Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: Compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Boron

Equilibrium reactions	lgK at infinite dilution and $T = 298 K$	
	Baes and Mesmer, 1976	NIST46
$B(OH)_3 + H_2O \rightleftharpoons B(OH)_4^- + H^+$	-9.236	-9.236 ± 0.002
$2 B(OH)_3 \rightleftharpoons B_2O(OH)_5^- + H^+$	-9.36	-9.306
$3 \text{ B(OH)}_3 \rightleftharpoons \text{B}_3\text{O}_3(\text{OH})_4^- + \text{H}^+ + 2 \text{ H}_2\text{O}$	-7.03	-7.306
$4 \text{ B(OH)}_3 \rightleftharpoons B_4O_5(OH)_4^{2-} + 2 \text{ H}^+ + 3 \text{ H}_2O$	-16.3	-15.032

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, pp 111.

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46

Distribution diagrams

These diagrams have been computed at two B concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

