Overview	SECTION [0101] - 1
----------	--------------------

Туре	No./Date	Name	Address	Zip
Client	C001	Bryna Holland	15 Blanca Drive, Novato	94947
Project	P010	Residence Remodel	55 Loring Avenue, Mill Valley	94941
Drawings	Dec. 1, 2020	PR-01 to PR-11	55 Loring Avenue, Mill Valley	94941

Governing Codes SECTION [0101] - 2

Figure 1: Wind load 1

02 - F01

Figure 2: Wind load 2

02 - F02

Table 01: Standards 02 - T01

Category	Standard	Year
Loading	ASCE-7	2016
Concrete	ACI-318	2014
Wood-National Design Specifications	AWC-NDS	2018
Wood-Special Design Provisions for Wind and Seismic	AWC-SDPWS	2015
Wood Frame Construction Manual	AWC-WFCM	2018

Table 02: Load Types

02 - T02

Sym	Load Effect	Notes
D	Dead load	See IBC 1606 and Chapter 3 of this publication
E	Combined effect of horizontal and vertical earthquake-induced forces as defined in ASCE/SEI 12.4.2	See IBC 1613, ASCE/SEI 12.4.2 and Chapter 6 of this publication
Em	Maximum seismic load effect of horizontal and vertical forces as set forth in ASCE/SEI 12.4.3	See IBC 1613, ASCE/SEI 12.4.3 and Chapter 6 of this publication
Н	Load due to lateral earth pressures, ground water pressure or pressure of bulk materials	See IBC 1610 for soil lateral loads
L	Live load, except roof live load, including any permitted live load reduction	See IBC 1607 and Chapter 3 of this publication
Li	Roof live load including any permitted live load reduction	See IBC 1607 and Chapter 3 of this publication
R	Rain load	See IBC 1611 and Chapter 3 of this publication
W	Load due to wind pressure	See IBC 1609 and Chapter 5 of this publication

Table 03: Load Combinations

02 - T03

CBC 2019 reference	Equation
Equation 16-1	1.4(D +F)
Equation 16-2	1.2(D + F) + I.6(L + H) + 0.5(L
Equation 16-3	1.2(D + F) + I.6(Lr or S or R) + I.6H + (f1L or 0.5W)
Equation 16-4	1.2(D + F) + 1.0W + f1L +1.6H + 0.5(Lr or S or R)

...continued on next page

CBC 2019 reference	Equation
Equation 16-5	1.2(D + F) + 1.0E + f1L + I.6H + f2S
Equation 16-6	0.9D+ I.0W+ I.6H
Equation 16-7	0.9(D + F) + 1.0E+ I.6H

Gravity Loads and Seismic Mass

SECTION [0101] - 3

Table 04: Roof unit dead loads

03 - T04

variable	value	[value]	description
ld1	2.0 psf	0.10 KPa	Urethane foam (4 inch thick)
ld2	1.0 psf	0.05 KPa	Three-ply roofing
ld3	5.0 psf	0.24 KPa	Doug Fir decking 2-in.
ld4	1.0 psf	0.05 KPa	Doug Fir beams 4x12 at 12 ft o.c.
			Total
roofdl1	9.0 psf	0.43 KPa	Total roof unit load

Table 05: Floor unit dead loads

03 - T05

variable	value	[value]	description
ld1	3.0 psf	0.14 KPa	3/4 in. hardwood flooring
ld2	2.0 psf	0.10 KPa	1/2 in. plywood subfloor
ld3	4.0 psf	0.19 KPa	2x10 joists at 16 in. o.c.
ld4	1.5 psf	0.07 KPa	fixtures
			Total
floordl1	10.5 psf	0.50 KPa	Total floor unit load

Table 06: Interior wall unit dead loads

03 - T06

variable	value	[value]	description
ld1	5.5 psf	0.26 KPa	5/8" sheet rock (2)
ld2	2 psf	0.10 KPa	2x4 studs at 16" o.c.
ld3	1.5 psf	0.07 KPa	fixtures
			Total
intwalldl1	9 psf	0.43 KPa	Total interior wall unit load

Table 07: Exterior wall unit dead loads

03 - T07

variable	value	[value]	description
ld1	2.0 psf	0.10 KPa	1/2 in plywood sheathing
ld2	2.0 psf	0.10 KPa	2x4 studs at 16 in o.c.
ld3	3.0 psf	0.14 KPa	5/8 in sheet rock
ld4	1.5 psf	0.07 KPa	fixtures
			Total
extwalldl1	8.5 psf	0.41 KPa	Total exterior wall unit load

