Lecture 3 **Exponential Families**

Prof. Dahua Lin dhlin@ie.cuhk.edu.hk

Roadmap

- Basic formulation
- Minimal and overcomplete representations
- Mean parameters and gradient map
- 4 Conjugate Prior

Definition

An **exponential family** \mathcal{P} over a measure space \mathcal{X} :

$$p_{\theta}(\mathbf{x}) = \frac{h(\mathbf{x})}{Z(\theta)} \exp\left(\eta(\theta)^T \phi(\mathbf{x})\right) = h(\mathbf{x}) \exp\left(\eta(\theta)^T \phi(\mathbf{x}) - A(\theta)\right)$$

- sufficient statistics: $\phi: \mathcal{X} \to \mathbb{R}^d$.
- canonical parameter function: $\eta:\Theta\to\mathbb{R}^d$.
- partition function: $Z: \Theta \to \mathbb{R}$.
- base density: h over \mathcal{X} .

Partition Function

• The **partition function** is given by:

$$Z(\boldsymbol{\theta}) = \int_{\mathcal{X}} \exp\left(\boldsymbol{\eta}(\boldsymbol{\theta})^T \boldsymbol{\phi}(\mathbf{x})\right) h(\mathbf{x}) \nu(d\mathbf{x})$$

• The log-partition function given by $A(\theta) = \log(Z(\theta))$ is often used instead of $Z(\theta)$.

Parameter Space

- An exponential family is essentially determined by the *domain* \mathcal{X} and the *sufficient statistics* ϕ .
- The set of valid parameters is $\Theta = \{\theta : Z(\theta) < \infty\}.$
- An exponential family can be parameterized in many ways. When $\eta(\theta)=\theta$, it is said to be in the **canonical form**.

Examples

- Many important families of distributions are exponential families:
 - Binomial distribution
 - Poisson distribution
 - Normal distribution
 - Exponential distribution
 - Beta distribution
 - And many more

Bernoulli Distribution

A Bernoulli distribution describes an event that may or may not happen.

- domain: $\{0,1\}$
- parameter: $\theta \in (0,1)$
- pdf:

$$p_{\theta}(x) = \begin{cases} 1 - \theta & (x = 0) \\ \theta & (x = 1) \end{cases}$$

- sufficient stats: $\phi(x) = x$
- canonical params:

$$\eta(\theta) = \log\left(\frac{\theta}{1-\theta}\right)$$

- base: h(x) = 1 w.r.t. counting
- partition function: $Z(\theta) = \frac{1}{1-\theta}$

Poisson Distribution

A **Poisson distribution** characterizes the number of independent events occurring in a certain rate λ within a unit time.

- domain: $\mathbb{N} = \{0, 1, ...\}$
- parameter: $\lambda \in \mathbb{R}_+$
- pdf:

$$p_{\lambda}(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- sufficient stats: $\phi(x) = x$
- canonical params: $\eta(\lambda) = \log(\lambda)$
- base: h(x) = 1/x!
- partition function: $Z(\lambda) = e^{\lambda}$

Exponential Distribution

An **exponential distribution** characterizes the time interval between independent events occurring at a certain rate λ .

- domain: N
- parameter: $\lambda \in \mathbb{R}_+$
- pdf:

$$p_{\lambda}(x) = \lambda e^{-\lambda x}$$

- sufficient stats: $\phi(x) = x$
- canonical params: $\eta(\lambda) = -\lambda$
- base: h(x) = 1
- partition function: $Z(\lambda) = \lambda^{-1}$

Normal Distribution

Normal distributions are the most widely used distributions in probabilistic analysis to describe real-valued variables.

- ullet domain: ${\mathbb R}$
- parameter: $\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+$
- pdf:

$$p_{\lambda}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- sufficient stats: $\phi(x) = (x, -x^2/2)$
- canonical params:

$$\eta(\mu, \sigma^2) = (\mu/\sigma^2, 1/\sigma^2)$$

- base: h(x) = 1
- partition function: $Z(\theta) = \sqrt{2\pi\sigma^2} \exp\left(\mu^2/(2\sigma^2)\right)$

Normal Distribution in Canonical Form

The normal distributions are often parameterized in the **canonical form** in Bayesian analysis.

