Due Date: 19 September 2022

1 Statistical distance of \mathcal{D}_0' and \mathcal{D}_1'

Here are some facts about statistical distance:

Fact 1.1. For any three distributions $\mathcal{D}_0, \mathcal{D}_1, \mathcal{D}_2$,

$$SD(\mathcal{D}_0, \mathcal{D}_2) \leq SD(\mathcal{D}_0, \mathcal{D}_1) + SD(\mathcal{D}_1, \mathcal{D}_2).$$

Fact 1.2. For any two distributions $\mathcal{D}_0, \mathcal{D}_1$, $\mathsf{SD}(\mathcal{D}_0, \mathcal{D}_1) = \epsilon$ if and only if there exists an adversary \mathcal{A} (not necessarily polynomial time) that can win the following game with probability $1/2 + \epsilon/2$:

- Challenger picks a bit $b \leftarrow \{0,1\}$, samples $u \leftarrow \mathcal{D}_b$ and sends u to \mathcal{A} .
- \mathcal{A} sends its guess b' and wins if b = b'.

We will use the above facts to prove the following theorem.

Theorem 1.3. Suppose $SD(\mathcal{D}_0, \mathcal{D}_1) \leq \epsilon$. Then $SD(\mathcal{D}'_0, \mathcal{D}'_1) \leq t \cdot \epsilon$.

Proof. The proof follows via a sequence of hybrid distributions $\mathcal{H}_0, \ldots, \mathcal{H}_t$, where $\mathcal{H}_0 \equiv \mathcal{D}'_0$, $\mathcal{H}_t \equiv \mathcal{D}'_1$, and \mathcal{H}_i is defined as follows:

 $\mathcal{H}_i = \{ \text{output (t-i) samples chosen independently from } \mathcal{D}_0 \text{ and output i samples chosen independently from } \mathcal{D}_1 \}$

Claim 1.4. For any $i \leq t$, $SD(\mathcal{H}_{i-1}, \mathcal{H}_i) \leq \epsilon$.

Proof. Let Ω be sample space for \mathcal{D}_0 and \mathcal{D}_1 . Let $\Omega = \{ a_1, a_2, ..., a_{n-1}, a_n \}$.

Let define a new sample space $\Omega^t = \{ \text{ output } (t-i) \text{ samples chosen independently from } \mathcal{D}_0 \text{ and output i samples chosen independently from } \mathcal{D}_1 \text{ for } i \in [0,t] \}$

$$SD(\mathcal{H}_{i-1}, \mathcal{H}_i) = \frac{1}{2} (\sum_{z \in \Omega^t} |\Pr_{x \leftarrow \mathcal{H}_{i-1}}[x = z] - \Pr_{x \leftarrow \mathcal{H}_i}[x = z]|). - - - (1)$$

Let $\mathbf{z} = (z_1, z_2, ..., z_t) \in \Omega^t$ where each $z_i \in \Omega$.

$$SD(\mathcal{H}_{i-1}, \mathcal{H}_i) = \frac{1}{2} \left(\sum_{z \in Ot} | \Pr_{x \leftarrow \mathcal{H}_{i-1}}[x = (z_1, z_2, ..., z_t)] - \Pr_{x \leftarrow \mathcal{H}_i}[x = (z_1, z_2, ..., z_t)] | \right) - - - (2)$$

As we know that samples is chosen independently . So we will use probability of independent event formula.

$$\Pr[\mathbf{x}=(z_1, z_2, ..., z_t)] = \Pr[x_1=z_1] \Pr[x_2=z_2] ... \Pr[x_t=z_t].$$

