

Specification for Kylin: MISC Architecture Specification

Warning

This document is not a STB Standard. It is distributed for review and comment. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of

which they are aware and to provide supporting documentation. Distribution does not constitute publication.

1. MISC system

1.1 Register

1.1.1 Register summery

	Physical Address	Name	R/W	Description
	0x9801_B008	MIS_UMSK_ISR	R/W	MISC unmasked interrupt status Register
	0x9801_B00C	MIS_ISR	R/W	MISC masked interrupt status Register. This
				register is the result of raw unmasked interrupt
				bits "and" with interrupt enable bits from each
				function (e.g. MIS_GPIE)
	0x9801_B010	MIS_UMSK_ISR_SWC		MISC unmasked interrupt status Register in SWC
ļ	0x9801_B014	MIS_ISR_SWC		MISC masked interrupt status Register in SWC
	0x9801_B018	MIS_SETTING_SWC		MISC register settings in SWC
	0x9801_B01C	MIS_FAST_INT_EN_0		MISC fast interrupts enable
	0x9801_B020	MIS_FAST_INT_EN_1		MISC fast interrupts enable
	0x9801_B024	MIS_FAST_ISR	R/W	MISC fast interrupt status registers
	0x9801_B028	Rvd	-	-
	0x9801_B02C	MIS_DBG		MISC Debug Register.
	0x9801_B030	MIS_DUMMY	R/W	MISC DUMMY Register. This is reserved for
				future used.
	0x9801_B034	Rvd	R/W	
	0x9801_B040	MIS_UMSK_ISR_GP0A	R/W	MISC unmasked GPIO 0 Assert interrupt status
				Register
	0x9801_B044	MIS_UMSK_ISR_GP1A	R/W	MISC unmasked GPIO 1 Assert interrupt status
ļ				Register
	0x9801_B048	Rvd	-	-
	~			
	0x9801_B050			
	0x9801_B054	MIS_UMSK_ISR_GP0DA	R/W	MISC unmasked GPIO 0 Dis-Assert interrupt
ļ	0.0001.700			status Register
	0x9801_B058	MIS_UMSK_ISR_GP1DA	R/W	MISC unmasked GPIO 1 Dis-Assert interrupt
ļ	0.0001 P050			status Register
	0x9801_B05C	Rvd	-	-
ļ	0x9801_B060	MIS_UR_CTRL		MISC UR Control register
	0x9801_B064	MIS_UR2_CTRL		MISC UR2 Control register
ļ		MIS_DUMMY1	R/W	MISC dummy register
ļ	0x9801_B06C	Rvd		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	0x9801_B070	MIS_FAST_ISR_GPIO0_A	R/W	MISC fast masked GPIO assert interrupt status
	0.0001.7051	Ma Diam tab abyot	D /***	Register
	0x9801_B074	MIS_FAST_ISR_GPIO1_A	R/W	MISC fast masked GPIO assert interrupt status
ļ	0.0001 7070	MG FACE ICE COVOCA	D /***	Register
	0x9801_B078	MIS_FAST_ISR_GPIO0_DA	R/W	MISC fast masked GPIO de-assert interrupt status
1				Register

0x9801_B07C	MIS_FAST_ISR_GPIO1_DA	R/W	MISC fast masked GPIO de-assert interrupt status
			Register
0x9801_B080	MIS_SCPU_INT_EN	R/W	MISC SCPU Interrupt Enable register
0x9801_B084	Rvd	-	-
0x9801_B088	Rvd	-	-
0x9801_B08C	MIS_I2C2_SDA_DEL		MISC I2C2 SDA delay control register
0x9801_B090	MIS_I2C3_SDA_DEL		MISC I2C3 SDA delay control register
0x9801_B094	MIS_I2C4_SDA_DEL		MISC I2C4 SDA delay control register
0x9801_B098	MIS_I2C5_SDA_DEL		MISC I2C5 SDA delay control register
0x9801_B09C	MIS_RTC_SYS_SYNC	R/W	MISC RTC sys clock sync control register
0x9801_B0A0	MIS_FAST_INT_EN_2	R/W	MISC fast interrupts enable
0x9801_B0A4	MIS_UMSK_ISR_GP2A	R/W	MISC unmasked GPIO 2 Assert interrupt status
			Register
0x9801_B0A8	MIS_UMSK_ISR_GP2DA	R/W	MISC unmasked GPIO 2 Dis-Assert interrupt
			status Register
0x9801_B0AC	MIS_FAST_ISR_GPIO2_A	R/W	MISC fast masked GPIO assert interrupt status
			Register
0x9801_B0B0	MIS_FAST_ISR_GPIO2_DA	R/W	MISC fast masked GPIO de-assert interrupt status
			Register
0x9801_B0B4	MIS_FAST_INT_EN_3		MISC fast interrupts enable
0x9801_B0B8	MIS_UMSK_ISR_GP3A	R/W	MISC unmasked GPIO 3 Assert interrupt status
			Register
0x9801_B0BC	MIS_UMSK_ISR_GP3DA	R/W	MISC unmasked GPIO 3 Dis-Assert interrupt
			status Register
0x9801_B0C0	MIS_FAST_ISR_GPIO3_A	R/W	MISC fast masked GPIO assert interrupt status
		Y .	Register
0x9801_B0C4	MIS_FAST_ISR_GPIO3_DA	R/W	MISC fast masked GPIO de-assert interrupt status
0.0001.7070			Register
0x9801_B0C8	Rvd		
0x9801_B0E0	MIS_GATING_EN		MIS clock gating enable control
0x9801_B0E4	MIS_DUMMY2		MISC dummy register
0x9801_B0E8	MIS_DUMMY3		MISC dummy register
0x9801_B0F0	MIS_UR_H5_CTRL		UR H5 basic control
0x9801_B0F4	MIS_UR_H5_ST	R	UR H5 status
0x9801_B0F8	MIS_UR2_H5_CTRL		UR H5 basic control
0x9801_B0FC	MIS_UR2_H5_ST	R	UR H5 status

1.1.2 Register Description

Mod	Module::MIS Register::UMSK_ISR		_ISR	Set::1 ATTR::r		:nor Type::		e::SR	ADDR::0x9801_B008
					_up				
Name		Bits	Read/Write		Reset		Comments		
						Sta	te		
Rvc	d		31:30	-		-		-	
FAI	N_INT		29	R/W		'b0		DC I	FAN interrupt flag.

Rvd	28	-	-	-
GSPI_INT	27	R/W	'b0	GSPI interrupt flag.
Rvd	26:21	-	-	-
GPIODA_INT	20	R/W	'b0	GPIO[98:0] dis-assert interrupt
				flag.
GPIOA_INT	19	R/W	'b0	GPIO[98:0] assert interrupt flag.
				Reading MIS_ISR_GPDA to
				check which gpio assert
				interrupt.
Rvd	18:13	-	-	-
RTC_DATE_INT	12	R/W	'b0	RTC date interrupt flag.
RTC_HOUR_INT	11	R/W	'b0	RTC hour interrupt flag.
RTC_MIN_INT	10	R/W	'b0	RTC minute interrupt flag.
RTC_HSEC_INT	9	R/W	'b0	RTC half second interrupt flag.
Rvd	8	-	-	
TC1_INT	7	R/W	'b0	timer/counter 1 interrupt flag.
TC0_INT	6	R/W	'b0	timer/counter 0 interrupt flag.
UR1_TO_INT	5	R/W	'b0	uart1 timeout interrupt flag.
UR2_TO_INT	4	R/W	'b0	uart2 timeout interrupt flag.
Rvd	3	-	-	-
WDOG_NMI_INT	2	R/W	'b0	Watchdog Non-Mask interrupt.
Rvd	1	-		-
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Note1: MIS_UMSK_ISR(MISC unmasked ISR) is raw interrupt flag and can't be masked by interrupt enable. MIS_ISR is masked by interrupt enable and issue to SCPU interrupt controller.

Note2: I2C ,UART is synopsys IP. They only output masked interrupt.

We can polling I2C un_mask interupt flag from I2C register (I2C0: IC_RAW_INTR_STAT, I2C1: IC1_RAW_INTR_STAT).

But we can't polliing UART un_mask interrupt flag from UR register.

Note3: MIS_ISR_reg/MIS_UMSK_ISR_reg diagram.

Figure 1 MIS_ISR_reg/MIS_UMSK_ISR_reg diagram.

Note4: Interrupt to SCPU/KCPU diagram.

Figure 2 Interrupt to SCPU/KCPU diagram.

Module::MIS	Register::ISR		Set::1 ATTR:	:nor 7	Type::SR	ADDR::0x9801_B00C	
Name		Bits	Read/Write	Reset State	Con	nments	
Rvd		31:30	-	-	-		
FAN_INT	7	29	R/W	'b0	DC	FAN interrupt flag.	
Rvd		28	-	-	-		
GSPI_INT		27	R/W	'b0	GSP	I interrupt flag.	
I2C2_INT		26	R/W	'b0	Seco	ond i2c interrupt.	
					mus let i2	C2_INT be set to 1'b1, SW thandle i2c interrupt issue to 2c exit interrupt condition, then clear the I2C2_INT.	
Rvd		25	-	-			
SC0_INT		24	R/W	'b0	Sma	rt Card0 interrupt flag.	
I2C3_INT		23	R/W	'b0	If I2 mus let i2	Third i2c interrupt. If I2C3_INT be set to 1'b1, SW must handle i2c interrupt issue to let i2c exit interrupt condition first, then clear the I2C3_INT.	

LSADC1 INT	22	R/W	'b0	LSADC1 interrupt flag.
LSADC0_INT	21	R/W	'b0	LSADC0 interrupt flag.
GPIODA_INT	20	R/W	'b0	GPIO[100:0] dis-assert interrupt
	20			flag.
GPIOA_INT	19	R/W	'b0	GPIO[100:0] assert interrupt
OHOA_INI	1)	IX/ VV	00	flag.
				Reading MIS_ISR_GPDA to
				check which gpio assert
				interrupt.
Rvd	18:16			interrupt.
I2C4_INT	15.10	R/W	'b0	Fourth i2a interrupt
12C4_IN1	13	K/W	DU	Fourth i2c interrupt. If I2C4_INT be set to 1'b1, SW
				must handle i2c interrupt issue to
				let i2c exit interrupt condition
IOCE INTE	1.4	D/W	(1.0	first, then clear the I2C4_INT.
I2C5_INT	14	R/W	'b0	Fivth i2c interrupt.
				If I2C5_INT be set to 1'b1, SW
				must handle i2c interrupt issue to
				let i2c exit interrupt condition
LIDA TO DIT	12	D AV	(1.0)	first, then clear the I2C5_INT.
UR2_TO_INT	13	R/W	'b0	uart2 timeout interrupt flag.
RTC_DATE_INT	12	R/W	'b0	RTC date interrupt flag.
RTC_HOUR_INT	11	R/W	'b0	RTC hour interrupt flag.
RTC_MIN_INT	10	R/W	'b0	RTC minute interrupt flag.
RTC_HSEC_INT	9	R/W	'b0	RTC half second interrupt flag.
				This regiter don't issue isr to
				SCPU. Move function to
				ISO_ISR_RTC_HSEC_INT.This
				register will be remove at next
				project
				MIG IGD DEC HGEG INE
				MIS_ISR_RTC_HSEC_INT
				1 2 CODII
				don't issue isr to SCPU.
*				ISO_ISR_RTC_HSEC_INT
LIDO INTE	0	DAV	(10	ISO_ISR_RTC_HSEC_INT issue isr to SCPU.
UR2_INT	8	R/W	'b0	ISO_ISR_RTC_HSEC_INT issue isr to SCPU. Uart2 interrupt.
UR2_INT	8	R/W	'ь0	ISO_ISR_RTC_HSEC_INT issue isr to SCPU. Uart2 interrupt. If UR2_INT be set to 1'b1, SW
UR2_INT	8	R/W	'b0	ISO_ISR_RTC_HSEC_INT issue isr to SCPU. Uart2 interrupt. If UR2_INT be set to 1'b1, SW must handle uart2 interrupt issue
UR2_INT	8	R/W	'b0	ISO_ISR_RTC_HSEC_INT issue isr to SCPU. Uart2 interrupt. If UR2_INT be set to 1'b1, SW must handle uart2 interrupt issue to let uart2 exit interrupt
UR2_INT	8	R/W	'b0	ISO_ISR_RTC_HSEC_INT issue isr to SCPU. Uart2 interrupt. If UR2_INT be set to 1'b1, SW must handle uart2 interrupt issue to let uart2 exit interrupt condition first, then clear the
				ISO_ISR_RTC_HSEC_INT issue isr to SCPU. Uart2 interrupt. If UR2_INT be set to 1'b1, SW must handle uart2 interrupt issue to let uart2 exit interrupt condition first, then clear the UR2_INT.
TC1_INT	7	R/W	'b0	ISO_ISR_RTC_HSEC_INT issue isr to SCPU. Uart2 interrupt. If UR2_INT be set to 1'b1, SW must handle uart2 interrupt issue to let uart2 exit interrupt condition first, then clear the UR2_INT. timer/counter 1 interrupt flag.
				ISO_ISR_RTC_HSEC_INT issue isr to SCPU. Uart2 interrupt. If UR2_INT be set to 1'b1, SW must handle uart2 interrupt issue to let uart2 exit interrupt condition first, then clear the UR2_INT.

Rvd	4	-	_	-
UR1_INT	3	R/W	'b0	Uart1 interrupt.
				If UR1_INT be set to 1'b1, SW
				must handle uart1 interrupt issue
				to let uart1 exit interrupt
				condition first, then clear the
				UR1_INT.
WDOG_NMI_INT	2	R/W	'b0	Watchdog interrupt.
Rvd	1	-	-	-
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Note1: UART RX timeout condition: No characters in or out of the RX FIFO during the last 4 character times and there is at least 1 character in it during this time

Module::MIS Register::UMSK_ISR_SV		ISR_SW	Set::1 ATTR::		:nor Type		e::SR	ADDR::0x9801_B01	0
	C	.		_up					
Name		Bits	Read/Write		Reset		Comments		
					State	e	,		
Rvd		31:4	-		-		-		
WDOG_NM	II_INT	3	R/W		'b0		Wate	chdog Non-Mask ir	nterrupt.
Rvd		2	-		-		-		
TC2_INT		1	R/W		'b 0	7	time	r/counter 2 interrup	t flag.
write_data		0	W		1		1 to s	et, 0 to clear bits with 1	

Module::MIS Register::ISR_SWC		WC	Set::1 ATTR:: _up	nor Type	e::SR ADDR::0x9801_B014
Name		Bits	Read/Write	Reset State	Comments
Rvd		31:4	-	1	-
WDOG_NM	I_INT	3	R/W	'b0	Watchdog interrupt.
I2C_2_INT	ムし	2	R/W	'b0	I2C_2 (touch panel) interrupt flag
TC2_INT		1	R/W	'b0	timer/counter 2 interrupt flag.
write_data		0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS Register::SETTIN	NG_SWC	Set::1 ATTR:	ctrl Type	e::SR ADDR::0x9801_B018
Name	Bits	Read/Write	Reset State	Comments
Rvd	31:2	-	-	-
I2C_2_SWC_EN	1	R/W	'b0	Send to SB2 to control I2C_2 SWC mode enable or not.
I2C_2_EN	0	R/W	'b0	Enable I2C_2 (touch panel) interrupt through mis_int_scpu or independent i2c_2_int_swc

	1: enable i2c_2 in SWC mode, and the interrupt output through i2c_2_int_swc port 0: i2c_2 in NWC mode, and the
	interrupt output through mis_int_scpu

P.S. SWC int: Wdog_nmi, I2C_2 and TC2 FAST_int: GSPI, GPIO, I2C_2 and I2C_3

 $Enable\ Priority: SWC > FAST > ISR$

GPIO extension from 60 to 103 is included in FAST ISR

signal	condition1	condition2	condition3	condition4
GSPI	MIS_FAST_INT_EN_1_gspi_int		MIS_SCPU_INT_EN_gspi	GSPI_SPI_INT_EN*
MIS_ISR_gspi_int	1'60		1'b1	1'b1
MIS_FAST_ISR_gspi_int	1'b1		X, don't care	1/61
1 1 1				
I2C2	MIS_FAST_INT_EN_1_i2c2_int	MIS_SETTING_SWC_i2c_2_en	MIS_SCPU_INT_EN_i2c2	I2C
MIS_ISR_i2c2_int	1'60	1'60	1'b1	i2c2_int
MIS_ISR_SWC_i2c_2_int	X, don't care	1'b1	X, don't care	i2c2_int
MIS_FAST_ISR_i2c2_int	1'b1	1'60	X,don't care	i2c2_int
I2C3	MIS_FAST_INT_EN_1_i2c3_int		MIS_SCPU_INT_EN_i2c3	I2C
MIS_ISR_i2c3_int	1'b0		1'b1	i2c3_int
MIS_FAST_ISR_i2c3_int	1'b1		X,don't care	i2c3_int
1 1 1				
GPIO[59:0]	MIS_FAST_INT_EN_1_gp_int[N]		MIS_SCPU_INT_EN_gpio	MIS_GPIE[N]
MIS_ISR_gpioa_int	1'60		1'b1	1'b1
MIS_FAST_ISR_gpioa_int	1'51		X,don't care	1'b1

Module::MIS	::MIS Register::FAST_INT_EN_0			ATTR::ctrl	Type::SR	ADDR::0x9801_B01C
Name	Bits	Read/Write	Reset	Comments		
			State			
GP_INT	31:1	R/W	'h0	GPIO30~	0 through fa	st interrupt enable
Rvd	0	-		-		

Module::MIS Regi	ster:: FAS	T_INT_EN_1	Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B020
Name	Bits	Read/Write	Reset	Comment	S	
			State			
GSPI_INT	31	R/W	'b0	GSPI thro	ugh fast into	errupt
I2C3_INT	30	R/W	'b0	I2C_3 thro	ough fast in	terrupt
GP_INT	29:1	R/W	'b0	GPIO59~3	31 through t	fast interrupt enable
I2C2_INT	0	R/W	'b0	I2C_2 thro	ough fast in	terrupt

Module::MIS Register::FAST_INT_EN_2			Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B0A0	
Name Bits Read/Write		Read/Write	Reset	Comments			
			State				
GP_INT	31:1	R/W	'h0	GPIO90~6	60 through 1	fast interrupt enable	
Rvd	0	-	-	-			

Module::MIS Register::FAST_INT_EN_3		Set::1	ATTR::ctrl Type:	:SR ADDR::0x9801_B0B4	
Name	Bits	Read/Write	Reset	Comments	
			State		
Rvd	31:11	-	-	-	
GP_INT	10:1	R/W	'h00	GPIO100~91 thr	ough fast interrupt enable
Rvd	0	-	-	-	

Module::MIS Regi	ster::FAS	T_ISR		ATTR::nor_ Type::SR ADDR::0x9801_B024
Name	Bits	Read/Write		Comments
D 1	21.6		State	
Rvd	31:6		-	-
i2c2_int	5	R/W	ъ0	I2C_2 (touch panel) interrupt flag.
gspi_int	4	R/W	'b0	GSPI interrupt flag
i2c3_int	3	R/W	'b0	I2C_3 (Mems) interrupt flag.
gpioda_int	2	R/W	'b0	GPIO dis-assert interrupt flag.
gpioa_int	1	R/W	'b0	GPIO assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS Register::DBG				Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B02C
Name	Bits	Read/Write	Reset		Comments		
			State				
Rvd	311	-	-		-		
	2						
write_enable3	11	W	-		_		
sel1	107	R/W	'h0		Select cont	rol of dbg_s	sel1.
write_enable2	6	W	-		_		
sel0	52	R/W	'h0		Select cont	rol of dbg_s	sel0.
write_enable1	1	W	-		_		

enable	0	R/W	'b0	Debug Enable. If set to 1, the debug port will be switched to the selected probed signals for observation. If clear to 0 (default), the mis_dbg_out0 and mis_dbg_out1 are both static at 16'h0.
--------	---	-----	-----	---

sel[3:0]	debug port output
7	gspi_dbg[15:0]

Module::MIS R	Register::D	UMMY	Set::1	ATTR::nor Type::SR ADDR::0x9801_B030
Name	Bits	Read/Write	Reset	Comments
			State	
write_enable4	31	W	-	-
Rvd4	30:24	R/W	'h0	-
write_enable3	23	W	-	-
Rvd3	22:16	R/W	'h0	
write_enable2	15	W	-	-
Rvd2	14:8	R/W	'h0	bit9: 1'b1, IR RC6_EN, enable IR RC6
				mode
				bit8: IR RC6 Trailer bit length[7]
write_enable1	7	W	- 1	-
Rvd1	6:0	R/W	'h0	bit[6:0]: IR RC6 Trailer bit length[6:0]

Module::MIS	Register::UMS	SK_ISR_GP0A	Set::1	ATTR::nor_	Type::SR	ADDR::0x9801_B040
Name	Bits	Read/Write	Reset State	Comments		
INT30	31	R/W	'b0	GPIO30 ass	ert interrup	t flag.
INT29	30	R/W	'b0	GPIO29 ass	ert interrup	t flag.
INT28	29	R/W	'b0	GPIO28 ass	ert interrup	t flag.
INT27	28	R/W	'b0	GPIO27 ass	ert interrup	t flag.
INT26	27	R/W	'b0	GPIO26 ass	ert interrup	t flag.
INT25	26	R/W	'b0	GPIO25 ass	ert interrup	t flag.
INT24	25	R/W	'b0	GPIO24 ass	ert interrup	t flag.
INT23	24	R/W	'b0	GPIO23 ass	ert interrup	t flag.
INT22	23	R/W	'b0	GPIO22 ass	ert interrup	t flag.
INT21	22	R/W	'b0	GPIO21 ass	ert interrup	t flag.
INT20	21	R/W	'b0	GPIO20 ass	ert interrup	t flag.
INT19	20	R/W	'b0	GPIO19 ass	ert interrup	t flag.
INT18	19	R/W	'b0	GPIO18 ass	ert interrup	t flag.

INT17	18	R/W	'b0	GPIO17 assert interrupt flag.
INT16	17	R/W	'b0	GPIO16 assert interrupt flag.
INT15	16	R/W	'b0	GPIO15 assert interrupt flag.
INT14	15	R/W	'b0	GPIO14 assert interrupt flag.
INT13	14	R/W	'b0	GPIO13 assert interrupt flag.
INT12	13	R/W	'b0	GPIO12 assert interrupt flag.
INT11	12	R/W	'b0	GPIO11 assert interrupt flag.
INT10	11	R/W	'b0	GPIO10 assert interrupt flag.
INT9	10	R/W	'b0	GPIO9 assert interrupt flag.
INT8	9	R/W	'b0	GPIO8 assert interrupt flag.
INT7	8	R/W	'b0	GPIO7 assert interrupt flag.
INT6	7	R/W	'b0	GPIO6 assert interrupt flag.
INT5	6	R/W	'b0	GPIO5 assert interrupt flag.
INT4	5	R/W	'b0	GPIO4 assert interrupt flag.
INT3	4	R/W	'b0	GPIO3 assert interrupt flag.
INT2	3	R/W	'b0	GPIO2 assert interrupt flag.
INT1	2	R/W	'b0	GPIO1 assert interrupt flag.
INT0	1	R/W	'b0	GPIO0 assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS Regi	ster::UMS	SK_ISR_GP1A		ATTR::nor_ Type::SR ADDR::0x9801_B044
Name	Bits	Read/Write	Reset State	Comments
INT61	31	R/W	'b0	GPIO61 assert interrupt flag.
INT60	30	R/W	'b 0	GPIO60 assert interrupt flag.
INT59	29	R/W	'b0	GPIO59 assert interrupt flag.
INT58	28	R/W	'b0	GPIO58 assert interrupt flag.
INT57	27	R/W	'b0	GPIO57 assert interrupt flag.
INT56	26	R/W	'b0	GPIO56 assert interrupt flag.
INT55	25	R/W	'b0	GPIO55 assert interrupt flag.
INT54	24	R/W	'b0	GPIO54 assert interrupt flag.
INT53	23	R/W	'b0	GPIO53 assert interrupt flag.
INT52	22	R/W	'b0	GPIO52 assert interrupt flag.
INT51	21	R/W	'b0	GPIO51 assert interrupt flag.
INT50	20	R/W	'b0	GPIO50 assert interrupt flag.
INT49	19	R/W	'b0	GPIO49 assert interrupt flag.
INT48	18	R/W	'b0	GPIO48 assert interrupt flag.
INT47	17	R/W	'b0	GPIO47 assert interrupt flag.
INT46	16	R/W	'b0	GPIO46 assert interrupt flag.
INT45	15	R/W	'b0	GPIO45 assert interrupt flag.
INT44	14	R/W	'b0	GPIO44 assert interrupt flag.
INT43	13	R/W	'b0	GPIO43 assert interrupt flag.

INT42	12	R/W	'b0	GPIO42 assert interrupt flag.
INT41	11	R/W	'b0	GPIO41 assert interrupt flag.
INT40	10	R/W	'b0	GPIO40 assert interrupt flag.
INT39	9	R/W	'b0	GPIO39 assert interrupt flag.
INT38	8	R/W	'b0	GPIO38 assert interrupt flag.
INT37	7	R/W	'b0	GPIO37 assert interrupt flag.
INT36	6	R/W	'b0	GPIO36 assert interrupt flag.
INT35	5	R/W	'b0	GPIO35 assert interrupt flag.
INT34	4	R/W	'b0	GPIO34 assert interrupt flag.
INT33	3	R/W	'b0	GPIO33 assert interrupt flag.
INT32	2	R/W	'b0	GPIO32 assert interrupt flag.
INT31	1	R/W	'b0	GPIO31 assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS	Register::UMS	K_ISR_GP2A	Set::1	ATTR::nor_ Type::SR ADDR::0x9801_B0A4
		l		up
Name	Bits	Read/Write	Reset	Comments
			State	
INT92	31	R/W	'b0	GPIO92 assert interrupt flag.
INT91	30	R/W	'b0	GPIO91 assert interrupt flag.
INT90	29	R/W	'b0	GPIO90 assert interrupt flag.
INT89	28	R/W	'b0	GPIO89 assert interrupt flag.
INT88	27	R/W	'b0	GPIO88 assert interrupt flag.
INT87	26	R/W	'b0	GPIO87 assert interrupt flag.
INT86	25	R/W	'b 0	GPIO86 assert interrupt flag.
INT85	24	R/W	'b0	GPIO85 assert interrupt flag.
INT84	23	R/W	'b 0	GPIO84 assert interrupt flag.
INT83	22	R/W	'b0	GPIO83 assert interrupt flag.
INT82	21	R/W	'b0	GPIO82 assert interrupt flag.
INT81	20	R/W	'b0	GPIO81 assert interrupt flag.
INT80	19	R/W	'b0	GPIO80 assert interrupt flag.
INT79	18	R/W	'b0	GPIO79 assert interrupt flag.
INT78	17	R/W	'b0	GPIO78 assert interrupt flag.
INT77	16	R/W	'b0	GPIO77 assert interrupt flag.
INT76	15	R/W	'b0	GPIO76 assert interrupt flag.
INT75	14	R/W	'b0	GPIO75 assert interrupt flag.
INT74	13	R/W	'b0	GPIO74 assert interrupt flag.
INT73	12	R/W	'b0	GPIO73 assert interrupt flag.
INT72	11	R/W	'b0	GPIO72 assert interrupt flag.
INT71	10	R/W	'b0	GPIO71 assert interrupt flag.
INT70	9	R/W	'b0	GPIO70 assert interrupt flag.
INT69	8	R/W	'b0	GPIO69 assert interrupt flag.
INT68	7	R/W	'b0	GPIO68 assert interrupt flag.
INT67	6	R/W	'b0	GPIO67 assert interrupt flag.

INT66	5	R/W	'b0	GPIO66 assert interrupt flag.
INT65	4	R/W	'b0	GPIO65 assert interrupt flag.
INT64	3	R/W	'b0	GPIO64 assert interrupt flag.
INT63	2	R/W	'b0	GPIO63 assert interrupt flag.
INT62	1	R/W	'b0	GPIO62 assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS	Register::UMS	SK_ISR_GP3A	Set::1	ATTR::nor_up	Type::SR	ADDR::0x9801_B0B8	
Name	Bits	Read/Write	Reset	Comments			
			State				
Rvd	31:9	-	-	-			
INT100	8	R/W	'b0	GPIO100 as	sert interru	pt flag.	
INT99	7	R/W	'b0	GPIO99 ass	GPIO99 assert interrupt flag.		
INT98	6	R/W	'b0	GPIO98 ass	ert interrup	t flag.	
INT97	5	R/W	'b0	GPIO97 ass	ert interrup	t flag.	
INT96	4	R/W	'b0	GPIO96 ass	ert interrup	t flag.	
INT95	3	R/W	'b0	GPIO95 ass	ert interrup	t flag.	
INT94	2	R/W	'b0	GPIO94 ass	ert interrup	t flag.	
INT93	1	R/W	'b0	GPIO93 ass	ert interrup	t flag.	
write_data	0	W	-	1 to set, 0 to c	lear bits with	1.	

Module::MIS Register::UMSK_ISR_GP0DA			Set::1	ATTR::nor_	Type::SR	ADDR::0x9801_B054	
Name	Bits	Read/Write	Reset State	1	Comments		
INT30	31	R/W	'b0	GPIO30 di	is-assert int	errupt flag.	
INT29	30	R/W	'b0	GPIO29 di	is-assert int	errupt flag.	
INT28	29	R/W	'b0	GPIO28 di	GPIO28 dis-assert interrupt flag.		
INT27	28	R/W	'b0	GPIO27 di	is-assert int	errupt flag.	
INT26	27	R/W	'b0	GPIO26 di	is-assert int	errupt flag.	
INT25	26	R/W	'b0	GPIO25 di	is-assert int	errupt flag.	
INT24	25	R/W	'b0	GPIO24 di	is-assert int	errupt flag.	
INT23	24	R/W	'b0	GPIO23 di	is-assert int	errupt flag.	
INT22	23	R/W	'b0	GPIO22 dis-assert interrupt flag.			
INT21	22	R/W	'b0	GPIO21 di	is-assert int	errupt flag.	
INT20	21	R/W	'b0	GPIO20 di	is-assert int	errupt flag.	

INT19	20	R/W	'b0	GPIO19 dis-assert interrupt flag.		
INT18	19	R/W	'b0	GPIO18 dis-assert interrupt flag.		
INT17	18	R/W	'b0	GPIO17 dis-assert interrupt flag.		
INT16	17	R/W	'b0	GPIO16 dis-assert interrupt flag.		
INT15	16	R/W	'b0	GPIO15 dis-assert interrupt flag.		
INT14	15	R/W	'b0	GPIO14 dis-assert interrupt flag.		
INT13	14	R/W	'b0	GPIO13 dis-assert interrupt flag.		
INT12	13	R/W	'b0	GPIO12 dis-assert interrupt flag.		
INT11	12	R/W	'b0	GPIO11 dis-assert interrupt flag.		
INT10	11	R/W	'b0	GPIO10 dis-assert interrupt flag.		
INT9	10	R/W	'b0	GPIO9 dis-assert interrupt flag.		
INT8	9	R/W	'b0	GPIO8 dis-assert interrupt flag.		
INT7	8	R/W	'b0	GPIO7 dis-assert interrupt flag.		
INT6	7	R/W	'b0	GPIO6 dis-assert interrupt flag.		
INT5	6	R/W	'b0	GPIO5 dis-assert interrupt flag.		
INT4	5	R/W	'b0	GPIO4 dis-assert interrupt flag.		
INT3	4	R/W	'b0	GPIO3 dis-assert interrupt flag.		
INT2	3	R/W	'b0	GPIO2 dis-assert interrupt flag.		
INT1	2	R/W	'b0	GPIO1 dis-assert interrupt flag.		
INT0	1	R/W	'b0	GPIO0 dis-assert interrupt flag.		
write_data	0	W	-	1 to set, 0 to clear bits with 1.		

Module::MIS Re			ATTR::nor_	Type::SR	ADDR::0x9801_B058		
Name	Bits	Read/Write	Reset State	Comments			
INT61	31	R/W	'b0	GPIO61 dis	s-assert int	errupt flag.	
INT60	30	R/W	'b0	GPIO60 dis	s-assert int	errupt flag.	
INT59	29	R/W	'b0	GPIO59 dis	s-assert int	errupt flag.	
INT58	28	R/W	'b0	GPIO58 dis	s-assert int	errupt flag.	
INT57	27	R/W	'b0	GPIO57 dis	s-assert int	errupt flag.	
INT56	26	R/W	'b0	GPIO56 dis	GPIO56 dis-assert interrupt flag.		
INT55	25	R/W	'b0	GPIO55 dis	s-assert int	errupt flag.	
INT54	24	R/W	'b0	GPIO54 dis	s-assert int	errupt flag.	
INT53	23	R/W	'b0	GPIO53 dis	s-assert int	errupt flag.	
INT52	22	R/W	'b0	GPIO52 dis	s-assert int	errupt flag.	
INT51	21	R/W	'b0	GPIO51 dis	s-assert int	errupt flag.	
INT50	20	R/W	'b0	GPIO50 dis	s-assert int	errupt flag.	
INT49	19	R/W	'b0	GPIO49 dis	GPIO49 dis-assert interrupt flag.		
INT48	18	R/W	'b0	GPIO48 dis-assert interrupt flag.			
INT47	17	R/W	'b0	GPIO47 dis-assert interrupt flag.			
INT46	16	R/W	'b0	GPIO46 dis-assert interrupt flag.			
INT45	15	R/W	'b0	GPIO45 dis	s-assert int	errupt flag.	

INT44	14	R/W	'b0	GPIO44 dis-assert interrupt flag.
INT43	13	R/W	'b0	GPIO43 dis-assert interrupt flag.
INT42	12	R/W	'b0	GPIO42 dis-assert interrupt flag.
INT41	11	R/W	'b0	GPIO41 dis-assert interrupt flag.
INT40	10	R/W	'b0	GPIO40 dis-assert interrupt flag.
INT39	9	R/W	'b0	GPIO39 dis-assert interrupt flag.
INT38	8	R/W	'b0	GPIO38 dis-assert interrupt flag.
INT37	7	R/W	'b0	GPIO37 dis-assert interrupt flag.
INT36	6	R/W	'b0	GPIO36 dis-assert interrupt flag.
INT35	5	R/W	'b0	GPIO35 dis-assert interrupt flag.
INT34	4	R/W	'b0	GPIO34 dis-assert interrupt flag.
INT33	3	R/W	'b0	GPIO33 dis-assert interrupt flag.
INT32	2	R/W	'b0	GPIO32 dis-assert interrupt flag.
INT31	1	R/W	'b0	GPIO31 dis-assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS Register::UMSK_ISR_GP2DA				ATTR::nor_	Type::SR	ADDR::0x9801_B0A8	
Name	Bits	Read/Write	Reset	Comments			
Name	Dits	Read/ write	State	Comment	S		
INT92	31	R/W	'b0	CDIO02 di	is-assert int	errupt flag	
INT91	30	R/W	°b0		is-assert int	<u> </u>	
INT90	29	R/W	'b0			1 0	
	_				is-assert int	<u> </u>	
INT89	28	R/W	'b0		is-assert int		
INT88	27	R/W	'b0	1	is-assert int		
INT87	26	R/W	'b 0		is-assert int		
INT86	25	R/W	'b0		is-assert int	<u> </u>	
INT85	24	R/W	'b0		is-assert int		
INT84	23	R/W	'b0	GPIO84 di	is-assert int	errupt flag.	
INT83	22	R/W	'b0	GPIO83 di	is-assert int	errupt flag.	
INT82	21	R/W	'b0	GPIO82 di	is-assert int	errupt flag.	
INT81	20	R/W	'b0	GPIO81 di	is-assert int	errupt flag.	
INT80	19	R/W	'b0	GPIO80 di	is-assert int	errupt flag.	
INT79	18	R/W	'b0	GPIO79 di	is-assert int	errupt flag.	
INT78	17	R/W	'b0	GPIO78 di	is-assert int	errupt flag.	
INT77	16	R/W	'b0	GPIO77 di	is-assert int	errupt flag.	
INT76	15	R/W	'b0	GPIO76 di	is-assert int	errupt flag.	
INT75	14	R/W	'b0	GPIO75 dis-assert interrupt flag.			
INT74	13	R/W	'b0	GPIO74 dis-assert interrupt flag.			
INT73	12	R/W	'b0	GPIO73 dis-assert interrupt flag.			
INT72	11	R/W	'b0	GPIO72 dis-assert interrupt flag.			
INT71	10	R/W	'b0	GPIO71 dis-assert interrupt flag.			
INT70	9	R/W	'b0		is-assert int	<u> </u>	

INT69	8	R/W	'b0	GPIO69 dis-assert interrupt flag.
INT68	7	R/W	'b0	GPIO68 dis-assert interrupt flag.
INT67	6	R/W	'b0	GPIO67 dis-assert interrupt flag.
INT66	5	R/W	'b0	GPIO66 dis-assert interrupt flag.
INT65	4	R/W	'b0	GPIO65 dis-assert interrupt flag.
INT64	3	R/W	'b0	GPIO64 dis-assert interrupt flag.
INT63	2	R/W	'b0	GPIO63 dis-assert interrupt flag.
INT62	1	R/W	'b0	GPIO62 dis-assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS	Register::UMS	K_ISR_GP3DA	Set::1	ATTR::nor_ up	Type::SR	ADDR::0x9801_B0BC
Name	Bits	Read/Write	Reset	Comment	ts	
			State			
Rvd	31:9	-	-	-		
INT100	8	R/W	'b0	GPIO100	dis-assert in	nterrupt flag.
INT99	7	R/W	'b0	GPIO99 d	is-assert in	terrupt flag.
INT98	6	R/W	'b0	GPIO98 d	is-assert in	terrupt flag.
INT97	5	R/W	'b0	GPIO97 d	is-assert in	terrupt flag.
INT96	4	R/W	'b0	GPIO96 d	is-assert in	terrupt flag.
INT95	3	R/W	'b0	GPIO95 d	is-assert in	terrupt flag.
INT94	2	R/W	'b0	GPIO94 d	is-assert in	terrupt flag.
INT93	1	R/W	' b0	GPIO93 d	is-assert in	terrupt flag.
write_data	0	W	-	to set, 0 to	clear bits wit	th 1.

Module::MIS Register::DUMMY1			Set::1	ATTR::nor	Type::SR	ADDR::0x9801_B068	
Name	Bits	Read/Write	Reset State		Comments		
write_enable2	31	W	-		_		
Rvd2	30:16	R/W	'h3	fff			
write_enable1	15	W	-		-		
Rvd1	14:0	R/W	'h0				

Module::MIS Register:: UR_CTRL				Set::1	ATTR::nor	Type::SR	ADDR::0x9801_B060
Name	Bits	Read/Write	Res Stat		Comments	8	
Rvd3	31:29	R/W	'h0		-		
Rvd	28	-	-		-		
to_len	27:20	R/W	'h4		timeout len	ıgth.	
					UART RX	timeout co	ndition: No
					characters i	in or out of	the RX FIFO during

				the last n character times and there is at least 1 character in it during this time
				ex: 8'h4: timeout will assert after 4 character time. 8'hF: timeout will assert after 15 character time.
to_int_en	19	R/W	'b0	1'b1: Timeout interrupt enable.
TOAUAREQ	18	R/W	'b0	Timeout Auto Assert Request to MD if rx_fifo_waterlevel > 0 Byte. 1'b1: Auto assert request to MD. 1'b0: Don't auto assert request to MD.
FLOW_POL	17	R/W	'b0	UR1 Flow control signal (CTS/RST) polarity. 1'b0: low active. 1'b1: high active.
MDIFEN	16	R/W	'b0	MD Interface Enable. Enable MD access UART TX/RX FIFO. 1'b1: UR-MD IF Enable. 1'b0: UR-MD IF Disable.
Rvd	15:14	R/W	-	-
TXEMPTHR	13:8	R/W	'h10	TX empty threshold for UR-MD IF. IF UR1 TX FIFO have TXEMPTHR bytes free space, issue read request to MD. 6'D8: 8 Bytes 6'D16: 16 Bytes 6'D24: 24 Bytes 6'D32: 32 Bytes
Rvd	7:6	R/W	-	-
RXFULTHR	5:0	R/W	'h10	RX full threshold for UR-MD IF. If UR1 RX receive RXFULTHR bytes data, UR1 will issue write request to MD. 6'D8: 8 Bytes 6'D16: 16 Bytes 6'D24: 24 Bytes 31 Bytes and 32 Bytes are unsupported.

p.s1: UR_CTRL is used for high speed UART (UART 1).

p.s2:

a. We can config RX FIFO threshold for rts_n (rts_n = 1 : rx fifo is almost full , request "stop" to transfer data to Saturn.UR1.RX)

Threshold of UR DW IP, RX FIFO as following: (at 0x9801_BC08[7:6])

00 = 1 character in the FIFO

 $01 = FIFO \frac{1}{4}$ full

 $10 = FIFO \frac{1}{2}$ full

11 = FIFO 2 less than full

b. config UR DW RX FIFO threshold for issue request to MD (at 0x9801_B070[5:0])

support range: 1 bytes ~ 30 bytes. Un_support range: 31 byte ~ 32 byte.

If we config 31 bytes or 32 bytes, DW UR IP will issue issue rts_n after receive 30 bytes(config 0x9801_BC08[7:6]=2'b11). Saturn UR will not receive rx data.

Then, time out assert,

If enable MD transfer at timeout, MD transfer 30 bytes data.

If dis-able MD transfer at timeout, timeout ISR will assert. Need CPU help to read RX data. Then rts_n de-assert. Saturn UR will continur to receive rx data.

Module::MIS R	egister:: U	JR2_CTRL	Set::1	ATTR::nor
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd3	31:29	R/W	'h0	-
Rvd	28	-	-	-
to_len	27:20	R/W	ʻh4	timeout length.
				UART RX timeout condition: No
				characters in or out of the RX FIFO during
				the last n character times and there is at
				least 1 character in it during this time
				ex:
				8'h4: timeout will assert after 4 character
				time.
				8'hF: timeout will assert after 15 character time.
to_int_en	19	R/W	'b0	1'b1: Timeout interrupt enable.
to_int_en	19	K/ W	DU	1 01. Timeout interrupt enable.
TOAUAREO	18	R/W	'b0	Timeout Auto Assert Request to MD if
TOHORICLO	10	10/ 11/	00	rx_fifo_waterlevel > 0 Byte.
				1'b1: Auto assert request to MD.
				1'b0: Don't auto assert request to MD.
FLOW POL	17	R/W	'b0	UR2 Flow control signal (CTS/RST)
	-			polarity.
				1'b0 : low active.
				1'b1 : high active.
MDIFEN	16	R/W	'b0	MD Interface Enable. Enable MD access
				UART TX/RX FIFO.
				1'b1: UR-MD IF Enable.
				1'b0: UR-MD IF Disable.
Rvd	15:14	R/W	_	-

TXEMPTHR	13:8	R/W	'h10	TX empty threshold for UR-MD IF. IF UR2 TX FIFO have TXEMPTHR bytes
				free space, issue read request to MD.
				6'D8: 8 Bytes
				6'D16: 16 Bytes
				6'D24: 24 Bytes
				6'D32: 32 Bytes
Rvd	7:6	R/W	-	-
RXFULTHR	5:0	R/W	'h10	RX full threshold for UR-MD IF. If UR2
				RX receive RXFULTHR bytes data, UR2
				will issue write request to MD.
				6'D8: 8 Bytes
				6'D16: 16 Bytes
				6'D24: 24 Bytes
				31 Bytes and 32 Bytes are unsupported.

Module::MIS	Register::FA	ST_ISR_GPIO0_	Set::1	ATTR::nor_ up	Type::SR	ADDR::0x9801_B070
Name	Bits	Read/Write	Reset	Comments		
			State			
int_30	31	R/W	'b0	GPIO30 asse	ert interrup	t flag.
int_29	30	R/W	'b0	GPIO29 asse	ert interrup	t flag.
int_28	29	R/W	'b0	GPIO28 asse	ert interrup	t flag.
int_27	28	R/W	'b0	GPIO27 asse	ert interrup	t flag.
int_26	27	R/W	'b0	GPIO26 asse	ert interrup	t flag.
int_25	26	R/W	'b0	GPIO25 asse	ert interrup	t flag.
int_24	25	R/W	'b0	GPIO24 asse	ert interrup	t flag.
int_23	24	R/W	'b0	GPIO23 asse	ert interrup	t flag.
int_22	23	R/W	'b0	GPIO22 asse	ert interrup	t flag.
int_21	22	R/W	'b0	GPIO21 asse	ert interrup	t flag.
int_20	21	R/W	'b0	GPIO20 asse	rt interrup	t flag.
int_19	20	R/W	'b0	GPIO19 asse	ert interrup	t flag.
int_18	19	R/W	'b0	GPIO18 asse	ert interrup	t flag.
int_17	18	R/W	'b0	GPIO17 asse	ert interrup	t flag.
int_16	17	R/W	'b0	GPIO16 asse	ert interrup	t flag.
int_15	16	R/W	'b0	GPIO15 asse	ert interrup	t flag.
int_14	15	R/W	'b0	GPIO14 asse	ert interrup	t flag.
int_13	14	R/W	'b0	GPIO13 asse	ert interrup	t flag.
int_12	13	R/W	' b0	GPIO12 asse	ert interrup	t flag.
int_11	12	R/W	'b0	GPIO11 asse	ert interrup	t flag.
int_10	11	R/W	'b0	GPIO10 asse	ert interrup	t flag.
int_9	10	R/W	'b0	GPIO9 asser	t interrupt	flag.
int_8	9	R/W	'b 0	GPIO8 asser	t interrupt	flag.
int_7	8	R/W	'b0	GPIO7 asser	t interrupt	flag.
int_6	7	R/W	'b0	GPIO6 asser	t interrupt	flag.
int_5	6	R/W	'b0	GPIO5 asser	t interrupt	flag.
int_4	5	R/W	'b0	GPIO4 asser	t interrupt	flag.
int_3	4	R/W	'b0	GPIO3 asser	t interrupt	flag.
int_2	3	R/W	'b0	GPIO2 asser	t interrupt	flag.
int_1	2	R/W	'b0	GPIO1 asser	t interrupt	flag.
int_0	1	R/W	'b0	GPIO0 asser	t interrupt	flag.
write_data	0	W	-	1 to set, 0 to cle	ear bits with	1.

Module::MIS	Register::FAST_ISR_GPIO1_ A			Set::1	ATTR::nor_ up	Type::SR	ADDR::0x9801_B074
Name		Bits	Read/Write	Reset State	Comments		
int_61		31	R/W	'b0	GPIO61 ass	ert interrup	t flag.
int_60		30	R/W	'b0	GPIO60 ass	ert interrup	t flag.

int_59	29	R/W	'b0	GPIO59 assert interrupt flag.
int_58	28	R/W	'b0	GPIO58 assert interrupt flag.
int_57	27	R/W	'b0	GPIO57 assert interrupt flag.
int_56	26	R/W	'b0	GPIO56 assert interrupt flag.
int_55	25	R/W	'b0	GPIO55 assert interrupt flag.
int_54	24	R/W	'b0	GPIO54 assert interrupt flag.
int_53	23	R/W	'b0	GPIO53 assert interrupt flag.
int_52	22	R/W	'b0	GPIO52 assert interrupt flag.
int_51	21	R/W	'b0	GPIO51 assert interrupt flag.
int_50	20	R/W	'b0	GPIO50 assert interrupt flag.
int_49	19	R/W	'b0	GPIO49 assert interrupt flag.
int_48	18	R/W	'b0	GPIO48 assert interrupt flag.
int_47	17	R/W	'b0	GPIO47 assert interrupt flag.
int_46	16	R/W	'b0	GPIO46 assert interrupt flag.
int_45	15	R/W	'b0	GPIO45 assert interrupt flag.
int_44	14	R/W	'b0	GPIO44 assert interrupt flag.
int_43	13	R/W	'b0	GPIO43 assert interrupt flag.
int_42	12	R/W	'b0	GPIO42 assert interrupt flag.
int_41	11	R/W	'b0	GPIO41 assert interrupt flag.
int_40	10	R/W	'b0	GPIO40 assert interrupt flag.
int_39	9	R/W	'b0	GPIO39 assert interrupt flag.
int_38	8	R/W	,p0	GPIO38 assert interrupt flag.
int_37	7	R/W	'b0	GPIO37 assert interrupt flag.
int_36	6	R/W	'b0	GPIO36 assert interrupt flag.
int_35	5	R/W	,p0	GPIO35 assert interrupt flag.
int_34	4	R/W	'b0	GPIO34 assert interrupt flag.
int_33	3	R/W	°b0	GPIO33 assert interrupt flag.
int_32	2	R/W	'b0	GPIO32 assert interrupt flag.
int_31		R/W	'b0	GPIO31 assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS		Γ_ISR_GPIO2_	Set::1	ATTR::nor_	Type::SR	ADDR::0x9801_B0AC
NT	A D:4-	D 1/33/4	D4	up C		
Name	Bits	Read/Write	Reset State	Comments		
int 92	31	R/W	'b0	CDIO02 aga	aut intauman	t floo
	30		'b0	GPIO92 ass		
int_91		R/W		GPIO00 ass		
int_90	29	R/W	'b0	GPIO90 ass		
int_89	28	R/W	'b0	GPIO89 ass		
int_88	27	R/W	'b0	GPIO88 ass		
int_87	26	R/W	'b0	GPIO87 ass		
int_86	25	R/W	'b0	GPIO86 ass		
int_85	24	R/W	'b0	GPIO85 ass		
int_84	23	R/W	'b0	GPIO84 ass		
int_83	22	R/W	'b0	GPIO83 ass		
int_82	21	R/W	'b0	GPIO82 ass		
int_81	20	R/W	'b0	GPIO81 ass	ert interrup	t flag.
int_80	19	R/W	'b0	GPIO80 ass	ert interrup	t flag.
int_79	18	R/W	' b0	GPIO79 ass	ert interrup	t flag.
int_78	17	R/W	'b0	GPIO78 ass	ert interrup	t flag.
int_77	16	R/W	'b0	GPIO77 ass	ert interrup	t flag.
int_76	15	R/W	'b0	GPIO76 ass	ert interrup	t flag.
int_75	14	R/W	'b0	GPIO75 ass	ert interrup	t flag.
int_74	13	R/W	'b0	GPIO74 ass	ert interrup	t flag.
int_73	12	R/W	'b0	GPIO73 ass	ert interrup	t flag.
int_72	11	R/W	'b0	GPIO72 ass	ert interrup	t flag.
int_71	10	R/W	'b0	GPIO71 ass	ert interrup	t flag.
int_70	9	R/W	'b0	GPIO70 ass	ert interrup	t flag.
int_69	8	R/W	'b0	GPIO69 ass	-	
int_68	7	R/W	'b0	GPIO68 ass		
int_67	6	R/W	'b0	GPIO67 ass		
int_66	5	R/W	'b0	GPIO66 ass		
int_65	4	R/W	'b0	GPIO65 ass		
int_64	3	R/W	'b0	GPIO64 ass		
int_63	2	R/W	'b0	GPIO63 ass		
int_62	1	R/W	'b0	GPIO62 ass		<u> </u>
write_data	0	W	-	1 to set, 0 to c	1	C

Module::MIS	Module::MIS Register::FAST_ISR_GPIO3_ A			ATTR::nor_ Type::SR ADDR::0x9801_B0C0 up
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:9	-	-	-
int_100	8	R/W	'b0	GPIO100 assert interrupt flag.
int_99	7	R/W	'b0	GPIO99 assert interrupt flag.
int_98	6	R/W	'b0	GPIO98 assert interrupt flag.
int_97	5	R/W	'b0	GPIO97 assert interrupt flag.
int_96	4	R/W	'b0	GPIO96 assert interrupt flag.
int_95	3	R/W	'b0	GPIO95 assert interrupt flag.
int_94	2	R/W	'b0	GPIO94 assert interrupt flag.
int_93	1	R/W	'b0	GPIO93 assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

Module::MIS	Register::FA	ST_ISR_GPIO0_	Set::1	ATTR::nor_up	Type::SR	ADDR::0x9801_B078
Name	Bits	Read/Write	Reset	Comments		
			State			
int_30	31	R/W	'b0	GPIO30 de-	assert inter	rupt flag.
int_29	30	R/W	'b0	GPIO29 de-	assert inter	rupt flag.
int_28	29	R/W	'b0	GPIO28 de-	assert inter	rupt flag.
int_27	28	R/W	'b0	GPIO27 de-	assert inter	rupt flag.
int_26	27	R/W	'b0	GPIO26 de-	assert inter	rupt flag.
int_25	26	R/W	'b0	GPIO25 de-	assert inter	rupt flag.
int_24	25	R/W	'b0	GPIO24 de-		1 0
int_23	24	R/W	'b0	GPIO23 de-	assert inter	rupt flag.
int_22	23	R/W	'b0	GPIO22 de-	assert inter	rupt flag.
int_21	22	R/W	'b0	GPIO21 de-	assert inter	rupt flag.
int_20	21	R/W	'b0	GPIO20 de	assert inter	rupt flag.
int_19	20	R/W	'b0	GPIO19 de-	assert inter	rupt flag.
int_18	19	R/W	'b0	GPIO18 de-	assert inter	rupt flag.
int_17	18	R/W	'b0	GPIO17 de-	assert inter	rupt flag.
int_16	17	R/W	'b0	GPIO16 de-	assert inter	rupt flag.
int_15	16	R/W	'b0	GPIO15 de-	assert inter	rupt flag.
int_14	15	R/W	'b0	GPIO14 de-	assert inter	rupt flag.
int_13	14	R/W	'b0	GPIO13 de-	assert inter	rupt flag.
int_12	13	R/W	'b 0	GPIO12 de-	assert inter	rupt flag.
int_11	12	R/W	'b0	GPIO11 de-	assert inter	rupt flag.
int_10	11	R/W	'b0	GPIO10 de-	assert inter	rupt flag.
int_9	10	R/W	'b0	GPIO9 de-a	ssert interru	ıpt flag.
int_8	9	R/W	6 0	GPIO8 de-a	ssert interru	upt flag.
int_7	8	R/W	'b0	GPIO7 de-a	ssert interru	upt flag.
int_6	7	R/W	'b0	GPIO6 de-a	ssert interru	ıpt flag.
int_5	6	R/W	'b0	GPIO5 de-a	ssert interru	upt flag.
int_4	5	R/W	'b0	GPIO4 de-a	ssert interru	ıpt flag.
int_3	4	R/W	'b0	GPIO3 de-a	ssert interru	upt flag.
int_2	3	R/W	'b0	GPIO2 de-a	ssert interru	ıpt flag.
int_1	2	R/W	'b0	GPIO1 de-a	ssert interru	ıpt flag.
int_0	1	R/W	'b0	GPIO0 de-a	ssert interru	upt flag.
write_data	0	W	-	1 to set, 0 to cl	ear bits with	1.

