ALGO QCM

	oans un graphe orienté, s raphe le graphe est?	'il existe un	chemin $x \sim$	→ x passant p	ar tous les	sommets du
(a) complet					
(b) partiel					
(c) parfait					

- 2. Dans la forêt couvrante associée au parcours en profondeur d'un graphe orienté G, les arcs x→y tels que x est le père de y sont appelés?
 - (a) Arcs couvrants

(d) fortement connexe

- (b) Arcs en arrière
- (c) Arcs en Avant
- (d) Arcs croisés
- 3. Dans un graphe non orienté $G=\langle S,A\rangle$, Le sous-graphe connexe maximal $G'=\langle S',A\rangle$ est une composante connexe du graphe G?
 - (a) vrai
 - (b) faux
- 4. Un graphe partiel G' de G=<S,A> est défini par?
- ((a)) < S, A' > avec A' \subseteq A
- (b) $\langle S', A \rangle$ avec $S' \subseteq S$
- (c) < A,S >
- 5. Dans un graphe non orienté, s'il existe une arête x-y pour tout couple de sommet $\{x,y\}$ le graphe est?
 - (a) complet
 - (b) partiel
 - (c) parfait
 - (d) connexe
- 6. Dans un graphe orienté, on dit que l'arc $U = y \rightarrow x$ est?
 - (a) incident à x vers l'extérieur
 - (b) accident à x vers l'extérieur
- (c) incident à x vers l'intérieur
- (d) accident à x vers l'intérieur

- 7. Supposons que Pref[i] retourne le Numéro d'ordre préfixe de rencontre d'un sommet i. Lors du parcours en profondeur d'un graphe orienté G, les arcs x -> y tels que pref[y] est inférieur à Pref[x] dans la forêt sont appelés?
 - (a) Arcs couvrants
 - (b) Arcs en arrière
 - (c) Arcs en Avant
 - ((d)) Arcs croisés
- 8. Dans un graphe valué G=<S,A,C>, les coûts sont portés par?
 - (a) les relations
 - (b) les sommets
- 9. Un chemin qui ne contient pas plusieurs fois un même sommet est?
 - (a) élémentaire
 - (b) optimal
 - (c) plus court
 - (d) une chaîne
- 10. Dans un graphe non orienté, une chaîne dont toutes les arêtes sont distinctes deux à deux et telle que les deux extrémités coïncident est?
- ((a) un circuit → h circuit à un sens (b) un cycle → las un cycle

 - (c) connexe
 - (d) fortement connexe
 - (e) un chemin

QCM N°5

lundi 18 novembre 2019

Question 11

Soit X une variable aléatoire à valeurs dans \mathbb{N} . Alors

(a.
$$P(X > 2) = \sum_{k=3}^{+\infty} P(X = k)$$

b.
$$P(X > 2) = 1 - P(X = 0) - P(X = 1)$$

(c.
$$P(X > 2) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$$

d.
$$P(X = 0) = 0$$

$$e. \sum_{n=0}^{+\infty} P(X=n) = 1$$

Question 12

Soient X et Y deux variables aléatoires à valeurs dans $\mathbb N$ possédant chacune une espérance et une variance, et $(a,b) \in \mathbb R^2$. Alors

a.
$$E(aX + b) = aE(X) + E(b)$$

$$\int b. E(aX+b) = aE(X) + b$$

c.
$$E(X - E(X)) = 0$$

$$d. \ V(aX+b)=aV(X)$$

e. rien de ce qui précède

Question 13

Soient $E,\,F$ deux $\mathbb{R}\text{-ev}$ et $f\in\mathcal{L}(E,F)$ injective. Alors

a.
$$Ker(f) = \emptyset$$

(b)
$$\operatorname{Ker}(f) = \{\emptyset\}$$
 \bigwedge \bigvee \bigvee \bigvee

c.
$$Im(f) = F$$

(d)
$$\operatorname{Ker}(f) \subset \operatorname{Im}(f) \to \operatorname{Ker}(f) = \{0 \in \}$$

e. rien de ce qui précède

$$O_{\mathcal{E}} \notin I_{m}(b)$$
 $O_{\mathcal{F}} \in I_{m}(b)$

Question 14

Soient E l'espace des polynômes à coefficients réels et f l'endomorphisme de E défini pour tout $P \in E$ par f(P) = P'. Alors

