PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

C12N 15/16, C07K 14/63, A61K 38/22,
C07K 16/26

(11) International Publication Number: WO 98/42840

(43) International Publication Date: 1 October 1998 (01.10.98)

(21) International Application Number: PCT/US98/05620

(22) International Filing Date: 23 March 1998 (23.03.98)

(30) Priority Data: 08/822,897 24 March 1997 (24.03.97) US 60/041,102 24 March 1997 (24.03.97) US

(71) Applicant: ZYMOGENETICS, INC. [US/US]; 1201 Eastlake Avenue East, Scattle, WA 98102 (US).

(72) Inventors: SHEPPARD, Paul, O.; 20717 N.E. 2nd, Redmond, WA 98053 (US). DEISHER, Theresa, A.; 4006 Greenwood Avenue North, Seattle, WA 98103 (US).

(74) Agent: SAWISLAK, Deborah, A.; ZymoGenetics, Inc., 1201 Eastlake Avenue East, Seattle, WA 98102 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: MOTILIN HOMOLOGS

(57) Abstract

The present invention is directed to polynucleotides, polypeptides and peptide fragments thereof, and uses thereof for a novel cDNA sequence which has homology to motilin. Tissue distribution of the mRNA for the novel polypeptide is specific to the stomach, small intestine and pancreas. The present invention further includes agonsits, antagonists, antibodies, host cells expressing the cDNA encoding the novel motilin homologs and methods for increasing gastric motility using the novel molecules.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		•
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT/US98/05620 WO 98/42840

DESCRIPTION MOTILIN HOMOLOGS

BACKGROUND OF THE INVENTION

5

20

Many of the regulatory peptides that important in maintaining nutritional homeostasis are found in the gastrointestinal environment. These peptides may be synthesized in the digestive system and act locally, but can also be identified in the brain as well. addition, the reverse is also found, i.e., peptides are synthesized in the brain, but found to regulate cells in 15 the gastrointestinal tract. This phenomena has been called the "brain-gut axis" and is important for signaling and other regulating body temperature satiety, physiological processes that require feedback between the brain and gut.

The gut peptide hormones include gastrin, cholecystokinin (CCK), secretin, gastric inhibitory peptide (GIP), vasoactive intestinal polypeptide (VIP), motilin, somatostatin, pancreatic peptide (PP), substance P and neuropeptide Y (NPY), and use several different 25 mechanisms of action. For example, gastrin, motilin and CCK function as endocrine- and neurocrine-type hormones. Others, such as gastrin and GIP, are thought to act exclusively in an endocrine fashion. Other modes of action include a combination of endocrine, neurocrine and 30 paracrine action (somatostatin); exclusively neurocrine action (NPY); and a combination of neurocrine paracrine actions (VIP and Substance P). Most of the gut hormone actions are mediated by membrane-bound receptors and activate second messenger systems. For a review of 35 gut peptides see, Mulvihill et al., in Basic and Clinical Endocrinology, pp.551-570, 4th edition Greenspan F. S. and

WO 98/42840

2

PCT/US98/05620

Baxter, J. D. editors., Appleton & Lange: Norwalk, Connecticut, 1994.

Many of these gut peptides are synthesized as inactive precursor molecules that require multiple peptide cleavages to be activated. The family known as the "glucagon-secretin" family which includes VIP, gastrin, secretin, motilin, glucagon and galanin exemplifies peptides regulated by multiple cleavages and posttranslational modifications.

Motilin is a 22 amino acid peptide found in gut 10 tissue of mammalian species (Domschke, W., Digestive The DNA and amino acid <u>Diseases</u> 22(5):454-461, 1977). sequences for porcine prepromotilin have been identified (U.S. Patent 5,006,469). Motilin has been identified as a 15 factor capable of increasing gastric motility, affecting the secretory function of the stomach by stimulating pepsin secretion (Brown et al., Canadian J. of Physiol. Pharmacol. 49:399-405, 1971), and recent evidence suggests a role in myoelectric regulation of stomach and small increases of motilin have been intestine. Cyclic of the interdigestive correlated with phase III myoelectric complex and the hunger contraction of the duodenum (Chey et al., in <u>Gut Hormones</u>, (eds.) Bloom, S.R., pp. 355-358, Edinburgh, Churchill Livingstone, 1978; 25 Lee et al, Am. J. Digestive Diseases, 23:789-795, 1978; and Itoh et al., Am. J. Digestive Diseases, 23:929-935, Motilin and analogues of motilin have been 1978). demonstrated to produce contraction of gastrointestinal smooth muscle, but not other types of smooth muscle cells 30 (Strunz et al., Gastroenterology 68:1485-1491, 1975).

The present invention is directed to a novel secreted protein with homology to motilin, found to be transcribed in the gastrointestinal system. The discovery of this novel peptide is important for further elucidation of the how the body maintains its nutritional homeostasis and development of therapeutics to intervene in those

3

processes, as well as other uses that will be apparent from the teachings therein.

SUMMARY OF THE INVENTION

5

Within one aspect, the present invention provides an isolated polynucleotide molecule encoding a polypeptide selected from the group consisting of: (a) polynucleotide molecules comprising a nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 70 to nucleotide 111; (b) allelic variants of (a); (c) orthologs of (a) and (b); and (d) degenerate nucleotide sequences of (a), (b) or (c).

Within another aspect, the present invention provides an isolated polypeptide selected from the group consisting of: (a) polypeptide molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 24 to residue 37; (b) allelic variants of (a); and (c) orthologs of (a) or (b).

In another aspect, the present invention provides an expression vector comprising the following operably linked elements: a transcription promoter; a DNA segment selected from the group consisting of: (a) polynucleotide molecules comprising a nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 70 to nucleotide 111; (b) allelic variants of (a); (c) orthologs of (a) or (b); and (d) degenerate nucleotide sequences of (a), (b) or (c); a transcription terminator.

In another aspect, the present invention provides a cultured cell into which has been introduced an expression vector comprising the following operably linked elements: a transcription promoter; a DNA segment selected from the group consisting of: (a) polynucleotide molecules comprising a nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 70 to nucleotide 111; (b) allelic variants of (a); (c) orthologs of (a) or (b); and (d) degenerate

PCT/US98/05620 WO 98/42840

4

nucleotide sequences of (a), (b) or (c); a transcription terminator, wherein said cell expresses the polypeptide encoded by the DNA segment.

the In another aspect, present 5 provides a pharmaceutical composition comprising purified polypeptide selected from the group consisting of: (a) polypeptide molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 24 to residue 37; (b) allelic variants of (a); and (c) orthologs of (a) or (b), 10 in combination with a pharmaceutically acceptable vehicle.

another the present aspect, provides an antibody that binds to an epitope of a polypeptide selected from the group consisting of: (a) polypeptide molecules comprising an amino acid sequence as 15 shown in SEQ ID NO: 2 from residue 24 to residue 117; (b) allelic variants of (a); and (c) orthologs of (a) or (b).

another aspect, the present invention provides a method of producing a zsig33 polypeptide comprising: culturing a cell into which has 20 introduced an expression vector comprising the following operably linked elements: a transcription promoter; a DNA selected from the group consisting of: polynucleotide molecules comprising a nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 70 to nucleotide 25 111; (b) allelic variants of (a); (c) orthologs of (a) or (b); and (d) degenerate nucleotide sequences of (a), (b) or (c); a transcription terminator, whereby said cell expresses a polypeptide encoded by the DNA segment; and recovering the polypeptide.

In another aspect, the present invention provides method of stimulating gastric motility comprising administering to a mammal in need thereof, an amount of a composition comprising an isolated polypeptide selected from the group consisting of: (a) polypeptide 35 molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 24 to residue 37; (b) allelic

30

5

variants of (a); and (c) orthologs of (a) or (b); in a pharmaceutically acceptable vehicle, sufficient to increase transit time or gastric emptying of an ingested substance.

5

DETAILED DESCRIPTION OF THE INVENTION

Prior to describing the present invention in detail, it may be helpful to define certain terms used herein:

The term "ortholog" denotes a polypeptide or protein obtained from one species that is the functional counterpart of a polypeptide or protein from a different species. Sequence differences among orthologs are the result of speciation.

"Paralogs" are distinct but structurally related proteins made by an organism. Paralogs are believed to arise through gene duplication. For example, α -globin, β -globin, and myoglobin are paralogs of each other.

The term "allelic variant" denotes any of two or more alternative forms of a gene occupying the same 20 Allelic variation arises naturally chromosomal locus. through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene.

The term "expression vector" denotes a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription. Such additional segments may include promoter and terminator sequences, and may optionally include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, and the

6

like. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.

"isolated", when term applied polynucleotide molecule, denotes that the polynucleotide 5 has been removed from its natural genetic milieu and is free of other extraneous or unwanted sequences, and is in a form suitable for use within genetically engineered protein production systems. isolated molecules are those that are separated from their 10 natural environment and include cDNA and genomic clones. Isolated DNA molecules of the present invention are free of other genes with which they are ordinarily associated, but may include naturally occurring 5' and 3' untranslated regions such as promoters and terminators. identification of associated regions will be evident to one of ordinary skill in the art (see for example, Dynan and Tijan, <u>Nature</u> <u>316</u>:774-78, 1985). When applied to a protein, the term "isolated" indicates that the protein is found in a condition other than its native environment, 20 such as apart from blood and animal tissue. preferred form, the isolated protein is substantially free of other proteins, particularly other proteins of animal It is preferred to provide the protein in a highly purified form, i.e., greater than 95% pure, more preferably greater than 99% pure.

The term "operably linked", when referring to DNA segments, denotes that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in the promoter and proceeds through the coding segment to the terminator

The term "polynucleotide" denotes a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized in vitro, or prepared from a combination of natural and synthetic molecules.

WO 98/42840

10

7

PCT/US98/05620

The term "complements of polynucleotide molecules" denotes polynucleotide molecules having a complementary base sequence and reverse orientation as compared to a reference sequence. For example, the sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.

term "degenerate nucleotide The sequence" denotes a sequence of nucleotides that includes one or more degenerate codons (as compared to a reference polynucleotide molecule that encodes a polypeptide). codons contain different Degenerate triplets nucleotides, but encode the same amino acid residue (i.e., GAU and GAC triplets each encode Asp).

The term "promoter" denotes a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding regions of genes.

The term "secretory signal sequence" denotes a 20 DNA sequence that encodes a polypeptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized. The larger peptide is commonly cleaved to remove the secretory peptide during transit through the secretory pathway.

The term "receptor" denotes a cell-associated protein that binds to a bioactive molecule (i.e., a ligand) and mediates the effect of the ligand on the cell. Membrane-bound receptors are characterized by a multi-30 domain structure comprising an extracellular ligand-binding domain and an intracellular effector domain that is typically involved in signal transduction. Binding of ligand to receptor results in a conformational change in the receptor that causes an interaction between the effector domain and other molecule(s) in the cell. This interaction in turn leads to an alteration in the

WO 98/42840

metabolism of the cell. Metabolic events that are linked interactions include receptor-ligand transcription, phosphorylation, dephosphorylation, increases in cyclic AMP production, mobilization of 5 cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of Most nuclear receptors also exhibit a phospholipids. multi-domain structure, including an amino-terminal, transactivating domain, a DNA binding domain and a ligand In general, receptors can be membrane 10 binding domain. bound, cytosolic or nuclear; monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g., PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF receptor, 15 erythropoietin receptor and IL-6 receptor).

