Online Learning Summer School Copenhagen 2015 Lecture 3

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Online Learning

Recall: The Online Classification Game

For t = 1, 2, ...

- ullet Environment presents a question x_t
- Learner predicts an answer $\hat{y}_t \in \{\pm 1\}$
- Environment reveals true label $y_t \in \{\pm 1\}$
- Learner pays 1 if $\hat{y}_t \neq y_t$ and 0 otherwise

Recall: The Online Classification Game

For t = 1, 2, ...

- ullet Environment presents a question x_t
- Learner predicts an answer $\hat{y}_t \in \{\pm 1\}$
- Environment reveals true label $y_t \in \{\pm 1\}$
- Learner pays 1 if $\hat{y}_t \neq y_t$ and 0 otherwise

Goal of the learner: Make few mistakes

Online Learnability

When can we guarantee to make few mistakes (or to have low regret w.r.t. \mathcal{H})?

Online Learnability

When can we guarantee to make few mistakes (or to have low regret w.r.t. \mathcal{H})?

For finite \mathcal{H} :

- ullet Realizable case: Halving makes at most $\log(\mathcal{H})$ mistakes
- Non-realizable case: Weighted Majority (normalized-EG with the "randomization" approach) have expected regret of $\sqrt{\log(d)\,T}$

Realizable Case (no noise)

Realizable Assumption: Environment answers $y_t = h(\mathbf{x}_t)$, where $h \in \mathcal{H}$ and the hypothesis class, \mathcal{H} , is known to the learner

Theorem (Littlestone'88)

A combinatorial dimension, $\operatorname{Ldim}(\mathcal{H})$, characterizes online learnability:

- ullet Any algorithm might make at least $\operatorname{Ldim}(\mathcal{H})$ mistakes
- ullet Exists algorithm that makes at most $\operatorname{Ldim}(\mathcal{H})$ mistakes

 $Ldim(\mathcal{H}) \leq \log(|\mathcal{H}|)$ and the gap can be substantial

Littlestone's dimension – Motivation

Littlestone's dimension – Motivation

Littlestone's dimension

Definition

 $\mathrm{Ldim}(\mathcal{H})$ is the maximal depth of a full binary tree such that each path is "explained" by some $h \in \mathcal{H}$

Lemma

Any learner can be forced to make at least $\operatorname{Ldim}(\mathcal{H})$ mistakes

Proof.

Adversarial environment will "walk" on the tree, while on each round setting $y_t = -\hat{y}_t$.

Standard Optimal Algorithm (SOA)

```
initialize: V_1 = \mathcal{H}

for t = 1, 2, ...

receive \mathbf{x}_t

for r \in \{0, 1\} let V_t^{(r)} = \{h \in V_t : h(\mathbf{x}_t) = r\}

predict \hat{y}_t = \arg\max_r \operatorname{Ldim}(V_t^{(r)})

receive true answer y_t

update V_{t+1} = V_t^{(y_t)}
```

Standard Optimal Algorithm (SOA)

```
initialize: V_1 = \mathcal{H}

for t = 1, 2, ...

receive \mathbf{x}_t

for r \in \{0, 1\} let V_t^{(r)} = \{h \in V_t : h(\mathbf{x}_t) = r\}

predict \hat{y}_t = \arg\max_r \operatorname{Ldim}(V_t^{(r)})

receive true answer y_t

update V_{t+1} = V_t^{(y_t)}
```

Theorem

SOA makes at most $Ldim(\mathcal{H})$ mistakes.

Proof.

Whenever SOA errs we have $Ldim(V_{t+1}) \leq Ldim(V_t) - 1$.

Randomized Prediction and Expected Regret

- ullet Environment should decide on y_t before seeing \hat{y}_t
- Learner can randomize his predictions
- We analyze expected regret

$$\sum_{t=1}^{T} \mathbb{E}[|\hat{y}_t - y_t|] - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |h(\mathbf{x}_t) - y_t|$$

Weighed Majority (Warmuth&Littlestone 89)

WM for learning with d experts

```
initialize: assign weight w_i = 1 for each expert for t = 1, 2, ..., T each expert predicts f_i \in \{0, 1\} environment determines y_t without revealing it to the learner predict \hat{y}_t = 1 w.p. \propto \sum_{i:f_i=1} w_i receive label y_t foreach wrong expert: w_i \leftarrow \eta w_i
```

Weighed Majority (Warmuth&Littlestone 89)

WM for learning with d experts

```
initialize: assign weight w_i = 1 for each expert for t = 1, 2, ..., T each expert predicts f_i \in \{0, 1\} environment determines y_t without revealing it to the learner predict \hat{y}_t = 1 w.p. \propto \sum_{i:f_i=1} w_i receive label y_t foreach wrong expert: w_i \leftarrow \eta w_i
```

Theorem

WM achieves expected regret of at most: $\sqrt{\ln(d)\,T}$

WM and Online Learnability

- ullet WM regret bound \Rightarrow a finite ${\cal H}$ is learnable with regret $\sqrt{\ln(|{\cal H}|)\,T}$
- ullet Is this the best we can do ? And, what if ${\cal H}$ is infinite ?
- Solution: Combing WM with SOA

WM and Online Learnability

- ullet WM regret bound \Rightarrow a finite ${\cal H}$ is learnable with regret $\sqrt{\ln(|{\cal H}|)\,T}$
- ullet Is this the best we can do ? And, what if ${\cal H}$ is infinite ?
- Solution: Combing WM with SOA

Theorem

- Exists learner with expected regret $\sqrt{\operatorname{Ldim}(\mathcal{H})} T \log(T)$
- ullet No learner can have expected regret smaller than $\sqrt{\operatorname{Ldim}(\mathcal{H})\,T}$

Therefore: \mathcal{H} is agnostic online learnable $\iff \operatorname{Ldim}(\mathcal{H}) < \infty$

Proof idea

$\mathsf{Expert}(i_1,\ldots,i_L)$

```
initialize: V_1 = \mathcal{H}

for t = 1, 2, ...

receive \mathbf{x}_t

for r \in \{0, 1\} let V_t^{(r)} = \{h \in V_t : h(\mathbf{x}_t) = r\}

define \hat{y}_t = \arg \max_r \operatorname{Ldim}(V_t^{(r)})

if t \in \{i_1, ..., i_L\} flip prediction: \hat{y}_t \leftarrow \neg \hat{y}_t

update V_{t+1} = V_t^{(\hat{y}_t)}
```

Proof idea

$\mathsf{Expert}(i_1,\ldots,i_L)$

```
initialize: V_1 = \mathcal{H}

for t = 1, 2, ...

receive \mathbf{x}_t

for r \in \{0, 1\} let V_t^{(r)} = \{h \in V_t : h(\mathbf{x}_t) = r\}

define \hat{y}_t = \arg\max_r \operatorname{Ldim}(V_t^{(r)})

if t \in \{i_1, ..., i_L\} flip prediction: \hat{y}_t \leftarrow \neg \hat{y}_t

update V_{t+1} = V_t^{(\hat{y}_t)}
```

Lemma: $\forall h \in \mathcal{H}, \exists i_1, \dots, i_L, L < \text{Ldim}(\mathcal{H}), \text{ s.t. Expert}(i_1, \dots, i_L)$ agrees with h on the entire sequence.