第三讲 二次函数

知识方法概要

1.定义

函数 $f(x) = ax^2 + bx + c(a \neq 0)$ 称为关于 x 的二次函数. 配方后形式为 $f(x) = a(x - x_0)^2 + f(x_0)(a \neq 0)$ (顶点式), 其中 $x_0 = -\frac{b}{2a}$.

2.
$$f(x) = ax^2 + bx + c(a \neq 0)$$
 的性质

(1) 对称性.

f(x) 的图像关于直线 $x = -\frac{b}{2a}$ 对称.

$$f\left(-\frac{b}{2a} + x\right) = f\left(-\frac{b}{2a} - x\right)$$

(2) 当 a > 0 时 (当 a < 0 时类似),方程

$$ax^2 + bx + c = 0$$
, (1)

和不等式

$$ax^2 + bx + c > 0 \tag{2}$$

$$ax^2 + bx + c < 0 \tag{3}$$

与函数 f(x) 的关系如下 (记 $\Delta = b^2 - 4ac$):

当 $\Delta > 0$ 时,方程 (1) 有两个不相等的实根 $x_1, x_2(x_1 < x_2)$,不等式 (2) 和不等式 (3) 的解集分别是 $\{x | x < x_1 \ \text{或} \ x > x_2\}$ 和 $\{x | x_1 < x < x_2\}$,二次函数 f(x) 的图像与 x 轴有两个不同的交点. f(x) 可写成 $f(x) = a(x - x_1)(x - x_2)(a \neq 0)$ (零点式),这个形式可以导出韦达定理,还可以推广到一元 n 次方程.

当 $\Delta = 0$ 时,方程 (1) 有两个相等的实根 $x_1 = x_2 = x_0 = -\frac{b}{2a}$, 不等式 (2) 和不等式 (3) 的解集分别是 $\left\{x \mid x \neq -\frac{b}{2a}\right\}$ 和空集 \emptyset , f(x) 的图像与 x 轴相切, 只有一个交点.

当 $\Delta < 0$ 时,方程 (1) 无解,不等式 (2) 和不等式 (3) 的解集分别是 **R** 和 \emptyset . f(x) 的图像与x 轴无交点.

当 $\Delta < 0$ 时, 若 a > 0, f(x) > 0, $x \in \mathbb{R}$; 若 a < 0, f(x) < 0, $x \in \mathbb{R}$.

(3) 单调性.

若 a>0, $\left(-\infty,-\frac{b}{2a}\right]$ 为单调递减区间, $\left[-\frac{b}{2a},+\infty\right)$ 为单调递增区间. 若 a<0, $\left(-\infty,-\frac{b}{2a}\right]$ 为单调递增区间, $\left[-\frac{b}{2a},+\infty\right)$ 为单调递减区间.

(4) 二次函数的最值.

定义在 **R** 上的二次函数 $f(x) = ax^2 + bx + c$, 当 a > 0 时, 有最小值 $f(x)_{\min} = \frac{4ac-b^2}{4a}$; 当 a < 0 时, 有最大值 $f(x)_{\max} = \frac{4ac-b^2}{4a}$.

3. 二次函数恒成立问题: 转化为最值问题或者参变分离.

类型 1

- 设 $f(x) = ax^2 + bx + c(a \neq 0)$,
 - (1) f(x) > 0 在 $x \in \mathbb{R}$ 上恒成立 ⇔ a > 0 且 $\Delta < 0$;
 - (2) f(x) < 0 在 $x \in \mathbb{R}$ 上恒成立 $\Leftrightarrow a < 0$ 且 $\Delta < 0$.

类型 2

- f(x) > a 对一切 $x \in I$ 恒成立 $\Leftrightarrow f(x)_{\min} > a$,
- f(x) < a 对一切 $x \in I$ 恒成立 $\Leftrightarrow f(x)_{max} < a$.

【例 3-3】 已知实系数二次函数 f(x) 和 g(x), 若方程 f(x) = g(x) 和 3f(x) + g(x) = 0 都只有一对重根, 方程 f(x) = 0 有两个不等的实根。求证: 方程 g(x) = 0 没有实根。

【例 3-4】设二次函数 $f(x) = ax^2 + bx + c(a \neq 0)$ 满足:

- (1) $\stackrel{\text{d}}{=}$ $x \in \mathbb{R}$ \forall , f(x-4) = f(2-x), \exists $f(x) \geqslant x$;
- (2) $\stackrel{\text{def}}{=}$ $x \in (0,2)$ 时, $f(x) \leqslant \left(\frac{x+1}{2}\right)^2$;
- (3) f(x) 在 **R** 上的最小值为 0.

