대학영어에서 한국어로 번역 - www.onlinedoctranslator.com

장삼

지역 네트워크 – 토폴로지 및 아키텍처

장의 목적

- LAN 토폴로지라는 용어를 정의하고 버스, 스타, 링 및 무선 토폴로지를 식별합니다.
- 물리적 토폴로지와 논리적 토폴로지의 차이점을 설명합니다.
- LAN 아키텍처라는 용어를 정의합니다.
- 이더넷 LAN 아키텍처를 설명하고 일반적인 이더넷 표준을 식별합니다.
- 이더넷 액세스 방법을 설명하십시오.

장의 목적(계속)

- 무선 LAN 아키텍처를 설명합니다.
- 무선 LAN 및 무선 PAN 기술과 그 역사에 대해 토론합니다.
- IEEE 802.11 및 Bluetooth에 대한 공통 표준 및 액세 스 방법을 식별합니다.
- 무선 아키텍처에 대한 기술 및 비즈니스 고려 사항을 논 의합니다.
- FDDI 및 ATM 표준, 액세스 방법, 기술 및 비즈니스 측면을 식별합니다.

LAN 토폴로지

- ㅏLAN 토폴로지나LAN의 기본 지도 또는 레이아 웃입니다.
- 네 가지 일반적인 유형은 버스, 스타, 링 및 무선입니다.
- LAN 설계에서는 논리적 및 물리적 토폴로지를 고려해야 합니다.

LAN 토폴로지(계속)

 논리적 토폴로지LAN의 개념적 레이아웃 또는 LAN을 통해 데이터가 흐르는 방식을 정의합니다.

• 물리적 토폴로지LAN의 실제 물리적 레이아웃과 LAN의 케이블 연결, 컴퓨터, 프린터 및 기타장치의 구성을 정의합니다.

LAN 토폴로지 – 버스

나버스 토폴로지다양한 네트워크 장치가 연결된 공유 네트워크 매체로 구성되며 연결된 모든 장치는 네트워크의 모든 데이터 전송을 듣습니다.

 동축 케이블로 구현되는 버스 토폴로지는 물리 적 버스이자 논리적 버스입니다.

단순 버스 토폴로지

LAN 토폴로지 - 버스(계속)

- 버스 토폴로지의 장점/단점:
 - 구현이 쉽고 저렴합니다. (고급)
 - 케이블 세그먼트가 분리되거나 손상되면 전체 네트워 크를 사용할 수 없게 됩니다. (단점)
 - 케이블 세그먼트에 오류가 발생하면 어떤 케이블 세 그먼트에 오류가 발생했는지 쉽게 알 수 없으므로 문제 해결이 어렵습니다. (단점)

LAN 토폴로지 – 스타

 스타 토폴로지네트워크 장치, 데이터 전송 매체, 연결된 모든 장치 간의 연결을 제공하는 중앙 집중식 장치로 구성됩니다.

• 일반적인 구현에는 허브나 스위치에 연결된 UTP 케이블 연결이 포함됩니다.

스타 토폴로지

LAN 토폴로지 – 스타 (계속)

• 물리적 스타/논리 버스

- 물리적 스타/논리 버스 토폴로지는 연선 케이블리과 허브를 사용합니다.
- 허브에 연결된 모든 컴퓨팅 장치는 즉시 데이터를 듣고 구성을 논리 버스로 만듭니다.
- 연선 케이블을 통해 장치를 허브에 연결하는 실제 물 리적 레이아웃은 물리적 별입니다.

물리적 스타/논리 버스

LAN 토폴로지 – 스타 (계속)

• 물리적 별/논리적 별

- 면선 케이블과 스위치를 사용합니다.
- 별의 물리적 구성을 가지고 있습니다.
- 데이터 흐름은 의도된 수신자에게만 전달되므로 구성
 도 논리적인 별이 됩니다.