- a. f est bijective
- b. f est injective et non surjective
- c. f est surjective mais non injective
- (d.) n'est ni injective, ni surjective
- e. rien de ce qui précède

Endomorphisme & Theorème du rang

P= X et P= X + 1 & Seulent urai

Question 15

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & 2 \end{pmatrix}$$
. Alors

- a. det(A) = 2
- b. det(A) = 1
- c. $\det(A) = -1$
- d. $\det(A) = 0$
- e. rien de ce qui précède

g(P1) = 1 et f(P2) = 1

To f pas inj. To f pas surg 1x(2x2)-(1x1) - 1x[1x2-1x1]+(4[1x1-1x2]

Question 16

Soit une série entière de rayon de convergence R. Alors

- a. R peut être égal à +∞
- b. Pour tout $x \in \mathbb{R}$ tel que |x| < R, la série converge absolument
- (c.) Pour tout $x \in \mathbb{R}$ tel que |x| < R, la série converge
- (d.) Pour tout $x \in \mathbb{R}$ tel que |x| > R, la série diverge
- e. rien de ce qui précède

Question 17

Soit la série entière $\sum \frac{x^n}{n!}$. Alors son rayon de convergence vaut

a.
$$R = 2$$

b.
$$R = 0$$

$$\frac{\alpha_{n+1}}{\alpha_n} = \frac{n!}{(n+1)!} = \frac{1}{n+1}$$
 axec $\alpha_n = \frac{1}{n!}$

c. R = 4d. R = 1

$$\lim_{n\to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$$
 donc $R = +\infty$

2

Question 18

Soient $\sum a_n x^n$ une série entière de rayon de convergence R non nul et $f: \left\{ \begin{array}{ccc}]-R, R[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sum_{n=0}^{+\infty} a_n x^n \end{array} \right.$ Alors

(a.) f est continue sur
$$]-R$$
, $R[$

b f est dérivable sur]-R, R[et, pour tout
$$x \in$$
]-R, R[, $f'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$]

C. pour tout
$$x \in]-R, R[, \int_0^x f(t)dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

d. rien de ce qui précède

Question 19

Soit X une variable aléatoire à valeurs dans $\{0,\ldots,n\}$. Alors sa fonction génératrice vaut, pour tout $t\in\mathbb{R}$:

$$(a.)G_X(t)=E(t^X)$$

b.
$$G_X(t) = \sum_{k=0}^{n} P(X = k)$$

c.
$$G_X(t) = E(X^t)$$

$$(d.)G_X(t) = \sum_{k=0}^n t^k P(X=k)$$

e. rien de ce qui précède

Question 20

Soit X une variable aléatoire entière dont la fonction génératrice est $G_X(t) = a(2t+1)^2$. Alors

$$(a.) a = \frac{1}{9}$$

b.
$$a = \frac{1}{3}$$

c.
$$a = 1$$

d. on ne peut déterminer a avec ces données

e. rien de ce qui précède

QCM Azar Chap13 (Adjective clauses ex 8, 11, 13) QCM 5

In 21 - 24, the two sentences have been combined. Which of the combinations use the second sentence as an adjective clause correctly? (Punctuation is taken into account.)

- 21. The book was good. I read it.
- a. The book was good that I read.
- (b.) The book that I read was good.
- c. The book I read it was good.
- d. B and C.
- 22. I liked the woman. I met her at the party last night.
- a. I liked the woman, that I met her at the party last night.
- b. The woman I liked I met at the party last night.
- c. I met at the party last night the woman that I liked.
- d. I met at the party last night the woman whom I liked.
- e.) I liked the woman that I met at the party last night.
- 23. I liked the song. My brother wrote It.
- a. I liked the song that my brother wrote it.
- (b.) I liked the song that my brother wrote.
- c. My brother wrote the song I liked.
- d. I liked the song, that my brother wrote it.
- 24. The people were very nice. We visited them yesterday.
- a. The people, we visited them yesterday, were very nice
- b. We visited the people whom were very nice yesterday.
- c. The people whom we visited yesterday were very nice.
- d. The people we visited yesterday were very nice.
- (e.) C and D.

Choose the adjective clause that is NOT correct for the following sentences.

- 25. The keys ___ were under the table.
- a. that I was looking for
- b. I was looking for
- c. which I was looking for
- d.) whom I was looking for
- 26. The man ____ at the health care center was able to answer most of my questions.
- a. who I spoke to
- b) to who I spoke
- c. to whom I spoke
- d. I spoke to
- e. All of the above.

