Xét hệ phương trình gồm n phương trình và n ẩn số và det $A \neq 0$ (hệ Cramer)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1i}x_i + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{i1}x_1 + a_{i2}x_2 + \dots + a_{ii}x_i + \dots + a_{in}x_n = b_i \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{ni}x_i + \dots + a_{nn}x_n = b_n \end{cases}$$

1 Phương pháp Gauss-Jordan

1.1 Phương pháp Gauss

Trình tự giải

- \bullet Viết ma trận mở rộng (A|B) của hệ.
- Dùng các phép biến đổi sơ cấp trên hàng biến đổi ma trận mở rộng về ma trận bậc thang.
- Viết hệ phương trình tương ứng với ma trận bậc thang.
- Giải hệ phương trình ngược từ dưới lên, ta được 1 nghiệm duy nhất.

Ví dụ: Giải hệ phương trình

$$\begin{cases} x_1 + 2x_2 + 2x_3 &= 9\\ 2x_1 + 4x_2 + 9x_3 &= 23\\ 3x_1 + 7x_2 + 8x_3 &= 31 \end{cases}$$

Giải:

$$\begin{pmatrix}
1 & 2 & 2 & 9 \\
2 & 4 & 9 & 23 \\
3 & 7 & 8 & 31
\end{pmatrix}
\xrightarrow{h_2 - 2h_1 \to h_2}
\begin{pmatrix}
1 & 2 & 2 & 9 \\
0 & 0 & 5 & 5 \\
0 & 1 & 2 & 4
\end{pmatrix}$$

$$\xrightarrow{h_2 \leftrightarrow h_3}
\begin{pmatrix}
1 & 2 & 2 & 9 \\
0 & 1 & 2 & 4 \\
0 & 0 & 5 & 5
\end{pmatrix}
\Leftrightarrow
\begin{cases}
x_1 = 3 \\
x_2 = 2 \\
x_3 = 1
\end{cases}$$

1.2 Phương pháp Gauss-Jordan

Định nghĩa

Phần tử trội là phần tử có trị tuyệt đối lớn nhất, sao cho không cùng hàng và cột với những phần tử đã chọn trước.

Phương pháp Gauss-Jordan

- Chọn phần tử trội để biến đổi cho tất cả các phần tử trên cùng cột của phần tử trội bằng không.
- Qua n bước sẽ tìm được nghiệm cần tìm.

Ví du: Giải hệ phương trình

$$\begin{cases} x_1 - x_2 + 2x_3 - x_4 & = -9\\ 2x_1 - 2x_2 + 3x_3 - 3x_4 & = -20\\ x_1 + x_2 + x_3 & = -2\\ x_1 - x_2 + 4x_3 + 3x_4 & = 4 \end{cases}$$

Giải: Ma trận mở rộng:

$$\begin{pmatrix}
1 & -1 & 2 & -1 & | & -8 \\
2 & -2 & 3 & -3 & | & -20 \\
1 & 1 & 1 & 0 & | & -2 \\
1 & -1 & 4 & 3 & | & 4
\end{pmatrix}$$

Chọn phần tử trội là $a_{43} = 4$

$$\frac{\stackrel{4h_3-h_4\to h_3}{\stackrel{4h_2-3h_4\to h_2}{\stackrel{2h_1-h_4\to h_1}{\stackrel{}{\longrightarrow}}}}}{\stackrel{1}{\stackrel{}{\longrightarrow}}} \begin{pmatrix}
1 & -1 & 0 & -5 & | & -20 \\
5 & -5 & 0 & -21 & | & -92 \\
3 & 5 & 0 & -3 & | & -12 \\
1 & -1 & 4 & 3 & | & 4
\end{pmatrix}$$

Chọn phần tử không được nằm trên hàng 4 và cột 3 là phần tử $a_{24}=-21$

Chọn phần tử không được nằm trên hàng 4,2 và cột 3,4 là phần tử $a_{32}=40$

Chọn phần tử không được nằm trên hàng 4,2,3 và cột 3,4,2 là phần tử $a_{11}=-56$

$$\frac{\stackrel{h_2+h_1\to h_2}{7h_3+2h_1\to h_3}}{\stackrel{h_4+3h_1\to h_4}{\longrightarrow}} \begin{pmatrix}
-56 & 0 & 0 & 0 & 392 \\
0 & 0 & 0 & -168 & -336 \\
0 & 280 & 0 & 0 & 840 \\
0 & 0 & 280 & 0 & 560
\end{pmatrix}$$