물리적 별/논리적 별

LAN 토폴로지 – 스타 (계속)

- 물리적 별의 장점/단점:
 - LAN에 대한 연결은 중앙 집중식 장치를 통해 이루어집 니다. (고급)
 - 중앙 집중식 장치는 잠재적인 단일 실패 지점입니다.(단점)
 - 하나의 케이블 세그먼트가 손실되어도 전체 네트워크가 중단되지는 않습니다. (고급)

LAN 토폴로지 – 링

 안에링 토폴로지, 모든 네트워크 장치는 폐쇄 루 프로 연결되고 데이터는 장치에서 장치로 흐릅니다.

링 주위의 단방향 패션.

링 토폴로지

LAN 토폴로지 – 링(계속)

- 장점 단점:
 - 스타 구성이 없으면 장치 간 케이블이 끊어지면 전체 링이 손 상될 수 있습니다. (단점)
 - 이중 링은 첫 번째 링이 실패하거나 손상된 경우 장애 조치 보호를 제공할 수 있습니다.

LAN 토폴로지 - 무선

 무선 토폴로지케이블 대신 무선 주파수를 전송 매 체로 사용합니다.

- 무선 토폴로지는 무선 장치를 LAN에 연결하기 위해 허브 대신 액세스 포인트를 사용합니다.
- 지리적 영역은 셀로 구분되며 각 셀에는 액세스 포인 트가 포함됩니다.

무선 토폴로지

LAN 토폴로지 – 무선 (계속)

- 무선 LAN의 물리적 토폴로지는 물리적 별에 비유될 수 있습니다.
- 논리적 토폴로지는 논리적 버스와 비교할 수 있습니다.
- 그러나 무선 LAN의 무선 장치는 항상 서로의 소리를 듣지 못합니다. 이는 모든 장치가 LAN의 다른 모든 장치를 수신하는 논리 버스 토폴로지와 다릅니다.

LAN 토폴로지 – 무선 (계속)

- 무선의 장점/단점:
 - 무선 LAN은 설치가 쉽습니다. (고급)
 - 설치할 케이블이나 구멍을 뚫을 구멍이 없습니다. (고급)
 - _ 네트워크 장치는 셀에서 셀로 이동할 수 있습니다. (고급)
 - 네트워크 장치는 액세스 포인트에서 수백 피트 이내 에 위치해야 합니다. (단점)
 - 보안에는 더 많은 주의가 필요합니다. (단점)

LAN 아키텍처

 LAN 아키텍처데이터가 네트워크 미디어에 액세 스하는 방식과 미디어에 배치된 데이터 프레임의 구조입니다.

LAN 아키텍처 -이더넷

- 1970년대 초반에 시작되었습니다.
- 이는 Alohanet이라는 네트워크에서 사용되는 데이터 전송 방법을 기반으로 합니다.
- Bob Metcalfe는 이 발명품으로 인정을 받았습니다.
- 최초의 이더넷 표준은 DIX로 알려졌습니다.
- 최초의 IEEE 이더넷 표준은 IEEE로 알려져 있습니다. 802.3
- 최신 LAN에서 인기가 있습니다.
- 신뢰성이 높고 구현이 쉬우며 비용 효율적입니다.
- 이는 널리 받아들여지는 업계 표준입니다.

LAN 아키텍처 -이더넷(계속)

- 이더넷은 원래 Thicknet(10Base5)과 이후의 Thinnet(10Base2)에 배포되었습니다.
- 10Base-T는 UTP 케이블을 통한 10Mbps 베이스밴 드 이더넷입니다.
- 100Base-T는 UTP 케이블을 통한 100Mbps 베이스밴 드 이더넷입니다.
- 다른 이더넷 표준은 IEEE 802.3x 표준 세트에 속합니다.