Identify the adjective clause in the following sentences.

- 27. I returned the money which I had borrowed from my parents.
- a. I returned the money
- (b) which I had borrowed from my parents
- c. from my parents
- d. A and B

- 28. Yesterday on the bus I ran into a man I had shared a room with at college.
- a. on the bus
- b. I ran into a man
- (c.) I had shared a room with at college
- d. I ran into a man I had shared a room
- 29. Anne talked in detail about a movie that she did not see.
- a. a movie she did not see
- b. Anne talked in detail about a movie
- c. a movie that she did not see
- (d.) that she did not see
- 30. Did you read about the candidate who is accused of tax evasion?
- a. Did you read about
- b. the candidate who is accused
- (c.) who is accused of tax evasion
- d. None of the above.

31) The film "Minority report" was realized by
(a) Steven Spielberg
b) Danny Boyle
c) Sofia Coppola
d) Terry Gillian
32) This movie is based on a novel written by
(a) Philip K. Dick
b) Jules Vernes
c) Isaac Asimov
d) Franck Herbert
33) Which of these actors is an intruder?
(a) Leonardo Di Caprio
b) Colin Farrell
c) Tom Cruise
d) Max von Sydow
34) Which of these first names is not that of a precog?
(a) Azrael
b) Agatha
(c) Arthur
d) Dashiell
35) PreCrime is a specialized police department, apprehends criminals based on foreknowledge
(a) provided by psychics called "precogs".
b) provided by aliens called "precogs"
c) provided by angels called "precogs"
d) based on a minority report.
36) The Mosuo people is

(a) a matriarchal society

Q.C.M n°5 de Physique

41- Pour toute surface S, le flux ϕ du champ \vec{E} est donné par :

(a)
$$\phi = \iint_{\mathcal{S}} \vec{E} \cdot \vec{dS}$$

b)
$$\frac{\partial \phi}{\partial t} = \iint_{\mathcal{S}} \vec{E} \cdot \vec{dS}$$

c)
$$\phi = \iint_{\mathcal{S}} \frac{\partial \vec{E}}{\partial t} \cdot \overrightarrow{dS}$$

42- On considère un disque sur le plan xOy centré en O et chargé avec une densité linéique λ<0 (voir la figure). Par symétrie, le vecteur champ électrique créé en M par la distribution est porté par :

$$(b)$$
 $-\overline{u_z}$

a) $-\overline{u_z}$ (b) $+\overline{u_z}$ c) Aucune des deux réponses précédentes n'est correcte

43- Le champ $\vec{E}(M)$, généré par un cylindre creux infini de rayon a chargé avec une densité surfacique σ uniforme, en un point M à l'intérieur du cylindre, est donné par :

$$\widehat{(a)} \vec{E}(M) = \vec{0}$$

b)
$$\vec{E}(M) = \frac{k\sigma a}{r} \vec{u_r}$$

c)
$$\vec{E}(M) = \frac{k\sigma}{r^2} \overrightarrow{u_r}$$

44- Le champ électrique $\vec{E}(r) = k \frac{Qr}{a_0^2} e^{-\frac{r^2}{a_0^2}} \cdot \vec{u_r}$, où Q et a_0 sont des constantes, dérive du potentiel:

(a)
$$V(r) = k \frac{Q}{2a_0} e^{-\frac{r^2}{a_0^2}}$$
 b) $V(r) = -k \frac{Q}{a_0} e^{-\frac{r^2}{a_0^2}}$ c) $V(r) = k \frac{Q}{a_0^2} e^{-\frac{r^2}{a_0^2}}$

b)
$$V(r) = -k \frac{Q}{a_0} e^{-\frac{r^2}{a_0^2}}$$

c)
$$V(r) = k \frac{Q}{a_0^2} e^{-\frac{r^2}{a_0^2}}$$

45- On montre qu'un élément infinitésimal situé en P d'un fil de charge linéique λ crée un champ électrique en un point M extérieur au fil $dE_x(x) = \frac{k \cdot \lambda}{r} \cos(\alpha) d\alpha$ où α est tel qu'indiqué ci-contre.

