Диффузия замедляющихся нейтронов.

Напечатано по заказу кафедры K01-22M: Петровская А.В., Бодунков Д.В., Таракчян Л.С., Минаков А.О.

В предыдущих разделах рассмотрены процессы замедления и диффузии в отрыве друг от друга. При рассмотрении процесса замедления не учитывался факт пространственного перемещения, а при изучении диффузии нейтронов не учитывался их факт пространственного перемещения, а при изучении диффузии нейтронов пренебрегалось изменениями энергии нейтронов при рассеянии на ядрах среды. В действительности эти процессы происходят одновременно: нейтроны сталкиваясь с ядрами среды перемещаются в пространстве и изменяют свою энергию. Поэтому при вычислении распределения плотности потока нейтронов в ядерном реакторе нельзя разделять процессы замедления и диффузии. Наиболее простой математической моделью, позволяющей описать диффузию замедляющихся нейтронов является модель непрерывного замедления.

Основное положение этой модели заключаетмя в том, что дискретный процесс потери энергии нейтроном, при замедлении аппроскимируется непрерывной зависимостью (см. рис)

Найдем функциональную связь между временем и энергией при непрерывном торможении нейтрона. Пусть нейтрон при своем замедлени проходит энергетический интервал dE, около энергии E за время dt. Нейтрон снижает свою энергию за счет того, что за время dt сталкивается с ядрами среды.

Число таких столкновений при диффузии нейтрона легко определяется из соотношений

$$\frac{V}{l_s}dt$$
, где V - скорость нейтрона (1)

соответствующая энергия E.

С другой стороны, число столкновений, которое необходимо претерпеть нейтрону, чтобы изменить свою энергию на величину dE, есть отношение приращения логарифма энергии на этом интервале к величине ξ - средней потере логарифма энергии на одно столкновение. Приравняем эти величины и ваполняя простые преобразования, получим:

$$\frac{dE}{dt} = -\frac{V}{l_s} \xi E = \xi \Sigma_s V E \tag{2}$$

Знак (-) в этом выражении взят с целью описать факт уменьшения энергии нейтрона со временем.

Обратимся теперь к следующей задаче: в бесконечной непоглощающей среде находится точечный источник, испускающий нейтроны с энергией E_o . Если источник испускает в единицу времени какую-то порцию нейтронов, то эти нейтроны будут распределяться по все возрастающему объему. Поэтому числю нетронов в I см 3 около точки с координатой \vec{r} , будет зависеть от хронологического времени t, т.е. $n_1 = n_1(\vec{r}, t)$.

Изменение плотности нейтронов $n_1(\vec{r},t)$ при отсутствии поглощения происходит только за счет диффузии, поэтому:

$$\frac{\partial n_1}{\partial t} = DV_{\Delta} n_1 \tag{3}$$

Уравнение (3) описывает изменение плотности нейтронов, за счет того, что источник испустил порцию нейтронов, равную мощности источники, то есть, по сути дела, уравнения (3) описывает скорость изменения числа нейтронов, т.е. $n_1(\vec{r},t) = \frac{dn}{dt}$. Учтем, что переменные t и E связанны соотношением (1). Поскольку форма дифференциала dn не зависит от того, что рассматривать в качемтве переменной, имеем

$$dn = \frac{dn}{dt}dt$$
 или $dn = \frac{dn}{dE}dE$ (4)

откуда

$$\frac{dn}{dt}dt = \frac{dn}{dE}dE\tag{5}$$

Обозначим $\frac{dn}{dE} = n_2(\vec{r}, E)$, тогда будем иметь

$$n_1(\vec{r}, t)dt = n_2(\vec{r}, E)dE \tag{6}$$

откуда

$$n_1(\vec{r},t) = n_2(\vec{r},E)\frac{dE}{dt} = n_2(\vec{r},E)V\xi E\Sigma_s$$
(7)

или

$$n_1(\vec{r}, t) = \Phi(\vec{r}, E)\xi \Sigma_s E \tag{8}$$

 $\frac{dn}{dE}$ - есть число нейтронов в ед. объема, приходящихся на единичный энергетический интервал, т.е. $\varphi(\vec{r},E)$.

