U.T.N. - F.R.C.

3R1 - Electrónica Aplicada I

Colector común

TRABAJO PRÁCTICO 5

Rao Valentino [402308] - León Parfait Manuel [406599] - Gatica Marcos Raúl [402006]

¿Qué es y para qué sirve?

• Es una de las tres configuraciones clásicas de un transistor BJT, donde la pata del colector del dispositivo es común con la malla de entrada y la de salida desde el emisor.

- Alta impedancia de entrada y baja de salida.
- Ganancia de tensión (=1)
- Ganancia de corriente (< 1)

DATOS:

- R_e = 1,5 $k'\Omega$
- $R_L = 1 k'\Omega$
- V_cc = 17,4 V

DATOS:

- R_e = 1,5 $k'\Omega$
- $R_L = 1 k'\Omega$
- V_cc = 17,4 V
- Beta = 233

$$\begin{split} V_{CEMES} &= I_{CQMES} \cdot (R_e / / R_L) \\ \Rightarrow V_{CC} - I_{CQMES} \cdot (R_e / / R_L) - I_{CQMES} \cdot R_e = 0 \\ \Rightarrow I_{CQMES} &= \frac{V_{CC}}{(R_e / / R_L) + R_e} \\ I_{CQMES} &\approx 8,2857 mA \end{split}$$

DATOS:

- R_e = 1,5 $k'\Omega$
- $R_L = 1 k'\Omega$
- V_cc = 17,4 V
- Beta = 233
- I_CQMES = 8,2857mA

$$V_{BB} = I_{CQ} \cdot (R_e + \frac{R_B}{\beta}) + V_{BEQ}$$

$$\Rightarrow V_{BB} = I_{CQ} \cdot [R_e + (\frac{R_e}{10}) \cdot \frac{1}{\beta}] + V_{BEQ}$$

$$\Rightarrow V_{BB} \approx 14,3714V$$

DATOS:

- R_e = 1,5 $k'\Omega$
- $R_L = 1 k'\Omega$
- V_cc = 17,4 V
- Beta = 233
- I_CQMES = 8,2857mA
- V_BB = 14,3714V

Cálculo R_1 y R_2

$$R_{B} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}} \to \frac{R_{B}}{R_{2}} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$V_{BB} = \frac{V_{CC} \cdot R_{1}}{R_{1} + R_{2}} \to \frac{V_{BB}}{V_{CC}} = \frac{R_{1}}{R_{1} + R_{2}}$$

DATOS:

- R_e = 1,5 $k'\Omega$
- $R_L = 1 k'\Omega$
- V_cc = 17,4 V
- Beta = 233
- I_CQMES = 8,2857mA
- V_BB = 14,3714V

Cálculo R_1 y R_2

$$\Rightarrow \frac{R_B}{R_2} = \frac{V_{BB}}{V_{CC}}$$

$$R_2 = \frac{V_{CC}}{V_{BB}} \cdot R_B$$

$$R_2 = \frac{V_{CC}}{V_{BB}} \cdot \frac{R_e}{10} \cdot \beta$$

 $R_2 \approx 45,7658k\Omega$

DATOS:

- R_e = 1,5 $k'\Omega$
- $R_L = 1 k'\Omega$
- V_cc = 17,4 V
- Beta = 233
- I_CQMES = 8,2857mA
- V_BB = 14,3714V
- $R_2 = 45,7658 \text{ k}\Omega$

Cálculo R_1 y R_2

$$V_{BB} \cdot (R_1 + R_2) = V_{CC} \cdot R_1$$

$$V_{BB} \cdot R_1 + V_{BB} \cdot R_2 - V_{CC} \cdot R_1 = 0$$

$$R_1 \cdot (V_{BB} - V_{CC}) + V_{BB} \cdot R_2 = 0$$

$$R_1 = -\frac{V_{BB} \cdot R_2}{V_{BB} - V_{CC}}$$

$$R_1 \approx 217, 1692k\Omega$$

DATOS:

- R_e = 1,5 $k'\Omega$
- $R_L = 1 k'\Omega$
- V_cc = 17,4 V
- Beta = 233
- I_CQMES = 8,2857mA
- V_BB = 14,3714V
- $R_2 = 45,7658 \text{ k}\Omega$
- $R_1 = 217,1692 \text{ k}\Omega$

Cálculo R_B

$$R_B = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$R_B = 37,7999k\Omega$$

Resumen

- R_e = 1,5 $k'\Omega$
- $R_L = 1 k'\Omega$
- V_cc = 17,4 V
- Beta = 233
- I_CQMES = 8,2857mA
- V_BB = 14,3714V
- $R_2 = 45,7658 \text{ k}'\Omega$
- $R_1 = 217,1692 \text{ k}\Omega$
- $R_B = 37,7999 \, k'\Omega$

ANÁLISIS Y TRAZADO DE RECTAS DE CARGA

Recta de carga de corriente continua

$$V_{CC} - V_{CE} + I_C \cdot R_e = 0$$
 # malla de salida
 $\Rightarrow V_{CE} = V_{CC} - I_C \cdot R_e$

