

Verificarea protocoalelor

24 martie 2008

Protocoale de comunicație - Curs 5

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare

Verificarea Protocoalelor

Specificarea

- ne-formala (limbaj natural)
- formala modele
 - tranziţionale
 - automate FSMs (Finite State Machines)
 - reţele Petri
 - algoritmice
 - hibride FDTs (Formal Description Techniques)
 - Estelle (ISO 9074)
 - LOTOS (Language Of Temporal Ordering Specification) ISO 8807
 - SDL (Specification and Description Language) ITU-T recomandarea Z.100
 - TTCN-3 Testing and Test Control Notation Version 3

24 martie 2008

Protocoale de comunicație – Curs

101

10-

(a)

7

8

Protocoale de comunicație – Curs 5

s

(timeout)

(timeout)

(b)

Modelul transmițătorului / receptorului

Protocoale de comunicație – Curs 5

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare

Acțiuni:

- a inițializare tampon mesaj;
- b inițializare tampon text şi variabile text;
- c start text transparent;
- d primul caracter; pune contor pe valoarea 1;
- e alte caractere de text; increment contor;
- f sfârşit antet, memoreazã și interpretează început
- g verificare erori;
- k sfârşit bloc/text; aşteaptă caracter verificare.

Tabel acțiuni

stare\intr	soh	stx	α	dle	syn	etb	etx	β	itb	bcc
1	2 a	4 b		10 с						
2			3 d		2					
3		4 f	3 e		3	6 k				
4			5 d		4					
5			5 e		5	6 k	8 k			
6										7 g
7										
8										9 g
9										

stare următoare / acțiune

24 martie 2008

FOLITEMANCE

Rețele Petri

- Propuse în forma iniţială de Carl Adam Petri în 1962;
- Au evoluat spre mai multe variante:
 - Retele Petri elementare;
 - Reţele Petri generalizate;
 - Rețele Petri cu arce inhibitoare;
 - Reţele Petri colorate;
 - Rețele Petri continue;
 - Reţele Petri cu predicate;
 - Rețele Petri cu capacități;
 - Rețele Petri cu priorități.
- Unele variante sunt echivalente între ele, altele nu.
- Se folosesc pentru analiza (automată) a proprietăţilor sistemelor concurente, bazate pe evenimente:
 - Caz particular: verificarea protocoalelor.

24 martie 2008

Protocoale de comunicație – Curs :

FOLITEMANON

Definiții (1)

- Reţea Petri este RP = (L, T, I, O)
 - L, mulţime finită de locuri;
 - T, mulţime finită de tranziţii, L ∩ T = Φ;
 - I, funcție de incidență înainte I: L x T → {0, 1};
 - O, funcție de incidență înapoi O: T x L → {0, 1}.
- Un Marcaj M: L → N asociază fiecărui loc un număr natural.
- Pentru fiecare t din T se definesc:
 - Mulţimea locurilor de intrare: Pre(t) = {I ∈ L | I(I, t)<>0};
 - Multimea locurilor de ieşire: Post(t) = {I ∈ L | O(t, I)<>0}.
- Reprezentare:

24 martie 2008

Protocoale de comunicație – Curs 5

TOLITEHMIC

Definiții (2)

- Tranziţia t este executabilă pentru marcajul M dacă:
 - M(I) >= I(I,t), ∀ I ∈ Pre(t) (fiecare loc de intrare are >= un punct).
 - deoarece I(I,t)=0 pentru I \notin Pre(t) → M(I) >= I(I,t), \forall I \in L
- Execuția tranziției t in M schimbă marcajul în M':
 - M'(I) = M(I) I (I,t) + O (t,I), \forall I ∈ L
- Pentru execuţia unei tranziţii se foloseşte notaţia:
 - M -t-> M'
- O secvenţă posibilă de execuţii din M în M', notată M =\$=> M', este \$ = t₁, t₂, t₃, ... tₙ dacă ∃ marcajele M₁, M₂, M₃, ... Mₙ a.î. M -t₁-> M₁ -t₂-> M₂ -t₃-> M₃ ... -tₙ-> Mₙ=M'
- Fie RP şi M₀ un marcaj iniţial. Clasa marcajelor accesibile din M0 este notată A(M₀).

24 martie 2008

Protocoale de comunicație - Curs !

