过类绝早	
试卷编号	:

考核对象: 信息学院 2018 级 学号 姓名

注意: 试卷右侧及背面为草算区

大连工业大学 2018 ~2019 学年 第二 学期

《高等数学 11 章》共 3 页 第 1 页

•••	袋 7	线				•••••						
	题号	1	1	=	四	五	*	+	//	h	阅卷	复核
	应了				P3	-11.	/\	L	/\	/ L	总分	总分
	得分											

说明:"阅卷总分"由阅卷人填写;"复核总分"由复核人填写,复核总分不得有改动。

得	
分	

一、 单项选择题(每小题 2 分, 共 20 分)

1.设 C 为圆心在坐标原点,半径为 a 的圆周,则曲线积分 $\oint_C (x^2 + y^2) ds$ =(

- (A) $2\pi a^2$ (B) πa^3 (C) $2\pi a^3$ (D) $4\pi a^3$
- 2.设曲线 L 是区域 D 的正向边界,那么 D 的面积为(

(A)
$$\frac{1}{2} \oint_L x dy - y dx$$
; (B) $\oint_L x dy + y dx$; (C) $\oint_L x dy - y dx$; (D) $\frac{1}{2} \oint_L x dy + y dx$

(B)
$$\oint_{\Gamma} x dy + y dx$$
;

(C)
$$\oint_{\mathcal{L}} x dy - y dx$$

(D)
$$\frac{1}{2} \oint_L x dy + y dx$$

3.设 L:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, 则曲线积分 $\oint \frac{xdy - ydx}{x^2 + y^2}$ ()

(A) 与 L 的取向无关,与 a,b 的值有关 (B) 与 L 的取向无关,与 a,b 的值无关 (C) 与 L 的取向有关,与 a,b 的值有关 (D) 与 L 的取向有关,与 a,b 的值无关 4. 设 G 为一单连通开区域, P(x,y), Q(x,y) 在 G 内具有一阶连续偏导数,命题 $a:\oint_L Pdx+Qdy=0$,其中 L 为 G 内任一条

分段光滑闭曲线,命题b:在 G 内 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ 处处成立 , 命题c: Pdx + Qdy 为某一二元函数的全微分。则命题a,b,c 满足(

- (A) *a,b,c* 彼此等价
- (B) a = b 等价与c 不等价(C) a = c 等价与b 不等价 (D) a,b,c 彼此不等价

5.已知 $\frac{(x+ay)dx+ydy}{(x+y)^2}$ 是某一二元函数的全微分,则 a=(

- (A) -1 (B) 0 (C) 1 (D) 2
- 6. 已知曲面 Σ 的方程为 $x^2 + y^2 + z^2 = a^2$,则 $\oint_{\Gamma} (x^2 + y^2 + z^2) dS = ($)
- (A) 0 (B) $2\pi a^4$ (C) $4\pi a^4$ (D) $6\pi a^4$

7.设曲面 Σ为x + y + z = 1在第一卦限部分的下侧,则 $\iint (x^2 + z) dx dy = ($)

(A) $\int_0^1 dx \int_0^{1-x} (x^2 + 1 - x - y) dy$ (B) $-\int_0^1 dx \int_0^{1-x} (x^2 + 1 - x - y) dy$ (C) $\int_0^1 dx \int_0^{1-x} (x^2 + z) dy$ (D) $-\int_0^1 dx \int_0^{1-x} (x^2 + z) dy$

8.已知 Σ 为 $x^2 + y^2 + z^2 = 2z$,下列等式错误的是(

$$(A) \iint_{\mathbb{R}} x(y^2 + z^2) dS = 0$$

(A)
$$\iint_{\Sigma} x(y^2 + z^2) dS = 0$$
 (B) $\iint_{\Sigma} y(x^2 + z^2) dS = 0$ (C) $\iint_{\Sigma} z(x^2 + y^2) dS = 0$ (D) $\iint_{\Sigma} (x + y) z^2 dS = 0$ 9.设 Σ 由分片光滑的所围成闭曲面的外侧,则 Σ 的体积 V= (B)

(D)
$$\oint (x+y)z^2 dS = 0$$

(A)
$$\frac{1}{3} \oiint_{\Sigma} y dy dz + z dz dx + x dx dy$$
 (B) $\frac{1}{3} \oiint_{\Sigma} x dy dz + y dz dx + z dx dy$ (C) $\frac{1}{3} \oiint_{\Sigma} z dy dz + x dz dx + y dx dy$ (D) $\frac{1}{3} \oiint_{\Sigma} x dy dz + z dz dx + y dx dy$

