Homicídios por 100mil habitantes em gráficos

Estado de São Paulo e Capital - (2000 - 2010)

Raul de Sá Durlo*

09 janeiro 2018

Abstract

Série de gráficos da taxa de homicídios por cem mil habitantes nas localidades: i) Estado de São Paulo (Capital, Interior e Região Metropolitana - exclusive Capital), do ano 2000 até o ano 2010 e ii) na Capital (Município de São Paulo, Distritos Policiais e Seccionais), somente nos anos 2003 e 2013.

1 códigos: Introdução e pacotes utilizados

O objetivo deste projeto é reescrever minha dissertação de mestrado em ambiente 100% R. O relatório é gerado em Rmarkdown e tem como output um arquivo .pdf.

A primeira parte deste documento apresenta os códigos rodados para obtenção do texto final. O texto final está na segunda parte.

Os seguintes pacotes foram utilizados:

- readr: para ler extensão .rds;
- tidyverse: para manipular data.frames;
- huxtable: para montar tabelas;
- lubridate: para séries temporais.
- ggpubr: para organizar figuras
- ggrepel: para lidar com labels em obj's. ggplot

```
library(readr)
library(tidyverse)
library(huxtable)
library(ggpubr)
library(ggrepel)
```

2 códigos: Estado de São Paulo

2.1 Carregando arquivo

2.1.1 Para taxas anuais de homicídio por 100mil habitantes

O código abaixo carrega dados anuais de homicídios e população por região no estado de São Paulo:

```
# lendo .rds
estado_sp <- read_rds("C:\\Users\\rauld\\Google Drive\\meu_projeto\\dados e scripts\\tabelas_output\\ta
# subset
estado_sp <- estado_sp[,seq(4)]</pre>
```

^{*}Mestre em Economia - Unesp/FCLAr

Um objeto do tipo tibble:

```
glimpse(estado_sp)
```

Onde:

- ano é o ano de registro,
- população é a contagem da população residente.
- homicidio é o número total de registros de homicídio doloso e
- local são as localidades, com:
 - Capital: município de São Paulo,
 - Grande SP: para os municípios da região Metropolitana de São Paulo (exclusive MSP),
 - Interior: para os demais municípios e
 - Total: Todo o estado de São Paulo.

2.1.1.1 Adicionando variáveis

A taxa de homicídio é calculada com o código:

```
estado_sp$tx_homicidio <- (estado_sp$homicidio/estado_sp$populacao)*100000
```

O resultado no objeto tibble:

```
glimpse(estado_sp)
```

2.1.2 Para números totais de homicídios, por trimestre:

O código abaixo carrga dados absolutos das Estatíticas Trimestrais da Secretaria de Segurança Pública.

A variável trimestre apresenta valores correspondentes aos trimestres do ano de referência (p.e. trimestre = $1 \rightarrow 1^{\circ}$ Trimestre) e a periodicidade total é de 3° Trimestre de 1995 até 1° Trimestre de 2016:

```
# arq .rds
estado_sp_trim <- read_rds(</pre>
  "C:\\Users\\rauld\\Google Drive\\meu_projeto\\dados e scripts\\tabelas_output\\tab_análise_1\\tab_tri
# subset
estado_sp_trim <- estado_sp_trim[,seq(4)]</pre>
# agregando
estado_sp_trim <- estado_sp_trim
                                                             %>%
                    group_by(trimestre, ano)
                                                             %>%
                    summarise(homicidio = sum(homicidio))
                                                            %>%
                                                             %>%
                    ungroup()
                    mutate(local=rep("Total", 83))
                                                            %>%
                   bind_rows(estado_sp_trim)
                                                             %>%
                    arrange(local, ano, trimestre)
```

Aplicamos lubridate::quarter() e lubridate::ymd() para lidar com anos e trimestres:

```
trim <- quarter(
          # a partir de uma sequencia de datas
seq(ymd("1995/7/1"), ymd("2016/1/30"), by = "quarter"),
          with_year = T,
          fiscal_start = 1
          )
estado_sp_trim <- estado_sp_trim %>%
          mutate(data=rep(trim, 4)) %>% select(local,trimestre,ano,data,homicidio)
```

