Méthodes de Partionnement et d'apprentissage non supervisé

Classification Hiérarchique et Kmeans

Anne Badel, Frédéric Guyon & Jacques van Helden

2019-02-20

Partitionnement et apprentissage

- On a une représentation des données
 - sous forme de valeurs réelles=vecteur de
 - sous forme de catégories
- ► Clustering: on cherche a priori des groupes dans les données
- Apprentissage:
 - on connaît le partitionnement sur un jeu de données
 - on cherche le groupe (la classe) de nouvelles données

Partionnement = Clustering

Figure 1: Y a-t-il des groupes ?

Partionnement = Clustering

Figure 2: Oui, 4 groupes.

Apprentissage

Figure 3: 2 groupes.

Apprentissage: Séparation linéaire

Figure 4: 2 groupes.

Méthodes

Trois grands principes de méthodes basées sur:

- La géométrie
- Les probabilités (statistique)
- Les graphes

En fait, trois façons de voir les mêmes algorithmes

Géométrie et distances

On considère les données comme des points de R^n (*)

- géométrie donnée par distances
- distances = dissimilaritées imposées par le problème
- dissimilarités permettent visualisation de l'ensemble des points
- Détermination visuelle des groupes
- (*) Espace Euclidien à n dimensions, où
 - chaque dimension représente une des variables observées;
 - un individu est décrit comme un vecteur à n valeurs, qui correspond à un point dans cet espace.

Les données

Ces données sont un classique des méthodes d'apprentissage Dans un premier temps, regardons les données.

```
dim(mes.iris)
```

[1] 150 4

head(mes.iris)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4

Les variables

summary(mes.iris)

th Sepal	L.Width	Petal	.Length	Peta]	L.Wio
00 Min.	:2.000	Min.	:1.000	Min.	:0
00 1st Qı	1.:2.800	1st Qu	1.:1.600	1st Qı	1.:0
00 Median	ı :3.000	Mediar	:4.350	Mediar	ı :1
43 Mean	:3.057	Mean	:3.758	Mean	:1
00 3rd Qı	1.:3.300	3rd Qu	1.:5.100	3rd Qı	1.:1
00 Max.	:4.400	Max.	:6.900	Max.	:2
	00 Min. 00 1st Qu 00 Median 43 Mean 00 3rd Qu	00 Min. :2.000 00 1st Qu.:2.800 00 Median :3.000 43 Mean :3.057 00 3rd Qu.:3.300	00 Min. :2.000 Min. 00 1st Qu.:2.800 1st Qu 00 Median :3.000 Median 43 Mean :3.057 Mean 00 3rd Qu.:3.300 3rd Qu	00 Min. :2.000 Min. :1.000 00 1st Qu.:2.800 1st Qu.:1.600 00 Median :3.000 Median :4.350 43 Mean :3.057 Mean :3.758 00 3rd Qu.:3.300 3rd Qu.:5.100	00 Min. :2.000 Min. :1.000 Min. 00 1st Qu.:2.800 1st Qu.:1.600 1st Qu 00 Median :3.000 Median :4.350 Median 43 Mean :3.057 Mean :3.758 Mean 00 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu

Visualisation des données

On peut ensuite essayer de visualiser les données

plot(mes.iris)

Cas d'étude : TCGA Breast Invasive Cancer (BIC)

 Présentation du cas d'étude (Jacques van Helden A COMPLETER)

TP : analyse de données d'expression

- ► TP clustering : [html][pdf] [Rmd]
- Première partie : chargement des données

Géométrie et distances

Sur la base d'une distance (souvent euclidienne)

- Partionnement:
 - Moyennes mobiles ou K-means : séparation optimale des groupes connaissant le nombre de groupes
 - Méthode agglomérative ouhierarchical clustering
- Classification:
 - attribution K plus proches voisins (K Nearest Neighbor)
 - séparation linéaire ou non linéaire

Distances

Définition d'une distance : fonction positive de deux variables

- 1. $d(x, y) \ge 0$
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) = 0 \iff x = y$
- 4. Inégalité triangulaire : $d(x,z) \le d(x,y) + d(y,z)$

Si 1,2,3 : dissimilarité

Distances utilisées dans R

- distance euclidienne ou distance L_2 : $d(x,y) = \sqrt{\sum_i (x_i y_i)^2}$
- ▶ distance de manahattan ou distance L_1 : $d(x,y) = \sum_i |x_i y_i|$
- ▶ distance du maximum ou L-infinis, L_{∞} : $d(x,y) = \max_i |x_i y_i|$

Distances utilisées dans R

▶ distance de Minkowski I_p :

$$d(x,y) = \sqrt[p]{\sum_{i} (|x_i - y_i|^p)}$$

distance de Canberra (x et y valeurs positives):

$$d(x,y) = \sum_{i} \frac{x_i - y_i}{x_i + y_i}$$

 distance binaire ou distance de Jaccard ou Tanimoto: proportion de propriétés communes

Autres distances non géométriques (pour information)

Utilisées en bio-informatique:

- Distance de Hamming: nombre de remplacements de caractères (substitutions)
- Distance de Levenshtein: nombre de substitutions, insertions, deletions entre deux chaînes de caractères

$$d("BONJOUR", "BONSOIR") = 2$$

- ▶ Distance d'alignements: distances de Levenshtein avec poids (par ex. matrices BLOSSUM)
- Distances d'arbre (Neighbor Joining)
- Distances ultra-métriques (phylogénie UPGMA)

Distances plus classiques en génomique

Comme vu lors de la séance 3, il existe d'autres mesures de distances :

- ▶ **Jaccard** (comparaison d'ensembles): $J_D = \frac{A \cap B}{A \cup B}$
- ▶ Distance du χ^2 (comparaison de tableau d'effectifs)

Ne sont pas des distances, mais indices de dissimilarité :

- ▶ Bray-Curtis (en écologie, comparaison d'abondance d'espèces)
- Jensen-Shannon (comparaison de distributions)

Remarque : lors du TP, sur les données d'expression RNA-seq, nous utiliserons le **coefficient de corrélation de Spearman** et la distance dérivée, $d_c=1-r$

Distances entre groupes

▶ Single linkage : élements les plus proches des 2 groupes

$$D(C_1, C_2) = \min_{i \in C_1, j \in C_2} D(x_i, x_j)$$

► Complete linkage : éléments les plus éloignés des 2 groupes

$$D(C_1, C_2) = \max_{i \in C_1, j \in C_2} D(x_i, x_j)$$

Group average : distance moyenne

$$D(C_1, C_2) = \frac{1}{N_1 N_2} \sum_{i \in C_1, i \in C_2} D(x_i, x_j)$$

Ward

$$d^{2}(C_{i}, C_{j}) = I_{intra}(C_{i} \cup C_{j}) - I_{intra}(C_{i}) - I_{intra}(C_{j})$$

Distances entre groupes

Les données

Ces données sont un classique des méthodes d'apprentissage Dans un premier temps, regardons les données

```
dim(mes.iris)
```

[1] 150 4

head(mes.iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2
5.4	3.9	1.7	0.4
	5.1 4.9 4.7 4.6 5.0	5.1 3.5 4.9 3.0 4.7 3.2 4.6 3.1 5.0 3.6	4.9 3.0 1.4 4.7 3.2 1.3 4.6 3.1 1.5 5.0 3.6 1.4

str(mes.iris)

'data.frame': 150 obs. of 4 variables:

summary(mes.iris)

separ.	Lengtn	Sepal.	wiatn	Petal.	Lengtn	Petal.	Wl
Min.	:4.300	Min.	:2.000	Min.	:1.000	Min.	:0
1st Qu.	:5.100	1st Qu.	:2.800	1st Qu.	:1.600	1st Qu.	:0
Median	:5.800	Median	:3.000	Median	:4.350	Median	:1
Mean	:5.843	Mean	:3.057	Mean	:3.758	Mean	:1
3rd Qu.	:6.400	3rd Qu.	:3.300	3rd Qu.	:5.100	3rd Qu.	:1
Max.	:7.900	Max.	:4.400	Max.	:6.900	Max.	:2

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Visualisation des données

On peut ensuite essayer de visualiser les données

▶ par un plot

plot(mes.iris)

Visualisation des données - coloration par espèces

```
species.colors <- c(setosa = "#BB44DD", virginica = "#AA004
plot(mes.iris, col = species.colors[iris$Species], cex = 0</pre>
```


Visualisation des données

par la fonction image()

```
image(1:nb.var, 1:nb.iris ,t(as.matrix(mes.iris)), xlab =
```


Nettoyage des données (1): données manquantes

Avant de commencer à travailler, il est nécessaire de commencer par vérifier que :

▶ il n'y a pas de données manquantes

```
sum(is.na(mes.iris))
```

[1] 0

Nettoyage des données (2) : variables constantes

 aucune variable n'est constante (aucune variable n'a une variance nulle)

```
iris.var <- apply(mes.iris, 2, var)
kable(iris.var, digits = 3, col.names = "Variance")</pre>
```

	Variance
Sepal.Length	0.686
Sepal.Width	0.190
Petal.Length	3.116
Petal.Width	0.581

```
sum(apply(mes.iris, 2, var) == 0)
```

[1] 0

Normalisation

Afin de pouvoir considérer que toutes les variables sont à la même échelle, il est parfois nécessaire de normaliser les données.

