Supporting Information for

ES&T in the 21^{st} century: A data-driven analysis of research topics, interconnections, and trends in the past 20 years

Jun-Jie Zhu[†], Willow Dressel[‡], Kelee Pacion[‡], and Zhiyong Jason Ren^{†,*}

[†]Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA.

[‡]Princeton University Library, Princeton University, Princeton, NJ 08544, USA

*Corresponding author; email: zjren@princeton.edu

Summary

Number of pages 28

Number of figures 7

Number of tables 12

Number of texts 4

Table S1. Eleven major challenges identified in raw keyword data and their corresponding six-step preprocessing approaches developed in this study.

Challenges	•	Corresponding preprocessing approaches (with inspection applied to all)		
Description	Examples	Corresponding preprocessing approaches (with inspection applied to air)		
Same stem but in different forms	system vs. systems (system); contamination vs. contaminants (contamin)	Standard word stemming . All keywords were lowercased and keywords with more than four letters were stemmed before other steps. Python NLP package <i>nltk</i> ¹ and the "SnowballStemmer" algorithm was used. For example, <i>contamination</i> and <i>contaminants</i> were both normalized to their root <i>contamin</i> . A few words with irregular plural forms were manually corrected, such as bacterium (bacteria), consortium (consortia), and medium (media).		
Prefix or isomer	3,3'-dichlorobiphenyl vs. dichlorobiphenyl; alpha alumina vs. alumina	Excess component removal . <i>ChemListem</i> , ² a deep neural networks-based Python NLP package for chemical named entity recognition (NER), was adopted to pre-select organic chemicals to avoid affecting terms like <i>16s ribosomal-rna</i> and <i>25-degrees-c</i> . A rule was		
Excess ending word	lead concentration vs. lead; copper ion vs. copper	applied to typical isomers (such as 1,1,1-trichloroethan or 2,2',4,4'-tetrabromodiphenyl ether) that contain number, hyphen, and more than three letters while the first element must be number, and number and letters are not successive. Prefix like <i>alpha</i> , <i>beta</i> , and <i>gamma</i> were removed, initial words such as <i>contaminated</i> , <i>environmental</i> , and <i>polluted</i> and ending words such as <i>atom</i> , <i>concentration(s)</i> , <i>emission(s)</i> , <i>formation</i> , <i>ion(s)</i> , <i>level(s)</i> , <i>production</i> , <i>reduction</i> , and <i>removal</i> , were eliminated for all non-single-word keywords.		
Acronyms and abbreviations	PAH vs. polycyclic aromatic hydrocarbon; DBP vs. disinfection byproduct	Acronym identification and replacement . A text-based method was used to detect initial letters-based acronyms. The primary step to identify X -letter acronyms ($X = 2, 3, 4, \text{ or } 5$) was to screen all X -letter candidates with defined stop words, such as air and gas ($X = 3$). Candidates were further selected while each of them should have corresponding, first-letters-matched X -word term(s). Corresponding articles were identified and reviewed to determine the final acronyms based on domain knowledge. An acronym is a combination of initial letters (e.g., PAH) or partial-initial letters (e.g., TCE) of a terminology, typically from three to five letters. The same method without the first-letters-matched step was used to detect the partial initial letters-based acronyms. Table S2 lists 45 acronyms identified in this study with special case explained.		

Different chemical expressions	carbon dioxide vs. CO2; Hg vs. mercury	Chemical recognition and unification . Inorganic chemicals had different expressions (name or formula) in the raw data. Identifying chemical formula using Chemical NER (<i>ChemListem</i>) was determined not effective in this case, instead detecting chemical name was used to screen chemicals (e.g., use <i>carbon dioxide</i> rather than <i>co2</i>) with relatively high frequency. In 377 frequent chemicals, only 22 of them were required to be unified (Table S3). Words that contain any typical formats of roman numerals (e.g., <i>i</i> ,, <i>vii</i> , (<i>i</i>),, (<i>vii</i>)) or charges (+, 2+,	
Chemicals with charges or roman numerals	mercury(ii) versus $Hg(ii)$ versus Hg^{2+}	contain any typical formats of format infinites (e.g., 1,, vii, (i),, (vii)) of charges (+, 2+,, 7+) were identified and replaced correspondingly (Table S4). Specifically, different formats (e.g., chromium(iii), cr(iii), chromium(vi), cr(vi), and cr) of a metal were unified to a single, base name (chromium) only except when the metal (e.g., iron) has different names in different valences (ferrous oxide or ferric oxide) and is not the single element in the chemical.	
Similar terms that may be combined	organic compound and organic chemical were combined, whereas organic contaminant and organic compound were not	Principal term detection and combination. The method involves detecting the same first (several) word(s), which are denoted them as "principal terms". Any frequent keywords had the same principal terms (only the last word varies) were identified if they have the same number of words. For example, <i>acid rain</i> and <i>acid deposition</i> or <i>dissolved humic substance dissolved humic material</i> were combined, respectively. The method was applied to keyword from one- to four-word, leading to 62 groups of synonyms based on domain knowledge (Ta S5). A similar method was applied to the keywords with the same last (several) word(s), suc as <i>carbon nanotube</i> and <i>walled carbon nanotube</i> , leading to another 56 groups of synonyms (Table S6).	
Subset terms that may be combined	in situ bioremediation and in situ remediation were combined		
Terms that have the same meaning	sewage water vs. wastewater; physical chemical vs. physicochemical	Inspection and post-hoc correction . In each of the above five steps, an initial inspection was used to prepare an effective preprocessing method, and a final inspection was taken to	
Other miscellaneous challenges include excess parenthesis (e.g. poly(dimethylsiloxane) vs. polydimethylsiloxane), excess hyphen (wastewater vs. wastewater), irregular space (zero valent iron vs. zerovalent iron), and repeat-word acronym (trinitrotoluene tnt)		determine and combine variants and synonyms. In addition, a post-hoc inspection and correction was conducted to refine the final treated keywords database and improve the reliability of results. This post-hoc step helped to address many issues, such as same-meaning terms, subset terms, and other miscellaneous issues.	
All keywords were capitalized in the raw data which makes the above issues more challenging		Solved with other issues by the above approaches. For example, use chemical name rather than chemical formula in the chemical NER; acronym was not identified based on capital letters.	

