Modified from the course material of: Nara Institute of Science and Technology Data Science Special Lecture

An Introduction to Graph Neural Networks: basics and applications

Katsuhiko ISHIGURO, Ph. D (Preferred Networks, Inc.) Oct. 23, 2020

Take home message

- Graph Neural Networks (GNNs): Neural Networks (NNs) to compute nodes' representation of graph-structured data
- Practical applications in industry, hard competitions in academia
- Model: The fundamental is approximated Graph Convolution
- Applications: applicable in several tasks in different domains

Table of Contents (1/2)

- Graph Neural Networks (GNN)s; what is it
 - Graph structure data
 - Overview of GNN: function, application
- The basic and the de-facto standard: GCN
 - Graph Convolutions and the GCN model
 - Exemplar task: semi-supervised node classification with GCN

Table of Contents (2/2)

- Application in Chemo-Informatics: Protein Interface Prediction
 - A straightforward application of GNN as I/O for graphs
- Application in Computer Vision: Scene Graph generation
 - Task-tailored GNN model
- Theoretical issues of GNN
 - Deep GNN does not work well
 - Representation power of GNN is upper-bounded
- Conclusion and Materials

Acknowledgements

Many thanks for helpful comments and provided materials!!

Daisuke Okanohara, Shin-ichi Maeda, Kentaro Minami, Yuta Tsuboi, Sousuke Kobayashi, Kenta Oono, Hiroshi Maruyama (Preferred Networks)

Graph: for relational data

- Graph $G = (\mathcal{V}, \mathcal{E})$
- Set of nodes (vertices): $\mathcal{V} = \{v_i\}$
- Set of edges: $\mathcal{E} = \{e_{i,j}\}$
 - directional/non-directional

- Especially interested in Attributed graph
 - Nodes and/or edges have some features (label, numbers, vectors)

Matrix representation of Attributed graphG = (X, A)

Suitable for formulations/implementations of GNNs

Feature Matrix
$$X = (x_{i,d}) = (x_1 x_2 \dots)^T$$

 $X \in \mathbb{R}^{N imes D}$ N nodes, D dim. features

 $A \in \{0, 1\}^{N \times N}$ Edge existence between N X N node pairs

Symmetric A <-- non-directional edges

GNN Functionality: compute latent representation H

Interface for intelligent processes on graphs

 H is informative and easy-to-handle "data" for machinelearning (ML) models/tools

Application Domains of GNNs: concrete applications

Social Network

[http://konect.unikoblenz.de/networks/ucidatazacharv]

Scene Graph [Qi19AttentiveRN]

Chemical Molecular Graph [Jin18JTVAE, Laugier18CGCNN]

Knowledge Graph [DeCao19QA2]

Pointcloud [Landrieu_Boussaha19PCS]

Physical Simulator [Sanchez-Gonzalez20GNS]

GNN in Machine Learning Researches

~2016: "graphical models", "graph kernels", and pure graph theory works 2017~: GNN works add up the counts

The basic and the defacto standard: GCN

Convolution

Modify a signal f by a filter g, accumulate over ``shift" t on the coordinate (axes) x

$$(f*g)(x) = \int f(x)g(x-t)dt \quad (f*g)(x) = \sum_t f(x)g(x-t)$$

1D signal example

f: Sound signal

g: Impulse response

→ Hall resonated sound (reverb)

abcpedia.acoustics.jp

E.g. ConvNet in computer vision [Krizhevsky12ConvNet]

$$(f * g)(x) = \sum_{t} f(x)g(x - t)$$

E.g. ConvNet in computer vision

[Krizhevsky12ConvNet]

L- iterative conv. Operations for image pixels

Image signal (feature) at pixel (x,y) of layer I

$$h_{x,y}^{\ell} = \left(h^{\ell-1} * W^{\ell}\right)_{x,y}$$

$$= \sigma \left(\sum_{i,j \in \{-1,0,1\}} h_{x+i,y+j}^{\ell-1} \times W_{i,j}^{\ell}\right)$$
shift signal filter

15

How can we define Conv. in graphs?

- No "axes" in graphs unlike sound signals (time) and image signals (x, y)
- What is "coordinate"? What is "shift"?

