Preview

We are building the tools for learning about the RSA cryptosystem—soon!

Today: Building the foundations of modular arithmetic.

Greatest Common Divisor

For two integers $a, b \in \mathbb{Z}$, the **greatest common divisor (GCD)** of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides gcd(a, b).

- ▶ If not, then d has a prime factor that gcd(a,b) does not.
- ▶ This prime factor *p* divides both *a* and *b*.
- ► So, pgcd(a, b) would divide both a and b, and is larger than gcd(a, b), which is impossible.

Review

- ▶ Say $x \equiv y \pmod{m}$ if $m \mid x y$.
- ▶ If $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$, then $a+b \equiv c+d \pmod{m}$ and $ab \equiv cd \pmod{m}$.
- ▶ Notation: $\mathbb{Z}/m\mathbb{Z} = \{0, 1, ..., m-1\}$ with the operations of addition and multiplication modulo m.
- ▶ Each $a \in \mathbb{Z}$ has a unique representative in $\{0, 1, ..., m-1\}$.
- ► For $a \in \mathbb{Z}/m\mathbb{Z}$, a^{-1} exists in $\mathbb{Z}/m\mathbb{Z}$ if and only if $\gcd(a,m)=1$.

Bijection Facts

Fact 1: For $f: A \rightarrow B$, if A and B are *finite*, then

- ▶ a bijection $A \rightarrow B$ exists only if |A| = |B|;
- ▶ injective ⇔ surjective ⇔ bijective.

Why? Counting argument.

- ▶ Suppose f is injective. Then $|\operatorname{range} f| = |A| = |B|$, but $\operatorname{range} f \subseteq B$. So $\operatorname{range} f = B$.
- ► Suppose f is surjective. If two inputs are mapped to the same output, then $|\operatorname{range} f| < |B|$, impossible.

This is not true for infinite sets.

Example: $f: \mathbb{N} \to \mathbb{N}$ with f(x) = x + 1 is injective. Not surjective.

Review of Multiplicative Inverses

Say $a \in \mathbb{Z}/m\mathbb{Z}$. How might we look for a^{-1} ?

Try every possibility.

- ▶ Is $a^{-1} = 1$? Check if $a \cdot 1 \equiv 1 \pmod{m}$.
- ▶ Is $a^{-1} = 2$? Check if $a \cdot 2 \equiv 1 \pmod{m}$.
- So on...

Thus we are led to study the map $f(x) = ax \pmod{m}$ as x ranges over $\mathbb{Z}/m\mathbb{Z}$.

Insight: If $gcd(a, m) \neq 1$, then the map f sends some non-zero elements to zero.

- ► Example: Multiplication by 3, modulo 6.
- ▶ This means 3 cannot have an inverse modulo 6.

On the other hand, if gcd(a, m) = 1, then f is bijective, which gives us our inverse.

Bijections Have Inverse Bijections

Fact 2: f is bijective \iff there exists a two-sided inverse function g.

$$f(g(y)) = y$$
 and $g(f(x)) = x$

for all $x \in A$, $y \in B$.

- ▶ If f is bijective, each $y \in B$ has a $x \in A$ with f(x) = y; let g(y) = x.
- ► So, f(g(y)) = f(x) = y.
- ► Also, g(f(x)) = g(y) = x.
- ▶ If g exists, then for $y \in B$, y = f(g(y)), where $g(y) \in A$. So f is surjective.
- ▶ If f(x) = f(y), then (apply g) x = y. So f is injective. \Box

GCD & Bijectivity

Theorem: The map $f(x) = ax \mod m$ is bijective if and only if gcd(a, m) = 1.

Proof.

- ▶ If *f* is bijective, then $ax \equiv 1 \mod m$ for some *x*.
- ► So *m* | *ax* − 1.
- ► So $gcd(a, m) \mid ax$ and $gcd(a, m) \mid ax 1$, which means $gcd(a, m) \mid 1$. gcd(a, m) = 1.
- ▶ Conversely, if gcd(a, m) = 1, then let $ax_1, ax_2 \in range f$.
- ▶ If $ax_1 \equiv ax_2 \mod m$, then $m \mid a(x_1 x_2)$.
- ▶ But a and m have no common factors, so $m \mid x_1 x_2$.
- ▶ Thus, $x_1 \equiv x_2 \pmod{m}$. So f is injective (and thus bijective because the sets are finite). \Box

The Structure of $(\mathbb{Z}/m\mathbb{Z})^{\times}$

In $(\mathbb{Z}/m\mathbb{Z})^{\times}$, not only can we multiply, we can also divide. Multiplicative inverses exist!

But we can no longer add.

- In $(\mathbb{Z}/6\mathbb{Z})^{\times} = \{1,5\}$, notice that 1+5=0 does not have an inverse.
- ightharpoonup Or. 1+1=2 does not have an inverse.

When p is prime, $\mathbb{Z}/p\mathbb{Z}$ is more special: any non-zero number has an inverse. Like \mathbb{Q} or \mathbb{R} or \mathbb{C} .