- soit
 - en centrant (ramener la moyenne de chaque variable à 0)

```
mes.iris.centre <- scale(mes.iris, center=TRUE, scale=FALS)</pre>
```

- soit
 - en centrant (ramener la moyenne de chaque variable 0)
 - et mettant à l'échelle (ramener la variance de chaque variable à
 1)

```
mes.iris.scaled <- scale(mes.iris, center=TRUE, scale=TRUE)
```

On peut visuellement regarder l'effet de la normalisation :

par un plot des données

```
plot(mes.iris, main = "Raw variables")
```


! ne pas faire si "grosses" données

... par une boîte à moustaches (boxplot)

```
par(mfrow = c(1,2))
par(mar = c(7, 4.1, 4.1, 1.1)) # adapt margin sizes for the
boxplot(mes.iris, main = "Raw data", las = 2)
boxplot(mes.iris.scaled, main = "scaled", las = 2)
```


... par une image

```
par(mfrow=c(1,2))
image(1:nb.var, 1:nb.iris, t(as.matrix(mes.iris)), main="Raimage(1:nb.var, 1:nb.iris, t(as.matrix(mes.iris.scaled)), n
```


... par une projection sur une ACP

La matrice de distances

Nous utilisons ici la distance euclidienne.

```
iris.euc <- dist(mes.iris)
iris.scale.euc <- dist(mes.iris.scaled)</pre>
```

```
par(mfrow = c(1,2))
image(t(as.matrix(iris.euc)), main = "Données brutes", las
image(t(as.matrix(iris.scale.euc)), main = "Données normal")
```


La classification hiérarchique

Principe

- classification hiérarchique : mettre en évidence des liens hiérachiques entre les individus
 - classification hiérarchique ascendante : partir des individus pour arriver à des classes / cluster
 - classification hiérarchique descendante : partir d'un groupe qu'on subdivise en sous-groupes /clusters jusqu'à arriver à des individus.

Notion importante, cf distances

- ressemblance entre individus = distance
- ► ressemblance entre groupes d'invidus = critère d'aggrégation
 - lien simple
 - ▶ lien complet
 - ▶ lien moyen
 - critère de Ward

L'algorithme

étape 1 :

- ▶ départ : n individus = n clusters distincts
- calcul des distances entre tous les individus
 - choix de la métrique à utiliser en fonction du type de données
- ► regroupement des 2 individus les plus proches => (n-1) clusters

au départ

identification des individus les plus proches

construction du dendrogramme

étape j :

- ightharpoonup calcul des dissemblances entre chaque groupe obtenu à l'étape (j-1)
- ▶ regroupement des deux groupes les plus proches =>(n-j) clusters

calcul des nouveaux représentants 'BE' et 'CD'

calcul des distances de l'individu restant 'A' aux points moyens

A est plus proche de . . .

dendrogramme

pour finir

▶ à l'étape (n-1), tous les individus sont regroupés dans un même cluster

dendrogramme final

Je ne fais pas attention à ce que je fais . . .

```
iris.hclust <- hclust(iris.euc)
plot(iris.hclust, hang = -1, cex = 0.5)</pre>
```

Cluster Dendrogram

Sur données normalisées

```
iris.scale.hclust <- hclust(iris.scale.euc)
plot(iris.scale.hclust, hang = -1, cex = 0.5)</pre>
```

Cluster Dendrogram


```
par(mfrow = c(2, 1))
plot(iris.hclust, hang = -1, cex = 0.5, main = "Données bro
```

plot(iris.hclust, hang = -1, cex = 0.5, main = "Données bruplot(iris.scale.hclust, hang = -1, cex = 0.5, main = "Normal name of the control o

En utilisant une autre métrique

```
iris.scale.max <- dist(mes.iris.scaled, method = "manhattar
iris.scale.hclust.max <- hclust(iris.scale.max)
par(mfrow=c(2,1))
plot(iris.scale.hclust, hang=-1, cex=0.5, main = "Euclidian
plot(iris.scale.hclust.max, hang=-1, cex=0.5, main = "Manha")</pre>
```


En utilisant un autre critère d'aggrégation

```
iris.scale.hclust.single <- hclust(iris.scale.euc, method=
iris.scale.hclust.ward <- hclust(iris.scale.euc, method="water m
```


