

Deep Learning for Physicists

Tutorial #0

Kosmas Kepesidis

 Introduction to Python language: https://docs.python.org/3.7/tutorial/index.html

- 1. Whetting Your Appetite
- 2. Using the Python Interpreter
 - 2.1. Invoking the Interpreter
 - 2.1.1. Argument Passing
 - 2.1.2. Interactive Mode
 - 2.2. The Interpreter and Its Environment
 - 2.2.1. Source Code Encoding
- 3. An Informal Introduction to Python
 - 3.1. Using Python as a Calculator
 - **3.1.1.** Numbers
 - 3.1.2. Strings
 - **3.1.3. Lists**
 - 3.2. First Steps Towards Programming
- 4. More Control Flow Tools
 - 4.1. if Statements
 - 4.2. for Statements
 - 4.3. The range() Function

• Numpy:

https://numpy.org/doc/stable/user/quickstart.html

> widely used library for numerical operations in Python

```
>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<class 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<class 'numpy.ndarray'>
```

- Matplotlib: https://matplotlib.org/
 - ➤ Basic visualization with Python
 - > Easy to use library for creating static, animated, and interactive visualizations

- Pandas: https://pandas.pydata.org/
 - > Fast, powerful, flexible and easy to use data analysis and manipulation tool

Take a Quick Look at the Data Structure

In [5]: housing = load_housing_data()
housing.head()

Out[5]:

		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
()	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
•	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
;	3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	1	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY

- Keras: https://keras.io/
 - ➤ beginner-friendly Deep Learning library
 - ➤ Main package to be used in the computational assignments
 - ➤ **TensorFlow** will be used as backend: https://www.tensorflow.org/

```
from tensorflow import keras
import numpy as np
```

- SciKit-Learn: https://scikit-learn.org/stable/
 - ➤ Helpful machine-learning library
 - ➤ Widely used tool in data science

- Anaconda distribution: https://www.anaconda.com/products/individual
 - > Python distribution for local installation
 - > Anaconda includes the so-called Jupyter Notebooks or JupyterLab: https://jupyter.org/
 - > Computational assignments will be of the **Jupyter Notebook** format

Working with Jupyter Notebooks

- See notebook Tutorial_O.ipynbk in folder Tutorial O
- Analysis of the California Housing data set (Luís Torgo's page): https://www.dcc.fc.up.pt/~ltorgo/Regression/cal housing.html
 - Reference:
 - ➤ Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and Probability Letters, 33 (1997) 291-297
 - Description:
 - ➤ Collected information on the variables using all the block groups in California from the 1990 Concensus
 - ➤ Includes 1425.5 individuals living in a geographically compact areas
 - Final data contained 20,640 observations on 9 variables

- Google Colab: https://colab.research.google.com/
 - ➤ Similar to Jupyter notebooks but in your web-browser
 - ➤ Files stored on Google Drive
 - > Computational resources provided by Google, including virtual CPUs and GPUs
 - Tutorial: https://www.youtube.com/watch?v=inN8seMm7UI
 - ➤ Jupyter Notebooks can be uploaded to Google Drive and be used in Colab: https://medium.com/swlh/migrating-from-jupyter-to-colaboratory-2888332d57a7

• TensorFlow Playground: <u>www.playground.tensorflow.org</u>

- TensorFlow Playground: <u>www.playground.tensorflow.org</u>
 - Description:
 - > Data corresponds to a 2D probability distribution and is represented by the value pairs (x1, x2)
 - Second data set: regions x1, x2 > 0 and x1, x2 < 0 are shown by one color, value pairs with x1 > 0, x2 < 0 and x1 < 0, x2 > 0, the regions are indicated by a different color.
 - Questions:
 - 1. Using ReLU activation function, what is the smallest network that gives a good fit result?
 - 2. What do you observe when training networks with the same settings multiple times?
 - 3. Which of the features is most helpful?

• TensorFlow Playground: www.playground.tensorflow.org

- Answers:
 - 1. A network with a single layer having 3 nodes seems to work but this configuration is not stable. A single layer with 4 nodes is more stable
 - 2. Due to the random initialization of weights, the network training development is always a bit different, leading to different results
 - 3. Obviously, $x1 \cdot x2!$

For next time...

- See folder *Tutorial 1*
 - > Try to work on the problems in Jupyter notebook *Tutorial_1*