Unit8

Workshop: Forecasting time series

VisCon, 12 October 2019

About us

Krzysiek & Kilian

Software Engineers @ Unit8

Before we begin... Let's setup!

https://qithub.com/unit8co/u8timeseries-viscon

Why Time Series Forecasting?

Time Series Examples

The Big Picture

Everyone needs forecasting!

Predicting electricity demand

Predicting product sales

Predicting taxi rides demand ... and many more

Unit8

Time Series Concepts

Point Forecasts, Horizon, Residuals

Prediction Intervals

We're 95% sure that the value is going to be within

Autocorrelation

Unit8.

Seasonal Trend Decomposition

Additive:

Time series = Seasonal + Trend + Random

Multiplicative:

Time series = Trend * Seasonal *Random

More complex trend & seasonality

Time for Task 1

The dataset

RetailNZ.csv

Monthly total clothing retail sales Value in dollars Timespan: May 1995 - September 2010

Let's code!

Task 1 in 1_explore_and_forecast_task1-3.ipynb notebook

Naive

Naive

Just take the last value (or previous year value) as prediction of next value.

Naïve Forecast Graph

Unit8.

Exponential Smoothing

Exponential Smoothing Intuition

Let's mix a weighted sum of:

- **★** Previous value
- **★** Our previous estimation

$$\hat{y}_{t+1|t} = \alpha y_t + (1-\alpha)\hat{y}_{t|t-1},$$
 Smoothing coefficients fitted to dataset

Unit8

Exponential Smoothing

There's lots of different methods in this family....

Simple Exponential Smoothing (SES)

Trend Component	Seasonal (Seasonal Component			
	N	A	M		
	(None)	(Additive)	(Multiplicative)		
N (None)	(N,N)	(N,A)	(N,M)		
A (Additive)	(A,N)	(A,A) 🔨	(A,M)		
A_d (Additive damped)	(A_d,N)	(A_d,A)	(A_d,M)		
			Holt-Winters' Method		

Holt's Method

Exponential Smoothing

How to choose the model?

Follow ES modeling procedure

Better to automate the process!

```
library(forecast)
model <- ets(dataset)
future <- forecast(model, h=3)</pre>
```

ets () brute-forces all possible models to find the one that best fits the dataset

ARIMA

ARIMA = AR + I + MA

Let's mix together:

- ★ previous p values of the serie (AR)
- ★ previous q residuals of the serie (MA)
- \star single or double differencing (d) to get rid of seasonality & trend (I) $y_t'=y_t-y_{t-1}$

Unit8

ARIMA = AR(p) + I(d) + MA(q)

How to choose p, d & q?

Follow ARIMA modeling procedure

Better to automate the process!

```
library(forecast)
model <- auto.arima(dataset)
future <- forecast(model, h=3)</pre>
```

auto.arima() brute-forces the search space of (p,d,q) that optimizes AIC, AICc or BIC value.

Time for Task 2

Error metrics

Mean Absolute Percentage Error (MAPE)

$$\mathrm{M} = rac{100\%}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|,$$

Symmetric MAPE (sMAPE)

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^{n} rac{|F_t - A_t|}{|A_t| + |F_t|}$$

Mean Absolute Scaled Error (MASE)

$$ext{MASE} = ext{mean}\left(rac{|e_j|}{rac{1}{T-1}\sum_{t=2}^{T}|Y_t - Y_{t-1}|}
ight) = rac{rac{1}{J}\sum_{j}|e_j|}{rac{1}{T-1}\sum_{t=2}^{T}|Y_t - Y_{t-1}|}$$

Time for Task 3

Which model is the best?

M3 Competition (2000) & NN3 (2006)

Can be expressed as Simple Exponential Smoothing (SES) with drift

- 3003 series
- Data from business, finance & economics
- Seasonality: yearly, monthly, daily, hourly
- Series length between 14 and 126

Method	MAPE	sMAPE	MASE	
Theta	17.42	12.76	1.39	
ForecastPro	18.00 13.06		1.47	
B-J automatic	19.13	13.72	1.54	
ETS	17.38	13.13	1.43	
AutoARIMA	19.12	13.85	1.47	

Conclusions:

- Complex methods not necessarily better than simpler ones
- Methods ranking varies depending on accuracy metric & forecasting horizon
- ML & Neural Networks unable to get comparable results

Unit8

u8timeseries

u8timeseries

- Specialized software written by Unit8
- Easy to use collection of forecasting models in Python
- Unified API, on top of pandas
- Auto-regressive and regressive models
- Utilities to manipulate time series

Time for Task 4

Ensembling

M4 Competition (2018)

- 100K series
- Objective: compare ML vs statistical
- Point Forecast + Prediction Interval

Ranking	Type of Method	sMAPE	MASE	OWA	
1st Ranked: Best	Hybrid	11.374	1.536	0.821	
2nd Ranked: 2nd Best	Best Combining	11.720	1.551	0.838	
8th Ranked	Best Statistical	11.986	1.601	0.861	
19th Ranked	Comb Benchmark	12.555	1.663	0.898	
25th Ranked	Best ML	12.894	1.682	0.915	
37th Ranked	Naïve 2 Benchmark	13.564	1.912	1.000	
48th Ranked	2nd Best ML	16.638	2.056	1.151	

Conclusions:

- Combination of methods is the king 12/17 of best methods
- Surprising winner: hybrid approach ES-RNN submitted by Slawek Smyl from Uber
- Pure ML methods performed poorly

Unit8.

