PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 1/21, 5/10, 15/18, 15/63, C07K 1/14, 14/475, 14/49

A1

(11) International Publication Number:

WO 98/07832

(43) International Publication Date:

26 February 1998 (26.02.98)

(21) International Application Number:

PCT/US97/14696

(22) International Filing Date:

21 August 1997 (21.08.97)

(74) Agent: EVANS, Joseph, D.; Evenson, McKeown, Edwards & Lenahan P.L.L.C., Suite 700, 1200 G Street N.W., Washington, DC 20005 (US).

(30) Priority Data: AU PO 1825 23 August 1996 (23.08.96) 23 August 1996 (23.08.96) US 60/023,751 11 November 1996 (11.11.96) ΑU PO 3554 14 November 1996 (14.11.96) US 60/031,097 5 February 1997 (05.02.97) ΑU PO 4954 10 February 1997 (10.02.97) US 60/038,814 19 June 1997 (19.06.97) ΑU PO 7435 l July 1997 (01.07.97) US 60/051,426

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(71) Applicants: LUDWIG INSTITUTE FOR CANCER RE-SEARCH [US/US]; 1345 Avenue of the Americas, New York, NY 10105 (US). HELSINKI UNIVERSITY LI-CENSING LTD., OY [FI/FI]; University of Helsinki, P.O. Box 26, FIN-00014 (FI).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(72) Inventors: ACHEN, Marc, G.; 86 Charles Street, Fitzroy, VIC 3065 (AU). WILKS, Andrew, F.; 6 McFarlan Lane, South Yarra, VIC 3141 (AU). STACKER, Steven, A.; 30 McKean Street, North Fitzroy, VIC 3068 (US). ALITALO, Kari; Nyyrikintie 4 A, FIN-02100 Espoo (FI).

(54) Title: RECOMBINANT VASCULAR ENDOTHELIAL CELL GROWTH FACTOR D (VEGF-D)

(57) Abstract

VEGF-D, a new member of the PDGF family of growth factors, which among other things stimulates endothelial cell proliferation and angiogenesis and increases vascular permeability, is described, as well as nucleotide sequences encoding it, methods for producing it, antibodies and other antagonists to it, transfected or transformed host cells for expressing it, pharmaceutical compositions containing it, and uses thereof in medical and diagnostic applications.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	l-atvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	[sræ]	MR	Mauritania	UG	Uganda
BY	Belarus	IS	iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	· NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SF.	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

RECOMBINANT VASCULAR ENDOTHELIAL CELL GROWTH FACTOR D (VEGF-D)

This invention relates to growth factors for endothelial cells, and in particular to a novel vascular endothelial growth factor, DNA encoding the factor, and to pharmaceutical and diagnostic compositions and methods utilising or derived from the factor.

BACKGROUND OF THE INVENTION

10

15

20

25

Angiogenesis is a fundamental process required for normal growth and development of tissues, and involves the proliferation of new capillaries from pre-existing blood Angiogenesis is not only involved in embryonic vessels. tissue growth, repair, normal and development also involved female but is the in regeneration, reproductive cycle, establishment and maintenance pregnancy, and in repair of wounds and fractures. In addition to angiogenesis which takes place in the normal individual, angiogenic events are involved in a number of notably tumour growth pathological processes, metastasis, and other conditions in which blood vessel proliferation, especially of the microvascular system, is increased, such as diabetic retinopathy, psoriasis and Inhibition of angiogenesis is useful in arthropathies. preventing or alleviating these pathological processes.

On the other hand, promotion of angiogenesis is desirable in situations where vascularization is to be established or extended, for example after tissue or organ transplantation, or to stimulate establishment of collateral

circulation in tissue infarction or arterial stenosis, such as in coronary heart disease and thromboangitis obliterans.

Because of the crucial role of angiogenesis in so many physiological and pathological processes, factors involved in the control of angiogenesis have been intensively investigated. A number of growth factors have been shown to be involved in the regulation of angiogenesis; these include fibroblast growth factors (FGFs), platelet-derived growth factor (PDGF), transforming growth factor α (TGF α), and hepatocyte growth factor (HGF). See for example Folkman et al, "Angiogenesis", J. Biol. Chem., 1992 267 10931-10934 for a review.

5

10

15

20

25

30

35

It has been suggested that a particular family of endothelial cell-specific growth factors and corresponding receptors is primarily responsible stimulation of endothelial cell growth and differentiation, and for certain functions of the differentiated cells. These factors are members of the PDGF family, and appear to act via endothelial receptor tyrosine kinases (RTKs). Hitherto four vascular endothelial growth factor subtypes have been identified. Vascular endothelial growth factor (VEGF), now known as VEGF-A, has been isolated from several sources. VEGF-A shows highly specific mitogenic activity against endothelial cells, and can stimulate the whole sequence of events leading to angiogenesis. In addition, it has strong chemoattractant activity towards monocytes, can induce plasminogen activator and plasminogen activator inhibitor in endothelial cells, and can also influence microvascular permeability. Because of the latter activity, it is also sometimes referred to as vascular permeability The isolation and properties of VEGF have factor (VPF). been reviewed; see Ferrara et al, "The Vascular Endothelial Growth Factor Family of Polypeptides", J. Cellular Biochem., 1991 47 211-218 and Connolly, "Vascular Permeability Factor: A Unique Regulator of Blood Vessel Function", J. Cellular Biochem., 1991 47 219-223.

More recently, three further members of the VEGF family have been identified. These are designated VEGF-B, International Application described in Patent No. PCT/US96/02957 (WO 96/26736) by Ludwig Institute for Cancer Research and The University of Helsinki, VEGF-C, described in Joukov et al, The EMBO Journal, 1996 15 290-298, and VEGF2, described in International Patent Application No. PCT/US94/05291 (WO 95/24473) by Human Genome Sciences, Inc. VEGF-B has closely similar angiogenic and other properties to those of VEGF, but is distributed and expressed in tissues differently from VEGF. In particular, VEGF-B is very strongly expressed in heart, and only weakly in lung, whereas the reverse is the case for VEGF. This suggests that VEGF and VEGF-B, despite the fact that they are coexpressed in many tissues, may have functional differences.

5

10

15

20

25

30

35

VEGF-B was isolated using a yeast co-hybrid interaction trap screening technique, screening for cellular proteins which might interact with cellular retinoic acid-binding protein type I (CRABP-I). Its isolation and characteristics are described in detail in PCT/US96/02597 and in Olofsson et al, Proc. Natl. Acad. Sci., 1996 93 2576-2581.

VEGF-C was isolated from conditioned media of PC-3 prostate adenocarcinoma cell line (CRL1435) by screening for ability of the medium to produce tyrosine phosphorylation of the endothelial cell-specific receptor tyrosine kinase Flt4, using cells transfected to express Flt4. VEGF-C was purified using affinity chromatography with recombinant Flt4, and was cloned from a PC-3 cDNA library. Its isolation and characteristics are described in detail in Joukov et al, The EMBO Journal, 1996 15 290-298.

VEGF2 was isolated from a highly tumorgenic, oestrogen-independent human breast cancer cell line. While this molecule is stated to have about 22% homology to PDGF and 30% homology to VEGF, the method of isolation of the gene encoding VEGF2 is unclear, and no characterization of the biological activity is disclosed.

Vascular endothelial growth factors appear to act by binding to receptor tyrosine kinases of the PDGF-receptor family. Five endothelial cell-specific receptor tyrosine kinases have been identified, namely Flt-1 (VEGFR-1), KDR/Flk-1 (VEGFR-2), Flt4 (VEGFR-3), Tie and Tek/Tie-2. All of these have the intrinsic tyrosine kinase activity which is necessary for signal transduction. The essential, specific role in vasculogenesis and angiogenesis of Flt-1, Flk-1, Tie and Tek/Tie-2 has been demonstrated by targeted mutations inactivating these receptors in mouse embryos. VEGFR-1 and VEGFR-2 bind VEGF with high affinity, and VEGFR-1 also binds VEGF-B and placenta growth factor (PlGF). VEGF-C has been shown to be the ligand for Flt4 (VEGFR-3), and also activates VEGFR-2 (Joukov et al, 1996). A ligand for Tek/Tie-2 has been described (International Patent Application No. PCT/US95/12935 (WO 96/11269) by Regeneron Pharmaceuticals, Inc.); however, the ligand for Tie has not yet been identified.

The receptor Flt-4 is expressed in venous and lymphatic endothelia in the fetus, and predominantly in lymphatic endothelia in the adult (Kaipainen et al, Cancer Res, 1994 54 6571-6577; Proc Natl. Acad. Sci. USA, 1995 92 3566-3570). It has been suggested that VEGF-C may have a primary function in lymphatic endothelium, and a secondary function in angiogenesis and permeability regulation which is shared with VEGF (Joukov et al, 1996).

We have now isolated human cDNA encoding a novel protein of the vascular endothelial growth factor family. The novel protein, designated VEGF-D, has structural similarities to other members of this family.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

The invention generally provides an isolated novel growth factor which has the ability to stimulate and/or enhance proliferation or differentiation of endothelial cells, isolated DNA sequences encoding the novel growth

factor, and compositions useful for diagnostic and/or therapeutic applications.

5

10

15

20

25

30

35

According to one aspect, the invention provides an isolated and purified nucleic acid molecule which encodes a novel polypeptide, designated VEGF-D, which is structurally homologous to VEGF, VEGF-B and VEGF-C. In a preferred embodiment, the nucleic acid molecule is a cDNA which comprises the sequence in SEQ ID NO. out set SEQ ID NO. 4, SEQ ID NO. 6 or SEQ ID NO. 7. This aspect of the invention also encompasses DNA molecules of sequence such that they hybridise under stringent conditions with DNA of SEQ ID NO. 1, SEQ ID NO. 4, SEQ ID NO. 6 or SEQ ID NO. 7. Preferably the DNA molecule able to hybridise under stringent conditions encodes the portion of VEGF-D from amino acid residue 93 to amino acid residue 201, optionally operatively linked to a DNA sequence encoding FLAG™ peptide.

preferably the cDNA comprises the sequence set out in SEQ ID NO. 4, SEQ ID NO. 6 or SEQ ID NO. 7, more preferably that of SEQ ID NO. 4.

According to a second aspect, the invention provides a polypeptide possessing the characteristic amino acid sequence:

Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys (SEQ ID NO. 2),

said polypeptide having the ability to stimulate proliferation of endothelial cells, and said polypeptide comprising a sequence of amino acids substantially corresponding to the amino acid sequence set out in SEQ ID NO. 3, or a fragment or analogue thereof which has the ability to stimulate one or more of endothelial cell proliferation, differentiation, migration or survival.

These abilities are referred to herein as "biological activities of VEGF-D" and can readily be tested by methods known in the art. Preferably the polypeptide has the

ability to stimulate endothelial cell proliferation or differentiation, including, but not limited to, proliferation or differentiation of vascular endothelial cells and/or lymphatic endothelial cells.

More preferably the polypeptide has the sequence set out in SEQ ID NO. 5, SEQ ID NO. 8 or SEQ ID NO. 9, and most preferably has the sequence set out in SEQ ID NO. 5.

5

10

15

20

25

30

35

A preferred fragment of the polypeptide invention is the portion of VEGF-D from amino acid residue 93 to amino acid residue 201, optionally linked to FLAG^M peptide. Where the fragment is linked to FLAG^M, the fragment is VEGFD Δ N Δ C, as hereindefined.

polypeptides comprising conservative Thus substitutions, insertions, or deletions, but which still retain the biological activity of VEGF-D, are clearly to be understood to be within the scope of the invention. The person skilled in the art will be well aware of methods which can readily be used to generate such polypeptides, for example the use of site-directed mutagenesis, or specific enzymic cleavage and ligation. The skilled person will also be aware that peptidomimetic compounds or compounds in which one or more amino acid residues are replaced by a nonnaturally occurring amino acid or an amino acid analogue may retain the required aspects of the biological activity of Such compounds can readily be made and tested by methods known in the art, and are also within the scope of the invention.

In addition, variant forms of the VEGF-D polypeptide which result from alternative splicing, as are known to occur with VEGF, and naturally-occurring allelic variants of the nucleic acid sequence encoding VEGF-D are encompassed within the scope of the invention. Allelic variants are well known in the art, and represent alternative forms or a nucleic acid sequence which comprise substitution, deletion or addition of one or more nucleotides, but which do not

result in any substantial functional alteration of the encoded polypeptide.

As used herein, the term "VEGF-D" collectively refers to the polypeptides of SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 8 and SEQ ID NO. 9 and fragments or analogues thereof which have the biological activity of VEGF-D as herein defined.

5

10

15

20

25

30

35

Such variant forms of VEGF-D can be prepared by targeting non-essential regions of the VEGF-D polypeptide for modification. These non-essential regions are expected to fall outside the strongly-conserved regions indicated in the figures herein, especially Figure 2 and Figure 10. particular, the growth factors of the PDGF family, including VEGF, are dimeric, and VEGF-B, VEGF-C, PlGF, PDGF-A and PDGF-B show complete conservation of 8 cysteine residues in the N-terminal domains, ie. the PDGF-like domains (Olofsson et al, 1996; Joukov et al, 1996). These cysteines are thought to be involved in intra- and inter-molecular disulphide bonding. In addition there are further strongly, but not completely, conserved cysteine residues in the C-terminal domains. Loops 1, 2 and 3 of each subunit, which are formed by intra-molecular disulphide bonding, involved in binding to the receptors for the PDGF/VEGF family of growth factors (Andersson et al: Growth Factors, 1995 12 159-164) As shown herein, the cysteines conserved in previously known members of the VEGF family are also conserved in VEGF-D.

The person skilled in the art thus is well aware that these cysteine residues should be preserved in any proposed variant form, and that the active sites present in loops 1, 2 and 3 also should be preserved. However, other regions of the molecule can be expected to be of lesser importance for biological function, and therefore offer suitable targets for modification. Modified polypeptides can readily be tested for their ability to show the biological activity of

- 7 -

VEGF-D by routine activity assay procedures such as cell proliferation tests.

5

10

15

20

25

30

35

contemplated that VEGF-D some modified is polypeptides will have the ability to bind to endothelial cells, ie. to VEGF-D receptors, but will be unable to stimulate endothelial cell proliferation, differentiation, migration or survival. These modified polypeptides are expected to be able to act as competitive or non-competitive inhibitors of VEGF-D, and to be useful in situations where prevention or reduction of VEGF-D action is desirable. Thus such receptor-binding but non-mitogenic, non-differentiation inducing, non-migration inducing or non-survival promoting variants of VEGF-D are also within the scope of the invention, and are referred to herein as "receptor-binding but otherwise inactive variants".

According to a third aspect, the invention provides a purified and isolated nucleic acid encoding a polypeptide or polypeptide fragment of the invention. The nucleic acid may be DNA, genomic DNA, cDNA or RNA, and may be single-stranded or double stranded. The nucleic acid may be isolated from a cell or tissue source, or of recombinant or synthetic origin. Because of the degeneracy of the genetic code, the person skilled in the art will appreciate that many such coding sequences are possible, where each sequence encodes the amino acid sequence shown in SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 8 or SEQ ID NO. 9, an active fragment or analogue thereof, or a receptor-binding but otherwise inactive or partially inactive variant thereof.

A fourth aspect of the invention provides vectors comprising the cDNA of the invention or a nucleic acid according to the third aspect of the invention, and host cells transformed or transfected with nucleic acids or vectors of the invention. These cells are particularly suitable for expression of the polypeptide of the invention, and include insect cells such as Sf9 cells, obtainable from the American Type Culture Collection (ATCC SRL-171),

transformed with a baculovirus vector, and the human embryo kidney cell line 293EBNA transfected by a suitable expression plasmid. Preferred vectors of the invention are expression vectors in which a nucleic acid according to the invention is operatively connected to one or more appropriate promoters and/or other control sequences, such that appropriate host cells transformed or transfected with the vectors are capable of expressing the polypeptide of the invention. Other preferred vectors are those suitable for transfection of mammalian cells, or for gene therapy, such as adenovirus or retrovirus vectors or liposomes. A variety of such vectors is known in the art.

5

10

15

20

25

30

35

The invention also provides a method of making a vector capable of expressing a polypeptide encoded by a nucleic acid according to the invention, comprising the steps of operatively connecting the nucleic acid to one or more appropriate promoters and/or other control sequences, as described above.

The invention further provides a method of making a polypeptide according to the invention, comprising the steps of expressing a nucleic acid or vector of the invention in a host cell, and isolating the polypeptide from the host cell or from the host cell's growth medium. In one preferred embodiment of this aspect of the invention, the expression vector further comprises a sequence encoding an affinity tag, such as FLAG[™] or hexahistidine, in order to facilitate purification of the polypeptide by affinity chromatography.

In yet a further aspect, the invention provides an antibody specifically reactive with a polypeptide of the invention. This aspect of the invention includes antibodies specific for the variant forms, fragments and analogues of VEGF-D referred to above. Such antibodies are useful as inhibitors or agonists of VEGF-D and as diagnostic agents for detection and quantification of VEGF-D. Polyclonal or monoclonal antibodies may be used. Monoclonal and

polyclonal antibodies can be raised against polypeptides of the invention using standard methods in the art. For some purposes, for example where a monoclonal antibody is to be used to inhibit effects of VEGF-D in a clinical situation, it may be desirable to use humanized or chimeric monoclonal antibodies. Methods for producing these, including recombinant DNA methods, are also well known in the art.

5

10

15

20

25

30

35

This aspect of the invention also includes an antibody which recognises VEGF-D and which is suitably labelled.

Polypeptides or antibodies according to the invention may be labelled with a detectable label, and utilised for diagnostic purposes. Similarly, the thus-labelled polypeptide of the invention may be used to identify its corresponding receptor in situ. The polypeptide or antibody may be covalently or non-covalently coupled to a suitable supermagnetic, paramagnetic, electron dense, ecogenic or radioactive agent for imaging. For use in diagnostic assays, radioactive or non-radioactive labels, the latter including enzyme labels or labels of the biotin/avidin system, may be used.

Clinical applications of the invention include diagnostic applications, acceleration of angiogenesis in wound healing, tissue or organ transplantation, or to establish collateral circulation in tissue infarction or arterial stenosis, such as coronary artery disease, and inhibition of angiogenesis in the treatment of cancer or of diabetic retinopathy. Quantitation of VEGF-D in cancer biopsy specimens may be useful as an indicator of future metastatic risk.

Inasmuch as VEGF-D is highly expressed in the lung, and it also increases vascular permeability, it is relevant to a variety of lung conditions. VEGF-D assays could be used in the diagnosis of various lung disorders. VEGF-D could also be used in the treatment of lung disorders to improve blood circulation in the lung and/or gaseous exchange between the lungs and the blood stream. Similarly, VEGF-D

could be used to improve blood circulation to the heart and O_2 gas permeability in cases of cardiac insufficiency. In like manner, VEGF-D could be used to improve blood flow and gaseous exhange in chronic obstructive airway disease.

5

10

15

20

25

30

35

Conversely, VEGF-D antagonists (e.g. antibodies and/or inhibitors) could be used to treat in conditions, such as congestive heart failure, involving accumulations of fluid in, for example, the lung resulting from increases in vascular permeability, by exerting an offsetting effect on vascular permeability in order to counteract the fluid accumulation.

VEGF-D is also expressed in the small intestine and colon, and administrations of VEGF-D could be used to treat malabsorptive syndromes in the intestinal tract as a result of its blood circulation increasing and vascular permeability increasing activities.

Thus the invention provides a method of stimulation of angiogenesis and/or neovascularization in a mammal in need of such treatment, comprising the step of administering an effective dose of VEGF-D, or a fragment or analogue thereof which has the ability to stimulate endothelial cell proliferation, to the mammal.

Optionally VEGF-D may be administered together with, or in conjunction with, one or more of VEGF-A, VEGF-B, VEGF-C, PLGF, PDGF, FGF and/or heparin.

provides method of Conversely the invention a inhibiting angiogenesis and/or neovascularization in a mammal in need of such treatment, comprising the step of administering an effective amount of an antagonist of VEGF-D The antagonist may be any agent that to the mammal. prevents the action of VEGF-D, either by preventing the binding of VEGF-D to its corresponding receptor or the target cell, or by preventing activation of the transducer of the signal from the receptor to its cellular site of action. Suitable antagonists include, but are not limited to, antibodies directed against VEGF-D; competitive or non-

competitive inhibitors of binding of VEGF-D to the VEGF-D receptor, such as the receptor-binding but non-mitogenic VEGF-D variants referred to above; and anti-sense nucleotide sequences complementary to at least a part of the DNA sequence encoding VEGF-D.

5

10

15

20

25

30

35

The invention also provides a method of detecting VEGF-D in a biological sample, comprising the step of contacting the sample with a reagent capable of binding VEGF-D, and detecting the binding. Preferably the reagent capable of binding VEGF-D is an antibody directed against VEGF-D, more preferably a monoclonal antibody. In a preferred embodiment the binding and/or extent of binding is detected by means of a detectable label; suitable labels are discussed above.

Where VEGF-D or an antagonist is to be used for therapeutic purposes, the dose and route of application will depend upon the condition to be treated, and will be at the discretion of the attending physician or veterinarian. Suitable routes include subcutaneous, intramuscular or intravenous injection, topical application, implants etc. Topical application of VEGF-D may be used in a manner analogous to VEGF.

According to yet a further aspect, the invention provides diagnostic/prognostic means typically in the form For example, in one embodiment of the of test kits. invention there is provided a diagnostic/prognostic test kit comprising an antibody to VEGF-D and means for detecting, and more preferably evaluating, binding between the antibody In one preferred embodiment VEGF-D. and diagnostic/prognostic means according to the invention, either the antibody or the VEGF-D is labelled with a detectable label, and either the antibody or the VEGF-D is substrate-bound, such that the VEGF-D-antibody interaction can be established by determining the amount of label attached to the substrate following binding between the antibody and the VEGF-D. In a particularly preferred

embodiment of the invention, the diagnostic/prognostic means may be provided as a conventional ELISA kit.

In another alternative embodiment, the diagnostic/prognostic means may comprise polymerase chain reaction means for establishing the genomic sequence structure of a VEGF-D gene of a test individual and comparing this sequence structure with that disclosed in this application in order to detect any abnormalities, with a view to establishing whether any aberrations in VEGF-D expression are related to a given disease condition.

5

10

15

20

25

30

35

In accordance with a further aspect, the invention relates to a method of detecting aberrations in VEGF-D gene structure in a test subject which may be associated with a disease condition in said test subject. This method comprises providing a DNA sample from said test subject; contacting the DNA sample with a set of primers specific to VEGF-D DNA operatively coupled to a polymerase selectively amplifying VEGF-D DNA from the sample by polymerase chain reaction, and comparing the nucleotide sequence of the amplified VEGF-D DNA from the sample with the nucleotide sequences set forth in SEQ ID NO:1 or SEQ ID The invention also includes the provision of a test kit comprising a pair of primers specific to VEGF-D DNA operatively coupled to a polymerase, whereby said polymerase is enabled to selectively amplify VEGF-D DNA from a DNA sample.

Another aspect of the invention concerns the provision of a pharmaceutical composition comprising either VEGF-D polypeptide or a fragment or analogue thereof which promotes proliferation of endothelial cells, or an antibody thereto. Compositions which comprise VEGF-D polypeptide may optionally further comprise one or more of VEGF, VEGF-B and VEGF-C, and/or heparin.

In another aspect, the invention relates to a protein dimer comprising VEGF-D polypeptide, particularly a disulphide-linked dimer. The protein dimers of the

invention include both homodimers of VEGF-D polypeptide and heterodimers of VEGF-D and VEGF, VEGF-B, VEGF-C, PlGF or PDGF.

According to a yet further aspect of the invention there is provided a method for isolation of VEGF-D comprising the step of exposing a cell which expresses VEGF-D to heparin to facilitate release of VEGF-D from the cell, and purifying the thus-released VEGF-D.

5

10

15

20

25

30

35

Another aspect of the invention involves providing a vector comprising an anti-sense nucleotide sequence which is complementary to at least a part of a DNA sequence which encodes VEGF-D or a fragment or analogue thereof which promotes proliferation of endothelial cells. According to a yet further aspect of the invention such a vector comprising an anti-sense sequence may be used to inhibit, or at least mitigate, VEGF-D expression. The use of a vector of this type to inhibit VEGF-D expression is favoured in instances where VEGF-D expression is associated with a disease, for example where tumours produce VEGF-D in order to provide for angiogenesis. Transformation of such tumour cells with a vector containing an anti-sense nucleotide sequence would suppress or retard angiogenesis, and so would inhibit or retard growth of the tumour.

Polynucleotides of the invention such those as described above, fragments of those polynucleotides, and variants of those polynucleotides with sufficient similarity the non-coding strand of those polynucleotides to hybridise thereto under stringent conditions all are useful for identifying, purifying, and isolating polynucleotides encoding other, non-human, mammalian forms of VEGF-D. Thus, such polynucleotide fragments and variants are intended as aspects of the invention. Exemplary stringent hybridisation conditions are as follows: hybridisation at 42°C in 5X SSC, 20 mM NaPO, pH 6.8, 50% formamide; and washing at 42°C in Those skilled in the art understand that it is 0.2X SSC. desirable to vary these conditions empirically based on the

length and the GC nucleotide base content of the sequences to be hybridised, and that formulae for determining such variation exist. See for example Sambrook et al, "Molecular Cloning: A Laboratory Manual", Second Edition, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory (1989).

and isolated polynucleotides purified Moreover, encoding other, non-human, mammalian VEGF-D forms also are aspects of the invention, as are the polypeptides encoded thereby, and antibodies that are specifically immunoreactive with the non-human VEGF-D variants. Thus, the invention mammalian VEGF-D and isolated purified includes а polypeptide, and also a purified and isolated polynucleotide encoding such a polypeptide.

It will be clearly understood that nucleic acids and polypeptides of the invention may be prepared by synthetic means or by recombinant means, or may be purified from natural sources.

