3. Интерполирование по равностоящим узлам.

Конечные разности.

Интерполяционный многочлен в форме Ньютона

3.1. Постановка задачи интерполирования

Пусть на промежутке [a,b] задана таблица значений вещественной функции y=f(x):

x	f(x)
a	f(a)
a+h	f(a+h)
a+2h	f(a+2h)
a + nh = b	f(a+nh)

Требуется найти значение функции в точке $x=\bar{x}$, не совпадающей с узлами. Обозначим $x_i=a+ih,\ f(x_i)=y_i.$

3.2. Конечные разности

При построении интерполяционного многочлена по равностоящим узлам могут быть использованы конечные разности, которые играют роль, подобную той, которую играют производные для функций с непрерывно изменяющимся аргументом. Конечная разность первого порядка в точке x_i определяется следующим образом: $\Delta y_i = y_{i+1} - y_i$.

Конечные разности высших порядков определяются рекурсивно:

 $\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$ — конечная разность k—го порядка в точке x_i .

Конечные разности можно выразить непосредственно через значения функций:

$$\Delta^n y_i = y_{i+n} - ny_{i+n-1} + \dots + (-1)^k C_n^k y_{i+n-k} + \dots + (-1)^n y_i = (S-1)^n y_i.$$

Здесь S — оператор сдвига, так что $S^k y_i = y_{i+k}$.

Можно показать, что для достаточно гладкой функции $\Delta^n y_0 = h^n f^{(n)}(\xi)$, $\xi \in (x_0, x_0 + nh)$ и поэтому $\Delta^n y_0 \to 0$ при h < 1. Обратим внимание на очевидное свойство конечной разности:

$$\Delta^n P_n(x) \equiv \text{const.}$$

Конечные разности принято записывать в таблицу следующего вида:

			T_{ϵ}	аблица 1
x	y	Δy	$\Delta^2 y$	$\Delta^3 y$
a	y_0			
		Δy_0		
a+h	y_1		$\Delta^2 y_0$	
		Δy_1		$\Delta^3 y_0$
a+2h	y_2		$\Delta^2 y_1$	
		Δy_2		
a+3h	y_3			
		Δy_{n-3}		$\Delta^3 y_{n-4}$
b-2h	y_{n-2}		$\Delta^2 y_{n-3}$	
		Δy_{n-2}		$\Delta^3 y_{n-3}$
b-h	y_{n-1}		$\Delta^2 y_{n-2}$	
		Δy_{n-1}		
b = a + nh	y_n			

Пусть значения функции в узлах интерполирования заданы с точностью ε (например, $\varepsilon=1/2\cdot 10^{-5}$). Тогда конечные разности имеет смысл вычислять лишь до тех пор, пока они не будут "постоянными" с учётом ошибки округления ε в значениях функции, т.е. до тех пор, пока $\left|\Delta^k y_j - \Delta^k y_i\right| \leqslant 2^{k+1} \varepsilon = 2^k$ единиц младшего разряда. Число k <= n принимаем за степень искомого интерполяционного полинома. Полином будет строиться по (k+1) узлу, которые следует выбирать таким образом, чтобы обеспечить минимальную по абсолютной величине погрешность (разность между значением функции и значением полинома) в точке интерполяции \bar{x} . Для этого в качестве x_0 следует выбирать ближайший к \bar{x} узел. В качестве x_1 выбирать ближайший из оставшихся и т. д. Это следует из теоремы об остатке интерполирования. В связи с этим рассматриваются три варианта расположения точки интерполирования \bar{x} .

3.3. Построение интерполяционного многочлена в зависимости от расположения точки интерполирования

3.3.1. Интерполяционный многочлен в форме Ньютона для начала таблицы

Пусть точка интерполирования $\overline{x_1}$ удовлетворяет условию $a < \overline{x_1} <= a+h/2$. Узлы следует выбирать в следующем порядке: $x_0 = a, \ x_1 = a+h, \ x_2 = a+2h, \ \dots, x_n = a+nh$.

В этом случае из таблицы 1 используются значения $y_0, \ \Delta y_0, \ \Delta^2 y_0, \ \Delta^3 y_0, \dots, \ \Delta^n y_0,$ отмеченные в таблице 1 красным цветом.

