Тема 4 Кратчайшие пути

Рассмотрим *сеть* (ориентированную) $S = \{I, U\}$ со множеством узлов I и дуг U . Каждой ориентированной дуге $(i,j) \in U$ поставим в соответствие пару точек $\{i,j\}$, которую назовем **ребром** с граничными узлами i и j.

Последовательность различных ребер

$$\{i_1,i_2\}, \ \{i_2,i_3\}, \ \ldots, \ \{i_{k-1},i_k\}$$

называется (простой) цепью, соединяющей узлы i_1 и i_k .

Пусть данная цепь рассматривается в направлении от узла i_1 к узлу i_k . Если это направление совпадает с направлением $i \to j$ дуги (i,j) в этой цепи, то дуга (i,j) называется *прямой*. Дуга с противоположным направлением называется *обрамной*.

Путем из узла $s \in I$ в узел $t \in I$ называется простая цепь, соединяющая s и t, при этом все дуги цепи являются прямыми при движении из s в t.

Цепь (путь)

$$\{i_1, i_2\}, \{i_2, i_3\}, \dots, \{i_{k-1}, i_k\}$$

с совпадающими узлами i_1 и i_k : $i_1 = i_k$ называется *циклом (контуром)*.

Каждой дуге $(i,j) \in U$ припишем некоторый параметр c_{ij} («стоимость»), который определяет длину дуги (i,j).

В этом случае под длиной пути будем понимать сумму длин дуг, образующих данный путь.

В данной главы изучается задача о нахождении кратчайшего (минимального) пути из фиксированного узла s в другой заданный узел t или во все другие узлы сети. В последнем случае говорят о задаче построения дерева кратчайших путей. Следует различать три случая:

- 1. Все дуги сети имеют неотрицательную длину.
- 2. Некоторые дуги имеют отрицательную длину, но в сети не существует контуров с суммарной отрицательной длиной.
- 3. В сети существует один или несколько контуров с отрицательной суммарной длиной.

В третьем случае задача о построении кратчайшего пути из s в t может не иметь решения. (Задача будет иметь решение только в том случае, если нет ни одного пути из s в узел i, принадлежащий контуру с отрицательной длиной.) В таких ситуациях используются алгоритмы, позволяющие обнаружить и указать контуры с отрицательной длиной.

Заметим, что отсутствие в сети $S = \{I, U\}$ контуров отрицательной длины и существование пути из i в j для любых i, $j \in I$, являются необходимыми и

достаточными условиями существования кратчайшего пути из любого узла $i \in I$ в любой узел $j \in I$.

Второй параграф данной главы посвящен построению кратчайших путей между всеми парами узлов заданной сети.

4.1 Задача о кратчайшем пути

4.1.1. Поиск кратчайшего пути и задача о потоке минимальной стоимости

Покажем, что задача построения кратчайших путей из заданного узла s во все другие узлы $i \in I \setminus s$ сети $S = \{I, U\}$ является частным случаем задачи о потоке минимальной стоимости (см. раздел [Задача о потоке минимальной стоимости]). , которая, в свою очередь, является частным случаем задачи линейного программирования.

Рассмотрим задачу построения кратчайших путей из узла s в узлы $i \in I \setminus s$.

Покажем, что эта задача эквивалентна следующей задаче о потоке минимальной стоимости на сети $S = \{I, U\}$:

$$\sum_{j \in I_i^+} \sum_{ij \in I_i^-} c_{ij} x_{ij} \to \min,$$

$$\sum_{j \in I_i^+} x_{ij} - \sum_{j \in I_i^-} x_{ji} = a_i, \quad i \in I,$$

$$x_{ij} \ge 0, \quad (i, j) \in U,$$

$$(1)$$

где

$$I_i^+ = \{ j \in I : (i, j) \in U \}; \quad I_i^- = \{ j \in I : (j, i) \in U \};$$

$$a_s = n - 1; \quad a_i = -1, \quad i \in I \setminus n = |I|.$$
(2)

С учетом того, что все числа $a_i, i \in I$, -- целые, можно показать, что задача $(\underline{1})$ имеет оптимальный целочисленный поток.

