COURSE PLAN

Department:	Instrumentation and Control Engineering									
Course Name & code:	Industrial A	Industrial Automation				ICE 3252				
Semester & branch:	VI	VI				Electronics & Instrumentation Engineering				
Name of the faculty:	Mr. Bipin K	Mr. Bipin Krishna & Dr. Bhagya R Navada								
No of contact hours/week:		L	T		P		С			
		4	0 0		0		4			

COURSE OUTCOMES (COS)

At the	e end of this course, the student should be able to:	No. of Contact Hours	Marks	Progra m Outcom es (POs)	PSO	BL (Recommended)
CO1	Review the computer based control, PLC architecture and maintenance.	8	16	1,2	1	2,3
CO2	Analyse the function blocks of PLC programming.	6	12	1,2, 3,6	1,2	3,4
CO3	Develop PLC programmes using different programming methods.	15	30	1,2, 3,6	1,2	3,4,5,6
CO4	Comprehend the structure and working of various types of communication protocols used in automation domain.	10	22	1,2	1	2,3,4
CO5	Understand the architecture and interface concepts of DCS	9	20	1,2	2	2,3,4
	Total	48	100			

Assessment Plan

<u>IN – SEMESTER ASSESSMENTS</u>

S. No.			Assessment Method	Time Duration	Marks	Weightage	Typology of Questions (Recommended)	Schedule	**Topics Covered	
1	MISAC	1 Surprise Assignment		20 Mins	5	1 Question × 5M = 5 marks (Minimum 5 questions to be given)	Bloom's taxonomy (B) level of the question should be L3 and above.	Feb 13-17, 2023	Topics covered during Jan 30 th to Feb 11, 2023.	
		2	Quiz	15 Mins	5	$10 \text{ MCQs} \times \frac{1}{2} = 5$	Bloom's taxonomy (BT) level of the question should be L3 and above.	Feb 27-March 4 th , 2023	Topics covered during Jan 30 th to Feb 25, 2023	
		3	In-semester Exam 1	20 Mins	15	Objective: 5M 10 MCQs × ½ = 5 marks Descriptive: 10 M (2 Questions of 2 marks +2 Questions of 3 marks)	Bloom's taxonomy (BT) level of the question should be L3 and above.	March 10 th - 13 th 2023	Topics covered during Jan 30 th to March 4 th , 2023	
		4	In-semester Exam 2	60 Mins	15	Objective: 5M $10 \text{ MCQs} \times \frac{1}{2} = 5 \text{ marks}$ Descriptive: 10 M (2 Questions of 2 marks) +2 Questions of 3 marks)	Bloom's taxonomy (BT) level of the question should be L3 and above.	April 18-20,2023	Topics covered during March 6 th to April 14 th , 2023	
2	FISAC	1	Quiz	15 Mins	5	$10 \text{ MCQs} \times \frac{1}{2} = 5$	Bloom's taxonomy (BT) level of the question should be L3 and above.	March 27 th to April 01, 2023	Lecture N0. 14-22	

	2	Surprise Assignment	20 Mins	5	1 Question × 5M = 5 marks (Minimum 5 questions to be given)	Bloom's taxonomy (BT) level of the question should be L3 and above.	May 2 nd to 08 th , 2023	Topics covered in the guest lecture.				
	<u>END – SEMESTER ASSESSMENT</u>											
1	Regular/Make-	Up Exam	180 Mins	50	Answer all 5 full questions of 10 marks each. Each question can have 3 parts of 2/3/4/5/6 marks.	level of the	17 th week of the semester	Comprehensive examination covering full syllabus.				

** Individual faculty will be entering the topics

<u>NOTE:</u> Information provided in the table is as per the In-semester assessment plan and schedule of V and VII semester B. Tech provided from Academic Section.

^{***} Individual faculty must identify the assessment method from table 3 and fill in the details.

Flexible In-semester Assessment Component (FISAC):

- i) The FISAC 1 & FISAC 2 may be any of the types given in Table 1. However, the two components should be of different type.
- ii) The type of assessment should be informed to the students well in advance.
- iii) Syllabus for the last component of In-semester Assessment (ISAC) i.e. FISAC 2 should cover the topics mentioned for self-study if any / topics which are not covered till MISAC 4: In-Semester Exam 2.

Table 1: Flexible In-semester Assessment Component (FISAC)

