Projekt: Identifikation eines Duffing Systems mit einem Neuronalen Netz

Maximilian Schermer, Matrikelnummer: 03664650, Maximilian Sperr, Matrikelnummer: 03658841, Giulio Evangelisti, Matrikelnummer: 03659301

December 11, 2018

1 Duffing System

System beschreiben, Simulationsergebnisse des Duffing Systems zeigen.

2 Identifikationsmodell

Als Identifikationsmodell dient das General Dynamic Neuronal Network (GDNN) welches aus drei versteckten Schichten mit zweimal zwei und einmal einem Neuron (2-2-1) besteht. In der Eingangs sowie in der Ausgangsschicht befindet sich ein Neuron und die verschiedenen Schichten sind miteinander über Tapped Delay Lines gekoppelt. Die Tapped Delay Lines sind wiefolgt aufgebaut:

Schicht 1	Schicht 2	Schicht 3
$DI^{1,1} = \{1, 2, 3\}$	$DL^{2,1} = \{0\}$	$DL^{3,2} = \{0\}$
$DL^{1,1} = \{1, 2, 3\}$	$DL^{2,2} = \{1, 2, 3\}$	$DL^{3,3} = \{1, 2, 3\}$
$DL^{1,2} = \{1, 2, 3\}$	$DL^{2,3} = \{1, 2, 3\}$	
$DL^{1,3} = \{1, 2, 3\}$		

Die Identifikation findet mittels eines NARX Modells statt, d.h. der Systemausgang und das Anregungssignal sind die Eingänge für das neuronale Netz. Das GDNN wurde wegen seiner hohen Approximationsfähigkeit ausgewählt.

3 Systemanregung

Anregungssignal beschrieben, Grund für Chirp angeben, Frequenzabhängigkeit des Systems.

4 Identifikationsergebnisse

Identifikationsergebnis, Validierung Modell

5 Anpassung des Identifikationsmodells

Modellstruktur und Anregungssignal ändern. Zu statischen Identifikationsmodell wechseln.