Assignment 4

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4

## v tibble 3.0.4 v dplyr 1.0.2

## v tidyr 1.1.2 v stringr 1.4.0

## v readr 1.4.0 v forcats 0.5.0
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
##
library(modelr)
library(broom)
## Attaching package: 'broom'
## The following object is masked from 'package:modelr':
##
##
       bootstrap
```

Modeller

Leser inn data

```
arblos <- read_csv("data/al9914m.csv")
```

```
##
knr = col_character(),
##
##
    knavn = col_character(),
##
    aar = col double(),
    mnd = col double(),
##
    al_Menn = col_double(),
##
##
    al_Kvinner = col_double(),
##
    alp_Menn = col_double(),
    alp_Kvinner = col_double(),
##
    alp_15_74 = col_double(),
##
    alp_15_29 = col_double(),
##
    alp_30_74 = col_double()
## )
bef <- read_csv("data/bef9914MK.csv")</pre>
##
## -- Column specification -----
## cols(
##
    knr = col_character(),
    knavn = col_character(),
##
##
    aar = col_double(),
##
    bef_K_0_14 = col_double(),
##
    bef_K_15_29 = col_double(),
##
    bef K 30 74 = \text{col double}(),
##
    bef_K_75_105 = col_double(),
##
    bef_M_0_14 = col_double(),
    bef_M_15_29 = col_double(),
##
##
    bef_M_30_74 = col_double(),
##
    bef_M_75_105 = col_double(),
    bef_MK_0_14 = col_double(),
##
    bef_MK_15_29 = col_double(),
##
    bef_MK_30_74 = col_double(),
    bef_MK_75_105 = col_double()
##
## )
Modeller med data fra bef (befolkning)
```

```
names(bef)
## [1] "knr"
                       "knavn"
                                       "aar"
                                                       "bef K 0 14"
##
  [5] "bef_K_15_29"
                       "bef_K_30_74"
                                       "bef_K_75_105" "bef_M_0_14"
  [9] "bef M 15 29"
                       "bef M 30 74"
                                       "bef M 75 105"
                                                       "bef MK 0 14"
## [13] "bef_MK_15_29" "bef_MK_30_74" "bef_MK_75_105"
names(arblos)
## [1] "knr"
                      "knavn"
                                   "aar"
                                                 "mnd"
                                                               "al_Menn"
## [6] "al Kvinner"
                     "alp_Menn"
                                   "alp_Kvinner" "alp_15_74"
                                                               "alp_15_29"
## [11] "alp_30_74"
```

Arbeidsledighetsprosenten blir beregnet som: arbl% = antall arb. ledige/arbeidsstyrken. Arbeidsstyrken er her dem man anser egnet for arbeid dvs. uføretrygdete etc. er trukket ut. Arbeidsstyren i en aldesrkategori er derfor langt mindre enn befolkningen i den tilsvarende alderskategorien.

Dessverre kjenne vi ikke arbeidsstyrken, men vi kan beregne den vha.: arbeidsstyrken = antall arb. ledige/arb. ledighetsprosent.

```
arblos <- arblos %>%
  mutate(
     wf_K = (al_Kvinner/alp_Kvinner)*100,
     wf_M = (al_Menn/alp_Menn)*100,
     wf_KM = wf_K + wf_M
)
```

arblos

