Théorie du transport optimal

Racine Florian

December 7, 2022

Table des matières

Chapter 1	Cours	Page 2
1.1	Introduction Formulation du problème — 2	2
1.2	Modélisation	2
1.3	La formulation du problème de transfert optimal de Monge	4
1.4	La dualité de Kantorovitch La théorie — 6 • Application(s) — 8	6
1.5	La distance de Wasserstein	9
Chapter 2	TD	Page 11
9.1	TD1	11

Chapter 1

Cours

1.1 Introduction

1.1.1 Formulation du problème

Question 1

Quelle est la façon optimal de transporter un tas de sable dans un trou?

Question 2

Comment constuire un chateau de sable d'une forme données à partir d'un tas de sable ?

Figure 1.1: Transporter un tas de sable dans un trou

Note:-

Avec le même nombre de grain de sable et la même masse.

1.2 Modélisation

 $\nu \in \mathcal{P}(\mathbb{R}) \; ; \; \mu \in \mathcal{P}(\mathbb{R})$

Definition 1.2.1

 $\forall A \in \mathcal{P}(\mathbb{R}), \mu[A]$ décrit quelle quantité de sable est dans A.

Figure 1.2: $\mu[A]$

Definition 1.2.2

Cout infinitésimal:

$$C: \left| \begin{array}{ccc} \mathbb{R} * \mathbb{R} & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & C(x,y) \end{array} \right|$$

Cout de transporter un grain de sable de x vers y.

Question 3

Comment transporter un tas de sable avec un cout global minimal?

Definition 1.2.3

Un plan de transport entre les mesures μ et ν est une mesure de probabilité :

 $\Pi \in \mathcal{P}(\mathbb{R} * \mathbb{R})$ à pour marginale μ et ν .

Note:-

 $\Pi \in \mathcal{P}(\mathbb{R} * \mathbb{R})$ à pour marginal μ et ν

 $\Leftrightarrow \forall \mathbf{A}, \mathbf{B} \text{ enssemble mesurable avec } \mathbf{A} \subset \mathbb{R} \text{ et } \mathbf{B} \subset \mathbb{R} \left\{ \begin{array}{l} \Pi[A \times \mathbb{R}] = \mu[A] \\ \Pi[\mathbb{R} \times B] = \mu[B] \end{array} \right.$

 $\Leftrightarrow \forall \varphi \in C^0(\mathbb{R}), \Psi \in C^0(\mathbb{R}): \int_{\mathbb{R} \times \mathbb{R}} \varphi(x) + \Psi(y) \, d\Pi(x,y) = \int \, \varphi(x) \, d\mu(x)$

Note:-

On notera, $\Pi(\mu, \nu) = \{ \Pi \in \mathcal{P}(\mathbb{R} \times \mathbb{R}) | \Pi \text{ a pour marginal, } \mu, \nu \}$

On remarquera que, $\Pi(\mu, \nu) \neq \emptyset$

 $I[\Pi] = \int_{\mathbb{R}^2} C(x, y) d\Pi(x, y)$ Le cout total assocé au plan de transport optimal.

On cherche, $\tau_c(\mu, \nu) = INF_{\Pi \in \Pi(\mu, \nu)}(I[\Pi])$

Definition 1.2.4

S'il existe $\Pi_0 \in \mathcal{P}(\mathbb{R} \times \mathbb{R})$ tel que $I[\Pi_0] = \tau_c(\mu, \nu)$

 Π_0 est appelé un plan de transfert optimal

Exemple 1.2.1 (Exemple trivial (Kotorovitch))

$$a < b$$

$$c < d$$

$$C(x, y) = |x - y|^2$$

$$\mu = \frac{1}{2}(\delta_a + \delta_b)$$

$$\nu = \frac{1}{2}(\delta_c + \delta_d)$$

Question 4

$$\Pi(\mu, \nu) = ?$$

Solution: $\Pi_{\alpha} = \frac{1}{2}(\alpha \delta_{(a,c)} + (1-\alpha)\delta_{(a,d)} + (1-\alpha)\delta_{(b,c)} + \alpha \delta_{(b,d)}) \Pi(\mu, \nu) = \{\Pi_{\alpha} | \alpha \in [0,1]\}$

Question 5

Calculer : $I[\Pi] \forall \Pi \in \Pi(\mu, \nu)$

Solution:
$$I[\Pi_{\alpha}] = \int_{\mathbb{R}^2} C(x, y) d\Pi_{\alpha}(x, y)$$

 $I[\Pi_{\alpha}] = \frac{1}{2} (\alpha C(a, c) + (1 - \alpha)C(a, d) + (1 - \alpha)C(b, c) + \alpha C(b, d))$
 $I[\Pi_{\alpha}] = \frac{1}{2} (a^2 + b^2 + c^2 + d^2) - \alpha (ac + bd) - (1 - \alpha)(ad + cb)$

Question 6

Trouver : $\tau_c(\mu, \nu)$

Solution: $P(\alpha) = \frac{\partial I[\Pi_{\alpha}]}{\partial \alpha} \implies P(\alpha) = -ac - bd + ad + cb; \implies P(\alpha) = (d - c)(a - b) < 0$ Donc, $I[\Pi_{\alpha}]$ atteint son min en $\alpha = 1$ $\Pi_0 = \Pi_{\alpha=1}$ Donc, $a \to c$ et, $b \to d$

