제 2교시

수학 영역(B형)

5지선다형

- 1. 두 행렬 $A = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} a & 0 \\ 2 & -3 \end{pmatrix}$ 에 대하여 행렬 A + B의 모든 성분의 합이 6일 때, a의 값은? [2점]
 - ① 1
- ② 2
- ③ 3
- **⑤** 5
- 3. 좌표공간에서 두 점 A(a, 5, 2), B(-2, 0, 7)에 대하여 선분 AB를 3:2로 내분하는 점의 좌표가 (0, b, 5)이다. a+b의 값은? [2점]
 - 1
- ② 2
- ③ 3
- **⑤** 5

- **2.** $\tan\theta = \frac{\sqrt{5}}{5}$ 일 때, $\cos 2\theta$ 의 값은? [2점]

- ① $\frac{\sqrt{6}}{3}$ ② $\frac{\sqrt{5}}{3}$ ③ $\frac{2}{3}$ ④ $\frac{\sqrt{3}}{3}$ ⑤ $\frac{\sqrt{2}}{3}$
- 4. 첫째항이 2인 등차수열 $\{a_n\}$ 에 대하여 $a_9=3a_3$ 일 때, a_5 의 값은? [3점]
 - 10
- 2 11
- ③ 12
- ④ 13
- **⑤** 14

5. 두 사건 A, B에 대하여

$$P(A^{C} \cup B^{C}) = \frac{4}{5}, \quad P(A \cap B^{C}) = \frac{1}{4}$$

일 때, $P(A^C)$ 의 값은? (단, A^C 은 A의 여사건이다.) [3점]

- ① $\frac{1}{2}$ ② $\frac{11}{20}$ ③ $\frac{3}{5}$ ④ $\frac{13}{20}$ ⑤ $\frac{7}{10}$

- **6.** 좌표공간에서 두 점 A(5, 5, a), B(0, 0, 3)을 지나는 직선과 직선 x=4-y=z-1이 서로 수직일 때, a의 값은? [3점]
 - ① 3
- 2 5
- ③ 7
- **4** 9
- ⑤ 11

- 7. 함수 $f(x) = 2\cos^2 x + k\sin 2x 1$ 의 최댓값이 $\sqrt{10}$ 일 때, 양수 *k*의 값은? [3점]
- ① 1 ② 2
 - ③ 3
- **4**
- **⑤** 5

- 8. 좌표평면에서 포물선 $y^2=8x$ 에 접하는 두 직선 $l_1,\ l_2$ 의 기울기가 각각 $m_1,\ m_2$ 이다. $m_1,\ m_2$ 가 방정식 $2x^2-3x+1=0$ 의 서로 다른 두 근일 때, l_1 과 l_2 의 교점의 x좌표는? [3점]
 - ① 1
- ② 2
- ③ 3
- 4
- **⑤** 5
- 을 만족시키는 정수 x의 개수는? (단, $-4 < \alpha < -3$, $0 < \beta < 1$) [3점]

함수 f(x)와 함수 $g(x) = -\frac{1}{2}x + 1$ 의 그래프가 세 점에서

10. 그림과 같이 닫힌 구간 [-4, 4]에서 정의된

 $\frac{g(x)}{f(x)} \le 1$

만나고 그 세 점의 x좌표는 $\alpha, \beta, 2$ 이다. 부등식

- ① 1
- ② 2
- ③ 3
- 4
- **⑤** 5

- 9. 숫자 1, 2, 3, 4에서 중복을 허락하여 5개를 택할 때, 숫자 4가 한 개 이하가 되는 경우의 수는? [3점]
 - ① 45
- ② 42
- ③ 39
- **4** 36
- ⑤ 33

11. 모든 항이 양수인 수열 $\left\{a_n\right\}$ 은 $a_1=10$ 이고

$$(a_{n+1})^n = 10(a_n)^{n+1} \ (n \ge 1)$$

을 만족시킨다. 다음은 일반항 a_n 을 구하는 과정이다.

