Diferenciálny počet funkcií komplexnej premennej

Oľga Stašová

Ústav informatiky a matematiky Fakulta elektrotechniky a informatiky Slovenská technická univerzita

letný semester 2023/2024

Definícia derivácie funkcie komplexnej premennej

Definícia

Nech $f:A(\subset {\bf C})\longrightarrow {\bf C}$ je jednoznačná funkcia komplexnej premennej. Množina A je otvorená a $a\in A$.

- Ak existuje konečná limita $\lim_{z \longrightarrow a} \frac{f(z) f(a)}{z a}$, potom túto funkciu nazývame derivácia funkcie f v bode a, označujeme f'(a) a hovoríme, že funkcia f je diferencovateľná v bode a.
- Ak je funkcia f diferencovateľná v každom bode z A, hovoríme, že f je diferencovateľná funkcia a funkciu

$$f': A(\subset \mathbf{C}) \longrightarrow \mathbf{C}, \ f'(a) = \lim_{z \longrightarrow a} \frac{f(z) - f(a)}{z - a}$$

nazývame derivácia funkcie f.

Pravidlá derivovanie funkcie komplexnej premennej

Pretože definícia derivácie funkcie komplexnej premennej v bode a je rovnaká ako pre funkciu reálnej premennej, platia všetky pravidlá, ktoré platili pre derivovanie funkcií reálnej premennej a tak isto aj všetky vety o diferencovateľnosti, napr. diferencovateľnosť funkcie komplexnej premennej f(z) v nejakom bode z definičného oboru implikuje spojitosť funkcie f v tomto bode.

Parciálne derivácie

Parciálna derivácia funkcie viac premenných je jej derivácia vzhľadom na jednu z jej premenných, pričom s ostatnými premennými pracujeme ako s konštantami.

- znak parciálnej derivácie

$$\frac{\partial u(x,y)}{\partial x}$$
 - parciálna derivácia funkcie $u(x,y)$ podľa premennej x

S premennou y pri výpočte parciálnej derivácie pracujeme tak, ako keby to bola konštanta.

$$\frac{\partial u(x,y,z)}{\partial y}$$
 – parciálna derivácia funkcie $u(x,y,z)$ podľa premennej y S premennými x a z pri výpočte parciálnej derivácie pracujeme tak, ako

keby to boli konštanty.

Parciálne derivácie

 $\frac{\partial u(x,y)}{\partial x}$ – parciálna derivácia funkcie u(x,y) podľa premennej x

S premennou y pri výpočte parciálnej derivácie pracujeme tak, ako keby to bola konštanta.

Príklad

$$u(x,y) = 5x^3y^7$$

Vypočítajte
$$\frac{\partial u(x,y)}{\partial x}$$

Použijeme vzorec: $(c \cdot f)' = c \cdot f'$

$$\frac{\partial u(x,y)}{\partial x} = 5y^7 3x^2 = 15x^2 y^7$$

Cauchyho - Riemannove rovnice (veľmi dôležité)

Nutná a postačujúca podmienka diferencovateľnosti

Veta

Funkcia $f:A(\subset \mathbf{C})\longrightarrow \mathbf{C},\ f(z)=u(x,y)+i\ v(x,y)$ (A je otvorená) je diferencovateľná v bode $\mathbf{a}=a_1+i\ a_2$ vtedy a len vtedy ak sú funkcie u(x,y) a v(x,y) diferencovateľné v bode $\mathbf{a}=(a_1,a_2)$ a platia nasledujúce podmienky:

$$\frac{\partial u(\mathbf{a})}{\partial x} = \frac{\partial v(\mathbf{a})}{\partial y}$$
 $\frac{\partial u(\mathbf{a})}{\partial y} = -\frac{\partial v(\mathbf{a})}{\partial x}$

Tieto 2 rovnice nazývame Cauchyho - Riemannove rovnice.