Module::MIS	Register::FAST_ISR_GPIO1_ DA			Set::1	ATTR::nor_ up	Type::SR	ADDR::0x9801_B07C
Name	Name Bits Read/Write		Reset State	Comments			
int_61		31	R/W	'b0	GPIO61 de-	assert inter	rupt flag.
int_60	•	30	R/W	'b0	GPIO60 de-	assert inter	rupt flag.

int_59	29	R/W	'b0	GPIO59 de-assert interrupt flag.
int_58	28	R/W	'b0	GPIO58 de-assert interrupt flag.
int_57	27	R/W	'b0	GPIO57 de-assert interrupt flag.
int_56	26	R/W	'b0	GPIO56 de-assert interrupt flag.
int_55	25	R/W	'b0	GPIO55 de-assert interrupt flag.
int_54	24	R/W	'b0	GPIO54 de-assert interrupt flag.
int_53	23	R/W	'b0	GPIO53 de-assert interrupt flag.
int_52	22	R/W	'b0	GPIO52 de-assert interrupt flag.
int_51	21	R/W	'b0	GPIO51 de-assert interrupt flag.
int_50	20	R/W	'b0	GPIO50 de-assert interrupt flag.
int_49	19	R/W	'b0	GPIO49 de-assert interrupt flag.
int_48	18	R/W	'b0	GPIO48 de-assert interrupt flag.
int_47	17	R/W	'b0	GPIO47 de-assert interrupt flag.
int_46	16	R/W	'b0	GPIO46 de-assert interrupt flag.
int_45	15	R/W	'b0	GPIO45 de-assert interrupt flag.
int_44	14	R/W	'b0	GPIO44 de-assert interrupt flag.
int_43	13	R/W	'b0	GPIO43 de-assert interrupt flag.
int_42	12	R/W	'b0	GPIO42 de-assert interrupt flag.
int_41	11	R/W	'b0	GPIO41 de-assert interrupt flag.
int_40	10	R/W	'b0	GPIO40 de-assert interrupt flag.
int_39	9	R/W	'b0	GPIO39 de-assert interrupt flag.
int_38	8	R/W	,p0	GPIO38 de-assert interrupt flag.
int_37	7	R/W	'b0	GPIO37 de-assert interrupt flag.
int_36	6	R/W	'b0	GPIO36 de-assert interrupt flag.
int_35	5	R/W	'b0	GPIO35 de-assert interrupt flag.
int_34	4	R/W	'b0	GPIO34 de-assert interrupt flag.
int_33	3	R/W	°b0	GPIO33 de-assert interrupt flag.
int_32	2	R/W	'b0	GPIO32 de-assert interrupt flag.
int_31	1	R/W	'b0	GPIO31 de-assert interrupt flag.
write_data	0	W	-	1 to set, 0 to clear bits with 1.

	_	Γ_ISR_GPIO2_	Set::1	ATTR::nor_	Type::SR	ADDR::0x9801_B0B0
Name	Bits	Read/Write	Reset	Comments		
Name	Dits	Reau/ Wille	State	Comments		
int_92	31	R/W	'b0	GPIO92 dis-	-assert inter	runt flao
int_91	30	R/W	'b0	GPIO91 dis-		ž –
int_90	29	R/W	'b0	GPIO90 dis-		•
int_89	28	R/W	'b0	GPIO89 dis-		
int_88	27	R/W	'b0	GPIO88 dis-		• •
int_87	26	R/W	'b0	GPIO87 dis-		
int_86	25	R/W	'b0	GPIO86 dis-		ž –
int_85	24	R/W	'b0	GPIO85 dis-		
int_84	23	R/W	'b0	GPIO84 dis-		
int_83	22	R/W	'b0	GPIO83 dis-		1 0
int_82	21	R/W	'b0	GPIO82 dis		
int_81	20	R/W	'b0	GPIO81 dis	-assert inter	crupt flag.
int_80	19	R/W	'b0	GPIO80 dis-	-assert inter	rrupt flag.
int_79	18	R/W	'b0	GPIO79 dis-	-assert inter	rrupt flag.
int_78	17	R/W	'b0	GPIO78 dis-		
int_77	16	R/W	'b0	GPIO77 dis-	-assert inter	rrupt flag.
int_76	15	R/W	'b0	GPIO76 dis-	-assert inter	rrupt flag.
int_75	14	R/W	'b0	GPIO75 dis-	-assert inter	rrupt flag.
int_74	13	R/W	'b0	GPIO74 dis-	-assert inter	rrupt flag.
int_73	12	R/W	'b0	GPIO73 dis-	-assert inter	rrupt flag.
int_72	11	R/W	'b 0	GPIO72 dis-	-assert inter	rrupt flag.
int_71	10	R/W	'b0	GPIO71 dis-	-assert inter	rrupt flag.
int_70	9	R/W	'b 0	GPIO70 dis-	-assert inter	rrupt flag.
int_69	8	R/W	'b0	GPIO69 dis-	-assert inter	rrupt flag.
int_68	7	R/W	'b0	GPIO68 dis-	-assert inter	rupt flag.
int_67	6	R/W	'b0	GPIO67 dis-	-assert inter	rrupt flag.
int_66	5	R/W	'b0	GPIO66 dis-	-assert inter	rupt flag.
int_65	4	R/W	'b0	GPIO65 dis-		1 0
int_64	3	R/W	'b0	GPIO64 dis-		1 0
int_63	2	R/W	'b0	GPIO63 dis-		1 0
int_62	1	R/W	'b0	GPIO62 dis-		
write_data	0	W	-	1 to set, 0 to cl	lear bits with	1.

Module::MIS Regis	ster::FAS	Γ_ISR_GPIO3_	Set::1	ATTR::nor_	Type::SR	ADDR::0x9801_B0C4	
DA				up			
Name	Bits	Read/Write	Reset	Comments			
			State				
Rvd	31:9	-	i	-			
int_100	8	R/W	'b0	GPIO100 di	s-assert into	errupt flag.	
int_99	7	R/W	'b0	GPIO99 dis-assert interrupt flag.			
int_98	6	R/W	'b0	GPIO98 dis	-assert inter	rupt flag.	
int_97	5	R/W	'b0	GPIO97 dis	-assert inter	rupt flag.	
int_96	4	R/W	'b0	GPIO96 dis	-assert inter	rupt flag.	
int_95	3	R/W	'b0	GPIO95 dis	-assert inter	rupt flag.	
int_94	2	R/W	'b0	GPIO94 dis	-assert inter	rupt flag.	
int_93	1	R/W	'b0	GPIO93 dis		1 0	
write_data	0	W	-	1 to set, 0 to cl	ear bits with	1.	

Module::MIS Register::SCPU_	INT_EN	Set::1 ATTR:	ctrl Type	e::SR ADDR::0x9801_B080
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:30	-	-	-
FAN	29	R/W	'b1	1'b1: Enable DC FAN interrupt
				to SCPU.
I2C3	28	R/W	'b1	1'b1: Enable Third i2c interrupt
				to SCPU.
GSPI	27	R/W	'b1	1'b1: Enable Second gspi
				interrupt to SCPU.
I2C2	26	R/W	'b1	1'b1: Enable Second i2c
				interrupt to SCPU.
Rvd	25	-	-	-
SC0	24	R/W	'b1	1'b1: Enable smart card0
				interrupt to SCPU.
Rvd	23		-	-
LSADC1	22	R/W	'b1	1'b1: Enable LSADC1 interrupt
				to SCPU
LSADC0	21	R/W	'b1	1'b1: Enable LSADC0 interrupt
·	·			to SCPU
GPIODA	20	R/W	'b1	1'b1: Enable GPIO[59:0] dis-
				assert interrupt to SCPU.
GPIOA	19	R/W	'b1	1'b1: Enable GPIO[59:0] assert
				interrupt to SCPU.
Rvd	18:16	-	-	-
I2C4	15	R/W	'b1	1'b1: Enable Forth i2c interrupt
				to SCPU.
I2C5	14	R/W	'b1	1'b1: Enable Fivth i2c interrupt
				to SCPU.
Rvd	13	-	-	-
RTC_DATE	12	R/W	'b1	1'b1: Enable RTC date interrupt
				to SCPU.
RTC_HOUR	11	R/W	'b1	1'b1: Enable RTC hour interrupt
				to SCPU.

RTC_MIN	10	R/W	ʻb1	1'b1: Enable RTC minute
				interrupt to SCPU.
Rvd	9:8	-	-	-
UR2	7	R/W	'b1	1'b1: Enable uart1 interrupt to
				SCPU.
UR2_TO	6	R/W	'b1	1'b1: Enable uart2 timeout
				interrupt to SCPU.
UR1_TO	5	R/W	'b1	1'b1: Enable uart1 timeout
				interrupt to SCPU.
Rvd	4	-	-	-
UR1	3	R/W	'b1	1'b1: Enable uart1 interrupt to
				SCPU.
Rvd	2:0	-	-	-

Module::MIS R	egister:: I	2C2_SDA_DE	L Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B08c
Name	Bits	Read/Write	Reset State	Comments		
dmy1	31:12	R/W	'hff000	-		
Rvd	11:9	R/W	-	-		
en	8	R/W	'b0	SDA data p	hase delay	enable.
Rvd	7:5	R/W	-	_		
sel	4:0	R/W	'h1	SDA data p	-	
				CALLANI	SDA delay (unit : ns)	time
				1		518
				2		1036
				3		1554
				4		2072
				5		2590
				6		3108
				7		3626
				8		4144
				9		4662
				10		5180
				11		5698
				12		6216
				13		6734
				14		7252
				15		7770

	16	8288
	17	8806
	18	9324
	19	9842
	20	10360
	21	10878
	22	11396
	23	11914
	others: reser	ved

Module::MIS Re	egister:: I	2C3_SDA_DE	L Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B090
Name	Bits	Read/Write	Reset State	Comments		
dmy1	31:12	R/W	'hff000	-		
Rvd	11:9	R/W	-	-		
en	8	R/W	'b0	SDA data p	hase delay	enable.
Rvd	7:5	R/W	-	-		
sel	4:0	R/W	'h1	SDA data p	-	
				Sell4.III	SDA delay (unit : ns)	time
				1		518
				2		1036
				3		1554
				4		2072
				5		2590
				6		3108
				7		3626
				8		4144
				9		4662
				10		5180
				11		5698
				12		6216
				13		6734
				14		7252
				15		7770
				16		8288

	17	8806	
	18	9324	
	19	9842	
	20	10360	
	21	10878	
	22	11396	
	23	11914	
	others: rese	rved	

Module::MIS R	egister:: I	2C4_SDA_DE	L Set::1	ATTR::ctrl	Type::SR ADDR::0x9801_B094
Name	Bits	Read/Write	Reset State	Comments	
dmy1	31:12	R/W	'hff000	-	
Rvd	11:9	R/W	-	-	
en	8	R/W	'b0	SDA data p	ohase delay enable.
Rvd	7:5	R/W	-	-)	
sel	4:0	R/W	'h1		phase delay .
				(A) (A)	SDA delay time
			$\lambda \lambda$	3C1[+.0]	(unit: ns)
				1	518
				2	1036
				3	1554
				4	2072
				5	2590
				6	3108
				7	3626
				8	4144
				9	4662
				10	5180
				11	5698
				12	6216
				13	
				14	
				15	
				16	8288
				17	8806

	18	9324
	19	9842
	20	10360
	21	10878
	22	11396
	23	11914
	others: reser	ved

Module::MIS R	egister:: I	2C5_SDA_DE	Set::1	ATTR::ctrl Type::SR ADDR::0x9801_B098	
Name	Bits	Read/Write	Reset	Comments	
dmay 1	31:12	R/W	State 'hff000		
dmy1 Rvd	11:9	R/W	-	-	
	8	R/W	'b0	SDA data phase delay enable.	
en	O	IX/ VV	00	SDA data phase delay enable.	
Rvd	7:5	R/W	-	-	
sel	4:0	R/W	'h1	SDA data phase delay . SDA delay time (unit : ns)	
			$\lambda \lambda$	1 518	
				2 1036	
				3 1554	
				4 2072	
				5 2590	
				6 3108	
	71			7 3626	
				8 4144	
				9 4662	
				10 5180	
				11 5698	
				12 6216	
				13 6734	
				14 7252	
				15 7770	
				16 8288	
				17 8806	
				18 9324	

	19	9842
	20	10360
	21	10878
	22	11396
	23	11914
	others: rese	rved

Module::MIS R	egister:: I	RTC_SYS_SYI	NC Set::1	ATTR::ctrl Type::SR ADDR::0x9801_B09C			
Name	Bits	Read/Write	Reset State	Comments			
Rvd	31:2	R/W	-	-			
wdog_ov_xor _en	1	R/W	'b0	Watch dog overflow reset XOR function enable 1'b0: wdog_ov_swc OR wdog_ov_nwc 1'b1: wdog_ov_swc XOR wdog_ov_nwc If 1'b1 and wdog_ov_swc,wdog_ov_nwc inverse at the same time the reset will be ignored.			
en	0	R/W	,p0	RTC interrupt asynchronous enable. 1'b1: Hsec,Min,Hour and Date interrupt from RTC will be synchronous to sys domain and then osc domain 1'b0: only 2 osc DFF and posedge latch 1'b1: for RTC crystal at 27MHz or others 1'b0: for RTC crystal at 32768Hz			

Module::MIS F	Register:: (GATING_EN		Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B0E0	
Name	Bits	Read/Write	Reset State		Comments			
Rvd	31:6	R/W	_		-			
fan	5	R/W	'b1		Enable clock gating function.			
timer	4	R/W	'b1		Enable clock gating function.			
ur2_h5	3	R/W	'b1		Enable clock gating function.			
ur1_h5	2	R/W	'b1 Enable clock gating function.				nction.	
dummy1	1	R/W	'b1 Enable clock gating function.					
dummy0	0	R/W	'b1 Enable clock gating function.					

Module::MIS	Register:: I	DUMMY2		Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B0E4	
Name	Bits Read/Write		Reset		Comments			
			State					
dummy2	310	R/W	'h0		Dummy			

Module::MIS	Module::MIS Register:: DUMMY3				ATTR::ctrl	Type::SR	ADDR::0x9801_B0E8
Name	ame Bits Read/Write Res		set	Comments			
			Sta	te			
dummy3	310	R/W	ʻhff	ffffff	Dummy		

Module::MIS	Register:: 1	UR_H5_CTRL	ATTR::ctrl	Type::SR	ADDR::0x9801_B0F0		
Name	Bits	Read/Write	Reset State		Comments		
Rvd	31:4	R/W	-		_		
tx_clr	3	R/W	'b0				
rx_int_mask	2	R/W	'b0				
rx_err_clr	1	R/W	'b0				
en	0	R/W	'b0				

Module::MIS	Register	r:: UR_H5_ST	Set::1	A	ATTR::nor	Type::SR	ADDR::0x9801_B0F4
Name	Bits	Read/Write	Reset		Comment	S	
			State				
Rvd	31:3	R/W	-		-		
rx_err_st	2:0	R	'h0		H5 err sta	te	
					3'b001:0	RC error	
					3'b010:0	Checksum	error
					3'b100 : p	ayload len	gth error

Module::MIS Re	egister:: [JR2_H5_CTRI	Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B0F8
Name	Bits	Read/Write	Reset	Comments	S	
			State			
Rvd	31:4	R/W	-	-		
tx_clr	3	R/W	'b0			
rx_int_mask	2	R/W	'b0			
rx_err_clr	1	R/W	'b0			
en	0	R/W	'b0			

Module::MIS	Register	r:: UR2_H5_S7	Set::1	ATTR::nor	Type::SR	ADDR::0x9801_B0FC	
Name	Bits	Read/Write	Reset	Comment	S		
			State				
Rvd	31:3	R/W	-	-			
rx_err_st	2:0	R	'h0	H5 err sta	te		
				3'b001:0	3'b001 : CRC error		
				3'b010:0	Checksum	error	
				3'b100 : p	payload len	igth error	

2 GPIO

2.1 Register

2.1.1 Register Summery

Physical Address		R/W	Description
0x9801_B100	MIS_GP0DIR	R/W	GPIO 0 Direction Configuration Register
0x9801_B104	MIS_GP1DIR	R/W	GPIO 1 Direction Configuration Register
0x9801_B108	MIS_GP2DIR	R/W	GPIO 0 Direction Configuration Register
0x9801_B10C	MIS_GP3DIR	R/W	GPIO 1 Direction Configuration Register
0x9801_B110	MIS_GP0DATO	R/W	GPIO 0 Data Output Register
0x9801_B114	MIS_GP1DATO	R/W	GPIO 1 Data Output Register
0x9801_B118	MIS_GP2DATO	R/W	GPIO 0 Data Output Register
0x9801_B11C	MIS_GP3DATO	R/W	GPIO 1 Data Output Register
0x9801_B120	MIS_GP0DATI	R/W	GPIO 0 Data Input Register
0x9801_B124	MIS_GP1DATI	R/W	GPIO 1 Data Input Register
0x9801_B128	MIS_GP2DATI	R/W	GPIO 0 Data Input Register
0x9801_B12C	MIS_GP3DATI	R/W	GPIO 1 Data Input Register
0x9801_B130	MIS_GP0IE	R/W	GPIO 0 Interrupt Enable Register
0x9801_B134	MIS_GP1IE	R/W	GPIO 1 Interrupt Enable Register
0x9801_B138	MIS_GP2IE	R/W	GPIO 0 Interrupt Enable Register
0x9801_B13C	MIS_GP3IE	R/W	GPIO 1 Interrupt Enable Register
0x9801_B140	MIS_GP0DP	R/W	GPIO 0 Detection Polarity Register
0x9801_B144	MIS_GP1DP	R/W	GPIO 1 Detection Polarity Register
0x9801_B148	MIS_GP2DP	R/W	GPIO 0 Detection Polarity Register
0x9801_B14C	MIS_GP3DP	R/W	GPIO 1 Detection Polarity Register
0x9801_B150	MIS_GPDEB	R/W	GPIO De-bounce Length Register

2.1.2 Register Description

Module::MI	odule::MIS Register::GP0DIR			Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B100		
Name	Bits	Read/Write	Reset		Comments				
			State						
GPDIR	31:0	R/W	'h0		GPIO[31:0] direction configuration.				
					0: Configured as input pin				
					1: Configure	ed as output	pin		

Module::MI	S Regi	ster::GP1DIR		Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B104		
Name	Bits	Read/Write Rese		set	Comments				
			Sta	te					
GPDIR	31:0	R/W	'h0	•	GPIO[63:32] direction	configuration.		

	0: Configured as input pin
	1: Configured as output pin

Module::MIS Register::GP2DIR				Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B108	
Name	Bits	Read/Write	Reset		Comments			
			State					
GPDIR	31:0	R/W	'h0		GPIO[95:64] direction configuration.			
					0: Configured as input pin			
					1: Configure	ed as output	pin	

Module::MI	S Reg	Register::GP3DIR		Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B10 C	
Name	Bits	Read/Write	Reset State		Comments			
Rvd	31:5	-	-		-			
GPDIR	4:0	R/W	ʻh0		GPIO[100:9 0: Configure 1: Configure	ed as input		

Module::MIS	Registe	r::GP0DATO	Set::1	ATTR::ctrl Type::SR ADDR::0x9801_B11
Name	Bits	Read/Write	Reset State	Comments
GPDATO	31:0	R/W	'h0	GPIO[31:0] data output. Write GPDATO to output data to gpio pad

Module::MIS	Register	:::GP1DATO	Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B114		
Name Bits Read/Write Reset				Commen	Comments			
			State					
GPDATO	31:0	R/W	'h0	GPIO[63:	GPIO[63:32] data output.			
				Write GP	Write GPDATO to output data to gpio			
	•			pad				

Module::MIS	Register::GP2DATO			Set::1	Α	ATTR::ctrl Type::SR		ADDR::0x9801_B118
Name	Bits	Read/Write	Reset		Comments			
			St	ate				
GPDATO	31:0	R/W	'h	0		GPIO[95:64] data output.		
						Write GPDATO to output data to gpio		
						pad		

Module::MIS	Register::GP3DATO		Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B11C
Name	Bits	Read/Write	Reset	Commen	ts	

			State	
Rvd	31:5	-	-	-
GPDATO	4:0	R/W	'h0	GPIO[100:96] data output. Write GPDATO to output data to gpio pad

Module::MIS	Register::GP0DATI		Set::1	ATTR::nor	Type::SR	ADDR::0x9801_B120	
Name	Bits	Read/Write	Reset	Commen	Comments		
			State				
GPDATI	31:0	R	'h0	GPIO[31	:0] data inp	out.	
				Read GP	Read GPDATI to read data from gpio		
				pad.			

Module::MIS	Register::GP1DATI		Set::1	A	ATTR::nor	Type::SR	ADDR::0x9801_B124
Name	Bits	Read/Write	Reset		Commen	ts	
			State				
GPDATI	31:0	R	'h0		GPIO[63:	32] data in	iput.
					Read GPI	ATI to rea	ad data from gpio
					pad.		

Module::MIS	Register::GP2DATI		Set::1	ATTR::nor	Type::SR	ADDR::0x9801_B128
Name	Bits	Read/Write	Reset	Comments		
			State			
GPDATI	31:0	R	'h0	_	64] data in	•
				Read GPI	DATI to rea	ad data from gpio
				pad.		

Module::MIS	Register::GP3DATI		Set::1	ATTR::nor	Type::SR	ADDR::0x9801_B12C		
Name	Bits	Bits Read/Write Reset		Comments				
			State					
Rvd	31:5	-	-	-	-			
GPDATI	4:0	R	'h0	GPIO[100	GPIO[100:96] data input.			
				Read GPI	Read GPDATI to read data from gpio			
				pad.				

Module::MIS Register::GP0IE				Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B130		
Name	Bits	Read/Writ	Reset		Comments				
		e	State						
GP	31:0	R/W	'h0		GPIO[31:0] Assert/Dis-assert Interrupt				
					Enable Register.				

	0: disable interrupt.
	1: enable interrupt.

Module::M	Module::MIS Register::GP1IE Set::1				ATTR::ctrl	Type::SR	ADDR::0x9801_B134	
Name	Bits	Read/Writ	Reset		Comments			
		e	Sta	te				
GP	31:0	R/W	'h0		GPIO[63:32] Assert/Dis-assert Interrupt			
					Enable Register.			
					0: disable interrupt.			
					1: enable interrupt.			

Module::MIS Register::GP2IE Set::				Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B138		
Name	Bits	Read/Writ	Reset State		Comments				
		e							
GP	31:0	R/W	'h0		GPIO[95:64	1] Assert/D	Dis-assert Interrupt		
					Enable Regi	ister.			
					0: disable interrupt.				
					1: enable interrupt.				

Module::MIS Register::GP3IE		Set::1	ATTR::ctrl Type::SR ADDR::0x9801_B13C	
Name	Bits	Read/Writ	Reset State	Comments
Rvd	31:5	-	-	-
GP	4:0	R/W	'h0	GPIO[100:96] Assert/Dis-assert Interrupt
				Enable Register.
				0: disable interrupt.
				1: enable interrupt.

Module::MI	Module::MIS Register::GP0DP			ATTR::ctrl	Type::SR	ADDR::0x9801_B140
Name	Bits	Read/Write Reset		Comments		
			State			
GPHA	31:0	R/W	'hffffffff	GPIO[31:0]	detection	polarity
	•			0: low active.		
				1: high acti	ve.	

Module::MI	Module::MIS Register::GP1DP			Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B144	
Name	Bits	Read/Write	Reset		Comments			
			State					
GPHA	31:0	R/W	ʻhff	ffffff	GPIO[63:32	2] detection	n polarity	
					0: low active.			
					1: high acti	ve.		

Module::MI	::MIS Register::GP2DP			Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B148	
Name	Bits	Read/Write	Reset		Comments			
			State					
GPHA	31:0	R/W	'hff	ffffff	GPIO[95:64	detection	n polarity	
					0: low active.			
					1: high acti	ve.		

Module::MI	S Regi	ster::GP3DP		Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_B14C
Name	Bits	Read/Write	Res Star		Comments		
Rvd	31:5	-	-		-		
GPHA	4:0	R/W	'h7		GPIO[100:9	6] detection	on polarity
					0: low activ	e.	
					1: high acti	ve.	

Module::MIS F	Register::(GPDEB	Set::1	AT	ΓR::ctrl	Type::SR	ADDR::0x9801_	_B150
Name	Bits	Read/Write	Reset		Comm	ents		
			State					
Rvd	31:28	-	-		+()			
write_enable7	27	W	-		Write 6	enable for b	oit[26:24]	
CLK7	26:24	R/W	'b0			ınce clock l		
					MIS_C	GPDEB[26:	24] control	
						100:96].		
					3'h7: 3	80ms		
					3'h6: 2	20ms		
					3'h5: 1	0ms		
					3'h4: 1	ms		
		λ			3'h3: 1	.00us		
					3'h2: 1			
					3'h1: 1	us		
						87ns (27MF	,	
write_enable6	23	W	-		Write 6	enable for b	oit[22:20]	
CLK6	22:20	R/W	'b0		De-bou	ince clock l	base.	
						GPDEB[22:	20] control	
					_	95:80].		
					3'h7: 3	80ms		
					3'h6: 2	-		
					3'h5: 1	-		
					3'h4: 1			
					3'h3: 1			
					3'h2: 1			
					3'h1: 1			
						37ns (27MF	,	
write_enable5	19	W	-		Write 6	enable for b	oit[18:16]	

CLK5	18:16	R/W	'b0	De-bounce clock base. MIS_GPDEB[18:16] control GPIO[79:64]. 3'h7: 30ms 3'h6: 20ms 3'h5: 10ms 3'h4: 1ms 3'h3: 100us 3'h2: 10us 3'h1: 1us 3'h0: 37ns (27MHz)
write_enable4	15	W	_	Write enable for bit[14:12]
CLK4	14:12	R/W	'b0	De-bounce clock base. MIS_GPDEB[14:12] control GPIO[63:48]. 3'h7: 30ms 3'h6: 20ms 3'h5: 10ms 3'h4: 1ms 3'h3: 100us 3'h2: 10us 3'h1: 1us 3'h0: 37ns (27MHz)
write_enable3	11	W	-	Write enable for bit[10:8]
CLK3	10:8	R/W	'60	De-bounce clock base. MIS_GPDEB[10:8] control GPIO[47:32]. 3'h7: 30ms 3'h6: 20ms 3'h5: 10ms 3'h4: 1ms 3'h3: 100us 3'h2: 10us 3'h1: 1us 3'h0: 37ns (27MHz)
write_enable2	7	W	-	Write enable for bit[6:4]
CLK2	6:4	R/W	'b0	De-bounce clock base. MIS_GPDEB[6:4] control GPIO[31:16]. 3'h7: 30ms 3'h6: 20ms 3'h5: 10ms 3'h4: 1ms 3'h3: 100us 3'h2: 10us 3'h1: 1us 3'h0: 37ns (27MHz)

write_enable1	3	W	-	Write enable for bit[2:0]
CLK1	2:0	R/W	'b0	De-bounce clock base.
				MIS_GPDEB[2:0] control GPIO[15:0].
				3'h7: 30ms
				3'h6: 20ms
				3'h5: 10ms
				3'h4: 1ms
				3'h3: 100us
				3'h2: 10us
				3'h1: 1us
				3'h0: 37ns (27MHz)

Notice: GPIO base on the de-bounce clock to read GPIO input data.

3 UART

3.1 Register

3.1.1 UR1 Register Description

3.1.1 UR1 Register Description									
Module::MI	S Reg	ister::U1RBR_TH	IR_	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B200		
	DLL								
Name	Bits	Read/Write	Res	et	Comments				
			Stat	te					
Rvd	31:8	-	-		-				
DLL	7:0	R/W	'h00)	DLAB=1				
					Divisor Latch LSB				
RBD	7:0	R	-		DLAB=0				
					Read: Receiver Buffer Data.				
THD	7:0	W	-		DLAB=0				
					Write: Transmitter Holding Data.				

Module::MI	Module::MIS Register::U1IER_DLH		H	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B204
Name	Bits	Read/Write	Res	et	Comments		
			Stat	te			
Rvd	31:8	-	-		-		
DLH	7:0	R/W	'h00		DLAB=1		
				X	Divisor Lat	ch MSB	

Rvd	31:8	-		-
PTIME	7	R/W	'h0	DLAB=0
				Programmable THRE Interrupt Mode
				Enable.
				This is used to enable/disable the
				generation of THRE Interrupt.
				0 = disabled
				1 = enabled
Rvd	6:4	-	-	-
EDSSI	3	R/W	'h0	DLAB=0
				Enable modem status register interrupt.
				This is used to enable/disable the
				generation of Modem Status Interrupt. This
				is the fourth highest priority
ELSI	2	R/W	'h0	DLAB=0
				Enable receiver line status interrupt.
				This is used to enable/disable the
				generation of Receiver Line Status
				Interrupt. This is the highest priority
				interrupt.

				0 = disabled
				1 = enabled
ETBEI	1	R/W	'h0	DLAB=0
				Enable transmitter holding register empty
				interrupt.
				This is used to
				enable/disable the generation of Transmitter
				Holding Register Empty
				Interrupt. This is the third highest priority
				interrupt.
				0 = disabled
				1 = enabled
ERBFI	0	R/W	'h0	DLAB=0
				Enable received data available interrupt.
				This is used to enable/disable the
				generation of Received Data Available
				Interrupt and the Character Timeout
				Interrupt (if in FIFO mode and FIFOs
				enabled). These are the second
				highest priority interrupts.
				0 = disabled
				1 = enabled

Module::MI	S Reg	ister::U1IIR_FCR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801	_B208
Name	Bits	Read/Write	Reset State	Comments			
Rvd	31:8	-		-			
FIFO16	7:6	R	'h O	FIFOs Enabled whether the disabled. 00 = disabled 11 = enabled	FIFOs are	is used to in enabled or	dicate
Rvd	5:4	-	ı	-			
IID	3:0	R	'h1	Interrupt ID priority pend can be one of	ling interru	•	ighest
				0000 = mode	em status		
				0001 = no in		nding	
				0010 = THR			
				0100 = recei			
				0110 = recei		itus	
				0111 = busy			
				1100 = chara	cter timeo	ut	

RTRG	7:6	W	'h0	RCVR Trigger. This is used to select the
				trigger level in the receiver FIFO
				at which the Received Data Available
				Interrupt is generated. In auto flow
				control mode it is used to determine when
				the rts_n signal is de-asserted. It
				also determines when the dma_rx_req_n
				signal is asserted in certain
				modes of operation. The following trigger
				levels are supported:
				00 = 1 character in the FIFO
				01 = FIFO ¼ full
				10 = FIFO ½ full
				11 = FIFO 2 less than full
TET	5:4	-	'h0	TX Empty Trigger. Writes have no effect
				when THRE_MODE_USER ==
				Disabled. This is used to select the empty
				threshold level at which the
				THRE Interrupts are generated when the
				mode is active. It also determines
				when the dma_tx_req_n signal is asserted
				when in certain modes of
				operation. The following trigger levels are
				supported:
				00 = FIFO empty
				01 = 2 characters in the FIFO
				10 = FIFO ¼ full
				11 = FIFO ½ full
DMAM	3	W	'b0	DMA Mode. This determines the DMA
DIVIANI	3			signalling mode used for the
				dma_tx_req_n and dma_rx_req_n
				output signals. But dma_tx_req_n and
	X			dma_rx_req_n aren't be used in
				hardware RTL design.
				0 = mode 0
THE CT		***	(1.0	1 = mode 1
TFRST	2	W	'b0	Transmitter FIFO reset. Writes 1 to clear
				the transmitter FIFO.
RFRST	1	W	'b0	Receiver FIFO reset. Writes 1 to clear the
				receiver FIFO.
EFIFO	0	W	'b0	Enable FIFO. When this bit is set, enable
				the transmitter and receiver FIFOs.
				Changing this bit clears the FIFOs.

Module::MIS	Register::U1LCR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801 B20C

Name	Bits	Read/Write	Reset State	Comments
Rvd	31:8	_	_	_
DLAB	7	R/W	'b0	Divisor latch access bit
BRK	6	R/W	'b0	Break Control Bit. This is used to cause a break condition to be transmitted to the receiving device. If set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR[4], the sout line is forced low until the Break bit is cleared.
Rvd	5	-	-	-
EPS	4	R/W	'b0	Even Parity Select. This is used to select between even and odd parity, when parity is enabled (PEN set to one). If set to one, an even number of logic 1s is transmitted or checked. If set to zero, an odd number of logic 1s is transmitted or checked.
PEN	3	R/W	'b0	Parity enable. This bit is used to enable and disable parity generation and detection in transmitted and received serial character respectively. 0 = parity disabled 1 = parity enabled
STB	2	R/W	'60	Number of stop bits. This is used to select the number of stop bits per character that the peripheral transmits and receives. If set to zero, one stop bit is transmitted in the serial data. If set to one and the data bits are set to 5 (LCR[1:0] set to zero) one and a half stop bits is transmitted. Otherwise, two stop bits are transmitted. Note that regardless of the number of stop bits selected, the receiver checks only the first stop bit. 0 = 1 stop bit 1 = 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop bit
WLS	1:0	R/W	'b00	Word length select or Data Length Select. This is used to select the number of data bits per character that the peripheral transmits and receives. The number of bit that may be selected areas follows: 00 = 5 bits 01 = 6 bits

	10 = 7 bits
	11 = 8 bits

Module::MI	S Reg	ister::U1MCR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B210
Name	Bits	Read/Write	Reset	Comments
D 1	21.6		State	
Rvd AFCE	31:6	- R/W	- 'b0	- Auto Flow Control Enable. When FIFOs are enabled
AICE	3	K/W	BU	and the Auto Flow Control Enable (AFCE) bit is set,
				Auto Flow Control features are enabled
				0 = Auto Flow Control Mode disabled
LOOP	4	D/W	11.0	1 = Auto Flow Control Mode enabled Loopback
	3:2	R/W	'b0	Loopback
Rvd		-	- (1.0	Degreet to Cond. This is read to directly control the
RTS	1	R/W	'b0	Request to Send. This is used to directly control the Request to Send (rts_n) output. The Request To
				Send (rts_n) output is used to inform the modem or
				data set that the UART is ready to exchange data.
				When Auto RTS Flow Control is not enabled
				(MCR[5] set to zero), the rts_n signal is set low by
				programming MCR[1] (RTS) to a high.In Auto Flow
				Control, AFCE_MODE == Enabled and active
				(MCR[5] set to one) and FIFOs enable (FCR[0] set to one), the rts_n output is controlled in the same
				way, but is also gated with the receiver FIFO
				threshold trigger (rts_n is inactive high when above
				the threshold). The rts_n signal is de-asserted when
				MCR[1] is set low.
				Note that in Loopback mode (MCR[4] set to one),
				the rts_n output is held inactive high while the value
DTD	0	D/W	1 -0	of this location is internally looped back to an input. Data Terminal Ready. This is used to directly
DTR		R/W	'b0	control the Data Terminal Ready (dtr_n) output. The
	X			value written to this location is inverted and driven
				out on dtr_n, that is:
				0 = dtr_n de-asserted (logic 1)
				1 = dtr_n asserted (logic 0)
				The Data Terminal Ready output is used to inform
				the modem or data set that the UART is ready to
				establish communications. Note that in Loopback
				mode (MCR[4] set to one), the dtr_n output is held inactive high while the value of this location is
				internally looped back to an input.

Module::MI	S Reg	ister::U1LSR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B214
Name	Bits	Read/Write	Res	et	Comments		

			State	
Rvd	31:8	_	_	_
RFE	7	R	'b0	Errors in receiver FIFO. At least one parity, framing and break error in the FIFO. Receiver FIFO Error bit. This bit is only relevant when FIFOs are enabled (FCR[0] set to one). This is used to indicate if there is at least one parity error, framing error, or break indication in the FIFO. 0 = no error in RX FIFO 1 = error in RX FIFO This bit is cleared when the LSR is read and the character with the error is at the top of the receiver FIFO and there are no subsequent errors in the FIFO. Transmitter Empty bit. If FIFOs enabled (FCR[0] set
				to one), this bit is set whenever the Transmitter Shift Register and the FIFO are both empty. If in non- FIFO mode or FIFOs are disabled, this bit is set whenever the Transmitter Holding Register and the Transmitter Shift Register are both empty.
THRE	5	R	'b0	Transmitter holding register empty. Character mode: THR is empty. FIFO mode: transmitter FIFO is empty Transmit Holding Register Empty bit. If THRE mode is disabled (IER[7] set to zero) and regardless of FIFO's being implemented/enabled or not, this bit indicates that the THR or TX FIFO is empty. This bit is set whenever data is transferred from the THR or TX FIFO to the transmitter shift register and no new data has been written to the THR or TX FIFO. This also causes a THRE Interrupt to occur, if the THRE Interrupt is enabled. If FIFO_MODE != NONE and both modes are active (IER[7] set to one and FCR[0] set to one respectively), the functionality is switched to indicate the transmitter FIFO is full, and no longer controls THRE interrupts, which are then controlled by the FCR[5:4] threshold setting.
BI	4	R	'b0	Break Interrupt indicator. Break Interrupt bit. This is used to indicate the detection of a break sequence on the serial input data. It is set whenever the serial input, sin, is held in a logic '0' state for longer than the sum of start time + data bits + parity + stop bits. In the FIFO mode, the character associated with the break condition is carried through the FIFO and is revealed when the character is at the top of the FIFO. Reading the LSR clears the BI bit. In the non-FIFO mode, the BI indication occurs immediately and persists until the LSR is read.
FE	3	R	'b0	Framing error. This is used to indicate the occurrence of a framing error in the receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the

				racaived data
				received data.
				In the FIFO mode, since the framing error is
				associated with a character received, it is revealed
				when the character with the framing error is at the
				top of the FIFO. When a framing error occurs, the
				UART tries to resynchronize. It does this by
				assuming that the error was due to the start bit of the
				next character and then continues receiving the other
				bit i.e. data, and/or parity and stop. It should be
				noted that the Framing Error (FE) bit (LSR[3]) is set
				if a break interrupt has occurred, as indicated by
				Break Interrupt (BI) bit (LSR[4]).
				0 = no framing error
				1 = framing error
DE .		7		Reading the LSR clears the FE bit.
PE	2	R	'b0	Parity error.
				This is used to indicate the occurrence of a parity
				error in the receiver if the Parity Enable (PEN) bit
				(LCR[3]) is set.
				In the FIFO mode, since the parity error is
				associated with a character received, it is revealed
				when the character with the parity error arrives at the
				top of the FIFO. It should be noted that the Parity
				Error (PE) bit (LSR[2]) is set if a break interrupt has
				occurred, as indicated by Break Interrupt (BI) bit
				(LSR[4]).
				0 = no parity error
				1 = parity error
OF	1	D	(1.4	Reading the LSR clears the PE bit.
OE	1	R	'b0	Overrun error bit. This is used to indicate the
				occurrence of an overrun error. This occurs if a new
				data character was received before the previous data
				was read.
				In the non-FIFO mode, the OE bit is set when a new
				character arrives in the receiver before the previous character was read from the RBR. When this
				happens, the data in the RBR is overwritten. In the
				FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver.
				The data in the FIFO is retained and the data in the
				receive shift register is lost. 0 = no overrun error
				1 = overrun error
DR	0	R	11.0	Reading the LSR clears the OE bit.
DK		IX.	'b0	Data ready. Character mode: data ready in RBR
				FIFO mode: receiver FIFO is not empty. This is used to indicate that the receiver contains at
				least one character in the RBR or the receiver FIFO.
				0 = no data ready 1 = data ready
				This bit is cleared when the RBR is read in non-
	1			FIFO mode, or when the receiver FIFO is empty, in
				FIFO mode.
1				THO mode.

Module::MI	S Reg	ister::U1MSR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B218					
Name	Bits	Read/Write	Reset	Comments					
			State						
Rvd	31:8	-	-	-					
DCD	7	R	'b0	In loopback mode, returns the bit 2 of					
				MCR.					
				In normal mode, returns 1.					
RI	6	R	'b0	In loopback mode, returns the bit 3 of					
				MCR.					
				In normal mode, returns 0.					
DSR	5	R	'b0	In loopback mode, returns the bit 0 of MCR					
				In normal mode, returns 1.					
CTS	4	R	'b0	Clear to send.					
				0 = CTS# detected high					
				1 = CTS# detected low					
DDCD	3	R	'b0	Delta DCD. DCD change. The bit will be clear					
				to zero after read the bit.					
TERI	2	R	'b0	Delta RI. RI change. The bit will be clear to zero					
D D G D		_	(1.0	after read the bit.					
DDSR	1	R	'b0	Delta DSR, DSR change. The bit will be clear					
DCTC	0	D	1 -0	to zero after read the bit. Delta clear to send. CTSchange . The bit will be					
DCTS	0	R	'b0	clear to zero after read the bit.					
				crear to zero arter read the ort.					

p.s:

DCTS (bit 0), DDSR (bit 1) and DDCD (bit 3) bits record whether the modem control lines (cts_n, dsr_n and dcd_n) have changed since the last time the CPU read the MSR. TERI (bit 2) indicates ri_n has changed from an active low, to an inactive high state since the last time the MSR was read. In Loopback Mode, DCTS reflects changes on MCR bit 1 (RTS), DDSR reflects changes on MCR bit 0 (DTR) and DDCD reflects changes on MCR bit 3 (Out2), while TERI reflects when MCR bit 2 (Out1) has changed state from a high to a low. The CTS, DSR, RI and DCD Modem Status bits contain information on the current state of the modem control lines. CTS (bit 4) is the compliment of cts_n, DSR (bit 5) is the compliment of dsr_n, RI (bit 6) is the compliment of ri_n and DCD (bit 7) is the compliment of dcd_n. In Loopback Mode, CTS is the same as MCR bit 1 (RTS), DSR is the same as MCR bit 0 (DTR), RI is the same as MCR bit 2 (Out1) and DCD is the same as MCR bit 3 (Out2).

Module::MI	S Reg	ister::U1SCR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B21C
Name	Bits	Read/Write	Rese	et	Comments		
			Stat	e			
Rvd	31:8	-	-		-		
SCR	7:0	R/W	'h0		Scratch Regi	ster.	

Module::MIS Register::U1SRBR Set::1 ATTR::sfdf	Type::SR	ADDR::0x9801 B230
--	----------	-------------------

			6				
Name	Bits	Read/Write	Reset	Comments			
			State				
Rvd	31:8	_	_	-			
RBD	31:8 7:0	- R	- 'h0	Receiver buffer data. This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it is overwritten, resulting in an overrun error. If in FIFO mode (FIFO_MODE != NONE) and FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data			
				character arrives, then the data already in the FIFO are preserved, but any incoming data is lost. An overrun error also occurs.			
Rvd	31:8	- ()	-	-			
THD	7:0	W	-	This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set.			
				If in non-FIFO mode or FIFOs are disabled (FCR[0] set to zero) and THRE is set,			

writing a single character to the THR clears the THRE. Any additional writes to the

	THR before the THRE is set again causes the THR data to be overwritten.
	If in FIFO mode and FIFOs are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.

Module::MI	S Reg	ister::U1FAR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B270
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:1	-	-	-
FAR	0	R/W	'h0	This register is use to enable a FIFO access
				mode for testing, so that the receive FIFO
				can be written by the master and the
				transmit FIFO can be read by the master
				when FIFOs are implemented and enabled.
				When FIFOs are not implemented or not
				enabled it allows the RBR to be written by
				the master and the THR to be read by the
				master.
				0 = FIFO access mode disabled
				1 = FIFO access mode enabled
			,	Note, that when the FIFO access mode is
				enabled/disabled, the control portion of the
				receive FIFO and transmit FIFO is reset and
				the FIFOs are treated as empty.

Module::MI	S Reg	ister::U1TFR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B274				
Name	Bits	Read/Write	Reset	Comments				
			State					
Rvd	31:8	-	-	-				
FAR	7:0	R	'h0	Transmit FIFO Read. These bits are only				
				valid when FIFO access mode is enabled				
				(FAR[0] is set to one).				
				When FIFOs are implemented and enabled,				
				reading this register gives the data at the top				
				of the transmit FIFO. Each consecutive read				
				pops the transmit FIFO and gives the next				
				data value that is currently at the top of the				

		FIFO.
		When FIFOs are not implemented or not
		enabled, reading this register
		gives the data in the THR.

Module::MI	S Reg	ister::U1RFW		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B278
Name	Bits	Read/Write	Res	et	Comments		
			Stat	te			
Rvd	31:1	-	-		-		
	0						
RFFE	9	W	'h0				ng Error. These bits
					•		FIFO access mode is
					,		set to one). When
							ed and enabled, this
							aming error detection
							eceive FIFO. When
						-	ented or not enabled,
							write framing error
					detection inf		*
RFPF	8	W	'h0			•	Error. These bits are
							FO access mode is
						_	set to one). When
						-	ed and enabled, this
							arity error detection
					information		
							implemented or not
							d to write parity error
					detection inf		
RFWD	7:0	W	'h0				Data. These bits are
							FO access mode is
					,		set to one). When
							ed and enabled, the
							the RFWD is pushed
							D. Each consecutive
							data to the next write
							FIFO. When FIFOs
					_		or not enabled, the
							the RFWD is pushed
					into the RBF	₹	

Module::MIS Register::U1USR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B27C				
Name	Bits	Read/Write	Reset		Comments					
			Stat	te						
Rvd	31:5	-	-		-					
RFF	4	R	'h0		Receive FIFO Full. This bit is only valid					
					when FIFO_STAT == YES. This is used to					

				indicate that the receive FIFO is completely
				full.
				0 = Receive FIFO not full
				1 = Receive FIFO Full
				This bit is cleared when the RX FIFO is no
				longer full.
RFNE	3	R	'h0	Receive FIFO Not Empty. This bit is only
				valid when FIFO_STAT == YES. This is
				used to indicate that the receive FIFO
				contains one or more entries.
				0 = Receive FIFO is empty
				1 = Receive FIFO is not empty
				This bit is cleared when the RX FIFO is
				empty.
TFE	2	R	'h0	Transmit FIFO Empty. This bit is only
				valid when FIFO_STAT == YES. This is
				used to indicate that the transmit FIFO is
				completely empty.
				0 = Transmit FIFO is not empty
				1 = Transmit FIFO is empty
				This bit is cleared when the TX FIFO is no
				longer empty.
TFNF	1	R	'h0	Transmit FIFO Not Full. This bit is only
				valid when FIFO_STAT == YES. This is
				used to indicate that the transmit FIFO in
				not full.
				0 = Transmit FIFO is full
				1 = Transmit FIFO is not full
				This bit is cleared when the TX FIFO is
				full.
BUSY	0	R	'h0	UART Busy. This bit is valid only when
				UART_16550_COMPATIBLE == NO and
				indicates that a serial transfer is in
				progress,; when cleared, indicates that the
				DW_apb_uart is idle or inactive.
				0 = DW_apb_uart is idle or inactive
				1 = DW_apb_uart is busy (actively
				transferring data)
				NOTE: It is possible for the UART Busy
				bit to be cleared even though a new
				character may have been sent from another
				device. That is, if the DW_apb_uart has no
				data in THR and RBR and there is no
				transmission in progress and a start bit of a
				new character has just reached the
				DW_apb_uart. This is due to the fact that a

		valid start is not seen until the middle of the bit period and this duration is dependent on the baud divisor that has been programmed.				
			ond system	at Has o	reen program	iiica.
		clock	has	been	impleme	ented
		(CLOCI	K_MODE	==	Enabled),	the
		assertion	n of this			
		bit is al	so delayed	by sev	eral cycles o	f the
		slower c	clock.			

Module::MIS Register::U1TFL				Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B280
Name	Bits	Read/Write	Res Stat		Comments		
Rvd	31:8	-	-		-		
TFL	7:0	R	'h0				This is indicates the in the transmit FIFO.

Module::MIS Register::U1RFL				Set::1	ATT	R::sf	df	Type::SR	ADDR::0x9801_B284
Name	Bits	Read/Write	Res	et	Con	ımer	ıts		
			Stat	te					
Rvd	31:8	-	-		-				
RFL	7:0	R	'h0						This is indicates the in the receive FIFO.

Module::MI	S Reg	ister::U1SRR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B288					
Name	Bits	Read/Write	Reset State	Comments					
Rvd	31:3		-	-					
XFR	2	W	ʻhO	register for (FCR[2]). To burden on previously we pretty static). This resets transmit FII empty. This request and DMA hand (DMA_EXT	the XM his can be software written FC just to res the cont FO and also de-a single sig shaking s FRA == YF is bit is 'se	elf-clearing'. It is not			
RFR	1	W	'h0			This is a shadow /R FIFO Reset bit			

				(FCR[1]). This can be used to remove the burden on software having to store previously written FCR values (which are pretty static) just to reset the receive FIFO This resets the control portion of the receive FIFO and treats the FIFO as empty. This also de-asserts the DMA RX request and single signals when additional DMA handshaking signals are selected (DMA_EXTRA == YES). Note that this bit is 'self-clearing'. It is not necessary to clear this bit.
UR	0	W	'h0	UART Reset. This asynchronously resets the DW_apb_uart and synchronously removes the reset assertion. For a two clock implementation both pclk and sclk domains are reset.

Module::MI	Module::MIS Register::U1SBCR			Set::1	ATT	R::sf	df	Type::SR	ADDR::0x9801_B290
Name	Bits	Read/Write	Reso Stat		Con	ımeı	nts		
Rvd	31:1	-	-						
SBCR	0	R/W	'h0						

Module::MI	S Reg	ister::U1SDMAM	5	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B294
Name	Bits	Read/Write	Reset		Comments		
			State				
Rvd	31:1		-		-		
SDMA M	0	R/W	'hO		register for This can be having to sto to the FCR i this value so gets updated signalling me and dma_rx	the DMA used to repore the present memory of that only d. This do not used for the present of th	This is a shadow mode bit (FCR[3]). emove the burden of viously written value and having to mask the DMA Mode bit etermines the DMA for the dma_tx_req_n utput signals when dshaking signals are TTRA

Module::MIS Register::U1SFE	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B298
-----------------------------	--------	------------	----------	-------------------

Name	Bits	Read/Write	Reset State	Comments
			State	
Rvd	31:1	-	-	-
SFE	0	R/W	'h0	Shadow FIFO Enable. This is a shadow
				register for the FIFO enable bit (FCR[0]).
				This can be used to remove the burden of
				having to store the previously written value
				to the FCR in memory and having to mask
				this value so that only the FIFO enable bit
				gets updated. This enables/disables the
				transmit (XMIT) and receive (RCVR)
				FIFOs. If this bit is set to zero (disabled)
				after being enabled then both the XMIT and
				RCVR controller portion of FIFOs are
				reset.

