SDK - HTHardD11.d11 说明文档

目录

一、	说明	明3				
一、	说明		3			
_,	结构体。	介绍	3			
三、	函数介绍	绍	4			
1.	•	dsoHTDeviceConnect.	4			
2.		dsoHTSearchDevice	4			
3.		dsoHTSetCHPos	4			
4.		dsoHTSetVTriggerLevel	5			
5.		dsoHTSetHTriggerLength	5			
6.		dsoHTSetCHAndTrigger	6			
7.		dsoHTSetCHAndTriggerVB	6			
8.		dsoHTSetSampleRate	7			
9.		dsoHTSetSampleRateVi	7			
10	0.	dsoHTStartCollectData	8			
13	1.	dsoHTGetState	8			
12	2.	dsoHTGetData	9			
13	3.	dsoHTGetScanData	9			
14	4.	dsoHTGetRollData	10			
1	5.	dsoHTSetHardFC	10			
16	5.	dsoHTGetHardFC	10			
17	7.	dsoGetFPGAVersion	11			
18	8.	ddsSetOnOff	11			
19	9.	ddsSetCmd	11			
20	0.	ddsEmitSingle	11			
2:	1.	ddsSDKSetFre	12			
2	2.	ddsSDKSetAmp.	12			

23.	ddsSDKSetOffset
24.	ddsSDKSetBurstNum
25.	ddsSDKSetWaveType
26.	ddsSDKSetWavePhase
27.	ddsSDKSetWaveDuty
28.	dsoInitHard14
29.	dsoHTADCCHModGain
30.	dsoHTSetAmpCalibrate
31.	dsoHTSetRamAndTrigerControl
32.	dsoHTSetTrigerMode
33.	dsoHTSetVideoTriger
34.	dsoHTSetPulseTriger
四、排	空制流程图如下:
表 1:	时基与索引值的对应关系19
表 2:	时基与通道模式19
表 3:	电压档位与索引值的对应关系20
表 4:	常用示波器设置
采集数	数据电压值计算21
	数据电压值计算
DDS 车	俞出示例21

一、说明

所有 DLL 在 VC++ 6.0 环境下编译生成。所以数据类型符合 VC++ 6.0 标准.

WORD: unsigned short, 无符号 16bit 整型, 两个字节

BOOL: 布尔类型, 32bit 四个字节。

ULONG: unsigned long, 无符号 32bit 整型, 四个字节。

MAX CH NUM: 4, 详见 DefMacro.h 中定义

此 DLL 中的所有文件都是用命令行上定义的 DLL_API 符号编译的。在使用此 DLL 的任何其他项目上都不应定义此符号。这样,源文件中包含此文件的任何其他项目都会将 DLL API 函数视为是从 DLL 导入的。

```
#ifndef DLL_API
#define DLL_API extern "C" __declspec(dllimport)
#endif
```

定义标准调用:

#define WIN_API __stdcall

二、结构体介绍

结构体 _HT_RELAY_CONTROL 包含了所有控制继电器状态所需要的信息。

```
typedef struct _HT_RELAY_CONTROL
{
    BOOL bCHEnable[MAX_CH_NUM];
    WORD nCHVoltDIV[MAX_CH_NUM];
    WORD nCHCoupling[MAX_CH_NUM];
    BOOL bCHBWLimit[MAX_CH_NUM];
    WORD nTrigSource;
    BOOL bTrigFilt;
    WORD nALT;
} RELAYCONTROL, *PRELAYCONTROL;
```

说明:

bCHEnable [MAX_CH_NUM]: 大小为 MAX_CH_NUM (CH 的总数) 的数组,表示 CH 的开/关。取值: 1 为开; 0 为关。

nCHVo1tDIV[MAX_CH_NUM]:大小为 MAX_CH_NUM(CH 的总数)的数组,表示 CH 的电压档位。电压档位以索引值形式表示。以最小电压档位为 0 开始依次递加 1 计算。

nCHCoupling[MAX_CH_NUM]: 大小为 MAX_CH_NUM(CH 的总数)的数组,表示 CH 的耦合。耦合 以索引值形式表示。取值: DC 为 0; AC 为 1;

bCHBWLimit[MAX_CH_NUM]:大小为 MAX_CH_NUM(CH 的总数)的数组,表示 CH 的带宽限制。取值:1为打开带宽限制;0为关闭带宽限制。

