Combating Exacerbated Heterogeneity for Robust Models in Federated Learning

Jianing Zhu¹, Jiangchao Yao^{2, 3}, Tongliang Liu⁴, Quanming Yao⁵, Jianliang Xu¹, Bo Han¹

¹Hong Kong Baptist University ²Shanghai Jiao Tong University ³Shanghai Al Laboratory

⁴Sydney Al Centre, The University of Sydney ⁵Tsinghua University

Outline

- Background
- Intensified Heterogeneity
- Slacked Federated Adversarial Training (SFAT)
- Summary

Figure. Framework overview of SFAT.

Adversarial Training

Vulnerability of Deep Neural Networks (DNNs)

"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

DNNs could be easily fooled by adding a small number of perturbations on natural inputs. The perturbed example is adversarial example.

$$\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} \max_{\|\mathbf{x}_{i}' - \mathbf{x}_{i}\|_{p} \leq \epsilon} \ell(h_{\boldsymbol{\theta}}(\mathbf{x}_{i}'), y_{i})$$

Standard Training

Trained on True Labels

Trained on Random Labels

Adversarial Training

Trained on True Labels

Trained on Random Labels

Federated Adversarial Training

Adversarial Vulnerability in Device-edge

- a. Local Adversarial Training
- **b.** Federated Model Aggregation

"panda"
57.7% confidence

+.007 ×

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

Previous Work

Towards the algorithmic challenge of federated adversarial training

Unexpected Robust Deterioration

AT vs. FAT

(a) Centralized AT vs. FAT

Dynamic Heterogeneity

$$\min_{f_{\theta} \in \mathcal{F}} \frac{1}{N} \sum_{n=1}^{N} \left(\max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n) \right)$$

Adversarial Training with FL

$$\min_{f_{\theta} \in \mathcal{F}} \frac{1}{N} \sum_{n=1}^{N} \left(\max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n) \right)$$

E↑ client drift ↑

the inner-maximization for pursuing adversarial robustness would exacerbate the data heterogeneity among local clients in federated learning.

α-Slack Mechanism

$$\mathcal{L}_{AT} = \frac{1}{N} \sum_{n=1}^{N} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n)$$

$$\mathcal{L}_{AT} = \frac{1}{N} \sum_{n=1}^{N} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n) = \sum_{k=1}^{K} \frac{N_k}{N} \underbrace{\left(\frac{1}{N_k} \sum_{n=1}^{N_k} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n^k), y_n^k)\right)}_{\mathcal{L}_k}$$

$$\geq (1 + \alpha) \sum_{k=1}^{\hat{K}} \frac{N_{\phi(k)}}{N} \mathcal{L}_{\phi(k)} + (1 - \alpha) \sum_{k=\hat{K}+1}^{K} \frac{N_{\phi(k)}}{N} \mathcal{L}_{\phi(k)}$$

$$\doteq \mathcal{L}^{\alpha}(\hat{K}), \qquad \text{s.t. } \alpha \in [0, 1), \ \hat{K} \leq \frac{K}{2},$$

SFAT

α-Slack Mechanism

$$\mathcal{L}_{AT} = \frac{1}{N} \sum_{n=1}^{N} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n) = \sum_{k=1}^{K} \frac{N_k}{N} \underbrace{\left(\frac{1}{N_k} \sum_{n=1}^{N_k} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n^k), y_n^k)\right)}_{\mathcal{L}_k}$$

$$\geq (1+\alpha) \sum_{k=1}^{\hat{K}} \frac{N_{\phi(k)}}{N} \mathcal{L}_{\phi(k)} + (1-\alpha) \sum_{k=\hat{K}+1}^{K} \frac{N_{\phi(k)}}{N} \mathcal{L}_{\phi(k)}$$

$$\doteq \mathcal{L}^{\alpha}(\hat{K}), \quad \text{s.t. } \alpha \in [0, 1), \ \hat{K} \leq \frac{K}{2},$$

Theorem 4.1. $\mathcal{L}^{\alpha}(\widehat{K})$ is monotonically decreasing w.r.t. both α and \widehat{K} , i.e., $\mathcal{L}^{\alpha_1}(\widehat{K}) < \mathcal{L}^{\alpha_2}(\widehat{K})$ if $\alpha_1 > \alpha_2$ and $\mathcal{L}^{\alpha}(\widehat{K}_1) < \mathcal{L}^{\alpha}(\widehat{K}_2)$ if $\widehat{K}_1 > \widehat{K}_2$. Specifically, $\mathcal{L}^{\alpha}(\widehat{K})$ recovers \mathcal{L} of adversarial training when α achieves 0, and $\mathcal{L}^{\alpha}(\widehat{K})$ relaxes \mathcal{L} to a lower bound objective by increasing \widehat{K} and α .

