Wireless Channel Modeling: Basics

Amitangshu Pal

Free space propagation

Isotropic transmission \rightarrow at distance d, the power is distributed over the surface of a sphere of distance d

$$P_r(d) = \frac{P_t}{4\pi d^2}$$

Receiver antenna provides an aperture with an effective area for catching a fraction of this power

If the transmitter uses a directional antenna:

$$P_r(d) = \frac{P_t}{4\pi d^2} G_t G_r$$

$$P_L(d) = \frac{P_t}{P_r} : P_L(d) \propto d^2$$

Source of Inaccuracies

- Signal components goes through
 - Reflections
 - Scattering
 - Diffraction

- Signal attenuation from obstructions
 - Random due to random # and type of obstructions

Simplified Path Loss Model

- Used when path loss dominated by reflections
- Most important parameter is the path loss exponent n, determined empirically

$$P_L(d) \propto d^n \quad 2 \leq n \leq 8$$

 $n \rightarrow$ Path loss exponent

Combined Path Loss and Shadowing

$$[P_L(d)]dB = [P_L(d_0)]dB + 10n \log_{10}(\frac{d}{d_0})$$

$$[P_L(d)]dB = [P_L(d_0)]dB + 10n\log_{10}\left(\frac{d}{d_0}\right) + \chi; \qquad \chi = \mathbb{N}(0, \sigma^2)$$

$$P_r(d)[dBm] = P_t(d)[dBm] - P_L(d)[dB]$$

$$= P_t(d)[dBm] - [P_L(d_0)]dB - 10n\log_{10}\left(\frac{d}{d_0}\right) + \chi$$

Log Normal Shadowing Model

Combined Path Loss and Shadowing

Combined Path Loss and Shadowing

Scatter plot of measured data and corresponding MMSE path loss model cities in Germany. For this data, n = 2.7 and $\sigma = 11.8$ dB

Model Parameters from Empirical Measurements

- Finding n
- Path loss at d_0 known:
 - "Best fit" line through dB data
 - Exponent is MMSE estimate based on data
 - Captures mean due to shadowing
- Shadowing variance
 - Variance of data relative to path loss model (straight line) with MMSE estimate for n

Model Parameters from Empirical Measurements

Environment	Path Loss Exponent (n)
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed urban cellular radio	3 to 5
Inside a building - line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factory	2 to 3

- Multiple signal components reach at the receiver, each with
 - Different amplitude
 - Different phase
 - Different delay
- Random components change with time
- Leads to time-varying channel impulse response

Bregar, Klemen & Hrovat, Andrej & Mohorcic, Mihael. (2016). NLOS Channel Detection with Multilayer Perceptron in Low-Rate Personal Area Networks for Indoor Localization Accuracy Improvement.

Channel Impulse Response

