Análisis de datos Bivariante

Tipología de los datos

$$(X,Y) \rightarrow (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

$$x_i \in S_X = \{x_1^*, x_2^*, ..., x_r^*\}$$
 Posibles valores de X (o sus marcas de clase).

$$y_i \in S_Y = \left\{y_1^*, y_2^*, ..., y_k^*\right\}$$
 Posibles valores de Y (o sus marcas de clase).

Tabla de contingencia (clasificación)

							•	
XY	y_1^*	y_2^*	:	y ',	:	y_k^*	$n_{i.}$	
x_1^*	n_{11}	n ₁₂				n_{1k}	<i>n</i> _{1.}	}
x_2^*	n_{21}	n_{22}			•••	n_{2k}	$n_{2.}$	
:	:	÷	·			:	:	
x_i^*	:	:		n_y	•	:	:	
:	:	÷			٠.	:	:	
x_r^*	n_{r1}	n_r				n_{rk}	$n_{r.}$	
$n_{.j}$	$n_{.1}$	$n_{.2}$				$n_{.k}$	n	

Distribuciones marginales

Frecuencias marginales absolutas.

$$n_{i.} = \sum_{j=1}^{k} n_{ij}$$
 $i = 1,..., r$ (variable X)
$$n_{.j} = \sum_{i=1}^{k} n_{ij}$$
 $j = 1,..., k$ (variable Y)

Supongamos que se pretende realizar un estudio para una muestra de una población en la que a cada individuo se le pregunta sobre su estado civil y se anota el sexo. Los datos obtenidos sobre un total de 15 individuos son:

(Soltero, Hombre), (C,H), (S,M), (S,M), (V,M), (C,M), (S,H), (C,H), (C,H), (C,M), (V,M), (C,H), (V,H), (S,H), (C,M).

$S. \setminus E.C.$	Soltero	Casado	Viudo	n_i .
\overline{Hombre}	$n_{11} = 3$	$n_{12} = 4$	$n_{13} = 1$	$n_{1.} = 8$
Mujer	$n_{21} = 2$	$n_{22} = 3$	$n_{23}=2$	$n_{2.} = 7$
$n_{\cdot j}$	$n_{\cdot 1} = 5$	$n_{-2} = 7$	$n_{.3} = 3$	$n_{\cdot \cdot} = 15$

Tablas de clasificación

$$\begin{split} &(X,Y) \to (x_1,y_1), \quad (x_2,y_2),....., \quad (x_n,y_n) \\ &x_i \in \mathcal{S}_X = \left\{x_1^*,x_2^*,...,x_r^*\right\} \text{ Posibles valores de X (o sus marcas de clase).} \\ &y_i \in \mathcal{S}_Y = \left\{y_1^*,y_2^*,...,y_k^*\right\} \text{ Posibles valores de Y (o sus marcas de clase).} \end{split}$$

Tabla de contingencia

XY	y_1^*	y_2^*		y_j^*		y_k^*	$n_{i.}$
x_1^*	n_{11}	n ₁₂				n_{1k}	$n_{\scriptscriptstyle 1.}$
x_2^*	n_{21}	n_{22}				n_{2k}	$n_{2.}$
:	:	:	٠.			:	:
x_i^*	:	:		n_{ij}		:	:
:	:	:			٠.	:	:
x_r^*	n_{r1}	n_r				n_{rk}	$n_{r.}$
$n_{.j}$	$n_{.1}$	$n_{.2}$				$n_{.k}$	n

$$f_{ij} = \frac{n_{ij}}{n}$$
 Frecuencias relativas (al total de individuos).

Distribuciones marginales

Frecuencias marginales relativas.

$$f_{i.} = \frac{n_{i.}}{n} \quad i = 1,..., r \quad \text{(variable } X\text{)}$$

$$f_{.j} = \frac{n_{.j}}{n} \quad j = 1,..., k \quad \text{(variable } Y\text{)}$$

Supongamos que se pretende realizar un estudio para una muestra de una población en la que a cada individuo se le pregunta sobre su estado civil y se anota el sexo. Los datos obtenidos sobre un total de 15 individuos son:

(Soltero, Hombre), (C, H), (S, M), (S, M), (V, M), (C, M), (S, H), (C, H), (C, H), (C, M), (V, M), (C, H), (V, H), (S, H), (C, M).

