29/04/2025 **TEMA 13**

Hoja 1 de 4

APELLIDO:		
NOMBRE:	CALIFICACIÓN:	
DNI (registrado en SIU Guaraní):		
E-MAIL:	DOCENTE (nombre y apellido):	
TEL:		
AULA:		

Tabla de uso exclusivo para el docente

	1	2	3	4
Puntaje de cada ejercicio	2,50	2,50	2,50	2,50

Duración del examen: 1h 30'. Completar los datos personales con letra clara, mayúscula e imprenta.

No se aceptarán respuestas en lápiz.

1. Hallar el valor de la constante $k \in \mathbb{R}$ para que la función $f(x) = 2x^3 - 8x^2 - kx + 12$ corte al eje x en x = -1. Encontrar el resto de los ceros de f.

Para encontrar el valor de la constante k tal que la función $f(x) = 2x^3 - 8x^2 - kx + 12$ corte al eje x en x = -1, debemos asegurar que f(-1) = 0

Sustituyamos x = -1 en la función:

$$f(-1) = 2.(-1)^3 - 8.(-1)^2 - k.(-1) + 12$$

Calculamos cada término:

$$f(-1) = -2 - 8 + k + 12$$
$$f(-1) = k + 2$$

Para que la función corte al eje x en x = -1, debemos tener:

$$k + 2 = 0$$

Por lo tanto: k = -2

Luego, para identificar el resto de los ceros de la función podemos, primeramente, aplicar la regla de Ruffini:

Por lo cual queda: $f(x) = (x + 1) \cdot (2x^2 - 10x + 12)$

Aplicando la fórmula resolvente en el paréntesis de la cuadrática obtendremos las raíces faltantes, las cuales deben ser como máximo 3 por el grado del polinomio:

$$x_{2,3} = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot 2 \cdot 12}}{2 \cdot 2}$$
$$x_{2,3} = \frac{10 \pm \sqrt{100 - 96}}{4}$$
$$x_{2,3} = \frac{10 \pm \sqrt{4}}{4}$$

Por lo tanto, las raíces faltantes serán:

$$x_2 = 3$$
$$x_3 = 2$$

TEMA 13 Hoja 2 de 4

APELLIDO Y NOMBRE: DNI:

2. Dadas f(x) = 2x + k y $g(x) = \sqrt{x}$ hallar el valor de la constante $k \in R$ para que $(f \circ g)(9) = 7$ y determinar el dominio de $f \circ g$.

De acuerdo con lo estudiado en la Unidad 3, Estudio de Funciones, Composición de funciones, luego de comprobar que, efectivamente, el conjunto imagen de g (números reales no negativos) está incluido en el dominio de f (función lineal, definida para todos los valores reales) se obtiene la expresión de $f \circ g$ con el procedimiento conocido.

Entonces, según la definición:

$$(f \circ g)(x) = f[g(x)]$$

Luego,

$$(f \circ g)(x) = f(\sqrt{x})$$

$$(f \circ g)(x) = 2\sqrt{x} + k$$

Teniendo en cuenta que $(f \circ g)(9) = 7$, resulta:

$$2\sqrt{9} + k = 7$$

$$2.3 + k = 7$$

$$k = 1$$

Para determinar el dominio de fog previamente se obtiene su expresión algebraica reemplazando en la misma el valor de la constante k calculado.

Entonces,

$$(f \circ g)(x) = 2\sqrt{x} + 1$$

En este caso, el radicando debe ser no negativo (mayor o igual que cero),

Luego,

$$x \ge 0$$

En definitiva,

$$Dom_{fog} = [0; +\infty)$$

APELLIDO Y NOMBRE:

DNI:

TEMA 13 Hoja 3 de 4

3. Sea f(x) = -2x + 4a y $f^{-1}(x)$ la función inversa de f, determinar el valor de $a \in \mathbb{R}$, de modo que $f(1) = f^{-1}(3)$.

Para hallar el valor de a se debe hallar la función inversa, es decir, $f^{-1}(x)$. Para ello, plantearemos que f(x) = y e intercambiamos las variables x e y en la función.

$$f(x) = -2x + 4a$$

$$y = -2x + 4a$$

$$x = -2y + 4a$$

A continuación, despejamos la variable y.

$$x = -2y + 4a$$

$$x - 4a = -2y$$

$$\frac{x-4a}{-2} = y$$

Por lo tanto, la función inversa es $f^{-1}(x) = \frac{x-4a}{-2}$.

Ahora es necesario que planteemos $f(1) = f^{-1}(3)$ para hallar el valor de a.

$$f(1) = f^{-1}(3)$$

$$-2 \cdot 1 + 4a = \frac{3 - 4a}{-2}$$

$$-2 + 4a = -\frac{3}{2} + 2a$$

$$4a - 2a = -\frac{3}{2} + 2$$

$$2a = \frac{1}{2}$$

$$a = \frac{1}{2 \cdot 2}$$

$$a = \frac{1}{4}$$

.UBAXXI

APELLIDO Y NOMBRE: DNI:

TEMA 13 Hoja 4 de 4

4. Calcular el valor del siguiente límite:

$$\lim_{x\to 2} \ \frac{x^2-7x+10}{x^3-2x^2-x+2}$$

Tenemos que calcular el límite: $\lim_{x\to 2} \frac{x^2-7x+10}{x^3-2x^2-x+2}$

Aplicamos álgebra de límites viendo cómo nos queda la expresión reemplazando por x=2:

$$\frac{2^2-7\times2+10}{2^3-2\times2^2-2+2}=\frac{4-14+10}{8-8-2+2} \text{ , lo cual es una indeterminación de la forma } \frac{0}{0}$$

Luego, para resolver esta indeterminación vamos a necesitar factorizar a los polinomios

$$P_1 = x^2 - 7x + 10$$
 y $P_2 = x^3 - 2x^2 - x + 2$.

Empecemos con $P_1(x)$. Observemos que:

$$P_1(x) = x^2 - 7x + 10 = (x - 2)(x - 5)$$

Ahora veamos cómo podemos factorizar a $P_2(x)$. Veamos si podemos dividir a $P_2(x)$ por alguno de los factores de $P_1(x)$. Para eso podemos hacer $\frac{P_1(x)}{x-2}$:

$$x^3 - 2x^2 - x + 2$$
 : $x - 2$

Luego, podemos factorizar a $P_2(x) = x^3 - 2x^2 - x + 2$ como $(x-2)(x^2-1)$.

Luego me queda:

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^3 - 2x^2 - x + 2} = \lim_{x \to 2} \frac{(x - 2)(x - 5)}{(x - 2)(x^2 - 1)} = \lim_{x \to 2} \frac{(x - 5)}{(x^2 - 1)} = -\frac{3}{3} = -1$$