BRIEF DESCRIPTION OF THE FIGURES

5

10

15

20

25

30

35

Figure 1 shows a comparison between the sequences of human VEGF-D and human VEGF₁₆₅ (Figure 1a), human VEGF-B (Figure 1b), human VEGF-C (Figure 1c) and human PlGF (Figure 1d). The box indicates residues which match those in human VEGF-D exactly;

Figure 2 shows sequence alignments between the sequences of human VEGF-D, human VEGF $_{165}$, human VEGF-B, human VEGF-C and human PlGF. The boxes indicate residues that match the VEGF-D sequence exactly; and

Figure 3 shows the amino acid sequence of human VEGF-D (SEQ ID NO 3), as predicted from the cDNA sequence (SEQ ID NO 1). The boxes indicate potential sites for N-linked glycosylation.

Figure 4 shows the nucleotide sequence of a second cDNA sequence encoding human VEGF-D (SEQ ID NO 4), isolated by hybridisation from a commercial human lung cDNA library; this cDNA contains the entire coding region for human VEGF-D;

Figure 5 shows the amino acid sequence for human VEGF-D (SEQ ID NO 5) deduced from the sequence of the cDNA of Figure 4;

Figure 6 shows the nucleotide sequence of cDNA encoding mouse VEGF-D1 (SEQ ID NO 6), isolated by hybridisation screening for a commercially-available mouse lung cDNA library;

5

10

15

20

25

30

35

Figure 7 shows the nucleotide sequence of cDNA encoding mouse VEGF-D2 (SEQ ID NO 7), isolated from the same library as in Figure 6;

Figure 8 shows the deduced amino acid sequences for mouse VEGF-D1 (SEQ ID NO 8) and VEGF-D2 (SEQ ID NO 9);

Figure 9 shows a comparison between the deduced amino acid sequences of mouse VEGF-D1, mouse VEGF-D2 and human VEGF-D;

Figure 10 shows sequence alignments between the amino acid sequences of human VEGF-D, human VEGF₁₆₅, human VEGF-B, human VEGF-C and human PlGF; and

Figure 11 shows the results of a bioassay in which conditioned medium from COS cells expressing either VEGF-A or VEGF-D was tested for ability to bind to the extracellular domain of a chimeric receptor expressed in Ba/F3 cells.

Figure 12 shows the results of immunoprecipitation and Western blotting analysis of VEGF-D peptides

(A) pEFBOSVEGFDfullFLAG and pCDNA-1VEGF-A were transfected into COS cells and biosynthetically labelled with ³⁵S-cysteine/methionine for 4 hours. The supernatants from these cultures were immunoprecipitated with either M2 gel or an antiserum directed to VEGF-A coupled to protein A. Washed beads were eluted with an equal volume of 2 x SDS-PAGE sample buffer and boiled. The samples were then resolved by 12% SDS-PAGE. Lanes marked with an asterix (*) indicate where samples were reduced with dithiothreitol and alkylated with iodoacetamide. Molecular weight markers are indicated. fA and fB indicate the 43 kD and 25 kD species

immunoprecipitated by the M2 gel from the COS cells expressing pEFBOSVEGFDfullFLAG.

(B) Western blotting analysis of purified VEGFDANAC. An aliquot of material eluted from the M2 affinity column (fraction #3, VEGFDANAC) was combined with 2 x SDS-PAGE sample buffer and resolved on a 15% SDS-PAGE gel. The proteins were then transferred to nitrocellulose membrane and probed with either monoclonal antibody M2 or a control isotype-matched antibody (Neg). Blots were developed using a goat anti-mouse-HRP secondary antibody and chemiluminescence (ECL, Amersham). Monomeric VEGFDANAC is arrowed, as is the putative dimeric form of this peptide (VEGFDANAC"). Molecular weight markers are indicated.

5

10

15

20

25

30

35

Figure 13 shows the results of analysis of VEGFDANAC protein using the VEGFR2 bioassay. Recombinant VEGFDANAC, and material purified by M2 affinity chromatography, was assessed using the VEGFR2 bioassay. Bioassay cells (10⁴), washed to remove IL-3, were incubated with aliquots of conditioned medium from VEGF-D transfected COS cells, fraction #1 from the affinity column (void volume) or fraction #3 from the affinity column (containing VEGFDANAC). All samples were tested at an initial concentration of 20% (ie 1/5) followed by doubling dilutions. Cells were allowed to incubate for 48 hours at 37°C in a humidified atmosphere of 10% CO₂. Cell proliferation was quantitated by the addition of 1 μ Ci of 3 H-thymidine and counting the amount incorporated over a period of 4 hours.

Figure 14 shows stimulation of tyrosine phosphorylation of the VEGFR3 receptor (Flt4) on NIH3T3 cells by culture supernatant from HF cells infected with a recombinant baculovirus vector transformed with VEGF-D.

Figure 15 shows stimulation of tyrosine phosphorylation of the VEGFR2 receptor (KDR) in PAE cells by culture supernatant prepared as in Figure 14.

Figure 16 shows the mitogenic effect of VEGFDANAC on bovine aortic endothelial cells (BAEs). BAEs were treated

with fraction #3 containing VEGFDANAC and, as positive control, purified VEGF-A as described in the text. The result obtained using medium without added growth factor is denoted Medium Control.

5

DETAILED DESCRIPTION OF THE INVENTION

The invention will now be described in detail by reference to the figures, and to the following non-limiting examples.

10

15

20

25

30

35

Example 1

It has been speculated that no further members of the VEGF family will be found, because there are no known orphan receptors in the VEGFR family. Furthermore, we are not aware of any suggestion in the prior art that other such family members would exist.

A computer search of nucleic acid databases was carried out incidentally to another project, using as search topics the amino acid sequences of VEGF, VEGF-B, VEGF-C and PlGF. Several cDNA sequences were identified by this search. One of these sequences, GenBank Accession No. H24828, encoded a polypeptide which was similar in structure to the cysteine-This sequence was riched C-terminal region of VEGF-C. obtained from the database of expressed sequence tags (dbEST), and for the purposes of this specification is designated XPT. The XPT cDNA had been isolated from a human cDNA library designated "Soares Breast 3NbHBst", which was constructed using mRNA from an adult human female breast tissue. As far as can be ascertained this was normal breast tissue. Sequencing of the XPT DNA was performed pursuant to the Integrated Molecular Analysis of Genome Expression Consortium (IMAGE Consortium), which solicits cDNA libraries from laboratories around the world, arrays the cDNA clones, and provides them to other organisations for sequencing.

The XPT sequence shown in the database was 419 nucleotides long, and encoded an amino acid sequence similar

- 18 -

100 amino acids of VEGF-C, C-terminal approximately residues 250 to 350, using the numbering system of Joukov et al (1996). Similarly cysteine-rich regions are found in other proteins, which are entirely unrelated in function to the VEGF family, for example the secreted silk-like protein sp185 synthesized in the salivary glands of the midge Chironomus tentans. This protein is encoded by the gene BR3, located in a Balbiani ring, a specific chromosome "puff" found on polytene tissue chromosomes in the midge salivary gland (Dignam and Case: Gene, 1990 <u>88</u> 133-140; Paulsson et al, J. Mol. Biol., 1990 211 331-349). It is stated in Joukov et al (1996) that the sp185-like structural motif in VEGF-C may fold into an independent domain, which is thought to be at least partially cleaved off after biosynthesis, and that there is at least one cysteine motif of the sp185 type in the C-terminal region of VEGF.

5

10

15

20

25

30

35

Figure 3 of Joukov et al shows that the last two-thirds of the C-terminal cysteine-rich region of VEGF-C do not align with VEGF or PIGF, and in fact could be considered a C-terminal extension of VEGF-C which is not present in VEGF or PIGF. The sequence encoded by XPT is similar to this extension. As the XPT cDNA was truncated at its 5' end, it was not possible to deduce or predict any amino acid sequence for regions N-terminal to the cysteine-rich domain. Thus the portion of VEGF-C which is similar to the XPT-derived sequence does not extend to regions of VEGF-C which are conserved among other members of the VEGF family.

As described above, it was not possible to predict whether the N-terminal region of the polypeptide encoded by a full-length XPT nucleic acid (as distinct from the truncated XPT cDNA reported in dbEST) would show any further homology to any member of the VEGF family, in particular VEGF-C, which has a further N-terminal 250 amino acids. For example, the naturally-occurring protein encoded by a full-length XPT nucleic acid could have been the human homologue

of the midge salivary gland protein. Alternatively, the type of cysteine-rich motif encoded by truncated XPT cDNA could be widely distributed among proteins, as are many structural domains. For example, clusters of cysteine residues may be involved in metal binding, formation of intramolecular disulphide bonds to promote accurate protein folding, or formation of intermolecular disulphide bonds for assembly of protein subunits into complexes (Dignam and Chase, 1990). In order to determine whether the truncated XPT cDNA was derived from sequences encoding a VEGF-related molecule, it was necessary to isolate a much longer cDNA.

Example 2 Cloning of cDNA Encoding VEGF-D

10

15

20

25

30

35

A sample of the XPT cDNA reported in dbEST was obtained from the American Type Culture Collection, which is a registered supplier of cDNA clones obtained by the IMAGE Consortium. The identity of the XPT cDNA was confirmed by nucleotide sequencing, using the dideoxy chain termination method (Sanger et al, Proc. Natl. Acad. Sci. USA, 1977 74 5463-5467).

The XPT cDNA was used as a hybridisation probe to screen a human breast cDNA library, which was obtained commercially from Clontech. One positive clone was isolated, and this clone was then sequenced on both strands. The nucleotide sequence was compiled, and an open reading frame was identified. The nucleic acid sequence is set out in SEQ ID NO. 1. The polypeptide encoded by this sequence was designated VEGF-D, and its deduced amino acid sequence, designated SEQ ID NO. 3, is set out in Figure 3. In Figure 3 putative sites of N-linked glycosylation, with the consensus sequence N-X-S/T in which X is any amino acid, are indicated by the boxes.

Example 3 Characteristics of VEGF-D

The amino acid sequence of VEGF-D was compared with those of human VEGF-A₁₆₅, VEGF-B, VEGF-C and PlGF. These

comparisons are set out in Figures la to d respectively. The degree of sequence homology was calculated, and if gaps in sequence introduced for the purposes of alignment are not considered in the calculation, VEGF-D is 31% identical to VEGF, 48% identical to VEGF-C, 28% identical to VEGF-B and 32% identical to PIGF. Thus the most closely-related protein identified was VEGF-C.

5

10

15

20

25

30

35

Computer searches of the GenBank, EMBL and SwissProt nucleic acid databases did not reveal any protein sequences identical to VEGF-D. As expected from the sequence alignment referred to above, the most closely related protein found in these databases was VEGF-C. Searches of dbEST were also performed, but did not reveal any sequences encompassing the entire coding region of VEGF-D. The sequence of VEGF-D is unrelated to that of Tie-2 ligand 1 as disclosed in WO 96/11269.

It is important to bear in mind that the only homologies detected were at the level of amino acid sequence. Thus it would not have been possible to isolate the cDNA or gDNA encoding VEGF-D by methods such as low-stringency hybridization with a nucleic acid sequence encoding another member of the VEGF family.

VEGF-D appears to be most closely related to VEGF-C of all the members of the VEGF family. Because the VEGF-D amino acid sequence includes the cysteine-rich sp185-like motif which is found in VEGF-C, the polypeptide of the invention may play an important functional role in lymphatic While we do not wish to be bound by any endothelia. proposed mechanism, it is thought that VEGF-C and VEGF-D may constitute a silk-like matrix over which endothelial cells Lymphatic vessels have no basement membrane, so the silk-like matrix can form a basement membrane-like This may be important in promoting cell growth material. and/or in cell differentiation, and may be relevant to cancer, especially metastasis, drug therapy, prognosis, etc.

Example 4 Biological Characteristics of VEGF-D

The cDNA sequence of VEGF-D was used to predict the deduced amino acid sequence of VEGF-D, the biochemical characteristics of the encoded polypeptide, including the numbers of strongly basic, strongly acidic, hydrophobic and polar amino acids, the molecular weight, the isoelectric point, the charge at pH 7, and the compositional analysis of the whole protein. This analysis was performed using the Protean protein analysis program, Version 1.20 (DATASTAR). These results are summarised in Tables 1 and 2 below. Table 1 also shows the codon usage.

Table 1

Translated DNA Sequence of VEGF-D contig x(1,978)
With Standard Genetic Code

Molecular Weight 37056.60 Daltons

425 Amino Acids

5

10

15

20

35

46 Strong Basic(+) Amino Acids (K,R)

41 Strong Acidic(-) Amino Acids (D,E)

79 hydrophobic Amino Acids (A, I, L, F, W, V)

108 Polar Amino Acids (N,C,Q,S,T,Y)

7.792 Isoelectric Point

25 6.371 Charge at pH 7.0

Total number of bases translated is 978

% A = 28.73 [281]

% G = 23.11 [226]

% T = 23.21 [227]

% C = 24.95 [244]

% Ambiguous = 0.00 [0]

% A+T = 51.94 [508]

% C+G = 48.06 [470]

Davis, Botstein, Roth Melting Temp °C. 84.09
Wallace Temp °C. 3384.00

- 22 -

Table 1 (cont.)

Codon usage	:		
ccg ()	0 # ugc Cys(C)	14 # cuc Leu(L)	6 # ucg Ser(S)
uaa ()	0 # ugu Cys(C)	16: # cug Leu(L)	4 # ucu Ser(S)
uag ()	0 # Cys(C)	30 # cuu Leu(L)	2 # Ser(S)
()	0 # caa Gln(Q)	1 # uua Leu(L)	1 # uga Ter(.)
gca Ala(A)	5 # cag Gln(Q)	ll # uug Leu(L)	5 # Ter(.)
gcc Ala(A)	4 # Gln(Q)	12 # Leu(L)	23 # aca Thr(T)
gcg Ala(A)	1 # gaa Glu(E)	16 # aaa Lys(K)	13 # acc Thr(T)
gcu Ala(A)	5 # gag Glu(E)	12 # aag Lys(K)	10 # acg Thr(T)
Ala(A)	15 # Glu(E)	28 # Lys(K)	23 # acu Thr(T)
aga Arg(R)	7 # gga Gly(G)	1 # aug Met(M)	6 # Thr(T)
agg Arg(R)	5 # ggc Gly(G)	2 # Met(M)	6 # ugg Trp(W)
cga Arg(R)	5 # ggg Gly(G)	3 # uuc Phe(F)	4 # Trp(W)
cgc Arg(R)	4 # ggu Gly(G)	2 # uuu Phe(F)	8 # uac Tyr(Y)
cgg Arg(R)	1 # Gly(G)	8 # Phe(F)	12 # uau Tyr(Y)
cgu Arg(R)	1 # cac His(H)	7 # cca Pro(P)	9 # Tyr(Y)
Arg(R)	23 # cau His(H)	7 # ccc Pro(P)	6 # gua Val(V)
aac Asn(N)	5 # His(H)	14 # ccu Pro(P)	8 # guc Val(V)
aau Asn(N)	4 # aua Ile(I)	2 # Pro(P)	23 # gug Val(V)
Asn (N)	9 # auc Ile(I)	6 # agc Ser(S)	6 # guu Val(V)
gac Asp(D)	8 # auu Ile(I)	5 # agu Ser(S)	8 # Val(V)
qau Asp (D)	5 # Ile(I)	13 # uca Ser(S)	5 # nnn ???(X)
gau Asp(D)	5 # Ile(I)	13 # uca Ser(S)	5 # nnn ???(X)
Asp (D)	13 # cua Leu(L)	5 # ucc Ser(S)	7 # TOTAL

Contig 2:

Contig Length: 2379 bases
Average Length/Sequence: 354 bases

Total Sequence Length: 4969 bases

Table 2

Predicted Structural Class of the Whole Protein: Deléage & Roux Modification of Nishikawa & Ooi 1987

35	Analysis	Whole Protein
	Molecular Weight	37056.60 m.w.
	Length	325
	1 microgram =	26.986 pMoles
40	Molar Extinction coefficient	30200±5%
	1 A(280) =	1.23 mg/ml
	Isoelectric Point	7.79
	Charge at pH 7	6.37

Table 2 (cont.)

Whole Protein Composition Anayalsis

5	Amino Acid(s)	Number count	% by weight	% by frequency
	Charged (RKHYCDE)	134	46.30	41.23
	Acidic (DE)	41	13.79	12.62
	Basic (KR)	46	17.65	14.15
:	Polar (NCQSTY)	108	30.08	33.23
10	Hydrophobic (AILFWV)	79	23.86	24.31
	A Ala	15	2.88	4.62
	C Cys	30	8.35	9.23
	D Asp	13	4.04	4.00
	E Glu	28	9.75	8.62
15	F Phe	12	4.77	3.69
	G Gly	m B.	1.23	2.46
	H His	14	5.18	4.31
	I Ile	13	3.97	4.00
:	K Lys	23	7.96	7.08
20	L Leu	23	7.03	7.08
	M Met	6	2.12	1.85
	N Asn	9	2.77	2.77
	P Pro	23	6.08	7.08
	Q Gln	12	4.15	3.69
25	R Arg	23	9.69	7.08
	S Ser	33	7.76	10.15
	T Thr	21	5.73	6.46
	V Val	12	3.21	3.69
	W Trp	4	2.01	1.23
30	Y Trp	3	1.32	0.92
	B Asx	0	0.00	0.00
	Z Glx	0	0.00	0.00
	X Xxx	0	0.00	0.00
	. Ter	0	0.00	0.00
35				

- 24 -

This analysis predicts a molecular weight for the unprocessed VEGF-D monomer of 37 kilodaltons (kD), compared to the experimentally determined values (for the fully processes peptides) of 20 to 27 kD for VEGF-A monomers, 21 kD for the VEGF-B monomer and 23 kD for the VEGF-C monomer.

Example 5

5

10

15

20

25

30

35

The original isolation of a cDNA for VEGF-D, described in Example 2 involved hybridisation screening of a human breast cDNA library. As only one cDNA clone for VEGF-D was thus isolated, it was not possible to confirm the structure of the cDNA by comparison with other independently isolated VEGF-D cDNAs. The work described in this example, which involved isolation of additional human VEGF-D cDNA clones, was carried out in order to confirm the structure of human VEGF-D cDNA. In addition, mouse VEGF-D cDNA clones were isolated.

Two cDNA libraries which had been obtained commercially from Stratagene, one for human lung and one for mouse lung (catalogue numbers 937210 and 936307, respectively) were used for hybridisation screening with a VEGF-D cDNA probe. The probe, which spanned from nucleotides 1817 to 2495 of the cDNA for human VEGF-D described in Example 2, was generated by polymerase chain reaction (PCR) using a plasmid containing the VEGF-D cDNA as template and the following two oligonucleotides:

5'-GGGCTGCTTCTAGTTTGGAG (SEQ ID NO. 10), and 5'-CACTCGCAACGATCTTCGTC (SEQ ID NO. 11).

Approximately two million recombinant bacteriophage were screened with this probe from each of the two cDNA libraries. Nine human and six mouse cDNA clones for VEGF-D were subsequently isolated.

Two of the nine human cDNA clones for VEGF-D were sequenced completely using the dideoxy chain termination method (Sanger et al, Proc. Natl. Acad. Sci. USA, 1977 74

5463-5467). The two cDNAs contained the entire coding region for human VEGF-D, and were identical except that one of the clones was five nucleotides longer than the other at the 5'-terminus. The nucleotide sequence of the shorter cDNA is shown in Figure 4, and is designated SEQ ID NO. 4. The amino acid sequence for human VEGF-D (hVEGF-D) deduced from this cDNA was 354 residues long, and is shown in Figure 5; this is designated SEQ ID NO. 5. The sequences of the 5' regions of five of the other human VEGF-D cDNA clones were also determined. For each clone, the sequence that was characterized contained more than 100 nucleotides of DNA immediately downstream from the translation start site of the coding region. cases, the sequences of these regions were identical to corresponding regions of the human VEGF-D cDNA shown in Figure 4.

10

15

20

25

30

All six mouse cDNA clones for VEGF-D were sequenced completely. Only two of the clones contained an entire coding region for VEGF-D; the other clones were truncated. The nucleotide sequences of the two clones with an entire coding region are different, and encode amino acid sequences of different sizes. The longer amino acid sequence is designated mVEGF-D1, and the shorter sequence is designated mVEGF-D2. The nucleotide sequences of the cDNAs encoding mVEGF-D1 and mVEGF-D2 are shown in Figures 6 and 7 respectively. The deduced amino acid sequences for mVEGF-D1 and mVEGF-D2 are shown in Figure 8. These sequences are respectively designated SEQ ID NOS. 6, 7, 8 and 9. The differences between the amino acid sequences are:

- i) an insertion of five amino acids (DFSFE) after
 residue 30 in mVEGF-D1 in comparison to mVEGF-D2;
- ii) complete divergence of the C-terminal ends after residue 317 in mVEGF-D1 and residue 312 in mVEGF-D2,
 35 which results in mVEGF-D1 being considerably longer.

Three of the four truncated cDNAs for mouse VEGF-D encoded the C-terminal region, but not the N-terminal 50 amino acids. All three of these cDNAs encoded a C-terminal end for VEGF-D which is identical to that for mVEGF-D2. The other truncated cDNA encoded only the N-terminal half of VEGF-D. The amino acid sequence deduced from this cDNA contained the five amino acids DFSFE immediately after residue 30 found in mVEGF-D1, but not in mVEGF-D2.

5

10

15

20

25

30

35

As described above, the entire sequence of the human VEGF-D cDNA clone reported in this example has been validated by comparison with that for a second human clone. In addition, the sequence of the 5' end of the coding region was found to be identical in five other human VEGF-D cDNA clones. In contrast, the sequence reported in Example 2 contained most of the coding region for VEGF-D, but was incorrect near the 5'-end of this region. This was probably because the VEGF-D cDNA was truncated near the 5'-end of the coding region and at that point had been ligated with another unidentified cDNA, and consequently the first 30 codons of the true coding sequence for VEGF-D had been deleted and replaced with a methionine residue. This methionine residue was defined as the N-terminal amino acid of the VEGF-D sequence presented in Example 2.

The N-terminal regions of the deduced amino acid sequences of mouse VEGF-D1 and VEGF-D2 are very similar to that deduced for human VEGF-D (see Figure 9). This also indicates that the correct deduced amino acid sequence for human VEGF-D is reported in this example. The N-terminal 25 amino acids of human VEGF-D form an extremely hydrophobic region, which is consistent with the notion that part of this region may be a signal sequence for protein secretion. Figure 10 shows the alignment of the human VEGF-D sequence with the sequences of other members of the VEGF family of growth factors, namely human VEGF165

(hVEGF₁₆₅), human VEGF-B (hVEGF-B), human VEGF-C (hVEGF-C) and human Placental Growth Factor (hPlGF). When gaps in the alignments are ignored for the purposes of calculation, human VEGF-D is found to be 31% identical in amino acid sequence to human VEGF₁₆₅, 28% identical to human VEGF-B, 48% identical to VEGF-C and 32% identical to human PlGF. Clearly VEGF-C is the member of this family which is most closely related to VEGF-D.

5

10

15

20

25

30

35

The differences in sequence for mouse VEGF-D1 and VEGF-D2 most probably arise from differential mRNA splicing. The C-terminal 41 amino acid residues of VEGF-D1 are deleted in VEGF-D2, and are replaced with 9 residues which are not closely related to the VEGF-D1 sequence. Therefore 4 cysteine residues present near the C-terminus of VEGF-D1 are deleted in VEGF-D2. This change may alter the tertiary or quaternary structures of the protein, or may affect the localisation of the protein in the cell or the extracellular environment. The C-terminal end of human VEGF-D resembles that of mouse VEGF-D1, not mouse VEGF-D2. The small 5 amino acid insertion after residue 30 in mouse VEGF-D1, which is not present in either mouse VEGF-D2 or human VEGF-D, may influence proteolytic processing of the protein.

VEGF-D is highly conserved between mouse and man. Eighty-five percent of the amino acid residues of human VEGF-D are identical in mouse VEGF-D1. This is likely to reflect conservation of protein function. Putative functions for VEGF-D have been proposed herein. Although we have not found alternative forms of human VEGF-D cDNA, it is possible that the RNA splice variation which gives rise to numerous forms of mRNA for mouse VEGF-D may also occur in human tissues.

Example 6 Expression of VEGF-D in COS Cells

A fragment of the human cDNA for VEGF-D, spanning from nucleotide 1 to 1520 of the sequence shown in Figure

4 and containing the entire coding region, was inserted into the mammalian expression vector pCDNA1-amp. The vector was used to transiently transfect COS cells by the DEAE-Dextran method as described previously (Aruffo and Seed, 1987) and the resulting conditioned cell culture media, collected after 7 days of incubation, were concentrated using Amicon concentrators (Centricon 10 with a 10,000 molecular weight cut off) according to the manufacturer. The plasmids used for transfections were the expression construct for human VEGF-D and, as positive control, a construct made by insertion of mouse VEGF-A cDNA into pCDNA1-amp. The conditioned media were tested in two different bioassays, as described below, and the results demonstrate that the COS cells did in fact express and secrete biologically-active VEGF-D.

5

10

15

Example 7 Bioassay for Capacity of VEGF-D to Bind to VEGF Receptor-2

As shown in Example 5, VEGF-D is closely related in primary structure to other members of the VEGF family. 20 Most members of this protein family are mitogenic and/or chemotactic for endothelial cells (Keck et al, 1989; Leung et al, 1989; Joukov, et al, 1996; Olofsson et al, 1996). In addition VEGF-A (previously known as VEGF), the first member of the VEGF family to be described in the 25 literature, is a potent inducer of vascular permeability (Keck et al, 1989). As protein structure is an important determinant of protein function, it seemed likely that VEGF-D might also be mitogenic for endothelial cells or induce vascular permeability. Therefore human VEGF-D was 30 tested in a bioassay for its capacity to bind to VEGF receptor-2 (VEGFR2; also known as Flk-1), an endothelial cell-specific receptor which, when activated by VEGF-A, is thought to give rise to a mitogenic signal (Strawn et al, 35 1996).