Spectral approach on Graphs

[いらすとや]

Fourier Transform and Convolution

Convolutions in the signal (spatial) domain = Multiplication in the spectral (frequency) domain

$$\mathcal{F}(f*g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

 1D case:
$$\mathcal{F}(f(x)) = \int f(x) e^{(-2\pi i x k)} dx$$

 K-th frequency's Fourier base function

For Graphs, what is the signal? How the FT defined??

Def: Graph signals

- Simply concatenate numbers
- 1D node attribute case: N-array

$$x = (x_1, x_2, \dots, x_N)^T \in \mathbb{R}^N$$

D-dim attribute case → Feature matrix

$$X = (x_{i,d}) = (x_1 x_2 \dots)^T \quad X \in \mathbb{R}^{N \times D}$$

Def: Graph Laplacian and Normalized Laplacian

$$G=(X,A)$$

0	1	1	0	0		
1	0	0	1	1		
1	0	0	0	1		
0	1	0	0	0		
0	1	1	0	0		

Adjacency Matrix
$$A \in \{0,1\}^{N \times N}$$

Degree Matrix

$$D = \operatorname{Diag}\left(\sum_{i} a_{1,i}, \sum_{i} a_{2,i}, \dots\right)$$

Graph Laplacian Matrix

$$L = D - A$$

2	-1	-1	0	0
-1	3	0	-1	-1
-1	0	2	0	-1
0	-1	0	1	0
0	-1	-1	0	2

Normalized Graph Laplacian

Degree Matrix
$$D = Diag \left(\sum_{i} a_{1,i}, \sum_{i} a_{2,i}, \dots \right)$$

$$D = Diag \left(\sum_{i} a_{1,i}, \sum_{i} a_{2,i}, \dots \right)$$

$$D = Diag \left(\sum_{i} a_{1,i}, \sum_{i} a_{2,i}, \dots \right)$$

Graph Fourier Transform = Multiply Eigenvectors of (Normalized) Graph Laplacians

i-th eigenvevtor = i-th graph Fourier base
$$u_i^T \mathcal{L} u_i = u_i^T \lambda_i u_i = \lambda_i$$
 i-th eigenvalue = frequency of i-th base

Graph Fourier Transform(GFT)

Graph signal in spectral (freq.)
$$\tilde{x} = \sum u_i^T x = U^T x$$
 Inner product between the graph space

$$U = \begin{bmatrix} u_1 u_2 \dots u_N \end{bmatrix} \quad \begin{array}{l} \Lambda = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_N) \\ 0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_N \end{array}$$

Graph Fourier Transform: just multiply U^T or U

[Ma20tutorial,Shuman13Graph]

Graph Convolution via GFT

• Convolution is a multiplication in Fourier space and GFT as well $\mathfrak{F}(f*g) = \mathfrak{F}(f) \cdot \mathfrak{F}(g)$

GFT of the graph signal
$$\tilde{x} = GFT(x) = U^T x$$

Convolution = simple multiplication in spectral

$$W_{\Lambda} \cdot \tilde{x} = W_{\Lambda} U^T x$$

IGFT to get conv-filtered graph signal CC

$$conv(x) = IGFT(W_{\Lambda}\tilde{x}) = UW_{\Lambda}U^{T}x$$

$$(f * g)(x) = \sum_{t} f(x)g(x - t)$$

Naïve Graph Convolution

$$conv(x) = UW_{\Lambda}U^{T}x$$

Two parameters: Fixed U (eigenvectors of the Laplacian = Fourier bases over freq.)

Trainable
$$W_{\Lambda} = \operatorname{Diag}(\theta_{\lambda_1}, \theta_{\lambda_2}, \dots, \theta_{\lambda_N})$$

(amplify each spectral coefficients)

- © Simple linear algebra for a generic Graph Conv.
- © Eig.Decompose of (normalized) graph Laplacians O(N^3) for each graph

Approximation: ChebyNet [Defferrard16ChebNet]

 Model N trainable param. with K (<<N) order Chebychev Polynomials

$$W_{\Lambda} = \operatorname{Diag}(\theta_{\lambda_{1}}, \theta_{\lambda_{2}}, \dots, \theta_{\lambda_{N}})$$

$$\Longrightarrow \sum_{K} w_{k} \mathfrak{T}_{k} \left(\tilde{\Lambda}\right) \quad \tilde{\Lambda} = \frac{2}{\lambda_{N}} \Lambda - I$$

$$\Lambda = \operatorname{Diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$$

Chebychev $\Im_k(x) = 2x\Im_{k-1}(x) - \Im_{k-2}$ Polynomial $\Im_1(x) = x$, $\Im_0(x) = 1$

No U-s = No Eig. Decomp.

$$conv(x) = UW_{\Lambda}U^{T}x$$

$$= U \left[\sum_{k=0}^{K} w_k \mathfrak{T}_k \left(\tilde{\Lambda} \right) \right] U^T x = \left[\sum_{k=0}^{K} w_k \mathfrak{T}_k \left(\frac{2}{\lambda_N} \mathcal{L} - I \right) \right] x$$

- © Graph Laplacian is sparse in nature
 - → Polynomial L is lightweight << O(N^3)

GCN [Kipf_Welling17GCN]: much simpler Convolution

Set K = 1, and replace λ_N with 2 (the theoretical maximum value)

$$\operatorname{conv}(x) = \left[\sum_{k=0}^{K} w_k \mathfrak{T}_k \left(\frac{2}{\lambda_N} \mathcal{L} - I \right) \right] x$$

$$= \left[w_0 + w_1 \left(\mathcal{L} - I \right) \right] x \qquad \begin{array}{c} \text{Very simple GraphConv} \\ \bullet \quad \text{No Eig. Decomp.} \end{array}$$

Assume w = -w1 = (w0-w1)

$$= w \left[I + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right] x$$

- No Matrix Polynomials
- single tunable parameter (w)

spatial interpretation of GCN's convolution

- Weighted sum of neighbor nodes (shift) + self-link
- Number of neighbor nodes vary unlike image Cnvnet

GCN formulation: multi-dim simpler conv + activation

Update rule of GCN *ℓ*-th layer

Non-linear activation (e.g. sigmoid, ReLU)

$$H^{\ell+1} = GCN(H^{\ell}) = \sigma \left[\tilde{A}H^{\ell}W^{\ell} \right]$$

output: updated node vectors

Input: node vectors @ layer f

Trainable weight parameter for node vector updates

$$W^{\ell} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{out}}}$$

Fixed Adjacency parameter for node conv (mixing)

$$\tilde{A} = (D+I)^{-\frac{1}{2}} (A+I) (D+I)^{-\frac{1}{2}}$$

Once trained, run anywhere (on different topologies)

The sole trainable parameter W does not care the adjacency

The simplest GCN... it works quite well

Table 3: Comparison of propagation models.

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = 3$	$\sum_{K} T(\tilde{I}) VO$	69.8	79.5	74.4
Chebyshev filter (Eq. 5) $K = 2$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.6	81.2	73.8
1st-order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
1 st -order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55	71.4

[Kipf_Welling17GCN]

Perform better than the original ChebNet

Exemplar task: semi-supervised node classification with GCN

Set of labeled nodes (supervisions)

Set of unlabeled nodes

$$\bigcirc \mathcal{D}_{\text{unlabeled}} = \left\{ x_j \right\}$$

Goal: predict the labels of unlabeled nodes y_j using a trained model (GCN and classifier)

Train: tune parameters of the model to recover y_i

Forward path

Apply L-layered GCN to update the latent node representations, H

$$H^{\ell} = \sigma\left(\tilde{A}H^{\ell-1}W^{\ell}\right) \quad \ell = 1, 2, \dots, L$$

$$H^{\ell} = \left[h_1^{\ell} \cdots h_N^{\ell}\right]^T$$
 $h_i^0 = x_i$ The initial node vector = node attributes

Classifier computes the label prob. distribution based on the final H

$$H = H^L$$
 $H = [h_1 \cdots h_N]^T$

$$P(c|h) \propto \exp\left(\theta_c^T h\right)$$
 C = { \bullet , \bullet } θ : trainable param of a classifier

Objective Function and Training

``Labeled"

Objective function: cross entropy ≒ accuracy of label prediction on Labeled Nodes

$$\mathcal{L} = \sum_{(x_i, y_i) \in \mathcal{D}_{labeled}} \sum_{c} \delta(y_i = c) \log P(c|h_i)$$

Training: find the best parameters W(GCN) and θ (classifier) to minimize the negative of the objective function L

$$\hat{W}, \hat{\theta} = \arg\min_{W,\theta} -\mathcal{L}$$

Prediction using the Trained Model

Predict y_j (a label of node j) in unlabeled set, perform forward path from the observed x_i

$$x_j \in \mathcal{D}_{\text{unlabeled}}$$

$$h_j \leftarrow H_{\hat{W}^L}^L \left(H_{\hat{W}^{L-1}}^{L-1} \left(\dots \left(H_{\hat{W}^1}^1 \left(x_j \right) \right) \right) \right)$$

$$y_j = \hat{c} = \arg\max_{c} \exp\left(\hat{\theta}_c^T h_j\right)$$

Application in Chemo-Informatics: Protein Interface Prediction

Interacting proteins

- Where is a binding site between two proteins?
 - Biding site: where a ligand and a receptor interacts

Predict binding site nodes by GNN [Fout17Interface]

- Predict the binding site regions of ligand-receptor proteins
 - Possible binding = possible drug discovery and improvement

- Protein: a graph of inter-connected amino acids
- Use GNN for the binding prediction

Attributed Protein Graphs

Binding sites: specific nodes interact between ligand and receptor

JC

Training/Test of Interaction Prediction [Fout17Interface]

• Training: optimize parameters to predict the interaction label y_i between a node pair (ℓ_i, r_i) (for all training sampls)

$$y_i \in \{-1, 1\} \iff \hat{y}_i = F_{\theta_F} \left[\text{GNN}_{\theta_L} \left(\ell_i \right), \text{GNN}_{\theta_R} \left(r_i \right) \right]$$

- Test: predict interactions of node pairs in unseen Ligand-Receptor pairs
 - "Train once, run any graphs (with different topology)"

39

architecture

GCN formulation choices

[Fout17Interface]

Considering nodes features only

$$z_i = \sigma \left(W^{\mathsf{C}} x_i + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} W^{\mathsf{N}} x_j + b \right), \tag{1}$$

Node features plus Edge features

$$z_i = \sigma \left(W^{\mathsf{C}} x_i + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} W^{\mathsf{N}} x_j + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} W^{\mathsf{E}} A_{ij} + b \right), \tag{2}$$

With ordering of nearest node orders

$$z_i = \sigma \left(W^{\mathsf{c}} x_i + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} W_j^{\mathsf{N}} x_j + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} W_j^{\mathsf{E}} A_{ij} + b \right). \tag{3}$$

Neighbor nodes j are ordered by distances from the node i

Results

Method	Convolutional Layers			
	1	2	3	4
No Convolution	0.812 (0.007)	0.810 (0.006)	0.808 (0.006)	0.796 (0.006)
Diffusion (DCNN) (2 hops) [5]	0.790 (0.014)	_	-	-
Diffusion (DCNN) (5 hops) [5])	0.828 (0.018)	-	-	-
Single Weight Matrix (MFN [9])	0.865 (0.007)	0.871 (0.013)	0.873 (0.017)	0.869 (0.017)
Node Average (Equation 1)	0.864 (0.007)	0.882 (0.007)	0.891 (0.005)	0.889 (0.005)
Node and Edge Average (Equation 2)	0.876 (0.005)	0.898 (0.005)	0.895 (0.006)	0.889 (0.007)
DINN [21]	0.867 (0.007)	0.880 (0.007)	0.882 (0.008)	0.873 (0.012)
Order Dependent (Equation 3)	0.854 (0.004)	0.873 (0.005)	0.891 (0.004)	0.889 (0.008)

Computer Vision
Application Example:
Scene Graph generation

Scene Graph: summary graph of image contents

- Useful representation of images' understanding
- Want to generate a scene graph from image input

