Study Notes of Principles of Mathematical Analysis

Jacob Xie

January 1, 2023

1 The Real and Complex Number Systems

Ordered Sets

Definition 1.7. Suppose S is an ordered set, $E \subset S$, and E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- (i) α is an upper bound of E.
- (ii) If $\gamma < \alpha$ the γ is not an upper bound of E.

Then α is called the *least upper bound of E* or the *supremum of E*, and we write

$$\alpha = \sup E$$

The greatest lower bound, or infimum, of a set E which is bounded below is defined in the same manner: The statement

$$\alpha = \inf E$$

means that α is a lower bound of E and that no β with $\beta > \alpha$ is a lower bound of E.

Note

- S 是有序集合的情况下,E 又是属于 S 的,并且 E 拥有上界。那么只会存在一个 α 是 E 的最小上界。同理如果是 E 拥有下界,只会存在一个 α 是 E 的最大下界。
- 上确界 Supremum [su:'pri:məm]; 下确界 Infimum ['ınfaıməm]。

Definition 1.10. An ordered set S is said to have the *least-upper-bound property* if the following is true: If $E \subset S$, E is not empty, and E is bounded above, then $\sup E$ exists in S.

Note S 中存在 $E \subset S$, 且 E 具有最小上界, 那么 S 就具有最小上界性, 反之亦然。

Theorem 1.11. Suppose S is an ordered set with the least-upper-bound property, $B \subset S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then $\alpha = \sup L$ exists in S, and $\alpha = \inf B$. In particular, $\inf B$ exists in S.

Proof.

因为 B 是有下界的,且 L 不为空。由于 L 包含了所有的 y ($y \in S$) 且满足不等式 $y \le x$ ($x \in B$),那么所有的 $x \in B$ 都是 L 的上界。因此 L 是有上界的。关于 S 的假设意为在 S 中有一个 L 的最小上界,被称为 α 。

如果 $\gamma < \alpha$ 那么 (根据 Definition 1.8) γ 并不是 L 的一个上界,因此 $\gamma \notin B$ 。对于所有 的 $x \in B$ 都有 $\alpha \le x$ 。因此 $\alpha \in L$ 。

如果 $\alpha < \beta$ 那么 $\beta \notin L$, 因为 α 是 L 的一个上界。

我们展示过了 $\alpha \in L$ 但是 $\beta \notin L$ 而 $\beta > \alpha$ 的情况。也就是说, α 是 B 的一个下界,但是 当 $\beta > \alpha$ 时 β 却不是。这就意味着 $\alpha = \inf B$ 。

Fields

Definition 1.12. A field is a set F with two operations, called *addition* and *multiplication*, which satisfy the following so-called "field axioms" (A), (M), and (D):

(A) Axioms for addition

- (A1) If $x \in F$ and $y \in F$, then their sum x + y is in F.
- (A2) Addition is commutative: x + y = y + x for all $x, y \in F$.
- (A3) Addition is associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
- (A4) F contains an element 0 such that 0 + x = x for every $x \in F$.
- (A5) To every $x \in F$ corresponds an element $-x \in F$ such that x + (-x) = 0.

(M) Axioms for multiplication

- (M1) If $x \in F$ and $y \in F$, then their product xy is in F.
- (M2) Multiplication is commutative: xy = yx for all $x, y \in F$.
- (M3) Multiplication is associative: (xy)z = x(yz) for all $x, y, z \in F$.
- (M4) F contains an element $1 \neq 0$ such that 1x = x for every $x \in F$.
- (M5) If $x \in F$ and $x \neq 0$ then there exists an element $\frac{1}{x} \in F$ such that $x \cdot (\frac{1}{x}) = 1$.

(D) The distributive law

x(y+z) = xy + xz holds for all $x, y, z \in F$.

Note 域的定义: 维基百科。

Definition 1.17. An ordered field is a field F which is also an ordered set, such that:

- 1. x + y < x + z if $x, y, z \in F$ and y < z,
- 2. xy > 0 if $x \in F$, $y \in F$, x > 0, and y > 0.

如果 x > 0,我们称 x 为 positive; 如果 x < 0,x 则为 negative.

The Real Field

Theorem 1.19. There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a subfield.

