Examen DEPI - Exemplu

Aceste este un exemplu de examen DEPI. Întrebările sunt doar în scop ilustrativ.

Exerciții (18p)

- 1. Fie o variabilă aleatoare X cu distribuția din figură $w(x) = \begin{cases} h \frac{h}{5}x, & x \in [0, 5] \\ 0, & \text{în rest} \end{cases}$
 - a. (1p) Găsiți valoarea lui h și calculați probabilitatea ca \boldsymbol{X} să fie mai mare decât 3
 - b. (1p) Calculați valoarea medie \overline{X}
 - c. (2p) Găsiți expresia funcției de repartiție a lui x

Figure 1: Distribuția w(x)

- 2. Un semnal constant poate avea două valori posibile, -2 (ipoteza H_0) sau 4 (ipoteza H_1). Semnalul este afectat de zgomot Gaussian cu distribuția $\mathcal{N}(0, \sigma^2 = 4)$. La recepție se ia un singur eșantion r. Probabilitățile celor două ipoteze sunt $P(H_0) = 2/3$, $P(H_1) = 1/3$. Decizia se ia folosind **criteriul plauzibilității** maxime.
 - b. (1p) Scrieți expresiile matematice ale funcțiilor de plauzibilitate $w(r|H_0)$ și $w(r|H_1)$;
 - c. (1p) Care este decizia luată, dacă eșantionul r are valoarea r=2?
 - d. (1p) Care sunt regiunile de decizie R_0 și R_1 ?
 - e. (2p) Calculați probabilitatea alarmei false.

- f. (1p) Dacă raportul de plauzibilitate $\frac{w(r|H_1)}{w(r|H_0)} = 3$, care ar fi decizia luată cu criteriul probabilității minime de eroare?
- 3. (3p) Se transmite unul dintre semnale $s_0(t)$ sau $s_1(t)$, iar la recepție se recepționează r(t). Semnalele sunt reprezentate mai jos. Știind că semnalele transmise sunt afectate de zgomot alb cu distribuție Gaussiană $\mathcal{N}(0, \sigma^2 = 2)$, să se găsească decizia luată de receptor conform criteriului plauzibilității maxime, prin una dintre cele două metode:
 - i. fie prin metoda observării continue
 - ii. fie pe baza a 3 eșantioane luate la momentele $t_1=0.5,\,t_2=1.5$ și $t_2=3.5$

4. (5p) Se recepționează un semnal de forma $r(t) = \underbrace{A+t+2}_{s_{\Theta}(t)} + zgomot$, unde A

este un parametru necunoscut. Zgomotul are distribuție Gaussiană $\mathcal{N}(0, \sigma^2 = 4)$. La recepție se iau trei eșantioane, la momentele $t_1 = 1, t_2 = 2, t_3 = 3$, valorile fiind $r_1 = 6.1, r_2 = 7.1, r_3 = 8.1$. Estimați parametrul A folosind estimarea de plauzibilitate maximă.

Formule cunoscute

• primitiva unei funcții Gaussiene: $F(x) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right) \right)$

Teorie

- 1. (1p) Fie variabila aleatoare X reprezentând numărul obținut prin aruncarea unui zar. Reprezentați funcția de repartiție a lui X.
- 2. (2p) Enunțați teorema Wiener-Hincin.
- 3. (2p) Completați: "Criteriul probabilității minime de eroare este identic cu criteriul plauzibilității maxime atunci când _______.". Justificați.
- 4. (2p) Hașurați probabilitatea condiționată de **rejecție corectă** (decizie corectă că semnalul nu este prezent) în cazul ipotezei H_0 , pentru criteriul Plauzibilității Maxime, pentru cele două funcții de plauzibilitate de mai jos. Explicați în cuvinte ce ați colorat.

2

Figure 2:

- 5. (3p) Fie cazul detecției unui semnal constant (0 sau A), afectat de **zgomot Gaussian** cu medie nulă, pe baza unui singur eșantion r. Raportul de plauzibilitate se compară cu o valoare oarecare K, $\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$. Găsiți regiunile de decizie R_0 și R_1 (în funcție de K).
- 6. (1p) Dacă zgomotul care afectează un semnal **se dublează**, cum se modifică **raportul Semnal-Zgomot** SNR (justificați în cuvinte):
 - a. SNR creste
 - b. SNR scade
 - c. SNR rămâne constant
- 7. (5p) Demonstrați că minimizarea integralei $I = \int_{-\infty}^{\infty} C(\epsilon)w(\Theta|\mathbf{r})d\Theta$ utilizând funcția de cost pătratică $C(\epsilon) = \epsilon^2 = (\hat{\Theta} \Theta)^2$ conduce la formula estimatorului de Eroare Pătratică Medie Minimă (EPMM):

$$\hat{\Theta}_{EPMM} = \int_{-\infty}^{\infty} \Theta w(\Theta|r) d\Theta$$

- 8. (1p) Distribuția a posteriori a unui parametru necunoscut Θ este funcția triunghiulară de mai jos.
 - a. Care este valoarea estimatorului MAP? Explicați.
 - b. Care este valoarea estimatorului EPMM? Explicați.

Figure 3:

9. (2p) Arătați că estimarea Maximum A Posteriori este o generalizare a criteriului probabilității minime de eroare de la detecția semnalelor.