

Hi3798C V200 Data Sheet

General Information

Issue 00B02

Date 2016-02-03

Copyright © HiSilicon Technologies Co., Ltd. 2016. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of HiSilicon Technologies Co., Ltd.

Trademarks and Permissions

(HISILICON), and other HiSilicon icons are trademarks of HiSilicon Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between HiSilicon and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

HiSilicon Technologies Co., Ltd.

Address: Huawei Industrial Base

> Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://www.hisilicon.com

Email: support@hisilicon.com

About This Document

Purpose

This document describes the basic information about the Hi3798C V200 intelligent network terminal media processor, including its architecture, boot mode, address space mapping, soldering process, moisture-sensitive specifications, and ordering information.

Related Version

The following table lists the product version related to this document.

Product Name	Version
Hi3798C	V2XX

Intended Audience

This document is intended for:

- Technical support personnel
- Software development engineers

Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol	Description
A DANGER	Alerts you to a high risk hazard that could, if not avoided, result in serious injury or death.
MARNING	Alerts you to a medium or low risk hazard that could, if not avoided, result in moderate or minor injury.

Symbol	Description
A CAUTION	Alerts you to a potentially hazardous situation that could, if not avoided, result in equipment damage, data loss, performance deterioration, or unanticipated results.
©—¹ TIP	Provides a tip that may help you solve a problem or save time.
NOTE	Provides additional information to emphasize or supplement important points in the main text.

Register Attributes

The register attributions that may be found in this document are defined as follows.

Symbol	Description	Symbol	Description
RO	The register is read-only.	RW	The register is read/write.
RC	The register is cleared on a read.	WC	The register can be read. The register is cleared when 1 is written. The register keeps unchanged when 0 is written.

Reset Value Conventions

In the register definition tables:

- If the reset value (for the Reset row) of a bit is "?", the reset value is undefined.
- If the reset values of one or multiple bits are "?", the total reset value of a register is undefined and is marked as "-".

Numerical System

The expressions of data capacity, frequency, and data rate are described as follows.

Type	Symbol	Value
	K	1024
Data capacity (such as the RAM capacity)	M	1,048,576
	G	1,073,741,824
Frequency, data rate	k	1000

Type	Symbol	Value
	M	1,000,000
	G	1,000,000,000

The expressions of addresses and data are described as follows.

Symbol	Example	Description
0x	0xFE04, 0x18	Address or data in hexadecimal
0b	06000, 0600 000000000	Data or sequence in binary (register description is excluded.)
X	00X, 1XX	In data expression, X indicates 0 or 1. For example, 00X indicates 000 or 001 and 1XX indicates 100, 101, 110, or 111.

Others

Frequencies in this document all comply with the SDH standard. The shortened frequency names and the corresponding nominal frequencies are as follows.

Shortened Frequency Name	Nominal Frequency
19 M	19.44 MHz
38 M	38.88 MHz
77 M	77.76 MHz
622 M	622.08 MHz

Change History

Changes between document issues are cumulative. Therefore, the latest document issue contains all changes made in previous issues.

Issue 00B02 (2016-02-03)

This issue is the second draft release, which incorporates the following changes:

In Section 2.2.1, description about the master processor is modified.

Table 4-1 in chapter 4 is modified.

Issue 00B01 (2015-09-30)

This issue is the first draft release.

Contents

About This Document	i
1 Document Overview	1
2 Product Overview	3
2.1 Application Scenario	3
2.2 Architecture	4
2.2.1 Master Processor	4
2.2.2 3D Engine	4
2.2.3 Security Processing	4
2.2.4 Memory Interfaces	5
2.2.5 Data Stream Interfaces	6
2.2.6 Video CODEC (HiVXE 2.0 Processing Engine)	6
2.2.7 Graphics and Display Processing (Imprex 2.0 Processing Engine)	7
2.2.8 Audio/Video Interfaces	7
2.2.9 Peripheral Interfaces	8
2.2.10 Low-Power Control	9
3 Boot Modes	10
4 Address Space Mapping	12
5 Soldering Process	18
5.1 Overview	18
5.2 Requirements of Lead-Free Reflow Soldering	18
5.3 Requirements of Mixing Reflow Soldering	20
6 Moisture-Sensitive Specifications	22
6.1 Overview	22
6.2 HiSilicon Moisture-proof Packaging	22
6.2.1 Basic Information.	22
6.2.2 Incoming Inspection.	23
6.2.3 Storage and Usage	23
6.3 Rebaking	24
7 Ordering Information	26

Figures

Figure 2-1 Application block diagram.	3
Figure 3-1 Boot process	11
Figure 5-1 Lead-free reflow soldering curve	19
Figure 5-2 Measuring the package temperature	20
Figure 6-1 Vacuum packaging materials	23
Figure 7-1 Mark naming convention	26

Tables

Table 1-1 Hi3798C V200 Data Sheet overview.	1
Table 4-1 Address space mapping	12
Table 5-1 Lead-free reflow soldering parameters	19
Table 5-2 Thermal resistance standard for the lead-free package in the IPC/JEDEC 020D standard	20
Table 5-3 Mixing reflow soldering parameters.	21
Table 5-4 Thermal resistance standard for the lead package	21
Table 6-1 Floor life	24
Table 6-2 Rebaking reference	24
Table 7-1 Packages	2.7

1 Document Overview

Table 1-1 describes the content of the *Hi3798C V200 Data Sheet*. The highlighted portion outlines information contained in this document.

Table 1-1 Hi3798C V200 Data Sheet overview

Document No.	Document Name	Description
Hi3798C V200 Data Sheet 01	General Information	 Product Overview Boot Mode Address Space Mapping Soldering Process Moisture-Sensitive Specifications Ordering Information Acronyms and Abbreviations
Hi3798C V200 Data Sheet 02	Hardware	 Package and Pins Electrical Characteristics Schematic Diagram Design Recommendations PCB Design Recommendations Thermal Design Recommendations Interface Timings
Hi3798C V200 Data Sheet 03	System	 Processor Subsystem Security Subsystem Power Management and Low-Power Control Reset Clock System Controller Peripheral Controller Interrupt System Timer

Document No.	Document Name	Description
		• 64-bit Timer
		• WDG
Hi3798C V200 Data Sheet 04	Peripherals	• DDRC
		• FMC
		• eMMC/SD/SDIO
		• GSF
		• GPIO
		• UART
		• SCI
		• I ² C
		• IR
		• SPI
		• LED
		• USB 2.0
		• USB 3.0
		• PCIe
		• SATA
		• LSADC
Hi3798C V200 Data Sheet 05	Data Stream/Graphics	• TSI
	Processing/Audio/Vide	Video Decoder
	o Interfaces	Video Encoder
		• TDE
		• HWC
		• GPU
		• VPSS
		• VDP
		• AIAO
		• HDMI TX

2 Product Overview

2.1 Application Scenario

With an integrated quad-core 64-bit high-performance Cortex A53 processor and embedded NEON, Hi3798C V200 provides powerful CPU processing capabilities that meet differentiated service requirements. It creates the industry's best user experience in stream compatibility, smoothness and picture quality of live video playback, and STB performance. To meet the growing requirements on multimedia playback, video communication, and multiscreen transcoding, Hi3798C V200 supports 4K x 2Kp60@10-bit ultra-HD video decoding and display in various formats (including H.265/HEVC, H.264/AVC, AVS+, MVC, MPEG2, MPEG4, VC-1, VP6, VP8, and VP9) and high-performance H.264 encoding. It also supports Dolby and DTS audio processing. Hi3798C V200 provides a smooth man-machine interface and rich gaming experience with a high-performance multi-core 2D/3D acceleration engine. It also enables flexible connection schemes with multiple Ethernet ports, USB 2.0 ports, USB 3.0 ports, SATA/eSATA ports, PCIe 2.0 ports, and more peripheral interfaces.