```
## # A tibble: 77,330 x 14
##
            knavn
                           mnd al_Menn al_Kvinner alp_Menn alp_Kvinner alp_15_74
      knr
                     aar
                                                                               <dbl>
##
      <chr> <chr> <dbl> <dbl>
                                  <dbl>
                                              <dbl>
                                                       <dbl>
                                                                    <dbl>
    1 0101 Hald~
                    1999
                                    283
                                                248
                                                         3.9
                                                                      4.1
                                                                                 4
##
                             1
##
    2 0101
            Hald~
                    1999
                              2
                                    291
                                                236
                                                         4
                                                                      3.9
                                                                                 4
    3 0101
            Hald~
                    1999
                             3
                                    290
                                                230
                                                         4
                                                                      3.8
##
                                                                                 3.9
    4 0101
            Hald~
                    1999
                             4
                                    244
                                                207
                                                         3.4
                                                                      3.4
                                                                                 3.4
   5 0101
            Hald~
                    1999
                                    210
                                                179
                                                         2.9
                                                                      3
                                                                                 2.9
##
                             5
##
    6 0101
            Hald~
                    1999
                              6
                                    227
                                                203
                                                         3.2
                                                                      3.4
                                                                                 3.2
                             7
                                                                      4.5
##
   7 0101
            Hald~
                    1999
                                    265
                                                273
                                                         3.7
                                                                                 4.1
    8 0101
            Hald~
                    1999
                              8
                                    288
                                                278
                                                         4
                                                                      4.6
                                                                                 4.3
##
    9 0101
            Hald~
                    1999
                              9
                                    230
                                                201
                                                         3.2
                                                                      3.3
                                                                                 3.3
            Hald~
                    1999
                            10
                                    225
                                                207
                                                                      3.4
                                                                                 3.3
## 10 0101
                                                         3.1
## # ... with 77,320 more rows, and 5 more variables: alp_15_29 <dbl>,
       alp_30_74 <dbl>, wf_K <dbl>, wf_M <dbl>, wf_KM <dbl>
```

Arbeidsstyrken

Når befolkningen øker vil også arbeidsstyrken øke. Det er derfor mer naturlig å se på arbeidsstyrken relativt til delen av befolkningen som er i yrkesaktiv alder (15-74 år her).

```
names(bef)
```

```
[1] "knr"
##
                         "knavn"
                                          "aar"
                                                           "bef_K_0_14"
    [5] "bef_K_15_29"
##
                         "bef_K_30_74"
                                          "bef_K_75_105"
                                                           "bef M 0 14"
    [9] "bef M 15 29"
                         "bef M 30 74"
                                          "bef M 75 105"
                                                           "bef MK 0 14"
## [13] "bef_MK_15_29"
                         "bef_MK_30_74"
                                          "bef_MK_75_105"
```

Vi skal starte med å lage et datasett med arbeidsstyrken (wf) for hele landet samlet, men fordelt på de tre kategorien kvinner, menn og kvinner + menn.

Bruk data for januar hvert år til å beregne wf på landsbasis

```
# årlige data landet samlet
wf <- arblos %>%
    filter(mnd == 1) %>%
```

```
group_by(aar) %>%
summarise(
    wf_K = sum(wf_K, na.rm = TRUE),
    wf_M = sum(wf_M, na.rm = TRUE),
    wf_KM = wf_K + wf_M
)
```

'summarise()' ungrouping output (override with '.groups' argument)

```
dim(wf)
```

```
## [1] 16 4
```

```
names(wf)
```

```
## [1] "aar" "wf_K" "wf_M" "wf_KM"
```

Summer de ulike årskategoriene for de to kjønnene og menn+kvinner for å finne total befolkning de ulike årene. Bruk mutate til å lage de nye variablene.

```
dim(bef)
```

```
## [1] 6688 18
```

names(bef)

```
[1] "knr"
                                                         "bef_K_0_14"
##
                        "knavn"
                                         "aar"
                        "bef_K_30_74"
                                                         "bef_M_0_14"
   [5] "bef_K_15_29"
                                         "bef_K_75_105"
##
  [9] "bef_M_15_29"
                        "bef_M_30_74"
                                         "bef_M_75_105" "bef_MK_0_14"
                                        "bef_MK_75_105" "bef_K"
## [13] "bef_MK_15_29"
                        "bef_MK_30_74"
## [17] "bef_M"
                        "bef_KM"
```

Legg befolkningsdata variablene bef_K, bef_M, bef_KM til wf. Husk at de må aggregeres for hele landet (group_by() og så summarise() før de «joines»). Bruk tilslutt mutate() make_date() for å lage en ny variabel år som er en date, dvs aar + month=1L + day=1L.

