Assignment 2 - Report

Team Members:

Sathyanarayanan R - S20180010154 Darshan G - S20180010046 Jaswanth K - S20180010068 Ejurothu Pavan Sai Santhosh - S20180010053

Part-1 Simulating Chi-Square Distribution

The Chi-Squared Distribution (χ^2 -distribution) is the distribution of the sum of squares of n standard normal random variables, where n is the degrees of freedom of the chi-square random variable (df = n).

Mean of the distribution = df Variance of the distribution = 2 * df

Values of Mean and Variance found by simulation and theoretical:

Degrees of Freedom, (df)	Simulated		Theoretical	
	Mean	Variance	Mean	Variance
1	1.0	1.89	1	2
2	2.01	4.05	2	4
3	2.98	5.98	3	6
4	4.07	8.76	4	8
5	5.06	10.85	5	10
6	6.12	12.69	6	12
7	7.05	14.32	7	14
8	8.13	16.6	8	16
9	9.11	18.04	9	18
10	10.12	20.27	10	20

Chi-Square Distribution for the above tabulation:

Random variables were generated for the above parameters and the pdf formula f(x) was applied to each of those points to get the corresponding distribution

DF=2

DF=6

DF=8

DF=10

Conclusion:

The Chi-Square Distribution was successfully simulated by taking random samples and the parameters are found to be approximately equal to the theoretical values.

The mean of a Chi-Square distribution is equal to the DF, the variance is equal to two times DF.

The Chi-Square PDF looks more and more normal with an increase in degrees of freedom.

Part 2 - Simulating t-distributions

A t-distribution can be expressed as $\sqrt{\chi^2}$

$$\frac{z}{\sqrt{\chi^2/n}}$$

Where Z is a standard normal distribution random variable and X^2 is a chi-squared distribution with 'n' degrees of freedom.

Mean of a t-distribution is zero and variance is n/(n-2)

Method used:

Random variables generated for Z-distribution and Chi-squared were used for each degrees of freedom and with the help of the above formula t-distribution was simulated (v - Degrees of freedom)

Plots showing t-distribution with different degrees of freedom

Plots comparing Standard Normal Distribution with t-distribution

Conclusion

In terms of mean both Standard normal distribution and t-distribution are centered around zero. Also, t-distribution has fatter tails than normal distribution. This means that the probability of getting values far away from the mean is larger with a t-distribution than a normal distribution. Based on the observations in the above plots above, as the degrees of freedom increase t-distribution looks similar to the normal distribution

Part-3 Simulating F - Distributions using X²:

The F distribution is the ratio of two chi-square distributions with degrees of freedom n_1 and n_2 , respectively, where each chi-square has first been divided by its degrees of freedom.

$$F(n1,n2) = (U1/n1)/(U2/n2)$$

Here, U1 has X^2 distribution with n1 degrees of freedom. U2 has X^2 distribution with n2 degrees of freedom.

Method:

F(2,3) is simulated using $X^2(2)$ and $X^2(3)$ taken from part-1.

We divide chisq2 and chisq3 by their degrees of freedom and then the ratio is taken to find F(2,3).

```
dfn = 2
dfd = 3
limit = 5
chn=chisq2/dfn
chd= chisq3/dfd
np.random.shuffle(chd)
x=np.divide(chn,chd)
```


Similarly, the following F- distributions have been simulated and plotted using respective X^2 - distributions:

*Orange lines(--) denote theoretical pdf

Conclusion:

Since theoretical pdf matches with simulated ones, it can be concluded that Fdistribution is successfully simulated.

Part-4 Check Normality:

A multivariate normal distribution was simulated with 3 variables for 100 observations

Mean used to generate random variables = [5,3,7] Covariance matrix used to generate random variables= [[4,-1,0],[-1,4,2],[0,2,9]]

A) Univariate Normality Check using Q-Q Plots:

Q-Q plots are used to check univariate normality

Method to plot Q-Q plots

$$x_1, x_2, \dots x_n$$
 (unixposite date).

 $x_{(1)}, x_{(2)}, \dots x_{(n)}$ ($x_{(1)} \le x_{(2)} \le \dots x_{(n)}$).

Find $Q(i)$:

 $P(z \le Q(i)) = \frac{i-x_2}{n}$.

 $Q(i) : P(z \le Q(i)) = \frac{i-x_2}{n}$.

Figure Q-Q plots for each variable:

Observation:

As observed all Q-Q plots have points which can be fitted with a straight line, so this shows that the given univariate data is normal

B) **Bivariate Normality Test:**

To do bivariate normality test, two variables are taken at a time their scatter plots are plotted

Figure: Scatter plots of two variables at a time

Observation:

The scatter plots form an elliptical shape which confirms that two variables taken a time are bivariate normals

Multivariate Normality Test:

Method used:

$$X_{1}, X_{2}, \dots X_{n} \quad (\text{Multivariate} \quad \text{data})$$

$$d_{j}^{2} = (x_{j} - \bar{x}_{j})^{T} \quad (x_{j} - \bar{x}_{j}) \quad (\text{This follows etail} x^{2} \text{ distribute})$$

$$d_{1}^{2}, d_{2}^{2}, \dots , d_{n}^{2}$$
Sout it,
$$d_{(1)}^{2}, d_{(2)}^{2}, \dots d_{(n)}^{2} \quad \left[d_{(1)}^{2} \leq d_{(2)}^{2} \leq \dots d_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{1}^{2}, a_{2}^{2}, \dots d_{(n)}^{2} \quad \left[d_{(1)}^{2} \leq d_{(2)}^{2} \leq \dots d_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(1)}^{2} \leq d_{(2)}^{2} \leq \dots d_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(1)}^{2} \leq d_{(2)}^{2} \leq \dots d_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(n)}^{2} \leq d_{(2)}^{2} \leq \dots d_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(n)}^{2} \leq d_{(2)}^{2} \leq \dots d_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(n)}^{2} \leq d_{(2)}^{2} \leq \dots a_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(n)}^{2} \leq d_{(n)}^{2} \leq \dots a_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(n)}^{2} \leq d_{(n)}^{2} \leq \dots a_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(n)}^{2} \leq d_{(n)}^{2} \leq \dots a_{(n)}^{2} \right].$$

$$a_{1}^{2}, a_{2}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2}, \dots a_{(n)}^{2} \quad \left[d_{(n)}^{2} \leq d_{(n)}^{2} \leq \dots a_{(n)}^{2} \right].$$

Each d_j^2 follows chi-squared distribution and using chi-squared table q(c,p) is found which is plotted along with d_j^2 values

Figure: Plot to check Multivariate Normality:

Observation:

The scatter plot forms a straight line which shows that the simulated Multivariate data (here Trivariate) is normal