- (a) In a general IR system:
 - (i) Draw a basic structure with all fundamental components, including those inside of the IR black box.
 - (ii) Suppose we are using a vector space model, label in your structure diagram what each block is, as a function or data.

[10 marks]

(b) Assume a document collection with the following three documents:

D1: Several technologies are important for realizing the semantic web. (Length = 0.619)

D2: Technologies that are important for semantic web are those including RDF and OWL. (Length = 0.781)

D3: Owl is hatching eggs in its nestle. Owl has three pretty eggs. (Length = 0.661) Assume a Boolean retrieval model and the query "(semantic AND owl) OR (rdf AND NOT(owl))". Derive the disjunctive normal form (DNF) \vec{q}_{dnf} for the query. Which are the relevant documents for the query? Explain why.

[5 marks]

(c) Based on the same document collection in (b), assume a vector space model and rank the documents according to the query "semantic owl", based on the TF-IDF coefficient:

$$w_{t,q} = (0.5 + 0.5 \times \frac{tf_{t,q}}{max\{tf_{t',q} : t' \in q\}}) \times \log(N/df_t)$$

Use the cosine similarity and show your calculations. $log_{10}(3/1) = 0.477$ and $log_{10}(3/2) = 0.176$.

(a) Illustrate mathematically how the zero-probability problem occurs in the context of unigram Language Model (LM), and how to work around this problem using Jelinek-Mercer smoothing.

[5 marks]

(b) Suppose in a piece of Starwars movie transcript d, bigram probabilities for eight words are listed below. For instance, when the bigram is 'use lightsaber', t_k ='lightsaber', t_{k-1} ='use', then $p(t_k|t_{k-1}) = 0.27$. Within document d, $p_d('jedi') = 0.051$. Consider a query 'Jedi Yoda is Jedi master'.

t_{k-1}	jedi	use	lightsaber	Yoda	is	master	force	hope
jedi	0	0.33	0.0011	0.26	0.52	0.12	0.0065	0.0029
use	0	0	0.27	0	0	0	0.17	0
lightsaber	0	0.0022	0	0.00092	0.38	0.00079	0	0.0058
Yoda	0.43	0.29	0.37	0.014	0.58	0.35	0.021	0.065
is	0.67	0	0.15	0.12	0	0.14	0.089	0.36
master	0.22	0.18	0.069	0.66	0.39	0	0.14	0.002
force	0	0.0065	0	0.095	0.44	0.11	0	0.056
hope	0	0	0	0	0.18	0	0	0
Global P(t _k)	0.022	0.092	0.055	0.032	0.19	0.0015	0.011	0.0043

- (i) What is the probability of this document being relevant to the query in the bigram model without smoothing?
- (ii) What is the probability of this document being relevant to the query in the bigram model with Jelinek-Mercer smoothing given λ = 0.6? No need to calculate the final answer for these questions.

[10 marks]

(c) In a local network of six webpages $\{A, B, C, D, E, F\}$, we have the following Pagerank:

$$\begin{split} PR(A) &= (1-d) + d(\frac{PR(B)}{N(B)} + \frac{PR(C)}{N(C)}); & PR(B) &= (1-d) + d(\frac{PR(A)}{N(A)} + \frac{PR(D)}{N(D)}); \\ PR(C) &= (1-d) + d(\frac{PR(B)}{N(B)}); & PR(D) &= (1-d) + d(\frac{PR(E)}{N(E)}); \\ PR(E) &= (1-d) + d(\frac{PR(B)}{N(B)} + \frac{PR(D)}{N(D)}); & PR(F) &= (1-d) + d(\frac{PR(C)}{N(C)}). \end{split}$$

- (i) Provide a diagram to illustrate the network structure.
- (ii) Set d = 0.5. Complete the Pagerank functions with the correct $N(\cdot)$ values.
- (iii) Use any approach to calculate the $PR(\cdot)$ values for the six pages. Two decimal places are adequate.

(a) In the following table, if a term appears in a document, it is represented by a 1; otherwise, 0.

