Math 571 - Homework 7

Richard Ketchersid

Problem 0.1 (R:5:26). Suppose f(x) is differentiable on [a,b], f(a) = 0, and there is a fixed A such that $|f'(x)| \le A|f(x)|$ for all x in [a,b]. Show that f(x) = 0 on [a,b].

Problem 0.2 (R:5:27). Let $\phi : [a,b] \times [\alpha,\beta] \to \mathbb{R}$. A solution to the initial-value problem (IVP)

$$y' = \phi(x, y), \quad y(a) = c \text{ for } a \le c \le b$$

is a function $f:[a,b] \to [\alpha,\beta]$ satisfying

$$f(a) = c$$
, $f'(x) = \phi(x, f(x))$ for all $a \le x \le b$

Show that if there is a constant $A \geq 0$ so that

$$|\phi(x, y_1) - \phi(x, y_2)| \le A|y_1 - y_2|$$
 for all $x \in [a, b]$ and $y_1, y_2 \in [\alpha, \beta]$,

then there is at most one solution to any such IVP.

Problem 0.3. Show that the following are equivalent for a bounded function f on [a, b]:

- i) $f \in \mathcal{R}$, i.e., f is Riemann integrable,
- ii) For all $\epsilon > 0$, there is a $\delta > 0$ such that

$$||P|| < \delta \implies U(f, P) - L(f, P) < \epsilon$$

Problem 0.4 (R:6:1). Suppose $\alpha : [a, b] \to \mathbb{R}$ is monotonic increasing and continuous at $x_0 \in [a, b]$. consider $f : [a, b] \to 0, 1$ given by $f(x_0) = 1$ and f(x) = 0 for $x \neq x_0$. Show that $f \in \mathcal{R}(\alpha)$ and $\int_a^b f d\alpha = 0$.

Problem 0.5 (R:6:2). Suppose $f:[a,b]\to\mathbb{R}$ is continuous, $f\geq 0$, and $\int_a^b f\,dx=0$, then f=0.

Note that where Rudin asks you to compare with (1), there might be the thought that these do not compare since (1) is about $\mathcal{R}(\alpha)$ while (2) is about \mathcal{R} , but taking $\alpha = \mathrm{id}$ in (1) allows you to make the comparison.

Problem 0.6 (R:6:3). Define $\beta_i : [-1,1] \to [0,1]$ by $\beta_i = 0$ for x < 0 and $\beta_i = 1$ for x > 0, then $\beta_1(0) = 0$, $\beta_2(0) = 1$, and $\beta_3(0) = 1/2$. In particular β_i has a simple discontinuity at 0 with $\beta_1(0-) = \beta_1(0) = 0$ (continuous from the left), $\beta_2(0+) = \beta_2(0) = 1$ (continuous from the right), while β_3 is neither continuous from the left or right. Let $f : [-1,1] \to \mathbb{R}$ be bounded. show that

- i) $f \in \mathcal{R}(\beta_1)$ iff f(0+) = f(0), that is, f is continuous from the right at 0.
- ii) $f \in \mathcal{R}(\beta_2)$ iff f(0-) = f(0), that is, f is continuous from the right at 0.
- iii) $f \in \mathcal{R}(\beta_3)$ iff f is continuous at 0.

Problem 0.7 (R:6:6). Let $f:[0,1] \to \mathbb{R}$ be bounded and continuous off of the Cantor set \mathcal{C} . Show that $f \in \mathcal{R}$.

Problem 0.8 (R:6:10). See text. This is mostly done in the notes.

Problem 0.9 (Functions with only countable many discontinuities are integrable.). Let f be bounded on [a, b] with at most countable many discontinuities on [a, b]. Let $\alpha : [a, b] \to \mathbb{R}$ is monotonic increasing and α is continuous at every discontinuity of f. Show that $f \in \mathcal{R}(\alpha)$.

Hint: Fix an enumeration $S = \{s_i \mid i \in \mathbb{N}\}$ of the discontinuities of f. Fix $\epsilon > 0$ and $\epsilon_i > 0$ so that $\sum_i \epsilon_i \leq \epsilon$. Since α is continuous at s_i fix δ_i so that $\alpha(N_{\delta_i}(s_i)) \subset N_{\epsilon_i}(\alpha(s_i))$. For $x \notin S$, fix δ_x so that $f(N_{\delta_x}(x)) \subset N_{\epsilon}(f(x))$. Now $\mathcal{O} = \{N_{\delta_i}(s_i) \mid i \in \mathbb{N}\} \cup \{N_{\delta_x}(x) \mid x \notin S\}$ is an open cover of [a, b]. Apply compactness to get a finite subcover and then do something *similar* (not the same) as in the proof of 6.10.

Problem 0.10 (An integrable function with uncountable many discontinuities.). Let \mathcal{C} be the Cantor set and f be defined by

$$f(x) = \begin{cases} 1 & x \in \mathcal{C} \\ 0 & x \notin \mathcal{C} \end{cases}$$

Show that $f \in \mathcal{R}$, namely, $\int_0^1 f \, dx = 0$. That f has uncountably many points of discontinuity is clear since each point of \mathcal{C} is a discontinuity of f and \mathcal{C} is perfect, hence uncountable.

The following is for a future class, but it came up here so I wanted to record it. Let $\alpha:[a,b]\to\mathbb{R}$ and say $Z\subseteq[a,b]$ has α -measure 0 iff for all $\epsilon>0$ there is (a_i,b_i) so that $Z\subseteq\bigcup_{i=0}^{\infty}(a_i,b_i)$ and $\sum_{i=0}^{\infty}\alpha(b_i)-\alpha(a_i)<\epsilon$. The argument above works for $\mathcal{R}(\alpha)$ with α -measure zero replacing measure 0.

Notice that if Z has α -measure zero and $z \in Z$, then α is continuous at z. To see this let $\epsilon > 0$ and take $\{(a_i,b_i) \mid i \in \mathbb{N}\}$ covering Z with $\sum_i \alpha(b_i) - \alpha(a_i) < \epsilon$. Then $z \in (a_i,b_i)$ and clearly $\alpha((a_i,b_i)) \subset N_{\epsilon}(\alpha(z))$, since $\alpha(b_i) - \alpha(a_i) < \epsilon$. So if Z is the set of discontinuities of f, then α must be continuous at each $z \in Z$.

Problem 0.11. Show that if $f[a,b] \to \mathbb{R}$ is bounded and $Z = \{x \mid f \text{ is discontinuous at } x\}$ is countable α is continuous at each in Z, then Z has α -measure zero.

Problem 0.12 (Generalization of Problem 7). Show that if $f:[a,b]\to\mathbb{R}$ is bounded and $\alpha:[a,b]\to\mathbb{R}$ is monotonic increasing with f discontinuous on a set Z of α -measure zero with α continuous at each point in Z, then $f\in\mathcal{R}(\alpha)$.

Problem 0.13. Let $f, g : [a, b] \to \mathbb{R}$ and let $Z = \{z \mid g(z) \neq f(z)\}$. If Z has α -measure zero show that

- i) $f \in \mathcal{R}(\alpha) \iff g \in \mathcal{R}(\alpha)$
- ii) If $f \in \mathcal{R}(\alpha)$, then $\int_a^b f \, d\alpha = \int_a^b g \, d\alpha$