(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年10 月13 日 (13.10.2005)

PCT

(10) 国際公開番号 WO 2005/095890 A1

(51) 国際特許分類7:

G01C 17/38

(21) 国際出願番号:

PCT/JP2005/006333

(22) 国際出願日:

2005年3月31日(31.03.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-107771 2004年3月31日(31.03.2004) JI

- (71) 出願人 (米国を除く全ての指定国について): 京セラ株式会社 (KYOCERA CORPORATION) [JP/JP]; 〒6128501 京都府京都市伏見区竹田鳥羽殿町 6 番地 Kyoto (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 桶屋 成生 (OKEYA, Shigeo) [JP/JP]; 〒2248502 神奈川県横浜市

都筑区加賀原2丁目1番1号 京セラ株式会社内 Kanagawa (JP).

- (74) 代理人: 佐藤 隆久 (SATOH, Takahisa); 〒1110052 東京都台東区柳橋 2 丁目 4 番 2 号 創進国際特許事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護 が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA,

[続葉有]

(54) Title: DIRECTION COMPUTING DEVICE AND ERROR CORRECTING METHOD

(54) 発明の名称: 方位算出装置および誤差補正方法

A START

ST502 START MAP INFORMATION DISPLAY

ST504 ABNORMAL STATE OCCURRED?

ST506 MEASURE TIME

ST508 CONTINUATION FOR MORE THAN PREDETERMINED TIME?

ST510 CORRECT OFFSET ERROR

ST512 MAP INFORMATION DISPLAY END?

(57) Abstract: A direction computing devise comprises a geomagnetism sensor for detecting geomagnetism and a control section for computing the geographical direction from the detection value of the geomagnetism sensor. The control section can correct the error of the offset to the geomagnetism sensor on the basis of the variation of the magnetic field in the direction computing device. The control section corrects the error of the offset when the detection value of the geomagnetism sensor is abnormal and the abnormal state continues for a predetermined time. The control section does not perform offset error correction if the abnormal state ends within the predetermined time.

(57) 要約: 地磁気を検出する地磁気センサと、前記地磁気センサの検出値に基づいて地理的方位を算出する制御部と、を備える方位算出装置。前記制御部は、当該方位算出装置内部の磁界変動に基づく前記地磁気センサへのオフセット誤差補正処理を実行可能であり、前記地磁気センサの検出値が異常状態となった場合、当該異常状態が所定時間続いたときには前記オフセット誤差補正処理を行い、所定時間内で異常状態が終了した場合には前記オフセット誤差補正処理を行わない。

WO 2005/095890 A1

SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

WO 2005/095890 1 PCT/JP2005/006333

明細書

方位算出装置および誤差補正方法 技術分野

- [0001] 本発明は、地理的方位を測定するための地磁気センサを備えた携帯電話機等の 移動可能な通信装置と、その地磁気センサの補正を行う方法に関するものである。 背景技術
- [0002] 従来から、現在地の地理的位置を確認したり、目的地までの道のりを地図によって 案内する装置への要望があり、こうした要望を満たすものとして、カーナビゲーション 装置が知られている(たとえば、特許文献1、特許文献2、特許文献3)。

一般に、カーナビゲーション装置は、複数のGPS (global positioning system)人口衛星から送出される信号(以降、GPS信号と表記する)を受信して処理することにより現在地の地理的位置を割り出し、この現在地周辺の地図データを装置内の記憶部(DVDやハードディスク等)に格納されたデータベースから読み出して、ディスプレイに表示させている。また、車速センサとジャイロセンサを用いて車両の移動軌跡を算出し、これと地図上における道路との一致程度を検出するマップマッチング処理を行って、測位の誤差を補正している。

- [0003] しかしながら、車両に乗っていないときでも利用者が自らの位置を把握し、目的地までの道のりを知りたいという要望があり、こうした要望を満たすものとして、移動可能な電話機(mobile cellur phone)に簡易的な地図情報表示処理機能を搭載したものが登場している。
- [0004] 当初、地図情報表示処理機能付き移動可能な電話機には、方位を測定するための装置が省略されていたため、カーナビゲーション装置で一般的に行われているへディングアップ表示(進行方向が画面の上部に向かうように地図を回転させる表示)のような利用者にとって分かり易い地図表示が困難であった。

そこで、近年では、地磁気センサを用いて方位の測定を行い、ヘディングアップ表示を可能にした地図情報表示処理機能付きの移動可能な電話機が提案されている

特許文献1:特開2004-28837号公報

特許文献2:特開2002-328042号公報

特許文献3:特開平10-197258号公報

発明の開示

発明が解決しようとする課題

[0005] しかしながら、微弱な地磁気を検出する地磁気センサは、移動可能な電話機などの通信装置内の様々な部品が発生する磁界に影響されて、誤差を生じ易い。特に、近年の移動可能で携帯性に富む電話機はサイズが小型化しており、部品間の距離が取り難いため、通信装置内の部品から発生する磁界による地磁気の検出誤差は無視できないレベルになっている。そのため、例えばメモリーカードを着脱でき、さらに読み書きが可能に構成されている移動可能な電話機では、メモリカードを装着した状態とそうでない状態とで方位の算出結果が異なってしまうといった問題が生じる。

[0006] 一方、近年の移動可能で携帯性に富む電話機には、表示画面の大型化に伴なって、表示部とキー入力部とをそれぞれ別の筐体に配置したものが多くなっている。この種の電話機は、一般に、2つの筐体が折り畳まれてキー入力部が内側に隠れる状態(閉状態)か、または、キー入力部および表示部が共に露出する状態(開状態)で使用される。

この2筐体型の電話機には、閉状態において表示部が内側に隠れるタイプと外側に露出したままになるタイプとがあり、後者のタイプの代表的なものとしては、表示部の面とキー入力部の面とをほぼ平行な状態で相対的に回転させるタイプがある。

このように、開状態および閉状態の何れにおいても表示部を使用できるタイプの電話機では、2つの状態の何れにおいても地図情報表示処理機能を用いることが要求される。しかしながら、筐体の開閉状態を変化させると、地磁気センサの周囲の磁界が変化するため、方位の測定結果が異なってしまうといった問題が生じる。

[0007] また、移動可能な電話機では、サイズやコストの制約から、例えばカーナビゲーション装置におけるジャイロセンサを用いた移動方向の検出などのように、地磁気センサ 以外の検出方法を用いて方位の測定誤差を補正することが困難である。

[0008] 本発明はかかる事情に鑑みてなされたものであり、その目的は、地磁気センサを用

いて精度良く方位を求め、さらに磁界変動に基づくオフセットを補正することができる方位算出装置を提供することにある。

本発明の他の目的は、磁界変動に基づくオフセットを補正することを可能にする誤差補正方法を提供することにある。

課題を解決するための手段

- [0009] 本発明によれば、地磁気を検出する地磁気センサと、前記地磁気センサの検出値に基づいて地理的方位を算出する制御部と、を備える方位算出装置であって、前記制御部は、当該方位算出装置内部の磁界変動に基づく前記地磁気センサへのオフセット誤差を補正するオフセット誤差補正処理を実行可能であり、前記地磁気センサの検出値が異常状態となった場合、当該異常状態が所定時間続いたときには前記オフセット誤差補正処理を行い、所定時間内で異常状態が終了した場合には前記オフセット誤差補正処理を行わないことを特徴とする方位算出装置が提供される。
- [0010] また本発明によれば、地磁気を検出する地磁気センサと、前記地磁気センサの検出値に基づいて地理的方位を算出する方位算出装置における誤差補正方法であって、当該方位算出装置内部の磁界変動に基づく前記地磁気センサへのオフセット誤差を補正するオフセット誤差補正処理ステップと、前記地磁気センサの検出値が異常状態となったことを検出する異常状態検出ステップと、前記異常状態検出ステップにて異常状態が検出されると、当該異常状態が所定時間続くか否かを判定する判定ステップと、を備え、前記判定ステップにて前記異常状態が所定時間続くと判定すると前記オフセット誤差補正処理ステップを行い、前記所定時間続かないと判定すると前記オフセット誤差補正処理ステップを行い、前記所定時間続かないと判定するとが記オフセット誤差補正処理ステップを行わないことを特徴とする方位算出装置における誤差補正方法が提供される。

発明の効果

[0011] 本発明によれば、地磁気センサを用いて精度良く方位を求め、かつ、磁界変動に 基づくオフセットを補正することができる。

図面の簡単な説明

[0012] [図1]本発明の実施形態に係る携帯電話機において地理的位置および地図の情報 を取得するためのシステムの構成例を示すブロック図である。 [図2] 開状態にある携帯電話機の斜視図である。

[図3]閉状態にある携帯電話機の一側面からの斜視図である。

[図4]閉状態にある携帯電話機の他の側面からの斜視図である

[図5]基板実装筐体の内部における基板実装状態を示す斜視図である。

[図6]本発明の実施形態に係る携帯電話機の構成例を示すブロック図である。

[図7]携帯電話機におけるGPS信号受信処理の一例を図解したフローチャートである。

[図8]携帯電話機における位置標定処理の一例を図解したフローチャートである。

「図9]ナビゲーションサーバ装置から送信される地図情報の一例を示す図である。

[図10]携帯電話機における表示画像の回転処理の一例を図解したフローチャートである。

[図11]方位角の算出方法を説明するための図である。

[図12]携帯電話機における方位算出処理の第1の例を図解したフローチャートである。

[図13]補正用データの一例を示す図である。

[図14]携帯電話機における方位算出処理の第2の例を図解したフローチャートである。

[図15]携帯電話機における方位算出処理の第3の例を図解したフローチャートである。

[図16]携帯電話機における方位算出処理の第4の例を図解したフローチャートである。

[図17]携帯電話機における方位算出処理の第5の例を図解したフローチャートである。

[図18]メモリカードの装着の有無に応じた地磁気センサ検出値の時間的変化の一例 を示す図である。

[図19]携帯電話機における方位算出処理の第6の例を図解したフローチャートである。

[図20]地磁気検出値に異常状態が生じた場合におけるオフセット誤差補正処理の第

1の例を図解したフローチャートである。

[図21]外部磁界の影響により生じた地磁気検出値の異常状態の一例を示す図である。

[図22]携帯電話機におけるオフセット誤差補正処理の第2の例を図解したフローチャートである。

[図23]携帯電話機におけるオフセット誤差補正処理の第3の例を図解したフローチャートである。

[図24]外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第1の例を図解したフローチャートである。

[図25]外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第2の例を図解したフローチャートである。

[図26]外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第3の例を図解したフローチャートである。

[図27]外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第4の例を図解したフローチャートである。

[図28]外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第5の例を図解したフローチャートである。

[図29]外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第6の例を図解したフローチャートである。

[図30]外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第7の例を図解したフローチャートである。

[図31]外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第8の例を図解したフローチャートである。

[図32]図28~図31に示す処理において、記憶部に精度低下地域を登録する処理 の一例を図解したフローチャートである。

符号の説明

[0013] 2…第1筐体、3…第2の筐体、4…可動機構部、21…表示パネル、100…携帯電話機、200…GPS衛星、300…基地局、401…GPSサーバ装置、402…ナビゲー

ションサーバ装置、150…無線通信部、151…GPS信号受信部、152…記憶部、15 3…開閉判定部、154…キー入力部、155…表示部、156…音声処理部、157…撮 像部、158…地磁気センサ、159…メモリカード部、160…制御部

発明を実施するための最良の形態

- [0014] 以下、地図情報表示処理機能や撮像機能を有する多機能型の移動可能で携帯性に富み、方位を考慮した地図情報を表示可能な電話機(以下、電話機(mobile cellur phone))に本発明を適用した場合の一実施形態について、図面を参照して述べる。
- [0015] 図1は、本発明の実施形態に係る電話機100において地理的位置および地図情報を取得するためのシステムの構成例を示すブロック図である。