Les k-means

Les individus dans le plan

L'algorithme

étape 1 :

- k centres provisoires tirés au hasard
- ▶ *k* clusters créés à partir des centres en regroupant les individus les plus proches de chaque centre
- ▶ obtention de la partition P₀

Choix des centres provisoires

Calcul des distances aux centres provisoires

 $\bullet\,$ calcul des distances de chaque point aux centres G_1 et $G_2,$

Affectation à un cluster

Calcul des nouveaux centres de classes

Etape j:

- ightharpoonup construction des centres de gravité des k clusters construits à l'étape (j-1)
- k nouveaux clusters créés à partir des nouveaux centres suivant la même règle qu'à l'étape 0
- ightharpoonup obtention de la partition P_j

Fin:

▶ l'algorithme converge vers une partition stable

Arrêt:

▶ lorsque la partition reste la même, ou lorsque la variance intra-cluster ne décroit plus, ou lorsque le nombre maximal d'itérations est atteint.

Un premier k-means en 5 groupes

```
iris.scale.kmeans5 <- kmeans(mes.iris.scaled, center=5)
iris.scale.kmeans5</pre>
```

K-means clustering with 5 clusters of sizes 50, 21, 29, 28

Cluster means:

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 -0.8373333  0.37066667  -2.2960000  -0.9533333
2  0.5804762 -0.13828571  0.8467619  0.2387619
3  0.3532184 -0.17457471  1.4247586  0.7351494
4  -0.3111905 -0.42161905  0.2027143  0.0292381
5  1.2793939  0.05630303  2.2738182  0.9324848
```

Clustering vector:

iris.scale.kmeans5\$cluster

table(iris.scale.kmeans5\$cluster)

1 2 3 4 5 50 21 29 28 22 plot(iris.scaled.acp, col.ind = iris.scale.kmeans5\$cluster

Individuals factor map

Combien de clusters ?

Quand une partition est-elle bonne?

- ▶ si les individus d'un même cluster sont proches
 - homogénéité maximale à l'intérieur de chaque cluster
- ▶ si les individus de 2 clusters différents sont éloignés
 - hétérogénéité maximale entre chaque cluster

Classification hiérarchique

La coupure de l'arbre à un niveau donné construit une partition. la coupure doit se faire :

- après les agrégations correspondant à des valeurs peu élevées de l'indice
- avant les agrégations correspondant à des niveaux élevés de l'indice, qui dissocient les groupes bien distincts dans la population.

plot(iris.scale.hclust.ward, hang=-1, cex=0.5)

iris.scale.euc hclust (*, "ward.D2")

K-means

```
I.intra = numeric(length=10)
I.intra[1] = kmeans(mes.iris.scaled, centers=2)$totss
for (i in 2:10) {
   kmi <- kmeans(mes.iris.scaled, centers=i)
   I.intra[i] <- kmi$tot.withinss
}</pre>
```


iris.scale.kmeans3 <- kmeans(mes.iris.scaled, center=3)
plot(iris.scaled.acp, col.ind=iris.scale.kmeans3\$cluster,</pre>

Individuals factor map

Heatmap

heatmap(mes.iris.scaled, margins = c(7,4), cexCol = 1.4, cexcol = 1.4)

Comparaison de clustering: Rand Index

Mesure de similarité entre deux clustering

à partir du nombre de fois que les classifications sont d'accord

$$R=\frac{m+s}{t}$$

- m=nombre de paires dans la même classe dans les deux classifications
- s=nombre de paires séparées dans les deux classifications
- t=nombre de paires totales

Comparaison de clustering: Adjusted Rand Index

$$ARI = \frac{RI - ExpectedRI}{MaxRI - ExpectedRI}$$

- ARI=RI normalisé
- Prend en compte la taille des classes
- ► ARI=1 pour classification identique
- lacktriangle ARI $\simeq 0$ pour classification aléatoire (peut être <0)
- Adapté pour nombre de classe différent entre les deux classifications et taille de classe différente

Comparaison des résultats des deux classifications

par une table de confusion

```
cluster.kmeans3 <- iris.scale.kmeans3$cluster
cluster.hclust5 <- cutree(iris.scale.hclust.ward, k=5)
table(cluster.hclust5, cluster.kmeans3)</pre>
```

par une visualisation

```
par(mfrow=c(1,2))
plot(iris.scaled.acp, col.ind=cluster.kmeans3, choix="ind"
plot(iris.scaled.acp, col.ind=cluster.hclust5, choix="ind"
```


par(mfrow=c(1,1))

Comparaison avec la réalité

La réalité