Figure 1.3: Solution

1.3 La formulation du problème de transfert optimal de Monge

Note:- 🛉

On autorise pas le fait de couper les masses. A chaque x est associé une unique y. On dit que T envoie μ sur ν et on note : $T\#\mu=\nu$

Proposition 1.3.1

 $\forall A \subset \mathbb{R}$ partie mesurable : $\nu(A) = \mu(T^{-1}(A))$

 \Leftrightarrow

Proposition 1.3.2

$$\begin{split} \forall \varphi \text{ continue} : & \int_{\mathbb{R}} \varphi(y) \, d\nu(y) = \int_{\mathbb{R}} (\varphi o T)(x) \, d\mu(x) \\ \tau_c^M(\mu, \nu) & = INF_{TtqT\#f=\nu} I[T] \\ I(T) & = \int_{\mathbb{R}} C(x, T(x)) \, d\mu(x) \end{split}$$

Note:-

Solution de cout optimal d'après Kantorovitch \leq Solution de cout optimal d'après Monge Dans le première exemple ils coincident.

Note:-

Kantorovitch définit un problème linéare en Π . Monge définit un problème non linéare en T.

Note:-

Problème de kantorovitch admet toujours une solution Π_0 .

Problème de Monge n'admet pas toujours de solution n'y même d'application qui envoi μ sur ν .

Exemple 1.3.1

$$\begin{cases} \mu \in \mathcal{P}(\mathbb{R}) \\ \nu = \delta_a \end{cases}$$

Kantorovitch : $\Pi(\mu, \nu) = \{\mu \otimes \delta_a\}$

Monge : Quelles sont les T tel que $T \# \mu = \nu$?

Il en existe une seule:

$$\forall x | T : \left| \begin{array}{ccc} x & \longrightarrow & a \\ \mathbb{R} & \longmapsto & \mathbb{R} \end{array} \right.$$

$$\begin{split} \tau_c^M(\mu,\nu) &= \tau_c(\mu,\nu) \\ \text{D'une part :} \\ \tau_c^M(\mu,\nu) &= \int_{\mathbb{R}} C(T(x),x) \, d\mu(x) \\ \tau_c^M(\mu,\nu) &= \int_{\mathbb{R}} C(0,x) \, d\mu(x) \end{split}$$

$$\tau_c(\mu, \nu) = \int_{\mathbb{R}} C(x, y) d\Pi(x, y)$$

$$\tau_c(\mu, \nu) = \int_{\mathbb{R}} C(x, y) d(\mu \otimes \delta_a)(x, y)$$

$$\tau_c(\mu, \nu) = \int_{\mathbb{R}} C(x, y) d\mu(x) d\delta_a$$

$$\tau_c(\mu, \nu) = \int_{\mathbb{R}} C(x, y) d\mu(x)$$

$$\left\{ \begin{array}{l} \mu = \frac{1}{n} \sum_{i=1}^n \delta_{x_i} \\ \nu = \frac{1}{n} \sum_{i=1}^n \delta_{y_i} \end{array} \right.$$

Les plans de transports Π entre μ et ν peuvent être représenté par des matrices bistochastiques de tailles p

$$\begin{array}{l} 0 \leq \Pi_{i,j} \leq 1 \\ \sum_{i=1}^n \Pi_{i,j} = 1 \end{array}$$

$$\sum_{j=1}^n \Pi_{i,j} = 1$$

Note:-

On note \mathcal{B}_n l'enssemble des matrices bisctochastiques.

Soit
$$\Pi \in \mathcal{B}_n$$
: $I[\Pi] = \frac{1}{n} \sum_{i=1}^n C(x_i, y_i) \Pi_{i,j}$
 $\tau_c(\mu, \nu) = INF_{\Pi \in \mathcal{B}_n} \{ \frac{1}{n} \sum_{i=1}^n \Pi_{i,j} C(x_i, y_i)$

Il s'agit d'un problème linéaire de minimisation sur un enssemble convexe.

Proposition 1.3.3 Enssemble convexe

 \mathcal{B}_n est convexe $\Leftrightarrow A, B \in \mathcal{B}_n$ alors $\forall \theta \in [0, 1] | \theta A + (1 - \theta)B \in \mathcal{B}_n$

Definition 1.3.1: Points extremaux

L'enssemble des points extremaux de E convexe est l'enssemble des $e \in E$ tel que :

si $e = \theta e_1 + (1 - \theta)e_2$ avec $\theta \in [0, 1], e_1 \in E, e_2 \in E$

Alors $\theta = 0$ ou $\theta = 1$

Théoreme 1.3.1 Théorème de Choquet

F est linéaire sur un domaine K convexe et compact, alors F admet au moin un minimum. Parmi les minimums de F au moin l'un d'eux est un extrema de K.

Théoreme 1.3.2 Théorème de Birkhoff

 \mathcal{B}_n est convexe et compact.

