Projet 6 : Classifier automatiquement des biensde consommation

Mentor : Amine HADJ-YOUCEF

Etudiant: Marin DUCHEMIN

Plan de la Présentation

I ~ Rappel de la Problématique et Apperçu du Jeu de Données

II ~ Données Texte

III ~ Données Images

Conclusions et Perspectives

Place de Marché : marketplace e-commerce

Objectifs:

- Etude de faisabilité d'un moteur de classification des biens
- Classification basée sur une description et une image

- Aucune description ou image manquante.
- Peu d'informations sur les trois dernières catégories.

Pré-traitements (nltk, gensim, wordcloud):

- Tokenisation
- · Passage en minuscule
- Suppression des 'stopwords'

Lemmatisation

```
We went from this :
This is a text, made to illustrate the text's transformations processes that will and have occured.
to this :
['text', 'make', 'illustrate', 'text', 'transformation', 'process', 'occur']
```


Regroupement:

Utilisation des Bag of Words

Vectorisation:

 Term Frequency - Inverse Document Frequency (tf-idf)

Word2Vec (Continuous Bags of Words, Skip Gram)

VECTORISATION

Male-Female

king

man

Verb tense

REGROUPEMENT

Country-Capital

CLASSIFICATION

Dimension 1

Aller plus loin, la classification :

- En entrée : vecteurs
- En sortie : niveaux de catégories
- Séparation en jeux d'entrainement et de test

Classification:

Naive Bayes Classifier

- Niveau 1 : 92%

- Niveau 2 : 74%

- Niveau 3:67%

Classification:

Random Forests

- Niveau 1 : 92%

- Niveau 2:87%

- Niveau 3:83%

Classification:

Recurrent Neural Network

- Niveau 1:93%

- Niveau 2:84%

- Niveau 3:80%

- Déployé par moi même
 - Modèle simple, 3 couches
 - Testé sur CBOW et Skip Gram

Classification:

		Accuracy	Time
Level of Category	Model		
Level 1	Multinomial Naive Bayes	92.380952	0.023243
	Random Forest	92.380952	0.520511
	RNN on Continuous Bag of Word	80.000001	13.767050
	RNN on Skip Gram	92.631578	17.020003
Level 2	Multinomial Naive Bayes	74.285714	0.011050
	Random Forest	86.666667	0.568172
	RNN on Continuous Bag of Word	70.526314	29.507907
	RNN on Skip Gram	84.210527	28.094129
Level 3	Multinomial Naive Bayes	66.666667	0.022552
	Random Forest	82.857143	0.608572
	RNN on Continuous Bag of Word	66.315788	41.373782
	RNN on Skip Gram	80.000001	29.876024

Pré-traitement (OpenCV) :

Passage en Gris

- Exposition et Contraste Optimisés
- Filtrage du Bruit

Regroupement:

K-means Clustering

Réduction Dimensionnelle :

- Décorrélation :
 - Meilleure séparation
 - Réduction du temps de traitement
- PCA:
 - 99% variance expliquée
 - 32 à 28 composantes
- T-SNE :
 - Visualisation

Classification:

Linear Suppport-Vector Clustering (SVC)

Classification:

Linear SVC

- Niveau 1 : 31%

- Niveau 2 : 2%

- Niveau 3 : 5%

Classification:

CNN

- Niveau 1 : 35%

- Niveau 2 : 30%

- Niveau 3 : 39%

Classification:

		Accuracy	Time
Level of Category	Model		
Level 1	Linear SVC	31.428571	2.942513
	CNN	34.523809	190.002122
Level 2	Linear SVC	1.904762	4.112777
	CNN	29.761904	207.038256
Level 3	Linear SVC	4.761905	3.729364
	CNN	39.285713	197.103601

Conclusion et Perspectives

Conclusion:

- Traitement de textes
- Traitement d'images
- Classifieur :
 - Texte → possible en l'état
 - Image → non possible en l'état

		Accuracy	Time
Level of Category	Model		
Level 1	Linear SVC	31.428571	2.942513
	CNN	34.523809	190.002122
Level 2	Linear SVC	1.904762	4.112777
	CNN	29.761904	207.038256
Level 3	Linear SVC	4.761905	3.729364
	CNN	39.285713	197.103601

Conclusion et Perspectives

Axes de poursuite

- Autres classifieurs
- Optimisation (hyperparamètres, "Transfert Learning", etc)
- GPU plutôt que CPU
- Plus de données ou "data augmentation"
- Mélange de classifieurs.

Merci de votre attention

Réserve

Recurrent Neural Network