The term "complement/anti-complement denotes non-identical moieties that form a non-covalently associated, stable pair under appropriate conditions. instance, biotin and avidin (or streptavidin) 20 prototypical members of a complement/anti-complement pair. Other exemplary complement/anti-complement pairs include receptor/liqand pairs, antibody/antigen (or hapten or epitope) pairs, sense/antisense polynucleotide pairs, and the like. Where subsequent dissociation the 25 complement/anti-complement pair is desirable, the complement/anti-complement pair preferably has a binding affinity of $<10^9 \text{ M}^{-1}$.

All references cited herein are incorporated by reference in their entirety.

The present invention is based in part upon the discovery of a novel human DNA sequence that encodes a novel secreted polypeptide having homology to motilin, of which the closest homolog is porcine motilin (shown in SEQ ID NOs: 3 and 4). Motilin is member of a family of polypeptides that regulate the gastrointestinal physiology. The family of polypeptides important in

PCT/US98/05620 WO 98/42840

9

gastrointestinal regulation to which motilin belongs includes glucagon, gastrin, galanin, and vasoactive intestinal peptide (VIP). These polypeptides synthesized in a precursor form that requires multiple 5 steps of processing to the active form. Particularly relevant to the polypeptide of the present invention are motilin, VIP and galanin, where processing involves removal of signal sequence, followed by cleavage of one or more accessory peptides to release the active peptide. The resulting active peptide is generally small (10-30 amino acids) and may require further post-translational modifications, such as amidation, sulfation or pyrrolidan carbonylic acid modification of glutamic residues.

10

20

30

Analysis of the tissue distribution of the mRNA 15 corresponding to this novel DNA showed that expression was highest in stomach, followed by apparent but decreased expression levels in small intestine and pancreas. EST is also present in lung cDNA libraries. The polypeptide has been designated zsig33.

polynucleotides The novel zsig33 and polypeptides of the present invention were identified by querying an EST database for sequences possessing a putative secretion signal. An EST sequence was discovered and predicted to be related to the motilin 25 family. The EST sequence was derived from a fetal pancreatic library.

The novel polypeptide encoded by the full length cDNA is 117 amino acids. The predicted signal sequence is 23 amino acid residues (amino acid residues 1 to 23 of SEQ The active peptide was predicted to be 16 ID NO: 2). amino acid residues (amino acid residues 24 to 41 of SEQ ID NO: 2), with a C-terminal cleavage after amino acid residue 41 of SEQ ID NO: 2 (Ser). However, many of the gut-brain peptides require multiple cleavages. example, progastrin peptide is 101 amino acids, and is 35 cleaved at the N-terminus resulting in sequentially 15

10

smaller peptides (G34, G17 and G14) (Sugano et al., J. Biol. Chem. 260:11724-11729, 1985). Other peptides that require multiple processing steps include glucagon, for which C-terminal cleavages result in glucagon-like peptide 1 and glucagon-like peptide 2 and galanin, in which processing involves cleavage of a C-terminal peptide known as GMAP. Therefore, an additional peptide based on cleavage after amino acid 37 of SEQ ID NO: 2 (Gln) was synthesized and resulted in a 14 amino acid peptide with biological activity (from amino acid residue 24 (Gly) to

The C-terminal peptide (amino acid 42 to 117 of SEQ ID NO: 2) may have some specialized activity as well. Processing of the active peptide for motilin (shown in SEQ ID NO: 4) results in a release of a C-terminal peptide of 70 amino acids, amino acid residue 50 (Ser) to amino acid residue 119 (Lys), known as motilin-associated peptide (MAP). Adelman et al., (U.S. Patent 5,006,469) have postulated that MAP plays a role in regulation of digestion, appetite and nutrient absorption.

amino acid residue 37 (Gln) of SEQ ID NO: 2).

highly conserved amino acids polypeptide zsig33 can be used as a tool to identify new family members. For instance, reverse transcriptionpolymerase chain reaction (RT-PCR) can be used to amplify 25 sequences encoding the conserved motif from RNA obtained from a variety of tissue sources. Two such conserved domains have been identified using sequences from the present invention. The first domain is found at amino acid residues 31 to 36 of SEQ ID NO: 2, wherein the motif identified is Glu X Gln Arg X Gln, wherein X is any amino acid residue (shown in SEQ ID NO: 5), and the second domain is found at amino acid residues 78 to 84 of SEO ID NO: 2, wherein the motif identified is Ala Pro X Asp X Gly Ile, wherein X is any amino acid residue (shown in SEQ ID In particular, highly degenerate primers designed from these sequences are useful for this purpose.

11

Those skilled in the art will readily recognize that, in view of the degeneracy of the genetic code, considerable sequence variation is possible among these polynucleotide molecules encoding SEQ ID NO:2, including 5 all RNA sequences by substituting U for T. Thus, zsiq33 polypeptide-encoding polynucleotides and their equivalents are contemplated by the present invention. Table 1 sets forth the one-letter codes used to denote degenerate nucleotide positions. "Resolutions" are the 10 nucleotides denoted by a code letter. "Complement" indicates the code for the complementary nucleotide(s). For example, the code Y denotes either C or T, and its complement R denotes A or G, A being complementary to T, and G being complementary to C.

TABLE 1

Nucleotide	Resolution	Nucleotide	Complement
Α	Α	Τ	Т
С	. C	G	G
G	G	С	С
Т	Т	Α	Α
R	A G	Υ	. C T
Υ	CIT	R	A G
М	A C	K	G T
K	G T	М	AIC
S	C G	S	C G
W	AIT	W	AIT
Н	A C T	D	A G T
В	C G T	V	A C G
. V	A C G	В	C G T
D	A G T	Н	AJC T
N	A C G T	N	A C G T

The degenerate codons encompassing all possible codons for a given amino acid are set forth in Table 2.

TABLE 2

		77,1022 0	
	0ne		
Amino	Letter	Codons	Degenerate
Acid	Code		Codon
Cys	С	TGC TGT	TGY
Ser	S	AGC AGT TCA TCC TCG TCT	WSN
Thr	T	ACA ACC ACG ACT	ACN
Pro	Р	CCA CCC CCG CCT	CCN
Ala	Α	GCA GCC GCG GCT	GCN
Gly	G	GGA GGC GGG GGT	GGN
Asn	N	AAC AAT	AAY
Asp	D	GAC GAT	GAY
Glu	Ε	GAA GAG	GAR
Gln	Q	CAA CAG	CAR
His	Н	CAC CAT	CAY
Arg	R	AGA AGG CGA CGC CGG CGT	MGN
Lys	K	AAA AAG	AAR
Met	М	ATG	ATG
Ile	I	ATA ATC ATT	ATH
Leu	L	CTA CTC CTG CTT TTA TTG	YTN
Val	٧	GTA GTC GTG GTT	GTN
Phe	F	TTC TTT	TTY
Tyr	Υ	TAC TAT	TAY
Trp	W	TGG	TGG
Ter		TAA TAG TGA	TRR
Asn Asp	В		RAY
Glu Gln	Z		SAR
Any	Χ		NNN

One of ordinary skill in the art will appreciate some ambiguity is introduced in determining a degenerate codon, representative of all possible codons encoding each amino acid. For example, the degenerate codon for serine (WSN) can, in some circumstances, encode arginine (AGR), and the degenerate codon for arginine (MGN) can, in some circumstances, encode serine (AGY). similar relationship exists between codons phenylalanine and leucine. Thus, some polynucleotides encompassed by the degenerate sequence may encode variant amino acid sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequence of SEQ ID NO:2. Variant sequences can be readily tested for functionality as described herein.

10

15

20

25

30

35

Within preferred embodiments of the invention the isolated polynucleotides will hybridize to similar sized regions of SEQ ID NO: 1, or a sequence complementary thereto, under stringent conditions. In stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly Typical stringent conditions are those in matched probe. which the salt concentration is at least about 0.02 M at pH 7 and the temperature is at least about 60°C.

As previously noted, the isolated polynucleotides of the present invention include DNA and RNA. Methods for isolating DNA and RNA are well known in the art. It is generally preferred to isolate RNA from stomach, although DNA can also be prepared using RNA from other tissues or isolated as genomic DNA. Total RNA can be prepared using guanidine HCl extraction followed by isolation by centrifugation in a CsCl gradient (Chirgwin et al., Biochemistry 18:52-94, 1979). Poly (A)+ RNA is

10

15

. 20

25

30

35

PCT/US98/05620 WO 98/42840 15

prepared from total RNA using the method of Aviv and Leder (Proc. Natl. Acad. Sci. USA <u>69</u>:1408-1412, Complementary DNA (cDNA) is prepared from poly(A) + RNA using known methods. Polynucleotides encoding zsig33 polypeptides are then identified and isolated by, example, hybridization or PCR.

The present invention further provides counterpart polypeptides and polynucleotides from other species (orthologs). Of particular interest are zsig33 from other mammalian species, including polypeptides murine, rat, porcine, ovine, bovine, canine, equine and other primate proteins. Orthologs of the human proteins can be cloned using information and compositions provided by the present invention in combination with conventional cloning techniques. For example, a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses the protein. Suitable sources of mRNA can be identified by probing Northern blots with probes designed from the sequences disclosed herein. A library is then prepared from mRNA of a positive tissue of cell zsig33 ortholog-encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial human cDNA or with one or more sets of degenerate probes based on the disclosed sequences. cDNA can also be cloned using the polymerase chain reaction, or PCR (Mullis, U.S. Patent 4,683,202), using primers designed from the sequences disclosed herein. Within an additional method, the cDNA library can be used to transform or transfect host cells, and expression of the cDNA of interest can be detected with an antibody to Similar techniques can also be applied to the zsig33 isolation of genomic clones.

Those skilled in the art will recognize that the sequences disclosed in SEQ ID NO: 1, and polypeptide encoded thereby, represent a single allele of the human zsig33 gene and polypeptide, and that allelic variation

10

and alternative splicing are expected to occur. variants can be cloned by probing cDNA or genomic libraries from different individuals according to standard procedures. Allelic variants of the DNA sequence shown in SEQ ID NO: 1, including those containing silent mutations and those in which mutations result in amino acid sequence changes, are within the scope of the present invention, as are proteins which are the product of allelic variation of SEQ ID NO: 2.

The present invention also provides isolated zsig33 polypeptides that are substantially homologous to the polypeptides of SEQ ID NO: 2 and their orthologs. term "substantially homologous" is used herein to denote polypeptides having 50%, preferably 60%, more preferably 15 at least 80%, sequence identity to the sequences shown in SEQ ID NO: 2 or their orthologs. Such polypeptides will more preferably be at least 90% identical, and most preferably 95% or more identical to SEQ ID NO: 2 or its orthologs. Percent sequence identity is determined by 20 conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48: 603-616, 1986 and Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89:10915-10919, 1992. Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "blosum 62" scoring matrix of Henikoff and Henikoff (ibid.) as shown in Table 3 (amino acids are indicated by the standard one-letter codes).

PCT/US98/05620

> 3 2 2 2 S [I4 Σ × Н Н \mathbf{H} $\boldsymbol{\wp}$ 3 0 2 2 6 6 団 α Ö Ω ፈ ОИВЕНИМЕТОББО

10

Ŋ

20

The percent identity is then calculated as: Total number of identical matches

x 100

[length of the longer sequence plus the number of gaps introduced into the longer sequence in order to align the two sequences]

5

Sequence identity of polynucleotide molecules is determined by similar methods using a ratio as disclosed above.

10 Substantially homologous proteins polypeptides are characterized as having one or more amino acid substitutions, deletions or additions. These changes are preferably of a minor nature, that is conservative amino acid substitutions (see Table 4) and 15 substitutions that do not significantly affect the folding activity of the protein or polypeptide; deletions, typically of one to about 30 amino acids; and small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue, a small linker peptide 20 of up to about 20-25 residues, or a small extension that facilitates purification (an affinity tag), such as a polyhistidine tract, protein A (Nilsson et al., EMBO J. 4:1075, 1985; Nilsson et al., Methods Enzymol. 198:3, 1991), glutathione S transferase (Smith and Johnson, Gene 25 67:31, 1988), maltose binding protein (Kellerman and Ferenci, Methods Enzymol. 90:459-463, 1982; Guan et al., Gene 67:21-30, 1987), thioredoxin, ubiquitin, cellulose binding protein, T7 polymerase, or other antigenic epitope or binding domain. See, in general Ford et al., Protein 30 Expression and Purification 2: 95-107, 1991, which is incorporated herein by reference. DNAs encoding affinity are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, NJ; New England Biolabs. Beverly, MA).

20

19

<u>Table 4</u>

Conservative amino acid substitutions Basic: arginine lysine 5 histidine glutamic acid Acidic: aspartic acid Polar: glutamine asparagine 10 Hydrophobic: leucine isoleucine valine phenylalanine Aromatic: tryptophan 15 tyrosine Small: glycine alanine serine threonine

In addition to the 20 standard amino acids, nonstandard amino acids (such as 4-hydroxyproline, 6-N-methyl lysine, 2-aminoisobutyric acid, isovaline and α -methyl 25 serine) may be substituted for amino acid residues of A limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, and unnatural amino acids may be substituted for zsig33 amino acid residues. "Unnatural amino acids" have been modified 30 after protein synthesis, and/or have a chemical structure in their side chain(s) different from that of the standard amino acids. Unnatural amino acids can be chemically synthesized, or preferably, are commercially available, and include pipecolic acid, thiazolidine carboxylic acid, dehydroproline, 35 3 and 4-methylproline, and dimethylproline.

methionine

20

Essential amino acids in the zsig33 polypeptides of the present invention can be identified according to known in the art, such as site-directed procedures mutagenesis or alanine-scanning mutagenesis (Cunningham 5 and Wells, <u>Science</u> <u>244</u>: 1081-1085, 1989). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant are tested for biological activity stimulation of gastrointestinal cell contractility, 10 modulation of nutrient uptake and/or secretion of digestive enzymes) to identify amino acid residues that are critical to the activity of the molecule. See also. Hilton et al., <u>J. Biol. Chem.</u> <u>271</u>:4699-4708, 1996. of ligand-receptor interaction can also be determined by physical analysis of structure, as determined by such 15 techniques as nuclear magnetic resonance, crystallography, diffraction or photoaffinity labeling, conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., Science 255:306-312, 1992; Smith et al., <u>J. Mol. Biol.</u> 224:899-904, 1992; Wlodaver et al., FEBS Lett. 309:59-64, 1992. identities of essential amino acids can also be inferred from analysis of homologies with related members of the glucagon-secretin family of qut-brain peptide hormones. 25

Multiple amino acid substitutions can be made using known methods of mutagenesis tested screening, such as those disclosed by Reidhaar-Olson and Sauer (Science 241:53-57, 1988) or Bowie and Sauer (Proc. Natl. Acad. Sci. USA 86:2152-2156, 1989). Briefly, these 30 authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional polypeptide, and then sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position. Other methods 35 that can be used include phage display (e.g., Lowman et al., <u>Biochem.</u> <u>30</u>:10832-10837, 1991; Ladner et al., U.S.

21

Patent No. 5,223,409; Huse, WIPO Publication WO 92/06204) and region-directed mutagenesis (Derbyshire et al., <u>Gene 46</u>:145, 1986; Ner et al., <u>DNA 7</u>:127, 1988).

Mutagenesis methods as disclosed above can be 5 combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides in host cells. Mutagenized DNA molecules that encode active polypeptides (e.g., stimulation of gastrointestinal cell modulation of nutrient contractility, uptake and/or 10 secretion of digestive enzymes) can be recovered from the host cells and rapidly sequenced using modern equipment. These methods allow the rapid determination of importance of individual amino acid residues а polypeptide of interest, and can be applied 15 polypeptides of unknown structure.

Using the methods discussed above, one of ordinary skill in the art can identify and/or prepare a variety of polypeptides that are substantially homologous to residues 24 to 37 of SEQ ID NO: 2 or allelic variants thereof and retain properties of the wild-type protein. Such polypeptides may also include additional polypeptide segments as generally disclosed above.

polypeptides of the present The including full-length proteins and fragments thereof, can 25 be produced in genetically engineered host cells according to conventional techniques. Suitable host cells are those cell types that can be transformed or transfected with exogenous DNA and grown in culture, and include bacteria, and cultured higher eukaryotic cells. fungal cells, 30 Eukaryotic cells, particularly cultured multicellular organisms, are preferred. Techniques for manipulating cloned DNA molecules and introducing exogenous DNA into a variety of host cells are disclosed by Sambrook et al., Molecular Cloning: A Laboratory 35 Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989, and Ausubel et al. (eds.),

PCT/US98/05620 WO 98/42840

Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987, which are incorporated herein by reference.

In general, a DNA sequence encoding a zsig33 5 polypeptide of the present invention is operably linked to genetic elements required for its expression, transcription including a promoter generally terminator within an expression vector. The vector will also commonly contain one or more selectable markers and 10 one or more origins of replication, although those skilled in the art will recognize that within certain systems selectable markers may be provided on separate vectors, and replication of the exogenous DNA may be provided by integration into the host cell genome. Selection of promoters, terminators, selectable markers, vectors and other elements is a matter of routine design within the level of ordinary skill in the art. Many such elements are described in the literature and are available through commercial suppliers.

direct zsiq33 polypeptide a secretory pathway of a host cell, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) is provided in the expression vector. The secretory signal sequence may be that of the zsig33 polypeptide, or may be derived from another secreted protein (e.g., t-PA) or synthesized de novo. secretory signal sequence is joined to the zsig33 DNA sequence in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence 30 encoding the propeptide of interest, although certain signal sequences may be positioned elsewhere in the DNA sequence of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No. 5,143,830).

20

Cultured mammalian cells are also preferred within the present invention. 35 hosts Methods introducing exogenous DNA into mammalian host cells

include calcium phosphate-mediated transfection (Wigler et al., Cell 14:725, 1978; Corsaro and Pearson, Somatic Cell Genetics 7:603, 1981: Graham and Van der Eb, Virology 52:456, 1973), electroporation (Neumann et al., EMBO J. 5 1:841-845, 1982), DEAE-dextran mediated transfection (Ausubel et al., eds., Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987), liposomemediated transfection (Hawley-Nelson et al., Focus 15:73, 1993; Ciccarone et al., Focus 15:80, 1993), and viral 10 vectors (A. Miller and G. Rosman, BioTechniques 7:980-90, 1989; O. Wang and M. Finer, Nature Med. 2:714-16, 1996), which are incorporated herein by reference. recombinant polypeptides production of in cultured mammalian cells is disclosed, for example, by Levinson et 15 al., U.S. Patent No. 4,713,339; Hagen et al., U.S. Patent No. 4,784,950; Palmiter et al., U.S. Patent No. 4,579,821; and Ringold, U.S. Patent No. 4,656,134, which incorporated herein by reference. Preferred cultured mammalian cells include the COS-1 (ATCC No. CRL 1650), 20 COS-7 (ATCC No. CRL 1651), BHK 570 (ATCC No. CRL 10314), 293 (ATCC No. CRL 1573; Graham et al., J. Gen. Virol. 36:59-72, 1977) and Chinese hamster ovary (e.g. CHO-K1; ATCC No. CCL 61) cell lines. Additional suitable cell lines are known in the art and available from public 25 depositories such as the American Type Culture Collection, Rockville, Maryland. In general, strong transcription promoters are preferred, such as promoters from SV-40 or cytomegalovirus. See, e.g., U.S. Patent No. 4,956,288. suitable promoters include those 30 metallothionein genes (U.S. Patent Nos. 4,579,821 and 4,601,978, which are incorporated herein by reference) and the adenovirus major late promoter.

Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been inserted. Such cells are commonly referred to as "transfectants". Cells that have been cultured in the

24

presence of the selective agent and are able to pass the gene of interest to their progeny are referred to as "stable transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. 5 Selection is carried out in the presence of a neomycintype drug, such as G-418 or the like. Selection systems may also be used to increase the expression level of the gene of interest, a process referred "amplification." Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for cells that produce high levels of the products of the introduced genes. preferred amplifiable selectable marker is dihydrofolate which confers resistance to methotrexate. Other drug resistance genes (e.g., hygromycin resistance, multi-drug resistance, puromycin acetyltransferase) also be used. Alternative markers that introduce an altered phenotype, such as green fluorescent protein, or cell surface proteins such as CD4, CD8, Class I MHC, placental alkaline phosphatase may be used to transfected cells from untransfected cells by such means as FACS sorting or magnetic bead separation technology.

other higher eukaryotic cells can also be used as hosts, including plant cells, insect cells and avian cells. The use of Agrobacterium rhizogenes as a vector for expressing genes in plant cells has been reviewed by Sinkar et al., J. Biosci. (Bangalore) 11:47-58, 1987. Transformation of insect cells and production of foreign polypeptides therein is disclosed by Guarino et al., U.S. Patent No. 5,162,222 and WIPO publication WO 94/06463. Insect cells can be infected with recombinant baculovirus, commonly derived from Autographa californica nuclear polyhedrosis virus (AcNPV). DNA encoding the zsig33 polypeptide is inserted into the baculoviral genome in place of the AcNPV polyhedrin gene coding sequence by one

25

The first is the traditional method of of two methods. homologous DNA recombination between wild-type AcNPV and a transfer vector containing the zsig33 flanked by AcNPV Suitable insect cells, e.g. SF9 cells, are 5 infected with wild-type AcNPV and transfected with a transfer vector comprising а zsig33 polynucleotide operably linked to an AcNPV polyhedrin gene promoter, terminator, and flanking sequences. See, King, L.A. and Possee, R.D., The Baculovirus Expression System: A 10 Laboratory Guide, London, Chapman & Hall; O'Reilly, D.R. et al., <u>Baculovirus Expression Vectors</u>: A <u>Laboratory</u> Manual, New York, Oxford University Press., 1994; and, Richardson, C. D., Ed., Baculovirus Expression Protocols. Methods in Molecular Biology, Totowa, NJ, Humana Press, 15 1995. Natural recombination within an insect cell will result in a recombinant baculovirus which contains zsig33 driven by the polyhedrin promoter. Recombinant viral stocks are made by methods commonly used in the art.

of The second method making 20 baculovirus utilizes a transposon-based system described by Luckow (Luckow, V.A, et al., <u>J Virol</u> 67:4566-79, 1993). system is sold in the Bac-to-Bac kit Technologies, Rockville, MD). This system utilizes a transfer vector, pFastBacl™ (Life Technologies) containing 25 a Tn7 transposon to move the DNA encoding the zsig33 polypeptide into a baculovirus genome maintained in E. coli as a large plasmid called a "bacmid." The pFastBac1™ transfer vector utilizes the AcNPV polyhedrin promoter to drive the expression of the gene of interest, in this case However, pFastBac1[™] can be modified to a 30 zsig33. considerable degree. The polyhedrin promoter can be removed and substituted with the baculovirus basic protein promoter (also known as Pcor, p6.9 or MP promoter) which is expressed earlier in the baculovirus infection, and has 35 been shown to be advantageous for expressing secreted proteins. See, Hill-Perkins, M.S. and Possee, R.D., J Gen

WO 98/42840

<u>Virol</u> <u>71</u>:971-6, 1990; Bonning, B.C. et al., <u>J</u> Gen Virol 75:1551-6, 1994; and, Chazenbalk, G.D., and Rapoport, B., J Biol Chem 270:1543-9, 1995. In such transfer vector constructs, a short or long version of the basic protein 5 promoter can be used. Moreover, transfer vectors can be constructed which replace the native zsig33 secretory signal sequences with secretory signal sequences derived from insect proteins. For example, a secretory signal sequence from Ecdysteroid Glucosyltransferase (EGT), honey bee Melittin (Invitrogen, Carlsbad, CA), or baculovirus gp67 (PharMingen, San Diego, CA) can be used in constructs to replace the native zsig33 secretory signal sequence. In addition, transfer vectors can include an in-frame fusion with DNA encoding an epitope tag at the C- or Nterminus of the expressed zsig33 polypeptide, for example, a Glu-Glu epitope tag (Grussenmeyer, T. et al., Proc Natl Acad Sci. 82:7952-4, 1985). Using a technique known in the art, transfer vector containing zsiq33 transformed into E. Coli, and screened for bacmids which 20 contain an interrupted lacZ gene indicative of recombinant baculovirus. The bacmid DNA containing the recombinant baculovirus genome is isolated, using common techniques, and used to transfect Spodoptera frugiperda cells, e.g. Sf9 cells. Recombinant virus that expresses zsig33 is subsequently produced. Recombinant viral stocks are made by methods commonly used the art.

