第一章 图论高级算法

1.1 最大流

最大流算法分成两大类:增广路(augmengting path)算法与预流推进(preflow-push)算法。这一节介绍的三个算法,都属于增广路算法。下面给出几个定义。

流网络

网络流的研究对象是流网络。流网络 G=(V,E,c,s,t) 是一个有向图, $V \times E$ 是其点集与边集,点和边的数目分别记作 $n \times m \circ c$ 是容量函数,每条边($(u,v) \in E$ 都有一容量 $c(u,v) \in \mathbb{N} \circ s$ 和 t 是网络中的两个特殊点,称作源点和汇点。为简便计,流网络简称「网络」或「图」,简记作 $G=(V,E) \circ s$

自环在网络中无意义,我们规定图 G 中不含自环。下文在论述、证明关于网络流的原理、性质或定理时,为了表示上的方便,我们对流网络做出两条限定:

- 1. 图中不存在重边;
- 2. 图中不存在反向边,即若 $(u,v) \in E$,则 $(v,u) \notin E$ 。

这两条限定都不妨碍一般性。我们可以通过将容量相加将重边合为一条边, 反向边可以通过新增一个节点来消除。请读者注意,上文所谓「表示上的方 便」是指一条边可以通过两个端点唯一确定。下文我们要介绍的算法和代 码可以处理含有重边或反向边的图,这两条限定都不是根本性的,仅仅是为 了方便表述而已。 流

流是满足下述两个性质的实值函数 $f: V \times V \to \mathbb{R}$:

容量限制: 对任意 $u, v \in V$, 有 $0 \le f(u, v) \le c(u, v)$ 。

流守恒: 对任意
$$u \in V - \{s,t\}$$
, 有 $\sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)$

f(u,v) 即边 (u,v) 上的流量,若 $(u,v) \notin E$, f(u,v) = 0。从源点 s 到汇点 t 的总流量称作流 f 的值,记作 |f|,不难得出

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s),$$

最大流问题即求给定的网络 G 中的一个值最大的流。

1.1.1 增广路方法

增广路方法是求解最大流问题的一种方法。本章要介绍的三个最大流算法都是基于增广路方法的。增广路算法涉及三个重要概念:残余网络,增广路,割。

残量网络

给定流网络 G = (V, E) 和 G 上的一个流 f,残量网络 G_f 是由 G 和 f 所导出的一个网络。首先定义残余容量 c_f :

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{\vec{T} } (u,v) \in E, \\ f(v,u) & \text{\vec{T} } (v,u) \in E, \\ 0 & \text{\vec{T} } \text{$\vec{$$

这里需要指出我们提出限制 2 的用意。 $(u,v) \in E$ 和 $(v,u) \in E$ 同时成立会给 c_f 的定义带来形式上的不便。残量网络 G_f 定义为 $G_f = (V,E_f)$,其中 $E_f = \{(u,v) \in V \times V \colon c_f(u,v) > 0\}$ 。除了可能含有反向边,残量网络也符合流网络的定义;而我们已经指出「不含反向边」并非根本性的要求,我们可以用残余容量 c_f 类似地定义残量网络上的流,称作残量流。

我们考虑残量流的原因在于,借助残量流 f',可以将原网络 G 上的流 f 修改成一个值更大的流 $f \uparrow f'$ 。用 f' 增广 f ,这正是「增广」二字含义所

1.1 最大流 3

在。增广方法为:

$$(f \uparrow f')(u,v) = \begin{cases} f(u,v) + f'(u,v) - f'(v,u) & 若 (u,v) \in E, \\ 0 & 其他情况. \end{cases}$$

不难证明 $|f \uparrow f'| = |f| + |f'|$ 。

增广路

增广路是残量网络 G_f 上从 s 到 t 的一条简单路径。有了增广路 p,很容易得到一个残量流 f_p 。

$$f_p(u,v) = \begin{cases} c_f(p) & \text{若边 } (u,v) \text{ 在路径 } p \perp, \\ 0 & \text{其他情况.} \end{cases}$$

