

DL3 in GammaLib & ctools

Jürgen Knödlseder

Topics covered

- GammaLib and ctools
- Event lists
- Instrument response functions
- Stacked analysis

The span of gamma-ray astronomy

GammaLib

ctools

GammaLib concepts

- Observation (GObservation)
 - period in time during which an instrument was taking data, in a stable configuration that can be described by an instrument response function
 - Instrument response can be time dependent
 - Time period does not need to be contiguous (GTI)
- Event (GEvent)
 - Elementary constituent of the data, characterised by an instrument direction, measured energy and trigger time
 - Can be unbinned (event atom) or binned (event bin)
- Response (GResponse)
 - Transformation from the physical properties of a photon to the measured characteristics of an event

CTA event lists

Starting point

FITS Data format for ACTs v1.0.0

Karl Kosack, CTA DAFA Working Package

2011-05-18

• (Minimal) implementation

□ 0	Primar	y Image	0		Header	Image		Table	
□ 1	EVENT	S Binary	7 cols X 4119 rows		Header	Hist	Plot	All	Select
□ 2	GTI	Binary	2 cols X1 rows		Header	Hist	Plot	All	Select
	☐ EVENT_ID	_ TIME	□ RA	□ DEC	□ ENERGY	□ DETX		□ DETY	
Select	1J	1D	1E	1E	1E	1E		1E	
□ All		s	deg	deg	TeV	deg		deg	
Invert	Modify	Modify	Modify	Modify	Modify	Modify		Modify	
1	1	3.596789240837E-01	8.362013E+01	2.197107E+01	1.570517E-01	-3.893483E-02		-9.149051E-03 △	
2	2	9.667769908905 E +00	8.360922E+01	2.195930E+01	1.137184E-01	-5.070112E-02		-1.927271E-02	
3	3	1.314883381128E+01	8.365855E+01	2.205752E+01	1.149002E-01	4.752544E-02		2.645994E-02	
4	4	1.550700747967E+01	8.362605E+01	2.206566E+01	1.719268E-01	5.566480E-02		-3.665101E-03	
5	5	1.589011639357E+01	8.375288E+01	2.202609E+01	1.138880E-01	1.613743E-02 1.		1.1391	71E-01

CTA event lists - header

Data sub-space keywords to define Region of Interest (Fermi/LAT format)

OGIP standard time reference

Pointing information (only fixed pointing supported, ALT/AZ not used)

```
/ physical unit of field
TUNIT7 = 'deg
EXTNAME = 'EVENTS
                               / name of this extension
                               / Data sub-space type
                               / Data sub-space unit
                               / Data sub-space value
                               / Data sub-space reference
                               / Data sub-space type
                               / Data sub-space unit
       = '0.1:100
                               / Data sub-space value
       = 'POS(RA, DEC)
                               / Data sub-space type
       = 'dea
                                 Data sub-space unit
       = 'CIRCLE(83.63,22.01,10)' / Data sub-space value
                             3 / Number of data sub-space keys
                                / Program which created the file
CREATOR = 'GammaLib'
TELESCOP= 'CTA
                                 Telescope
OBS ID =
                             0 / Observation identifier
DATE OBS= '2000-01-01
                                 Observation start date
TIME OBS= '11:58:56'
                                 Observation start time
DATE_END= '2000-01-01
                                 Observation end date
TIME END= '12:28:56'
                                 Observation end time
TSTART =
                                     Mission time of start of observati
              1.8000000000E+03
                                  's| Mission time of end of observation
MJDREFI =
                         51544 /
                                  [days] Integer part of time reference
MJDREFF =
              5.000000000E-01 /
                                 [days] Fractional part of time referen
TIMEUNIT= 's
                                 Time unit
TIMESYS = 'TT
                                / Time system
TIMEREF =
          'LOCAL
                                / Time reference
TELAPSE
                8000000000E+03 /
                                 [s] Mission elapsed time
                                     Total good time including deadtime
ONTIME
                8000000000E+03 /
LIVETIME =
                .7100000000E+03 / [s] Total livetime
DEADC
              9.500000000E-01 / Deadtime correction factor
TIMEDEL =
              1.0000000000E+00 / Time resolution
OBJECT =
                                 Observed object
RA OBJ
                                       Target Right Ascension
DEC OBJ =
                                       Target Declination
RA PNT =
                                       Pointing Right Ascension
                                       Pointing Declination
                                       Average altitude of pointing
AZ PNT
                                       Average azimuth of pointing
                                 [deq]
RADECSYS= 'FK5
                                 Coordinate system
EQUINOX =
              2.0000000000E+03 / Epoch
CONV DEP=
              0.000000000E+00 /
                                 Convergence depth of telescopes
                                 [deg] Convergence Right Ascension
CONV RA =
              0.000000000E+00
CONV DEC=
              0.000000000E+00
                                  [deg] Convergence Declination
OBSERVER= 'string
                                 Number of telescopes in event list
N TELS
TELLIST = 'string
                                 Telescope IDs
              0.000000000E+00
                                 [deg] Geographic latitude of array cen
                                  [deq] Geographic longitude of array ce
GEOLON
              0.000000000E+00
ALTITUDE=
                                  [km] Altitude of array centre
EUNIT = 'TeV
                                 Energy unit
EVTVER = 'draft1
                               / Event list version number
```


