Instructions: Upload LEGIBLE, COMPLETE solutions to Gradescope before 11:59pm on 18 October 2021.

1. Either compute the following limit or show it does not exist.

$$\lim_{(x,y)\to(1,-1)}\frac{6x-y-5}{\sqrt{(x-1)^2-(y+1)^2}}$$

- 2. Consider the function $f(x,y,z) = \frac{x+y}{z}$ and let $\mathbf{v} = \frac{1}{\sqrt{3}}\langle 1, -1, 1 \rangle$ and p = (0, -3, 1).
 - (a) Compute the directional derivative $D_{\mathbf{v}}f(p)$ via the definition.
 - (b) Compute the gradient of f at p.
 - (c) Compute the directional derivative $D_{\mathbf{v}}f(p)$ via the gradient formula.
- 3. Compute all second order partial derivatives of the function $f(x, y, z) = \cos(x^2 y) z \arctan(xy)$.
- 4. Let $f(x,y) = \sin(xy^2 + xy)$ where $x(r,s,t) = r^2 + s^2 + t^2$ and y(r,s,t) = rst. Compute $\frac{\partial f}{\partial r}$, $\frac{\partial f}{\partial s}$, and $\frac{\partial f}{\partial t}$ via the chain rule.
- 5. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for a function z(x,y) satisfying the equation $(x^2 + y^2 + z^2 + 3)^2 = 16(x^2 + y^2)$.
- 6. Compute the tangent plane to the function $f(x, y, z) = \frac{x + \cos(\sqrt{y}z)}{xy}$ at $p = (-1, \frac{1}{4}, \pi)$.
- 7. Compute the total differential of $f(x, y, z) = \frac{x + y}{z}$.