IMPERIAL

Conformal Prediction as Bayesian QuadratureICML 2025

Xinzhe Luo July 31, 2025

Motivation

- Distribution-free uncertainty quantification: to flexibly and reliably quantify the suitability of a model
 for deployment without making too many assumptions about how the model was trained or in which
 setting it will be used.
- Conformal prediction is distribution-free, but are based on frequentist statistics, making it difficult to incorporate prior knowledge that might be available about specific models.

Distribution-Free Uncertainty Quantification

Split conformal prediction

- Assume a black-box model mapping inputs X to outputs Y, a calibration set $\{X_i, Y_i\}_{i=1}^n$, and a score function s(x, y) which measures the disagreement between a predictor's output and the ground truth.
- Assuming exchangeability of $\{(X_i,Y_i)\}_{i=1}^{n+1}$, the α -acceptable conformal prediction set $\mathcal{C}(X_{n+1})$ of for a test point (X_{n+1},Y_{n+1}) is

$$P(Y_{n+1} \notin C(X_{n+1})) \le \alpha, \quad C(X_{n+1}) = \{y : s(X_{n+1}, y) \le \widehat{q}\},$$
 (1.1)

where \widehat{q} is the $\frac{\lceil (n+1)(1-\alpha) \rceil}{n}$ -th quantile of the scores on the calibration set.

Proof.

Note that $P(Y_{n+1} \notin \mathcal{C}(X_{n+1})) = P(s(X_{n+1}, Y_{n+1}) > \widehat{q})$, where \widehat{q} is the $\lceil (n+1)(1-\alpha) \rceil$ -th value of the sorted scores. Thus, due to the exchangeability of the samples, we have

$$P(s(X_{n+1}, Y_{n+1}) > \widehat{q}) = \frac{(n+1) - \lceil (n+1)(1-\alpha) \rceil}{n+1} \le \frac{(n+1) - (n+1)(1-\alpha)}{n+1} = \alpha.$$
 (1.2)

Distribution-Free Uncertainty Quantification

Conformal Risk Control

Conformal risk control considers prediction sets that minimise the expected risk of miscoverage,

$$\mathbb{E}\left[\ell\left(\mathcal{C}_{\lambda}(X_{n+1}), Y_{n+1}\right)\right] \le \alpha,\tag{1.3}$$

for any bounded loss function $\ell \leq B < \infty$ that shrinks as $\mathcal{C}_{\lambda}(X_{n+1})$ grows, and larger λ leads to larger (more conservative) prediction sets.

Theorem (Conformal Risk Control)

Denote $L_i(\lambda) \triangleq \ell(\mathcal{C}_{\lambda}(X_i), Y_i)$ for $i = 1, \ldots, n+1$. Assume that $L_i(\lambda)$ is non-increasing in λ , right continuous, and $L_i(\lambda_{\text{max}}) \leq \alpha$, $\sup_{\lambda} L_i(\lambda) \leq B < \infty$ a.s. Let $\widehat{R}_n(\lambda) = \frac{1}{n} \sum_{i=1}^n L_i(\lambda)$, then

$$\mathbb{E}\left[L_{n+1}(\widehat{\lambda})\right] \le \alpha, \quad \widehat{\lambda} = \inf\left\{\lambda : \frac{n}{n+1}\widehat{R}_n(\lambda) + \frac{B}{n+1} \le \alpha\right\}. \tag{1.4}$$

Bayesian Quadrature

- Bayesian quadrature estimates the value of an integral $J[f] := \int_a^b f(x) dx$ by
 - 1. place a prior p(f) on functions;
 - 2. evaluate f at a finite set of points $\{x_i\}_{i=1}^n$;
 - 3. compute the posterior distribution $p(f \mid x_{1:n}, y_{1:n}) \propto p(f) \prod_{i=1}^{n} \delta(y_i f(x_i));$
 - 4. estimate $\int_a^b f(x) dx \approx \int_a^b f_n(x) dx$, where $f_n(x) = \mathbb{E}[f(x) \mid x_{1:n}, y_{1:n}]$.

Proof.

