日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application: 2004年 9月15日

出願番号

 Application Number:
 特願2004-267958

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-267958

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人 松下旬

松下電器産業株式会社

Applicant(s):

2005年11月30日

特許庁長官 Commissioner, Japan Patent Office.

1寸 訂 深具 盲拟口』 2110560043 【整理番号】 【提出日】 平成16年 9月15日 【あて先】 特許庁長官殿 【国際特許分類】 H011 11/02 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 【氏名】 弘之 栖 【発明者】 【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【氏名】 小杉 直貴 【発明者】 【住所又は居所】 松下電器産業株式会社内 大阪府門真市大字門真1006番地 【氏名】 若林 俊一 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 【氏名】 奥村 茂行 【特許出願人】 【識別番号】 000005821 【氏名又は名称】 松下電器産業株式会社 【代理人】 【識別番号】 100097445 【弁理士】 【氏名又は名称】 岩橋 文雄 【選任した代理人】 【識別番号】 100103355 【弁理士】 【氏名又は名称】 坂口 智康 【選任した代理人】 【識別番号】 100109667 【弁理士】 【氏名又は名称】 内藤 浩樹 【手数料の表示】 【予納台帳番号】 011305 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 【物件名】 図面 1 要約書 1 【物件名】

【包括委任状番号】 9809938

【官規句】付訂胡小ツ戦団

【請求項1】

第1の基板上に、走査電極と維持電極とから構成される複数の表示電極対と、

前記第1の基板上の隣り合う前記表示電極対の隙間のうち、1つおきの隙間に前記表示電極対と平行に配置された複数のプライミング電極と、

放電空間を挟んで前記第1の基板に対向配置された第2の基板上に、前記表示電極対と交差する方向に配置された複数のデータ電極とを備え、

前記表示電極対と前記データ電極とか対向して主放電セルを構成し、前記プライミング電極と前記データ電極とが対向してプライミング放電セルを構成したプラズマディスプレイバネルの駆動方法であって、

1フィールドを初期化期間、書込み期間、維持期間を有する複数のサブフィールドで構成し、

前記書込み期間は奇数番目の走査電極を有する主放電セルの書込み動作を行う奇数ライン 書込み期間と、偶数番目の走査電極を有する主放電セルの書込み動作を行う偶数ライン書 込み期間とを有し、

前記奇数ライン書込み期間において、奇数番目の走査電極に走査バルス電圧を順次印加するとともに、前記走査バルス電圧を印加された走査電極に隣接するプライミング電極には前記走査バルス電圧の印加に先立って前記プライミング電極と前記データ電極との間でプライミング放電を発生させるためのプライミングバルス電圧を印加し、

前記偶数ライン書込み期間において、偶数番目の走査電極に走査バルス電圧を順次印加するとともに、前記走査バルス電圧を印加された走査電極に隣接するプライミング電極には前記走査バルス電圧の印加に先立って前記ブライミング電極と前記データ電極との間でプライミング放電を発生させるためのプライミングバルス電圧を印加することを特徴とするプラズマディスプレイバネルの駆動方法。

【請求項2】

前記書込み期間において、走査電極に走査バルス電圧を印加している時間とプライミング電極にプライミングバルス電圧を印加している時間とには重なりがあることを特徴とする請求項1に記載のプラズマディスプレイバネルの駆動方法。

【請求項3】

前記奇数ライン書込み期間と前記偶数ライン書込み期間との間に前記プライミング電極と前記データ電極の間で初期化放電を行う補助初期化期間を設けたことを特徴とする請求項1または請求項2に記載のプラズマディスプレイバネルの駆動方法。

【官规句】 奶籼官

【発明の名称】プラズマディスプレイパネルの駆動方法

【技術分野】

[0001]

本発明は、壁掛けテレビや大型モニター等に用いられるプラズマディスプレイパネルの 駆動方法に関する。

【背景技術】

[0002]

プラズマディスプレイバネル(以下、「バネル」と略記する)は、大画面、薄型、軽量であることを特徴とする視認性に優れた表示デバイスである。

[0.003]

