Sujet 109 : Le réseau : notions et fonctions de base

- 109.1 Les bases des protocoles TCP/IP (Weight 4)
- 109.2 Configuration de base de la pile TCP/IP (Weight 4)
- 109.3 Résolution de problèmes réseaux. (Weight 3)
- 109.4 Configuration de la résolution de nom côté client (Weight 2)

Pile TCP/IP

- Modèle OSI (approche formaliste) versus modèle TCP/IP (approche pragmatique)
- A l'origine TCP/IP ne décrit ni de douche physique ni de couche liaison et les applications s'appuient directement sur le service de transport.

Encapsulation TCP/IP

Multiplexage et Démultiplexage

Entête IP

Entête TCP

0 3	4	10	15	16		31	
	Port So	urce		Port Destination			octets
NS Numéro de séquence							20
	Numéro de séquence acquitté						En-tête, minimum
LGR En-tête		U A P R R C S S G K H T		Fenêtre			
Total de contrôle Pointeur sur données urgentes							En-té
(Options éventuelles Bourrage						
	Champ données						

Configuration de base de la pile TCP/IP

- Description : Les candidats doivent être capables d'examiner, de changer et de vérifier les paramètres de configuration de la pile TCP/IP côté client
- Termes, fichiers et utilitaires utilisés :
 - /etc/hostname, /etc/hosts, /etc/resolv.conf, /etc/nsswitch.conf, ifconfig, ifup, ifdown, route, ping.

Fichiers de configuration

- /etc/protocols,
- /etc/services
- /etc/hosts
- /etc/networks
- /etc/resolv.conf
- /etc/nsswitch.conf

Les numéros des protocoles : /etc/protocols

 Permettre aux programmes de convertir les noms des protocoles en leurs nombres.

```
internet protocol, pseudo protocol number
ip
           IP
      0
icmp
      1
           ICMP
                     internet control message protocol
igmp
      2
           IGMP
                     internet group multicast protocol
      3
           GGP
                    gateway-gateway protocol
ggp
tcp
      6
           TCP
                  # transmission control protocol
      12
                    PARC universal packet protocol
pup
           PUP
      17
udp
           UDP
                    user datagram protocol
```


Les numéros des ports : /etc/services

 Permettre aux programmes de convertir les noms des services en leurs nombres (numéros des ports)

```
tcpmux
           1/tcp
                  # rfc-1078
echo
           7/tcp
           7/udp
echo
daytime
           13/tcp
daytime
           13/udp
           15/tcp
netstat
           20/tcp
ftp-data
           21/tcp
ftp
ssh
           22/tcp
                     # SSH Remote Login Protocol
ssh
           22/udp
                       SSH Remote Login Protocol
telnet
           23/tcp
                       Telnet
           23/udp
                       Telnet
telnet
```


Résolution des noms des machines

Résolution des noms : /etc/hosts et /etc/networks

/etc/hosts

```
172.16.12.2 rodent.wrotethebook.com rodent
127.0.0.1 localhost
172.16.12.1 crab.wrotethebook.com crab loghost
172.16.12.4 jerboas.wrotethebook.com jerboas
172.16.12.3 horseshoe.wrotethebook.com horseshoe
172.16.1.2 ora.wrotethebook.com ora
172.16.6.4 linuxuser.articles.wrotethebook.com linuxuser
```

/etc/networks

loopback 127.0.0.0 mylan 192.168.1.0

Configuration DNS côté client : /etc/resolv.conf

nameserver 192.168.1.5

nameserver 192.168.250.2

/etc/nsswitch.conf

- Name Switch Service configuration : multiplexeur de service de noms
- Le mécanisme de résolution des noms peut s'appuyer sur différentes sources (ou services) déclarées dans le fichier /etc/nsswitch.conf

```
passwd: files nisplus nis
```

shadow: files nisplus nis

group: files nisplus nis

hosts: files dns nisplus nis

networks: files dns nisplus nis

protocols: files

services: files

ifconfig

- ifconfig [interface] [adresse] [options]
 - Options:
 - up down : activer ou désactiver une interface
 - broadcast adresse
 - netmask adresse
 - arp / -arp : activer ou désctiver la résolution arp sur l'interface
- Exemples
 - ifconfig eth0 192.168.2.9 netmask 255.255.255.0 up
 - ifconfig eth0:0 10.0.8.10

Routage

Routage

- Routage minimal
- Routage statique
- Routage dynamique
- Table de routage :
 - Pour aller vers une telle destination, il faut sortir par telle voie,
 avec un tel coût associé

Routage statique

- route [-n][add|del][-host|-net] destination
 [netmask mask] [gw passerelle] [metric N]
- Exemples:

```
#route add —net 192.168.1.0 netmask 255.255.255.0 gw 10.0.8.1
#route add —net default gw 10.0.0.2
```


Résolution de problèmes réseaux

- Description : Les candidats doivent être capables de dépanner des problèmes côté client concernant la configuration IP (adressage, routage, sockets).
- Termes, fichiers et utilitaires utilisés :
 - ifconfig, ifup, ifdown, route, ping. host, hostname, dig, netstat, traceroute

