Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Given the following PROLOG predicate definition **f(integer, integer)**, with the flow model (i, o):

```
f(1, 1):-!.

f(K,X):-K1 is K-1, \underline{f(K1,Y)}, Y>1, !, K2 is K1-1, X is K2.

f(K,X):-K1 is K-1, \underline{f(K1,Y)}, Y>0.5, !, X is Y.

f(K,X):-K1 is K-1, \underline{f(K1,Y)}, X is Y-1.
```

Rewrite the definition in order to avoid the recursive call **f(J,V)** in all clauses. Do NOT redefine the predicate. Justify your answer.

B. Given a nonlinear liverifies if the average atoms on odd levels. Fresult will be true.	of the numerical	atoms on even	levels is equal to	the average of t	ne numerical

C. Write a PROLOG program that generates the list of all subsets with value of sum for each subset odd number and also odd numbers of odd values from each subset. Write the mathematical models and flow models for the predicates used. For example, for $[2,3,4] \Rightarrow [[2,3],[3,4],[2,3,4]]$ not necessarily in this order).

D. Given a nonlinear list, write a Lisp function to return the list with all atoms on the level **k** replaced by 0. The superficial level is assumed 1. A MAP function shall be used.

Example for the list (a (1 (2 b)) (c (d))) **a)** $k=2 \Rightarrow (a (0 (2 b)) (0 (d)))$

- **b)** k=1 => (0 (1 (2 b)) (c (d)))
- c) k=4 => the list does not change