Exercici 17 Siguin n > 1 un nombre natural i p el menor nombre natural primer que divideix n. Demostreu que si $p^3 > n$, llavors n es primer (i p = n) o be n/p es primer.

Solucio 17

Procedirem per contrareciproc, per tant suposem que no es compleix la seguent proposicio: n es primer (i p=n) o be n/p es primer $\Longrightarrow n$ no es primer (o $n\neq p$) i n/p tampoc. Per tant com estem suposant que n/p no es primer $\exists \ k\in\mathbb{N}$. amb 1< k< n/p tal que k|(n/p) i aixo implica que $\exists \ l\in\mathbb{N}$ tal que $kl=\frac{n}{p}$ multipicant a tots dos costats de la igualtat per p ens queda que pkl=n, i tenim que 1< l ja que si l=1 aleshores k=n/p, cosa que ja sabem que es impossible. Ara siguin $q_1\cdot\ldots\cdot q_s$ i $r_1\cdot\ldots\cdot r_n$, les descomposicons de k,l respectivament. Tenim que $p\leq q_i,\ i=1,\ldots,s$ i $p\leq r_j,\ j=1,\ldots,n$. Ja que si un r_j o q_i fos menor estricte que p, aleshores no es compliria la premisa de l'enunciat de p ser el menor divisor primer de n, per tant tenim que $p^s\leq q_1\cdot\ldots\cdot q_s$ $p^n\leq r_1\cdot\ldots\cdot r_n$.

Aleshores tenint en compte n = klp ens queda que $n \ge pp^sp^n = p^{1+s+n} \ge p^3$, ara la segona desigualtat es compleix ja que s > 0 i n > 0, i aixo es cert ja que com hem vist anteriorment k, l > 1 i per tant admenten una descomposico en almenys un primer, ara notem que el que hem deduit , $(n \ge p^3)$, es just el contrari que la hipotesi de la proposicio $(p^3 > n)$, per tant queda demostrat l'enunciat.