In a scene graph of an image,

node: object region in an image

edge: relation between object regions

Relations [Qi19AttentiveRN]

Graph R-CNN for scene-graph generation [Yang18GRCNN]

- Consists of three inner components
 - (a) → (b) Off-the-shelf object detector [Ren15RCNN] (omit)
 - (b) \rightarrow (c) RePN to prune unnecessary branches (omit)
 - (c) \rightarrow (d) Attentional GCN to predict labels of nodes and edges

Expand Graph with Relation Nodes

One GNN can infer all objects and relations

Attentional GCN [Yang18GRCNN]

GCN update with Attention [Bahdanau15Attention] -based variable connection

$$\operatorname{GCN}_{\text{Adjacency is fixed}} H^\ell = \sigma \left(\tilde{A} H^{\ell-1} W^\ell \right)$$

Attentional GCN
$$H^{\ell} \propto \sigma \left(\hat{\mathsf{A}} H^{\ell-1} W^{\ell}
ight)$$

Attention connection

$$\hat{\mathbf{A}}[k,l] = \begin{cases} \text{similarity}_{\phi} \left(h_k^{\ell}, h_l^{\ell}; \phi \right) & \text{nodes } (k,l) \text{ connected} \\ 0 & \text{disconnected} \end{cases}$$
Parameter ϕ can switch based on node types

Inferring labels of objects/relations

Other Application of GNNs

- Segmentation of pointcloud w/ 10^5 samples [Hu20RandLaNet]
 - Decode laser rangefinder data into 3D obstacle map
- Particle-based Physical simulator [Sanchez-Gonzalez20GNS]
 - Simulate fluid dynamics via GNN
- Molecular Graph Generation [Jin18JTVAE, Madhawa19GVNP]
 - Generate a novel compound graph in computers

Theoretical issues

Theoretical Topics of GNN

- "Deep" GNNs do no work well
 - "Oversmoothing"
 - Current solution: normalizer + residual connection

- The theoretical limit of representation powers of GNNs
 - Graph Isomorphism test
 - Invariance/Equivalence

"Deep" GNNs do not work well

Quite different from the successful deep Conv models in Computer vision

Oversmoothing Problem [Li18Oversmoothing]

- Latent node vectors get closer to each other as the GCN layers go deeper (higher)
- Difficult to distinguish nodes in deeper GCNs

Latent node vectors of ``Karate club'' social network [Li18Oversmoothing]

Oversmoothing is theoretically proven

 Deeper GCN converges to a solution where connected nodes will have similar latent vectors [Li18Oversmoothing, NT_Maehara19revisit]

- Such convergence in GCN proceeds very quickly (exponential to the depth), regardless of the initial node vectors [Oono_Suzuki20Exponential]
 - Similar conclusion also holds for a generic GNN

A good workaround [Zhou20Deep, Chen20SimpleDeep, Li20DeeperGCN]

- Combining a proper normalizer and a residual term
 - Normalizing the latent node vectors keep distant from each other [Zhao_Akoglu20PairNorm]
 - Residual terms keep the norm of loss gradients in a moderate scale [Kipf_Welling17GCN]

Residual term: Add the current layer "as it is"

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right) + H^{(l)}.$$

Not a workaround for "deeper layers, stronger GNNs" (like image recognition)

The theoretical limit of representation powers of GNNs

 Surprisingly, the limitation of GNNs is already known in the problem of "graph isomorphism" test

• The theory does NOT directly give limitations of GNN's power for other tasks (i.e. node classification), but it is loosely related [Chen19RGNN]

Graph isomorphism problem (for theory of GNNs)

- Classify whether two given graphs have an edgepreserving bijective map of node sets
 - the same topology in terms of the edges?

Weisfeiler-Lehman (WL) test algorithm [Weisfeiler_Lehman68WL]

- A popular heuristics to test the isomorphism
- Idea: concatenate the neighbour nodes' labels to check the edge topology
 - Used in graph kernels [Shervashidze11WLKernel, Togninalli18WWL] and GNNs [Jin17WLorg, Morris19kGNN]

Weisfeiler-Lehman (WL) test algorithm [Weisfeiler_Lehman68WL]

Upper limit of the GNN's representation power

- In terms of the Graph Isomorphism problem,
 a generic GNN ≤ WL test algorithm [Xu19GIN, Morris19WL]
 - There could be a case where WL test can decide isomorphism but GNN can not.