Current CTA IRF handling

Legacy: performance tables

```
log(E) Area r68 r80 ERes. BG Rate Diff Sens
-1.7 261.6 0.3621 0.4908 0.5134 1.89924e-02
                                               6.88237e-11
-1.5 5458.2 0.2712 0.3685 0.4129 1.00972e-01
                                                1.72717e-11
-1.3 15590.0 0.1662 0.2103 0.2721 5.75623e-02
                                                 6.16963e-12
-1.1 26554.1
               0.1253
                      0.1567 0.2611 2.13008e-02
                                                 2.89932e-12
                      0.1305 0.1987 8.87292e-03
-0.9 52100.5
             0.1048
-0.7 66132.1 0.0827
                      0.1024 0.1698 1.09756e-03
-0.5 108656.8 0.0703
                       0.0867 0.1506 4.84287e-04
                                                  3.98147e-13
-0.3 129833.0 0.0585
                       0.0722 0.1338 1.57546e-04
                                                  3.23090e-13
-0.1 284604.3 0.0531 0.0656 0.1008 1.36703e-04
                                                  2.20178e-13
0.1 263175.3 0.0410 0.0506 0.0831 2.09694e-05
                                                 1.87452e-13
0.3 778048.6 0.0470
                      0.0591 0.0842 6.92374e-05
                                                 1.53976e-13
0.5 929818.8
              0.0391 0.0492 0.0650 1.45844e-05
                                                 1.18947e-13
0.7 1078450.0 0.0335
                      0.0415 0.0541 1.15959e-05
                                                 1.51927e-13
0.9 1448579.1 0.0317
                      0.0397 0.0516 4.71231e-06
1.1 1899905.0
                0.0290
                       0.0372 0.0501 8.14997e-06
                                                  1.96670e-13
1.3 2476403.8
                0.0285
                       0.0367 0.0538 5.91940e-06
                                                  2.20695e-13
1.5 2832570.6
               0.0284
                       0.0372 0.0636 7.33847e-06
                                                  3.22523e-13
                       0.0386 0.0731 1.34549e-05
1.7 3534065.3 0.0290
1.9 3250103.4
                0.0238
                        0.0308 0.0729 4.42228e-06
                                                  6.26265e-13
2.1 3916071.6 0.0260
                        0.0354 0.0908 2.26648e-06
 1) log(E) = log10(E/TeV) - bin centre
 2) Eff Area - in square metres after background cut (no theta cut)
 3) Ang. Res - 68% containment radius of gamma-ray PSF post cuts - in degrees
 4) Ang. Res - 80% containment radius of gamma-ray PSF post cuts - in degrees
 5) Fractional Energy Resolution (rms)
 6) BG Rate - inside point-source selection region - post call cuts - in Hz
 7) Diff Sens - differential sensitivity for this bin expressed as E^2 dN/dE
 - in erg cm^-2 s^-1 - for a 50 hours exposure - 5 sigma significance including
 systematics and statistics and at least 10 photons.
```

