CH02-企業流程管理與企業資源規劃系統

Business Process Management & ERP

授課教師:應鳴雄 老師

網路經濟的新時代

- 網路經濟中的重要術語
 - □電子商務(eCommerce, EC):是指企業利用通訊網路對消費者(B2C)以及對其他企業(B2B)傳遞資訊、銷售商品、或提供服務。
 - C2C \ E2E \ B2E \ G2B \ G2C \ B2B2C...
 - □電子化企業(eBusiness, EB):是指企業應用整合性資訊系統(integrated information system),規劃與執行關於採購、生產、銷售、服務等前臺與內部的作業。
 - □供應鏈管理(Supply Chain Management, SCM):針對從供應商到顧客的整體流程,進行有關物流、資訊流、金流的各種活動規劃、執行、與控制,進而與其他跨供應階層(cross-echelon)的企業成員統合為自原料到最終產品的價值鏈(Value Chain)

■ EC、EB、SCM彼此相關

- □ 推動產業資訊電子化是為了能夠即時(real-time)交換以及分析資訊,以促成物盡其用與貨暢其流。
- □ 金流、物流、資訊流、商流
- □ 客流、人才流

作法

- □ 採行流程導向的營運模式※
- □應用網際網路(Internet)、企業內部網路(Intranet)、企業問網路(Extranet)等資訊系統與技術(Information System and Technology, IS/IT)進行個別企業以及企業間的整合

電子化價值鏈

價值鏈

ERP之與起

- IS/IT快速發展,企業如何適時選取與應用各種技術以滿足動態性的營運需求?
- ERP為網路經濟中最關鍵的資訊技術之一
- ERP被定位為落實電子化企業的基礎系統 (backbone system)
- ERP導入被窄化為對資訊系統的升級而僅屬於技術 性問題
- 企業應以策略層次,將ERP定位為對整體企業乃至 供應供應鏈升級的契機→成效

ERP之特性

- ERP系統為一多模組(multi-modular)整體性企業資訊 系統(company-wide information systems)
 - 以流程導向的模式整合內部所有功能
 - □ **可使用整合應用**技術(B2B integration applications) 與其他企業的ERP系統聯結
- 選取與評估ERP系統
 - □ 根據各項指標選取ERP系統供應商所提供的標準化架構 套裝系統(commercial off-the-self package)
 - 功能性、投資成本、支援能力…等
- 導入專案時需針對特定的需求執行系統配置或系統組 態(system configuration),以達成客製化目的

ERP之特性(續)

- 有別於傳統自行開發系統
 - □ ERP系統配置(組態)是依據特定的企業需求,組合架構系 統的各個標準應用模組(application modules)及中央資 料庫(central database),以建構成結構化的整體系統
 - □ 各模組間能依照所設定的流程及邏輯,自動傳遞資訊以 及提供決策支援的機制

ERP之導入

- ■目前著名的ERP系統(例如SAP R/3、鼎新Workflow ERP、鼎新Tiptop ERP)多已提供相當完備的標準流程,即所謂的最佳(流程)實務(best practices)及參考模型(reference models)。
- ■導入ERP時的難題
 - □應該全面調整現存流程以符合架構ERP所提供的標準流程與系統功能?
 - □ 遷就現存流程對該ERP系統進行完全客製化?

ERP之導入

- 為了符合最佳(流程)實務,需進行大幅的組織變革與企業流程再造(Business Process Reengineering, BPR)
- 若要求完全客製化,標準ERP系統未必具備足夠的彈性 以執行特殊的功能與流程
- 未經流程合理化即導入ERP將使得資訊自動化徒具形式

BPM與ERP系統配置之關聯性

製造業的流程及相互的關係

典型製造業的各功能性流程具有彼此串連的關係, 而物流是否流暢實取決於資訊流的效率及品質

資金

跨功能的核心流程

- 不同功能部門除了執行內部流程外,必須參予執行各項 跨功能的核心流程
- 企業流程管理的核心問題在於功能間能否密切整合,而整合性資訊系統則為達成整合的充要條件

資料、資訊與知識

- 資料、資訊與知識
 - □ 資料是對事實的客觀描述與測量值
 - □ 資訊則是經過資料處理與分析所粹取出的意義與解釋
 - □ 知識即是善用資訊的一種能力
- 企業組織各層級與功能部門所需要的資料、資訊、以及知識不同,但彼此間卻有縱向與橫向傳遞的關係
 - □ 日常交易作業(transactions) 遵循標準化作業規則與程序 以處理大量日常性交易資料(基層)
 - □ 管理控制(management control):執行績效評量(中階)
 - □ 決策分析(decision analysis):評估中期性營運問題
 - □ 策略規劃(strategic planning):針對長期性策略發展,決定策略聯盟、開發營運能力與機會、以及市場分析等