O resultado em uma tibble

```
# tibble
estado_sp_trim
```

```
## # A tibble: 332 x 5
##
     local trimestre
                        ano data homicidio
##
     <chr>
                <dbl> <int> <dbl>
                                     <dbl>
## 1 Capital
                 3.00 1995 1995
                                      1134
                 4.00 1995 1995
## 2 Capital
                                      1142
## 3 Capital
                 1.00 1996 1996
                                      1331
## 4 Capital
                 2.00 1996 1996
                                      1109
                 3.00 1996 1996
## 5 Capital
                                      1150
## 6 Capital
                 4.00 1996 1996
                                      1092
                 1.00 1997 1997
                                      1140
## 7 Capital
## 8 Capital
                 2.00 1997 1997
                                      1051
## 9 Capital
                 3.00 1997 1997
                                      1145
## 10 Capital
                  4.00 1997 1997
                                      1217
## # ... with 322 more rows
```

2.2 Estatísticas descritivas

2.2.1 Agrupando os dados com dplyr

Agrupa-se a taxa de homicídio segundo as localidades:

```
%>%
estat_descr <- estado_sp
                                                  %>%
 group_by(local)
  # summarize() define as variáveis
 summarise(`Média`
                         = mean(tx_homicidio),
            `Desvio padrão`= sd(tx_homicidio),
            Mediana = median(tx_homicidio),
            `IQR`
                          = IQR(tx_homicidio),
            `Mínimo`
                         = min(tx homicidio),
                          = max(tx homicidio))
                                                  %>%
            `Máximo`
 ungroup()
                                                  %>%
 rename("Localidade"=local)
```

2.2.2 Figura 1: estatísticas trimestrais

Os gráficos com dados por trimestre são gerados a partir da função homic_trimestre(), que aceita como argumentos as variáveis de estado_sp_trim\$local:

Utilizamos o ggpubr::ggarrange para enquadrar as localidades.

Com ggpubr::annotate_figure edita-se o quadro:

```
fig.lab = NA,
fig.lab.face = NA
)
```

2.2.3 Figura 2: Distribuição percentual de ocorrências de homicídio e da população residente

A função perc(y,z) aceita argumentos do vetor de interesse (\$homicidio ou \$populacao) e sua posição (2=homicidios e 3=populacao):

Gerando o quadro:

Editando o quadro:

2.2.4 Tabela 1: estatísticas descritivas

Cria a tabela huxtable::hux():

Para Editar a tabela, basta alterar os parâmetros no código abaixo:

```
ht <- ht
                                                   %>%
  set_bold(1, everywhere, TRUE)
                                                  %>% # negrito
  set number format(3)
                                                  %>% # casas decimais
  set_top_border(1, everywhere, 1)
                                                  %>% # borda superior
  set_top_border(1, everywhere, 1)  %>% # borda superior set_bottom_border(c(1,5), everywhere, 1)  %>% # borda inferior
  set_align(everywhere, everywhere, 'center') %>% # alinhamento de texto na célula
  set_right_padding(3)
                                                  %>% # para posicionar
  set_left_padding(3)
                                                  %>% # para posicionar
  set_width(.9)
                                                  %>% # para posicionar no pdf
  set_position('center')
                                                  %>% # para posicionar no pdf
  set_caption(
    'Estatísticas descritivas - homicídios por 100.000 habitantes no Estado de São Paulo - Capital, RMS
```

2.2.5 figura 3: Taxa de homicídios anuais - de 2000 até 2010

O Código abaixo faz os gráficos de taxas de homicídio anuais, novamente temos uma função(homic_tx(x)). Ela aceita como argumento as localidades "Capital", "Interior", "Grande SP" e "Total":

Para gerar o quadro, analogamente às figuras anteriores:

Editando o quadro:

```
quadro_homic_tx <- annotate_figure(quadro_homic_tx, #####
# Titulo
top = text_grob(</pre>
```

