C-HƯỚNG DẪN GIẢI

DẠNG 1: ÁP DỤNG ĐỊNH NGHĨA VÀ CÁC TÍNH CHẤT PHÉP QUAY

Câu 1: Cho tam giác đều tâm O. Hỏi có bao nhiều phép quay tâm O góc quay α , $0 < \alpha \le 2\pi$ biến tam giác trên thành chính nó?

A. Môt.

B. Hai.

C. Ba.

D. Bốn.

Hướng dẫn giải:

Chọn C.

Có 3 phép quay tâm O góc α , $0 < \alpha \le 2\pi$ biến tam giác trên thành chính nó là các phép quay với góc quay bằng: $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, 2π .

Câu 2: Cho hình vuông tâm O. Hỏi có bao nhiều phép quay tâm O góc quay α , $0 < \alpha \le 2\pi$ biến hình vuông trên thành chính nó?

A. Môt.

B. Hai

C. Ba.

D. Bốn.

Hướng dẫn giải:

Chon D.

Có 4 phép quay tâm O góc $\alpha, 0 < \alpha \le 2\pi$ biến tam giác trên thành chính nó là các phép quay với góc quay bằng: $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π .

Câu 3: Cho hình chữ nhật có O là tâm đối xứng. Hỏi có bao nhiều phép quay tâm O góc quay α , $0 < \alpha \le 2\pi$ biến hình chữ nhật trên thành chính nó?

A. Không có.

B. Hai.

C. Ba.

D. Bốn.

Hướng dẫn giải:

Chon B.

Có 2 phép quay tâm O góc α , $0 < \alpha \le 2\pi$ biến tam giác trên thành chính nó là các phép quay với góc quay bằng: π , 2π .

Câu 4: Có bao nhiều điểm biến thành chính nó qua phép quay tâm O góc quay $\alpha \neq k2\pi$ $(k \in \mathbb{Z})$?

A. Không có.

B. Môt.

C. Hai.

D. Vô số.

Hướng dẫn giải:

Chon B.

Có một điểm biến thành chính nó qua phép quay tâm O góc quay $\alpha \neq k2\pi \ (k \in \mathbb{Z})$ đó chính là điểm O

Câu 5: Phép quay $Q_{(O:\phi)}$ biến điểm M thành M'. Khi đó

A. $\overrightarrow{OM} = \overrightarrow{OM'}$ và $(OM, OM') = \varphi$.

B. OM = OM' và $(OM, OM') = \varphi$.

C. $\overrightarrow{OM} = \overrightarrow{OM'}$ và $\widehat{MOM'} = \varphi$.

D. OM = OM' và $\widehat{MOM'} = \varphi$.

Hướng dẫn giải:

Chọn B.

$$Q_{\scriptscriptstyle (O;\varphi)}(M)=M'\Leftrightarrow\begin{cases} OM=OM'\\ (OM,OM')=\varphi \end{cases}.$$

Chú ý số đo góc $\widehat{MOM'}$ không âm nên $(OM, OM') \neq \widehat{MOM'}$.

Câu 6: Phép quay $Q_{(O;\omega)}$ biến điểm A thành M . Khi đó

- (I) O cách đều A và M.
- (II) O thuộc đường tròn đường kính AM .
- (III) O nằm trên cung chứa góc φ dựng trên đoạn AM.

Trong các câu trên câu đúng là

A. Cả ba câu.

B. (I) và (II).

C. (I).

D. (I) và (III).

Hướng dẫn giải:

Chọn C.

Ta có: $Q_{(O,\phi)}(A) = M$ suy ra

- + OA = OM nên (I) đúng.
- + (II) xảy ra khi $\triangle OAM$ vuông tại O, nói chung điều này không đúng, nên (II) sai.
- + $(OA, OM) = \varphi$ nên (III) sai.

Câu 7: Chon câu sai.