其中 $c_f(p) = \min\{c_f(u,v): (u,v)$ 在路径p 上}, $c_f(p)$ 称作路径 p 的残余容量。易见, $|f_p| = c_f(p) > 0$ 。

增广路方法即,从图 G 上的某个初始流 f (比如零流) 开始,在 G_f 找一条增广路 p; 沿着 p 增广,更新 f 和 G_f ; 如此循环,直到 G_f 上找不到增广路。此时 f 便是 G 上的一个最大流。

流网络的割

为了给出最大流最小割定理,我们先介绍割的概念。将流网络 G=(V,E) 的点集 V 划分成两个子集 S 和 T=V-S 使得 $s\in S$ 且 $t\in T$, (S,T) 称作 G 的一个割。令 f 为 G 上的一个流,割 (S,T) 之间的净流 f(S,T) 定义为

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

不难证明,对 G 的任意一个割 (S,T) 都有 f(S,T)=|f|。割 (S,T) 的容量 c(S,T) 定义为

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

网络的最小割即所有割之中容量最小者。显然,对于 G 上的任意一个流 f 和 G 的任意一个割 (S,T) 都有 f < c(S,T)。

定理 $\mathbf{1}$ (最大流最小割定理). 若 f 是流网络 G = (V, E, c, s, t) 上的一个流,则下列三个命题等价:

- 1. f 是 G 上的一个最大流。
- 2. 残量网络 G_f 上无增广路。
- 3. 存在某个割 (S,T) 满足 |f|=c(S,T)。

证明. (1)⇒(2): 显然。

(2) ⇒(3): 假设 G_f 中无增广路,即 G_f 上不存在从 s 到 t 的路径。令 $S = \{v \in V : G_f$ 上有从 s 到 v 的路径}, T = V - S, 易见 $t \notin S$, 则 (S,T) 是一个割。考虑点对 $u \in S$ 和 $v \in T$ 。若 $(u,v) \in E$,则必有 f(u,v) = c(u,v);因为若不然则有 $(u,v) \in E_f$,即 $v \in S$ 。若 $(v,u) \in E$,则必有 f(v,u) = 0;因为若不然则有 $c_f(u,v) = f(v,u) > 0$,即 $(u,v) \in E_f$,仍有 $v \in S$ 。若 $(u,v) \notin E$ 且 $(v,u) \notin E$,则 f(u,v) = f(v,u) = 0。因此我们有

$$\begin{split} f(S,T) &= \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0 \\ &= c(S,T) \end{split}$$

所以 $|f| = f(S,T) = c(S,T) \circ (3) \Rightarrow (1)$: 由于对任意割 (S,T) 都有 $|f| \le c(S,T)$, |f| = c(S,T) 蕴含着 f 是一个最大流。

不难看出, 高效地实现增广路方法应从两个方面考虑:

- 1. 如何快速地在残量网络 G_f 上找一条增广路。
- 2. 如何减少增广的次数。

我们已经知道,通过深度优先搜索(DFS)或宽度优先搜索(BFS)可在线性间内找到一条增广路。在下一小节中我们将证明,如果每次都沿着最短增广路(shortest augmenting path,SAP)增广,那么增广次数是 O(VE) 的。沿着最短增广路增广的算法统称为最短增广路算法。下面三个小节中要介绍的算法都属于最短增广路算法。

1.1.2 Edmonds-Karp 算法

Edmonds-Karp 是 SAP 算法的朴素实现。下面介绍代码实现的细节。

1.2 费用流 5

- 1.1.3 Dinic 算法
- 1.1.4 ISAP 算法
- 1.1.5 网络流的建图
- 1.2 费用流
- 1.3 二分图
- 1.3.1 最大流和二分图
- 1.3.2 匈牙利算法
- 1.3.3 二分图模型应用
 - 1.4 图的连通
- 1.4.1 强连通-Tarjan 算法
- 1.4.2 双连通
- 1.4.3 2-SAT 问题