머신런닝 개요

Lecture 5: ML Algorithms

College of Information and Electronic Engineering

Kyung Hee Univeristy

Prof. Wonha Kim

(wonha@khu.ac.kr)

Contents

- Supervised Learning
 - 1. K-nearest neighbor (k-NN)
 - 2. Maximum A Posteriori (MAP) Estimation
 - 3. Regression
- Unsupervised Learning
 - 4. K-mean

1. k-Nearest Neighbors(k-NN) (1/3) - Supervised Learning

- Training set $D = \{(X_i, y_i)\}_{i=1}^n$, $(X_i : Feature vector, y_i : Label/Target)$
- Task : Assign the proper label to a query vector X'.
- Calculate distances from X' to each training vector X_i (i=1,...n): $d_i(X', X_i) = ||X' X_i||$
- Select k nearest vectors. k should be odd to prevent ties.
- For classification, assign the majority label of k nearest vectors as the label of X'.

For regression, assign average target value of k nearest vectors as the target value of X'.

Weight can be assigned as decreasing with distance so that nearer data contributes more.

So,
$$d_i^w(X', X_i) = w \cdot ||X' - X_i||, w \propto 1/||X' - X_i||$$

• Instance-based learning, Non-parametric method. (No use of any probability model)

1. k-Nearest Neighbors (2/3): Classification/Regression

Regression

1. k-NN regression program (3/3)

```
import matplotlib.pyplot as plt
import malearn
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
# 데이터 셋을 만듭니다.
X, y = mglearn.datasets.make_wave(n_samples=40)
plt.plot(X, y, 'o')
plt.ylim(-3, 3)
plt.xlabel("Feature")
plt.ylabel("Target")
plt.show()
# k = 1 일 때의 예측
mglearn.plots.plot_knn_regression(n_neighbors=1)
plt.show()
# k = 3 일 때의 예측
mglearn.plots.plot_knn_regression(n_neighbors=3)
plt.show()
# wave 데이터 셋을 훈련 세트와 테스트 세트로 나눕니다.
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# 이웃의 수를 3으로 하여 모델의 객체를 만듭니다.
reg = KNeighborsRegressor(n_neighbors=3)
# Training data와 Target을 사용하여 Model을 확습시킵니다.
reg.fit(X_train, y_train)
print("테스트 세트 예측:\h{}".format(reg.predict(X_test)))
print("테스트 세트 R^2: {:.2f}".format(reg.score(X_test, y_test)))
```

Cf) Introduction to Machine Learning with Python, p30~44

2. Maximum A Posteriori (MAP) Estimation (1/9): Bayesian Rule

$$\begin{array}{cccc} p(B \mid A)p(A) &=& p(A \cap B) \\ p(A \mid B)p(B) &=& p(A \cap B) \end{array} \Rightarrow p(A \mid B)p(B) &=& p(B \mid A)p(A) \Longrightarrow p(A \mid B) = & \frac{p(B \mid A)p(A)}{p(B)} = & \frac{p(B \mid A)p(A)}{\sum_{\alpha \in A} p(B \mid A)p(A)} \end{array}$$

$$P(y,x) = P(x|y)P(y) = P(x,y) = P(y|x)P(x) \implies P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

•
$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$
 Posterior = $\frac{\text{Likelihood x Prior}}{\text{Evidence}}$

- Posteriori Prob. P(y | x) 의 추정은 대부분의 겨우 x의 공간 너무 크기 (너무 많기) 때문에 거의 불가능
- Posteriori Prob. P(y | x)는 대부분은 Bayesian Theory를 이용하여 추정함.
- Priori Prob. P(y)는 data로 부터 측정하여 구함. 즉, $P(y=i) = N_i/N = i$ 의 개수/전체 샘플 개수
- Likelihood P(x|y) (L(y|x))는 data의 observation를 통해서 구함. (Density Estimation method)
 - MAP : \mathbf{x} 가 발생 했을 때, 가장 발생 가능한 \mathbf{y} 를 추정. $\langle \longrightarrow \rangle$ \mathbf{y}^* = $\underset{\mathcal{Y}}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x})$

