ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN - ĐIỆN TỬ **BỘ MÔN KỸ THUẬT ĐIỆN TỬ**

BÁO CÁO ĐỀ TÀI THIẾT KẾ MÁY ĐO ĐỘ ROI ÁNH SÁNG SỬ DỤNG LDR BRIGHTNESS METER CIRCUIT DESIGN

Sinh viên thực hiện: Vũ Toàn Diện 2110905

Phan Trường Giang 2111103

Đồng Thanh Khoa 2113746

Phạm Hồ Anh Tuấn 2112586

Giảng viên hướng dẫn: ThS. Nguyễn Trung Hiếu

Tp. Hồ Chí Minh, tháng 12/2023

LÒI CẨM ƠN

Để hoàn thành được đề tài này,nhóm em xin gửi lời cảm ơn đến các Quý Thầy cô Khoa Điện điện tử, Trường Đại học Bách Khoa đã tạo cơ hội cho được học tập, rèn luyện và tích lũy kiến thức, kỹ năng để thực hiện đề tài.

Đặc biệt, nhóm xin gửi lời cảm ơn đến Giảng viên hướng dẫn thầy Nguyễn Trung Hiếu đã tận tình chỉ dẫn, theo dõi và đưa ra những lời khuyên bổ ích giúp em giải quyết được các vấn đề gặp phải trong quá trình nghiên cứu và hoàn thành đề tài một cách tốt nhất.

Do kiến thức của bản thân còn hạn chế và thiếu kinh nghiệm thực tế nên nội dung đề tài khó tránh những thiếu sót. Nhóm em rất mong nhận sự góp ý, chỉ dạy thêm từ Quý Thầy cô.Cuối cùng, nhóm em xin chúc Quý Thầy cô luôn thật nhiều sức khỏe và luôn thành công trong công việc.

Trân trọng.

GIỚI THIỆU ĐỀ TÀI

Có thể thấy thế giới đang trong thời kì thay đổi ngày càng văn minh và hiện đai hơn. Vì vây, đời sống càng hiện đai càng không thể thiếu sư hiện diên của các thiết bi điên tử. Các thiết bi này xuất hiện ở khắp moi nơi phục vụ cho lợi ích của con người, từ sinh hoạt cho đến sản xuất. Mọi thiết bị điện tử lúc bấy giờ tập trung vào sự chính xác, tốc đô phản hồi nhanh, là những thứ mà người tiêu dùng mong muốn khi sử dung. Để đạt được những yêu cầu đó, thì cảm biến đóng một vai trò quan trọng trong các thiết bị điện tử. Cảm biến đã trở thành hat nhân không thể thiếu trong thế giới hiện đại. Từ việc đảm bảo an toàn trong giao thông đến việc tối ưu hóa quy trình sản xuất công nghiệp, chúng đóng vai trò quan trọng trong mọi lĩnh vực. Cảm biến không chỉ cung cấp dữ liêu mà còn tao ra sư linh hoat và tư đông hóa, giúp nâng cao hiệu suất và tiết kiệm tài nguyên. Chính sư hiện diên của cảm biến đã mở ra hàng ngàn ứng dung, đinh hình một tương lại thông minh và tiên lợi hơn cho chúng ta. Cảm biến ánh sáng đóng vai trò quan trọng trong nhiều lĩnh vực. Trong công nghiệp, chúng giúp điều chỉnh độ sáng tự động trong các hệ thống chiếu sáng và hiệu suất năng lượng. Trong điện tử tiêu dùng, cảm biến ánh sáng được sử dung để điều chỉnh đô sáng màn hình tư đông trên điện thoại, máy tính bảng. Đồng thời, chúng cũng đóng vai trò quan trọng trong các hệ thống an ninh, kiểm soát ánh sáng để bảo vệ và tiết kiệm năng lương. Vì vậy nhóm quyết định chon đề tài "Thiết kế máy đo đô roi ánh sáng sử dung LDR" để tìm hiểu rõ hơn về cảm biến ánh sáng. Đề tài gồm 2 nôi dung chính:

- 1 Nguyên lý hoạt động của mạch đo.
- 2 Thiết kế mạch nguyên lý và PCB.

MỤC LỤC

CHƯƠNG I: NGUYÊN LÝ HOẠT ĐỘNG CỦA MẠCH ĐO	1
I. Mạch đo và phương pháp đo	1
II. Tuyến tính hóa của cảm biến	2
III. Nguồn dòng	12
IV. Mạch chuyển đổi điện trở thành điện áp	18
CHƯƠNG II: THIẾT KẾ MẠCH NGUYÊN LÝ VÀ PCB	20
I. Mạch nguyên lý	20
I. PCB	27
TÀI LIÊU THAM KHẢO	29

DANH SÁCH HÌNH ẢNH

1	LM342 input offset voltage	1
2	LM342 input bias current và input offset current	1
3	LM342 CMRR	1
4	LM342 output swing	1
5	INA128 offset value	2
6	INA128 input impedance	2
7	INA128 CMRR	2
8	INA128 input bias current	2
9	INA128 output swing	2
10	Đồ thị tuyến tính với thang đo 10-100 lux (độ phân giải 1 lux) tại $T=25^{\circ}\mathrm{C}$	6
11	Đồ thị tuyến tính với thang đo 10-1000 lux (độ phân giải 10 lux) tại $T=25^{\circ}\mathrm{C}$	11
12	Mô hình tuyến tính hóa điện trở song song	11
13	Mô hình nguồn dòng	13
14	Nguồn dòng thiết kế	14
15	Ånh hưởng của V_{os} lên I_L	15
16	Ånh hưởng I_{os} và I_{ib} lên I_L	17
17	Phương trình ngỗ ra	19
18	VOTAGE SUPPLY	20
19	CHARGE PUMP	20
20	POWER LED	21
21	MCU	21
22	CURRENT SOURCE - VOTAGE REFERENCE	22

