Politechnika Wrocławska

Katedra Teorii Pola, Układów Elektronicznych i Optoelektroniki

Zespół Układów Elektronicznych

LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

Data: 19.04.2021 Dzień: Poniedziałek

Grupa: E12-93| **Godzina**: 13:15-15:30

TEMAT ĆWICZENIA:

Przetwornica DC-DC

DANE PROJEKTOWE:

Napięcie wejściowe: $U_{in} = 3.3 \text{ V}$ Napięcie wyjściowe: $U_{out} = 9 \text{ V}$

Maksymalny prąd wyjściowy: $I_{out}=450~\mathrm{mA}$

Lp.	Nazwisko i Imię	Oceny
1.	Kuboń Piotr 252871	

1. Część praktyczna

1.1. Dane projektowe

Napięcie wejściowe: $U_{in} = 5 V$ Napięcie wyjściowe: $U_{out} = 15 V$

Maksymalny prąd wyjściowy: $I_{out} = 250 \ mA$

1.1.1. Założenia:

$$C_T = 680 \, pF$$

 $U_{in \, min} = 3V$ (przetwornica podwyższająca i odwracająca)

 $U_{in \ min} = U_{out \ n} + 1 \quad (przetwornica \ obniżająca)$

$$U_{CEsat} = 0.2 V$$

$$C_T[pF] = 40 t_{on} [\mu s]$$

$$t_{on} = \frac{C_T}{40} = 17 \ \mu s$$

$$I_{Lpk} = 2 * I_{out\ max} * \frac{U_{out}}{U_{in}} = 2 * 0.25 * \frac{15}{5} = 1.5 A$$

$$T = t_{on} + t_{off}$$

$$U_{out} = \frac{U_{in}}{1 - \gamma}$$

$$\gamma = 1 - \frac{U_{in}}{U_{out}} = 1 - \frac{5}{15} = \frac{2}{3}$$

$$T = \frac{t_{on}}{\gamma} = \frac{17 * 3}{2} = 25.5 \mu s \text{ stąd } f = \frac{1}{T} = 39.2 \text{ kHz}$$

$$L_{min} = \left(\frac{U_{in} - U_{CESat}}{I_{Lpk}}\right) \left(1 - \frac{U_{in \, min}}{U_{out}}\right) T = \left(\frac{3 - 0.2}{1.5}\right) \left(1 - \frac{3}{15}\right) * 25.5 * 10^{-6} = 38.1 \, \mu H$$

 $Przyjmujemy L = 100 \mu H$

$$I_{pk} = I_{Lpk}$$

$$R_{sc} = \frac{0.3}{I_{pk}} = \frac{0.3}{1.5} = 0.2$$

 $Przyjmujemy \ R_{sc} = 0.22 \varOmega$

$$|U_{out}| = 1.25 \left(1 + \frac{R_2}{R_1}\right)$$

 $Przyjmujemy R_1 = 1 k\Omega$

$$R_2 = \left(\frac{U_{out}}{1.25} - 1\right) * R_1 = 11k\Omega$$

Przyjmujemy $C_0 = 100 \mu F$

$$I_{out n} = \frac{1}{2}I_{out max} = \frac{1}{2} * 0.25 = 0.125 A$$

$$C_0 \geq \frac{9\,I_{out}}{U_{tpp}} * t_{on}$$

$$U_{tpp} = \frac{9 * I_{out}}{C_0} * t_{on} = \frac{9 * 0,125}{100 * 10^{-6}} * 17 * 10^{-6} = 0,19 V$$

$$R_{out n} = \frac{U_{out n}}{\frac{1}{2}I_{out max}} = \frac{15}{0.5 * 0.25} = 120\Omega$$

$$R_{out\,min} = \frac{R_{out\,n}}{2} = 60\Omega$$

1.1.2. Pomiar wartości elementów układu:

$$R_2 = 10,933 \, k\Omega$$

$$R_1 = 987,9 \ \Omega$$

 $R_{sc}=0.29~\Omega$ jednak pomiar rezystancji przewodów wskazał 0,07 Ω

Więc
$$R_{sc} = 0.22\Omega$$

Pomiar Rsc obarczony jest dużym błędem. Wynika to z faktu posiadania przez rezystor bardzo małej rezystancji. Aby dokonać lepszego pomiaru należało by zastosować mostek Thomsona.

$$C_T = 682,9 \ pF$$

$$C_0 = 100 \, \mu F$$

$$L = 102 \, \mu H$$

1.2. Przebieg pomiarów

1.2.1. Pomiar częstotliwości impulsowania oscylatora

Ustawiamy napięcie wejściowe $U_{in}=5~V$ i rezystancję obciążenia $R_{out}=120 \Omega$. Następnie dokonujemy pomiaru okresu impulsów oscylatora na kondensatorze C_T .

