Exercice 1. Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x-y,3x+y)$. Soit B=((1,1),(1,2)) une base de \mathbb{R}^2 . Donner la matrice $[T]_{BB}$.

Solution 1. Voir la vidéo correspondante.

Les colonnes de la matrice $[T]_{BB}$ sont constituées des images des vecteurs de la base B, exprimés dans la base B. Ici, on calcule :

$$T((1,1)) = (0,4) = -4(1,1) + 4(1,2),$$

 $T((1,2)) = (-1,5) = -7(1,1) + 6(1,2).$

La matrice $[T]_{BB}$ est donc $[T]_{BB} = \begin{pmatrix} -4 & -7 \\ 4 & 6 \end{pmatrix}$.

Remarque. Pour trouver les coordonnées dans une nouvelle base, il suffit de poser un système. Ici, pour exprimer (0,4) dans la base (1,1),(1,2), on pose $(0,4)=\alpha(1,1)+\beta(1,2)$, et on résout donc le système

$$\begin{cases} \alpha + \beta = 0 \\ \alpha + 2\beta = 4 \end{cases}$$

Cette méthode sera toujours utilisée pour calculer les coordonnées d'un vecteur dans une base. Dans le reste du corrigé, on ne détaillera plus ces calculs.

Exercice 2. Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$,

$$(x, y, z, t) \mapsto (x - 2y + 3z, -x + z - t, y - 3z + 2t, 3y - 5z).$$

Soit B = ((1, 1, -1, 0), (0, 1, 1, -1), (0, 0, 1, 1), (0, 0, 0, 1)) une base de \mathbb{R}^4 et soit $C = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

- 1) Donner la matrice $[T]_{CC}$.
- 2) Donner une base de l'image de T.
- 3) Donner une base du noyau de T.
- 4) L'application T est-elle injective? Surjective? Bijective?
- 5) Donner la matrice $[T]_{CB}$.
- 6) Donner la matrice $[T]_{BC}$.
- 7) Donner la matrice $[T]_{BB}$.

Solution 2. Voir les vidéos correspondantes.

1) On calcule

$$T(e_1) = T((1,0,0,0)) = (1,-1,0,0), \ T(e_2) = T((0,1,0,0)) = (-2,0,1,3),$$

$$T(e_3) = T((0,0,1,0)) = (3,1,-3,-5), T(e_4) = T((0,0,0,1)) = (0,-1,2,0).$$

Donc la matrice $[T]_{CC}$ est égale à

$$\begin{pmatrix} 1 & -2 & 3 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & 1 & -3 & 2 \\ 0 & 3 & -5 & 0 \end{pmatrix},$$

i.e., on met l'image des vecteurs de base dans les colonnes de la matrice.

2) L'image de T étant engendrée par les colonnes de $[T]_{CC}$, on va calculer une base de l'espace ligne de la transposée de cette matrice, en échelonnant

$$[T]_{CC}^{T} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -2 & 0 & 1 & 3 \\ 3 & 1 & -3 & -5 \\ 0 & -1 & 2 & 0 \end{pmatrix}.$$

On échelonne comme suit :

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ -2 & 0 & 1 & 3 \\ 3 & 1 & -3 & -5 \\ 0 & -1 & 2 & 0 \end{pmatrix} \xrightarrow{L_2 \to L_2 + 2L_1} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & -2 & 1 & 3 \\ 0 & 4 & -3 & -5 \\ 0 & -1 & 2 & 0 \end{pmatrix} \xrightarrow{L_2 \leftrightarrow L_4} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 4 & -3 & -5 \\ 0 & -2 & 1 & 3 \end{pmatrix}$$

Une base de l'image de T est donc donnée par

$$((1,-1,0,0),(0,-1,2,0),(0,0,1,-1)).$$

(Cette base n'est pas unique! Cela dépend des opérations élémentaires effectuées pour échelonner la matrice. On aurait pu par exemple prendre

$$((1,-1,0,0),(0,-1,2,0),(0,0,5,-5))$$

si on ne divisait pas la troisième ligne par 5 à la fin. Par contre, on constate que $\dim(\operatorname{Im}(T)) = 3$, on doit donc toujours avoir une base formée de trois vecteurs.)