 \mathcal{B}_n admet n points extremaux qui sont les matrices de permutations

Ainsi, le min pour le problème de Kantorovitch est atteint pour $\begin{cases} \Pi_{i,j} = 1 | sij = \sigma(i) \\ \Pi_{i,j} = 0 | sinon \end{cases}$

La dualité de Kantorovitch 1.4

1.4.1 La théorie

Théoreme 1.4.1 Dualité de Kantorovitch

$$\mu \in \mathcal{P}(\mathbb{R}^n); \ \nu \in \mathcal{P}(\mathbb{R}^n)$$

C semi continue inférieurement (par exemple C continue)

Pour
$$\Pi \in \Pi(\mu, \nu), I[\Pi] = \int C(x, y) \, d\Pi(x, y)$$

Soit $(\varphi, \psi) \in \phi_c$

$$J(\varphi, \psi) = \int_{\mathbb{R}^n} \varphi(x) \, d\mu(x) + \int_{\mathbb{R}^n} \psi(y) \, d\nu(y)$$

 $J(\varphi, \psi) = \int_{\mathbb{R}^n} \varphi(x) \, d\mu(x) + \int_{\mathbb{R}^n} \psi(y) \, d\nu(y)$ $\phi_c = \{ (\varphi, \psi) \in (C^0(\mathbb{R}^n))^2 \text{ tq } \varphi(x) + \psi(y) \le C(x, y) \text{ presque partout } \}$

Alors, $INF_{\Pi \in \Pi(\mu,\nu)}I[\Pi] = SUP_{(\varphi,\psi) \in \phi_c}J(\varphi,\psi)$

Note:-

Interprétation :

1. On embauche un transporteur.

2. Il achète de la masse située en x au pris $\varphi(x)$.

3. Il vous débarasse au prix $\int \varphi(x) d\mu(x)$

4. Il vous revend de la masse en y au prix $\psi(y)$

5. On rachète ν au prix $\int \psi(y) d\nu(y)$

On embauche le transporteur sous la condition : $\varphi(x) + \psi(y) \leq C(x, y)$

Proof: D'une part :

Soit $(\varphi, \psi) \in \phi_c$

Soit $\Pi \in \Pi(\mu, \nu) | I[\Pi]) \tau(\mu, \nu)$

$$J(\varphi,\psi) = \int_{\mathbb{R}^n} \varphi(x) \, d\mu(x) + \int_{\mathbb{R}^n} \psi(y) \, d\nu(y) \leq \int C(x,y) \, d\Pi(x,y) = I[\Pi] = \tau(\mu,\nu) = INF_{\Pi}I[\Pi]$$

Ainsi, $J(\varphi, \psi) \leq INF_{\Pi}I[Pi]$

D'autre part :

⊜

Definition 1.4.1: Les fonction C-concaves (relatif au coût)

Soit, $\varphi : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty\}$

On définit sa fonction C-conjuguée par :

$$\varphi^c: \left| \begin{array}{ccc} \mathbb{R}^n & \longrightarrow & \mathbb{R} \cup -\{\infty\} \\ y & \longmapsto & INF_{x \in \mathbb{R}^n}(C(x,y) - \varphi(x)) \end{array} \right|$$

On dit que φ est C-concave si $\exists \psi : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty\}$ tq $\forall x \in \mathbb{R}^n, \varphi(x) = \psi^c(x)$

Lemme 1.4.1

- 1. $\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \varphi(x) + \varphi^c(y) \leq C(x,y)$
- 2. $\varphi^c = \varphi^{ccc}$
- 3. $\varphi = \varphi^{cc} \Leftrightarrow \varphi$ est C-concave

Proof: 1. Par définition, $\forall y, \varphi^c(y) = INF_{x \in \mathbb{R}^n}(C(x, y) - \varphi(x)) \le C(x, y) - \varphi(x) \forall x \in \mathbb{R}^n$ Ainsi, $\forall (x, y) \in \mathbb{R}^n \times \mathbb{R}^n, \varphi(x) + \varphi^c(y) \le C(x, y)$

2. Par définition, $\varphi^{cc}(y) = INF_{x \in \mathbb{R}^n}(C(x, y) - \varphi^c(x)) \ge \varphi(y)$ En effet comme démontré ci-dessus, $\forall (x, y) \in \mathbb{R}^n \times \mathbb{R}^n, \varphi(y) \le C(x, y) - \varphi^c(x)$

$$\Rightarrow$$
 D'une part, $\varphi^c(x) = INF_y(C(x,y) - \varphi(y)) \ge INF_y(C(x,y) - \varphi^{cc}(y)) = \varphi^{ccc}(x)$ Ainsi, $\varphi^c(x) \ge \varphi^{ccc}(x)$

7

```
\Rightarrow \text{Et d'autre part}, \ INF_{x \in \mathbb{R}^n}(C(x,y) - \varphi^c(x)) \leq C(x,y) - \varphi^c(x) \forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n \\ \text{Donc}, \ \forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \varphi^c(x) \leq C(x,y) - \varphi^{cc}(x) \\ \text{Donc}, \ \forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \varphi^c(x) \leq INF_{x \in \mathbb{R}^n}(C(x,y) - \varphi^{cc}(x)) = \varphi^{ccc}(x)) \\ \text{Ainsi}, \ \boldsymbol{\varphi}^c(x) \leq \boldsymbol{\varphi}^{ccc}(x))
```

Ce qui montre bien que, $\varphi^c(x) = \varphi^{ccc}(x)$

3. \Rightarrow Si φ est C-concave alors $\exists \psi | \varphi = \psi^c$ Donc, $\varphi^{cc} = \psi^{ccc} = \psi^c = \varphi$ \Leftarrow Si $\varphi = \varphi^{cc}$, $alors \varphi = (\varphi^c)^c$ Donc φ est C-concave.

