

射影几何与相机模型

Projective Geometry and Camera model Class 2

points, lines, planes 点, 线, 面, 二次曲 conics and quadrics 线和二次曲面变换 transformations camera model

相机模型

Chapter 1, 2 and 5 in Hartley and Zisserman

对应课本的第1, 2, 5章

Homogeneous coordinates

Homogeneous representation of 2D points and lines

$$ax + by + c = 0$$
 $(a,b,c)^{T}(x,y,1) = 0$

The point x lies on the line 1 if and only if

$$1^{\mathsf{T}}\mathbf{x} = 0$$

Note that scale is unimportant for incidence relation

$$(a,b,c)^{\mathsf{T}} \sim k(a,b,c)^{\mathsf{T}}, \forall k \neq 0$$
 $(x,y,1)^{\mathsf{T}} \sim k(x,y,1)^{\mathsf{T}}, \forall k \neq 0$

equivalence class of vectors, any vector is representative Set of all equivalence classes in \mathbb{R}^3 – $(0,0,0)^T$ forms \mathbb{P}^2

Homogeneous coordinates
$$(x_1, x_2, x_3)^T$$
 but only 2DOF Inhomogeneous coordinates $(x, y)^T$

Points from lines and vice-versa

Intersections of lines

The intersection of two lines 1 and 1' is $x = 1 \times 1$ '

Line joining two points

The line through two points x and x' is $1 = x \times x'$

Example

Note:

$$\mathbf{x} \times \mathbf{x'} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\times} \mathbf{x'}$$
with
$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix}$$

Ideal points and the line at infinity

Intersections of parallel lines

$$1 = (a, b, c)^{T}$$
 and $1' = (a, b, c')^{T}$ $1 \times 1' = (b, -a, 0)^{T}$

$$1 \times 1' = (b, -a, 0)^{\mathsf{T}}$$

Example

$$egin{pmatrix} (b, \hbox{-}a) & ext{tangent vector} \ (a, b) & ext{normal direction} \end{pmatrix}$$

$$(a,b)$$
 normal direction

 $(x_1, x_2, 0)^T$ Ideal points Line at infinity $1_{m} = (0,0,1)^{T}$

$$\mathbf{P}^2 = \mathbf{R}^2 \cup 1_{\infty}$$

Note that in P^2 there is no distinction between ideal points and others

3D points and planes

Homogeneous representation of 3D points and planes

$$\pi_1 X_1 + \pi_2 X_2 + \pi_3 X_3 + \pi_4 X_4 = 0$$

The point X lies on the plane π if and only if

$$\pi^{\mathsf{T}}X = 0$$

The plane π goes through the point X if and only if

$$\pi^{\mathsf{T}} X = 0$$

Planes from points

Solve π from $X_1^T \pi = 0$, $X_2^T \pi = 0$ and $X_3^T \pi = 0$

$$\begin{bmatrix} X_1^\mathsf{T} \\ X_2^\mathsf{T} \\ X_3^\mathsf{T} \end{bmatrix} \pi = 0 \quad \text{(solve π as right nullspace of } \begin{bmatrix} X_1^\mathsf{T} \\ X_2^\mathsf{T} \\ X_3^\mathsf{T} \end{bmatrix} \text{)}$$

Points from planes

Solve X from $\pi_1^T X = 0$, $\pi_2^T X = 0$ and $\pi_3^T X = 0$

$$\begin{bmatrix} \pi_1^\mathsf{T} \\ \pi_2^\mathsf{T} \\ \pi_3^\mathsf{T} \end{bmatrix} \mathbf{X} = \mathbf{0} \quad \text{(solve Xas right nullspace of } \begin{bmatrix} \pi_1^\mathsf{T} \\ \pi_2^\mathsf{T} \\ \pi_3^\mathsf{T} \end{bmatrix} \text{)}$$

Representing a plane by its span

$$X = M x \qquad M = [X_1 X_2 X_3]$$

$$\boldsymbol{\pi}^{\mathsf{T}} \mathbf{M} = 0$$

Lines

Representing a line by its span

$$W = \begin{bmatrix} A^{\mathsf{T}} \\ B^{\mathsf{T}} \end{bmatrix} \qquad \lambda A + \mu B$$