nTrigSource: 表示触发源,以索引值形式取值。假设现在为 4CH 示波器,则内部触发取值为: CH1 为 0; CH2 为 1; CH3 为 2; CH4 为 3; 如果有外部触发,则 EXT 为 5; 如果有 EXT/10 触发,则取值为 6。

bTrigFilt:表示高频抑制。取值:1表示打开高频抑制,0表示关闭高频抑制。nALT:表示是否交替。取值:1为交替,0为非交替。

```
举例:
```

```
声明一个变量: RELAYCONTROL myRelayControl;
声明一个指针: PRELAYCONTROL pRelayControl;
```

三、函数介绍

1. dsoHTDeviceConnect

函数声明: DLL_API WORD WINAPI dsoHTDeviceConnect (WORD DeviceIndex) 返回值:

返回仪器连接的情况。0:不连接;非0:连接。

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

备注:

获取 PC 是否与仪器相连。

程序举例:

```
WORD DeviceIndex = 0;

//调用函数

if(0 = dsoHTSearchDevice(DeviceIndex))
{

    //不连接
}
else
{
    //连接中
```

2. dsoHTSearchDevice

函数声明: DLL_API WORD WINAPI dsoHTSearchDevice(short* pDevInfo); 返回值:

与 PC 机连接成功的设备数。

参数:

pDevInfo

short 指针长度为 32, 用来遍历 0-31 端口是否有设备,如果第 i 端口有设备返回 pDevInfo[i]==1,无设备 pDevInfo[i]==0。

备注:

遍历端口。

3. dsoHTSetCHPos

```
函数声明: DLL_API WORD dsoHTSetCHPos(WORD nDeviceIndex, WORD nVoltDIV, WORD nPos, WORD nCH, WORD nCHMode)
```

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

pLeve1

WORD 指针型,储存零电平校准数据要求长度为 577。从 dsoHTWriteCalibrationData 获得

nVoltDIV

WORD 型变量,表示当前通道 nCH 电压的索引值。

nPos

WORD 型变量,表示当前通道 nCH 垂直位置范围 0-255。

nCH

WORD 型变量,表示当前设置的通道。范围 0~3

nCHMode

WORD 型变量,表示当前的通道模式(1、2、4)。通道模式请详见表 2

备注:

设定通道的垂直位置。通道垂直位置的范围为 0~255, "0"表示将通道位置设置到屏幕最下端;"128"将通道设置到屏幕最中间;"255"表示设置到屏幕最上端

4. dsoHTSetVTriggerLevel

函数声明: DLL API WORD dsoHTSetVTriggerLevel(WORD nDeviceIndex,

WORD nPos,

WORD nSensitivity)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nPos

WORD 型变量,表示触发的垂直位置,范围 0-255。

nSensitivity

WORD 型变量,表示触发灵敏度。触发灵明度越大越不会误触发,但设置的灵敏度过大,会导致较小幅度的信号无法触发。

备注:

设定触发的垂直位置。

5. dsoHTSetHTriggerLength

函数声明: DLL API WORD dsoHTSetHTriggerLength(

WORD nDeviceIndex,

PCONTROLDATA pControl,

WORD nCHMod)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

pControl

指向 CONTROLDATA 型变量,详见 HTSoftD11 中 CONTROLDATA 的定义。nCHMode

WORD 型变量,表示当前的通道模式(1、2、4)。通道模式请详见表 2

备注:

设定水平触发位置,以及采集深度。

注意此函数设置的是单个通道的采集深度,范围是 4096-64KB(64*1024),因为设备的存储数据的内存仅有 64KB,故仅有一个通道开启才可设置为 64KB,更具体的说,假如所开通道数目为 nCHEnable;设置的采集深度为 nLength, nCHEnable*nLength<=64KB.

