Параметрические методы решения задачи о мосте Шредингера

Забарянская Ирина

Московский физико-технический институт кафедра интеллектуальных систем

> Научно-исследовательская работа 17 мая 2025 года

Диффузионные модели (DMs)

Основная идея: обратить процесс зашумления данных.

Forward SDE (data
$$\rightarrow$$
 noise)
$$\mathbf{x}(0) \qquad \qquad \mathbf{d}\mathbf{x} = \mathbf{f}(\mathbf{x},t)\mathrm{d}t + g(t)\mathrm{d}\mathbf{w} \qquad \qquad \mathbf{x}(T)$$

$$\mathbf{x}(0) \qquad \qquad \mathbf{d}\mathbf{x} = \left[\mathbf{f}(\mathbf{x},t) - g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\right]\mathrm{d}t + g(t)\mathrm{d}\bar{\mathbf{w}} \qquad \qquad \mathbf{x}(T)$$
Reverse SDE (noise \rightarrow data)

Аппроксимируем $abla_x \log p_t(x) \implies$ генеративная модель!

Ограничение DM №1: трудоемкий вывод

Процесс расшумления:

$$dx_t = x_t - [f(x_t, t) - g^2(t)\nabla_x \log p(x_t, t)]dt + g(t)d\overline{W_t}.$$

Дискретизация процесса расшумления (метод Эйлера-Маруямы):

$$x_{t-\Delta t} = x_t - [f(x_t, t) - g^2(t) \nabla_x \log p(x_t, t)] \Delta t + g(t) \sqrt{\Delta t \xi_t}, \quad \xi_t \sim \mathcal{N}(0, I).$$

Малое Δt

- Более точная симуляция процесса расшумления;
- lacktriangle Много раз пересчитывать $\nabla_x \log p(x_t,t) \implies$ долго.

Ограничение DM №1: трудоемкий вывод

Процесс расшумления:

$$dx_t = x_t - [f(x_t, t) - g^2(t)\nabla_x \log p(x_t, t)]dt + g(t)d\overline{W_t}.$$

Дискретизация процесса расшумления (метод Эйлера-Маруямы):

$$x_{t-\Delta t} = x_t - [f(x_t, t) - g^2(t) \nabla_x \log p(x_t, t)] \Delta t + g(t) \sqrt{\Delta t \xi_t}, \quad \xi_t \sim \mathcal{N}(0, I).$$

Малое Δt :

- Более точная симуляция процесса расшумления;
- lacktriangle Много раз пересчитывать $abla_x \log p(x_t,t) \implies$ долго.

Ограничение DM №2: задача непарного перевода домена

С учителем: Без учителя:

Применимы обусловленные DMs.

He применимы DMs!

Оптимальный транспорт (ОТ, постановка Монжа)

Стоимость транспорта между $p_0, p_1 \in \mathcal{P}_{2,ac}(\mathbb{R}^D)$:

$$Cost(p_0, p_1) = \inf_{T \not | p_0 = p_1} \int_{\mathcal{X}} \frac{\|x_0 - T(x_0)\|^2}{2} p_0(x_0) dx_0.$$

Оптимальный транспорт T^* минимизирует стоимость.

Оптимальное транспортное отображение.

Не оптимальное транспортное отображение.

Энтропийный оптимальный транспорт (ЕОТ)

Стохастический ОТ (постановка Канторовича):

$$\inf_{\pi \in \Pi(p_0,p_1)} \int_{\mathbb{R}^D} C(x_0,\pi(.|x_0)) p_0(x_0) dx_0.$$

Стохастический ОТ с энтропийной регуляризацией:

$$C(x_0, \pi(.|x_0)) \stackrel{\Delta}{=} \int_{\mathbb{R}^D} \frac{\|x_0 - x_1\|^2}{2} \pi(x_1|x_0) dx_1 - \epsilon H(\pi(.|x_0)).$$

Параметр регуляризации ϵ контролирует разнообразие.

EOT: большое ϵ .

EOT: малое ϵ .

Задача о мосте Шредингера (SB)

Обозначения:

 $\mathcal{F}(p_0,p_1)$ - стохастические процессы с маргинальными p_0 и p_1 ; W^ϵ - винеровский процесс с вариацией ϵ .

Задача о мосте Шредингера:

$$\inf_{T \in \mathcal{F}(\rho_{\mathbf{0}}, \rho_{\mathbf{1}})} \mathit{KL}(T \| W^{\epsilon})$$

Связь SB с EOT

Обозначение: π^T совместное распределение процесса T на концах.

Можно переписать:

$$\inf_{T \in \mathcal{F}(p_{\mathbf{0}}, p_{\mathbf{1}})} \mathit{KL}(T \| W^{\epsilon}) = \inf_{T \in \mathcal{F}(p_{\mathbf{0}}, p_{\mathbf{1}})} \mathit{KL}(\pi^T \| \pi^{W^{\epsilon}}) = \inf_{\pi \in \Pi(p_{\mathbf{0}}, p_{\mathbf{1}})} \mathit{KL}(\pi \| \pi^{W^{\epsilon}}).$$

Связь SB с EOT:

Совместное распределение оптимального транспорта T^* – решение EOT с параметром регуляризации ϵ .

$$\pi^{T^*} = \pi^*$$

Yongxin Chen, et al. On the relation between optimal transport and Schrödinger bridges // Optimization Theory and Applications. 2016.