Module::MI	S Reg	ister::U1SRT		Set::1	ATTR::sfdf	Type::SR ADDR::0x9801_B29C
Name	Bits	Read/Write	Res		Comments	
			Stat	te		
Rvd	31:2	-	-		-	
SRT	1:0	R/W	'h0		Shadow RC	VR Trigger. This is a shadow
					register for	the RCVR trigger bits
					(FCR[7:6]).	This can be used to remove the
					burden of h	aving to store the previously
					written value	e to the FCR in memory and
						ask this value so that only the
					RCVR trigge	er bit gets updated.
					This is used	to select the trigger level in the
					receiver FIF	O at which the Received Data
					Available In	nterrupt is generated. It also
					determines v	when the dma_rx_req_n signal
					is asserted w	then DMA Mode $(FCR[3]) = 1$.
					The followin	g trigger levels are supported:
					00 = 1 charac	cter in the FIFO
					$01 = FIFO \frac{1}{4}$	full
					$10 = FIFO \frac{1}{2}$	full
					11 = FIFO 2	less than full

Module::MI	Module::MIS Register::U1STET			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B2A0
Name	Bits	Read/Write	Res Stat		Comments		
Rvd	31:2	-	-		-		
STET	1:0	R/W	'h0		shadow regi	ster for th	Trigger. This is a ne TX empty trigger an be used to remove

	the burden of having to store the previously
	written value to the FCR in memory and
	having to mask this value so that only the
	TX empty trigger bit gets updated.
	This is used to select the empty threshold
	level at which the THRE Interrupts are
	generated when the mode is active. The
	following trigger levels are supported:
	00 = FIFO empty
	01 = 2 characters in the FIFO
	10 = FIFO ¼ full
	11 = FIFO ½ full

Module::MIS	Regi	ster::U1HTX	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B2A4
Name	Bits	Read/Write	Reset State	Comments
Rvd	31:1	-	-	-
HTX	0	R/W	'h0	This register is use to halt transmissions for testing, so that the transmit FIFO can be filled by the master when FIFOs are implemented and enabled. 0 = Halt TX disabled 1 = Halt TX enabled Note, if FIFOs are implemented and not enabled, the setting of the halt TX register has no effect on operation.

Module::MI	S Reg	ister::U1DMASA		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B2A8
Name	Bits	Read/Write	Rese	et	Comments		
			State	e			
Rvd	31:1		-		-		
DMASA	0	W	'h0		software ack be terminate example, if then the D request. This single, RX re	cnowledge d due to ar the DMA o W_apb_ua s causes t equest and ote that this	to perform a DMA if a transfer needs to a error condition. For disables the channel, art should clear its the TX request, TX RX single signals to a bit is 'self-clearing'. ear this bit.

Module::MI	S Regis	Register::U1CPR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B2F4
Name	Bits	Read/Writ	Res	et	Comments		

		e	State	
Rvd	31:24	-	-	
FIFO_M	23:16	R	-	0x00 = 0
ODE				0x01 = 16
				0x02 = 32
				to
				0x80 = 2048
				0x81-0xff = reserved
Rvd	15:14	R	-	
DMA_E	13	R	-	0 = FALSE
XTRA				1 = TRUE
UART_	12	R	-	0 = FALSE
ADD_E				1 = TRUE
NCODE				
D_PAR				
AMS				
SHADO	11	R	-	0 = FALSE
W				1 = TRUE
FIFO_S	10	R	-	0 = FALSE
TAT				1 = TRUE
FIFO_A	9	R	-	0 = FALSE
CCESS				1=TRUE
ADDITI	8	R	-	0 = FALSE
ONAL_				1 = TRUE
FEAT				
SIR_LP_	7	R	-	0 = FALSE
MODE				1 = TRUE
SIR_MO	6	R	-	0 = FALSE
DE			•	1 = TRUE
THRE_	5	R	-	0 = FALSE
MODE				1 = TRUE
AFCE_	4	R	-	0 = FALSE
MODE				1 = TRUE
Rvd	3:2	R	-	
APB_D	1:0	R	-	00 = 8 bits
ATA_W				01 = 16 bits
IDTH				10 = 32 bits
				11 = reserved

Module::MI	S Regis	ster::U1UCV		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B2F8
Name	Bits	Read/Writ	Res	et	Comments		
		e	Stat	te			
UCV	31:0	R	-		ASCII valu	e for ea	ch number in the
					version, fol	lowed by	*. For example
					32_30_31_2	A represen	ts the version 2.01*

Module::MIS Register::U1CTR			Set::1	ATTR	R::sfdf	Type::SR	ADDR::	0x9801_B2FC	
Name	Bits	Read/Writ	Res	et	Com	ments			
		e	Stat	te					
CTR	31:0	R	_		This	registe	r contai	ns the	peripherals
					identi	fication	code.		

3.1.2 UR2 Register Description

3.1.2.1 UR2 Register Description

Module::M		Register::U2RBR_THR_ DLL			ATTR::sfdf	Type::SR ADDR::0x9801_B400
Name	Bits	Read/Write	Res Stat		Comments	
Rvd	31:8	-	-		-	
DLL	7:0	R/W	'h00)	DLAB=1 Divisor Late	ch LSB
		_				
RBD	7:0	R	-		DLAB=0 Read: Rece	iver Buffer Data.
THD	7:0	W	-	3/	DLAB=0	asmitter Holding Data

Module::MI	S Reg	ister::U2IER_DL	H Set:	ATTR::sfdf Type::SR ADDR::0x9801_B404
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:8	-	-	-
DLH	7:0	R/W	'h00	DLAB=1
				Divisor Latch MSB

Rvd	31:8	-	-	-
PTIME	7	R/W	'h0	DLAB=0
				Programmable THRE Interrupt Mode
				Enable.
				This is used to enable/disable the
				generation of THRE Interrupt.
				0 = disabled
				1 = enabled
Rvd	6:4	-	-	-
EDSSI	3	R/W	'h0	DLAB=0
				Enable modem status register interrupt.
				This is used to enable/disable the

				generation of Modem Status Interrupt. This is the fourth highest priority
ELSI	2	R/W	'h0	DLAB=0 Enable receiver line status interrupt. This is used to enable/disable the generation of Receiver Line Status Interrupt. This is the highest priority interrupt. 0 = disabled 1 = enabled
ETBEI	1	R/W	'h0	DLAB=0 Enable transmitter holding register empty interrupt. This is used to enable/disable the generation of Transmitter Holding Register Empty Interrupt. This is the third highest priority interrupt. 0 = disabled 1 = enabled
ERBFI	0	R/W	'hO	DLAB=0 Enable received data available interrupt. This is used to enable/disable the generation of Received Data Available Interrupt and the Character Timeout Interrupt (if in FIFO mode and FIFOs enabled). These are the second highest priority interrupts. 0 = disabled 1 = enabled

Module::MI	S Reg	ister::U2IIR_FCR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B408
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:8	-	-	-
FIFO16	7:6	R	'h 0	FIFOs Enabled. This is used to indicate whether the FIFOs are enabled or disabled. 00 = disabled 11 = enabled
Rvd	5:4	-	-	-
IID	3:0	R	'h1	Interrupt ID. This indicates the highest priority pending interrupt which can be one of the following types:

	I			0000 1
				0000 = modem status
				0001 = no interrupt pending
				0010 = THR empty
				0100 = received data available
				0110 = receiver line status
				0111 = busy detect
				1100 = character timeout
RTRG	7:6	W	'h0	RCVR Trigger. This is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt is generated. In auto flow control mode it is used to determine when the rts_n signal is de-asserted. It also determines when the dma_rx_req_n signal is asserted in certain modes of operation. The following trigger levels are supported: 00 = 1 character in the FIFO
				01 = FIFO ¼ full
				10 = FIFO ½ full
TET	5:4		'h0	11 = FIFO 2 less than full
				TX Empty Trigger. Writes have no effect when THRE_MODE_USER == Disabled. This is used to select the empty threshold level at which the THRE Interrupts are generated when the mode is active. It also determines when the dma_tx_req_n signal is asserted when in certain modes of operation. The following trigger levels are supported: 00 = FIFO empty
				01 = 2 characters in the FIFO
				10 = FIFO ¼ full
	•			11 = FIFO ½ full
DMAM	3	W	'b0	DMA Mode. This determines the DMA
				signalling mode used for the
				dma_tx_req_n and dma_rx_req_n
				output signals. But dma_tx_req_n and
				dma_rx_req_n aren't be used in
				hardware RTL design.
				0 = mode 0
				1 = mode 1
TFRST	2	W	'b0	Transmitter FIFO reset. Writes 1 to clear
11,1791		**	UU	
	1			the transmitter FIFO.

RFRST	1	W	'b0	Receiver FIFO reset. Writes 1 to clear the receiver FIFO.
EFIFO	0	W	'b0	Enable FIFO. When this bit is set, enable the transmitter and receiver FIFOs. Changing this bit clears the FIFOs.

Module::MI	S Reg	ister::U2LCR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B40C
Name	Bits	Read/Write	Reset State	Comments
Rvd	31:8	-	-	-
DLAB	7	R/W	'b0	Divisor latch access bit
BRK	6	R/W	'b0	Break Control Bit. This is used to cause a break condition to be transmitted to the receiving device. If set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR[4], the sout line is forced low until the Break bit is cleared.
Rvd	5	-	-	-
EPS	4	R/W	'b0	Even Parity Select. This is used to select between even and odd parity, when parity is enabled (PEN set to one). If set to one, an even number of logic 1s is transmitted or checked. If set to zero, an odd number of logic 1s is transmitted or checked.
PEN	3	R/W	ъ0	Parity enable. This bit is used to enable and disable parity generation and detection in transmitted and received serial character respectively. 0 = parity disabled 1 = parity enabled
STB	2	R/W	'b0	Number of stop bits. This is used to select the number of stop bits per character that the peripheral transmits and receives. If set to zero, one stop bit is transmitted in the serial data. If set to one and the data bits are set to 5 (LCR[1:0] set to zero) one and a half stop bits is transmitted. Otherwise, two stop bits are transmitted. Note that regardless of the number of stop bits selected, the receiver checks only the first stop bit. 0 = 1 stop bit 1 = 1.5 stop bits when DLS (LCR[1:0]) is

				zero, else 2 stop bit
WLS	1:0	R/W	'b00	Word length select or Data Length Select. This is used to select the number of data bits per character that the peripheral transmits and receives. The number of bit that may be selected areas follows: 00 = 5 bits 01 = 6 bits 10 = 7 bits
				11 = 8 bits

Module::MI	S Reg	ister::U2MCR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B410
Name	Bits	Read/Write	Reset State	Comments
David	21.6		State	
Rvd AFCE	31:6	- D/W/		Auto Flow Control Enable. When FIFOs are enabled
AFCE	3	R/W	'b0	and the Auto Flow Control Enable (AFCE) bit is set,
				Auto Flow Control features are enabled
				0 = Auto Flow Control Mode disabled
				1 = Auto Flow Control Mode enabled
LOOP	4	R/W	'b0	Loopback
Rvd	3:2	-	-	-
RTS	1	R/W	'b0	Request to Send. This is used to directly control the
				Request to Send (rts_n) output. The Request To
				Send (rts_n) output is used to inform the modem or
				data set that the UART is ready to exchange data.
				When Auto RTS Flow Control is not enabled
				(MCR[5] set to zero), the rts_n signal is set low by
				programming MCR[1] (RTS) to a high.In Auto Flow
				Control, AFCE_MODE == Enabled and active
				(MCR[5] set to one) and FIFOs enable (FCR[0] set
				to one), the rts_n output is controlled in the same
				way, but is also gated with the receiver FIFO
				threshold trigger (rts_n is inactive high when above
				the threshold). The rts_n signal is de-asserted when MCR[1] is set low.
				MCK[1] is set low.
				Note that in Loopback mode (MCR[4] set to one),
				the rts_n output is held inactive high while the value
				of this location is internally looped back to an input.
DTR	0	R/W	'b0	Data Terminal Ready. This is used to directly
				control the Data Terminal Ready (dtr_n) output. The
				value written to this location is inverted and driven
				out on dtr_n, that is:
				$0 = dtr_n de$ -asserted (logic 1)
				1 = dtr_n asserted (logic 0)
				The Data Terminal Ready output is used to inform

	the modem or data set that the UART is ready to
	establish communications. Note that in Loopback
	mode (MCR[4] set to one), the dtr_n output is held
	inactive high while the value of this location is
	internally looped back to an input.

Module::M	IS Reg	ister::U2LSR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801	_B414		
Name	Bits	Read/Write	Reset State	Comments	Comments				
Rvd	31:8	_	-	_					
RFE	7	R	'b0	and break error Receiver FIFO when FIFOs ar used to indicat framing error, of 0 = no error in 1 = error in RX This bit is cle character with	in the FIFO Control Error bit. The enabled (Figure 1) there is or break indicated and in the FIFO Control Error is the error is	least one parity, . This bit is only CR[0] set to one) at least one parit cation in the FIFC the LSR is read at the top of the subsequent errors	relevant . This is ty error,). and the receiver		
TEMT	6	R	'b0	to one), this bit Register and the FIFO mode on	t is set whence he FIFO are FIFOs are FIROs are	IFOs enabled (FC ever the Transmit e both empty. If disabled, this be Holding Register are both empty.	ter Shift in non-it is set		
THRE	5	R	'b0	mode is disable of FIFO's being indicates that the This bit is set of THR or TX FII no new data in FIFO. This also the THRE Interpretation in FCR[0] functionality is FIFO is full interrupts, where FCR[5:4] thres	e: THR is emansmitter FIF- ling Registered (IER[7] so g implemented the THR or The whenever date and the transport of the tra	apty. O is empty ber Empty bit. If et to zero) and re ed/enabled or not. X FIFO is empty. ta is transferred f insmitter shift regi itten to the THR HRE Interrupt to bled. If FIFO_Me active (IER[7] se one respectively o indicate the tra- longer controlled	gardless, this bit from the ster and or TX occur, if ODE!= to one y), the nsmitter THRE		
ВІ	4	R	'b0	Break interrupt Break Interrupt This is used t sequence on th the serial inpu	indicator. bit. o indicate t e serial inpu t, sin, is hel	he detection of at data. It is set w ld in a logic '0' s at time + data bits	henever state for		

			I	In the EIEO made the absorption and the d
				In the FIFO mode, the character associated with the
				break condition is carried through the FIFO and is
				revealed when the character is at the top of the
				FIFO. Reading the LSR clears the BI bit. In the non-
				FIFO mode, the BI indication occurs immediately
				and persists until the LSR is read.
FE	3	R	'b0	Framing error.
				This is used to indicate the occurrence of a framing
				error in the receiver. A framing error occurs when
				the receiver does not detect a valid STOP bit in the
				received data.
				In the FIFO mode, since the framing error is
				associated with a character received, it is revealed
				when the character with the framing error is at the
				top of the FIFO. When a framing error occurs, the
				UART tries to resynchronize. It does this by
				assuming that the error was due to the start bit of the
				next character and then continues receiving the other
				bit i.e. data, and/or parity and stop. It should be
				noted that the Framing Error (FE) bit (LSR[3]) is set
				if a break interrupt has occurred, as indicated by
				Break Interrupt (BI) bit (LSR[4]).
				0 = no framing error
				1 = framing error
				Reading the LSR clears the FE bit.
PE	2	R	'b0	Parity error.
				This is used to indicate the occurrence of a parity
				error in the receiver if the Parity Enable (PEN) bit
				(LCR[3]) is set.
				In the FIFO mode, since the parity error is
				associated with a character received, it is revealed
				when the character with the parity error arrives at the
				top of the FIFO. It should be noted that the Parity
				Error (PE) bit (LSR[2]) is set if a break interrupt has
				occurred, as indicated by Break Interrupt (BI) bit
			•	(LSR[4]).
				0 = no parity error
				1 = parity error
				Reading the LSR clears the PE bit.
OE	1	D	1 -0	Overrun error bit. This is used to indicate the
JE		Ř	'b0	occurrence of an overrun error. This occurs if a new
				data character was received before the previous data
				· · · · · · · · · · · · · · · · · · ·
				was read. In the non EIEO mode, the OE bit is set when a new
	1	i		In the non-FIFO mode, the OE bit is set when a new
				character arrives in the receiver before the massicus
1				character arrives in the receiver before the previous
				character was read from the RBR. When this
				character was read from the RBR. When this happens, the data in the RBR is overwritten. In the
				character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO
				character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver.
				character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the
				character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost.
				character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost. $0 = \text{no}$ overrun error
				character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost. 0 = no overrun error 1 = overrun error
DR	0	R	'b0	character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost. $0 = \text{no}$ overrun error

	Character mode: data ready in RBR FIFO mode: receiver FIFO is not empty.
	This is used to indicate that the receiver contains at
	least one character in the RBR or the receiver FIFO.
	0 = no data ready
	1 = data ready
	This bit is cleared when the RBR is read in non-
	FIFO mode, or when the receiver FIFO is empty, in
	FIFO mode.

Module::MI	S Reg	ister::U2MSR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B418
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:8	-	-	-
DCD	7	R	'b0	In loopback mode, returns the bit 2 of
				MCR.
				In normal mode, returns 1.
RI	6	R	'b0	In loopback mode, returns the bit 3 of
				MCR.
				In normal mode, returns 0.
DSR	5	R	'b0	In loopback mode, returns the bit 0 of MCR
				In normal mode, returns 1.
CTS	4	R	'b0	Clear to send.
				0 = CTS# detected high
				1 = CTS# detected low
DDCD	3	R	'b0	Delta DCD. DCD change. The bit will be clear
				to zero after read the bit.
TERI	2	R	'b0	Delta RI. RI change. The bit will be clear to zero
				after read the bit.
DDSR	1	R	'b0	Delta DSR. DSR change. The bit will be clear
D.C.T.C.	0		(1.0)	to zero after read the bit.
DCTS	0	R	'b0	Delta clear to send. CTSchange. The bit will be clear to zero after read the bit.
				cical to zero after read the off.

p.s:

DCTS (bit 0), DDSR (bit 1) and DDCD (bit 3) bits record whether the modem control lines (cts_n, dsr_n and dcd_n) have changed since the last time the CPU read the MSR. TERI (bit 2) indicates ri_n has changed from an active low, to an inactive high state since the last time the MSR was read. In Loopback Mode, DCTS reflects changes on MCR bit 1 (RTS), DDSR reflects changes on MCR bit 0 (DTR) and DDCD reflects changes on MCR bit 3 (Out2), while TERI reflects when MCR bit 2 (Out1) has changed state from a high to a low. The CTS, DSR, RI and DCD Modem Status bits contain information on the current state of the modem control lines. CTS (bit 4) is the compliment of cts_n, DSR (bit 5) is the compliment of dsr_n, RI (bit 6) is the compliment of ri_n and DCD (bit 7) is the compliment of dcd_n. In Loopback Mode, CTS is the same as MCR bit 1 (RTS), DSR is the same as MCR bit 0 (DTR), RI is the same as MCR bit 2 (Out1) and DCD is the same as MCR bit 3 (Out2).

Module::MIS Register::U2SCR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B41C				
Name	Bits	Read/Write	Reset State		Comments				
Rvd	31:8	-	-		-				
SCR	7:0	R/W	'h0		Scratch Register.				

Module::MIS Register::U2SRBR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B430				
Name	Bits	Read/Write	Res	6	Comments				
Name	Dits	Keau/ Write	State		Comments				
Rvd	31:8	_	-	ic .	_				
RBD	7:0	R	'h0		Receiver buf	fer data			
KDD	7.0		110				ter for the RBR and		
					has been allocated sixteen 32-bit locations				
							burst accesses from		
							ter contains the data		
						_	erial input port (sin)		
					in UART m	ode or the	serial infrared input		
					(sir_in) in in	nfrared mo	de. The data in this		
					register is v	valid only	if the Data Ready		
						he Line sta	tus Register (LSR) is		
					set.				
					-		(2220 11022		
							e (FIFO_MODE ==		
							disabled (FCR[0] set		
					to zero), the data in the RBR must be read				
					before the next data arrives, otherwise it is				
					overwritten, resulting in an overrun error.				
					If in FIFO n	node (FIFC	D_MODE != NONE)		
							(FCR[0] set to one),		
							he head of the receive		
							FIFO is full and this		
					register is r	not read b	efore the next data		
							the data already in		
						-	d, but any incoming		
					data is lost. A	An overrun	error also occurs.		
D 1	21.0	ī	I	-					
Rvd	31:8	-	-		- -	1 ,	. C /1 (TITE 1		
THD	7:0	W	-			-	ster for the THR and		
							teen 32-bit locations		
							burst accesses from		
					the master.	ınıs registe	er contains data to be		

	transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set.
	If in non-FIFO mode or FIFOs are disabled (FCR[0] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten.
	If in FIFO mode and FIFOs are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during
	configuration. Any attempt to write data when the FIFO is full results in the write data being lost.

Module::MI	S Reg	ister::U2FAR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B470
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:1	-		-
FAR	0	R/W	'h0	This register is use to enable a FIFO access mode for testing, so that the receive FIFO can be written by the master and the transmit FIFO can be read by the master when FIFOs are implemented and enabled. When FIFOs are not implemented or not enabled it allows the RBR to be written by the master and the THR to be read by the master. 0 = FIFO access mode disabled 1 = FIFO access mode enabled Note, that when the FIFO access mode is enabled/disabled, the control portion of the receive FIFO and transmit FIFO is reset and the FIFOs are treated as empty.

Module::MIS Register::U2TFR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B474	
Name	Bits	Read/Write	Res	et	Comments		

_			State	
Rvd	31:8	-	-	-
FAR	7:0	R	'h0	Transmit FIFO Read. These bits are only valid when FIFO access mode is enabled (FAR[0] is set to one). When FIFOs are implemented and enabled, reading this register gives the data at the top of the transmit FIFO. Each consecutive read pops the transmit FIFO and gives the next data value that is currently at the top of the FIFO. When FIFOs are not implemented or not enabled, reading this register gives the data in the THR.

Module::MI	S Reg	ister::U2RFW	Se	et::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B478
Name	Bits	Read/Write	Reset		Comments		
			State				
Rvd	31:1	-	-		-		
	0						
RFFE	9	W	'h0		Receive FI	FO Frami	ng Error. These bits
							TIFO access mode is
							set to one). When
							ed and enabled, this
							ming error detection
							eceive FIFO. When
						-	ented or not enabled,
			1 4				write framing error
			(1.2		detection info		
RFPF	8	W	'h0			•	Error. These bits are
					•		O access mode is
					,		set to one). When
	X						ed and enabled, this
							arity error detection
					information t		
							implemented or not
					detection info		to write parity error
RFWD	7:0	W	'h0				Data. These bits are
MYWD	7.0	**	110				O access mode is
					•		set to one). When
							ed and enabled, the
						-	the RFWD is pushed
							D. Each consecutive
							lata to the next write
					-		FIFO. When FIFOs
	l .	<u>l</u>					0un 111 05

		are not implemented or not enabled, the
		data that is written to the RFWD is pushed
		into the RBR.

Module::MI	S Reg	ister::U2USR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B47C
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:5	-	-	-
RFF	4	R	'h0	Receive FIFO Full. This bit is only valid
				when FIFO_STAT == YES. This is used to
				indicate that the receive FIFO is completely
				full.
				0 = Receive FIFO not full
				1 = Receive FIFO Full
				This bit is cleared when the RX FIFO is no
				longer full.
RFNE	3	R	'h0	Receive FIFO Not Empty. This bit is only
				valid when FIFO_STAT == YES. This is
				used to indicate that the receive FIFO
				contains one or more entries.
				0 = Receive FIFO is empty
				1 = Receive FIFO is not empty
				This bit is cleared when the RX FIFO is
TEE	2	D	(1.0	empty
TFE	2	R	'h0	Transmit FIFO Empty. This bit is only valid when FIFO_STAT == YES. This is
				used to indicate that the transmit FIFO is
				completely empty.
				0 = Transmit FIFO is not empty
				1 = Transmit FIFO is empty
				This bit is cleared when the TX FIFO is no
				longer empty.
TFNF	1	R	'h0	Transmit FIFO Not Full. This bit is only
				valid when FIFO_STAT == YES. This is
				used to indicate that the transmit FIFO in
				not full.
				0 = Transmit FIFO is full
				1 = Transmit FIFO is not full
				This bit is cleared when the TX FIFO is
				full.
BUSY	0	R	'h0	UART Busy. This bit is valid only when
				UART_16550_COMPATIBLE == NO and
				indicates that a serial transfer is in
				progress,; when cleared, indicates that the
				DW_apb_uart is idle or inactive.
				0 = DW_apb_uart is idle or inactive

1 = DW_apb_uart is busy (actively
transferring data)
NOTE: It is possible for the UART Busy
bit to be cleared even though a new
character may have been sent from another
device. That is, if the DW_apb_uart has no
data in THR and RBR and there is no
transmission in progress and a start bit of a
new character has just reached the
DW_apb_uart. This is due to the fact that a
valid start is not seen until the middle of the
bit period and this duration is dependent on
the baud divisor that has been programmed.
If a second system
clock has been implemented
(CLOCK_MODE == Enabled), the
assertion of this
bit is also delayed by several cycles of the
slower clock.

Module::MI	S Reg	ister::U2TFL	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B480
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:8	-	-	-
TFL	7:0	R	'h0	Transmit FIFO Level. This is indicates the
				number of data entries in the transmit FIFO.

Module::MI	Module::MIS Register::U2RFL			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B484
Name	Bits	Read/Write	Reset		Comments		
			State				
Rvd	31:8		-		-		
RFL	7:0	R	'h0				This is indicates the in the receive FIFO.

Module::MI	S Reg	ister::U2SRR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B488
Name	Bits	Read/Write	Res	et	Comments		
			State				
Rvd	31:3	-	_		-		
XFR	2	W	'h0		XMIT FIF	O Reset.	This is a shadow
					register for	the XM	IT FIFO Reset bit
					,		used to remove the
					burden on	software	having to store
							R values (which are
					pretty static)	just to res	et the transmit FIFO.

				This resets the control portion of the
				transmit FIFO and treats the FIFO as
				empty. This also de-asserts the DMA TX
				request and single signals when additional
				DMA handshaking signals are selected
				$(DMA_EXTRA == YES).$
				Note that this bit is 'self-clearing'. It is not
				necessary to clear this bit.
RFR	1	W	'h0	RCVR FIFO Reset. This is a shadow
				register for the RCVR FIFO Reset bit
				(FCR[1]). This can be used to remove the
				burden on software having to store
				previously written FCR values (which are
				pretty static) just to reset the receive FIFO
				This resets the control portion of the receive
				FIFO and treats the FIFO as empty. This
				also de-asserts the DMA RX request and
				single signals when additional DMA
				handshaking signals are selected
				$(DMA_EXTRA == YES).$
				Note that this bit is 'self-clearing'. It is not
				necessary to clear this bit.
UR	0	W	'h0	UART Reset. This asynchronously resets
				the DW_apb_uart and synchronously
				removes the reset assertion. For a two clock
				implementation both pclk and sclk domains
				are reset.

Module::MI	S Regi	ister::U2SBCR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B490
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:1		-	-
SBCR	0	R/W	'h0	

Module::MI	S Reg	ister::U2SDMAM	[Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B494
Name	Bits	Read/Write	Reset		Comments		
			State				
Rvd	31:1	-	_		-		
SDMA	0	R/W	'h0		Shadow DM	IA Mode.	This is a shadow
M					register for	the DMA	mode bit (FCR[3]).
					This can be	used to re	emove the burden of
					having to sto	ore the pre	viously written value
					to the FCR i	in memory	and having to mask
					this value so	that only	the DMA Mode bit

	gets updated. This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals when additional DMA handshaking signals are not selected (DMA_EXTRA == NO). 0 = mode 0
	0 = mode 0
	1 = mode 1

Module::MI	S Reg	ister::U2SFE	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B498
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:1	-	-	-
SFE	0	R/W	'h0	Shadow FIFO Enable. This is a shadow register for the FIFO enable bit (FCR[0]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the FIFO enable bit gets updated. This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs. If this bit is set to zero (disabled) after being enabled then both the XMIT and RCVR controller portion of FIFOs are
				reset.

Module::MIS Register::U2SRT Set::1				ATTR::sfdf	Type::SR	ADDR::0x9801_B49C
Name	Bits	Read/Write	Reset	Comments		
			State			
Rvd	31:2		-	-		
SRT	1:0	R/W	'h0	Shadow RC	VR Trigg	er. This is a shadow
				register for	r the R	CVR trigger bits
				(FCR[7:6]).	This can b	e used to remove the
				burden of h	naving to	store the previously
				written valu	e to the F	FCR in memory and
				having to m	ask this va	alue so that only the
				RCVR trigge	_	•
				This is used	to select th	ne trigger level in the
				receiver FIF	O at which	h the Received Data
					-	s generated. It also
						dma_rx_req_n signal
						Mode (FCR[3]) = 1.
					0 00	evels are supported:
				00 = 1 chara		FIFO
				$01 = FIFO \frac{1}{4}$		
				$10 = FIFO \frac{1}{2}$	full	

	11 = FIFO 2 less than full

Module::MI	S Reg	ister::U2STET	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B4A0			
Name	Bits	Read/Write	Reset	Comments			
			State				
Rvd	31:2	-	-	-			
STET	1:0	R/W	'h0	Shadow TX Empty Trigger. This is a			
				shadow register for the TX empty trigger			
				bits (FCR[5:4]). This can be used to remove			
				the burden of having to store the previously			
				written value to the FCR in memory and			
				having to mask this value so that only the			
				TX empty trigger bit gets updated.			
				This is used to select the empty threshold			
				level at which the THRE Interrupts are			
				generated when the mode is active. The			
				following trigger levels are supported:			
				00 = FIFO empty			
				01 = 2 characters in the FIFO			
				10 = FIFO ¼ full			
				11 = FIFO ½ full			

Module::MI	S Reg	ister::U2HTX	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B4A4
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:1	-		-
HTX	0	R/W	'h0	This register is use to halt transmissions for
				testing, so that the transmit FIFO can be
				filled by the master when FIFOs are
				implemented and enabled.
				0 = Halt TX disabled
				1 = Halt TX enabled
				Note, if FIFOs are implemented and not
				enabled, the setting of the halt TX register
				has no effect on operation.

Module::MIS Register::U2DMASA			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B4A8		
Name	Bits	Read/Write	Reset State		Comments			
Rvd	31:1	-	-		-			
DMASA	0	W	'h0		This register is use to perform a DMA software acknowledge if a transfer needs to be terminated due to an error condition. For			

	example, if the DMA disables the channel, then the DW_apb_uart should clear its request. This causes the TX request, TX single, RX request and RX single signals to de-assert. Note that this bit is 'self-clearing'.
	It is not necessary to clear this bit.

Module::MI	S Regis	ster::U2CPR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B4F4
Name	Bits	Read/Writ	Reset	Comments
		e	State	
Rvd	31:24	-	-	
FIFO_M	23:16	R	-	0x00 = 0
ODE				0x01 = 16
				0x02 = 32
				to
				0x80 = 2048
				0x81-0xff = reserved
Rvd	15:14	R	-	•
DMA_E	13	R	-	0 = FALSE
XTRA				1 = TRUE
UART_	12	R	-	0 = FALSE
ADD_E				1 = TRUE
NCODE				
D_PAR AMS				
SHADO	11	R		0 = FALSE
W	11	K	V	1 = TRUE
FIFO_S	10	R	_	0 = FALSE
TAT	10			1 = TRUE
FIFO A	9	R	-	0 = FALSE
CCESS				1 = TRUE
ADDITI	8	R	-	0 = FALSE
ONAL_				1 = TRUE
FEAT				
SIR_LP_	7	R	-	0 = FALSE
MODE				1 = TRUE
SIR_MO	6	R	-	0 = FALSE
DE				1 = TRUE
THRE_	5	R	-	0 = FALSE
MODE				1 = TRUE
AFCE_	4	R	-	0 = FALSE
MODE				1 = TRUE
Rvd	3:2	R	-	
APB_D	1:0	R	-	00 = 8 bits
ATA_W				01 = 16 bits

IDTH		10 = 32 bits
		11 = reserved

Module::MIS Register::U2UCV			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B4F8		
Name	Bits	Read/Writ	Reset		Comments			
		e	State					
UCV	31:0	R	-		ASCII valu	e for ea	ch number in the	
					version, fol	llowed by	*. For example	
					32_30_31_2	A represen	ts the version 2.01*	

Module::MI	S Regis	ster::U2CTR		Set::1	ATTR	::sfdf	Type::SR	ADDR::	0x9801_B4FC
Name	Bits	Read/Writ	Reset		Comments				
		e	Stat	te					
CTR	31:0	R	-		This	registe	er contain	ns the	peripherals
					identi	fication	code.		

4. I2C Control Module

3.1 Register

3.1.1 Register summery

Physical Address	Name	Width	R/W	Description
0x9801_B700	IC2_CON	7 bits	R/W	I2C Control
0x9801_B704	IC2_TAR	12 bits	R/W	I2C Target Address
0x9801_B708	IC2_SAR	10 bits	R/W	I2C Slave Address
0x9801_B70C	IC2_HS_MADDR	3 bits	R/W	I2C HS Master Mode Code Address
0x9801_B710	IC2_DATA_CMD	9(W)	R/W	I2C RX/TX Data Buffer and Command
		8 (R)		
0x9801_B714	IC2_SS_SCL_HCNT	16 bits	R/W	Standard speed I2C Clock SCL High Count
0x9801_B718	IC2_SS_SCL_LCNT	16 bits	R/W	Standard speed I2C Clock SCL Low Count
0x9801_B71C	IC2_FS_SCL_HCNT	16 bits	R/W	Fast speed I2C Clock SCL High Count
0x9801_B720	IC2_FS_SCL_LCNT	16 bits	R/W	Fast speed I2C Clock SCL Low Count
0x9801_B724	Rvd			
0x9801_B728	Rvd			
0x9801_B72C	IC2_INTR_STAT	12 bits	R	I2C Interrupt Status
0x9801_B730	IC2_INTR_MASK	12 bits	R/W	I2C Interrupt Mask
0x9801_B734	IC2_RAW_INTR_STAT	12 bits	R	I2C Raw Interrupt Status
0x9801_B738	IC2_RX_TL	8 bits	R/W	I2C Receive FIFO Threshold
0x9801_B73C	IC2_TX_TL	8 bits	R/W	I2C Transmit FIFO Threshold
0x9801_B740	IC2_CLR_INTR	1 bit	R	Clear Combined and Individual Interrupts
0x9801_B744	IC2_CLR_RX_UNDER	1 bit	R	Clear RX_UNDER Interrupt
0x9801_B748	IC2_CLR_RX_OVER	1 bit	R	Clear RX_OVER Interrupt
0x9801_B74C	IC2_CLR_TX_OVER	1 bit	R	Clear TX_OVER Interrupt
0x9801_B750	IC2_CLR_RD_REQ	1 bit	R	Clear RD_REQ Interrupt
0x9801_B754	IC2_CLR_TX_ABRT	1 bit	R	Clear TX_ABRT Interrupt
0x9801_B758	IC2_CLR_RX_DONE	1 bit	R	Clear RX_DONE Interrupt
0x9801_B75c	IC2_CLR_ACTIVITY	1 bit	R	Clear ACTIVITY Interrupt
0x9801_B760	IC2_CLR_STOP_DET	1 bit	R	Clear STOP_DET Interrupt
0x9801_B764	IC2_CLR_START_DET	1 bit	R	Clear START_DET Interrupt
0x9801_B768	IC2_CLR_GEN_CALL	1 bit	R	Clear GEN_CALL Interrupt
0x9801_B76C	IC2_ENABLE	1 bit	R/W	I2C Enable
0x9801_B770	IC2_STATUS	5 bits	R	I2C Status register
0x9801_B774	IC2_TXFLR	4bits	R	Transmit FIFO Level Register
0x9801_B778	IC2_RXFLR	4 bits	R	Receive FIFO Level Register
0x9801_B77C	IC2_SDA_HOLD	16 bits		I2C SDA Hold Time Length Register
0x9801_B780	IC2_TX_ABRT_SOURC	16 bits	R/W	I2C Transmit Abort Status Register
	E			
0x9801_B784	IC2_SLV_DATA_NAC	1 bit	R/W	Generate Slave Data NACK Register
	K_ONLY			
0x9801_B788	IC2_DMA_CR	2 bits	R/W	DMA Control Register for transmit and receive
				handshaking interface

0x9801_B78c	IC2_DMA_TDLR	3bits	R/W	DMA Transmit Data Level
0x9801_B790	IC2_DMA_RDLR	3bits	R/W	DMA Receive Data Level
0x9801_B794	IC2_SDA_SETUP	8 bits	R/W	I2C SDA Setup Register
0x9801_B798	IC2_ACK_GENERAL_	1 bit	R/W	I2C ACK General Call Register
	CALL			
0x9801_B79C	IC2_ENABLE_STATUS	3 bits	R	I2C Enable Status Register
0x9801_B7F4	IC2_COMP_PARAM_1	32 bits	R	Component Parameter register
0x9801_B7F8	IC2_COMP_VERSION	32 bits	R	Component version ID
0x9801_B7FC	IC2_COMP_TYPE	32 bits	R	DW Component Type Register

Physical	Name	Width	R/W	Description
Address				
0x9801_B900	IC3_CON	7 bits		I2C Control
0x9801_B904	IC3_TAR			I2C Target Address
0x9801_B908	IC3_SAR			I2C Slave Address
0x9801_B90C	IC3_HS_MADDR	3 bits		I2C HS Master Mode Code Address
0x9801_B910	IC3_DATA_CMD	9(W) 8 (R)	R/W	I2C RX/TX Data Buffer and Command
0x9801 B914	IC3_SS_SCL_HCNT		R/W	Standard speed I2C Clock SCL High Count
0x9801_B918	IC3_SS_SCL_LCNT			Standard speed I2C Clock SCL Low Count
0x9801_B91C	IC3_FS_SCL_HCNT			Fast speed I2C Clock SCL High Count
0x9801 B920	IC3_FS_SCL_LCNT			Fast speed I2C Clock SCL Low Count
0x9801 B924	Rvd			
0x9801 B928	Rvd			
0x9801 B92C	IC3_INTR_STAT	12 bits	R	I2C Interrupt Status
0x9801 B930	IC3_INTR_MASK			I2C Interrupt Mask
0x9801 B934	IC3_RAW_INTR_STAT		R	I2C Raw Interrupt Status
0x9801_B938	IC3_RX_TL	8 bits	R/W	I2C Receive FIFO Threshold
0x9801_B93C	IC3_TX_TL	8 bits	R/W	I2C Transmit FIFO Threshold
0x9801_B940	IC3_CLR_INTR	1 bit	R	Clear Combined and Individual Interrupts
0x9801_B944	IC3_CLR_RX_UNDER	1 bit	R	Clear RX_UNDER Interrupt
0x9801_B948	IC3_CLR_RX_OVER	1 bit	R	Clear RX_OVER Interrupt
0x9801_B94C	IC3_CLR_TX_OVER	1 bit	R	Clear TX_OVER Interrupt
0x9801_B950	IC3_CLR_RD_REQ	1 bit	R	Clear RD_REQ Interrupt
0x9801_B954	IC3_CLR_TX_ABRT	1 bit	R	Clear TX_ABRT Interrupt
0x9801_B958	IC3_CLR_RX_DONE	1 bit	R	Clear RX_DONE Interrupt
0x9801_B95c	IC3_CLR_ACTIVITY	1 bit	R	Clear ACTIVITY Interrupt
0x9801_B960	IC3_CLR_STOP_DET	1 bit	R	Clear STOP_DET Interrupt
0x9801_B964	IC3_CLR_START_DET	1 bit	R	Clear START_DET Interrupt
0x9801_B968	IC3_CLR_GEN_CALL	1 bit	R	Clear GEN_CALL Interrupt
0x9801_B96C	IC3_ENABLE	1 bit	R/W	I2C Enable
0x9801_B970	IC3_STATUS	5 bits	R	I2C Status register
0x9801_B974	IC3_TXFLR	4bits	R	Transmit FIFO Level Register
0x9801_B978	IC3_RXFLR	4 bits	R	Receive FIFO Level Register
0x9801_B97C	IC3_SDA_HOLD	16 bits	R/W	I2C SDA Hold Time Length Register
0x9801_B980	IC3_TX_ABRT_SOURC	16 bits	R/W	I2C Transmit Abort Status Register
	E			
0x9801_B984	IC3_SLV_DATA_NAC	1 bit	R/W	Generate Slave Data NACK Register

	K_ONLY			
0x9801_B988	IC3_DMA_CR	2 bits	R/W	DMA Control Register for transmit and receive
				handshaking interface
0x9801_B98c	IC3_DMA_TDLR	3bits	R/W	DMA Transmit Data Level
0x9801_B990	IC3_DMA_RDLR	3bits	R/W	DMA Receive Data Level
0x9801_B994	IC3_SDA_SETUP	8 bits	R/W	I2C SDA Setup Register
0x9801_B998	IC3_ACK_GENERAL_	1 bit	R/W	I2C ACK General Call Register
	CALL			
0x9801_B99C	IC3_ENABLE_STATUS	3 bits	R	I2C Enable Status Register
0x9801_B9F4	IC3_COMP_PARAM_1	32 bits	R	Component Parameter register
0x9801_B9F8	IC3_COMP_VERSION	32 bits	R	Component version ID
0x9801_B9FC	IC3_COMP_TYPE	32 bits	R	DW Component Type Register

Physical	Name	Width	R/W	Description
Address				
0x9801 BA00	IC4 CON	7 bits	R/W	I2C Control
0x9801_BA04	IC4_TAR			I2C Target Address
0x9801 BA08	IC4 SAR			I2C Slave Address
0x9801_BA0C	IC4_HS_MADDR	3 bits	R/W	I2C HS Master Mode Code Address
0x9801_BA10	IC4_DATA_CMD	9(W)	R/W	I2C RX/TX Data Buffer and Command
		8 (R)		
0x9801_BA14	IC4_SS_SCL_HCNT	16 bits	R/W	Standard speed I2C Clock SCL High Count
0x9801_BA18	IC4_SS_SCL_LCNT	16 bits	R/W	Standard speed I2C Clock SCL Low Count
0x9801_BA1C	IC4_FS_SCL_HCNT			Fast speed I2C Clock SCL High Count
0x9801_BA20	IC4_FS_SCL_LCNT	16 bits	R/W	Fast speed I2C Clock SCL Low Count
0x9801_BA24	Rvd			
0x9801_BA28	Rvd			
0x9801_BA2C	IC4_INTR_STAT	12 bits		I2C Interrupt Status
0x9801_BA30	IC4_INTR_MASK			I2C Interrupt Mask
0x9801_BA34	IC4_RAW_INTR_STAT		R	I2C Raw Interrupt Status
0x9801_BA38	IC4_RX_TL	8 bits	R/W	I2C Receive FIFO Threshold
0x9801_BA3C	IC4_TX_TL	8 bits		I2C Transmit FIFO Threshold
0x9801_BA40	IC4_CLR_INTR	1 bit	R	Clear Combined and Individual Interrupts
0x9801_BA44	IC4_CLR_RX_UNDER	1 bit	R	Clear RX_UNDER Interrupt
0x9801_BA48	IC4_CLR_RX_OVER	1 bit	R	Clear RX_OVER Interrupt
0x9801_BA4C	IC4_CLR_TX_OVER	1 bit	R	Clear TX_OVER Interrupt
0x9801_BA50	IC4_CLR_RD_REQ	1 bit	R	Clear RD_REQ Interrupt
0x9801_BA54	IC4_CLR_TX_ABRT	1 bit	R	Clear TX_ABRT Interrupt
0x9801_BA58	IC4_CLR_RX_DONE	1 bit	R	Clear RX_DONE Interrupt
0x9801_BA5c	IC4_CLR_ACTIVITY	1 bit	R	Clear ACTIVITY Interrupt
0x9801_BA60	IC4_CLR_STOP_DET	1 bit	R	Clear STOP_DET Interrupt
0x9801_BA64	IC4_CLR_START_DET	1 bit	R	Clear START_DET Interrupt
0x9801_BA68	IC4_CLR_GEN_CALL	1 bit	R	Clear GEN_CALL Interrupt
0x9801_BA6C	IC4_ENABLE	1 bit	R/W	I2C Enable
0x9801_BA70	IC4_STATUS	5 bits	R	I2C Status register
0x9801_BA74	IC4_TXFLR	4bits	R	Transmit FIFO Level Register
0x9801_BA78	IC4_RXFLR	4 bits	R	Receive FIFO Level Register
0x9801_BA7C	IC4_SDA_HOLD	16 bits	R/W	I2C SDA Hold Time Length Register

0x9801_BA80	IC4_TX_ABRT_SOURC	16 bits	R/W	I2C Transmit Abort Status Register
	E			
0x9801_BA84	IC4_SLV_DATA_NAC	1 bit	R/W	Generate Slave Data NACK Register
	K_ONLY			
0x9801_BA88	IC4_DMA_CR	2 bits	R/W	DMA Control Register for transmit and receive
				handshaking interface
0x9801_BA8c	IC4_DMA_TDLR	3bits	R/W	DMA Transmit Data Level
0x9801_BA90	IC4_DMA_RDLR	3bits	R/W	DMA Receive Data Level
0x9801_BA94	IC4_SDA_SETUP	8 bits	R/W	I2C SDA Setup Register
0x9801_BA98	IC4_ACK_GENERAL_	1 bit	R/W	I2C ACK General Call Register
	CALL			_
0x9801_BA9C	IC4_ENABLE_STATUS	3 bits	R	I2C Enable Status Register
0x9801_BAF4	IC4_COMP_PARAM_1	32 bits	R	Component Parameter register
0x9801_BAF8	IC4_COMP_VERSION	32 bits	R	Component version ID
0x9801_BAFC	IC4_COMP_TYPE	32 bits	R	DW Component Type Register

Physical Address	Name	Width	R/W	Description
0x9801_BB00	IC5_CON	7 bits	R/W	I2C Control
0x9801_BB04	IC5_TAR	12 bits	R/W	I2C Target Address
0x9801_BB08	IC5_SAR	10 bits	R/W	I2C Slave Address
0x9801_BB0C	IC5_HS_MADDR	3 bits	R/W	12C HS Master Mode Code Address
0x9801_BB10	IC5_DATA_CMD	9(W) 8 (R)	R/W	I2C RX/TX Data Buffer and Command
0x9801_BB14	IC5_SS_SCL_HCNT	16 bits	R/W	Standard speed I2C Clock SCL High Count
0x9801_BB18	IC5_SS_SCL_LCNT	16 bits	R/W	Standard speed I2C Clock SCL Low Count
0x9801_BB1C	IC5_FS_SCL_HCNT	16 bits	R/W	Fast speed I2C Clock SCL High Count
0x9801_BB20	IC5_FS_SCL_LCNT	16 bits	R/W	Fast speed I2C Clock SCL Low Count
0x9801_BB24	Rvd			
0x9801_BB28	Rvd			
0x9801_BB2C	IC5_INTR_STAT	12 bits	R	I2C Interrupt Status
0x9801_BB30	IC5_INTR_MASK			I2C Interrupt Mask
0x9801_BB34	IC5_RAW_INTR_STAT	12 bits	R	I2C Raw Interrupt Status
0x9801_BB38	IC5_RX_TL	8 bits	R/W	I2C Receive FIFO Threshold
0x9801_BB3C	IC5_TX_TL	8 bits	R/W	I2C Transmit FIFO Threshold
0x9801_BB40	IC5_CLR_INTR	1 bit	R	Clear Combined and Individual Interrupts
0x9801_BB44	IC5_CLR_RX_UNDER	1 bit	R	Clear RX_UNDER Interrupt
0x9801_BB48	IC5_CLR_RX_OVER	1 bit	R	Clear RX_OVER Interrupt
0x9801_BB4C	IC5_CLR_TX_OVER	1 bit	R	Clear TX_OVER Interrupt
0x9801_BB50	IC5_CLR_RD_REQ	1 bit	R	Clear RD_REQ Interrupt
0x9801_BB54	IC5_CLR_TX_ABRT	1 bit	R	Clear TX_ABRT Interrupt
0x9801_BB58	IC5_CLR_RX_DONE	1 bit	R	Clear RX_DONE Interrupt
0x9801_BB5c	IC5_CLR_ACTIVITY	1 bit	R	Clear ACTIVITY Interrupt
0x9801_BB60	IC5_CLR_STOP_DET	1 bit	R	Clear STOP_DET Interrupt
0x9801_BB64	IC5_CLR_START_DET	1 bit	R	Clear START_DET Interrupt
0x9801_BB68	IC5_CLR_GEN_CALL	1 bit	R	Clear GEN_CALL Interrupt
0x9801_BB6C	IC5_ENABLE	1 bit	R/W	I2C Enable
0x9801_BB70	IC5_STATUS	5 bits	R	I2C Status register

0x9801_BB74	IC5_TXFLR	4bits	R	Transmit FIFO Level Register
0x9801_BB78	IC5_RXFLR	4 bits	R	Receive FIFO Level Register
0x9801_BB7C	IC5_SDA_HOLD	16 bits	R/W	I2C SDA Hold Time Length Register
0x9801_BB80	IC5_TX_ABRT_SOURC	16 bits	R/W	I2C Transmit Abort Status Register
	E			
0x9801_BB84	IC5_SLV_DATA_NAC	1 bit	R/W	Generate Slave Data NACK Register
	K_ONLY			
0x9801_BB88	IC5_DMA_CR	2 bits	R/W	DMA Control Register for transmit and receive
				handshaking interface
0x9801_BB8c	IC5_DMA_TDLR	3bits	R/W	DMA Transmit Data Level
0x9801_BB90	IC5_DMA_RDLR	3bits	R/W	DMA Receive Data Level
0x9801_BB94	IC5_SDA_SETUP	8 bits	R/W	I2C SDA Setup Register
0x9801_BB98	IC5_ACK_GENERAL_	1 bit	R/W	I2C ACK General Call Register
	CALL			
0x9801_BB9C	IC5_ENABLE_STATUS	3 bits	R	I2C Enable Status Register
0x9801_BBF4	IC5_COMP_PARAM_1	32 bits	R	Component Parameter register
0x9801_BBF8	IC5_COMP_VERSION	32 bits	R	Component version ID
0x9801_BBFC	IC5_COMP_TYPE	32 bits	R	DW Component Type Register

3.1.2 Second I2C Register Description

IC2_CON

•Name: I2C Control Register 0

•Size: 7 bits

•Address Offset: 0x00

•Read/Write Access: Read/Write

This register can be written only when the DW_apb_i2c is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect.

Module::MIS Register::	IC2_CON		Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B700
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:7	-	-	-
IC_SLAVE_DISABLE	6	R/W	ʻb1	This bit controls whether I2C has its slave disabled after reset. The slave can be disabled by programming a '1' into IC_CON[6]. By default the slave is enabled. 0: slave is enabled 1: slave is disabled
IC_RESTART_EN	5	R/W	ʻb1	Determines whether RESTART conditions may be sent when acting as a master. Some older slaves do not support handling RESTART conditions; however, RESTART conditions are used in

				several DW_apb_i2c operations.
				0: disable
				1: enable
				When RESTART is disabled, the master is
				prohibited from
				performing the following functions:
				Change direction within a transfer (split)
				Send a START BYTE
				 High-speed mode operation
				• Combined format transfers in 7-bit
				addressing modes
				 Read operation with a 10-bit address
				 Send multiple bytes per transfer
				By replacing RESTART condition followed
				by a STOP and a
				subsequent START condition, split operations
				are broken down
				into multiple DW_apb_i2c transfers. If the
				above operations are
				performed, it will result in setting bit 6
				(TX_ABRT) of the
				IC_RAW_INTR_STAT register.
IC_10BITADDR_MASTER	4	R/W	'bl	This bit controls whether the DW_apb_i2c
				starts its transfers in 10-bit addressing mode
			1	when acting as a master.
				0: 7-bit addressing
		AT		1: 10-bit addressing
IC_10BITADDR_SLAVE	3	R/W	'b1	When acting as a slave, this bit controls
				whether the DW_apb_i2c responds to 7- or
				10-bit addresses.
				0: 7-bit addressing. The DW_apb_i2c
				ignores transactions
				which involve 10-bit addressing; for 7-bit
	•			addressing, only the
				lower 7 bits of the IC_SAR register are
				compared.
				1: 10-bit addressing. The DW_apb_i2c
				responds to only 10-bit
				addressing transfers that match the full 10 bits
				of the IC_SAR
				register.
SPEED	2:1	R/W	'b10	Controls at which speed the DW_apb_i2c
				operates:
				0: illegal; writing a 0 results in setting SPEED
				to IC_MAX_SPEED_MODE
				1: standard mode (100 kbit/s)
				2: fast mode (400 kbit/s)
				· ···························/
				3: high speed mode (3.4 Mbit/s)

				standard mode (1 or 2) and a value of 2 or 3 is written, then IC_MAX_SPEED_MODE is stored.
MASTER_MODE	0	R/W	'ь1	This bit controls whether the DW_apb_i2c master is enabled or not. The slave is always enabled. 0: master disabled 1: master enabled

IC2_TAR

•Name: I2C Target Address Register

•Size: 12 bits

•Address Offset: 0x04

•Read/Write Access: Read/Write

All bits can be dynamically updated as long as any set of the following conditions are true:

● DW_apb_i2c is NOT enabled (IC_ENABLE is set to 0); or

● DW_apb_i2c is enabled (IC_ENABLE=1); AND

DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND there are NO entries in the TX FIFO (IC_STATUS[2]=1)

Module::MIS	Regis	ter::IC2_T	AR	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B704
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:13	-		-
IC_10BITADD	12	R/W	'b0	This bit controls whether the DW_apb_i2c starts its
R_MASTER				transfers in 7-or 10-bit addressing mode when acting as
				a master.
				0: 7-bit addressing
			÷	1: 10-bit addressing
				Dependencies: This bit exists in this register only if the
				I2C_DYNAMIC_TAR_UPDATE configuration
				parameter is set to "Yes" (1).
SPECIAL	11	R/W	'b0	This bit indicates whether software performs a General Call
				or START BYTE command.
				0: ignore bit 10 GC_OR_START and use IC_TAR normally
				1: perform special I2C command as specified in
CC OD CTART	10	D/W	'b0	GC_OR_START bit
GC_OR_START	10	R/W	00	If bit 11 (SPECIAL) is set to 1, then this bit indicates whether a General Call or START byte command is to be
				performed by the DW_apb_i2c.
				performed by the DW_apo_12c.
				0: General Call Address – after issuing a General Call, only
				writes may be performed. Attempting to issue a read
				command results in setting bit 6 (TX_ABRT) of the
				IC_RAW_INTR_STAT register.
				The DW_apb_i2c remains in General Call mode until the

				SPECIAL bit value (bit 11) is cleared. 1: START BYTE
IC_TAR	9:0	R/W	'h055	This is the target address for any master transaction. When transmitting a General Call, these bits are ignored. To generate a START BYTE, the CPU needs to write only once into these bits. If the IC_TAR and IC_SAR are the same, loopback exists but the FIFOs are shared between master and slave, so full loopback is not feasible. Only one direction loopback mode is supported (simplex), not duplex. A master cannot transmit to itself; it can transmit to only a slave.