IEEE 802.3 이더넷 표준

TABLE 3.2
IEEE 802.3 Ethernet
Standards

Ethernet Standard	Media Type(s) Supported	Description
10BASE5	Thicknet or thick Ethernet	10 Mbps Ethernet over thicknet with a maximum cable segment length of 500 meters
10BASE2	Thinnet or thin Ethernet	10 Mbps Ethernet over thinnet with a maximum cable segment length of 185 meters ^a
10BASE-T	Categories 3-6 UTP	10 Mbps Ethernet over UTP cabling, usually cat5. Uses two of the twisted pairs
100BASE-TX	Categories 3-6 UTP	100 Mbps Ethernet over UTP cabling, usually cat5 or cat5e. Uses two of the twisted pairs
100BASE-FX	Fiber-optic cable	100 Mbps Ethernet over fiber-optic cable
100BASE-T4	Category 3 UTP	Obsolete. Was designed to use all four of the twisted pairs of cat3 UTP cabling
1000BASE-T	Category 5-6 UTP	1 Gbps over cat 5 or greater. Uses all four of the cabling's twisted pairs. Generally implemented on cat5e or greater
10GBase-LX4	SMF or MMF	10 Gbps over SMF or MMF

*The 2 in 10Base2 is a representation of 200 meters, which is 185 meters rounded up.

LAN 아키텍처 -이더넷 액세스 방법

- 이더넷은 CSMA/CD를 사용합니다.
- <u>캐리어 감지는 네트워크 미디어의 중성 전기 신호</u> 를 수신하거나 감지하는 네트워크 장치를 나타냅 니다.
- <u>다중 액세스는 모든</u> 네트워크 장치가 네트워크 미디어에 대해 동일한 액세스 권한을 갖도록 지정합니다.

LAN 아키텍처 - 이더넷 액세스 방법(계속)

충돌 감지충돌을 감지한 전송 장치는 충돌이 발생했음을 알리기 위해 다른 모든 장치에 신호를 보냅니다.

• 충돌이 발생하면 네트워크 장치는 재전송을 시도 하기 전에 임의의 시간 동안 기다립니다.

LAN 아키텍처 - 이더넷 액세스 방법(계속)

- CSMA/CD의 장점과 단점:
 - 구성이 쉽고 광범위한 표준화와 구현이 가능합니 다. (고급)
 - 네트워크에 더 많은 장치가 추가될수록 충돌 횟수 가 증가합니다. (단점)

이더넷: 기술 및 비즈니스 고려 사항

- 이더넷에는 거리 제한이 있습니다.
 - 예를 들어, 100Mbps 이더넷의 최대 세그먼트 길이는 100미터이고 네트워크 범위는 205미터입니다.
- 이더넷은 산업 표준입니다.
 - 공급업체는 계속해서 새로운 제품을 개발하고 있습니다.
 - 최신 버전의 이더넷은 이전 버전과 호환됩니다.
 - 풍부한 기술 지원.

LAN 아키텍처 – 무선 전화

- 무선 아키텍처는 IEEE 802.11, Bluetooth 및 HomeRF로 구성됩니다.
- IEEE는 IEEE 802.11 표준 시리즈와 IEEE 802.15(Bluetooth) 표준 시리즈를 지원합니다.

