

Cambridge International AS & A Level

CANDIDATE NAME	4	- Us	ail	•			
CENTRE NUMBER					CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

JC20 06_9709_32/RP © UCLES 2020

[Turn over

2020

genarind 2020.

turn over

South furn

Find the quotient and remainder when $6x^4 + x^3 - x^2 + 5x - 6$ is divided by $2x^2 - x + 1$.	
3×2+2x-1	
$2z^{2}x+1$ $6x^{4}+x^{3}-x^{2}+5x-6$	
- 62 ⁴ -3x ³ +3x ²	•••••
$4x^3 - 4x^2 + 5x$	•••••
$4x^9 - 2x^2 + 2\alpha$	• • • • • •
-2x2+3x -6	• • • • • •
-2x +x -1	•••••
0 2x - 5	
+ + 0 · 0 · 1	•••••
quotient = 322, 2x-1 remainder = 22-5	
reamounder = 22-5	•••••
	• • • • • •
	• • • • • •
	• • • • • •
	• • • • • • •
	•••••
	• • • • • •
	• • • • • •
	• • • • • •
	• • • • • •
	•••••

2

The variables x and y satisfy the equation $y^2 = Ae^{kx}$, where A and k are constants. The graph of $\ln y$ against x is a straight line passing through the points (1.5, 1.2) and (5.24, 2.7) as shown in the diagram.

Find the values of *A* and *k* correct to 2 decimal places.

[5]

21ng =	InA+ kx
lny =	In A + kx
	$\frac{\ln A + kx}{2}$
y intercept = In 1	, <u>k</u> = gradient
2	2
y= mx +c	
0	
m= 2.7-1.2 -	0.4012
5.24-1.5	
	C= y-mx
$\frac{R}{2} = 0.4012$	c= y-mx = 1.2-0.4012(1.5)
2	= 0.5982
R = 0.80	
	: In A = 1.1969
	A = e ¹⁻¹⁹⁶
	A = 3-31

3 Find the exact value of

$\int_1^4 x^{\frac{3}{2}} \ln x \mathrm{d}x.$	LIATE	[5]
• 1		

u=\nx u= 1

 $V = \frac{2x^{2-5}}{5} \qquad V' = x^{1-5}$

 $\ln \left(\frac{2x^{2.5}}{5}\right) - \frac{2}{5} \int 2^{2.5} \left(\frac{1}{2}\right) dr$

 $\frac{2x^{2S} \ln x - 2 \int x^{1.S} dx}{5}$

 $\frac{2 x^{2.5} \ln x - 2 (2 x^{2.5})}{5 (5 x^{2.5})}$

 $\frac{2}{9} x^{2.5} \ln x - \frac{4}{2} x^{2.5}$

 $\frac{2x^{2.5}\left(\ln x-\frac{2}{5}\right)}{5}$

 $\left[\begin{array}{c}
2(4)^{2\cdot5}\left(1_{1}4-2\right) \\
6
\end{array}\right] - \left[\begin{array}{c}
2(1)^{2\cdot5}\left(-2\right) \\
5
\end{array}\right]$

