Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

Estatística Descritiva em R

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Estatística Descritiva

Medidas de Tendência Central

- Média
- Moda
- Mediana

Medidas de Dispersão

- Amplitude
- Desvio entre quartis
- Variância
- Desvio Padrão

Análise de dados normais

- Z-score
- Histogramas
- QQ-plot
- TesteShapiro-Wilk
- TesteKolmogorov-Smirnov

Medidas de associação

- Covariância
- Correlação de Pearson

Estatística descritiva em R

- data(iris)
- summary(iris\$Sepal.Length)

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.300 5.100 5.800 5.843 6.400 7.900
```

Medidas de Tendência Central

Média

 mean(iris\$Sepal.Length)

 Mediana

 median(iris\$Sepal.Length)

Moda

```
Modes <- function(x) {
  ux <- unique(x)
  tab <- tabulate(match(x, ux))
  ux[tab == max(tab)]
}
Modes(iris$Sepal.Length)</pre>
```

Medidas de Dispersão

Amplitude

```
    max(iris$Sepal.Length) # retorna valor máximo
    min(iris$Sepal.Length) # retorna valor mínimo
    range(iris$Sepal.Length) # retorna vetor com valor máximo e mínimo
```

- IQR (amplitude entre quartis)
 - o quantile(iris\$Sepal.Length)
 - # retorna vetor com mínimo, máximo e os três quartis (0.25, 0.5, 0.75)
 - IQR(iris\$Sepal.Length)

Medidas de Dispersão

- Variância
 - var(iris\$Sepal.Length) # retorna a variância amostral

- Desvio padrão
 - sd(iris\$Sepal.Length) # retorna o desvio padrão amostral

stat.desc (da biblioteca pastecs)

<pre>install.packages("pastecs")</pre>		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
	nbr.val	150.00	150.00	150.00	150.00
library(pastecs)	nbr.null	0.00	0.00	0.00	0.00
	nbr.na	0.00	0.00	0.00	0.00
res <- stat.desc(iris[, -5])	min	4.30	2.00	1.00	0.10
	max	7.90	4.40	6.90	2.50
res	range	3.60	2.40	5.90	2.40
	sum	876.50	458.60	563.70	179.90
res["mean",]	median	5.80	3.00	4.35	1.30
	mean	5.84	3.06	3.76	1.20
	SE.mean	0.07	0.04	0.14	0.06
	CI.mean.0.95	0.13	0.07	0.28	0.12
	var	0.69	0.19	3.12	0.58
	std.dev	0.83	0.44	1.77	0.76
	coef.var	0.14	0.14	0.47	0.64

Casos em que há dados faltantes

A função **mean()**, por exemplo, retornará **NA** se houver um dado faltante. Para calcular a média ignorando estes valores basta colocar **TRUE** para o parâmetro **na.rm**:

```
mean(iris$Sepal.Length, na.rm = TRUE)
```

```
# histograma com curva da normal

data <- iris$Sepal.Length

hist(data, breaks=20,freq = FALSE, col
= "grey")

curve(dnorm(x,mean=mean(data),sd=sd(data)), col = 2, add = TRUE)</pre>
```

Histogram of data


```
# histograma com curva da normal
gg <- ggplot(iris,</pre>
aes(x=Sepal.Length))
gg <- gg +
geom histogram(aes(y=..density..))
gg <- gg + stat_function(fun=dnorm,</pre>
args =
list(mean=mean(iris$Sepal.Length), sd
= sd(iris$Sepal.Length)))
```



```
# qq-plot with R basic plot
qqnorm(iris$Sepal.Length)
qqline(iris$Sepal.Length, col =
"steelblue", lwd = 2)
```



```
# qq-plot with ggplot
g <- ggplot(iris, aes(sample = Sepal.Length))
g + geom_qq + geom_qq_line()</pre>
```



```
# qq-plot with ggplot

g <- ggplot(iris, aes(sample =
Sepal.Length))

g+ geom_qq(position="jitter",
alpha=0.25) + geom_qq_line(size=1,
color="steelblue",alpha=0.5)</pre>
```



```
# Teste de Shapiro-Wilk
                                          Shapiro-Wilk normality test
shapiro.test(iris$Sepal.Length)
                                          data: iris$Sepal.Length
                                          W = 0.97609, p-value = 0.01018
# Teste Kolmogorov-Smirnov
data <- iris$Sepal.Length
                                          One-sample Kolmogorov-Smirnov test
ks.test(data, "pnorm", mean(data),
                                          data: data
                                          D = 0.088654, p-value = 0.1891
sd(data))
                                          alternative hypothesis: two-sided
```

Covariância e Correlação

- Covariância
 - cov(iris\$Sepal.Length, iris\$Sepal.Width)

- Correlação de Pearson
 - o cor(iris\$Sepal.Length, iris\$Sepal.Width)