流程與資料整合

- 傳統獨立性的資訊系統缺乏橫向及縱向的流程與資料整合
- 不同功能或階層的部門不能即時取得與傳遞資訊
- 企業重視企業整體性需求與三種整合概念※
 - □ 資訊系統之間
 - □ 組織層級之間
 - □ 部門之間
- 企業基礎建設的資訊系統,要提供各層級人員輸入、分析、產出、貯存、與控制各種大量的資料與資訊
- 有效管理資料、資訊、知識的相關程序與設計營運規則 (business rules)
- 提高加值性物流與處理現金流(財務會計)的效率以及設計與 其他企業的界面關係

ERP層級系統--以運籌管理為例

企業流程之定義

- 企業流程的定義
 - □ 為達成既定的企業目的,利用有限資源執行一組邏輯性相關的活動 (activities)與分項任務(tasks)。
 - □ 因事件驅動(driven by event),執行一連續的加值活動以滿足各種利益關係人(stakeholders)
 - □ 清楚定義特定流程的5W3H:利益關係人的需求(What)、目的(Why)、流程負責人(Who)、場所(Where)、開始與結束的時間與條件(When)、進行方法與所需資源(How)、預算(How Much)、及期間(How Long)。
- 加值性流程與企業組織的構成要素有直接的關係
- 系統觀點:加值性流程是由投入(Input)、產出(Output)、資源/機制源(Resource/Mechanism)、及控制/限制源(Control/Constraint)四類元素所組成※
- 流程
 - □ 可隸屬於其他流程
 - □ 與其他流程有特定的介面關係
 - □ 可分層解構至最基本的分項活動

加值性企業流程及其層級性結構

流程改善之演進

- 流程改善的演進分為三個階段
- 早期
 - □ 當發現某些流程的效率不佳時,即憑主觀與經驗採取快速修補(quick fix)的 方式強化或簡化該流程
 - □ 此方式忽視流程間或流程中各活動間的相依關係,因此成效弊多於利
- 中期
 - □ 由於全面品質管理(Total Quality Management)極為盛行,企業普遍採取由微至巨、由下而上地逐步改善(gradual improvement),
 - □ 規劃改善方案(Plan)、局部更新(Do)、評估成效(Check)、擴大改進範圍(Act)的PDCA循環模式進行
- 後期(90年代初之後)
 - □ Hammer與Champy 在 "Reengineering the Corporation" 一書中倡導企業再造工程(BPR)的觀念而蔚為風尚
 - 然而由於普遍對BPR認知不足而驟然施行所謂組織瘦身(downsizing)者居多,因而大量流失最重要的資產-中階管理階層-以及組織忠誠度
 - □ BPR即被認為是風險太高而不切實際的理論,而寧願採行遠較保守的TQM

BPR之興起

- 由於IT的發展及全面整合,BPR再度受到重視
- BPR是以IT為促成元素(enabler),徹底檢驗及全面 改造所有企業流程,以改進成本、品質、服務及速 度等績效(Hammer與Champy,1993)
- 傳統BPR僅以流程與資訊系統兩者的關係進行分析 與設計,而忽略了管理與組織的構面。
- ■宏觀角度
 - 企業為了達成各項特定目標,而成了由文化性、程序性及技術性等元件所組合成的綜合系統,因此設計企業流程應考量企業組織與整體績效間的關係
 - □ 此觀點可從Leavitt所提出的鑽石模式(Leavitt Diamond)以及Kaplan與Norton發展的平衡計分卡(Balanced Scorecard)之間的關係得知

組織變數與績效指標關聯圖

- Leavitt (1965)認為四類組織變數(企業流程、組織模式、知識與技能、 及資訊技術)之間必須達到雙向平衡
- Kaplan與Norton (1992)亦以平衡為訴求,以四項績效指標(顧客滿意度、財務績效、企業流程的效率、組織學習)衡量短中長期目標間、財務與非財務量度間、落後與領先衡量指標間、企業內外部績效間的平衡度
- 本文於組織變數與績效指標關聯圖中增加一組織變數項-可取得資源-並串接共五項組織變數與四項績效指標以界定BPM的範疇※

BPM的10項原則

- Burlton (2001)建議在從事BPM時,需遵循10項原則:※
 - □ 必須為績效導向(例如:KPI)
 - □ 必須考量所有利益關係人的需求並求其平衡
 - □ 有關決策應能追溯至利益關係人的需求
 - □ 企業流程必須以整體與宏觀的途徑進行管理
 - □ 能夠清楚界定各流程以及其間的介面與關係,而所有流程對於變革的方向應一致
 - □ 推動流程的更新必須能夠激勵眾人並建立共識
 - □ 推動流程更新的原由最好源自於外部顧客
 - □ 推動流程更新應採取反覆式、按照時限、階段性的方式進
 - □ 人的因素決定改造的成敗
 - □ 企業改造是沒有終點的持續旅程

BPM的範疇

- 傳統BPR多直接發展企業流程模型(Business Process Model) 以描述與定義企業行為
- 傳統BPR忽略了企業行為會受限於組織結構以及所處情境 變遷差異的影響問題
- BPM的範疇包括訂定策略、分析企業的結構與行為、以及 設計企業模型與企業流程,而三者之間必須緊密相扣

企業流程分析之分類與任務

- 企業流程主要可分為企業內流程(intra-organizational business processes) 與企業間流程(inter-organizational business processes)兩大類。
 - □ 企業內流程
 - 同層級人員或部門間溝通合作(水平)
 - 上級與下級間管控與執行的互動關係(垂直)
 - □ 企業間流程
 - 依照彼此供需關係,針對規劃、採購、生產、銷售及服務作業進行協調合作
- 流程分析必須達成以下四項任務: ※
 - 建模(Modeling):以特定的圖像式建模語言(graphical language)定義一流程以解釋與該流程相關的元素、平行流程、次流程、進行途程與步驟、規則、例外與失誤處理等
 - □ 整合(Integrating):緊密聯結相關的元素以確保之間能毫無間隙地交換資訊
 - 監控(Monitoring):提供圖型化管控臺(graphical administrative console)顯示
 進行中的流程、已完成的流程、相關的績效
 - □ 最佳化(Optimizing):針對所監控的流程進行分析,瞭解是否效率不足而能即時調整

Zachman系統發展程序的矩陣式架構

 Zachman (1987) 以矩陣式架構(表2.1)建立企業組織與資訊系統的關係, 試圖從各種角色(包括高階經理、企業分析者、資訊部門主管、系統分析師與資訊工程師等)的觀點看待系統發展的程序

-	資訊類別	資料 (What)	功能 (How)	網路 (Where)	人員 (Who)	時間 (When)	動機 (Why)	
角色	- 觀點	分析與設計企業及資訊系統						
企業營	規劃階段 (目的/範疇)	條列各項系統發 展的主題	條列主要的企業 流程	條列所有營運地 區 (地區模型)	條列所有組織 單位 (企業互動模型)	列舉所有驅動 企業流程的事 件 (事件模型)	列舉營運標 地、目標、及策 略 (目標模型)	
運角度	分析階段 (企業模型)	實體關聯圖 (物件模型)	企業流程模型 (資料流模型)	運籌網路模型	組織圖 (角色、技能)	企業主排程 (工作流模型)	營運計劃 (目標模型)	
	邏輯設計階段 (資訊系統模型)	邏輯性資料模型 (物件模型)	資料流與應用模型 (方法模型與物件互動模型)	分散式系統架 構 (邏輯性網路模型)	人員介面架構 (角色、資料、權 限、Use Case模型)	相依關係圖、 實體生命週期 (流程結構、工作 流模型)	企業規則模型	
資訊系	實體設計階段 (技術模型、資料庫 對應分析)	資料架構 (實體資料庫模型、產生資料定義 語言)	實體應用模型 (結構圖、近似碼)	實體網路模型	使用者介面 (實體佈設及安 全系統)	排程定義 (工作流控制圖)	設定企業規則 的規格	
統角度	細部表示	資料設計、實體資 料储存設計	細部程式設計	網路架構 (系統架構:硬 體、軟體類別)	系統維型 (顯示畫面、安全 架構、明訂權限)	定義各作業時機	制訂程式選輯中規則的規格	
		實際建構資訊系統						
	系統建構	將現存系統的資 料轉移至新系統 (資料庫、檔案)	程式與元件 (可執行程式)	作業網路 (通訊設施)	完成人員訓練 (顯示畫面、標準 操作程序)	營運事件 (排程規定的程 式碼)	強制性規則的 程式碼	

企業資源規劃專題-甲華大學資官系-應嗚雁老即

執行BPM的模式與ERP導入專案※

- 雖然Zachman架構主要用於發展系統,其概念亦適用於 指引ERP的導入過程以及配置與客製化標準ERP系統。
- 進行BPM應該被定位為從策略規劃到細步作業的設計 與控制以確保組織績效能持續提升的一套程序。

	策略模式		設計模式			實踐模式		操作模式
	階段I	階段Ⅱ	階段III	階段IV	階段V	階段VI	階段VII	階段VIII
	分析企業環境	分析主流程與	設定BPM專案	分析現存流程	更新流程	確定新流程	導入新流程	運作ERP系統
		資產的對稱性	的願景				於ERP	
	1.瞭解企業環	1. 決定主要流	1界定專案範	1 蒐集現存流	1 產生執行流	1 產生新流	1全面測試	1 實際運作新
	境	程	圍與評量標	程的資訊	程的新方式	程的指導	新流程	流程
BPM程序	2.確定策略方	2. 確定流程與	準	2 發現可改進	2 產生新流程	文件	2準備執行	2 評估績效並
DI MAE/T	向與營運需	組織及ERP	2規劃執行模	的機會	的模型並驗	2 準備所需	新流程以	持續改進
	求	系統應有的	式		證可行性與	設備	及ERP上線	
		關係	3確定溝通方		評估效率	3 確定能支		
			式			援新流程		
						的ERP系 統		
						功能		
ERP專案	規劃EI	RP策略	分析應用需求		配置ERP		ERP系統上線	

流程管理與ERP導入程序

■ 導入ERP與BPM直接相關,以專案的角度而言兩者應被 視為一體,因此必須同步進行

BPM的宏觀與微觀

- 企業變革屬於BPM的宏觀層次,而流程設計屬 於微觀層次
 - □ 企業變革:以企業本體結構分析與企業情境分析闡釋
 - □ 流程設計:以物件導向的分析方法說明
- BPM的宏觀與微觀兩個層次的關係
 - □見樹亦須見林
 - □ 由大處著眼,小處著手
 - □宏觀調控
- BPM微觀分析後可產出營運藍圖※

企業本體結構 in ERP

■ 利用企業本體結構分析(Enterprise Ontology)並結合物件導向的圖示法可有效幫助BPM專案以宏觀的角度定義企業流程與其他企業物件(business

企業情境分析

- ■企業情境分析(Business Scenario Analysis)是根據企業結構,對各種流程進行描述以歸納為若干典型的流程模式(process patterns),而個別的企業流程則被視為各流程模式的實例 (instance)。
- SAP及IDS-Scheer針對不同產業將企業情境 分類※
 - □ 內部ERP交易(ERP Transaction)
 - □ 企業間合作(Inter-Enterprise Cooperation)
 - □ 電子化社群(e-Community Collaboration)

BPR宏觀分析之八項原理

- 在進行BPR宏觀分析時,應遵循由Hammer所提供的8項原理:※
 - □ 根據對流程期望的結果設計流程;摒除功能分工的個別活動設計
 - □ 確認所有的流程及其重要程度,以決定重新設計的優先順序
 - □ 若流程價值低,或無法支援其它加值流程者,應簡化或刪除
 - 要求流程產出的使用者執行該流程,以減少官僚作風並鼓勵外部顧客 擔負部份作業
 - □ 將資訊產出作業與資訊處理作業應整合在同流程中
 - 以主從式架構(client-server architecture)整合地域分散的資源,並集中控管。
 - □ 根據同步工程(Concurrent Engineering)的概念強調平行作業在過程中必 須互相配合,而不僅止於整合這些作業的結果。
 - 整合決策點與實際作業並將控制權建入流程中;鼓勵員工的自主性、 強化工作群組的授權、以及實施較扁平的管理層級。