Ранее в курсе методов оптимизации было доказано, что если в задаче $(\underline{1})$ существует оптимальный поток, то для нее найдется и оптимальный **базисный** поток, который определяется следующими свойствами: пусть $x^0=(x^0_{ij},(i,j)\in U)$ -- оптимальный базисный поток, тогда существует такое базисное множество (являющееся деревом) $U^0_R\subset U$, что

$$x_{ij}^0 \ge 0, \ (i,j) \in U_B^0, \ x_{ij}^0 = 0, \ (i,j) \in U \setminus U_B^0.$$
 (3)

В силу специального подбора чисел $a_i, i \in I$, можно утверждать, что $x_{ij}^0 > 0$ (и даже

 $x_{ij}^0 \geq 1$), если $(i,j) \in U_B^0$.

Покажем, что базисное множество U_B^0 и будет деревом кратчайших путей из s в $j \in I \setminus s$.

Действительно, выше отмечалось, что множество U_B^0 является деревом. Из свойств дерева следует, что для любого узла $j_* \in I \setminus s$ существует единственная цепь, принадлежащая U_B^0 и соединяющая s и j_* .

В силу (3) ненулевые потоки могут быть только на дугах дерева U_B^0 . У нас только один узел-источник (с $a_i>0$) -- это узел s .

Значит, единичный поток, который попадает в узел j_* с $a_{j_*}=-1<0$, приходит в узел j_* из узла s. Следовательно, все дуги упомянутой цепи должны быть прямыми. Значит, эта цепь является путем из s в j_* .

Обозначим дуги этого пути через $U(j_*) \subset U_B^0$. Так как из s в j_* вдоль пути $U(j_*)$ идет единица потока, то по построению $x_{ij}^0 \geq 1, \ (i,j) \in U(j_*)$.

Предположим, что существует другой путь из s в j_* меньшей длины, т.е. существует такой путь $\bar{U}(j_*)$, что

$$\sum_{(i,j)\in \mathbb{Q}_{ij}} c_{ij} < \sum_{(i,j)\in \mathbb{Q}_{ij}} .$$
 (4)

Построим новый поток $x^* = (x_{ij}^*, (i, j) \in U)$ в сети S:

$$x_{ij}^* = x_{ij}^0 + 1$$
, если $(i,j) \in \bar{U}(j_*)$, $(i,j) \notin U(j_*)$, $x_{ij}^* = x_{ij}^0 - 1$, если $(i,j) \notin \bar{U}(j_*)$, $(i,j) \in U(j_*)$, $x_{ij}^* = x_{ij}^0$ для остальных дуг $(i,j) \in U$.

Нетрудно проверить, что x^* -- допустимый поток в сети S , причем

Однако последнее неравенство противоречит оптимальности потока x^0 в сети S .

Таким образом, мы показали, что, решив задачу (1), (2), мы находим дерево U_B^0 (оптимальный базис, соответствующий потоку минимальной стоимости), которое является деревом кратчайших путей из s в узлы $j \in I \setminus s$.

Следовательно, для построения дерева кратчайших путей можно использовать метод потенциалов, рассмотренный ранее в разделе <u>Задача о потоке минимальной</u>

стоимости].

Заметим, что задача (1), (2) является частным случаем общей задачи о потоке минимальной стоимости. Специфика задачи (1), (2) состоит в специальной структуре интенсивностей $a_i, i \in I$.

Кроме того, мы получим дополнительную специфику, если, например, предположим, что $c_{ij} \geq 0$, $(i,j) \in U$. Учет этой специфики позволяет разработать специальные методы, учитывающие особенности данной задачи. Рассмотрим некоторые из таких методов.

4.1.2 Построение кратчайшего пути на сети с неотрицательными длинами дуг

Пусть задана сеть $S=\{I,U\}$ со множеством узлов I и множеством дуг U. На дугах $(i,j)\in U$ заданы характеристики $c_{ij}\geq 0,\ (i,j)\in U$, где c_{ij} -- длина дуги (i,j). Требуется для двух фиксированных узлов $s,t\in I$ найти путь из s в t минимальной длины.

Используем метод динамического программирования для построения и обоснования специального алгоритма нахождения кратчайших путей.

Вложим задачу построения кратчайшего пути из узла s в узел t в семейство аналогичных задач. Общая задача семейства состоит в построении кратчайшего пути из s в произвольный узел $j \in I \setminus s$.

Обозначим через B_j функцию Беллмана -- длину кратчайшего пути из s в j.

Для составления уравнения, которому удовлетворяет функция Беллмана B_j , в пути из s в j в качестве последней дуги выберем произвольную дугу $(i,j) \in U, i \in I_j^-$, и предположим, что в узел i мы пришли кратчайшим путем, т.е. длина пути из s в i равна B_i . Здесь

$$I_i^-=\{j\in I: (j,i)\in U\}.$$

Очевидно, что длина минимального пути из s в j через узел $I \in I_j^-$ равна

$$c_{ij} + B_i, i \in I_j^-. \tag{5}$$

Ясно, что в узел j из s мы можем попасть, только пройдя через какой-либо узел $i \in I_j^-$. Нас интересует кратчайший путь, поэтому в $(\underline{5})$ найдем минимум:

$$\min_{i \in I_i^-} (c_{ij} + B_i). \tag{6}$$

Ясно, что (6) -- длина кратчайшего пути из s в j , т.е.

$$B_j = \min_{i \in I_j^-} (c_{ij} + B_i). \tag{7}$$

Краевое условие для уравнения Беллмана (7) имеет вид

$$B_s = 0. (8)$$

Уравнение Беллмана <u>(7)</u> не является рекуррентным. Однако этому уравнению можно придать рекуррентный характер.

Обозначим через I_* множество узлов сети S , для которых функция Беллмана B_i уже построена. Очевидно, что $I_* \neq \emptyset$, так как по построению $s \in I_*$.

Если $t \in I_*$, то исходная задача решена, B_t -- длина минимального пути из s в t . Сам путь можно восстановить «обратным ходом» алгоритма (см. ниже).

Пусть $t \notin I_*$. В сети S по множеству I_* построим разрез

$$U(I_*) = \{(i, j) \in U : i \in I_*, j \notin I_*\}.$$

Предположим, что $U(I_*) \neq \emptyset$. Ясно, что каждый путь из s в узел $k \notin I_*$ содержит хотя бы одну дугу из множества $U(I_*)$.

Следовательно, в силу того, что $c_{ij} \geq 0, (i,j) \in U$, для любого $k \notin I_*$ справедливо неравенство

$$B_k \ge \min_{(i,j)\in U(I_*)} (B_i + c_{ij}) = B_{i_*} + c_{i_*j_*}, \quad k \notin I_*.$$
(9)

Поскольку (i_*,j_*) -- дуга разреза $U(I_*)$, то $i_* \in I_*,j_* \notin I_*$.

B(9) положим $k = j_*$. Тогда, согласно (9), имеем

$$B_{j_*} \ge B_{i_*} + c_{i_*j_*}. \tag{10}$$

С другой стороны, так как $i_* \in I_{j_*}^-$, согласно (7), получаем

$$B_{j_*} = \min_{i \in I_{j_*}^-} (B_i + c_{ij_*}) \le B_{i_*} + c_{i_*j_*}. \tag{11}$$

Из <u>(10)</u> и <u>(11)</u> следует, что

$$B_{j_*} = B_{i_*} + c_{i_*j_*}$$
.

Узел j_* добавим ко множеству I_* и с новым множеством I_* повторяем описанные выше операции.

Очевидно, что через конечное число шагов придем к одной из следующих ситуаций: либо $t \in I_*$, либо $U(I_*) = \emptyset$. Первая ситуация означает, что минимальный путь из s в t найден. Вторая ситуация означает, что в сети S нет ни одного пути из s в t.

