

[DOCUMENT TITLE]

Prepared by: YOUSSEF MOHAMED ABDELAAL BAYOUMI (gp2)

Yusuf Mohamed Sayed Hassan (gp1) Omar Ayman Adel Elashkar (gp2) Supervised by: ENG. Kareem Wassem

Table of Contents

- 1. QuestaSim Simulation Snippets
 - 1.1. Figure 1: WRITE Operation Check
 - 1.2. Figure 2: Memory Assignment
 - 1.3. Figure 3: Memory Assignment
 - 1.4. Figure 4: READ Operation Check
 - 1.5. Figure 5: DOUT Assignment
 - 1.6. Figure 6: DOUT Assignment
- 2. Linting Results
 - 2.1. Figure 7: Snippet Showing No Linting Errors
- 3. FSM Encoding Comparison
 - 3.1. Sequential Encoding
 - Figures 8-10: RTL View
 - Figures 11-14: Post-Synthesis View
 - Figure 15: FSM Encoding in Synthesis Report
 - Figure 16: Timing Report
 - 3.2. One-Hot Encoding
 - Figures 17-19: RTL View
 - Figures 20–23: Post-Synthesis View
 - Figure 24: FSM Encoding in Synthesis Report
 - Figure 25: Timing Report
 - 3.3. Gray Encoding
 - Figures 26-28: RTL View
 - Figures 29–32: Post-Synthesis View
 - Figure 33: FSM Encoding in Synthesis Report
 - Figure 34: Timing Report
- 4. Implementation Results for Each FSM Encoding
 - 4.1. Sequential Encoding
 - Figure 35: Utilization Report
 - Figure 36: Timing Report
 - Figure 37: FPGA Device Snippet
 - 4.2. One-Hot Encoding
 - Figure 38: Utilization Report
 - Figure 39: Timing Report
 - Figure 40: FPGA Device Snippet
 - 4.3. Gray Encoding
 - Figure 41: Utilization Report
 - Figure 42: Timing Report
 - Figure 43: FPGA Device Snippet
- 5. Messages Summary
 - Figure 44: Messages Tab Snippet No Critical Errors (One-Hot Encoding)

1. QuestaSim Snippets

Check write operation

Figure 1: WRITE operation check

This snippet demonstrates the following behaviors:

- State Transitions:
 - \circ 0 \rightarrow IDLE state
 - \circ 1 \rightarrow CHCK CMD (Check Command) state
 - \circ 2 \rightarrow WRITE state
- Master Behavior (cs = 2):
 - o When **cs** is set to 2, the master receives the address after 10 clock cycles, followed by receiving the data after an additional 10 clock cycles.
- Output Signals:
 - o **Dout** remains at 0, as no output is expected in this sequence.
 - o **MISO** is held at 0 throughout.

Figure 2: memory assigning check

This snippet demonstrates assigning memory address **37** with the value **0x62**, which corresponds to the binary input **0110 0010**.

Figure 3: memory assigning check

This snippet demonstrates assigning memory address **219** with the value **0xb5**, which corresponds to the binary input **1011 0101**.

Figure 4: READ operation check

This snippet demonstrates the following behaviors:

• State Transitions:

- $0 \rightarrow IDLE state$
- \circ 1 \rightarrow CHCK CMD (Check Command) state
- \circ 3 \rightarrow READ ADD (Read Address) state
- \circ 4 \rightarrow READ_DATA (Read Data) state

• Master Behavior (cs signal):

- When **cs** is set to 3, the master receives the address after 10 clock cycles.
- When **cs** is set to 4, the master sends the data stored at the specified memory address to the slave device.

• Output Signals:

- o **Dout** is assigned the value read from the memory address.
- o **MISO** begins driving the assigned value, shifting it out serially over 8 clock cycles.

Figure 5: DOUT assigning check

This snippet demonstrates that the value stored at memory address **0x213** is correctly assigned to the **Dout** signal.

Figure 6: DOUT assigning check

This snippet demonstrates that the value stored at memory address **0x40** is correctly assigned to the **Dout** signal.

2. Linting (snippets showing no errors)

Figure 7: linting

3. Elaboration and synthetization

3.1. Elaboration schematic

Figure8: RTL schematic

Figure 9: RTL schematic

Figure 10: RTL schematic

3.2. Synthesis schematic

Sequential encoding

o Synthesis schematic

Figure 11: Synthesis schematic

Figure 12: Synthesis schematic

Figure 13: Synthesis schematic

Figure 14: Synthesis schematic

o Synthesis report showing the encoding used

State	New Encoding	Previous Encoding
IDLE	000	000
CHK_CMD	001	001
WRITE	010	010
READ_ADD	011	011
READ_DATA	100	100

Figure 15: Synthesis report

Timing report snippet

Figure 16: Timing report

• One_hot encoding

Synthesis schematic

Figure 17: Synthesis schematic

Figure 18: Synthesis schematic

Figure 19: Synthesis schematic

Figure 20: Synthesis schematic

Synthesis report showing the encoding used

State	New Encoding	Previous Encoding
IDLE	00001	1 000
CHK_CMD	00010	001
WRITE	00100	010
READ_ADD	01000	011
READ_DATA	10000	100

Figure 21: Synthesis report

Timing report snippet

Figure 22: Timing report

Gray encoding

o Synthesis schematic

Figure 23: Synthesis schematic

Figure 24: Synthesis schematic

Figure 25: Synthesis schematic

Figure 26: Synthesis schematic

Synthesis report showing the encoding used

State	New Encoding	Previous Encoding
IDLE	000	1 000
CHK_CMD	001	001
WRITE	011	010
READ_ADD	010	011
READ_DATA	111	100

Figure 27: Synthesis report

Timing report snippet

Figure 28: Timing report

4. Implementation snippets for each encoding

Sequential encoding

Utilization report

Figure 29: Utilization report

Timing report

Figure 30: Timing report

FPGA device snippet

Figure 31: Device snippet

• One_hot encoding

Utilization report

Name 1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT as Memory (9600)	LUT Flip Flop Pairs (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)	BSCANE2 (4)
∨ N interface	2128	4035	283	136	1377	2020	108	772	0.5	5	2	1
> 1 dbg_hub (dbg_hub)	476	727	0	0	240	452	24	316	0	0	1	1
■ master (RAM)	851	2070	273	136	746	851	0	8	0	0	0	0
I slave (SPI)	36	39	0	0	18	36	0	18	0	0	0	0
> 1 u_ila_0 (u_ila_0)	764	1189	10	0	383	680	84	425	0.5	0	0	0

Figure 32: Utilization report

Timing report

Figure 33: Timing report

FPGA device snippet

Figure 34: Device snippet

• Gray encoding

Utilization report

Figure 35: Utilization report

Timing report

Figure 36: Timing report

FPGA device snippet

Figure 37: Device snippet

Since the **one_hot encoding report** shows a slightly better WNS of **6.325 ns** (vs. 6.319 ns), it offers a tiny bit more setup slack — which means it can theoretically achieve a slightly higher maximum frequency.

Therefore, the one_hot encoding represents the best choice to achieve the highest operating frequency.

5. Snippet of the "Messages" tab showing no critical warnings or errors after running elaboration, synthesis, implementation and a successful bitstream generation. (using one_hot encoding)

Figure 38: Message tab