Table S2. Acronyms that were identified (frequency ≥ 5) and their full descriptions (punctuations were removed and remain as singular form).

Acronym	Full description	Acronym	Full description
AFM	Atomic force microscopy	PCB	Polychlorinated biphenyl
AHTN	Acetyl hexamethyl tetralin	PCDD*	Polychlorinated dibenzodioxin
ВНТ	Butylated hydroxytoluene	PCDF*	Polychlorinated dibenzofuran
BPA	Bivalve potamocorbula amurensis	PCE	Perchloroethylene
DDT	Dichlorodiphenyltrichloroethane	PCN	Polychlorinated naphthalene
DOC	Dissolved organic carbon	PCR	Polymerase chain reaction
DOM	Dissolved organic matter	PFAS**	Perfluorinated alkylated substance
EPS	Extracellular polymeric substance	PFC	Per/poly fluorinated compound
GAC	Granular activated carbon	PFOA	Perfluorooctanoic acid
GC	Gas chromatography	PFOS	Perfluorooctane sulfonate
GIS	Geographic information system	PM	Particulate matter
HBCD	Hexabromocyclododecane	RDX	Hexahydro trinitro triazine
НСН	Hexachlorocyclohexane	RO	Reverse osmosis
LCA	Life cycle assessment	SCR	Selective catalytic reduction
MBR	Membrane bioreactor	SMP	Soluble microbial product
MEA	Monoethanolamine	SOA	Secondary organic aerosol
NAPL	Nonaqueous phase liquids	TCDD	Tetrachlorodibenzo p dioxin
NDMA	N nitrosodimethylamine	TCE	Trichloroethylene
NF	Nanofiltration	THM	Trihalomethanes
NMR	Nuclear magnetic resonance	TNT	Trinitrotoluene
NOM	Natural organic matter	UV	Ultraviolet
PAH	Polycyclic aromatic hydrocarbon	VOC	Volatile organic compound
PBDE	Polybrominated diphenyl ether		

^{*} PCDD and PCDF were equal frequently studied together, so all the relevant keywords were replaced and combined as *pcdd/pcdfs*.

^{**}PFAS: Perfluorinated alkylated substance; polyfluorinated alkylated substance; perfluoroalkyl substance; or polyfluoroalkyl substance

Table S3. Chemical names that were identified using *ChemListem* (combined frequency \geq 10) and unified with their formulas.

Chemical name	Chemical formula	Chemical name	Chemical formula	
Ammonia	NH ₃	Nitrate radical	NO ₃	
Bromide	Br	Nitric oxide	NO	
Carbon dioxide	CO_2	Nitrogen dioxide	NO ₂	
Carbon monoxide	СО	Nitrogen oxide	NO _x	
Cerium oxide	CeO ₂	Nitrous oxide	N ₂ O	
Cesium	Cs	Palladium	Pd	
Chloride	Cl	Rhodium	Rh	
Hydrogen peroxide	H_2O_2	Selenium	Se	
Hydrogen sulfide	H_2S	Sulfur dioxide	SO_2	
Hydroxyl radical	OH radical	Titanium dioxide	TiO ₂	
Methane	CH ₄	Zinc oxide	ZnO	

Table S4. Identified metals (combined frequency ≥ 10) that had different forms (in raw, low-cased texts and separated by semicolons) and their unified forms.

Different forms	Unified form
al; al(iii)	aluminum
sb; sb(iii)	antimony
as; as(iii); as(v); arsenic(iii); arsenic(v)	arsenic
cd; cd(ii); cd 2+; cadmium(ii)	cadmium
cr; cr(iii); cr(vi); chromium(iii); chromium(vi); hexavalent chromium	chromium
eu; eu(iii); europium(iii)	europium
au; au iii; gold(iii)	gold
pb; pb(ii); lead(ii)	lead
mn; mn(ii); mn(iii); mn(iv); manganese(ii); manganese(iii); manganese(iv)	manganese
hg; hg(ii); hg ii; hg2+; mercury(ii); inorganic mercury; elemental mercury	mercury
np(v); neptunium(v)	neptunium
ni; ni(ii)	nickel
pu; pu(iv); pu(v); plutonium(iv)	plutonium
ag; ag i	silver
tc; tc(vii)	technetium
u(iv); u(vi); u vi; uranium(iv); uranium(vi)	uranium
zn; zn(ii); zinc(ii)	zinc
fe; fe(ii); fe(iii); iron(iii); fe ii; iron(ii); ferrous iron; ferric iron	iron
fe(ii); fe ii; iron(ii); ferrous iron	ferrous*
fe(iii); iron(iii); ferric iron	ferric*
cu; cu(ii); cu ii; cu2+; copper(ii)	copper
cu(ii); cu ii; cu2+; copper(ii)	cupric*