物件導向之流程分析

- 應用物件導向的方法論(Object-Oriented Methodologies)是聯結 流程設計與ERP配置的最佳途徑,以降低導入時間與成本, 並提升分析品質及彈性※
- 物件導向的流程分析概可分為以下三個階段※
 - □ 根據企業本體結構與情境分析的結果,檢驗現存流程的假設與規則是否謬誤或與現況不符。同時針對不同營運領域,經由企業概念建模(Business Concept Modeling),應用包括OOA與Unified Modeling Language (UML)的建模方法產生各個領域模型(Domain Models)以完整地描述企業現況
 - □ 重新設計與建構新的流程,而不是局部調整、改進或強化流程。 所產出新的物件與UML模型即所謂企業藍圖與流程地圖
 - □ 比對企業藍圖與ERP所提供的參考模型是否存有差距,再決定究 竟應該調整現存流程以符合ERP的標準流程或是按照新流程對該 ERP系統進行客製化。

UML的五個觀點

觀點	作用(對應到 ISUC 的階	使用工具
	段)	
使用狀況觀點		使用狀況圖(use case diagram)
(use case view)	計階段)	行動圖(activity diagram)
邏輯觀點	描述系統內部功能性作	類別圖(class diagram)
(logical view)	業的部設計	物件圖(object diagram)
	(即ISDLC的系統分析階	
	段)	順序圖(sequence diagram)
		合作圖(collaboration diagram)
		行動圖(activity diagram)
處理程序觀點		狀態圖、順序圖、合作圖、元件圖、
(process view)		活動圖、配置圖(deployment
	系統設計階段)	diagram)
實施觀點		元件圖(component diagram)
(implementation	體元件(即ISDLC的系統	
view)	發展階段)	
配置觀點	描述系硬體之連結關係	配置圖
(deployment	及軟體程序的配置(即	
view)	ISDLC的系統推行階段)	

軟體構築的4+1觀點

使用案例觀點

- 系統的使用案例觀點,描述出終端使用者、系統分析 師、測試工程師眼中的系統用法
- 用UML來捕捉的話,這部分觀點的靜態面用的是使用個案圖

邏輯(設計)觀點

- 用UML來捕捉的話,這部 分觀點的靜態面用的是 Tole 類別圖和物件圖,動態 member 1..* 面用的則是互動圖、狀 Pe 能圖和活動圖。

UI Package

P.2-C

流程觀點

- 流程觀點包含了執行緒和處理流程,這些機制,奠定了系統的並行性和同步機制。這種觀點主要針對的是系統的效能、可擴充性(scalability)、和處理大量資料的能力
- 用UML來捕捉的話,這部分觀點的靜態面和動態面的圖,用的跟 邏輯觀點一樣,但重點集中在代表執行緒和處理流程的主動類別 (active class)上

執行(元件)觀點

- 包含了用來組裝和發布實體系統的元件群,這個觀點主要針對的 是組態管理,它由相當程度獨立的元件所組成,這些元件可以用 不同的方式組裝,來產生一個可以跑的系統。
- 用UML來捕捉的話,這部分觀點的靜態面用的是元件圖。

部署觀點

- 部署觀點包含了一些節點,系統就在這些節點所形成的硬體拓撲 (hardware topology)上執行。這個觀點主要針對的是構成系統的 實體部分如配置(distribution)、交付(delivery)、安裝 (installation)等議題。
- 用UML來捕捉的話,這部分觀點的靜態面用的是部署圖。

BPR 的成功因素--- 策略性原則

- 必須確認大規模的流程再造勢在必行,否則宜採行漸進式的改進流程
- 自始至終必須有最高層經理人的持續支持
- 強化溝通機制以使BPR能被普遍接受
- 組成有能力的變革團隊
- 建立能鼓勵創新的氣氛與環境
- 建立完整的BPR架構與網領,包括
 - □ 定義清楚的目標
 - □ 變革的規模與範疇
 - □ 變革管理的機制
 - □ 外部顧客與供應商的投入
 - □ 與資訊技術的整合
 - □ 足夠的彈性對特別的需求客製化
- 結合BPR與企業策略

