MATH 135 Winter 2020: Final Assignment

Q01. Let p, q, r be distinct primes. Determine $gcd(p^{10}q^{20}r^{30}, (p^2qr^2)^{10})$ in terms of p, q, r.

Solution. Since p, q, and r are distinct, the quantities $p^{10}q^{20}r^{30}$ and $(p^2qr^2)^{10}=p^{20}q^{10}r^{20}$ are in their UPF form. Then, apply GCD PF: $\gcd(p^{10}q^{20}r^{30},p^{20}q^{10}r^{20})=p^{10}q^{10}r^{20}$. \square

Q02. Given that $[x_0] = [6]$ is a solution to [12][x] = [8] in \mathbb{Z}_{64} , write down the complete solution. Express your answer(s) in the form [a], where a is an integer and $0 \le a < 64$.

Solution. By the Modular Arithmetic Theorem, there are gcd(12, 64) = 4 solutions, which are of the form $[6 + \frac{64}{4}k]$ for $0 \le k < 4$. That is, [x] is one of [6], [22], [38], or [54].

Q03. Determine the units digit (i.e., the ones digit) of 7^{202} .

Solution. We must evaluate $7^{202} \pmod{10}$. Since $7^2 \equiv 49 \equiv -1 \pmod{10}$, it follows that $7^{202} \equiv (7^2)^{101} \equiv (-1)^{101} \equiv -1 \equiv 9 \pmod{10}$.

Therefore, the last digit is 9.

Q04. Write $(2-2i)^6$ in standard form.

Solution. Notice that $2 - 2i = 2(1 - i) = 2\sqrt{2}\operatorname{cis}(-\frac{\pi}{4})$. Then, we distribute and apply DMT: $(2\sqrt{2}\operatorname{cis}(-\frac{\pi}{4}))^6 = (2\sqrt{2})^6\operatorname{cis}(-\frac{3\pi}{2}) = 512\operatorname{cis}(\frac{\pi}{2})$.

It follows that in standard form, $(2-2i)^6 = 0 + 512i$.

Q05. Find all $z \in \mathbb{C}$ that satisfy the equation $z^6 = 32z$. You may express your solution(s) in polar form.

Solution. We have $z^6 = 32z \iff z^5 = 32$. In polar form, $32 = 32 \operatorname{cis} 0$. By CNRT, we have the fifth roots of 32 are

$$2 \operatorname{cis} 0, 2 \operatorname{cis} \frac{2\pi}{5}, 2 \operatorname{cis} \frac{4\pi}{5}, 2 \operatorname{cis} \frac{6\pi}{5}, 2 \operatorname{cis} \frac{8\pi}{5}$$

Q06. Determine all integer solutions (x, y) to the linear Diophantine equation 21x + 15y = 72 such that $x \ge 0$ and $y \ge 0$.

Solution. We apply the EEA:

We can stop since $3 \mid 6$ and conclude gcd(21, 15) = 3. Now, 21(-2) + 15(3) = 3 and multiplying through by 24, we have 21(-48) + 15(72) = 72.

It follows by the LDET that the set of all solutions is given by

$$\{(-48+5n,72-7n): n \in \mathbb{Z}\}$$

If both x and y are positive, then $-48 + 5n > 0 \iff n > \frac{48}{5} \iff n \ge 10$ and $72 - 7n > 0 \iff n < \frac{72}{7} \iff n \le 10$.

The only such value is n = 10 so the only such solution is x = 2 and y = 2.

Q07. Let $z, w \in \mathbb{C}$ such that |z| = |w| = 2 and $z\overline{w} = 1 + i$. Determine $|z - w|^2$.

Solution. Let z=a+bi and w=c+di be complex numbers with modulus 2 where $z\overline{w}=1+i$. Then, by definition, $a^2+b^2=c^2+d^2=\sqrt{2}$ and (a+bi)(c-di)=1+i. From the second equation, we have (ac+bd)+(bc-ad)i=1+i. Equating real parts, ac+bd=1. Now,

$$\begin{split} |z-w|^2 &= |(a-c)+(b-d)|^2 \\ &= (a-c)^2 + (b-d)^2 \\ &= a^2 - 2ac + c^2 + b^2 - 2bc + d^2 \\ &= (a^2+b^2) + (c^2+d^2) - 2(ac+bd) \\ &= \sqrt{2} + \sqrt{2} - 2(1) \\ &= 2\sqrt{2} - 2 \end{split}$$

Q08. You are an eavesdropper who has intercepted the ciphertext C = 9 sent using RSA. You have obtained the public key (29,91) and have managed to factor n = 91 as $7 \cdot 13$.

