Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER: NJM2114

MANUFACTURER: NEW JAPAN RADIO CO., LTD.

Bee Technologies Inc.

Spice Model


```
*$
* PART NUMBER:NJM2114
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2114 OUT1 -IN1 +IN1 V- +IN2 -IN2 OUT2 V+
X U1
       +IN1 -IN1 V+ V- OUT1 NJM2114_ME
X U2
       +IN2 -IN2 V+ V- OUT2 NJM2114_ME
.ends NJM2114
.subckt NJM2114 ME 1 2 3 4 5
 c1 11 12 8.6603E-12
 c2 6 7 30.000E-12
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 2.4088E6 -1E3 1E3 2E6 -2E6
 ga 6 0 11 12 2.9641E-3
 gcm 0 6 10 99 26.465E-9
 iee 10 4 dc 445.15E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 3 11 337.37
 rc2 3 12 337.37
 re1 13 10 220.41
 re2 14 10 220.41
 ree 10 99 449.28E3
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 1.6531E3
 vb 9 0 dc 0
 vc 3 53 dc 1.8063
 ve 54 4 dc 2.8063
 vlim 7 8 dc 0
 vlp 91 0 dc 60
 vln 0 92 dc 60
.model dx D(ls=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 NPN(Is=800.00E-18 Bf=437.50)
.model gx2 NPN(Is=805.9608E-18 Bf=447.55)
.ends
*$
```

Output Voltage Swing Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	+17.000	+17.004	0.024
-Vout(V)	-16.000	-16.005	0.031

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	0.2	0.201	0.5

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	15.000	15.006	0.040

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb(nA)	500.000	500.042	0.008
lbos(nA)	10.000	10.055	0.550

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	13.000	13.043	0.331
Av-dc(dB)	104.000	103.998	-0.002

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(158452.83/(19.114 /12)) = 99.954 dB

	Measurement	Simulation	%Error
CMRR(dB)	100	99.954	-0.046

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

