C11 - 4.1 - x-intercepts $x^2 + bx + c "a = 1"$ WS

Factor the following, set y = 0, and set your brackets equal to zero seperately and solve. Then sketch a graph and label the x-inercepts

$$y = x^2 + 5x + 6$$
 _____ X ___ = ___ = ___ = ___ =

Check by foil:

$$y = x^2 + 3x - 4$$
 $X =$

$$y = x^2 - 3x - 18$$
 $X = =$

C11 - 4.1 - x-intercepts $x^2 + bx + c "a = 1"$ WS

Factor the following, set y = 0, and set your brackets equal to zero seperately and solve. Then sketch a graph and label the x – inercepts

$$y = x^2 + 7x + 12$$
 _____ = __ = __ = __ =

Check by foil:

$$x^2 + 4x - 45$$
 $X =$

C11 - 4.1 - x-intercepts " $x^2 + bx + c$, c = 0" WS

Factor the following, set y = 0, and set your Factors equal to zero seperately and solve. Then sketch a graph and label the x-inercepts

$$y = x^2 + 2x$$

Check by foil:

$$y = x^2 + 5x$$

$$y = x^2 - 3x$$

$$y = -x^2 - 13x$$

$$y = 3x^2 + 6x$$

$$y = -x^2 - 10x$$

C11 - 4.2 - x-intercepts
$$ax^2 + bx + c "a = 1"$$
 WS

Factor the following, set y = 0, and set your brackets equal to zero seperately and solve. Then sketch a graph and label the x – inercepts

$$y = 2x^2 + 7x + 6$$
 _____ = Check by foil:

$$y = 2x^2 + 3x - 9$$
 $X = y = 3x^2 - 5x + 2 = x = =$

Factor the following, set y = 0, and set your brackets equal to zero seperaely and solve. Then sketch a graph and label the x-intercepts

$$y=x^2-1$$

$$y=x^2-25$$

$$y = x^2 - 16$$

$$y = x^2 - 49$$

$$y = x^2 - 36$$

$$y = x^2 - 81$$

$$y = x^2 - 64$$

$$y = x^2 - 144$$

$$y = x^2 + 121$$

$$y = 4 - 9x^2$$

$$y = -x^2 + 49$$

$$y=a^2-b^2$$

$$y = 4x^2 - 9$$

$$y = 4x^2 - 16$$

$$y = 4x^2 + 25$$

$$y = 49 - 81x^2$$

$$y = -25 + 121x^2$$

$$y = 81x^2 - 4$$

C11 - 4.2 - Graphing Factored Form TOV WS (a=1)

Graph the following equations using a table of values.

$$y=(x+1)(x-1)$$

x y

				4	١,	7					
 ļ	ļ	 	 	 		·····	 	 	ļ	ļ	
<u> </u>	<u> </u>				L			 	<u> </u>	<u> </u>	
 ·····	ļ	 	 	 			 	 			
 		 	 	 	L		 	 			
 ļ	ļ	 	 	 	L		 	 			
<u> </u>	<u> </u>		 		L		 		İ		
i	i								i	i	A
	_								_		,
 	<u>.</u>	 	 	 			 	 			
 		 	 	 	L		 	 			
 į	į	 	 	 			 	 	ļ		
<u> </u>	<u> </u>										
 	 !	 	 	 			 	 			
 ļ	<u> </u>	 	 	 	H		 	 			
 ·····	į	 	 	 	L		 	 	ļ		

$$y=(x-3)(x+1)$$

$$y=x(x-2)$$

$$y = (x-2)(x+2)$$

C11 - 4.2 - Graphing Factored Form TOV WS ($a \neq 1$)

Graph the following equations using a table of values.

$$y=2(x-1)(x-3)$$

x	y	

$$y=3(x+2)(x+4)$$

$$y = -2(x-1)(x-5)$$

$$y = \frac{1}{2}(x+2)(x+6)$$

C11 - 4.2 - Find Equation in Standard Form HW

Find equation in Standard Form

$$x - int = 1$$
 and 5 $a = 1$

$$x - int = 1 \text{ and } 5$$
 (3, -8)

$$x - int = -3$$
 and 1 $a = 2$

$$x - int = 2 \text{ and } 4$$

$$a = \frac{1}{2}$$

$$x - int = 2 and 4$$
 (0,4)

$$x - int = \frac{1}{2} and \frac{9}{2}$$

C11 - 4.3 - Solve by Completing the Square HW

Set y = 0, complete the square, add or subtact, square root both sides, dont forget about \pm , add or subtact

$$y = x^2 - 4x + 3$$

$$y = x^2 - 8x + 15$$

$$y = x^2 - 10x + 24$$

$$y = x^2 + 4x - 5$$

$$y = x^2 - 10x + 16$$

$$y = 2x^2 + 6x - 9$$

$$y = -3x^2 + 12x + 8$$

$$y = 2x^2 - 8x + 13$$

$$y = x^2 - 4x + 3$$

$$y = x^2 - 8x + 15$$

$$y = x^2 - 10x + 24$$

$$y = x^2 + 4x - 5$$

$$y = x^2 - 10x + 16$$

$$y = 2x^2 + 6x - 9$$

$$y = -3x^2 + 12x + 8$$

$$y = 2x^2 - 8x + 13$$

C11 - 4.4 - Discriminant HW

Find the number of x-intercepts using the discriminant: $b^2 - 4ac$

$$y = x^2 - 4x + 5$$

$$y = x^2 - 16$$

$$y = x^2 + 6x + 8$$

$$y = x^2 - 8x + 16$$

$$y = x^2 + 4x$$

$$y = x^2 - 2x - 24$$

$$y = x^2 - 4x + 5$$

$$y = -x^2 + 4x - 5$$