3) Trouver une base du noyau consiste à résoudre le système $[T]_{CC} \cdot X = 0$. On échelonne et on réduit donc cette fois-ci la matrice $[T]_{CC}$ (et non sa transposée, comme pour l'image). Cela nous donne

$$\begin{pmatrix} 1 & -2 & 3 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & 1 & -3 & 2 \\ 0 & 3 & -5 & 0 \end{pmatrix} \xrightarrow{L_2 \to L_2 + L_1} \begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & -2 & 4 & -1 \\ 0 & 1 & -3 & 2 \\ 0 & 3 & -5 & 0 \end{pmatrix} \xrightarrow{L_2 \to L_3} \begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 1 & -3 & 2 \\ 0 & 3 & -5 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 1 & -2 & 3 & 0 \\ 0 & 1 & -2 & 3 & 0 \\ 0 & 1 & -2 & 3 & 0 \end{pmatrix}$$

Le noyau de T est donc constitué des vecteurs de la forme $(\frac{1}{2}t, \frac{5}{2}t, \frac{3}{2}t, t)$ pour $t \in \mathbb{R}$. Une base du noyau est, par exemple, ((1, 5, 3, 2)).

4) Le noyau n'est pas réduit à zéro, donc l'application n'est pas injective. Pour l'image, on peut regarder les dimensions : $\dim(\operatorname{Im}(T)) = 3 < 4 = \dim(\mathbb{R}^4)$, donc l'application n'est pas non plus surjective.

(On peut au passage vérifier la cohérence de nos résultats des points 2) et 3) par le théorème du rang : on a bien $\dim(\mathbb{R}^4) = 4 = \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T)) = 1 + 3.$)

5) Pour obtenir la matrice $[T]_{CB}$, il nous faut calculer l'image des vecteurs de la base B et les exprimer dans la base C, qui est la base canonique. On trouve donc

$$T((1,1,-1,0)) = (-4,-2,4,8), T((0,1,1,-1)) = (1,2,-4,-2),$$

 $T((0,0,1,1)) = (3,0,-1,-5), T((0,0,0,1)) = (0,-1,2,0),$

donc

$$[T]_{CB} = \begin{pmatrix} -4 & 1 & 3 & 0 \\ -2 & 2 & 0 & -1 \\ 4 & -4 & -1 & 2 \\ 8 & -2 & -5 & 0 \end{pmatrix}.$$

6) On fait l'inverse, à savoir exprimer l'image des vecteurs de la base canonique C dans la base B. Notons $f_1 = (1, 1, -1, 0), f_2 = (0, 1, 1, -1), f_3 = (0, 0, 1, 1), f_4 = (0, 0, 0, 1)$ les vecteurs de B. Cela nous donne

et ainsi

$$[T]_{BC} = \begin{pmatrix} 1 & -2 & 3 & 0 \\ -2 & 2 & -2 & -1 \\ 3 & -3 & 2 & 3 \\ -5 & 8 & -9 & -4 \end{pmatrix}.$$

7) On a vu précédemment que si l'on nomme (f_1, f_2, f_3, f_4) les vecteurs de B, on a

$$T(f_1) = (-4, -2, 4, 8), T(f_2) = (1, 2, -4, -2),$$

 $T(f_3) = (3, 0, -1, -5), T(f_4) = (0, -1, 2, 0).$

On exprime ensuite ces vecteurs dans la même base B, ce qui nous donne

$$T(f_1) = -4f_1 + 2f_2 - 2f_3 + 12f_4$$

 $T(f_2) = 1f_1 + 1f_2 - 4f_3 + 3f_4$
 $T(f_3) = 3f_1 - 3f_2 + 5f_3 - 13f_4$,
 $T(f_4) = 0f_1 - 1f_2 + 3f_3 - 4f_4$

ce qui nous donne donc

$$[T]_{BB} = \begin{pmatrix} -4 & 1 & 3 & 0 \\ 2 & 1 & -3 & -1 \\ -2 & -4 & 5 & 3 \\ 12 & 3 & -13 & -4 \end{pmatrix}.$$

Remarque : les points 5, 6, 7) peuvent être vérifiés en calculant $[id]_{BC}$ et $[id]_{CB}$ puis en calculant explicitement les changements de base demandés.