23	DIFFERENCE AMPLIFIER	22
24	FILTER	23
25	ADC	23
26	ADC	24
27	LCD	24
28	SWITCH	25
29	WARNING	25
30	LEVEL SHIFTING I2C	26
31	LEVEL SHIFTING DATA	26
32	PCB mặt sau	27
33	PCB mặt trước	28

DANH SÁCH BẢNG

1	Đánh giá sai số từ 10-25 lux tại $T=25^{\circ}\mathrm{C}$	3
2	Đánh giá sai số từ 26-50 lux tại $T=25^{\circ}\mathrm{C}$	4
3	Đánh giá sai số từ 51-75 lux tại $T=25^{\circ}\mathrm{C}$	5
4	Đánh giá sai số từ 76-100 lux tại $T=25^{\circ}\mathrm{C}$	6
5	Đánh giá sai số từ 10-250 lux tại $T=25^{\circ}\mathrm{C}$	7
6	Đánh giá sai số từ 260-500 lux tại $T=25^{\circ}\mathrm{C}$	8
7	Đánh giá sai số từ 510-750 lux tại $T=25^{\circ}\mathrm{C}$	9
8	Đánh giá sai số từ 760-1000 lux tại $T=25^{\circ}\mathrm{C}$	10

CHƯƠNG I: NGUYÊN LÝ HOẠT ĐỘNG CỦA MẠCH ĐO

I. Mạch đo và phương pháp đo

- Cảm biến ánh sáng điện trở có ngõ ra là điện trở thay đổi theo Illuminace (E_V) . Cảm biến sẽ có 4 dây, dùng phương pháp nguồn dòng đo điện trở 4 dây.
- Yêu cầu ngõ vào là điện trở trong khoảng $17.31\,\mathrm{k}\Omega = 21.79\,\mathrm{k}\Omega$ với thang đo 10-100 lux và nguồn dòng Howland "cải tiến" $100\,\mu\mathrm{A}$. Ngõ ra là điện áp trong khoảng từ $1.731\,\mathrm{V} 2.179\,\mathrm{V}$.
- Yêu cầu ngõ vào là điện trở trong khoảng $3.67\,\mathrm{k}\Omega$ $4.68\,\mathrm{k}\Omega$ với thang đo 10-100 lux và nguồn dòng Howland "cải tiến" $100\,\mu\mathrm{A}$. Ngõ ra là điện áp trong khoảng từ $0.367\,\mathrm{V} 0.468\,\mathrm{V}$.
- **Yêu cầu ở opamp tạo nguồn dòng**: nguồn dòng tạo với giá trị nhỏ (100 μ A) nên cần V_{os} , I_{ib} và I_{os} nhỏ.

OPAMP được chọn để tạo nguồn dòng: LMV342

V Input offset voltage	25°C	0.25 4		
V _{IO}	Input offset voltage	Full range	4.5	m\

Hình 1: LM342 input offset voltage

		25°C		1 120	20
I _{IB}	Input bias current		-40°C to 85°C	250	рA
			-40°C to 125°C	3	nA
I _{IO}	Input offset current		25°C	6.6	fA

Hình 2: LM342 input bias current và input offset current

CMRR	Common made rejection ratio	0 ≤ V _{ICR} ≤ 1.7 V	25°C	56	80	٩D
	Common-mode rejection ratio	0 ≤ V _{ICR} ≤ 1.6 V	Full range	50		aB

Hình 3: LM342 CMRR

Vo	La	Low level	25°C	24	60			
		$R_L = 2 k\Omega$ to 1.35 V	R _L = 2 kΩ to 1.35 V	Full range		95		
				High lovel	25°C	26	60	
	Output swing (delta from supply rails)		High level	Full range		95		
		R _L = 10 kΩ to 1.35 V	l and land	25°C	5	30	mV	
				Low level	Full range		40	
				25°C	5.3	30		
			High level	Full range		40		

Hình 4: LM342 output swing

• Yêu cầu ở OPAMP đo vi sai:

- Trở kháng ngõ vào lớn.
- V_{os} , I_{ib} và I_{os} nhỏ.
- Có thể điều chỉnh được độ khuếch đại (gain).
- -CMRR > 80dB

OPAMP được chọn để mạch đo vi sai: INA128

.,	Offset voltage (RTI)	1 < 0 < 10000	INA12xP, INA12xU	±10 ±100 / G ±50 ±500 / G	.,
Vos	Oliset voltage (KTI)	1 ≤ G ≤ 10000	INA12xPA, INA12xUA	±25 ±100 / G ±125 ±1000 / G	v

Hình 5: INA128 offset value

Input impedance	Differential	10 2	GO II pE
input impedance	Common-mode	100 9	GΩ pr

Hình 6: INA128 input impedance

			0 - 1	INA12xP, INA12xU	80	86	
		Common-mode rejection ratio $\Delta R_{S} = 1 \text{ k}\Omega, \text{ V}_{CM} = \pm 13 \text{ V}$	G = 1	INA12xPA, INA12xUA	73		
	Common-mode rejection ratio ΔF		G = 10	INA12xP, INA12xU	100	106	
CMRR			G = 10	INA12xPA, INA12xUA	93		dB
CIVIKK			C = 100	INA12xP, INA12xU	120	125	ub ub
			G = 100	INA12xPA, INA12xUA	110		
			C = 1000	INA12xP, INA12xU	120	130	
			G = 1000	INA12xPA, INA12xUA	110		