^{*}Only converted to this form if it is part of a binary chemical form, such as fe(ii) oxide

Table S5. Keywords (frequency ≥ 10) the same first (several) word(s) identified based on the principal term method and their final replaced term (bold). Keywords may be listed as their singular forms while the actual text replacement also included their plural forms

No.	Keywords
1	acid deposition; acid rain
2	advanced oxidation; advanced oxidation process
3	aerobic biodegradation; aerobic biotransformation
4	anaerobic biodegradation; anaerobic degradation; anaerobic digestion
5	aquatic ecosystem; aquatic environment; aquatic system
6	aromatic compound; aromatic hydrocarbon
7	atmospheric oxidation; atmospheric photooxidation
8	chemical analysis; chemical characteristics; chemical characterization
9	chlorophyll; chlorophyll a; chlorophyll alpha
10	climate; climate change
11	competitive adsorption; competitive sorption
12	contaminated aquifer; contaminated groundwater
13	cryptosporidium; cryptosporidium parvum; cryptosporidium parvum oocysts
14	dissolution kinetic; dissolution rate
15	dissolved humic material; dissolved humic substance; humic substance
16	dissolved organic compound; dissolved organic carbon
17	endocrine disrupting compound; endocrine disrupting chemical; endocrine disruption; endocrine disruptor
18	energy; energy consumption; energy use
19	environmental contaminant; environmental pollutant
20	fecal contamination; fecal pollution
21	fluidized bed; fluidized bed reactor
22	food chain; food web
23	green alga; green algae
24	greenhouse gas; greenhouse gas emission
25	geographic information system; geographical information system
26	human serum; human serum albumin
27	in situ bioremediation; in situ degradation; in situ hybridization; in situ remediation
28	ion exchange; ion exchange membrane
29	land application; land use; land use change
30	life cycle; life cycle analysis; life cycle assessment
31	marine; marine environment; marine ecosystem; marine water

32	messenger RNA; messenger RNA expression
33	microbial degradation; microbial oxidation; microbial transformation
34	mytilus edulis; mytilus edulis l.
35	nano; nanoscale; nanosized
36	nanofiltration; nanofiltration membrane; NF membrane
37	organic acid; organic carbon; organic chemical;
38	organic compound; organic material; organic matter
39	organic contaminant; organic micropollutant; organic pollution
40	organochlorine; organochlorine compound; organochlorine contaminant
41	PCB; PCB congener
42	perfluoroalkyl; perfluoroalkyl compound; perfluoroalkyl contaminant; perfluoroalkyl substance; polyfluoroalkyl chemical; polyfluorinated alkyl substance; polyfluoroalkyl compound; polyfluoroalkyl substance; PFAS
43	petroleum; petroleum hydrocarbon
44	photocatalytic activity; photocatalytic degradation; photocatalytic oxidation
45	photochemical oxidation; photochemical transformation
46	photo fenton; photo fenton reaction
47	quantitative analysis; quantitative determination
48	reduced sulfur; reduced sulfur groups
49	rate coefficient; rate constant
50	RO; RO membrane; reverse osmosis; reverse osmosis membrane
51	seasonal trend; seasonal variation
52	solid phase microextraction; solid phase extraction
53	spatial distribution; spatial pattern; spatial trend; spatial variability; spatial variation
54	spectroscopic characterization; spectroscopic evidence; spectroscopic properties
55	steroid estrogens; steroid hormones
56	surface chemistry; surface properties
57	temporal trend; temporal variability
58	thermal decomposition; thermal degradation
59	treatment process; treatment system; treatment work
60	ultrafiltration; ultrafiltration membrane; UF membrane
61	UV; UV light
62	volatile organic compound; volatile organic contaminant

Table S6. Keywords (frequency ≥ 10) with the same last (several) word(s) identified based on the principal term method and their final replaced term (bold). Keywords may be listed as their singular forms while the actual text replacement also included their plural forms