6. dsoHTSetCHAndTrigger

函数声明: DLL_API WORD dsoHTSetCHAndTrigger(WORD nDeviceIndex,

PRELAYCONTROL pRelayControl,

WORD nTimeDIV);

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

pRelayControl

PRELAYCONTROL 指针详见文件头部。

nTimeDIV

WORD 型变量,表示当前时基的索引值。

备注:

设定继电器状态。电压档位、通道开关、20M 带宽限制、耦合方式等改变需要调用

7. dsoHTSetCHAndTriggerVB

函数声明: DLL API WORD dsoHTSetCHAndTriggerVB(WORD nDeviceIndex,

WORD* pCHEnable,

WORD* pCHVoltDIV,

WORD* pCHCoupling,

WORD* pCHBWLimit,

WORD nTriggerSource,

WORD nTriggerFilt,

WORD nALT,

WORD nTimeDIV):

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

pCHVoltDIV

WORD 型变量指针,长度为 4,存放 4 个通道的电压档位索引值。pCHEnable

WORD 型变量指针,长度为 4,存放 4 个通道的开关状况 1 表示开,0 表示关。 pCHCoupling

WORD 型变量指针,长度为 4,存放 4 个通道的输入耦合状况 0: DC, 1: AC。 pCHBWLimit

WORD 型变量指针,长度为4,存放4个通道的带宽限制。

nTriggerSource, nTriggerFilt, nALT

WORD 型变量,与结构体 RELAYCONTROL 同名变量相同。

nTimeDIV

WORD 型变量,表示当前时基的索引值。

备注:

此接口为 c#提供的,dsoHTSetCHAndTrigger 的变形,在 DLL 中还是调用dsoHTSetCHAndTrigger,用来设定继电器状态。

8. dsoHTSetSampleRate

函数声明: DLL API WORD WINAPI dsoHTSetSampleRate(WORD nDeviceIndex,

WORD nYTFormat,

PRELAYCONTROL pRelayControl, PCONTROLDATA pControl)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nYTFormat

WORD 型变量,表示当前的 YT 模式 0: NORMAL 1: SCAN 2: ROLL。pControl

指向 CONTROLDATA 型变量,详见 HTSoftDll 中 CONTROLDATA 的定义。pRelayControl

指向 RELAYCONTROL 型变量,详见 RELAYCONTROL 的定义。

备注:

设定 FGPA 的采样率。

9. dsoHTSetSampleRateVi

函数声明: DLL API WORD dsoHTSetSampleRateVi(WORD nDeviceIndex,

WORD* pCHEnable,

WORD* pCHVoltDIV,

WORD* pCHCoupling,

WORD* pCHBWLimit,

WORD nTriggerSource,

WORD nTriggerFilt,

WORD nALT,

PCONTROLDATA pControl);

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

pAmpLevel,

WORD 型变量指针,长度为 289,存放幅度校准数据存放 289 个数度数据。pCHVoltDIV

WORD 型变量指针,长度为 4,存放 4个通道的电压档位索引值。pCHEnable

WORD 型变量指针,长度为 4,存放 4 个通道的开关状况 1 表示开,0 表示关。 pCHCoupling

WORD 型变量指针,长度为 4,存放 4 个通道的输入耦合状况 ODC, 1 AC。pCHBWLimit

WORD 型变量指针,长度为4,存放4个通道的带宽限制。

nTriggerSource, nTriggerFilt, nALT

WORD 型变量,与结构体 RELAYCONTROL 同名变量相同。pControl

指向 CONTROLDATA 型变量,详见 HTSoftD11 中 CONTROLDATA 的定义。

备注:

dsoHTSetSampleRate 的变形,设定 FGPA 的采样率。

10. dsoHTStartCollectData

函数声明: DLL_API WORD WINAPI dsoHTStartCollectData(WORD nDeviceIndex,

WORD nStartControl)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nStartControl

WORD 型变量,表示开始采集的模式。WORD 数据一共8bit,0:0为AUT01为其他为0;

- 1: 1 为滚动模式 0 为正常模式
- 2: 1为 采集完一次停止,0为正常模式

备注:

开始数据采集。

11. dsoHTGetState

函数声明: DLL_API WORD WINAPI dsoHTGetState(WORD nDeviceIndex); 返回值:

WORD 类型 8bit

- 0: 1 有触发, 0 无触发
- 1: 1 采集结束, 0 采集未结束

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

备注:

获取采集状态。仅当采集结束才可读取采集数据

12. dsoHTGetData

函数声明: DLL API WORD WINAPI dsoHTGetData(WORD nDeviceIndex,

WORD* pCH1Data,
WORD* pCH2Data,
WORD* pCH3Data,

WORD* pCH4Data,

PCONTROLDATA pControl)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

pCH%n%Data

WORD 型变量指针,长度为 pControl-> nReadDataLen,用来存放通道 n 的采集数据数据范围 0-255

pControl

指向 CONTROLDATA 型变量,详见 HTSoftD11 中 CONTROLDATA 的定义。

备注:

