ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ

 $\min f(x,y)$ - ?

 $Fit^{-1} = f(x,y) - функция$ приспособленности

 $(x,y) \in [0,1]^2$ — фенотип $(moчка \ B^2)$

$$x = 00000000000 \sim \frac{0}{2^{10} - 1} = 0$$
$$x = 111111111111 \sim \frac{2^{10} - 1}{2^{10} - 1} = 1$$

х∘у – генотип (хромосома, точка в 20 – мерном хемминговом пространстве)

ПРОСТОЙ ГА

- **INIT** (инициализация популяции)
- STOP? (критерий останова)
- FIT (оценка Fitness-функции)
- **SL** (отбор по Fit)
- **CR** (кроссовер с вероятностью p_{cr})
- **MU** (мутация с вероятностью p_{mu})

КРИТЕРИИ OCTAHOBA (MATLAB)

- GENERATIONS
- TIME LIMIT
- FITNESS LIMIT
- STALL GENERATIONS
- STALL TIME LIMIT

ПРОПОРЦИОНАЛЬНЫЙ ОТБОР ("ROULETTE WHEEL")

$$p_{sl_i} = \frac{Fit_i}{\sum_{j=1}^{N} Fit_j}$$

Хромосомы	Fit _i	p _{sli}
C ₁	1	1/13
C ₂	5	5/13
C ₃	4	4/13
C ₄	1	1/13
C ₅	2	2/13
Σ	13	1

10-код	2-10-код	Код Грея
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

СТРАТЕГИИ СЕЛЕКЦИИ

1. СЛУЧАЙНАЯ

$$p_{sl_i} = \frac{1}{N}, \quad p_{sl_j} = \frac{1}{N-1}$$

$$p_{sl_{ij}} = p_{sl_i} p_{sl_j} = \frac{1}{N(N-1)}$$

2. ПРОПОРЦИОНАЛЬНАЯ

$$p_{sl_i} = Fit_i / \sum_{k=1}^{N} Fit_k$$

$$p_{sl_j} = Fit_j / \sum_{\substack{k=1,\\k\neq i}}^{N} Fit_k \quad unu \quad p_{sl_j} = \frac{1}{N-1}$$

3. ДАЛЬНЕЕ РОДСТВО – БЛИЖНЕЕ РОДСТВО

$$dist_{HAM}(x_i, x_j) > R \sim " \mathcal{I}P"$$

$$dist_{HAM}(x_i, x_j) < R \sim "5P"$$

ГДЕ R – РАДИУС СКРЕЩИВАНИЯ

"
$$\mathcal{I}P" \xrightarrow[t \to \infty]{} "5P"$$

4. ДЕТЕРМИНИСТСКАЯ

$$Fit_i \ge Fit_{ave} = \frac{1}{N} \sum_{k=1}^{N} Fit_k$$

4. ГИБРИДНАЯ, НАПР. ТУРНИРНАЯ

ОПЕРАТОР КРОССОВЕРА

1. ОДНОТОЧЕЧНЫЙ

$$000 \sim 00000 \otimes 111 \sim 11111 =$$

$$= \begin{cases} 000 \sim 11111 \\ 111 \sim 00000 \end{cases}$$

2. ДВУХТОЧЕЧНЫЙ

3. N-ТОЧЕЧНЫЙ:

- СЛУЧАЙНЫЙ
- ДЕТЕРМИНИРОВАННЫЙ (ФИБОНАЧЧИ, «ЗОЛОТОЕ СЕЧЕНИЕ», «КАНТОРОВА ПЫЛЬ»)

3. УПОРЯДОЧЕННЫЙ (TSP)

4. УНИВЕРСАЛЬНЫЙ (XOR)

