Table 1: Endogenous

Variable	L TEX	Description
W	W	Salario
$R_{-}K$	R^K	Renta del capital
L	L	Trabajo
K	K	Capital
Y	Y	Produción
I	I	Inversión
С	C	Consumo
A	A	Productividad

Table 2: Exogenous

Variable	₽TEX	Description
eps_A	ϵ^A	Choque de productividad

Table 3: Parameters

Variable	ĿŒX	Description
sigma	σ	Inverse of intertemporal subs elasticity
bbeta	β	Factor de descuento
delta	δ	Depreciación del capital
aalpha	α	Part. del capital en la producción
${\tt psi_l}$	ϕ^L	psi L
$\mathtt{pphi}_\mathtt{K}$	ϕ^K	Costo de ajuste del capital
eta	η	Elasticidad de Frish
rho	$ ho_A$	Persistencia de la productividad
Ass	A	Estado estacionario de la productividad

Table 4: Parameter Values

Parameter	Value	Description
σ	2.000	Inverse of intertemporal subs elasticity
β	0.980	Factor de descuento
δ	0.050	Depreciación del capital
α	0.300	Part. del capital en la producción
ϕ^L	1.000	psi L
ϕ^K	0.000	Costo de ajuste del capital
η	1.500	Elasticidad de Frish
$ ho_A$	0.750	Persistencia de la productividad
A	1.000	Estado estacionario de la productividad

[name= 'Función de producción']

$$Y_t = A_t K_{t-1}^{\alpha} L_t^{1-\alpha} \tag{1}$$

[name= 'Demanda de capital']

$$R^{K}_{t} = \alpha \frac{Y_t}{K_{t-1}} \tag{2}$$

[name= 'Ley de acumulación de capital']

$$K_t = K_{t-1} (1 - \delta) + I_t + \frac{\phi^K}{2} (K_t - K_{t-1})^2$$
(3)

[name= 'Demanda de trabajo']

$$W_t = (1 - \alpha) \frac{Y_t}{L_t} \tag{4}$$

[name= 'Oferta de trabajo']

$$\phi^L L_t^{\eta} C_t^{\sigma} = W_t \tag{5}$$

[name= 'Ecuación de Euler']

$$\left(\frac{C_{t+1}}{C_t}\right)^{\sigma} = \beta \left(R^K_t + 1 - \delta + \phi^K \left(K_t - K_{t-1}\right)\right) \tag{6}$$

[name= 'Productividad']

$$A_t = A_{t-1}^{\rho_A} A^{1-\rho_A} \left(1 + \epsilon^A_{\ t} \right) \tag{7}$$

[name= 'Demanda agregada']

$$Y_t = I_t + C_t \tag{8}$$