APPUNTI DI ANALISI I

di Arlind Pecmarkaj

Università degli studi di Urbino Anno accademico 2020/2021

Numeri Reali e la retta reale

I numeri reali sono i numeri che possono espressi come decimali, incluso i numeri irrazionali. L'insieme $\mathbb R$ è totalmente ordinato e dunque ogni suo elemento è direttamente confrontabile con un altro.

I numeri reali possono essere rappresentati geometricamente come punti di una retta che chiameremo retta reale.

Nella retta reale si fissano la direzione (seguendola i numeri sono maggiori di quelli precedenti), l'origine ovvero il punto dello 0 e un unità di misura.

Es.

Modulo o valore assoluto di un numero reale

Sia $a \in \mathbb{R}$ il suo modulo o valore assoluto è:

$$|a| = \begin{cases} a \text{ se } a > 0 \\ 0 \text{ se } a = 0 \\ -a \text{ se } a < 0 \end{cases}$$

Esempi:

- |2| = 2
- |0| = 0
- |-3| = 3

Il modulo rappresenta la distanza dall'origine (o la lunghezza del segmento nella retta).

Proprietà:

- a) $|a| \ge 0$ per ogni $a \in \mathbb{R}$
- b) Per ogni $a \ge 0 \mid x \mid \le a \Leftrightarrow -a \le x \le a$
- c) Per ogni x, $y \in \mathbb{R} | x + y | \le | x | + | y |$ (diseguaglianza triangolare)
- d) Per ogni $x, y \in \mathbb{R} \mid |x| |y| \mid \le |x y|$ (conseguenza del punto c)

Sottoinsiemi e intervalli di R

Sia $E \subseteq \mathbb{R}$

Si dice che E è ¹superiormente/²inferiormente limitato se:

- 1) Esiste $M \in \mathbb{R}$ tale che $x \le M$ per ogni $x \in E$
- 2) Esiste $m \in \mathbb{R}$ tale che $m \le x$ per ogni $x \in E$

Se in E valgono entrambi i punti 1 e 2 si dice che esso è limitato.

E è chiamato intervallo se per alcuni a, $b \in \mathbb{R}$ con a < b, coincide con uno di questi insiemi:

$$[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

$$(a, b) = \{x \in \mathbb{R} \mid a < x \le b\}.$$

a e b sono gli estremi dell'intervallo.

Per ogni a $\in \mathbb{R}$ possiamo definire gli intervalli illimitati inferiormente

$$(-\infty, a] = \{x : x \in X \land x \le a\}$$
$$(-\infty, a) = \{x : x \in X \land x < a\}$$

e illimitati superiormente

$$[a,\infty) = \{x : x \in X \land x \ge a\}$$

$$(a,\infty) = \{x : x \in X \land x > a\}.$$

Ne consegue che

$$\mathbb{R} = (-\infty, +\infty)$$

Massimi e minimi di un insieme, maggioranti e minoranti, estremi inferiori e superiori Sia $E \subseteq \mathbb{R}$

 $a \in \mathbb{R} \ e^{1}$ massimo/2minimo per E se

- 1) $a \in E, x \le a \text{ per ogni } x \in E$
- 2) $a \in E$, $a \le x$ per ogni $x \in E$

 ${}^{1}M/{}^{2}m \in \mathbb{R}$ è detto ${}^{1}maggiorante/{}^{2}minorante$ per E se

- 1) $x \le M$ per ogni $x \in E$
- 2) $m \le x \text{ per ogni } x \in E$

Si definisce estremo ¹superiore/²inferiore il più ¹piccolo/²grande dei ¹maggioranti/²minoranti di E e si indica con ¹sup E/²inf E.

Nota:

- a) inf $E \leq \sup E$
- b) Se E è illimitato ¹superiormente/²inferiormente si ha che ¹sup E = ∞ /²inf E = $-\infty$

Assioma di Dedekind

Per ogni sottoinsieme non vuoto di $\mathbb R$ che è superiormente limitato esiste un estremo superiore in $\mathbb R$.

Si dimostra che l'insieme dei numeri razionali $\mathbb Q$ non soddisfa l'assioma Prendiamo $E\subseteq \mathbb Q$ tale che

$$E = \{ x \in \mathbb{Q} \mid 0 \le x \le \sqrt{2} \}$$

Si nota che il minimo e l'estremo inferiore sono 0 e che E non ammette massimo. L'estremo superiore è $\sqrt{2}$ che però non appartiene a \mathbb{Q} !

Sommatorie

Per scrivere somme composte da un numero relativamente alto di termini si usa per convenzione la lettera greca Σ (sigma). Ciò permette di accorciare espressioni.

$$\sum_{i=1}^{n} a_i$$

La scrittura va a sostituire $a_1 + a_2 + ... + a_n$.

In questo caso i è l'indice della sommatoria, a_i è il termine generale della sommatoria e 1 - n è la gamma di valori degli indici (1, 2, ..., n con n naturale). Esempi:

$$\sum_{n=1}^{5} n = 1 + 2 + 3 + 4 + 5$$

$$\sum_{n=1}^{10} n^2 = 1 + 4 + 9 + \dots + 100$$

Grazie alla formula di Gauss sappiamo che:

$$\sum_{i=1}^{n} k = \frac{n(n+1)}{2}$$

Progressioni geometriche

a₁, ..., a_n sono in progressione geometrica se

$$\frac{a_{i+1}}{a_i} = q \in \mathbb{R}, per \ ogni \ i = 1, ..., i-1$$

Allora

$$a_{i+1} = q \cdot a_i$$

 $i = 1$ $a_2 = q \cdot a_1$
 $i = 2$ $a_3 = q \cdot q$ $a_1 = q^2 \cdot a_1$
...
 $i = n - 1$ $a_n = q \cdot a_{n-1} = q^{n-1} \cdot a_1$

Dunque una progressione geometrica è del tipo:

a,
$$q \cdot a$$
, $q^2 \cdot a$, ..., $q^n \cdot a$

che può essere scritto anche come sommatoria

$$\sum_{i=0}^{n} a \cdot q^{i} = \begin{cases} a (n+1) \text{ se } q = 1\\ a \frac{1-q^{n+1}}{1-q} \text{ se } q \neq 1 \end{cases}$$

Coefficiente binomiale

Siano n, k \in N con k \leq n, si definisce coefficiente binomiale e si indica con $\binom{n}{k}$ il valore:

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

dove

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1$$

Si pone 0! = 1 e si ha che $n! = n \cdot (n - 1)!$

Si può dimostrare che

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Dimostrazione:

1. Si ha:

$$\binom{n+1}{k} = \frac{(n+1)!}{k! \left((n+1) - k \right)!}$$

2. Inoltre risulta:

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}$$

3. Sappiamo che:

$$(n-k+1)! = (n-k+1)(n-k)!$$

 $k! = k(k-1)!$

4. Dall'equazione del punto 2 effettuiamo le opportune sostituzioni e calcoliamo:

5. Dal risultato del punto 4 sappiamo che al numeratore $n! \cdot (n+1)$ equivale a (n+1)! e che al denominatore $(k-1)! \cdot k$ equivale a k! e infine $(n-k)! \cdot (n-k+1)$ equivale a (n-k+1)!; Possiamo riscrivere l'equazione e otteniamo:

... =
$$\frac{(n+1)!}{k!(n-k+1)!}$$

Abbiamo dimostrato che il predicato è vero.

Dimostrazioni per induzione

La dimostrazione per induzione è un modo per dimostrare predicati che si basa sul principio di induzione di Peano.

Se abbiamo un predicato P, dati $n_0 \in \mathbb{N}$ e per ogni $n \in \mathbb{N}$ $n_0 \le n$, se $P(n_0)$ è vera e per ogni $n \in \mathbb{N}$ $P(n) \Rightarrow P(n+1)$ allora il predicato è vero.

La dimostrazione avviene in due passaggi:

1) BASE DELL'INDUZIONE

Si prova P(n₀);

2) IPOTESI INDUTTIVA

Se $P(n_0)$ vale e si dimostra che $P(n) \Rightarrow P(n+1)$ vale allora P vale

Esempio:

$$P = 2^n \ge 2n$$
 per ogni $n \in \mathbb{N}$

BASE DELL'INDUZIONE

 $n_0 = 1$

 $2^1 = 2 \cdot 1$ vero e dunque $P(n_0)$ vale.

IPOTESI INDUTTIVA

Supponiamo che P(n) valga e dimostriamo che vale P(n + 1)

$$2^{n+1} \ge 2(n+1)$$

Consideriamo

$$2^{n+1} = 2 \cdot 2^n = 2^n + 2^n$$

Dunque da P(n) possiamo scrivere

$$2^n + 2^n \ge 2n + 2^n$$

E dunque

$$2^{n+1} \ge 2n + 2^n$$

Ma poiché per ogni $n \in \mathbb{N}^+$ $2^n \ge 2$, possiamo scrivere

$$2^{n+1} > 2n + 2$$

Dunque P vale.

Studio di funzioni

Sia $D \subseteq \mathbb{R}$, si definisce una funzione f *reale* (da \mathbb{R}) di *variabile reale* una corrispondenza tra gli insiemi $D \in \mathbb{R}$ tale che ad ogni elemento (es. x) dell'insieme D fa corrispondere uno ed un solo elemento di \mathbb{R} , cioè tale che per ogni $x \in D \exists ! y \in \mathbb{R} : y = f(x)$ e si indica con:

$$f: D \longrightarrow \mathbb{R}, x \mapsto y = f(x)$$

Dove:

- Dè il dominio della funzione.
- \mathbb{R} è l'insieme di arrivo.
- x è la variabile indipendente.
- y è la variabile dipendente.

 $f(D) = \{y \in \mathbb{R} \mid \exists \ x \in D : f(x) = y\} = \{f(x) \mid x \in D\}$ rappresenta l'immagine di D mediante f o anche *codominio* di f.

Si definisce grafico di f l'insieme $G_f \subseteq \mathbb{R}^2$ tale che

$$G_f = \{ (x, f(x)) \mid x \in D \}$$

Funzioni elementari e i loro grafici

1) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto f(x) = x$ $G_f = \{(x, x) \mid x \in \mathbb{R}\}$

2) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto f(x) = x^2$

Ciò che otteniamo è una parabola che sta sul primo e secondo quadrante poiché il quadrato di ogni numero è sempre positivo

3) $f(x) = \sqrt{x}$ $D = [0, +\infty)$ $G_f = \{(x, \sqrt{x}) \mid x \in D\}$

Il grafico è soltanto nel primo quadrante poiché la radice quadrata di qualsiasi numero maggiore di 0 è sempre positiva.

4) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \sqrt[3]{x}$ $G_f = \{(x, \sqrt[3]{x}) \mid x \in \mathbb{R}\}$

In questo caso il grafico è sia nel primo e nel terzo quadrante poiché la radice cubica di un numero negativo lo è a sua volta. Da ricordare che funzioni del tipo $f(x) = \sqrt[n]{x}$ quando n è pari hanno $D = [0, +\infty)$, mentre quando è dispari $D = \mathbb{R}$.

6) $f(x) = x^3$ $D = \mathbb{R}$ $G_f = \{(x, x^3) \mid x \in \mathbb{R}\}$

Il grafico è una cubica.

7) $f(x) = a^{x}$ $con \ a > 0, a \neq 1, a \in \mathbb{R}$ $D = \mathbb{R}$ $G_{f} = \{(x, a^{x}) \mid x \in \mathbb{R}\}$

La linea rossa rappresenta il grafico della funzione con a > 1, la linea blu il grafico quando 0 < a < 1.

Il grafico è una esponenziale e passa per il punto (0,1) poiché preso qualsiasi a, a^0 è sempre 1. L'andamento del grafico quando a è maggiore di 1 è simmetrico a quello di quando a è minore di 1 e maggiore di 0.

7)

$$y = \log_a x$$

$$con \ a > 0, a \neq 1, a \in \mathbb{R}$$

$$D = (0, +\infty)$$

$$G_f = \{(x, \log_a x) \mid x \in D\}$$

La linea blu indica il grafico della funzione con a > 1, la linea nera con 0 < a < 1. Nel caso di a > 0 il grafico scende sotto 0 poiché per ottenere un 0 < x < 1 alla base dovremmo dare un esponente negativo. Viceversa quando 0 < a < 1

Note

Data una funzione y = f(x), una funzione del tipo $y = f(x) + k, k \in \mathbb{R}$ avrà lo stesso grafico, ma traslato nell'asse delle ordinate di k unità, una funzione del tipo y = f(x + k) $k \in \mathbb{R}$ avrà lo stesso grafico, ma traslato di -k unità nell'asse delle ascisse.

- Date due funzioni $y = x^n e y = x^m con n < m$, a $0 < x < 1 y = x^n$ si troverà sopra $y = x^m$. Il contrario accade con x > 1.
- Date due funzioni $y = \sqrt[n]{x} e y = \sqrt[m]{x} con n < m$, a 0 < x < 1 $y = \sqrt[m]{x}$ si troverà sopra $y = \sqrt[n]{x}$. Il contrario accade con x > 1.
- Date due funzioni $y = a^x e y = b^x con a < b$, a x < 0 $y = a^x$ si troverà sopra $y = b^x$. Il contrario accade con x > 1.
- Date due funzioni $y = \log_a x \ e \ y = \log_b x \ con \ a < b$, $a \ e \ b > 1$, a 0 < x < 1 $y = \log_b x$ si troverà sopra $y = \log_a x$. Il contrario accade con x > 1. Stessa cosa quando a e b sono maggiori di 0 e minori di 1

Operazioni tra funzioni

Siano f e g due funzioni:

$$f: D_1 \to \mathbb{R}, D_1 \subseteq \mathbb{R}$$

 $g: D_2 \to \mathbb{R}, D_2 \subseteq \mathbb{R}$

Le operazioni tra le due funzioni sono definite come segue:

- $f \pm g : D_1 \cap D_2 \to \mathbb{R}, x \mapsto (f \pm g)(x) = f(x) \pm g(x)$
- $f \cdot g : D_1 \cap D_2 \to \mathbb{R}, x \mapsto (f \cdot g)(x) = f(x) \cdot g(x)$
- $\frac{f}{g} \colon \mathcal{D} \to \mathbb{R}, x \mapsto \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \text{ dove } \mathcal{D} = \{x \in D_1 \cap D_2 \mid g(x) \neq 0\}$
- $g \circ f : D_1 \to \mathbb{R}, x \mapsto g(f(x)) \Leftrightarrow f(D_1) \subseteq D_2$

Caratteristiche di una funzione

Sia f una funzione:

$$f: D \to \mathbb{R}, D \subseteq \mathbb{R}$$

Monotonia.

Si dice che f è monotona ¹ *crescente*/² *decrescente* se:

- 1. $\forall x_1, x_2 \in D \ con \ x_1 < x_2 \implies f(x_1) \le f(x_2)$
- 2. $\forall x_1, x_2 \in D \ con \ x_1 < x_2 \implies f(x_1) \ge f(x_2)$

Si dice che f è monotona strettamente ¹*crescente*/²*decrescente* se:

- 1. $\forall x_1, x_2 \in D \ con \ x_1 < x_2 \implies f(x_1) < f(x_2)$
- 2. $\forall x_1, x_2 \in D \ con \ x_1 < x_2 \implies f(x_1) > f(x_2)$

Limitatezza.

Si dice che f è limitata ¹ superiormente/² inferiormente se:

- 1. $\exists M \in \mathbb{R} : f(x) \leq M \text{ per ogni } x \in D$
- 2. $\exists M \in \mathbb{R} : f(x) \geq M \text{ per ogni } x \in D$

Se f soddisfa entrambi i punti si dice che è limitata.

Esempio.

y = cos(x) e y = sen(x) sono limitate. In entrambe le funzioni M è 1 mentre m è -1.

Periodicità.

Si dice che f è periodica di periodo T se esiste T > 0 tale che

$$f(x+T) = f(x)$$

Esempio.

y = sen(x) è periodica di periodo 2π .

Invertibilità.

Si dice che f è invertibile se e solo se f è biettiva(o biunivoca) ossia:

per ogni
$$y \in R \exists ! x \in D : f(x) = y \iff x = f^{-1}(y)$$

 f^{-1} è la funzione inversa di f tale che:

$$f^{-1}: f(D) \to D, y \mapsto f^{-1}(y)$$

Si ha che:

- $f^{-1}(f(x)) = x \text{ per ogni } x \in D$
- $f(f^{-1}(y)) = y \text{ per ogni } y \in \mathbb{R}$
- $f^{-1} \circ f = id_D$

Appunti di Analisi I di Arlind Pecmarkaj

$$- \quad f \circ f^{-1} = id_{\mathbb{R}}$$

Esempio.

$$f(x) = x^3$$
 è invertibile poiché è biettiva, infatti $f^{-1}(x) = \sqrt[3]{x}$

Teorema. Se f è strettamente monotona in $D\Rightarrow f$ è invertibile in D allora f^{-1} è strettamente monotona.

Data una f invertibile, f^{-1} è simmetrica a f rispetto alla bisettrice del I e del III quadrante poiché:

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$
$$(x, y) \in Gr_f \Leftrightarrow (y, x) \in Gr_f^{-1}$$

Limiti di una funzione

Punti di accumulazione e intorni

Sia $E \subseteq \mathbb{R}$

Intorni.

