เลขที่นั่งสอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2557

วิชา ENE325 Electromagnetic Fields and Waves ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ) สอบ วันพุธที่ 24 กันยายน พ.ศ. 2557

เวลา 9:00 -12:00น.

คำสั่ง:-

- 1. ข้อสอบวิชานี้มี 5 ข้อ 11 หน้า (รวมใบปะหน้า) คะแนนรวม 100 คะแนน
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น
- 3. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 4. ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

คำเตือน/คำแนะนำ:-

- เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ
- นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุตให้พันสภาพการเป็นนักศึกษา
- นักศึกษาควรดูข้อสอบทั้งหมตก่อนเริ่มลงมือทำและควรอำนคำถามให้รอบคอบก่อนเริ่มทำการ คำนวณเพื่อไม่ให้เสียเวลากับการคำนวณที่ไม่มีประโยชน์

ข้อสอบข้อที่	1	2	3	4	5	คะแนนรวม
คะแนนเดิม	20	20	20	20	20	100
คะแนนที่ได้						

ชื่อ-สกุล	***************************************	•	 รหัสประจำ	าตัว	

รศ.ตร.ราชวดี ศิลาพันธ์ (โทร: 9062) ผู้ออกซ้อสอบ

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รองศาสตราจารย์ ตร.ราชวดี ศิลาพันธ์) หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

สูตรคำนวณ

- 1. พิกัดคาร์ทีเซียนมีองค์ประกอบ (x, y, z)
- 2. พิกัดทรงกระบอกมืองค์ประกอบ (ho, ϕ , Z)
- 3. พิกัดทรงกลมมีองค์ประกอบ (r, θ , ϕ)
- 4. ตารางการแปลงพิกัดระหว่างพิกัดคาร์ทีเชียน (Cartesian coordinates) และพิกัดทรงกระบอก (cylindrical coordinates)

4.1 ตารางการแปลงชนาด

$P(x, y, z)$ to $P(r, \theta, \phi)$	P (r, θ, ϕ) to P (x, y, z)
$\rho = \sqrt{x^2 + y^2}$ $\phi = \tan^{-1} \left(\frac{y}{x}\right)$ $z = z$	$x = \rho \cos \phi$ $y = \rho \sin \phi$ $z = z$

4.2 ตารางการแปลงทิศทาง

	$\hat{a}_{ ho}$	\hat{a}_{ϕ}	\hat{a}_z
\hat{a}_x •	$\cos \phi$	-sin ϕ	0
\hat{a}_y •	sin ø	$\cos \phi$	0
\hat{a}_z •	0	0	1

- 5. เวกเตอร์ 1 หน่วย (unit vector) $\hat{a}_R = \frac{R}{\vec{R}}$
- 6. สมการของสนามไฟฟ้า $\overline{E} = \frac{\overrightarrow{F}}{O}$ V/m

โดยที่ \vec{F} = แรงที่กระทำบนประจุ Q (Newton)

- 7. กฎของคูลอมบ์ (Coulomb's law)
 - 7.1 สนามไฟฟ้าจากจุดประจุ $\overrightarrow{E} = \frac{Q}{4\pi\varepsilon_0 R^2} \hat{a}_r \text{V/m}$ (พิกัดทรงกลม)
 - 7.2 สนามไฟฟ้าจากเส้นลวดยาวอนันต์ $\overline{E} = \frac{\rho_L}{2\pi \varepsilon_0 \rho} \hat{a}_\rho \text{V/m}$ (พิกัดทรงกระบอก)

โดยที่

 $ho_{\!\scriptscriptstyle L}$ = ความหนาแน่นของประจุต่อความยาว (C/m)

ho = ระยะทางจากเส้นลวดในแนวรัศมี (m)

 $\hat{a}_{
ho}$ = เวกเตอร์ 1 หน่วยในแนวรัศมี

8. กฎของเก๊าส์ (Gauss's law):

8.1 รูปแบบอินทิกรัล $m{\varPsi}=\phi \, \overrightarrow{E} \cdot d \, \overrightarrow{S}=rac{q_{en}}{arepsilon_0}$ V·m

โดยที่ Ψ = เส้นแรงไฟฟ้า (electric flux) (V·m) หรือ

8.2 รูปแบบอินทกรัล $\oint \overrightarrow{D} \cdot d\overrightarrow{S} = q_{en}$ Coulomb โดยที่ ความหนาแน่นเส้นแรงไฟฟ้า $\overrightarrow{D} = \varepsilon_0 \overrightarrow{E}$ C/m²

8.3 รูปแบบอนุพันธ์ $\nabla \cdot \overrightarrow{D} = \rho_{\nu}$ C/m³

ในรูปแบบทรงกลม $\nabla \cdot \overrightarrow{D} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 D_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (D_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial D_{\phi}}{\partial \phi}$

9. ขนาดประจุรวมบนพื้นผิว: $Q=\iint
ho_s dS$ Coulomb

โดยที่ $\rho_s = ความหนาแน่นของประจุต่อพื้นที่ (C/m²)$

dS = surface differential element (m³) สำหรับทรงกลม = $r^2 sin \Theta d \Theta d \phi$

10. ศักย์สัมบูรณ์ที่เกิดจากประจุใดๆ $V=rac{Q}{4\pi arepsilon_0 r}$ Volt

โดยที่ r= ระยะทางจากจุดประจุไปยังจุดสังเกต (m)