$S. \setminus E.C.$	Soltero	Casado	Viudo	n_i .
Hombre				
Mujer	$n_{21} = 2$	$n_{22} = 3$	$n_{23} = 2$	$n_{2.} = 7$
$n_{\cdot j}$	$n_{\cdot 1} = 5$	$n_{-2} = 7$	$n_{.3} = 3$	$n_{\cdot \cdot} = 15$

$$f_{ij} = \frac{n_{ij}}{n}$$

$$S. \setminus E.C. \mid Soltero \quad Casado \quad Viudo \quad f_{i}$$

$$Hombre \quad f_{11} = 0.2 \quad f_{12} = 0.266 \quad f_{13} = 0.066 \quad f_{1.} = 0.532$$

$$Mujer \quad f_{21} = 0.133 \quad f_{22} = 0.2 \quad f_{23} = 0.133 \quad f_{2.} = 0.466$$

$$f_{.j} \quad f_{.1} = 0.333 \quad f_{.2} = 0.466 \quad f_{.3} = 0.199 \quad f_{..} = 0.998 \approx 1$$

ESCUELA POLITÉCNICA SUPERIOR DE CÓRDOBA

Universidad de Córdoba

Departamento de Estadística

Distribuciones condicionadas

$$f_{Y|X} = \frac{n_{ij}}{n_{i}}$$
; $j = 1,..., k$; $i = 1,..., r$ $f_{X|Y} = \frac{n_{ij}}{n_{.j}}$; $i = 1,..., r$, $j = 1,..., k$

$S. \setminus E.C.$	Soltero	Casado	Viudo	
\overline{Hombre}	0,376	0,5	0,124	1
Mujer	$0,\!285$	$0,\!43$	$0,\!285$	1

$S. \setminus E.C.$	Soltero	Casado	Viudo
Hombre	0,6	$0,\!57$	$0,\!332$
Mujer	$0,\!4$	$0,\!43$	0,668
	1	1	1

Frecuencias condicionadas del sexo para cada categoría del estado civil.

Frecuencias condicionadas del estado civil para cada categoría del sexo.

Medidas gráficas

$S. \setminus E.C.$				
Hombre	$n_{11} = 3$	$n_{12} = 4$	$n_{13} = 1$	$n_{1.} = 8$
Mujer	$n_{21} = 2$	$n_{22} = 3$	$n_{23} = 2$	$n_{2.} = 7$
$n_{\cdot j}$	$n_{\cdot 1} = 5$	$n_{-2} = 7$	$n_{.3} = 3$	$n_{\cdot \cdot} = 15$

Diagrama de Barras

Medidas gráficas

$S. \setminus E.C.$	Soltero	Casado	Viudo	
Hombre	0,376	0,5	$0,\!124$	1
Mujer	$0,\!285$	$0,\!43$	$0,\!285$	1

$S. \setminus E.C.$	Soltero	Casado	Viudo
Hombre	0,6	0,57	0,332
Mujer	$0,\!4$	$0,\!43$	0,668
	1	1	1

Perfiles de la variable Estado Civil

Perfiles de la variable Sexo

Medidas de asociación:

Escala nominal

$$fe_{ij} = \frac{n_i n_{.j}}{n}$$
, $\forall ij$ frecuencias absolutas esperadas en caso de ausencia de asociación

$$\chi^2$$
 de Pearson $\chi^2 = \sum_{i=1}^r \sum_{j=1}^k \frac{(n_{ij} - fe_{ij})^2}{fe_{ij}} = \sum_{i=1}^r \sum_{j=1}^k \frac{(e_{ij})^2}{fe_{ij}}$

$$\chi^2 \in [0, n \cdot t]; t = \min\{(r-1), (k-1)\}$$

Coeficiente C de contingencia

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}} \qquad C \in [0, 1)$$

$$V$$
 de Cramer $V = \sqrt{\frac{\chi^2}{nt}}$

$$V = \sqrt{\frac{\chi^2}{nt}}$$
 ESCUELA POLITÉCNICA $V \in [0,1]$ ERIOR DE CÓRDOBA Universidad de Córdoba

