Trapping and imaging of single atom in the present of light shift

Yichao Yu May 26, 2016 Ni Group/Harvard

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Cs single atom loading

λ_{trap}	922	935	970	
Loading %	0	≈ 50	≈ 50	

- Alternate between resonant and trap light
- Switching at 1 3MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times 5 \sim 10$ MHz
- Being able to load single Na atom

- Alternate between resonant and trap light
- Switching at 1 3MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times 5 \sim 10$ MHz
- Being able to load single Na atom

- Alternate between resonant and trap light
- Switching at 1 3MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times 5 \sim 10$ MHz
- Being able to load single
 Na atom

- Alternate between resonant and trap light
- Switching at 1 3MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times 5 \sim 10$ MHz
- Being able to load single
 Na atom

Cs single atom loading

es single atom roading			
λ_{trap}	922	935	970
Loading %	≈ 50	≈ 50	≈ 50

- Alternate between resonant and trap light
- Switching at 1 − 3MHz $f_{trap} = 10 \sim 400 \text{kHz}$ $\Gamma = 2\pi \times 5 \sim 10 \text{MHz}$

Cs single atom loading

	5		
λ_{trap}	922	935	970
Loading %	≈ 50	≈ 50	≈ 50

Cs single atom imaging

Trap

Resonant

- Alternate between resonant and trap light
- Switching at 1 3MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times 5 \sim 10$ MHz
- Being able to load single
 Na atom

Cs single atom loading

λ_{trap}	922	935	970
Loading %	≈ 50	≈ 50	≈ 50

Cs single atom imaging

- Alternate between resonant and trap light
- Switching at 1 3MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times 5 \sim 10$ MHz
- Being able to load single
 Na atom

Cs single atom loading

	5		
λ_{trap}	922	935	970
Loading %	≈ 50	≈ 50	≈ 50

Cs single atom imaging

- Alternate between resonant and trap light
- Switching at 1 − 3MHz $f_{trap} = 10 \sim 400 \text{kHz}$ $\Gamma = 2\pi \times 5 \sim 10 \text{MHz}$
- Being able to load single Na atom

Cs single atom loading

	9		7
λ_{trap}	922	935	970
Loading %	≈ 50	≈ 50	≈ 50

Cs single atom imaging

Conclusion

- Measured the effect of light shift on loading and imaging of single atom
- Overcome the light shift by alternating trapping and resonant light to achieve loading of single Na atom.
- Generalizable to other species