a)	Draw a diagram to show this inform	mation.
	Diagram:	
b)	Calculate the value of x .	
Woi	orking:	
		Answer:
		Answer: (b)(Total 4 mark

The height of a vertical cliff is 450 m. The angle of elevation from a ship to the top of the cliff is 23° . The ship is x metres from the bottom of the cliff.

1.

2. The diagram shows a water tower standing on horizontal ground. The height of the tower is 26.5 m.

From a point A on the ground the angle of elevation to the top of the tower is 28°.

- (a) On the diagram, show and label the angle of elevation, 28° .
- (b) Calculate, **correct to the nearest metre**, the distance x m.

Working:	
	Answers:
	(b)

(Total 4 marks)

3. A rectangular block of wood with face ABCD leans against a vertical wall, as shown in the diagram below. AB = 8 cm, BC = 5 cm and angle $B\hat{A}E = 28^{\circ}$.

Find the vertical height of C above the ground.

4. ABCD is a trapezium with AB = CD and [BC] parallel to [AD]. AD = 22 cm, BC = 12 cm, AB = 13 cm.

Diagram not to scale

(a)	Show that $AE = 5$ cm.	(2)
(b)	Calculate the height BE of the trapezium.	(2)
(c)	Calculate	
	(i) BÂE;	
	(ii) BĈD.	(3)
(d)	Calculate the length of the diagonal [CA].	(3) Fotal 10 marks)

(b)	Calculate the distance between Brian and the deer.
(c)	Brian looks at Andrew, and then turns through an angle θ to look at the deer. Calculate the value of θ .
Dia	agram: (a)

Andrew is at point A in a park. A deer is 3 km directly north of Andrew, at point D. Brian is 1.8 km due west of Andrew, at point B.

Draw a diagram to represent this information.

5.

(a)

1. (a)

Note: All three $(23^{\circ}, x, 450 \text{ m})$ must be labelled and in correct position for (M1)

(b)
$$\tan 23^\circ = \frac{450}{x}$$
 (M1)

Note: Follow through from candidate's diagram

$$x = \frac{450}{\tan 23^{\circ}}$$

$$x = 1060.13...$$

$$x = 1060 (3 \text{ s.f.})$$
(A1) (C3)
[4]

2. (a)

(b)
$$x = \frac{26.5}{\tan 28^{\circ}}$$
 (or equivalent, allow follow-through from part (a)) (M1)

$$=49.83925...$$
 (A1)

$$= 50 \text{ m (correct to nearest metre)}$$
 (A1)

[4]

$$3. \quad \sin 28^\circ = \frac{BE}{8} \tag{M1}$$

 $8 \times \sin 28^{\circ} = BE$

$$\hat{FBC} = 28^{\circ}$$
 (M1)

$$\cos 28^\circ = \frac{BF}{5}$$

(M1)

 $5\cos 28^{\circ} = BF$ Altitude of $C = 8\sin 28^{\circ} + 5\cos 28^{\circ}$

= 8.17 cm (3 s.f)(A1)

[4]

4.

(a)
$$22 - 12 = 10$$
 (R1)

Therefore,
$$AE = \frac{10}{2} = 5$$
 (R1)(AG)

Also allow 12 + 2(5) = 22. (R2)

(b)
$$13^2 = 5^2 + BE^2$$
 (M1)

$$BE = \sqrt{169 - 25}$$
= 12 cm (A1)

Also allow just an answer 12 (Pythagorean triple) (C2)

(c) (i)
$$\tan B\hat{A}E = \frac{12}{5}$$
 (accept any other correct ratio) (M1)

$$B\hat{A}E = 67.4^{\circ} (3 \text{ s.f.})$$
 (A1)

(ii)
$$\hat{BCD} = 180 - 67.4$$
 (A1) $= 113^{\circ} (3 \text{ s.f.})$

2

(d)
$$CA^2 = BD^2 = 13^2 + 22^2 - 2(13)(22) \cos 67.4^\circ$$
 (M1)
= 433.183 (M1)

$$CA = 20.8 (3 \text{ s.f.})$$
 (A1)

OR

$$ED = 17 (M1)$$

$$CA^2 = BD^2 = 12^2 + 17^2 = 433$$
 (M1)

Therefore,
$$CA = 20.8 \text{ cm} (3 \text{ s.f})$$
 (A1) 3

Accept 20.9

[10]

5. (a)

Note: Award (A1) for AB = 1.8, (A1) for AD = 3, (A1) for $\hat{A} = 90^{\circ}$

(b)
$$\sqrt{3^2 + 1.8^2} = \sqrt{12.24}$$
 (3.50 (3s.f)) (M1)(A1)(C2)

(c)
$$\tan \theta = \frac{3}{1.8}$$
 (M1)
 $\theta = 59.0^{\circ}$ (or 1.03 radians) (A2)(C3)
[8]