2. Maximum A Posteriori (MAP) (2/9): Toy Example (1/2)

- -주머니에서 번호를 뽑은 다음, 번호에 따라 해당 병에서 공을 뽑고 색을 관찰함
- 꺼낸 카드와 공은 까낸 곳에 다시 넣음.
- 번호를 J, 공의 색을 X라는 확률변수로 표현 하면 정의역은

y={①,②,③}, x={따랑, 하양}

- ① **번 카드를 뽑을 확률은** P(y=1)=P(1)=1/8
- 카드는 ①번, 공은 하양일 확률은 P(y=①,x=하양)

$$P(y = 1, x = 5) = P(x = 5) = 1) = 10$$

- 하얀 공이 뽑힐 확률

$$P(\text{하양}) = P(\text{하양}(1))P(1) + P(\text{하양}(2))P(2) + P(\text{하양}(3))P(3)$$
$$= \frac{9}{128} + \frac{5}{158} + \frac{3}{68} = \frac{43}{96}$$

- 합 규칙 (Marginalization)

$$P(x) = \sum_{y} P(y, x) = \sum_{y} P(x|y)P(y)$$

2. Maximum A Posteriori (MAP) (3/9): Toy Example (2/2)

• 하얀 공이 나왔을 때 [x=하양], 어느 병에서 나왔는지 추정하시오. (가장 발생 가능한 y=?)

$$\hat{y} = \operatorname{argmax}_{y} P(y|x = 5)$$
 = $\operatorname{argmax}_{y} \frac{P(x = 5)$ $P(x = 5)$

$$P(1)$$
 ইণ্ড =
$$\frac{P(5)$$
 ইণ্ড 1) \text{P(1)}}{P(5) =
$$\frac{\frac{9}{12} \frac{1}{8}}{\frac{43}{96}} = \frac{9}{43}$$

$$P(2|\vec{\delta}|\vec{\delta}) = \frac{P(\vec{\delta}|\vec{\delta}|2)P(2)}{P(\vec{\delta}|\vec{\delta}|\vec{\delta})} = \frac{\frac{5}{15}\frac{4}{8}}{\frac{43}{96}} = \frac{16}{43}$$

$$P(3|\vec{5}|\vec{5}) = \frac{P(\vec{5}|\vec{5}|\vec{3})P(3)}{P(\vec{5}|\vec{5}|\vec{5})} = \frac{\frac{3}{6}\frac{3}{8}}{\frac{43}{96}} = \frac{18}{43}$$

Bayesian rule의 Decision에 적용

③번 병일 확률이 가장 높음

Posteriori Prob.
$$P(y|x) = \frac{P(x|y) P(y)}{P(x)}$$

$$P(x)$$
Evidence

2. Maximum A Posteriori (MAP) (4/9): Estimation

- Jang, Hana (A pro golfer)
 - Evidence: We observe that 1 of 10 players makes par at a hole. (P(x)): P(par) = 1/10.
 - **Prior**: Among 20 players, Jang hits one time. The prob. that Jan hits. (P(y)): P(Jang)=1/20.
 - Likelihood: Data shows that Jan Hana makes 6 pars at 7 hits. (P(x/y)): P(par/Jang) = 6/7

- Prof. Kim, Wonha
 - Evidence: We observe that 1 of 10 players make par at a hole.: P(par) = 1/10.
 - **Prior**: Among 20 players, Prof. Kim played 7 times. The prob. of Kim's hitting.: P(Kim)=7/20.
- Likelihood: Data shows that Kim makes the one par at 6 hits.: P(par/Kim) = 1/6.
- We know that either Kim or Jang makes par. Estimate who is he/she?
 - Prob. of Kim's hitting: P(Kim/Par) = P(Par/Kim) * P(Kim)/P(Par) = (1/6)*(7/20)/(1/10) = 7/12.
 - Prob. of Jang's hitting: P(Jang/Par) = P(Par/Jang) * P(Jang)/P(Par) = (6/7)*(1/20)/(1/10) = 6/14.
 - ⇒ P(Par/Jang) > P(Par/Kim) : Definitely, Jang plays much better than Prof. Kim.
 - ⇒ P(Kim) > P(Jang) : Unfair. Prof. Kim plays 7 times more than Jang.
 - \Rightarrow P(Kim/Par) > P(Jang/Par) : We must estimate that Prof. Kim makes the par.

