

ALGEBRA y ALGEBRA LINEAL 520142

Primer Semestre

FUNCIONES (2)

DEPARTAMENTO DE INGENIERIA MATEMATICA

Facultad de Ciencias Físicas y Matemáticas
Universidad de Concepción

FUNCION EXPONENCIAL

Una Función Exponencial de Base b es la función real positiva:

$$\exp_b: \mathbb{R} \longrightarrow]0, +\infty[$$

$$x \longmapsto y = \exp_b(x) = b^x$$

donde $b \in \mathbb{R}, \ b > 0, \ b \neq 1$.

OBSERVACIONES

- **Description** La gráfica de \exp_b es **asintótica** respecto al eje X.
- Todas las gráficas de \exp_b pasan por el punto (1,b):

$$(\forall b > 0, b \neq 1) : \exp_b(1) = b$$

La única intersección de f con el eje Y, es el punto (0,1):

$$(\forall b > 0, b \neq 1) : \exp_b(0) = 1$$

- Producto de exponenciales $(\forall b > 0, b \neq 1)(\forall x_1, x_2 \in \mathbb{R})$:
 - 1. $\exp_b(x_1 + x_2) = \exp_b(x_1) \cdot \exp_b(x_2)$
 - 2. $\exp_b(x_1 x_2) = \exp_b(x_1) : \exp_b(x_2)$ = $\exp_b(x_1) \cdot \exp_b(-x_2)$

Propiedades de \exp_b , b > 1

 $= \exp_b$ es una función estrictamente creciente:

$$(\forall x_1, x_2 \in \mathbb{R}): x_1 < x_2 \implies b^{x_1} < b^{x_2}$$

• el valor de $\exp_b(x) > 0$, $\forall x \in \mathbb{R}$ se aproxima a 0, cuando x es negativamente grande.

Observación

$$\forall x \in \mathbb{R} : \exp_b(x) = \exp_{\frac{1}{b}}(-x)$$

Luego las gráficas de \exp_b y $\exp_{\frac{1}{b}}$ son **simétricas** respecto al eje Y. Por lo tanto, si 0 < b < 1, entonces \exp_b es una función **positiva**, estrictamente **decreciente** y asintótica al eje X, ella tiende a 0 cuando x es positivamente grande.

Biyectividad de \exp_b

Para todo b > 0 con $b \neq 1$

La función exponencial es inyectiva:

$$(\forall x_1, x_2 \in \mathbb{R}) : b^{x_1} = b^{x_2} \implies x_1 = x_2$$

La función exponencial es sobreyectiva:

$$Rec(\exp_b) = \exp_b(\mathbb{R}) =]0, +\infty[$$

Si $b = e \approx 2,7182\cdots$ la función se llama La Función Exponencial Natural y se escribe:

$$\exp(x) = e^x$$

Funciones EXPONENCIALES

Funciones EXPONENCIALES

FUNCION LOGARITMICA

Una Función Logarítmica de base b, es la función real:

$$\log_b: \]0, +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto y = \log_b(x) \iff b^y = x$$

$$\iff \exp_b(y) = x$$

para cualquier $b > 0, b \neq 1$.

Observación
$$\left\{ \begin{array}{l} (\forall \ x \in \mathbb{R}) \ : \ \log_b(b^x) = x \\ (\forall \ x > 0) \ : \ b^{\log_b(x)} = x \end{array} \right.$$

Propiedades de \log_b

Sean $b > 0, \ b \neq 1, \ x, x_1, x_2 \in \mathbb{R}^+$ y $\alpha \in \mathbb{R}$. Entonces:

1.
$$\log_b(x_1 \cdot x_2) = \log_b(x_1) + \log_b(x_2)$$

2.
$$\log_b(\frac{x_1}{x_2}) = \log_b(x_1) - \log_b(x_2)$$

3.
$$\log_b(\frac{1}{x}) = -\log_b(x)$$

4.
$$\log_b(x^{\alpha}) = \alpha \log_b(x)$$

Gráfica de \log_b

Sea $b > 0, b \neq 1$, entonces:

- lacksquare La gráfica de \log_b es **asintótica** respecto al eje Y
- La única intersección de \log_b con el eje X es el punto (1,0), es decir:

$$(\forall b > 0, \ b \neq 1) : \log_b(1) = 0$$

■ Todas las gráficas de \log_b pasan por el punto (b,1), es decir:

$$\left| (\forall b > 0, \ b \neq 1) : \log_b(b) = 1 \right|$$

Propiedades de \log_b para b > 1

- **La función** \log_b es **estrictamente creciente**:

$$(0 < x_1 < x_2 \implies \log_b(x_1) < \log_b(x_2)$$

por lo tanto ella es inyectiva:

$$(\forall x_1, x_2 \in \mathbb{R}^+): \log_b(x_1) = \log_b(x_2) \implies x_1 = x_2$$

Además, es sobreyectiva:

$$Rec(\log_b) = \log_b(]0, +\infty[) = \mathbb{R}$$

Fórmula de Cambio de base de \log_b

$$(\forall a, b > 0, \ a, b \neq 1)(\forall x > 0) : \log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$

Observación

$$\log_b(x) = -\log_{\frac{1}{b}}(x)$$

Luego las gráficas de las funciones \log_b y $\log_{\frac{1}{b}}$ son simétricas con respecto al eje X. Por lo tanto, si 0 < b < 1, entonces \log_b es una función **biyectiva**, **estrictamente decreciente**, que verifica la propiedad:

$$x > 1 \iff \log_b(x) < 0$$
 , si $0 < b < 1$

Funciones LOGARITMICAS

Funciones LOGARITMICAS

Funciones EXPONENCIALES y LOGARITMICAS

EJEMPLO

Considere la función $f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ definida, para cada $x\in Dom(f)$, por: $f(x)=\ln(x-1)$. Defina la función $g=f\circ f$.

SOLUCION

Primero es necesario calcular el dominio de f:

$$Dom(f) = \{x \in \mathbb{R} : f(x) \in \mathbb{R}\}$$

$$= \{x \in \mathbb{R} : \ln(x-1) \in \mathbb{R}\}$$

$$= \{x \in \mathbb{R} : x-1 > 0\}$$

$$= [1, +\infty[$$

Ahora estamos en condiciones de calcular el dominio de $g = f \circ f$:

$$\begin{array}{lll} Dom(g) & = & \{x \in]1, +\infty[: f(x) \in]1, +\infty[\} \\ & = & \{x \in]1, +\infty[: \ln(x-1) \in]1, +\infty[\} \\ & = & \{x \in]1, +\infty[: \ln(x-1) > 1\} \\ & = & \{x \in]1, +\infty[: x-1 > \mathrm{e}\} \text{ pues } \ln \text{ es creciente} \\ & = & \{x > 1 : x > \mathrm{e} + 1\} =]\mathrm{e} + 1, +\infty[\neq \emptyset \end{array}$$

Finalmente, la función g es definida por:

$$g:]\mathbf{e} + 1, +\infty[\longrightarrow \mathbb{R}$$

$$g(x) = \ln(\ln(x-1) - 1) \quad \forall x \in]\mathbf{e} + 1, +\infty[$$

