avito.tech 2

AVITO ML CUP Поиск дублей

MISIS Neychev Loss

Top 2 Public LB, Top 3 Private LB

Наша команда

Рыжичкин Кирилл ex CV RnD @ SBER AI

Аксеновский Максим CV Engineer @ X5

Груздев Александр
Data Scientist @ GPB

Герасин Тимофей
NLP Researcher @ Huawei

Начальный подход

Категориальные признаки

Мэтч по категориям 1-4 уровня, частичный мэтч по 4 уровню, полнота столбца.

2 Текстовые признаки

всего подряд (I, r)

Частичные мэтчи по названиям и описаниям, BM25, LCP и LCS. Сходства для строк и списков. IOU по n-gram. Антислова. Отношения и разницы длин для

3 Атрибутивные признаки

Совпадения для словаря атрибутов, топ-атрибуты по категориям

CV	0,48739	
LB	0,33978	

Неприятный баг

Небольшие изменения

GroupKFold → StratifiedGroupKFold

CV: 0,5249 I LB: 0,3495

Отказ от весов классов в лоссе

CV: 0,5418 | LB: 0,3552

Ручная настройка Ir=0.1

CV: 0,5498 | LB: 0,3598

Докидываем картинки

Эмбеддинги

Использовали претрейн openai/clipvit-large-patch14

⋄ [~]

Обработка

Заняло одну ночь на локальной 2060

Результат

Значительное улучшение метрик

Косинусное сходство

Рассчитали сходство между изображениями товаров

CV / LB

0,5659 / 0,3774

LightAutoML и категории

LightAutoML

Заменили соло CatBoost на LAMA с 5 фолдами. Использовали lgb, lgb_tuned, cb, cb_tuned

CV	0,5699
LB	0,3824

Категории как признаки

Тут мы вспомнили, что забыли подать сами категории товаров как фичи... Исправляемся

CV	0,5691	
LB	0,3920	

Чисти вилкой, чисти

Это печально

Выявили, что 97% слов в датасетах были с подменой букв — схожие по написанию русские и английские буквы заменялись друг другом.

Вполне ок...

Определять язык слова по мажорирующему языку: если больше n% букв в нем русские – слово русское.

Иные подходы

Фикс с мультиязычными токенизаторами и перплексией мультиязычного берта оказались менее эффективными.

Братишка, как я kenlm-ом буду чистить?

На инференсе считали перплексию для двух вариантов: en → ru и ru → en. Выбирали лучший вариант только когда в слове смешаны разные языки.

Новые фичи

- Расширение текстовых признаков: Добавили n-грамм IOU (1-7) для описаний товаров.
- Улучшение метрик схожести: Добавили token set/sort ratios и dice для описаний товаров.
- **BM25 и TF-IDF**: Применили их к названиям, описаниям и конкатенированным атрибутам.
- Взвешенное совпадение атрибутов: Учитывали совпадения ключей и значений для повышения точности.
- Битые слова: Включили отношения и абсолютные разницы процентов некорректных слов.

Новая картиночная модель

Взяли обученный под домен претрейн. Также тут добавлены фичи с прошлого шага + фикс букв.

0.589

0.401

1

Скор CV

Скор LB

Модель Marqo-SigLIP

Невероятно!

Эвано как!

Зато какая!

DL для текстов

Мы использовали предобученную модель sergeyzh/BERTA.

Косинусное сходство рассчитывалось для строк, объединяющих название, категорию и описание товара.

0.60

0.41

Скор CV

Скор LB

Еще одна картиночная модель

0.601

0.413

1

Скор CV

+0.01!

Скор LB

+0.03!

marqo-ecommerceembeddings-L

Зато какая!

FastText

Мы обучили модель FastText на объединенных описаниях товаров. ТТА заметно поднял скор.

Также помимо ABAB, ABBA инференса пробовали BAAB и BABA, но прироста не получили.

Метрика	Без ТТА	CTTA
CV	0.6096	0.6111
LB	0.4198	0.4235

Еще одна картиночная модель

В этот раз обратились к соревнованию Kaggle 'Shopee - Price Match Guarantee'. Топы там учили картиночные модели на arcface_loss на группы товаров. Только лишь веса топ-5 команды уцелели под грузом времени.

