OUTLINE

Motivation and background

Selected Inversion Algorithm

PSelInv: a parallel implementation of Selected Inversion

Initial performance evaluation

Communication load analysis (Symmetric case)

Performance evaluation

Conclusion

CONTEXT & MOTIVATION

Motivations:

- · Sparse matrices arise in many applications:
 - · Optimization problems
 - · Discretized PDEs
 - · Electronic structure theory
 - ٠ . . .
- · Some sparse direct methods require:
 - · Sparse factorizations
 - · Computing some inverse elements

CONTEXT & MOTIVATION

Motivations:

- · Sparse matrices arise in many applications:
 - · Optimization problems
 - · Discretized PDEs
 - · Electronic structure theory
 - ٠ . . .
- · Some sparse direct methods require:
 - · Sparse factorizations
 - · Computing some inverse elements

CONTEXT & MOTIVATION

Motivations:

- · Sparse matrices arise in many applications:
 - · Optimization problems
 - · Discretized PDEs
 - · Electronic structure theory
 - ٠ . . .
- · Some sparse direct methods require:
 - · Sparse factorizations
 - · Computing some inverse elements

Challenges for current and future platforms:

- · Lower amount of memory per core
- · Higher relative communication costs
- · Large performance variations

SPARSE MATRICES AND ELIMINATION TREE

· Fill in, $\Omega(A) \subseteq \Omega(L)$

$$A = LL^T$$
 $\Omega(A)$ is the sparsity pattern of A

SPARSE MATRICES AND ELIMINATION TREE

- · Elim. tree represents column dependences
- · Fill in, $\Omega(A) \subseteq \Omega(L)$

$$A = LL^T$$
 $\Omega(A)$ is the sparsity pattern of A

SPARSE MATRICES AND ELIMINATION TREE

- · Elim. tree represents column dependences
- · Fill in, $\Omega(A) \subseteq \Omega(L)$
- Supernode, same structure below diagonal block

 $A = LL^T$ $\Omega(A)$ is the sparsity pattern of A

pselinv: parallel selected inversion

Motivation:

- Many applications require some elements of an inverse matrix:
 - · Electronic structure theory
 - · Confidence interval estimation
 - · Poisson-Boltzmann
 - · Quantum transport theory

Ex: Kohn-Sham density functional theory

$$\Gamma = f(H - \mu I) \approx \sum_{i=1}^{Q} \frac{\omega_i}{H - Z_i I}$$
$$\rho(\Gamma) \approx \sum_{i=1}^{Q} diag(\frac{\omega_i}{H - Z_i I})$$

Objective:

· Compute selected entries of A^{-1}

$$\{(A^{-1})_{ij} \mid A_{ij} \neq 0 \text{ or } A_{ji} \neq 0, 1 \leq i, j \leq N\}$$

· "Naive" solution: sequence of solve on e_j

$$A = LU, A^{-1} = [x_1, x_2 \dots x_N] \implies \text{Solve } LUx_j = e_j$$

· Better algorithms:

[Takahashi et al. 1973], [Erismann and Tinney 1975]

· "Naive" solution: sequence of solve on e_j

$$A = LU, A^{-1} = [x_1, x_2 \dots x_N] \implies \text{Solve } LUx_j = e_j$$

· Better algorithms: [Takahashi et al. 1973], [Erismann and Tinney 1975]

- · Let A = LU be the LU factorization of A
- · Selected Inversion: entries of A^{-1} corresponding to $\Omega(A)$

· "Naive" solution: sequence of solve on e_j

$$A = LU, A^{-1} = [x_1, x_2 \dots x_N] \implies \text{Solve } LUx_j = e_j$$

Better algorithms:

[Takahashi et al. 1973], [Erismann and Tinney 1975]

- · Let A = LU be the LU factorization of A
- · Selected Inversion: entries of A^{-1} corresponding to $\Omega(A)$
- · If A sparse, entries of A^{-1} in $\Omega(A)$ require entries in $\Omega(L+U)$

· "Naive" solution: sequence of solve on e_j

$$A = LU, A^{-1} = [x_1, x_2 \dots x_N] \implies \text{Solve } LUx_j = e_j$$

· Better algorithms: [Takahashi et al. 1973], [Erismann and Tinney 1975]

- · Let A = LU be the LU factorization of A
- · Selected Inversion: entries of A^{-1} corresponding to $\Omega(A)$
- · If A sparse, entries of A^{-1} in $\Omega(A)$ require entries in $\Omega(L+U)$
- · All entries of A^{-1} in $\Omega(L+U)$ are actually computed