- Canonical parameters:
 - **potential** coefficient: $h = \mu/\sigma^2$.
 - **precision** coefficient: $J = 1/\sigma^2 > 0$.
- Probability density function:

$$p_{h,J}(x) = \frac{1}{Z(h,J)} \exp\left(-\frac{J}{2}x^2 + hx\right),\,$$

with

$$Z(h, J) = \sqrt{2\pi J^{-1}} \exp(h^2/J).$$

• An exponential family over \mathbb{R} with a quadratic exponent is **normal**.

Regular Family

We will focus on exponential families in the *canonical form*:

$$p_{\theta}(\mathbf{x}) = \exp(\theta^T \phi(\mathbf{x}) - A(\theta)).$$

The set of all valid canonical parameters is:

$$\Omega(\mathcal{P}) = \left\{ \boldsymbol{\theta} \in \mathbb{R}^d : \int_{\mathcal{X}} \exp\left(\boldsymbol{\theta}^T \boldsymbol{\phi}(\mathbf{x})\right) h(d\mathbf{x}) < +\infty \right\}$$

The exponential family \mathcal{P} is called a **regular family**, if $\Omega(\mathcal{P})$ is an *open* subset of \mathbb{R}^d . We restrict our attention to *regular families*.

Bernoulli in Canonical Forms

An exponential family $\mathcal P$ can be parameterized in different ways. Consider the *Bernoulli distributions* over $\{0,1\}$:

Form-A

$$p(x|\theta) = \frac{1}{Z(\theta)} \exp(\theta x)$$

with $Z(\theta) = 1 + e^{\theta}$.

Form-B

$$p(x|\theta_0, \theta_1) = \frac{1}{Z(\theta_0, \theta_1)} \exp(\theta_0(1-x) + \theta_1 x)$$

with
$$Z(\theta_0, \theta_1) = e_0^{\theta} + e_1^{\theta}$$
.

Minimal and Overcomplete

Consider an exponential family ${\cal P}$ parameterized as:

$$p_{\theta}(\mathbf{x}) = \exp(\theta^T \phi(\mathbf{x}) - A(\theta)).$$

• This parameterized form is called an overcomplete representation of \mathcal{P} , if there exist $\mathbf{a} \in \mathbb{R}^d - \{0\}$ and $b \in \mathbb{R}$ such that

$$\mathbf{a}^T \boldsymbol{\phi}(\mathbf{x}) = b$$

holds almost everywhere.

Otherwise, it is called a minimal representation.

Identifiability

Let $\mathcal{P}[\Omega] = \{P_{\theta} : \theta \in \Omega\}$ be a parameterized family:

• $\mathcal{P}[\Omega]$ is called **identifiable** when each distribution in $P \in \mathcal{P}$ corresponds to a unique parameter $\theta \in \Omega$:

$$P_{\boldsymbol{\theta}_1} = P_{\boldsymbol{\theta}_2} \implies \boldsymbol{\theta}_1 = \boldsymbol{\theta}_2.$$

• Identifiability indicates whether different parameters can always be distinguishable purely based on observed samples. In other words, if $\overline{\mathcal{P}[\Omega]}$ is not identifiable, then

$$\exists \boldsymbol{\theta}_1, \boldsymbol{\theta}_2 \in \Omega : \quad \boldsymbol{\theta}_1 \neq \boldsymbol{\theta}_2 \& P_{\boldsymbol{\theta}_1} = P_{\boldsymbol{\theta}_2}.$$

Minimality and Identifiability

If a parameterized exponential family $\mathcal{P}[\Omega]$ is overcomplete, then $\mathcal{P}[\Omega]$ is not identifiable.

Proof:

- There exist (\mathbf{a}, b) , such that $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{a}^T \phi(\mathbf{x}) = b$.
- Given $\theta \in \Omega$, then we can show:

$$P_{\boldsymbol{\theta}} = P_{\boldsymbol{\theta} + \lambda \mathbf{a}}, \quad \forall \lambda \in \mathbb{R}.$$

Is the converse also true?

