Ricordiamo preliminarmente che data un'applicazione $g: A \to B$

- g(a) è detta *l'mmagine di a mediante g*. Chiaramente $g(a) \in B$; si dice anche che g(a) and g(a) e, se g(a) e, allora si scrive anche g(a) e (sottoindendo g(a)).
- Per ogni scelta di b in B rimane definito l'insieme (eventualmente vuoto) denotato con $g^{-1}(b)$ e costituito da tutti gli elementi di A mandati in b da g. Tale insieme è detto la controimmagine o pre-immagine o immagine inversa di b. Tale insieme è pertanto il sottoinsieme di A descritto da $g^{-1}(b) = \{a \in A \mid g(a) = b\}$. Si osservi che $g^{-1}(b) = \emptyset$ quando b non è "un valore assunto da g su A";
- Img denota l'immagine di A tramite g—anche detta l'immagine di g– cioè l'insieme Im $g = \{g(a) \mid a \in A\} \subseteq B$.
- L'applicazione $g: A \to B$ è suriettiva se Im g = B ed è iniettiva se la controimmagine di ogni elemento b o è vuota oppure è costituita da un solo elemento¹.

Esercizio 1. Convincervi che la definizione di iniettività data sopra coincide con la più familiare definizione: $g: A \to B$ è iniettiva se $\forall a, a' \in A$, da g(a) = g(a') segue a = a'.

Siano V e W due spazi vettoriali di dimensione finita sul campo \mathbb{R} . Un'applicazione $f: V \to W$ è un'applicazione lineare (detta anche omomorfismo di spazi vettoriali) se per ogni scelta di $u, v \in V$ e per ogni scelta di $\lambda \in \mathbb{R}$ le due seguenti proprietà sono soddisfatte:

- 1. f(u+v) = f(u) + f(v) cioè, brevemente, l'immagine della somma è la somma delle immagini;
- 2. $f(\lambda u) = \lambda f(u)$ cioè, brevemente, l'immagine di un multiplo è multipla dell'immagine.

Esercizio 2. Convincervi che le due precedenti proprietà equivalgono alla proprietà

$$(\star) f(\lambda u + \mu v) = \lambda f(u) + \mu f(v), \, \forall \lambda, \, \mu \in \mathbb{R}, \, \forall u, \, v \in V$$

cioè, brevemente, l'immagine di combinazioni lineari è combinazione lineare di immagini. Convircervi inoltre che la precedente vale per ogni combinazione lineare di un numero finito di vettori: $f(\sum_i \lambda_i v_i) = \sum_i \lambda_i f(v_i)$.

Esercizio 3. Sia $A \in M_{m,n}(\mathbb{R})$ e sia $f_A : \mathbb{R}^n \to \mathbb{R}^m$ definita da $f_A(\mathbf{x}) = A\mathbf{x}$. Per esempio, se m = n = 2 e $A = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$, allora $f_A(x) = A\mathbf{x} = \begin{pmatrix} x_1 - 2x_2 \\ -x_1 + 3x_2 \end{pmatrix}$. Dimostrare che f_A è lineare.

La controimmagine del vettore 0_W (vettore nullo di W) è detta nucleo di f ed è denotato con $\ker f$.

¹gli insiemi costtituiti da un solo elemento sono detti singoletti

Esercizio 4.

- (a) Interpretare il nucleo dell'applicazione lineare f_A scritta sopra come un insieme che ben conoscete. Lo conoscete davvero bene.
- (b) Dimostrare che un'applicazione lineare $f: V \to W$ è iniettiva se e solo se ker $f = \{O_V\}$, dove O_V è il vettore nullo di V. Che cosa significa questo per l'applicazione f_A ?
- (c) Dimostrare che $\ker f$ è un sottospazio vettoriale di V e che $\operatorname{Im} f$ è un sottospazio vettoriale di W.
- (e) Descrivere l'immagine dell'applicazione f_A e describvere una base di tale immagine.
- (d) Dimostrare che se f è iniettiva, allora f manda vettori linearmente indipendenti in vettori linearmente indipendenti e dunque f manda sottospazi in sottospazi della stessa dimensione.

La dimensione di $\ker f$ è detta talora difetto di f, mantre la dimensione di $\operatorname{Im} f$ è detta rango di f.