第二个声明意味着 $Q \subset R$ 以及加法与乘法在 R 上的运算,当应用于 Q 的成员时,与有理数的通常操作重合;同样的,正有理数成员是 R 的正元素。

R 的成员被称为 real numbers, 即实数。

Theorem 1.20.

- (a) If $x \in R$, $y \in R$, and x > 0, then there is a positive integer n such that nx > y.
- (b) If $x \in R$, $y \in R$, and x < y, then there exists a $p \in Q$ such that x .

对于 (a) 部分通常认为是 R 具有 $archimedean\ property$,即阿基米德性质,详见维基百科。 (b) 部分则表明 Q 是在 R 中 dense,即具有稠密性:在任意两个实数之间有一个有理数。

Proof.

- (a) 令 A 作为所有 nx 的集合,其中 n 为所有的正整数。如果 (a) 是错误的,那么 y 则会是 A 的一个上界。但是接着 A 会在 R 中拥有一个最小上界,即 $\alpha = \sup A$ 。由于 x > 0, $\alpha x < \alpha$,以及 αx 不是 A 的上界,因此 $\alpha x < mx$ 对于某些正整数 m 成立。但是 这样就会有 $\alpha < (m+1)x \in A$,这是不可能的,因为 α 是 A 的上界。
- (b) 因为 x < y, y x > 0 以及由 (a) 所知一个正整数 n 满足

$$n(y-x) > 1$$

再次应用 (a), 获取正整数 m_1 与 m_2 满足 $m_1 > nx$, $m_2 > -nx$, 那么

$$-m_2 < nx < m_1$$

因此会有一个整数 m $(-m_2 \le m \le m_1)$ 满足

$$m-1 \le nx \le m$$

如果我们结合这些不等式,则会得到

$$nx < m \le 1 + nx < ny$$

因为 n > 0, 它遵循

$$x < \frac{m}{n} < y$$

通过 $p = \frac{m}{n}$ 证明了 (b)。

Note (b) 的第一步将 y-x 作为整体,将 (a) nx>y 中的 x 替换为 y-x,y 替换为 1。同理对于整数 m_1 与 m_2 而言,可分别将 nx 与 -nx 视为不等式右侧的 y,而不等式左侧的 x 视为 1,那么就有了 $m_1 \cdot 1 > nx$ 与 $m_2 \cdot 1 > -nx$ 。对于整数 m 的 $-m_2 \le m \le m_1$ 最坏的情况可将 $-m_2$ 与 m_1 视为相邻的整数,比如说 1 和 2,那么当 m 取值为 2 时视为 $2-1 \le nx < 2$,满足 $m-1 \le nx < m$ 。最后根据有理数的定义 p=m/n $m,n \in Q$ 可以得出 x 与 y 之间一定存在一个有理数。

Theorem 1.21. For every real x > 0 and every integer n > 0 there is one and only one positive real y such that $y^n = x$.

这个 y 数可以被写作 $\sqrt[n]{x}$ 或是 $x^{\frac{1}{n}}$ 。

Proof.

对于至多存在一个 y 的论证很简单,因为 $0 < y_1 < y_2$ 意味着 $y_1^n < y_2^n$.

今 E 为所有满足 $t^n < x$ 的正实数 t 的集合。

如果 t = x/(1+x) 那么 $0 \le t < 1$,那么 $t^n \le t < x$ 。因此 $t \in E$,且 E 不为空。

如果 t > 1 + x 那么 $t^n \ge t > x$,所以 $t \notin E$ 。因此 1 + x 是 E 的一个上界。

所以根据 Theorem 1.19 得出,存在一个

$$y = \sup E$$

而证明 $y^n = x$ 我们需要展示不等式 $y^n < x$ 与 $y^n > x$ 皆会导致矛盾。

当 0 < a < b 时,等式 $b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \cdots + a^{n-1})$ 得出不等式

$$b^n - a^n < (b - a)nb^{n-1}$$

假设 $y^n < x$ 。选择 h 使得 0 < h < 1 且

$$h < \frac{x - y^n}{n(y+1)^{n-1}}$$

今 a = y, b = y + h, 那么就有

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n$$

因此 $(y+h)^n < x$, 且 $y+h \in E$ 。因为 y+h > y,这与 y 是 E 的一个上界相矛盾。假设 $y^n > x$ 。令

$$k = \frac{y^n - x}{ny^{n-1}}$$

那么 0 < k < y。如果 $t \ge y - k$,我们得出以下结论:

$$y^{n} - t^{n} \le y^{n} - (y - k)^{n} \le kny^{n-1} = y^{n} - x$$

因此 $t^n > x$, 且 $t \notin E$ 。它遵循 y - k 是 E 的一个上界。

但是因为 y-k < y, 其与 y 是 E 的最小上界的事实相矛盾。

因此 $y^n = x$, 证明完成。

Note 至多存在一个 y 换个角度也就是说但凡有第二个 y 使得 $y_1^n=y_2^n$,那么 $y_1=y_2$ 。 等式

$$b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1})$$

左侧可以视为

$$(b-a)(b^{n-1}+b^{n-1}\frac{a}{b}+\cdots+b^{n-1}\frac{a}{b^{n-1}})$$

提取 b^{n-1} 后得

$$(b-a)b^{n-1}(1+\frac{a}{b}+\cdots+\frac{a^{n-1}}{b^{n-1}})$$

由于有0 < a < b这么一个前提,可以将第三项变为

$$1 + \frac{a}{b} + \dots + \frac{a^{n-1}}{b^{n-1}} < 1 + 1 + \dots + 1 = n$$

因此可得不等式

$$b^n - a^n < (b - a)nb^{n-1}$$

至于在证明 $y^n < x$ 不成立时,选择 h 的 $h < \frac{x-y^n}{n(y+1)^{n-1}}$ 分母为什么是 $n(y+1)^{n-1}$,是因为这是为了之后处理不等式而特意设置的消除项(这里利用了函数 $f(x) = x^n$ 是连续的事实,也就是说分母一定也是实数,那么就可以将 h 视为小于某实数);同样的在证明 $y^n > x$ 时的 k 也是如此。

Corollary. If a and b are positive real numbers and n is a positive integer, then

$$(ab)^{1/n} = a^{1/n}b^{1/n}$$

Proof.

$$ab = \alpha^n \beta^n = (\alpha \beta)^n$$

而乘法是符合交换律的, 因此

$$(ab)^{1/n} = \alpha\beta = a^{1/n}b^{1/n}$$

The Extended Real Number System

Definition 1.23. The extended real number system consists of the real field R and two symbols, $+\infty$ and $-\infty$. We preserve the original order in R, and define

$$-\infty < x < +\infty$$

for every $x \in R$.

可以清楚的知道 $+\infty$ 是所有广义实数系子集的一个上界,且每个非空子集都有一个最小上界。如果 E 是一个实数的非空集合,且没有上界在 R 中,那么 $\sup E = +\infty$ 在广义实数系中。下界同理。

广义实数系并不形成一个域,但它形成了一下惯例:

(a) 如果 x 是实数则

$$x + \infty = +\infty$$
, $x - \infty = -\infty$, $\frac{x}{+\infty} = \frac{x}{-\infty} = 0$

- (b) 如果 x > 0 则 $x \cdot (+\infty) = +\infty$, $x \cdot (-\infty) = -\infty$
- (c) 如果 x < 0 则 $x \cdot (+\infty) = -\infty$, $x \cdot (-\infty) = +\infty$

The Complex Field

Definition 1.24. A *complex number* is an ordered pair (a, b) of real numbers. "Ordered" means that (a, b) and (b, a) are regarded as distinct if $a \neq b$.

令 x = (a,b), y = (c,d) 为两个复数。当且仅当 a = c 以及 b = d 时有 x = y。(注意该定义并非是完全不必要的;考虑有理数的等式,表现为整数的商。)我们定义:

$$x + y = (a + c, b + d)$$

$$xy = (ac - bd, ad + bc)$$

Note 作为补充(详见该篇文章),对于任意两个复数 x = (a, b), y = (c, d)的四则运算:

(1)
$$x + y = (a + c) + i(b + d)$$

(2)
$$x - y = (a - c) + i(b - d)$$

(3)
$$xy = (a+ib)(c+id) = ac - bd + i(ad+bc)$$

(4)
$$\frac{x}{y} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$$

首先,对于任意一个复数 z=a+ib,可以用复平面上的一个点来表示,那么复数加减法可以通过向量来理解:

而对于复数的乘除法,需要先引入复数在极坐标上的几何意义 – 对于任意一个复数 z=a+ib 用极坐标来表示:

那么复数的三角表示为:

这里将 OP 的长度作为复数 z 的模 (Modulus), 用 |z| 表示; 而角 θ 为复数 z 的幅角 (Ar-

gument),用 arg(z)表示。那么复数的三角表示为:

$$z = x + iy = r(\cos\theta + i\sin\theta), \quad r = \sqrt{x^2 + y^2}, \quad \tan\theta = \frac{y}{x}$$

接下来是复数乘法的几何意义,使用复数的三角形式计算下列两个复数的乘积:

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$
$$z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$$

那么有:

$$z_1 z_2 = r_1 r_2 (\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2)$$

= $r_1 r_2 (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2))$

那么根据三角和差公式:

$$z_1 z_2 = r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)\right)$$

可以发现 $z_1 \cdot z_2$ 计算后模为两个复数模的乘积 $|z_1||z_2|$,幅角为两个复数幅角之和 $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ 。因此复数的乘积可以理解为**拉伸与旋转**。例如:

因为

$$z_1 = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}), \quad z_2 = 1(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$$

所以 z_1z_2 的模长为 $\sqrt{2}$ 且幅角为 $\frac{3\pi}{4}$ 。而复数的除法只需要将除法写成乘法形式即可

$$z^{-1} = (r(\cos\theta + i\sin\theta))^{-1}$$

$$= r^{-1} \frac{1}{\cos\theta + i\sin\theta}$$

$$= r^{-1} \frac{\cos\theta - i\sin\theta}{(\cos\theta + i\sin\theta)(\cos\theta - i\sin\theta)}$$

$$= r^{-1}(\cos\theta - i\sin\theta)$$

那么两个复数

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$
$$z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$$

的除法便是

$$\frac{z_1}{z_2} = z_1 z_2^{-1}
= \frac{r_1}{r_2} (\cos \theta_1 + i \sin \theta_2) (\cos \theta_1 - i \sin \theta_2)
= \frac{r_1}{r_2} (\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2))$$

因此, $\frac{z_1}{z_2}$ 的模长为两个模相除 $\frac{|z_1|}{|z_2|}$,幅角为 $\arg(\frac{z_1}{z_2}) = \arg(z_1) - \arg(z_2)$ 。所以复数的除法也可以理解为**拉伸与旋转**。

综上所述, 复数的加减法就是向量的加减法, 乘除法就是拉伸与旋转变换。

Theorem 1.25. These definitions of addition and multiplication turn the set of all complex numbers into a field, with (0, 0) and (1, 0) in the role of 0 and 1.

Proof.

我们简单的验证一下域的公理(Definition 1.12),使用 R 的域结构。令 x=(a,b),y=(c,d),z=(e,f)。

(A1) 很清楚。

(A2)
$$x + y = (a + c, b + d) = (c + a, d + b) = y + x$$

(A3)
$$(x + y) + z = (a + c, b + d) + (e, f)$$
$$= (a + c + e, b + d + f)$$
$$= (a, b) + (c + e, d + f)$$
$$= x + (y + z)$$

(A4)
$$x + 0 = (a, b) + (0, 0) = (a, b) = x$$

(A5)
$$\diamondsuit -x = (-a, -b)$$
, 那么 $x + (-x) = (0, 0) = 0$

(M1) 很清楚。

(M2)
$$xy = (ac - bd, ad + bc) = (ca - db, da + cb) = yx$$

(M3)
$$(xy)z = (ac - db, ad + bc)(e, f)$$

$$= (ace - bde - adf - bef, acf - bdf + ade + bce)$$

$$= (a, b)(ce - df, cf + de)$$

$$= x(yz)$$

(M4)
$$1x = (1,0)(a,b) = (a,b) = x$$

(M5) 如果 $x \neq 0$ 那么 $(a,b) \neq (0,0)$,也就是说 a 和 b 至少有一个实数不等于 0。因此 $a^2 + b^2 > 0$,根据 Proposition 1.18(d),我们可以定义

$$\frac{1}{x} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

那么

$$x \cdot \frac{1}{x} = (a,b) \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2} \right) = (1,0) = 1$$
(D)
$$x(y+z) = (a,b)(c+e,d+f)$$

$$= (ac + ae - bd - bf, ad + af + bc + be)$$

$$= (ac - bd, ad + bc) + (ae - bf, af + be)$$

$$= xy + yz$$

Theorem 1.26. For any real numbers a and b we have

$$(a,0) + (b,0) = (a+b,0), (a,0)(b,0) = (ab,0)$$

Definition 1.27. i = (0, 1)

