$12a_{0143} \ (K12a_{0143})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{44} - u^{43} + \dots + b + 1, -u^{26} + 19u^{24} + \dots + a - 1, u^{45} + 2u^{44} + \dots + u - 1 \rangle$$

 $I_2^u = \langle b + 1, a + 1, u^3 - u^2 - 2u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{44} - u^{43} + \dots + b + 1, \ -u^{26} + 19u^{24} + \dots + a - 1, \ u^{45} + 2u^{44} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{26} - 19u^{24} + \dots + 2u + 1 \\ u^{44} + u^{43} + \dots + u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{44} + u^{43} + \dots - 19u^{3} + 3u \\ u^{44} + u^{43} + \dots + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} - 4u^{3} + 3u \\ u^{7} - 5u^{5} + 6u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{44} + 2u^{43} + \dots + 4u^{2} + 3u \\ u^{44} + u^{43} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{11} - 8u^{9} + 22u^{7} - 24u^{5} + 9u^{3} \\ u^{13} - 9u^{11} + 29u^{9} - 40u^{7} + 22u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ u^{6} - 4u^{4} + 3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $5u^{44} + 4u^{43} + \cdots 4u 19$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{45} + 22u^{44} + \dots + 74u + 1$
c_2, c_4	$u^{45} - 4u^{44} + \dots + 6u + 1$
c_3, c_8	$u^{45} - u^{44} + \dots + 12u + 8$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$u^{45} - 2u^{44} + \dots + u + 1$
<i>c</i> 9	$u^{45} + 8u^{44} + \dots + 409u + 55$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{45} + 6y^{44} + \dots + 4358y - 1$
c_{2}, c_{4}	$y^{45} - 22y^{44} + \dots + 74y - 1$
c_{3}, c_{8}	$y^{45} + 21y^{44} + \dots + 16y - 64$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$y^{45} - 64y^{44} + \dots + 13y - 1$
<i>c</i> ₉	$y^{45} - 4y^{44} + \dots - 43479y - 3025$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.962969 + 0.169603I		
a = 0.440533 - 0.958645I	-0.28984 - 2.31607I	-13.48731 + 4.06907I
b = 0.692370 + 0.677447I		
u = 0.962969 - 0.169603I		
a = 0.440533 + 0.958645I	-0.28984 + 2.31607I	-13.48731 - 4.06907I
b = 0.692370 - 0.677447I		
u = -1.148590 + 0.071392I		
a = 0.801348 + 0.494679I	-5.22276 + 0.37204I	0
b = -0.427212 - 0.486489I		
u = -1.148590 - 0.071392I		
a = 0.801348 - 0.494679I	-5.22276 - 0.37204I	0
b = -0.427212 + 0.486489I		
u = 1.176560 + 0.211087I		
a = -0.653062 + 0.188078I	-2.36170 - 5.17327I	0
b = 0.348834 - 0.855887I		
u = 1.176560 - 0.211087I		
a = -0.653062 - 0.188078I	-2.36170 + 5.17327I	0
b = 0.348834 + 0.855887I		
u = 0.763709 + 0.251528I		
a = -0.0103561 - 0.1259090I	-1.03136 + 2.41021I	-15.6897 - 1.6774I
b = 0.955005 - 0.546675I		
u = 0.763709 - 0.251528I		
a = -0.0103561 + 0.1259090I	-1.03136 - 2.41021I	-15.6897 + 1.6774I
b = 0.955005 + 0.546675I		
u = 1.191250 + 0.124036I		
a = -1.094580 + 0.310585I	-7.65311 - 1.99196I	0
b = -1.252440 + 0.198803I		