Théoreme 1.4.2

La dualité de Kantorovitch peut être restreinte à des couples de fonction C-conjuguées. $SUP_{(\varphi,\ \psi)\in (C(\mathbb{R}^n)^2]}J(\varphi,\psi)=MAX_{(\psi^c,\psi)}J(\psi^c,\psi)$

 ${\it Proof:}$ On montre que le sup est un max.

Corollaire 1.4.1 Les plans de transferts optimals sont caractérisés par leur support

Si (φ, ψ) est un maximiseur pour le problème de Kantorovitch dual, alors $\Pi \in \Pi(\mu, \nu)$ est un minimiseur pour le problème de Kantorovitch primal si et seulement si Π est concentrée sur $\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n | \varphi(x) + \psi(y) = C(x,y)\}$

⊜

1.4.2 Application(s)

```
Proposition 1.4.1 On considère un objet indexé par j présent en quantité \nu_j. (type(j), quantjté(j)) = (j, \nu_j) On considère un consomateur indexé par i présent en quantité \mu_i. (type(i), quantité(i)) = (i, \mu_i) Utilité de l'objet j pour l'agent i. Hypothèse L'utilité est tranférable. L'objet j a une utilité nette U_{r,j} - P. Pour un système de prix P_j, l'agent i choisit l'objet j_p qui maximise U_{ij} - P_j. Transfert optimal: SUP_{\Pi} \sum_{ij} U_{ij} \Pi_{ij} sous la contrainte \sum_j \Pi_{ij} = \mu_i; \sum_i \Pi_{ij} = \nu_j
```

```
Note:-

Explication:
\mu = \sum_{i} \mu_{i} \delta_{x_{i}}
\nu = \sum_{j} \nu_{j} \delta_{y_{j}}
C(i, j) = -u_{i, j}
I[\Pi] = -\sum_{ij} u_{ij} \Pi_{ij}
Utilité maximale: INF_{\Pi}I[\Pi] = SUP_{\Pi}\{-\sum_{i} \varphi_{i}\mu_{i} - \sum_{j} \psi_{j}\nu_{j}\}
Problème dual: (D): INF_{P_{j}}\{\sum_{j} \nu_{j}P_{j} + \sum_{i} \mu_{i}MAX_{j}(\nu ij - P_{j})\}
```

Definition 1.4.2: Prix d'équilibre

Un système de prix qui satisfait (D) est un prix d'équilibre du problème. Un tel système de prix permet d'atteindre l'optimum global

Note:-

Pour le mar. 29 nov. 2022

Lire Guillaume Carlier, Teaching, Transfert Optimal (Chapitre 3 Matching equilibre)

1.5 La distance de Wasserstein

Definition 1.5.1: Distance de Wasserstein

On munit \mathbb{R}^n d'une distance d. On considère la fonction cout : $C(x,y) = [d(x,y)]^p$ Par convention, si p=0, par convention, $(d(x,y))^0 = \begin{cases} =0 | six = y \\ =1 | sinon \end{cases}$

Definition 1.5.2

 $\mathcal{P}_p(\mathbb{R}^n)$

Note:-

Si $p \in \mathcal{P}_p(\mathbb{R}^n)$ alors $\forall y \in \mathbb{R}^n$, $\int d(y, x)^p d\mu(x) < \infty$ Si d est borné $\mathcal{P}_p(\mathbb{R}^n) = \mathcal{P}(\mathbb{R}^n)$

Definition 1.5.3

Soit $p \ge 1$ On définit, $W_p^p(\mu, \nu) = INF_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^n \times \mathbb{R}^n} d(x, y)^p \ d\pi(x, y)$

Note:-

On remarque que, $W_p(\mu, \nu) = [\tau_p(\mu, \nu)]^{\frac{1}{p}}$

Lemme 1.5.1 Lemme de

Théoreme 1.5.1

 W^p est une mesure

Definition 1.5.4: Inégalité Triangulaire

Soient $\mu_1, \mu_2, \mu_3 \in \mathcal{P}_p(\mathbb{R}^n)$ $\pi_{1,2}(\mu_1) = \mu_2 \ \pi_{2,3}(\mu_2) = \mu_3$

Des plans de transports optimaux. On note π la mesure de proba sur $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ définie dans le lemme définit ci-dessous.

On note $\pi_{1,3}$ sa marginale sur $\mathbb{R}^n \times \mathbb{R}^n$

On a $\pi_{1,3} \in \Pi(\mu_1, \mu_3)$ mais pas (forcément) optimal.

Note:-

 Π à pour marginale $\pi_{1,3}$ sur $\mathbb{R}_1^n \times \mathbb{R}_2^n$

 $\forall \varphi \in (\mathbb{R}^n \times \mathbb{R}^n) \int \varphi(x,y) \, d\Pi(x,y,z) = \int \varphi(x,y) \, d\pi_{1,3}(x,y)$

Proof:

⊜

Exemple 1.5.1

p = 2

 W_2 est la distance de Wasserstein quadratique.

