Coursework 3: Graph Algorithms and Complexity Theory

Oskar Mampe

Tutorial Session: Thursday 1pm

Explanation: A hamiltonian path in an undirected graph is a path that contains all vertices of the graph (without repetition). Similarly, a hamiltonian cycle is a cycle that contains all vertices of the graph. A graph with hamiltonian path is traceable, and a graph with hamiltonian cycle is hamiltonian.

1. Specify decision problems HP and HC dealing with hamiltonian paths and hamiltonian cycles in undirected graphs.

HP:

Input: An undirected graph G = (V, E).

Question: Does G contain a Hamiltonian Path?

HC:

Input: An undirected graph G = (V, E).

Question: Does G contain a Hamiltonian Circuit?

- 2. Show HP \leq_m^p HC by completing the following tasks:
 - (a) Construct a polynomial transformation f from HP to HC. Let G = (V, E) be an input for a Hamiltonian Path. Let f(G) = G' = (V', E'), where $V' = V \cup \{v\}$ $v \notin V$ and $E' = E \cup \{\{v, w\} | w \in V\}$. This is in polynomial time as adding a vertex takes constant time and adding edges $\{v, w\}$ for all $w \in V$ takes |V| amount of time. In total this operation takes |V| + c amount of time, which is polynomial.
 - (b) Show for all graphs G that $G \in Y_{HP} \Rightarrow f(G) \in Y_{HC}$. **Proof:** Let $G \in HP$. Given a path $p = (v_1, \ldots, v_n)$ connect the vertex v_n to v_1 through v', making a path $p' = (v_1, \ldots, v_n, v', v_1)$, which is a cycle. The vertices v_n and v_1 will always be able to traverse to v' as v' is connected to all vertices. f(G) is a HC as

it starts and ends at the vertex v_1 .

- (c) Show for all graphs G that $f(G) \in Y_{HC} \Rightarrow G \in Y_{HP}$. Let $f(G) \in HC$. Given a path $p' = (v_1, \dots, v_{n-1}, v_n, v_1)$ removing v_n, v_1 gives $p'' = (v_1, \dots, v_{n-1})$. The result has to be a path as v_n will always be the bridge between the last node of a hamiltonian path and the first.
- 3. Show HC \leq_m^p HP by completing the following tasks:

- (a) Construct a polynomial transformation f from HC to HP. Let G = (V, E) be an input for a Hamiltonian Cycle. Let f(G) = G' = (V', E'), where $v \in V$ is a vertex in $G, V' = V \cup \{v', s, t\}$ where $v', s, t \notin V$ and $E' = E \cup \{\{v', w\} | \{v, w\} \in E\} \cup \{\{t, v'\}, \{s, v\}, \{v, v'\}\}\}$. This is in polynomial time as adding 3 vertices takes constant time and adding edges $\{\{v', w\} | \{v, w\} \in E\} \cup \{\{t, v'\}, \{s, v\}, \{v, v'\}\}\}$ |V| + c amount of time, which is polynomial.
- (b) Show for all graphs G that $G \in Y_{HC} \Rightarrow g(G) \in Y_{HP}$. Given a cycle $c = (v_1, \ldots, v_n, v_1)$, it is known that there is a path where (v_1, u, \ldots, y, v_1) which traverses all the vertices and end up at the same vertex v_1 . However, if you create a copy v' of v and then connect s to v and t to v', as s, t being the endpoints this must translate to a hamiltonian path. making cycle $c' = (s, v, u, \ldots, y', v', t)$, which is a hamiltonian path. Considering s and t are only connected to the one vertex, the path must begin and end at these vertices.

$$f(G) = G' =$$

(c) Show for all graphs G that $g(G) \in Y_{HP} \Rightarrow G \in Y_{HC}$. Given a path in f(G), it is guaranteed that s,t are the endpoints. Therefore, ignoring the first and last edge of the path will give you the path $c' = (v, u, \dots, y', v)$ which has to be a cycle.