```
wfhjelp <- bef %>%
group_by(aar) %>%
summarise(
   bef_K = sum(bef_K, na.rm = TRUE),
   bef_M = sum(bef_M, na.rm = TRUE),
   bef_KM = sum(bef_KM, na.rm = TRUE))
```

'summarise()' ungrouping output (override with '.groups' argument)

```
wf <- right_join(wf, wfhjelp, by = "aar")

wf <- wf %>%
  mutate(
    år = make_date(year = aar, month = 1L, day = 1L)
)
```

wf

```
##
    A tibble: 16 x 8
##
        aar
                wf_K
                         wf_M
                                 wf_KM
                                          bef_K
                                                  bef_M
                                                         bef_KM år
##
      <dbl>
               <dbl>
                        <dbl>
                                 <dbl>
                                          <dbl>
                                                  <dbl>
                                                          <dbl> <date>
##
       1999 1031744. 1205745. 2237489. 2172270 2128101 4300371 1999-01-01
       2000 1037097. 1207206. 2244303. 2187760 2145401 4333161 2000-01-01
##
##
       2001 1049731. 1218061. 2267791. 2198085 2159014 4357099 2001-01-01
##
       2002 1061392. 1221762. 2283154. 2207743 2169466 4377209 2002-01-01
##
       2003 1077983. 1219325. 2297307. 2221543 2183278 4404821 2003-01-01
       2004 1079308. 1221288. 2300596. 2233444 2195946 4429390 2004-01-01
##
   7
       2005 1081663. 1225478. 2307142. 2247678 2211290 4458968 2005-01-01
##
##
       2006 1089654. 1233306. 2322960. 2263342 2228683 4492025 2006-01-01
       2007 1103816. 1249628. 2353444. 2280147 2252098 4532245 2007-01-01
       2008 1132662. 1271414. 2404076. 2301949 2285368 4587317 2008-01-01
##
##
       2009 1172942. 1323707. 2496649. 2328143 2319883 4648026 2009-01-01
       2010 1179755. 1318575. 2498330. 2354699 2350920 4705619 2010-01-01
## 12
       2011 1181768. 1330901. 2512669. 2381939 2384191 4766130 2011-01-01
       2012 1194903. 1342914. 2537817. 2408715 2421079 4829794 2012-01-01
## 15
       2013 1212788. 1365955. 2578743. 2436406 2457056 4893462 2013-01-01
       2014 1230477. 1381665. 2612141. 2462194 2487875 4950069 2014-01-01
```

Vi vil nå se på arbeidsstyrke relativt til befolkning på landsbasis, dvs. wf_K/bef_K etc. Plot dataen vha. geom_line() for de tre kategoriene. Bruk år som x-variabel.

Hvordan kan pukkelen rett før 2010 forklares?

Denne pukkelen kan forklares ut fra at i 2008 var en finanskrise som påvirket næringen og arbeidsmarkedet, mens i 2010 var verdensøkonomien og arbeidsmarkedet på vei til å stabilisere seg slik som tidligere før finanskrisen.

```
names(arblos)
```

```
## [1] "knr" "knavn" "aar" "mnd" "al_Menn"
## [6] "al_Kvinner" "alp_Menn" "alp_Kvinner" "alp_15_74" "alp_15_29"
## [11] "alp_30_74" "wf_K" "wf_M" "wf_KM"
```

Vi vil nå generere data for arbeidsstyrken på fylkesbasis. Husk at de to første sifferene i knr angir fylket en kommune ligger i. Bruk dataene i arblos til å finne arbeidsstyrken på fylkesbasis (wf_f). Start med å bruke mutate() til å lage en ny variabel fylke. Grupper så og finn wf_K_f, wf_M_f og wf_KM_f vha. summarise(). Lag til slutt en ny variabel år som en date. Velg til slutt de relevante variabelen vha. select().

```
# årlige data per fylke
wf_f <- arblos %>%
    mutate(
        fylke = substr(knr, start = 1, stop = 2)
) %>%
    group_by(aar, mnd, fylke) %>%
    summarise(
        wf_K_f = sum(wf_K, na.rm = TRUE),
        wf_M_f = sum(wf_M, na.rm = TRUE),
        wf_KM_f = wf_K_f + wf_M_f
) %>%
    mutate(år = make_date(aar, mnd, day=1L)) %>%
    select(aar, mnd, år, fylke, wf_K_f, wf_M_f, wf_KM_f)
```

'summarise()' regrouping output by 'aar', 'mnd' (override with '.groups' argument)

Vi skal nå ha en tibble wf f som ser slik ut:

```
print(wf_f, n = 5)
```

```
## # A tibble: 3,515 x 7
               aar, mnd [185]
## # Groups:
##
       aar
             mnd år
                             fylke
                                    wf K f wf M f wf KM f
##
     <dbl> <dbl> <date>
                             <chr>
                                     <dbl>
                                             <dbl>
                                                      <dbl>
## 1 1999
               1 1999-01-01 01
                                            67408. 125079.
                                    57671.
                                   120670. 133018. 253688.
## 2 1999
               1 1999-01-01 02
                                           147097. 280597.
## 3
     1999
               1 1999-01-01 03
                                   133500
## 4 1999
               1 1999-01-01 04
                                    42237.
                                            49356.
                                                    91593.
## 5 1999
               1 1999-01-01 05
                                    41178.
                                            47990.
                                                    89168.
## # ... with 3,510 more rows
```

Lag også en ny tibble bef f fra bef som inneholder befolkningen i hvert fylke hvert år.

```
## 'summarise()' regrouping output by 'aar' (override with '.groups' argument)
```

bef_f

```
## # A tibble: 304 x 5
   # Groups:
                aar [16]
##
        aar fylke bef_K_f bef_M_f bef_KM_f
##
      <dbl> <chr>
                     <dbl>
                              <dbl>
                                        <dbl>
                             120740
##
       1999 01
                    125278
                                       246018
    1
##
    2
       1999 02
                    232564
                             228000
                                       460564
##
    3
       1999 03
                    260639
                             242228
                                       502867
##
       1999 04
                     94239
                              92082
                                       186321
                              87363
##
    5
       1999 05
                     88898
                                       176261
                    119096
       1999 06
                             115922
##
    6
                                       235018
##
    7
       1999 07
                     73772
                              70920
                                       144692
##
    8
       1999 08
                     83559
                              80964
                                       164523
##
    9
       1999 09
                     50994
                              50493
                                       101487
## 10 1999 10
                     77789
                              76209
                                       153998
## # ... with 294 more rows
```

Lag til slutt tibble-en wf_f_bef som innholde arbeidsstyrke (wf-f) og befolkning (bef-f) på fylkesnivå for hvert år.

```
## Joining, by = c("aar", "fylke")
```

Da skal wf_f_bef se slik ut:

```
print(arrange(wf_f_bef, fylke, aar, mnd))
```

```
## # A tibble: 3,515 x 10
## # Groups:
               aar, mnd [185]
##
              mnd år
                              fylke wf_K_f wf_M_f wf_KM_f bef_K_f bef_M_f bef_KM_f
        aar
                                                                       <dbl>
##
      <dbl> <dbl> <date>
                              <chr>
                                     <dbl>
                                             <dbl>
                                                      <dbl>
                                                              <dbl>
                                                                                <dbl>
                                                             125278
##
    1 1999
                 1 1999-01-01 01
                                     57671. 67408. 125079.
                                                                     120740
                                                                               246018
##
    2
       1999
                 2 1999-02-01 01
                                     57693. 67526. 125220.
                                                             125278
                                                                     120740
                                                                               246018
       1999
                                     57108. 67551. 124659.
                                                                     120740
##
    3
                 3 1999-03-01 01
                                                             125278
                                                                               246018
##
    4
       1999
                 4 1999-04-01 01
                                     57526. 67355. 124881.
                                                             125278
                                                                     120740
                                                                               246018
##
    5
      1999
                5 1999-05-01 01
                                     57285. 67189. 124474.
                                                             125278
                                                                     120740
                                                                               246018
##
    6
      1999
                 6 1999-06-01 01
                                     57529. 66792. 124321.
                                                             125278
                                                                     120740
                                                                               246018
##
    7
       1999
                7 1999-07-01 01
                                     57393. 67690. 125083.
                                                             125278
                                                                     120740
                                                                               246018
##
    8
       1999
                 8 1999-08-01 01
                                     57531. 66998. 124529.
                                                             125278
                                                                     120740
                                                                               246018
##
    9
       1999
                 9 1999-09-01 01
                                     57264. 67609. 124873.
                                                             125278
                                                                     120740
                                                                               246018
                                     57702. 66907. 124610.
## 10
       1999
               10 1999-10-01 01
                                                             125278
                                                                     120740
                                                                               246018
## # ... with 3,505 more rows
```

Plot nå arbeidsstyrke relativt til befolkning vha. geom line()

Lage regioner

Alle fylkene blir litt rotete så vi definerer istedet seks regioner vha. case_when() og lager en ny tibble wf_r fra wf_f_bef.