電話機100は、既知の軌道を周回する3つまたはそれ以上のGPS用人口衛星200から送信されるGPS信号を受信する。そして、電話機100は、受信したGPS信号に関する情報を、基地局300から通信網を経由して、本発明の位置標定手段の1例としてのGPSサーバ装置401に送信し、現在地の位置情報をGPSサーバ装置401から取得する。

また、電話機100は、GPSサーバ装置401から取得した現在地の位置情報を、基地局300から通信網を経由して、本発明の位置標定手段の1例としてのナビゲーションサーバ装置402に送信し、現在地周辺の地図情報をナビゲーションサーバ装置402から取得する。

[0016] 本発明の位置標定手段の1例としてのGPSサーバ装置401は、通信網を介して電話機100から送られてくるGPS信号に基づいて、電話機100の地理的位置(例えば緯度や経度など)を算出し、算出した位置情報を通信網から基地局300を経由して電話機100に送信する。

本発明の位置標定手段の1例としてのナビゲーションサーバ装置402は、通信網を介して電話機100から送られてくる位置情報に基づいて、電話機100周辺の地図情報を図示しないデータベースから検索し、検索した地図情報を通信網から基地局300を経由して電話機100に送信する。

[0017] 図2~図4は、電話機100の外観の一例を示す図である。 図2は開いた状態にある電話機100の斜視図であり、図3は閉じた状態にある電話 機100の一側面からの斜視図であり、図4は閉じた状態にある電話機100の他の側面からの斜視図である。

[0018] 電話機100は、第1筐体(上部筐体)2と、第2筐体(下部筐体)3とが、可動機構部4 を介して開閉自在、および/または、回転自在に連結されている。

可動機構部4は、所定の回転軸を中心に、第1筐体2と第2筐体3とを相対的に回 転可能、および/または、開閉可能に構成されている。

[0019] 第1筐体2には、可動機構部4の作動状態(開状態、閉状態)にかかわりなく露出する第1面2aに、例えばLCD(liquid crystal display)パネルや有機EL(electroluminescent)ディスプレイパネルからなる表示パネル21が配置される。この表示パネル21の図2中の左側隅に、スピーカ22が内蔵されている。

表示パネル21は、後述する表示部155に含まれる。スピーカ22は、後述する音声 処理部156に含まれる。

[0020] 第2筐体3は、内部に基板が実装される基板実装筐体31と、基板実装筐体31の蓋体をなす蓋側筐体32とを重ね合わせて構成されている。

第2筐体3の基板実装筐体31の外平面31a、すなわち閉状態時に第1筐体2の一面と対向する面31aには、テンキーボタン311aと、カーソルボタン311bと、決定ボタン311cとを有する操作キー311が配置されている。操作キー311の図2中の右側隅に、マイクロフォン312が内蔵されている。

操作キー311は、後述するキー入力部154に含まれる。マイクロフォン312は、後述する音声処理部156に含まれる。

第2筐体3の蓋側筐体32において開状態、閉状態にかかわりなく露出する外平面3 2aには、図4に示すように、カメラモジュール34の光学系34aが配置されている。

第2筐体3の蓋側筐体32の外平面32aにおいて、内蔵のフラッシュランプによる閃光を外部に放射するための発光窓321と、接写時等に撮影補助としての白色光を放射するための発光窓322が配置されている。

カメラモジュール34は、後述する撮像部157に含まれる。

第2筐体3の一側部には、カメラモジュール用タクトスイッチ35が配置されており、第 2筐体3の他方の側部には、メモリカードを挿入するためのメモリカード用スロット33が 形成されている。

[0021] 図5は、基板実装筐体31の内部31bにおける基板実装状態を示す斜視図である。 基板実装筐体31の内部31bには、その底面部全体にわたって、メイン基板37が装着される。

メイン基板37上においてメモリカード用スロット33に面する位置には、着脱可能なメモリカードが装着されるメモリカード部159が実装される。

このメモリカード部159に隣接するメイン基板37のほぼ中央位置に、地磁気センサ158が実装される。

[0022] 図6は、本発明の実施形態に係る電話機100の例示的な構成例を示すブロック図である。

電話機100は、無線通信部150と、GPS信号受信部151と、記憶部152と、開閉判定部153と、キー入力部154と、表示部155と、音声入出力部156と、撮像部157と、地磁気センサ158と、メモリカード部159と、信号処理・制御部160とを有する。

無線通信部150は、本発明の無線通信手段の一実施形態である。

GPS信号受信部151は、本発明のGPS信号受信手段の一実施形態である。

GPS信号受信部151および無線通信部150は、本発明の位置情報取得手段の一 実施形態である。

開閉判定部153は、本発明の作動状態判定手段の一実施形態である。

表示部155は、本発明の表示手段の一実施形態である。

地磁気センサ158は、本発明の地磁気センサの一実施形態である。

メモリカード部159は、本発明の記憶媒体装着手段の一実施形態である。

信号処理・制御部160は、本発明の信号処理・制御手段の一実施形態である。

[0023] 無線通信部150は信号処理・制御部160と協働して、基地局300との間の無線通信に関する処理を行う。例えば、信号処理・制御部160から出力される送信データに所定の変調処理を施して無線信号に変換し、第1アンテナAT1から送出する。また、無線通信部150は、第1アンテナAT1において受信された無線信号に所定の復調処理を施して受信データを再生し、信号処理・制御部160に出力する。

無線通信部150は、位置情報取得手段として、基地局300から送出される測位用

の基準信号を受信する処理も行う。

- [0024] GPS信号受信部151は信号処理・制御部160と協働して、GPS用人口衛星20から送出されるGPS信号を第2アンテナAT2を介して受信して増幅、ノイズ除去、変調等の信号処理を施し、GPSサーバ装置401において電話機100の地理的位置を算出するために必要な情報を取得する。
- [0025] 記憶部152は信号処理・制御部160と協働して、信号処理・制御部160において 実行されるプログラムや、信号処理・制御部160の処理で用いられる定数データ、一 時的に記憶が必要な変数データ、撮像画像データなどを記憶する。
- [0026] 開閉判定部153は信号処理・制御部160と協働して、可動機構部4による第1筐体 2および第2筐体3の回転の状態が、上述した開状態または閉状態の何れであるかを 判定する。例えば、開閉判定部153は、第1筐体2と第2筐体3とが重なった状態になる閉状態を検出するスイッチ等の検出器を含んでおり、閉状態とそれ以外の状態とを 判別する。
- [0027] キー入力部154は信号処理・制御部160と協働して、操作キー311やカメラモジュール用タクトスイッチ35に対してキーを押下する等の入力操作が行われた場合、これに応じた信号を発生して信号処理・制御部160に出力する。
- [0028] 表示部155は信号処理・制御部160と協働して、信号処理・制御部160において 生成される画像データに応じた画像を表示パネル21に表示させる。
- [0029] 音声処理部156は信号処理・制御部160と協働して、入力される音声をマイクロフォン312において電気的な音声信号に変換して増幅、アナログーデジタル変換、符号化等の信号処理を施し、その処理結果の音声データを信号処理・制御部160〜出力する。また、信号処理・制御部160から入力される音声データに復号化、デジタルーアナログ変換、増幅等の信号処理を施して音声信号を生成し、これをスピーカ22において音声に変換する。
- [0030] 撮像部157は信号処理・制御部160と協働して、光学系34aにおいて入射した像を撮像して静止画や動画の画像データを生成し、信号処理・制御部160に出力する。撮像部157はまた、信号処理・制御部160の制御に従って、撮像時にフラッシュランプを点灯させ、発光窓321から放射させる。

[0031] 地磁気センサ158は、方位の算出に用いる地磁気を検出する。例えば図5に示すように、地磁気センサ158は、メイン基板37上の固定された位置において、メイン基板37上に設定された直交3次元座標系を基準として、各軸方向の地磁気を検出する。地磁気の検出には、例えばコイルの励磁を利用する方法や、ホール効果を利用する方法、磁気抵抗素子を利用する方法など、種々の方法が用いられる。

本実施形態では、一例として、地磁気センサ158がアナログーデジタル変換器を搭載しており、検出した地磁気のアナログ信号を8ビットのデジタル信号、すなわち、'0'から'255'までの整数値として出力するものとする。

[0032] 信号処理・制御部160は、記憶部152に格納されるプログラムに基づいて処理を実行するコンピュータを有しており、電話機100の全体的な動作に関わる種々の処理を行う。

例えば、電話機能に関連する処理として、信号処理・制御部160は、キー入力部154におけるキー入力操作に応じて無線通信部150を介した発呼、着信のシーケンスを制御する処理や、音声処理部156において入出力される音声データを無線通信部150を介して送受信する処理を行う。

データ通信機能に関連する処理として、信号処理・制御部160は、キー入力部15 4におけるキー入力操作に応じて無線通信部150を動作させて、所定のメールサー バ装置と通信を行い、電子メール等のデータのやりとりする処理を行う。

撮像機能に関連する処理として、信号処理・制御部160は、キー入力部154におけるキー入力操作に応じて撮像部157に静止画や動画の撮像処理を実行させる処理や、撮像された画像のデータに圧縮符号化等の画像処理を施して記憶部152に格納する処理などを行う。静止画の撮影時には、信号処理・制御部160は、適切なタイミングでフラッシュランプを点灯させる処理も行う。

信号処理・制御部160は、地図情報表示処理機能に関連する処理として、地磁気 センサ158の検出値に基づいて地理的方位を算出する処理や、GPS信号受信部1 51で受信したGPS信号の情報をGPSサーバ装置401に送信して現在地の位置情 報を取得する処理、この位置情報をナビゲーションサーバ装置402に送信して現在 地周辺の地図の情報を取得する処理、基地局300からの測位用信号と方位の算出 結果とに基づいて現在地を割り出す処理、方位の算出結果に応じて表示部155の表示画面上における地図の向きを制御する処理(ヘディングアップ表示処理)などを行う。

信号処理・制御部160は、ユーザに対する表示パネル21の向きが、第1筐体2と第2筐体3との開状態と閉状態とで180度異なることに対処するため、開閉判定部153の判定結果に応じて表示部155の表示画像に回転を施す処理を行う。

- [0033] 上述した構成を有する電話機100の動作について、本発明に関連する地図表示 処理機能を中心に説明する。
- [0034] まず、電話機100の電源がオンの時の信号処理・制御部160を中心として行う、G PS信号の受信処理について述べる。

図7は、電話機100におけるGPS信号受信処理の一例を図解したフローチャートである。

- [0035] 信号処理・制御部160は、例えば2秒間隔といった一定の周期でGPS信号受信部 151を制御して、GPS用人口衛星からのGPS信号を受信するためのスキャンを行う(ST102, ST104)。スキャンの結果、GPS信号を受信できた場合には、信号処理・制御部160は受信したGPS信号を記憶部152に格納する(ST106)。このようなGP S信号のスキャンと情報の格納を、受信可能な全てのGPS用人口衛星について繰り返す(ST108, ST104, ST106)。全てのGPS用人口衛星についてスキャンを行ったら、信号処理・制御部160は次のGPS信号受信タイミングまで待って、再びステップST104~108の処理を行う。
- [0036] 次に、位置標定処理について述べる。 図8は、電話機100における位置標定処理の一例を図解したフローチャートである
- [0037] 信号処理・制御部160は、例えばキー入力部154におけるキー入力操作等によって位置標定処理の開始が選択されると(ST122)、上述したGPS受信処理によって得られた情報を無線通信部150から基地局300、通信網を介して、GPSサーバ装置401に送信する処理を行う(ST124)。

GPSサーバ装置401は、電話機100からGPS情報を受信すると、この受信したGP

S情報に基づいて電話機100の現在地の位置(例えば緯度、経度)を算出し、その算出結果を通信網から基地局300を経由して、電話機100に送信する。

信号処理・制御部160は、GPSサーバ装置401から送信される位置情報を受信して、記憶部152に格納する(ST126)。

[0038] 次に、信号処理・制御部160は、無線通信部150から基地局300、通信網を介して ナビゲーションサーバ装置402にアクセスし(ST128)、取得した位置情報をナビゲーションサーバ装置402へ送信する(ST130)。

ナビゲーションサーバ装置402は、電話機100から位置情報を受信すると、この位置情報によって特定される電話機100の現在地周辺の地図情報をデータベースから検索し、該検索した地図情報を通信網から基地局300を経由して電話機100に送信する。

信号処理・制御部160は、ナビゲーションサーバ装置402から送信される地図情報を受信して、記憶部152に格納する(ST132)。

[0039] 図9は、ナビゲーションサーバ装置402から送信される地図情報の一例を示す図である。

本実施形態では、一例として、地図情報にそれぞれ固有の識別番号が割り当てられているものとする。ナビゲーションサーバ装置402は、この識別番号に基づいて、所定サイズ(例えば1km四方)ごとに地図データを管理しており、電話機100〜地図情報を送信する場合には、この識別番号を地図のデータに添付して送信する。図9の例において、現在地周辺の地図は識別番号MP0であり、その四方の地図は識別番号MP1〜MP4である。

[0040] 信号処理・制御部160は、このような地図情報を取得すると、取得した地図情報に基づいて現在地周辺の地図の画像データを生成し、表示部155の表示パネル21に地図を表示させる(ST134)。

表示パネル21に表示される地図の領域は、ナビゲーションサーバ装置402から取得した1km四方の地図より狭い領域(例えば200m×300m)である。

[0041] 地図の表示方法は、例えばノースアップ表示(地図上の北を画面の上に向ける表示)とヘディングアップ表示(地図上の進行方向を画面の上に向ける表示)の何れか

を選択することが可能である。

キー入力部154のキー操作によってノースアップ表示が選択された場合、信号処理・制御部160は、地図の北方向を表示画面の上方向に固定させて表示部155に表示させる。

キー入力部154のキー操作によってヘディングアップ表示が選択された場合、信号処理・制御部160は、後述する方位算出処理によって求めた方位に応じて、表示画面上における地図の向きを制御する処理を行う。例えば、第2筐体3のマイクロフォン312が配置される一方の端部から連結部を有する他方の端部へ向かう方向A(図2参照)を電話機100の進行方向とした場合、この進行方向の方位が表示画面の上方に向かうように、表示画面上における地図の向きを制御する。

[0042] ここで述べている「表示画面の上方」は、第2筐体3を把持して電話機100を利用するユーザの視点から見た場合のものであり、筐体2、3の開、閉状態を変化させると、これに応じて「表示画面の上方」も変化する。すなわち、筐体2、3が開状態の場合、第1筐体2におけるスピーカ22側が表示画面の上方になり、筐体2、3が閉状態の場合は、第1筐体2における連結部側が表示画面の上方になる。

信号処理・制御部160は、後述するように、筐体2、3の開、閉状態に応じて表示画面上における画像を回転させる処理を行い、ユーザに対して適切な向きに画像を表示させる。

- [0043] 上述のようにして地図の表示を始めると、信号処理・制御部160は、キー入力部15 4のキー操作によって位置標定処理の終了が選択されるまでの間、次に述べるステップST138以降の処理を繰り返す(ST136)。
- [0044] まず、信号処理・制御部160は、電話機100周囲の複数(例えば3つ以上)の基地局300から送出される測位用の基準信号を無線通信部150に受信させ、その受信信号に基づいて現在地の位置を算出する(ST138)。そして、信号処理・制御部160は、現在地の算出結果から電話機100の移動の有無を判定し(ST140)、電話機100が移動していないと判定した場合は、基地局300からの基準信号に基づく現在地の算出を引き続き行う(ST138)。
- [0045] ステップST140において、電話機100が移動したと判定した場合、信号処理・制御

部160は、その移動先の地点が現在取得している地図の端の領域にあるか否かを判定する(ST142)。例えば、表示部155に表示すべき地図の一部が、現在取得している地図に含まれておらず、これに隣接する地図に含まれている場合、現在地が地図の端の領域にあると判定する。

現在地が端領域にあると判定した場合、信号処理・制御部160は、無線通信部15 0によりこの端領域に隣接する地図をナビゲーションサーバ装置146に要求する(ST 146)。例えば、現在取得中の地図の識別番号と、この地図に対して東西南北の何 れの方位に隣接するかを指示する情報とを、ナビゲーションサーバ装置146に送信 する。

ナビゲーションサーバ装置146は、電話機100から送られるこれらの情報に応じた 地図をデータベースから検出して、電話機100に送信する。

信号処理・制御部160は、ナビゲーションサーバ装置402から送信される地図情報を受信して記憶部152に格納し(ST132)、この地図情報に応じた地図を表示部155に表示させる(ST134)。その後は、ステップST138以降の処理を繰り返す。

また、現在地が端領域にないと判定した場合、信号処理・制御部160は、現在地の算出結果に応じて、例えば電話機100の現在地が表示中の地図の中央になるように地図の表示領域を移動させる処理を行い、その後は、信号処理・制御部160は、ステップST138以降の処理を繰り返す。

[0046] 次に、電話機100にとってのイベントの例として、筐体の開、閉状態が遷移したとき におけるそれぞれに応じた表示画像の回転処理について述べる。

図10は、電話機100における表示画像の回転処理の一例を図解したフローチャートである。

[0047] 信号処理・制御部160は、電話機100の電源がオンの間、開閉判定部153において判定される開閉状態を常に監視する(ST162)。開閉判定部153において閉状態でないこと(すなわち開状態)が判定されると、信号処理・制御部160は、第1筐体2におけるスピーカ22側が画像の上方となる向きで、表示パネル21に画像を表示させる(ST166)。

この開状態における表示を通常表示とすると、開閉判定部153において閉状態が

判定された場合、信号処理・制御部160は、通常表示における画像を180度回転させて表示パネル21に表示させる(ST164)。 すなわち、第1筐体2における連結部側が画像の上方となる向きで、表示パネル21に画像が表示される。

このような表示画像の回転処理によって、筐体2、3の開、閉状態によらず常にユーザの見易い向きで表示部155に画像を表示させることができる。

[0048] 方位の算出処理

まず、図11を参照して方位の算出方法の概略を述べ、次いで、図12~図19を参照して信号処理・制御部160における方位算出処理の幾つかの例を述べる。

[0049] 図11は、方位角の算出方法を説明するための図である。

図11において、座標軸Hx、Hy、Hzを有する直交3次元座標系は、地平面上に設定される基準の座標系である。座標軸HxおよびHyは地平面に平行な座標軸であり、座標軸Hzは地平面に垂直な方向を向く座標軸である。

方位角 θ は、第2筐体3のメイン基板37上に配置された地磁気センサ158について設定される地磁気検出の基準方向RD(例えば図2における方向A)のベクトルを地平面に正射影した像Zxyと座標軸Hxとのなす角度である。傾斜角 ϕ は、この像Zx yと基準方向Aのベクトルとのなす角度である。また、ひねり角 η は、基準方向Aのベクトルを回転軸として電話機100をその周りに回転させた角度である。

方位角 θ 、傾斜角 ϕ 、ひねり角 η が何れもゼロの場合、第2筐体3のメイン基板37上に設定される地磁気検出の座標系は、図11に示す座標軸Hx、Hy、Hzの座標系と一致する。

地磁気センサ158による、座標軸Hxに対応する地磁気検出値を α 、座標軸Hyに対応する地磁気検出値を β 、座標軸Hzに対応する地磁気検出値を γ とすると、図1 1に示す方位角 θ の正接 $\tan\theta$ は次式で表される。 ϕ は表示パネル21の傾斜角である。

[0050] (数1)

 $\tan \theta = \beta / (\gamma \cdot \sin \phi - \alpha \cdot \cos \phi) \quad \cdots \quad (1)$

[0051] 式(1)において、ひねり角 n はゼロとしている。

信号処理・制御部160は、式(1)に示す関係を用いて、地磁気センサ158から得ら

れる3方向の地磁気の検出値に応じた方位角を算出する。

信号処理・制御部160は、上述した方位の算出にあたって、地平面に対する表示パネル21の傾斜角 øも考慮している。

ユーザは、表示パネル21を、例えば45度程度の角度で傾けたときに、楽な姿勢で表示パネル21の画像を見ることができる。そこで、信号処理・制御部160は、地平面に対する表示パネル21の傾斜角 φ が例えば好ましくは45度になるときの傾斜角 φ を用いて、式(1)により方位を算出する。

信号処理・制御部160は、筐体2、3の開状態と閉状態とにおいて地平面に対する地磁気センサ158の傾斜角。が異なる場合、この傾斜角の違いを考慮して、それぞれの状態の方位角を算出しても良い。例えば、閉状態において第1筐体2と第2筐体3とがほぼ平行に重なるのに対し、開状態において第1筐体2と第2筐体3とが相対的に傾斜するように、2つの筐体が連結されているものとする。この場合、ユーザが、両方の操作スタイルで表示パネル21に対する視線の方向を一定に保とうとすると、地平面に対する第2筐体3の傾斜は、開状態と閉状態とで異なる。第2筐体3の傾斜が異なるということは、地平面に対する基準方向Aの傾斜が開,閉状態において異なることを意味する。そこで、信号処理・制御部160は、開閉判定部153の判定結果に応じた所定の角度の傾斜角。を用いて、方位の算出を行う。この傾斜角。は、開状態および閉状態の何れにおいても、地平面に対する表示パネル21の傾斜角。が例えば好ましくは45度で一定となるように予め設定された角度である。

傾斜角 φ の情報は、例えばデータテーブルとして記憶部152に予め格納される。 方位の検出が行われる場合、信号処理・制御部160は、開閉判定部153の判定結果に関連付けられた傾斜角 φ の情報を記憶部152内のデータテーブルから読み出し、この傾斜角 φ の情報を用いて方位の算出を行う。

[0052] 方位算出処理

図12は、電話機100における方位算出処理の例を図解したフローチャートである。

[0053] キー入力部154におけるキー入力操作等によって位置標定処理の開始が選択されると地磁気センサ158を起動して方位の情報を取得し(ST202)、信号処理・制御部160は、所定のイベント(現象)が発生しているかまたは終了したかを調べる(ST2

 $04)_{0}$

- [0054] ここで所定のイベントとは、表示部155において方位の情報(ヘディングアップ表示の地図や方位を示すコンパスなど)を表示しているときに、電話機100内の回路や処理系において、地磁気センサ158の検出値に変化を生じさせるようなイベントである。この所定のイベントは、例えば、図8のステップST146においてナビゲーションサーバ装置402から地図情報を取得する場合や、着信処理、メール受信処理を行う場合などにおいて、無線通信部150を動作させるイベントを含む。所定のイベントとして、キー入力操作、方位の情報の変化、地図の表示の更新などに応じて表示部155における表示輝度を変化させるイベントや、音声処理部156を動作させてスピーカから音声を出力させるイベントなどを含んでも良い。所定のイベントとして、表示部155がLCDパネルを有する場合は、例えば、LCDバックライトとしての光源をオンオフさせたり、光源の発光強度を変化させるイベントを含んでも良い。
- [0055] このような所定のイベントの発生を検知すると、信号処理・制御部160は、検知したイベントに対応して予め用意された地磁気検出値の補正用データを記憶部152から読み出して、現在使用中の補正用データを変更する。
- [0056] 図13は、補正用データの一例を示す図である。

図13の例において、補正用データは、地磁気センサ158のX軸、Y軸、Z軸の検出値に対応する3つの補正値によって構成される。例えば、無線通信部150を動作させる通信処理が実行される場合、信号処理・制御部160は、X軸、Y軸、Z軸の地磁気検出値に対応する'-1', '0', '-1'の補正値を記憶部152から読み出す。

記憶部152は、例えばこのような補正用データを、複数のイベントにそれぞれ対応付けて記憶する。補正用データの各補正値は、例えば、それぞれのイベントが発生している場合と発生していない場合とにおける地磁気検出値の変動量を予め測定することにより決定される。

