Developing a Swarm of Independent Cooperating Robots

Computer Science - Senior Project Willamette University - Spring 2013

by Trevor Griswold

Overview

- Background
 - Swarm Intelligence
 - Swarm Robotics
- My Project
 - Inspiration
 - Original Plan
 - Hardware Design
 - Robot Programming
 - Software Simulation
- Conclusion
 - Lessons learned
 - What I would do differently
 - Future work

Background

- Swarm Intelligence and Swarm Robotics
 - First introduced in 1989
 - Uses a collection of cooperating autonomous agents to accomplish a goal
 - Inspired by nature

Flock of Birds

Ant Colony

School of Fish

Background - Swarm Intelligence

Swarm Intelligence

 "any attempt to design algorithms or distributed problem-solving devices inspired by the collective behaviour of social insect colonies and other animal societies"

Birds

Locusts

Background - Swarm Robotics

Swarm Robotics

- "the study of how large numbers of relatively simple physically embodied agents can be designed such that a desired collective behavior emerges from the local interactions among agents and between the agents and the environment"
- Uses ideas from Swarm Intelligence

Project Inspiration

Original Project Plan

- Design and build a "swarm" of identical robots
- Get the robots to work cooperatively
- Search the area for a specific object and gather around it

Original Project Plan

Steps:

- Design a basic hardware platform for a mobile robot
- Add the required sensors
- Get the robots to communicate, and cooperate to achieve the task

Hardware Design

Design - Microcontroller

- Raspberry Pi
 - Credit-card sized computer
 - Runs Raspbian, a Debian (Linux) distribution
 - 512 MB ram, 800 MHz ARM processor
 - 26 GPIO Pins

RASPBERRY PI MODEL B

Hardware Design - Microcontroller

- Supporting hardware
 - Pi Cobbler Breakout Kit
 - Breadboard
 - Step-Up/Step-Down Voltage Regulator
 - 2-AA Battery Holder
 - Usb Port

Hardware Design - Chassis

- Robot Chassis Plate
- Ball Caster
 - Ball bearing to provide balance to the robot, while still allowing it to spin in place

Hardware Design - Chassis

- Motors
 - Twin-Motor Gearbox
 - Two separate motors in one gearbox to drive the robot
 - Dual Motor Driver Carrier
 - Converts signals from the Raspberry Pi, in order to drive each of the motors
 - 4-AA Battery Holder
 - Power the Motors

Hardware Design - Sensor

- Digital Distance Sensor
 - Detects object between 2 cm and 10 cm away
 - Used to avoid running into things, and driving off the edge of something

Robot Programming

- Obstacle-avoiding robot
 - A robot able to move forward, backward, spin in place, and detect obstacles in front of it and the floor below it.
 - Written in Python

Robot Programming

```
def rightWheelForward():
def leftWheelForward():
  GPIO.output(16, True);
                              GPIO.output(24, False);
  GPIO.output(18, False);
                              GPIO.output(26, True);
def leftWheelBackward():
                           def rightWheelBackward():
  GPIO.output(16, False);
                              GPIO.output(24, True);
  GPIO.output(18, True);
                              GPIO.output(26, False);
def leftWheelStop():
                           def rightWheelStop():
                              GPIO.output(24, False);
  GPIO.output(16, False);
  GPIO.output(18, False);
                              GPIO.output(26, False);
```

Robot Demo

Software Simulation

- Finish the original goal of the project:
 - Create a swarm of individual virtual robots which work cooperatively to search the area for a specific object and gather around it

Class Diagram

Simulation Demo

Conclusion

- Knowledge Gained
- Lessons Learned
 - Working with microelectronics a lot longer than I expected
 - Soldering often isn't easy
 - Don't add a program with an endless loop to an uninterruptible boot process
- What would I do differently

Conclusion

- Future Work
 - Add obstacles that block sight into the simulation
 - Add more complicated tasks to the simulation
 - Add the required hardware and get the robots to accomplish their goal
- Any Questions?

All of my code and documentation can be found on my github account at: https://github.com/tgriswol/SwarmRobotics