EDA on NYC Taxi Records

Presented by

B Parashuram Achar

CONTENT

- Introduction
- Problem Statement
- Understanding the Dataset
- EDA
- Challenges Faced
- Conclusion

Introduction

- Taxicabs are the only vehicles that have the right to pick up street-hailing and prearranged passengers anywhere in New York City.
- Increasing popularity of app-based taxi such as lyft or uber and there competitive pricing levels made user decisive to choose based on trip pricing and duration.
- In the present supervised Machine Learning (ML) regression algorithm, will try to predict the over all trip duration of the average yellow taxi service of NYC Taxi and Limousine Commission (TLC).
- Such kind of model building for prediction, will help customers to select the taxi based on trip duration and driver to select optimum route to their destination.
- Thus, will further help service providers to improve their service more, helping customer.

Problem Statement

An upcoming taxi operation in NYC, you are tasked to use the 2023 taxi trip data to uncover insights that could help optimise taxi operations. The goal is to analyse patterns in the data that can inform strategic decisions to improve service efficiency, maximise revenue, and enhance passenger experience.

In the dataset there are over all 1458644 & 11, of rows and columns

- id a unique identifier for each trip
- vendor_id a code indicating the provider associated with the trip record
- pickup_datetime date and time when the meter was engaged
- dropoff_datetime date and time when the meter was disengaged
- passenger_count the number of passengers in the vehicle (driver entered value)
- · pickup_longitude the longitude where the meter was engaged
- · pickup_latitude the latitude where the meter was engaged
- dropoff_longitude the longitude where the meter was disengaged
- dropoff_latitude the latitude where the meter was disengaged
- store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory before sending to the vendor because the vehicle did not have a connection to the server - Y=store and forward; N=not a store and forward trip
- trip_duration duration of the trip in seconds

Unique values and data types of the different variables identified

```
Total Unique Values in id - 1458644

Total Unique Values in vendor_id - 2

Total Unique Values in pickup_datetime - 1380222

Total Unique Values in dropoff_datetime - 1380377

Total Unique Values in passenger_count - 10

Total Unique Values in pickup_longitude - 23047

Total Unique Values in pickup_latitude - 45245

Total Unique Values in dropoff_longitude - 33821

Total Unique Values in dropoff_latitude - 62519

Total Unique Values in store_and_fwd_flag - 2

Total Unique Values in trip_duration - 7417
```

```
RangeIndex: 1458644 entries, 0 to 1458643
Data columns (total 11 columns):
                       Non-Null Count
    Column
                                         Dtype
    id
                       1458644 non-null
                                         object
    vendor id
                      1458644 non-null
                                         int64
    pickup datetime
                       1458644 non-null
                                         obiect
    dropoff datetime
                        1458644 non-null
                                         object
    passenger count
                       1458644 non-null
                                         int64
    pickup longitude
                        1458644 non-null float64
    pickup latitude
                        1458644 non-null float64
    dropoff longitude 1458644 non-null float64
    dropoff latitude
                        1458644 non-null float64
    store and fwd flag 1458644 non-null
                                         object
    trip duration
                        1458644 non-null int64
dtypes: float64(4), int64(3), object(4)
memory usage: 122.4+ MB
```

Pickup Heatmap Location CONNECTICUT New Haven New York New York City (NYC), USA **Drop-off Heatmap Location**

Location
Map of
NYC, USA

Added features and its types in the list

	index	
0	id	object
1	vendor_id	int64
2	pickup_datetime	datetime64[ns]
3	dropoff_datetime	datetime64[ns]
4	passenger_count	int64
5	pickup_longitude	float64
6	pickup_latitude	float64
7	dropoff_longitude	float64
8	dropoff_latitude	float64
9	store_and_fwd_flag	object
10	trip_duration	int64
11	pickup_hour	int64
12	pickup_weekday	object
13	pickup_month	int64
14	pickup_day_num	int64
15	dropoff_weekday	object
16	distance	float64
17	speed	float64
18	pickuptime_of_day	object

Distribution of dependent variable after using log transform

Dependent variable distribution

- After treatment, most trip durations completed within 10-20 min and observed trips took 0-30 min (1800 seconds).
- Outliers present in the variable

 Duration of a day time when maximum number of passenger travels Number of passengers travelling during a trip

 Distribution of days when it is maximum travelling take place.

