Introduction to Stata

UW CSSCR Workshop Zhe Liu July 2021

Purpose of the workshop

- This workshop introduces the basic usage of Stata for data analysis
- Topics include¹
 - Stata as a data analysis software package
 - Navigating Stata
 - Data import
 - Exploring data
 - Data visualization
 - Data management
 - Basic statistical analysis

What is Stata?

- A software package for data management, statistical analysis, and graphics.
- A wide array of statistical tools that include both standard methods and newer, advanced estimation procedures
- Designed for researchers in the fields of econometrics, social science and biostatistics

Tools for data analysis, a comparison

Features	SPSS	SAS	Stata	JMP (SAS)	R	Python (Pandas)	
Learning curve	Gradual	Pretty steep	Gradual	Gradual	Pretty steep	Steep	
User interface	Point-and- click	Programming	Programming/ point-and- click	Point-and- click	Programming	Programming	
Data manipulation	Strong	Very strong	Strong	Strong	Very strong	Strong	
Data analysis	Very strong	Very strong	Very strong	Strong	Very strong	Strong	
Graphics	Good	Good	Very good	Very good	Excellent	Good	
Cost	Expensive (perpetual, cost only with new version).	Expensive (yearly renewal) Free student	Affordable (perpetual, cost only with new version).	Expensive (yearly renewal) Student disc.	Open source (free)	Open source (free)	
	Student disc.	version, 2014	Student disc.	Otadont disc.			
Released	1968	1972	1985	1989	1995	2008	

Why Stata?

Advantages

- Intuitive data management capabilities
- Command driven, but can also be accessed via a point-and-click method
- Syntax is provided and consistent across commands, so easier to learn
- Exceptionally strong support for
 - Specialized statistical analysis
 - Panel data analysis

Disadvantages

- Limited to one dataset in memory at a time
- Appearance of output tables and graphics is somewhat dated and primitive
- Community is smaller than R
 - less online help
 - fewer user-written extensions

Acquiring and using Stata at UW

- Order and then download Stata directly from their website, but be sure to use <u>GradPlan pricing</u>, available to UW students
 - IC ≤ SE ≤ MP, regarding size of dataset allowed, number of processors used, and cost
- Stata is also installed in CSSCR labs and on remote desktops
 - https://depts.washington.edu/csscr/rdservices/

Navigating Stata's interface

Command window

- You can enter commands directly into the Command window
- This command will load a Stata dataset over the internet

Variables window

- Clicking on a variable name will cause its description to appear in the Properties Window
- Double-clicking on a variable name will cause it to appear in the Command Window

Properties window

- The **Variables** section lists information about selected variable
- The **Data** section lists information about the entire dataset

Review Window

- The Review window lists previously issued commands
- Successful commands will appear black
- Unsuccessful commands will appear red
- Double-click a command to run it again

Stata menus

- Almost all Stata users use syntax to run commands rather than point-and-click menus
- Nevertheless, Stata provides menus to run *most* of its data management, graphical, and statistical commands

Help files

Precede a command name (and certain topic names)
 with help to access its help file.

Log-files

- Stata can create a copy of everything that is sent to the Results window, with the exception of graphs.
- The default in Stata is to save the file with the extension .smcl

Do-files

- Stata do-files are text files where users can store and run their commands for reuse
 - Reproducibility
 - Easier debugging and changing commands
- We recommend *always* using a do-file when using Stata
- The file extension .do is used for do-files

Opening the do-file editor

Use the command doedit to open the dofile editor

Or click on the pencil and paper icon on the toolbar

The do-file editor is a text file editor specialized for Stata

Syntax highlighting

The do-file editor colors Stata commands blue

Comments, which are not executed, are usually preceded by * and are colored green

Words in quotes (file names, string values) are colored "red"

16

Running commands from the do-file

To run a command from the do-file, highlight part or all of the command, and then hit Ctrl-D (*Mac*: Shift+Cmd+D) or the "Execute(do)" icon, the rightmost icon on the do-file editor toolbar

Multiple commands can be selected and executed

COMMENTS

Comments are not executed, so provide a way to document the do-file

Comments are either preceded by * or surrounded by /* and */

Comments will appear in green in the do-file editor

18

Log-files

- Stata can create a copy of everything that is sent to the Results window, with the exception of graphs.
- The default in Stata is to save the file with the extension .smcl

