ЛАБОРАТОРНАЯ РАБОТА № 5 ИССЛЕДОВАНИЕ АВТОМАТИЧЕСКОЙ СИСТЕМЫ С ЗАПАЗДЫВАНИЕМ

<u>Цель работы</u> - ознакомление с автоматическими системами с запаздыванием; моделирование звена запаздывания; устойчивость автоматических систем с запаздыванием; влияние запаздывание на качество переходных процессов

1.ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

В большинстве промышленных систем управления реакция на управляющее воздействие возникает только через определенный промежуток времени τ после начала этого воздействия. Такое свойство называется чистым (транспортным) запаздыванием.

Покажем на примере суть запаздывания. Пусть система управления описывается апериодическим звеном первого порядка, которому соответствует дифференциальное уравнение

(1)
$$T\frac{dy}{dt} + y = ku,$$

а та же система управления, но с запаздыванием описывается уравнением

(2)
$$T\frac{dy}{dt} + y = ku(t - \tau),$$

соответствующее апериодическому звену порядка с запаздыванием. Такого вида уравнения называются уравнениями с запаздывающим аргументом или дифференциально-разностными уравнениями.

Введем обозначение $\hat{u}(t) = u(t-\tau)$. Тогда уравнение (2) запишется в обыкновенном виде

(3)
$$T\frac{dy}{dt} + y = k\widehat{u}.$$

Так, если входное воздействие u(t) изменяется скачком от нуля до единицы (рис. 1), то изменение величины $\widehat{u}(t) = u(t-\tau)$, стоящей в правой части уравнения звена изобразится графиком (рис. 2), который изображается как скачок, возникающий позже на время τ . Используя переходную характеристику инерционного звена применительно к уравнению (3), получаем изменение выходной величины y(t) в виде графика, изображенного на рис. 3. Это и будет переходная характеристика инерционного звена с запаздыванием, у которого "инерционное" свойство характеризуется постоянной времени T, а запаздывание — величиной τ .

Пусть передаточная функция разомкнутой автоматической системы с запаздыванием

(4)
$$W(p) = W_o(p)\ell^{-p\tau} = \frac{K(p)}{D(p)}\ell^{-p\tau},$$

где K(p) и D(p) – полиномы от p степени, соответственно m и $n;\ W_o(p)$ – передаточная функция линейной части разомкнутой системы.

Характеристическое уравнение замкнутой системы

(5)
$$D(p) + K(p)\ell^{-p\tau} = 0.$$

Это трансцендентное уравнение и оно имеет бесконечно большое число корней. Поэтому для устойчивости систем первого и второго порядка недостаточно только положительности коэффициентов, а для систем более высокого порядка неприменимы критерии устойчивости Гурвица и Рауса.

Наиболее удобен критерий Найквиста и для его применения передаточную функцию разомкнутой системы следует иметь в виде (4). С этой целью соответственно выбирают точку размыкания исследуемой системы.

В одноконтурной системе можно размыкать основную обратную связь (рис. 4). В этом случае

(6)
$$W(p) = W_1(p)W_2(p)\ell^{-\tau p}$$
.

Рис. 4.

Если звено с запаздыванием находится в цепи местной обратной связи, то автоматическую систему следует размыкать на выходе этой связи (рис. 5). Тогда

(7)
$$W(p) = \frac{W_{01}(p)W_2(p)}{1 + W_1(p)W_2(p)W_3(p)} \ell^{-\tau p}.$$

Рис. 5.

Звено с запаздыванием может быть в параллельной ветви прямой цепи системы. На входе этой ветви и нужно размыкать систему (рис. 6.). При этом

(8)
$$W(p) = \frac{W_1(p)W_2(p)W_4(p)}{1 + W_1(p)W_3(p)W_4(p)} \ell^{-\tau p}.$$

Рис. 6.

Передаточные функции W(p), которые определяются равенствами (6) - (8), после подстановки передаточных функций отдельных участков системы принимают вид (4).

Рассмотрим возможность применения критерия Найквиста для исследования устойчивости систем с запаздыванием. Запишем еще раз передаточную функцию системы в разомкнутом состоянии

$$W(p) = W_o(p)\ell^{-p\tau}$$
.

