Architettura degli Elaboratori

Tutorato

a cura di Manuela Flores

Barbara Masucci – Classe: Resto_1
UNIVERSITÀ DEGLI STUDI DI SALERNO
DIPARTIMENTO DI INFORMATICA

Multiple 1-4

1)

Si consideri l'implementazione del processore MIPS a singolo ciclo, come studiato. Durante l'esecuzione dell'istruzione sw \$s1,24 (\$s2) quale sarà il primo ingresso alla ALU?

A. Il contenuto del registro \$s1

C. Il contenuto del registro \$s2

B. 24

D. Nessuna delle risposte precedenti

2)

Il pipelining:

- A. Riduce il numero di istruzioni eseguibili nell'unità di tempo
- B. Aumenta il numero di istruzioni eseguibili nell'unità di tempo
- C. Riduce il tempo per eseguire una singola istruzione
- D. Nessuna delle risposte precedenti

3)

Se in un flip-flop D temporizzato, il segnale di Clock è 1, allora

- A. Il flip-flop è aperto e l'uscita Q sarà uguale a D
- B. Il flip-flop è aperto e l'uscita Q sarà uguale a 1
- C. Il flip-flop è chiuso e l'uscita Q resta invariata
- D. Nessuna delle risposte precedenti

4)

In una memoria cache a mappatura diretta si ha una hit (successo), in seguito alla richiesta di un indirizzo, se:

- A. L'indirizzo era stato già richiesto in precedenza (dall'accensione della macchina)
- B. Nella linea indicata dal campo indice dell'indirizzo, il bit di validità è posto a 1 oppure il campo tag è uguale al campo tag dell'indirizzo
- C. Nella linea indicata dal campo indice dell'indirizzo, il bit di validità è posto a 1 e il campo tag è diverso dal campo tag dell'indirizzo
- D. Nessuna delle risposte precedenti

sw rt,offset(rs)

Lezione 21 pag. 18

Osservazioni

- L'implementazione con pipeline aumenta il numero di istruzioni contemporaneamente in esecuzione
- Quindi, la pipeline
 - Aumenta il throughput (numero di istruzioni eseguite nell'unità di tempo)
 - Non diminuisce la latenza (tempo di esecuzione della singola istruzione), che resta sempre la stessa

Flip-Flop D

- Quando il Clock è 1, cioè il suo fronte è alto, il circuito è aperto e l'output Y diventa uguale all'input D (il circuito lascia passare il dato D)
- Quando il Clock è O, cioè il suo fronte è basso, il circuito è chiuso e l'output Y mantiene il valore che aveva l'ultima volta che il circuito era aperto (il circuito non lascia passare il dato D)

Lezione 23 pag. 20

Migrazione delle informazioni

- Livello superiore
- Livello inferiore

Blocco o linea

- La più piccolo quantità di informazione che può essere trasferita tra due livelli adiacenti nella gerarchia
- Analogia con la biblioteca: blocco = libro

Hit (successo)

- Se il dato richiesto dal processore è contenuto in uno dei blocchi presenti nel livello superiore
- Analogia con la biblioteca: l'informazione cercata dallo studente è presente in uno dei libri a disposizione sulla scrivania

Lezione 23 pag. 21 Migrazione delle informazioni

- Se il dato richiesto dal processore non è contenuto in uno dei blocchi presenti nel livello superiore
- In tal caso bisogna accedere al livello inferiore della gerarchia per recuperare il blocco contenente il dato richiesto e copiarlo nel livello superiore

Analogia con la biblioteca

- L'informazione cercata dallo studente non è presente in nessuno dei libri sulla scrivania
- In tal caso lo studente deve cercare tra gli scaffali della biblioteca per recuperare il libro contenente l'informazione di cui ha bisogno
- Se lo studente trova il libro, lo porta sulla scrivania

Lezione 23 pag. 37

Hit!

Avrò una hit (dato presente nella cache) se, nella linea di cache INDICE

Index	٧	Tag	Data		
000	Y	10 _{two}	Memory (10000 _{two})		

Il tag coincide con TAG e V=1

Multiple 5-8

5)

Nel processore a singolo ciclo studiato, l'unità di controllo e il banco dei registri sono rispettivamente:

A. un circuito combinatorio e un circuito sequenziale

C. entrambi circuiti combinatori

B. un circuito sequenziale e un circuito combinatorio

D. Nessuna delle risposte precedenti.

6)

Si consideri l'implementazione studiata del processore con pipeline.

Cosa fa l'istruzione lw \$s1,24 (\$s2) nello stadio MEM?

- A. Esegue la somma del contenuto del registro \$52 con 24
- B. Scrive nel registro \$\$1 il dato prelevato dalla memoria
- C. Preleva l'istruzione dalla memoria istruzioni

D. Nessuna delle risposte precedenti

7)

La lettura di un registro nel banco dei registri (register file) avviene tramite

- A. un multiplexer che ha il numero del registro come segnale di controllo
- B. un decoder che ha in input il dato da scrivere
- C. un decoder che ha in input il numero del registro
- D. Nessuna delle risposte precedenti

8)

Nel processore a singolo ciclo (come studiato) il segnale di controllo MemRead:

- A. è 1 per tutte le istruzioni e permette la lettura dalla memoria istruzioni
- B. è 1 per l'istruzione sw e permette la lettura dalla memoria dati
- C. non esiste
- D. Nessuna delle precedenti

