Bidirectional Multi-Hop Communication via Two Relays Using Nested Voronoi Codes

Christian Häger[†] Aydin Sezgin[‡] Alexandre Graell i Amat[†]

[†]Department of Signals and Systems Communication Systems Group Chalmers University of Technology Gothenburg, Sweden

[‡] Chair of Communication Systems Ruhr University Bochum Bochum, Germany

{christian.haeger, alexandre.graell}@chalmers.se, aydin@cs.rub.de

March 14, 2012

OUTLINE

- 1. Basic Principles
- 2. One Relay (Separated Two-Way Relay Channel)
- 3. Two Relays (Separated Two-Way Two-Relay Channel)
- 4. Conclusion

• Three nodes / devices

- Three nodes / devices
- ullet One message from a to b

- Three nodes / devices
- ullet One message from a to b
- ullet One message from b to a

•0000

- Three nodes / devices
- ullet One message from a to b
- ullet One message from b to a
- No direct link

•0000

Message Exchange via a Relay

- Three nodes / devices
- ullet One message from a to b
- ullet One message from b to a
- No direct link

Start with toy problems:

- Three nodes / devices
- One message from a to b
- ullet One message from b to a
- No direct link

Basic Principles •0000

Start with toy problems:

No noise at the nodes

Message Exchange via a Relay

- Three nodes / devices
- ullet One message from a to b
- ullet One message from b to a
- No direct link

Start with toy problems:

- No noise at the nodes
- Binary input and output alphabets

Message Exchange via a Relay

- Three nodes / devices
- One message from a to b
- ullet One message from b to a
- No direct link

Start with toy problems:

- No noise at the nodes
- Binary input and output alphabets
- Half-duplex constraint (i.e. a node either listens or talks but not both at the same time)

ROUTING

ROUTING

ROUTING

ROUTING

ROUTING

ROUTING

ROUTING

Exchanging 2 bits x_1 and x_2 with a routing approach:

sum rate: 2 bits in 4 transmissions

 x_2

NETWORK CODING

NETWORK CODING

NETWORK CODING

The relay node r can reach both a and b. Broadcasting saves one transmission.

sum rate: 2 bits in 3 transmissions

Physical-Layer Network Coding

Physical-Layer Network Coding

The relay node doesn't need to know the individual bits.

sum rate: 2 bits in 2 transmissions (for ideal channel)

OBVIOUS QUESTION

How does it work for more realistic channel models?

GAUSSIAN CHANNEL MODEL

Gaussian Channel Model

GAUSSIAN CHANNEL MODEL

Gaussian Channel Model

Additive Gaussian noise:

$$Y_a = X_r + Z_a$$

$$Y_r = X_a + X_b + Z_r$$

$$Y_b = X_r + Z_b$$

Successive channel uses:

$$\boldsymbol{X}_a = (X_{a,1}, \dots, X_{a,n})$$
, etc.

Additive Gaussian noise:

$$Y_a = X_r + Z_a$$

$$Y_r = X_a + X_b + Z_r$$

$$Y_b = X_r + Z_b$$

Successive channel uses:

$$\boldsymbol{X}_a = (X_{a,1}, \dots, X_{a,n})$$
, etc.

Additive Gaussian noise:

$$Y_a = X_r + Z_a$$

$$Y_r = X_a + X_b + Z_r$$

$$Y_b = X_r + Z_b$$

Successive channel uses:

$$X_a = (X_{a,1}, \dots, X_{a,n})$$
, etc.

• Power constraint:
$$P_a$$
, P_r , P_b

Additive Gaussian noise:

$$Y_a = X_r + Z_a$$

$$Y_r = X_a + X_b + Z_r$$

$$Y_b = X_r + Z_b$$

Successive channel uses:

$$X_a = (X_{a,1}, \dots, X_{a,n})$$
, etc.