求最大值 m(m>1), 使得存在 $t \in \mathbb{R}$, 只要 $x \in [1,m]$, 就有 $f(x+t) \leq x$.

【例 3-5】 $f(x) = x^2 + px + q$. 若 f(f(x)) = 0 只有一个实数根, 求证: $p, q \ge 0$. 分析 设 x_0 是方程 f(x) = 0 的根, 则使得 $f(x) = x_0$ 成立的 x 的取值即为方程 f(f(x)) = 0 的根.

【例 3-6】设函数 $f(x) = ax^2 + 8x + 3(a < 0)$, 对于给定的负数 a, 有一个最大的正数 l(a), 使得在整个区间 [0, l(a)] 上, 不等式 $|f(x)| \le 5$ 都成立. 问: a 为何值时, l(a) 最大?求这个最大的 l(a), 证明你的结论.

【例 3-7】已知函数 $f(x) = |x^2 - a|$, 其中 a > 0. 若恰好有两组解 (m,n) 使得 f(x) 在定义域 [m,n] 上的值域也为 [m,n], 求实数 a 的取值范围.

【例 3-8】将 25 个首项系数为正的二次三项式放置在 5×5 的正方形表格中. 它们的 75 个系数都是取自从 -37 到 37 的整数 (每个数只用一次). 证明: 至少有一列中的所有二次三项式的和有实根。

.

第四讲 函数的概念、图像与性质

知识方法述要

1.映射与函数

对于任意两个集合 A,B, 依对应法则 f, 若对 A 中的任意一个元素 x, 在 B 中都有唯一一个元素与之对应, 则称 $f:A\to B$ 为一个映射. 若 $f:A\to B$ 是一个映射, 且对任意 $x,y\in A$, $x\neq y$ 都有 $f(x)\neq f(y)$, 则称之为单射. 若 $f:A\to B$ 是映射, 且对任意 $y\in B$, 都有一个 $x\in A$ 使得 f(x)=y, 则称 $f:A\to B$ 是 A 到 B 上的满射. 若 $f:A\to B$ 既是单射又是满射, 则叫作一一映射. 一一映射存在逆映射, 即从 B 到 A 由相反的对应法则 f^{-1} 构成的映射, 记作 $f^{-1}:B\to A$.

从非空数集 A 到非空数集 B 的一个映射 $f:A\to B$ 叫作 A 到 B 的函数,记作:

$$y = f(x)$$
, 其中 $x \in A$, $y \in B$.

这里的数集 A 称为函数 f 的定义域. 对于 A 中的每个元素 x, 根据对应法则 f 所对应的 B 中的元素 y,称为 f 点在 x 的函数值, 记为 f(x). 全体函数值的集合

$$f(A) = \{y | y = f(x), x \in A\} \subseteq B$$

称为函数 f 的值域.

2. 函数的图像

点集 $\{(x,y)|y=f(x),x\in D\}$ 称为函数 y=f(x) 的图像,其中 D 为 f(x) 的定义域.函数图像形象地显示函数性质,为研究数量关系问题提供了 "形" 的直观性,它是探求解题途径、获得问题结果的重要工具.应当重视数形结合解题的思想方法.

函数图像变换主要有平移、对称、伸缩三种基本变换.

(1) 平移变换.

水平平移: $y = f(x \pm a)(a > 0)$ 的图像, 可由 y = f(x) 的图像向左 (+) 或向右 (-) 平移 a 个单位而得到;

坚直平移: $y = f(x) \pm b(b > 0)$ 的图像, 可由 y = f(x) 的图像向上 (+) 或向下 (-) 平移 b 个单位而得到.

(2) 对称变换.

y = f(-x) 与 y = f(x) 关于 y 轴对称; y = -f(x) 与 y = f(x) 关于 x 轴对称; y = -f(-x) 与 y = f(x) 关于原点对称; $y = f^{-1}(x)$ 与 y = f(x) 关于直线 y = x 对称.

(3) 伸缩变换.

y = Af(x)(A > 0) 的图像, 可将 y = f(x) 图像上每一点的纵坐标伸 (A > 1) 缩 (0 < A < 1) 到原来的 A 倍,横坐标不变而得到;

y = f(ax)(a > 0) 的图像, 可将 y = f(x) 的图像上每一点的横坐标(伸) (0 < a < 1) 缩 (a > 1) 到原来的 $\frac{1}{a}$, 纵坐标不变而得到.

3. 函数的性质

(1) 单调性: 设函数 f(x) 在区间 I 上满足对任意的 $x_1, x_2 \in I$, 并且 $x_1 < x_2$, 总有 $f(x_1) < f(x_2)(f(x_1) > f(x_2))$, 则称 f(x) 在区间 I 上是增(减) 函数, 区间 I 称为单调增(减) 区间.