By Fubini's theorem, we have

$$\int_{a}^{b} f(x) dx \approx \mathbb{E}\left[\int_{a}^{b} f(x) dx \mid x_{1:n}, y_{1:n}\right] = \int_{a}^{b} \mathbb{E}[f(x) \mid x_{1:n}, y_{1:n}] dx = \int_{a}^{b} f_{n}(x) dx.$$
 (1.5)

Decision-Theoretic Formulation

- Let $z = (z_1, \ldots, z_n)$ be a set of calibration data where each $z_i = (x_i, y_i)$ is a pair of input and ground truth.
- Let θ denote the true state of nature that defines a shared density $f(z_i \mid \theta)$ for the data. A new test point z_{new} is assumed to have the same distribution.
- Let $\lambda(z)$ be a control parameter that must be chosen based on the calibration data. We assume the presence of a loss function $L(\theta,\lambda)$ which quantifies the loss incurred by selecting λ when the true state of nature is θ .
- The decision-theoretic goal is to choose a decision rule $\lambda(z)$ that controls the *risk*, defined as the expected loss:

$$R(\theta, \lambda) = \mathbb{E}_{\mathbf{z} \sim f(\mathbf{z}|\theta)}[L(\theta, \lambda(\mathbf{z}))]. \tag{1.6}$$

• The maximum risk is defined as $\overline{R}(\lambda) = \sup_{\theta} R(\theta, \lambda)$. We want to find α -acceptable decision rules whose risk is upper bounded by a constant α :

$$\overline{R}(\lambda) \le \alpha,$$
 (1.7)

and use another criterion to select among these.

Decision-Theoretic Formulation

Recovering Split Conformal Prediction

Proposition (3.1)

Let $L_{scp}(\theta, \lambda) \triangleq P(s(z_{new}) > \lambda) = 1 - \int \mathbf{1}(s(z_{new}) \leq \lambda) f(z_{new} \mid \theta) dz_{new}$ be the miscoverage loss, where s is an arbitrary nonconformity function. Define $s_i \triangleq s(z_i)$ for $i = 1, \ldots, n$ and let $s_{(1)} \leq s_{(2)} \leq \cdots \leq s_{(n)}$ be the corresponding order statistics. Let λ_{scp} be the following decision rule:

$$\lambda_{scp} = \widehat{q}_{1-\alpha} := \begin{cases} s_{(\lceil (n+1)(1-\alpha)\rceil)}, & \text{if } \lceil (n+1)(1-\alpha)\rceil \leq n, \\ \infty, & \text{otherwise.} \end{cases}$$
 (1.8)

Then λ_{scp} is an α -acceptable decision rule for the miscoverage loss L_{scp} .

Proof.

By exchangeability, $P(s_{\mathsf{new}} \leq \widehat{q}_{1-\alpha}) \geq 1 - \alpha$. Therefore, for $\lambda = \widehat{q}_{1-\alpha}$, $R(\theta, \lambda) = P(s_{\mathsf{new}} > \lambda) \leq \alpha$. This statement holds for any θ , so we have $\overline{R}(\lambda_{\mathsf{scp}}) \leq \alpha$ and $\lambda_{\mathsf{scp}} = \widehat{q}_{1-\alpha}$.

Recovering Conformal Risk Control

Proposition (3.2)

Let $L_{crc}(\theta, \lambda) \triangleq \int \ell(z_{new}, \lambda) f(z_{new} \mid \theta) dz_{new}$ where $\ell(z_{new}, \lambda)$ is an individual loss function that is monotonically non-increasing in λ . Let λ_{crc} be the following decision rule:

$$\lambda_{crc} = \inf \left\{ \lambda : \frac{1}{n+1} \left(\sum_{i=1}^{n} \ell(z_i, \lambda) + B \right) \le \alpha \right\}.$$
 (1.9)

Then λ_{crc} is an α -acceptable decision rule for the loss L_{crc} .

Proof.

By definition, we identify $L_i(\lambda) = \ell(z_i, \lambda)$ for i = 1, ..., n and $L_{n+1}(\lambda) = \ell(z_{\text{new}}, \lambda)$, $\lambda_{\text{crc}} = \widehat{\lambda}$, and $R(\theta, \lambda_{\text{crc}}) = \mathbb{E}[L_{n+1}(\widehat{\lambda})] \leq \alpha$ for any θ . Thus, we have $\overline{R}(\lambda_{\text{crc}}) \leq \alpha$.