Sia $x_o \in \mathbb{R}$, si definisce intorno di x_o un qualunque intervallo aperto in cui x_o è al suo interno. Invece si definisce intorno sferico di x_o con raggio r > 0 l'intervallo $I_{x_o} = (x_o - r, x_o + r)$.

Punti di accumulazione.

Si dice che x_o è un punto di accumulazione per l'insieme E se in ogni intorno di x_o cadono punti distinti da x_o cioè se

$$per \ ogni \ I_{x_o}, E \cap (I_{x_o} \setminus \{x_o\}) \neq \emptyset$$

L'insieme dei punti di accumulazione di E si chiama derivato di E e si indica con $\mathfrak{D}(E)$

Teorema. Se x_o è un punto di accumulazione per E, in ogni suo intorno cadono infiniti punti di E. Ne deriva dunque che se E ha cardinalità finita, $\mathfrak{D}(E)$ è vuoto.

Limiti

Sia f una funzione

$$f \colon\! D \to \mathbb{R}, D \subseteq \mathbb{R}, \, x_o \in \mathfrak{D}(D)$$

Si dice che

$$\lim_{x \to x_0} f(x) = L \in \mathbb{R}$$

Se possiamo rendere |f(x) - L| piccolo quanto vogliamo pur di scegliere $|x - x_0|$ sufficientemente piccolo, cioè se e solo se per definizione:

$$per\ ogni\ \varepsilon > 0, \exists\ \delta = \ \delta(\varepsilon) > 0\ tale\ che\ per\ ogni\ x \in D\ 0 < |x - x_o| < \delta \implies |f(x) - L| < \varepsilon$$

per ogni
$$I_L \exists I_{x_0}$$
 tale che per ogni $x \in D \cap (I_{x_0} \setminus \{x_0\}) \Longrightarrow f(x) \in I_L$

Ciò si può visualizzare con il grafico qui sopra. $\lim_{x\to x_0} f(x) = L$ vuol dire che preso un numero qualsiasi ε maggiore di 0 che definisce un intorno di L e presa un qualsiasi δ che dipende da ε

che crea un intorno di x_0 con intervallo $(x_0 - \delta, x_0 + \delta)$ maggiore di 0, per ogni x nel dominio in cui $|x - x_0|$ è maggiore di 0 (ovvero i punti vicini a x_0 nel suo intorno) e minore di δ (i punti lontani da x_0) si ha che |f(x) - L| è minore di ε ovvero f(x) appartiene all'intorno di L.

Teorema.

Supponiamo che:

$$\lim_{x \to x_0} f(x) = L$$
$$\lim_{x \to x_0} g(x) = M$$

Con L, $M \in \mathbb{R}$

Allora:

1)
$$\lim_{x \to x_0} [f(x) \pm g(x)] = L \pm M$$
2)
$$\lim_{x \to x_0} [f(x) \cdot g(x)] = L \cdot M$$

$$2) \lim_{x \to x_0} [f(x) \cdot g(x)] = L \cdot M$$

3)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L}{M}$$
 se e solo se $M \neq 0$

Teorema di unicità del limite

Se esiste $\lim_{x\to x_0} f(x) = L$, allora tale limite è unico. Ciò si può dimostrare per assurdo.

Supponiamo che
$$\lim_{x \to x_0} f(x) = L_1 e \lim_{x \to x_0} f(x) = L_2$$

Dalla definizione abbiamo che:

per ogni $\varepsilon > 0$, $\exists \delta_1 = \delta_1(\varepsilon) > 0$ tale che per ogni $x \in D$ $0 < |x - x_0| < \delta_1 \implies |f(x) - L_1| < \varepsilon$ $per\ ogni\ \varepsilon > 0, \exists\ \delta_2 = \ \delta_2(\varepsilon) > 0\ tale\ che\ per\ ogni\ x \in D\ 0 < |x-x_o| < \delta_2 \implies |f(x)-L_2| < \varepsilon$ Sia $\delta = \min \{\delta_1, \delta_2\}$ abbiamo che per ogni $x \in D$, dove $0 < |x - x_o| < \delta$, $|f(x) - L_1| < \varepsilon$ e $|f(x) - L_2| < \varepsilon$

Allora

$$0 < |L_1 - L_2| = |L_1 - f(x) + f(x) - L_2|$$

$$\leq |L_1 - f(x)| + |f(x) - L_2| < \varepsilon + \varepsilon$$

Perciò

$$0<|L_1-L_2|<2\varepsilon$$

Però visto che $\varepsilon > 0$, L₁ = L₂. Assurdo!

Teorema della permanenza del segno.

Supponiamo che:

$$\lim_{x \to x_0} f(x) = L$$

Allora si ha per ogni $\varepsilon > 0$

a) Se
$$L > 0$$
, $\exists \delta = \delta(\varepsilon) > 0$ tale che per ogni $x \in D$ $0 < |x - x_0| < \delta \implies f(x) > \frac{L}{2}$

b) Se
$$L < 0, \exists \delta = \delta(\varepsilon) > 0$$
 tale che per ogni $x \in D$ $0 < |x - x_o| < \delta \implies f(x) < \frac{L}{2}$

Da a) segue che f è positiva in un intorno di x_0 , da b) segue che f è negativa in intorno di x_0 . Se L = 0, non possiamo dire nulla sul segno. Infatti basta considerare funzioni come $y = x^3$.

Teorema. Siano f e g due funzioni reali a variabile reale con x_0 punto di accumulazione per il dominio D delle due funzioni.

Se
$$\exists I_{x_0}$$
 tale che per ogni $x \in D \cap (I_{x_0} \setminus \{x_o\} \ f(x) \le g(x)$
e se $\lim_{x \to x_0} f(x) = L \ e \lim_{x \to x_0} g(x) = M$, allora $L \le M$.

Corollario. Se $\exists I_{x_0}$ tale che per ogni $x \in D \cap (I_{x_0} \setminus \{x_0\})$ $f(x) \leq 0$ se $\lim_{x \to x_0} f(x) = L$ allora

Ovvero f è definitivamente negativa per $x \to x_0$.

Teorema dei due carabinieri. Siano f, g, h tre funzioni reali a variabile reale con x_0 punto di accumulazione per il dominio D delle tre funzioni.

Supponiamo che

$$\exists I_{x_0} \text{ tale che per ogni } x \in D \cap (I_{x_0} \setminus \{x_0\}) \Longrightarrow f(x) \leq g(x) \leq h(x)$$

E che

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$$

Allora

$$\lim_{x \to x_0} g(x) = L$$

Proposizione.

$$\lim_{x \to x_0} f(x) = 0 \Leftrightarrow \lim_{x \to x_0} |f(x)| = 0$$

Corollario del teorema dei carabinieri. Siano f e g due funzioni reali a variabile reale con xo punto di accumulazione nel loro dominio D. Se:

- a) gèlimitata in D
- b) $\lim_{x \to a} f(x) = 0$ ovvero f è infinitesima per $x \to x_0$

Allora

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = 0$$

Limiti notevoli

Grazie al teorema dei carabinieri esistono particolari funzioni la cui risoluzione è immediata. Essi sono:

i)
$$\lim_{x \to x_0} \frac{\sin(f(x))}{f(x)} = 1$$

ii)
$$\lim_{x \to x_0} \frac{1 - \cos f(x)}{[f(x)]^2} = \frac{1}{2}$$

iii)
$$\lim_{x \to x_0} \frac{e^{f(x)} - 1}{f(x)} = 1$$

iii)
$$\lim_{x \to x_0} \frac{e^{f(x)}}{f(x)} = 1$$
iv)
$$\lim_{x \to x_0} \frac{\log(1 + f(x))}{f(x)} = 1$$

Questi valgono se e solo se $\lim_{x \to r_n} f(x) = 0$.

Limiti infiniti

Un altro limite notevole è

$$-\lim_{x \to x_0} \left(1 + \frac{1}{f(x)} \right)^{f(x)} = e$$

Se e solo se $\lim_{x\to x_0} f(x) = \pm \infty$ che è un limite infinito ovvero che la funzione a un certo valore di x_0 assume valori nell'intorno di più infinito o meno infinito. Segue la definizione formale: Sia

$$f: D \to \mathbb{R}, D \subseteq \mathbb{R}, x_o \in \mathfrak{D}(D)$$

Si dice che

$$\lim_{x \to x_0} f(x) = +\infty$$

Se

per ogni
$$M > 0 \exists \delta = \delta(M)$$
 tale che per ogni $x \in D$ per cui $0 < |x - x_0| < \delta$
 $\implies f(x) > M$

Si dice che

$$\lim_{x \to x_0} f(x) = -\infty$$

Se

per ogni
$$M > 0 \exists \delta = \delta(M)$$
 tale che per ogni $x \in D$ per cui $0 < |x - x_0| < \delta$
 $\implies f(x) < -M$

Se

$$\lim_{x \to x_o} f(x) = \pm \infty$$

Si dice che f è un infinito per $x \rightarrow x_0$ e che f ha un asintoto verticale di equazione $x = x_0$.

Algebra dei limiti

$\lim_{x\to x_0} f(x)$	$\lim_{x\to x_0} g(x)$	$\lim_{x\to x_0}[f(x)+g(x)]$
L	M	L + M
L	±∞	±∞
±∞	±∞	±∞
+∞	-8	Forma indeterminata
		$\lim_{x\to x_0}[f(x)\cdot g(x)]$
L > 0	±∞	±∞
L < 0	±∞	∓∞
+∞	+∞	+∞
-∞	-∞	+∞
+∞	-8	-∞
0	8	Forma indeterminata
		$\lim_{x\to x_0} \left[\frac{f(x)}{g(x)} \right]$
L	M ≠ 0	$\frac{L}{M}$
L	±∞	0
±∞	M > 0	<u>+</u> ∞
±∞	M < 0	∓∞
L > 0	0	$\begin{cases} +\infty \text{ se } g(x) > 0 * \\ -\infty \text{ se } g(x) < 0 * \\ \nexists \text{ altrimenti} \end{cases}$
L < 0	0	$\begin{cases} -\infty \text{ se } g(x) > 0 * \\ +\infty \text{ se } g(x) < 0 * \\ \nexists \text{ altrimenti} \end{cases}$
+∞	0	$\begin{cases} +\infty se \ g(x) > 0 * \\ -\infty se \ g(x) < 0 * \end{cases}$ $(-\infty se \ g(x) > 0 *$
-∞	0	$\begin{cases} -\infty \text{ se } g(x) > 0 * \\ +\infty \text{ se } g(x) < 0 * \end{cases}$
0	0	Forma indeterminata
∞	∞	Forma indeterminata

* $in I_{x_0} \setminus \{x_0\}$ Nelle potenze ritroviamo altre forme indeterminate quali $0^0, 1^\infty, \infty^0$.

Limiti all'infinito

Sia f una funzione definita come $f: D \to R$ con $D \subseteq R$

Se D è illimitato superiormente si dice che

$$\lim_{x \to +\infty} f(x) = L$$

se

per ogni
$$\varepsilon > 0 \exists k = k(\varepsilon) > 0 \mid per ogni \ x \in D \ per cui \ x > k$$

$$\Rightarrow |f(x) - L| < \varepsilon$$

Si dice che

$$\lim_{x \to +\infty} f(x) = +\infty (-\infty)$$

se

per ogni
$$M > 0 \exists k = k(M) \mid per ogni x \in D per cui x > k$$

$$\Rightarrow f(x) > M (f(x) < -M)$$

Se D è illimitato inferiormente si dice che

$$\lim_{x \to -\infty} f(x) = L$$

se

per ogni
$$\varepsilon > 0 \exists k = k(\varepsilon) > 0 \mid per ogni x \in D per cui x < -k$$

$$\Rightarrow |f(x) - L| < \varepsilon$$

Si dice che

$$\lim_{x \to -\infty} f(x) = +\infty (-\infty)$$

se

per ogni
$$M > 0 \exists k = k(M) \mid per ogni x \in D per cui x < -k$$

 $\Rightarrow f(x) > M (f(x) < -M)$

Asintoti

Sia f una funzione definita come $f: D \to R$ con $D \subseteq R$, $x_0 \in \mathfrak{D}(D)$.

Se $\lim_{x\to x_0} f(x) = \pm \infty$ allora si dice che la retta di equazione $x=x_0$ è un asintoto verticale.

Se D è illimitato e se $\lim_{x\to\pm\infty}f(x)=L$ allora si dice che la retta di equazione y=L è un asintoto orizzontale per f per $x\longrightarrow x_0$

Se $\lim_{x\to+\infty(-\infty)} f(x) = +\infty(-\infty)$ si dice che f ha un asintoto obliquo per $x\to+\infty(-\infty)$ di equazione y=mx+q se:

$$\lim_{x \to +\infty(-\infty)} [f(x) - (mx + q)] = 0 \text{ dove } m, q \in \mathbb{R}$$

Proposizione. f ammette asintoto obliquo per $x \to +\infty(-\infty) \Leftrightarrow$

a)
$$\exists in \mathbb{R} \lim_{x \to +\infty(-\infty)} \frac{f(x)}{x} = m \neq 0$$

b)
$$\exists in \mathbb{R} \lim_{x \to +\infty(-\infty)} (f(x) - mx) = q$$

In tal caso l'equazione dell'asintoto obliquo è dato da y = mx + q.

Limite del rapporto tra due polinomi per $x \rightarrow \pm \infty$

Siano P(x) e Q(x) due polinomi del tipo:

$$P(x) = a_n x^n + \dots + a_1 n + a_0 \cos a_n \neq 0$$

 $Q(x) = b_m x^m + \dots + b_1 x + b_0 \cos b_m \neq 0$

Allora

$$\lim_{x \to +\infty(-\infty)} \frac{P(x)}{Q(x)} = \begin{cases} \frac{\pm \infty}{a_n} & \text{se } n > m \\ \frac{a_n}{b_m} & \text{se } n = m \\ 0 & \text{se } n < m \end{cases}$$

Ordine degli infiniti

Siano
$$f,g:D\to\mathbb{R},D\subseteq\mathbb{R},x_0\in\mathfrak{D}(D)$$
 tali che $\lim_{x\to x_0}f(x)=\infty=\lim_{x\to x_0}g(x)$

$$\text{Se }\lim_{x\to x_0}\frac{f(x)}{g(x)}=\begin{cases} 0\Rightarrow f\text{ è un infinito di ordine inferiore a g per }x\to x_0\\ L\neq 0\Rightarrow f\text{ è un infinito di ordine superiore a g per }x\to x_0\\ \pm\infty\Rightarrow f\text{ è un infinito di ordine superiore a g per }x\to x_0\\ \exists\Rightarrow f\text{ e g non sono confrontabili} \end{cases}$$

Teorema della gerarchia degli infiniti. Siano $\alpha > 0$ e $\alpha > 1$ allora si ha:

$$\lim_{x \to \pm \infty} \frac{\log_a x}{x^{\alpha}} = 0$$

$$\lim_{x \to \pm \infty} \frac{x^{\alpha}}{a^x} = 0$$

Cioè per x \to $\pm\infty$, $\log_a x$ ha una crescita più lenta di x^{α} , che a sua volta ha una crescita più lenta di a^x.

Limite destro e sinistro

Prendiamo per esempio la seguente funzione segno

$$f(x) = sgn \ x = \begin{cases} 1 \ se \ x > 0 \\ 0 \ se \ x = 0 \\ -1 \ se \ x < 0 \end{cases}$$

Provando a fare $\lim_{x\to 0} sgn\ x$ notiamo che esso non esiste. Dunque introduciamo il concetto di limite destro (ovvero come si comporta la funzione a destra di x₀) e limite sinistro (ovvero come si comporta la funzione a sinistra di x_0).

Prendendo la funzione abbiamo che con 0 il limite destro è

$$\lim_{x \to 0^+} sgn \ x = 1$$

Mentre il limite sinistro è

$$\lim_{x \to 0^{-}} sgn \ x = -1$$

Dunque per una funzione reale a variabile reale con x_0 punto di accumulazione per il suo dominio si dice che

$$\lim_{x \to x_0^+} f(x) = L$$

Se per ogni $\varepsilon > 0 \exists \delta = \delta(\varepsilon) \mid per ogni \ x \in D \ per cui \ 0 < x - x_0 < \delta$
$$\Rightarrow |f(x) - L| < \varepsilon$$

Appunti di Analisi I di Arlind Pecmarkaj

$$\lim_{x \to x_0^-} f(x) = L$$
 Se per ogni $\varepsilon > 0$ \exists $\delta = \delta(\varepsilon) \mid per ogni \ x \in D \ per cui - \delta < x - x_0 < 0$ $\Rightarrow |f(x) - L| < \varepsilon$

Alla luce di ciò possiamo dire che

$$\exists \lim_{x \to x_0} f(x) = L \in \mathbb{R} \ \cup \{\pm \infty\}$$

Se e solo se

$$\exists \lim_{x \to x_0^+} f(x) \land \exists \lim_{x \to x_0^-} f(x)$$

$$\Rightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$$

Successioni numeriche

Una successione numerica è una funzione definita in questo modo:

$$a: \mathbb{N} \to \mathbb{R}$$
$$n \mapsto a(n) = a_n$$

La successione si indica con $(a_n)_n$ (oppure $(a_n)_{n \in \mathbb{N}}$) e il termine a_n ("a con n") si chiama termine generale della funzione.