No	Туре	Description
A.	Quiz/MCQs	Same as MISAC 2: Quiz/MCQs
В.	Surprise Assignment	Same as MISAC 3: Surprise assignment.
C.	Take Home Assignment	*10 questions are to be given to each student. *Questions must be of Blooms Taxonomy Level 3 for first year and Level 4 for higher semesters. *Questions are to be given TWO weeks in advance. *Students have to write the answers to all the questions.
D.	Group Assignment	*The students are to be grouped in such a way that there are 3 – 4 students in each group. *Each group is to be given one question. *The questions should be of Blooms Taxonomy Level 4 for first year and Level 5 for higher semesters. *Questions are to be given TWO weeks in advance. *The questions may be in the form of case studies, design, report writing, etc.
E.	Seminar	*Students may be given the topics for seminar relevant to the course of study. *Topics are to be given TWO weeks in advance. *Should be of Blooms Taxonomy Level 4 for first year and Level 5 for higher semesters. *Topics should be related to the courses of study. *Topics should be in the field of recent developments in the courses of study. *Students have to collect the data regarding the seminar topic and submit a report. *Students should make a presentation for about TEN minutes using Power Point.
F.	Quiz / Assignment based on invited talks	*Faculty have to arrange for the invited talk in the emerging areas in the courses of study. *Quiz / Assignment is to be conducted on the topic of the invited talk. *Questions should be at Blooms Taxonomy Level 4 for first year and Level 5 for higher semesters.
G.	Development of Software / Apps	*Faculty has to define the problem statement. *Problem Statements are to be given TWO weeks in advance. *Should be at Blooms Taxonomy Level 4 for first year and Level 5 for higher semesters. *Students have to develop the software / mobile apps using the appropriate software language / platform.
H.	Mini Project	*Faculty has to define the problem statement. *Problem Statements are to be given TWO weeks in advance. *Should be at Blooms Taxonomy Level 4 for first year and Level 5 for higher semesters. *Students have to develop prototypes.

LESSON PLAN

L No	TOPICS	Course Outcome Addressed
1	Introduction to the course	
2	Computers in Process Control: Data loggers, Data Acquisition Systems (DAS)	CO1
3	Direct Digital Control (DDC)	CO1
4	Supervisory Control and Data Acquisition Systems (SCADA), sampling considerations	CO1
5	Programmable Logic Controller (PLC): Definition, overview of PLC systems	CO1
6	PLC architecture, power supplies and isolators	CO1
7	input/output modules	CO1
8	PLC Maintenance: networking of PLC, PLC installation, troubleshooting and maintenance	CO1
9	wiring of sensors and output devices to the PLC	CO1
10	Ladder logic Programming: General PLC programming procedures	CO3
11	Programming on-off inputs/ outputs	CO3
12	Auxiliary commands and functions	CO2
13	PLC Basic Functions, register basics	CO2
14	Timer functions	CO2
15	Problems using Timers	CO3
16	Problems using Timers	CO3
17	Counter Function	CO2
18	Problems using counters	CO3
19	Problems using counters	CO3
20	PLC Intermediate Functions: Arithmetic functions	CO2
21	Skip and MCR functions, Number comparison functions	CO2
22	Problems using Data move systems	CO3
23	Problems with PLC Advanced intermediate functions: Utilizing digital bits, sequencer functions	CO3
24	Problems with PLC-PID functions, PLC advanced functions	CO3
25	Problems with Analog PLC operatio and matrix functions	CO3
26	General programming procedures to construct Instruction List (IL) and problems	CO3
27	General programming procedures to construct Structured Text (ST) and problems	CO3
28	General programming procedures to construct Sequential Flow Chart (SFC) and problems	CO3
29	General programming procedures to construct Functional Block Diagrams (FBD) and problems	CO3
30	Problems on alternate programming languages	CO3
31	Interface and Backplane Bus Standards for Instrumentation Systems: Communication Hierarchy- Communication System Requirements Network Topologies -Protocol - Functions of Various Layers	CO4
32	Field bus: Introduction, concept	CO4
33	HART protocol: Method of operation, structure, operating conditions and applications.	CO4
34	Smart transmitters, smart valves and smart actuators	CO4
35	MOD bus: Transmission mode	CO4
36	General message form, Data types, Data addressing	CO4
37	Cyclic redundancy check calculation	CO4
38	Profibus: Communication Profiles, Physical Profiles	CO4
39	Application Profiles, Protocol Architecture	CO4
40	RS-485 Transmission Technology, IEC 1158-2 Transmission Technology.	CO4

41	Distributed Control Systems (DCS): Definition, configuration of DCS	CO5
42	Local Control Unit (LCU) architecture	CO5
43	LCU languages, LCU – Process interfacing issues	CO5
44	Redundancy concept	CO5
45	Operator interfaces: Low level and high level operator interfaces- Displays	CO5
46	Engineering interfaces – Low level and high level engineering interfaces	CO5
47	Factors to be considered in selecting DCS	CO5
48	Case studies in DCS	CO5
49	Case studies in DCS	CO5

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2											1		
CO2	1	2	2			1							1	2	
CO3	2	2	2			1							1	2	
CO4	1	2											1		
CO5	2													2	
Articu lation Level	1.6	2	2										1	2	

FACULTY MEMBERS TEACHING THE COURSE (IF MULTIPLE SECTIONS EXIST):

FACULTY	SECTION	FACULTY	SECTION
Mr. Bipin Krishna	В		
Dr. Bhagya R Navada	A		

References:

- 1. John. W. Webb Ronald A Reis, *Programmable Logic Controllers Principles and Applications*, PHI, (5e). 2022.
- 2. Lukcas M.P, Distributed Control Systems, Van Nostrand Reinhold Co., 2016.
- 3. Frank D. Petruzella, *Programmable Logic Controllers*, MGH, (4e), 2011.
- 4. Liptak, B.G., *Instrument engineers' handbook, volume two: Process control and optimization*, CRC press, 2018.

Submitted by: Bipin Krishna

(Signature of the faculty)

Date: 30-01-2023

Approved by:

(Signature of HOD)