Importing data

use load Stata dataset

save save Stata dataset

clear clear dataset from memory

import import Excel dataset

excel

delimited

import import delimited data (csv)

Loading and saving .dta files

- The command use loads Stata .dta files
 - Usually these will be stored on a hard drive, but .dta files can also be loaded over the internet (using a web address)
- Use the command save to save data in Stata's .dta format
 - The replace option will overwrite an existing file with the same name
- The extension .dta can be omitted when using use and save
- Data import commands like use will often have a clear option which clears memory before loading the new dataset

- * read from hard drive; do not execute use "C:/path/to/myfile.dta"
- * load data over internet use https://stats.idre.ucla.edu/stat/data/hs0
- * save data, replace if it exists save hs0, replace
- * load data but clear memory first use https://stats.idre.ucla.edu/stat/data/hs0, clear

Importing excel data sets

- Stata can read in data sets stored in many other formats
- The command import excel is used to import Excel data
 - An Excel filename is required (with path, if not located in working directory) after the keyword using
- Use the sheet () option to open a particular sheet
- Use the firstrow option if variable names are on the first row of the Excel sheet

* import excel file; change path below before executing import excel using "C:\path\myfile.xlsx", sheet("mysheet") firstrow clear

Importing .csv data sets

- Comma-separated values files are also commonly used to store data
- Use import delimited to read in .csv files (and files delimited by other characters such as tab or space)
- The syntax and options are very similar to import excel
 - But no need for sheet() or firstrow options (first row is assumed to be variable names in .csv files)

* import csv file; change path below before executing import delimited using "C:\path\myfile.csv", clear

Using the menu to import EXCEL and .csv data

Select File -> Import and then either "Excel spreadsheet" or "Text data(delimited,*.csv, ...)"

25

Exploring data

browse open spreadsheet of data

describe get variable properties

codebook inspect variable values

summarize summarize distribution

tabulate tabulate frequencies

Workshop dataset

- We will use a dataset consisting of 200 observations (rows) and 13 variables (columns)
- Each observation is a student
- Variables
 - Demographics gender(1=male, 2=female), race, ses(low, middle, high), etc
 - Academic test scores
 - read, write, math, science, socst
- Go ahead and load the dataset!

* Workshop dataset

use https://stats.idre.ucla.edu/stat/data/hs0, clear

Browsing the dataset

- Once the data are loaded, we can view the dataset as a spreadsheet using the command browse
- The magnifying glass with spreadsheet icon also browses the dataset

 Black columns are numeric, red columns are strings, and blue columns are numeric with string labels

Stata logical and relational operators

- == equal to
 - double equals used to check for equality
- <,>,<=,>= greater than, greater than or equal to, less than, less than or equal to
- ! not
 - != not equal
- & and
- | or

- * browse gender, ses, and read
- * for females (gender=2) who have read > 70

browse gender ses read if gender == 2 & read > 70

Quick exploring

- describe provides the following variable properties:
 - storage type (e.g. byte (integer), float (decimal), str8 (character string variable of length 8))
 - name of value label
 - variable label
- codebook detailed information about the values of each variable
- summarize command calculates a variable's:
 - number of non-missing observations
 - mean
 - standard deviation
 - min and max
- tabulate displays counts of each value of a variable
 - useful for variables with a limited number of levels

Data visualization

histogram histogram

scatter scatter plot

Data management

generate create variable

replace replace values of variable

rename rename variable

label variable give variable description

egen extended variable generation

encode convert string variable to

numeric

creating dummy indicators

- It is often necessary to create variables that are 0/1 indicators for belonging to a category of another variable, where 0=FALSE and 1=TRUE
 - often called dummy variables or indicators
 - Remember that Stata often prefers to work with numeric variables

```
* create a variable that equals 1 if prgtype
```

* equals academic, 0 otherwise

gen academic = 0
replace academic = 1 if prgtype == "academic"
tab prgtype academic

extended generation of variables

- egen (extended generate) creates variables using a wide array of functions, which include:
 - statistical functions that accept multiple variables as arguments
 - e.g. means across several variables
 - functions that accept a single variable, but do not involve simple arithmetic operations
 - e.g. standardizing a variable (subtract mean and divide by standard deviation)
- See the help file for egen to see a full list of available functions