Hình 7: INA128 CMRR

INPUT BIAS CURRENT							
	Input bias current	INA12xP, INA12xU	±2 ±5	nA			
IB	input bias current	INA12xPA, INA12xUA	±10	IIA			
	Input bias current drift	$T_A = -40$ °C to +85°C	±30	pA/°C			
	Input offset current	INA12xP, INA12xU	±1 ±5	nA			
los		INA12xPA, INA12xUA	±10	nA			
	Input offset current drift	T _A = -40°C to +85°C	±30	pA/°C			

Hình 8: INA128 input bias current

OUTPU	ОЦТРИТ						
	Positive output voltage swing		(V+) – 1.4	V			
	Negative output voltage swing		(V–) + 1.4	٧			

Hình 9: INA128 output swing

II. Tuyến tính hóa của cảm biến

• Để biết được hàm sự thay đổi của điện trở theo E_V tại nhiệt độ $25\,^{\circ}$ C ta sử dụng phương pháp bình cực tiểu để tìm được hàm sự thay đổi của điện trở theo E_V .

1. Tuyến tính đặc tuyến cảm biến ánh sáng (thang đo 10-100 lux)

Bảng 1 Đánh giá sai số từ 10-25 lux tại $T=25\,^{\circ}\mathrm{C}$

No.	E_V	$R(k\Omega)$	R song song	Phương trình tt	Sai số
1	10	251.1886	21.7943	21.7939	0.0018
2	11	237.2271	21.6835	21.7441	0.2795
3	12	225.16	21.5778	21.6943	0.5399
4	13	214.6021	21.4766	21.6445	0.7818
5	14	205.2689	21.3793	21.5947	1.0075
6	15	196.9451	21.2856	21.5449	1.2182
7	16	189.4646	21.1952	21.4951	1.4149
8	17	182.6967	21.1077	21.4453	1.5994
9	18	176.5373	21.0229	21.3955	1.7724
10	19	170.9023	20.9407	21.3457	1.934
11	20	165.7227	20.8608	21.2959	2.0857
12	21	160.9416	20.7831	21.2461	2.2278
13	22	156.5115	20.7074	21.1963	2.361
14	23	152.3924	20.6336	21.1465	2.4858
15	24	148.5502	20.5616	21.0967	2.6024
16	25	144.9559	20.4913	21.0469	2.7114
17	26	141.5846	20.4226	20.9971	2.8131
18	27	138.4145	20.3553	20.9473	2.9083
19	28	135.427	20.2895	20.8975	2.9966
20	29	132.6054	20.225	20.8477	3.0789
21	30	129.9353	20.1618	20.7979	3.155
22	31	127.404	20.0999	20.7481	3.2249
23	32	125	20.0391	20.6983	3.2896
24	33	122.7133	19.9794	20.6485	3.3489
25	34	120.5349	19.9208	20.5987	3.403

Bảng 2 Đánh giá sai số từ 26-50 lux tại $T=25\,^{\circ}\mathrm{C}$

No.	E_V	$R(k\Omega)$	R song song	Phương trình tt	Sai số
26	35	118.4566	19.8632	20.5489	3.4521
27	36	116.4712	19.8065	20.4991	3.4968
28	37	114.5721	19.7509	20.4493	3.536
29	38	112.7535	19.6961	20.3995	3.5713
30	39	111.0098	19.6422	20.3497	3.6019
31	40	109.3362	19.5892	20.2999	3.628
32	41	107.7283	19.5369	20.2501	3.6505
33	42	106.1819	19.4855	20.2003	3.6684
34	43	104.6933	19.4347	20.1505	3.6831
35	44	103.2591	19.3848	20.1007	3.6931
36	45	101.8761	19.3355	20.0509	3.6999
37	46	100.5415	19.2869	20.0011	3.703
38	47	99.2525	19.239	19.9513	3.7024
39	48	98.0066	19.1917	19.9015	3.6985
40	49	96.8016	19.145	19.8517	3.6913
41	50	95.6352	19.0989	19.8019	3.6808
42	51	94.5057	19.0535	19.7521	3.6665
43	52	93.411	19.0085	19.7023	3.6499
44	53	92.3495	18.9642	19.6525	3.6295
45	54	91.3195	18.9204	19.6027	3.6062
46	55	90.3197	18.8771	19.5529	3.58
47	56	89.3485	18.8343	19.5031	3.551
48	57	88.4046	18.792	19.4533	3.5191
49	58	87.4869	18.7502	19.4035	3.4842
50	59	86.5942	18.7088	19.3537	3.447

