Modellierung von kategorialen Daten

Multinomiale Prozessbaummodelle und Signalentdeckungstheorie

Marie A. Jakob marie.jakob@psychologie.uni-freiburg.de

SUMMER SCHOOL KOGNITIVE MODELLIERUNG 2022

Ablauf

- Anwendungskontext: Recognition Memory
- Multinomiale Prozessbaum-Modelle (MPTs) → Annahme diskreter Zustände
- Signalentdeckungstheorie (SDT) → Annahme eines kontinuierlichen Gedächtnissignals
- Ausblick: Weitere Anwendungen von MPTs und SDT

https://giphy.com/gifs/lost-gandalf-memory-FPjbHO0jJxGsE

I have no memory of this place

Recognition Memory

Recognition Memory

- "recognize" = ",the act of perceiving something as previously known"
- → Rekognitionsgedächtnis = Fähigkeit, zuvor erlebte Stimuli wiederzuerkennen und von neuen zu unterscheiden
- > Spezifische Form des Langzeitgedächtnisses

Modellierung von Rekognitionsgedächtnis:

→ Welche zentralen kognitiven Prozesse laufen ab, wenn Menschen versuchen, Stimuli wiederzuerkennen?

Paradigma

1. Lernphase

Präsentation von Targets

Aufgabe: Stimuli merken

2. Rekognitionsphase

Präsentation von Targets und Lures

Aufgabe: Klassifizierung in "alte" (gelernte)

vs. "neue" (nicht gelernte) Stimuli

Arten von Antworten

	Target	Lure
Antwort "alt"	Hit	False Alarm
Antwort "neu"	Miss	Correct Rejection

Modellierung

- Formale Beschreibung der Prozesse die beim Wiedererkennen involviert sind
- → Aufstellen von mathematischen Gleichungen, die beschreiben, mit welcher
 Wahrscheinlichkeit ein Hit, False Alarm, Miss oder eine Correct Rejection auftreten
- Parameter dieser Gleichungen haben kognitive Interpretationen
- Zwei Modellklassen:
 - Multinomiale Prozessbaum-Modelle (MPTs): Annahme diskreter Zustände
 - Signalentdeckungstheorie (SDT): Annahme eines kontinuierlichen Gedächtnissignals

Mein Freund der Baum

Multinomiale Prozessbaum-Modelle

Annahmen

- Über die Daten:
 - Endliche Anzahl an Antwortkategorien
- Über die kognitiven Prozesse:
 - Endliche Anzahl an diskreten Prozesszuständen
 - z.B. Detektion Target oder Unsicherheit
 - Übergänge zwischen Zuständen erfolgen probabilistisch (Wahrscheinlichkeitsparameter)
 - Antworten resultieren probabilistisch aus Zuständen

MPTs für Rekognition: Das 1HT Model

- → Welche Prozesse werden angenommen?
- Detektion von Targets als alt
- Raten bei Unsicherheit
- →Welche Parameter müssen geschätzt werden?
- **d**: Wahrscheinlichkeit, ein Target als solches zu erkennen
- g: Wahrscheinlichkeit, "alt" zu raten

1HTM - Modellgleichungen

Lure uncertain "old"

1-g "new"

- → ergeben sich aus dem Baum durch Multiplikation und Addition entlang der Pfade
- p("old" | target) = d + (1 d) * g
- $p(\text{"new"} \mid \text{target}) = (1 d) * (1 g)$
- p("old" | lure) = g
- p("new" | target) = 1 g
- → Welche Gleichungen beschreiben Hits, False Alarms etc.?

MPTs – allgemein

- Ein Baum pro Itemtyp (z.B. Targets)
 - → besteht aus hintereinander geschalteten Prozessen (z.B. Detektion, Raten)
- Modellparameter (z.B. d, g) beschreiben bedingte Wahrscheinlichkeit des Auftretens eines Prozesses (gegeben die vorherigen Prozesse)
 - → Wertebereich zwischen 0 und 1
- Wahrscheinlichkeit eines Pfades: Multiplikation der Parameter entlang des Pfads
- Wahrscheinlichkeit einer Antwortkategorie: Addition aller Pfade, die in Kategorie enden

Modifikation des 1HTM: Das 2HTM

- Welchen neuen Parameter beinhaltet das Modell und welchen Prozess soll dieser abbilden?
- $\rightarrow d_n$: Detektion von Lures

Aufgabe: Stellt die Modellgleichungen für das

2HTM auf!

