Universidad Mayor de San Simón Facultad de Ciencia y Tecnología Departamento de Física

1er Parcial de Laboratorio de Física III

21 de abril 2021

Apellidos y nombres:	

1. A partir de la siguiente tabla, determinar la resistencia interna (con su error), la corriente de corto circuito (sin su error) y la FEM (con su error). (25 pts.)

Nº	1	2	3	4	5	6	7	8	9	10
I[mA]	30	34	38	42	46	50	54	58	62	66
V[V]	2.8	2.79	2.76	2.74	2.72	2.70	2.68	2.66	2.64	2.60

3.- A partir de los siguientes datos determinar la constante de la permitividad del vacío con su respectivo error. Considere las cargas iguales a: 4,2 μ C y 7,89 μ C (25 pts.)

Νō	1	2	3	4	5
d[m]	0,02	0,03	0,04	0,05	0,06
F[N]	719,0	320,1	179,9	115,0	80,0

3.- Explicar los procedimientos utilizados para la práctica de mediciones de la resistencia (10 pts.)

$$\sum d^{2} = \sum y^{2} - 2A \sum y - 2B \sum xy + nA^{2} + 2AB \sum x + B^{2} \sum x^{2}$$

$$\Delta = n \sum x^{2} - (\sum x)^{2}$$

$$\sigma_{A} = \sqrt{\frac{\sigma^{2} \sum x^{2}}{\Delta}} \qquad \sigma_{B} = \sqrt{\frac{\sigma^{2} n}{\Delta}} \qquad \sigma^{2} = \frac{\sum d^{2}}{n-2}$$