Bảng 3 Đánh giá sai số từ 51-75 lux tại $T=25\,^{\circ}\mathrm{C}$

No.	E_V	$R(k\Omega)$	R song song	Phương trình tt	Sai số
51	60	85.7253	18.668	19.3039	3.4064
52	61	84.8794	18.6275	19.2541	3.3638
53	62	84.0553	18.5875	19.2043	3.3184
54	63	83.2522	18.548	19.1545	3.2699
55	64	82.4692	18.5088	19.1047	3.2195
56	65	81.7056	18.4701	19.0549	3.1662
57	66	80.9606	18.4317	19.0051	3.1109
58	67	80.2334	18.3938	18.9553	3.0527
59	68	79.5233	18.3562	18.9055	2.9924
60	69	78.8298	18.319	18.8557	2.9297
61	70	78.1522	18.2822	18.8059	2.8645
62	71	77.4899	18.2457	18.7561	2.7974
63	72	76.8423	18.2096	18.7063	2.7277
64	73	76.209	18.1738	18.6565	2.656
65	74	75.5894	18.1383	18.6067	2.5824
66	75	74.9831	18.1032	18.5569	2.5062
67	76	74.3895	18.0684	18.5071	2.428
68	77	73.8084	18.0339	18.4573	2.3478
69	78	73.2391	17.9997	18.4075	2.2656
70	79	72.6815	17.9658	18.3577	2.1814
71	80	72.135	17.9323	18.3079	2.0945
72	81	71.5993	17.899	18.2581	2.0063
73	82	71.0742	17.866	18.2083	1.9159
74	83	70.5591	17.8332	18.1585	1.8241
75	84	70.0539	17.8008	18.1087	1.7297

Bảng 4 Đánh giá sai số từ 76-100 lux tại $T=25\,^{\circ}\mathrm{C}$

No.	E_V	$R(k\Omega)$	R song song	Phương trình tt	Sai số
76	85	69.5582	17.7686	18.0589	1.6338
77	86	69.0718	17.7367	18.0091	1.5358
78	87	68.5944	17.7051	17.9593	1.4357
79	88	68.1256	17.6737	17.9095	1.3342
80	89	67.6653	17.6425	17.8597	1.2311
81	90	67.2132	17.6117	17.8099	1.1254
82	91	66.769	17.581	17.7601	1.0187
83	92	66.3326	17.5506	17.7103	0.9099
84	93	65.9038	17.5204	17.6605	0.7996
85	94	65.4822	17.4905	17.6107	0.6872
86	95	65.0678	17.4608	17.5609	0.5733
87	96	64.6602	17.4313	17.5111	0.4578
88	97	64.2594	17.4021	17.4613	0.3402
89	98	63.8652	17.373	17.4115	0.2216
90	99	63.4774	17.3442	17.3617	0.1009
91	100	63.0957	17.3156	17.3119	0.0214

Hình 10: Đồ thị tuyến tính với thang đo 10-100 lux (độ phân giải 1 lux) tại $T=25\,^{\circ}\mathrm{C}$

2. Tuyến tính đặc tuyến cảm biến ánh sáng (thang đo 10-1000 lux)

Bảng 5 Đánh giá sai số từ 10-250 lux tại $T=25\,^{\circ}\mathrm{C}$

No.	E_V	$R(k\Omega)$	R song song	Phương trình tt	Sai số
1	10	251.1886	4.6871	4.6871	0
2	20	165.7227	4.6424	4.6769	0.7432
3	30	129.9353	4.6069	4.6666	1.2959
4	40	109.3362	4.5763	4.6563	1.7481
5	50	95.6352	4.549	4.6461	2.1345
6	60	85.7253	4.5241	4.6358	2.469
7	70	78.1522	4.5011	4.6255	2.7638
8	80	72.135	4.4796	4.6152	3.0271
9	90	67.2132	4.4593	4.605	3.2673
10	100	63.0957	4.4401	4.5947	3.4819
11	110	59.5888	4.4218	4.5844	3.6772
12	120	56.5576	4.4043	4.5742	3.8576
13	130	53.9056	4.3875	4.5639	4.0205
14	140	51.5612	4.3713	4.5536	4.1704
15	150	49.4704	4.3557	4.5434	4.3093
16	160	47.5913	4.3406	4.5331	4.4349
17	170	45.8913	4.326	4.5228	4.5492
18	180	44.3442	4.3118	4.5125	4.6547
19	190	42.9287	4.298	4.5023	4.7534
20	200	41.6277	4.2846	4.492	4.8406
21	210	40.4267	4.2715	4.4817	4.921
22	220	39.3139	4.2588	4.4715	4.9944
23	230	38.2792	4.2464	4.4612	5.0584
24	240	37.3141	4.2342	4.4509	5.1178
25	250	36.4113	4.2223	4.4407	5.1725

Bảng 6 Đánh giá sai số từ 260-500 lux tại $T=25\,^{\circ}\mathrm{C}$

No.	E_V	$R(k\Omega)$	R song song	Phương trình tt	Sai số
26	260	35.5644	4.2107	4.4304	5.2177
27	270	34.7682	4.1993	4.4201	5.258
28	280	34.0177	4.1882	4.4098	5.2911
29	290	33.309	4.1772	4.3996	5.3241
30	300	32.6383	4.1665	4.3893	5.3474
31	310	32.0024	4.1559	4.379	5.3683
32	320	31.3986	4.1456	4.3688	5.384
33	330	30.8242	4.1354	4.3585	5.3949
34	340	30.277	4.1254	4.3482	5.4007
35	350	29.7549	4.1156	4.338	5.4038
36	360	29.2562	4.1059	4.3277	5.402
37	370	28.7792	4.0964	4.3174	5.395
38	380	28.3224	4.087	4.3071	5.3854
39	390	27.8844	4.0777	4.2969	5.3756
40	400	27.464	4.0686	4.2866	5.3581
41	410	27.0601	4.0597	4.2763	5.3354
42	420	26.6717	4.0508	4.2661	5.315
43	430	26.2978	4.0421	4.2558	5.2869
44	440	25.9375	4.0335	4.2455	5.256
45	450	25.5901	4.025	4.2353	5.2248
46	460	25.2549	4.0166	4.225	5.1885
47	470	24.9311	4.0083	4.2147	5.1493
48	480	24.6181	4.0001	4.2044	5.1074
49	490	24.3155	3.9921	4.1942	5.0625
50	500	24.0225	3.9841	4.1839	5.0149

