Проверить, что $S_5(f)$ точна на многочленах пятой степени $\int\limits_{-1}^{1} P_5(x) dx = S_5(P_5)$, но найдется многочлен степени 6, на котором она не точна.

4.3. Квадратурные формулы Гаусса

Рассмотрим следующую задачу: при заданном числе узлов n построить для вычисления интегралов вида $I(f) = \int\limits_a^b p(x)f(x)\,dx$ квадратурную формулу

$$S_n(f) = \sum_{i=1}^n c_i f(x_i),$$
 (4.1)

точную для многочленов максимально высокой степени. Весовая функция p(x) предполагается почти всюду положительной.

В этой постановке имеется 2n свободных параметров (узлы x_i и коэффициенты c_i неизвестны), поэтому можно попытаться построить квадратуру, точную для многочленов степени 2n-1. Несложно убедиться в том, что не существует квадратуры с n узлами, точной для всех многочленов степени 2n. Действительно, возьмем $P_{2n}(x) = (x-x_1)^2 \cdots (x-x_n)^2$. Тогда $0 = S_n(P_{2n}) \neq I(P_{2n}) > 0$.

Важную роль при построении $\kappa вадратурных$ формул $\Gamma aycca$ (4.1) играют ортогональные многочлены на отрезке [a,b] с весом p(x)>0 почти всюду. Они могут быть получены, например, в результате стандартной процедуры ортогонализации, примененной к системе $\{1,x,\ldots,x^k,\ldots\}$, при скалярном произведении

$$(f,g) = \int_a^b p(x)f(x)g(x) dx.$$

Пусть на отрезке [a,b] имеется система ортогональных многочленов с весом p(x)

 $1, \psi_1(x), \psi_2(x), \ldots, \psi_k(x), \ldots$

Тогда многочлен k-й степени $\psi_k(x)$ ортогонален произвольному многочлену $P_l(x)$ при $l=0,\dots,k-1$. Действительно, многочлен $P_l(x)$ представим в виде $P_l(x)=\sum\limits_{j=0}^l c_j\psi_j(x)$, и при $k\neq l$ имеют место равенства

$$\int_{a}^{b} p(x)\psi_{k}(x)\psi_{l}(x) dx = 0.$$

На практике наиболее употребительны следующие ортогональные многочлены:

Лежандра ($[-1,1], p(x) \equiv 1$),

Чебышёва первого рода
$$\left([-1,1],\ p(x)=\frac{1}{\sqrt{1-x^2}}\right)$$
, Лагерра $([0,\infty),\ p(x)=\mathrm{e}^{-x})$, Эрмита $\left((-\infty,\infty),\ p(x)=\mathrm{e}^{-x^2}\right)$.

Здесь в скобках указаны промежуток интегрирования и весовая функция. При построении квадратурных формул Гаусса базовым является следующее утверждение:

Теорема. Пусть x_1, \ldots, x_n — нули ортогонального на [a,b] с весом p(x) многочлена $\psi_n(x)$ степени n и (4.1) — квадратура, точная для многочленов степени n-1. Тогда квадратура (4.1) точна для многочленов степени 2n-1.

На основании этого утверждения процесс построения квадратуры может быть разбит на два последовательных этапа: — нахождение нулей ортогонального многочлена; — нахождение весов методом неопределенных коэффициентов.

Приведем оценку погрешности формул Гаусса

$$R_n = ||f^{(2n)}(x)|| \int_a^b p(x) \frac{\psi_n^2(x)}{(2n)!} dx,$$

которая для отрезка [-1,1] и веса $p(x) \equiv 1$ имеет вид

$$R_n = ||f^{(2n)}(x)|| \frac{2^{2n+1}(n!)^4}{((2n)!)^3(2n+1)}$$
.

4.42. Методом ортогонализации построить несколько первых многочленов Лежандра со старшим коэффициентом 1, ортогональных на отрезке [-1,1] с весом $p(x)\equiv 1$.

Otbet:
$$\psi_0 = 1$$
, $\psi_1 = x$, $\psi_2 = x^2 - \frac{1}{3}$, $\psi_3 = x^3 - \frac{3}{5}x$, ...

4.43. Доказать, что ортогональный многочлен степени n имеет ровно n различных корней на отрезке [a,b].

