Отчет по лабораторной работе №1

«Реализация метода обратного распространения ошибки для двуслойной полностью связанной нейронной сети»

Выполнила: студентка группы 381603м4 Решетова Анастасия.

Постановка задачи.

Цель настоящей работы состоит в том, чтобы изучить метод обратного распространения ошибки для обучения глубоких нейронных сетей на примере двуслойной полностью связанной сети (один скрытый слой).

Выполнение лабораторной работы предполагает решение следующих задач:

- 1. Изучение общей схемы метода обратного распространения ошибки.
- 2. Вывод математических формул для вычисления градиентов функции ошибки по параметрам нейронной сети и формул коррекции весов.
- 3. Проектирование и разработка программной реализации.
- 4. Тестирование разработанной программной реализации.

Метод обратного распространения ошибки.

Многослойная нейронная сеть содержит нейроны, которые распределены по слоям. В общем случае сеть содержит входной, выходной и множество промежуточных (скрытых) слоев. В полностью связной нейронной сети все узлы каждого слоя соединены с узлами следующего. Графическое представление полностью связной нейронной сети:

Входной слой содержит $m \times n$ нейронов, что соответствует разрешению изображения. Выходной слой содержит k нейронов, что соответствует количеству классов.

В процессе обучения подбираются веса $w_{j,i}^s$ (вес ребра, соединяющего j-й нейрон слоя s и i-й нейрон слоя (s+1)). Задача обучения нейронной сети сводится к задаче оптимизации функции ошибки по всем синаптическим весам:

$$\min_{w} E(w)$$

Обучение нейронной сети будем проводить методом обратного распространения ошибки. Общая схема метода:

- 1. Прямой проход (от входного сигнала через скрытые слои к выходному слою). Вычисляются значения выходных сигналов и соответствующие значения производных функций активации на каждом слое.
- 2. Вычисление значения целевой функции и ее градиента
- 3. Обратный проход. Корректировка синаптических весов:

$$w(k+1) = w(k) + \Delta w,$$

$$\Delta w = \eta p(w), \quad \eta, 0 < \eta < 1$$
 – скорость обучения, $p(w) = -\nabla E(w)$ - направление

4. Повторение 1-3 до выполнения критерия остановки.

В данной лабораторной работе рассматривается трехслойная полносвязная нейронная сеть (один скрытый слой).

В качестве функции активации на втором слое используется softmax:

$$\varphi(u_j) = \frac{e^{u_j}}{\sum_{j=1}^M e^{u_j}}.$$

В качестве функции ошибки используется кросс-энтропия:

$$E(w) = -\sum_{k=1}^{L} (y^k \ln u^k + (1 - y^k) \ln(1 - u^k)).$$

Вычисление градиента функции ошибки:

$$\frac{\partial E}{\partial w_{sj}} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial w_{sj}}$$

$$\frac{\partial E}{\partial y_j} = u_j - t_j$$

$$\frac{\partial y_j}{\partial w_{sj}} = v_s$$

$$\frac{\partial E}{\partial w_{sj}} = (u_j - t_j)v_s = \delta_j v_s$$

$$\frac{\partial E}{\partial w_{is}} = \frac{\partial E}{\partial z_s} \frac{\partial z_s}{\partial w_{is}}$$

$$\frac{\partial E}{\partial z_s} = \sum_{j=1}^{N_o} \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial v_s} \frac{\partial f}{\partial z_s} = \frac{\partial f}{\partial z_s} \sum_{j=1}^{N_o} \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial v_s} = \frac{\partial f}{\partial z_s} (\sum_{j=1}^{N_o} \delta_j^2 w_{s_j}^2)$$
$$\frac{\partial E}{\partial w_{is}} = \frac{\partial f}{\partial z_s} (\sum_{j=1}^{N_o} \delta_j^2 w_{s_j}^2) x_i$$

Корректировка весов:

$$w_{is}^{n+1} = w_{is}^{n} - \eta \frac{\partial E}{\partial w_{is}}$$

Программная реализация.

Программа реализована на языке Python. В качестве параметров запуска задаются количество изображений в тренировочной и тестовой выборке, количество нейронов на скрытом слое, а так же скорость обучения (величина шага в направлении антиградиента при корректировке весов).

Программа реализует алгоритм обратного распространения ошибки. Критерием остановки может явиться как достижение достаточной точности, так и превышение заданного количества итераций. На выходе программа выдает достигнутую точность на обучающей и на тестовой выборках, а также количество потребовавшихся для этого эпох.

Результаты исследований.

Number of neuron (hidden)	Accuracy	Number of epoch
100	0,9674	15
150	0,973	18
200	0,9718	22
250	0,9823	25
300	0,9885	25