No.	Keywords	No.	Keywords	
1	activated carbon; granular activated carbon	26	children; preschool children; young children	
2	aerosol; ambient aerosol; atmospheric aerosol	27	China; north China; south China	
3	algae; blue green algae; green algae	28	coated silver nanoparticle; silver nanoparticle	
4	alkane; n-alkane	29	desalination; seawater desalination; water desalination	
5	ambient air; atmospheric air; outdoor air	30	dolphins tursiops truncatus; tursiops truncatus	
6	anaerobic bacteria; strictly anaerobic bacteria	31	estuary; river estuary	
7	Asia; east Asia	32	exposure; human exposure	
8	Atlantic; north Atlantic	33	ferrihydrite; line ferrihydrite	
9	Atlantic salmon; salmon	34	fish; marine fish	
10	bears ursus maritimus; ursus maritimus	35	groundwater; shallow groundwater	
11	biodiversity; diversity; microbial diversity	36	gulls larus argentatus; larus argentatus	
12	biofilm reactor; membrane biofilm reactor	37	health; human health	
13	biofilm; microbial biofilm	38	in vitro; vitro	
14	biofuel cell; fuel cell; microbial fuel cell	39	in vivo; vivo	
15	biomass; microbial biomass	40	*Lake Michigan; southern Lake Michigan	
16	black carbon; environmental black carbon	41	m-xylene; p-xylene; xylene	
17	blue mussel; mussel	42	minnow pimephales promelas; pimephales promelas	
18	California; southern California	43	municipal wastewater; wastewater	
19	carbon sequestration; CO_2 sequestration	44	nanomaterial; engineered nanomaterial	
20	carp cyprinus carpio; cyprinus carpio	45	nanoparticle; engineered nanoparticle	
21	capture; carbon capture; dioxide capture; CO2 capture	46	nitrosamine; n-nitrosamine	
22	chain PFAA; PFAA	47	nonylphenol; p-nonylphenol	
23	chain PFCA; PFCA	48	northern Sweden; Sweden	
24	chemical ion; ion	49	Ontario; southern Ontario	
25	chemistry; environmental chemistry	50	temporal trend; time trend	
51	airborne particulate matter; ambient particulate matter; a	tmosph	eric particulate matter; particulate matter	
52	carbon nanotube; multiwalled carbon nanotube; walled	carbon	nanotube	
53	liquid chromatography; performance liquid chromatog	raphy		
54	magnetic resonance spectroscopy; nuclear magnetic resonance spectroscopy			
55	midwestern USA; northeastern USA; southeastern USA; USA; western USA			
56	rainbow trout; trout oncorhynchus mykiss; oncorhynchus mykiss; salvelinus namaycush; trout salvelinus namaycush			

^{*}Lake Erie, Lake Michigan, Lake Ontario, and Lake Superior were combined with "great lakes"

Text S1. Stemming

Stemming is a crude process to cut off the last several characters.³ Stemming is a better way in our case, and all keywords were lowercased and keywords that were more than four letters were stemmed before other preprocessing steps. Python NLP package *nltk*¹ was used to perform the stemming and the "SnowballStemmer" algorithm was used. Specific rules used in stemming can be complex, here we briefly introduce several basic rules.^{4,5} Porter's algorithm is the most popular algorithm to perform the stemming of English. Some typical rules:

- $sses \rightarrow ss; ies \rightarrow i; ational \rightarrow ate; tional \rightarrow tion$
- Weight of word sensitive rules
- (m > 1) EMENT: replacement \rightarrow replac; cement \rightarrow cement

Given that a word is in a form of $[C](VC)^m[V]$, where C and V are consonant and vowel, respectively; m is the *measures* of a word or part of a word. The rules for removing a suffix, (condition) $S1 \rightarrow S2$, are usually based on m. This means that S1 will be replaced by S2 if the word ends with S1 and the stem before S1 meets the condition. In the above example, S1 is 'EMENT' and S2 is null, which maps *replacement* to *replac*, but not *cement* to c, because *replac* is a word part with m = 2. There are many other specific rules and information associated with the Porter's algorithm.⁵ Snowball was a revised and improved version of the Porter's algorithm when the inventor, Martin Porter, realized that the original algorithm could give incorrect results in many researchers' published works.⁶

Text S2. Selection of trending up topics

Majority of trending up keywords were determined based on moderate values of the trend factor (> 0.4) and $F_{current}$ (> 4). The two criteria helped to ensure a general growing popularity in selected keywords when comparing their normalized frequencies during the current period (2010-2019) with the past period (2000-2009). To guarantee a steady popularity, an additional criterion ($F_{2015-2019}/F_{2010-2014} > 90\%$) was applied to exclude keywords with a much lower frequency in the most recent years. The proposed trending analyzing method simplified the selection processes, but the break point may cause an "edge effect". In other words, it is possible to miss a potential trending up keywords if its frequency rapidly increases over the years just before 2009 but slowly increases subsequently. Although most of this type of keywords can be still detected using the above approach, some of them have a trend factor of between 0.2 and 0.4, below the defined threshold. To address this issue, we considered two additional criteria to screen the candidates that did not meet the original trend factor (> 0.4):

- a. The normalized frequency in the current period (2010-2019) should be slightly higher $(0.1 < \text{trend factor}_{2007-2009}^{2010-2019} < 0.25)$ than the normalized frequency during 2007-2009 (years just before 2010);
- b. The normalized frequency in the current period (2010-2019) should be significantly higher (trend $factor_{2000-2006}^{2010-2019} > 0.4$) than the normalized frequency during 2000-2006. It is also worthwhile to mention that the above approaches helped to determine the most trending up topics, while there are many other less popular, trending up topics.

Text S3. Rule-based classification method

The title, abstract, and keywords of a paper were treated and combined to develop the corpus; keywords were preprocessed as described previously; the abstract was also tokenized by n-grams (n = 1, 2, 3, and 4), lowercased, stop-worded, and stemmed. To accurately classify the papers, specific terms, denoted as *domain surrogates*, were carefully and rigorously selected to label every individual domain. The selected surrogates should be representative. For example, compared to *disinfection*, *disinfection byproduct* is a better surrogate to label a water-specific study. Selection of surrogates followed an iterative procedure comprised of the following steps:

- 1) Initial, typical surrogates were brainstormed and prepared;
- 2) Because the keywords *water* and *air* are less representative, more specific, frequent terms that included "water" or "air", such as *drinking water* or *air quality*, were identified;
- 3) New surrogates were identified from frequent terms of pre-classified papers based on pre-identified surrogates;
- 4) A manual inspection was used to serve as an additional expansion on the list of surrogates based on unlabeled papers;
- 5) Steps 3 and 4 were iteratively conducted until a minimum document retrieval rate (80%) was achieved and no more than five new surrogates were identified.
- 6) A post-hoc validation was taken to improve the classification accuracy. Fifty sample papers were randomly selected for review at each iteration, and inappropriate surrogates were removed or corrected afterward. A sample classification accuracy (correct number/sample size) was calculated and the validation was iteratively conducted until 90% accuracy was achieved.