```
variete <- iris[,5]
table(variete)</pre>
```

```
variete
setosa versicolor virginica
50 50 50
```


Comparer k-means avec la réalité

Table 1: Confusion table: 3-clusters k-means versus actual class

	1	2	3
setosa	0	0	50
versicolor	48	2	0
virginica	14	36	0

Setosa vs others

Visualisation

```
variete2 <- rep("notSetosa", 150)
variete2[variete=="setosa"] <- "setosa"
variete2 = factor(variete2)
table(variete2)</pre>
```

```
variete2
notSetosa setosa
100 50
```

par(mfrow=c(1,2))
plot(iris.scaled.acp, col.ind=variete2, title="Actual specicluster.kmeans2 <- kmeans(mes.iris.scaled, center=2)\$cluster
plot(iris.scaled.acp, col.ind=cluster.kmeans2, title="2-grounds")</pre>

par(mfrow=c(1,1))

Table de confusion et calcul de performances

```
conf.kmeans <- table(variete2, cluster.kmeans2)
kable(conf.kmeans)</pre>
```

	1	2
notSetosa	3	97
setosa	50	0

table de confusion, taux de bien prédits, spécificité, sensibilité, ...

```
TP \leftarrow conf.kmeans[1,1]
FP \leftarrow conf.kmeans[1,2]
FN \leftarrow conf.kmeans[2,1]
TN \leftarrow conf.kmeans[2,2]
P <- TP + FN # nb positif dans la réalité
N <- TN + FP # nb négatif dans la réalité
FPrate <- FP / N # = false alarm rate
Spe \leftarrow TN / N # = spécificité
Sens <- recall <- TPrate <- TP / P # = hit rate ou re
PPV <- precision <- TP / (TP + FP)
accuracy <- (TP + TN) / (P + N)
F.measure <- 2 / (1/precision + 1/recall)
performance <- c(FPrate, TPrate, precision, recall, accuracy
names(performance) <- c("FPrate", "TPrate", "precision", ";</pre>
```

kable(performance, digits=3)

	×
FPrate	1.000
TPrate	0.057
precision	0.030
recall	0.057
accuracy	0.020
F.measure	0.039
Spe	0.000
PPV	0.030

rand index et adjusted rand index

clues::adjustedRand(as.numeric(variete2), cluster.kmeans2)

Rand HA MA FM Jaccard 0.9605369 0.9204051 0.9208432 0.9639434 0.9302767

Versicolor vs !Versicolor

Visualisation

```
variete2 <- rep("notVersicolor", 150)
variete2[variete=="versicolor"] <- "versicolor"
variete2 = factor(variete2)
table(variete2)</pre>
```

```
variete2
notVersicolor versicolor
100 50
```

```
par(mfrow=c(1,2))
plot(iris.scaled.acp, col.ind = variete2, cex =0.7)
cluster.kmeans2 <- kmeans(mes.iris.scaled, center=2)$cluster
plot(iris.scaled.acp, col.ind = cluster.kmeans2, cex = 0.7)</pre>
```


par(mfrow=c(1,1))

Table de confusion et calcul de performances

```
conf.kmeans <- table(variete2, cluster.kmeans2)
kable(conf.kmeans)</pre>
```

	1	2
notVersicolor	50	50
versicolor	3	47

```
TP <- conf.kmeans[1,1]
FP \leftarrow conf.kmeans[1,2]
FN <- conf.kmeans[2,1]
TN \leftarrow conf.kmeans[2,2]
P <- TP + FN # nb positif dans la réalité
N <- TN + FP # nb négatif dans la réalité
FPrate <- FP / N # = false alarm rate
Spe \leftarrow TN / N # = spécificité
Sens <- recall <- TPrate <- TP / P # = hit rate ou re
PPV <- precision <- TP / (TP + FP)
COUNCER / (TD | TN) / (D | N)
```

kable(performance, digits=3)

	×
FPrate	0.515
TPrate	0.943
precision	0.500
recall	0.943
accuracy	0.647
F.measure	0.654
Spe	0.485
PPV	0.500

clues::adjustedRand(as.numeric(variete2), cluster.kmeans2)

Rand HA MA FM Jaccard 0.53995526 0.07211421 0.07722223 0.57895580 0.40737752

Pros et cons des différents algorithmes

Algorithme	Pros
Hiérarchique	L'arbre reflète la nature imbriquée de tous les sous-cluste Permet une visualisation couplée dendrogramme (groupes Choix a posteriori du nombre de clusters (élagage)
K-means	Rapide (linéaire en temps), peut traiter des jeux de donn

 ${\tt Contact: anne.badel@univ-paris-diderot.fr}$