5. DISCRETE RANDOM VARIABLES

Introduction

- We introduced random events and probability in the previous chapter.
- Now we will formalize the random events mathematically.
- This chapter focuses on discrete random variables, while the next chapter will focus on continuous random variables.

Random variables

Random variables

- A random variable is a variable whose values are determined by chance.
 - In other words, random variable is the random outcome of an experiment.
- Discrete random variable random variable that assumes countable values.
 - Example:
 - The number of students getting an A
 - The number of fish caught on a fishing trip
- We usually denote a random variable by X (uppercase letter), and x (lowercase letter) for a specific value of the random variable.

Probability distribution

- The probability distribution is a table or function, that lists all the possible values for a random variable and their corresponding probabilities.
- Also called probability mass function (pmf) for discrete random variables.
- □ Notation: P(x) or P(X = x) is the probability that the random variable X takes the value x.
- □ Two properties of probability distribution of discrete random variable:

$$0 \le P(X = x) \le 1$$

Example

- Consider rolling a die.
 - \blacksquare Let X be the observed outcome when rolling a die.
 - \blacksquare The following table is the probability distribution of X:

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6

- Arr P(X=1)=1/6, means that the probability of X takes value 1 is 1/6
- Also note that

$$\sum P(X = x) = P(1) + P(2) + \dots + P(6) = 1$$

Determine whether the following represents a probability distribution. If it does not, state why.

7.
$$\frac{X}{P(X)}$$
 15 16 20 25 0.7 -0.8

8.
$$\frac{X}{P(X)}$$
 5 7 9 0.6 0.8 -0.4

10.
$$\frac{X}{P(X)}$$
 20 30 40 50 0.05 0.35 0.4 0.2

11.
$$\frac{X}{P(X)}$$
 3 6 9 1 0.3 0.4 0.3 0.1

12.
$$\frac{X}{P(X)}$$
 $\frac{3}{13}$ $\frac{7}{13}$ $\frac{9}{13}$ $\frac{1}{13}$ $\frac{2}{13}$

Two properties

1)
$$0 \le P(X=n) \le 1$$

2) $\ge P(X=n)=1$

7)
$$P(X=25)=-0.8<0$$

Not a probability distribution

P(
$$X=25$$
)= -0.8<0
Not a probability distribution
8) P($X=9$) = -0.4<0
Not a probability distribution

9)
$$0 \le P(X=n) \le 1$$

$$EP(X=n) = 0.1 + 0.3$$

$$+0.2 + 0.3$$

$$+0.1$$

$$= 1$$
Ves, it is a probability distribution
$$0 \le P(X=n) \le 1$$

$$EP(X=n) = 0.05 + 0.35$$

$$+0.4 + 0.2$$

$$= 1$$
Ves, it is a probability distribution

11)
$$0 \le P(x=x) \le 1$$

 $\ge P(x=x) = 0.3 + 0.4 + 0.3$
 $+0.1$
 $= 1.1 \ne 1$
This is not a probability
distribution
12) $0 \le P(x=x) \le 1$
 $\ge P(x=n) = \frac{4}{13} + \frac{3}{13}$

 $=\frac{1}{10} \neq 1$

Not a probability distribution

An industrial psychologist administered a personality inventory test for passive-aggressive traits to 150 employees. Individuals were given a score from 1 to 5, where 1 was extremely passive and 5 extremely aggressive. A score of 3 indicated neither trait. Construct a probability distribution for the random variable X.

Score, x	Frequency, f	P(X=V)
1	24	24/150= 0.16
2	33	33/150 = 0.22
3	42	0.28
4	30	0.2
5	21	0.14

- At a drop-in mathematics tutoring center, each teacher sees 4 to 8 students per hour. The probability that a tutor sees 4 students in an hour is 0.117; 5 students, 0.123; 6 students, 0.295; and 7 students, 0.328.
 - a) Find the probability that a tutor sees 8 students in an hour
 - b) Construct the probability distribution.
 - c) Find the probability that a tutor sees 6 or less students in an hour.

$$z_{p}(x=x)=1$$

$$p(4) + p(5) + p(6) + p(7) + p(8) = 1$$

$$p(8) = 1 - p(4) - p(5) - p(6) - p(7)$$

$$= 1 - o(17 - o(123 - o(295 - o(328 - o(328 - o(337 - o(3$$

$$P(X \le 6) = P(4) + P(5) + P(6)$$

$$= 0.117 + 0.123 + 0.295$$

$$= 0.535$$

□ The number 1, 2, 3 and 4 are printed one each on one side of card. The cards are placed face down and mixed. Choose two cards at random; and let *X* be the sum of the two numbers. Construct the probability distribution for this random variable *X*.