Связь SB с EOT

Обозначение: π^T совместное распределение процесса T на концах.

Можно переписать:

$$\inf_{T \in \mathcal{F}(\rho_{\mathbf{0}}, \rho_{\mathbf{1}})} KL(T \| W^{\epsilon}) = \inf_{T \in \mathcal{F}(\rho_{\mathbf{0}}, \rho_{\mathbf{1}})} KL(\pi^{T} \| \pi^{W^{\epsilon}}) = \inf_{\pi \in \Pi(\rho_{\mathbf{0}}, \rho_{\mathbf{1}})} KL(\pi \| \pi^{W^{\epsilon}}).$$

Связь SB с EOT:

Совместное распределение оптимального транспорта T^* – решение EOT с параметром регуляризации ϵ .

$$\pi^{T^*} = \pi^*$$

Yongxin Chen, et al. On the relation between optimal transport and Schrödinger bridges // Optimization Theory and Applications. 2016.

Характеристика решений ЕОТ

Решения ЕОТ π^* характеризуются начальным распредением p_0 и скалярной функцией $v^*: \mathbb{R}^D \to \mathbb{R}_+$:

$$\pi^*(x_0, x_1) = \pi^*(x_0)\pi^*(x_1|x_0) = p_0(x_0)\frac{\exp(\langle x_0, x_1 \rangle \epsilon)v^*(x_1)}{c_{v^*}(x_0)},$$

$$c_{v^*}(x_0) \stackrel{\Delta}{=} \int_{\mathbb{R}^D} \exp(\langle x_0, x_1 \rangle \epsilon)v^*(x_1)dx_1.$$

 $c_{v^*}(x_0)$ - нормализующая константа; v^* - потенциал Шредингера.

Christian Leonard. A survey of the Schrödinger problem and some of its connections with optimal transport // Discrete and Continuous Dynamical Systems-A. 2014.

Light SB

Вместо решения EOT ightarrow минимизируем KL с искомым планом π^* :

$$\underset{\pi \in \Pi(\rho_{\mathbf{0}}, \rho_{\mathbf{1}})}{\operatorname{arg \, min}} \, \mathit{KL}(\pi \| \pi^{W^{\epsilon}}) \to \underset{\pi}{\operatorname{arg \, min}} \, \mathit{KL}(\pi^{*} \| \pi)$$

Проблема: не знаем π^* .

Решение: выбрать хорошую параметризацию для π .

$$\pi_{\theta}(x_0, x_1) = p_0(x_0)\pi_{\theta}(x_1|x_0) = p_0(x_0)\frac{\exp(\langle x_0, x_1 \rangle \epsilon)v_{\theta}(x_1)}{c_{\theta}(x_0)}$$

 $c_{ heta}(x_0)$ - нормализующая константа, $v_{ heta}$ - параметризация v^* .

Функция потерь Light SB

$$\min_{\theta} KL(\pi^* \| \pi_{\theta}) - C = \min_{\theta} \int_{\mathbb{R}^D} p_0(x_0) \log c_{\theta}(x_0) dx_0 - \int_{\mathbb{R}^D} p_1(x_1) \log v_{\theta}(x_1) dx_1.$$

Правая часть не зависит от π^*

Light SB

Вместо решения EOT ightarrow минимизируем KL с искомым планом π^* :

$$\underset{\pi \in \Pi(\rho_{\mathbf{0}}, \rho_{\mathbf{1}})}{\operatorname{arg \, min}} \, \mathit{KL}(\pi \| \pi^{W^{\epsilon}}) \to \underset{\pi}{\operatorname{arg \, min}} \, \mathit{KL}(\pi^{*} \| \pi)$$

Проблема: не знаем π^* .

Решение: выбрать хорошую параметризацию для π .

$$\pi_{\theta}(x_0, x_1) = p_0(x_0)\pi_{\theta}(x_1|x_0) = p_0(x_0)\frac{\exp(\langle x_0, x_1 \rangle \epsilon)v_{\theta}(x_1)}{c_{\theta}(x_0)},$$

 $c_{ heta}(x_0)$ - нормализующая константа, $v_{ heta}$ - параметризация v^* .

Функция потерь Light SB

$$\min_{\theta} \mathit{KL}(\pi^* \| \pi_\theta) - C = \min_{\theta} \int_{\mathbb{R}^D} p_0(x_0) \log c_\theta(x_0) dx_0 - \int_{\mathbb{R}^D} p_1(x_1) \log v_\theta(x_1) dx_1$$

Правая часть не зависит от π^* !

