7.7

Approximate Integration

If $f(x) \ge 0$, then the integral represents an area and (1) represents an approximation of this area by the rectangles shown in Figure 1(a).

Left endpoint approximation

Figure 1(a)

If we choose x_i^* to be the right endpoint, then $x_i^* = x_i$ and we have

$$\int_a^b f(x) \ dx \approx R_n = \sum_{i=1}^n f(x_i) \ \Delta x$$

[See Figure 1(b).]

The approximations L_n and R_n defined by Equations 1 and 2 are called the **left endpoint approximation** and **right endpoint approximation**, respectively.

Right endpoint approximation

Figure 1(b)

Midpoint Rule

$$\int_a^b f(x) \ dx \approx M_n = \Delta x \left[f(\overline{x}_1) + f(\overline{x}_2) + \cdots + f(\overline{x}_n) \right]$$

where

$$\Delta x = \frac{b - a}{n}$$

and

$$\bar{x}_i = \frac{1}{2}(x_{i-1} + x_i) = \text{midpoint of } [x_{i-1}, x_i]$$

Another approximation, called the Trapezoidal Rule, results from averaging the approximations in Equations 1 and 2:

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} \left[\sum_{i=1}^{n} f(x_{i-1}) \Delta x + \sum_{i=1}^{n} f(x_{i}) \Delta x \right] = \frac{\Delta x}{2} \left[\sum_{i=1}^{n} \left(f(x_{i-1}) + f(x_{i}) \right) \right]$$

$$= \frac{\Delta x}{2} \left[\left(f(x_{0}) + f(x_{1}) \right) + \left(f(x_{1}) + f(x_{2}) \right) + \dots + \left(f(x_{n-1}) + f(x_{n}) \right) \right]$$

$$= \frac{\Delta x}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n}) \right]$$

Trapezoidal Rule

$$\int_a^b f(x) \, dx \approx T_n = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right]$$

where $\Delta x = (b - a)/n$ and $x_i = a + i \Delta x$.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates the case with $f(x) \ge 0$ and n = 4.

Trapezoidal approximation

Figure 2

Example 1

Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n = 5 to approximate the integral $\int_{1}^{2} (1/x) dx$.

Solution:

(a) With n = 5, a = 1, and b = 2, we have $\Delta x = (2 - 1)/5 = 0.2$, and so the Trapezoidal Rule gives

$$\int_{1}^{2} \frac{1}{x} dx \approx T_{5} = \frac{0.2}{2} [f(1) + 2f(1.2) + 2f(1.4) + 2f(1.6) + 2f(1.8) + f(2)]$$

$$=0.1\left(\frac{1}{1}+\frac{2}{1.2}+\frac{2}{1.4}+\frac{2}{1.6}+\frac{2}{1.8}+\frac{1}{2}\right)$$

≈ 0.695635

Type 1: Infinite Intervals

Type 1: Infinite Intervals

Consider the infinite region S that lies under the curve $y = 1/x^2$, above the x-axis, and to the right of the line x = 1.

You might think that, since S is infinite in extent, its area must be infinite, but let's take a closer look.

The area of the part of S that lies to the left of the line x = t (shaded in Figure 1) is

$$A(t) = \int_{1}^{t} \frac{1}{x^{2}} dx = -\frac{1}{x} \Big]_{1}^{t}$$
$$= 1 - \frac{1}{t}$$

Figure 1

Type 1: Infinite Intervals

Using this example as a guide, we define the integral of *f* over an infinite interval as the limit of integrals over finite intervals.

1 Definition of an Improper Integral of Type 1

(a) If $\int_a^t f(x) dx$ exists for every number $t \ge a$, then

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx$$

provided this limit exists (as a finite number).

(b) If $\int_{t}^{b} f(x) dx$ exists for every number $t \le b$, then

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

provided this limit exists (as a finite number).

The improper integrals $\int_a^{\infty} f(x) dx$ and $\int_{-\infty}^b f(x) dx$ are called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

(c) If both $\int_a^\infty f(x) dx$ and $\int_{-\infty}^a f(x) dx$ are convergent, then we define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

In part (c) any real number a can be used (see Exercise 76).

Example 1

Determine whether the integral $\int_{1}^{\infty} (1/x) dx$ is convergent or divergent.

ı

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \quad \text{is convergent if } p > 1 \text{ and divergent if } p \le 1.$$

Type 2: Discontinuous Integrands

Type 2: Discontinuous Integrands

3 Definition of an Improper Integral of Type 2

(a) If f is continuous on [a, b) and is discontinuous at b, then

$$\int_a^b f(x) \ dx = \lim_{t \to b^-} \int_a^t f(x) \ dx$$

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

$$\int_a^b f(x) \, dx = \lim_{t \to a^+} \int_t^b f(x) \, dx$$

if this limit exists (as a finite number).

The improper integral $\int_a^b f(x) dx$ is called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

(c) If f has a discontinuity at c, where a < c < b, and both $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ are convergent, then we define

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

A Comparison Test for Improper Integrals

Comparison Theorem Suppose that f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for $x \ge a$.

- (a) If $\int_a^\infty f(x) dx$ is convergent, then $\int_a^\infty g(x) dx$ is convergent.
- (b) If $\int_a^\infty g(x) dx$ is divergent, then $\int_a^\infty f(x) dx$ is divergent.