Protein Pow(d)er

The legend of Cysteine
Ruby Bron
Michael Stroet
Sophie Stiekema

De case

- Eiwitten vouwen
- Aminozuren op een 2D / 3D rooster
 - Hydrofoob
 - Polair
 - Cysteïne

Minimaliseren van energie

$$\rightarrow 0$$

Eiwitten vouwen

- 2D: Matrix (lijst van lijsten)
- 3D: lijst van matrices

Matrix grootte varieerbaar

Toestandsruimte

Toestandsruimte

• 2D: $3^{\text{lengte - 2}}$ lengte 50: $3^{48} \approx 8.0 * 10^{22}$

• 3D: $\mathbf{5}^{\text{lengte - 2}}$ lengte 50: $5^{48} \approx 3.6 * 10^{33}$

- Toestandsruimte verkleinen:
 - Symmetrie
 - Matrix grootte

Random Walk

- Aminozuren willekeurig één voor één plaatsen
- N aantal proteïnen vouwen en de beste onthouden

Greedy (look-ahead)

- Aminozuren één voor één plaatsen bij de beste energie
 - O Bij gelijke energie waarde, willekeurige keuze tussen deze richtingen

Greedy (look-ahead)

→ Zonder look-ahead

Greedy (look-ahead)

→ Met look-ahead

Constructief: Beam Search Breadth-first Onthoudt *x* beste eiwitten per lengte 0 \rightarrow Beam width (x) = 3 Beam width oneindig => 0 Exact algoritme

Constructief: Branch 'n Bound

Depth-first, recursief, non-stack en probability based

Aminozuren een voor een plaatsen en energie bijhouden

Laagste energie tot nu toe?

- Verder gaan

Lagere energie dan gemiddelde?

- Kans om verder te gaan

Hogere energie dan gemiddelde?

Kleinere kans om verder te gaan

Kansen 1 & 1 => Exact algoritme

Begin

Iteratief: Hill Climber (Local Search)

- Start eiwit:
 - Eiwit van random_walk
- Verwijderen en plaatsen aminozuren:
 - Tussen start & end
 - o Range: n
 - Aantal iteraties
 - Verbinding leggen
 - Energie testen
 - Lager: accepteren
 - hoger/gelijk: weigeren
- Paper:
 - Simulated annealing
 - Zang, Kou & Liu (2007)

Beste resultaten

РРСННРРСНРРРРСННННСННРРННРРРРННРРНРР

СРРСНРРСНРРСРРННННННССРСНРРСРСНРРНРС

НСРИРИРИСНИНИРССРРИРРРИРРРСРРРИРРИРИНИНСИРИРИРИ

	Proteïne	Lengte	2D	3D				
1	ННРНННРН	8	-3	-3				
2	ННРНННРН	14	-6	-7				
3	НРНРРННРРНРН	20	-9	-11				
4	РРРННРРННРРРРННРРРННРРР	36	-14	-18				
5	ННРНРНРННННРНРРРНРРРНРРРНРРРНРРННННРНРНР	50	-21	-30				

-25

-38

-29

-34

-35

-58

-47

-54

36

36

50

50

Energiën per algoritme (2D, lengte/2, ~10 minuten) <u>oer</u>

	<u>Lengte</u>	Random walk	Greedy		Branch 'n bound	<u>Hill Climber</u>
		1.000.000	12.500 3	10.000	~ 10 min	Iteraties cut

-3

-6

-8

-13

-20

-25

-37

-28

-33

-3

-6

-9

-13

-21

-23

-38

-29

-34

-3

-6

-9

-13

-20

-21

-36

-28

-33

8

14

20

36

50

36

36

50

50

2

3

5

6

7

8

9

-3

-6

-8

-12

-14

-21

-32

-24

-27

Energiën per algoritme (3D, lengte/3, ~20 minuten) Random walk Greedy Beam Search Branch 'n bound Hill Climber

6000

-3

-7

-11

-18

-30

-35

-57

-47

-53

~ 20 min

-3

-7

-10

-18

-33

Iteraties | cut

15.000 | 2

-3

-7

-11

-18

-30

-35

-58

-47

-50

Lengte

8

14

20

36

50

36

36

50

50

2

3

4

5

6

7

8

9

1.000.000

-3

-7

-9

-14

-18

-26

-38

-35

-27

Alleen cysteine met alle algoritmes Greedy onderling? + random? Bnb beam in percentages? Andere vergelijkingen?

Afhankelijk van timing 10 min voor presentatie

Vergelijking - Kort

2D 3D

ННРНННРН (3D)

Vergelijking - Lang

HCPHPCPHPCHCHPHPPPHPPPPHPPPPHPCPHPPPHPHHHCCHCHCHCH(3D)

20111 Proteins Folded

Vergelijking - Cysteine

21216 Proteins Folded

Vouwing proteïne 4

Branch 'n bound, 0.75 & 0.25, 00:14:22, Matrix size: 2 * lengte - 1

Look-ahead 2, 10.000 proteïnes, 00:02:04, Matrix size: lengte / 2

Vouwing proteïne 5

Greedy, 100.000 proteïnes, 00:15:54, Matrix size: lengte

Look-ahead 5, 100.000 proteïnes, 07:18:20, Matrix size: lengte / 2

Referenties

Engstler, J., & Giovambattista, N. (2018). Comparative Study of the Effects of Temperature and Pressure on the Water-Mediated Interactions between Apolar Nanoscale Solutes. *The Journal of Physical Chemistry B*, 123(5), 1116-1128.

Chen, M. & Huang, W. (2005). A Branch and Bound Algorithm for the Protein Folding Problem in the HP Lattice Model. *Genomics, Proteomics & Bioinformatics*, 3(4), 225-230.

Selkoe, D. J. (2003). Folding proteins in fatal ways. Nature, 426(6968), 900.

Zhang, Jinfeng, Samuel C. Kou, and Jun S. Liu. (2007). Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo. Journal of Chemical Physics 126(22): 225101.