```
In[19]:
 print("Shape of target: {}".format(iris dataset['target'].shape))
Out[19]:
 Shape of target: (150,)
The species are encoded as integers from 0 to 2:
In[20]:
 print("Target:\n{}".format(iris_dataset['target']))
Out[20]:
 Target:
 2 2]
```

The meanings of the numbers are given by the iris['target_names'] array: 0 means setosa, 1 means versicolor, and 2 means virginica.

Measuring Success: Training and Testing Data

We want to build a machine learning model from this data that can predict the species of iris for a new set of measurements. But before we can apply our model to new measurements, we need to know whether it actually works—that is, whether we should trust its predictions.

Unfortunately, we cannot use the data we used to build the model to evaluate it. This is because our model can always simply remember the whole training set, and will therefore always predict the correct label for any point in the training set. This "remembering" does not indicate to us whether our model will generalize well (in other words, whether it will also perform well on new data).

To assess the model's performance, we show it new data (data that it hasn't seen before) for which we have labels. This is usually done by splitting the labeled data we have collected (here, our 150 flower measurements) into two parts. One part of the data is used to build our machine learning model, and is called the training data or training set. The rest of the data will be used to assess how well the model works; this is called the *test data*, *test set*, or *hold-out set*.

scikit-learn contains a function that shuffles the dataset and splits it for you: the train_test_split function. This function extracts 75% of the rows in the data as the training set, together with the corresponding labels for this data. The remaining 25% of the data, together with the remaining labels, is declared as the test set. Deciding how much data you want to put into the training and the test set respectively is somewhat arbitrary, but using a test set containing 25% of the data is a good rule of thumb.

In scikit-learn, data is usually denoted with a capital X, while labels are denoted by a lowercase y. This is inspired by the standard formulation f(x)=y in mathematics, where x is the input to a function and y is the output. Following more conventions from mathematics, we use a capital X because the data is a two-dimensional array (a matrix) and a lowercase y because the target is a one-dimensional array (a vector).

Let's call train test split on our data and assign the outputs using this nomenclature:

In[21]:

```
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(
    iris_dataset['data'], iris_dataset['target'], random_state=0)
```

Before making the split, the train test split function shuffles the dataset using a pseudorandom number generator. If we just took the last 25% of the data as a test set, all the data points would have the label 2, as the data points are sorted by the label (see the output for iris['target'] shown earlier). Using a test set containing only one of the three classes would not tell us much about how well our model generalizes, so we shuffle our data to make sure the test data contains data from all classes.

To make sure that we will get the same output if we run the same function several times, we provide the pseudorandom number generator with a fixed seed using the random_state parameter. This will make the outcome deterministic, so this line will always have the same outcome. We will always fix the random_state in this way when using randomized procedures in this book.

The output of the train_test_split function is X_train, X_test, y_train, and y_test, which are all NumPy arrays. X_train contains 75% of the rows of the dataset, and X test contains the remaining 25%:

In[22]:

```
print("X_train shape: {}".format(X_train.shape))
    print("y train shape: {}".format(y train.shape))
Out[22]:
    X train shape: (112, 4)
    y_train shape: (112,)
```

In[23]:

```
print("X test shape: {}".format(X test.shape))
    print("y_test shape: {}".format(y_test.shape))
Out[23]:
   X_test shape: (38, 4)
    y_test shape: (38,)
```

First Things First: Look at Your Data

Before building a machine learning model it is often a good idea to inspect the data, to see if the task is easily solvable without machine learning, or if the desired information might not be contained in the data.

Additionally, inspecting your data is a good way to find abnormalities and peculiarities. Maybe some of your irises were measured using inches and not centimeters, for example. In the real world, inconsistencies in the data and unexpected measurements are very common.

One of the best ways to inspect data is to visualize it. One way to do this is by using a scatter plot. A scatter plot of the data puts one feature along the x-axis and another along the y-axis, and draws a dot for each data point. Unfortunately, computer screens have only two dimensions, which allows us to plot only two (or maybe three) features at a time. It is difficult to plot datasets with more than three features this way. One way around this problem is to do a pair plot, which looks at all possible pairs of features. If you have a small number of features, such as the four we have here, this is quite reasonable. You should keep in mind, however, that a pair plot does not show the interaction of all of features at once, so some interesting aspects of the data may not be revealed when visualizing it this way.

Figure 1-3 is a pair plot of the features in the training set. The data points are colored according to the species the iris belongs to. To create the plot, we first convert the NumPy array into a pandas DataFrame. pandas has a function to create pair plots called scatter_matrix. The diagonal of this matrix is filled with histograms of each feature:

In[24]:

```
# create dataframe from data in X_train
# label the columns using the strings in iris dataset.feature names
iris dataframe = pd.DataFrame(X train, columns=iris dataset.feature names)
# create a scatter matrix from the dataframe, color by y_train
grr = pd.scatter matrix(iris dataframe, c=y train, figsize=(15, 15), marker='o',
                        hist_kwds={'bins': 20}, s=60, alpha=.8, cmap=mglearn.cm3)
```