Si
$$\mu \in \mathcal{P}_2(\mathbb{R}^n)$$
, $a \in \mathbb{R}^n$

$$W_2(\mu, \delta_a) = \int_{\mathbb{R}^n} (x - a)^2 d\mu(x)$$

Et la moyenne de μ (son esperance) est définie comme : $m = \int x d\mu(x) dx$ $m = INF_{a \in \mathbb{R}^n} W_2(\mu, \delta_a)$

Note:-

Cela permet de définir des espérances sur des espaces compliqués dans lesquels on ne peut pas définir d'intégrale.

Exemple 1.5.2

$$p = 1$$

 τ_1 s'apppelle la distance de Rubinstein-Kantorovitch.

Proposition 1.5.1

Exemple 1.5.3

Le cas $\mathbb{R}^n = \mathbb{R}$

Definition 1.5.5: CDF

 $\mu \in \mathcal{P}(\mathbb{R})$ On définit sa CDF par : $F(x) = \int dx$

Definition 1.5.6

On appelle F^{-1} l'inverse généralisé de F définie sur [0,1] par : $F^{-1}(t) = INF_{x \in \mathbb{R} | F(x) > t}$

Proposition 1.5.2

$$\begin{split} W_1(\mu,\nu) &= \int_0^1 F^{-1}(t) - G^{-1}(t) \, dt \\ W_1(\mu,\nu) &= \int_{\mathbb{R}} |F(x) - G(x)| \, dx \\ W_1(\mu,\nu) &= ||F - G||_{L_1(\mathbb{R})} \end{split}$$

$$W_1(\mu, \nu) = \int_{\mathbb{R}} |F(x) - G(x)| dx$$

$$W_1(\mu, \nu) = ||F - G||_{L_1(\mathbb{R})}$$

Note:-

On note, $\mu_1, \dots, \mu_n \in \mathcal{P}_2(\mathbb{R}^n)$

$$\lambda_1, \ldots, \lambda_n \in \mathbb{R}^+$$
 tel que $\sum_{i=1}^n \lambda_i = 1$

Definition 1.5.7

$$\begin{split} \mu^* &= INF_{\mu \in \mathcal{P}_2(\mathbb{R})} \sum_{i=1}^n \lambda_i W_2^2(\mu, \mu_i) \\ \text{est le barycentre de } (\mu_1, \nu_1) \dots (\mu_n, \lambda_n) \end{split}$$

🛉 Note:- 🛊

Voir cours: Peyré / Cuturi: Computational Transfert optimal.

Chapter 2

TD

2.1TD1

Exercice

Exercice 1. On considère le coût c(x,y) = |x-y|. Dans chacun des cas, donner les solutions des problèmes de Monge et de Kantorovitch.

1.
$$\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$$
, $\nu = \frac{1}{3}\delta_{-1} + \frac{1}{3}\delta_2 + \frac{1}{3}\delta_3$

2.
$$\mu = \frac{7}{2}\delta_0 + \frac{7}{2}\delta_1$$
, $\nu = \frac{9}{2}\delta_0 + \frac{1}{2}\delta_1$,

1.
$$\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$$
, $\nu = \frac{1}{3}\delta_{-1} + \frac{1}{3}\delta_2 + \frac{1}{3}\delta_3$,
2. $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$, $\nu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$,
3. $\mu = \frac{1}{3}\delta_0 + \frac{1}{3}\delta_1 + \frac{1}{3}\delta_2$, $\nu = \frac{1}{3}\delta_{-1} + \frac{1}{3}\delta_0 + \frac{1}{3}\delta_3$.

Solution:

1.
$$0 \ge \alpha \ge \frac{1}{3}$$
; $0 \ge \beta \ge \frac{1}{3}$
 $\frac{1}{6} \ge \alpha + \beta \ge \frac{1}{2}$
 $\Pi_{\alpha,\beta} = \alpha \delta_{(0,-1)} + \beta \delta_{(0,2)} + (\alpha + \beta) \delta_{(0,3)}$

2. Equivalent à l'exemple du cours.

Exercice

Exercice 2. Soit $T: \mathbb{R} \to \mathbb{R}$ définie par $T(x) = x + 1, S: \mathbb{R} \to \mathbb{R}$ définie par S(x) = 2x et $Z: \mathbb{R} \to \mathbb{R}$ définie par Z(x) = 2 - x. On définit $\mu = \mathbb{1}_{[0,1]}$ et $\nu = \mathbb{1}_{[1,2]}$. A-t-on $T \# \mu = \nu$? $S \# \mu = \nu$? $Z \# \mu = \nu$?

Solution: Soit $\varphi \in C^0(\mathbb{R})$,

$$\int_{[0,1]} (\varphi o T)(x) \, d\mu(x) = \int_{[0,1]} \varphi(1+x) \, dx = \int_{[1,2]} \varphi(y) \, dy = \int \varphi(y) \, d\nu(y)$$

$$\Rightarrow T \# \mu = \nu$$

$$\int_{[0,1]} (\varphi oS)(x) \, d\mu(x) = \int_{[0,1]} \varphi(2x) \, dx = \frac{1}{2} \int_{[0,2]} \varphi(y) \, dy$$

$$\Rightarrow S\#\mu = \frac{1}{2} \mathbb{1}_{[0,2]} \Rightarrow S\#\mu = \frac{1}{2} (\mu + \nu) \Rightarrow S\#\mu \neq \nu$$

$$\int_{[0,1]} (\varphi \circ Z)(x) \, d\mu(x) = \int_{[0,1]} \varphi(2-x) \, dx = \int_{[1,2]} \varphi(y) \, dy = \int \varphi(y) \, d\nu(y)$$

$$\Rightarrow Z \# \mu = \nu$$

Exercice

Exercice 3. (Non-unicité pour un coût convexe - Book shifting). On définit $\mu = \frac{1}{2}\mathbb{1}_{[0,2]}$ et $\nu = \frac{1}{2}\mathbb{1}_{[1,3]}$ et le coût c(x,y) = |x-y|. Soit $T_1(x) = x+1$ et

$$T_2(x) = \begin{cases} x + 2, & \text{si } x \in [0, 1], \\ x, & \text{si } x \in (1, 2]. \end{cases}$$

Montrer que T_1 et T_2 sont deux applications optimales.