0.6129

0.4252

Скор CV

Скор LB

Немного текстовых претрейнов

Добавили multilingual-e5-large-instruct, снова небольшой прирост

0.6156

0.4273

Скор CV

Скор LB

Будущие эксперименты с userbge-m3 также дадут нам дополнительный небольшой прирост.

Модели по категориям

Мы обучили специализированные модели для каждой из семи категорий первого уровня.

7

0.5 + 0.5

0.436

Категорий

Веса блендинга

Скор LB

С отдельными моделями.

Общая и категориальная.

Финальный результат на лидерборде.

Вспоминаем про LAMA

Заменяем общий CatBoost на LAMA. Категориальные модели CatBoost остались без изменений.

0.4420

Скор LB

Учим картиночную модель

Для более точного сопоставления изображений мы сосредоточились на дообучении своей модели.

Выбор Модели

Дообучили timm/resnet50.a1_in1k, быструю и производительную модель.

Метод Обучения

Использовали Contrastive loss для эффективного обучения признакам. (OCL оказался хуже)

Оценка Эффективности

0.19 PRAUC на валидации, что выше всех прежних картиночных претрейнов!

Свой DL на текстах

Дообучили rubert-base на конкатах товаров. Только соло CatBoost как мета-модель!

Картиночная модель resnet с прошлого шага была также интегрирована.

0.626

CV Скор

0.446

LB Скор

0.455

LB Скор с ТТА

Снова LAMA

- 1. Заменили соло СВ на LAMA, а также преблендили соло катбусты по категориям и получили
- 2. Бленд 0.5 * lama_full + 0.5 * (0.7 * cb_cat1 + 0.3 * lama_cat1)
- 3. Добавили rouge по текстам как фичу и также поучили LAMA подольше

Постпроцессинг результатов

После алаймента вероятностей	0.465	
После ручной корректировки (оверфит под лб)	0.471	

$$p_1^{adj} = \frac{p_1 \pi_1 \rho_0}{p_1 \pi_1 \rho_0 + (1 - p_1) \pi_0 \rho_1}$$

- Сначала выполнили алаймент категориальных моделей под общую модель LAMA.
- Потом руками домножили вероятности: для животных и электроники на 1.2, для транспорта на 1.3.

Что не удалось

- **TabM**: Отлично показал себя соло (0,4222 на LB), но не смог улучшить общий бленд моделей.
- Ограничения моделей: Жирные текстовые и картиночные модели не поддавались обучению : (
- Постпроцессинг: Дополнительная обработка (id1,id2) и (id2,id1) не принесла прироста к скору.
- **LAMA по категориям**: Обучение LAMA для отдельных категорий не улучшило общую метрику.
- Псевдолейблинг: Применение псевдометок также не привело к ожидаемому повышению метрики.
- **CL > OCL:** Online Contrastive Loss работал хуже обычного Contrastive Loss.
- Модели по категориям 2 уровня: Модели по категориям второго уровня тянули скор вниз.
- Отбор фичей: Отбор фичей оказался для нас бесполезен (+долгий), в итоге использовали все 470.
- Разметка новых категорий: Разметка трех новых категории с помощью LLM/VLM тянула вниз.

Что не успели

- 1. Расширение датасета: Планировали использовать транзитивные цепочки для обогащения данных.
- 2. Кросс-энкодер на атрибутах: Давал 0.2 prauc в соло, не успели интегрировать как фичу.
- 3. Модели по кластерам: Была идея обучать модели по кластерам пользователей, а не только по категориям.
- 4. Обучение LLM/VLM: Трейн 3b 4bit модели требовал 800 часов на 150k сэмплов : (

Корреляция метрик

Важным аспектом было сопоставление результатов на лидерборде с внутренней валидацией. Этот график демонстрирует динамику ключевой метрики PRAUC в разных итерациях.

Спасибо за внимание!

Мы были рады поделиться нашим опытом и результатами!