011001
010111
011010
000011
001101

- 5. «ЖАДНЫЙ»
- 6. ДРУГИЕ ТИПЫ

ОПЕРАТОР МУТАЦИИ

1. ИНВЕРТИРОВАНИЕ ГЕНА

$$"0" \rightarrow "1" \quad "1" \rightarrow "0"$$

2. ОБМЕН ГЕНОВ А) ОДНОТОЧЕЧНЫЙ

Б) ДВУХТОЧЕЧНЫЙ

$$\frac{P \quad A \mid BCD \mid EF}{\Pi \quad A \mid ECD \mid BF}$$

В) N-ТОЧЕЧНЫЙ

$$P A | BC | DEF | GH$$
 $\Pi A | GC | BEF | DH$

3. ИНВЕРСИЯ СЕГМЕНТА

$$\frac{P}{\Pi} \frac{ABC}{ABC} \frac{DEFG}{GFED}$$

4. ТРАНСПОЗИЦИЯ

$$P A | BC | DEF | GH$$
 $\Pi A | FED | BC | GH$

5. ТРАНСЛОКАЦИЯ (КРОССОВЕР+ИНВЕРСИЯ)

P1 $AB \mid CDEF$ P2 $GK \mid HIJQ$ П1 $AB \mid QJIH$ П2 $GK \mid FEDC$

ПРИМЕР

$$f(x,y) = \frac{1}{1+x^2+y^2} \to \max$$

$$(f * (0,0) = 1)$$

Хромосома=2 гена:

$$(x,y) \sim x \circ y$$

INIT («фонд» хромосом):

C ₀	-1	2	0,167	0,178
C ₁	-2	3	0,017	0,018
C ₂	1,5	0	0,310	0,332
C ₃	0,5	-1	0,440	0,471
	X	У	Fit=f(x,y)	p _i

$$\sum_{i} Fit_{i} = 0,934$$
 $Fit_{cp} = 0,248$

Выбор 2-х пар родителей:

$$(C_3, C_2), (C_3, C_0)$$

(x_{C3}, y_{C2})	0,5	0	0,80
(x _{C&} , y _{C'})	1,5	-1	0,24
(x_{C3}, y_{C2})	0,5	2	0,19
(x _{C\$} , y _{C'})	-1	-1	0,33
	X	у	Fit=f(x,y)

$$Fit_{cp} = 0.39$$

ТЕСТОВЫЕ ФУНКЦИИ

DE JONG 1 (SPHERE MODEL)

$$f(\mathbf{x}) = \sum_{i=1}^n x_i^2$$

$$X_i \in [-5.12, 5.12]$$

$$f^*(0)=0$$

DE JONG 2 (ROSENBROCK'S SADDLE)

$$f(\mathbf{x}) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$$

 $X_i \in [-2.048, 2.048]$

$$f * (1.0) = 0$$

DE JONG 3 (STEP FUNCTION)

$$f(\mathbf{x}) = \sum_{i=1}^{n} |[x_i]|$$

$$X_i \in [-5.12, 5.12]$$

$$f * (0) = 0$$

DE JONG 4 (GAUSSIAN QUARTIC)

$$f(\mathbf{x}) = \sum_{i=1}^{n} \left(x_i^4 - e^{-x_i^2} \right)$$

$$X_i \in [-1.28, 1.28]$$

$$f^*(0)=0$$

RASTRIGIN'S FUNCTION

$$f(\mathbf{x}) = 10n + \sum_{i=1}^{n} (x_i^2 - 10\cos 2\pi x_i)$$

$$X_i \in [-5.12, 5.12]$$

$$f * (0) = 0$$

Локальный минимум в точке, где одна координата равна 1.0, а остальные равны 0.0

SCHWEFEL'S (SINE ROOT)

$$f(\mathbf{x}) = 418.9829n + \sum_{i=1}^{n} \left(-x_i \sin \sqrt{|x_i|}\right)$$

$$X_i \in [-500, 500]$$

$$f^*(0)=0$$

Локальный минимум в точке, где одна координата равна -302.5232, а остальные равны 420.9687.

ACKLEY'S FUNCTION

$$f(\mathbf{x}) = 20 + e - 20e^{-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}} - e^{\frac{1}{n}\sum_{i=1}^{n}\cos 2\pi x_{i}}$$

$$x_{i} \in [-30, 30]$$

$$f^{*}(0) = 0$$

GRIEWANGK'S FUNCTION

$$f(\mathbf{x}) = 1 + \sum_{i=1}^{n} \frac{X_i^2}{4000} - \prod_{i=1}^{n} \cos \frac{X_i}{\sqrt{i}}$$

$$x_i \in [-600, 600]$$

$$f^*(0)=0$$

