RAPID THERMAL PROCESSING OF CZOCHRALSKI SILICON SUBSTRATES: DEFECTS, DENUDED ZONES, AND MINORITY CARRIER LIFETIME

NORTH CAROLINA STATE UNIVERSITY

G. S. Rozgonyi, D. K. Yang, Y. H. Cao, and Z. Radzimski

Rapid Thermal Processing of Czochralski Silicon: Objectives

To evaluate rapid thermal processing as a viable procedure for:

- 1. Czochralski substrate modification using high temperature defect-dissolution treatments,
- 2. Rapid junction activation following ion implantation

Diagnostic Tools

- 1. MOS Capacitor -- minority carrier lifetime
- 2. X-Ray Topography -- defect delineation
- 3. Nomarski Optical Microscopy & Preferential Chemical Etching -- defect delineation
- 4. Fourier Transform Infrared Microscopy -- oxygen precipitation kinetics

Metal Oxide Semiconductor Capacitor - C

- 1. Capacitance-voltage (C-V) measurements
- 2. Capacitance-time (C-t) measurements
- 3. C-V, C-t measurements at different temperatures T
- 4. Minority carrier generation and recombination lifetime (τ_g and τ_r)

PRECEDING PAGE SLANK NOT FILMUL

×H

Change of Inversion Layer Charge Density with Time

$$\frac{dn_s}{dt} = \left(\frac{n_i (W - W_F)}{\tau_g} + n_i s\right) + \left(\frac{n_i^2 D_n}{N_A L_n}\right)$$

Room temperature A * B (Zerbst, 1966)

Elevated temperature A « B (Schroder, 1984)

n_c - inversion layer charge density

WF - final space charge region width

W - space charge width

ni - intrinsic carrier density

D_n - diffusion constant

L_n - diffusion length

NA - substrate doping concentration

τ_g - generation lifetime

s - surface recombination velocity

 τ_r - recombination lifetime $(\tau_r = L_n^2/D_n)$

Capacitance Versus Voltage (Sample Y2)

180

Capacitance Versus Voltage (Sample Z27)

W.

Zerbst Analysis (Room Temperature)

$$\begin{array}{ccc} -d (C_{ox}/C) & C_{\overline{F}} \\ \hline dt & C-1 \end{array}$$

s œ intercept

Schroder Analysis (Elevated Temperature)

 $\tau_r \propto L_n^2$

 $1-(C_F/C)^2$ vs time

 L_n œ slope

Capacitance Versus Time (Sample Z27)

X-Ray Topography

- 1. X Ray Source: Marconi-Elliot GX-21 (15!:W, Rotating anode)
- 2. Cameras: Lang Transmission
 Double Crystal
- 3. Sample treatment conditions:
 - i. Virgin
 - ii. Lo-Hi + RTP combination
 - iii. Li decoration

Surface Recombination Velocity/X-Ray Topography

MoK_α 220 X30

V: Virgin

A: 700°C/16h dry O2+ 0.0425HCL

B: $1100^{\circ}C/10$ min dry $O_2 + 60$ minwet $O_2 + 10$ min dry O_2

Nomarski Optical Microscopy and Preferential Chemical Etching

Etchant: Secco

Observation: 1. Depth of denuded zone (DZ)

2. Density and size of oxygen precipitates, stacking faults and dislocation.

ORIGINAL PAGE 75 OF POOR QUALITY

- P: 700° C/16h dry O₂+2% HCl+1100°C/(10min dry+65min wet+10min)O₂+2% HCl +1100°C/15min dry O₂+2% HCl
- V: Virgin
- X: RTA 1200°C/2 min Ar

Minority Carrier Lifetime (Units in μ s)

Heat Treatment

RTP(1200°C/2min) in Ar +1100°C/(10min dry+65min wet+10min dry)O₂

Heat Treatment of Samples

A: 700°C/16h dry O₂ + 2% HCl

B: 1100°C/(10 min dry+65 min wet+10 min

dry)O₂ + 2% HCl

C: 1100°C/15 min dry O₂

V: Virgin

X: RTP 1200°C/2 min in Ar

Y: 1200°C/30 min in Ar

 $Z: 1250^{\circ}C/30 \text{ min in dry } O_2 + 2\% \text{ HCI}$

w: 1250°C/30 min in Ar

Arrays of Her Treatments

C V+A+B+C
C X+A+B+C
Y+A+B+C
Z+A+B+C
C W+A+B+C

Heat Treatment of Samples

A: 700° C/16h dry O₂ + 2% HCl

B: 1100°C/(10 min dry+65 min wet+10 min

 $dry)O_2 + 2\%$ HCl

C: 1100° C/15 min dry O₂ + 2% HCl

V: Virgin

X: RTP 1200°C/2 min in Ar

Y: 1200°C/30 min in Ar

 $Z: 1250^{\circ}C/30 \text{ min in dry } O_2$

+ 2% HCl

W: 1250°C/30 min in Ar

C

A + C

B + C

A + B + C

Minority Carrier Lifetime (τ_{g} , μ s)