1 Pracovní bod a jeho pohyb

Tranzistor je typická nelineární součástka v obvodu popsatelná šesti veličinami, třemi proudy a třemi napětími vyznačenými na obr. 1 a) $(I_C I_B I_E U_{CE} U_{BE} U_{BC})$. Tyto veličiny jsou propojeny nelineárními závislostmi které lze chápat jako šestirozměrný objekt, kterým když provede dvourozměrný řez dostaneme např. výstupní charakteristiku (závislost I_C na U_{CE} při konstantním proudu I_B).

Figure 1:

Pokud tranzistory zapojíme do zapojení na obr. 1 b) při $U_{in}=0$ ustálí se jeho veličiny na konkrétním bodě, tento bod označujeme Q a nazýváme ho stejnosměrný pracovní bod tranzistoru. Aby mohl tranzistor fungovat jako zesilovač správně je nutné aby nastavení pracovního bodu umožňovalo v oběma směry dostatečný rozkmit výstupního signálu v dostatečné míře bez přílišného zkreslení. Pracovní bod se proto obvykle nastavuje tak aby v ustáleném stavu platilo $U_{out}=\frac{1}{2}V_{cc}$

Abychom mohli na tento zesilovač přivést signál s jiným středním napětím neš jaké je na bázi tranzistoru, přípojíme vstup zesilovače na bázi skrz kapacitu C_1 . Tato kapacita musí být dostatečně velká aby se pro signál o požadované frekvenci dala považovat za zkrat. Na obr. 2 je zobrazen možný procházející signál.

Při nastavování pracovního bodu je mimo jiné nezbytné znát následující vztahy

$$I_C = I_B \cdot \beta \qquad I_E = I_B + I_C \tag{1}$$

Figure 2:

2 Počítačové cvičení

Jednostupňový tranzistorový zesilovač, třída A, bez stabilizace prac. bodu

Figure 3: Stejnosměrné nastavení pracovního bodu

Figure 4: Odezva na základní sinusoví signál

Figure 5: Sinusový průběh při změně U_{in}

Figure 6: Sinusový průběh při změně R_b

Figure 7: Šířka pásma při $C_v = 5 \mu F$

Figure 8: Šířka pásma při změně C_v

3 Laboratorní cvičení

Měřili jsme s tranzistorem BC55 u kterého jsme na začátku naměřili $\beta=422$ Nejprve jsme sestavili obvod a pomocí potenciometru jsme nastavili pracovní bod dle tab. 1.

$U_{cc}[V]$	$U_c[V]$	$R_b[M\Omega]$	$R_c[k\Omega]$
12	6	2.5	2.2

Table 1: Nastavení obvodu

Figure 9: