Due: April 4, 2024

1. Carry out the following exploratory time series analysis in R using the beer product in section 1.4.3.

Data File Table cbe.dat attached.

- (a) EDA produce a time plot of the data. Plot the aggregate annual series and boxplot that summaries the observed values for each season, and comment on the plots.
- (b) Decompose using both methods the series into the components trend, seasonal effect, and residuals, and plot the decomposed series. Produced a plot of the trend with a superimposed seasonal effect.
- (c) Compare the two results by different decomposition methods above (b). Which method make more sense and why.

2. calculate sample autocorrelation

you are given the following ordered sample of size 6 from a time series

$$1\ 1.5\ 1.6\ 1.4\ 1.5\ 1.7$$

Calculate the sample lag 2 autocorrelation.

- 3. calculation of forecast error You are given:
 - i The random walk model

$$y_t = y_0 + c_1 + c_2 + \ldots + c_t$$

where $c_t, t = 0, 1, 2, ..., T$ denote observations from a white noise process,

ii The following nine observed values of c_t :

	t	11	12	13	14	15	16	17	18	19
ĺ	c_t	2	3	5	3	4	2	4	1	2

- iii The average value of c_1, c_2, \ldots, c_{10} is 2.
- iv The 9 step ahead forecast of y_{19}, \hat{y}_{19} , is estimated based on the observed value of y_{10}

calculate the forecast error, $y_{19} - \hat{y}_{19}$

- 4. **forecast an AR(1) model** An AR(1) model was fit to the following time series data through time t = 7.
 - The mean was subtracted from the data before the parameter was estimated.
 - The estimated parameter for the model is -0.79.

time(t)	y_t
1	8.7
2	7.0
3	8.6
4	7.4
5	8.3
6	7.6
7	8.5
mean	8.01

Calculate the forecast for the observation at t = 9, \hat{y}_9 .

5. Use data set Global.dat attached for the following exercise.

Create a time series $\{x_t\}$ object starting date of 1856 January and the ending date of 2005 December.

- (a) You are interested at the annual temperature, plot the annual average temperature from 1900 to 2005.
- (b) Suppose that you are interested to look at more recent the annual temperature from 1950 to 2005, please create a new annual temperature time series $\{x_t\}$ by first extracting data (using window() function) from $\{x_t\}$ and second aggregating the series into an annual time series. Plot the new series average annual temperature. Also superimpose a line using regression of the annual temperature on the new series.
- (c) Please fit the new annual Global Temperature series $\{x_t\}$ from 1950 to 2005 using the following model.

$$y_t = \alpha + \beta t + z_t$$

Report the coefficient estimates and the associated confidence intervals.

- (d) Please estimate ρ_1 of z_t obtained from (b).
- (e) Please fit a GLS model with AR(1) residual correlation to y_t from 1950 to 2005. Report the coefficient estimates and the associated confidence intervals.
- (f) Please overlay the GLS fitted series \hat{y}_t from 1950 to 2005 as a fitted line to your graph in (b). Commenting on the gls line and the regression line in did before in (b).