

Introduction à la théorie de Fourier Généralités

M. Waharte

Polytech Paris-Saclay

MAT 342 : Théorie de Fourier - 2022

Intro Fourier **MAT342** 1/12

Sommaire

Définition

2 Propriétés

Transformée inverse

M. Waharte (PPS) Intro Fourier MAT342 2 / 12

Sommaire

Définition

2 Propriétés

Transformée inverse

Définition

Défintion

Soit $f:\mathbb{R}^n \to \mathbb{C}$ intégrable, on note sa transformée de Fourier \hat{f} (ou $\mathcal{F}(f)$) :

$$\hat{f}: \xi \in \mathbb{R}^n \mapsto \int_{\mathbb{R}} f(x)e^{-2i\pi x\xi} \, \mathrm{d}x$$

Définition

Défintion

Soit $f:\mathbb{R}^n \to \mathbb{C}$ intégrable, on note sa transformée de Fourier \hat{f} (ou $\mathcal{F}(f)$) :

$$\hat{f}: \xi \in \mathbb{R}^n \mapsto \int_{\mathbb{R}} f(x)e^{-2i\pi x\xi} \, \mathrm{d}x$$

- On peut aussi le définir :
 - $\hat{f}(\xi) \mapsto \int_{\mathbb{R}} f(x)e^{-x\xi} dx$

Défintion

Soit $f: \mathbb{R}^n \to \mathbb{C}$ intégrable, on note sa transformée de Fourier \hat{f} (ou $\mathcal{F}(f)$):

$$\hat{f}: \xi \in \mathbb{R}^n \mapsto \int_{\mathbb{R}} f(x)e^{-2i\pi x\xi} dx$$

On peut aussi le définir :

$$\bullet \ \hat{f}(\xi) \mapsto \int_{\mathbb{R}} f(x) e^{-x\xi} \ \mathrm{d}x$$

(La seule différence sera les coefficient des formules)

Exemple

Exemple

Calculez la transformée de Fourier de $\mathbb{1}_{[a,b]}$ et de $x\mapsto e^{-|x|}.$

Exemple

Exemple

Calculez la transformée de Fourier de $\mathbb{1}_{[a,b]}$ et de $x\mapsto e^{-|x|}$.

$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-|x|} e^{-2i\pi x\xi} dx =$$

Exemple

Exemple

Calculez la transformée de Fourier de $\mathbb{1}_{[a,b]}$ et de $x\mapsto e^{-|x|}$.

$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-|x|} e^{-2i\pi x\xi} dx = \int_{\mathbb{R}^{-}} e^{x(1-2i\pi\xi)} dx + \int_{\mathbb{R}^{+}} e^{x(-1-2i\pi\xi)} dx$$
$$= \frac{2}{1+4\pi\xi^{2}}.$$

M. Waharte (PPS) Intro Fourier MAT342 5/12

Sommaire

Définition

2 Propriétés

Transformée inverse

Soient la translation $\tau_y(f): x \in \mathbb{R}^n \mapsto f(x-y)$ et $\mathscr{C}_{\to 0}$ l'ensemble des fonctions continues convergeant vers 0 en $\pm \infty$.

Propriétés

Soient $f, g \in L^1(\mathbb{R}^n)$, $\lambda \in \mathbb{R}$ et $k \in \mathbb{N}$.

1. Si $h: x \mapsto e^{2\pi i \lambda x} f(x)$, alors h intégrable et $\hat{h} = \tau_{\lambda} f$.

M. Waharte (PPS) Intro Fourier MAT342 7/12

Soient la translation $\tau_y(f): x \in \mathbb{R}^n \mapsto f(x-y)$ et $\mathscr{C}_{\to 0}$ l'ensemble des fonctions continues convergeant vers 0 en $\pm \infty$.

Propriétés

Soient $f, g \in L^1(\mathbb{R}^n)$, $\lambda \in \mathbb{R}$ et $k \in \mathbb{N}$.

