

1. 교육 내용

가. 교육과정 일정 및 목표

	월	화	수	목	=
1주차	개론	기초데이터 분석	고급데0	l <mark>터분석</mark>	머신러닝 알고리즘
2주차	머신러닝 알고리즘 딥러닝 알고리즘			알고리즘	
3주차	딥러닝 알고리즘				
4주차	Kaggle을 통한 실전 프로젝트				

과 정 명	교육시간	교 육 목 표
인공지능 개론	1일 8시간	 인공지능의 영향력과 추세 머신러닝과 딥러닝 프로젝트 이해 국내외 인공지능 업체의 활용 사례 인공지능 비즈니스 인사이트
데이터 분석	3일 24시간	 Numpy, Pandas 핵심 기능 데이터 정제 및 준비 데이터 시각화 실습
머신러닝	4일 32시간	 머신러닝 개요와 데이터전처리 의사결정트리 회귀분석 군집분석
딥러닝	7일 56시간	 신경망 구성 및 구현 CNN 알고리즘 RNN 알고리즘 강화학습
Kaggle을 통한 실전 프로젝트	5일 40시간	 캐글 경진대회 활용 팁 데이터 전처리하기 탐색적 데이터 분석 캐글 자유 주제 미니 프로젝트

南村四季州外景的产生 多素到红斑

나. 인공지능 개론

	인공시능 개론
교육시간	■ 1일8시간
과정개요	 인공지능의 기본적인 개념과 역사에 대해 이해하고 인공지능 분야와 대표적인 유형, 영향력에 대해 학습하게 된다. 머신러닝과 딥러닝의 차이점을 이해하고 기본 알고리즘에 대해 학습한다. 인공지능이 다양한 비즈니스 문제를 해결하는 방법으로 활용된 사례를 학습한다.
학습목표	 인공지능의 역사와 배경에 대해 이해할 수 있다. 인공지능 분야와 대표적인 유형을 이해할 수 있다. 머신러닝과 딥러닝의 차이점을 설명할 수 있다. 머신러닝과 딥러닝의 기본 알고리즘을 이해할 수 있다. 인공지능의 비즈니스 활용 사례에 대해 이해할 수 있다.
학습내용	 인공지능 개념 인공지능의 영향력과 추세 머신러닝과 딥러닝 개요 머신러닝과 딥러닝 알고리즘 인공지능의 비즈니스 활용 사례
과정 평가방법	■ 객관식 8문제(80점) + 서술형 2문제(20점)

		│ 인공지능 개론 │
	오전	[Phase 01] 인공지능 개념 이해 인공지능에 대한 올바른 개념 이해 인공지능 발전사 및 그 의미 인공지능의 세부 분류별 특징 이해 [Phase 02] 인공지능의 영향력과 추세 이해 인공지능의 전세계적인 추세 이해 인공지능이 모든 산업 분야로확장되는 근본 이유 이해 인공지능이 사회 전반, 산업계에 미치는 영향 이해
1일차	오후	[Phase 03] 머신러닝과 딥러닝 비교 · 관리자를 위한 머신 러닝과 딥러닝 비교 이해 · 관리자를 위한 머신 러닝/딥러닝 프로젝트 구성 요소 이해 · 관리자를 위한 머신러닝/딥러닝 개발 프로세스 이해 [Phase 04] 머신러닝과 딥러닝 프로젝트 이해 · 머신러닝/딥러닝 기술을 관리 차원에서지원하는 방법 이해 · 머신러닝/딥러닝 관련 프로젝트 협업 방법이해 · 머신러닝/딥러닝 알고리즘 핵심 개념 이해 [Phase 05] 인공지능 비즈니스 활용 · 국내외 인공지능 업체의 활용 사례 이해 · 인공지능 비즈니스 인사이트 이해