Light SB

Вместо решения EOT ightarrow минимизируем KL с искомым планом π^* :

$$\underset{\pi \in \Pi(\rho_{\mathbf{0}}, \rho_{\mathbf{1}})}{\operatorname{arg \, min}} \, \mathit{KL}(\pi \| \pi^{W^{\epsilon}}) \to \underset{\pi}{\operatorname{arg \, min}} \, \mathit{KL}(\pi^{*} \| \pi)$$

Проблема: не знаем π^* .

Решение: выбрать хорошую параметризацию для π .

$$\pi_{\theta}(x_0, x_1) = p_0(x_0)\pi_{\theta}(x_1|x_0) = p_0(x_0)\frac{\exp(\langle x_0, x_1 \rangle \epsilon)v_{\theta}(x_1)}{c_{\theta}(x_0)},$$

 $c_{ heta}(x_0)$ - нормализующая константа, $v_{ heta}$ - параметризация v^* .

Функция потерь Light SB:

$$\min_{\theta} \mathsf{KL}(\pi^* \| \pi_{\theta}) - \mathsf{C} = \min_{\theta} \int_{\mathbb{R}^D} p_0(x_0) \log c_{\theta}(x_0) dx_0 - \int_{\mathbb{R}^D} p_1(x_1) \log v_{\theta}(x_1) dx_1.$$

Правая часть не зависит от $\pi^*!$

Light SB: гауссова параметризация

Проблема: сложно вычислить $c_{\theta}(x_0)$ для произвольной v_{θ} .

Решение: аппроксимируем v_{θ} смесью гауссиан:

$$v_{\theta} \stackrel{\Delta}{=} \sum_{k=1}^{K} \alpha_{k} \mathcal{N}(x_{1}|r_{k}, S_{k}), \quad \theta \stackrel{\Delta}{=} \{\alpha_{k}, r_{k}, S_{k}\}_{k=1}^{K}.$$

Теперь $c_{ heta}(x_0)$ аналитически вычислима:

$$\pi_{\theta}(x_1|x_0) = \frac{1}{c_{\theta}(x_0)} \sum_{k=1}^K \widetilde{\alpha}_k(x_0) \mathcal{N}(x_1|r_k(x_0), \epsilon S_k),$$

$$r_k(x_0) \stackrel{\Delta}{=} r_k + S_k x_0, \quad \widetilde{\alpha}_k(x_0) \stackrel{\Delta}{=} \exp \frac{x_0^T S_k x_0 + 2r_k^T x_0}{2\varepsilon}, \quad c_{\theta}(x_0) \stackrel{\Delta}{=} \sum_{k=1}^K \widetilde{\alpha}_k(x_0).$$

Alexander Korotin, et al. Light Schrödinger Bridge // ICLR. 2024

Light SB: гауссова параметризация

Проблема: сложно вычислить $c_{\theta}(x_0)$ для произвольной v_{θ} .

Решение: аппроксимируем v_{θ} смесью гауссиан:

$$v_{\theta} \stackrel{\Delta}{=} \sum_{k=1}^{K} \alpha_k \mathcal{N}(x_1 | r_k, S_k), \quad \theta \stackrel{\Delta}{=} \{\alpha_k, r_k, S_k\}_{k=1}^{K}.$$

Теперь $c_{\theta}(x_0)$ аналитически вычислима:

$$\pi_{\theta}(x_1|x_0) = \frac{1}{c_{\theta}(x_0)} \sum_{k=1}^K \widetilde{\alpha}_k(x_0) \mathcal{N}(x_1|r_k(x_0), \epsilon S_k),$$

$$r_k(x_0) \stackrel{\Delta}{=} r_k + S_k x_0, \quad \widetilde{\alpha}_k(x_0) \stackrel{\Delta}{=} \exp \frac{x_0^T S_k x_0 + 2r_k^T x_0}{2\epsilon}, \quad c_{\theta}(x_0) \stackrel{\Delta}{=} \sum_{k=1}^K \widetilde{\alpha}_k(x_0).$$

Alexander Korotin, et al. Light Schrödinger Bridge // ICLR. 2024.

Вариационная оценка: Bohning vs Jaakkola

Функция потерь Light SB:

$$\min_{\theta} \int_{\mathbb{R}^D} p_0(x_0) \log c_{\theta}(x_0) dx_0 - \int_{\mathbb{R}^D} p_1(x_1) \log v_{\theta}(x_1) dx_1.$$

Как оптимизировать? Исходная статья: градиентный спуск.

Мой результат: вывод вариационной оценки (с Jaakkola).

Оценка Bohning

- Менее точная:
- Быстрее;
- Фиксированная кривизна.

Оценка Jaakkola

- Более точная;
- Медленнее;
- Переменная кривизна.

Эксперимент: Swiss Rolls

Эксперимент: ALAE

Мужчина o женщина.

Взрослый ightarrow ребенок.

Jaakkola Light SB: решение проблемы затухания весов?

Bohning Light SB: $\mathbb{E}_{p_0(x)}[\alpha_k(x)]$.

Jaakkola Light SB: $\mathbb{E}_{p_0(x)}[\alpha_k(x)]$.