CMPM17: Final Project

By Liam Youm & Kevin Nguyen Team Name: Thing 1 & Thing 2

Agenda

- Problem/Goal
- Model Description
- Dataset Processing & Analysis
- Model Results
- Reflection & Challenges

Reminders

- Take notes on questions you want to ask by the end of the
 - presentation!
- This format is a bit on the nose...

Problem/Goal

Create a model to distinguish between 6 facial expressions:

- Angry
- Fear
- Happy
- Neutral
- Sad
- Surprise

Model Description

Model Description

CNN architecture

- 4 convolutional layers
- 3 linear layers
- 3x3 kernels & 1 padding on all convolutional layers
- 32 batch size
- 30 epochs
- Batch normalization after every layer
- ReLU activation function & Adam optimizer

Model Refinements/Iterations

Adding layers 3 and 4 (64 and 128 filters respectively)

Grants complexity

10 -> 30 epochs

Enough epochs for noticeable improvements; flattens afterwards

Dataset Processing & Analysis

About the Dataset (FER-2013)

Pretty organized already:

- 48x48 grayscale faces; already centered
- Training Set: 29,000 images
- **Test Set:** 3,600 images

Summary

☐ 35.9k files

We did a few things after viewing...

1. Disgust & Anger Folders

We **merged** them together!

Why:

- Faces are similar
- Disgust folder has little samples
- CNNs online also struggled with this problem!

Disgust folder face that looks angry...

...and an angry folder face that looks disgusted???

train folder ->

2. Happy Folder

We **cut** about 2000-3000 happy images

Why:

- Too many images
- May cause bias or make model worse if not cut
- Balances training

3. Image Channels

We used v2.Grayscale(1) on our tensors, even though it's already grayscale

Why:

- Tensor shape had 3 channels, but grayscale should only 1
- Properly makes them 1

Data Augmentations Used

```
train_transforms = v2.Compose(
v2.Resize((128, 128)),
v2.RandomHorizontalFlip(),
v2.RandomRotation(30),
v2.Grayscale(1),
#v2.Lambda(add_noise),
v2.ToTensor(),
v2.Normalize([0.5], [0.5])
```

Mainly just rotations & flips

Facial expressions require a lot of information to predict, even from humans, so not many augmentations are needed!

Model Results

The Numbers

Test accuracy: ~60%

Average train accuracy: 66.9%

Average Loss: 1.09

Goals

Bare min accuracy: 25%

Initial target accuracy: 40%

Final target accuracy: 60%

(subtle foreshadowing)

Thoughts

Very good! Reached & surpassed expectations (60% target accuracy)

Notes: Possible overfitting, unstable learning

Demo Time!

Reflection

What Went Well

Work ethic, punctuality, communication & feedback

Good system!

- Liam focused more often on advanced coding
- Kevin focused more often on code structure & documents

Challenges - What We Encountered

Rocky start - uneven work distribution

Kubernetes...

Challenges - How We Addressed Them

Feedback & self-reflection

Office hours, Discord server

Getting gooder

What We Would've Done Differently

Still try to even out work distribution

Keep up work ethic

Otherwise, not too much!

RECAP

- CNN to predict facial expressions
- Added layers & epochs to improve model
- Evened out classes for better training
- Model reached desired results
- Overall experience went well save a few difficulties

Thanks for listening!

Questions, comments, concerns?