## Probabilistic meta learning

Wu, 2019/02/26

#### Overview

- Review
  - Meta learning
  - MAML
- Probabilistic meta learning
  - Bayesian meta learning
  - Meta learning based on extended PAC-Bayes theory
- Some meta learning applications
  - Meta learning for item cold-start recommendations
  - Learn what to transfer

### Meta learning example: few-shot learning



#### Problem formulation

Supervised learning

$$f(x) \rightarrow y$$

- Supervised meta learning
  - Learner

$$f(D_i^{train},x) o y$$

- Meta learner
  - Learn a learner given a task

#### MAML

#### Algorithm 1 Model-Agnostic Meta-Learning

```
Require: p(\mathcal{T}): distribution over tasks
```

**Require:**  $\alpha$ ,  $\beta$ : step size hyperparameters

- 1: randomly initialize  $\theta$
- 2: while not done do
- 3: Sample batch of tasks  $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all  $\mathcal{T}_i$  do
- 5: Evaluate  $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$  with respect to K examples
- 6: Compute adapted parameters with gradient descent:  $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: **end for**
- 8: Update  $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

Probabilistic interpretation of MAML

Line 6

•

$$p(\mathcal{D}_{\mathcal{T}}^{\text{val}} \mid \theta_0, \mathcal{D}_{\mathcal{T}}^{\text{trn}}) = \prod_{\tau \in \mathcal{T}} p(\mathcal{D}_{\tau}^{\text{val}} \mid \underline{\theta_{\tau}'} = \theta_0 + \alpha \nabla_{\theta_0} \log p(\mathcal{D}_{\tau}^{\text{trn}} \mid \theta_0)),$$

where 
$$p(\mathcal{D}_{\tau}^{\text{val}}|\theta_{\tau}') = \prod_{i=1}^{|\mathcal{D}_{\tau}^{\text{val}}|} p(y_i|x_i,\theta_{\tau}')$$

Line 8

More general probabilistic interpretation

$$p(\mathcal{D}_{\mathcal{T}}^{\text{val}} \mid \theta_0, \mathcal{D}_{\mathcal{T}}^{\text{trn}}) = \prod_{\tau \in \mathcal{T}} \left( \int p(\mathcal{D}_{\tau}^{\text{val}} \mid \theta_{\tau}) p(\theta_{\tau} \mid \mathcal{D}_{\tau}^{\text{trn}}, \theta_0) d\theta_{\tau} \right)$$

Integrate over posterior distribution instead of point estimation approximation

 Use a more flexible task-train posterior while maintaining the efficiency. How?

Obtaining M samples from the task-train posterior using SVGD

$$p(\mathcal{D}_{\mathcal{T}}^{\text{val}} \mid \Theta_0, \mathcal{D}_{\mathcal{T}}^{\text{trn}}) \approx \prod_{\tau \in \mathcal{T}} \left( \frac{1}{M} \sum_{m=1}^{M} p(\mathcal{D}_{\tau}^{\text{val}} \mid \theta_{\tau}^m) \right) \quad \text{where} \quad \theta_{\tau}^m \sim p(\theta_{\tau} \mid \mathcal{D}_{\tau}^{\text{trn}}, \Theta_0)$$

 SVGD: iteratively transports a set of particles to match the target distribution

#### Algorithm 1 Bayesian Inference via Variational Gradient Descent

**Input:** A target distribution with density function p(x) and a set of initial particles  $\{x_i^0\}_{i=1}^n$ . **Output:** A set of particles  $\{x_i\}_{i=1}^n$  that approximates the target distribution p(x). **for** iteration  $\ell$  **do** 

$$x_{i}^{\ell+1} \leftarrow x_{i}^{\ell} + \epsilon_{\ell} \hat{\phi}^{*}(x_{i}^{\ell}) \quad \text{where} \quad \hat{\phi}^{*}(x) = \frac{1}{n} \sum_{j=1}^{n} \left[ k(x_{j}^{\ell}, x) \nabla_{x_{j}^{\ell}} \log p(x_{j}^{\ell}) + \nabla_{x_{j}^{\ell}} k(x_{j}^{\ell}, x) \right], \tag{8}$$

where  $\epsilon_{\ell}$  is the step size at the  $\ell$ -th iteration.