获取采集模式为 NORMAL 采集数据。数组 pCH1Data 第 i 个点所代表的实际电压值为: (pCH1Data[i]-通道垂直位置)×电压档位/32,比如 dsoHTSetCHAndTrigger 设置通道 1 电压档位索引为 5 (查表 3 得为 100mV), dsoHTSetCHPos 设置通道垂直位置为 128,第 i 点数据为 65,侧第 i 点实际电压值为 (65-128)*100mV/32=-197.7mV

13. dsoHTGetScanData

函数声明: DLL API WORD dsoHTGetScanData(WORD nDeviceIndex,

WORD* pCH1Data,

WORD* pCH2Data,

WORD* pCH3Data,

WORD* pCH4Data,

PCONTROLDATA pControl);

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

pCH%n%Data

WORD 型变量指针,长度为 pControl-> nReadDataLen,用来存放通道 n 的采集数据数据范围 0-255

pControl

指向 CONTROLDATA 型变量,详见 HTSoftD11 中 CONTROLDATA 的定义。

备注:

获取采集模式为 SCAN 采集数据。

pControl->nLastAddress 用来记录上一次采集结束地址 pControl->nAlready 用来记录在一帧的采集中已经采的长度

14. dsoHTGetRollData

函数声明: DLL API WORD dsoHTGetRollData(WORD nDeviceIndex,

WORD* pCH1Data,

WORD* pCH2Data,

WORD* pCH3Data,

WORD* pCH4Data,

PCONTROLDATA pControl)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

pCH%n%Data

WORD 型变量指针,长度为 pControl-> nReadDataLen,用来存放通道 n 的采集数据数据范围 0-255

pControl

指向 CONTROLDATA 型变量,详见 HTSoftD11 中 CONTROLDATA 的定义。

备注:

获取采集模式为 ROLL 采集数据。

pControl->nLastAddress 用来记录上一次采集结束地址

15. dsoHTSetHardFC

函数声明: DLL API WORD dsoHTSetHardFC(WORD nDeviceIndex,

ULONG nTime)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nTime

ULONG 类型变量,下发的数据 nSend,时间长度单位 nS,长度越大精度越高反应越慢 **备注**:

请结合 dsoHTGetHardFC 查看。

16. dsoHTGetHardFC

函数声明: DLL_API ULONG dsoHTGetHardFC(WORD nDeviceIndex)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

备注:

计算的频率= nIndata*1E9/(8*nSend);

17. dsoGetFPGAVersion

函数声明: DLL_API WORD dsoGetFPGAVersion(WORD DeviceIndex) 返回值:

FPGA 版本

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

备注:

获取 FPGA 版本。

18. ddsSetOnOff

函数声明: DLL_API WORD ddsSetOnOff(WORD DeviceIndex, short nOnOff)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nOnOff

short 型变量, 1表示关闭, 0表示开启

备注:

具有 DDS 功能 DDS 开关。

19. ddsSetCmd

函数声明: DLL_API WORD ddsSetCmd(WORD DeviceIndex,

USHORT nData)

返回值:

0: 失败, 非零: 成功

参数:

 ${\tt DeviceIndex}$

WORD 型变量,表示当前设备的索引值。

nData

WORD 型变量, 4表示非连续, 0表示连续

备注:

设置是否为连续波形。

20. ddsEmitSingle

函数声明: DLL_API WORD ddsEmitSingle(WORD DeviceIndex)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

备注:

ddsSetCmd data=4时,触发一次输出。

21. ddsSDKSetFre

函数声明: DLL_API float WINAPI ddsSDKSetFre(WORD DeviceIndex, float dFre) 返回值:

旧的值

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

dbFre

double 型变量,表示 DDS 的频率

备注:

DDS 频率设置。

22. ddsSDKSetAmp

函数声明: DLL_API WORD WINAPI ddsSDKSetAmp(WORD DeviceIndex, WORD nAmp) 返回值:

旧的值

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nAmp

WORD 型变量,单位 mV 表示 DDS 的输出的幅度如果 Sinwave nAmp=1000,测波形幅度 1V, Vpp2V

备注:

