	`
Réseaux de neurones IFT 780	
Segmentation et localisation Par Pierre-Marc Jodoin, Antoine Théberge	
	,

Segmentation sémantique

Application: identification+localisation des structures vues par satellite (« remote sensing »)

Fig. 7: Left: Original satellite image. Right: Semantic segmentation of roads, buildings and vegetation.

Ng, V., & Hofmann, D. (2018, July). Scalable feature extraction with aerial and satellite imagery. In Proceedings of the 17 Python in Science Conference (SCIPY 2018). Austin TX. USA (np. 9-15).

7

Segmentation sémantique

Application : imagerie médicale, identification+localisation des tumeurs et régions du cerveau

Hou, X., Yang, D., Li, D., Liu, M., Zhou, Y., & Shi, M. (2020). A new simple brain segmentation method for extracerebra

8

Segmentation sémantique

 ${\bf Comment\ mesurer\ la\ performance\ de\ la\ segmentation\ ?}$

Cible – Vérité terrain

Prédiction

Segmentation sémantique Jusqu'à présent, on a vu comment classifier des images.

Jusqu'a present, on a vu comment classifier des images.

Idée: segmentation = classifier des sous-parties (patches) d'image

14

Segmentation sémantique

Jusqu'à présent, on a vu comment classifier des images. Idée: segmentation = classifier des sous-parties (*patches*) d'image

Exemple d'un réseau à convolution pour des patches RGB 31x31 (Image tirée de l'article)

Wang Y, Luo Z., Jodoin P-M (2017) Interactive Deep Learning Method for Segmenting Moving Objects Pattern Recognition Letters, 96, p.66-75

Plusieurs inconvénients

- Très long tant en entraînement qu'en test
 Entraînement

Si 10,000 images 640x480 (300 000 pixels/image) = 3 milliards de patches!

1 epoch = 3 milliards de propagations avant et de rétro-propagations

2. Prédiction basée sur une information locale (une patch)

16

17

Segmentation sémantique

Un réseau comme celui de la page précédente n'est jamais utilisé en pratique. Voici un exemple:

Réponse : le "receptive field" est trop petit!

Pour quoi la prédiction est-elle bruitée ? Pour quoi autant de trous dans la prédiction ?

 $Wang\ Y, Luo\ Z., Jodoin\ P-M\ (2017)\ Interactive\ Deep\ Learning\ Method\ for\ Segmenting\ Moving\ Objects\ Pattern\ Recognition\ Letters, 96, p.66-75$

22

23

Note: taille du receptive field

$$r_0 = \sum_{l=1}^L \left((k_l-1) \prod_{i=1}^{l-1} s_i
ight) + 1$$

r = receptive field

k = kernel

s = stride

l = layers du réseau

https://distill.pub/2019/computing-receptive-fields

Pour **augmenter la taille** des cartes d'activation il faut une opération de "**upsampling**"

Deux types d'approches

- Méthodes sans paramètres => <u>unpooling</u>
- Méthode avec paramètres => convolution transposée

41

Convo]	lution	transi	nosée
COHVO	lulloll	uans	posee

L'idée ici est moins intuitive que pour du unpooling.

Commençons par un exemple 1D...

E-Net: le "combo" ultime

(E pour Efficient) Table 1: ENet architecture. Output sizes are given for an example input of 512 × 512.

Name	Type	Output size
initial		$16 \times 256 \times 256$
bottleneck1.0	downsampling	$64 \times 128 \times 128$
4× bottleneck1.x		$64 \times 128 \times 128$
bottleneck2.0	downsampling	$128 \times 64 \times 64$
bottleneck2.1		$128 \times 64 \times 64$
bottleneck2.2	dilated 2	$128 \times 64 \times 64$
bottleneck2.3	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.4	dilated 4	$128 \times 64 \times 64$
bottleneck2.5		$128 \times 64 \times 64$
bottleneck2.6	dilated 8	$128 \times 64 \times 64$
bottleneck2.7	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.8	dilated 16	$128 \times 64 \times 64$
Repeat section 2	, without bottlened	k2.0
bottleneck4.0	upsampling	$64 \times 128 \times 128$
bottleneck4.1		$64 \times 128 \times 128$
bottleneck4.2		$64 \times 128 \times 128$
bottleneck5.0	upsampling	$16 \times 256 \times 256$
bottleneck5.1		$16 \times 256 \times 256$
fullconv		$C \times 512 \times 512$

Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep neural network architecture for real-time semantic segmentation, arXiv: 1606.02147, 2016.

74

E-Net

(E pour Efficient)

Table 2: Performance comparison.

	NVIDIA TX1				NVIDIA Titan X							
Model	480×320		640×360		1280×720		640×360		1280×720		1920×1080	
	ms	fps	ms	fps	ms	fps	ms	fps	ms	fps	ms	fps
SegNet	757	1.3	1251	0.8			69	14.6	289	3.5	637	1.6
ENet	47	21.1	69	14.6	262	3.8	7	135.4	21	46.8	46	21.6

Table 3: Hardware requirements. FLOPs are estimated for an input of $3\times640\times360$.

