Samenvatting Analyse 2B

Luc Veldhuis

April 2017

1 Limietpunt

Neem $f: D \subseteq \mathbb{R}^m \to \mathbb{R}^n$. Laat $a \in \mathbb{R}^m$ en $b \in \mathbb{R}^m$. Dan is a een limiet punt van f dan en slechts dan als $\forall \epsilon > 0 \ \exists \delta > 0$ zodat voor $x \in D$ en als $||x - a|| < \delta$ dan $||f(x) - b|| < \epsilon$.

Dan geldt ook dat $\lim_{x\to a} f(x) = b$ dan en slechts dan als $\lim_{x\to a} f_i(a) = b_i$ voor alle $1 \le i \le m$

2 Continuiteit

Een functie f is continu in een limietpunt a als $\lim_{x\to a} f(x) = f(a)$. Dus een functie is continu als geldt dat $\forall \epsilon > 0 \ \exists \delta > 0 \ \text{zodat voor} \ x \in D$ en als $\|x-a\| < \delta$ dan $\|f(x) - f(a)\| < \epsilon$.

2.1 Uniforme Continuiteit

Een functie f is uniform continu in een limietpunt a als geldt dat $\forall \epsilon > 0 \ \exists \delta > 0$ zodat voor $x,y \in D$ en als $||x-y|| < \delta$ dan $||f(x)-f(y)|| < \epsilon$.

3 Inwendig punt

Een punt $x \in \mathbb{R}^m$ is een inwendig punt als geldt dat $\exists \epsilon_0 \text{ zodat } \forall 0 < \epsilon < \epsilon_0 \beta_{\epsilon}(a) \subseteq D$. Bijvoorbeeld de randpunten van [1,2] zijn geen inwendig punt.

4 Differentieerbaar

Een functie f is differentieerbaar in een punt a als het limiet $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$ bestaat. Dit kan ook geschreven worden als $\lim_{h\to 0} \frac{f(a+h)-f(a)-L(h)}{\|h\|} = 0$

4.1 Continu differentieerbaar

Een functie is continu differentieerbaar in een punt a als hij differentieerbaar is in a en als alle richtingafgeleiden bestaan voor een open gebied rond a en als deze continu zijn. Continu differentieerbaar \Rightarrow differentieerbaar \Rightarrow continu.

Als een functie $f:U\subseteq \mathbb{R}^n\to\mathbb{R}^m$ met U open, 2 keer continu differentieerbaar is, dan geldt dat $D_i D_j f = D_j D_i f$ op U.

5 Differentiaal

Als
$$L(h) = f'(a)h = \begin{pmatrix} f'_1(a) \\ \vdots \\ f'_n(a) \end{pmatrix} h = df_a(h)$$
 bestaat, dan noemen we dit ook wel het differentiaal. Hierbij geldt dat $L(h) = f'(a)h$ lineair is. De vector $f'(a)$ is de spelheidsvector

rentiaal. Hierbij geldt dat L(h) = f'(a)h lineair is. De vector f'(a) is de snelheidsvector en ||f'(a)|| is de 'speed' van f in a.

Als f differentieerbaar is in a, geldt dat $D_v f(a) = df_a(v)$ $L(v) = D_v f(a) = \lim_{h \to 0} \frac{f(a+vh)-f(a)}{h}$ heet de richtingsafgeleide van v in a.

Ook geldt dat
$$D_v f(a) = \sum_{j=1}^n v_j D_j f(a)$$

6 Gradient vector

De gradient vector is vector $\nabla f(a) = (D_1 f(a), \dots, D_n f(a))$ en $D_v f(a) = \nabla f(a) \cdot v$, met · het inwendige product.

Afgeleide 7

De afgeleide van een functie
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 is $f' = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$ Op een raakvlak te vinden, bereken eerst $F'(a)$. Vind orthogonale rij vectoren door voor elke colum b_i op te

vinden, bereken eerst F'(a). Vind orthogonale rij vectoren door voor elke colum b_i op te $lossen b_i \cdot x = 0.$

Zet deze rij vectoren in een matrix A.

Los nu op A(x - F(a)) = 0

Deze vergelijking is het raakvlak.

Kettingregel 8

De kettingregel heeft de vorm: h'(t) = g'(f(t))f'(t)Dit kan geschreven worden als: $h'(t) = \nabla g(f(t)) \cdot f'(t) = \frac{\partial g}{\partial x_1} \frac{\partial f_1}{\partial t} + \dots + \frac{\partial g}{\partial x_m} \frac{\partial f_m}{\partial t}$

Maar ook als
$$h'(t) = \begin{pmatrix} D_1G_1(F(a)) & \dots & D_nG_1(F(a)) \\ \vdots & \ddots & \vdots \\ D_1G_m(F(a)) & \dots & D_nG_m(F(a)) \end{pmatrix} \begin{pmatrix} D_1F_1(a) & \dots & D_nF_1(a) \\ \vdots & \ddots & \vdots \\ D_1F_m(a) & \dots & D_nF_m(a) \end{pmatrix}$$

9 Middelwaardestelling

Gegeven is de differentieerbare functie $f: \mathbb{R}^n \to \mathbb{R}^m$ Neem een open omgeving $U \subseteq \mathbb{R}^n$. Dan geldt voor $a, b \in U$ dat:

$$f(a) - f(b) = f'(c)(b - a) = \nabla f(c) \cdot (b - a)$$

voor een $c \in L$ met L de lijn van a naar b.

10 Locale maxima en minima

Voor het vinden van een lokaal maxima of minima in een inwendig punt van f, is het voldoende om de vergelijking $\nabla f = 0$ op te lossen.

Voor het vinden van een lokaal maxima of minima in de rand van een functie, moet de methode van lagrange toegepast worden.

Er moet gelden: $f \in C^1$ en g differentieerbaar. Met C^1 de klasse van functies die 1 keer continu differentieerbaar zijn.

Los de vergelijking op:

$$\nabla f(p) = \lambda \nabla g(p)$$

Met g de 'zero set' en $\nabla g \neq 0$. De vergelijking waarvoor de gegeven functie 0 is, en f de afstandsfunctie waarmee het maximum of minimum gezocht kan worden. Bijvoorbeeld $f(x,y) = (x-u)^2 + (y-v)^2$ als afstand tot het punt (u,v).

Hier heet λ de 'lagrange multiplier'.

Als m < n, dan geldt er:

$$\nabla f(p) = \lambda_m \nabla g_1(p) + \dots + \lambda_m \nabla g_m(p)$$

10.1 Tweede afgeleide test

Voor een functie $f: \mathbb{R}^2 \to \mathbb{R}$ die twee keer continu differentieerbaar is, en een kritiek punt p = (a, b) hebben we als determinant van de tweede afgeleide: $\Delta = D_1^2 f(a, b) D_2 f(a, b) - (D_1 D_2 f(a, b))^2$

Hiervoor geldt:

- p is een lokaal minima als $\Delta > 0$ en $D_1^2 f(a, b) > 0$
- p is een lokaal maximum als $\Delta > 0$ en $D_1^2 f(a, b) < 0$
- p is een zadelpunt als $\Delta < 0$ (geen van beide)

11 Stelling van Taylor

11.1 Enkele variabele

$$f(a+h) = \sum_{r=0}^{k} \frac{f^{(r)}(a)}{r!} h^r + \frac{f^{(r)}(\xi)}{(k+1)!} h^{k+1}$$

Voor een $\xi \in (a, a+h)$

Ook geldt als $|f^{(k+1)}(\xi)| \leq M$ (bounded) of als f continu is dat:

$$\lim_{h \to 0} \frac{R_k(h)}{h^k} = 0$$

Neem nu aan dat $f^{(k+1)}$ differentieerbaar is rond a en continu is in a. Neem ook aan dat $f^{(1)}(a) = \cdots = f^{(k-1)}(a) = 0$ maar $f^{(k)}(a) \neq 0$

Dan geldt dat:

- f heeft een lokaal minima in a als k even is en $f^{(k)}(a) > 0$
- f heeft een lokaal maxima in a als k even is en $f^{(k)}(a) < 0$
- \bullet f heeft geen maxima en geen minima in a als k oneven is

11.2 Meerdere variabelen

$$f(a+h) = \sum_{r=0}^{k} \frac{D_h^r f(a)}{r!} + \frac{D_h^{k+1} f(\xi)}{(k+1)!}$$

Met $\xi \in L$ met L de lijn van a naar a+hNeem als kwadratische vorm: $q(h) = \frac{1}{2}f''(a)h^2$

Dan geldt:

- \bullet Een lokaal minimum in a als de kwadratische vorm positief definiet is
- Een lokaal maximum in a als de kwadratische vorm negatief definiet is
- Heeft geen maxima of minima in a als de kwadratische vorm niet definiet is

Een matrix is positief/negatief definiet als alle eigenwaardes positief/negatief zijn.