Bảng 7 Đánh giá sai số từ 510-750 lux tại $T=25\,^{\circ}\mathrm{C}$

No.	E_V	$R(k\Omega)$	R song song	Phương trình tt	Sai số
51	510	23.7388	3.9762	4.1736	4.9645
52	520	23.4638	3.9684	4.1634	4.9138
53	530	23.1971	3.9607	4.1531	4.8577
54	540	22.9384	3.9531	4.1428	4.7988
55	550	22.6873	3.9456	4.1326	4.7395
56	560	22.4433	3.9381	4.1223	4.6774
57	570	22.2062	3.9308	4.112	4.6097
58	580	21.9757	3.9235	4.1017	4.5419
59	590	21.7515	3.9163	4.0915	4.4736
60	600	21.5332	3.9091	4.0812	4.4025
61	610	21.3207	3.9021	4.0709	4.3259
62	620	21.1137	3.8951	4.0607	4.2515
63	630	20.912	3.8882	4.0504	4.1716
64	640	20.7153	3.8813	4.0401	4.0914
65	650	20.5235	3.8745	4.0299	4.0108
66	660	20.3364	3.8678	4.0196	3.9247
67	670	20.1537	3.8612	4.0093	3.8356
68	680	19.9754	3.8546	3.999	3.7462
69	690	19.8012	3.848	3.9888	3.659
70	700	19.6309	3.8416	3.9785	3.5636
71	710	19.4646	3.8351	3.9682	3.4706
72	720	19.3019	3.8288	3.958	3.3744
73	730	19.1428	3.8225	3.9477	3.2753
74	740	18.9872	3.8162	3.9374	3.1759
75	750	18.8349	3.81	3.9272	3.0761

Bảng 8 Đánh giá sai số từ 760-1000 lux tại $T=25\,^{\circ}\mathrm{C}$

No.	E_V	$R(k\Omega)$	R song song	Phương trình tt	Sai số
76	760	18.6858	3.8039	3.9169	2.9706
77	770	18.5398	3.7978	3.9066	2.8648
78	780	18.3968	3.7918	3.8963	2.7559
79	790	18.2568	3.7858	3.8861	2.6494
80	800	18.1195	3.7799	3.8758	2.5371
81	810	17.9849	3.774	3.8655	2.4245
82	820	17.853	3.7681	3.8553	2.3142
83	830	17.7236	3.7623	3.845	2.1981
84	840	17.5967	3.7566	3.8347	2.079
85	850	17.4722	3.7509	3.8245	1.9622
86	860	17.3501	3.7452	3.8142	1.8424
87	870	17.2301	3.7396	3.8039	1.7194
88	880	17.1124	3.734	3.7936	1.5961
89	890	16.9968	3.7285	3.7834	1.4724
90	900	16.8832	3.723	3.7731	1.3457
91	910	16.7716	3.7175	3.7628	1.2186
92	920	16.662	3.7121	3.7526	1.091
93	930	16.5543	3.7067	3.7423	0.9604
94	940	16.4484	3.7014	3.732	0.8267
95	950	16.3443	3.6961	3.7218	0.6953
96	960	16.2419	3.6908	3.7115	0.5609
97	970	16.1412	3.6856	3.7012	0.4233
98	980	16.0422	3.6804	3.6909	0.2853
99	990	15.9448	3.6753	3.6807	0.1469
100	1000	15.8489	3.6702	3.6704	0.0054

Hình 11: Đồ thị tuyến tính với thang đo 10-1000 lux (độ phân giải 10 lux) tại $T=25\,^{\circ}\mathrm{C}$

3. Phương trình tuyến tính của cảm biến ánh sáng

Sau khi có được hàm sự thay đổi của điện trở theo E_V thì ta tuyến tính hóa bằng phương pháp mắc điện trở song song. Để $R_{//}$ thay đổi tuyến tính thì đạo hàm cấp hai

Hình 12: Mô hình tuyến tính hóa điện trở song song

của $R_{//}$ theo RH = 0:

$$\frac{d^{2}R_{//}}{dRH^{2}} = \left(\frac{R_{P}R_{T}}{R_{P} + R_{T}}\right)^{"}$$

$$\Leftrightarrow -\left[\frac{R_{P}R_{T}}{(R_{P} + R_{T})^{2}} + \frac{R_{P}}{R_{P} + R_{T}}\right]R_{T}^{"} = -\frac{2R_{P}R_{T}R_{T}^{'}}{(R_{P} + R_{T})^{3}} + \frac{2R_{P}R_{T}^{"}}{(R_{P} + R_{T})^{2}}$$

$$\Leftrightarrow R_{T}^{"}\left[-R_{P}R_{T}(R_{P} + R_{T}) + R_{P}(R_{P} + R_{T})^{2}\right] = 2R_{P}R_{T}(R_{T}^{'})^{2} + 2R_{P}(R_{T}^{'})^{2}(R_{P} + R_{T})$$

$$\Leftrightarrow R_{T}^{"} = \frac{-2R_{P}R_{T}(R_{T}^{'})^{2} + 2R_{P}(R_{T}^{'})^{2}(R_{P} + R_{T})}{-R_{P}R_{T}(R_{P} + R_{T}) + R_{P}(R_{P} + R_{T})^{2}}$$

$$\Leftrightarrow R_{T}^{"} = \frac{2(R_{T}^{'})^{2}}{R_{P} + R_{T}}$$

$$\Leftrightarrow R_{T}^{"}(R_{P} + R_{T}) = 2(R_{T}^{'})^{2}$$

$$\Leftrightarrow R_{P} = \frac{2(R_{T}^{'})^{2}}{R_{T}^{"}} - R_{T}$$

Ta có phương trình của R theo E_V :