- Plot it can be clearly viewed that the timing between 6.00 pm to 7.00 pm in evening are the pick time for travelling.
- As this is the time when class people and market prefer to travel.

 Vendor and total trip distribution just provides a small variation between two types. Number of trips per month in which it can be seen that not much change observed.

- First plot showing the outliers of speed and distance.
- And after treatment, the distance variable updated between 0 to 100 km.
- And for speed, its variable updated to near by 60 km/h (as per the traffic rule of NYC speed limit is 40 km/h).

- Showing the plot trip duration in following of 6 months in total.
- It is lowest at its starting month.
- But the picks up suddenly in the 5th month of the year.

- Trip duration reaches its pick around 3pm.
- And lowest at 6 am in early morning.

- Plot shows, lowest trip number can be seen around 6am in early morning.
- Again in all weekdays maximum number of pick hours can be observed around between 3pm to 4pm, with some variation in all weekdays.

Not much difference between Y and N

It can be observed at few values the speed at 60 km/hr travels the maximum distances.

Regression line showing some linear relation between trip duration and distance.

Feature Engineering

trip_duration_for	0.007 - D Appear	dessenger count - 0	Boom joudange - B	BCA - aproprie drope	dopor longitude - 10	019 - apriling product	becap, your - 20	oost - quant drod	distance - 20	and first flag N - 02	Sofe and field fleg T - 10	pictup day Monday - 00	melag day Saturday - 99	Gord day Sunday -	pickup, day, Thursday - 29	BOD - Appeal Air accept	ckup day Wednesday - 09	trip_durebbb_fir_
pickup_day_Wednesday	0 0011	0.0097	0.00022	0.016	0.0032	0.01	0.032	0.014	0.01	0.0014	0.0034	0.16	017	0.16	0.17	0.16	1	0.031
pickup_day_Tuesday	0.002	0.0067	0.0094	0.015	0.0043	0.0098	0.035	0.0068	0.0087	37e-05	37e-05	0.15	037	0.16	0.37	1	0.16	0.015
pickup_day_Thursday	0.00055	0.0081	0.0025	0.01	0.00074	0.0029	0.034	0.014	0.0024	0.0018	8 0018	016	018	0.13	1	017	0.17	0.045
pickup_day_Sunday	0.0026	0016	0.0027	0.036	0.013	0.012	0.089	0.0034	0.027	0.0041	0.0041	0.15	017	1	0.17	0.16	0.16	0.055
pickup_day_Saturday	0.00048	0.021	0.035	0.024	0.016	0.017	0.035	0.0074	0.015	0.0001	11000	016	1	0.17	0.18	0.17	0.17	0.045
pickup day Monday			0.033	0.0046	0.0074	0.0063	0.023	0.0013	0.015	0.0023	0.0023	1	016	0.15	0.10	035	0.16	0.016
store and fed flag Y		0.022	0.02	non	0.015	0.012		0.00073		9	į.	0.0023	0.0031	0.0041	0.0018	17e-05	0.0014	0.03
store and feel flag N	0.081	0.032	0.02	0.01	0.015	0.012		0.00073	_///	1	1	0.0023	0.0031	0.0041		3.7e-05		0.03
datance		0.011	0.54	0.33	0.38	016	0.024	0013	î	0.031	0.031	0.015	0.015	0.027	0.0024	0.0087	0.01	0.76
pickup month		0.0019	0.023	0.0023	0.0062	0.00093		1	0.024	0.0023			0.0074	0.0034	0.034	0.0088	8014	0.03
dropoff_tatitude pickup hour		0.0027	0.025	0.0097	0.05	0015	0015	0.00093 0.003E	816	0.012	0.012	0.0063	0.017	0.012	0.0029	0.0098	0.01	0.03
dropoff_longitude		0.00027	0.21		T A	0.12	0.05	0.0062	9.34	10000		0.0074		0.013	A COLORES	0.0043	0.0032	
pickup_latitude		0.0055	0.18	0032	0.032	0.36	0.0097	0.0023	833	001	0.01	0.0046	0.034	0.026	0.0074	0.015	0.016	0.24
pickup_longitude		0.0054	14	0.16	621	0.026	5023	0.0048	0.54	0.02	0.02	0.033	0.035	0.0027	0.0025		2113397	0.38
passenger_count	0.28	1.	0.0054	0.0055	0.00027	0.0027	0.0089	0.0019	0.011	0.022	0.027	0.0095	0.021	0.016	0.0001	9.0067	0.0897	0.014
vendor_id	1	038	0.018	0.0015	0.0048	0.0043	0.0087	0.0063	0.0099	0.063	0.081	0.00061	0.00648	0.0026	0.00055	0.002	0.0011	0.007