Bayes Risk

• Since the true state of nature θ is uncertain, we want a decision rule that protects against high loss for a range of possible θ . The idea is expressed as the *integrated risk*:

$$r(\pi, \lambda) = \int R(\theta, \lambda) \pi(\theta) d\theta,$$
 (2.1)

where $\pi(\theta)$ is a prior distribution over the true state of nature θ .

• The Bayes decision rule is defined as the minimiser of the posterior risk:

$$\lambda^{\pi} \triangleq \arg\min_{\lambda} r(\lambda \mid z), \tag{2.2}$$

where $r(\lambda \mid z)$ is the posterior risk

$$r(\lambda \mid z) = \int L(\theta, \lambda) \pi(\theta \mid z) d\theta.$$
 (2.3)

Reformulation as Bayesian Quadrature

- Consider the posterior risk $r(\lambda \mid z) = \int L(\theta, \lambda) \pi(\theta \mid z) d\theta$ where $L(\theta, \lambda) = \int \ell(z_{\text{new}}, \lambda) f(z_{\text{new}} \mid \theta) dz_{\text{new}}$.
- Define the distribution function of individual losses induced by λ for a particular value of θ : $F(\ell) \triangleq P(\ell(z_{\text{new}}, \lambda) \leq \ell \mid \theta)$. The corresponding quantile function is defined as $K(t) := F^{-1}(t) \triangleq \inf\{\ell : F(\ell) \geq t\}$. Since the expectation of an r.v. is equal to the integral of its quantile function, we have $L(\theta, \lambda) = \int_0^1 K(t) dt =: J[K]$.
- The posterior risk given the observed individual losses $\ell_i \triangleq \ell(z_i, \lambda)$ for $i = 1, \dots, n$ can be expressed as

$$r(\lambda \mid \ell_{1:n}) = \mathbb{E}_{\theta} \left[L(\theta, \lambda) \mid \ell_{1:n} \right] = \mathbb{E}_{K} \left[J[K] \mid \ell_{1:n} \right] = \int J[K] p(K \mid \ell_{1:n}) dK. \tag{2.4}$$

• The posterior over quantile functions can be expressed as

$$p(K \mid \ell_{1:n}) = \int p(K \mid t_{1:n}, \ell_{1:n}) p(t_{1:n} \mid \ell_{1:n}) dt_{1:n}, \quad p(K \mid t_{1:n}, \ell_{1:n}) \propto \pi(K) \prod_{i=1}^{n} \delta(\ell_{i} - K(t_{i})). \quad (2.5)$$

Elimination of the Prior Distribution

Theorem (4.1)

Let $t_{(0)}=0$, $t_{(n+1)}=1$, and $\ell_{(n+1)}=B$. Then, given the evaluation sites $t_{1:n}$,

$$\sup_{\pi} \mathbb{E}[L \mid t_{1:n}, \ell_{1:n}] \le \sum_{i=1}^{n+1} u_i \ell_{(i)}, \tag{2.6}$$

where $u_i = t_{(i)} - t_{(i-1)}$.

Proof.

By Lemma B.2, we have

$$\mathbb{E}[L \mid t_{1:n}, \ell_{1:n}] = \int J[K] p(K \mid t_{1:n}, \ell_{1:n}) dK \le \sup_{K \in \mathcal{K}_n} J[K] \le \sum_{i=1}^{n+1} (t_{(i)} - t_{(i-1)}) \ell_{(i)}.$$
 (2.7)

Elimination of the Prior Distribution

Lemma (B.1)

Consider the variational maximisation problem $I[f] = \int_a^b f(x) dx$ subject to $f(a) = f_a$, $f(b) = f_b$, and $f_a \leq f(x) \leq f_b$ for all $x \in [a, b]$ where $f_a \leq f_b$. Then, the solution is given by

$$f^{*}(x) = \begin{cases} f_{a} & \text{if } x = a, \\ f_{b} & \text{otherwise,} \end{cases}$$
 (2.8)

and $I[f^*] = (b - a)f_b$.

Lemma (B.2)

Let K_n be the set of quantile functions for which $K(t_i) = \ell_i$ for $i = 1, \ldots, n$. Then,

$$\sup_{K \in \mathcal{K}_n} J[K] = \sum_{i=1}^{n+1} (t_{(i)} - t_{(i-1)}) \ell_{(i)},$$

where
$$t(0) = 0$$
, $t(B_{\text{total}}) = 1$ ($(B_{\text{total}}) = B_{\text{total}} = B_{\text{total}}$ and $J[K] = \int_0^1 K(t) dt$.