 $SD(\mathcal{H}_{i-1}, \mathcal{H}_i)$

$$\begin{split} &=\frac{1}{2} \big(\sum_{z \in \Omega^t} |\Pr_{x_1 \leftarrow \mathcal{D}_0} [\mathbf{x}_1 = z_1] \Pr_{x_2 \leftarrow \mathcal{D}_0} [\mathbf{x}_2 = z_2] \dots \Pr_{x_{t-i+1} \leftarrow \mathcal{D}_0} [\mathbf{x}_{t-i+1} = z_{t-i+1}] \Pr_{x_{t-i+2} \leftarrow \mathcal{D}_1} [\mathbf{x}_{t-i+2} = z_{t-i+2}] \dots \Pr_{x_t \leftarrow \mathcal{D}_1} [\mathbf{x}_t = z_t] - \Pr_{x_1 \leftarrow \mathcal{D}_0} [\mathbf{x}_1 = z_1] \Pr_{x_2 \leftarrow \mathcal{D}_0} [\mathbf{x}_2 = z_2] \dots \Pr_{x_{t-i} \leftarrow \mathcal{D}_0} [\mathbf{x}_{t-i} = z_{t-i}] \Pr_{x_{t-i+1} \leftarrow \mathcal{D}_1} [\mathbf{x}_{t-i+1} = z_{t-i+1}] \dots \Pr_{x_t \leftarrow \mathcal{D}_1} [\mathbf{x}_t = z_t] |). \\ &= 1_{\frac{1}{2}} \cdot \big\{ \sum_{z \in \Omega^t} |\Pr_{x_1 \leftarrow \mathcal{D}_0} [\mathbf{x}_1 = z_1] \Pr_{x_2 \leftarrow \mathcal{D}_0} [\mathbf{x}_2 = z_2] \dots \Pr_{x_{t-i} \leftarrow \mathcal{D}_0} [\mathbf{x}_{t-i} = z_{t-i}] (\Pr_{x_{t-i+1} \leftarrow \mathcal{D}_0} [\mathbf{x}_{t-i+1} = z_{t-i+1}] - \Pr_{x_{t-i+1} \leftarrow \mathcal{D}_1} [\mathbf{x}_{t-i+1} = z_{t-i+1}] - \Pr_{x_{t-i+1} \leftarrow$$

Let simplify above expression:

Let define $p_{0,i}$ be the probability that a_i is chosen from \mathcal{D}_0 during sampling. Similarly $p_{1,i}$ be the probability that a_i is chosen from \mathcal{D}_1 during sampling.

Then according to total probability theorem:

$$\sum_{i=1}^{n} p_{0,i} = 1 \qquad --(4)$$

$$\sum_{i=1}^{n} p_{1,i} = 1 \qquad --(5)$$

As we know that $z_i \in \Omega$, hence z_i can take "n" different values.

Let fixed z_{t-i-1} say to a_1 and let other z_j vary and take values from Ω for $j \in [1,n]$ - $\{t-i+1\}$.

Note that for each $z_k \in \Omega$ where $k \in [1,t-i]$:

$$\sum_{\substack{z_k \in \Omega, k \in [1, t-i] \\ \text{from equation 4}}} |\Pr_{\substack{x_1 \leftarrow \mathcal{D}_0}} [\mathbf{x}_1 = z_1] \Pr_{\substack{x_2 \leftarrow \mathcal{D}_0}} [\mathbf{x}_2 = z_2] \dots \Pr_{\substack{x_{t-i} \leftarrow \mathcal{D}_0}} [\mathbf{x}_{t-i} = z_{t-i}] | = (p_{0,1} + p_{0,2} + \dots + p_{0,n})^{t-i} = 1.$$

Similarly for each $z_k \in \Omega$ where $k \in [t-i+2,t]$:

$$\sum_{\substack{z_k \in \Omega, k \in [t-i+2,t] \\ \text{(from equation 5)}}} |\Pr_{\substack{x_{t-i+2} \leftarrow \mathcal{D}_1}} [\mathbf{x}_{t-i+2} = z_{t-i+2}] \dots \Pr_{\substack{x_t \leftarrow \mathcal{D}_1}} [\mathbf{x}_t = z_t] | = (p_{1,1} + p_{1,2} + \dots + p_{1,n})^{i-1} = 1.$$

Now from Equation 6 and 7 we can re-write the Equation 3 where value of z_{t-i+1} is fixed to a_1 .