DEPARTAMENTO DE ESTADÍSTICA

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{(n_{ij} - fe_{ij})^{2}}{fe_{ij}} = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{(e_{ij})^{2}}{fe_{ij}}$$

$$fe_{ij} = \frac{n_{i.}n_{.j}}{n} \quad \begin{array}{|c|c|c|c|c|c|c|c|}\hline S. \setminus E.C. & Soltero & Casado & Viudo & f_{e_{(i,\cdot)}} \\\hline Hombre & f_{e_{(1,1)}} = 2.6 & f_{e_{(1,2)}} = 3.7 & f_{e_{(1,3)}} = 1.6 & f_{e_{(1,\cdot)}} = 7.9 \approx 8 \\\hline Mujer & f_{e_{(2,1)}} = 2.3 & f_{e_{(2,2)}} = 3.2 & f_{e_{(2,3)}} = 1.4 & f_{e_{(2,\cdot)}} = 6.9 \approx 7 \\\hline f_{e_{(\cdot,j)}} & f_{e_{(\cdot,1)}} = 4.9 \approx 5 & f_{e_{(\cdot,2)}} = 6.9 \approx 7 & f_{e_{(\cdot,3)}} = 3 & f_{e_{(\cdot,\cdot)}} \approx 15 \\\hline \end{array}$$

$S. \setminus E.C.$	Soltero	Casado	Viudo
Hombre	$e_{11}=0,4$	$e_{12}=0,\!3$	$e_{13} = -0.6$
Mujer	$e_{21} = -0.3$	$e_{22} = -0.2$	$e_{23} = 0.6$

$$\chi^2 = \sum_{\forall \, i,j} \frac{e_{ij}^2}{f_{e_{(i,j)}}} = 0,\!59$$

 $\max \chi^2 = n \cdot t = n \cdot \min \{(2-1), (3-1)\} = 15 \cdot 1 = 15$

$$V = \sqrt{\frac{\chi^2}{n \cdot t}} = \sqrt{\frac{0,59}{15}} = 0,198$$

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}} = \sqrt{\frac{0,59}{0,59 + 15}} = 0,195$$

Escala ordinal

Coeficientes predictivos λ :

$$\lambda_{Y/X} = \frac{\sum_{i=1}^{r} \max_{j=1...k} n_{ij} - \max_{j=1..k} n_{.j}}{n - \max_{j=1..k} n_{.j}} \in [0,1]$$

$$\lambda_{X/Y} = \frac{\sum_{j=1}^{k} \max_{i=1...r} n_{ij} - \max_{i=1..r} n_{i.}}{n - \max_{i=1..r} n_{i.}} \in [0,1]$$

$$\lambda_{Y/X} = \frac{4+3-7}{15-7} = 0$$

Indica que la variable *X* (sexo) no tiene ningún poder predictivo sobre *Y* (estado civil).

$$\lambda_{X/Y} = \frac{3+4+2-8}{15-8} = 0.142$$

Escaso poder predictivo de *Y* (estado civil) sobre *X* (sexo).

Escala numérica

Covarianza
$$S_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i y_i\right) - \overline{x} \overline{y} = \left(\frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij} x_i y_i\right) - \overline{x} \overline{y}$$

Coeficiente de correlación $r_{xy} = \frac{S_{xy}}{S_x S_y} \in [-1,1]$

$$X: Calificaci\'on \mid 5 \quad 7 \quad 3 \quad 8 \quad 4 \quad 6 \quad 9 \quad 8 \quad 3 \quad 5 \ Y: Horas \qquad 15 \quad 20 \quad 10 \quad 21 \quad 12 \quad 15 \quad 25 \quad 20 \quad 10 \quad 13$$

$$S_x^2 = 4.4275$$
 $S_y^2 = 26.55$

$$S_{xy} = 9.975$$
 $r_{xy} = \frac{S_{xy}}{S_x S_y} = 0.92$

Análisis de datos Bivariante