We will answer this later.

Bernoulli Revisit

- Form-A with sufficient stats x
 - It is minimal and identifiable.
- Form-B with sufficient stats (1-x,x).
 - It is overcomplete, as

$$1 \cdot (1-x) + 1 \cdot x = 1.$$

and not identifiable:

$$P_{(\theta_1,\theta_2)} = P_{(\theta_1+\lambda,\theta_2+\lambda)}, \quad \forall \lambda \in \mathbb{R}.$$

Another Example

Consider the **categorical distribution** parameterized in a canonical form, with $\theta = (\theta_1, \dots, \theta_k)$.

$$p(x) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left(\sum_{i=1}^{k} \theta_i \delta_i(x)\right),$$

with $x \in \{1, ..., k\}$ and $Z(\boldsymbol{\theta}) = \sum_{i=1}^{k} \exp(\theta_i)$.

- Questions
 - Is it a <u>minimal</u> representation?
 - Is it identifiable?
 - If it is not minimal, how to make it into a minimal representation?

Mean Parameters

The expectation of sufficient statistics are called mean parameters:

$$\mu = E_p[\phi(x)] = \int_{\mathcal{X}} \phi(\mathbf{x}) p(\mathbf{x}) \nu(d\mathbf{x}).$$

- The mean parameters provide an alternative way to parameterize an exponential family.
 - Under certain conditions, the distribution in an exponential family is uniquely determined by the mean parameters.

Realizable Mean Parameters

- Not every vector in \mathbb{R}^b can be a mean parameter.
- Given a sufficient stats ϕ , we say a distribution p realizes a mean parameter μ if $E_p[\phi(X)] = \mu$.
- ullet The set of **(realizable) mean parameters** for a given sufficient stats ϕ is:

$$\mathcal{M}_{\phi} = \left\{ oldsymbol{\mu} \in \mathbb{R}^d : \exists p \; \mathsf{s.t.} \; E_p[oldsymbol{\phi}(X)] = oldsymbol{\mu}
ight\}$$

Here, p is **arbitrary**, not restricted to the exponential family.

• \mathcal{M}_{ϕ} is a <u>convex set</u>. Why?

Convex Polytopes

- Given a set $C \subset \mathbb{R}^d$, the **convex hull** of C, denoted by $\operatorname{conv}(C)$, is the set of all *convex combinations* of elements in C.
- conv(C) is the <u>minimum</u> convex set that contains C.
- A convex hull of some finite set is called a convex polytope.
- Convex polytopes are compact.

Probability Simplex

 Given a finite space X, the probability simplex over X is defined as:

$$\mathcal{S}(\mathcal{X}) \triangleq \left\{ f \in \mathbb{R}_+^{\mathcal{X}} : \sum_{x \in \mathcal{X}} f(x) = 1 \right\}.$$

• When $\mathcal{X} = \{1, \dots, n\}$, $\mathcal{S}(\mathcal{X})$ reduces to:

$$S_{n-1} \triangleq S(\mathbb{R}^n) = \left\{ \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{1}^T \mathbf{x} = 1 \right\}$$

• S_{n-1} is an (n-1)-dimensional convex polytope:

$$S_{n-1} = \operatorname{conv}(\mathbf{e}_1, \dots, \mathbf{e}_n)$$

Polytope of Mean Parameters

• When the sample space \mathcal{X} is finite, given any $\phi: \mathcal{X} \to \mathbb{R}^d$, the set \mathcal{M}_{ϕ} is a convex polytope:

$$\mathcal{M}_{\phi} = \operatorname{conv} \left\{ \phi(x) : x \in \mathcal{X} \right\}$$

ullet Each $oldsymbol{\mu} \in \mathcal{M}_{\phi}$ can be written as

$$\mu = \sum_{x \in \mathcal{X}} \alpha(x)\phi(x) \quad \text{ with } \alpha \in \mathcal{S}(\mathcal{X})$$

Log-partition Function

• The log-partition function given by

$$A(\boldsymbol{\theta}) = \log \int_{\mathcal{X}} \exp(\boldsymbol{\theta}^T \boldsymbol{\phi}(\mathbf{x})) h(d\mathbf{x})$$

has the following properties:

First-order

$$\nabla A(\boldsymbol{\theta}) = E_{p_{\boldsymbol{\theta}}}[\phi(X)]$$

Second-order

$$\nabla^2 A(\boldsymbol{\theta}) = \operatorname{Cov}_{p_{\boldsymbol{\theta}}}[\phi(X)]$$

• $A(\theta)$ is a <u>convex function</u> and thus the parameter set $\Omega = \{\theta : A(\theta) < \infty\}$ is a <u>convex set</u>.