Dual representation

$$W^* = \begin{bmatrix} P^\mathsf{T} \\ Q^\mathsf{T} \end{bmatrix} \qquad \lambda P + \mu Q$$

$$\mathbf{W}^*\mathbf{W}^\mathsf{T} = \mathbf{W}\mathbf{W}^{*\mathsf{T}} = \mathbf{0}_{2 \times 2}$$

Example: X-axis

$$\mathbf{W} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{W}^* = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

(Alternative: Plücker representation, details see e.g. H&Z)

Points, lines and planes

$$\mathbf{M} = \begin{bmatrix} \mathbf{W} \\ \mathbf{X}^{\mathsf{T}} \end{bmatrix} \qquad \mathbf{M} \, \boldsymbol{\pi} = 0$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{W}^* \\ \mathbf{\pi}^T \end{bmatrix} \quad \mathbf{M} \mathbf{X} = 0$$

Plücker coordinates

Elegant representation for 3D lines

$$\begin{split} l_{ij} &= A_i B_j \quad B_i A_j \qquad \text{(with A and B points)} \\ \mathsf{L} &= \begin{bmatrix} l_{12}, l_{13}, l_{14}, l_{23}, l_{42}, l_{34} \end{bmatrix}^\mathsf{T} \ \in \mathbf{P}^5 \\ & (\mathsf{L} \, | \, \hat{\mathsf{L}} \,) = l_{12} \hat{l}_{34} + l_{13} \hat{l}_{42} + l_{14} \hat{l}_{23} + l_{23} \hat{l}_{14} + l_{42} \hat{l}_{13} + l_{34} \hat{l}_{12} \\ & (\mathsf{L} \, | \, \mathsf{L} \,) = 0 \qquad \qquad \text{(Plücker internal constraint)} \\ & (\mathsf{L} \, | \, \hat{\mathsf{L}} \,) = \det \left[\mathsf{A}, \mathsf{B}, \hat{\mathsf{A}}, \hat{\mathsf{B}} \right] = 0 \quad \text{(two lines intersect)} \end{split}$$

(for more details see e.g. H&Z)

Conics

Curve described by 2nd-degree equation in the plane

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

or homogenized $x \mapsto \frac{x_1}{x_3}, y \mapsto \frac{x_2}{x_3}$

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

or in matrix form

matrix form
$$\mathbf{x}^{\mathsf{T}} \mathbf{C} \mathbf{x} = 0 \quad \text{with} \quad \mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

5DOF: $\{a:b:c:d:e:f\}$

Five points define a conic

For each point the conic passes through

$$ax_i^2 + bx_iy_i + cy_i^2 + dx_i + ey_i + f = 0$$

or

$$(x_i^2, x_i y_i, y_i^2, x_i, y_i, 1) \cdot \mathbf{c} = 0$$

stacking constraints yields

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \mathbf{c} = \mathbf{0}$$

Tangent lines to conics

The line I tangent to \mathbb{C} at point x on \mathbb{C} is given by $l=\mathbb{C}x$

Dual conics

A line tangent to the conic \mathbf{C} satisfies $\mathbf{1}^{\mathsf{T}} \mathbf{C}^* \mathbf{1} = 0$

In general (C full rank): $\mathbf{C}^* = \mathbf{C}^{-1}$

Dual conics = line conics = conic envelopes

Degenerate conics

A conic is degenerate if matrix **C** is not of full rank

e.g. two lines (rank 2)
$$\mathbf{C} = \mathbf{lm}^{\mathsf{T}} + \mathbf{ml}^{\mathsf{T}}$$

e.g. repeated line (rank 1)

$$\mathbf{C} = 11^{\mathsf{T}}$$

Degenerate line conics: 2 points (rank 2), double point (rank1)

Note that for degenerate conics $(\mathbf{C}^*)^* \neq \mathbf{C}$

Quadrics and dual quadrics

$$X^TQX = 0$$
 (Q: 4x4 symmetric matrix)

• 9 d.o.f.

- $Q = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ \circ & \bullet & \bullet & \bullet \\ \circ & \circ & \bullet & \bullet \end{bmatrix}$
- in general 9 points define quadric
- det Q=0 → degenerate quadric
- tangent plane $\pi = QX$

$$\pi^{\mathsf{T}} Q^* \pi = 0$$

• relation to quadric $Q^* = Q^{-1}$ (non-degenerate)

2D projective transformations

Definition:

A *projectivity* is an invertible mapping h from P² to itself such that three points x_1,x_2,x_3 lie on the same line if and only if $h(x_1),h(x_2),h(x_3)$ do.