TS in x 6 or VDAC x 1 **CVBS** TS in x2+TS Demux 3D GPU in/out x 2 Mali T720MP HDMI 2.0a TX HDMI out SDIO 3.0 x 2 Quad-core Cortex A53 OpenGL ES 3.1 SD card 32 KB I/D L1 cache (Optional) OpenVG 1.1 512 KB L2 cache Audio DAC Audio output OpenCL 1.1 ΙR Audio CODEC $I^2S \times 1$ VDP S/PDIF x 1 S/PDIF Video processor UART x 2 Video decoder engine USB 2.0 (4K x 2Kp60,10-bit) USB 2.0 x 1 JPEG/PNG device **JTAG** HEVC/H.264/AVS+/ decoder MPEG2/MPEG4/VC-1/ USB 3.0 DDR3/3L/4 Video encoder VP6/VP8/VP9 USB 3.0 x 1 DDR SDRAM device 32-bit (1080p30 x 1 or 720p30 x 2) USB 3.0/ NAND flash/ H.264 **USB 3.0** SATA 3.0/ BootROM/OTP eMMC NAND/eMMC/ SATA 3.0 PCle 2.0 **BootRAM** SPI Nor/SPI SPI PCIe2.0 TDE and HWC device NAND flash Cipher Low-power DES/3DES/AES GMAC x 2 PLL processor osc

Figure 2-1 Application block diagram

2.2 Architecture

Hi3798C V200 has the following features:

- Master processor
- 3D engine
- Security processing
- Memory interfaces
- Data stream interfaces
- Video CODEC
- Graphics and display processing
- Audio/Video interfaces
- Peripheral interfaces
- Low-power control

2.2.1 Master Processor

Hi3798C V200 integrates a quad-core ARM Cortex A53 processor as the master CPU to implement system functions and some audio and video processing tasks. This processor has the following features:

- Maximum 15000 DMIPS
- Independent 32 KB I-cache and 32 KB D-cache, 512 KB shared L2 cache
- Integrated NEON
- Dynamic power consumption reduction such as dynamic voltage and frequency scaling (DVFS) and adaptive voltage scaling (AVS)

2.2.2 3D Engine

 $\rm Hi3798C~V200$ integrates the high-performance multi-core Mali720 GPU to process 3D graphics and videos.

- OpenGL ES 3.1/2.0/1.1/1.0
- OpenVG 1.1
- OpenCL 1.1 full profile/RenderScript
- 1080p60 UI processing capability
- 1080p60 gaming applications

2.2.3 Security Processing

Hi3798C V200 has the following advanced security features:

- Trusted execution environment (TEE)
- Secure video path (SVP)
- Secure boot
- Secure storage
- Secure upgrade
- Protection for Joint Test Action Group (JTAG) and other debugging ports

- One-time programmable (OTP)
- Digital rights management (DRM)
- Downloadable conditional access (CA) (DCAS) and other mainstream advanced CA
- HDCP 2.2/1.4 protection for HDMI outputs

2.2.4 Memory Interfaces

Hi3798C V200 provides the DDR3/3L/DDR4 SDRAM controller (DDRC), flash memory controller (FMC) that supports the SPI NOR, SPI NAND, and NAND flash, and MMC/SD/SDIO controller.

DDRC

The DDRC controls the access to the DDR3/3L/DDR4 SDRAM. It supports the following features:

- Maximum 2 GB capacity
- 32-bit memory
- Maximum 1066 MHz frequency
- Standby power-down

FMC

The FMC provides memory controller interfaces for connecting to external NAND flash, SPI NAND flash, or SPI NOR flash to access data. It supports the following features:

- Provides one 9 KB (8192 bytes+1024 bytes) on-chip buffer for improving the read speed.
- Supports one external CS (SPI NAND flash, SPI NOR flash, or NAND flash).
- Supports the SPI NOR flash, SPI NAND flash, and NAND flash.
- Supports five types of SPIs, including the standard SPI, dual-output/dual-input SPI, quad-output/quad-input SPI, dual I/O SPI, and quad I/O SPI.
- Supports the SPI NAND flash with the following specifications:
 - 2 KB or 4 KB page size
 - 64 pages/block
 - 3-byte or 4-byte address mode
- Supports the NAND flash with the following specifications:
 - 2 KB, 4 KB, 8 KB, or 16 KB page size
 - 64/128/256/512 pages/block
 - 8-bit width
 - Asynchronous NAND flash
- Supports the error checking and correction (ECC) function for the SPI NAND flash and NAND flash.
 - 8-bit/1 KB, 16-bit/1 KB, 24-bit/1 KB, 28-bit/1 KB, 40-bit/1 KB, and 64-bit/1 KB Bose-Chaudhuri-Hocquenghem (BCH) code ECC (1 KB means the 1 KB level but not exactly 1024 bytes)
 - Enable and disable of the ECC function and ECC code generation
- Supports the randomizer only in non-ECC0 mode when the page size is 8 KB or 16 KB. It is disabled in other modes.

MMC/SD/SDIO Controller

Hi3798C V200 integrates three high-speed large-capacity SDIO 3.0/MMC 5.0 controllers to control the access to the MMC/SD card. Extended peripherals such as Bluetooth and Wi-Fi devices can be connected over the SDIO interface.

Two controllers support the 1-/4-bit mode. Another one supports the 1-/4-/8-bit mode for boot from the eMMC, and the interface is multiplexed with the NAND flash interface.

2.2.5 Data Stream Interfaces

The data stream interfaces of Hi3798C V200 include the Ethernet port and transport stream interface (TSI).

Ethernet Ports

Hi3798C V200 provides two gigabit Ethernet MACs.

- 10/100/1000 Mbit/s, half-duplex or full-duplex mode
- Two RGMII/RMII interfaces
- Configurable destination MAC address filtering table, which filters the input frames of the Ethernet port
- Traffic control of the CPU interface, protecting the CPU against heavy traffic

TSI

Hi3798C V200 integrates a TSI controller, which supports the following features:

- Parsing and demultiplexing of MPEG2 TSs complying with the standards of the ISO 13818-1 (GB 17975-1) system layer
- Maximum two external standard serial TS inputs and two external standard serial TS inputs/outputs; or six TS inputs without sync signals
- 4-channel playback TSs from the memory
- Maximum 96 hardware PID channels, processing at most 7-channel TSs at the same time

2.2.6 Video CODEC (HiVXE 2.0 Processing Engine)

Hi3798C V200 integrates the HD video and graphics CODEC that supports various protocols (H.265/H.264/AVS+/MVC/VC-1/MPEG2/MPEG4/AVS/VP6/VP8/VP9/JPEG/PNG), providing powerful video/graphics encoding and decoding capabilities.

