S. 40

- I = 0.262 A
- $\eta = 0.538$
- $4 \eta = 0.547$
- 5 **a)** $P_{ab1} = 184W$
- **b)** $P_{ab2} = 174,8 \text{ W}$
- **c)** $P_{\text{auf4}} = P_{\text{ab3}} = 157.3 \,\text{W}$ **d)** $\eta_{12} = 0.76$
- **e)** $\eta = \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot \dots$
- 6 **a)** $\eta = \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot \eta_4$
 - **b)** $I_1 = 13,14 \text{A}$, $I_2 = 13,14 \text{A}$, $I_3 = 13,1 \text{A}$, $I_4 = 12,5 \text{A}$
- 7 **a)** $W_{\text{auf}} = 21,64 \text{ kWh}$
- **b)** $\zeta = 16.6\%$
- 8 **a)** $W_{auf} = 3006 \text{ kWh}$
- **b)** $\zeta = 79\%$

4.8 Grundschaltungen

4.8.1 Reihenschaltung

Seite 40

- 1 $R_3 = 90 \Omega$
- 2 680 Ω, 220 Ω, 100 Ω
- 3 a) $R = 930 \Omega$
- **b)** $U_1 = 24,7 \text{ V}$
- 4 a) $R = 675 \Omega$
- **b)** $U_3 = 88,9 \text{ V}$
- 5 **a)** $I = 1.846 \,\text{mA}$ **b)** $U_1 = 7.38 \,\text{V}; U_2 = 4.62 \,\text{V}$
- 6 $U_{AB} = 2V$; $U_{BC} = 5V$; $U_{CD} = 1V$; $U_{AC} = 7 \text{ V}; \quad U_{AD} = 8 \text{ V}; \quad U_{BD} = 6 \text{ V}$
- 7 a) $R_{\rm v} = 650 \,\Omega$
- **b)** $P_{\rm v} = 4.16 \,\rm W$
- 8 $R_v = 72\Omega$; $P_v = 18W$
- 9 $I = 5 \,\text{mA}$
- 10 U = 18,1 V
- 11 $R_v = 209\Omega$; $P_v = 6.92W$; gewählt: 210 Ω , 10W
- 12 $R_1 = 5800 \Omega$; $R_2 = 10200 \Omega$

4.8.2 Parallelschaltung

Seite 41 __

- 1 $R = 0.0667 \Omega$
- 2 a) $R = 5\Omega$
- **b)** G = 0.2S
- $R_2 = 0.2 \Omega$
- 4 a) $G_1 = 1.6 \text{ mS}$
- **b)** $R = 0.156 \text{ k}\Omega$
- 5 a) $I_2 = 2.5 \,\mathrm{mA}$
- **b)** $R = 4.35 \,\mathrm{k}\Omega$
- 6 U = 2.16 V
- 7 a) $R = 12,6\Omega$
- **b)** U = 4V
- 8 U = 50 V

4.8.3 Gemischte Schaltungen

Seite 42 _

- 1 $R = 4,60 \,\mathrm{k}\Omega$
- 2 R = 1,35 MΩ

- $R = 132,7\Omega$
- $4 R_x = 19,93 kΩ$
- $R_{v} = 6000 \Omega$

Seite 43

- 6 $I_1 = 0.4 \text{ A}$; $U_2 = 13.2 \text{ V}$; $U_4 = 19.2 \text{ V}$; $I_4 = 0.873 \,\mathrm{A}; \quad I_3 = 1.273 \,\mathrm{A}; \quad U_3 = 80.8 \,\mathrm{V};$ $R_3 = 63,5 \Omega$
- 7 $I_{12} = 8 \text{ mA}$; $I_2 = 2 \text{ mA}$; $U_4 = 400 \text{ V}$; $U_3 = 160 \text{ V}$ $U_1 = 240 \,\mathrm{V}; \quad R_1 = 40 \,\mathrm{k}\Omega; \quad R_2 = 120 \,\mathrm{k}\Omega$
- 8 $P_1 = 64 \text{W}$; $P_2 = 160 \text{W}$; $P_3 = 48 \text{W}$; $P_4 = 64 \text{W}$
- 9 P = 27W
- $10 U_{b2} = 116,67 V$
- 11 $I_{b2} = 0.8 A$
- $12 U_x = -5,54V$
- $\frac{U_1}{U_4} = 1,60$

Seite 44

- 14 a) 2,88Ω
- **b)** 1,18 m
- c) 1,58Ω
- d) 7.6 A
- e) 40,5W
- f) $43,72W \Rightarrow P_r \uparrow$
- g) 11,67 W
- h) rechter Heizgriff kalt
- 15 a) $R_2 = 40\Omega$; $R_1 = 21,6\Omega$
- **b)** $P_2 = 0.9 \text{ W}; P_1 = 1.67 \text{ W}$ 16 $R_{P1} = 60 \Omega$; $R_{P2} = 48 \Omega$
- P1 wird überlastet!
- 17 **a)** $R_{\rm g} = 1 \, \rm k \Omega$
 - **b)** $I = 50 \,\text{mA}$
 - c) $I_1 = I_2 = 25 \,\text{mA}$ $I_3 = I_4 = 12,5 \,\mathrm{mA}$

I_5	$=I_{6}=$	6,25 mA
0	100000	

d)	S1	S2	S3	I_{AB}
	0	0	0	0 mA
	1	0	0	6,25 mA
	0	1	0	12,5 mA
	1	1	0	18,75 mA
	0	0	1	25 mA
	1	0	1	31,25 mA
	0	1	1	37,5 mA
	1	1	1	50 mA
C)FF: S = 0;	ON: S = 1		

4.8.4 Spannungsteiler

Seite 45 _

- 1 a) $U_{20} = 100 \text{ V}$
- **b)** $U_{20} = 66,7 \text{ V}$
- c) $U_{20} = 50 \text{ V}$
- **d)** $U_{20} = 33,3 \text{ V}$