end for

Traditional Loss, can be overfitting

$$\log p(\mathcal{D}^{ ext{val}}_{\mathcal{T}_t}|\Theta_0,\mathcal{D}^{ ext{trn}}_{\mathcal{T}_t})$$

$$\approx \sum_{\tau \in \mathcal{T}_t} \mathcal{L}_{BFA}(\Theta_{\tau}(\Theta_0); \mathcal{D}_{\tau}^{val}) \text{ where } \mathcal{L}_{BFA}(\Theta_{\tau}(\Theta_0); \mathcal{D}_{\tau}^{val}) = \log \left[ \frac{1}{M} \sum_{m=1}^{M} p(\mathcal{D}_{\tau}^{val} | \theta_{\tau}^{m}) \right]$$

Chaser loss

$$\underset{\Theta_0}{\operatorname{arg\,min}} \sum_{\tau} d_p(p_{\tau}^n \parallel p_{\tau}^{\infty}) \approx \underset{\Theta_0}{\operatorname{arg\,min}} \sum_{\tau} d_s(\Theta_{\tau}^n(\Theta_0) \parallel \Theta_{\tau}^{\infty}).$$

$$p_{\tau}^n \equiv p_n(\theta_{\tau} | \mathcal{D}_{\tau}^{\operatorname{trn}}; \Theta_0)$$

$$p_{\tau}^{\infty} \equiv p(\theta_{\tau} | \mathcal{D}_{\tau}^{\operatorname{trn}} \cup \mathcal{D}_{\tau}^{\operatorname{val}})$$

$$\mathcal{L}_{\text{BMAML}}(\Theta_0) = \sum_{\tau \in \mathcal{T}_t} d_s(\Theta_{\tau}^n \parallel \Theta_{\tau}^{n+s}) = \sum_{\tau \in \mathcal{T}_t} \sum_{m=1}^M \|\theta_{\tau}^{n,m} - \theta_{\tau}^{n+s,m}\|_2^2.$$

#### **Algorithm 3** Bayesian Meta-Learning with Chaser Loss (BMAML)

```
1: Initialize \Theta_0

2: for t = 0, \ldots until converge do

3: Sample a mini-batch of tasks \mathcal{T}_t from p(\mathcal{T})

4: for each task \tau \in \mathcal{T}_t do

5: Compute chaser \Theta_{\tau}^n(\Theta_0) = \text{SVGD}_n(\Theta_0; \mathcal{D}_{\tau}^{\text{trn}}, \alpha)

6: Compute leader \Theta_{\tau}^{n+s}(\Theta_0) = \text{SVGD}_s(\Theta_{\tau}^n(\Theta_0); \mathcal{D}_{\tau}^{\text{trn}} \cup \mathcal{D}_{\tau}^{\text{val}}, \alpha)

7: end for

8: \Theta_0 \leftarrow \Theta_0 - \beta \nabla_{\Theta_0} \sum_{\tau \in \mathcal{T}_t} d_s(\Theta_{\tau}^n(\Theta_0) \parallel \text{stopgrad}(\Theta_{\tau}^{n+s}(\Theta_0)))

9: end for
```

sinusoidal function regression





**Figure 1:** Sinusoidal regression experimental results (meta-testing performance) by varying the number of examples (K-shot) given for each task and the number of tasks  $|\mathcal{T}|$  used for meta-training.