Possible outcomes:
$$132$$
 173 174 273 274 374 X : 3 4 5 5 6 X

$$y(x=x) = \frac{3}{1/6} = \frac{4}{3} = \frac{5}{3} = \frac{1}{6} = \frac{1}{6}$$

$$9! P(X < 5) = P(3) + P(4)$$

$$= \frac{1}{6} + \frac{1}{4}$$

$$= \frac{1}{3}$$

Cumulative distribution function

- Another important concept in the distribution of random variable is the cumulative distribution function (also called distribution function).
- \square If X is a discrete random variable, the cumulative distribution function is given by

$$F(x) = P(X \le x) = \sum_{t \le x} P(X = t)$$

for $-\infty < x < \infty$.

 \Box F(x) is the probability of X taking value less than equal to x.

Cumulative distribution function

- Properties of a discrete distribution function:
 - $0 \le F(x) \le 1$ for all x
 - □ If a < b, then $F(a) \le F(b)$
 - \Box F(x) is a step function
 - Γ $F(-\infty) = 0$ and $F(\infty) = 1$
- Additionally:
 - $P(a < X \le b) = F(b) F(a)$
 - $P(X > a) = 1 P(X \le a) = 1 F(a)$
 - $P(X < a) = P(X \le a 1) = F(a 1)$
 - $P(X = a) = P(X \le a) P(X \le a 1) = F(a) F(a 1)$

Example - CDF

Using the following probability distribution, find its cumulative distribution function F(x).

χ	0	1	2	3
P(X=x)	1/8	3/8	3/8	1/8

□ From the table we get:

get:
$$F(0) = \frac{1}{8}$$

 $F(0) = \frac{1}{8}$
 $F(1) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}$
 $F(2) = \frac{1}{2} + \frac{3}{8} = \frac{7}{8}$
 $F(3) = \frac{7}{8} + \frac{1}{8} = 1$

Example - CDF

□ Additionally, F(x) = 0 for x < 0, and F(x) = 1 for x > 3.

Therefore:

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{8}, & 0 \le x < 1 \\ \frac{1}{2}, & 1 \le x < 2 \\ \frac{7}{8}, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

 \square You are given the following table of probability distribution of X. Find the distribution function F(x).

х	1	2	3	4	5
P(X=x)	0.16	0.22	0.28	0.20	0.14
p(x≤n)	0-14	0.38	0-66	0.86	
	to	27 +0	J 1.28		
		\mathcal{C}	> /	2<)
_	_		.16,	1 < 7	< 7
F	(n) =	50	.33/	2<9	۷3
		C	0-86	3 < 9	n<4 u <5
				9C	7,5

 \square Given the following cumulative distribution function for a discrete random variable X:

$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{1}{6}, & 1 \le x < 2 \end{cases}$$

$$f(x=1) = \frac{1}{6} - 0 = \frac{1}{6}$$

$$1 \le x < 2$$

$$1 \le x < 3$$

$$1 \le x < 3$$

$$1 \le x < 3$$

$$1 \le x < 4$$

$$2 \le x < 3$$

$$2 \le x < 4$$

$$3 \le x < 4$$

$$2 \le x < 4$$

$$3 \le x < 4$$

$$4 \le x = 3$$

$$2 \le x < 4$$

$$3 \le x < 4$$

$$4 \le x = 3$$

$$2 \le x < 3$$

$$3 \le x < 4$$

$$4 \le x = 3$$

$$2 \le x < 3$$

$$3 \le x < 4$$

$$4 \le x = 3$$

$$5 \le x = 3$$

$$5 \le x = 3$$

$$6 \le x = 3$$

$$1 \le x = 3$$

$$2 \le x = 3$$

Find

- a) P(1 < X < 3)
- b) P(X > 2)
- c) $P(2 \le X \le 4)$
- d) The probability distribution of X

a)
$$P(|\langle X \langle 3 \rangle) = P(X \leq 2) - P(X \leq 1) = F(2) - F(1)$$

= $P(|\langle X \rangle \rangle) = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}$

b)
$$P(X > 2) = 1 - P(X \le 2) = 1 - F(2) = 1 - \frac{1}{2} = \frac{1}{2}$$

c)
$$P(2 \le x \le 4) = P(x \le 4) - P(x \le 1) = F(4) - F(1)$$

= $P(1 < x \le 4) = 1 - \frac{1}{6} = \frac{5}{6}$

$$\frac{1}{p(x-n)} \frac{1}{\sqrt{4}} \frac{2}{\sqrt{3}} \frac{3}{\sqrt{4}}$$

Graphing probability distribution

- The probability distribution can be shown visually using for example:
 - Histogram
 - Line plot
- The distribution function can be shown visually using:
 - Line plot
- Presenting the probability distribution visually helps with describing the distribution.