设 f(x) 在区间 I_1 和 I_2 上都分别是单调递增(或递减),且 $I_1 \cap I_2 \neq \emptyset$,则 f(x) 在 $I_1 \cup I_2$ 上也是单调递增(或递减)的(若 $I_1 \cap I_2 = \emptyset$,则不一定成立,如 $y = \frac{1}{x}$ 在 $(0, +\infty)$ 和 $(-\infty, 0)$ 上均为单调递减,但在 $(-\infty, 0) \cup (0, +\infty)$ 上不是单调递减的).

- (2) **奇偶性:** 设函数 y = f(x) 的定义域为 D, 且 D 是关于原点对称的数集, 若对于任意的 $x \in D$, 都有 f(-x) = -f(x), 则称 f(x) 是奇函数; 若对任意 $x \in D$, 都有 f(-x) = f(x),则称 f(x) 是偶函数. 奇函数的图像关于原点对称, 偶函数的图像关于 y 轴对称.
- (3) 周期性: 对于函数 f(x) , 如果存在一个不为零的常数 T , 使得当 x 取定义域内每一个数时, f(x+T)=f(x) 总成立, 则称 f(x) 为周期函数, T 称为这个函数的周期, 如果周期中存在最小的正数 T_0 , 则这个正数叫作函数 f(x) 的最小正周期.

周期函数具有无穷多个周期,并不是任何周期函数都有最小正周期,一个十分著名的例子是狄里赫勒函数.

$$D(x) = \begin{cases} 1, x \in \{ \text{ 有理数 } \}, \\ 0, x \in \{ \text{ 无理数 } \}. \end{cases}$$

常量函数 $f(x) = a(x \in \mathbf{R})$, 同样是无最小正周期的周期函数.

4. 连续函数的性质

若 a < b, f(x) 在 [a,b] 上连续,且 $f(a) \cdot f(b) < 0$,则 f(x) = 0 在 (a,b) 上至少有一个实根.

处理函数问题时要注意数形结合思想的应用,经常要将函数与方程相联系.

【例 4-1】求函数 $f(x) = x^2 + x\sqrt{x^2 - 1}$ 的值域.

【例 4-2】 己知
$$(2x + \sqrt{4x^2 + 1})(\sqrt{y^2 + 4} - 2) \geqslant y > 0$$
, 求 $x + y$ 的最小值.

【例 4-6】设
$$a,b,c,d$$
 是实数, 且满足 $(a+b+c)^2 \ge 2(a^2+b^2+c^2) + 4d$, 求证: $ab+bc+cd \ge 3d$

第五讲 幂函数、指数函数、对数函数

知识方法概要

1.幂函数

形如 $y = x^a (a \in \mathbf{R})$ 的函数叫作幕函数.

2. 指数函数

形如 $y = a^x (a > 0, a \ne 1)$ 的函数叫作指数函数,其定义域是 **R** ,值域为 $(0, +\infty)$ 。当 a > 1 时, $y = a^x$ 在 $(-\infty, +\infty)$ 上单调递增; 当 0 < a < 1 时, $y = a^x$ 在 $(-\infty, +\infty)$ 上单调递减.它的图像恒过定点 (0,1).

分数指数幂:

$$a^{\frac{1}{n}} = \sqrt[n]{a}, a^{\frac{m}{n}} = \sqrt[n]{a^m}, a^{-n} = \frac{1}{a^n}, a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$$

有理指数幂 $(a > 0, b > 0, p \in \mathbf{Q}, r \in \mathbf{Q})$:

$$a^{p} \cdot a^{r} = a^{p+r}, (a^{p})^{r} = a^{pr}, (ab)^{p} = a^{p}b^{p}.$$

3.对数函数

形如 $y = \log_a x (a > 0, a \neq 1)$ 的函数叫作对数函数。其定义域是 $(0, + \infty)$,值域是 $(-\infty, +\infty)$ 。 它是指数函数 $y = a^x (a > 0, a \neq 1)$ 的反函数,所有性质均可由指数函数的性质导出。当 a > 1 时, $y = \log_a x$ 在 $(0, +\infty)$ 上单调递增;当 0 < a < 1 时, $y = \log_a x$ 在 $(0, +\infty)$ 上单调递减。它的图像过定点 (1,0).

对数的运算性质 $(M > 0, N > 0, a > 0, a \neq 1, n \in \mathbf{R})$:

$$\log_a (MN) = \log_a M + \log_a N$$

$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

$$\log_a M^n = n\log_a M$$

对数恒等式: $a^{\log_a N} = N$.