Table 08: Areas 03 - T08

variable	value	[value]	description
arearf1	1700.00 sf	157.94 SM	roof area
areaflr1	1200.00 sf	111.48 SM	floor area
htwall1	9.00 ft	2.74 m	wall height
lenwall1	110.00 ft	33.53 m	interior wall length
lenwall2	155.00 ft	47.24 m	exterior wall length 2

Eq. 1: Roof weight

03 - E01

 $rfwt_1 = arearf_1 \cdot roofdl_1$

 $15.30 \text{ kip} = 1700.00 \text{ sf} \cdot 9.00 \text{ psf}$

Eq. 2: Floor weight

03 - E02

 $flrwt_1 = areaflr_1 \cdot floordl_1$

 $12.60 \text{ kip} = 10.50 \text{ psf} \cdot 1200.00 \text{ sf}$

Eq. 3: Partition weight

03 - E03

partwt1 = htwall1.intwalldl1.lenwall1

 $8.91 \text{ kip} = 110.00 \text{ ft} \cdot 9.00 \text{ ft} \cdot 9.00 \text{ psf}$

Eq. 4: Exterior wall weight

03 - E04

exwallwt1 = extwalldl1.htwall1.lenwall2

 $11.86 \text{ kip} = 155.00 \text{ ft} \cdot 8.50 \text{ psf} \cdot 9.00 \text{ ft}$

Eq. 5: Total building weight

03 - E05

totwt1 = exwallwt1 + flrwt1 + partwt1 + rfwt1

48.67 kip = 11857.50 lbs + 12600.00 lbs + 15300.00 lbs + 8910.00 lbs

Table 09: Weights

03 - T09

variable	value	[value]	description [eq. number]
rfwt1	15.30 kip	68.06 KN	Roof weight [01]
flrwt1	12.60 kip	56.05 KN	Floor weight [02]
partwt1	8.91 kip	39.63 KN	Partition weight [03]
exwallwt1	11.86 kip	52.74 KN	Exterior wall weight [04]
totwt1	48.67 kip	216.48 KN	Total building weight [05]

Material Densities and Seismic Models

SECTION [0101] - 4

Eq. 6: Effective model floor load

04 - E06

$$17.93 \text{ psf} = \frac{12600.00 \text{ lbs} + 8910.00 \text{ lbs}}{1200.00 \text{ sf}}$$

Eq. 7: Effective model floor density

04 - E07

$$eflrdens_1 = \frac{eflrdl_1}{0.5 \cdot IN}$$

0.25 pci =
$$\frac{17.93 \text{ lbs/sf}}{0.5 \cdot \text{in}}$$

Eq. 8: Effective model roof density

04 - E08

$$erfdens_1 = \frac{roofdl_1}{1.5 \cdot IN}$$

$$0.04 \text{ pci} = \frac{9.00 \text{ psf}}{1.5 \cdot \text{in}}$$

Eq. 9: Effective model wall density

04 - E09

$$ewalldens_1 = \frac{extwalldl_1}{0.5 \cdot IN}$$

$$0.12 \text{ pci} = \frac{8.50 \text{ psf}}{0.5 \cdot \text{in}}$$

Table 10: Model loads

04 - T10

variable	value	[value]	description [eq. number]
eflrdl1	17.93 psf	0.86 KPa	Effective model floor load [06]
eflrdens1	0.25 pci	67.58 KNcM	Effective model floor density [07]
erfdens1	0.04 pci	11.31 KNcM	Effective model roof density [08]
ewalldens1	0.12 pci	32.05 KNcM	Effective model wall density [09]

Abbreviations and References

SECTION [0101] - 5

References

ACI American Concrete Institute 38800 Country Club Drive Farmington Hills, MI 48331 318—14

AISC

American Institute of Steel 130 East Randolph Street, Suite 2000 Chicago, IL 60601-6219 ANSI/AISC 341-16 Seismic Provisions for Structural Steel Buildings

AISI

American Iron and Steel Institute 25 Massachusetts Avenue, NW Suite 800 Washington, DC 20001 AISI S100-16 North American Specification for the Design of Cold-formed Steel Structural Members, 2016

ASCE/SEI

American Society of Civil Engineers
Structural Engineering Institute
1801 Alexander Bell Drive
Reston, VA 20191-4400
7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures with Supplement No. 1

AWC

American Wood Council
222 Catoctin Circle SE, Suite 201
Leesburg, VA 20175
ANSI/AWC NDS—2018
National Design Specification (NDS) for
Wood Construction—with 2018 NDS Supplement
ANSI/AWC SDPWS—2015
Special Design Provisions for Wind and Seismic