- H.265/HEVC Main/Main 10 profile@level 5.1 high-tier, maximum 4K x 2K@60 fps and 1x1080p@30 fps simultaneous decoding
- H.264/AVC BP/MP/HP@level 5.1; H.264/AVC MVC, maximum 4K x 2K@30 fps decoding
- VP9, maximum 4K x 2K@60 fps decoding
- VP6/8, maximum 1080p@60 fps decoding
- MPEG1, maximum 1080p@60 fps decoding
- MPEG2 SP@ML, MP@HL, maximum 1080p@60 fps decoding
- MPEG4 SP@level 0-3, ASP@level 0-5, GMC, short header format, maximum 1080p@60 fps decoding
- AVS baseline profile@level 6.0, AVS-P16 (AVS+), maximum 1080p@60 fps decoding

• VC-1 SP@ML, MP@HL, AP@level 0-3, maximum 1080p@60 fps decoding

2.2.7 Graphics and Display Processing (Imprex 2.0 Processing Engine)

Hi3798C V200 integrates the dedicated two-dimensional engine (TDE), dedicated multi-graphics/video overlapping engine (hardware composer engine), and dedicated display processing engine.

- Hardware overlaying of multiple graphics and video inputs
- 4-layer on-screen display (OSD) and three video layers
- Maximum 4K x 2K image output
- Mosaic and multi-region display
- Mirroring
- 16-bit or 32-bit color depth
- Graphics and video rotation
- LetterBox and PanScan
- 3D video processing and display
- Multi-order vertical and horizontal scaling of videos and graphics; free scaling
- Low-delay display
- Enhanced full-hardware TDE
- Full-hardware anti-aliasing and anti-flicker
- Color space conversion (CSC) with configurable coefficients (including BT2020)
- Image enhancement and noise reduction
- Deinterlacing
- Sharpening
- Chrominance, luminance, contrast, and saturation adjustment
- Db/Dr processing for graphics and videos
- High data rate (HDR)

2.2.8 Audio/Video Interfaces

Hi3798C V200 integrates various audio/video input/output interfaces, providing rich audio/video input/output capabilities.

Video Output Interface

- One 4Kp60 or 1920 x 1080p@60 fps output and one SD output from the same source
- One HDMI 2.0a TX output, supporting HDCP 2.2/1.4, maximum 4K x 2K resolution
- Embedded DAC
 - One composite video broadcasting signal (CVBS) output
 - Rovi and vertical blanking interval (VBI) video output

Audio I/O Interface

• Sony/Philips digital interface format (S/PDIF) audio output interface

- One embedded DAC, which supports audio-left and audio-right channels (output interface of the RCA type, low impedance, and imbalance)
- One inter-IC sound (I²S) or pulse code modulation (PCM) digital audio input/output
- One HDMI TX audio output

2.2.9 Peripheral Interfaces

Hi3798C V200 integrates diverse peripheral interfaces for connecting to various peripherals or extending system functions.

IR Interface

The integrated dedicated infrared remoter (IR) receives data through an IR interface. It has the following features:

- Flexible configuration for decoding data in various formats
- Error check for received data
- IR wakeup
- One input interface

LED/Keypad Controller

Hi3798C V200 integrates the LED/keypad controller for controlling the LED display and key scanning.

USB Controller

Hi3798C V200 integrates one USB 2.0 controller and supports two USB 3.0 controllers.

- The USB 2.0 controller supports the host function and supports the Android debug bridge (ADB) debugging (USB1).
- The USB 2.0 ports support the low-speed or high-speed mode and extended hub.
- The USB 3.0 controllers are backward compatible with USB 2.0.

GPIO Controllers

Hi3798C V200 integrates multiple groups of GPIO controllers. Each group provides eight programmable input/output pins.

- Each GPIO pin can be configured as an input or output.
- As an input pin, the GPIO can be an interrupt source.
- As an output pin, the GPIO can be independently set to 1 or 0.

UARTs

Hi3798C V200 integrates two universal asynchronous receiver transmitters (UARTs) for debugging, controlling, or extending external devices such as the Bluetooth and keyboard. One is a 2-wire interface, and the other one is a 4-wire interface.

I²C Controllers

Hi3798C V200 integrates five inter-integrated circuit (I²C) controllers, which serve as standard master I²C devices to transmit or receive data to or from the slave devices over the I²C bus

SCI

Hi3798C V200 integrates a smart card interface (SCI) controller and provides one SCI that supports the ISO/IEC 7816-3, ISO/IEC 7816-10 protocols and T0, T1, and T14 asynchronous transmission protocols. The CPU reads data from or writes data to the smart card through the SCI and implements serial-to-parallel conversion (when it reads data from the smart card) and parallel-to-serial conversion (when it writes data to the smart card).

2.2.10 Low-Power Control

Hi3798C V200 supports various low-power modes to dynamically reduce power consumption.

- Various system operating modes, including the normal mode, light standby mode, and passive standby mode
- Module low-power control
- DVFS based on CPU load monitoring
- AVS based on CPU timing monitoring
- Ultra-low-power standby design, including various standby wakeup modes such as remote control wakeup and key wakeup

3 Boot Modes

After the chip is powered on, the system is reset. The CPU jumps to the internal BOOTROM to execute the boot program after the reset is deasserted. After the internal BOOTROM program is executed, if the external pin USB_BOOT is low level, the chip directly boots from the USB port; otherwise, the CPU copies the U-boot codes stored in the external memory to the DDR to continue executing the boot program.

Hi3798C V200 can boot from any of the following external memories storing the U-boot:

- SPI NOR flash
- NAND flash
- SPI NAND flash
- eMMC
- fSD card

CAUTION

The USB BOOT pin is pulled high by its internal resistor by default.

The boot_sel pin determines the flash memory from which the chip boots. Figure 3-1 shows the process.

Figure 3-1 shows the boot process.

Figure 3-1 Boot process

4 Address Space Mapping

Table 4-1 describes the address space mapping of Hi3798C V200.

Table 4-1 Address space mapping

Start Address	End Address	Object	Size (Byte)
0x0000_0000	0xEFFF_FFFF	DRAM	3.75 GB
0xF000_0000	0xF000_1FFF	PCIe0 register	8 KB
0xF000_2000	0xF0FF_FFFF	Reserved	16376 KB
0xF100_0000	0xF100_FFFF	Generic interrupt controller (GIC) register	64 KB
0xF101_0000	0xF1FF_FFFF	Reserved	16320 KB
0xF200_0000	0XF4FF_FFFF	PCIe0 register	48 MB
0xF500_0000	0xF7FF_FFFF	Reserved	48 MB
0xF800_0000	0xF800_0FFF	Sysctrl register	4 KB
0xF800_1000	0xF800_1FFF	IR register	4 KB
0xF800_2000	0xF800_2FFF	Timer01 register	4 KB
0xF800_3000	0xF800_3FFF	LEDC register	4 KB
0xF800_4000	0xF800_4FFF	GPIO5 register	4 KB
0xF800_5000	0xF800_7FFF	Reserved	124 KB
0xF800_8000	0xF800_8FFF	SEC Timer01 register	4 KB
0xF800_9000	0xF800_9FFF	SEC Timer23 register	4 KB
0xF800_A000	0xF83F_FFFF	Reserved	4056 KB
0xF840_0000	0xF840_FFFF	8051 local RAM	64 KB
0xF841_0000	0xF8A1_FFFF	Reserved	6208 KB
0xF8A2_0000	0xF8A2_0FFF	PERI_CTRL register	4 KB