Система без запаздывающего звена $\tau \to 0$ называется *предельной системой*. Ее передаточная функция в разомкнутом состоянии

(9)
$$W_{pa3}(p) = W_o(p).$$

$$\tau \to 0$$

Частотные характеристики системы с запаздыванием и без него определяются соответственно выражениями

(10)
$$W(j\omega) = W_0(j\omega)\ell^{-j\omega\tau} = A(\omega)\ell^{j\varphi(\omega)} \cdot \ell^{-j\omega\tau} = A(\omega)\ell^{j(\varphi(\omega)-\omega\tau)}$$

И

$$W(j\omega) = W_0(j\omega).$$

Из выражения (10) следует, что для построения АФЧХ системы с запаздывание необходимо построить годограф системы без запаздывания (предельной системы) и каждый вектор этой АФЧХ повернуть на угол $\omega \tau$. При возрастании ω значение $\omega \tau$ также возрастает и так как при больших значениях ω модуль $W_0(j\omega)$ обычно мал, то АФЧХ системы с запаздыванием закручивается вокруг нуля . На рис. 7 цифрой 1 обозначена АФЧХ предельной системы; цифрой 2 – АФЧХ системы с запаздыванием.

Допустим, что предельная система устойчива. Тогда согласно критерия устойчивости Найквиста для устойчивых в разомкнутом состоянии стем, АФЧХ не должна охватывать точку -1, j0. Будем теперь увеличивать τ от нуля и следить деформацией за АФЧХ, соответствующей $W_0(j\omega)$. Может получиться, что для некоторого значения при $\omega = \omega_{\kappa p}$ АФЧХ пройдет через точку -1, j0.

Если при $\tau < \tau_{\kappa p}$ АФЧХ разомкнутой системы не будет охватывать точку (-1,j0), а при $\tau > \tau_{\kappa p}$ АФЧХ эту точку охватывает, то это соответствует тому, что при $\tau = \tau_{\kappa p}$ система находится на границе устойчивости.

Тем самым при возрастании τ точка (-1, j0) оказывается внутри АФЧХ разомкнутой системы и система станет неустойчивой.

Если продолжать увеличивать τ , то это в общем случае может привести к тому, что АФЧХ разомкнутой системы изменясь, не будет охватывать точку (-1,j0) и система вновь станет устойчивой. Дальнейшее увеличение τ вновь может привести к неустойчивости. Значения τ , при которых АФЧХ разомкнутой системы проходит через точку (-1,j0), называют *критическими*. Эти критические значения $\tau_{\kappa p}$ и частоты $\omega_{\kappa p}$ определяются из уравнения

(11)
$$W_p(j\omega_{\kappa p}) = W_1(j\omega_{\kappa p})\ell^{-j\tau_{\kappa p}\omega_{\kappa p}} = 1,$$

которое можно представить двумя уравнениями

(12)
$$\operatorname{mod} W_p(j\omega_{\kappa p}) = \operatorname{mod} W_1(j\omega_{\kappa p}) = A_1(\omega_{\kappa p}) = 1,$$

(13)
$$\arg W_p(j\omega_{\kappa p}) = \arg W_1(j\omega_{\kappa p}) - \omega_{\kappa p}\tau_{\kappa p}.$$

Из выражения (13) следует, что критические значения $\tau_{\kappa p}$ можно найти из условия

(14)
$$\tau_{\kappa p} = \frac{\pi - \varphi}{\omega_{\kappa p}} = \frac{\gamma}{\omega_{\kappa p}},$$

где $\varphi = -\arg W_1(\omega_{\kappa p}); \ \gamma$ – угол между вектором $W_p(j\omega_{\kappa p})$ и отрицательным направлением действительной оси.

Значение $\tau_{\kappa p}$ может быть определено графически. Для этого на комплексной плоскости $W(j\omega)$ проведем окружность единичного радиуса (рис. 8). Точки пересечения годографа $W_1(j\omega)$ с этой окружностью определяют частоты пересечения $\omega_{\kappa p1}, \omega_{\kappa p2}, \ldots$, а отношения углов $\gamma_1, \gamma_2, \ldots$ к значениям $\omega_{\kappa p1}, \omega_{\kappa p2}, \ldots$ предельные времена запаздывания. В общем случае таких точек может быть несколько.

Рис. 8.

Отметим, что если годограф $W_1(j\omega)$ целиком лежит в окружности единичного радиуса, т.е. нет точек пересечения, то система устойчива при любом значении τ .

<u>Пример</u>. Автоматическая система состоит из инерционного звена с передаточной функцией $W_1(p) = \frac{k_1}{Tp+1}$ и звена запаздывания $W_2(p) = \ell^{-p\tau}$.

Требуется определить критическое время запаздывания $\tau_{\kappa p}$ при $k_1 > 1$.

