

UNIVERSIDAD TECNOLÓGICA NACIONAL

Facultad Regional Avellaneda

Física II - 2^{do} 31

Guía de problemas de la unidad I

Termodinámica

Contenidos

1 Calorimetría	1
Respuestas de la unidad I	3

1. Calorimetría

- 1.1 a) Calcule la única temperatura a la que los termómetros Fahrenheit y Celsius coinciden. b) Calcule la única temperatura a la que los termómetros Fahrenheit y Kelvin coinciden.
- 1.2 a) Un termómetro de gas a volumen constante tiene una presión de 1000 Pa a 15 °C. Si la presión se incrementa a 2000 Pa, ¿cuál es la temperatura en grados Celsius? b) Un termómetro de gas registra una presión absoluta de 325 mmHg, estando en contacto con agua en el punto triple. ¿Qué presión indicará en contacto con agua en su punto de ebullición normal?
- 1.3 Usando un termómetro de gas de volumen constante, un experimentador determinó que la presión del gas cuando el termómetro se encuentra a la temperatura del punto triple del agua $(0.01\,^{\circ}\text{C})$ es $4.8\times10^4\,\text{Pa}$; y en el punto de ebullición normal del agua $(100\,^{\circ}\text{C})$ es $6.5\times10^4\,\text{Pa}$. a) Suponiendo que la presión varía linealmente con la temperatura, use estos datos para calcular la temperatura Celsius en la que la presión del gas sería cero (es decir, obtenga la temperatura Celsius del cero absoluto). b) ¿El gas de este termómetro obedece con precisión la ecuación $T_2/T_1 = p_2/p_1$? Si es así y la presión a $100\,^{\circ}\text{C}$ fuera $6.5\times10^4\,\text{Pa}$, ¿qué presión habría medido el experimentador a $0.01\,^{\circ}\text{C}$?
- 1.4 Un técnico mide el calor específico de un líquido desconocido sumergiendo en él una resistencia eléctrica. La energía eléctrica se convierte en calor transferido al líquido durante 120 s a una tasa constante de 65,0 W. La masa del líquido es 0,780 kg y su temperatura aumenta de 18,55 °C a 22,54 °C. Calcule el calor específico promedio del líquido en este intervalo de temperatura. Suponga que la cantidad de calor que se transfiere al recipiente es despreciable y que no se transfiere calor al entorno.
- 1.5 En un experimento se suministra calor a una muestra sólida de $500\,\mathrm{g}$ a una tasa de $10,0\,\mathrm{kJ/min}$ mientras se registra su temperatura en función del tiempo. La gráfica de sus datos se muestra en la figura 1.1.~a) Calcule el calor latente de fusión del sólido. b) Determine los calores específicos de

los estados sólido y líquido del material.

Figura 1.1: Problema 1.5

- 1.6 Una pieza metálica de $6,00 \,\mathrm{kg}$ de cobre sólido a una temperatura inicial T se coloca con $2,00 \,\mathrm{kg}$ de hielo que se encuentran inicialmente a $-20,0 \,^{\circ}\mathrm{C}$. El hielo está en un contenedor aislado de masa despreciable. Después de que se alcanza el equilibrio térmico, se observan $1,20 \,\mathrm{kg}$ de hielo y $0,80 \,\mathrm{kg}$ de agua líquida. ¿Cuál era la temperatura inicial de la pieza de cobre?
- 1.7 Una olla de cobre con una masa de 0,500 kg contiene 0,170 kg de agua, y ambas están a una temperatura de 20,0 °C. Un bloque de 0,250 kg de hierro a 85,0 °C se deja caer en la olla. Encuentre la temperatura final del sistema, suponiendo que no hay pérdida de calor a los alrededores.
- 1.8 En un recipiente adiabático de masa despreciable, $0.2 \,\mathrm{kg}$ de hielo a una temperatura inicial de $-40\,^{\circ}\mathrm{C}$ se mezclan con una masa m de agua que tiene una temperatura inicial de $80\,^{\circ}\mathrm{C}$. Si la temperatura final del sistema es $20\,^{\circ}\mathrm{C}$, ¿cuál es la masa m del agua que estaba inicialmente a $80\,^{\circ}\mathrm{C}$?
- 1.9 El calor específico molar de cierta sustancia varía con la temperatura según la siguiente ecuación empírica: C = a + bT, donde $a = 29.5 \,\mathrm{J\,mol^{-1}\,K^{-1}}$ y $b = 8.20 \times 10^{-3} \,\mathrm{J\,mol^{-1}\,K^{-2}}$. ¿Cuánto calor se necesita para modificar la temperatura de 3,00 mol de la sustancia de 27,0 °C a 227 °C? (Sugerencia: Integre la ecuación dQ = nCdT.)