Start Address	End Address	Object	Size (Byte)
0xF8A2_1000	0xF8A2_1FFF	IO_CONFIG register	4 KB
0xF8A2_2000	0xF8A2_2FFF	CRG register	4 KB
0xF8A2_3000	0xF8A2_3FFF	PMC register	4 KB
0xF8A2_4000	0xF8A2_8FFF	Reserved	20 KB
0xF8A2_9000	0xF8A2_9FFF	Timer23 register	4 KB
0xF8A2_A000	0xF8A2_AFFF	Timer45 register	4 KB
0xF8A2_B000	0xF8A2_BFFF	Timer67 register	4 KB
0xF8A2_C000	0xF8A2_CFFF	WDG0 register	4 KB
0xF8A2_D000	0xF8A2_DFFF	WDG1 register	4 KB
0xF8A2_E000	0xF8A2_FFFF	Reserved	8 KB
0xF8A3_0000	0xF8A3_FFFF	MDDRC0 register	64 KB
0xF8A4_0000	0xF8A4_FFFF	Reserved	64 KB
0xF8A5_0000	0xF8A5_FFFF	Reserved	64 KB
0xF8A6_0000	0xF8A6_FFFF	Reserved	64 KB
0xF8A7_0000	0xF8A7_FFFF	Reserved	64 KB
0xF8A8_0000	0xF8A8_0FFF	SEC_CFG register	4 KB
0xF8A8_1000	0xF8A8_1FFF	Reserved	4 KB
0xF8A8_2000	0xF8A8_2FFF	PASTC register	4 KB
0xF8A8_3000	0xF8A8_FFFF	Reserved	52 KB
0xF8A9_0000	0xF8A9_FFFF	MKL	64 KB
0xF8AA_0000	0xF8AA_FFFF	Reserved	64 KB
0xF8AB_0000	0xF8AB_FFFF	OTP register	64 KB
0xF8AC_0000	0xF8AF_FFFF	Reserved	256 KB
0xF8B0_0000	0xF8B0_0FFF	UART0 register	4 KB
0xF8B0_1000	0xF8B0_1FFF	Reserved	4 KB
0xF8B0_2000	0xF8B0_2FFF	UART2 register	4 KB
0xF8B0_3000	0xF8B0_3FFF	Reserved	4 KB
0xF8B0_4000	0xF8B0_4FFF	Reserved	4 KB
0xF8B0_5000	0xF8B0_FFFF	Reserved	44 KB
0xF8B1_0000	0xF8B1_0FFF	I ² C0	4 KB
0xF8B1_1000	0xF8B1_1FFF	I ² C1	4 KB

Start Address	End Address	Object	Size (Byte)
0xF8B1_2000	0xF8B1_2FFF	I ² C2	4 KB
0xF8B1_3000	0xF8B1_3FFF	I ² C3	4 KB
0xF8B1_4000	0xF8B1_4FFF	I ² C4	4 KB
0xF8B1_5000	0xF8B1_5FFF	Reserved	4 KB
0xF8B1_6000	0xF8B1_6FFF	Reserved	4 KB
0xF8B1_7000	0xF8B1_7FFF	Reserved	4 KB
0xF8B1_8000	0xF8B1_8FFF	SCI0 register	4 KB
0xF8B1_9000	0xF8B1_9FFF	Reserved	4 KB
0xF8B1_A000	0xF8B1_AFFF	SPI0 register	4 KB
0xF8B1_B000	0xF8B1_BFFF	Reserved	4 KB
0xF8B1_C000	0xF8B1_FFFF	Reserved	16 KB
0xF8B2_0000	0xF8B2_0FFF	GPIO0 register	4 KB
0xF8B2_1000	0xF8B2_1FFF	GPIO1 register	4 KB
0xF8B2_2000	0xF8B2_2FFF	GPIO2 register	4 KB
0xF8B2_3000	0xF8B2_3FFF	GPIO3 register	4 KB
0xF8B2_4000	0xF8B2_4FFF	GPIO4 register	4 KB
0xF8B2_5000	0xF8B2_5FFF	Reserved	4 KB
0xF8B2_6000	0xF8B2_6FFF	GPIO6 register	4 KB
0xF8B2_7000	0xF8B2_7FFF	GPIO7 register	4 KB
0xF8B2_8000	0xF8B2_8FFF	GPIO8 register	4 KB
0xF8B2_9000	0xF8B2_9FFF	GPIO9 register	4 KB
0xF8B2_A000	0xF8B2_AFFF	GPIO10 register	4 KB
0xF8B2_B000	0xF8B2_BFFF	GPIO11 register	4 KB
0xF8B2_C000	0xF8B2_CFFF	GPIO12 register	4 KB
0xF8B2_D000	0xF8B2_DFFF	Reserved	4 KB
0xF8B2_E000	0xF8B2_EFFF	Reserved	4 KB
0xF8B2_F000	0xF8B2_FFFF	Reserved	4 KB
0xF8B3_0000	0xF8B3_0FFF	Reserved	4 KB
0xF8B3_1000	0xF8B3_4FFF	Reserved	16 KB
0xF8B3_5000	0xF8B3_5FFF	Reserved	4 KB
0xF8B3_6000	0xF8B3_6FFF	Reserved	4 KB

Start Address	End Address	Object	Size (Byte)
0xF8B3_7000	0xF8BA_FFFF	Reserved	484 KB
0xF8BB_0000	0xF8BB_FFFF	COUNT register	64 KB
0xF8BC_0000	0xF8C0_FFFF	Reserved	320 KB
0xF8C1_0000	0xF8C1_EFFF	TDE register	640 KB
0xF8C1_F000	0xF8C1_FFFF	TDE MMU register	4 KB
0xF8C2_0000	0xF8C2_EFFF	HWC register	60 KB
0xF8C2_F000	0xF8C2_FFFF	HWC MMU register	4 KB
0xF8C3_0000	0xF8C3_EFFF	VDH register	60 KB
0xF8C3_F000	0xF8C3_FFFF	VDH MMU register	4 KB
0xF8C4_0000	0xF8C4_EFFF	JPGD0 register	60 KB
0xF8C4_F000	0xF8C4_FFFF	JPGD0 MMU register	4 KB
0xF8C5_0000	0xF8C6_FFFF	Reserved	128 KB
0xF8C7_0000	0xF8C7_EFFF	PGD register	60 KB
0xF8C7_F000	0xF8C7_FFFF	PGD MMU register	4 KB
0xF8C8_0000	0xF8C8_EFFF	VEDU register	60 KB
0xF8C8_F000	0xF8C8_FFFF	VEDU MMU register	4 KB
0xF8C9_0000	0xF8C9_FFFF	JPGE register	64 KB
0xF8CA_0000	0xF8CA_FFFF	Reserved	64 KB
0xF8CB_0000	0xF8CB_EFFF	VPSS0 register	60 KB
0xF8CB_F000	0xF8CB_FFFF	VPSS0 MMU register	4 KB
0xF8CC_0000	0xF8CC_EFFF	VDP register	60 KB
0xF8CC_F000	0xF8CC_FFFF	VDP MMU register	4 KB
0xF8CD_0000	0xF8CD_FFFF	AIAO register	64 KB
0xF8CE_0000	0xF8CF_FFFF	HDMI_TX register	128 KB
0xF8D0_0000	0xF8D1_FFFF	Reserved	128 KB
0xF8D2_0000	0xF8D2_FFFF	Reserved	64 KB
0xF8D2_0000	0xF91F_FFFF	Reserved	4928 KB
0xF920_0000	0xF920_FFFF	GPU register	64 KB
0xF924_0000	0xF980_FFFF	Reserved	6080 KB
0xF980_0000	0xF980_FFFF	Reserved	64 KB
0xF981_0000	0xF981_FFFF	Reserved	64 KB

