PROGRAMME 2 – Data Mining

```
# Importation des librairies
import os
import pandas
import numpy
import scipy
import sklearn # Version de sklearn : 0.23.1
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.tree import DecisionTreeClassifier
from sklearn.feature selection import SelectKBest, chi2
from sklearn import metrics
# Implémentation des parametres
#taille train = 0.75
taille test = 0.25
# seuil = 0.05
1. Importation et description des données (avant traitement)
""" Fonction qui importe les données à partir d'un chemin menant à un
dataframe : Importation data(dataframe)
Input:
   - dataframe : le chemin et le nom du dataframe que l'on veut importer
Output :
   - data : Le dataframe importé
   - chemin : le répertoire courant (c'est le répertoire où se trouve le
dataframe)
def Importation data(dataframe):
    data = pandas.read table(dataframe, sep="\t", header=0)
    chemin = os.getcwd()
    return data, chemin
# Importation des données et définition du répertoire courant (celui où se
trouve "data_avec_etiquettes.txt")
data brute, chemin =
Importation data("/home/elisa/Documents/M1 Info/Semestre 1/Data Mining/Projet
Data Mining/data avec etiquettes.txt")
print("Le répertoire courant est : " , chemin)
Le répertoire courant est :
/home/elisa/Documents/M1 Info/Semestre 1/Data Mining/Projet Data Mining
```

	V1	V2	V3	V4	V5	V 6	V7	V8	V9	V10	 V191	V192	V193	V194	V195	V196	V197	V198	V199	V200
0	0	0	1	5	0	8	0	1	5	1	 9	1.0	0.0	0.11	0.0	0.0	0.0	0.0	0.0	m12
1	0	0	1	1	1	7	0	1	8	1	 19	1.0	0.0	0.05	0.0	0.0	0.0	0.0	0.0	m12
2	1	0	0	9	0	2	0	0	3	1	 29	1.0	0.0	0.03	0.0	0.0	0.0	0.0	0.0	m12
3	0	0	0	5	0	3	1	0	0	0	 39	1.0	0.0	0.03	0.0	0.0	0.0	0.0	0.0	m12
4	0	1	0	9	1	4	0	1	4	1	 49	1.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	m12

5 rows × 200 columns

Le fichier (avant traitement) contient 494021 lignes et 200 colonnes.

2. Traitement des données

```
# Recodage des variables qualitatives V160, V161 et V162 en quantitatives
data = pandas.get_dummies(data_brute.iloc[:,0:199], prefix=['V160', 'V161',
'V162'])
data = data.join(data_brute["V200"])
data.head(5)
```

	V1	V2	V3	V4	V5	V 6	V7	V8	V 9	V10	 V162_m11	V162_m2	V162_m3	V162_m4	V162_m5	V162_m6	V162_m7	V162_m8	V162_m9	V200
0	0	0	1	5	0	8	0	1	5	1	 0	0	0	0	0	0	0	0	0	m12
1	0	0	1	1	1	7	0	1	8	1	 0	0	0	0	0	0	0	0	0	m12
2	1	0	0	9	0	2	0	0	3	1	 0	0	0	0	0	0	0	0	0	m12
3	0	0	0	5	0	3	1	0	0	0	 0	0	0	0	0	0	0	0	0	m12
4	0	1	0	9	1	4	0	1	4	1	 0	0	0	0	0	0	0	0	0	m12

5 rows × 277 columns

```
# Recodage de la variable cible : « m16 » (les positifs)
data.V200 = pandas.get_dummies(data_brute.V200).m16
#data = data.join(data_brute["V200"])
data.head(5)
```

	V1	V2	V 3	V4	V5	V6	V7	V8	V9	V10	 V162_m11	V162_m2	V162_m3	V162_m4	V162_m5	V162_m6	V162_m7	V162_m8	V162_m9	V200
0	0	0	1	5	0	8	0	1	5	1	 0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	7	0	1	8	1	 0	0	0	0	0	0	0	0	0	0
2	1	0	0	9	0	2	0	0	3	1	 0	0	0	0	0	0	0	0	0	0
3	0	0	0	5	0	3	1	0	0	0	 0	0	0	0	0	0	0	0	0	0
4	0	1	0	9	1	4	0	1	4	1	 0	0	0	0	0	0	0	0	0	0