26

PCT/US98/05620

The recombinant virus is used to infect host cells, typically a cell line derived from the fall armyworm, Spodoptera frugiperda. See, in general, Glick and Pasternak, Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press, Washington, D.C., 1994. Another suitable cell line is the High FiveO™ cell line (Invitrogen) derived from Trichoplusia ni (U.S. Patent #5,300,435). Commercially available serum-free media are used to grow and maintain the cells. media are Sf900 II™ (Life Technologies) or ESF 921™

27

(Expression Systems) for the Sf9 cells; and Ex-cellO405™ (JRH Biosciences, Lenexa, KS) or Express FiveO™ (Life Technologies) for the T. ni cells. The cells are grown up from an inoculation density of approximately 2-5 x 10^5 cells to a density of $1-2 \times 10^6$ cells at which time a recombinant viral stock is added at a multiplicity of infection (MOI) of 0.1 to 10, more typically near 3. recombinant virus-infected cells typically produce the recombinant zsig33 polypeptide at 12-72 hours postinfection and secrete it with varying efficiency into the 10 The culture is usually harvested 48 hours postinfection. Centrifugation is used to separate the cells from the medium (supernatant). The supernatant containing zsiq33 polypeptide is filtered through micropore 15 filters, usually 0.45 μ m pore size. Procedures used are generally described in available laboratory manuals (King, L. A. and Possee, R.D., <u>ibid</u>.; O'Reilly, D.R. et al., ibid.; Richardson, C. D., ibid.). Subsequent purification of the zsig33 polypeptide from the supernatant can be achieved using methods described herein. 20

Fungal cells, including yeast cells, particularly cells of the genera Saccharomyces and Pichia, can also be used within the present invention, such as for producing zsiq33 fragments or polypeptide Methods for transforming yeast cells with exogenous DNA 25 producing recombinant polypeptides therefrom disclosed by, for example, Kawasaki, U.S. Patent 4,599,311; Kawasaki et al., U.S. Patent No. 4,931,373; Brake, U.S. Patent No. 4,870,008; Welch et al., U.S. Patent No. 5,037,743; and Murray et al., U.S. Patent No. 4,845,075, which are incorporated herein by reference. Transformed cells are selected by phenotype determined by the selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient 35 (e.g., leucine). A preferred vector system for use in yeast is the POT1 vector system disclosed by Kawasaki et

al. (U.S. Patent No. 4,931,373), which allows transformed cells to be selected by growth in glucose-containing Suitable promoters and terminators for use in media. yeast include those from glycolytic enzyme genes (see, 5 e.g., Kawasaki, U.S. Patent No. 4,599,311; Kingsman et al., U.S. Patent No. 4,615,974; and Bitter, U.S. Patent No. 4,977,092, which are incorporated herein by reference) and alcohol dehydrogenase genes. See also U.S. Patents Nos. 4,990,446; 5,063,154; 5,139,936 and 4,661,454, which 10 are incorporated herein by reference. Transformation systems for other yeasts, including Hansenula polymorpha, Schizosaccharomyces pombe, Kluyveromyces Kluyveromyces fragilis, Ustilago maydis, Pichia pastoris, Pichia quillermondii, Pichia methanolica and Candida 15 maltosa are known in the art. See, for example, Gleeson et al., <u>J. Gen. Microbiol.</u> 132:3459-3465, 1986 and Cregg, U.S. Patent No. 4,882,279. Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent No. 4,935,349, which is incorporated herein by 20 reference. Methods for transforming Acremonium chrysogenum are disclosed by Sumino et al., U.S. Patent No. 5,162,228, which is incorporated herein by reference. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent No. 4,486,533, which is 25 incorporated herein by reference.

Transformed or transfected host cells are cultured according to conventional procedures in a culture medium containing nutrients and other components required for the growth of the chosen host cells. A variety of suitable media, including defined media and complex media, are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins and minerals. Media may also contain such components as growth factors or serum, as required. The growth medium will generally select for cells containing the exogenously

29

added DNA by, for example, drug selection or deficiency in an essential nutrient which is complemented by the selectable marker carried on the expression vector or cotransfected into the host cell. P. methanolica cells are cultured in a medium comprising adequate sources of carbon, nitrogen and trace nutrients at a temperature of about 25°C to 35°C. Liquid cultures are provided with sufficient aeration by conventional means, such as shaking of small flasks or sparging of fermentors. A preferred culture medium for P. methanolica is YEPD (2% D-glucose, 2% BactoTM Peptone (Difco Laboratories, Detroit, MI), 1% BactoTM yeast extract (Difco Laboratories), 0.004% adenine and 0.006% L-leucine).

Expressed recombinant zsig33 polypeptides can be 15 purified fractionation and/or using conventional purification methods and media. Ammonium precipitation and acid or chaotrope extraction may be used for fractionation of samples. Exemplary purification steps may include hydroxyapatite, size exclusion, FPLC and 20 reverse-phase high performance liquid chromatography. include Suitable anion exchange media derivatized dextrans, agarose, cellulose, polyacrylamide, specialty silicas, and the like. PEI, DEAE, QAE and Q derivatives are preferred, with DEAE Fast-Flow Sepharose (Pharmacia, 25 Piscataway, NJ) being particularly preferred. Exemplary chromatographic media include those media derivatized with phenyl, butyl, or octyl groups, such as Phenyl-Sepharose FF(Pharmacia), Toyopearl butyl 650 (Toso Montgomeryville, PA), Octyl-Sepharose (Pharmacia) and the 30 like; or polyacrylic resins, such as Amberchrom CG 71 (Toso Haas) and the like. Suitable solid supports include glass beads, silica-based resins, cellulosic resins, agarose beads, cross-linked agarose beads, polystyrene beads, cross-linked polyacrylamide resins and the like 35 that are insoluble under the conditions in which they are to be used. These supports may be modified with reactive

WO 98/42840 PO

30

PCT/US98/05620

groups that allow attachment of proteins by amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups and/or carbohydrate moieties. Examples of coupling chemistries include cyanogen bromide activation, N-hydroxysuccinimide 5 activation, epoxide activation, sulfhydryl activation, hydrazide activation, and carboxyl and amino derivatives for carbodiimide coupling chemistries. These and other solid media are well known and widely used in the art, and are available from commercial suppliers. Methods for 10 binding receptor polypeptides to support media are well known in the art. Selection of a particular method is a matter of routine design and is determined in part by the properties of the chosen support. See, for example, Affinity Chromatography: Principles & Methods, Pharmacia 15 LKB Biotechnology, Uppsala, Sweden, 1988.

The polypeptides of the present invention can be isolated by exploitation of small size and low pI. example, polypeptides of the present invention can be bound to anionic exchanges at low pH values. 20 methods of purification include purification glycosylated proteins by lectin affinity chromatography and ion exchange chromatography (Methods in Enzymol., Vol. 182, "Guide to Protein Purification", M. Deutscher, (ed.), Acad. Press, San Diego, 1990, pp.529-39). Alternatively, a fusion of the polypeptide of interest and an affinity (e.g., polyhistidine, maltose-binding protein, immunoglobulin domain) may be constructed to facilitate purification.

Protein refolding (and optionally reoxidation)
30 procedures may be advantageously used. It is preferred to
purify the protein to >80% purity, more preferably to >90%
purity, even more preferably >95%, and particularly
preferred is a pharmaceutically pure state, that is
greater than 99.9% pure with respect to contaminating
35 macromolecules, particularly other proteins and nucleic
acids, and free of infectious and pyrogenic agents.

Preferably, a purified protein is substantially free of other proteins, particularly other proteins of animal origin.

zsig33 polypeptides or fragments thereof may 5 also be prepared through chemical synthesis. zsiq33 polypeptides may be monomers or multimers; glycosylated or non-glycosylated; pegylated or non-pegylated; amidated or non-amidated; sulfated or non-sulfated; and may or may not include an initial methionine amino acid residue. 10 example, zsig33 polypeptides can also be synthesized by exclusive solid phase synthesis, partial solid phase methods, fragment condensation or classical solution synthesis. The polypeptides are preferably prepared by solid phase peptide synthesis, for example as described by 15 Merrifield, J. Am. Chem. Soc. 85:2149, 1963. The synthesis is carried out with amino acids that protected at the alpha-amino terminus. Trifunctional amino acids with labile side-chains are also protected suitable groups to prevent undesired chemical 20 reactions from occurring during the assembly of polypeptides. The alpha-amino protecting group selectively removed to allow subsequent reaction to take place at the amino-terminus. The conditions for the removal of the alpha-amino protecting group do not remove 25 the side-chain protecting groups.

The alpha-amino protecting groups are those known to be useful in the art of stepwise polypeptide synthesis. Included are acyl type protecting groups (e.g., formyl, trifluoroacetyl, acetyl), aryl type protecting groups (e.g., biotinyl), aromatic urethane type protecting groups (e.g., benzyloxycarbonyl (Cbz), substituted benzyloxycarbonyl and 9-fluorenylmethyloxycarbonyl (Fmoc)], aliphatic urethane protecting groups [e.g., t-butyloxycarbonyl (tBoc), isopropyloxycarbonyl, cyclohexloxycarbonyl] and alkyl type protecting groups

PCT/US98/05620 WO 98/42840

32

(e.g., benzyl, triphenylmethyl). The preferred protecting groups are tBoc and Fmoc.

The side-chain protecting groups selected must remain intact during coupling and not be removed during 5 the deprotection of the amino-terminus protecting group or during coupling conditions. The side-chain protecting groups must also be removable upon the completion of synthesis using reaction conditions that will not alter the finished polypeptide. In tBoc chemistry, the side-10 chain protecting groups for trifunctional amino acids are mostly benzyl based. In Fmoc chemistry, they are mostly tert-butyl or trityl based.

In tBoc chemistry, the preferred side-chain protecting groups are tosyl for arginine, cyclohexyl for aspartic acid, 4-methylbenzyl (and acetamidomethyl) for cysteine, benzyl for glutamic acid, serine and threonine, benzyloxymethyl (and dinitrophenyl) for histidine, 2-Clbenzyloxycarbonyl for lysine, formyl for tryptophan and 2bromobenzyl for tyrosine. In Fmoc chemistry. 20 preferred side-chain protecting groups are 2,2,5,7,8pentamethylchroman-6-sulfonyl (Pmc) or 2,2,4,6,7pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) arginine, trityl for asparagine, cysteine, glutamine and histidine, tert-butyl for aspartic acid, glutamic acid, 25 serine, threonine and tyrosine, tBoc for lysine tryptophan.

