Diffie-Hellman: Theory, Requirements, and CTF Challenge Design

August 13, 2025

1 Why "p Must Be Prime for the Multiplicative Group mod p to be Cyclic"

1.1 Multiplicative Group mod p

- Definition: The set $\{1,2,3,\ldots,p-1\}$ with multiplication modulo p as the operation.
- Excludes 0 because it has no multiplicative inverse.
- Example for p = 7:
 - Set: $\{1, 2, 3, 4, 5, 6\}$
 - $-3 \times 5 \equiv 1 \pmod{7}$ since $15 = 2 \times 7 + 1$.

1.2 Group Properties

A group (G, \cdot) satisfies:

- 1. Closure: $a, b \in G \Rightarrow a \cdot b \in G$.
- 2. **Identity:** $1 \in G$ such that $a \cdot 1 = a$.
- 3. Inverses: $\forall a \in G, \exists a^{-1} \text{ with } a \cdot a^{-1} = 1.$
- 4. Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

1.3 Cyclic Groups

A group is cyclic if there exists a generator g such that:

$${g^1 \bmod p, g^2 \bmod p, \dots, g^{p-1} \bmod p} = {1, 2, \dots, p-1}.$$

Example (p = 7, g = 3):

$$3^1 \equiv 3$$
, $3^2 \equiv 2$, $3^3 \equiv 6$, $3^4 \equiv 4$, $3^5 \equiv 5$, $3^6 \equiv 1 \pmod{7}$.

1.4 Why Prime p Matters

- If p is prime, $\mathbb{Z}_p^* = \{1, \dots, p-1\}$ is always cyclic.
- \bullet Guarantees at least one generator g producing all elements.
- If p is composite, \mathbb{Z}_n^* may not be cyclic.

1.5 Counterexample (Non-prime p)

Let p = 8, coprime set: $\{1, 3, 5, 7\}$.

- g = 3: $3^1 \equiv 3$, $3^2 \equiv 1$ misses 5 and 7.
- g = 5: $5^1 \equiv 5$, $5^2 \equiv 1$ misses 3 and 7.

1.6 Plain English Summary

We want a generator g whose powers cover all nonzero residues mod p before repeating. Prime p ensures this is possible; composite p may break it.

2 Diffie-Hellman Variable Requirements

p (Prime Modulus)

Large prime, often a safe prime p = 2q + 1 to prevent small subgroup attacks.

g (Generator)

Integer $2 \le g \le p-2$, generating a large subgroup.

a, b (Private Keys)

Random integers in [2, p-2], kept secret.

A, B (Public Keys)

$$A = q^a \mod p$$
, $B = q^b \mod p$

S (Shared Secret)

$$S = B^a \bmod p = A^b \bmod p$$

3 Why Diffie-Hellman is Hard to Break

- Based on the hardness of the Discrete Logarithm Problem (DLP).
- $\bullet\,$ No efficient classical algorithm for large p.
- Quantum computers with Shor's algorithm could solve DLP efficiently motivating post-quantum cryptography.