

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V, I_D =65A $R_{DS(ON)}$ =8.5m Ω , typical@ V_{GS} =10V $R_{DS(ON)}$ =10.5m Ω , typical@ V_{GS} =4.5V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N085-T2	VST10N085	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	65	А
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	48	А
Pulsed Drain Current	I _{DM}	260	А
Maximum Power Dissipation	P _D	90	W
Derating factor		0.6	W/°C
Single pulse avalanche energy (Note 4)	E _{AS}	288	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance, Junction-to-Case Rejc 1.67 C/W		R ₀ JC	1.67	°C/W
--	--	-------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}, I_{D}=250\mu A$	1.1	1.7	2.5	V
Drain-Source On-State Resistance	P	V_{GS} =10V, I_D =32.5A	-	8.5	9.5	mΩ
Dialii-Source Off-State Resistance	R _{DS(ON)}	V_{GS} =4.5V, I_{D} =32.5A	-	10.5	12.0	
Forward Transconductance	g FS	V_{DS} =5 V , I_{D} =32.5 A		50	-	S
Dynamic Characteristics (Note3)						
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	2950	-	pF
Output Capacitance	Coss	V _{DS} =50V,V _{GS} =0V, F=1.0MHz	-	300	-	pF
Reverse Transfer Capacitance	C _{rss}	r – r.oivii iz	-	11.5	-	pF
Switching Characteristics (Note 3)						
Turn-on Delay Time	t _{d(on)}		-	13	-	nS
Turn-on Rise Time	t _r	V_{DD} =50V, I_{D} =32.5A	-	10	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.6 Ω	-	30	-	nS
Turn-Off Fall Time	t _f		-	8	-	nS
Total Gate Charge	Qg	V _{DS} =50V,I _D =32.5A,	-	54	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = 50V, I_D = 32.5A,$ $V_{GS} = 10V$	-	10	-	nC
Gate-Drain Charge	Q _{gd}	VGS-10V	-	14	-	nC
Drain-Source Diode Characteristics			•		<u>'</u>	
Diode Forward Voltage (Note 2)	V _{SD}	V _{GS} =0V,I _S =32.5A	-	-	1.2	V
Diode Forward Current	Is		-	-	65	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$, $I_F = 32.5A$	-	55	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	98	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 3. Guaranteed by design, not subject to production
- 4. EAS condition : Tj=25 $^{\circ}\text{C}$,V $_{DD}$ =50 V ,V $_{G}$ =10 V ,L=0.25 mH ,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Gate Charge

Figure 5 Source- Drain Diode Forward

Vsd Source-Drain Voltage (V)

Vds Drain-Source Voltage (V) Figure 6 Capacitance vs Vds

100 (W) 80 60 60 40 200 150 200

Figure 7 Power De-rating

T_J-Junction Temperature (°C) **Figure 9 Current De-rating**

Figure 8 Safe Operation Area

Figure 10 Rdson-Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance