

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 16 de julio de 2019

Nombre y apellido:	Padrón:
e-mail:	Cuatrimestre de cursada:

- Para aprobar deben contestarse bien 6 puntos del total.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta tiene opciones y es respondida incorrectamente resta el puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- Utilizar $V_{th} = 26 \,\mathrm{mV}$.
- [1 pt.] 1) Una muestra de silicio que está dopada con $N_A = 2 \times 10^{16} \, \mathrm{at/cm^3}$, tiene una longitud $L = 100 \, \mu \mathrm{m}$ y un área $A = 10 \, \mu \mathrm{m^2}$. Calcular la corriente $(I \, [\mu \mathrm{A}])$ que circula cuando se conecta una fuente de 3, 3 V entre los extremos de la muestra.
- [1 pt.] 2) Calcular la carga por unidad de área en el gate $(Q'_G [\text{C/cm}^2])$ de una juntura MOS fabricada con polysilicio dopado tipo N y sustrato dopado con $N_A = 10^{17} \, \text{cm}^{-3}$, $C'_{ox} = 2,7 \times 10^{-7} \, \text{F/cm}^2$, $\gamma = 0,1 \, \text{V}^{-1/2}$, $V_T = 0,6 \, \text{V}$ cuando se aplica $V_{GB} = 1,7 \, \text{V}$.
- [1 pt.] 3) Dado un diodo de silicio P⁺N con $N_D = 10^{15}$ at/cm³, A = 0, 2 mm² y $C_{j0} = 2, 1 \cdot 10^{-11}$ F, hallar N_A .
- $[\frac{1}{2}$ pt.] 4) Por un JFET en saturación circulan 150 μ A. Hallar V_{GS} considerando $I_{DSS}=500\,\mu$ A y $V_p=-1,2\,\mathrm{V}$.
- [½ pt.] 5) En un proceso de fabricación CMOS de sustrato tipo P, luego de aplicarse la máscara de NWELL, ¿cuál es la siguiente?
 A) N/P-SELECT, B) METAL, C) POLY, D) ZONA ACTIVA, E) CONTACTOS.
- [1 pt.] 6) Calcular el tiempo de propagación de un inversor CMOS en cuya salida se conecta una carga $C_L=1$ pF (despreciar las capacidades parásitas de los MOSFET). Datos: $V_{DD}=3,3$ V, $V_{Tn}=0,7$ V, μ_n $C'_{ox}=120\,\mu\text{A/V}^2$, $W_n=1,1\,\mu\text{m}$, $V_{Tp}=-0,9$ V, μ_p $C'_{ox}=40\,\mu\text{A/V}^2$, $W_p=2,2\,\mu\text{m}$, $L_p=L_p=0,6\,\mu\text{m}$, $\lambda\to0$.
- [1 pt.] 7) Se implementa un amplificador emisor común sin realimentación con un transistor PNP con parámetros $\beta=265$ y $V_A=40\,\mathrm{V}$. La tensión de alimentación es $V_{CC}=3\,\mathrm{V}$, y el transistor está polarizado con una resistencia de base $R_B=33\,\mathrm{k}\Omega$, y una resistencia de colector, $R_C=120\,\Omega$. A la entrada del amplificador, se conecta una señal (v_s) con resistencia serie $R_s=1\,\mathrm{k}\Omega$ a través de un capacitor de desacople de valor adecuado. Hallar A_{vo} , R_{IN} y R_{OUT} .
- [1 pt.] 8) Para el amplificador del punto 7 hallar la señal de salida v_{out} cuando $v_s = 10 \,\mathrm{mV}$.
- [1 pt.] 9) Para el amplificador del punto 7 calcular la máxima tensión v_s admisible sin que se manifieste distorsión en las señales.
- [1 pt.] 10) Un transistor MOSFET de potencia es utilizado en un regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y la tensión es $V_{DS}=10\,\mathrm{V}$. La temperatura en el ambiente donde debe funcionar es 50°C. Las características térmicas del dispositivo son $T_{j,\mathrm{máx}}=125^{\circ}\mathrm{C}$; $\theta_{JC}=1,5^{\circ}\mathrm{C/W}$ y $P_{\mathrm{máx}}(@T_A=25^{\circ}\mathrm{C})=20\,\mathrm{W}$, determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.
- [1 pt.] 11) Realizar el corte lateral de un transistor TBJ de potencia indicando sus características constructivas mas importantes.