Diskret matematik IT ht 2004: Kryssuppgifter vecka 2

1. Låt $f:A\to B$ vara en funktion. För en delmängd C av A skriv f_C för restriktionen av f till C, dvs den funktion $f_C:C\to B$ som ges av

$$f_C(x) = f(x), x \in C.$$

Antag nu att $A = A_1 \cup A_2$ Är följande påståenden sanna?

- (a) Om f_{A_1} och f_{A_2} är surjektiva så är f surjektiv.
- (b) Om f_{A_1} och f_{A_2} är injektiva så är f injektiv.
- 2. Funktionen $f:[1,2]\to \mathbf{R}$ är given av

$$f(x) = 8x - 3x^2 + 1.$$

Bestäm det längsta intervallet $I \subseteq [1, 2]$ sådant att restriktionen av f till I är injektiv. Ange också f(I).

3. Låt A vara mängden av kvadratiska funktioner, dvs funktioner av typen $f(x) = ax^2 + bx + c$ och låt R vara en relation på A given av att $a_1x^2 + b_1x + c_1$ R $a_2x^2 + b_2x + c_2$ då $a_1 = a_2$ och $b_1 = b_2$.

Visa att R är en ekvivalensrelation och beskriv ekvivalensklasserna geometriskt.

Lösningar

1. Utsagan (a) är sann, ty om f_{A_1} är surjektiv gäller att

$$f(A) \supseteq f(A_1) = f_{A_1}(A_1) = B.$$

Däremot är inte (b) sann, låt till exempel $A=\mathbf{R}, A_1=(-\infty,0], A_2=[0,\infty)$ och $f(x)=x^2.$

2. Eftersom f är en andragradsfunktion med negativ x^2 -koefficient vet vi att det finns en punkt a sådan att f'(a) = 0 och att f är strikt växande till vänster om a och strikt avtagande till höder om a. (Åtminstone om vi låtsas att f har hela reella linjen som definitionsmängd vilket egentligen inte är fallet här, men om det skulle visa sig att $a \notin [1,2]$ är f själv injektiv.)

Vi beräknar a: f'(a) = -6x + 8 = 0 ger att $a = 4/3 \in [1, 2]$. Det följer att det sökta intervallet är I = [4/3, 2] (och restriktionen av f till I är strikt avtagande och därmed injektiv.)

3. Att R är reflexiv, dvs att det för alla a, b och c gäller att $ax^2 + bx + cR$ $ax^2 + bx + c$, följer av att a = a och b = b. Symmetrin följer av att om $ax^2 + bx + cR$ $dx^2 + ex + f$ så gäller per definition av R att a = d och b = e varför d = a och e = b så att $dx^2 + ex + fR$ $ax^+bx + c$. Slutligen följer transitiviteten av att om $ax^2 + bx + cR$ $dx^2 + ex + f$ och $dx^2 + ex + fR$ $gx^2 + hx + i$ så gäller per definition av R att a = d, d = g, b = e och e = h varför a = g och b = h så att $ax^2 + bx + cR$ $gx^2 + hx + i$.

Ekvivalensklasserna beskrivs geometriskt av att två kvadratiska funktioner ligger i samma ekvivalensklass om båda har samma graf sånär som på att de ligger på olika höjd.