64 Int - 128 + 4 5 29 25

641_h4 124 S 25

4	A curve ha	is equation $y =$	$\cos x \sin 2x$.
-	11 Cui ve in	is equation y –	COS A 5111 2A.

of stationary point is $ \begin{array}{c} 2 (2632x 3652 \\ 2 (2632x - 1)6 \\ 4 (3232x - 1)6 \end{aligned} $ $ \begin{array}{c} 4 (3232x - 1)6 \\ 4 (3232x - 1)6 \\ 4 (3232x - 1)6 \end{array} $ $ \begin{array}{c} 4 (3232x - 1)6 \\ 4 (3232x - 1)6 \\ 4 (3232x - 1)6 \end{array} $ $ \begin{array}{c} 4 (3232x - 1)6 \\ 4 (3232x - 1)6 \\ 4 (3232x - 1)6 \end{array} $	$\frac{4}{3} = 0$ $2 = \sin 2$ $2 = \sin 2$ $2 = -4 = 0$	(Sim2 o α 2 Sim 2 Simo 2 - 2 Gas	c ny laso L ²				
at stationary point $\frac{1}{2}$ $\frac{2(26230-1)6}{4(2030-1)6}$ $\frac{4(2030-1)6}{5c-3}$ $\frac{4(2023-1)6}{5(2023)}$ $\frac{6(2023-1)6}{2}$	$\frac{4}{3} = 0$ $2 = \sin 2$ $2 = \sin 2$ $2 = -4 = 0$	(Sim2 o α 2 Sim 2 Simo 2 - 2 Gas	c ny laso L ²				
at stationary point $\frac{1}{2}$ $\frac{2(26230-1)6}{4(2030-1)6}$ $\frac{4(2030-1)6}{5c-3}$ $\frac{4(2023-1)6}{5(2023)}$ $\frac{6(2023-1)6}{2}$	$\frac{4}{3} = 0$ $2 = \sin 2$ $2 = \sin 2$ $2 = -4 = 0$	(Sim2 o α 2 Sim 2 Simo 2 - 2 Gas	c ny laso L ²				
$\frac{2(2682x-1)6}{2(2682x-1)6}$ $\frac{4(6882x-1)6}{4(682x-1)6}$ $4(682x-1)6$ $6(682x-1)6$	$x = \sin x$ $x = -4 = 1$	(Sim2 o a 2 Si 2 Simo 2 - 2 Gas	c nor losso 1 ²				
$\frac{2(2682x-1)6}{2(2682x-1)6}$ $\frac{4(6882x-1)6}{4(682x-1)6}$ $4(682x-1)6$ $6(682x-1)6$	$x = \sin x$ $x = -4 = 1$	(Sim2 o a 2 Si 2 Simo 2 - 2 Gas	c nor losso 1 ²				
$2(2\cos^2\alpha - 1)6$ $4\cos^2\alpha - 3$ $6\cos^2\alpha - 3$ $6\cos^2\alpha$ $\cos\alpha = 4\sqrt{3}$	2 = cim 2 = cim 2 = -4 = 1	2 2 Sino 2 Sino 2 - 2 Gas	ny (aso) 1 ²		•••••		
$2(2\cos^2\alpha - 1)6$ $4\cos^2\alpha - 3$ $6\cos^2\alpha - 3$ $6\cos^2\alpha$ $\cos\alpha = 4\sqrt{3}$	2 = cim 2 = cim 2 = -4 = 1	2 2 Sino 2 Sino 2 - 2 Gas	ny (aso) 1 ²		•••••		
$4 \cos^2 x - 3$ $4 \cos^2 x - 3$ $6 \cos^2 x$ $\cos x = \pm \sqrt{3}$	2 (2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 	2 smg 2 - 26s	,² + ∝				
$4 \cos^2 x - \frac{b \cos^2 x}{b \cos^2 x}$ $\cos x = \pm \sqrt{\frac{a}{a}}$	2 - -4 -(2 - 26s	<u>+ </u>				
$6\cos^2 x$ $\cos x = \pm \sqrt{3}$	_ 4 = (
$6\cos^2 x$ $\cos x = \pm \sqrt{3}$	_ 4 = (
$6\cos^2 x$ $\cos x = \pm \sqrt{3}$	_ 4 = (
$\cos x = \pm \sqrt{2}$	<u></u>	D			•••••	•••••	
	<u></u>						
	<u> </u>	. .					
χ , υ. [•••••	•••••	•••••	••••••	•••••
	515						
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
			•••••	•••••		••••••	•••••
	•••••	•	•••••	•••••	•••••	••••••	•••••
			•••••				
							••••

R= 1(15)	٢(١٤) ٢	d =	tan-1/	F		
				2	•••••	• • • • • • • • • • • • • • • • • • • •
= \sqrt{2}	ᡶ ⊆					
= \ 7		;	57. 68	88		
	•••••	•••••		•••••		· • • • • • • • • • • • • • • • • • • •
•	J7/A	(x + 57.	688)			
***************************************				•••••		•••••
	•••••		•••••			• • • • • • • • • • • • • • • • • • • •
•••••	•••••		•••••	•••••		
				•••••		
			•••••	•••••		
•••••	••••••	••••••	•••••	••••••	•••••	•
			•••••			
•••••	•••••	•••••	••••••	••••••	••••••	
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••		••••••	••••••

(b)	Hence solve the equation $\sqrt{2}\cos 2\theta - \sqrt{5}\sin 2\theta$	$\theta = 1$, for $0^{\circ} < \theta < 180^{\circ}$.	4]
	$\sqrt{7} \left(63 \left(2\chi + 57.688 \right) = 1 \right)$		
	7 x + 57.688 = (a)	(-(/ 1)	
	2.4.1.21	-"(<u> </u>	•••
		67.792 ,292.208	•••
		7	•••
	2x+57:688 = 67:792	2x + 57.688 = 292.200	
	χ = G·	2 = 117·3	
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••

6

The diagram shows the curve $y = \frac{x}{1 + 3x^4}$, for $x \ge 0$, and its maximum point M.

(a)	Find the x -coordinate of M , giving your answer correct to 3 decimal places.	[4]
	$= (1+3x^{4})(1) - (x)(12x^{3})$	
	(1x 3x+)2	
	1+324-12x4	
	(1+3x4)2	

1-924	<u>.</u> 0	
(+ 3x1)2		

(-92)4	≈ 0
2 ⁴ =	
	Q

•••••	 	

x = 0.577

.....