Log-partition Function (cont'd)

- ullet For an overcomplete representation, A is not strictly convex.
 - **Proof:** We have $\mathbf{a}^T \phi(x) = b$ for some (\mathbf{a}, b) , thus

$$\operatorname{Var}_{p_{\theta}}[\mathbf{a}^{T}\boldsymbol{\phi}(X)] = \mathbf{a}^{T}\operatorname{Cov}_{p_{\theta}}[\boldsymbol{\phi}(X)]\mathbf{a} = 0.$$

Therefore:

$$\mathbf{a}^T \nabla^2 A(\boldsymbol{\theta}) \mathbf{a} = 0.$$

- \bullet For a minimal representation, A is strictly convex.
 - **Proof:** Given arbitrary ${\bf a}$, we have ${\rm Var}[{\bf a}^T \phi(X)] > 0$, and thus ${\bf a}^T \nabla^2 A(\theta) {\bf a} > 0$.

Gradient Map

• The gradient map defined as

$$\nabla A: \theta \mapsto E_{p_{\theta}}[\phi(X)]$$

is a mapping from the canonical parameters Ω to the mean parameters $\mathcal{M}.$

- Two questions:
 - When is ∇A injective (i.e. one-to-one)?
 - When is ∇A surjective onto \mathcal{M} ?

Gradient Map (cont'd)

• The *gradient map* is <u>injective</u> if and only if the exponential representation is <u>minimal</u>.

Proof:

 \bullet If it is minimal, then A is strictly convex, and thus

$$\langle \nabla A(\boldsymbol{\theta}) - \nabla A(\boldsymbol{\theta}'), \boldsymbol{\theta} - \boldsymbol{\theta}' \rangle > 0$$

 If it is overcomplete, there exists an affine subset of canonical parameters that corresponds to a single distribution, thus the same mean parameter.

• We now answer a question left earlier:

• An exponential family with a minimal representation is identifiable.

Gradient Map (cont'd)

- With a minimal representation, ∇A is onto \mathcal{M}° , the interior of \mathcal{M} .
 - Each mean parameter $\mu \in \mathcal{M}^{\circ}$ is <u>uniquely realized</u> by a canonical parameter $\theta \in \Omega$.
- Given $\mu \in \mathcal{M}^{\circ}$, there can be many distributions that <u>realize</u> μ , among which there is one that <u>maximizes the entropy</u>, which is in the exponential family associated with ϕ (we will see this).

Maximum Entropy Problem

• Given a distribution over \mathcal{X} , with density function p w.r.t. the base measure μ its **entropy** is defined to be:

$$H(p) \triangleq -\int_{\mathcal{X}} p(\mathbf{x}) \log p(\mathbf{x}) \mu(d\mathbf{x}).$$

• Given a statistic function ϕ and $\mu \in \mathcal{M}_{\phi}$, the maximum entropy problem is defined as:

maximize
$$H(p)$$
 s.t. $p \in \mathcal{P}(\mathcal{X})$ and $E_p[oldsymbol{\phi}(X)] = oldsymbol{\mu}$

Here, $\mathcal{P}(\mathcal{X})$ is the space of all distributions over \mathcal{X} .

Solution?

Optimal Solution to Maximum Entropy

ullet The optimal solution \hat{p} to the maximum entropy problem is given by

$$\hat{p}(\mathbf{x}) = \frac{1}{Z} \exp \left(\hat{\boldsymbol{\theta}}^T \boldsymbol{\phi}(\mathbf{x}) \right) \quad \text{ with } E_{\boldsymbol{\theta}}[\boldsymbol{\phi}(X)] = \boldsymbol{\mu}.$$

- ullet When ${\mathcal X}$ is finite, this can be shown using the method of Lagrange multipliers.
- For general \mathcal{X} , the proof can be generalized using the tools in functional analysis.