So, $\mathbb{Z}/p\mathbb{Z}$ is called a **field**. Sometimes, this is called GF(p).

Let x be a^-1, which means that $a*x === 1 \pmod{m}$, then a*x*(m/d) === m/d <>0But, a*x*(m/d) === 0 as shown So, x DNE

Existence of Multiplicative Inverses

Theorem: $f(x) = ax \mod m$ is bijective if and only if gcd(a, m) = 1.

For $a \in \mathbb{Z}/m\mathbb{Z}$, a **multiplicative inverse** x is an element of $\mathbb{Z}/m\mathbb{Z}$ for which $ax \equiv 1 \pmod{m}$.

Corollary: For all $a \in \mathbb{Z}/m\mathbb{Z}$, a has a multiplicative inverse (necessarily unique) if and only if gcd(a, m) = 1.

- ▶ If gcd(a, m) = 1, then $f(x) = ax \mod m$ is bijective, so there exists x with $ax \equiv 1 \mod m$.
- ▶ The multiplicative inverse is unique because *f* is bijective.
- ► On the other hand, if $d := \gcd(a, m) > 1$, then $m/d \neq 0$ (mod m).
- ▶ So for any x, $ax \cdot (m/d) \equiv x(a/d) \cdot m \equiv 0 \pmod{m}$.
- ▶ So no multiplicative inverse for a can exist.

Computing the GCD

Given $a, b \in \mathbb{Z}$, how do we calculate gcd(a, b)?

First approach: factor a and b.

- Example: Let $72 = 2^3 \cdot 3^2$ and $27 = 3^3$.
- ► For each prime *p*, take the largest power of *p* that divides both numbers.
- ▶ Here, the GCD is $3^2 = 9$.

Elements with Multiplicative Inverses

If a^{-1} exists in $\mathbb{Z}/m\mathbb{Z}$, then a^{-1} also has an inverse. Namely, a is the inverse of a^{-1} .

Consequence: $gcd(a^{-1}, m) = 1$.

If a and b have inverses, does ab have an inverse? Yes, $a^{-1}b^{-1}$.

Notation: $(\mathbb{Z}/m\mathbb{Z})^{\times}$ consists of the elements in $\mathbb{Z}/m\mathbb{Z}$ which have multiplicative inverses.

- ▶ So, $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ if and only if gcd(a, m) = 1.
- Example: (Z/6Z)[×] = {1,5}.
- ► Example: $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{1,3,5,7\}.$
- ▶ Example: $(\mathbb{Z}/p\mathbb{Z})^{\times} = \{1, ..., p-1\}$ for p prime.

Factoring Is Slow?

Problem: We do not know how to factor numbers fast.

- ▶ What does *fast* mean?
- We want an algorithm that runs in time which is a polynomial in the size of the input.
- ▶ For a positive integer N, it takes $\approx \log_2 N$ bits to write. We can try dividing N by all numbers between 1 and N.
- ► The above algorithm runs in time *O*(*N*), then its runtime is *exponential* in the input size.
- Actually we only have to check $O(\sqrt{N})$ numbers, but this is still bad—we want $O((\log_2 N)^k)$ for some $k \in \mathbb{N}$.

Euclid's Algorithm

Given positive integers a, b, assume (WLOG) a > b.

Key observation: If we write a = qb + r (by the Division Algorithm), where $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$, then:

- If d is a common divisor of a and b, then $d \mid a qb = r$.
- ▶ If *d* is a common divisor of *b* and *r*, then $d \mid qb+r=a$.
- ► A number divides *a* and *b* if and only if it divides *b* and *r*.

In other words, $gcd(a, b) = gcd(b, a \mod b)$.

Example: a = 72, b = 27.

- $ightharpoonup \gcd(72,27) = \gcd(27,72 \mod 27) = \gcd(27,18).$
- ightharpoonup gcd(27,18) = gcd(18,27 mod 18) = gcd(18,9).
- $ightharpoonup \gcd(18,9) = \gcd(9,18 \mod 9) = \gcd(9,0).$
- $ightharpoonup \gcd(9,0) = 9.$

Looking for Multiplicative Inverses

For $a \in \mathbb{Z}/m\mathbb{Z}$, how do we compute a^{-1} in $\mathbb{Z}/m\mathbb{Z}$?

- ▶ The inverse is a number x such that $ax \equiv 1 \pmod{m}$.
- ► So, *m* | *ax* − 1.
- ▶ So, my = ax 1 for some $y \in \mathbb{Z}$. (definition of divisibility)
- ▶ So, ax my = 1 for some $x, y \in \mathbb{Z}$.

We need to take an integer multiple of a, an integer multiple of m, and add them to form 1.

Next question to investigate: what numbers can we reach using integer combinations of a and m?

Analysis of Euclid's Algorithm

Euclid's Algorithm: Given two positive integers a > b:

- ▶ If b = 0, then gcd(a, 0) = a.
- ▶ Otherwise, set a := b and $b := a \mod b$.
- Repeat.

Analysis: What happens to the first argument, a?