[0057] ステップST204において複数のイベントの発生を検知した場合、信号処理・制御部160は、検知したイベントに対応する補正用データの補正値を3方向の地磁気検出値にそれぞれ加算する。例えば、図13の例において、通信処理と音声出力処理とが共に発生している場合、地磁気センサの検出値を±255とした場合、X軸の補正

値は'-1'+'-1'='-2'、Y軸の補正値は'0'+'0'='0'、Z軸の補正値は'-1'+'0'='-1'になる。

- [0058] また、ステップST204においてあるイベントの終了を検知した場合、信号処理・制御部160は、終了したイベントに対応する補正用データの補正値を、現在の値から減算する。例えば、現在のX軸、Y軸、Z軸の補正値が'-2'、'-1'、'1'の状態で図13に示す通信処理が終了した場合、X軸の補正値は'-2'-'-1'='-1'、Y軸の補正値は'-1'-'0'='-1'、Z軸の補正値は'1'-'-1'='2'に変更される。
- [0059] 信号処理・制御部160は、記憶部152から読み出した補正用データに基づいて、 地磁気センサ158の検出値を補正する(ST208)。すなわち、地磁気センサの3方向 の検出値に、補正用データの対応する補正値をそれぞれ加算する。そして、この補 正後の地磁気検出値を用いて、上述した算出方法により、方位を算出する(ST210)

信号処理・制御部160は、位置標定処理が実行されている間、上述したステップS T204~ST210の処理を繰り返す(ST212)。

[0060] 以上のように、図12に示す方位算出処理の第1の例によれば、方位の情報を表示 部155に表示させているときに、電話機100内部の磁界を変動させる所定のイベント の発生(イベントの終了を含む)が信号処理・制御部160によって監視され、該所定 イベントの発生が検知された場合に、方位の情報が補正される。

したがって、イベントの発生によって地磁気センサ158の検出値が変動し、表示部1 55に表示される方位の情報の精度が低下しても、イベントの発生を検知して方位の 情報を補正することにより、方位の情報精度を回復させることができる。

また、イベントごとに予め決定されて記憶部152に記憶される補正用データを用いて方位の情報の補正が行われるため、発生するイベント毎に精度良く方位の情報を補正することができる。

[0061] 図14は、電話機100における方位算出処理のさらなる例を図解したフローチャートである。

上述した図12に対する図14の違いは、所定のイベントの発生を検知してから、方

位の情報の補正を行うための演算を行って表示部155に演算結果の方位の情報を表示させるまでの間、表示部155に表示される方位の情報の精度が低いことを表示部155に表示させる点にある。

すなわち、信号処理・制御部160は、ステップST204において所定のイベントの発生を検知すると、表示部155に表示される方位の情報の精度が低いことを表示部155に表示させる(ST214)。例えば、方位を表すコンパスの画像を表示させている場合には、このコンパスが左右に振れるような動きを表示させることにより、方位の情報の精度が低いことを示しても良い。また、コンパスの画像の形や色、サイズを変化させたり、方位の精度が低いことを示す別の画像を表示させても良い。

[0062] 信号処理・制御部160は、このような方位の精度低下を示す情報を、補正値の変更 (ST206)、地磁気検出値の補正(ST208)、方位の算出(ST210)を行っている間 に表示部155に表示させる。そして、補正後の方位の情報を表示部155に表示させるときに、方位の精度が回復したとき(ST211)、そのことを表示部155に表示させる(ST216)。

例えば、コンパスの画像を左右に振らせる動きによって方位の精度低下を表示している場合には、この左右の振れを停止させることによって方位の精度が回復したことを示しても良い。コンパスの画像の形や色、サイズを変化させることにより方位の精度低下を表示している場合には、これを元の状態に戻すことにより精度の回復を表しても良い。あるいは、方位の情報の精度が回復したことを示す別の画像を表示させても良い。

- [0063] 以上のように、図14に示す方位算出処理の第2の例によれば、所定のイベントの発生(イベントの終了を含む)によって地磁気検出値の補正値に変更が生じた場合、新たな補正値によって方位を再算出してその結果を表示部155に表示させるまでの間、表示中の方位の情報の精度が低いことをユーザに通知することができる。これにより、表示されている方位の情報の精度が低いか否かをユーザが正しく把握できるようになる。
- [0064] 図15は、電話機100における方位算出処理の例を図解したフローチャートである。 上述した図12および図14の例の方位算出処理では、内部の処理的なイベントの

発生によって生じる地磁気検出値の変化を補正するが、次に述べる図15の例では、 筐体2、3の開、閉状態に応じた地磁気検出値の変化を補正する。

[0065] 電話機100には、上述のような内部処理によるイベントごとに発生する動的な磁界と異なり、例えばスピーカ22に用いられている磁石などの静的な磁界を発生する部品が含まれている。このような静磁界は、地磁気検出値の定常的な誤差(オフセット誤差)の原因になっており、後述するオフセット誤差補正処理によって補正される。しかしながら、筐体2、3の開、閉状態を変化させると、地磁気センサ158に対するこれらの静磁界発生源の位置関係が変化するため、これに応じてオフセット誤差も変化してしまう。

そこで、第3の例の方位算出処理では、このようなオフセット誤差の変化による方位 算出値の精度低下を低減させるため、オフセット誤差補正処理により得られるオフセット誤差の補正値を開状態および閉状態のそれぞれについてもイベントとして別に保持する。そして、筐体2,3の開閉状態に変化が生じた場合、これに合わせて、オフセット誤差の補正に用いる補正値を変更する。

- [0066] キー入力部154におけるキー入力操作等によって位置標定処理の開始が選択されると地磁気センサ158を起動して方位の情報を取得し(ST302)、信号処理・制御部160は、開閉判定部153の判定結果を調べる(ST304)。開閉判定部153において筐体2、3が開状態にあると判定されている場合、信号処理・制御部160は、例えば信号処理・制御部160内の図示しないレジスタに保持されている開状態のオフセット誤差補正用データを読み出し(ST306)、これに基づいて地磁気センサ158の検出値を補正する(ST307)。また、開閉判定部153において筐体2、3が閉状態にあると判定されている場合、信号処理・制御部160は、信号処理・制御部160内の図示しないレジスタに保持されている閉状態のオフセット誤差補正用データを読み出し(ST308)、これに基づいて地磁気センサ158の検出値を補正する(ST309)。
- [0067] なお、オフセット誤差補正用データは、例えば図13に示すように、3方向の地磁気 検出値に対応する3つの補正値で構成されている。この補正値は、後述するオフセッ ト誤差補正処理によって、位置標定処理の開始時やその実行中に度々取得されて、 開、閉の状態の各々に対して設けられた信号処理・制御部160の所定のレジスタに

書き込まれる。レジスタに格納されるオフセット誤差補正用データは、オフセット誤差 補正処理が実行され、新しい補正値が取得される度に書き換えられる。

- [0068] 地磁気センサ158の検出値を補正すると、信号処理・制御部160は、この補正後の地磁気検出値を用いて、方位の算出を行う(ST312)。
- [0069] 次いで信号処理・制御部160は、再び開閉判定部153の判定結果を取得して、開閉状態に変化がないか調べる(ST314)。

閉状態から開状態への変化を検出した場合、信号処理・制御部160は、ステップS T306に戻って開状態のオフセット誤差補正用データを読み出し、これを用いて地磁 気検出値の補正と方位の算出を繰り返す(ST307, ST312)。開状態から閉状態へ の変化を検出した場合、信号処理・制御部160は、ステップST308に戻って閉状態 のオフセット誤差補正用データを読み出し、これを用いて地磁気検出値の補正と方 位の算出を繰り返す(ST309, ST312)。

開閉状態の変化がない場合、信号処理・制御部160は、位置標定処理の終了が 選択されていないか確認し(ステップST316)、位置標定処理が続行するならば、現 在使用中のオフセット誤差補正用データを用いて地磁気検出値の補正と方位の算 出を繰り返す(ST307/309, ST312)。

- [0070] 位置標定処理の終了が選択されると、信号処理・制御部160は、レジスタに保持されている開状態および閉状態のオフセット誤差補正用データを記憶部152にそれぞれ保存する(ステップST318)。これにより、次回位置標定処理が行われる際には、記憶部152に保存したオフセット誤差補正用データを用いて速やかに方位の算出を行うことが可能になる。
- [0071] 以上のように、図15に示す方位算出処理例によれば、方位の情報を表示部155に表示させているときに開閉判定部153における判定結果の変化が監視され、該変化が検知された場合、表示部155に表示される方位の情報が該変化後の状態(開状態または閉状態)に応じて補正される。すなわち、該変化が検知されると、地磁気センサ158の検出値に、該変化後の状態に対応する所定の補正が行われ、この補正後の地磁気検出値に基づいて方位が算出される。

したがって、開状熊および閉状熊の両方で表示部155による方位の情報の表示が

可能な構造を有する電話機100において、この開閉状態の変化というイベントの発生に伴い地磁気センサ158の検出値が変動して、表示中の方位の情報の精度が低下する場合でも、開閉判定部153における判定結果の変化を検知して方位の情報を補正することにより、方位の情報の精度を回復させることができる。

また、開状態および閉状態のそれぞれにおけるオフセット誤差補正用データが信号処理・制御部160の所定のレジスタに別に保持されており、開閉状態に応じた適切なオフセット誤差補正用データを用いて方位の情報の補正が行われるため、それぞれの状態において精度良く方位の情報を補正することができる。

- [0072] なお、ステップST314における開閉状態の変化の検出では、開閉判定部153の判定結果に基づいて開閉状態の変化を検知した後、この変化後の開または閉状態が所定時間持続することをもって、開状態から閉状態もしくは閉状態から開状態への変化が生じたと最終判定しても良い。これにより、ユーザが意図せず可動機構部4が動いて開閉状態の変化が瞬間的に検出されるような場合に、オフセット誤差補正用データが誤って変更されることを防止できる。
- [0073] 図16は、電話機100における方位算出処理例を図解したフローチャートである。
- [0074] 上述した図15に対する図16の違いは、開閉判定部153において開閉状態の変化 というイベントを検知してから、方位を再算出し、該再算出した方位の情報を表示部1 55に表示させるまでの間、表示部155に表示される方位の情報の精度が低いことを 表示部155に表示させる点にある。

信号処理・制御部160は、ステップST314において開閉状態の変化を検出し、これに応じてステップST306またはST308において変化後の状態に応じたオフセット誤差補正用データを読み出した後、表示部155に表示される方位の情報の精度が低いことを表示部155に表示させる(ST320)。

信号処理・制御部160は、図14のステップST214と同様に、方位を表すコンパスの画像を左右に振らせたり、コンパスの形、色、サイズ等を変化させたり、方位の精度低下を表す別の画像を表示させるなどの方法により、方位の精度低下の情報を表示部155に表示させる。

[0075] 信号処理・制御部160は、このような方位の精度低下を示す情報を、地磁気検出

値の補正(ST307/309)および方位の算出(ST312)を行っている間に表示部15 5に表示させる。そして、補正後の方位の情報を表示部155に表示させるときに、方 位の精度が回復したことを表示部155に表示させる(ST322)。例えば、コンパスの 画像を左右に振らせる動きによって方位の精度低下を表示している場合には、この 左右の振れを停止させても良い。コンパスの画像の形や色、サイズを変化させること により方位の精度低下を表示している場合には、これを元の状態に戻しても良い。あ るいは、方位の情報の精度が回復したことを示す別の画像を表示させても良い。

- [0076] 以上のように、図16に示す方位算出処理の例によれば、筐体2、3の開閉状態の変化によって地磁気検出値の補正値に変更が生じた場合、新たな補正値によって方位を再算出してその結果を表示部155に表示させるまでの間、表示中の方位の情報の精度が低いことをユーザに通知することができる。これにより、表示されている方位の情報の精度が低いか否かをユーザが正しく把握できるようになる。
- [0077] 図17は、電話機100における方位算出処理の例を図解したフローチャートである。 上述した図15および図16の例の方位算出処理では、筐体2、3の開閉状態の変化 というイベントによって生じる地磁気検出値の変化を補正するが、次に述べる第5の 例では、メモリカード部159におけるメモリカードの装着の有無というイベント発生に 応じた地磁気検出値の変化を補正する。
- [0078] メモリカードに、例えば半導体集積装置のリードフレームなどのような磁気を帯び易い部品が使用されていると、この磁気の影響によって、メモリカードの装着時と未装着時とにおける地磁気センサ158のオフセット誤差が変化する場合がある。

図18は、メモリカードの装着の有無に応じた地磁気センサ検出値(X軸、Y軸、Z軸)の時間的変化の一例を示す図である。図18の例では、X軸、Y軸、Z軸における地磁気センサ検出値が、それぞれ'-7'、'-8'、'-1'だけ変化している。

図17の例の方位算出処理では、このような地磁気センサ検出値の変動による方位 の誤差を低減させるため、オフセット誤差補正処理により得られるオフセット誤差の補 正値をメモリカード装着時および未装着時のそれぞれのイベントについて別に保持 する。そして、筐体のメモリカードの装着状態に変化が生じた場合、これに合わせて、 オフセット誤差の補正に用いる補正値を変更する。

- [0079] キー入力部154におけるキー入力操作等によって位置標定処理の開始が選択されると地磁気センサ158を起動して方位の情報を取得し(ST402)、信号処理・制御部160は、メモリカード部159におけるメモリカードの装着状態を調べる(ST404)。メモリカード部159からの信号によってメモリカードが装着されていると判定した場合、信号処理・制御部160は、例えば信号処理・制御部160内の図示しないレジスタに保持されているメモリカード装着時のオフセット誤差補正用データを読み出し(ST406)、これに基づいて地磁気センサ158の検出値を補正する(ST407)。また、メモリカード部159からの信号によってメモリカードが装着されていと判定した場合、信号処理・制御部160は、信号処理・制御部160内の図示しないレジスタに保持されているメモリカード未装着時のオフセット誤差補正用データを読み出し(ST408)、これに基づいて地磁気センサ158の検出値を補正する(ST409)。
- [0080] メモリカード装着時および未装着時のオフセット誤差補正用データは、例えば図18に示すように、3方向の地磁気検出値に対応する3つの補正値で構成されている。この補正値は、後述するオフセット誤差補正処理によって、位置標定処理の開始時やその実行中に度々取得されて、メモリカード装着時および未装着時の各々に対して設けられた信号処理・制御部160内の所定のレジスタに書き込まれる。レジスタに格納されるオフセット誤差補正用データは、オフセット誤差補正処理が実行され、新しい補正値が取得される度に書き換えられる。
- [0081] 地磁気センサ158の検出値を補正すると、信号処理・制御部160は、この補正後の 地磁気検出値を用いて、方位の算出を行う(ST412)。
- [0082] 次いで信号処理・制御部160は、再びメモリカード部159におけるメモリカードの装着状態を確認し、装着状態に変化がないか調べる(ST414)。

メモリカード部159にメモリカードが装着されていない状態からメモリカード部159に メモリカードが装着された状態への変化を検出した場合、信号処理・制御部160は、 ステップST406に戻ってメモリカード装着時のオフセット誤差補正用データを読み出 し、これを用いて地磁気検出値の補正と方位の算出を繰り返す(ST407, ST412)。 メモリカード部159にメモリカードが装着された状態からメモリカード部159にメモリカードが装着されていない状態への変化を検出した場合、信号処理・制御部160は、 ステップST408に戻ってメモリカード未装着時のオフセット誤差補正用データを読み出し、これを用いて地磁気検出値の補正と方位の算出を繰り返す(ST409, ST412)。

メモリカードの装着状態に変化がない場合、信号処理・制御部160は、位置標定処理の終了が選択されていないか確認し(ST416)、位置標定処理が続行するならば、現在使用中のオフセット誤差補正用データを用いて地磁気検出値の補正と方位の 算出を繰り返す(ST407/409, ST412)。

- [0083] 位置標定処理の終了が選択されると、信号処理・制御部160は、レジスタに保持されているメモリカード装着時および未装着時のオフセット誤差補正用データを記憶部152にそれぞれ保存する(ST418)。これにより、次回位置標定処理が行われる際には、記憶部152に保存したオフセット誤差補正用データを用いて速やかに方位の算出を行うことが可能になる。
- [0084] 以上のように、図17に示す方位算出処理の例によれば、方位の情報を表示部155に表示させているときにメモリカード部159におけるメモリカードの装着状態の変化が監視され、該変化が検知された場合、表示部155に表示される方位の情報が該変化後の状態(装着または未装着)に応じて補正される。すなわち、メモリカードの装着状態に変化が検知された場合、地磁気センサ158の検出値に、該変化後の状態に対応する所定の補正が行われ、この補正後の地磁気検出値に基づいて方位が算出される。

したがって、メモリカードの装着状態の変化によって地磁気センサ158の検出値が変動し、表示部155に表示される方位の情報の精度が低下しても、メモリカード部159におけるメモリカードの装着状態の変化を検知して方位の情報を補正することにより、方位の情報の精度を回復させることができる。

また、装着状態および未装着状態のそれぞれにおけるオフセット誤差補正用データが信号処理・制御部160の所定のレジスタに別に保持されており、メモリカードの装着状態に応じた適切なオフセット誤差補正用データを用いて方位の情報の補正が行われるため、それぞれの状態において精度良く方位の情報を補正することができる。

[0085] 図19は、電話機100における方位算出処理の例を図解したフローチャートである。

上述した図17に対する図19の違いは、メモリカードの装着状態の変化というイベントを検知してから、方位を再算出し、該再算出した方位の情報を表示部155に表示させるまでの間、表示部155に表示される方位の情報の精度が低いことを表示部155に表示させる点にある。

- [0086] 信号処理・制御部160は、ステップST414においてメモリカード装着状態の変化を検出し、これに応じてステップST406またはST408において変化後の状態に応じたオフセット誤差補正用データを読み出した後、地磁気検出値を補正し(ST407/ST409)、表示部155に表示される方位の情報の精度が低いことを表示部155に表示させる(ST420)。
- [0087] 信号処理・制御部160は、このような方位の精度低下を示す情報を、地磁気検出値の補正(ST407/ST409)および方位の算出(ST412)を行っている間に表示部155に表示させる。そして、補正後の方位の情報を表示部155に表示させるときに、方位の精度が回復したことを表示部155に表示させる(ステップST422)。

例えば、コンパスの画像を左右に振らせる動きによって方位の精度低下を表示している場合には、この左右の振れを停止させても良い。コンパスの画像の形や色、サイズを変化させることにより方位の精度低下を表示している場合には、これを元の状態に戻しても良い。あるいは、方位の情報の精度が回復したことを示す別の画像を表示させても良い。

- [0088] 以上のように、図19に示す方位算出処理の例によれば、メモリカードの装着状態の変化によって地磁気検出値の補正値に変更が生じた場合、新たな補正値によって方位を再算出してその結果を表示部155に表示させるまでの間、表示中の方位の情報の精度が低いことをユーザに通知することができる。これにより、表示されている方位の情報の精度が低いか否かをユーザが正しく把握できるようになる。
- [0089] オフセット誤差補正処理

オフセット誤差補正処理は、電話機100内部の磁界発生源によって生じる定常的な地磁気検出値の誤差を補正するための処理である。

電話機100内部で発生する静的な磁界は、電話機100を向ける方位に依らない定常的な誤差を地磁気センサ158の検出値にもたらす。これに対し、地磁気自体の検

出値は、電話機100を向ける方位に応じて変化する。したがって、例えば電話機100を回転させながら地磁気の検出を行い、電話機100の回転に応じた地磁気のベクトルの軌跡を求めることによって、地磁気センサ158の検出値に含まれるオフセット誤差を容易に算出することできる。

[0090] 信号処理・制御部160は、位置標定処理を開始する際、ユーザに対して電話機10 0を回転するように促す指示を表示部155に表示させる。ユーザがこの指示に従って 電話機100を回転させると、信号処理・制御部160は、回転の途中で地磁気センサ1 58の検出値を複数取得し、取得した地磁気検出値のベクトル軌跡からオフセット誤 差を算出して、地磁気センサ158の検出値から差し引く。これにより、オフセット誤差 が補正された地磁気検出値が得られる。

信号処理・制御部160は、上述のようなオフセット誤差補正処理によって算出されるオフセット誤差を、オフセット誤差補正用データとして信号処理・制御部160の所定のレジスタに格納する。

信号処理・制御部160は、位置標定処理を実行している間にも、例えば一定時間毎に、上述したオフセット誤差補正処理を行う。

信号処理・制御部160は、次に述べるように、地磁気センサ158の検出値がオーバーフロー等の所定の異常状態になった場合にも、オフセット誤差補正処理を行って地磁気検出値の補正を行う。

- [0091] 図20は、地磁気検出値に異常状態が生じるというイベントの発生した場合における オフセット誤差補正処理の例を図解したフローチャートである。
- [0092] キー入力部154におけるキー入力操作等によって、位置標定処理の開始が選択されると(ST502)、信号処理・制御部160は、地磁気センサ158の検出値が所定の異常状態になっているか調べる(ST504)。

ここで所定の異常状態とは、例えば、'0'~'255'までの整数値で表現される8ビットの検出値の何れか1つ(すなわちX軸、Y軸、Z軸の地磁気検出値の何れか1つ)にオーバーフローが生じて、その値が最大値'255'や最小値'0'になっている状態である。また、上限値と下限値を持つ正常範囲が規定されている場合には、地磁気検出値の何れか1つがこの正常範囲を外れていることをもって、異常状態としても良い。

- [0093] 信号処理・制御部160は、このような地磁気検出値の異常状態を検知すると、該検知の時点から異常状態が持続する時間を計測する(ST506)。異常状態が所定時間(例えば5秒間)持続した場合、信号処理・制御部160は、電話機100の着磁等によってオフセット誤差が生じたと判断して、上述のオフセット誤差補正処理を実行する(ST510)。
- [0094] オフセット誤差補正処理の後、信号処理・制御部160は、位置標定処理の終了が 選択されているかどうかを調べ、当該処理が続くと確認された場合、上述したステップ ST504~ST510の処理を繰り返す(ST512)。

また、ステップST504において地磁気検出値の異常状態が検知されない場合や、ステップST508において所定時間内に全ての検出値の異常状態が解消されたと判定された場合、同様に位置標定処理の続行を確認した上で、ステップST504~ST510の処理を繰り返す(ST512)。

[0095] 以上のように、図20に示すオフセット誤差補正処理の第1の例によれば、方位の情報を表示部155に表示させているときに、地磁気センサ158の検出値が所定の異常状態になり、この異常状態が所定時間続いた場合、方位の情報の補正が行われる。すなわち、3方向の地磁気の検出値の何れか1つ(もしくは複数)が所定の異常状態になり、この異常状態が所定時間続いた場合に、地磁気センサ158のオフセット誤差を検出して補正する処理(オフセット誤差補正処理)が行われ、この補正後の地磁気検出値に基づいて方位が再算出される。したがって、地磁気センサ158の検出値の異常を監視することにより、電話機100のオフセット誤差の発生が検知されて適切な補正が行われるため、オフセット誤差による方位の情報の精度低下を抑えることができる。

また、図20の処理によれば、地磁気検出値が所定時間以上にわたって持続して所定の異常状態になった場合に、オフセット誤差補正処理が行われる。そのため、例えば建物や電車などから発生する外部磁界の影響で起こった一時的な地磁気検出値の異常状態を、電話機100の着磁等により生じたオフセット誤差と間違って判定し、不適切なオフセット誤差補正処理が実行されてしまうケースを減らすことができる。

