3

ELECTRICAL MACHINES – I SEMESTER – 4

Tuma .	3 Hours		No. of the second	[Full Marks: 70
I muc. c	, mound !		talija i i i i i i i i i i i i i i i i i i	[I'un mars. / 0

GROUP - A

(Multiple Choice Type Questions)

		ne correct alternatives for		10 × 1 = 10
ij	The	e number of parallel paths	in a 8-pole D.C. machine, wave wou	nd is
	a)		b) • • 4 • • • • • • • • • • • • • • • • • • •	
• (1)	c)	2	d) none of these.	
11.)		O.C. series motor is never a	switched on without load connected	at rated voltage
V"	a)	the field current initially	y zero	
	b)	the motor does not acce	lerated	
Same of Same o	c)	the speed becomes dan	gerously high	
	d)	none of these.		
iii)	Tra	nsformer core are made u	p of laminated sheet to reduce	
	a)	hysteresis loss		
	b)	eddy current loss		
	c)	copper loss		
	d)	none of these		
	e)	all of these.		

5	4	
4		

iv)	supply is			hase induction motor fed	nom 50 Hz
	a) 100)0 rpm	b)	1500 rpm	
	c) 75 0) rpm	d)	800 rpm.	
v)	100	of odd harmonics in the market the voltage.		sing current in a 3-phas	se core type
	a) sin	usoidal	b)	non-sinusoidal	
	c) asy	mmetrical	d)	none of these.	
vi)	A 1 : 1 tr	ansformer is used as			•
	a) pul	se transformer	b)	isolating transformer	
	c) pot	ential transformer	d)	current transformer.	
vii)	Tertiary v	winding is used in case	e of		
	a) del	ta-delta	b)	star-zigzag	
	c) sta	r-star	d)	none of these.	
viii)		tion of rotation of a D	.C. shunt r	notor can be reversed by in	nterchanging
	the a) sup	ply terminals only			
•		i terminals only			
		nature terminals only			
	d) bot	h field and armature to	erminals.		
ix)		rotor induction mo	tor can be	distinguished from a se	quirrel cage
	a) size	of the frame	b)	direction of rotation	
	c) diar	neter of the shaft	d)	presence of slip ring	

. 5

A-)	· · · · ·	C. Shant School and Michael Michael and Charleston 2000 and open and open and				
	volta	ige of 10 volts. When the field winding is excited, the voltage dropped to zero.				
	The reason is					
	a)	there is not residual magnetism				
	b)	field resistance is greater than the critical resistance				
	c)	field winding is wrongly connected				
- 4.V	d)	none of these.				
xi)	For a	a slip ring induction motor, if the rotor resistance is increased, then				
	a)	starting torque and efficiency increases				
	b)	starting torque and efficiency decreases				
	c)	starting torque decreases but efficiency increases				
	d)	starting torque increases but efficiency decreases.				

GROUP - B

(Short Answer Type Questions)

Answer any three of the following questions.

 $3 \times 5 = 15$

- 2. Show how there is saving in conductor material in an auto-transformer compared to a two winding transformer having same kVA rating.
- 3. Determine the steps of the resistance for a shunt motor starter using resistance control method.
- 4. Derive the expression for developed torque in a 3-phase induction motor and state the conditions for maximum torque.
- 5. What is armature reaction? Describe the effects of armature reaction on the operation of a D.C. machine. How is the armature reaction minimised? 1 + 2 + 2

.

- 6. Explain the tests to be conducted on three isolated secondary windings of a 3-phase transformer for connecting them
 - i) in star
 - ii) in delta.

3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) What is the advantage of V-V connection of transformer?
 - b) Three single-phase transformers are connected in delta. If one of the transformers is found faulty and removed, what will be the reduction in kVA supplied?
 - Three single-phase transformers, connected in Δ/Δ supply a balanced 3-phase load of 1500 kW at 4400 V at 0.8 power factor lagging. The transformers are supplied from 3-phase mains at 11000 V. Find the current in the windings of each transformer. If one of the transformers is found faulty and is removed and the supply is maintained in V-V connection, determine the currents in the windings and the power supplied by each of the transformers. 2 + 5 + (2 + 2 + 4)
- 8. a) What are different phasor groups? Why are phasor groups mentioned in the name plate of a transformer?
 - b) Draw the phasor and connection diagrams of transformers connected
 - i) Yd 11
 - ii) Dz 6
 - iii) Dy 11
 - iv) Dd 6.

(2+1)+12

7

- 9. a) Describe the different types of excitation of D.C. machines. Explain the build up process of voltage of a D.C. shunt generator. Mention the different reasons of failure to building up process of D.C. shunt generator.
 - b) A 10 kW, 250 V shunt generator having an armature resistance of 0·1 Ω and field resistance of 250 Ω delivers full load at rated speed of 800 rpm and at rated voltage of 250 volt. Machine now runs as motor while taking 10 kW at 250 volt. Find the speed of the machine as motor. Neglect brush contact drop.
- 10. a) Bring out the difference between an autotransformer and induction regulator.
 - b) Explain with circuit diagram the principle of operation of a single-phase induction regulator.
 - c) Draw the circuit diagram of a 3-phase induction regulator and explain.
 - d) Why is compensating winding necessary for single phase induction regulator but not necessary for 3-phase? 2+6+3+4
- 11. Write short notes on any three of the following:

 3×5

- a) On-load tap changer of a transformer
- b) Three-phase to two-phase conversion
- c) Cogging and Crawling in induction motors
- d) Determination of external characteristics of separately excited D.C. generator from its open circuit characteristics.
- e) Different methods of starting of induction motors.

END