주어진 식의 양변에 상용로그를 취하면

$$n\log a_{n+1} = (n+1)\log a_n + 1$$

이다. 양변을 n(n+1)로 나누면

$$\frac{\log a_{n+1}}{n+1} = \frac{\log a_n}{n} + \boxed{(7)}$$

이다.
$$b_n = \frac{\log a_n}{n}$$
 이라 하면 $b_1 = 1$ 이고

$$b_{n+1} = b_n + \boxed{ (7 \})}$$

이다. 수열 $\{b_n\}$ 의 일반항을 구하면

$$b_n = \boxed{ (\downarrow) }$$

이므로

$$\log a_n = n \times \boxed{ \text{ (나)} }$$

- 이다. 그러므로 $a_n = 10^{n \times \text{(t\downarrow)}}$ 이다.
- 위의 (7)와 (나)에 알맞은 식을 각각 f(n)과 g(n)이라 할 때, $\frac{g(10)}{f(4)}$ 의 값은? [3점]
- ① 38
- 2 40
- 3 42 44
- ⑤ 46

12. 이차항의 계수가 1인 이차함수 f(x)와 함수

$$g(x) = \begin{cases} \frac{1}{\ln(x+1)} & (x \neq 0) \\ 8 & (x = 0) \end{cases}$$

- 에 대하여 함수 f(x)g(x)가 구간 $(-1, \infty)$ 에서 연속일 때, f(3)의 값은? [3점]
- ① 6 ② 9
- ③ 12
- **4** 15
- ⑤ 18

수학 영역(B형)

5

 $[13 \sim 14]$ 그림과 같이 직선 l: x-y-1=0과 한 초점이 점 F(c, 0) (단, c < 0)인 쌍곡선 $C: x^2 - 2y^2 = 1$ 이 있다. 13번과 14번의 두 물음에 답하시오.

- 13. 직선 l과 쌍곡선 C로 둘러싸인 부분을 y축의 둘레로 회전시켜 생기는 회전체의 부피는? [3점]
- ① $\frac{5}{3}\pi$ ② $\frac{3}{2}\pi$ ③ $\frac{4}{3}\pi$ ④ $\frac{7}{6}\pi$ ⑤ π

- 14. 원점을 중심으로 heta 만큼 회전하는 회전변환에 의하여 직선 l은 쌍곡선 C의 초점 F를 지나는 직선으로 옮겨진다. $\sin 2\theta$ 의 값은? [4점]

- ① $-\frac{2}{3}$ ② $-\frac{5}{9}$ ③ $-\frac{4}{9}$ ④ $-\frac{1}{3}$ ⑤ $-\frac{2}{9}$

15. 직사각형 $A_1B_1C_1D_1$ 에서 $\overline{A_1B_1}=1$, $\overline{A_1D_1}=2$ 이다. 그림과 같이 선분 A_1D_1 과 선분 B_1C_1 의 중점을 각각 M_1 , N_1 이라 하자. 중심이 N_1 , 반지름의 길이가 $\overline{B_1N_1}$ 이고 중심각의 크기가 $\frac{\pi}{2}$ 인 부채꼴 $N_1M_1B_1$ 을 그리고, 중심이 D_1 , 반지름의 길이가 $\overline{C_1D_1}$ 이고 중심각의 크기가 $\frac{\pi}{2}$ 인 부채꼴 $D_1M_1C_1$ 을 그린다. 부채꼴 $N_1M_1B_1$ 의 호 M_1B_1 과 선분 M_1B_1 로 둘러싸인 부분과 부채꼴 D,M,C,의 호 M,C,과 선분 M,C,로 둘러싸인 부분인 모양에 색칠하여 얻은 그림을 R_1 이라 하자.

그림 R_1 에 선분 M_1B_1 위의 점 A_2 , 호 M_1C_1 위의 점 D_2 와 변 B_1C_1 위의 두 점 B_2 , C_2 를 꼭짓점으로 하고 $\overline{A_2B_2}$: $\overline{A_2D_2}$ =1:2인 직사각형 $A_2B_2C_2D_2$ 를 그리고, 직사각형 $A_2B_2C_2D_2$ 에서 그림 R_1 을 얻는 것과 같은 방법으로 만들어지는 🖊 모양에 색칠하여 얻은 그림을 R_2 라 하자.