バネルとして代表的な交流面放電型バネルは、対向配置された前面板と背面板との間に多数の放電セルが形成されている。前面板は、走査電極と維持電極とからなる表示電極対が前面ガラス基板上に互いに平行に複数対形成され、それら表示電極対を覆うように誘電体層および保護層が形成されている。背面板は、背面ガラス基板上に複数の平行なデータ電極と、それらを覆うように誘電体層と、さらにその上にデータ電極と平行に複数の隔壁がそれぞれ形成され、誘電体層の表面と隔壁の側面とに蛍光体層が形成されている。そして、表示電極対とデータ電極とが立体交差するように前面板と背面板とが対向配置されて密封され、内部の放電空間には放電ガスが封入されている。このような構成のバネルにおいて、各放電セル内でガス放電により紫外線を発生させ、この紫外線でRGB各色の蛍光体を励起発光させてカラー表示を行っている。

[0004]

バネルを駆動する方法としてはサブフィールド法、すなわち、1フィールド期間を複数のサブフィールドに分割した上で、発光させるサブフィールドの組み合わせによって階調表示を行う方法が一般的である。ここで、各サブフィールドは初期化期間、書込み期間および維持期間を有する。

[0005]

初期化期間では、すべての放電セルで一斉に初期化放電を行い、それ以前の個々の放電セルに対する壁電荷の履歴を消すとともに、つづく書込み動作のために必要な壁電荷を形成する。加えて、放電遅れを小さくし書込み放電を安定して発生させるためのプライミング(放電のための起爆剤=励起粒子)を発生させるというはたらきをもつ。書込み期間では、走査電極に順次走査バルス電圧を印加するとともに、データ電極には表示すべき画像信号に対応した書込みパルス電圧を印加し、走査電極とデータ電極との間で選択的に書込み放電をおこし、選択的な壁電荷形成を行う。つづく維持期間では、走査電極と維持電極との間に所定の回数の維持パルス電圧を印加し、書込み放電による壁電荷形成を行った放電セルを選択的に放電させ発光させる。

[0006]

このように、画像を正しく表示するためには書込み期間における選択的な書込み放電を確実に行うことが重要であるが、回路構成上の制約から書込みバルス電圧に高い電圧が使えないこと、データ電極上に形成された蛍光体層が放電をおこり難くしていること等、書込み放電に関しては放電遅れを大きくする要因が多い。したがって、書込み放電を安定して発生させるためのプライミングが非常に重要となる。

[0007]

しかしながら、放電によって生じるプライミングは時間の経過とともに急速に減少する。そのため、上述したバネルの駆動方法において、初期化放電から長い時間が経過した書込み放電に対しては初期化放電で生じたプライミングが不足して放電遅れが大きくなり、書込み動作が不安定になって画像表示品質が低下するといった問題があった。あるいは、書込み動作を安定して行うために書込み時間を長く設定し、その結果、書込み期間に費やす時間が大きくなりすぎるといった問題があった。

[0008]

しれつい回過で呼びりるにめに、ノノコミンノ

電遅れを小さくするパネルとその駆動方法が提案されている(たとえば特許文献 l)。

【特許文献1】特開平9-245627号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

しかしながら上述のパネルにおいては、隣接する放電セルが相互干渉をおこしやすく、特に書込み期間において、隣接する放電セルの書込み放電にともない発生するプライミングの影響を受けて誤書込み、あるいは書込み不良を生じるおそれがあり、そのため書込み動作の駆動電圧マージンが狭くなるという課題があった。

[0010]

本発明はこれらの課題に鑑みなされたものであり、書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるプラズマディスプレイパネルの駆動方法を提供することを目的とする。

【課題を解決するための手段】

 $[0\ 0\ 1\ 1]$

本発明のパネルの駆動方法は、第1の基板上に走査電極と維持電極とから構成される複 数の表示電極対と、第1の基板上の隣り合う表示電極対の隙間のうち1つおきの隙間に表 示電極対と平行に配置された複数のプライミング電極と、放電空間を挟んで第1の基板に 対向配置された第2の基板上に表示電極対と交差する方向に配置された複数のデータ電極 とを備え、表示電極対とデータ電極とが対向して主放電セルを構成し、プライミング電極 とデータ電極とが対向してプライミング放電セルを構成したプラズマディスプレイパネル の駆動方法であって、1フィールドを初期化期間、書込み期間、維持期間を有する複数の サブフィールドで構成し、書込み期間は奇数番目の走査電極を有する主放電セルの書込み 動作を行う奇数ライン書込み期間と偶数番目の走査電極を有する主放電セルの書込み動作 を行う偶数ライン書込み期間とを有し、奇数ライン書込み期間において、奇数番目の走査 電極に走査バルス電圧を順次印加するとともに走査バルス電圧を印加された走査電極に隣 接するプライミング電極には走査バルス電圧の印加に先立ってプライミング電極とデータ 電極との間でプライミング放電を発生させるためのプライミングバルス電圧を印加し、偶 数ライン書込み期間において、偶数番目の走査電極に走査バルス電圧を順次印加するとと もに走査バルス電圧を印加された走査電極に隣接するプライミング電極には走査バルス電 圧の印加に先立ってプライミング電極とデータ電極との間でプライミング放電を発生させ るためのプライミングバルス電圧を印加することを特徴とする。この方法により、書込み 動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができる プラズマディスプレイパネルの駆動方法を提供することができる。

