Sub: Compiler Construction Syntax Analysis PART 1

Compiled for: 7th Sem, CE, DDU

Compiled by: Niyati J. Buch

Ref.: Compilers: Principles, Techniques, and Tools, 2nd Edition Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman

Topics Covered

- Introduction
 - Role of a parser
 - Representative Grammars
 - Syntax Error Handling
 - Error-Recovery Strategies
- Context-Free Grammars
 - Formal Definition
 - Conventions
 - Sentinel and Canonical form
 - Ambiguity
- Writing a grammar
 - Eliminating useless variables
 - Eliminating left recursion
 - Eliminating left factoring
 - Elimination of ε productions
 - Eliminating unit productions

Introduction to Syntax Analysis

Role of a parser

- A parser uses a grammar to check structure of tokens.
- It produces a parse tree.
- It checks for syntactic errors and recovery.
- It recognize correct syntax.
- It report errors.

3 Types of Parsers

1. Universal parsing methods

- Such as Cocke-Younger-Kasami algorithm and Earley's algorithm can parse any grammar.
- But they are too inefficient to use in production compilers.

2. Top down methods

Build the parse tree from top(root) to the bottom(leaves)

3. Bottom up methods

Builds the parse tree from bottom(leaves) to the top(root)

Types of parser

- Top-down: LL → scan Left to right and consider Left most derivative
- Bottom-up: LR → scan Left to right and consider Right most derivative in reverse
- In both top-down and bottom up, the input to the parser is scanned from **left to right**, one symbol at a time.
- Parsers implemented by hand often use LL grammar(ex. predictive parsing)
- Parsers for the larger class of LR grammars are usually constructed using automated tools.

Representative Grammars

- Associativity and precedence are captured in the following grammar, for describing expressions, terms, and factors.
- E represents expressions consisting of terms separated by + signs
- T represents terms consisting of factors separated by * signs
- F represents factors that can be either parenthesized expressions or identifiers:

```
E \rightarrow E + T \mid T

T \rightarrow T * F \mid F

F \rightarrow (E) \mid id
```

Can you observe any recursion??

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

Can you observe any recursion??

- Recursion on left side is observed.
- LR grammar is suitable for bottom up parsing.
- It cannot be used for top-down parsing because it is left recursive.

Non-left-recursive variant

$$E \rightarrow E + T \mid T$$
 $E \rightarrow T E'$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$ $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid \epsilon$
 $F \rightarrow (E) \mid id$

Common Programming Errors

Lexical Errors

Misspellings of identifiers, keywords, or operators

Syntactic Errors

- Misplaced semicolons
- Extra or missing braces

Semantic Errors

Type mismatch between operators and operands

Logical Errors

— Incorrect reasoning like use of assignment operator = instead of the comparison operator ==

Syntax Error Handling

- The precision of parsing methods allows syntactic errors to be detected very efficiently.
- Several parsing methods, such as the LL and LR methods, detect an error as soon as possible; that is, when the stream of tokens from the lexical analyzer cannot be parsed further according to the grammar for the language.
- More precisely, they have the viable-prefix property, meaning that they detect that an error has occurred as soon as they see a prefix of the input that cannot be completed to form a string in the language.

Syntax Error Handling

- Another reason for emphasizing error recovery during parsing is that many errors appear syntactic, whatever their cause, and are exposed when parsing cannot continue.
- A few semantic errors, such as type mismatches, can also be detected efficiently; however, accurate detection of semantic and logical errors at compile time is in general a difficult task.

Goals of error handler in a parser

- ✓ Report the presence of errors clearly and accurately.
- ✓ Recover from each error quickly enough to detect subsequent errors.
- ✓ Add minimal overhead to the processing of correct programs.
- It must report the place in the source program where an error is detected, because there is a good chance that the actual error occurred within the previous few tokens.
- A common strategy is to print the offending line with a pointer to the position at which an error is detected.

Error Recovery Strategies

- 1. Panic Mode Recovery
- 2. Phrase-Level Recovery
- 3. Error Productions
- 4. Global Correction

Panic-Mode Recovery

- On discovering an error, the parser discards input symbols one at a time until one of a designated set of synchronizing tokens is found.
- The synchronizing tokens are usually delimiters, such as semicolon or }, whose role in the source program is clear and unambiguous.
- The compiler designer must select the synchronizing tokens appropriate for the source language.
- While panic-mode correction often skips a considerable amount of input without checking it for additional errors, it has the advantage of simplicity, and is guaranteed not to go into an infinite loop.