3 códigos: Município de São Paulo

```
# diretÓrio ########
setwd("C:\\Users\\rauld\\Google Drive\\meu_projeto\\dados e scripts\\tabelas_output")
dir() #\\user
## [1] "plan_queen.txt" "tab_análise_1" "tab_FINAL"
txt <- read_rds("C:\\Users\\rauld\\Google Drive\\meu_projeto\\dados e scripts\\tabelas_output\\tab_FINA
# Tabela mãe #######
dados <- tibble(ano</pre>
                         = as.integer(txt$Q1),
                distrito = as.character(gsub(txt$distrito, pattern="_", replacement=" ")),
                dpol = as.integer(txt$Q12),
                seccional= as.character(txt$Seccional),
                homic = as.numeric((txt\$Q22/txt\$P)*100000),
                roubovcl = as.numeric((txt$Q40/txt$P)*100000),
                furtovcl = as.numeric((txt$Q43/txt$P)*100000)
# transformações ##############
# subset seccional
seccional <- dados %>%
  select(seccional) %>%
 distinct(seccional) %>%
 arrange(seccional)
# Ordena barras em geom_bar()+scale_x_discrete()
limits <- function(x) {</pre>
  dados %>%
   filter(ano == 2003 & seccional == x) %>%
   select(distrito, homic) %>%
   arrange(desc(homic)) %>%
    select(distrito)
 } # my first function!
# subset ano
dados2013 <- filter(dados, ano==2013)</pre>
dados2003 <- filter(dados, ano==2003)</pre>
```

```
# Estatísticas descritivas
# Compute descriptive statistics by groups
stable <- desc_statby((dados), measure.var = "homic", grps = "ano")</pre>
stable1 <- stable[, c("ano", "mean", "min", "median", "max", "iqr")]</pre>
stable1[,2:6] <- round(stable1[,2:6],2)
############## objetivo #####
#----
dados$ano <- as.character(dados$ano)</pre>
#----
# {histograma} #########
histograma <- ggplot(dados, aes(x=homic)) +
 geom_histogram(aes(y=..density.., fill=ano, color=ano), alpha=.3 ,position = "identity", bins = 80)+
   theme(plot.title = element_text(hjust=.5),
       panel.background = element_rect(fill="white"),
       legend.position = "top") +
 labs(x="Taxa de homicídio (100.000/hab)", y="Densidade") +
 geom rug(aes(color=ano)) +
 scale_color_manual(values = c("#E69F00","black")) +
 scale_fill_manual(values = c("#E69F00","#999999")) +
 geom vline(data = filter(dados,ano=="2003"), aes(xintercept = mean(homic), color = ano), linetype = "
 geom_vline(data = filter(dados,ano=="2013"), aes(xintercept = mean(homic), color = ano), linetype = "
# {boxplot} #########
boxplot <- ggplot(dados, aes(x=ano, y=homic)) +</pre>
 geom_boxplot() +
 geom_text(check_overlap = T, aes(label=distrito, color=ano), size=2.5)+
 scale_color_manual(values = c("#E69F00","#999999")) +
 theme(plot.title = element_text(hjust=.5),
       plot.subtitle = element_text(hjust=.5),
axis.text = element_text(colour="black", size=8),
       axis.text = element_text(colour="black", size=8),
axis.title = element_text(colour="black", size=8),
axis.line = element_line(size=.5, colour = "black"),
       panel.background = element_rect(fill="white"),
       legend.position = "none") +
 labs(x="Ano",
      y="Taxa de homicídio (100.000/hab)")
# um layout:
mylayout <- list( # para colocar no barra2</pre>
 geom_bar(stat = "identity",
          position = "dodge",
          show.legend= F,
```

```
alpha
                      = "black"), # salva lista e troca '+' por ','
           color
                       = element_text(hjust=.5),
   theme(plot.title
        plot.subtitle = element_text(hjust=.5),
         axis.text = element_text(colour="black"),
         axis.text.x = element_text(size=13,angle=90,hjust=1,vjust=.3),
        axis.text.y
                       = element_text(size=13),
                      = element_line(),
         axis.ticks
                      = element_line(size=1,colour="black"),
        axis.line
        axis.title.x = element_blank(),
axis.title.y = element_blank(),
         panel.background= element rect(fill="white")),
  labs(color = "ano"),
   scale_fill_manual(values = c("#E69F00","#999999")),
   scale_color_manual(dados$ano, values = c("#E69F00","black")),
   scale_y_continuous(limits = c(0,255),
                     breaks = c(0,25,50,75,100,125,150,175,200,225,250))
# {barra1} Centro, ordem: 2013 #########
barra1 <- ggplot(data = filter(dados, seccional == "1 CENTRO"),</pre>
                  aes(x = distrito, y = homic, fill = ano, color=ano)) +
           scale_x_discrete(limits=as_vector(limits("1 CENTRO"))) +
           geom_label(y = 187.5,
                         = 5.5,
                     label = 'atop("Seccional 1:", bold("CENTRO"))',
                     fill = "white",
                     colour= "black",
                     parse = T) +
          # o primeiro gráfico deve conter legenda
          geom_bar(stat
                            = "identity",
                    position = "dodge",
                    color
                              = "black",
                    alpha
                             = .5) +
          mylayout[-1] #inclui qeom_bar() manualmente
# {barra2} Sul, ordem: 2013 #####
barra2 <- ggplot(data = filter(dados, seccional == "2 SUL"),
                 aes(x = distrito, y = homic, fill = ano)) +
           scale_x_discrete(limits=as_vector(limits("2 SUL"))) +
                           = 187.5,
           geom_label(y