BPR 的成功因素---管理原則

- 與外部顧問合作並培養內部顧問
- 選取對的流程進行再造
- 集中焦點於核心流程以及主要的支援流程
- ■核心流程必須與組織結構趨於一致 (align)
- IT為改造流程的促成元素(enabler)而不是目標
- 充份瞭解流程改造的風險,包括 ※
 - □ 技術性風險
 - □ 組織反彈
 - □因應之道

BPR 的成功因素---流程分析原則

- 充份瞭解現存流程
 - □ 保留理想的流程或流程中重要的部份
 - □ 順利將現存流程轉換為新流程
 - □ 掌握與流程有關的成員
 - □ 建立共識與內控機制
- 選取與使用正確的流程績效評估準則(參考課本)
 - □ 顧客價值、品質、服務、成本、時間、滿意度、產出率…
- 善用流程建模及模擬的方法與工具
 - □ 對現存流程蒐集完整資料並以模擬軟體測試模型是否正確,繼而模 擬創新流程以預測改進的效益
 - □ 計算流程的正常與變異成本、個別活動成本、設定成本、及總成本
- 具備持續改善的方案
 - □ 以改造後的績效為基準,針對提高願客價值的目標持續改善流程

※再造企業流程的生命週期 ---上游階段(1/2)

- 建構總體介面模型(Meta-Model)
 - □ 釐清關於流程的概念、術語及邏輯
 - □ 定義物件類別、屬性、關聯性、限制、控制程序、規則、以及 計算方法等描述各種流程的功能與實例
- 定義與建立正式流程模型
 - □ 根據介面模型,將非正式化的描述轉換為正式的流程模型與流 程實例
- 分析流程
 - □ 邏輯分析:評估模型的靜態及動態特性
 - □ 適切性分析:新流程滿足需求?
 - □ 統計分析:事件發生之頻率與相關性統計
 - □ 推理:樣型比對與推論,以判斷流程特性
 - □ 資源流:作業基準成本分析(Activity Based Costing, ABC) → 分析如何轉化流程,以降低資源需求、時間及成本※

再造企業流程的生命週期 ---上游階段(2/2)

- 模擬分析
 - □ 根據不同情境重組流程模型以及進行動態分析
 - □ 離散事件模擬
- 重新設計流程
 - □ 轉變流程的結構與資料流、控制、及產出以期縮短週期、減少流程步驟、部門內與部門間的交涉次數、以及重覆性人工作業等
 - 系統化流程績效測量,可提供不同的選項以進一步判斷孰為最佳的設計
 - 根據流程分類(process taxonomy),可將成功的流程設計提供給其他流程 借鏡,用以比對轉變模式與規則
- 分析具象化(Visualization;視覺化)
 - □ 由於物件化的系統設計,這些系統提供使用者各種清晰的流程圖樣版 (templates)以供編輯或增減物件與其間關係、逐步追蹤(navigationally traverse)流程的動態過程以及求算各種績效的統計值。

再造企業流程的生命週期 --- 中游階段

- 建構流程雛形(prototyping)用以試驗並示範成果
- 規劃變革管理
 - □ 與流程負責人員協調,規劃新流程執行的步驟、期限、所需資源、權責、行政支援等
 - □ 確定人員的角色、使用工具、及所需資料
 - □ 決定執行新流程的具體時程及里程碑
- 以物件導向方法整合資料、工具、及使用者介面
- 將各流程模型轉換為資訊系統環境中可執行的運算 流程
- 準備ERP及新流程上線

再造企業流程的生命週期 ---下游階段

- 啟動新流程
 - □ 要求系統使用者必須切實執行流程
- 監控流程並測量效益
 - □ 蒐集執行新流程的資料以分析效益與作成紀錄
- 利用系統模擬工具顯示新流程的動態變化
 - □ 評估是否有異常發生,遇有異常即進行診斷是否存在作業瓶頸
 - □ 修正流程
- 持續改進
 - □ 依照使用者新增需求逐步調整、強化、或重建流程模型
 - □ 利用更適用的分析法與工具評估績效
 - □ 展示成功的流程,提供其他流程改造的專案參考