Обозначим $t = (\overline{x_1} - a)/h$, тогда интерполяционный многочлен примет следующий вид:

$$P_n(a+th) = y_0 + t \Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!} \Delta^3 y_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!} \Delta^n y_0.$$
(1)

Представим $P_n(t)$ в виде:

$$P_n(a+th) = \sum_{k=0}^n N_k(t) \Delta^k y_0,$$

где
$$\Delta^0 y_0 = y_0, \ N_0 = 1, \ N_1 = t, \dots, \ N_k = \frac{N_{k-1} \cdot (t-k+1)}{k}.$$

Вычисления удобно оформить в виде таблицы 2.

Таблица 2

k	0	1	2	3	4
$\Delta^k y_0$					
$N_k(t)$					
$N_k \cdot \Delta^k y_0$					
$P_k(\overline{x_1})$					
$f(\overline{x_1}) - P_k(\overline{x_1})$					
$ R_k(\overline{x_1}) \leqslant$					

В ячейки таблицы следует записывать значения согласно обозначениям, помещённым в первом столбце. В предпоследней строке будут получаться значения многочленов в точке интерполирования нулевой, первой, второй и т. д. степеней. Согласно формуле

$$P_k(t) = P_{k-1}(t) + N_k(t) \, \Delta^k y_0,$$

т. е. для k > 0 $P_k(t)$ получается сложением значений, находящихся левее по строке и выше по столбцу. Количество цифр после запятой должно быть согласовано с ε . Часто в учебных целях рассматривается модельная задача, т. е. такая, в которой известно аналитическое выражение для интерполируемой функции. В этом случае следует вычислить "точное" значение функции в точке $\overline{x_1}$, привести его рядом с таблицей, привести в последней строке фактические погрешности, проанализировать результаты.

Напомним, что выражение для погрешности интерполирования определяется теоремой:

Теорема 1. Пусть функция f(x) имеет конечную непрерывную производную $f^{(n+1)}(x)$ на наименьшем отрезке [c,d], содержащем узлы интерполирования x_0, x_1, \ldots, x_n и точку интерполирования \overline{x} , так что $c = \min\{x_0, x_1, \ldots, x_n, \overline{x}\}, \quad d = \max\{x_0, x_1, \ldots, x_n, \overline{x}\}.$

Тогда существует такая точка $\xi = \xi(\overline{x}), \quad c < \xi < d,$ что

$$R_n(f, \overline{x}) = f(\overline{x}) - P_n(\overline{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(\overline{x}), \quad \omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i).$$

В данном случае, учитывая, что узлы равноотстоящие с шагом h и $t=(\overline{x}-a)/h$, $R_n(f,\overline{x})$ примет вид:

$$R_n(f, \overline{x}) = f(\overline{x}) - P_n(\overline{x}) = \frac{t(t-1)\cdots(t-n+1)\cdot(t-n)}{(n+1)!}h^{n+1}f^{(n+1)}(\xi).$$

Оценка погрешности значения многочлена k-ой степени в нижней строке таблицы 2 вычисляется следующим образом:

$$|R_k(\overline{x})| \le M_{k+1} \cdot |N_{k+1}| h^{k+1},$$

где

$$M_{k+1} = \max |f^{(k+1)}(x)|, \ x \in [a, a+kh].$$

3.3.2. Интерполяционный многочлен в форме Ньютона для конца таблицы

Пусть теперь требуется найти значение интерполяционного многочлена в точке $\overline{x_2}$, такой что $b-h/2 <= \overline{x_2} < b$. Узлы следует выбирать в следующем порядке: b,b-h,b-2h и т. д. Соответственно ипользуются значения $y_n, \ \Delta y_{n-1}, \ \Delta^2 y_{n-2}, \ \Delta^3 y_{n-3}$ и т. д., отмеченные в таблице 1 синим цветом.

