	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	#10.000000	400.000000	400 (000000)	400.000000	400 000000	400 000000	400 000000	400 000000
mean	316.867500	107.410000	3.067500	3.400000	3.452500	8.590025	0.547500	0.724350
Mil	11.473646	6.000514	1.143728	1.000000	0.400478	0.696317	0.400302	0.143509
min	290.000000	92.000000	1.000000	1.000000	1.400000	6.800000	0.000000	0.340000
25%	308.000009	103.000000	2.000000	2.500000	3.000000	0.170000	0.000000	0.640000
50%	317.0600000	107 000000	3.000000	3.500000	3.500000	8.610000	1.000000	0.730000
75%	325.000000	112.000000	4.000000	4.000000	4.000000	9.062505	1.000000	0.836000
man	340.000000	129.000000	5.000000	5.000000	5.000006	9.520905	1.000000	0.970000

```
data.info()

*class 'pandas.core.frame.batarrame'.

Rampsindor: 440 entries, 0 to 280

*ata columns (total a columns):

* Column ben-mail fount Otype

**Column ben-mail fount Otype

**Co
```

```
Let us import necessary libraries to get started!

import numpy as up
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sus
%matplotlib inline
```

```
category = ['GRE Score','TOEFL Score','University Rating','SOP','LOR ','CGPA','Research','Chance of Admit']
color = ['yellowgreen','gold','lightskyblue','pink','red','purple','orange','gray']
start = True
for i in np.arange(4):
    fig = plt.figure(figsize=(14,8))
    plt.subplot2grid((4,2),(i,0))
    data[category[2*i]].hist(color=color[2*i],bins=10)
    plt.title(category[2*i])
    plt.subplot2grid((4,2),(i,1))
    data[category[2*i+1]].hist(color=color[2*i+1],bins=10)
    plt.title(category[2*i+1])

plt.subplots_adjust(hspace = 0.7, wspace = 0.2)
plt.show()
```


0.000

330 340

31.0 320 GRE Score

