CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Reminder

• Midterm 1: Oct 26

• Format: Unlimited Notes. In-person. Submit both a physical and a e-version on BrightSpace.

Covering: Everything we will have learned by then

Exercise: Disproof

- Disprove: for all real number x, if x>0 then $x^2 >= x$
- "disprove P" should be translated as "prove ~P"

Exercise (a tricky one from last lecture)

 Every odd number can be written as the sum of three odd numbers

Today

Some Wrong proof

Some other proof tech

Exercises (maybe afternoon or Thur.)

Some wrong "proof"

Theorem: For all integers k, if k > 0 then $k^2 + 2k + 1$ is composite.

"Proof: For k = 2, $k^2 + 2k + 1 = 2^2 + 2 \cdot 2 + 1 = 9$. But $9 = 3 \cdot 3$, and so 9 is composite. Hence the theorem is true."

Do not prove a universal statement with a single case

Theorem: The difference between any odd integer and any even integer is odd.

"**Proof:** Suppose n is any odd integer, and m is any even integer. By definition of odd, n = 2k + 1 where k is an integer, and by definition of even, m = 2k where k is an integer. Then

$$n - m = (2k + 1) - 2k = 1.$$

But 1 is odd. Therefore, the difference between any odd integer and any even integer is odd."

Do not use the same "k" coming from two different "there exists k..."

```
\forall a and b \in Z, \exists ab \exists s even, then a \exists s even or b is even \exists a, b \in Z, \exists ab \exists s even and a, b are odd \exists ab \exists Z \exists X, \exists X \exists Z \exists X, \exists Z \exists X, \exists Z \exists X, \exists Z \exists X, \exists Z \exists Z \exists X, \exists Z \exists Z
```

b is even if b = 2*k for an integer k. Note "k" must be an integer

- True or false: For any nonnegative integer n, n^2+3n+2 is a composite
- $n^2+3n+2=(n+1)(n+2)$ therefore composite

c is a composite if c = a*b where a!=1 and b!=1. Note the "!=1" parts

Clarification on disproof

Some other proof tech.

If-and-only-if

- Prove: The integer n is odd if and only if n^2 is odd.
- To prove A if and only if B, first prove A -> B, then prove B
 ->A

Proposition The integer n is odd if and only if n^2 is odd.

Proof. First we show that n being odd implies that n^2 is odd. Suppose n is odd. Then, by definition of an odd number, n = 2a + 1 for some integer a. Thus $n^2 = (2a + 1)^2 = 4a^2 + 4a + 1 = 2(2a^2 + 2a) + 1$. This expresses n^2 as twice an integer, plus 1, so n^2 is odd.

Conversely, we need to prove that n^2 being odd implies that n is odd. We use contrapositive proof. Suppose n is not odd. Then n is even, so n = 2a for some integer a (by definition of an even number). Thus $n^2 = (2a)^2 = 2(2a^2)$, so n^2 is even because it's twice an integer. Thus n^2 is not odd. We've now proved that if n is not odd, then n^2 is not odd, and this is a contrapositive proof that if n^2 is odd then n is odd.

Equivalent statements

Theorem Suppose A is an $n \times n$ matrix. The following statements are equivalent:

- (a) The matrix A is invertible.
- **(b)** The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- (c) The equation Ax = 0 has only the trivial solution.
- (d) The reduced row echelon form of A is I_n .
- (e) $\det(A) \neq 0$.
- **(f)** The matrix *A* does not have 0 as an eigenvalue.

(How to actually prove this in details is not a part of our lecture)

$$\begin{array}{cccc} (a) & \Longrightarrow & (b) & \Longrightarrow & (c) \\ \uparrow & & & & \downarrow \\ (f) & \Longleftarrow & (e) & \Longleftarrow & (d) \end{array}$$

$$\begin{array}{ccc} (a) & \Longrightarrow & (b) & \Longleftrightarrow & (c) \\ \uparrow & & & \downarrow & \\ (f) & \Longleftarrow & (e) & \Longleftrightarrow & (d) \end{array}$$

$$(a) \iff (b) \iff (c)$$

$$(a) \iff (b) \iff (c)$$

$$(f) \iff (e) \iff (d)$$

Uniqueness Proof

- Prove: there is a unique function f defined over R such that f'(x)=2x and f(0)=3
- To prove there is a unique x such that P(x):
 - first prove there exist an x,
 - then prove "x and y both satisfy P, then x = y"

Proof. Existence: $f(x) = x^2 + 3$ works.

Uniqueness: If $f_0(x)$ and $f_1(x)$ both satisfy these conditions, then $f_0'(x) = 2x = f_1'(x)$, so they differ by a constant, i.e., there is a C such that $f_0(x) = f_1(x) + C$. Hence, $3 = f_0(0) = f_1(0) + C = 3 + C$. This gives C = 0 and so $f_0(x) = f_1(x)$.