[0096] 図21は、外部磁界の影響により生じた地磁気検出値の異常状態の一例を示す図

である。同図の例では、3~4秒の時間にわたって、Z軸方向の地磁気検出値が'0' に張り付いている。このような一時的な外部磁界による異常が起きているときにオフセット誤差補正処理を実行してしまうと、オフセット誤差を正しく算出できないため、誤った補正値で地磁気検出値の補正を行ってしまい、結果として方位の算出結果が不正確になる。方位の不正確な状態は、少なくとも次回のオフセット誤差補正処理まで続いてしまう。

- [0097] 図21に示すように、外部磁界の影響による地磁気検出値の異常状態は、通常、数 秒以内の一過性のものであり、例えば5秒間以内に多くの場合は正常状態に戻る。 したがって、図20の処理のように、所定時間以上異常状態が持続するか否かに応 じて、外部磁界の影響により生じた異常状態とオフセット誤差とを判別し、この判別結 果に従ってオフセット誤差補正処理の実行を制御することにより、該補正処理の不適 切な実行を効果的に防ぐことができる。
- [0098] 図22は、電話機100におけるオフセット誤差補正処理の例を図解したフローチャートである。

上述した図20に対する図22の違いは、方位の情報の補正を行っている間、方位の情報の精度が低いことを表示部155に表示させる点にある。

- [0099] 信号処理・制御部160は、ステップST508において地磁気検出値の異常が所定時間以上持続したと判定した後、表示部155に表示される方位の情報の精度が低いことを表示部155に表示させる(ST514)。
- [0100] 信号処理・制御部160は、このような方位の精度低下を示す情報を、オフセット誤差補正処理(ST510)を行っている間に表示部155に表示させる。そして、補正後の地磁気検出値に基づいて再算出した方位の情報を表示部155に表示させるときに、方位の精度が回復したことを表示部155に表示させる(ST516)。

例えば、コンパスの画像を左右に振らせる動きによって方位の精度低下を表示している場合には、この左右の振れを停止させても良い。コンパスの画像の形や色、サイズを変化させることにより方位の精度低下を表示している場合には、これを元の状態に戻しても良い。あるいは、方位の情報の精度が回復したことを示す別の画像を表示させても良い。

- [0101] 以上のように、図22に示すオフセット誤差補正処理の第2の例によれば、地磁気検 出値の異常に伴う方位の情報の補正を行っている間、表示部155に表示されている 方位の情報の精度が低いことをユーザに通知することができる。これにより、表示され ている方位の情報の精度が低いか否かをユーザが正しく把握できるようになる。
- [0102] 図23は、電話機100におけるオフセット誤差補正処理の例を図解したフローチャートである。

上述した図22に対する図23の違いは、上述のオーバーフロー方位の情報の補正 を行っている間、地図の表示をヘディングアップ表示からノースアップ表示に固定し 、方位の情報の補正が完了した場合、ヘディングアップ表示を再開することにある。

- [0103] 信号処理・制御部160は、ステップST508において地磁気検出値の異常が所定時間以上持続したと判定した後、地図の表示をヘディングアップ表示からノースアップ表示に固定し(ST518)、オフセット誤差補正処理(ST510)を行っている間は、ノースアップ表示を持続する。そして、この補正後の地磁気検出値に基づいて方位が再算出されときに、ノースアップ表示を解除して、ヘディングアップ表示を再開させる(ST520)。
- [0104] 以上のように、図23に示すオフセット誤差補正処理の例においても、地磁気検出値の異常の検出というイベント発生に伴う方位の情報の補正を行っている間、ノースアップ表示に固定することによって、表示部155に表示されている方位の情報の精度が低いことをユーザに通知することができる。これにより、表示されている方位の情報の精度が低いか否かをユーザが正しく把握できるようになる。
- [0105] 外部磁場の影響による誤差の補正 次に、外部磁場の影響によって地磁気センサ158の検出値に誤差が生じ、方位の 情報の精度が低下する場合の処理について述べる。
- [0106] 一般に、建物や電車などは磁界の発生源を多く含んでいるため、その内部や周囲では、これらの磁界発生源による外部磁界の影響を受けて、地磁気センサ158の検出値に大きな誤差を生じる。仮に、このような地域でオフセット誤差補正処理を実行してしまうと、誤ったオフセット誤差を算出してしまうため、該地域を離れた後も、再びオフセット誤差補正処理を行うまでは、不正確な方位の情報を表示部155に表示した

ままになる。

そこで、以下に述べる処理では、外部磁界等の影響で地磁気センサ158の検出値に誤差を生じる地域に入ったことを検知した場合、オフセット誤差補正処理を禁止する。また、方位の情報の精度が低下することを表示部155に表示させて、ユーザが方位の情報を参考にすべきか否かを判断できるようにする。

- [0107] 図24は、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の例を図解したフローチャートである。
- [0108] キー入力部154におけるキー入力操作等によって位置標定処理の開始が選択されると地磁気センサ158が起動されて方位の情報を取得し(ST602)、信号処理・制御部160は、GPS信号受信部151において受信されるGPS信号のレベルが所定の値より低いか否かを調べる(ST604)。

通常、GPS信号のレベルは、電話機100が建物の内部に入ると受信不能なレベルまで非常に小さくなる。本例では、この性質を利用して、電話機100が建物の内部に入っているか否かを判断する。

GPS信号が所定値より低くなったことを検知した場合、信号処理・制御部160は、電話機100が建物の内部に入ったと判断して、上述したオフセット誤差補正処理の実行を禁止する(ST606)。例えば一定時間毎に補正処理が繰り返されている場合には、この一定時間経過後も補正処理を行わないようにする。この場合、信号処理・制御部160は、方位の情報の精度が低下していることを表示部155に表示させる(ST608)。例えば、方位を表すコンパスの画像を左右に振らせたり、コンパスの形,色,サイズ等を変化させたり、方位の精度低下を表す別の画像を表示させるなどの方法により、方位の精度低下の情報を表示部155に表示させる。

[0109] 一方、GPS信号が所定値より高くなったことを検知した場合、信号処理・制御部16 0は、電話機100が建物の内部に入っていないと判断して、上述したオフセット誤差 補正処理の実行が禁止されている状態であれば、この禁止を解除する(ST610)。この場合、信号処理・制御部160は、方位の情報の精度が回復したことを表示部155 に表示させる(ST612)。例えば、コンパスの画像を左右に振らせる動きによって方位の精度低下を表示している場合には、この左右の振れを停止させても良い。コンパ

スの画像の形や色、サイズを変化させることにより方位の精度低下を表示している場合には、これを元の状態に戻しても良い。あるいは、方位の情報の精度が回復したことを示す別の画像を表示させても良い。

- [0110] ステップST608またはST612の後、信号処理・制御部160は、位置標定処理の終了が選択されているかどうかを調べ、当該処理が続くと確認された場合、上述したステップST604以降の処理を繰り返す(ST614)。
- [0111] 以上のように、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の例(図24)によれば、方位の情報を表示部155に表示させているとき、GPS 信号受信部151において受信されるGPS信号のレベルが監視し、このレベルが所定の値より低くなったことが検知された場合、電話機100が建物の内部に入っていると判断され、表示部155における方位の情報の精度が低いことを示す情報が表示部155に表示される。これにより、表示されている方位の情報の精度が低いか否かをユーザが正しく把握できるようになる。例えば、方位の情報の精度が低い場合、画面に表示中の方位を参考にせずに、地図に表示されている情報と周囲の風景とを見比べて方位を把握するなど、別の方法により方位の見当を付けるべきことがユーザにとって明確になるため、地図情報表示処理機能の使い易さを向上させることができる。

また、建物の内部など、外部磁場の影響によってオフセット誤差を正確に算出する ことができない不適切な地域においてオフセット誤差補正処理の実行が禁止される ため、不正確な方位の表示を長時間にわたって表示部155に表示させてしまうケースを減らすことができる。

[0112] 次に、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 例について、図25に示すフローチャートを参照して述べる。

上述した図24に対する図25の違いは、GPS信号が所定値より低くなったことを検知した場合に、地図の表示をヘディングアップ表示からノースアップ表示に固定し、GPS信号が所定値より高くなったことを検知した場合に、ヘディングアップ表示を再開させることにある。

[0113] 信号処理・制御部160は、ステップST604においてGPS信号が所定値より低くなったことを検知した場合、オフセット誤差補正処理を禁止するとともに(ST606)、地

図の表示をヘディングアップ表示からノースアップ表示に固定する(ST616)。また、ステップST604においてGPS信号が所定値より高くなったことを検知した場合、信号処理・制御部160は、オフセット誤差補正処理の禁止を解除するとともに(ST610)、ノースアップ表示を解除して、ヘディングアップ表示を再開させる(ST618)。

- [0114] 以上のように、図25に示す例の処理によれば、建物の内部など、外部磁場の影響で方位の情報の精度が低下する地域において、地図の表示をノースアップ表示に固定することにより、表示部155に表示されている方位の情報の精度が低いことをユーザに通知することができる。これにより、表示されている方位の情報の精度が低いか否かをユーザが正しく把握できるようになる。
- [0115] 次に、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 例について、図26に示すフローチャートを参照して述べる。

上述した図25に対する図26の違いは、GPS信号が所定値より低くなったことを検知した場合に、方位の算出処理ならびに地磁気センサ158の動作を停止させ、GPS信号が所定値より高くなったことを検知した場合に、これらの動作を再開させることにある。

- [0116] 信号処理・制御部160は、ステップST604においてGPS信号が所定値より低くなったことを検知した場合、地図の表示をヘディングアップ表示からノースアップ表示に固定するとともに(ST616)、方位の算出処理ならびに地磁気センサ158の動作を停止させる(ST620)。ステップST604においてGPS信号が所定値より高くなったことを検知した場合、信号処理・制御部160は、ノースアップ表示を解除してヘディングアップ表示を再開させるとともに(ST618)、方位の算出処理ならびに地磁気センサ158の動作を再開させる(ST622)。
- [0117] もともとGPS信号を受信し難い建物の内部などは、外部磁場の影響を受け易い環境であるが、以上述べた図26に示す例の処理によれば、電話機100がこのような環境にあるか否かをGPS信号のレベルに応じて検知して地磁気センサ158の動作を停止させるため、電話機100内の利用されない回路への無駄な電力の供給を抑えて、消費電力の削減を図ることができる。
- [0118] 次に、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の

例について、図27に示すフローチャートを参照して述べる。

上述した図26に対する図27の違いは、GPS信号が所定値より高くなったことを検知した場合、方位の算出値が安定してから、ヘディングアップ表示を再開させることにある。

- [0119] 信号処理・制御部160は、ステップST604においてGPS信号が所定値より高くなったことを検知し、方位の算出処理ならびに地磁気センサ158の動作を再開させた後(ST622)、方位の算出値が安定したか否かを判定する(ST624)。例えば、信号処理・制御部160は、方位の算出結果の所定時間における変動幅が所定範囲内に収まる場合、方位の算出値が安定したと判定する。そして、方位の算出値が安定したと判定したと判定した後、ノースアップ表示を解除して、ヘディングアップ表示を再開させる(ST618)。
- [0120] 以上のように、図27に示す例の処理によれば、GPS信号の信号レベルが所定値より高くなり、電話機100が建物等の内部から出たと判断された場合、方位の算出値の安定が確認されてからヘディングアップ表示が再開される。そのため、例えば建物の外に出た直後において建物からの磁場による地磁気検出値の変動が大きい状態で、精度の低い方位の情報が表示部155に表示されることを防ぐことができる。
- [0121] 次に、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 例について、図28に示すフローチャートを参照して述べる。

上述した例の処理(図24~図27)では、GPS信号の受信レベルに基づいて、電話機100が建物の内部に入っているか否か、すなわち外部磁場の影響によって地磁気の検出に誤差が生じ易い地域に入っているか否かを判断している。

次に述べる例(図28)の処理では、予め記憶部152に登録される情報に基づいて、電話機100の現在地が磁気センサ158の検出値の精度低下を生じる精度低下地域に含まれるか否かを判定し、含まれると判定した場合に、オフセット誤差補正処理を禁止する。また、方位の情報の精度が低下することを表示部155に表示させて、ユーザが方位の情報を参考にすべきか否かを判断できるようにする。

[0122] まず、キー入力部154におけるキー入力操作等によって位置標定処理の開始が選択されると地磁気センサ158を起動して方位の情報を取得し(ST702)、信号処理・

制御部160は、通信装置の現在地が記憶部152に登録されている精度低下地域に 含まれるか否か判定する(ST704)。

記憶部152に登録されている精度低下地域の情報は、例えば、ナビゲーションサーバ装置402から送られてくる地図の識別番号と、この地図上における精度低下地域の座標の情報(例えば座標の範囲によって地図上の精度低下地域を示す情報など)とによって構成される。

信号処理・制御部160は、まず記憶部152に登録されている精度低下地域の情報から、現在表示中の地図と同一の識別番号の情報を検索する。検索の結果、同一の識別番号の情報が存在する場合は、更にその座標情報が示す地図上の精度低下地域の座標範囲に電話機100の現在地が含まれるか否かを判定する。現在地がこの座標範囲に含まれる場合、信号処理・制御部160は、電話機100の現在地が精度低下地域に含まれるとの判定を下す。

- [0123] 現在地が精度低下地域に含まれると判定した場合、信号処理・制御部160は、上述したオフセット誤差補正処理の実行を禁止する(ST706)。例えば一定時間毎に補正処理が繰り返されている場合、この一定時間経過後も補正処理を行わないようにする。この場合、信号処理・制御部160は、方位の情報の精度が低下していることを表示部155に表示させる(ST708)。例えば、方位を表すコンパスの画像を左右に振らせたり、コンパスの形、色、サイズ等を変化させたり、方位の精度低下を表す別の画像を表示させるなどの方法により、方位の精度低下の情報を表示部155に表示させる。
- [0124] 一方、現在地が精度低下地域の外にあると判定した場合、信号処理・制御部160 は、上述したオフセット誤差補正処理の実行が禁止されている状態であれば、この禁止を解除する(ST710)。この場合、信号処理・制御部160は、方位の情報の精度が回復したことを表示部155に表示させる(ST712)。例えば、コンパスの画像を左右に振らせる動きによって方位の精度低下を表示している場合には、この左右の振れを停止させても良い。コンパスの画像の形や色、サイズを変化させることにより方位の精度低下を表示している場合には、これを元の状態に戻しても良い。あるいは、方位の情報の精度が回復したことを示す別の画像を表示させても良い。

- [0125] ステップST708またはST712の後、信号処理・制御部160は、位置標定処理の終了が選択されているかどうかを調べ、当該処理が続くと確認された場合、上述したステップST704以降の処理を繰り返す(ST714)。
- [0126] 以上のように、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の例(図28)によれば、方位の情報を表示部155に表示させているとき、電話機100の現在地が記憶部152に登録される精度低下地域に含まれるか否かの判定が行われる。この判定の結果、現在地が精度低下地域に含まれると判定された場合、表示部155における方位の情報の精度が低いことを示す情報が表示部155に表示される。これにより、表示されている方位の情報の精度が低いか否かをユーザが正しく把握できるようになるため、地図情報表示処理機能の使い易さを向上させることができる。
- [0127] また、外部磁場の影響によってオフセット誤差を正確に算出することができない精度低下地域においてオフセット誤差補正処理の実行が禁止されるため、不正確な方位の表示を長時間にわたって表示部155に表示させてしまうケースを減らすことができる。
- [0128] 次に、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 第6の例について、図29に示すフローチャートを参照して述べる。

上述した図28に対する図29の違いは、現在地が精度低下地域に含まれると判定した場合に、地図の表示をヘディングアップ表示からノースアップ表示に固定し、現在地が精度低下地域から外れたと判定した場合に、ヘディングアップ表示を再開させることにある。

[0129] 信号処理・制御部160は、ステップST704において電話機100の現在地が精度低下地域に含まれると判定した場合、オフセット誤差補正処理を禁止するとともに(ST706)、地図の表示をヘディングアップ表示からノースアップ表示に固定する(ST716)。ステップST704において現在地が精度低下地域から外れたと判定した場合、信号処理・制御部160は、オフセット誤差補正処理の禁止を解除するとともに(ST710)、ノースアップ表示を解除して、ヘディングアップ表示を再開させる(ステップST718)。

- [0130] 以上のように、図29に示す例の処理によれば、建物の内部など、外部磁場の影響で方位の情報の精度が低下する地域において、地図の表示をノースアップ表示に固定することにより、表示部155に表示されている方位の情報の精度が低いことをユーザに通知することができる。これにより、表示されている方位の情報の精度が低いか否かをユーザが正しく把握できるようになる。
- [0131] 次に、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 例について、図30に示すフローチャートを参照して述べる。

上述した図29に対する図30の違いは、記憶部152の情報に基づいて電話機100 が精度低下地域に入ったと判定した場合に、方位の算出処理ならびに地磁気セン サ158の動作を停止させ、電話機100が精度低下地域から出たと判定した場合に、 これらの動作を再開させることにある。

- [0132] 信号処理・制御部160は、ステップST704において電話機100の現在地が精度低下地域に含まれると判定した場合、地図の表示をヘディングアップ表示からノースアップ表示に固定するとともに(ST716)、方位の算出処理ならびに地磁気センサ158の動作を停止させる(ST720)。ステップST704において現在地が精度低下地域から外れたと判定した場合、信号処理・制御部160は、ノースアップ表示を解除してヘディングアップ表示を再開させるとともに(ST718)、方位の算出処理ならびに地磁気センサ158の動作を再開させる(ST722)。
- [0133] 以上のように、図30に示す例の処理によれば、外部磁場の影響で方位の情報の精度が低下する地域において地磁気センサ158の動作を停止させるため、利用されない回路への無駄な電力の供給を抑えて、消費電力の削減を図ることができる。
- [0134] 次に、外部磁場の影響によって地磁気検出値に誤差が生じる場合における処理の 例について、図31に示すフローチャートを参照して述べる。

上述した図30に対する図31の違いは、電話機100が精度低下地域から出たとを 判定した場合、方位の算出値が安定してから、ヘディングアップ表示を再開させるこ とにある。

[0135] 信号処理・制御部160は、ステップST704において電話機100の現在地が精度低下地域より外れたことを判定し、方位の算出処理ならびに地磁気センサ158の動作

を再開させた後(ST722)、方位の算出値が安定したか否かを判定する(ST724)。 例えば、信号処理・制御部160は、方位の算出結果の所定時間における変動幅が 所定範囲内に収まる場合、方位の算出値が安定したと判定する。そして、方位の算 出値が安定したと判定した後、ノースアップ表示を解除して、ヘディングアップ表示を 再開させる(ST718)。

- [0136] 以上のように、図31に示す例の処理によれば、電話機100の現在地が精度低下地域より外れたと判断された場合、方位の算出値が安定したことを確認してからヘディングアップ表示が再開される。そのため、例えば精度低下地域から外れた直後において、建物などからの磁界による地磁気検出値の変動が残っている場合に、精度の低い方位の情報が表示部155に表示されることを防ぐことができる。
- [0137] 次に、上述した外部磁場の影響を補正する例の処理(図28〜図31)において、記憶部152に精度低下地域を登録する処理について、図32のフローチャートを参照して述べる。
- [0138] キー入力部154におけるキー入力操作等によって位置標定処理の開始が選択されると(ST732)、信号処理・制御部160は、地磁気センサ158の検出値が所定の異常状態になっているか調べる(ST734)。

ここで所定の異常状態は、例えば図20のオフセット誤差補正処理において述べた ものと同様である。すなわち、'0'~'255'までの整数値で表現される8ビットの検出 値の何れか1つにオーバーフローが生じている状態や、地磁気検出値の何れか1つ が所定の正常範囲を外れている状態を、異常状態として検知する。

- [0139] 信号処理・制御部160は、このような地磁気検出値の異常状態を検知すると、該検知の時点から異常状態が持続する時間を計測する(ST736)。そして、異常状態が所定時間(例えば5秒間)以内で終了した場合、信号処理・制御部160は、外部磁界によって地磁気検出地に誤差が生じたと判断し(ST738)、現在地を精度低下地域として記憶部152に登録する(ST740)。
- [0140] 記憶部152への精度低下地域の登録は、地磁気検出値の異常を検出した際に表示していた地図の識別番号と、該異常が生じた地図上の座標の情報(例えば異常発生地点を含む数メートル四方の領域の座標範囲など)とを関連付けて、記憶部152

に割り当てられた所定の精度低下地域登録用データテーブルに格納することにより 行う。

- [0141] なお、記憶部152に登録する精度低下地域の数には上限を設けても良い。この場合、信号処理・制御部160は、記憶部152に登録される精度低下地域の数がこの上限に達した場合、新たな精度低下地域を登録する際に、登録済みの精度低下地域の情報の中から最も古い情報を削除しても良い。これにより、精度低下地域の登録情報によって記憶部152の記憶領域が際限なく消費されることを防止できるとともに、最新の情報を残すことによって精度低下地域の情報の信頼性を高めることができる。
- [0142] 記憶部152に精度低下地域を登録した後、信号処理・制御部160は、位置標定処理の終了が選択されているかどうかを調べ(ST742)、当該処理が続くと確認された場合、上述したステップST734~ST740の処理を繰り返す。

また、ステップST734において地磁気検出値の異常状態が検知されない場合や、ステップST738において所定時間以上にわたって地磁気検出値の異常状態が続いたと判定された場合、同様に位置標定処理の続行を確認した上で、ステップST734~ST740の処理を繰り返す。

[0143] 以上、本発明の好ましい実施形態について述べてきたが、本発明は上述した形態 にのみ限定されるものではなく、種々のバリエーションを含む。

上述の実施形態では、方位算出処理の例、オフセット誤差補正処理の例、外部磁場の影響により地磁気検出値に誤差が生じる場合の処理としての例を示したが、本発明の実施形態には、これらの処理例の少なくとも一部を任意に組み合わせた形態が含まれる。

- [0144] 上述の実施形態では、地磁気センサ158において3方向の地磁気が検出される例を示したが、これに限らず、例えば2方向でも良い。
- [0145] 上述の実施形態では、例えば図14のステップST208などにおいて、方位の情報 の精度が低下していることを表示部155に表示させる例が示されているが、これに限 定されず、例えばこの表示を行っているときに方位の情報の補正を行っている場合 には、その補正中であることを表示部155に表示させても良い。あるいは、精度低下中と補正中とを両方示す情報を表示部155に表示させても良い。

- [0146] また、精度低下中や補正中などの情報を表示する代わりに、方位の情報の表示を 単に停止させても良い。この場合、方位の補正が完了した場合(あるいは精度低下 地域から外れた場合)には、方位の情報の表示を再開することによって、方位の情報 の精度が回復したことをユーザに示しても良い。
- [0147] 図26,27のステップST616およびST618ではノースアップ表示の固定とその解除を行っているが、これに限らず、例えば図24のステップST608およびST612と同様に、方位の精度低下、方位の精度回復の表示を行っても良い。
- [0148] 図30,31のステップST716およびST718ではノースアップ表示の固定とその解除を行っているが、これに限らず、例えば図28のステップST708およびST712と同様に、方位の精度低下、方位の精度回復の表示を行っても良い。
- [0149] 外部磁場の影響により地磁気検出値に誤差が生じる場合の処理の例(図28~図3 1)では、精度低下地域の情報を記憶部152のデータテーブルから取得しているが、これに限らず、例えば無線通信部150を介して接続されるサーバ装置から取得しても良い。すなわち、信号処理・制御部160は、電話機100の現在地が精度低下地域に含まれるか否かを示す情報を、所定のサーバ装置から無線通信部150を介して取得し、この取得した情報において現在地が精度低下地域に含まれることが示されている場合、オフセット誤差補正処理を禁止しても良い。
- [0150] 上述の実施形態では、電話機100において地図の回転処理(例えばヘディングアップ表示など)を行っているが、これに限らず、例えば電話機100がナビゲーションサーバ装置402に対して地図の表示の向きを指定して地図情報を要求し、ナビゲーションサーバ装置402が、電話機100から要求に応じた向きの地図情報を生成して電話機100に提供しても良い。すなわち、信号処理・制御部160は、地磁気検出値に基づき算出した方位に応じた地図の画像情報を、ナビゲーションサーバ装置402から取得して表示部155に表示させる処理を行なっても良い。そして、この処理中に、例えばGPS信号のレベルが所定値より低くなる等により、地磁気検出値の検出精度の低下が検知された場合、信号処理・制御部160は、算出した方位とは関係なく予め設定された方位の地図の画像情報をナビゲーションサーバ装置402に要求してこれを取得し、表示部155に表示させても良い。