Zeit: 5 Minuten

Parameterschätzung

 $\rightarrow d_o$, d_n und g sind unbekannt und müssen auf Grundlage der Daten und der Modellgleichungen geschätzt werden

$$p("old" | target) = d + (1 - d) * g$$

 $\rightarrow p$ ("old" | target): relative Häufigkeit von "alt" Antworten zu Targets \rightarrow Hits (analog für andere Gleichungen)

 Maximum Likelihood Schätzung: Parameter werden so gewählt, dass die Likelihood Funktion (die Wahrscheinlichkeit für die Daten gegeben bestimmte Parameterwerte) maximal ist

Identifizierbarkeit

- Was beschreibt Identifizierbarkeit?
- = "Extent to which a unique set of parameter values can be determined from a set of data" (Farrell & Lewandowsky, 2018)
- Ist das 2HTM f
 ür das anfangs vorgestellte Recognition Memory Paradigma identifiziert?
- → Nein, da Anzahl der Parameter > Anzahl der "freien" Datenpunkte
- Notwendig, aber nicht hinreichend: Anzahl "freie" Datenpunkte >= Anzahl Parameter
- → Als Faustregel für MPTs und SDT hier ausreichend ©

Parametervalidierung

"[…] moving from the mathematical space in which the model parameters describe specific effect patterns to a psychological space in which parameters are interpreted in terms of processes." (Hütter & Klauer, 2016)

- z.B. *g*: Soll die Rate-Wahrscheinlichkeit unabhängig vom Gedächtnissignal widerspiegeln
- Wie kann man diese Interpretation empirisch validieren?

→ Selective Influence Studies

• Experimentelle Manipulationen, die *genau einen* Prozess beeinflussen sollen

Parametervalidierung – Selective Influence

Hütter & Klauer (2016)

- Implementierung von Manipulationen, die genau einen Prozess beeinflussen sollen
- g:z.B. Manipulation der Basisrate alter und neuer Wörter:
 - Gruppe 1: Testphase 20 % alte und 80 % neue Wörtern
 - Gruppe 2: Testphase 50 % alte und 50% neue Wörtern
 - Gruppe 3: Testphase 80 % alte und 20% neue Wörtern
- → Ratewahrscheinlichkeit sollte sich entsprechend ändern
- Annahme: $g_1 < g_2 < g_3$
- Detektionswahrscheinlichkeiten d_0 und d_n sollte sich nicht ändern

Parametervalidierung – Modellspezifikation

- Fitten von mehreren Modellvarianten:
 - Modell 1: Selber Parameter für alle Bedingungen (z.B: *g* gleich für Gruppen 1, 2 und 3)
 - Modell 2: Separate Parameter für die unterschiedlichen Bedingungen (z.B. g_1 , g_2 , g_3)
- Modellvergleiche der unterschiedlichen Modellvarianten → Wie?
- Konvergente Validität:
 - Gleichsetzen der zu beeinflussenden Parameter zwischen den Gruppen ($g_1=g_2=g_3=g$) sollte die Passung signifikant verschlechtern
- Diskriminante Validität:
 - Gleichsetzen der anderen (nicht zu beeinflussenden Parameter) zwischen den Gruppen sollte die Passung *nicht* signifikant verschlechtern (z.B. $d_{o,1} = d_{o,2} = d_{o,3} = d_o$)

Exkurs: Fitten von Daten mehrerer Vpn

- Bisher: immer von "einem" Datensatz ausgegangen
- → Tatsächlich meist Daten von mehreren Vpn
- Zwei einfache Möglichkeiten:
 - → Parameterschätzung einzeln für den Datensatz jeder Vp
 - → Aggregation der Datensätze und Parameterschätzung für aggregierten Datensatz
- Jeweils Vor- und Nachteile
- → Bessere aber kompliziertere Lösung: hierarchische Modellierung

Beispiel – 2HT g Parameter

- Bröder & Schütz (2009): "old-new" recognition task
- Manipulation der Basisrate alter Wörter in der Testphase:
 - 10 % vs. 25 % vs. 50 % vs. 75 % vs. 90 %

• R:

```
# install.packages("MPTinR")
library(MPTinR)
data(d.broeder)
```


2HT – Parameterschätzung und Validierung

MPTinR (Singmann & Kellen, 2013)