Some classic, unconventional proof (Not a part of the curriculum)

Non constructive proof

Proposition There exist irrational numbers x, y for which x^y is rational.

Proposition There exist irrational numbers x, y for which x^y is rational.

Proof. Let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$. We know y is irrational, but it is not clear whether x is rational or irrational. On one hand, if x is irrational, then we have an irrational number to an irrational power that is rational:

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^2 = 2.$$

On the other hand, if x is rational, then $y^y = \sqrt{2}^{\sqrt{2}} = x$ is rational. Either way, we have a irrational number to an irrational power that is rational.

Non-analytical, geometrybased proof

Proof of the Pythagorean Theorem

SBU exam problems

• Prove: Given an integer a, then a^3 + a^2 + a is even if and only if a is even.

- Suppose a is an integer.
- We first prove a^3 +a^2 +a is even -> a is even.
 - We only need to show a is odd -> a³ + a² + a is odd
 - Suppose a is odd

- We then prove a is even -> a³ + a² + a is even
 - Suppose a is even

SBU 2021 Final

Problem 6. [5 points]

Prove that if $n^2 + 8n + 20$ is odd, then n is odd for natural numbers n.

- Proof.
 - We want to prove: for all natural numbers n, n^2+8n+20 is odd -> n is odd.
 - We use proof by contradiction to prove the statement above.
 - That is, we assume there exists a natural number n such that n^2+8n+20 is odd, and n is even.
 - From "n is even", we know n^2 must be even, and 8n must be even
 - Therefore n^2+8n+20 must be even, which contradicts with the assumption above.
- QED.

SBU 2022 Midterm

Problem 6. [5 points]

Let a_1, a_2, \ldots, a_n be real numbers for $n \ge 1$. Prove that at least one of these numbers is greater or equal to the average of the numbers.

- Proof.
 - We want to prove: for any real numbers a1,...a_n, there exists an a_i where 1<=i<=n, such that a_i>= (a1+a2+...a_n)/n.
 - We use proof by contradiction to prove the statement above.
 - That is, we assume: there exists some real numbers a1,...a_n, such that for all a_i, 1<=i<=n, a_i<(a1+a2+...a_n)/n.
 - From this assumption, we know (a1+a2+...a_n) < n * (a1+a2+...a_n)/n, which is a contradiction.
- QED.

SBU 2020 Midterm

Problem 8. [5 points]

Prove that for all integers a, if a^3 is even, then a is even.

- Proof.
 - We want to prove _____
 - We use proof by contradiction to prove the statement above.
 - That is, we assume _____
 - From this assumption, we know....., which is a contradiction.
- QED.

SBU 2022 Midterm

Problem 8. [5 points]

Prove that for any two integers a and b, if ab is odd, then a and b are both odd.

- Proof.
 - We want to prove _____
 - We use proof by contradiction to prove the statement above.
 - That is, we assume _____
 - From this assumption, we know....., which is a contradiction.
- QED.

SBU 2020 Midterm

Problem 6. [5 points]

Prove that the product of any four consecutive integers is a multiple of 4.

- Proof.
 - We want to prove _____
 - We prove the statement by division into cases.
 - Case 1: ____
 - Case 2: _____
 - Thus, ____
- QED.

- Proof.
 - We want to prove for any interger n, $4 \mid (n+1)(n+2)(n+3)(n+4)$
 - We prove the statement by division into cases.
 - Case 1: Suppose n is even....
 - Case 2: Suppose n is odd....
 - Thus, 4 | (n+1)(n+2)(n+3)(n+4) in both cases.
- QED.

SBU 2021 Midterm

Problem 8. [5 points]

Prove by contradiction that there are no integers x and y such that $x^2 = 4y + 2$.

- Proof.
 - (formal statement of what we need to prove)

• (our proof strategy)

core proof

• QED.

- Proof.
 - (formal statement of what we need to prove) We want to prove: ~(\exists x,y\in Z, such that x^2 = 4 y + 2)
 - (our proof strategy) We use proof by contradiction. Assume
 - (A) \exists x,y\in Z, such that $x^2 = 4y + 2$
 - (core proof)
 - x^2 must be even since $x^2 = 4y + 2$. Thus x must be even. Let x = 2k for some integer k.
 - Then $4 k^2 = 4 y + 2$. Thus, $2 * k^2 = 2y + 1$.
 - This is a contradiction, since 2 * k^2 is even and 2y + 1 is odd. Therefore (A) must be false.
- QED.

SBU 2022 Midterm

Problem 7. [5 points]

Prove or disprove the following statement. If x and y are rational, then x^y is rational.

- The statement is false.
- To disprove it, we choose x=2, y=1/2. Then both x and y are rational, but x^y is irrational.