

EJEMPLO 2: HETEROSCEDASTICIDAD II

OBJETIVOS

El objetivo principal del ejemplo es mostrar la detección del problema de heteroscedasticidad en el modelo de regresión haciendo uso de R.

PLANTEAMIENTO

La base de datos adjunta muestra información sobre los determinantes del bajo peso en recién nacidos. En el siguiente ejemplo se usarán las herramientas de R para detectar el problema de heteroscedasticidad en el modelo estimado.

Desarrollo

El modelo tiene la siguiente forma:

```
bwghtl = \beta_0 + \beta_1 faminc + \beta_2 motheduc + \beta_3 cigs + \varepsilon
```

Este modelo trata de explicar el peso de un recién nacido en onzas (bwght), que depende del ingreso de la familia (faminc), la educación de la madre (motheduc) y el número de cigarrillos consumidos durante el embarazo (cigs).

Se procede a estimar el modelo:

En este ejemplo se usará el contraste de Goldfeld-Quandt para evaluar la existencia de heteroscedasticidad en el modelo de regresión. En primer lugar, se cargará el paquete **lmtest**, que es el que contiene a la función que se usará, que es la función **gqtest()**.

```
library(lmtest)
gqtest(modelo)
```

Los resultados serán los siguientes:

```
> gqtest(modelo)
```

```
Goldfeld-Quandt test
```

```
data: modelo
GQ = 0.93444, df1 = 690, df2 = 689, p-value = 0.8132
```

Estos resultados indicarán que la hipótesis nula es aceptada y por lo tanto no se puede comprobar la existencia de heteroscedasticidad en el modelo.