南心豆豆 树外是此中午 希望的工机的

다. 데이터분석

	│ 데이터분석 │
교육시간	■ 3일 24시간
과정개요	 파이썬 데이터 분석 개발 환경을 구성하는 방법을 배운다. 데이터 분석 프로세스에 대한 통찰력을 얻어 전체적인 구성을 계획할 수 있는 기법을 배운다. numpy 라이브러리를 사용하여 빠른 수치 계산 기법을 배운다. 판다스 Series 자료구조의 형태에 대해 이해하고 데이터를 구성하고 활용할 수 있는 기법을 배운다. 판다스 DataFrame 자료구조의 형태에 대해 이해하고 데이터를 구성하고 활용할 수 있는 기법을 배운다. 판다스 시계열 데이터 처리 기법을 배운다. 판다스 데이터 분석을 활용하여 데이터를 정제하여 그 결과를 워드클라우드로 표현할 수 있는 기법을 배운다.
학습목표	 데이터를 가공하여 유의미한 정보를 생성하고 컨트롤함으로써 데이터 설계 능력 향상 및 데이터 분석의 이해도를 높이고 활용 능력을 습득한다. 판다스(Pandas)를 활용하여 탐색적 데이터 분석을 할 수 있으며 판다스 자체에서 제공하는 다양한 시각화 기법을 활용하여 정보를 요약하고 시각화할 수 있는 능력을 습득한다. 실무에 가까운 판다스(Pandas) 미니 프로젝트를 통해 데이터 분석 업무를 개발할 수 있는 능력을 습득한다.
학습내용	 numpy의 다양한 수치 계산 기법을 배우고 각각의 처리 기법을 익힌다. pandas 탐색적 데이터 분석 기법을 배우고 실제 데이터를 활용하여 분석하는 방법을 익힌다. pandas 자료 구조에 대해 이해하고 분석과 통계 기법을 배우고 활용하는 방법을 익힌다. pandas 데이터 정제를 배우고 케이스별로 데이터를 정제할 수 있는 방법을 익힌다. pandas 결측치 처리 기법을 배우고 실제 데이터에 적용하는 기법을 익힌다. pandas 데이터 시각화 기법을 배우고 이를 활용하는 방법을 익힌다.
과정 평가방법	■ 객관식 15문제(60점) + 서술형 4문제(20점) + 실습 과제 1문제(20점)

| 데이터 분석 |

1일차	오전	 왜 데이터 분석에 파이썬인가? 필수 파이썬 데이터 분석 라이브러리 설치 데이터 분석 환경 구성 실습
	오후	 Numpy ndarray 활용 방법 Numpy 선형 대수 활용 방법
2일차	오전	 Pandas 핵심 기능 Pandas 자료 구조 이해 시리즈와 데이터 프레임의 기초와 활용 기술 통계 계산과 요약
	오후	 데이터 정제 및 준비 누락된 데이터 처리하기 데이터 집계와 그룹 연산
3일차	오전	 공공 빅데이터 분석 및 오픈API 실습 탐색적 데이터 분석 기법 실습 데이터 시각화 실습
	오후	■ 데이터 분석 미니 프로젝트

라. 머신러닝

	버신러닝
교육시간	■ 4일 32시간
과정개요	 파이썬 머신러닝의 구성요소를 차례로 배운 후 그 요소들을 조립하여 전체 구성을 할 수 있는 방법을 배운다. 파이썬 머신러닝 프로세스의 실제적인 구성을 이해하고 전체 프로세스를 설계할 수 있는 기법을 배운다. 파이썬 머신러닝을 위한 데이터 전처리 기법을 배운다. 파이썬 머신러닝을 위한 데이터 설계 기법을 배운다. 파이썬 머신러닝을 위한 모델을 설계하는 방법을 배운다. 파이썬 머신러닝을 위한 모델을 훈련하고 그 결과를 검증하며 성능을 측정하는 방법을 배운다. 파이썬 머신러닝을 위한 하이퍼 파라미터 튜닝 기법을 배운다.
학습목표	 머신러닝의 프로세스별 구성 요소를 다루는 방법과 각 프로세스별 주의사항에 따른 대처 방법을 배우고 전체 프로세스를 구성할 수 있는 능력을 습득한다. 머신러닝 모델별 장점을 파악하여 입력되는 데이터의 종류별로 처리하는 방법을 배우고 모델을 선택하고 다룰 수 있는 능력을 습득한다. 머신러닝 처리 결과인 분류와 회귀 기법을 배우고 상황에 맞는 결과를 얻을 수 있는 능력을 습득한다. 머신러닝의 데이터 정규화, 교차 검증, 하이퍼 파라미터 튜닝 등의 기법을 적용하여 성능을 향상시키는 능력을 습득한다.
학습내용	 머신러닝학습의 종류별 특징을 배우고 활용하는 방법을 익힌다. 머신러닝의 학습 알고리즘별 특징을 배우고 활용하는 기법을 익힌다. 머신러닝의 분류 기법을 익히고 데이터를 처리하여 이진 분류와 다중분류를 할 수 있는 기법을 익힌다. 머신러닝의 주성분 분석 기법을 배우고 데이터를 처리하여 주성분 분석을 통해 데이터 pandas 데이터 정제 기법을 익힌다. 머신러닝 성능 튜닝 기법을 배우고 활용할 수 있는 기법을 익힌다.
과정 평가방법	■ 객관식 15문제(60점) + 서술형 4문제(20점) + 실습 과제 1문제(20점)