2. Maximum A Posteriori (MAP) (5/9): Segmentation

Optimal Decision (Classification)

EX: Segmentation

16000

- 두 물체의 밝기에 따른 확률 분포
- 두 물체를 구분하는 최적의 밝기 threshold 설정하기

2. MAP Estimation (6/9): Bayes Decision Rule (BDR)

- Bayesian Decision for two classes.
 - For observed data X, there are two classes, i.e, y=0, or y=1.
 - We decide y* in following way:

$$y^{*}(x) = \begin{cases} 0, & \text{if } P_{y|X}(0|X) \ge P_{y|X}(1|X) \\ 1, & \text{if } P_{y|X}(1|X) \ge P_{y|X}(0|X) \end{cases} \equiv \underset{y}{\operatorname{argmax}} P_{y|X}(y|X) = \underset{y}{\operatorname{argmax}} P_{X|y}(X|y) P_{y}(y)$$

- Bayesian Decision for n classes.
- For observed data X, there are n classes, i.e, y=1,..., n.
- $y^*=i$ if $P_{y|X}(y=i|X) > P_{y|X}(y=j|X)$ for $j \neq i$ $\implies y^* = \underset{y}{\operatorname{argmax}} P_{y|X}(y|X) = \underset{y}{\operatorname{argmax}} P_{X|y}(X|y) P_y(y)$

2. MAP Estimation (7/9): Decision

Maximum Likelihood Estimation (MLE)

$$y^*(x) = \underset{v}{\operatorname{argmax}} P_{X|y}(x|y)$$

- Parameter w is known and the optimal w should be founded.

Maximum A Posteriori (MAP) Estimation .

$$y^*(x) = \underset{y}{\operatorname{argmax}} P_{y|X}(y|X)$$
 : Not much used

$$y^*(x) = \underset{y}{\operatorname{argmax}} P_{X|y}(X|y) P_y(y)$$

$$y^*(x) = \underset{v}{\operatorname{argmax}} [\log(P_{X|y}(X|y)) + \log(P_{y}(y))]$$
: Most frequently used

- Data X are observed.
- Parameters y (or prior knowledge) are unknown and probabilistically presumed.
- If $P_v(w)$ is uniform, MLE =MAP.

2 MAP Estimation (8/9): Classification for Gaussian

- MAP for Multivariate Gaussian Classifier (Model based learning)
- The pdf of class i is a N-dimensional Gaussian with mean ui and covariance

$$P_{x|y}(X|y=i) = \frac{1}{\sqrt{(2\pi)^N |\Sigma_i|}} \exp\left\{-\frac{1}{2} (X - \mu_i)^T \Sigma_i^{-1} (X - \mu_i)\right\}$$

-MAP Classifier

$$i^*(x) = \underset{i}{\operatorname{argmax}} \left[-\frac{1}{2} (X - \mu_i)^T \Sigma_i^{-1} (X - \mu_i) - \frac{1}{2} \log\{(2\pi)^N |\Sigma_i|\} + \log P_y (y = i) \right]$$

Low complexity

- Design one dimensional Gaussian K-classifiers.
- -Collect ith class dataset : $D^i = \{x_1^i, x_2^i, ..., x_n^i\}$ (data size for ith class is n^i .) where i=1,..., k.
- -Estimate the Gaussian parameters:

$$\widehat{u}_i = \frac{1}{n^i} \sum_{j=1}^{n^i} x_j^i$$
, $\widehat{\Sigma}_i = \frac{1}{n^i} \sum_{j=1}^{n^i} (x_j^i - \widehat{u}_i)^2$, $\widehat{P}_w(y=i) = \frac{n^i}{S}$ where S is the total sample size.

-MAP Classifier

$$i^{*}(x) = \underset{V}{\operatorname{argmax}} \left[-\frac{1}{2} (x - \hat{u}_{i})^{T} \hat{\Sigma}_{i}^{-1} (x - \hat{u}_{i}) - \frac{1}{2} \log\{2\pi |\hat{\Sigma}_{i}|\} + \log \hat{P}_{y} (y = i) \right]$$

2. Maximum A Posteriori (MAP) (9/9): Training

• Data x 가 주어졌을 때, x 를 발생 시킬 확률을 최대로 하는 매개변수 θ 를 추정하는 문제

$$\widehat{\Theta} = \operatorname*{argmax}_{\Theta} P(\mathbb{X}|\Theta)$$

· 수학적 계산 편의를 위해 Log 함수를 사용 할 수 있음.