Phrase-Level Recovery

- On discovering an error, a parser may perform local correction on the remaining input; that is, it may replace a prefix of the remaining input by some string that allows the parser to continue.
- A typical local correction is to replace a comma by a semicolon, delete an extraneous semicolon, or insert a missing semicolon.
- Phrase-level replacement has been used in several errorrepairing compilers, as it can correct any input string.
- Its major drawback is the difficulty it has in coping with situations in which the actual error has occurred before the point of detection.

Error Production

- By anticipating common errors that might be encountered, we can augment the grammar for the language at hand with productions that generate the erroneous constructs.
- A parser constructed from a grammar augmented by these error productions detects the anticipated errors when an error production is used during parsing.
- The parser can then generate appropriate error diagnostics about the erroneous construct that has been recognized in the input.

Global Correction

- Ideally, we would like a compiler to make as few changes as possible in processing an incorrect input string.
- There are algorithms for choosing a minimal sequence of changes to obtain a globally least-cost correction.
- Given an incorrect input string x and grammar G, these algorithms
 will find a parse tree for a related string y, such that the number of
 insertions, deletions, and changes of tokens required to transform x
 into y is as small as possible.
- Unfortunately, these methods are in general too costly to implement in terms of time and space, so these techniques are currently only of theoretical interest.
- Do note that a closest correct program may not be what the programmer had in mind.

Context-Free Grammars

Chomsky hierarchy

Chomsky hierarchy

https://www.geeksforgeeks.org/chomsky-hierarchy-in-theory-of-computation/

The formal definition of Context-free grammars

A context-free grammar (grammar for short) consists

- 1. The **Terminals** are the basic symbols from which strings are formed.
- 2. The Nonterminals are syntactic variables that denote sets of strings.
 - The sets of strings denoted by nonterminals help define the language generated by the grammar.
 - Nonterminals impose a hierarchical structure on the language that is key to syntax analysis and translation.
- 3. In a grammar, one nonterminal is distinguished as the **start symbol**, and the set of strings it denotes is the language generated by the grammar.
 - Conventionally, the productions for the start symbol are listed first.
- 4. The **productions of a grammar** specify the manner in which the terminals and nonterminals can be combined to form strings.

The formal definition of Context-free grammars

Each production consists of:

- 1. A nonterminal called **the head or left side of the production**; this production defines some of the strings denoted by the head.
- 2. The **symbol** \rightarrow .
 - Sometimes ::= has been used in place of the arrow.
- 3. A **body or right side** consisting of zero or more terminals and nonterminals.
 - The components of the body describe one way in which strings of the nonterminal at the head can be constructed.

Grammar for simple arithmetic expressions

```
expression \rightarrow expression + term
expression → expression - term
expression \rightarrow term
term → term * factor
term → term / factor
term \rightarrow factor
factor \rightarrow (expression)
factor \rightarrow id
```

Conventions

- These symbols are terminals:
 - Lowercase letters early in the alphabet, such as a, b, c.
 - Operator symbols such as +, *, and so on.
 - Punctuation symbols such as parentheses, comma, and so on.
 - The digits 0; 1,..., 9.
 - Boldface strings such as id or if, each of which represents a single terminal symbol.
- These symbols are nonterminals:
 - Uppercase letters early in the alphabet, such as A, B, C.
 - The letter S, which, when it appears, is usually the start symbol.
 - Lowercase, italic names such as expr or stmt.
 - When discussing programming constructs, uppercase letters may be used to represent nonterminals for the constructs.

Conventions

- Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar symbols; that is, either nonterminals or terminals.
- Lowercase letters late in the alphabet, chiefly u, v, ...,z, represent (possibly empty) strings of terminals.
- Lowercase Greek letters α , β , γ , for example represent (possibly empty) string s of grammar symbols.
- Unless stated otherwise, the head of the first production is the start symbol.