$$R = 10^3 E_V^{\gamma}(k\Omega)$$
 với $\gamma = -0.6$

 $\mathring{\mathrm{O}}$ thang đo 10-100 lux, ta chọn $E_V=50$ làm điểm tuyến tính hóa

$$\Rightarrow R_S = \frac{2(R'(50))^2}{R''(50)} - R(50) = 23.865(k\Omega)$$

Từ bảng số liệu trên ta có được phương trình tuyến tính hóa của $R_{//}$ ở nhiệt độ 25 $^{\circ}$ C:

$$R_{//} = -0.0498E_V + 22.2919(R:k\Omega, E_V:lux)$$

Ở thang đo 10-1000 lux, ta chọn $E_V=700$ làm điểm tuyến tính hóa

$$\Rightarrow R_S = \frac{2(R'(700))^2}{R''(700)} - R(700) = 4.776(k\Omega)$$

Từ bảng số liệu trên ta có được phương trình tuyến tính hóa của $R_{//}$ ở nhiệt độ 25 °C:

$$R_{//} = -1.02 \times 10^{-3} E_V + 4.6974 (R: k\Omega, E_V: lux)$$

III. Nguồn dòng

• Phương trình I_L

Ta có:
$$V_{-} = V_{+} = \frac{V_{o}}{R_{1} + R_{2}} R_{1}$$

Hình 13: Mô hình nguồn dòng

$$\Leftrightarrow V_o = V_+ \left(1 + \frac{R_2}{R_1} \right)$$

Ta có:

$$\begin{aligned} \frac{V_{in} - V_L}{R_3 + R_4} &= \frac{V_{in} - V_+}{R_3} \\ \Leftrightarrow \frac{V_L}{R_3 + R_4} &= \frac{V_{in}}{R_3 + R_4} - \frac{V_{in} - V_+}{R_3} \\ \Leftrightarrow V_L &= V_{in} - \frac{V_{in} - V_+}{R_3} \left(R_3 + R_4 \right) \end{aligned}$$

Ta có:

$$\begin{split} I_{L} &= \frac{V_{in} - V_{+}}{R_{3}} + \frac{V_{o} - V_{L}}{R_{5}} \\ \Leftrightarrow I_{L} &= \frac{V_{in}}{R_{3}} - \frac{V_{+}}{R_{3}} + \frac{V_{+}}{R_{5}} \left(1 + \frac{R_{2}}{R_{1}} \right) - \frac{V_{+}}{R_{5}} + V_{in} - \frac{V_{in} - V_{+}}{R_{3}R_{5}} (R_{3} + R_{4}) \\ \Leftrightarrow I_{L} &= V_{in} \left(\frac{1}{R_{3}} - \frac{1}{R_{5}} + \frac{R_{3} + R_{4}}{R_{3}R_{5}} \right) + V_{+} \left(-\frac{1}{R_{3}} + \frac{R_{2}}{R_{1}R_{5}} - \frac{R_{4}}{R_{3}R_{5}} \right) \end{split}$$

• Để I_L chỉ phụ thuộc vào V_{in} :

$$-\frac{1}{R_3} + \frac{R_2}{R_1 R_5} - \frac{R_4}{R_3 R_5} = 0$$

$$\Leftrightarrow \frac{R_2 R_3}{R_1 R_5} - \frac{R_4}{R_5} = 1$$

$$\Leftrightarrow \frac{R_2}{R_1} = \frac{R_4 + R_5}{R_3}$$

• Vậy phương trình I_L :

$$I_L = V_{in} \left(\frac{1}{R_3} + \frac{R_4}{R_3 R_5} \right)$$

Với
$$\frac{R_2}{R_1} = \frac{R_4 + R_5}{R_3}$$

• Chọn $R_1=100k\Omega$, $R2=200k\Omega$, $R3=100k\Omega$, $R4=100k\Omega$, $R5=100k\Omega$. Với R_L có tầm điện trở thay đổi từ: $3.67k\Omega$ - $21.79k\Omega$

$$I_L = 100 \, \mu A$$

Hình 14: Nguồn dòng thiết kế

• Ảnh hưởng của V_{os} lên I_L

Đặt
$$M = R_5 + [R_L//(R_3 + R_4)]$$

Ta có:

Hình 15: Ẩnh hưởng của V_{os} lên I_L

$$V_{-} = V_{A} + V_{os} = V_{B}$$

$$\Leftrightarrow V_{-} = V_{B} = I_{R_{1}} + V_{os}$$

$$\Leftrightarrow V_{-} = V_{B} = \frac{V_{o}}{R_{1} + R_{2}} R_{1} + V_{os}(1)$$

Ta có:
$$V_B = \frac{R_3}{R_3 + R_4} V_L(2)$$

$$V_L = V_o - \frac{V_o}{R_5 + [R_L//(R_3 + R_4)]} R_5 = V_o - \frac{V_o}{M} R_5$$

$$\Leftrightarrow V_o = \frac{V_L}{1 - \frac{R_5}{M}} (3)$$

Thế (3) vào (1):

$$\Rightarrow V_B = \frac{V_L}{1 - \frac{R_5}{M}} \frac{R_1}{R_1 + R_2} + V_{OS}(4)$$

