Delivery Delay Prediction for E-Commerce Dataset

Delay or not, just give me an answer!

Group 19

Gursifath Bhasin (gb2760) ● Jonathan Benghiat (jb4653) ● Lukas Wang (bw2712) Qi Meng (gm2162) ● Siddhant Pravin Mahurkar (sm5129)

Overview of Dataset

Data Source: Brazilian E-Commerce Public Dataset by Olist

Dataset Context: real-world commerce data from Brazilian marketplaces from 2016 to 2018 with more than 100k records among 71 categories.

Problem with Original Dataset:

- Too many columns/features (50 columns).
- Many unrelated features.
- Highly imbalanced datasets.

Schema of Dataset

Missing Data Analysis

Nullity Matrix for quick visualization on patterns in data completion. Eg: order_id and customer_id seem to be completely populated while review_comment_title and review_comment_message appear to have the maximum missing values.

Keeping above insights in mind and those from EDA, we:

- 1. dropped certain attributes (columns) which don't contribute meaningfully to our model.
- 2. calculated new feature from the existing features which seem to contribute to the delay
- 3. dropped rows with small number of missing values.

Column Name	# of missing values	% of missing values
review_comment_title	104418	88.26
review_comment_message	68628	58.01
order_delivered_customer_date	2588	2.19
product_category_name_english	1734	1.47
product_photos_qty	1709	1.44
product_description_length	1709	1.44
product_name_length	1709	1.44
product_category_name	1709	1.44
seller_city	0	0.00
customer_id	0	0.00
price	0	0.00
	I	I

Snippet of missing values per data column

Data Sampling Techniques

The original data is highly imbalanced where the minority class (order is delayed) represents roughly 7.5% of the total dataset.

We plan to try out four different sampling techniques in order to tackle the issue imbalanced dataset which are:

- Stratified Sampling
- Undersampling
- SMOTE
- **Ensemble Resampling**

PR curve of preliminary sampling experiments on random forest

Does Time / Holiday Matter?

on-time / delay ratio!

WHY?

- System increases the estimated delivery date
 (Wrong → orange graph)
 - Delivery service is awesome (Large capacity)

So, time / holiday matters!

Review Matters?

Imbalanced

Over 77% of customers leave 4 or 5 rating in review

Sparse

Over 58% of customer don't leave comments

Hard to extract

Comment not in English
Basically the same

So, review does not matter.

Word Cloud for On-time Orders

Do Numerical columns matter?

Payment?

Payment sequential seems to have some relation (basic outliers)

Review Score?

YES!!!

Product Size?

Can't see much correlation.

Sales?

The basic outliers are related.

So, numerical data matters!

Proposed Method

Base Models:

Pipelining several traditional machine learning methods, and choose the one with the best performances.

Hyperparameter Tuning:

Grid Search & Random Search

Model Evaluation:

Recall & Precision & F1 Score & PR Curve & ROC Curve

Model Selection:

Stratified K-fold

Logistic Regression	
SVM	
Decision Tree	
Random Forest	
Naive Bayes	
LDA	
Gradient Boosting	
XGBoost	
LightGBM	

Sample Methods