Example – graphing probability distribution

Example – graphing distribution function

Mean, variance, standard deviation of discrete random variables

Mean of discrete random variables

- The mean, variance and standard deviation for random variable are calculated in a similar way to grouped data.
- □ We use the probability P(X = x) to replace f/N (frequency over total population).
- □ The mean of random discrete variable is defined as:

$$\mu = \sum x P(X = x)$$

Variance and standard deviation of discrete random variables

Similarly, the variance and standard deviation can be calculated using:

$$\sigma^2 = \sum (x - \mu)^2 P(X = x), \qquad \sigma = \sqrt{\sum (x - \mu)^2 P(X = x)}$$

As before, for easier computation:

$$\sigma^2 = \sum x^2 P(X = x) - \mu^2$$
, $\sigma = \sqrt{\sum x^2 P(X = x) - \mu^2}$

Example

 \Box Three coins are tossed and let X be the number of heads that occur.

X	0	1	2	3
P(X=x)	1/8	3/8	3/8	1/8

$$\mu = \sum xP(X = x)$$

$$= \left(0 \times \frac{1}{8}\right) + \left(1 \times \frac{3}{8}\right) + \left(2 \times \frac{3}{8}\right) + \left(3 \times \frac{1}{8}\right)$$

$$= 1.5$$

$$\sigma^{2} = \sum x^{2} P(X = x) - \mu^{2}$$

$$= \left(0^{2} \times \frac{1}{8}\right) + \left(1^{2} \times \frac{3}{8}\right) + \left(2^{2} \times \frac{3}{8}\right) + \left(3^{2} \times \frac{1}{8}\right) - 1.5^{2}$$

$$= 3 - 2.25 = 0.75$$

$$\sigma = \sqrt{0.75} = 0.8660$$

Another example

□ The probability distribution for the number of batteries sold over the weekend at a convenience store is given below:

χ	2	4	6	8
P(x)	0.20	0.40	0.32	0.08

$$\mu = \sum xP(X = x)$$
= 2(0.2) + 4(0.4) + 6(0.32) + 8(0.08)
= 4.56

$$\sigma^{2} = \sum x^{2} P(X = x) - \mu^{2}$$

$$= 2^{2}(0.2) + 4^{2}(0.4) + 6^{2}(0.32) + 8^{2}(0.08) - 4.56^{2}$$

$$= 23.84 - 20.7936 = 3.046$$

$$\sigma = \sqrt{3.046} = 1.745$$

5.29 Let x be the number of heads obtained in two tosses of a coin. The following table lists the probability distribution of x.

x	0	1	2	
P(x)	.25	.50	.25	

Calculate the mean and standard deviation of x. Give a brief interpretation of the value of the mean.

$$M = \sum x P(x=x)$$
= $(0 \times 0.25) + (1 \times 0.5) + (2 \times 0.25)$
= 1

$$t^{2} = \sum n^{2} P(x=x) - M^{2}$$

$$= (0^{2} \times 0.25) + (1^{2} \times 0.5) + (2^{2} \times 0.25)$$

$$- 1^{2}$$

$$= 0.5$$

$$t = \sqrt{0.5} = 0.707$$

If the experiment is repeated many times, the average number of heads in two tooses is 1

Expectation

- Another concept related to the mean for a probability distribution is that of expected value or expectation
- The expected value of a random variable is the theoretical average of the variable.
- For discrete random variable, the formula is

$$E[X] = \sum x P(X = x) = \mu$$

Also note that the variance

A person pays \$2 to play a certain game by rolling a single die once. If a 1 or a 2 comes up, the person wins nothing. If, however, the player rolls a 3, 4, 5, or 6, he or she wins the difference between the number rolled and \$2. Find the expectation and variance for this game. Is the game fair?