$$\widehat{\Theta} = \operatorname*{argmax} \log P(\mathbb{X}|\Theta)$$

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmax}} \log P(\mathbb{X}|\Theta) = \underset{\Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log P(\mathbf{x}_{i}|\Theta)$$

3 Machine Learning Model (1/7): Regression

- Feature Data set : $\mathbf{X} = [x_1, x_2 \cdots x_n]^T$, Target value set : $\mathbf{Y} = [y_1, y_2 \cdots y_n]^T$
- Polynomial predicting the target value : $f_w(x) \Rightarrow$ For an input feature x_i , $f_w(x_i)$ predicts its target get value y_i .

$$f_{W}(x_{i}) = w_{0} + w_{1}x_{i} + w_{2}x_{i}^{2} \cdots + w_{p}x_{i}^{p} = \sum_{k=0}^{p} w_{k}x_{i}^{k} = \mathbf{x}_{i}^{T} \cdot \mathbf{W} \text{ where } \begin{bmatrix} \mathbf{x}_{i}, x_{i}, x_{i}^{2}, \cdots, x_{i}^{p} \end{bmatrix}^{T} \\ \mathbf{W} = \begin{bmatrix} \mathbf{w}_{0}, w_{1}, w_{2}, \cdots, w_{p} \end{bmatrix}^{T}$$
Bias

Objective (Cost) function:

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} |e_i|^2 = \frac{1}{n} \sum_{i=1}^{n} (f_W(x_i) - y_i)^2$$
(Mean Square Error (MSE))
$$= (\mathbf{X_n} \cdot W - Y)^T (\mathbf{X_n} \cdot W - Y)$$
where $\mathbf{X_n} = \begin{bmatrix} \mathbf{x_1}^T \\ \vdots \\ \mathbf{x_n}^T \end{bmatrix} = \begin{bmatrix} 1, \ x_1 \ x_1^2 \cdots x_1^p \\ \vdots \\ 1, \ x_n \ x_n^2 \cdots x_n^p \end{bmatrix}$

where
$$\mathbf{X_n} = \begin{bmatrix} \mathbf{x_1}^T \\ \vdots \\ \mathbf{x_n}^T \end{bmatrix} = \begin{bmatrix} 1, & x_1 & x_1^2 & \cdots & x_1^p \end{bmatrix}$$

• ML Training: Decide parameters so that the parameter set W minimizes MSE J(W).

$$\widehat{W} = \underset{W}{\operatorname{argmin}} J(W)$$

$$J(W) = (\mathbf{X}_{\mathbf{n}} \cdot W - Y)^{\mathrm{T}} (\mathbf{X}_{\mathbf{n}} \cdot W - Y) = W^{\mathrm{T}} \mathbf{X}_{\mathbf{n}}^{\mathrm{T}} \mathbf{X} W - 2(\mathbf{X}_{\mathbf{n}} W)^{\mathrm{T}} Y + Y^{\mathrm{T}} Y$$

$$\frac{1}{\partial W} J(W) = 2\mathbf{X}_{\mathbf{n}}^{\mathrm{T}} \mathbf{X}_{\mathbf{n}} W - 2\mathbf{X}_{\mathbf{n}}^{\mathrm{T}} Y = \mathbf{0} \quad \Longrightarrow \quad \widehat{\mathbf{W}} = (\mathbf{X}_{\mathbf{n}}^{\mathrm{T}} \cdot \mathbf{X}_{\mathbf{n}})^{-1} \cdot \mathbf{X}_{\mathbf{n}}^{\mathrm{T}} \cdot \mathbf{Y}$$

4. Regression by curve fitting (2/7): Exercise

Feature vectors and target values are

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \qquad y = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

- * Note that feature values are {1,1,2,2,3}.
- Linear Regression Model is y=b+ax.
- Optimal weights.

$$[b \ a]^T = (X_n^T \cdot X_n)^{-1} \cdot X_n^T \cdot y = [-0.5 \ 1.5]^T$$
$$y = -0.5 + 1.5x$$

Random data.