11. ความต่างศักย์ทางไฟฟ้าระหว่างจุด A (ปลายทาง) กับจุด B (ต้นทาง)

$$V_{AB} = -\int_{R}^{A} \vec{E} \cdot d\vec{L}$$
 Volt

โดยที่ $d\vec{L}$ = line differential element

12. ค่าการยอมรับได้ทางไฟฟ้าใน free space $\mathcal{E}_0 = 8.854 \times 10^{-12} \, \text{F/m}$

- 1. Electrostatics Concept: (20 คะแนน)
- (a) กำหนดให้ประจุ 2 ตัว Q_1 = 10 nC และ Q_2 = 100 nC วางห่างกันเป็นระยะ 100 nm แรงที่กระทำ บนประจุ Q_2 มีค่าเท่ากับแรงที่กระทำบนประจุ Q_1 หรือไม่ อธิบาย (5 คะแนน)

(b) ปัจจัยใดบ้างที่ทำให้ขนาดเส้นแรงหรือฟลักซ์ไฟฟ้าที่เดินทางผ่านพื้นที่ใดๆ มีการเปลี่ยนแปลง (5 คะแนน)

(c) จากรูปเป็นการอธิบายการทดลองของฟาราเดย์ จงวาดเส้นแรงหรือฟลักซ์ไฟฟ้าที่เกิดขึ้นในแต่ละ ขั้นตอนการทดลอง (5 คะแนน)

(d) กระแสไฟฟ้ามี 2 ชนิดได้แก่ กระแสการพา (convection current) และกระแสการนำ (conduction current) จงอธิบายความแตกต่างระหว่างกระแสทั้ง 2 นี้ (5 คะแนน)

ชื่อ

_____รหัสนักศึกษา_____เลขที่นั่งสอบ____

2. Coordinate systems: จากเวกเตอร์ $\vec{D} = \frac{(\hat{xa_x} - 2\hat{ya_y})}{(\hat{x}^2 + \hat{y}^2)}$ จงแปลงเป็นเวกเตอร์ในพิกัด

ทรงกระบอกโดย (20 คะแนน)

(a) ใส่คำตอบในรูปแบบตัวแปรของพิกัดทรงกระบอก (10 คะแนน)

(b) คำนวนค่า \vec{D} ที่จุด $m{
ho}=1$ $m{\phi}=0.3m{\pi}$ และ z=5 ในพิกัดทรงกระบอก และในพิกัดคาร์ทีเซียน (10 คะแนน)

3. Coulomb's law: รูปข้างล่างประกอบด้วยเส้นลวดตัวนำความยาวอนันต์ 2 เส้นวางตัวตามแนวแกน z โดยเส้นที่ 1 อยู่ที่ตำแหน่ง x=-3 m, y=-4 m มีความหนาแน่นประจุ $\rho_{i}=10$ nC/m เส้นที่ 2 อยู่ที่ ตำแหน่ง x=3 m, y=4 m มีความหนาแน่นประจุเท่ากัน $\rho_{i}=10$ nC/m และจุดประจุขนาด 10 nC อยู่ที่ตำแหน่ง (0,0,5) จงคำนวณความเข้มสนามไฟฟ้ารวมแบบเวคเตอร์จากแหล่งกำเนิดประจุทั้งหมดที่ (20 คะแนน)

4	
٦,	`
UE	ני

_ รหัสนักศึกษา_____ เลขที่นั่งสอบ_____

(b) พิกัด (0, 0, -5) (5 คะแนน)

(c) พิกัด (0, 0, 10) (5 คะแนน)

4. Gauss's law and Divergence: กำหนดให้ทรงกลมตัวนำไฟฟ้ากลวงมีรัศมีด้านใน (r_{in}) ชนาด 3 mm และด้านนอก (r_{out}) ขนาด 4 mm (ความหนาของเปลือก = 1 mm) และเวกเตอร์ความหนาแน่นเส้นแรง ไฟฟ้า (electric flux density) มีค่า $\overrightarrow{D} = 5r^2 \hat{a}_r$ C/m² จงคำนวณ (20 คะแนน)

(a) ความหนาแน่นประจุเชิงปริมาตร $ho_{\!\scriptscriptstyle V}$ ที่ระยะรัศมี r = 4 mm (5 คะแนน)

(b) ขนาดของความหนาแน่นเส้นแรงไฟฟ้า D และสนามไฟฟ้า E ที่ระยะรัศมี $r=4~\mathrm{mm}$ (5 คะแนน)

(c) ฟลักซ์ของสนามไฟฟ้า $m{\Psi}$ ที่พุ่งออกจากทรงกลมที่ระยะรัศมี r = 4 mm (5 คะแนน)

(d) ขนาดของประจุที่อยู่ในทรงกลมนี้ที่ระยะรัศมี $r=4~\mathrm{mm}$ (5 คะแนน)

4	
9	อ

•	v	-	
รหัส	1111	101	ብ ጉ ቀገ

	الما		
เลขที	นัง	สอ'	ι

- (a) ศักย์สัมบูรณ์ (Absolute potential) ที่ P (r=1 cm, $\boldsymbol{\theta}=25$ °, $\boldsymbol{\varphi}=50$ °) (10 คะแนน)

(b) ความต่างศักย์ V_{AB} ระหว่างจุด A (r=1 cm, $\boldsymbol{\theta}=45^{\circ}$, $\boldsymbol{\varphi}=60^{\circ}$) และจุด B (r=3 cm, $\boldsymbol{\theta}=30^{\circ}$, $\boldsymbol{\varphi}=90^{\circ}$) (10 คะแนน)