Optimization of Model Parameters Genetic Algorithm on Theis Equation

Gaurav Atreya, Aakriti Regmi

November 29, 2021

TOC

- Introduction
- Methodology
- Results and Discussions
- 4 Conclusions

Optimization Problems

A problem where you try to get either Minimum, Maximum or a certain value for one or multiple objective function(s) under the feasible range of given constraints.

Optimization Problems

A problem where you try to get either Minimum, Maximum or a certain value for one or multiple objective function(s) under the feasible range of given constraints.

Main Types:

- Non-Linear → At least one of the constraints or the objectives are non-linear.

Optimization Problems

A problem where you try to get either Minimum, Maximum or a certain value for one or multiple objective function(s) under the feasible range of given constraints.

Main Types:

- $\textbf{0} \ \ \text{Linear} \rightarrow \text{All the constraints and the objectives are linear}.$
- **②** Non-Linear \rightarrow At least one of the constraints or the objectives are non-linear.

Solution Techniques:

Linear: Linear Programming, Inverse Matrix

Non-Linear: Gradient Based Methods, Particle Swarm,

Ant Colony, **Genetic Algorithm**

Drawdown + Inverse problem

Provided Data:

Pumping Rate, $Q = 8.155 ft^3 / min$

Distance to OW, r = 582 ft

Storativity, S = ?

Transmissivity, T = ?

Observed Data for Drawdown vs time: (Provided by Dr. Reza Soltanian)

SN (i)	time (t _i min)	drawdown $(s_i ft)$	SN (i)	time (t _i min)	drawdown $(s_i ft)$
1	1.93	0.11	11	14.73	0.31
2	2.98	0.14	12	17.75	0.34
3	4.00	0.15	13	35.22	0.40
:	:	:	:	:	:
10	12.73	0.29	20	280.46	0.64

Theis Solution

Theis equation is used as an analytical solution in the field of transient groundwater hydraulics, it can give us the drawdown (s) in terms of distance from the well (r) and the time (t).

$$s(r, t) = \frac{Q}{4\pi T} W(u) \tag{1}$$

Theis Solution

Theis equation is used as an analytical solution in the field of transient groundwater hydraulics, it can give us the drawdown (s) in terms of distance from the well (r) and the time (t).

$$s(r,t) = \frac{Q}{4\pi T} W(u) \tag{1}$$

Where, s(r, t) is the drawdown at distance(r) at time (t) after the start of pumping, Q is the discharge rate, and W(u) is the well function of Theis

Theis Solution

Theis equation is used as an analytical solution in the field of transient groundwater hydraulics, it can give us the drawdown (s) in terms of distance from the well (r) and the time (t).

$$s(r, t) = \frac{Q}{4\pi T} W(u) \tag{1}$$

Where, s(r, t) is the drawdown at distance(r) at time (t) after the start of pumping, Q is the discharge rate, and W(u) is the well function of Theis Which is further defined by:

$$W(u) = \int_{u}^{\infty} \frac{e^{-y}}{y} dy = -\log(u) - E + \frac{u^{1}}{1*1!} - \frac{u^{2}}{2*2!} + \frac{u^{3}}{3*3!} - \dots$$
 (2)

Where.

$$u = \frac{r^2 S}{4T_t}$$
 (3)
 $E = 0.57721$

$$E = 0.57721$$

Optimization Model

Model Parameters:

- Aquifer Storativity, S
- Aquifer Transmissivity, T

Constraints:

- $5 \le 1 \times 10^{-14}, S \le 0.01$
- ② $T \ge 0.001$, $T \le 1000.0$

Objective Function:

Minimize mean absolute difference between predicted value and actual measurement.

$$Z = \frac{1}{N} \sum_{i} |s_i - s(r, t_i)| \tag{5}$$

Where,

 s_i is the observed drawdown, and $s(r, t_i)$ is the drawdown calculated using Equation (1).

Genetic Algorithm

Genetic Algorithm (GA) is among the algorithms that were designed to imitate the Nature. Since the nature already have so many complex things going on as a result of simple governing rules. GA tries to imitate it to solve problems or to understand the natural systems using the system of **Organisms**, their **Genes** and the **Evolution of Population**.

Genetic Algorithm

Genetic Algorithm (GA) is among the algorithms that were designed to imitate the Nature. Since the nature already have so many complex things going on as a result of simple governing rules. GA tries to imitate it to solve problems or to understand the natural systems using the system of **Organisms**, their **Genes** and the **Evolution of Population**.

Why?

- We need Non-Linear technique,
- 2 It gives Global Solution,
- Doesn't depend on initial guess,
- I really wanted to try this.

Understanding Nature

Figure: Interaction between Fox and Rabbit Population

Evolution of Population

Figure: How Advantageous Genes are Passed

Algorithm

Figure: Flowchart for Genetic Algorithm

Algorithm

Figure: Flowchart for Genetic Algorithm

Figure: Reproduction

Overall Model

Figure: Objects Model for GA

First 3 Generations

Figure: First 3 Generations of the Simulation

	Parameter	Generation 1	Generation 2	Generation 3
•	Error	0.00988603	0.00988603	0.00930710
	S_{best}	$3.53180773 \times 10^{-05}$	$3.53180773 \times 10^{-05}$	$3.80385357 \times 10^{-05}$
	T_{best}	5.85535578	5.85535578	5.64879303
		•		

Parameters Tuning

Figure: 5 Best and Worst Models and their GA parameters

Final Results

We ran the model, got the results.

Then we solved the same problem using two different methods, then did a comparison with them (graphical method & aqtsolve).

	Parameters		Errors		
Method	Storativity	Transmissivity	M.A.E.	Mean	Std. Dev.
Graphical			8.12×10^{-03}	5.31×10^{-03}	8.63×10^{-03}
AQTsolve	4.2331×10^{-05}		6.08×10^{-03}		
GA	4.2316×10^{-05}	5.5657	5.87×10^{-03}	-7.26×10^{-04}	7.87×10^{-03}

Importance of Mutation

Conclusions

- Aquifer Parameter Estimation can be solved using Genetic Algorithm,
- The results from GA is comparable or even more accurate than Industry Standard,
- GA takes more time and energy (on Computer) to solve the problem compared to specialized programs.

Thank You

Tools Used:

- Coding Python
- Plotting Python (matplotlib), R & Gnuplot
- Graphics Inkscape
- Report/Presentation LATEX
- Editing/scripting emacs
- Laptop 80E4 Lenovo G40-80
 - CPU Intel(R) Core(TM) i5-5200U CPU 2.20GHz
 - OS Arch Linux x86_64
 - Memory 8 GB
- Codes: https://github.com/Atreyagaurav/aquifer-properties-ga/

Supplementary Slides

- Sample Generations
 - 10, 20 & 30
 - 100, 200 & 300
- Other Methods
 - AQTsolve
 - Graphical
- Other GA Methods

AQTsolve

Graphical Method

Binary Genetic Algorithm

