Homework 1

STA4322/STA5328 Introduction to Statistics Theory Spring 2020, MWF 3:00pm

Due date: Wednesday, January 22nd, 2020

All work must be shown for complete credit. W.M.S. denotes the course textbook, *Mathematical Statistics with Applications*, *7th Ed.*.

- 1. Let X_1, X_2, \dots, X_n be independent random variables following the uniform distribution on the interval $[0, \theta]$ for some $\theta > 0$..
 - (a) Find the probability distribution function of $X_{(n)} = \max(X_1, X_2, \dots, X_n)$.
 - (b) Find the probability density function of $X_{(n)}$.
 - (c) Compute the mean and variance of $X_{(n)}$.
- 2. As in Problem 1,let X_1, X_2, \ldots, X_n be independent random variables following the uniform distribution on the interval $[0, \theta]$ for some $\theta > 0$. Find the density of $X_{(k)}$, the kth order statistic, where k is an integer between 1 and n.
- 3. (WMS 8.12) Let Y_1, \ldots, Y_n be a random sample where for $i=1,\ldots,n$, we know $Y_i \sim \mathrm{Uniform}(\theta,\theta+1)$ where $\theta>0$ is an unknown parameter.
 - (a) Show that $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ is a *biased* estimator of θ .
 - (b) Propose an estimator of θ which is unbiased. Verify that this estimator is unbaised.
 - (c) Compute the MSE of \bar{Y} with respect to θ , i.e., compute $\mathrm{MSE}_{\theta}(\bar{Y})$
- 4. Suppose that the random variables X_1 and X_2 are independent and that both have the normal distribution with mean μ and variance σ^2 . Prove that $\bar{X} = \sum_{i=1}^2 X_i$ and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ are independent.

Hint: Let $Y_1=X_1+X_2$ and $Y_2=X_1-X_2$. Show that \bar{X} and s^2 , respectively, can be written in terms of Y_1 and Y_2 alone. Then, verify that Y_1 and Y_2 are independent using that if two normally distributed random variables have zero covariance, they are independent.

5. Suppose that a random sample X_1,X_2,\dots,X_n is to be taken from the uniform distribution on the interval $[0,\phi]$ with $\phi>0$ unknown. What n is required so that

$$P(|\max(X_1, X_2, \dots, X_n) - \phi| < 0.1\phi) \ge 0.95$$

for all possible ϕ ?