Rys. 1: Ekran oscyloskopu podczas pomiaru częstotliwości impulsowania oscylatora z zaznaczoną wartością częstotliwości

Za pomocą oscyloskopu zmierzyliśmy częstotliwość f = 43,66 kHz.

Po dołączeniu obciążenia przetwornica zmieniła częstotliwość na 47 kHz.

1.2.2. Pomiar stałości napięcia wyjściowego od zmian napięcia wejściowego (współczynnik stabilizacji)

	$R_{01} =$	200Ω	$R_{02} = 120\Omega$		
Lp.	$U_{in}\left[V\right]$	$U_{out}[V]$	$U_{in}[V]$	$U_{out}[V]$	
1	14	15,344	14	15,357	
2	13	15,298	13	15,290	
3	12	15,254	12	15,257	
4	11	15,237	11	15,225	
5	10	15,216	10	15,205	
6	9	15,193	9	15,186	
7	8	15,191	8	15,178	
8	7	15,181	7	15,167	
9	6	15,164	6	15,148	
10	5	15,155	5	15,130	
11	4	15,143	4	15,063	
12	3	15,125	3	14,847	

W celu wyznaczenia współczynnika stabilizacji korzystamy ze wzoru: $S_U = \frac{\Delta U_{wy}}{\Delta U_{wa}}$

$$S_{U_{200\Omega}} = \frac{\Delta U_{wy}}{\Delta U_{we}} = \frac{15,344 - 15,125}{14 - 3} = 0,0199 = 1,99\%$$

$$S_{U_{120\Omega}} = \frac{\Delta U_{wy}}{\Delta U_{we}} = \frac{15,357 - 14,847}{14 - 3} = 0,0464 = 4,64\%$$

Rys. 2: Charakterystyka napięcia wyjściowego w funkcji napięcia wejściowego przy parametrze $R0 = 120\Omega$ [pomarańcz] $R0 = 200\Omega$ [niebieski]

1.2.3. Pomiar rezystancji wyjściowej oraz sprawności przetwornicy

	$U_{we1} = 10 V$					
Lp.	$I_{in}\left[A\right]$	$U_{out}[V]$	$I_{out}[A]$	$P_{in}\left[W\right]$	$P_{out}[W]$	$\eta[\%]$
1	0,005	15,2	0	0,05	0	0
2	0,147	15,21	0,076	1,47	1,15596	78,63673469
3	0,196	15,217	0,101	1,96	1,536917	78,41413265
4	0,227	15,215	0,118	2,27	1,79537	79,09118943
5	0,243	15,206	0,127	2,43	1,931162	79,47168724
6	0,265	15,21	0,139	2,65	2,11419	79,78075472
7	0,29	15,202	0,153	2,9	2,325906	80,20365517
8	0,314	15,206	0,165	3,14	2,50899	79,90414013
9	0,352	15,2	0,186	3,52	2,8272	80,31818182
10	0,398	15,2	0,212	3,98	3,2224	80,96482412
11	0,466	15,204	0,246	4,66	3,740184	80,26145923
12	0,545	15,182	0,293	5,45	4,448326	81,62066055

	$U_{we1} = 5 V$					
Lp.	$I_{in}\left[A\right]$	$U_{out}[V]$	$I_{out}\left[A\right]$	$P_{in}\left[W\right]$	$P_{out}[W]$	η [%]
1	0,007	15,151	0	0,035	0	0
2	0,327	15,148	0,075	1,635	1,1361	69,48624
3	0,434	15,144	0,1	2,17	1,5144	69,78802
4	0,5	15,132	0,117	2,5	1,770444	70,81776
5	0,6	15,125	0,139	3	2,102375	70,07917
6	0,66	15,117	0,152	3,3	2,297784	69,62982
7	0,711	15,109	0,165	3,555	2,492985	70,12616
8	0,781	15,018	0,184	3,905	2,763312	70,76343
9	0,9	15,028	0,209	4,5	3,140852	69,79671
10	1,065	15,019	0,244	5,325	3,664636	68,81946
11	1,277	14,931	0,287	6,385	4,285197	67,1135