Graph Isomorphism Network (GIN) [Xu19GIN]

 Proposed a specific GNN architecture that attain the same graph isomorphism detection power

One non-linear activation function

A layer update of typical GNNs

$$h_v^{(k)} = \text{ReLU}\left(W \cdot \text{MEAN}\left\{h_u^{(k-1)}, \ \forall u \in \mathcal{N}(v) \cup \{v\}\right\}\right).$$

A layer update of the proposed GIN

$$h_v^{(k)} = \text{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right).$$

Each layer update must be as powerful as MLP

Higher-order WL/GNN

- k-dimensional WL (k-WL) test
 - labels the k-tuple of nodes
 - powerful than the originalWL
 - K-GNN [Morris19kGNN] is as good as k-WL test

[Maron19NeurIPS]

More powerful GNNs [Sato20Survey]

- K-order graph network
 - consists of all linear functions that are invariant or equivariant to node permutations [Maron19ICLR]
 - as powerful as k-GNN, memory-efficient [Maron19NeurlPS]
- CPNGNN introduces the local node ordering, and is strictly powerful than GIN [Sato19CPNGNN]

Conclusion and Materials

Take home message (Revisited)

- Graph Neural Networks (GNNs): Neural Networks (NNs) to compute nodes' representation of graph-structured data
- Practical applications in industry, hard competitions in academia
- Model: The fundamental is approximated Graph Convolution
- Applications: applicable in several tasks in different domains

Surveys and documents for studying GNN

- Survey papers on GNN
 - [Wu19survey] [Zhou18survey]
 - For experts: [Battaglia18survey]

- Tutorials, slideshare, blogs
 - English: [Kipf18talk], [Ma20AAAI]
 - 日本語: [Honda19GNN]

The most famous dataset resources

- Prof. Leskovec (stanford)
 - Stanford Large Network Dataset collections
 http://snap.stanford.edu/data/index.html

- UC Santa Cruz LINQS group
 - https://linqs.soe.ucsc.edu/data
 - train/valid/test split:https://github.com/kimiyoung/planetoid

Finally: GNN for your use

- Say good-bye for "D = {vector x_i, label y_i}" framework with GNNs
 - Applicable for generic structured data = graph
 - The standard GCN is strong enough
- Many diverse application fields
 - chemo, pharmacy, materials, computer vision, social networks, ...

Dataset for specific domains

- MoleculeNet [Wu18MoleculeNet]
 - Molecular graph datasets from several chemical field.
 TensorFlow implmenetaions attached
- Scene Graphs
 - Visual Genome[Krishna17VG]: 108K images
- Pointcloud
 - S3DIS [Armeni16S3DIS]: inside office

Programing Libraries

- Recommended: PyTorch Geometric <u>https://github.com/rusty1s/pytorch_geometric</u>
- Deep Graph Library https://www.dgl.ai/

- Chainer Chemistry https://github.com/pfnet-research/chainer-chemistry
 - Tailored for molecular graphs, but also applicable for other domains

References A-G

[Anderson19Cormorant] Anderson+, "Comorant: Covariant Molecular Neural Networks", NeurIPS, 2019.

[Armeni16S3DIS] Armeni+, "3D Semantics Parsing of Large-scale Indoor Spaces", CVPR, 2016.

[Bahdanau15Attention] Bahdanau+, "Neural Machine Translation by Jointly Learning to Align and Translate", ICLR, 2015.

[Battaglia18survey] Battaglia+, "Relational Inductive Biases, Deep Learning, and Graph Networks", arXiv: 1806.01261v3 [cs.LG], 2018.

[Bruna14Spectral] Bruna+, "Spectral Networks and Locally Connected Networks on Graphs", ICLR, 2014.

[Chem19RGNN] Chen+, "On the Equivalence between Graph Isofmorphism Testing and Function Approximation with GNNs", NeurIPS 2019.