                           = 5.5,
                     label = 'atop("Seccional 2:", bold("SUL"))',
                     fill = "white",
                     colour = "black",
                     parse = T) +
          mylayout
# {barra3} Oeste, ordem: 2013 ######
barra3 <- ggplot(data = filter(dados, seccional == "3 OESTE"),</pre>
                 aes(x = distrito, y = homic, fill = ano)) +
          scale_x_discrete(limits = as_vector(limits("3 OESTE"))) +
```

```
geom_label(y = 187.5,
                         = 11,
                     label = 'atop("Seccional 3:", bold("OESTE"))',
                     fill = "white",
                      colour= "black",
                     parse = T) +
          mylayout
# {barra4} Oeste, ordem: 2013 #####
barra4 <- ggplot(data = filter(dados, seccional == "4 OESTE"),</pre>
                 aes(x = distrito, y = homic, fill = ano)) +
          scale_x_discrete(limits=as_vector(limits("4 OESTE"))) +
                          = 187.5,
          geom label(y
                         = 7.7,
                    X
                    label = 'atop("Seccional 4:", bold("OESTE"))',
                     fill = "white",
                     colour= "black",
                     parse = T) +
          mylayout
# {barra5} Leste, ordem: 2013 #####
barra5 <- ggplot(data = filter(dados, seccional == "5 LESTE"),</pre>
                 aes(x = distrito, y = homic, fill = ano)) +
              scale_x_discrete(limits=as_vector(limits("5 LESTE"))) +
              ylab("Taxa de Homicídios") +
              geom_label(y = 187.5,
                        x = 8
                        label = 'atop("Seccional 5:", bold("LESTE"))',
                        fill = "white",
                        colour="black",
                        parse =T) +
              mylayout
# {barra6} Santo Amaro, ordem: 2013 #####
barra6 <- ggplot(data = filter(dados, seccional == "6 SANTO AMARO"),
                 aes(x = distrito, y = homic, fill = ano)) +
            scale_x_discrete( limits=as_vector(limits("6 SANTO AMARO"))) +
            geom_label(y
                            = 187.5.
                           = 8.5,
                       label = 'atop("Seccional 6:", bold("SANTO AMARO"))',
                       fill = "white",
                       colour= "black",
                       parse = T) +
            mylayout
# {barra7} Itaquera, ordem: 2013 #####
barra7 <- ggplot(data = filter(dados, seccional == "7 ITAQUERA"),</pre>
                 aes(x = distrito, y = homic, fill = ano)) +
           scale_x_discrete( limits=as_vector(limits("7 ITAQUERA"))) +
           geom_label(y
                           = 187.5,
                           = 8.5,
                     X
                     label = 'atop("Seccional 7:", bold("ITAQUERA"))',
```

```
fill = "white",
                      colour= "black",
                      parse = T) +
            mylayout
# {barra8} São Mateus, ordem: 2013 #####
barra8 <- ggplot(data = filter(dados, seccional == "8 SÃO MATEUS"),
                 aes(x = distrito, y = homic, fill = ano)) +
           scale_x_discrete(limits=as_vector(limits("8 SÃO MATEUS"))) +
           geom_label(y
                         = 187.5,
                          = 6.8,
                      label = 'atop("Seccional 8:", bold("SÃO MATEUS"))',
                      fill = "white",
                      colour= "black",
                      parse = T) +
           mylayout
stable.p1 <- ggtexttable(stable1, rows = NULL)</pre>
figure2 <- ggarrange(barra1, barra2, barra3, barra4, #####
                     barra5, barra6, barra7, barra8,
                     ncol = 4,
                     nrow = 2,
                     align = "hv",
                     common.legend = TRUE,
                     legend= "top")
figura2 <- annotate_figure(figure2, ######</pre>
                top = text_grob("Figura: Taxa de Homicídios (100000 habitantes) - Seccionais do Municíp
                                       face = "bold",
                                       size = 16,
                                       family = "Times"),
                bottom = text_grob("Fonte: SSP/SP",
                                     color = "black",
                                     face = "italic",
                                     size = 10),
                left
                       = NA
                right = NA,
                fig.lab = NA, fig.lab.face = NA
                )
p1 <- ggarrange(stable.p1, ncol=1, nrow = 1)</pre>
p2 <- ggarrange(boxplot, p1, ncol=2, nrow=1)</pre>
p3 <- ggarrange(histograma, p2, ncol=1, nrow=2, common.legend = T)
p3 <- annotate_figure(p3, ######
                        = text_grob("Figura: Taxa de Homicídios (100000 habitantes) \n município de São
                                    color = "black",
                                    face = "bold",
                                    size = 12,
                                    family = "Times"),
                bottom = text_grob("Fonte: SSP/SP",
                                     color = "black",
                                     face = "italic",
```

```
size = 8),
left = NA,
right = NA,
fig.lab = NA, fig.lab.face = NA
)
p3
```