Solution: Vérifions que :

$$T_1 \# \mu = \nu$$

$$\int_{[0,2]} (\varphi \circ T_1)(x) \, d\mu(x) = \frac{1}{2} \int_{[0,2]} \varphi(x+1) \, dx = \frac{1}{2} \int_{[1,3]} \varphi(y) \, dy = \int \varphi(y) \, d\nu(y)$$

$$I(T_1) = \int_{\mathbb{R}} C(x, T_1(x)) \, d\mu(x) = \frac{1}{2} \int_{[0,2]} |x - T_1(x)| \, dx = \frac{1}{2} \int_{[0,2]} 1 \, dx = 1$$

$$T_2 \# \mu = \nu$$

$$\int_{[0,2]} (\varphi o T_2)(x) \, d\mu(x) = \frac{1}{2} \left(\int_{[0,1]} \varphi(x+2) \, dx + \int_{[1,2]} \varphi(x) \, dx \right) = \frac{1}{2} \left(\int_{[2,3]} \varphi(x) \, dx + \int_{[1,2]} \varphi(x) \, dx \right) = \frac{1}{2} \int_{[0,1]} \varphi(x) \, dx$$

$$I(T_2) = \int_{[0,2]} C(x, T_2(x)) \, d\mu(x) = \frac{1}{2} \int_{[0,1]} |x - T_2(x)| \, dx + 0 = \frac{1}{2} \int_{[0,1]} 2 \, dx = 1$$

De façon générale, $T\#\mu=\nu$ alors :

$$I(T) = \frac{1}{2} \int_{[0,2]} |x - T(x)| \, dx \ge \frac{1}{2} \left| \int_{[0,2]} |x| \, dx - \int_{[0,2]} |T(x)| \, dx \right| = \frac{1}{2} |2 - 4| = 1$$

\bullet Exercice

Exercice 4. (Non existence d'une application de transport). On prend μ la mesure uniforme sur [0,1] et ν la mesure uniforme sur [-1,1]. On considère le coût $c(x,y)=\left(x^2-y^2\right)^2$. 1. Pour tout entier n on définit l'application

$$T_n(x) = \begin{cases} 2x - \frac{k}{2n}, & \text{pour } x \in \left[\frac{k}{2n}, \frac{k+1}{2n}\right] \text{ si } k \text{ est pair,} \\ -2x + \frac{k+1}{2n}, & \text{pour } x \in \left[\frac{k}{2n}, \frac{k+1}{2n}\right] \text{ si } k \text{ est impair.} \end{cases}$$

Monter que $T_n \# \mu = \nu$ et montrer que

$$\lim_{n\to\infty}\int_0^1 c\left(x,T_n(x)\right)d\mu(x)=0.$$

2. En déduire qu'il n'esxite pas d'application de transport qui soit optimale. 3. Construire un plan de transport optimal.

Exercice

Exercice 5. (Transport quadratique et translation). On considère le coût $c(x,y) = (x-y)^2$ sur \mathbb{R}^2 Pour $a \in \mathbb{R}$, on définitit la translation $\tau_a(x) = x - a$. Soit f et g deux fonctions continues Le but est de montrer que

$$\mathcal{T}_c\left(f\circ\tau_a,g\circ\tau_b\right)=\mathcal{T}c(f,g)+(b-a)^2+2(b-a)\left(m_g-m_f\right),$$

οù

$$m_f = \int_{\mathbb{R}} x f(x) dx, \quad m_g = \int_{\mathbb{R}} x g(x) dx.$$

- 1. Soit T une application optimale qui envoie f sur g. On définit S par S(x) = T(x-a) + b. Montrer que $S\#(f\circ\tau_a) = g\circ\tau_b$.
- 2. Montrer que

$$\mathcal{T}_{c}\left(f\circ\tau_{a},g\circ\tau_{b}\right)\leqslant\int_{\mathbb{R}}|S(x)-x|^{2}f\left(\tau_{a}(x)\right)dx$$

3. En déduire que

$$\mathcal{T}_c(f \circ \tau_a, g \circ \tau_b) \leq \mathcal{T}_c(f, g) + (b - a)^2 + 2(b - a)(m_g - m_f),$$

4. De même montrer que

$$\mathcal{T}_c\left(f\circ\tau_a,g\circ\tau_b\right)\geq\mathcal{T}c(f,g)+(b-a)^2+2(b-a)\left(m_g-m_f\right),$$

et en déduire (1)

5. En déduire que $\mathcal{T}_c\left(\mathbb{1}_{[0,1]},\mathbb{1}_{[1,2]}\right)=1.$

Solution:

