Kode	Nama Kriteria	Atribut
C1	Harga	cost
C2	Kualitas Produk	benefit
C3	Waktu Pengiriman	cost
C4	Pelayanan	benefit

Langkah 1: Matriks Perbandingan Kriteria (AHP)

Data perbandingan yang diberikan:

Kode	C1	C2	C3	C4
C1	1	3	5	7
C2	0.333	1	3	5
C3	0.2	0.333	1	3
C4	0.143	0.2	0.333	1

Langkah 2: Normalisasi Matriks Perbandingan

Untuk menormalisasi matriks perbandingan, kita bagi setiap elemen matriks perbandingan dengan jumlah kolom yang bersesuaian.

Menjumlahkan elemen setiap kolom:

- \bullet Jumlah kolom C1: 1+0.333+0.2+0.143=1.676
- ullet Jumlah kolom C2: 3+1+0.333+0.2=4.533
- Jumlah kolom C3: 5+3+1+0.333=9.333
- Jumlah kolom C4: 7+5+3+1=16

Matriks normalisasi:

Kode	C1	C2	C3	C4
C1	$\frac{1}{1.979} = 0.597$	$\frac{3}{4.533} = 0.662$	$\frac{5}{9.333} = 0.536$	$\frac{7}{16} = 0.438$
C2	$\frac{0.333}{1.676} = 0.199$	$\frac{1}{4.533} = 0.221$	$\frac{3}{9.333} = 0.321$	$\frac{5}{16} = 0.313$
C3	$\frac{0.2}{1.676} = 0.119$	$\frac{0.333}{4533} = 0.074$	$\frac{333}{8\cdot333} = 0.107$	$\frac{3}{16} = 0.188$
C4	$\frac{0.143}{1.676} = 0.085$	$\frac{6.2}{4.533} = 0.044$	$\frac{0.333}{9.333} = 0.036$	$\frac{1}{16} = 0.063$

Hasil Matriks Normalisasi:

Kode	C1	C2	C3	C4
C1	0.597	0.662	0.536	0.438
C2	0.199	0.221	0.321	0.313
C3	0.119	0.074	0.107	0.188
C4	0.085	0.044	0.036	0.063

Langkah 3: Bobot Prioritas Kriteria

Setelah normalisasi, kita hitung bobot prioritas setiap kriteria dengan menjumlahkan nilai setiap baris dalam matriks normalisasi, lalu membaginya dengan jumlah kriteria (4 dalam hal ini).

Perhitungan Bobot Prioritas:

$$ullet$$
 Bobot untuk C1: $rac{0.597 + 0.662 + 0.536 + 0.438}{4} = 0.558$

$$ullet$$
 Bobot untuk C2: $rac{0.199+0.221+0.321+0.313}{4}=0.263$

$$ullet$$
 Bobot untuk C3: $rac{0.119+0.074+0.107+0.188}{4}=0.122$

$$\bullet$$
 Bobot untuk C4: $rac{0.085+0.044+0.036+0.063}{4}=0.057$

Hasil Bobot Prioritas:

Kode	C1	C2	C3	C4	Bobot Prioritas
C1	0.597	0.662	0.536	0.438	0.558
C2	0.199	0.221	0.321	0.313	0.263
C3	0.119	0.074	0.107	0.188	0.122
C4	0.085	0.044	0.036	0.063	0.057

Langkah 4: Konsistensi Matriks AHP

Dari matriks perbandingan kriteria, kita telah menghitung CI dan CR:

• CI (Consistency Index): 0.039

• CR (Consistency Ratio): 0.044 (Konsisten)

Langkah 5: Matriks Nilai Alternatif

Data yang diberikan adalah sebagai berikut:

Alternatif	C1	C2	C3	C4
A1	10	8	9	7
A2	8	7	8	6
A3	9	9	10	8

Langkah 6: Normalisasi Matriks Alternatif

Untuk normalisasi, kita hitung nilai setiap kolom terlebih dahulu, yaitu dengan rumus:

$$Normalisasi = \frac{Nilai Alternatif}{Norma (akar kuadrat dari jumlah kuadrat setiap nilai dalam kolom)}$$