$$x = 2 \times \text{random_noise}$$

 $y = 4 + 3 \times x + \text{random_noise}$

$$[b \ a]^T = (X_n^T \cdot X_n)^{-1} \cdot X_n^T \cdot y = [4.215 \ 2.770]^T$$

4. Regression by curve fitting (3/7): Polynomial Regression

- Multi dimension / Polynomial Regression Model
- d-features: Training Set $\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}, \ \mathbb{Y} = \{y_1, y_2, \cdots, y_n\} \ \text{ where } \mathbf{x}_i = (1) x_{i1}, x_{i2}, \cdots, x_{id})^{\mathrm{T}}$

$$\hat{y} = \theta_0 + \theta_1 x_{11} + \theta_2 x_{21}^2 + \dots + \theta_p x_{n1}^p + \theta_{p+1} x_{12} + \dots + \theta_{2p} x_{n2}^p + \dots + \theta_{(d-1)p} x_{1d} + \dots + \theta_{dp} x_{nd}^p$$

$$=\begin{bmatrix}1 & x_{11} & x_{21}^2 & \cdots & x_{n1}^p & x_{21} & x_{21}^2 \cdots & x_{2n}^p \cdots & x_{1d} & \cdots & x_{nd}^p\end{bmatrix}\begin{bmatrix}\theta_0\\\theta_1\\\vdots\\\vdots\\\theta_n\end{bmatrix}=J_{\theta}(\mathbf{x})=\theta^T\cdot\mathbf{x}$$

=> Optimal solution also is same with one-dimension model.

4. Regression(4/7): Regularization

- Low order or Small features: Underfitting
 - A regression model with lower order (or small features) cannot fit to the training and test data.
 - Biased error
- Higher Order or Many features: Overfitting
- A regression model with higher order (or many features) can reduce MSE for training data, but increase MSE for test data
- Variance error
- The more data generally produce the more appropriate regression estimator.

However, increasing data is difficult in real applications

4. Regression(5/7): Regularization

Tikhonov Regularization

$$\underline{J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})} = \underline{J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})} + \lambda \underline{R(\mathbf{\Theta})}$$
 국제를 적용한 목적함수 목적함수

- L2 norm regulation :
 - For online learning

$$J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) = J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + \lambda \|\mathbf{\Theta}\|_{2}^{2}$$

$$\nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) = \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + 2\lambda \mathbf{\Theta}$$

$$\mathbf{\Theta} = \mathbf{\Theta} - \rho \nabla J_{regularized}(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})$$

$$= \mathbf{\Theta} - \rho (\nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y}) + 2\lambda \mathbf{\Theta})$$

$$= (1 - 2\rho\lambda)\mathbf{\Theta} - \rho \nabla J(\mathbf{\Theta}; \mathbb{X}, \mathbb{Y})$$

$$\mathbf{\Theta} = (1 - 2\rho\lambda)\mathbf{\Theta} - \rho \nabla J$$

- Smooth function: degree of inverse **O** smooth
 - 차수가 높을 수로 커져서 penalty가 강화됨
 - 즉, 4 함수는 12차 함수 보다 smooth 정도가 적음
 - Data와 무관하고 model의 형태에 따라서 다름
- For batch learning

$$J_{regularized}(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathrm{T}}(\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda ||\mathbf{w}||_{2}^{2}$$

ox문제 나옴

$$\frac{\partial J_{regularized}}{\partial \mathbf{w}} = \mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{w} - \mathbf{X}^{\mathrm{T}}\mathbf{y} + 2\lambda\mathbf{w} = \mathbf{0}$$
 추가하면 절대 안됨

$$\implies (\mathbf{X}^{\mathrm{T}}\mathbf{X} + 2\lambda \mathbf{I})\mathbf{w} = \mathbf{X}^{\mathrm{T}}\mathbf{y}$$

$$\bigcirc$$

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X} + 2\lambda \mathbf{I})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

4. Regression (6/7): On-line vs Batch regression

Batch Gradient Descent	Stochastic Gradient Descent
 Gently converges to the (local) minimum Very slow Intractable for datasets that don't fit in memory No online learning 	 Faster Online learning Heavy fluctuation Capability to jump to new (potentially better local minima) Complicated convergence (overshooting)

