实验成绩:		
教	师:	

计算机组成原理 实验报告

姓	名:		
班	号:		
学	号:		

哈尔滨工业大学计算机硬件实验中心 2023 年 02 月

实验要求

- 1. 实验不得缺席,否则不能参加最终成绩的评定,任何一个实验项目不能完成也不能参加最终成绩的评定。
- 2. 实验必须提前预习,不预习不允许参加实验。预习成绩实验前给出。
- 3. 实验内容当堂完成, 教师根据完成情况当堂给出操作成绩。
- 4. 按时完成实验报告,实验报告在全部实验完成后一周内统一上交存档。
- 5. 实验报告丢失,实验成绩只计算预习成绩和操作成绩,无实验报告成绩。
- 6. 遵守学生实验守则,爱护实验设备,实验完成后需整理实验器材并关闭实验设备。

实验项目安排

计算机组成原理实验教学共 8 学时,设置有 4 个实验项目,具体安排如表 1 所示。

表 1 实验项目安排

序号	实验项目	实验学时	实验类别
1	运算器实验	2	设计
2	存储系统实验	2	设计
3	系统总线接口实验	2	设计
4	控制器实验	2	综合设计

实验一 运算器实验

—,	实验	目的
\	 -nn	\square

— .	实验预	习
<u> </u>		~

1. 学习使用 TDX-CMX 实验台, 然后回答下列问题。

	实验台上"时序与操作台单元	"中 KK1 功能是	,KK2 功能
是_	,ST 功能是	;	
	方波信号 300Hz、30Hz 和 3Hz	位于实验台的	单元, AL U 位
于多	上 验台的单元	,数据输入位于实验台的_	
数排	居总线和地址总线位于实验台的		

2. 参看实验台运算器实现原理, 填写括号处的部件名称或信号名称。

3. ALU 完成哪些基本的逻辑运算、算术运算和移位运算。

5. 简述 Quartus 环境下载 sof 文件到 FPGA 的操作流程。
三、实验步骤及原始数据记录
本次实验包括基本运算器实验和阵列乘法器实验两部分。
1. 本机运行
(1) 把时序与操作台单元的"MODE"用短路块短接,使系统工作在四节拍模式,JP1(在 ALU® 单元)用短路块将 1、2 短接,按图 1 所示连接实验电路,并检查无误。图中将用户需要连接的信号用圆圈标明(其它实验相同)。
4

4. 画出 4×4 阵列乘法器原理图,分析延迟与哪些因素有关?

图 1 实验一接线图

- (2) 将时序与操作台单元的开关 KK2 置为'单拍'档,开关 KK1、KK3 置为'运行'档。确认连线正确。
- (3) 打开电源,如果听到有'嘀'报警声,说明有总线竞争,应立即关闭电源,重新检查接线,直到错误排除。然后按动 CON 单元的 CLR 按钮,将运算器的 A、B 和 FC、FZ 清零。

记录:

SD17~SD10 开关拨到上面,对应 LED 指示灯状态	
二进制数据(1/0),SD17~SD10 作用是	·
S3、S2、S1、S0 的作用是	
LDA 的作用是	•
观察 ALU 单元中:	
CLR 前	
FZ=; FC=	
A7~A0=; B7~B0=	
CLR 后	
FZ=; FC=	
A7~A0=; B7~B0=	

(4) 用输入开关向暂存器 A 置数

按动 2 次时序单元的 ST 按钮,产生 T1、T2 节拍后,拨动 CON 单元的 SD17…SD10 数据开关,形成二进制数 01100101 (或其它数值),数据显示 亮为 '1',灭为 '0'。置 LDA=1, LDB=0,按动 2 次 ST 按钮产生 T3、T4

节拍,则将二进制数 01100101 置入暂存器 A 中, 暂存器 A 的值通过 ALU 单元的 A7…A0 八位 LED 灯显示。

ĸ	
	K

请绘制数据输入 ALU 中 A 寄存器的时序图:

(5) 用输入开关向暂存器 B 置数

按动 2 次时序单元的 ST 按钮,产生 T1、T2 节拍后,拨动 CON 单元的 SD17...SD10 数据开关,形成二进制数 10100111 (或其它数值 》置 LDA=0, LDB=1,按动 2 次ST 按钮产生 T3、T4 节拍,则将二进制数 10100111 置入暂存器 B 中,暂存器 B 的值通过 ALU 单元的 B7...B0 八位 LED 灯显示。

记录:

暂存器 B 输入数据(二进制):	
按动 2 次 ST 按钮后 ALU 中 B7~B0 中数据 (二进制):	