For the synthesis of phosphopeptides, direct or post-assembly incorporation of the phosphate group is used. In the direct incorporation strategy, the 30 phosphate group on serine, threonine or tyrosine may be protected by methyl, benzyl, or tert-butyl chemistry or by methyl, benzyl or phenyl in tBoc chemistry. Direct incorporation of phosphotyrosine without phosphate protection can also be used in Fmoc chemistry. the post-assembly incorporation unprotected hydroxyl groups of serine, threonine or

35

tyrosine are derivatized on solid phase with di-tertdibenzyldimethyl-N,N'or diisopropylphosphoramidite and then oxidized by tertbutylhydroperoxide.

Solid phase synthesis is usually carried out 5 from the carboxyl-terminus by coupling the alpha-amino protected (side-chain protected) amino acid to a suitable solid support. An ester linkage is formed when the attachment is made to a chloromethyl, chlortrityl or hydroxymethyl resin, and the resulting polypeptide will 10 free carboxyl group at the C-terminus. Alternatively, when an amide resin such as benzhydrylamine or p-methylbenzhydrylamine resin (for tBoc chemistry) and Rink amide or PAL resin (for Fmoc chemistry) are used, an amide bond is formed and the resulting polypeptide will have a carboxamide group at the C-terminus. These resins, whether polystyrenepolyamide-based or polyethyleneglycol-grafted, with or without a handle or linker, with or without the first amino acid attached, are 20 commercially available, and their preparations have been described by Stewart et al., "Solid Phase Synthesis" (2nd Edition), (Pierce Chemical Co., Rockford, IL, 1984) and Bayer & Rapp Chem. Pept. Prot. 3:3 (1986); and Atherton et al., Solid Phase Peptide Synthesis: A 25 Practical Approach, IRL Press, Oxford, 1989.

The C-terminal amino acid, protected at the side chain if necessary, and at the alpha-amino group, attached to a hydroxylmethyl resin using activating agents including dicyclohexylcarbodiimide N, N'-diisopropylcarbodiimide (DCC), (DIPCDI) and carbonyldiimidazole (CDI). Ιt can be attached to chloromethyl or chlorotrityl resin directly in its cesium tetramethylammonium salt form or in the presence of triethylamine (TEA) or diisopropylethylamine (DIEA). First amino acid attachment to an amide resin is the same as amide bond formation during coupling reactions.

30

WO 98/42840

Following the attachment to the resin support, the alpha-amino protecting group is removed using various reagents depending on the protecting chemistry (e.g., tBoc, Fmoc). The extent of Fmoc removal can be monitored at 300-320 nm or by a conductivity cell. After removal of the alpha-amino protecting group, the remaining protected amino acids are coupled stepwise in the required order to obtain the desired sequence.

Various activating agents can be used for the 10 coupling reactions including DCC, DIPCDI, 2-chloro-1,3dimethylimidium hexafluorophosphate (CIP), benzotriazol-1yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) and its pyrrolidine analog (PyBOP), bromotris-pyrrolidino-phosphonium hexafluorophosphate (PyBroP), 15 O-(benzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium hexafluorophosphate (HBTU) and its tetrafluoroborate analog (TBTU) or its pyrrolidine analog (HBPyU), O-(7azabenzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium hexafluorophosphate (UTAH) and its tetrafluoroborate 20 analog (TATU) or its pyrrolidine analog (HAPyU). The most common catalytic additives used in coupling reactions include 4-dimethylaminopyridine (DMAP), 3-hydroxy-3,4dihydro-4-oxo-1,2,3-benzotriazine (HODhbt), Nhydroxybenzotriazole (HOBt) and 1-hydroxy-7-25 azabenzotriazole (HOAt). Each protected amino acid is used in excess (>2.0 equivalents), and the couplings are usually carried out in N-methylpyrrolidone (NMP) or in DMF, CH2Cl2 or mixtures thereof. The extent of completion of the coupling reaction can be monitored at each stage, 30 e.g., by the ninhydrin reaction as described by Kaiser et al., Anal. Biochem. 34:595, 1970.

After the entire assembly of the desired peptide, the peptide-resin is cleaved with a reagent with proper scavengers. The Fmoc peptides are usually cleaved and deprotected by TFA with scavengers (e.g., H2O, ethanedithiol, phenol and thioanisole). The tBoc peptides

are usually cleaved and deprotected with liquid HF for 1-2 hours at -5 to 0° C, which cleaves the polypeptide from the resin and removes most of the side-chain protecting groups. Scavengers such as anisole, dimethylsulfide and p-5 thiocresol are usually used with the liquid HF to prevent cations formed during the cleavage from alkylating and amino acid residues present acylating the the polypeptide. The formyl group of tryptophan and the dinitrophenyl group of histidine need to be removed, 10 respectively by piperidine and thiophenyl in DMF prior to the HF cleavage. The acetamidomethyl group of cysteine can be removed by mercury(II) acetate and alternatively by iodine, thallium(III)trifluoroacetate or tetrafluoroborate which simultaneously oxidize cysteine to 15 cystine. Other strong acids used for tBoc peptide cleavage and deprotection include trifluoromethanesulfonic acid (TFMSA) and trimethylsilyltrifluoroacetate (TMSOTf).

activity of molecules of the present The invention can be measured using a variety of assays that stimulation of gastrointestinal 20 measure contractility, modulation of nutrient uptake secretion of digestive enzymes. Of particular interest are changes in contractility of smooth muscle cells. example, the contractile response of segments of mammalian 25 duodenum or other gastrointestinal smooth muscles tissue (Depoortere et al., <u>J. Gastrointestinal Motility 1:150-</u> 1989, incorporated herein by reference). exemplary in vivo assay uses an ultrasonic micrometer to the dimensional changes radially between 30 commissures and longiturdinally to the plane of the valve base (Hansen et al., Society of Thoracic Surgeons 60:S384-390, 1995).

Gastric motility is generally measured in the clinical setting as the time required for gastric emptying and subsequent transit time through the gastrointestinal tract. Gastric emptying scans are well known to those

Assays measuring zsig33 polypeptides ability to 15 affect cell proliferation or differentiation are well known in the art. For example, assays measuring proliferation include such assays as chemosensitivity to neutral red dye (Cavanaugh et al., Investigational New <u>Drugs</u> 8:347-354, 1990, incorporated herein by reference), 20 incorporation of radiolabelled nucleotides (Cook et al., Analytical Biochem. 179:1-7, 1989, incorporated herein by reference), incorporation of 5-bromo-2'-deoxyuridine (BrdU) in the DNA of proliferating cells (Porstmann et al., <u>J. Immunol. Methods</u> <u>82</u>:169-179, 1985, incorporated 25 herein by reference), and use of tetrazolium salts (Mosmann, J. Immunol. Methods 65:55-63, 1983; Alley et al., Cancer Res. 48:589-601, 1988; Marshall et al., Growth Reg. 5:69-84, 1995; and Scudiero et al., Cancer Res. 48:4827-4833, 1988; all incorporated herein by reference). 30 Assays measuring differentiation include, for example, measuring cell-surface markers associated with stagespecific expression of a tissue, enzymatic activity, functional activity or morphological changes (Watt, FASEB, 5:281-284, 1991; Francis, <u>Differentiation</u> 57:63-75, 1994; 35 Raes, Adv. Anim. Cell Biol. Technol. Bioprocesses, 161-171, 1989; all incorporated herein by reference).

WO 98/42840

37

Assays can be used to measure other cellular responses, that include, chemotaxis, adhesion, changes in ion channel influx, regulation of second messenger levels and neurotransmitter release. Such assays are well known 5 in the art. See, for example, in "Basic & Clinical Endocrinology Ser., Vol. Vol. 3," Cytochemical Bioassays: Techniques & Applications, Chayen; Chayen, Bitensky, eds., Dekker, New York, 1983.

PCT/US98/05620

In view of the tissue distribution observed for 10 zsig33, agonists (including the natural ligand/ substrate/ cofactor/ etc.) and antagonists have enormous potential in both in vitro and in vivo applications. identified as zsig33 agonists are useful for promoting stimulation of gastrointestinal cell contractility, of nutrient modulation uptake and/or secretion digestive enzymes in vivo and in vitro. For example, agonist compounds are useful as components of defined cell culture media and regulate the uptake of nutrients, and thus are useful in specifically promoting the growth and/or development of gastrointestinal cells such as G cells, enterochromaffin cells and the epithelial mucosa of the stomach, duodenum, proximal jejunum, antrum and fundus.

family of gut-brain peptides has been associated with neurological and CNS functions. example, NPY, a peptide with receptors in both the brain and the gut has been shown to stimulate appetite when administered to the central nervous system (Gehlert, Life <u>Sciences</u> <u>55(6)</u>:551-562, 1994). Motilin immunoreactivity 30 has been identified in different regions of the brain, particularly the cerebellum, and in the pituitary (Gasparini et al., <u>Hum. Genetics</u> 94(6):671-674, Motilin has been found to coexist with neurotransmitter γaminobutyric acid in cerebellum (Chan-Patay, Proc. Sym. 35 50th Anniv. Meet. Br. Pharmalog. Soc.:1-24, Physiological studies have provided some evidence that

38

motilin has an affect on feeding behavior (Rosenfield et al., Phys. Behav. 39(6):735-736, 1987), bladder control, pituitary growth hormone release. Other gut-brain peptides, such as CCK, enkephalin, VIP and secretin have been shown to be involved in control of blood pressure, heart rate, behavior, and pain modulation, in addition to be active in the digestive system. Therefore, zsig33, or some portion thereof, could be expected to have some neurological association.

10 Using site-specific changes in the amino acid and DNA sequences of the present invention analogs can be made that are either antagonists, agonists or partial agonists (Macielay et al., Peptides: Chem. Struct. Biol. pp.659, 1996). Antagonists are useful for clinical conditions associated with gastrointestinal hypermotility such as diarrhea and Crohn's disease. Antagonists are also useful as research reagents for characterizing sites of ligand-receptor interaction.

A zsig33 ligand-binding polypeptide can also be 20 used for purification of ligand. The polypeptide is immobilized on a solid support, such as beads of agarose, cross-linked agarose, glass, cellulosic resins, silicabased resins, polystyrene, cross-linked polyacrylamide, or like materials that are stable under the conditions of 25 use. Methods for linking polypeptides to solid supports are known in the art, and include amine chemistry, bromide activation, cyanogen N-hydroxysuccinimide activation, epoxide activation, sulfhydryl activation, and hydrazide activation. The resulting medium will generally be configured in the form of a column, 30 and fluids containing ligand are passed through the column one or more times to allow ligand to bind to the receptor polypeptide. The ligand is then eluted using changes in salt concentration, chaotropic agents (guanidine HCl), or 35 pH to disrupt ligand-receptor binding.

An assay system that uses a ligand-binding receptor (or an antibody, one member of a complement/ anti-complement pair) or a binding fragment thereof, and a commercially available biosensor instrument (BIAcore TM , 5 Pharmacia Biosensor, Piscataway, NJ) may be advantageously Such receptor, antibody, member complement/anti-complement pair or fragment is immobilized onto the surface of a receptor chip. Use of this instrument is disclosed by Karlsson, J. Immunol. Methods 10 145:229-40, 1991 and Cunningham and Wells, <u>J. Mol. Biol.</u> <u>234</u>:554-63, 1993. A receptor, antibody, member or fragment is covalently attached, using amine or sulfhydryl chemistry, to dextran fibers that are attached to gold film within the flow cell. A test sample is passed 15 through the cell. If a ligand, epitope, or opposite member of the complement/anti-complement pair is present in the sample, it will bind to the immobilized receptor, antibody or member, respectively, causing a change in the refractive index of the medium, which is detected as a change in surface plasmon resonance of the gold film. This system allows the determination of on- and off-rates, from which binding affinity can be calculated, assessment of stoichiometry of binding.