Slacked Federated Adversarial Training

SFAT

$$\min \mathcal{L}_{\text{SFAT}} = \min_{f_{\theta} \in \mathcal{F}} \frac{1}{\sum_{k}^{K} N_{k}} \sum_{k=1}^{K} P_{k} N_{k} \cdot \underbrace{\left(\frac{1}{N_{k}} \sum_{n=1}^{N_{k}} \max_{\tilde{x}_{n}^{k} \in \mathcal{B}_{\epsilon}[x_{n}^{k}]} \ell(f_{\theta}(\tilde{x}_{n}^{k}), y_{n}^{k})\right)}_{\mathcal{L}_{k}}$$

SFAT

Empirical Properties

Experiment

a. Ablation Study

b. Performance on different views

Table 1: Test accuracy on CIFAR-10 (Non-IID) partition with different client numbers.

Client Number	Methods	Natural	PGD-20	CW_{∞}
10	FAT	56.62%	31.24%	29.82%
10	SFAT	56.67%	33.31%	31.58%
20	FAT	60.55%	32.67%	31.07%
	SFAT	62.24%	35.66%	33.21%
25	FAT	58.97%	32.98%	31.14%
	SFAT		33.16%	
50	FAT	56.74%	32.91%	30.50%
	SFAT	57.21%	34.35%	31.75%

Table 2: Test accuracy on *CIFAR-10* (Non-IID) with different local adversarial training methods.

Metho	ods	Natural	PGD-20	CW_∞	
AT	FAT	57.45%	32.58%	30.52%	
	SFAT	62.34%	35.59%	33.06%	
TRADES	FAT	64.00%	31.64%	28.95%	
	SFAT	65.26%	35.10%	31.80%	
MART	FAT	56.29%	36.27%	32.41%	
	SFAT	58.41%	38.90%	34.67%	

Experiment

Table 3: Performance on Non-IID settings with different federated optimization methods (Mean±Std).

Setti	ng	Non-IID							
CIFAR-10		Natural	FGSM	PGD-20	$ $ CW_{∞}	AA			
FedAvg	FAT SFAT	58.13±0.68% 63.36±0.07%	40.06±0.62% 32.56±0.01% 44.82 ± 0.32 % 37.14 ± 0.03 %		30.88±0.37% 33.39±0.61%	29.17±0.03% 31.66±0.70%			
FedProx	FAT SFAT	59.95±0.45% 62.04±0.47%	41.44±0.15% 44.21±0.08%			30.11±0.09% 31.83±0.15%			
Scaffold	FAT SFAT	61.44±1.37% 63.16±0.96%	42.85±0.76% 45.55±0.50%			31.03±0.08% 33.32±0.01%			
CIFAR-100		Natural	FGSM	PGD-20	$ $ CW_{∞}	AA			
FedAvg	FAT SFAT	34.63±0.56% 35.65±0.54%	19.92±0.28% 20.23±0.44%	15.40±0.20% 16.24±0.16%	13.23±0.03% 13.53±0.02%	12.23±0.01% 12.45±0.03%			
FedProx	OV STORY		19.06±0.17% 20.54±0.08%						
Scaffold	FAT SFAT	39.98±0.02% 44.13±0.05%	24.30±0.04% 25.32±0.94%	->		15.29±0.08% 15.80±0.10%			
SVHN		Natural	FGSM	PGD-20	$ $ CW_{∞}	AA			
FedAvg	FAT SFAT	91.52±0.28% 91.26±0.01%	88.13±0.18% 88.27±0.02%	68.98±0.11% 72.04±0.32%	68.04±0.15% 69.96±0.16%	66.59±0.04% 68.89±0.27%			
FedProx	FAT SFAT	91.00±0.08% 91.19±0.06%	87.65±0.15% 88.15±0.01%	68.48±0.04% 71.84±0.30%	67.16±0.02% 69.88±0.35%	65.76±0.18% 68.84±0.37%			
Scaffold	FAT SFAT	90.82±0.87% 90.93±0.76%	87.89±0.66% 88.27±0.45%	69.51±0.84% 71.77±0.38%	68.12±0.88% 69.49±0.67%	67.19±0.54% 68.37±0.48%			

In the performance comparison, we demonstrate the effectiveness of SFAT in Three datasets.

