GLIOBLASTOMA: IMPROVED OUTCOMES URGENTLY NEEDED

Contemporary Management of Glioblastoma

Incidence Rates of Primary Brain Tumors

Central Brain Tumor Registry of the United States, 1992-1997

WHO Classification

- GRADE I "BENIGN" or low-grade
- GRADE II "BENIGN" or low-grade (more diffuse)
- GRADE III ANAPLASTIC (cellular atypia, etc)
- GRADE IV MALIGNANT (necrosis, vascularity, mitoses)

High-Grade Malignant Gliomas

- Fibrillary astrocytomas
 - Glioblastoma (WHO grade IV)
 - *Giant-cell glioblastoma
 - Anaplastic astrocytomas (WHO grade III)
 - **Gemistocytic astrocytomas
- Oligodendrogliomas
 - Anaplastic oligodendrogliomas
 (or Smith classification grade C or D)
- Mixed anaplastic oligoastrocytomas
- Anaplastic mixed gangliogliomas (mixed neuronal-glial tumors)

^{*}Giant-cell glioblastoma = slower progression rate; **gemistocytic astrocytomas = grade II but acts like grade III

Why Is It So Difficult to Treat Malignant Gliomas?

- Multiple disordered pathways (ie, AKT, IGF, HGF, etc)
- Multiple mutated targets (ie, EGF, PDGF, VEGF, etc)
- Poor disease biomarker
- Blood brain barrier
- Limited therapeutic window (Central nervous system is very sensitive to insults)
- Rapid development of resistant disease

Glioblastoma (WHO IV)

Enhancing cystic with necrosis

Enhancing cystic with necrosis cellular, vessels, necrosis, MIB-1

At Least Four Molecular Subtypes of Glioblastomas (Secondary Glioblastomas Have Proneural Profile)

FDA-Approved Treatments for Malignant Glioma

- June 14, 1996: Carmustine wafer for recurrent glioblastoma
- January 12, 1999: Temozolomide (TMZ) for anaplastic astrocytoma
- February 25, 2003: Carmustine wafer for newly-diagnosed glioblastoma
- March 15, 2005: Temozolomide for newly-diagnosed glioblastoma
- May 5, 2009: Bevacizumab (BEV) for progressive glioblastoma
- April 15, 2011: NovoTTF-100A for recurrent glioblastoma

Surgical Implantation of Chemotherapy Wafers: Carmustine

Carmustine Wafer for Newly Diagnosed Glioblastoma

Adjuvant Temozolomide Improves Survival in Glioblastoma

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

Roger Stupp, M.D., Warren P. Mason, M.D., Martin J. van den Bent, M.D., Michael Weller, M.D., Barbara Fisher, M.D., Martin J.B. Taphoorn, M.D., Karl Belanger, M.D., Alba A. Brandes, M.D., Christine Marosi, M.D., Ulrich Bogdahn, M.D., Jürgen Curschmann, M.D., Robert C. Janzer, M.D., Samuel K. Ludwin, M.D., Thierry Gorlia, M.Sc., Anouk Allgeier, Ph.D., Denis Lacombe, M.D., J. Gregory Cairncross, M.D., Elizabeth Eisenhauer, M.D., and René O. Mirimanoff, M.D., for the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group*

Treatment Schema

^{*}PCP prophylaxis was required for patients receiving TMZ during the concomitant phase. RT, radiotherapy

Radiotherapy and Temozolomide for Newly Diagnosed Glioblastoma

Radiotherapy and Temozolomide for Newly Diagnosed Glioblastoma

MGMT Promoter Methylation Is Associated With Improved Survival in Patients Treated With RT+TMZ

Methylated MGMT

Hegi ME, et al. N Engl J Med. 2005;352(10):997-1003.