$$SD(\mathcal{H}_{i-1}, \mathcal{H}_i)$$

$$=\frac{1}{2}.\ \{\sum_{z\in\Omega^t}|\Pr_{x_1\leftarrow\mathcal{D}_0}[\mathbf{x}_1=z_1]\Pr_{x_2\leftarrow\mathcal{D}_0}[\mathbf{x}_2=z_2]....\Pr_{x_{t-i}\leftarrow\mathcal{D}_0}[\mathbf{x}_{t-i}=z_{t-i}](\Pr_{x_{t-i+1}\leftarrow\mathcal{D}_0}[\mathbf{x}_{t-i+1}=a_1]-\Pr_{x_{t-i+1}\leftarrow\mathcal{D}_1}[\mathbf{x}_{t-i+1}=a_1]-\Pr_{x_{t-i+1}\leftarrow\mathcal{D}_1}[\mathbf{x}_{t-i+1}=a_1]-\Pr_{x_{t-i+1}\leftarrow\mathcal{D}_1}[\mathbf{x}_{t-i+1}=a_1]+\frac{1}{2}.\ \{\sum_{\substack{z_{t-i+1}\neq a_1\\z\in\Omega^t}}|\Pr_{x_1\leftarrow\mathcal{D}_0}[\mathbf{x}_1=z_1]\Pr_{x_2\leftarrow\mathcal{D}_0}[\mathbf{x}_2=z_2]....\Pr_{x_{t-i}\leftarrow\mathcal{D}_0}[\mathbf{x}_{t-i}=z_1]-\Pr_{x_{t-i}\leftarrow\mathcal{D}_0}[\mathbf{x}_{t-i+1}=a_1]-\Pr_{x_{t-i+1}\leftarrow\mathcal{D}_0}[\mathbf{x}_{t-i+1}=a_1]-\Pr_{x_$$

$$=\frac{1}{2}. \mid \left(\ p_{0,1} + p_{0,2} + \ldots + p_{0,n} \ \right)^{t-i} \left(\underset{x_{t-i+1} \leftarrow \mathcal{D}_0}{Pr} [\mathbf{x}_{t-i+1} = a_1] - \underset{x_{t-i+1} \leftarrow \mathcal{D}_1}{Pr} [\mathbf{x}_{t-i+1} = a_1] \right) \left(\ p_{1,1} + p_{1,2} + \ldots + p_{1,n} \ \right)^{t-1} \mid + \frac{1}{2}. \quad \left\{ \underset{z_{t-i+1} \neq a_1}{\sum} | \underset{x_1 \leftarrow \mathcal{D}_0}{Pr} [\mathbf{x}_1 = z_1] \underset{x_2 \leftarrow \mathcal{D}_0}{Pr} [\mathbf{x}_2 = z_2] \ldots \underset{x_{t-i} \leftarrow \mathcal{D}_0}{Pr} [\mathbf{x}_{t-i} = z_{t-i}] \left(\underset{x_{t-i+1} \leftarrow \mathcal{D}_0}{Pr} [\mathbf{x}_{t-i+1} = a_1] - \underset{x_{t-i+1} \leftarrow \mathcal{D}_1}{Pr} [\mathbf{x}_{t-i+1} = a_1] \right) \underset{x_{t-i+2} \leftarrow \mathcal{D}_1}{Pr} [\mathbf{x}_{t-i+2} = z_{t-i+2}] \ldots \underset{x_{t} \leftarrow \mathcal{D}_1}{Pr} [\mathbf{x}_t = z_t] \mid$$

$$= \frac{1}{2}. \quad \left\{ \sum_{z \in \Omega^t} \left| 1. \binom{Pr}{x_{t-i+1} \leftarrow \mathcal{D}_0} [\mathbf{x}_{t-i+1} = a_1] - \Pr_{x_{t-i+1} \leftarrow \mathcal{D}_1} [\mathbf{x}_{t-i+1} = a_1] \right) . 1 \mid \right\} \\ + \frac{1}{2}. \quad \left\{ \sum_{\substack{z_{t-i+1} \neq a_1 \\ z \in \Omega^t}} \left| \Pr_{x_1 \leftarrow \mathcal{D}_0} [\mathbf{x}_1 = a_1] - \Pr_{x_{t-i} \leftarrow \mathcal{D}_0} [\mathbf{x}_{t-i+1} = a_1] \right\} \right\} \\ - \frac{Pr}{x_{t-i+1} \leftarrow \mathcal{D}_1} [\mathbf{x}_{t-i+1} = a_1] - \Pr_{x_{t-i+1} \leftarrow \mathcal{D}_1} [\mathbf{x}_{t-i+1} = a_1] \right) \Pr_{x_{t-i+2} \leftarrow \mathcal{D}_1} [\mathbf{x}_{t-i+2} = a_1] \\ = z_{t-i+2}] \dots \Pr_{x_t \leftarrow \mathcal{D}_1} [\mathbf{x}_t = z_t] \mid$$

Similarly we can fix remaining values of $z_{t-i+1} \in \{a_2, a_3, ..., a_n\}$ and we will ge following expression:

$$\frac{1}{2}. \left\{ \sum_{j \in \Omega} |(\Pr_{x_{t-i+1} \leftarrow \mathcal{D}_0} [x_{t-i+1} = j] - \Pr_{x_{t-i+1} \leftarrow \mathcal{D}_1} [x_{t-i+1} = j]). \right\} = \mathsf{SD}(\mathcal{D}_0, \mathcal{D}_1).$$

Hence we got
$$SD(\mathcal{H}_{i-1}, \mathcal{H}_i) = SD(D_0, \mathcal{D}_1) \le \epsilon$$
 for $i \in [1,t]$.

Let use Triangle Inequality given as Fact 1.1 to derive final result.

$$SD(\mathcal{D}'_0, \mathcal{D}'_1) \leq SD(\mathcal{D}'_0, \mathcal{H}_1) + SD(\mathcal{H}_1, \mathcal{D}'_1,) - (9)$$

Again we can expand $SD(\mathcal{H}_1, \mathcal{D}'_1,)$ using Triangle Inequality as:

$$SD(\mathcal{H}_1, \mathcal{D}'_1,) \leq SD(\mathcal{H}_1, \mathcal{H}_2) + SD(\mathcal{H}_2, \mathcal{D}'_1,)$$
 -(10)

Similarly we will keep applying triangle equality and the final expression for Equation 8 would be :

$$SD(\mathcal{D}'_{0}, \mathcal{D}'_{1}) \leq SD(\mathcal{D}'_{0}, \mathcal{H}_{1}) + \sum_{i=1}^{i=(t-2)} SD(\mathcal{H}_{i}, \mathcal{H}_{i+1}) + SD(H_{t-1}, \mathcal{D}'_{1}) = \sum_{i=0}^{i=(t-1)} SD(\mathcal{H}_{i}, \mathcal{H}_{i+1}) - - (11)$$
(As $\mathcal{H}_{0} \equiv \mathcal{D}'_{0}$, $\mathcal{H}_{t} \equiv \mathcal{D}'_{1}$)

Now we will apply Equation (7) Result into Equation (10) and we will finally get :

$$SD(\mathcal{D}'_0, \mathcal{D}'_1) \leq \sum_{i=0}^{i=(t-1)} SD(\mathcal{H}_i, \mathcal{H}_{i+1}) \leq t\epsilon \qquad \Rightarrow \quad SD(\mathcal{D}'_0, \mathcal{D}'_1) \leq t\epsilon . \tag{Q.E.D}$$

2 Weak PRPs

Theorem 2.1. Assuming F is a secure PRF, the construction described in the assignment is a weak PRP.

Proof. We will prove that the construction is a weak PRP via a sequence of hybrid worlds. We first present the hybrid worlds below, then show that they are indistinguishable.

World 0: In this world, the challenger uses two PRF keys k_1, k_2 . For every query, the challenger picks (x_i, y_i) uniformly at random, and sends the output of the PRP construction.

- The challenger chooses two uniformly random PRF keys k_1, k_2 .
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then computes $v_i = y_i \oplus F(x_i, k_1)$. It then sends (x_i, y_i) together with $(v_i, x_i \oplus F(v_i, k_2))$.
- Adversary sends b'.

Hybrid 1:

- The challenger chooses a uniformly random function $f \leftarrow \mathsf{Func}[\mathcal{X}, \mathcal{X}]$ and PRF key k_2 .
- For the i^{th} query, the challenger chooses uniformly random x_i, y_i and then computes $\underline{v_i = y_i \oplus f(x_i)}$. It then sends (x_i, y_i) together with $(v_i, x_i \oplus F(v_i, k_2))$.
- Adversary sends b'.

Hybrid 2:

- The challenger chooses two uniformly random functions f_1, f_2 .
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then computes $v_i = y_i \oplus f_1(x_i)$. It then sends (x_i, y_i) together with $(v_i, x_i \oplus f_2(v_i))$.
- Adversary sends b'.

World 1:

- The challenger chooses uniformly random permutation $P \leftarrow \mathsf{Perm}[\mathcal{X}^2]$.
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then sends (x_i, y_i) together with $P(x_i, y_i)$.
- Adversary sends b'.

We will now prove that the hybrids are indistinguishable.

Claim 2.2. Suppose there exists a p.p.t adversary \mathcal{A} such that $p_0 - p_{\text{hyb},1} = \epsilon$. Then there exists a p.p.t reduction algorithm \mathcal{B} that breaks the PRF security of F with probability $1/2 + \epsilon/2$.

Proof. We construct the reduction algorithm \mathcal{B} as follows:

- \mathcal{B} sends x_i to the PRF challenger. The PRF challenger sends $ct = F(x_i, k_1)$ if b = 0 and $ct = f(x_i)$ if b = 1.
- \mathcal{B} chooses y_i, k_2 u.a.r from $\{0,1\}^n$. Sets $v_i = y_i \oplus ct$ and sends $(v_i, x_i \oplus F(v_i, k_2))$ to \mathcal{A} .

• After polynomially many queries, the adversary \mathcal{A} outputs b' sends to \mathcal{B} and \mathcal{B} forwards it to the PRG challenger.

If b = 0, then the adversary \mathcal{A} is in the **World 0** and if b = 1, then the adversary \mathcal{A} is in **Hybrid 1**. Clearly, Pr(b' = 0|b = 0) is same as p_0 and Pr(b' = 0|b = 1) is same as $p_{hyb,1}$.

Claim 2.3. Suppose there exists a p.p.t adversary \mathcal{A} such that $p_{\text{hyb},1} - p_{\text{hyb},2} = \epsilon$. Then there exists a p.p.t reduction algorithm \mathcal{B} that breaks the PRF security of F with probability $1/2 + \epsilon/2$.

Proof. This proof is very similar to the proof of previous claim.

Claim 2.4. Hybrid 2 is indistinguishable from world 1.

Proof. To prove indistinguishability between Hybrid 2 and World 1, we go through the following sequence of hybrids :

Hybrid $2.1 \equiv \text{Hybrid } 2$

- The challenger chooses two uniformly random functions f_1, f_2 .
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then computes $v_i = y_i \oplus f_1(x_i)$. It then sends (x_i, y_i) together with $(v_i, x_i \oplus f_2(v_i))$.
- Adversary sends b'.

Hybrid 2.2:

- The challenger chooses a uniformly random function f and a random number r.
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then computes $v_i = y_i \oplus r$. It then sends (x_i, y_i) together with $(v_i, x_i \oplus f(v_i))$.
- Adversary sends b'.

Hybrid 2.3

- The challenger chooses a uniformly random number r_1 and a random number r_2 .
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then computes $v_i = y_i \oplus r_1$. It then sends (x_i, y_i) together with $(v_i = y_i \oplus r_1, x_i \oplus r_2)$.
- Adversary sends b'.

Hybrid 2.4

- The challenger chooses a uniformly random function $f: \{0,1\}^{2n} \to \{0,1\}^{2n}$.
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then sends $f(x_i||y_i)$.
- Adversary sends b'.

Hybrid $2.5 \equiv$ World 2:

- The challenger chooses a uniformly random permutation $P: \{0,1\}^{2n} \to \{0,1\}^{2n}$.
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then sends P(x, y).
- Adversary sends b'.

Analysis

- Indistinguishability between Hybrid 2.1 and 2.2 follows from the property of random function.
- Similiarly, inditinguishability between Hybrid 2.2 and 2.3 follows from the property of random function.
- Indistinguishability between Hybrid 2.3 and 2.4 follows from the fact that XOR of a string with some random string outputs a random string, now concatenating two random strings of size n gives another random string of size 2n and then using the property of random function, the two are equivalent.

• Indistinguishability between Hybrid 2.4 and 2.5 follows from birthday bound.

This proves that Hybrid 2 and World 1 are indistinguishable.

3 Composing PRGs and PRFs

3.1

Theorem 3.1. Assuming F is a secure PRF and G is a secure PRG, F' is a secure PRF.

Proof. We will prove this theorem via a sequence of hybrid experiments, where world-0 (= hybrid-0) corresponds to the challenger choosing a PRF key, and world-1 (= final hybrid) corresponds to the challenger choosing a uniformly random function.

Description of hybrids: We describe the hybrids in the following way:

World 0: In this world, the challenger uses PRG G and PRF F.

- In i^{th} query, the adversary \mathcal{A} queries for x_i .
- Challenger outputs $G(F(x_i, k))$.
- Adversary \mathcal{A} outputs b'.

Hybrid 1: In this world, the challenger uses PRG G and random function f.

- In i^{th} query, the adversary \mathcal{A} queries for x_i .
- Challenger outputs $G(f(x_i))$.
- Adversary \mathcal{A} outputs b'.

Hybrid 2: In this world, the challenger uses PRG G and samples a random number r for each query. For repeated queries, it uses the same previously sampled random number.