Full-duplex nodes

Power constraint: P_a, P_r, P_b

• Noise: zero mean, variance σ_a^2 , σ_r^2 , σ_b^2

Additive Gaussian noise:

$$Y_a = X_r + Z_a$$

$$Y_r = X_a + X_b + Z_r$$

$$Y_b = X_r + Z_b$$

Successive channel uses:

$$X_a = (X_{a,1}, \dots, X_{a,n})$$
, etc.

Full-duplex nodes

• Power constraint: P_a , P_r , P_b

• Noise: zero mean, variance σ_a^2 , σ_r^2 , σ_b^2

• Error probability: $p_e = \Pr(\{\hat{W}_a \neq W_a\} \cup \{\hat{W}_b \neq W_b\})$

Additive Gaussian noise:

$$Y_a = X_r + Z_a$$

$$Y_r = X_a + X_b + Z_r$$

$$Y_b = X_r + Z_b$$

Successive channel uses:

$$\boldsymbol{X}_a = (X_{a,1}, \dots, X_{a,n})$$
, etc.

Full-duplex nodes

• Power constraint: P_a , P_r , P_b

• Noise: zero mean, variance σ_a^2 , σ_r^2 , σ_b^2

• Error probability: $p_e = \Pr(\{\hat{W}_a \neq W_a\} \cup \{\hat{W}_b \neq W_b\})$

• Uplink: a and b transmit to r.

Additive Gaussian noise:

$$Y_a = X_r + Z_a$$

$$Y_r = X_a + X_b + Z_r$$

$$Y_b = X_r + Z_b$$

Successive channel uses:

$$X_a = (X_{a,1}, \dots, X_{a,n})$$
, etc.

- Full-duplex nodes
- Power constraint: P_a , P_r , P_b
- Noise: zero mean, variance σ_a^2 , σ_r^2 , σ_b^2
- Error probability: $p_e = \Pr(\{\hat{W}_a \neq W_a\} \cup \{\hat{W}_b \neq W_b\})$
- Uplink: a and b transmit to r.
- Downlink: r broadcasts to a and b.

GAUSSIAN CHANNEL MODEL

Additive Gaussian noise:

$$Y_a = X_r + Z_a$$

$$Y_r = X_a + X_b + Z_r$$

$$Y_b = X_r + Z_b$$

Successive channel uses:

$$X_a = (X_{a,1}, \dots, X_{a,n})$$
, etc.

Full-duplex nodes

• Power constraint: P_a , P_r , P_b

• Noise: zero mean, variance σ_a^2 , σ_r^2 , σ_b^2

• Error probability: $p_e = \Pr(\{\hat{W}_a \neq W_a\} \cup \{\hat{W}_b \neq W_b\})$

• Uplink: a and b transmit to r.

• Downlink: r broadcasts to a and b.

What (R_a, R_b) are achievable $(p_e \to 0 \text{ as } n \to \infty)$?

DECODE-AND-FORWARD (DF)

See [Rankov-Wittneben '05], [Knopp '06].

DECODE-AND-FORWARD (DF)

See [Rankov-Wittneben '05], [Knopp '06].

Decode-and-forward (DF)

See [Rankov-Wittneben '05], [Knopp '06].

Decode-and-forward (DF)

Decode-And-Forward (DF)

Multi-acces channel

Decode-And-Forward (DF)

- Multi-acces channel
- Broadcasting with user side information

Sum Rate
$$R_{\text{sum}} = R_a + R_b$$

Symmetric case:
$$P_a = P_r = P_b = P$$
 and $\sigma_a^2 = \sigma_r^2 = \sigma_b^2 = 1$

Symmetric case:
$$P_a = P_r = P_b = P$$
 and $\sigma_a^2 = \sigma_r^2 = \sigma_b^2 = 1$

Symmetric case:
$$P_a = P_r = P_b = P$$
 and $\sigma_a^2 = \sigma_r^2 = \sigma_b^2 = 1$

Symmetric case: $P_a = P_r = P_b = P$ and $\sigma_a^2 = \sigma_r^2 = \sigma_b^2 = 1$

 Multiplexing loss: the relay tries to understand something that it doesn't really need to know, i.e., both messages individually.