Величина $q(\vec{r}, \vec{E}) = \xi \Sigma_s E \varphi(\vec{r}, E)$ носит название плотности замедления и имеет смысл числа нейтронов в $I \text{ см}^3$ пересекающих в ед. времени значение энергии E.

Действительно, величина ξ есть среднее изменение логорифма энергии в одном акте рассеяния

$$\xi = \overline{\Delta lnE} \approx \overline{(lnE)'_{E}\Delta E} = \overline{\frac{1}{E}\Delta E},$$
 откуда $\overline{\Delta E} = \xi E$ (9)

 $\overline{_{\Delta}E}$ - потеря энергии нейтроном в одном акте рассеяния. Если интервал $\overline{_{\Delta}E}$ расположен между E и $E + \overline{\Delta E}$, то каждое рассеяние приводит к снижению энергии нейтрона за значение E.

Число нейтронов претерпевших рассеяние в интервале $[E,E+\overline{_{\Delta}E}],$ есть произведение числа нейтронов рассеяных в единичном интервале энергий $\varphi(E)\Sigma_s$ на величину $\overline{\Delta E}$. Все эти нейтроны снижают свою энергию за значение E, следовательно

$$q(\vec{r}, E) = \varphi(E) \Sigma_s \overline{\Lambda E} = \Sigma_s \varphi(E) E \tag{10}$$

Так как $\frac{\partial n_1}{\partial E} = \frac{\partial n_1}{\partial E} \frac{\partial E}{\partial t}$, и $n_1 = q(\vec{r}, E)$, получим из уравнения (3) относительно плотности нейтронов, уравнение (23) относительно плотности замедления

$$D_{\Delta}q(\vec{r},E) = -\xi E \Sigma_s \frac{\partial q(\vec{r},E)}{\partial E}$$
(11)

Уравнение (23) можно еще упростить, если ввести новую независимую переменную

$$\tau(E) = \int_{E}^{E_0} \frac{D}{\Sigma_s} \frac{dE}{\xi E}$$

Очевидно, что
$$\frac{\partial q}{\partial \tau} \frac{\partial \tau}{\partial E} = \frac{\partial q}{\partial E}$$
; откуда (12)

$$\frac{\partial q}{\partial \tau} = \frac{\partial q}{\partial E} \frac{1}{\frac{\partial \tau}{\partial E}}, \text{ но } \frac{\partial \tau}{\partial E} = -\frac{D}{\sum_{s} \xi E}$$

$$\frac{\partial q}{\partial \tau} = \frac{\xi \sum_{s} E}{\xi E} \frac{\partial q}{\partial E} = \frac{\partial q}{\xi E}$$
(13)

T.e. $\frac{\partial q}{\partial \tau} = -\frac{\xi \Sigma_s E}{D} \frac{\partial q}{\partial E}$

Тогда уравнение (23) запишется в следующем виде

$$\Delta q(\vec{r}, \tau) = \frac{\partial q(\vec{r}, \tau)}{\partial \tau} \tag{24}$$

Уравнение (24) описывает распределение в пространстве \vec{r} и в пространстве τ плотности замедления $q(\vec{r},\tau)$. Величина τ - носит специальное название - "возраст нейтрона"и имеет размерность [см²]. Само уравнение (24) является уравнением теплопроводности. Решение этого уравнения для точечного источника в бесконечной среде имеет вид:

$$q(\vec{r},\tau) = \frac{Q}{(4\pi\tau)^{3/2}} \exp\left(-\frac{r^3}{4\tau}\right)$$
 (25)

На рис. 9 показан качественный вид решения (25) в зависимости от координаты при различных значениях параметра τ .