Esempio.

Con
$$n\mapsto n^2$$
, $a_n=n^2\ \forall\ n\in\mathbb{N}$ abbiamo che la successione è 1,4,9,16,25,...

Una successione $(a_n)_n$ si dice:

- Inferiormente limitata se $\exists h \in \mathbb{R} : h \leq a_n \forall n \in \mathbb{N}$
- Superiormente limitata se $\exists k \in \mathbb{R} : a_n \leq k \ \forall n \in \mathbb{N}$
- Limitata se è sia superiormente limitata che inferiormente.

Si dice inoltre che la successione è:

- Monotona crescente se $a_n \le a_{n+1} \ \forall \ n \in \mathbb{N}$ (se $a_n < a_{n+1} \ \dot{e}$ strettamente crescente)
- Monotona decrescente se $a_n \ge a_{n+1} \ \forall \ n \in \mathbb{N}$ (se $a_n > a_{n+1}$ è strettamente decrescente)

Limite di una successione

Calcolare il limite di una successione ha senso solo per valore di n tendenti all'infinito poiché esso è l'unico punto di accumulazione dei numeri naturali.

Dunque sia $(a_n)_n$ una successione si dice che

- a) $\lim_{n\to +\infty} a_n = L \in \mathbb{R}$ se $\forall \ \varepsilon > 0 \ \exists \ n' = n'(\varepsilon) \in \mathbb{N} : \forall \ n \in \mathbb{N} \ n > n' \Rightarrow |a_n L| < \varepsilon$ e si dice che la successione converge a L
- b) $\lim_{n\to+\infty} a_n = \pm \infty$ se \forall M>0 \exists $n'=n'(M)\in\mathbb{N}: \forall$ $n\in\mathbb{N}$ $n>n'\Rightarrow a_n>M$ $(a_n<-M)$ e si dice che la successione diverge a $+\infty$ $(-\infty)$

La successione si dice regolare se è convergente o divergente. In caso contrario di dice che è indeterminata o irregolare.

Se il limite di una successione esiste allora ogni sua sottosuccessione converge verso quel valore.

Proposizione. Se $(a_n)_n$ è una successione convergente allora è limitata. Il viceversa della proposizione non vale.

Teorema. Se $(a_n)_n$ è una successione monotona allora $\exists \lim_{n \to \infty} (a_n)_n$. Segue che :

- a) Se $(a_n)_n$ è monotona crescente allora $\lim_{n\to +\infty} a_n = \sup a_n$
- b) $(a_n)_n$ è monotona decrescente allora $\lim_{n\to+\infty} a_n = \inf a_n$

In entrambi i casi se la successione è limitata allora il limite è finito.

Funzioni continue

Sia f una funzione reale a variabile reale con x_0 appartenente al dominio. La funzione è continua in x_0 se

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall x \in D \text{ per cui } |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \delta$$

O equivalentemente se

$$\lim_{x\to x_0} f(x) = f(x_0) \ e \ x_0 \ e \ punto \ di \ accumulazione \ oppure \ punto \ isolato \ di \ D$$

f è continua in D se lo è in ogni punto del suo dominio.

Per dimostrare che una funzione è continua nel suo dominio basta dimostrare che

$$\lim_{x \to x_0} f(x) - f(x_0) = 0$$

A proposito tutte le funzioni elementari sono continue.

Teorema dell'algebra delle funzioni continue.

Siano f e g due funzioni reali a variabile reale, entrambe continue in x_0 .

Allora

- 1) $c \cdot f$ è continua in x_0 , $\forall c \in \mathbb{R}$
- 2) $f \pm g$ è continua in x_0
- 3) $f \cdot g$ è continua in x_0
- 4) se $g(x_0) \neq 0$ allora $\frac{f}{g}$ è continua in x_0

Dal teorema segue che

- a) Se P(x) è un polinomio allora P è una funzione continua in \mathbb{R} .
- b) Se P(x) e Q(x) sono polinomi allora $\frac{P}{O}$ è una funzione continua in \mathbb{R} .
- c) y = tg x e y = ctg x sono continue nel loro dominio.

Teorema della composizione di funzioni continue.

Siano f e g due funzioni definite in questo modo

$$f: D_1 \to \mathbb{R}, g: D_2 \to \mathbb{R}, D_1, D_2 \subseteq \mathbb{R}$$

Se f è continua in x_0 e g è continua in $f(x_0)$ allora $g \circ f$ è continua in x_0

Dimostrazione.

Sia
$$h = g \circ f$$
.

Per definizione si ha
$$\lim_{x\to x_0} f(x) = f(x_0)$$
, $\lim_{y\to f(x_0)} g(y) = g(f(x_0)) e \lim_{x\to x_0} h(x) = \lim_{x\to x_0} g(f(x))$.

Nell'ultimo limite possiamo far un cambio di variabile e dire che f(x) = y.

Otteniamo
$$\lim_{y \to f(x_0)} g(y) = g(f(x_0)) = h$$
 che perciò è continua in x_0 .

Corollario. Siano f e g due funzioni continue nel loro dominio con f(x) > 0 nel suo dominio. Allora la funzione

$$x \mapsto f(x)^{g(x)}$$

È continua nel suo dominio.

Dimostrazione.

Sia ha che $f(x)^{g(x)} = e^{\log (f(x)^{g(x)})} = e^{g(x)\log (f(x))}$ che è continua per il teorema dell'algebra delle funzioni continue.

Teorema di continuità della funzione inversa.

Sia f una funzione definita in questo modo

$$f: I \to \mathbb{R}$$
, con I intervallo di \mathbb{R} .

Allora se f è continua ed è invertibile in I allora f^{-1} è continua nel suo dominio.

Nota. Il teorema non vale se f non è definito in un intervallo. Infatti basta considerare la seguente funzione

$$f: [0,1) \cup [2,3] \ con \ f(x) = \begin{cases} x \ se \ x \in [0,1) \\ x-1 \ se \ x \in [2,3] \end{cases}$$

È facilmente dimostrabile che f^{-1} non è continua nel suo domini

Punti di discontinuità

Se una funzione f non è continua in x_0 allora si dice che f è discontinua in x_0 e si chiama punto di discontinuità per f. Come sono fatti questi punti?

1)
$$f(x) = \begin{cases} 1 \text{ se } x \neq 0 \\ 0 \text{ se } x = 0 \end{cases}$$
 non è continua in $x = 0$, infatti $\lim_{x \to 0} f(x) = \lim_{x \to 0} 1 = 1 \neq f(0)$.

Il punto x = 0 è un punto di discontinuità eliminabile. Infatti se modifichiamo f in questo modo $\tilde{f}(x) = 1 \ \forall \ x \in \mathbb{R}$ otteniamo una funzione continua.

2)
$$f(x) = \begin{cases} x^2 \text{ se } x \in [0,1] \\ x+1 \text{ se } x \in (1,2] \end{cases} \text{ non è continua in } x = 1 \text{ poichè } \lim_{x \to 1^+} f(x) = \lim_x 1 + x = 2$$

$$\text{e } \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 = 1 \text{ e dunque } \nexists \lim_{x \to 1} f(x).$$
In the sector was allowed to the sector with a point $g(x)$ and $g(x)$ is the sector with a point $g(x)$ and $g(x)$ is the sector with a point $g(x)$ and $g(x)$ is the sector $g(x)$ and $g(x)$ and $g(x)$ is the sector $g(x)$ and $g(x)$ and $g(x)$ is the sector

In questo caso il punto x = 1 è un punto di discontinuità chiamato punto di salto (o di discontinuità di 1° specie) ovvero esistono

$$\lim_{x \to x_0^+} f(x) e \lim_{x \to x_0^-} f(x)$$

Ed entrambi sono finiti. Il salto è dato da $f^+(x_0) - f^-(x_0)$.

3)
$$f(x) = \begin{cases} \frac{1}{2}x \text{ se } x \in [0,1] \\ \frac{1}{x-1} \text{ se } x \in (1,+\infty) \end{cases}$$
 non è continua in $x = 1$

3) $f(x) = \begin{cases} \frac{1}{2}x \text{ se } x \in [0,1] \\ \frac{1}{x-1} \text{ se } x \in (1,+\infty) \end{cases}$ non è continua in x=1 poichè $\lim_{x\to 1^-} f(x) = \frac{1}{2} \neq \lim_{x\to 1^+} f(x) = +\infty$ e dunque $\nexists \lim_{x\to 1} f(x)$. Il punto x=1 è un punto di discontinuità di 2° specie.

Se un punto di discontinuità non rientra tre queste tre casistiche non assume un nome specifico.

Teorema della permanenza del segno per funzioni continue.

Sia f una funzione reale a variabile reale continua nel suo dominio con il punto x₀ elemento del dominio.

Se
$$f(x_0) > 0$$
 (< 0) allora

$$\exists \ I_{x_0} : f(x) > 0 \ (< 0) \ \forall \ x \in I_{x_0} \cap D$$

 $\exists \ I_{x_0}: f(x)>0 \ (<0) \ \forall \ x\in I_{x_0}\cap D$ Dimostrazione. Poiché f è continua in D, lo è in x_0 e quindi per ipotesi $\lim_{x\to x_0} f(x)=f(x_0)>0 \ (<0)$ Allora è sufficiente seguire il teorema di permanenza del segno dei limiti.

Note.

1) Se f non è continua il teorema in generale non vale. Infatti basta considerare

$$f(x) = \begin{cases} x^2 + 1 \text{ se } x \ge 0 \\ x \text{ se } x < 0 \end{cases}$$

 $f(x) = \begin{cases} x^2 + 1 \text{ se } x \ge 0 \\ x \text{ se } x < 0 \end{cases}$ Prendendo f(0) otteniamo 1 che è un valore positivo. Ma in ogni intorno di 0 cadono punti del dominio la cui fè negativa.

2) Sia $c \in \mathbb{R}$ e supponiamo che $f(x_0) > c$ (< c) allora $\exists I_{x_0}$ tale che

$$f(x) > c \ (< c) \ \forall \ x \in D \cap I_{x_0}$$

A prova di ciò basta applicare il teorema alla funzione g(x) tale che

$$g(x) = f(x) - c$$

Che è continua in D per il teorema dell'algebra dei limiti e tale che

$$g(x_0) = f(x_0) - c > 0 (< 0)$$

Funzioni continue definite su un intervallo.

Teorema degli zeri.

Sia f una funzione definita in questo modo

$$f:[a,b]\to\mathbb{R},[a,b]\in\mathbb{R}$$

Tale che

- i) La funzione è continua in [a, b]
- ii) $f(a) \cdot f(b) < 0$

Allora esiste $x_0 \in (a, b) : f(x_0) = 0$

Dimostrazione. Supponiamo che f(a) < 0 e f(b) > 0. Allora la funzione sarà del tipo

Se $f(c) = 0 \Rightarrow$ tesi del teorema!

Se $f(c) \neq 0$ dividiamo l'intervallo in due e prendiamo la metà in cui il prodotto della funzione degli estremi è negativo (segno opposto) (in questo caso [a, c]) e riapplichiamo lo stesso procedimento all'intervallo che otteniamo.

Procedendo in questo modo abbiamo costruito una successione di intervalli $[a_n, b_n]$ tali che:

- 1) $a_n \le a_{n+1} e b_n > b_{n+1} \forall n \in \mathbb{N}$
- 2) $b_n a_n = \frac{b-a}{2^n} \forall n \in \mathbb{N}$
- 3) $f(a_n) \cdot f(b_n) < 0 \ \forall \ n \in \mathbb{N}$

Da 1) sappiamo che esistono $\overset{(*)}{\underset{n\to+\infty}{\lim}} a_n$ e $\underset{n\to+\infty}{\lim} b_n$. Inoltre $[a_n,b_n]\subseteq [a,b]$ \forall $n\in\mathbb{N}$ quindi $(a_n)_n$ e $(b_n)_n$ sono limitate $^{(**)}$.

Da (*) e (**) si ha che $\lim_{n\to+\infty} a_n = A \in \mathbb{R} \ e \lim_{n\to+\infty} b_n = B \in \mathbb{R}$.

Da 2) si ha che $b_n - a_n$ converge a B – A e $\frac{b-a}{2^n}$ converge a 0, dunque B = A.

Sia
$$l = A = B$$
 da 3) si ha che $f(a_n) \cdot f(b_n) < 0 \Rightarrow (f(l))^2 = \lim_n (f(a_n) \cdot f(b_n)) \le 0 \Rightarrow (f(l))^2 \le 0$

Ma qualsiasi quadrato di un valore è minore o uguale se e solo se esso è 0. Dunque f(l) = 0. Per la tesi si prende l.

Il teorema degli zeri fornisce condizione sufficiente ma non necessaria per l'esistenza di uno zero di f.

Note.

- 1) Al passo n i valori a_n e b_n rappresentano un'approssimazione per difetto o per eccesso del valore di x_0 . L'errore non è mai superiore a $\frac{b_n-a_n}{2}$.
- 2) Se f è strettamente monotona in [a, b] allora x_0 è unico.

Teorema di Weirstrass

Sia f una funzione reale a variabile reale definita su un intervallo [a, b] allora f ammette massimo e minimo assoluti in [a, b] cioè

$$\exists x_m, x_M \in [a, b] : f(x_m) \le f(x) \le f(x_M) \forall x \in [a, b]$$

Note:

- 1) Se f è continua in un intervallo (a, b) limitato, ma non chiuso il teorema non vale. Basta considerare $f(x) = x \Rightarrow 0 < f(x) < 1 \,\forall x \in (0,1), f$ non ammette ne massimo ne minimo.
- 2) Se f è continua in un intervallo [a, b] non limitato il teorema in generale non vale. Basta considerare f(x) = x
- 3) Se f non è continua in [a, b] il teorema non vale. Basta considerare

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \to f(x) = \begin{cases} x \text{ se } x \in (0, 1) \\ \frac{1}{2} \text{ se } x = 0 \text{ o } x = 1 \end{cases}$$

Teorema dei valori intermedi

Sia f un una funzione reale a variabile reale continua definita su un intervallo [a, b]. Allora

$$\exists \ \lambda \in [\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)] \ \exists \ \bar{x} \in [a,b] : f(\bar{x}) = \lambda$$

Dimostrazione. Poiché f è continua in [a, b], dal teorema di Weirstrass si ha che

$$\exists x_m, x_M \in [a, b] : f(x_m) = \min f(x) e f(x_M) = \max f(x)$$

Sia $\lambda \in (m, M)$ e consideriamo la funzione

$$g:[a,b] \to \mathbb{R}$$

 $x \mapsto g(x) = f(x) - \lambda$

Allora

- a) g è continua in [a, b]
- b) $g(x_m) = f(x_m) \lambda = m \lambda < 0$
- c) $g(x_M) = f(x_M) \lambda = M \lambda > 0$

Dal teorema degli zeri si ha che $\exists \ \widetilde{x} \in [x_m, \ x_M] \subset [a,b] : g(\widetilde{x}) = 0$

Però $g(\tilde{x}) = f(\tilde{x}) - \lambda = 0$ e dunque $f(\tilde{x}) = \lambda$.

Come conseguenza si ha che se f è continua in un intervallo allora l'immagine è un intervallo di estremi inf f(x) e sup f(x).

Note.

1) Se la funzione non è continua il teorema non vale. Basta considerare

La funzione è definita su [a, b], ma non ammette valori nella linea blu sulle ordinate

2) Se il dominio non è un intervallo il teorema non vale. Basta considerare.

$$f: [0,1] \cup [2,3] \to \mathbb{R}$$
$$x \mapsto f(x) = \begin{cases} 1 \ se \ x \in [0,1] \\ 2 \ se \ x \in [2,3] \end{cases}$$

Abbiamo che f(x) o è 1 o e 2 che sono rispettivamente minimo e massimo della funzione e dunque non esiste nessun x per cui $f(x) \in (\min f(x), \max f(x))$.

Applicazione del teorema. Si ha che un polinomio di grado dispari a coefficienti reali ammette sempre uno zero reale.

Dimostrazione. Sia P(x) un polinomio di grado dispari a coefficienti reali tale che

 $P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\ con\ a_i\in\mathbb{R}, i=0,1,\ldots,n-1\ e\ n\in\mathbb{N}\ dispari$ Si h che P è continua e il limite del polinomio per x tendente a $\pm\infty$ è $\pm\infty$. Dunque l'immagine è tutto l'insieme dei reali. Dal teorema dei valori intermedi esisterà perciò un \bar{x} per cui $P(\bar{x})=0$.

Derivate

Funzioni derivabili.

Sia f una funzione reale a variabile reale definita su un intervallo aperto (a, b) con x₀ punto del dominio. Si dice che f è derivabile in x₀ se esiste ed è finito

$$\lim_{h \to 0} \frac{(fx_0 + h) - f(x_0)}{h}$$

E in tal caso si pone

$$f'(x_0) = \lim_{h \to 0} \frac{(fx_0 + h) - f(x_0)}{h}$$

Da un punto di vista geometrico dire che f è derivabile in x₀ significa che esiste la retta tangente al grafico della funzione in x₀.

L'espressione di tale retta sarà

$$y = f(x_0) + f'(x_0)(x - x_0)$$

La derivata prima è il coefficiente angolare della retta tangente al grafico di f in $(x_0, f(x_0))$.