Determine the original message M.

Solution. Let p=7 and q=13, so our secret modulus is $6 \cdot 12=72$. We determine the privkey d knowing that $ed \equiv 29d \equiv 1 \pmod{72}$. Solving by SMT, $29d \equiv 5d \equiv 1 \pmod{8}$ and $29d \equiv 2d \equiv 1 \pmod{9}$.

From the first congruence, by inspection d=5 works, so LCT gives $d\equiv 5\pmod 8$ as the full solution set. So, d=8k+5 for some integer k. Substituting, $2(8k+5)\equiv 16k+10\equiv 7k+10\equiv 1\pmod 9$. Then, $7k\equiv 0\pmod 9$ and by inspection $k\equiv 0\pmod 9$. Finally, d=8(9n)+5=72n+5 with integer n, or, $d\equiv 5\pmod 72$. Indeed, 0< d<72.

Therefore, d = 5.

We decode the message knowing $M \equiv C^d \equiv 9^5 \pmod{91}$. Repeatedly squaring, we have $9^2 \equiv 81 \equiv -10 \pmod{91}$, and $9^4 \equiv 100 \equiv 9 \pmod{91}$.

Therefore,
$$M \equiv 9^{4+1} \equiv (9)(9) \equiv 9^2 \equiv -10 \equiv 81 \pmod{91}$$
, so $M = 81$.

Q09. It is known that 3i is a root of the polynomial $f(x) = 2x^5 - 5x^4 + 18x^3 - 44x^2 + 9$.

(a) Write f(x) as a product of irreducible polynomials in $\mathbb{C}[x]$.

Solution. The CPN gives that f(x) has 5 complex roots, so we must find 5 complex linear factors. By the CJRT, -3i is also a root of f(x). Then, by the Factor Theorem, $(x-3i)(x+3i)=(x^2+9)\mid f(x)$. By long division:

$$\begin{array}{r}
2x^3 - 5x^2 + 1 \\
x^2 + 9) \overline{2x^5 - 5x^4 + 18x^3 - 44x^2 + 9} \\
\underline{-2x^5 - 18x^3} \\
-5x^4 - 44x^2 \\
\underline{-5x^4 + 45x^2} \\
x^2 + 9 \\
\underline{-x^2 - 9} \\
0
\end{array}$$

Inspecting candidates from the Rational Roots Theorem, we find $f(\frac{1}{2}) = 0$.

We divide by (2x-1):

$$\begin{array}{r}
x^2 - 2x - 1 \\
2x^3 - 5x^2 + 1 \\
-2x^3 + x^2 \\
-4x^2 \\
4x^2 - 2x \\
-2x + 1 \\
2x - 1 \\
0
\end{array}$$

Finally, the quadratic formula gives $f(1\pm\sqrt{2})=0$. From these five roots, we multiply the of irreducible first degree factors to get

$$f(x) = (x-3i)(x+3i)(2x-1)(x-1+\sqrt{2})(x-1-\sqrt{2})$$

(b) Write f(x) as a product of irreducible polynomials in $\mathbb{R}[x]$.

Solution. Since $\mathbb{R}[x] \subsetneq \mathbb{C}[x]$, we can consider the factorization from (a). From (a), the only factors not in $\mathbb{R}[x]$ are (x-3i) and (x+3i). Then,

$$f(x) = (x^2 + 9)(2x - 1)(x - 1 + \sqrt{2})(x - 1 - \sqrt{2})$$

(c) Write f(x) as a product of irreducible polynomials in $\mathbb{Q}[x]$.

Solution. Again, $\mathbb{Q}[x] \subsetneq \mathbb{R}[x]$. The only factors in (b) not in $\mathbb{Q}[x]$ are $(x-1\pm\sqrt{2})$. Then,

$$f(x) = (x^2 + 9)(2x - 1)(x^2 - 2x - 1)$$

Q10. True or False. Indicate whether each statement is true or false.