Если τ мало, то это означает, что энергия нейтронов достаточно близка к энергии нейтронов источника E_0 и кривая $q(r,\tau)$ становится более выровненным. Важным случаем является тот, когда

$$\tau = \int_{E_t}^{E_0} \frac{D}{\xi \Sigma_s} \frac{dE}{E} = \tau_\tau$$

где E_T - энергия тепловых нейтронов. В этом случае $q(r,\tau_\tau)$ - дает распределение источников тепловых нейтронов около точечного источника быстрых нейтронов. Физический смысл понятия возраста нейтронов τ заключается в том, что возраст нейтронов $\tau(E)$ есть величина пропорциональная среднему квадрату смещения нейтронов от точки их рождения до точки, где их энергия равна величине E. Действительно, средний квадрат смещения нейтрона до достижения возраста τ есть

$$\vec{r}_{\tau}^{2} = frac \int_{0}^{\infty} r^{2} q(r,\tau) 4\pi r^{2} dr \int_{0}^{\infty} q(r,\tau) \pi r^{2} dr = \frac{1}{Q} \frac{Q4\pi}{4\pi \tau^{3/2}} \int_{0}^{\infty} r^{4} e^{-\frac{r^{2}}{t\tau}} dr = 6\tau$$
 (14)

При получении этого результата $\vec{r}^2=6\tau$ учтено, что $\int_0^\infty q(r,\tau)4\pi r^2dr$, т.е. число нейтронов замедляющихся до возраста τ в ед. времени во всем объеме рассматриваемой среды равно мощности источника Q. Поскольку возраст нейтронов $\tau(E_T)$ пропорционален смещению нейтрона от точки рождения (в качестве быстрого нейтрона) до точки замедления до тепловой энергии E_T , а квадрат длины диффузии L^2 пропорционален смещению от точки рождения теплового нейтрона до точки поглощения, то величина $M^2=\tau+L^2$ - пропорциональна среднему смещению нейтрона от точки его рождения как быстрого нейтрона до точки его поглощения как теплового нейтрона (см.рис. 10). Величина M^2 называется площадью миграции нейтрона.

- 1 точка, где родился быстрый нейтрон
- 2 точка, где быстрый нейтрон, замедлился до тепловой энергии и стал тепловым (точка рождения теплового нейтрона)
- 3 точка поглощения теплового нейтрона

Важными характеристиками являются время диффузии и время замедления нейтронов до тепловой энергии. При нормальных условаиях в качестве тепловой энергии нейтрона E_T принимается величина $E_T=0,025$ вВ, что соответствует скорости нейтронов $V_T=2200\frac{\rm M}{\rm cek}$.

Среднее время диффузии нейтрона до поглощения определяется из выражения

$$t_T = \frac{l_U}{V_T} = \frac{1}{\Sigma_u V_T} \tag{27}$$

 Σ_u - макроскопическое сечение поглощения среды

Среднее время замедления нейтрона от энергии E_0 до энергии E_T определяется с помощью выражения (20)

$$\begin{split} t_{\text{\tiny 3AM}} &= \int_{0}^{t_{\text{\tiny 3AM}}} dt = \int_{E_T}^{E_0} -\frac{dE}{\xi \Sigma_s V E} = \int_{E_T}^{E_0} -\frac{dE}{\xi \Sigma \sqrt{2} E^{3/2}} = \\ &\frac{1}{\sqrt{2} \xi \Sigma_s} \left[-\frac{1}{\left(\frac{3}{2} - 1\right) E^{3/2 - 1}} \right] \bigg|_{E_T}^{E_0} = \frac{1}{\sqrt{2} \xi \Sigma_s \frac{1}{2}} \left(-\frac{1}{\sqrt{E}} \right) \bigg|_{E_T}^{E_0} = \\ &\frac{2}{\xi \Sigma_s} \left(-\frac{1}{V} \right) \bigg|_{V_T}^{V_0} = \frac{2}{\xi \Sigma_s} \left(\frac{1}{V} \right) \bigg|_{V_T}^{V_0} = \frac{2}{\xi \Sigma_s} \left(\frac{1}{V_T} - \frac{1}{V_0} \right) \end{split}$$

Если в качестве E_0 принять среднюю энергию нейтронов деления, т.е. $E_0 \approx 2 \text{Мэв}$, то $V_0 \gg V_T$ и предыдущее выражение еще более упростится

$$t_{\text{\tiny 3AM}} \cong \frac{2}{\xi \Sigma_s V_T} \tag{28}$$

В таблице 1 представлены значения параметров диффузии и замедления для различного вида замедлений Из таблицы видно, премя пребывания нейтрона в тепловой области примерно на два порядка больше, чем время замедления. Это приводит к тому, что число тепловых нейтронов в замедлителе во столько же раз больше числа замедляющихся нейтронов, т.е. нейтроны "накапливаются" в тепловой области. В ядерных реакторах с графитовым замедлителем среднее время жизни нейтрона 10^{-3} с, а в ядерных реакторах с графитовым замедлителем 10^{-4} с. В ядерных реакторах на быстрых нейтронах, где замедления практически нет, среднее время жизни нейтрона 10^{-4} с.

Замедлитель	Плотность IO^3	L^2	τ	t_T	$t_{\rm sam}$
	$\frac{\text{K}\Gamma}{\text{M}^2}$	cm^2	cm^2	мс	мкс
H_2O	1.00	7.4	27	0.21	6.7
D_2O	1.10	25600	120	138	48
Be	1.84	441	96	3.7	59
BeO	2.96	641	105	6.2	76
C''	1.60	2916	350	15.2	149

Таблица 1: Параметры диффузии и замедления

0.1 Математическое моделирование процесса диффузии замедляющихся нейтронов от точечного источника в бесконечной непоглащающей среде.

Входной информацией являются массовые числа ядер, входящих в состав рассматриваемой среды и соответствующие макроконстанты рассеяния. Например, если среда состоит из углерода, то задается $A=12, \Sigma_s^c$; Если же среда состоит из ядер двух сортов, например H_2O , то задаются $A=1; \Sigma_S^H; B=16; \Sigma_S^O$. Задается также энергия нейтронов источника $E_0[\text{МэВ};$ Задается координата источника нейтронов $X_M=0; Y_M=0; Z_M=0$.

0.2 Алгоритм моделирования

1. Разыгрывается длинна свободного пробега нейтрона до столкновения с ядром среды

$$l_1 = \frac{1}{\Sigma_{tr}} \ln \gamma$$
, где

 γ - равномерно распределенная на отрезке [0,1] случайная величина. Если среда многокомпонентна, то $\Sigma_{tr} = \sum_{i}^{n} \Sigma_{tr_i}$, например, для H_2O

2. Разыгрываются направляющие косинусы движения нейтрона от изотропного источника

$$\omega_z = 1 - 2\gamma;$$
 $\omega_x = \sqrt{1 - \omega_z^2} \cos(2\pi\gamma);$ $\omega_y = \sqrt{1 - \omega_z^2} \sin(2\pi\gamma)$

3. Рассчитывается точка, где нейтрон столкнулся с ядром:

$$X_K = X_M + \omega_x l; \qquad Y_K = Y_M + \omega_y l; \qquad Z_K = Z_M + \omega_z l; \qquad r_K = \sqrt{X_K^2 + Y_K^2 + Z_K^2}$$

Если среда двухкомпонентная, то определяется с какого сорта ядром столкнулся нейтрон. Для этого разыгрывается γ из [0,1] и если $\gamma < \frac{\Sigma_S 1}{\Sigma_S}$, то нейтрон столкнулся с ядром под условным номером 1, если $\gamma > \frac{\Sigma_S 1}{\Sigma_S}$, то нейтрон столкнулся с ядром под условным номером 2. Например: для H_2O макросечение рассеяния состоит из двух слогаемых

$$\Sigma_s^{H_2O} = \underbrace{2\partial_S^H N_H}_{\Sigma_{s1}} \underbrace{\partial_S^{O_2} N^{O_2}}_{\Sigma_{s2}}$$

Тогда, если $\gamma < \frac{\Sigma_S 1}{\Sigma_s^{H_2O}}$, то нейтрон столкнулся с ядром водорода, в противном случае $\gamma < \frac{\Sigma_S 1}{\Sigma_s^{H_2O}}$ - нейтрон столкнулся с ядром кислорода.