Theorem:

A mapping $h: P^2 \rightarrow P^2$ is a projectivity if and only if there exist a non-singular 3x3 matrix **H** such that for any point in P^2 reprented by a vector x it is true that h(x) = Hx

<u>Definition:</u> Projective transformation

$$\begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 or $x' = \mathbf{H} \times \mathbf{BDOF}$

projectivity=collineation=projective transformation=homograph

Transformation of 2D points, lines and conics

For a point transformation

$$x' = H x$$

Transformation for lines

$$1' = \mathbf{H}^{-\mathsf{T}} \mathbf{1}$$

Transformation for conics

$$C' = H^{-T}CH^{-1}$$

Transformation for dual conics

$$\mathbf{C'}^* = \mathbf{HC}^* \mathbf{H}^\mathsf{T}$$

Fixed points and lines

$$\mathbf{H} \, \mathbf{e} = \lambda \, \mathbf{e}$$
 (eigenvectors \mathbf{H} =fixed points) $(\lambda_1 = \lambda_2 \Rightarrow \text{pointwise fixed line})$

$$\mathbf{H}^{\mathsf{T}} \mathbf{1} = \lambda \mathbf{1}$$
 (eigenvectors \mathbf{H}^{T} =fixed lines)

Hierarchy of 2D transformations

The line at infinity

$$\mathbf{l}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \mathbf{1}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & 0 \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \mathbf{1}_{\infty}$$

The line at infinity I_{∞} is a fixed line under a projective transformation H if and only if H is an affinity

Note: not fixed pointwise

Affine properties from images

$$\mathbf{H}_{PA} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_1 & l_2 & l_3 \end{bmatrix} \mathbf{H}_A \qquad \mathbf{1}_{\infty} = \begin{bmatrix} l_1 & l_2 & l_3 \end{bmatrix}^{\mathsf{T}}, l_3 \neq 0$$

Affine rectification

The circular points

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$$

$$\mathbf{I}' = \mathbf{H}_{S} \mathbf{I} = \begin{bmatrix} s \cos \theta & s \sin \theta & t_{x} \\ -s \sin \theta & s \cos \theta & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = se^{i\theta} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = \mathbf{I}$$

The circular points I, J are fixed points under the projective transformation **H** iff **H** is a similarity

The circular points

"circular points"

$$x_1^2 + x_2^2 + dx_1 x_3 + ex_2 x_3 + fx_3^2 = 0$$
$$x_3 = 0$$

$$x_1^2 + x_2^2 = 0$$

$$\mathbf{I} = (1, i, 0)^{\mathsf{T}}$$

$$\mathbf{J} = (1, -i, 0)^{\mathsf{T}}$$

Algebraically, encodes orthogonal directions

$$I = (1,0,0)^T + i(0,1,0)^T$$

Conic dual to the circular points

$$\mathbf{C}_{\infty}^{*} = \mathbf{I}\mathbf{J}^{\mathsf{T}} + \mathbf{J}\mathbf{I}^{\mathsf{T}} \qquad \mathbf{C}_{\infty}^{*} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{C}_{\infty}^{*} = \mathbf{H}_{S}\mathbf{C}_{\infty}^{*}\mathbf{H}_{S}^{\mathsf{T}}$$

The dual conic \mathbb{C}_{∞}^* is fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

Note: \mathbb{C}_{∞}^* has 4DOF \mathbb{I}_{∞} is the nullvector

Angles

Euclidean:
$$1 = (l_1, l_2, l_3)^T$$
 $\mathbf{m} = (m_1, m_2, m_3)^T$

$$\cos\theta = \frac{l_1 m_1 + l_2 m_2}{\sqrt{(l_1^2 + l_2^2)(m_1^2 + m_2^2)}}$$

Projective:
$$\cos \theta = \frac{1^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m}}{\sqrt{\left(1^{\mathsf{T}} \mathbf{C}_{\infty}^{*} 1\right) \left(\mathbf{m}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m}\right)}}$$

$$1^T \mathbf{C}^*_{\infty} \mathbf{m} = 0$$
 (orthogonal)

