Discrete Mathematics, 2016 Fall - Worksheet 17

November 9, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

1. Please express the following permutations in disjoint cycle form.

(a)
$$\pi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{bmatrix}$$
.

Solution.

(123456)

(b)
$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 3 & 5 \end{bmatrix}$$

Solution.

(124)(365)

2. Prove that in the cycle decomposition produced by the algorithm discussed on the slides, the resulting cycles are pairwise disjoint.

Proof. For the sake of contradiction, assume that some $s \in A$ that is not an element of some cycle $(t, \pi(t), \pi^{(2)}(t), \ldots)$ but some $\pi^{(k)}(s)$ is. Let (k) the smallest such iterate. Then $\pi^{(k-1)}(s)$ is not in the cycle. However, $\pi^{(k)}(s)$ being in the cycle implies that $\pi^{(m)}(t) = \pi^{(k)}(s)$ for some m. However. This means that if $a = \pi^{(k-1)}(s)$ and $b = \pi^{(m-1)}(t)$ then $a \neq b$ (since one of them is in the cycle, the other one isn't), but

$$\pi(a) = \pi(b),$$

contradicting the one-to-one-ness of π .

3. How many permutations in S_n have exactly one cycle?

Solution. Note that without loss of generality, we can assume that our cycle looks like

$$(1a_2a_3\ldots a_n),$$

because we can always cyclically 'rotate' a cycle. Now for $a_2
dots a_n$, we can choose any arrangements of the remaining n-1 numbers, and thus the answer is (n-1)!.

4. Let π, σ be given by

$$\pi = (1)(2, 3, 4, 5)(6, 7, 8, 9),$$
 $\sigma = (1, 3, 5, 7, 9, 2, 4, 6, 8)$

Calculate the following

(a) $\pi \circ \sigma$

(1, 4, 7, 6, 9, 3, 2, 5, 8)

(b) $\sigma \circ \pi$

(1, 3, 6, 9, 8, 2, 5, 4, 7)

(c) π^{-1}

(1)(2,5,4,3)(6,9,8,7)

(d) $\pi^{-1} \circ \pi$.

$$id = (1)(2)(3)(4)(5)(6)(7)(8)(9)$$

- 5. Write the following permutations as the composition of transpositions and determine whether the permutation is even or odd.
 - (a) $(1,3)(2,4,5) = (1,3) \circ (2,5) \circ (2,4)$
 - (b) $(1,2,4,3)(5) = (1,3) \circ (1,4) \circ (1,2)$
 - (c) $[(1,3)(2,4,5)]^{-1} = (1,3)(2,5,4) = (1,3) \circ (2,4) \circ (2,5).$
- 6. Prove the following group facts:
 - (a) If (G, *) is a group and $g \in G$, then $(g^{-1})^{-1} = g$.

Proof. This follows from

$$g^{-1} * g = g * g^{-1} = e$$

(b) If (G, *) is a group with identity element e, then $e^{-1} = e$.

Proof. This is an immediate consequence of

$$e*e=e$$

(c) If (G, *) is a group and $g, h \in G$, then $(g * h)^{-1} = h^{-1} * g^{-1}$.

Proof. Note that on one hand,

$$h^{-1} * q^{-1} * q * h = h^{-1} * e * h = h^{-1} * h = e.$$

On the other hand,

$$g * h * h^{-1} * g^{-1} = g * e * g^{-1} = gg^{-1} = e,$$

which proves the claim.

7. Show that the alternating group (A_n, \circ) is indeed a group.

Proof. First we have to show that A_n is closed under \circ . This indeed holds as if $\tau, \sigma \in A_n$, then

$$\tau = \tau_1 \circ \cdots \circ \tau_a, \qquad \sigma = \sigma_1 \circ \cdots \circ \sigma_b$$

where τ_i and σ_i are transpositions and a, and b are even numbers. Then

$$\tau \circ \sigma = \tau_1 \circ \cdots \circ \tau_a \circ \sigma_1 \circ \cdots \circ \sigma_b$$

which means that $\tau \circ \sigma \in A_n$ as a + b is even.

Associativity and the inverse element $e = id_{\{1,\dots,n\}}$ are inherited from S_n . To show that there are inverses, note that the inverse of $\tau \in A_n$ in S_n is

$$\tau^{-1} = \tau_a^{-1} \circ \dots \circ \tau_1^{-1}$$

which is a decomposition into an even number of transpositions. Thus $\tau^{-1} \in A_n$.