Le champ électrique créé par un fil infini vaut :

a)
$$E(x) = \frac{k\lambda}{x}$$

$$(b)E(x) = \frac{2k\lambda}{x}$$

(b)
$$E(x) = \frac{2k\lambda}{x}$$
 c) $E(x) = 2\sin(\alpha)\frac{k\lambda}{x}$

46 - Une distribution sphérique de charges crée en un point M situé à une distance r de O, un potentiel d'expression : $V(r) = \frac{q}{4\pi\epsilon_0} \cdot \frac{1}{r} e^{-\frac{r}{a_0}}$; $(a_o, q \text{ et } \epsilon_0 \text{ sont des constantes})$ positives.)

Rappel de l'expression du gradient en sphérique :

$$\overrightarrow{grad} f(r,\theta,\varphi) = \frac{\partial f}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{u}_\theta + \frac{1}{r \cdot \sin(\theta)} \frac{\partial f}{\partial \varphi} \vec{u}_\varphi$$

Quelle est l'expression du champ électrique $\overline{E(M)}$ au point M?

(a)
$$\overline{E(M)} = \frac{q}{4\pi\varepsilon_0} \cdot (\frac{1}{r^2} + \frac{1}{a_0 r}) e^{-\frac{r}{a_0}} \cdot \overline{u_r}$$

b) $\overline{E(M)} = \frac{q}{4\pi\varepsilon_0} \cdot (\frac{1}{r^3} + \frac{1}{a_0 r^2}) e^{-r} \cdot \overline{u_r}$

b)
$$\overline{E(M)} = \frac{q}{4\pi\epsilon_0} \cdot (\frac{1}{r^3} + \frac{1}{q_0 r^2}) e^{-r} \cdot \overline{u_r}$$

c)
$$\overrightarrow{E(M)} = \frac{1}{4\pi\varepsilon_0} \cdot \left(\frac{a_0}{r^2} + \frac{1}{a_0 r}\right) e^{-\frac{r}{a_0}} \cdot \overrightarrow{u_r}$$

47 – Comment s'exprime l'élément de charge dQ en fonction de la charge surfacique σ et de l'élément infinitésimal de surface dS?

a)
$$dQ = \frac{\sigma}{dl}$$

b)
$$dO = -\sigma dS$$

(c)
$$dQ = \sigma dS$$

48 - L'élément infinitésimal de volume dV en cylindrique s'écrit :

a)
$$dV = dx. dy. dz$$

b)
$$dV = dr. d\theta. dz$$

(c)
$$dV = r. d\theta. dr. dz$$

49 - Une sphère de centre O et de rayon R est chargée uniformément en surface avec une distribution surfacique σ positive. Le champ $\vec{E}(M)$, où M est à l'intérieur de cette sphère, est tel que :

a)
$$\|\vec{E}\|$$
 est proportionnel à r b) $\vec{E} = 4\pi R^2 k \rho . \overrightarrow{u_r}$

b)
$$\vec{E} = 4\pi R^2 k \rho_0 \vec{u}_r$$

$$(\vec{c})\vec{E} = \vec{0}$$

50 – Le dipôle électrique suivant est considéré. Le point O est situé au milieu de AB.

L'énergie potentielle électrique au point A est :

a)
$$Ep(A) = k \frac{Q^2}{a}$$

a)
$$Ep(A) = k\frac{Q^2}{a}$$
 b) $Ep(A) = -k\frac{Q^2}{2a}$ c) $Ep(A) = -k\frac{Q}{a}$

c)
$$Ep(A) = -k\frac{Q}{a}$$

QCM Electronique - InfoS3

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

- Q1. Le dopage permet d'augmenter la conductivité du semi-conducteur
 - (a-) VRAI

b- FAUX

Soit le circuit ci-contre, dans lequel on considère la diode idéale (interrupteur)

- Q2. Que vaut la tension aux bornes de R si e=E=10V, $R=100\Omega$.
 - (a-) 10 V

c-1kV

b- 0 V

d- 0,1 V

- Q3. On prend maintenant $e(t) = E_0\sqrt{2}$. $\sin(\omega \cdot t)$. Choisir l'affirmation correcte :
 - a- La diode est bloquée et la tension à ses bornes est égale à $\frac{E_0 \cdot \sqrt{2}}{R}V$.
 - b- Si e(t) < 0, alors la diode est passante.
 - $\widehat{(c)}$ Si e(t) < 0, alors la diode est bloquée.
 - d- Si e(t) > 0, alors la diode est bloquée.
- Q4. L'équation de la caractéristique de la diode s'écrit : $I_D = I_S(e^{\frac{V_D}{mV_T}}-1)$ où I_D représente le courant qui traverse la diode et V_D , la tension à ses bornes, courant et tension étant fléchés selon la convention récepteur. I_S correspond au courant inverse. C'est un courant :
 - a- Très grand (plusieurs dizaine d'ampères)
- b Très faible (quelques nano ampères)

Q5. Soit le circuit ci-contre:

Quelle type de porte logique réalise ce montage ?

