

74LCX541 Low Voltage Octal Buffer/Line Driver with 5V Tolerant Inputs and Outputs

Features

- 5V tolerant input and outputs
- 2.3V-3.6V V_{CC} specifications provided
- 6.5ns t_{PD} max $(V_{CC} = 3.3V)$, $10\mu A I_{CC}$ max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal¹
- ± 24 mA output drive ($V_{CC} = 3.0V$)
- Implements patented noise/ EMI reduction circuitry
- Latch-up performance exceeds JEDEC 78 conditions
- ESD performance
 - Human body model > 2000V
 - Machine model > 200V
- Leadless Pb-Free DQFN package

General Description

The LCX541 is an octal buffer/line driver designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers. The LCX541 is a non inverting option of the LCX540.

This device is similar in function to the LCX244 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes this device especially useful as an output port for microprocessors, allowing ease of layout and greater PC board density.

The LCX541 is designed for low voltage applications with capability of interfacing to a 5V signal environment. The LCX541 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Ordering Information

Order Number	Package Number	Package Description
74LCX541WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX541SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX541BQX ²	MLP020B	Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm
74LCX541MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74LCX541MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LCX541MTC_NL ³	MTC20	Pb-Free 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDED J-STD-020B.

Notes:

- To ensure the high impedance state during power up or down, OE should be tied to V_{CC} through a pull-up resistor: the minimum value of the resistor is determined by the current-sourcing capability of the driver.
- 2. DQFN package available in Tape and Reel only.
- 3. "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

Logic Symbol

IEEE/IEC

Connection Diagrams

Pin Assignments for SOIC, SOP, SSOP, TSSOP

Pad Assignment for DQFN

(Top View)

Pin Descriptions

Pin Names	Description		
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs		
I ₀ –I ₇	Inputs		
O ₀ -O ₇	Outputs		

Truth Table

	Inputs				
OE ₁	OE ₂	I	On		
L	L	Н	Н		
Н	Х	Х	Z		
X	Н	Х	Z		
L	L	L	L		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Absolute Maximum Ratings

The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Symbol	Parameter	Conditions	Value	Units
V _{CC}	Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		-0.5 to +7.0	V
Vo	DC Output Voltage	Output in 3-STATE	-0.5 to +7.0	V
		Output in HIGH or LOW State ⁴	-0.5 to $V_{CC} + 0.5$	
I _{IK}	DC Input Diode Current	V _I < GND	-50	mA
I _{OK}	DC Output Diode Current	V _O < GND	-50	mA
		$V_O > V_{CC}$	+50	
Io	DC Output Source/Sink Current		±50	mA
I _{CC}	DC Supply Current per Supply Pin		±100	mA
I _{GND}	DC Ground Current per Ground Pin		±100	mA
T _{STG}	Storage Temperature		-65 to +150	°C

Recommended Operating Conditions⁵

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	mA
		$V_{CC} = 2.7V - 3.0V$		±12	
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t/\Delta V$	Input Edge Rate	$V_{IN} = 0.8V - 2.0V, V_{CC} = 3.0V$	0	10	ns/V

3

- I_O Absolute Maximum Rating must be observed.
 Unused inputs or I/O's must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

				$T_A = -40^{\circ}C$	to +85°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min.	Max.	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 – 3.6	2.0		
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 – 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	2.3 – 3.6	V _{CC} - 0.2		V
		$I_{OH} = -8 \text{ mA}$	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.3 – 3.6		0.2	V
		I _{OL} = 8mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 – 3.6		±5.0	μΑ
I _{OFF}	Power-Off Leakage Current	V_I or $V_O = 5.5V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		10	μΑ
		$3.6V \le V_1, V_0 \le 5.5V^6$	2.3 – 3.6		±10	
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} = 0.6V$	2.3 – 3.6		500	μΑ

AC Electrical Characteristics

		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
		V _{CC} = 3.3	$V_{CC} = 3.3V \pm 0.3V$		= 2.7V	V _{CC} = 2.5	5V ± 0.2V	
		C _L =	50pF	C _L =	50pF	C _L =	30pF	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay	1.5	6.5	1.5	7.5	1.5	7.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{OSHL} , t _{OSLH}	Output to Output Skew ⁷		1.0					ns

^{6.} Outputs disabled or 3-STATE only.
7. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

			V _{CC}	$T_A = 25^{\circ}C$	
Symbol	Parameter	Conditions	(V)	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	

Capacitance

Symbol	Parameter Conditions		Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	25	pF

AC Loading and Waveforms (Generic for LCX Family)

Figure 1. AC Test Circuit (C_L includes probe and jig capacitance)

Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$
	V_{CC} x 2 at $V_{CC} = 2.5 \pm 0.2$ V
t _{PZH} , t _{PHZ}	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay, Pulse Width and t_{rec} Waveforms

3-STATE Output Low Enable and Disable Times for Logic

3-STATE Output High Enable and Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic

Figure 2. Waveforms (Input Characteristics; f = 1MHz, $t_r = t_f = 3ns$)

	V _{CC}			
Symbol	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V	
V_{mi}	1.5V	1.5V	V _{CC} /2	
V _{mo}	1.5V	1.5V	V _{CC} /2	
V _x	$V_{OL} + 0.3V$	V _{OL} + 0.3V	V _{OL} + 0.15V	
V_{y}	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	

Tape and Reel Specification

Tape Format for DQFN

Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
BQX	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Dimensions inches (millimeters)

DIMENSIONS ARE IN MILLIMETERS

NOTES: unless otherwise specified

- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.
- 2. Smallest allowable bending radius.
- 3. Thru hole inside cavity is centered within cavity.
- 4. Tolerance is ±0.002[0.05] for these dimensions on all 12mm tapes.
- 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
- 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole
- 8. Controlling dimension is millimeter. Diemension in inches rounded.

Reel Dimensions inches (millimeters)

Ta	ape Size	Α	В	С	D	N	W1	W2
	12 mm	13.0 (330.0)	0.059 (1.50)	0.512 (13.00)	0.795 (20.20)	2.165 (55.00)	0.488 (12.4)	0.724 (18.4)
		(000.0)	(1.50)	(10.00)	(20.20)	(33.00)	(1)	(13.1)

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

9

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M20DRevB1

DETAIL A

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AC
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP020BrevA

Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm Package Number MLP020B

20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide Package Number MSA20

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MU-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND THE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

SEE DETAIL A 0.09-0.20

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

13

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray [™]	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic [®]
CROSSVOLT™	GTO™ .	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I ² C TM	MSXPro™	RapidConnect™	UHC™
E ² CMOS™	i-Lo tm	OCX TM	μSerDes™	UltraFET®
EnSigna™ ImpliedDisconnect™		OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC®	SILENT SWITCHER®	VCX™
FACT Quiet Serie	es TM	OPTOPLANAR™	SMART START™	Wire™
Aaroos tha haara	l. Around the world.™	PACMAN™	SPM™	
The Power France		POP™	Stealth™	
		Power247™	SuperFET™	
Programmable A	clive Droop'"	PowerEdge™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		

Rev. I18