A bioassay for detection of growth factors which bind to VEGFR2 has been developed in the factor-dependent cell line Ba/F3, and is described in our earlier patent application, No. PCT/US95/16755. These cells grow in the presence of interleukin-3 (IL-3); however removal of this factor results in cell death within 48 hours. If another receptor capable of delivering a growth stimulus is transfected into the Ba/F3 cells, the cells can be rescued by the specific growth factor which activates that receptor when the cells are grown in medium lacking IL-3. In the specific case of receptor-type tyrosine kinases (eg. VEGFR2), chimeric receptors containing the extracellular domain of the receptor tyrosine kinase and the transmembrane and cytoplasmic domains of the erythropoietin receptor (EpoR) can be utilised. In this 15 case stimulation with the ligand (eg. VEGF), which binds to the extracellular domain of the chimeric receptor, results in signalling via the EpoR cytoplasmic domain and subsequent rescue of the cell line in growth medium lacking IL-3. The construction of the chimeric receptor 20 used in this study, consisting of the mouse VEGFR2 extracellular domain and the mouse EpoR transmembrane and cytoplasmic domains, and the bioassay itself are described below.

25

30

35

5

10

Plasmid Construction

Construction of a plasmid for generating chimeric i) VEGFR2 receptors

To obtain a plasmid construct with which DNA encoding the extracellular domain of mouse VEGFR2 could easily be ligated with DNA encoding other protein domains, site-directed mutagenesis was used to generate a restriction enzyme site at the position of mouse VEGFR2 cDNA which encoded the junction of the extracellular domain and the transmembrane domain. The full-length clone of the mouse VEGFR2 cDNA described by Oelrichs et al

(1993) was subcloned into the mammalian expression vector pCDNA1-amp, using the BstXI restriction enzyme site. Single stranded UTP+ DNA was generated using the M13 origin of replication, and this was used as a template to generate mouse VEGFR2 cDNA containing the BglII site at the desired position. The plasmid containing the altered VEGFR2 cDNA was designated pVEGFR2Bgl. DNA fragments encoding the transmembrane and cytoplasmic domains of any receptor can be inserted at the BglII site of pVEGFR2Bgl in order to generate chimeric VEGFR2 receptors.

5

10

15

20

25

30

35

Construction of VEGFR2/EpoR chimeric receptor ii) The mouse EpoR cDNA was subcloned into the expression vector pCDNA1-amp, and single stranded DNA was generated as a template for mutagenesis. A BglII restriction enzyme site was inserted into the EpoR cDNA at the position encoding the junction of the transmembrane and extracellular domains of the EpoR to allow direct ligation of this DNA fragment to the modified cDNA encoding the extracellular domain of VEGFR2 in pVEGFR2Bgl. In addition a BglII site in the cytoplasmic domain of the EpoR was removed by a silent single nucleotide substitution. The DNA fragment encoding the transmembrane and cytoplasmic domains of EpoR was then used to replace the portion of pVEGFR2Bgl encoding the transmembrane and cytoplasmic domains of VEGFR2. Thus a single reading frame was generated which encoded the chimeric receptor consisting of the VEGFR2 extracellular domain and the EpoR transmembrane and cytoplasmic domains.

The DNA fragment encoding the chimeric receptor was subcloned into the expression vector pBOS, and cotransfected into the Ba/F3 cell line with plasmid pgk-neo at a ratio of 1:20. Cells expressing the VEGFR2-EpoR protein were selected by flow cytometry analysis using a monoclonal antibody to the VEGFR2 extracellular domain (MAb 4H3). This monoclonal antibody is described in

Australian Patent Application No. PM 3794 filed 10 February 1994. Cell lines expressing higher levels of VEGFR2-EpoR were selected by growing the cells in 5 μ g/ml MAb 4H3 or 25 ng/ml of recombinant VEGF. A cell line expressing high levels of VEGFR2-EpoR, designated Ba/F3-NYK-EpoR, was used for the bioassay.

The Bioassay

5

10

15

20

25

30

35

The Ba/F3-NYK-EpoR cells described above were washed three times in PBS to remove all IL-3 and resuspended at a concentration of 1000 cells per 13.5 μ l of culture medium and 13.5 μ l was aliquoted per well of a 60-well Terasaki plate. Conditioned media from transfected COS cells were then diluted into the cell culture medium. Cells expressing a chimeric receptor consisting of the extracellular domain of the endothelial cell receptor Tie2 and the transmembrane and cytoplasmic domains of EpoR were used as a non-responding control cell line. Cells were incubated for 48-96 hours, during which the cells incubated in cell culture medium alone had died and the relative survival/proliferation seen in the other wells (ie. in the presence of COS cell-conditioned media) was scored by counting the viable cells present per well.

The conditioned medium from COS cells which had been transiently transfected with expression plasmids was concentrated 30-fold and used in the VEGFR2 bioassay. Concentrated conditioned medium from COS cells transfected with pCDNA1-amp was used as negative control.

The results are shown in Figure 11, with the percentage of 30-fold concentrated COS cell-conditioned medium in the incubation medium (vol/vol) plotted versus the number of viable cells in the well after 48 hours of incubation. Clearly the conditioned medium containing either VEGF-A or VEGF-D was capable of promoting cell survival in this assay, indicating that both proteins can bind to and activate VEGFR2.

Example 8 Vascular Permeability Assay

5

10

15

20

25

30

35

Human VEGF-D, prepared as in Example 6 and concentrated 30-fold, was tested in the Miles vascular permeability assay (Miles and Miles, 1952) performed in anaesthetized guinea pigs (albino/white, 300-400 g). Concentrated conditioned medium for COS cells transfected with pCDNA1-amp was again used as a negative control. Guinea pigs were anaesthetised with chloral-hydrate (3.6 g/100 ml; 0.1 ml per 10 g of body weight). The backs of the animals were then carefully shaved with clippers. Animals were given an intracardiac injection of Evans Blue dye (0.5% in MT PBS, 0.5 ml) using a 23G needle, and were then injected intra-dermally with 100-150 μl of concentrated COS cell-conditioned medium. After 15-20 min the animals were sacrificed and the layer of skin on the back excised to expose the underlying blood vessels. quantitation, the area of each injection was excised and heated to 45°C in 2-5 ml of formamide. The resulting supernatants, containing extravasated dye, were then examined spectrophotometrically at 620 nm.

For animal 1, the absorbance at 620 nm arising from injection of 30-fold concentrated VEGF-A conditioned medium was 0.178, that for the 30-fold concentrated VEGF-D conditioned medium was 0.114, and that for 30-fold concentrated medium from cells transfected with pCDNA1-amp was 0.004. For animal 2, the 30-fold concentrated media were diluted 4-fold in cell culture medium before intradermal injection. The absorbance at 620 nm for the VEGF-A conditioned sample was 0.141, that for the VEGF-D conditioned sample was 0.116 and that for a sample matched for serum content as negative control was 0.017. The enhanced extravasation of dye observed for both animals in the presence of VEGF-A or VEGF-D demonstrated that both of these proteins strongly induced vascular permeability.

The data described here indicate that VEGF-D is a secreted protein which, like VEGF-A, binds to and

activates VEGFR2 and can induce vascular permeability.

Example 9 Bioactivities of Internal VEGF-D Polypeptides
The deduced amino acid sequence for VEGF-D
includes a central region which is similar in sequence to
all other members of the VEGF family (approximately
residues 101 to 196 of the human VEGF-D amino acid
sequence as shown in the alignment in Figure 10).
Therefore, it was thought that the bioactive portion of
VEGF-D might reside in the conserved region. In order to
test this hypothesis, the biosynthesis of VEGF-D was
studied, and the conserved region of human VEGF-D was
expressed in mammalian cells, purified, and tested in
bioassays as described below.

15

20

25

30

35

10

5

Plasmid construction

A DNA fragment encoding the portion of human VEGF-D from residue 93 to 201, ie. with N- and C-terminal regions removed, was amplified by polymerase chain reaction with Pfu DNA polymerase, using as template a plasmid comprising full-length human VEGF-D cDNA. amplified DNA fragment, the sequence of which was confirmed by nucleotide sequencing, was then inserted into the expression vector pEFBOSSFLAG to give rise to a plasmid designated pEFBOSVEGFDANAC. The pEFBOSSFLAG vector contains DNA encoding the signal sequence for protein secretion from the interleukin-3 (IL-3) gene and the FLAG™ octapeptide. The FLAG™ octapeptide can be recognized by commercially available antibodies such as the M2 monoclonal antibody (IBI/Kodak). The VEGF-D PCR fragment was inserted into the vector such that the IL-3 signal sequence was immediately upstream from the FLAG™ sequence, which was in turn immediately upstream from the VEGF-D sequence. All three sequences were in the same reading frame, so that translation of mRNA resulting from transfection of pEFBOSVEGFDANAC into mammalian cells would

give rise to a protein which would have the IL-3 signal sequence at its N-terminus, followed by the FLAG[™] octapeptide and the VEGF-D sequence. Cleavage of the signal sequence and subsequent secretion of the protein from the cell would give rise to a VEGF-D polypeptide which is tagged with the FLAG[™] octapeptide adjacent to the N-terminus. This protein was designated VEGFDΔNΔC.

5

10

15

20

25

30

35

In addition, a second plasmid was constructed, designated pEFBOSVEGFDfullFLAG, in which the full-length coding sequence of human VEGF-D was inserted into pEFBOSIFLAG such that the sequence for the FLAG™ octapeptide was immediately downstream from, and in the same reading frame as, the coding sequence of VEGF-D. The plasmid pEFBOSIFLAG lacks the IL-3 signal sequence, so secretion of the VEGF-D/FLAG fusion protein was driven by the signal sequence of VEGF-D. pEFBOSVEGFDfullFLAG was designed to drive expression in mammalian cells of full-length VEGF-D which was C-terminally tagged with the FLAG™ octapeptide. This protein is designated VEGFDfullFLAG, and is useful for the study of VEGF-D biosynthesis.

Analysis of the Post-Translational Processing of VEGF-D

To examine whether the VEGF-D polypeptide is
processed to give a mature and fully active protein,
pEFBOSVEGFDfullFLAG was transiently transfected into COS
cells (Aruffo and Seed, 1987). Expression in COS cells
followed by biosynthetic labeling with ³⁵Smethionine/cysteine and immunoprecipitation with M2 gel
has demonstrated species of approximately 43 kD (fA) and
25 kD(fB) (Figure 12A). These bands are consistent with
the notion that VEGF-D is cleaved to give a C-terminal
fragment (FLAGTM tagged) and an internal peptide
(corresponding approximately to the VEGFDANAC protein).
Reduction of the immunoprecipitates (M2*) gives some
reduction of the fA band, indicating the potential for
disulphide linkage between the two fragments.

Expression and purification of internal VEGF-D polypeptide Plasmid pEFBOSVEGFDANAC was used to transiently transfect COS cells by the DEAE-Dextran method as described previously (Aruffo and Seed, 1987). The resulting conditioned cell culture medium (approximately 150 ml), collected after 7 days of incubation, was subjected to affinity chromatography using a resin to which the M2 monoclonal antibody had been coupled. In brief, the medium was run batch-wise over a 1 ml M2 antibody column for approximately 4 hours at 4°C. The column was then washed extensively with 10 mM Tris-HCl, pH 8.0, 150 mM NaCl before elution with free FLAG^M peptide at 25 μ g/ml in the same buffer. The resulting material was used for the bioassays described below.

5

10

15

20

25

30

35

In order to detect the purified VEGFDANAC, fractions eluted from the M2 affinity column were subjected to Western blot analysis. Aliquots of the column fractions were combined with 2 x SDS-PAGE sample buffer, boiled and loaded onto a 15% SDS polyacrylamide gel. The resolved fractions were transferred to nitrocellulose membrane and non-specific binding sites blocked by incubation in Tris/NaCl/Tween 20 (TST) and 10% skim milk powder (BLOTTO). Membranes were then incubated with monoclonal antibody M2 or control antibody at 3 $\mu \text{g/ml}$ for 2 h at room temperature, followed by extensive washing in TST. Membranes were then incubated with a secondary qoat anti-mouse HRP-conjugated antiserum for 1 h at room temperature, followed by washing in TST buffer. Detection of the protein species was achieved using a chemiluminescent reagent (ECL, Amersham) (Figure 12B).

Under non-reducing conditions a species of molecular weight approximately 23 kD (VEGFDANAC) was detected by the M2 antibody. This is consistent with the predicted molecular weight for this internal fragment (12,800) plus N-linked glycosylation; VEGFDANAC contains two potential N-linked glycosylation sites. A species of

approximately 40 kD was also detected, and may represent a non-covalent dimer of the 23 kD protein (VEGFD Δ N Δ C).

Bioassays

5

10

15

20

25

30

35

The bioassay for the capacity of polypeptides to bind to VEGF receptor-2 is described in detail in Example 7. Aliquots of fractions eluted from the M2 affinity column, containing the VEGFDANAC protein, were diluted in medium and tested in the VEGFR2 bioassay as previously described. Fraction #3 from the affinity column, which was shown to contain the purified VEGFDANAC protein (Figure 12B), demonstrated a clear ability to induce proliferation of the bioassay cell line to a dilution of 1/100 of the purified fraction (Figure 13). In comparison, the void volume of the affinity column (fraction #1) showed no activity, whereas the original VEGFDANAC conditioned medium gave only weak activity.

The vascular permeability assay (Miles and Miles, 1952) is described in brief in example 8. Aliquots of purified VEGFDANAC, and samples of the void volume from the M2 affinity column (negative control) were combined with medium and injected intradermally into the skin of guinea pigs. The regions of skin at the sites of injections were excised, and extravasated dye was eluted. The absorbance of the extravasated dye at 620 nm arising from injection of purified VEGFDANAC was 0.131 ± 0.009. In comparison, the value for absorbance arising from injection of a sample of the void volume was 0.092 ± 0.020. Therefore VEGFDANAC induced vascular permeability, but the effect was only marginal.

Due to its ability to bind to VEGFR2 and its lower induction of vascular permeability compared to full length VEGF-D, VEGF-DANAC may be said to relatively decrease the induction of vascular permeability by VEGF-D through competitive inhibition. In this sense, the VEGF-DANAC fragment may be thought of as an antagonist for VEGF-D as

regards the induction of vascular permeability.

Summary

5

10

15

20

25

30

35

Two factors have led us to explore internal fragments of VEGF-D for enhanced activity. Firstly, it is the central region of VEGF-D which exhibits amino acid homology with all other members of the VEGF family. Secondly, proteolytic processing which gives rise to internal bioactive polypeptides occurs for other growth factors such as PDGF-BB. In addition, the activity seen with the full length VEGF-D protein in COS cells was lower than for the corresponding conditioned medium from VEGF-A transfected COS cells.

It was predicted that the mature VEGF-D sequence would be derived from a fragment contained within residues 92-205, with cleavage at FAA^TFY and IIRR^SIQI. Immunoprecipitation analysis of VEGF-DfullFLAG expressed in COS cells produced species consistent with the internal proteolytic cleavage of the VEGF-D polypeptide at these sites. Therefore a truncated form of VEGF-D, with the Nand C-terminal regions removed (VEGFDANAC), was produced and expressed in COS cells. This protein was identified and purified using the M2 antibody. The VEGFDANAC protein was also detected by the A2 antibody, which recognizes a peptide within the 92-205 fragment of VEGF-D (not shown). VEGFDANAC was evaluated by the VEGFR2 bioassay and the Miles vascular permeability assay, and shown to bind to and activate the VEGFR2 receptor in a bioassay designed to detect cross-linking of the VEGFR2 extracellular domain. Induction of vascular permeability by this polypeptide in a Miles assay was at best marginal, in contrast to the effect of VEGF-A.

Example 10 VEGF-D Binds to and Activates VEGFR-3

The human VEGF-D cDNA was cloned into baculovirus shuttle vectors for the production of recommbinant VEGF-D.

In addition to baculoviral shuttle vectors, which contained the unmodified VEGF-D cDNA (referred to as "full length VEGF-D") two baculoviral shuttle vectors were assembled, in which the VEGF-D cDNA was modified in the following ways.

5

10

15

20

25

35

In one construct (referred to as "full length VEGF-D-H₆") a C-terminal histidine tag was added. In the other construct the putative N- and C-terminal propeptides were removed, the melittin signal peptide was fused inframe to the N-terminus, and a histidine tag was added to the C-terminus of the remaining VEGF homology domain (referred to as " Δ N Δ C-MELsp-VEGF-D-H₆").

For each of the three constructs baculoviral clones of two or three independent transfections were amplified. The supernatant of High Five (HF) cells was harvested 48 h post infection with high titre virus stocks. The supernatant was adjusted to pH 7 with NaOH and diluted with one volume of D-MEM (0.2% FCS).

The samples were tested for their ability to stimulate tyrosine phosphorylation of VEGFR-3 (Flt4 receptor) on NIH3T3 cells, as described by Joukov et al, 1996. The supernatant of uninfected cells and the supernatant of cells infected with the short splice variant of VEGF-C, which does not stimulate tyrosine phosphorylation of VEGFR-3, were used as negative controls. VEGF-C modified in the same way as ANAC-melSP-VEGF-D-H₆ was used as positive control. The results are shown in Figure 14.

The appearance of new bands at 125 and 195 kD indicates phosphorylation, and hence activation, of the receptor.

Example 11 VEGF-D Binds to and Activates VEGFR-2

Modified and unmodified human VEGF-D cDNA was cloned into baculovirus shuttle vectors for the production of recombinant VEGF-D as described in Example 10.

For each of the three constructs full length VEGF-D, full length VEGF-D-H₆, and $\Delta N\Delta C$ -melSP-VEGF-D-H₆, baculoviral clones of two or three independent transfections were amplified . The supernatant of High Five (HF) cells was harvested 48 hours post infection with high titre virus stocks. The supernatant was adjusted to pH 7 with NaOH and diluted with one volume of D-MEM (0.2% FCS).

5

10

15

20

25

30

35

The supernatants conditioned with the histidine-tagged proteins were tested for their ability to stimulate tyrosine phosphorylation of the KDR receptor according to Joukov et al, 1996. KDR is the human homologue of flk1 (VEGFR-2).

The supernatant of uninfected cells and the supernatant of cells infected with the VEGF-C 156S mutant, which does not stimulate KDR, were used as negative controls. VEGF₁₆₅ and VEGF-C modified in the same way as $\Delta N\Delta C$ -melSP-VEGF-D-H₆ were used as positive controls. The results are shown in Figure 15.

The appearance of a new band at approximately 210 kD indicates phosphorylation, and hence activation, of the receptor.

Example 12 Analysis of VEGF-D Gene Expression

In order to characterise the pattern of VEGF-D gene expression in the human and in mouse embryos, VEGF-D cDNAs were used as hybridization probes for Northern blot analysis of polyadenylated human RNA and for in situ hybridization analysis with mouse embryos.

Gene expression in the adult human

A 1.1 kb fragment of the human VEGF-D cDNA shown in Figure 4 (SEQ ID NO. 4) spanning from the EcoRV site to the 3'-terminus (nucleotides 911 to 2029) was labelled with $[\alpha^{-32}P]$ dATP using the Megaprime DNA labelling system (Amersham) according to manufacturer's instructions. This

probe was used to screen human multiple tissue northern blots (Clontech) by hybridization, also according to manufacturer's instructions. These blots contained polyadenylated RNA obtained from tissues of adult humans who were apparently free of disease. Autoradiography with the labelled blots revealed that VEGF-D mRNA was most abundant in heart, lung and skeletal muscle. VEGF-D mRNA was of intermediate abundance in spleen, ovary, small intestine and colon, and was of low abundance in kidney, pancreas, thymus, prostate and testis. No VEGF-D mRNA was detected in RNA from brain, placenta, liver or peripheral blood leukocytes. In most of the tissues where VEGF-D mRNA was detected the size of the transcript was 2.3 kb. The only exception was skeletal muscle, where two VEGF-D transcripts of 2.3 kb and 2.8 kb were detected. In skeletal muscle the 2.3 kb transcript was more abundant than the 2.8 kb transcript.

Gene expression in mouse embryos

5

10

15

20

25

30

35

In order to generate an antisense RNA probe for mouse VEGF-D mRNA, the mouse VEGF-D2 cDNA shown in Figure 7 (SEQ ID NO. 7) was inserted into the transcription vector pBluescriptIIKS+ (Stratagene). The resulting plasmid was digested to completion with the restriction endonuclease FokI and then used as template for an in vitro transcription reaction with T3 RNA polymerase. transcription reaction gave rise to an antisense RNA probe for VEGF-D mRNA which was complementary in sequence to the region of the VEGF-D2 cDNA (Figure 7) from the 3'-terminus to the FokI cleavage site closest to the 3'-terminus (nucleotides 1135 to 700). This antisense RNA probe was hybridized at high stringency with paraffin-embedded tissue sections generated from mouse embryos at postcoital day 15.5. Hybridization and washing were essentially as described previously (Achen et al., 1995).

After washing and drying, slides were exposed to autoradiography film for six days.

Development of the autoradiography film revealed that VEGF-D mRNA is localised in the developing lung of post-coital day 15.5 embryos. The signal for VEGF-D mRNA in the lung was strong and highly specific. Control hybridizations with sense probe gave no detectable background in lung or any other tissue.

Summary

The VEGF-D gene is broadly expressed in the adult human, but is certainly not ubiquitously expressed. Strongest expression was detected in heart, lung and skeletal muscle. In mouse embryos at post-coital day 15.5, strong and specific expression of the VEGF-D gene was detected in the lung. These data suggest that VEGF-D may play a role in lung development, and that expression of the VEGF-D gene in lung persists in the adult, at least in humans. Expression of the gene in other tissues in the adult human suggests that VEGF-D may fulfill other functions in other adult tissues.

20

25

30

35

5

10

15

Example 13 VEGF-D is Mitogenic for Endothelial Cells Some members of the VEGF family of proteins, namely VEGF-A (Leung et al, 1989) and VEGF-B (Olofsson et al, 1996), are mitogenic for endothelial cells. In order to test the mitogenic capacity of VEGFDANAC for endothelial cells, this protein was expressed and purified by affinity chromatography as described in Example 9. Fraction #3, eluted from the M2 affinity column, which contained VEGFDANAC, was diluted 1 in 10 in cell culture medium containing 5% serum and applied to bovine aortic endothelial cells (BAEs) which had been propagated in medium containing 10% serum. The BAEs had been seeded in 24-well dishes at a density of 10,000 cells per well the day before addition of VEGFDANAC, and 3 days after addition of this polypeptide the cells were dissociated with trypsin and counted. Purified VEGF-A was included in

the experiment as positive control. Results are shown in Figure 16. The addition of fraction #3 to the cell culture medium led to a 2.4-fold increase in the number of BAEs after 3 days of incubation, a result which was comparable to that obtained with VEGF-A. Clearly VEGFDANAC is mitogenic for endothelial cells.

Example 14 Localization of the VEGF-D Gene on Human Chromosomes

5

10

15

20

25

30

35

In order to generate hybridization probes for localization of the VEGF-D gene on human chromosomes, a human genomic DNA clone for VEGF-D was isolated from a human genomic DNA library (Clontech). The genomic library was screened by hybridization with the human VEGF-D cDNA shown in Figure 4, using standard methods (Sambrook et al., 1989). One of the clones thus isolated was shown to contain part of the VEGF-D gene by hybridization to numerous oligonucleotides which were derived in sequence from the human VEGF-D cDNA. A region of the genomic clone, approximately 13 kb in size, was purified from agarose gel, labelled by nick-translation with biotin-14dATP and hybridized in situ at a final concentration of 20 $ng/\mu l$ to metaphases from two normal human males. fluorescence in situ hybridization (FISH) method was modified from that previously described (Callen et al, 1990) in that chromosomes were stained before analysis with propidium iodide (as counterstain) and DAPI (for chromosome identification). Images of metaphase preparations were captured by a cooled CCD camera, using the CytoVision Ultra image collection and enhancement system (Applied Imaging Int. Ltd.). FISH signals and the DAPI banding pattern were merged for analysis.

Fifteen metaphases from the first normal male were examined for fluorescent signal. Ten of the metaphases showed signal on one chromatid (3 cells) or both chromatids (7 cells) of the X chromosome in band p22.1.

There was a total of 9 non-specific background dots observed in these 15 metaphases. A similar result was obtained from hybridization of the probe to 15 metaphases from the second normal male, where signal was observed at Xp22.1 on one chromatid in 7 cells and on both chromatids in 4 cells. In conclusion, the human VEGF-D gene is located on the X chromosome in band p22.1.

Example 15 Localization of the murine VEGF-D Gene on Mouse Chromosomes

5

10

15

20

25

30

35

The mouse chromosomal location of the VEGF-D gene was determined by interspecific backcross analysis using progeny generated by mating (C57BL/6J x Mus spretus)F1 females and CB7BL/67 males as described previously (Copeland and Jenkins, 1991). This interspecific backcross mapping panel has been typed for over 2400 loci that are well distributed among all the autosomes as well as the X chromosome (Copeland and Jenkins, 1991). C57BL/6J and M. spretus DNAs were digested with several enzymes and analyzed by Southern blot hybridization for informative restriction fragment length polymorphisms (RFLPs) using a 1.3 kb mouse VEGF-D cDNA probe essentially as described (Jenkins et al. 1982). Fragments of 7.1, 6.3, 4.7, 2.5 and 2.2 kb were detected in TaqI-digested C57BL/6J DNA and major fragments of 7.1, 3.7, 2.7 and 2.2 kb were detected in TaqI-digested M. spretus DNA. The presence or absence of the 3.7 and 2.7 TaqI M. spretusspecific fragments, which cosegregated, was followed in backcross mice. The mapping results indicated that the VEGF-D gene is located in the distal region of the mouse X chromosome linked to Bik, DxPasI and Ptmb4. Although 89 mice were analyzed for every marker, up to 133 mice were typed for some pairs of markers. Each locus was analyzed in pairwise combinations for recombination frequencies using the additional data. The ratios of the total number of mice exhibiting recombinant chromosomes to the total

number of mice analyzed for each pair of loci and the most likely gene order are: centromere - Btk - 14/121 - DxPasI - 3/99 - VEGF-D - 5/133 - Ptmb4. The recombination frequencies [expressed as genetic distances in centimorgans (cM) ± the standard error], calculated using Map Manager (version 2.6.5), are - Btk - 11.6+/-2.9 - DxPasI - 3.0+/-1.7 - VEGF-D - 3.8+/-1.7 - Ptmb4. A description of the probes and RFLPs for the loci linked to the VEGF-D gene, including Btk, DxPasI and Ptmb4, has been reported previously (Hacfliger et al., 1992; Holloway et al., 1997).

