Roll	No:									
	Co	mputer Sc	ience and	Engineeri	ng Departi	nent				
	Thapai	r Institute	of Enginee	ring and I	Fechnology	, Patiala				
Cour	se: Machin					Code: UN	/L501			
Time	:: 3 Hrs; Da	te: 12.12.2	019				I: 100			
Note	: Attempt A	LL questio	ons. Answe	er must be	e in brief a	nd point to				
1 a)	_					Explain the				
		classifying n				_	5			
b)						:? How it is	_			
		om a tree cla		maom rore	est Classifie	r now it is	5			
c)				(1)	(=) =					
C)	Define Machine Learning in terms of Experience (E), Task (T) and Performance (P) and identify E, T and P for placement prediction task.									
-										
d)	In order to build a robot for fighting with enemies, which type of									
	machine learning model will you use? Justify your answer and									
	elaborate all important components of building a robot for fighting									
	with enemies.									
2 a)	For the give	en regression	n dataset, fir	nd the best	independen	t feature by	10			
	using filter	approach-ba	sed selectio	n.	_					
	-	F ₁	F ₂	F ₃	Output					
	-	7	10	7	8					
	-	8	16	6	10					
	-	8	10	6	_ 3					
	-	2	17	7	6					
	-	7	17	5	10					
	-	1	7	1	4					
		8	6	10	6					
		1	9	5	6					
		-								

b) Predict the class for the given unknown instance for the following training dataset by using a Naïve Bayes classifier. Indicate all the intermediate steps.

PTO

Unknown Instance

Owns Home	Married	Gender	Employed	Credit rating	Class	
Yes	No	Male	Yes	A	7	

Training dataset

Owns Home	Married	Gender	Employed	Credit rating	Class	
Yes	Yes	Male	Yes	А	11	
No	No	Female	Yes	Α	1	
Yes	Yes	l emale	Yes	В	III	
Yes	No	Male	No	В	11	
No	Yes	Female	Yes	В	111	
No	No	Female	Yes	В	1	
No	No	Male	No	В	.11	
Yes	No	Lemale	Yes	A	1	
No	Yes	Female	Yes	А	111	
Yes	Yes	Fernale	Yes	А	111	

3 a) Build a neural network for the following case study by taking initial weights given in the figure below:

Assume that a sigmoid function is being used as the activation function. Show the first iteration (forward as well as back propagation) only.

b)	stride 1.											1						
	0	0	0	0	0				0			1						
	0	1	0	1	0				0	1	0							
	0	0	0	0	0				0	0	0							
	0	0	1	0	0				1	1	1							
	0	1	1	0	1					Filte	r							
		Inp	out In	nage														
c)	Annly M		1:	1	. 1													
C)	Apply M.	ax poc	oling	by cc	nside	ring	m	atri	x size	of 3×3 ar	nd stride 1.	3						
					0	1	0	0	0									
					0	1	1	1	0									
					1	0	1	2	1									
					1	4	2	1	0									
	0 0 1 2 1																	
d)	Differentiate between ANN and Deep Learning.										2							
4 a)	What is the need of elitism in Genetic algorithm?									5								
b)	How GA can be applied to find to global minima. Explain each stage of										10							
	GA with respect to find a global minimum out of multiple local minima										1							
	for a give	n mod	el?															
c)	What are different techniques for selection of a parent?										-							
5 a)	As a data scientist you have analysed that in a regression problem the										5							
	dependent variable is not changing linearly with respect to an											0						
	independent variable. Which regression technique will you use to build																	
	the model	and v	vhy?								ou doc to build							
b)	What are t	he ap	plica	tions	of ex	olan	ati	on b	pased l	learning?)							
											earning with	5						
	examples.	Comp	are b	oth t	echn	que	s in	at	abulaı	manner		10						
											e Internet for	_						
	Machine L	earnir	ng. Tl	ne sea	arch (n th	is t	erm	retur	ns total	210 pages out	5						
								Machine Learning. The search on this term returns total 210 pages, out of which 190 belongs to Machine Learning. Calculate the precision and										
	of which 19	o bel	ongs	to M	achin	Le.	arn	ing	. Calcı	ilate the	precision and							