Electric Vehicle (EE60082)

Lecture 8: Motor drive for EV (part 4)

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Traction motors for EV (recap)

Commonly used motors:

- Brushed DC motor
- Brushless DC motor (BLDC)
- Induction motor
- Permanent magnet synchronous motor (PMSM)
- Switched reluctance motor (SRM)

AC Machines

Rotating magnetic field (recap)

$$n_s = \frac{60f}{p}$$

$$\omega_{s} = \frac{2\pi n_{s}}{60}$$

Synchronous speed (recap)

Assume the wheel radius is 0.25m. The final drive ratio is 1, i.e., gearless. f=50Hz is the rated frequency.

Pole pair	Synchronous speed (rpm)	Vehicle speed (kmph)
1	3000	282
2	1500	141
3	1000	94
4	750	70
5	600	56
6	500	47

Induction motor construction (recap)

Equivalent circuit (recap)

When the load is heavy...

Voltage control (recap)

$$T = \frac{R_{2}^{'}V_{1}^{2}}{s\{R_{1}^{2} + (X_{1} + X_{2}^{'})^{2}\} + \frac{R_{2}^{'}}{s} + 2R_{1}R_{2}^{'}} \frac{1}{\omega_{s}}}$$

$$Voltage increasing$$

$$w_{s} \qquad w_{m}$$

$$s > 1$$

$$1$$

$$0$$

$$s < 0$$

$$s < 0$$

V/F control

Ignore the stator loss.

$$V_1 = j\omega_s L_m I_0$$

$$V_1 = j2\pi f_s \psi_m$$

$$V_1 = j\omega_s L_m I_0 \qquad V_1 = j2\pi f_s \psi_m \qquad \frac{V_1}{f_s} = j2\pi \psi_m$$

To avoid potential saturation, VVVF control is used.

Frequency control (recap)

$$T = \frac{R_{2}^{'}V_{1}^{2}}{s\{R_{1}^{2} + (X_{1} + X_{2}^{'})^{2}\} + \frac{R_{2}^{'2}}{s} + 2R_{1}R_{2}^{'}} \frac{1}{\omega_{s}}$$

Design for higher starting torque (recap)

$$R_1 > R_2 > R_3 > R_4$$

Induction motor- advantages and limitations (recap)

- >Advantages:
 - ➤ Simple construction
 - harsh environments with minimal maintenance
 - ➤ no permanent magnet
 - **≻**Lower cost
 - No need for rear-earth elements

- > Self-starting
 - No special arrangement needed for starting
- minimal noise and vibration
- can be designed for a wide range of power outputs

- > Drawbacks:
 - Losses in rotor
 - > Relatively lower efficiency
 - ➤ Heating in rotor
 - Complicated torque and speed control
 - complex controller required
 - > High in-rush current
 - ➤ When DOL starter used
 - ► Lower starting torque

Switched reluctance motor (SRM)

SRM structure

SRM-advantages and limitations

- >Advantages:
 - ➤ Simple rotor
 - ➤ Rugged construction
 - > minimal maintenance
 - ➤ no permanent magnet
 - **≻**Lower cost
 - ➤ No need for rear-earth elements

- ➤ No current in rotor
 - ➤ No conduction loss in rotor
- Good for high speed applications

- > Drawbacks:
 - Higher torque ripple
 - **≻**Noisy
 - Complicated control
 - complex controller required
 - Need for accurate position sensing
 - Costly sensors

Rotating magnetic field

Permanent Magnet Synchronous Machine (PMSM)

Quadrature (q)

axis

C

Direct (d) axis θ_r

Induction motor

PMSM motor

PMSM induced voltage

Surface mount and interior mount magnets

Speed control

Torque-speed characteristics

- How to start the motor?
 - Damper winding
 - Auxiliary motor
 - Using control (VFD)

PMSM-advantages and limitations

- >Advantages:
 - ➤ Higher power density
 - ➤ More flux due to permeant magnet
 - ➤ Higher efficiency
 - ➤ No conduction loss in rotor

- >Smooth torque
 - ➤ No conduction loss in rotor
- > Easier thermal management

- > Drawbacks:
 - > Higher cost
 - ➤ Costly permanent magnets
 - > Risk of demagnetization
 - when exposed to higher temperature and reverse magnetic field
 - Complex control
 - Hazardous fault condition