```
# region
wf_r <- wf_f_bef %>%
   mutate(
         dato = ymd(paste(aar, mnd, "01", sep = "-")),
        region = case_when(
            as.numeric(fylke) == 3 ~ "Oslo",
            as.numeric(fylke) %in% c(1:2, 4:8) ~ "Østlandet",
            as.numeric(fylke) %in% c(9, 10) ~ "Sørlandet",
            as.numeric(fylke) %in% c(11, 12, 14, 15) ~ "Vestlandet",
            as.numeric(fylke) %in% c(16, 17) ~ "Trøndelag",
            as.numeric(fylke) %in% c(18, 19, 20) ~ "Nord-Norge"
   ) %>%
    group_by(dato, region) %>%
    summarise(
        wf_K_r = sum(wf_K_f, na.rm = TRUE),
        wf_M_r = sum(wf_M_f, na.rm = TRUE),
        wf_KM_r = wf_K_r + wf_M_r,
        bef_K_r = sum(bef_K_f, na.rm = TRUE),
        bef_M_r = sum(bef_M_f, na.rm = TRUE),
```

```
bef_KM_r = bef_K_r + bef_M_r
) %>%
select(dato, region, wf_K_r, wf_M_r, wf_KM_r, bef_K_r, bef_M_r, bef_KM_r)
```

'summarise()' regrouping output by 'dato' (override with '.groups' argument)

Plot nå for regionene wf_KM_r/bef_KM_r, både vha. geom_line() og geom_smooth(). La farge vise regionene. Sett denne i ggplot() slik at det gjelder for både geom_line() og geom_smooth(). Sett i tillegg alpha = 0.5 for geom_line() og se = FALSE for geom_smooth(). Legg til theme(legend.position = "bottom") til slutt for å få legend under plottet.

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Arbeidsstyrkens andel av befolkningen for regionene.

Lag tilsvarende plot for kvinner.

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Arbeidsstyrkens andel av befolkningen for kvinner per region.

Lag tilsvarende plot for menn

'geom_smooth()' using method = 'loess' and formula 'y \sim x'

Forlar kort den generelle utviklingen i arbeidsstyrken. Hva er det som «redder oss»?

Svar: Når det kommer til den generelle utviklingen i arbeidsstyrken så virker tendensen for menn å være synkende de siste årene, dvs. at en mindre prosentandel av menn er i arbeidsstyrken. For kvinner er det motsatt, her ser man en positiv trend de siste årene, med større andel i arbeidsstyrken av befolkningen. Utviklingen på vestlandet virker videre å være "bedre" enn resten av landet. Oslo ligger generelt noe over resten av landet. Samlet sett(menn+kvinner) er det en økende trend 2000-2015, men en liten nedgang de siste årene.

nest() arblos

Da skal vi jobbe direkte med arbeidsløshet og lage lineære modeller for hver av de 418 kommunene. Modellen vi skal lage er på ingen måte perfekt. Vi er interessert i selve teknikken med å organisere dataene og kjøre modeller på mange subsett av dataene (her for hver kommune).

Vi vil se på en modell der vi forklarer arbeidsstyrken i en kommune vha. ungdomsledighet og ledighet blant litt eldre arbeidstakere (30-74 år). En hypotese er at vi vil se en negativ sammenheng mellom ungdomsledighet og arbeidsstyrken. De unge flytter hvis det ikke er jobb.

Vi starter med å gruppere på kommune og nest-e dataene.

