# Ієрархічні матриці у методі граничних елементів

Солук Олена

Львівський національний університет імені І.Франка

1 / 15

### Зміст

- 1. Кластерне дерево і блочне кластерне дерево.
- 2. Умова допустимості.
- 3. Означення  ${\cal H}$ -матриці.
- 4. Модельна задача.
- 5. Чисельні експерименти.

# Кластерне дерево



#### Block Cluster Tree

#### Означення

Нехай  $\mathbb{T}_I$  і  $\mathbb{T}_J$  - кластерні дерева над множинами індексів I та J відповідно. Кластерне дерево  $\mathbb{T}_{I\times J}=\mathbb{T}_{\mathbb{T}_I\times \mathbb{T}_J}=(V,E)$  називається блочне кластерне дерево над добутком множини індексів  $I\times J$ , якщо  $\forall v\in V$  виконуються наступні умови:

- $\mathbb{T}_{I \times J}^{(0)} = I \times J$
- Якщо  $v \in \mathbb{T}_{I \times J}^{(I)}$ , то існують  $\tau \in \mathbb{T}_I^{(I)}$  і  $\sigma \in \mathbb{T}_J^{(I)}$  такі, що  $v = \tau \times \sigma$ .
- Для синів  $v = \tau \times \sigma$ , де  $\tau \in \mathbb{T}_I$  і  $\sigma \in \mathbb{T}_J$  виконується  $\mathsf{S}(\mathsf{v}) = \begin{cases} \emptyset,\mathsf{якщо} \ S(\tau) = \emptyset \ \mathsf{a}\mathsf{fo} \ S(\sigma) = \emptyset \\ \{\tau' \times \sigma' : \tau' \in S(\tau), \sigma' \in S(\sigma)\},\mathsf{i}\mathsf{h}\mathsf{a}\mathsf{k}\mathsf{m}\mathsf{e} \end{cases}$

## Умова допустимості

Ми будемо використовувати стандартну умову допустимості в такому вигляді



$$diam(\tau) \leq dist(\tau, \sigma)$$

# Приклад побудови блочного кластерного дерева



# Означення $\mathcal{H}$ -матриці

#### Означення

Нехай  $\mathbb{T}_{I \times I}$  - блочне кластерне дерево над множиною індексів I. Означаємо множину  $\mathcal{H}$ -матриць як

$$\mathcal{H}(\mathbb{T}_{I imes I},k):=\{M\in\mathbb{R}^{I imes I}| \mathit{rank}(M|_{t imes s})\leq k$$
 для всіх

допустимих листків t imes s дерева  $\mathbb{T}_{I imes I} \}$ 

## Модельна задача

Нехай задано функцію  $F:[0,1]\to\mathbb{R}$ . Шукаємо функцію  $u:[0,1]\to\mathbb{R}$ , яка задовільняє наступне інтегральне рівняння:

$$\int_0^1 \ln|x - y| u(y) dy = F(x), x \in [0, 1]$$
 (1)

де  $g(x,y)=\ln |x-y|$  називається ядром інтегрального рівняння

#### Метод Гальоркіна

$$V_n = span\{\varphi_0, \dots, \varphi_{n-1}\}$$

$$\int_{0}^{1} \int_{0}^{1} \varphi_{i}(x) \ln|x - y| u(y) dy dx = \int_{0}^{1} \varphi_{i}(x) F(x) dx$$
 (2)

| □ ▶ ◀륜 ▶ ◀Ē ▶ │ Ē │ ∽ Q (C)

Потрібно знайти  $u_n$  в просторі  $V_n$ :

$$u_n = \sum_{j=0}^{n-1} u_j \varphi_j \tag{3}$$

таке, що вектор коефіцієнтів u є розв'язком лінійної системи

$$Gu = f$$

$$G_{ij} = \int_0^1 \int_0^1 \varphi_i(x) \ln|x - y| \varphi_j(y) dy dx$$

$$f_i = \int_0^1 \varphi_i(x) F(x) dx$$
(4)

#### Базисні функції визначені як

$$\varphi_i(x) = 
\begin{cases}
1, & \text{якщо } \frac{i}{n} \leq x < \frac{i+1}{n} \\
0, & \text{інакше}
\end{cases}$$

$$egin{aligned} & ilde{G}_{ij} = \int_0^1 \int_0^1 arphi_i(x) ilde{g}(x,y) arphi_j(y) dy dx = \ & \int_0^1 \int_0^1 arphi_i(x) \sum_{v=0}^{k-1} g_v(x) h_v(y) arphi_j(y) dy dx \ & = \sum_{v=0}^{k-1} (\int_0^1 arphi_i(x) g_v(x) dx) (\int_0^1 arphi_j(y) h_v(y) dy) \end{aligned}$$