11

Jniversitatea Politehnica București - Facultatea de Automatică și Calculatoare

Execuția unei tranziții

- Fie:
 - Locurile I1, I2, I3;
 - Marcajul iniţial M = [2, 0, 1];
 - Tranziţia t, executabilă.
- Execuţia este instantanee.
- Marcajul după execuţia tranziţiei M' = [1, 1, 2].
 - Fiecare loc de intrare pierde un punct;
 - Fiecare loc de ieşire primeşte un punct.

24 martie 200

Protocoale de comunicatie – Curs 5

Rețele Petri pure

- O tranziție impură are locuri de intrare care sunt şi de ieşire:
 - Pre(t) ∩ Post(t) <> Φ.
- O rețea Petri e impură dacă are cel puțin o tranziție impură.
- Rețelele impure mai dificil de analizat → purificare.
- Algoritm de purificare (creşte dimensiunea reţelei!):
 - Se adaugă un loc special L₀, cu marcaj 1;
 - Se transformă fiecare ţranziție t într-un ansamblu de 2 tranziții t', t" şi un loc intermediar l, cu marcaj 0;
 - Se adaugă un arc de la L_0 la fiecare tranziție t' și un arc de la fiecare tranziție t" către L_0 .
- · Exemplu:

Modelarea protocolului start-stop Model algoritmic: Model de automat finit: – Transmiţător: do ct, msg / ϕ asteapta cerere emisie (ct,msg)A pregateste mesaj (msg,m) В transmite mesaj φ / m С asteapta confirmare (r) } forever; m / φ – Receptor: do asteapta mesaj (m) φ/r D pregateste raspuns (m,r, Ε transmite confirmarea (r) asteapta cerere receptie cr / msq F transfera mesaj (msg) } forever

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare

Rețeaua Petri asociată

Tranziții:

- t1 preluare mesaj produs de utilizatorul transmiţător;
- t2 transmitere mesaj mediului de comunicare;
- t3 recepție mesaj de la mediu;
- **t4** transmitere confirmare;
- t5 recepție confirmare;
- **t6** consumare mesaj de utilizator receptor.

Marcajul corespunzător unei stări inițiale M0:

Entitatea emițătoare așteaptă producerea unui mesaj (A);

Entitatea receptoare este pregatită pentru recepție (D);

Mediul de transmisie este gol.

24 martie 2008

Protocoale de comunicatie - Curs 5

Validarea protocoalelor - proprietăți generale

- Mărginire:
 - Orice M ∈ A(M₀) şi orice I din L → M(I)<=n.
- Siguranţă:
 - Mărginire pentru n=1.
- Viabilitate:
 - Din oricare M accesibil din ${\rm M_0}$ există o secvență de execuții care conține t.
- Cvasi-viabilitate:
 - există o secvenţă de execuţii din M₀ care conţine t.
- Home state:
 - Din oricare M accesibil din $\rm M_{\rm 0}$ există o secvență de execuții care conduce în H.

24 martie 2008

Protocoale de comunicație - Curs 5

19

niversitatea Politehnica București - Facultatea de Automatică și Calculatoare

Persistența

· Conflicte efective:

· Conflicte structurale, dar ne-efective:

Persistență: În orice M accesibil din M0, în care tj şi tk sunt executabile, tj, tk şi, prin simetrie tk, tj sunt secvențe posibile de execuții din M.

24 martie 2008

Protocoale de comunicație – Curs 5

- Invarianţi:
 - Pe locuri (L-invarianţi):
 - M(A) + M(B) + M(C) = 1, pentru orice $M \in \mathcal{A}(M_0)$.
 - · Componentă / rețea conservativă.
 - Pe tranziţii (T-invarianţi):
 - Avans sincron 0 <= N(t3) N(t4) <= 1.
 - · Secvențe repetitive.

24 martie 2008

otocoale de comunicație - Curs

24

Universitatea Politehnica București - Facultatea de Automatică și Calculatoai

Validarea protocoalelor - metode

- Maşina de puncte.
- Arbori şi grafuri de acoperire.
- · Calculul invarianților (model algebric).
- Reducerea modelelor.

24 martie 200

Protocoale de comunicație – Curs

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare

Maşina de puncte

- Proprietăţi:
 - sigură;
 - viabilă;
 - home state;
 - invarianţi?