Exercice 3. Soit
$$A$$
 la matrice $A = \begin{pmatrix} 3 & 1 & 8 & 0 & 2 \\ -1 & -1 & 3 & 2 & 0 \\ -3 & -3 & -4 & 4 & 10 \\ 1 & 0 & -1 & 0 & 6 \end{pmatrix} \in M_{4\times 5}(\mathbb{R}), \text{ et soit } T: \mathbb{R}^5 \to \mathbb{R}^4$ l'application linéaire définie par $T(x) = A \cdot x^T$.

- 1) Soit $a = (13, 2, 3, 6) \in \mathbb{R}^4$. Est-ce que $a \in \text{Im}(T)$?
- 2) Soit $b = (-10, 2, 7, 0) \in \mathbb{R}^4$. Est-ce que $b \in \text{Im}(T)$?
- 3) Soit $c = (-2, 22, -2, 14, 0) \in \mathbb{R}^5$. Est-ce que $c \in \text{Ker}(T)$?

Solution 3. Voir la vidéo correspondante.

On rappelle que si $B \in M_{m \times n}(\mathbb{R})$, alors le rang ligne de B est égal au rang colonne de B, et on définit le rang de B comme étant le rang ligne (ou le rang colonne) de B. On va utiliser le fait que $a \in \text{Im}(T) \iff (A|a)$ est de même rang que A. On commence donc pas calculer le rang de A, en échelonnant la matrice.

$$\begin{pmatrix} 3 & 1 & 8 & 0 & 2 \\ -1 & -1 & 3 & 2 & 0 \\ -3 & -3 & -4 & 4 & 10 \\ 1 & 0 & -1 & 0 & 6 \end{pmatrix} \xrightarrow{L_1 \leftrightarrow L_4} \begin{pmatrix} 1 & 0 & -1 & 0 & 6 \\ -1 & -1 & 3 & 2 & 0 \\ -3 & -3 & -4 & 4 & 10 \\ 3 & 1 & 8 & 0 & 2 \end{pmatrix}$$

$$\xrightarrow{L_2 \to L_2 + L_1, \atop L_3 \to L_3 + 3L_1, \atop L_4 \to L_4 - 3L_1} \begin{pmatrix} 1 & 0 & -1 & 0 & 6 \\ 0 & -1 & 2 & 2 & 6 \\ 0 & -3 & -7 & 4 & 28 \\ 0 & 1 & 11 & 0 & -16 \end{pmatrix} \xrightarrow{L_3 \to L_3 - 3L_2, \atop L_4 \to L_4 + L_2} \begin{pmatrix} 1 & 0 & -1 & 0 & 6 \\ 0 & -1 & 2 & 2 & 6 \\ 0 & 0 & -13 & -2 & 10 \\ 0 & 0 & 13 & 2 & -10 \end{pmatrix}$$

$$\xrightarrow{L_4 \to L_4 + L_3} \begin{pmatrix} 1 & 0 & -1 & 0 & 6 \\ 0 & -1 & 2 & 2 & 6 \\ 0 & 0 & -13 & -2 & 10 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = A'.$$

La matrice A est donc de rang 3.

1) Au lieu de refaire toutes les opérations sur (A|a), on va effectuer toutes les opérations cidessus sur le vecteur a pour obtenir un vecteur a'. Notons A' la forme échelonnée de A obtenue ci-dessus. Il suffira donc de regarder si (A'|a') est de rang 3 ou non. En effet, (A'|a') correspondra à la forme échelonnée de (A|a) puisqu'on va effectuer les mêmes opérations sur a que celles faites sur A. Cela nous donne, pour a = (13, 2, 3, 6),

$$\begin{pmatrix} 13 \\ 2 \\ 3 \\ 6 \end{pmatrix} \xrightarrow{L_1 \leftrightarrow L_4} \begin{pmatrix} 6 \\ 2 \\ 3 \\ 13 \end{pmatrix} \xrightarrow{L_2 \to L_2 + L_1, \atop L_3 \to L_3 + 3L_1, \atop L_4 \to L_4 - 3L_1} \begin{pmatrix} 6 \\ 8 \\ 21 \\ -5 \end{pmatrix} \xrightarrow{L_3 \to L_3 - 3L_2, \atop L_4 \to L_4 + L_2} \begin{pmatrix} 6 \\ 8 \\ -3 \\ 3 \end{pmatrix} \xrightarrow{L_4 \to L_4 + L_3} \begin{pmatrix} 6 \\ 8 \\ -3 \\ 0 \end{pmatrix} = a'.$$

