or an acid addition salt thereof, wherein the radicals R, R_1 , R_2 , R_3 , R_4 and Z have the following meanings:

R represents

- (1) hydrogen, or
- (2) (C₁-C₄)-alkyl, wherein the alkyl group is optionally mono- or polysubstituted by a phenyl ring,

which ring is optionally mono- or polysubstituted by halogen, (C_1-C_6) -alkyl, (C_3-C_7) -cycloalkyl, carbonyl groups, carboxyl groups esterified with (C_1-C_6) -alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, benzyloxy groups and benzyl groups which are optionally mono- or polysubstituted on the phenyl moiety by (C_1-C_6) alkyl groups, halogen atoms or trifluoromethyl groups;

R₁ represents

- (1) a phenyl ring which is mono- or polysubstituted by (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, hydroxyl, benzyloxy, nitro, amino, (C₁-C₆)-alkylamino, (C₁-C₆)-alkoxy-carbonylamino and by a carboxyl group or a carboxyl group esterified by a (C₁-C₆)-alkanol;
- (2) a pyridine structure of formula II:

wherein the pyridine structure is alternatively bonded to the ring carbon atoms 2, 3 and 4 and is optionally substituted by R₅ and R₆, which may be identical or different and represent (C₁-C₆)-alkyl, (C₃-C₇) cycloalkyl, (C₁-C₆)alkoxy, nitro, amino, hydroxyl, halogen, trifluromethyl, an ethoxycarbonylamino radical and a carboxyalkyloxy group in which the alkyl group has 1-4 carbon atoms;

- (3) [a 2- or 4-pyrimidinyl-heterocycle or] a pyridylmethyl radical in which CH₂ is in the 2-, 3- or 4- position[, wherein the 2- pyrimidinyl ring is optionally mono- or polysubstituted by a methyl group];
- (4) a 2-, 3- or 4-quinolyl structure substituted by (C_1-C_6) -alkyl, halogen, a nitro group, an amino group or a (C_1-C_6) -alkylamino radical;
- (5) a 2-, 3- or 4-quinolyl methyl group, wherein the ring carbons of the pyridylmethyl and quinolylmethyl radicals are optionally substituted by (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, nitro, amino and (C₁-C₆)-alkoxy-carbonylamino;
- (6) if R represents hydrogen or a benzyl group, R₁ can represent the acid radical of a natural amino acid, wherein the amino group of said amino acid is present in protected or unprotected form wherein if R₁ represents an asparagyl or a glutamyl radical having a second nonbonded carboxyl group, said nonbonded carboxyl group is present as a free carboxyl group or in the form of an ester with C₁-C₆-alkanols;
- (7) an allylaminocarbonyl-2-methylprop-1-yl group; [or

R₁ and R, together with the nitrogen atom to which they are bonded, form a piperizine ring of formula III:

LEBAUT -- Appln. No. 08/925,326

$$7.37 - \sqrt{N-R_7}$$
 (III)

or a homopiperazine ring if R_1 represents an aminoalkylene group, in which R_7 represents an alkyl radical, a phenyl ring which is optionally mono- or polysubstituted by (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, halogen, a nitro group, an amino function, (C_1-C_6) -alkylamino, benzhydryl group and bis-p-fluorobenzylhydryl group;]

R₂ represents

- (1) hydrogen;
- (2) a (C₁-C₆)-alkyl group,
 said alkyl group being optionally mono- or polysubstituted by halogen
 or a phenyl ring,

which ring is optionally mono- or polysubstituted by halogen, (C_1-C_6) -alkyl, (C_3-C_7) -cycloalkyl, carbonyl groups, carboxyl groups esterified with (C_1-C_6) -alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, or benzyloxy groups;

or by a 2-quinolyl group or a 2-,3- or 4-pyridyl structure which are optionally mono- or polysubstituted by halogen, (C_1-C_4) -alkyl groups or (C_1-C_4) -alkoxy groups;