IC2_SAR

•Name: I2C Slave Address Register

•Size: 10 bits

•Address Offset: 0x08

•Read/Write Access: Read/Write

Module::MIS	Reg	ister::IC2_	SAR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B708
Name	Bits	Read	Reset	Comments			
		/Write	State				
Rvd	31:10	-	-	-			
IC_SAR	9:0	R/W	'h055	The IC_SAF	holds the sla	ve address w	hen the I2C is
			· ·	operating as	a slave. IC_SA	AR holds the	e slave address to which
				the DW_ap	b_i2c respon	ds. For 7-bit	addressing, only
							be written only when
				the I2C inter	face is disable	ed, which cor	responds to the
							rites at other times have
				no effect.	-	-	

IC2_HS_MADDR

•Name: I2C HS Master Mode Code Address Register

•Size: 3 bits

•Address Offset: 0x0c

Module::MIS	Register::IC2_HS_MADDF				Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B70C
Name	Bits	Read /Write	Reset State	Con	nments			
Rvd	31:3	-	-	-				
IC_HS_MAR	2:0	R/W	,90	HS-1 that mast mode	mode ma are not u er has it e master	aster codes are used for slave a s unique maste s can be prese	reserved 8-laddressing or er code; up to nt on the san	HS mode master code. bit codes (00001xxx) rother purposes. Each be eight high-speed ne I2C bus system. ter goes away and

	becomes read-only returning 0's if the IC_MAX_SPEED_MODE configuration parameter is set to either Standard (1) or Fast (2). This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being
	set to 0. Writes at other times have no effect.

IC2_DATA_CMD

•Name: I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when filling the TX FIFO and the CPU reads from when retrieving bytes from RX FIFO

•Size: 11 bits (writes) •Address Offset: 0x10

Module::MIS	Regis	ter::IC2_D/	ATA_CMD	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B710
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:11	-	-	-
RESTART	10	W	'b0	This bit controls whether a RESTART is issued before the byte is
				sent or received. Thie bit is available only it
				IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1.
				1 – If IC_RESTART_EN is 1, a RESTART is issued before the data is sent/received (according to the value of CMD), regardless
				of whether of not the transfer direction is changing from the
				previous command; if IC_RESTART_EN is 0, a STOP followed
				by a START is issued instead.
				0 - If IC_RESTART_EN is 1, a RESTART is issued only if the
				transfer direction is changing from the previous command; is
				IC_RESTART_EN is 0, a STOP followed by a START is issued
STOP	0	W	'b0	instead. This bit controls whether a STOP is issued after the byte is sent o
STOP	9	W	00	received. This bit is available only it
				IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1.
				1 – STOP is issued after this byte, regardless of whether of not the
				Tx FIFO is empty. If the Tx FIFO is not empty, the master
				immediately tries to start a new transfer by issuing a START and
				arbitrating for the bus.
				0 - STOP is not issued after this byte, regardless of whether or no the Tx FIFO is empty. If the Tx FIFO is not empty, the master
				continues the current transfer by sending/receiving data bytes
				according to the value of the CMD bit. If the Tx FIFO is empty
				the master holds the SCL line low and stalls the bus until a new
				command is available in the Tx FIFO.
CMD	8	W	'b0	This bit controls whether a read or a write is performed.
				This bit does not control the direction when the
				DW_apb_i2c acts as a slave. It controls only the direction
				when it acts as a master.
				1 = Read
				0 = Write
				When a command is entered in the TX FIFO, this bit

				distinguishes the write and read commands. In slave-receiver mode, this bit is a "don't care" because writes to this register are not required. In slave-transmitter mode, a "0" indicates that CPU data is to be transmitted and as DAT or IC_DATA_CMD[7:0]. When programming this bit, you should remember the following: attempting to perform a read operation after a General Call command has been sent results in a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11 (SPECIAL) in the IC_TAR register has been cleared. If a "1" is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT interrupt occurs. NOTE: It is possible that while attempting a master I2C read transfer on DW_apb_i2c, a RD_REQ interrupt may have occurred simultaneously due to a remote I2C master addressing DW_apb_i2c. In this type of scenario, DW_apb_i2c ignores the IC_DATA_CMD write, generates a TX_ABRT interrupt, and waits to service the RD_REQ
DAT	7:0	R/W	'b0	This register contains the data to be transmitted or received on the I2C bus. If you are writing to this register and want to perform a read, bits 7:0 (DAT) are ignored by the DW_apb_i2c. However, when you read this register, these bits return the value of data received on the DW_apb_i2c interface.

IC2_SS_SCL_HCNT

•Name: Standard Speed I2C Clock SCL High Count Register

•Size: 16 bits

•Address Offset: 0x14

Module::MIS Register::IC2_SS_SCL_HCN T			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B714		
Name	Bits	Read /Write	Reset State	Comm	ents			
Rvd	31:1 6	-	-	-				
IC_SS_SCL_HCNT	15:0	R/W	'h007a	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock high-period count for standard speed. The table below shows some sample IC_SS_HCNT calculations. This register can be written only when the I2C interface is disabled which corresponds to the IC_ENABLE				

	register being set to 0. Writes at other times have no effect. The minimum valid value is 6; hardware prevents values less than this being written, and if attempted results in 6 being set. For designs with APB_DATA_WIDTH = 8 the order of programming is important to ensure the correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is read only.
--	---

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL High required min (us)	H_CNT (HEX/decimal)	SCL High Time
100	2	4	0008/8	4.00
100	6.6	4	001B/27	4.09
100	10	4	0028/40	4.00
100	75	4	012C/300	4.00
100	100	4	0190/400	4.00
100	125	4	01F4/500	4.00
100	1000	4	0EA0/4000	4.00

IC2_SS_SCL_LCNT

•Name: Standard Speed I2C Clock SCL Low Count Register

•**Size:** 16 bits

•Address Offset: 0x98

Module::MIS	Register	::IC2_SS_S	SCL_LCNT	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B718
Name	Bits	Read	Reset	Commo	ents		
		/Write	State				
Rvd	31:1	-	-	-			
	6						
IC_SS_SCL_LCN	15:0	R/W	'h008f	This reg	ister must be	set before an	y I2C bus transaction
T				sets the The tabl calculate This reg disabled being se	SCL clock love below shown ions. The correst to 0. Writes	w period cours some samp ritten only verponds to the at other time	D timing. This register ant for standard speed. The standard speed of the IC_SS_LCNT when the I2C interface is IC_ENABLE register as have no effect. The standard prevents values

	less than this being written, and if attempted results in 8 being set. For designs with APB_DATA_WIDTH = 8 the order of programming is important to ensure the correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is read only.
--	--

Notice : Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL Low required min (us)	L_CNT (HEX/Decimal)	SCL Low Time (us)
100	2	4.7	000A/10	5.00
100	6.6	4.7	0020/32	4.85
100	10	4.7	002F/47	4.70
100	75	4.7	0161/353	4.71
100	100	4.7	01D6/470	4.70
100	125	4.7	024C/588	4.70
100	1000	4	125C/4700	4.70

IC2_FS_SCL_HCNT

•Name: Fast Speed I2C Clock SCL High Count Register

•**Size:** 16 bits

•Address Offset: 0x1c

Module::MIS	e::MIS Register::IC2_FS_SCL_HCN T			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B71C
Name	Bits	Read /Write	Reset State	Comments			
Rvd	31:16	-	-	-			
IC_FS_SCL_HCN T	15:0	R/W	'h0013	can tak sets the used ir STAR' shows This re returni This re is disal	te place to ensue SCL clock his high-speed marker BYTE or Gesome sample I egister goes awang 0s if IC_M. egister can be webled, which combet it is set in the second secon	gh-period co ode to send neral CALL C_FS_SCL_ ay and beco AX_SPEED written only rresponds to	ny I2C bus transaction O timing. This register ount for fast speed. It is the Master Code and The table below _HCNT calculations. mes read-only _MODE = standard. when the I2C interface the IC_ENABLE other times have no

	The minimum valid value is 6; hardware prevents values less than this being written, and if attempted results in 6 being set. For designs with APB_DATA_WIDTH == 8 the order of programming is important to ensure the correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is
	read only.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL High required min (us)	H_CNT (HEX/Decimal)	SCL High Time (us)
400	10	0.6	0006/6	0.60
400	25	0.6	000F/15	0.60
400	50	0.6	001E/	0.60
400	75	0.6	002D/30	0.60
400	100	0.6	003C/60	0.60
400	125	0.6	004B/75	0.60
400	1000	0.6	0258/600	0.60
100 (through IC_MAX_ SPEED_MODE = standard)	N/A	N/A	disabled	N/A

IC2_FS_SCL_LCNT

•Name: Fast Speed I2C Clock SCL Low Count Register

•Size: 16 bits

•Address Offset: 0x20

Module::MIS	Register::IC2_FS_SCL_LCNT			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B720
Name	Bits	Read	Reset	Comn	Comments		
		/Write	State				
Rvd	31:16	=	-	=			
IC_FS_SCL_LCNT	15:0	R/W	'h0028	can tak sets the used in STAR	te place to ensue SCL clock lon high-speed m FBYTE or Ge	re proper I/O w period cou ode to send to neral CALL	ny I2C bus transaction O timing. This register unt for fast speed. It is the Master Code and . The table below LCNT calculations.

F	
	This register goes away and becomes read-only returning
	$0s ext{ if } IC_MAX_SPEED_MODE = standard.$
	This register can be written only when the I2C interface
	is disabled, which corresponds to the IC_ENABLE
	register being set to 0. Writes at other times have no
	effect.
	The minimum valid value is 8; hardware prevents values
	less than this being written, and if attempted results in 8
	being set. For designs with APB_DATA_WIDTH = 8
	the order of programming is important to ensure the
	correct operation of the DW_apb_i2c. The lower byte
	must be programmed first. Then the upper byte is
	programmed. If the value is less than 8 then the count
	value gets changed to 8.
	When the configuration parameter
	IC_HC_COUNT_VALUES is set to 1, this register is
	read only.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL Low required min (us)	L_CNT (HEX/Decimal)	SCL Low Time (us)
400	10	1.3	000D/13	1.30
400	25	1.3	0021/33	1.32
400	50	1.3	0041/65	1.30
400	75	1.3	0062/98	1.31
400	100	1.3	0082/130	1.30
400	125	1.3	00A3/163	1.30
400	1000	1.3	0514/1300	1.30
100 (through IC_MAX_ SPEED_MODE = standard)	N/A	N/A	disabled	N/A

IC2_INTR_STAT

•Name: I2C Interrupt Status Register

•Size: 12 bits

•Address Offset: 0x2C •Read/Write Access: Read

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are cleared by reading the matching interrupt clear register. The unmasked raw versions of these bits are available in the IC_RAW_INTR_STAT register.

Module::MIS	Regi	ster::IC2_II	NTR_STA	T Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B72C
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:12	-	-	-
R_GEN_CALL	11	R	'b0	See "IC_RAW_INTR_STAT" for a detailed description of
R_START_DET	10	R	'b0	these bits.
R_STOP_DET	9	R	'b0	
R_ACTIVITY	8	R	'b0	
R_RX_DONE	7	R	'b0	
R_TX_ABRT	6	R	'b0	
R_RD_REQ	5	R	'b0	
R_TX_EMPTY	4	R	'b0	
R_TX_OVER	3	R	'b0	
R_RX_FULL	2	R	'b0	
R_RX_OVER	1	R	'b0	
R_RX_UNDER	0	R	'b0	

IC2_INTR_MASK

•Name: I2C Interrupt Mask Register

•Size: 12 bits

•Address Offset: 0x30

•Read/Write Access: Read/Write

These bits mask their corresponding interrupt status bits. They are active high; a value of 0 prevents a

bit from generating an interrupt.

Module::MIS	Regis	ter::IC2_IN	TR_MAS	K Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B730
Name	Bits	Read	Reset	Comments	l .		
		/Write	State				
Rvd	31:12	-	-	-			
M_GEN_CALL	11	R/W	'b1	Masks this b	oit in the IC_I	NTR_STAT	register.
M_START_DET	10	R/W	'b0				
M_STOP_DET	9	R/W	'b0				
M_ACTIVITY	8	R/W	'b0				
M_RX_DONE	7	R/W	'b1				
M_TX_ABRT	6	R/W	'b1				
M_RD_REQ	5	R/W	'b1				
M_TX_EMPTY	4	R/W	'b1				
M_TX_OVER	3	R/W	'b1				
M_RX_FULL	2	R/W	'b1				
M_RX_OVER	1	R/W	'b1				
M_RX_UNDER	0	R/W	'b1				

IC2_RAW_INTR_STAT

•Name: I2C Raw Interpol Status Register

•Size: 12 bits

•Address Offset: 0x34

•Read/Write Access: Read/Write

 $Unlike \ the \ \underline{IC_INTR_STAT} \ register, \ these \ bits \ are \ not \ masked \ so \ they \ always \ show \ the \ true \ status \ of$

the DW_apb_i2c.

Module::MI F	Register::I0	C2_RAW_	INTR_ST	AT Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B734	
Name	Bits	Read /Write	Reset State	Comments	ı		ı	
Rvd	31:12	/ vvrite	State	_				
GEN_CALL	11	R	'b0		n o Conorol Co	all addraga is	raceived and it is	
				Set only when a General Call address is received and it is acknowledged. It stays set until it is cleared either by disabling DW_apb_i2c or when the CPU reads bit 0 of the IC_CLR_GEN_CALL register. DW_apb_i2c stores the received data in the Rx buffer.				
START_DET	10	R	'b0	occurred on to DW_apb_i2	the I2C interfaction in the I2C interfaction in the I2C interface in the	ce regardless n slave or ma	aster mode.	
STOP_DET	9	R	'b0	interface regardate interface regardate or mast	ardless of whet er mode.	her DW_apl	s occurred on the I2C b_i2c is operating in	
ACTIVITY	8	R	b0	Cleared. Then Disablin Reading Reading System r Once this bit is used to cle Even if the D until cleared,	re are four way g the DW_apb the IC_CLR_A the IC_CLR_I reset is set, it stays ar it. DW_apb_i2c m indicating tha	s to clear it: _i2c ACTIVITY INTR registe set unless on odule is idle t there was a	ne of the four methods , this bit remains set activity on the bus.	
RX_DONE	7	R	ʻb0	When the DW_apb_i2c is acting as a slave-transmitter, this bit is set to 1 if the master does not acknowledge a transmitted byte. This occurs on the last byte of the transmission,				
TX_ABRT	6	R	ʻb0	indicating that the transmission is done. This bit indicates if DW_apb_i2c, as an I2C transmitter, is unable to complete the intended actions on the contents of the transmit FIFO. This situation can occur both as an I2C master or an I2C slave, and is referred to as a "transmit abort". When this bit is set to 1, the IC_TX_ABRT_SOURCE register indicates the reason why the transmit abort takes places. NOTE: The DW_apb_i2c flushes/resets/empties the TX FIFO whenever this bit is set. The TX FIFO remains in this flushed				

		ı		
				state until the register IC_CLR_TX_ABRT is read. Once this
				read is performed, the TX FIFO is then ready to accept more
				data bytes from the APB interface.
RD_REQ	5	R	'b0	This bit is set to 1 when DW_apb_i2c is acting as a slave
				and another I2C master is attempting to read data from
				DW_apb_i2c. The DW_apb_i2c holds the I2C bus in a wait
				state (SCL=0) until this interrupt is serviced, which means
				that the slave has been addressed by a remote master that is
				asking for data to be transferred. The processor must respond
				to this interrupt and then write the requested data to the
				IC_DATA_CMD register. This bit is set to 0 just after the
				, v
TV EMPTY	4	D	'b0	processor reads the IC_CLR_RD_REQ register.
TX_EMPTY	4	R	Ю	This bit is set to 1 when the transmit buffer is at or below the
				threshold value set in the IC_TX_TL register. It is
				automatically cleared by hardware when the buffer level goes
				above the threshold. When the IC_ENABLE bit 0 is 0, the TX
				FIFO is flushed and held in reset. There the TX FIFO looks
				like it has no data within it, so this bit is set to 1, provided
				there is activity in the master or slave state machines. When
				there is no longer activity, then with ic_en=0, this bit is set to
				0.
TX_OVER	3	R	'b0	Set during transmit if the transmit buffer is filled to
				IC_TX_BUFFER_DEPTH and the processor attempts to issue
				another I2C command by writing to the IC_DATA_CMD
				register. When the module is disabled, this bit keeps its level
				until the master or slave state machines go into idle, and when
				ic_en goes to 0, this interrupt is cleared.
RX_FULL	2	R	'b0	Set when the receive buffer reaches or goes above the RX_TL
				threshold in the IC_RX_TL register. It is automatically cleared
				by hardware when buffer level goes below the threshold. If the
				module is disabled (IC_ENABLE[0]=0), the RX FIFO is
				flushed and held in reset; therefore the RX FIFO is not full. So
		X = X		this bit is cleared once the IC_ENABLE bit 0 is programmed
				with a 0, regardless of the activity that continues.
RX_OVER	1	R	'b0	Set if the receive buffer is completely filled to
M_OVER		``		IC_RX_BUFFER_DEPTH and an additional byte is received
				from an external I2C device. The DW_apb_i2c acknowledges
				this, but any data bytes received after the FIFO is full are lost.
				1
				If the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the mester or sleve state mechines are into idla
				its level until the master or slave state machines go into idle,
DV INDER	0	D	1 L0	and when ic_en goes to 0, this interrupt is cleared.
RX_UNDER	0	R	'b0	Set if the processor attempts to read the receive buffer when it
				is empty by reading from the IC_DATA_CMD register. If the
				module is disabled (IC_ENABLE[0]=0), this bit keeps its level
				until the master or slave state machines go into idle, and when
				ic_en goes to 0, this interrupt is cleared.

IC2_RX_TL

•Name: I2C Receive FIFO Threshold Register

•Size: 8bits

•Address Offset: 0x38

•Read/Write Access: Read/Write

Module::MIS	Reg	ister::IC2_l	RX_TL	Se	et::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B738
Name	Bits	Read /Write	Reset State	Comm	ents			
Rvd	31:8	-	-	-				
RX_TL	7:0	R/W	'h00	Control: RX_FU addition be set to attempt maximu A value	Is the JLL ir nal rest o a va is maum de of 0	nterrupt. The vistriction that had lue larger than ade to do that, pth of the buff sets the thresh	s (or above) calid range is ardware doe the depth o the actual va- fer. old for 1 ent	that triggers the a 0-255, with the s not allow this value to f the buffer. If an alue set will be the ary, and a value of 255 a of the rx_buffer is

IC2_TX_TL

•Name: I2C Transmit FIFO Threshold Register

•Size: 8 bits

•Address Offset: 0x3c

•Read/Write Access: Read/Write

Module::MIS	Reg	ister::IC2_	TX_TL	Set::1 ATTR::sfdf Type:	:SR ADDR::0x9801_B73C
Name	Bits	Read	Reset	Comments	
		/Write	State		
Rvd	31:8	_	-	-	
TX_TL	7:0	R/W	'h00	Transmit FIFO Threshold Level C (or below) that trigger the TX_EM range is 0-255, with the additional set to value larger than the depth of made to do that, the actual value sedepth of the buffer. A value of 0 sets the threshold for sets the threshold for 255 entries. I 128.	IPTY interrupt. The valid restriction that it may not be of the buffer. If an attempt is et will be the maximum 0 entries, and a value of 255

IC2_CLR_INTR

•Name: Clear Combined and Individual Interrupt Register

•Size: 1 bit

•Address Offset: 0x40 •Read/Write Access: Read

Module::MIS	Reg R	ister::IC2_	_CLR_I	NT	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B740
Name	Bits	Read /Write	Reset State	Con	nments			
Rvd	31:1	-	-	-				
CLR_INTR	0	R	'b0	indiv regis but s IC_T	vidual in ter. This oftware TX_ABR	bit does not c clearable inter	ne IC_TX_A lear hardwar rupts. Refer	interrupt, all BRT_SOURCE e clearable interrupts to Bit 9 of the n exception to clearing

IC2_CLR_RX_UNDER

•Name: Clear RX_UNDER Interrupt Register

•Size: 1 bit

•Address Offset: 0x44 •Read/Write Access: Read

Module::MIS	Register::IC	2_CLR_RX	X_UNDER	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B744					
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:1	-	-	-					
CLR_RX_UN DER	0	R	, p0	Read this register to clear the <i>RX_UNDER</i> interrupt.					

IC2_CLR_RX_OVER

•Name: Clear RX_OVER Interrupt Register

•Size: 1 bit

•Address Offset: 0x48 •Read/Write Access: Read

Module::MIS	Regis R	ter::IC2_C	LR_RX_O	VE Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B748		
Name	Bits	Read /Write		Comments					
Rvd	31:1	-	-	-					
CLR_RX_OVER	0	R	'b0	Read this register to clear the <i>RX_OVER</i> interrupt.					

IC2_CLR_TX_OVER

•Name: Clear TX_OVER Interrupt Register

•Size: 1 bit

•Address Offset: 0x4c •Read/Write Access: Read

Module::MIS	Register::IC2_CLR_TX_OVE R			VE Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B74C	
Name	Bits	Read /Write		Comments				
Rvd	31:1	-	-	ı				
CLR_TX_OVER	0	R	'b0	Read this register to clear the TX_OVER interrupt.				

IC2_CLR_RD_REQ

•Name: Clear RD_REQ Interrupt Register

•Size: 1 bit

•Address Offset: 0x50 •Read/Write Access: Read

Module::MIS	Regi	ister::IC2_0	CLR_RD_	REQ Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B750
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:1	-	-	-
CLR_RD_REQ	0	R	'b0	Read this register to clear the RD_REQ interrupt.

IC2_CLR_TX_ABRT

•Name: Clear TX_ABRT Interrupt Register

•Size: 1 bit

•Address Offset: 0x54 •Read/Write Access: Read

Module::MIS Register::IC2_CLR_TX_ABR T					Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B754	
Name	Bits	Read /Write	Reset State						
Rvd	31:1	-	-	-					
CLR_TX_ABRT	0	R	'b0	Read this register to clear the <i>TX_ABRT</i> interrupt, and the IC_TX_ABRT_SOURCE register.					

IC2_CLR_RX_DONE

•Name: Clear RX_DONE Interrupt Register

•Size: 1 bit

•Address Offset: 0x58

•Read/Write Access: Read

Module::MIS	Register	Register::IC2_CLR_RX_DON			ATTR::sfdf	Type::SR	ADDR::0x9801_B758	
Name	Bits	Read /Write	Reset State	Comments				
Rvd	31:1	-	-	-				
CLR_RX_DONE	0	R	'b0	Read this	register to clear	r the RX_DO	NE interrupt.	

IC2_CLR_ACTIVITY

•Name: ACTIVITY Status Interrupt Register

•Size: 1 bit

•Address Offset: 0x5c •Read/Write Access: Read

Module::MIS	Register::IC2_CLR_ACTIVI			TY	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B75C
Name	Bits	Read	Reset	Cor	nment	S		
		/Write	State					
Rvd	31:1	-	-	-				
CLR_ACTIVITY	0	R	'b0	Read	d th <mark>is</mark> re	gister to get st	tatus of the A	ACTIVITY interrupt. It is
				auto	matical	ly cleared by l	hardware.	

IC2_CLR_STOP_DET

•Name: Clear STOP_DET Interrupt Register

•Size: 1 bit

•Address Offset: 0x60 •Read/Write Access: Read

Module::MIS	Register:	:IC2_CLR_	STOP_DE	ET Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B760		
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:1	-	-	-					
CLR_STOP_D	0	R	'b0	Read this register to clear the <i>STOP_DET</i> interrupt.					
ET									

IC2_CLR_START_DET

•Name: Clear START_DET Interrupt Register

•Size: 1 bit

•Address Offset: 0x64 •Read/Write Access: Read

Module::MIS Regi	ister::IC2 CLR S	START DET	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801 B764
------------------	------------------	-----------	--------	------------	----------	-------------------

Name	Bits	Read /Write	Reset State	Comments
Rvd	31:1	-	-	-
CLR_START_DET	0	R	'b0	Read this register to clear the START_DET interrupt.

IC2_CLR_GEN_CALL

•Name: Clear GEN_CALL Interrupt Register

•Size: 1 bit

•Address Offset: 0x68 •Read/Write Access: Read

Module::MIS	Register::IC2_CLR_GEN_CAL L				ATTR::sfdf	Type::SR	ADDR::0x9801_B768
Name	Bits		Reset State	Comme	nts		
Rvd	31:1	-	-	-			
CLR_GEN_CALL	0	R	'b0	Read this	register to cle	ear the GEN_	_CALL interrupt.

IC2_ENABLE

•Name: I2C Enable Register

•Size: 1 bit

•Address Offset: 0x6c

Module::MIS	Register	::IC2_ENA	BLE	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801 B76C			
Name	Bits	Read /Write	Reset State	Comments						
Rvd	31:1	-	-	-						
ENABLE		R/W	'b0	0: Disable erased states and the states are be tarendard by the states are beta properly. When DV • The • States active un module is complete stops the	es DW_apb_i2 can disable D ; it is important aken to ensure W_apb_i2c is C TX FIFO and us bits in the IC til DW_apb_i2 s transmitting, of the transmitter. If the module current transfer	c W_apb_i2c v t that that DW_ap disabled, the RX FIFO ge C_INTR_ST 2c goes into 1 it stops as w buffer after e is receiving er at the end	XX FIFOs are held in an while it is active. b_i2c is disabled following occurs:			

asynchronous pclk and ic_clk when IC_CLK_TYPE
parameter set to asynchronous (1), there is a two ic_clk
delay when enabling or disabling the DW_apb_i2c.

IC2 STATUS

•Name: I2C Status Register

•Size: 5 bits

•Address Offset: 0x70 •Read/Write Access: Read

This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register:

• Bits 1 and 2 are set to 1

Bits 3 and 4 are set to 0

When the master or slave state machines goes to idle and ic_en=0.

Bits 5 and 6 are set to 0

Module::MIS	Register	:::IC2_STA	TUS	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B770
Name	Bits	Read	Reset	Comme	nts		
		/Write	State				
Rvd	31:7	-	-				
SLV_ACTIVITY	6	R	'b0				Slave Finite State Machine
					not in the IDLE		
						state so the S	Slave part of DW_apb_i2c
				is not Acti		n IDIE stor	to so the Clave port of
					i2c is Active	II IDLE Sta	te so the Slave part of
MST_ACTIVITY	5	R	'b0			tatus. When	the Master Finite State
							e, this bit is set.
							so the Master part of
					i2c is not Active		
						in IDLE stat	e so the Master part of
			(1.0	-	i2c is Active		
RFF	4	R	'b0		_	-	en the receive FIFO is
					•		n the receive FIFO
						1 -	n, this bit is cleared.
					ve FIFO is not		
					ve FIFO is ful		
RFNE	3	R	'b0				n the receive FIFO
							cleared when the
							be polled by software
				_	etely empty the		FO.
					ve FIFO is em		
					ve FIFO is not		
TFE	2	R	ʻb1				When the transmit
							s set. When it contains
				one or mo	ore valid entrie	es, this bit is	cleared. This bit field
				does not	request an inte	rrupt.	

				0 – Transmit FIFO is not empty
				1 – Transmit FIFO is empty
TFNF	1	R	ʻb1	Transmit FIFO Not Full. Set when the transmit FIFO
				contains one or more empty
				locations, and is cleared when the FIFO is full.
				0 – Transmit FIFO is full
				1 – Transmit FIFO is not full
ACTIVITY	0	R	'b0	I2C Activity Status.

IC2 TXFLR

•Name: I2C Transmit FIFO Level Register

•Size: 4

•Address Offset: 0x74 •Read/Write Access: Read

This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared

whenever:

• The I2C is disabled

● There is a transmit abort—that is, TX_ABRT bit is set in the IC_RAW_INTR_STAT register

• The slave bulk transmit mode is aborted

The register increments whenever data is placed into the transmit FIFO and decrements when data is

taken from the transmit FIFO

Module::MIS	Register	::IC2_TXF	LR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B774
Name	Bits	Read	Reset	Comme	nts		
		/Write	State				
Rvd	31:4	-	-	-			
TXFLR	3:0	R	'b0	Transmit	FIFO Level.	Contains the	e number of valid data
				entries in	the transmit F	IFO.	

IC2_RXFLR

•Name: I2C Receive FIFO Level Register

•Size: 4

•Address Offset: 0x78 •Read/Write Access: Read

This register contains the number of valid data entries in the receive FIFO buffer. It is cleared whenever:

• The I2C is disabled

• Whenever there is a transmit abort caused by any of the events tracked in

IC TX ABRT SOURCE

The register increments whenever data is placed into the receive FIFO and decrements when data is

taken from the receive FIFO.

Module::MIS	Register::IC2_RXFLR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B778	
Name	Bits	Read	Reset	Comments				
		/Write	State					
Rvd	31:4	-	-	-				
RXFLR	3:0	R	'h0	Receive FIFO Level. Contains the number of valid data			number of valid data	
				entries in	the receive FI	FO.		

IC2 SDA HOLD

•Name: I2C SDA Hold Time Length Register

•Size: 16

•Address Offset: 0x7C

•Read/Write Access: Read / Write

This register controls the amount of hold time on the SDA signal after a negative edge of SCL in both master and slave mode, in units of ic_clk period. The value programmed must be greater than the minimum hold time in each mode for the value to be implemented – one cycle in master mode, seven cycles in slave mode. Writes to this register succeed only when IC ENABLE=0.

The programmed SDA hold time cannot exceed at any time the duration of the low part of SCL. Therefore the programmed value cannot be larger then N_SCL_LOW-2, where N_SCL_LOW is the duration of the low part of the SCL period measured in ic_clk cycles.

Module::MIS	Register::IC2_SDA_HOLD			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B77C	
Name	Bits	Read /Write	Reset State	Comi	Comments			
Rvd	31:16	_	<i>F</i>	-				
SDA_HOLD	15:0	R/W	'h0001	Sets th	e required SDA	hold time in	units of ic_clk period.	

IC2_TX_ABRT_SOURCE

•Name: I2C Transmit Abort Source Register

•Size: 16 bits

•Address Offset: 0x80 •Read/Write Access: Read

This register has 16 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is cleared whenever the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits

in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, Bit 9 clears for one cycle and is then re-asserted.

Module::MIS Register::IC2_TX_ABRT_SO URCE			Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B780
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:16	-	-	-
ABRT_SLVRD_INTX	15	R	'b0	1: When the processor side responds to
				a slave mode request for data to be transmitted to
				a remote master and user writes a 1 in CMD (bit
				8) of IC_DATA_CMD register.
ABRT_SLV_ARBLOST	14	R	'b0	1: Slave lost the bus while transmitting
				data to a remote master.
				IC_TX_ABRT_SOURCE[12] is set at
				the same time.
				Note: Even though the slave never "owns" the
				bus, something could go wrong on the bus. This
				is a fail safe check. For instance, during a data
				transmission at the low-to-high transition of
				SCL, if what is on the data bus is not what is
				supposed to be transmitted, then DW_apb_i2c no
			(1.0	longer own the bus.
ABRT_SLVFLUSH_TXFIFO	13	R	'ь0	1: Slave has received a read command and some
				data exists in the TX FIFO so the slave issues a
				TX_ABRT interrupt to flush old data in TX FIFO.
ARB_LOST	12	R	'b0	1: Master has lost arbitration, or if
ARD_LOST	12	R	00	IC_TX_ABRT_SOURCE[14] is also set, then
				the slave transmitter has lost arbitration.
				Note: I2C can be both master and slave
				at the same time.
ARB MASTER DIS	11	R	'b0	1: User tries to initiate a Master operation with
				the Master mode disabled.
ABRT_10B_RD_NORSTRT	10	R	'b0	1: The restart is disabled
				$(IC_RESTART_EN \text{ bit } (IC_CON[5]) = 0) \text{ and }$
				the master sends a read command in 10-bit
				addressing mode.
ABRT_SBYTE_NORSTRT	9	R	'b0	To clear Bit 9, the source of the
				ABRT_SBYTE_NORSTRT must be fixed first;
				restart must be enabled (IC_CON[5]=1), the
				SPECIAL bit must be cleared (IC_TAR[11]), or
				the GC_OR_START bit must be cleared
				(IC_TAR[10]). Once the source of the
				ABRT_SBYTE_NORSTRT is fixed, then this bit
				can be cleared in the same manner as other bits
				in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before
				ADK1_SD I IE_NOKS I KI IS HOL HXed DeTore

				attempting to clear this bit, bit 9 clears for one cycle and then gets re-asserted. 1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) = 0) and the user is trying to send a
				START Byte.
ABRT_HS_NORSTRT	8	R	'b0	1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) = 0) and the user is trying to use the master to transfer data in High Speed mode.
ABRT_SBYTE_ACKDET	7	R	'b0	1: Master has sent a START Byte and the START Byte was acknowledged (wrong behavior).
ABRT_HS_ACKDET	6	R	'b0	1: Master is in High Speed mode and the High Speed Master code was acknowledged (wrong behavior).
ABRT_GCALL_READ	5	R	'b0	1: DW_apb_i2c in master mode sent a General Call but the user programmed the byte following the General Call to be a read from the bus (IC_DATA_CMD[9] is set to 1).
ABRT_GCALL_NOACK	4	R	'b0	1: DW_apb_i2c in master mode sent a General Call and no slave on the bus acknowledged the General Call.
ABRT_TXDATA_NOACK	3	R	.p0	1: This is a master-mode only bit. Master has received an acknowledgement for the address, but when it sent data byte(s) following the address, it did not receive an acknowledge from the remote slave(s).
ABRT_10ADDR2_NOACK	2	R	'b0	1: Master is in 10-bit address mode and the second address byte of the 10-bit address was not acknowledged by any slave.
ABRT_10ADDR1_NOACK		R	'b0	1: Master is in 10-bit address mode and the first 10-bit address byte was not acknowledged by any slave.
ABRT_7B_ADDR_NOACK	0	R	'b0	1: Master is in 7-bit addressing mode and the address sent was not acknowledged by any slave.

IC2 SLV DATA NACK ONLY

Name: Generate Slave Data NACK Register

Size: 1 bit

Address Offset: 0x84

■ Read/Write Access: Read/Write

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as a slave-receiver. This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to 1. When this parameter disabled, this register does not exist and writing to the register's address has no effect.

A write can occur on this register if either of the following conditions are met:

- Φ DW_apb_i2c is disabled (IC_ENABLE[0] = 0)
- $\$ Slave part is inactive (IC_STATUS[6] = 0)

Module::MIS	Register::IC2 SLV DATA	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B784

_NACK	ONLY	•		
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:1	-	-	-
NACK	0	R/W	'b0	Generate NACK. This NACK generation only occurs when DW_apb_i2c is a slave-receiver. If this register is set to a value of 1, it can only generate a NACK after a data byte is received; hence, the data transfer is aborted and the data received is not pushed to the receive buffer. When the register is set to a value of 0, it generates NACK/ACK, depending on normal criteria. 1 = generate NACK after data byte received 0 = generate NACK/ACK normally

IC2_DMA_CR

•Name: DMA Control Register

•Size: 2 bits

•Address Offset: 0x88

•Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA Controller interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist and writing to the register's address has no effect and reading from this register address will return zero. The register is used to enable the DMA Controller interface operation. There is a separate bit for transmit and receive. This can be programmed regardless of the state of IC_ENABLE.

Module::MIS	Register	::IC2 DM	A CR	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B788
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:2	-	-	-
TDMAE	1	R/W	'b0	Transmit DMA Enable. This bit enables/disables the
				transmit FIFO DMA channel.
				0 = Transmit DMA disabled
				1 = Transmit DMA enabled
RDMAE	0	R/W	'b0	Receive DMA Enable. This bit enables/disables the
				receive FIFO DMA channel.
				0 = Receive DMA disabled
				1 = Receive DMA enabled

IC2_DMA_TDLR

•Name: DMA Transmit Data Level Register

•Size: 2 bits

•Address Offset: 0x8c

•Read/Write Access: Read/Write

This register is only valid when the DW_apb_i2c is configured with a set of DMA interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist; writing to its address has no effect; reading from its address returns zero.

Module::MIS	Register::IC2_DMA_TDLR		Set	:::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B78C	
Name	Bits	Read	Rese	et (Comments			
		/Write	State	9				
Rvd	31:3	-	-	-	-			
DMATDL	2:0	R/W	'h0		at w logid dma valid	hich a DMA r c. It is equal to _tx_req signal	equest is made the watermated is generated in the transm	t field controls the level de by the transmit ark level; that is, the when the number of the FIFO is equal to or MAE = 1.

IC2 DMA RDLR

•Name: I2C Receive Data Level Register

•Size: 2 bits

•Address Offset: 0x90

•Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist; writing to its address has no effect; reading from its address returns zero.

Module::MIS	Register::IC2	DMA_RD	LR S	::1 ATTR::sfdf Type::SR	ADDR::0x9801_B790
Name	Bits	Read	Reset	Comments	
		/Write	State		
Rvd	31:4	-	-	•	
DMARDL	3:0	R/W	ʻh0	Receive Data Level. This bit first which a DMA request is made. The watermark level = DM dma_rx_req is generated when data entries in the receive FIFO than this field value + 1, and instance, when DMARDL is 0, asserted when 1 or more data entreceive FIFO.	e by the receive logic. MARDL+1; that is, the number of valid D is equal to or more and RDMAE =1. For the dma_rx_req is

IC2 SDA SETUP

Name: I2C SDA Setup Register

Size: 8 bits

Address Offset: 0x94

■ Read/Write Access: Read/Write

This register controls the amount of time delay (in terms of number of ic_clk clock periods) introduced

in the rising edge of SCL, relative to SDA changing, when DW_apb_i2c services a read request in a

slave-transmitter operation. The relevant I2C requirement is tSU:DAT (note 4) as detailed in the I2C Bus

Specification.

Module::MIS	Register::IC2_SDA_SETUP			Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B794
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:8	-	-	-
SDA_SETUP	7:0	R/W	'h0	SDA Setup. It is recommended that if the required delay is
				1000ns, then for an ic_clk frequency of 10 MHz,
				IC_SDA_SETUP should be programmed to a value of 11.

IC2_ACK_GENERAL_CALL

Name: I2C ACK General Call Register

Size: 1 bit

Address Offset: 0x98

Read/Write Access: Read/Write

The register controls whether DW_apb_i2c responds with a ACK or NACK when it receives an I2C

General Call address.

Module::MIS	Register::IC2_ACK_GENER AL CALL		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B798			
Name	Bits	Read	Rese		Comments				
		/Write	State	!					
Rvd	31:1	-	-	-	-				
ACK_GEN_CALL	0	R/W	'h0	ACK	General Call.	When set to	1, DW_apb_i2c responds		
				with	with a ACK (by asserting ic_data_oe) when it receives a				
				Gene	General Call. Otherwise, DW_apb_i2c responds with a				
				NAC	NACK (by negating ic_data_oe).				

IC2_ENABLE_STATUS

• Name: I2C Enable Status Register

• Size: 3 bits

● Address Offset: 0x9C

Read/Write Access: Read

The register is used to report the DW_apb_i2c hardware status when the IC_ENABLE register is set

from 1 to 0; that is, when DW_apb_i2c is disabled.

If IC_ENABLE has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC ENABLE has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as '0'.

Module::MIS	Register::IC2 TUS	_ENABLE_	_STA	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B79C		
Name	Bits	Read /Write	Rese State		nments				
Rvd	31:3	-	\ -	-					
SLV_RX_DATA_ LOST	2	R/W	'h0	Reccibyte IC_I deer trans I2C beer mass befo and to 1 disa of a	Slave Received Data Lost. This bit indicates if a Slave-Receiver operation has been aborted with at least one data byte received from an I2C transfer due to the setting of IC_ENABLE from 1 to 0. When read as 1, DW_apb_i2c is deemed to have been actively engaged in an aborted I2C transfer (with matching address) and the data phase of the I2C transfer has been entered, even though a data byte has been responded with a NACK. NOTE: If the remote I2C master terminates the transfer with a STOP condition before the DW_apb_i2c has a chance to NACK a transfer, and IC_ENABLE has been set to 0, then this bit is also set to 1. When read as 0, DW_apb_i2c is deemed to have been disabled without being actively involved in the data phase of a Slave-Receiver transfer. NOTE: The CPU can safely read this bit when IC_EN (bit 0) is read as 0.				
SLV_DISABLED_ WHI LE_BUSY	1	R/W	'h0	indication about 1 to IC_I the areas Reco	cates if a potent ted due to the second of the second of the second On the second of t	tial or active etting of the IC set when the er while: (a) I the Slave-Traic (b) address and rom a remote W_apb_i2c is part of an I2C	nsmit, Receive). This bit Slave operation has been C_ENABLE register from a CPU writes a 0 to the DW_apb_i2c is receiving ansmitter operation from a d data bytes of the Slavemaster. deemed to have forced a C transfer, irrespective of the slave address set in		

				DW_apb_i2c (IC_SAR register) OR if the transfer is completed before IC_ENABLE is set to 0 but has not taken effect. NOTE: If the remote I2C master terminates the transfer with a STOP condition before the DW_apb_i2c has a chance to NACK a transfer, and IC_ENABLE has been set to 0, then this bit will also be set to 1. When read as 0, DW_apb_i2c is deemed to have been disabled when there is master activity, or when the I2C bus is idle. NOTE: The CPU can safely read this bit when IC_EN (bit 0) is read as 0.
IC_EN	0	R/W	'h0	ic_en Status. This bit always reflects the value driven on the output port ic_en. When read as 1, DW_apb_i2c is deemed to be in an enabled state. When read as 0, DW_apb_i2c is deemed completely inactive. NOTE: The CPU can safely read this bit anytime. When this bit is read as 0, the CPU can safely read SLV_RX_DATA_LOST (bit 2) and SLV_DISABLED_WHILE_BUSY (bit 1).

IC2_COMP_PARAM_1

•Name: Component Parameter Register 1

•Size: 32 bits

•Address Offset: 0xf4 •Read/Write Access: Read

Module::MIS	Register::IC2	2_COMP	_PARAM_	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B7F4	
Name		Bits	Read /Write	Reset State	Comments	I		
Rvd		31:24	-	-	-			
TX_BUFFER_	DEPTH	23:16	R	'h07	The value of this register is derived from the IC_TX_BUFFER_DEPTH coreConsultant parameter. 0x00 = Rvd 0x01 = 2 0x02 = 3 to			
RX_BUFFER_	DEPTH	15:8	R	'h07	0xFF = 256 The value of this register is derived from the IC_RX_BUFFER_DEPTH coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x00 = Rvd 0x01 = 2			

				0x02 = 3
				to
				0xFF = 256
ADD_ENCODED_PARAMS	7	R	ʻb1	The value of this register is derived from the IC_ADD_ENCODED_PARAMS coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
HAS_DMA	6	R	'b0	The value of this register is derived from the IC_HAS_DMA coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
INTR_IO	5	R	'b1	The value of this register is derived from the IC_INTR_IO coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = Individual 1 = Combined
HC_COUNT_VALUES	4	R	'ь0	The value of this register is derived from the IC_HC_COUNT_VALUES coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
MAX_SPEED_MODE	3:2	R	'b10	The value of this register is derived from the IC_MAX_SPEED_MODE coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. $0x0 = Rvd$ $0x1 = Standard$ $0x2 = Fast$ $0x3 = High$
APB_DATA_WIDTH	1:0	R	'b10	The value of this register is derived from the IC_MAX_SPEED_MODE coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x0 = 8 bits 0x1 = 16 bits 0x2 = 32 bits 0x3 = Rvd

Notice: This is a constant read-only register that contains encoded information about the component's parameter settings. The reset value depends on coreConsultant parameter(s).

IC2_COMP_VERSION

•Name: I2C Component Version Register

•Size: 32 bits

•Address Offset: 0xf8 •Read/Write Access: Read

Module::MIS	Regist N	gister::IC2_COMP_VERSIO			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B7F8		
Name	e Bits Read Reset /Write State					Comments				
IC_COMP_VER	SION	31:0	R	'h3130				s of the DW_apb_i2c C_COMP_VERSION		

DesignWare AMBA Release	DW_apb_i2c Version	I2C_COMP_VERSION value	Databook Date
2004.06	1.03a	31_30_33_2A	June 21, 2004

IC2_COMP_TYPE

•Name: I2C Component Type Register

•Size: 32 bits

•Address Offset: 0xfc •Read/Write Access: Read

Module::MIS	Register	::IC2_CON	MP_TYPE	Set::1	ATTR::sfdf	Type::SR	ADDR::	0x9801_B7FC
Name	Bits	Read	Reset	Com	ments			
		/Write	State					
IC_COMP_TYPE	31:0	R	'h44570140	Desig	gnware Co	mponent	Type	number :
				0x44	_57_01_40. 7	This assigned	d unique	hex value i
*				constant and is derived from the two ASCII letters				
				"DW	" followed by	a 16-bit uns	igned nun	nber.

3.1.3 Third I2C Register Description

IC3_CON

•Name: I2C Control Register 0

•Size: 7 bits

•Address Offset: 0x00

•Read/Write Access: Read/Write

This register can be written only when the DW_apb_i2c is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect.

Module::MIS	Register::	IC3_CON		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B900
Name		Bits	Read	Reset	Comment	ts	
			/Write	State			
Rvd		31:7	-	-	-		
IC_SLAVE_DI	SABLE	6	R/W	'b1			ner I2C has its slave
						ter reset. Th	
							by programming a '1'
						ON[6]. B y (default the slave is
					enabled.		
					0: slave is		
IC DECEMBE	T. F.).		D ATT	61. 1	disabled	DECEMBE 11:1	
IC_RESTAR?	I_EN	5	R/W	ʻb1			RESTART conditions
					may be sen		1.11
					_		ome older slaves do not
					support har		s; however, RESTART
						are used in	s, nowever, KESTAKT
						V_apb_i2c o	onerations
				1 0	0: disable	,_upo_120 (porations.
					1: enable		
				, i		START is	disabled, the master is
					prohibited		,
					performing	the following	ing functions:
					Chang	e direction	within a transfer (split)
					Send a	START B	YTE
					High-s	speed mode	operation
					Co	mbined for	rmat transfers in 7-bit
					addressing	modes	
	10						th a 10-bit address
						-	es per transfer
							ART condition followed
					by a STOP		
							ondition, split operations
					are broken		
					into multi	ple DW_ap	b_i2c transfers. If the
					above oper		
					_		result in setting bit 6
					(TX_ABR		
						INTR_STA	
IC_10BITADDR_	_MASTER	4	R/W	'b1			ner the DW_apb_i2c
							0-bit addressing mode
						g as a maste	er.
					0: 7-bit add	dressing	

				1: 10-bit addressing
IC_10BITADDR_SLAVE	3	R/W	'b1	When acting as a slave, this bit controls
				whether the DW_apb_i2c responds to 7- or
				10-bit addresses.
				0: 7-bit addressing. The DW_apb_i2c
				ignores transactions
				which involve 10-bit addressing; for 7-bit
				addressing, only the
				lower 7 bits of the IC_SAR register are
				compared.
				1: 10-bit addressing. The DW_apb_i2c
				responds to only 10-bit
				addressing transfers that match the full 10 bits
				of the IC_SAR
				register.
SPEED	2:1	R/W	'b10	Controls at which speed the DW_apb_i2c operates:
				0: illegal; writing a 0 results in setting SPEED
				to IC_MAX_SPEED_MODE
				1: standard mode (100 kbit/s)
				2: fast mode (400 kbit/s)
				3: high speed mode (3.4 Mbit/s)
				If the DW_apb_i2c is configured for fast or
				standard mode (1 or 2) and a value of 2 or 3 is
				written, then IC_MAX_SPEED_MODE
1446555		77.71		is stored.
MASTER_MODE	0	R/W	ʻb1	This bit controls whether the DW_apb_i2c
				master is enabled or not. The slave is always
				enabled.
		_		0: master disabled
				1: master enabled

IC3 TAR

•Name: I2C Target Address Register

•Size: 12 bits

•Address Offset: 0x04

•Read/Write Access: Read/Write

All bits can be dynamically updated as long as any set of the following conditions are true:

● DW_apb_i2c is NOT enabled (IC_ENABLE is set to 0); or

● DW_apb_i2c is enabled (IC_ENABLE=1); AND

DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND there are NO entries in the TX FIFO (IC_STATUS[2]=1)

Module::MIS	Register::IC3_TAR				et::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B904
Name	Bits	Read /Write	Reset State	Comr	ment	S		

Rvd	31:13	-	-	-
IC_10BITADD	12	R/W	'b0	This bit controls whether the DW_apb_i2c starts its
R_MASTER				transfers in 7-or 10-bit addressing mode when acting as
				a master.
				0: 7-bit addressing
				1: 10-bit addressing
				Dependencies: This bit exists in this register only if the
				I2C_DYNAMIC_TAR_UPDATE configuration
				parameter is set to "Yes" (1).
SPECIAL	11	R/W	'b0	This bit indicates whether software performs a General Call
SI ECIAL	11	IX/ VV		or START BYTE command.
				0: ignore bit 10 GC_OR_START and use IC_TAR normally
				1: perform special I2C command as specified in
				GC_OR_START bit
GC_OR_START	10	R/W	'b0	If bit 11 (SPECIAL) is set to 1, then this bit indicates
				whether a General Call or START byte command is to be
				performed by the DW_apb_i2c.
				0: General Call Address – after issuing a General Call, only
				writes may be performed. Attempting to issue a read
				command results in setting bit 6 (TX_ABRT) of the
				IC_RAW_INTR_STAT register.
				The DW_apb_i2c remains in General Call mode until the
				SPECIAL bit value (bit 11) is cleared.
				1. CTARTRYTE
IC_TAR	0.0	R/W	'h055	This is the torget address for any master transaction. When
IC_IAK	9:0	K/W	11033	This is the target address for any master transaction. When transmitting a General Call, these bits are ignored. To
				generate a START BYTE, the CPU needs to write only once
				into these bits.
				If the IC_TAR and IC_SAR are the same, loopback exists
			•	but the FIFOs are shared between master and slave, so full
				loopback is not feasible. Only one direction loopback mode
				is supported (simplex), not duplex. A master cannot transmit
	10			to itself; it can transmit to only a slave.

IC3_SAR

•Name: I2C Slave Address Register

•**Size:** 10 bits

•Address Offset: 0x08

•Read/Write Access: Read/Write

Module::MIS	Register::IC3_SAR				Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B908	
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:10	-	-	-					
IC_SAR	9:0	R/W	'h055	The IC_SAR holds the slave address when the I2C is					
				operating as a slave. IC_SAR holds the slave address to which					

the DW_apb_i2c responds. For 7-bit addressing, only IC_SAR[6:0] is used. This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have
no effect.

IC3 HS MADDR

•Name: I2C HS Master Mode Code Address Register

•Size: 3 bits

•Address Offset: 0x0c

•Read/Write Access: Read/Write

Module::MIS	Reg	ister::IC3_1	HS_MADI	OR Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B90C
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:3	-	-	-
IC_HS_MAR	2:0	R/W	'b0	This bit field holds the value of the I2C HS mode master code. HS-mode master codes are reserved 8-bit codes (00001xxx) that are not used for slave addressing or other purposes. Each master has its unique master code; up to eight high-speed mode masters can be present on the same I2C bus system. Valid values are from 0 to 7. This register goes away and becomes read-only returning 0's if the IC_MAX_SPEED_MODE configuration parameter is set to either Standard (1) or Fast (2). This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect.