```
arblos_by_knr <- arblos %>%
  group_by(knr, knavn) %>%
  nest()
```

print(arblos_by_knr, n = 4)

```
## # A tibble: 418 x 3
## # Groups:
               knr, knavn [418]
##
                       data
     knr
           knavn
     <chr> <chr>
                       t>
## 1 0101
           Halden
                       <tibble [185 x 12]>
## 2 0104
           Moss
                       <tibble [185 x 12]>
## 3 0105
           Sarpsborg
                       <tibble [185 x 12]>
## 4 0106
           Fredrikstad <tibble [185 x 12]>
## # ... with 414 more rows
```

arblos_by_knr\$data[[1]]

```
## # A tibble: 185 x 12
##
               mnd al_Menn al_Kvinner alp_Menn alp_Kvinner alp_15_74 alp_15_29
##
                      <dbl>
                                   <dbl>
                                             <dbl>
                                                          <dbl>
                                                                     <dbl>
       <dbl> <dbl>
                                                                                <dbl>
##
    1
       1999
                  1
                        283
                                     248
                                               3.9
                                                            4.1
                                                                       4
                                                                                   6.3
##
    2
       1999
                  2
                        291
                                     236
                                               4
                                                            3.9
                                                                       4
                                                                                   6.1
##
    3
       1999
                  3
                        290
                                     230
                                               4
                                                            3.8
                                                                       3.9
                                                                                   5.9
                                                            3.4
    4
       1999
                  4
                                     207
##
                        244
                                               3.4
                                                                       3.4
                                                                                   4.9
##
    5
       1999
                  5
                        210
                                     179
                                               2.9
                                                            3
                                                                       2.9
                                                                                   3.8
##
    6
       1999
                  6
                        227
                                     203
                                               3.2
                                                            3.4
                                                                       3.2
                                                                                   4.2
    7
       1999
                  7
                                     273
                                               3.7
                                                            4.5
                                                                                   5.2
##
                        265
                                                                       4.1
    8
                                                                                   6.6
##
       1999
                  8
                        288
                                     278
                                               4
                                                            4.6
                                                                       4.3
       1999
                  9
                                                            3.3
                                                                                   4.8
##
    9
                        230
                                     201
                                               3.2
                                                                       3.3
## 10
      1999
                10
                        225
                                     207
                                               3.1
                                                            3.4
                                                                       3.3
                                                                                   4.8
     ... with 175 more rows, and 4 more variables: alp_30_74 <dbl>, wf_K <dbl>,
       wf_M <dbl>, wf_KM <dbl>
```

Vi har nå en tibble med data for hver kommune inne i tibble-en arblos by knr.

Skriv en funksjon som kjører den lineære modellen wf_KM \sim alp_15_29 + alp_30_74 på en input dataframe a_df. Kall funksjonen mod1 (i magel på noe bedre navn).

```
mod1 <- function(a_df) {
  lm(wf_KM ~ alp_15_29 + alp_30_74)
}</pre>
```

KJøre så modellen vha. funksjonen mod1 på data i arblos_by_knr, og lag en list-column i arblos_by_knr som inneholder modellen. Kjør også tidy og glance fra broom på modellene for å få hhv. koeffisienter og ulike summary av modellen. Lagre resultatene i hhv. mod1_arblos, mod1_arblos_coef og mod1_arblos_sum (i siste er sum forkortelse for summary)

```
mod1 <- function(a_df){
  lm(wf_KM ~ alp_15_29 + alp_30_74, data = a_df)}</pre>
```

Kjøre så modellen vha. funksjonen mod1 på data i arblos_by_knr, og lag en list-column i arblos_by_knr som inneholder modellen. Kjør også tidy og glance fra broom på modellene for å få hhv. koeffisienter og ulike summary av modellen. Lagre resultatene i hhv. mod1_arblos, mod1_arblos_coef og mod1_arblos_sum (i siste er sum forkortelse for summary)

```
arblos_by_knr <- arblos_by_knr %>%
  mutate(mod1_arblos = map(data, .f = mod1)) %>%
  mutate(mod1_arblos_coef = map(.x = mod1_arblos, .f = tidy)) %>%
  mutate(mod1_arblos_sum = map(.x = mod1_arblos, .f = glance))
```

arblos_by_knr skal nå se ut slik:

```
arblos_by_knr
```

```
## # A tibble: 418 x 6
## # Groups:
               knr, knavn [418]
##
      knr
                       data
                                      mod1_arblos mod1_arblos_coef mod1_arblos_sum
            knavn
##
      <chr> <chr>
                       t>
                                       t>
                                                   t>
                                                                    st>
##
   1 0101 Halden
                       <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~</pre>
## 2 0104 Moss
                       <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~</pre>
## 3 0105 Sarpsborg <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~
## 4 0106 Fredrikst~ <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~
                       <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~
## 5 0111 Hvaler
## 6 0118 Aremark
                       <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~</pre>
                       <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~</pre>
## 7 0119 Marker
## 8 0121 Rømskog
                       <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~</pre>
## 9 0122 Trøgstad
                       <tibble [185 ~ <lm>
                                                   <tibble [3 x 5]> <tibble [1 x 12~</pre>
                                                   <tibble [3 x 5]> <tibble [1 x 12~</pre>
## 10 0123 Spydeberg <tibble [185 ~ <lm>
## # ... with 408 more rows
```

Kommunestørrelse

Vi lager oss så en ny kategori variabel for kommunestørrelse.