 $[0\ 0\ 1\ 2]$

また、本発明のバネルの駆動方法は、書込み期間において、走査電極に走査バルス電圧を印加している時間とプライミング電極にプライミングパルス電圧を印加している時間とには重なりがあってもよい。この方法により、書込み放電を行いながらプライミング放電も行うので、プライミング放電のための時間をあらたに設ける必要がなく、書込み時間の長さを変えることなく書込み放電を安定して発生させることができる。

[0013]

また、本発明のバネルの駆動方法は、奇数ライン書込み期間と偶数ライン書込み期間との間にプライミング電極とデータ電極の間で初期化放電を行う補助初期化期間を設けてもよい。この方法により、奇数ライン書込み期間、偶数ライン書込み期間ともに安定したプライミング放電を発生させることができる。

【発明の効果】

[0014]

本発明によれば、書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるプラズマディスプレイバネルの駆動方法を提供することができ

စစ

【発明を実施するための最良の形態】

[0015]

以下、本発明の実施の形態におけるパネルの駆動方法について、図面を用いて説明する

[0016]

(実施の形態)

図1は本発明の実施の形態におけるパネルの構造を示す分解斜視図であり、図2は同パネルの断面図である。第1の基板であるガラス製の前面基板21と第2の基板である背面 基板31とが放電空間を挟んで対向配置され、放電空間には放電によって紫外線を放射するネオンとキセノンとの混合ガスが封入されている。

 $[0\ 0\ 1\ 7\]$

前面基板21上には、走査電極22と維持電極23とからなる表示電極対が互いに平行に複数対形成されている。このとき、たとえば走査電極22一維持電極23の順で構成された表示電極対に隣接する表示電極対は維持電極23一走査電極22の順で構成されている。そして、隣接する表示電極対の隙間のうち、走査電極22が対向する側にはプライミング電極29が表示電極対と平行に構成されている。したがって、前面基板21上には、維持電極23一走査電極22一プライミング電極29一走査電極22一維持電極23一・・となるように配列されている。走査電極22と維持電極23は、それぞれ透明電極22 a、23 aとその透明電極22a、23 a上に形成された金属母線22b、23 bとから構成されている。走査電極22一走査電極22間、および維持電極23一維持電極23間には黒色材料からなる光吸収層28が設けられており、プライミング電極29は走査電極22一走査電極22間に設けられた光吸収層28上に金属母線を用いて構成されている。そして、これらの走査電極22、維持電極23、ブライミング電極29および光吸収層28とを覆うように誘電体層24および保護層25が形成されている。

[0018]

背面基板31上には、走査電極22と交差する方向にデータ電極32が互いに平行に複数形成され、そしてデータ電極32を覆うように誘電体層33が形成されている。そして誘電体層33の上に主放電セル40を区画するための隔壁34が形成されている。

[0019]

隔壁34は、データ電極32と平行な方向に延びる縦壁部34aと、主放電セル40を形成するとともに主放電セル40の間に隙間部41を形成する横壁部34bとで構成されている。その結果、隔壁34は走査電極22と維持電極23とからなる一対の表示電極対に沿って主放電セル40を複数連結した主放電セル行を形成し、隣接した主放電セル行の間に隙間部41を生じる。隙間部41のうち、2本の走査電極22が隣り合う側に位置する隙間部の前面基板21上にはプライミング電極29が形成されており、この隙間部はプライミング放電セル41aとしてはたらく。すなわち隙間部41は1つおきにプライミング電極29を有するプライミング放電セル41aとなっている。なお、隙間部41bは2本の維持電極23が隣り合う側に位置する隙間部である。

[0020]

そして、これら隔壁34の頂部は前面基板21に当接するように平坦に形成されている。これは、隣接する主放電セル40の相互干渉を防ぐためであり、特に書込み期間において隣接する主放電セル40の書込み放電にともない発生するプライミングの影響を受けて誤書込みを生じる等の誤動作を防ぐためである。さらには、プライミング放電にともない、プライミング放電セル41aに隣接する主放電セル40の壁電荷が減少し書込み不良を生じる等の誤動作を防ぐためである。