_		- 1		
i 1-		임		
	100	_	-	

1일차	오전	 Anaconda와 주피터 노트북 ndarray 자료구조 ndarray 자료구조 활용 numpy 함수 활용 	201∓1	오전	 랜덤 포레스트 GBRT Support Vector Machine 학습 알고리즘 SVM 모델 활용
		 pandas 자료구조 sklearn 라이브러리 sklearn 라이브러리 학습 알고리즘 	3일차	오후	 데이터 정규화 데이터 정규화 효과 실습 주성분 분석 (PCA)
	오후	분류와 회귀최적화와 일반화최초의 학습 알고리즘			 PCA 적용 및 활용 K-Means 알고리즘
2일차	오전	 퍼셉트론 구현 선형모델의 가설공간과 표현력 선형회귀 로지스틱 회귀 	4일차	오전	 병합군집 DBSCAN 범주형 변수 인코딩 구간분할 특성 선택
	오후	결정트리 학습 알고리즘결정트리 모델 활용결정트리와 선형 모델 비교		오후	 교차검증 (Cross Validation) 모델 튜닝 (Grid Search) 알고리즘 체인을 활용한 모델 구성

마. 딥러닝

교육시간	■ 7일 56시간
과정개요	 파이썬 딥러닝의 구성요소를 차례로 배운 후 그 요소들을 조립하여 전체 구성을 할 수 있는 방법을 배운다. 파이썬 딥러닝 프로세스의 실제적인 구성을 이해하고 전체 프로세스를 설계할 수 있는 기법을 배운다. 파이썬 딥러닝을 위한 데이터 전처리 기법을 배운다. 파이썬 딥러닝을 위한 데이터 설계 기법을 배운다. 파이썬 딥러닝을 위한 모델을 설계하는 방법을 배운다. 파이썬 딥러닝을 위한 모델을 훈련하고 그 결과를 검증하며 성능을 측정하는 방법을 배운다. 파이썬 딥러닝을 위한 하이퍼 파라미터 튜닝 기법을 배운다.
학습목표	 딥러닝의 프로세스별 구성 요소를 다루는 방법과 각 프로세스별 주의사항에 따른 대처 방법을 배우고 전체 프로세스를 구성할 수 있는 능력을 습득한다. 딥러닝 모델별 장점을 파악하여 입력되는 데이터의 종류별로 처리하는 방법을 배우고 모델을 선택하고 다룰 수 있는 능력을 습득한다. 딥러닝 처리 결과인 분류와 회귀 기법을 배우고 상황에 맞는 결과를 얻을 수 있는 능력을 습득한다. 딥러닝의 모델 설계 기법, 모델 테스트, 모델 튜닝 등의 기법을 적용하여 성능을 향상시키는 능력을 습득한다.
학습내용	 딥러닝 신경망의 종류별 특징을 배우고 활용하는 방법을 익힌다. 딥러닝의 손실 함수, 최적화 기법, 오차 역전법 등의 개념을 배우고 이를 활용하는 기법을 익힌다. 딥러닝의 분류 기법을 익히고 데이터를 처리하여 이진 분류와 다중분류를 할 수 있는 기법을 익힌다. 딥러닝의 이미지 처리 기법인 CNN 아키텍처를 배우고 데이터를 전처리하여 모델을 훈련하고 테스트하며 결과를 검증하는 기법을 익힌다. 딥러닝의 연속형 데이터를 처리하는 기법인 RNN 아키텍처를 배우고 데이터를 전처리하여 모델을 훈련하고 테스트하며 결과를 검증하는 기법을 익힌다.
과정 평가방법	■ 객관식 15문제(60점) + 서술형 4문제(20점) + 실습 과제 1문제(20점)

| 딥러닝 |

| 딥러닝 |

	오전	신경망 구성다차원 배열 계산신경망 구현
1일차	오후	 출력층 신경망 적용 손실 함수 최적화
2일차	오전	 신경망 학습 오차역전파 계층 구현 활성화 함수 계층 구현
	오후	 Affine/Softmax 계층 구현 오차역전파 구현 매개변수 갱신
	오전	 Tensorflow 설치 및 신경망 구현 Keras 설치 및 신경망 구현
3일차	오후	 합성곱 신경망 (CNN) CNN 모델 구현과 활용 (1): Keras Convolutional 계층 및 MaxPooling

4일차	오전	 CNN 모델 구현과 활용 (2): Dropout과 과적합 해소 및 이미지 데이터 입출력과 변환 CNN 모델 구현과 활용 (3): 은닉층 추가 및 노드와 은 닉층 추가를 활용한 모델 표현력 개선 데이터 보강 (Data Augmentation)
	오후	 Keras 고급 활용 (1): Keras 모델 특정 계층 출력 확인 Keras 고급 활용 (2): Keras 모델 파일 저장 및 Keras 가중치 파일 저장 이미지 딥러닝 최신 모델
5일차	오전	 순환 신경망 (RNN) RNN 모델 구현과 활용 (1): Keras RNN 계층 및 입력 데이터 형식 처리 RNN 모델 구현과 활용 (2): LSTM 계층 및 문장 단위 감정 분류
	오후	 강화학습 소개 및 활용 사례 신경망을 활용한 Q-Learning Tabular Q Learning 실습
6일차	오전	 Function Approximation 개요 및 실습 DQN 개요 및 구현 실습
	오후	■ Double DQN, PER, Duelling DQN 개요 및 실습
701-1	오전	 Actor-Critic 개요 / DDPG 개요 및 실습
7일차	오후	■ 새로운 환경에 강화학습 구현 및 테스트