AC sources for AC Machines

Generation of AC voltage

AC generation with H-bridge

Three-phase voltage generation

Clarke's Transformation

$$T_{\alpha\beta/abc} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

► A bit of history

- > Edith Clarke (1883-1959)
 - The first professional woman electrical engineer in US
 - First female professor of electrical engineering
 - First woman to deliver a paper at the American Institute of Electrical Engineers (AIEE)
 - first woman named as a fellow of AIEE

Space vector

$$T_{\alpha\beta/abc} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T_{\alpha\beta/abc} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix} = \begin{bmatrix} V_m \cos(\omega t) \\ V_m \cos(\omega t - 2\pi/3) \\ V_m \cos(\omega t + 2\pi/3) \end{bmatrix}$$

$$\vec{v} = \rho \cdot e^{j\theta}$$

$$\rho = \sqrt{\frac{3}{2}} \cdot V_m , \quad \theta = \omega t \qquad \qquad \rho = \sqrt{v_\alpha^2 + v_\beta^2} \qquad \theta = \tan^{-1} \left(\frac{v_\beta}{v}\right)$$

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = T_{\alpha\beta/abc} \cdot \begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix}$$

$$\theta = \tan^{-1} \left(\frac{v_{\beta}}{v_{\alpha}} \right)$$

Switching states

Switching state	i_{dc}	v_{ab}	v_{bc}	v_{ca}
nnn	0	0	0	0
nnp	i_c	0	$-V_{dc}$	V_{dc}
npn	i_b	$-V_{dc}$	V_{dc}	0
npp	$i_b + i_c$	$-V_{dc}$	0	V_{dc}
pnn	i_a	V_{dc}	0	$-V_{dc}$
pnp	$i_a + i_c$	V_{dc}	$-V_{dc}$	0
ppn	i_a+i_b	0	V_{dc}	$-V_{dc}$
ррр	$i_a + i_b + i_c$	0	0	0

			पानः परनतु प
S_a	S_b	S_c	Switching state
0	0	0	nnn
0	0	1	nnp
0	1	0	npn
0	1	1	прр
1	0	0	pnn
1	0	1	pnp
1	1	0	ppn
1	1	1	ррр

Space vector for state pnn

Switch state: pnn

$$\vec{V}_{pnn} = \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix}_{pnn} = T_{\alpha\beta/abc} \cdot \begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix}_{pnn} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \cdot \begin{bmatrix} V_{dc} \\ 0 \\ -V_{dc} \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{3}{2}} \cdot V_{dc} \\ \sqrt{\frac{1}{2}} \cdot V_{dc} \end{bmatrix}$$

$$\vec{V}_{pnn} = \vec{V}_{I} = \rho \cdot e^{j\theta}$$

$$\rho = \sqrt{2} \cdot V_{dc}$$

$$\theta = \tan^{-1} \left(\frac{v_{\beta}}{v_{\alpha}} \right) = 30^{\circ}$$

Space vector for state ppn

Switch state: ppn

$$\vec{V}_{ppn} = \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix}_{ppn} = T_{\alpha\beta/abc} \cdot \begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix}_{ppn} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ V_{dc} \\ -V_{dc} \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{2} \cdot V_{dc} \end{bmatrix} \xrightarrow{\stackrel{i_a}{\downarrow_i}} \frac{v_a}{v_c}$$

$$\vec{V}_{ppn} = \vec{V}_2 = \rho \cdot e^{j\theta}$$

$$\rho = \sqrt{2} \cdot V_{dc}$$

$$\theta = \tan^{-l} \left(\frac{v_{\beta}}{v_{\alpha}} \right) = 90^{\circ}$$

Space vector for state ppp

Switch state: ppp

$$\vec{V}_{ppp} = \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix}_{ppp} = T_{\alpha\beta/abc} \cdot \begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \end{bmatrix}_{mn} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\vec{V}_{ppp} = \vec{V}_0 = 0$$

Switching State Vectors

77 - 7	г -		• ,
$V_0 = [ppp] =$	[nnn]	at center	point

	ρ	θ (°)
$\vec{V}_{l}[pnn]$		30
$\vec{V}_2[ppn]$	$\sqrt{2} \cdot V_{dc}$	90
$\vec{V}_3[npn]$		150
$\vec{V}_{4}[npp]$		-150
$\vec{V}_{5}[nnp]$		-90
$\vec{V}_6[pnp]$		-30
$ec{V_o}[ppp]$		0
$\vec{V_o}[nnn]$	0	0

