Листок №NT-1

Цепные дроби

2022.01

Задача 1. Охотник стоит в точке плоскости с координатой (0,0), а в остальных точках с целыми координатами сидят одинаковые зайцы. Докажите, что в каком бы направлении ни выстрелил охотник, он обязательно попадет в зайца.

Задача 2. Найдите $\sup (\sin x + \sin \sqrt{2}x)$.

Задача 3. Десятичная запись числа 2^n может начинаться с любой последовательности цифр.

Определение 1. Будем говорить, что дробь $\frac{p}{a}$ приближает число α с коэффициентом качества δ , если $0 < \left| \alpha - \frac{p}{a} \right| \leqslant \frac{\delta}{a}.$

Задача 4. Число α может быть сколь угодно качественно приближено дробью тогда и только тогда, когда оно иррационально.

Задача 5. Докажите, что число $e = \sum_{i=1}^{n}$ иррационально.

Определение 2. Число α будем называть k-приближсаемым, если для любого $\delta>0$ существует такая дробь $\frac{p}{a}$, что $0 < \left| \alpha - \frac{p}{a} \right| \leqslant \frac{\delta}{a^k}.$

Если же такой дроби для некоторого $\delta > 0$ не существует, будем называть число k-неприближаемым.

Задача 6. a) Число $\sqrt{2}$ является 2-неприближаемым.

б) Алгебраическое число степени k является k-неприближаемым (теорема Лиувилля).

Задача 7. Число $\sum \frac{1}{10^{i!}}$ трансцендентно.

Задача 8. Любое иррациональное число обладает бесконечным число 2-приближений с коэффициентом 1 (в частности, является $(2 - \varepsilon)$ -приближаемым).

Задача 9*. Множество всех $(2 + \varepsilon)$ -приближаемых чисел *имеет меру ноль*¹.

Определение 3. Пусть a_0 — целое число, a_i — натуральные числа. Выражение вида

$$[a_0; a_1; \ldots] := a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}}$$

называется цепной дробью; число $\frac{p_n}{q_n} = [a_0; \dots; a_n]$ называется n-й подходящей дробью или конвергенmo \ddot{u} .

Задача 10. а) Вычислите [3; 7; 15; 1] (с точностью до 7 знаков после запятой) и [1; 1; . . .];

б) разложите в цепную дробь числа 10/7, $\sqrt{3}$, $\sqrt{5}$.

Задача 11. Для любой бесконечной цепной дроби $[a_0; \ldots]$ последовательность конвергент сходится к некоторому действительному числу.

Задача 12. а) Ненулевое рациональное число может разложено в цепную дробь ("алгоритм Евклида"), причем ровно двумя способами: вида $[a_0; \ldots; a_n]$ и $[a_0; \ldots; a_n-1; 1]$.

б) Иррациональное число может разложено в цепную дробь ровно одним способом.

Задача 13. а) $[a_0; a_1; \dots; a_n; z]$ — дробно-линейная функция от z. **б)*** Функция $\frac{az+b}{cz+d}$ $(a,b,c,d\in\mathbb{Z})$ представима в виде $[a_0;\dots;a_n;z]\iff \det\begin{pmatrix} a & b \\ c & d \end{pmatrix}=\pm 1.$

1	2	3	4	5	6 a	6	7	8	9	10 a	10 6	11	12 a	12 6	13 a	13 6

 $^{^{1}}$ Т. е. для каждого положительного δ существует покрытие этого множества не более чем счетным числом интервалов, сумма длин которых не превосходит δ .

Задача 14. Если разложение иррационального числа в цепную дробь периодично, то это квадратичная иррациональность 2 .

Задача 15. Пусть α — положительное число. Рассмотрим последовательность векторов (e_i) : $e_1 = (1\ 0), e_2 = (0\ 1); e_{i+1} = e_{i-1} + a_{i-2}e_i$ где в качестве a_{i-2} берется наибольше натуральное число, при котором e_{i+1} остается с той же стороны от прямой $y = \alpha x$, что и e_{i-1} ("алгоритм вытягивания носов").

б) Вектора (e_{2k-1}) и (e_{2k}) являются вершинами выпуклой оболочки части \mathbb{Z}^2 под и над прямой $y = \alpha x$ соответственно.

B)
$$\alpha = [a_0; a_1; \ldots], e_{n+2} = (q_n p_n).$$

r) *п*-я подходящая дробь является наилучшим (в смысле коэффициента качества приближения $q|\alpha-\frac{p}{q}|$) приближением к α среди дробей со знаменателем, не превосходящим q_n .

Задача 16. а)
$$\det \begin{pmatrix} q_n & q_{n+1} \\ p_n & p_{n+1} \end{pmatrix} = (-1)^{n+1}.$$
 б) У любого иррационального числа α бесконечно много прибли-

жений, таких что $\left|\alpha - \frac{p}{a}\right| < \frac{1}{2a^2}$.

Задача 18. Числитель и знаменатель подходящей дроби для $[1;1;\ldots;1]$ — два последовательных числа Фибоначчи (в частности, $\lim \frac{F_{n+1}}{F_n} = [1;1;\ldots]$).

Задача 19*. Последовательность (a_i) удовлетворяет некоторой линейной рекурренте тогда и только тогда, когда ее производящая функция $a_0 + a_1 t + a^2 t^2 + \dots$ рациональна.

Определение 4. $\Pi ymu \ \mathcal{A}u\kappa a$ — это пути из точки (0,0) в точку (2n,0), состоящие из шагов (1,1) и (1,-1)и не опускающиеся ниже прямой y=0. Количество таких путей — это n-е число Каталана.

 $\Pi y m u \; Mou \kappa u + a = 2$ то пути из точки (0,0) в точку (n,0), состоящие из шагов (1,1), (1,0) и (1,-1)и не опускающиеся ниже прямой y=0. Количество таких путей называется n-м числом Моцкина.

Задача 20. а) Производящая функция для чисел Каталана равна (обобщенной) цепной дроби

$$\frac{1}{1 - \frac{t}{1 - \frac{t}{1 - \dots}}}.$$

б) Ее k-я конвергента дает производящую функцию для путей Дика, не поднимающихся выше прямой y = k...

в) ...и она же равна производящей функции для плоских корневых деревьев³, имеющих высоту не более k.

Задача 21. а) Производящая функция для чисел Моцкина равна (обобщенной) цепной дроби $\frac{1}{1-t-\frac{t^2}{1-t-\frac{t^2}{1-t}}}.$

$$\frac{1}{1-t-\frac{t^2}{1-t-\frac{t^2}{1-\cdots}}}.$$

б) Ее k-я конвергента дает производящую функцию для путей Моцкина, не поднимающихся выше прямой y = k.

(Упражнение: придумайте несколько комбинаторных интерпретаций чисел Моцкина, аналогичных вашим любимым интерпретациям чисел Каталана; попробуйте описать подмножества этих объектов, соответствующие конвергентам цепной дроби.)

14	15 a	15 6	15 B	15 г	16 a	16 6	17	18	19	20 a	20 6	20 B	21 a	21 б

²Как мы увидим позже, верно и обратное ("теорема Лагранжа").

³Ср. с задачей 7 листка «Числа Каталана».