Irrationalité et récurrence

Lionel VIDAL

L'irrationalité, un phénomène aujourd'hui récurrent? Certainement. Mais dans cette courte note, on démontre seulement avec des moyens très élémentaires l'irrationalité de π^2 en utilisant une suite récurrente. ¹

Soit la suite d'intégrales définies pour tout entier $n \ge 0$:

$$\mathrm{I}_n = \int_0^\pi f_n(x) \sin(x) \, dx \,, \quad \text{où} \quad f_n(x) = \frac{(\pi x - x^2)^n}{n!}.$$

Remarquons que pour tout $x\in]0;\pi[$, $f_n(x)>0,$ et donc que pour tout $n\geqslant 0,$ $\mathbf{I}_n>0.$ On calcule facilement :

$$\begin{split} \mathrm{I}_0 &= \int_0^\pi \sin(x)\, dx = 2\,, \quad \text{et} \\ \mathrm{I}_1 &= \int_0^\pi (\pi x - x^2) \sin(x)\, dx = \int_0^\pi (\pi - 2x) \cos(x)\, dx = \int_0^\pi 2 \sin(x)\, dx = 4. \end{split}$$

Puis, pour tout $n \ge 2$:

$$\begin{split} f_n'(x) &= \frac{(\pi - 2x)(\pi x - x^2)^{n-1}}{(n-1)!} \,, \quad \text{et} \\ f_n''(x) &= \frac{-2(\pi x - x^2)^{n-1}}{(n-1)!} + \frac{(\pi - 2x)^2(\pi x - x^2)^{n-2}}{(n-2)!} \\ &= \frac{-2(\pi x - x^2)^{n-1}}{(n-1)!} + \frac{\pi^2(\pi x - x^2)^{n-2}}{(n-2)!} + \frac{(-4\pi x + 4x^2)(\pi x - x^2)^{n-2}}{(n-2)!} \\ &= (-4n + 2)\frac{(\pi x - x^2)^{n-1}}{(n-1)!} + \pi^2\frac{(\pi x - x^2)^{n-2}}{(n-2)!} \,. \end{split}$$

Et enfin, pour tout $n \ge 2$, en intégrant deux fois par partie :

$${\rm I}_n = -\int_0^\pi f_n''(x) \sin(x) \, dx = (4n-2) \, {\rm I}_{n-1} - \pi^2 \, {\rm I}_{n-2}.$$

Par une récurrence élémentaire, on en déduit que pout tout $n \ge 0$, I_n est un polynôme en π^2 à coefficients entiers, de degré au plus E(n/2).

Supposons maintenant que $\pi^2 = p/q$, avec p et q entiers naturels non nuls. Alors $q^{\mathrm{E}(n/2)}\mathrm{I}_n$ est un entier naturel non nul. Mais pour tout $x \in]0;\pi[$,

$$f_n(x) < \frac{(\pi^2)^n}{n!} \,, \text{et donc} : q^{\mathrm{E}(n/2)} \mathrm{I}_n \leqslant q^n \int_0^\pi \frac{(\pi^2)^n}{n!} \, dx = \pi \frac{(q\pi^2)^n}{n!}.$$

On en déduit que $q^{\mathrm{E}(n/2)}\mathrm{I}_n \to 0$, quand $n \to \infty$, ce qui est impossible. Donc π^2 est irrationnel.

^{1.} En suivant une idée de L. Zhou and L. Markov : Recurrent Proofs of the Irrationality of Certain Trigonometric Values.