5 rows × 277 columns

```
# Supprimer les variables sans information (c'est-à-dire nombre de modalité
<= 1)
""" Fonction qui supprime les variables qui ont un nombre de modalité <= 1
car elles n'apportent
aucune information : suppr var sans information(dataframe)
Input:
   - dataframe : Le nom du dataframe que l'on veut traiter
Output :
- data : le dataframe traité
def suppr_var_sans_information(dataframe):
    # Parcourir les colonnes du dataframe :
    for i in dataframe.columns:
        # Si nb de modalité <= 1, on supprime la variable :
        if len(dataframe[i].unique()) <= 1 :</pre>
            dataframe.drop([i], axis='columns', inplace=True)
    return dataframe
# Appliquer la fonction au dataframe
data = suppr_var_sans_information(data)
3. Description des données (après traitement)
# Dimensions
print("Le fichier (après traitement) contient " + str(data.shape[0]) + "
lignes et "
      + str(data.shape[1]) + " colonnes.")
Le fichier (après traitement) contient 494021 lignes et 275 colonnes.
# Informations sur le dataframe
print(data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 494021 entries, 0 to 494020
Columns: 275 entries, V1 to V200
dtypes: float64(15), int64(179), uint8(81)
memory usage: 769.4 MB
None
```

4. Subdivision en deux dataset (dataTrain et dataTest)

```
# Subdivision en deux dataset (dataTrain et dataTest)
dataTrain, dataTest = model_selection.train_test_split(data, test_size =
```

```
taille_test, random_state = 0)
# Vérification
print("Dimensions dataTrain :", dataTrain.shape)
print("Dimensions dataTest :", dataTest.shape)
Dimensions dataTrain : (370515, 275)
Dimensions dataTest : (123506, 275)
5. Définir la variable cible (y) et les variables explicatives (X)
""" Fonction pour définir la variable cible (y) et les variables explicatives
(X) : Var cible expl(dataframe)
Input:
  - dataframe : Le dataframe à définir
 Output:
   - X : Le dataframe des variables explicatives
   - y : la variable cible
def Var cible expl(dataframe):
    # On récupère tous les noms de colonnes du dataframe dans une liste col
    col = [i for i in dataframe.columns]
    # On enlève "V200" de la liste col
    col.remove("V200")
    # La colonne "V200" est la variable cible, les autres sont les variables
explicatives
    X = dataframe.loc[:,col]
    y = dataframe.V200
    return X, y
# Pour l'échantillon dataTrain
XTrain, yTrain = Var cible expl(dataTrain)
# Pour l'échantillon dataTest
XTest, yTest = Var_cible_expl(dataTest)
# Verification
print("Dimensions XTrain :", XTrain.shape)
print("Dimensions yTrain :", yTrain.shape)
print("Dimensions XTest :", XTest.shape)
print("Dimensions XTest :", yTest.shape)
```

```
Dimensions XTrain: (370515, 274)
Dimensions yTrain: (370515,)
Dimensions XTest: (123506, 274)
Dimensions XTest: (123506,)
```

```
6. Choix du nombre de variables le plus optimal
""" Fonction de décision pour optimiser le nombre de variable : optim(from,
to, step)
Input:
  - Nb var : Liste qui contient les nombres de variables à tester
Output:
   - Taux err : Liste des taux d'erreurs
   - Nb err : Liste des nombre d'erreurs
   - Graphique : "Choix du nombre de variables pertinentes"
def optim(Nb var):
    Taux err = []
    Nb err = []
    for i in Nb var:
        # Pour l'échantillon dataTrain
        XTrain, yTrain = Var_cible_expl(dataTrain)
        # Pour l'échantillon dataTest
        XTest, yTest = Var_cible_expl(dataTest)
        # On sélectionne les k variables
        selector = SelectKBest(chi2, k = i)
        selector.fit transform(XTrain, yTrain)
        selector.get_support()
        # Transformation des données
        XTrain = XTrain.loc[:,selector.get_support()]
        XTest = XTest.loc[:,selector.get_support()]
        # Instanciation
        tree = DecisionTreeClassifier(random state = 0)
        # Construction du modèle sur les données d'apprentissage
        tree.fit(XTrain,yTrain)
        # Prédiction
        prédictions = tree.predict(XTest)
        #print(prédictions)
        # Matrice de confusion
        mc = pandas.crosstab(yTest, prédictions)
        mc = mc.values # Transformation en matrice numpy (plus facile à
manipuler)
        # Taux d'erreur = (FN + FP) / Total
        Tx\_err = (mc[1,0] + mc[0,1]) / numpy.sum(mc)
        #print("Taux d'erreur :", Tx_err)
```

```
Taux_err.append(Tx_err)

# Nombre d'erreur sur 4 898 424 obs
Nb = round(Tx_err * 4898424)
Nb_err.append(Nb)

#print(Taux_err)
plt.plot(Nb_var, Taux_err, label="Courbe de décision")
plt.xlabel("Nombre de variables pertinentes", fontsize=10)
plt.ylabel("Taux d'erreur", fontsize=10)
plt.title("Choix du nombre de variables", fontsize=15)
plt.legend(loc = 'best', fontsize=8)
plt.show()
```