10.计算旋转抛物面 $z = 1 + \frac{x^2 + y^2}{2}$ 在 $1 \le z \le 2$ 那部分的曲面面积 S = (B)

(A)
$$\iint_{2} \sqrt{1-x^2-y^2} dx dy$$

(B)
$$\iint_{2} \sqrt{1 + x^2 + y^2} dx dy$$

(C)
$$\iint_{2} \sqrt{1-x^2-y^2} dxdy$$

(A)
$$\iint_{x^2+y^2 \le 2} \sqrt{1-x^2-y^2} \, dx dy$$
 (B)
$$\iint_{x^2+y^2 \le 2} \sqrt{1+x^2+y^2} \, dx dy$$
 (C)
$$\iint_{x^2+y^2 \le 4} \sqrt{1-x^2-y^2} \, dx dy$$
 (D)
$$\iint_{x^2+y^2 \le 4} \sqrt{1+x^2+y^2} \, dx dy$$

得

二、填空题(每空 2 分,共 20 分)1.设 L 是从 A(1,0) 到 B(-1,2) 的线段,则曲线积分 $\int_{T}(x+y)ds=$

2.空间曲线 x = 3t, $y = 3t^2$, $z = 2t^3$ 从点 O (0, 0, 0) 到点 A (3, 3, 2) 的弧长为__

3. C 为不包围原点的封闭曲线,积分 $\oint_c \frac{xdx + ydy}{x^2 + y^2} =$ ______

- 5. 设L是以A(-1,0),B(-3,2),C(3,0)为项点的三角形域的周界沿ABCA方向,则 $\oint_{t} (3x-y)dx + (x-2y)dy = 0$

6.设F(x, y)为可微函数, \overrightarrow{AB} 为光滑曲线,则曲线积分 $\int F(x,y)(ydx+xdy)$ 与路径无关的充分必要条件是_

7.已知曲线积分 $\int [e^x \cos y + yf(x)]dx + (x^3 - e^x \sin y)dy$ 与路径无关,则 f(x) =______

注意: 试卷右侧及背面为草算区

大连工业大学 2018 ~2019 学年 第二 学期

《高等数学11章》共3页第2页

分

三、计算题(每题 4 分,共 20 分)1.计算 $\int_{\Gamma} z ds$,其中 Γ : $x=t\cos t$, $y=t\sin t$, z=t $(0 \le t \le t_0)$

2.计算 $I = \int_L (2a - y) dx + x dy$, 其中 L 为摆线 $x = a(t - \sin t)$, $y = a(1 - \cos t)$ 上对应 t 从 0 到 2π 的一段弧。

3. 计算曲线积分 $\int_L xy dx$, 其中 L 为抛物线 $y^2 = x$ 上从点 A(1,-1) 到点 B(1,1) 的一段弧.

4. 设 Σ 是由 $z = \sqrt{x^2 + y^2}$ 被z = 1.z = 2所截下部分的下侧,求积分 $\iint_{\Sigma} \frac{e^z}{\sqrt{x^2 + y^2}} dxdy$

5. 计算
$$\iint_{\Sigma} z dx dy$$
 , Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 在 $0 \le z \le 1$ 部分下侧

分

四 (8分) 己知曲线积分 $I = \oint_C y^3 dx + (3x - x^3) dy$, 其中 C 为 $x^2 + y^2 = R^2 (R > 0)$ 的逆时针方向。

一为 R=?时使 I=0 $R=\sqrt{2}$ (2)问 R=?时使 I 取得最大值,并求最大值。R=1

试卷编号	킂
------	---

考核对象: 信息学院 2018 级

注意: 试卷右侧及背面为草算区

装 订 线

大连工业大学 2018 ~2019 学年 第二 学期

《高等数学11章》共3页第3页

得分

五(6 分).计算 $I = \int_L (x^2 + 2xy) dx + (x^2 + y^4) dy$, 其中 L 为由点 O(0,0) 到点 A(1,1) 的曲线 $y = \sin \frac{\pi}{2} x$ 。

得 分

 \int 六(10 分)设线积分 $I=\int_{\Gamma}xy^2dx+y\varphi(x)dy$ 与路径无关,其中 $\varphi(x)$ 具有连续的导数,且 $\varphi(0)=0$,求 $\varphi(x)$

得 分 八(8 分)计算曲面积分 $I=\iint\limits_{\Sigma}xzdydz+z^2dxdy$, 其中 \sum 是旋转抛物面 $z=x^2+y^2$ (0 $\leq z \leq$ 1) 的外侧。