- **A.** Qua phép quay $Q_{(O;\omega)}$ điểm O biến thành chính nó.
- **B.** Phép đối xứng tâm O là phép quay tâm O, góc quay -180° .
- C. Phép quay tâm O góc quay 90° và phép quay tâm O góc quay nhau.
- **D.** Phép đối xứng tâm O là phép quay tâm O, góc quay 180° .

Hướng dẫn giải:

Chọn C.

$$Q_{(O;90^{\circ})}(M) = A; \ Q_{(O;-90^{\circ})}(M) = B.$$

Do đó $Q_{(0;90^{\circ})} \neq Q_{(0;-90^{\circ})}$.

M

Câu 8: Khẳng định nào sau đây đúng về phép quay.

- **A.** Phép biến hình biến điểm O thành điểm O và điểm M khác điểm O thành điểm M' sao cho $(OM,OM') = \varphi$ được gọi là phép quay tâm O với góc quay \bullet .
- **B.** Nếu $Q_{(O:90^\circ)}: M \mapsto M'(M \neq O)$ thì $OM' \perp OM$.
- C. Phép quay không phải là một phép dời hình.
- **D.** Nếu $Q_{(O:90^\circ)}: M \mapsto M'$ thì OM' > OM.

Hướng dẫn giải:

Chon B.

Nếu $Q_{(O:90^{\circ})}: M \mapsto M'(M \neq O)$ thì $(OM, OM') = 90^{\circ}$ hay $OM \perp OM'$.

Câu 9: Cho tam giác đều ABC. Hãy xác định góc quay của phép quay tâm A biến B thành điểm C.

A.
$$\varphi = 30^{\circ}$$
.

B.
$$\varphi = 90^{\circ}$$
.

C.
$$\varphi = -120^{\circ}$$
.

D.
$$\varphi = -60^{\circ}$$
 hoặc $\varphi = 60^{\circ}$.

Hướng dẫn giải:

Chọn D.

Ta có:
$$\begin{cases} AB = AC \\ (AB, AC) = \pm 60^{\circ} \end{cases} \text{ nên } Q_{(A;\pm 60^{\circ})}(B) = C.$$

DANG 2: PHƯƠNG PHÁP TOẠ ĐỘ

Câu 1: Trong mặt phẳng Oxy, cho điểm M(1;1). Hỏi các điểm sau điểm nào là ảnh của M qua phép quay tâm O, góc 45° ?

A.
$$M'(-1;1)$$
.

B.
$$M'(1;0)$$
.

C.
$$M'(\sqrt{2};0)$$
. **D.** $M'(0;\sqrt{2})$.

D.
$$M'(0; \sqrt{2})$$
.

Hướng dẫn giải:

Chon D.

+ Thay biểu thức tọa độ của phép quay tâm O góc quay 45° ta có:

$$\begin{cases} x' = x \cdot \cos 45^{\circ} - y \cdot \sin 45^{\circ} = \cos 45^{\circ} - \sin 45^{\circ} = 0\\ y' = x \cdot \sin 45^{\circ} + y \cdot \cos 45^{\circ} = \sin 45^{\circ} + \cos 45^{\circ} = \sqrt{2} \end{cases}$$

Vậy
$$M'(0; \sqrt{2})$$
.

Câu 2: Trong mặt phẳng Oxy cho điểm A(3;0). Tìm tọa độ ảnh A' của điểm A qua phép quay $Q_{(O;\frac{\pi}{2})}$.

A.
$$A'(0;-3)$$
.

B.
$$A'(0;3)$$
.

C.
$$A'(-3;0)$$
.

D.
$$A'(2\sqrt{3}; 2\sqrt{3})$$
.

Hướng dẫn giải:

Chon B.

$$Q_{\left(0;\frac{\pi}{2}\right)}:A(x;y)\mapsto A'(x';y')$$

Nên
$$\begin{cases} x' = -y = 0 \\ y' = x = 3 \end{cases}$$
. Vậy $A'(0;3)$.