[0021]

そして、隔壁34により区画された主放電セル40に対応する誘電体層33の表面と隔壁34の側面とに蛍光体層35が設けられている。なお、図1では隙間部41側に蛍光体

増 3 3 でルルレ (゚゚ な ゚゚ 、 虫 ル 件 増 3 3 で ルル リ つ 伸 ル に し く も よ ゚゚。

[0022]

なお、上述の説明ではデータ電極32を覆うように誘電体層33が形成されているが、 この誘電体層33は形成しなくてもよい。

[0023]

図 3 は本発明の実施の形態におけるバネルの電極配列図である。列方向に m列のデータ電極 D $_1$ ~ D $_m$ (図 $_1$ のデータ電極 $_3$ 2)が配列され、行方向に $_1$ 行の走査電極 $_2$ 2)と $_1$ かで配列され、行方向に $_1$ の走査電極 $_2$ 2)と $_1$ での維持電極 $_1$ ~ SU $_1$ (図 $_1$ の $_1$ の $_2$ と $_1$ でで電極 $_1$ と $_1$ でで電極 $_1$ で $_2$ と $_1$ で $_2$ で $_2$ で $_2$ で $_3$ で $_3$ で $_4$ に $_3$ で $_4$ で $_3$ で $_4$ で $_4$

[0024]

図4は、本発明の実施の形態におけるパネルを用いたプラズマディスプレイ装置の回路構成の一例を示すプロック図である。ディスプレイ装置100は、画像信号処理回路10 1、データ電極駆動回路102、タイミング制御回路103、走査電極駆動回路104、維持電極駆動回路105およびプライミング電極駆動回路106を有している。画像信号 および同期信号は、画像信号処理回路101に入力される。画像信号処理回路101は、画像信号および同期信号に基づいて、各サブフィールドを点灯するか否かを制御するサブフィールド信号をデータ電極駆動回路102に出力する。また、同期信号はタイミング制御回路103にも入力される。タイミング制御回路103は同期信号に基づいて、データ電極駆動回路102、走査電極駆動回路104、維持電極駆動回路105、プライミング電極駆動回路106にタイミング制御信号を出力する。

[0025]

データ電極駆動回路102は、サブフィールド信号およびタイミング制御信号に応じて、パネル10のデータ電極32(図3のデータ電極D $_1$ ~ $_1$ ~ $_1$ 0 の駆動波形電圧を印加する。走査電極駆動回路104はタイミング制御信号に応じてパネル10の走査電極22(図3の走査電極SС $_1$ ~SС $_1$ 0 に所定の駆動波形電圧を印加し、維持電極駆動回路105はタイミング制御信号に応じてパネル10の維持電極23(図3の維持電極SU $_1$ ~SU $_1$ 0 に所定の駆動波形電圧を印加する。ブライミング電極駆動回路106はタイミング制御信号に応じてパネル10のプライミング電極29(図3のプライミング電極P $_1$ ~ $_1$ 0 に所定の駆動波形電圧を印加する。データ電極駆動回路102、走査電極駆動回路104、維持電極駆動回路105、ブライミング電極駆動回路106には電源回路(図示せず)から必要な電力が供給されている。

[0026]

つぎに、パネルを駆動するための駆動波形とそのタイミングについて、パネルの動作とともに説明する。図5は、本発明の実施の形態におけるパネルの駆動波形図である。なお本発明の実施の形態においては、1フィールド期間が初期化期間、書込み期間、維持期間を有する複数のサブフィールドから構成されており、書込み期間は、奇数番目の走査電極(以下、「奇数走査電極」と略記する)をもつ主放電セルの書込み動作を行う奇数ライン書込み期間と、偶数番目の走査電極(以下、「偶数走査電極」と略記する)をもつ主放電セルの書込み動作を行う偶数ライン書込み期間とを有し、奇数走査電極と偶数走査電極との書込み動作を時間的に分離して行う。そしてプライミング放電セルに関しては、奇数ラ

[0027]

[0028]