- Multiplexing loss: the relay tries to understand something that it doesn't really need to know, i.e., both messages individually.
- PNC idea: the relay should only try to understand a combination of the transmitted messages.

- Multiplexing loss: the relay tries to understand something that it doesn't really need to know, i.e., both messages individually.
- PNC idea: the relay should only try to understand a combination of the transmitted messages.
- Use structured codes: Voronoi codes

• (coding) Lattice Λ_c

- (coding) Lattice Λ_c
- Fundamental (Voronoi) region $\mathcal{R}_V(\Lambda_c)$

- (coding) Lattice Λ_c
- Fundamental (Voronoi) region $\mathcal{R}_V(\Lambda_c)$
- Voronoi regions

- (coding) Lattice Λ_c
- Fundamental (Voronoi) region $\mathcal{R}_V(\Lambda_c)$
- Voronoi regions
- Nested (shaping) lattice $\Lambda \subset \Lambda_c$

- (coding) Lattice Λ_c
- Fundamental (Voronoi) region $\mathcal{R}_V(\Lambda_c)$
- Voronoi regions
- Nested (shaping) lattice $\Lambda \subset \Lambda_c$
- Voronoi code:

$$\mathcal{C}(\Lambda_c/\Lambda) = (\Lambda_c + \mathbf{t}) \cap \mathcal{R}_V(\Lambda)$$

• Users a and b use the same Voronoi code $\mathcal{C}(\Lambda_c/\Lambda)$.

- Users a and b use the same Voronoi code $\mathcal{C}(\Lambda_c/\Lambda)$.
- Uplink: users transmit $V_a, V_b \in \mathcal{C}(\Lambda_c/\Lambda).$

- Users a and b use the same Voronoi code $\mathcal{C}(\Lambda_c/\Lambda)$.
- Uplink: users transmit $V_a, V_b \in \mathcal{C}(\Lambda_c/\Lambda).$
- Relay receives $\boldsymbol{V}_a + \boldsymbol{V}_b \in \Lambda_c$.

- Users a and b use the same Voronoi code $\mathcal{C}(\Lambda_c/\Lambda)$.
- Uplink: users transmit $V_a, V_b \in \mathcal{C}(\Lambda_c/\Lambda).$
- Relay receives $V_a + V_b \in \Lambda_c$.
- Relay computes $V = (V_a + V_b) \mod \Lambda \in \mathcal{C}(\Lambda_c/\Lambda).$

- Users a and b use the same Voronoi code $\mathcal{C}(\Lambda_c/\Lambda)$.
- Uplink: users transmit $V_a, V_b \in \mathcal{C}(\Lambda_c/\Lambda).$
- Relay receives $V_a + V_b \in \Lambda_c$.
- Relay computes $V = (V_a + V_b) \mod \Lambda \in \mathcal{C}(\Lambda_c/\Lambda).$
- Side information allows each user to recover the lattice point of the other user based on $oldsymbol{V}$

RESULT FOR ARBITRARY CHANNEL CONDITIONS

RESULT FOR ARBITRARY CHANNEL CONDITIONS

Theorem

The capacity region is achievable to within 1/2 bits per dimension.

Theorem

The capacity region is achievable to within 1/2 bits per dimension.

Theorem

The capacity region is achievable to within 1/2 bits per dimension.

Achievability strategy:

Theorem

The capacity region is achievable to within 1/2 bits per dimension.

Achievability strategy:

1. Uplink: rate splitting, Voronoi code, and superposition coding

Theorem

The capacity region is achievable to within 1/2 bits per dimension.

Achievability strategy:

- 1. Uplink: rate splitting, Voronoi code, and superposition coding
- 2. Downlink: two-dimensional random codebook

Theorem

The capacity region is achievable to within 1/2 bits per dimension.