Ligand-binding receptor polypeptides can also be
used within other assay systems known in the art. Such
systems include Scatchard analysis for determination of
binding affinity (see Scatchard, <u>Ann. NY Acad. Sci. 51</u>:
660-72, 1949) and calorimetric assays (Cunningham et al.,
<u>Science</u> 253:545-48, 1991; Cunningham et al., <u>Science</u>
30 245:821-25, 1991).

zsig33 polypeptides can also be used to prepare antibodies that specifically bind to zsig33 epitopes, peptides or polypeptides. Methods for preparing polyclonal and monoclonal antibodies are well known in the art (see, for example, Sambrook et al., Molecular Cloning:

A Laboratory Manual, Second Edition, Cold Spring Harbor,

PCT/US98/05620

NY, 1989; and Hurrell, J. G. R., Ed., Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC Press, Inc., Boca Raton, FL, 1982, which are incorporated herein by reference). As would be evident to one of ordinary skill 5 in the art, polyclonal antibodies can be generated from a variety of warm-blooded animals, such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, and rats.

The immunogenicity of a zsig33 polypeptide may be increased through the use of an adjuvant, such as alum 10 (aluminum hydroxide) or Freund's complete or incomplete Polypeptides useful for immunization include fusion polypeptides, such as fusions of zsig33 or a portion thereof with an immunoglobulin polypeptide or with maltose binding protein. The polypeptide immunogen 15 may be a full-length molecule or a portion thereof. the polypeptide portion is "hapten-like", such portion may be advantageously joined or linked to a macromolecular carrier (such as keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid) for immunization.

20

As used herein, the term "antibodies" includes polyclonal antibodies, affinity-purified polyclonal antibodies, monoclonal antibodies, and antigen-binding fragments, such as F(ab')2 and Fab proteolytic fragments. Genetically engineered intact antibodies or fragments, 25 such as chimeric antibodies, Fv fragments, single chain antibodies and the like, as well as synthetic antigenbinding peptides and polypeptides, are also included. Non-human antibodies may be humanized by grafting only non-human CDRs onto human framework and constant regions, 30 or by incorporating the entire non-human variable domains (optionally "cloaking" them with a human-like surface by replacement of exposed residues, wherein the result is a "veneered" antibody). In some instances, humanized antibodies may retain non-human residues within the human 35 variable region framework domains to enhance binding characteristics. Through humanizing antibodies,

41

biological half-life may be increased, and the potential for adverse immune reactions upon administration to humans is reduced. Alternative techniques for generating or selecting antibodies useful herein include in vitro exposure of lymphocytes to zsig33 protein or peptide, and selection of antibody display libraries in phage or similar vectors (for instance, through use of immobilized or labeled zsig33 protein or peptide).

Antibodies are defined to be specifically binding if they bind to a zsig33 polypeptide with a binding affinity (K_a) of $10^6~M^{-1}$ or greater, preferably $10^7~M^{-1}$ or greater, more preferably $10^8~M^{-1}$ or greater, and most preferably $10^9~M^{-1}$ or greater. The binding affinity of an antibody can be readily determined by one of ordinary skill in the art (for example, by Scatchard analysis).

A variety of assays known to those skilled in art can be utilized to detect antibodies which specifically bind to zsig33 proteins orpeptides. Exemplary assays are described in detail in Antibodies: A 20 Laboratory Manual, Harlow and Lane (Eds.), Cold Spring Harbor Laboratory Press, 1988. Representative examples of such assays include: concurrent immunoelectrophoresis, radioimmunoassay, radioimmuno-precipitation, enzyme-linked immunosorbent assay (ELISA), dot blot or Western blot inhibition or competition assay, 25 assay, and In addition, antibodies can be screened for assay. binding to wild-type versus mutant zsig33 protein or peptide.

Antibodies to zsig33 may be used for tagging cells that express zsig33 for isolating zsig33 by affinity purification; for diagnostic assays for determining circulating levels of zsig33 polypeptides; for detecting or quantitating soluble zsig33 as marker of underlying pathology or disease; in analytical methods employing FACS; for screening expression libraries; for generating anti-idiotypic antibodies; and as neutralizing antibodies

25

PCT/US98/05620 WO 98/42840

42

or as antagonists to block zsig33 activity in vitro and in Suitable direct tags or labels radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent markers, chemiluminescent markers, magnetic 5 particles and the like; indirect tags or labels may feature use of biotin-avidin or other complement/anticomplement pairs as intermediates. Antibodies herein may also be directly or indirectly conjugated to drugs, toxins, radionuclides and the like, and these conjugates 10 used for in vivo diagnostic or therapeutic applications.

Molecules of the present invention can be used identify and isolate receptors that mediate the function of zsig33. For example, proteins and peptides of the present invention can be immobilized on a column and 15 membrane preparations run over the column (Immobilized Affinity Ligand Techniques, Hermanson et al., Academic Press, San Diego, CA, 1992, pp.195-202). Proteins and peptides can also be radiolabeled (Methods in Enzymol., vol. 182, "Guide to Protein Purification", M. 20 Deutscher, ed., Acad. Press, San Diego, 1990, 721-737) or photoaffinity labeled (Brunner et al., Ann. Rev. Biochem. 62:483-514, 1993 and Fedan et al., Biochem. Pharmacol. 33:1167-1180, 1984) and specific cell-surface proteins can be identified.

The polypeptides, nucleic acid and/or antibodies of the present invention may be used in treatment of disorders associated with gastrointestinal contractility, secretion of digestive enzymes and acids, gastrointestinal motility, recruitment of digestive 30 enzymes; inflammation, particularly as it affects the gastrointestinal system; reflux disease and regulation of nutrient absorption. Specific conditions that will benefit from treatment with molecules of the present invention include, but are not limited to, diabetic 35 gastroparesis, post-surgical gastroparesis, vagotomy, chronic idiopathic intestinal pseudo-obstruction

43

gastroesophageal reflux disease. Additional uses include, gastric emptying for radiological studies, stimulating gallbladder contraction and antrectomy.

The motor and neurological affects of molecules of the present invention make it useful for treatment of obesity and other metabolic disorders where neurological feedback modulates nutritional absorption. The molecules of the present invention are useful for regulating satiety, glucose absorption and metabolism, and neuropathy-associated gastrointestinal disorders.

Molecules of the present invention are also useful as additives to anti-hypoglycemic preparations containing glucose and as adsorption enhancers for oral drugs which require fast nutrient action. Additionally, 15 molecules of the present invention can be used to stimulate glucose-induced insulin release.

For pharmaceutical use, the proteins of the present invention are formulated for parenteral, nasal inhalation, particularly intravenous or subcutaneous, 20 delivery according to conventional methods. Intravenous administration will be by bolus injection or infusion over a typical period of one to several hours. In general, pharmaceutical formulations will include a zsig33 protein in combination with a pharmaceutically acceptable vehicle, 25 such as saline, buffered saline, 5% dextrose in water or the like. Formulations may further include one or more excipients, preservatives, solubilizers, buffering agents, albumin to prevent protein loss on vial surfaces, etc. Methods of formulation are well known in the art and are 30 disclosed, for example, in Remington's Pharmaceutical Sciences, Gennaro, ed., Mack Publishing Co., Easton PA, herein which is incorporated by reference. Therapeutic doses will generally be in the range of 0.1 to 100 µg/kg of patient weight per day, preferably 0.5-20 µg/kg per day, with the exact dose determined by the clinician according to accepted standards, taking into

44

account the nature and severity of the condition to be treated, patient traits, etc. Determination of dose is within the level of ordinary skill in the art. The proteins may be administered for acute treatment, over one week or less, often over a period of one to three days or may be used in chronic treatment, over several months or years. For example, a therapeutically effective amount of zsig33 is an amount sufficient to produce a clinically significant change in gastric motility and parameters used to measure changes in nutritional absorption. Specific tests for making such measurements are known to these ordinarily skilled in the art.

Examples

15

Example 1

Scanning of a cDNA database for cDNAs containing a secretion sequence revealed an expressed sequence tag (EST) that has homology to motilin. The cDNA is from a 20 human fetal pancreatic cDNA library.

Confirmation of the EST sequence was made by sequence analyses of the cDNA from which the EST originated. This cDNA was contained in a plasmid, and was excised using cloning sites. The analyses revealed that the cDNA encompassed the entire coding region of the DNA encoding zsig33.

Example 2

Northerns were performed using Human Multiple Tissue Blots and Human RNA Master dot blots from Clontech (Palo Alto, CA). The probe was approximately 40 bp oligonucleotide ZC12,494 (SEQ ID NO: 7). The probe was end labeled using T4Polynucleotide Kinase (Life Technologies, Inc., Gaithersburg, MD) and 35 Polynucleotide Kinase Forward Buffer (Life Technologies, Inc.). The probe was purified using a NUCTRAP push

columns (Stratagene, La Jolla, CA). EXPRESSHYB (Clontech) solution was used for prehybridization and hybridizing solution for the Northern blots. Hybridization took place at 42°C, and the blots were washed in 2X SSC and 0.05% SDS at RT, followed by a wash in 1 X SSC and 0.1% SDS at 71°C. An approximately 600 bp transcript was observed as a strong signal in stomach, with weaker signals seen in pancreas and small intestine.

10 Example 3

Two male Sprague-Dawley rats, approximately 12 weeks old (Harlan, Indianapolis, IN) were anesthetized with urethane and their stomachs were exposed through a small abdominal incision. Two 2.4 mm transducing crystals (Sonometrics, Ontario, Canada) were placed on the antral portion of the stomach such that circular contractions could be monitored as a change in the distance between the two crystals. The crystals were attached with VETBOND TISSUE ADHESIVE (3M, St. Paul, MN).

20 μ l of 1 μ M acetylcholine 10 was topically to the stomach between the two crystals, and resulted in a rapid, but transient increase distance between two crystals. 10 µl of norepinephrine (NE) at 1 μM caused a reduction in the distance between 25 the two crystals. The amplitude of the NE-induced decrease was approximately 50% of the acetylcholineinduced increase in distance. Both responses were transient.

A negative control of 10 μl of phosphate buffer 30 solution (PBS) applied topically between the crystals had no effect.

A 14 amino acid zsig33 peptide (from amino acid residue 24 (Gly) to amino acid residue 37 (Gln) of SEQ ID NO: 2) was dissolved in PBS) and 10 μ l was applied topically for a final concentration of 1 μ g, 10 μ g or 100 μ g. The zsig33 at 1 μ g induced a sustained,

46

rhythmic increase and decrease in crystal distance. effect appeared to be dose-dependent, with enhanced responses in rate amplitude both and when of the contractions 10 μg and 100 μg were tested.

5

Example 4

Eight female ob/ob mice, approximately 6 weeks old (Jackson Labs, Bar Harbor, ME) were adapted to a 4 hour daily feeding schedule for two weeks. After two 10 weeks on the feeding schedule, the mice were give 100 μg of a 14 amino acid amino zsig33 peptide (from amino acid residue 24 (Gly) to amino acid residue 37 (Gln) of SEO ID 2) in 100 μ l sterile 0.1% BSA by oral gavage, immediately after their eating period (post-prandially). 15 Thirty minutes later, the mice were challenged orally with a 0.5 ml volume of 25% glucose. Retroorbital bleeds were done to determine serum glucose levels. Blood was drawn prior to zsig33 dosing, prior to oral glucose challenge, and at 1, 2, 4, and 20 hours following the glucose challenge. 20

When zsig33 peptide was given orally at 100 μ g, 30 minutes prior to an oral glucose challenge, an enhanced post-prandial glucose absorption was seen.