初期化期間後半部では、維持電極 $SU_1 \sim SU_n$ を正電圧 Vec 保ち、走査電極 SC_1 ~ SC_n には、維持電極 $SU_1 \sim SU_n$ およびデータ電極 $D_1 \sim D_m$ に対して放電開始電圧以下となる電圧 V_i 3 から放電開始電圧を超える電圧 V_i 4 に向かって緩やかに下極る傾斜波形電圧を印加する。また、ブライミング電極 $PR_1 \sim PR_{n-1}$ にも走査電極 $SC_1 \sim SC_n$ と同様の傾斜波形電圧を印加する。すると、走査電極 $SC_1 \sim SC_n$ とデータ電極 $D_1 \sim D_m$ 、走査電極 $SC_1 \sim SC_n$ とデータ電極 $D_1 \sim D_m$ との間でそれぞれ微弱な初期化放電にる。そして、走査電極 $SC_1 \sim SC_n$ 上部の負の壁電圧および維持電極 $SU_1 \sim SU_n$ をこる。そして、走査電極 $SC_1 \sim SC_n$ 上部の正の壁電圧は書込み動作に適る。そして、走査電極 $SC_1 \sim SC_n$ 上部の正の壁電圧は書込み動作に適とた値に調整され、ブライミング電極 $SC_1 \sim D_m$ 上部の壁電圧もプライミング電極 $SC_1 \sim D_m$ との正の壁電圧もプライミング電極 $SC_1 \sim D_m$ との正の壁電圧は書込み動作に適した値に調整される。以上により画像表示にかかわる全放電セルを初期化放電させる全セル初期化動作が終了する。

[0029]

奇数ライン書込み期間では、走査電極SC $_1$ ~SC $_n$ およびプライミング電極PR $_1$ ~PR $_{n-1}$ を一旦電圧Vcに保持する。これは、後述する書込みパルス電圧Vdの印加にともなって不要な放電を発生させないためである。そして、 $_1$ 行目のプライミング電極PR $_1$ に負のプライミングパルス電圧Vpを印加する。このときのプライミングパルス電圧は振幅の大きなパルスであり、データ電極D $_1$ ~D $_m$ に印加される書込みパルス電圧の有無にかかわらず、プライミング電極PR $_1$ とデータ電極D $_1$ ~D $_m$ との間でプライミングで電極PR $_1$ とデータ電極D $_1$ ~D $_m$ との間でプライミングを供給する。この放電によってプライミング電極PR $_1$ 上部には正の壁電圧が蓄積される。

[0030]

つぎに、1行目の走査電極SC $_1$ に負の走査パルス電圧V $_a$ を印加する。このとき同時に、データ電極 $_1$ ~ $_0$ mのうち $_1$ 行目に表示すべき画像信号に対応するデータ電極 $_k$ ($_k$ は $_1$ ~ $_0$ mの整数をあらわす)に正の書込みパルス電圧V $_1$ 0を印加する。すると、書込みパルス電圧V $_1$ 0を印加したデータ電極 $_1$ 0を走査電極SC $_1$ 2の交差部で放電が発生し、対応する主放電セルC $_1$ 1、 $_k$ 0維持電極SU $_1$ 2と走査電極SC $_1$ 2の間の放電に進展する。そして、主放電セルC $_1$ 1、 $_k$ 0を査電極SC $_1$ 1上部に正の壁電圧が蓄積され、維持電極SU $_1$ 1上部に負の壁電圧が蓄積され、 $_1$ 行目の書込み動作が終了する。ここで、主放電

てルし」、kい盲やの以尾は、ノノコミンノ尾型INICリーノ尾型DIでDmcい同で発生したプライミング放電からプライミングが供給された直後に発生するので放電遅れが小さく安定した放電となる。

[0031]

また、1行目の走査電極SC $_1$ に走査バルス電圧Vaを印加すると同時に、プライミング電極PR $_3$ にプライミングバルス電圧Vpを印加する。するとデータ電極D $_1$ ~D $_m$ に印加される書込みバルス電圧の有無にかかわらず、プライミング電極PR $_3$ とデータ電極D $_1$ ~D $_m$ との間でプライミング放電が発生する。そして、3行目の主放電セルC $_3$, 1~C $_3$, $_m$ 内部にプライミングを供給する。この放電によってプライミング電極PR $_3$ 上部に正の壁電圧が蓄積される。

[0032]