u = 1.191250 - 0.124036I		
a = -1.094580 - 0.310585I	-7.65311 + 1.99196I	0
b = -1.252440 - 0.198803I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.191140 + 0.163730I		
a = -0.78548 - 1.96254I	-6.91071 + 4.51785I	0
b = -1.029290 + 0.504098I		
u = -1.191140 - 0.163730I		
a = -0.78548 + 1.96254I	-6.91071 - 4.51785I	0
b = -1.029290 - 0.504098I		
u = 1.219810 + 0.229016I		
a = 1.09073 - 1.61980I	-4.75327 - 10.58690I	0
b = 1.150280 + 0.609142I		
u = 1.219810 - 0.229016I		
a = 1.09073 + 1.61980I	-4.75327 + 10.58690I	0
b = 1.150280 - 0.609142I		
u = -1.316520 + 0.069582I		
a = 0.845369 + 0.138843I	-7.86567 - 1.43041I	0
b = 0.949980 + 0.382113I		
u = -1.316520 - 0.069582I		
a = 0.845369 - 0.138843I	-7.86567 + 1.43041I	0
b = 0.949980 - 0.382113I		
u = -0.503453 + 0.459470I		
a = 0.37795 + 2.46430I	0.78058 + 8.20264I	-13.8836 - 9.3349I
b = 1.101250 - 0.610224I		
u = -0.503453 - 0.459470I	. =	
a = 0.37795 - 2.46430I	0.78058 - 8.20264I	-13.8836 + 9.3349I
b = 1.101250 + 0.610224I		
u = -0.432497 + 0.443637I		
a = -1.29853 - 0.73079I	2.77707 + 2.93987I	-10.12479 - 5.18879I
b = 0.428503 + 0.789342I		
u = -0.432497 - 0.443637I	2	10.10450 : 5.100505
a = -1.29853 + 0.73079I	2.77707 - 2.93987I	-10.12479 + 5.18879I
b = 0.428503 - 0.789342I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.442889 + 0.349610I		
a = 0.03028 + 3.06490I	-1.64546 - 2.76575I	-16.0685 + 7.3874I
b = -0.954541 - 0.430846I		
u = 0.442889 - 0.349610I		
a = 0.03028 - 3.06490I	-1.64546 + 2.76575I	-16.0685 - 7.3874I
b = -0.954541 + 0.430846I		
u = -0.147862 + 0.512639I		
a = -1.34459 - 1.27617I	1.83508 - 4.99628I	-10.28872 + 3.31837I
b = 1.043660 + 0.604880I		
u = -0.147862 - 0.512639I		
a = -1.34459 + 1.27617I	1.83508 + 4.99628I	-10.28872 - 3.31837I
b = 1.043660 - 0.604880I		
u = -0.229805 + 0.471597I		
a = -0.25152 + 1.93643I	3.37526 + 0.10760I	-7.61315 - 2.95177I
b = 0.527284 - 0.732325I		
u = -0.229805 - 0.471597I		
a = -0.25152 - 1.93643I	3.37526 - 0.10760I	-7.61315 + 2.95177I
b = 0.527284 + 0.732325I		
u = -0.426938 + 0.242547I		
a = -0.516634 - 0.830332I	-2.39909 + 0.70824I	-15.1495 - 9.1471I
b = -1.145690 - 0.133170I		
u = -0.426938 - 0.242547I		
a = -0.516634 + 0.830332I	-2.39909 - 0.70824I	-15.1495 + 9.1471I
b = -1.145690 + 0.133170I		
u = 0.181432 + 0.311155I		
a = 2.35597 - 1.25070I	-0.905303 + 0.433735I	-12.18552 + 1.89292I
b = -0.825100 + 0.293052I		
u = 0.181432 - 0.311155I		
a = 2.35597 + 1.25070I	-0.905303 - 0.433735I	-12.18552 - 1.89292I
b = -0.825100 - 0.293052I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.346739		
a = 1.01677	-0.548092	-17.9540
b = -0.122928		
u = -1.73488 + 0.01556I		
a = 0.165858 + 0.798942I	-10.02540 + 2.83788I	0
b = 0.805113 - 0.767877I		
u = -1.73488 - 0.01556I		
a = 0.165858 - 0.798942I	-10.02540 - 2.83788I	0
b = 0.805113 + 0.767877I		
u = 1.77511 + 0.02023I		