[Chen20SimpleDeep] Chen+, "Simple and Deep Graph Convolutional Networks", ICML 2020.

[DeCao19QA2] De Cao+, "Question Answering by Reasoning Across Documents with Graph Convolutional Networks", ICML Workshop, 2019.

[Defferrard16ChebNet] Defferrard+, "Convoluional Neural Networks on Graphs with Fast Localized Spectral Filtering", NIPS, 2016.

[Fout17Interface] Fout+, "Protein Interface Prediction using Graph Convolutional Networks", NIPS, 2017.

[Gilmer17MPNN] Gilmer+, "Neural Message Passing for Quantum Chemistry", ICML, 2017.

References H-K

[Hamilton17GraphSAGE] Hamilton+, "Inductive Representation Learning on Large Graphs", NIPS 2017.

[Honda19GNN] Honda, "GNNまとめ(1-3)", 2019. https://qiita.com/shionhonda/items/d27b8f13f7e9232a4ae5 https://qiita.com/shionhonda/items/d27b8f13f7e9232a4ae5

https://giita.com/shionhonda/items/e11a9cf4699878723844

[Hu20RandLaNet] Hu+, "RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds", CVPR 2020.

[Jin17WLorg] Jin+, "Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network", NIPS 2017.

[Jin18JTVAE] Jin+, "Junction Tree Variational Autoencoder for Molecular Graph Generation", ICML 2018.

[Kipf18talk] Kipf, "Structured Deep Models: Deep learning on graphs and beyond", 2018. http://tkipf.github.io/misc/SlidesCambridge.pdf

[Kipf_Welling17GCN] Kipf and Welling, "Semi-supervised Classification with Graph Convolutional Networks", ICLR 2017.

[Klicepra20DimeNet] Klicepra+, "Directional Message Passing for Molecular Graphs", ICLR 2020.

[Krizhevsky12ConvNet] Krizhevsky+, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012.

[Krishna17VG] Krishna+, "Visual genome: Connecting language and vision using crowdsourced dense image annotations", ICCV, 2017.

References L

[Landrieu_Boussaha19PCS] Landrieu and Boussaha, "Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning", CVPR, 2019.

[Laugier18CGCNN] Laugier+, "Predicting thermoelectric properties from crystal graphs and material descriptors - first application for functional materials", NeurIPS Workshop, 2018.

[Li16GGNN] Li+, "Gated Graph Sequence Neural Networks", ICLR, 2016.

[Li18Oversmoothing] Li+, "Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning", arXiv: 1801.07606 [cs.LG], 2018.

[Li19DeepGCNs] Li+, "DeepGCNs: can GCNs go as deep as CNNs?", ICCV 2019.

[Li20DeperGCN] Li+, "DeeperGCN: ALL You Need to Train Deeper GCNs", arXiv: 2006.07739, 2020

[Lu16VRD] Lu+,"Visual Relationship Detection with Language Priors", ECCV, 2016.

[Liu18CGVAE] Liu+, "Constrained Graph Variational Autoencoders for Molecule Design", NeurIPS 2018.

References M-P

[Ma20tutorial] Ma+, "Graph Neural Networks: Models and Applications", AAAI, 2020. http://cse.msu.edu/~mayao4/tutorials/aaai2020/

[Madhawa19GNVP] Madhawa+, "GraphNVP: An Invertible Flow Model for Generating Molecular Graphs", arXiv: 1905.11600, 2019.

[Marrn19NeurlPS] Marron+, "Provably Powerful Graph Networks", NeurlPS, 2019.

[Maron19ICLR] Marron+, "Invariant and Equivariant Graph Networks", ICLR 2019.

[Morris19kGNN] Morris+, "Weisfeiler and Lehman Go Neural: Higher-order Graph Neural Networks", AAAI, 2019.

[Ngueyn_Maehara20Homomorph] Nguyen and Maehara, "Graph Homomorphism Network", ICML, 2020.

[NT_Maehara19revisit] NT and Maehara, "Revisiting Graph Neural Networks: All We Have is Low-pass Filters", arXiv: 1905.09550, 2019.

[Oono_Suzuki20Exponential] Oono and Suzuki, "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification", ICLR 2020.