DDS 幅度设置。

23. ddsSDKSetOffset

函数声明: DLL_API short WINAPI ddsSDKSetOffset(WORD DeviceIndex, short nOffset) 返回值:

旧的值

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nOffset

short 型变量,表示信号偏移单位为 mV,如值为 1000,表示偏移为 1V

备注:

DDS 偏移设置。

24. ddsSDKSetBurstNum

函数声明: DLL_API WORD WINAPI ddsSDKSetBurstNum(WORD DeviceIndex, WORD nBurstNum)返回值:

旧的值

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nBurstNum

WORD 型变量,表示非连续波形输出的波形个数

25. ddsSDKSetWaveType

函数声明: DLL_API WORD WINAPI ddsSDKSetWaveType(WORD DeviceIndex, WORD nType)返回值:

旧的值

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nType

WORD 型变量,波形类型 0 正弦波; 1 三角波 2 方波; 4 直流; 8 高斯噪声; 9 白噪声**备注**:

DDS 波形类型。

26. ddsSDKSetWavePhase

函数声明: DLL_API float WINAPI ddsSDKSetWavePhase(WORD DeviceIndex, float fPhase)返回值:

旧的值

参数:

 ${\tt DeviceIndex}$

WORD 型变量,表示当前设备的索引值。

fPhase

表示 DDS 的信号的初始相位

27. ddsSDKSetWaveDuty

函数声明: DLL_API float WINAPI ddsSDKSetWaveDuty(WORD DeviceIndex, float fDuty) 返回值:

旧的值

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

fPhase

表示 DDS 的信号的占空比, 仅对锯齿波, 方波有效

28. dsoInitHard

函数声明: DLL_API WORD dsoInitHard(WORD DeviceIndex)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

备注:

设备初始化。硬件上电连接后需要及时调用

29. dsoHTADCCHModGain

函数声明: DLL_API WORD dsoHTADCCHModGain(WORD DeviceIndex,

WORD nCHMod)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nCHMod

WORD 型变量,表示当前设备的通道模式。

备注:

通道模式变化时调用。

30. dsoHTSetAmpCalibrate

函数声明: DLL API WORD dsoHTSetAmpCalibrate(WORD nDeviceIndex,

WORD nCHSet,

WORD nTimeDIV,

WORD *nVoltDiv,

WORD *pCHPos)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nCHSet

WORD 型变量, 定义同 pControl->nCHSet。

nTimeDIV

WORD 型变量,表示时基。

nVoltDiv

WORD 型指针,长度为4,四个通道的电压档位索引值。

pCHPos

WORD 型指针,长度为4,四个通道的垂直位置。

备注:

设置幅度修正。

31. dsoHTSetRamAndTrigerControl

函数声明: DLL_API WORD dsoHTSetRamAndTrigerControl(WORD DeviceIndex,

WORD nTimeDiv,

WORD nCHset,

WORD nTrigerSource,

WORD nPeak)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nCHSet

WORD 型变量, 定义同 pControl->nCHSet。

nTimeDIV

WORD 型变量,表示时基。

nTrigerSource

WORD 型变量,表示触发通道。

nPeak

WORD 型变量,表示是否开启峰值采样。1: 开启 0 关闭

备注:

设置触发源。

32. dsoHTSetTrigerMode

函数声明: DLL API WORD dsoHTSetTrigerMode(WORD m nDeviceIndex,

WORD nTriggerMode,

WORD nTriggerSlop,

WORD nTriggerCouple)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nTriggerMode

WORD 型变量,触发模式。0:边沿 1:脉冲 2:视频

nTriggerSlop

WORD 型变量,触发时上升沿还是下降沿。0:上升沿 1:下降沿

nTriggerCouple

WORD 型变量,表示触发耦合方式。0: 直流 1: 交流 2: 低频抑制 3: 高频抑制 4: 噪声抑制

备注:

设置触发模式。

33. dsoHTSetVideoTriger

函数声明: DLL_API WORD WINAPI dsoHTSetVideoTriger(WORD m_nDeviceIndex,

USHORT nStand,

USHORT nVedioSyncSelect,

USHORT nVideoHsyncNumOption,

USHORT nVideoPositive,

WORD nLevel,

WORD nLogicTriggerSource)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

nStand

WORD 型变量,表示视频触发制式 0: PALSECAM 1: NTSC。

nVedioSyncSelect

WORD 型变量,表示视频触发模式下的同步选择,默认值为0。

信:

