Step-1

Suppose that $B = M^{-1}AM$. Then A and B have the same eigen values. $\hat{a} \in \hat{a} \in A$

Suppose *A* has eigen values $\lambda = \lambda_1, \lambda_2, ..., \lambda_n$

That is the roots of $|A - \lambda I| = 0$ are $\lambda = \lambda_1, \lambda_2, ..., \lambda_n$ $\hat{a} \in [\hat{a} \in [(2)]]$

Replacing A with A+I, we get $|(A+I)-\lambda I|=0 \Rightarrow |A-(\lambda-1)I|=0$

So, its roots are $\lambda_1 - 1, \lambda_2 - 1, ..., \lambda_n - 1$ which the eigen values of A + I are. $\hat{a} \in \hat{a} \in \hat{a} \in \hat{a}$

We follow that the eigen values of A and that of A+I are not same.

In view of (1), we confirm that A and A+I are not similar.