WHAT IS CLAIMED IS:

1	1. An integrated circuit comprising:			
2	a differential amplifier having a first input coupled to a pad of the integrated			
3	circuit and a second input coupled to a reference voltage;			
4	a pull-up transistor coupled between a supply voltage and the pad; and			
5	a logic gate having an output coupled to a control electrode of the pull-up			
6	transistor and an input coupled to an output of the differential amplifier.			
1	2. The integrated circuit of claim 1 wherein a voltage output high level at			
2	the pad will be the lesser of the reference voltage level or the supply voltage.			
1	3. The integrated circuit of claim 1 wherein the differential amplifier			
2 .	outputs a logic one when a voltage level at the pad is greater than a voltage level of the			
3	reference voltage.			
1	4. The integrated circuit of claim 1 wherein the reference voltage is less			
2	than the supply voltage.			
1	5. The integrated circuit of claim 1 further comprising:			
2	a leaker device coupled to the pad to statically hold the pad at a desired VOH			
3	level or above.			
1	6. The integrated circuit of claim 5 wherein a control electrode of the			
2	leaker device is coupled to a leaker reference voltage which is generated on-chip.			
1	7. The integrated circuit of claim 5 wherein a control electrode of the			
2	leaker device is coupled to a supply voltage.			
1	8. The integrated circuit of claim 1 further comprising:			
2	a voltage reference generator circuit, coupled to the second input of the			
3	differential amplifier, to generate the reference voltage.			
1	9. The integrated circuit of claim 1 wherein the reference voltage is			
2	provided by way of an external course coupled to a god of the integrated circuit			

1	1	0.	The integrated circuit of claim 1 wherein the logic gate performs an	
2	OR function.			
1	1	1.	The integrated circuit of claim 1 further comprising:	
2 .	10	ogic ar	ray blocks, configurable to implement user-logic functions, providing	
3	a logical output coupled to another input of the logic gate.			
1	1	2.	The integrated circuit of claim 1 wherein the pad is also coupled to an	
2	input buffer circ	uit.		
1	1	3.	The integrated circuit of claim 8 wherein the voltage reference	
2	generator is programmable to select a level of the reference voltage.			
1	1	4.	The integrated circuit of claim 8 wherein the voltage reference	
2	generator is prog	gramm	ed before the integrated circuit is used for normal operation.	
1	1	5.	The integrated circuit of claim 8 wherein the voltage reference	
2	generator is prog	gramm	able to select from a plurality of reference voltage levels.	
1	1	6.	The integrated circuit of claim 1 wherein the supply voltage is a noisy	
2	VCC supply vol	tage.	·	
1	1	7.	The integrated circuit of claim 1 wherein the integrated circuit is a	
2	programmable lo	ogic in	itegrated circuit.	
1	1	8.	The integrated circuit of claim 1 wherein the pull-up transistor	
2	dynamically hol	ds the	pad at a voltage output high level.	
1	1	9.	The integrated circuit of claim 1 further comprising:	
2	a	standa	ard I/O buffer circuit coupled to the pad, wherein the standard I/O	
3	buffer circuit pro	ovides	support for voltage output high levels compatible with the supply	
4	voltage, and the pull-up transistor, differential amplifier, and logic gate provide support for			
5	voltage output high levels compatible with voltages other than the supply voltage.			

- 1 20. The integrated circuit of claim 1 wherein the pull-up transistor is a
- 2 PMOS device.