Esercizio 5. Che cos'è il rango di f_A ? L'applicazione f_A è definita nell'esercizio 3.

Esercizio 6. Sia ora V uno spazio vettoriale con base $\mathcal{B} = (v_1, \ldots, v_n)$. Sappiamo che ogni vettore $v \in V$ si scrive in modo unico come combinazione lineare dei vettori di \mathcal{B} e che i coefficienti della combinazione lieare si dicono le coordinate di v rispetto a \mathcal{B} . Sia $f_{\mathcal{B}}: V \to \mathbb{R}^n$ l'applicazione che manda ogni vettore $v \in V$ nel vettore delle sue coordinate rispetto a \mathcal{B} —in altre parole $f_{\mathcal{B}}(v)$ è il vettore di \mathbb{R}^n le cui componenti sono ordinatamente i coefficienti dell'unica combinazione lineare che esprime v rispetto \mathcal{B} —. Dimostrare che

- (a) $f_{\mathcal{B}}$ è lineare.
- (b) f_B è iniettiva e suriettiva².

Come conseguenza deduciamo che tutti gli spazi vettoriali reali di dimensione n sono isomorfi ad \mathbb{R}^n .

Le applicazioni lineari si costruiscono facilmente data una base dello spazio di partenza.

Esercizio 7. Sia V uno spazio vettoriale con base (v_1, v_2, v_3) e sia W un altro spazio vettoriale. Siano w, w' e w'' arbitrari elementi di W (non necessariamente distinti eventualmente dipendenti). Dire in ciascuno dei seguenti casi se esiste un'applicazione lineare $f: V : \to W$ soddisfacente le richieste; nel caso in cui un'applicazione soddisfacente le richieste esista, stabilire se ne esiste un'altra ed esibirne almeno una.

- (a) $f(v_1) = w$, $f(v_2) = w''$ e $f(v_1 + v_2) = w' + 2w''$;
- (b) $f(v_1) = w, f(2v_1) = 2w, f(v_3) = w;$
- (c) $f(v_1) = w$, $f(v_2) = w$, $f(w_3) = w$;
- (d) $f(v_1) = w, f(v_2) = w', f(w_3) = w'';$

²un omorfismo di spazi vettoriali sia iniettivo che suriettivo si dice *isomorfismo di spazi vettoriali*. Un isomorfismo di uno spazio in se stesso, si dice *automorfismo*.

(e)
$$f(v_1) = 0_W$$
, $f(v_2) = 0_W$, $f(w_3) = 0_W$;

Una volta risolto l'esercizio si comprende il seguente fatto. Sia $\mathcal{B} = (v_1, \dots, v_n)$ una base di V e siano w_1, \dots, w_n arbitrari vettori di uno spazio vettoriale W. Esiste un'unica applicazione lineare $f: V \to W$ tale che $f(v_i) = w_i$, $i = 1, \dots, n$. Tale unica applicazione si costruisce come segue: il valore di f è già assegnato per ipotesi sui vettori di una base; il valore di f su un qualsiasi altro vettore v di V è definito mediante la regola

$$f(v) = x_1 w_1 + \dots x_n w_n$$

dove x_1, \ldots, x_n sono le coordinate di v rispetto a \mathcal{B}_V . Tale risultato generalizza il fatto seguente: dato un punto P del piano, esite un'unica retta ℓ per l'origine passante per il punto dato. Se le coordinate di P sono x e y, le coordinate di ogni altro punto di ℓ sono date da λx e λy , per un certo λ di \mathbb{R} .

Sia V uno spazio vettoriale con base $\mathcal{B}_V = (v_1, \ldots, v_n)$ e W un altro spazio vettoriale spazio vettoriale con base $\mathcal{B}_W = (w_1, \ldots, w_m)$. Sia $f: V \to W$ un omomorfismo di spazi vettoriali. Allora, per la linearità di f, per ogni $v \in V$ con coordinate $\binom{x_1}{x_n}$, rispetto a \mathcal{B}_V , risulta $f(v) = f(\sum_j x_j v_j) = \sum_j x_j f(v_j)$ e cioé

$$f(v) = \sum_{j} x_j f(v_j) \tag{1}$$

D'altra parte, per ogni j = 1, ..., n, il vettore $f(v_j)$ appartiene a W e dunque possiede coordinate ripetto alla base \mathcal{B}_W . Sia

