基于同源的后量子认证密钥交换协议-以及新进展

薛海洋 2020/9/28

目录

·认证密钥交换协议(AKE)以及同源问题

• SIAKE-基于同源的AKE

- 后续研究进展
 - •量子随机预言模型(QROM)下的安全性
 - 框架以及具体方案的紧归约?

Authenticated Key Exchange (AKE)

- Passive secure under DDH assumption
- Adaptive attacks: Man-in-the-middle attack etc.
- Basic and general idea: Authenticated Key Exchange (AKE)

Authenticated Key Exchange (AKE)

• Binding id with static public key using PKI etc.

Constructions of AKE

• Explicit AKE: using additional primitives, i.e., signature or MAC

1. IKE, Canetti-Krawczyk 02

2. SIGMA, Krawczyk 03, Peikert 14

3. TLS, Krawczyk 02

Constructions of AKE

• Implicit AKE: unique ability so as to compute the resulted session key

1. MTI 86: the first one

2. MQV 95: various attacks

3. HMQV 05: provable secure implicit-AKE via gap-DH and KEA

4. YZ13: OAKE

5. Oka 07: in standard model from DDH (Hashing Proof Sys.)

6. LLM 07: NAXOS scheme from gap-DBDH

7. Boyd 08: Diffie-Hellman+KEM

8. FSXY 12: 2CCA+CPA-KEM, std.

9. FSXY 13: 2CCAKEM,RO

10.ZZD+15: HMQV-type based on RLWE with weaker aim

后量子安全AKE

- 后量子安全加密和签名正接近标准化(NIST)
- ·然而后量子安全AKE的研究处于不完全的阶段;
 - AKE的安全性定义复杂(数10种敌手)
 - 半经典半后量子的过渡方案

数学结构	特点
Lattice	研究充分,综合性能最优
Isogeny 同源	尺寸上表现最优
编码	和Lattice 相互借鉴
Hash	适合设计签名
多变量	Rainbow签名

超奇异曲线同源的(超)简单介绍

From Croatia's slides

[JAC+18] Jao, D., Azarderakhsh, R., Campagna, M., et al: Supersingular Isogeny Key Encapsulation. NIST Round 3.

超奇异曲线同源的(超)简单介绍

	DH		SIDH
Elements	integers <i>g</i> modulo prime	points <i>P</i> in curve group	curves <i>E</i> in isogeny class
Secrets	exponents x	scalars <i>k</i>	isogenies ϕ
computations	$g, x \mapsto g^x$	$k, P \mapsto [k]P$	$\phi, E \mapsto \phi(E)$
hard problem	given g, g^x find x	given <i>P</i> ,[<i>k</i>] <i>P</i> find <i>k</i>	given $E, \phi(E)$ find ϕ

[JAC+18] Jao, D., Azarderakhsh, R., Campagna, M., et al: Supersingular Isogeny Key Encapsulation. NIST Round 3.

超奇异曲线同源的(超)简单介绍

• 设 E_1 和 E_2 为定义在 F_q 上两条椭圆曲线,如果非常值有理映射 $\phi: E_1 \to E_2$,

是 E_1 到 E_2 的群同态,则称它为同源映射.

设 H是曲线 E 的有限子群,则存在唯一的椭圆曲线 E' (在同构意义下)和可分同源 $\phi : E \to E' \ \ \text{使得} \ \ Ker(\phi) = H.$

一般记为 $E' = \phi(E) = E/\langle H \rangle$

基于同源的Diffie-Hellman(SIDH)

$$H_B = \langle m_B P_B + n_B Q_B \rangle$$
 $\frac{\langle H_A, H_B \rangle}{H_A} = \phi_A(\langle H_A, H_B \rangle)$ $= \langle \phi_A(H_A), \phi_A(H_B) \rangle$ $= \langle \phi_A(H_B) \rangle = \langle m_B \phi_A(P_B) + n_B \phi_A(Q_B) \rangle$

SIDH—AKE Challenges

- 1. Sign-MAC? Signature via SIDH $O(\lambda^2)$
- $2. \quad g^{ad+x}$

- 3. Adaptive attack. Public Key Validation
- 4. Gap assumption

SIAKE概述

[XLL+18] Haiyang Xue, Xianhui Lu, Bao Li, Bei Liang, Jingnan He, Understanding and Constructing of AKE via 2-key KEM, **ASIACRYPT 2018** [XXW+18] Xiu Xu, Haiyang Xue, Kunpeng Wang, Man Ho Au, Song Tian, Strongly secure AKE from Supersingular Isogenies, **ASIACRYPT2019**

SIAKE概述

[XLL+18] Haiyang Xue, Xianhui Lu, Bao Li, Bei Liang, Jingnan He, Understanding and Constructing of AKE via 2-key KEM, **ASIACRYPT 2018** [XXW+18] Xiu Xu, Haiyang Xue, Kunpeng Wang, Man Ho Au, Song Tian, Strongly secure AKE from Supersingular Isogenies, **ASIACRYPT2019**