Vậy hệ đã cho tương đương với hệ sau

$$\begin{cases}
-56x_1 = 392 \\
-168x_4 = -336 \\
280x_2 = 840 \\
280x_3 = 560
\end{cases} \Leftrightarrow \begin{cases}
x_1 = -7 \\
x_2 = 3 \\
x_3 = 2 \\
x_4 = 2
\end{cases}$$

Suy ra hệ đã cho có nghiệm duy nhất $(x_1, x_2, x_3, x_4) = (-7, 3, 2, 2)$

2 Chuẩn của vector, chuẩn của ma trận

2.1 Chuẩn của vector

Định nghĩa

Trong không gian tuyến tính thực \mathbb{R}^n . Chuẩn của vector $X \in \mathbb{R}^n$ là một số thực không âm, ký hiệu ||X|| thỏa mãn các điều kiện sau:

- $\forall X \in \mathbb{R}^n$, $||X|| \ge 0$, $||X|| = 0 \Leftrightarrow X = 0$
- $\forall X \in \mathbb{R}^n, \, \forall \lambda \in \mathbb{R}, \, \|\lambda X\| = \|\lambda\| \cdot \|X\|$
- $\bullet \ \forall X, Y \in \mathbb{R}^n, \ \|X + Y\| \leqslant \|X\| + \|Y\|$

Trong \mathbb{R}^n có rất nhiều chuẩn, tuy nhiên chỉ xét chủ yếu 3 chuẩn thường dùng sau:

$$\forall X = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$$

- $||X||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\} = \max_{k=\overline{1,n}} |x_k|$
- $||X||_1 = |x_1| + |x_2| + \ldots + |x_n| = \sum_{k=1}^n |x_k|$
- $||X||_2 = (X^T X)^{\frac{1}{2}} = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$ (chuẩn Euclide)

Ví dụ: Cho $X = (1, 2, 3, -5)^T$

$$\begin{split} \|X\|_1 &= 1+2+3+5 = 11 \\ \|X\|_\infty &= \max\left\{1,2,3,5\right\} = 5 \\ \|X\|_2 &= \sqrt{1^2+2^2+3^2+5^2} = \sqrt{39} \end{split}$$

2.2 Chuẩn của ma trận

Định nghĩa

Chuẩn của ma trận A tương ứng với chuẩn vector X được xác định theo công thức:

$$||A|| = \max_{||X||=1} ||AX|| = \max_{||X||\neq 0} \frac{||AX||}{||X||}$$

Tính chất

$$||AX|| \le ||A|| \cdot ||X||$$
$$||A^k|| \le ||A||^k$$

Ví dụ: Xác định chuẩn của ma trận $A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right)$ tương ứng với chuẩn $\|X\|_1$

Giải: Với mọi
$$X=\begin{pmatrix}x_1\\x_2\end{pmatrix}$$
 thỏa mãn $\|X\|_1=|x_1|+|x_2|=1,$ ta có:
$$\|AX\|_1=|x_1+2x_2|+|3x_1+4x_2|\leqslant 4\,|x_1|+6\,|x_2|=4+2\,|x_2|\leqslant 6$$
 $\Rightarrow \|A\|=6$

Định lý

Chuẩn của ma trận $A = (a_{ij})_{m \times n}$ được xác định như sau:

•
$$||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|$$
 - Chuẩn cột

•
$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{i=1}^{n} |a_{ij}|$$
 - Chuẩn hàng

•
$$||A||_2 = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$
 - Chuẩn Euclide

Nói một cách dễ hiểu chuẩn Euclide bằng căn bậc hai tổng bình phương tất cả các phần tử của ma trân đó.

Ví dụ: Cho
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 5 & 3 & 2 \\ 6 & -7 & 3 \end{pmatrix}$$

$$\begin{split} \|A\|_1 &= \max\left\{2+5+6, 1+3+7, 4+2+3\right\} = \max\left\{13, 11, 9\right\} = 13 \\ \|A\|_2 &= 3\sqrt{17} \approx 12.3693169 \\ \|A\|_\infty &= \max\left\{2+1+4, 5+3+2, 6+7+3\right\} = \max\left\{7, 10, 16\right\} = 16 \end{split}$$

3 Những phương pháp lặp

3.1 Định nghĩa

Xét dãy các vector $(X^{(m)})_{m=0}^{\infty}$ với $X^{(m)} \in \mathbb{R}^n$. Dãy các vector này được gọi là hôi tu về vector \overline{X} nếu và chỉ nếu

$$\left\| X^{(m)} - \bar{X} \right\| \to 0 \ khi \ m \to +\infty \ \ \mbox{(hội tự theo chuẩn)}$$