Start Address	End Address	Object	Size (Byte)
0xF982_0000	0xF982_FFFF	SDIO0 register	64 KB
0xF983_0000	0xF983_FFFF	SDIO2/eMMC/SD card register	64 KB
0xF984_0000	0xF984_FFFF	GSF0 register	64 KB
0xF985_0000	0xF985_FFFF	Reserved	64 KB
0xF986_0000	0xF986_0FFF	PCIe0 peripheral register	4 KB
0xF986_1000	0xF986_1FFF	Reserved	4 KB
0xF986_2000	0xF987_FFFF	Reserved	120 KB
0xF988_0000	0xF988_FFFF	USB2Host0 open host controller interface (OHCI) register	64 KB
0xF989_0000	0xF989_FFFF	USB2Host0 enhanced host controller interface (EHCI) register	64 KB
0xF98A_0000	0xF98A_FFFF	USB3_0 register	64 KB
0xF98B_0000	0xF98B_FFFF	USB3_1 register	64 KB
0xF98C_0000	0xF98F_FFFF	USB2OTG0 register	256 KB
0xF990_0000	0xF990_FFFF	SATA register	64 KB
0xF991_0000	0xF991_FFFF	Reserved	64 KB
0xF992_0000	0xF992_FFFF	Reserved	64 KB
0xF993_0000	0xF993_FFFF	Reserved	64 KB
0xF994_0000	0xF994_FFFF	Reserved	64 KB
0xF995_0000	0xF995_FFFF	FMC register	64 KB
0xF996_0000	0xF99E_FFFF	Reserved	576 KB
0xF99F_0000	0xF99F_0FFF	Multi-cipher MMU register	4 KB
0xF99F_1000	0xF99F_FFFF	Reserved	60 KB
0xF9A0_0000	0xF9A0_FFFF	Multi-cipher register	64 KB
0xF9A1_0000	0xF9A1_FFFF	SHA1 (secure)	64 KB
0xF9A2_0000	0xF9A2_FFFF	SHA2 (non-secure)	64 KB
0xF9A3_0000	0xF9A3_0FFF	RSA register	4 KB
0xF9A3_0000	0xF9BE_FFFF	Reserved	1852 KB
0xF9BF_0000	0xF9BF_0FFF	PVR MMU register	4 KB
0xF9BF_1000	0xF9BF_FFFF	Reserved	60 KB
0xF9C0_0000	0xF9C0_FFFF	PVR0 register	64 KB
0xF9C1_0000	0xF9C1_FFFF	Reserved	64 KB

Start Address	End Address	Object	Size (Byte)
0xF9C2_0000	0xF9C2_FFFF	Reserved	64 KB
0xF9C3_0000	0xF9C3_FFFF	Reserved	64 KB
0xF9C4_0000	0xF9C4_FFFF	SDIO1 register	64 KB
0xF9C5_0000	0xF9C5_FFFF	Reserved	64 KB
0xF9C6_0000	0xF9C6_FFFF	Reserved	64 KB
0xF9C7_0000	0xF9FF_FFFF	Reserved	3648 KB
0xFA00_0000	0xFBFF_FFFF	Reserved	32 MB
0xFC00_0000	0xFDFF_FFFF	Reserved	32 MB
0xFE00_0000	0xFE0F_FFFF	Reserved	1 MB
0xFE10_0000	0xFE1F_FFFF	Reserved	1 MB
0xFE20_0000	0xFE2F_FFFF	FMC MEM register	1 MB
0xFE30_0000	0xFFEF_FFFF	Reserved	28 MB
0xFFF0_0000	0xFFFD_FFFF	Reserved	896 KB
0xFFFE_0000	0xFFFE_FFFF	BOOTROM (in remap mode) or reserved (in remap clear mode)	64 KB
0xFFFF_0000	0xFFFF_FFFF	BOOTROM (in remap mode) or BOOTRAM (in remap clear mode)	64 KB

5 Soldering Process

5.1 Overview

Objective

Define the zone temperatures in the surface mounting technology (SMT) phase.

Application Scope

HiSilicon Hi3798C V200

Basic Information

All HiSilicon products for customers comply with the restriction of the use of certain hazardous substances (RoHS) directive. In the part number format HixxxxRBC Vxxx, the letter R indicates RoHS. These products are lead-free. The lead-free technology and mixing technology are used in the reflow soldering of HiSilicon chips.

Reflow Chart

Note the following:

- HiSilicon chips: All HiSilicon chips for customers are lead-free RoHS-compliant products.
- Lead-free technology: A technology in which solder paste and all components (including the board, all ICs, capacitors, and resistors) are lead-free.
- Mixing technology: A technology in which lead solder pastes, lead-free BGAs, and lead ICs are used.

5.2 Requirements of Lead-Free Reflow Soldering

Figure 5-1 shows a lead-free reflow soldering curve.

Figure 5-1 Lead-free reflow soldering curve

Table 5-1 describes lead-free reflow soldering parameters.

Table 5-1 Lead-free reflow soldering parameters

Zone	Duration	Heating Up Slope	Peak Temperature	Cooling Down Slope
Preheat zone (40–150°C or 104–302°F)	60–150s	≤ 2.0°C/s (≤ 35.6°F/s)	None	None
Soak zone (150– 200°C or 302– 392°F)	60–120s	<1.0°C/s (< 33.8°F/s)	None	None
Reflow zone (> 217°C or 423°F)	60–90s	None	230–260°C (446–500°F)	None
Cooling zone (Tmax to 180°C or 356°F)	None	None	None	1.0°C/s ≤ Slope ≤ 4.0°C/s (33.8°F/s ≤ Slope ≤ 39.2°F/s)

□ NOTE

- Preheat zone: The temperate range is 40–150°C (104–302°F), the heating up slope must be about 2.0°C/s (36°F/s), and the zone duration must be 50–60s.
- Soak zone: The temperature range is 150–200°C (302–392°F), the heating up slope must be less than 1.0°C/s (34°F/s), and the zone duration must be 60–120s. Slow heating is required; otherwise, soldering is poor.
- Reflow zone: The zone temperature increases from 217°C (423°F) to Tmax, and then decreases from Tmax to 217°C (423°F). The zone duration must be 60–90s.
- Cooling zone: The zone temperature decreases from Tmax to 180°C (356°F). The cooling down slope must be within 4.0°C/s (39°F/s).
- The ambient temperate must increase from 25°C (77°F) to 250°C (482°F) within 6 minutes.

- The reflow soldering curve shown in Figure 5-1 is recommended. However, you can adjust it as required.
- Typically, the duration of the reflow zone is 60–90s. For the boards with great heat capacity, the duration can be extended to 120s. For details about the requirements on package thermal resistance, see the IPC/JEDEC J-STD-020D standard. For details about the method of measuring the package temperature, see the JEP 140 standard.

Table 5-2 describes the thermal resistance standard for the lead-free package according to the IPC/JEDEC 020D standard.

Table 5-2 Thermal resistance standard for the lead-free package in the IPC/JEDEC 020D standard

Package Thickness	Temperature 1 (Package Volume < 350 mm ³ or 0.02 in. ³)	Temperature 2 (Package Volume = 350-2000 mm ³ or 0.02-0.12 in. ³)	Temperature 3 (Package Volume > 2000 mm ³ or 0.12 in. ³)
< 1.6 mm (0.06 in.)	260°C (500°F)	260°C (500°F)	260°C (500°F)
1.6–2.5 mm (0.06–0.10 in.)	260°C (500°F)	250°C (482°F)	245°C (473°F)
> 2.5 mm (0.10 in.)	250°C (482°F)	245°C (473°F)	245°C (473°F)

The component soldering terminals (such as the solder ball and pin) and external heat sinks are not taken into account for volume calculation.

