LC28 : Cinétique électrochimique

Niveau : CPGE

Prérequis: Réaction d'oxydo-réduction, diagramme E-pH

Expérience introductive

$$E^{0}(Fe^{2+}, Pb) = -0.44 \text{ V}$$

 $E^{0}(H^{+}, H_{2}) = 0 \text{ V}$

Fe(s)+ 2 H⁺ (aq)
$$\rightarrow$$
 Fe²⁺ (aq +H₂(g)

- → Réaction thermodynamiquement favorisée
- → Observation attendue : dégagement de H₂

Etapes d'une réaction électrochimique

Montage à trois électrodes

Electrode de référence

Courbe i-E

Systèmes rapides, systèmes lents

Système rapide

(Fe³⁺, Fe²⁺ sur Pt)

Système lent

(H₃AsO₄, HasO₂ sur Pt)

Palier de diffusion

Palier de diffusion pour le couple Fe³⁺/ Fe²⁺

Mur du solvant

Mur du solvant pour les 2 couples de l'eau $(H_2O/H_2 \text{ et } O_2/H_2O)$

Changement de contrôle

Retour sur l'oxydation du fer

Métal	Cu	Ni	Fe	Zn	Pt _{poli}	Pt _{platiné}
Surtension / V	-0,52	-0,50	-0,46	-0,45	-0,31	-0,27

TABLE 8.1 - Surtension cathodique de dégagement du dihydrogène pour différents métaux

Retour sur l'oxydation du fer

Métal	Cu	Ni	Fe	Zn	Pt _{poli}	Pt _{platiné}
Surtension / V	-0,52	-0,50	-0,46	-0,45	-0,31	-0,27

TABLE 8.1 – Surtension cathodique de dégagement du dihydrogène pour différents métaux

Electrolyse

FIGURE 8.9 – Courbes intensité-potentiel dans le cas de deux électrodes : fonctionnement en générateur (courbes en pointillés) et fonctionnement en électrolyse (courbes pleines)