 $\mathrel{\displaystyle \vartriangleleft}$ Если $\psi_n(x)$ имеет на [a,b] только r < n нулей нечетной кратности, то многочлен

$$Q_{n+r}(x) = \psi_n(x) \prod_{l=1}^{r} (x - x_l)$$

не меняет знака на этом отрезке. Следовательно, интеграл $\int_a^b p(x)Q_{n+r}(x)\,dx$ отличен от нуля, что противоречит свойству ортогональности $\psi_n(x)$ любому многочлену низшей степени.

4.44. Построить квадратуру Гаусса с одним узлом для вычисления интеграла: 1) $I(f) = \int\limits_0^1 x f(x) \, dx$; 2) $I(f) = \int\limits_0^1 \mathrm{e}^x f(x) \, dx$. Ответ: 1) $\frac{1}{2} f\left(\frac{2}{3}\right)$; 2) $(e-1) f\left(\frac{1}{a-1}\right)$.

4.45. Построить квадратуру Гаусса с двумя узлами для вычисления интеграла: 1) $I(f) = \int_{-1}^{1} x^2 f(x) \, dx$; 2) $I(f) = \int_{-\pi/2}^{\pi/2} \cos(x) f(x) \, dx$.

$$\text{Otbet: 1)} \ \ \frac{1}{3} \left(f \left(\sqrt{\frac{3}{5}} \right) + f \left(-\sqrt{\frac{3}{5}} \right) \right) \ ; \ \ 2) \ \ f \left(\sqrt{\frac{\pi^2}{4} - 2} \right) + f \left(-\sqrt{\frac{\pi^2}{4} - 2} \right) \ .$$

4.46. Построить квадратуру Гаусса с тремя узлами для вычисления интеграла $I(f) = \int\limits_{-1}^{1} f(x) \, dx$.

Otbet:
$$\frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f\left(0\right) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right)$$
.

4.47. Доказать, что все коэффициенты квадратуры Гаусса положительны.

 \lhd Рассмотрим многочлен степени k=2n-2 вида $P_k(x)=\left(\prod\limits_{i=1\atop i\neq k}^n(x-x_i)\right)^2.$

Для интеграла от этого многочлена формула Гаусса дает точный результат

$$\int_{a}^{b} p(x)P_{k}(x) dx = \sum_{j=1}^{n} c_{j}P_{k}(x_{j}) = \sum_{\substack{j=1 \ i \neq k}}^{n} c_{j}P_{k}(x_{j}) + c_{k}P_{k}(x_{k}).$$

Так как справедливо $P_k(x_j) = 0$ при $j \neq k$, то имеет место равенство

$$c_k = \frac{\int\limits_a^b p(x)P_k(x)\,dx}{P_k(x_k)} > 0.$$

4.48. Пусть весовая функция p(x) четная относительно середины отрезка интегрирования — точки $\frac{a+b}{2}$. Доказать, что узлы квадратуры Гаусса для

вычисления интегралов $I(f) = \int_a^b p(x)f(x)\,dx$ расположены симметрично относительно $\frac{a+b}{2}$, а соответствующие симметричным узлам коэффициенты квалратуры равны

Ответ: симметрия узлов квадратуры следует из решения 4.70, а равенство коэффициентов — следствие симметрии узлов (см. 4.3).

- **4.49.** Пусть $R_n(f)$ погрешность для функции $f(x) = x^{2n}$ квадратурной формулы Гаусса с n узлами для отрезка [-1,1] и весовой функции $p(x) = \frac{1}{\sqrt{1-x^2}}$. Вычислить $R_n(f)$ и показать, что $\lim_{n\to\infty} 2^{2n-1}|R_n(f)| = \pi$.
- **4.50.** Пусть $R_n(f)$ погрешность для функции $f(x)=x^{2n}$ квадратурной формулы Гаусса с n узлами для отрезка [-1,1] и весовой функции $p(x)=\sqrt{1-x^2}$. Вычислить $R_n(f)$ и показать, что $\lim_{n\to\infty}2^{2n}|R_n(f)|=\pi$.
- **4.51.** Пусть f(x) непрерывная на отрезке [a,b] функция. Доказать, что для формул Гаусса $|R_n(f)| \to 0$ при $n \to \infty$.