(3) an aroyl radical, wherein the aroyl moiety on which the radical is based is a phenyl ring which is optionally mono- or polysubstituted by halogen, (C₁-C₆)-alkyl, (C₃-C₇)-cycloalkyl, carbonyl groups, carboxyl groups esterified with (C₁-

LEBAUT -- Appln. No. 08/925,326

C₆)-alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, or benzyloxy groups;

 R_3 and R_4 , which are identical or different, represent hydrogen, hydroxyl, $(C_1\text{-}C_6)$ -alkyl, $(C_3\text{-}C_7)$ -cycloalkyl, $(C_1\text{-}C_6)$ -alkanoyl, $(C_1\text{-}C_6)$ -alkoxy, halogen, benzoxy, a nitro group, an amino group, a $(C_1\text{-}C_4)$ -mono- or dialkyl substituted amino group, a $(C_1\text{-}C_3)$ -alkoxycarbonylamino function or a $(C_1\text{-}C_3)$ -alkoxycarbonylamino- $(C_1\text{-}C_3)$ -alkyl function; and

Z represents O or S;

wherein alkyl, alkanol, alkoxy and alkylamino groups may be straight chained or branched.

Amended) The N-substituted indol-3-glyoxylamide of claims wherein R is hydrogen or a benzyl group and R_1 is the acid radical of an amino acid selected from the group consisting of α -glycyl, α -alanyl, α -leucyl, α -isoleucyl, α -seryl, α -phenylalanyl, [α -histidyl, α -prolyl,] α -arginyl, α -lysyl, α -asparagyl and α -glutamyl.

(Amended) A method of treating asthma and/or allergy in a mammal comprising the step of administering to said mammal a treatment-effective amount of a compound of formula I:

$$\frac{1}{1,39}$$

$$\frac{1$$

or an acid addition salt thereof, wherein the radicals R, R_1 , R_2 , R_3 , R_4 and Z have the following meanings:

R represents

- (1) hydrogen, or
- (2) (C₁-C₄)-alkyl, wherein the alkyl group is optionally mono- or polysubstituted by a phenyl ring,

which ring is optionally mono- or polysubstituted by halogen, (C_1-C_6) -alkyl, (C_3-C_7) -cycloalkyl, carbonyl groups, carboxyl groups esterified with (C_1-C_6) -alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, benzyloxy groups and benzyl groups which are optionally mono- or polysubstituted on the phenyl moiety by (C_1-C_6) alkyl groups, halogen atoms or trifluoromethyl groups;

R₁ represents

(1) a phenyl ring which is mono- or polysubstituted by (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, hydroxyl, benzyloxy, nitro, amino, (C_1-C_6) -alkylamino, (C_1-C_6) -alkoxy-

carbonylamino and by a carboxyl group or a carboxyl group esterified by a (C_1-C_6) -alkanol;

(2) a pyridine structure of formula II:

wherein the pyridine structure is alternatively bonded to the ring carbon atoms 2, 3 and 4 and is optionally substituted by R_5 and R_6 , which may be identical or different and represent (C_1 - C_6)-alkyl, (C_3 - C_7) cycloalkyl, (C_1 - C_6)alkoxy, nitro, amino, hydroxyl, halogen, trifluromethyl, an ethoxycarbonylamino radical and a carboxyalkyloxy group in which the alkyl group has 1-4 carbon atoms;

