Non-Interactive Batch Arguments for NP from Standard Assumptions

Abhishek Jain
Johns Hopkins University

Zhengzhong Jin
Johns Hopkins University

Arka Rai Choudhuri

Johns Hopkins University

Crypto 2021

CRS

 C, x_1, \cdots, x_k

$$C, x_1, \cdots, x_k$$

CRS

$$C, x_1, \cdots, x_k$$

$$C, x_1, \cdots, x_k$$

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

 $\boldsymbol{\Pi}$ is publicly verifiable

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

No PPT $\overline{\mathbb{Z}}$ can produce accepting Π if

$$\exists i^* \in [k], (C, x_{i^*}) \times SAT$$

 $\boldsymbol{\Pi}$ is publicly verifiable

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

 $\boldsymbol{\Pi}$ is publicly verifiable

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$

 $\boldsymbol{\Pi}$ is publicly verifiable

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$

CRS $\leftarrow \ll |w| \cdot k \rightarrow$ \square C, x_1, \dots, x_k C, x_1, \dots, x_k

Verifier running time: $k \cdot |x| + |\Pi|$

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

Interactive batch proofs

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

Interactive batch proofs

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

Secure against unbounded cheating prover.

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

UP – each statement has a unique witness.

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

Succinct Non-interactive Arguments (SNARGs) for NP

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

SNARGs

 $|\Pi| \ll |w|$

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

Succinct Non-interactive Arguments (SNARGs) for NP

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

$$SAT^{\otimes k} = \{ (C, x_1, \dots, x_k) \mid \forall i \in [k], (C, x_i) \in SAT \}$$

SNARGs

 $|\Pi| \ll |w|$

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

SNARGs for NP from Non-falsifiable assumptions/Random oracle model

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

$$SAT^{\otimes k} = \{ (C, x_1, \dots, x_k) \mid \forall i \in [k], (C, x_i) \in SAT \}$$

SNARGs

 $|\Pi| \ll |w|$

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

SNARGs for NP from Non-falsifiable assumptions/Random oracle model

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

Designated Verifier non-interactive batch arguments for NP

[Brakerski-Holmgren-Kalai'17, Brakerski-Kalai'20]

Interactive batch proofs for UP

[Reingold-Rothblum'16, Reingold-Rothblum'18, Rothblum-Rothblum'20]

SNARGs for NP from Non-falsifiable assumptions/Random oracle model

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

Designated Verifier from standard assumptions

[Brakerski-Holmgren-Kalai'17, Brakerski-Kalai'20]

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

SNARGs for NP from Non-falsifiable assumptions/Random oracle model

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

Designated Verifier from standard assumptions

[Brakerski-Holmgren-Kalai'17, Brakerski-Kalai'20]

Non-interactive batch arguments for NP from new non-standard assumption [Kalai-Paneth-Yang'19]

Falsifiable assumption on groups with bilinear maps.

Do there exists non-interactive batch arguments for NP based on standard assumptions?

Our Result

Theorem

Assuming QR + (LWE/sub-exp DDH) there exists a non-interactive batch argument for NP where

$$|\Pi| = \tilde{O}(|C| + \sqrt{k|C|})$$

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

Key Insights

 β is a random string

 β is a random string

FS methodology is secure for certain protocols under a variety of assumptions (via correlation intractable hash functions)

[Kalai-Rothblum-Rothblum'17, Canetti-Chen-Reyzin-Rothblum'18, Holmgren-Lombardi'18, Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Rothblum-Wichs'19, Peikert-Sheihian'19, Brakerski-Koppula-Mour'20, Couteau-Katsumata-Ursu'20, Jain-Jin'21, Jawale-Kalai-Khurana-Zhang'21, Holmgren-Lombardi-Rothblum'21]

 β is a random string

FS methodology is secure for certain protocols under a variety of assumptions (via correlation intractable hash functions)

 β is a random string

FS methodology is secure for certain protocols under a variety of assumptions (via correlation intractable hash functions)

Proven secure if starting with statistically secure interactive protocols (interactive proofs).

 β is a random string

FS methodology is secure for certain protocols under a variety of assumptions (via correlation intractable hash functions)

Proven secure if starting with statistically secure interactive protocols (interactive proofs).

