Exercice 1.

On considère le repère (O; I, J) ci-contre.

- 1. Le repère (O; I, J) est-il orthonormé? Orthogonal?
- 2. Lire les coordonnées des points A, B et C dans le repère (O; I, J).
- 3. Placer les points D(1;1) et E(-1;0).
- 4. Déterminer les coordonnées de tous les points dans le repère (D; A, I).

Exercice 2. Dans un repère (O; I, J) du plan, on considère les points A(3; 1), B(-4; 2) et C(-1; 4).

- 1. Déterminer les coordonnées du point D, symétrique de C par rapport à B.
- 2. On note E le point du plan tel que les segments [AC] et [BE] aient le même milieu. Déterminer les coordonnées du point E.

Exercice 3. Soit (O; I, J) un repère orthonormé du plan. On considère les trois points A(1; 3), B(1,5; 8) et C(4; 5).

- 1. Faire une figure et y placer les points cités.
- 2. Calculer les coordonnées du milieu K de [BC].
- 3. Calculer les coordonnées de D, symétrique du point A par rapport à K.
- 4. Déterminer la nature du quadrilatère ABCD.

Exercice 4. Dans un repère orthonormé (O; I, J), on donne les points A(-2; 1), B(4; 3) et C(2; -3).

- 1. Calculer les coordonnées du point :
 - (a) D tel que ABCD soit un parallélogramme.
 - (b) E tel que ACBE soit un parallélogramme.
- 2. Faire une figure et vérifier les résultats.
- 3. Montrer que A est le milieu du segment [DE].

Exercice 5. Le plan est muni d'un repère orthonormé (O; I, J) d'unité 1 cm. On considère trois points du plan A(-5; 2), B(4; -1) et C(-2; 5).

- 1. Placer les points A, B et C dans le repère (O; I, J).
- 2. Calculer les distances AB, AC et BC.
- 3. En déduire la nature du triangle ABC. Justifier.

Exercice 6. Dans un repère orthonormé (O; I, J), on considère les points $A(\frac{-1}{2}; -1)$, $B(\frac{1}{2}; 2)$, $C(\frac{3}{2}; -1)$ et $D(\frac{1}{2}; -4)$.

- 1. Faire une figure.
- 2. Conjecturer la nature du quadrilatère ABCD.
- 3. Démontrer cette conjecture.

Exercice 7. Les points R, S et T sont-ils alignés? Justifier.

Exercice 8.

Une famille de touristes visite New-York et se trouve au niveau du point rouge indiqué. Dans le repère, une unité est égale à 180 mètres. La famille souhaite se rendre à la salle de concert Carnegie Hall puis au musée d'art moderne en suivant les rues. En utilisant le repère et l'échelle indiquée, donner une estimation de la distance parcourue en mètres.

Exercice 9. Soit ABCD un carré de centre O. On considère les points E et F, milieux respectifs de [DC] et [OB].

- 1. Faire une figure.
- 2. Lire les coordonnées de tous les points dans le repère (A; B, D).
- 3. Calculer EF, EA et FA.
- 4. En déduire la nature du triangle EFA.

Exercice 10. On considère le triangle RST tel que RS = 4.8 cm, ST = 5.2 cm et RT = 2 cm.

- 1. Démontrer que le triangle est rectangle en R.
- 2. Calculer alors la mesure de tous les angles dans ce triangle.

Exercice 11. On considère un repère orthonormé (O; I, J) du plan. On donne les points A(-1; 6), B(7; -2), C(1; -2) et D(9; 6).

- 1. Faire une figure.
- 2. Construire le centre Ω du cercle circonscrit au triangle ABC.
- 3. Donner, sans justification, les coordonnées de Ω et calculer le rayon du cercle.
- 4. Montrer que les points A, B, C et D appartiennent à un même cercle : on dira qu'ils sont **cocycliques**.

Exercice 12. On considère un triangle LMN rectangle en N tel que $\cos \widehat{MLN} = 0.6$.

- 1. Calculer la valeur exacte de $\sin(\widehat{MLN})$.
- 2. Sachant que LM = 10 cm, calculer la longueur des autres côtés du triangle. Arrondir au dixième.

Exercices d'approfondissement

Exercice A. Soit ABCD un carré dont les quatre côtés ont été partagés en quatre part égales. On munit le plan du repère orthonormé (A; B, D).

- 1. Déterminer les coordonnées des points A, B, C et D.
- 2. Reproduire la figure et placer les points J et L, milieux respectifs de [CD] et [AB].
- 3. Calculer les coordonnées des points J et L.
- 4. Placer les points $I(0; \frac{3}{4})$ et $K(1; \frac{1}{4})$.
- 5. Montrer que le quadrilatère IJKL est un parallélogramme.

Exercice B. Dans le plan muni d'un repère orthonormé (O; I, J), on considère les trois points A(-3; 3), B(2; 4) et C(1; -4).

- 1. Faire une figure.
- 2. Conjecturer la nature du triangle ABC.
- 3. Démontrer cette conjecture.

Exercice C. On veut démontrer la propriété suivante : « Le projeté orthogonal d'un point M sur une droite Δ est le point de Δ le plus proche de M. ».

- 1. Réaliser la figure suivante.
 - (a) Tracer une droite Δ et placer un point M m'appartenant pas à cette droite;
 - (b) construire le point H, projeté orthogonal de M sur Δ ;
 - (c) placer deux points distincts A et B sur Δ et différents de H.
- 2. Traduire la propriété que l'on cherche à démontrer en utilisant les points de la figure construite.
- 3. (a) Que peut-on dire des triangles AMH et MBH?
 - (b) En déduire le plus grand côté de chacun de ses triangles.
 - (c) La position des points A et B influence-t-elle la réponse à la question précédente?
- 4. Conclure.

Exercice D. Soit (O; I, J) un repère orthonormé du plan. On considère le quart de cercle de centre O et de rayon 1 unité. Le point M de coordonnées $(x_m; y_M)$ est un point mobile dans le quart de cercle. On note H le projeté orthogonal de M sur (OI) et L le projeté orthogonal de M sur (OJ).

- 1. Montrer que $IJ = \sqrt{2}$.
- 2. Expliquer pourquoi $0 \le x_m \le 1$ et $0 \le y_M \le 1$.
- 3. Déterminer la distance OM.
- 4. Calculer les coordonnées de S, milieu de [OI].
- 5. On considère dans cette question que M est aussi sur la médiatrice de [OI].
 - (a) Montrer que $x_M = x_H = \frac{1}{2}$.
 - (b) En déduire la distance MH et les coordonnées du point M
 - (c) Déterminer la mesure de l'angle $\widehat{HOM}.$
 - (d) Conclure en donnant les valeurs exactes de $\cos(60^{\circ})$ et $\sin(60^{\circ})$.
- 6. En raisonnant de manière analogue, déterminer les valeurs exactes de $\cos(30^{\circ})$ et $\sin(30^{\circ})$.

