

Presentación del equipo

Brayan
Zuluaga
Redacción de informe, código

Segundo autor Redacción de informe, código

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

El más camino más corto restringido

Primer algoritmo

Calles de Medellín, Origen y Destino

El camino más corto sin superar un riesgo medio ponderado de acoso *r*

Segundo algoritmo

Calles de Medellín, Origen y Destino

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

Algorítmo de Dijkstra

Inicialmente, se establece el nodo inicial y el nodo destino, en este caso A y F respectivamente, posteriormente, se establece un valor para cada nodo, siendo infinito para todos los nodos diferentes al inicial, luego, se inicia un recorrido comparando los pesos de cada arista, y la suma de las aristas de nodos antecesores para determinar cual es el valor mínimo posible para llegar a cada nodo, hasta llegar al nodo final habiendo evaluado los caminos posibles, sabiendo ya los antecesores de dicho nodo final y el camino más corto.

Complejidad del algoritmo

Nombre	Complejidad temporal	Complejidad de la memoria
Dijkstra	O(V ²)	O(V ²)
N/A	N/A	N/A

Complejidad en tiempo y memoria del nombre del algoritmo. V representa la cantidad nodos.

