北京工业大学 2018-2019 学年第二学期期末 线性代数(工) 课程试卷(A)

	考试方式:	闭卷	考试时间: 2019年6月28日			
	学号	姓名	成绩			
注:	本试卷共8大题	蔥, 满分 100 分.				

得分登记(由阅卷教师填写)

题 号	<u>(2-25)</u>		3	四	五.	六	七	八
得 分		전에 전						

得分

1. 若 3×2 型实矩阵 $A_{3\times 2}$ 和 2×3 型实矩阵 $B_{2\times 3}$ 满足 $AB = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 & 0 \\ 3 & 7 & -2 \end{pmatrix}$,则

BX=0的基础解系中含有解向量的个数是____1

3.
$$A = \begin{pmatrix} 1 & a & a^2 \\ 1 & -1 & 1 \\ 1 & 3 & 9 \end{pmatrix}$$
. 若 $AX = 0$ 有非零解,且 $a > 0$,则 $a = \underline{} 3$

- 4. A 是 2 阶实方阵. 若齐次线性方程组 (A+E)X=0和 (A-2E)X=0均有非零解,则行列式 |A*-A-1+A-E|=_______
- 5. 如果 A 是 2 阶实方阵; α_1,α_2 是线性无关的 2 维实列向量,且满足 $A\alpha_1=3\alpha_2$, $A\alpha_3=\alpha_1+2\alpha_2$. 则 A 的负特征值是

6.
$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \\ -1 & -1 & -1 & -1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{pmatrix}$$
. $A^{-1} =$ (A是正交矩阵)

7.
$$A = \begin{pmatrix} a+1 & 1 & 1 \\ -2 & 2a-6 & 2 \\ -2 & -9 & a-1 \end{pmatrix}$$
. 使得齐次线性方程组 $AX = 0$ 有非零解的 a 的所

有的值之积=_____

8. 如果
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
和 $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ 相似,且 $a \neq 0$,则 $a = \underline{-1}$

9. 如果3阶实方阵 $A=(\alpha_1\alpha_2\alpha_3)$ 的列向量组 $\{\alpha_1,\alpha_2,\alpha_3\}$ 与线性无关向量组

$$\{\beta_1,\beta_2\}$$
 具有关系
$$\begin{cases} \alpha_1=2\beta_1+\beta_2\\ \alpha_2=-\beta_1+3\beta_2 \end{cases} , 则齐次线性方程组 $AX=0$ 的一般解中
$$\alpha_3=\beta_1-\beta_2 \end{cases}$$$$

自由未知量的个数是_____

10. 若3阶实方阵 A是可逆的,则矩阵 A^TA 的正特征值的个数是_____

第一列除以-2

海分 三 (10分).用初等变换的方法,解方程
$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 $X = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & -1 & 0 \end{pmatrix}$.

得分 四 (10分).
$$a$$
 取何值时,线性方程组
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 1 \\ 2x_1 + x_2 - x_3 + 3x_4 = -2 \end{cases}$$
 有解?
$$5x_1 + 3x_2 - 3x_3 + 5x_4 = a$$

有解时,写出其通解.

得分

五(12分). 己知 $A = \begin{pmatrix} 1 & 6 & 6 \\ 6 & 1 & 6 \\ 6 & 6 & 1 \end{pmatrix}$. 求一个可逆矩阵P,使得 $P^{-1}AP$

是对角矩阵: 并求出这一对角矩阵.

得分

六(12分). 给定列向量组

$$\alpha_1 = (0,0-1,1)^T, \alpha_2 = (-1,0,0,2)^T,$$

 $\alpha_3 = (-1,1,-2,3)^T, \alpha_4 = (-3,1,-3,8)^T, \alpha_5 = (-6,3,-7,16)$

- 1 求该向量组的秩:
- 2 求该向量组的一个极大线性无关组:
- 3 把其余向量用问题 2 中求出的极大线性无关组线性表出.

得分

七 (8 分). 若 λ_1 , λ_2 是实方阵 A 的两个不同的特征值; α_1 , α_2 是属于 λ_1 的 线性无关的特征向量; β_1 , β_2 是属于 λ_2 的线性无关的特征向量, 则 α_1 , α_2 , β_1 , β_2 是线性无关的.

得 分

八 (8分). 若实方阵 $A \neq aE, bE$,且(A-aE)(A-bE)=0,则 a,b 都是 A 的特征值.