Inference for Kaplan-Meier Estimator	
Outline • Greenwood's formula • Confidence interval for survival function	
 Introduction We have ued the Kaplan-Meier method to estimate the survival function non-parametrically. How reliable is the estimate? Introduce a Greenwood's formula to estimate the variance of the Kaplan-Meier estimator. Use i to construct confidence intervals. 	

Variance of Kaplan-Meier estimator

• Recall that K-M estimator, for $t \ge t_1$,

$$\hat{S}(t) = \prod_{t_i \le t} \left[1 - \frac{d_i}{Y_i} \right].$$

• Greenwood's formula provides an estimator of variance of K-M estimator:

$$\begin{split} \widehat{Var}\left(\hat{S}(t)\right) &= \hat{S}^2(t) \sum_{t_i \leq t} \frac{d_i}{\gamma_i(\gamma_i - d_i)} \\ &= \hat{S}^2(t) \hat{\sigma}_S^2(t), \end{split}$$

where
$$\hat{\sigma}_S^2(t) = \sum_{t_i \le t} \frac{d_i}{Y_i(Y_i - d_i)}$$
.

An example

A total of 18 quails were radio tagged with survival times in

3,3,6,8,8+,9,9+,9+,10,10+,12+,13+,13+,13+,13+,13+,13+,13+					
t		Y_i	$\widehat{S}(\mathbf{t}) = \prod_{t_i \le t} \left[1 - \frac{d_i}{Y_i} \right]$	$\hat{\sigma}_S^2(t) \sum_{t_i \le t} \frac{d_i}{Y_i(Y_i - d_i)}$	$V(\widehat{S}(t)) = \widehat{S}^{2}(t)\widehat{\sigma}_{S}^{2}(t)$
3	2	18	0.89	$\frac{2}{18\times16}$ =0.0069	0.0055
6	1	16	0.83	$0.0069 + \frac{1}{16 \times 15} = 0.0111$	0.0076
8	1	15	0.78	$0.0111 + \frac{1}{15 \times 14} = 0.0159$	0.0096
9	1	13	0.72	$0.0159 + \frac{1}{12 \times 11} = 0.0234$	0.0121
10	1	10	0.65	$0.0234 + \frac{1}{11 \times 10} = 0.0325$	0.0137

Confidence intervals

• Greenwood's formula for the estimation of variance of K-M estimator:

$$\hat{\sigma}_{KM}^2(t) = \hat{S}^2(t) \sum_{t_i \le t} \frac{a_i}{Y_i(Y_i - d_i)}.$$

 $\hat{\sigma}_{KM}^2(t) = \hat{S}^2(t) \sum_{t_i \leq t} \frac{d_i}{\gamma_i (\gamma_i - d_i)}.$ • Then a naïve $100(1-\alpha)\%$ confidence interval (CI) for S(t) is

$$\hat{S}(t) \pm Z_{\alpha/2} \hat{\sigma}_{KM}(t).$$

Data example

t	$\widehat{S}(t)$	$V(\widehat{S}(t))$	95% naïve Cl $\widehat{S}(t)\pm 1.96\sqrt{V(\widehat{S}(t))}$
3	0.89	0.0055	$(0.74, \frac{1.03}{1.03}) = 0.89 \pm 1.96 \sqrt{0.0055}$
6	0.83	0.0076	(0.66,1.01)
8	0.78	0.0096	(0.59,0.97)
9	0.72	0.0121	(0.51,0.93)
10	0.65	0.0137	(0.41,0.88)

An important criticism of the naïve CI is that the bounds of the interval can lie outside [0, 1] and can contain insensible values

Confidence intervals

- The naïve CIs may include impossible values outside of [0, 1].
- Better CIs can be obtained by applying transformations on S(t).
- Kalbeisch & Prentice (2002) suggested $T(t) = \log[-\log S(t)]$
 - $S(t) \in (0,1)$
 - $\ \log(S(t)) \in (-\infty, 0)$
 - $\log(-\log(S(t))) \in (-\infty, +\infty)$

Confidence intervals

- Build CI for $T(t) = \log[-\log S(t)]$.
- Back transform to obtain a CI for $\mathcal{S}(t)$.
- Specifically, $100(1-\alpha)\%$ CI for T(t) is

$$c_1 = \log\left[-\log\hat{S}(t)\right] + Z_{\frac{\alpha}{2}}\sqrt{V\left(\log\left[-\log\hat{S}(t)\right]\right)}$$

$$c_2 = \log[-\log \hat{S}(t)] - Z_{\frac{\alpha}{2}} \sqrt{V(\log[-\log \hat{S}(t)])}$$

Confidence intervals

- Then the asy. $100(1-\alpha)\%$ CI for S(t) is $(\exp(-e^{\textcolor{red}{c_2}}), \exp(-e^{\textcolor{red}{c_1}})) = \left[\hat{S}(t)^\theta, \hat{S}(t)^{\frac{1}{\theta}}\right],$ where $\theta = \exp\left\{\frac{Z_{\alpha/2}\hat{\sigma}_S(t)}{\log[\hat{S}(t)]}\right\}$.
- · Always yields proper bounds.
- It is not defined for $\hat{S}(t) = 0$ or 1. In these cases, use (0,0), or (1,1) for CI.
- Default in SAS.

Interpretation

• For a given time t, a 95% CI for S(t) is

$$\left[\hat{S}(t)^{\theta},\hat{S}(t)^{\frac{1}{\theta}}\right]$$

- How to interpret this CI?
 - If repeated samples were taken and the 95% CI is calculated for each sample, then about 95% of these CIs would contain the true value of S(t).
 - But for any particular sample, the confidence bounds are fixed. It either covers S(t) or not.

Interpretation

- This CI is point-wise: for any fixed point t, its coverage probability is $100(1-\alpha)\%$.
- It doesn't tell us the coverage probability of the entire curve.
- To make inference about the entire survival curve, we need confidence bands with $100(1-\alpha)\%$ coverage for the entire curve.
- Hall & Wellner (1980) proposed a confidence band, but the formula is very complicated.

Data example

t	$\widehat{S}(t)$	$V(\widehat{S}(t))$	95% naïve CI	95% loglog CI
3	0.89	0.0055	(0.74,1.03)	(0.62, 0.97)
6	0.83	0.0076	(0.66,1.01)	(0.57, 0.94)
8	0.78	0.0096	(0.59,0.97)	(0.51, 0.91)
9	0.72	0.0121	(0.51,0.93)	(0.45, 0.87)
10	0.65	0.0137	(0.41.0.88)	(0.37, 0.83)

Interpretation(loglog CI): we are 95% confident that the probability of surviving more than 3 weeks is between 0.62 and 0.97.

Data example

Summary

- Greenwood's formula
- Confidence intervals for S(t)
 - Naïve CI
 - Loglog transformed CI
- Confidence bands