Указание. Квадратурная формула и вычисляемый по ней интеграл определяют линейные функционалы на пространстве непрерывных функций. Поэтому здесь применима теорема Банаха о сходимости последовательности линейных операторов (необходимым и достаточным условием сходимости является выполнение следующих двух требований: 1) сходимость на множестве элементов, всюду плотном в пространстве, где определены операторы; 2) ограниченность в совокупности норм операторов.)

Для квадратур Гаусса положительность коэффициентов гарантирует выполнение второго требования. Проверить, что оценка погрешности дает сходимость по n для произвольного алгебраического многочлена, откуда следует выполнение первого требования.

- **4.52.** Построить составную квадратурную формулу Гаусса с двумя узлами на каждом отрезке разбиения для вычисления интеграла $I(f)=\int\limits_a^b {
 m e}^{\alpha x} f(x) dx,$ где ${
 m e}^{\alpha x}-$ весовая функция. Оценить погрешность построенной формулы.
- **4.53.** Доказать, что не существует квадратур $\int_a^b f(x)dx \approx \sum_{i=1}^n c_i f(x_i)$ с n узлами, точных для всех тригонометрических полиномов степени n с весовой функцией $p(x)\equiv 1$.
- **4.54.** Построить квадратурную формулу Гаусса с одним узлом для вычисления интеграла I(f): 1) $\int\limits_0^1 x^2 f(x) dx$; 2) $\int\limits_{-1}^1 |x| f(x) dx$.
- **4.55.** Построить квадратурную формулу Гаусса с двумя узлами для вычисления интеграла I(f): 1) $\int\limits_{-1}^{1}|x|f(x)dx$; 2) $\int\limits_{-1}^{1}x^4f(x)dx$.
- **4.56.** Построить квадратурную формулу Гаусса с двумя узлами для вычисления интеграла $I(f) = \int\limits_0^1 p(x)f(x)dx, \; p(x)$ весовая функция:

1)
$$p(x) = x$$
; 2) $p(x) = \sin(\pi x)$; 3) $p(x) = e^x$; 4) $p(x) = \cos(x - \frac{1}{2})$;

5)
$$p(x) = 1 - x$$
; 6) $p(x) = e^{-x}$.

4.57. Показать, что квадратурная формула

$$S_3(f) = \frac{\sqrt{\pi}}{6} \left(f\left(-\sqrt{\frac{3}{2}}\right) + 4f(0) + f\left(\sqrt{\frac{3}{2}}\right) \right)$$

для вычисления интегралов $I(f) = \int_{-\infty}^{+\infty} \exp(-x^2) f(x) dx$ точна для всех алгебраических многочленов пятой степени.

4.58. Показать, что квадратурная формула

$$S_3(f) = \frac{\pi}{3} \left(f\left(-\frac{\sqrt{3}}{2}\right) + f(0) + f\left(\frac{\sqrt{3}}{2}\right) \right)$$

для вычисления интегралов $I(f) = \int\limits_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} \, dx$ точна для всех алгебрачческих многочленов пятой степени.

4.59. Построить квадратуру Гаусса с четырьмя узлами для вычисления интеграла $I(f) = \int_{-1}^{1} f(x) \, dx$.

Ответ:
$$-x_{-1} = x_1 = \sqrt{\frac{15 - 2\sqrt{30}}{35}}, \quad c_{-1} = c_1 = \frac{18 + \sqrt{30}}{36},$$

 $-x_{-2} = x_2 = \sqrt{\frac{15 + 2\sqrt{30}}{35}}, \quad c_{-2} = c_2 = \frac{18 - \sqrt{30}}{36}.$

4.60. На интервале $(-\infty,\infty)$ найти ортогональный многочлен $\psi_3(x)=x^3+\dots$ при заданной весовой функции $p(x)=\exp(-x^2)$. Ответ: $\psi_3(x)=x^3-\frac{3}{2}x$.

4.61. На отрезке [-1,1] найти ортогональный многочлен $\psi_3(x)=x^3+\dots$ при заданной весовой функции $p(x)=\frac{1}{\sqrt{1-x^2}}$.

Ответ: $\psi_3(x) = x^3 - \frac{3}{4}x$.

4.62. На отрезке [-1,1] найти ортогональный многочлен $\psi_3(x)=x^3+\dots$ при заданной весовой функции $p(x)=\sqrt{1-x^2}$.