- In i^{th} query, the adversary \mathcal{A} queries for x_i .
- Challenger samples a random number r outputs G(r).
- Adversary \mathcal{A} outputs b'.

Hybrid 3: In this world, the challenger samples a random number r for each query. For repeated queries, it uses the same previously sampled random number.

- The adversary \mathcal{A} queries for x.
- Challenger samples a random number r and outputs r.
- Adversary \mathcal{A} outputs b'.

World 1: In this world, the challenger uses a random function f for each query x and outputs f(x).

- The adversary \mathcal{A} queries for x.
- Challenger outputs f(x).
- Adversary \mathcal{A} outputs b'.

Next, we show that the consecutive hybrids are computationally indistinguishable.

Analysis: We show the indistinguishability between hybrids in the following way:

- Indistinguishability of World 0 and Hybrid 1 follows from the fact that F is a secure PRF.
- Indistinguishability of Hybrid 1 and Hybrid 2 follows from the property of the random function. (Note that Hybrid 1 and Hybrid 2 are equivalent in the way that despite using a random function f in Hybrid 2, we sample the value f(x) on fly for query x).
- Indistinguishability of Hybrid 2 and Hybrid 3 follows from the fact that G is a secure PRG and is secure even for polynomial number of queries (done in class).
- Indistinguishability of Hybrid 3 and World 1 follows from the property of the random function. (Note that Hybrid 3 and World 1 are equivalent in the way that despite using a random function f in Hybrid 3, we sample the value f(x) for query x on fly).

This proves that World 0 and World 1 are indistinguishable.

3.2

3.2.1 Construction of G'

We define $\mathcal{G}'(x||y) = \mathcal{G}(x)$.

Claim 3.2. Suppose there exists a p.p.t adversary \mathcal{A} that breaks the security of the PRG \mathcal{G}' then there exists a p.p.t adversary \mathcal{B} that breaks the PRG security of \mathcal{G} .

Proof. We construct the adversary \mathcal{B} as follows:

- Challenger of PRG G outputs u_b to adversary \mathcal{B} .
- \mathcal{B} sends u_b to \mathcal{A} .
- \mathcal{A} outputs b' to \mathcal{B} and \mathcal{B} forwards the same to challenger of PRG G.

Let adversary \mathcal{A} have the probability of outputting 0 in World 0 and World 1 wrt PRG \mathcal{G}' as p_0 and p_1 respectively. Clearly, in the World 0 wrt PRG \mathcal{G} , $\Pr(b'=0)=p_0$ (adversary \mathcal{A} receives $\mathcal{G}(x)$ for some x) and similarly in the World 1, $\Pr(b'=0)=p_1$ (adversary \mathcal{A} receives a random string of length n as expected). Clearly, if p_0-p_1 is non-negligible, so is the difference $\Pr(b'=0|b=0)$ - $\Pr(b'=0|b=1)$ in case of PRG \mathcal{G} . Thus, \mathcal{B} breaks the PRG security of \mathcal{G} .

Claim 3.3. F' is not a secure PRF.

Proof. We construct an adversary A that breaks the PRF security of F' as follows:

- The adversary A sends polynomially many queries of the form $0^n||x|$ where x is any random string of size n.
- Clearly, the adversary \mathcal{A} receives $F(G(0^n), k)$ as a result of each query.
- Clearly, adversary A can distinguish between a random function and F'.

This proves that F' is not secure.

CBC mode 4

Theorem 4.1. Assuming F is a secure PRP, and $|\mathcal{X}|$ is super-polynomial in the security parameter, the CBC mode of encryption satisfies No-Query-Semantic-Security.

Proof. As discussed in class (Lecture 11, Section 2), this proof goes through a sequence of hybrids.

World 0:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_b = (m_{b,1} \mid | \ldots | | m_{b,\ell})$.
- Challenger chooses PRP key $k \leftarrow \mathcal{K}$. It computes $\mathsf{ct}_1 = F(m_{0,1}, k)$. For all i > 1, it computes $\operatorname{ct}_i = F(m_{0,i} \oplus \operatorname{ct}_{i-1}, k).$ Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- Adversary sends b'

Hybrid 1:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_b = (m_{b,1} \mid | \dots | | m_{b,\ell})$.
- Challenger chooses $f \leftarrow \mathsf{Perm}[\mathcal{X}]$. It computes $\mathsf{ct}_1 = f(m_{0,1})$. For all i > 1, it computes $\mathsf{ct}_i = f(m_{0,i} \oplus \mathsf{ct}_{i-1})$. Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- Adversary sends b'