Gestion des pannes

- Une panne réseau = catastrophe pour l'entreprise
- Détecter, diagnostiquer et résoudre les pannes
- Processus de gestion des pannes :
 - isoler le problème en utilisant des outils pour déterminer les symptômes
 - Résoudre le problème
 - Enregistrer le processus utilisé pour détecter et résoudre le problème.
 (IMPORTANT et A NE PAS OUBLIER !!!)

ifconfig

```
$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:03:6D:00:83:CF
    inet addr:192.168.1.10 Bcast:192.168.1.255 Mask:255.255.255.0
    inet6 addr: fe80::203:6dff:fe00:83cf/64 Scope:Link
    UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
    [...]
lo Link encap:Local Loopback
    inet addr:127.0.0.1 Mask:255.0.0.0
    inet6 addr: ::1/128 Scope:Host
    UP LOOPBACK RUNNING MTU:16436 Metric:1
    [...]
```


ping: tester l'accessibilité

```
$ ping -c4 tunis
ping: unknown host tunis
$ ping -c4 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
From 10.0.0.111: icmp seq=1 Destination Host Unreachable
From 10.0.0.111 icmp seq=1 Destination Host Unreachable
From 10.0.0.111 icmp seq=2 Destination Host Unreachable
From 10.0.0.111 icmp seq=3 Destination Host Unreachable
$ ping -c4 172.20.0.1
PING 172.20.0.1 (172.20.0.1) 56(84) bytes of data.
--- 172.20.0.1 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 3012ms
```


route et netstat -r : Examiner la table de routage

route Kernel IP routing table **Destination Gateway Genmask** Flags Met Ref Use Iface 192.168.1.30 255, 255, 255, 255 0 eth0 UH 0 192,168,1,0 255, 255, 255, 0 0 eth0 U 0 10.0.0.0 255.0.0.0 127.0.0.0 255.0.0.0 0 10 U 0 0 eth0 0.0.0.0 default gate UG 0 0

netstat

Statistiques sur les interfaces réseaux :

```
# netstat -i
```

Kernel Interface table

Iface	MTU N	Met	RX-OK	RX-ERR	RX-DRP	RX-OVR	TX-OK	TX-ERR	TX-DRP	TX-OVR	Flags
lo	0	0	3185	0	0	0	3185	0	0	0	BLRU
eth0	1500	0	972633	17	20	120	628711	217	0	0	BRU

netstat (suite)

Afficher toutes les sockets, y compris les sockets d'écoute des serveurs :

```
# netstat -tua -p
```

Active Internet connections (servers and established)

Proto	Recv-Q Send-	-Q	Local Address	Foreign Address	State	PID/Program
tcp	0	0	*:login	*:*	LISTEN	3874/xinetd
tcp	0	0	*:5801	* • *	LISTEN	3874/xinetd
tcp	0	0	*:5901	* • *	LISTEN	3874/xinetd
tcp	0	0	*:pop3	* • *	LISTEN	3874/xinetd
tcp	0	0	*:imap	*:*	LISTEN	3874/xinetd
tcp	0	0	*:sunrpc	*:*	LISTEN	3167/portmap
tcp	0	0	*:ftp	*:*	LISTEN	3725/vsftpd
tcp	0	0	*:telnet	* • *	LISTEN	3874/xinetd
tcp	0	0	*:ssh	* • *	LISTEN	3653/sshd
udp	0	0	*:xdmcp	* • *		3966/kdm

host, dig : diagnostic des problèmes DNS

```
$ host uberpc
uberpc.alrac.net has address 192.168.1.76
$ host 192.168.1.76
76.1.168.192.in-addr.arpa domain name pointer uberpc.alrac.net.
```


host, dig : diagnostic des problèmes DNS

```
$ dig uberpc
; <<>> DiG 9.3.4 <<>> uberpc
;; global options: printcmd
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 46745
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;uberpc.
                                   IN
                                           A
;; ANSWER SECTION:
                                                   192.168.1.76
uberpc.
                          0
                                   IN
                                           A
;; Query time: 42 msec
;; SERVER: 192.168.1.50#53(192.168.1.50)
  WHEN: Sat Jul 14 23:17:02 2007
;; MSG SIZE rcvd: 38
```


traceroute, tracepath : localiser les problèmes

- Problème d'accès d'une machine ou d'un réseau, et ping confirme ceci
- Mais plusieurs routeurs intermédiaires et vous voulez savoir à quel niveau vous avez un problème.

```
$ traceroute mailserver1
```

```
traceroute to mailserver1.alrac.net (192.168.2.76), 30 hops max, 40 byte packets
```

```
1 pyramid.alrac.net (192.168.1.45) 3.605 ms 6.902 ms 9.165 ms
```

```
2 mailserver1.alrac.net (192.168.2.76) 3.010 ms 0.070 ms 0.068 ms
```