Malignant Gliomas Generate Abnormal Blood Vessels

Normal human cortex

Angiogenesis Balance

Glioblastoma Has the Greatest Potential for Angiogenesis

VEGF mRNA Is Upregulated in the Hypoxic Zone of Glioblastomas

Anti-Angiogenic Therapy in Malignant Glioma

First generation angiogenesis inhibitors:

- 1. Thalidomide
- 2. Lenalidomide
- 3. Penicillamine
- 4. Carboxyamidotriazole

Inhibitors of VEGF

Bevacizumab

Small-molecule inhibitors of VEGRF/PDGFR/EGFR:

- **1.** Cediranib (AZD 2171)
- 2. Vatalanib (PTK 787)
- **3.** Pazopanib (GW 786034)
- 4. Sorafenib
- 5. Sunitinib
- 6. Vandetanib (ZD 6474)

Metronomic temozolomide

High Response Rate and Improved Progression-Free Survival (PFS) in Phase II Trial of Bevacizumab and Irinotecan

Glioblastoma (GBM)
PFS-6 (30%) = 20 weeks (9 weeks hc)

Anaplastic glioma
PFS-6 (56%) = 30 weeks (13 weeks hc)

AZD2171 (cediranib) (pan-VEGFR inhibitor) Responder

Bevacizumab Plus Irinotecan Versus Salvage Cytotoxic Chemotherapies

	PFS, 6 months	Response
Bevacizumab plus irinotecan		
Vredenburgh, et al	57%	46%
Chen, et al	47%	65%
*Friedman HS, et al	38%	50%
*Kreisl TN, et al	35%	29%
**Wong, et al - cytotoxic chemotherapy	6%	15%

^{*}FDA approval: Friedman HS, et al. *J Clin Oncol.* 2009;27(28):4733-4740. Kreisl TN, et al. *J Clin Oncol.* 2009;27(5):740-745.

^{**}Wong ET, et al. J Clin Oncol. 1999;17(8):2572-2578.

Tumor Progression During Bevacizumab Plus Irinotecan

RTOG 0825: Phase III trial testing first-line treatment with bevacizumab

Primary outcomes by treatment

Median overall survival

Placebo: 16.1 months

Bevacizumab: 15.7 months

HR (BEV/placebo: 1.13 [95%CI: 0.93, 1.37])

P = .21

Median progression-free survival

Placebo: 7.3 months

Bevacizumab: 10.7 months

HR (BEV/placebo: 0.79 [95%CI: 0.66, 0.94])

P = .007

Neither OS or PFS achieved prespecified endpoints

Gilbert M, et al. J Clin Oncol. 2013;31(suppl): Abstract 01. Gilbert M, et al. Presented at: 2013 Scientific Meeting and Education Day of the Society for Neuro-Oncology; November 21-24, 2013; San Francisco, California: Abstract NO-046.

Outcomes by MGMT status: Both arms pooled

Median overall survival

Methylated: 23.2 months Unmethylated: 14.3 months

HR (unmeth/meth: 2.10 (95%CI: 1.65, 2.68)

P<.001

Median progression-free survival

Methylated: 14.1 months Unmethylated: 8.2 months

HR (unmeth/meth: 1.67 (95%CI: 1.36, 2.05)

P<.001

AVAglio study design

AVAGlio trial: Investigator-assessed PFS (Co-primary endpoint)

Overall survival (Co-primary endpoint)

Designed to achieve a HR of 0.80 (20% reduction in the risk of death) with 80% power (log-rank test, 2 sided 4% α level adjusted using O'Brien and Fleming): 683 events were required for analysis

Wick W, et al. J Clin Oncol. 2013;31(suppl): Abstract 2002. Chinot OL, et al. Presented at: 2013 Scientific Meeting and Education Day of the Society for Neuro-Oncology; November 21-24, 2013; San Francisco, California: Abstract NO-031.

1. No clinical benefit in upfront treatment of glioblastoma

Primary endpoints

	RTOG 0825		AVAGLIO	
Regimen	Bevacizumab/TMZ/RT	TMZ/RT	Bevacizumab/TMZ/RT	TMZ/RT
PFS	10.3 months	7.3 months	10.6 months	6.2 months
	HR 0.79, <i>P</i> = .07		HR 0.64, <i>P</i> <.0001	
os	15.7 months	16.1 months	16.8 months	16.7 months
	HR 1.13, <i>P</i> = .21		HR 0.88, <i>P</i> = .0987	

2. There may be benefit in specialized population of patients with newly diagnosed glioblastoma (ie, large unresectable tumor, molecular genetics, etc)

Treatment Options for Glioblastoma

Newly-diagnosed:

- Maximum safe neurosurgical resection
- Radiotherapy with concomitant temozolomide
 - Adjuvant temozolomide

At recurrence:

- Re-resection (Carmustine wafer may be used)
- Second-line chemotherapy
- NovoTTF
- Bevacizumab with or without chemotherapy
- Re-irradiation