Figure S1. Temporal and geospatial variations of articles and reviews published in ES&T from 2000 to 2019. (a) Actual number of papers; (b) percentage of valid papers.

Table S7. Top 100 frequent keywords (lowercased, stemmed form) and their frequencies

No.	Keyword	Freq.	No.	Keyword	Freq.	No.	Keyword	Freq.
1	water	3106	35	speciat	960	69	natural organic matt	603
2	sorption	2581	36	chemic	925	70	bioaccumul	598
3	soil	2383	37	surfac	916	71	energi	592
4	emiss	2187	38	air	912	72	ozon	590
5	oxid	1969	39	fate	901	73	mass spectroscopi	569
6	surface wat	1852	40	bacteria	888	74	urban	555
7	sediment	1704	41	identif	871	75	organic pollut	553
8	exposur	1703	42	china	871	76	implic	553
9	organic compound	1639	43	drinking wat	848	77	copper	551
10	remov	1587	44	transform	809	78	analysi	550
11	pah	1560	45	matter	790	79	growth	543
12	model	1560	46	atmospher	787	80	catalyst	534
13	degrad	1503	47	metal	784	81	nitrat	529
14	mechan	1449	48	pbde	784	82	nitrogen	529
15	kinet	1447	49	product	752	83	air pollut	528
16	wastewat	1438	50	accumul	745	84	e coli	527
17	toxic	1417	51	biodegrad	732	85	life cycle assess	511
18	impact	1414	52	aerosol	711	86	spectroscopi	510
19	reduct	1384	53	hydrocarbon	698	87	arsenic	509
20	pcb	1374	54	perform	690	88	persistent organic pollut	508
21	contamin	1368	55	plant	682	89	co2	490
22	transport	1351	56	chemistri	663	90	sampl	486
23	particulate matt	1335	57	deposit	648	91	aromatic compound	480
24	carbon	1288	58	mercuri	646	92	h2o2	475
25	system	1253	59	fish	646	93	distribut	474
26	particl	1180	60	concentr	643	94	fraction	465
27	humic subst	1127	61	behavior	636	95	black carbon	465
28	iron	1094	62	nanoparticl	635	96	climat	464
29	usa	1052	63	temperatur	632	97	pharmaceut	461
30	acid	1039	64	bioavail	628	98	great lak	456
31	groundwat	1019	65	complex	626	99	ion	455
32	pollut	1012	66	dissolved organic carbon	616	100	miner	449
33	aqueous solut	980	67	wastewater treatment process	607			
34	environ	968	68	heavy met	604			

Table S8. Summary of annual top ten keywords from 2000 to 2019

		diffically of affiliate			
Top#	2000	2001	2002	2003	2004
1	soil	water	sorption	water	soil
2	water	soil	water	soil	sorption
3	sorption	sorption	soil	sorption	water
4	sediment	sediment	organic compound	pah	pcb
5	organic compound	organic compound	pah	sediment	surface wat
6	pah	emiss	oxid	pcb	sediment
7	pcb	pah	surface wat	surface wat	pah
8	surface wat	surface wat	sediment	remov	organic compound
9	kinet	oxid	humic subst	kinet	degrad
10	oxid	pcb	emiss	emiss	kinet
Top#	2005	2006	2007	2008	2009
1	water	water	water	water	water
2	sorption	sorption	sorption	sorption	sorption
3	soil	soil	soil	soil	emiss
4	pah	surface wat	oxid	oxid	soil
5	organic compound	sediment	surface wat	emiss	oxid
6	surface wat	contamin	pah	organic compound	sediment
7	sediment	pcb	sediment	sediment	exposur
8	pcb	pah	emiss	contamin	organic compound
9	oxid	oxid	degrad	reduct	model
10	model	remov	contamin	degrad	remov
Top#	2010	2011	2012	2013	2014
1	water	water	water	water	water
2	sorption	sorption	sorption	sorption	emiss
3	soil	soil	emiss	emiss	impact
4	emiss	emiss	soil	soil	exposur
5	oxid	exposur	exposur	exposur	sorption
6	surface wat	oxid	toxic	impact	soil
7	sediment	sediment	oxid	oxid	oxid
8	degrad	toxic	surface wat	toxic	toxic
9	transport	surface wat	mechan	surface wat	surface wat
10	pcb	contamin	impact	kinet	carbon
Top#	2015	2016	2017	2018	2019
1	emiss	water	water	water	water
2	water	sorption	emiss	emiss	exposur
3	impact	exposur	exposur	exposur	oxid
4	oxid	emiss	wastewat	impact	emiss
5	exposur	impact	surface wat	sorption	remov
6	wastewat	oxid	soil	wastewat	impact
7	sorption	soil	particulate matt	soil	degrad
8	model	toxic	toxic	oxid	mechan
9	surface wat	wastewat	remov	surface wat	sorption
10	soil	model	impact	remov	particulate matt

Table S9. Summary of the 79 couples of high frequent (≥ 200) co-occurring keywords