Oтвет: $\psi_3(x) = x^3 - \frac{1}{2} x$.

4.63. На полуинтервале $[0,\infty)$ найти ортогональный многочлен $\psi_3(x)=x^3+\dots$ при заданной весовой функции $p(x)=\exp(-x)$. Ответ: $\psi_3(x)=x^3-9x^2+18x-6$.

4.64. Построить квадратурную формулу Гаусса с двумя узлами для вычисления интегралов $I(f) = \int_{0}^{\pi} \sin(x) f(x) dx$.

Ответ:
$$S_2(f) = f\left(\frac{\pi + \sqrt{\pi^2 - 8}}{2}\right) + f\left(\frac{\pi - \sqrt{\pi^2 - 8}}{2}\right)$$
.

4.65. Построить квадратурную формулу Гаусса с двумя узлами для вычисления интегралов $I(f) = \int\limits_0^\infty \exp(-x) \, f(x) \, dx.$

O т в е т:
$$S_2(f) = \frac{2+\sqrt{2}}{4} \, f(2-\sqrt{2}) + \frac{2-\sqrt{2}}{4} \, f(2+\sqrt{2})$$
 .

4.66. Построить квадратурную формулу Гаусса с двумя узлами для вычисления интегралов $I(f) = \int\limits_0^1 \left(x - \frac{1}{2}\right)^2 f(x) \, dx.$

O т в е т:
$$S_2(f) = \frac{1}{24} \left[f\left(\frac{1}{2} + \sqrt{\frac{3}{20}}\right) + f\left(\frac{1}{2} - \sqrt{\frac{3}{20}}\right) \right]$$
.

- **4.67.** Доказать, что ни с каким весом p(x) > 0 многочлены $\{x^m\}_{m=0}^{\infty}$ не могут быть ортогональны на [0,1].
- **4.68.** Пусть на отрезке [a,b] имеется система ортогональных многочленов $\{\psi_n(x)\}$ с весом p(x) и старшим коэффициентом, равным единице. Доказать, что среди всех многочленов степени n вида $P_n(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$ минимальную норму

 $\|P_n\|^2 = \int\limits_a^b p(x) P_n^2(x) \, dx$ имеет ортогональный многочлен $\psi_n(x)$.

 \triangleleft Пусть $P_n(x)$ — произвольный многочлен степени n со старшим коэффициентом, равным единице. Тогда $P_n(x) = \psi_n(x) + r_{n-1}(x)$, и из ортогональности $\psi_n(x)$ любому многочлену низшей степени следует

$$||P_n(x)||^2 = ||\psi_n(x)||^2 + ||r_{n-1}(x)||^2.$$

4.69. Для ортогональных многочленов вида $\psi_n(x) = x^n + \dots$ показать справедливость рекуррентного соотношения

$$\psi_n(x) = (x - b_n)\psi_{n-1}(x) - c_n\psi_{n-2}(x)$$

с коэффициентами $b_n = \frac{(x\psi_{n-1}, \psi_{n-1})}{(\psi_{n-1}, \psi_{n-1})}$ и $c_n = \frac{(\psi_{n-1}, \psi_{n-1})}{(\psi_{n-2}, \psi_{n-2})} > 0.$

 \triangleleft Представим многочлен $x\psi_{n-1}$ в виде $\sum\limits_{k=0}^{n}\alpha_k\psi_k$, где коэффициенты α_j определяются из условий ортогональности

$$(x\psi_{n-1}, \psi_j) = \alpha_j(\psi_j, \psi_j), \ j = 0, \dots, n.$$

При j < n-2 имеем

$$(x\psi_{n-1}, \psi_j) = (\psi_{n-1}, x\psi_j) = (\psi_{n-1}, Q_{j+1}(x)) = 0,$$

т. е. все $\alpha_j=0$ при j< n-2 (здесь $Q_{j+1}(x)=x\psi_j$ — многочлен степени j+1). Таким образом,

$$x\psi_{n-1} = \alpha_n \psi_n + \alpha_{n-1} \psi_{n-1} + \alpha_{n-2} \psi_{n-2} ,$$