<u>Решение</u>. Выражение для амплитудно-частотной характеристики инерционного звена имеет вид

$$A(\omega) = \frac{k_1}{\sqrt{T_1 \omega^2 + 1}}.$$

Приравняв его к единице и возведя обе части в квадрат имеем

$$k_1^2 = \omega_{\kappa p}^2 T_1^2 = 1.$$

Отсюда

$$\omega_{\kappa p}^2 = \frac{k_1^2 - 1}{T_1^2}.$$

Зная $\omega_{\kappa p}$ определим угол φ из выражения для инерционного звена

$$\varphi = -\arg W_1(j\omega_{\kappa p}) = -arctg(\omega_{\kappa p}T_1)$$

и затем по формуле (14) вычислим критическое значение времени запаздывания. Годограф $W_1(j\omega)$ для данного случая показан на рис. 9, где

$$\tau_{\kappa p} = \frac{\pi - \varphi}{\omega_{\kappa p}} = \frac{\pi - arctg\omega_{\kappa p}T_1}{\omega_{\kappa p}}.$$

При $au < au_{\kappa p}$ система устойчива; при $au > au_{\kappa p}$ система неустойчива.

Пример. Передаточная функция разомкнутой системы представлена в

двух составляющих

$$W_1(p) = \frac{kpT_2}{(T_1p+1)(T_2p+1)}$$

И

$$W_2(p) = \mathcal{C}^{-\tau p}$$
.

Требуется определить значения времени запаздывания, при которых система устойчива.

Решение. Для удобства изложения хода решения передаточную функцию $W_1(p)$ представим

$$W_1(p) = W_{11}(p)W_{12}(p) = \frac{k}{T_1p+1} \cdot \frac{pT_2}{T_2p+1}.$$

Тем самым, уравнение (12) для случая имеет вид

$$A_1(\omega_{\kappa p}) = A_{11}(\omega_{\kappa p}) \cdot A_2(\omega_{\kappa p}) = 1,$$

где

$$A_{11}(\omega_{\kappa p}) = \frac{k}{\sqrt{T_1^2 \omega_{\kappa p}^2 + 1}}, \qquad A_{12}(\omega_{\kappa p}) = \frac{T_2 \omega_{\kappa p}}{\sqrt{T_2^2 \omega_{\kappa p}^2 + 1}}.$$

После выполнения необходимых преобразований получим

$$k_1^2 = \left(\frac{T_1 + T_2}{T_2}\right)^2 + \left(\omega_{\kappa p} T_1 - \frac{1}{\omega_{\kappa p} T_2}\right)^2,$$

ИЛИ

$$\omega_{\kappa p} T_1 - \frac{1}{\omega_{\kappa p} T_2} = \pm \sqrt{k_1^2 - \left(\frac{T_1 + T_2}{T_2}\right)^2} = \pm a.$$

Откуда

$$\omega_{\kappa p1} = rac{+a + \sqrt{a^2 + 4rac{T_1}{T_2}}}{2T_1},$$

$$\omega_{\kappa p1} = \frac{-a + \sqrt{a^2 + 4\frac{T_1}{T_2}}}{2T_1},$$

при этом $\omega_{\kappa p1} > \omega_{\kappa p2}$.

Таким образом, для рассматриваемого случая существуют две частоты пересечения $\omega_{\kappa p1}$ и $\omega_{\kappa p2}$, которым соответствуют два различных угла φ

$$\varphi_1 = arctg \frac{\omega_{\kappa p1}^2 T_1 T_2 - 1}{\omega_{\kappa p1} (T_1 + T_2)};$$

$$\varphi_2 = arctg \frac{\omega_{\kappa p2}^2 T_1 T_2 - 1}{\omega_{\kappa p2} (T_1 + T_2)}.$$

Из построений, представленных на рис. 10, следует, что $\, \phi_1 > 0 , \,$ а $\, \phi_2 < 0 \,$ и, тем самым

$$\gamma_1 = \pi - \varphi_1 < \gamma_2 = \pi - \varphi_2.$$

Рассматривая последовательно увеличение τ от нуля до бесконечности на основании уравнения

$$\tau_{_{\mathit{KP}}} = \frac{\pi - \varphi}{\omega_{_{\mathit{KD}}}} = \frac{\gamma}{\omega_{_{\mathit{KD}}}}$$

можно сделать вывод, что при

$$\tau < \frac{\gamma_1}{\omega_{\kappa p1}} = \tau_{\kappa p1}$$

система устойчива; при

$$\tau_{\kappa p1} < \tau < \frac{\gamma_2}{\omega_{\kappa p2}} = \tau_{\kappa p2}$$

система неустойчива.

