1. Plano de Projeto e Estratégia de Testes

No protótipo, o usuário poderá interagir com o sistema para definir a quantidade de energia que pretende gerar e também as característícas da região, e assim, o software fará o cálculo para decidir qual a melhor configuração de equipamentos.

Além disso, o usuário poderá ver todo o detalhamento da decisão tomada pelo sistema.

À respeito da estratégia de testes utilizada, serão realizados testes ao fim de cada sprint com o objetivo de encontrar erros no projeto e facilitar a depuração.

Primeiramente serão realizados testes de unidade, ou seja, testes individuais nos módulos para detectar erros na lógica de processamento.

Depois que os módulos foram testados e os erros corrigidos, serão realizados testes de integração, ou seja, testar as comunicações entre os módulos e o funcionamento deles com essa nova interação.

Após a implementação do software, serão realizados testes de validação para verificar se o software atende aos requisitos definidos e testes de disponibilização para descobrir erros de execução em ambientes com configurações diferentes.

1.1 Product Backlog

O Product Backlog abaixo descreve as tarefas a serem realizadas para o desenvolvimento do protótipo:

- 1. Desenvolvimento do núcleo do SW (1): Comparação entre as possibilidades
- 2. Tela Decisão do sistema: Criação da tela que detalha a decisão tomada pelo sistema
- 3. Redirecionamento entre telas: Tela do projeto redirecionando para a tela que detalha a decisão do sistema
- 4. Usuário definir a quantidade de energia: Interação com o usuário para que seja definida a quantidade de energia a ser gerada
- 5. Desenvolvimento do núcleo do SW (2): Utilização de mais equipamentos
- 6. Melhoria no método de transição entre telas
- 7. Usuário definir as características do local: Interação com o usuário para que seja definida as características do local
- 8. Desenvolvimento do núcleo do SW (3): Utilização de mais fontes de energia renovável
- 9. Mais características para o local
- 10. Desenvolvimento do núcleo do SW (4): Melhoria no cálculo de comparação das possibilidades

1.2 Sprints

O desenvolvimento do protótipo será dividido em quatro sprints. Cada sprint possui um conjunto de tarefas a serem realizadas, além dos testes que serão feitos no fim de cada um deles.

1.2.1 Sprint 1

Sprint Release / Sprint 1 -

From 03/07/2016 10:00 to 05/07/2016 23:59

ID	Type	Title	Status
127598	User story	Tela - Decisão do sistema	TODO
127599	User story	Redirecionamento entre telas	TODO
127600	User story	Desenvolvimento do núcleo do SW (1)	TODO

Testes:

- 1. Teste de unidade: Valores passados como entrada para o núcleo do sistema serão testados no papel para encontrar erros no cálculo feito e na decisão tomada pelo sistema.
- 2. Teste de unidade: A tela que detalha a decisão do sistema será revista a fim de melhorar a forma como as informações são apresentadas.
- 3. Teste de integração: Serão testados as transições entre as telas para descobrir erros de navegação.

1.2.2 Sprint 2

Sprint Release / Sprint 2 -

From 06/07/2016 14:00 to 12/07/2016 23:59

ID	Туре	Title	Status
127601	User story	Usuário definir a quantidade de energia	TODO
127602	User story	Desenvolvimento do núcleo do SW (2)	TODO
127603	User story	Melhoria no método de transição entre telas	TODO

Testes:

- 1. Teste de Integração: Entradas não válidas serão utilizadas para testar a verificação feita pelo software na interação com o usuário.
- Teste de unidade: Valores passados como entrada para o núcleo do sistema serão testados no papel para encontrar erros no cálculo feito e na decisão tomada pelo sistema. (Já que agora possuem mais equipamentos).
- 3. Revisões serão feitas para avaliar a alteração feita na estrutura do código.
- 4. Testes de regressão serão feitos para avaliar se erros foram introduzidos no sistema após a alteração da estrutura do código.

1.2.3 Sprint 3

Sprint Release / Sprint 3 -

From 13/07/2016 14:00 to 19/07/2016 23:59

ID	Type	Title	Status
127604	User story	Usuário definir as características do local	TODO
127605	User story	Desenvolvimento do núcleo do SW (3)	TODO
127606	User story	Mais características para o local	TODO

Testes:

- Teste de unidade: Valores passados como entrada para o núcleo do sistema serão testados no papel para encontrar erros no cálculo feito e na decisão tomada pelo sistema. (Já que agora possuem mais fontes de energia).
- 2. Teste de Integração: Entradas não válidas serão utilizadas para testar a verificação feita pelo software na interação com o usuário.

1.2.4 Sprint 4

Sprint Release / Sprint 4 -

From 20/07/2016 14:00 to 25/07/2016 23:59

ID	Type	Title	Status	
127607	User story	Desenvolvimento do núcleo do SW (4)	TODO	

Testes:

- 1. Testes de unidade: Valores passados como entrada para o núcleo do sistema serão testados no papel para encontrar erros no cálculo feito e na decisão tomada pelo sistema.
- 2. Teste de disponibilização: O software será testados em diferentes navegadores.
- 3. Teste de validação: Os requisitos serão revistos para avaliar se estão sendo satisfeitos pelo SW.

2. Gestão da Configuração

Gestão da configuração é um conjunto de atividades que foram desenvolvidas para gerenciar as alterações num software. A principal atividade da GCS é registrar toda a evolução do projeto ao longo do tempo. Essa atividade é chamada de Controle de Versão.

Para isso, o projeto possui um repositório onde são armazenados todos os itens de configuração para facilitar e controlar o acesso. Os itens de configuração são de diferentes tipos, desde código-fonte até os artefatos gerados durante todo o processo de engenharia. Nesse repositório ficam registradas todas as alterações feitas nos itens armazenados, ou seja, quem alterou, quando foi alterado e o que foi alterado em cada modificação realizada.

Além disso, com o uso de Controle de Versão, existe a possibilidade de reverter para uma versão mais antiga dos itens de configuração.

Para essa tarefa de gestão, está sendo utilizada uma ferramenta online que disponibiliza todos os recursos e funcionalidades citados: o GitHub.

Aqui está o link para o repositório criado para o EnergyCAD: http://bit.ly/29gyfw7 .