Classification on minilmagenet



## PAC-Bayes Theory for single task problem

- For a hypothesis/algorithm h:
  - generalization error:  $er(h, \mathcal{D}) \triangleq \underset{z \sim \mathcal{D}}{\mathbb{E}} \ell(h, z)$
  - empirical error:  $\widehat{er}(h,S) \triangleq (1/m) \sum_{j=1}^{m} \ell(h,z_i)$
- ullet For a (posterior) distribution Q on the hypothesis space:
  - Generalization error:  $er(Q, \mathcal{D}) \triangleq \underset{h \sim Q}{\mathbb{E}} er(h, \mathcal{D})$
  - Empirical error:  $\widehat{er}(Q,S) \triangleq \underset{h \sim Q}{\mathbb{E}} \widehat{er}(h,S)$

#### PAC-Bayes Generalization Bound

**Theorem 1 (McAllester's single-task bound)** *Let*  $P \in \mathcal{M}$  *be some prior distribution over*  $\mathcal{H}$ . *Then for any*  $\delta \in (0,1]$ , the following inequality holds uniformly for all posteriors distributions  $Q \in \mathcal{M}$  with probability at least  $1 - \delta$ ,

$$er(Q, \mathcal{D}) \le \widehat{er}(Q, S) + \sqrt{\frac{D(Q||P) + \log \frac{m}{\delta}}{2(m-1)}}$$

where D(Q||P) is the Kullback-Leibler (KL) divergence,  $D(Q||P) \triangleq \underset{h \sim Q}{\mathbb{E}} \log \frac{Q(h)}{P(h)}$ .

#### PAC-Bayes Meta-Learning

- In single task problem, we need to define the prior distribution P
- In meta learning setting, can we learn the distribution of prior distribution *P* by making use of previous similar tasks?



#### Meta-Learning Problem Formulation

- We assume all tasks share the
  - sample space: Z.
  - hypothesis space:  $\mathcal{H}$
  - loss function (model architecture):  $\ell: \mathcal{H} \times \mathcal{Z} \to [0,1]$
- For each task:
  - Unknown data distribution:  $D_i$
  - Observed dataset  $S_i \sim \mathcal{D}_i^{m_i}$
  - $m_i$  is the number of data
  - All data distribution  $D_i$  are generated from same unknown tasks distribution  $\tau$

#### Meta-Learning Problem Formulation

• To measure the quality of a prior P:

$$er(P,\tau) \triangleq \underset{(\mathcal{D},m)\sim \tau}{\mathbb{E}} \underset{S\sim \mathcal{D}^m}{\mathbb{E}} \underset{h\sim Q(S,P)}{\mathbb{E}} \underset{z\sim \mathcal{D}}{\mathbb{E}} \ell(h,z).$$

- For meta learning problem, we define: 'hyper-prior'  $\mathcal{P}(P)$ ,
- observes the training tasks, and then outputs a distribution over priors 'hyper-posterior' Q(P).

#### Meta-Learning Problem Formulation

• To measure the performance of 'hyper-posterior' Q(P).

Transfer error(generalization error)

$$er(Q,\tau) \triangleq \underset{P \sim Q}{\mathbb{E}} er(P,\tau).$$

Empirical error

$$\widehat{er}(Q, S_1, ..., S_n) \triangleq \underset{P \sim Q}{\mathbb{E}} \frac{1}{n} \sum_{i=1}^n \widehat{er}(Q(S_i, P), S_i)$$

### Meta-learning PAC-Bayes bound

**Theorem 2 (Meta-learning PAC-Bayes bound)** Let  $Q: \mathcal{Z}^m \times \mathcal{M} \to \mathcal{M}$  be a base learner, and let  $\mathcal{P}$  be some predefined hyper-prior distribution. Then for any  $\delta \in (0,1]$  the following inequality holds uniformly for all hyper-posterior distributions  $\mathcal{Q}$  with probability at least  $1 - \delta$ , <sup>4</sup>

$$er(\mathcal{Q}, \tau) \leq \frac{1}{n} \sum_{i=1}^{n} \underset{P \sim \mathcal{Q}}{\mathbb{E}} \widehat{er}_{i}(Q_{i}, S_{i})$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{D(\mathcal{Q}||\mathcal{P}) + \underset{P \sim \mathcal{Q}}{\mathbb{E}} D(Q_{i}||P) + \log \frac{2nm_{i}}{\delta}}{2(m_{i} - 1)}}$$

$$+ \sqrt{\frac{D(\mathcal{Q}||\mathcal{P}) + \log \frac{2n}{\delta}}{2(n - 1)}},$$

$$(4)$$

where  $Q_i \triangleq Q(S_i, P)$ .