つぎに、3行目の走査電極 S C $_3$ に走査バルス電圧 V a を印加する。このとき同時に、データ電極 D $_1$ \sim D $_m$ のうち 3 行目に表示すべき画像信号に対応するデータ電極 D $_k$ に正の書込みパルス電圧 V d を印加する。すると、データ電極 D $_k$ と走査電極 S C $_3$ とので放電が発生し、対応する主放電セル C $_3$ $_k$ の維持電極 S U $_3$ と走査電極 S C $_3$ との間の放電に進展する。そして、主放電セル C $_3$ $_k$ の走査電極 S C $_3$ 上部に正の壁電圧が蓄積され、3 行目の書込み動作が終了する。ここでの、主放電セル C $_3$ $_k$ の書込み放電も、プライミング電極 P R $_3$ とデータ電極 D $_1$ \sim D $_m$ との間で発生したプライミング放電からプライミングが供給された直後に発生するので放電遅れが小さく安定した放電となる。

[0033]

また、3行目の走査電極SC3に走査バルス電圧Vaを印加すると同時に、プライミング電極PR5にプライミングバルス電圧Vpを印加してプライミング放電を発生させる。そして、5行目の主放電セルC5,1 \sim C5,m内部にプライミングを供給する。

[0034]

以下同様の書込み動作を奇数番目の最後の主放電セル C_{n-1} , kに至るまで行い、書込み動作を終了する。そして、それぞれの主放電セル C_{i} , jの書込み放電は、隣接するプライミング放電セルからプライミングが供給された直後に発生するので、放電遅れの小さい安定した放電となる。

[0035]

つぎに、プライミング放電セルを再び初期化する。以下、この期間を補助初期化期間と記する。補助初期化期間では、維持電極 SU $_1$ \sim SU $_n$ を電圧 V $_e$ に、走査電極 SC $_1$ \sim SC $_n$ を電圧 V $_e$ に、それぞれ保ったまま、プライミング電極 P R $_1$ \sim P R $_{n-1}$ には電圧 V $_e$ を印加する。すると、プライミング電極 P R $_1$ \sim P R $_{n-1}$ とデータ電極 D $_1$ \sim D $_m$ との間でそれぞれ放電がおこり、プライミング電極 P R $_1$ \sim P R $_{n-1}$ 上部には負の壁電圧、データ電極 D $_1$ \sim D $_m$ 上部には正の壁電圧がそれぞれ蓄積される。

[0036]

つぎに、初期化期間後半部と同様の傾斜波形電圧を印加する。すると、プライミング電極 $PR_1 \sim PR_{n-1}$ とデータ電極 $D_1 \sim D_m$ との間でそれぞれ再び微弱な初期化放電がおこる。そして、データ電極 $D_1 \sim D_m$ 上部の正の壁電圧は書込み動作に適した値に調整され、プライミング電極 $PR_1 \sim PR_{n-1}$ 上部の壁電圧もプライミング動作に適した値に調整される。

[0037]

[0038]

つるに、2 11 日の定量電極 2 に 其の定量 2 に 其の定量 2 に 其のに 2 で 2 電極 2 に 其のに 2 で 2 電極 2 で 2 で 2 電極 2 で

[0039]

また、2行目の走査電極SC2に走査パルス電圧Vaを印加すると同時に、プライミング電極PR3にプライミングパルス電圧Vpを印加する。するとデータ電極D1~Dmに印加される書込みパルス電圧の有無にかかわらず、プライミング電極PR3とデータ電極D1~Dmとの間でプライミング放電が発生する。そして、4行目の主放電セルC4、1~C4、m内部にプライミングを供給する。この放電によってプライミング電極PR3上部に正の壁電圧が蓄積される。

[0040]

つぎに、4行目の走査電極SC4に走査パルス電圧Vaを印加する。このとき同時に、データ電極D $_1$ ~D $_m$ のうち4行目に表示すべき画像信号に対応するデータ電極D $_k$ に正の書込みパルス電圧Vdを印加する。すると、データ電極D $_k$ と走査電極SC4との交差部で放電が発生し、対応する主放電セルC4 $_1$, $_k$ の維持電極SU4と走査電極SC4との間の放電に進展する。そして、主放電セルC4 $_1$, $_k$ の走査電極SC4上部に正の壁電圧が蓄積され、4行目の書込み動作が終了する。ここでの、主放電セルC4 $_1$, $_k$ の書込み放電も、プライミング電極PR3とデータ電極D $_1$ ~D $_m$ との間で発生したプライミング放電からプライミングが供給された直後に発生するので放電遅れが小さく安定した放電となる。

[0041]