Una funzione è derivabile se è derivabile in ogni x appartenente a (a, b).

Se la funzione è definita in un intervallo chiuso [a, b], essa è derivabile se è derivabile in ogni x appartenente ad (a, b) e se esistono finiti

$$\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h} = f'_+(a) \text{ (derivata destra)}$$

Е

$$\lim_{h \to 0^{-}} \frac{f(b+h) - f(b)}{h} = f'_{-}(b) (derivata sinistra)$$

Derivate di funzioni elementari.

1) $f(x) = c, c \in \mathbb{R}$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0$$

$$f'(x)=0.$$

2) f(x) = x

$$\lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1$$

$$f'(x) = 1.$$
3) $f(x) = x^2$

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h} = \lim_{h \to 0} 2x + h = 2x$$

$$f'(x) = 2x$$

4) $f(x) = \sin x$

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} =$$

$$= \lim_{h \to 0} \frac{\sin x (\cos h - 1)}{h} + \cos x \frac{\sin h}{h} =$$

$$= \lim_{h \to 0} \sin x \cdot \frac{\cos h - 1}{h^2} \cdot h + \cos x \cdot \frac{\sin h}{h} = \cos x$$

$$f'(x) = \cos x$$

5) $f(x) = \cos x$, con risoluzione simile a quella del seno di ha che $f'(x) = -\sin x$.

Appunti di Analisi I di Arlind Pecmarkaj

6)
$$f(x) = e^x$$

$$\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} e^x \cdot \frac{e^h - 1}{h} = e^x$$
 $f'(x) = e^x$

Teorema.

Sia f una funzione reale a variabile reale definita su un intervallo aperto con x_0 punto del dominio, se f è derivabile in x_0 allora f è continua in x_0 .

Dimostrazione.

Dobbiamo provare che

$$\lim_{h \to 0} f(x_0 + h) = f(x_0) \Rightarrow \lim_{h \to 0} [f(x_0 + h) - f(x_0)] = 0$$

Si ha che

$$f(x_0 + h) - f(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} \cdot h \to^{h \to 0} 0$$

Quindi f è continua in x_0 .

Nota. Il viceversa del teorema non vale ovvero f continua in x_0 non implica che f è derivabile. Basta considerare f(x) = |x| che è continua in 0, ma non è derivabile in quel punto.

Regole di derivazione

 $f,g:A\to\mathbb{R},A\subseteq\mathbb{R},f\ e\ g\ derivabili.$

- 1) $(f \pm g)' = f'(x) \pm g'(x)$
- 2) $(f \cdot g)' = f'(x)g(x) + f(x)g'(x)$
- 3) Se $g \neq 0$, $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$

Dunque

a) Da 2) si ha che

$$g(x) = k \cdot f(x), k \in \mathbb{R}$$
 è derivabile e $g'(x) = (k \cdot f(x))' = k \cdot f'(x)$

- b) Da 3) si ha che la funzione $\frac{1}{g}$ è derivabile e $\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{g^2(x)}$
- c) Sia $h(x) = x^n$, $n \in \mathbb{N}$, da 2) si ha che è derivabile $\forall x \in \mathbb{R}$ e $h'(x) = n \cdot x^{n-1}$
- d) Se $f(x) = x^{\alpha}$, $\alpha \in \mathbb{R}$ e(x) > 0, fè derivabile $\forall x > 0$ e si ha che $f'(x) = \alpha x^{\alpha 1}$
- e) f(x) = tg x, f(x) = ctg x sono derivabili

Teorema di derivazione della funzione composta

Siano A e B due intervalli aperti e

- $f: A \to \mathbb{R}$, derivabile in $x_0 \in A$ con $f(A) \subseteq B$
- $g: B \to \mathbb{R}$ derivabile in $f(x_0)$
- $r: A \to \mathbb{R}, x \mapsto r(x) = g(f(x))$

Allora r è derivabile in x_0 e risulta che

$$r'(x) = g'(f(x)) \cdot f'(x)$$
 (regola della catena)

Esempio.

$$r = (sinx)^{3}$$

$$x \mapsto^{f} \sin x \mapsto^{g} (sinx)^{3} \Rightarrow r \ derivabile$$

$$r'(x) = g'(f(x)) \cdot f'(x) = 3(sinx)^{2} \cdot \cos x$$

Derivabilità della funzione inversa.

Sia f una funzione reale a variabile reale definita su un intervallo aperto (a, b) con inversa f-1. Se $\exists x_0 \in (a,b) : f'(x_0) \neq 0$ allora f^{-1} è derivabile in $f(x_0)$ e risulta

$$(f^{-1})(f(x_0)) = \frac{1}{f'(x_0)}$$

Dimostrazione.

Sia $h \in \mathbb{R}$ e $x_0 + h$ vicino ad x_0 .

Poniamo $f(x_0 + h) = \eta, f(x_0) = y_0$.

Il rapporto incrementale di f^{-1} in $f(x_0)$ è dato da

$$\frac{f^{-1}(\eta) - f^{-1}(y_0)}{\eta - y_0} = \frac{x_0 + h - x_0}{f(x_0 + h) - f(x_0)} = \frac{h}{f(x_0 + h) - f(x_0)}$$

Allora

$$\lim_{\eta \to y_0} \frac{f^{-1}(\eta) - f^{-1}(y_0)}{\eta - y_0} = \lim_{h \to 0} \frac{h}{f(x_0 + h) - f(x_0)} = \frac{1}{f'(x_0)} \in \mathbb{R} \text{ poich} \ f'(x) \neq 0$$

 f^{-1} è continua per il teorema di continuità della funzione inversa.

La formula di derivazione della funzione inversa si può scrivere nella forma

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Esempi.

1) $f^{-1}(y) = \log y$, inversa di $f(x) = e^x$ f è derivabile in \mathbb{R} con $f'(x) = e^x \neq 0$ dunque $\forall x \in \mathbb{R}$

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{e^x | x = \log y} = \frac{1}{y}$$

2) $f^{-1}(y) = \arcsin x$, inversa di $f(x) = \sin x$ È derivabile in (1, 1) con $\cos x \neq 0$.

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{\cos x | x = \arcsin y} = \frac{1}{\sqrt{1 - \sin^2 x} | x = \arcsin y} = \frac{1}{\sqrt{1 - y^2}} = \frac{1}{\sqrt{1 - y^2}}$$

In modo analogo si ha che

$$(\operatorname{arccos} y)' = \frac{1}{\sqrt{1 - y^2}} \,\forall \, y \in (-1, 1)$$
$$(\operatorname{arctg} y)' = \frac{1}{1 + y^2} \,\forall \, y \in \mathbb{R}$$
$$(\operatorname{arccotg} y)' = -\frac{1}{1 + y^2} \,\forall \, y \in \mathbb{R}$$

Punti di non derivabilità.

 $f:(a,b)\to\mathbb{R}, x_0\in(a,b), f\ continua\ in\ x_0$

- a) Se $\exists f_+(x_0) e f_-(x_0)$ e son finiti e diversi tra loro allora x_0 è un punto angoloso per f.
- Esempio: $x_0 = 0$ in f(x) = |x|b) Se $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = +\infty$ ($-\infty$) allora x_0 è un punto di flesso a tangente verticale Esempio: $x_0 = 0$ in $f(x) = \sqrt[3]{x}$

Appunti di Analisi I di Arlind Pecmarkaj

c) Se

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = +\infty \ (-\infty)$$

E

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty \ (+\infty)$$

Allora x_0 è una cuspide.

Esempio:
$$x_0 = 0$$
 in $f(x) = \sqrt[3]{|x|}$

d) Se

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = L \in \mathbb{R}$$

E

$$\lim_{h\to 0^-}\frac{f(x_0+h)-f(x_0)}{h}=\infty$$

Allora x_0 è una cuspide.

Esempio:
$$x_0 = 0$$
 in $f(x) = \begin{cases} -x \text{ se } x < 0 \\ \sqrt{x} \text{ se } x \ge 0 \end{cases}$

Studio di funzioni Massimi e minimi per una funzione.

Sia
$$f: [a, b] \to \mathbb{R}, x_0 \in [a, b]$$

Si dice che x_0 è un punto di ¹massimo/²minimo globale o assoluto se

1-
$$f(x) \le f(x_0) \ \forall \ x \in [a, b]$$

2-
$$f(x) \ge f(x_0) \ \forall \ x \in [a, b]$$

Si dice che x_0 è un punto di ¹massimo/²minimo locale o relativo se

1-
$$\exists \delta > 0 : f(x) \le f(x_0) \ \forall x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]$$

2-
$$\exists \delta > 0 : f(x) \ge f(x_0) \ \forall x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]$$

Teorema di Fermat

Sia $f: [a, b] \to \mathbb{R}$, f derivabile in (a, b)

Se $x_0 \in (a,b)$ è un massimo o minimo locale per f allora $f'(x_0) = 0$.

Dimostrazione.

Consideriamo $h \in \mathbb{R}$ e $\frac{f(x_0+h)-f(x_0)}{h}$.

Supponiamo che x_0 sia massimo locale per f quindi:

$$\exists \ \delta > 0 : f(x) \le f(x_0) \ \forall \ x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]$$

Sia $|h| < \delta$, abbiamo che

-
$$f'_{+}(x_0) = \lim_{h \to 0^{+}} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$$

- $f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$

$$- f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

Ma f è derivabile in x_0 dunque $f'_+(x_0) = f'_-(x_0)$ e perciò $f'(x_0) = 0$.

Da Fermat si ha che i massimi e i minimi di una funzione vanno cercati in

- $\{x \in (a,b) \mid f \text{ derivabile in } x_0 \text{ e } f'(x) = 0$ i)
- $\{x \in (a,b) \mid f \text{ non } e \text{ derivabile in } x\}$ ii)
- iii) {*a*, *b*}

Teorema di Rolle

Sia $f: [a, b] \to \mathbb{R}$, se $f \in$

- a) Continua in [a, b]
- b) È derivabile in (a, b)
- c) f(a) = f(b)

Allora esiste $x_0 \in (a, b) : f'(x) = 0$

Dimostrazione.

Dal teorema di Weirstrass e a) si ha che

$$\exists x_1, x_2 \in [a, b] \mid f(x_1) = \max f \ e \ f(x_2) = \min f$$

Se $x_1 \in (a, b)$ (o $x_2 \in (a, b)$) allora da Fermat si ha che $f'(x_1) = 0$ (o $f'(x_2) = 0$).

Dunque $x_0 = x_1$ (o $x_0 = x_2$).

Se $x_1 = a$ e $x_2 = b$ allora si ha che $\max f = f(a) = f(b) = \min f$ e dunque f è costante e $f'(x) = 0 \ \forall x \in (a,b)$

Teorema di Lagrange o del valore medio

Sia $f: [a, b] \to \mathbb{R}$ tale che

- a) f è continua in [a, b]
- b) f è derivabile in (a, b)

Allora esiste $x_0 \in (a, b)$: $\frac{f(b)-f(a)}{b-a} = f'(x_0)$

Dimostrazione.

Sia
$$F(x) = f(x) - \lambda, \lambda \in \mathbb{R}$$

Da a) e b) si ha che F è continua in [a, b] e derivabile in (a, b).

Inoltre F(a) = F(b) se $\lambda = \frac{f(b) - f(a)}{b - a}$. Allora F soddisfa tutte le condizioni del teorema di Rolle e quindi $\exists \ x_0 \in (a,b) : F'(x_0) = 0$.

Si ha che $F'(x_0) = f'(x_0) - \lambda = 0$ e perciò $f'(x_0) = \lambda$.

Applicazioni del teorema di Lagrange.

1) Caratterizzazioni delle funzioni a derivata nulla in un intervallo.

 $f: I \to \mathbb{R}, I \subseteq \mathbb{R}$ intervallo

Se f è derivabile in \dot{I} con $f'(x) = 0 \ \forall \ x \in \dot{I}$, allora f(x) è costante.

 $f, g: I \to \mathbb{R}, I \subseteq \mathbb{R}$ intervallo

Se f e g sono continue in I e derivabili in \dot{I} con $f'(x) = g'(x) \ \forall \ x \in \dot{I}$

Allora $\exists c \in \mathbb{R} : f(x) = g(x) + c \ \forall x \in I$.

Se $\exists f(x_0) = g(x_0), x_0 \in I \text{ allora } f(x) = g(x) \ \forall \ x \in I.$

2) Test di monotonia.

 $f: I \to \mathbb{R}, I \subseteq \mathbb{R}$ intervallo.

f derivabile in \dot{I}

Allora f è crescente in $I \Leftrightarrow f'(x) \ge 0 \ \forall \ x \in I$, f è decrescente in $I \Leftrightarrow f'(x) \le 0 \ \forall \ x \in I$.

Funzioni concave e convesse.

 $f: I \to \mathbb{R}, I \subseteq \mathbb{R}$ intervallo.

Si dice che f è ¹concava/²convessa in I se $\forall x, y \in I$ il segmento di estremi (x, f(x)) e (y, f(y)) non ha punti ¹sopra/²sotto il grafico di f o in alternativa $\forall t \in [0, 1]$ si ha che

- 1) $f((1-t)x + ty) \ge (1-t)f(x) + tf(y)$
- 2) $f((1-t)x + ty) \le (1-t)f(x) + tf(y)$

Teorema. $f:(a,b) \to \mathbb{R}$

Se f è derivabile due volte in (a, b) allora

- fè convessa in $(a, b) \Leftrightarrow f''(x) \ge 0 \ \forall \ x \in (a, b)$
- f è concava in $(a, b) \Leftrightarrow f''(x) \le 0 \ \forall \ x \in (a, b)$

Se $x_0 \in (a, b)$ è un flesso per f allora $f''(x_0) = 0$ (Il viceversa non vale)

Teorema. Sia f derivabile fino all'ordine n in $x_0 \in D$.

Supponiamo che

-
$$f'(x_0) = f''(x_0) = \dots = f^{n-1}(x) = 0$$

-
$$f^n(x_0) \neq 0$$

Allora si ha

- a) n pari e $f^n(x_0) > 0 \Rightarrow x_0$ minimo locale per f. $e f^n(x_0) < 0 \Rightarrow x_0$ massimo locale per f.
- b) n dispari $\Rightarrow x_0$ non è né massimo né minimo locale per f.

Teorema di De L'Hopital

Siano $-\infty \le a < b \le +\infty$ e f, g: $(a,b) \to \mathbb{R}$ tali che

1)
$$\lim_{x \to z} f(x) = \lim_{x \to z} g(x) = 0$$
 oppure $= \infty$ dove $z = a^+ o b^- o c \in (a, b)$.

2)
$$f \in g$$
 derivabili in (a, b) con $g'(x) \neq 0 \ \forall \ x \in (a, b)$

3)
$$\exists \lim_{x \to z} \frac{f'(x)}{g'(x)} = L \in \mathbb{R} \cup \{\pm \infty\}$$

Allora $\exists \lim_{x \to z} \frac{f(x)}{g(x)} = L$

Allora
$$\exists \lim_{x \to z} \frac{f(x)}{g(x)} = L$$

Passaggi per lo studio di una funzione

- 1) Determinare il dominio.
- 2) Verificare simmetria e periodicità.
- 3) Determinare il segno della funzione.
- 4) Determinare l'eventuale intersezione con gli assi
- 5) Calcolare il limiti ai bordi della funzione ed eventuali asintoti
- 6) Determinare se la funzione è continua e derivabile.
- 7) Determinare la monotonia della funzione e i suoi massimi e i minimi
- 8) Determinare le concavità/convessità e i suoi eventuali flessi.

Calcolo integrale Primitive di una funzione

Sia
$$f: [a, b] \to \mathbb{R}$$

Si dice che $F: [a, b] \to \mathbb{R}$ è una primitiva di f in [a, b] se F è derivabile in [a, b] e

$$F'(x) = f(x) \ \forall \ x \in [a, b].$$

Caratterizzazione delle primitive.

Sia $f: [a, b] \to \mathbb{R}$ e siano $F \in G$ due primitive di f in [a, b].

Allora
$$\exists c \in \mathbb{R} \mid F(x) = G(x) + c$$
 e dunque $F'(x) = f(x) = G'(x)$

Sia $f: [a, b] \to \mathbb{R}$ continua, allora $\exists F$ primitiva di f in [a, b].

L'insieme delle primitive di *f* si indica con il simbolo

$$\int f(x) dx$$

Che si legge "integrale indefinito di f" e che dalla caratterizzazione si ha che

$$\int f(x) dx = F(x) + c, c \in \mathbb{R}$$

Integrali indefiniti di funzioni elementari.

1) $\int 1 dx = x + c, c \in \mathbb{R}$

2)
$$\int x^{\alpha} dx = \begin{cases} \frac{x^{\alpha+1}}{\alpha+1} + c, c \in \mathbb{R} \text{ se } \alpha \in \mathbb{R} \setminus \{-1\} \\ \log|x| + c, c \in \mathbb{R} \text{ se } \alpha = -1 \end{cases}$$

- 3) $\int e^x dx = e^x + c$, $c \in \mathbb{R}$
- 4) $\int \sin x \, dx = -\cos x + c, c \in \mathbb{R}$
- 5) $\int \cos x \, dx = \sin x + c$, $c \in \mathbb{R}$
- 6) $\int [\alpha f(x) + \beta g(x)] dx = \alpha \int f(x) dx + \beta \int g(x) dx$ (linearità dell'integrale indefinito)

Integrale definito di una funzione

Sia $f: [a, b] \to \mathbb{R}$ continua e non negativa

Problema: calcolare l'area della parte di piano R compresa tra l'asse x e il grafico di f e delimitata dalle rette x = a e x = b.