Transformation of 3D points, planes and quadrics

For a point transformation

(cfr. 2D equivalent)

$$X' = HX$$

$$(x'=Hx)$$

Transformation for lines

$$\pi' = \mathbf{H}^{\mathsf{-T}} \pi$$

$$(1'=\mathbf{H}^{-\mathsf{T}}1)$$

Transformation for conics

$$Q' = H^{-T}QH^{-1}$$

$$\left(\mathbf{C'} = \mathbf{H}^{-\mathsf{T}}\mathbf{C}\mathbf{H}^{-\mathsf{1}}\right)$$

Transformation for dual conics

$$Q'^* = HQ^*H^T$$

$$\left(\mathbf{C}_{\mathsf{L}_{*}}=\mathbf{H}\mathbf{C}_{*}\mathbf{H}_{\mathsf{L}}\right)$$

Hierarchy of 3D transformations

Projective 15dof

$$\begin{bmatrix} A & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$

Intersection and tangency

Affine 12dof

$$\begin{bmatrix} A & t \\ 0^\mathsf{T} & 1 \end{bmatrix}$$

Parallellism of planes, Volume ratios, centroids, The plane at infinity π_{∞}

Similarity 7dof

$$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{1} \end{bmatrix}$$

Angles, ratios of length The absolute conic Ω_{∞}

Euclidean 6dof

$$\begin{bmatrix} R & t \\ 0^\mathsf{T} & 1 \end{bmatrix}$$

Volume

The plane at infinity

$$oldsymbol{\pi}_{\infty}' = oldsymbol{H}_A^{-\mathsf{T}} oldsymbol{\pi}_{\infty} = egin{bmatrix} oldsymbol{A}^{-\mathsf{T}} & 0 \ -t^{\mathsf{T}} oldsymbol{A}^{-\mathsf{T}} & 1 \end{bmatrix} egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix} = oldsymbol{\pi}_{\infty}$$

The plane at infinity π_{∞} is a fixed plane under a projective transformation H iff H is an affinity

- 1. canonical position $\pi_{\infty} = (0,0,0,1)^{\mathsf{T}}$ 2. contains directions $\mathbf{D} = (X_1,X_2,X_3,0)^{\mathsf{T}}$
- two planes are parallel \Leftrightarrow line of intersection in π_{∞}
- line // line (or plane) \Leftrightarrow point of intersection in π_{∞}

The absolute conic

The absolute conic Ω_{∞} is a (point) conic on π_{∞} .

In a metric frame:

or conic for directions: $(X_1, X_2, X_3)I(X_1, X_2, X_3)^T$ (with no real points)

The absolute conic Ω_{∞} is a fixed conic under the projective transformation **H** iff **H** is a similarity

- 1. Ω_{∞} is only fixed as a set
- 2. Circle intersect Ω_{∞} in two circular points
- 3. Spheres intersect π_{∞} in Ω_{∞}

The absolute dual quadric

$$\Omega_{\infty}^* = \begin{bmatrix} I & 0 \\ 0^\mathsf{T} & 0 \end{bmatrix}$$

The absolute dual quadric Ω^*_{∞} is a fixed conic under the projective transformation $\mathbf H$ iff $\mathbf H$ is a similarity

- 1. 8 dof
- 2. plane at infinity π_{∞} is the nullvector of Ω_{∞}

3. Angles:
$$\cos \theta = \frac{\pi_1^\mathsf{T} \Omega_{\infty}^* \pi_2}{\sqrt{(\pi_1^\mathsf{T} \Omega_{\infty}^* \pi_1)(\pi_2^\mathsf{T} \Omega_{\infty}^* \pi_2)}}$$

Camera model

Relation between pixels and rays in space

Pinhole camera

illum in tabula per radios Solis, quam in cœlo contingit: hoc est, si in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior desicere, vt ratio exigit optica.

Sic nos exactè Anno . 1544 . Louanii eclipium Solis observauimus, inuenimusq; deficere paulò plus q dex-

Pinhole camera model

$$(X,Y,Z)^T \mapsto (fX/Z,fY/Z)^T$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

linear projection in homogeneous coordinates!