при этом в силу равенства коэффициентов при старшей степени $x, \alpha_n = 1$. Отсюда следует, что

$$\psi_n(x) = (x - \alpha_{n-1})\psi_{n-1} - \alpha_{n-2}\psi_{n-2}, \quad b_n \equiv \alpha_{n-1}, \quad c_n \equiv \alpha_{n-2}.$$

Умножая скалярно равенство на ψ_{n-1} , получаем $b_n = \frac{(x\psi_{n-1}, \psi_{n-1})}{(\psi_{n-1}, \psi_{n-1})}$. Умножая скалярно равенство на ψ_{n-2} , с учетом $(x\psi_{n-1}, \psi_{n-2}) = (\psi_{n-1}, \psi_{n-1})$, находим $c_n = \frac{(\psi_{n-1}, \psi_{n-1})}{(\psi_{n-2}, \psi_{n-2})} > 0$.

4.70. Доказать, что ортогональные многочлены на симметричном относительно нуля отрезке с четным весом p(x) обладают свойством $\psi_n(-x) = (-1)^n \psi_n(x)$.

Указание. $\psi_0(x) = 1$, $\psi_1(x) = x$. Продолжить решение по индукции, используя рекуррентное соотношение из 4.69 и доказав, что $b_n \equiv 0$.

4.71. Пусть задан отрезок [a,b]. Доказать, что при $b>a\geqslant 0$ все коэффициенты ортогонального многочлена отличны от нуля.

 \triangleleft Все корни x_k многочлена $\psi_n(x)$ положительны, а его коэффициенты выражаются через величины $B_j = \sum_{k=1}^n x_k^j$ (см. 4.25). Доказательство также можно построить на основе теоремы Виета.

4.72. Доказать, что нули ортогональных многочленов с фиксированным на отрезке [a,b] весом p(x)>0 перемежаются, т. е.

$$a < x_1^{(n)} < x_1^{(n-1)} < \dots < x_{n-1}^{(n-1)} < x_n^{(n)} < b.$$

 \triangleleft Подставим $x = x_i^{(n)}$ в рекуррентное соотношение (см. 4.69)

$$\psi_{n+1} = (x - \alpha_n)\psi_n - \alpha_{n-1}\psi_{n-1}$$
.

Учитывая, что здесь $\alpha_{n-1} > 0$, имеем

$$\psi_{n+1}\left(x_i^{(n)}\right) + \alpha_{n-1}\psi_{n-1}\left(x_i^{(n)}\right) = 0.$$

Пусть утверждение верно для некоторого n. Отсюда и из равенств

$$\operatorname{sign} \psi_{n-1}(b) = 1$$
, $\operatorname{sign} \psi_{n-1}(a) = (-1)^{n-1}$

следует, что

$$\psi_{n-1}\left(x_i^{(n)}\right) = (-1)^{n-i},$$

а знаки $\operatorname{sign} \psi_{n+1}\left(x_i^{(n)}\right) = -\operatorname{sign} \psi_{n-1}\left(x_i^{(n)}\right)$ противоположны. Так как $\operatorname{sign} \psi_{n+1}(b) = 1 \quad \text{и} \quad \operatorname{sign} \psi_{n+1}(a) = (-1)^{n+1},$

то $\psi_{n+1}(x)$ имеет чередующиеся знаки в последовательно расположенных точках $a, x_1^{(n)}, \dots, x_n^{(n)}, b$, что и завершает доказательство.

4.73. Доказать, что для многочленов Лежандра

$$L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} ((x^2 - 1)^n)$$

справедливы следующие соотношения:

1)
$$L_n(x) = \frac{1}{n!} \frac{d^n}{dt^n} \left(\frac{1}{\sqrt{1 - 2tx + t^2}} \right) \Big|_{t=0}, \ n \geqslant 0;$$