Convex Conjugate

Consider a real-valued function $f: \Omega \to \mathbb{R}$: $\Omega \subset \mathbb{R}^d$:

• The **convex conjugate** of f is defined to be

$$f^*(\mathbf{y}) \triangleq \sup_{\mathbf{x} \in \Omega} (\mathbf{y}^T \mathbf{x} - f(\mathbf{x}))$$

- f^* is always convex no matter whether f is convex, and thus $dom(f^*) = \{ \mathbf{y} \in \mathbb{R}^d : f^*(\mathbf{y}) < +\infty \}$ is convex.
- Fenchel's inequality

$$f(\mathbf{x}) + f^*(\mathbf{y}) \ge \mathbf{y}^T \mathbf{x}, \quad \forall \mathbf{x} \in \text{dom}(f), \mathbf{y} \in \text{dom}(f^*)$$

Convex Conjugate (cont'd)

- $\forall \mathbf{y} \in \text{dom}(f^*), \ \mathbf{y}^T \mathbf{x} f^*(\mathbf{y}) \text{ is a supporting plane of } f(\mathbf{x}).$
- For the **biconjugate** f^{**} , $epi(f^{**}) = conv(epi(f))$.
- (Fenchel-Moreau theorem)
 f** = f iff f is convex and lower semi-continuous. Under such conditions:

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom}(f)} (\mathbf{x}^T \mathbf{y} - f(\mathbf{x}))$$
$$f(\mathbf{x}) = \sup_{\mathbf{y} \in \text{dom}(f^*)} (\mathbf{x}^T \mathbf{y} - f^*(\mathbf{y}))$$

Dual Coupling

Given a convex and lower semi-continuous function f and its convex conjugate f^* :

• For each $\mathbf{x} \in \text{dom}(f)$, define

$$\hat{\mathbf{y}}(\mathbf{x}) \triangleq \underset{\mathbf{y}}{\operatorname{argmax}} \left\{ \mathbf{y}^T \mathbf{x} - f^*(\mathbf{y}) \right\}$$

• For each $\mathbf{y} \in \text{dom}(f^*)$, define

$$\hat{\mathbf{x}}(\mathbf{y}) \triangleq \operatorname*{argmax}_{\mathbf{x}} \left\{ \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \right\}$$

• We have $\hat{\mathbf{x}}(\hat{\mathbf{y}}(\mathbf{x})) = \mathbf{x}$. Thus, we call $(\mathbf{x}, \hat{\mathbf{y}}(\mathbf{x}))$ dually coupled.

Convex Conjugate of Log-partition

ullet The convex conjugate to a log-partition function A is

$$A^*(\boldsymbol{\mu}) = \sup_{\boldsymbol{\theta} \in \Omega} \left(\boldsymbol{\theta}^T \boldsymbol{\mu} - A(\boldsymbol{\theta}) \right)$$

ullet Supreme attained at $\hat{oldsymbol{ heta}}$ iff $(\hat{oldsymbol{ heta}},oldsymbol{\mu})$ iff

$$E_{\hat{\boldsymbol{\theta}}}[\boldsymbol{\phi}(X)] = \nabla A(\hat{\boldsymbol{\theta}}) = \boldsymbol{\mu}$$

- Under such condition, $(\hat{\theta}, \mu)$ is dually coupled.
 - In other words, the canonical parameter θ is dually coupled with the corresponding mean parameter $\mu = \nabla A(\theta)$.

Convex Conjugate of Log-partition (cont'd)

• Then, A^* is actually the negated entropy:

$$A^*(\boldsymbol{\mu}) = \begin{cases} -H\left(p_{\hat{\boldsymbol{\theta}}(\boldsymbol{\mu})}\right) & (\boldsymbol{\mu} \in \mathcal{M}^\circ) \\ +\infty & (\boldsymbol{\mu} \notin \overline{\mathcal{M}}) \end{cases}$$

• With a minimal representation, ∇A maps Ω one-to-one onto \mathcal{M}° , while ∇A^{*} is the inverse map.

