Student Name:	
Student Number:	

Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Question	Points	Score
1	10	
2	20	
3	10	
4	40	
5	5	
6	15	
7	10	
8	10	
Total:	120	

Graduate students must answer the GR question. The EC question is for extra credit. Undergraduate students may answer the GR or the EC question for extra-credit. Total possible points are 110/100 for undergraduate and 120/110 for graduate students.

10 Pts	1.	True	/False.	Answer	the	following	true	/false	auestions	
TO T 00	т.	II ac	, i disc.	TILLDWCI	ULIC	10110 W 1115	or ac	/ raise	questions	•

- (a) _____ Regularization helps the network avoid overfitting on training data.
- (b) ____ The formula for softmax loss function is $\frac{e^{-s_k}}{\sum_i e^{-s_i}}$
- (c) ____ In stochastic gradient descent the loss is calculated over all training data.
- (d) $\underline{\hspace{1cm}}$ 1 × 1 convolutional kernels allow the data to be interpolated across channels from the previous layer.
- (e) ____ The receptive field of 2 successive 3×3 convolutional kernels is equal to that of one 5×5 kernel.

[20 Pts]	2.	What is the decision boundary implemented by a neural network with N inputs, 1 output, an no hidden layers?
		Explain with equation(s).

[10 Pts] 3. Prove the following about activation function derivatives.

- (a) $\sigma'(x) = \sigma(x)(1 \sigma(x))$
- (b) $\tanh'(x) = 1 \tanh^2(x)$

4. A 2-layer perceptron is designed to classify objects with 3-dimensional features into two classes.

[5 Pts] (a) Write the equation of this perceptron only in terms of matrix multiplications and ReLU functions. What are the parameters of each matrix multiplications $\hat{\mathbf{x}}, \hat{\mathbf{w}}_1, \hat{\mathbf{w}}_2$ in terms of $\mathbf{x}, \mathbf{w_1}, \mathbf{w_2}, \mathbf{b_1}$, and $\mathbf{b_2}$?

_			
İ			

- [5 Pts] (b) Draw the computational graph of this neural network. Hint: Use only matrix multiplications. Use Concatenation nodes. Use ReLU nodes.
- [2 Pts] (c) On the computational graph write down the equation for each node and label each edge with its dimension.
- [8 Pts] (d) Perform the forward pass on this graph for the input given in the figure –i.e., $\mathbf{x} = [1, 0, -1]^T$.

Ω	D_{4-1}
14U	r ts

(e) Perform the backward pass of the backpropagation on this graph. Hint: The derivative of ReLU function for an input x_i is 1 if $x_i \ge 0$, otherwise it is 0. For example, if $\mathbf{x} = [-1, 3, 2, -3]^T$ then ReLU'(\mathbf{x}) = $[0, 1, 1, 0]^T$.

[5 Pts] 5. Explain three advantages of using convolutional kernels in deep neural networks over fully connected layers.

[15 Pts] 6.	Consider a CNN whose inputs are RGB images of size 512×512 . The network has t Answer the following questions about this network:	wo convolutional layers.
	(a) If the first layer has 12 convolutional filters, the spatial dimensions of the first 504×504 and no padding is applied, what are the sizes of the first layer's kernels	
		(a)
	(b) If a max-pooling sizes of 2×2 and stride 2 is applied in the first layer, what are the pooled feature maps?	e sizes of the first layer's
		(b)
	(c) What is the depth of the pooled feature maps?	
		(c)
	(d) If the second layer contains 6 kernels of size 3×3 and no padding is applied, what layer feature maps?	is the size of the second
		(d)
	(e) If the second layer also contains a 2×2 with stride 2 pooling layer, what are the vectors that result from vectorization (unwrapping) of the last layer of the CNN?	final dimensions of the
		(e)

[10 **GR**] 7. Specify the structure, weights, and bias(es) of the smallest neural network capable of performing the minimum distance classification on two tightly grouped and linearly separable classes with means m_1 and m_2 in N-dimensions

Hint: The decision boundary equation for minimum distance classification is:

$$d_{12}(\mathbf{x}) = d_1(\mathbf{x}) - d_2(\mathbf{x}) \tag{1}$$

where:

$$d_i(\mathbf{x}) = \mathbf{m}_i^T \mathbf{x} - \frac{1}{2} \mathbf{m}_i^T \mathbf{m}_i \tag{2}$$

- [10 **EC**] 8. Suppose that the input to a convolutional kernel is an image with dimensions $N \times N$. The size of the kernel is $F \times F$, and stride is S, with padding of P pixels applied on both sides of the image.
 - (a) Prove the size of the output image is $M \times M$, where:

$$M = \frac{N+2P-F}{S} + 1 \tag{3}$$

(b) Prove that the amount of padding to keep the output image size the same as the input image size is:

$$P = \frac{(S-1)N + F - S}{2} \tag{4}$$