```
## # A tibble: 6 x 4
##
          knavn
                       bef_KM k_str
    knr
##
                        <dbl> <chr>
     <chr> <chr>
## 1 0101 Halden
                        30132 Stor
## 2 0104 Moss
                        31308 Stor
## 3 0105
          Sarpsborg
                        54059 Stor
## 4 0106 Fredrikstad 77591 Svært stor
## 5 0111 Hvaler
                        4386 Liten
## 6 0118 Aremark
                        1408 Swært liten
```

Pakker ut og henter model karakteristika

Bruk så unnest() til å pakke ut mod1 arblos coef og mod1 arblos coef (husk at de to må stå i en c() og ha anførselstegn). Plukk ut variablene knr, knavn, term, estimate, std.error, p.value...9, adj.r.squared og legg resultatet i mod_arbl_re.

```
#modell arbeidsløse resultat
mod_arbl_re <- arblos_by_knr %>%
  unnest(c("mod1_arblos_coef", "mod1_arblos_sum"), names_repair = "universal") %>%
  select(knr, knavn, term, estimate, std.error, p.value...9, adj.r.squared)
```

```
## New names:
## * statistic -> statistic...8
## * p.value -> p.value...9
## * statistic -> statistic...13
## * p.value -> p.value...14
```

Du skal da ha noe som ser slik ut:

```
print(mod_arbl_re, n = 10)
```

```
## # A tibble: 1,254 x 7
## # Groups:
               knr, knavn [418]
                                    estimate std.error p.value...9 adj.r.squared
##
      knr
           knavn
                        term
##
      <chr> <chr>
                        <chr>
                                       <dbl>
                                                 <dbl>
                                                                            <dbl>
                                                              <dbl>
##
   1 0101 Halden
                        (Intercept)
                                     14288.
                                                 153.
                                                         1.23e-155
                                                                           0.110
  2 0101 Halden
##
                        alp_15_29
                                       228.
                                                  58.0
                                                         1.19e- 4
                                                                           0.110
   3 0101 Halden
                        alp_30_74
                                                 105.
                                                         1.97e- 6
                                      -516.
                                                                           0.110
## 4 0104 Moss
                        (Intercept)
                                     14030.
                                                 252.
                                                         3.65e-116
                                                                           0.0102
## 5 0104 Moss
                        alp_15_29
                                        47.0
                                                  97.2
                                                         6.30e- 1
                                                                           0.0102
## 6 0104
                        alp_30_74
                                                 206.
                                                         7.48e- 1
           Moss
                                        66.3
                                                                           0.0102
           Sarpsborg
##
   7 0105
                        (Intercept)
                                     25250.
                                                 435.
                                                         2.02e-119
                                                                           0.0138
## 8 0105 Sarpsborg
                        alp_15_29
                                       273.
                                                 164.
                                                         9.72e- 2
                                                                           0.0138
## 9 0105 Sarpsborg
                        alp_30_74
                                      -416.
                                                 381.
                                                         2.77e- 1
                                                                           0.0138
## 10 0106 Fredrikstad (Intercept)
                                     36302.
                                                 394.
                                                         1.15e-154
                                                                           0.550
## # ... with 1,244 more rows
```

Slå sammen kom str og mod arbl re vha. left join(). Kall resultatet for kom str mod.

