Titre: Effet Tunnel

Présentée par : Raphael Leriche Rapport écrit par : Bernard Chelli

Correcteur : Jean Hare Date : 10/02/2020

Bibliographie de la leçon :					
Titre [1] Dunod tout en un PC-PC* 2014	Auteurs Fosset	Éditeur	Année		
[2] http://bupdoc.udppc.asso.fr/consultatio n/article-bup.php?ID_fiche=3903	BUP 734				
[3] https://www.youtube.com/watch?v=w QEqksTcARE	BUO 699				
Jean HARE. Abrégé de mécanique quantique à l'usage de la préparation à l'agrégation de physique. 2018	Jean Hare		2018		

Plan détaillée

Niveau choisi pour la leçon : CPGE

Pré-requis:

- Équation de Shrodinger stationnaire
- Densité d'état
- Courant de densité de probabilité (voir cours Jean Hare chapitre 2 section 2.1 et 2.3)
- Radioactivité

Plan:

- I Barrière de potentiel et effet tunnel
 - 1) Position du problème
 - 2) Raccordement et Probabilité de transmission
- II Une application technologique, le microscope à effet tunnel
 - 1) Microscope à effet tunnel
 - 2) La spectroscopie à effet tunnel
- III Radioactivité α

Introduction:

Comme il a été vu dans les cours de EM, (ex. effet de peau dans un conducteur), les champs **E** et **B** peuvent pénétrer sur une certaine distance dans la matière (réflexion totale). Étant donné la dualité onde-corpuscule, on peut se demander si les particules de matière (comme l'électron) peuvent aussi présenter un caractère similaire à l'onde évanescente, et quelles conséquences un tel phénomène peut-il avoir.

Commençons par considérer un profil d'énergie potentielle pour un électron qui aurait la forme d'une barrière de potentielle de largeur « a » et hauteur V0 (la dessiner de 0 à a).

Soit un électron provenant de la gauche et allant vers la droite avec une énergie cinétique 0<E<V0

Ici on voit que l'électron classique ne peut pas exister dans la zone [0,a]. Du fait de la conservation de l'énergie mécanique, son existance impliquerait une énergie cinétique <0 ce qui est impossible.

Classiquement l'électron est donc reflechi. Or que ce passe dans une approche quantique?

I) Barrière de potentiel et effet tunnel (2:40)

1) Position du problème

Posons l'équation de shrodiger appliqué à la particule M de masse m arrivant de la gauche dans chaque région de l'espace (1, 2 et 3) :

Suivre le calcul du [1] p. 1200-1201. Il faut l'adapter légèrement.

On obtient trois équations différentielles. Poser $k=\frac{\sqrt{2mE}}{\hbar}$ et $K=\frac{\sqrt{2m(V0-E)}}{\hbar}$ pour simplifier l'écriture des résultats.

Donner les solutions pour les trois régions :

=> La fonction d'onde admet pour solution: (Y2(x) = A e ihx + B e ihx Y2(x) = C ch(Kx) + D sh(Kx)
$(Y_3(x) = E e^{ihx} + F e^{-ihx}$
* Du suppose me onde incidente sprovenant de la ganche $ Y_1(x) = e^{ihx} + r e^{ihx} $ $ Y_2(x) = C \operatorname{ch}(Kx) + D \operatorname{sh}(Kx) $
143 (5c) = teikx

On normalise tout par l'onde incidente et on pose r et t.

2) Raccordement et Probabilité de transmission (8:30)

Le raccordement est un peu fastidieux et calculatoire, donc ne pas le faire. Par contre l'avoir en tête : [1] p. 1202. Le résultat diffère dans 1 du fait d'avoir choisi une barrière centrée sur 0, mais les calculs sont les mêmes.

Montrer le résultat obtenu sur slide :

Calcul des coefficients de transmission et de réflexion

$$\begin{cases} 1 + r = te^{ika}[ch(Ka) - \frac{ik}{K}sh(Ka)] \\ \frac{ik}{K}(1 - r) = -te^{ika}[sh(Ka) - \frac{ik}{K}ch(Ka)] \end{cases}$$

Après calcul:

$$\begin{cases} t = \frac{2e^{-ika}kK}{2kKch(Ka) - i(k^2 - K^2)sh(Ka)} \\ r = \frac{-i(k^2 + K^2)sh(Ka)}{2kKch(Ka) - i(k^2 - K^2)sh(Ka)} \end{cases}$$

On trouve:

$$|t|^2 + |r|^2 = 1$$

$$T = \frac{4k^2K^2}{4k^2K^2 + (k^2 + K^2)^2sh^2(Ka)}$$

T = probabilité de transmission

Ce qui nous intéresse est le module au carré des coefficients r et t, qui traduisent une probabilité de reflexion et transmission respectivement.

