중고차 거래금액 예측 모델링 🧟

이수빈

🤦 1. 데이터 확인

	Unnamed: 0	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price	Pric
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0	NaN	1.7
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0	NaN	12.5
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0	8.61 Lakh	4.5
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0	NaN	6.0
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0	NaN	17.7

🤦 2. 전처리-결측치 확인

train_orig.isnull().sum()			
Unnamed: O	0		
Name	0		
Location	0		
Year	0		
Kilometers_Driven	0		
Fuel_Type	0		
Transmission	0		
Owner_Type	0		
Mileage	2		
Engine	36		
Power	36		
Seats	42		
New_Price	5195		
Price	0		
dtype: int64			

🤵 2. 전처리-결측치 확인

```
train_orig.isnull().sum()
Unnamed: 0
Name
Location
Year
Kilometers Driven
Fuel_Type
Transmission
Owner_Type
Mileage
                       36
Engine
                       36
Power
Seats
New_Price
                     5195
Price
dtype: int64
```

```
train_orig.drop(columns=['Unnamed: O','New_Price'],inplace=True)
train_orig.dropna('index',inplace=True)
pd.DataFrame(train_orig)
train_orig.set_index('Name', inplace=True)
train = train_orig.reset_index()
train.shape
#New_Price열에 결측치가 너무 많아서 삭제
(5975, 12)
```


3. Feature Engineering-Name

```
name=train['Name']
len(np.unique(name))
#차종으로 하기는 너무 많다. 차종을 없애고 브랜드만 남겨두자
1855
```

```
for i in range(len(name)):
    name[i]=name[i].split(' ')[0]
```

```
len(name.unique())
#브랜드가 31개다.
31
```


③ 3. Feature Engineering-단위삭제

```
for i in range(len(mileage)):
   mileage[i]=mileage[i].split(' ')[0]
    engine[i]=engine[i].split(' ')[0]
    power[i]=power[i].split(' ')[0]
```


③ 3. Feature Engineering-데이터형식

print(train.dtypes)

Name	object
Location	object
Year	int64
Kilometers_Driven	int 64
Fuel_Type	object
Transmission	object
Owner_Type	object
Mileage	object
Engine	object
Power	object
Seats	float64
Price	float64
dtype: object	

🤦 3. Feature Engineering-데이터형식

```
print(train.dtypes)
Name
                      object
Location
                      object
                       int64
Year
Kilometers Driven
                       int 64
Fuel_Type
                      obiect
Transmission
                      object
Owner_Type
                      object
Mileage
                      object
Engine
                      object
                      object
Power
                      float64
Seats
                      float64
Price.
dtype: object
```

```
train['Price']=train['Price'].astype(float)
train['Kilometers_Driven']=train['Kilometers_Driven'].astype(float)
train['Mileage']=train['Mileage'].astype(float)
train['Engine']=train['Engine'].astype(float)
train['Power']=train['Power'].astype(float)
#Object 자료형을 float로 바꾼다
```


③ 3. Feature Engineering-데이터형식

```
print(train.dtypes)
                      object
Name
Location
                      object
                        int64
Year
Kilometers Driven
                       int64
Fuel_Type
                      object
Transmission
                      object
Owner_Type
                      object
Mileage
                      object
Engine
                      object
Power
                      object
                     float64
Seats
Price
                     float64
dtype: object
```

```
#카테고리별로 분류
train['Year']=pd.Categorical(train['Year'])
train['Seats']=pd.Categorical(train['Seats'])
```


③ 3. Feature Engineering-데이터형식

Name	object
Location	object
Year	int 64
Kilometers_Driven	int 64
Fuel_Type	object
Transmission	object
Owner_Type	object
Mileage	object
Engine	object
Power	object
Seats	float64
Price	float64

train=pd.get_dummies(train,prefix_sep='_',drop_first=**True**)

🤦 4. 이상치 확인

🤦 4. 이상치 확인

이상치 제거 후

🤦 4. 이상치 확인

🤦 5. 모델링- 선형회귀

```
x=train.values
columns=train.columns
```

scaler=preprocessing.MinMaxScaler() tmp=scaler.fit_transform(x) train=pd.DataFrame(tmp) train.columns=columns

x=train.to_numpy()

#data split

x_train, x_test, y_train, y_test=train_test_split(x,y,train_size=0.8,random_state=1)

```
model=LinearRegression(fit_intercept=True,normalize=True,copy_X=True)
model.fit(x_train,y_train)
```

LinearRegression(normalize=True)

🤦 5. 모델링 선형회귀

model.score(x_train,y_train)

0.8029093360061492

🤦 5. 모델링 선형회귀

다음 할일 : 다른 모델링 할 예정입니다

ヽ(☆゚▽゚)ノ