5

10

15

20

25

30

35

We have compared our interspecific map of the X chromosome with a composite mouse linkage map that reports the map location of many uncloned mutations (provided from Mouse Genome Database, a computerized database maintained at The Jackson Library, Bar Harbor, ME). The VEGF-D gene mapped in a region of the composite map that lacks mouse mutations with a phenotype that might be expected for an alteration in the locus for an endothelial cell mitogen. The distal region of the mouse X-chromosome shares a region of homology with the short arm of the human X chromosomes (Mouse Genome Database). The placement of the VEGF-D gene in this interval in mouse suggests that the human homolog will map to Xp22. This is consistent with our FISH analysis which has localized the human gene to Xp22.1.

Numerous disease states are caused by mutations in unknown genes which have been mapped to Xp22.1 and the positions immediately surrounding this region in the human. These disease states include Kallmann syndrome, ocular albinism (Nettleship-Falls type), ocular albinism and sensorineural deafness, Partington syndrome, spondyloepiphyseal dysplasia (late), retinitis pigmentosa 15, gonadal dysgenesis (XY female type), Nance-Horan cataract-dental syndrome, retinoschisis, Charcot-Marie-Tooth disease, F-cell production, hypomagnesemia, keratosis follicularis spinulosa decalvans, Coffin-Lowry

syndrome, corneal dermoids, hypophosphatemia, agammaglobulinemia, Aicardi symdrome, hereditary hypophosphatemia II, mental retardation (non-dysmorphic), Opitz G syndrome, pigment disorder (reticulate), dosagesensitive sex reversal, adrenal hypoplasia, retinitis pigmentosa-6, deafness 4 (congenital sensorineural) and Wilson-Turner syndrome. The positions of the genes involved in these disease states are documented in the OMIM gene map which is edited by Dr. Victor McKusick and colleagues at Johns Hopkins University (USA).

BIOASSAYS TO DETERMINE THE FUNCTION OF VEGF-D

5

10

25

30

Other assays are conducted to evaluate whether VEGF-D has similar activities to VEGF in relation to endothelial cell function, angiogenesis and wound healing. Further assays may also be performed, depending on the results of receptor binding distribution studies.

I. Assays of Endothelial Cell Function

- Endothelial cell proliferation

 Endothelial cell growth assays are performed by methods well known in the art, eg. those of Ferrara & Henzel (1989), Gospodarowicz et al (1989), and/or Claffey et al, Biochim. Biophys. Acta, 1995 1246 1-9.
 - The effect of VEGF-D on adhesion of polmorphonuclear granulocytes to endothelial cells is tested.
 - c) Chemotaxis

 The standard Boyden chamber chemotaxis assay is used to test the effect of VEGF-D on chemotaxis.
- 35 d) Plasminogen activator assay

 Endothelial cells are tested for the effect of

 VEGF-D on plasminogen activator and plasminogen activator

inhibitor production, using the method of Pepper et al (1991).

e) Endothelial cell Migration assay

The ability of VEGF-D to stimulate endothelial cells to migrate and form tubes is assayed as described in Montesano et al (1986). Alternatively, the three-dimensional collagen gel assay described by Joukov et al (1996) or a gelatinized membrane in a modified Boyden chamber (Glaser et al, 1980) may be used.

II Angiogenesis Assay

The ability of VEGF-D to induce an angiogenic response in chick chorioallantoic membrane is tested as described in Leung et al (1989). Alternatively the rat cornea assay of Rastinejad et al (1989) may be used; this is an accepted method for assay of in vivo angiogenesis, and the results are readily transferrable to other in vivo systems.

20

25

15

5

10

III Wound Healing

The ability of VEGF-D to stimulate wound healing is tested in the most clinically relevant model available, as described in Schilling et al (1959) and utilised by Hunt et al (1967).

IV The Haemopoietic System

A variety of in vitro and in vivo assays using specific cell populations of the haemopoietic system are known in the art, and are outlined below. In particular a variety of in vitro murine stem cell assays using fluorescence-activated cell sorter purified cells are particularly convenient:

35 a) Repopulating Stem Cells

These are cells capable of repopulating the bone marrow of lethally irradiated mice, and have the Lin,

Rh^{h1}, Ly-6A/E⁺, c-kit⁺ phenotype. VEGF-D is tested on these cells either alone, or by co-incubation with other factors, followed by measurement of cellular proliferation by ³H-thymidine incorporation.

5

10

20

25

30

35

b) Late Stage Stem Cells

These are cells that have comparatively little bone marrow repopulating ability, but can generate D13 CFU-S. These cells have the Lin⁻, Rh^{h1}, Ly-6A/E⁺, c-kit⁺ phenotype. VEGF-D is incubated with these cells for a period of time, injected into lethally irradiated recipients, and the number of D13 spleen colonies enumerated.

15 c) Progenitor-Enriched Cells

These are cells that respond in vitro to single growth factors and have the Lin-, Rh^{h1}, Ly-6A/E+, c-kit+ phenotype. This assay will show if VEGF-D can act directly on haemopoietic progenitor cells. VEGF-D is incubated with these cells in agar cultures, and the number of colonies present after 7-14 days is counted.

V Atherosclerosis

Smooth muscle cells play a crucial role in the development or initiation of atherosclerosis, requiring a change of their phenotype from a contractile to a synthetic state. Macrophages, endothelial cells, T lymphocytes and platelets all play a role in the development of atherosclerotic plaques by influencing the growth and phenotypic modulations of smooth muscle cell. An in vitro assay using a modified Rose chamber in which different cell types are seeded on to opposite coverslips measures the proliferative rate and phenotypic modulations of smooth muscle cells in a multicellular environment, and is used to assess the effect of VEGF-D on smooth muscle cells.

VI Metastasis

The ability of VEGF-D to inhibit metastasis is assayed using the Lewis lung carcinoma model, for example using the method of Cao et al (1995).

5

VII VEGF-D in Other Cell Types

The effects of VEGF-D on proliferation, differentiation and function of other cell types, such as liver cells, cardiac muscle and other cells, endocrine cells and osteoblasts can readily be assayed by methods known in the art, such as ³H-thymidine uptake by *in vitro* cultures. Expression of VEGF-D in these and other tissues can be measured by techniques such as Northern blotting and hybridization or by *in situ* hybridization.

15

20

25

30

35

10

VIII Construction of VEGF-D Variants and Analogues

VEGF-D is a member of the PDGF family of growth factors which exhibits a high degree of homology to the other members of the PDGF family. VEGF-D contains eight conserved cysteine residues which are characteristic of this family of growth factors. These conserved cysteine residues form intra-chain disulfide bonds which produce the cysteine knot structure, and inter-chain disulfide bonds that form the protein dimers which are characteristic of members of the PDGF family of growth factors. VEGF-D will interact with protein tyrosine kinase growth factor receptors.

In contrast to proteins where little or nothing is known about the protein structure and active sites needed for receptor binding and consequent activity, the design of active mutants of VEGF-D is greatly facilitated by the fact that a great deal is known about the active sites and important amino acids of the members of the PDGF family of growth factors.

Published articles elucidating the structure/activity relationships of members of the PDGF family of growth factors include for PDGF: Oestman et al,

J. Biol. Chem., 1991 <u>266</u> 10073-10077; Andersson et al, J. Biol. Chem., 1992 <u>267</u> 11260-1266; Oefner et al, EMBO J., 1992 <u>11</u> 3921-3926; Flemming et al, Molecular and Cell Biol., 1993 <u>13</u> 4066-4076 and Andersson et al, Growth Factors, 1995 <u>12</u> 159-164; and for VEGF: Kim et al, Growth Factors, 1992 <u>7</u> 53-64; Pötgens et al, J. Biol. Chem., 1994 <u>269</u> 32879-32885 and Claffey et al, Biochem. Biophys. Acta, 1995 <u>1246</u> 1-9. From these publications it is apparent that because of the eight conserved cysteine residues, the members of the PDGF family of growth factors exhibit a characteristic knotted folding structure and dimerization, which result in formation of three exposed loop regions at each end of the dimerized molecule, at which the active receptor binding sites can be expected to be located.

5

10

15

20

25

30

35

Based on this information, a person skilled in the biotechnology arts can design VEGF-D mutants with a very high probability of retaining VEGF-D activity by conserving the eight cysteine residues responsible for the knotted folding arrangement and for dimerization, and also by conserving, or making only conservative amino acid substitutions in the likely receptor sequences in the loop 1, loop 2 and loop 3 region of the protein structure.

The formation of desired mutations at specifically targeted sites in a protein structure is considered to be a standard technique in the arsenal of the protein chemist (Kunkel et al, Methods in Enzymol., 1987 154 367-382). Examples of such site-directed mutagenesis with VEGF can be found in Pötgens et al, J. Biol. Chem., 1994 269 32879-32885 and Claffey et al, Biochim. Biophys. Acta, 1995 1246 1-9. Indeed, site-directed mutagenesis is so common that kits are commercially available to facilitate such procedures (eg. Promega 1994-1995 Catalog., Pages 142-145).

The endothelial cell proliferating activity of VEGF-D mutants can be readily confirmed by well established screening procedures. For example, a

procedure analogous to the endothelial cell mitotic assay described by Claffey et al, (Biochim. Biophys. Acta., 1995 1246 1-9) can be used. Similarly the effects of VEGF-D on proliferation of other cell types, on cellular differentiation and on human metastasis can be tested using methods which are well known in the art.

It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding, various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of the inventive concept disclosed in this specification.

References cited herein are listed on the following pages, and are incorporated herein by this reference.

5

REFERENCES

Achen, M.G., Clauss, M., Schnürch, H. and Risau, W. Differentiation, 1995 59 15-24

Andersson, M., Östman, A., Bäckström, G., Hellman, U., George-Nascimento, C., Westermark, B. and Heldin, C-H.

J. Biol. Chem., 1992 267 11260-1266

Anderson, M, Östman, A., Kreysing, J., Bäckström, G. van de Poll, M. and Heldin, C-H. Growth Factors, 1995 12 159-164

Aruffo, A. and Seed, B. Proc. Natl. Acad. Sci. USA., 1987 84 8573-8577

Callen, D.F., Baker, E., Eyre, H.J., Chermos, J.E., Bell, J.A. and Sutherland, G.R.

Ann. Genet., 1990 33 219-221

Claffey, K.P., Senger, D.R., Spiegelman, B.M. Biochem. Biophys. Acta, 1995 1246 1-9

Cao, Y. Chen, C., Weatherbee, J.A., Tsang, M. and Folkman, J. J. Exp. Med., 1995 182 2069-2077

Copeland, N.G. and Jenkins N.A. Trends Genet., 1991 7 113-118

Ferrara, N. & Henzel, W.J.

Biochem. Biophys. Res. Commun., 1989 <u>161</u> 851-858

Flemming, S.V., Andersson, M., Westermark, B., Heldin, C-H. and Östman, A.

Molecular and Cell Biol., 1993 13 4066-4076

Glaser, B.M. and D'Amore, P.A. Nature, 1980 288 483-484

Gospodarowicz, D., Abraham, J.A., Schilling, J. Proc. Natl. Acad. Sci. USA, 1989 86 7311-7315

Haefliger, J-A., Bruzzone, R., Jenkins, N.A., Gilbert, D.J., Copeland, N.G. and Paul D.L.

1992 J. Biol. Chem., 1992 267 2057-2064

Holloway. A.J., Della N.G., Fletcher, C.F., Largaespada, D.A., Copeland, N.G., Jenkins, N.A. and Bowtell D.D.L. Genomics, 1997 41 160-168

Hunt et al

Am. J. Surgery, 1967 114 302-307

Jenkins, N.A., Copeland, N.G., Taylor, B.A. and Lee, B.K. J. Virol. 1982 43 26-36

Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N. and Alitalo, K. EMBO Journal, 1996 15 290-298

Kim, K.J., Li, B., Houck, K. Winner, J. and Ferrara, N.
Growth Factors, 1992 7 53-64

Kunkel, T.A., Roberts, J.D. and Zakour, R.A.
Methods in Enzymol., 1987 154 367-382

Leung, D.W., Cachianes, G., Kuang, W-J., Goeddel, D.V. and Ferrara, N.

Science, 1989 246 1306-1309

Miles, A.A. and Miles, E.M. J. Physiol. (London), 1952 <u>118</u> 228-257

Montesano, R., Vassalli, J.D., Baird, A., Guillemin, R. and Orci, L.

Proc. Natl. Acad. Sci. USA, 1986 83 7297-7301

Oefner, C., D'Arcy, A., Winkler, F.K., Eggimann, B. and Hosang, M.

EMBO Journal, 1992 11 3921-3926

Oelrichs, R.B., Reid, H.H., Bernard, O., Ziemiecki, A. and Wilks, A.F.

Oncogene, 1993 8 11-18

Oestman, A., Andersson, M., Hellman, U. and Heldin, C-H. J. Biol. Chem., 1991 <u>266</u> 10073-10077

Olofsson, B., Pajusola, K., Kaipainen, A., von Euler, G., Joukov, V., Saksela, O., Orpana, A., Pettersson, R.F., Alitalo, K. and Eriksson, U.

Proc. Natl. Acad. Sci. USA., 1996 93 2576-2581

Pepper, M.S., Ferrara, N. Orci, L. and Montesano. R. Biochem. Biophys. Res. Commun., 1991 181 902-906

Pötgens, A.J., Lubsen, N.H., van Altena, M.C., Vermeulen, R., Bakker, A., Schoenmakers, J.G.G., Ruiter, D.J. and de Waal, R.M.W.

J. Biol. Chem., 1994 269 32879-32885

Rastinejad, F., Plverini, P.J. and Bouck, N.P. Cell, 1989 <u>56</u> 345-355

Sambrook, J., Fritsch, E.F. and Maniatis, T.
Molecular Cloning. A Laboratory Manual. Second edition. Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, New York

Schilling et al Surgery, 1959 <u>46</u> 702-710

Strawn, L.M., McMahon, G., App, H., Schreck, R., Kuchler, W.R., Longhi, M.P., Hui, T.H., Tang, C., Levitzki, A., Gazit, A., Chen, I., Keri, G., Orfi, L., Risau, W., Flamme, I., Ullrich, A., Hirth, K.P. and Shawver, L.K.

Cancer Res., 1996 56 3540-3545

SEQUENCE LISTING

(1)	GENERAL	INFORMATION:
-----	---------	--------------

- (i) APPLICANT: LUDWIG INSTITUTE FOR CANCER RESEARCH
- (ii) TITLE OF INVENTION: GROWTH FACTOR
- (iii) NUMBER OF SEQUENCES: 11
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Evenson, McKeown, Edwards & Lenahan P.L.L.C.
 - (B) STREET: 1200 G Street, NW, Suite 700
 - (C) CITY: Washington
 - (D) STATE: DC
 - (E) COUNTRY: United States of America
 - (F) ZIP: 20005
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: EVANS, Joseph D.
 (C) REFERENCE/DOCKET NUMBER: 1064/42983PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 628-8800
 - (B) TELEFAX: (202) 628-8844
 - (C) TELEX: N/A
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2846 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Human Breast
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GGAA	TTCAGT	GAAGTAAGAA	AGACAAAGTG	TTCATTGGAG	ATTTTTAGTA	AGGGCCAAC	60
AGAG	CTGCTA	AAGTCATGCT	TCACTTAACG	ATGGGGATAT	GTTCGGAGAA	ATGCATTGTT	120
AGGT	GATTTT	GTCGTTGTGC	AAGCATCTTA	GAGTACACTT	AGACAAACCT	AGCTGGTATA	180
ACCT	AGGTGT	GTAGTAGGAT	ATATGGTATA	GCCTATTGTT	CCTAGGCTAC	AAACCCATAC	240
AGCA	TGTTCC	TGTACTGAAT	ACTGAGGCAA	CTGCAACACC	GTGGTGAGTA	TTTGTGTATC	300
TAAA	CATACC	TAAACATAGA	AAAGATACAG	TAAAAATATG	GCATTATAGT	CTTATGGGAC	360

TACTGTCATA	CATACAGTCC	ATATATTGTT	GACTGTGTAA	TGTTGACCTG	AATGTCATTA	420
TGTGGCAGGC	ACATGACTGT	GTCGCTAACC	TTTGCACAAG	ATTACTGTAG	GATTACATGA	480
GATAGTTGTA	AATAATTGGT	GGGGTACTGG	GCACCTAGTA	GGTATGCATA	CATGTTCACC	540
ATCATTATGG	TTGTTTTAAA	TCACCTAACC	CAGGCCCTGC	ACATAGTAAG	ACATCAACAA	600
ATTGTAGCTG	CTACTATTTT	GCGCATCTAA	TCTTAATATC	ATTTATTTTG	TAGTCCTTGG	660
ATGTTCCCTC	CTTTATGACT	TCTTTTTTT	TTGTTGTCCT	TCCTTTAGCC	CTCCATCCTC	720
TACAGCTCAG	CATCAGAACA	CTCTCTTTTT	AGACTCCGAT	ATGGGGTCCT	CCAAGAAAGT	780
TACTCTCTCA	GTGCTCAGCC	GGGAGCAGTC	GGAAGGGGTT	GGAGCGAGGG	TCCGGAGAAG	840
CATTGGCAGA	CCCGAGTTAA	AAAATCTGGA	TCCGTTTTTA	CTGTTTGATG	AATTTAAAGG	900
AGGTAGACCA	GGAGGATTTC	CTGATCATCC	ACATCGAGGT	TTTGAAACAG	TATCCTACCT	960
CCTGGAAGGG	GGCAGCATGG	CCCATGAAGA	CTTCTGTGGA	CACACTGGTA	AAATGAACCC	1020
AGGAGATTTG	CAGTGGATGA	CTGCGGGCCG	GGGCATTCTG	CACGCTGAGA	TGCCTTGCTC	1080
AGAGGAGCCA	GCCCATGGCC	TACAACTGTG	GGTTAATTTG	AGGAGCTCAG	AGAAGATGGT	1140
GGAGCCTCAG	TACCAGGAAC	TGAAAAGTGA	AGAAATCCCT	AAACCCAGTA	AGGATGGTGT	1200
GACAGTTGCT	GTCATTTCTG	GAGAAGCCCT	GGGAATAAAG	TCCAAGGTTT	ACACTCGCAC	1260
ACCAACCTTA	TATTTGGACT	TCAAATTGGA	CCCAGGAGCC	AAACATTCCC	AACCTATCCC	1320
TAAAGGGTGG	ACAAGCTTCA	TTTACACGAT	ATCTGGAGAT	GTGTATATTG	CCCTCTCTAT	1380 °
ATCCCAGCAC	AGGTATGCCC	AGGGCAGGGT	GCCTTTCAGC	TTACAGAACA	TTCAGTGAGG	1440
GAAGAGAATA	TGAACACCAG	TCATGACACA	TCCTGTGCAC	AGATGAAAGT	CCAGGCACCA	1500
TTATGTGTTT	TGATACCTCG	CTAAGACGTT	GGCAACCTCC	ATACTGATAA	AGGGATGGAG	1560
CTACAGTGGA	CTCCAAGGGG	AGCAGGAATC	TGCCTATCTC	CTGGGAGAAG	GAAATGGAAG	1620
GAGGGCCCGA	TGATGCACAA	CAAAAAATAG	AACCTCATCA	CACAGCAGTG	CTTGGAGAAG	1680
GTGACAGTGT	CCAAGTGGAG	AACAAGGATO	CCAAGAGAAG	CCACTTTGTC	TTAATTGCTG	1740
GGGAGCCATT	AAGAGAACCA	GTTATCCAAC	ATGCGATCAT	CTCAGTCCAC	ATTGGAACGA	1800
TCTGAACAGC	AGATCAGGGC	TGCTTCTAGT	TTGGAGGAAC	TACTTCGAAT	TACTCACTCT	1860
GAGGACTGGA	AGCTGTGGAG	ATGCAGGCTG	AGGCTCAAAA	GTTTTACCAG	TATGGACTCT	1920
CGCTCAGCAT	CCCATCGGTC	CACTAGGTT	GCGGCAACTT	TCTATGACAT	TGAAACACTA	1980
AAAGTTATAG	ATGAAGAATG	GCAAAGAACI	CAGTGCAGCC	CTAGAGAAA	GTGCGTGGAG	2040
GTGGCCAGTG	AGCTGGGGAA	GAGTACCAA	C ACATTCTTCA	AGCCCCCTTC	TGTGAACGTG	2100
TTCCGATGT	GTGGCTGTT	CAATGAAGAG	G AGCCTTATCT	GTATGAACAC	CAGCACCTCG	2160
TACATTTCC	A AACAGCTCTT	TGAGATATC	A GTGCCTTTGA	CATCAGTACO	TGAATTAGTG	2220
CCTGTTAAAC	TTGCCAATC	A TACAGGTTG	r aagtgcttgo	CAACAGCCC	CCGCCATCCA	2280
TACTCAATT	A TCAGAAGAT	CATCCAGAT	C CCTGAAGAA	ATCGCTGTT	CCATTCCAAG	2340
AAACTCTGT	CTATTGACA	r gctatggga'	r agcaacaaa	GTAAATGTG	TTTGCAGGAG	2400

GAAAATCCAC	TCGCTGGAAC	AGAAGACCAC	TCTCATCTCC	AGGAACCAGC	TCTCTGTGGG	2460
CCACACATGA	TGTTTGACGA	AGATCGTTGC	GAGTGTGTCT	GTAAAACACC	ATGTCCCAAA	2520
GATCTAATCC	AGCACCCCAA	AAACTGCAGT	TGCTTTGAGT	GCAAAGAAAG	TCTGGAGACC	2580
TGCTGCCAGA	AGCACAAGCT	ATTTCACCCA	GACACCTGCA	GCTGTGAGGA	CAGATGCCCC	2640
TTTCATACCA	GACCATGTGC	AAGTGGCAAA	ACAGCATGTG	CAAAGCATTG	CCGCTTTCCA	2700
AAGGAGAAAA	GGGCTGCCCA	GGGGCCCCAC	AGCCGAAAGA	ATCCTTGATT	CAGCGTTCCA	2760
AGTTCCCCAT	CCCTGTCATT	TTTAACAGCA	TGCTGCTTTG	CCAAGTTGCT	GTCACTGTTT	2820
TTTTCCCAGG	TGTTAAAAAA	ААААА				2846

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Pro Xaa Cys Val Xaa Xaa Xaa Arg Cys Xaa Gly Cys Cys 1

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 325 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Human Breast
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Arg Ser Ser Gln Ser Thr Leu Glu Arg Ser Glu Gln Gln Ile Arg

Ala Ala Ser Ser Leu Glu Glu Leu Leu Arg Ile Thr His Ser Glu Asp 20 25 30

Trp Lys Leu Trp Arg Cys Arg Leu Arg Leu Lys Ser Phe Thr Ser Met

Asp Ser Arg Ser Ala Ser His Arg Ser Thr Arg Phe Ala Ala Thr Phe 50 55 60

Tyr Asp Ile Glu Thr Leu Lys Val Ile Asp Glu Glu Trp Gln Arg Thr 65 70 75 80

- 57 -

Gln Cys Ser Pro Arg Glu Thr Cys Val Glu Val Ala Ser Glu Leu Gly 85 Lys Ser Thr Asn Thr Phe Phe Lys Pro Pro Cys Val Asn Val Phe Arg 100 105 110 Cys Gly Gly Cys Cys Asn Glu Glu Ser Leu Ile Cys Met Asn Thr Ser 120 125 115 Thr Ser Tyr Ile Ser Lys Gln Leu Phe Glu Ile Ser Val Pro Leu Thr 135 130 Ser Val Pro Glu Leu Val Pro Val Lys Val Ala Asn His Thr Gly Cys 150 155 160 145 Lys Cys Leu Pro Thr Ala Pro Arg His Pro Tyr Ser Ile Ile Arg Arg 170 Ser Ile Gln Ile Pro Glu Glu Asp Arg Cys Ser His Ser Lys Lys Leu 185 Cys Pro Ile Asp Met Leu Trp Asp Ser Asn Lys Cys Lys Cys Val Leu 200 Gln Glu Glu Asn Pro Leu Ala Gly Thr Glu Asp His Ser His Leu Gln 220 215 Glu Pro Ala Leu Cys Gly Pro His Met Met Phe Asp Glu Asp Arg Cys 230 235 240 225 Glu Cys Val Cys Lys Thr Pro Cys Pro Lys Asp Leu Ile Gln His Pro 250 245 255 Lys Asn Cys Ser Cys Phe Glu Cys Lys Glu Ser Leu Glu Thr Cys Cys 265 270 260 Gln Lys His Lys Leu Phe His Pro Asp Thr Cys Ser Cys Glu Asp Arg 285 280 275 Cys Pro Phe His Thr Arg Pro Cys Ala Ser Gly Lys Thr Ala Cys Ala 300 295 290 Lys His Cys Arg Phe Pro Lys Glu Lys Arg Ala Ala Gln Gly Pro His 320 310 315 305 Ser Arg Lys Asn Pro 325

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2029 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Human Lung
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GTTGGGTTCC AGCTTTCTGT AGCTGTAAGC ATTGGTGGCC ACACCACCTC CTTACAAAGC