Keyword 1	Keyword 2	Freq.	Keyword 1	Keyword 2	Freq
sorption	soil	538	degrad	biodegrad	259
water	sorption	467	water	degrad	254
emiss	particulate matt	434	pah	aromatic compound	250
sorption	remov	426	sorption	mechan	249
pcb	pah	409	mercuri	methylmercuri	247
soil	sediment	369	water	organic compound	238
pcb	pbde	345	usa	emiss	237
particl	particulate matt	342	pah	organic compound	236
pbde	brominated flame retard	334	sorption	iron	232
soil	organic compound	325	particl	emiss	224
pah	hydrocarbon	321	sorption	reduct	223
pcb	persistent organic pollut	317	sorption	pah	222
sorption	oxid	315	wastewat	surface wat	222
oxid	mechan	312	sorption	aqueous solut	221
reduct	iron	312	water	aqueous solut	220
water	soil	309	sorption	kinet	219
impact	emiss	308	speciat	soil	219
water	remov	307	sediment	pcb	218
sorption	organic compound	306	water	kinet	218
oxid	kinet	305	water	acid	217
sorption	sediment	303	water	groundwat	217
water	sediment	303	pcb	biphenyl	217
air pollut	particulate matt	300	emiss	china	214
surface wat	sediment	298	kinet	degrad	214
sediment	pah	298	humic subst	dissolved organic carbon	213
water	oxid	296	soil	humic subst	213
sorption	humic subst	292	soil	degrad	212
oxid	degrad	288	sorption	activated carbon	21
mechan	kinet	287	humic subst	acid	209
aerosol	particulate matt	286	pcb	contamin	208
remov	oxid	284	water	contamin	207
reduct	oxid	282	speciat	sorption	205
soil	pah	281	soil	bioavail	205
oxid	iron	280	particl	aerosol	203
humic subst	natural organic matt	278	sediment	organic compound	203
wastewat	remov	276	transport	soil	203
hydrocarbon	aromatic compound	274	reduct	kinet	202
surfac	sorption	270	water	mechan	202
matter	humic subst	266	remov	reduct	201
toxic	exposur	266			

Figure S2. Co-occurrence of the top 300 frequent keywords (stemmed form) based on the circos plot. The keywords (nodes) are ordered by their overall frequency. Edge width and color are used to indicate the co-occurrence between keywords. High quality figures and other related materials can also be found or downloaded via the author's webpage⁷.

Figure S3. Temporal trend of the top 50 frequent keywords based on normalized annual frequency. Higher frequencies (≥ 30) are labeled.

Figure S4. Temporal trend of ten other "general" keywords that have been trending up over the time based on annual normalized frequency. Higher frequencies (≥ 10) are labeled; keywords are ordered by the cumulative frequency.

Figure S5. Temporal trend of keywords that have been trending up over the time based on annual normalized frequency. Higher frequencies (≥ 10) are labeled; keywords are ordered by the trend factor.

Figure S6. Normalized cumulative frequencies of the top 1500 frequent keywords (bubbles) in the earlier (2000-2014) and most recent (2015-2019) periods. Trend factor value is shown by color; keywords rendered by the red color are more likely to be emerging research topics. The size of bubble reflects the geospatial popularity of the keyword.

Table S10. Major domain surrogates (#influenced documents \geq 5) identified during the rule-based classification method based on ES&T data. Different forms or abbreviations of surrogates might be used.

Domain	Domain surrogates
Air	acid deposition; acid rain; aerosol; air emission; air mass; air pollution; air quality; air sample; airborne; ambient air; atmospheric; co2 capture; co2 emission; clean air; coal fired power plant; downwind; dry deposition; dust sample; emission control; emission factor; emission inventory; emission rate; emission reduction; emissions inventory; emissions reduction; exhaust; flue gas; fly ash; fossil fuel combustion; indoor; light duty vehicle; long range transport; marine boundary layer; meteorological; multimedia model; nitrogen dioxide emission; nitrogen oxide emission; nitrous oxide emission; particulate matter; plume model; reactive gaseous; semivolatile organic compound; smog; source apportionment; sulfur dioxide; ultrafine particle; vehicle emission; volatile organic compound; water vapor
Soil	acid volatile sulfide; clay; contaminated land; contaminated sediment; contaminated site; contaminated soil; enrichment factor; glacier; multimedia model; peat; plant root; plant uptake; porewater; porous heterogeneous medium; remobilization; rhizosphere; root cell; sediment; sedimentary; snowpack; soil; subsurface; superfund
Solid waste	agricultural waste; animal waste; bottom ash; composting; electronic waste; food waste; hazardous waste; landfill; livestock waste; mine waste; mining waste; municipal solid waste; nuclear waste; organic waste; plastic waste; solid waste; waste incinerator; waste management; waste material; waste pcb; waste repository; wastes disposal
Water	acid mine drainage; aquaculture; aquatic ecosystem; aquatic environment; aquatic life; aquatic organism; aquatic system; aquatic toxicity; aqueous stream; brackish water; coastal water; contaminated water; creek; cryptosporidium; deepwater; deionized water; desalination; disinfection byproduct; drinking water; estuary; eutrophication; flood; freshwater; groundwater; gulf of mexico; hydrology; injection well; irrigation water; lagoon; lake; marine environment; marine food web; marine mammal; marine water; multimedia model; mussel; natural water; phytoplankton; polluted water; potable water; rainwater; receiving water; river; riverine; sea; seawater; softening; source water; stormwater; surface water; tap water; trout; water act; water consumption; water disinfection; water dispersion; water distribution; water environment; water footprint; water management; water pollution; water purification; water resource; water sample; water source; water supply; water suspension; water treatment; water use; water velocity; watershed; waterway; wetland
Wastewater	activated sludge; anammox; biosolid; granular sludge; membrane bioreactor; mine water; sequencing batch reactor; sewage; sewer; waste stream; wastewater; wastewater treatment process

