l'Ingénieur

Applications

Exercices d'application – Détermination du torseur de cohésion.

Savoirs et compétences :

Résoudre : à partir des modèles retenus :

- ***

Exercice 1

On considère un ressort de diamètre moyen D =10 mm, de diamètre de fil d = 1mm, de longueur libre $L_0 = 17.5 \,\mathrm{mm}$ de longueur $L_c = 5.55 \,\mathrm{mm}$ lorsque les spires sont jointives.

Question 1 Exprimer le torseur de cohésion en tout point du ressort.

Correction

On isole le tronçon I, soumis aux actions du torseur de cohésion et de l'effort en A. On a donc :

$$\{\mathscr{T}_{\operatorname{coh}}\}_{II \to I} + \{\mathscr{F}_{\operatorname{Ext} \to I}\} = \{0\} \iff \{\mathscr{T}_{\operatorname{coh}}\}_{II \to I} = \\ -\{\mathscr{F}_{\operatorname{Ext} \to I}\} = -\left\{ \begin{array}{c} 0 & 0 \\ F & 0 \\ 0 & 0 \end{array} \right\}_{A,\mathscr{R}} \iff \{\mathscr{T}_{\operatorname{coh}}\}_{II \to I} = \\ \left\{ \begin{array}{c} -F\sin\alpha & \frac{FD}{2}\cos\alpha \\ -F\cos\alpha & -\frac{FD}{2}\sin\alpha \\ 0 & 0 \end{array} \right\}_{G,\mathscr{R}_s} \\ \frac{\operatorname{En} \text{ effet},}{\mathscr{M}(G,\operatorname{Ext} \to I)} = \frac{\mathscr{M}(A,\operatorname{Ext} \to I)}{\mathscr{M}(A,\operatorname{Ext} \to I)} + \frac{\overrightarrow{GA}}{A} \land \\ \overline{R(\operatorname{Ext} \to I)} = \left(-h\overrightarrow{y} + \frac{D}{2}\overrightarrow{z} \right) \land F\overrightarrow{y} = -\frac{FD}{2}\overrightarrow{x} = \\ -\frac{FD}{2}\left(\cos\alpha\overrightarrow{x_s} - \sin\alpha\overrightarrow{y_s}\right).$$
 Le ressort est donc soumis à de la traction – compressure de la tra

Le ressort est donc soumis à de la traction – compression, à des effort tranchants, à un moment de torsion et à un moment de flexion.

Question 2 Déterminer l'expression des contraintes de cisaillement et des contraintes de cisaillement et de torsion. En déduire la contrainte semblant prédominante et donc la sollicitation prédominante.

Correction

On exprime la contrainte de cisaillement de façon sui-

vante : $\tau_c = \frac{T_y}{S}$ avec T_y l'effort tranchant et S la section d'une spire. D'où $\tau_c = \frac{T_y}{S} = \frac{-F\cos\alpha}{\pi d^2/4} = \frac{-4F\cos\alpha}{\pi d^2}$.

On exprime la contrainte de torsion de la façon suivante : $\tau_t = \frac{\rho M_t}{I_G}$ avec M_t le moment de torsion et $I_G = \int_S \rho^2 \mathrm{d}S$ le moment quadratique de la section. Pour

une section circulaire on a $I_G = \frac{\pi d^4}{32}$.

En conséquence, $\tau_t = \frac{\rho M_t}{I_G} = \frac{16\rho FD\cos\alpha}{\pi d^4} = \frac{8FD\cos\alpha}{\pi d^3}$ (avec $\rho = \frac{d}{2}$).

On a alors: $\frac{\tau_t}{\tau_c} = \frac{\frac{8FD\cos\alpha}{\pi d^3}}{\frac{-4F\cos\alpha}{\pi d^2}} = \frac{-2D}{d}$.

 $\frac{\overline{\pi d^2}}{\pi d}$ Application numérique : $\frac{\tau_t}{\tau_c} = -20$. La contrainte de torsion est donc 20 fois plus importante que la

contrainte de cisaillement. On néglige donc les effets dûs au cisaillement.

Question 3 Déterminer la flèche d'un tronçon de longueur ΔL . En déduire la flèche totale.

Question 4 En déduire la raideur (rigidité?) du ressort.