W celu wyznaczenia rezystancji wyjściowej korzystamy ze wzoru: $R_{wy}=rac{\Delta U_{wy}}{\Delta I_{wv}}$

$$R_{out_{10V}} = \frac{\Delta U_{wy}}{\Delta I_{wy}} = \frac{15,217 - 15,182}{0,293 - 0} = 0,119 \ \Omega$$

$$R_{out_{5V}} = \frac{\Delta U_{wy}}{\Delta I_{wy}} = \frac{15,151 - 14,931}{0,287 - 0} = 0,767 \ \Omega$$

W celu wyznaczenia mocy wyjściowej korzystamy ze wzoru: $P_{in} = U_{in} * I_{in}$

W celu wyznaczenia mocy wejściowej korzystamy ze wzoru: $P_{out} = U_{out} * I_{out}$

W celu wyznaczenia sprawności korzystamy ze wzoru: $\eta = \frac{P_{out}}{P_{in}}$

Rys. 3: Charakterystyka napięcia wyjściowego w funkcji prądu wyjściowego przy parametrze Uin= 5V [pomarańcz] Uin=10V [niebieski]

1.2.4. Pomiar napięcia tętnień

W celu dokonania pomiaru napięcia tętnień ustawiamy obciążenie na wartość 120Ω oraz napięcie wyjściowe na wartość nominalną. Napięcie wejściowe wynosi 5V.

Pomiaru wartości napięcia międzyszczytowego składowej zmiennej [AC] dokonujemy na rezystorze R2 (rezystor podłączony na wyjście).

Napięcie tętnień wynosi 776mV

Rys. 4: Ekran oscyloskopu podczas pomiaru wartości składowej zmiennej napięcia międzyszczytowego z zaznaczoną ową wartością

2. Część symulacyjna

2.1. Dane projektowe

Napięcie wejściowe: $U_{in} = 3.3 V$

Napięcie wyjściowe: $U_{out} = 9 V$

Maksymalny prąd wyjściowy: $I_{out} = 450 \; mA$

2.1.1. Założenia:

$$C_T = 680 \ pF$$

$$U_{in \, min} = 3V$$
 (przetwornica podwyższająca i odwracająca)

$$U_{CEsat} = 0.2 V$$

$$C_T[pF] = 40 t_{on} [\mu s]$$

$$t_{on} = \frac{C_T}{40} = 17 \ \mu s$$

$$I_{Lpk} = 2 * I_{out\ max} * \frac{U_{out}}{U_{in}} = 2 * 0.45 * \frac{9}{3.3} = 2.455 A$$

$$T = t_{on} + t_{off}$$

$$U_{out} = \frac{U_{in}}{1 - \nu}$$

$$\gamma = 1 - \frac{U_{in}}{U_{out}} = 1 - \frac{3.3}{9} = 0.633$$

$$T = \frac{t_{on}}{\gamma} = \frac{17 * 10^{-6}}{0.633} = 26.86 \ \mu s \ stad \ f = \frac{1}{T} = 37.24 \ kHz$$

$$L_{min} = \left(\frac{U_{in} - U_{CEsat}}{I_{Lpk}}\right) \left(1 - \frac{U_{in\;min}}{U_{out}}\right) T = \left(\frac{3.3 - 0.2}{2.455}\right) \left(1 - \frac{3}{9}\right) * 26.86 * 10^{-6} = 22.66 \; \mu H$$

 $Przyjmujemy L = 100 \mu H$

$$I_{pk} = I_{Lpk}$$

$$R_{sc} = \frac{0.3}{I_{nk}} = \frac{0.3}{2.455} = 0.122$$

 $Przyjmujemy R_{sc} = 0.12 \Omega$

$$|U_{out}| = 1,25\left(1 + \frac{R_2}{R_1}\right)$$

Przyjmujemy $R_1=1.2~k\Omega$

$$R_2 = \left(\frac{U_{out}}{1,25} - 1\right) * R_1 = \left(\frac{9}{1,25} - 1\right) * 1200 = 7,44 \, k\Omega$$