AACTAGAACC	TGCGGCATAC	ATTGGAGAGA	TAATTTTTTT	TTTCTGGACA	TGAAGTAAAT	120
TTAGAGTGCT	TTCTAATTTC	AGGTAGAAGA	CATGTCCACC	TTCTGATTAT	TTTTGGAGAA	180
CATTTTGATT	TTTTTCATCT	CTCTCTCCCC	ACCCCTAAGA	TTGTGCAAAA	AAAGCGTACC	240
TTGCCTAATT	GAAATAATTT	CATTGGATTT	TGATCAGAAC	TGATTATTTG	GTTTTCTGTG	300
TGAAGTTTTG	AGGTTTCAAA	CTTTCCTTCT	GGAGAATGCC	TTTTGAAACA	ATTTTCTCTA	360
GCTGCCTGAT	GTCAACTGCT	TAGTAATCAG	TGGATATTGA	AATATTCAAA	ATGTACAGAG	420
AGTGGGTAGT	GGTGAATGTT	TTCATGATGT	TGTACGTCCA	GCTGGTGCAG	GGCTCCAGTA	480
ATGAACATGG	ACCAGTGAAG	CGATCATCTC	AGTCCACATT	GGAACGATCT	GAACAGCAGA	540
TCAGGGCTGC	TTCTAGTTTG	GAGGAACTAC	TTCGAATTAC	TCACTCTGAG	GACTGGAAGC	600
TGTGGAGATG	CAGGCTGAGG	CTCAAAAGTT	TTACCAGTAT	GGACTCTCGC	TCAGCATCCC	660
ATCGGTCCAC	TAGGTTTGCG	GCAACTTTCT	ATGACATTGA	AACACTAAAA	GTTATAGATG	720
AAGAATGGCA	AAGAACTCAG	TGCAGCCCTA	GAGAAACGTG	CGTGGAGGTG	GCCAGTGAGC	780
TGGGGAAGAG	TACCAACACA	TTCTTCAAGC	CCCCTTGTGT	GAACGTGTTC	CGATGTGGTG	840
GCTGTTGCAA	TGAAGAGAGC	CTTATCTGTA	TGAACACCAG	CACCTCGTAC	ATTTCCAAAC	900
AGCTCTTTGA	GATATCAGTG	CCTTTGACAT	CAGTACCTGA	ATTAGTGCCT	GTTAAAGTTG	960
CCAATCATAC	AGGTTGTAAG	TGCTTGCCAA	CAGCCCCCCG	CCATCCATAC	TCAATTATCA	1020
GAAGATCCAT	CCAGATCCCT	GAAGAAGATC	GCTGTTCCCA	TTCCAAGAAA	CTCTGTCCTA	1080
TTGACATGCT	ATGGGATAGC	AACAAATGTA	AATGTGTTTT	GCAGGAGGAA	AATCCACTTG	1140
CTGGAACAGA	AGACCACTCT	CATCTCCAGG	AACCAGCTCT	CTGTGGGCCA	CACATGATGT	1200
TTGACGAAGA	TCGTTGCGAG	TGTGTCTGTA	AAACACCATG	TCCCAAAGAT	CTAATCCAGC	1260
ACCCCAAAAA	CTGCAGTTGC	TTTGAGTGCA	AAGAAAGTCT	GGAGACCTGC	TGCCAGAAGC	1320
ACAAGCTATT	TCACCCAGAC	ACCTGCAGCT	GTGAGGACAG	ATGCCCCTTT	CATACCAGAC	1380
CATGTGCAAG	TGGCAAAACA	GCATGTGCAA	AGCATTGCCG	CTTTCCAAAG	GAGAAAAGGG	1440
CTGCCCAGGG	GCCCCACAGC	CGAAAGAATC	CTTGATTCAG	CGTTCCAAGT	TCCCCATCCC	1500
TGTCATTTTT	AACAGCATGC	TGCTTTGCCA	AGTTGCTGTC	ACTGTTTTT	TCCCAGGTGT	1560
ТАААААААА	ATCCATTTA	CACAGCACCA	CAGTGAATCC	AGACCAACCT	TCCATTCACA	1620
CCAGCTAAGG	AGTCCCTGGT	TCATTGATGG	ATGTCTTCTA	GCTGCAGATG	CCTCTGCGCA	1680
CCAAGGAATG	GAGAGGAGGG	GACCCATGTA	ATCCTTTTGT	TTAGTTTTGT	TTTTGTTTTT	1740
TGGTGAATGA	GAAAGGTGTG	CTGGTCATGG	AATGGCAGGT	GTCATATGAC	TGATTACTCA	1800
GAGCAGATGA	GGAAAACTGT	AGTCTCTGAG	TCCTTTGCTA	ATCGCAACTC	TTGTGAATTA	1860
TTCTGATTCT	TTTTTATGCA	GAATTTGATT	CGTATGATCA	GTACTGACTT	TCTGATTACT	1920
GTCCAGCTTA	TAGTCTTCCA	GTTTAATGAA	CTACCATCTG	ATGTTTCATA	TTTAAGTGTA	1980
TTTAAAGAAA	ATAAACACCA	TTATTCAAGC	СААААААА	АААААААА		2029

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 354 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Human Lung
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Tyr Arg Glu Trp Val Val Val Asn Val Phe Met Met Leu Tyr Val 1 5 10 15

Gln Leu Val Gln Gly Ser Ser Asn Glu His Gly Pro Val Lys Arg Ser 20 25 30

Ser Gln Ser Thr Leu Glu Arg Ser Glu Gln Gln Ile Arg Ala Ala Ser 35 40 45

Ser Leu Glu Glu Leu Leu Arg Ile Thr His Ser Glu Asp Trp Lys Leu 50 60

Trp Arg Cys Arg Leu Arg Leu Lys Ser Phe Thr Ser Met Asp Ser Arg 65 70 75 80

Ser Ala Ser His Arg Ser Thr Arg Phe Ala Ala Thr Phe Tyr Asp Ile 85 90 95

Glu Thr Leu Lys Val Ile Asp Glu Glu Trp Gln Arg Thr Gln Cys Ser 100 105 110

Pro Arg Glu Thr Cys Val Glu Val Ala Ser Glu Leu Gly Lys Ser Thr 115 120 125

Asn Thr Phe Phe Lys Pro Pro Cys Val Asn Val Phe Arg Cys Gly Gly 130 135 140

Cys Cys Asn Glu Glu Ser Leu Ile Cys Met Asn Thr Ser Thr Ser Tyr 145 150 150

Ile Ser Lys Gln Leu Phe Glu Ile Ser Val Pro Leu Thr Ser Val Pro 165 170 175

Glu Leu Val Pro Val Lys Val Ala Asn His Thr Gly Cys Lys Cys Leu 180 185 190

Pro Thr Ala Pro Arg His Pro Tyr Ser Ile Ile Arg Arg Ser Ile Gln
195 200 205

Ile Pro Glu Glu Asp Arg Cys Ser His Ser Lys Lys Leu Cys Pro Ile 210 215 220

Asp Met Leu Trp Asp Ser Asn Lys Cys Lys Cys Val Leu Gln Glu Glu 225 230 235 240

Asn Pro Leu Ala Gly Thr Glu Asp His Ser His Leu Gln Glu Pro Ala 245 250 255

Leu Cys Gly Pro His Met Met Phe Asp Glu Asp Arg Cys Glu Cys Val 260 265 270

- 60 -

Cys Lys Thr Pro Cys Pro Lys Asp Leu Ile Gln His Pro Lys Asn Cys 275 280 285

Ser Cys Phe Glu Cys Lys Glu Ser Leu Glu Thr Cys Cys Gln Lys His 290 295 300

Lys Leu Phe His Pro Asp Thr Cys Ser Cys Glu Asp Arg Cys Pro Phe 305 310 315 320

His Thr Arg Pro Cys Ala Ser Gly Lys Thr Ala Cys Ala Lys His Cys 325 330 335

Arg Phe Pro Lys Glu Lys Arg Ala Ala Gln Gly Pro His Ser Arg Lys 340 345 350

Asn Pro

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1325 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Mouse Lung
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

60 GGAGAATGCC TTTTGCAACA CTTTTCAGTA GCTGCCTGGA AACAACTGCT TAGTCATCGG TAGACATTTA AAATATTCAA AATGTATGGA GAATGGGGAA TGGGGGAATAT CCTCATGATG 120 TTCCATGTGT ACTTGGTGCA GGGCTTCAGG AGCGAACATG GACCAGTGAA GGATTTTTCT 180 TTTGAGCGAT CATCCCGGTC CATGTTGGAA CGATCTGAAC AACAGATCCG AGCAGCTTCT 240 300 AGTTTGGAGG AGTTGCTGCA AATCGCGCAC TCTGAGGACT GGAAGCTGTG GCGATGCCGG TTGAAGCTCA AAAGTCTTGC CAGTATGGAC TCACGCTCAG CATCCCATCG CTCCACCAGA 360 TTTGCGGCAA CTTTCTATGA CACTGAAACA CTAAAAGTTA TAGATGAAGA ATGGCAGAGG 420 ACCCAATGCA GCCCTAGAGA GACATGCGTA GAAGTCGCCA GTGAGCTGGG GAAGACAACC 480 AACACATTCT TCAAGCCCCC CTGTGTAAAT GTCTTCCGGT GTGGAGGCTG CTGCAACGAA 540 GAGGGTGTGA TGTGTATGAA CACAAGCACC TCCTACATCT CCAAACAGCT CTTTGAGATA 600 TCAGTGCCTC TGACATCAGT GCCCGAGTTA GTGCCTGTTA AAATTGCCAA CCATACGGGT 660 TGTAAGTGCT TGCCCACGGG CCCCCGCCAT CCTTACTCAA TTATCAGAAG ATCCATTCAG 720 ACCCCAGAAG AAGATGAATG TCCTCATTCC AAGAAACTCT GTCCTATTGA CATGCTGTGG 780 GATAACACCA AATGTAAATG TGTTTTGCAA GACGAGACTC CACTGCCTGG GACAGAAGAC 840 CACTCTTACC TCCAGGAACC CACTCTCTGT GGACCGCACA TGACGTTTGA TGAAGATCGC 900 TGTGAGTGCG TCTGTAAAGC ACCATGTCCG GGAGATCTCA TTCAGCACCC GGAAAACTGC 960

AGTTGCTTTG AGTGCAAAGA AAGTCTGGAG AGCTGCTGCC AAAAGCACAA GATTTTCAC 1020
CCAGACACCT GCAGCTGTGA GGACAGATGT CCTTTTCACA CCAGAACATG TGCAAGTAGA 1080
AAGCCAGCCT GTGGAAAGCA CTGGCGCTTT CCAAAGGAGA CAAGGGCCCA GGGACTCTAC 1140
AGCCAGGAGA ACCCTTGATT CAACTTCCTT TCAAGTCCCC CCATCTCTGT CATTTTAAAC 1200
AGCTCACTGC TTTGTCAAGT TGCTGTCACT GTTGCCCACT ACCCCTTGAA CATGTGCAAA 1260
CACAGACACA CACACACAC CACACAGA GCAACTAGAA TTATGTTTTC TAGGTGCTGC 1320
CTAAG

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1135 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Mouse Lung
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AAACTTTGCT TCTGGAGAAT GCCTTTTGCA ACACTTTTCA GTAGCTGCCT GGAAACAACT 60 GCTTAGTCAT CGGTAGACAT TTAAAATATT CAAAATGTAT GGAGAATGGG GAATGGGGAA 120 TATCCTCATG ATGTTCCATG TGTACTTGGT GCAGGGCTTC AGGAGCGAAC ATGGACCAGT 180 GAAGCGATCA TCCCGGTCCA TGTTGGAACG ATCTGAACAA CAGATCCGAG CAGCTTCTAG 240 TTTGGAGGAG TTGCTGCAAA TCGCGCACTC TGAGGACTGG AAGCTGTGGC GATGCCGGTT 300 GAAGCTCAAA AGTCTTGCCA GTATGGACTC ACGCTCAGCA TCCCATCGCT CCACCAGATT 360 TGCGGCAACT TTCTATGACA CTGAAACACT AAAAGTTATA GATGAAGAAT GGCAGAGGAC 420 CCAATGCAGC CCTAGAGAGA CATGCGTAGA AGTCGCCAGT GAGCTGGGGA AGACAACCAA 480 CACATTCTTC AAGCCCCCT GTGTAAATGT CTTCCGGTGT GGAGGCTGCT GCAACGAAGA 540 GGGTGTGATG TGTATGAACA CAAGCACCTC CTACATCTCC AAACAGCTCT TTGAGATATC 600 AGTGCCTCTG ACATCAGTGC CCGAGTTAGT GCCTGTTAAA ATTGCCAACC ATACGGGTTG 660 TAAGTGCTTG CCCACGGGCC CCCGCCATCC TTACTCAATT ATCAGAAGAT CCATTCAGAC 720 CCCAGAAGAA GATGAATGTC CTCATTCCAA GAAACTCTGT CCTATTGACA TGCTGTGGGA 780 TAACACCAAA TGTAAATGTG TTTTGCAAGA CGAGACTCCA CTGCCTGGGA CAGAAGACCA 840 CTCTTACCTC CAGGAACCCA CTCTCTGTGG ACCGCACATG ACGTTTGATG AAGATCGCTG 900 TGAGTGCGTC TGTAAAGCAC CATGTCCGGG AGATCTCATT CAGCACCCGG AAAACTGCAG 960 TTGCTTTGAG TGCAAAGAAA GTCTGGAGAG CTGCTGCCAA AAGCACAAGA TTTTTCACCC 1020 AGACACCTGC AGGTCAATGG TCTTTTCGCT TTCCCCTTAA CTTGGTTTAC TGATGACATT 1080

1135

TAAAGGACAT ACTAATCTGA TCTGTTCAGG CTCTTTTCTC TCAGAGTCCA AGCAC

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 358 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Mouse Lung
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Tyr Gly Glu Trp Gly Met Gly Asn Ile Leu Met Met Phe His Val

10 15

Tyr Leu Val Gln Gly Phe Arg Ser Glu His Gly Pro Val Lys Asp Phe 20 25 30

Ser Phe Glu Arg Ser Ser Arg Ser Met Leu Glu Arg Ser Glu Gln Gln 35

Ile Arg Ala Ala Ser Ser Leu Glu Glu Leu Leu Gln Ile Ala His Ser 50 55 60

Glu Asp Trp Lys Leu Trp Arg Cys Arg Leu Lys Leu Lys Ser Leu Ala
65 70 75 80

Ser Met Asp Ser Arg Ser Ala Ser His Arg Ser Thr Arg Phe Ala Ala 85 90 95

Thr Phe Tyr Asp Thr Glu Thr Leu Lys Val Ile Asp Glu Glu Trp Gln
100 105 110

Arg Thr Gln Cys Ser Pro Arg Glu Thr Cys Val Glu Val Ala Ser Glu
115 120 125

Leu Gly Lys Thr Thr Asn Thr Phe Phe Lys Pro Pro Cys Val Asn Val 130 135 140

Phe Arg Cys Gly Gly Cys Cys Asn Glu Glu Gly Val Met Cys Met Asn 145 150 155 160

Thr Ser Thr Ser Tyr Ile Ser Lys Gln Leu Phe Glu Ile Ser Val Pro 165 170 175

Leu Thr Ser Val Pro Glu Leu Val Pro Val Lys Ile Ala Asn His Thr 180 185 190

Gly Cys Lys Cys Leu Pro Thr Gly Pro Arg His Pro Tyr Ser Ile Ile 195 200 205

Arg Arg Ser Ile Gln Thr Pro Glu Glu Asp Glu Cys Pro His Ser Lys 210 220

Lys Leu Cys Pro Ile Asp Met Leu Trp Asp Asn Thr Lys Cys Lys Cys 235 240

Val Leu Gln Asp Glu Thr Pro Leu Pro Gly Thr Glu Asp His Ser Tyr
245 250 255

Leu Gln Glu Pro Thr Leu Cys Gly Pro His Met Thr Phe Asp Glu Asp 260 265 270

- 63 -

Arg Cys Glu Cys Val Cys Lys Ala Pro Cys Pro Gly Asp Leu Ile Gln 275 280 285

His Pro Glu Asn Cys Ser Cys Phe Glu Cys Lys Glu Ser Leu Glu Ser 290 295 300

Cys Cys Gln Lys His Lys Ile Phe His Pro Asp Thr Cys Ser Cys Glu 305 310 315

Asp Arg Cys Pro Phe His Thr Arg Thr Cys Ala Ser Arg Lys Pro Ala 325 330 335

Cys Gly Lys His Trp Arg Phe Pro Lys Glu Thr Arg Ala Gln Gly Leu 340 345 350

Tyr Ser Gln Glu Asn Pro 355

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 321 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Mouse Lung
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Tyr Gly Glu Trp Gly Met Gly Asn Ile Leu Met Met Phe His Val

Tyr Leu Val Gln Gly Phe Arg Ser Glu His Gly Pro Val Lys Arg Ser 20 25 30

Ser Arg Ser Met Leu Glu Arg Ser Glu Gln Gln Ile Arg Ala Ala Ser 35 40 45

Ser Leu Glu Glu Leu Leu Gln Ile Ala His Ser Glu Asp Trp Lys Leu 50 60

Trp Arg Cys Arg Leu Lys Leu Lys Ser Leu Ala Ser Met Asp Ser Arg 65 70 75 80

Ser Ala Ser His Arg Ser Thr Arg Phe Ala Ala Thr Phe Tyr Asp Thr 85 90 95

Glu Thr Leu Lys Val Ile Asp Glu Glu Trp Gln Arg Thr Gln Cys Ser 100 105 110

Pro Arg Glu Thr Cys Val Glu Val Ala Ser Glu Leu Gly Lys Thr Thr 115 120 125

Asn Thr Phe Phe Lys Pro Pro Cys Val Asn Val Phe Arg Cys Gly Gly 130

Cys Cys Asn Glu Glu Gly Val Met Cys Met Asn Thr Ser Thr Ser Tyr 145 150 155 160

Ile Ser Lys Gln Leu Phe Glu Ile Ser Val Pro Leu Thr Ser Val Pro 165 170 175

- 64 -

Glu Leu Val Pro Val Lys Ile Ala Asn His Thr Gly Cys Lys Cys Leu 180 185 190

Pro Thr Gly Pro Arg His Pro Tyr Ser Ile Ile Arg Arg Ser Ile Gln
195 200 205

Thr Pro Glu Glu Asp Glu Cys Pro His Ser Lys Lys Leu Cys Pro Ile 210 215 220

Asp Met Leu Trp Asp Asn Thr Lys Cys Lys Cys Val Leu Gln Asp Glu 235 240

Thr Pro Leu Pro Gly Thr Glu Asp His Ser Tyr Leu Gln Glu Pro Thr 245 250 255

Leu Cys Gly Pro His Met Thr Phe Asp Glu Asp Arg Cys Glu Cys Val 260 265 270

Cys Lys Ala Pro Cys Pro Gly Asp Leu Ile Gln His Pro Glu Asn Cys 275 280 285

Ser Cys Phe Glu Cys Lys Glu Ser Leu Glu Ser Cys Cys Gln Lys His 290 295 300

Lys Ile Phe His Pro Asp Thr Cys Arg Ser Met Val Phe Ser Leu Ser 305 310 315

Pro

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nuleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: oligonucleotide
- (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GGGCTGCTTC TAGTTTGGAG 20

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nuleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: oligonucleotide
- (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CACTCGCAAC GATCTTCGTC 20

Patent Claims

1. An isolated nucleic acid molecule comprising a nucleic acid sequence which encodes a polypeptide comprising a sequence of amino acids substantially corresponding to the amino acid sequence set out in SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.8 or SEQ ID NO. 9, said polypeptide having the ability to stimulate vascular permeability or proliferation of endothelial cells, or a fragment or analogue thereof which has the ability to stimulate at least one biological activity selected from the group consisting of angiogenesis, vascular permeability, endothelial cell proliferation, differentiation, migration or survival, or which has the ability to bind to endothelial cells, but is unable to stimulate at least one of said biological activities.

5

10

15

- 2. A nucleic acid molecule according to claim 1, wherein said nucleic acid molecule comprises a nucleic acid sequence which encodes the amino acid sequence Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys (SEQ ID NO.2).
- 3. A nucleic acid molecule according to claim 1, wherein said endothelial cells are selected from the group consisting of vascular endothelial cells and lymphatic endothelial cells.
- 4. A nucleic acid molecule according to claim 1, which is a genomic DNA.
- 5. A nucleic acid molecule according to claim 1, which is a cDNA.
- 6. A nucleic acid molecule according to claim 5, which comprises the nucleic acid sequence of SEQ ID NO.1, SEQ ID NO.4, SEQ ID NO.6, SEQ ID NO.7, or a DNA sequence

which hybridizes to one of the foregoing sequences under stringent conditions.

- 7. A nucleic acid molecule according to claim 6, which comprises the nucleic acid sequence of SEQ ID NO.4.
- 8. A nucleic acid molecule according to any one of claims 1 to 7, which encodes a polypeptide which has the ability to stimulate vascular permeability or proliferation of endothelial cells.
- 9. A nucleic acid molecule according to claim 1, which encodes a polypeptide comprising amino acid residues 64 through 172 of SEQ ID NO:3 or amino acid residues 93 through 201 of SEQ ID NO:5.
- 10. A nucleic acid molecule according to claim 9, wherein said polypeptide further comprises an affinity tag peptide sequence.
- 11. A nucleic acid molecule according to any one of Claims 1 to 7, which encodes a polypeptide which has the ability to bind to endothelial cells but is unable to stimulate endothelial cell proliferation.
- 12. A nucleic acid molecule according to claim 11, wherein said endothelial cells are selected from the group consisting of vascular endothelial cells and lymphatic endothelial cells.
- 13. A nucleic acid molecule according to claim 1, wherein said nucleic acid molecule is a human DNA molecule.
- 14. A vector comprising a nucleic acid according to any one of Claims 1 to 13.

15. A host cell transformed or transformed with a vector according to claim 14.

sequence of amino acids substantially corresponding to the amino acid sequence set out in SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.8 or SEQ ID NO. 9, said polypeptide having the ability to stimulate vascular permeability or proliferation of endothelial cells, or a fragment or analogue thereof which has the ability to stimulate at least one endothelial cell biological activity selected from the group consisting of cell proliferation, cell differentiation, cell migration, cell survival and vascular permeability, or which has the ability to bind to endothelial cells but is unable to stimulate at least one of said biological activities.

- 17. A polypeptide according to claim 16, wherein said polypeptide comprises the amino acid sequence Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys (SEO ID NO.2).
- 18. A polypeptide according to claim 16, wherein said endothelial cells are selected from the group consisting of vascular endothelial cells and lymphatic endothelial cells.
- 19. A polypeptide according to Claim 16, which comprises a sequence of amino acids substantially corresponding to SEQ ID NO:3 or SEQ ID NO:5.
- 20. A polypeptide according to Claim 19, which comprises a sequence of amino acids substantially corresponding to SEQ ID NO 5.
- 21. A polypeptide according to any one of Claims 16 to 20, which has the ability to stimulate proliferation of endothelial cells.

22. A polypeptide according to any one of claims 16 to 20, which has the ability to induce endothelial cell differentiation.

- 23. A polypeptide according to any one of claims 16 to 20, which has the ability to induce vascular permeability.
- 24. A polypeptide according to Claim 16, comprising amino acid residues 64 through 172 of SEQ ID NO:3 or 93 through 201 of SEQ ID NO:5.
- 25. A polypeptide according to claim 24, further comprising an affinity tag peptide sequence.
- 26. A polypeptide according to claim 16 or 17, which has the ability to bind to endothelial cells but is unable to stimulate proliferation of endothelial cells.
- 27. A polypeptide according to claim 26, wherein said endothelial cells are selected from the group consisting of vascular endothelial cells and lymphatic endothelial cells.
- 28. A polypeptide according to any one of claims 16 to 20, wherein said polypeptide is a human protein.
- 29. An antibody specifically reactive with a polypeptide according to any one of Claims 16 to 28.
- 30. An antibody according to claim 29, wherein said antibody is a polyclonal antibody.
- 31. An antibody according to claim 29, wherein said antibody is a monoclonal antibody.
- 32. An antibody according to claim 29, wherein said antibody is labelled with a detectable label.

33. A method of making a polypeptide according to claim 16, said method comprising the steps of:

culturing a host cell transformed or transfected with a vector comprising a nucleic acid sequence encoding said polypeptide operably associated with a promoter sequence such that the nucleic acid sequence encoding said polypeptide is expressed; and

5

5

5

isolating said polypeptide from said host cell or from a growth medium in which said host cell is cultured.

- 34. A method of isolation of VEGF-D comprising the step of exposing a cell which expresses VEGF-D to heparin to facilitate release of VEGF-D from the cell, and purifying the thus-released VEGF-D.
- 35. A method of making a vector capable of expressing a polypeptide encoded by a nucleic acid molecule according to any one of Claims 1 to 9, said method comprising inserting said nucleic acid molecule into a vector in a position in which said nucleic acid molecule is operatively connected with at least one promoter.
- 36. A vector comprising an anti-sense nucleotide sequence, said anti-sense nucleotide sequence being complementary to at least a part of a VEGF-D genomic DNA sequence or a VEGF-D RNA sequence or a cDNA sequence which encodes VEGF-D or a fragment or analogue thereof which promotes at least one bioactivity selected from vascular permeability, proliferation of endothelial cells and endothelial cell differentiation, whereby said vector can be used to inhibit said at least one bioactivity.
- 37. A method of stimulating endothelial cell proliferation comprising contacting endothelial cells with an effective endothelial cell proliferation stimulating amount of a polypeptide according to claim 16.

38. A method according to claim 37, wherein said endothelial cells are selected from the group consisting of vascular endothelial cells and lymphatic endothelial cells.

39. A method of stimulating at least one bioactivity selected from endothelial cell proliferation, endothelial cell differentiation and vascular permeability, in vivo in a mammal, said method comprising administering to said mammal an effective bioactivity stimulating amount of a polypeptide according to claim 16, which has the ability to stimulate said at least one bioactivity.

