

3. E is compared with some ab-initio data (D), in order to estimate the error in the prediction (E). The values of W_i and b_i are then learnt through an optimization algorithm (e.g., adadelta, rmsprop, ...), which minimizes a loss function by cycles of forward propagations, error estimates and weights updates.

Permutation Invariant Polynomials Neural Networks (PIP-NN):

Multi-layer feed-forward Neural Networks (NN) have been adopted as fitting functional:

Easy to implement; Easy to train: Easy to generalize to new systems; Easy to differentiate in R;

Cost effective: Easy to be refined; Widely tested; Easy to be extended to the stochastic case.

theano

ANN for PESs: Methodology

ANN for PESs: Methodology

Multi-layer feed-forward Neural Networks (NN) have been adopted as fitting functional:

- ◆ Easy to implement;
- ◆ Easy to train;
- ◆ Easy to generalize to new systems;
- ◆ Easy to differentiate in R;

- **♦** Cost effective;
- ◆ Easy to be refined;
- ◆ Widely tested;
- ◆ Easy to be extended to the stochastic case.

Permutation Invariant Polynomials Neural Networks (PIP-NN):

1st H. Layer L-th H. Layer

3. E is compared with some ab-initio data (D), in order to estimate the error in the prediction (ϵ). The values of W_i and b_i are then **learnt through an optimization algorithm** (e.g., adadelta, rmsprop, ...), which minimizes a loss function by cycles of forward propagations, error estimates and weights updates.

From Deterministic To Stochastic

In a classic approach to ML, the error is known only at the data points. What can we say about the reliability of the fit at a generic location?

Plus ... 3 main concerns about the deterministic PIP-NN deterministic approach ...

- ◆ The uncertainty on the data points (Schrödinger Eq. solutions) has not been taken into account;
- ◆ Overfitting Risk;
- ◆ Committee of Neural Networks can produce significantly different results:

No. of fit	N	GP		
points N_{pts}	1 NN	⟨10 NN⟩	1 GP	⟨10 GP⟩
313	198.00/103.93/87.77	119.11/53.97/43.90	29.09	17.18
625	21.12/12.91/12.03	13.36/7.52/6.53	5.98	3.87
1250	9.29/5.74/4.38	5.74/3.36/2.54	2.17	1.13
2500	4.59/2.43/1.12	2.27/1.23/0.86	1.08	0.62

Fig.1: RMSEs for multiple NN configurations. From: "Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy", J. Chem. Phys. 148, March 2018