바. Kaggle을 통한 실전 프로젝트

│ Kaggle을 통한 실전 프로젝트 │

교육시간	 5일 40시간
과정개요	 인공지능(머신러닝, 딥러닝) 개발자의 학습 공간 및 경연 공간인 캐글에 가입하는 방법과 데이터 분석 프로젝트에 참여하는 방법을 배워 실제로 참가하여 프로젝트를 실행할 수 있는 방법을 배운다. 캐글에서 추천하는 경진 대회 주제를 알아보고 난이도가 쉬운 것부터 점점 수준을 올려서 진행하는 방법을 배운다. 파이썬 딥러닝 프로세스의 실제적인 구성을 이해하고 전체 프로세스를 설계할 수 있는 기법을 배운다. 캐글의 대표적인 분류 문제를 알아보고 탐색적 데이터 분석부터 시작하여 전체 프로세스를 차례로 배운다. 캐글의 예측 문제들를 알아보고 설계 기법, 훈련 기법, 평가 기법 등을 순차적으로 적용하는 방법을 배운다. 캐글러들의 딥러닝 기법을 배우고 그 기법을 나의 프로젝트에 적용하는 방법을 배운다.
학습목표	 캐글 경진대회의 샘플을 통해 각 프로세스별 대처 방법을 배우고 전체 프로세스를 구성하고 프로젝트를 진행할 수 있는 능력을 습득한다. 캐글러들의 팁을 통해 나의 프로젝트의 장점과 단점을 파악하고 각 단계별로 발생할 수 있는 문제를 알아보고 해결책을 찾는 능력을 습득한다. 다양한 캐글 프로젝트별 구성 요소들의 차이점과 공통점을 파악하여 데이터별로 적절히 처리할 수 있는 능력을 습득한다. 캐글에서 배운 프로젝트 진행 기법을 활용하여 나만의 미니 프로젝트를 진행할 수 있는 능력을 습득한다.
학습내용	 캐글 추천 경진 대회에 대해 알아보고 이를 기반으로 순차적으로 경진 대회 문제들을 차례대로 처리할 수 있는 방법을 익힌 다. 캐글 경진 대회별 주요 접근 방법을 알아보고 각 접근 방법에 다른 장단점을 비교하여 상황별로 처리할 수 있는 방법을 익힌 다. 캐글 경진 대회의 이미지 처리 프로세스를 알아보고 데이터를 전처리하여 모델을 훈련하고 결과를 검증하는 전체 프로세스를 다루는 방법을 익힌다. 캐글 경진 대회의 연속형 데이터를 처리하는 프로세스를 알아보고 모델 훈련/테스트/검증/성능 향상법들을 익혀 프로젝트를 다루는 방법을 익힌다.
과정 평가방법	■ 객관식 15문제(60점) + 서술형 4문제(20점) + 실습 과제 1문제(20점)

| Kaggle을 통한 실전 프로젝트 |

1일차	오전	왜 머신러닝/딥러닝 실력향상에 캐글인가? 캐글을 시작하는 방법 캐글 경진대회 활용 팁 경진대회 선발 기준 산탄데르 제품 추천 경진대회 경진대회 동기 평가 척도 주요 접근방법 데이터 전처리하기	3일차	오전	 로이터 뉴스 분류 탐색적 데이터 분석 분류 모델 설계/훈련/평가 실습
				오후	 CIFAR10 탐색적 데이터 분석 CIFAR10 이미지 인식 모델 설계/훈련/평가 실습
			4일차	오전	■ 포르토 세구로 안전 운전자 예측 대회
	오후				■ 분류 모델 설계/훈련/평가 실습
					■ 비트코인 LSTM 예측 오후 ■ LSTM 모델 설계/훈련/평가 실습 ■ 캐글 자유 주제 미니 프로젝트 준비
2일차	오전	탐색적 데이터 분석Baseline 모델		오후	
		• 승자의 비법	5일차	오전	 캐글 자유 주제 미니 프로젝트 진행 캐글 자유 주제 미니 프로젝트 발표
	오후	보스턴 집값 예측 탐색적 데이터 분석회귀 모델 설계/훈련/평가 실습		오후	