CS/ECE 374 FALL 2018
Homework 3 Problem 3

Zhe Zhang (zzhan157@illinois.edu) Ray Ying (xinruiy2@illinois.edu) Anqi Yao (anqiyao2@illinois.edu)

Given languages L_1 and L_2 we define $insert(L_1, L_2)$ to be the language $\{uvw \mid v \in L_1, uw \in L_2\}$ to be the set of strings obtained by "inserting" a string of L_1 into a string of L_2 . For example if $L_1 = \{isfun\}$ and $L_2 = \{0, CS\}$ then

$$insert(L_1, L_2) = \{isfun0, 0isfun, isfunCS, CisfunS, CSisfun\}$$

• The goal is to show that if L_1 and L_2 are regular languages then $insert(L_1, L_2)$ is also regular. In particular you should describe how to construct an NFA $N=(Q,\Sigma,\delta,s,A)$ from two DFAs $M_1=(Q_1,\Sigma,\delta_1,s_1,A_1)$ and $M_2=(Q_2,\Sigma,\delta_2,s_2,A_2)$ such that $L(N)=insert(L(M_1),L(M_2))$. You do not need to prove the correctness of your construction but you should explain the ideas behind the construction (see lab 3 solutions).

Solution:

1. Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, s_2, A_2)$ such that $L(N) = insert(L(M_1), L(M_2))$, We construct an NFA $N = (Q, \Sigma, \delta, s, A)$ that accepts $insert(L(M_1), L(M_2))$ as follows: $Q := Q_1 * Q_2$ $\Sigma := \Sigma$ $\delta((q_2, before), a) := \begin{cases} \{\delta((q_2, a), before), (q_2, after)\} \ a \in L(M_1) \\ \{\delta((q_2, a), before)\} \ otherwise \end{cases}$ $\delta((q_2, after), a) := \{\delta((q_2, a), after)\} \ a \in L(M_2)$ $s := \{s_1, s_2\}$ $A := A_1 \cap A_2$

For the states in the NFA, Q is going to be Q_1*Q_2 without any doubts. Since we can start at both old state s_1 and s_2 , the start state for NFA is just the set contain both s_1 and s_2 . Same reason apply for accepting state, we can end at both old accepting states, the accepting states for NFA is the union of A_1 and A_2 . As for the language it accepts, doesn't matter if the input language that start with $L(M_1)$ or $L(M_2)$, once it receive the language in $L(M_1)$, because $L(N) = insert(L(M_1), L(M_2))$, only breaks the language that is in $L(M_2)$ in half, that means once we pass or enter the start state in $L(M_1)$, there is only one way to the accepting state (only one accepting state as there is only one route).

- The state $(q_2$, before) means (the simulation of) M_2 is in state q_2 and N has not yet enter the start state for M_1 .
- The state $(q_2$, after) means (the simulation of) M_2 is in state q_2 and N has passed the accepting state for M_1 .