Donc

$$(A'|a') = \begin{pmatrix} 1 & 0 & -1 & 0 & 6 & 6 \\ 0 & -1 & 2 & 2 & 6 & 8 \\ 0 & 0 & -13 & -2 & 10 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

est de rang 3, ce qui nous permet de conclure que $a \in \text{Im}(T)$.

2) On utilise la même méthode pour b = (-10, 2, 7, 0), et on trouve

$$\begin{pmatrix} -10 \\ 2 \\ 7 \\ 0 \end{pmatrix} \xrightarrow{L_1 \leftrightarrow L_4} \begin{pmatrix} 0 \\ 2 \\ 7 \\ -10 \end{pmatrix} \xrightarrow{L_2 \to L_2 + L_1, \atop L_3 \to L_3 + 3L_1, \atop L_4 \to L_4 - 3L_1} \begin{pmatrix} 0 \\ 2 \\ 7 \\ -10 \end{pmatrix} \xrightarrow{L_3 \to L_3 - 3L_2, \atop L_4 \to L_4 + L_2} \begin{pmatrix} 0 \\ 2 \\ 1 \\ -8 \end{pmatrix} \xrightarrow{L_4 \to L_4 + L_3} \begin{pmatrix} 0 \\ 2 \\ 1 \\ -7 \end{pmatrix} = b'.$$

Ainsi on a

$$(A'|b') = \begin{pmatrix} 1 & 0 & -1 & 0 & 6 & 0 \\ 0 & -1 & 2 & 2 & 6 & 2 \\ 0 & 0 & -13 & -2 & 10 & 1 \\ 0 & 0 & 0 & 0 & 0 & -7 \end{pmatrix}$$

qui est de rang 4, et on en conclut que $b \notin \text{Im}(T)$.

3) Pour savoir si c est dans le noyau de T, il suffit de voir si T(c) = 0 ou non. On calcule

$$T(c) = A \cdot c = \begin{pmatrix} 3 & 1 & 8 & 0 & 2 \\ -1 & -1 & 3 & 2 & 0 \\ -3 & -3 & -4 & 4 & 10 \\ 1 & 0 & -1 & 0 & 6 \end{pmatrix} \begin{pmatrix} -2 \\ 22 \\ -2 \\ 14 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 4 \\ 0 \end{pmatrix} \neq 0.$$

Donc le vecteur c n'est pas dans le noyau de T.

Exercice 4. Calculer le rang de $A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 3 & 1 & 4 & -3 \\ 1 & 0 & 2 & 5 & -3 \end{pmatrix} \in M_{3\times 5}(\mathbb{R})$, et donner une base de l'espace

ligne de A. Faire de même pour $B = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \in M_{3\times 4}(\mathbb{R})$. Quel est le rang de B^T ?

Solution 4. On échelonne la matrice A comme suit

$$\begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 3 & 1 & 4 & -3 \\ 1 & 0 & 2 & 5 & -3 \end{pmatrix} \xrightarrow{L_2 \to L_2 - 2L_1} \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 0 & -1 & 1 & 2 & -1 \\ 0 & -2 & 2 & 4 & -2 \end{pmatrix} \xrightarrow{L_3 \to L_3 - 2L_2} \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 0 & -1 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

La matrice A est donc de rang 2, et une base de son espace ligne est

$$((1,2,0,1,-1),(0,-1,1,2,-1)).$$

Pour B, on obtient

$$\begin{pmatrix} 1 & 0 & 2 & 3 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \xrightarrow[L_3 \to \frac{1}{3}L_3]{L_2 \to L_2 - L_1}, \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

La matrice B est ainsi de rang 3, avec base de son espace ligne

$$((1,0,2,3),(0,1,-1,-3),(0,0,0,1)).$$

Puisque le rang d'une matrice est égal au rang ligne et au rang colonne (de cette même matrice), le rang de B^T est égal au rang de B et vaut donc 3.