5

5

- 40. A method according to Claim 39, wherein said polypeptide comprises amino acid residues 64 through 172 of SEQ ID NO:3 or amino acid residues 93 through 201 of SEQ ID NO:5.
- 41: A method according to Claim 39, wherein lymphatic vessel endothelial cell proliferation is stimulated.
- 42. A method of stimulating at least one bioactivity selected from angiogenesis and neovascularization in a mammal, said method comprising the step of administering to said mammal an effective angiogenesis or neovascularization stimulating amount of a polypeptide according to claim 16, said polypeptide having the ability to stimulate endothelial cell proliferation.
- 43. A method according to Claim 42, wherein said polypeptide comprises amino acid residues 64 through 172 of SEQ ID NO:3 or amino acid residues 93 through 201 of SEQ ID NO:5.
- 44. A method according to claim 43, wherein said polypeptide further comprises an affinity tag peptide sequence.

45. A method according claim 32, further comprising co-administering at least one substance selected from the group consisting of VEGF, VEGF-B, VEGF-C, PlGF, PDGF, FGF and heparin.

- 46. A method of inhibiting a bioactivity selected from angiogenesis and neovascularization in a mammal, said method comprising the step of administering to said mammal an effective angiogenesis or neovascularization inhibiting amount of a VEGF-D antagonist.
- 47. A method according to claim 46, wherein said VEGF-D antagonist comprises an antibody specific to VEGF-D.

5

5

- 48. A method according to claim 46, wherein said VEGF-D antagonist comprises a polypeptide which binds to endothelial cells but which is unable to stimulate at least one biological activity selected from proliferation of endothelial cells, endothelial cell differentiation and vascular permeability.
 - 49. A method according to claim 48, wherein said endothelial cells are selected from the group consisting of vascular endothelial cells and lymphatic endothelial cells.
 - 50. A method of inhibiting VEGF-D expression in a mammal comprising the step of transforming target cells expressing VEGF-D with a vector according to Claim 36.
 - 51. A pharmaceutical composition comprising a polypeptide according to any one of claims 16 to 24, and a pharmaceutically acceptable carrier or adjuvant.

₹2

52. A pharmaceutical composition according to claim 51, further comprising at least one substance selected from the group consisting of VEGF, VEGF-B, VEGF-C, PlGF, PDGF and heparin.

- 53. A pharmaceutical composition comprising an antibody according to any one of claims 29 through 32, and a pharmaceutically acceptable carrier or adjuvant.
- 54. A pharmaceutical composition according to Claim 53, wherein said antibody is a monoclonal antibody.
- 55. A protein dimer comprising a first polypeptide according to any one of claims 16 to 24, and a second polypeptide.
- 56. A protein dimer according to Claim 55, wherein said protein dimer is a homodimer in which the second polypeptide is identical to the first polypeptide.
- 57. A protein dimer according to claim 55, wherein said protein dimer is a heterodimer in which the second polypeptide is selected from VEGF, VEGF-B, VEGF-C, PlGF and PDGF.
- 58. A method of detecting VEGF-D in a biological sample, comprising the step of contacting the sample with a reagent capable of binding VEGF-D, and detecting the occurrence of binding of said reagent.
- 59. A method according to claim 58, wherein said reagent comprises an antibody according to any one of claims 29 to 32.

a mammal, said method comprising administering to said mammal an effective vascular permeability modulating amount of a polypeptide according to any one of claims 16 to 24, or an antibody according to any one of claims 29 to 32.

5

5

- 61. A method according to claim 60, comprising administering to said mammal a polypeptide according to claim 16, having the ability to stimulate endothelial cell proliferation.
- 62. A method according to claim 60, comprising administering to said mammal a polypeptide according to claim 16, which has the ability to bind to endothelial cells, but which is unable to stimulate endothelial cell proliferation.
- 63. A method of activation of VEGF receptor 2, comprising the step of exposing cells bearing said receptor to an effective receptor activating dose of VEGF-D.
- 64. A method of activation of VEGF receptor 3, comprising the step of exposing cells bearing said receptor to an effective receptor activating dose of VEGF-D.
- 65. A method according to claim 63 or 64, wherein said method is carried out in vivo.
- 66. A method according to claim 63 or 64, wherein said method is carried out in vitro.

67. A diagnostic or prognostic test kit comprising a specific binding reagent for VEGF-D and means for detecting binding of said reagent.

- 68. A test kit according to claim 67, wherein said specific binding reagent comprises an antibody according to any one of claims 29 to 32.
- 69. A diagnostic or prognostic test kit comprising a pair of primers specific to VEGF-D DNA operatively coupled to a polymerase, whereby said polymerase is enabled to selectively amplify VEGF-D DNA from a DNA sample.
- 70. A method of detecting aberrations in VEGF-D gene structure in a test subject comprising the steps of:

providing a DNA sample from said test subject;

5

10

5

contacting said sample with a set of primers specific to VEGF-D DNA operatively coupled to a polymerase and selectively amplifying VEGF-D DNA from said sample by polymerase chain reaction; and

comparing the nucleotide sequence of the amplified VEGF-D DNA from said sample with a nucleotide sequence as set forth in SEQ ID NO:1 or SEQ ID NO:4.

- 71. A VEGF-D antagonist having the capability to inhibit at least one biological activity induced by VEGF-D selected from vascular permeability, endothelial cell proliferation and endothelial cell differentiation, said antagonist binding to VEGF-D or to a VEGF-D receptor, but being less able than VEGF-D to stimulate said at least one biological activity.
- 72. A VEGF-D antagonist according to claim 71, wherein said antagonist comprises an antibody which selectively binds VEGF-D.

73. A VEGF-D antagonist according to claim 72, wherein said antibody is a monoclonal antibody.

5

5

5

- 74. A VEGF-D antagonist according to claim 71, wherein said antagonist comprises a VEGF-D polypeptide fragment or analogue which binds to a VEGF-D receptor, but is less able to stimulate said at least one biological activity.
- 75. A method of improving pulmonary blood circulation and/or gas exchange in a mammal, said method comprising administering to said mammal an effective blood circulation and/or gas exchange improving amount of VEGF-D.
- 76. A method of treating fluid accumulation in the heart and/or lung due to increases in vascular permeability in a mammal, said method comprising administering to said mammal an effective vascular permeability decreasing amount of a VEGF-D antagonist.
- 77. A method of treating an intestinal malabsorption syndrome in a patient suffering therefrom, said method comprising administering to said patient an effective intestinal blood circulation and/or vascular permeability increasing amount of VEGF-D.

1	M R S S M N F L	OS LS		-TL wsl	ERS	S E O	0 I	RAA	SSL	E E	LLR	VEGF-D h VEGF	165
27 17	I T H S Y L H H	E D S	K L	WRC	R L J	R L K	SF	T S M P M A	D S R	S A G Q	S H R N H H	VEGF-D h VEGF	165
57 39	ST-R EVVK	FA.	TF	YDI	ETI	KV	ID	EEW	O R T	2 0 Y C	S P R H P I	VEGF-D h VEGF	165
86 56	ETLV	EVI	A S E	L G K Y P D	STI	YTF	F K	P P C	V N V V P L	F R M R	C G G	VEGF-D h VEGF	165
116 86	CCND	E S I	EC	M N T V P T	STS	NI	S K	Q L F	E I S	У Р Р -	L T S	VEGF-D h VEGF	165
146 114	Y P E L G Q H I	Y P I	Y K Y M S F	A N H	TGO	EC	L P	T A P	R H P	Y S	IIR	VEGF-D h VEGF	165
	RSIO											VEGF-D h VEGF	165
206 147	CATO	EE	NPL	A G T	E D I	SE	LO L	E P A	L C G	PH	MMF	VEGF-D H VEGF	165
236 154	DEDR	CEC	C V C	KTP	CPI	(D L	I O	D P O	N C S	C F	E C K	VEGF-D h VEGF	165
266 167	ESLE	T C	COK	HKL	F H I	D T E R T	C S C R	CED	R C P	FH	TRP	VEGF-D h VEGF	165
296 188	CASG	KT	A C A	KHC	RF	P K E	K R	A A O	GPH		K N P P R R	VEGF-D h VEGF	165

FIG. 1a

1	MRS MSP	S O	S R	T I	L E	R	S E	-	0	I	R	A	A	S	S L	I.	E A	E A	L L	r r	R I		C H	S A	VEGF-D h VEGF-B
31 20	EDW QA-																								VEGF-D h VEGF-B
61 39	AAT	F Y Y -	Đ	IJ	E T	L.	К У	Ī	D	E	E	W	O T	R R	T_A	O T	כ כ	s ol	P P	R R	E 7	三 ' \	v V V	E P	VEGF-D h VEGF-B
91 56	LTV	E L	M	K S	5 T r v	N A	T F	F L	K V	P P	P S	C C	y Y	T	v V	F O	R (C (G (G (C C	JE I	P D	E D	VEGF-D h VEGF-B
121 86	SLI	C V	P	T (5 T	S H	Y I V	S R	K	0	L	F L	E M	ī	S R	Y Y	P	L S	r S	S .	Y F	Ŀ	L M	_ v]	VEGF-D h VEGF-B
	P V K																								VEGF-D h VEGF-B
																									VEGF-D h VEGF-B
																									VEGF-D h VEGF-B
241 158	E C V	C K	T R	P (<u> </u>	K R	D L S F	L	O R	H	P -	K_	N_	<u>c</u>	S_	<u>C</u>		E_(<u>.</u>	E_S		E	Ī	VEGF-D h VEGF-B
271 169	C C 0	K H	G	L L	EL	H	P D	T T	c C	S R	c c	E_	D -	R (<u>C</u>	P	٤٦			R _	2 -		S	G	VEGF-D h VEGF-B
300 184	KTA	C A	ĸ	H_C	R	F	P K	E	K	R	A _	Α_	0	G_	P_ -		S_J R 1								VEGF-D h VEGF-B

FIG. 1b

1 MRSSOSTLERSEOOIRAASSLEELLRITHS VEGF-	D C
31 EDWKLWRCRLRLKSFTSMDSRSAS VEGF- 7 EYWKMYKCOLRKGGWOHNREQANLNSRTEE VEGF-	
55 HRSTRFAATFYDIETLKYIDEEWORTOCSPVEGF-	D C
RETCYEVASELGKSTNTFFKPPCVNVFRCG VEGF- 65 REVCIDYGKEFGYATNTFFKPPCVSVYRCG VEGF-	D C
115 G C C N E E S L I C M N T S T S Y I S K O L F E I S V P L T VEGF-	D C
145 S Y P E L V P Y K Y A N H T G C K C L P T A P R H P Y S VEGF-125 Q G P K P Y T I S F A N H T S C R C M S K L D V Y R Q V H S VEGF-	D C
173 I I R R S I O I P E E D R C S H S K K L C P I D M L W D S N VEGF-155 I I R R S L P A T L P Q - C Q A A N K T C P T N Y M W N N H VEGF-	
203 KCKCYLOEE NPLAGTED VEGF-184 ICRCLAOED FMFSSDAGDDSTDGFHDICGP VEGF-	D C
220 HSHLOE VEGF-	
226 PALCGPHMMFDEDRCECV VEGF-1244 NSCQCVCKNKLFPSQCGANREFDENTCQCV VEGF-1	D C
244 CKTPCPKDLIOHPKNCSCFECKESLETCCO VEGF-1274 CKRTCPRNOPLNPGKCAC-ECTESPOKCLL VEGF-	
274 KHKLFHPDTCSCEDRCPFHTRPCASGKTAC VEGF-	
304 A K H C R F P K E K - R A A O G P H S R K N P . VEGF-	D

FIG. 1c

1	W	R P	S V	S_C	S 1	- L 1	- F	- P	- C	F	- L	- Q	- L	- (L	S A	T G	T.	E A	R_	<u>s</u>	E_	0	0	I -	R -	A_ -	A	<u>s</u> -	<u>s</u>	I.	VEGF-D hPlGF
22 19	E	E -	- [لے نا ا ایا	R 7	A '	T_V	H P	S P	E Q	D O	W W	K	I'l	<u>₩</u>	R	C	R -	<u>L</u>	R.	L.	K	<u>s</u>	F	T -	<u>s</u>	<u>M</u>	<u>D</u>	<u>S</u>	R	VEGF-D hPlGF
52 30	s s	A A	S G	H J	R S	s s	T S	R	F -	A -	A -	T -	F	Y -	D E	Į V	E E	T	L V	K P	<u>y</u>	F	D O	E E	E V	W W	o Gl	R R	T S	O Y	VEGF-D hPlGF
82 52	ြင	S R	P A	R	E 5	T_R	c Ll	v y	E D	v Y	A IV	s s	E E	L Y	G P	K S	S	T V	N E	T H	F M	F F	K S	P P	P S	C C	v y	N S	Y L	E L	VEGF-D hPlGF
112 82	R R	<u>ာ</u>	G T	G (C (ر دا	N G	E D	E E	S N	L	H	c c	M V	N P	T	S	T	S A	Y N	I V	S T	K M	Q O	L L	F L	E K	I	S	y s	VEGF-D hPlGF
142 112	P_	L -	T G	S '	Y R	P P	E S	L _Y	v Y	P E	Ý L	K T	Y F	A S	N Q	H	T	G R	c cl	K E	c c	L R	P P	T	A	P	R	<u>H</u>	<u>P</u>	Y	VEGF-D hPlGF
172 133	s	I	I L	R R	R E	S K	I	O K	<u>I</u>	P P	E E	E	D R	R R	C -	S	H	S	K	K	L	<u>c</u>	P	I	D	M	Į.	W	D -	s	VEGF-D hPlGF
202 144	N	K -	C -	K -	<u>C</u> _	y _	L -	0	E -	E	N -	P	L	A -	G	<u>T</u>	E	D	H	S	H -	Į.	<u>0</u> -	E	P -	<u>A</u>	L	Ċ	G -	P	VEGF-D hPlGF
232 144	Ħ	M	M	F -	D_	E	D -	R	<u>c</u>	E	<u>C</u>	<u>y</u>	C	K	T	P	<u>c</u>	P -	K	D	L	Ī	0	H	P	K	N	<u>c</u>	S	c	VEGF-D hPlGF
262 144	F	<u>E</u>	C -	<u>K</u>	E	<u>s</u>	<u>I</u> .	<u>E</u>	T	<u>C</u>	<u>C</u>	0	_K	H	K	L	F	H	P -	D -	T	<u>C</u>	S -	C -	E	D -	R -	<u>c</u>	P	F	VEGF-D hPlGF
292 144	E -	T	R -	P	C				K		A	<u>C</u>	A	K	H	C	R	Œ.		•						-	_	-		D D	VEGF-D hPlGF
320 160		H	- L	- C	-			-	K P			_																			VEGF-D hPlGF

FIG. 1d

1 1 1 1	H R S S O S T L E R S E O O I R A A S S L E E L L R I T B S VEGF-D H T V L Y P VEGF-C H S h VEGF-B H N F L L S h VEGF 16 M P V H R L F P C hPlGF	r I G .	2
31 7 5 7 10	EDWKLWRCRLRLKSF TSMDSRSA VEGF-D EYWKMYKCOLRKGGWOH - NREQANLNSRT - VEGF-C LRRLLLAALLQLAPAQAPVSQPDA b VEGF-B WVHWSLALLL - YLHHAKWSQAAPMAEGC b VEGF 16 FLQLLAGLALPAVPPQQWA LSAGN hP1GF	5	
54 35 29 34 34	SHRSTRFAATFYDIETLKYIDEEWORTOCS VEGF-D - EETIKFAAAHYNTEILKSIDNEHRKTOCH VEGF-C PGHQRKVVSWIDV-YTRATCO b VEGF-B GON	S	
84 64 49 54 54	PRETCYEVASELGKSTNTFFKPPCVNVFRC VEGF-D PREVCIDYGKEFGVATNTFFKPPCVSVYRC VEGF-C PREVVVPLTVELMGTVAKQLVPSCVTYQRC h VEGF-B PIETLVDIFQEYPDEIEYIFKPSCVPLMRC h VEGF 16 A LERLYDYVS EYPS E V E H HESPSC VS L LR C hP1GF	5	
94	GGCCNFESLICHNTSTSYISKOLFEISVPL VEGF-DGGCCNSEGLOCHNTSTSYLSKTLFFITYPL VEGF-CGGCCPDDGLECVPTGOHOVRHOILMIR h VEGF-BGCCCNDEGLECVPTEESNITHOIMRIKP h VEGF 16 TGCCGDENLHCVPVETANVTHOLLKIRS hP1GF	5	
124 106	TSVPELVPVKVANETGCKCLPTAP - REPYVEGF-D SOGPKPYTISFANETSCRCHSKLDVYROVHVEGF-C YPSSOLIGEMSLEEESOCEC h VEGF-B EOGOHIGEMSFLOHMKCEC h VEGF 16 GDRPSYYELTFSOHVRCEC hPlGF	5	
154 /125 131 131	SIIRRSIOIPEEDRCSASKKICPIDMIWDS VEGF-D SIIRRSILP-ATLPOCQAAMKTCPTMYHWMM VEGF-CRPKKKDSAVKPDSPRPLCP		
202 183 144 145 139	NKCKCYLQEENPLAGTED VEGF-D HICRCLAGEDFHFSSDAGDDSTDGFHDICG VEGF-C RCTQHHQR P b VEGF-B PCSERRKHLFVQ b VEGF 16	55	
153 157	PNKELDEETCOCVCRAGLRPASCGPHKELD VEGF-C DhVEGF-B	55	
154 158 145	PALCGPHHHFDEDRCEC VEGF-D RNSCQCVCKNKLFPSQCGANREFDENTCQC VEGF-C PRTCRCRCRRRSF		
243 273 167 170 149	VCKTPCPKDLIOHPKNCSCFECKESLETCC VEGF-D VCKRTCPRNOPLNPGKCAC-ECTESPOKCL VEGF-C	65	
171 174	OKHKLFHPDTCSCEDR-CPFHTRPCASGKT VEGF-D LKGKKFHHOTCSCYRRPCTNROKACEPGFS VEGF-C GRGLELNPDTCRC	65	
184 187	ACAKHCRFPKEKRAAOGPHSRKNP VEGF-D VEGF-C VEGF-C VEGF-C VEGF-B VEGF		

6/19

FIG. 3

10 20 30 40 MRSSQSTLERSEQQIRAASSLEELLRITHSEDWKLWRCRL

RLKSFTSMDSRSASHRSTRFAATFYDIETLKVIDEEWQRT

QCSPRETCVEVASELGKSTNTFFKPPCVNVFRCGGCCNEE

SLICMNTSTSYISKQLFEISVPLTSVPELVPVKVANHTGC

KCLPTAPRHPYSIIRRSIQIPEEDRCSHSKKLCPIDMLWD

210 220 230 240 SNKCKCVLQEENPLAGTEDHSHLQEPALCGPHMMFDEDRC

250 260 270 280 ECVCKTPCPKDLIQHPKNCSCFECKESLETCCQKHKLFHP

290 300 310 320 DTCSCEDRCPFHTRPCASGKTACAKHCRFPKEKRAAQGPH

SRKNP

7/19

FIG. 4

GTTGGGTTCCAGCTTTCTGTAGCTGTAAGCATTGGTGGCCACACCACCTCCTTACAA **AGCAACTAGAACCTGCGGCATACATTGGAGAGATTTTTTTAATTTTCTGGACATGAA** GTAAATTTAGAGTGCTTTCTAATTTCAGGTAGAAGACATGTCCACCTTCTGATTATT TTTGGAGAACATTTTGATTTTTTTCATCTCTCTCTCCCCACCCCTAAGATTGTGCAA **AAAAAGCGTACCTTGCCTAATTGAAATAATTTCATTGGATTTTGATCAGAACTGATT** ATTTGGTTTTCTGTGAAGTTTTGAGGTTTCAAACTTTCCTTCTGGAGAATGCCTT TTGAAACAATTTTCTCTAGCTGCCTGATGTCAACTGCTTAGTAATCAGTGGATATTG AAATATTCAAAATGTACAGAGAGTGGGTAGTGGTGAATGTTTCATGATGTTGTACG TCCAGCTGGTGCAGGGCTCCAGTAATGAACATGGACCAGTGAAGCGATCATCTCAGT CCACATTGGAACGATCTGAACAGCAGATCAGGGCTGCTTCTAGTTTGGAGGAACTAC TTCGAATTACTCACTCTGAGGACTGGAAGCTGTGGAGATGCAGGCTGAGGCTCAAAA GTTTTACCAGTATGGACTCTCGCTCAGCATCCCATCGGTCCACTAGGTTTGCGGCAA CTTTCTATGACATTGAAACACTAAAAGTTATAGATGAAGAATGGCAAAGAACTCAGT GCAGCCCTAGAGAAACGTGCGTGGAGGTGGCCAGTGAGCTGGGGGAAGAGTACCAACA CATTCTTCAAGCCCCCTTGTGTGAACGTGTTCCGATGTGGTGGCTGTTGCAATGAAG AGAGCCTTATCTGTATGAACACCAGCACCTCGTACATTTCCAAACAGCTCTTTGAGA TATCAGTGCCTTTGACATCAGTACCTGAATTAGTGCCTGTTAAAGTTGCCAATCATA CCATCCAGATCCCTGAAGAAGATCGCTGTTCCCATTCCAAGAAACTCTGTCCTATTG ACATGCTATGGGATAGCAACAAATGTAAATGTGTTTTTGCAGGAGGAAAATCCACTTG CTGGAACAGAAGACCACTCTCATCTCCAGGAACCAGCTCTCTGTGGGCCACACATGA TGTTTGACGAAGATCGTTGCGAGTGTGTCTGTAAAACACCATGTCCCAAAGATCTAA GCCAGAAGCACAAGCTATTTCACCCAGACACCTGCAGCTGTGAGGACAGATGCCCCT TTCATACCAGACCATGTGCAAGTGGCAAAACAGCATGTGCAAAAGCATTGCCGCTTTC CAAAGGAGAAAAGGGCTGCCCAGGGGCCCCACAGCCGAAAGAATCCTTGATTCAGCG TTCCAAGTTCCCCATCCCTGTCATTTTTAACAGCATGCTGCTTTGCCAAGTTGCTGT CACTGTTTTTTTCCCAGGTGTTAAAAAAAAAATCCATTTTACACAGCACCACAGTGA TCTTCTAGCTGCAGATGCCTCTGCGCACCAAGGAATGGAGAGGAGGGGACCCATGTA ATCCTTTTGTTTAGTTTTTTTTTTTTTTTTTTGGTGAATGAGAAAGGTGTGCTGGTCA TGGAATGGCAGGTGTCATATGACTGATTACTCAGÁGCAGATGAGGAAAACTGTAGTC TCTGAGTCCTTTGCTAATCGCAACTCTTGTGAATTATTCTGATTCTTTTTTTATGCAG AATTTGATTCGTATGATCAGTACTGACTTTCTGATTACTGTCCAGCTTATAGTCTTC CAGTTTAATGAACTACCATCTGATGTTTCATATTTAAGTGTATTTAAAGAAAATAAA CACCATTATTCAAGCCAAAAAAAAAAAAAAAAAAAA

8/19

MYREWVVVNVFMMLYVQLVQGSSNEHGPVKRSSQSTLERSEQQIRAASSLEELLRIT HSEDWKLWRCRLRLKSFTSMDSRSASHRSTRFAATFYDIETLKVIDEEWQRTQCSPR ETCVEVASELGKSTNTFFKPPCVNVFRCGGCCNEESLICMNTSTSYISKQLFEISVP LTSVPELVPVKVANHTGCKCLPTAPRHPYSIIRRSIQIPEEDRCSHSKKLCPIDMLW DSNKCKCVLQEENPLAGTEDHSHLQEPALCGPHMMFDEDRCECVCKTPCPKDLIQHP KNCSCFECKESLETCCQKHKLFHPDTCSCEDRCPFHTRPCASGKTACAKHCRFPKEK RAAQGPHSRKNP

FIG. 5

9/19

FIG. 6

GGAGAATGCCTTTTGCAACACTTTTCAGTAGCTGCCTGGAAACAACTGCTTAGTCAT CGGTAGACATTTAAAATATTCAAAATGTATGGAGAATGGGGGAATGCCTC ATGATGTTCCATGTGTACTTGGTGCAGGGCTTCAGGAGCGAACATGGACCAGTGAAG GATTTTTCTTTTGAGCGATCATCCCGGTCCATGTTGGAACGATCTGAACAACAGATC CGAGCAGCTTCTAGTTTGGAGGAGTTGCTGCAAATCGCGCACTCTGAGGACTGGAAG CTGTGGCGATGCCGGTTGAAGCTCAAAAGTCTTGCCAGTATGGACTCACGCTCAGCA TCCCATCGCTCCACCAGATTTGCGGCAACTTTCTATGACACTGAAACACTAAAAGTT ATAGATGAAGAATGCAGACCCAATGCAGCCCTAGAGAGACATGCGTAGAAGTC GCCAGTGAGCTGGGGAAGACAACCAACACATTCTTCAAGCCCCCCTGTGTAAATGTC TTCCGGTGTGGAGGCTGCAACGAAGAGGGTGTGATGTGTATGAACACAAGCACC TCCTACATCTCCAAACAGCTCTTTGAGATATCAGTGCCTCTGACATCAGTGCCCGAG TTAGTGCCTGTTAAAATTGCCAACCATACGGGTTGTAAGTGCTTGCCCACGGGCCCC CGCCATCCTTACTCAATTATCAGAAGATCCATTCAGACCCCAGAAGAAGATGAATGT CCTCATTCCAAGAAACTCTGTCCTATTGACATGCTGTGGGATAACACCAAATGTAAA TGTGTTTTGCAAGACGAGACTCCACTGCCTGGGACAGAAGACCACTCTTACCTCCAG GAACCCACTCTCTGTGGACCGCACATGACGTTTGATGAAGATCGCTGTGAGTGCGTC TGTAAAGCACCATGTCCGGGAGATCTCATTCAGCACCCGGAAAACTGCAGTTGCTTT GAGTGCAAAGAAAGTCTGGAGAGCTGCTGCCAAAAAGCACAAGATTTTTCACCCAGAC ACCTGCAGCTGTGAGGACAGATGTCCTTTTCACACCAGAACATGTGCAAGTAGAAAG CCAGCCTGTGGAAAGCACTGGCGCTTTCCAAAGGACAAGGGCCCAGGGACTCTAC AGCCAGGAGAACCCTTGATTCAACTTCCTTTCAAGTCCCCCCATCTCTGTCATTTTA AACAGCTCACTGCTTTGTCAAGTTGCTGTCACTGTTGCCCACTACCCCTTGAACATG TGCAAACACAGACACACACACACACACAGAGCAACTAGAATTATGTTTTCT AGGTGCTGCCTAAG