- (a) For all $f(x) \in \mathbb{R}[x]$, if f(x) has no real roots, then f(x) is irreducible in $\mathbb{R}[x]$. True False Counterexample: take $f(x) = x^4 + 2x^2 + 1 = (x^2 + 1)(x^2 + 1)$
- (b) $\{x \in \mathbb{Z} : \gcd(x, 20) = 1\} = \{y \in \mathbb{Z} : \gcd(2y, 40) = 2\}.$ True False Use BL to simplify RHS into LHS
- (c) There are infinitely many integers x satisfying the simultaneous congruence

$$2x \equiv 4 \pmod{8}$$
$$x + 1 \equiv 5 \pmod{7}$$

True False Simplifies to $x \equiv 18 \pmod{28}$

- (d) For every $a \in \mathbb{Z}$, the LDE (2a+1)x + ay = 1 has a solution. True False $Since \gcd(2a+1,a) = \gcd(a,1) = 1$
- (e) In \mathbb{Z}_{48} , the equation [9][x] = [4] has exactly 3 solutions. True False There are none.
- (f) For all $d \in \mathbb{Z}$, if $d \mid 10$ and $d \mid 15$ and $d \mid 10s + 15t$ for some $s, t \in \mathbb{Z}$, then d = 5. True False No special d by DIC

(g) For all polynomials f(x) with integer coefficients, if $f(\frac{\sqrt{2}}{1+i}) = 0$, then $f(\frac{1+i}{\sqrt{2}}) = 0$.

True False Since they are
$$\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2}i$$

Q11. Prove that there does not exist an integer x such that $x^2 \equiv 5 \pmod{6}$.

Proof. We exhaust the values of $x \pmod{6}$:

Notice that no x satisfies $x^2 \equiv 5 \pmod{6}$.

Q12. Let p be an odd prime, and let a be an odd integer such that $p \nmid a$. Prove that

$$a^{p-1} \equiv 1 \pmod{2p}$$
.

Proof. Let p be an odd prime, that is, $p \neq 2$, and a be an odd integer not a multiple of p. By $F\ell T$, $a^{p-1} \equiv 1 \pmod{p}$. Since a is odd, $a \equiv 1 \pmod{2}$ and $a^{p-1} \equiv 1 \pmod{2}$ by CP. Then, by SMT, $a^{p-1} \equiv 1 \pmod{2p}$.

Q13. Prove that for all $a, b, c \in \mathbb{Z}$, $c \mid \gcd(a, c) \cdot \gcd(b, c)$ if and only if $c \mid ab$.

Proof. Let a, b, and c be integers, and say gcd(a,c) = g and gcd(b,c) = h. Then, by Bézout's Lemma, we can write g = as + ct and h = bu + cv for some integers s, t, u, v. Expanding, $gh = (as+ct)(bu+cv) = asbu+ascv+ctbu+c^2tv = ab(su)+c(asv+tbu+ctv)$.

 (\Rightarrow) Suppose that $c \mid gh$. By definition, $g \mid a$ and $h \mid b$. Then, gn = a and hm = b for some integers n and m. It follows that gh(nm) = ab so $gh \mid ab$. Finally, by TD, $c \mid ab$.

(\Leftarrow) Suppose that $c \mid ab$. Then, since $c \mid ab$ and $c \mid c$, by DIC as su and asv + tbu + ctv are integers, $c \mid gh$, finishing the proof.

Q14. Let $\theta \in \mathbb{R}$ be such that $2\sin\theta\cos\theta = \frac{1}{\sqrt{2}}$. Prove that $\sin\theta + \cos\theta$ is irrational.

Proof. Let θ be a real number and $2\sin\theta\cos\theta = \sin 2\theta = \frac{1}{\sqrt{2}}$. Then, WLOG, we restrict $0 \le \theta < 2\pi$, so that $2\theta = \frac{\pi}{4}$ and $\theta = \frac{\pi}{8}$.

Now, recall the half-angle formulae for sine and cosine. We have

$$\sin \theta = \sin \left(\frac{\pi/4}{2}\right) = \sqrt{\frac{1 - \cos(\pi/4)}{2}} = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

and

$$\cos \theta = \cos \left(\frac{\pi/4}{2}\right) = \sqrt{\frac{1 + \cos(\pi/4)}{2}} = \frac{\sqrt{2 + \sqrt{2}}}{2}$$

Then, $\sin \theta + \cos \theta = \frac{\sqrt{2-\sqrt{2}}+\sqrt{2+\sqrt{2}}}{2}$. Let $a = \sin \theta + \cos \theta$, so that

$$2a = \sqrt{2 - \sqrt{2}} + \sqrt{2 + \sqrt{2}}$$

$$4a^2 = 4 + 2\sqrt{2}$$

$$(a^2 - 1)^2 = 2$$

$$0 = a^4 - 2a^2 - 1$$

Let $f(x) = x^4 - 2x^2 - 1$ so that f(a) = 0 and a is a root of f. Then, the Rational Roots Theorem states that candidates for rational roots of f are ± 1 . However, f(1) = -2 and f(-1) = -2. Therefore, there are no rational roots of f, so g is irrational.