

第二部分动态规划

汇报人: 蔡新宇

2021.7.8

2021WDS暑期讨论班

- 概述
- 策略评估
- 策略迭代
- 价值迭代
- 总结

动态规划

动态规划是运筹学的一个分支,是求解决策过程最优化的过程。

使用动态规划解决的问题包含以下性质:

- 最优子结构
- 重叠子问题

MDP满足以上性质:

- 贝尔曼方程将问题递归分解
- 价值函数保存和重用问题的解

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_{\pi}(s'))$$

两种规划问题

• 预测:

□□输入: MDP $\langle S, A, P, R, \gamma \rangle$ 和策略 π ,

输出: *V*_π□□

• 控制:

输入: MDP (S, A, P, R, γ)

输出: V_* (最优价值函数)和 π_* (最优策略)

- 概述
- 策略评估
- 策略迭代
- 价值迭代
- ■总结

策略评估

输入: MDP (S, A, P, R, γ) 和策略 π,

输出:
$$V_{\pi}$$
 $v_{\pi}=(1-\gamma P^{\pi})^{-1}R^{\pi}$

算法:从任意一个状态价值函数V开始,依据给定的策略 π ,结合贝尔曼期望方程、

状态转移概率、和奖励同步迭代更新V,直至V收敛。

$$V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_{\pi}$$

贝尔曼期望方程:
$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right]$$

使用上一个迭代周期k内的后续状态价值来计算当前当前迭代周期k+1内某状态s的价值。

网格世界的策略评估

MDP $\langle S, A, P, R, \gamma \rangle$:

状态空间S: s1-s14为非终止状态、灰色为终止状态

行为空间A: 向东西南北移动四个行为, 进入终止状态终止

转移概率P: 任何试图离开方格世界的动作将100%停留在原状态,其余条件下将

100%地转移到动作指向的状态;

即时奖励R:均为-1

衰减系数γ: 1

策略π: 在任何一个非终止状态下有均等的

几率采取任一移动方向这个行为

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1$ on all transitions

网格世界的策略评估

$$V_1^{(21)} = \frac{1}{4}[(-1+0)*4] = -1$$

$$V_1^{(22)} = \frac{1}{4}[(-1+0)*4] = -1$$

$$V_2^{(21)} = \frac{1}{4}[(-1-1)*3 + (-1+0)] = -1$$

$$V_2^{(22)} = \frac{1}{4}[(-1-1)*4] = -2$$

(a) k=0

(b) k=1

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

(c) k=2

$$V_2^{(22)} = \frac{1}{4}[(-1-1)*4] = -2$$

$$V_3^{(21)} = \frac{1}{4}[(-1-2.0) * 2 + (-1-1.7) + (-1+0)]$$

= -2.425

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	0.0

$$V_3^{(22)} = \frac{1}{4}[(-1-1.7)*2 + (-1-2)*2] = -2.85$$

$$(d) k=3$$

(e)
$$k=10$$

(f)
$$k=\infty$$

Iterative policy evaluation

```
Input \pi, the policy to be evaluated
Initialize an array V(s) = 0, for all s \in S^+
Repeat
   \Delta \leftarrow 0
    For each s \in S:
        v \leftarrow V(s)
        V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx v_{\pi}
```


- 概述
- 策略评估
- 策略迭代
- 价值迭代
- 总结

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	←	←	\longleftrightarrow
1	Ţ	\longleftrightarrow	ţ
1	\leftrightarrow	₽	ţ
\longleftrightarrow	\rightarrow	\rightarrow	

给定一个策略π

策略评估

$$v_{\pi}(s) = E[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

策略改进 基于 ν_{π} 通过贪心算法找到新的策略 $\pi^{t}=$ greedy(ν_{π})

在格子问题中, $\pi=\pi^t$

$$\pi_0 \overset{E}{\Rightarrow} V_{\pi_0} \overset{I}{\Rightarrow} \pi_1 \overset{E}{\Rightarrow} V_{\pi_1} \overset{I}{\Rightarrow} \pi_2 \overset{E}{\Rightarrow} \dots \overset{I}{\Rightarrow} \pi_* \overset{E}{\Rightarrow} V_*$$