Summary of the Conjugate Relations

Prior and Posterior

- In Bayesian analysis, we usually place a **prior** with density $p(\theta|\alpha)$ over the parameter space Ω .
- θ is linked to observations $\mathcal{D} = \mathbf{x}_{1:n}$ via a likelihood model: $f(\mathbf{x}|\theta)$.
- The **posterior** conditioned on \mathcal{D} is

$$p(\boldsymbol{\theta}|\mathcal{D}; \boldsymbol{\alpha}) = \frac{1}{Z(\boldsymbol{\alpha}, \mathcal{D})} p(\boldsymbol{\theta}|\boldsymbol{\alpha}) \prod_{i=1}^{n} f(\mathbf{x}_{i}|\boldsymbol{\theta})$$

- Computing the posterior distribution is generally very difficult.
 - It requires the integration over the parameter space.
- However, when the prior is *conjugate* to the likelihood model, the computation can be drastically simplified.

Conjugate Prior

• A prior with density $p(\theta|\alpha)$ is called a **conjugate prior** to the <u>likelihood model</u> $f(\mathbf{x}|\theta)$, if the posterior conditioned on $\mathcal{D}=x_{1:n}$ is in the same parameterized family, *i.e.* in the form

$$p(\boldsymbol{\theta}|\mathcal{D};\boldsymbol{\alpha}) = p(\boldsymbol{\theta}|\boldsymbol{\alpha} \oplus \mathcal{D}).$$

ullet $\oplus: \Omega \times \mathcal{X} \to \Omega$ is <u>left-associative</u> and satisfies

$$\alpha \oplus \mathbf{x} \oplus \mathbf{y} = \alpha \oplus \mathbf{y} \oplus \mathbf{x}$$

• With $D = \mathbf{x}_{1:n}$,

$$\alpha \oplus \mathcal{D} \triangleq \alpha \oplus \mathbf{x}_1 \oplus \cdots \oplus \mathbf{x}_n$$

The result is independent of the order of samples.

Conjugate Prior for Exponential Families

- Generally, conjugate pairs in exponential families are as follows:
 - Prior:

$$p(\boldsymbol{\theta}|\boldsymbol{\alpha}, \beta) = \exp(\boldsymbol{\alpha}^T \boldsymbol{\eta}(\boldsymbol{\theta}) - \beta a(\boldsymbol{\theta}) - A(\boldsymbol{\alpha}, \kappa))$$

Likelihood:

$$f(\mathbf{x}|\boldsymbol{\theta}) = h(\mathbf{x}) \exp(\boldsymbol{\eta}(\boldsymbol{\theta})^T \boldsymbol{\phi}(\mathbf{x}) - \gamma a(\boldsymbol{\theta}))$$

• Given a dataset $\mathcal{D} = \mathbf{x}_{1:n}$, the posterior remains in the same family, with parameters updated to:

$$(\boldsymbol{\alpha}, \boldsymbol{\beta}) \oplus \mathcal{D} = \left(\alpha + \sum_{i=1}^{n} \phi(\mathbf{x}_i), \ \boldsymbol{\beta} + n\gamma\right)$$

CP for Exponential Families (cont'd)

- The family of *conjugate priors* is largely determined by the *likelihood model*, particularly by the form of $\eta(\theta)$ and $a(\theta)$.
- A family of *prior distributions* can serve as the *conjugate priors* to different *likelihood model*.

Example: Beta-Bernoulli

Prior: Beta distribution

$$p(\theta|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, \text{ with } B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

Likelihood: Bernoulli distribution

$$f(x|\theta) = \theta^x \cdot (1-\theta)^{1-x}, \quad \text{with } x \in \{0,1\}$$

• Posterior: remains a Beta distribution:

$$\theta | \mathcal{D} \sim \text{Beta}\left(\alpha + \sum_{i=1}^{n} x_i, \ \beta + \sum_{i=1}^{n} (1 - x_i)\right)$$

Example: Normal-Normal

Prior: Normal distribution

$$\theta | \mu_0, \sigma_0^2 \sim \mathcal{N}(\mu_0, \sigma_0^2) = \mathcal{N}_c(\sigma_0^{-2}\mu_0, \ \sigma_0^{-2})$$

Here, \mathcal{N}_c denotes the canonical form of normal distribution.