Some context-free grammars

•
$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

$$E \rightarrow id$$

•
$$S \rightarrow aSb$$

 $S \rightarrow \varepsilon$

•
$$S \rightarrow 0S0$$

$$S \rightarrow 1S1$$

$$S \rightarrow 0$$

$$S \rightarrow 1$$

$$S \rightarrow \epsilon$$

•
$$S \rightarrow aB|bA$$

$$A \rightarrow a \mid aS \mid bAA$$

$$B \rightarrow b | bS | aBB$$

Sentinel Form (Left most derivation)

•
$$E \rightarrow E + E$$

 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id$

 Here, we replace the left most non-terminal of production by appropriate grammar rule. This is called left most derivation. For input: a + b * c $E \xrightarrow{lm} E + E$ \rightarrow id + \boxed{E} * \boxed{E} \rightarrow id + id * \rightarrow id + id * id

Canonical derivation (Right most derivation)

•
$$E \rightarrow E + E$$

 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id$

 Here, we replace the right most non-terminal of production by appropriate grammar rule. This is called right most derivation. For input: a + b * c $E \xrightarrow{rm} E + \boxed{E}$ r<u>→</u> E + E * <u>E</u> $\stackrel{\text{\tiny rm}}{\rightarrow}$ E + $\stackrel{\text{\tiny E}}{=}$ * id $\stackrel{\text{rm}}{\rightarrow}$ \boxed{E} + id * id $\stackrel{rm}{\longrightarrow}$ id + id * id

Ambiguity

- A grammar that produces more than one parse tree for some sentence is said to be ambiguous.
- Put another way, an ambiguous grammar is one that produces more than one leftmost derivation or more than one rightmost derivation for the same sentence.
- Consider the grammar: E → E + E | E * E | (E) | id
- Input id + id *id generates two distinct leftmost derivatives:

```
E \Rightarrow E + E \Rightarrow E * E
\Rightarrow id + E \Rightarrow E + E * E
\Rightarrow id + E * E \Rightarrow id + E * E
\Rightarrow id + id * E \Rightarrow id + id * E
\Rightarrow id + id * id \Rightarrow id + id * id
```

$E \rightarrow E + E \mid E * E \mid (E) \mid id$ input: id + id *id

$$E \Rightarrow E + E \Rightarrow E * E$$

$$\Rightarrow id + E \Rightarrow E + E * E$$

$$\Rightarrow id + E * E \Rightarrow id + E * E$$

$$\Rightarrow id + id * E \Rightarrow id + id * E$$

$$\Rightarrow id + id * id \Rightarrow id + id * id$$

$E \rightarrow E + E \mid E * E \mid (E) \mid id$ input: id + id *id

$$E \Rightarrow E + E \Rightarrow E * E$$

$$\Rightarrow id + E \Rightarrow E + E * E$$

$$\Rightarrow id + E * E \Rightarrow id + E * E$$

$$\Rightarrow id + id * E \Rightarrow id + id * E$$

$$\Rightarrow id + id * id \Rightarrow id + id * id$$

Why use regular expressions to define the lexical syntax of a language?

- 1. Separating the syntactic structure of a language into lexical and nonlexical parts provides a convenient way of modularizing the front end of a compiler into two manageable-sized components.
- The lexical rules of a language are frequently quite simple, and to describe them we do not need a notation as powerful as grammars.
- 3. Regular expressions generally provide a more concise and easier-to-understand notation for tokens than grammars.
- 4. More efficient lexical analyzers can be constructed automatically from regular expressions than from arbitrary grammars.

Observe the grammar

```
stmt → if expr then stmt
| if expr then stmt else stmt
| other
```

Here "other" stands for any other statement.

if E_1 then S_1 else if E_2 then S_2 else S_3

if E_1 then if E_2 then S_1 else S_2

Re-writing dangling else grammar

```
stmt → if expr then stmt
| if expr then stmt else stmt
| other
```



```
stmt \rightarrow matched\_stmt
| open\_stmt |
matched\_stmt \rightarrow if \ expr \ then \ matched\_stmt \ else \ matched\_stmt
| other
| open\_stmt \rightarrow if \ expr \ then \ stmt
| if \ expr \ then \ matched\_stmt \ else \ open\_stmt
```

Note:

- No general techniques for handling ambiguity
- Impossible to convert automatically an ambiguous grammar to an unambiguous one