CBC

International Code Council
500 New Jersey Avenue, NW
6th Floor, Washington, DC 20001
California Building Standards Commission
2525 Natomas Park Dr # 130, Sacramento, CA 95833
California Building Code
Part 2 of Title 24, 2019 Edition

CRC

International Code Council 500 New Jersey Avenue, NW 6th Floor, Washington, DC 20001

California Building Standards Commission 2525 Natomas Park Dr # 130, Sacramento, CA 95833 California Residential Code Part 2.5 of Title 24, 2019 Edition

Drawings

55 LORING - RESIDENCE REMODEL AND SEISMIC STRENGTHENING

PR.01: COVER AND INDEX PR.02: PROJECT SCOPE

PR.03: GENERAL NOTES, CONTRACTORS

PR.04: SITE PLAN
PR.05: PLANS

PR.06: ELEVATIONS

PR.07: KITCHEN AND BATH REMODEL PR.08: MASTER BATH, CLOSET, LAUNDRY PR.09: RESIDENCE STRENGTHENING

PR.10: CARPORT STRENGTHENING

PR.11: SITE IMPROVEMENTS

Abbreviations - Terms

ASD Allowable Stress Design
ACI American Concrete Institute

AISC American Institute of Steel Construction

AISI American Iron and Steel Institute

ASTM American Society for Testing and Materials

AWS American Welding Society

AB Anchor Bolt BDRY Boundry

CBC Califiornia Building Code
CRC Califiornia Residential Code

CIP Cast-In-Place

CLR Clear Concrete

CMU Concrete Masonry Unit

CRSI Concrete Reinforcing Steel Institute

CONST JT Construction Joint

CONT Continuous
CJ Control Joint

D-C Demand-Capacity (ratio)

DIA Diameter Dimension

EA Each

EF Each Face

EJ Expansion Joint

ES Each Side

EW Each Way

EXP Bolt Expansion Bolt

EXP JT Expansion Joint

FTG Footing
FND Foundation
GALV Galvanized
GA Gauge
GR Grade
HT Height
IN Inch

ID Inside Diameter

ICBO International Conference of Building Officials

K Kip (1000 Pounds)
LWC Light Weight Concrete

LRFD Load and Resistance Factor Design

NWC Normal Weight Concrete

NIC Not in Contract OC On Center

OD Outside Diameter

OPNG Opening

PVC Polyvinyl Chloride
PSF Pounds per Square Foot
PSI Pounds per Square Inch

R Radius
REINF Reinforced
SIM Similar

SOG Slab on Grade
SL Splice Length

SQ Square Standard

SDI Steel Deck Institute

SF Step Footing or Square Foot

SYM Symmetrical

THK Thick or Thickness
T & B Top and Bottom
T & G Tongue and Groove
TOC Top of Concrete
TOF Top of Foundation
Top of Stool

TOS Top of Steel
TOW Top of Wall
TYP Typical

UNOUnless Noted OtherwiseWWFWelded Wire Fabric

W/ With

WP Working Point

Abbreviations - Math

D = dead load

 $\boldsymbol{L} = \text{live load}$

 D_m = module dead load

E = earthquake load

 F_a = acceleration site coefficient

 F_v = velocity site coefficient

 F_N = normal wind force

 GC_{Ms} = net moment static coefficient

 GC_{Md} = net moment dynamic coefficient

 GC_M = net moment coefficient

 GC_P = net pressure coefficient

 GC_{Ps} = net static pressure coefficient

 GC_{Pd} = net dynamic pressure coefficient

 k_1 = hazard coefficient

 k_2 = terrain and structure coefficient

 k_3 = topography coefficient

Kzt =topographic Factor

 K_z = velocity pressure exposure coefficient

MRI = mean return interval

 p_d = net design wind pressure on module - Pa

SDOF =single degree of freedom

 S_s = short period mapped acceleration

 S_{DS} = site design response acceleration

 $S_1 = 1$ second period mapped acceleration

 S_{MS} = short period parameter

 $S_{M1} = 1$ second period parameter

T =fundamental period of structure

 M_{tor} = wind moment about panel center

 T_0 = short period spectral cap

 T_S = long period spectral cap

 V_b = basic wind speed

 $V_B=$ seismic design base shear

 $oldsymbol{W}=\mathsf{wind}\;\mathsf{load}$

 $oldsymbol{W}=$ seismic weight of structure