企業流程設計方法論

- 近年來,與發展資訊系統相關的企業流程設計方法論甚多而以 PERA、TOVE、CIMOSA、IDEF、ARIS等最為著名。
- 雖然各個方法論所著重的角度與適用範疇不盡相同,共同的特性 皆為物件導向圖式語言用於流程的概念化與建模以呈現流程的邏 輯性藍圖(logical blueprint)。

企業流程設計方法論	簡介
Purdue Enterprise Reference Architecture	• 由 Purdue 大學與工業界合作發展
(PERA)	• 對企業整個生命週期建模
Toronto Virtual Enterprise	由 Toronto 大學發展
(TOVE)	• 應用企業本體論(ontologies)建模
CIM Open System Architecture	• 被視為歐洲企業建模的標準
(CIMOSA)	• 對電腦整合製造系統(CIM)構建開放系統架構
ICAM DEFinition	• 由美國空軍發展
(IDEF)	• 包含 15 種建模方法,其中以 IDEF0 應用最為普遍
Architecture of Integrated Information Systems	• 由 Dr. August-Wilhelm Scheer 發展
(ARIS) 💥	• 為 SAP R/3 的流程建模方法論
	• 各種分析工具完備且可以完全整合

ARIS

- ARIS是由Dr. August-Wilhelm Scheer所提出一具備完整架構的流程規劃 方法,以各種角度描述企業流程。
- ARIS以組織、資料、控制及功能等四敘述觀點(descriptive views)描述 企業流程,其中以控制項串聯其他三項而能整合為一整體模型。 ※
- ARIS同時在各觀點中融合發展資訊系統的三個敘述層次(descriptive levels): ※
 - □ 需求定義(requirement definition):確定名詞的一致性
 - □ 設計規格(design specification):將需求定義轉換成資訊技術及介面(如網路 佈線圖)
 - □ 導入說明(implementation description):將設計規格轉換成具體的硬體、軟體 元件及連結(如網路通訊協定的規格與組合)
- 如同Zachman的矩陣式架構,ARIS的三項敘述層次對原本粗略的企業 流程逐步細分,並將一般敘述性語言逐步發展為結構化的程式語言, 以完成系統發展程序。

發展資訊系統的敘述層次與ARIS結構

ARIS流程規劃的雙向平衡

- ARIS同時提供水平平衡與垂直平衡的概念
 - □ 以組織及功能觀點而言,往往是以階層的方式規劃流程,由上往下逐層展開而達到階層間垂直的平衡。
 - □水平的平衡指的是屬於一特定層級的流程必須與隸屬 該層級的功能及資料對應。

ARIS之圖例

- ARIS利用若干符號表示企業流程中的各項實體與其間的邏輯關係,其中包括
 - □ 事件:代表一狀態,以被動語態表示,例如"顧客訂單被收到
 - 功能:是由某一物件為了完成企業目標所執行的動作而以主動式語態表示, 例如"確認訂單"。
 - □ 組織:組織泛指所有流程中相關的實體或虛擬組織。
 - □ 資料:被定義成所有流程中相關的訊息,而以表格或文件等表示。

53/64

ARIS之組織模型

- 組織設計一般可分為功能別組織、目標(產品) 別組織及混合式組織。
- ARIS適合處理程序導向的組織,設計的重點在 於以最小的成本達成不同組織及個人間的溝通
- 規畫、協調與基本作業間皆有特定的互動關係
- 根據逐層管控的機制所建立的指揮鏈(chain of command)稱為組織階層圖
- ■根據組織階層圖,分析者可以進一步設計組織圖,而物件間的關係包括階層從屬的關係(ex."由…組成"、"高於…")以及水平階層式的關係(ex."由…負責"、"由…替換"等)

ARIS組織階層圖與組織圖

ARIS之功能模型

- 針對企業功能,ARIS 提供功能樹由上而下 展開為細項功能
- 功能樹可以分為目標 導向、執行導向、及 流程導向的功能樹
 - □ 目標導向功能樹是將相 同受詞而有不同動詞的 功能集合而成
 - 執行導向功能樹將相同動詞而有不同受詞的功能集合而成
 - □ 流程導向功能樹是依功 能先後順序排序而成

目標導向功能樹

執行導向功能樹

流程導向功能樹

ARIS之資料模型(1/2)