Обозначим $t = (\overline{x_2} - b)/h$, тогда

$$P_{n}(b+th) = y_{n} + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^{2}y_{n-2} + \frac{t(t+1)(t+2)}{3!}\Delta^{3}y_{n-3} + \dots + \frac{t(t+1)\cdots(t+n-1)}{n!}\Delta^{n}y_{0}.$$
(2)

Представим $P_n(t)$ в виде:

$$P_n(b+th) = \sum_{k=0}^n N_k(t) \Delta^k y_{n-k},$$

где
$$\Delta^0 y_n = y_n, \ N_0 = 1, \ N_1 = t, \dots, \ N_k = \frac{N_{k-1}(t+k-1)}{k}.$$

Вычисления удобно оформить в виде таблицы, аналогичной таблице 2.

3.3.3. Интерполяционный многочлен в форме Ньютона-Гаусса для середины таблицы (интерполирование вперед)

Пусть a — узел в середине таблицы, т. е. в отличие от предыдущих случаев имеются узлы и левее и правее данного. Приведем фрагмент таблицы конечных разностей, где $y_i = f(a+ih)$.

					блица 3
x	y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
a-3h	y_{-3}				
		Δy_{-3}			
a-2h	y_{-2}		$\Delta^2 y_{-3}$		
		Δy_{-2}		$\Delta^3 y_{-3}$	
a-h	y_{-1}		$\Delta^2 y_{-2}$		$\Delta^4 y_{-3}$
		Δy_{-1}		$\Delta^3 y_{-2}$	
a	y_0		$\Delta^2 y_{-1}$		$\Delta^4 y_{-2}$
		Δy_0		$\Delta^3 y_{-1}$	
a+h	y_1		$\Delta^2 y_0$		$\Delta^4 y_{-1}$
		Δy_1		$\Delta^3 y_0$	
a+2h	y_2		$\Delta^2 y_1$		
		Δy_2			
a+3h	y_3				

Пусть требуется найти значение интерполяционного многочлена в точке $\overline{x_3}$, такой что $a<\overline{x_3}<=a+h/2$. Узлы следует выбирать в следующем порядке: $a,\ a+h,\ a-h,\ a+2h,\ a-2h$ и т. д. Соответственно ипользуются значения $y_0,\ \Delta y_0,\ \Delta^2 y_{-1},\ \Delta^3 y_{-1}$ и т. д., отмеченные в таблице 3 цветом magenta.

Обозначим $t = (\overline{x_3} - a)/h$, тогда

$$P_{n}(a+th) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!} \Delta^{2} y_{-1} + \frac{t(t-1)(t+1)}{3!} \Delta^{3} y_{-1} + \cdots + \frac{t(t-1)\cdots(t-(-1)^{n}\left[\frac{n}{2}\right])}{n!} \Delta^{n} y_{-\left[\frac{n}{2}\right]}$$

$$(3)$$

Представим $P_n(t)$ в виде:

$$P_n(a+th) = \sum_{k=0}^{n} N_k(t) \Delta^k y_{-[\frac{k}{2}]},$$

где $N_0 = 1$, $N_1 = t$ и т. д.

Здесь выражение $\left[\frac{n}{2}\right]$ означает целую часть от деления n на 2.

Вычисления следует оформить в виде таблицы, аналагичной таблице 2.

Упражнения

- 1) Написать и проиллюстрировать на примере формулу для интерполяционного многочлена Ньютона-Гаусса для середины таблицы (интерполирование назад).
- 2) Проиллюстрировать на примере применение формул для интерполяционных многочленов для случая экстраполирования а) $\bar{x} < a$; б) $\bar{x} > b$.
- 3) Написать и проиллюстрировать на примере формулу для интерполяционного многочлена, если $a+h/2 < \bar{x} < a+h$.
- 4) Написать и проиллюстрировать на примере формулу для интерполяционного многочлена, если $b-h < \bar{x} < b-h/2$.

3.4. Задание

Дана функция f(x), промежуток [a,b], точки интерполирования. Требуется

- 1) Построить таблицу значений функции по равноотстоящим узлам с шагом h=0.1 на [a,b], округлив значения функции до 5-го знака после запятой ($\varepsilon=1/2\cdot 10^{-5}$).
- 2) Построить таблицу конечных разностей до 4-го порядка.
- 3) Вычислить значение функции в точках интерполирования, используя интерполяционный многочлен в форме Ньютона 0-ой, 1-ой, 2-ой, 3-ей и 4-ой степени по заданным узлам.
- 4) Сравнить с точным значением функции.
- 5) Получить оценку погрешности.