Achievability strategy:

- 1. Uplink: rate splitting, Voronoi code, and superposition coding
- 2. Downlink: two-dimensional random codebook

(see also [Nam-Chung-Lee '10])

• Lattice decoding: $Q_{\Lambda_c}(\boldsymbol{K}_r)$

- Lattice decoding: $Q_{\Lambda_c}(\boldsymbol{K}_r)$
- Dithering and linear MMSE estimation for effective noise reduction

- Lattice decoding: $Q_{\Lambda_c}(\boldsymbol{K}_r)$
- Dithering and linear MMSE estimation for effective noise reduction
- $K_r = (\alpha Y_r U_a U_b) \mod \Lambda = (V_a + V_b + \tilde{Z}_r) \mod \Lambda$

- Lattice decoding: $Q_{\Lambda_c}(\boldsymbol{K}_r)$
- Dithering and linear MMSE estimation for effective noise reduction
- $K_r = (\alpha Y_r U_a U_b) \mod \Lambda = (V_a + V_b + \tilde{Z}_r) \mod \Lambda$
- Superposition coding with successive cancellation

Sum Rate $R_{\text{sum}} = R_a + R_b$

Sum Rate
$$R_{\text{sum}} = R_a + R_b$$

Symmetric case:
$$P_a = P_r = P_b = P$$
 and $\sigma_a^2 = \sigma_r^2 = \sigma_b^2 = 1$

Sum Rate $R_{\text{sum}} = R_a + R_b$

Symmetric case:
$$P_a = P_r = P_b = P$$
 and $\sigma_a^2 = \sigma_r^2 = \sigma_b^2 = 1$

Sum Rate
$$R_{\text{sum}} = R_a + R_b$$

Symmetric case:
$$P_a = P_r = P_b = P$$
 and $\sigma_a^2 = \sigma_r^2 = \sigma_b^2 = 1$

Two Relays •000000

Multi-hop extension of the separated two-way relay channel

Two Relays

- Multi-hop extension of the separated two-way relay channel
- Both relays are necessary to enable the message exchange.

Two Relays

- Multi-hop extension of the separated two-way relay channel
- Both relays are necessary to enable the message exchange.
- No sinks or sources at the relays

- Multi-hop extension of the separated two-way relay channel
- Both relays are necessary to enable the message exchange.
- No sinks or sources at the relays
- Transmission strategy: physical-layer network coding with nested Voronoi codes

 No noise, binary inputs and outputs, finite field physical layer, full-duplex nodes

- No noise, binary inputs and outputs, finite field physical layer, full-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_h^{(1)}, u_h^{(2)}, \ldots$

- No noise, binary inputs and outputs, finite field physical layer, full-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_h^{(1)}, u_h^{(2)}, \ldots$

- No noise, binary inputs and outputs, finite field physical layer, full-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

• Each user "sees" the packet stream of the other user - delayed by two blocks.

- No noise, binary inputs and outputs, finite field physical layer, full-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_{\scriptscriptstyle h}^{(1)}, u_{\scriptscriptstyle h}^{(2)}, \ldots$

- Each user "sees" the packet stream of the other user delayed by two blocks.
- User rates approach 1 bit per channel use for many blocks.

Channel model:

$$Y_a = X_{r_1} + Z_a$$

$$Y_{r_1} = X_a + X_{r_2} + Z_{r_1}$$

$$Y_{r_2} = X_{r_1} + X_b + Z_{r_2}$$

$$Y_b = X_{r_2} + Z_b$$

Channel model:

$$Y_a = X_{r_1} + Z_a$$

$$Y_{r_1} = X_a + X_{r_2} + Z_{r_1}$$

$$Y_{r_2} = X_{r_1} + X_b + Z_{r_2}$$

$$Y_b = X_{r_2} + Z_b$$

• Same power constraint P for all nodes

Channel model:

$$Y_a = X_{r_1} + Z_a$$

$$Y_{r_1} = X_a + X_{r_2} + Z_{r_1}$$

$$Y_{r_2} = X_{r_1} + X_b + Z_{r_2}$$

$$Y_b = X_{r_2} + Z_b$$

- Same power constraint P for all nodes
- Gaussian noise with zero mean, variances $\sigma_a^2, \, \sigma_{r_1}^2, \, \sigma_{r_2}^2, \, \sigma_b^2$