$$\begin{pmatrix} a_{1,j} \\ \vdots \\ a_{m,j} \end{pmatrix}$$

il vettore delle coordinate di $f(v_i)$ rispetto a \mathcal{B}_W . Ciò significa precisamente che:

$$f(v_j) = \sum_i a_{i,j} w_i$$

sicché sostituendo tale espressione nella (1) e raggruppando, si ottiene

$$f(v) = (\sum_{j} a_{1,j} x_j) w_1 + (\sum_{j} a_{2,j} x_j) w_2 + \dots (\sum_{j} a_{m,j} x_j) w_m.$$

La precedente esrpime f(v) come combinatione lineare dei vettori di \mathcal{B}_W e sicoome B_W è una base, i coefficienti di tale combinazione sono le coordinate di f(v) rispetto \mathcal{B}_W . Scrivendo il vettore delle coordinate per colonna

$$\begin{pmatrix} \sum_{j} a_{1,j} x_{j} \\ \vdots \\ \sum_{j} a_{m,j} x_{j} \end{pmatrix}$$

riconosciamo tale vettore come il prodotto Ax, dove x è il vettore delle coordinate di v rispetto a \mathcal{B}_V mentre A è la matrice le cui colonne sono le coordinate delle immagini dei vettori di \mathcal{B}_V (i vettori $f(v_j)$, $j=1,\ldots,n$) rispetto alla base \mathcal{B}_W . La matrice A così costruita si chiama matrice indotta da f rispetto alle basi \mathcal{B}_V e \mathcal{B}_W . Essa ha la proprietà di rappresentare f rispetto alle basi date secondo la regola

se v ha coordinate x rispetto a \mathcal{B}_V allora f(v) ha coordinate Ax, rispetto a \mathcal{B}_W .

Esercizio 8. Scrivere la matrice di f rispetto a basi canoniche in ciascuno dei seguenti casi

- (a) $f: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto Bx$ dove B è una matrice con m righe ed m colonne.
- (b) $f: M_2(\mathbb{R}) \to M_2(\mathbb{R}), M \mapsto NM$ dove N è la matrice $\binom{12}{21}$.
- (c) $f: M_2(\mathbb{R}) \to \mathbb{R}$, $M \mapsto \operatorname{tr}(M)$ dove Tr denota la traccia di M (somma elementi diagonali).

Siano \mathcal{B}_V e \mathcal{B}_V^* due basi di un medesimo spazio vettoriale e sia id : $V \to V$, $v \mapsto v$ l'applicazione identica. La matrice che rappresenta id rispetto alle basi date si chiama matrice del cambiamento di base.

Esercizio 9. Descrivere tutte le applicazioni lineari da \mathbb{R} in \mathbb{R} .

Le proprietà della matrice che rappresenta un'applicazione lineare sono molto potenti e utili. Si ha:

- difetto di f=dimensione di $\ker f = \dim\{x \in \mathbb{R}^n \mid Ax = 0\}.$
- rango di f=dimensione Imf=rango(A).
- f invertibile $\Leftrightarrow f$ iniettiva e suriettiva $\Leftrightarrow A$ invertibile.
- ker $f = \langle v_1, \dots, v_t \rangle \Leftrightarrow x_1, \dots, x_t$ soluzioni linearmnete indipendenti del sistema lineare omogeneo Ax = 0, dove x_1, \dots, x_t sono i vettori delle coordinate di $v:_1, \dots, v_t$.
- Im $f = \langle f(v_{i_1}), \dots, f(v_{i_s}) \rangle \Leftrightarrow y_1, \dots, y_t$ colonne linearmnete indipendenti di A, dove y_1, \dots, y_s sono i vettori delle coordinate di $f(v_{i_1}), \dots, f(v_{i_s})$.

Vale inoltre il Teorema della dimensione: Sia $f:V\to W$ un'applicazione lineare e V abbia dimensione n. Allora

$$n = \dim \ker f + \dim \operatorname{Im} f$$
.

Esercizio 10. Dimostrare che

- (a) se dim $W \ge n + 1$, allora f non può essere suriettiva.
- (b) se dim $W \leq n 1$, allora f non può essere iniettiva.