Aufgabe

- Bröder & Schütz (2009) implementieren 5 Baseline-Bedingungen:
 - 10 % vs. 25 % vs. 50 % vs. 75 % vs. 90 % alte Wörter in der Testphase
- → Testet das 2HT mit 5 Rate-Parametern gegen ein Modell, das in den 10% und 90% Bedingungen, sowie in den 25% und 75% Bedingungen die gleichen Rate-Wahrscheinlichkeiten annimmt

$$\Rightarrow g_{10} = 1 - g_{90}$$
 $g_{25} = 1 - g_{75}$

- Geht dafür wie so vor:
 - Baut die beschriebene Restriktion in die Modellgleichungen des 2HT ein.
 - Fittet das Modell auf den Datensatz.
 - Vergleicht die geschätzten Parameter zwischen den beiden Modellen.
 - Vergleicht das Modell mit dem 2HT mit 5 Rate-Parametern.

Volker hört die Signale

Signalentdeckungstheorie (SDT)

SDT – Konzeptuell

SDT – Formal

- Seien ψ_{target} und ψ_{lure} Zufallsvariablen, die die Gedächtnisstärke von Targets und Lures repräsentieren, sei $\lambda \in \mathbb{R}$ (repräsentiert ein Entscheidungskriterium)
- Seien p_H und p_{FA} die Wahrscheinlichkeit für einen Hit bzw. einen False Alarm
- Dann gilt:

$$p_H = \int_{\lambda}^{\infty} f_{target}(x) \ dx$$

$$p_{FA} = \int_{\lambda}^{\infty} f_{lure}(x) dx$$

wobei f_{target} und f_{lure} die Dichtefunktionen der Target- und Lure-Verteilungen sind

Parameter

- Angenommen ψ_{target} und ψ_{lures} sind normalverteilt:
- Durch welche Parameter sind die Verteilungen gekennzeichnet?
- \rightarrow Mittelwerte und Standardabweichungen: μ_{target} , μ_{lure} , σ_{target} , σ_{lure}
- Konvention: $\mu_{lure} = 0$ $\sigma_{lure} = 1$
 - $\rightarrow \mu_{target}$ ist die Differenz zwischen den Verteilungen (auch als d' bezeichnet)
- Zwei gängige Varianten:

```
Equal-Variance SDT (EV-SDT): \sigma_{target} = \sigma_{lure}

Unequal-Variance SDT (UV-SDT): \sigma_{target} wird geschätzt (meist \sigma_{target} > \sigma_{lure})
```


Parameterschätzung

- Gleiches Prinzip wie bei MPTs:
- → SDT definiert Modellgleichungen mit Parametern, die die Wahrscheinlichkeit für die unterschiedlichen Kategorien vorhersagen
- \rightarrow Über die beobachteten Häufigkeiten (z.B. Hit Rate, False Alarm Rate) werden die unbekannten Parameter (μ_{target} , λ) geschätzt (z.B. mit Maximum Likelihood Schätzung)

Identifizierbarkeit

- Sind das EV-SDT Modell und das UV-SDT Modell für das standard Recognition Memory Paradigma identifiziert?
- → 2 "freie" Datenpunkte
- \rightarrow EV-SDT: μ_{target} und λ müssen geschätzt werden \rightarrow gesättigtes Modell
- ightarrowUV-SDT: zusätzlich muss σ_{target} geschätzt werden ightarrow nicht identifiziert (aber für andere Paradigmen
- → EV-SDT Parameter können hier ohne iterativen Algorithmus berechnet werden

EV-SDT – Parameter

- Herleitung über die PDF und CDF der Normalverteilung → Was war das nochmal?
 - PDF = Probability Density Function = Dichtefunktion
 - CDF = Cumulative Distribution Function = Verteilungsfunktion
 - $\rightarrow F_x(x) = p(X \le x)$, für die Standardnormalverteilung: $\Phi(x)$

$$\Rightarrow p_H = \int_{\lambda}^{\infty} f_{target}(x) \ dx = \Phi\left(\mu_{target} - \lambda\right) \qquad p_{FA} = \int_{\lambda}^{\infty} f_{lure}(x) \ dx = \Phi(-\lambda)$$

• Daraus lassen sich λ und μ_{target} ableiten:

$$\lambda = -\Phi^{-1}(p_{FA})$$

$$\mu_{target} = \Phi^{-1}(p_{H}) - \Phi^{-1}(p_{FA})$$

Aufgabe

- Schreibt eine Funktion in R, die die EV-SDT Parameter f
 ür gegebene Hit und False Alarm Rates berechnet
 - Tipp: Ihr braucht dafür die qnorm() Funktion (Quantilfunktion der Normalverteilung)
- Gegeben seien die folgenden Hit und False Alarm Rates wie sind die geschätzten EV-SDT Parameter?

