AMENDMENTS TO THE CLAIMS

1-12. (Cancel)

13. (Original) A device comprising an electrochemical cell, said electrochemical cell comprising:

a membrane electrode assembly defining an anode side of said cell and a cathode side of said cell:

a first flow field plate for the cathode side of said cell, said first flow field plate comprising a plurality of first channels separated by first lands; and

a second flow field for the anode side of said cell, said second flow field plate comprising a plurality of second channels separated by second lands, wherein

said membrane electrode assembly is interposed between said first and second flow field plates, and

a pitch defined by said first flow field plate is less than a pitch defined by said second flow field plate.

- 14. (Original) The device according to claim 13 wherein the pitch defined by said second flow field plate is approximately twice as large as the pitch defined by said first flow field plate.
- 15. (Original) The device according to claim 13 wherein at least one of said second lands has a cross sectional width wider than a cross sectional width of at least one of said first lands.

DINSMORE & SHOHL DAYTON **2** 004/012

08/18/2005 14:18 FAX 9372230724

Serial No.: 10/669,479

Docket No.: GP-303584

16. (Original) The device according to claim 13 wherein said first channels define a

cross sectional width approximately equal to a cross sectional width defined by said

second channels.

17. (Original) The device according to claim 13 wherein a substantial number of said

second lands define a cross sectional width greater than a cross sectional width defined

by a substantial number of said first lands.

18. (Original) The device according to claim 13 wherein a substantial number of said

second channels define a cross sectional width approximately equal to a cross sectional

width defined by a substantial number of said first channels.

19. (Original) The device according to claim 13 wherein a majority of said second lands

define a cross sectional width greater than a cross sectional width defined by a majority

of said first lands.

20. (Original) The device according to claim 13 wherein a majority of said first channels

define a cross sectional width approximately equal to a cross sectional width defined by a

majority of said second channels.

(Original) The device according to claim 13 wherein substantially all of said second

lands define a cross sectional width greater than a cross sectional width defined by

substantially all of said first lands.

2 005/012

Serial No.: 10/669,479 Docket No.: GP-303584

22. (Original) The device according to claim 13 wherein substantially all of said first

channels define a cross sectional width approximately equal to a cross sectional width

defined by substantially all of said second channels.

23. (Original) The device according to claim 13 wherein said first and second channels

each have a cross sectional width of 1.5 mm or less.

24. (Original) The device according to claim 13 wherein each of said flow field plates

have a thickness of 1 mm or less.

25. (Original) The device according to claim 13 wherein a cross sectional width of each

said first lands is 1mm or less.

26. (Original) The device according to claim 13 wherein a cross sectional width of each

said second lands is about 3 times wider than a cross sectional width of each said first

lands.

27. (Original) The device according to claim 26 wherein said first channels define a cross

sectional width approximately equal to a cross sectional width defined by said second

channels.

4

- 28. (Original) The device according to claim 13 wherein said first and second channels are predominately straight.
- 29. (Original) The device according to claim 13 wherein said first and second channels each have a depth of about 1 mm or less.
- 30. (Original) The device according to claim 13 wherein the pitch defined by said first flow field plate is about 2.5 mm or less.
- 31. (Original) The device according to claim 13 wherein said device further comprises structure defining a fuel cell of the PEM-type.
- 32. (Original) The device according to claim 31 wherein said device further comprises structure defining a vehicle powered by said fuel cell.
- 33. (Original) The device according to claim 13 wherein said second lands are oriented at an angle to said first lands in a plane parallel to said second flow field plate.
- 34. (Original) The device according to claim 33 wherein said angle is in the range of 0° to 90°.
- 35. (Original) The device according to claim 13 wherein said first and second fluid flow plates lie in substantially parallel planes and said first channels, said first lands, said

second channels, and said second lands define respective pitches that ensure at least about 30% land-to-land contact across a surface of a membrane interposed between said first and second flow field plates.

- 36. (Original) The device according to claim 35 wherein said respective pitches ensure at least about 30% land-to-land contact regardless of the manner in which said first lands are aligned relative to said second lands.
- 37. (Original) The device according to claim 13 wherein at least one of said first and second channels are formed with a multiple of alternating angles.
- 38. (Original) The device according to claim 13 wherein said first and second lands each have a wiggle alignment pattern, and each said wiggle alignment pattern is in phase respectively.
- 39. (Original) The device according to claim 13 wherein said first and second lands each have a wiggle alignment pattern and each said wiggle alignment pattern is out of phase respectively.
- 40. (Currently Amended) The device according to claims 1323 wherein said first and second channels are predominately straight.

- 41. (Original) The device according to claims 13 wherein said first and second channels are serpentine.
- 42. (Original) A device comprising an electrochemical cell, said electrochemical cell comprising:

a membrane electrode assembly defining an anode side of said cell and a cathode side of said cell;

a first flow field plate for the cathode side of said cell, said first flow field plate comprising a plurality of first channels separated by first lands; and

a second flow field for the anode side of said cell, said second flow field plate comprising a plurality of second channels separated by second lands, wherein

said membrane electrode assembly is interposed between said first and second flow field plates,

said second channels define a cross sectional width approximately equal to a cross sectional width defined by said first channels,

said second flow field plate defines a channel pitch substantially greater than a channel pitch defined by said first flow field plate, and

at least said second lands are formed with a multiple of alternating angles relative to said first lands in a plane parallel to said second flow field plate and said respective channel pitches and cross-sectional widths ensure at least 30% land-to-land contact which is insensitive to plate-to-plate positioning.