```
kom_str_mod <- mod_arbl_re %>%
   left_join(kom_str, by = c("knr", "knavn"))
```

Da skal du ha noe som ser slik ut:

```
print(kom_str_mod, n = 5)
## # A tibble: 1,254 x 9
              knr, knavn [418]
## # Groups:
##
    knr
           knavn term
                          estimate std.error p.value...9 adj.r.squared bef_KM k_str
     <chr> <chr> <chr>
                                                                        <dbl> <chr>
                             <dbl>
                                       <dbl>
                                                   <dbl>
                                                                 <dbl>
## 1 0101 Halden (Inter~ 14288.
                                               1.23e-155
                                                                         30132 Stor
```

0.110

153.

```
## 2 0101 Halden alp_15~
                            228.
                                                                       30132 Stor
                                       58.0
                                              1.19e- 4
                                                               0.110
## 3 0101 Halden alp_30~
                           -516.
                                      105.
                                              1.97e- 6
                                                               0.110
                                                                       30132 Stor
## 4 0104 Moss
                 (Inter~
                          14030.
                                      252.
                                              3.65e-116
                                                               0.0102 31308 Stor
## 5 0104 Moss
                                       97.2
                                              6.30e- 1
                                                               0.0102 31308 Stor
                 alp_15~
                             47.0
## # ... with 1,249 more rows
```

Vi plotter koeffisientene som er signifikante og lar farge vise kommune størrelse. Tar vekk ekstreme estimat.

Lag tilsvarende plot for alp $_30_74$.

```
kom_str_mod %>%
  filter(term == "alp_30_74") %>%
  filter(estimate > -500 & estimate < 500 ) %>%
  filter(p.value...9 < 0.05) %>%
```

```
ggplot(mapping = aes(
    x = estimate,
    y = p.value...9,
    colour = k_str
    )
    ) +
    geom_point()
```


Hvor mange har vi?

```
kom_str_mod %>%
filter(term == "alp_15_29") %>%
group_by(k_str) %>%
summarise(n = n())
```

'summarise()' ungrouping output (override with '.groups' argument)

```
kom_str_mod %>%
   filter(term == "alp_15_29") %>%
    filter(estimate > - 500 & estimate < 500 ) %>%
    filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
   summarise(n = n())
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 4 x 2
## k_str n
            int>
## <chr>
## 2 Middels
## 3 Stor
                 64
                 74
                 16
## 4 Swært liten 58
kom_str_mod %>%
   filter(term == "alp_30_74") %>%
   filter(estimate > - 500 & estimate < 500 ) %>%
   filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
   summarise(n = n())
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 4 x 2
## k_str n
## <chr> <int>
               68
## 1 Liten
## 2 Middels
                 66
## 3 Stor
                  5
## 4 Svært liten
kom_str_mod %>%
   filter(term == "alp_15_29") %>%
    filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
    summarise(mean_15_29 = mean(estimate))
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 5 x 2
## k_str mean_15_29
## <chr>
                <dbl>
## 1 Liten
                   -2.93
## 2 Middels
## 3 Stor
                   -6.53
                  -18.5
## 4 Svært liten -1.64
## 5 Svært stor -9901.
```

```
kom_str_mod %>%
   filter(term == "alp_30_74") %>%
   filter(p.value...9 < 0.05) %>%
   group_by(k_str) %>%
   summarise(mean_30_74 = mean(estimate))
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 5 x 2
   k_str mean_30_74
              <dbl>
    <chr>
##
## 1 Liten
                   -1.47
## 2 Middels
                   3.42
                 -10.4
## 3 Stor
## 4 Svært liten
                   4.75
## 5 Svært stor 11076.
kom_str_mod %>%
   filter(term == "alp_15_29") %>%
   filter(p.value...9 < 0.05) %>%
   group_by(k_str) %>%
   summarise(n = n())
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 5 x 2
  k str n
##
    <chr>
              <int>
## 1 Liten
## 2 Middels
## 3 Stor
                74
                 24
## 4 Svært liten 58
## 5 Svært stor 7
kom_str_mod %>%
   filter(term == "alp_30_74") %>%
   filter(p.value...9 < 0.05) %>%
   group_by(k_str) %>%
 summarise(n = n())
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 5 x 2
    k_str n
             <int>
   <chr>
##
              68
## 1 Liten
## 2 Middels
                 69
## 3 Stor
                 26
## 4 Svært liten 71
## 5 Svært stor
                   7
```

I litt over 50% av kommunene, hovedsaklig de små, ser modellen ut til virke. Kanskje noe å bygge videre på.

#siste