IC3_DATA_CMD

•Name: I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when filling the TX FIFO and the CPU reads from when retrieving bytes from RX FIFO

•Size: 11 bits (writes) •Address Offset: 0x10

•Read/Write Access: Read/Write

Module::MIS Register::IC3_DATA_CMD				Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B910
Name	Bits	Read /Write	Reset State	Comments			
Rvd	31:11	-	-	-			
RESTART	10	W	'ь0	sent or IC_EMPTY 1 – If IC_I data is sent	received. T TFIFO_HOLD_ RESTART_EN received (acco	Thie bit in MASTER_ENT is 1, a REST rding to the value of	s issued before the byte is s available only if N is configured to 1. 'ART is issued before the value of CMD), regardless on is changing from the

				previous command; if IC_RESTART_EN is 0, a STOP followed
				by a START is issued instead.
				0 – If IC_RESTART_EN is 1, a RESTART is issued only if the
				transfer direction is changing from the previous command; if
				IC_RESTART_EN is 0, a STOP followed by a START is issued
				instead.
STOP	9	W	'b0	This bit controls whether a STOP is issued after the byte is sent or
				received. This bit is available only if
				IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1.
				1 – STOP is issued after this byte, regardless of whether of not the
				Tx FIFO is empty. If the Tx FIFO is not empty, the master
				immediately tries to start a new transfer by issuing a START and
				arbitrating for the bus.
				0 – STOP is not issued after this byte, regardless of whether or not
				the Tx FIFO is empty. If the Tx FIFO is not empty, the master
				continues the current transfer by sending/receiving data bytes according to the value of the CMD bit. If the Tx FIFO is empty,
				the master holds the SCL line low and stalls the bus until a new
				command is available in the Tx FIFO.
CMD	8	W	'b0	This bit controls whether a read or a write is performed.
CMD	O	**		This bit does not control the direction when the
				DW_apb_i2c acts as a slave. It controls only the direction
				when it acts as a master.
				1 = Read
				0 = Write
				When a command is entered in the TX FIFO, this bit
				distinguishes the write and read commands. In slave-
				receiver mode, this bit is a "don't care" because writes to
				this register are not required. In slave-transmitter mode, a
				"0" indicates that CPU data is to be transmitted and as DAT
				or IC_DATA_CMD[7:0].
				When programming this bit, you should remember the
				following: attempting to perform a read operation after a
				General Call command has been sent results in a TX_ABRT
				interrupt (bit 6 of the IC_RAW_INTR_STAT register),
				unless bit 11 (SPECIAL) in the IC_TAR register has been
				cleared.
				If a "1" is written to this bit after receiving a RD_REQ
				interrupt, then a TX_ABRT interrupt occurs.
				NOTE: It is possible that while attempting a master I2C
				read transfer on DW_apb_i2c, a RD_REQ interrupt may
				have occurred simultaneously due to a remote I2C master
				addressing DW_apb_i2c. In this type of scenario,
				DW_apb_i2c ignores the IC_DATA_CMD write, generates
				* *
				a TX_ABRT interrupt, and waits to service the RD_REQ
DAT	7:0	DAV	'b0	interrupt.
DAT	7:0	R/W	טט	This register contains the data to be transmitted or received
				on the I2C bus. If you are writing to this register and want to
				perform a read, bits 7:0 (DAT) are ignored by the
				DW_apb_i2c. However, when you read this register, these
				bits return the value of data received on the DW_apb_i2c
				interface.

IC3_SS_SCL_HCNT

•Name: Standard Speed I2C Clock SCL High Count Register

•Size: 16 bits

•Address Offset: 0x14

•Read/Write Access: Read/Write

Module::MIS	Register::IC3_SS_SCL_HCN			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B914
Name	Bits	Read /Write	Reset State	Comm	ents		l
Rvd	31:1 6	-	-	-			
IC_SS_SCL_HCNT	15:0	R/W	'h007a	can take sets the The tab calcular This register effect. The miless that being so order or operation program When t	e place to ensure SCL clock highle below shown ions. I gister can be welled which correspond to the configuration of the DW med first. The he configuration COUNT_VA	re proper I/Ogh-period cos some samp ritten only we responds to the with a lue is 6; har ritten, and if with APB_I is importan_apb_i2c. The contract of the upper on parameter	by I2C bus transaction of timing. This register unt for standard speed. The I2C interface the IC_ENABLE when the I2C interface the IC_ENABLE where times have no redware prevents values attempted results in 6 DATA_WIDTH = 8 the to ensure the correct of the lower byte must be byte is programmed.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL High required min (us)	H_CNT (HEX/decimal)	SCL High Time (us)
100	2	4	0008/8	4.00
100	6.6	4	001B/27	4.09
100	10	4	0028/40	4.00
100	75	4	012C/300	4.00
100	100	4	0190/400	4.00
100	125	4	01F4/500	4.00
100	1000	4	0FA0/4000	4.00

IC3_SS_SCL_LCNT

•Name: Standard Speed I2C Clock SCL Low Count Register

•**Size:** 16 bits

•Address Offset: 0x98

• Read/Write Access: Read/Write

24 1 1 2470	D	100 00	TOL LOND	TO COLUMN THE CASE OF THE COLUMN TO A COLU
Module::MIS	Register	::1C3_SS_S	SCL_LCNT	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B918
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:1	-		-
	6		21,0000	
IC_SS_SCL_LCN	15:0	R/W	'h008f	This register must be set before any I2C bus transaction
T				can take place to ensure proper I/O timing. This register
				sets the SCL clock low period count for standard speed.
				The table below shows some sample IC_SS_LCNT
				calculations.
				This register can be written only when the I2C interface is
				disabled which corresponds to the IC_ENABLE register
				being set to 0. Writes at other times have no effect.
				The minimum valid value is 8; hardware prevents values
				less than this being written, and if attempted results in 8
				being set. For designs with APB_DATA_WIDTH = 8 the
				order of programming is important to ensure the correct
				operation of the DW_apb_i2c. The lower byte must be
				programmed first. Then the upper byte is programmed.
				When the configuration parameter
				IC_HC_COUNT_VALUES is set to 1, this register is
				read only.
				Trade only.

Notice : Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL Low required min (us)	L_CNT (HEX/Decimal)	SCL Low Time (us)
100	2	4.7	000A/10	5.00
100	6.6	4.7	0020/32	4.85
100	10	4.7	002F/47	4.70
100	75	4.7	0161/353	4.71
100	100	4.7	01D6/470	4.70
100	125	4.7	024C/588	4.70
100	1000	4	125C/4700	4.70

IC3_FS_SCL_HCNT

•Name: Fast Speed I2C Clock SCL High Count Register

•**Size:** 16 bits

•Address Offset: 0x1c

•Read/Write Access: Read/Write

Module::MIS	Register: T	:IC3_FS_S	CL_HCN	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B91C
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:16	-	-	
IC_FS_SCL_HCN T	15:0	R/W	1h0013	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock high-period count for fast speed. It is used in high-speed mode to send the Master Code and START BYTE or General CALL. The table below shows some sample IC_FS_SCL_HCNT calculations. This register goes away and becomes read-only returning 0s if IC_MAX_SPEED_MODE = standard. This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 6; hardware prevents values less than this being written, and if attempted results in 6 being set. For designs with APB_DATA_WIDTH == 8 the order of programming is important to ensure the correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is read only.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL High required min (us)	H_CNT (HEX/Decimal)	SCL High Time (us)
400	10	0.6	0006/6	0.60
400	25	0.6	000F/15	0.60
400	50	0.6	001E/	0.60
400	75	0.6	002D/30	0.60
400	100	0.6	003C/60	0.60
400	125	0.6	004B/75	0.60
400	1000	0.6	0258/600	0.60
100 (through IC_MAX_ SPEED_MODE = standard)	N/A	N/A	disabled	N/A

IC3_FS_SCL_LCNT

•Name: Fast Speed I2C Clock SCL Low Count Register

•Size: 16 bits

•Address Offset: 0x20

•Read/Write Access: Read/Write

Module::MIS	Register:	:IC3_FS_S	SCL_LCNT	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B920
Name	Bits	Read	Reset	Comn	nents		
		/Write	State				
Rvd	31:16	-	-	-			
IC_FS_SCL_LCNI	15:0	R/W	'h0028	can tak sets the used in START shows: This re 0s if IC This re is disab register effect. The mi less that being s	e place to ensue SCL clock lo high-speed man BYTE or Gesome sample I gister goes away and Seled, which contribute to being set to the minum valid was this being wet. For designs	w period contode to send eneral CALL C_FS_SCL_ay and become to send energy and become to the contode to send energy and become to the contode	ny I2C bus transaction O timing. This register unt for fast speed. It is the Master Code and . The table below _LCNT calculations. mes read-only returning = standard. when the I2C interface the IC_ENABLE other times have no urdware prevents values f attempted results in 8 _DATA_WIDTH = 8 ortant to ensure the

	correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. If the value is less than 8 then the count value gets changed to 8. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is
	read only.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL Low required min (us)	L_CNT (HEX/Decimal)	SCL Low Time (us)
400	10	1.3	000D/13	1.30
400	25	1.3	0021/33	1.32
400	50	1.3	0041/65	1.30
400	75	1.3	0062/98	1.31
400	100	1.3	0082/130	1.30
400	125	1.3	00A3/163	1.30
400	1000	1.3	0514/1300	1.30
100 (through IC_MAX_ SPEED_MODE = standard)	N/A	N/A	disabled	N/A

IC3_INTR_STAT

•Name: I2C Interrupt Status Register

•Size: 12 bits

•Address Offset: 0x2C •Read/Write Access: Read

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are cleared by reading the matching interrupt clear register. The unmasked raw versions of these bits are available in the IC_RAW_INTR_STAT register.

Module::MIS	Regi	ster::IC3_II	NTR_STA	T Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B92C
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:12	-	-	-
R_GEN_CALL	11	R	'b0	See "IC_RAW_INTR_STAT" for a detailed description of
R_START_DET	10	R	'b0	these bits.
R_STOP_DET	9	R	'b0	
R_ACTIVITY	8	R	'b0	
R_RX_DONE	7	R	'b0	
R_TX_ABRT	6	R	'b0	

R_RD_REQ	5	R	'b0
R_TX_EMPTY	4	R	'b0
R_TX_OVER	3	R	'b0
R_RX_FULL	2	R	'b0
R_RX_OVER	1	R	'b0
R_RX_UNDER	0	R	'b0

IC3_INTR_MASK

•Name: I2C Interrupt Mask Register

•Size: 12 bits

•Address Offset: 0x30

•Read/Write Access: Read/Write

These bits mask their corresponding interrupt status bits. They are active high; a value of 0 prevents a bit from generating an interrupt.

Module::MIS	Regis	ter::IC3_IN	TR_MAS	Set::1 ATTR::sfdf Type::SR	ADDR::0x9801_B930
Name	Bits	Read	Reset	Comments	
		/Write	State		
Rvd	31:12	-	-		
M_GEN_CALL	11	R/W	ʻb1	Masks this bit in the IC_INTR_STAT re	egister.
M_START_DET	10	R/W	'b0		
M_STOP_DET	9	R/W	'b0		
M_ACTIVITY	8	R/W	'b0		
M_RX_DONE	7	R/W	'b1		
M_TX_ABRT	6	R/W	'b1		
M_RD_REQ	5	R/W	'b1		
M_TX_EMPTY	4	R/W	ъ1		
M_TX_OVER	3	R/W	'b1		
M_RX_FULL	2	R/W	'b1		
M_RX_OVER	1	R/W	'b1		
M_RX_UNDER	0	R/W	'b1		

IC3 RAW INTR STAT

•Name: I2C Raw Interpol Status Register

•Size: 12 bits

•Address Offset: 0x34

•Read/Write Access: Read/Write

Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of the DW_apb_i2c.

Module::MI S	Register::I	C3_RAW_	INTR_STA	AT Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B934	
Name	Bits	Read /Write	Reset State	Comments				
Rvd	31:12	-	-	-				
GEN_CALL	11	R	'b0	acknowledge DW_apb_i2c	Set only when a General Call address is received and it is acknowledged. It stays set until it is cleared either by disabling DW_apb_i2c or when the CPU reads bit 0 of the IC_CLR_GEN_CALL register. DW_apb_i2c stores the			
START_DET	10	R	'b0	occurred on t	ether a START the I2C interfacts operating it	ce regardless		
STOP_DET	9	R	'b0		ardless of whet	_	s occurred on the I2C b_i2c is operating in	
ACTIVITY	8	R	'b0	cleared. Ther Disablin Reading Reading System to Once this bit is used to cleared.	re are four way g the DW_apb the IC_CLR_ the IC_CLR_ reset is set, it stays ar it. DW_apb_i2c m	s to clear it: 12c ACTIVITY INTR registers set unless or		
RX_DONE	7	R	*b0	When the DV is set to 1 if to byte. This oc	W_apb_i2c is a	acting as a slass not acknown t byte of the	ave-transmitter, this bit vledge a transmitted transmission,	
TX_ABRT	6	R	°ъ0	This bit ind unable to cor transmit FIFO or an I2C sla When this bi indicates the NOTE: The whenever this state until the read is perfordata bytes from	icates if DW_amplete the inte O. This situation ve, and is refer this set to 1, the reason why the DW_apb_i2c for so bit is set. The eregister IC_C cmed, the TX I come the APB in	npb_i2c, as a nded actions on can occur red to as a "e IC_TX_AFe transmit at lushes/resets e TX FIFO r CLR_TX_AFE FIFO is then terface.	on I2C transmitter, is on the contents of the both as an I2C master transmit abort". BRT_SOURCE register cort takes places. Sempties the TX FIFO emains in this flushed BRT is read. Once this ready to accept more	
RD_REQ	5	R	'b0	and another I DW_apb_i2c state (SCL=0 that the slave asking for da to this interru IC_DATA_0	2C master is a c. The DW_apl d) until this into thas been addit to be transfer apt and then we	ttempting to b_i2c holds the crupt is serversed by a re- cerred. The properties the request This bit is se	2c is acting as a slave read data from the I2C bus in a wait riced, which means emote master that is rocessor must respond ested data to the t to 0 just after the register.	

TX_EMPTY	4	R	'b0	This bit is set to 1 when the transmit buffer is at or below the threshold value set in the IC_TX_TL register. It is automatically cleared by hardware when the buffer level goes above the threshold. When the IC_ENABLE bit 0 is 0, the TX FIFO is flushed and held in reset. There the TX FIFO looks like it has no data within it, so this bit is set to 1, provided there is activity in the master or slave state machines. When there is no longer activity, then with ic_en=0, this bit is set to 0.
TX_OVER	3	R	'b0	Set during transmit if the transmit buffer is filled to IC_TX_BUFFER_DEPTH and the processor attempts to issue another I2C command by writing to the IC_DATA_CMD register. When the module is disabled, this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.
RX_FULL	2	R	'b0	Set when the receive buffer reaches or goes above the RX_TL threshold in the IC_RX_TL register. It is automatically cleared by hardware when buffer level goes below the threshold. If the module is disabled (IC_ENABLE[0]=0), the RX FIFO is flushed and held in reset; therefore the RX FIFO is not full. So this bit is cleared once the IC_ENABLE bit 0 is programmed with a 0, regardless of the activity that continues.
RX_OVER	1	R	,p0	Set if the receive buffer is completely filled to IC_RX_BUFFER_DEPTH and an additional byte is received from an external I2C device. The DW_apb_i2c acknowledges this, but any data bytes received after the FIFO is full are lost. If the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.
RX_UNDER	0	R	,p0	Set if the processor attempts to read the receive buffer when it is empty by reading from the IC_DATA_CMD register. If the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.

IC3_RX_TL

•Name: I2C Receive FIFO Threshold Register

•Size: 8bits

•Address Offset: 0x38

•Read/Write Access: Read/Write

Module::MIS	Register::IC3_RX_TL			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B938	
Name	Bits	Read	Reset	Com	ments			
		/Write	State					
Rvd	31:8	-	-	-				
RX_TL	7:0	R/W	'h00	Receive FIFO Threshold Level				
				Cont	rols the	level of entrie	s (or above)	that triggers the

	RX_FULL interrupt. The valid range is 0-255, with the additional restriction that hardware does not allow this value to be set to a value larger than the depth of the buffer. If an attempt is made to do that, the actual value set will be the maximum depth of the buffer. A value of 0 sets the threshold for 1 entry, and a value of 255 sets the threshold for 256 entries. Depth of the rx_buffer is 128.
--	---

IC3_TX_TL

•Name: I2C Transmit FIFO Threshold Register

•Size: 8 bits

•Address Offset: 0x3c

•Read/Write Access: Read/Write

Module::MIS	Reg	ister::IC3_7	ΓX_TL	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B93C
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:8	-	ı	-
TX_TL	7:0	R/W	'h00	Transmit FIFO Threshold Level Controls the level of entries (or below) that trigger the TX_EMPTY interrupt. The valid range is 0-255, with the additional restriction that it may not be set to value larger than the depth of the buffer. If an attempt is made to do that, the actual value set will be the maximum depth of the buffer. A value of 0 sets the threshold for 0 entries, and a value of 255 sets the threshold for 255 entries. Depth of the tx_buffer is 128.

IC3_CLR_INTR

•Name: Clear Combined and Individual Interrupt Register

•Size: 1 bit

•Address Offset: 0x40 •Read/Write Access: Read

Module::MIS	Reg	Register::IC3_CLR_INT				ATTR::sfdf	Type::SR	ADDR::0x9801_B940		
Name	Bits	Read	Reset	Con	Comments					
		/Write	State							
Rvd	31:1	-	-	-						
CLR_INTR	0	R	'b0	Read this register to clear the combined interrupt, all						
				individual interrupts, and the IC_TX_ABRT_SOURCE						

register. This bit does not clear hardware clearable interrupts but software clearable interrupts. Refer to Bit 9 of the IC_TX_ABRT_SOURCE register for an exception to clearing
IC_TX_ABRT_SOURCE.

IC3_CLR_RX_UNDER

•Name: Clear RX_UNDER Interrupt Register

•Size: 1 bit

•Address Offset: 0x44 •Read/Write Access: Read

Module::MIS	Register::IC	3_CLR_RX	K_UNDER	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B944
Name	Bits	Read	Reset	Comme	nts		
		/Write	State				
Rvd	31:1	-	-	-			
CLR_RX_UN	0	R	'b0	Read this	register to cle	ar the <i>RX_U</i>	NDER interrupt.
DER							

IC3_CLR_RX_OVER

•Name: Clear RX_OVER Interrupt Register

•Size: 1 bit

•Address Offset: 0x48 •Read/Write Access: Read

Module::MIS	Regis R	ter::IC3_C	LR_RX_O	VE	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B948	
Name	Bits	Read /Write		Comments					
Rvd	31:1	7	-	-					
CLR_RX_OVER	0	R	'b0	Read this register to clear the <i>RX_OVER</i> interrupt.					

IC3_CLR_TX_OVER

•Name: Clear TX_OVER Interrupt Register

•Size: 1 bit

•Address Offset: 0x4c •Read/Write Access: Read

Module::MIS	Module::MIS Register::IC3_CLR_TX_OVE R					Type::SR	ADDR::0x9801_B94C		
Name	Bits	Read /Write		Comments					
Rvd	31:1	-	-	-					
CLR_TX_OVER	0	R	'b0	Read this register to clear the <i>TX_OVER</i> interrupt.					

IC3_CLR_RD_REQ

•Name: Clear RD_REQ Interrupt Register

•Size: 1 bit

•Address Offset: 0x50 •Read/Write Access: Read

Module::MIS	Reg	ister::IC3_0	CLR_RD_	REQ	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B950
Name	Bits	Read	Reset	Con	nments			
		/Write	State					
Rvd	31:1	-	-	-				
CLR_RD_REQ	0	R	'b0	Reac	l this reg	gister to clear t	he <i>RD_REQ</i>	interrupt.

IC3_CLR_TX_ABRT

•Name: Clear TX_ABRT Interrupt Register

•Size: 1 bit

•Address Offset: 0x54 •Read/Write Access: Read

Module::MIS	Regis T	ster::IC3_C	LR_TX_A	ABR Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B954						
Name	Bits	Read /Write	Reset State	Comments						
Rvd	31:1	-								
CLR_TX_ABRT	0	R	'b0	Read this register to clear the <i>TX_ABRT</i> interrupt, and the IC_TX_ABRT_SOURCE register.						

IC3_CLR_RX_DONE

•Name: Clear RX_DONE Interrupt Register

•Size: 1 bit

•Address Offset: 0x58 •Read/Write Access: Read

Module::MIS	Register::IC3_CLR_RX_DONE			VE Se	t::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B958	
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:1	-	-	-					
CLR_RX_DONE	0	R	'b0	Read this register to clear the <i>RX_DONE</i> interrupt.					

IC3_CLR_ACTIVITY

•Name: ACTIVITY Status Interrupt Register

•Size: 1 bit

•Address Offset: 0x5c •Read/Write Access: Read

Module::MIS	Register::IC3_CLR_ACTIVI			TY	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B95C	
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:1	-	-	-					
CLR_ACTIVITY	0	R	'b0	Read this register to get status of the <i>ACTIVITY</i> interrupt. It is					
				automatically cleared by hardware.					

IC3_CLR_STOP_DET

•Name: Clear STOP_DET Interrupt Register

•Size: 1 bit

•Address Offset: 0x60 •Read/Write Access: Read

IC3_CLR_START_DET

•Name: Clear START_DET Interrupt Register

•Size: 1 bit

•Address Offset: 0x64 •Read/Write Access: Read

Module::MIS	Module::MIS Register::IC3_CLR_START_DET						Type::SR	ADDR::0x9801_B964
Name		Bits	Read	Reset	Comme	nts		
			/Write	State				
Rvd		31:1	-	-	-			
CLR_START_D	ET	0	R	'b0	Read this	register to cle	ear the STAR	<i>T_DET</i> interrupt.

IC3_CLR_GEN_CALL

•Name: Clear GEN_CALL Interrupt Register

•Size: 1 bit

•Address Offset: 0x68 •Read/Write Access: Read

Module::MIS	Register::IC3 CLR GEN CAL	Sot··1	ATTR::sfdf	Type··SP	ADDR::0x9801 B968
MOduleMily	Negisterates the tien car	Set1	A I IIXSIUI	Type::SR	ADDRUXZOUL DZUO

L				
Name	Bits		Reset State	Comments
Rvd	31:1	-	-	-
CLR_GEN_CALL	0	R	'b0	Read this register to clear the GEN_CALL interrupt.

IC3_ENABLE

•Name: I2C Enable Register

•Size: 1 bit

•Address Offset: 0x6c

•Read/Write Access: Read/Write

Module::MIS	Register	::IC3_EN <i>A</i>	ABLE	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B96C
Name	Bits	Read	Reset	Comme	nts		
		/Write	State				
Rvd	31:1	-	-	-			
ENABLE	0	R/W	'b0	Controls	s whether the D	OW_apb_i2c	is enabled.
				0: Disable	es DW_apb_i2	c (TX and R	X FIFOs are held in an
				erased sta			
					es DW_apb_i2c		
							while it is active.
					, it is important		
				care be ta	ken to ensure t	that DW_ap	b_i2c is disabled
				properly.			
							following occurs:
					TX FIFO and l	U	
				 Statu 	us bits in the IC	C_INTR_ST	AT register are still
				active un	til DW_apb_i2	c goes into	DLE state. If the
				module is	s transmitting,	it stops as w	ell as deletes the
				contents	of the transmit	buffer after	the current transfer is
				complete	. If the module	is receiving	, the DW_apb_i2c
				stops the	current transfe	r at the end	of the current byte and
				does not	acknowledge tl	he transfer.Iı	n systems with
							IC_CLK_TYPE
				paramete	r set to asynchi	ronous (1), t	here is a two ic_clk
•				delay who	en enabling or	disabling th	e DW_apb_i2c.

IC3_STATUS

•Name: I2C Status Register

•Size: 5 bits

•Address Offset: 0x70 •Read/Write Access: Read

This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register:

- Bits 1 and 2 are set to 1
- Bits 3 and 4 are set to 0

When the master or slave state machines goes to idle and ic_en=0:

Bits 5 and 6 are set to 0

Module::MIS	Register	::IC3_STA	TUS	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B970
Name	Bits	Read	Reset	Comme	nts		
		/Write	State				
Rvd	31:7	-	-	-			
SLV_ACTIVITY	6	R	'b0				Slave Finite State Machine
					not in the IDLE		
						state so the S	Slave part of DW_apb_i2c
				is not Acti		n_IDLE etat	te so the Slave part of
					i2c is Active	ii iDLE stai	ic so the stave part of
MST_ACTIVITY	5	R	'b0			tatus. When	the Master Finite State
_					FSM) is not in t		
							so the Master part of
					i2c is not Active		4 34
					i2c is Active	in IDEE stat	e so the Master part of
RFF	4	R	'b0			ely Full Wh	en the receive FIFO is
KI I	-	K	00				the receive FIFO
				_			n, this bit is cleared.
					ve FIFO is not		ii, tiiis oit is cicarca.
				1 – Recei	ve FIFO is ful	1	
RFNE	3	R	'b0	Receive I	FIFO Not Emp	ty. Set wher	the receive FIFO
				contains	one or more er	ntries and is	cleared when the
							be polled by software
					etely empty the		FO.
					ve FIFO is em		
					ve FIFO is not		
TFE	2	R	'b1				When the transmit
							s set. When it contains
						•	cleared. This bit field
					request an inte		
					mit FIFO is no		
TFNF	1	R	'b1		mit FIFO is en		he transmit FIFO
11'1\Γ	1	I K	01		one or more er		ne nansimi fifO
					and is cleared		TFO is full
					mit FIFO is fu		
					mit FIFO is no		
ACTIVITY	0	R	'b0		ity Status.		

IC3_TXFLR

•Name: I2C Transmit FIFO Level Register

•Size: 4

•Address Offset: 0x74 •Read/Write Access: Read

This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared

whenever

• The I2C is disabled

● There is a transmit abort—that is, TX_ABRT bit is set in the IC_RAW_INTR_STAT register

• The slave bulk transmit mode is aborted

The register increments whenever data is placed into the transmit FIFO and decrements when data is taken from the transmit FIFO.

Module::MIS	Register::IC3_TXFLR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B974
Name	Bits	Read	Reset	Comme	nts		
		/Write	State				
Rvd	31:4	-	-	-			
TXFLR	3:0	R	'b0		t FIFO Level. the transmit F		e number of valid data

IC3 RXFLR

•Name: I2C Receive FIFO Level Register

•Size: 4

•Address Offset: 0x78 •Read/Write Access: Read

This register contains the number of valid data entries in the receive FIFO buffer. It is cleared whenever:

• The I2C is disabled

• Whenever there is a transmit abort caused by any of the events tracked in

IC_TX_ABRT_SOURCE

The register increments whenever data is placed into the receive FIFO and decrements when data is taken from the receive FIFO.

Module::MIS	Register::IC3_RXFLR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B978
Name	Bits	Read	Reset	Comme	nts		
		/Write	State				
Rvd	31:4	-	-	-			
RXFLR	3:0	R	'h0		FIFO Level. C the receive FI		number of valid data

IC3_SDA_HOLD

•Name: I2C SDA Hold Time Length Register

•Size: 16

•Address Offset: 0x7C

•Read/Write Access: Read / Write

This register controls the amount of hold time on the SDA signal after a negative edge of SCL in both master and slave mode, in units of ic_clk period. The value programmed must be greater than the minimum hold time in each mode for the value to be implemented – one cycle in master mode, seven cycles in slave mode. Writes to this register succeed only when IC ENABLE=0.

The programmed SDA hold time cannot exceed at any time the duration of the low part of SCL. Therefore the programmed value cannot be larger then N_SCL_LOW-2, where N_SCL_LOW is the duration of the low part of the SCL period measured in ic_clk cycles.

Module::MIS	Register::	Register::IC3_SDA_HOLD			ATTR::sfdf	Type::SR	ADDR::0x9801_B97C
Name	Bits	Read /Write	Reset State	Com	ments	•	
Rvd	31:16	-	-	-			
SDA_HOLD	15:0	R/W	'h0001	Sets th	e required SDA	hold time in	units of ic_clk period.

IC3_TX_ABRT_SOURCE

•Name: I2C Transmit Abort Source Register

•Size: 16 bits

•Address Offset: 0x80 •Read/Write Access: Read

This register has 16 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is cleared whenever the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, Bit 9 clears for one cycle and is then re-asserted.

Module::MIS	Register::I	C3_TX	ABRT_SO	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B980
Name		Bits	Read /Write	Reset State	Comments		
Rvd		31:16	-	-	-		
ABRT_SLVRD_	INTX	15	R	'b0		request for d ter and user	lata to be transmitted to writes a 1 in CMD (bit
ABRT_SLV_ARE	BLOST	14	R	'b0	1: Slave lost t	he bus while	transmitting

			ı	
				data to a remote master.
				IC_TX_ABRT_SOURCE[12] is set at
				the same time.
				Note: Even though the slave never "owns" the
				bus, something could go wrong on the bus. This
				is a fail safe check. For instance, during a data
				transmission at the low-to-high transition of
				SCL, if what is on the data bus is not what is
				supposed to be transmitted, then DW_apb_i2c no
ADDT CLUELLICH TVEIEG	1.2	D	'b0	longer own the bus.
ABRT_SLVFLUSH_TXFIFO	13	R	00	1: Slave has received a read command and some
				data exists in the TX FIFO so the slave issues a
				TX_ABRT interrupt to flush old data in TX
			(1.0	FIFO.
ARB_LOST	12	R	'b0	1: Master has lost arbitration, or if
				IC_TX_ABRT_SOURCE[14] is also set, then
				the slave transmitter has lost arbitration.
				Note: I2C can be both master and slave
				at the same time.
ARB_MASTER_DIS	11	R	'b0	1: User tries to initiate a Master operation with
				the Master mode disabled.
ABRT_10B_RD_NORSTRT	10	R	'b0	1: The restart is disabled
				$IC_RESTART_EN$ bit $(IC_CON[5]) = 0)$ and
				the master sends a read command in 10-bit
				addressing mode.
ABRT_SBYTE_NORSTRT	9	R	'b0	To clear Bit 9, the source of the
				ABRT_SBYTE_NORSTRT must be fixed first;
				restart must be enabled (IC_CON[5]=1), the
				SPECIAL bit must be cleared (IC_TAR[11]), or
				the GC_OR_START bit must be cleared
				(IC_TAR[10]). Once the source of the
				ABRT_SBYTE_NORSTRT is fixed, then this bit
				can be cleared in the same manner as other bits
				in this register. If the source of the
				ABRT_SBYTE_NORSTRT is not fixed before
				attempting to clear this bit, bit 9 clears for one
				cycle and then gets re-asserted.
				1: The restart is disabled (IC_RESTART_EN bit
				$(IC_CON[5]) = 0$) and the user is trying to send a
				START Byte.
ABRT_HS_NORSTRT	8	R	'b0	1: The restart is disabled (IC_RESTART_EN bit
				$(IC_CON[5]) = 0$) and the user is trying to use
				the master to transfer data in High Speed mode.
ABRT_SBYTE_ACKDET	7	R	'b0	1: Master has sent a START Byte and the START
				Byte was acknowledged (wrong behavior).
ABRT_HS_ACKDET	6	R	'b0	1: Master is in High Speed mode and the High
				Speed Master code was acknowledged (wrong
				behavior).
ABRT_GCALL_READ	5	R	'b0	1: DW_apb_i2c in master mode sent a General
ADKI_GCALL_KEAD)	IX.	50	Call but the user programmed the byte following
		i	i	i van om me user brogrammed me byle following. T

				the General Call to be a read from the bus (IC_DATA_CMD[9] is set to 1).
ABRT_GCALL_NOACK	4	R	'b0	1: DW_apb_i2c in master mode sent a General
				Call and no slave on the bus acknowledged the
				General Call.
ABRT_TXDATA_NOACK	3	R	'b0	1: This is a master-mode only bit. Master has
				received an acknowledgement for the address,
				but when it sent data byte(s) following the
				address, it did not receive an acknowledge from
				the remote slave(s).
ABRT_10ADDR2_NOACK	2	R	'b0	1: Master is in 10-bit address mode and the
				second address byte of the 10-bit address was not
				acknowledged by any slave.
ABRT_10ADDR1_NOACK	1	R	'b0	1: Master is in 10-bit address mode and the first
				10-bit address byte was not acknowledged by
				any slave.
ABRT_7B_ADDR_NOACK	0	R	'b0	1: Master is in 7-bit addressing mode and the
				address sent was not acknowledged by any slave.

IC3_SLV_DATA_NACK_ONLY

Name: Generate Slave Data NACK Register

Size: 1 bit

Address Offset: 0x84

Read/Write Access: Read/Write

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as a slave-receiver. This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to 1. When this parameter disabled, this register does not exist and writing to the register's address has no effect.

A write can occur on this register if either of the following conditions are met:

- Φ DW_apb_i2c is disabled (IC_ENABLE[0] = 0)
- $\$ Slave part is inactive (IC_STATUS[6] = 0)

	er: IC3_SL CK_ONLY	_	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B984
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:1	-	-	-
NACK	0	R/W	, p0	Generate NACK. This NACK generation only occurs when DW_apb_i2c is a slave-receiver. If this register is set to a value of 1, it can only generate a NACK after a data byte is received; hence, the data transfer is aborted and the data received is not pushed to the receive buffer. When the register is set to a value of 0, it generates NACK/ACK, depending on normal criteria. 1 = generate NACK after data byte received

0 = generate NACK/ACK norma	ılly

IC3 DMA CR

•Name: DMA Control Register

•Size: 2 bits

•Address Offset: 0x88

•Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA Controller interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist and writing to the register's address has no effect and reading from this register address will return zero. The register is used to enable the DMA Controller interface operation. There is a separate bit for transmit and receive. This can be programmed regardless of the state of IC_ENABLE.

Module::MIS	Register::IC3_DMA_CR			Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B988
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:2	-	-	-
TDMAE	1	R/W	'b0	Transmit DMA Enable. This bit enables/disables the
				transmit FIFO DMA channel.
				0 = Transmit DMA disabled
				1 = Transmit DMA enabled
RDMAE	0	R/W	'b0	Receive DMA Enable. This bit enables/disables the
				receive FIFO DMA channel.
				0 Receive DMA disabled
				1 = Receive DMA enabled

IC3 DMA TDLR

•Name: DMA Transmit Data Level Register

•Size: 2 bits

•Address Offset: 0x8c

•Read/Write Access: Read/Write

This register is only valid when the DW_apb_i2c is configured with a set of DMA interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist; writing to its address has no effect; reading from its address returns zero.

Module::MIS	Register::IC3_DMA_TDLR		3_DMA_TDLR		ATTR::sfdf	Type::SR	ADDR::0x9801_B98C
Name	Bits	Read	Read Reset		nments		
		/Write	State	:			
Rvd	31:3	-	-	-			
DMATDL	2:0	R/W 'h0		Tra	nsmit Data Le	evel. This bit	field controls the level
					hich a DMA re	equest is mad	de by the transmit
				logi	c. It is equal to	the waterma	ark level; that is, the
				dma	_tx_req signal	is generated	when the number of

		valid data entries in the transmit FIFO is equal to or
		below this field value, and $TDMAE = 1$.

IC3_DMA_RDLR

•Name: I2C Receive Data Level Register

•Size: 2 bits

•Address Offset: 0x90

•Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist; writing to its address has no effect; reading from its address returns zero.

Module::MIS	Register::IC3	_DMA_RD	LR	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B990
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:4	-	-	•
DMARDL	3:0	R/W	'h0	Receive Data Level. This bit field controls the level
				at which a DMA request is made by the receive logic.
				The watermark level = DMARDL+1; that is,
				dma_rx_req is generated when the number of valid
				data entries in the receive FIFO is equal to or more
				than this field value + 1, and RDMAE =1. For
				instance, when DMARDL is 0, then dma_rx_req is
				asserted when 1 or more data entries are present in the
				receive FIFO.

IC3_SDA_SETUP

Name: 12C SDA Setup Register

Size: 8 bits

• Address Offset: 0x94

Read/Write Access: Read/Write

This register controls the amount of time delay (in terms of number of ic_clk clock periods) introduced

in the rising edge of SCL, relative to SDA changing, when DW_apb_i2c services a read request in a

slave-transmitter operation. The relevant I2C requirement is tSU:DAT (note 4) as detailed in the I2C Bus

Specification.

Module::MIS	Register::IC3_SDA_SETUP		UP	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B994
Name	Bits	Read /Write			nments		
Rvd	31:8	7 *************************************	-	1_			
SDA SETUP		D /W	'h0		Cotup It is roo	ommandad th	not if the required delay is
SDA_SETUP	7:0	R/W	no		-		nat if the required delay is
						_	frequency of 10 MHz,
				IC_S	SDA_SETUP sh	lould be progr	ammed to a value of 11.

IC3_ACK_GENERAL_CALL

● Name: I2C ACK General Call Register

Size: 1 bit

Address Offset: 0x98

Read/Write Access: Read/Write

The register controls whether DW_apb_i2c responds with a ACK or NACK when it receives an I2C

General Call address.

Module::MIS	Register::IC3_ AL_CALL	ACK_GE	NER S	et::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B998
Name	Bits	Read /Write	Reset State	Con	nments		
Rvd	31:1	-	-	-			
ACK_GEN_CALL		R/W	ʻh0	with Gene	a ACK (by ass	serting ic_dat rwise, DW_a	1, DW_apb_i2c responds a_oe) when it receives a apb_i2c responds with a

IC3_ENABLE_STATUS

Name: I2C Enable Status Register

Size: 3 bits

● Address Offset: 0x9C

Read/Write Access: Read

The register is used to report the DW_apb_i2c hardware status when the IC_ENABLE register is set

from 1 to 0; that is, when DW_apb_i2c is disabled.

If IC_ENABLE has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC_ENABLE has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as '0'.

Module::MIS	Register::IC3_TUS	_ENABLE_	_STA	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B99C
Name	Bits	Read /Write	Rese State		mments		
Rvd	31:3	-	-	-			
SLV_RX_DATA_ LOST	2	R/W	'h0	Reccibyte IC_I deer trans I2C beer mass befo and to 1 disa of a NO7	received from received from ENABLE from ned to have been fer (with mater transfer has been responded with the ENABLE has been read as (bled without be Slave-Receiver).	has been abort an I2C trans 1 to 0. When a ren actively ending address) en entered, even a NACK. If the transfer _i2c has a chas been set to 1, DW_apb_i2 ing actively it transfer.	bit indicates if a Slave- rted with at least one data after due to the setting of read as 1, DW_apb_i2c is agged in an aborted I2C and the data phase of the en though a data byte has NOTE: If the remote I2C with a STOP condition ance to NACK a transfer, 0, then this bit is also set acc is deemed to have been anvolved in the data phase
SLV_DISABLED_ WHI LE_BUSY		R/W	'h0	Slavindid abord 1 to IC_I the are more Record Whee NAC whee DW come effect NOC with chart to 0, Whee disa is id NOC 100 to 100 t	e Disabled Wheates if a potented due to the second of the	tial or active etting of the It set when the er while: (a) the Slave-Tra (b) address ar from a remote W_apb_i2c is part of an I20 dress matched SAR register C_ENABLE is the I2C masted dition before transfer, and It also be set to DW_apb_i2c is master active.	deemed to have forced a C transfer, irrespective of s the slave address set in O OR if the transfer is set to 0 but has not taken er terminates the transfer the DW_apb_i2c has a IC_ENABLE has been set
IC_EN	0	R/W	'h0	ic_ the c Whe	en Status. This putput port ic_er en read as 1, 1 led state.	n. DW_apb_i2c	flects the value driven on is deemed to be in an e is deemed completely

	inactive. NOTE: The CPU can safely read this bit anytime. Who this bit is read as 0, the CPU can safely read SLV_RX_DATA_LOST (by the CPU can safely read SLV_RX_DATA_LOST).
	2) and SLV_DISABLED_WHILE_BUSY (bit 1).

IC3_COMP_PARAM_1

•Name: Component Parameter Register 1

•Size: 32 bits

•Address Offset: 0xf4 •Read/Write Access: Read

Module::MIS	Dagistanu ICC	COM	DADANA	Cate 1	1 ATTR::sfdf Type::SR ADDR::0x9801 B9F4
Module::MIS	Register::IC3	5_COMP	_PAKAM_	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B9F4
Name		Bits	Read /Write	Reset State	Comments
Rvd		31:24	ı	-	-
TX_BUFFER_	DEPTH	23:16	R	'h07	The value of this register is derived from the IC_TX_BUFFER_DEPTH coreConsultant parameter. 0x00 = Rvd
					0x01 = 2 0x02 = 3 to 0xFF = 256
RX_BUFFER_	DEPTH	15:8	R	'h07	The value of this register is derived from the IC_RX_BUFFER_DEPTH coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x00 = Rvd 0x01 = 2 0x02 = 3 to 0xFF = 256
ADD_ENCODEL	D_PARAMS	7	R	'b1	The value of this register is derived from the IC_ADD_ENCODED_PARAMS coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
HAS_DM	1A	6	R	,p0	The value of this register is derived from the IC_HAS_DMA coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False

				1 7
				1 = True
INTR_IO	5	R	'b1	The value of this register is derived from the
				IC_INTR_IO coreConsultant parameter. For a
				description of this parameter, see DesignWare
				DW_apb_i2c Databook, Table 4 on page 46.
				0 = Individual
				1 = Combined
HC COUNT VALUES	4	D	'b0	
HC_COUNT_VALUES	4	R	00	The value of this register is derived from the
				IC_HC_COUNT_VALUES coreConsultant
				parameter. For
				a description of this parameter, see DesignWare
				DW_apb_i2c Databook, Table 4 on page 46.
				0 = False
				1 = True
MAX_SPEED_MODE	3:2	R	'b10	The value of this register is derived from the
				IC_MAX_SPEED_MODE coreConsultant
				parameter. For
				a description of this parameter, see DesignWare
				DW_apb_i2c Databook, Table 4 on page 46.
				0x0 = Rvd
				0x1 = Standard
				0x2 = Fast
				0x3 = High
APB_DATA_WIDTH	1:0	R	~'b10	The value of this register is derived from the
				IC_MAX_SPEED_MODE coreConsultant
				parameter. For
				a description of this parameter, see DesignWare
				DW_apb_i2c Databook, Table 4 on page 46.
				0x0 = 8 bits
				0x1 = 16 bits
				0x2 = 32 bits
	\			$0x^2 - 32$ bits $0x^3 = \text{Rvd}$
		•		UXS = KVU

Notice: This is a constant read-only register that contains encoded information about the component's parameter settings. The reset value depends on coreConsultant parameter(s).

IC3_COMP_VERSION

•Name: I2C Component Version Register

•Size: 32 bits

•Address Offset: 0xf8 •Read/Write Access: Read

Module::MIS	Register::IC3 ₋ N	ister::IC3_COMP_VERSIO			ATTR::sfdf	Type::SR	ADDR::0x9801_B9F8
Name	Bits	Read	Reset	(Comments		
		/Write	State				
IC_COMP_VERS	ION 31:0	R	'h31303	332a I	Lists the relea	ses/version	s of the DW_apb_i2c
				C	component a	nd the I20	C_COMP_VERSION
				1	alue.		

DesignWare AMBA Release	DW_apb_i2c Version	I2C_COMP_VERSION value	Databook Date
2004.06	1.03a	31_30_33_2A	June 21, 2004

IC3_COMP_TYPE

•Name: I2C Component Type Register

•Size: 32 bits

•Address Offset: 0xfc •Read/Write Access: Read

Module::MIS	Register::IC3_COMP_TYPE S			Set::1 ATTR::sfdf Type::SR ADDR::0x9801_B9FC
Name	Bits	Read	Reset	Comments
		/Write	State	•
IC_COMP_TYPE	31:0	R	'h44570140	Designware Component Type number =
				0x44_57_01_40. This assigned unique hex value is
				constant and is derived from the two ASCII letters
				"DW" followed by a 16-bit unsigned number.

3.1.4 Fourth I2C Register Description

IC4_CON

•Name: I2C Control Register 0

•Size: 7 bits

•Address Offset: 0x00

•Read/Write Access: Read/Write

This register can be written only when the DW_apb_i2c is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect.

Module::MIS Register::IC4_CON			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA00		
Name		Bits	Read /Write	Reset State	Commen	Comments		
Rvd		31:7	-	-	-	-		
IC_SLAVE_DISABLE		6	R/W	ʻb1	disabled af	This bit controls whether I2C has its slave disabled after reset. The slave can be disabled by programming a '1' into IC_CON[6]. By default the slave is		

Γ		1	1	
				enabled.
				0: slave is enabled
				1: slave is disabled
IC_RESTART_EN	5	R/W	'b1	Determines whether RESTART conditions
				may be sent when
				acting as a master. Some older slaves do not
				support handling
				RESTART conditions; however, RESTART
				conditions are used in
				several DW_apb_i2c operations.
				0: disable
				1: enable
				When RESTART is disabled, the master is
				prohibited from
				performing the following functions:
				Change direction within a transfer (split)
				Send a START BYTE
				High-speed mode operation
				Combined format transfers in 7-bit
				addressing modes
				Read operation with a 10-bit address
				Send multiple bytes per transfer
				By replacing RESTART condition followed
				by a STOP and a
			1 0	subsequent START condition, split operations
				are broken down
				into multiple DW_apb_i2c transfers. If the
				above operations are
				performed, it will result in setting bit 6
				(TX_ABRT) of the
				IC_RAW_INTR_STAT register.
IC_10BITADDR_MASTER	4	R/W	'b1	
IC_IOBITADDIC_WASTER	4	IX/ VV	01	This bit controls whether the DW_apb_i2c
				starts its transfers in 10-bit addressing mode
				when acting as a master.
				0: 7-bit addressing
				1: 10-bit addressing
IC_10BITADDR_SLAVE	3	R/W	' b1	When acting as a slave, this bit controls
				whether the DW_apb_i2c responds to 7- or
				10-bit addresses.
				0: 7-bit addressing. The DW_apb_i2c
				ignores transactions
				which involve 10-bit addressing; for 7-bit
				addressing, only the
				lower 7 bits of the IC_SAR register are
				compared.
				1: 10-bit addressing. The DW_apb_i2c
				responds to only 10-bit
				addressing transfers that match the full 10 bits
				of the IC_SAR
		<u> </u>		OF THE IC_SAK

				register.
SPEED	2:1	R/W	'b10	Controls at which speed the DW_apb_i2c operates: 0: illegal; writing a 0 results in setting SPEED to IC_MAX_SPEED_MODE 1: standard mode (100 kbit/s) 2: fast mode (400 kbit/s) 3: high speed mode (3.4 Mbit/s) If the DW_apb_i2c is configured for fast or standard mode (1 or 2) and a value of 2 or 3 is written, then IC_MAX_SPEED_MODE is stored.
MASTER_MODE	0	R/W	'b1	This bit controls whether the DW_apb_i2c master is enabled or not. The slave is always enabled. 0: master disabled 1: master enabled

IC4_TAR

•Name: I2C Target Address Register

•Size: 12 bits

•Address Offset: 0x04

•Read/Write Access: Read/Write

All bits can be dynamically updated as long as any set of the following conditions are true:

● DW_apb_i2c is NOT enabled (IC_ENABLE is set to 0); or

DW_apb_i2c is enabled (IC_ENABLE=1); AND

DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND there are NO entries in the TX FIFO (IC_STATUS[2]=1)

Module::MIS	Dogic	ter::IC4 T.	۸D	Set::1 ATTR::sfdf Type::SR ADDR::0x9801 BA04
				21 –
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:13	-	-	-
IC_10BITADD	12	R/W	'b0	This bit controls whether the DW_apb_i2c starts its
R_MASTER				transfers in 7-or 10-bit addressing mode when acting as
				a master.
				0: 7-bit addressing
				1: 10-bit addressing
				Dependencies: This bit exists in this register only if the
				I2C_DYNAMIC_TAR_UPDATE configuration
				parameter is set to "Yes" (1).
SPECIAL	11	R/W	'b0	This bit indicates whether software performs a General Call
				or START BYTE command.
				0: ignore bit 10 GC_OR_START and use IC_TAR normally
				1: perform special I2C command as specified in

_					
					GC_OR_START bit
	GC_OR_START	10	R/W	'b0	If bit 11 (SPECIAL) is set to 1, then this bit indicates
					whether a General Call or START byte command is to be
					performed by the DW_apb_i2c.
					0: General Call Address – after issuing a General Call, only writes may be performed. Attempting to issue a read command results in setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT register. The DW_apb_i2c remains in General Call mode until the SPECIAL bit value (bit 11) is cleared.
					1: START BYTE
	IC_TAR	9:0	R/W	'h055	This is the target address for any master transaction. When transmitting a General Call, these bits are ignored. To generate a START BYTE, the CPU needs to write only once into these bits. If the IC_TAR and IC_SAR are the same, loopback exists but the FIFOs are shared between master and slave, so full loopback is not feasible. Only one direction loopback mode is supported (simplex), not duplex. A master cannot transmit to itself; it can transmit to only a slave.

IC4_SAR

•Name: I2C Slave Address Register

•Size: 10 bits

•Address Offset: 0x08

•Read/Write Access: Read/Write

Module::MIS	Reg	ister::IC4_	SAR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA08
Name	Bits	Read /Write	Reset State	Comments		, J1	
Ryd	31:10	-	-	-			
IC_SAR	9:0	R/W	'h055	operating as the DW_ap IC_SAR[6:0 the I2C inter	b_i2c respon] is used. This face is disable	AR holds the ds. For 7-bit register can d, which cor	then the I2C is a slave address to which addressing, only be written only when responds to the rites at other times have

IC4_HS_MADDR

•Name: I2C HS Master Mode Code Address Register

•Size: 3 bits

•Address Offset: 0x0c

Module::MIS	Reg	ister::IC4_1	HS_MADI	DR Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BA0C
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:3	-	-	-
IC_HS_MAR	2:0	R/W	ʻb0	This bit field holds the value of the I2C HS mode master code. HS-mode master codes are reserved 8-bit codes (00001xxx) that are not used for slave addressing or other purposes. Each master has its unique master code; up to eight high-speed mode masters can be present on the same I2C bus system. Valid values are from 0 to 7. This register goes away and becomes read-only returning 0's if the IC_MAX_SPEED_MODE configuration parameter is set to either Standard (1) or Fast (2). This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect.

IC4_DATA_CMD

•Name: I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when filling the TX FIFO and the CPU reads from when retrieving bytes from RX FIFO

•Size: 11 bits (writes) •Address Offset: 0x10

Module::MIS	Regis	ter::IC4_D	ATA_CMD	Set::1 ATTI	R::sfdf	Type::SR	ADDR::0x9801_BA10
Name	Bits	Read /Write	Reset State	Comments			
Rvd	31:11	-	-	-			
RESTART	10		60	sent or received IC_EMPTYFIFO_1 - If IC_RESTA data is sent/received of whether of no previous command by a START is issued of the IC_RESTA transfer direction.	red. TI HOLD_I RT_EN i ed (according to the tra l; if IC_I ued inste RT_EN i is change	hie bit i MASTER_EN is 1, a REST rding to the v ansfer direction RESTART_E ad. is 1, a REST ging from th	s issued before the byte is a vailable only if N is configured to 1. ART is issued before the value of CMD), regardless on is changing from the EN is 0, a STOP followed ART is issued only if the previous command; if yed by a START is issued
STOP	9	W	'b0	received. This IC_EMPTYFIFO_1 – STOP is issued Tx FIFO is empt immediately tries arbitrating for the lo – STOP is not is the Tx FIFO is en	HOLD_I HOLD_I I after thing. If the to start abous. Sued afte	is MASTER_EN is byte, regard e Tx FIFO i new transfer r this byte, re the Tx FIFO	ed after the byte is sent or available only if N is configured to 1. Illess of whether of not the s not empty, the master by issuing a START and gardless of whether or not is not empty, the master ding/receiving data bytes

		Т		and the state of the CMD 1's Test TE DEFO.
				according to the value of the CMD bit. If the Tx FIFO is empty,
				the master holds the SCL line low and stalls the bus until a new
				command is available in the Tx FIFO.
CMD	8	W	'b0	This bit controls whether a read or a write is performed.
				This bit does not control the direction when the
				DW_apb_i2c acts as a slave. It controls only the direction
				when it acts as a master.
				1 = Read
				0 = Write
				When a command is entered in the TX FIFO, this bit
				distinguishes the write and read commands. In slave-
				receiver mode, this bit is a "don't care" because writes to
				this register are not required. In slave-transmitter mode, a
				"0" indicates that CPU data is to be transmitted and as DAT
				or IC_DATA_CMD[7:0].
				When programming this bit, you should remember the
				following: attempting to perform a read operation after a
				General Call command has been sent results in a TX_ABRT
				interrupt (bit 6 of the IC_RAW_INTR_STAT register),
				unless bit 11 (SPECIAL) in the IC_TAR register has been
				cleared.
				If a "1" is written to this bit after receiving a RD_REQ
				interrupt, then a TX_ABRT interrupt occurs.
				NOTE: It is possible that while attempting a master I2C
				read transfer on DW_apb_i2c, a RD_REQ interrupt may
				have occurred simultaneously due to a remote I2C master
				addressing DW_apb_i2c. In this type of scenario,
				DW_apb_i2c ignores the IC_DATA_CMD write, generates
				a TX_ABRT interrupt, and waits to service the RD_REQ
				interrupt.
DAT	7:0	R/W	'b0	This register contains the data to be transmitted or received
				on the I2C bus. If you are writing to this register and want to
			•	perform a read, bits 7:0 (DAT) are ignored by the
				DW_apb_i2c. However, when you read this register, these
				bits return the value of data received on the DW_apb_i2c
				interface.
				Interface.

