INTRODUCTION TO WIRELESS SENSOR NETWORKS

- by Shahriar Yazdipour
- Complex Embedded Systems
- Technische Universität Ilmenau
- June 2020

AGENDA

- 3 ERA OF COMPUTING
- WHAT ARE WIRELESS SENSOR NETWORKS?
- TYPICAL SCENARIOS AND APPLICATIONS
- DESIGN CHALLENGES
 - Locally Available Resources
 - Diversity and Dynamics
 - Needed Algorithms
 - Dependability

3 ERA OF COMPUTING

- Each of these eras represents a major difference in the role computers play in human life and society.
- The three eras also correspond to major shifts in the dominant form of computing devices and software.

FIRST ERA

- The Corporate Computing Era
- To enhance and empower large organizations (commercial enterprises and governments)
- Share mainframe among
- High cost to provide
- Huge maintenance cost

http://www.wirfs-brock.com/allen/posts/74

SECOND ERA

- Personal Computers
 Era
- Cheaper
- Smaller
- Affordable
- Average user has access more than one
- Rise of internet usage
- Cell Phones

THIRD ERA

- No universally
 accepted name.
 Some people call
 it post-PC,
 cloud, mobile, IoT,
 or web computing
- Desktop computers tend to be replaced by laptops and other portable devices
- Smart Phones / PDA

WHAT IS WIRELESS SENSOR NETWORK?

- Any collection of devices equipped with
 - Processor
 - Sensing and Communication capabilities
 - Being able to organize themselves into a network created in an AdHoc manner
- Wireless communication capability increases functionality of sensors dramatically.
- Wireless sensor networks are one of the most important tools of the third era of computing.
- Help simple intelligent devices around which their main purpose is monitoring the environment, alerting us of the events happening.

TYPICAL SCENARIOS AND APPLICATIONS

Classification based on the complexity of the networks:

- "Intelligent" warehouse
 - item to be monitored inside a warehouse is "tagged" with a small device
 - tags are monitored by the fixed sensor nodes embedded into the walls and shelves
- Environmental monitoring
 - Disaster monitoring category
 - Help humans estimate the effects of the disaster, build maps of the safe areas
- Very large-scale sensor networks applications
 - scenario of a large city where all the cars have integrated sensors
 - sensor nodes communicate with each other collecting traffic information, routes, and special traffic conditions

TYPICAL SCENARIOS AND APPLICATIONS

Classification based on their area of application

- Military applications
- Environmental applications
 - Several aspects of the wildlife are being studied (movement of birds, animals, and even insects)
- Healthcare applications
 - An increasing interest is being shown to the elder population (in home and hospitals)
- Home applications
 - Home security devices
- Other commercial applications

ESP32

DEBO JT ESP32 Development boards ESP32 Wi-Fi and Bluetooth module

Wireless standard: 802.11 b/g/n

Frequency: 2.4 GHz Bluetooth: Classic / LE

Operating voltage: 3.3 V (can be operated via 5-V micro-USB)

Operating temperature: -40 to 125°C

SMALL & CAPABLE

High-level description of Design Goals:

- Long life
 - The sensor node should be able to "live" as long as possible using its own batteries.
 - The targeted lifetime of a node powered by two AA batteries is a couple of years.
- Small size
 - The size of the device should be less than $1 mm^3$
- Inexpensive
 - To encourage large scale deployment, this technology must be really cheap, meaning that the targeted prices in the range of a couple of cents.

LOCALLY AVAILABLE RESOURCES

Small size comes with the disadvantage of very limited resources availability

- Limited processing power
- Low-rate unreliable wireless communication
- Small memory footprint
- Low energy the most important design constraint.

So:

- Each components must be optimized to obtain minimum energy consumption.
- Spend all the idle time in a deep power down mode.
- When active, employ scheduling schemes that take into consideration voltage and frequency scaling.

DIVERSITY AND DYNAMICS

Diversity:

There may be several kinds of sensor nodes present inside a single sensor network. Combining sensing parameters from different sensors and then make a single decision (data-fusion).

For example: To detect if fire has started:

- Light
- Temperature
- Smoke, etc.

Dynamic: Sensor nodes are to be deployed in the real world, most probably in harsh and dynamic environments.

- Influence on the algorithms
- Failures at random times
- Change their transmission range to better suit their energy budget

DEPENDABILITY

More than any other sort of computer network, the wireless sensor networks are subject to failures.

- High probability of failure
- Algorithms must employ some form of robustness in front of the failures
 - Effect on the energy, memory cost, so it must keep failures at a minimum.
- This scenario hardly ever happens simultaneously for all the layers and a combination of lower layer protocols could eliminate such a scenario.
- The preferred approach is that of cross-layer designing and studying of the sensor node as a whole object rather than separate building blocks
- The medium will be an important factor to disturb the message communication
- Even with a perfect environment, collisions will occur due to the imprecise local time estimates and lack of synchronization.

DEPENDABILITY

Another dependability attribute is **Security:**

- The communication channel is opened and cannot be protected.
- This means that others can intercept and to disrupt the transmissions or even to transmit their own data.
- In addition to accessing private information, a third party could also act as an attacker that wants to disrupt the correct functionality of the network.
- The usual protection schemes require too much memory and too much computation power to be employed (the keys themselves are sometimes too big to fit into the limited available memory)

NEXT

The following chapters of the book will focus on

- Particular Issues
- Giving more insight to the current state of the art approaches in this field.

REFERENCE

Networked Embedded Systems by Richard Zurawski Chapter 3

THANK YOU

Q/A