10/19

FIG. 7

AAACTTTGCTTCTGGAGAATGCCTTTTTGCAACACTTTTCAGTAGCTGCCTGGAAACA ACTGCTTAGTCATCGGTAGACATTTAAAATATTCAAAATGTATGGAGAATGGGGAAT GGGGAATATCCTCATGATGTTCCATGTGTACTTGGTGCAGGGCTTCAGGAGCGAACA TGGACCAGTGAAGCGATCATCCCGGTCCATGTTGGAACGATCTGAACAACAGATCCG AGCAGCTTCTAGTTTGGAGGAGTTGCTGCAAATCGCGCACTCTGAGGACTGGAAGCT GTGGCGATGCCGGTTGAAGCTCAAAAGTCTTGCCAGTATGGACTCACGCTCAGCATC CCATCGCTCCACCAGATTTGCGGCAACTTTCTATGACACTGAAACACTAAAAGTTAT AGATGAAGAATGGCAGAGGACCCAATGCAGCCCTAGAGAGACATGCGTAGAAGTCGC CAGTGAGCTGGGGAAGACAACCAACACATTCTTCAAGCCCCCCTGTGTAAATGTCTT CCGGTGTGGAGGCTGCAACGAAGAGGGTGTGATGTATGAACACAAGCACCTC CTACATCTCCAAACAGCTCTTTGAGATATCAGTGCCTCTGACATCAGTGCCCGAGTT AGTGCCTGTTAAAATTGCCAACCATACGGGTTGTAAGTGCTTGCCCACGGGCCCCCG CCATCCTTACTCAATTATCAGAAGATCCATTCAGACCCCAGAAGAAGATGAATGTCC TCATTCCAAGAAACTCTGTCCTATTGACATGCTGTGGGATAACACCAAATGTAAATG TGTTTTGCAAGACGAGACTCCACTGCCTGGGACAGAAGACCACTCTTACCTCCAGGA ACCCACTCTCTGTGGACCGCACATGACGTTTGATGAAGATCGCTGTGAGTGCGTCTG TAAAGCACCATGTCCGGGAGATCTCATTCAGCACCCGGAAAACTGCAGTTGCTTTGA GTGCAAAGAAAGTCTGGAGAGCTGCTGCCAAAAGCACAAGATTTTTCACCCAGACAC CTGCAGGTCAATGGTCTTTTCGCTTTCCCCCTTAACTTGGTTTACTGATGACATTTAA AGGACATACTAATCTGATCTGTTCAGGCTCTTTTCTCTCAGAGTCCAAGCAC

WO 98/07832

11/19

YLVOGFRSEHGPVKDFSFERSSRS MVEGF-D ELLQIAHSEDWKLWRCRLKLKSLA MVEGF-D TFYDTETLKVIDEEWORTOCSPRE MVEGF-D FKPPCVNVFRCGCCNEEGVMCMN MVEGF-D LTSVPELVPVKIANHTGCKCLPTG MVEGF-D LTSVPELVPVKIANHTGCKCLPTG MVEGF-D LOEPTLCGPHMTFDEDRCECVCKA MVEGF-D LOEPTLCGPHMTFDEDRCECVCKA MVEGF-D CCKESLESCCOKHKIFHPDTCSCE MVEGF-D CGKHWRFPKETRAOGLYSOENP MVEGF-D CGKHWRFPKETRAOGLYSOENP MVEGF-D									
MYGENGNGNILMMFHVYLVOGFRSEHGPVKDFSFERSSRSMWERT MYGENGNGNILMMFHVYLVOGFRSEHGPVKDFSFERSSRSMWERT MYGENGNGNILMMFHVYLVOGFRSEHGPVKDFFRSENSLAMWERT MYGENGROIRAASSLEELLOIAHSEDWKLMRCRLKKKKLAAMWERT MIERSEOOIRAASSLEELLOIAHSEDWKLMRCRLKKKKLAAMWERT MYGENDSRSASHRSTRFAATFYDTETLKVIDEEHGRTGCSPREMWERT MYGENDSRSASHRSTRFAATFYDTETLKVIDEEHGRTGCSPREMWERT MYGENDSRSASHRSTRFAATFYDTETLKVIDEEHGRTGCSPREMWERT MYGENDSRSASHRSTRFAATFYDTETLKVIDEEHGRTGCSPREMWERT MYGENDSRSASHRSTRFAATFYDTETLKVIDEEHGRTGCSPREMWERT MYGENDSRSASHRSTGTEDFSVPLTSVPELVPVKIANHTGCKCLPTGMWEGT MYGENDSRSASHRSTGTEDHSYLGEPTLCGPHHTFDEDRCECVCKAMWEGT MYGENDSRSASHRSTGTEDHSYLGEPTLCGPHHTFDEDRCECVCKAMWEGT MYGENDSRSASHRSTGTEDHSYLGEPTLCGPHHTFDEDRCECVCKAMWEGT MYGENDSRSASHRSTGTEDHSYLGEPTLCGPHHTFDEDRCECVCKAMWEGT MYGENDSRSASHRSTGTEDHSYLGEPTLCGPHHTFDEDRCECVCKAMWEGT MYGENDSRSASHRSTGTEDHSYLGEPTLCGPHHTFDEDRCECVCKAMWEGT MYGENDSRSASHRSTGTEDHSYLGEPTRAGGLYSOENPMWEGT MYGENDSRSASHRSTGTEDHSYLGEPTRAGGLYSOENPMWEGT MYGENDSRSASHRSTGRKESLESCOKHKRFPKETRAGGLYSOENPMWEGT MYGENDSRSASHRSTGRKESLESCOKHKRFPKETRAGGLYSOENPMWEGT MYGENDSRSASHRSTGRKESLESCOKHKRFPKETRAGGLYSOENPMWEGT MYGENDSRSHRSTGRKESLESCOKHWRFPKETRAGGLYSOENPMWEGT MYGENDSRSHRSTGRCECYCKAMWERPKETRAGGLYSOENPMWEGT MYGENDSRSHRSTGRCECYCKAMWERPKTRAGGLYSOENPMWEGT MYGENDSRSHRSHTGTCTTRAGGLYSOTH MYGENDSRSHRSHTGTCTTRAGGLYNGTTRAGGLYSOTH MYGENDSRSHRSHTGTTRAGGLYNGT	07			\Box	\Box	010	Ω		
MYGEHGHGNILMMFHVYLVOGFRSEHGPVKDFSFERSRSPSMML MYGENGNOIRAASSLEELLQIAHSEDWKLWRCRLKLKKSLAMWS SHDRASSLEELLQIAHSEDWKLWRCRLKLKKSLAMWS SHDRASSLEELLQIAHSEDWKLWRCRLKLKKSLAMWS SHDRASSLEELLOIAHSEDWKLWRCRLKLKSLAMWS SHDRASSLEELLOIAHSEDWKLWRCRLKLKSLAMWS SHDRASSHREWORTOCSPRE WORTOCSPRE WOLTSVASELGKTTNTFFKPFCVNVFRCGGCCNEEGVMCMN WW SHDSTSYISKOLFEISVPLTSVERGGCCNEEGVMCMN WW SHT STSYISKOLFEISVPLTSVPELVPVKIANHTGCKCLPTG WW STSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKCLPTG WW STSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKCLPTG WW STSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKCLPTG WW STSTSYISKOLFEISVPLTGGPHMTFDEDRCECVCKAMW STSTSYISKOLFEISVPLTGGPHMTFDEDRCECVCKAMW STPLGDFLGGPHMTFDEDRCECVCKAMW STPLGDFLGGPHMTFDEDRCECVCKAMW STPLGDFLGGPHMTFDEDRCECVCKAMW STPLGDFLGGPHMTFDEDRCECVCKAMW STPLGDFLGGPHMTFDEDRCECVCKAMW STPLGDFLGGENGFROOGLYSOEN W NAT STRADGLYSOEN W WW STPLGSBWW W W STPLGRSW W W W STPLGSBW W W W STPLGRSW W W W STPLGRSW W W W STPLGRSW W W W W STPLGRSW W W W W STPLGRSW W W W W STPLGRSW W W W W STPLGRSW W W W W STPLGRSW W W W STPLGRSW W W W W STPLGRSW W W W W W STPLGRSW W W W W W W W W W W W W W W W W W W	بنايط	far far	fer for	fe. fe.	fa. fa.	بن بن	See See		, , , (s,
MYGEWGMGNILMMFHVYLVOGFRSEHGPVKDFSFRSBRS MYGEWGMGNILMMFHVYLVOGFRSEHGPVKDFSFRSBRS MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKLKSLA MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKLKSLA MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKLKSLA MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKLKSLA MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKLKSLA MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKGLA ANDSRSASHRSTRFAATFYDTETLKVIDEEWORTOCSPRE MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKSLA ANDSRSASHRSTRFAATFYDTETLKVIDEEWORTOCSPRE MLTSTSYLSKOLFEISVPLTSVPELVPVKIANHTGCKCLPTG MYGEWGWGNN MYGEWGWCNLKSLOFPEEDECPHSKKLCPIDMLWDNTKCKC MLCOPETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCKA MYGEWGWCNN MYGEWGWGNTLKSLOYPEELCGPHMTFDEDRCECVCKA MYGEWGWCNN MYGEWGWGNTLKSLOYPEELCGPHMTFDEDRCECVCKA MYGEWGWCNN MYGEWGWCNLKSLEECKESLESCCOKHKIFHPDTCSCE MYGEWGWCNN MYGEWGWCNCKCKC MYGEWGWCNN MYGEWGWCNLKSLEECKESLESCCOKHKIFHPDTCSCE MYGEWGWCNN MYGEWGWCNLKSLEECKESLESCCOKHKIFHPDTCSCE MYGEWGWCNN MYGEWGWCNN MYGEWGWCNLKSLEECKESLESCCOKHKIFHPDTCSCE MYGEWGWCNN MYGEWGWCNN MYGEWGWCNLKSLEECKESLESCCOKHKIFHPDTCSCE MYGEWGWCNN MYGEWGWCN MYGEWGWCNN MYGEWGWCNN MYGEWGWCNN MYGEWGWCN MYGWCN) E) <u>a</u>		750	SE SE	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	<u> </u>		មាម
MYGEMGMGNILMMFHVYLVOGFRSEHGPVKDFSFERSSR MLERSEOOIRAASSLEELLQIAHSEDWKLWRCRLKKSL MLERSEOOIRAASSLEELLQIAHSEDWKLWRCRLKKSL MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKKSL MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKKSL MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKKSL MLERSEOOIRAASSLEELLOIAHSEOWKLWRCRLKKSL MLERSEOOIRAASSLEELLOIAHSCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ÉÉ	ÉÉ	EE	EE	EE	EE	E E		ξĘ
MYGEMGMGNILMMFHVYLVOGFRSEHGPVKDFSFERSSR MYGEMGMGNILMMFHVYLVOGFRSEHGPVKDFSFERSSR MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKLKSL MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKLKSL SMDSRSASHRSTRFAATFYDTETLKVIDEEWORTOCSPR 11 SMDSRSASHRSTRFAATFYDTETLKVIDEEWORTOCSPR 12 TCVEVASELGKTTNTFFKPPCVNVFRCGGCCNEEGVMCM 14 TCVEVASELGKTTNTFFKPPCVNVFRCGGCCNEEGVMCM 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKCLPT 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKCLPT 16 TSTSYISKOLFEISVPLTGGPHSKKLCPIDMLWDNTKCK 16 TSTSYISKOLFEISVPLTGGPHSKKLCPIDMLWDNTKCK 16 TSTSYISKOLFEISVPLTGGPHSKKLCPIDMLWDNTKCK 16 TSTSYISKOLFEISVPLTGGPHSKKLCPIDMLWDNTKCK 16 TSTSYISKOLFEISVPLTGGPHSKKLCPIDMLWDNTKCK 16 TSTSYISKOLFEISVEGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 17 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 18 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 19 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 19 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEFTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEFTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEFTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEFTLCGPHMTFDEDRCECVCK 10 VLODETPLPGTEDHSYLOEFTLCGPHMTFBDGCSCOKHKIFHPYSTGR 10 VLODETPLPGTEDHSYLOEFTLCGPHMTFBDGCSCOKHKIFHPYSTGR 10 VLODETPLPGTEDHSYLOEFTLCGPHMTFBDTCS	လ လ	44	ខាត	22	OO	OU	ৰৰ	ũΣ	
MYGEWGMGNILMMFHVYLVQGFRSEHGPVKPFRRSENS MLERSEQQIRAASSLEELLQIAHSEDWKLWRCRLKLK MLERSEOQIRAASSLEELLQIAHSEDWKLWRCRLKLK MLERSEOQIRAASSLEELLQIAHSEDWKLWRCRLKLK MLERSEOQIRAASSLEELLQIAHSEDWKLWRCRLKLK MLERSEOQIRAASSLEELLQIAHSEDWKLWRCRLKLK MLERSEOQIRAASSLEELLQIAHSEDWKLWRCRLKLK MLERSEOQIRAASSLEELLQIAHSEDWKLWRCRLKC MLERSEOQIRAASSLEELLQIAHSEDWKLWRCRLKC MLERSEOQIRAASSLEELLQIAHSEDCO MLERSEOQIRAASSLEELLQIAHSEDCO MLERSEOQIRAASSLEELCO MLERSEOQIRAASSLEELCO MLERSEOQIRAASSLEELCO MLERSEOQIRAASSLEELCO MLERSEOQIRAASSCE MLERSEOQIRAASSCE MLERSEOQIRAASSCE MLERSEOQIRAASSCE MLERSEOQIRAASSCE MLERSEOQIRAASSCE MLERSEOQIRAASSE MLERSEOQIRAASSE MLERSEOQIRAASSE MLERSEOQIRAASSE MLERSEOQIRAASSE MLERSEOQIRAASSE MLERSEOQIRAASSE MLERSEOQIRAASSE MLERSEOOJIRAASSCE MLERSEOOJIRAASSE MLERSEOOJIRAASSE MLERSEOOJIRAASSCE MLERSEOOJIRAASSE MLERSEOOJIRAASSE MLERSENGRIGO MLERSEOOJIRAASSE MLERSTANICK MLERSEOOJIRAASSE MLECOOJIRAASSE MLERSEOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSE MLECOOJIRAASSA MLECOOJIRAASSA MLECOOJIRAASSA MLECOOJIRAASE MLECOOJIRAASSA MLECOO	≃ व्द	니 니 니	~ œ	ΣÞ	e e	\times	××	ပြစ	
MYGEMGMOILMMFHVYLVOGFRSEHGPVKDFSFFR MYGEMGMOILMMFHVYLVOGFRSEHGPVKDFSFFR MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKL 11 MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLKL 12 TCVEVASELGKTTNTFFYDTETLKVIDEEWORTOC 13 MDSRSASHRSTRFAATFYDTETLKVIDEEWORTOC 14 TCVEVASELGKTTNTFFKPCVNVFRCGCCNEEGV 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKC 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKC 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKC 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKC 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKC 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCKC 16 TSTSYIRRSIOTPEEDRSYLOEPTLCGPHMTFDEDRCEC 16 TSTSYIRRSIOTPEEDRSYLOEPTLCGPHMTFDEDRCEC 16 TSTSYIRRSIOTPEEDRSYLOEPTLCGPHMTFDEDRCEC 16 TSTSYIRRSIOTPEEDRSYLOEPTLCGPHMTFDEDRCEC 16 TCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 16 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 16 TCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 16 TCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 16 TCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 17 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 18 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 19 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 10 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 10 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 10 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 11 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 12 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 13 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 14 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 15 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 16 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 17 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 18 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 19 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 10 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 10 PRHPYSILOHPENCSCFECKESLESCCOKHKIFHPDT 11 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 11 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 11 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 11 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 11 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 11 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPDT 11 PCPGDLIQHPENCSCFECKESLESCCOKHKIFHPT 11 PCPGDLICHPENCSCFECKESLESCCOKHKIFHPT 11 PCPGDLICHPENCSCFECKESLESCFECKESLESCFECKESLESCFECKESLESCFECKESLESCFECKESLESCFECKESLESCFECKESLESCFECKESLESCFECKES	လ လ	တ လ	P P4	ပပ	1 1	, ,		wα	<u> </u>
MYGEMGMILMMFHVYLVOGFRSEHGPVKDFSFE MYGEMGMONILMMFHVYLVOGFRSEHGPVKDFSFE MIERSEOOIRAASSLEELLOIAHSEDWKLWRCRLK MLERSEOOIRAASSLEELLOIAHSEDWKLWRCRLK 11 SMDSRSASHRSTRFAATFYDTETLKVIDEEWORTO 12 TCVEVASELGKTTNTFFKPPCVNVFRCGGCCNEEG 13 TCVEVASELGKTTNTFFKPPCVNVFRCGGCCNEEG 14 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 15 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 17 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 18 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 19 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 19 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 10 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 10 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 10 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 10 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGCK 10 TSTSYISKOLFEISVPRTSVFCK 10 TSTSYISKOLFEISVPTTCSPHSKKLCPFIDMLWDN 10 TSTSYISKOLFEISVPTTCSPHSKKLCPFIDMLWDN 10 TSTSYISKOLFEISVPTTCSPHSKKLCPFIDMLWDN 10 TSTSYISKOLFEISVPTTCSPHSKKLCPFIDMLWDN 10 TSTSYISKOLFEISVCSCFECKESLESCCOKHKIFHPD 11 VLQDETPLPGTEDHSYLOEPTLCGPHMTFDEDRCE 11 TSTSYISKOLFEISVCSCFECKESLESCCOKHKIFHPD 11 VLQDETPLPGTEDHSYLOEPTLCGPHMTFDEDRCE 11 TSTSYISKOLFEISVCSCFECKESLESCCOKHKIFHPD 11 VLQDETPLPGTEDHSYLOEFTLCGPHMTFDEDRCE 11 VLQDETPLPGTEDHSYLOEFTLCGPHMTFDEDRCE 11 VLQDETPLPGTEDHSYLOEFTLCGPHMTFDEDRCE 11 VLQDETPLPGTEDHSYLOEFTLCGPHMTFDEDRCE 11 VLQDETPLPGTEDHSYLOEFTLCGPHMTFDEDRCE 11 VLQDETPLPGTEDHSYLOEFTLCGPHMTFDEDRCE 11 VLQDETPLPGTEDHSYLOEFTLCGPHMTFTLOEFTLOEFTLOEFTLOEFTLOEFTLOEFTLOEFTLO	- 1	1 1	1 1	1 1	1 1	1 1		1 1	2 0
MYGEWGMGNILMMFHVYLVOGFRSEHGPVKDFSF MLERSEQOIRAASSLEELLQIAHSEDWKLWRCRL MLERSEQOIRAASSLEELLQIAHSEDWKLWRCRL MLERSEQOIRAASSLEELLQIAHSEDWKLWRCRL MLERSEQOIRAASSLEELLQIAHSEDWKLWRCRL MLERSEQOIRAASSLEELLQIAHSEDWKLWRCRL MLERSEQOIRAASSLEELLQIAHSEDWKLWRCRL MLERSEQOIRAASSLEELLQIAHSEDWKLWRCRL MLERSEQOIRAASSLEELLQIAHSEDWKLWRCRL MLERSEOOIRAASSLEELLQIAHSEWGRT MLERSEOOIRAASSLEELLQIAHSEWGRT MLERSEOOIRAASSLEELLQIAHSEWGRT MLERSEOOIRAASSLEELLQIAHSEWGRT MRCRL MLERSEOOIRAASSLEELLQIAHSEWGRCRU MLERSEOOIRAASSLEELGGCONEE 16 TSTSYISKOLFEISVPLTSVPELVPVKIANHTGC 16 TSTSYISROLFEISVPLTSVPELVPVKIANHTGC 16 TSTSYISRSIOTPEEDECPHSKKLCPIDMLWD 16 PRHPYSIIRRSIOTPEEDECPHSKKLCPIDMLWD 16 PRHPYSIIRRSIOTPEEDECPHSKKLCPIDMLWD 17 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRC 18 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRC 19 PRHPYSIIRRSIOTPEECKESLESCCOKHKIFHP 10 PRCPGDLIOHPENCSCFECKESLESCCOKHKIFHP 11 VLODETPLPGTEDHSYLOEPTLCGPHMTFDEDRC 12 DRCPFHTRTCASRKPACGKHWRFPKETRROGLYS	#\H	1 1	i i		1 1	1		1 1	ы
MYGEMGMGNILMMFHVYLVOGFRSEHGPVKDFS MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSEDWKLWRCR MLERSEQQIRAASSLEELLQIAHSCOCN MLERSEQOIRAASSLEELLQIAHSCOCN MLERSEQOIRAASSLEELLQIAHSCOCN MLERSEQOIRAASSLEELLQIAHSCOCN MLERSEQOIRAASSLEELLQIAHSCOCN MLERSEQOIRAASSLEELLOIAHSCOCN MLERSEQOIRAASSLEELLOIAHSCOCN MLERSEQOIRAASSLEELLOIAHSCOCN MLERSEQOIRAASSLEELLOIAHSCOCN MLERSEQOIRAASSLEELLOIAHSCOCN MLERSEDOILOHPENCSCFECKESLESCCOKHKIFH MLERSEDOILOHPENCSCFECKESLESCCOKHKIFH MLERSEDOILOHPENCSCFECKESLESCCOKHKIFH MYGEWGHLENTERAOGLY MLODETPLEGTEDHSYLOGENTERAOGLY MYGEWGHRTFDEOR MYGEWGHRTFDEOR MLERSEDOIRANSTERAOGLY MLODETPLEGTEDHSYLOGENTERAOGLY MYGEWGHRTFDEOR MLERSEDOIRANSTERAOGLY MLODETPLEGTEDHSYLOGENTERAOGLY MYGEWGHRTFDEOR MINTERSENOOF MINTERSEN		4	1 1	1	1	1 1	1 1	1 1	1 —
MYGEWGMGNILMMFHVYLVQGFRSEHGPVKDF MYGEWGMGNILMMFHVYLVQGFRSEHGPVKDF MILERSEQOIRAASSLEELLOIAHSEDWKLWRC MILERSEQOIRAASSLEELLOIAHSEDWKLWRC MILERSEQOIRAASSLEELLOIAHSEDWKLWRC MILERSEQOIRAASSLEELLOIAHSEDWKLWRC MILERSEQOIRAASSLEELLOIAHSEDWKLWRC MILERSEGOIWWFWCGCCN MILERSEGOIWANTERPOWNYFRCGCCN MILERSEGOIWANTERPOWN MILERSEGOIWANT		1 1	1 1	1 1			1 1	1 1	
MYGEMGMGNILMMFHVYLVQGFRSEHGPVKD MYGEMGMGNILMMFHVYLVQGFRSEHGPVKD MLERSEOOIRAASSLEELLQIAHSEDWKLWR MLERSEOOIRAASSLEELLQIAHSEDWKLWR MLERSEOOIRAASSLEELLQIAHSEDWKLWR 11 SMDSRSASHRSTRFAATFYDTETLKVIDEEW 12 TCVEVASELGKTTNTFFKPPCVNVFRCGGCC 13 TSYISKOLFEISVPLTSVPELVPVKIANH 14 TCVEVASELGKTTNTFFKPPCVNVFRCGGCC 15 TSTSYISKOLFEISVPLTSVPELVPVKIANH 16 TSTSYISRSIQTPREDECPHSKKLCPIDM 16 PRHPYSIIRRSIQTPREDECPHSKKLCPIDM 17 VLODETPLPGTEDHSYLOEPTLCGPHMTFDE 18 VLODETPLPGTEDHSYLOEPTLCGPHMTFDE 19 CPGDLIQHPENCSCFECKESLESCCOKHKI 10 PCPGDLIQHPENCSCFECKESLESCCOKHKI 11 PCPGDLIQHPENCSCFECKESLESCCOKHKI 12 DRCPFHTRTCASRKPACGKHWRFPRETRAOG				1 1			1 1	1 1	7
MYGEWGMGNILMMFHVYLVQGFRSEHG MYGEWGMGNILMMFHVYLVQGFRSEHG MLERSEQQIRAASSLEELLQIAHSEDW MLERSEQOINQFREDHSYLGEPTLCGPHM MLERSEQCOO MLERSEGGETPLGETEDHSYLGEPTLCGPHM MCGPGDLIQHPENCSCFECKESLESCCOO MYGENGOLIQHPENCSCFECKESLESCCOO MYGENGOLIQHPENCSCFECKESLESCCOOO MYGENGOLIQHPENCSCFECKESLESCFINGON MYGENGOLIQHPENCSCFECKESLESCCOOO MYGENGOLIQHPENCSCFECKESTINGON MYGENGOLIQHPENCSCFECKESTINGON MYGENGOLIQHPENCSCFECKESTINGON MYGENGON MYGEN	- 1		1 1	1 1	1 1		3 1	1 1	
MYGEWGMGNILMMFHVYLVQGFRSEHG MYGEWGMGNILMMFHVYLVQGFRSEHG MLERSEQQIRAASSLEELLQIAHSEDW MLERSEQOINQFREDHSYLGEPTLCGPHM MLERSEQCOO MLERSEGGETPLGETEDHSYLGEPTLCGPHM MCGPGDLIQHPENCSCFECKESLESCCOO MYGENGOLIQHPENCSCFECKESLESCCOO MYGENGOLIQHPENCSCFECKESLESCCOOO MYGENGOLIQHPENCSCFECKESLESCFINGON MYGENGOLIQHPENCSCFECKESLESCCOOO MYGENGOLIQHPENCSCFECKESTINGON MYGENGOLIQHPENCSCFECKESTINGON MYGENGOLIQHPENCSCFECKESTINGON MYGENGON MYGEN	⊼점	1 6			1 1	1 1	1 1	1 4	
MYGEWGMGNILMMFHVYLVQGFRSEHG MYGEWGMGNILMMFHVYLVQGFRSEHG MLERSEQQIRAASSLEELLQIAHSEDW 11 MLERSEQQIRAASSLEELLQIAHSEDW 12 TCVEVASELGKTTNTFFKPPCVNVFRC 13 MDSRSASHRSTRFAATFYDTETLKVI 14 TCVEVASELGKTTNTFFKPPCVNVFRC 16 TSTSYISKQLFEISVPLTSVPELVPVK 16 TSTSYISKQLFEISVPLTSVPELVPVK 16 TSTSYISRGLGKTTNTFFKPPCVNVFRC 16 PRHPYSIIRRSIQTPBEDECPHSKKLC 16 PRHPYSIIRRSIQTPBEDFCPHSKKLC 16 PCPGDLIQHPENCSCFECKESLESCCO 16 PRHPYSIIRRSIOTPBEDFCPHSKKLC 16 PCPGDLIQHPENCSCFECKESLESCCO 16 PRHPRFPKET	>>		ខា ខា		1 1	1 1		1 1	1 .
MYGEWGMGNILMMFHVYLVQGFRSEH MYGEWGMGNILMMFHVYLVQGFRSEH MLERSEQOIRAASSLEELLQIAHSED SMDSRSASHRSTRFAATFYDTETLKV GLTCVEVASELGKTTNTFFKPPCVNVFR TCVEVASELGKTTNTFFKPPCVNVFR TCVEVASELGKTTNTFFKPPCVNVFR TCVEVASELGKTTNTFFKPPCVNVFR TCVEVASELGKTTNTFFKPPCVNVFR TCVEVASELGKTTNTFFKPPCVNVFR TCVEVASELGKTTNTFFKPPCVNVFR TCVEVASELGKTTNTFFKPPCVNVFR TCVEVASELGKTTNTFFKPPCPC TGTTSYISKOLFEISVPLTSVPELVPV TCVEVASELGKTTNTFFKPPCPC TGTTSYISKOLFEISVPLTSVPELVPV TCVEVASELGKTTNTFFKPPCPC TGTTSYISKOLFEISVPLTSVPELVPV TCVEOPETPLPGTEDHSYLOEPTLCGPH TVLODETPLPGTEDHSYLOEPTLCGPH TVLODETPLPGTEDHSYLOEPTLCGHS TVLODETPLPGTEDHSYLOEPTLCGHS TVLODETPLPGTEDHSYLOEPTLCGHS TVLODETPLPGTEDHSYLOEPTLCGHS TVLODETPLPGTEDHSYLOEPTLCGHS TVLODETPL	ᅀᆈ	××		00	HH	ام ما	E E		a
MYGEWGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MIERSEOOIRAASSLEELLQIAHSE MIERSEOOIRAASSLEELLQIAHSE MIERSEOOIRAASSLEELLQIAHSE MIERSEOOIRAASSLEELLQIAHSE MIERSEOOIRAASSLEELLQIAHSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILAHSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHVYLVOGFRSE MYGEMGMGNILMMFHV MYGEMGNILMMFHV MYGEMGNILMMFH MYGEMGNILMM	ပ ပ	3 ₹	HH	ပပ	\times	ပပ	××	00	E .
MYGEWGMGNILMMFHVYLVQGFR MYGEWGMGNILMMFHVYLVQGFR MLERSEQIRAASSLEELLQIAH SMDSRSASHRSTRFAATFYDTET 121 TCVEVASELGKTTNTFFKPPCVN 146 TSTSYISKOLFEISVPLTSVPEL 156 TSTSYISKOLFEISVPLTSVPEL 157 SYISKOLFEISVPLTSVPEL 158 TSYISKOLFEISVPLTSVPEL 158 TSYISKOLFEISVPLTSVPEL 159 TSYISKOLFEISVPLTSVPEL 150 TSTSYISKOLFEISVPLTSVPEL 151 TSTSYISKOLFEISVPLTSVPEL 151 TSTSYISKOLFEISVPLTSVPEL 152 TSTSYISKOLFEISVPLTSVPEL 153 TSTSYISKOLFEISVPLTSVPEL 154 TSTSYISKOLFEISVPLTSVPEL 155 TSTSYISKOLFEISVPLTSVPEL 156 TSTSYISKOLFEISVPLTSVPEL 157 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISSVPLTSVPEL 158 TSTSYISKOLFEISSVPLTSVPEL 158 TSTSYISKOLFEISSVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISSVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYLFFRENCSCFECKESLE 158 TSTSYLFFRE	포프	1 1		1 1	>>	1-1-	ᆍ	ပပ	ы .
MYGEWGMGNILMMFHVYLVQGFR MYGEWGMGNILMMFHVYLVQGFR MLERSEQIRAASSLEELLQIAH SMDSRSASHRSTRFAATFYDTET 121 TCVEVASELGKTTNTFFKPPCVN 146 TSTSYISKOLFEISVPLTSVPEL 156 TSTSYISKOLFEISVPLTSVPEL 157 SYISKOLFEISVPLTSVPEL 158 TSYISKOLFEISVPLTSVPEL 158 TSYISKOLFEISVPLTSVPEL 159 TSYISKOLFEISVPLTSVPEL 150 TSTSYISKOLFEISVPLTSVPEL 151 TSTSYISKOLFEISVPLTSVPEL 151 TSTSYISKOLFEISVPLTSVPEL 152 TSTSYISKOLFEISVPLTSVPEL 153 TSTSYISKOLFEISVPLTSVPEL 154 TSTSYISKOLFEISVPLTSVPEL 155 TSTSYISKOLFEISVPLTSVPEL 156 TSTSYISKOLFEISVPLTSVPEL 157 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISSVPLTSVPEL 158 TSTSYISKOLFEISSVPLTSVPEL 158 TSTSYISKOLFEISSVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISSVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYISKOLFEISVPLTSVPEL 158 TSTSYLFFRENCSCFECKESLE 158 TSTSYLFFRE				1 1	1 L	1 1	1 1	ပ	\
MYGEWGMGNILMMFHVYLVQGF MYGEWGMGNILMMFHVYLVQGF MLERSEQOIRAASSLEELLQIA MLERSEQOIRAASSLEELLQIA MLERSEQOIRAASSLEELLQIA MLERSEOOIRAASSLEELLQIA MLERSEOOIRAASSLEELLQIA MLERSEOOIRAASSLEELLQIA MLERSEOOIRAASSLEELLQIA MLERSEOOIRASTREATTYDTE SMDSRSASHRSTRAATTYDTE 16 TCVEVASELGKTTNTFFKPPCV 16 TCVEVASELGKTTNTFFKPPCV 16 TCVEVASELGKTTNTFFKPPCV 16 TSTSYISKOLFEISVPLTSVPE 16 TSTSYISKOLFEISVPE 16 TSTSYISKOLFEISVPLTSVPE 16 TSTSYISKOLFEISVPE 16 TSTSYNPSTEST 16 TSTSYNPSTEST 16 TSTSYISKOLFEISVPE 16 TSTSYNPSTEST 17 TSTSYNPST 1	1		1 1		1 1		1 1	1 1	
MYGEWGMGNILMMFHVYLVOG MYGEWGMGNILMMFHVYLVOG MLERSEQOIRAASSLEELLOI SMDSRSASHRSTRFAATFYDT SMDSRSASHRSTRFAATFYDT 10 T CVEVASELGKTTNTFFKPPC 16 T CVEVASELGKTTNTFFKPPC 16 T S T S Y I S KOLFE I S V P L T S V P 16 T C V E V A S E L G K T T N T F F K P P C 16 T C V E V A S E L G K T T N T F F K P P C 16 T C V E V A S E L G K T T N T F F K P P C 16 T C V E V A S E L G K T T N T F F K P P C 16 T C V E V A S E L G K T T N T F F K P P C 16 T S T S Y I S K O L F E I S V P L T S V P 16 T S T S Y I S K O L F E I S V P L T S V P 17 V L O D E T P L P G T E D H S Y L O E P T 18 V L O D E T P L P G T E D H S Y L O E P T 19 V L O D E T P L P G T E D H S Y L O E P T 10 R C P G D L I O H P E N C S C F E C K E S 10 D R C P G D L I O H P E N C S C F E C K E S 10 D R C P G D L I O H P E N C S C F E C K E S 10 D R C P G D L I O H P E N C S C F E C K E S 11 D R C P F H T R T C A S R K P A C G K H W			1 1	1 1	1 1	1 1		1 1	1 (
MYGEWGMGNILMMFHVYLVO MYGEWGMGNILMMFHVYLVO MLERSEQOIRAASSLEELLO MLERSEQOIRAASSLEELLO MLERSEQOIRAASSLEELLO MLERSEQOIRAASSLEELLO MLERSEQOIRAASSLEELLO MLERSEQOIRAASSLEELLO MLERSEQOIRAASSLEELLO MLERSEQOIRAASSLEELLO MLERSEQOIRAATEYD MLERSEQOIRAATEYD MLERSEQOIRAATEYD MLERSEDOIRO MLERSEDOIRO MLERSEDOIRO MYGEWGMGNILMMFHVYLVO MLERSEDOIRO MLERSEDOIRO MYGEWGMGNILMMFHVYLVO MLERSEDOIRO MYGEWGWGNTHVYLVO MLERSEDOIRO MYGEWGMGNILMMFHVYLVO MLERSEDOIRO MYGEWGMGNTHVYLVO MLERSEDOIRO MYGEWGWGNTHVYLVO MAGENGWGNTHVYLVO MLERSEDOIRO MYGEWGMGNILM MYGEWGWGNTHVYLVO MAGENGWGNTHVYLVO MAGENGWGNTHVYLVO MYGEWGNILMMFHVYLVO MAGENGWGNTHVYLVO MYGEWGNILMMFHVYLVO MYGEWGNTHVYLVO MYGEWGNILMMFHVYLVO MYGENGUGNILMO MYGEWGNILMMFHVYLVO MYGERU MYGEWGNILMO MYGEWGNILMMFHVYLVO MYGERU MYGE				1 1	1 1	1 1			M .
MYGEWGMGNILMMFHVYLV MYGEWGMGNILMMFHVYLV MLERSEOOIRAASSLEELL MLERSEOOIRAASSLEELL MLERSEOOIRAASSLEELL MLERSEOOIRAASSLEELL MLERSEOOIRAASSLEELL MLERSEOOIRAASSLEELL MLERSEOOIRAASSLEELL MLERSEOOIRAASSLEELL MLERSEOOIRAASSLEELL MLERSEOOIRAATEY 10		1 1			1 1		1 1	1 1	, i
MYGEWGMGNILMMFHVYL MYGEWGMGNILMMFHVYL MLERSEQQIRAASSLEEL TCVEVASELGKTTNTFFK TCVEVASELGKTTNTFFK TGTSTSYLSKOLFELSVPLT TGTSTSYLSKOLFELSVFLT TGTSTSYLSKOLFT TGTSTSY			1 1	i i		3 1	1 1	1 1	1 1
MYGEWGMGNILMMFHV MYGEWGMGNILMMFHV MLERSEQQIRAASSLE MLERSEGQIRAASSLE MLERSEGGRIAAT MYGEWGMGNIAAF METTAASSLE MLERSEGGRIAAT MYGEWGMGNIAAF METTAASSLE MATTAASSLE MATTAASSCE MATTAASSC	44	2.2	L. L.	××	EFE	99	00	1 1	1 1
MYGEWGMGNILMMFH MYGEWGMGNILMMFH MLERSEQQIRAASSL MLOOTET WASTANT NATIONA MENTANT NATIONA MENTAN	××	ច ច	FE	£. £.	12.4	ខ្មា	1212	យស	u ·
MYGEWGMGNILMMF MYGEWGMGNILMMF MLERSEQOIRAASS MLERSEDOIRAASS MLONIMATERATORA MLERSEDOIRAASS MLONIMATERATORA MLERSEDOIRAASS MLONIMATERATORA MLERSEDOIRAASS MLONIMATERATORA MLONIM	> >	ωш	144	E- E-	2	82 04	> >	E E	4⋅
MYGEWGMGNILMM MYGEWGMGNILMM MLERSEOOIRAAS MLERSEOO	1	i l	1 1	1 1	1 1		လ လ	ပပ	Α.
MYGEWGMGNILM MYGEWGMGNILM MLERSEQOIRAA MLERSEQOIRAA MLERSEQOIRAA MLERSEQOIRAA SMDSRSASHRST TCVEVASELGKT TCVEVASELGKT TCVEVASELGKT TCVEVASELGKT TCVEVASELGKT TGVEV		1 1	1 1		1 1		1 1	4 6	H.
MYGEWGMGNILLERSECOLIRA MYGEWGMGNILLERSECOLIRA MLERSECOLIRA MLERSECOLI		- 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
MYGEWGNGNI MYGEWGNGNI MLERSEQOIR MLO METARE MANA MLERSEQOIR MLO METARE MANA MLO METARE MANA MLO METARE MANA MLO METARE MANA MANA MANA MANA MANA MANA MANA MAN		1		1 1) E	1 1	1 1	1 1	1 1
M Y G E W G M G N M Y G E W G M G N M L E R S E O O I M L E R S E O O I M L E R S E O O I M L E R S E O O I M L E R S E O O I M L E R S E C O I M L C O D E T P L P M T C D E T P M T C D E T	1 1	, l		1 1	1 1		1 1	1 1	
M Y G E W G M G M L E R S E O O M L E C D E C D L I O M L E R S E R T B M L E R S E O O M L E C D E C D L I O M L E	1 1	1 1	1 1	1 1			1 1		
M Y G E W G M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R S E O M L E R E R E C O D E T P C P G D L T T T T T T T T T T T T T T T T T T	1 1	ad	1 1	1 1	1 1	1 1	1 1	1 1	.
M Y G E W M Y G E W M L E R S M L E R S	ΣÞ	ad	4	လ လ	တ က	HH	ام ما	1 1	1 1
М К С Е В В В В В В В В В В В В В В В В В В	ပ	ម ជ	တ တ	144	HH	လ လ	₽ 6	12.2	
21 P C C P F F C C F F C C C F F C C C C C	1 1	စာ ဟ	~ ~ ~	>>	××	 ≻ ≯	មក	00	14
121 12	1		လ တ	က က	1 1	스	0 0	ပ ပ	
12 12 12 12 12 12 12 12 12 12 12 12 12	1 1		•			- 1 - 1	- 1 - 1		
	1 1		1	- 1 i	4 1	1 1	1 6	1 1	1 1
10 10 71 90 06 40 87 74	2	22	o o			ليسيا	<u> </u>	면관	13
	~ ~	_	_	7	9 5	00	40	7 80	2 ~