IC4_SS_SCL_HCNT

•Name: Standard Speed I2C Clock SCL High Count Register

•Size: 16 bits

•Address Offset: 0x14

Module::MIS	Register::IC4_SS_SCL_HCN T			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA14
Name	Bits	Read	Reset	Comm	ents		

		/Write	State	
Rvd	31:1	-	-	-
	6			
IC_SS_SCL_HCNT	15:0	R/W	'h007a	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock high-period count for standard speed. The table below shows some sample IC_SS_HCNT calculations. This register can be written only when the I2C interface is disabled which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 6; hardware prevents values less than this being written, and if attempted results in 6 being set. For designs with APB_DATA_WIDTH = 8 the order of programming is important to ensure the correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is read only.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL High required min (us)	H_CNT (HEX/decimal)	SCL High Time (us)
100	2	4	0008/8	4.00
100	6.6	4	001B/27	4.09
100	10	4	0028/40	4.00
100	75	4	012C/300	4.00
100	100	4	0190/400	4.00
100	1 25	4	01F4/500	4.00
100	1000	4	0FA0/4000	4.00

IC4_SS_SCL_LCNT

•Name: Standard Speed I2C Clock SCL Low Count Register

•**Size:** 16 bits

•Address Offset: 0x98

Module::MIS	Register::IC4_SS_SCL_LCNT			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA18	
Name	Bits	Read /Write	Reset State	Comments				
Rvd	31:1	-	-	-				

	6			
IC_SS_SCL_LCN T	15:0	R/W	'h008f	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock low period count for standard speed. The table below shows some sample IC_SS_LCNT calculations. This register can be written only when the I2C interface is disabled which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 8; hardware prevents values less than this being written, and if attempted results in 8 being set. For designs with APB_DATA_WIDTH = 8 the order of programming is important to ensure the correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is
				read only.

Notice : Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL Low required min (us)	L_CNT (HEX/Decimal)	SCL Low Time (us)
100	2	4.7	000A/10	5.00
100	6.6	4.7	0020/32	4.85
100	10	4.7	002F/47	4.70
100	75	4.7	0161/353	4.71
100	100	4.7	01D6/470	4.70
100	125	4.7	024C/588	4.70
100	1000	4	125C/4700	4.70

IC4_FS_SCL_HCNT

•Name: Fast Speed I2C Clock SCL High Count Register

•**Size:** 16 bits

•Address Offset: 0x1c

Module::MIS	Register::IC4_FS_SCL_HCN T			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA1C
Name	Bits	Read /Write	Reset State	Comn	nents		
Rvd	31:16	=	-	=			
IC_FS_SCL_HCN T	15:0	R/W	'h0013				ny I2C bus transaction O timing. This register

sets the SCL clock high-period count for fast speed. It is used in high-speed mode to send the Master Code and START BYTE or General CALL. The table below shows some sample IC_FS_SCL_HCNT calculations. This register goes away and becomes read-only returning 0s if IC_MAX_SPEED_MODE = standard. This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 6; hardware prevents values less than this being written, and if attempted results in 6 being set. For designs with APB_DATA_WIDTH == 8 the order of programming is important to ensure the correct operation of the DW apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is read only.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL High required min (us)	H_CNT (HEX/Decimal)	SCL High Time (us)
400	10	0.6	0006/6	0.60
400	25	0.6	000F/15	0.60
400	50	0.6	001E/	0.60
400	75	0.6	002D/30	0.60
400	100	0.6	003C/60	0.60
400	125	0.6	004B/75	0.60
400	1000	0.6	0258/600	0.60
100 (through IC_MAX_ SPEED_MODE = standard)	N/A	N/A	disabled	N/A

IC4 FS SCL LCNT

•Name: Fast Speed I2C Clock SCL Low Count Register

•Size: 16 bits

•Address Offset: 0x20

Module::MIS	Register::IC4 FS SCL LCNT	Set ·· 1 ATTR ·· sfdf	Type::SR	ADDR::0x9801 BA20

Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:16	-	-	-
IC_FS_SCL_LCNT	15:0	R/W	'h0028	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock low period count for fast speed. It is used in high-speed mode to send the Master Code and START BYTE or General CALL. The table below shows some sample IC_FS_SCL_LCNT calculations. This register goes away and becomes read-only returning 0s if IC_MAX_SPEED_MODE = standard. This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 8; hardware prevents values less than this being written, and if attempted results in 8 being set. For designs with APB_DATA_WIDTH = 8 the order of programming is important to ensure the correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. If the value is less than 8 then the count value gets changed to 8. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is read only.

Notice : Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL Low required min (us)	L_CNT (HEX/Decimal)	SCL Low Time (us)
400	10	1.3	000D/13	1.30
400	25	1.3	0021/33	1.32
400	50	1.3	0041/65	1.30
400	75	1.3	0062/98	1.31
400	100	1.3	0082/130	1.30
400	125	1.3	00A3/163	1.30
400	1000	1.3	0514/1300	1.30
100 (through IC_MAX_ SPEED_MODE = standard)	N/A	N/A	disabled	N/A

IC4_INTR_STAT

•Name: I2C Interrupt Status Register

•Size: 12 bits

•Address Offset: 0x2C •Read/Write Access: Read

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are cleared by reading the matching interrupt clear register. The unmasked raw versions of these bits are available in the IC_RAW_INTR_STAT register.

Module::MIS	Regi	ster::IC4_II	NTR_STA	T Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BA2C
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:12	-	-	-
R_GEN_CALL	11	R	'b0	See "IC_RAW_INTR_STAT" for a detailed description of
R_START_DET	10	R	'b0	these bits.
R_STOP_DET	9	R	'b0	
R_ACTIVITY	8	R	'b0	
R_RX_DONE	7	R	'b0	
R_TX_ABRT	6	R	'b0	
R_RD_REQ	5	R	'b0	
R_TX_EMPTY	4	R	'b0	
R_TX_OVER	3	R	'b0	
R_RX_FULL	2	R	'b0	
R_RX_OVER	1	R	'b0	
R_RX_UNDER	0	R	'b0	

IC4_INTR_MASK

•Name: I2C Interrupt Mask Register

•Size: 12 bits

•Address Offset: 0x30

•Read/Write Access: Read/Write

These bits mask their corresponding interrupt status bits. They are active high; a value of 0 prevents a bit from generating an interrupt.

Module::MIS	Regis	Register::IC4_INTR_MASI			ATTR::sfdf	Type::SR	ADDR::0x9801_BA30
Name	Bits	Read	Reset	Commen	ts		
		/Write	State				
Rvd	31:12	-	-	-			
M_GEN_CALL	11	R/W	'b1	Masks this	bit in the IC_I	NTR_STAT	register.
M_START_DET	10	R/W	'b0				
M_STOP_DET	9	R/W	'b0				
M_ACTIVITY	8	R/W	'b0				
M_RX_DONE	7	R/W	'b1				
M_TX_ABRT	6	R/W	'b1				

M_RD_REQ	5	R/W	'b1
M_TX_EMPTY	4	R/W	'b1
M_TX_OVER	3	R/W	'b1
M_RX_FULL	2	R/W	'b1
M_RX_OVER	1	R/W	'b1
M_RX_UNDER	0	R/W	'b1

IC4_RAW_INTR_STAT

•Name: I2C Raw Interpol Status Register

•Size: 12 bits

•Address Offset: 0x34

•Read/Write Access: Read/Write

Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of

the DW_apb_i2c.

Module::MI R	egister::I0	C4_RAW_	INTR_ST	AT Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BA34
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:12	-	-	-
GEN_CALL	11	R	'b0	Set only when a General Call address is received and it is acknowledged. It stays set until it is cleared either by disabling DW_apb_i2c or when the CPU reads bit 0 of the IC_CLR_GEN_CALL register. DW_apb_i2c stores the received data in the Rx buffer.
START_DET	10	R	'b0	Indicates whether a START or RESTART condition has occurred on the I2C interface regardless of whether DW_apb_i2c is operating in slave or master mode.
STOP_DET	9	R	'b0	Indicates whether a STOP condition has occurred on the I2C interface regardless of whether DW_apb_i2c is operating in slave or master mode.
ACTIVITY	8	R	[,] p0	This bit captures DW_apb_i2c activity and stays set until it is cleared. There are four ways to clear it: Disabling the DW_apb_i2c Reading the IC_CLR_ACTIVITY register Reading the IC_CLR_INTR register System reset Once this bit is set, it stays set unless one of the four methods is used to clear it. Even if the DW_apb_i2c module is idle, this bit remains set until cleared, indicating that there was activity on the bus.
RX_DONE	7	R	'b0	When the DW_apb_i2c is acting as a slave-transmitter, this bit is set to 1 if the master does not acknowledge a transmitted

	1			hosts. This seems on the last hat a full of
				byte. This occurs on the last byte of the transmission,
TIL ADDT		D.	41.0	indicating that the transmission is done.
TX_ABRT	6	R	'b0	This bit indicates if DW_apb_i2c, as an I2C transmitter, is
				unable to complete the intended actions on the contents of the
				transmit FIFO. This situation can occur both as an I2C master
				or an I2C slave, and is referred to as a "transmit abort".
				When this bit is set to 1, the IC_TX_ABRT_SOURCE register
				indicates the reason why the transmit abort takes places.
				NOTE: The DW_apb_i2c flushes/resets/empties the TX FIFO
				whenever this bit is set. The TX FIFO remains in this flushed
				state until the register IC_CLR_TX_ABRT is read. Once this
				read is performed, the TX FIFO is then ready to accept more
				data bytes from the APB interface.
RD_REQ	5	R	'b0	This bit is set to 1 when DW_apb_i2c is acting as a slave
				and another I2C master is attempting to read data from
				DW_apb_i2c. The DW_apb_i2c holds the I2C bus in a wait
	1			state (SCL=0) until this interrupt is serviced, which means
	1			that the slave has been addressed by a remote master that is
				asking for data to be transferred. The processor must respond
				to this interrupt and then write the requested data to the
				IC_DATA_CMD register. This bit is set to 0 just after the
				processor reads the IC_CLR_RD_REQ register.
TX_EMPTY	4	R	'b0	This bit is set to 1 when the transmit buffer is at or below the
				threshold value set in the IC_TX_TL register. It is
				automatically cleared by hardware when the buffer level goes
				above the threshold. When the IC_ENABLE bit 0 is 0, the TX
				FIFO is flushed and held in reset. There the TX FIFO looks
				like it has no data within it, so this bit is set to 1, provided
				there is activity in the master or slave state machines. When
				there is no longer activity, then with ic_en=0, this bit is set to
				0.
TX_OVER	3	R	'b0	Set during transmit if the transmit buffer is filled to
				IC_TX_BUFFER_DEPTH and the processor attempts to issue
				another I2C command by writing to the IC_DATA_CMD
				register. When the module is disabled, this bit keeps its level
				until the master or slave state machines go into idle, and when
				ic_en goes to 0, this interrupt is cleared.
RX_FULL	2	R	'b0	Set when the receive buffer reaches or goes above the RX_TL
				threshold in the IC_RX_TL register. It is automatically cleared
	1			by hardware when buffer level goes below the threshold. If the
	1			module is disabled (IC_ENABLE[0]=0), the RX FIFO is
	1			flushed and held in reset; therefore the RX FIFO is not full. So
	1			this bit is cleared once the IC_ENABLE bit 0 is programmed
			(1.0	with a 0, regardless of the activity that continues.
RX_OVER	1	R	'b0	Set if the receive buffer is completely filled to
				IC_RX_BUFFER_DEPTH and an additional byte is received
				from an external I2C device. The DW_apb_i2c acknowledges
				this, but any data bytes received after the FIFO is full are lost.
				If the module is disabled (IC_ENABLE[0]=0), this bit keeps
				its level until the master or slave state machines go into idle,

				and when ic_en goes to 0, this interrupt is cleared.
RX_UNDER	0	R	'b0	Set if the processor attempts to read the receive buffer when it
				is empty by reading from the IC_DATA_CMD register. If the
				module is disabled (IC_ENABLE[0]=0), this bit keeps its level
				until the master or slave state machines go into idle, and when
				ic_en goes to 0, this interrupt is cleared.

IC4_RX_TL

•Name: I2C Receive FIFO Threshold Register

•Size: 8bits

•Address Offset: 0x38

•Read/Write Access: Read/Write

Module::MIS	Reg	ister::IC4_1	RX_TL	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BA38
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:8	-	-	-
RX_TL	7:0	R/W	'h00	Receive FIFO Threshold Level
				Controls the level of entries (or above) that triggers the
				RX_FULL interrupt. The valid range is 0-255, with the
				additional restriction that hardware does not allow this value to
				be set to a value larger than the depth of the buffer. If an
				attempt is made to do that, the actual value set will be the
				maximum depth of the buffer.
				A value of 0 sets the threshold for 1 entry, and a value of 255
			16	sets the threshold for 256 entries. Depth of the rx_buffer is 32.

IC4_TX_TL

•Name: I2C Transmit FIFO Threshold Register

•Size: 8 bits

•Address Offset: 0x3c

Module::MIS	Reg	gister::IC4_TX_TL		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA3C
Name	Bits	Read	Reset	Comments			
		/Write	State				
Rvd	31:8	-	-	-			
TX_TL	7:0	R/W	'h00	Transmit FIFO Threshold Level Controls the level of entries			
			(or below) that trigger the TX_EMPTY interrupt. The valid				
				range is 0-25	5, with the add	ditional restr	iction that it may not be
				set to value 1	arger than the	depth of the	buffer. If an attempt is
				made to do the	hat, the actual	value set wil	l be the maximum

			depth of the buffer. A value of 0 sets the threshold for 0 entries, and a value of 255 sets the threshold for 255 entries. Depth of the tx_buffer is 32.
--	--	--	---

IC4_CLR_INTR

•Name: Clear Combined and Individual Interrupt Register

•Size: 1 bit

•Address Offset: 0x40 •Read/Write Access: Read

Module::MIS	Reg R	ister:: IC4 _	_CLR_I	NT Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BA40
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:1	-	-	-
CLR_INTR	0	R	,p0	Read this register to clear the combined interrupt, all individual interrupts, and the IC_TX_ABRT_SOURCE register. This bit does not clear hardware clearable interrupts but software clearable interrupts. Refer to Bit 9 of the IC_TX_ABRT_SOURCE register for an exception to clearing IC_TX_ABRT_SOURCE.

IC4_CLR_RX_UNDER

•Name: Clear RX_UNDER Interrupt Register

•Size: 1 bit

•Address Offset: 0x44 •Read/Write Access: Read

Module::MIS	Register::IC	4_CLR_RX	K_UNDER	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA44
Name	Bits Read Reset			Commer	nts		
		/Write	State				
Rvd	31:1	-	-	-			
CLR_RX_UN	0	R	'b0	Read this	register to cle	ar the <i>RX_U</i>	NDER interrupt.
DER							

IC4_CLR_RX_OVER

•Name: Clear RX_OVER Interrupt Register

•Size: 1 bit

•Address Offset: 0x48 •Read/Write Access: Read

R							
Name	Bits	Read	Reset	set Comments			
		/Write	State				
Rvd	31:1	-	-	-			
CLR_RX_OVER	0	R	'b0	Read this register to clear the <i>RX_OVER</i> interrupt.			

IC4_CLR_TX_OVER

•Name: Clear TX_OVER Interrupt Register

•Size: 1 bit

•Address Offset: 0x4c •Read/Write Access: Read

Module::MIS	Regis R	ster::IC4_C	LR_TX_O	VE Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA4C
Name	Bits	Read /Write	Reset State	Comment	s		
Rvd	31:1	-	-	-			
CLR_TX_OVER	0	R	'b0	Read this re	egister to clear	the TX_OVI	ER interrupt.

IC4_CLR_RD_REQ

•Name: Clear RD_REQ Interrupt Register

•Size: 1 bit

•Address Offset: 0x50 •Read/Write Access: Read

Module::MIS	Reg	ister::IC4_0	CLR_RD_	REQ Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA50
Name	Bits	Read	Reset	Comments			
		/Write	State				
Rvd	31:1		-	-			
CLR_RD_REQ	0	R	'b0	Read this reg	gister to clear t	he <i>RD_REQ</i>	interrupt.

IC4_CLR_TX_ABRT

•Name: Clear TX_ABRT Interrupt Register

•Size: 1 bit

•Address Offset: 0x54 •Read/Write Access: Read

Module::MIS	Register::IC4_CLR_TX_ABR T				Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA54
Name	Bits	Read /Write	Reset State	Cor	nments	}		
Rvd	31:1	-	-	-				
CLR_TX_ABRT	0	R	'b0	Read	d this re	gister to clear	the TX_ABR	T interrupt, and the

		IC_TX_ABRT_SOURCE register.

IC4_CLR_RX_DONE

•Name: Clear RX_DONE Interrupt Register

•Size: 1 bit

•Address Offset: 0x58 •Read/Write Access: Read

Module::MIS	Register	::IC4_CLR	_RX_DON	NE Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA58
Name	Bits	Read /Write		Comment	s		
Rvd	31:1	-	-	-			
CLR_RX_DONE	0	R	'b0	Read this re	egister to clear	the RX_DO	NE interrupt.

IC4_CLR_ACTIVITY

•Name: ACTIVITY Status Interrupt Register

•Size: 1 bit

•Address Offset: 0x5c •Read/Write Access: Read

Module::MIS	Registe	r::IC4_CLF	R_ACTIVI	TY	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA5C
Name	Bits	Read	Reset	Co	mment	S		
		/Write	State					
Rvd	31:1		-	7				
CLR_ACTIVITY	0	R	'b0	Rea	ad this re	egister to get st	atus of the A	CTIVITY interrupt. It is
				aut	omatical	ly cleared by h	nardware.	

IC4_CLR_STOP_DET

•Name: Clear STOP_DET Interrupt Register

•Size: 1 bit

•Address Offset: 0x60 •Read/Write Access: Read

Module::MIS	Register:	:IC4_CLR_	STOP_DI	ET Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA60		
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:1	-	-	-					
CLR_STOP_D	0	R	'b0	Read this register to clear the <i>STOP_DET</i> interrupt.					
ET									

IC4_CLR_START_DET

•Name: Clear START_DET Interrupt Register

•Size: 1 bit

•Address Offset: 0x64 •Read/Write Access: Read

Module::MIS Register::IC4_CLR_START_DET					ATTR::sfdf	Type::SR	ADDR::0x9801_BA64
Name Bits Read Reset /Write State			Comme	nts			
Rvd	31:1	i	-	ı			
CLR_START_DET	0	R	'b0	Read this register to clear the <i>START_DET</i> interrupt.			

IC4_CLR_GEN_CALL

•Name: Clear GEN_CALL Interrupt Register

•Size: 1 bit

•Address Offset: 0x68 •Read/Write Access: Read

Module::MIS	Register::IC4_CLR_GEN_CAL L			Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BA68
Name	Bits	Read /Write		Comments
Rvd	31:1	-	-	-
CLR_GEN_CAL	2 0	R	,p0	Read this register to clear the GEN_CALL interrupt.

IC4_ENABLE

•Name: I2C Enable Register

•Size: 1 bit

•Address Offset: 0x6c

Module::MIS	Register	::IC4_ENA	BLE	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BA6C						
Name	Bits	Read	Reset	Comments						
		/Write	State							
Rvd	31:1	-	-	-						
ENABLE	0	R/W	'b0	Controls whether the DW_apb_i2c is enabled.						
				0: Disables DW_apb_i2c (TX and RX FIFOs are held in an						
				erased state)						
				1: Enables DW_apb_i2c						
				Software can disable DW_apb_i2c while it is active.						
				However, it is important that						
				care be taken to ensure that DW_apb_i2c is disabled						
				properly.						
				When DW_apb_i2c is disabled, the following occurs:						
				The TX FIFO and RX FIFO get flushed.						

• Status bits in the IC_INTR_STAT register are still active until DW_apb_i2c goes into IDLE state. If the module is transmitting, it stops as well as deletes the contents of the transmit buffer after the current transfer is
complete. If the module is receiving, the DW_apb_i2c stops the current transfer at the end of the current byte and does not acknowledge the transfer.In systems with asynchronous pclk and ic_clk when IC_CLK_TYPE parameter set to asynchronous (1), there is a two ic_clk delay when enabling or disabling the DW_apb_i2c.

IC4 STATUS

•Name: I2C Status Register

•Size: 5 bits

•Address Offset: 0x70 •Read/Write Access: Read

This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register:

Bits 1 and 2 are set to 1Bits 3 and 4 are set to 0

When the master or slave state machines goes to idle and ic_en=0:

Bits 5 and 6 are set to 0

Module::MIS	Register	:::IC4_STA	TUS	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA70		
Name	Bits	Read /Write	Reset State	Comments					
Rvd	31:7	-		-					
SLV_ACTIVITY	6	R	'b0	(FSM) is 1 0: Slave F is not Acti 1: Slave	not in the IDLE SM is in IDLE ive	state, this bit state so the S	Slave Finite State Machine is set. Slave part of DW_apb_i2c te so the Slave part of		
MST_ACTIVITY	5	R	'b0	Master FSM Activity Status. When the Master Finite State Machine (FSM) is not in the IDLE state, this bit is set. 0: Master FSM is in IDLE state so the Master part of DW_apb_i2c is not Active 1: Master FSM is not in IDLE state so the Master part of DW_apb_i2c is Active					
RFF	4	R	,p0	Receive FIFO Completely Full. When the receive FIFO is completely full, this bit is set. When the receive FIFO contains one or more empty location, this bit is cleared. 0 – Receive FIFO is not full 1 – Receive FIFO is full					
RFNE	3	R	'b0	contains	one or more er	ntries and is	the receive FIFO cleared when the be polled by software		

				to completely empty the receive FIFO. 0 – Receive FIFO is empty 1 – Receive FIFO is not empty
TFE	2	R	ʻb1	Transmit FIFO Completely Empty. When the transmit FIFO is completely empty, this bit is set. When it contains one or more valid entries, this bit is cleared. This bit field does not request an interrupt. 0 – Transmit FIFO is not empty 1 – Transmit FIFO is empty
TFNF	1	R	ʻb1	Transmit FIFO Not Full. Set when the transmit FIFO contains one or more empty locations, and is cleared when the FIFO is full. 0 – Transmit FIFO is full 1 – Transmit FIFO is not full
ACTIVITY	0	R	'b0	I2C Activity Status.

IC4_TXFLR

•Name: I2C Transmit FIFO Level Register

•Size: 4

•Address Offset: 0x74 •Read/Write Access: Read

This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared

whenever:

• The I2C is disabled

• There is a transmit abort—that is, TX_ABRT bit is set in the IC_RAW_INTR_STAT register

• The slave bulk transmit mode is aborted

The register increments whenever data is placed into the transmit FIFO and decrements when data is taken from the transmit FIFO.

Module::MIS	Register::IC4_TXFLR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA74		
Name	Bits	Read	Reset	set Comments					
		/Write	State						
Rvd	31:4	-	-	-					
TXFLR	3:0	R	'b0	Transmit	t FIFO Level.	Contains the	e number of valid data		
				entries in the transmit FIFO.					

IC4_RXFLR

•Name: I2C Receive FIFO Level Register

•Size: 4

•Address Offset: 0x78 •Read/Write Access: Read This register contains the number of valid data entries in the receive FIFO buffer. It is cleared whenever:

• The I2C is disabled

• Whenever there is a transmit abort caused by any of the events tracked in

IC_TX_ABRT_SOURCE

The register increments whenever data is placed into the receive FIFO and decrements when data is taken from the receive FIFO.

Module::MIS	Register	::IC4_RXF	LR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA78		
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:4	-	-	-					
RXFLR	3:0	R	'h0	Receive FIFO Level. Contains the number of valid data					
				entries in the receive FIFO.					

IC4 SDA HOLD

•Name: I2C SDA Hold Time Length Register

•Size: 16

•Address Offset: 0x7C

•Read/Write Access: Read / Write

This register controls the amount of hold time on the SDA signal after a negative edge of SCL in both master and slave mode, in units of ic_clk period. The value programmed must be greater than the minimum hold time in each mode for the value to be implemented – one cycle in master mode, seven cycles in slave mode. Writes to this register succeed only when IC_ENABLE=0.

The programmed SDA hold time cannot exceed at any time the duration of the low part of SCL. Therefore the programmed value cannot be larger then N_SCL_LOW-2, where N_SCL_LOW is the duration of the low part of the SCL period measured in ic_clk cycles.

Module::MIS	Register::IC4_SDA_HOLD			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA7C
Name	Bits	Read /Write	Reset State	Comments			
Rvd	31:16	-	-	-			
SDA_HOLD	15:0	R/W	'h0001	Sets the required SDA hold time in units of ic_clk period.			

IC4_TX_ABRT_SOURCE

•Name: I2C Transmit Abort Source Register

•Size: 16 bits

•Address Offset: 0x80 •Read/Write Access: Read This register has 16 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is cleared whenever the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, Bit 9 clears for one cycle and is then re-asserted.

	Register::I	C4_TX_	ABRT_SO	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA80	
Name	UKCL	Bits	Read /Write	Reset State	Comments			
Rvd		31:16	-	-	-			
ABRT_SLVRD_I	INTX	15	R	'b0		request for o	lata to be transmitted to writes a 1 in CMD (bit	
ABRT_SLV_ARB	LOST	14	R	'b0	1: Slave lost the bus while transmitting data to a remote master. IC_TX_ABRT_SOURCE[12] is set at the same time. Note: Even though the slave never "owns" the bus, something could go wrong on the bus. This is a fail safe check. For instance, during a data transmission at the low-to-high transition of SCL, if what is on the data bus is not what is supposed to be transmitted, then DW_apb_i2c n longer own the bus.			
ABRT_SLVFLUSH	TXFIFO	13	R	ʻb0	Slave has received a read command and some data exists in the TX FIFO so the slave issues a TX_ABRT interrupt to flush old data in TX FIFO.			
ARB_LOST)	12	R	'b0	1: Master has lost arbitration, or if IC_TX_ABRT_SOURCE[14] is also set, then the slave transmitter has lost arbitration. Note: I2C can be both master and slave at the same time.			
ARB_MASTER_	_DIS	11	R	'b0	1: User tries t the Master me		Master operation with .	
ABRT_10B_RD_NO	ORSTRT	10	R	'b0		T_EN bit (Inds a read co	C_CON[5]) = 0) and ommand in 10-bit	
ABRT_SBYTE_NO	PRSTRT	9	R	'b0	To clear Bit 9 ABRT_SBYT	the source [FE_NORST]	of the RT must be fixed first; C_CON[5]=1), the	

				SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, bit 9 clears for one cycle and then gets re-asserted.
				1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) = 0) and the user is trying to send a START Byte.
ABRT_HS_NORSTRT	8	R	'b0	1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) = 0) and the user is trying to use the master to transfer data in High Speed mode.
ABRT_SBYTE_ACKDET	7	R	'b0	1: Master has sent a START Byte and the START Byte was acknowledged (wrong behavior).
ABRT_HS_ACKDET	6	R	'b0	1: Master is in High Speed mode and the High Speed Master code was acknowledged (wrong behavior).
ABRT_GCALL_READ	5	R	'b0	1: DW_apb_i2c in master mode sent a General Call but the user programmed the byte following the General Call to be a read from the bus (IC_DATA_CMD[9] is set to 1).
ABRT_GCALL_NOACK	4	R	ъ0	1: DW_apb_i2c in master mode sent a General Call and no slave on the bus acknowledged the General Call.
ABRT_TXDATA_NOACK	3	R	b 0	1: This is a master-mode only bit. Master has received an acknowledgement for the address, but when it sent data byte(s) following the address, it did not receive an acknowledge from the remote slave(s).
ABRT_10ADDR2_NOACK	2	R	'b0	1: Master is in 10-bit address mode and the second address byte of the 10-bit address was not acknowledged by any slave.
ABRT_10ADDR1_NOACK	1	R	'b0	1: Master is in 10-bit address mode and the first 10-bit address byte was not acknowledged by any slave.
ABRT_7B_ADDR_NOACK	0	R	'b0	1: Master is in 7-bit addressing mode and the address sent was not acknowledged by any slave.

IC4_SLV_DATA_NACK_ONLY

Name: Generate Slave Data NACK Register

Size: 1 bit

Address Offset: 0x84

Read/Write Access: Read/Write

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as a slave-receiver. This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to 1. When this parameter disabled, this register does not exist and writing to the register's address has no

effect.

A write can occur on this register if either of the following conditions are met:

- \mathbb{P} DW_apb_i2c is disabled (IC_ENABLE[0] = 0)
- $\ \ \$ Slave part is inactive (IC_STATUS[6] = 0)

Register::IC4_SLV_DATA			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA84		
NACK	ONLY							
	Bits	Read	Reset	Comments				
		/Write	State					
	31:1	-	=	-				
	0	R/W	'b0	Generate N	ACK. This	NACK generation		
				only occurs when DW_apb_i2c is a slave-				
				receiver. If this register is set to a value of 1,				
				it can only generate a NACK after a data				
				byte is receive	ved; hence,	the data transfer is		
				aborted and t	the data rec	eived is not pushed		
				to the receive buffer. When the register is set				
				to a value of	0, it genera	ites NACK/ACK,		
				U		•		
	U	NACK_ONLY Bits 31:1	NACK_ONLY Bits Read /Write 31:1 -	NACK_ONLY Bits Read Reset /Write State 31:1	NACK_ONLY State Comments 31:1	NACK_ONLY Bits Read /Write State 31:1 0 R/W 'b0 Generate NACK. This only occurs when DW_receiver. If this register it can only generate a N byte is received; hence, aborted and the data received.		

IC4 DMA CR

•Name: DMA Control Register

•Size: 2 bits

•Address Offset: 0x88

•Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA Controller interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist and writing to the register's address has no effect and reading from this register address will return zero. The register is used to enable the DMA Controller interface operation. There is a separate bit for transmit and receive. This can be programmed regardless of the state of IC_ENABLE.

Module::MIS	Register::IC4_DMA_CR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA88		
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:2	-	-	-					
TDMAE	1	R/W	'b0	Transmit DMA Enable. This bit enables/disables the					
				transmit FIFO DMA channel.					
				0 = Transmit DMA disabled					
				1 = Trans	smit DMA ena	bled			
RDMAE	0	R/W	'b0	Receive 1	DMA Enable.	This bit ena	bles/disables the		
				receive FIFO DMA channel.					
				0 = Receive DMA disabled					
				1 = Recei	ive DMA enab	led			

IC4_DMA_TDLR

•Name: DMA Transmit Data Level Register

•Size: 2 bits

•Address Offset: 0x8c

•Read/Write Access: Read/Write

This register is only valid when the DW_apb_i2c is configured with a set of DMA interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist; writing to its address has no effect; reading from its address returns zero.

Module::MIS	Register::IC4	_DMA_TD	LR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA8C
Name	Bits	Read /Write	Reset State		mments		
Rvd	31:3	-	-	-			
DMATDL	2:0	R/W	'h0	at w logi dma vali	hich a DMA ic. It is equal to a_tx_req signa	request is made the watermated is generated in the transm	t field controls the level de by the transmit ark level; that is, the l when the number of it FIFO is equal to or MAE = 1.

IC4_DMA_RDLR

•Name: I2C Receive Data Level Register

•Size: 2 bits

•Address Offset: 0x90

•Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist; writing to its address has no effect; reading from its address returns zero.

Module::MIS	Register::IC4_	_DMA_RD	LR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA90		
Name	Bits	Read	Reset	t Coi	Comments				
		/Write	State	!					
Rvd	31:4	-	-	-					
DMARDL	3:0	R/W	'h0	Rec	eive Data Lev	vel. This bit	field controls the level		
				at w	hich a DMA r	equest is ma	de by the receive logic.		
				The	watermark	level = I	DMARDL+1; that is,		
				dma	_rx_req is ge	nerated whe	en the number of valid		
				data	entries in the	receive FII	FO is equal to or more		
				thar	this field v	alue + 1,	and RDMAE =1. For		
				inst	ance, when D	MARDL is	0, then dma_rx_req is		
				asse	rted when 1 or	more data e	entries are present in the		
				rece	ive FIFO.				

IC4_SDA_SETUP

● Name: I2C SDA Setup Register

• Size: 8 bits

Address Offset: 0x94

■ Read/Write Access: Read/Write

This register controls the amount of time delay (in terms of number of ic_clk clock periods) introduced

in the rising edge of SCL, relative to SDA changing, when DW_apb_i2c services a read request in a

slave-transmitter operation. The relevant I2C requirement is tSU:DAT (note 4) as detailed in the I2C Bus

Specification.

Module::MIS	Register::IC4_	SDA_SET	UP S	et::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA94
Name	Bits	Read	Reset	Cor	nments		
		/Write	State				
Rvd	31:8		-	-			
SDA_SETUP	7:0	R/W	'h0	1000	ns, then for	an ic_clk	nat if the required delay is frequency of 10 MHz, ammed to a value of 11.

IC4_ACK_GENERAL_CALL

Name: I2C ACK General Call Register

Size: 1 bit

Address Offset: 0x98

Read/Write Access: Read/Write

The register controls whether DW_apb_i2c responds with a ACK or NACK when it receives an I2C

General Call address.

Module::MIS	Register::IC4_AL_CALL	egister::IC4_ACK_GENER L_CALL			ATTR::sfdf	Type::SR	ADDR::0x9801_BA98
Name	Bits	Read	Reset	t Cor	nments		

		/Write	State	
Rvd	31:1	-	-	-
ACK_GEN_CALL	0	R/W	ʻh0	ACK General Call. When set to 1, DW_apb_i2c responds with a ACK (by asserting ic_data_oe) when it receives a General Call. Otherwise, DW_apb_i2c responds with a NACK (by negating ic_data_oe).

IC4_ENABLE_STATUS

Name: I2C Enable Status Register

• Size: 3 bits

Address Offset: 0x9C

Read/Write Access: Read

The register is used to report the DW_apb_i2c hardware status when the IC_ENABLE register is set

from 1 to 0; that is, when DW_apb_i2c is disabled.

If IC_ENABLE has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC_ENABLE has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as '0'.

Module::MIS	Register::IC4_TUS	ENABLE_	STA S	et::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BA9C
Name	Bits	Read /Write	Reset State	Coı	nments		
Rvd	31:3	-	-	-			
SLV_RX_DATA_ LOST		R/W	'h0	Record byte IC_I deer trans I2C been mass before and to 1 disal of a NOT	eiver operation received from ENABLE from ned to have be- sfer (with match transfer has be- a responded with ter terminates re the DW_apb IC_ENABLE h When read as (bled without be Slave-Receiver	has been abor an I2C trans 1 to 0.When ren actively en hing address) and entered, even the a NACK. In the transfer o_i2c has a char as been set to 0, DW_apb_i2 bing actively in transfer.	bit indicates if a Slave- ted with at least one data fer due to the setting of read as 1, DW_apb_i2c is gaged in an aborted I2C and the data phase of the en though a data byte has NOTE: If the remote I2C with a STOP condition ance to NACK a transfer, 0, then this bit is also set c is deemed to have been avolved in the data phase this bit when IC_EN (bit
SLV_DISABLED_ WHI LE_BUSY	1	R/W	'h0	Slav indicabor	e Disabled Wheates if a potented due to the s	tial or active etting of the IO	nsmit, Receive). This bit Slave operation has been C_ENABLE register from a CPU writes a 0 to the

				IC_ENABLE register while: (a) DW_apb_i2c is receiving the address byte of the Slave-Transmitter operation from a remote master; OR, (b) address and data bytes of the Slave-Receiver operation from a remote master. When read as 1, DW_apb_i2c is deemed to have forced a NACK during any part of an I2C transfer, irrespective of whether the I2C address matches the slave address set in DW_apb_i2c (IC_SAR register) OR if the transfer is completed before IC_ENABLE is set to 0 but has not taken effect. NOTE: If the remote I2C master terminates the transfer with a STOP condition before the DW_apb_i2c has a chance to NACK a transfer, and IC_ENABLE has been set to 0, then this bit will also be set to 1. When read as 0, DW_apb_i2c is deemed to have been disabled when there is master activity, or when the I2C bus is idle. NOTE: The CPU can safely read this bit when IC_EN (bit
				0) is read as 0.
IC_EN	0	R/W	'h0	ic_en Status. This bit always reflects the value driven on the output port ic_en. When read as 1, DW_apb_i2c is deemed to be in an enabled state. When read as 0, DW_apb_i2c is deemed completely inactive. NOTE: The CPU can safely read this bit anytime. When this bit is read as 0, the CPU can safely read SLV_RX_DATA_LOST (bit 2) and SLV_DISABLED_WHILE_BUSY (bit 1).

IC4_COMP_PARAM_1

•Name: Component Parameter Register 1

•Size: 32 bits

•Address Offset: 0xf4 •Read/Write Access: Read

Module::MIS Register::IC4	4_COMP	P_PARAM_	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BAF4		
Name Bits Read			Reset	Comments				
		/Write	State					
Rvd	31:24	1	-	1				
TX_BUFFER_DEPTH	23:16	R	'h07	The value of this register is derived from the IC_TX_BUFFER_DEPTH coreConsultant parameter. 0x00 = Rvd 0x01 = 2 0x02 = 3 to 0xFF = 256				
RX_BUFFER_DEPTH	15:8	R	'h07			s derived from the H coreConsultant		

				parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x00 = Rvd 0x01 = 2 0x02 = 3 to 0xFF = 256
ADD_ENCODED_PARAMS	7	R	'b1	The value of this register is derived from the IC_ADD_ENCODED_PARAMS coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
HAS_DMA	6	R	'b0	The value of this register is derived from the IC_HAS_DMA coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
INTR_IO	5	R	'b1	The value of this register is derived from the IC_INTR_IO coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = Individual 1 = Combined
HC_COUNT_VALUES	4	R	°b0	The value of this register is derived from the IC_HC_COUNT_VALUES coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
MAX_SPEED_MODE	3:2	R	'b10	The value of this register is derived from the IC_MAX_SPEED_MODE coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x0 = Rvd 0x1 = Standard 0x2 = Fast 0x3 = High
APB_DATA_WIDTH	1:0	R	'b10	The value of this register is derived from the IC_MAX_SPEED_MODE coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x0 = 8 bits

		0x1 = 16 bits
		0x2 = 32 bits
		0x3 = Rvd

Notice: This is a constant read-only register that contains encoded information about the component's parameter settings. The reset value depends on coreConsultant parameter(s).

IC4 COMP VERSION

•Name: I2C Component Version Register

•Size: 32 bits

•Address Offset: 0xf8 •Read/Write Access: Read

Module::MIS	Regist N	ter::IC4_COMP_VERSIO			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BAF8
Name		Bits				Comments		
IC_COMP_VER	SION	31:0	R	'h3130				ons of the DW_apb_i2c I2C_COMP_VERSION

DesignWare AMBA Release	DW_apb_i2c Version	I2C_COMP_VERSION value	Databook Date
2004.06	1.03a	31_30_33_2A	June 21, 2004

IC4_COMP_TYPE

•Name: I2C Component Type Register

•Size: 32 bits

•Address Offset: 0xfc •Read/Write Access: Read

Module::MIS	Register	Register::IC4_COMP_TYPE S			ATTR::sfd	f Type::SR	ADDR::	:0x9801_BA	FC
Name	Bits	Read /Write	Reset State	Com	ments				
IC_COMP_TYPE	31:0	R	'h44570140	0x44 const	_57_01_40. ant and is	Component This assigne derived from by a 16-bit uns	d unique the two	ASCII let	

3.1.5 Fivth I2C Register Description

IC5_CON

•Name: I2C Control Register 0

•Size: 7 bits

•Address Offset: 0x00

•Read/Write Access: Read/Write

This register can be written only when the DW_apb_i2c is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect.

Module::MIS Register	::IC5_CON		Set::1	ATTR::sfdf Type::SR ADDR::0x9801_BB00
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:7	-	-	-
IC_SLAVE_DISABLE	6	R/W	ʻb1	This bit controls whether I2C has its slave
				disabled after reset. The
				slave can be disabled by programming a '1'
				into IC_CON[6]. B y default the slave is
				enabled.
				0: slave is enabled
IC DECTART FAI	5	DAV	'b1	1: slave is disabled
IC_RESTART_EN	3	R/W	01	Determines whether RESTART conditions
				may be sent when acting as a master. Some older slaves do not
		λ		support handling
				RESTART conditions; however, RESTART
				conditions are used in
				several DW_apb_i2c operations.
				0: disable
				1: enable
				When RESTART is disabled, the master is
				prohibited from
				performing the following functions:
				Change direction within a transfer (split)
				Send a START BYTE
				 High-speed mode operation
				• Combined format transfers in 7-bit
				addressing modes
				 Read operation with a 10-bit address
				 Send multiple bytes per transfer
				By replacing RESTART condition followed
				by a STOP and a
				subsequent START condition, split operations
				are broken down
				into multiple DW_apb_i2c transfers. If the
				above operations are
				performed, it will result in setting bit 6

				(TX_ABRT) of the
				IC_RAW_INTR_STAT register.
IC_10BITADDR_MASTER	4	R/W	'b1	
IC_10B11ADDK_MAS1EK	4	IX/ VV	01	This bit controls whether the DW_apb_i2c
				starts its transfers in 10-bit addressing mode
				when acting as a master.
				0: 7-bit addressing
				1: 10-bit addressing
IC_10BITADDR_SLAVE	3	R/W	'b1	When acting as a slave, this bit controls
				whether the DW_apb_i2c responds to 7- or
				10-bit addresses.
				0: 7-bit addressing. The DW_apb_i2c
				ignores transactions
				which involve 10-bit addressing; for 7-bit
				addressing, only the
				lower 7 bits of the IC_SAR register are
				compared.
				1: 10-bit addressing. The DW_apb_i2c
				responds to only 10-bit
				addressing transfers that match the full 10 bits
				of the IC_SAR
				register.
SPEED	2:1	R/W	'b10	5
SIEED	2.1	IX/ VV	010	Controls at which speed the DW_apb_i2c
				operates:
			1 6	Of illegal; writing a 0 results in setting SPEED
				to IC_MAX_SPEED_MODE
				1: standard mode (100 kbit/s)
				2: fast mode (400 kbit/s)
				3: high speed mode (3.4 Mbit/s)
				If the DW_apb_i2c is configured for fast or
				standard mode (1 or 2) and a value of 2 or 3 is
				written, then IC_MAX_SPEED_MODE
				is stored.
MASTER_MODE	0	R/W	'b1	This bit controls whether the DW_apb_i2c
				master is enabled or not. The slave is always
				enabled.
				0: master disabled
				1: master enabled

IC5_TAR

•Name: I2C Target Address Register

•Size: 12 bits

•Address Offset: 0x04

•Read/Write Access: Read/Write

All bits can be dynamically updated as long as any set of the following conditions are true:

- DW_apb_i2c is NOT enabled (IC_ENABLE is set to 0); or
- DW_apb_i2c is enabled (IC_ENABLE=1); AND

DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND

there are NO entries in the TX FIFO (IC_STATUS[2]=1)

Module::MIS	Regis	ter::IC5_T	AR	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BB04
Name	Bits	Read /Write	Reset State	Comments
Rvd	31:13	-	-	-
IC_10BITADD R_MASTER	12	R/W	'b0	This bit controls whether the DW_apb_i2c starts its transfers in 7-or 10-bit addressing mode when acting as a master. 0: 7-bit addressing 1: 10-bit addressing Dependencies: This bit exists in this register only if the I2C_DYNAMIC_TAR_UPDATE configuration parameter is set to "Yes" (1).
SPECIAL	11	R/W	'b0	This bit indicates whether software performs a General Call or START BYTE command. 0: ignore bit 10 GC_OR_START and use IC_TAR normally 1: perform special I2C command as specified in GC_OR_START bit
GC_OR_START	10	R/W	,p0	If bit 11 (SPECIAL) is set to 1, then this bit indicates whether a General Call or START byte command is to be performed by the DW_apb_i2c. 0: General Call Address – after issuing a General Call, only writes may be performed. Attempting to issue a read command results in setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT register. The DW_apb_i2c remains in General Call mode until the SPECIAL bit value (bit 11) is cleared. 1: START BYTE
IC_TAR	9:0	R/W	'h055	This is the target address for any master transaction. When transmitting a General Call, these bits are ignored. To generate a START BYTE, the CPU needs to write only once into these bits. If the IC_TAR and IC_SAR are the same, loopback exists but the FIFOs are shared between master and slave, so full loopback is not feasible. Only one direction loopback mode is supported (simplex), not duplex. A master cannot transmit to itself; it can transmit to only a slave.

IC5_SAR

•Name: I2C Slave Address Register

•**Size:** 10 bits

•Address Offset: 0x08

Name	Bits	Read /Write	Reset State	Comments
Rvd	31:10	-	-	-
IC_SAR	9:0	R/W	'h055	The IC_SAR holds the slave address when the I2C is operating as a slave. IC_SAR holds the slave address to which the DW_apb_i2c responds. For 7-bit addressing, only IC_SAR[6:0] is used. This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect.

IC5_HS_MADDR

•Name: I2C HS Master Mode Code Address Register

•Size: 3 bits

•Address Offset: 0x0c

•Read/Write Access: Read/Write

to either Standard (1) or Fast (2).

set to 0. Writes at other times have no effect.

This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being

IC5_DATA CMD

•Name: I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when filling the TX FIFO and the CPU reads from when retrieving bytes from RX FIFO

•Size: 11 bits (writes) •Address Offset: 0x10

Module::MIS	Regis	Register::IC5_DATA_CMD				ATTR::sfdf	Type::SR	ADDR::0x9801_BB10
Name	Bits	Read /Write	Reset State	Co	mmen	ts		
Rvd	31:11	-	-	-				

RESTART 10 W 'b0 This bit controls whether a RESTART is issued before the byte is sent or received. This bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1. 1 - If IC_RESTART_EN is 1, a RESTART is issued before the data is sent/received (according to the value of CMD), regardless of whether of not the transfer direction is changing from the previous command; if IC_RESTART_EN is 0, a STOP followed by a START is issued instead. 0 - If IC_RESTART_EN is 1, a RESTART is issued only if the transfer direction is changing from the previous command; if IC_RESTART_EN is 0, a STOP followed by a START is issued instead. STOP 9 W 'b0 This bit controls whether a STOP is issued after the byte is sent or received. This bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1. 1 - STOP is issued after this byte-regardless of whether of not the TX_FIFO is empty. If the TX_FIFO is not empty, the master immediately tries to star a new transfer by issuing a START and arbitrating for the bus. 0 - STOP is not issued after this byte, regardless of whether or not the TX_FIFO is empty. If the TX_FIFO is not empty, the master continues the current transfer by sending receiving data bytes according to the value of the CMD bit. If the TX_FIFO is empty, the master plots the SCL line low and stalls the bus until a new command is available in the TX_FIFO. This bit does not control the direction when the DW_apb_I2e acts as a slave. It controls only the direction when it also as an asser. 1 - Read 0 - Write When a command is entered in the TX_FIFO, this bit distinguishes the write and read commands. In slave-receiver mode, this bit is a "don't care" because writes to this register are not required. In slave-transmitter mode, a "O" indicates that CPU data is to be transmitted and as DAT or IC_DATA_CMD[7:0]. When programming this bit, you should remember the following: attempting to perform a read operation after a General Call command has been sent results in a TX_ABRT interrupt dust have control to th	_				
received. This bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1. 1. STOP is issued after this byte, regardless of whether of not the Tx_FIFO is empty. If the Tx_FIFO is not empty, the master immediately tries to start a new transfer by issuing a START and arbitrating for the bus. 0.—STOP is not issued after this byte, regardless of whether or not the Tx_FIFO is empty, the master continues the current transfer by sending/receiving data bytes according to the value of the CMD bit. If the Tx_FIFO is empty, the master looks the SCL line low and stalls the bus until a new command is available in the Tx_FIFO. CMD 8 W bu bu cmmand is available in the Tx_FIFO. This bit controls whether a read or a write is performed. This bit does not control the direction when the DW_apb_12e acts as a slave. It controls only the direction when it acts as a master. - Read 0.—Write When a command is entered in the Tx_FIFO, this bit distinguishes the write and read commands. In slave-receiver mode, this bit is a "don't care" because writes to this register are not required. In slave-transmitter mode, a "0" indicates that CPU data is to be transmitted and as DAT or IC_DATA_CMD[7:0]. When programming this bit, you should remember the following: attempting to perform a read operation after a General Call command has been sent results in a Tx_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11 (SPECIAL) in the IC_TAR register has been cleared. If a "1" is written to this bit after receiving a RD_REQ interrupt, then a Tx_ABRT interrupt occurs. NOTE: It is possible that while attempting a master 12C read transfer on DW_apb_12c, a RD_REQ interrupt may have occurred simultaneously due to a register. DW_apb_12c ignores the IC_DATA_CMD write, generates a Tx_ABRT interrupt, and waits to service the RD_REQ interrupt.	RESTART	10	W		sent or received. Thie bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1. 1 - If IC_RESTART_EN is 1, a RESTART is issued before the data is sent/received (according to the value of CMD), regardless of whether of not the transfer direction is changing from the previous command; if IC_RESTART_EN is 0, a STOP followed by a START is issued instead. 0 - If IC_RESTART_EN is 1, a RESTART is issued only if the transfer direction is changing from the previous command; if IC_RESTART_EN is 0, a STOP followed by a START is issued
This bit does not control the direction when the DW_apb_i2c acts as a slave. It controls only the direction when it acts as a master. 1 = Read 0 = Write When a command is entered in the TX FIFO, this bit distinguishes the write and read commands. In slave-receiver mode, this bit is a "don't care" because writes to this register are not required. In slave-transmitter mode, a "0" indicates that CPU data is to be transmitted and as DAT or IC_DATA_CMD[7:0]. When programming this bit, you should remember the following: attempting to perform a read operation after a General Call command has been sent results in a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11 (SPECIAL) in the IC_TAR register has been cleared. If a "1" is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT interrupt occurs. NOTE: It is possible that while attempting a master I2C read transfer on DW_apb_i2c, a RD_REQ interrupt may have occurred simultaneously due to a remote I2C master addressing DW_apb_i2c ignores the IC_DATA_CMD write, generates a TX_ABRT interrupt, and waits to service the RD_REQ interrupt.	STOP	9	W	'b0	received. This bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1. 1 – STOP is issued after this byte, regardless of whether of not the Tx FIFO is empty. If the Tx FIFO is not empty, the master immediately tries to start a new transfer by issuing a START and arbitrating for the bus. 0 – STOP is not issued after this byte, regardless of whether or not the Tx FIFO is empty. If the Tx FIFO is not empty, the master continues the current transfer by sending/receiving data bytes according to the value of the CMD bit. If the Tx FIFO is empty, the master holds the SCL line low and stalls the bus until a new
	CMD	8	W	,p0	This bit does not control the direction when the DW_apb_i2c acts as a slave. It controls only the direction when it acts as a master. 1 = Read 0 = Write When a command is entered in the TX FIFO, this bit distinguishes the write and read commands. In slave-receiver mode, this bit is a "don't care" because writes to this register are not required. In slave-transmitter mode, a "0" indicates that CPU data is to be transmitted and as DAT or IC_DATA_CMD[7:0]. When programming this bit, you should remember the following: attempting to perform a read operation after a General Call command has been sent results in a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11 (SPECIAL) in the IC_TAR register has been cleared. If a "1" is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT interrupt occurs. NOTE: It is possible that while attempting a master I2C read transfer on DW_apb_i2c, a RD_REQ interrupt may have occurred simultaneously due to a remote I2C master addressing DW_apb_i2c. In this type of scenario, DW_apb_i2c ignores the IC_DATA_CMD write, generates a TX_ABRT interrupt, and waits to service the RD_REQ
	DAT	7:0	R/W	'b0	•

on the I2C bus. If you are writing to this register and want to perform a read, bits 7:0 (DAT) are ignored by the DW_apb_i2c. However, when you read this register, these bits return the value of data received on the DW_apb_i2c
interface.