Choix du nombre de variables pertinentes
optim(range(15, 80, 8))

Choix du nombre de variables pertinentes
optim(range(24, 38, 1))

Choix du nombre de variables pertinentes
optim(range(10, 20, 1))

Choix du nombre de variables pertinentes
optim([15,31,33,42,49,52])

7. Sélection de variables

On a pu voir (ci-dessus) que le nombre de variables optimal est 15.

```
# Pour l'échantillon dataTrain
XTrain, yTrain = Var_cible_expl(dataTrain)
# Pour l'échantillon dataTest
XTest, yTest = Var_cible_expl(dataTest)
# Vérification
print("Dimensions XTrain :", XTrain.shape)
print("Dimensions yTrain :", yTrain.shape)
print("Dimensions XTest :", XTest.shape)
print("Dimensions XTest :", XTest.shape)
```

```
Dimensions XTrain: (370515, 274)
Dimensions yTrain: (370515,)
Dimensions XTest: (123506, 274)
Dimensions XTest: (123506, 274)
```

```
# On sélectionne les k variables les plus pertinentes à l'aide d'un test du chi2 selector = SelectKBest(chi2, k = 15)
```

```
# On applique la sélection de variables sur le dataset d'entrainement
selector.fit_transform(XTrain, yTrain)
selector.get_support() # Renvoie un booléen
print("Les variables sélectionnées sont : \n",
XTrain.columns[selector.get support()])
Les variables sélectionnées sont :
 Index(['V159', 'V163', 'V164', 'V181', 'V182', 'V185', 'V186', 'V191',
'V193',
       'V198', 'V199', 'V161 m39', 'V162 m1', 'V162 m4', 'V162 m5'],
      dtype='object')
8. Entrainement du modèle (Arbre de décision)
# Observations ponctuelles
print("Proportions d'observations positives et négatives dans dataTrain :")
print(yTrain.value counts(normalize = True))
print("Proportions d'observations positives et négatives dans dataTest :")
print(yTest.value counts(normalize = True))
Proportions d'observations positives et négatives dans dataTrain :
     0.997916
1
     0.002084
Name: V200, dtype: float64
Proportions d'observations positives et négatives dans dataTest :
     0.99783
     0.00217
Name: V200, dtype: float64
# Instanciation de l'arbre de décision (pour avoir les mêmes valeurs à chaque
fois)
tree = DecisionTreeClassifier(random state = 0)
# Transformer les données à l'aide des variables sélectionnées
XTrain = XTrain.loc[:,selector.get_support()]
XTest = XTest.loc[:,selector.get_support()]
# Construction du modèle sur les données d'apprentissage
tree.fit(XTrain,yTrain)
DecisionTreeClassifier(random state=0)
# Importance des variables sélectionnées
imp = {"VarName":XTrain.columns,"Importance":tree.feature importances }
imp var = pandas.DataFrame(imp).sort values(by="Importance",ascending=False)
imp_var.head(5)
```

