Discrete Et Geometrique | CM: 7

Par Lorenzo

25 mars 2025

0.1 Variables aléatoires

Définition 0.1. X une variable aléatoire réelle c'est à dire $X : \Omega \mapsto \mathbb{R}$

Définition 0.2. Soient X une variable aléatoire et A un événement en termes de X. C'est à dire de forme $\{w \in \Omega | X(w) \in S\}$ avec $S \subset \mathbb{R}$.

Notation correcte:

- $\{X \in S\} = \{w \in \Omega | X(w) \in S\}$
- ${X = 3} = {w \in \Omega | X(w) \in {3}}$
- $\{X \ge 7\} = \{w \in \Omega | X(w) \in [7, +\infty[\}$

Remarques 0.1. Tout ensemble d'événements résultant d'une variable aléatoire est d'ordre multiplie de quelque chose (dans un lancé de dé, des multiple de 6)

Remarques 0.2. Premières questions à se poser:

• $P(X \in S) = ?$

Définition 0.3. Soit X une variable aléatoire. La loi de X (notée P_X) est une fonction $P_X: \mathscr{P}(\mathbb{R}) \to [0,1]$

définie par $P_X(S) = P(\{X \in S\})$ avec $S \subset \mathbb{R}$

Proposition 0.1.

Etant donné une variable aléatoire X d'un univers fini Ω . Soit $S, S' \subset \Omega$. Supposons $S \cap X(\Omega) = S' \cap X(\Omega)$ alors $P_X(S) = P_X(S')$

Démonstration 0.1.

$$P_X(S) = P(\lbrace X \in S \rbrace) = P(\lbrace w \in \Omega | X(w) \in S \rbrace)$$

$$= P(\lbrace w \in \Omega | X(w) \in S \cap X(\Omega) \rbrace)$$

$$= P(\lbrace w \in \Omega | X(w) \in S' \cap X(\Omega) \rbrace)$$

$$= \dots = P_X(S')$$

Proposition 0.2.

Soit X une variable aléatoire d'un univers fini Ω . Soit $S \subset \mathbb{R}$. Alors $P_X(S) = \sum_{x \in S \cap X(\Omega)} P_X(\{x\})$

Démonstration 0.2.

$$P_X(S) = P(\{w \in \Omega | X(w) \in S\})$$

$$= P(\{w \in \Omega | X(w) \in S \cap X(\Omega)\})$$

$$= P(\bigcup_{x \in S \cap X(\Omega)} \{w \in \Omega | X(w) = x\})$$

$$= \sum_{x \in S \cap X(\Omega)} P(\{w \in \Omega | X(w) = x\})$$

Remarques 0.3. Pour définir la loi d'une variable aléatoire, il suffit de donner $P(\{X = x\}) = P_X(\{x\})$ pour tout $x \in X(\Omega)$

Proposition 0.3.

Soit X une variable aléatoire d'un univers fini Ω . $\sum_{x \in X(\Omega)} P_X(\{x\}) = 1$

Démonstration 0.3.

$$\sum_{x \in X(\Omega)} P_X(\{x\}) = \sum_{x \in X(\Omega) \cap \mathbb{R}} P(\{x\})$$
$$= P_X(\mathbb{R})$$
$$= P(\{X \in \mathbb{R}\})$$
$$= P(\Omega) = 1$$

Proposition 0.4.

Soit X une variable aléatoire. Soit $S, S' \subset \mathbb{R}$ tels que $S \cap S' = \emptyset$. $P_X(S \cup S') = P_X(S) + P_X(S')$

Démonstration 0.4.

$$P_X(S \cup S') = P(\{w \in \Omega | X(w) \in S\} \cup \{w \in \Omega | X(w) \in S\})$$

= $P(\{w \in \Omega | X(w) \in S\}) + P(\{w \in \Omega | X(w) \in S'\})$
= $P_X(S) + P_X(S')$