Possiamo creare una partizione P di [a,b], $P=\{a=x_0 < x_1 < \cdots < x_n=b\}$

Creiamo dei rettangoli di base $(x_i - x_{i-1})$ con i = 1, 2, ..., n e di altezza $f(\xi_i)$ dove ξ_i è un punto compreso tra x_i e x_{i-1} .

L'area di un determinato R_i è data da $f(\xi_i)\cdot(x_i-x_i-1)$ dunque l'area del piano R è data da

$$\sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1}) = S_n$$

Che è la somma di Cauchy-Riemann.

Passando al limite per $n \to +\infty$ in modo tale che $\max_{i=1,...n} (x_i - x_{i-1})$ tende a 0 si ha che S_n ammette

limite finito e indipendente dalla scelta dei punti ξ_i .

Si definisce area della regione R il valore del limite

$$A(R) = \lim_{n \to +\infty} \max_{i=1,..,n} (x_i - x_i - 1) \to 0 = \int_a^b f(x) \, dx$$
 Se f è continua e limitata si dice che f è integrabile secondo Riemann in $[a,b]$ e si pone

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to +\infty} \max_{i=1,..,n} (x_{i} - x_{i} - 1) \to 0$$

E si legge integrale definito di f in [a, b].

f(x) è la funzione integranda, la x in dx è la variabile di integrazione mentre a e b sono gli estremi di integrazione.

L'integrale definito non è un'area.

Non tutte le funzioni limitate sono integrabili secondo Riemann. Infatti basta considerare la funzione

$$f(x) = \begin{cases} 1 \text{ se } x \in \mathbb{Q} \\ 0 \text{ se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Se
$$\xi_i \in \mathbb{Q}$$
, $S_n = 1$, se $\xi_i \in \mathbb{R} \setminus \mathbb{Q}$, $S_n = 0$.

Osservazioni

f è continua in [a, b]

a)
$$f \ge 0$$
 in $[a, b] \Rightarrow A(R) = \int_a^b f(x) dx$

b)
$$f \le 0$$
 in $[a, b] \Rightarrow A(R) = -\int_{a}^{b} f(x) dx$

c)
$$f$$
 cambia segno in $[a, b] \Rightarrow A(R) = \int_a^b |f(x)| dx \neq \int_a^b f(x) dx$

Proprietà dell'integrale definito.

Sia $f: [a, b] \to \mathbb{R}$ integrabile. Allora

1)
$$\int_a^a f(x) \, dx = 0$$

2)
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

3)
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx \ \forall c \in [a, b]$$

4)
$$\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$$

Siano $f, g: [a, b] \to \mathbb{R}$ integrabili. Allora

1)
$$\int_a^b (f+g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

2)
$$c \cdot f$$
 integrabile in $[a, b]$

$$\int_a^b c \cdot f(x) \ dx = c \cdot \int_a^b f(x) \ dx \ \forall \ c \in \mathbb{R}$$

3) Se
$$f(x) \le g(x) \forall x \in [a, b]$$

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

Teoremi.

- 1) $f: [a, b] \to \mathbb{R}$, continua in [a, b]Allora f è integrabile in [a, b]
- 2) $f: [a, b] \to \mathbb{R}$, monotona e limitata in [a, b]Allora f è integrabile in [a, b]
- 3) $f:[a,b] \to \mathbb{R}$, limitata e f è continua in [a,b] tranne che in un numero finito di punti Allora f è integrabile in [a,b] e

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{x_{1}} f(x) \, dx + \dots + \int_{x_{n}}^{b} f(x) \, dx$$

Teorema della media.

Sia $f: [a, b] \to \mathbb{R}$ continua. Allora $\exists x_0 \in [a, b]$ tale che

$$\int_{a}^{b} f(x) \, dx = f(x_0) \cdot (b - a)$$

Dimostrazione.

Dal teorema di Weirstrass f ammette massimo e minimo assoluti in [a, b] e si ha che

$$m = \min_{x \in [a,b]} f(x) \le f(x) \le \max_{x \in [a,b]} f(x) = M$$

Dalla monotonia dell'integrale definito si ha che

$$\int_{a}^{b} m \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} M \, dx$$

Si ha dunque che

$$m \cdot (b-a) \le \int_a^b f(x) \, dx \le M \cdot (b-a)$$

Dividendo per b - a > 0 si ottiene

$$m \le \frac{1}{b-a} \cdot \int_{a}^{b} f(x) \, dx \le M$$

Dal teorema dei valori intermedi si ha che $\exists x_0 \in [a, b]$ tale che

$$f(x_0) = \frac{1}{b-a} \cdot \int_a^b f(x) \, dx \le M$$

Moltiplicando entrambi i termini per (b - a) si ha

$$f(x_0)(b-a) = \int_a^b f(x) \, dx$$

Che è la tesi del teorema.

Funzione integrale

Sia $f:[a,b]\to\mathbb{R}$, limitata e integrabile in [a,b] e perciò integrabile in [a,x] \forall $x\in[a,b]$ Allora esiste $F:[a,b]\to\mathbb{R}$ tale che $F(x)=\int_a^x f(t)\,dt$

F si chiama funzione integrale di f in [a, b].

Teorema.

Sia $f: [a, b] \to \mathbb{R}$ limitata e integrabile allora la funzione integrale F è continua in [a, b].

Teorema fondamentale del calcolo integrale

Sia $f: [a, b] \to \mathbb{R}$ continua in [a, b] e sia $F: [a, b] \to \mathbb{R}$ la sua funzione integrale allora

- F è derivabile in [a, b]
- $F'(x) = f(x) \forall x \in [a, b]$

Dimostrazione.

Sia $x \in (a, b)$ e consideriamo

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \cdot \left[\int_{a}^{x+h} f(t) \, dt - \int_{a}^{x} f(t) \, dt \right] =$$

$$= \frac{1}{h} \cdot \int_{a}^{x} f(t) \, dt + \int_{x}^{x+h} f(t) \, dt - \int_{a}^{x} f(t) \, dt =$$

$$= \frac{1}{h} \cdot \int_{x}^{x+h} f(t) \, dt$$

Dal teorema della media si ha che con $x(h) \in [x, x + h]$ il risultato è uguale a

$$\frac{1}{h} \cdot f(x(h)) \cdot h = f(x(h))$$

Per $h \to 0$ poiché la funzione è continua f(x(h)) tende a f(x). Quindi

$$\lim_{h\to 0} \frac{F(x+h) - f(x)}{h} = f(x)$$

E perciò F è erivabile in x e

$$F'(x) = f(x)$$

La dimostrazione procede allo stesso modo per x = a o x = b. In questo caso h tenderà rispettivamente a 0^+ e a 0^- .

Formula fondamentale del calcolo integrale

Sia $f: [a, b] \to \mathbb{R}$ continua e sia G primitiva di f in [a, b]. Allora

$$\int_{a}^{b} f(x) dx = G(b) - G(a) = [G(x)]_{a}^{b}$$

Dimostrazione.

Poiché f è continua in [a, b] la funzione integrale

$$F(x) = \int_{a}^{b} f(t) dt$$

È una primitiva di f in [a, b].

Dalla caratterizzazione delle primitive si ha che $\exists c \in \mathbb{R}$ tale che

$$G(x) = F(x) + c, \forall x \in [a, b]$$

Allora

$$G(b) - G(a) = F(b) + c - (F(a) + c) = F(b) - F(a)$$

Ma ciò è uguale a

$$\int_a^b f(t) dt - \int_a^a f(t) dt = \int_a^b f(t) dt$$

Formula di integrazione per sostituzione

Sia f continua e g derivabile con g' continua.

Sia x = g(t)

Allora

$$\int f(x) dx = \int f(g(t)) g'(t) dt$$

Esempi

1)
$$\int \frac{1}{\sqrt{x}-3} x = t^2 \to g(t)$$

$$\sqrt{x} = t$$

$$dx = 2tdt \text{ dove } 2t = g'(t)$$

$$\int \frac{1}{t-3} \cdot 2t \, dt = 2 \int \frac{t}{t-3} dt = 2 \int \frac{t-3+3}{t-3} dt = 2 \int 1 \, dt + 6 \int \frac{1}{t-3} \, dt = 2t + 6 \log|t-3| + c = 2\sqrt{x} + 6 \log|\sqrt{x} - 3| + c, c \in \mathbb{R}$$
2)
$$\int \frac{1}{e^{x} + e^{-x}} \, dx$$

2)
$$\int \frac{1}{e^{x} + e^{-x}} dx$$

$$e^{x} = t$$

$$x = \log t$$

$$dx = \frac{1}{t} dt$$

$$\int \frac{1}{e^{x} + e^{-x}} dx = \int \frac{1}{t + \frac{1}{t}} \cdot \frac{1}{t} dt = \int \frac{t}{t^{2} + 1} \cdot \frac{1}{t} dt = \int \frac{1}{t^{2} + 1} dt = \arctan t + c = \arctan e^{x} + c, c \in \mathbb{R}$$

Negli integrali definiti con x=g(t), a=g(c), b=g(d) la formula della sostituzione è

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(g(t))g'(t) dt$$

Formula di integrazione per parti

Siano f e g derivabili con derivata continua allora

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

Dove f(x) è il fattore finito e g'(x) è il fattore differenziale.

Se la derivata è continua in [a, b] allora

$$\int_{a}^{b} f(x)g'(x) \, dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

Dimostrazione.

Segue da

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

Esempi

- 1) $\int x \cos x \, dx$ $f(x) = x e g'(x) = \cos x \Rightarrow f'(x) = 1 e g(x) = \sin x$ $\int x \cos x \, dx = x \sin x \int \sin x \, dx = x \sin x + \cos x + c, c \in \mathbb{R}$
- 2) $\int \log x \, dx$ $f(x) = \log x \, e \, g'(x) = x \Rightarrow f'(x) = \frac{1}{x} \, e \, g(x) = x$ $\int \log x \, dx = x \log x \int \frac{1}{x} \cdot x \, dx = x \log x x + c, c \in \mathbb{R}$
- $\int \log x \, dx = x \log x \int \frac{1}{x} \cdot x \, dx = x \log x x + c, c \in \mathbb{R}$ 3) $\int e^x \sin x = e^x \sin x \int e^x \cos x = e^x \sin x [e^x \cos x + \int e^x \sin x \, dx]$ $2 \int e^x \sin x \, dx = e^x \sin x e^x \cos x + c$ $\int e^x \sin x \, dx = \frac{e^x \sin x e^x \cos x}{2} + c, c \in \mathbb{R} \text{ (integrale per parti ricorsivo)}$
- 4) $\int \cos^2 x \, dx = \int \cos x \cos x \, dx = \sin x \cos x \int -\sin x \sin x \, dx = \sin x \cos x + \int \sin^2 x \, dx = \sin x \cos x + \int 1 \, dx \int \cos^2 x \, dx$ $2 \int \cos^2 x \, dx = \sin x \cos x + x + c$ $\int \cos^2 x \, dx = \frac{\sin x \cos x + x}{2} + c, c \in \mathbb{R}$

Integrazioni delle funzioni razionali

$$\int \frac{P(x)}{Q(x)} dx$$

Dove *P* e *Q* sono polinomi

 $1^{\circ} \text{ CASO} \rightarrow \delta P > \delta O$

$$\int \frac{x^3 + 1}{x^2 + 1} dx$$

In questo caso si fa la divisione tra i due polinomi e si ha che

$$x^3 + 1 = (x^2 + 1) \cdot x - x + 1$$

Dunque risolveremo

$$\int x + \frac{1 - x}{x^2 + 1} \, dx = \int x \, dx + \int \frac{1}{x^2 + 1} \, dx - \int \frac{x}{x^2 + 1} \, dx = \frac{x^2}{2} + \arctan x - \frac{1}{2} \ln(x^2 + 1) + c$$

 $2^{\circ} \text{ CASO} \rightarrow \delta P = \delta Q$

$$\int \frac{x}{2x+1} dx = \frac{1}{2} \int \frac{2x}{2x+1} dx = \frac{1}{2} \int \frac{2x+1-1}{2x+1} dx =$$

$$= \frac{1}{2} \int 1 dx - \frac{1}{4} \int \frac{2}{2x+1} dx = \frac{1}{2} x - \frac{1}{4} \log|2x+1| + c$$

 3° CASO $\rightarrow \delta P < \delta O$

1)
$$\int \frac{1}{x+3} dx = \log|x+3| + c, c \in \mathbb{R}$$

2)
$$\int_{-\frac{x^2+1}{2}}^{\frac{2}{2}} dx = 2 \arctan x + c, c \in \mathbb{R}$$

3)
$$\int_{\frac{x^2+3}{x^2+3}}^{\frac{x}{x^2+3}} dx = \frac{1}{2} \int_{\frac{x^2+3}{x^2+3}}^{\frac{2x}{x^2+3}} dx = \frac{1}{2} \log(x^2+3) + c, c \in \mathbb{R}$$

$$4^{\circ} \operatorname{CASO} \to \int \frac{P(x)}{ax^2 + bx + c} dx \operatorname{con} \delta P < 2 \operatorname{e} a, b, c \in \mathbb{R}, a \neq 0$$

a)
$$\int \frac{x+7}{x^2-x-2} dx$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x^2 - x - 2 = (x - 2)(x + 1)$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

$$x^{2} - x - 2 = (x - 2)(x + 1)$$

$$\frac{x+7}{x^{2}-x-2} = \frac{x+7}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}$$

$$A(x + 1) + B(x - 2) = x + 7 \rightarrow Ax + A + Bx - 2B = x + 7$$

$$\{A + B = 1 \ \{A = 1 - B \ \{A = 3\}\}\}$$

$$A - 2B = 7 \cdot 1 - 3B = 7 \cdot B = -2$$

$$A(x+1) + B(x-2) = x + 7 \to Ax + A + Bx - 2B = x + 7$$

$$\begin{cases} A + B = 1 & A = 1 - B \\ A - 2B = 7 & 1 - 3B = 7 \end{cases} \begin{cases} A = 3 \\ B = -2 \end{cases}$$

$$\int \frac{x+7}{x^2 - x - 2} dx = 3 \int \frac{1}{x-2} dx - 2 \int \frac{1}{x+1} dx = 3 \log|x-2| - 2 \log|x+1| + c, c \in \mathbb{R}$$

b)
$$\int \frac{x^2}{x^2 + 2x + 1} dx = \int \frac{x^2}{(x+1)^2} dx$$

$$\frac{x}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2} = \frac{A(x+1)+B}{(x+1)^2}$$

$$A(x+1) + B = x$$

$$Ax + A + B = x$$

$$\begin{cases} A = 1 \\ A + B = 0 \end{cases} \rightarrow \begin{cases} A = 1 \\ B = -1 \end{cases}$$

$$\begin{cases} A = 1 \\ A + B = 0 \end{cases} \to \begin{cases} A = 1 \\ B = -1 \end{cases}$$
$$\int \frac{x}{(x+1)^2} dx = \int \frac{1}{x+1} dx - \int \frac{1}{(x+1)^2} dx = \log|x+1| + \frac{1}{x+1} + c, c \in \mathbb{R}$$

Integrali impropri

Sia $f: [a, +\infty) \to \mathbb{R}$ continua

Se $\exists \lim_{c \to +\infty} \int_a^c f(x) dx$, si dice che f è integrabile in $[a, +\infty)$ e si pone

$$\int_{a}^{+\infty} f(x) \ dx = \lim_{c \to +\infty} \int_{a}^{c} f(x) \ dx$$

Sia $f: (-\infty, b] \to \mathbb{R}$ continua

Se $\exists \lim_{c \to -\infty} \int_{c}^{b} f(x) dx$ si dice che f è integrabile in $(-\infty, b]$ e si pone

$$\int_{-\infty}^{b} f(x) \ dx = \lim_{c \to -\infty} \int_{c}^{b} f(x) \ dx$$

Sia $f:(-\infty,\infty)\to\mathbb{R}$ continua

Se $\exists \lim_{R \to +\infty} \int_{-T}^{R} f(x) dx$ si dice che f è integrabile in $(-\infty, +\infty)$ e si pone

$$\int_{-\infty}^{+\infty} f(x) \ dx = \lim_{R,T \to +\infty} \int_{-T}^{R} f(x) \ dx$$

In tutti e tre i casi se il valore L del limite è finito, si dirà che l'integrale improprio di f è convergente, mentre se il valore L è infinito si dirà che l'integrale improprio di f è divergente.