[CCA,·] Security of 2-key KEM

2-key PKE

$$g^{r_1}, h_1^{r_1} \oplus m_1 \mid g^{r_2}, h_2^{r_2} \oplus m_2$$

$$g^r$$
, $H(h_1^r) \oplus m_1$, $H(h_1^r) \oplus m_2$

SIAKE19

$$g^{r_1}$$
, g^{r_2} , $h_1^{r_1} \oplus h_2^{r_2} \oplus m$

2Kyber18

SIAKE

参数 (256)	A to B (Bytes)	B to A (Bytes)	Total (Bytes)
SIAKEp751	1160	628	1788
Lattice-Kyber	2912	3008	5912

- SIAKE 通信还可以进一步压缩40%
- 缺点: 计算效率慢

一些进展

- 量子随机预言模型下的安全性
 - 必要性及我们的结果

- 紧归约问题
 - 理论与实际意义,初步工作

量子随机预言模型 (QROM)

CK+ AKE 经典RO **QROM** [CPA, CPA] 2PKE 格

SIDH

• QROM安全的必要性

• QROM-AKE公开问题 2013---

• 我们证明了所述框架 (略微修改)的 QROM安全性

Several techniques for FO in QROM

Dec(sk, C)		$C^* = Enc(pk, m^*, r^*) \mid r^* = G(m^*) \mid K^* = h(m^*)$				
RON	M	G-list	h-list	If $m^* \notin h$ -list	t G-list r*	K^*
QROM —		C H(m)		OW2H Lemma	增加密文	[TU16] [HHK17]
		$)\coloneqq h_q\circ h$	Enc(pk, m, G(m))	OW2H Lemma	Puncture Additional Hash One Way	[SXY18]-1 [HKSU18] [SXY18]-2 [JZC+18]

Several techniques for FO in QROM

$$C^* = Enc(pk, m^*, r^*) \mid r^* = G(m^*) \mid K^* = h(m^*)$$

QROM [BDF+11]

If
$$h(m) := h_q \circ Enc(pk, m, G(m))$$

$$h(Dec(sk,C)) = h_q \circ Enc(pk,Dec(sk,C)) = h_q(C)$$

Challenges for our AKE in QROM

$$Dec(sk_{\pm}, sk_{0}, C)$$
 $C^{*} = Enc(pk_{1}, pk_{0}, m^{*}, r^{*}) \mid K^{*} = h(pk_{1}, pk_{0}^{*}, m^{*})$

1. Putting pk_1 , pk_0 in to h

 $2.h(pk_1, pk_0, m) = H_q(pk_1, pk_0, Enc(pk_1, pk_0, m, G(m)))$ injective????

3.敌手可以选择 pk_0^* ?????

Challenges for our AKE in QROM

$$Dec(sk_{\pm}, sk_0, C)$$

$$C^* = Enc(pk_1, pk_0, m^*, r^*) \mid K^* = h(pk_1, pk_0^*, m^*)$$

- 1. Putting pk_1 , pk_0 in to h
- 2. Injective????

Domain Separation and Injective mapping under many pks

3.敌手可以选择 pk_0^*

QROM结果(投稿中)

- AKE框架在QROM下的安全性
- ✓SIAKE [XLW+19]
- ✓FSXY13 (2013的公开问题)
- ✓2Kyber-AKE

- Multi-uer QROM
 - Putting public key into h; 争论中。。。。
 - 攻击 vs 证明

紧归约问题?

$$\epsilon_{AKE} \leq l_{loss} \cdot \epsilon_{SIDH}$$

$$l_{loss} = N^2 l \qquad 2^{128} \qquad 2^{40} \qquad 2^{168}$$

$$l_{loss} = o(1) \qquad 2^{128} \qquad o(1) \qquad 2^{128}$$

紧归约问题

• 显式认证+签名
[BHJKL-TCC15] [GJ-CRYPTO18] [XZM-RSA20] [LLGW-eprint20]

• 隐式认证 [CCGJJ-CRYPTO19] $l_{loss} = N$

紧归约问题

AKE	Multi-auth	KeyReveal	长期临时公钥	Corruption
KEM	Multi-user	[CCA,.]	2-key	Corruption
困难问题	随机自归约 Commutative Sl	IDH	AND	OR proof

PK为2倍,通信量增加30%

可能的后续工作。。。

• QROM下的紧归约问题

- ·基于同源的多用户签名,QROM?紧归约?
 - Lossy identification, sign with corruption?

总结

- 同源问题
- SIAKE
- QROM
- 紧归约

参考文献

Haiyang Xue, Xianhui Lu, Bao Li, Bei Liang, Jingnan He, Understanding and Constructing AKE via Double-key Key Encapsulation Mechanism, ASIACRYPT 2018

Xiu Xu, Haiyang Xue, Kunpeng Wang, Man Ho Au, Song Tian, Strongly Secure Authenticated Key Exchange from Supersingular Isogenies, ASIACRYPT 2019

薛海洋,路献辉,王鲲鹏,田松,徐秀,贺婧楠,李宝,SIAKE:基于超奇异同源的认证密钥交换协议,算法竞赛

Haiyang Xue, Man Ho Au, Rupeng Yang, Bei Liang, Haodong Jiang, Compact Authenticated Key Exchange in the Quantum Random Oracle Model(投稿中)