24 martie 2008

rotocoale de comunicație – Curs 5

23

Jniversitatea Politehnica București - Facultatea de Automatică și Calculatoare

The state of the s

Arbori şi grafuri de acoperire

· Analiza rețelelor nemarginite.

- Proprietăţi:
 - Locurile \mathbf{I}_1 și \mathbf{I}_2 sunt mărginite; \mathbf{I}_3 nu este;
 - Există o infinitate de blocări (M₂ si M₂₊);
 - RP este cvasi-viabilă.

[00&] M₂₊ [10&] M₀

24 martie 2008

Protocoale de comunicație – Curs 5

Construire arbore de acoperire

```
construire_arbore_acoperire()
  calculeaza succesoarele lui M0;
  for (fiecare succesor M)
   if (M>M0)
      marcheaza cu & fiecare componenta a lui M superioara componentei
      corespunzatoare din M0;
    while (exista un marcaj nou Mi, neconsiderat)
      if (nu exista pe calea de la MO la Mi un marcaj Mj=Mi)
        calculeaza succesoarele lui Mi;
        for (fiecare succesor Mk al lui Mi)
          o componenta & a lui Mi ramine & in Mk;
          if (exista un marcaj Mj pe calea de la M0 la Mk cu Mk>Mj)
        marcheaza cu & fiecare componenta din Mk superioara
             componentei coresp. din Mj;
      }
}
```

24 martie 2008

Protocoale de comunicație - Curs 5

2

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare

Analiza RP prin calculul invarianților

- Fie RP o reţea Petri pură (fără bucle), în care L şi T sunt ordonate (arbitrar):
 - L: I1 < I2 < ...< Im,
 - T: t1 < t2 < ...< tn.
- Matricea A : L x T → Z cu A [li, tj] = O (tj, li) I (li, tj) este matricea de incidenţe a lui RP.
- Notăm:
 - A [li, -] = linia li;
 - A [-, tj] = coloana tj.
- L-vector = o matrice coloană indexată după L.
- T-vector = o matrice coloană indexată după T.

24 martie 2008

Protocoale de comunicație – Curs

Modelul excluderii mutuale

Matricea de incidențe:

A	I	1	2	3	4

$$A[a,1] = O[a,1] - I[a,1] = 0-1 = -1$$

24 martie 2008

Protocoale de comunicație – Curs 5

2

Universitatea Politehnica București - Facultatea de Automatică și Calculatoar

Aspecte de corectitudine

c

- Aspecte de corectitudine:
 - Garantare că nu se pierd puncte;
 - Posibilitate reproducere marcaje.
- · Exemple:
 - RP fără pierderi de puncte dar cu marcaj nereproductibil.
 - RP fără pierderi de puncte și cu marcaj reproductibil;

- RP cu pierderi de puncte şi cu marcaj nereproductibil.

24 martie 200

Protocoale de comunicație – Curs 5

FOLITEMANER

L-invarianți

- Daca M şi M' au M -t-> M'; rezulta
 - M' = M + A[-, t];
- Pentru modelul excluderii mutuale avem invariantul :

$$M[a]+2M[b]+M[c]+2M[d]+M[e] = 3$$
(Orice M).

- Pentru g^T = [1, 2, 1, 2, 1] şi M, M' reprezentaţi ca L-vectori
 g^T.M = g^T.M' = g^T.M + g^T.A[-,t].
- Rezultă:
 - $-g^{T}.A[-,t]=0;$
 - $-g^{T}$. A = 0 (relaţia anterioară valabilă pentru orice t).
- g este L-invariant.
- Un L-vector I este un L-invariant ⇔ I^T.A = 0.
- Un L-invariant ne-negativ I se numeşte minimal

 ⇔ nu există un I' a.i. 0 < I' < I.