Die outrone	(2	3	4	5	6
Amount un	0	ð	Ţ	2	3	4

Let X = amount win

$$P(X=n) \frac{2}{4} = \frac{3}{3} \frac{4}{4}$$

$$E[x] = u = \sum n P(x = n) = (D \times \frac{1}{3}) + (1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) + (3 \times \frac{1}{6}) + (4 \times \frac{1}{6}) + (4$$

$$\frac{1}{3} = \sum_{n=0}^{\infty} 2 p(x=n) - n^{2}$$

$$= (0^{2} \times \frac{1}{3}) + (1^{2} \times \frac{1}{6}) + (2^{2} \times \frac{1}{6}) + (3^{2} \times \frac{1}{6})$$

$$+ (4^{2} \times \frac{1}{6}) - (\frac{5}{3})^{2}$$

$$= \frac{20}{9} = 2.222$$

the game is not fair because the expected arount of winnings (\$1.67) is less than the cost (\$2)

The probability distribution for the number of batteries sold over the weekend at a convenience store is given below:

X	2	4	6	8
P(X=x)	0.20	0.40	0.32	0.08

Calculate

b)
$$E[2X]$$

c) $E[X^2]$

a)
$$E[x] = \sum x P(x = x)$$

= $(2x0-2) + (4x0-4) + (6x0-32)$
+ $(8x0-08)$

b)
$$E[2x] = \sum 2xP(X=x)$$

= $(2x2x0.2)+(2x4x0.4)+(2x6x0.3)$
 $+(2x3x0.08)$
= 9.12 / $E[2x] = 2E[x]$
 $E[ax+b] = aE[x]+b$

c)
$$E[x^2] = \sum n^2 P(x=n)$$

 $= (2^2 \times 0.2) + (4^2 \times 0.4) + (1^2 \times 0.32)$
 $+ (8^2 \times 0.08)$
 $= 23.84$ $(E[x^2] \neq E[x]^2)$

Binomial distribution

Binomial experiment

- Consider a probability experiment that only has two outcomes "success" or "failure".
 - Eg: Toss a coin. If head is observed, then it is a success.
- This experiment is called a Bernoulli trial.
- On the other hand, suppose we repeat the trial a few times and count how many success we observed.
- These are called binomial experiments.

Binomial experiment

- A binomial experiment is a probability experiment that satisfies the following four requirements:
 - There must be a fixed number of trials.
 - Each trial can have only two outcomes. These outcomes can be considered as either "success" or "failure".
 - The outcomes of each trial must be independent of one another.
 - The probability of a success must remain the same for each trial.
- "Success" does not imply that something good or positive has occurred.

Binomial distribution

- \Box Let X be the number of successes observed in a binomial experiment with n number of trials.
- Then the probability distribution of X is called the binomial distribution.

Example:

- Toss a coin 10 times, and let *X* be the number of times head is observed.
- Roll a die 5 times, and let X be the number of times odd numbers are observed.

Notation for binomial distribution

- We usually use these notations:
 - \blacksquare n: Total number of trials.

 - $\blacksquare q$: The probability of failure. q = 1 p.
 - $\blacksquare X$: Number of successes in n trials.
- □ Note that $0 \le X \le n$. X can take the values 0, 1, 2, ..., n

Probability distribution for binomial

 \square The probability distribution of X:

$$P(X=x) = {^n}C_x p^x q^{n-x}$$

for
$$x = 0, 1, ..., n$$

- □ How do we get this probability?
 - $lue{}$ Out of the n trials, x number of them are successes.
 - Total possible way to get x successes out of n trials is ${}^n\mathcal{C}_x$
 - \blacksquare There are x number of successes, each with probability p.
 - The probability for this is p^x
 - There are n-x number of failures, each with probability q.
 - The probability for this is q^{n-x}
 - Since they are independent, we can multiply their probabilities.

Probability distribution for binomial

Mean and variance for binomial distribution

Mean:

$$\mu = np$$

Variance:

$$\sigma^2 = npq = np(1-p)$$

■ Standard deviation:

$$\sigma = \sqrt{npq} = \sqrt{np(1-p)}$$

Example

- A coin is tossed 3 times.
 - Find the probability that we observe 2 heads.
 - Find the mean, variance, and standard deviation of the number of heads that will be obtained.
- Let X be the number of times we observe heads. X has a binomial distribution.
- In this case, "success" is defined as "observing head".