이와 같은 과정을 계속하여 n번째 얻은 그림 R_n 에 색칠되어 있는 부분의 넓이를 S_n 이라 할 때, $\lim S_n$ 의 값은? [4점]

- ① $\frac{25}{19} \left(\frac{\pi}{2} 1 \right)$ ② $\frac{5}{4} \left(\frac{\pi}{2} 1 \right)$ ③ $\frac{25}{21} \left(\frac{\pi}{2} 1 \right)$

- $\textcircled{4} \ \ \frac{25}{22} \bigg(\frac{\pi}{2} 1 \bigg) \qquad \qquad \textcircled{5} \ \ \frac{25}{23} \bigg(\frac{\pi}{2} 1 \bigg)$

- **16.** 닫힌 구간 [0, a]에서 정의된 확률변수 X의 확률밀도함수가 연속이다. 확률변수 X가 다음 조건을 만족시킬 때, 상수 k의 값은? [4점]
 - (가) $0 \le x \le a$ 인 모든 x 에 대하여 $P(0 \le X \le x) = kx^2$ 이다. (나) E(X) = 1
 - ① $\frac{9}{16}$

- $2\frac{4}{9}$ $3\frac{1}{4}$ $4\frac{1}{9}$ $5\frac{1}{16}$

17. 두 이차정사각행렬 A, B가

$$AB + A^2B = E$$
, $(A - E)^2 + B^2 = O$

를 만족시킬 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? (단, E는 단위행렬이고, O는 영행렬이다.) [4점]

----<보 기>-

- ㄱ. B의 역행렬이 존재한다.
- $\ \ \, \bot$. AB = BA
- \Box . $(A^3 A)^2 + E = O$
- ① L ② C
- ③ ७, ∟

- ④ ¬, □ ⑤ ¬, ∟, □

18. 자연수 n에 대하여 직선 y=n과 함수 $y=\tan x$ 의

그래프가 제1사분면에서 만나는 점의 x좌표를 작은 수부터 크기순으로 나열할 때, n번째 수를 a_n 이라 하자.

 $\lim_{n\to\infty} \frac{a_n}{n}$ 의 값은? [4점]

- ① $\frac{\pi}{4}$ ② $\frac{\pi}{2}$ ③ $\frac{3}{4}\pi$ ④ π ⑤ $\frac{5}{4}\pi$

19. 좌표공간에서 중심의 x 좌표, y 좌표, z 좌표가 모두 양수인 구 S가 x 축과 y 축에 각각 접하고 z 축과 서로 다른 두 점에서 만난다. 구 S가 xy 평면과 만나서 생기는 원의 넓이가 64π이고 z 축과 만나는 두 점 사이의 거리가 8일 때, 구 S의 반지름의 길이는? [4점]

11

② 12

③ 13

4 14

⑤ 15

20. 1보다 큰 실수 x에 대하여 logx의 지표와 가수를 각각 f(x), g(x)라 하자. 3f(x)+5g(x)의 값이 10의 배수가 되도록 하는 x의 값을 작은 수부터 크기순으로 나열할 때 2번째 수를 a, 6번째 수를 b라 하자. log ab의 값은? [4점]

① 8

② 10

③ 12

④ 14

⑤ 16

21. 연속함수 y = f(x)의 그래프가 원점에 대하여 대칭이고, 모든 실수 x에 대하여

$$f(x) = \frac{\pi}{2} \int_{1}^{x+1} f(t) dt$$

이다. f(1) = 1 일 때,

$$\pi^2 \int_0^1 x f(x+1) \, dx$$

의 값은? [4점]

- ① $2(\pi-2)$
- ② $2\pi 3$
- $3) 2(\pi-1)$
- $4) 2\pi 1$
- \bigcirc 2π

단답형

22. 함수 $f(x) = 5e^{3x-3}$ 에 대하여 f'(1)의 값을 구하시오. [3점]

23. 어느 마라톤 대회에 참가한 50명의 동호회 회원 중 마라톤 에서 완주한 회원 수와 기권한 회원 수가 다음과 같다.