25 Example 5

zsig33-1, a peptide corresponding to amino acid residue 24 (Gly) to amino acid residue 37 (Gln) of SEO ID NO: 2, was synthesized by solid phase peptide synthesis using model 431A Peptide Synthesizer (Applied 30 Biosystems/Perkin Elmer, Foster City, CA). Fmoc-Glutamine resin (0.63 mmol/g; Advanced Chemtech, Louisville, KY) was used as the initial support resin. '1 mmol amino acid cartridges (Anaspec, Inc. San Jose, CA) were used for synthesis. A mixture of 2(1-Hbenzotriazol-y-yl 1,1,3,3-35 tetrahmethylhyluronium hexafluorophosphate (HBTU), hydroxybenzotriazol (HOBt), 2m N,N-Diisolpropylethylamine,

N-Methylpyrrolidone, Dichloromethane (all from Applied Biosystems/Perkin Elmer) and piperidine (Aldrich Chemical Co., St. Louis, MO), and used for synthesis reagents.

The Peptide Companion software (Peptides 5 International, Louisville, KY) was used to predict the aggregation potential and difficulty level for synthesis for the zsig33-1 peptide. Synthesis was performed using single coupling programs, according to the manufacturer's specifications.

The peptide was cleaved from the solid phase 10 following standard TFA cleavage procedure (according to Peptide Cleavage manual, Applied Biosystems/Perkin Elmer). Purification of the peptide was done by RP-HPLC using a C18, 10 µm semi-peparative column (Vydac, Hesperial, CA). 15 Eluted fractions from the column were collected and analyzed for correct mass and purity by electrospray mass Two pools of the eluted material were spectrometry. collected. The mass spectrometry analysis indicated that both pools contained the purified form of 20 zsig33 with a mass of 1600 Daltons. This was the expected

mass, so the pools were combined, frozen and lyophilized.

Example 6

zsig33 was mapped to chromosome 3 using the

25 commercially available "GeneBridge 4 Radiation Hybrid
Panel" (Research Genetics, Inc., Huntsville, AL). The
GeneBridge 4 Radiation Hybrid Panel contains DNAs from
each of 93 radiation hybrid clones, plus two control DNAs
(the HFL donor and the A23 recipient). A publicly

30 available WWW server (http://www-genome.wi.mit.edu/cgibin/contig/rhmapper.pl) allows mapping relative to the
Whitehead Institute/MIT Center for Genome Research's
radiation hybrid map of the human genome (the "WICGR"
radiation hybrid map) which was constructed with the

35 GeneBridge 4 Radiation Hybrid Panel.

For mapping of zsig33 with the "GeneBridge 4 RH 20 μ l reactions were set up in a 96-well microtiter plate (Stratagene, La Jolla, CA) and used in a "RoboCycler Gradient 96" thermal cycler (Stratagene). 5 Each of the 95 PCR reactions consisted of 2 μ l 10X KlenTag PCR reaction buffer (CLONTECH Laboratories, Alto, CA), 1.6 μ l dNTPs mix (2.5 mM each, Perkin-Elmer, Foster City, CA), 1 µl sense primer, ZC13,166 (SEQ ID NO: 8), 1 μ l antisense primer, ZC13,167 (SEQ ID NO: 9), "RediLoad" (Research Genetics, Inc., Huntsville, AL), 0.4 Advantage KlenTag Polymerase 50X Mix(Clontech Laboratories, Inc.), 25 ng of DNA from an individual hybrid clone or control and ddH2O for a total volume of 20 The reactions were overlaid with an equal amount of 15 mineral oil and sealed. The PCR cycler conditions were as follows: an initial 1 cycle 5 minute denaturation at 95°C, 35 cycles of a 1 minute denaturation at 95°C, 1 minute annealing at 64°C and 1.5 minute extension at 72°C, followed by a final 1 cycle extension of 7 minutes at 72°C. The reactions were separated by electrophoresis on a 3% 20 NuSieve GTG agarose gel (FMC Bioproducts, Rockland, ME).

results showed that zsiq33 maps The cR 3000 from the framework marker AFMA216ZG1 on the WICGR chromosome 3 radiation hybrid map. Proximal and distal 25 framework markers AFMA216ZG1 were and D3S1263, respectively. The use of surrounding markers positions zsig33 in the 3p26.1 region on the integrated LDB chromosome 3 map (The Genetic Location Database, University of Southhampton, · WWW server: 30 http://cedar.genetics. soton.ac.uk/public html/).

Example 7

The effect of topically applied zsig33 peptide (amino acid 24 to 37 of SEQ ID NO: 2) on the transit of phenol red through the stomachs of fasted male Sprague-Dawley rats (Harlan, Indianapolis, IN) was evaluated. The

49

rats (6 animals, 8 weeks old) were fasted 24 hrs prior to being anesthetized with urethane(0.5 ml/100 grams of 25% solution). After anesthetizing, the animals were orally gavaged with 1 ml of Phenol Red solution (50 mg/ml in 2% methylcellulose solution).

The stomach of each animal was exposed through a small abdominal incision and either 1 μg zsig33 peptide or a 14 amino acid control of a scrambled sequence peptide was applied topically to the stomach five minutes 10 following the gavage. The amount of Phenol Red remaining in the stomach was determined by measuring optical density of the extracted stomach contents 30 minutes after the gavage.

The zsig33 peptide reduced the amount of Phenol
15 Red remaining in the stomach by approximately 25% compared
to a scrambled peptide, indicating that the zsig33 peptide
enhanced gastric emptying in these rats.

Example 8

Sixteen female ob/ob mice, 8 weeks old, (Jackson 20 Labs, Bar Harbor, ME) were adapted to a special 4 hour daily feeding schedule for two weeks. The were fed ad libitum from 7:30-11:30 am daily. After two weeks on the feeding schedule, the mice were divided into two groups of 25 8. One group was given 1.0 μg/mouse of zsig33-1 (14 amino acid peptide) and the other vehicle (a 14 amino acid scrambled sequence peptide) in 100 μ l sterile 0.1% BSQA by oral gavage just prior to receiving food, and at the end of the 4 hour feeding period. The mice were injected 30 twice daily for fourteen days, during which time food intake and body weight was measured daily. One day 14, immediately after the second oral gavage of the zsig33-1 peptide, the mice were challenged orally with an 0.5 ml volume of 25% glucose. Retro-orbital bleeds were done to 35 determine serum glucose levels immediately prior to administration of the zsig33-1 peptide or vehicle (t=30

PCT/US98/05620 WO 98/42840

50

min.), and also at 0, 1, 2, and 4 hours following the glucose challenge.

Results indicated that when zsig33-1 given orally at 1 µg/mouse had no affect on daily body weight or 5 food intake measurements, or on glucose clearance as determined on day 14.

Example 9

- Gut Northern Tissue Blot Α.
- 10 A Northern blot was prepared using mRNA from the following sources:
 - 1. RNA from Human Colorectal Andenocarcinoma cell line SW480 (Clontech, Palo Alto, CA)
- 2. RNA from human small intestine (Clontech) 15
 - RNA from human stomach tissue (Clontech)
 - Human Intestinal Smooth Muscle cell line 4. (Hism; ATCC No.CRL-1692; American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD)
- 20 Normal Human Colon cell line (FHC; ATCC No. CRL-1831; American Type Culture Collection)
 - Human Normal Fetal Small Intestine cell line (FHs74 Int.; ATCC No. CCL241; American Type Culture Collection).
- 25 Total RNAs were isolated from Hism, FHC and FHs74 Int. by acid guanidium method (Chomczynski et al., Anal. Biochem. 162:156-159, 1987). The polyA RNAs were selected by eluting total RNA through a column that retains polyA RNAs (Aviv et al., Proc. Nat. Acad. Sci.
- 30 $\underline{69}$:1408-1412, 1972). 2 μg of polyA⁺ RNA from each sample separated out in a 1.5% agarose gel in 2.2 M formaldehyde and phosphate buffer. The RNAs transferred onto Nytran membrane (Schleicher and Schuell, Keene, NH) in 20% SSC overnight. The blot was treated in
- the UV Stratalinker 2400 (Stratagene, La Jolla, CA) at 0.12 Joules. The bolt was then baked at 80°C for one hour.

51

Using the full length cDNA (shown in SEQ ID NO:

1) amplified by PCR approximately 50 ng of zsig33 DNA and
42.5 µl of water was radiolabeled with ³²P dCTP using a
Rediprime pellet kit (Amersham, Arlington Heights, IL)
5 according to the manufacturer's specifications. The blot
was hybridized in EXPRESSHYB (Clontech) at 55°C overnight.
The blot was washed at room temp. in 2X SSC and 0.1% SDS,
then in 2X SSC and 0.1% SDS at 65°C, and finally at 65°C in
0.1X SSC and 0.1% SDS. Results showed that zsig33
10 hybridized to stomach RNA and not to other RNAs from other
tissue origins.

B. Tumor Northern Blot

A Northern Territory™ -Human Tumor Panel Blot II (Invitrogen, San Diego, CA) and a Northern Territory™
15 Human Stomach Tumor Panel Blot (Invitrogen) were analyzed for expression patterns of zsiq33 RNA.

The Human Tumor Panel Blot contained 20 μg of total RNA per lane and was run on a 1% denaturing formaldehyde gel. The blot contained RNA from: esophageal tumor, normal esophagus, stomach tumor, normal stomach, colon tumor, normal colon, rectal tumor and normal rectum. The Stomach Tumor Panel Blot contained total RNA isolated human and normal tissues of four separate donors. 20 μg of RNA was used for each sample lane and the lanes alternated a normal and tumor set from each donor.

Probes approximately that were bp oligonucleotide ZC12,494 (SEQ ID NO: 7) were prepared. The probes were end labeled using T4 Polynucleotide Kinase MD) Inc., Gaithersburg, Technologies, 30 Polynucleotide Kinase Forward Buffer (Life Technologies, The probes were purified using a NUCTRAP push columns (Stratagene, La Jolla, CA). The tumor blot and the stomach blot were both treated in the same way. for EXPRESSHYB (Clontech) solution was used 35 prehybridization and as a hybridizing solution for the Northern blots. Hybridization took place at 42°C, and the

52

blots were washed in 0.1% SSC and 0.01% SDS at 60°C, followed by a wash in 0.1% SSC and 0.1% SDS at 70°C. The results clearly indicate that zsig33 is exclusively expressed in normal stomach tissue in both the Human Tumor 5 Panel and the Human Stomach Tumor Panel.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various 10 modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

53

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: ZymoGenetics, Inc.