Channel model:

$$Y_a = X_{r_1} + Z_a$$

$$Y_{r_1} = X_a + X_{r_2} + Z_{r_1}$$

$$Y_{r_2} = X_{r_1} + X_b + Z_{r_2}$$

$$Y_b = X_{r_2} + Z_b$$

- Same power constraint P for all nodes
- Gaussian noise with zero mean, variances σ_a^2 , $\sigma_{r_1}^2$, $\sigma_{r_2}^2$, σ_b^2
- Successive channel uses, transmission block i: $X_a^{(i)}$, etc.

Channel model:

$$Y_a = X_{r_1} + Z_a$$

$$Y_{r_1} = X_a + X_{r_2} + Z_{r_1}$$

$$Y_{r_2} = X_{r_1} + X_b + Z_{r_2}$$

$$Y_b = X_{r_2} + Z_b$$

- Same power constraint P for all nodes
- Gaussian noise with zero mean, variances $\sigma_a^2, \, \sigma_{r_1}^2, \, \sigma_{r_2}^2, \, \sigma_b^2$
- · Successive channel uses, transmission block $i: \mathbf{X}_{a}^{(i)}$. etc.

Theorem

One can achieve all rate pairs (R_a, R_b) satisfying

$$\begin{split} R_{a} &< \min \left(\tilde{\mathbf{C}} \left(P/\sigma_{r_{1}}^{2} \right), \tilde{\mathbf{C}} \left(P/\sigma_{r_{2}}^{2} \right), \mathbf{C} \left(P/\sigma_{b}^{2} \right) \right) \\ R_{b} &< \min \left(\tilde{\mathbf{C}} \left(P/\sigma_{r_{2}}^{2} \right), \tilde{\mathbf{C}} \left(P/\sigma_{r_{1}}^{2} \right), \mathbf{C} \left(P/\sigma_{a}^{2} \right) \right) \end{split}$$

where $C(x) \triangleq \log_2(1/2 + x)/2$ and $C(x) \triangleq \log_2(1 + x)/2$.

Channel model:

$$Y_a = X_{r_1} + Z_a$$

$$Y_{r_1} = X_a + X_{r_2} + Z_{r_1}$$

$$Y_{r_2} = X_{r_1} + X_b + Z_{r_2}$$

$$Y_b = X_{r_2} + Z_b$$

- Same power constraint P for all nodes
- Gaussian noise with zero mean, variances $\sigma_a^2, \, \sigma_{r_1}^2, \, \sigma_{r_2}^2, \, \sigma_b^2$
- · Successive channel uses, transmission block $i: \mathbf{X}_{a}^{(i)}$. etc.

Theorem

One can achieve all rate pairs (R_a, R_b) satisfying

$$\begin{split} R_{a} &< \min \left(\mathbf{\tilde{C}} \left(P/\sigma_{r_{1}}^{2} \right), \mathbf{\tilde{C}} \left(P/\sigma_{r_{2}}^{2} \right), \mathbf{C} \left(P/\sigma_{b}^{2} \right) \right) \\ R_{b} &< \min \left(\mathbf{\tilde{C}} \left(P/\sigma_{r_{2}}^{2} \right), \mathbf{\tilde{C}} \left(P/\sigma_{r_{1}}^{2} \right), \mathbf{C} \left(P/\sigma_{a}^{2} \right) \right) \end{split}$$

where $C(x) \triangleq \log_2(1/2 + x)/2$ and $C(x) \triangleq \log_2(1 + x)/2$.