4. Regression(7/7): Example

예제 5-1

리지 회귀

훈련집합 $\mathbb{X} = \{\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}\}, \mathbb{Y} = \{y_1 = 3.0, y_2 = 7.0, y_3 = 8.8\}$ 이 주어졌다고 가정하자. 특징 벡터가 2차원이므로 d=2이고 샘플이 3개이므로 n=3이다. 훈련집합으로 설계행렬 **X**와 레이블 행렬 **y**를 다음과 같이 쓸 수 있다.

$$\mathbf{X} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 3 \end{pmatrix}, \qquad \mathbf{y} = \begin{pmatrix} 3.0 \\ 7.0 \\ 8.8 \end{pmatrix}$$

이 값들을 식 (5.29)에 대입하여 다음과 같이 $\hat{\mathbf{w}}$ 을 구할 수 있다. 이때 $\lambda = 0.25$ 라 가정하자.

$$\widehat{\mathbf{w}} = \left(\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 3 \end{pmatrix} + \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix} \right)^{-1} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix} \begin{pmatrix} 3.0 \\ 7.0 \\ 8.8 \end{pmatrix} = \begin{pmatrix} 1.4916 \\ 1.3607 \end{pmatrix}$$

따라서 하이퍼 평면은 $y=1.4916x_1+1.3607x_2$ 이다. 새로운 샘플로 $\mathbf{x}=(5-4)^\mathrm{T}$ 가 입력되면 식 (5.30)을 이용하여 12.9009를 예측한다.

4. K-mean (1/3): Unsupervised Learning

• For d-features (dimension) and n- observation (or data) set $[\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n]$, partition the n observation into $\mathbf{k} (\leq n)$ sets $\mathbf{S} = \{S_1, S_2, \cdots, S_k\}$ so as to minimize the within-cluster sum of squares(WCSS) (Wikipedia)

$$\arg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} ||\mathbf{x} - \boldsymbol{\mu}_i||^2 \quad \boldsymbol{\mu}_i$$
: is the mean of elements in S_i .

- Algorithms
- : Give an initial set of k means $oldsymbol{u}_1^{(1)}, \cdots, oldsymbol{u}_k^{(1)}$
- : Do iteration until $||\boldsymbol{u}_i^{(t+1)} \boldsymbol{u}_i^{(t)}|| > \varepsilon$
 - (1) Assign each observation to the cluster whose mean has the least distance.

$$i^* = \underset{1 \le i \le k}{\operatorname{argmin}} ||\mathbf{x}_j - u_i|| \Rightarrow \mathbf{x}_j \to S_{i^*} \quad (j = 1, \dots, N)$$

(2) Update the means to be the centroids of observations in the new clusters

$$u_i^{(t+1)} = \frac{1}{\left|S_i^{(t)}\right|} \sum_{\mathbf{x}_i \in S_i^{(t)}} \mathbf{x}_j \quad \left|S_i^{(t)}\right| \text{ is the number of data in class } S_i^{(t)}$$

4. K-mean Clustering (2/3): Constructing clusters

- Mean Splitting (for deciding proper k).
- 1. Set k=1, calculate $u^{(i)}$.
- 2. Splitting the mean for k=2 by perturbing randomly.

$$\mathbf{u}_{1}^{(2)} \leftarrow \mathbf{u}^{(1)}, \quad \mathbf{u}_{2}^{(2)} \leftarrow (1+\epsilon)\mathbf{u}^{(1)} \quad (\epsilon <<1)$$

- 3. Run k=2 means.
- 4. Deleting empty clusters
 - Check the number of elements in each cluster.
 - Delete the cluster having too small elements
 - Split the cluster having the most elements.
- 4. Splitting the means for k=4.

$$\mathbf{u}_{1}^{(4)} \leftarrow \mathbf{u}_{1}^{(2)}, \quad \mathbf{u}_{2}^{(4)} \leftarrow (1 + \epsilon)\mathbf{u}_{1}^{(2)}$$
 $\mathbf{u}_{3}^{(4)} \leftarrow \mathbf{u}_{2}^{(2)}, \quad \mathbf{u}_{4}^{(4)} \leftarrow (1 + \epsilon)\mathbf{u}_{2}^{(2)}$

- 5. Repeat splitting until finding the proper k.
 - (* Random initialization of means are not good.)

Clustering with k=4

Voronoi Cell

4. K-mean Clustering (3/3): Application

- Image segmentation
- The Image Data form is I(x,y) = [R, G, B].
- K-mean clustering let neighbored and similar color pixels be a set.