所有行: 0 行: 1

奇数场: 2偶数场: 3

所有场: 4

nVideoHsyncNumOption,

WORD 型变量,表示视频触发的线数值。

nVideoPositive

WORD 型变量,表示触发的极性选择。

nLevel

WORD 型变量,表示触发的实际电平

nLogicTriggerSource

WORD 型变量,表示视频触发的触发源。

备注:

设定视频触发时,调用完 dsoHTSetTrigerMode 需调用此函数。

34. >> dso HTS et Pulse Triger

函数声明: DLL_API WORD WINAPI dsoHTSetPulseTriger(WORD m_nDeviceIndex,

ULONG nPW,

WORD nPWCondition)

返回值:

0: 失败, 非零: 成功

参数:

DeviceIndex

WORD 型变量,表示当前设备的索引值。

ULONG 型变量,表示 Pulse 宽度 nS 单位。

 $n \\ PWC \\ ondition$

WORD 型变量,表示 Pulse 触发条件。

值:

等于 0.

不等于 1.

大于 2.

小于 3.

备注:

设定 Pulse 触发时,调用完 dsoHTSetTrigerMode 需调用此函数。

四、控制流程图如下:

表 1: 时基与索引值的对应关系

时基	时基值	采样率 (Sa)	时基	时基值	采样率 (Sa)
索引			索引		
0	2nS	单:1G 双:0.5G 四:250M	19	5mS	50K
1	5nS	单:1G 双:0.5G 四:250M	20	10mS	25K
2	10nS	单:1G 双:0.5G 四:250M	21	20mS	12.5K
3	20nS	单:1G 双:0.5G 四:250M	22	50mS	5K
4	50nS	单:1G 双:0.5G 四:250M	23	100mS	2.5K
5	100nS	单:1G 双:0.5G 四:250M	24	200mS	1.25K
6	200nS	单:1G 双:0.5G 四:250M	25	500mS	500
7	500nS	单双: 0.5G 四:250M	26	1S	250
8	1uS	250M	27	2S	125
9	2uS	125M	28	5S	50
10	5uS	50M	29	10S	25
11	10uS	25M	30	20S	12. 5
12	20uS	12.5M	31	50S	5
13	50uS	5M	32	100S	2. 5
14	100uS	2.5M	33	200S	1.25
15	200uS	1.25M	34	500S	0.5
16	500uS	500K	35	1000S	0.25
17	1mS	250K			
18	2mS	125K			

注意:

- 1 采样率列中粗体表示需要插值
- 2 当示波器不需要插值时,采样率=250/时基;其中 250 是水平一个大格的采集点数,例如时基为 1uS 时采样率=250/(1e-6)=250MSa
- 3 "单"表示单通道模式;"双"表示双通道模式;"四"表示四通道模式。关于通道模式详见表: 时基与通道模式

表 2: 时基与通道模式

时基索引	时基值	通道开启数目/通道模式	
0	2nS	1/单; 2/双; 3、4/四	
•••	•••	1/单; 2/双; 3、4/四	
6	200nS	1/单; 2/双; 3、4/四	
7	500nS	1、2/双;3、4/四	
8	1uS	*/四	
•••	•••	*/四	
35	1000S	*/四	

注意:

1 例如在 200nS 时基的时候,开启了1个通道为单通道模式;开启2个通道为双通道模式;开启3个和4个为四通道模式。

表 3: 电压档位与索引值的对应关系

索引	电压档位	量程	索引	电压档位	量程
0	2mV	16mV	6	200mV	1.6V
1	5mV	40mV	7	500mV	4V
2	10mV	80mV	8	1V	8V
3	20mV	160mV	9	2V	16V
4	50mV	400mV	10	5V	40V
5	100mV	800mV	11	10V	80V

注意:

- 1 "电压档位"表示垂直 1 个大格对应的电压值,更确切的说是表示采集的波形数据 32 个数据差对应的值
- 2 "量程"表示用 1:1 探头对应的量程,如果用 n 倍衰减探头,测量程扩大 n 倍。例如 100mV 用 1:1 探头量程是 800mV,用 1:10 探头量程是 8V