GCTAAeffPerfTable GCTAPsfPerfTable GCTAEdispPerfTable GCTABackgroundPerfTable

Only on-axis information A_{eff} and B_{rate} off-axis dependence modelled using $B(\theta) \propto \exp\left(-\frac{1}{2}\frac{\theta^4}{\sigma^2}\right)$ Gaussians assumed for PSF and energy dispersion

Legacy: ARF, RMF, PSF vectors

GCTAAeffArf GCTAPsfVector GCTAEdispRmf

Only on-axis information A_{eff} off-axis dependence modelled using $B(\theta) \propto \exp\left(-\frac{1}{2}\frac{\theta^4}{\sigma^2}\right)$ Gaussian assumed for PSF

Response tables

Response tables

Format of Fermi/LAT instrument response files Handles:

- n-dimensional cubes (don't need to be contiguous)
- arbitrary number of data blocks
- parametric models (each data block is a parameter)

Handling of this format implement by the class GCTAResponseTable

Effective area

Function of energy and off axis angle Store A_{eff} values as function or true and measured energy

Point Spread Function

Function of energy and off axis angle Two parametric variants:

- 3-Gaussians (6 parameters)
- King function (2 parameters)

Energy dispersion

Function of true energy, E_{reco}/E_{true} and off axis angle Store migration matrix (3D)

Background rate templates

Function of DETX, DETY and measured energy Store rates per energy and solid angle (3D)

Stacked analysis

Goal

Combine (stack) data for multiple observations into a single events cube

Requires

- computation of an effective exposure (Exposure Cube)
- computation of a (exposure) averaged point spread function (Psf Cube)
- computation of a (exposure) averaged energy dispersion (Energy Dispersion Cube)
- computation of a (lifetime) averaged background rate (Background Cube)

Stacked analysis response cubes

$$X_{\text{cube}}(\boldsymbol{p}, E) = \sum_{i} A_{\text{eff},i}(\boldsymbol{p}, E, t) \times \tau_{i},$$

$$PSF_{\text{cube}}(\boldsymbol{p}, E, \delta) = \frac{\sum_{i} PSF_{i}(\boldsymbol{p}'|\boldsymbol{p}, E, t) \times A_{\text{eff},i}(\boldsymbol{p}, E, t) \times \tau_{i}}{\sum_{i} A_{\text{eff},i}(\boldsymbol{p}, E, t) \times \tau_{i}},$$

$$D_{\text{cube}}(E'|\boldsymbol{p},E) = \frac{\sum_{i} D_{i}(E'|\boldsymbol{p},E,t) \times A_{\text{eff},i}(\boldsymbol{p},E,t) \times \tau_{i}}{\sum_{i} A_{\text{eff},i}(\boldsymbol{p},E,t) \times \tau_{i}},$$

$$B_{\text{cube}}(\mathbf{p'}, E') = \frac{\sum_{i} B_{i}(\mathbf{p'}, E', t') \times \tau_{i}}{\sum_{i} \tau_{i}}.$$

A word about implementation

Response information is heavily accessed and corresponding code needs to be optimised for speed; this explains why specific response classes have been implemented.

Summary

- Minimum event list implement following Karl's proposal
 - EVENT_ID, TIME, ENERGY, RA, DEC, DETX, DETY
- Instrument response function format based on Fermi/ LAT format
 - We're using this format since 2012 and have not yet encountered any show stopper
 - It apparently fits also the needs of existing IACTs