Documents	t_0	<i>t</i> ₁	t ₂	<i>t</i> ₃	<i>t</i> ₄	<i>t</i> ₅	<i>t</i> ₆	<i>t</i> ₇	t ₈	<i>t</i> ₉
D_0	1	0	0	1	1	0	0	0	0	0
D_1	1	1	0	1	0	0	1	1	1	0
D_2	0	0	0	0	1	1	0	1	0	1
D_3	1	0	1	0	1	1	1	0	0	1
D_4	0	1	1	0	0	1	0	0	0	0
D_5	0	1	0	0	0	0	0	1	0	1
D_6	1	1	0	1	0	0	1	1	0	0
D_7	0	1	1	0	1	0	1	0	0	1
D_8	1	0	0	1	1	0	0	1	0	0
<i>D</i> ₉	1	0	1	1	0	1	0	0	0	1

A term-to-term occurrence matrix is obtained from the document collection:

$C_{i,j}$	t ₀	t ₁	t_2	<i>t</i> ₃	t_4	<i>t</i> ₅	<i>t</i> ₆	<i>t</i> ₇	t ₈	<i>t</i> 9
t_0	1	0.35	0	0.54	0	0	0.17	0.08	0	0.26
t_1	0.35	1	0.72	0	0	0.06	0	0	0.88	0
t_2	0	0.72	1	0	0.33	0	0	0	0.38	0.18
t_3	0.54	0	0	1	0.21	0.28	0	0	0	0.49
t_4	0	0	0.33	0.21	1	0.81	0	0.56	0	0
<i>t</i> ₅	0	0.06	0	0.28	0.81	1	0.48	0	0	0.20
t_6	0.17	0	0	0	0	0.48	1	0.82	0.17	0
t_7	0.08	0	0	0	0.56	0	0.82	1	0	0
t_8	0	0.88	0.38	0	0	0	0.17	0	1	0.16
t_9	0.26	0	0.18	0.49	0	0.20	0	0	0.16	1

The sequence of values $\{i, j, k, l, m, n, p, q, s, t\}$ each corresponds to a digit in your student number, which consists of 10 digits and a slash sign '/'. The '/' itself is ignored in this context. For EXAMPLE, if your student number is 202112345/1, then i = 2, j = 0, k = 2, l = 1, m = 1, n = 2, p = 3, q = 4, s = 5, t = 1. If you do not know the value of t, you can use t = n.

Based on the given data, calculate the relevance scores based on the fuzzy set model: $\mu_i(D_j)$, $\mu_k(D_l)$, $\mu_m(D_n)$, $\mu_p(D_q)$ and $\mu_s(D_l)$.

[15 marks]

- (b) Consider the same Boolean query in Question 1.(b): "(semantic AND owl) OR (rdf AND NOT(owl))", suppose w_s , w_o and w_r are the weights for "semantic", "owl" and "rdf", respectively.
 - (i) Write down the similarity function R(d, q) with 2-norm.
 - (ii) Calculate the similarity values for cases of $(w_s = 1, w_o = 1, w_r = 0)$, $(w_s = 1, w_o = 0, w_r = 1)$ and $(w_s = 1, w_o = 0, w_r = 0)$

(a) Given an indexed collection of documents and a query, your system retrieves a set of documents ranked as shown in the table below. For this particular query, the set of relevant documents is {d1, d3, d4, d10}.

Rank	Doc	Relevant/Non-relevant	Precision	Recall
1	d5			
2	d4			
3	d1			
4	d7			
5	d20			
6	d3			
7	d8			
8	d9			
9	d10			
10	d11			

- (i) Fill in the table with correct values (You can use fractions or decimals for the values).
- (ii) Draw an interpolated precision-recall curve for this result.

[5 marks]

- (b) Based on the question above, answer the following:
 - (i) What is the R-precision? Explain your answer.
 - (ii) What is the Mean average precision (we only have a single query here). Show your steps.
 - (iii) What is the E measure of this retrieved list, with b = 0.3? Show your steps. Is this E measure in favour of precision or recall?

[10 marks]

(c) Suppose we are conducting relevance feedback with the Rocchio algorithm, with $\alpha=1.0,\ \beta=0.5$ and $\gamma=0.5$. In one feedback iteration, we receive one positive document $\vec{d}_{pos}=\{3,1,0,0,5,0,2,6,3,0\}$ and one negative document $\vec{d}_{neg}=\{0,2,4,3,0,0,4,6,0,3\}$. The resulting new query vector contains 10 elements, each corresponds to a digit in your student number, which consists of 10 digits and a slash sign '\'. The '\' itself is ignored in this context. For example, if your student number is 202112345/1, the new query vector $\vec{q}_{new}=\{2,0,2,1,1,2,3,4,5,1\}$. Please write down the Rocchio algorithm and deduce the original query vector.