PROGRAMMING ASSIGNMENT-III

Computer Vision

Coding Standard and General Requirements

Code for all programming assignments should be **well documented**. A working program with no comments will receive **only partial credit**. Documentation entails writing a description of each function/method, class/structure, as well as comments throughout the code to explain the program flow. Preferred programming language for the assignment is **Python** with PyTorch framework for deep learning. You are free to use any other programming language and framework as well.

Submit by **Dec 1**, **2021**, 11.59pm. There will be strictly no extension to this deadline.

Question 1: Image Classification [5 pts]

This is an extension of problem 2 from programming assignment 1. In this question your goal is to develop a CNN classification network to recognize RGB color images. You will design your own variants of CNN architecture which should have more than 2 convolutional layers and more than 1 fully connected layers. You will use CIFAR-10 dataset which is available from PyTorch (torchyision.datasets.CIFAR10).

Your tasks:

- Design a CNN architecture which has more than 2 conv layers and more than 1 fully connected layers. It should make 10 predictions for the 10 classes of CIFAR-10. Train this network on CIFAR-10 for 30 epochs using cross-entropy loss and SGD optimizer. Report training/testing loss for each epoch in form of plots and accuracy scores after 30 epochs. Remember you will need a softmax activation after the final fully connected layer.
- Increase the number of conv layers in the above network and train again. Report the same numbers and plots again comparing with the first network.

NOTE: You can use the code provided as a solution for programming assignment 1 and extend it.

What to submit:

- Code
- A short write-up about your implementation with results: 1) Accuracy scores for all the variations, 2) Compare all the variations using accuracy scores. Comment of how the accuracy changes when you increase the number of conv layers.

Question 2: Image segmentation [5 pts]

In this question you goal is to implement Otsu thresholding to perform image segmentation. The algorithm will be discussed during a class lecture next week.

Your tasks:

- First implement a simple thresholding based image binarization algorithm. Plot the histogram for three different input image. Now based on the plot, perform binarization at three different threshold levels.
- Implement a Otsu thresholding. Use the determined threshold to perform segmentation on the three input image.

NOTE: You are free to choose any 3 images. If the images are colored, you can convert them to greyscale by averaging the RGB values at each pixel. You can also use any library function to convert it to greyscale.

What to submit:

- Code
- A short write-up about your implementation with results (as indicated for each variation) and your observations
 from each results. For each image, you will have to show corresponding histogram and resultant segmented
 image.