	GFLOPs	Parameters	Model size (fp16)
SegNet	286.03	29.46M	56.2 MB
ENet	3.83	0.37M	0.7 MB

Très efficace!!! 300 fois moins de calculs pour des résultats similaires à SegNet

Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep neural network architecture for real-time semantic segmentation, arXiv: 1606.02147, 2016.

75

DeepLab V1,V2,V3, PSPNet, MSCADC, etc.

Plusieurs méthodes utilisent à la fois des convolutions dilatées et du « upsampling ».

H.Zhao, J.Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing Network, CVPR 2017

L. Chen, G. Papandreou, I.Kokkinos, K.Murphy, A.L. Yuille Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs, ICLR 2015

F. Yu, V. Koltun, Multi-Scale Context Aggregation by Dilated Convolution, ICLR 2016

L. Chen, G. Papandreou, I.Kokkinos, K.Murphy, A.L. Yuille
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, PAMI 2016

DÉTECTION D'OBJETS

Intersection over Union Aussi appelé "Jaccard Index"

Comment comparer les régions ?

Intersection

|Union|

- 0.5 est "correct"
- 0.7 est bon
- 0.9 est excellent

119

Intersection over Union Aussi appelé "Jaccard Index"

Comment comparer les régions ?

|Intersection|

|Union|

- 0.5 est "correct" 0.7 est bon

120

"Non-Max Suppression"

Comment éviter les duplicatas (2 boîtes sur un même objet)?

- 1. Sélectionner la boîte avec le plus haut score
- 2. Éliminer les boîtes avec un IoU > ϵ (p.e. 0.7) ayant un score moins élevé
- Répéter jusqu'à ce qu'aucune boîte ne puisse être éliminée

"Non-Max Suppression"

Comment éviter les duplicatas (2 boîtes sur un même objet)?

- Sélectionner la boîte avec le plus haut score
- 2. Éliminer les boîtes avec un IoU > ϵ (p.e. 0.7) ayant un score moins élevé
- Répéter jusqu'à ce qu'aucune boîte ne puisse être éliminée

122

"Non-Max Suppression"

Comment éviter les duplicatas (2 boîtes sur un même objet)?

- Sélectionner la boîte avec le plus haut score
- 2. Éliminer les boîtes avec un IoU > ϵ (p.e. 0.7) ayant un score moins élevé
- Répéter jusqu'à ce qu'aucune boîte ne puisse être éliminée

123

"Non-Max Suppression"

Comment éviter les duplicatas (2 boîtes sur un même objet)?

- Sélectionner la boîte avec le plus haut score
- 2. Éliminer les boîtes avec un IoU > ε (p.e. 0.7) ayant un score moins élevé
- Répéter jusqu'à ce qu'aucune boîte ne puisse être éliminée

YOLOv2-3

v2:

- Batch norm
- Images de plus haute résolution
- Anchors
- et autres

v3:

- Réseau plus profond
- Détection à plusieurs résolutions
- Plus de boîtes par élément de grille

J. Redmon, S Divvala, R Girshick, A Farhad "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2017
J. Redmon, A. Farhadi "YOL.09000: Better, Faster, Stronger", CVPR 2018
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.

170

YOLOv2-v3

Yolo v2 et James Bond

https://www.youtube.com/watch?v=VOC3huqHrss

https://pjreddie.com (Site web du premier auteur)

J. Redmon, S Divvala, R Girshick, A Farhad "You Only Look Once: Unified, Real-Time Object Detection", CVFR 2017
J. Redmon, A Farhadi "YOLO9000: Better, Faster, Stronger", CVFR 2018
J. Redmon, & Farhadi, A. (2018), Voloviš-An incremental improvement. arXiv preprint arXiv:1804.02767.

171

174

 $SSD \ (\text{single shot detector}) \quad \text{\tiny [Liu\ et\ al.\ 2016]}$

Tout comme YOLO:

- Pas de « region proposal method » pour SSD
- Prédiction d'un nombre fixe de boîtes englobantes.
 - ➤ 98 pour YOLO
 - **> 8732 pour SSD300**
 - > 24564 pour SSD512 (!)
- Prédit 25 éléments : [x,y,w,h,confiance,c1,..., c20]
- Élimine les boîtes avec une confiance faible

W Liu, D Anguelov, D Erhan, C Szegedy, S Reed, C-Y Fu, AC. Berg "SSD: Single Shot MultiBox Detector", ECCV 2016

Method	mAP	FPS
Faster R-CNN (VGG16)	73.2	7
Fast YOLO	52.7	155
YOLO (VGG16)	66.4	21
SSD300	74.3	46
SSD512	76.8	19
SSD300	74.3	59
SSD512	76.8	22
nean average precision		1

Mask R-CNN

=
CNN localization + CNN segmentation

