Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №4 по дисциплине «Интервальный анализ»

Выполнил студент: Величко Арсений Юрьевич

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Постановка задачи	3
	1.1 Получение решения по теореме Зюзина	3
	1.2 Получение решения субдифференциальным методом Ньютона	3
2	Теория	3
	2.1 Теорема Зюзина	3
	2.2 Субдифференциальный метод Ньютона	4
3	Реализация	4
4	Результаты	5
	4.1 Получение решения по теореме Зюзина	5
	4.2 Субдифференциальный метод Ньютона	6
5	Обсуждение	7

1 Постановка задачи

1.1 Получение решения по теореме Зюзина

Построить итерационную схему с разложением на матрицы диагональную и недиагональную части для следующей ИСЛАУ

$$\begin{cases} [2,4]x_1 + [-2,1]x_2 = [-2,2] \\ [-2,1]x_1 + [2,4]x_2 = [-2.2] \end{cases}$$

Провести вычисления и привести иллюстрации:

- брусов итерационного процесса
- радиусов решения в зависимости от номера итерации

1.2 Получение решения субдифференциальным методом Ньютона

Для ИСЛАУ

$$\begin{cases} [3,4]x_1 + [5,6]x_2 = [-3,3] \\ [-1,1]x_1 + [-3,1]x_2 = [-1.2] \end{cases}$$
 (1)

построить итерационную схему субдифференциального метода Ньютона. Провести вычисления и привести иллюстрации:

• брусов итерационного процесса

Аналогично поступить с ИСЛАУ

$$\begin{cases} [3,4]x_1 + [5,6]x_2 = [-3,4] \\ [-1,1]x_1 + [-3,1]x_2 = [-1.2] \end{cases}$$
 (2)

Сравнить результаты для двух ИСЛАУ.

2 Теория

2.1 Теорема Зюзина

Пусть в интервальной линейной системе уравнений

$$\mathbf{C}x = \mathbf{d} \tag{3}$$

с $\mathbf{C} \in \mathbb{KR}^{n \times n}$ и $\mathbf{d} \in \mathbb{KR}^n$ правильная проекция матрицы \mathbf{C} имеет диагональное преобладание. Тогда формальное решение существует и единственно.

Итерационная схема

Пусть

D— диагональная матрица $diag\{c_{11}, c_{22}, ..., c_{nn}\},$

Е- матрица, полученная из С занулением её диагональных элементов.

Таким образом, C = D + E, а формальные решения исходной системы очевидно совпадают с формальными решениями системы

$$\mathbf{D}x + \mathbf{E}x = \mathbf{d} \tag{4}$$

которая, в свою очередь равносильна

$$\mathbf{D}x = \mathbf{d} \ominus \mathbf{E}x \tag{5}$$

Взяв далее какой-нибудь вектор $\mathbf{x}^{(0)},$ мы можем организовать итерационный процесс

$$\mathbf{x}^{(k+1)} \leftarrow (\text{inv } \mathbf{D}) \left(\mathbf{d} \ominus \mathbf{E} \mathbf{x}^{(k)} \right), \quad k = 0, 1, 2, \dots$$
 (6)

с (inv \mathbf{D}) := diag{inv $\mathbf{c_{11}}$, inv $\mathbf{c_{22}}$, ..., inv \mathbf{c}_{nn} } и по теореме Шрёдера о неподвижной точке, он будет сходиться к единственной неподвижной точке отображения

$$\mathbf{x} \mapsto (\text{inv } \mathbf{D}) (\mathbf{d} \ominus \mathbf{E} \mathbf{x})$$
 (7)

в силу диагонального преобладания в С.

2.2 Субдифференциальный метод Ньютона

Пусть

$$\mathcal{F}(y) = \operatorname{sti}\left(\mathbf{C} \operatorname{sti}^{-1}(y)\right) - y + \operatorname{sti}\left(\mathbf{d}\right) \tag{8}$$

Тогда итерационная схема метода выглядит следующим образом

$$\mathbf{x}^{(k+1)} \leftarrow x^{(k)} - \tau \left(D^{(k)}\right)^{-1} \mathcal{F}(x^{(k)})$$
 (9)

где $\tau \in [0,1]$, а $D^{(k)}$ - некоторый субградиент отображения \mathcal{F} в точке $x^{(k)}$.

3 Реализация

Лабораторная работа выполнена при помощи пакета Octave с использованием библиотек IntLab и IntLinInc2D и kinterval.

Ссылка на репозиторий с исходный кодом:

https://github.com/ArsenyVelichko/IntervalAnalysis

4 Результаты

4.1 Получение решения по теореме Зюзина

Рис. 1: Работа схемы, основанной на теореме Зюзина

Рис. 2: Радиусы брусов при работе схемы, основанной на теореме Зюзина

4.2 Субдифференциальный метод Ньютона

Рис. 3: Работа субдифференциального метода Ньютона для (1)

Алгоритм закончил свою работу на брусе $\binom{[0,0.5]}{[-0.5,0.16]}$, который обозначен на рисунке красным цветом.

Рис. 4: Работа субдифференциального метода Ньютона для (2)

Алгоритм зациклился между двумя брусьями — $\begin{pmatrix} [-0.3333,1] \\ [-0.3333,0] \end{pmatrix}$ и $\begin{pmatrix} [0,0.5] \\ [-0.5,0.3333] \end{pmatrix}$ которые обозначены на рисунке красным и синим цветом соответственно.

5 Обсуждение

- 1. Решение полученное по теореме Зюзина достаточно точно описывает допусковое множество решений радиус конечного бруса равен минимальной диагонали между его вершинами. По графику радиусов брусов (4.1) мы видим, что сходимость к конечному брусу происходит с двух сторон, одна итерация полностью лежит в Ξ_{tol} , а последующая выходит за его границы. Сходимость данного процесса занимает порядка 10 итераций.
- 2. При решении задачи (1) субдифференциальный метод Ньютона хорошо описывает $\Xi_{\rm tol}$ в той его части, где $x_1>0$. При этом конечный брус достигается всего за 3 итерации.
- 3. При решении задачи (2) субдифференциальный метод Ньютона зацикливается между двумя брусьями, которые обозначены на рисунке (4.2) синим и красным цветом. Оба они выходят за границы допускового множества. Однако границы Ξ_{tol} лучше приближает синий брус, так как две его нижние вершины лежат на гранях данного множества. Для достижения цикла требуется порядка 10 итераций.
- 4. Сравнивая результаты для задач (1) и (2) можно сказать, что даже малые изменения правой части могут сильно повлиять на результаты субдифференциального метода Ньютона, что не лучшим образом характеризует его устойчивость.