Norma untuk setiap kolom:

• Norma C1:
$$\sqrt{10^2 + 8^2 + 9^2} = \sqrt{100 + 64 + 81} = 13.114$$

• Norma C2:
$$\sqrt{8^2 + 7^2 + 9^2} = \sqrt{64 + 49 + 81} = 12.206$$

• Norma C3:
$$\sqrt{9^2 + 8^2 + 10^2} = \sqrt{81 + 64 + 100} = 14.449$$

• Norma C4:
$$\sqrt{7^2+6^2+8^2}=\sqrt{49+36+64}=11.445$$

Matriks Normalisasi Alternatif:

Alternatif	C1	C2	C3	C4
A1	$\frac{10}{13.114} = 0.63888$	$\frac{8}{12,206} = 0.57437$	$\frac{9}{14.449} = 0.57499$	$\frac{7}{11.445} = 0.57346$
A2	$\frac{13.81}{13.114} = 0.5111$	$\frac{12700}{12,206} = 0.50257$	$\frac{11.80}{14.449} = 0.5111$	$\frac{166}{11.445} = 0.49154$
A3	$\frac{9}{13.114} = 0.57499$	$\frac{12900}{12,206} = 0.64616$	$\frac{10^{10}}{14.449} = 0.63888$	$\frac{18}{11.445} = 0.65539$

Langkah 7: Normalisasi Terbobot

Pada tahap ini, kita mengalikan matriks normalisasi alternatif dengan bobot prioritas kriteria yang sudah dihitung sebelumnya.

Matriks Bobot Prioritas Kriteria:

Kode	C1	C2	C3	C4	Bobot Prioritas
C1	0.597	0.662	0.536	0.438	0.558
C2	0.199	0.221	0.321	0.313	0.263
C3	0.119	0.074	0.107	0.188	0.122
C4	0.085	0.044	0.036	0.063	0.057

Kita kalikan setiap elemen matriks normalisasi dengan bobot prioritas yang sesuai.

Matriks Normalisasi Terbobot:

Alternatif	<i>C</i> 1	C2	C3	C4
A1	$0.63888 \times 0.597 = 0.35642$	$0.57437 \times 0.662 = 0.15126$	$0.57499 \times 0.536 = 0.07008$	$0.57346 \times 0.438 = 0.03262$
A2	$0.5111 \times 0.597 = 0.28514$	$0.50257 \times 0.662 = 0.13235$	$0.5111 \times 0.536 = 0.06229$	$0.49154 \times 0.438 = 0.02796$
A3	$0.57499 \times 0.597 = 0.32078$	$0.64616 \times 0.662 = 0.17016$	$0.63888 \times 0.536 = 0.07786$	$0.65539 \times 0.438 = 0.03728$

Hasil Matriks Normalisasi Terbobot:

Alternatif	C1	C2	C3	C4
A1	0.35642	0.15126	0.07008	0.03262
A2	0.28514	0.13235	0.06229	0.02796
A3	0.32078	0.17016	0.07786	0.03728

Langkah 8: Matriks Solusi Ideal

Matriks solusi ideal terbagi menjadi dua jenis: solusi positif (best case) dan solusi negatif (worst case). Kita memilih nilai terbesar untuk kriteria "benefit" dan nilai terkecil untuk kriteria "cost."

Solusi Positif (Best Case):

- Untuk kriteria benefit (C2 dan C4), ambil nilai terbesar di setiap kolom.
- Untuk kriteria cost (C1 dan C3), ambil nilai terkecil di setiap kolom.

Solvei Positif (Bost Coso)	C1	C2	C3	C4	
Solusi Positif (Best Case) :	0.28514	0.17016	0.06229	0.03728	

Solusi Negatif (Worst Case):

- Untuk kriteria benefit (C2 dan C4), ambil nilai terkecil di setiap kolom.
- Untuk kriteria cost (C1 dan C3), ambil nilai terbesar di setiap kolom.