Deriváciu funkcie f pomocou parciálnych derivácií funkcií u a v vypočítame nasledovne:

$$f'(\mathbf{a}) = \frac{\partial u(\mathbf{a})}{\partial x} + i \frac{\partial v(\mathbf{a})}{\partial x} = \frac{\partial v(\mathbf{a})}{\partial y} - i \frac{\partial u(\mathbf{a})}{\partial y}$$

$$\frac{\partial u(\mathbf{a})}{\partial x} = \frac{\partial v(\mathbf{a})}{\partial y} \qquad \frac{\partial u(\mathbf{a})}{\partial y} = -\frac{\partial v(\mathbf{a})}{\partial x}$$
$$f'(\mathbf{a}) = \frac{\partial u(\mathbf{a})}{\partial x} + i \frac{\partial v(\mathbf{a})}{\partial x} = \frac{\partial v(\mathbf{a})}{\partial y} - i \frac{\partial u(\mathbf{a})}{\partial y}$$

Príklad

Nájdite deriváciu funkcie
$$f: \mathbf{C} \longrightarrow \mathbf{C}, \ f(z) = x^3 - 3xy^2 + i(3x^2y - y^3).$$

Riešenie:
$$u(x,y) = x^3 - 3xy^2$$
 $v(x,y) = 3x^2y - y^3$
$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2$$

$$\frac{\partial v}{\partial x} = 6xy$$

$$\frac{\partial u}{\partial y} = -6xy$$

$$\frac{\partial v}{\partial y} = 3x^2 - 3y^2$$

$$3x^2 - 3y^2 = 3x^2 - 3y^2 \quad \land \quad -6xy = -6xy$$

Parciálne derivácie sú spojité v každom bode $(x,y)\in\mathbf{R}^2$ a spĺňajú Cauchyho - Riemannove rovnice v každom bode.

$$f'(\mathbf{a}) = \frac{\partial u(\mathbf{a})}{\partial x} + i \frac{\partial v(\mathbf{a})}{\partial x} = \frac{\partial v(\mathbf{a})}{\partial y} - i \frac{\partial u(\mathbf{a})}{\partial y}$$

Príklad

Nájdite deriváciu funkcie $f: \mathbf{C} \longrightarrow \mathbf{C}, f(z) = x^3 - 3xy^2 + i(3x^2y - y^3).$

Riešenie:
$$u(x,y) = x^3 - 3xy^2$$
 $v(x,y) = 3x^2y - y^3$
$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2$$

$$\frac{\partial v}{\partial x} = 6xy$$

$$\frac{\partial u}{\partial y} = -6xy$$

$$\frac{\partial v}{\partial y} = 3x^2 - 3y^2$$

 $3x^2 - 3u^2 = 3x^2 - 3u^2 \quad \land \quad -6xy = -6xy$ Parciálne derivácie sú spojité v každom bode $(x, y) \in \mathbf{R}^2$

a spĺňajú Cauchyho - Riemannove rovnice v každom bode.

$$f'(z) = 3x^2 - 3y^2 + i 6xy.$$

Príklad

Vyšetrite, v ktorých bodoch je funkcia $f: \mathbf{C} \longrightarrow \mathbf{C}, f(z) = |z^2|$ diferencovateľná.

Riešenie: Nech z = x + i y, potom

$$f(z) = |z^2| = |z|^2 = \left(\sqrt{x^2 + y^2}\right)^2 = x^2 + y^2 + i0.$$

$$u(x,y) = x^2 + y^2$$
 $v(x,y) = 0$
 $\frac{\partial u}{\partial x} = 2x$ $\frac{\partial v}{\partial x} = 0$
 $\frac{\partial u}{\partial y} = 2y$ $\frac{\partial v}{\partial y} = 0$

$$\frac{\partial u(\mathbf{a})}{\partial x} = \frac{\partial v(\mathbf{a})}{\partial y} \qquad \frac{\partial u(\mathbf{a})}{\partial y} = -\frac{\partial v(\mathbf{a})}{\partial x}$$