- (3) [a 2- or 4-pyrimidinyl-heterocycle or] a pyridylmethyl radical in which CH₂ is in the 2-, 3- or 4- position[, wherein the 2- pyrimidinyl ring is optionally mono- or polysubstituted by a methyl group];
- (4) a 2-, 3- or 4-quinolyl structure substituted by (C_1-C_6) -alkyl, halogen, a nitro group, an amino group or a (C_1-C_6) -alkylamino radical;
- (5) a 2-, 3- or 4-quinolyl methyl group, wherein the ring carbons of the pyridylmethyl and quinolylmethyl radicals are optionally substituted by (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, nitro, amino and (C₁-C₆)-alkoxy-carbonylamino;
- (6) if R represents hydrogen or a benzyl group, R₁ can represent the acid radical of a natural amino acid, wherein the amino group of said amino acid is present in protected or unprotected form wherein if R₁ represents an asparagyl or a glutamyl

radical having a second nonbonded carboxyl group, said nonbonded carboxyl group is present as a free carboxyl group or in the form of an ester with C_1 - C_6 -alkanols;

(7) an allylaminocarbonyl-2-methylprop-1-yl group;[or

R₁ and R, together with the nitrogen atom to which they are bonded, form a piperizine ring of formula III:

-N $N-R_7$ (III)

or a homopiperazine ring if R_1 represents an aminoalkylene group, in which R_7 represents an alkyl radical, a phenyl ring which is optionally mono- or polysubstituted by (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, halogen, a nitro group, an amino function, (C_1-C_6) -alkylamino, benzhydryl group and bis-p-fluorobenzylhydryl group;]

R₂ represents

- (1) hydrogen;
- (2) a (C_1-C_6) -alkyl group, said alkyl group being optionally mono- or polysubstituted by halogen or a phenyl ring,

which ring is optionally mono- or polysubstituted by halogen, (C_1-C_6) -alkyl, (C_3-C_7) -cycloalkyl, carbonyl groups, carboxyl groups esterified

with (C₁-C₆)-alkanols, trifluoromethyl groups, hydroxyl groups,
methoxy groups, ethoxy groups, or benzyloxy groups;
or by a 2-quinolyl group or a 2-,3- or 4-pyridyl structure
which are optionally mono- or polysubstituted by halogen, (C₁-C₄)alkyl groups or (C₁-C₄)-alkoxy groups;

(3) an aroyl radical, wherein the aroyl moiety on which the radical is based is a phenyl ring which is optionally mono- or polysubstituted by halogen, (C₁-C₆)-alkyl, (C₃-C₇)-cycloalkyl, carbonyl groups, carboxyl groups esterified with (C₁-C₆)-alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, or benzyloxy groups;

 R_3 and R_4 , which are identical or different, represent hydrogen, hydroxyl, (C_1-C_6) -alkyl, (C_3-C_7) -cycloalkyl, (C_1-C_6) -alkanoyl, (C_1-C_6) -alkoxy, halogen, benzoxy, a nitro group, an amino group, a (C_1-C_4) -mono- or dialkyl substituted amino group, a (C_1-C_3) -alkoxycarbonylamino function or a (C_1-C_3) -alkoxycarbonylamino- (C_1-C_3) -alkyl function; and

Z represents O or S;

wherein alkyl, alkanol, alkoxy and alkylamino groups may be straight chained or branched.

(Amended) A method of inducing regression of an immunological reaction in a mammal comprising the step of administering to said mammal an effective amount of a compound according to formula I:

or an acid addition salt thereof, wherein the radicals R, R_1 , R_2 , R_3 , R_4 and Z have the following meanings:

R represents

- (1) hydrogen, or
- (2) (C₁-C₄)-alkyl, wherein the alkyl group is optionally mono- or polysubstituted by a phenyl ring,

which ring is optionally mono- or polysubstituted by halogen, (C₁-C₆)-alkyl, (C₃-C₇)-cycloalkyl, carbonyl groups, carboxyl groups esterified with (C₁-C₆)-alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, benzyloxy groups and benzyl groups which are optionally mono- or polysubstituted on the phenyl moiety by (C₁-C₆)alkyl groups, halogen atoms or trifluoromethyl groups;

