Chapter 2: Probability

Meike Niederhausen 2023-09-25

Table of contents

- Overview
- What do you know about probabilities?
- Probabilities of equally likely events
 - Probabilities of equally likely events (1/2)
 - Probabilities of equally likely events (2/2)
 - A probability is a function...
- Probability Axioms
 - Probability Axioms
- Some probability properties
 - Some probability properties
 - Proposition 1 Proof
 - Proposition 2 Proof
 - Proposition 3 Proof
- Partitions
 - Partitions
- Venn Diagram Probabilities
 - Venn Diagram Probabilities

Overview

What do you know about probabilities?

Probabilities of equally likely events

Probabilities of equally likely events (1/2)

Example 1

Suppose you have a regular well-shuffled deck of cards. What's the probability of drawing:

- 1. any heart
- 2. the queen of hearts
- 3. any queen

Solution:

- 1. any heart = 13/52 = 1/4
- 2. the queen of hearts = 1/52
- 3. any queen = 4/52 = 1/13

Probabilities of equally likely events (2/2)

If S is a finite sample space, with equally likely outcomes, then

$$\mathbb{P}(A) = \frac{|A|}{|S|}.$$

A probability is a function...

P(A) is a function with

- input: event A from the sample space S, $(A \subseteq S)$
- output: a number between 0 and 1 (inclusive)

$$\mathbb{P}(A): S \rightarrow [0,1]$$

A function that follows some specific rules though! See Probability Axioms on next slide.

Probability Axioms

Probability Axioms

Axiom 1

For every event $A, 0 \le \mathbb{P}(A) \le 1$.

Axiom 2

For the sample space S, $\mathbb{P}(S) = 1$.

Axiom 3

If $A_1, A_2, A_3, ...$, is a collection of **disjoint** events, then

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i}).$$

Some probability properties

Some probability properties

Using the Axioms, we can prove all other probability properties!

Proposition 1

For any event A, $\mathbb{P}(A) = 1 - \mathbb{P}(A^C)$

 $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$

Proposition 2

 $\mathbb{P}(\emptyset) = 0$

Proposition 3

If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

Proposition 5

Proposition 4

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(B$$

$$\mathbb{P}(\mathbb{C}) - \mathbb{P}(\mathbb{A} \cap \mathbb{B}) - \mathbb{P}(\mathbb{A} \cap \mathbb{C}) -$$

$$\mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

Proposition 1 Proof

Proposition 1

For any event A, $P(A) = 1 - P(A^C)$

Proposition 1 Proof

Since A and A^C are disjoint, we know from Axiom 3 that $\mathbb{P}(A \cup A^C) = \mathbb{P}(A) + \mathbb{P}(A^C)$. However, $S = A \cup A^C$, and by Axiom 2, $\mathbb{P}(S) = 1$, implying $\mathbb{P}(A \cup A^C) = \mathbb{P}(S) = 1$.

Thus, $P(A) + P(A^{C}) = 1$, or $P(A) = 1 - P(A^{C})$

Proposition 2 Proof

Proposition 2

$$\mathbb{P}(\emptyset) = 0$$

Proposition 2 Proof (different from book)

We know $\emptyset = S^C$.

Thus by Prop 1,

$$\mathbb{P}(\emptyset) = \mathbb{P}(S^{C}) = 1 - \mathbb{P}(S) = 1 - 1 = 0.$$

Proposition 3 Proof

Proposition 3

If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

Proposition 3 Proof

Create a partition! Make a Venn diagram.

$$B = A \cup (B \cap A^{C})$$

$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \cap A^{C})$$

$$\mathbb{P}(B) \geq \mathbb{P}(A),$$

since $\mathbb{P}(B \cap A^C) \ge 0$.

Partitions

Partitions

Definition: Partition

A set of events $\{A_i\}_{i=1}^n$ create a partition of A, if

- the A_i's are disjoint (mutually exclusive) and
- $\bullet \bigcup_{i=1}^{n} A_i = A$

Example 2

- If $A \subset B$, then $\{A, B \cap A^C\}$ is a partition of B.
- If $S = \bigcup_{i=1}^{n} A_i$, then the A_i 's are a partition of the sample space.

Creating partitions is sometimes used to help calculate probabilities, since by Axiom 3 we can add the probabilities of disjoint events.

Venn Diagram Probabilities

Venn Diagram Probabilities

Example 3

If a subject has an

- 80% chance of taking their medication this week,
- 70% chance of taking their medication *next* week, and
- 10% chance of not taking their medication either week,

then find the probability of them taking their medication exactly one of the two weeks.

Hint: Draw a Venn diagram labelling each of the parts to find the probability.

Answer: $\mathbb{P}(A \cap B) = 0.6$.