$$f'(\mathbf{a}) = \frac{\partial u(\mathbf{a})}{\partial x} + i \frac{\partial v(\mathbf{a})}{\partial x} = \frac{\partial v(\mathbf{a})}{\partial y} - i \frac{\partial u(\mathbf{a})}{\partial y}$$

$$u(x,y) = x^2 + y^2 \qquad v(x,y) = 0$$

$$\frac{\partial u}{\partial x} = 2x \qquad \frac{\partial v}{\partial x} = 0$$

$$\frac{\partial u}{\partial y} = 2y \qquad \frac{\partial v}{\partial y} = 0$$

$$2x=0 \quad \wedge \quad 2y=-0 \quad \Rightarrow \quad x=0 \quad \wedge \quad y=0$$
 Parciálne derivácie sú spojité v každom bode $(x,y)\in \mathbf{R}^2$ a spĺňajú Cauchyho - Riemannove rovnice v jedinom bode $(0,0)$.

$$f'(z) = 2x + i0 \quad \lor \quad f'(z) = 0 - i2y \qquad f'(0) = f'(0 + i0) = 0.$$

Analytické (holomorfné) funkcie

Definícia

Funkcia $f:A(\subset {\bf C})\longrightarrow {\bf C}$ (A je otvorená) je funkcia komplexnej premennej. Hovoríme, že f je:

- a) analytická v oblasti $M\subset A$, ak f'(z) existuje v každom bode $z\in M$,
- b) analytická v bode $a \in A$, ak existuje okolie $O(a) \subset A$ také, že v každom bode $z \in O(a)$ existuje f'(z).

Pozn.

- Diferencovateľnosť a analytickosť funkcie v oblasti sú zhodné pojmy.
- Analytickosť funkcie v bode je silnejšia vlastnosť ako diferencovateľnosť funkcie v bode.
 - Napr. v poslednom príklade bola funkcia diferencovateľná len v jedinom bode 0, ale analytická v ňom nie je, pretože jej derivácia neexistuje v žiadnom bode (okrem bodu 0) ľubovoľne malého okolia O(0).

Analytické (holomorfné) funkcie

Pozn.

- Diferencovateľnosť a analytickosť funkcie **v oblasti** sú zhodné pojmy.
- Analytickosť funkcie v bode je silnejšia vlastnosť ako diferencovateľnosť funkcie v bode.
 Napr. v poslednom príklade bola funkcia diferencovateľná len v jedinom bode 0, ale analytická v ňom nie je, pretože jej derivácia neexistuje v žiadnom bode (okrem bodu 0) ľubovoľne malého okolia O(0).
 - Funkcia nie je analytická v bodoch jednorozmernej množiny (keďže okolie v C je dvojrozmerný kruh.)
 Napr. funkcia môže byť diferencovateľná v izolovaných bodoch alebo na úsečke, priamke, ale na týchto množinách nie je analytická.

Regulárne a singulárne body funkcie

Definícia

- Body komplexnej roviny C, v ktorých funkcia je analytická nazývame regulárne body funkcie.
- Body komplexnej roviny C, v ktorých funkcia nie je analytická nazývame singulárne body funkcie.
 - Singulárne body sú aj body, v ktorých funkcia nie je definovaná (keďže v nich neexistuje derivácia funkcie).

Pozn.

- Mocninová funkcia s prirodzeným exponentom, polynomická funkcia, trigonometrické a hyperbolické funkcie sú analytické funkcie.
- Hlavná hodnota (vetva) logaritmu a všeobecnej mocniny sú analytické na množine všetkých komplexných čísel s výnimkou nuly a záporných reálnych čísel.
 - Je to z toho dôvodu, že tieto funkcie sú definované pomocou logaritmickej funkcie.

Nespojitosť na polpriamke záporných reálnych čísel

Hlavná hodnota (vetva) logaritmu a mocniny so všeobecným exponentom sú analytické na množine všetkých komplexných čísel **s výnimkou nuly a záporných reálnych čísel**.

$$\ln z = \ln|z| + i\arg z$$

Ďakujem za pozornosť.