SPARSE MATRIX 2D BLOCK LAYOUT

 $\begin{tabular}{ll} \mbox{for Supernode $\mathcal{K}=\mathcal{N}$ down to 1 do} \\ \mbox{$|$} \mbox{ Compute selected elements of A^-1 within \mathcal{K}} \\ \mbox{end} \\ \end{tabular}$

- · 2D Block Cyclic layout
- · 4-by-3 processor grid
- · No explicit load balancing
- Works well in practice [Gupta]

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

· Supernode depends on S^{-1}

6

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

- · Supernode depends on S^{-1}
- Supernode processed in parallel
 - \cdot $S^{-1} \leftrightarrow$ Ancestors in the elimination tree
 - Ancestors compute contributions
 - · Contributions reduced

6

8

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

- · Supernode depends on S^{-1}
- Supernode processed in parallel
 - $S^{-1} \leftrightarrow \text{Ancestors in the}$ elimination tree
 - Ancestors compute contributions
 - · Contributions reduced
- · Complex communication pattern
 - \cdot Sending to cross-diagonal processors \leftrightarrow simpler pattern

6

8

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

- · Supernode depends on S^{-1}
- Supernode processed in parallel
 - $S^{-1} \leftrightarrow$ Ancestors in the elimination tree
 - Ancestors compute contributions
 - · Contributions reduced
- · Complex communication pattern
 - \cdot Sending to cross-diagonal processors \leftrightarrow simpler pattern
 - · Communication only within rows / columns of processors

6

8

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

- · Supernode depends on S^{-1}
- Supernode processed in parallel
 - $S^{-1} \leftrightarrow \text{Ancestors in the}$ elimination tree
 - Ancestors compute contributions
 - · Contributions reduced
- · Complex communication pattern
 - · Sending to cross-diagonal processors \leftrightarrow simpler pattern
 - · Communication only within rows / columns of processors

8

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

- · D: diagonal block
- · L: lower triangular block
- · *U*: upper triangular block

- 6
- O

 - P₅
- 8 P₁₂ P₁₁
- 10
- *P*₅
- P_4

$$P_{5}$$
 P_{4}
 P_{5}
 P_{4}
 P_{6}
 P_{6}
 P_{7}
 P_{10}
 P_{10}
 P_{6}
 P_{7}
 P_{7}
 P_{10}

- · D: diagonal block
- · L: lower triangular block
- · *U*: upper triangular block
- Alloc. *L* and *U* on cross-diagonal processors

- U: upper triangular block
 - Alloc. L and U on cross-diagonal processors
 - Bcast. L along cols., U along rows

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

D: diagonal block

- L: lower triangular block
 - · U: upper triangular block
 - Alloc. L and U on cross-diagonal processors
 - Bcast. L along cols., U along rows

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

· D: diagonal block

· L: lower triangular block

· U: upper triangular block

- · Alloc. *L* and *U* on cross-diagonal processors
- · Bcast. L along cols., U along rows
- Reduce contrib. to L along rows,
 U along cols.

$$P_5$$
 P_4
 P_5
 P_6
 P_5
 P_4
 P_{12}
 P_{12}
 P_{13}
 P_{14}
 P_{10}
 P_6
 P_6
 P_7
 P_8
 P_8

· D: diagonal block

 $A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$

- · L: lower triangular block
- · *U*: upper triangular block
- · Alloc. *L* and *U* on cross-diagonal processors
- · Bcast. L along cols., U along rows
- Reduce contrib. to L along rows,
 U along cols.
- Reduce contrib. to D within column

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

$$\cdot D: \text{ diagonal block}$$

- · L: lower triangular block
- · U: upper triangular block
- Alloc. L and U on cross-diagonal processors
- Bcast. L along cols., U along rows
- Reduce contrib. to L along rows, U along cols.
- Reduce contrib. to D within column

$$A^{-1} = \begin{pmatrix} D^{-1} + US_{-1}L & -US^{-1} \\ -S^{-1}L & S^{-1} \end{pmatrix}$$

- D: diagonal block
- · L: lower triangular block
- · U: upper triangular block
- Alloc. L and U on cross-diagonal processors
- Bcast. L along cols., U along rows
- Reduce contrib. to L along rows, U along cols.
- Reduce contrib. to D within column
- Delete temporary L and U

for Supernode $K = \mathcal{N}$ down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow & \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ \mathcal{A}_{\mathcal{K},\mathcal{K}} \leftarrow & d^{-1} + Y^T \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \end{split}$$

end

 $A_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow -Y$

- Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

for Supernode $K = \mathcal{N}$ down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow & \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ \mathcal{A}_{\mathcal{K},\mathcal{K}} \leftarrow & d^{-1} + Y^T \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \end{split}$$

end

 $A_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow -Y$

- Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

for Supernode $K = \mathcal{N}$ down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{K},\mathcal{K}} \leftarrow d^{-1} + Y^T \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \end{split}$$