Từ (2) và (4), ta có:

$$\frac{R_3}{R_3 + R_4} V_L = \frac{V_L}{1 - \frac{R_5}{M}} \frac{R_1}{R_1 + R_2} + V_{os}$$

$$\Leftrightarrow V_{os} = V_{L} \left[\frac{R_{3}}{R_{3} + R_{4}} - \frac{R_{1}}{\left(1 - \frac{R_{5}}{M}\right)(R_{1} + R_{2})} \right]$$

$$\Leftrightarrow V_{L} = \frac{V_{os}}{-\frac{R_{5}(R_{L} + R_{3} + R_{4}) + R_{L}(R_{3} + R_{4})}{R_{2}(R_{3} + R_{4})} \frac{R_{1}}{R_{1} + R_{2}} + \frac{R_{3}}{R_{3} + R_{4}}}$$

$$\Leftrightarrow V_{L}I_{L} = \frac{V_{os}}{-\frac{R_{5}(R_{L} + R_{3} + R_{4}) + R_{L}(R_{3} + R_{4})}{R_{2}(R_{3} + R_{4})} \frac{R_{1}}{R_{1} + R_{2}} + \frac{R_{3}}{R_{3} + R_{4}}}$$

$$\Leftrightarrow I_{L} = \frac{V_{os}}{R_{3}R_{L}} - \frac{R_{5}(R_{L} + R_{3} + R_{4}) + R_{L}(R_{3} + R_{4})}{R_{3} + R_{4}} \frac{R_{1}}{R_{1} + R_{2}}$$

$$\Leftrightarrow I_{L} = \frac{V_{os}(R_{3} + R_{4})(R_{1} + R_{2})}{R_{3}R_{L}(R_{1} + R_{2}) - R_{1}R_{5}(R_{L} + R_{3} + R_{4}) - R_{1}R_{L}(R_{3} + R_{4})}$$

$$\Leftrightarrow I_{L} = \frac{V_{os}(R_{3} + R_{4})(R_{1} + R_{2})}{R_{L}R_{2}R_{3} - R_{1}[R_{5}(R_{L} + R_{3} + R_{4}) + R_{L}R_{4}]}$$

$$\Leftrightarrow I_{L} = -\frac{V_{os}(R_{3} + R_{4})(R_{1} + R_{2})}{R_{1}[R_{5}(R_{L} + R_{3} + R_{4}) + R_{L}R_{4}] - R_{L}R_{2}R_{3}}$$

$$v \circ i : \frac{R_{1}}{R_{2}} = \frac{R_{3}}{R_{4} + R_{5}}$$

$$\Rightarrow I_{L} = \frac{V_{os}(R_{3} + R_{4})(R_{1} + R_{2})}{R_{1}R_{5}(R_{3} + R_{4})}$$

$$\Rightarrow I_{L} = \frac{V_{os}(R_{1} + R_{2})}{R_{1}R_{5}(R_{3} + R_{4})} = -16 \text{ nA}$$

Vậy: $\Delta I_L = \pm 16 \,\mathrm{nA}$

• Ảnh hưởng I_{os} và I_{ib} lên I_L

Ta có:

$$I_{ib} = \frac{I_+ + I_-}{2} = 200 \times 10^{-12} \,\mathrm{A}$$

$$I_{os} = |I_+ - I_-| = 6.6 \times 10^{-15} \,\mathrm{A}$$

Suy ra

$$I_{+} = 2.000033 \times 10^{-10} \,\mathrm{A}; I_{-} = 1.999967 \times 10^{-10} \,\mathrm{A}$$

Hoăc

$$I_{+} = 1.999967 \times 10^{-10} \,\mathrm{A}; I_{-} = 2.000033 \times 10^{-10} \,\mathrm{A}$$

Hình 16: Ånh hưởng I_{os} và I_{ib} lên I_L

Tai chân (-):

$$\begin{split} &\frac{V_{-}}{R_{1}} + I_{-} = \frac{V_{o} - V_{-}}{R_{2}} \\ &\Leftrightarrow V_{-} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) = \frac{V_{o}}{R_{2}} - I_{L} \\ &\Leftrightarrow V_{-} = \left(\frac{V_{o}}{R_{2}} - I_{-}\right) \left(\frac{R_{1}R_{2}}{R_{1} + R_{2}}\right) \\ &\Leftrightarrow V_{-} = \frac{R_{1}}{R_{1} + R_{2}} \left(V_{o} - I_{-}R_{2}\right) (1) \\ &(A) : \frac{V_{A}}{R_{3}} + I_{+} = \frac{V_{B} - V_{A}}{R_{4}} \\ &\Leftrightarrow V_{B} = V_{A} \left(\frac{R_{4}}{R_{3}} + 1\right) + I_{+}R_{4} \\ &(B) : \frac{V_{B} - V_{A}}{R_{4}} + \frac{V_{B}}{R_{L}} = \frac{V_{o} - V_{B}}{R_{5}} \\ &\Leftrightarrow V_{B} \left(\frac{1}{R_{4}} + \frac{1}{R_{5}} + \frac{1}{R_{L}}\right) - \frac{V_{A}}{R_{4}} = \frac{V_{o}}{R_{5}} \\ &V_{o} = V_{B} \left(\frac{R_{4} + R_{5}}{R_{4}} + \frac{R_{5}}{R_{L}}\right) - \frac{V_{A}}{R_{4}} \end{split}$$

$$V_{o} = \left(\frac{R_{2}}{R_{1}R_{4}} + \frac{R_{5}}{R_{L}}\right) \left[\left(\frac{R_{4}}{R_{5}} + 1\right) + I_{+}R_{4}\right] - \frac{V_{A}}{R_{4}}$$

