数据预处理、特征工程、模型评价

李波

研究数据的相关方向包括:

- 机器学习 (machine learning)
- 数据科学 (data science)
- 数据分析 (data analysis)
- 统计学习 (statistical learning)
- 数据挖掘 (knowledge mining)
- 模式识别 (pattern recognition)

"数据"这个概念包含:

- 文本
- 数学数字
- 图数据
- 表格
- 交易流水
- 图片
- 视频
- 音频

.

一些数据的例子:

- · 谷歌公司每天处理24 PB数据
- Facebook网站每天上传1千万张照片
- Youtube每秒钟上传1小时时长视频
- Twitter每天新增4亿新twitter
- 全世界的卫星每天产生数据都是几百个PB。

截止2020年,全球数据达到44ZB (44000亿GB)

数据预处理将给定数据转换为机器学习可以处理的数据。

- 删除无信息量的特征: 与任务无关特征应该删除。
- 平衡数据:保证每一类别数据个数差不多。
- · 补全缺失数据。
- 删除野值: 野值是指与同类别其他数据分布规律不一致的数据。
- 非数值数据转换为数值数据: 机器学习模型只能处理数值型数据。

• 数据归一化: 保证每个特征数值的大小都差不多

$$x_{ij} \leftarrow \frac{x_{ij} - \overline{x_{.j}}}{s_j} \text{ or } x_{ij} \leftarrow \frac{x_{ij} - \overline{x_{.j}}}{\max\limits_{j} |x_{ij} - \overline{x_{.j}}|}$$

其中
$$\overline{x_{.j}} = \frac{\sum_{i} x_{ij}}{n_0 + n_1}, s_j^2 = \frac{\sum_{i} (x_{ij} - \overline{x_{.j}})^2}{n_0 + n_1 - 1}$$
。

Loan_ID	Gender	Married	Depende nts	Education	Self_ Employed	Applicantl ncome	Coapplica ntlncome	LoanAmo unt	Loan_Am ount_Ter m	Credit His	Property_ Area	Loan_Stat us
LP001014	Male	Yes	3+	Graduate	No	3036	2504	158	360	0	Semiurba n	N
LP001018	Male	Yes	2	Graduate	No	4006	1526	168	360	1	Urban	Y
LP001020	Male	Yes	1	Graduate	No	12842113	10968	349	360	1	Semiurba n	N
LP001024	Male	Yes	2	Graduate	No	3200	700	70	360	1	Urban	Y
LP001027	Male	Yes	2	Graduate		2500	1840	109	360	1	Urban	Y
LP001028	Male	Yes	2	Graduate	No	3073	8106	200	360	1	Urban	Y
LP001029	Male	No	0	Graduate	No	1853	2840	114	360	1	Rural	Ν
LP001030	Male	Yes	2	Graduate	No	1299	1086	17	120	1	Urban	Y
LP001032	Male	No	0	Graduate	No	4950	0	125	360	1	Urban	Υ

非数值特征

					*							
Loan_ID	Gender	Married	Depende nts	Education	Self_ Employed	Applicant ncome	Coapplica ntlncome	LoanAmo unt	Loan_Am ount Ter m	Credit_His fory	Property_ Area	Loan_Sta
LP001014	Male	Yes	3+	Graduate	No	3036	2504	158	360	0	Semiurba n	N
LP001018	Male	Yes	2	Graduate	No	4006	1526	168	360	1	Urban	Υ
LP001020	Male	Yes	1	Graduate	No	12842113	10968	349	360	1	Semiurba n	Ν
LP001024	Male	Yes	2	Graduate	No	3200	700	70	360	1	Urban	Υ
LP001027	Male	Yes	2	Graduate		2500	1840	109	360	1	Urban	Υ
LP001028	Male	Yes	2	Graduate	No	3073	8106	200	360	1	Urban	Υ
LP001029	Male	No	0	Graduate	No	1853	2840	114	360	1	Rural	N
LP001030	Male	Yes	2	Graduate	No	1299	1086	17	120	1	Urban	Υ
LP001032	Male	No	0	Graduate	No	4950	0	125	360	1	Urban	Υ
						\						+
无用特征	_		格式	错误	数值	缺失	野值				数:	据不平

数据划分

- 训练数据(training data)
 - 70%, 用于训练模型, 调整模型参数。
- 测试数据(testing data)
 - 20%,用于测试模型性能。
- 验证数据(validation data)
 - o 10%, 用于确定模型的超参数(hyper-parameters)

机器学习流程

以有监督学习为例

训练过程

机器学习三要素:

- 模型或者机器学习算法:选择一个适合问题的模型。
- **损失函数**: 如果 $y = \hat{y}$, 损失函数Loss (y, \hat{y}) 最小。
- 优化: 优化算法用于调整模型参数,最小化损失函数。

机器学习流程

有监督学习

机器学习三要素:

- 模型或者机器学习算法:选择一个适合问题的模型。
- **损失函数**: 如果 $y = \hat{y}$, 损失函数Loss (y, \hat{y}) 最小。
- 优化: 优化算法用于调整模型参数,最小化损失函数。