1. Montrons que : $S\#(f\circ\tau_a)=g\circ\tau_b$ On sait que T est une appication optimal de f vers g. Donc, : T#f=gDonc, $\forall\psi$ continue : $\int (\psi\circ T)(x)\,df(x)=\int \psi(x)\,dg(x)$ Et, $\tau^c(f,g)=\int_{\mathbb{R}}|x-T(x)|^2\,df(x)$ D'autre part, $\forall\varphi$ continue : $\int (\varphi\circ S)(x)\,d(f\circ\tau_a)(x)=\int \varphi(T(x-a)+b)f(x-a)\,dx$ On pose, u=x-a $\int \varphi(T(u)+b)f(u)\,du=\int \varphi\circ\tau_{-b}\circ T(u)f(u)\,du=\int \varphi\circ\tau_{-b}\circ T(u)g(u)\,du=\int \varphi(u+b)g(u)\,du$ On pose, z=u+b $\int \varphi(z)g(z-b)\,dz=\int \varphi(z)g\circ\tau_b\,dz$ D'où : $S\#(f\circ\tau_a)=g\circ\tau_b$

- 2. Montrons que : $\mathcal{T}_c(f \circ \tau_a, g \circ \tau_b) \leq \int_{\mathbb{R}} |S(x) x|^2 f(\tau_a(x)) dx$ $\mathcal{T}_c(f \circ \tau_a, g \circ \tau_b) = \int_{\mathbb{R}} |T(x) - x|^2 f(\tau_a(x)) dx \leq \int_{\mathbb{R}} |S(x) - x|^2 f(\tau_a(x)) dx$
- 3. Montrons que : $\mathcal{T}_{c}(f \circ \tau_{a}, g \circ \tau_{b}) \leq \mathcal{T}_{c}(f, g) + (b a)^{2} + 2(b a)(m_{g} m_{f}),$ $\int_{\mathbb{R}} |S(x) x|^{2} f(x a) \, dx = \int_{\mathbb{R}} |T(x a) + b x|^{2} f(x a) \, dx = \int_{\mathbb{R}} |T(y) + b y a|^{2} f(y) \, dy$ $= \int_{\mathbb{R}} |T(y) y|^{2} f(y) \, dy + \int_{\mathbb{R}} |b a|^{2} f(y) \, dy + \int_{\mathbb{R}} 2|T(y) y| \times |b a|f(y) \, dy$ $= \mathcal{T}_{c}(f, g) + (b a)^{2} + 2(b a)(m_{g} m_{f}),$ $D'où, \mathcal{T}_{c}(f \circ \tau_{a}, g \circ \tau_{b}) \leq \mathcal{T}_{c}(f, g) + (b a)^{2} + 2(b a)(m_{g} m_{f}),$
- 4. $\mathcal{T}_{c}(f \circ \tau_{a}, g \circ \tau_{b}) = \int_{\mathbb{R}} |T(x) x|^{2} f(\tau_{a}(x)) dx$ On a, $\mathcal{T}_{c}(f, g) = \mathcal{T}_{c}((f \circ \tau_{a}) \circ \tau_{-a}, (g \circ \tau_{b}) \circ \tau_{-b}) \leq \mathcal{T}_{c}(f \circ \tau_{a}, g \circ \tau_{b}) + (b - a)^{2} + 2(a - b) (m_{g \circ \tau_{a}} - m_{f \circ \tau_{b}})$,

 Avec, $m_{f \circ \tau_{a}} = \int_{\mathbb{R}} x f(x - a) dx = \int_{\mathbb{R}} (y + a) f(y) dy$, $= a + m_{f}$ et, $m_{g \circ \tau_{b}} = \int_{\mathbb{R}} x g(x - b) dx$. $= \int_{\mathbb{R}} (y + b) g(y) dy$. $= b + m_{g}$ Donc, $\mathcal{T}_{c}(f, g) \leq \mathcal{T}_{c}(f \circ \tau_{a}, g \circ \tau_{b}) + (b - a)^{2} + 2(a - b) (b + m_{g} - a - m_{f})$,
 Donc, $\mathcal{T}_{c}(f, g) \leq \mathcal{T}_{c}(f \circ \tau_{a}, g \circ \tau_{b}) + (b - a)^{2} - 2(b - a)^{2} + 2(a - b) (m_{g} - m_{f})$,
 D'ou $\mathcal{T}_{c}(f, g) + (b - a)^{2} + 2(b - a) (m_{g} - m_{f})$, $\leq \mathcal{T}_{c}(f \circ \tau_{a}, g \circ \tau_{b})$ Ainsi, $\mathcal{T}_{c}(f, g) + (b - a)^{2} + 2(b - a) (m_{g} - m_{f})$, $= \mathcal{T}_{c}(f \circ \tau_{a}, g \circ \tau_{b})$
- 5. Pour, $f = g = \mathbb{1}_{[0,1]}$ et $\tau_a = \tau_0$ et $\tau_b = \tau_1$ $\tau_c(\mathbb{1}_{[0,1]}, \mathbb{1}_{[1,2]}) = \tau_c(\mathbb{1}_{[0,1]}, \mathbb{1}_{[0,1]}) + (1-0)^2 + 2(1-0)(m_g m_f) = 1$

Exercice

Exercice 6. (Non unicité des potentiels de Kantorovitch). Montrer que si (φ, ψ) est une paire optimale de potentiel de Kantorovitch, alors, pour tout $a \in \mathbb{R}$, la paire $(\varphi + a, \psi - a)$ l'est aussi.