# Наближення низького рангу блоків матриці

$$egin{aligned} & ilde{G}_{ij} = \int_0^1 \int_0^1 arphi_i(x) ilde{g}(x,y) arphi_j(y) dy dx = \ & \int_0^1 \int_0^1 arphi_i(x) \sum_{v=0}^{k-1} g_v(x) h_v(y) arphi_j(y) dy dx \ & = \sum_{v=0}^{k-1} (\int_0^1 arphi_i(x) g_v(x) dx) (\int_0^1 arphi_j(y) h_v(y) dy) \end{aligned}$$

#### Факторизований вигляд підматриці

$$G|_{t\times s} = AB^{\top}, \quad A \in \mathbb{R}^{t\times\{0,\dots,k-1\}}, \quad B \in \mathbb{R}^{s\times\{0,\dots,k-1\}}$$

$$A_{iv} := \int_{0}^{1} \varphi_{i}(x)g_{v}(x)dx, \quad B_{jv} := \int_{0}^{1} \varphi_{j}(y)h_{v}(y)dy \tag{5}$$

#### Недопустимі листки

$$\tilde{G}_{ij} := \int_0^1 \int_0^1 \varphi_i(x) \ln|x - y| \varphi_j(y) dy dx 
= \int_{i/n}^{(i+1)/n} \int_{j/n}^{(j+1)/n} ln|x - y| dy dx$$

#### Допустимі листки

$$ilde{G}|_{t imes s}:=AB^ op$$
 $A_{iv}:=\int_{i/n}^{(i+1)/n}(x-x_0)^vdx$ 
 $B_{jv}:=egin{cases} (-1)^{v+1}v^{-1}\int_{j/n}^{(j+1)/n}(x_0-y)^{-v}dy, & ext{якщо } v>0 \ \int_{i/n}^{(j+1)/n}\ln|x_0-y|dy, & ext{якщо } v=0 \end{cases}$ 

**◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆り**�

## Чисельні експерименти

#### Приклад 1

$$\int_0^1 \log|x-y|u(y)dy = \frac{2x^2 \log|x| - 2\log|x-1|(x^2-1) - 2x - 1}{4}$$

$$u^*(x) = x$$

| n k  | 1          | <u>n</u>    | <u>n</u><br>2 | 3 <i>n</i> /4 | n               |
|------|------------|-------------|---------------|---------------|-----------------|
| 4    | 0.142393   | 0.142393    | 0.1423937     | 0.1423937     | 0.1423937       |
| 16   | 0.035737   | 0.0357365   | 0.0357365     | 0.0357365     | 0.0357365       |
| 64   | 0.00894708 | 0.00894237  | 0.00894237    | 0.00894237    | 0.00894237      |
| 256  | 0.0022506  | 0.00223609  | 0.00223609    | 0.00223609    | 0.00223609      |
| 1024 | 7.7118E-4  | 5.590532E-4 | 5.59053E-4    | 5.59053E-4    | 5.5905321665E-4 |

#### Приклад 2

$$\int_{0}^{1} \log|x - y| u(y) dy = -\frac{(12x^{3} - 18x^{2}) \ln(|x|) - 12 \ln(|x - 1|) x^{3} + }{36}$$

$$\frac{+ (18 \ln(|x - 1|) - 12) x^{2} + 12x - 6 \ln(|x - 1|) + 5}{36}$$

$$u^{*}(x) = x(1 - x)$$

| n k  | 1           | <u>n</u>    | <u>n</u><br>2 | 3 <i>n</i> /4 | n             |
|------|-------------|-------------|---------------|---------------|---------------|
| 4    | 0.09689281  | 0.09689281  | 0.09689281    | 0.09689281    | 0.09689281    |
| 16   | 0.03246286  | 0.032463147 | 0.032463147   | 0.03246314722 | 0.03246314722 |
| 64   | 0.00873409  | 0.008736689 | 0.008736689   | 0.008736689   | 0.008736689   |
| 256  | 0.002215192 | 0.0022232   | 0.0022232     | 00.0022232047 | 0.00222320    |
| 1024 | 5.40425E-4  | 5.58247E-4  | 5.58247E-4    | 5.582473E-4   | 5.582473E-4   |

#### Приклад 3

$$\int_0^1 \log|x - y| u(y) dy = x \log|x| + (1 - x) \log|1 - x| - 1$$
$$u^*(x) = 1$$

| n k  | 1            | <u>n</u><br>4 | <u>n</u><br>2 | 3 <u>n</u>    | n            |
|------|--------------|---------------|---------------|---------------|--------------|
| 4    | 8.881784E-16 | 8.881784E-16  | 8.8818E-16    | 8.8818E-16    | 8.8818E-16   |
| 16   | 1.99770E-6   | 2.02060E-14   | 2.020606E-14  | 2.020606E-14  | 2.042810E-14 |
| 64   | 1.9708842E-5 | 4.993783E-13  | 4.9938E-13    | 4.993783E-13  | 5 140338E-13 |
| 256  | 7.34135E-5   | 1.18067E-11   | 1.18067E-11   | 1 18067E-11   | 1 176681E-11 |
| 1024 | 2.3177027E-4 | 2.04782E-10   | 1.98478E-10   | 1.9847878E-10 | 2.00121E-10  |

# Дякую за увагу!