Pasos a seguir para realizar la Ejercitación del Modelo de Procesador

SITUACIÓN DE INICIO DEL PROGRAMA

- 0. Poner un rótulo a la hoja.
- 1. Programa y datos deben estar en la memoria.
- 2. El IP debe apuntar a la dirección de memoria de la primer instrucción.
- 3. En nuestro modelo al momento de arrancar, comienza con 0000 en RL.
- 4. Todo otro Registro no determinado se completará con XXXX

CLOCK ARRANCA, SE MANTIENE EN CERO

- 5. Salida del RL, activa ROM de la UC.
- 6. A la salida de la UC, se activa el microcódigo (se activan las líneas)
- 7. Marcamos donde se ponen en uno las lineas de control (las demás estarán en cero)
- 8. Analizamos los movimientos de informacion que generan las lineas de control en 1 (uno)
- 9. Completamos los valores de los Maestros para TODOS LOS REGISTROS para Ck=0

.....

CLOCK PASA A UNO

- 10. Analizamos qué cambia en RL.
- 11. Analizamos que pasa con las líneas de control. (SE MANTIENEN)
- 12. Si las líneas se mantienen, a la UAL llega la misma info, de la UAL sale la misma info, todos los Registros con línea de control en cero. NO TIENEN CAMBIO.
- 13. Los Registros con uno en la línea de control, experimentan un cambio. Registrar ese cambio Y SUS CONSECUENCIAS. (posible direccionamiento de memoria o que lleguen datos a otra parte del procesador)

Termina el ciclo con todos los Registros completos para CK=0 y para CK=1

SITUACIÓN DE INICIO DE INSTRUCCIÓN SIGUIENTE (el Clock pasa a cero)

- 0. Poner un rótulo a la hoja.
- 1. Programa y datos deben mantenerse en la memoria.
- 2. Todos los Registros (salvo el RL) inician el ciclo con sus esclavos reteniendo el último valor que tenían al finalizar el ciclo anterior.

3. Analizamos el cambio en RL.

.....

CLOCK SE MANTIENE EN CERO

- 4. Salida del RL, activa la ROM de la UC.
- 5. A la salida de la UC, se activa el microcódigo (se activan las líneas)
- 6. Marcamos las líneas de control que se ponen en uno en los distintos puntos del circuito (las demás estarán en cero)
- 7. Comprobemos si la memoria no está siendo direccionada desde el ciclo anterior y completemos si corresponde RDA.
- 8. Analizamos los movimientos de información que generan las líneas de control en 1 (uno)
- 9. Completamos los valores de los Maestros para TODOS LOS REGISTROS para Ck=0

CLOCK PASA A UNO

- 10. Analizamos qué cambia en RL.
- 11. Analizamos que pasa con las lineas de control. (SE MANTIENEN)
- 12. Si las líneas se mantienen, a la UAL llega la misma info, de la UAL sale la misma info, todos los Registros con línea de control en cero, NO TIENEN CAMBIO.
- 13. Los Registros con uno en la línea de control, experimentan un cambio. Registrar ese cambio Y SUS CONSECUENCIAS. (posible direccionamiento de memoria o que lleguen datos a otra parte del procesador)

Termina el ciclo con todos los Registros completos para CK=0 y para CK=1

A partir de aquí y hasta el fin del programa se repite a partir de SITUACIÓN DE INICIO DE CICLO SIGUIENTE (el Clock pasa a cero) hasta llegar a la última ejecución de la última instrucción del programa