Constraint Based Ontology: QSIM

Heated Tanks

Component Representation

Process Representation

Behavioural Abstraction

QSIM Model

M+(Fab Lb)
M+(La Fab)
M+(D2 T_dash)
ADD(D1 D2 Q)
MINUS(Fba Fab)
MULT(Fab T D1)
DERIV(La Fba)
DERIV(L Fab)
DERIV(T T_dash)

Representation Summary

- Variables represented by two element vectors: <qmag qdir>
- · Quantitiy Space
 - Ordered set of points (landmarks) and intervals (always contains inf, 0 and minf) for magnitude
 - inc, std and dec for derivatives
- Integration phase by means of Transition Rules
 - defined by Mean value and Intermediate value theorems

Transition Rules

- Intermediate Value Theorem (IVT)
- Defines the direction of change of a variable between two points.
- Mean Value Theorem (MVT)
- States that for a continuous system, a function joining two points of opposite sign must pass through zero.

Example: Thrown Ball

- · Presented in the literature
- · Simplest meanful example
- Limited operating region
- bounded by max height and ground (assuming no cliff)
- transition to spring model when in contact with ground.

DERIV (Y, V)DERIV(V, A)A(t) = g < 0

Qualitative Simulation

Example Start

- · Initial State
 - An assignment of values <qmag qdir> to all variables of the system at the initial time point, t0: QS(F, t0)

```
QS(A, t0) = \langle (g, std > QS(V, t0) = \langle (0, \infty), dec > QS(Y, t0) = \langle (0, \infty), inc > (0, \infty), inc > (0, \infty)
```

- Example Start
 - We join the example after the first transition, where the qualitative state is:

```
QS(A, t0, t1) = <g, std>
QS(V, t0, t1) = <(0, \infty), dec>
QS(Y, t0, t1) = <(0, \infty), inc>
```

QSIM Algorithm

- · Select state from ACTIVE
- Apply transition rules to each **Variable**
- Apply **Constraints** to tuples of variables
 - Consistent derivative values
 - Magnitude corresponding values match
- Check variable values in All constraints:
 - Pairwise Consistency (Waltz)
- Generate all Global interpretations
 - Create New States
- Apply **Global Filters** => ACTIVE

Transitions of Variables

$$\begin{split} QS(A,t0,t1) &=> QS(A,t1) \\ I1: & => \\ \\ QS(Y,t0,t1) &=> QS(Y,t1) \\ I4: &<(0,\infty), inc> => <(0,\infty), inc> \\ I8: &<(0,\infty), inc> => \\ \\ QS(V,t0,t1) &=> QS(V,t1) \\ I5: &<(0,\infty), dec> => <0, std> \\ I6: &<(0,\infty), dec> => <0, dec> \\ I7: &<(0,\infty), dec> => <(0,\infty), dec> \\ I9: &<(0,\infty), dec> => \\ \end{split}$$

Filters and Interpretations

· Constraint and Waltz Filtering

· Global Interpretations

Global Filters and Heuristics

- Filters
 - No Change
 - Predicted state is the same as the previous state
 - Cycle
 - Predicted state is identical with one of its predecessors
 - Divergence
 - If inf or minf is predicted endpoint of simulation reached.
- Heuristics
- Quiescence
 - All variables have zero derivative steady state.
- No Divergence
 - · Remove states which diverge to inf or minf

The Next State

 $QS(Y, t_1) = \langle Y_{new}, std \rangle$

 $QS(V, t_1) = <0, dec>$

 $QS(A, t_1) = \langle g, std \rangle$

New landmark discovered:

 $0 < Y_{\text{new}} < \infty$

Corresponding Values

Variables: X, Y, Z

Landmarks: $X = \{0 X1 X2 X3 inf\}$

 $Y = \{0 \ Y1 \ inf\}$ $Z = \{0 \ Z1 \ Z2 \ inf\}$

Constraint:

ADD(X, Y, Z) (0, 0, 0) (X3, Y1, Z2)

Contributions of Ontologies

- Device (Component) Centred
 - Modularization: Component library
 - Envisionment
 - Qualitative operators
- · Process Centred
 - Compositional Modelling (complex ontology)
 - Explicit reasoning about state change
- · Constraint Centred
 - Simple abstraction of ODE's
 - Focus on simulation
- · Domains of Application
- Diagnosis
- Training
- Control
- Explanation

The Problem of Spurious Behaviour Generation

Soundness and Completeness

- Sound
 - Guarantees to find all possible behaviours of system
- Incomplete
 - Unfortunately also finds non-existent (spurious) behaviours
- Still useful for ascertaining that a dangerous state cannot be reached.
- Large research effort to remove spurious behaviours
- we will skim the surface of the surface!

Single Tank System

•Input: Stepped Ramp

2 Element Vector Envisionment

State	Vector
21	+ - +
12	+0+
3	+++
5	+ + 0
7	++-
30	0 + +
32	0 + 0
34	0 + -

3 Element Vector Envisionment

State	Vector
21	+-+-
12	+ 0 + -
3	+++-
5	+ + 0.0
7	++-+
30	0++-
32	$0 + 0 \ 0$
34	0+-+

Behaviour Categorisation

• Distinct Behaviours

Categorisation of Behaviours

Ignore *qdirs:* Cascaded Tanks

inflowA = IF*
pressureA = M+(amountA)
pressureB = M+(amountB)
outflowA = M+(pressureA)
outflowB = M+(pressureB)
netflowA = inflowA - outflowA

netflowA = inflowA - outflowAnetflowB = outflowA - outflowB

d/dt(amountA) = netflowA

d/dt(amountB) = netflowB

Ignore qdirs

$$[+ign]$$
 \longrightarrow $[+ign]$ \longrightarrow $[+ign]$

Ignore *qdirs*: Satifiability Filter

- Quiescence when magnitude reaches zero.
- Make sure there are no discontinuities:
- Check that a consistent state exists by replacing ign with each of {inc, std, dec}
- Check for valid transition

Higher-Order Derivatives (HOD's)

netflowB(t) at a critical pointnetflowB"(t) < 0 netflowB'(t) = 0

Use knowledge of system to automatically generate the second derivative of the HODs

HOD Algorithm

- · Identify HODs in the system:
 - necessary and applicable where there is intractible branching from points where HOD'=0
- For each HOD derive and expression, valid where HOD' = 0, for HOD' in terms of the other system variables
 - determine sign of HOD" and derive valid transition
- Smoothness Assumption
 - M+ relations linear in region of a critical point

And the rest . . .

- QSIM Development
- Time scale abstraction
- Semi- quanitative information
- Energy constraints
- Phase plane analysis
- Other Systems
- Order of Magnitude Reasoning
- Hyper-real simulation
- Causal ordering
- Fuzzy simulation
- Constructive and Non-constructive algorithms
- Synchronous and asynchronous simulation
- See CS46310

-