•
$$p_{FA} = .788$$
 $p_H = .964$

•
$$p_{FA} = .211$$
 $p_H = .579$

SDT – MPTinR

- Trotz des Namens kann das Package MPTinR auch (standard) SDT Modelle fitten
- Wie bei MPTs: Jede Zeile definiert Modellgleichung für eine Kategorie
- pnorm() → CDF der Normalverteilung
 - → Zur Definition der SDT Modellgleichungen
- EV-SDT für zwei Kategorien (vgl. Folie 29):

```
pnorm(cr, mu, sigma) # probability for Hits
pnorm(cr) # probability for False Alarms
```


Anwendungen von SDT und MPTs

Sozialpsychologie

Modeling Implicit Cognition IAT & Quad-Model

- Implicit Association Test: soll Assoziationen
 zwischen unterschiedlichen Konzepten indirekt
 messen → bspw. Assoziationen hinter rassistischen
 Einstellungen
- Basis: Vergleich von Reaktionszeiten und Fehlern in Blöcken, in denen angenommen kompatible (z.B. "Good – Caucasian") Konzepte und inkompatible (z.B. "Bad – Caucasian") dieselbe Reaktionstaste zugeordnet haben

Modeling Implicit Cognition IAT & Quad-Model

- **Aber:** IAT hat beträchtliche Methodenvarianz, die nicht mit dem interessierenden Konstrukt zusammenhängen (z.B. Klauer et al., 2007)
- → IAT bildet neben konstruktrelevanten Prozessen auch andere Prozesse ab
- → verunschärft und verzerrt Messergebnis
- → Modellierung des IATs soll unterschiedliche Prozesse auf unterschiedliche Modell-Parameter abbilden
- → Ziel: Differenziertere Erfassung der Prozesse und genauere Messung des Konstrukts

DFG Projekt: Detecting Discrimination

• Diskriminierung = ungerechte oder nachteilige Behandlung von Menschen und Gruppen aufgrund von Merkmalen wie Rasse, Geschlecht, Alter oder sexueller Orientierung

SDT Ansatz: Erkennen von Diskriminierung hat zwei Komponenten:

- Ungleichbehandlung erkennen → Sensitivität
- Attribution / Interpretation dieser als Diskriminierung → Response Bias
- →Sind Unterschiede in der Wahrnehmung von Diskriminierung auf unterschiedliche Sensitivität oder unterschiedlichen Response Bias zurückzuführen?

MPT – Recommended Reading

• Social Psychology:

Hütter, M., & Klauer, K. C. (2016). Applying processing trees in social psychology. *European Review of Social Psychology*, *27*(1), 116-159.

• Cognitive Psychology:

Erdfelder, E., Auer, T. S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. *Zeitschrift für Psychologie/Journal of Psychology*, *217*(3), 108.

SDT – Recommended Reading

• Sehr verständlich, aber nur die ersten beiden Kapitel online verfügbar: Wickens, T. D. (2001). *Elementary signal detection theory*. Oxford university press.

• Sehr gut, aber sehr formal / mathematisch:

Kellen, D., & Klauer, K. C. (2018). Elementary signal detection and threshold theory. *Stevens'*handbook of experimental psychology and cognitive neuroscience, 5, 1-39.

Danke für Eure Aufmerksamkeit!

References

- Bröder, A., & Schütz, J. (2009). Recognition ROCs are curvilinear—or are they? On premature arguments against the two-high-threshold model of recognition. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 35(3), 587.
- Farrell, S., & Lewandowsky, S. (2018). *Computational modeling of cognition and behavior*. Cambridge University Press.
- Conrey, F. R., Sherman, J. W., Gawronski, B., Hugenberg, K., & Groom, C. J. (2005). Separating multiple processes in implicit social cognition: the quad model of implicit task performance. *Journal of personality and social psychology*, 89(4), 469.
- Hütter, M., & Klauer, K. C. (2016). Applying processing trees in social psychology. European Review of Social Psychology, 27(1), 116-159.
- Klauer, K. C., Voss, A., Schmitz, F., & Teige-Mocigemba, S. (2007). Process components of the Implicit Association Test: a diffusion-model analysis. *Journal of Personality and Social Psychology*, 93(3), 353.