 $S \rightarrow abS \mid abA \mid abB$

 $A \rightarrow cd$

 $B \rightarrow aB$

 $C \rightarrow dc$

$$S \rightarrow abS \mid abA \mid abB$$
 $S \rightarrow abS \mid abA \mid abB$ $A \rightarrow cd$ $A \rightarrow cd$ $B \rightarrow aB$ $C \rightarrow dc$ $B \rightarrow aB$

C is Non-reachable so remove it.

$$S \rightarrow abS \mid abA \mid abB$$

 $A \rightarrow cd$

 $B \rightarrow aB$

 $C \rightarrow dc$

$$S \rightarrow abS \mid abA \mid abB$$

 $A \rightarrow cd$

 $B \rightarrow aB$

$$S \rightarrow abS \mid abA$$

$$A \rightarrow cd$$

$$S \rightarrow abS \mid abA \mid abB$$

 $A \rightarrow cd$

 $B \rightarrow aB$

 $C \rightarrow dc$

$$S \rightarrow abS \mid abA \mid abB$$

 $A \rightarrow cd$

 $B \rightarrow aB$

$$S \rightarrow abS \mid abA$$

$$A \rightarrow cc$$

- 1. $S \rightarrow AB/a$
 - $A \rightarrow BC/b$
 - $B \rightarrow aB/C$
 - $C \rightarrow aC/B$
- 2. $S \rightarrow AB/AC$
 - A → aAb/bAa/a
 - $B \rightarrow bbA/aaB/AB$
 - $C \rightarrow abCA/aDb$
 - $D \rightarrow bD/aC$

- 3. $S \rightarrow aB / bX$
 - $A \rightarrow Bad / bSX / a$
 - $B \rightarrow aSB / bBX$
 - $X \rightarrow SBD / aBx / ad$
- 4. $S \rightarrow AB|a$
 - $A \rightarrow b$
- 5. $S \rightarrow AB \mid CA$
 - $B \rightarrow BC \mid AB$
 - $A \rightarrow a$
 - $C \rightarrow AB|b$

Elimination of Left Recursion

 A Grammar G (V, T, P, S) is left recursive if it has a production in the form.

$$A \rightarrow A \alpha \mid \beta$$

- The above Grammar is left recursive because the left of production is occurring at a first position on the right side of production.
- It can eliminate left recursion by replacing a pair of production with

$$A \rightarrow \beta A'$$

 $A' \rightarrow \alpha A' | \epsilon$

Elimination of Left Recursion


```
E \rightarrow TE'
E' \rightarrow +TE' | \epsilon
T \rightarrow FT'
T' \rightarrow *FT' | \epsilon
F \rightarrow (E) | id
```

- Comparing E \rightarrow E +T |T with A \rightarrow A α | β .
- Here, A is E, α is +T and β is T
- On eliminating left recursion, using

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' | \epsilon$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

Similarly for $T \rightarrow T * F|F$ $T \rightarrow FT'$ $T' \rightarrow *FT'|\epsilon$

Removal of left recursion

• $S \rightarrow a |^{(T)}$

 $T \rightarrow T, S \mid S$

Removal of left recursion

•
$$S \rightarrow a|^{\wedge}|(T)$$

 $T \rightarrow T, S|S$

- Comparing T \rightarrow T, S|S with A \rightarrow A α | β .
- Here, A is T, α is ,S and β is S
- On eliminating left recursion,
 T → ST'
 T'→ ,ST' | ∈
- So, finally
 S → a | ^ | (T)
 T → ST'
 T'→ ,ST' | ε

Remove left recursion

• S \rightarrow Aa | b A \rightarrow Ac | Sd | \in

Remove left recursion

• $S \rightarrow Aa \mid b$ $A \rightarrow Ac \mid Sd \mid \epsilon$

Eliminating the indirect left recursion.

$$S \rightarrow Aa|b$$

 $A \rightarrow Ac \mid Aad \mid bd \mid \epsilon$

- In A → Ac | Aad | bd | ∈,
 A is A
 α is c, ad
 β is bd | ∈
 - So, $A \rightarrow (bd \mid \epsilon)A' \rightarrow A' \mid bdA'$ $A' \rightarrow cA' \mid adA' \mid \epsilon$

Remove left recursion

S → Aa | b
 A → Ac | Sd | ∈

Finally,

$$S \rightarrow Aa \mid b$$

 $A \rightarrow A' \mid bdA'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Eliminating the indirect left recursion.