1)
$$\int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx = \lim_{c \to +\infty} \int_{1}^{c} \frac{1}{\sqrt{x}} dx = \lim_{c \to +\infty} 2\sqrt{x} \Big|_{1}^{c} = \lim_{c \to +\infty} (2\sqrt{c} - 2) = +\infty \text{ DIVERGENTE}$$

2)
$$\int_{1}^{+\infty} \frac{1}{x^{2}} dx = \lim_{c \to +\infty} \int_{1}^{c} \frac{1}{x^{2}} dx = \lim_{c \to +\infty} -\frac{1}{x} \Big|_{1}^{c} = \lim_{c \to +\infty} \left(-\frac{1}{c} + 1\right) = 1 \text{ CONVERGENTE}$$
3)
$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} +\infty \text{ se } \alpha \le 1 \\ \frac{1}{\alpha - 1} \text{ se } \alpha > 1 \end{cases}$$

3)
$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} +\infty \text{ se } \alpha \le 1 \\ \frac{1}{\alpha - 1} \text{ se } \alpha > 1 \end{cases}$$

4)
$$\int_{a}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} +\infty & \text{se } \alpha \le 1 \\ \frac{a^{1-\alpha}}{\alpha - 1} & \text{se } \alpha > 1 \end{cases}$$

Criterio del confronto per integrali impropri I

Siano $f, g: [a, +\infty) \to \mathbb{R}$ continue e tali che

$$0 \le f(x) \le g(x) \ \, \forall \, x \in [a, +\infty)$$

Allora

a) Se
$$\int_a^{+\infty} g(x) dx$$
 converge $\Rightarrow \int_a^{+\infty} f(x) dx$ converge

b)
$$\int_{a}^{+\infty} f(x) dx$$
 diverge $\Rightarrow \int_{a}^{+\infty} g(x) dx$ diverge

Dimostrazione.

 $f \in g$ sono intergabili in [a, c] e si ha che

$$0 \le \int_a^c f(x) \; dx \le \int_a^c g(x) \; dx \; \forall \; c \in [a, +\infty)$$

Dalla monotonia dell'integrale definito.

Passando al limite per $c \to +\infty$ si ha che

$$0 \le \lim_{c \to +\infty} \int_{a}^{c} f(x) \, dx \le \lim_{c \to +\infty} \int_{a}^{c} g(x) \, dx$$

a) Se
$$\lim_{c \to +\infty} \int_a^c g(x) dx$$
 è finito, lo è pure $\lim_{c \to +\infty} \int_a^c f(x) dx$

a) Se
$$\lim_{c \to +\infty} \int_a^c g(x) \, dx$$
 è finito, lo è pure $\lim_{c \to +\infty} \int_a^c f(x) \, dx$
b) Se $\lim_{c \to +\infty} \int_a^c f(x) \, dx$ è infinito, lo è pure $\lim_{c \to +\infty} \int_a^c g(x) \, dx$

Appunti di Analisi I di Arlind Pecmarkaj

Esempi

1)
$$\int_{1}^{+\infty} e^{-x^{2}} dx$$

 $0 < e^{-x^{2}} \le e^{-x}$
 $\lim_{c \to +\infty} \int_{1}^{c} e^{-x} dx = \lim_{c \to +\infty} [-e^{-c} + e^{-1}] = \frac{1}{e}$
Dunque $\int_{1}^{+\infty} e^{-x^{2}} dx$ è convergente.

Dunque
$$\int_{1}^{+\infty} e^{-x^2} dx$$
 è convergente.

2)
$$\int_{\pi}^{+\infty} \frac{1}{x(\cos^2 \sqrt{x} + 2)} dx$$

$$-1 \le \cos \sqrt{x} \le 1$$

$$0 \le \cos^2 \sqrt{x} \le 1$$

$$2 \le \cos^2 \sqrt{x} + 3 \le 3$$

$$0 < 2x \le x(\cos^2 \sqrt{x} + 2) \le 3x \text{ in } [\pi, +\infty)$$

$$0 < \frac{1}{3x} \le \frac{1}{x(\cos^2 \sqrt{x} + 2)} \le \frac{1}{2x}$$

 $\int_{\pi}^{+\infty} \frac{1}{3x} dx$ è divergente dunque $\int_{\pi}^{+\infty} \frac{1}{x(\cos^2 \sqrt{x} + 2)} dx$ è divergente.

Criterio del confronto asintotico I

Siano $f, g: [a, +\infty) \to \mathbb{R}$ continue e tali che $\forall x \in [a, +\infty)$

$$0 \le f(x), g(x) > 0$$

Е

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L \in \mathbb{R} \setminus \{0\}$$

Allora

$$\int_{a}^{+\infty} f(x) dx \text{ diverge (converge)} \Leftrightarrow \int_{a}^{+\infty} g(x) dx \text{ diverge (converge)}$$

Dimostrazione.

Dalla definizione di limite si ha che con $\varepsilon = \frac{l}{2} > 0$, $\exists M > 0 : \forall x > M$

$$\frac{l}{2} = l - \frac{l}{2} < \frac{f(x)}{g(x)} < l + \frac{l}{2} = \frac{3}{2}l$$

Poiché g(x) > 0 in $[a, +\infty)$ si ha che $\forall x > M$

$$0 < \frac{l}{2}g(x) < f(x) < \frac{3l}{2}g(x)$$

La tesi segue applicando il teorema del confronto.

1)
$$\int_{1}^{+\infty} \frac{x^{2}+1}{x^{4}+2} dx$$

$$\frac{x^{2}+1}{x^{4}+2} \cong \frac{x^{2}}{x^{4}} = \frac{1}{x^{2}}$$
Verifica:
$$\lim_{x \to +\infty} (\frac{x^{2}+1}{x^{4}+2} \cdot x^{2}) = 1$$

$$\int_{1}^{+\infty} \frac{1}{x^{2}} dx \text{ è convergente perciò lo è anche } \int_{1}^{+\infty} \frac{x^{2}+1}{x^{4}+2} dx$$

Appunti di Analisi I di Arlind Pecmarkaj

2)
$$\int_{1}^{+\infty} \frac{1}{\sqrt{x^{2}+1}} dx$$

$$\frac{1}{\sqrt{x^{2}+1}} \cong \frac{1}{\sqrt{x^{2}}} = \frac{1}{x}$$
Verifica:
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x^{2}+1}} \cdot x = \lim_{x \to +\infty} \frac{1}{x\sqrt{1+\frac{1}{x^{2}}}} = 1$$

$$\int_{1}^{+\infty} \frac{1}{x} dx \text{ è divergente, dunque } \int_{1}^{+\infty} \frac{1}{\sqrt{x^{2}+1}} dx \text{ è divergente.}$$

Nota.

Se $\int_{a}^{+\infty} |f(x)| dx$ converge allora $\int_{a}^{+\infty} f(x) dx$ converge.

Segue da $\left| \int_{a}^{+\infty} f(x) dx \right| \le \int_{a}^{+\infty} |f(x)| dx$

Osservazione.

Sia $f:[a,+\infty)\to\mathbb{R}$ continua e non negativa e che $\lim_{x\to 0}f(x)\neq 0$

$$1) \lim_{x \to +\infty} f(x) = +\infty$$

$$\forall M > 0 \exists N = N(M) > 0 : f(x) > M \ \forall x > N$$
$$\Rightarrow \int_{N}^{+\infty} f(x) \ dx > \int_{N}^{+\infty} M \ dx$$

$$2) \lim_{x \to +\infty} f(x) = L \in \mathbb{R} \setminus \{0\}$$

Per
$$\varepsilon = \frac{L}{2} \exists N > 0 : \frac{L}{2} = L - \frac{L}{2} < f(x) < L + \frac{L}{2} \forall x > N$$

$$f(x) > \frac{L}{2} \Rightarrow \int_{a}^{+\infty} f(x) dx > \int_{a}^{+\infty} \frac{L}{2} dx$$

Ne deriva che se $\exists \lim_{x \to +\infty} f(x)$ ed è un valore diverso da 0 allora $\int_a^{+\infty} f(x) dx$ è divergente.

Integrali impropri di funzioni non limitate in un intervallo

Sia $f:(a,b] \to \mathbb{R}$, illimitata per $x \to a^+$, continua in (a,b]

Se $\exists \lim_{c \to a^+} \int_c^b f(x) dx$ si dice che f è integrabile in (a, b] e si pone

$$\int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx$$

Sia $f:[a,b)\to\mathbb{R}$, illimitata per $x\to b^-$, continua in [a,b)

Se $\exists \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx$ si dice che f è integrabile in [a, b) e si pone

$$\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx$$

Esempi

1)
$$\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{c \to 0^+} \int_c^1 \frac{1}{\sqrt{x}} dx \lim_{c \to 0^+} 2\sqrt{x} \Big|_c^1 = \lim_{c \to 0^+} \left(2 - 2\sqrt{c}\right) = 2$$

2)
$$\int_0^1 \frac{1}{x^2} dx = \lim_{c \to 0^+} \int_c^1 \frac{1}{x^2} dx = \lim_{c \to 0^+} -\frac{1}{x} \Big|_c^1 = \lim_{c \to 0^+} \left(-1 + \frac{1}{c}\right) = +\infty$$

Si ha che

a)
$$\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} se \ \alpha < 1 \ convergente \\ se \ \alpha \ge 1 \ divergente \end{cases}$$

a)
$$\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} se \ \alpha < 1 \ convergente \\ se \ \alpha \ge 1 \ divergente \end{cases}$$
b)
$$\int_a^b \frac{1}{(x-a)^{\alpha}} = \begin{cases} se \ \alpha < 1 \ convergente \\ se \ \alpha \ge 1 \ divergente \end{cases}$$

Criterio del confronto II

Siano $f, g: (a, b] \to \mathbb{R}$, illimitate per $x \to a^+$ e continue e tali che $0 \le f(x) \le g(x)$

Allora

- 1) $\int_a^b g(x) dx$ converge $\Rightarrow \int_a^b f(x) dx$ converge
- 2) $\int_a^b f(x) dx$ diverge $\Rightarrow \int_a^b g(x) dx$ diverge

Criterio del confronto asintotico II

Siano $f, g: (a, b] \to \mathbb{R}$, continue e tali che $\forall x \in (a, b]$

$$0 \le f(x), g(x)$$

Se

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = l \in \mathbb{R} \setminus \{0\}$$

Allora

$$\int_{a}^{b} f(x) dx \text{ converge (diverge)} \Leftrightarrow \int_{a}^{b} g(x) dx \text{ converge (diverge)}$$

Esempi.

 $1) \int_0^1 \frac{1}{\sqrt{x}} \sin^2 \frac{1}{x} dx$

$$0 \le \frac{1}{\sqrt{x}} \sin^2 x \le \frac{1}{\sqrt{x}}$$

 $\int_0^1 \frac{1}{\sqrt{x}} dx \text{ converge perciò } \int_0^1 \frac{1}{\sqrt{x}} \sin^2 \frac{1}{x} dx \text{ è convergente.}$

2) $\int_0^1 \frac{x^2+1}{x^2} dx$

$$0 < \frac{1}{x^2} \le \frac{x^2 + 1}{x^2}$$

 $\int_0^1 \frac{1}{x^2} dx$ diverge dunque $\int_0^1 \frac{x^2+1}{x^2} dx$ è divergente.

Numeri complessi

Un numero complesso è un numero z della forma

$$z = a + ib$$

Dove $a, b \in \mathbb{R}$ e i è l'unità immaginaria definita dalla proprietà

$$i^2 = -1$$

Si ha che

- a = Re(z) è la parte reale di z.
- b = Im(z) è la parte immaginaria di z
- $Re(z), Im(z) \in \mathbb{R}$

L'insieme dei numeri complessi C è definito come

$$\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}\$$

 $\mathbb{R} \subseteq \mathbb{C}$ poiché ogni numero $a \in \mathbb{R}$ equivale a $a + 0 \cdot i$ (b = 0).

Rappresentazione dei numeri complessi.

La notazione z = a + ib è la forma algebrica di un numero complesso.

Però z può essere rappresentato come z=(a,b) che è la forma in termini di coppia di numeri reali. Questa rappresentazione ci fornisce delle coordinate di un piano. Più precisamente il piano complesso o di Argand-Gauss che ha come asse delle ascisse l'asse reale, mentre come asse delle ordinate l'asse immaginario.

Si ha che se $a = 0 : z = ib, b \in \mathbb{R}$ allora z è un numero immaginario puro.

Modulo di z

Sia $z \in \mathbb{C}$ allora

$$|z| = \sqrt{a^2 + b^2}$$

Ovvero il modulo di un numero complesso è la sua distanza dall'origine del piano di Argand-Gauss.

Se $z \in \mathbb{R}$ allora z = a dunque $|z| = \sqrt{a^2} = |a|$.

Coniugato di un numero complesso

Sia z = a + ib si definisce conjugato di z il numero $\bar{z} = a - ib$ o $\bar{z} = (a, -b)$

Note.

- 1. $|z| \in \mathbb{R}, \forall z \in \mathbb{C}$
- 2. $|z| \ge 0, \forall z \in \mathbb{C}$
- 3. $|z| = 0 \Leftrightarrow z = 0$
- 4. $|z| = |\bar{z}|, \forall z \in \mathbb{C}$
- 5. $z = \bar{z} \iff z \in \mathbb{R}$
- 6. $z = -\bar{z} \iff z$ è un immaginario puro.

Operazioni tra numeri complessi

Siano $z, w \in \mathbb{C}$.

$$z = a + ib$$

$$w = c + id$$

Con $a, b, c, d \in \mathbb{R}$.

Somma e sottrazione.

Somma e sottrazione sono definiti in questo modo

$$z \oplus w = (a+c) + i(b+d)$$

$$z \ominus w = (a - c) + i(b - d)$$

Se $z, w \in \mathbb{R}$ allora z = a e w = c quindi $z \oplus w = a + c$. Vale lo stesso per \ominus . Si ha che \oplus e \ominus estendono + e - di \mathbb{R} dunque è possibile non usare il tondino.

Proprietà.

1.
$$z + \overline{z} = 2 \cdot Re(z) = 2 \cdot Re(\overline{z})$$

2.
$$z - \overline{z} = 2 \cdot iIm(z) = 2 \cdot iIm(\overline{z})$$

3.
$$\overline{z \pm w} = \overline{z} + \overline{w}$$

Prodotto

$$z \boxdot w = (a+ib) \boxdot (c+id)$$

= $ac + iad + ibc - bd$
= $(ac - bd) + i(ad + bc)$

Proprietà.

1.
$$z \cdot \bar{z} = (a + ib)(a - ib) = a^2 - iab + iab + b^2 = a^2 + b^2 = |z|^2 \ \forall \ z \in \mathbb{C}$$

2.
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w} \ \forall z, w \in \mathbb{C}$$

In particulare se $z = \alpha \in \mathbb{R}$ si ha che $\overline{\alpha \cdot w} = \alpha \cdot \overline{w}$

Divisione

Sia $w \neq 0$.

Si ha che

$$\frac{1}{w} = \frac{1}{c+id} = \frac{1}{c+id} \cdot \frac{c-id}{c-id} = \frac{c-id}{c^2+d^2} = \frac{\overline{w}}{|w|^2}$$

Dunque

$$\frac{z}{w} = z \cdot \frac{1}{w} = \frac{z \cdot \overline{w}}{|w|^2}$$

Proprietà.

$$\overline{\left(\frac{z}{w}\right)} = \overline{\left(\frac{1}{|w|^2} \cdot z\overline{w}\right)} = \frac{1}{|w|^2} \cdot \overline{z} \, w = \frac{\overline{z}}{\overline{w}}$$

Forma trigonometrica

Un numero complesso z può essere scritto nella forma trigonometrica

$$z = \rho(\cos\theta + i\sin\theta)$$

Dove

- $\rho = |z|$
- $\theta = \arg(z)$ o argomento di 0 ovvero l'angolo creato dal segmento |z| e l'asse reale.

Poiché seno e coseno sono funzioni periodiche possiamo avere più valori $di \theta$ per un unico numero complesso z.

Si ha che per $z = (a, b) \in \mathbb{C}$

- $a = \rho \cos \theta$
- $b = \rho \sin \theta$
- $\rho = \sqrt{a^2 + b^2}$

Inoltre l'angolo θ deve essere tale che $-\cos\theta = \frac{a}{\sqrt{a^2+b^2}}$ $-\sin\theta = \frac{b}{\sqrt{a^2+b^2}}$

Forma esponenziale complessa

Dalle formule di Eulero si ha che

$$e^{i\theta} = \cos \theta + i \sin \theta$$
$$e^{-i\theta} = \cos \theta - i \sin \theta$$

Dunque un numero complesso z può essere scritto nella forma esponenziale complessa

$$z = \rho e^{i\theta}$$

Esempi

1)
$$z = 2$$

 $\rho = 2$
 $\theta = 0$
 $z = -2$
 $\rho = 2$
 $\theta = \pi$
 $\Rightarrow z = 2(\cos 0 + i \sin 0)$
 $z = -2$
 $\theta = \pi$
2) $z = 1 + i$
 $a = b = 1$
 $\rho = \sqrt{2}$
 $\theta = \frac{\pi}{4}$ $\Rightarrow z = \sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$

Appunti di Analisi I di Arlind Pecmarkaj

3)
$$z = i$$

 $\rho = 1$
 $\theta = \frac{\pi}{2} \rightarrow z = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$

4) $z \in \mathbb{C}$ tale che |z| = 1 e $Arg(z) = \frac{3}{4}\pi$ Da Arg(z) si ha che a < 0 e b > 0

$$\begin{cases} a = -b \\ a^2 + b^2 = 1 \end{cases} \to \begin{cases} b = -a \\ 2a^2 = 1 \end{cases} \to \begin{cases} b = \frac{\sqrt{2}}{2} \\ a = -\frac{\sqrt{2}}{2} \end{cases}$$
$$z = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

Formule di De Moivre

Formula di De Moivre per il prodotto e il rapporto.