Exercice 5. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f((x, y, z)) = (x - y, x + z). Soit $g: \mathbb{R}^2 \to \mathbb{R}^4$ définie par g((x, y)) = (-x, x + 3y, 2y, -x - y). Soit B_n la base canonique de \mathbb{R}^n , n = 2, 3, 4.

- 1) Calculer $[f]_{B_2B_3}$.
- 2) Calculer $[g]_{B_4B_2}$.
- 3) En déduire $[g \circ f]_{B_4B_3}$.
- 4) Donner $g \circ f$ sous la forme $(g \circ f)(x, y, z) = \dots$ en utilisant le résultat précédent.

Solution 5.

1) On a

$$f((1,0,0)) = (1,1), f((0,1,0)) = (-1,0), f((0,0,1)) = (0,1),$$

donc

$$[f]_{B_2B_3} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

2) Idem, on trouve

$$g((1,0)) = (-1,1,0,-1), g((0,1)) = (0,3,2,-1),$$

et ainsi

$$[g]_{B_4B_2} = \begin{pmatrix} -1 & 0 \\ 1 & 3 \\ 0 & 2 \\ -1 & -1 \end{pmatrix}.$$

3) On utilise la formule $[g \circ f]_{B_4B_3} = [g]_{B_4B_2}[f]_{B_2B_3}$, et on a

$$[g \circ f]_{B_4B_3} = \begin{pmatrix} -1 & 0 \\ 1 & 3 \\ 0 & 2 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 4 & -1 & 3 \\ 2 & 0 & 2 \\ -2 & 1 & -1 \end{pmatrix}.$$

4) Il suffit de "lire" la matrice trouvée, à savoir que l'image de chaque vecteur de base se trouve écrit en colonne. Par exemple, on en déduit que $(g \circ f)((1,0,0)) = (-1,4,2,-2)$. On trouve donc

$$(g \circ f)((x, y, z)) = (-x + y, 4x - y + 3z, 2x + 2z, -2x + y - z).$$

Autrement

$$[(g \circ f)(x, y, z)]_{B_4} = [g \circ f]_{B_4 B_3} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 4 & -1 & 3 \\ 2 & 0 & 2 \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x + y \\ 4x - y + 3z \\ 2x + 2z \\ -2x + y - z \end{pmatrix}.$$

Exercice 6. Soient V, W des \mathbb{R} -espaces vectoriels et soit $T: V \to W$ une application linéaire injective. Soit $\{v_1, \ldots, v_k\}$ une famille libre de V. Montrer que $\{T(v_1), \ldots, T(v_k)\}$ est une famille libre de W. Est-ce toujours vrai si on ne suppose pas que T est injective?

Solution 6. L'hypothèse que $\{v_1, \ldots, v_k\}$ est une famille libre signifie que pour tous $\lambda_i \in \mathbb{R}$, $i = 1, \ldots, k$ tels que $\sum_{i=1}^k \lambda_i v_i = 0$, on a forcément $\lambda_i = 0$ pour tout i.

Soient donc $\mu_i \in \mathbb{R}, i = 1, ..., k$ tels que $\sum_{i=1}^k \mu_i T(v_i) = 0$. Par la linéarité de T, on a

$$0 = \sum_{i=1}^{k} \mu_i T(v_i) = \sum_{i=1}^{k} T(\mu_i v_i) = T(\sum_{i=1}^{k} \mu_i v_i).$$

Or, on a supposé que T est injective, donc le seul vecteur dont l'image est 0_W est 0_V . On en conclut que cela force

$$\sum_{i=1}^{k} \mu_i v_i = 0,$$

et puisque $\{v_1, \ldots, v_k\}$ est une famille libre, on a $\mu_i = 0$, $i = 1, \ldots, k$. On a donc montré que $\{T(v_1), \ldots, T(v_k)\}$ est une famille libre de W.

Cela n'est plus vrai si T n'est pas injective. Prenons par exemple $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (0, y)$. Alors $\{(1,0),(0,1)\}$ est une famille libre, mais $\{T((1,0))=(0,0),T((0,1))=(0,1)\}$ est liée puisqu'elle contient $0_{\mathbb{R}^2}$.