$$S \rightarrow Aa|b$$

 $A \rightarrow Ac \mid Aad \mid bd \mid \epsilon$

- In A → Ac | Aad | bd|∈,
 A is A
 α is c, ad
 β is bd|∈
- So,
 A → (bd | ∈)A' → A' | bdA'
 A' → cA' |adA'| ∈

Remove left recursion (try yourself)

• $S \rightarrow Sa \mid Sb \mid c \mid d$

•	$A \rightarrow Br$	
	$B \rightarrow Cd$	

$$C \rightarrow At$$

Elimination of Left factoring

- Left factoring is removing the common left factor that appears in two productions of the same non-terminal.
- It is done to avoid back-tracing by the parser.
 - A → aα1 | aα2 | aα3
 Here, a is a common prefix or factor.
 - After removal,

$$A \rightarrow aA'$$

$$A' \rightarrow \alpha 1 \mid \alpha 2 \mid \alpha 3$$

• $A \rightarrow aAB / aBc / aAc$

Here, common prefix a is observed.

$$A \rightarrow aA'$$

A' $\rightarrow AB \mid Bc \mid Ac$

Again common prefix A is observed in A' → AB | Bc | Ac

$$A' \rightarrow AD \mid Bc$$

 $D \rightarrow B \mid c$

• $A \rightarrow aAB / aBc / aAc$

Here, common prefix a is observed.

$$A \rightarrow aA'$$

A' \rightarrow AB | Bc | Ac

Finally we have,

$$A \rightarrow aA'$$
 $A' \rightarrow AD \mid Bc$
 $D \rightarrow B \mid c$

Again common prefix A is observed in A' → AB | Bc | Ac

$$A' \rightarrow AD \mid Bc$$

 $D \rightarrow B \mid c$

S → bSSaaS/bSSaSb/bSb/a

S → bSSaaS/bSSaSb/bSb/a

Here common prefix bS is observed.

$$S \rightarrow bSS' \mid a$$

 $S' \rightarrow SaaS \mid SaSb \mid b$

 Again, Sa common prefix is observed

$$S' \rightarrow SaA \mid b$$

 $A \rightarrow aS \mid Sb$

S → bSSaaS/bSSaSb/bSb/a

Here common prefix bS is observed.

$$S \rightarrow bSS' \mid a$$

 $S' \rightarrow SaaS \mid SaSb \mid b$

Finally, we have

$$S \rightarrow bSS' \mid a$$

 $S' \rightarrow SaA \mid b$
 $A \rightarrow aS \mid Sb$

 Again, Sa common prefix is observed

$$S' \rightarrow SaA \mid b$$

A \rightarrow aS \rightarrow Sb

S → iEtS | iEtSeS | a
 E → b

 Here, common prefix iEtS is observed

$$S \rightarrow iEtSS' \mid a$$

 $S' \rightarrow eS \mid \epsilon$

So, finally we have,

$$S \rightarrow iEtSS' \mid a$$

 $S' \rightarrow eS \mid \epsilon$
 $E \rightarrow b$

• $S \rightarrow aSSbS \mid aSaSb \mid abb \mid b$

- $S \rightarrow aSSbS \mid aSaSb \mid abb \mid b$
- Common prefix a is observed.

$$S \rightarrow aS' \mid b$$

 $S' \rightarrow SSbS \mid SaSb \mid bb$

Again common prefix S is observed.

$$S' \rightarrow SA \mid bb$$

$$A \rightarrow SbS \mid aSb$$

- S → aSSbS | aSaSb | abb | b
 Common prefix a is observed.

$$S \rightarrow aS' \mid b$$

 $S' \rightarrow SSbS \mid SaSb \mid bb$

Finally we have,

$$S \rightarrow aS' \mid b$$

 $S' \rightarrow SA \mid bb$
 $A \rightarrow SbS \mid aSb$

 Again common prefix S is observed.

$$S' \rightarrow SA \mid bb$$

A \rightarrow SbS \| aSb

• S → a | ab | abc | abcd

• $S \rightarrow a \mid ab \mid abc \mid abcd$

- Common prefix a is observed
 S → aS'
 S' → ε | b | bc | bcd
- Common prefix b is observed
 S' → ∈ | bA
 A → ∈ | c | cd
- Common prefix c is observed $A \rightarrow \epsilon \mid cB$ $B \rightarrow \epsilon \mid d$