Correlation

The plot does not show much correlation between different independent variables with variable.

Only distance and pickup_longitude shows correlation.

Else not much correlation has observed.

Evaluation Metrics & Types

- Mean Absolute Error(MAE)
 MAE is a very simple metric which calculates the absolute difference between actual and predicted values.
- Mean Squared Error(MSE)
 MSE is a most used and very simple metric with a little bit of change in mean absolute error.
 Mean squared error states that finding the squared difference between actual and predicted value.
- Root Mean Squared Error(RMSE)
 As RMSE is clear by the name itself, that it is a simple square root of mean squared error.
- R-Squared (R2)
 R-Squared is a statistical measure of fit that indicates how much variation of a dependent variable is explained by the independent variable(s) in a regression model. It's values range from 0 to 1 and are commonly stated as percentages from 0% to 100%.
- Adjusted R2
 Adjusted R2 is a corrected goodness-of-fit (model accuracy) measure for linear models. It identifies the percentage of variance in the target field that is explained by the input or inputs.

Linear Regression

Lasso Regression
Actual vs Predicted for Test Data - Lasso

Decision Tree Regressor

- GridSearch CV
- Hyperparameter tuning

Ridge Regression Actual vs Predicted for Test Data - Ridge

XGBoost Regressor

- GridSearch CV
- Hyperparameter Tuning

Random Forest Regressor

- GridSearch CV
- Hyperparameter Tuning

Feature Importance

- Here, we can see among all the features, distance performed best in XGBoost model.
- And stands out to be the most important feature during prediction.

Model Comparison

	Model Name	Train MSE	Train RMSE	Train R^2	Train Adjusted R^2
0	Linear Regression	0.012791	0.113097	0.595977	0.595970
1	Lasso Regression	0.012791	0.113097	0.595977	0.595970
2	Ridge Regression	0.012791	0.113097	0.595977	0.595970
3	DecisionTree Regressor	0.008673	0.093132	0.726034	0.726029
4	XGBoost Regressor	0.005282	0.072681	0.833144	0.833142
5	Random Forest Regressor	0.008334	0.091293	0.736744	0.736739

Train set analysis

Test set analysis

	Model Name	Test MSE	Test RMSE	Test R^2	Test Adjusted R^2
0	Linear Regression	0.012752	0.112926	0.595680	0.595651
1	Lasso Regression	0.012752	0.112926	0.595681	0.595653
2	Ridge Regression	0.012752	0.112926	0.595681	0.595653
3	DecisionTree Regressor	0.008806	0.093841	0.720792	0.720773
4	XGBoost Regressor	0.006079	0.077967	0.807264	0.807250
5	Random Forest Regressor	0.008477	0.092073	0.731215	0.731196

Challenges Faced

- Handling the very large dataset
- Feature Engineering
- Computational time during running of model
- Optimization of models

Conclusion

- Firstly, their is not much difference between the train and test values of Linear Regression, Lasso Regression, Ridge Regression during the MSE, RMSE.
- But the model performance of the above mentioned regression models
- suddenly increases for R^2 and Adjusted R^2 value.
- Hyperparameter tuning also did not help much in improving the value.
- The model performance for the Decision Tree Regressor, XGBoost Regressor
- and Random Forest Regressor finally showed some good performance in both
- train and test data for MSE, RMSE.
- Among all the used models for ML regression analysis, XGBoost Regressor showed the best performance with 80.72% in test R^2 value and 83.31% in train R^2.