Exercice

Exercice 7. (Potentiels de Kantorovitch). Donner au moins une paire optimale de potentiel de Kantorovitch pour le book-shifting problem.

ulletExerciceullet

Exercice 8. Pour $x \in \mathbb{R}$ et $y \in \mathbb{R}$, on considère le cout $c(x,y) = \Psi(|x-y|)$ avec

$$\Psi(z) = \begin{cases} 1 - z, & 0 \le z \le 1 \\ z - 1, & z \ge 1. \end{cases}$$

On considère les mesures $\mu = \frac{1}{2} (\delta_{-1} + \delta_2)$ et $\nu = \frac{1}{3} (\delta_{-1} + \delta_0 + \delta_1)$. Calculer le coût global du transport optimal entre μ et ν , et donner l'ensemble des plans de transport optimaux.

Solution:
$$0 \ge \alpha \ge \frac{1}{3}$$
; $0 \ge \beta \ge \frac{1}{3}$ $\frac{1}{6} \ge \alpha + \beta \ge \frac{1}{2}$ $\Pi_{\alpha,\beta} = \alpha \delta_{(-1,0)} + \beta \delta_{(-1,1)} + (\frac{1}{2} - \alpha - \beta) \delta_{(-1,-1)} + (\frac{1}{3} - \alpha) \delta_{(2,0)} + (\frac{1}{3} - \beta) \delta_{(2,1)} + (\alpha + \beta - \frac{1}{6}) \delta_{(2,-1)}$ $I[\Pi_{\alpha\beta}] = \beta + \frac{1}{2} - \alpha - \beta + \frac{1}{3} - \alpha + 2\alpha + 2\beta - \frac{1}{3} = \frac{1}{2} + 2\beta$ $\Pi(\mu, \nu) = \{\Pi_{\alpha\beta=0} | \frac{1}{6} \ge \alpha \ge \frac{1}{3}\}$

Exercice

Exercice 9. Soit $A \in M_{n,m}(\mathbb{R}), b \in \mathbb{R}^m, c \in \mathbb{R}^n$. Montrer que

$$\sup_{Ax \leq b} c.x = \inf_{\substack{y \geq 0 \\ tAy = c}} b.y$$

Notation: on dit que $x \ge 0$ si toutes ses composantes sont positives, et tA est la transposée de la matrice A. Pour $c \in \mathbb{R}^n$ et $x \in \mathbb{R}^n$, on note x.c le produit scalaire entre c et x. Indice: S'inspirer de la preuve de la dualité de Kantorovitch.

Solution:
$$SUP_{Ax \le b} < C, x >= SUP_{x \in \mathbb{R}^n} < C, x > + \begin{cases} 0 | siAx \le b \\ -\infty | sinon \end{cases}$$
Or,
$$\begin{cases} 0 | siAx \le b \\ -\infty | sinon \end{cases} = INF_{y \ge 0}[- < Ax - b, y >]$$
Si $Ax < b$

Toutes les composante de -(Ax-b) sont positives ou nulles. $\mathcal{L}y \ge 0$ (si toutes les composantes de y sont positives ou nulles) $< -(Ax+b), y \ge 0$ Pour y = 0, < -(Ax+b), y >= 0

Si $Ax \le b$ est faux $\exists i | (Ax - b)_i \ge 0$

On prend : $y = \begin{bmatrix} 0 \\ \vdots \\ n \\ \vdots \\ 0 \\ 0 \end{bmatrix}$

Exercice

Exercice 10. On définit pour $x \in \mathbb{R}$

$$G_{\sigma}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}}.$$

Calculer $W_1(G_{\sigma}, \delta_0)$.

Exercice

Exercice 11 (Interpolation de McCann). Soient μ_0 et μ_1 des mesures à densité ρ_0 et ρ_1 par rapport à la mesure de Lebesgue. On considère le coût quadratique $c(x,y) = ||x-y||_2^2$. Soit T l'application optimale de Monge. 1. Quel théorème garantit l'existence de T? 2. On suppose que T est inversible. Montrer que T^{-1} envoie μ_1 sur μ_0 de façon optimale. 3. On définit pour $t \in [0,1]$

$$T_t(x) = (1-t)x + tT(x),$$

et

$$\mu_t = T_t \# \mu_0.$$

Montrer que $\left(T^{-1}\right)_{1-t}$ envoie μ_1 sur $\mu_t.$ 4. Montrer que

$$W_2(\mu_0, \mu_t) \leq t W_2(\mu_0, \mu_1)$$
.

5. Montrer que

$$W_2(\mu_1, \mu_t) \leq (1-t)W_2(\mu_0, \mu_1).$$

6. Calculer $W_2(\mu_0, \mu_t)$. 7. On prend

$$\rho_0(x) = \begin{cases} x+1, & x \in [-1,0] \\ 1-x, & x \in [0,1] \\ 0, & \text{sinon,} \end{cases} \quad \rho_1(x) = \begin{cases} 1, & x \in [3,4], \\ 0, & \text{sinon.} \end{cases}$$

Calculer la densité ρ_t de μ_t .