M4 Competition (2018)

Rank	Team	Affiliation	Method	sMAPE	MASE	OWA	Diff from Comb (%)
1	Smyl	Uber Technologies	Hybrid	11.37	1.54	0.821	-8.52
2	Montero-Manso et al.	University of A Coruña & Monash University	Comb (S & ML)	11.72	1.55	0.838	-6.65
3	Pawlikowski et al.	ProLogistica Soft	Comb (S)	11.84	1.55	0.841	-6.25
4	Jaganathan & Prakash	Individual	Comb (S & ML)	11.70	1.57	0.842	-6.17
5	Fiorucci, J. A. & Louzada	University of Brasilia & University of São Paulo	Comb (S)	11.84	1.55	0.843	-6.10
6	Petropoulos & Svetunkov	University of Bath & Lancaster University	Comb (S)	11.89	1.57	0.848	-5.55

Significant margin

All submitted methods open sourced on GitHub:

https://github.com/M4Competition/M4-methods

All M4-Conference papers available online:

https://www.mcompetitions.unic.ac.cy/presentations/

Ensembling

Different ways to combine:

- Simple Average
- Weighted Average by accuracy
- Learned weights (LR, RF, XGBoost)

Benefits:

- Improved accuracy due to additional information
- Safety in numbers reduced risk of bad forecast
- Ability to incorporate external features

Backtesting

Backtesting

Concept: simulate predictions that would have been obtained historically with certain model(s)

- 1. Set prediction time $t \leftarrow t_{\rho}$
- 2. Produce point prediction for a fixed time horizon
- 3. Move pointer $t \leftarrow t+1$
- 4. Repeat

Backtesting - test your model over time

aka Time Series Cross-Validation

Time for Task 5

Let's code!

Workshop u8timeseries. Jupyter notebook.

Tasks:

- Time series forecasting using u8timeseries
- Backtesting
- Ensemble predictions

Forecasting Research

In Search of Single Forecasting Model

Statistical methods work very well but:

- Infeasible for millions of time series (Uber, Amazon)
- Require frequent retraining
- Do not benefit from cross-learning

Benefits of single ML model:

- Difficult to train & get right, but easy to maintain
- Allow cross-learning & can accomodate for new time series

Hybrid ES-RNN (Uber)

The idea is the following:

- Separate Exponential Smoothing (ES) model per serie
- One global LSTM network that learns on all of the series

Ensemble of Specialists

- Train a pool of models on random subset of the series
- Final forecast for a particular serie is the average of top N models

Hybrid ES-RNN (Uber)

Implemented in C++ using DyNet, but there are open source implementations in PyTorch

DeepAR (Amazon)

- Available as a Service via AWS Forecast
- Also has some open source implementation https://github.com/zhykoties/DeepAR
- Used internally to forecast Amazon.com products demand & AWS utilization

Highlights:

- One global LSTM model for all series
- Predicting likelihood instead of point forecast
- Covariates: item-dependent + time-dependent features

Conclusions

- Classical methods are hard to beat when you have:
 - Sufficient history
 - Little external information
 - Few related time series
- Start with classics and proceed with Combination of Methods:
 - Reduced risk of bad forecast
 - Ability to incorporate external features
- Experiment with emerging ML/DL methods:
 - You know what you are doing
 - Lots of related time series
 - Cross-learning between series
 - One global model
- Forecasting toolset:
 - Much better in R (forecast, hts, tsfeatures, tsintermittent, etc..)
 - Bit rusty in Python (statmodels, prophet, etc)

Unit8.

Bibliography

- M4-Conference Presentations
 https://www.mcompetitions.unic.ac.cy/presentations/
- Forecasting at Uber https://eng.uber.com/forecasting-introduction/
- Amazon DeepAR+
 https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-recipe-deeparplus.html
- Automatic Algorithms for Time Series Forecasting https://www.slideshare.net/hyndman/automatic-time-series-forecasting
- Exploring Time Series Feature Space
 https://www.slideshare.net/hyndman/exploring-the-feature-space-of-large-collections-of-time-series
- Facebook Prophet https://research.fb.com/prophet-forecasting-at-scale/
- Guru of Time Series Forecasting Homepage https://robjhyndman.com/
- DeepAR+ Open Source Implementation https://github.com/zhykoties/DeepAR
- ES-RNN Open Source Implementation https://github.com/damitkwr/ESRNN-GPU

Unit8.

Twitter: unit8co

Linkedin: unit8.co

Instagram: unit8.co

follow us!

unit8.co thank you