Nom, Prénom: CORRECTION

3 février 2023

Évaluation (Sujet A) : polynômes de degré 2 et 3

Exercice 1:

1. a = 2, b = -6, c = 1.

On a $-\frac{b}{2a}$ = 1,5, donc les coordonnées du sommet sont (1,5;f(1,5)) = (1,5;-3,5).

2. a = 14, b = 1, c = -7.

On a $-\frac{b}{2a} = -\frac{1}{28}$, donc les coordonnées du sommet sont $(-\frac{1}{28}; f(-\frac{1}{28})) \approx (-0.036; -7.018)$.

3. a = 2, b = 0, c = 1.

On a $-\frac{b}{2a}$ = 0, donc les coordonnées du sommet sont (0; f(0)) = (0;1).

Exercice 2 : Pour chaque courbe ci-dessous, donner les coordonnées du sommet, les racines si elles existent, et le signe de a :

Exercice 3:

- 1. a = 1, b = 1, c = -6.
- 2. Les bras de la fonction sont orientés vers le haut, car a > 0.
- 3. On a $-\frac{b}{2a}=-0.5$. Ainsi les coordonnées du sommet de la courbe de f sont (-0.5;f(-0.5))=(-0.5;-6.25).

5. Les racines de f sont -3 et 2, donc f(x) = (x + 3)(x - 2).

Exercice 4:

1.
$$(x - 5)(x + 7) = 0$$

On a donc
 $x - 5 = 0$, soit $x = 5$

OU x + 7 = 0, soit x = -7.

L'ensemble des solutions est donc $\{-7;5\}$.

2.
$$5x(2x - 10) = 0$$

On a donc
 $5x = 0$, soit $x = 0$
OU $2x - 10 = 0$, soit $x = 5$.

L'ensemble des solutions est donc {0;5}.

3.
$$(6x + 2)^2 = 100$$

On a donc
 $6x + 2 = 10$, soit $x = \frac{4}{3}$
OU $6x + 2 = -10$, soit $x = -2$.

L'ensemble des solutions est donc $\{-2; \frac{4}{3}\}$.

4.
$$2x(4x-7) + 6(4x-7) = 0$$

Si on factorise, on obtient $(2x+6)(4x-7) = 0$
On a donc
 $2x+6=0$, soit $x=-3$
OU $4x-7=0$, soit $x=\frac{7}{4}$.

L'ensemble des solutions est donc $\{-3; \frac{7}{4}\}$.

Exercice 5: Soit g une fonction définie par $g(x) = 3x^2 + 8x - 35$.

1. On va développer :

$$(3x - 7)(x + 5) = 3x^{2} - 7x + 15x - 35$$
$$= 3x^{2} + 8x - 35$$
$$= g(x)$$

- 2. Les racines de cette fonction sont donc obtenu en résolvant 3x 7 = 0 et x + 5 = 0. Ce sont donc $\frac{7}{3}$ et -5.
- 3. a > 0, donc les bras de la courbe de la fonction sont orientés vers le haut.
- 4. On a $-\frac{b}{2a} = -\frac{8}{2\times 3} = -\frac{4}{3}$. Les coordonnées du sommet sont donc $(-\frac{4}{3}; f(-\frac{4}{3})) = (-\frac{4}{3}; -\frac{121}{3})$

x	-8	$-\frac{4}{3}$	+∞
g(x)	+∞ _	- <u>121</u>	+∞

5.

Nom, Prénom: CORRECTION

3 février 2023

Évaluation (Sujet B) : polynômes de degré 2 et 3

Exercice 1:

1. a = 5, b = -16, c = 2.

On a $-\frac{b}{2a}$ = 1,6, donc les coordonnées du sommet sont (1,6;f(1,6)) = (1,6;-10,8).

2. a = 13, b = 1, c = -3.

On a $-\frac{b}{2a} = -\frac{1}{26}$, donc les coordonnées du sommet sont $(-\frac{1}{26}; f(-\frac{1}{26})) \approx (-0.038; -3.019)$.

3. a = 2, b = 0, c = -1.

On a $-\frac{b}{2a}$ = 0, donc les coordonnées du sommet sont (0; f(0)) = (0; -1).

Exercice 2 : Pour chaque courbe ci-dessous, donner les coordonnées du sommet, les racines si elles existent, et le signe de a :

Exercice 3:

- 1. a = 1, b = -2, c = -3.
- 2. Les bras de la fonction sont orientés vers le haut, car a > 0.
- 3. On a $-\frac{b}{2a}=1$. Ainsi les coordonnées du sommet de la courbe de f sont (1;f(1))=(1;-4).

4.

5. Les racines de f sont -1 et 3, donc f(x) = (x + 1)(x - 3).

Exercice 4:

1.
$$(x-8)(x+3) = 0$$

On a donc
 $x-8=0$, soit $x=8$
OU $x+3=0$, soit $x=-3$.

L'ensemble des solutions est donc $\{-3;8\}$.

2.
$$4x(3x - 10) = 0$$

On a donc
 $4x = 0$, soit $x = 0$
OU $3x - 10 = 0$, soit $x = \frac{10}{3}$.

L'ensemble des solutions est donc $\{0; \frac{10}{3}\}$.

3.
$$(7x + 3)^2 = 100$$

On a donc
 $7x + 3 = 10$, soit $x = 1$
OU $7x + 3 = -10$, soit $x = -\frac{13}{7}$.

L'ensemble des solutions est donc $\{-\frac{13}{7};1\}$.

4.
$$5x(3x - 11) + 9(3x - 11) = 0$$

Si on factorise, on obtient $(5x + 9)(3x - 11) = 0$
On a donc
 $5x + 9 = 0$, soit $x = -1.8$
OU $3x - 11 = 0$, soit $x = \frac{11}{3}$.

L'ensemble des solutions est donc $\{-1,8;\frac{11}{3}\}$.

Exercice 5: Soit g une fonction définie par $g(x) = 2x^2 + 10x - 48$.

1. On va développer :

$$(2x-6)(x+8) = 2x^2 - 6x + 16x - 48$$

= $2x^2 + 10x - 48$ = $g(x)$

- 2. Les racines de cette fonction sont donc obtenues en résolvant 2x 6 = 0 et x + 8 = 0. Ce sont donc 3 et -8.
- 3. a > 0, donc les bras de la courbe de la fonction sont orientés vers le haut.
- 4. On a $-\frac{b}{2a} = -\frac{10}{2\times 2} = -2.5$. Les coordonnées du sommet sont donc (-2.5; f(-2.5)) = (-2.5; -60.5)

