SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

Credits

B1: Speech and Language Processing (Third Edition draft – Jan2022)

Daniel Jurafsky, James H. Martin

https://www.probabilitycourse.com/chapter8/8 2 3 max likelihood e stimation.php

https://www.statology.org/likelihood-vs-probability/

 $\frac{https://www.simplilearn.com/tutorials/statistics-tutorial/difference-between-probability-and-likelihood#:~:text=Example%20Scenario,-Suppose%20you%20have&text=However%2C%20when%20calculating%20the%20likelihood,given%20toss%20is%20p%20%3D%200.5.$

Assignment

Read:

B1: Chapter 8

Problems:

Part-of-speech (POS) and Named Entity Recognition (NER)

- POS: taking a sequence of words and assigning each word a part of speech like NOUN, VERB, PRONOUN, PREPOSITION, ADVERB,
 CONJUNCTION, PARTICIPLE, ARTICLE and more.
- NER: assigning words or phrases tags like PERSON, LOCATION, or ORGANIZATION
- Sequence labelling task: POS tagging and NER

Parts of Speech

- Closed Class
 - With relatively fixed membership, e.g., prepositions.
- Open Class
 - New words are continually added. E.g., nouns and verbs (iPhone or to fax)

Noun, verb, adverb, adjective.

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
\Box	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open	VERB	words for actions and processes	draw, provide, go
Ō	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by, under
S.		spacial, temporal, or other relation	
Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
\geqslant	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
seq	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
15	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Universal Dependencies tagset (Nivre et al., 2016a).

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	ир, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

Penn Treebank tagset (Marcus et al., 1993)

□ Blue: UD tagset; Red: Penn tagset

There/PRO/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS there/ADV/RB ./PUNC/.

Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN in/ADP/IN today/NOUN/NN 's/PART/POS New/PROPN/NNP

England/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

POS Tagging

- POS tagging is a is a disambiguation task
 - Words are ambiguous; have more than one possible part-of-speech
 - 'book' can be a verb (book that flight) or a noun (hand me that book).
 - 'that' can be a determiner (Does that flight serve dinner) or a complementizer (I thought that your flight was earlier).
- Very high accuracy for POS tagging algorithms have been achieved
 - 97% (Wu and Dredze, 2019), (Manning, 2011).
 - The same as what humans can achieve

Amount of ambiguity

Types:	WSJ Brown
Unambiguous (1 tag)	44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags)	7,025 (14%) 8,050 (15%)
Tokens:	
Unambiguous (1 tag)	577,421 (45 %) 384,349 (33 %)
Ambiguous (2+ tags)	711,780 (55%) 786,646 (67%)

 \square Ambiguous words though are only 14-15% of the vocabulary, are very common, and 55-67% of word tokens in running text are ambiguous

A Baseline Classifier for Ambiguous Words

- Always compare a classifier against a baseline at least as good as the most frequent class baseline (assigning each token to the class it occurred in most often in the training set).
 - □ Produces an accuracy of 92% (just 5% less than human standard)

Named Entities and Named Entity Tagging

- Named Entity roughly speaking, anything that can be referred to
 with a proper name: a person, a location, an organization.
 - PER (person)
 - 2. LOC (location)
 - 3. ORG (organization)
 - 4. GPE (geo-political entity)

Type	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity	GPE	countries, states	Palo Alto is raising the fees for parking.

A sample output from an NER tagger

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

- □ Issues
 - Segmentation problem in NER NEs can span words

solution of NER

- **BIO tagging** (Ramshaw and Marcus, 1995).
- Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

BIO Tagging

Captures both boundary and NE type

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	O	O	O
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	O	O	O
the	O	O	O
Chicago	I-LOC	B-LOC	S-LOC
route	O	O	O
•	O	O	O

HMM Part-of-Speech Tagging

Markov Chain

- Consists of states and probability sequence
- Very strong assumption: knowledge of current state is sufficient to predict the next state

Formally, a Markov Chain is defined as

$$Q = q_1 q_2 \dots q_N$$

 $A = a_{11}a_{12}...a_{N1}...a_{NN}$

$$\pi = \pi_1, \pi_2, ..., \pi_N$$

a set of N states

a transition probability matrix A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{i=1}^{n} a_{ij} = 1 \quad \forall i$

an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i. Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Take the initial probabilities