Siano

$$z_1 = \rho_1(\cos\theta_1 + i\sin\theta_1)$$

$$z_2 = \rho_2(\cos\theta_2 + i\sin\theta_2)$$

Si ha che

$$\begin{split} z_1 \cdot z_2 &= \rho_1(\cos\theta_1 + i\sin\theta_1) \cdot \rho_2(\cos\theta_2 + i\sin\theta_2) = \\ &= \rho_1\rho_2(\cos\theta_1\cos\theta_2 \\ &+ i\cos\theta_1\sin\theta_2 \\ &+ i\sin\theta_1\cos\theta_2 \\ &- \sin\theta_1\sin\theta_2) = \\ &= \rho_1\rho_2[(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\cos\theta_1\sin\theta_2 + \sin\theta_1\cos\theta_2)] \end{split}$$

Dunque

$$z_1 \cdot z_2 = \rho_1 \rho_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$

Se $z_2 \neq 0$ analogamente si ha che

$$\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right]$$

Esempio

$$z_{1} = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

$$z_{2} = 7\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$z_{1} \cdot z_{2} = 21\left[\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4} + \frac{\pi}{3}\right)\right] = 21\left(\cos\frac{7}{12}\pi + i\sin\frac{7}{12}\pi\right)$$

Formula di De Moivre per le potenze

Sia
$$z = \rho(\cos\theta + i\sin\theta)$$
 allora

$$z^n = \rho^n [\cos(n\theta) + i \sin(n\theta)], n \in \mathbb{N}$$

Esempio

$$w = (1+i)^{7}$$

$$z = 1+i \to z = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$$

$$w = z^{7} = (\sqrt{2})^{7}(\cos\frac{7}{4}\pi + i\sin\frac{7}{4}\pi) = 8\sqrt{2}(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}) = 8 - 8i$$

Radici n-sime di un numero complesso

Siano $w \in \mathbb{C}, n \in \mathbb{N}$.

Si definisce radice n-sima di w il numero complesso z tale che

$$z^n = w$$

Teorema.

Sia $w \in \mathbb{C} \setminus \{0\}$ con $w = \rho(\cos \theta + i \sin \theta)$ e sia $n \in \mathbb{N}$.

Allora esistono n radici n-sime di w date da

$$z_k = \rho_k(\cos\theta_k + i\sin\theta_k)$$

Con

$$\rho_k = \rho^{\frac{1}{n}}$$

E

$$\theta_k = \frac{\theta + 2k\pi}{n} con k = 0, 1, \dots, n-1$$

Dimostrazione.

Basta provare che $z_k^n = w \ \forall \ k$.

È conseguenza della formula di De Moivre per le potenze.

Esempi

1)
$$\sqrt[6]{i}$$

 $n = 6$
 $w = 1 = 1(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$
 $\rho_k = \sqrt[6]{1} = 1 e \theta_k = \frac{\frac{\pi}{2} + 2k\pi}{6} con k = 0, 1, ..., 5$

Si ha dunque che

Si ha dunque che
$$z_0 = \cos \frac{\pi}{12} + \sin \frac{\pi}{12}$$

$$z_1 = \cos \frac{5}{12}\pi + \sin \frac{5}{12}\pi$$

$$z_2 = \cos \frac{3}{4}\pi + \sin \frac{3}{4}\pi$$

$$z_3 = \cos \frac{13}{12}\pi + \sin \frac{13}{12}\pi$$

$$z_4 = \cos \frac{17}{12}\pi + \sin \frac{17}{12}\pi$$

$$z_5 = \cos \frac{7}{4}\pi + \sin \frac{7}{4}\pi$$

2)
$$\sqrt[3]{-1}$$

Sappiamo che in $\sqrt[3]{-1} = -1$ in \mathbb{R}

Dato che $\rho = 1$ le altre due soluzioni stanno nella circonferenza unitaria con origine 0 e che tutte le soluzioni sono equidistanti tra di loro.

Perciò le soluzioni distano tra di loro nella circonferenza per $\frac{2}{3}\pi$. Poiché -1 ha $\theta=\pi$ si ha che le altre due soluzione hanno $\theta = \frac{\pi}{3}$ e $\theta = \frac{5}{3}\pi$.

Dunque le soluzioni sono

$$\begin{split} z_0 &= -1 \\ z_1 &= \frac{1}{2} + i \frac{\sqrt{3}}{2} \\ z_2 &= \frac{1}{2} - i \frac{\sqrt{3}}{2} \end{split}$$

Teorema fondamentale dell'algebra

Sia $n \in \mathbb{N}$ e $a_0, a_1, ..., a_n \in \mathbb{C}$ con $a_n \neq 0$ Allora l'equazione algebrica

$$a_0 + a_1 z + \dots + a_n z^n = 0^{(1)}$$

Ammette n soluzioni in $\mathbb C$ contati con le loro molteciplità.

Se $a_i \in \mathbb{R}$, i = 0, ..., n allora vale il seguente risultato

z soluzione di (1)
$$\Leftrightarrow \bar{z}$$
 soluzione di (1)

Come conseguenza si ha che un equazione algebrica a coefficienti in $\mathbb R$ di grado dispari ammette sempre una soluzione reale.

Serie numeriche

Sia $(a_n)_n$ una successione numerica $(a_n \in \mathbb{R} \ \forall \ n \in \mathbb{N})$ si definisce serie numerica di termine generale a_n e si indica con il simbolo

$$\sum_{n=1}^{\infty} a_n$$

La somma di tutti i termini della successione $(a_n)_n$ i.e.

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

Diremo che

$$S_1 = a_1$$

$$S_2 = a_1 + a_2$$

$$S_3 = a_1 + a_2 + a_3 = S_2 + a_3$$

...

$$S_n = a_1 + \dots + a_n = S_{n-1} + a_n$$

 $(S_n)_n$ è la successione delle somme parziali o delle ridotte della serie $\sum_{n=1}^\infty a_n$ Se $\exists \lim_{n \to +\infty} S_n = S$ si dice che

- a) Se $S \in \mathbb{R}$, la serie $\sum_{n=1}^{\infty} a_n$ converge ad S.
- b) Se $S = \pm \infty$, la serie $\sum_{n=1}^{\infty} a_n$ diverge a $\pm \infty$

Se $\nexists \lim_{n \to +\infty} S_n$ si dice che la serie $\sum_{n=1}^{\infty} a_n$ è indeterminata.

Se una serie converge o diverge si dice che è regolare.

Esempi

1)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 (serie di Mengoli-Cauchy)

$$S_n = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)}$$

Si ha che

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$S_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

2) $\sum_{n=1}^{\infty} (-1)^n$ (serie a segni alterati)

$$S_1 = -1$$

$$S_2 = -1 + 1 = 0$$

$$S_3 = S_2 - 1 = -1$$

$$S_4 = S_3 + 1 = 0$$

$$S_{2n} = 0, S_{2n+1} = -1 \ \forall \ n$$

$$\Rightarrow \exists \lim_{n \to +\infty} S_n \Rightarrow \sum_{n=1}^{\infty} (-1)^n \text{ indeterminata}$$

Condizione necessaria per la convergenza di una serie

Sia

$$\sum_{n=1}^{\infty} a_n$$

Convergente. Allora

$$\lim_{n\to+\infty}a_n=0$$

Dimostrazione.

Poiché $\sum_{n=1}^{\infty} a_n$ converge si ha che $\lim_{n \to +\infty} S_n = S \in \mathbb{R}$

Allora

$$S_n = S_{n-1} + a_n$$

E dunque

$$a_n = S_n - S_{n-1}$$

 $a_n = S_n - S_{n-1}$ Poiché per $n \to +\infty$ S_n e S_{n+1} tendono a $S \in \mathbb{R}$, a_n tende a 0.

Il viceversa non vale, basta considerare la serie armonica.

Teorema di regolarità di una serie

Sia

$$\sum_{n=1}^{\infty} a_n, a_n \ge 0 \ (\le 0) \ \forall n \in \mathbb{N}$$

Allora tale serie è regolare.

Dimostrazione.

Abbiamo che

$$S_n = S_{n-1} + a_n$$

 $S_n=S_{n-1}+a_n$ Poiché $a_n\geq 0$ allora $S_n\geq S_n$ e dunque $(S_n)_n$ è monotona crescente e perciò $\exists \lim_{n\to +\infty} S_n$.

Divergenza della serie armonica

Consideriamo la serie armonica

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Si ha che

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ge \int_1^{n+1} \frac{1}{x} dx = \log x \Big|_1^{n+1} = \log (n+1)$$

E dunque

$$\Rightarrow S_n \ge \log(n+1) \ \forall \ n \in \mathbb{N}$$

$$\Rightarrow \lim_{n \to +\infty} S_n \ge \lim_{n \to +\infty} \log(n+1) = +\infty$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

Serie armonica generalizzata.

Sia

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

Con $\alpha \in \mathbb{R}$.

Si ha che

- Se $\alpha \leq 1$, allora la serie diverge.
- Se $\alpha \geq 1$, allora la serie converge.

Serie geometrica

Siano $a, q \in \mathbb{R}$, si definisce serie geometrica di ragione q la serie

$$\sum_{n=1}^{\infty} aq^n$$
 Dove $aq^n=(a_n)_n$, $a,q\neq 0$ e $\frac{a_{n+1}}{a_n}=\frac{aq^{n+1}}{aq^n}=q$ \forall $n\in\mathbb{N}$

Si ha che

$$S_n = a + aq + \dots + aq^n = \begin{cases} a \cdot \frac{1 - q^{n+1}}{1 - q} & \text{se } q \neq 1 \\ a(n+1) & \text{se } q = 1 \end{cases}$$

E dunque

$$\sum_{n=0}^{\infty} aq^n = \begin{cases} (sgn \ a) \infty \ se \ q \ge 1 \\ \not\exists \ se \ q \le 1 \\ \frac{a}{1-q} \ se \ |q| < 1 \end{cases}$$

Criterio del confronto per serie a termini non negativi

Siano

$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$$

Tali che $a_n \leq b_n$, $a_n \geq 0 \ \forall \ n \in \mathbb{N}$

Allora

- 1) Se $\sum_{n=1}^{\infty} b_n$ converge allora $\sum_{n=1}^{\infty} a_n$ converge. 2) Se $\sum_{n=1}^{\infty} a_n$ diverge allora $\sum_{n=1}^{\infty} b_n$ diverge.

Dimostrazione.

Si ha che

$$\begin{split} 0 \leq A_n &= a_1 + \dots + a_n \leq b_1 + \dots + b_n = B_n \\ &\Rightarrow 0 \leq \lim_{n \to +\infty} a_n \leq \lim_{n \to +\infty} b_n \end{split}$$

Segue la tesi

Esempio

$$\begin{split} & \sum_{n=1}^{\infty} \frac{1}{2^n + 1} \\ & \text{Si ha che } \frac{1}{2^n + 1} < \frac{1}{2^n} \\ & \sum_{n=1}^{\infty} \frac{1}{2^n} \text{converge} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{2^n + 1} \text{converge} \end{split}$$

Criterio del confronto asintotico

Siano

$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$$

Con $a_n \ge 0$, $b_n \ge 0 \ \forall \ n \in \mathbb{N}$

$$\lim_{n\to +\infty}\frac{a_n}{b_n}=L\in\mathbb{R}\setminus\{0\}$$

Allora $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ hanno lo stesso carattere.

Criterio del rapporto

Sia

$$\sum_{n=1}^{\infty} a_n, a_n > 0 \ \forall \ n \in \mathbb{N}$$

Supponiamo che $\exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L$

Si ha che

- a) Se L < 1 allora la serie converge.
- b) Se L > 1 allora la serie diverge.

Esempi.

1) $\sum_{n=1}^{\infty} \frac{1}{n!}$ è convergente poiché

$$\frac{a_{n+1}}{a_n} = \frac{1}{(n+1)!} \cdot n! = \frac{n!}{(n+1) \cdot n!} \xrightarrow{n \to +\infty} 0$$

2) $\sum_{n=1}^{\infty} \frac{e^n}{n}$ è divergente poiché

$$\frac{a_{n+1}}{a_n} = \frac{e^{n+1}}{n+1} \cdot \frac{n}{e^n} \to e > 1$$

Criterio della radice

Sia

$$\sum_{n=1}^{\infty} a_n, a_n \ge 0 \ \forall \ n \in \mathbb{N}$$

Supponiamo che $\exists \lim_{n \to +\infty} \sqrt[n]{a_n} = L$

Si ha che

- a) Se L < 1 la serie converge.
- b) Se L > 1 la serie diverge.

Esempi

1)
$$\sum_{n=1}^{\infty} \frac{n^n}{2^n}$$
 è divergente poiché
$$\sqrt[n]{a_n} = \sqrt[n]{\frac{n^n}{2^n}} = \frac{n}{2} \longrightarrow +\infty$$

2)
$$\sum_{n=1}^{+\infty} \left(\frac{n}{n+1}\right)^{n^2}$$
 è convergente poiché
$$\sqrt[n]{\left(\frac{n}{n+1}\right)^{n^2}} = \left(\frac{n}{n+1}\right)^n = \left(\frac{1}{\frac{n+1}{n}}\right)^n = \frac{1}{\left(1+\frac{1}{n}\right)^n} \longrightarrow \frac{1}{e} < 1$$

Convergenza assoluta di una serie

Sia

$$\sum_{n=1}^{\infty} a_n$$

Si dice che la serie converge assolutamente se la sua serie dei moduli

$$\sum_{n=1}^{\infty} |a_n|$$

È convergente.

Esempio

Si ha

$$\sum_{n=2}^{\infty} \frac{\sin(\log n)}{n^2 \cdot \log n}$$

La serie dei suoi moduli è

$$\sum_{n=1}^{\infty} \frac{|\sin(\log n)|}{n^2 \cdot \log n}$$

Poiché $|\sin x| \le |x|$ si ha che

$$\frac{|\sin(\log n)|}{n^2 \cdot \log n} \le \frac{|\log n|}{n^2 \cdot \log n} = \frac{1}{n^2}$$

Poiché

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

È convergente allora

$$\sum_{n=2}^{\infty} \frac{\sin(\log n)}{n^2}$$

È assolutamente convergente.

Teorema.

Se $\sum_{n=1}^{\infty} a_n$ è assolutamente convergente allora è convergente.

Il viceversa non vale. Basta considerare

 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ che è convergente, ma la sua serie dei moduli $\sum_{n=1}^{\infty} \frac{1}{n}$ è divergente.

Serie a segni alternati

Una serie a segni alternati è una serie del tipo

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

Oppure

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$

 $\operatorname{Con} a_n \geq 0 \ \forall \ n \in \mathbb{N}$

Criterio di Leibnitz

Sia

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n, a_n \ge 0 \ \forall \ n \in \mathbb{N}$$

Se

- a) $\lim_{n\to+\infty}a_n=0$
- b) $(a_n)_n$ è decrescente.

Allora la serie data è convergente. Inoltre se S indica la somma della serie si ha che

$$|S_n - S| \le a_{n+1} \ \forall \ n \in \mathbb{N}$$

Esempio

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Si ha che $a_n = \frac{1}{n} \to 0$ per $n \to +\infty$.

Inoltre si ha che $n < n+1 \Rightarrow a_n = \frac{1}{n} > \frac{1}{n+1} = a_{n+1} \Rightarrow (a_n)_n$ è decrescente.

Dunque la serie converge per il criterio di Leibnitz.

Esercizi riepilogativi.

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$$

Si ha che $a_n = \frac{1}{n!} \to 0$ per $n \to +\infty$

Inoltre $(n+1)! = (n+1) \cdot n! > n! \Rightarrow a_{n+1} = \frac{1}{(n+1)!} < \frac{1}{n!} = a_n \Rightarrow (a_n)_n$ è decrescente.

Dunque la serie converge per il criterio di Leibnitz.

- 2) $\sum_{n=1}^{\infty} 7$ diverge
- 3) $\sum_{n=1}^{\infty} \frac{2n^2}{3}$

Si ha che $(a_n)_n$ è regolare e $\lim_{n\to+\infty}\frac{2n^2}{3}=+\infty\neq 0$ dunque la serie diverge.

4)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n-1}{n}$$

Si ha che la serie dei moduli $\sum_{n=1}^{\infty} \frac{n-1}{n}$ è divergente.

Possiamo dire solo che $\sum_{n=1}^{\infty} (-1)^n \frac{n-1}{n}$ non è assolutamente convergente.

Appunti di Analisi I di Arlind Pecmarkaj

5)
$$\sum_{n=1}^{\infty} \frac{t^n}{2^n \log(n+1)}$$
, $t > 0$

Si ha che

$$\frac{a_{n+1}}{a_n} = \frac{t^{n+1}}{2^{n+1}\log(n+2)} \cdot \frac{2^n\log(n+1)}{t^n} = \frac{t\log(n+1)}{2\log(n+2)} \to \frac{t}{2} \text{ per } n \to +\infty \Rightarrow \begin{cases} \frac{t}{2} > 1 \text{ la serie diverge} \\ \frac{t}{2} < 1 \text{ la serie converge} \end{cases}$$

Con t = 2 la serie diventa

$$\sum_{n=1}^{\infty} \frac{1}{\log(n+1)}$$

$$\log(n+1) < n+1 \text{ dunque } \frac{1}{\log(n+1)} > \frac{1}{n+1}$$

$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$
 diverge $\sum_{n=1}^{\infty} \frac{1}{\log(n+1)}$ diverge.