* generate variables with functions rowmean returns mean of all non-missing values

egen meantest = rowmean(read math science socst)

summarize meantest read math science socst

encoding string variables into numeric

- encode converts a string variable into a numeric variable
 - remember that some Stata commands require numeric variables
 - encode will use alphabetical order to order the numeric codes
 - encode will convert the original string values into a set of value labels
 - encode will create a new numeric variable, which must be specified in option gen (varname)

* encoding string prgtype into numeric variable prog encode prgtype, gen(prog)

Basic statistical analysis

ttest t-tests

correlate correlation matrices

regress linear regression

logistic regression

T-tests

- independent samples t-test: whether the mean of a variable is different between 2 groups
- paired samples t-test: assesses whether the means of 2 variables are the same

* independent samples t-test

```
ttest var, by (groupvar)
```

where var is the variable whose mean will be tested for differences between levels of groupvar

* paired samples t-test

```
ttest var1 == var2
```

correlation

- A correlation coefficient quantifies the linear relationship between two (continuous) variables on a scale between -1 and 1
- Syntax: correlate varlist
- The output will be a correlation matrix that shows the pairwise correlation between each pair of variables

* correlation matrix of 5 variables corr read write math science socst

(obs=195)

		read	write	math	science	socst
read	T-	1.0000				
write	1	0.5960	1.0000			
math	1	0.6492	0.6203	1.0000		
science		0.6171	0.5671	0.6166	1.0000	
socst	1	0.6175	0.5996	0.5299	0.4529	1.0000

linear regression

- Linear regression, or ordinary least squares regression, models the effects of one or more predictors, which can be continuous or categorical, on a normally-distributed outcome
- Syntax: regress depvar varlist, where depvar is the name of the dependent variable, and varlist is a list of predictors.
 - For categorical predictors with the \pm . prefix, Stata will automatically create dummy 0/1 indicator variables and enter all but one (the first, by default) into the regression

LINEAR REGRESSION EXAMPLE

* linear regression of write on continuous predictor math and categorical predictor prog

regress write math i.prog

Source	SS	df	MS	Number	of obs	= 200	
+-				F(3, 1	96)	= 44.20	
Model	7214.30058	3	2404.76686	Prob >	F	= 0.0000	
Residual	10664.5744	196	54.411094	R-squa:	red	= 0.4035	
+-				Adj R-	squared	- 0.394 4	
Total	17878.875	199	89.843593	Root M	SE	= 7.3764	
write	Coef	Std. Err.	t	P> t	[95% Conf	. Interval]	
			-/				
math	.5476883	.0635714	8.62	0.000	.4223166	.6730601	
1		\ /			1		
prog) ()		
general	-1.248212	1.381794	-0.90	0.367	-3 973304	1.47688	
vocati	-3.84865	1.426982	-2.70	0.008	6.66286	-1.034441	
_cons	25.18486	3.677755	6.85	0.000	17.9319	32.43801	

logistic regression

- Logistic regression is used to estimate the effect of multiple predictors on a binary outcome
- Syntax very similar to regress: logit depvar varlist, where depvar is a binary outcome variable and varlist is a list of predictors
- Add the or option to output the coefficients as odds ratios

Logistic regression example

```
* logistic regression of being in academic program on female and math score
* coefficients as odds ratios
logit academic i.female c.math, or
Logistic regression
                                               Number of obs
                                                                         200
                                               LR chi2(2)
                                                                       46.85
                                               Prob > chi2
                                                                      0.0000
Log likelihood = -114.95535
                                                                      0.1693
                                               Pseudo R2
    academic | Odds Ratio
                           Std. Err.
                                                         [95% Conf. Interval]
                                               P>|z|
                            .3680227
                1.144479
                                        0.42
                                               0.675
                                                         . 093863
                                                                    2.149429
    1.female |
                1.128431
                            .0229718
                                        5.94
                                               0.000
                                                         1.084293
                                                                    1.174365
       math |
                 .0018648
                            .0020288
                                       -5.78
                                               0.000
                                                         .002211
                                                                     .0157282
       _cons
```

Where to find additional helps?

- Data Manipulation topics: help contents data management
- List of all Estimation Commands: help estimation commands
- Time series: help time
- Survival analysis: help st
- Panel data: help xt
- Survey analysis: help survey
- UCLA STATA resources: https://stats.idre.ucla.edu/stata/