- ▶ In one iteration, the first argument becomes *b*.
- ► Case 1: If *b* < *a*/2, then in one iteration the first argument is cut in half.
- ▶ In two iterations, the first argument becomes *a* mod *b*.
- ► Case 2: If $b \ge a/2$, then $a \mod b \le a/2$. The first argument is cut in half.

In at most two iterations, the first argument is cut in half.

Integer Linear Combinations

What numbers can we reach using integer linear combinations of a and m?

First observation: If d divides a and m, then d divides any integer linear combination of a and m.

Second observation: Since this holds for any common divisor, it holds for the greatest common divisor gcd(a, m).

So, the only numbers we can reach are multiples of gcd(a, m).

- ► This (again) proves that if $gcd(a, m) \neq 1$, then a^{-1} does not exist in $\mathbb{Z}/m\mathbb{Z}$.
- ► Since we can only reach multiples of gcd(a, m) with integer linear combinations of a and m, then we can never form 1.

Goal: Express gcd(a, m) as an integer combination of a and m.

Analysis of Euclid's Algorithm

In at most two iterations, the first argument is cut in half.

In binary, "cut in half" means "lose a bit".

If a has $\log_2 N$ bits, then it takes $\approx 2 \log_2 N$ iterations to lose all of its bits

In each iteration, we perform a division, so it takes $O(\log N)$ divisions.

If $a = 2^{100}...$

- If we try all numbers from 1 to \sqrt{a} , we need to check 2⁵⁰ numbers. About one quadrillion numbers!
- ▶ If we use Euclid, we need \approx 200 divisions.

From Euclid to Multiplicative Inverses

Goal: Express gcd(a, b) as an integer combination of a and b.

Remember: If we are computing gcd(a, b), then Euclid's Algorithm uses the Division Algorithm: a = qb + r.

Algorithm in a nutshell: keep taking remainders. The remainder left at the end is the GCD.

Can we write each remainder as an integer combination of a and b?

- Start with $r = 1 \cdot a q \cdot b$.
- ► The next inputs to the GCD algorithm are *b* and *r*.
- Since we have already written $r = 1 \cdot a q \cdot b$, it is enough to express the next remainder in terms of b and r.

Extended Euclid's Algorithm in Action

At each step of the algorithm, express the remainder as an integer linear combination of the inputs.

Example: Let a = 72, b = 27.

- ► Start with gcd(72,27).
- ▶ Division Algorithm: $72 = 2 \cdot 27 + 18$. Write $18 = 1 \cdot 72 2 \cdot 27$.
- ▶ Next step: gcd(27, 18).
- ▶ Division Algorithm: $27 = 1 \cdot 18 + 9$. Write $9 = 1 \cdot 27 1 \cdot 18$.
- ▶ Plug in for 18, so 9 = -1.72 + 3.27.
- ► Next step: gcd(18,9).
- ► The GCD is 9.

We have expressed $9 = \gcd(72,27) = -1 \cdot 72 + 3 \cdot 27$.

Extended Euclid's Algorithm

Extended Euclid's Algorithm:

- ▶ If b = 0, then $\operatorname{egcd}(a, 0) = (a, 1, 0)$.
- ► Otherwise, let $(d', x', y') := \operatorname{gcd}(b, a \mod b)$. Return (d', y', x' |a/b|y').

Expressing the Remainder Operation

Euclid uses $gcd(a,b) = gcd(b, a \mod b)$.

- ► To calculate a mod b, first find the largest multiple of b before you hit a. This is |a/b|b.¹
- ▶ Thus the remainder is a |a/b|b.

Summary

- We proved facts about bijections.
- ▶ The element $a \in \mathbb{Z}/m\mathbb{Z}$ has a multiplicative inverse (i.e., $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$) if and only if $\gcd(a,m) = 1$.
- ▶ Euclid's Algorithm: Efficiently compute GCD.
- Extended Euclid: Efficiently express GCD as an integer linear combination of the inputs.

Extended Euclid's Algorithm

Note: $a \mod b = a - |a/b|b$.

Extended Euclid's Algorithm:

- ► Goal: Given positive integers a > b, return (d, x, y), where $d = \gcd(a, b)$, and $d = x \cdot a + y \cdot b$.
- ► Base case: If b = 0, then $\operatorname{egcd}(a, 0) = (a, 1, 0)$. Because $a = 1 \cdot a + 0 \cdot 0$.
- Assume (strong induction) that extended Euclid works for smaller arguments.
- ► Then, $\operatorname{egcd}(b, a \mod b) = (d', x', y')$, where $d' = \operatorname{gcd}(b, a \mod b) = x' \cdot b + y' \cdot (a \mod b)$.
- Now, $gcd(a,b) = gcd(b, a \mod b)$, so set d := d'.
- Also, $d = x' \cdot b + y' \cdot (a |a/b|b)$.
- ► Rearrange: $d = y' \cdot a + (x' |a/b|y') \cdot b$.
- So, set x := y' and y := x' |a/b|y'.

¹The $|\cdot|$ notation is called the **floor** function and it means "round down".