Additional notes:

- Many initial surrogates were not included because there are more influential surrogates can be used to label the same papers. For example, "phosphorus recovery" was not used because "wastewater" covered all of the relevant papers.
- Glacier and snowpack are grouped to the soil domain in this study.
- "sediment" belonged to the soil domain when it appeared together with water-related surrogates.
- Hazardous wastes (e.g., electronic waste, nuclear waste) were also included in the solid waste domain.

Table S11. List of the 31 classified domain groups (A: air; S: soil; SW: solid waste; W: water; WW: wastewater) and their numbers of papers, highest, average, and standard deviation (SD) of the normalized citation (NC) counts (#/year). Groups that have more than 200 papers are shown in grey shaded cells.

Domain type	Specific domain(s)	#Papers	Highest NC	Average NC	SD NC
Mono-	A	4454	79	5.7	6.0
	S	2481	120	5.5	6.3
	SW	298	37	5.3	5.0
	W	4458	126	6.2	7.7
	WW	1006	244	8.7	12.3
Bi-	A-S	632	57	5.4	5.8
	A-SW	229	45	4.4	4.3
	A-W	796	41	5.4	4.7
	A-WW	109	65	5.7	7.3
	S-SW	149	40	4.9	5.8
	S-W	2445	103	5.6	6.1
	SW-W	76	35	5.4	5.4
	S-WW	167	33	7.1	6.2
	SW-WW	58	34	7.4	7.1
	W-WW	1213	309	9.0	12.4
Tri-	A-S-SW	65	42	6.1	6.4
	A-SW-W	25	18	6.4	4.6
	A-S-WW	15	31	6.7	7.3
	A-SW-WW	17	12	5.2	3.1
	A-S-W	653	96	5.3	6.5
	A-W-WW	98	62	8.6	9.3
	S-SW-W	91	27	5.8	5.5
	S-SW-WW	22	54	9.2	11.0
	S-W-WW	371	156	9.3	15.1
	SW-W-WW	35	116	10.0	19.4
Quad-	A-S-SW-W	25	39	7.5	8.5
	A-S-SW-WW	5	9	4.2	3.2
	A-S-W-WW	53	197	10.1	26.6
	A-SW-W-WW	3	9	5.0	2.8
	S-SW-W-WW	17	49	13.0	13.7
	All domains	5	13	4.4	4.5

Table S12. Summary of the top ten keywords and their frequencies for the 12 major groups (#papers \geq 200, groups are ordered by number of papers).

Top#	water	air	soil	soil-water
1	water, 765	emiss, 1325	soil, 1144	sediment, 690
2	surface wat, 579	particulate matt, 1106	sorption, 574	soil, 530
3	drinking wat, 494	particl, 600	sediment, 435	water, 430
4	toxic, 390	aerosol, 561	water, 327	surface wat, 425
5	oxid, 364	air, 464	organic compound, 313	groundwat, 399
6	groundwat, 363	air pollut, 457	pah, 281	sorption, 354
7	kinet, 361	atmospher, 430	humic subst, 255	transport, 254
8	sorption, 338	pah, 425	bioavail, 225	iron, 226
9	remov, 333	oxid, 392	degrad, 206	organic compound, 224
10	exposur, 308	secondary organic aerosol, 388	transport, 200	contamin, 220
Top#	water-wastewater	wastewater	air-water	air-soil-water
1	wastewat, 613	wastewat, 448	surface wat, 174	surface wat, 215
2	surface wat, 264	wwtp, 238	water, 126	sediment, 160
3	wwtp, 218	remov, 236	atmospher, 107	soil, 128
4	drinking wat, 205	activated sludg, 142	pcb, 102	water, 91
5	remov, 197	degrad, 131	emiss, 98	pcb, 90
6	pharmaceut, 194	bacteria, 116	air, 98	pah, 81
7	water, 155	oxid, 114	usa, 77	deposit, 79
8	aquatic system, 125	water, 110	pah, 74	transport, 77
9	fate, 117	system, 92	persistent organic pollut, 71	contamin, 74
10	degrad, 109	sorption, 88	particulate matt, 65	organic compound, 69
Top#	air-soil	soil-water-wastewater	solid waste	air-solid waste
1	soil, 255	wastewat, 150	wast, 61	emiss, 74
2	emiss, 113	sediment, 97	msw, 40	fly ash, 67
3	pah, 100	surface wat, 92	china, 35	pcdd/pcdfs, 63
4	air, 90	soil, 73	electronic wast, 30	combust, 61
5	pcb, 89	fate, 72	pbde, 29	dibenzo p dioxin, 51
6	atmospher, 82	sorption, 54	system, 25	china, 38
7	particulate matt, 72	wwtp, 48	sorption, 24	msw, 37
8	deposit, 69	remov, 45	manag, 24	inciner, 34
9	sediment, 59	pharmaceut, 44	energi, 23	pcb, 29
10	model, 59	degrad, 41	product, 23	waste inciner, 28

Figure S7. Co-occurrence of the top 30 frequent keywords (stemmed form) for each of the major 12 groups based on the circos plot. The keywords (nodes) are ordered by their overall frequency. Edge width and color are used to indicate the co-occurrence between keywords.