 $\pi = [.1 \text{ (cold)}, .7(hot), .2(warm)]$

Compute the probabilities for seuqueces .1

- 1. hot hot hot hot
- 2. cold hot cold hot

Hidden Markov Model

- Sometimes the events we are interested in are <u>hidden</u>: we don't observe them directly.
 - E.g., POS tags in a sequence of words
- □ An HMM allows to model both
 - Observed events (like words that we see in the input)
 - Hidden events (like part-of-speech tags)

□ Formally, an HMM is defined as

$$Q = q_1 q_2 \dots q_N$$
 a set of N states

$$A = a_{11} \dots a_{ij} \dots a_{NN}$$
 a **transition probability matrix** A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{i=1}^{N} a_{ij} = 1 \quad \forall i$

$$O = o_1 o_2 \dots o_T$$
 a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2, \dots, v_V$

$$B = b_i(o_t)$$
 a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state q_i

$$\pi = \pi_1, \pi_2, ..., \pi_N$$
 an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^n \pi_i = 1$

- □ Simplifying assumptions
- lacksquare One: Markov Assumption: $P(q_i|q_1,...,q_{i-1})=P(q_i|q_{i-1})$ current state depends only on previous state
- Two: the probability of an output observation o_i depends only on the state q_i that produced the observation and not on any other states or any other observations

Output Independence: $P(o_i|q_1,\ldots,q_i,\ldots,q_T,o_1,\ldots,o_i,\ldots,o_T)=P(o_i|q_i)$

The components of an HMM tagger

- \square w_i : denotes a word (e.g., 'will')
- \Box t_i : tag associated with w_i (e.g., 'MD' stands for modal verb)
- \square A probability matrix: contains $P(t_i|t_{i-1})$ probability of a tag occurring given the previous tag
 - E.g., in "...will race...", tag 'MD' (modal verb) is followed by 'VB' (verb in the base f
 - Maximum likelihood estimate

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

Write on desk

- B emission probability matrix: $P(w_i|t_i)$ represent the probability, given a tag (say 'MD') will be associated with a given word (say 'will')
 - Maximum likelihood estimate

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

 \blacksquare Note: Both A and B can be pre-computed from a corpus

HMM tagging as decoding

□ The task of determining the hidden variables sequence corresponding to the sequence of observations is called decoding

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 q_3 ... q_T$.

 \Box For part-of-speech tagging, the goal of HMM decoding is to choose the tag sequence $t_1 \dots t_n$ that is most probable given the observation sequence of n words $w_1 \dots w_n$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$

■ We will use Bayes' rule to instead compute

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} \frac{P(w_1...w_n|t_1...t_n)P(t_1...t_n)}{P(w_1...w_n)}$$

Dropping the denominator

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(w_1...w_n|t_1...t_n) P(t_1...t_n)$$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(w_1...w_n|t_1...t_n) P(t_1...t_n)$$

 Assumption 1: the probability of a word appearing depends only on its own tag and is independent of neighboring words and tags

$$P(w_1 \dots w_n | t_1 \dots t_n) \approx \prod_{i=1}^{n} P(w_i | t_i)$$

Assumption 2: Bigram assumption: the probability of a tag is dependent only on the previous tag, rather than the entire tag sequence

$$P(t_1 \ldots t_n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n) \approx \underset{t_1...t_n}{\operatorname{argmax}} \prod_{i=1}^n \underbrace{P(w_i | t_i)}_{P(t_i | t_{i-1})}$$

The Viterbi Algorithm – a dynamic programming solution

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                           ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                           ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
      backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
```

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time **return** bestpath, bestpathprob

Write on desk

 $\neg viterbi[N,T]$ or v[N,T]: with one column for each observation o_t and one row for each state q_i in the state graph.

- $v_t(j)$: represents the probability that the HMM is in state j after seeing the first t observations and passing through the most probable state sequence q_1, \ldots, q_{t-1} , given the HMM λ .
- $v_t(j)$: is computed by recursively taking the most probable path that could lead us to this cell
- Dynamic programming way $v_t(j) =$

$$\max_{i=1}^{N} v_{t-1}(i) \ a_{ij} \ b_{j}(o_{t})$$

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the current state j

- Let us tag "Janet will back the bill"
 - Correct sol: Janet/NNP will/MD back/VB the/DT bill/NN
- \square A: Transition probabilities $P(t_i|t_{i-1})$ precomputed from corpus

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

\square Observation likelihoods/ emission probabilities: B: $b_i(o_t)$ or $p(w_i|t_i)$

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

