

Metropolis-Hastings

Algorithme de Metropolis-Hastings

Soit f une densité de probabilité et q(y|x) une densité de transition (proposal) de x à y. On suppose que X_n est déjà généré. X_{n+1} est défini par:

- 1. Générer $y \sim q(.|X_n)$
- 2. Générer $\boldsymbol{u} \sim \mathcal{U}([0,1])$.
- 3. Si $u < \min(1, \frac{f(y)q(X_n|y)}{f(X_n)g(y|X_n)})$ alors $X_{n+1} = y$, sinon $X_{n+1} = X_n$.

La suite $(X_n)_n$ obtenue admet une distribution stationnaire donnée par la densité f.

Hastings généralise l'algorithme de Metropolis en prenant une distribution de transition (exploration) quelconque:

1. Utile si la distribution cible f a un domaine borné (par ex. [0, 1], on peut choisir Q = Beta)

Utile si la distribution cible f est discrète (Q uniforme sur ensemble fini)

3. On peut utiliser une densité q non normalisée (Gaussienne tronquée)

Avantages:

Identiques à ceux de l'algorithme de Metropolis

Inconvénients:

Remarque: si q est symétrique, on retrouve l'algorithme de Metropolis

L'algorithme

L'algorithme

Hastings généralise l'algorithme de Metropolis en prenant une distribution de transition (exploration) quelconque:

Algorithme de Metropolis-Hastings

Soit f une densité de probabilité et q(y|x) une densité de transition (proposal) de x à y. On suppose que X_n est déjà généré. X_{n+1} est défini par:

- 1. Générer $y \sim q(.|X_n)$
- 2. Générer $u \sim \mathcal{U}([0,1])$.
- 3. Si $u < \min(1, \frac{f(y)q(X_n|y)}{f(X_n)q(y|X_n)})$ alors $X_{n+1} = y$, sinon $X_{n+1} = X_n$.

La suite $(X_n)_n$ obtenue admet une distribution stationnaire donnée par la densité f.

Avantages:

- 1. Utile si la distribution cible f a un domaine borné (par ex. [0, 1], on peut choisir Q = Beta)
- 2. Utile si la distribution cible f est discrète (Q uniforme sur ensemble fini)
- 3. On peut utiliser une densité q non normalisée (Gaussienne tronquée)

Inconvénients: Identiques à ceux de l'algorithme de Metropolis

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Monte-Carlo: récap des séances passées

On est souvent confronté à calculer une quantité du type: $I \stackrel{\text{def}}{=} \int \varphi(x) f(x) dx$.