- 1.10 Un calorímetro de cobre cuya masa es $0,446 \,\mathrm{kg}$ contiene $0,095 \,\mathrm{kg}$ de hielo, y el sistema está inicialmente en equilibrio a $0\,^{\circ}\mathrm{C}$. Si se agregan $0,035 \,\mathrm{kg}$ de vapor de agua a $100,0\,^{\circ}\mathrm{C}$ y 1 atm de presión, a) ¿qué temperatura final alcanzará el calorímetro y su contenido?, b) ¿cuántos kilogramos habrá de hielo, de agua líquida y de vapor a dicha temperatura final?
- 1.11 Considere un calorímetro con una capacidad calorífica igual a $0.125\,\mathrm{kJ/^\circ C}$, que contiene $400\,\mathrm{ml}$ de agua a $20.0\,^\circ\mathrm{C}$, en equilibrio térmico con el recipiente. Si se introducen $55.0\,\mathrm{g}$ de plomo líquido a su temperatura de fusión, ¿cuál es la temperatura final de la mezcla?

Datos:

Temperatura de fusión del plomo: 327,5°C

Calor específico del plomo líquido: $0.148\,\mathrm{kJ/(kg^\circ C)}$

Calor específico del plomo sólido: $0.129\,\mathrm{kJ/(kg^\circ C)}$

Calor latente de fusión del plomo: 23,0 kJ/kg

- 1.12 Un calorímetro cuyo equivalente en agua es 20 g, contiene 100 g de agua a 20 °C. Se agregan 50 g de una sustancia desconocida a una temperatura de 90 °C, obteniéndose una temperatura final de equilibrio de 24 °C. Calcular el calor específico de la sustancia desconocida.
- 1.13 Un calorímetro contiene $40\,\mathrm{g}$ de agua a $22\,^\circ\mathrm{C}$ y se le agregan $50\,\mathrm{g}$ de agua a $50\,^\circ\mathrm{C}$, obteniéndose una temperatura final de $35\,^\circ\mathrm{C}$. a) Calcular el equivalente en agua del calorímetro. b) En un nuevo experimento, este mismo calorímetro contiene $100\,\mathrm{g}$ de agua a una temperatura de $22\,^\circ\mathrm{C}$, y se agregan $80\,\mathrm{g}$ de aluminio a $90\,^\circ\mathrm{C}$. Calcular la temperatura de equilibrio. Dato: Calor específico del aluminio: $0,22\,\mathrm{cal}\,\mathrm{g}^{-1}\,^\circ\mathrm{C}^{-1}$.

Respuestas de la unidad I

1.1 a)
$$-40\,^{\circ}\text{C} = -40\,^{\circ}\text{F}$$

b)
$$575 \,^{\circ}\text{F} = 575 \,^{\circ}\text{K}$$

1.3 a)
$$-282,4$$
 °C

b)
$$4.6 \times 10^4 \, \text{Pa}$$

1.4
$$2.51 \times 10^3 \,\mathrm{J\,kg^{-1}\,K^{-1}}$$

1.5 a)
$$L_f = 3{,}00 \times 10^4 \,\mathrm{J/kg}$$

b)
$$c_{\text{s\'olido}} = 1.33 \times 10^{3} \,\mathrm{J\,kg^{-1}\,K^{-1}}$$
 y $c_{\text{l\'iquido}} = 1.00 \times 10^{3} \,\mathrm{J\,kg^{-1}\,K^{-1}}$

1.6
$$T = 150 \,^{\circ}\text{C}$$

1.8
$$m = 0.4 \,\mathrm{kg}$$

1.9
$$Q = 19700 \,\mathrm{J}$$

b) sin hielo, sin vapor, 0,130 kg de agua en estado líquido.

1.12
$$0.145 \operatorname{cal} \operatorname{g}^{-1} \circ \operatorname{C}^{-1}$$