- 1. Si $h: x \mapsto e^{2\pi i \lambda x} f(x)$, alors h intégrable et $\hat{h} = \tau_{\lambda} f$.
- 2. $\mathcal{F}(\tau_{\lambda}f)(\xi) = e^{-2i\pi x\xi}\hat{f}(\xi)$.

Soient la translation $\tau_y(f): x \in \mathbb{R}^n \mapsto f(x-y)$ et $\mathscr{C}_{\to 0}$ l'ensemble des fonctions continues convergeant vers 0 en $\pm \infty$.

Propriétés

Soient $f, g \in L^1(\mathbb{R}^n)$, $\lambda \in \mathbb{R}$ et $k \in \mathbb{N}$.

- 1. Si $h: x \mapsto e^{2\pi i \lambda x} f(x)$, alors h intégrable et $\hat{h} = \tau_{\lambda} f$.
- 2. $\mathcal{F}(\tau_{\lambda}f)(\xi) = e^{-2i\pi x\xi}\hat{f}(\xi)$.
- 3. $\mathcal{F}(f*g) = \hat{f}\hat{g}.$

Soient la translation $\tau_u(f): x \in \mathbb{R}^n \mapsto f(x-y)$ et $\mathscr{C}_{\to 0}$ l'ensemble des fonctions continues convergeant vers 0 en $\pm \infty$.

Propriétés

Soient $f, g \in L^1(\mathbb{R}^n)$, $\lambda \in \mathbb{R}$ et $k \in \mathbb{N}$.

- 1. Si $h: x \mapsto e^{2\pi i \lambda x} f(x)$, alors h intégrable et $\hat{h} = \tau_{\lambda} f$.
- 2. $\mathcal{F}(\tau_{\lambda}f)(\xi) = e^{-2i\pi x\xi}\hat{f}(\xi)$.
- 3. $\mathcal{F}(f*q) = \hat{f}\hat{q}$.
- **4.** Si $\forall \alpha \in \mathbb{N}^n \ |\alpha| \leq k, (x \mapsto x^{\alpha} f(x)) \in L^1(\mathbb{R}), \text{ alors } \hat{f} \in \mathscr{C}^k \text{ et}$ $\partial^{\alpha} f = \mathcal{F}[(-2i\pi x)^{\alpha} f(x)].$

M. Waharte (PPS) Intro Fourier MAT342 7 / 12

Soient la translation $\tau_y(f): x \in \mathbb{R}^n \mapsto f(x-y)$ et $\mathscr{C}_{\to 0}$ l'ensemble des fonctions continues convergeant vers 0 en $\pm \infty$.

Propriétés

Soient $f, g \in L^1(\mathbb{R}^n)$, $\lambda \in \mathbb{R}$ et $k \in \mathbb{N}$.

- 1. Si $h: x \mapsto e^{2\pi i \lambda x} f(x)$, alors h intégrable et $\hat{h} = \tau_{\lambda} f$.
- 2. $\mathcal{F}(\tau_{\lambda}f)(\xi) = e^{-2i\pi x\xi}\hat{f}(\xi)$.
- $3. \ \mathcal{F}(f*g) = \hat{f}\hat{g}.$
- 4. Si $\forall \alpha \in \mathbb{N}^n \ |\alpha| \leq k, (x \mapsto x^{\alpha} f(x)) \in L^1(\mathbb{R}), \text{ alors } \hat{f} \in \mathscr{C}^k \text{ et } \partial^{\alpha} f = \mathcal{F}[(-2i\pi x)^{\alpha} f(x)].$
- 5. Si $f \in \mathscr{C}^k$ et $\forall |\alpha| \leq k$, $\partial^{\alpha} f \in L^1$ et $\in \mathscr{C}_{\to 0}$ avec k-1, alors $\mathcal{F}(\partial^{\alpha} f)(\xi) = (2i\pi\xi)^{\alpha} \hat{f}(\xi)$.

M. Waharte (PPS) Intro Fourier MAT342 7/12

Remarque

Une fonction est dite à décroisssance rapide si $\forall n, \lim_{x \to \pm \infty} x^n f(x) = 0$; la transformée de Fourier d'une telle fonction sera \mathscr{C}^{∞} et réciproquement.