$A_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow -Y$ end

- · Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

for Supernode K = N down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow & \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ \mathcal{A}_{\mathcal{K},\mathcal{K}} \leftarrow & d^{-1} + Y^{\mathsf{T}} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ \mathcal{A}_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow & -Y \end{split}$$

end

- · Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

for Supernode $K = \mathcal{N}$ down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow & \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ \mathcal{A}_{\mathcal{K},\mathcal{K}} \leftarrow & d^{-1} + Y^{T} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ \mathcal{A}_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow & -Y \end{split}$$

end

- · Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

· Serializations from common ancestors

for Supernode $K = \mathcal{N}$ down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow & \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{K},\mathcal{K}} \leftarrow & d^{-1} + Y^{T} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow & -Y \end{split}$$

end

- · Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

· Serializations from common ancestors

for Supernode K = N down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow & \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{K},\mathcal{K}} \leftarrow d^{-1} + Y^{T} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow -Y \end{split}$$

end

- · Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

- · Serializations from common ancestors
- · Serializations from layout

for Supernode $K = \mathcal{N}$ down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow & \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{K},\mathcal{K}} \leftarrow d^{-1} + Y^{T} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow -Y \end{split}$$

end

- · Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

- · Serializations from common ancestors
- · Serializations from layout

CONCURRENCY BETWEEN SUPERNODES

for Supernode $\mathcal{K} = \mathcal{N}$ down to 1 do

$$\begin{split} \mathcal{R}_{\mathcal{K}} \leftarrow & \text{non-zero rows in supernode } \mathcal{K} \\ Y &= S_{\mathcal{R}_{\mathcal{K}},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ \mathcal{A}_{\mathcal{K},\mathcal{K}} \leftarrow d^{-1} + Y^{T} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \end{split}$$

end

 $A_{\mathcal{R},\kappa,\mathcal{K}} \leftarrow -Y$

- · Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

- · Serializations from common ancestors
- · Serializations from layout
- · How to schedule supernodes?

CONCURRENCY BETWEEN SUPERNODES

for Supernode $K = \mathcal{N}$ down to 1 do

$$\begin{array}{l} \mathcal{R}_{\mathcal{K}} \leftarrow \text{non-zero rows in supernode } \mathcal{K} \\ Y = S_{\mathcal{R},\mathcal{R}_{\mathcal{K}}}^{-1} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{K},\mathcal{K}} \leftarrow d^{-1} + Y^{\mathsf{T}} \ell_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \\ A_{\mathcal{R}_{\mathcal{K}},\mathcal{K}} \leftarrow -Y \end{array}$$

end

- · Top-Down elimination tree traversal
- Exploit elimination tree to increase concurrency

- · Serializations from common ancestors
- · Serializations from layout
- · How to schedule supernodes?
- · Level-based heuristic as first step

PERFORMANCE EVALUATION

- · Experiments on NERSC Edison
 - · Intel Ivy Bridge 2.4 GHz processors
 - · 24 cores per node (two sockets)
 - · 2.6 GB of memory per core
- ParMETIS used for matrix ordering
- · SuperLU_DIST used for factorization
- · PSelInv:
 - · "Flat" MPI implementation
 - · Only asynchronous P2P send/recv

PERFORMANCE EVALUATION

- · Experiments on NERSC Edison
 - · Intel Ivy Bridge 2.4 GHz processors
 - · 24 cores per node (two sockets)
 - · 2.6 GB of memory per core
- ParMETIS used for matrix ordering
- · SuperLU_DIST used for factorization
- · PSelInv:
 - · "Flat" MPI implementation
 - · Only asynchronous P2P send/recv

Focus on pipelining computations

COMMUNICATION LOAD ANALYSIS - FLAT-TREE

Audikw_1 matrix from UFL

p steps

COMMUNICATION LOAD ANALYSIS - FLAT-TREE

Audikw_1 matrix from UFL Communication volume (MB) Processor row index 14 Processor column index

p steps

Col-Bcast using Flat-tree on 256 processors Avg. volume: 120.06 MB, Std. dev.: 10.2%, Med.: 119.04 MB

COMMUNICATION LOAD ANALYSIS - FLAT-TREE

p steps

Col-Bcast using Flat-tree on 2116 processors Avg. volume: 43 MB, Std. dev.: 19.2%, Med.: 40.8 MB