S → a | ab | abc | abcd

Finally we have

$$S \rightarrow aS'$$

 $S' \rightarrow bA \mid \epsilon$
 $A \rightarrow cB \mid \epsilon$
 $B \rightarrow d \mid \epsilon$

Common prefix a is observed
 S → aS'
 S' → ∈ | b | bc | bcd

- Common prefix b is observed
 S' → ∈ | bA
 A → ∈ | c | cd
- Common prefix c is observed $A \rightarrow \epsilon \mid cB$ $B \rightarrow \epsilon \mid d$

```
    S → aAd | aB
    A → a | ab
    B → ccd | ddc
```

Remove left factoring

• $S \rightarrow aAd \mid aB$ • $S \rightarrow aS'$ $A \rightarrow a \mid ab$ $B \rightarrow ccd \mid ddc$ • $S \rightarrow aS'$ $S' \rightarrow Ad \mid B$ $A \rightarrow aA'$ $A' \rightarrow b \mid \in$ $B \rightarrow ccd \mid ddc$

• Steps:

- To remove A → ε, look for all productions whose right side contains A
- Replace each occurrence of 'A' in each of these productions with ϵ
- Add the resultant productions to the grammar

```
• S \rightarrow ABA

A \rightarrow aA \mid \epsilon

B \rightarrow bB \mid \epsilon
```

- $S \rightarrow ABA$
 - $A \rightarrow aA \mid \epsilon$
 - $B \rightarrow bB \mid \epsilon$

- As A and B are directly nullable variables:
 - $A \rightarrow aA \mid a$
 - $B \rightarrow bB \mid b$
 - $S \rightarrow ABA | AB | BA | AA | A | B$

- S → aS | AB |a
 - $A \rightarrow \epsilon$
 - $B \rightarrow \epsilon$
 - $D \rightarrow b$

S → aS | AB | a

$$A \rightarrow \epsilon$$

$$B \rightarrow \epsilon$$

$$D \rightarrow b$$

$$S \rightarrow aS \mid a$$

$$D \rightarrow b$$


```
• S \rightarrow ABAC

A \rightarrow aA / \epsilon

B \rightarrow bB / \epsilon

C \rightarrow c
```

- $S \rightarrow ABAC$ $A \rightarrow aA / \epsilon$ $B \rightarrow bB / \epsilon$ $C \rightarrow c$
- S → ABAC / ABC / BAC / BC / AAC / AC / C
 A → aA / a
 B → bB / b
 C → c

```
• S \rightarrow ABCd
```

$$A \rightarrow BC$$

$$B \rightarrow bB \mid \epsilon$$

$$C \rightarrow cC \mid \epsilon$$

- S→a|Ab|aBa
 - A→b|∈
 - $B \rightarrow b|A$

• S→a|Ab|aBa

$$A \rightarrow b | \epsilon$$

$$B \rightarrow b|A$$

• S→a|Ab|b|aBa|aa

$$A \rightarrow b$$

$$B \rightarrow b$$

Remove null productions & unit productions

• Steps:

- 1. To remove $X \rightarrow Y$, add production $X \rightarrow a$ to the grammar rule whenever $Y \rightarrow a$ occurs in the grammar
- 2. Now delete $X \rightarrow Y$ from the grammar
- 3. Repeat Step 1 and 2 until all unit productions are removed

```
• S \rightarrow OA \mid 1B \mid C

A \rightarrow OS \mid 00

B \rightarrow 1 \mid A

C \rightarrow O1
```

• $S \rightarrow OA \mid 1B \mid C$ $A \rightarrow OS \mid 00$ $B \rightarrow 1 \mid A$ $C \rightarrow O1$

- $S \rightarrow C$ is a unit production
- $S \rightarrow 0A \mid 1B \mid 01$ $A \rightarrow 0S \mid 00$ $B \rightarrow 1 \mid A$ $C \rightarrow 01$

• $S \rightarrow 0A \mid 1B \mid C$ $A \rightarrow 0S \mid 00$ $B \rightarrow 1 \mid A$ $C \rightarrow 01$

