CS 228 : Logic in Computer Science

Krishna. S

▶ NBA and DBA

- ▶ NBA and DBA
- lacktriangleright ω -regular languages : those accepted by a NBA

2/18

- ▶ NBA and DBA
- lacktriangleright ω -regular languages : those accepted by a NBA
- ► DBA < NBA

2/18

- ▶ NBA and DBA
- ightharpoonup ω -regular languages : those accepted by a NBA
- ► DBA < NBA
- Intersection and union of ω -regular languages

Emptiness

Given an NBA/DBA \mathcal{A} , how do you check if $L(\mathcal{A}) = \emptyset$?

- ► Enumerate SCCs
- Check if there is an SCC reachable from the initial state containing a good state

3/18

- ▶ Given \mathcal{A} is a DBA, and $w \notin L(\mathcal{A})$, then after some finite prefix, the unique run of w settles in bad states.
- ▶ Idea for complement: "copy" states of Q G, once you enter this block, you stay there.
- ▶ View this as the set of good states, any word w that was rejected by \mathcal{A} has two possible runs in this automaton: the original run, and one another, that will settle in the Q-G copy, and will be accepted.
- ▶ What we get now is an NBA for $\overline{L(A)}$, not a DBA.

Complementing NBA non-trivial, can be done.

An ω -regular language $L \subseteq \Sigma^{\omega}$ can be written as $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$, where U_i , V_i are regular languages.

One direction: Assume L is accepted by an NBA/DBA.

- ▶ Define $U_q = \{ w \in \Sigma^* \mid q_0 \stackrel{w}{\rightarrow} g \}$
- ▶ Define $V_g = \{ w \in \Sigma^* \mid g \stackrel{w}{\rightarrow} g \}$
- ▶ Then $L = \bigcup_{g \in G} U_g V_g^{\omega}$, where U_g, V_g are regular
- ▶ Show that U_a , V_a are regular.

An ω -regular language $L \subseteq \Sigma^{\omega}$ can be written as $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$, where U_i , V_i are regular languages.

Other direction : Assume $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$. Show that L is accepted by an NBA/DBA.

- ▶ Show that if V is regular, V^{ω} is ω -regular
- ▶ Show that if U is regular and V^{ω} is ω -regular, then UV^{ω} is ω -regular
- ▶ Show that finite union of ω -regular languages is ω -regular.

An ω -regular language $L \subseteq \Sigma^{\omega}$ can be written as $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$, where U_i , V_i are regular languages.

Other direction : Assume $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$. Show that L is accepted by an NBA/DBA.

An ω -regular language $L \subseteq \Sigma^{\omega}$ can be written as $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$, where U_i , V_i are regular languages.

Other direction : Assume $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$. Show that L is accepted by an NBA/DBA.

An ω -regular language $L \subseteq \Sigma^{\omega}$ can be written as $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$, where U_i , V_i are regular languages.

Other direction : Assume $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$. Show that L is accepted by an NBA/DBA.

An ω -regular language $L \subseteq \Sigma^{\omega}$ can be written as $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$, where U_i , V_i are regular languages.

Other direction : Assume $L = \bigcup_{i=1}^{n} U_i V_i^{\omega}$. Show that L is accepted by an NBA/DBA.

- 1. If V is regular, V^{ω} is ω -regular
 - ▶ Let $D = (Q, \Sigma, q_0, \delta, F)$ be a DFA accepting V
 - ► Construct NBA $E = (Q \cup \{p_0\}, \Sigma, p_0, \Delta, G)$ such that $G = \{p_0\},$
- 2. Show that if U is regular and V^{ω} is ω -regular, then UV^{ω} is ω -regular
 - ▶ $D = (Q_1, \Sigma, q_0, \delta_1, F)$ be a DFA, L(D) = U and $E = (Q_2, \Sigma, q'_0, \delta_2, G)$ be an NBA, $L(E) = V^{\omega}$.
 - ► $A = (Q_1 \cup Q_2, \Sigma, q_0, \delta', G)$ NBA such that $\delta' = \delta_1 \cup \delta_2 \cup \{(q, a, q'_0) \mid \delta_1(q, a) \in F\}$