机器学习流程

以有监督学习为例

人看到的图像

[(226, 137, 125), (226, 137, 125), (223, 137, 133), (223, 136, 128), (226, 138, 120), (226, 129, 116), (228, 138, 123), (227, 134, 124), (227, 140, 127), (225, 136, 119), (228, 135, 126), (225, 134, 121), (223, 130, 108), (226, 139, 119), (223, 135, 120), (221, 129, 114), (221, 134, 108), (221, 131, 113), (222, 138, 121), (222, 139, 114), (223, 127, 109), (223, 132, 105), (224, 129, 102), (221, 134, 109), (218, 131, 110), (221, 133, 113), (223, 130, 108), (225, 125, 98), (221, 130, 121), (221, 129, 111), (220, 127, 121), (223, 131, 109), (225, 127, 103), (223, 134, 109), (226, 128, 106), (223, 135, 122), (225, 133, 112), (227, 144, 124), (229, 135, 104), (231, 142, 123), (231, 143, 116), (232, 142, 112), (230, 143, 117), (233, 150, 121), (234, 148, 121), (237, 154, 123), (233, 153, 121), (231, 149, 121), (237, 149, 119), (238, 149, 116), (234, 143, 118), (235, 154, 122), (234, 145, 116), (232, 142, 121), (233, 135, 112), (230, 133, 121), (227, 118, 98), (221, 120, 105), (219, 127, 127), (213, 110, 109), (203, 98, 103), (202, 82, 91), (187, 86, 98), (174, 74, 92), (169, 63, 84), (166, 65, 85), (158, 63, 89), (153, 61, 96), (155, 55, 80), (157, 67, 98), (166, 72, 93), (161, 66, 82), (166, 73, 89), (165, 69, 87), (169, 73, 91), ...

计算机看到的图像

https://learnopencv.com/histogram-of-oriented-gradients/

$$G_x = 240 - 190 = 50$$
 $G_y = 110 - 60 = 50$
 $G = \sqrt{(G_x)^2 + (G_y)^2} = 50\sqrt{2}$
 $\theta = \operatorname{atan}\left(\frac{G_y}{G_x}\right) = 45^\circ$

https://learnopencv.com/histogram-of-oriented-gradients/

https://learnopencv.com/histogram-of-oriented-gradients/

https://learnopencv.com/histogram-of-oriented-gradients/

词典={爱(1), 机(2), 器(3), 我(4), 习(5), 学(6)}

我	爱	机	器	学	习
4	1	2	3	6	5

"我爱机器学习" —— [4 1 2 3 6 5]

词典={爱(1), 机(2), 器(3), 我(4), 习(5), 学(6)}

$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	我	爱	机	器	学	习
	$egin{bmatrix} 0 \ 0 \ 1 \ \end{bmatrix}$		1 0 0	$egin{bmatrix} 0 \ 1 \ 0 \ \end{bmatrix}$	0 0 0	0 0

- 这种特征表示方式被称为独热编码(one-hot vector)
- 每个词的独热编码向量长度与词典中字的个数一样。如果词典很大,独热编码向量很长。
- 独热编码向量绝大多数元素为0。

我	爱	机	器	学	习
ر 0.1 ر	г 0.3 т	Γ – 0.17	Γ 0.9 ⁻	Γ 0.2 ⁻	ј г0.6 ⁻
0.9	-0.5	0.6	0.1	-0.5	0.4
0.2	0.1	8.0	-0.7	-0.9	-0.8
-0.4	0.4	0.2	0.6	0.6	0.9
-0.3	0.9	0.5	0.4	-0.7	0.2
L 0.5 J	[-0.2]	$\lfloor 0.1 \rfloor$	L-0.9	l L 0.4 ₋	J L 0.7 ₋

- 这种特征表示方式被称嵌入编码(embedding vectors)
- 嵌入词向量绝大多数元素非零,因此也被称为分布式词向量(distributed word embeddings)
- 一般使用海量文本训练神经网络模型得到嵌入词向量。
- 嵌入词向量长度可控。

```
V(king) - V(queen) \approx V(man) - V(woman)
V(father) - V(mother) \approx V(man) - V(woman)
V(uncle) - V(aunt) \approx V(man) - V(woman)
V(China) - V(France) \approx V(Beijing) - V(Paris)
V(doctor) - V(nurse) \approx V(man) - V(woman)
V(pilot) - V(flight attendant) \approx V(man) - V(woman)
```

The doctor asked the nurse to wash his hands. The doctor asked the nurse to wash her hands.

大夫让护士把他的帽子带好。 大夫让护士把她的帽子带好。

- 特征选择(feature selection)
 - · 滤波器法(filter method): 仅利用数据,不利用分类器。
 - 包装法(wrapper method): 选择特征子集, 训练分类器。
 - 嵌入法(embedding method): 更改损失函数, 使其具有特征选择性。
- 特征提取(feature extraction)
 - 从已有特征创造出新的特征

模型评价

TP: true positive

• 真实类别为正, 预测类别均为正.

FP: false positive

• 真实类别为负,预测类别为正

FN: false negative

• 真实类别为正, 预测类别为负

TN: true negative

• 真实类别为负,预测类别为证

二分类问题的混淆矩阵(confusion matrix)

模型评价

准确率(accuracy)=
$$\frac{TP+TN}{TP+TN+FP+FN}$$

召回率(recall or sensitivity)=
$$\frac{TP}{TP+FN}$$

特异度(specificity)=
$$\frac{TN}{TN+FP}$$

精度(precision)=
$$\frac{TP}{TP+FP}$$

$$F1$$
值= 2 × $\frac{Precision \times Recall}{Precision + Recall}$

模型评价

ROC (线下区域,Region Under the Curve) 与AOC (线下区域面积,Area Under the Curve)