Unità di controllo Implementazione

Tabella di verita' dell'unita' di Contro	llo
--	-----

	Segnale	form.	lw	SW	beq
片	(Op5	0	1	1	0
<u> </u>	Op4	0	0	0	0
Inputs) Op3	0	0	1	0
11	Op2	0	0	0	1
g	Op1	0	1	1	0
6	Op0	0	1	1	0
=Opcode	RegDst	1	0	Х	X
	ALUSTC	0	1	1	0
	MemtoReg	0	1	Х	X
O	RegWrite	1	1	0	0
~ Outputs	MemRead	0	1	0	0
Ĕ	MemWrite	0	0	1	0
S	Branch	0	0	0	1
	ALUOp1	1	0	0	0
Y 4	ALUOP0	0	0	0	1

Rete Combinatoria realizzabile tramite PLA

Lezione 22 pag. 3

Unità di elaborazione con pipeline e controllo

Lezione 16 pag. 28

Leggere in un registro

Realizzazione:

- Usa un MUX 25:1 in cui il register number è usato per ottenere i 5 segnali di selezione del MUX
- L'output del MUX è il contenuto del registro indicato

Lezione 9 pag. 15

Multiplexer 2:1 a 32 bit

Costruito con 32 multiplexer 2:1 con un segnale di controllo distribuito ai vari multiplexer

Lezione 16 pag. 30

Scrivere in un registro

m=5 n=2^m=32

Disegnamo il MIPS

add rd, rs, rt

Datapath dell' istruzione add

add rd, rs, rt

lw rt,offset(rs)

A SILVA

lw rt,offset(rs)

sw rt,offset(rs)

sw rt,offset(rs)

beq rs, rt, offset

E' stato aggiunto anche un multiplexer per selezionare il registro di scrittura (target)

- La necessità sorge dal fatto che il registro target si trova in posizioni diverse a seconda del tipo dell'istruzione
 - Posizione dei bit da 15 a 11 per istruzioni di tipo R

Posizione dei bit da 20 a 16 per istruzioni lw, sw registro target

Unità di controllo Implementazione

Tabella di verita' dell'unita' di Contro	llo
--	-----

	Segnale	form.	lw	SW	beq
片	(Op5	0	1	1	0
פֿ	Op4	0	0	0	0
Inputs) Op3	0	0	1	0
11	Op2	0	0	0	1
g	Op1	0	1	1	0
6	Op0	0	1	1	0
=Opcode	RegDst	1	0	Х	X
	ALUSTC	0	1	1	0
	MemtoReg	0	1	Х	X
O	RegWrite	1	1	0	0
~ Outputs	MemRead	0	1	0	0
Ĕ	MemWrite	0	0	1	0
S	Branch	0	0	0	1
	ALUOp1	1	0	0	0
Y 4	ALUOP0	0	0	0	1

Rete Combinatoria realizzabile tramite PLA

Unità di controllo principale e dell'ALU

Rete combinatoria definita da una coppia di tabelle di verita' Controllo Principale e Controllo ALU

La ALU del MIPS

La ALU prevede le 6 seguenti combinazioni dei suoi 4 segnali di controllo

Ainvert (1 bit), Bnegate (1 bit), Operation (2bit)

ALU control lines	Function			
0000	AND			
0001	OR			
0010	add			
0110	subtract			
0111	set on less than			
1100	NOR			

Ignoriamo l'istruzione NOR (e il segnale Ainvert) perché non fa parte del set di istruzioni considerate

Hazard: propagazione e stallo

addi \$s0,\$0,9 addi \$s1,\$0,5 add \$t0,\$s0,\$s1 addi \$s2,\$0,40 sw \$t0,8(\$s2)

_									
	IF	ID	EX	MEM	WB				
		IF	ID	EX	MEM	WB			
			IF	ID	EX	MEM	WB		
				IF	ID	EX	MEM	WB	
					IF	ID	EX	MEM	WB

lw \$t0,0(\$s0)
add \$s1,\$s0,\$t0

	IF	ID	EX	MEM	WB				
)		IF	ID	EX	MEM	WB			
			IF	ID	EX	MEM	WB		
				IF	ID	EX	MEM	WB	
					IF	ID	EX	MEM	WB

MIPS con Pipeline

Con l'aggiunta di Forwarding Unit e Hazard Detection Unit

Domanda sul Datapath

- a) Si consideri lo schema implementativo studiato del processore a singolo ciclo MIPS. Si disegni **soltanto** la parte del processore necessaria ad eseguire le istruzioni di formato **R** e l'istruzione **beq**. L'inserimento di blocchi funzionali **non necessari** all'esecuzione delle istruzioni indicate comporterà un aumento dei costi e una riduzione della votazione di questo esercizio. È necessario inserire anche l'**unità di controllo**.
- b) Si consideri il processore disegnato al punto a) mentre esegue l'istruzione add \$s0,\$s1,\$s2, dove i registri \$s0,\$s1 e \$s2 contengono rispettivamente i valori 2020, 1 e -7. Indicare i valori di seguito richiesti, ciascuno col corretto numero di bit con cui compaiono. Si ricordi che i numeri dei registri \$s0,\$s1 e \$s2 sono rispettivamente 16, 17 e 18 e che il campo funct di add è 20_{esa}.
 - b1) le stringhe binarie in ingresso alle porte di lettura del banco dei registri.
 - b2) le stringhe binarie in ingresso rispettivamente all'unità di controllo principale e all'unità di controllo della ALU.
 - b3) il dato da scrivere nel banco dei registri e il numero del registro in cui scrivere.
- c) Si supponga adesso di voler aggiungere al processore disegnato al punto a) la possibilità di eseguire anche l'istruzione **bne**. Quali modifiche dovranno essere apportate (ai blocchi funzionali dell'unità di elaborazione, all'unità di controllo, ai segnali di controllo, ...)?

Riepilogo

Approfondimento Datapath e Hazard

- Prossime lezioni:
 - 19 dicembre 2022 ore 9:00 11:30, stesso Team
 - 10 gennaio 2023 ore 16:00 19:00, stesso Team