#### Implementation

文中选择的超后验分布就是常用的高斯分布。定义如下, 其中  $k_{\mathbb{Q}}>0$  是人工设定的超参数。

$$\mathbb{Q}_{\theta} = N(\theta, k_{\mathbb{Q}}^2 I_{N_P X N_P})$$

超先验分布定义为以 0 为均值的高斯分布,如下:

$$\mathbb{P} = N(0, k_{\mathbb{P}}^2 I_{N_P X N_P})$$

这样上图泛化误差上界中 KL 散度可以求得为:  $D(\mathbb{Q}_{\theta}||\mathbb{P}) = \frac{1}{2k_{\mathbb{P}}^2}||\theta||_2^2$ 。同时,与 VAE 中相同,从  $\mathbb{Q}_{\theta}$  中采样一个分布 P 的参数  $\hat{\theta}$  可以视为在参数  $\theta$  上加一个随机采样的噪声,如下:

$$\hat{\theta} = \theta + \epsilon_P, \epsilon_P \sim N(0, k_{\mathbb{Q}}^2 I_{N_P X N_P})$$

采样 K 个样本  $\hat{\theta}_1, ..., \hat{\theta}_K$ , 就可以对上图中误差上界中的  $E_{P \sim \mathbb{Q}}$  做一个估计, 如下:

$$\mathbb{E}_{P \sim \mathbb{Q}_{\theta}} \hat{er}_i(Q_i, S_i) \approx \frac{1}{K} \sum_{j=1}^K \hat{er}_i(Q_i(S_i, P_{\hat{\theta}_j}), S_i)$$

#### Implementation

•  $Q_i$  for each task is also defined as parameterized Gaussian distribution

$$Q_{\phi_i}(w) = \prod_{k=1}^d \mathcal{N}\left(w_k; \mu_{i,k}, \sigma_{i,k}^2\right)$$

Permute labels and permute pixels

| Метнор     | PERMUTED LABELS  | PERMUTED PIXELS |
|------------|------------------|-----------------|
| SCRATCH-S  | $2.27 \pm 0.06$  | $7.92 \pm 0.22$ |
| SCRATCH-D  | $2.82 \pm 0.06$  | $7.65 \pm 0.22$ |
| WARM-START | $1.07 \pm 0.03$  | $7.95 \pm 0.39$ |
| ORACLE     | $0.69 \pm 0.04$  | $6.57 \pm 0.32$ |
| MLAP-M     | $0.908 \pm 0.04$ | $3.4 \pm 0.18$  |
| MLAP-S     | $0.75 \pm 0.03$  | $3.54 \pm 0.2$  |
| MLAP-PL    | $82.8 \pm 5.26$  | $74.9 \pm 4.03$ |
| MLAP-VB    | $0.85 \pm 0.03$  | $3.52 \pm 0.17$ |
| AVERAGED   | $2.72 \pm 0.08$  | $7.63 \pm 0.36$ |
| MAML       | $1.16 \pm 0.07$  | $3.77 \pm 0.8$  |

#### Learn what to transfer

• Each task is a transfer learning problem



#### Design function a

- All in all, function a can be approximated by a linear embedding matrix W
  - a(W, x) = Wx

## Design function f

- The Difference between a Source and a Target Domain
  - maximum mean discrepancy (MMD)

$$\hat{d}_e^2(\mathbf{X}_e^s\mathbf{W}_e,\mathbf{X}_e^t\mathbf{W}_e)$$

Variance

$$\sigma_e^2(\mathbf{X}_e^s\mathbf{W}_e,\mathbf{X}_e^t\mathbf{W}_e)$$

The Discriminative Ability of a Target Domain

$$\tau_e = \operatorname{tr}(\mathbf{W}_e^T \mathbf{S}_e^N \mathbf{W}_e) / \operatorname{tr}(\mathbf{W}_e^T \mathbf{S}_e^L \mathbf{W}_e)$$