Capacity region to within 1/2 bit per dimension

Channel model:

$$Y_a = X_{r_1} + Z_a$$

$$Y_{r_1} = X_a + X_{r_2} + Z_{r_1}$$

$$Y_{r_2} = X_{r_1} + X_b + Z_{r_2}$$

$$Y_b = X_{r_2} + Z_b$$

- Same power constraint P for all nodes
- Gaussian noise with zero mean, variances $\sigma_a^2,\,\sigma_{r_1}^2,\,\sigma_{r_2}^2,\,\sigma_b^2$
- Successive channel uses, transmission block i: $X_a^{(i)}$, etc.

Theorem

One can achieve all rate pairs (R_a, R_b) satisfying

$$R_{a} < \min \left(\tilde{C} \left(P/\sigma_{r_{1}}^{2} \right), \tilde{C} \left(P/\sigma_{r_{2}}^{2} \right), C \left(P/\sigma_{b}^{2} \right) \right)$$

$$R_{b} < \min \left(\tilde{C} \left(P/\sigma_{r_{2}}^{2} \right), \tilde{C} \left(P/\sigma_{r_{1}}^{2} \right), C \left(P/\sigma_{a}^{2} \right) \right)$$

where $\tilde{C}(x) \triangleq \log_2(1/2 + x)/2$ and $C(x) \triangleq \log_2(1 + x)/2$.

- Capacity region to within 1/2 bit per dimension
- Essentially optimal at high SNR

MLAN CONVERSION

e [Erez-Zamir '08].	
	J

MLAN Conversion

See [Erez-Zamir '08].

Blockwise modulo-lattice additive noise channel:

$$\begin{split} \tilde{\boldsymbol{Y}}_a^{(i)} &= (\tilde{\boldsymbol{X}}_{r_1}^{(i)} + \tilde{\boldsymbol{Z}}_a^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_{r_1}^{(i)} &= (\tilde{\boldsymbol{X}}_a^{(i)} + \tilde{\boldsymbol{X}}_{r_2}^{(i)} + \tilde{\boldsymbol{Z}}_{r_1}^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_{r_2}^{(i)} &= (\tilde{\boldsymbol{X}}_{r_1}^{(i)} + \tilde{\boldsymbol{X}}_b^{(i)} + \tilde{\boldsymbol{Z}}_{r_2}^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_b^{(i)} &= (\tilde{\boldsymbol{X}}_{r_2}^{(i)} + \tilde{\boldsymbol{Z}}_b^{(i)}) \mod \Lambda \end{split}$$

where

MLAN Conversion

See [Erez-Zamir '08].

Blockwise modulo-lattice additive noise channel:

$$\begin{split} \tilde{\boldsymbol{Y}}_a^{(i)} &= (\tilde{\boldsymbol{X}}_{r_1}^{(i)} + \tilde{\boldsymbol{Z}}_a^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_{r_1}^{(i)} &= (\tilde{\boldsymbol{X}}_a^{(i)} + \tilde{\boldsymbol{X}}_{r_2}^{(i)} + \tilde{\boldsymbol{Z}}_{r_1}^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_{r_2}^{(i)} &= (\tilde{\boldsymbol{X}}_{r_1}^{(i)} + \tilde{\boldsymbol{X}}_b^{(i)} + \tilde{\boldsymbol{Z}}_{r_2}^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_b^{(i)} &= (\tilde{\boldsymbol{X}}_{r_2}^{(i)} + \tilde{\boldsymbol{Z}}_b^{(i)}) \mod \Lambda \end{split}$$

where

•
$$\tilde{\pmb{X}}_a^{(i)}, \tilde{\pmb{X}}_{r_1}^{(i)}, \tilde{\pmb{X}}_{r_2}^{(i)}, \tilde{\pmb{X}}_b^{(i)} \in \mathcal{R}_V(\Lambda)$$
 are the input signals in block i .