(6) 改变运算器的功能设置,观察运算器的输出

按动 2 次时序单元的 ST 按钮,产生 T1、T2 节拍后,置 ALU_B=0、LDA=0、LDB=0, 然后按表 3 设置 S3、S2、S1、S0 和 Cn 的数值,并观察数据 总线 LED 显示灯显示的结果。如置 S3、S2、S1、S0 为 1001,运算器作加法运算,置 S3、S2、S1、S0 为 0010,运算器作逻辑与运算。按动 2 次 ST 按钮产生 T3、T4 节拍,观察 FC、FZ 标志位变化。

≝ S3S2S1S0 =	,运算器做,
寄存器 A 内容	_,寄存器 B 内容
FC =, FZ =	o
<u>¥</u> S3S2S1S0 =	,运算器做,
寄存器 A 内容	_,寄存器 B 内容
FC =, FZ =	o

2. 联机运行

如果实验箱和 PC 联机操作,则可通过软件中的数据通路图来观测实验结果, 也可通过软件中的信号时序图来观测实验结果。

(1) 观测数据通路图

打开 TDX-CMX 软件,选择联机软件的"【实验】—【运算器实验】",打 开运算器实验的数据通路图,如图 2 所示。

操作方法同本机运行,每按动一次 ST 按钮,数据通路图会有数据的流动,反映当前运算器所做的操作,或在软件中选择"【调试】—【单节拍】",其作用相当于将时序单元的状态开关 KK2 置为'单拍'档后按动了一次 ST 按钮,数据通路图也会反映当前运算器所做的操作。

图 2 数据通路图

重复上述操作,并完成表 3。然后改变 A、B 的值,验证 FC、FZ 的锁存功能。点击联机软件的"【回放】—【保存...】"按钮,可保存数据通路图的实验过程。

运算类型	A	В	S3 S2 S1 S0	CN	结果
	65	A7	0 0 0 0	X	F=() FC=() FZ=()
	65	A7	0 0 0 1	X	F=() FC=() FZ=()
逻辑运算			0 0 1 0	X	F=() FC=() FZ=()
			0 0 1 1	X	F=() FC=() FZ=()
			0 1 0 0	X	F=() FC=() FZ=()
			0 1 0 1	X	F=() FC=() FZ=()
移位运算			0 1 1 0	0	F=() FC=() FZ=()
				1	F=() FC=() FZ=()
			0 1 1 1	0	F=() FC=() FZ=()
			0 1 1 1	1	F=() FC=() FZ=()
算术运算			1 0 0 0	X	F=() FC=() FZ=()
			1 0 0 1	X	F=() FC=() FZ=()
			101 0 (FC=0)	X	F=() FC=() FZ=()
			1 0 1 0 (FC=1)	X	F=() FC=() FZ=()
			1 0 1 1	X	F=() FC=() FZ=()
			1 1 0 0	X	F=() FC=() FZ=()
			1 1 0 1	X	F=() FC=() FZ=()

表 2 记录运算结果

(2) 观测数据时序图

打开 TDX-CMX 软件,选择联机软件的"【实验】—【运算器实验】",打开运算器实验的数据通路图。再点击 TT 打开选择观察信号窗口,或者选择联机软件的"【调试】—【时序观测窗】",选择想要观察的信号,如图 3,点击确定。

图 3 选择观察信号

弹出时序观测窗,操作方法同本机运行,记录操作过程的时序图,时序图 左侧标明信号名称。

3. 阵列乘法器设计实验

(1) 根据上述阵列乘法器的原理,使用 Quartus 软件编辑相应的电路 原理图并进行编译,其在 FPGA 芯片中对应的引脚如图 4 所示,框外文 字表示连线标号,框内文字表示该引脚的含义(本实验例程见'安装路径 \FPGA \Multiply\Multiply.qpf'工程)。

图 4 FPGA 引脚分配

(2)关闭实验系统电源,按图 5连接实验电路,图中将用户需要连接的信号用圆圈标明。

图 5 阵列乘法器连接图

- (3)打开实验系统电源,将下载电缆插入扩展单元的 E_JTAG 口,把 生成的 SOF 文件下载到扩展单元中。
- (4)以 CON 单元中的 SD10····SD13 四个二进制开关为乘数 A, SD03····SD00 四个二进制开关为被乘数 B, 而相乘的结果在扩展单元的 L7····L0 八个 LED 灯显示。给 A 和 B 置不同的数, 观察相乘的结果。

SD17~SD10 输入数据:	
SD07~SD00 输入数据:	

记录被乘数、乘数和乘积:

下面是该阵列乘法器实现逻辑图,补充括号内缺失的信号名称。

四、思考题

1、本实验完成了8位加法器的设计,如何在实验台上实现16位加法运算?

	2,	试比较教材中无符号原码一	位乘(4	位)	与实验中阵列乘法器的时间延
迟。					

五、实验成绩

预习 (2分)	操作(6分)	报告(2分)	实验成绩	备注
签字:	签字:	签字:		