Lire le bas de [1] p. 1203 pour quelques commentaires physiques.

Le raccordement des fonctions aux différents points est montré sur slide :

Probabilité de présence dans la barrière

- $|\psi|^2 = 1 + R + 2\sqrt{R}\cos(2kx \varphi)$
- Décroissance sur une longueur caractéristique :

$$\delta = \frac{1}{K} = \frac{\hbar}{\sqrt{2m(V_0 - E)}}$$

 $\boxed{3} \qquad |\psi|^2 = T$

Dans 1: on a des interférences avec l'onde réfléchie

Dans 2 : on a une densité de probabilité de présence non nulle qui diminue avec la hauteur de la barrière. On introduit alors 2 une longueur caractéristique de décroissance. Donc plus la barrière est épaisse et haute, plus faible sera la probabilité de présence de la particule à la sortie de la barrière.

Dans 3 : la probabilité de présence est uniforme et égale à T

Une discussion est faite dans [1] p. 1204.

Lorsque Ka>>1 on est dans le cas d'une barrière épaisse (fait aussi dans [1] p. 1204). Alors l'expression de T se simplifie car sh(Ka) $\sim \frac{e^{Ka}}{2}$.

Alors
$$T \sim \frac{16k^2K^2e^{-2Ka}}{(k^2+K^2)^2} \sim \frac{16E(V0-E)e^{-\frac{2a}{\hbar}\sqrt{2m(V0-E)}}}{(V0)^2}$$
 Expression fondamentale pour la suite

Montrer slide avec courant de probabilité qui est admis et préciser que J3 est proportionnel à T. (Rq. BC au niveau CPGE je préfère me limiter à l'expression du vecteur densité de courant de probabilité de [1] p. 1160 qui donne le résultat de manière immédiate.)

Courant de probabilité de présence

Courant de probabilité :

$$J(x,t) = \frac{\hbar}{2im} \left[\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right]$$

Après calcul:

$$J_3(x,t) = \frac{k\hbar}{m}T$$

\Rightarrow Le courant tunnel *I* est proportionnel à *T*

Si on s'intéresse à un ensemble d'électrons qui arrivent de la gauche sans la zone 1, il est clair qu'on pourra voir l'apparition d'un autre courant dans la zone 2 qui résulte des électrons qui ont traversé la barrière de potentiel par effet tunnel. Alors le courant électrique sera proportionnel à T. Ceci est exploité dans le microscope à effet tunnel

II – Une application technologique, le microscope à effet tunnel (13:33)

1) Microscope à effet tunnel (voir [3])

Principe du microscope à effet tunnel (STM)

Image topographique des matériaux avec une **résolution atomique**

Prix Nobel 1986 G. Binnig et H. Rohrer

Suivre l'introduction p. 1269 de [3] et presenter sur slide.

Faire schéma suivant pour expliquer le fonctionnement :

Préciser que :

- l'échantillon et la pointe sont des conducteurs ;
- On applique une différence de potentiel, alors et seulement alors, l'air entre la pointe et l'échantillon se comporte comme une barrière de potentiel ;
- L'échantillon est un solide, donc un assemblage d'atomes ;
- On mesure un courant tunnel $I \propto I0e^{-B*d\sqrt{\phi}}$, où ϕ est la hauteur relative de la barrière de potentiel qui dépend du potentiel appliqué et des matériaux conducteurs. I0 dépend du potentiel appliqué aussi. (voir [3] p. 1269-1270, aussi [1] p. 1207-1208)

Discuter le courant I avec la formule du courant de probabilité, on peut l'approximer par un courant proportionnel à $e^{-\frac{2a}{\hbar}\sqrt{2m(V0-E)}}$.

Expliquer le fonctionnement du microscope (soit on se place à hauteur constante et on regarde le courant tunnel qui varie, soit in se place à courant constant avec une boucle d'asservissement et on regarde la hauteur de la pointe). La pointe est contrôlée par des piezo.

Présenter des ordres de grandeur :

- pour E \sim 0 avec m éléctron de 9.109*10^-31kg et V0 \sim 4eV (travail de sortie typique des métaux cf. [3] p. 1271) :

Si on passe de a = 5A à 6A, le coefficient de transmission T diminue d'un facteur 10, donc très précis en hauteur (résolution transverse) (De l'ordre de 10-11m).

Parler de la résolution latérale avec un schéma (c.f. [3] p. 1275). Donc importance de la pointe ! (résolution latérale de l'ordre de 1A avec une bonne pointe).

Parler des conditions de la pointe sur slide et sur les vibrations (lire début de la p. 1274 de [3]).

Conditions d'imagerie par effet tunnel

- Pointe très fine, terminée par un seul atome, pour garantir résolution atomique
- Pouvoir contrôler les déplacements de la pointe à la fraction d' Angström (grâce à piézoélectriques)
- Eliminer les vibrations qui perturbent la mesure

Microscope M3, équipe SNEQ, INSP, Paris

B) Mode spectroscopique (22:36)

Optionnel car complexe. On peut lire [3] p. 1278-1281 pour le presenter avec les slides suivants.

Quasiparticule interferences

$$\psi_i = e^{i \vec{k}_i \cdot \vec{r}}$$

$$\psi_f = e^{i \vec{k}_f \cdot \vec{r}}$$

$$\psi_{interference} = \psi_i + \psi_f$$

In STM only access to local density of states:

$$\|\psi_{interference}\|^2 = 2(1 + 2\cos(\overrightarrow{k_f \cdot \vec{k}_i}) \cdot \overrightarrow{r}))$$

Fourier transform STM:

$$FFT\left(\left\|\psi_{interference}\right\|^{2}\right)\sim\delta(\overrightarrow{q})+\delta(-\overrightarrow{q})$$

Quasiparticule interferences

Example :

Hexagonal Brillouin zone with a given energy

 $E = E_{\tau}$

Fourier transform of the LDOS map at energy $\it E_{
m 1}$

How to obtain local density of states maps ?

Vr V

 Collection of scattering wave vectors linking many isoenergy states.

the autoconvolution of the energy contour:

III – Radioactivité α (26:00)

Faire un rappel sur la radioactivité α [3] p. 1211-1212.

Prendre la réaction $^{226}_{88}Ra \to ^{222}_{86}Rn + ^4_2He$ (désintégration du Radium dans du Radon He particule alpha).

Montrer slide (chiffres se trouvent dans [1]):

Désintégration α

Noyau	Demi-vie τ _{1/2} (s)	E (MeV)
²¹² ₈₄ Po	3,0.10 ⁻⁷	9,0
²¹⁵ ₈₅ At	1,0.10-4	8,1
²²² ₈₈ Ra	3,3.10 ⁵	5,6
²²⁶ ₈₈ Ra	5,4.10 ¹⁰	4,9
²³⁶ ₉₂ U	7,2.1014	4,4
$^{232}_{90}Th$	4,4.10 ¹⁷	4,0

$$E \nearrow \implies \tau_{1/2} \searrow$$

Parler que expérimentalement il semble que si E augmente T1/2 diminue. On se propose de modéliser ce résultat avec l'effet tunnel.

On introduit le modèle de Gamow, Gurney et Condon ([3] p. 1213-1215, les calculs sont faits dans [2] p. 738-740).

Hypothèses:

- On suppose que la particule alpha de masse m existe à l'intérieur du noyau et oscille à l'interieur avec un mouvement de vas et vien;
- On suppose qu'elle est soumise à une Ep résultant de l'interaction forte de courte portée supposée nulle à partir d'une distance R0 (~ 10-14m);
- On suppose que la particule alpha es soumise aussi à la répulsion électrostatique entre la particule alpha et le nouveau noyau à Z-2 protons tq Epcoulomb = $\frac{2e(Z-2)e}{4\pi\epsilon_0 r}$;
- On suppose à l'intérieur du noyau de rayon R, le potentiel qui domine est l'interaction forte ;
- On suppose R0>>R;
- On suppose un puit de potentiel sphérique.

On note que E de la particule alpha est de 4,9 MeV et que la répulsion coulombienne V en R, V \sim 40 MeV (cf. [1] p .1213). On peut donc approximer le problème comme un puit de potentiel :

Pour faire le calcul il faut découper le potentiel en barrières rectangulaires. Alors on constante que la probabilité de transmission à travers 2 barrières de hauteur différente est:

$$T(l1 + l2) \propto T(l1) * T(l2)$$

$$\propto e^{\frac{-2}{\hbar} * l1 * \sqrt{2 * m \left(\frac{2e(Z-2)e}{4\pi\epsilon_0 l1} - E\right)}} * e^{\frac{-2}{\hbar} * l2 * \sqrt{2 * m \left(\frac{2e(Z-2)e}{4\pi\epsilon_0 l2} - E\right)}}$$

$$T(l1+l2) \propto e^{\frac{-2}{\hbar}*\sum_{l}l*\sqrt{2*m\left(\frac{2e(Z-2)e}{4\pi\epsilon_{0}l2}-E\right)}}$$