MLAN Conversion

Two Relays

See [Erez-Zamir '08].

Blockwise modulo-lattice additive noise channel:

$$\begin{split} \tilde{\boldsymbol{Y}}_a^{(i)} &= (\tilde{\boldsymbol{X}}_{r_1}^{(i)} + \tilde{\boldsymbol{Z}}_a^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_{r_1}^{(i)} &= (\tilde{\boldsymbol{X}}_a^{(i)} + \tilde{\boldsymbol{X}}_{r_2}^{(i)} + \tilde{\boldsymbol{Z}}_{r_1}^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_{r_2}^{(i)} &= (\tilde{\boldsymbol{X}}_{r_1}^{(i)} + \tilde{\boldsymbol{X}}_b^{(i)} + \tilde{\boldsymbol{Z}}_{r_2}^{(i)}) \mod \Lambda \\ \tilde{\boldsymbol{Y}}_b^{(i)} &= (\tilde{\boldsymbol{X}}_{r_2}^{(i)} + \tilde{\boldsymbol{Z}}_b^{(i)}) \mod \Lambda \end{split}$$

where

- $\tilde{X}_a^{(i)}, \tilde{X}_{r_1}^{(i)}, \tilde{X}_{r_2}^{(i)}, \tilde{X}_b^{(i)} \in \mathcal{R}_V(\Lambda)$ are the input signals in block i.
- Effective noise $\tilde{Z}_a^{(i)}$, $\tilde{Z}_{r_1}^{(i)}$, $\tilde{Z}_{r_2}^{(i)}$, $\tilde{Z}_b^{(i)}$ is statistically independent of the inputs and has reduced effective noise power.

NESTED VORONOI CODES

Nested Voronoi Codes

NESTED VORONOI CODES

NESTED VORONOI CODES

Nested Voronoi Codes

Nested Voronoi Codes

relays "protect" linear combinations of codewords

FINAL REMARKS

FINAL REMARKS

• Superposition coding for unequal power constraints does not lead to a gap with respect to the upper bound in general.

Final Remarks

- Superposition coding for unequal power constraints does not lead to a gap with respect to the upper bound in general.
- Different shaping lattices might provide a solution.

FINAL REMARKS

- Superposition coding for unequal power constraints does not lead to a gap with respect to the upper bound in general.
- Different shaping lattices might provide a solution.
- Generalization to L relays (assuming full separation) is possible.

CONCLUSION

CONCLUSION

 Structured codes appear to be a powerful tool to show achievability of rates in communication networks.

- Structured codes appear to be a powerful tool to show achievability of rates in communication networks.
- Involved principles: physical-layer network coding, broadcasting, using side information

- Structured codes appear to be a powerful tool to show achievability of rates in communication networks
- Involved principles: physical-layer network coding, broadcasting, using side information
- In certain networks the interference of users can be harnessed.

- Structured codes appear to be a powerful tool to show achievability of rates in communication networks.
- Involved principles: physical-layer network coding, broadcasting, using side information
- In certain networks the interference of users can be harnessed.
- However, a strategy to show full achievability of the upper bound is still not available.

References

B. Rankov and A. Wittneben.

Spectral efficient signaling for half-duplex relay channels.

2005, Proc. of Asilomar Conference on Signals, Systems and Computers

R. Knopp.

Two-way radio networks with a star topology.