Hybrid 2:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_b = (m_{b,1} \mid | \dots | | m_{b,\ell})$.
- Challenger chooses $f \leftarrow \mathsf{Perm}[\mathcal{X}]$. It computes $\mathsf{ct}_1 = f(m_{1,1})$. For all i > 1, it computes $\mathsf{ct}_i = f(m_{1,i} \oplus \mathsf{ct}_{i-1})$. Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- Adversary sends b'

World 1:

- 1. A sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$.
- 2. Challenger chooses PRP key $k \leftarrow \mathcal{K}$ and computes $\mathsf{ct}_1 = F(m_{1,1}, k)$. For all i > 1, it computes $\operatorname{ct}_i = F(m_{1,i} \oplus \operatorname{ct}_{i-1}, k).$ Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- 3. Adversary sends b'.

Let $p_0, p_1, p_{\text{hyb},1}$ and $p_{\text{hyb},2}$ denote the probability of adversary \mathcal{A} outputting 0 in world-0, world-1, hybrid-1 and hybrid-2 respectively.

Claim 4.2. Assuming F is a secure PRP, $p_0 \approx p_{\text{hyb},1}$.

Proof. This follows from the PRP security — for a uniformly random PRP key, $F(\cdot, k)$ is indistinguishable from a uniformly random permutation.

Claim 4.3. For any adversary A, $p_{\text{hvb},1} - p_{\text{hvb},2} \leq \mu(n)$.

Proof. Let construct following Hybrids to proof the claim.

Hybrid 1.1:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_0 = (m_{0,1} \mid \mid \ldots \mid \mid m_{0,\ell})$.
- Challenger chooses a random function $F_0 \leftarrow \mathsf{Func}[\mathcal{X}, \mathcal{X}]$. It computes $\underline{\mathsf{ct}_1 = F_0(m_{0,1})}$. For all i > 1, it computes $\mathsf{ct}_i = F_0(m_{0,i} \oplus \mathsf{ct}_{i-1})$.

Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .

• Adversary sends b'

Hybrid 1.2:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_0 = (m_{0,1} \mid | \dots | | m_{0,\ell})$.
- Challenger maintains a table T in which it stores the random strings chosen by the challenger corresponding to the input provided by the adversary.
- Challenger first check the table T for the entry m_0 , if present it uses the random string $y = (y_1||y_2...||y_l)$ used previously. If m_0 is not present in the table, then the challenger chooses uniformly random strings $y_i \leftarrow \mathcal{X}$ for each i. For all i, it computes $\underline{\mathsf{ct}_i = y_i \oplus m_{0,i}}$. Then, it stores $y = (y_1, y_2, ..., y_l)$ corresponding to m_0 .

Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .

• Adversary sends b'

Hybrid 1.3:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_0 = (m_{0,1} \mid | \dots | | m_{0,\ell})$.
- Challenger chooses uniformly random strings $y_i \leftarrow \mathcal{X}$ for each i. For all i, it computes $\underline{\mathsf{ct}_i = y_i \oplus m_{0,i}}$. Finally, it sends $(\mathsf{ct}_1, \dots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- Adversary sends b'

Hybrid 1.4:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_1 = (m_{1,1} \mid | \dots | | m_{1,\ell})$.
- Challenger chooses uniformly random strings $y_i \leftarrow \mathcal{X}$ for each i. For all i, it computes $\underline{\mathsf{ct}_i = y_i \oplus m_{1,i}}$. Finally, it sends $(\mathsf{ct}_1, \dots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- Adversary sends b'

Hybrid 1.5:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_1 = (m_{1,1} \parallel \ldots \parallel m_{1,\ell})$.
- Challenger maintains a table T in which it stores the random strings chosen by the challenger corresponding to the input provided by the adversary.
- Challenger first check the table T for the entry m_1 , if present it uses the random string $y = (y_1||y_2...||y_l)$ used previously. If m_1 is not present in the table, then the challenger chooses uniformly random strings $y_i \leftarrow \mathcal{X}$ for each i. For all i, it computes $\underline{\mathsf{ct}_i = y_i \oplus m_{1,i}}$. Then, it stores $y = (y_1, y_2, ..., y_l)$ corresponding to m_1 .

Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .

• Adversary sends b'

Hybrid 1.6:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_b = (m_{b,1} \mid | \ldots | | m_{b,\ell})$.
- Challenger chooses a random function $F_1 \leftarrow \mathsf{Func}[\mathcal{X}, \mathcal{X}]$. It computes $\underline{\mathsf{ct}_1 = F_1(m_{1,1})}$. For all i > 1, it computes $\underline{\mathsf{ct}_i = F_1(m_{1,i} \oplus \mathsf{ct}_{i-1})}$.

Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .

• Adversary sends b'

Probability Analysis

- $p_{\text{hyb},1} \approx p_{\text{hyb},1.1}$ due to Birthday Bound.
- $p_{\text{hyb},1.1} = p_{\text{hyb},1.2}$, The two experiments are identical in the adversary's view. In one case, it receives the outputs of a random function on distinct inputs, while in the other case, it creates a random function on fly by mapping m to some y.
- $p_{\text{hyb},1.2} = p_{\text{hyb},1.3} \leq q^2/|\mathcal{X}|$, The only difference in the two hybrids happens if some m is sampled twice. Using the birthday bound, we know that this happens with probability at most $q^2/|\mathcal{X}|$.
- $p_{\text{hyb},1.3} = p_{\text{hyb},1.4}$, using security of Shannon's OTP.
- $p_{\text{hyb},1.4} = p_{\text{hyb},1.5} \leq q^2/|\mathcal{X}|$, The only difference in the two hybrids happens if some m is sampled twice. Using the birthday bound, we know that this happens with probability at most $q^2/|\mathcal{X}|$.
- $p_{\text{hyb},1.5} = p_{\text{hyb},1.6}$, The two experiments are identical in the adversary's view. In one case, it receives the outputs of a random function on distinct inputs, while in the other case, it creates a random function on fly by mapping m to some y.
- $p_{\rm hyb,1.6} \approx p_{\rm hyb,2}$ due to Birthday Bound.

From above Probability Analysis, we can conclude that $p_{\rm hyb,1} \approx p_{\rm hyb,2}$.

Hence, For any adversary \mathcal{A} , $p_{\text{hvb},1} - p_{\text{hvb},2} \leq \mu(n)$.

Claim 4.4. Assuming F is a secure PRP, $p_{\text{hvb},2} \approx p_1$.

Proof. This proof is similar to the proof of Claim 4.2.

Putting together the above claims, it follows that the CBC mode of encryption satisfies No-Query-Semantic-Security.

 \Box

5 OWFs

5.1

Let $f: \{0,1\}^n \to \{0,1\}^m$ be a OWF. Let $g: \{0,1\}^n \to \{0,1\}^{m-1}$, where g(x) is computed by evaluating f(x) and then removing the first bit from the output (i.e. if $f(x) = y_1, y_2, ..., y_m$ then $g(x) = y_2, ..., y_m$).

We begin by assuming that g is not an OWF. i.e. given g(x) for some $x \in \{0,1\}^n$, there exists an adversary \mathcal{A} that can output x' in polynomial time such that g(x') = g(x).

Theorem 5.1. We show that if g is not an OWF then, f also can't be an OWF. We will be using the adversary \mathcal{A} to show that f can't be an OWF.

Proof. Given $f(x) = f(x)_1 f(x)_2 ... f(x)_m$ ($f(x)_i$ is the i^{th} bit of f(x)), if the adversary \mathcal{A} is given input $f(x)_2 ... f(x)_m$, then \mathcal{A} outputs x' such that $g(x') = f(x)_2 ... f(x)_m$ for which either $f(x') = 0 ||f(x)_2 ... f(x)_m$ or $f(x') = 1 ||f(x)_2 ... f(x)_m$.

This means that the adversary \mathcal{A} is able to output a valid value x' (f(x') = f(x)) in one of the above two cases depending whether $f(x)_1$ is 0 or 1. --(1)

Thus, we construct our adversary \mathcal{B} for the OWF f as follows:

- The adversary \mathcal{B} receives $f(x) = f(x)_1 f(x)_2 ... f(x)_m$. The adversary \mathcal{B} forwards $f(x)_2 f(x)_3 ... f(x)_m$ to adversary \mathcal{A} .
- \mathcal{A} sends x' to adversary \mathcal{B} and \mathcal{B} checks whether f(x') = f(x).

From (1), we get that the adversary \mathcal{B} will be able to output x' such that f(x') = f(x) for 50% of the cases. This shows that f(x) is not an OWF which is a contradiction. Thus our assumption was wrong that g is not an OWF.

This proves that g is also an OWF.