24 martie 2008

Protocoale de comunicație - Curs 5

25

Jniversitatea Politehnica București - Facultatea de Automatică și Calculatoare

Exemplul excluderii mutuale (1)

U A	١						1	2	3	4
a	-	1	0	0	0	0	-1	1		
b	1	0	1	0	0	0	1	-1		
С									-1	1
d	1	0	0	0	1	0			1	-1
е	I	0	0	0	0	1	-1	1	-1	1

Pentru j=1 se adaugă liniile a+b și b+e

a+b | 1 1 0 0 0 0 0 0 0 0 0 b+e | 0 1 0 0 1 0 0 -1 1

24 martie 200

Protocoale de comunicatie – Curs 5

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare

Exemplul excluderii mutuale (2)

c+d | 0 0 1 1 0 d+b+e| 0 1 0 1 1

24 martie 200

Protocoale de comunicație – Curs :

31

niversitatea Politehnica București - Facultatea de Automatică și Calculatoare

Exemplul excluderii mutuale (3)

24 martie 2008

Protocoale de comunicație - Curs 5

Calcul invarianți

```
calcul_invarianti()
{
  construieste matricea (U|A);
  for (fiecare indice j al tranzitiei tj)
  {
    adauga la matricea (U|A) atâtea linii i câte
        combinatii lineare de câte două linii cu
        coeficienti intregi pozitivi in care se anulează
        elementul [i,j] există;
    elimină din matricea (U|A) liniile i în care
        elementul [i,j] este nenul.
  }
}
```

24 martie 2008

Protocoale de comunicație - Curs !

33

Jniversitatea Politehnica București - Facultatea de Automatică și Calculatoare

Folosire invarianți

- Regulă:
 - Dacă M este un marcaj şi I un L-invariant atunci pentru orice M' accesibil din M:
 - $I^{T}.M' = I^{T}.M$
- Utilizare:
 - Verificarea evitării anumitor marcaje:
 - Dacă există un invariant I a.î. I^T.M' <> I^T.M atunci M' nu poate fi accesibil din M.
 - Găsirea condiţiilor necesare completării unui marcaj M' accesibil din M şi cunoscut parţial;
 - Deducerea unor proprietăți generale ale marcajelor accesibile.

24 martie 2008

Protocoale de comunicație – Curs 5

Exemplu pentru excluderea mutuală

- Invarianții găsiți sunt (se omite T=transpus):
 - $-I_1 = [0 1 0 1 1];$
 - $I_2 = [0 \ 0 \ 1 \ 1 \ 0];$
 - $I_3 = [1 1 0 0 0];$
 - $I = I_1 + I_2 + I_3 = [1 \ 2 \ 1 \ 2 \ 1]$ (invariantul **global**).
- Din I^T.M = I^T.M0 obţinem ptr invarianţi:
 - M[b] + M[d] + M[e] =1;
 - M[c] + M[d] = 1;
 - -M[a] + M[b] = 1.
- · Relaţiile exprimă:
 - Condiţia de excludere mutuală (prima relaţie);
 - Siguranţa: M[l_i] <= 1 pentru orice l_i;
 - Reţea conservativă: din g = I₁ + I₂ + I₃ se obţine:

$$M[a] + 2M[b] + M[c] + 2M[d] + M[e] = 3.$$

24 martie 2008

Protocoale de comunicatie - Curs

3

Iniversitatea Politehnica București - Facultatea de Automatică și Calculatoar

Reproducerea marcajelor

• Efectul tranziției 1, scris M₀ + A[-,1] = M₁ este echivalent cu:

• Efectul cumulat al tranzițiilor 1 și 2 poate fi scris:

24 martie 2008

Protocoale de comunicatie - Curs 5

FOLITE HAVE

T-invarianți

 T-vectorul J care reprezintă numărul de execuţii ale tranziţiilor şi este o soluţie a ecuaţiei A.y = 0 este T-invariant:

- J este un T-invariant

 A.J = 0.
- Un T-invariant ne-negativ J se numeşte minimal ⇔ nu există J' a.î. 0 < J' < J.
- Dacă J este un T-invariant atunci există un marcaj reproductibil prin execuţia tranziţiilor în conformitate cu J.
- Pentru modelul excluderii mutuale, RP revine în marcajul iniţial prin execuţia tranziţiilor 1 şi 2 (J1) sau 3 şi 4 (J2).

24 martie 2008

Protocoale de comunicație – Curs 5

3

Jniversitatea Politehnica București - Facultatea de Automatică și Calculatoare

Calculul T-invarianților

- Din x^T.A=0 şi A.y=0 (sau y^T.A^T =0) rezultă că:
 - T-invarianţii asociaţi lui A sunt L-invarianţii lui A^T.
- A^T este matricea de incidenţe corespunzătoare RP duale.
- RP duală se obţine astfel:
 - Fiecărui loc în RP îi corespunde o tranziție în RP duală;
 - Fiecărei tranziții în RP îi corespunde un loc în RP duală;
 - Fiecărui arc în RP îi corespunde un arc orientat în sens contrar în RP duală.