Experiment

Table 21: Performance on three benchmark datasets under different federated optimization methods (Non-IID & IID).

Setti	ng	Non-IID				IID					
CIFAR-10		Natural	FGSM	PGD-20	CW_{∞}	AA	Natural	FGSM	PGD-20	CW_{∞}	AA
Centraliz	ed AT	-	-	-	-	-	66.47%	47.68%	38.18%	37.04%	34.48%
FedAvg	FAT SFAT	57.45% 63.44 %	39.44% 45.13%	32.58% 37.17%	30.52% 33.99%	29.20% 32.36%	69.35 % 67.43%	48.45% 50.33%	37.43% 42.78%	35.72% 37.91%	33.96% 36.20%
FedProx	FAT	60.44%	41.59%	33.84%	31.29%	30.02%	66.91%	46.70%	37.14%	34.54%	32.68%
	SFAT	62.51%	44.29%	36.75%	33.82%	31,98%	68.31%	48.40%	42.41 %	37.25%	35.97%
Scaffold	FAT	62.81%	43.61%	34.13%	32.53%	30.95%	68.27%	49.25%	39.33%	37.31%	35.30%
	SFAT	64.12%	46.05%	37.35%	34.78%	33.32%	71.36%	50.42%	43.83%	39.12%	35.47%
CIFAR	-100	Natural	FGSM	PGD-20	CW_{∞}	AA	Natural	FGSM	PGD-20	CW _∞	AA
Centraliz	ed AT	-	-	-	-	-	35.81%	23.09%	18.64%	16.48%	15.42%
FedAvg	FAT	35.19%	20.20%	15.60%	13.26%	12.22%	32.65%	20.44%	16.47%	14.10%	12.99%
	SFAT	36.18%	20.70%	16.40%	13.55%	12.42%	38.36%	21.86%	17.10%	14.36%	13.42%
FedProx	FAT	32.36%	19.22%	15.37%	12.91%	12.05%	34.78%	20.71%	16.37%	14.28%	13.09%
	SFAT	35.11%	20.62%	16.19%	13.47%	12.63%	37.58%	21.74%	17.03%	14.46%	13.50%
Scaffold	FAT	39.96%	24.26%	19.41%	16.60%	15.37%	43.80%	26.25%	20.76%	18.39%	17.20%
	SFAT	44.08%	24.38%	20.29%	16.79%	15.90%	44.36%	28.65%	23.14%	20.11%	18.39%
SVH	IN	Natural	FGSM	PGD-20	CW_{∞}	AA	Natural	FGSM	PGD-20	CW∞	AA
Centraliz	ed AT	-	-	-	-	-	92.39%	89.75%	72.73%	72.31%	70.93%
FedAvg	FAT	91.24%	87.95%	68.87%	67.89%	66.54%	93.52%	90.68%	72.24%	71.22%	70.08%
	SFAT	91.25%	88.28%	71.72%	69.79 %	68.62%	92.75%	90.06%	74.37%	72.34%	71.27%
FedProx	FAT	90.92%	87.50%	68.44%	67.18%	65.94%	93.54%	90.66%	72.53%	71.42%	70.21%
	SFAT	91.25%	88.15%	71.54%	69.53%	68.47%	93.59%	90.80%	74.66%	72.67%	71.48%
Scaffold	FAT	89.95%	87.23%	68.66%	67.23%	66.65%	93.80%	91.00%	73.26%	72.05%	70.80%
	SFAT	90.20%	87.81%	71.39%	68.81%	67.88%	93.92%	91.28%	75.96 %	74.05%	72.88%

We find that our method could improve the original FAT on not only Non-IID but also IID setting in FL.

Future: Intensified Heterogeneity

Does Intensified Heterogeneity in aggregating robust models has been already fixed?

The answer is: Not Yet!

Q1: How to solve such algorithmic conflict?

Q2: Why it also happens on IID dataset?

Summary

- In this work, We study the critical **robustness deterioration** in FAT, and discover that the reason behind this phenomenon may attribute to the **intensified data heterogeneity** induced by the adversarial generation in local clients.
- \Box We derive an α-slack mechanism for adversarial training to relax the innermaximization to a lower bound for SFAT, which could asymptotically approach the original goal towards adversarial robustness and alleviate the intensified heterogeneity in federated learning.

Thank You!