Описанную выше схему решения уравнения Беллмана можно реализовать с помощью *метода пометок*.

4.1.3 Метод пометок

Перед первой итерацией алгоритма полагаем

$$I_* = \{s\}, B_s = 0, f(s) = s.$$

Пусть перед началом текущей итерации известно множество узлов I_* сети, для которых найдены значения функции Беллмана $B_i, i \in I_*$, а также некоторой функции $f(i) \in I_*, i \in I_*$.

Обозначим через $\omega(I_*)=\{j\in I: (i,j)\in U(I_*)\}$ множество узлов, соседних со множеством I_* .

Если $\omega(I_*)=\emptyset$, то в сети S нет путей из s в t .

Пусть $\omega(I_*) \neq \emptyset$. Подсчитаем числа (временные метки):

$$B'_{j} = \min_{i \in I_{*} \cap I_{i}^{-}} (B_{i} + c_{ij}), \quad j \in \omega(I_{*}),$$
(12)

и найдем минимальное среди них

$$B'_{j_*} = \min_{B'_{j}}, j \in \omega(I_*).$$
 (13)

Узлу j_* , на котором реализовался минимум в (13), приписываем постоянную метку

$$B_{j_*} = B'_{j_*},$$

полагаем $f(j_*)=i_*$, где $i_*\in I_*$ -- такой узел, что существует дуга $(i_*,j_*)\in U$ и $B_{j_*}=B_{i_*}+c_{i_*j_*}$. Узел j_* добавляем к узлам I_* . Переходим к следующей итерации.

На каждой итерации алгоритма количество узлов, имеющих постоянные метки, увеличивается на единицу. Следовательно, через конечное число шагов придем к одной из следующих ситуаций:

Случай «б» означает, что в сети $S = \{I, U\}$ нет путей из s в t.

Случай «а» означает, что B_t -- длина кратчайшего пути из s в t.

Для построения самого кратчайшего пути из s в t осуществим «обратный ход», используя функцию $f(i), i \in I_*$. С этой целью определим узлы по правилу

$$i_0 := f(t), \quad i_1 := f(i_0), \quad i_2 := f(i_1), \quad \dots,$$
 (14)

$$i_k := f(i_{k-1}), \dots, i_m := f(i_{m-1}) = s.$$

Тогда путь из s в t имеет вид

$$s \to i_{m-1} \to \dots \to i_k \to i_{k-1} \to \dots \to i_1 \to i_0 \to t. \tag{15}$$

Пример, иллюстрирующий работу метода пометок, приведен на рис. 3.1.

Дуги кратчайшего пути из узла s=1 в узел t=4 выделены жирными линиями.

$$s=1$$
, $t=4$
 $B_2 = 1$, $f(2) = 6$
 $B_3 = 1$, $f(3) = 2$
 $B_4 = 5$, $f(4) = 5$
 $B_1 = 0$, $f(1) = 1$
 $B_6 = 1$, $f(6) = 1$
 $B_5 = 4$, $f(5) = 3$

Рис. 3.1

4.1.4 Алгоритм Дейкстры

Описанный метод пометок можно сделать еще более детальным. Приводимая ниже модификация называется «жадным» алгоритмом, или алгоритмом Дейкстры. Опишем этот алгоритм.

Перед началом работы алгоритма полагаем

$$I_* = \{s\}, B_s = 0, f(s) = s, B'_j = \infty, f'(j) = 0, j \in I \setminus s, i_* = s.$$

Пусть заданы множество и числа

$$I_*, B_i, f(i), i \in I_*, B'_i, f'(j), j \in I \setminus I_*,$$

а также индекс $i_* \in I_*$.

Опишем алгоритм Дейкстры по шагам.

Шаг 1. Рассмотрим узлы

$$\tilde{I}_{i_*}^+ = \{ j \in I \setminus I_* : \exists (i_*, j) \in U \} = I_{i_*}^+ \bigcap (I \setminus I_*).$$

Для любого $j \in \tilde{I}_{i_*}^+$ при $B_j^{'} > B_{i_*} + c_{i_*j}$ положим

$$B'_{i} := B_{i_{*}} + c_{i_{*}j}, f'(j) := i_{*},$$

в противном случае (т.е. при $B_j^{'} \leq B_{i_*} + c_{i_*j}$) временные метки узла j не меняем : $B_j^{'} := B_j^{'}, \ f^{'}(j) = f^{'}(j)$. Переходим к шагу 2.

Шаг 2. Среди всех узлов $j \in I \backslash I_*$ (т.е. узлов с временными метками) находим узел j_* с минимальной временной меткой:

$$B_{j_*}' = \min_{j \in I \setminus I_*} B_j'.$$

Если $B_{j_*}^{'}=\infty$, то STOP -- алгоритм заканчивает свою работу, так как в сети нет путей из s в t_*

Если $B_{i_*}' < \infty$, то переходим к шагу 3.

Шаг 3. Полагаем $B_{j_*}:=B_{j_*}^{'}, \quad f(j_*)=f^{'}(j_*)$, т.е. узлу j_* приписываем постоянные метки и относим узел j_* ко множеству I_* , заменяя I_* на $I_*:==I_*\bigcup j_*$.

Полагаем $i_*:=j_*$ и переходим к шагу 1, если $t\notin I_*$.

Случай $t \in I_*$ означает, что кратчайший путь из s в t найден. Восстанавливаем этот путь по вторым постоянным меткам $f(i), i \in I_*$, согласно правилу (14), (15). Останавливаем работу алгоритма.

Заметим, что описанные алгоритмы обладают достоинством, о котором уже говорилось при изучении метода динамического программирования: мы можем изменить условия задачи и быстро найти решение новой задачи. Например, мы можем легко найти кратчайший путь из s в другой узел $j_0 \in I$, отличный от t.

Действительно, если узел j_0 уже принадлежит множеству помеченных узлов I_* , то кратчайший путь из s в j_0 можно сразу восстановить по вторым постоянным меткам $f(i), i \in I_*$. Если же данный узел $j_0 \notin I_*$, т.е. не имеет еще постоянной метки, то работу алгоритма надо продолжить до тех пор, пока ни реализуется одна из ситуаций:

$$j_0 \in I_*$$
 либо $B_{j_*}^{'} = \min_{j \in I \setminus I_*} B_j^{'} = \infty.$

4.1.5 Алгоритм построения дерева кратчайших путей

Предположим теперь, что в сети $S = \{I, U\}$ могут быть дуги с отрицательной длиной, но нет контуров с отрицательной суммарной длиной. В этом случае описанные выше алгоритмы, основанные на идеях динамического программирования, не применимы. В данной ситуации разумно использовать метод потенциалов (см. в разделе [Задача о потоке минимальной стоимости]). для решения задачи (1), (2) . Отметим, что в силу специфики данной задачи (см. условие (2)) метод потенциалов можно упростить.

Приведем этот упрощенный вариант метода потенциалов, предназначенный для решения задачи (1), (2).

Опишем вначале алгоритм построения начального базиса U_B , который является деревом путей (необязательно кратчайших) из s в произвольный узел $j \in I$. Это -- аналог алгоритма первой фазы метода потенциалов.

Положим $I_* = \{s\}, B_s = 0, f(s) = s.$

Пусть на некотором шаге известны множество I_* , числа $B_i, f(j), j \in I_*$.

Если $I_* = I$, то начальный базис-дерево U_B построен. Его легко восстановить по вторым меткам $f(i), i \in I$, согласно правилам (14), (15).

Пусть $I_* \neq I$. Если существует узел $j \in I \backslash I_*$, для которого найдется дуга $(i,j) \in U$ с $i \in I_*$, то полагаем

$$B_j = B_i + c_{ij}, \ f(j) = i, \ I_* := I_* \bigcup j.$$

Повторяем описанные выше операции с новым множеством I_* .