Para
$$V_{CE} = 0 \rightarrow I_{CMAX} = \frac{V_{CC}}{R_e}$$

$$V_{CEMAX} = 17,4V$$

Para $I_C = 0 \rightarrow V_{CEMAX} = V_{CC}$

$$I_{CMAX} = 11,6mA$$

Recta de carga de corriente alterna

$$v_{CE} = V'_{CC} - i_C \cdot (R_e//R_L) \quad (1)$$

$$V_{CEQ} = V'_{CC} - I_{CQ} \cdot (R_e//R_L) \quad (2)$$

$$V'_{CC} = V_{CEQ} + I_{CQ} \cdot (R_e//R_L) \quad (3)$$
 Despejando V'_CC

Reemplazamos (3) en (1):

$$v_{CE} = [V_{CEQ} + I_{CQ} \cdot (R_e//R_L)] - i_C \cdot (R_e//R_L)$$

Recta de carga de corriente alterna

$$v_{CE} = 4,97V + 8,2857mA \cdot 600\Omega - i_{C} \cdot 600\Omega$$

Para
$$v_{CE}=0 \rightarrow i_{CMAX}=\frac{4,97V+8,2857mA\cdot 600\Omega}{600\Omega}$$

$$i_{CMAX} = 16,5690mA$$

Para
$$i_C = 0 \to v_{CEMAX} = 4,97V + 8,2857mA \cdot 600\Omega$$

$$v_{CEMAX} = 9,9414V$$

Gráfico de rectas de carga Rectas de Carga DC y AC --- Recta de carga AC 15.0 7.5 15.0

MEDICIONES DE PEQUEÑA SEÑAL:

ANALÍTICO

IMPEDANCIA DE ENTRADA

$$Z_i = R_b / \left[h_{ie} + (R_E / / R_L)(h_{fe} + 1) \right]$$

- $R_b = 377700,923\Omega$
- $h_{ie} = \beta x 25 \text{mV} / I_{CQ}$
- $h_{ie} = 760,345\Omega$
- $R_E = 1.5 K\Omega$
- $R_L = 1 K\Omega$
- $h_{fe} = 233$

 $Z_i = 30293,975\Omega$

Normalizada: $Z_i = 30K\Omega$

IMPEDANCIA DE SALIDA

$$Z_o = R_E / \left[h_{ib} + \frac{\left(r_i / / R_b \right)}{h_{fe} + 1} \right]$$

$$Si \ r_i = 0 \implies Z_o = R_E / / h_{ib}$$

- $h_{ib} = 25 \text{mV} / I_{CQ}$ $R_E = 1.5 \text{K}\Omega$

• $h_{ib} = 3,017\Omega$

 $Z_0 = 3,0109\Omega$

Normalizada: $Z_0 = 3\Omega$

GANANCIA DE TENSIÓN

$$A_{v} = \frac{v_{L}}{v_{i}} = \frac{R_{e}//R_{L}}{h_{ib} + R_{e}//R_{L}}$$

$$A_v = 0,9949 \cong 1$$

$$v_L = \frac{v_i}{(h_{ib} + R_e // R_L)} \times R_e // R_L$$

GANANCIA DE CORRIENTE

$$A_i = 30,142$$

•
$$Z_i = 30293,975\Omega$$

MEDICIONES DE PEQUEÑA SEÑAL:

EXPERIMENTAL

GANANCIA DE TENSIÓN

• Entrada con $1KH_Z$ y un $V_{p-p}=1V$ en V_L

Medido: V_i = 1V

$$A_V = \frac{v_L}{v_i}$$

$$A_v = 1V/1V = 1$$

GANANCIA DE CORRIENTE

$$A_{i} = \frac{i_{L}}{i_{i}} = \frac{\frac{v_{L}}{R_{L}}}{\frac{v_{g} - v_{i}}{R_{s}}}$$

un V_{p-p} =1V en V_L Medido:

•
$$V_i = 1V$$
 • $R_s = 33K\Omega$

•
$$V_g = 2,6V$$

$$A_i = \frac{\frac{1}{1k\Omega}}{\frac{2,6V-1V}{33K\Omega}} = 20,625$$

IMPEDANCIA DE **ENTRADA**

$$Z_i = \frac{v_i}{i_i} = \frac{v_i}{\frac{v_g - v_i}{R_s}}$$

 Entrada con 1KH_Z y un V_{p-p} =1V en V_L

Medido:

$$\bullet$$
 $V_i = 1V$

•
$$V_i = 1V$$
 • $R_s = 33K\Omega$

•
$$V_g = 2,6V$$

$$Z_i = \frac{1V}{\frac{2,6V-1V}{33K\Omega}} = 20625\Omega$$

• $V_i = 1V$ • $R_s = 10\Omega$

• $V_g = 0.015V$

IMPEDANCIA DE SALIDA

$$Z_o = \frac{v_o}{i_o} = \frac{v_o}{\frac{v_g - v_o}{R_s}}$$

$$Z_o = \frac{0,005V}{\frac{0,015V - 0,005V}{10\Omega}} = 5\Omega$$

	Calculado	EXPERIMENTAL	
Z _I	30293,975Ω	20625Ω	
Z _O	3,0109Ω	$5\Omega_{RS} = 10\Omega$	
Ai	30,142	20,625	
A _V	0,9949	1	