The measurement method for the reflow soldering curve is as follows:

According to the JEP140 standard, to measure the package temperature, you are advised to place the temperature probe of the thermocouple close to the chip surface if the package is thin or to drill a hole on the package surface and place the temperature probe of the thermocouple into the hole if the chip package is thick. The second method is recommended based on the thickness of most chip packages. However, this method is not applicable if the chip package is too thin to drill a hole. See Figure 5-2.

Figure 5-2 Measuring the package temperature

5.3 Requirements of Mixing Reflow Soldering

Lead-free components must be properly soldered during mixing reflow soldering. Table 5-3 describes mixing reflow soldering parameters.

Table 5-3 Mixing reflow soldering parameters

Zone	Item	Lead BGA	Lead-free BGA	Other Components
Preheat zone (40–	Duration	60–150s		
150°C or 104–302°F)	Heating up slope	< 2.5°C/s (37°F/s)		
Soak zone (150– 183°C or 302–361°F)	Duration	30–90s		
	Heating up slope	< 1.0°C/s (34°F/s)		
Reflow zone (> 183°C or 361°F)	Peak temperature	210–240°C (410– 464°F)	220–240°C (428– 464°F)	210–245°C (410– 473°F)
	Duration	30–120s	60–120s	30–120s
Cooling zone (Tmax to 150°C or 302°F)	Cooling down slope	1.0 °C/s \leq Slope \leq 4.0	$0^{\circ}\text{C/s} (34^{\circ}\text{F/s} \leq \text{Slope})$	e ≤ 39°F/s)

M NOTE

The preceding parameter values are provided based on the soldering joint temperature. The maximum and minimum soldering joint temperatures for the board must meet the requirements described in Table 5-3.

When the soldering curve is adjusted, the package thermal resistance requirements on the board components must be met. For details about the requirements on package thermal resistance, see the IPC/JEDEC J-STD-020D standard. For details about the method of measuring the package temperature, see the JEP 140 standard.

Table 5-4 describes the thermal resistance standard for the lead package according to the IPC/JEDEC 020D standard.

Table 5-4 Thermal resistance standard for the lead package

Package Thickness	Temperature 1 (Package Volume < 350 mm ³ or 0.02 in. ³)	Temperature 1 (Package Volume ≥ 350 mm³ or 0.02 in.³)
< 2.5 mm (0.10 in.)	235°C (455°F)	220°C (428°F)
≥ 2.5 mm (0.10 in.)	220°C (428°F)	220°C (428°F)

The component soldering terminals (such as the solder ball and pin) and external heat sinks are not taken into account for volume calculation.

According to the JEP140 standard, the method for measuring the temperature of the package soldered with the mixing technology is the same as that for measuring the temperature of the package soldered with the lead-free technology. For details, see section 5.2 "Requirements of Lead-Free Reflow Soldering."

6 Moisture-Sensitive Specifications

6.1 Overview

Objective

Define the usage rules for moisture-sensitive ICs, ensuring that ICs are properly used.

Application Scope

All HiSilicon products for external customers

Terminology

- Floor life: time during which a HiSilicon chip can be stored in the workshop at 30°C (86°F) and 60% relative humidity (RH), that is, the time from moisture barrier bag (MBB) unpacking to reflow soldering
- Desiccant: a material for absorbing moisture to keep things dry
- Humidity indicator card (HIC): a card that indicates the humidity status
- Moisture sensitivity level (MSL): a level for measuring the moisture degree. The MSL of Hi3798C V200 is level 3.
- MBB: a vacuum bag for protecting products against moisture
- Solder reflow: reflow soldering
- Shelf life: storage period

6.2 HiSilicon Moisture-proof Packaging

6.2.1 Basic Information

The vacuum packaging materials consist of the following:

- An HIC
- An MBB
- Desiccant

Figure 6-1 Vacuum packaging materials

6.2.2 Incoming Inspection

When the vacuum bag is unpacked before SMT in the factories of customers or their partners:

- If the largest indicator dot of the HIC is not blue or khaki, rebake the chip by referring to Table 6-1.
- If the 10% RH dot of the HIC is blue or khaki, the chip is dry. In this case, replace the desiccant and pack the chip into a vacuum bag.

If the 10% RH dot is not blue or khaki and the 5% RH dot is red or light green, the chip is moist. In this case, rebake the chip by referring to Table 6-1.

6.2.3 Storage and Usage

Storage Environment

You are advised to store products at 30°C (86°F) or lower and at most 60% RH.

Shelf Life

At 30°C (86°F) or lower and at most 60% RH, the shelf life is greater than or equal to 12 months for vacuum packaging.

Floor Life

Table 6-1 describes the floor life at 30°C (86°F) or lower and at most 60% RH.

Table 6-1 Floor life

MSL	Floor Life (Out of Bag) at Factory Ambient ≤ 30°C (86°F)/60% RH or As Stated
1	Unlimited at 30°C (86°F) or lower and at most 85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. After bake, the product must be reflowed within the time limit specified on the label.

Usage

- If a chip has been exposed to air for more than 2 hours at 30°C (86°F) or lower and at most 60% RH, rebake it and pack it into a vacuum bag.
- If a chip has been exposed to air for not more than 2 hours at 30°C (86°F) or lower and at most 60% RH, replace the desiccant and pack the chip into a vacuum bag.

For details about other storage modes and usage rules, see the JEDEC J-STD-033A standard.

6.3 Rebaking

Applicable Products

All moisture-sensitive ICs of HiSilicon

Application Scope

All ICs that need to be rebaked

Rebaking Reference

Table 6-2 Rebaking reference

Body Thickness	Level	Baking at 125°C (257°F)	Baking at 90°C (194°F) ≤ 5% RH	Baking at 40°C (104°F) ≤ 5% RH
≤ 1.4 mm (0.06 in.)	2a	3 hours	11 hours	5 days
	3	7 hours	23 hours	9 days
	4	7 hours	23 hours	9 days

Body Thickness	Level	Baking at 125°C (257°F)	Baking at 90°C (194°F) ≤ 5% RH	Baking at 40°C (104°F) ≤ 5% RH
	5	7 hours	24 hours	10 days
	5a	10 hours	24 hours	10 days
≤ 2.0 mm (0.08 in.)	2a	16 hours	2 days	22 days
	3	17 hours	2 days	23 days
	4	20 hours	3 days	28 days
	5	25 hours	4 days	35 days
	5a	40 hours	6 days	56 days
≤ 4.5 mm (0.18 in.)	2a	48 hours	7 days	67 days
	3	48 hours	8 days	67 days
	4	48 hours	10 days	67 days
	5	48 hours	10 days	67 days
	5a	48 hours	10 days	67 days

■ NOTE

- Table 6-2 lists the minimum rebaking time for moist chips.
- Low-temperature rebaking is recommended.
- For details, see the JEDEC standard.

7 Ordering Information

Figure 7-1 illustrates the mark naming convention of Hi3798C V200.

HiXXXX indicates the 6-digit product model before the part number.

Figure 7-1 Mark naming convention

MOTE

- The letter *X* in the part number indicates variable digits and is only for internal use.
- For details about the conventions for the advanced CA bit field, consult the HiSilicon technical support engineers.

Table 7-1 Packages

Part Number	Package	Body Size	Pitch
Hi3798 CRBC V20X XXX	TFBGA 433	19 mm x 19 mm (0.74 in. x 0.74 in.)	0.8 mm (0.03 in. x 0.03 in.)

For example, if the part number is Hi3798CRBC V2010D0, the chip supports Dolby but not Macrovision (Rovi) and DTS.