Text S4. Library science analyses

In library science, traditional methods for analyzing literature include bibliometric analysis such as those cited in the introduction, systematic reviews which synthesize the results of several similar studies, meta-analysis which uses statistical methods to analyze results of similar studies, and analysis tools provided by databases such as Web of Science. A search in Web of Science for the journal *Environmental Science & Technology* from 2000-2019 provides analysis of fields such as categories, publication years, document types, authors, organizations, countries of origin, and more. Web of Science's automated analysis has limitations on selecting specific document types, so the analysis includes more documents than were used in this study. Web of Science Categories are included in the analysis instead of keywords. For the journal Environmental Science & Technology only two categories, "Engineering Environment" and "Environmental Studies", are applied across all articles published between 2000-2019. This analysis was not able to reveal emerging topics or research gaps. Similarly, the Web of Science automated analysis of the publication over time only provides data on the number of articles published as opposed to the analysis of keywords over time performed in this study. Web of Science limits the number of countries analyzed to 25. The numbers are slightly different because of the inability to select specific document types, but the rankings provided by Web of Science match those in this study. Scopus indexing of Environmental Science & Technology for the years 2000-2019 seems to be incomplete. Analysis provided by Scopus for a similar dataset provides the same level of granularity as compared to Web of Science. In Scopus it is possible to view and limit based on keywords but no advanced analysis of keywords is available. In fact the top keyword available in Scopus is "Article" with 16,076 results. It is clear that the text mining approach presented in this study has provided a more in depth understanding of emerging topics and research gaps than searching directly in the database would provide.

Environmental Science & Technology is one journal among a whole ecosystem of interdisciplinary research. In addition to other peer reviewed journals related to the environment, research results are also disseminated through technical reports, government documents such as U.S. Geological Survey sources, and state government agencies. Like the literature cited in the introduction, the analysis on Environmental Science & Technology in this study provides insight into a slice of environmental research. Other text mining studies vary widely in scope and breadth, but few are related to environmental studies. Rabiei et al. used text mining on search queries performed on a database in Iran to analyze search behavior. Other studies examine text mining as a research tool, but using research from another discipline. In a text mining study on 15 million articles comparing the results of using full text versus abstracts, Westgaard et al. found that "text-mining of full text articles consistently outperforms using abstracts only". 12

References

- (1) NLTK is a natural language toolkit based on Python programs to work with human language data. https://www.nltk.org.
- (2) Corbett, P.; Boyle, J. Chemlistem: Chemical Named Entity Recognition Using Recurrent Neural Networks. *J Cheminform* **2018**, *10* (1), 59. https://doi.org/10.1186/s13321-018-0313-8.
- (3) Manning, C.; Raghavan, P.; Schütze, H. The term vocabulary and postings lists. In Introduction to Information Retrieval (pp. 18-44). Cambridge: Cambridge University Press. **2008**. https://doi.org/10.1017/CBO9780511809071.003.
- (4) CS 276 / LING 286: Information Retrieval and Web Search. Course materials of Information retrieval at the Stanford University can be free retrieved from http://web.stanford.edu/class/cs276/.
- (5) Porter, M. The Porter stemming algorithm. **2006**. http://snowball.tartarus.org/algorithms/porter/stemmer.html.
- (6) Porter, M. Snowball: A language for stemming algorithms. **2001**. https://perun.pmf.uns.ac.rs/radovanovic/dmsem/cd/install/PorterStemmer/snowball/doc/introduction.html.
- (7) High quality figures and other related materials may also be found or downloaded via the author's webpage. https://junjiezhublog.wordpress.com/tm/.
- (8) Clarivate. Web of Science Core Collection. Results analysis of SO=(ENVIRONMENTAL SCIENCE TECHNOLOGY) AND PY=2000-2019. https://wcs.webofknowledge.com/RA/analyze.do?product=WOS&SID=5AbFDjnXgCO2d6Toez W&field=TASCA JCRCategories JCRCategories en&yearSort=false.

- (9) Elsevier. Scopus. Results analysis of ISSN(0013936x) AND ISSN(15205851) AND LIMIT-TO(PUBYEAR, 2000-2019) https://www.scopus.com/.
- (10) Wild, E.; Havener, W. M. Online Bibliographic Sources in Hydrology. *Science & Technology Libraries*. **2001**, *21*, 63-86. https://doi.org/10.1300/J122v21n03_05.
- (11) Rabiei, M.; Hosseini-Motlagh, S. M.; Haeri, A. Using Text Mining Techniques for Identifying Research Gaps and Priorities: a Case Study of the Environmental Science in Iran. *Scientometrics*. **2017**, *110*, 815-842. https://link.springer.com/article/10.1007/s11192-016-2195-8.
- (12) Westergaard, D.; Stærfeldt, H.H.; Tønsberg, C.; Jensen, L. J.; Brunak, S. A. Comprehensive and Quantitative Comparison of Text-mining in 15 Million Full-text Articules Versus their Corresponding Abstracts. *PLOS Computational Biology*. **2018**. https://doi.org/10.137/journal.pcbi.1005962.