Exercice 1:

On pose $B = \begin{pmatrix} 5 & -2 & 5 \\ -1 & 3 & -2 \\ -6 & 0 & -5 \end{pmatrix}$ et, pour $n \in \mathbb{N}^*$, on notera I_n la matrice unité de taille n.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice telle que $A^p = 0$ pour un certain entier naturel p. Montrer que $I_n - A$ est inversible, d'inverse $I_n + A + A^2 + \cdots + A^{p-1}$, c'est-à-dire : $(I_n - A)^{-1} = \sum_{k=0}^{p-1} A^k$.
- 2. En déduire que B est inversible et calculer B^{-1} .
- 3. Utiliser une autre méthode pour montrer que B est inversible et pour calculer B^{-1} .
- 4. Calculer B^n pour tout entier naturel n.
- 5. Écrire une fonction Python prenant en entrée une matrice carrée A et un entier naturel non nul p. Cette fonction devra calculer et donner en sortie la somme $I_n + A + A^2 + \cdots + A^{p-1}$ (si A est carrée de taille n). On importera la bibliothèque numpy via l'instruction import numpy as np.

À faire chez soi : utiliser cette fonction ainsi que np.linalg.inv pour vérifier les résultats obtenus aux questions 1) et 2).

Exercice 2:

Soit (E): $x(1+x)y' + y = \arctan(x)$.

- 1. (a) Déterminer des réels a, b, c tels que : $\forall x \in]0, +\infty[$, $\frac{1}{(1+x)(x^2+1)} = \frac{1}{2}\left(\frac{a}{1+x} + \frac{b+cx}{x^2+1}\right)$.
 - (b) En déduire une primitive F de $x\mapsto \frac{1}{(1+x)(x^2+1)}$ sur $]0,+\infty[$.
- 2. (a) Soit $g(x) = -\frac{\arctan(x)}{x+1} + F(x)$. Calculer g'(x) pour tout réel x > 0.
 - (b) Résoudre alors sur $]0,+\infty[$ l'équation différentielle (E).
- 3. Soit $a \in \mathbb{R}$. Déterminer l'expression de la solution φ de (E) telle que $\varphi(1) = a$ puis écrire une fonction Python prenant en entrée un réel a et traçant le graphe de la fonction φ solution de (E) sur [1, 10] telle que $\varphi(1) = a$.

On importera matplotlib.pyplot via l'instruction import matplotlib.pyplot as plt et, si besoin, les bibliothèques math via import math as met numpy via import numpy as np.

Exercice 3:

On rappelle qu'un condensateur de capacité C (en farad) dans un circuit électrique est traversé à l'instant t par un courant i(t) satisfaisant à la relation

$$i(t) = C \times \frac{du(t)}{dt} = C \times u'(t)$$

où u(t) est la tension aux bornes du condensateur à l'instant t comme indiqué dans le schéma ci-dessous.

$$\begin{array}{c|c} C \\ \hline i(t) & \\ \hline u(t) & \\ \end{array}$$

On considère le circuit ci-contre :

où e est une tension sinusoïdale : $e(t) = E_m \times \cos(\omega t)$ (où $E_m > 0$ est l'amplitude du signal). On cherche à déterminer l'expression de la tension u(t) en fonction de t.

On posera dans la suite $\tau = RC$.

- 1. Utiliser la loi des mailles pour établir une relation entre e, u, R et i.
- 2. En déduire une équation différentielle linéaire du premier ordre (E) satisfaite par la tension u aux bornes du condensateur.
- 3. (a) Donner l'expression des solutions de cette équation différentielle en fonction de τ, ω, E_m et une constante indéterminée.

(On cherchera une solution particulière sous la forme $t \mapsto A\cos(\omega t) + B\sin(\omega t)$ où $(A, B) \in \mathbb{R}^2$.)

(b) Écrire la solution particulière précédemment trouvée sous la forme $t \mapsto \lambda \cos(\omega t + \varphi)$ où $\varphi \in]-\pi,\pi]$ et $\lambda \in \mathbb{R}$.

On justifiera que $\varphi \in \left] -\frac{\pi}{2}, 0\right]$ et on exprimera φ en fonction de τ et ω .

On exprimera λ en fonction de E_m , τ et ω .

- (c) Déterminer la solution u telle que u(0) = 0 (cas où le condensateur est déchargé à l'instant initial).
- 4. (a) Écrire une fonction Python prenant en entrée R, C, ω et une liste $[E_m^1, E_m^2, \dots, E_m^n]$ de réels strictement positifs et affichant n graphiques de la tension u en fonction du temps $(\text{pour } t \in [0, 2 \times 10^{-1}]), \text{ sachant que } u(0) = 0. \text{ Ici, } E_m^1, E_m^2, \dots, E_m^n \text{ sont les différentes amplitudes du signal sinusoïdal } e \text{ correspondant chacune à un des } n \text{ graphiques.}$

On importera matplotlib.pyplot via l'instruction import matplotlib.pyplot as plt et, si besoin, les bibliothèques math via import math as m et numpy via import numpy as np.

Pour n=3 et $(R,C,f)=(100,10^{-6},50)$ (où f est la fréquence du signal e en Hertz. On rappelle que $\omega=2\pi f$), la fonction précédente a affiché les graphiques ci-contre.

Déterminer les amplitudes E_m^1, E_m^2, E_m^3 de la liste $[E_m^1, E_m^2, E_m^3]$ fournie en entrée de la fonction sachant qu'ici $E_m^1 < E_m^2 < E_m^3$ et que ces trois nombres sont des entiers.