Si on passe au continu:

$$T(x) \propto e^{\frac{-2}{\hbar}*\int_{R}^{R0}*dx\sqrt{2*m\left(\frac{2e(Z-2)e}{4\pi\epsilon_{0}l2}-E\right)}}$$

Le calcul de cette intégrale est long et complexe avec plusieurs changements de variables (voir [2] p. 739-740 et le cours de Jean Hare p. 88).

En faisant le calcul on trouve :

$$\ln(T) = \frac{4R}{\hbar} \sqrt{U * m * Z} - \frac{\pi * R * U}{\hbar} \sqrt{\frac{2m}{E}}$$

Avec U =
$$\frac{2e(Z-2)e}{4\pi\epsilon_0}$$

Or T est la probabilité de sortir de l'atome à chaque collision avec la barrière. En moyenne il faut 1/T collisions pour que la particule alpha soit éjectée de l'atome.

Alors si t0 est la durée de traversée du noyau, la particule passe un temps t = t0/T dans le noyau.

On déduit :

$$t_{1/2} = t \ln(2) \propto e^{-\frac{4R}{\hbar}\sqrt{U*m*Z} + \frac{\pi*R*U}{\hbar}\sqrt{\frac{2m}{E}}}$$

Si E augmente, t1/2 diminue. Cette loi est globalement verifiée sur 26 ordres de grandeur ! (c.f. FIG. 4 p. 86 du cours de Jean Hare tiré du cours de Berkley)				
Conclusion sur d'autres applications possibles, par exemple le double puit de potentiel pour modéliser des liaisons chimiques ou autres utilités du microscope à effet tunnel si on se sent capable de répondre aux questions.				

Questions posées par l'enseignant

Vouz avez parlé d'ondes stationnaires, c'est approprié?

Non, il n'y as pas de nœuds.

Que caractérise une onde stationnaire?

Pas de dépendance temporelle, il faut des nœuds et des ventres.

Le diagramme (du raccordement du puit de potentiel) est-il conforme à ce que vous présentez ? Non il devrait y avoir continuité de la dérivée.

Dans la limite de la zone 2-3 comment pouvez-vous arriver entre la zone 2 et la zone 3 avec une tangente horizontale ?

On ne sait pas si dans la zone 2 il y a une exponentielle dû à la réflexion au niveau de l'interface 2-3 (onde anti-évanescente en retours). Alors sur cette interface on aura 2 ondes opposées qui ont la même amplitude ce qui donne une tangente horizontale.

Comment obtenez-vous dans la zone 3 que le courant est constant ?

Par calcul est du fait qu'on a une seule onde propagative

Il y a une condition sur le métal de la pointe pour le microscope à effet tunnel?

Oui, il faut qu'elle soit métallique ex. en platine coupé et qu'elle ne soit pas chimiquement active.

Pourquoi vous utilisez la masse de l'électron dans l'onde évanescente ?

Ça dépend du matériau mais ça peut arriver qu'on ait le droit de le faire.

Est-ce que $|r^2| + |t^2| = 1$ est toujours valable ? que represente r et t ?

R est le coefficient de reflexion en amplitude et t le coefficient de transmission en amplitude.

Dans un problème de collision quantique on a toujours $\;|r^2|+|t^2|=1$?

Ce qui compte c'est le coefficient de transmission en courant. Cette formule est étroitement liée à une hypothèse du modèle : les énergies en déhors de la barrière sont les mêmes

Vous avez parlé d'une onde évanescente en éléctromagnetisme, c'est pareil ou il y a une difference importante entre les 2 ?

On a une perte d'énergie.

En EM, on a un vecteur de poynting et l'énergie transportée par l'onde évanescente est dissipé par le métal. En MQ on n'a pas d'effets dissipatifs car tant qu'on n'est pas arrivé à la fin de la barrière on n'aura pas de courant.

La loi de la radioactivité alpha marche bien?

Oui, sur plus de 26 ordres de grandeur.

Partie réservée au correcteur

Avis général sur la leçon (plan, contenu, etc.)	
Notions fondamentales à aborder, secondaires, délicates	
Expériences possibles (en particulier pour l'agrégation docteur)	
Bibliographie conseillée	