- $S \rightarrow C$ is a unit production
- $S \to 0A \mid 1B \mid 01$

$$A \rightarrow 0S \mid 00$$

$$B \rightarrow 1 \mid A$$

$$C \rightarrow 01$$

- $B \rightarrow A$ is also a unit production
- $S \to 0A | 1B | 01$
- $A \rightarrow 0S \mid 00$
- $B \rightarrow 1 | 0S | 00$
- $C \rightarrow 01$

- $S \rightarrow OA \mid 1B \mid C$
 - $A \rightarrow 0S \mid 00$
 - $B \rightarrow 1 \mid A$
 - $C \rightarrow 01$

- $S \to 0A | 1B | 01$
 - $A \rightarrow 0S \mid 00$
 - $B \rightarrow 1 | 0S | 00$
 - $C \rightarrow 01$

- $S \rightarrow C$ is a unit production
- $S \rightarrow 0A \mid 1B \mid 01$
 - $A \rightarrow 0S \mid 00$
 - $B \rightarrow 1 \mid A$
 - $C \rightarrow 01$
- $B \rightarrow A$ is also a unit production
- $S \to 0A | 1B | 01$
 - $A \rightarrow 0S \mid 00$
 - $B \rightarrow 1 | OS | OO$
 - $C \rightarrow 01$

- $S \rightarrow Aa/B/c$
 - $B \rightarrow A/bb$
 - $A \rightarrow a/bc/B$

- $S \rightarrow Aa/B/c$
 - $B \rightarrow A/bb$
 - $A \rightarrow a/bc/B$

- First writing the productions with unit productions
- S→B
 - $B \rightarrow A$
 - $A \rightarrow B$

- $S \rightarrow Aa/B/c$
 - $B \rightarrow A/bb$
 - $A \rightarrow a/bc/B$

- First writing the productions with unit productions
- For the production S→B

$$S \rightarrow B \rightarrow bb$$

$$S \rightarrow B \rightarrow A \rightarrow a$$

$$S \rightarrow B \rightarrow A \rightarrow bc$$

$$B \rightarrow A$$

$$A \rightarrow B$$

- $S \rightarrow Aa/B/c$
 - $B \rightarrow A/bb$
 - $A \rightarrow a/bc/B$

- First writing the productions with unit productions
- For the production S→B

$$S \rightarrow B \rightarrow bb$$

$$S \rightarrow B \rightarrow A \rightarrow a$$

$$S \rightarrow B \rightarrow A \rightarrow bc$$

• For the production $B \rightarrow A$

$$B \rightarrow A \rightarrow a$$

$$B \rightarrow A \rightarrow bc$$

$$A \rightarrow B$$

- $S \rightarrow Aa/B/c$
 - $B \rightarrow A/bb$
 - $A \rightarrow a/bc/B$

- First writing the productions with unit productions
- For the production S→B

$$S \rightarrow B \rightarrow bb$$

$$S \rightarrow B \rightarrow A \rightarrow a$$

$$S \rightarrow B \rightarrow A \rightarrow bc$$

• For the production $B \rightarrow A$

$$B \rightarrow A \rightarrow a$$

$$B \rightarrow A \rightarrow bc$$

• For the production $A \rightarrow B$

$$A \rightarrow B \rightarrow bb$$

- $S \rightarrow Aa/B/c$
 - $B \rightarrow A/bb$
 - $A \rightarrow a/bc/B$

- First writing the productions with unit productions
- For the production S→B

$$S \rightarrow B \rightarrow bb$$

$$S \rightarrow B \rightarrow A \rightarrow a$$

$$S \rightarrow B \rightarrow A \rightarrow bc$$

• For the production $B \rightarrow A$

$$B \rightarrow A \rightarrow a$$

$$B \rightarrow A \rightarrow bc$$

For the production A→B

$$A \rightarrow B \rightarrow bb$$

- $S \rightarrow Aa/B/c$
 - $B \rightarrow A/bb$
 - $A \rightarrow a/bc/B$

S → Aa | c | bb | a | bc
 B → bb | a | bc
 A → a | bc | bb

- First writing the productions with unit productions
- For the production $S \rightarrow B$

$$S \rightarrow B \rightarrow bb$$

$$S \rightarrow B \rightarrow A \rightarrow a$$

$$S \rightarrow B \rightarrow A \rightarrow bc$$

• For the production $B \rightarrow A$

$$B \rightarrow A \rightarrow a$$

$$B \rightarrow A \rightarrow bc$$

For the production A→B

$$A \rightarrow B \rightarrow bb$$

Sequence of steps for elimination

- 1. Eliminate/Remove null production
- 2. Eliminate/Remove unit production
- 3. Eliminate/Remove useless symbol