- [0151] 上述の実施形態では、GPS信号に応じた位置の算出処理をGPSサーバ装置401 で行っているが、これに限らず、電話機100においてGPS信号から位置を求める計算を行っても良い。
- [0152] 上述の実施形態では、地図情報をナビゲーションサーバ装置402から取得しているが、これに限らず、地図情報を電話機100の内部の記憶装置に格納しても良い。
- [0153] 上述の実施形態では、信号処理・制御部160の処理がコンピュータによってプログラムに基づいて実行される例を示したが、これらの処理の少なくとも一部をコンピュータによらずにハードウェアで実行させることも可能である。

逆に、信号処理・制御部160以外の他のユニットにおける少なくとも一部の処理を、信号処理・制御部160のコンピュータにおいて実行させても良い。

[0154] また、本発明の移動可能な通信装置は携帯電話機に限定されない。例えば、PDA (personal digital assistants)など、通信機能を有する移動可能で、好ましくは携帯型 の通信装置装置に本発明は広く適用可能である。

請求の範囲

[1] 地磁気を検出する地磁気センサと、

前記地磁気センサの検出値に基づいて地理的方位を算出する制御部と、を備える方位算出装置であって、

前記制御部は、当該方位算出装置内部の磁界変動に基づく前記地磁気センサへのオフセット誤差を補正するオフセット誤差補正処理を実行可能であり、

前記地磁気センサの検出値が異常状態となった場合、当該異常状態が所定時間 続いたときには前記オフセット誤差補正処理を行い、所定時間内で異常状態が終了 した場合には前記オフセット誤差補正処理を行わない

ことを特徴とする方位算出装置。

[2] 表示部を更に備え、

前記制御部は、前記地磁気センサの検出値に基づいて地理的方位を算出し、当該算出した方位の情報を前記表示部に表示させるよう制御する

ことを特徴とする請求の範囲1に記載の方位算出装置。

[3] 前記地磁気センサは、互いに直交する複数の方向における地磁気をそれぞれ検出し、

前記制御部は、前記複数方向の地磁気の検出値の少なくとも1つが所定の異常状態になってから、前記複数方向の地磁気の検出値の全てが前記異常状態でなくなるまでに前記所定時間を要しなかった場合、前記オフセット誤差補正処理を行わないことを特徴とする請求の範囲1に記載の方位算出装置。

[4] 前記異常状態は、前記地磁気センサの検出値が、正常と定めた範囲を外れる状態である

ことを特徴とする請求の範囲3に記載の方位算出装置。

[5] 前記地磁気センサは、地磁気のアナログ信号をデジタル信号に変換して地磁気の 検出値として出力し、

前記所定の異常状態は、前記地磁気センサの検出値が前記デジタル信号の最大値または最小値と等しくなる状態である

ことを特徴とする請求の範囲3に記載の方位算出装置。

- [6] 前記制御部は、前記方位の情報のオフセット誤差補正処理を実行しているときに、 方位の情報の精度が低いこと、および/または、前記方位の情報の補正処理を実行 中であることを示す情報を前記表示部に表示させるよう制御する
 - ことを特徴とする請求の範囲2に記載の方位算出装置。
- [7] 前記制御部は、前記方位の情報として特定の方位を指示す絵記号を表示させ、当該絵記号の表示形態を前記異常状態でない場合と異ならせることにより、前記方位の情報の精度が低いこと、および/または、前記方位の情報の補正処理を実行中であることを示す

ことを特徴とする請求の範囲6に記載の方位算出装置。

[8] 前記制御部は、前記方位の情報のオフセット誤差補正処理が完了した際に、方位の情報の精度が回復したこと、および/または、前記方位の情報のオフセット誤差補 正処理が完了したことを示す情報を前記表示部に表示させる

ことを特徴とする請求の範囲6に記載の方位算出装置。

[9] 前記制御部は、前記方位の情報のオフセット誤差補正処理が完了した際に、前記 絵記号の表示形態を前記異常状態でない場合と同じくすることにより、前記方位の情報の精度が回復したこと、および/または、前記方位の情報のオフセット誤差補正処理が完了したことを示す

ことを特徴とする請求の範囲7に記載の方位算出装置。

[10] 現在地の地理的位置に関連する情報を取得する位置情報取得部を有し、前記制御部は、

前記位置情報取得部において取得される位置情報に基づいて特定される現在地 の周辺地図を取得し、前記表示部の表示画面上における前記地図の向きを前記算 出した方位に応じて回転制御する第1の表示処理を行い、

前記第1の表示処理中に、前記地磁気センサの検出値が前記異常状態になり、当該異常状態が所定時間続いた場合には、前記回転制御を停止し、前記地図上の所定の方位を前記表示画面上の所定の方向に固定して表示させる第2の表示処理を行う

ことを特徴とする請求の範囲2に記載の方位算出装置。

[11] 前記制御部は、前記回転制御を停止した後、前記オフセット誤差補正処理が完了 した場合、前記回転制御を再開する

ことを特徴とする請求の範囲10に記載の方位算出装置。

[12] 地磁気を検出する地磁気センサと、前記地磁気センサの検出値に基づいて地理的 方位を算出する方位算出装置における誤差補正方法であって、

当該方位算出装置内部の磁界変動に基づく前記地磁気センサへのオフセット誤差を補正するオフセット誤差補正処理ステップと、

前記地磁気センサの検出値が異常状態となったことを検出する異常状態検出ステップと、

前記異常状態検出ステップにて異常状態が検出されると、当該異常状態が所定時間続くか否かを判定する判定ステップと、を備え、

前記判定ステップにて前記異常状態が所定時間続くと判定すると前記オフセット誤差補正処理ステップを行い、前記所定時間続かないと判定すると前記オフセット誤差補正処理ステップを行わない

ことを特徴とする方位算出装置における誤差補正方法。

[図1]

[図2]

WO 2005/095890 PCT/JP2005/006333

[図4]

[図5]

[図6]

[図7]

FIG. 7

WO 2005/095890 PCT/JP2005/006333

8/32

[図8]

FIG. 8

[図9]

FIG. 9

[図10]

FIG. 10

WO 2005/095890 PCT/JP2005/006333

11/32

[図11]

FIG. 11

WO 2005/095890 PCT/JP2005/006333

12/32

[図12]

FIG. 12

[図13]

FIG. 13

イベント	地磁気センサ補正値		
	X軸	人軸	Z軸
通信処理	-1	0	-1
音声出力処理	1	0	0
バックライト点灯(低)	1	0	-1
バックライト点灯(中)	-2	0	1
バックライト点灯(高)	-3	1	1

[図14]

FIG. 14

[図15]

FIG. 15

[図16]

FIG. 16

[図17]

FIG. 17

WO 2005/095890 PCT/JP2005/006333

[図18]

FIG. 18

WO 2005/095890 PCT/JP2005/006333

[図19]

FIG. 19

[図20]

FIG. 20

[図21]

FIG. 21

[図22]

[図23]

[図24]

FIG. 24

[図25]

FIG. 25

[図26]

FIG. 26

[図27]

FIG. 27

[図28]

FIG. 28

[図29]

FIG. 29

[図30]

FIG. 30

[図31]

FIG. 31

[図32]

FIG. 32

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/006333

Α.	CLAS	SIFICA	TION	OF	SUB	JECT	MAT	TER
	Tnt	C_{1}^{7}	േ വ	CI	7/3	9		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ G01C17/00-17/38, G01C21/00-21/36, G01C23/00-25/00, G01R33/00-33/26, G09B23/00-29/14

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	JP 8-105745 A (Fujitsu Ltd.), 23 April, 1996 (23.04.96), Par. Nos. [0011], [0012] (Family: none)	1,12 2,6,7
Y	JP 2002-098536 A (Nippon Seiki Co., Ltd.), 05 April, 2002 (05.04.02), Par. No. [0018]; Figs. 2 to 5 (Family: none)	2
Y	JP 5-113342 A (Pioneer Electronic Corp.), 07 May, 1993 (07.05.93), Par. Nos. [0013], [0014] & EP 539145 A1	6,7

×	Further documents are listed in the continuation of Box C.		See patent family annex.	
* "A"	Special categories of cited documents: document defining the general state of the art which is not considered	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand	
	to be of particular relevance		the principle or theory underlying the invention	
"E"	earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive	
"L"	cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means		step when the document is taken alone	
			document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is	
"O"			combined with one or more other such documents, such combination being obvious to a person skilled in the art	
"P"			document member of the same patent family	
	the priority date channed	"&"	document memoer of the same patent ranning	
Date of the actual completion of the international search		Date of mailing of the international search report		
22 June, 2005 (22.06.05)		05 July, 2005 (05.07.05)		
Name and mailing address of the ISA/		Authorized officer		
	Japanese Patent Office			
Facsimile No.		Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/006333

C (Continuation	a). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2004-028837 A (Kyocera Corp.), 29 January, 2004 (29.01.04), (Family: none)	1-12
A	JP 2002-328042 A (Kyocera Corp.), 15 November, 2002 (15.11.02), (Family: none)	1-12
A		1-12

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/006333

There is a passage "indicating that correction of information on the direction is continuing" in claims 6, 7. However, there is no mention supporting this passage in the description, and the inventions of claim 6, 7 are not supported by the description within the meaning PCT Article 6. Consequently, the international search has been conducted only on the scope, namely, "indicating that the accuracy of direction information is low", disclosed in and supported by the description.

発明の属する分野の分類(国際特許分類(IPC)) Int.Cl.7 G 0 1 C 1 7/3 8

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.7

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年1996-2005年

日本国実用新案登録公報

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X JP 8-105745 A(富士通株式会社)1996.04. 1, 12 23, 段落【0011】,【0012】(ファミリーなし) Y 2, 6, 7 Y JP 2002-098536 A(日本精機株式会社)2002. 2 04.05, 段落【0018】、【図2】-【図5】(ファミリーなし)

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

国際調査を完了した日 22.06.2005	国際調査報告の発送日 05. 7. 2005			
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP)	特許庁審査官(権限のある職員) 3 H	9521		
郵便番号100-8915	片岡 弘之			
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線	3 3 1 4		

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*		関連する 請求の範囲の番号
Y	JP 5-113342 A (パイオニア株式会社) 1993.0 5.07,段落【0013】,【0014】 & EP 539145 A1	6, 7
A	JP 2004-028837 A (京セラ株式会社) 2004. 01.29 (ファミリーなし)	1-12
Α	JP 2002-328042 A (京セラ株式会社) 2002. 11.15 (ファミリーなし)	1-12
A	JP 10-197258 A (京セラ株式会社) 1998.07. 31 (ファミリーなし)	1-12

—————————————————————————————————————	
請求の範囲6,7に「前記方位の情報の補正処理 あるが,明細書中には該記載を裏付ける記載がなく いる。よって,調査は明細書に開示され,裏付けら 度が低いことを示す」事項に限定して行った。	, PCT第6条の意味での裏付けを欠いて
·	· ·