무선 IEEE 802.11 데이터 통신

표준

TABLE 3.4

Wireless IEEE 802.11

Data

Communications

Standards

IEEE 802.11 Standard	Description
802.11	The basic standard with transmission rates up to 2 Mbps in the 2.4 GHz frequency range
802.11a	Extension to the basic standard with transmission rates up to 54 Mbps in the 5 GHz frequency range
802.11b	Extension to the basic 802.11 standard with transmission rates up to 11 Mbps in the 2.4 GHz frequency range
802.11e	Provides Quality of Service (QoS) functionality to allow voice, video, and data transmission over wireless
802.11g	Defines data transmission rates up to 54 Mbps in the 2.4 GHz frequency range
802.11h	Allows compatibility with European regulations in the 5 GHz frequency range
802.11i	Defines security protocols for 802.11 WLAN security
IEEE 802.15 (B Standard	luetooth)
802.15.1	The basic standard for wireless personal area networks (WPANs) based on the Bluetooth v1.1 SIG specification, which includes data rate at up to 1 Mbps operating in the 2.4 GHz frequency range and at distances spanning less than 10 meters
802.15.1a	Update to the original standard to include the Bluetooth SIG v1.2 specs
802.15.2	Defines the coexistence of 802.11 WLANs and 802.15 WPANs within the 2.4 GHz frequency range so that the signals do not interfere with each other
802.15.3	Defines high-speed WPANs up to 55 Mbps for distances under 10 meters
802.15.4	Defines WPANs with data transmission rates between 2 Kbps and 200 Kbps in the 2.4 GHz and 915 MHz frequency ranges

LAN 아키텍처 -무선 액세스 방법

- IEEE 802.11분산이라고 알려진 충돌 회피 방법을 사용합니다. 조정 기능(DCF).
- DCF충돌 감지 통신을 위한 전이중 채널의 필요성이 줄어듭니다.

LAN 아키텍처 – 무선 액세스 방법(계속)

- 블루투스액세스가 제어된 폴링 메커니즘을 사용합니다.
- 장치는 Bluetooth에서 마스터 또는 슬레이브 장치로 설 정됩니다.피코넷, 두 장치 간의 통신은 마스터 장치에 의 해 제어됩니다.
- 이 방법은 데이터 충돌을 방지하고 통신 채널의 효율적인 사용을 보장합니다.

무선 기술 고려사항

• 경쟁 표준 간의 주파수 중복.

 액세스 포인트 위치는 사용자에게 최적의 적용 범 위를 제공해야 하며 인접한 액세스 포인트와 겹치 지 않아야 합니다.

No로 액세스 포인트 찾기 채널 오버랩

무선 사업 고려사항

- 비용.
- 어떤 무선 아키텍처를 선택해야 할까요?
- 표준은 기존 "유선" 기술과의 수명 및 상호 운용 성을 위해 중요합니다.

• 비즈니스 요구 사항을 충족하기 위한 거리 및 속도 요구 사항.

LAN 아키텍처 -FDDI

- FDDI 광섬유 분산 데이터 인터페이스
- 오래된 데이터 전송 기술입니다.
- 그 뿌리는 1980년대 초반으로 거슬러 올라간다.
- 다양한 네트워크 환경에서는 여전히 지원 됩니다.
- 한때 캠퍼스 환경에서 원격 LAN 간의 고속 연결
 을 위한 일반적인 선택이었습니다.

FDDI 이중 링 구성 및 네트워크 상호 연결성

LAN 아키텍처 – FDDI (계속)

• FDDI는 기존 설치에서 유지 관리될 수 있지만 더 높은 데이터 속도가 필요하므로 일반적으로 기가 비트(또는 더 빠른) 이더넷으로 대체됩니다.

LAN 아키텍처 -ATM

- ATM은 1960년대 후반 Bell Labs에서 개발된 기술입니다.
- ATM은 데이터, 음성 및 비디오 전송을 적시에 안 정적으로 전달해야 하는 네트워크에서 대기 시간 이 짧은 고속 데이터 전송을 제공합니다.
- 일반적으로 네트워크 백본, 광역 네트워크 및 통신 업체 서비스 네트워크용으로 예약되어 있습니다.

LAN 아키텍처 – ATM (계속)

- ATM에 대한 비즈니스 고려 사항:
 - 이더넷과 같은 비용 및 효율적인 경쟁업체로 인 해 LAN에서는 널리 사용되지 않습니다.
 - LAN 설정에서 백본 연결에 사용할 수 있지만 기가비 트(및 더 빠른 형태) 이더넷도 여기서도 효율적인 경쟁 자입니다.
 - ATM은 데이터, 음성 및 비디오 전송을 위해 통신업 체 서비스 네트워크에서 광범위하게 사용됩니다.