东南大学计算机学院万维网数据科学实验室

策略改进证明

- 给定一个确定的策略 $\pi: a = \pi(s)$
- 贪心策略在同样的状态s下得到新的行为: $a' = \pi'(s)$ $\pi'(s) = \underset{a \in A}{argmax} q_{\pi}(s, a)$
- 假如仅在下一步采取该贪心策略产生的行为,而后续步骤仍采用原策略的行为,那么 $q_{\pi}(s,\pi'(s)) = \max_{a \in A} q_{\pi}(s,a) \ge q_{\pi}(s,\pi(s)) = v_{\pi}(s)$
- 如果对后续每个状态s均使用贪心策略产生的行为,那么有: $v_{\pi'} \ge v_{\pi}(s)$, 推导如下:

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'} \left[R_{t+1} + \underline{\gamma} v_{\pi}(S_{t+1}) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \underline{\gamma} q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \underline{\gamma} R_{t+2} + \underline{\gamma}^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \underline{\gamma} R_{t+2} + \dots \mid S_{t} = s \right] = v_{\pi'}(s)$$

策略改进证明

■ 如果一直迭代到状态价值函数不再改善,即:

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

- 此时,满足了bellman最优方程: $v_*(s) = \max_a q_*(s,a)$ $v_\pi = \max_{a \in A} q_\pi(s,a)$
- 因此,对于所有的状态s,满足: $v_{\pi}(s) = v_{*}(s)$
- 故此时的策略π为最优策略

算法

Policy iteration (using iterative policy evaluation)

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$

2. Policy Evaluation

Repeat

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s', r | s, \pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

网格世界

 \mathcal{V}_k for the Random Policy

Greedy Policy w.r.t. v_k

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 3

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	←	\leftrightarrow	\leftrightarrow
1	\leftrightarrow	\leftrightarrow	\leftrightarrow
+	\leftrightarrow	\leftrightarrow	ţ
\Rightarrow	$ \Longleftrightarrow $	\rightarrow	

k =	=]	0	

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	←	←	\leftrightarrow
Ť	₽,	\leftrightarrow	1
Ť	\leftrightarrow	₽	ţ
$\overline{\longleftrightarrow}$	\rightarrow	\rightarrow	

	←	←	Ţ
1	Ļ	_	1
1	₽	₽	1
₽	\rightarrow	\rightarrow	

策略迭代的改进

- 设置一些条件提前终止迭代 例如,设置ε,当价值函数的更新小于ε时就停止迭代。
- 直接设置迭代次数 例如,在网格世界中,设置迭代次数k=3
- 每迭代一次便更新一次策略 即价值迭代

- 概述
- 策略评估
- 策略迭代
- 价值迭代
- 总结

DataScience@Web

问题: 寻找最优策略π

解决方案: 从初始状态开始同步迭代计算到最终收敛

贝尔曼最优方程: $v_{k+1}(s) \doteq \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$ $= \max_{a} \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big],$

Policy Evaluation

Value Iteration

初始化随机值函数V(s) 对每个状态, 计算Q(s,a) 因为贝尔曼最优方程终止 条件为V(s)=Max Q(s,a), 故用Q(s,a)的最大值更新 值函数 V(s)最优?

东南大学计算机学院万维网数据科学实验室

Problem

V₁

 V_2

V₃

0	-1	- 2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

 V_4

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

 V_5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	- 5
-3	-4	-5	-5

V₆

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

V₇

20

Value iteration

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

Repeat

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, $\pi \approx \pi_*$, such that

$$\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$V_1 \rightarrow V_2 \rightarrow$	•••	\rightarrow	V_{π}
-----------------------------------	-----	---------------	-----------

$$\pi_0 \overset{E}{\Rightarrow} V_{\pi_0} \overset{I}{\Rightarrow} \pi_1 \overset{E}{\Rightarrow} V_{\pi_1} \overset{I}{\Rightarrow} \dots \overset{I}{\Rightarrow} \pi_* \overset{E}{\Rightarrow} V_*$$

$$V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_*$$

Problem	Bellman Equation	Algorithm	
Dradiction	Pollman Expectation Equation	Iterative	
Frediction	Prediction Bellman Expectation Equation		
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration	
Control	Bellman Optimality Equation	Value Iteration	

- 概述
- 策略评估
- 策略迭代
- 价值迭代
- 总结

总结

- 策略评估是给定策略下值函数的迭代计算,解决预测问题。
- 策略迭代和值迭代是将策略评估和策略提升结合的算法,解决控制问题。
- 在给定MDP的所有先验知识的情况下,策略迭代和价值迭代均能求解出最优策略和价值函数。
- 收敛性的证明: 压缩映射定理[1]
- 局限性: 一般用于所有情况都能预先知道的问题、问题规模大会发生维度灾难。

https://zhuanlan.zhihu.com/p/39279611 [1]

谢谢