Рис. 10.

Примечание. Приведенные выше выражения для определения $\omega_{\kappa p}$ нуждается в уточнении и должно быть записано так

$$\tau_{\kappa p} = \frac{\pi - \varphi}{\omega_{\kappa p}} + \frac{2m\pi}{\omega_{\kappa p}} \quad (m = 0, 1, 2, \dots).$$

Тем самым в приведенном выше примере можно рассматривать и такие значения τ , при которых

$$\tau_{\kappa p2} < \tau < \tau_{\kappa p1} + \frac{2\pi}{\omega_{\kappa p1}}$$

система устойчива.

Далее при

$$\tau_{\kappa p1} + \frac{2\pi}{\omega_{\kappa p1}} < \tau < \tau_{\kappa p2} + \frac{2\pi}{\omega_{\kappa p2}}$$

система неустойчива.

2.ИССЛЕДОВАНИЕ

В лабораторной работе исследуется одна из автоматических систем, структурные схемы которых представлены на рисунках.

Рис.₄.

Рис. 2.

Рис. 3.

Рис.4

Рис. 5.

Здесь
$$W_1(p) = \frac{k_1}{T_1p+1}; \ W_2(p) = \frac{k_2}{T_2^2\,p^2 + 2\varsigma T_2\,p + 1}; \ W_3(p) = \frac{k_3}{T_3\,p + 1}.$$

Рис. 6.

Варианты

$N_{\underline{0}}$	Структурная схема	<i>k</i> ₁	k_2	k3	k	T ₁	Т2	Т3	Т	ς
1	Рис.1	1.0	0.5	3.0					2.0	
2	Рис.2				0.05	0.5	0.2		_	
3	Рис.3				10.0				0.05	
4	Рис.4				50	25	0.1	0.01	_	
5	Рис.5	20	5	0.1		0.5	0.2	1		0.25
6	Рис.6				580				0.0014	0.5
7	Рис.1	0.5	0.8	1.5				_	2.0	
8	Рис.2	_			0.1	0.5	0.2	_	_	
9	Рис.3			_	5.0				0.1	
10	Рис.4				75.0	25.0	0.1	0.01		
11	Рис.5	10.0	10.0	0.1		0.5	0.2	1.0		0.2
12	Рис.6	_			540.0			_	0.0014	5.0
13	Рис.1	0.75	0.1	1.4			_		2.0	
14	Рис.2			_	0.01	0.5	0.2			
15	Рис.3	_			2			_	0.2	
16	Рис.4				100.0	25.0	0.1	0.01		
17	Рис.5	20.0	50.0	0.01		0.5	0.2	1.0	_	0.2
18	Рис.6				500.0				0.0014	5.0
19	Рис.1	0.5	0.1	0.5					2.0	
20	Рис.2				0.05	0.7	0.2			
21	Рис.3				1.0				0.5	
22	Рис.4				150	25.0	0.1	0.01		
23	Рис.5	100.0	1.0	0.01		0.4	0.2	1.0	_	0.25
24	Рис.6				400		_		0.0014	
25	Рис.1	0.6	1.5	0.8					2.0	
26	Рис.2				0.04	0.6	0.2			
27	Рис.3				1.25				0.4	
28	Рис.4				125.0	20.0	0.1	0.01		
29	Рис.5	125.0	0.75	0.01		0.4	0.2	1.0		
30	Рис.6		_	_	375.0			_	0.0014	

3.3АДАНИЕ

- 3.1.Построить АФЧХ системы с запаздыванием.
- 3.2.Определить графическим способом τ_{Kp} .
- 3.3.Определить аналитическим путем $\tau_{\rm KP}$
- 3.4.Прибегая к моделированию заданной автоматической системы подтвердить правильность вычисления значения $\tau_{\rm kp}$, т.е. представить три переходных процесса при $\tau < \tau_{\rm kp}$, $\tau = \tau_{\rm kp}$, $\tau > \tau_{\rm kp}$.
- 3.5. Прибегая к моделированию заданной автоматической системы оцените влияние запаздывания на качество переходных процессов по трем-четырем характеристикам.