24 martie 2008

Protocoale de comunicatie - Curs

Reducerea RP

- Reducerea are ca scop scăderea dimensiunilor reţelei.
- Reducerea trebuie să păstreze (cat mai multe) din proprietățile rețelei.
- Reducere cu păstrarea proprietaţilor generale (marginire, viabilitate,...):
 - R1 (Reducerea unui loc);
 - R2 (Reducerea unui loc implicit);
 - R3 (Reducerea unei tranziţii neutre);
 - R4 (Reducerea tranziţiilor identice).
- · Reducere cu păstrarea invarianților:
 - Ra (Reducerea unei tranziții impure);
 - Rb (Reducerea unei tranziții pure).

24 martie 2008

Protocoale de comunicație – Curs :

39

Jniversitatea Politehnica București - Facultatea de Automatică și Calculatoare

R1: Reducerea unui loc

Eliminarea unui loc I:

- Dacă locul I are j intrari şi k ieşiri, ele sunt înlocuite prin j*k tranziţii, obţinute prin contopirea unei tranziţii de intrare cu una de ieşire;
- leşirile unei tranziţii de intrare (ex. d ieşirea lui t1) devin ieşiri ale tranziţiei obţinută prin contopire (t12).

 Daca I este marcat si are k iesiri (locul c din fig), prin eliminarea sa se obtin k retele distincte, marcajul fiind plasat in fiecare caz in locurile corespunzatoare unei alte tranzitii de iesire

24 martie 2008

Protocoale de comunicație – Curs 5

R2: Reducerea unui loc implicit

- · Loc implicit:
 - Marcajul său permite întotdeauna execuţia oricărei tranziţii de ieşire, care ar fi executabilă dacă se ignoră l;
 - Marcajul său poate fi determinat din marcajul celorlalte locuri.

24 martie 2008

rotocoale de comunicatie – Curs 5

44

Universitatea Politehnica Bucureşti - Facultatea de Automatică și Calculatoare

FOLITEMATCA

R3: Reducerea unei tranziții neutre

- Tranziţia t este neutră ⇔ Pre(t) = Post(t).
- Eliminare ⇔ există t'<>t cu O(t',I)>=I(I,t) pentru orice I din Pre(t).

24 martie 200

Protocoale de comunicație – Curs

R4: Reducerea tranziții identice

- Tranziţii identice: au aceleaşi locuri de intrare şi de ieşire.
- Dacă există n tranziții identice, se elimină n-1 din ele.

24 martie 2008

Protocoale de comunicație – Curs :

43

Iniversitatea Politehnica București - Facultatea de Automatică și Calculatoar

POLITEMANCA

Ra: Reducerea unei tranziții impure

- O tranziție impură are locuri de intrare care sunt și de ieșire:
 - Pre(t) ∩ Post(t) \Leftrightarrow Φ.

24 martie 200

Protocoale de comunicatie - Curs 5

Rb: Reducerea unei tranziții pure

- Reducere tranziţie pură:
 - Se elimină tranziţia pură t;
 - Fiecărui cuplu de locuri l_i din Pre(t) şi l_j din Post(t) i se asociază un loc l_i+l_i al cărui marcaj este M(l_i)+M(l_i).

24 martie 2008

Protocoale de comunicație – Curs

45

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare

Cazuri ireductibile

Reţea conservativă: M(I1)+M(I2)=1.

24 martie 200

Protocoale de comunicatie - Curs

Proprietăți păstrate prin reducere

Reduceri	R1	R2	R3	R4	Ra	Rb
Proprietăți						
Mărginirea	Χ	X	X	X		
Siguranța	Х		Х	Х		
Viabilitatea	Χ	Х	Х			
Cvasi-viabilitatea	Х	Х	Х	Х		
Evitarea blocării	Х	Х	Х	Х		
Starea de revenire	Х	Х	Х	Х		
Conservabilitatea	Х	Х	Х	Х		
Invarianți					Х	Х

24 martie 2008

Protocoale de comunicatie – Curs 5

