Real and Complex Analysis Qualifying Exam

Fall 2007

(Burckel and Moore)

Throughout, $\mathbb{N} := \{1, 2, 3, ...\}$, $\mathbb{R} := \text{real numbers and } \mathbb{C} := \text{the complex numbers.}$

Problem 1. R is an open rectangle with sides parallel to the coordinate axes, $f: \bar{R} \to \mathbb{C}$ is continuous and satisfies

$$\int_{x_0}^x f(s+iy_0)ds - \int_{x_0}^x f(s+iy)ds + i \int_{y_0}^y f(x+it)dt - i \int_{y_0}^y f(x_0+it)dt = 0$$

for all $x_0 + iy_0$, $x + iy \in R$. Find a continuous function $F : R \to \mathbb{C}$ such that $D_1F = f = -iD_2F$ in R.

Problem 2. (i) Prove there is no holomorphic logarithm in the region $A := \{z \in \mathbb{C} : 0 < |z| < 1\}$.

(ii) Improve (i) by showing that there is no logarithm is A which is even continuous.

Problem 3. (i) $\emptyset \neq U$ is an open subset of \mathbb{C} , f_n are holomorphic functions in U and $f_n \to f$ uniformly on each compact subset of U. Show that f is differentiable in U.

(ii) Show that the conclusion of (i) fails if U is an open subset of \mathbb{R} and each f_n is a differentiable function in U.

Problem 4. Show that $f(x) = \frac{\cos x}{1 + x^4}$ is (absolutely) integrable over \mathbb{R} and calculate $\int_{\mathbb{R}} f$.

Problem 5. Let $f_n: X \to \mathbb{R}$ be a sequence of real-valued measurable functions on a measure space (X, \mathcal{M}, μ) . Suppose E is a measurable subset of X such that for each $x \in E$,

$$\sup_{k \in \mathbb{N}} |f_k(x)| < \infty.$$

Suppose also that for each $\alpha > 0$ there exists a positive integer k_{α} such that for every $k \geq k_{\alpha}$, $\mu(\{x \in E : |f_k(x)| \leq \alpha\}) \leq \frac{\alpha}{k}$. Prove that $\mu(E) = 0$.

Problem 6. Suppose (X, \mathcal{M}, μ) is a measure space, μ is a positive measure, and $f_n \in L^p(X)$ for $n \in \mathbb{N}$, and $f \in L^p(X)$, where $1 \le p < \infty$. Prove:

- (i) If $||f f_n||_p \to 0$ as $n \to \infty$, then $||f_n||_p \to ||f||_p$.
- (ii) If $f_n \to f$ a.e. and $||f_n||_p \to ||f||_p$ then $||f f_n||_p \to 0$.

Problem 7. Let h be a bounded Lebesgue measurable function on [0,1] which has the property that $\lim_{n\to\infty}\int_I h(nx)dx=0$ for every interval $I\subset[0,1]$. Prove that for every $f\in L^1([0,1])$,

$$\lim_{n \to \infty} \int_0^1 f(x)h(nx)dx = 0.$$

Problem 8. Suppose (X, \mathcal{M}, μ) is a measure space with $\mu(X) < \infty$, and $f: X \to [0, \infty)$ an \mathcal{M} -measurable function. Suppose $G: [0, \infty) \to [0, \infty)$ is increasing. Prove that

$$\int_X G(f(x))d\mu(x) \ge \int_0^\infty G'(t)\mu(\{x \in X : f(x) > t\})dt.$$