(2.9)

Bound on Maximum Posterior Risk

Theorem (4.3)

Define $\ell_{(i)}$ to be the order statistics of $\ell_{1:n}$, and $\ell_{(n+1)} \triangleq B$. Let L^+ be the r.v. defined as follows:

$$L^{+} = \sum_{i=1}^{n+1} U_{i}\ell_{(i)}, \quad U_{1}, \dots, U_{n+1} \sim Dir(1, \dots, 1).$$
 (2.10)

Then, for any $b \in (-\infty, B]$,

$$\inf_{\pi} P(L \le b \mid \ell_{1:n}) \ge P(L^{+} \le b). \tag{2.11}$$

Corollary (4.4)

For any desired confidence level $\beta \in (0,1)$, define

$$b_{\beta}^* = \inf_{b} \{ b : P(L^+ \le b \mid \ell_{1:n}) \ge \beta \}.$$
 (2.12)

Then, $\inf_{\pi} P(L \leq b \mid \ell_{1:n}) \geq \beta$ for any $b \geq b_{\beta}^*$.

Recovering Conformal Methods

• Taking the expected value of L^+ , we have,

$$\mathbb{E}[L^+] = \sum_{i=1}^{n+1} \mathbb{E}[U_i] \ell_{(i)} = \frac{1}{n+1} \left[\sum_{i=1}^{n+1} \ell_i + B \right]. \tag{2.13}$$

The *Conformal Risk Control* decision rule is the infimum over λ for which $\mathbb{E}[L^+] \leq \alpha$.

• For *Split Conformal Prediction*, the individual loss is defined as $\ell_i = 1 - \mathbf{1}(s_i \leq \lambda)$. Let $\lambda = s_{(k)}$. The expected value of L^+ becomes

$$\mathbb{E}[L^+] = \frac{1}{n+1} \left[n + 1 - \sum_{i=1}^n \mathbf{1}(s_i \le s_{(k)}) \right] = 1 - \frac{k}{n+1}.$$
 (2.14)

Therefore, $\mathbb{E}[L^+] \leq \alpha$ is satisfied when $k \geq (n+1)(1-\alpha)$, and in particular $k^* = \lceil (n+1)(1-\alpha) \rceil$.

Conformal Prediction as Bayesian Quadrature

We use the Bayesian quadrature-based method to compute the decision rule based on the one-sided highest posterior density (HPD) interval

$$\lambda_{\mathsf{hpd}}^{\beta} \triangleq \inf_{\lambda} \left\{ \lambda : P(L^{+} \leq \alpha \mid \ell_{1:n}) \geq \beta \right\} \tag{2.15}$$

by finding the corresponding critical values b_{β}^* via Monte Carlo simulation of Dirichlet random variables with 1000 samples.

Related Work: Risk-Controlling Prediction Sets

Definition (Risk-Controlling Prediction Set, Bates et al., J. ACM 2021)

Let \mathcal{T} be a random function taking values in the space of functions $\mathcal{X} \to \mathcal{Y}'$, where \mathcal{Y}' is some space of sets. We say that \mathcal{T} is a (α, δ) -risk-controlling prediction set (RCPS) if, with probability at least $1-\delta$, we have $R(\mathcal{T}) \leq \alpha$, where $R(\mathcal{T}) = \mathbb{E}[L(Y, \mathcal{T}(X))]$ for some loss function $L: \mathcal{Y} \times \mathcal{Y}' \to \mathbb{R}$.

• Assume that \mathcal{T} is indexed by a parameter $\lambda \in [-\infty, \infty]$, and we have access to a pointwise *upper confidence bound (UCB)* \widehat{R}^+ for the risk R for each λ :

$$P\left(R(\lambda) \le \widehat{R}^+(\lambda)\right) \ge 1 - \delta,$$
 (2.16)

where $\widehat{R}^+(\lambda)$ may depend on the calibration set $\{(X_i, Y_i)\}_{i=1}^n$.