Представить результаты в виде таблицы 2.

3.5. Варианты заданий

1)
$$f(x) = \sin(x), [a, b] = [0.5, 1.5], \overline{x_1} = 0.55, \overline{x_3} = 1.05.$$

2)
$$f(x) = \cos(x), [a, b] = [0.5, 1.5], \overline{x_1} = 0.45, \overline{x_3} = 0.95.$$

3)
$$f(x) = \cos(x), [a, b] = [-0.5, 0.5], \overline{x_2} = 0.45, \overline{x_3} = 0.05.$$

4)
$$f(x) = \cos(x), [a, b] = [0.5, 1.5], \overline{x_1} = 0.45, \overline{x_3} = 0.95.$$

5)
$$f(x) = \sin(x), [a, b] = [0.5, 1.5], \overline{x_2} = 1.55, \overline{x_3} = 1.05.$$

6)
$$f(x) = \cos(x), [a, b] = [2.5, 3.5], \overline{x_2} = 2.55, \overline{x_3} = 3.15.$$

7)
$$f(x) = \sin(x), [a, b] = [5, 6], \overline{x_1} = 5.05, \overline{x_3} = 5.35.$$

8)
$$f(x) = \cos(x), [a, b] = [-3.5, -2.5], \overline{x_2} = -2.55, \overline{x_3} = -3.05.$$

9)
$$f(x) = \cos(x), [a, b] = [5.5, 6.5], \overline{x_1} = 5.45, \overline{x_3} = 6.25.$$

10)
$$f(x) = \sin(x), [a, b] = [-0.5, 0.5], \overline{x_2} = 0.45, \overline{x_3} = 0.05.$$

11)
$$f(x) = \cos(x), [a, b] = [3.5, 4.5], \overline{x_1} = 3.45, \overline{x_3} = 3.95.$$

12)
$$f(x) = \sin(x), [a, b] = [0.5, 1.5], \overline{x_2} = 1.55, \overline{x_3} = 1.05.$$

13)
$$f(x) = \cos(x), [a, b] = [-7.5, -6.5], \overline{x_1} = -7.65, \overline{x_3} = -6.95.$$

14)
$$f(x) = \cos(x), [a, b] = [2.5, 3.5], \overline{x_2} = 2.45, \overline{x_3} = 3.05.$$

15)
$$f(x) = \cos(x), [a, b] = [0.5, 1.5], \overline{x_1} = 0.55, \overline{x_3} = 1.05.$$

16)
$$f(x) = \cos(x), [a, b] = [4.5, 5.5], \overline{x_1} = 4.45, \overline{x_3} = 5.95.$$

17)
$$f(x) = \cos(x), [a, b] = [-0.5, 0.5], \overline{x_2} = 0.45, \overline{x_3} = 0.05.$$

18)
$$f(x) = \sin(x), [a, b] = [0.5, 1.5], \overline{x_1} = 0.35, \overline{x_3} = 1.35.$$

19)
$$f(x) = \sin(x), [a, b] = [0.5, 1.5], \overline{x_2} = 1.55, \overline{x_3} = 1.05.$$

20)
$$f(x) = \cos(x), [a, b] = [-1.5, -0.5], \overline{x_1} = -1.55, \overline{x_3} = -1.05.$$

21)
$$f(x) = \sin(x), [a, b] = [2.5, 3.5], \overline{x_2} = 2.48, \overline{x_3} = 2.95.$$

22)
$$f(x) = \sin(x), [a, b] = [5, 6], \overline{x_1} = 4.95, \overline{x_3} = 5.35.$$

23)
$$f(x) = \sin(x), [a, b] = [6.3, 7.3], \overline{x_1} = 6.25, \overline{x_3} = 6.95.$$

24)
$$f(x) = \cos(x), [a, b] = [4, 5], \overline{x_2} = 5.05, \overline{x_3} = 4.35.$$