2006 International Zurich Seminar on Communications

U. Erez and R. Zamir.

A Modulo-Lattice Transformation for Multiple-Access Channels 2008, IEEE Convention of Electrical and Electronics Engineers in Israel

W. Nam and S.-Y. Chung and Y. Lee.

Capacity of the Gaussian Two-Way Relay Channel to within 1/2 bit 2010. IEEE Transactions on Information Theory

DOWNLINK

	1	 $2^{n(R_a - R_b)}$
1	$X_r(1,1)$	 $\boldsymbol{X}_r(1,M)$
2	$egin{aligned} oldsymbol{X}_r(1,1) \ oldsymbol{X}_r(2,1) \end{aligned}$	 $\boldsymbol{X}_r(2,M)$
:	:	:
2^{nR_b}	$X_r(N,1)$	 $\boldsymbol{X}_r(N,M)$

Downlink

DOWNLINK

$$oldsymbol{V} \in \mathcal{C}(\Lambda_c/\Lambda)$$

	I		
	1	• • •	$2^{n(R_a - R_b)}$
1	$X_r(1,1)$		$\boldsymbol{X}_r(1,M)$
2	$X_r(2,1)$		$\boldsymbol{X}_r(2,M)$
:	:		÷
2^{nR_b}	$X_r(N,1)$		$\boldsymbol{X}_r(N,M)$

Conclusion 00000

Downlink

DOWNLINK

Downlink

- Random codebook: $N=2^{nR_b}$ rows, $M=2^{n(R_a-R_b)}$ columns
- User b decodes with respect to the whole codebook.

DOWNLINK

- Random codebook: $N=2^{nR_b}$ rows, $M=2^{n(R_a-R_b)}$ columns
- User b decodes with respect to the whole codebook.
- User a decodes with respect to a column of the codebook.

Downlink

- Random codebook: $N=2^{nR_b}$ rows, $M=2^{n(R_a-R_b)}$ columns
- User b decodes with respect to the whole codebook.
- User a decodes with respect to a column of the codebook.
- Optimal downlink strategy.

Another Toy Problem

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

Another Toy Problem

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

Another Toy Problem

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

Another Toy Problem

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

can be discarded

Another Toy Problem

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

• Steady state

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

- Steady state
- Both users send a new packet or receive a packet in each block

- Noiseless, finite field physical layer and half-duplex nodes
- Users exchange bits (packets) $u_a^{(1)}, u_a^{(2)}, \ldots$ and $u_b^{(1)}, u_b^{(2)}, \ldots$

- Steady state
- Both users send a new packet or receive a packet in each block
- Sum rate approaches 2 bits per 2 transmissions

FULL-DUPLEX BLOCK TRANSMISSION

Two phases:

00000

FULL-DUPLEX BLOCK TRANSMISSION

Two phases:

1. Uplink: users a and b transmit to the relay r.

Two phases:

- 1. Uplink: users a and b transmit to the relay r.
- 2. Downlink: relay r broadcasts to the users a and b.

uplink 1	uplink 2	uplink 3
	downlink 1	downlink 2

uplink M	
downlink $M-1$	downlink M

Two phases:

- 1. Uplink: users a and b transmit to the relay r.
- 2. Downlink: relay r broadcasts to the users a and b.

uplink 1	uplink 2	uplink 3
	downlink 1	downlink 2

uplink Mdownlink M-1 downlink M

Two phases:

- 1. Uplink: users a and b transmit to the relay r.
- 2. Downlink: relay r broadcasts to the users a and b.

Choose number of blocks M (uplink-downlink pairs) large, such that

$$\frac{MnR_a}{(M+1)n} \approx R_a, \qquad \frac{MnR_b}{(M+1)n} \approx R_b.$$

 $\longleftarrow n \longrightarrow$

uplink 1	uplink 2	uplink 3
	downlink 1	downlink 2

uplink M downlink M-1 downlink M

Two phases:

- 1. Uplink: users a and b transmit to the relay r.
- 2. Downlink: relay r broadcasts to the users a and b.

Choose number of blocks M (uplink-downlink pairs) large, such that

$$\frac{MnR_a}{(M+1)n} \approx R_a, \qquad \frac{MnR_b}{(M+1)n} \approx R_b.$$

What rate pairs (R_a,R_b) (in bits per channel use) are achievable with $p_e \to 0$ as $n \to \infty$?