Related Work: Risk-Controlling Prediction Sets

Theorem (Validity of UCB Calibration)

Suppose $R(\lambda)$ is a continuous monotone nonincreasing function such that $R(\lambda) \leq \alpha$ for some $\lambda \in \Lambda$. Then, for $\widehat{\lambda} \triangleq \inf\{\lambda \in \Lambda : \widehat{R}^+(\lambda') < \alpha, \ \forall \, \lambda' \geq \lambda\}$,

$$P\left(R(\widehat{\lambda}) \le \alpha\right) \ge 1 - \delta. \tag{2.17}$$

That is, $\mathcal{T}_{\widehat{\lambda}}$ is a (α, δ) -RCPS.

Proof.

Define $\lambda^* \triangleq \inf\{\lambda \in \Lambda : R(\lambda) \leq \alpha\}$. By continuity, $R(\lambda^*) = \alpha$. Then,

$$R(\widehat{\lambda}) > \alpha \Rightarrow \widehat{\lambda} < \lambda^* \Rightarrow \widehat{R}^+(\lambda^*) < \alpha = R(\lambda^*).$$
 (2.18)

Thus,
$$P(R(\widehat{\lambda}) > \alpha) \le P(\widehat{R}^+(\lambda^*) < R(\lambda^*)) \le \delta$$
.

Related Work: Risk-Controlling Prediction Sets

Example (Smplified Hoeffding Bound)

It is natural to construct a UCB for $R(\lambda)$ based on the empirical risk $\widehat{R}(\lambda) \triangleq \frac{1}{n} \sum_{i=1}^{n} L(Y_i, \mathcal{T}_{\lambda}(X_i))$. Suppose the loss is bounded above by 1, then

$$P\left(\widehat{R}(\lambda) - R(\lambda) \le -x\right) \le \exp\left(-2nx^2\right).$$
 (2.19)

This implies a UCB of the form

$$\widehat{R}_{\mathsf{sHoef}}^{+}(\lambda) = \widehat{R}(\lambda) + \sqrt{\frac{1}{2n}} \log\left(\frac{1}{\delta}\right),\tag{2.20}$$

and an RCPS $\mathcal{T}_{\widehat{\lambda}_{\mathsf{sHoef}}}$ with

$$\widehat{\lambda}_{\mathsf{sHoef}} = \inf \left\{ \lambda \in \Lambda : \widehat{R}^+_{\mathsf{sHoef}}(\lambda') < \alpha, \ \forall \, \lambda' \geq \lambda \right\} = \inf \left\{ \lambda \in \Lambda : \widehat{R}(\lambda) < \alpha - \sqrt{\frac{1}{2n} \log \left(\frac{1}{\delta}\right)} \right\} \quad (2.21)$$

Experiment: Synthetic Binomial Data

ullet Assume the acceptance rate is lpha=0.4 and the loss function is

$$\ell(z_i, \lambda) = \frac{1}{K} \sum_{k=1}^{K} \mathbf{1}(V_{ik} > \lambda), \tag{3.1}$$

where $V_{ik} \sim \text{Unif}(0,1)$ for $i = 1, \ldots, n$.

Figure 3. Comparison of risk incurred by each procedure across multiple trials. Left: Histogram of the decision rule λ_{crc} chosen by Conformal Risk Control across M = 10,000 randomly sampled calibration sets. The region where per-trial risk exceeds α is highlighted in red. Right: Histogram of the $\lambda_{col}^{0.08}$ chosen according to our 95% Bayesian posterior interval.

Experiment: Synthetic Heteroskedastic Data

- Let $X \sim U[0, 4]$ and $Y \sim N(0, X^2)$.
- The prediction intervals are defined as $[-\lambda, \lambda]$. The loss is the miscoverage loss and the target loss is set to $\alpha = 0.1$.
- The maximum acceptable failure rate is set to $1 \beta = 0.05$.

Table 2. Relative frequency of trials (out of 10,000) for which the resulting decision rule λ exceeded the target risk threshold α in the synthetic heteroskedastic experiment.

Decision Rule	Relative Freq.	95% CI	Mean Prediction Interval Length
Split Conformal Prediction / CRC	46.19%	[45.21%, 47.17%]	7.99
RCPS	0.0%	[0.0%, 0.04%]	14.29
Ours ($\beta = 0.95$)	3.42%	[3.07%, 3.80%]	9.50

Note: Error bars are computed as 95% Clopper-Pearson confidence intervals for binomial proportions.

IMPERIAL

Thank you! **Q&A**

Conformal Prediction as Bayesian Quadrature July 31, 2025