

	Note: As the Graph is undirected. (a, b) 4 (b, a) mean the same, ie they denote the same edge.
)	But this "mathematical representation" is hard for computers to process. Hence, we have come up with alternate representions-
	1 Adjacency Matrix 2 Adjacency List
)	Adjacency Matrix
	DIY (Do It Yourself)
	PS: Let me know if you ever find a good application of this representation! of graphs!
)	Adjacency List
	Defn: Degree of a vertex -1 Degree of a vertex V is the number of neighbors of V = Number of vertices adjacent to V
	Question: Find the sum of degrees of all vertices of the example graph. Ts it related to the number of edges?

	Answer: For an undirected graph,
	Edeg (V) = 21E1
\rightarrow	Adjacency List for the Example Graph -
	$0 \rightarrow (3)$
	$1 \rightarrow (2, 5, 4)$
	$2 \rightarrow (1, 3)$
	$3 \rightarrow (4,2,0)$
1	$4 \rightarrow (1, 5)$ $5 \rightarrow (4, 1)$
	9 7 (7, 1)
	Rule: If a is a neighour of b, then
\longrightarrow	Lis prosent in the adjacency list of a 1
	b is present in the adjacency list of a some and a sency list of b
<u> </u>	Question: Find the error in the above example,
	if you haven't already!
→	An adjacency list can be represented as-
	O a 2D Array or
	@ a Linked List
	the augstion "Representing Graphs" of
	Way tru the guestian representation
	the HackerRank Contest. Pro Tip: Use the 20 Array representation,
	Pro Tip: Use the 20 Array representation,
*	it is fairly easy to implement, as compared to the linked list representation.
	compared to the united is in the
	Notes: - Revise your programming concepts if neces
	necessary.
43	In > Fach row of the adjacency list matrix contains
	all neighbors of the vertex corresponding to the
	Scanned by CamScanner

(4)

111	
	row number.
Ÿ	→ Frach row is sorted in ascending order. → The number of neighbors of each vertex is different, but is there an upper limit on
	→ The number of neighbors of each vertex
	is different but is there an apper limit on
	this number?
7	Do not proceed without completing "Representing Graphs", with all test cases passed.
	Graphs", with all test cases passed.
\rightarrow	Next; try to golve the question "Modelling Graphs", -wherein a scenario has to be modelled.
	Graphs", -wherein a scenario has to be modelled.
	-> Notice the similarity between the 2
	problems
	Notice the differences.
	> What is the maximum mumber of
	neighbors of any vertex?
	+ Notice that each vertex has to
	be denoted by the x & y coordinates
- 1871 - 1871 - 1882	
	Hint: You can use the 2d > 1d mapping -
	b = nx + y or
	to convert it to wither previous problem
	to convert it to wither previous problem
	(not necessary)
	Do not proceed without complete was 111
-	On not proceed without completing "Modelling graphs", with all test cases passed.
	graphs, with the cases passed.
	Now, take a look at the problem. "Maze Solving
-	Robot
->	Think by all so how our can be knew
	This problem is an example of a reachability problem.

classmate