A propos d'une fonction f telle que $f^{2}(n) = 3n$

On s'intéresse à une fonction f de N^* dans N^* , strictement croissante, et vérifiant $f^2(n) = 3n$ pour tout n entier positif (soit f(f(n)) = 3n, ou encore $f^2 = 3$ Id). Nous allons montrer qu'une telle fonction existe et est unique.

- 1) On doit avoir f(1) = 2 et f(2) = 3.
- Si l'on avait f(1) = 1, on aurait aussi $f^2(1) = 1$ au lieu de 3.
- Si l'on avait f(1) = 3 on aurait aussi f(f(1)) = f(3) = 3, et la suite ne serait pas strictement croissante. De même si l'on prend f(1) = k avec k > 3, on aurait f(k) = 3, la suite serait décroissante, ce qui contredit l'hypothèse.
- Il reste une seule possibilité : f(1) = 2, et par suite f(2) = 3, qui ne provoque pas de contradiction.
 - 2) On doit avoir $f(3^k) = 2 \cdot 3^k$ et $f(2 \cdot 3^k) = 3^{k+1}$ (k entier ≥ 0)
- Dès que la première formule est vraie, la seconde l'est aussi : à supposer que l'on ait $f(3^k) = 2 \cdot 3^k$, on en déduit que $f^2(3^k) = f(2 \cdot 3^k)$ et aussi $f^2(3^k) = 3 \cdot 3^k = 3^{k+1}$, et la seconde formule s'ensuit.
 - Pour montrer que $f(3^k) = 2 \cdot 3^k$, faisons un raisonnement par récurrence :
 - La formule est vraie pour k = 0, comme on l'a vu : f(1) = 2.
- Supposons la formule vraie jusqu'à un certain rang k, et montrons qu'elle reste vraie au rang k+1: par hypothèse de récurrence : $f(3^k)=2$. 3^k ce qui entraîne que $f(2.3^k)=3^{k+1}$, d'où $f(f(2.3^k))=f(3^{k+1})$, et aussi $f(f(2.3^k))=2$. 3^{k+1} , la formule est vérifiée au rang k+1.
- 3) Pour tout q entier compris entre 0 et 3^k , on doit avoir $f(3^k + q) = 2 \cdot 3^k + q$, et $f(2 \cdot 3^k + q) = 3^{k+1} + 3q$.
- Entre 0 et 3^k (y compris ces nombres), il y a exactement k+1 nombres entiers. Entre $f(3^k) = 2 \cdot 3^k$ et $f(2 \cdot 3^k) = 3^{k+1}$, il y a aussi k+1 nombres entiers. Comme la fonction f est strictement croissante, la seule possibilité est $f(3^k + q) = 2 \cdot 3^k + q$.
- Entre 2 . 3^k et 3^{k+1} , il y a exactement $3^k + 1$ nombres entiers, et entre $f(2 . 3^k) = 3^{k+1}$ et $f(3^{k+1}) = 2 . 3^{k+1}$, il y en a $3^{k+1} + 1$. Avec $f(f(3^k + q)) = f(2 . 3^k + q)$ comme on vient de le voir, et aussi $f(f(3^k + q)) = 3^{k+1} + 3q$, on aboutit à $f(2 . 3^k + q) = 3^{k+1} + 3q$. (où 3q prend $3^k + 1$ valeurs).

Finalement les contraintes précédentes se réduisent à :
$$f(3^k + q) = 2 \cdot 3^k + q$$
, et $f(2 \cdot 3^k + q) = 3^{k+1} + 3q$, avec $0 \le q \le 3^k$, et $k \ge 0$.

On obtient une fonction unique, et celle-ci vérifie bien les conditions de l'énoncé. On obtient la suite f(n) qui commence ainsi :

										10	
f(n)	2	3	6	7	8	9	12	15	18	19	20

Entre 3^k et 2 . 3^k, la suite avance de 1 en 1, et entre 2 . 3^k et 3^{k+1}, elle va de 3 en 3. Graphiquement, si l'on joint les points successifs obtenus, on trouve une ligne brisée avec des pentes de 1 et de 3 au-dessus de la droite de pente 2.

En jouant sur l'autosimilarité, on peut aussi fabriquer la suite f(n) de façon linguistique en enlevant à la succession des nombres pairs 2, 4, 6, 8, ... (droite de pente 2), les formes triangulaires $\underline{01}$ $\underline{012321}$ $\underline{012345678987654321}$ $\underline{0}$...

n	1	2	3	4	5	6	7	8	9	10	11
	2	4	6	8	10	12	14	16	18	20	22
	0	1	0	1	2	3	2	1	0	1	2
f(n)	2	3	6	7	8	9	12	15	18	19	20

Le calcul de f(n) se simplifie si l'on travaille en base 3, avec les règles suivantes :

- si n commence par 1 en base 3, f(n) s'obtient en remplaçant ce 1 par 2.
- si *n* commence par 2, *f*(*n*) s'obtient en remplaçant ce 2 par 1 et en ajoutant un 0 à la fin.

Par exemple f(10201) = 20201 ou encore f(2212) = 12120.