FIG. 8

hvegf.d mvegf.d1 mvegf.d2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	hvegr.D mvegr.D1 mvegr.D2		VEGF.	MVEGF.	AVEGE.	hvegf.D mvegf.D1 mvegf.D2	hvegr.d mvegr.dl mvegf.d2
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	777 888 777	000 000 040 0	EE -	E E 2	(1	1	A N A O S
XX XX YX YX YX YX YX	W W W W C W C W C W C W C W C W C W C W	2 2 3 0 0 0 2 2 2 3 2 2 2 3 3 2 3 5 5 5 6 5 6 6 6 5 6 6 6 5 6 6 6 5 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 7 6 7		000 B	200		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ж э э э э э э э э э э э э э э э э э э э
> > > a a a b b b a	888 888 888 888	X X X X X X X X X X X X X X X X X X X		2 4 4 2 4 4 3 4 4 4 4 4	XXX 111 000 999	MER MER MER	200 200 200 200	X E X X X X X X X X X X X X X X X X X X
V Q G S S N V Q G F R S	200	6 to to	2 2 2 > > > U U U a, a, a		R S S S S S S S S S S S S S S S S S S S	8 P T T G G G G G G G G G G G G G G G G G	X E S L E S	X H C R F P W H R F P
1	777 888 888	7	2 2 2 4 4 4 4 4 4 4 4 4 7 4 4	S	0.0.0 0.0.0 0.0.0 0.0.0	017 017 14 8 H 8 H	0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*점
X X X X X X X X X X X X X X X X X X X	H R R R R R R R R R R R R R R R R R R R	===	8 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	X X X Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LAGTED PGTED	N N N N N N N N N N N N N N N N N N N	S & C C C C C C C C C C C C C C C C C C
> N N N N N N N N N N N N N N N N N N N	対 	8 8 8 8 8 8 8 8 8	VEVASE VEVASE VEVASE	7 S X I S Y I S Y I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X I S X X X I S X X X I S X X X I S X X X X	H P Y S I J	2 4 4 2 4 2	**************************************	日 A A ·
X X X X	র মু <u>দু</u> ΣΣ পুরু	E WWW E WWW	116 T C 121 T C 116 T C	156 T S 161 T S 156 T S	196 P R 201 P R 196 P R	36 41 4 C L	26 P C C C C C C C C C C C C C C C C C C	16 16 16 16 16

FIG. 0

	L V O G S S N E H C P V K hVEGF-D L L P G P R E A P A A A A F E S G hVEGF-C L H H A K W S Q A A P M A hVEGF 165 L L O L A P A Q A P V S Q hVEGF-B A L P A V P P Q Q W A L S hP1GF
31	OOIRAASSLEELLRITHS hVEGF-D EOLRS VSSV DELM T V L Y P hVEGF-C hVEGF 165
60 E D W K L W R C R L R L K S F T S M 76 E Y W K M Y K C Q L R K G G W Q H N R E Q A 42 37 42	D S R S A S H R S T R F A A T F Y D hVEGF-D N L N S R T E E T I K F A A A H Y N hVEGF-C hVEGF 165 hVEGF-B hPlGF
96 IETLKVIDEEWORTQCSPRETC 116 TEILKSIDNEWRKTOCMPREVIC 42 - · · · · KFMDVYORSYCHPIETL 37 - · · · SWIDVYTRATCQPREVV 42 · · · · · PFQEVWGRSYCRALERL	VEVASELCKSTNTFFKPPhvEGF-D I DVG KEFGVATNTFFKPPhvEGF-C VDIFQEYPDEIEYIFKPShVEGF165 VPLTVELMGTVAKQLVPShVEGF-B VDVVSEYPSEVEHMFSPShP1GF
136 C V N V F R C G G C C N E E S L I C M N T S 156 C V S V Y R C G G C C N S E G L O C M N T S 77 C V P L M R C G G C C N D E G L E C V P T E 72 C V T V O R C G G C C P D D G L E C V P T G 77 C V S L L R C T G C C G D E N L H C V P V E	TSYISKOLFEISVPLTSV hvegf-D TSYLSKTLFEITVPLS QG hvegf-C ESNITMQIMRIKPHQG hvegf 165 QHQVRMQILMIRYPS hvegf-B TANVTMQLLKIRSGDR hP1GF
176 PELVPVKVANHTGCKCLPTAP. 196 PKPVTISFANHTSCRCMSKLDV 115 QHIGEMSFLQHNKCECRPKKD. 109 SQLGEMSLEEHSQCECRPKKK. 115 PSYVELTFSQHVRCECRPLRE.	RHPYSIIRR - SIOIPE hVEGF-D YRQVHSIIRR - SLPATL hVEGF-C -RA
212 E D R C S H S K K L C P I D M L W D S N K C 234 P Q - C Q A A N K T C P T N Y M W N N H I C 144 G P - C S E R R K	KCVLQEENPLAGTEDHSH hVEGF-D RCLAQEDFMFSSDAGDDShVEGF-C
212 E D R C S H S K K L C P I D M L W D S N K C 234 P Q - C Q A A N K T C P T N Y M W N N H I C 144 G P - C S E R R K	KCVLQEENPLAGTEDHSH hVEGF-D RCLAQEDFMFSSDAGDDS hVEGF-C
212 E D R C S H S K K L C P I D M L W D S N K C 234 P Q - C Q A A N K T C P T N Y M W N N H I C 144 G P - C S E R R K	KCVLQEENPLAGTEDRSH hVEGF-D RCLAQEDFMFSSDAGDDShVEGF-C
212 E D R C S H S K K L C P I D M L W D S N K C 234 P Q - C Q A A N K T C P T N Y M W N N H I C 144 G P - C S E R R K	KCVLQEENPLAGTEDRSH hVEGF-D RCLAQEDFMFSSDAGDDShVEGF-C

FIG. 10

15/19

FIG. 14

FIG. 15

19/19

International application No.
PCT/US97/14696

		<u></u>							
IPC(6)	SSIFICATION OF SUBJECT MATTER :C12N 1/21, 5/10, 15/18, 15/63; C07K 1/14, 14/475,	14/49							
	:435/69.4, 325, 243, 320.1; 530/399, 412; 536/23.51 to International Patent Classification (IPC) or to both	national classification and IPC							
	DS SEARCHED								
	ocumentation searched (classification system follows	d by classification symbols)							
	435/69.4, 325, 243, 320.1; 530/399, 412; 536/23.51	2 07 0.000.000.000							
O.S	455/09.4, 525, 245, 320.1, 550/399, 412, 550/25.51								
Documental	ion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched						
	ata base consulted during the international search (na	ame of data base and, where practicable,	search terms used)						
c. Doc	UMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.						
X	Database GenBank, Accession Number y142g02.rl Homo sapiens cDNA clon see entire document.		6						
X,P	P ORLANDINI et al. Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Natl. Acad. Sci. USA. October 1996, Vol. 93, pages 11675-11680, see especially Figure 1 and "Materials and Methods" at pages 11675-11677.								
A	TISCHER et al. Vascular endothelial gof the platelet-derived growth factor general. Comm. Decemer 1989, Vol. 16 see entire document.	ne family. Biochm. Biophys.	1-13, 16-28, 33- 35						
- Fugh	er documents are listed in the continuation of Box C	See notes: family annual							
<u> </u>									
•	ecial categories of cited documents: cument defining the general state of the art which is not considered	"T" later document published after the inte date and not in conflict with the appl	ication but cited to understand						
to	be of particular relevance	"X" document of particular relevance: the							
"L" do-	clier document published on or after the international filing data cument which may throw doubts on priority claim(s) or which is sed to establish the publication date of another citation or other	considered novel or cannot be considered when the document is taken alone	red to involve an inventive step						
O do:	special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is								
P do	oursent published prior to the international filing date but later than	*&* document member of the same patent							
	actual completion of the international search	Date of mailing of the international sea							
. 29 ОСТО		2 3 DEC 1997							
Commission Box PCT	ame and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized officer CHRISTINE SAOUD Authorized officer CHRISTINE SAOUD								
Facsimile N	o. (703) 305-3230	Telephone No. (703) 308-0196	′						

International application No. PCT/US97/14696

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. X Claims Nos.: 14-15, 29-32, 51-57, 59-62, 68 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Picase See Extra Sheet.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-13, 16-28, 33-35
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

International application No. PCT/US97/14696

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, STN, BIOSIS, MEDLINE, EMBASE, WPIDS

search terms: vascular endothelial cell growth factor, VEGF, PDGF, VEGF-D, endothelial cell proliferation, vascular permeability

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s) 1-13, 16-28, 33-35, drawn to DNA, vectors, host cells, polypeptides, pharmaceutical compositions of polypeptides and methods of making polypeptides.

Group II, claim(s) 36, drawn to a vector comprising antisense molecule.

Group III, claim(s) 37-45, 63-66 (in part), drawn to methods of promoting cell differentiation and/or proliferation.

Group IV, claim(s) 39-40, 63-66 (in part), drawn to methods of stimulating vascular permeability.

Group V, claim(s) 46-49, drawn to methods of inhibiting by administration of an antagonist which is an antibody.

Group VI, claim(s) 50, drawn to a method of inhibiting expression by administration of an antisense vector.

Group VII, claim(s) 58, drawn to methods of detecting VEGF-D.

Group VIII, claim(s) 67 (in part), drawn to a diagnostic test kit which uses an antibody.

Group IX, claim(s) 67 (in part), 69, drawn to a diagnostic test kit which uses primers.

Group X, claim(s) 70, drawn to methods of detecting aberrations in VEGF-D.

Group XI, claim(s) 71 (in part), 72, 73, drawn to a VEGF-D antagonist which is an antibody and pharmaceutical compositions thereof.

Group XII, claim(s) 71 (in part), 74, drawn to a VEGF-D antagonist which is a fragment or analog of VEGF-D.

Group XIII, claim(s) 76, drawn to methods of using a VEGF-D antagonist.

Group XIV, claim(s) 75, drawn to a method of increasing circulation and/or gas exchange.

Group XV, claim(s) 77, drawn to a method of treating intestinal malabsorption.

The inventions listed as Groups I-XV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the special technical feature of Group I, DNA encoding a VEGF polypeptide, is not shared by all of inventive groups. Therefore, the main inventive groups is the DNA encoding a VEGF polypeptide, including the vectors and host cells containing said DNA, the polypeptide made with said DNA and the first method of using the DNA, which is the method of making the protein. The special technical feature of Group II is the vector containing the antisense. The special technical feature of Group III is the method of promoting cell differentiation and/or proliferation. The special technical feature of Group V is the method of inhibition by administration of an antibody. The special technical feature of Group VI is the method of inhibiting expression by administration of an antisense vector. The special technical feature of Group VII is the method of detecting VEGF-D. The special technical feature of Group VII is the special technical feature of Group XI is the diagnostic test kit which utilizes an antibody. The special technical feature of Group XI is the VEGF-D. The special technical feature of Group XI is the VEGF-D.

International application No. PCT/US97/14696

D antibody. The special technical feature of Group XII is the VEGF-D antagonist which is an analog or fragment of VEGF-D. The special technical feature of Group XIII is the method of using an antagonist. The special technical feature of Group XIV is the method of increasing circulation and/or gas exchange. The special technical feature of Group XV is the method of treating intestinal malabsorption. PCT Rule 13 does not provide for multiple products or methods within a single application. The methods are distinct because they have different goals, method steps, and/or starting materials as well as being qualitatively different methods. The products are distinct because they do not share the same or corresponding technical feature (i.e. DNA encoding VEGF-D) and because they are structurally different products.