 $Przyjmujemy R_2 = 7,5k\Omega$

Przyjmujemy $C_0 = 100 \mu F$

$$I_{out n} = \frac{1}{2} I_{out max} = \frac{1}{2} * 0.45 = 0.225 A$$

$$U_{tpp} = \frac{9 * I_{out}}{C_0} * t_{on} = \frac{9 * 0,225}{100 * 10^{-6}} * 17 * 10^{-6} = 0,344 V$$

$$R_{out n} = \frac{U_{out n}}{\frac{1}{2} I_{out max}} = \frac{9}{0,5 * 0,45} = 40 \Omega$$

$$R_{out min} = \frac{R_{out n}}{2} = 20 \Omega$$

W trakcie przeprowadzania symulacji zauważono iż w momencie gdy rezystancja wyjściowa wynosi 40Ω napięcie wyjściowe nie jest w stanie osiągnąć napięcia wyższego niż 4.8V przy dużych tętnieniach.

Z tego powodu dalsze obliczenia wykonano dla nominalnej rezystancji wyjściowej wynoszącej 400Ω . Zapewnia ona uzyskanie napięcia wyjściowego na poziomie 9V w czasie 8.6ms.

2.2. Schemat symulowanego układu

Rys 1: Schemat LTSpice badanego układu

2.3. Przebieg pomiarów

2.3.1. Pomiar częstotliwości impulsowania oscylatora

Ustawiamy napięcie wejściowe $U_{in}=3.3~V$ i rezystancję obciążenia $R_{out}=400 \varOmega$. Następnie dokonujemy pomiaru okresu impulsów oscylatora na kondensatorze C_T .

Rys. 5: Ekran symulatora podczas pomiaru częstotliwości impulsowania oscylatora z zaznaczonymi wartościami kursorów

Za pomocą kursorów zmierzyliśmy wartości kolejnych dwóch wartości minimalnych. Na tej podstawie jesteśmy w stanie wyliczyć okres impulsowania który wynosi $T_{imp}=39{,}238\mu s$, jak również częstotliwość impulsowania która wynosi $f_{imp}=\frac{1}{T_{imp}}=25{,}49kHz$

2.3.2. Pomiar stałości napięcia wyjściowego od zmian napięcia wejściowego (współczynnik stabilizacji)

	$R_{01} =$	400Ω	$R_{02} = 800\Omega$		
Lp.	$U_{in}[V]$	$U_{out}\left[V ight]$	$U_{in}[V]$	$U_{out}[V]$	
1	3,3	9,075	3,3	9,084	
2	4	9,119	4	9,076	
3	5	9,174	5	9,158	
4	6	9,213	6	9,182	
5	7	9,256	7	9,391	
6	8	9,311	8	9,511	

W celu wyznaczenia współczynnika stabilizacji korzystamy ze wzoru: $S_U = \frac{\Delta U_{wy}}{\Delta U_{we}}$

$$S_{U_{400\Omega}} = \frac{\Delta U_{wy}}{\Delta U_{we}} = \frac{9,311 - 9,075}{8 - 3,3} = 0,0502 = 5,02\%$$

$$S_{U_{800\Omega}} = \frac{\Delta U_{wy}}{\Delta U_{we}} = \frac{9,511 - 9,084}{8 - 3,3} = 0,0909 = 9,09\%$$

Rys. 6: Charakterystyka napięcia wyjściowego w funkcji napięcia wejściowego przy parametrze $R0 = 800\Omega$ [pomarańcz] $R0 = 400\Omega$ [niebieski]

2.3.3. Pomiar rezystancji wyjściowej oraz sprawności przetwornicy

	$U_{we1} = 3.3 V$					
Lp.	$I_{in}\left[A\right]$	$U_{out}\left[V\right]$	$I_{out} [mA]$	$P_{in}\left[W\right]$	P_{out} [mW]	$\eta[\%]$
1	-0,685	9,068	23	2,2605	208,57	9,23
2	-0,685	9,095	15,16	2,2605	137,89	6,1
3	-0,685	9,101	11,38	2,2605	103,57	4,58
4	-0,685	9,097	9,098	2,2605	82,76	3,66
5	-0,685	9,082	6,05	2,2605	54,94	2,43
6	-0,685	9,091	4,55	2,2605	41,36	1,83
7	-0,685	9,1	0	2,2605	0	0