Figura: Taxa de Homicídios (100000 habitantes) município de São Paulo

Fonte: SSP/SP

max

251.44

81.12

iqr

34.22

9.67

3.1 Município de São Paulo - Seccionais

Figura: Taxa de Homicídios (100000 habitantes) - Seccionais do Município de São Paulo (2003 e 2013)

Fonte: SSP/SP

4 Estado de São Paulo

4.1 Dados

Os dados referem-se ao número de ocorrências de homicídio registradas entre os anos de 2000 e 2010. Como a interpretação de ocorrências criminais é sensível à mudanças demográficas, os dados foram normalizados em relação à população residente, sendo calculado, portanto, uma taxa de homicídios por 100.000 habitantes:

$$txhomicdio_{ij} = \left(\frac{homicdio_{ij}}{populacao_{ij}}\right)100000$$

Na equação acima, a taxa de homicídio no período i é calculada para a localidade j por 100.000 habitantes.

- Os dados de ocorrências criminais são provenientes das Estatísticas Trimestrais¹ da Secretaria Estadual de Segurança Pública do Estado de São Paulo. para esta análise os dados trimestrais foram agrupados em anos.
- Já os dados da população residente foram extraídos das estimativas utilizadas pelo Tribunal de Contas da União para determinação das cotas do Fundo de Participação dos Municípios².

4.2 Estatísticas descritivas

Principais pontos:

- As estatísticas trimestrais mostram queda significativa dos registros de homicídio.
- As localidades no interior do estado apresentam um aumento na proporção de homicídios registrados.
- A distribuição da população nas localidades permaneceram relativamente estáveis.
- A queda da taxa de homicídios é persistente em todas as localidades. há uma pequena resistência no decréscimo da taxa de himicídio no interior, com aumento a partir do ano de 2008.

4.2.1 Estatísticas Trimestrais da Secretaria de Segurança Pública.

O quadro abaixo apresenta a evolução da taxa de homicídio nas localidades:

¹http://www.ssp.sp.gov.br/estatistica/trimestrais.aspx

²http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/poptsp.def

Ocorrências de homicídios - 3T-1995 até 1T-2016

4.2.2 Taxas de homicídio, por localidade, no período 2000 a 2010:

A evolução da população e das ocorrências de homicídios, em termos proporcionais, por localidade no período 2000-2010.

% de ocorrências de homicídios e população residênte por região (2000 até 2010)

Foram calculadas as taxas de homicídio por localidade. Os resultados estão na tabela 1:

O quadro abaixo mostra a evolução da taxa de homicídios no período 2000-2010 por localidade:

Table 1: Estatísticas descritivas - homicídios por 100.000 habitantes no Estado de São Paulo - Capital, RMSP e Interior - no período de 2000 a 2010

Localidade	Média	Desvio padrão	Mediana	IQR	Mínimo	Máximo
Capital	27.756	16.323	22.593	29.021	10.636	53.221
Grande SP	27.130	13.242	22.477	24.174	12.221	46.173
Interior	14.099	4.734	12.843	9.172	8.511	20.354
Total	20.549	9.652	17.496	18.028	10.484	34.766

Taxa de homicídios anuais - de 2000 até 2010