CAUTION

According to the technical agreement between HiSilicon and providers of third-party software, HiSilicon has no rights to provide technical samples of the third-party software for other parties. Therefore, if the third-party software or chips that are provided for only authenticated users are involved (including but not limited to DD+ and DTS), ensure that you have obtained authentication from the third party when you place an order for the HiSilicon chip.

A

Acronyms and Abbreviations

 \mathbf{A}

AAC advanced audio coding

AAF anti-aliasing filter

ABR average bit rate

AC alternating current

ACA accessory charge adapter

ACC automatic contrast control

ACD auto command done

ACM adaptive coding and modulation

ADP attach detection protocol

ADC analog-to-digital converter

AE automatic exposure

AEC audio echo cancelation

AES advanced encryption standard

AF adaption field

AGC automatic gain control

AHB advanced high-performance bus

AI audio input

AIU audio input unit

ALU arithmetic logic unit

AMBA advanced microcontroller bus architecture

AMP asymmetric multi-processing

ANI automatic number identification

ANR automatic noise reduction

AO audio output

AOU audio output unit

AP access point

APB advanced peripheral bus

API application programming interface

APLL analog phase-locked loop

APSK amplitude phase shift keying

AQTD alternate queue transfer descriptor

ARM advanced RISC machines

ARGB alpha, red, green, blue

ASF advanced specification format

ATA advanced technology attachment

ATAH ATA host controller

ATAPI advanced technology attachment packet interface

ATR answer to reset

ATTR attribute

AUD audio

AV audio & video

AVI auxiliary video information

AVS audio video coding standard

AWB automatic white balance

AXI advanced extensible interface

В

BB baseband

BCH Bose-Chaudhuri-Hocquenghem

BCM byte counter modified

BEP boot entrance point

BER bit error rate

BGA ball grid array

BIST built-in self test

BIU bus interface unit

BMC bi-phase mark coding

BND bayonet nut connector

BOM bill of material
BPD bit plan decoder

BPSK binary phase shift keying

BRG bridge

BSP board support package

BVACT bottom vertical active area
BVBB bottom vertical back blank
BVFB bottom vertical front blank

 \mathbf{C}

CA conditional access

CABAC context-based adaptive binary arithmetic coding

CAR committed access rate
CAS column address signal.

CAVLC context adaptive variable length coding

CBC cipher block chaining

CBR constant bit rate

CCB change control board

CCC command completion coalescing

CCD charge-coupled device

CCM constant coding and modulation

CD command done or collision detection

CDR clock data recovery

CEC consumer electronics control

CFB compact flash cipher feedback

CFR crest factor reduction
CGI common gate interface

CGMS copy generation management system

CI common interface

CIC cascaded integrator comb

CIU card interface unit

CL CAS latency

CLK clock

CML current mode logic

CMOS complementary metal-oxide semiconductor

CN carrier noise

CNG comfort noise generator

CODEC coder/decoder
CP charge pump
CPL completion

CPLD complex programmable logic device

CPU central processing unit

CR carrier recovery

CRAMFS compressed ROM file system

CRC cyclic redundancy check
CRG clock and reset generator
CRS completion retry request