$$\Leftrightarrow V_{o} = V_{A} \left(\frac{R_{2}}{R_{1}R_{4}} + \frac{R_{5}}{R_{L}} - \frac{1}{R_{4}} + \frac{R_{2}}{R_{1}^{2}} + \frac{R_{4}R_{5}}{R_{1}R_{2}}\right) + I_{+} \left(\frac{R_{2}}{R_{1}} + \frac{R_{4}R_{5}}{R_{L}}\right) (2)$$

$$\text{Tùr (1) và (2):}$$

$$\Rightarrow V_{A} = -I_{-} \left(\frac{R_{1}R_{2}}{R_{1} + R_{2}}\right) + V_{A} \frac{R_{1}}{R_{1} + R_{2}} \left(\frac{R_{2}}{R_{4}} + \frac{R_{1}R_{5}}{R_{L}} - \frac{R_{1}}{R_{4}} + \frac{R_{2}}{R_{1}} + \frac{R_{4}R_{5}}{R_{L}}\right) + \frac{I_{+}}{R_{1} + R_{2}} \left(R_{2} + \frac{R_{1}R_{4}R_{5}}{R_{L}}\right)$$

$$\Leftrightarrow V_{A} = \frac{-I_{-} (R_{1}R_{2}) + I_{+}R_{2} + I_{+} \left(\frac{R_{1}R_{4}R_{5}}{R_{L}}\right)}{R_{1} + R_{2} - \left[\frac{R_{2} - R_{1}}{R_{4}} + \frac{R_{2}}{R_{1}} + \frac{R_{5}}{R_{L}} (R_{1} + R_{4})\right]}$$

Ta có:

$$\Leftrightarrow V_{B} = V_{A} \left(\frac{R_{4}}{R_{3}} + 1\right) + I_{+}R_{4}$$

$$\Leftrightarrow V_{B} = I_{+}R_{4} + \left(\frac{R_{4}}{R_{3}} + 1\right) \frac{-I_{-}(R_{1}R_{2}) + I_{+}R_{2} + I_{+} \left(\frac{R_{1}R_{4}R_{5}}{R_{L}}\right)}{R_{1} + R_{2} - \left[\frac{R_{2} - R_{1}}{R_{4}} + \frac{R_{2}}{R_{1}} + \frac{R_{5}}{R_{L}}(R_{1} + R_{4})\right]}$$

$$I_{L} = \frac{V_{B}}{R_{L}}$$

$$\Leftrightarrow I_{L} = \frac{I_{+}R_{4}}{R_{L}} + \left(\frac{R_{4}}{R_{3}} + 1\right) \frac{-I_{-}(R_{1}R_{2}) + I_{+}R_{2} + I_{+} \left(\frac{R_{1}R_{4}R_{5}}{R_{L}}\right)}{R_{L}(R_{1} + R_{2}) + \frac{R_{1} - R_{2}}{R_{4}} - \frac{R_{2}R_{L}}{R_{1}} + R_{5}(R_{1} + R_{4})}$$

Vây $\Delta I_L = \pm 3.048 \,\mathrm{nA}$

Như vậy sai số tổng của opamp là: $\Delta I_L = \pm 16\,\mathrm{nA} \pm 3.048\,\mathrm{nA}$

IV. Mạch chuyển đổi điện trở thành điện áp

• Phương trình ngỗ ra

Ta có:
$$V_{+} = I \left(R_{sens} + R_{line} + R_{bias} \right)$$

$$V_{-} = I \left(R_{line} + R_{bias} \right)$$

$$\Rightarrow V = \left(1 + \frac{50k\Omega}{R_{G}} \right) (V_{+} - V_{-})$$

Hình 17: Phương trình ngỗ ra

$$\Leftrightarrow V = \left(1 + \frac{50k\Omega}{R_G}\right)(IR_{sens})$$

- Ảnh hưởng của V_{os} lên V
 - $\Delta V = GV_{os} = \pm 10 \pm 100 \,\mu\text{A}$
- Ảnh hưởng I_{os} và I_{ib} lên V Xét ΔV_{ib} :

$$V_{+} = V_{A} - I_{+} \left(R_{sens} + R_{line} \right)$$

$$V_{-} = V_{A} - I_{-}R_{line}$$

$$\Delta V = G(V_{+} - V_{-}) = G[I_{-}R_{line} - I_{+}(R_{sens} + R_{line})]$$

Do ΔV phụ thuộc vào R_{line} nên

$$\Delta V max = 5 \left[1.5 \times 10^{-9}.10 - 2.5 \times 10^{-9} \left(69000 + 10 \right) \right] = \pm 0.9 \,\mathrm{mV}$$

CHƯƠNG II: THIẾT KẾ MẠCH NGUYÊN LÝ VÀ PCB

- I. Mạch nguyên lý
- 1. Power

Hình 18: VOTAGE SUPPLY

Hình 19: CHARGE PUMP

Hình 20: POWER LED

2. *MCU*

Hình 21: MCU

3. Measure

Hình 22: CURRENT SOURCE - VOTAGE REFERENCE

Hình 23: DIFFERENCE AMPLIFIER

Hình 24: FILTER

Hình 25: ADC

4. *ADC*

Hình 26: ADC

5. *LCD*

Hình 27: LCD

6. Settting

Hình 28: SWITCH

Hình 29: WARNING

7. Level Shifting

Hình 30: LEVEL SHIFTING I2C

Hình 31: LEVEL SHIFTING DATA

II. PCB

Hình 32: PCB mặt sau

Hình 33: PCB mặt trước

TÀI LIỆU THAM KHẢO