No known interactive proofs for batch NP.

Dual-Mode Interactive Batch Arguments

Security Intuition

Security Intuition

Security Intuition

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

f determined by the information theoretic component.

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Protocol Template


```
SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}
\forall i \in [k], (C, x_i) \in SAT
```

Protocol Template


```
SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}
\forall i \in [k], (C, x_i) \in SAT
```

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Somewhere Statistically
Binding (SSB) Commitment
Scheme

Needs to be Fiat-Shamir friendly.

Based on LWE/sub-exp DDH

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Somewhere Statistically Binding (SSB) Commitment Scheme

Needs to be Fiat-Shamir friendly.

Based on LWE/sub-exp DDH

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with appropriate opening to f (with additional properties) based on $\mathbb{Q}\mathbb{R}$

Needs to be Fiat-Shamir friendly.

(Some) Technical Details

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with appropriate opening to f (with additional properties) based on $\mathbb{Q}\mathbb{R}$

Needs to be Fiat-Shamir friendly.

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with appropriate opening to f (with additional properties) based on QR

Needs to be Fiat-Shamir friendly.

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with appropriate opening to f (with additional properties) based on $\mathbb{Q}\mathbb{R}$

Needs to be Fiat-Shamir friendly.

 $\forall x \notin \mathcal{L}$ $BAD_{x,\alpha} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}$

 β is a random string

$$\forall x \notin \mathcal{L}$$
 $BAD_{x,\alpha} = \{\beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma)\}$

If $x \notin \mathcal{L}$, no PPT $\overline{\mathbb{S}}$ can find α such that

$$h(x, \alpha) \in BAD_{x,\alpha}$$

$$\forall x \notin \mathcal{L}$$
 $BAD_{x,\alpha} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}$

If $x \notin \mathcal{L}$, no PPT $\overline{\mathbb{S}}$ can find α such that

$$h(x, \alpha) \in BAD_{x,\alpha}$$

h is correlation intractable (CI) for $BAD_{x,\alpha}$

TC⁰ - Constant depth polynomial-size threshold circuits

TC⁰ - Constant depth polynomial-size threshold circuits

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with appropriate opening to f (with additional properties) based on $\mathbb{Q}\mathbb{R}$

Needs to be Fiat-Shamir friendly.

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with appropriate opening to f (with additional properties) based on QR

BAD needs to be computable in TC^0 .

Based on LWE/sub-exp DDH

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

Spartan-core primarily consists of the Sumcheck protocol.

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$

BAD =
$$\{\beta \in \mathbb{F} | \beta \text{ is a root of } g(x) - g_w^*(x)\}$$

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$

$$\mathrm{BAD} = \{ \beta \in \mathbb{F} | \beta \text{ is a root of } g(x) - g_w^*(x) \}$$
 the "true" polynomial an honest prover would have sent

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

BAD =
$$\{\beta \in \mathbb{F} | \beta \text{ is a root of } g(x) - g_w^*(x)\}$$

Show that appropriate field \mathbb{F} , BAD can be computed in TC^0 .

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with appropriate opening to f (with additional properties) based on QR

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with linear homomorphic opening (with additional properties) based on QR

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with linear homomorphic opening (with additional properties) based on QR

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

We construct SSB with linear homomorphic opening (with additional properties) based on QR

BAD computable in TC^0 .

Concluding Remarks

Theorem

Assuming QR + (LWE/sub-exp DDH) there exists a non-interactive batch argument for NP where

$$|\Pi| = \tilde{O}(|C| + \sqrt{k|C|})$$

Concluding Remarks

Theorem

Assuming QR + (LWE/sub-exp DDH) there exists a non-interactive batch argument for NP where

$$|\Pi| = \tilde{O}(|C| + \sqrt{k|C|})$$

Follow up work [C-Jain-Jin'21b] (ia.cr/2021/808)

- Batch arguments for NP with improved parameters
- Application of batch arguments to construct delegation scheme for ${\mathcal P}$

Thank you. Questions?

Arka Rai Choudhuri achoud@cs.jhu.edu

ia.cr/2021/807