また、4行目の走査電極SC4に走査パルス電圧Vaを印加すると同時に、プライミング電極PR5にプライミングパルス電圧Vpを印加する。このときのプライミングパルス電圧Vpも振幅の大きなパルスであり、データ電極 $D_1 \sim D_m$ に印加される書込みパルス電圧の有無にかかわらず、プライミング電極PR5とデータ電極 $D_1 \sim D_m$ との間でプライミング放電が発生する。そして、5行目の主放電セルC5, $1 \sim C5$,m内部にプライミングを供給する。

[0042]

以下同様の書込み動作を偶数番目の最後の主放電セル $C_{n,k}$ に至るまで行い、書込み動作を終了する。そして、それぞれの主放電セル $C_{i,j}$ の書込み放電は、隣接するプライミング放電セルからプライミングが供給された直後に発生するので、放電遅れの小さい安定した放電となる。

[0043]

維持期間においては、走査電極SC $_1$ ~SC $_n$ 、ブライミング電極PR $_1$ ~PR $_n$ - $_1$ および維持電極SU $_1$ ~SU $_n$ を $_0$ (V)に一旦戻す。その後、走査電極SC $_1$ ~SC $_n$ に正の維持バルス電圧Vsを印加する。このとき、書込み放電をおこした主放電セルC $_i$, $_j$ における走査電極SC $_i$ 上部と維持電極SU $_i$ 上部との間の電圧は、維持バルス電圧Vsに加えて、書込み期間において走査電極SC $_i$ 上部および維持電極SU $_i$ 上部に蓄積された壁電圧が加算されるので放電開始電圧を超え維持放電が発生する。以降同様に、走査電極SC $_1$ ~SC $_n$ と維持電極SU $_1$ ~SU $_n$ とに維持バルス電圧を交互に印加することにより、書込み放電をおこした主放電セルC $_i$, $_j$ に対して維持バルスの回数だけ維持放電が継続して行われる。

[0044]

なお、プライミング電極 $PR_1 \sim PR_{n-1}$ には 図5 に示すように走査電極 $SC_1 \sim S$

Un C回びの離けつかへ電圧が印加される。 盲 との 期間においてノノコミンノ 電便I NI ~ PR n-1 上部には正の壁電圧が蓄積しているので、最初の維持パルス電圧印加時にはプライミング放電セル内部で放電が発生するが、それ以降は放電は発生しない。

[0045]

つづくサブフィールドの初期化期間では、維持電極SU $_1$ ~SU $_n$ を正電圧Veに保ち、走査電極SC $_1$ ~SC $_n$ とブライミング電極PR $_1$ ~PR $_{n-1}$ には電圧Vi $_4$ に向かって緩やかに下降する傾斜波形電圧を印加する。すると、維持放電を行った主放電セルCi, kの走査電極SC $_1$ ~SC $_n$ と維持電極SU $_1$ ~SU $_n$ 、データ電極D $_1$ ~D $_m$ との間、およびプライミング電極PR $_1$ ~PR $_{n-1}$ とデータ電極D $_1$ ~D $_m$ との間でそれぞれ微弱な初期化放電がおこる。そして、走査電極SC $_1$ ~SC $_n$ 上部および維持電極SU $_1$ ~SU $_n$ 上部の壁電圧が弱められ、データ電極D $_1$ ~D $_m$ 上部の正の壁電圧は書込み動作に適した値に調整される。

[0046]

この後の奇数ライン書込み期間、補助初期化期間、偶数ライン書込み期間、維持期間、およびつづくサブフィールドの駆動波形とパネルの動作は上述と同様である。

[0047]

上述のように、奇数ライン書込み期間および偶数ライン書込み期間における主放電セルの書込み放電は、それぞれの主放電セルに隣接するプライミング放電セルからプライミングが供給された直後に発生するので放電遅れの小さい安定した放電となる。また、奇数ライン書込み期間、偶数ライン書込み期間および維持期間の最初の維持バルス電圧印加時にプライミング放電セル内部で画像表示に関係しない放電が発生するが、プライミング放電セルには光吸収層28が設けてあるので、このときに発生する発光がパネル外部に漏れることはない。

[0048]

また、走査電極SC $_{p-1}$ に走査パルス電圧を印加している時間とプライミング電極PR $_p$ にプライミングパルス電圧を印加している時間とには重なりがあるので、 $_1$ 行目のプライミング放電を除いて、プライミング放電のための時間をあらたに設ける必要がない。実施の形態においては、走査電極SC $_{p-1}$ とデータ電極D $_k$ との間で書込み放電を発生させると同時にプライミング電極PR $_p$ とデータ電極D $_1$ \sim D $_m$ との間でプライミング放電を発生させることにより、パネルの駆動時間を延ばすことなくプライミング放電を発生させることが可能となっている。