1201 Eastlake Avenue East

Seattle

WA

USA

- (ii) TITLE OF THE INVENTION: MOTILIN HOMOLOGS
- (iii) NUMBER OF SEQUENCES: 7
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: ZymoGenetics, Inc.
 - (B) STREET: 1201 Eastlake Avenue East
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98102
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Sawislak, Deborah A
 - (B) REGISTRATION NUMBER: 37.438
 - (C) REFERENCE/DOCKET NUMBER: 97-04PC

((A) (B)	TEL	EPHO EFAX	UNIC NE: : 20	206-	442-	6672		N:				
	(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	1:				
((A) (B) (C)	LENO TYP STR	GTH: E: n ANDE	CHAR 351 ucle DNES Y: 1	base ic a S: s	e pa cid ingl	irs						
	ii) ix)			TYP	E: cl	DNA							
	(B) L0	CATI	EY: (ON: INFO	1:	351	eque	nce					
	(B)) L0	CATI	EY: : ON: INFO	1(69	ide						
	(B)) L0	CATI	EY: 1 ON: 1 INFO	70	. 351	ide						
()	ki) S	SEQUI	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	1 :			
												ATG Met 15	48
												GAA Glu	96
												AAG Lys	144

55

							GGT Gly		192
 	 	 	 -				CCC Pro		240
	 						AGC Ser 95		288
							AAA Lys		336
	GAC Asp								351

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 117 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

 Met
 Pro
 Ser
 Pro
 Gly
 Thr
 Val
 Cys
 Ser
 Leu
 Leu
 Leu
 Gly
 Met
 Leu

 Trp
 Leu
 Asp
 Leu
 Ala
 Met
 Ala
 Gly
 Ser
 Ser
 Phe
 Leu
 Ser
 Pro
 Glu
 His

 30
 Gln
 Arg
 Lys
 Glu
 Ser
 Lys
 Lys
 Pro
 Pro
 Ala
 Lys
 Leu

 Gln
 Arg
 Ala
 Leu
 Ala
 Gly
 Trp
 Leu
 Arg
 Pro
 Glu
 Asp
 Gly
 Gln

 Ala
 Glu
 Ala
 Glu
 Leu
 Glu
 Val
 Arg
 Phe
 Asn
 Ala
 Pro
 Phe

 65
 70
 75
 80
 80

Asp	Val	Gly	Ile	Lys 85	Leu	Ser	Gly	Val	G1n 90	Tyr	Gln	Gln	His	Ser 95	Gln	
Ala	Leu	Gly	Lys 100		Leu	Gln	Asp	Ile 105		Trp	Glu	Glu	Ala 110	Lys	Glu	
Alā	Pro	Ala 115	Asp					103					110			
		(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	3:						
	((B) (C)	LEN TYP STR	GTH: E: n ANDE	546 ucle DNES	ACTE base ic ac S: s inea	e pa cid ingl	irs								
		ii) ix)			TYP	E: cl	DNA									
		(B)) LO	CATI	ON: 4	Codi 40 RMAT	. 396	eque	nce							
	(xi) S	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	3:					
GGG	CAGA	GAC /	4CAC	ACGC	GC C	CAGT	TGTC	C AG	CTCC				TCC (Ser /			54
	GTG Val															102
	ACG Thr															150
	CAG Gln															198
	CAG Gln 55															246

	GAA G1u															294
	ATC Ile															342
	AGG Arg															390
	AAG Lys	TAA	CAGG	CCG (CTGG(GGA(GA A(GGAG(GACA	C AG	CTCG	GACC	CCC	CTCC	CAC GC	448
	GAGG(CCCC(CCC	гстс	CCA /	AACA(GCCCTC	508 546
		(2) IN	FORM	OITA	N FO	R SE	Q ID	NO:4	4 :						
	((A) (B) (C)	LENO TYPI STRA	STH: E: ar ANDEI	CHARA 119 mino DNESS Y: 1:	amir acio S: s ⁻	no ad d ingle	cids								
					TYPE:	•										
	()	xi) S	SEQUI	ENCE	DESC	CRIP	ΓΙΟN	: SE(Q ID	NO:4	4:					
Met 1	Val	Ser	Arg	Lys 5	Ala	Val	Val	Val	Leu 10	Leu	Val	Va1	His	Ala 15	Ala	
Ala	Met	Leu	Ala 20	Ser	His	Thr	Glu	Ala 25	Phe	Val	Pro	Ser	Phe 30	Thr	Tyr	
Gly	Glu	Leu 35		Arg	Met	Gln	Glu 40		Glu	Arg	Asn	Lys 45		Gln	Lys	
Lys	Ser 50	Leu	Ser	Val	Gln	G1n 55	Ala	Ser	Glu	Glu	Leu 60	Gly	Pro	Leu	Asp	
Pro 65	Ser	Glu	Pro	Thr	Lys 70		Glu	Glu	Arg	Va1 75		Ile	Lys	Leu	Leu 80	
Ala	Pro	Val	Asp	Ile 85	Gly	Ile	Arg	Met	Asp 90	Ser	Arg	Gln	Leu	G1u 95	Lys	

58

Tyr Arg Ala Thr Leu Glu Arg Leu Leu Gly Gln Ala Pro Gln Ser Thr 100 105 110 Gln Asn Gln Asn Ala Ala Lys 115

- (2) INFORMATION FOR SEQ ID NO:5:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: ZC12494
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTCTTCGACT CCTTTCTCTG CTGGACTCTC TGGTGTTCAG

40

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Glu Xaa Gln Arg Xaa Gln 1 5

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

59

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Pro Xaa Asp Xaa Gly Ile

5

CLAIMS

- 1. An isolated polynucleotide molecule encoding a polypeptide selected from the group consisting of:
- (a) polynucleotide molecules comprising a nucleotide sequence as shown in SEQ_ID_NO: 1 from nucleotide 70 to nucleotide 111;
 - (b) allelic variants of (a);
 - (c) orthologs of (a) and (b); and
- (d) degenerate nucleotide sequences of (a), (b) or (c).
- 2. An isolated polynucleotide molecule encoding a polypeptide selected from the group consisting of:
- (a) polynucleotide molecules comprising a nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 70 to nucleotide 120;
 - (b) allelic variants of (a);
 - (c) orthologs of (a) or (b); and
- (d) degenerate nucleotide sequences of (a), (b) or (c).
- 3. An isolated polynucleotide molecule encoding a polypeptide selected from the group consisting of:
- (a) polynucleotide molecules comprising a
 nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide
 70 to nucleotide 351;
 - (b) allelic variants of (a);
 - (c) orthologs of (a) or (b); and
- (d) degenerate nucleotide sequences of (a), (b) or (c).
- 4. An isolated polynucleotide molecule encoding a polypeptide selected from the group consisting of:

WO 98/42840

(a) polynucleotide molecules comprising nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 1 to nucleotide 111;

- (b) allelic variants of (a);
- (c) orthologs of (a) or (b); and
- (d) degenerate nucleotide sequences of (a), (b) or (c).
- 5. The isolated polynucleotide molecule of claim 4, wherein said polynucleotide molecule further comprises the nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 1 to nucleotide 351.
- The isolated polynucleotide of claim 1, wherein the polynucleotide is DNA.
- An expression vector comprising the following operably linked elements:
 - a transcription promoter;
 - a DNA segment selected from the group consisting of:
- polynucleotide molecules comprising nucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 70 to nucleotide 111;
 - (b) allelic variants of (a);
 - (c) orthologs of (a) or (b); and
- degenerate nucleotide sequences of (a), (b) or (d) (c);
 - a transcription terminator.
- A cultured cell into which has been introduced an expression vector according to claim 7, wherein said cell expresses the polypeptide encoded by the DNA segment.
- An isolated polypeptide selected from the group 9. consisting of:

(a) polypeptide molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 24 to residue 37;

- (b) allelic variants of (a); and
- (c) orthologs of (a) or (b).
- 10. An isolated polypeptide selected from the group consisting of:
- (a) polypeptide molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 24 to 41;
 - (b) allelic variants of (a); and
 - (c) orthologs of (a) or (b).
- 11. An isolated polypeptide selected from the group consisting of:
- (a) polypeptide molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 24 to residue 117;
 - (b) allelic variants of (a); and
 - (c) orthologs of (a) or (b).
- 12. An isolated polypeptide selected from the group consisting of:
- (a) polypeptide molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 1 to residue 37;
 - (b) allelic variants of (a); and
 - (c) orthologs of (a) or (b).
- 13. The isolated polypeptide of claim 9, wherein said polypeptide molecules further comprises an amino acid sequence as shown in SEQ ID NO: 2 from residue 1 to residue 117.

WO 98/42840

14. A pharmaceutical composition comprising purified polypeptide according to claim 9, in combination with a pharmaceutically acceptable vehicle.

63

- An antibody that binds to an epitope of a 15. polypeptide selected from the group consisting of:
- (a) polypeptide molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 24 to residue 117;
 - (b) allelic variants of (a); and
 - (c) orthologs of (a) or (b).
- 16. A method of producing zsig33 polypeptide comprising:

culturing a cell into which has been introduced an expression vector according to claim 7, whereby said cell expresses a polypeptide encoded by the DNA segment; and recovering the polypeptide.

- method of stimulating gastric comprising administering to a mammal in need thereof, amount of a pharmaceutical composition comprising an isolated polypeptide selected from the group consisting of:
- (a) polypeptide molecules comprising an amino acid sequence as shown in SEQ ID NO: 2 from residue 24 to residue 37;
 - (b) allelic variants of (a); and
 - (c) orthologs of (a) or (b);

sufficient to increase transit time or gastric emptying of an ingested substance.

The method of claim 17, wherein the transit time or gastric emptying is measured using a radiolabeled substance.

inte anal Application No PCT/US 98/05620

A. CLASSIF IPC 6	ication of subject matter C12N15/16 C07K14/63 A61K38/22	C07K16/26
A	International Patent Classification (IPC) or to both national classification	n and IPC
B. FIELDS S		
	currentation searched (classification system followed by classification CO7K C12N A61K	symbols)
Documentati	on searched other than minimum documentation to the extent that such	n documents are included in the fields searched
Electronio de	ata base consulted during the international search (name of data base	and, where practical, search terms used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant	ant passages Relevant to claim No.
A	WO 89 07611 A (OREGON STATE) 24 A 1989 see abstract; figure 1; examples see the claims	
A	EP 0 505 846 A (SANWA KAGAKU KENK 30 September 1992 see abstract; claim 1; example 1 	YUSHO CO)
X Furt	ther documents are listed in the continuation of box C.	X Patent (amily members are listed in annex.
"A" dooum consis "E" earlier filing "L" docum which citatic "O" docum other "P" docum later i	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or a is ofted to establish the publication date of another on or other special reason (as specified) sent referring to an oral disclosure, use, exhibition or means	T' later document published after the international filing date or priority date and not in conflict with the application but olted to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report
	5 June 1998	0 2 -07- 1998
	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Eav. (+31-70) 340-3016	Authorized officer Oderwald, H

Inte onal Application No PCT/US 98/05620

		PC1/03 96	,
C.(Continue	ation) DOCUMENTS C INSIDERED TO BE RELEVANT		
Category °	Citation of document, with Indication, where appropriate, of the relevant passages		Relevant to claim No.
A	SUGANO K. ET AL.: "Identification and characterization of glycine-extended post-translational processing intermediates of progastrin in procine stomach" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 260, no. 21, 25 September 1985, pages 11724-11729, XP002067111 cited in the application see abstract; tables 1,4 see page 11728, paragraph 2 - page 11729, paragraph 3		
P,X	NCI-CGAP: "Homo sapiens cDNA clone (AC No. AA530994)." EMBL SEQUENCE DATABASE, 24 July 1997, HEIDELBERG, GERMANY, XP002067112 see the whole document		1-8

PCT/US 98/05620

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 17 and 18 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

information on patent family members

Inter inal Application No PCT/US 98/05620

Patent document cited in search report		Publication date		atent family member(s)	Publication date 09-04-1991 06-09-1989	
WO 8907611	A	24-08-1989	US AU	5006469 A 3193089 A		
EP 0505846	Α	30-09-1992	JP AT DE DE DK ES	4299990 A 132166 T 69207037 D 69207037 T 505846 T 2084857 T	23-10-1992 15-01-1996 08-02-1996 05-09-1996 20-05-1996 16-05-1996	