Random Variate Generation

- 1. Inverse transformation
- 2. Rejection
- 3. Composition
- 4. Convolution
- 5. Characterization

©2010 Raj Jain www.rajjain.com

Random-Variate Generation

- General Techniques
- □ Only a few techniques may apply to a particular distribution
- □ Look up the distribution in Chapter 29

Inverse Transformation

■ Used when F⁻¹ can be determined either analytically or empirically.

$$u = F(x) \sim U(0, 1)$$

©2010 Raj Jain www.rajjain.com

Proof

Let y = g(x), so that $x = g^{-1}(y)$.

$$F_Y(y) = P(Y \le y) = P(x \le g^{-1}(y))$$

= $F_X(g^{-1}(y))$

If g(x) = F(x), or y = F(x)

$$F(y) = F(F^{-1}(y)) = y$$

And:

$$f(y) = dF/dy = 1$$

That is, y is uniformly distributed between 0 and 1.

■ For exponential variates:

The pdf
$$f(x) = \lambda e^{-\lambda x}$$

The CDF $F(x) = 1 - e^{-\lambda x} = u$ or, $x = -\frac{1}{\lambda} \ln(1 - u)$

- \Box If u is U(0,1), 1-u is also U(0,1)
- □ Thus, exponential variables can be generated by:

$$x = -\frac{1}{\lambda}\ln(u)$$

□ The packet sizes (trimodal) probabilities:

Size	Probability
64 Bytes	0.7
128 Bytes	0.1
512 Bytes	0.2

□ The CDF for this distribution is:

$$F(x) = \begin{cases} 0.0 & 0 \le x < 64\\ 0.7 & 64 \le x < 128\\ 0.8 & 128 \le x < 512\\ 1.0 & 512 \le x \end{cases}$$

Example 28.2 (Cont)

□ The inverse function is:

$$F^{-1}(u) = \begin{cases} 64 & 0 < u \le 0.7\\ 128 & 0.7 < u \le 0.8\\ 512 & 0.8 < u \le 1 \end{cases}$$

Generate
$$u \sim U(0, 1)$$

 $u \leq 0.7 \Rightarrow Size = 64$
 $0.7 < u \leq 0.8 \Rightarrow size = 128$
 $0.8 < u \Rightarrow size = 512$

- □ Note: CDF is *continuous from the right*
 - \Rightarrow the value on the right of the discontinuity is used
 - ⇒ The inverse function is continuous from the left

$$\Rightarrow$$
 u=0.7 \Rightarrow x=64

Applications of the Inverse-Transformation Technique

Distribution	CDF F(x)	Inverse
Exponential	$1 - e^{-x/a}$	$-a \ln(u)$
Extreme value	$1 - e^{-e^{\frac{x-a}{b}}}$	$a + b \ln \ln u$
Geometric	$1 - (1 - p)^x$	$\left\lceil \frac{\ln(u)}{\ln(1-p)} \right\rceil$
Logistic	$1 - \frac{1}{1 + e^{\frac{x - \mu}{b}}}$	$\mu - b \ln(\frac{1}{u} - 1)$
Pareto	$1 - x^{-a}$	$1/u^{1/a}$
Weibull	$1 - e^{(x/a)^b}$	$a(\ln u)^{1/b}$

Rejection

- □ Can be used if a pdf g(x) exists such that c g(x) majorizes the pdf $f(x) \Rightarrow c g(x) \ge f(x) \forall x$
- □ Steps:
- 1. Generate x with pdf g(x).
- 2. Generate y uniform on [0, cg(x)].
- 3. If $y \le f(x)$, then output x and return. Otherwise, repeat from step 1.
 - \Rightarrow Continue rejecting the random variates x and y until $y \ge f(x)$
- Efficiency = how closely c g(x) envelopes f(x)Large area between c g(x) and $f(x) \Rightarrow$ Large percentage of (x, y) generated in steps 1 and 2 are rejected
- □ If generation of g(x) is complex, this method may not be efficient.

©2010 Rai Jain www.rajjain.con

Beta(2.4) density function: $f(x) = 20x(1-x)^3 \quad 0 \le x \le 1$ $c=2.11 \text{ and } g(x) = 1 \quad 0 \le x \le 1$

- Bounded inside a rectangle of height 2.11
 - \Rightarrow Steps:
 - > Generate x uniform on [0, 1].
 - > Generate y uniform on [0, 2.11].
 - > If $y \le 20 x(1-x)^3$, then output x and return. Otherwise repeat from step 1.