$$p = P(\text{head}) = 0.5, \qquad q = P(\text{tail}) = 0.5$$

- \square The number of trials, n is 3.
- Probability of observing 2 heads:

$$P(X = 3) = {}^{3}C_{2}(0.5)^{2}(0.5)^{1} = 0.375$$

Example

Mean:

$$\mu = np = 3(0.5) = 1.5$$

Variance:

$$\sigma^2 = npq = 3(0.5)(0.5) = 0.75$$

Standard deviation:

$$\sigma = \sqrt{npq} = \sqrt{0.75} = 0.8660$$

Another example

- A die is rolled 3 times.
 - Find the probability that we observe numbers 1 or 2 two times.
 - Find the mean and variance of the number of times 1 or 2 are observed.
- Let X be the number of times 1 or 2 are observed. X has a binomial distribution.
- □ Number of trials: n = 3.
- □ "Success" is observing 1 or 2.
- Probability of success and failure:

$$p = \frac{2}{6} = \frac{1}{3}$$
, $q = 1 - p = \frac{2}{3}$

 \square Probability X=2:

$$P(2) = {}^{3}C_{2} \left(\frac{1}{3}\right)^{2} \left(\frac{2}{3}\right)^{1} = 0.2222$$

Another example

Mean:

$$\mu = np = 3\left(\frac{1}{3}\right) = 1$$

Variance:

$$\sigma^2 = npq = 3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right) = \frac{2}{3}$$

Exercise

- □ Forty percent of prison inmates were unemployed when they entered prison. If 5 inmates are randomly selected, find these probabilities:
 - a) Exactly 3 were unemployed.
 - b) At most 4 were unemployed.
 - c) At least 3 were unemployed.
 - d) Fewer than 2 were unemployed.

Let X be the number of inmates that were unemployed out of the five immates. X has a binomial distribution with n=5, p=0.4, n=0.6 X can take values 0, 1, 2, 3, 4, 5

a)
$$P(X=3) = {}^{n}C_{n}p^{n}q^{n-n} = {}^{5}C_{3}(0.4)^{3}(0.6)^{2}$$

 $= 0.2804$
b) $P(X \le 4) = {}^{1}-P(5) = {}^{1}-{}^{5}C_{7}(0.4)^{5}(0.6)^{0}$
 $= 0.9898 (sr P(b)+P(1)+P(2)+P(3)+P(4))$
c) $P(X = 3) = {}^{1}P(3)+P(4)+P(5)$
 $= {}^{5}C_{3}(0.4)^{3}(0.6)^{2}+{}^{5}C_{4}(0.4)^{4}(0.6)^{4}$

$$+ {}^{5}C_{5}(0.4)^{5}(0.6)^{0}$$

$$= 0.3174$$

$$d) P(x<2) = P(0)+P(1) = {}^{5}C_{0}(0.4)^{0}(0.6)^{5} + {}^{5}C_{1}(0.4)^{1}(0.6)^{4}$$

$$= 0.3370$$

Exercise

Thirty-two percent of adult Internet users have purchased groceries online. For a random sample of 200 adult Internet users, find the mean, variance, and standard deviation for the number who have purchased groceries online.

$$M = Np = 200 \times 0.32 = 64$$

$$J^{2} = npq = 200 \times 032 \times 068 = 43-52$$

$$J = \sqrt{43.52} = 6.597$$

Poisson distribution

.

Poisson experiment

- □ A Poisson experiment is a probability experiment that satisfies the following requirements:
 - The random variable X is the <u>number of occurrences</u> of an event over some interval (i.e., length, area, volume, period of time, etc.).
 - The occurrences occur randomly.
 - The occurrences are independent of one another.
 - The average number of occurrences over an interval is known.
- □ Note that $X \ge 0$ and can take the values 0, 1, 2, ...

Poisson distribution

- \Box Let X be the outcome of a Poisson experiment.
- \square Then the distribution of X is a Poisson distribution.
- Example:
 - Number of patients admitted in a hospital in a day.
 - Number of customers in 5 hours interval.
 - Number of typographical error in a page.

Probability distribution for Poisson

- Denote λ be the mean number of occurrences in that interval.
- Then probability distribution of X:

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

for x = 0,1,2,...