Likelihood: Normal distribution (fixed variance)

$$x|\theta \sim \mathcal{N}(\theta, \sigma^2)$$

• Posterior: remains a Normal distribution

$$\theta | \mathcal{D} \sim \mathcal{N}_c \left(\sigma_0^{-2} \mu_0 + \sigma^{-2} \sum_{i=1}^n x_i, \ \sigma_0^{-2} + n \sigma^{-2} \right)$$

Dirichlet Distribution

- **Dirichlet distribution** is a distribution over S_{n-1} .
- It is often used as a conjugate prior to Categorical distributions or Multinomial distributions.
- With $\alpha \in \mathbb{R}^n_{++}$ as the parameter, its density is

$$p_{\alpha}(x) = \frac{1}{B(\alpha)} \prod_{i=1}^{n} x_i^{\alpha_i - 1}$$

with
$$B(\boldsymbol{\alpha}) = \frac{\prod_{i=1}^{n} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{n} \alpha_i)}$$

Dirichlet Distribution (cont'd)

- Mean: $E[X_i] = \frac{\alpha_i}{\alpha_0}$ with $\alpha_0 = \alpha_1 + \ldots + \alpha_n$.
- Covariance:

$$Cov(X_i, X_j) = \begin{cases} \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)} & (i = j) \\ \frac{-\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)} & (i \neq j) \end{cases}$$

Mode:

$$\left(\frac{\alpha_i - 1}{\alpha_0 - n}\right)_{1:n}$$

Marginal:

$$X_i \sim \text{Beta}(\alpha_i, \alpha_0 - \alpha_i)$$

Dirichlet Distribution (cont'd)

- Dirichlet distributions are an exponential family:
 - Canonical parameter: $\eta(\alpha) = (\alpha_i 1)_{1:n}$
 - Sufficient stats: $\phi(\mathbf{x}) = (\log(x_i))_{1:n}$
 - Log-partition function:

$$\log B(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \log \Gamma(\alpha_i) - \log \Gamma(\alpha_0)$$

Hence,

$$E_{\alpha}[\log(X_i)] = \frac{\partial \log B(\alpha)}{\partial \alpha_i} = \psi(\alpha_i) - \psi(\alpha_0)$$

Here, ψ is the digamma function. **Note:** This equation is very important in deriving the inference algorithm for Latent Dirichlet Allocation (LDA).

Predictive Distribution

• Given $\mathcal{D} = \mathbf{x}_{1:n}$, the **predictive distribution** of a new sample \mathbf{x} :

$$p(\mathbf{x}|\mathcal{D}) = \int_{\Omega} f(\mathbf{x}|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\boldsymbol{\alpha}, \beta) \nu(d\boldsymbol{\theta})$$

• With exponential family and conjugate prior, we have

$$p(\mathbf{x}|\mathcal{D}) = h(\mathbf{x}) \exp \left(A \left(\boldsymbol{\alpha} + \boldsymbol{\phi}(\mathbf{x}), \beta + \gamma \right) - A(\boldsymbol{\alpha}, \beta) \right)$$

Prove this as an exercise.

Common Conjugate Priors

Prior	Likelihood parameter
Beta	the probability parameter of Bernoulli, Bino- mial, Geometric or Negative Binomial
Normal	the mean parameter of Normal
InverseGamma	the variance parameter of Normal
Gamma	the rate parameter of Exponential or Poisson, or the precision parameter of Normal

Common Conjugate Priors (cont'd)

Prior	Likelihood parameter
Beta Dirichlet	the <i>probability vector</i> of <i>Categorical</i> or <i>Multinomial</i>
Multivariate Normal	the mean vector of Multivariate Normal
InverseWishart	the covariance matrix of Multivariate Normal
Wishart	the precision matrix of Multivariate Normal