- ■針對資料庫的設計,ARIS改良傳統的實體關連圖(Entity Relationship Diagrams),發展為延伸式ER模型(Extended ER Models, eERM)
- ■此種模型主要是加入分類 (classification)、一般化/特殊化(generalization/specialization)、聚集(aggregation)、關聯性 (association)、及群組(grouping)等物件導向的概念,並且以對應基數(cardinalities)明確界定物件之間1對1、1對多、或多對多的關係

ARIS之資料模型(2/2)

ARIS之流程模型(1/2)

- 事件驅導流程鏈(Event-driven Process Chain, EPC)可說是ARIS的核心規劃方法,同時亦是建立SAP R/3參考模型的建模方法※
- 建立EPC模型首先決定執行流程中各個功能應屬那些組織單位的權責,接著將事件與功能結合以決定所有功能的促發原因及產生結果
- 在EPC模型中,以三種邏輯運算元(logical operators):交集 (AND)、聯集(OR)、及互斥(Exclusive OR, XOR)表示流程中分叉 及合流的關係
- 建立EPC後,分析者可應用動態模擬以及作業基準制成本計算 (ABC)兩項工具估算執行流程的時間以及總成本
- 在EPC模型中,將時間與成本兩項參數設定在各個功能項中, ARIS即可依照各功能在模擬過程中被啟動的次數以及所設定機 率以累計如處理時間、動態等待時間、總流程時間、物料成本、 人工成本、總成本等數值

ARIS之流程模型(2/2)

- 1. E1與E2皆發生才會啟動F1或F2,但若要啟動F2仍必須有事件E3的發生;F2的啟動,必須在E1、E2及E3皆發生的狀態下
- 2. F1的啓動會產生E4或E5兩者其一,但是F2的發生也會產生E5; 在F1啓動後,E4與E5僅發生其一,但是E5的發生也有可能是 因為F2的啟動,所以E4及E5仍有可能同時產生。

ARIS ZPCD

■ 當有關組織、功能、 資料、以及EPC等模型俱已完成後,即可 料四種觀點整合為流 程鏈圖(Process Chain Diagram, PCD)

企業間的流程管理

- 上下游廠商藉由企業間網路協定、web-based平台、以及各種應用系統交換需求預測、訂單、產能、庫存、配送、成本等即時性資訊。
- 除了作業層次的互動,有關協同產品開發以及協同供應 鏈等合作的模式、技術、與執行已成為重要的議題。
- 協同的目的在交換資訊、調整作業步驟、分享資源、強 化共同能量,以形成綜效與達成共同獲利目標。
- 企業間合作應全面審檢現存的流程以及應用系統的功能 ,進而規劃、分析、與創新流程,建立雙方交易的營運 規則,強化共同決策的彈性、提高整體供應的效率、以 及降低共同風險。

企業間的協同關係

- 協同的結構變數與交易績效指標的因果與平衡關係,而其中企業間流程被視為中介變數。
- 在分析設計企業間交易程序與流程之前,首先須要界定各方企業的利益與風險關係(長期或短期)、權利義務、以及指揮權的歸屬與模式(集中式或分散式)

BPM的發展趨勢

- 產業正朝向電子化市集(e-Marketplace)、虛擬企業群(Virtual Enterprise)、延伸式供應鏈(Extended Supply Chain)進展,如何發展延伸式ERP系統(Extended ERP)、協同作業與整合企業間的流程已成為極為熱門的實務課題。 ※
- 在商用軟體方面,已有不計其數的企業流程分析工具(如FlowMark、 Proforma、Popkin)與群組軟體(Groupware)(如Lotus Notes)上市
- 現今已有Workflow Management Coalition的組織針對工作流管理系統 (Workflow Management Systems)建立了軟體產業的標準
- 在學理發展方面,協調理論(Coordination Theory)、智慧代理人系統 (Multi-agent System)、電腦輔助合作系統(Computer-Supported Cooperative Work)、以及電子黑板(Electronic Blackboard)等跨領域研究皆以不同的角度探討如何應用分散式人工智慧(Distributed Artificial Intelligence)設計智慧化與可動態組合的分散式企業流程
- 在資訊技術蓬勃發展之際,可以預期的是企業營運將進入一個更加動態變化的環境。