Remarque

Une fonction est dite à décroisssance rapide si $\forall n, \ \lim_{x \to +\infty} x^n f(x) = 0$; la transformée de Fourier d'une telle fonction sera \mathscr{C}^{∞} et réciproquement.

Théorème de Riemann-Lebesgue

$$\mathcal{F}(L^1) \subset L^{\infty} \cap \mathscr{C}_{\to 0}.$$

i.e. pour $f \in L^1$, \hat{f} est continue, bornée et converge vers 0 en $\pm \infty$ (la TF est régulière).

M. Waharte (PPS) Intro Fourier **MAT342** 8/12

Sommaire

Définition

Propriétés

Transformée inverse

Définition

Définition (Transformée inverse)

Soit $g \in L^1$,

$$\mathcal{F}^{-1}(g) = \check{g} : x \mapsto \int_{\mathbb{R}} g(\xi) e^{2i\pi x \xi} d\xi \ (= \hat{g})(-x)$$

.

Définition (Transformée inverse)

Soit $g \in L^1$,

$$\mathcal{F}^{-1}(g) = \check{g} : x \mapsto \int_{\mathbb{R}} g(\xi) e^{2i\pi x \xi} d\xi \ (= \hat{g})(-x)$$

Théorème d'inversion : Soit $f \in L^1$ telle que \hat{f} intégrable alors, \hat{f} est continue et $||f - \mathcal{F}^{-1}(\hat{f})||_1 = 0.$

M. Waharte (PPS) Intro Fourier **MAT342** 10 / 12

Définition (Transformée inverse)

Soit $g \in L^1$,

$$\mathcal{F}^{-1}(g) = \check{g} : x \mapsto \int_{\mathbb{R}} g(\xi) e^{2i\pi x \xi} d\xi \ (= \hat{g})(-x)$$

Théorème d'inversion : Soit $f \in L^1$ telle que \hat{f} intégrable alors, \hat{f} est continue et $||f - \mathcal{F}^{-1}(\hat{f})||_1 = 0$.

De plus, si f continue, $f = \mathcal{F}^{-1}(\hat{f})$.

 $\implies \mathcal{F}$ est injective sur L^1 .

M. Waharte (PPS) Intro Fourier MAT342 10 / 12

Espace de Schwarz

Définition (Espace de Schwarz)

On note \mathcal{S} , espace de Schwarz, l'ensemble des fonctions infiniment dérivables telles que

$$\forall \alpha, \beta \in \mathbb{N}^n, \ \lim_{|x| \to \infty} x^{\alpha} \partial^{\beta} = 0$$

M. Waharte (PPS) Intro Fourier MAT342 11 / 12

Espace de Schwarz

Définition (Espace de Schwarz)

On note S, espace de Schwarz, l'ensemble des fonctions infiniment dérivables telles que

$$\forall \alpha, \beta \in \mathbb{N}^n, \lim_{|x| \to \infty} x^{\alpha} \partial^{\beta} = 0$$

On y retrouve notamment $x\mapsto e^{-|x|^2}$ et les fonctions \mathscr{C}^∞ à support compact.

Espace de Schwarz

Définition (Espace de Schwarz)

On note S, espace de Schwarz, l'ensemble des fonctions infiniment dérivables telles que

$$\forall \alpha, \beta \in \mathbb{N}^n, \lim_{|x| \to \infty} x^{\alpha} \partial^{\beta} = 0$$

On y retrouve notamment $x\mapsto e^{-|x|^2}$ et les fonctions \mathscr{C}^∞ à support compact.

$$\mathcal{F}: \mathbb{S} \to \mathbb{S}$$
.

M. Waharte (PPS) Intro Fourier MAT342 11/12

Plancheret-Parseval

Théorème de Plancheret-Parseval (simplifié)

Si
$$f \in L^1 \cap L^2$$
, alors $\hat{f} \in L^2$ et $||f||_2 = ||\hat{f}||_2$.