Vector synthesis

Step 1: Choose desired switching state vectors to synthesize $ec{V}_{ref}$

Step 2: Calculate the duty ratios of chosen switching state vectors

Step 3: Make the sequence of chosen switching state vectors

Vector selection

- Minimize the number of switching
- Minimize the harmonic distortion

☞ Nearest Three Vectors (NTV)

 $\vec{V}_0 = [ppp] = [nnn]$ at center point

High frequency synthesis

$$\int_{0}^{T_{S}} \vec{V}_{ref} dt = \sum_{i} \left(\int_{0}^{T_{i}} \vec{V}_{i} dt \right), \qquad \sum_{i} T_{i} = T_{S}$$

For example
$$\int_{0}^{T_{S}} \vec{V}_{ref} dt = \int_{0}^{T_{I}} \vec{V}_{I} dt + \int_{T_{I}}^{T_{I}+T_{2}} \vec{V}_{2} dt + \int_{T_{I}+T_{2}}^{T_{S}} \vec{V}_{0} dt$$

Area of Total area of

$$\vec{V}_0 = [ppp] = [nnn]$$
 at center point

Duty ratio in sector I

From HF synthesis definition, $\int_{0}^{T_{s}} \vec{V}_{ref} dt = \int_{0}^{T_{l}} \vec{V}_{l} dt + \int_{T_{l}}^{T_{l}+T_{2}} \vec{V}_{2} dt + \int_{T_{l}+T_{2}}^{T_{s}} \vec{V}_{0} dt$

Assume \vec{V}_{ref} is constant in T_S , $\vec{V}_{ref} \cdot T_S = \vec{V}_1 \cdot T_1 + \vec{V}_2 \cdot T_2$

$$\rho \cdot \begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix} \cdot T_S = \|V_I\| \cdot \begin{bmatrix} I \\ 0 \end{bmatrix} \cdot T_I + \|V_2\| \cdot \begin{bmatrix} \cos 60^{\circ} \\ \sin 60^{\circ} \end{bmatrix} \cdot T_2$$

where $\phi = \theta - 30^{\circ}$

$$\frac{T_1}{T_S} = d_1 = \frac{2}{\sqrt{3}} \cdot \frac{\rho}{\|V_1\|} \cdot \sin(60^\circ - \phi)$$

$$\frac{T_2}{T_S} = d_2 = \frac{2}{\sqrt{3}} \cdot \frac{\rho}{\|V_2\|} \cdot \sin \phi$$

$$d_0 = 1 - d_1 - d_2$$

Duty ratio in other sectors

Other sectors have the same results of duty ratio.

$$\frac{T_N}{T_S} = d_N = \frac{2}{\sqrt{3}} \cdot \frac{\rho}{\|V_N\|} \cdot \sin(60^\circ - \phi)$$

$$\frac{T_{N+1}}{T_S} = d_{N+1} = \frac{2}{\sqrt{3}} \cdot \frac{\rho}{\|V_{N+1}\|} \cdot \sin \phi$$

$$d_0 = 1 - d_N - d_{N+1}$$

where
$$\phi = \theta - (N-1) \cdot 60^{\circ} - 30^{\circ}$$

 $N : sector\ number\ (1 \sim 6)$

$$\vec{V}_{ref(steady-state)} = \rho \cdot e^{j\theta} = \sqrt{\frac{3}{2}} \cdot V_m \cdot e^{j\omega t}$$

Modulation index

For all the switching state vectors, $||V_N|| = \sqrt{2} \cdot V_{dc}$ and $\rho = \sqrt{\frac{3}{2}} \cdot V_m$

$$d_N = \frac{V_m}{V_{dc}} \cdot \sin(60^\circ - \phi)$$

$$d_{N+1} = \frac{V_m}{V_{dc}} \cdot \sin \phi$$

$$d_0 = I - d_N - d_{N+I}$$

Define the modulation index

$$M = \frac{V_m}{V_{dc}}$$

$$d_N = M \cdot \sin(60^\circ - \phi)$$

$$d_{N+1} = M \cdot \sin \phi$$

$$d_0 = I - d_N - d_{N+1}$$

Vector sequence – 3ph, symmetric

- Use both zero switching state vectors
- Six commutations per switching cycle

Vector sequence – 2ph, symmetric

- Use a zero vector in one switching cycle $\begin{cases} \text{Sector I, III, V : [ppp]} \\ \text{Sector II, IV, VI : [nnn]} \end{cases}$
- Asymmetrical sequence
- Four commutations Reduced switching losses

Thank you!