对数换底公式: $\log_a M = \frac{\log_c M}{\log_c a} (a > 0, a \neq 1; M > 0; c > 0, c \neq 1).$

由以上性质容易得到以下推论:

$$\log_a b = \frac{1}{\log_b a}, \log_{a^n} b^m = \frac{m}{n} \log_a b.$$

指数函数 $y = a^x$ 与对数函数 $y = \log_a x$ 互为反函数.

【例 5-5】 已知 a > 0, $a \ne 1$, 试求使方程

$$\log_a (x - ak) = \log_{a^2} (x^2 - a^2)$$

有解的 k 的取值范围.

【例 5-6】 已知方程 $2^{333x-2} + 2^{111x+2} = 2^{222x+1} + 1$ 有三个实数根, 求这三个实数根的和.

【例 5-7】求满足等式

$$\begin{aligned} \left| \lg (xx_1) \right| + \left| \lg (xx_2) \right| + \dots + \left| \lg (xx_n) \right| + \left| \lg \frac{x}{x_1} \right| + \left| \lg \frac{x}{x_2} \right| + \dots + \left| \lg \frac{x}{x_n} \right| \\ &= \left| \lg x_1 + \lg x_2 + \dots + \lg x_n \right| \end{aligned}$$

的所有正实数 x, x_1, x_2, \dots, x_n 的值.

【例 5-9】已知 x 是正数, 求 $2^x - 4^x + 6^x - 8^x - 9^x + 12^x$ 的最小值.

同步练习

- 1、 己知 $a > 0, b > 0, \log_9 a = \log_{12} b = \log_{16} (a + b), 求 \frac{b}{a}$ 的值.
- 2、已知 x_1 是方程 $x+\lg x=10$ 的根, x_2 是方程 $x+10^x=10$ 的根, 求 x_1+x_2 的值.
- 3、若 $a > a^2 > b > 0$, $m = \log_b \frac{b}{a}$, $n = \log_a \frac{a}{b}$, $p = \log_b a$, $q = \log_a b$. 求 m, n, p, q 从小到大的排列顺序.
- 4、求函数 $f(x) = \sqrt{2x^2 3x + 4} + \sqrt{x^2 2x}$ 的最小值
- 5. 定义: 若函数 f(x) 图像上的点到定点 A 的最短距离小于 3,则称函数 f(x) 是点 A 的近点函数,已知函数 $f(x) = \frac{-2x + a}{x 2}$ 在 $(2, +\infty)$ 上是严格增函数,且是点 A(0, -4) 的近点函数,求实数 a 的取值范围.

6. 已知函数 $f(x)=x^2+(a-4)x+3-a$,若对于任意的 $a \in (0,4)$,存在 $x \in [0,2]$,使得 $|f(x)| \ge t$,则实数 t 的取值范围是_____

7. 已知函数 $f(x) = \begin{cases} x^2 + (4a - 3)x + 3a, x < 0 \\ \log_a(x + 1) + 1, x \ge 0 \end{cases}$, (a > 0) 且 $a \ne 1$ 在 R 上单调递减,且关于 x 的方程 |f(x)| = 2 - x 恰好有两个不相等的实数解,则 a 的取值范围是

8. 设函数 f(x) 满足 $f(x)=f\left(\frac{1}{x+1}\right)$, 定义域为 $D=[0,+\infty)$, 值域为 A, 若集合 $\{y|\ y=f(x), x\in[0,a]\}$ 可取得 A中所有值,则实数 a 的取值范围为_____.

9. 已知函数 y = f(x), 其中 $f(x) = \left| \frac{2^{x+1}}{2^x + 2^{-x}} - 1 - a \right|$, 存在实数 x_1, x_2, \dots, x_n 使得 $\sum_{i=1}^{n-1} f(x_i) = f(x_n)$ 成立,若正整数 n 的最大值为 8,则实数 a 的取值范围是

10. 若关于 x 的方程 $1 + \frac{\log_2(2 \lg a - x)}{\log_2 x} = 2 \log_x 2$ 有两解, 求实数 a 的取值范围.

- 11、已知 $a,b,c \in \mathbf{R}_+$, 满足 abc(a+b+c)=1,
 - (1) 求 S = (a+c)(b+c) 的最小值;
 - (2) 当 S 取最小值时, 求 c 的最大值.

12.设 n 为奇数, $x_1, x_2, ..., x_n$ 是互不相同的实数, 求满足

$$|f(x_1) - x_1| = |f(x_2) - x_2| = \dots = |f(x_n) - x_n|$$

的一一映射 $f: \{x_1, x_2, \dots, x_n\} \rightarrow \{x_1, x_2, \dots, x_n\}.$