Review – distribution of discrete random variable

Binomial distribution:

- n trials (n is fixed in advance)
- each trial: either success or failure
- Probability of success (p) remains the same throughout the trials
- All trials are independent

Binomial Random Variable:

X = the number of successes after n trials

$$X \sim Binom(n,p)$$
 $P(X=k) = ?$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

Review – distribution of discrete random variable

Geometric distribution:

- each trial: either success or failure
- Probability of success (p) remains the same throughout the trials
- All trials are independent

Geometric Random Variable:

X = the number of trials until the first success occurs

$$X\sim Geom(p)$$
 $P(X=k) = ?$

$$E(X) = 1/p$$

$$Var(X) = \frac{1-p}{p^2}$$

Distribution of

continuous

random variable

Density Curves

Density

density = rectangle height =
$$\frac{\text{relative frequency of class interval}}{\text{class interval width}}$$

Relative Frequency = density * interval width

Density Curves

Histogram

working with smooth curves is much easier than jagged histograms

Density Curve

Density Curves

A density curve is a **smooth curve** that describes the **probability distribution for a continuous random variable X**.

The function that defines this curve is denoted by f(x) and it is called the **density function**.

Density Curves -- Properties

- 1. $f(x) \ge 0$ (the curve can**not** dip below the horizontal axis).
- 2. The total area under the density curve is equal to 1.

The probability that X falls in any particular interval is the area under the density curve and above the horizontal axis.

$$P(7 < X \le 8) = 0.12$$

Density Curves -- Properties

The probability that a continuous random variable x lies between a lower limit a and an upper limit b is

$$P(a < x < b) =$$
(cumulative area to the left of b) $-$ (cumulative area to the left of a) $= P(x < b) - P(x < a)$

Density Curves -- Properties

$$P(x=a) = 0$$

If x is a continuous random variable, then for any two numbers a and b with a < b,

$$P(a \le x \le b) = P(a < x \le b) = P(a \le x < b) = P(a < x < b)$$

Practice:

Let X denote the lifetime (in thousands of hours) of a certain type of fan used in diesel engines. The density curve of X is as pictured.

Shade the area under the curve corresponding to each of the following

- 1.P(X<30)
- 2. The probability that the lifetime is at least 25,000 hours

Practice:

Let X be the amount of time (in minutes) that a particular San Francisco commuter must wait for a BART train. Suppose that the density curve is as pictured (a uniform distribution):

- a. What is the probability that X is less than 10 minutes? more than 15 minutes?
- b. What is the probability that X is between 7 and 12 minutes?
- c. Find the value c for which P(X<c) = 0.9

Practice:

What is the probability that X is less than 10 minutes?

$$P(X<10) = 0.5$$

more than 15 minutes?

$$P(X>15) = 0.25$$

What is the probability that X is between 7 and 12 minutes?

$$P(7$$

Find the value c for which P(X<c) = 0.9

$$c = 18$$

7.24 Let x denote the amount of gravel sold (in tons) during a randomly selected week at a particular sales facility. Suppose that the density curve has height f(x) above the value x, where

$$f(x) = \begin{cases} 2(1-x) & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

a.
$$P\left(x < \frac{1}{2}\right)$$

b.
$$P\left(x \le \frac{1}{2}\right)$$

c.
$$P\left(x < \frac{1}{4}\right)$$

$$d. \quad P\left(\frac{1}{4} < x < \frac{1}{2}\right)$$

Mean and Median of Density Curves

Median:

The point divides the area under the curve in half

Mean:

The point at which the curve would balance if made out of solid material

Assume the balance point is X=en

moment

 $\int_{-\infty}^{\infty} (u-x) f(x) dx = \int_{0}^{+\infty} (x-u) f(x) dx$ $= \int_{-\infty}^{\infty} (u-x) f(x) dx + \int_{0}^{+\infty} (x-u) f(x) dx = \int_{0}^{\infty} f(x) u dx + \int_{0}^{+\infty} u f(x) dx$

Left side = $\int_{-\infty}^{+\infty} x f(x) dx$ = E(x)Right side = $\int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} x f(x$ Thus, G(x) is the balance point of the solid material.

For a symmetric Density curve...

For a skewed density curve...