R₁ represents

- (1) a phenyl ring which is mono- or polysubstituted by (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, hydroxyl, benzyloxy, nitro, amino, (C₁-C₆)-alkylamino, (C₁-C₆)-alkoxy-carbonylamino and by a carboxyl group or a carboxyl group esterified by a (C₁-C₆)-alkanol;
- (2) a pyridine structure of formula II:

wherein the pyridine structure is alternatively bonded to the ring carbon atoms 2, 3 and 4 and is optionally substituted by R_5 and R_6 , which may be identical or different and represent (C_1 - C_6)-alkyl, (C_3 - C_7) cycloalkyl, (C_1 - C_6)alkoxy, nitro, amino, hydroxyl, halogen, trifluromethyl, an ethoxycarbonylamino radical and a carboxyalkyloxy group in which the alkyl group has 1-4 carbon atoms;

- (3) [a 2- or 4-pyrimidinyl-heterocycle or] a pyridylmethyl radical in which CH₂ is in the 2-, 3- or 4- position[, wherein the 2- pyrimidinyl ring is optionally mono- or polysubstituted by a methyl group];
- (4) a 2-, 3- or 4-quinolyl structure substituted by (C_1-C_6) -alkyl, halogen, a nitro group, an amino group or a (C_1-C_6) -alkylamino radical;
- (5) a 2-, 3- or 4-quinolyl methyl group, wherein the ring carbons of the pyridylmethyl and quinolylmethyl radicals are optionally substituted by (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, nitro, amino and (C₁-C₆)-alkoxy-carbonylamino;

- (6) if R represents hydrogen or a benzyl group, R₁ can represent the acid radical of a natural amino acid, wherein the amino group of said amino acid is present in protected or unprotected form wherein if R₁ represents an asparagyl or a glutamyl radical having a second nonbonded carboxyl group, said nonbonded carboxyl group is present as a free carboxyl group or in the form of an ester with C₁-C₆-alkanols;
- (7) an allylaminocarbonyl-2-methylprop-1-yl group; [or

R₁ and R, together with the nitrogen atom to which they are bonded, form a piperizine ring of formula III:

$$-N N-R_7 \qquad (III)$$

or a homopiperazine ring if R_1 represents an aminoalkylene group, in which R_7 represents an alkyl radical, a phenyl ring which is optionally mono- or polysubstituted by (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, halogen, a nitro group, an amino function, (C_1-C_6) -alkylamino, benzhydryl group and bis-p-fluorobenzylhydryl group;]

R₂ represents

- (1) hydrogen;
- (2) a (C₁-C₆)-alkyl group,
 said alkyl group being optionally mono- or polysubstituted by halogen
 or a phenyl ring,

which ring is optionally mono- or polysubstituted by halogen, (C_1-C_6) -alkyl, (C_3-C_7) -cycloalkyl, carbonyl groups, carboxyl groups esterified with (C_1-C_6) -alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, or benzyloxy groups;

or by a 2-quinolyl group or a 2-,3- or 4-pyridyl structure which are optionally mono- or polysubstituted by halogen, (C_1-C_4) -alkyl groups or (C_1-C_4) -alkoxy groups;

(3) an aroyl radical, wherein the aroyl moiety on which the radical is based is a phenyl ring which is optionally mono- or polysubstituted by halogen, (C₁-C₆)-alkyl, (C₃-C₇)-cycloalkyl, carbonyl groups, carboxyl groups esterified with (C₁-C₆)-alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, or benzyloxy groups;

R₃ and R₄, which are identical or different, represent hydrogen, hydroxyl, (C₁-C₆)-alkyl, (C₃-C₇)-cycloalkyl, (C₁-C₆)-alkanoyl, (C₁-C₆)-alkoxy, halogen, benzoxy, a nitro group, an amino group, a (C₁-C₄)-mono- or dialkyl substituted amino group, a (C₁-C₃)-alkoxycarbonylamino function or a (C₁-C₃)-alkoxycarbonylamino-(C₁-C₃)-alkyl function; and

Z represents O or S;

wherein alkyl, alkanol, alkoxy and alkylamino groups may be straight chained or branched.