Pinhole camera model

$$\begin{pmatrix} fX \\ fYx \\ Z \end{pmatrix} = \begin{bmatrix} f \\ PX \\ f \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ 1 \\ Z \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = diag(f, f, 1)[I \mid 0]$$

Principal point offset

$$(X,Y,Z)^T \mapsto (fX/Z + p_x, fY/Z + p_y)^T$$

 $(p_x, p_y)^T$ principal point

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_x \\ fY + Zp_x \\ Z \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Principal point offset

$$\begin{pmatrix}
fX + Zp_x \\
fY + Zp_x \\
Z
\end{pmatrix} = \begin{bmatrix}
f & p_x & 0 \\
K[I | 0]X_{examy} & 0 \\
1 & 0
\end{bmatrix} \begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix}$$

$$K = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix}$$
 calibration matrix

Camera rotation and translation

$$x = PX$$
 $P = K[R \mid t]$ $t = -R\widetilde{C}$

CCD camera

General projective camera

$$K = \begin{bmatrix} \alpha_x & s & p_x \\ & \alpha_x & p_y \\ & & 1 \end{bmatrix}$$

$$P = KR[I \mid \widetilde{C}]$$
 11 dof (5+3+3)

non-singular

$$P = K[R \mid t]$$
intrinsic camera parameters
extrinsic camera parameters

Radial distortion

- Due to spherical lenses (cheap)
- Model:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \mathcal{R} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}^\top & -\mathbf{R}^\top \mathbf{t} \\ 0_3^\top & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\Re(x,y) = (1 + K_1(x^2 + y^2) + K_2(x^4 + y^4) + \dots) \begin{bmatrix} x \\ y \end{bmatrix}$$

straight lines are not straight anymore http://foto.hut.fi/opetus/260/luennot/11/atkinson_6-11_radial_distortion_zoom_lenses.jpg

Camera model

Relation between pixels and rays in space

Projector model

Relation between pixels and rays in space (dual of camera)

(main geometric difference is vertical principal point offset to reduce keystone effect)

Meydenbauer camera

vertical lens shift to allow direct ortho-photographs

Fig. 5: The principle of »Plane-Table Photogrammetry« (after an instructional poster of Meydenbauer's institute)

Fig. 6: The effect of a vertical shift of the camera lens; the position II makes the best use of the image format (after Meydenbauer's textbook from 1912)

Affine cameras

Action of projective camera on points and lines

projection of point

$$x = PX$$

forward projection of line

$$X(\mu) = P(A + \mu B) = PA + \mu PB = a + \mu b$$

back-projection of line

$$\Pi = \mathbf{P}^{\mathrm{T}}\mathbf{1}$$

$$\Pi^{\mathsf{T}} \mathbf{X} = \mathbf{1}^{\mathsf{T}} \mathbf{P} \mathbf{X} \qquad (\mathbf{1}^{\mathsf{T}} \mathbf{x} = 0; \mathbf{x} = \mathbf{P} \mathbf{X})$$

Action of projective camera on conics and quadrics

back-projection to cone

$$Q_{co} = P^{T}CP$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{C}\mathbf{x} = \mathbf{X}^{\mathrm{T}}\mathbf{P}^{\mathrm{T}}\mathbf{C}\mathbf{P}\mathbf{X} = \mathbf{0}$$

$$(\mathbf{x} = \mathbf{P}\mathbf{X})$$

projection of quadric

$$\mathbf{C}^* = \mathbf{P}\mathbf{Q}^*\mathbf{P}^T$$

$$\Pi^{\mathrm{T}} Q^* \Pi = \mathbf{1}^{\mathrm{T}} P Q^* P^{\mathrm{T}} \mathbf{1} = 0$$

$$\left(\Pi = \mathbf{P}^{\mathrm{T}}\mathbf{1}\right)$$

Image of absolute conic

$$\omega^* = \mathbf{P}\Omega^* \mathbf{P}^{\top}$$

$$= \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R}^{\top} \\ \mathbf{t}^{\top} \end{bmatrix} \mathbf{K}^{\top}$$

$$= \mathbf{K} \mathbf{K}^{\top}$$

$$\omega = \mathbf{K}^{-1} \mathbf{K}^{-\top}$$

A simple calibration device

- (i) compute H for each square (corners @ (0,0),(1,0),(0,1),(1,1))
- (ii) compute the imaged circular points $H(1,\pm i,0)^T$
- (iii) fit a conic to 6 circular points
- (iv) compute K from ω through cholesky factorization

(≈ Zhang's calibration method)

Exercises: Camera calibration

Next class: Single View Metrology