	VarName	Importance
14	V162_m5	0.651396
1	V163	0.108413
9	V198	0.078702
11	V161_m39	0.054802
5	V185	0.033375

```
9. Evaluation du modèle sur le "dataTest"
```

```
# Probas de prédictions
probas_de_prédictions = tree.predict_proba(XTest)
print(probas_de_prédictions)
# Liste des classes
print("Liste des classes :", tree.classes_)
```

```
[[1. 0.]
  [1. 0.]
  [1. 0.]
  [1. 0.]
  [1. 0.]
  [1. 0.]
  [1. 0.]]
  Liste des classes : [0 1]
```

```
# Prédiction
```

```
prédictions = tree.predict(XTest)
print(prédictions)
```

```
[0 0 0 ... 0 0 0]
```

```
# Précision moyenne des scores sur les données de test
s = tree.score(XTest, yTest)
print(s)
```

0.9999757096821207

```
# Matrice de confusion
mc = pandas.crosstab(yTest, prédictions)
print(mc)
# Transformation en matrice numpy (plus facile à manipuler)
mc = mc.values
```

```
col_0 0 1
V200
0 123237 1
1 2 266
```

```
# Taux d'erreur = (FN + FP) / Total
Tx_err = (mc[1,0] + mc[0,1]) / numpy.sum(mc)
print("Taux d'erreur :", Tx_err)

# Taux de reconnaissance
Tx_reco = 1 - Tx_err
print("Taux de reconnaissance global =" , Tx_reco)
Taux d'erreur : 2.4290317879293315e-05
```

```
Taux de reconnaissance global = 0.9999757096821207
# Rappel (sensibilité) = VP / Nb total de + Observé
SE = mc[1,1]/numpy.sum(mc[1,:])
```

```
print("Rappel (sensibilité) = " + str(SE))
# Précision = VP / Nb total de + Prédit
P = mc[1,1]/numpy.sum(mc[:,1])
print("Précision = " + str(P))
```

Rappel (sensibilité) = 0.9925373134328358 Précision = 0.9962546816479401

Calcul des sensibilités (rappels) et précisions par classe
print(metrics.classification_report(yTest,prédictions))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	123238
1	1.00	0.99	0.99	268
accuracy			1.00	123506
macro avg	1.00	1.00	1.00	123506
weighted avg	1.00	1.00	1.00	123506

10. Construction de la courbe de gain

```
# Score de 'positif'
score = probas_de_prédictions[:,1]
# Transfert en 0/1 de yTest
pos = pandas.get_dummies(yTest).values
# Colonne de positif
pos = pos[:,1]
# Nombre total de positif
npos = numpy.sum(pos)
print("Nombre total de positif (npos) :", npos)
```

```
# Index pour tri selon le score croissant
index = numpy.argsort(score)
# Inverser pour score décroissant
index = index[::-1]
print("Index pour tri selon le score décroissant :", index)
# Tri des individus (des valeurs 0/1)
sort pos = pos[index]
print("Tri des individus (des valeurs 0/1) :", sort_pos)
# Somme des positifs cumulée
cpos = numpy.cumsum(sort pos)
print("Somme des positifs cumulée (cpos) : ",cpos)
# Rappel
rappel = cpos/npos
print("Rappel :", rappel)
# Nombre d'obs dans dataTest
n = vTest.shape[0]
print("Nombre d'obs dans dataTest (n) :", n)
# Taille de cible (en pourcentage)
taille = numpy.arange(start=1,stop=n+1,step=1)/ n
Nombre total de positif (npos) : 268
Index pour tri selon le score décroissant : [114840 87468 81276 ... 82303
82304
           0]
Tri des individus (des valeurs 0/1) : [1 1 1 ... 0 0 0]
Somme des positifs cumulée (cpos): [ 1 2 3 ... 268 268 268]
Rappel: [0.00373134 0.00746269 0.01119403 ... 1.
                                                          1.
                                                                     1.
Nombre d'obs dans dataTest (n) : 123506
# Graphique
plt.title('Courbe de gain')
plt.xlabel('Taille de cible')
plt.ylabel('Rappel')
plt.xlim(0,1)
plt.ylim(0,1)
plt.scatter(taille,taille,marker='.',color='blue')
plt.scatter(taille,rappel,marker='.',color='red')
plt.show()
```