Если $I_* \neq I$ и не существует узла $j \in I \setminus I_*$, для которого найдется дуга $(i,j) \in U$ с $i \in I_*$, то в заданной сети $S = \{I,U\}$ нельзя построить дерево кратчайших путей, поскольку не во все узлы есть пути из s.

Пусть начальный базис-дерево U_B построен. При этом будут построены и числа $B_j, j \in I$, соответствующие U_B . Очевидно, что B_j -- длина пути из s в j вдоль дуг дерева U_B .

Общий вид множества дуг U_B приведен на рис. 3.2.

Рис. 3.2

Опишем шаги алгоритма построения дерева кратчайших путей

Шаг 1. Для небазисных дуг $U_H = U \backslash U_B$ проверяем условия оптимальности

$$B_i + c_{ij} \ge B_j, (i, j) \in U_H. \tag{16}$$

Если соотношения (16) выполняются, то текущее дерево U_B является деревом кратчайших путей. Алгоритм прекращает работу.

Если найдется дуга $(i_0,j_0)\in U_H$, для которой

$$B_{i_0} + c_{i_0 j_0} < B_{j_0},$$

то зафиксируем эту дугу и перейдем к шагу 2.

Шаг 2. Рассмотрим множество дуг $U_B \bigcup (i_0,j_0)$.

В разделе [Задача о потоке минимальной стоимости] было показано, что добавление дуги $(i_0,j_0)\in U_H$ к дереву U_B приводит к образованию единственного цикла $U_*\subset U_B$ $\bigcup (i_0,j_0)$. В нашем случае этот цикл обладает спецификой: цикл состоит как бы из двух частей. В одну часть входят дуги, направление которых совпадает с направлением дуги (i_0,j_0) , другую часть цикла образуют дуги, имеющие обратное направление (см. рис. 3.3). Отметим, что «прямые» дуги идут подряд, затем подряд идут «обратные» дуги, т.е. нет чередования прямых и обратных дуг (что могло иметь место в общей задаче о потоке минимальной стоимости).

Рис. 3.3

Шаг 3. Далее, согласно методу потенциалов, надо вычислить шаг $\theta_0 = \min_{U_*^-} x_{ij}$, где U_*^- -- обратные дуги цикла. В общей задаче шаг θ_0 мог реализоваться на любой дуге $(i,j) \in U_*^-$.

В силу специфики (2) видно, что в нашем случае шаг θ_0 обязательно реализуется на обратной дуге $(i_*,j_0)\in U_*^-$, ведущей в узел j_0 . Удалим дугу (i_*,j_0) из множества U_B , получим две компоненты связности $\{I_1,U_1\},\{I_2,U_2\}$, одна из которых содержит узел s, другая -- узел j_0 ,

$$s \in I_1, j_0 \in I_2, U_1 \bigcup U_2 = U_B \setminus (i_*, j_0).$$

(см. <u>рис. 3.4</u>).

Вычислим новые потенциалы $B_j, j \in I$, по правилу

$$\bar{B}_j = B_j - (B_{j_0} - c_{i_0 j_0} - B_{i_0}), \ j \in I_2;$$

 $\bar{B}_j = B_j, \ j \in I_1.$ (17)

Шаг 4. Построим новое базисное дерево (см. рис. 3.5)

$$\bar{U}_B = (U_B \setminus (i_*, j_0)) \bigcup (i_0, j_0).$$

Перейдем к шагу 1 с новым множеством \bar{U}_B и соответствующими ему потенциалами (17).

Приведенный алгоритм решает задачу за конечное число итераций.

Рис. 3.4

Рис. 3.5

Описанный выше алгоритм, базирующийся на методе потенциалов, можно использовать и для выявления отрицательных контуров в сети. Для этого на шаге 2 надо рассмотреть цикл $U_* \subset U_B \cup (i_0,j_0)$.

Если в этом цикле не все дуги имеют одно направление, то действуем как и раньше.

Если в цикле U_* все дуги имеют одно направление, то STOP -- в сети есть отрицательные контуры. В этом случае задача построения дерева кратчайших путей не имеет решения.