CS chip select

CSA common scramble algorithm

CSI camera serial interface

CSIX common switch interface

CSMD carrier sense multiple access

CTI chroma transient improvement

CTR counter

CTS clear to send

CVBS composite video broadcast signal

CW cipher word

D

DAC digital-to-analog converter

DAG digital automatic gain

DAGC digital automatic gain control

DAV DMA of audio and video

DC direct current

DCD data connect detection

DCRC data CRC error

DCT discrete cosine transform

DDC display data channel

DDR double data-rate

DDRC double data rate controller

DHCP dynamic host configuration protocol

DEM dynamic-element matching

DES data encryption standard

DFT design for testability

DIP dual in-line package

DIS digital image stabilization

DiSEqC digital satellite equipment control

DLL delay locked loop

DM data mask

DMA direct memory access

DMAC direct memory access controller

DNR digital noise reduction

DP data path

DPLL digital phase-locked loop

DQ data input/output

DQS data strobe

DR design requirement

DRAM dynamic random access memory

DRC dynamic range compression

DRM digital rights management

DRTO data read timeout

DSI display serial interface **DSU** dedicated scaling unit

DTMF dual-tone multi-frequency

DTO data transfer over

DVB digital video broadcasting

DVB-S digital video broadcasting-satellite

DVD digital versatile disc

DVI digital visual interface**DVR** digital video recorder

DWA data weighted averaging

E

E2PROM electrically erasable programmable read-only memory

EAV end of active video

EB eviction buffer

EBE end-bit error

EBI external bus interface

ECB electronic code book

ECC error correcting code

ECS embedded CPU subsystem

ED exposed die

EDID extended display identification data

EEE energy efficient Ethernet

EHCI enhanced host controller interface

EMI electromagnetic interference

EMM entitlement management message

eMMC embedded multimedia card

EOP end of PES

EoS Ethernet over SONET/SDH

EP end point

EPG electronic program guide

EQU equalizer

ERR error

ES element stream

eSATA external serial advanced technology attachment

ESD electrostatic discharge

ESR equivalent series resistance

ETH Ethernet

ETU elementary time unit

 \mathbf{F}

FAS frame aligning signal FBE feedback equalizer

FC switch fabric

FCBGA flip-chip ball grid array

FCCSP flip-chip chip scale package

FEC forward error correction

FER frame error rate
FFC flexible flat cable

FFE feed forward equalizer

FIFO first in first out

FIQ fast interrupt request

FIR finite impulse response

FIS frame information structure

FOD field order detect

FPC flexible printed connector

FPU floating-point unit

FRUN FIFO underrun/overrun error

FSK frequency shift keying
FTP File Transfer Protocol

 \mathbf{G}

GFP-F frame-mapped generic framing procedure

GFP-T transparent generic framing procedure

GHB global history buffer

GIC generic interrupt controller

GOP group of pictureGS generic stream

GMAC gigabit media access control

GND ground

GPIO general purpose input/output

GPL GNU general public license

GPU graphics processing unit

H

HBA host bus adapter

HBP horizontal back porch

HD high definition

HDCP high-bandwidth digital content protection

HDI high density interconnector

HDMI high definition multimedia interface

HFP horizontal front porch

HIAO high-performance audio output interface

HPW horizontal pulse width

HSTL high speed transceiver logic

HTML hypertext markup language

HACT horizontal active area

HFB horizontal front blank

HL high level

HLDC horizontal lens distortion correction

HLE hardware locked error

HNP host negotiation protocol

HTO data starvation-by-host timeout

HP high profile

HSIC high-speed inter-chip

HSS high-speed serializer/deserializer

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HVBB horizontal back blank

HWC hardware composition

I

I in-phase

IBIS input/output buffer information specification

IC integrated circuit

I²C inter-integrated circuit

I'S inter-IC sound I/O input/output

IOC I/O configuration
IP Internet Protocol

ISI input stream identifierISP image signal processor

IDE integrated device electronic

LDPC low-density parity check code

IDR intermediate data rateIF intermediate frequency

IGMP Internet Group Management Protocol

LMS linear mean square

IPF IP filter

IPv4 Internet Protocol Version 4

IR infrared

IRQ interrupt request

ISI input stream identifier
ISP image signal processor

ISR interrupt service routine

ITCM instruction tightly coupled memory

ITLA integrated tunable laser assembly

ITU International Telecommunication Union

IV initialization vector

J

JFFS2 journaling flash file system version 2

JPEG Joint Photographic Experts Group

JPGD JPEG decoder
JPGE JPEG encoder

JTAG Joint Test Action Group

K

KL key ladder

L

LCD liquid crystal display

LDO low dropout regulator

LDPC low-density parity check code

LED light emitting diode

LFB line fill buffer

LFSR linear feedback shifting register

LMR load mode register

LMS least mean square

LNB low noise block

LOS loss of signal

LPI low-power idle

LRB line read buffer

LSB least significant bit

LSP label switched path
LSN logic sector number

LTI luma transient improvement

LVDS low-voltage differential signaling

LVPECL low-voltage positive emitter-coupled logic

LVTTL low-voltage transistor-transistor logic

LVPECL low-voltage positive emitter-coupled logic

M

MAC media access control

MBAFF macroblock adaptive frame field

MCE media control engine

MCU microprogrammed control unit

MD motion detection

MDDRC multiport DDRC

MDIO management data input/output

MDU motion detect unit

MF matched filter

MQFNmapped quad flat non-leadedMHLmobile high-definition link

MII media independent interface

MIPI mobile industry processor interface

MIPS microprocessor without interlocked pipeline stages

MLC multi-level cell

MLF malformed

MMB media memory block

MMC multimedia card

MMU memory management unit

MMZ media memory zone

MP main profile

MPI MPP programming interface

MPE media processing engine

MPLL multiplying phase-locked loop

MPP media processing platform

MRL manually-operated retention latch

MSB most significant bit

MSE mean square error

MSG message

MV motion vector

N

NAL network abstraction layer

NANDC NAND flash controller

NC not connect

NCQ native command queuing

NLP non-linear processor

NR noise reduction

NRZ non-return-to-zero

NTSC National Television Systems Committee

NVR network video recorder

 \mathbf{o}

OCT on-chip termination

OD open drain

ODT on-die termination

OEN output enable
OFB output feedback

OHCI open host controller interface

OOB out of band

OP operational amplifier
OR original requirement

OSC oscillator

OSD on screen display

OTG on-the-go

OTP one time programmable

OTU optical transponder unit

P

PAD packet assembler/disassembler

PAFF picture adaptive frame field

PAL phase alternating line
PCB printed circuit board

PCI peripheral component interconnect

PCIe peripheral component interconnect express

PCIV PCI view

PCR program clock reference
PCM pulse code modulation
PDM pulse density modulation

PECL positive emitter coupled logic

PER packet error rate

PES packetized elementary stream

PG power/ground

PGD PNG and GIF decoder

PHY physicalPID packet ID

PIM-DM protocol independent multicast dense mode
PIM-SM protocol independent multicast sparse mode

PIO programmable input/output

PLL phase-locked loop

PLS physical layer signaling

PM port multiplexer

PMoC power management of chip

PMP personal media player

POR power-on reset

PPP Point-to-Point Protocol
PPS picture parameter set

PRBS pseudo random binary sequence
PRDT physical region descriptor table
PSI program specific information

PSK phase shift keying

PSRAM pseudo static random access memory

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

PT packet type

PTS presentation time stamp

PUB PHY utility block

PUSI payload unit start indicator

PWM pulse width modulation

Q

Q quadrant

QAM quadrature amplitude modulation

QDR quad data rate

QoS quality of service

QP quantizer parameter

QPSK quaternary phase shift keying

 \mathbf{R}

RAM random access memory

RAS row address signal
RC resistor-capacitor

RCA Radio Corporation of America

RCRC response CRC error

RE response error
RF radio frequency
RGB red-green-blue

RGMII reduced gigabit media independent interface

RH relative humidity

RoHS restriction of the use of certain hazardous substances

ROI region of interest
ROM read-only memory
ROP raster operation

RPR resilient packet ring

RLDRAM reduced latency dynamic random access memory

RMII reduced media-independent interface

RS Reed-Solomon
RTC real-time clock
RTO response timeout
RTS request to send

RVDS RealView development suite

RX receive

RXDR receive FIFO data request

 \mathbf{S}

SAP service access point

SAD sum of absolute difference SAR successive approximation

SATA serial advanced technology attachment

SAV start of active video

SBE start-bit error

SBP secure boot procedure

SCD start code detect

SCI smart card interface

SCL serial clock

SCR system clock reference

SCS secure chipset start-up

SCU snoop control unit

SD secure digital

SDA serial data

SDB set device bits

SDH synchronous digital hierarchy

SDHC secure digital high capacity

SDI serial digital interface

SDIO secure digital input/output

SDK software development kit

SDRAM synchronous dynamic random access memory

SDV system design verification

SI specific information

SIO sonic input/output

SLC single-level cell

SMI static memory interface

SNAP subnetwork access point

SNR signal-to-noise ratio

SNTF serial ATA notification

SOA semiconductor optical amplifier

SoC system-on-chip

SONET synchronous optical network

SOP start of PES

SP simple profile

SPDIF Sony/Philips digital interface

SPI serial peripheral interface

SPS sequence parameter set

SRAM static random access memory

SRP Session Request Protocol

SSA secure software authentication

SSD secure software download

SSMC synchronous static memory controller

SSP synchronous serial port

SSRAM synchronous static random access memory

SSTL-18 stub series terminated logic for 1.8 V

STA station

STB set-top box

STM-1 synchronous transport module level 1

SVB selective voltage binning

SYNC synchronization

SYS system

T

TBD to be determined

TBGA tape ball grid array

TC traffic class

TCP Transmission Control Protocol

TD TLP digest

TDES triple data encryption standard

TDE two-dimensional engine

TE tearing effect

TEI transport error indicator

TFD task file data

TFPBGA tape fine-pitch ball grid array

TFT thin-film technology

TI Texas Instruments

TLV type-length-value

TOE TCP/IP offload engine

TP transponder

TPIT TS packet index table

TR timing recovery

TS transport stream

TSI transport stream interface

TT teletext

TV television

TVACT top vertical active area

TVBB top vertical back blank

TVFB top vertical front blank

TVS transient voltage suppressor

TX transmit

TXDR transmit FIFO data request

U

UART universal asynchronous receiver transmitter

U-boot universal boot loader

UC unexpected completion

UDP User Datagram Protocol

ULPI UTMI low pin interface

UPnP universal plug and play

UR unsupported request

USB universal serial bus

USIM universal subscriber identity module

UTMI USB 2.0 transceiver macrocell interface

V

VACT vertical active area

VAD voice activity detector

VAPU video analysis and process unit

VBB vertical back blank

VBI vertical blanking interval

VBR variable bit rate

VCC common connector voltage

VCO voltage controller oscillator

VCM variable coding and modulation

VCMP video compress

VCXO voltage control crystal oscillator

VDA video detection analysis

VDH video decoder for high-definition

VDM video decoding module

VDEC video decoding
VDP video display

1 3

VEDU video encoding/decoding unit

VENC video encoding

VFB vertical front blank

VFMW video firmware

VFP vertical front porch

VGA video graphics array

VI video input

VIC vector interrupt controller

VICAP video capture
VIU video input unit

VLD valid

VLL virtual leased line

VO video output
VOIE voice encoder

VOU video output unit

VPP video pre-processing

VPS video programming system

VPSS video process subsystem

VPW vertical pulse width

VSA vertical sync start

VQE voice quality enhancement

VQM voice quality monitor

 \mathbf{W}

WDG watchdog

WE write enable
WFE wait for event

WFI wait for interrupt

WRED weighted random early discard

WSS wide screen signaling

X

XAUI 10 gigabit attachment unit interface

Y

YAFFS yet another flash file system

YUV luminance-bandwidth-chrominance

 \mathbf{Z}

ZME zoom engine