4. СОДЕРЖАНИЕ И ОФОРМЛЕНИЕ ОТЧЕТА

- 4.1.Структурная схема исследуемой автоматической системы с заданными значениями параметров.
- 4.2.Описание процесса построения АФЧХ для заданной автоматической системы.
- 4.3.Описание процесса определения $\tau_{\rm Kp}$ графическим способом, при этом АФЧХ с помощью которой определяется $\tau_{\rm Kp}$ должна иметь необходимые обозначения, разметку и т.п.
- 4.4. Аналитические выражения с необходимыми пояснениями, с помощью которых определено значение τ_{KD} .
- 4.5. Графики переходных функций с необходимыми, позволяющими работать с графиками, т.е. последние должны иметь масштабы, обозначения функций и т.п.
- 4.6.Доказательство правильности определения $\tau_{\rm Kp}$. В основе доказательства должны быть полученные путем моделирования графики переходных функций.
- 4.7. Анализ влияния запаздывания на качество переходных процессов путем построения зависимостей $I_j = f(\tau)$ (j = 1,2,3,...) при $\tau < \tau_{\kappa p}$, где I_i , (j = 1,2,3,...) выбранные Вами показатели качества переходных процессов.
- 4.8.Соображения по выбору и выбранные значения шага интегрирования Δt и величины интервала интегрирования L.
- 4.9.Листинг фрагмента программы, относящегося к моделированию исследуемой автоматической системы.
- 4.10.Текстовая часть отчета должна соответствовать ГОСТу 2.105-79; графики выполняются с учетом ГОСТа 2319-81; список использованной литературы представляется с учетом ГОСТа 7.1-81.

5.КОНТРОЛЬНЫЕ ВОПРОСЫ

1.Передаточная функция разомкнутой линейной системы равна

$$W(p) = \frac{k}{p} \ell^{-p\tau}.$$

Покажите, что критическое время запаздывания определяется соотношением $au_{\kappa p} = \frac{\pi}{k}$, т.е. замкнутая система будет устойчивой при $au < au_{\kappa p} = \frac{\pi}{k}$.

2.Передаточная функция разомкнутой линейной системы равна

$$W(p) = \frac{k}{p} \ell^{-\sqrt{p\tau}}$$

Покажите, что устойчивость замкнутой системы не зависит от τ и замкнутая система будет устойчивой при $k < \ell^\pi \approx 23.14$.

3.Покажите, что

$$\lim_{n \to \infty} \frac{1}{\left(1 + p\frac{\tau}{n}\right)^n} = \ell^{-p\tau},$$

т.е. звено запаздывания может приближенно рассматриваться как последовательное соединение большого числа инерционных звеньев первого порядка с соответствующими постоянными времени.

4. Докажите, что звено запаздывания имеет передаточную функцию вида

$$W_{3an}(p) = \ell^{-\tau p}$$
.

В основу доказательства положите разложение в ряд Тейлора.

ЛИТЕРАТУРА

- 1. Красовский А. А., Поспелов Г. С. Основы автоматики и технической кибернетики. М., Л.: Гос. энергетическое изд-во, 1962. 600 с.
- 2. Теория автоматического управления. Ч. 1./Л. С. Гольдфарб, А. В. Балтрушевич, Г. К. Круг, А. В. Нетушил, Е. Б. Пастернак; Под ред. А. В. Нетушила. М.: Высшая школа, 1967. 424 с.
- 3. Фельдбаум А. А., Бутковский А. Г. Методы теории автоматического управления. М.: Наука, 1971. 744 с.
- 4. Бесекерский В. А., Попов Е. П. Теория систем автоматического регулирования. -2-е изд., испр. и доп. М.:Наука, 1972. 768 с.
- 5. Макаров И. М., Менский Б.М. Линейные автоматические системы (элементы теории, методы расчета и справочный материал): Учеб. пособие для студентов втузов. М.: Машиностроение, 1977. 464 с.
- 6. Топчеев Ю. И., Цыпляков А. П. Задачник по теории автоматического регулирования: Учеб. пособие для вузов. М.: Машиностроение, 1977. 592 с.

- 7. Сборник задач по теории автоматического регулирования и управления/В. А. Бесекерский, А. Н. Герасимов, С. В. Лучко, А. В. Небылов, Л. Ф. Порфирьев, Е. А. Фабрикант, С. М. Федоров, В. И. Цветков; Под ред. В. А. Бесекерского. М.: Наука, 1978. 512 с.
- 8. Основы теории автоматического управления: Учебник для авиационных вузов/В. С. Булыгин, Ю. С. Гришанин, Н. Б. Судзиловский и др. Под ред. Н. Б. Судзиловского. М.: Машиностроение, 1985. 512 с.