2)
$$(n+1)L_{n+1}(x) - (2n+1)xL_n(x) + nL_{n-1}(x) = 0, \ n \ge 1;$$

3)
$$L'_{n+1}(x) - L'_{n-1}(x) = (2n+1)L_n(x), \ n \geqslant 1;$$

4)
$$L'_{n+1}(x) - xL'_n(x) = (n+1)L_n(x), \ n \geqslant 0;$$

5)
$$xL'_n(x) - L'_{n-1}(x) = nL_n(x), \ n \geqslant 1;$$

6)
$$(x^2-1)L'_n(x) = nxL_n(x) - nL_{n-1}(x), \ n \ge 1;$$

7)
$$(1-x^2)L_n''(x) - 2xL_n'(x) + n(n+1)L_n(x) = 0, \ n \geqslant 0;$$

8)
$$\int_{-1}^{1} x^k L_n(x) dx = \begin{cases} 0, & \text{если } 0 \leqslant k \leqslant n-1, \\ \frac{2^{n+1} (n!)^2}{(2n+1)!}, & \text{если } k=n; \end{cases}$$

9)
$$\int_{-1}^{1} L_k(x) L_m(x) dx = \begin{cases} 0, & \text{если } k \neq m, \\ \frac{2}{2k+1}, & \text{если } k = m; \end{cases}$$

10) Если
$$L_n(x_k) = 0$$
, то $\int_{-1}^{1} \frac{L_n(x)}{x - x_k} dx = -\frac{2}{(n+1)L_{n+1}(x_k)}$, $n \geqslant 1$;

11)
$$L_n(x) = 2^{-n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k C_n^k C_{2n-2k}^n x^{n-2k}, \ n \geqslant 0.$$

4.74. Пусть $x_1, x_2, ..., x_n$ — корни многочлена Лежандра $L_n(x)$ и $\gamma_k = \int\limits_{-1}^1 \prod\limits_{\substack{j=1 \\ j \neq k}}^n \frac{x-x_j}{x_k-x_j} \, dx$. Доказать, что если f(x), g(x) — алгебраические

многочлены степени n-1, то $\int_{-1}^{1} f(x)g(x)dx = \sum_{k=1}^{n} \gamma_{k}f(x_{k})g(x_{k}).$

4.75. Доказать следующие свойства узлов и коэффициентов квадратурной формулы Гаусса $S_n(f)$ для вычисления интегралов $\int_1^1 f(x)dx$:

1) $L_n(x_k)=0,\ k=1,2,\ldots,n,$ где $L_n(x)$ — ортогональный многочлен Лежандра степени n;

2)
$$c_k = -\frac{2}{(n+1)L_{n+1}(x_k)L'_n(x_k)}, \quad k = 1, 2, \dots, n;$$

3)
$$c_k = \frac{2(1-x_k^2)}{n^2(L_{n-1}(x_k))^2}, \quad k = 1, 2, \dots, n;$$

4)
$$c_k = \frac{2}{nL_{n-1}(x_k)L'_n(x_k)}, \quad k = 1, 2, \dots, n.$$

4.76. Для вычисления интегралов $\int_{-1}^{1} f(x)dx$ построить $\kappa \epsilon a \partial p a m y p n y r o \phi o p m y n y Map ko e a - P a d o$

$$S_n(f) = c_1 f(-1) + \sum_{i=2}^n c_i f(x_i),$$

точную для произвольного многочлена степени 2n-2.

4.77. Для вычисления интегралов $\int_{-1}^{1} f(x)dx$ построить $\kappa в a d p a m y p n y v \phi o p m y n y Map ko в a — Лобатто$

$$S_n(f) = c_1 f(-1) + \sum_{i=2}^{n-1} c_i f(x_i) + c_n f(1),$$

точную для произвольного многочлена степени 2n-3.

Указание. Представить исходный интеграл в виде

$$I(f) = \int_{-1}^{1} Q_1(x)dx + \int_{-1}^{1} \frac{f(x) - Q_1(x)}{1 - x^2} p(x)dx,$$

где

$$Q_1(x) = f(-1)\frac{1-x}{2} + f(1)\frac{1+x}{2}, \ p(x) = 1-x^2.$$

Построить квадратурную формулу Гаусса с n-2 узлами, соответствующую весовой функции p(x):

$$\int_{-1}^{1} q(x)p(x)dx \approx \sum_{j=2}^{n-1} d_j q(x_j).$$

Показать, что квадратурная формула

$$\int_{-1}^{1} f(x)dx \approx \int_{-1}^{1} Q_1(x)dx + \sum_{j=2}^{n-1} d_j \frac{f(x_j) - Q_1(x_j)}{1 - x_j^2}$$

при $c_j = \frac{d_j}{1 - x_j^2}, \ j = 2, \dots, n-1,$ является искомой.