Abitur 2020 Mathematik Infinitesimalrechnung II

Gegeben ist die Funktion $g: x \mapsto \ln (2-x^2)$ mit maximalem Definitionsbereich D_g .

Teilaufgabe Teil A 1a (3 BE)

Skizzieren Sie die Parabel mit der Gleichung $y=2-x^2$ in einem Koordinatensystem und geben Sie D_g an.

Teilaufgabe Teil A 1b (2 BE)

Ermitteln Sie den Term der Ableitungsfunktion g' von g.

Die Abbildung 1 zeigt einen Teil des Graphen G_h einer in $\mathbb{R} \setminus \{2\}$ definierten gebrochenrationalen Funktion h.

Die Funktion h hat bei x=2 eine Polstelle ohne Vorzeichenwechsel; zudem besitzt G_h die Gerade mit der Gleichung y=x-7 als schräge Asymptote.

Teilaufgabe Teil A 2a (3 BE)

Zeichnen Sie in die Abbildung 1 die Asymptoten von G_h ein und skizzieren Sie im Bereich x < 2 einen möglichen Verlauf von G_h .

Teilaufgabe Teil A 2b (2 BE)

Berechnen Sie unter Berücksichtigung des asymptotischen Verhaltens von G_h einen Näherungswert für $\int_{10}^{20} h(x) dx$.

Gegeben ist die in \mathbb{R} definierte Funktion $k: x \mapsto \frac{-x^2 + 2x}{2x^2 + 4}$. Ihr Graph wird mit G_k bezeichnet.

Teilaufgabe Teil A 3a (3 BE)

Geben Sie die Nullstellen von k an und begründen Sie anhand des Funktionsterms, dass G_k die Gerade mit der Gleichung y = -0, 5 als waagrechte Asymptote besitzt.

Teilaufgabe Teil A 3b (2 BE)

Berechnen Sie die x-Koordinate des Schnittpunkts von G_k mit der waagrechten Asymptote.

Teilaufgabe Teil A 4 (5 BE)

Die Abbildung 2 zeigt den Graphen G_f einer in $[0,8;+\infty[$ definierten Funktion f.

Betrachtet wird zudem die in $[0,8;+\infty[$ definierte Integralfunktion $J:x\mapsto\int\limits_2^x f(t)$ dt.

Begründen Sie mithilfe von Abbildung 2, dass $J(1) \approx -1$ gilt, und geben Sie einen Näherungswert für den Funktionswert J(4,5) an. Skizzieren Sie den Graphen von J in der Abbildung 2.

Gegeben ist die Funktion $f: x \mapsto 1 + 7e^{-0.2x}$ mit Definitionsbereich \mathbb{R}_0^+ ; die Abbildung 1 (Teil B) zeigt ihren Graphen G_f .

Teilaufgabe Teil B 1a (3 BE)

Begründen Sie, dass die Gerade mit der Gleichung y = 1 waagrechte Asymptote von G_f ist. Zeigen Sie rechnerisch, dass f streng monoton abnehmend ist.

Für jeden Wert s > 0 legen die Punkte (0|1), (s|1), (s|f(s)) und (0|f(s)) ein Rechteck mit dem Flächeninhalt R(s) fest.

Teilaufgabe Teil B 1b (7 BE)

Zeichnen Sie dieses Rechteck für s=5 in die Abbildung 1 (Teil B) ein. Zeigen Sie, dass R(s) für einen bestimmten Wert von s maximal ist, und geben Sie diesen Wert von s an.

(zur Kontrolle: $R(s) = 7s \cdot e^{-0.2s}$)

Teilaufgabe Teil B 1c (7 BE)

Berechnen Sie den Inhalt des Flächenstücks, das von G_f , der y-Achse sowie den Geraden mit den Gleichungen y = 1 und x = 5 begrenzt wird.

Einen Teil dieses Flächenstücks nimmt das zu s=5 gehörige Rechteck ein. Bestimmen Sie den prozentualen Anteil des Flächeninhalts dieses Rechtecks am Inhalt des Flächenstücks.

Die in \mathbb{R}^+_0 definierte Funktion $A: x \mapsto \frac{8}{f(x)}$ beschreibt modellhaft die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Südufer eines Sees. Dabei ist x die seit Beobachtungsbeginn vergangene Zeit in Tagen und A(x) der Flächeninhalt in Quadratmetern.

Teilaufgabe Teil B 2a (5 BE)

Bestimmen Sie A(0) sowie $\lim_{x\to +\infty} A(x)$ und geben Sie jeweils die Bedeutung des Ergebnisses im Sachzusammenhang an. Begründen Sie mithilfe des Monotonieverhaltens der Funktion f, dass der Flächeninhalt des Algenteppichs im Laufe der Zeit ständig zunimmt.

Teilaufgabe Teil B 2b (4 BE)

Bestimmen Sie denjenigen Wert x_0 , für den $A(x_0) = 4$ gilt, und interpretieren Sie Ihr Ergebnis im Sachzusammenhang.

```
(zur Kontrolle: x_0 \approx 9, 7)
```

Teilaufgabe Teil B 2c (4 BE)

Bestimmen Sie die momentane Änderungsrate des Flächeninhalts des Algenteppichs zu Beobachtungsbeginn.

Teilaufgabe Teil B 2d (2 BE)

Nur zu dem Zeitpunkt, der im Modell durch x_0 (vgl. Aufgabe 2b) beschrieben wird, nimmt die momentane Änderungsrate des Flächeninhalts des Algenteppichs ihren größten Wert an. Geben Sie eine besondere Eigenschaft des Graphen von A im Punkt $(x_0|A\ (x_0))$ an, die sich daraus folgern lässt, und begründen Sie Ihre Angabe.

Teilaufgabe Teil B 2e (3 BE)

Skizzieren Sie den Graphen der Funktion A unter Verwendung der bisherigen Ergebnisse in der Abbildung 2 (Teil B).

Teilaufgabe Teil B 2f (5 BE)

Um die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Nordufer des Sees zu beschreiben, wird im Term A(x) die im Exponenten zur Basis e enthaltene Zahl -0, 2 durch eine kleinere Zahl ersetzt.

Vergleichen Sie den Algenteppich am Nordufer mit dem am Südufer

- hinsichtlich der durch A(0) und $\lim_{x\to +\infty} A(x)$ beschriebenen Eigenschaften (vgl. Aufgabe 2a).
- hinsichtlich der momentanen Änderungsrate des Flächeninhalts zu Beobachtungsbeginn (vgl. Aufgabe 2c).

Skizzieren Sie – ausgehend von diesem Vergleich – in der Abbildung 2 (Teil B) den Graphen einer Funktion, die eine mögliche zeitliche Entwicklung des Flächeninhalts des Algenteppichs am Nordufer beschreibt.