Composition

 \Box Can be used if CDF F(x) = Weighted sum of n other CDFs.

$$F(x) = \sum p_i F_i(x)$$

- \square Here, $p_i \ge 0, \sum_{i=1}^n p_i = 1$, and F_i 's are distribution functions.
- \square *n* CDFs are composed together to form the desired CDF Hence, the name of the technique.
- □ The desired CDF is decomposed into several other CDFs
 ⇒ Also called decomposition.
- □ Can also be used if the pdf f(x) is a weighted sum of n other pdfs:

$$f(x) = \sum_{i=1}^{n} p_i f_i(x)$$

Steps:

□ Generate a random integer *I* such that:

$$P(I=i) = p_i$$

- □ This can easily be done using the inversetransformation method.
- \square Generate x with the ith pdf $f_i(x)$ and return.

- **pdf:** $f(x) = \frac{1}{2a}e^{-|x|/a}$
- Composition of two exponential pdf's
- Generate

$$u_1 \sim U(0,1)$$

 $u_2 \sim U(0,1)$

- ☐ If u_1 <0.5, return; otherwise return $x=a \ln u_2$.
- Inverse transformation better for Laplace

©2010 Raj Jain www.rajjain.com

Convolution

- \square Sum of *n* variables: $x = y_1 + y_2 + \cdots + y_n$
- ☐ Generate n random variate y_i's and sum
- □ For sums of two variables, pdf of $x = \text{convolution of pdfs of } y_1 \text{ and } y_2$. Hence the name
- Although no convolution in generation
- \square If pdf or CDF = Sum \Rightarrow Composition
- \square Variable $x = Sum \Rightarrow Convolution$

$$f * g(t) = \int f(\tau)g(t - \tau)d\tau$$

Convolution: Examples

- □ Erlang- $k = \sum_{i=1}^{k} Exponential_i$
- □ Binomial(n, p) = $\sum_{i=1}^{n}$ Bernoulli(p) ⇒ Generated n U(0,1), return the number of RNs less than p
- □ $\Gamma(a, b_1) + \Gamma(a, b_2) = \Gamma(a, b_1 + b_2)$ ⇒ Non-integer value of b = integer + fraction
- $\square \sum_{t=1}^{n} Any = Normal \Rightarrow \sum U(0,1) = Normal$
- $\square \sum_{i=1}^{m}$ Geometric = Pascal
- \square $\sum_{i=1}^{2}$ Uniform = Triangular

Characterization

- \square Use special characteristics of distributions \Rightarrow characterization
- □ Exponential inter-arrival times ⇒ Poisson number of arrivals
 ⇒ Continuously generate exponential variates until their sum exceeds T and return the number of variates generated as the Poisson variate.
- The a^{th} smallest number in a sequence of a+b+1 U(0,1) uniform variates has a $\beta(a, b)$ distribution.
- \Box The ratio of two unit normal variates is a Cauchy(0, 1) variate.
- \square A chi-square variate with even degrees of freedom $\chi^2(\nu)$ is the same as a gamma variate $\gamma(2,\nu/2)$.
- □ If x_1 and x_2 are two gamma variates $\gamma(a,b)$ and $\gamma(a,c)$, respectively, the ratio $x_1/(x_1+x_2)$ is a beta variate $\beta(b,c)$.
- □ If x is a unit normal variate, $e^{\mu+\sigma x}$ is a lognormal(μ , σ) variate.

Exercise 28.1

■ A random variate has the following triangular density:

$$f(x) = \min(x, 2 - x) \quad 0 \le x \le 2$$

- Develop algorithms to generate this variate using each of the following methods:
- a. Inverse-transformation
- b. Rejection
- c. Composition
- d. Convolution

Homework

■ A random variate has the following triangular density:

$$f(x) = \frac{1}{16} \min(x, 8 - x) \quad 0 \le x \le 8$$

- Develop algorithms to generate this variate using each of the following methods:
- a. Inverse-transformation
- b. Rejection
- c. Composition
- d. Convolution