AI assignment2

Mouly Gupta (2014MCS2126) Harinder Sethi (2014MCS2123)

February 2015

Algorithm for converting the problem into CNF

• TYPE 1 clauses:

Each edge in the given graph should be present in at-least one of the subgraphs i.e. for an edge i in graph and subgraph j where $1 \le j \le k$ So, add clauses-

for each i

 $e_{i,1} \lor e_{i,2} \lor ... \lor e_{i,k}$ Complexity $O(kn^2)$

• TYPE 2 clauses:

No subgraph should be empty i.e. at least one edge j where $1 \le j \le n$ of graph should be present in a subgraph k. So, add clauses-

for each k

 $e_{1,k} \lor e_{2,k} \lor \dots \lor e_{n,k}$ Complexity $O(kn^2)$

• TYPE 3 clauses:

Any edge which is not in the given graph should not be in any of the subgraphs. So, add clauses-

for each e_j not present in the given graph

 $NOT e_{j,1} \& NOT e_{j,2} \& ... \& NOT e_{j,k}$

Complexity $O(kn^2)$

• TYPE 4 clauses:

Each subgraph should be complete. If an edge from i to j $e_{ij,k}$ is present in subgraph k then $V_{i,k}$ and $V_{j,k}$ should also be present and vice verse should also be true. So, add clausesfor each $e_{ij,k}$ not present in the given graph

 $e_{ij,k} \iff (V_{i,k} \& V_{j,k})$

whose CNF equivalent is $(NOT\ V_{i,k} \lor NOT\ V_{j,k} \lor e_{ij,k})$ & $(V_{i,k} \lor NOT\ e_{ij,k})$ & $(V_{j,k} \lor NOT\ e_{ij,k})$ Complexity $O(kn^2)$

• TYPE 5 clause:

No subgraph should be superset of the other subgraph i.e. not all vertices of one subgraph should be present in any other subgraph. So, add clauses-

for two subgraphs k1 and k2

for each vertex $1 \le i \le n$

 $NOT(V_{1,k1} \implies V_{1,k2} \& ... \& V_{i,k1} \implies V_{i,k2} \& V_{n,k1} \implies V_{n,k2})$

Complexity $O(k^2n)$