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Tree-based communication patterns
 - · Asynchronous, non-collective

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Tree-based communication patterns
 - · Asynchronous, non-collective
 - · Structure is pre-allocated
 - · Message sizes pre-computed

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- Tree-based communication patterns
- · Binary tree

- · Asynchronous, non-collective
- · Structure is pre-allocated
- · Message sizes pre-computed

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Tree-based communication patterns
- · Binary tree

- · Asynchronous, non-collective
- · Structure is pre-allocated
- · Message sizes pre-computed

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Tree-based communication patterns
- · Binary tree

- · Asynchronous, non-collective
- · Structure is pre-allocated
- · Message sizes pre-computed

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Tree-based communication patterns
- · Binary tree

- · Asynchronous, non-collective
- · Structure is pre-allocated
- · Message sizes pre-computed

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Tree-based communication patterns
- · Binary tree

- · Asynchronous, non-collective
- · Structure is pre-allocated
- · Message sizes pre-computed

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Tree-based communication patterns
 - · Asynchronous, non-collective
 - · Structure is pre-allocated
 - · Message sizes pre-computed

- · Binary tree
- · log(p) cost

COMMUNICATION LOAD ANALYSIS - BINARY-TREE

log(p) steps

Col-Bcast using Binary-tree on 2116 processors Avg. volume: 42.96 MB, Std. dev.: 63%, Med.: 36.9 MB

COMMUNICATION LOAD ANALYSIS - BINARY-TREE

log(p) steps

Col-Bcast using Binary-tree on 2116 processors Avg. volume: 42.96 MB, Std. dev.: 63%, Med.: 36.9 MB "Striped" pattern ⇔ imbalance

COMMUNICATION LOAD ANALYSIS - BINARY-TREE

log(p) steps Col-Bcast using Binary-tree on 2116 processors

Avg. volume: 42.96 MB, Std. dev.: 63%, Med.: 36.9 MB

"Striped" pattern ⇔ imbalance

Same nodes are picked to forward data

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

· Random circular shift

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Random circular shift
- · Binary tree

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Random circular shift
- · Binary tree

- · "Flat-tree" communication pattern not efficient
- Restricted broadcast/reduce implemented by point-to-point cause imbalance

- · Random circular shift
- · Binary tree

COMMUNICATION LOAD ANALYSIS - SHIFTED BINARY-TREE

log(p) steps

Col-Bcast using Shifted Binary-tree on 2116 processors

Avg. volume: 42.96 MB, Std. dev.: 7.7%, Med.: 42.6 MB

COMMUNICATION LOAD ANALYSIS - SHIFTED BINARY-TREE

log(p) steps

Col-Bcast using Shifted Binary-tree on 2116 processors

Avg. volume: 42.96 MB, Std. dev.: 7.7%, Med.: 42.6 MB

Volume of communication is now balanced

Communication volume (MB)

STRONG SCALING: DG_PHOSPHORENE (DGDFT)

n=512,000 , nnz=550,400,000 , nnz(L+U)= 3.7×10^9

STRONG SCALING: DG_PHOSPHORENE (DGDFT)

n=512,000 , nnz=550,400,000 , nnz(L+U)=3.7 $\times~10^9$ Binary-tree allows a better pipeline

STRONG SCALING: DG_PHOSPHORENE (DGDFT)

n=512,000 , nnz=550,400,000 , nnz(L+U)= 3.7×10^9 Binary-tree allows a better pipeline Shifted Binary-tree balance load, preserving pipeline

CONCLUSION

Conclusions:

- · Parallel Selected Inversion for Unsymmetric matrices
- · Trace computations may need transpose
- Pipelining and asynchronous task execution model are critical for performance
- · Communication load has a severe impact on performance
- · Faster than more general inversion algorithms

CONCLUSION

Conclusions:

- · Parallel Selected Inversion for Unsymmetric matrices
- · Trace computations may need transpose
- Pipelining and asynchronous task execution model are critical for performance
- · Communication load has a severe impact on performance
- · Faster than more general inversion algorithms
- PSelInv available in the PEXSI library http://www.pexsi.org/
- PEXSI used in many packages and SciDAC projects: SIESTA, CP2K, DGDFT (LBL), ELSI (NSF)

FUTURE WORK

Future work:

- · Concurrent supernodes scheduling
- · Finer granularity tasks
- · Remove need for duplicating data
- · Tree-based communications for unsymmetric case
- · Hybrid MPI/ OpenMP
- Dynamic task scheduling