Ricapitolando

$$\sum_{n=1}^{\infty} \frac{t^n}{2^n \log(n+1)} = \begin{cases} converge \ se \ 0 < t < 2\\ diverge \ se \ t \ge 2 \end{cases}$$

Funzioni asintotiche

Siano $f, g: D \to \mathbb{R}, D \subseteq \mathbb{R}, x_0 \in \mathfrak{D}(D)$ $f \in g$ sono asintotiche per $x \to x_0$ se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = L \in \mathbb{R}$$

Oppure

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

E si scrive $f \sim g \text{ per } x \rightarrow x_0$.

La relazione asintotico è una relazione di equivalenza, infatti essa è

- Riflessiva: $f \sim f \text{ per } x \rightarrow x_0$
- Simmetrica: $f \sim g \text{ per } x \to x_0 \Rightarrow g \sim f \text{ per } x \to x_0$
- Transitiva: $f \sim g \in g \sim h \text{ per } x \rightarrow x_0 \Rightarrow f \sim h \text{ per } x \rightarrow x_0$

Proposizione. Siano $f, g: D \to \mathbb{R}, D \in \mathbb{R}, x_0 \in \mathfrak{D}(D)$

- a) Se $f \sim g$ per $x \to x_0$ allora f e g hanno lo stesso limite finito per $x \to x_0$ oppure f e g hanno lo stesso limite infinito per $x \to x_0$ oppure f e g non ammettono limite per $x \to x_0$
- b) Se $f \sim g$ e $h \sim r$ per $x \to x_0$ allora $f \cdot h \sim g \cdot r$ e $\frac{f}{h} \sim \frac{g}{r}$ per $x \to x_0$

Dimostrazione.

a) Poiché $f \sim g$ per $x \to x_0$ si ha che $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$.

Supponiamo che $\lim_{x \to x_0} f(x) = L \in \mathbb{R} \cup \{\pm \infty\}$

Si ha che
$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} \left(\frac{g(x)}{f(x)} \cdot f(x) \right) = L$$

Supponiamo che $\nexists \lim_{x \to x_0} f(x)$

Supponiamo per assurdo che $\exists \lim_{x \to x_0} g(x) = L \in \mathbb{R} \cup \{\pm \infty\}$

Si ha che $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{f(x)}{g(x)} \cdot g(x) = L$, assurdo poiché $\nexists \lim_{x \to x_0} f(x)$

b) Si ha che

$$\lim_{x \to x_0} \frac{f(x) \cdot h(x)}{g(x) \cdot r(x)} = 1 \Rightarrow f \cdot h \sim g \cdot r \text{ per } x \to x_0$$

In generale

$$f + h \sim g + r \operatorname{per} x \to x_0$$

Non vale.

o-piccolo

Siano $f, g: D \to \mathbb{R}, D \subseteq R, x_0 \in \mathfrak{D}(D)$

Si dice che f è un o-piccolo di g per $x \to x_0$ e si scrive

$$f = o(g) \operatorname{per} x \to x_0$$

Se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

Nota: f è infinitesima per $x \to x_0$ se f = o(1) per $x \to x_0$.

Teorema di relazione tra \sim e o-piccolo.

Si ha che

$$f \sim g \text{ per } x \rightarrow x_0 \Leftrightarrow f = g + o(g) \text{ per } x \rightarrow x_0$$

Dimostrazione.

$$f \sim g \text{ per } x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \Leftrightarrow \lim_{x \to x_0} \left(\frac{f(x)}{g(x)} - 1\right) = 0 \Leftrightarrow$$
$$\Leftrightarrow \lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0 \Leftrightarrow f(x) - g(x) = o(g(x)) \Leftrightarrow f = g + o(g) \text{ per } x \to x_0$$

Limiti notevoli.

Si ha che

$$-\lim_{x\to 0}\frac{\sin x}{x}=1, \sin x\sim x \text{ per } x\to 0, \sin x=x+o(x) \text{ per } x\to 0.$$

$$\lim_{x \to 0} \frac{\int_{-\infty}^{\infty} x}{1 - \cos x} = 1, 1 - \cos x \sim \frac{1}{2} x^2 \text{ per } x \to 0 \Rightarrow \cos x \sim 1 - \frac{1}{x^2} \text{ per } x \to 0$$

$$\cos x - 1 = -\frac{1}{2}x^2 + o\left(-\frac{1}{2}x^2\right) \Rightarrow \cos x = 1 - \frac{1}{2}x^2 + o(x^2) \text{ per } x \to 0$$

$$-\lim_{x\to 0} \frac{e^{x}-1}{x} = 1, e^{x} - 1 \sim x \text{ per } x \to 0 \Rightarrow e^{x} \sim 1 + x \text{ per } x \to 0$$

$$e^{x} - 1 = x + o(x) \Rightarrow e^{x} = 1 + x + o(x) \text{ per } x \to 0$$

$$-\lim_{x\to 0} \frac{\log{(1+x)}}{x} = 1, \log(1+x) \sim x \text{ per } x \to 0, \log(1+x) = x + o(x) \text{ per } x \to 0$$

Proprietà di o-piccolo.

1.
$$o(x^n) \pm o(x^n) = o(x^n)$$

2.
$$c \cdot o(x^n) = o(x^n), c \in \mathbb{R}$$

3.
$$x^m \cdot o(x^n) = o(x^{n+m}) \ \forall \ n, m \in \mathbb{N}$$

4.
$$o(x^n) \cdot o(x^m) = o(x^{n+m}) \ \forall \ n, m \in \mathbb{N}$$

5.
$$\frac{o(x^n)}{x^m} = o(x^{n-m}) \ \forall \ n, m \in \mathbb{N} \ n \ge m$$

Linearizzazione di una funzione

Sia $f:(a,b) \to \mathbb{R}, x_0 \in (a,b)$

Problema: è possibile linearizzare f vicino ad x_0 ? In altre parole, possiamo costruire un polinomio di I° grado che approssima f vicino a x_0 ?

Se f è derivabile in x_0 allora sì.

Si ha che

$$f(x) \sim f(x_0) + f'(x_0)(x - x_0) \text{ per } x \to 0$$

$$f(x) - f(x_0) \sim f'(x_0)(x - x_0) \text{ per } x \to 0$$

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0) \text{ per } x \to 0$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) \text{ per } x \to 0$$

Inoltra si ha che se denotiamo con dx la distanza di un punto da x_0

- $f(x_0 + dx)$ è il valore vero di f in $x_0 + dx$
- $f(x_0) + f'(x_0)dx$ è il valore approssimato con quello sulla tangente dove $f'(x_0)dx$ è il differenziale di f in x_0 ed è rappresentato come $df(x_0)$.

L'errore è dato da $f(x_0 + dx) - [f(x_0) + f'(x_0)dx] = f(x_0 + dx) - f(x_0) - f'(x_0)dx$ Dove $f(x_0 + dx) - f(x_0) = \Delta f(x_0)$ è l'incremento di f in x_0 . Dunque l'errore è dato da $\Delta f(x_0) - df(x_0)$.

Formula di Taylor con il resto di Peano

Sia $f \in C^n(a,b), x_0 \in (a,b), n \in \mathbb{N}$, allora per $x \to x_0$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0) + o((x - x_0)^n)$$

Con f(0) = f(x), 0! = 1 e dove

- $\frac{f^{(k)}(x_0)}{k!}(x-x_0)$ è il polinomio di Taylor di f di grado n centrato in x_0 o $P_{n,f}$.
- $o((x-x_0)^n)$ è il resto di Peano.

Il resto di Peano è l'errore di approssimazione

$$E_n = o((x - x_0)^n)$$

Quindi

$$\lim_{x \to x_0} \frac{E_n}{(x - x_0)^n} = 0$$

Il polinomio se ha un grado maggiore ha anche un errore migliore.

Si ha che per n = 1

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

La formula estesa di $P_n(x)$ è

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Dimostrazione.

Si procede per induzione.

Base dell'induzione, n = 1:

$$f \in C^{1}(a,b) \Rightarrow f \text{ è derivabile in } x_{0}$$

$$\Rightarrow \lim_{x \to x_{0}} \frac{f(x) - f(x_{0})}{x - x_{0}} = f'(x_{0}) \Rightarrow \lim_{x \to x_{0}} \left[\frac{f(x) - f(x_{0})}{x - x_{0}} - f'(x_{0}) \right] = 0$$

$$\Rightarrow \lim_{x \to x_{0}} \frac{f(x) - f(x_{0}) - f'(x_{0})(x - x_{0})}{x - x_{0}} = 0$$

$$\Rightarrow f(x) - f(x_{0}) - f'(x_{0})(x - x_{0}) = o(x - x_{0}) \text{ per } x \to x_{0}$$

Che è il polinomio per n = 1.

Ipotesi induttiva: supponiamo che $f \in C^{n-1}(a, b)$ tale che

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^{n-1})$$

Dobbiamo provare che

$$\frac{f(x) - P_{n,f}(x)}{(x - x_0)^n} \to 0 \ per \ x \to x_0$$

Consideriamo

$$\lim_{x \to x_0} \frac{f(x) - P_{n,f}(x)}{(x - x_0)^n} = H$$

$$= H \lim_{x \to x_0} \frac{f'(x) - P'_{n,f}(x)}{n(x - x_0)^{n-1}}$$

Si ha che

$$P'_{n,f}(x) = f'(x_0) + \frac{f''(x_0)}{2!} 2(x - x_0) + \dots + \frac{f^n(x_0)}{n!} n(x - x_0)^{n-1} =$$

$$= f'(x_0) + f''(x_0)(x - x_0) + \dots + \frac{f^n(x_0)}{(n-1)!} (x - x_0)^{n-1}$$

E dunque

$$P'_{n,f}(x) = P_{n-1,f'}(x)$$

Inoltre se $f \in C^n(a, b) \Rightarrow f' \in C^{n-1}(a, b)$, allora

$$\lim_{x \to x_0} \frac{f'(x) - P'_{n,f}(x)}{n(x - x_0)^{n-1}} = 0$$

Poiché $f' \in C^{n-1}(a,b)$ e vale l'ipotesi induttiva.

Formula di Taylor applicata

1.
$$f(x) = e^{x}, x_{0} = 0$$

 $f \in C^{\infty}(\mathbb{R}), f(0) = 1$
 $f'(x) = \dots = f^{(n)}(x) = e^{x}|_{x=0} = 1$
 $P_{n}(x) = \sum_{k=0}^{n} \frac{x^{k}}{n!}$
 $e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) \text{ per } x \to 0$

2.
$$f(x) = \log(1+x), x_0 = 0$$

 $f \in C^{\infty}(-1, +\infty), f(0) = 0$
 $f'(x) = \frac{1}{1+x}|_{x=0} = 1 = 0!$
 $f''(x) = \frac{-1}{(1+x)^2}|_{x=0} = -1 = -1!$

$$f'''(x) = \frac{2}{(1+x)^3} \Big|_{x=0} = -1 = -1$$

$$f'''(x) = \frac{2}{(1+x)^3} \Big|_{x=0} = 2 = 2$$

$$f^{IV}(x) = \frac{-6}{(1+x)^4} \Big|_{x=0} = -6 = -3$$

$$f^{IV}(x) = \frac{\frac{-6}{(1+x)^4}}{(1+x)^4}|_{x=0} = -6 = -3!$$

$$f^{(k)}(0) = (-1)^{k-1}(k-1)!$$

$$\log(1+x) = \sum_{k=0}^{n} \frac{(-1)^{k-1}(k-1)!}{k!} \cdot x^k + o(x^n) = \sum_{k=0}^{n} \frac{(-1)^{k-1}}{k} \cdot x^k + o(x^n) \text{ per } x \to 0$$

3.
$$f(x) = \sin x$$
, $x_0 = 0$

$$f \in \mathcal{C}^{\infty}(\mathbb{R}), f(0) = 0$$

$$f'(x) = \cos x|_{x=0} = 1$$

$$f''(x) = -\sin x|_{x=0} = 0$$

$$f'''(x) = -\cos x |_{x=0} = -1$$

$$f^{IV}(x) = \sin x \mid_{x=0} = 0$$

$$f^{(2k+1)} = (-1)^k$$

$$P_{2n+1}(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} \cdot x^{2k+1}$$

In questo caso si ha che $P_{2n+1}(x) = P_{2n+2}(x)$

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} \cdot x^{2k+1} + o(x^{2n+1}) \text{ per } x \to 0$$

Con n = 0 si ha che per $x \to 0$

$$\sin x = x + o(x) \text{ o } \sin x = x + o(x^2)$$

Con un procedimento simile si ha che

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{2k!} + o(x^{2n})$$

Formula di Taylor con il resto di Lagrange

Sia $f \in C^{n+1}(a,b) \operatorname{con} x, x_0 \in (a,b)$

Allora $\exists \bar{x} \in (x, x_0)$ (oppure $\bar{x} \in (x_0, x)$) tale che

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0) + \frac{f^{(n+1)}(\bar{x})}{(n+1)!} (x - x_0)^{n+1}$$

Dove

$$\frac{f^{(n+1)}(\bar{x})}{(n+1)!}(x-x_0)^{n+1}$$
 è il resto di Lagrange.

Nota.

Con n = 0 si ottiene

$$f(x) = f(x_0) + f'(\bar{x})(x - x_0)$$

$$f(x) - f(x_0) = f'(\bar{x})(x - x_0)$$

Che è il teorema di Lagrange.

Formula di Taylor con il resto integrale

Sia $f \in C^n(a, b)$ con $x, x_0 \in (a, b)$ allora

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x}^{x_0} \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt$$

Nota.

Con n = 0 si ottiene

$$f(x) = f(x_0) + \int_{x}^{x_0} f'(t) dt$$

Che è la formula fondamentale del calcolo integrale.

Esercizi

1) Approssimare il valore di e.

Si ha che
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$
 per $x \to 0$

Dunque $P_n(1)$ approssima e.

$$P_0(x) = 1|_{x=1} = 1$$

$$P_1(x) = 1 + x|_{x=0} = 2$$

$$P_2(x) = 1 + x + \frac{x^2}{2}|_{x=1} = 2 + \frac{1}{2} = \frac{5}{2} = 2,5$$

$$P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}|_{x=1} = \frac{5}{2} + \frac{1}{6} = \frac{8}{3} = 2, \overline{6}$$

2) Approssimare il valore di \sqrt{e} con $P_3(x)$ e stimare l'errore.

$$P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \Big|_{x = \frac{1}{2}} = \frac{79}{48}$$

$$\left| R_n \left(\frac{1}{2} \right) \right| = \frac{e^{\overline{x}}}{(n+1)!} \left(\frac{1}{2} \right)^{n+1} =_{n=3}^{\infty} \frac{e^{\overline{x}}}{4!2^4} < \frac{\sqrt{e}}{4!2^4}$$
 poiché $\overline{x} \in \left(0, \frac{1}{2} \right)$

$$\frac{\sqrt{e}}{4!2^4} < \frac{\sqrt{3}}{4!2^4} \simeq 0,0045 \rightarrow$$
 l'errore è più piccolo di questa quantità.

3) Approssimare \sqrt{e} in modo tale che l'errore di approssimazione sia inferiore a 10^2 $\left| R_n \left(\frac{1}{2} \right) \right| = \frac{e^{\overline{x}}}{(n+1)! \cdot 2^{n+1}} < \frac{\sqrt{e}}{(n+1)! \cdot 2^{n+1}} < \frac{\sqrt{e}}{(n+1)!} < \frac{\sqrt{3}}{(n+1)!} < 10^{-2}$ $\Rightarrow (n+1)! > \sqrt{3} \cdot 100 = 178 \Rightarrow n > 5$

Serie di Taylor

Sia $f:(a,b)\to\mathbb{R}, x_0\in(a,b), f\in C^\infty(a,b).$

Si definisce serie di Taylor di f centrata in x_0 la serie

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Si dice che f è sviluppabile in serie di Taylor di punto iniziale x_0 se $\exists r > 0$ tale che

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

 $\forall \ x \in (x_0 - r, x_0 + r)$

 $f \in C^{\infty}(a,b)$ non implica che f è sviluppabile in serie di Taylor. Basta considerare $f(x) = \begin{cases} e^{-\frac{1}{x^2}} se \ x \neq 0 \\ 0 \ se \ x = 0 \end{cases}$

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} se \ x \neq 0 \\ 0 \ se \ x = 0 \end{cases}$$

$$f \in C^{\infty}(\mathbb{R}) \ e \ f^{(n)}(0) = 0 \Rightarrow \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0 \neq f(x)$$

Si dimostra che

$$- e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ \forall \ x \in \mathbb{R} \rightsquigarrow \sum_{n=0}^{\infty} \frac{1}{n!} = e$$

$$- \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \,\forall \, x \in \mathbb{R}$$

$$- \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \ \forall \ x \in \mathbb{R}$$

$$- \log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n \ \forall \ x \in (-1,1] \implies \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \log 2$$