IC5_SS_SCL_HCNT

•Name: Standard Speed I2C Clock SCL High Count Register

•Size: 16 bits

•Address Offset: 0x14

•Read/Write Access: Read/Write

Module::MIS	Register::IC5_SS_SCL_HCN		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801 BB14	
	T					-JP	
Name	Bits	Read /Write	Reset State	Comm	ents		
Rvd	31:1 6	-	-	1		•	
IC_SS_SCL_HCNT	15:0	R/W	'h007a	can tak sets the The tab calculat This reg is disab register effect. The min less that being so order or operation program When t	e place to ensure SCL clock highle below show tions. gister can be welled which correspond to the being set to 0. In this being whether the being whether th	re proper I/Ogh-period cors some sample ritten only we responds to the company of	ny I2C bus transaction O timing. This register ount for standard speed. ple IC_SS_HCNT when the I2C interface the IC_ENABLE ther times have no rdware prevents values fattempted results in 6 DATA_WIDTH = 8 the at to ensure the correct The lower byte must be byte is programmed. r to 1, this register is

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL High required min (us)	H_CNT (HEX/decimal)	SCL High Time (us)
100	2	4	0008/8	4.00
100	6.6	4	001B/27	4.09
100	10	4	0028/40	4.00
100	75	4	012C/300	4.00
100	100	4	0190/400	4.00
100	125	4	01F4/500	4.00
100	1000	4	0FA0/4000	4.00

IC5_SS_SCL_LCNT

•Name: Standard Speed I2C Clock SCL Low Count Register

•**Size:** 16 bits

•Address Offset: 0x98

• Read/Write Access: Read/Write

3.6.1.1.3.670	D • • •	TO # 00 /	COL LOND	G 1 A THE CLC III GD A DDD 0 0004 DD10
Module::MIS	Register	::IC5_SS_S	SCL_LCNT	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BB18
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:1	-		-
IC_SS_SCL_LCN T	6 15:0	R/W	'h008f	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock low period count for standard speed. The table below shows some sample IC_SS_LCNT calculations. This register can be written only when the I2C interface is disabled which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 8; hardware prevents values less than this being written, and if attempted results in 8 being set. For designs with APB_DATA_WIDTH = 8 the order of programming is important to ensure the correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this register is read only.

Notice : Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL Low required min (us)	L_CNT (HEX/Decimal)	SCL Low Time (us)
100	2	4.7	000A/10	5.00
100	6.6	4.7	0020/32	4.85
100	10	4.7	002F/47	4.70
100	75	4.7	0161/353	4.71
100	100	4.7	01D6/470	4.70
100	125	4.7	024C/588	4.70
100	1000	4	125C/4700	4.70

IC5_FS_SCL_HCNT

•Name: Fast Speed I2C Clock SCL High Count Register

•**Size:** 16 bits

•Address Offset: 0x1c

•Read/Write Access: Read/Write

Module::MIS	Register: T	:IC5_FS_S	CL_HCN	Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BB1C
Name	Bits	Read	Reset	Comments
Rvd	31:16	/Write	State	
		D/W	'h0013	This was intermediate the next had one and InC has the man set in
IC_FS_SCL_HCN	15:0	R/W	110013	This register must be set before any I2C bus transaction
T				can take place to ensure proper I/O timing. This register
				sets the SCL clock high-period count for fast speed. It is
				used in high-speed mode to send the Master Code and START BYTE or General CALL. The table below
				shows some sample IC_FS_SCL_HCNT calculations. This register goes away and becomes read-only
				returning 0s if IC_MAX_SPEED_MODE = standard.
				This register can be written only when the I2C interface
				is disabled, which corresponds to the <i>IC_ENABLE</i>
·				register being set to 0. Writes at other times have no
				effect.
				The minimum valid value is 6; hardware prevents values
				less than this being written, and if attempted results in 6
				being set. For designs with APB_DATA_WIDTH == 8
				the order of programming is important to ensure the
				correct operation of the DW_apb_i2c. The lower byte
				must be programmed first. Then the upper byte is
				programmed.
				When the configuration parameter
				IC_HC_COUNT_VALUES is set to 1, this register is
				read only.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL High required min (us)	H_CNT (HEX/Decimal)	SCL High Time (us)
400	10	0.6	0006/6	0.60
400	25	0.6	000F/15	0.60
400	50	0.6	001E/	0.60
400	75	0.6	002D/30	0.60
400	100	0.6	003C/60	0.60
400	125	0.6	004B/75	0.60
400	1000	0.6	0258/600	0.60
100 (through IC_MAX_ SPEED_MODE = standard)	N/A	N/A	disabled	N/A

IC5_FS_SCL_LCNT

•Name: Fast Speed I2C Clock SCL Low Count Register

•Size: 16 bits

•Address Offset: 0x20

•Read/Write Access: Read/Write

Module::MIS Re	<mark>egister:</mark>	:IC5_FS_S	CL_LCNT	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB20	
Name	Bits	Read	Reset	Comm	ents			
		/Write	State					
Rvd	31:16	-	1	1				
IC_FS_SCL_LCNT	15:0	R/W	'h0028	This re	gister must be	set before a	ny I2C bus transaction	
		•		can tak	e place to ensu	ire proper I/0	O timing. This register	
				sets the	SCL clock lo	w period co	unt for fast speed. It is	
				used in	high-speed m	ode to send	the Master Code and	
				STAR	TBYTE or Ge	neral CALL	. The table below	
				shows	some sample I	C_FS_SCL_	LCNT calculations.	
				This re	gister goes aw	ay and becon	mes read-only returning	
				0s if IC	_MAX_SPEE	ED_MODE =	= standard.	
				This re	gister can be v	vritten only	when the I2C interface	
				is disab	oled, which con	rresponds to	the <i>IC_ENABLE</i>	
				register being set to 0. Writes at other times have no				
				effect.				
				The minimum valid value is 8; hardware prevents values				
				less tha	n this being w	ritten, and if	f attempted results in 8	
				being s	et. For designs	with APB_	$DATA_WIDTH = 8$	
				the ord	er of programn	ning is impo	ortant to ensure the	

correct operation of the DW_apb_i2c. The lower byte must be programmed first. Then the upper byte is programmed. If the value is less than 8 then the count value gets changed to 8. When the configuration parameter
IC_HC_COUNT_VALUES is set to 1, this register is
read only.

Notice: Read-only if IC_HC_COUNT_VALUES = 1.

I ² C Data Rate (kbps)	ic_clk _{freq} (MHz)	SCL Low required min (us)	L_CNT (HEX/Decimal)	SCL Low Time (us)
400	10	1.3	000D/13	1.30
400	25	1.3	0021/33	1.32
400	50	1.3	0041/65	1.30
400	75	1.3	0062/98	1.31
400	100	1.3	0082/130	1.30
400	125	1.3	00A3/163	1.30
400	1000	1.3	0514/1300	1.30
100 (through IC_MAX_ SPEED_MODE = standard)	N/A	N/A	disabled	N/A

IC5_INTR_STAT

•Name: I2C Interrupt Status Register

•Size: 12 bits

•Address Offset: 0x2C •Read/Write Access: Read

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are cleared by reading the matching interrupt clear register. The unmasked raw versions of these bits are available in the IC_RAW_INTR_STAT register.

Module::MIS	Regi	ster::IC5_II	NTR_STA	T Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BB2C
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:12	-	-	-
R_GEN_CALL	11	R	'b0	See "IC_RAW_INTR_STAT" for a detailed description of
R_START_DET	10	R	'b0	these bits.
R_STOP_DET	9	R	'b0	
R_ACTIVITY	8	R	'b0	
R_RX_DONE	7	R	'b0	
R_TX_ABRT	6	R	'b0	

R_RD_REQ	5	R	'b0
R_TX_EMPTY	4	R	'b0
R_TX_OVER	3	R	'b0
R_RX_FULL	2	R	'b0
R_RX_OVER	1	R	'b0
R_RX_UNDER	0	R	'b0

IC5_INTR_MASK

•Name: I2C Interrupt Mask Register

•Size: 12 bits

•Address Offset: 0x30

•Read/Write Access: Read/Write

These bits mask their corresponding interrupt status bits. They are active high; a value of 0 prevents a bit from generating an interrupt.

Module::MIS	Regis	ter::IC5_IN	NTR_MAS	K Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BB30
Name	Bits	Read	Reset	Comments
		/Write	State	
Rvd	31:12	-	-	
M_GEN_CALL	11	R/W	ʻb1	Masks this bit in the IC_INTR_STAT register.
M_START_DET	10	R/W	'b0	
M_STOP_DET	9	R/W	'b0	
M_ACTIVITY	8	R/W	'b0	
M_RX_DONE	7	R/W	'b1	
M_TX_ABRT	6	R/W	'b1	
M_RD_REQ	5	R/W	'b1	
M_TX_EMPTY	4	R/W	ъ1	
M_TX_OVER	3	R/W	'b1	
M_RX_FULL	2	R/W	'b1	
M_RX_OVER	1	R/W	'b1	
M_RX_UNDER	0	R/W	'b1	

IC5_RAW_INTR_STAT

•Name: I2C Raw Interpol Status Register

•Size: 12 bits

•Address Offset: 0x34

•Read/Write Access: Read/Write

Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of the DW_apb_i2c.

Module::MI S	Register::I	C5_RAW_1	INTR_STA	AT Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB34	
Name	Bits	Read /Write	Reset State	Comments	-			
Rvd	31:12	-	-	-				
GEN_CALI		R	'b0	Set only when a General Call address is received and it is acknowledged. It stays set until it is cleared either by disabling DW_apb_i2c or when the CPU reads bit 0 of the IC_CLR_GEN_CALL register. DW_apb_i2c stores the				
START_DE	T 10	R	'b0	Indicates who	tin the Rx buf ether a STAR the I2C interfacts operating i	Γ or RESTAl ce regardless		
STOP_DET	9	R	'b0	Indicates who	ether a STOP of ardless of whe	condition has	s occurred on the I2C b_i2c is operating in	
ACTIVITY	8	R	,p0	This bit captures DW_apb_i2c activity and stays set until it is cleared. There are four ways to clear it: Disabling the DW_apb_i2c Reading the IC_CLR_ACTIVITY register Reading the IC_CLR_INTR register System reset Once this bit is set, it stays set unless one of the four methods is used to clear it. Even if the DW_apb_i2c module is idle, this bit remains set				
RX_DONE	7	R	'b0	until cleared, indicating that there was activity on the bus. When the DW_apb_i2c is acting as a slave-transmitter, this bit is set to 1 if the master does not acknowledge a transmitted byte. This occurs on the last byte of the transmission, in direction that the transmission is done.				
TX_ABRT	6	R	°60	Indicating that the transmission is done. This bit indicates if DW_apb_i2c, as an I2C transmitter, is unable to complete the intended actions on the contents of the transmit FIFO. This situation can occur both as an I2C master or an I2C slave, and is referred to as a "transmit abort". When this bit is set to 1, the IC_TX_ABRT_SOURCE register indicates the reason why the transmit abort takes places. NOTE: The DW_apb_i2c flushes/resets/empties the TX FIFO whenever this bit is set. The TX FIFO remains in this flushed state until the register IC_CLR_TX_ABRT is read. Once this read is performed, the TX FIFO is then ready to accept more data bytes from the APB interface.				
RD_REQ	5	R	'b0	This bit is set to 1 when DW_apb_i2c is acting as a slave and another I2C master is attempting to read data from DW_apb_i2c. The DW_apb_i2c holds the I2C bus in a wait state (SCL=0) until this interrupt is serviced, which means that the slave has been addressed by a remote master that is asking for data to be transferred. The processor must respond to this interrupt and then write the requested data to the IC_DATA_CMD register. This bit is set to 0 just after the processor reads the IC_CLR_RD_REQ register.				

TX_EMPTY	4	R	'ь0	This bit is set to 1 when the transmit buffer is at or below the threshold value set in the IC_TX_TL register. It is automatically cleared by hardware when the buffer level goes above the threshold. When the IC_ENABLE bit 0 is 0, the TX FIFO is flushed and held in reset. There the TX FIFO looks like it has no data within it, so this bit is set to 1, provided there is activity in the master or slave state machines. When there is no longer activity, then with ic_en=0, this bit is set to 0.
TX_OVER	3	R	ʻb0	Set during transmit if the transmit buffer is filled to IC_TX_BUFFER_DEPTH and the processor attempts to issue another I2C command by writing to the IC_DATA_CMD register. When the module is disabled, this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.
RX_FULL	2	R	'b0	Set when the receive buffer reaches or goes above the RX_TL threshold in the IC_RX_TL register. It is automatically cleared by hardware when buffer level goes below the threshold. If the module is disabled (IC_ENABLE[0]=0), the RX FIFO is flushed and held in reset; therefore the RX FIFO is not full. So this bit is cleared once the IC_ENABLE bit 0 is programmed with a 0, regardless of the activity that continues.
RX_OVER	1	R	,p0	Set if the receive buffer is completely filled to IC_RX_BUFFER_DEPTH and an additional byte is received from an external I2C device. The DW_apb_i2c acknowledges this, but any data bytes received after the FIFO is full are lost. If the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.
RX_UNDER	0	R	ʻb0	Set if the processor attempts to read the receive buffer when it is empty by reading from the IC_DATA_CMD register. If the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.

IC5_RX_TL

•Name: I2C Receive FIFO Threshold Register

•Size: 8bits

•Address Offset: 0x38

•Read/Write Access: Read/Write

Module::MIS	Reg	Register::IC5_RX_TL			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB38
Name	Bits	Read	Reset	Comments				
		/Write	State					
Rvd	31:8	-	-	-				
RX_TL	7:0	R/W	'h00	Receive FIFO Threshold Level				
				Controls the level of entries (or above) that triggers the				

	RX_FULL interrupt. The valid range is 0-255, with the additional restriction that hardware does not allow this value to be set to a value larger than the depth of the buffer. If an attempt is made to do that, the actual value set will be the maximum depth of the buffer. A value of 0 sets the threshold for 1 entry, and a value of 255 sets the threshold for 256 entries. Depth of the rx_buffer is 32.
--	--

IC5 TX TL

•Name: I2C Transmit FIFO Threshold Register

•Size: 8 bits

•Address Offset: 0x3c

•Read/Write Access: Read/Write

IC5_CLR_INTR

•Name: Clear Combined and Individual Interrupt Register

•Size: 1 bit

•Address Offset: 0x40 •Read/Write Access: Read

Module::MIS Register::IC5_CLR_INT R						ATTR::sfdf	Type::SR	ADDR::0x9801_BB40		
Name	Bits	Read /Write	Reset State							
Rvd	31:1	-	-	-						
CLR_INTR	0	R	'b0	Read this register to clear the combined interrupt, all individual interrupts, and the IC_TX_ABRT_SOURCE register. This bit does not clear hardware clearable interrupts but software clearable interrupts. Refer to Bit 9 of the						

	IC_TX_ABRT_SOURCE register for an exception to clearing
	IC_TX_ABRT_SOURCE.

IC5_CLR_RX_UNDER

•Name: Clear RX_UNDER Interrupt Register

•Size: 1 bit

•Address Offset: 0x44 •Read/Write Access: Read

Module::MIS	Register::IC	5_CLR_RX	K_UNDER	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB44		
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:1	-	-	-					
CLR_RX_UN	0	R	'b0	Read this	register to cle	ar the <i>RX_U</i>	NDER interrupt.		
DER									

IC5_CLR_RX_OVER

•Name: Clear RX_OVER Interrupt Register

•Size: 1 bit

•Address Offset: 0x48 •Read/Write Access: Read

Module::MIS	Regis R	ster::IC5_C	LR_RX_O	VE Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB48			
Name	Bits	Read /Write	Reset State	Comments						
Rvd	31:1	-	-	-						
CLR_RX_OVER	0	R	'b0	Read this register to clear the <i>RX_OVER</i> interrupt.						

IC5_CLR_TX_OVER

•Name: Clear TX_OVER Interrupt Register

•Size: 1 bit

•Address Offset: 0x4c •Read/Write Access: Read

Module::MIS	Register::IC5_CLR_TX_OVE R				Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB4C	
Name	Bits	Read /Write		Comments					
Rvd	31:1	-	-	-					
CLR_TX_OVER	0	R	'b0	Read this register to clear the <i>TX_OVER</i> interrupt.					

IC5_CLR_RD_REQ

•Name: Clear RD_REQ Interrupt Register

•Size: 1 bit

•Address Offset: 0x50 •Read/Write Access: Read

Module::MIS	Regi	ster::IC5_0	CLR_RD_	REQ	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB50
Name	Bits	Read	Reset	Con	ments			
		/Write	State					
Rvd	31:1	-	-	-				
CLR_RD_REQ	0	R	'b0	Read	l this reg	gister to clear t	he <i>RD_REQ</i>	interrupt.

IC5 CLR TX ABRT

•Name: Clear TX_ABRT Interrupt Register

•Size: 1 bit

•Address Offset: 0x54 •Read/Write Access: Read

Module::MIS	ule::MIS Register::IC5_CLR_TX_ABR T					ATTR::sfdf	Type::SR	ADDR::0x9801_BB54
Name	Bits	Read /Write	Reset State	Coı	nment			
Rvd	31:1	-	-	1				
CLR_TX_ABRT	0	R	'b0	Read this register to clear the <i>TX_ABRT</i> interrupt, and the IC_TX_ABRT_SOURCE register.				

IC5_CLR_RX_DONE

•Name: Clear RX_DONE Interrupt Register

•Size: 1 bit

•Address Offset: 0x58 •Read/Write Access: Read

Module::MIS	Register	::IC5_CLR	_RX_DO	NE Set::	1 ATTR::sfdf	Type::SR	ADDR::0x9801_BB58
Name	Bits	Read /Write	Reset State	Comme	nts		
Rvd	31:1	-	-	-			
CLR_RX_DONE	0	R	'b0	Read this register to clear the <i>RX_DONE</i> interrupt.			

IC5_CLR_ACTIVITY

•Name: ACTIVITY Status Interrupt Register

•Size: 1 bit

•Address Offset: 0x5c •Read/Write Access: Read

Module::MIS	Register::IC5_CLR_ACTIVIT			ΤY	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB5C	
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:1	-	-	-					
CLR_ACTIVITY	0	R	'b0	Read this register to get status of the <i>ACTIVITY</i> interrupt. It is					
				automatically cleared by hardware.					

IC5_CLR_STOP_DET

•Name: Clear STOP_DET Interrupt Register

•Size: 1 bit

•Address Offset: 0x60 •Read/Write Access: Read

Module::MIS	Register:	:IC5_CLR_	_STOP_DI	ET Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB60
Name	Bits	Read /Write	Reset State	Commen	ts		
Rvd	31:1	-	-	-			
CLR_STOP_D ET	0	R	'b0	Read this	register to clea	r the STOP_	_DET interrupt.

IC5 CLR START DET

•Name: Clear START_DET Interrupt Register

•Size: 1 bit

•Address Offset: 0x64 •Read/Write Access: Read

Module::MIS	Regi	ister::IC5	CLR_ST	ART_DET	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB64	
Name		Bits	Read	Reset	Comments				
			/Write	State					
Rvd		31:1	ı	-	-				
CLR_START_L	DET	0	R	'b0	Read this	register to cle	ar the START	T_DET interrupt.	

IC5_CLR_GEN_CALL

•Name: Clear GEN_CALL Interrupt Register

•Size: 1 bit

•Address Offset: 0x68 •Read/Write Access: Read

Module::MIS	Ro L	Register::IC5_CLR_GEN_CAL L				ATTR::sfdf	Type::SR	ADDR::0x9801_BB68
Name		Bits	Read	Reset	Comme	nts		

		/Write	State	
Rvd	31:1	-	-	-
CLR_GEN_CALL	0	R	'b0	Read this register to clear the <i>GEN_CALL</i> interrupt.

IC5_ENABLE

•Name: I2C Enable Register

•Size: 1 bit

•Address Offset: 0x6c

•Read/Write Access: Read/Write

Module::MIS	Register	::IC5_ENA	BLE	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB6C
Name	Bits	Read /Write	Reset State	Comme	nts		
Rvd	31:1	-	-	-			
ENABLE	0	R/W	'b0	Controls	whether the I	OW_apb_i2d	e is enabled.
				0: Disable	es DW_apb_i2	c (TX and F	RX FIFOs are held in an
				erased sta	ite)		
				1: Enable	s DW_apb_i2	c	
	Software can disable DW_apb_i2c wh						while it is active.
				However,	it is importan	t that	
				care be ta	ken to ensure	that DW_ap	b_i2c is disabled
				properly.			
				When DV	V_apb_i2c is d	lisabled, the	following occurs:
				• The	TX FIFO and	RX FIFO ge	et flushed.
				Statu	as bits in the IC	C_INTR_ST	AT register are still
				active unt	il DW_apb_i2	c goes into	IDLE state.If the
				module is	transmitting,	it stops as w	ell as deletes the
				contents of	of the transmit	buffer after	the current transfer is
				complete.	If the module	is receiving	g, the DW_apb_i2c
				•			of the current byte and
					•		n systems with
					•		IC_CLK_TYPE
				parameter	r set to asynch	ronous (1), t	there is a two ic_clk
				delay whe	en enabling or	disabling th	e DW_apb_i2c.

IC5_STATUS

•Name: I2C Status Register

•Size: 5 bits

•Address Offset: 0x70 •Read/Write Access: Read

This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register:

Bits 1 and 2 are set to 1

Bits 3 and 4 are set to 0

When the master or slave state machines goes to idle and ic_en=0:

Bits 5 and 6 are set to 0

Module::MIS	Register	:::IC5_STA	TUS	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB70
Name	Bits	Read	Reset	Commer	nts		
		/Write	State				
Rvd	31:7	-	-	-			
SLV_ACTIVITY	6	R	'b0	(FSM) is n 0: Slave FS is not Activ 1: Slave D DW_apb_i	ot in the IDLE SM is in IDLE we FSM is not if 2c is Active	state, this bit state so the S in IDLE sta	Slave part of DW_apb_i2c te so the Slave part of
MST_ACTIVITY	5	R	'ь0	Machine (F 0: Master DW_apb_i 1: Master	FSM) is not in FSM is in 2c is not Active	the IDLE state IDLE state e	the Master Finite State e, this bit is set. so the Master part of the so the Master part of
RFF	4	R	'b0	completel contains of 0 – Receiv	y full, this bit	is set. When noty location the full	nen the receive FIFO is in the receive FIFO in, this bit is cleared.
RFNE	3	R	,90	contains of receive FI to comple 0 – Receive	one or more en	ntries and is This bit can e receive FII apty	the receive FIFO cleared when the be polled by software FO.
TFE		R	'b1	Transmit I FIFO is co one or mo does not r 0 – Transi 1 – Transi	FIFO Comple ompletely empore valid entrice equest an internit FIFO is no mit FIFO is en	etely Empty. pty, this bit is es, this bit is errupt. ot empty mpty	When the transmit is set. When it contains cleared. This bit field
TFNF	1	R	'b1	contains of locations, 0 – Transi 1 – Transi	one or more en and is cleared mit FIFO is fu mit FIFO is no	mpty I when the F Ill	the transmit FIFO
ACTIVITY	0	R	'b0	I2C Activ	ity Status.		

IC5_TXFLR

•Name: I2C Transmit FIFO Level Register

•Size: 4

•Address Offset: 0x74

•Read/Write Access: Read

This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared

whenever:

- The I2C is disabled
- There is a transmit abort—that is, TX_ABRT bit is set in the IC_RAW_INTR_STAT register
- The slave bulk transmit mode is aborted

The register increments whenever data is placed into the transmit FIFO and decrements when data is

taken from the transmit FIFO.

Module::MIS	Register::IC5_TXFLR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB74
Name	Bits	Read	Reset	Comme	nts		
		/Write	State				
Rvd	31:4	-	-	-			
TXFLR	3:0	R	'b0		t FIFO Level . the transmit F		e number of valid data

IC5_RXFLR

•Name: I2C Receive FIFO Level Register

•Size: 4

•Address Offset: 0x78 •Read/Write Access: Read

This register contains the number of valid data entries in the receive FIFO buffer. It is cleared whenever:

- The I2C is disabled
- Whenever there is a transmit abort caused by any of the events tracked in

IC TX ABRT SOURCE

The register increments whenever data is placed into the receive FIFO and decrements when data is taken from the receive FIFO.

Module::MIS	Register	Register::IC5_RXFLR			ATTR::sfdf	Type::SR	ADDR::0x9801_BB78		
Name	Bits	Read	Reset	Comments					
		/Write	State						
Rvd	31:4	-	-	-					
RXFLR	3:0	R	'h0	Receive 1	FIFO Level. C	Contains the	number of valid data		
				entries in	the receive FI	FO.			

IC5 SDA HOLD

•Name: I2C SDA Hold Time Length Register

•Size: 16

•Address Offset: 0x7C

•Read/Write Access: Read / Write

This register controls the amount of hold time on the SDA signal after a negative edge of SCL in both master and slave mode, in units of ic_clk period. The value programmed must be greater than the minimum hold time in each mode for the value to be implemented – one cycle in master mode, seven cycles in slave mode. Writes to this register succeed only when IC_ENABLE=0.

The programmed SDA hold time cannot exceed at any time the duration of the low part of SCL. Therefore the programmed value cannot be larger then N_SCL_LOW-2, where N_SCL_LOW is the duration of the low part of the SCL period measured in ic_clk cycles.

Module::MIS	Register::1	Register::IC5_SDA_HOLD			ATTR::sfdf	Type::SR	ADDR::0x9801_BB7C
Name	Bits	Read /Write	Reset State	Comments			
Rvd	31:16	-	-	-			
SDA_HOLD	15:0	R/W	'h0001	Sets th	e required SDA	hold time in	units of ic_clk period.

IC5_TX_ABRT_SOURCE

•Name: I2C Transmit Abort Source Register

•Size: 16 bits

•Address Offset: 0x80 •Read/Write Access: Read

This register has 16 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is cleared whenever the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, Bit 9 clears for one cycle and is then re-asserted.

Module::MIS	Register::IC5_TX_ABRT_SO URCE			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB80
Name		Bits	Read /Write	Reset State	Comments		
Rvd		31:16	-	1	-		
ABRT_SLVRD_INTX		15	R	'b0		request for d ter and user	lata to be transmitted to writes a 1 in CMD (bit
ABRT_SLV_ARBLOST		14	R	ʻb0	1: Slave lost t data to a remo IC_TX_ABR	ote master.	Č

ABRT_SLVFLUSH_TXFIFO	13	R	'b0	the same time. Note: Even though the slave never "owns" the bus, something could go wrong on the bus. This is a fail safe check. For instance, during a data transmission at the low-to-high transition of SCL, if what is on the data bus is not what is supposed to be transmitted, then DW_apb_i2c no longer own the bus. 1: Slave has received a read command and some
				data exists in the TX FIFO so the slave issues a TX_ABRT interrupt to flush old data in TX FIFO.
ARB_LOST	12	R	'b0	1: Master has lost arbitration, or if IC_TX_ABRT_SOURCE[14] is also set, then the slave transmitter has lost arbitration. Note: I2C can be both master and slave at the same time.
ARB_MASTER_DIS	11	R	'b0	1: User tries to initiate a Master operation with the Master mode disabled.
ABRT_10B_RD_NORSTRT	10	R	'b0	1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) = 0) and the master sends a read command in 10-bit addressing mode.
ABRT_SBYTE_NORSTRT	9	R	'b0	To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed first; restart must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, bit 9 clears for one cycle and then gets re-asserted. 1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) = 0) and the user is trying to send a START Byte.
ABRT_HS_NORSTRT	8	R	,p0	1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) = 0) and the user is trying to use the master to transfer data in High Speed mode.
ABRT_SBYTE_ACKDET	7	R	'b0	1: Master has sent a START Byte and the START Byte was acknowledged (wrong behavior).
ABRT_HS_ACKDET	6	R	'b0	1: Master is in High Speed mode and the High Speed Master code was acknowledged (wrong behavior).
ABRT_GCALL_READ	5	R	'b0	1: DW_apb_i2c in master mode sent a General Call but the user programmed the byte following the General Call to be a read from the bus (IC_DATA_CMD[9] is set to 1).

ABRT_GCALL_NOACK	4	R	'b0	1: DW_apb_i2c in master mode sent a General Call and no slave on the bus acknowledged the General Call.
ABRT_TXDATA_NOACK	3	R	°b0	1: This is a master-mode only bit. Master has received an acknowledgement for the address, but when it sent data byte(s) following the address, it did not receive an acknowledge from the remote slave(s).
ABRT_10ADDR2_NOACK	2	R	'b0	1: Master is in 10-bit address mode and the second address byte of the 10-bit address was not acknowledged by any slave.
ABRT_10ADDR1_NOACK	1	R	'b0	1: Master is in 10-bit address mode and the first 10-bit address byte was not acknowledged by any slave.
ABRT_7B_ADDR_NOACK	0	R	'b0	1: Master is in 7-bit addressing mode and the address sent was not acknowledged by any slave.

IC5_SLV_DATA_NACK_ONLY

Name: Generate Slave Data NACK Register

Size: 1 bit

Address Offset: 0x84

Read/Write Access: Read/Write

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as a slave-receiver. This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to 1. When this parameter disabled, this register does not exist and writing to the register's address has no effect.

A write can occur on this register if either of the following conditions are met:

- † DW_apb_i2c is disabled (IC_ENABLE[0] = 0)
- ♥ Slave part is inactive (IC STATUS[6] = 0)

	Register::IC5_SLV_DATA			ATTR::sfdf	Type::SR	ADDR::0x9801_BB84
_NAC	CK_ONLY					
Name	Bits	Read	Reset	Comments		<u>'</u>
		/Write	State			
Rvd	31:1	-	-	-		
NACK	0	R/W	'b0	Generate Na	ACK. This	NACK generation
				only occurs v	when DW_	apb_i2c is a slave-
				receiver. If the	nis register	is set to a value of 1,
				it can only ge	enerate a N	ACK after a data
				byte is receiv	ved; hence,	the data transfer is
				aborted and t	he data rec	eived is not pushed
				to the receive	e buffer. W	hen the register is set
				to a value of	0, it genera	ites NACK/ACK,
				depending on	n normal cr	iteria.
				1 = generate	NACK afte	er data byte received
				0 = generate	NACK/AC	CK normally

IC5_DMA_CR

•Name: DMA Control Register

•Size: 2 bits

•Address Offset: 0x88

•Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA Controller interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist and writing to the register's address has no effect and reading from this register address will return zero. The register is used to enable the DMA Controller interface operation. There is a separate bit for transmit and receive. This can be programmed regardless of the state of IC_ENABLE.

Module::MIS	Register::IC5_DMA_CR			Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BB88			
Name	Bits	Read	Reset	Comments			
		/Write	State				
Rvd	31:2	-	-	-			
TDMAE	1	R/W	'b0	Transmit DMA Enable. This bit enables/disables the			
				transmit FIFO DMA channel.			
				0 = Transmit DMA disabled			
				1 = Transmit DMA enabled			
RDMAE	0	R/W	'b0	Receive DMA Enable. This bit enables/disables the			
				receive FIFO DMA channel.			
				0 = Receive DMA disabled			
				1 = Receive DMA enabled			

IC5_DMA_TDLR

•Name: DMA Transmit Data Level Register

•Size: 2 bits

•Address Offset: 0x8c

•Read/Write Access: Read/Write

This register is only valid when the DW_apb_i2c is configured with a set of DMA interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist; writing to its address has no effect; reading from its address returns zero.

Module::MIS	Register::IC5_DMA_TDLR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB8C			
Name	Bits	Read Reset /Write State			Comments				
Rvd	31:3	-	-	-					
DMATDL	2:0	R/W	'h0	at v log dm val	which a DMA reic. It is equal to a_tx_req signal	equest is made the watermated is generated in the transmi	t field controls the level de by the transmit ark level; that is, the when the number of it FIFO is equal to or MAE = 1.		

IC5_DMA_RDLR

•Name: I2C Receive Data Level Register

•Size: 2 bits

•Address Offset: 0x90

•Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA interface signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist; writing to its address has no effect; reading from its address returns zero.

Module::MIS	Register::IC5	_DMA_RD	LR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB90
Name	Bits	Read	Reset	t Cor	nments		
		/Write	State				
Rvd	31:4	-	-	-			
DMARDL	3:0	R/W	'h0	Rec	eive Data Le	vel. This bit	field controls the level
				at w	hich a DMA r	equest is ma	nde by the receive logic.
							DMARDL+1; that is,
				dma	_rx_req is ge	nerated whe	en the number of valid
				data	entries in the	receive FI	FO is equal to or more
				than	this field v	alue + 1,	and RDMAE =1. For
				inst	ince, when Di	MARDL is	0, then dma_rx_req is
				asse	rted when 1 or	more data	entries are present in the
				rece	ive FIFO.		

IC5 SDA SETUP

● Name: I2C SDA Setup Register

Size: 8 bits

• Address Offset: 0x94

■ Read/Write Access: Read/Write

This register controls the amount of time delay (in terms of number of ic_clk clock periods) introduced

in the rising edge of SCL, relative to SDA changing, when DW_apb_i2c services a read request in a

slave-transmitter operation. The relevant I2C requirement is tSU:DAT (note 4) as detailed in the I2C Bus

Specification.

Module::MIS	Register::IC5_SDA_SETUP			Set::1	ATTR::	sfdf	Type::SR	ADDR::0x9801_BB94
Name	Bits	Read Reset		t Cor	nments			
		/Write	State	:				
Rvd	31:8	-	-	-				
SDA_SETUP	7:0	R/W	'h0	1000	ns, then	for	an ic_clk f	nat if the required delay is frequency of 10 MHz, ammed to a value of 11.

IC5_ACK_GENERAL_CALL

Name: I2C ACK General Call Register

Size: 1 bit

Address Offset: 0x98

Read/Write Access: Read/Write

The register controls whether DW_apb_i2c responds with a ACK or NACK when it receives an I2C

General Call address.

Module::MIS	Register::IC5_ AL_CALL	_ACK_GE	NER	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB98
Name	Bits	Read /Write	Rese State		mments		
Rvd	31:1	-	-	-			
ACK_GEN_CALL	0	R/W	°h0	with Gen	a ACK (by as	serting ic_dat rwise, DW_a	1, DW_apb_i2c responds a_oe) when it receives a apb_i2c responds with a

IC5_ENABLE_STATUS

• Name: I2C Enable Status Register

• Size: 3 bits

● Address Offset: 0x9C

Read/Write Access: Read

The register is used to report the DW_apb_i2c hardware status when the IC_ENABLE register is set

from 1 to 0; that is, when DW_apb_i2c is disabled.

If IC_ENABLE has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC_ENABLE has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as '0'.

Module::MIS	Register::IC5_ TUS	ENABLE_	_STA	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BB9C
Name	Bits	Read /Write	Rese State		mments		
Rvd	31:3	_	_	-			
SLV_RX_DATA_ LOST	2	R/W	'h0	Reccibyte IC_I deer trans I2C beer mass befor and to 1 disa of a	eiver operation received from ENABLE from ned to have bester (with match transfer has been responded with the DW_apb IC_ENABLE h. When read as (bled without be Slave-Receiver)	has been abore an I2C trans 1 to 0. When a cent actively ending address) en entered, even a NACK. It the transfer i2c has a chas been set to 1, DW_apb_i2ing actively it transfer.	bit indicates if a Slave- rted with at least one data sfer due to the setting of read as 1, DW_apb_i2c is ngaged in an aborted I2C and the data phase of the ten though a data byte has NOTE: If the remote I2C with a STOP condition ance to NACK a transfer, 0, then this bit is also set 2c is deemed to have been nvolved in the data phase
				NO. 0) is	TE: The CPU caread as 0.	an safely read	this bit when IC_EN (bit
SLV_DISABLED_ WHI LE_BUSY		R/W	'ho'	Slay indicates a series of the comment of the comme	e Disabled Wheates if a potented due to the second of the second of the master; OR, eiver operation from read as 1, Deck during any ther the I2C adaphi2c (IC_Spleted before IC to the second of the master; OR, eiver operation from read as 1, Deck during any there is I2C adaphi2c (IC_Spleted before IC to the second of the master of the second of the se	tial or active etting of the I set when the er while: (a) the Slave-Tra (b) address afrom a remote W_apb_i2c is part of an I2dress matche SAR register C_ENABLE is to the I2C mastedition before transfer, and ill also be set to DW_apb_i2c is master action safely read	deemed to have forced a C transfer, irrespective of s the slave address set in O OR if the transfer is set to 0 but has not taken er terminates the transfer the DW_apb_i2c has a IC_ENABLE has been set to 1. is deemed to have been ivity, or when the I2C bus I this bit when IC_EN (bit
IC_EN	0	R/W	'h0	ic_ the c Whe enab Whe inac	en Status. This putput port ic_en read as 1, oled state. en read as 0, tive.	n. DW_apb_i2c DW_apb_i2d	flects the value driven on is deemed to be in an c is deemed completely
				NO	ΓE: The CPU c	an safely rea	d this bit anytime. When

	this bit is read as 0, the CPU can safely read SLV_RX_DATA_LOST (bit
	2) and SLV_DISABLED_WHILE_BUSY (bit 1).

IC5_COMP_PARAM_1

•Name: Component Parameter Register 1

•Size: 32 bits

•Address Offset: 0xf4 •Read/Write Access: Read

Module::MIS R	egister::IC:	5_COMP	PARAM_	_ Set::1	ATTR::sfdf Type::SR ADDR::0x9801_BBF4
Name		Bits	Read /Write	Reset State	Comments
Rvd		31:24	1	-	-
TX_BUFFER_Di	ЕРТН	23:16	R	'h07	The value of this register is derived from the IC_TX_BUFFER_DEPTH coreConsultant parameter. $0x00 = Rvd$ $0x01 = 2$ $0x02 = 3$ to $0xFF = 256$
RX_BUFFER_D	0	15:8	R	'h07	The value of this register is derived from the IC_RX_BUFFER_DEPTH coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x00 = Rvd 0x01 = 2 0x02 = 3 to 0xFF = 256
ADD_ENCODED_I	PARAMS	7	R	ʻb1	The value of this register is derived from the IC_ADD_ENCODED_PARAMS coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
HAS_DMA		6	R	'b0	The value of this register is derived from the IC_HAS_DMA coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
INTR_IO		5	R	'b1	The value of this register is derived from the

				IC_INTR_IO coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = Individual 1 = Combined
HC_COUNT_VALUES	4	R	ʻb0	The value of this register is derived from the IC_HC_COUNT_VALUES coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0 = False 1 = True
MAX_SPEED_MODE	3:2	R	'b10	The value of this register is derived from the IC_MAX_SPEED_MODE coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x0 = Rvd 0x1 = Standard 0x2 = Fast 0x3 = High
APB_DATA_WIDTH	1:0	R	'ь10	The value of this register is derived from the IC_MAX_SPEED_MODE coreConsultant parameter. For a description of this parameter, see DesignWare DW_apb_i2c Databook, Table 4 on page 46. 0x0 = 8 bits 0x1 = 16 bits 0x2 = 32 bits 0x3 = Rvd

Notice: This is a constant read-only register that contains encoded information about the component's parameter settings. The reset value depends on coreConsultant parameter(s).

IC5_COMP_VERSION

•Name: I2C Component Version Register

•Size: 32 bits

•Address Offset: 0xf8 •Read/Write Access: Read

Module::MIS	Regist N	Register::IC5_COMP_VERSIO N			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BBF8
Name		Bits	Read /Write	Reset State		Comments		
IC_COMP_VER	SION	31:0	R	'h3130:				s of the DW_apb_i2c C_COMP_VERSION

DesignWare AMBA Release	DW_apb_i2c Version	I2C_COMP_VERSION value	Databook Date
2004.06	1.03a	31_30_33_2A	June 21, 2004

IC5_COMP_TYPE

•Name: I2C Component Type Register

•**Size:** 32 bits

•Address Offset: 0xfc •Read/Write Access: Read

Module::MIS	Register::IC5_COMP_TYPE S			Set::1 ATTR::sfdf Type::SR ADDR::0x9801_BBFC
Name	Bits	Read	Reset	Comments
		/Write		
IC_COMP_TYPE	31:0	R	'h44570140	Designware Component Type number =
				0x44_57_01_40. This assigned unique hex value is
				constant and is derived from the two ASCII letters
				"DW" followed by a 16-bit unsigned number.

4 Timer Control

4.1 Register

4.1.1 Register Summery

Physical Address	Name	R/W	Description
0x9801_B500	MIS_TC0TVR	R/W	Timer/Counter 0 Target Value Register
0x9801_B504	MIS_TC1TVR	R/W	
0x9801_B508	MIS_TC2TVR	R/W	Timer/Counter 2 Target Value Register
0x9801_B50C	MIS_TC0CVR		Timer/Counter 0 Current Value Register
0x9801_B510	MIS_TC1CVR	R/W	Timer/Counter 1 Current Value Register
0x9801_B514	MIS_TC2CVR	R/W	Timer/Counter 2 Current Value Register
0x9801_B518	MIS_TC0CR	R/W	Timer/Counter 0 Control Register
0x9801_B51C	MIS_TC1CR	R/W	Timer/Counter 1 Control Register
0x9801_B520	MIS_TC2CR	R/W	Timer/Counter 2 Control Register
0x9801_B524	MIS_TC0ICR	R/W	Timer/Counter 0 Interrupt Control Register
0x9801_B528	MIS_TC1ICR	R/W	Timer/Counter 1 Interrupt Control Register
0x9801_B52C	MIS_TC2ICR	R/W	Timer/Counter 2 Interrupt Control Register
0x9801_B530	Reserved	-	-
0x9801_B534	Reserved		- ()
0x9801_B538	MIS_CLK90K_CT	R/W	clk_90KHz counter Control Register.
	RL		
0x9801_B53C	MIS_SCPU_CLK2 7M_90K	R	SCPU clk27MHz to clk90kHz divider
0x9801_B540	MIS_SCPU_CLK9 0K_LO	R	SCPU 90kHz timer current value low word
0x9801_B544	MIS_SCPU_CLK9 0K_HI	R	SCPU 90kHz timer current value high word
0x9801_B548	MIS_ACPU_CLK2	R	ACPU clk27MHz to clk90kHz divider
	7M_90K		
0x9801_B54C	MIS_ACPU_CLK9 0K_LO	R	ACPU 90kHz timer current value low word
0x9801_B550	MIS_ACPU_CLK9 0K_HI	R	ACPU 90kHz timer current value high word
0x9801_B554	Reserved	-	-
0x9801_B558	Reserved	-	-
0x9801_B55C	Reserved	-	-
0x9801_B560	Reserved	-	-
0x9801_B564	Reserved	-	-
0x9801_B568	Reserved	-	-
0x9801_B56C	-	-	-
0x9801_B570	MIS_PCR_CLK90 K_CTRL	R/W	PCR clk_90KHz counter Control Register.

(0x9801_B574	MIS_PCR_SCPU_	R	PCR SCPU clk27MHz to clk90kHz divider
		CLK27M_90K		
(0x9801_B578	MIS_PCR_SCPU_	R	PCR SCPU 90kHz timer current value low
		CLK90K_LO		word
(0x9801_B57C	MIS_PCR_SCPU_	R	PCR SCPU 90kHz timer current value high
		CLK90K_HI		word
(0x9801_B580	MIS_PCR_ACPU_	R	PCR ACPU clk27MHz to clk90kHz divider
		CLK27M_90K		
(0x9801_B584		R	PCR ACPU 90kHz timer current value low
		CLK90K_LO		word
(0x9801_B588	MIS_PCR_ACPU_	R	PCR ACPU 90kHz timer current value high
		CLK90K_HI		word
	0x9801_B58C	Reserved	-	-
(0x9801_B590	Reserved	-	-
(0x9801_B594	Reserved	-	-
	0x9801_B598	Reserved	-	-
(0x9801_B59C	Reserved	-	-
(0x9801_B5A0	Reserved	-	-
C	0x9801_B5A4	Reserved	-	-
	~			
	0x9801_B5AC			
	0x9801_B5B0	MIS_TCWCR		Timer/Counter Watchdog Control Register
(0x9801_B5B4	MIS_TCWTR	R/W	Timer/Counter Watchdog Trigger Register
(0x9801_B5B8	MIS_TCWNMI	R/W	Timer/Counter Watchdog NMI Register
C)x9801_B5BC	MIS_TCWOV	R/W	Timer/Counter Watchdog overflow
				Register
(0x9801_B5C0	MIS_TCWCR_SW	R/W	Timer/Counter Watchdog Control Register
		C		in SWC
(0x9801_B5C4	MIS_TCWTR_SW	R/W	Timer/Counter Watchdog Trigger Register
		C		in SWC
	0x9801_B5C8	MIS_TCWNMI_S	R/W	Timer/Counter Watchdog NMI Register in
		WC		SWC
C	0x9801_B5CC	MIS_TCWOV_SW	R/W	Timer/Counter Watchdog overflow
		C		Register in SWC

p.s: $0x9801_B570 \sim 0x9801_B59F$ reserved for clk_pcr domain

4.1.2 Register Description

Module::MIS Register::TC0TVR S			Set::	ATTR::sfdf Type::SR ADDR::0x9801_B500		
Name	Bits	Read/Write	Reset	Comments		
			State			
TC0TVR	31:0	R/W	-	The timer/counter 0 target value		
				0 and 1 are not allowed. Counts from 0 to		

	TC0TVR.
--	---------

Module::MIS	S Regi	ster::TC1TVR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B504
Name	Bits	Read/Write	Reset		Comments		
			Sta	te			
TC1TVR	31:0	R/W		-	The timer/c	ounter 1 ta	rget value
					0 and 1 are	not allowed	ed. Counts from 0 to
					TC1TVR.		

Module::MIS	ule::MIS Register::TC2TVR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B508
Name	Bits	Read/Write	Reset		Comments		
			Sta	te			
TC2TVR	31:0	R/W		-	The timer/c	ounter 2 ta	rget value
					0 and 1 are	not allow	ed. Counts from 0 to
					TC2TVR.		

Notice: TC0,TC1,TC2 count at 27MHz

Module::MIS	S Regi	ster::TC0CVR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B50C
Name	Bits	Read/Write	Reset		Comments		
			Stat	te			
TC0CVR	31:0	R		-	The timer/c	ounter 0 cu	ırrent value.

Module::MIS	Module::MIS Register::TC1CVR			ATTR::sfdf Type::SR ADDR::0x9801_B510
Name	Bits	Read/Write	Reset State	Comments
TC1CVR	31:0	R	-	The timer/counter 1 current value.

Module::MIS	S Regi	ster::TC2CVR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B514
Name	Bits	Read/Write	Rese	et	Comments		
			State	e			
TC2VR	31.0	P		_	The timer/c	ounter 2 ci	irrent value.

Module::MIS	Registe	er::TC0CR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B518
Name	Bits	Read/Write	Reset	Comment	S	
			State			
TC0En	31	R/W	'b0	Timer/Cou	ınter 0 enal	ble
				0: Disable	TC0. Clea	r TC0CVR to 32'b0
				1: Enable	TC0. Time	r/Counter 0 count at
				27MHz		
TC0Mode	30	R/W	'b0	Timer/Cou	inter 0 mod	de
				0: counter	mode	
				1: timer m	ode	
TC0Pause	29	R/W	'b0	Timer/Cou	inter 0 paus	se.

				1: Pause
RvdA	28:24	R/W	'h0	Rvd Register.
Rvd	23:0	-	-	-

Module::MIS	Registe	er::TC1CR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B51C
Name	Bits	Read/Write	Reset	Comments
			State	
TC1En	31	R/W	'b0	Timer/Counter 1 enable
				0: Disable TC1. Clear TC1CVR to 32'b0
				1: Enable TC1. Timer/Counter 1 count at
				27MHz
TC1Mode	30	R/W	'b0	Timer/Counter 1 mode
				0=counter mode
				1=timer mode
TC1Pause	29	R/W	'b0	Timer/Counter 1 pause.
				1: Pause
RvdA	28:24	R/W	'h0	Rvd Register.
Rvd	23:0	-	-	-

Module::MIS	Registe	er::TC2CR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B520
Name	Bits	Read/Write	Reset	Comments
			State	
TC2En	31	R/W	'b0	Timer/Counter 2 enable
				O: Disable TC2. Clear TC2CVR to 32'b0
				1: Enable TC2. Timer/Counter 2 count at
				27MHz
TC2Mode	30	R/W	'b0	Timer/Counter 2 mode
				0=counter mode
				1=timer mode
TC2Pause	29	R/W	'b0	Timer/Counter 2 pause.
				1: Pause
RvdA	28:24	R/W	'h0	Rvd Register.
Rvd	23:0	-	-	-

Module::MIS	S Regi	ster::TC0ICR	R Set::1		ATTR::sfdf	Type::SR	ADDR::0x9801_B524	
Name	Bits	Read/Write	Res	et	Comments			
			Stat	te				
TC0IE	31	R/W	(b0	Timer/Counter 0 interrupt enable.			
Rvd	30:0	-		-	-			

Module::MIS	Register::TC1ICR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B528	
Name	Bits	Read/Write	Res	et	Comments		

			State	
TC1IE	31	R/W	'b0	Timer/Counter 1 interrupt enable.
Rvd	30:0	-	-	-

Module::MIS	Module::MIS Register::TC2ICR Set::1				ATTR::sfdf	Type::SR	ADDR::0x9801_B52C		
Name	Bits	Read/Write	Res	set	Comments				
			Sta	te					
TC2IE	31	R/W	•	b0	Timer/Coun	ter 2 interr	upt enable.		
Rvd	30:0	-		-	-				

Module::MIS	Register::	CLK90K_CTRL	Set::1 AT	TR::sfdf	Type::SR ADDR::0x9801_B538
Name	Bits	Read/Write	Reset State	Comme	ents
Rvd	31:1	-	-	-	
EN	0	R/W	'b1	0: 90KH Set EN= to 48'b0 EN can	Iz counter enable. Iz counter disable. I'b0 to clear CLK90KHz counter control CLK90KHz counter only, control clk27M_clk90K_cnt[8:0].

Notice1: clk27MHz to clk90KHz counter

clk_27M								$\overline{}$		$\overline{}$	$\overline{}$		$\overline{}$
clk27M_clk90K_cnt[8:0]	299	χ 0	X I	2		X 29B X 29) (0	χı		X 29B	299	X O X	1
clk90K_cnt_en					N				N			$\overline{}$	
clk90K_cnt[47:0]		0		1) 2			2	X	3

Notice2:

- 1. If SCPU want to read 90KHz counter, it must read MIS_SCPU_CLK90K_LO first and it will generate a latch enable signal to latch MIS_SCPU_CLK90K_HI and MIS_SCPU_CLK27M_90K at the same time.
- 2. ACPU have the same function to SCPU. The only different are that they must read the counter register belong to ACPU.

Module::MIS	Register::	SCPU_CLK27	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B53C
	M_90K					
Name	Bits	Read/Write	Reset	Comme	ents	

			State	
Rvd	31:9	-	-	-
CNT	8:0	R	'h0	SCPU clk_27MHz to clk_90KHz count. Read MIS_SCPU_CLK90K_LO first to
				ensure the correct CNT.

Module::MIS	Register:: _LO	SCPU_CLK90K	Set::1	АТ	TR::sfdf	Type::SR	ADDR::0x9801_B540	
Name	Bits	Read/Write	Reset State		Comments			
VAL	31:0	R	'h0		90KHz timer current value bit31:0.			

Module::MIS	Register:: _HI	SCPU_CLK90K	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_B544
Name	Bits	Read/Write	Reset	Comments
			State	
Rvd	31:16	1	1	-
VAL	15:0	R	'h0	90KHz timer current value bit47:32.
				Read MIS_SCPU_CLK90K _LO first to
				ensure the correct
				MIS_SCPU_CLK90K_HI.

Module::MIS	Register::. M_90K	ACPU_CLK27	Set::1 A7	TR::sfdf	Type::SR	ADDR::0x9801_B548
Name	Bits	Read/Write	Reset State	Comme	nts	
Rvd	31:9		-	-		
CNT	8:0	R	'h0	Read M	_	to clk_90KHz count. CLK90K_LO first to CNT.

Module::MIS	Register:: K_LO	ACPU_CLK90	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B54C		
Name	Bits	Read/Write	Reset State	Comme	Comments			
VAL	31:0	R	'h0	90KHz	90KHz timer current value bit31:0.			

Module::MIS	Register:: K_HI	ACPU_CLK90	Set::1	AT	TR::sfdf	Type::SR	ADDR::0x9801_B550
Name	Bits	Read/Write	Reset State		Comme	nts	
Rvd	31:16	-	-		-		

VAL	15:0	R	'h0	90KHz timer current value bit47:32.
				Read MIS_ACPU_CLK90K _LO first to
				ensure the correct
				MIS_ACPU_CLK90K_HI.

Module::MIS	Register:: CTRL	PCR_CLK90K_	Set::1	АТ	TR::sfdf	Type::SR	ADDR::0x9801_B570
Name	Bits	Read/Write	Reset State		Comme	nts	
Rvd	31:1	-	-		-		
EN	0	R/W	'b1		0: 90KH Set EN= to 48'b0 EN can	control CL	

Notice1: clk27MHz to clk90KHz counter

clk_27M							
c1k27M_c1k90K_cnt[8:0]	(299) 0) 1) 2) 29B) 299	(0)		X 298 X 299 X 0 X 1
c1k90K_cnt_en		\	N			N	
c1k90K_cnt[47:0]	0) 1) 2		2)(3

Notice2:

- 3. If SCPU want to read 90KHz counter, it must read MIS_PCR_SCPU_CLK90K_LO first and it will generate a latch enable signal to latch MIS_PCR_SCPU_CLK90K_HI and MIS_PCR_SCPU_CLK27M_90K at the same time.
- 4. ACPU have the same function to SCPU. The only different are that they must read the counter register belong to ACPU.