Định nghĩa ma trận chéo trội

Ma trận A được gọi là ma trận chéo trội nếu nó thỏa mãn điều kiện

$$\sum_{j=1, j\neq i}^{n} |a_{ij}| < |a_{ii}|, \ \forall i = \overline{1, n} \ \text{(chéo trội hàng)}$$

hoăc

$$\sum_{i=1,i\neq j}^{n}\left|a_{ij}\right|<\left|a_{jj}\right|,\,\forall j=\overline{1,n}\ \, (\text{chéo trội cột})$$

Định lý

Phương pháp lặp Jacobi, Gauss - Seidel cho hệ phương trình AX=B sẽ hội tụ nếu A là ma trận chéo trội.

3.2 Phương pháp lặp đơn (Ý tưởng)

Từ hệ AX = B, ta phân tích A = M - N, với M là ma trận dễ khả nghịch, khi đó ta có:

$$(M-N)X = B \Leftrightarrow MX = NX + B$$

$$\Leftrightarrow X = M^{-1}NX + M^{-1}B$$

Đặt
$$C = M^{-1}N$$
, $D = M^{-1}B \Rightarrow X = CX + D$

Xuất phát từ vector ban đầu $X^{(0)}$ ta xây dựng dãy $\left(X^{(m)}\right)_{m=0}^{\infty}$ theo công thức

$$X^{(m)} = CX^{(m-1)} + D$$

Định lý

Nếu $\|C\| < 1$ thì dãy các vector $(X^{(m)})_{m=0}^{\infty}$ xác định theo công thức lặp sẽ hội tụ về vector nghiệm \overline{X} của hệ với mọi vector ban đầu $X^{(0)}$. Khi đó công thức đánh giá sai số như sau:

$$||X^{(m)} - \overline{X}|| \le \frac{||C||^m}{1 - ||C||} \cdot ||X^{(1)} - X^{(0)}||$$

hoặc

$$||X^{(m)} - \overline{X}|| \le \frac{||C||}{1 - ||C||} \cdot ||X^{(m)} - X^{(m-1)}||$$

3.3 Phương pháp lặp Jacobi

Phương pháp cho ma trận chéo trội hàng

Xét hệ phương trình AX = B. Ta phân tích ma trận $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$

thành

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} - \begin{pmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ -a_{21} & 0 & \dots & -a_{2n} \\ \dots & \dots & \dots & \dots \\ -a_{n1} & -a_{n2} & \dots & 0 \end{pmatrix} = P - Q$$

Do $a_{ii} \neq 0, \forall i = 1, 2, \dots, n$ nên det $P \neq 0$. Như vậy

$$P^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & 0 & \dots & 0\\ 0 & \frac{1}{a_{22}} & \dots & 0\\ \dots & \dots & \dots & \dots\\ 0 & 0 & \dots & \frac{1}{a_{nn}} \end{pmatrix}$$

Ta có:

$$AX = B \Leftrightarrow (P - Q)X = B$$

$$\Leftrightarrow PX = QX + B$$

$$\Leftrightarrow X = P^{-1}QX + P^{-1}B$$

Đặt $C_j = P^{-1}Q$ và $D_j = P^{-1}B$. Khi đó công thức lặp có dạng:

$$X^{(m)} = C_j X^{(m-1)} + D_j \quad (\|C\|_{\infty} < 1)$$

Phương pháp cho ma trân chéo trôi cột

Biến đổi tuyến tính dạng

$$x_i = \frac{z_i}{a_{ii}}$$

sau đó tiến hành như phương pháp cho ma trận chéo trội hàng ($\|C\|_1 < 1$).

3.4 Phương pháp lặp Gauss-Seidel

Phân tích Q = K + L với K là ma trận tam giác dưới và L là ma trận tam giác trên.

$$\begin{array}{l} AX=B\Leftrightarrow (P-K-L)\,X=B\\ \Leftrightarrow (P-K)\,X=LX+B\\ \Leftrightarrow X=(P-K)^{-1}LX+(P-K)^{-1}B\\ \text{Dặt }C_g=(P-K)^{-1}L\ \text{và }D_g=(P-K)^{-1}B.\ \text{Khi đó công thức lặp có dạng}\\ X^{(m)}=C_gX^{(m-1)}+D_g \end{array}$$