more potential to our client.

5.2 Model Evaluation

- Logistic regression presented better performance than the decision tree with the testing data set
- ▶ Jaccard index (how many classifications were correct) for LR was 94.11% and for Decision tree was 78,31%

Table 4. Logistic Regression performance metrics

		precision	recall	f1-score	support
	0.0	0.92	1.00	0.96	23
	1.0	1.00	0.82	0.90	11
micro	avg	0.94	0.94	0.94	34
macro	avg	0.96	0.91	0.93	34
weighted	avg	0.95	0.94	0.94	34

Table 5. Decision Tree performance metrics

		precision	recall	f1-score	support
	0.0	0.72	1.00	0.84	28
	1.0	1.00	0.52	0.69	23
micro	avg	0.78	0.78	0.78	51
macro	avg	0.86	0.76	0.76	51
weighted	avg	0.85	0.78	0.77	51

5.2 Model Evaluation

we can realize that both classification models are good in classifying non potential clients instead of potential clients.

Logistic Regression Confusion Matrix.

Confusion matrix, without normalization [[9 2] [0 23]]

Decision Tree Confusion Matrix.

Confusion matrix, without normalization [[12 11] [0 28]]

6. Results

6. Results

- the models classified, using each cluster data set, the categories venues that are interesting in terms of clients to our client – more potential to bring delivery transactions, and therefore revenue. The results were not so different between models and between NY clusters.
- Their proportion of adherent venue categories (classified as good for our client, y = 1) are similar, around 25%, just for cluster 8 in the Decision Tree model we see a number quite distant from the others

Table 5. Predictions for NY Clusters using Logistic Regression Model

	NY Cluster2	NY Cluster4	NY Cluster8
Proportion adherent	29.4	26.0	23.0
Cluster Size	340.0	340.0	350.0
Potential clients	100.0	88.0	82.0

Table 6. Predictions for NY Clusters using Decision Tree Model

	NY Cluster2	NY Cluster4	NY Cluster8
Proportion adherent	21.2	23.1	17.1
Cluster Size	340.0	340.0	350.0
Potential clients	72.0	79.0	82.0

7. Conclusion

7. Conclusion

- We analyzed spatial data from Foursquare about neighborhood and venue categories in order to identify the best location for a start-up (delivery business) based on Toronto to begin its expansion in NY.
- We created clusters for Toronto and for NY (unsupervised), and from the best cluster for our client in Toronto we predict the best cluster in NY for our client (supervised).
- From the results, cluster 2 seems to be the best choice for our client begin its expansion in NY. This cluster had the best results in the best model.
- But cluster 4 is a good choice as well, since its results are not so far from those of cluster 2. Perhaps it could be a second phase of our client's expansions in NY.

8. Future Directions

8. Future Directions

- We used just Foursquare data.
- A good improvement could be gathering other kind of data, like socioeconomic data for example.
- Such information can change the results that we found, bring more information.
- Other improvement could be testing SVM and Neural Network models in order to compare results.
- Moreover, the value of the threshold is something that could change results if it is changed, as well as the number of clusters for each city.