Value Iteration, for estimating $\pi \approx \pi_*$

Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0Loop:

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation

$$\Delta \leftarrow 0$$

Loop for each
$$s \in S$$
:

 $v \leftarrow V(s)$

$$V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until
$$\Delta < \theta$$

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s' \ r} p(s', r \mid s, a) [r + \gamma V(s')]$