Câu 3: Trong mặt phẳng Oxy cho điểm A(3;0). Tìm tọa độ ảnh A' của điểm A qua phép quay

$$Q_{_{(O;-\frac{\pi}{2})}}.$$

A.
$$A'(-3;0)$$
.

B.
$$A'(3;0)$$
.

C.
$$A'(0; -3)$$
.

D.
$$A'(-2\sqrt{3}; 2\sqrt{3})$$
.

Hướng dẫn giải:

Chon C.

$$Q_{\left(0;-\frac{\pi}{2}\right)}:A(x;y)\mapsto A'(x';y')$$

Nên
$$\begin{cases} x' = y = 0 \\ y' = -x = -3 \end{cases}$$
. Vậy $A'(0; -3)$.

Câu 4: Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M(2;0) và điểm N(0;2). Phép quay tâm O biến điểm M thành điển N, khi đó góc quay của nó là

A.
$$\varphi = 30^{\circ}$$
.

B.
$$\varphi = 45^{\circ}$$
.

C.
$$\varphi = 90^{\circ}$$
.

D.
$$\varphi = 270^{\circ}$$
.

Hướng dẫn giải:

Chon C.

$$Q_{(O;\varphi)}: M(x;y) \mapsto N(x';y')$$

Khi đó:
$$\begin{cases} x' = x \cos \varphi - y \sin \varphi \\ y' = x \sin \varphi + y \cos \varphi \end{cases}$$

Thử đáp án ta nhận $\varphi = 90^{\circ}$. Hoặc biểu diễn trên hệ trục tọa độ ta cũng được đáp án tương tự. Câu 5: Cho M(3;4). Tìm ảnh của điểm M qua phép quay tâm O góc quay 30° .

A.
$$M'\left(\frac{3\sqrt{3}}{2}; \frac{3}{2} + 2\sqrt{3}\right)$$

B.
$$M'(-2; 2\sqrt{3})$$

C.
$$M'\left(\frac{3\sqrt{3}}{2}; 2\sqrt{3}\right)$$

D.
$$M'\left(\frac{3\sqrt{3}}{2}-2;\frac{3}{2}+2\sqrt{3}\right)$$

Hướng dẫn giải:

Gọi $M'(x'; y') = Q_{(0;30^0)}$. Áp dụng biểu thức tọa độ $\begin{cases} x' = x \cos \alpha - y \sin \alpha \\ y' = x \sin \alpha + y \cos \alpha \end{cases}$ ta có

$$\begin{cases} x' = 3\cos 30^{0} - 4\sin 30^{0} = \frac{3\sqrt{3}}{2} - 2\\ y' = 3\sin 30^{0} + 4\cos 30^{0} = \frac{3}{2} + 2\sqrt{3} \end{cases} \Rightarrow M' \left(\frac{3\sqrt{3}}{2} - 2; \frac{3}{2} + 2\sqrt{3} \right).$$

Câu 6: Cho I(2;1) và đường thẳng d:2x+3y+4=0. Tìm ảnh của d qua $Q_{(I:45^0)}$.

A.
$$d': -x + 5y - 3 + \sqrt{2} = 0$$

B.
$$d': -x + 5y - 3 = 0$$

C.
$$d': -x + 5y - 10\sqrt{2} = 0$$

D.
$$d': -x + 5y - 3 + 10\sqrt{2} = 0$$

Hướng dẫn giải:

Lấy hai điểm M(-2;0); N(1;-2) thuộc d.

Gọi $M\,{}^{\shortmid}\!\!\big(x_{\!_{1}};y_{\!_{1}}\big), N\,{}^{\backprime}\!\!\big(x_{\!_{2}};y_{\!_{2}}\big)$ là ảnh của $M\,, N\,$ qua $Q_{_{(I:45^0)}}$