4. После того, как определен атомный номер ядра, с которым столкнулся нейтрон (пусть этот номер A), разыгрывается случайная величина γ из интервала [0,1]

$$1.\cos Q = 1 - 2\gamma = \omega_z \omega_x = \sqrt{1 - \omega_z^2} \cos(2\pi\gamma)\omega_y = \sqrt{1 - \omega_z^2} \sin(2\pi\gamma)l_s = -\frac{\ln\gamma}{\Sigma_{tr}}$$
$$2.\epsilon = \frac{(A - 1)^2}{(A + 1)^2}$$
$$3.E_1 = \frac{E_0}{2}[(1 + \epsilon) + (1 - \epsilon)\cos\theta]$$

Таким образом, определятся энергия нейтрона после столкновения E_1 , направляющие косинусы движения нейтрона после рассеяния ω_x , ω_y , ω_z , а значит и координаты следующего столкновения.

5. Если $E_1 \ge E_T$, то возврат к п.4 в котором следует положить $E_0 = E_1$, если $E < E_T$, то разыгрывается новый нейтрон источника, т.е. программа должна идти на п.1.

0.3 Выходная информация

Выходной информацией являются для каждого из M рассмотренных нейтронов источника следующиемассивы: координаты точек столкновения нейтрона с ядрами среды и энергия нейтрона после столкновения. В результате обработки этих массивов информации можно получить экспериментальные значения возраста нейтронов в зависимости от энергии и распределения плотности замедления. Действительно, так как возраст нейтронов энергии E связан со средним квадратом смещения нейтрона соотношением $\tau(E) = \frac{1}{\Omega} \vec{r}^2(E)$, то достаточно определить средний квадрат смещения нейтронов от источника до точки замедления до энергии E. Зафиксируем некоторое заданное значение энергии нейтрона E и для каждого из M рассмотренных нейтронов источника определим координаты точки рассеяния, в результате которого энергия нейтрона станет меньше, чем E. Пусть координаты этой точки для i-ого нейтрона будут

 (x_i, y_i, z_i) . Тогда средний квадрат смещения нейтрона до замедления его до энергии E будет приблеженно определяться выражением

$$\bar{r}^2 = \frac{1}{M} \sum_{i=1}^{M} (x_i^2 + y_i^2 + z_i^2)$$

Задавая различные значения величины Е, можно получить зависимость возраста от энергии

$$\tau(E) = \frac{1}{6}\bar{r}^2(E)$$

При $E=E_T$ возраст нейтрона au характеризует смещение нейтрона от точки его рождения до точки превращения замедляющегося нейтрона в тепловой.

Экспериментальное распределение плотности замедления по пространству при различных значениях возраста нейтронов можно получить следующим образом. Зададимся обастью изменения координаты r в сферической геометрии $r=\sqrt{x_2+y_2+z^2}$). Пусть эта величина будет равна R. Разобьем радиус вектор R на K частей, тогда $R_i=i\frac{R}{K}=i_{\Delta}R$. Введем в рассмотрение объем пространства, заключенного между двумя соседними сферами

$$V_i = \frac{4}{3}\pi(R_{i+1}^3 - R_i^3), i = 0, \dots, k$$

Зададимся величиной энергии E и номером i, используя информацию о координатах столкновения нейтронов с ядрами среды и об их энергии, определим, как и прежде, координаты точки рассеяния, в результате которого энергия нейтрона станет меньше, чем E. Пусть эта точка характеризуется радиусом $r = \sqrt{x^2 + y^2 + z^2}$. Определим радиусы этих точек для всех M, рассмотренных нейтронов источника. Далее вычислим относительную долю нейтронов из M рассмотренных координаты которых, попали в пространство V_i , т.е. определим величину

$$\tilde{q}(R_i) = \frac{n_i}{M} \frac{1}{V_i}$$

где $n_i(E)$ - число нейтронов из M рассмотренных, величина радиуса смещения которых оказалась в пределах объема Величина \tilde{q} будет пропорциональна плотности замедления.

