

NPTEL ONLINE CERTIFICATION COURSES

Blockchain and its applications **Prof. Sandip Chakraborty**

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Lecture 20: Limitations of PoW: Forking and Security

CONCEPTS COVERED

- PoW Forks
- Attacks on PoW
- The Monopoly Problem

KEYWORDS

- Forks
- Security
- 51% attack

PoW: Mining a New Block

 The miner who is able to solve the puzzle becomes the leader

The block from the leader is appended in the blockchain

TX22

TX17

TX16

 For the next block creation, a miner accepts the previous block that it hears from the majority of the neighbor

 For the next block creation, a miner accepts the previous block that it hears from the majority of the neighbor

Security Measures for PoW

Sybil Attacks

- Attacker attempts to fill the network with the clients under its control
- Create multiple identities (multiple public key addresses) to control the network – refuse to relay valid blocks or relay attacked blocks
- Solution: Diversify the connections Bitcoin allows one outbound connection to per /16 block of IP addresses – cannot make both 202.141.81.2/16 and 202.141.80.18/16 as the peers

Security Measures for PoW

- Denial of Service (DoS)
 - Send a lot of data to a node block the processing power
 - **Solution:** Limit forwarding of blocks, disconnect a peer that sends too many transactions

Breaking PoW

 Bitcoin PoW is computationally difficult to break, but not impossible

 Attackers can deploy high power servers to do more work than the total work of the blockchain

Breaking PoW

- A known case of successful double-spending
 - (November 2013) "it was discovered that the GHash.io mining pool appeared to be engaging in repeated payment fraud against BetCoin Dice, a gambling site" [Source: https://en.bitcoin.it/]

The Monopoly Problem

- PoW depends on the computing resources available to a miner
 - Miners having more resources have more probability to complete the work

The Monopoly Problem

- Monopoly can increase over time (Tragedy of the Commons)
 - Miners will get less reward over time
 - Users will get discouraged to join as the miner
 - Few miners with large computing resources may get control over the network

The Monopoly Problem

- 51% Attack: A group of miners control more than 50% of the hash rate of the network
 - Hypothetical as of now for Bitcoin (as the network is large), but not impossible (happened for Kryptom – Ethereum based blockchain, in August, 2016)

Conclusion

 PoW may result a fork – consensus finality is not ensured

 The security of PoW is ensured with the condition that attackers cannot gain more than 50% of the hash power