(b)	Using the substitution $u = \sqrt{3}x^2$, find by integration the exact area of the shaded region both	undec
	by the curve, the <i>x</i> -axis and the line $x = 1$.	[5]

4 <u>2 </u>	U= (52)
1+3x+	du=253x dr
1	
(× , w	
1 + W2 2 /250C	when x=0 u=0
· · · · · · · · · · · · · · · · · · ·	α= l u= 5
1 (1 du	
1 x 1 du 2/3 2/3 2/3	
U	
$\frac{1}{2\sqrt{3}}$ \times $\frac{1}{4}$	
253	
441	
ton-((T)) 13	
$\frac{\tan^{-1}\left(\frac{12}{1}\right)}{2\sqrt{3}}$	
- 0	

(4 ,	17	_ (_)			
253	3	_ (0)			
••••••	π	•••••		•••••••	••••••

<u> </u>				
653				
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••

7 The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y-1}{(x+1)(x+3)}.$$

It is given that y = 2 when x = 0.

x.	[9]
4	
<u>A</u>	B
X 41	x+
1 4~ , 30	Bas
3A+B=1	
A+ B=0	
· k: -B	••••••
(B) (B = 1	•••••
•	•••••
	- 1
2	2
	•••••
	•••••
	•••••
	•••••
	•••••
	1 = A2+3A 3A+B=1 A+B=0

8 (a)	Solve the equation $(1 + 2i)w + iw^* = 3 + 5i$. Give your answer in the form $x + iy$, where x and y are real.
	let w= x+iy
	(1+2i)(x+iy)+i(x-iy)=3+5i
	$x + iy + 2\pi i + 2y(-1) + \pi i - (-1)y = 3 + 5i$
	2x + iy + 3xi - 2y + y = 3 + 5i
	3 = x - y $5 = y + 3x$ (1) x = 3 + y - 0
	: x=3+y — D sub D in D
	5=4+3(3+4)
	5 = y + 3(3 + y) $5 = y + 9 + 3y$ $4 = -4$
	y = -1
	∴ x= 3+(-1)
	(x=2)
	<u>z = 2-i</u>

(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z-2-2i| \le 1$ and $\arg(z-4i) \ge -\frac{1}{4}\pi$. [4]

(ii) Find the least value of Im z for points in this region, giving your answer in an exact form.

[2]

 $(x-2)^{2} + (y-2)^{2} = 1$ $2^{2} + 2 + 4 + (-x + 2)^{2} = 1$ $2^{2} - 42 + 4 + 2^{2} - 42 + 4 = 1$ $2x^{2} - 8x + 7 = 1$ x = 2 + 1 x = 2 + 1 x = 2 + 1

9

The diagram shows the curves $y = \cos x$ and $y = \frac{k}{1+x}$, where k is a constant, for $0 \le x \le \frac{1}{2}\pi$. The curves touch at the point where x = p.

(a) Show that p satisfies the equation $\tan p = \frac{1}{1+p}$. [5]

(a> D	<u> </u>	v	

 $-5m\rho = -k$ $(1+\rho)^2$

 $k = (\sin p)(1+p)^2 - D$

 $\frac{(1)}{D} : R = (sin p)(1+p)$ (bs p)(1+p)

1 = tosp (1+p)

tom p = 1 1+p

© UCLES 2020 9709/32/M/J/20

1	Give the result	t of each	n iteration to 5 decim	al places.	
	Pnze	= ta	m (I+Pm)		
	۴,		4JL		
			0.51051		
	<u>.</u>	<u>=</u>	0. 58979 0. 5629	<u>3</u> 1	
	_ •	=	0.5692	.0	
	l 5		0.5613		
	₽2 ₽8	•••••	0.5617	• • • • • • • • • • • • • • • • • • • •	
	Pa	=	0-561	9	
•••••		<u> </u>	0.568		
Hence			ect to 2 decimal plac		0 640
			1.32	2	7° 966 J
•••••					

- With respect to the origin O, the points A and B have position vectors given by $\overrightarrow{OA} = 6\mathbf{i} + 2\mathbf{j}$ and $\overrightarrow{OB} = 2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$. The midpoint of OA is M. The point N lying on AB, between A and B, is such that AN = 2NB.
 - (a) Find a vector equation for the line through M and N. [5]

The line through M and N intersects the line through O and B at the point P.

('n)	Find	the	position	vector	of	P
•	. ~	,	1110	uii	POSITION	, 00001	01	

[3]

(c) Calculate angle *OPM*, giving your answer in degrees.

[3]

 $\frac{1}{4^{2}+6^{2}+6^{2}} = \frac{4+12+36}{4^{2}+6^{2}}$

63 0 <u>52</u> 2 \sqrt{182}

62 0 = 0.92976

.....

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.					

BLANK PAGE

© UCLES 2020 9709/32/M/J/20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020 9709/32/M/J/20