

<u>Lecture 18: Jeffreys Prior and</u>

<u>Course</u> > <u>Unit 5 Bayesian statistics</u> > <u>Bayesian Confidence Interval</u>

> 10. Bayesian Statistics for Estimation

10. Bayesian Statistics for Estimation Bayesian Estimation

- ► The Bayesian framework can also be used to estimate the true underlying parameter (hence, in a frequentist approach).
- ▶ In this case, the prior distribution does not reflect a prior belief: It is just an artificial tool used in order to define a new class of estimators.

(Caption will be displayed when you start playing the video.)

 X_1, \ldots, X_n is associated with a statistical model $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta}).$

- ▶ Define a prior (that can be improper) with pdf π on the parameter space Θ .
- Compute the posterior pdf $\pi(\cdot|X_1,\ldots,X_n)$ associated with π .

▶ 0:00 / 0:00 ▶ 1.50x ♣) 🔀 © 🛍

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

(a)

1/1 noints (graded)

Generating Speech Output he posterior distribution derived in the worked example from the previous lecture (here and here).

To recap, our parameter of interest is λ , prior distribution $\mathsf{Exp}\,(a)$, and likelihood $\mathsf{Poiss}\,(\lambda)$ for n observations X_1,\ldots,X_n . This is a Gamma distribution with parameters q_0 and λ_0 that you must get from the last two answerboxes in Worked Example Part II.

As before, recall the **Gamma distribution** , which is a probability distribution with parameters q>0 and $\lambda>0$, has support on $(0,\infty)$, and whose density is given by $f(x)=\frac{\lambda^q x^{q-1}e^{-\lambda x}}{\Gamma(q)}$. Here, Γ is the Euler Gamma function.

Of the four sample statistics (mean, median, mode, variance), the Gamma distribution has a simple closed form for three of them. Look up statistics for the Gamma distribution, then for the three that have a simple closed form, calculate them and express your answer in terms of a,

$$n$$
, and $\sum_{i=1}^n X_i$ (use **SumXi**), otherwise enter -1 .

Note that depending on your source, the format of the Gamma distribution may be different, so you must make sure that you have the correct corresponding parameters.

mean:

(SumXi -a)/n+1.96/sqrt(n

$$\frac{SumXi-a}{n} + \frac{1.96}{\sqrt{n}}$$

STANDARD NOTATION

True or False: The variance of this distribution models our uncertainty about the value of the parameter λ .

True

False

Submit

You have used 2 of 3 attempts

(c)

1.0/2 points (graded)

Now, suppose that we instead have the proper prior $\pi(\lambda) \sim \mathsf{Exp}(a)$ (a>0). Again, just as in part (b): conditional on λ , we have observations

 $X_1, X_2, \cdots, X_n \overset{ ext{i.i.d}}{\sim} \mathsf{N}\left(\lambda, 1\right)$. You may assume that $a < \sum_{i=1}^n X_i$. Compute the posterior distribution $\pi\left(\lambda | X_1, X_2, \dots, X_n\right)$, then provide the

following statistics on the posterior distribution. Write Phi for the CDF function Φ () and PhiInv for its inverse.

Use **SumXi** for $\sum_{i=1}^n X_i$.

median:

(SumXi-a)/n+(PhiInv(0.75

mode:

Add a comment

markweitzman (Community TA)

2 days ago

I did the calculation and then compared with the wikipedia page, and they agree and get green check marks.

Add a comment

sandipan dey

about 2 hours ago

I thought the median will be $\mu+\Phi^{-1}\left(\frac{\Phi(0)+\Phi(\infty)}{2}\right)\sigma=\mu+\Phi^{-1}\left(\frac{0.5+1}{2}\right)\sigma=\mu+\Phi^{-1}\left(0.75\right)\sigma$, where μ and σ^2 are same as computed in the earlier problems, since posterior is $\propto\mathcal{N}\left(\mu,\sigma^2\right)$ with the left part with the corresponding standardized value ≤ 0 being truncated. But I got it marked wrong.

With the following code in python, I tried for a few different μ, σ and the median returned by python's $\mathit{truncnorm.median()}$ function and my computed value were exactly same, as shown below (also wikipedia's formula $\mu + \Phi^{-1}\left(\frac{\Phi(-\mu/\sigma) + \Phi(\infty)}{2}\right)\sigma$ with the standardized values do not seem to work, as shown below):

```
from scipy.stats import truncnorm
mu = 10
sigma = 5
print(truncnorm.median(a=0, b=np.Inf, loc=mu, scale=sigma))  # scipy's implementation
# 13.372448750980409
print(mu+norm.ppf(0.75)*(sigma))  # my formula
# 13.372448750980409
print(mu+norm.ppf((1+norm.cdf(-mu/sigma))/2)*(sigma))  # wikipedia's formula
# 10.142584632954586
```

Generating Speech Output

+

+

Did not get what's going wrong here, can anyone help? thanks in advance.

Also, I was thinking of writing some MCMC / variational inference code to approximate the posterior distribution, but never done it before (may be some examples in **computational Bayesian** will be useful, since I am a beginner in probabilistic programming).

[UPDATE] I think I got the issue, a parameter value passed to the scipy function was wrong (it needs to be standardized), wiki's formula is correct.

The correct code should be:

```
print(truncnorm.median(a=-mu/sigma, b=np.Inf, loc=mu, scale=sigma)) # scipy's implementation
# 10.142584632954586
```


© All Rights Reserved