0.4 Подготовка к данному разделу лабороторной работы

- 1. Изучить теоретический материал.
- 2. Для заданного вариантом состава среды рассчитать Σ_{tr} , D, ξ . В заданном энергетическом диапозоне $E_0 \div E_T$, построить зависимость $\tau(E)$.
- 3. Построить для заданных свойств зависимости $q(\vec{r}, E)$ и $q(\vec{r}, \tau)$ в случае точечного источника в бесконечной непоглощающей среде.
- 4. Для заданного варианта состава среды определить время замедления от энергии E_0 до тепловой энергии и время диффузии.
- 5. Нарисовать блок схему алгоритма модели.
- 6. Разработать план исследования процесса замедления при диффузии.

0.5 Подготовка к сдаче данного раздела лабораторной работы

- 1. По данным распечаткам построить для двух из рассмотренных M судеб нейтронов зависимость $E(r^2),$ где $r^2=x^2+y^2+z^2$
- 2. Получить зависимость экспериментального значения возраста нейтронов от числа рассмотренных судеб нейтронов. Сравнить с теоретическими значениями возраста.
- 3. Построить зависимость возраста от энергии по данным численного эксперимента.
- 4. Построить экспериментальную зависимость $\tilde{q}(\vec{r},\tau)$ и сравнить с аналитической зависимостью.

Основные результаты, полученные при выполнении всех разделов лабороторной работы излагаются в заключении.

При сдаче лабораторной работы необходимо правильно отвечать на следующие контрольные вопросы:

- 1. На основании каких физических законов сохраниения, получены выражения для описания акта рассеяния нейтрона на ядре?
- 2. Какой элемент эффективнее всего замедляет нейтроны?
- 3. Какая величина используется для характеристики качества замедлителя?
- 4. В какой системе координат рассеяние нейтронов практически считается сфериеским симметричным?
- 5. Какой физический смысл Σ_{tr} ?

- 6. Что такое летаргия нейтрона? Как с помощью летаргии определить среднее число столкновений нейтронов?
- 7. От чего зависит средняя логарифмическая потеря энергии нейтронов при замедлении?
- 8. Из каких соображений можно получить спектр замедляющихся нейтронов в поглащающей среде?
- 9. Что такое "спектр Ферми"? Почему с уменьшением энергии нейтронов $\varphi(E)$ растет?
- 10. Понятие плотности замедления. Как связана плотность замедления со спектром нейтронов?
- 11. Какие основные параметры процесса диффузии нейтронов и какой их физический смысл?
- 12. Смысл величины L^2 ?
- 13. Какова качественная зависимость L^2 от температуры среды?
- 14. Смысл членов уравнения диффузии нейтронов в среде. Как они зависят от параметров среды?
- 15. Условия однозначности для уравнения диффузии.
- 16. Уравнение возраста. Смысл членов уравнения.
- 17. Понятие возраста нейтронов в среде. От каких физических свойств среды зависит величина возраста нейтронов?
- 18. Что такое площадь миграции?
- 19. Каковы характерные величины време диффузии и замедления в воде, тяжелой воде и графите?

0.6 Литература

- 1. Лекции по курсу "Математические модели физических систем".
- 2. Климов А.Н. Ядерная физика и ядерные реакторы, М., Энергоатомиздат, 1985, с. 167-195.
- 3. Бартоломей Г.Г. и др. Основы теории и методы расчета ядерных энергетических реакторов. М., Энергоиздат, 1982, с. 81-159