

Nedbørfeltgrenser, feltparametere og vannføringsindekser er automatisk generert og kan inneholde feil. Resultatene må kvalitetssikres.

Lavvannskart

Areal (A) Effektiv sjø (S_{eff}) Elvelengde (E_L) Elvegradient (E_G) Elvegradient ₁₀₈₅ (G_{1085}) Feltlengde(F_L) H min H 10	48,2 km ² 1,2 % 20,3 km 12,5 m/km 8,8 m/km 10,4 km 174 moh.
$\begin{split} & Elvelengde~(E_L) \\ & Elvegradient~(E_G) \\ & Elvegradient_{1085}~(G_{1085}~) \\ & Feltlengde(F_L) \\ & H_{min} \\ & H_{10} \end{split}$	20,3 km 12,5 m/km 8,8 m/km 10,4 km 174 moh.
$\begin{split} & Elvelengde~(E_L) \\ & Elvegradient~(E_G) \\ & Elvegradient_{1085}~(G_{1085}~) \\ & Feltlengde(F_L) \\ & H_{min} \\ & H_{10} \end{split}$	12,5 m/km 8,8 m/km 10,4 km 174 moh.
$\begin{split} & Elvegradient_{1085} \ (G_{1085} \) \\ & Feltlengde(F_L) \\ & H_{min} \\ & H_{10} \end{split}$	8,8 m/km 10,4 km 174 moh.
$\begin{aligned} & \text{Feltlengde}(F_L) \\ & \text{H}_{\text{min}} \\ & \text{H}_{10} \end{aligned}$	10,4 km 174 moh.
H_{min} H_{10}	174 moh.
H ₁₀	
H ₁₀	212 1
	312 moh.
H ₂₀	341 moh.
H ₃₀	358 moh.
H ₄₀	365 moh.
	376 moh.
H ₆₀	389 moh.
H ₇₀	401 moh.
H ₈₀	421 moh.
H ₉₀	444 moh.
H_{max}	502 moh.
Bre	0,0 %
Dyrket mark	0,1 %
Myr	11,5 %
Sjø	3,1 %
Skog	85,1 %
Snaufjell	0,0 %
Urban	0,0 %
	H ₅₀ H ₆₀ H ₇₀ H ₈₀ H ₉₀ H _{max} Bre Dyrket mark Myr Sjø Skog

1) Verdien er editert

Det er generelt stor usikkerhet i beregninger av lavvannsindekser. Resultatene bør verifiseres mot egne observasjoner eller sammenlignbare målestasjoner.

I nedbørfelt med høy breprosent eller stor innsjøprosent vil tørrværsavrenning (baseflow) ha store bidrag fra disse lagringsmagasinene.

Flomberegning

Vassdragsnr.: 002.EB11A

Kommune: Sør-Odal

Fylke: Hedmark

Vassdrag: Kugga

Flomverdiene viser størrelsen på kulminasjonsflommer for ulike gjentaksintervall. De er beregnet ved bruk av et formelverk som er utarbeidet for nedbørfelt under ca 50 km2. Feltparametere som inngår i formelverket er areal, effektiv sjøprosent og normalavrenning (l/s*km²). For mer utdypende beskrivelse av formelverket henvises det til NVE –Rapport 7/2015 «Veileder for flomberegninger i små uregulerte felt». Det pågar fortsatt forskning for å Det pågar fortsatt forskning for å bestemme klimapåslag for momentanflommer i små nedbørfelt. Frem til resultatene fra disse prosjektene foreligger anbefales et klimapåslag på 1.2 for døgnmiddelflom og 1.4 for kulminasjonsflom i små nedbørfelt.

Kugga	
Areal (km²)	48,17
Klimafaktor	1,4

	Q ^M m3/s l/(s*km²)		Q 5	Q 10	Q 20	Q 50	Q 100	Q 200
	m3/s	1/(S*KIII-)						
Flomfrekvensfaktorer	-	-	1,27	1,51	1,78	2,18	2,54	2,94
95% intervall øvre grense (m³/s)	19,1	396,8	24,8	30,3	36,4	46,0	54,8	63,5
Flomverdier (m³/s)	10,8	224	13,7	16,4	19,3	23,6	27,4	31,8
95% intervall nedre grense (m³/s)	6,1	127	7,6	8,8	10,2	12,1	13,7	15,9
Flommer med klimapåslag (m³/s)	15,1	313,9	13,7	22,9	27,0	33,0	38,4	44,5

Beregningene er automatisk generert og kan inneholde feil. Det er generelt stor usikkerhet i denne typen beregninger. Resultatene må verifiseres mot egne observasjoner eller sammenlignbare målestasjoner. Resultatene er ikke gyldig som grunnlag til flomberegninger for klassifiserte dammer.