Module::MIS	Register:: K27M_90	PCR_SCPU_CL)K	Set::1	АТ	TR::sfdf	Type::SR	ADDR::0x9801_B574
Name	Bits	Read/Write	Reset State		Comme	nts	
Rvd	31:9	-	-		-		
CNT	8:0	R	'h0		Read M	_	to clk_90KHz count. CLK90K_LO first to CNT.

Module::MIS	Register:: K90K_L0	PCR_SCPU_CL	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B578
Name	Bits	Read/Write	Reset State	Comme	ents	
VAL	31:0	R	'h0	90KHz	timer curre	nt value bit31:0.

Module::MIS	Register:: K90K_H	PCR_SCPU_CL	Set::1	AT	TR::sfdf	Type::SR	ADDR::0x9801_B57C
Name	Bits	Read/Write	Reset State		Comme	nts	
Rvd	31:16	-	-		-		
VAL	15:0	R	'h0		Read MI first to ex	S_PCR _S	nt value bit47:32. CPU_CLK90K _LO orrect MIS_PCR HI.

Module::MIS	Register::PCR_ACPU_C LK27M_90K		Set::1	АТ	ATTR::sfdf		Гуре::SR	ADDR::0x9801_B580
Name	Bits	Read/Write	Reset State		Com	men	ts	
Rvd	31:9	-	-		-			
CNT	8:0	R	'h0		Read	MIS		to clk_90KHz count. CLK90K_LO first to CNT.

Module::MIS	Register:: LK90K_I	PCR_ACPU_C .O	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B584
Name	Bits	Read/Write		Comme	nts	
			State			
VAL	31:0	R	'h0	90KHz t	90KHz timer current value bit31:0.	

Module::MIS	Register:: LK90K_I	PCR_ACPU_C HI	Set::1	АТ	TR::sfdf	Type::SR	ADDR::0x9801_B588
Name	Bits	Read/Write	Reset State		Comme	nts	
Rvd	31:16	-	-		-		
VAL	15:0	R	'h0		Read Ml first to e	IS_PCR _A	nt value bit47:32. ACPU_CLK90K _LO orrect MIS_PCR _HI.

Module::MIS	S Regis	ster::TCWCR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B5B0
Name	Bits	Read/Write	Reset	Comments	S	

			State	
WD_INT	31	R/W	'h1	Watchdoe interrupt enable
_EN				
Rvd	30:16	-	-	-
NMIC	15:12	R/W	'h0	Watchdog NMI Occurrence Count Write "1111" to clear NMIC. Other value can't effect NMIC. Reset to zero by power-on reset or bottom reset only. Watchdog reset and software
				reset can't reset NMIC.
WDC	11:8	R/W	'h0	Watchdog Occurrence Count Write "1111" to clear WDC. Other value can't effect WDC. Reset to zero by power-on reset or bottom reset only. Watchdog reset and software reset can't reset WDC.
WDEN	7:0	R/W	ʻhA5	Watchdog Enable. When these bits are set to 0xA5, the watchdog timer stops. Other value can enable the watchdog timer and cause a system reset when an overflow signal occurs.

Note1: watchdog count at 27MHz

Note2: WDC and NMIC only can reset by power-on-reset and bottom reset(RESET_N). Note3: WDEN can reset by power-on-reset, bottom reset(RESET_N) and wdog_reset.

MIS watchdog(NWC or SWC) overflow 詩會 reset watchdog(NWC+SWC) enable, interrupt enable, ov_sel and nmi_sel

NWC overflow 發生時會 clear NWC 內部 counter, 不會 clear SWC 內部 counter SWC overflow 發生時會 clear SWC 內部 counter, 不會 clear NWC 內部 counter 所以要注意使用前要 clear counter TCWTR WDCLR

Module::MIS Register::TCWTR			Set::1	ΑΊ	TR::sfdf	Type::SR	ADDR::0x9801_B5B4
Name Bits Read/Write			Reset		Comme	nts	
			State				
Rvd	31:1	-	-		-		
WDCLR	0	W	'b0			g counter.	rite "1" to clear the It is auto cleared

Module::MIS	Register::	TCWNMI	Set::1	ATTR::sfdf	TR::sfdf Type::SR ADDR::0x9801		
Name	Bits	Read/Write	Reset	Comme	nts		
			State				
SEL	31:0	R/W	'hfffffff	f Watchdo	Watchdog NMI select.		

		NMI condition = TCWNMI_SEL * 1/27MHz		
		ex:		
		TCWNMI_SEL	NMI time (us)	
		32'h0070_0000	271852	
		32'h0080_0000	310688	
		32'h00f0_0000	582541	
		32'h0100_0000	621377	

Note1: TCWNMI can reset by power-on-reset, bottom reset(RESET_N) and wdog_reset.

Module::MIS	Register::	TCWOV	Set::1 A	TTR::sfdf Type::SR ADDR::0x9801_B5BC
Name	Bits	Read/Write	Reset	Comments
			State	
SEL	31:0	R/W	'hffffffff	Watchdog overflow select.
				overflow condition = TCWOV_SEL *
				1/27MHz
				ex:
				TCWOV_SEL overflow time (us)
				32'h0070_0000 271852
				32'h0080_0000 310688
				32'h00f0_0000 582541
				32'h0100_0000 621377
		1		

Note1: TCWOV can reset by power-on-reset, bottom reset(RESET_N) and wdog_reset.

Module::MIS	S Regis	ster::TCWCR_SW	VC Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_B5C0
Name	Bits	Read/Write	Reset	Comments	Comments	
			State			
WD_INT	31	R/W	'h1	Watchdoe	interrupt er	nable
_EN					_	
Rvd	30:16	-	-	-		
NMIC	15:12	R/W	ʻh0	Watchdog	NMI Occi	urrence Count
				Write "111	1" to clear	NMIC. Other value
				can't effec	t NMIC.	
				Reset to ze	ro by powe	er-on reset or bottom
				reset only.	Watchdog	reset and software
				reset can't	reset NMI	IC.

WDC	11:8	R/W	ʻh0	Watchdog Occurrence Count Write "1111" to clear WDC. Other value can't effect WDC. Reset to zero by power-on reset or bottom reset only. Watchdog reset and software reset can't reset WDC.
WDEN	7:0	R/W	ʻhA5	Watchdog Enable. When these bits are set to 0xA5, the watchdog timer stops. Other value can enable the watchdog timer and cause a system reset when an overflow signal occurs.

Note1: watchdog count at 27MHz

Note2: WDC and NMIC only can reset by power-on-reset and bottom reset(RESET_N).

Note3: WDEN can reset by power-on-reset, bottom reset(RESET_N) and wdog_reset.

MIS watchdog(NWC or SWC) overflow 時會 reset watchdog(NWC+SWC) enable, interrupt enable, ov_sel and nmi_sel

NWC overflow 發生時會 clear NWC 內部 counter, 不會 clear SWC 內部 counter SWC overflow 發生時會 clear SWC 內部 counter, 不會 clear NWC 內部 counter 所以要注意使用前要 clear counter TCWTR_WDCLR

Module::MIS	Register::	TCWTR_SWC	Set::1	ΑΊ	TR::sfdf	Type::SR	ADDR::0x9801_B5C4
Name	Bits	Read/Write	Reset		Comme	nts	
			State				
Rvd	31:1	-	-		-		
WDCLR	0	W	'b0			g counter.	rite "1" to clear the It is auto cleared

Module::MIS	Register::	TCWNMI_SW	Set::1	AT	TR::sfdf	Type::SR	ADDR::0x9801_B5C8
Name	Bits	Read/Write	Reset		Comme	nts	
SEL	31:0	R/W	State 'hfffff	fff	NMI cor	MI_SWC_S MI_SEL 1 0_0000 0_0000 _0000	NMI time (us) 271852 310688 582541 621377

Note1: TCWNMI can reset by power-on-reset, bottom reset(RESET_N) and wdog_reset.

Module::MIS	Register::	TCWOV_SWC	Set::1	ΑΊ	TR::sfdf	Type::SR	ADDR::0x9801_B5CC
Name	Bits	Read/Write	Reset		Comme	nts	
			State				
SEL	31:0	R/W	'hffffff	fff	Watchdo	og overflo	w select.
					overflow	condition	n =
					TCWOV	SWC_S	EL * 1/27MHz
					ex:		
					TCWOV	_SEL	overflow time (us)
					32'h0070	0000_	271852
					32'h0080	0000_	310688
					32'h00f0	_0000	582541
					32'h0100	0_0000	621377
							—

Note1: TCWOV can reset by power-on-reset, bottom reset(RESET_N) and wdog_reset.

5 Real-time clock

5.1 Register

5.1.1 Register Summery

Physical Address	Name	R/W	Description
0x9801_B600	MIS_RTCSEC	R/W	current RTC second
0x9801_B604	MIS_RTCMIN	R/W	current RTC minute
0x9801_B608	MIS_RTCHR	R/W	current RTC hour
0x9801_B60C	MIS_RTCDATE1	R/W	current RTC date [7:0]
0x9801_B610	MIS_RTCDATE2	R/W	current RTC date [13:8]
0x9801_B614	MIS_ALMMIN	R/W	Alarm minute
0x9801_B618	MIS_ALMHR	R/W	Alarm hour
0x9801_B61C	MIS_ALMDATE1	R/W	Alarm date [7:0]
0x9801_B620	MIS_ALMDATE2	R/W	Alarm date [13:8]
0x9801_B624	MIS_RTCSTOP	R	RTC STOP
0x9801_B628	MIS_RTCACR	R/W	RTC analog circuit control register
0x9801_B62C	MIS_RTCEN	R/W	RTC enable register
0x9801_B630	MIS_RTCCR	R/W	RTC control register

5.1.2 Register Description

Module::MIS	Register:	:RTCSEC	Set::1	TTR::sfdf	Type::SR	ADDR::0x9801_B600
Name	Bits	Read/Write	Reset State	Comm	ents	
Rvd	31:7			-		
RTCSEC	6:0	R/W	-	second,		ts the current RTC this register updates

Module::MIS	Register: RTCMIN		Set::1	ATTR::sfdf		Type::SR	ADDR::0x9801_B604
Name	Bits	Read/Write	Reset		Comments		
			State				
Rvd	31:6	-	-		-		
RTCMIN	5:0	R/W	-		Reading register gets the current RTC Minute, and writing this register updates new RTC Minute		

Module::MIS Register::RTCHR		:RTCHR	Set::1	ATTR::sfdf		Type::SR	ADDR::0x9801_B608
Name	Bits	Read/Write	Reset State		Comm	ents	
Rvd	31:5	-	-		-		
RTCHR	4:0	R/W	-		RTC ho	our.	

Name	Bits	Read/Write	Reset State	Comments
Rvd	31:8	-	-	-
RTCDATE1	7:0	R/W	-	RTC date LSB.

Module::MIS	Register::R	er::RTCDATE2		Set::1 ATTR::s		Type::SR	ADDR::0x9801_B610
Name	Bits	Read/Write	Reset State		Comments		
Rvd	31:7	-		-	ı		
RTCDATE2	6:0	R/W	-		RTC	date MSB.	

Module::MIS	Register::	ALMMIN	Set::1	ATT	R::sfdf	Type::SR	ADDR::0x9801_B614
Name	Bits	Read/Write	Reset State		Comm	ents	
Rvd	31:6	-	-		-		
ALMMIN	5:0	R/W	-		Alarm	minute	

Module::MIS Register::ALMHR		Set::1	ATTR::sfdf Ty		Type::SR	ADDR::0x9801_B618	
Name	Bits	Read/Write	Reset		Comm	ents	
			State				
Rvd	31:5	-	-		-		
ALMHR	4:0	R/W	-		Ala <mark>r</mark> m l	nour.	

Module::MIS	Register::AL	MDATE1	Set::1	ATTR:	:sfdf	Type::SR	ADDR::0x9801_B61C
Name	Bits	Read/Write	e Re Sta		Con	nments	
Rvd	31:8			7 -	-		
ALMDATE1	7:0	R/W		-	Alar	m date LS	В.

Module::MIS	Register::AL	MDATE2	Set::1	ATTR:::	sfdf	Type::SR	ADDR::0x9801_B620
Name	Bits	Read/Write	Res	et	Con	nments	
	6		Stat	e			
Rvd	31:7	-		-	-		
ALMDATE2	6:0	R/W			Alar	m date MSI	3.

Module::MIS	Register::	RTCSTOP	Set::1	ATT	R::sfdf	Type::SR	ADDR::0x9801_B624
Name	Bits	Read/Write	Reset		Comn	Comments	
			State				
Rvd	31:3	-	-		-		
VREF	2:1	R/W	-		RTC p	ower-on-ce	ll Voltage
					Refere	ence.	
RTCSTOP	0	R	-		STOP (Readin	or not. g '1' indi ading '0' ir	er to check RTC is cates RTC is stopped ndicates RTC is

Module::MIS	Register	::RTCACR	Set::1	ATTR::sf	If Type::SR	ADDR::0x9801_B628
Name	Bits	Read/Write	Reset State	Con	ments	
Rvd	31:8	-	-	-		
RTCPW R	7	R/W	-	SW stab		1'b1 when RTC power be clear to zero if RTC
СО	6:5	R/W	-		Crystal RC co se SW write it	
CI	4:3	R/W	-		Crystal RC co se SW write it	
CLKSEL	2	R/W	-	0: R	ΓC_clk=27MH	8KHz for normal function. z for RTC counter test
BC	1:0	R/W	-	Osci	lator bias curr	ent control.

p.s.1: SW should set CKSEL, BC to zero to initialize RTC.

p.s.2: CLKSEL have two function. One is select RTC_clk frequency. Second is select RTC_testcnt source for MP testing.

CLKSEL=1'b0: RTC_testcnt output RTC_clk for analog_test_mode.

CLKSEL=1'b1: RTC_testcnt output "RTC counter test mode output" for digital_test.

After take the pllrtc of Sirius. (add the function for 27MHz crystal, but iso_mis debounce the hsecint in phoenix. Need to fix in Unicorn)

Rtc_test == 1'b0, normal mode RTC_CKSEL can choose the counter in 32768Hz or 27MHz Rtc_test == 1'b1, test mode

RTC_CKSEL can choose the RTC_testcnt output RTC_clk or RTC_testcnt

Nike

RTC_CKSEL	RTC_clk	Hsec_int	Application
0	32.768KHz	14'h 3 fff/ 32.768 K = 0.5 sec	hsec
1			Only for CP test
a	1 1 /	121.0	

Sirius: in normal mode(rtc_test==1'b0)

RTC_CKSEL	RTC_clk	Hsec_int	Application
0	32.768KHz	14'h 3 fff/ 32.768 K = 0.5 sec	32.768KHz osc
1	27MHz	24'd13499999/27M=0.5sec	27MHz osc

Application:

RTC_CKSEL

1'b0:

Use XIRTC_APAD, XORTC_APAD to generate 32768Hz to RTC_CLK

1'b1: Connect XIRTC_APAD to RTC_CLK directly.

RTC_test: anlg_test_mode, shorter counter for CP

Module::MIS	Register	::RTCEN	Set::1	AT	ΓR::sfdf	Type::SR	ADDR::0x9801_B62C
Name	Bits	Read/Write	Reset		Comme	ents	
			State				

Rvd	31:8	-	-	-
RTCEN	7:0	R/W	-	RTC enable. 8'h5A: enable RTC counter. 8'h00: disable RTC counter. Stop RTC counter. Firmware has to read RTCSTOP to ensure RTC is stop.
				Only use 8'h00 to disable RTC, other value maybe have glitch to hardware and can't disable RTC.

Note: If RTCEN isn't equal to 8'h5A, it means that user have not initialize RTC timer or RTC power have ever exhausted. The RTC timer value isn't available anymore and user to set the RTC timer. DVR should ignore the value of RTC timer register and display a default time to the VFD. GUI also can display a hint to request the user to setup the time of DVR.

Module::MIS	Regist	ter::RTCCR	Set::	1 ATTR::sfdf Type::SR ADDR::0x9801_B630
Name	Bits	Read/Write	Reset State	Comments
Rvd	31:7	-	1	-
RTCRST	6	R/W	'b0	Writing '1' to reset RTC counter (MIS_RTCSEC, MIS_RTCMIN, MIS_RTCHR,MIS_RTCDATE1,MIS_RTCDATE2) asynchronously until re-writing this bit to '0'. Firmware has to disable RTC before using this reset function.
Rvd	5:4	-	1	
DAINTE	3	R/W	'b0	Enable date interrupt.
HUINTE	2	R/W	'b0	Enable hour interrupt.
MUINTE	1	R/W	'b 0	Enable minute interrupt.
HSUINTE	0	R/W	'b0	Enable half second interrupt.

6.2 Register Sets

GSPI module 0

Module::GSPI	Register::SCK_CT	RL S	et::1	ATTR::r	or_up	Type::SR	ADDR::0x9801_BD00		
Name	Bits	R/W	Defa	ault Co	ommen	ts			
Rvd	3124	-	-	Re	Reserved				
sck_divider	2316	R/W	'h1	Fr	equenc	y divider	for SCK		
					-	-	not support)		
							z (not support)		
						51.75MH	11 /		
				8'	h3: 6 : 2	41.16MHz			
				8'	h4: 8 : 3	30.1MHz			
				8'	h5: 10 :	24.7MHz	Z		
				8'	h6:12 :	20.6MHz			
						17.6MHz			
				8'	h8:16:	15.43MH	Z		
				87	h9:20:	12.35MH	·Z		
				8'	ha:24 :	10.3MHz			
				8	hb:48: :	5.14MHz			
				8"	8'hc:256: 0.96MHz				
				8"	hd:512	: 0.48MH	Z		
				8'	he:2048	3:0.12MI	Hz		
				8'	hf: 256	0:0.096N	ИHz		
				8'	h10: 3	(not suppo	ort)		
				8'	h11: 5				
				8'	h12: 7				
				Ot	thers : r	eserve			
Rvd	159	-	-	Re	eserved				
Phase_adjust	8	R/W	'b0	A	djust th	e phase of	address/write data changed		
				at	falling	edge in m	ode0		
Rvd	72	-	-		eserved				
phase	1	R/W	'b0		ase sel	ection			
					o1:	0!'	a ta manife sa a daga at a d		
							n to positive edge of sck; e edge of sck		
							n to negative edge of sck;		
							edge of sck		
				1'h	0:				
						= 1, so alig	n to positive edge of sck;		
				sa	mple si	at negative	e edge of sck		
							to negative edge of sck; sample si		
				at 1	positive (edge of sck			

polarity	0	R/W	'b0	Polarity selection
				1'b1: sck idle state = H
				1'b0: sck idle state = L

Module::GSPI	Register: IMING	:CS_T	Set::1	AT	TR::nor_up	Type::SR	ADDR::0x9801_ BD04	
Name	Bits	R/W	Defa	ult	Comment	ts	1	
Rvd	31	-	-					
CS_O_VAL	30	R/W	'b0		CS outpu CS_SEL=	t value set ==1'b1	ting at	
CS_OE_VAL	29	R/W	'b0		CS_OE s	etting at C	SSEL==1'b1	
CS_SEL	28	R/W	'b0		CS control select 1'b0: CS pin be controlled auto 1'b1: CS pin be controlled by CS_O_VAL and CS_OE_VAL			
Rvd	2724	-	-					
Tcs_high	2316	R/W	'b0		CS falling edge to previous CS rising edge time 8'h0: 1 bus_clk 8'hff: 256 bus_clk			
Tcs_end	158	R/W	'b0		Last SCK active edge to CS risitime 8'h0: 0 bus_clk 8'hff: 255 bus_clk			
Tcs_start	70	R/W	'b0		CS falling edge time 8'h0: 1 bu 8'hff: 256	s is_clk	irst SCK active	

Module::GSPI	Register::_ _CTRL	AUX	Set::1	AT	TR::nor_up	Type::SR	ADDR::0x9801_ BD08
Name	Bits	R/W	Defau	ılt	Comments		
Rvd	319	-	-				
SLAVE_MODE_E	8	R/W	'b0		Slave mode enable		
NABLE					1'b0: Master mode		
					1'b1: Slave mode		
Rvd	72	-	-				
CS_1_ENABLE	1	R/W	'b0		CS 1 outp	out eanble	
					1'b0: disable CS_1 output		
					1'b1: enable CS_1 output		
CS_0_ENABLE	0	R/W	'b1		CS 0 output eanble		
					1'b0: disa	ble CS_0	output

		1'b1: enable CS_0 output	

Module::GSPI	Register::CMD_DUN	MMY S	et::1	ATT	R::nor_up	Type::SR	ADDR::0x9801_BD0C	
Name	Bits	R/W	Def	ault	Commen	Comments		
Rvd	3123	-	-		Reserved	l		
CMD_LEN	2216	R/W	'h0		Command length: 7'h0: no command out 7'h1: command = 1 bit 7'h20: command = 32 bits			
Rvd	156	-	-		Reserved			
DMY_LEN	5: 0	R/W	'h0		Dummy bit Length: 6'h0: No Dummy phase 6'h1: 1 bit dummy 6'h10: 16 bits dummy 6'h1f: 31 bits dummy 6'h20: 32 bits dummy			

Module::GSPI	Register::M CTRL	OSI_	Set::1 AT	TR::nor_up Type::SR ADDR::0x9801 BD10			
	OTICE			_BB10			
Name	Bits	R/W	Default	Comments			
RWCMD	31	R/W	'b0	Read or Write Command.			
				0: read (default)			
				1: write			
Master_Full_duple	30	R/W	' b0	Master Full duplex mode			
X				1: SI is input mode when SO is			
				output mode (RWCMD = 1'b1)			
				1'b0: master single mode(Receive			
				only)			
				PS. No implement.			
ADDR_LEN	2922	R/W	'h0	ADDR bit Length.			
				8'h0: No address phase			
				8'h1: 1 bit addr			
				8'h20: 32 bit addr			
				others : reserved			
LSB first	21	R/W	'b0	MSB first or LSB first selection			
				1'b1: LSB is the 1 st bit on so			
	• • • • •		4.0	1'b0: MSB is the 1 st bit on so			
Dual_mode_sel	2019	R/W	'h0	dual mode selection			
				2'h0: no dual mode			
				2'h1: only data phase in dual mode			
				2'h2: both address phase & data phase in			
				dual mode			
				others : reserved			

First_bit_sel	18	R/W	'b0	First bit selection (only in dual mode)	
				1'b0: first bit on SI	
				1'b1: first bit on SO	
Rvd	17	-	-	Reserved	
Slave_Full_duplex	16	R/W	'b0	Slave Full duplex mode	
				1'b1: SI is input mode when SO is output	
				mode	
				1'b0: slave single mode (Transmit only)	
				PS. No implement.	
WR_LEN	150	R/W	'b0	Write Data bit Length:	
				Number of write data bits (minimum	
				number is 1 bit)	
				16'h0: 0 bit (can't use)	
				16'h1: 1 bits	
				16'h8: 8 bits	
				16'h7f: 127 bits	
				16'h3ff:1023 bits	
				16'h400: 1024 bits	
				16'h800: 2048 bits	
				16'h2000:8192 bits	
				Support length as below sheet	

Module::GSPI	Register:: _CTRL	MISO	Set::1	AT	TR::nor_up	Type::SR	ADDR::0x9801_ BD14
Name	Bits	R/W	Defai	Default Comments			
Rvd	3129	-	X				
LSB first	28	R/W	'b0 MSB first or LSB first selection 1'b1: LSB is the 1 st bit on si 1'b0:MSB is the 1 st bit on si				t on si
Rvd	2716	-	-				
RD_LEN	150	R/W	'b0		16'h0:0 bit 16'h1:1 bit 16'h8: 8 bi 16'h7f:127 16'h3ff:102 16'h400:10 16'h800:20 16'h2000:8	read data bit s ts bits 23 bits 024 bits 048 bits	

P.S.

MISI_CTRL_LSB first and MISO_CTRL_LSB first function

Because of register FIFO depth is 8*32 and md path getting data order issue, there is a 128bits limit when MSB_first(LSB_first==1'b0)

Solution:

1. Repeat the 128bits read/write command

- 2. Check the swap function in MD application.
- 3. Use LSB+Swap function

	GSPI Data Length Support								
	Write data length (Byte)	Read data length (Byte)							
Rbus+MSB	1~32	1~32							
Rbus+LSB	1~32	1~32							
Rbus+LSB+Swap	1~32	1~32							
Rbus+DMA+MSB	1~16	1~16							
Rbus+DMA+LSB	1~16, 32, 64, 96, 128	1~16, 32, 64, 96, 128							
Rbus+DMA+LSB+Swap	1~16, 32, 64, 96, 128	1~16, 32, 64, 96, 128							
Descriptor +DMA+MSB	1~16	1~16							
Descriptor +DMA+LSB	1~16, 32, 64, 96, 128	1~16, 32, 64, 96, 128							
Descriptor +DMA+LSB+Swap	1~16, 32, 64, 96, 128	1~16, 32, 64, 96, 128							

Module::GSPI	Register:: FO	W_FI	Set::1	ATT	R::nor_up	Type::SR	ADDR::0x9801_ BD18
Name	Bits	R/W	Defau	ılt	Commen	ts	
W_FIFO	310	R/W	ʻh0		32 Bytes	Data FIFO	(Write)

Module::GSPI	Register:: FO	R_FI	Set::1	ATTR::nor_up		Type::SR	ADDR::0x9801_ BD1C
Name	Bits	R/W	Default		Comments		
R_FIFO	310	R/W	'h0		32 Bytes Data FIFO. (Read)		(Read)

In the MSB/LSB mode the data sending order of Byte and bit of Byte.

MSB mode: byte from High to Low, bit from High to Low

LSB mode: byte from Low to High, bit from Low

P.S.

SW should to take care the Access order of W_FIFO and R_FIFO below in **MSB** mode Write the W_FIFO oder before command enable or Read the R_FIFO order after command done.

The First time access the W/R_FIFO , will store/get the Byte $3{\sim}0$ in MSB order. The Second time access the W/R_FIFO , will store/get the Byte $7{\sim}4$ in BSB order. The same order continued to 8^{th} access.

For Example, If SW want to write 7 byte data in W_FIFO like 0x070605_04030201

First step: Write the W_FIFO 0x04030201

Second step: write the W_FIFO 0x070605, and trig the command.

The data will send in GSPI waveform in the order 0x07, 0x06,...,0x02,0x01

Read is the same as the rule.

First step : access the R_FIFO , SW will get the 0x04030201 Second step : access the R_FIFO , SW will get the 0x070605

Access order reg FIFO

Module::GSPI	Register::ADD	Set::1 AT	ΓR::nor_up	Type::SR	ADDR::0x9801 _BD24
Name	Bits R/W	Default	Comment	S	
SPI_ADDR	310 R/W	' 'h0	SPI addre	ss	

Module::GSPI	Register:: CTRL	SPI_	Set::1	AT	ΓR::nor_up	Type::SR	ADDR::0x9801 _BD28	
Name	Bits	R/W	Default		Comments			
Rvd	3122	-	-					
CAL_SEL	2120	R/W	'h1		Read date sample timing select 2'b00: original 2'b01: delay 1T sys_clk 2'b10: delay 2T sys_clk 2'b11: delay 3T sys_clk			
Rvd	1918	-	-					
R_FIFO_ALMOST_	17	R/W	'b0		R_FIFO_almost_full_sel			

FULL_SEL				0: 1/2 FIFO valid (16 Bytes)
TOLL_SEL				1: 1/4 FIFO valid (8 Bytes)
W_FIFO_ALMOST	16	R/W	'b0	W_FIFO_almost_empty_sel
_FULL_SEL	10	10 //		0: 1/2 FIFO valid (16 Bytes)
				1: 1/4 FIFO valid (8 Bytes)
Rvd	159	_	_	11 17 1 11 0 valid (0 2 jees)
FIFO_PTR_RST	8	W	'b0	Reset R_FIFO & W_FIFO pointer
				1'b1 : reset R_FIFO & W_FIFO
				pointer, this bit is need clear by
				SW. If no clear it, W_FIFO can
				not use.
RDFIFO_BSWAP	7	R/W	'b0	RDFIFO_BSWAP
				0: no swap function
				1: RD_DATA byte swap
				Ex: [7:0] -> [0:7], [15:8] -> [8:15]
CONTI_TRANS_E	6	R/W	'b0	Continuous Transfer mode enable
N				1'b0: CS will go de-assert after
				finishing single command
				1'b1: CS will not go de-assert
				until last command finished.
				PS. No implement.
CONTI_TRANS_L	5	R/W	'b0	Continuous Transfer mode Last
AST				command
				13b1: last command in Continuous
				Transfer mode, (valid only when
				CONTI_TRANS_EN = 1'b1)
DES_MODE_ENA	4	R/W	'b0	Descriptor mode enable
BLE				1'b0: descriptor mode disable, SW
	λ			updates GSPI control registers
				when CMD done
				1'b1: descriptor mode enable, SW
				prepares commands in DRAM
				first, then sets Des_mode_enable
				=1, GSPI will issue read command to MD to get commands for
				control registers, this bit is auto
				clear when all commands for
				descriptor mode has been
				executed.
Rvd	32	_	-	
DMA_MODE_ENABL		D/W/	'hO	DMA mode enable
E	1	R/W	'b0	1'b1: W/R data from/to MD
				interface
				1'b0 W/R data from/to R-bus
CMD_ENABLE	0	R/W	'b0	Command Enable
			•	

		1'b1: issue spi cmd, this bit is	
		auto clear when command finished	

Note:

DES_MODE_ENABLE = 1, & DMA_MODE_ENABLE = 1, means cmd/data from/to MD

DES_MODE_ENABLE = 1, & DMA_MODE_ENABLE =0, no function

DES_MODE_ENABLE = 0, & DMA_MODE_ENABLE = 1, means data from/to MD

DES_MODE_ENABLE = 0, & DMA_MODE_ENABLE = 0, means data from/to rbus interface

Module::GSPI	Register:: STATUS		Set::1 ATT		TR::nor_up	Type::SR	ADDR::0x9801_ BD2C
Name	Bits	R/W	Defau	ılt	Comment	ts	
Rvd	3129	-	_				
R_FIFO_PTR	2824	R	'h0		R_FIFO_	PTR	
Rvd	2321	-	-				
W_FIFO_PTR	2016	R	'h0		W_FIFO_PTR		
Rvd	158	-	_				
Rvd	72	-	-				
MD_empty	1	R	'b0		MD empt	y status	
					1'b1: issu	ie request i	to MD, but MD
					empty		
					Write one to clear		
SFC_BUSY	0	R	'b0		SFC busy now		
					1'b1 : SPI controller is still in		
					action		

Module::GSPI	Register:: NT	SPI_I	Set::1	AT	TR::nor_up	Type::SR	ADDR::0x9801_ BD30
Name	Bits	R/W	Defau	ılt	Comments		
Rvd	3126	-	-				
R_FIFO_ALMOST_	25	R	'b0		R_FIFO_ALMOST_FULL,, 1/2 or		
FULL					1/4 FIFO valid for read data, base		
					on 0x9801_BD20[17]		
R_FIFO_FULL	24	R	'b0		R_FIFO_FULL, 16 bytes data		
					stored in R_FIFO		
					PS. Not correct when MSB first		
Rvd	2318	-	-				
W_FIFO_ALMOST	17	R	'b0		WR_FIFO_almost_empty, 1/2 or		
_EMPTY					1/4 FIFO	valid for v	write data, base

				on 0x9801_BD20[16]
W_FIFO_EMPTY	16	R	'b0	W_FIFO_EMPTY, no data stored
				in 16 Bytes FIFO
				PS. Not correct when MSB first
Rvd	158	-	-	
Rvd	73	-	-	
SYN_CODE_ERR	2	R	'b0	Synchronization code error
				1'b1: write one to clear this bit
DES_MODE_DON	1	R	'b0	Descriptor mode Done
Е				1'b1: write one to clear this bit
CMD_DONE	0	R	'b0	Command Done
				1'b1: write one to clear this bit

Module::GSPI	Register:: NT_EN	SPI_I	Set::1 ATT		TR::nor_up	Type::SR	ADDR::0x9801_ BD34
Name	Bits	R/W	Defau	lt	Comments	3	
Rvd	3126	-	-				
R_FIFO_ALMOST_	25	R/W	'b0		R_FIFO_A	ALMOST	FULL interrupt
FULL					enable		
R_FIFO_FULL	24	R/W	'b0		R_FIFO_FULL		
Rvd	2318	-	-				
W_FIFO_ALMOST	17	R/W	'b0		WR_FIFO_ALMOST_EMPTY		
_EMPTY					interrupt e	nable	
W_FIFO_EMPTY	16	R/W	'b0		W_FIFO_EMPTY interrupt enable		
Rvd	158	_	-				
Rvd	73	-	-				
SYN_CODE_ERR_	2	R/W	' b0		Synchronia	zation cod	de error
IE					interrupt e	nable	
DES_MODE_DON	1	R/W	'b0		Descriptor	mode Co	mmand Done
E_IE					interrupt e	nable	
CMD_DONE_IE	0	R/W	'b0	•	Command	Done into	errupt enable

Module::GSPI	Register:: SYN_CT		Set::1	AT	ΓR::nor_up	Type::SR	ADDR::0x9801_ BD38
Name	Bits	R/W	Default		Comments		
SYN_MODE_EN	31	R/W	'b0		Synchronization mode enable 1'b0: disable 1'b1: enable		
Rvd	3014	-	-				
SYN_CODE_LENG TH	138	R/W	'h0		Synchronization code bit Length: Number of synchronization code bits		
Rvd	76	-	-				

	1	1	_		Ι =			
RESPONSE_LENGTH	50	R/W	'h0		Response bit Length:			
					Number of response bits			
Module::GSPI	Register::	SVN	Set::1	ΔΤ	R::nor_up Type::SR ADDR::0x		ADDR::0x9801	
WoduleOSI I	CODE	5111_	SCt1	AI	rknor_up	турсык	BD3C	
	CODE						2230	
Name	Bits	R/W	Defau	ılt	Comment	S		
SYN_CODE	310	R	'h0		32 bits sy	nchronizat	tion code	
			1					
Module::GSPI	Register::	SYN	Set::1	AT	ΓR::nor_up	Type::SR	ADDR::0x9801_	
Module GBT 1	CODE M		BCt1	711	rrnor_up	Typesic	BD40	
	3 3 4 4 4							
Name	Bits	R/W	Defau	ılt	Comment	S		
SYN_CODE_MAS	310	R/W	'h0		32 bits ma	ask for <mark>sy</mark> r	chronization	
K					code			
Module::GSPI	Register::	_	Set::1	AT	ΓR::nor_up	Type::SR	ADDR::0x9801_	
	CODE_V	AL					BD44	
N	D'	D/W	I = 0		~			
Name	Bits	R/W	Defau	ılt	Comment	S		
SYN_CODE_VAL	310	R/W	'h0		22 bite ob	ook volue	for	
SIN_CODE_VAL	310	IX/ VV	IIU		32 bits check value for synchronization code			
					Synchronization code			
M. J. L. CCDI	D : - (Catal	A TDT	TID (1) TI GD ADDD 0 0001			
Module::GSPI	Register:: POWER		Set::1	AI	ΓR::etrl	Type::SR	ADDR::0x9801_ BD48	
	TOWER						DD40	
Name	Bits	R/W	Defau	11t	Comments			
			Dorac	*11	Comments			
Rvd	311	-	-		-			
gating on	0	R/W	'b1		Enoble no	vivor gotini	a function	
gating_en	0	R/W	DI		Enable po	wer gaung	g function.	
Module::GSPI	Register::		Set::1	AT	ΓR::ctrl	Type::SR	ADDR::0x9801_	
	DUMMY	1					BD50	
Nama	Dita	R/W	ID C	1.	C			
Name	Bits	K/W	Defau	ılt	Comment	CS.		
dummy1	310	R/W	'h0		Dummy			
dullilly I	310	1X/ VV	110		Dullilly			
				I				
Module::GSPI	Register::		Set::1 ATT		ΓR::ctrl	Type::SR	ADDR::0x9801_	
	DUMMY	2			BD54		BD54	
Name	Bits	R/W	Dafa	.14	Comments			
TAIL	ומ	IX/ VV	Defau	111	Comments			
					Dummy			
dummy2	310	R/W	'hffff	ffff	Dummy			

7 DC-FAN CTRL

7.1 Register

7.1.1 Register Summery

Physical Address	Name	R/W	Description
0x9801_BC00	FAN_CTRL	R/W	DC FAN control
0x9801_BC04	FAN_DEBOUNCE	R/W	DC FAN de-bounce select
0x9801_BC08	FAN_TIMER_TA	R/W	DC FAN timer target value
	R_VAL		
0x9801_BC0C	FAN_TIMER_CN	R	DC FAN timer count value
	T_VAL		
0x9801_BC10	FAN_COUNTER_	R/W	DC FAN counter count value
	CNT_VAL		

7.1.2 Register Description

Module::MIS Register::FAN_CTRL			Set::1	ATTR::ctrl Type::SR ADDR::0x9801_BC00		
Name Bits Read/Write		Reset	Comments			
		State				
Rvd	Rvd 312 -		-	_		
INT_EN 1 R/W		,p0	1'b1: Eanble DC FAN function interrupt			
EN	0	R/W	'b0	1'b1: Eanble DC FAN function		

Module::MIS	Register::FAN	_DEBOUNCE	Set::1	ATTR::ctrl Type::SR ADDR::0x9801_BC04			
Name	Bits	Read/Write	Reset	Comments			
			State				
Rvd	314	<i></i>	-	-			
write_en1	3	W	ı	Write enable for bit[2:0]			
CLK	20	R/W	'b0	De-bounce clock base.			
				3'h7: 30ms			
				3'h6: 20ms			
				3'h5: 10ms			
				3'h4: 1ms			
				3'h3: 100us			
				3'h2: 10us			
				3'h1: 1us			
				3'h0: 37ns (27MHz)			

Module::MIS	Register::FAN_TIMER_TV			Set::1	ATTR::ctrl	Type::SR	ADDR::0x9801_BC08
Name Bits Read/Wri		Read/Write	Reset	Comment	s		
		State					
TAR_VAL 310 R/W			'b0	DC FAN t	imer target	value	

Module::MIS	Register::FAN_TIMER_CV			Set::1	ATTR::nor	Type::SR	ADDR::0x9801_BC0C
Name Bits		Read/Write	Reset	Comments			
		State					
CNT_VAL 310 R		'b0	DC FAN t	imer count	value		

Module::MIS	Register::FAN_COUNTER_C			Set::1	ATTR::nor_	Type::SR	ADDR::0x9801_BC10
V				up			
Name		Bits	Read/Write	Reset	Comment	S	
		State					
CNT_VAL 310 R/W		'b0	DC FAN o	counter cou	nt value		

8 UART H5

8.1 Register

8.1.1 Register Summary

Physical Address	Name	R/W	Description
0x9801_BE00	MIS_SC0_FP	R/W	Smartcard0 Carrier Frequency Programmer
0x9801_BE04	MIS_SC0_CR	R/W	Smartcard0 Control Register
0x9801_BE08	MIS_SC0_PCR	R/W	Smartcard0 Protocol Control Register
0x9801_BE0C	MIS_SC0_TXFIFO	W	Smartcard0 Transmit FIFO Register
0x9801_BE10			
0x9801_BE14	MIS_SC0_RXFIFO	R	Smartcard0 Receive FIFO Register
0x9801_BE18	MIS_SC0_RXLENR	R	Smartcard0 Receive Length Register
0x9801_BE1C	MIS_SC0_FCR	R	Smartcard0 Flow Control Register
0x9801_BE20	MIS_SC0_IRSR	R/W	Smartcard0 Interrupt Status Register
0x9801_BE24	MIS_SC0_IRER	R/W	Smartcard0 Interrupt Enable Register
			Y The second sec

8.1.2 SC0 Register Description

Module::MIS I	Register::S	C0_FP	Set::1	ATTR::sfdf Type::SR ADDR::	0x9801_BE00
Name	Bits	Read/	Reset	Comments	
		Write	State		
Rvd	31:25	-	-	-	
CLK_EN	24	R/W	'b1	Write "1" to enable clock. If 0, SC_CLK and io_cl	k are stopped.
				Remaining high or low is determined by	
				MIS_SC0_CR[CLK_STOP] bit.	
SC_CLKDIV	23:18	R/W	'h00	Controls the frequency of the SC_CLK I/O pin. Its	value is from
				0~31.	
				$f_{sc_clk} = (system clock) / (PRE_CLKDIV + 1) /$	
				(SC_CLKDIV+1)	
BAUDDIV2	17:16	R/W	'h0	Controls the baud rate used by the transmitter.	
				00 – divide by 31	
				01 – divide by 32	
				10 – divide by 39	
				(For $T=14 \Rightarrow F=624 = BAUDDIV1x BAUDDIV2$	$=16 \times 39$)

BAUDDIV1	15:8	R/W	ʻh0b	The internal clock is divided by the 8 bit (BAUDDIV2 + 1) and BAUDDIV2 to determine the baud clock.
PRE_CLKDIV	7:0	R/W	'h07	Controls the frequency of the etu and the SC_CLK I/O pin. Divided by system clock rate (27 MHz).

Module::MIS	Register::S	C0_CR	Set::1	ATTR::sfdf Type::SR ADDR::0x9801_BE04					
Name	Bits	Read/	Reset	Comments					
		Write	State						
FIFO_RST	31	W	'b0	Smartcard FIFO Soft Reset, write "1" clears all RX FIFO					
RST	30	W	'b0	Smartcard Reset, write "1" to reset smartcard					
SCEN	29	W	'b0	Smartcard Enable bit, write "1" to enable smartcard function					
TX_GO	28	W	'b0	Write "1" to start sending the contents of the transmit buffer					
				until the transmit buffer is empty.					
AUTO_ATR	27	W	'b1	When this bit is set, the next character received is interpreted as					
				the initial character (TS) and the convention is automatically set.					
				This bit is set before the first character of the Answer-to-Reset is					
				received. This bit is ignored after the reception of the TS					
				character unless RST bit is set.					
CONV	26	W	'b1	Determines the convention if AUTO_ATR is NOT used to					
				automatically set the convention.					
				0=Direct Convention					
				1=Inverse Convention					
CLK_STOP	25	W	'b0	Indicates which electrical state is preferred on CLK when the					
				clock is stopped, if the card supports clock stop mechanism.					
				0=state low					
				1=state high					
PS	24	R/W	'b1	Parity select					
				0: no parity					
				1: with parity					
				(T=14 with no parity)					
Rvd	23:0	A -		Reserved					

Module::MIS R	egister::S	C0_PCR	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BE08
Name	Bits	Read/	Reset	Comments		
		Write	State			
TXGRDT	31:24	R/W	'h00	Transmit guard time. It dete		
				automatically inserted betw	een transmit	characters. A guard time
				of 2 etus is the default (TXC	GRDT=0).	
				$0\sim254$: Extra Guard time =	: 12 + TXGR	DT
				255: when T =0, Extra Guar	rd time = 12	etu
				when T=1, Extra Guard t	ime = 11 etu	
CWI	23:20	R/W	'h0	Character Waiting Integer		
				which is the number of et	us to allow	between characters in a
				receive block. When the	number of	etus between received
				characters is greater th		
				[CWT_INT] is set and the	e smart card	l interrupt is asserted if
				enabled. The character wa	aiting time i	s encoded as following
				equation:		
				$CWT = (2^{CWI} + 11) \text{ etu}$		
BWI	19:16	R/W	'h0	Block Waiting Integer. This	s field detern	nines the Block Waiting
				Time (BWT) that is the max	ximum delay	between the leading

				edge of the last character of the block received by the ICC and the leading edge of the first character of the next block sent by the ICC. BWT is used to detect an unresponsive card. This condition generates an interrupt if IF_SCIRER[BWT_EN] is set. BWT = 11 etu + 2 ^{BWI} * 960 * 372* D/F
WWI	15:12	R/W	'h0	BWT = $11 \text{ etu} + 2^{\text{BWI}} * 960 * 372 * \text{D/F}$ (Actually, BWT = $11 + 2^{\text{BWI}} * 1024 \text{ etu}$) Work Waiting Integer. This field determines the Work Waiting
				Time (WWT) that is the maximum delay between the leading edge of any character sent by the ICC and the leading edge of the precious character (sent either by the ICC or IFD). WWT = (960*WWI)*D etu (Actually, WWT = 1024*2*WWI etu)
BGT	11:7	R/W	ʻh16	Block Guard Time. This field determines the BGT that is the minimum delay between the leading edge of two consecutive characters sent in opposite directions. The value written to the field is the number of etus. IF_SCIRSR[BGT_INT] is set if this minimum delay is violated. In addition, the smart card interrupt is asserted if IF_SCRIRER[BGT_EN] is enabled. The value for BGT is 22 etu for most applications. BGT must be programmed to a value greater than 0x0C
EDC_EN	6	R/W	'b0	Enables EDC (Error Detection Code) method for T=1 protocol. When set to 1, an EDC (CRC16 or LRC) is appended to the end of each transmit block and the EDC received is checked against the received data. Note that the EDC bytes are always loaded into the receive buffer regardless of the state of EDC_EN.
CRC	5	R/W	'b0	Selects the EDC method for T=1 protocol. EDC_EN bit enables this feature. 1: for two bytes CRC16 0: for one byte LRC.
PROTOCOL_T	4	R/W	'b 0	Determines the protocol. O for T=0 protocol, 1 for T=1 protocol
TORTY	3	R/W	'b1	For T=0 protocol, when enabled, characters are automatically retransmitted when the ICC indicates a parity error. The number of times any one character is retransmitted is determined by T0RTY_CNT.
TORTY_CNT	2:0	R/W	,рооо	Specify the number of transmit parity retries per character. This is feature is enabled if T0RTY is set to 1. When ICC requests more retries than T0RTY_CNT for a single character, it will stop sending any characters until TX_GO is set again. The IF_SCIRSR[TXP_INT] will always be set if enabled to allow the application to detect if too many parity retries are requested. 000: No limit to the number 001-111: Set the number of retries to 1-7. (For EMV, the number of retries is set to 3.

Module::MIS Register::SC0_TXFIFO			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BE0C	
Name	Bits	Read/ Write	Reset State	Comn	nents		
Rvd	31:9	-	-	-			
tx_fifo_full	8	R	-	TX FIF	O FULL		
DAT	7:0	W	-		•	•	this register is written, the t buffer. The contents of the

register are always written in direct convention.

Module::MIS	Register::S	C0_RXFIFO)	Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BE14
Name	Bits	Read/ Write	Reset State	Comn	nents		
Rvd	31:8	-	-	-			
DAT	7:0	R	-		Characters are	*	characters from the receive d from RXFIFO in direct

Module::MIS	Register::SC0_RXLENR			Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BE18
Name	Bits	Read/ Write	Reset State	Comn	nents	V	
Rvd	31:8	-	-	-			
RXLEN	7:0	R	-	RXLEN		verflow cond	ntly in the receive buffer. If lition has occurred. Overflow ER].

Note: SC0_RXLENR is RX/TX length register.

Module::MIS R	egister::S	C0_FCR		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BE1C
Name	Bits	Read/ Write	Reset State	Comm	ents		
Rvd	31:2	-	-	-			
RXFLOW	1	W	'b0	pulled lo next reco case, SO successf	ow at 11.5 etu eive character C_IO is pulled	into the next is due to a real low in the	FLOW set to 1, SC_IO is receive character, unless the transmission request (In this receive character after the emains low until RXFLOW
FLOW_EN	0	W	'b0	(at 12 et is reques waits ur RXFLO	u or later) by to sted. If SC_IO atil SC_IO is	he transmitter is low when high again. I l 1.5 etu. If hig	the TGUARD time expires to determine if flow control tested, then the transmitter in the receiver, the state of the the the transmitter of the theory of the transmitter that the transmitter of the transm

Module::MIS R		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BE20		
Name	Bits	Read/ Write	Reset State	Comn	nents		
Rvd	31:17	-	-	-			
PRES	16	R	'b0	Smartca	ard Present bit.	1: present 0:	absent
CPRES_INT	15	R/W	'b0		resence Interrup move from the h		bit is set when card is insert rface.
TX_FLOW_INT	14	R/W	'b0				e transmitter has detected a
				flow co	ontrol condition	form the IC	C's receiver and is waiting

	ı	ı		
				until it is released. When released (after SC_IO is pulled high by
				the ICC) this bit returns to zero and the transmitter will continue
				sending any characters in the transmit buffer.
TXP_INT	13	R/W	'b0	Transmit Parity Interrupt Status. This bit is set when the ICC
				requests a retransmit due to parity error in the last transmitted
				character. This is applicable in T=0 when characters are resent
				when the ICC detects a parity error and requests a re-send. If
				IF_SCIRER[TXP_EN]=1, then this condition also causes a
				smart card interrupt.
TXDONE_INT	12	R/W	'b0	Transmit Done Interrupt Status. Set high when the transmitter
				has finished sending one byte in SCTXFIFO.
TXEMPTY_INT	11	R/W	'b0	Transmit Empty Interrupt Status. Set high when the transmitter
				has finished sending the number of bytes in SCTXFIFO.
EDCERR_INT	10	R/W	'b0	Error Detection Code Error Interrupt Status. Indicates that the
				received block has bit errors because the calculated CRC16 or
				LRC failed.
RX_FOVER	9	R/W	'b0	RX FIFO Overflow. This is an error condition and is cleared by
				resetting the buffer using IF_SCCR[FIFO_RST]. In addition, the
				SC should also be reset using IF_SCCR[RST].
RXP_INT	8	R/W	'b0	Receive Parity Interrupt Status. This bit is set immediately when
				a parity error is detected on a received character.
ATRS_INT	7	R/W	'b0	Answer To Reset Start Interrupt Status. This bit is set when
				receiving first byte (TS) of the ATR.
BGT_INT	6	R/W	'b0	Block Guard Time Interrupt Status. This bit is set when the BGT
				is violated. The BGT is applicable for T=1 protocol and is used
				with the BWT to define a window for when the ICC can send a
				response to the IFD.
CWT_INT	5	R/W	'b0	Character Waiting Time Out Interrupt Status. This is used in
				T=1 application can indicate the ICC is not functioning properly
				or that there is an error in the length of a lock.
RLEN_INT	4	R/W	'b 0	Receive Length Error Interrupt Status. This bit is set when one
				of two conditions occurs: An extra character is received in a T=1
				block, or when the receive buffer overflows.
WWT_INT	3	R/W	'b0	Work Waiting Time Interrupt Status.
BWT_INT	2	R/W	'b0	Block Waiting Time Interrupt Status.
RCV_INT	1	R/W	'b0	Receive Character Interrupt Status. This bit is set when the
				receive buffer goes not empty and has at least one character.
DRDY_INT	0	R/W	'b0	Receive Ready Interrupt Status. Indicates a block has been
				received and is ready in the receive buffer. SCRXLENR
				indicates the number of bytes in the message. The hardware
				asserts IF_SCSR[RX_DR] when the calculated block size is
				equal to the number of bytes in the buffer. The hardware
				calculates the block size by extracting the LEN field from a T=1
				message and compensating for the prologue and epilogue fields.

Module::MIS R	egister::S	C0_IRER		Set::1	ATTR::sfdf	Type::SR	ADDR::0x9801_BE24
Name	Bits	Read/ Write	Reset State	Comn	nents		
Rvd	31:16	-	-				
CPRES_EN	15	R/W	'b0	Card Pr	resence Interrup	t Enable.	
TXFLOW_INT_ EN	14	R/W	'b0	Transm	it Flow Detect I	Interrupt Enab	le.
TXP_EN	13	R/W	'b0	Transm	it Parity Interru	pt Enable.	

TXDONE_EN	12	R/W	'b0	Transmit Done Interrupt Enable.
TXEMPTY_EN	11	R/W	'b0	Transmit Empty Interrupt Enable.
EDCERR_EN	10	R/W	'b0	Error Detection Code Error Interrupt Enable.
RX_FOVER_EN	9	R/W	'b0	RX FIFO Overflow Interrupt Enable.
RXP_EN	8	R/W	'b0	Receive Parity Interrupt Enable.
ATRS_EN	7	R/W	'b0	Answer To Reset Start Interrupt Enable.
BGT_EN	6	R/W	'b0	Block Guard Time Interrupt Enable.
CWT_EN	5	R/W	'b0	Character Waiting Time Out Interrupt Enable.
RLEN_EN	4	R/W	'b0	Receive Length Error Interrupt Enable.
WWT_EN	3	R/W	'b0	Work Waiting Time Interrupt Enable.
BWT_EN	2	R/W	'b0	Block Waiting Time Interrupt Enable.
RCV_EN	1	R/W	'b0	Receive Character Interrupt Enable.
DRDY_EN	0	R/W	'b0	Receive Ready Interrupt Enable.