Solvei Negatif (Worst Case)	C1	C2	C3	C4
Solusi Negatif (Worst Case) :	0.35642	0.13235	0.07786	0.02796

Langkah 9: Menghitung Jarak Solusi Positif dan Negatif

Untuk menghitung jarak antara setiap alternatif dengan solusi positif dan negatif, kita gunakan rumus jarak Euclidean:

$$\begin{aligned} & \text{Jarak Positif} = \sqrt{\sum (\text{Nilai Alternatif} - \text{Solusi Positif})^2} \\ & \text{Jarak Negatif} = \sqrt{\sum (\text{Nilai Alternatif} - \text{Solusi Negatif})^2} \end{aligned}$$

Jarak Positif:

Untuk A1:

Untuk A2:

$$\mathbf{Jarak\ Positif} = \sqrt{(0.28514 - 0.28514)^2 + (0.13235 - 0.17016)^2 + (0.06229 - 0.06229)^2 + (0.02796 - 0.03728)^2} = \sqrt{0 + 0.001440 + 0 + 0.000086} = \sqrt{0.001526} = 0.03895$$

Untuk A3.

$$\label{eq:Jarak Positif} \begin{aligned} & \text{Jarak Positif} = \sqrt{(0.32078 - 0.28514)^2 + (0.17016 - 0.17016)^2 + (0.07786 - 0.06229)^2 + (0.03728 - 0.03728)^2} = \sqrt{0.001277 + 0 + 0.000241 + 0} = \sqrt{0.001518} = 0.0389 \end{aligned} \\ & \text{Jarak Negatif:} \end{aligned}$$

Untuk A1:

$$Jarak \ Negatif = \sqrt{(0.35642 - 0.35642)^2 + (0.15126 - 0.13235)^2 + (0.07008 - 0.07786)^2 + (0.03262 - 0.02796)^2} = \sqrt{0 + 0.000354 + 0.000060 + 0.000021} = \sqrt{0.000435} = 0.02097$$

Untuk A2:

$$Jarak \ Negatif = \sqrt{(0.28514 - 0.35642)^2 + (0.13235 - 0.13235)^2 + (0.06229 - 0.07786)^2 + (0.02796 - 0.03728)^2} = \sqrt{0.005089 + 0 + 0.000241 + 0.000086} = \sqrt{0.005416} = 0.07297$$

Untuk A3:

$$Jarak Negatif = \sqrt{(0.32078 - 0.35642)^2 + (0.17016 - 0.13235)^2 + (0.07786 - 0.07786)^2 + (0.03728 - 0.02796)^2} = \sqrt{0.001277 + 0.001441 + 0 + 0.000086} = \sqrt{0.002804} = 0.05279$$

Langkah 10: Menghitung Preferensi

Preferensi dihitung dengan rumus:

$$\mathbf{Preferensi} = \frac{\mathbf{Jarak\ Negatif}}{\mathbf{Jarak\ Positif} + \mathbf{Jarak\ Negatif}}$$

Untuk A1:

$$\text{Preferensi A1} = \frac{0.02097}{0.07431 + 0.02097} = \frac{0.02097}{0.09528} = 0.22011$$

Untuk A2:

$$\text{Preferensi A2} = \frac{0.07297}{0.03895 + 0.07297} = \frac{0.07297}{0.11192} = 0.65199$$

Untuk A3:

Preferensi A3 =
$$\frac{0.05279}{0.0389 + 0.05279} = \frac{0.05279}{0.09169} = 0.57579$$

Langkah 11: Perangkingan

Berdasarkan nilai preferensi, kita dapat memberikan peringkat alternatif:

- A2 memiliki nilai preferensi tertinggi (0.65199), sehingga berada di peringkat 1.
- A3 memiliki nilai preferensi 0.57579, sehingga berada di peringkat 2.
- A1 memiliki nilai preferensi 0.22011, sehingga berada di peringkat 3.