Simplify the grammar

Simplify the grammar Eliminate/Remove null production

S → Aa | B
 B → a | bC
 C → a | ε

- $C \rightarrow \varepsilon$ is a null production
- To remove it, add the production
- B \rightarrow bC \rightarrow b $\epsilon \rightarrow$ b
- So we have,
- S → Aa | B
 B → a | bC | b
 C → a
- Now, no null productions.

Simplify the grammar Eliminate/Remove null production

- S → Aa | B B → a | bC C → a | ε ∏
- S → Aa | B
 B → a | bC | b
 C → a

- $C \rightarrow \epsilon$ is a null production
- To remove it, add the production
- B \rightarrow bC \rightarrow b $\epsilon \rightarrow$ b
- So we have,
- S → Aa | B
 B → a | bC | b
 C → a
- Now, no null productions.

Simplify the grammar Eliminate/Remove unit production

 $B \rightarrow a \mid bC \mid b$ $C \rightarrow a$

- Identifying unit productions
 S→B
- Removing it, gives:
 S→B → a | bC | b
- So grammar is:
 S → Aa |a |bC |b
 B → a |bC |b
 C →a

Simplify the grammar Eliminate/Remove unit production

- $S \rightarrow Aa \mid B$ $B \rightarrow a \mid bC \mid b$
 - $C \rightarrow a$
- S → Aa |a |bC |b
 B → a |bC |b
 C →a

- Identifying unit productions
 S→B
- Removing it, gives:

$$S \rightarrow B \rightarrow a \mid bC \mid b$$

• So grammar is:

$$S \rightarrow Aa |a|bC|b$$

$$B \rightarrow a | bC | b$$

$$C \rightarrow a$$

Now, no unit productions.

Simplify the grammar Eliminate/Remove unit production

• S → Aa | B

$$B \rightarrow a \mid bC \mid b$$

• $S \rightarrow Aa \mid a \mid bC \mid b$ $B \rightarrow a \mid bC \mid b$

- Identifying unit productions
 S→B
- Removing it, gives:

$$S \rightarrow B \rightarrow a \mid bC \mid b$$

• So grammar is:

$$S \rightarrow Aa |a|bC|b$$

$$B \rightarrow a | bC | b$$

$$C \rightarrow a$$

Now, no unit productions.

- S → Aa | B
 B → a | bC | b
 C → a
 I
- S → Aa |a |bC |b
 B → a |bC |b
 C →a

- B is a useless variable as cannot reach B from S.
- So remove it.
 S → Aa |a |bC |b
 C → a

- S → Aa | B
 B → a | bC
 C → a | ε
 Π
- S → Aa | B
 B → a | bC | b
 C → a
 ∏
- S → Aa |a |bC |b
 B → a |bC |b
 C → a

- B is a useless variable as cannot reach B from S.
- So remove it.
 S → Aa |a |bC |b
 C →a
- Now, Aa is useless as no production head A.
- So remove it.
 S → a |bC |b
 C → a

- S → Aa | B B → a | bC C → a | ε ∏
- S → Aa | B
 B → a | bC | b
 C → a
 ∏
- S → Aa |a |bC |b
 B → a |bC |b
 C → a

- B is a useless variable as cannot reach B from S.
- So remove it.
 S → Aa |a |bC |b
 C →a
- Now, Aa is useless as no production head A.
- So remove it.
 S → a |bC |b
 C → a
- Now, C → a can be substituted
 S → a | ba | b

- S → Aa | B B → a | bC C → a | ε
- S → Aa | B
 B → a | bC | b
 C → a
 Π
- S → Aa |a |bC |b
 B → a |bC |b
 C → a

- B is a useless variable as cannot reach B from S.
- So remove it.
 S → Aa |a |bC |b
 C → a
- Now, Aa is useless as no production head A.
- So remove it.
 S → a |bC |b
 C → a
- Now, C → a can be substituted
 S → a | ba | b