• f:

$$1/f = \boldsymbol{\beta}^T \hat{\mathbf{d}}_e + \lambda \boldsymbol{\beta}^T \hat{\mathbf{Q}}_e \boldsymbol{\beta} + \frac{\mu}{\boldsymbol{\beta}^T \boldsymbol{\tau}_e} + b$$

#### Learn during meta train

$$\boldsymbol{\beta}^*, \lambda^*, \mu^*, b^* = \arg\min_{\boldsymbol{\beta}, \lambda, \mu, b} \sum_{e=1}^{N_e} \mathcal{L}_h \left( \boldsymbol{\beta}^T \hat{\mathbf{d}}_e + \lambda \boldsymbol{\beta}^T \hat{\mathbf{Q}}_e \boldsymbol{\beta} + \frac{\mu}{\boldsymbol{\beta}^T \boldsymbol{\tau}_e} + b, \frac{1}{l_e} \right) + \gamma_1 R(\boldsymbol{\beta}, \lambda, \mu, b),$$
s.t.  $\beta_k \geq 0, \ \forall k \in \{1, \dots, N_k\}, \ \lambda \geq 0, \ \mu \geq 0,$  (2)

#### Learn a for a new task

$$\mathbf{W}_{N_e+1}^* = \arg \max_{\mathbf{W}} f(\mathcal{S}_{N_e+1}, \mathcal{T}_{N_e+1}, \mathbf{W}; \boldsymbol{\beta}^*, \lambda^*, \mu^*, b^*) - \gamma_2 \|\mathbf{W}\|_F^2$$

$$= \arg \min_{\mathbf{W}} (\boldsymbol{\beta}^*)^T \hat{\mathbf{d}}_{\mathbf{W}} + \lambda^* (\boldsymbol{\beta}^*)^T \hat{\mathbf{Q}}_{\mathbf{W}} \boldsymbol{\beta}^* + \mu^* \frac{1}{(\boldsymbol{\beta}^*)^T \boldsymbol{\tau}_{\mathbf{W}}}$$

$$+ \gamma_2 \|\mathbf{W}\|_F^2, \tag{3}$$

- Task: image classification
- Dataset: Caltech-256 (Griffin et al., 2007) and Sketches (Eitz et al., 2012)
- The model and baseline models learn representations of images
- Use nearest neighbor classifier based on representations learned by different algorithms



Figure 4. Average performance improvement ratio comparison over 500 testing pairs of source and target domains.







## Meta learning for item cold-start recommendations

- Recommending items for a user is regarded as a task
- All items share the same embedding function F.
- Each user has 2 class representation embeddings calculated as follows:

$$R_j^c = \mathcal{G}(\{\mathcal{F}(t_m)\} : t_m \in T_j \land (e_{mj} = c))$$

# Linear Classifier with Task-dependent weights



$$\Pr(e_{ij}=1|t_i, u_j) = \sigma(b + \mathcal{F}(t_i) \cdot (w_0 R_j^0 + w_1 R_j^1))$$

# Non-linear Classifier with Task-dependent Bias



| Model        | AUROC  | AUROC   |
|--------------|--------|---------|
|              |        | (w/CTR) |
| MF (shallow) | +0.22% | +1.32%  |
| MF (deep)    | +0.55% | +1.87%  |
| PROD-BEST    | +2.54% | +2.54%  |
| LWA          | +1.76% | +2.43%  |
| LWA*         | +1.98% | +2.31%  |

Table 1: Performance with LWA

| Model        | AUROC  | AUROC   |
|--------------|--------|---------|
|              |        | (w/CTR) |
| MF (shallow) | +0.22% | +1.32%  |
| MF (shallow) | +0.55% | +1.87%  |
| PROD-BEST    | +2.54% | +2.54%  |
| NLBA         | +2.65% | +2.76%  |

Table 2: Performance with NBLA

## Thank you