Mean:

$$\mu = \lambda$$

Variance and standard deviation:

$$\sigma^2 = \lambda,$$

$$\sigma^2 = \lambda$$
, $\sigma = \sqrt{\lambda}$

Probability distribution for Poisson

Example

- A sales firm receives, on average, 3 calls per hour on its tollfree number. For any given hour, find the probability that it receives exactly 5 calls.
- ightharpoonup Let X be the number calls received in an hour. X has a Poisson distribution.
- □ Mean number of calls per hour, $\lambda = 3$.
- □ Probability receiving exactly 5 calls:

$$P(5) = \frac{3^5 e^{-3}}{5!} = 0.1008$$

Another example

- A sales firm receives, on average, 3 calls per hour on its tollfree number. Find the probability that it receives exactly 5 calls in a two-hour period.
- Let X be the number calls received in a two-hour period. X has a Poisson distribution.
- Mean number of calls in a two-hour period:

$$\lambda = \text{mean number per hour} \times 2 = 3 \times 2 = 6$$

Probability receiving exactly 5 calls:

$$P(5) = \frac{6^5 e^{-6}}{5!} = 0.1606$$

Exercise

- □ A recent study of robberies for a certain geographic region showed an average of 1 robbery per 20,000 people. In a city of 80,000 people, find the probability of the following.
 - a) 0 robberies
 - b) 1 robbery
 - c) 2 robberies

$$X = \text{number of robbesies}$$
 in a city of 80000 people X has a Poisson distribution
$$\lambda = \frac{1}{20000} \times 40000 \text{ people} = 1 \times 4 = 4$$

a)
$$P(0) = \frac{\lambda^{2}e^{-\lambda}}{2!} = \frac{4^{\circ}e^{-4}}{0!} = 0.01832$$

b)
$$P(1) = \frac{4e^{-4}}{1!} = 0.07326$$

c)
$$P(2) = 4^2 e^{-4} = 0.1465$$

Exercise

- The mean number of accidents per month at a certain intersection is three. Find the probability that in any given month,
 - a) No accidents will occur.
 - b) At least one accident will occur.
 - c) Less than three accident will occur.

$$\lambda = 3$$

a)
$$P(x=0) = \frac{\lambda e^{-\lambda}}{n!} = \frac{3e^{-3}}{0!} = 0.04979$$

b)
$$P(x_{7}) = (-P(x=0)) = (-0.04979)$$

= 0.9502

c)
$$p(x < 3) = p(0) + p(1) + p(2)$$

$$= 3^{0} + 3^{1-3} + 3^{2-3} = 3^{0} + 3^{0} + 3^{0} = 3^{0} + 3^{0} = 3^$$

Geometric distribution

Geometric distribution

- □ A geometric experiment is a probability experiment such that:
 - Each trial has two outcomes, either success or failure
 - The outcomes are independent of each other
 - The probability of a success is the same for each trial
 - The experiment continues until a success is obtained.
- Geometric distribution is related to the binomial.
 - \blacksquare Binomial random variable counts number of successes in n trials.
 - Geometric random variable counts number of trials until success.
- Note: in some books, the geometric r.v. may refer to the number of failures until success

Probability distribution for geometric

Probability distribution:

$$P(X = x) = (1 - p)^{x - 1}p$$

for
$$x = 1,2,3,...$$

Mean:

$$\mu = \frac{1}{p}$$

Variance:

$$\sigma^2 = \frac{1 - p}{p^2}$$

Probability distribution for geometric

Example

- □ Suppose that the probability that an applicant for a driver's license will pass the road test on any given try is 0.75, and assume the tests are independent.
- Let X be the number of road test taken by an applicant until they pass the test.
- In this case, X can take values 1, 2, 3, ... and X follows the geometric distribution with p=0.75.
- For example, the probability that it will take an applicant passing the test for the first time at the 4th attempt is

$$P(X = 4) = (0.25)^3 0.75 = 0.01171$$

Additionally, the mean number of attempts it will take for an applicant to pass the test is $\frac{1}{p} = 1.333$

Exercise

- □ The probability that you will make a sale on any given telephone call is 0.19. Find the probability that you:
 - a) make your first sale on the fifth call.
 - b) make your first sale on the first, second, or third call.
 - c) do not make a sale on the first three calls.

$$X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call until the first sale
 $X = number of call unti$$$

b)
$$P(1 \le X \le 3) = P(1) + P(2) + P(3)$$

 $= (0.81)(0.19) + (0.81)(0.19)$
 $+ (0.81)^{2}(0.19)$
 $= 0.4686$

c)
$$P(x > 3) = 1 - P(x \le 3)$$

= $1 - P(1) - P(2) - P(3)$
= $1 - 0.4686$
= 0.5314

Summary

- This chapter introduces discrete random variables.
- We first introduced what random variables are.
- Then we focused on discrete random variables including
 - Probability distribution
 - Distribution function
 - Mean
 - Variance
- We looked at three special case of discrete random variables:
 - \square Binomial distribution number of successes in n trials.
 - □ Poisson distribution number of events in an interval.
 - Geometric distribution number of trials until success