表 4: 常用示波器设置

序号	设置选项	函数调用		
1	电压档位	dsoHTSetCHAndTrigger: 必须		
1	电压油压	dsoHTSetAmpCalibrate: 不调用幅度可能不对		
		dsoHTSetSampleRate: 必须		
2	时基	dsoHTSetRamAndTrigerControl: 必须		
	印至	SetADCCHModGain: 通道模式改变需下发,不调用幅度不准		
		SetAmpCalibrate: 通道模式改变需下发,不调用幅度不准		
		dsoHTSetCHAndTrigger: 必须		
3	通道开启/关闭	SetADCCHModGain: 通道模式改变需下发,不调用幅度不准		
		SetAmpCalibrate: 通道模式改变需下发,不调用幅度不准		
4	垂直触发位置 dsoHTSetVTriggerLevel: 必须			
5	水平触发位置 dsoHTSetHTriggerLength: 必须			
6	带宽限制	dsoHTSetCHAndTrigger: 必须		
7	交直流输入耦合	dsoHTSetCHAndTrigger: 必须		
		dsoHTSetTrigerMode: 必须		
8	触发模式	dsoHTSetVideoTriger: 视频触发额外调用		
		dsoHTSetPulseTriger: 脉宽触发额外调用		
9	触发源 dsoHTSetRamAndTrigerControl: 必须			
10	触发上升沿/下降沿	dsoHTSetTrigerMode: 必须		
11	通道垂直位置	dsoHTSetCHPos 必须		
		dsoHTSetAmpCalibrate 必须		
)), 				

注意:

1 归根到底设置是改变硬件寄存器所存储的值,因此所有设置即可以重复下发,也可在不需要下发时下发。

采集数据电压值计算

```
WORD pCHData[4][4096];//申请空间每个通道 4096 个数据
                                       pCHData[0], WORD
dsoHTGetData(WORD
                   nDeviceIndex, WORD
                                                         pCHData[1], WORD
pCHData[2], WORD pCHData[3], PCONTROLDATA pControl);//调用函数进行数据采集
//假设通道1的垂直位置是64;
short pSrcData[4][4096];//长度与 pCHData 长度一样存放<mark>减去基准位置的数据</mark>
WORD nPos[4];//通道的垂直位置
for (int i=0; i<4; i++)
   for (int j=0; j<4096; i++)
       pSrcData[i][j]= pCHData[i][j]- nPos[i];
我们假设计算通道 1 第 1000 个点对应的实际电压值
假设 nPos[0]=64; pCHData[0][999]=50;侧 pSrcData[0][999]=-14;假设通道 1 设置的电压
```

故计算通道 i 第 j 个点实际电压公式: (pCHData[i][j]- nPos[i])/32.0f*索引对应的电压 值。

档位索引值为"3", 查表 3 得"3"对应 20mV, 那么这个点的电压值为-14/32*20mV=-8.75mV。

注意:要计算的点 pCHData[i][j]必须在[1-254]之间否则数据超出量程计算的肯定不正确

DDS 输出示例

1. 输出正弦波

```
频率 10k; 幅度 1.5V; 偏移-0.5V; 连续
ddsSetCmd(nIndex, 0);
ddsSDKSetFre(nIndex, 10000);
ddsSDKSetAmp(nDIndex, 1500);
ddsSDKSetOffset (nIndex, -500);
ddsSDKSetWaveType (nIndex, 0);
ddsSetOnOff (nIndex, 1)
```

2. 输出非连续正弦波

```
频率 10k; 幅度 1.5V; 每隔 10s 输出一次; 每次输出 11 个波形
ddsSetCmd(nIndex, 4);
ddsSDKSetFre(nIndex, 10000);
ddsSDKSetAmp (nDIndex, 1500);
ddsSDKSetBurstNum(nIndex, 11);
ddsSDKSetWaveType(nIndex, 0);
ddsSetOnOff(nIndex, 1);
while(true) {
    sleep (10S);
```

```
ddsEmitSingle(nIndex);
}
```

3. 输出方波

```
频率 1k; 幅度 2V; 占空比 0.3
ddsSetCmd(nIndex,0);
ddsSDKSetFre(nIndex,1000);
ddsSDKSetAmp(nDIndex,2000);
ddsSDKSetWaveDuty(nIndex,0.3);
ddsSDKSetWaveType(nIndex,2);
ddsSetOnOff(nIndex,1);
```