[Pei20GeomGCN] Pei+, "Geom-GCN: Geometric Graph Convolutional Networks", ICLR, 2020.

References Q-V

[Qi19AttentiveRN] Qi+, "Attentive Relataional Networks for Mapping Images to Scene Graphs", CVPR, 2019.

[Sanchez-Gonzalez20GNS] Sanchez-Gonzalez+, "Learning to Simulate Complex Physics with Graph Networks", arXiv: 2002.09405, 2020.

[Sanyal20PGCN] Sanyal+, "Protein GCN: Protein model quality assessment using graph convolutional networks", bioRxiv, 2020.

[Sato19CPNGNN] Sato+, "Approximation Ratios of Graph Neural Networks for Combinatorial Problems", NeurIPS, 2019.

[Sato20Survey] Sato, "A Survey on the Expressive Power of Graph Neural Networks", arXiv: 2003.04078.

[Scarselli08GNN] Scarselli+, "The Graph Neural Network Model", IEEE Trans. Neural Networks, 20(1), pp. 61-80, 2008

[Schlichtkrull18RGCN] Modeling Relational Data with Graph Convolutional Networks, ESWC 2018.

[Shervashidze11WLKernel: Shervashidez+, "Weisfeiler-Lehman Graph Kernels", JMLR, 12, pp.2539-2661, 2011.

[Shuman13Graph] Shuman+, "The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains", IEEE Signal Processing Magazine, 30(3), pp.83-98, 2013

[Togninalli18WWL] Togninalli+, "Wasserstein Weisfeiler-Lehman Graph Kernels", NeurIPS 2018.

[Veličković18GAT] Veličković+, "Graph Attention Networks", ICLR 2018.

References W-Z

[Wang18NLNN] Wang+, "Non-local Neural Networks", CVPR 2018.

[Weisfeiler_Lehman68WL] Weisfeiler and Lehman, "A Reduction of a Graph to a Canonical Form and an Algebra Arising during this Reduction", Nauchno-Technicheskaya Informatsia, Ser.2(9), pp.12-16, 1968.

[Wu18MoleculeNet] Wu+, "MoleculeNet: a benchmark for molecular machine learning", Chemical Science, 9(513), 2018.

[Wu19SGC] Wu+, "Simplifying Graph Convolutional Networks", in Proc. ICML, 2019.

[Wu19survey] Wu+, "A Comprehensive Survey on Graph Neural Networks", arXiv:1901.00596v1 [cs.LG], 2019.

[Xu19GIN] Xu+, "How powerful are Graph Neural Networks?", in Proc. ICLR, 2019.

[Yang18GRCNN] Yang+, "Graph R-CNN for Scene Graph Generation", ECCV, 2018.

[You18GCPN] You+, "Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation", NeurIPS 2018.

[Zhao_Akoglu20PairNorm] Zhao and Akoglu, "PairNorm: Tackling Oversmoothing in GNNs", ICLR, 2020.

[Zhou20Deep] Zhou+, "Effective Training Strategies for Deep Graph Neural Networks", arXiv: 2006.07107, 2020.

[Zhou18survey] Zhou+, "Graph Neural Networks: A Review of Methods and Applications", arXiv: 1812.08434v2 [cs.LG], 2018.

GNN research history

Original GNN [Scarteslli08GNN] Spectral GNN [Bruna14Spectral] ChebNet[Defferrard16Cheb]
GGNN[Li16GGNN] GCN [Kipf_Welling17GCN] GraphSAGE [Hamilton17GraphSAGE] GAT [Veličković18GAT]
MPNN [Gilmer17MPNN] NLNN [Wang18NLNN] GIN [Xu19GIN] K-GNN [Morris19kGNN] SGC [Wu19SGC]
CPNGNN [Sato19CPNGNN] Graph Homomorphism Convolution [Ngueyn_Maehara20Homomorph] DimeNet [Klcepra20DimeNet]

Def: Graph signals

Suppose the 1D node attribute case: N-array

$$x = (x_1, x_2, \dots, x_N)^T \in \mathbb{R}^N$$

Low frequency graph signal

High frequency graph signal