	$U_{we1} = 6 V$					
Lp.	$I_{in}[A]$	$U_{out}[V]$	$I_{out} [mA]$	$P_{in}\left[W\right]$	$P_{out}[W]$	η [%]
1	-1,6	9,05	22,7	9,6	0,205	2,14
2	-1,589	9,069	15,11	9,534	0,137	1,44
3	-1,594	9,072	11,34	9,564	0,103	1,08
4	-1,812	9,072	9,072	10,872	0,082	0,76
5	-1,78	9,073	6,05	10,68	0,055	0,51
6	-1,56	9,077	4,54	9,36	0,042	0,44
7	-0,0016	9,33	0	0,0096	0	0

W celu wyznaczenia rezystancji wyjściowej korzystamy ze wzoru: $R_{wy}=rac{\Delta U_{wy}}{\Delta I_{wy}}$

$$R_{out_{3,3V}} = \frac{\Delta U_{wy}}{\Delta I_{wy}} = \frac{9,1-9,068}{0,023-0} = 1,39 \ \Omega$$

$$R_{out_{6V}} = \frac{\Delta U_{wy}}{\Delta I_{wy}} = \frac{9,33 - 9,05}{0,0227 - 0} = 12,33 \ \Omega$$

W celu wyznaczenia mocy wyjściowej korzystamy ze wzoru: $P_{in} = U_{in} * I_{in}$

W celu wyznaczenia mocy wejściowej korzystamy ze wzoru: $P_{out} = U_{out} * I_{out}$

W celu wyznaczenia sprawności korzystamy ze wzoru: $\eta = \frac{P_{out}}{P_{in}}$

Rys. 7: Charakterystyka napięcia wyjściowego w funkcji prądu wyjściowego przy parametrze Uin= 6V [pomarańcz] Uin=3,3V [niebieski]

2.3.4. Pomiar napięcia tętnień

W celu dokonania pomiaru napięcia tętnień ustawiamy obciążenie na wartość 400Ω oraz napięcie wyjściowe na wartość nominalną. Napięcie wejściowe wynosi 3,3V.

Pomiaru wartości napięcia międzyszczytowego składowej zmiennej [AC] dokonujemy na rezystorze R2 (rezystor podłączony na wyjście).

Napięcie tętnień wynosi 32,3mV

Rys. 8: Ekran symulatora podczas pomiaru wartości składowej zmiennej napięcia międzyszczytowego

3. Wnioski

- Im większa wartość indukcyjności dławika, tym większe wahania napięcia, ale także większe wzmocnienie. Jest to spowodowane faktem magazynowania energii przez dławik, która następnie zostaje uwolniona.
- Wartość pojemności kondensatora C_T wpływa bezpośrednio na czas narastania a co za tym idzie również na okres i częstotliwość impulsowania przetwornicy
- Układ rzeczywisty spełnił zamierzenia projektowe. Niewielkie rozbieżności wynikają przez korzystanie z nieidealnych elementów rzeczywistych.
- Układ symulacyjny nie spełnił zamierzeń projektowych. Po zawyżeniu nominalnej rezystancji
 wyjściowej udało się ostatecznie uzyskać na wyjściu napięcie 9V, jednak spowodowało to
 uzyskanie mniejszych prądów wyjściowych, a przez to znaczny spadek sprawności.
- Uzyskanie ujemnego prądu wejściowego może wynikać z niedokładności modelu lub błędnej interpretacji schematu, a co za tym idzie jego niepoprawnej realizacji.
- Współczynnik stabilizacji jest w obu ćwiczeniach na zadowalającym poziomie, jednak znacznie odbiega od wartości jakie udało się uzyskać w przypadku stabilizatora.
- Rezystancja wyjściowa zarówno w przypadku części praktycznej jak i symulacyjnej jest na zadowalającym poziomie.
- Przekroczenie przyjętego napięcia wejściowego powoduje szybsze uzyskanie stanu ustalonego, oraz możliwość uzyskania wyższych prądów wyjściowych, jednak wpływa to również na zwiększenie rezystancji wyjściowej oraz na zwiększenie się wydzielonej mocy.