(단위: 명)

구분	남성	여성
완주한 회원 수	27	9
기권한 회원 수	8	6

참가한 회원 중에서 임의로 선택한 한 명의 회원이 여성이었을 때, 이 회원이 마라톤에서 완주하였을 확률이 p이다. 100p의 값을 구하시오. [3점]

24. 무리방정식 $\sqrt{2x^2-6x} = x^2-3x-4$ 의 모든 실근의 곱을 k라 할 때, k^2 의 값을 구하시오. [3점]

25. 단면의 반지름의 길이가 R(R < 1)인 원기둥 모양의 어느 급수관에 물이 가득 차 흐르고 있다. 이 급수관의 단면의 중심에서의 물의 속력을 v_c , 급수관의 벽면으로부터 중심 방향으로 $x(0 < x \le R)$ 만큼 떨어진 지점에서의 물의 속력을 v라 하면 다음과 같은 관계식이 성립한다고 한다.

$$\frac{v_c}{v} = 1 - k \log \frac{x}{R}$$

 $(\mathrm{CF}, \, k = \mathrm{CF}) + \mathrm{CF}$ 상수이고, 길이의 단위는 CF 등의 단위는 CF 등의 상수이고, 길이의 단위는 CF 등의 당위는 CF 등의 CF 등의

R<1인 이 급수관의 벽면으로부터 중심 방향으로 $R^{\frac{27}{23}}$ 만큼 떨어진 지점에서의 물의 속력이 중심에서의 물의 속력의 $\frac{1}{2}$ 일 때, 급수관의 벽면으로부터 중심 방향으로 R^a 만큼 떨어진 지점에서의 물의 속력이 중심에서의 물의 속력의 $\frac{1}{3}$ 이다. 23a의 값을 구하시오. [3점]

26. 어느 도시의 중앙공원을 이용한 경험이 있는 주민의 비율을 알아보기 위하여 이 도시의 주민 중 n 명을 임의추출하여 조사한 결과 80%가 이 중앙공원을 이용한 경험이 있다고 답하였다. 이 결과를 이용하여 구한 이 도시 주민 전체의 중앙공원을 이용한 경험이 있는 주민의 비율에 대한 신뢰도 95%의 신뢰구간이 [a, b]이다. b-a=0.098일 때, n의 값을 구하시오. (단, Z가 표준정규분포를 따르는 확률변수일 때, P(|Z|≤1.96)=0.95로 계산한다.) [4점]

27. 그림과 같이 y축 위의 점 A(0, a)와 두 점 F, F'을 초점으로 하는 타원 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 위를 움직이는 점 P가 있다. $\overline{AP} - \overline{FP}$ 의 최솟값이 1일 때, a^2 의 값을 구하시오. [4점]

28. 그림과 같이 길이가 4인 선분 AB를 한 변으로 하고, $\overline{AC} = \overline{BC}$, $\angle ACB = \theta$ 인 이등변삼각형 ABC가 있다. 선분 AB의 연장선 위에 $\overline{AC} = \overline{AD}$ 인 점 D를 잡고, $\overline{AC} = \overline{AP}$ 이고 $\angle PAB = 2\theta$ 인 점 P를 잡는다. 삼각형 BDP의 넓이를 $S(\theta)$ 라할 때, $\lim_{\theta \to +0} (\theta \times S(\theta))$ 의 값을 구하시오. (단, $0 < \theta < \frac{\pi}{6}$) [4점]

29. 좌표공간에서 구 $x^2+y^2+z^2=4$ 위를 움직이는 두 점 P, Q가 있다. 두 점 P, Q에서 평면 y=4에 내린 수선의 발을 각각 P_1 , Q_1 이라 하고, 평면 $y+\sqrt{3}z+8=0$ 에 내린 수선의 발을 각각 P_2 , Q_2 라 하자. $2|\overrightarrow{PQ}|^2-|\overrightarrow{P_1Q_1}|^2-|\overrightarrow{P_2Q_2}|^2$ 의 최댓값을 구하시오. [4점]

- **30.** 이차함수 f(x)에 대하여 함수 $g(x) = f(x)e^{-x}$ 이 다음 조건을 만족시킨다.
 - (가) 점 (1, g(1))과 점 (4, g(4))는 곡선 y = g(x)의 변곡점이다.
 - (나) 점 (0, k) 에서 곡선 y = g(x) 에 그은 접선의 개수가 3인 k의 값의 범위는 -1 < k < 0이다.

 $g(-2) \times g(4)$ 의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.