11. Prédiction sur la base de déploiement (4 898 424 obs)

```
# Nombre d'erreur sur 4 898 424 obs
Nb = round(Tx_err * 4898424)
print("Nb d'erreur sur la base de déploiement (4 898 424 obs) : ", Nb)
```

```
Nb d'erreur sur la base de déploiement (4 898 424 obs) : 119.0

# Combien d'observations positives y a-t-il parmi les 10 000 individus qui présentent les scores
# les plus élevés de la base de déploiement (4 898 424 obs) ?

# Recherche des 10 000 / n en se basant sur la taille
numpy.argwhere(taille <= 10000/n)

# --> indice = 9999

# Rappel correspondant au 10 000 ième individu
prop_pos = rappel[9999]
print("Rappel correspondant au 10 000 ième individu : ", prop_pos)

# On multiple par le nombre de positifs
Nombre_de_pos = prop_pos * npos
print("Nb de positif parmi les 10 000 observations qui ont les scores les
plus élevés (4 898 424 obs) :",
Nombre_de_pos)
```

Rappel correspondant au 10 000 ième individus : 0.996268656716418 Nb de positif parmi les 10 000 observations qui ont les scores les plus élevés (4 898 424 obs) : 267.0

12. Sauvegarder "scores.txt" dans le répertoire courant

	index	score	Prédictions
0	22650	0.0	0
1	5765	0.0	0
2	241826	0.0	0
3	292391	0.0	0
4	392127	0.0	0

```
# Ecriture du fichier "scores.txt" dans le répertoire courant
df.to_csv("scores.txt", sep="\t", encoding="utf-8", index=False)
```

13. Déploiement

deploiement, chemin = Importation data("data essai.txt")

Recodage des variables qualitatives V160, V161 et V162 en quantitatives
deploiement = pandas.get_dummies(deploiement.iloc[:,:], prefix=['V160',
'V161', 'V162'])

Supprimer les variables sans information (c'est-à-dire nombre de modalité <= 1)

deploiement = suppr_var_sans_information(deploiement)

deploiement.head(5)

	V1	V2	V 3	V4	V 5	V6	V7	V8	V9	V10	 V162_m10	V162_m11	V162_m2	V162_m3	V162_m4	V162_m5	V162_m6	V162_m7	V162_m8	V162_m9
0	0	0	1	5	0	8	0	1	5	1	 1	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	7	0	1	8	1	 1	0	0	0	0	0	0	0	0	0
2	1	0	0	9	0	2	0	0	3	1	 1	0	0	0	0	0	0	0	0	0
3	0	0	0	5	0	3	1	0	0	0	 1	0	0	0	0	0	0	0	0	0
4	0	1	0	9	1	4	0	1	4	1	 1	0	0	0	0	0	0	0	0	0

5 rows × 274 columns

```
# Sélection de variable
deploiement = deploiement.loc[:,selector.get_support()]
# Probas de prédictions
probas_de_prédictions = tree.predict_proba(deploiement)
# Prédiction
prédictions = tree.predict(deploiement)
# Score de 'positif'
score = probas_de_prédictions[:,1]
# Création du dataframe à enregistrer
df = pandas.DataFrame({'index' : deploiement.index, 'score': [i for i in
score],
                       'Prédictions': [j for j in prédictions] })
df.head(5)
   index score Prédictions
0
      0
           0.0
                      0
1
          0.0
      1
                      0
2
      2
           0.0
                      0
3
      3
          0.0
                      0
4
      4
          0.0
                      0
```

```
# Ecriture du fichier "scores.txt" dans le répertoire courant
df.to_csv("scores.txt", sep="\t", encoding="utf-8", index=False)
```