Ta có
$$\begin{cases} x_1 = 2 + (-2 - 2)\cos 45^0 - (0 - 1)\sin 45^0 \\ y_1 = 1 + (-2 - 2)\sin 45^0 + (0 - 1)\cos 45^0 \end{cases} \Leftrightarrow \begin{cases} x_1 = 2 - \frac{3\sqrt{2}}{2} \\ y_1 = 1 - \frac{5\sqrt{2}}{2} \end{cases}$$

$$\Rightarrow M' \left(2 - \frac{3\sqrt{2}}{2}; 1 - \frac{5\sqrt{2}}{2} \right).$$

$$\begin{cases} x_2 = 2 + (1 - 2)\cos 45^0 - (-2 - 1)\sin 45^0 \\ y_2 = 1 + (1 - 2)\sin 45^0 + (-2 - 1)\cos 45^0 \end{cases} \Leftrightarrow \begin{cases} x_2 = 2 + \sqrt{2} \\ y_2 = 1 - 2\sqrt{2} \end{cases}$$

$$\Rightarrow N'(2+\sqrt{2};1-2\sqrt{2}).$$

Ta có
$$\overline{M'N'} = \left(\frac{5\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}(5;1)$$
.

Gọi
$$d' = Q_{(I;45^0)}(d)$$
 thì d' có VTCP $\vec{u} = \overrightarrow{M'N'} = (5;1) \Rightarrow VTPT$ $\vec{n} = (-1;5)$

Phương trình:

$$d': -(x-2-\sqrt{2}) + 5(y-1+2\sqrt{2}) = 0 \Leftrightarrow -x+5y-3+10\sqrt{2} = 0.$$

Câu 7: Tìm ảnh của đường thẳng d:5x-3y+15=0 qua phép quay $Q_{(0:90^0)}$.

A.
$$d': x + y + 15 = 0$$

B.
$$d': 3x + 5y + 5 = 0$$

C.
$$d': 3x + y + 5 = 0$$

D.
$$d': 3x + 5y + 15 = 0$$

Hướng dẫn giải:

 $d' \perp d$ nên phương trình có dạng 3x + 5y + c = 0

Lấy
$$M(-3;0) \in d$$
, ta có $Q_{(0;90^0)}(M) = M'(0;-3)$, $M' \in d' \Rightarrow C = 15$, hay $d':3x + 5y + 15 = 0$.

Câu 8: Tìm ảnh của đường tròn $(C):(x-1)^2+(y+2)^2=9$ qua phép quay $Q_{(I;90^0)}$ với I(3;4).

A.
$$(C'):(x+2)^2+(y-2)^2=9$$

B.
$$(C')$$
: $(x-3)^2 + (y+2)^2 = 9$

C.
$$(C'):(x+5)^2+(y-7)^2=9$$

D.
$$(C'):(x+3)^2+(y-2)^2=9$$

Hướng dẫn giải:

$$(C)$$
 có tâm $J(1;-2), R=3$, gọi $J'(x';y')=Q_{(I;90^0)}(I)$ ta có

$$\begin{cases} x' = 3 + (1 - 3)\cos\frac{\pi}{2} - (4 + 2)\sin\frac{\pi}{2} = -3\\ y' = 4 + (1 - 3)\sin\frac{\pi}{2} + (4 + 2)\cos\frac{\pi}{2} = 2 \end{cases}$$

$$\Rightarrow J'(-3;2)$$
 mà $R' = R = 3$ nên phương trình $(C'): (x+3)^2 + (y-2)^2 = 9$.

Câu 9: Viết phương trình các cạnh của tam giác ABC biết A(1,2), B(3,4) và

$$\cos A = \frac{2}{\sqrt{5}}, \cos B = \frac{3}{\sqrt{10}}.$$

A.
$$AC: x - y - 1 = 0, BC: x - y + 5 = 0$$

B.
$$AC: 3x - y - 2 = 0, BC: x - 2y + 3 = 0$$

C.
$$AC:3x-y-1=0$$
, $BC:x-2y+5=0$

D.
$$AC:3x-y-4=0$$
, $BC:x-2y+2=0$

Hướng dẫn giải:

Sử dụng tính chất: Phép quay tâm $I(a;b) \in d$: Ax + By + C = 0 góc quay α biến d thành d' có phương trình $(A - B \tan \varphi)(x - a) + (A \tan \varphi + B)(y - b) = 0$.

Ta được
$$AC: 3x - y - 1 = 0, BC: x - 2y + 5 = 0$$