a = 0.581848 - 0.527304I	-15.9251 - 0.7872I	0
b = -0.425874 + 0.628346I		
u = 1.77511 - 0.02023I		
a = 0.581848 + 0.527304I	-15.9251 + 0.7872I	0
b = -0.425874 - 0.628346I		
u = -1.77793 + 0.05224I		
a = -0.414828 - 0.211707I	-13.1145 + 6.3153I	0
b = 0.314583 + 0.909747I		
u = -1.77793 - 0.05224I		
a = -0.414828 + 0.211707I	-13.1145 - 6.3153I	0
b = 0.314583 - 0.909747I		
u = 1.78253 + 0.04085I		
a = -0.78346 + 1.57093I	-17.7770 - 5.4165I	0
b = -1.063730 - 0.545729I		
u = 1.78253 - 0.04085I		
a = -0.78346 - 1.57093I	-17.7770 + 5.4165I	0
b = -1.063730 + 0.545729I		
u = -1.78292 + 0.03166I		
a = -1.096720 - 0.115819I	-18.5397 + 2.6826I	0
b = -1.302410 - 0.221345I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.78292 - 0.03166I		
a = -1.096720 + 0.115819I	-18.5397 - 2.6826I	0
b = -1.302410 + 0.221345I		
u = -1.78906 + 0.05870I		
a = 1.08096 + 1.26242I	-15.7314 + 11.8740I	0
b = 1.181650 - 0.611600I		
u = -1.78906 - 0.05870I		
a = 1.08096 - 1.26242I	-15.7314 - 11.8740I	0
b = 1.181650 + 0.611600I		
u = 1.81198 + 0.01590I		
a = 0.970531 - 0.091202I	-19.4518 + 1.0384I	0
b = 0.989237 - 0.314096I		
u = 1.81198 - 0.01590I		
a = 0.970531 + 0.091202I	-19.4518 - 1.0384I	0
b = 0.989237 + 0.314096I		

II.
$$I_2^u = \langle b+1, \ a+1, \ u^3-u^2-2u+1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^2 - u + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u^2 + 1 \\ -u^2 - u + 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^2 - 1 \\ u^2 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 + u 17$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_8	u^3
c_4	$(u+1)^3$
c_5, c_6, c_7 c_9	$u^3 - u^2 - 2u + 1$
c_{10}, c_{11}, c_{12}	$u^3 + u^2 - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_8	y^3
c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.24698		
a = -1.00000	-7.98968	-19.8020
b = -1.00000		
u = 0.445042		
a = -1.00000	-2.34991	-16.7530
b = -1.00000		
u = 1.80194		
a = -1.00000	-19.2692	-18.4450
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{45} + 22u^{44} + \dots + 74u + 1)$
c_2	$((u-1)^3)(u^{45} - 4u^{44} + \dots + 6u + 1)$
c_3, c_8	$u^3(u^{45} - u^{44} + \dots + 12u + 8)$
c_4	$((u+1)^3)(u^{45} - 4u^{44} + \dots + 6u + 1)$
c_5, c_6, c_7	$(u^3 - u^2 - 2u + 1)(u^{45} - 2u^{44} + \dots + u + 1)$
<i>c</i> ₉	$(u^3 - u^2 - 2u + 1)(u^{45} + 8u^{44} + \dots + 409u + 55)$
c_{10}, c_{11}, c_{12}	$(u^3 + u^2 - 2u - 1)(u^{45} - 2u^{44} + \dots + u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^3)(y^{45} + 6y^{44} + \dots + 4358y - 1)$
c_2, c_4	$((y-1)^3)(y^{45} - 22y^{44} + \dots + 74y - 1)$
c_3,c_8	$y^3(y^{45} + 21y^{44} + \dots + 16y - 64)$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$(y^3 - 5y^2 + 6y - 1)(y^{45} - 64y^{44} + \dots + 13y - 1)$
<i>c</i> ₉	$(y^3 - 5y^2 + 6y - 1)(y^{45} - 4y^{44} + \dots - 43479y - 3025)$