- a- OU
- c- NON ET
- b- NON OU
- (d-) ET

Soit le circuit suivant où $v(t) = V.\sqrt{2}.sin(\omega t)$. (Q6 à 7)

Si v(t)>0, quelles sont les diodes passantes :

- a- D_1 et D_2
- b- D_1 et D_3
- C- D_2 et D_4 d- D_2 et D_3

Q7. Choisir l'affirmation correcte :

- a-) $u(t) \leq 0 \ \forall t$
 - $b-u(t) \ge 0 \ \forall t$
 - c- $u(t) = 0 \text{ si } v(t) \le 0$
 - d- u(t) = 0 si $v(t) \ge 0$

Que se passe-t-il si on modélise les diodes par leur modèle à seuil? On notera V_0 , la Q8. tension de seuil des diodes.

- a- Si |v| > 2. V_0 , alors les 4 diodes sont bloquées.
- b- Si $|v| > V_0$, alors les 2 diodes de la question 3 sont passantes.
- (c-) Si $|v| < 2.V_0$, alors les 4 diodes sont bloquées.
 - d- Toutes les réponses précédentes sont fausses.

Q9. Un dopage approprié du silicium permet de favoriser l'effet d'avalanche et d'obtenir une diode Zéner.

(a- VRAI

b- FAUX

Q10. Par quoi remplace-t-on la diode Zéner lorsqu'elle est passante en inverse si on utilise le modèle à seuil?

QCM 5 Architecture des ordinateurs

Lundi 25 novembre 2019

Pour toutes les questions, une ou plusieurs réponses sont possibles.

11. Le l	ous d'adresse du 68000 est de :
(\widehat{A})	24 bits
B.	16 bits

C. 32 bits

D. 64 bits

12. Quel mnémonique est une directive d'assemblage?

A. MOVE

B. ADD

(C.) ORG

D. ILLEGAL

13. Soit l'instruction suivante: MOVE.W 2(A0),D0

A. A0 est incrémenté de 4.

(B.) A0 ne change pas.

C. A0 est incrémenté de 1.

D. A0 est incrémenté de 2.

14. Quels modes d'adressage ne spécifient pas d'emplacement mémoire ?

A. Mode d'adressage direct.

B. Mode d'adressage indirect.

C. Mode d'adressage absolu.

√D. Mode d'adressage immédiat.

15. Soit l'instruction suivante : MOVE.W \$50,D0. Que représente la valeur \$50 ?

A. Une donnée immédiate sur 8 bits.

(B) Une adresse sur 32 bits.

C. Une adresse sur 16 bits.

D. Une donnée immédiate sur 32 bits.

	Alcintecture are	Ammorramme	٠,
_	Ouelle(s) instruction(s) peut-on utiliser pour appeler un	sous-programme	•
16.	Ouelle(s) instruction(s) peut-on duriser pour app		

- A. BRA
- B. GSR
- (C.) BSR

17. Après l'exécution d'une instruction RTS, le pointeur de pile est :

- A. Incrémenté de deux.
- (B.) Incrémenté de quatre.
- C. Décrémenté de deux.
- D. Décrémenté de quatre.

18. Les étapes pour empiler une donnée sont :

- A. Écrire la donnée dans (A7) puis décrémenter A7.
- B. Lire la donnée dans (A7) puis incrémenter A7.
- C. Incrémenter A7 puis lire la donnée dans (A7).
- (D.) Décrémenter A7 puis écrire la donnée dans (A7).

CMP.B D1,D2

BLE NEXT

Branchement à NEXT si :

20. Soient les deux instructions suivantes :

CMP(B) D1, D2

BNE NEXT

Branchement à NEXT si:

A.
$$D1 = FF0000FF \text{ et } D2 = FF0000FF$$