MATH 271: chapter 6 homework

Micah Sherry

November 4, 2024

2. Suppose $n \in \mathbb{Z}$, If n^2 is odd then n is odd

Suppose for the sake of contradiction that n^2 is odd and n is even. Since n is even $\exists k \in \mathbb{Z}$ such that n = 2k. Therefore,

$$n^2 = (2k)^2$$
$$= (4k^2)$$
$$= 2(2k^2).$$

This implies n^2 is even but, we assumed n^2 is not even. Thus we have a contradiction, therefore the original statement holds.

4. Prove that $\sqrt{6}$ is irrational

Suppose for the sake of contradiction that $\sqrt{6}$ is rational. Then $\exists a,b\in\mathbb{Z}$ such that a and b have no common factors and $\sqrt{6}=\frac{a}{b}$. So,

$$6 = \frac{a^2}{b^2}$$
$$6b^2 = a^2.$$

Which implies 6 divides a^2 .

Now we will show that if $a \in \mathbb{Z}$ and $6 \mid a^2$, then $6 \mid a$. Consider the contra-positive of this statement: If $6 \nmid a$, Then $6 \nmid a^2$ Since 6 does not divide then $\exists k \in \mathbb{Z}$ and $r \in \{1, 2, 3, 4, 5\}$ such that a = 6k + r. So,

$$a^{2} = (6k + r)^{2}$$
$$= 36k^{2} + 12kr + r^{2}$$
$$= 6(6k^{2} + 2kr) + r^{2}$$

let $n = 6k^2 + 2kr$, So $a^2 = 6n + r^2$ Now we need to check all Possible cases for r.

r	r^2	a^2
1	1	6n + 1
2	4	6n + 4
3	9	6(n+1)+3
4	16	6(n+2)+4
5	25	6(n+4)+1

Since in all cases 6 does not divide a^2 . Therefore the Contra-positive holds and thus 6 divides a. using the result of the proof above a = 6k for some $k \in \mathbb{Z}$

$$6b^{2} = a^{2}.$$

$$= 6(6k^{2})^{2}.$$

$$b^{2} = 6k^{2}.$$

Therefore 6 divides b^2 and therefore divides b (by the above result). So, a and b share 6 as a factor which is a contradiction. Thus the original statement holds.

6. If $a, b \in \mathbb{Z}$ then $a^2 - 4b - 2 \neq 0$

Assume for the sake of contradiction that a and b are integers and $a^2 - 4b - 2 = 0$. Therefore, $a^2 = 4b + 2$. Now consider the cases where a is odd and even

Case 1: a is even. If a is even then a = 2k, for some k in the integers. So, $a^2 = 4(k^2)$, which is a contradiction be cause we established a^2 is of the form 4b + 2.

Case 2: a is odd. If a is odd then a = 2k + 1, for some k in the integers. So, $a^2 = 4(k^2 + k) + 1$, which is a contradiction be cause we established a^2 is of the form 4b + 2.

(Note im fairly confident that a singular case would have been sufficient to prove a contradiction. But I included the both even and odd cases to be sure) Thus the original statement holds. \Box

8. Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$ then a or b is even

Assume for the sake of contradiction that $a^2 + b^2 = c^2$, and a and b are odd. Then $\exists k, n \in \mathbb{Z}$ such that a = 2k + 1 and b = 2n + 1. So,

$$c^{2} = a^{2} + b^{2}$$

$$= (2k+1)^{2} + (2k+1)^{2}$$

$$= 4k^{2} + 4k + 1 + 4n^{2} + 4n + 1$$

$$= 4(k^{2} + n^{2} + k + n) + 2.$$

let $m = k^2 + n^2 + k + n$ Therefore $c^2 = 4m+2$.

Case 1: c is even. Then c=2j for some $j\in\mathbb{Z}$. Then $c^2=4j^2$. This is a contradiction because we have established that c^2 is of the form 4m+2

Case 2: c is odd. Then c = 2j + 1 for some $j \in \mathbb{Z}$. Then $c^2 = 4j^2 + 4j + 1 = 4(j^2 + j) + 1$. This is a contradiction because we have established that c^2 is of the form 4m + 2.

Since both cases for c leads to a contradiction the original statement holds.

10. There exist no integers a and b such that 21a + 30b = 1

Suppose for the sake of contradiction that $\exists a, b \in \mathbb{Z}$ such that 21a + 30b = 1. Lets consider

$$1 = 21a + 30b$$

= $3(7a + 10b)$.

This implies that 3 divides 1 (because 7a + 10b is an integer). Which is a contradiction. Thus the original statement holds

14. If A and B are sets then $A \cap (B - A) = \emptyset$

Assume for the sake of contradiction that A and B are sets and $A \cap (B - A) \neq \emptyset$. Then $\exists x$ such that $x \in A \cap (B - A)$

$$A\cap (B-A)=\{x\mid x\in A \text{ and } x\in (B-A)\}$$
 (by definition of Union)
$$B-A=\{x\mid x\in B \text{ and } x\not\in A\}$$
 (by definition of Set Subtraction)
$$A\cap (B-A)=\{x\mid x\in A \text{ and } x\in B \text{ and } x\not\in A\}$$

Therefore x must be an element of A and not an element of A which Is a contradiction and thus the original statement is true. \Box

16. If a and b are positive real numbers then $a+b \ge 2\sqrt{ab}$

Assume for the sake of contradiction that a and b are positive real numbers and $a+b<2\sqrt{ab}$. Then,

$$a - 2\sqrt{ab} + b < 0$$

$$\sqrt{a^2} - 2\sqrt{ab} + \sqrt{b^2} < 0$$

$$(\sqrt{a} - \sqrt{b})^2 < 0.$$
 (by Factoring)

This implies that a real number squared is negative which is false. Therefore the original statement holds. $\ \Box$