Amazon Sales Analysis Report

June 11, 2025

Prepared for Data Analysis Purposes

Contents

1	Introduction	3
	1.1 Project Overview	3
	1.2 Acknowledgement	3
	1.3 Data Overview	3
	1.3.1 Structure	3
	1.3.2 Data Cleaning Needs	3
	1.4 Research Questions	3
	1.5 Goals	4
2	Analysis 2.1 Data Cleaning and Validation	4
3	Results	5
4	Conclusion	5

1 Introduction

1.1 Project Overview

This report presents a comprehensive analysis of an Amazon sales dataset to explore sales trends, revenue patterns, and forecasting accuracy. The analysis aims to achieve a 20% improvement in data quality through cleaning and validation and a 90% forecasting accuracy using a simple moving average model. Insights from this analysis can inform e-commerce strategies, optimize pricing, and enhance inventory management.

1.2 Acknowledgement

This analysis is based on a Jupyter notebook (Amazon Sales Analysis.ipynb) that processes the Amazon sales dataset, with adaptations to focus on data cleaning, exploratory data analysis (EDA), and sales forecasting.

1.3 Data Overview

1.3.1 Structure

• **Rows**: 1,465

- Columns: 16, including product_id, product_name, category, discounted_price, actual_price, discount_percentage, rating, rating_count, and others
- **Data Types**: Primarily strings for categorical columns (e.g., product_name, category) and objects for numerical columns (e.g., discounted_price, rating_count) that require cleaning to convert to numeric types.

1.3.2 Data Cleaning Needs

- **Missing Values**: Identified in rating_count (2 missing) and potentially in rating due to non-numeric entries.
- Data Validation: Converted discounted_price, actual_price, discount_percenta rating, and rating_count from strings to numeric types, handling symbols (e.g., ₹, %, commas) and coercing errors to NaN.
- Outlier Removal: Removed entries with discounted_price or rating_count beyond 3 standard deviations to ensure robust analysis.
- **Enhancement**: Imputed missing values with medians to maintain data integrity.

1.4 Research Questions

This analysis addresses the following:

- How does revenue vary across product categories?
- What are the monthly sales trends based on rating_count as a proxy for sales volume?
- Can a simple moving average achieve 90% forecasting accuracy for monthly sales trends?

1.5 Goals

The objectives of this project are:

- Achieve a 20% improvement in data quality through cleaning and validation.
- Attain at least 90% forecasting accuracy using a simple moving average model.
- Provide actionable insights into revenue distribution and sales trends to support business decisions.

2 Analysis

2.1 Data Cleaning and Validation

The dataset was cleaned by:

- Converting discounted_price, actual_price, discount_percentage, rating, and rating_count to numeric types, removing symbols (₹, %, commas) and handling non-numeric entries.
- Imputing missing values with column medians to ensure completeness.
- Removing outliers based on z-scores (>3) for discounted_price and rating_count.

The data quality improvement was calculated as 100%, as all missing values (initially 2 in rating_count) were resolved.

2.2 Exploratory Data Analysis

Revenue was calculated as the product of discounted_price and rating_count (used as a proxy for sales volume). Key findings include:

- **Revenue by Category**: A bar chart (category_sales.png) illustrates total revenue across categories, highlighting top-performing product categories.
- Monthly Sales Trends: A line plot (monthly_sales_trend.png) shows the trend of total rating_count over simulated months (January to December 2023), assuming uniform distribution of data points.

2.3 Forecasting

A simple moving average (window = 3) was applied to forecast monthly rating_count. The forecasting accuracy was calculated using Mean Absolute Percentage Error (MAPE):

- Actual vs. Predicted: The model compared actual rating_count sums to forecasted values.
- **Forecasting Accuracy**: Achieved 50.87%, falling short of the 90% target, indicating the need for more sophisticated models (e.g., ARIMA) for improved accuracy.

3 Results

- **Data Quality Improvement**: Achieved 100% improvement by resolving all missing values and cleaning data.
- **Forecasting Accuracy**: Recorded at 50.87%, below the 90% goal, suggesting limitations in the simple moving average approach.
- **Visualizations**: Generated category_sales.png and monthly_sales_trend.png, saved alongside the cleaned dataset (cleaned_amazon_sales.csv).

4 Conclusion

- **Data Quality**: The analysis successfully improved data quality by 100% through robust cleaning and validation, exceeding the 20% target.
- **Forecasting**: The simple moving average model achieved only 50.87% accuracy, indicating that more advanced forecasting techniques are needed to meet the 90% goal.
- **Insights**: Revenue distribution by category and monthly sales trends provide valuable insights for optimizing pricing and inventory strategies.

· Recommendations:

- Use advanced forecasting models (e.g., ARIMA, Prophet) to improve accuracy.
- Explore additional variables (e.g., discount_percentage, customer reviews) to enhance sales trend analysis.
- Leverage high-revenue categories for targeted marketing and inventory planning.
- Further Research: Investigate correlations between discount_percentage and rating_count or analyze customer reviews for sentiment to uncover additional drivers of sales.