ВОДОРОД. ВОДА. ПЕРОКСИД ВОДОРОДА. ТИПЫ РЕАКЦИЙ

окислитель + восстановитель (+ среда) - ОВР

примеры:

1) Fe + Cl, = FeCl, 2) Na,SO, + H,O, = Na,SO, + H,O

основное + кислотное = соль - основно-кислотные взаимодействия примеры:

1) Na,O + CO, = Na,CO, 2) NaOH + HCl = NaCl + H₂O

электролит + электролит (р-р) = газ/осадок/сл.электролит - РИО примеры:

1) NaOH + HCl = NaCl + H₂O

2) KCl + AgNO, = KNO, + AgI

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение примеры:

1) Fe + 2HCl = FeCl, + H, 2) Fe + CuSO, = FeSO, + Cu

ВОДОРОД ОБЩИЕ СВЕДЕНИЯ

Нахождение: ІА-группа ПС Электронная формула: 1s1 Степени окисления: -1, 0, +1

НАХОЖДЕНИЕ В ПРИРОДЕ:

в космосе

неорг. в-ва: H,O, NH,, Ca(HCO,),

ODT. B-Ba: нефть, уголь, белки, жиры

1, H - ПРОТИЙ **ДЕЙТЕРИЙ**

ФИЗИЧЕСКИЕ СВОЙСТВА Н.:

без цвета, без запаха

легче воздуха

нерастворим в воде

ПОЛУЧЕНИЕ

Чем отличается получение в лаборатории и в промышленности?

Промышленность, в отличие от лаборатории, отличается:

- + бОльшими объёмами производства
- + более дешёвыми и доступными источниками получения
 - + очень часто: наиболее специфичным оборудованием

В ЛАБОРАТОРИИ

- 1) Ме до H_2 + кислота-неокислитель Fe + HCl = FeCl₂ + H_2
 - 2) Щ/Щ3 Me + H₂O Na + H₂O = NaOH + H₃
- 3) Al/Zn/Be + p-p щёлочи Zn + NaOH + H,O = Na,[Zn(OH),] + H,
 - 4) Si + щёлочь + H₂O Si + KOH + H₂O = K₂SiO₂ + H₂
- 5) эл-з растворов щелочей/кислот/ солей активных металлов (до Al) NaCl + H_2 O (эл-з) = NaOH + H_2 + Cl_2

в промышленности

- 1) Ме средней активности + H_2O (t) Fe + H_2O (t) = $Fe_2O_2 + H_2$
 - 2) раскалённый уголь + H₂O (t) C + H₁O = CO + H₂
- 3) эл-з воды/растворов щелочей/кислот/ солей активных металлов (до Al) H₂O (эл-з) = H₂ + O₂ NaCl + H₂O (эл-з) = NaOH + H₃ + Cl₃

5) разложение и конверсия метана CH₄ (1000 гр) = C + H₂ CH₄ + H₂O (t) = CO + H₂ CH₄ + CO₇ (t) = CO + H₇

химические свойства

Водороду, чтобы обрести счастье, нужно всего-то отдать ОДИН (!!!) электрон, поэтому для него характерна больше отдача электрона, то бишь ВОССТАНОВИТЕЛЬНЫЕ свойства. Он дико хочет отдать свой-собственный электрон!

$$H_{2} + F_{2} = HF$$
 , $H_{2} + Cl_{2} \rightleftharpoons HCl$
 $H_{2} + Br_{2} \rightleftharpoons HBr$, $H_{2} + I_{2} \rightleftharpoons HI$
 $H_{2} + S \rightleftharpoons H_{2}S$, $H_{2} + N_{2} \rightleftharpoons NH_{3}$
 $H_{3} + C = CH_{4}$, $H_{3} + O_{3} = H_{3}O$

$$H_2$$
 + Щ/ЩМ/Al = гидрид металла
Ca + H_2 = Ca H_2

$$H_2$$
 + HeMeO = HeMe + H_2 O
NO₂ + H_2 (t) = N_2 + H_2 O
CO₂ + H_3 (t) = C + H_3 O

$$H_2$$
 + соль/разл. бинарные соединения $SiCl_4$ + H_2 (t) = Si + HCl CO + H_2 (t) = C + H_2O

гидриды металлов гидролизуются (игра "просто соедини плюсик с минусом")

$$NaH + H_2O = NaOH + H_2$$

 $CaH_2 + H_2O = Ca(OH)_2 + H_2$

ПРИМЕНЕНИЕ

Водород используется для синт<mark>еза HHal, для получения металлов, а также:</mark>

сварки/резки Ме

маргарина

ОКСИД ВОДОРОДА. ВОДА Н,О

бесцветная жидкость

без цвета, без запаха

универсальный растворитель

взаимодействует с некоторыми неМе (F₂, Cl₂, Br₂, S), с Ме (до H₂), основными (Щ/ЩМ Ме) и кислотными (кроме SiO₂) оксидами, некоторыми солями (1. к-е гидролизуются в водном растворе; 2. средними солями с амф. Ме в анионе)

H,O + Cl, = HCl + HClO (реакция обратима)

H,O + Br, = HBr + HBrO (реакция обратима)

 $H_{y}O + S(t) = H_{y}S + SO_{y}$ (реакция с водяным паром)

H,O + Na = NaOH + H, (со взрывом)

 H_2^{-} O + Zn (t) = ZnO + H_2^{-} (реакция с водяным паром)

 $H_{2}O + Fe (t) = Fe_{3}O_{L} + H_{2}$ (реакция с водяным паром)

H,O + Cu = реакция не идёт

H,O + SO, = H,SO, (реакция обратима)

H,O + SO, = H,SO,

H,O + SiO, = реакция не идёт

H,O + Na,O = NaOH

H,O + CuO = реакция не идёт

H,O + ZnO = реакция не идёт

 $H_{0} + Al_{2}(CO_{3})_{3} = Al(OH)_{3} + CO_{3}$ (необратимый гидролиз)

 $H_{y}O + NaAlO_{y} = Na[Al(OH)_{y}]$

ПЕРОКСИД ВОДОРОДА. ПЕРЕКИСЬ ВОДОРОДА Н,О,

бесцветная жидкость

с металлическим вкусом

хорошо растворима в воде, спирте, эфире

концентрированные р-ры взрывоопасны

является очень слабой кислотой

ПОЛУЧЕНИЕ: BaO₂ + H₂SO₄ = BaSO₄ + H₂O₂ BaO₂ + CO₂ + H₂O = BaCO₃ + H₂O₂ H,O + O₂ = H,O,

химические свойства: