Ing. Fisica AA.2019-2020 prova del 18-02-2020

Nome:....

Cognome:

Matricola:....

Ai fini della valutazione, consegnare: il presente foglio compilato con nome, cognome, matricola e risultati numerici negli appositi spazi \mathbf{e} i fogli protocollo con lo svolgimento dei calcoli.

Problema 1

Il sistema articolato rappresentato in figura è costituito da tre corpi rigidi: l'asta AB (di inerzia trascurabile), il corpo rettangolare (baricentro G, massa m, momento di inerzia baricentrale J), e l'asta CD (di inerzia trascurabile). Da un punto di vista cinematico, ABCD costituisce un quadrilatero articolato. Una forza esterna orizzontale F (incognita) è applicata a G. Il sistema si muove nel piano verticale ed è soggetto alla forza di gravità. Nell'atto di moto raffigurato è nota la configurazione del sistema (α, β, γ) e i valori di $\dot{\alpha}$, $\ddot{\alpha}$.

Figura 1:

Per l'atto di moto raffigurato, si chiede di:

- 1. calcolare la velocità e l'accelerazione angolare delle aste BC e CD;
- 2. calcolare la velocità e l'accelerazione di G;
- 3. calcolare il valore di ${\cal F},$ applicando il teorema dell'energia cinetica;
- 4. calcolare la reazione vincolare in A.

Dati

 $a = 0.475 \ m, \ b = 0.346 \ m, \ c = 0.443 \ m, \ d = 0.198 \ m, \ e = 0.469 \ m, \ h = 0.115 \ m, \ f = 0.299 \ m, \ \alpha = 293 \ \mathrm{deg}, \\ \beta = 214 \ \mathrm{deg}, \ J = 0.20 \ kgm^2, \ m = 1.5 \ \mathrm{kg}, \ \dot{\alpha} = 2 \ rad/s, \ \ddot{\alpha} = 0.3 \ rad/s^2.$

Risposte

1.
$$\vec{\omega}_{BC} = \dots \vec{k} \text{ rad/s}; \qquad \vec{\omega}_{CD} = \dots \vec{k} \text{ rad/s};$$

2.
$$\vec{\omega}_{BC} = \dots \vec{k} \, rad/s^2;$$
 $\vec{\omega}_{CD} = \dots \vec{k} \, rad/s^2;$

3.
$$\vec{v}_G = \dots \vec{i} + \dots \vec{j} \text{ m/s};$$
 $\vec{a}_G = \dots \vec{i} + \dots \vec{j} \text{ m/s}^2$

4.
$$F = \dots N$$

5.
$$\vec{R_A} = \dots \vec{i} + \dots \vec{j} N$$
;

Problema 2

Il sistema in figura, posto nel piano orizzontale, è costituito da due dischi uniformi e concentrici saldati tra loro (costituiscono un unico corpo rigido) ed una massa traslante m_1 . Il disco di diametro maggiore è vincolato a terra in A, mediante un vincolo di puro rotolamento. Il disco più grande ha raggio R_2 , massa m_2 , momento di inerzia baricentrale J_2 ; l'altro disco ha raggio R_3 , massa m_3 , momento di inerzia baricentrale J_3 . La massa m_1 è vincolata tramite una fune inestensibile che si avvolge senza strisciare sul disco di raggio R_2 da un lato e con una molla k_1 a terra dall'altro lato. Un gruppo molla-smorzatore di rigidezza k_2 e smorzamento r è vincolato tramite una fune inestensibile che si avvolge senza strisciare sulla periferia del disco di raggio R_2 da un lato e a terra dall'altro. Una coppia $C(t) = C_0 \cos(\Omega t)$ è applicata al disco. Si utilizza la coordinata x(t), traslazione della massa m_1 , per descrivere il grado di libertà del sistema. Quando x(t) = 0 il sistema si trova in equilibrio statico con le molle indeformate.

Si chiede di calcolare:

- 1. l'equazione di moto del sistema, usando come coordinata libera x(t).
- 2. la pulsazione propria del sistema non smorzato ω_0 ed il coefficiente di smorzamento h
- 3. l'integrale particolare $x_P(t)$

Dati

 $m_1 = 8.0 \text{ kg}, \ m_2 = 7.7 \text{ kg}, \ m_3 = 5.8 \text{ kg}, \ J_2 = 9.6 kgm^2, \ J_3 = 6.7 kgm^2, \ R_2 = 3.8 \text{ m}, \ R_3 = 1.6 \text{ m}, \ r = 36 \, Ns/m, \ k_1 = 8846 \, N/m, \ k_2 = 3438 \, N/m, \ C_0 = 240.6 \, Nm, \ \Omega = 10.5 \, rad/s,$

Risposte

- 1. eq. di moto: $\dots \ddot{x} + \dots \dot{x} + \dots \dot{x} = \dots \cos(\Omega t)$
- 2. $\omega_0 = \ldots rad/s;$ $h = \ldots n$
- 3. $x_P(t) = \dots \cos(\Omega t + \dots)$

Domande di teoria

Discutere dei seguenti argomenti in maniera discorsiva, facendo eventualmente anche uso di equazioni, di dimostrazioni, di esempi.

- 1. Risposta nel tempo in risonanza di un sistema a 1 grado di libertà non smorzato e forzato da una forzante armonica.
- 2. Descrivere i metodi per la soluzione delle equazioni di moto di sistemi vibranti a 2 gradi di libertà forzati da forzanti armoniche.