[0049]

なお、上述の動作説明においては、最初のサブフィールドの初期化期間はすべての主放電セルで初期化放電を行う全セル初期化動作を行い、つぎのサブフィールド以降の初期化期間は維持放電を行った主放電セルを選択的に初期化する選択初期化動作を行うものとして説明したが、これらの初期化動作は任意に組み合わせてもよい。

[0050]

また、各電極に印加される駆動波形電圧についてはパネルの特性や駆動条件により最適に設定することが望ましい。図6に、他の実施の形態におけるパネルの駆動波形電圧を示す。図6に示した駆動波形の特徴は、維持期間においてプライミング電極に最初に印加される維持パルス電圧の振幅を大きくして、プライミング放電セルの動作を安定させ、さらに、プライミングパルス電圧Vpを走査パルス電圧Vaと等しく設定できるように、初期化期間後半部においてプライミング電極に印加する駆動波形を工夫している。

[0051]

具体的には、プライミング電極 $PR_1 \sim PR_{n-1}$ にも走査電極 $SC_1 \sim SC_n$ と同様の傾斜波形電圧を印加するが、図 6 に示すように、電圧 V_{i-4} に至る以前の電圧 V_{i-p} までしか電圧を低下させない。そして、つづく書込み期間では、プライミング電極 $PR_1 \sim PR_{n-1}$ を一旦電圧 V_c に保持する。電圧 V_c は電圧 V_{i-p} に書込みバルス電圧 V_d を加算した値にほぼ等しく、これは、書込みバルス電圧 V_d の印加にともなって不要な

版电で北土ででないたのでのる。てして、アノコミンノ电極」 N_1 に見いアノコミンノハルス電圧 V_p 。を印加する。このときプライミング電極 P_1 R_1 \sim P_1 R_{n-1} 上部には初期 化期間に形成された大きな負の壁電圧が残っているために、プライミングバルス電圧 V_p 。の電圧を走査バルス電圧 V_1 a と等しい電圧に設定することができる。そのため電源の共有化が可能となり回路構成を簡素化することができる。

[0052]

【産業上の利用可能性】

[0053]

本発明は、書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるので、壁掛けテレビや大型モニター等に用いられるパネルの駆動方法として有用である。

【図面の簡単な説明】

[0054]

- 【図1】本発明の実施の形態におけるパネルの構造を示す分解斜視図
- 【図2】同パネルの断面図
- 【図3】同パネルの電極配列図
- 【図4】同バネルを用いたプラズマディスプレイ装置の回路の構成の一例を示すブロ ック図
- 【図5】 同パネルの駆動波形図
- 【図6】本発明の他の実施の形態におけるパネルの駆動波形図

【符号の説明】

[0055]

- 21 前面基板
- 22 走査電極
- 23 維持電極
- 24 誘電体層
- 25 保護層
- 28 光吸収層
- 29 プライミング電極
- 3 1 背面基板
- 32 データ電極
- 3 3 誘電体層
- 3 4 隔壁
- 35 蛍光体層
- 40 主放電セル
- 41 隙間部
- 4 1 a プライミング放電セル

【図3】

.

【窗烘白】女们盲

【要約】

【課題】書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるプラズマディスプレイパネルの駆動方法を提供する。

【解決手段】走査電極と維持電極とからなる表示電極対の隙間のうち1つおきの隙間に表示電極対と平行にプライミング電極を備えたプラズマディスプレイパネルの駆動方法であって、書込み期間は奇数番目の走査電極を有する主放電セルの書込み動作を行う奇数ライン書込み期間と偶数番目の走査電極を有する主放電セルの書込み動作を行う偶数ライン書込み期間とを有し、それぞれの書込み期間において、奇数番目または偶数番目の走査電極に走査パルス電圧Vaを印加された走査電極に走査パルス電圧Vaを印加された走査電極に隣接するプライミング電極には走査パルス電圧Vaの印加に先立ってプライミング電極とデータ電極との間でプライミング放電を発生させるためのプライミングパルス電圧Vpを印加する。

【選択図】図5

000000582119900828

大阪府門真市大字門真1006番地 松下電器産業株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP2005/016938

International filing date: 14 September 2005 (14.09.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-267958

Filing date: 15 September 2004 (15.09.2004)

Date of receipt at the International Bureau: 09 December 2005 (09.12.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