Theorem 1.28. $i^2 = -1$

Proof.

$$i^2 = (0,1)(0,1) = (-1,0) = -1$$

Theorem 1.29. If a and b are real, then (a,b) = a + bi

Proof.

$$a + bi = (a, 0) + (b, 0)(0, 1)$$
$$= (a, 0) + (0, b)$$
$$= (a, b)$$

Definition 1.30. If a, b are real and z = a + bi, then the complex number $\overline{z} = a - bi$ is called the *conjugate* of z. The numbers a and b are the *real part* and the *imaginary part* of z, respectively. We shall occasionally write

$$a = Re(z), \quad b = Im(z)$$

Theorem 1.31. If z and w are complex, then

- (a) $\overline{z+w} = \overline{z} + \overline{w}$
- (b) $\overline{zw} = \overline{z} \cdot \overline{w}$
- (c) $z + \overline{z} = 2 \operatorname{Re}(z), z \overline{z} = 2i \operatorname{Im}(z)$
- (d) $z\overline{z}$ is real and positive (except when z=0)

Definition 1.32. If z is a complex number, its absolute value |z| is the non-negative square root of $z\overline{z}$; that is, $|z| = (z\overline{z})^{1/2}$.

|z| 的存在(以及唯一性)遵循 Theorem 1.12 以及 Theorem 1.31 (d)。 注意当 x 为实数时,那么 $\overline{x}=x$,因此 $|x|=\sqrt{x^2}$ 。所以如果 $x\geq 0$ 时 |x|=x,如果 x<0 时 |x|=-x。

Theorem 1.33. Let z and w be complex numbers. Then

- (a) |z| > 0 unless z = 0, |0| = 0
- (b) $|\overline{z}| = |z|$
- (c) |zw| = |z||w|
- (d) $|Re z| \leq |z|$
- (e) $|z + w| \le |z| + |w|$

Proof.

(a) 与 (b) 不足为道。令 z=a+bi, w=c+di, 其 a,b,c,d 皆为实数。那么

$$|zw|^2 = (ac - bd)^2 + (ad + bc)^2 = (a^2 + b^2)(c^2 + d^2) = |z|^2|w|^2$$

即 $|zw|^2 = (|z||w|)^2$ 。(c) 遵循 Theorem 1.21 所声明的唯一性。

证明 (d), 有 $a^2 \le a^2 + b^2$, 因此

$$|a| = \sqrt{a^2} < \sqrt{a^2 + b^2}$$

证明 (e), 有 $\overline{z}w$ 与 $z\overline{w}$ 是共轭的, 因此 $\overline{z}w + z\overline{w} = 2Re(z\overline{w})$ 。因此

$$|z+w|^2 = (z+w)(\overline{z}+\overline{w})$$

$$= z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w}$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2$$

$$\leq |z|^2 + 2|z\overline{w}| + |w|^2$$

$$= |z|^2 + 2|z||w| + |w|^2$$

$$= (|z| + |w|)^2$$

两边开根号后即可得 (e)。

Note 计算中第一步的 $|z+w|^2=(z+w)(\overline{z}+\overline{w})$ 是将 z+w 视为整体,并使用了 Definition 1.32 中的 $|z|=(z\overline{z})^{1/2}$ 转换为 $(z+w)(\overline{z}+\overline{w})$,而又因为 Theorem 1.31 (a) 可将第二项变为 $(\overline{z}+\overline{w})$;而第三步到第四步的不等式则利用了 Theorem 1.33 (d),即 $|Rez|\leq |z|$;第四步到第五步则使用了 Theorem 1.33 (c),即 |zw|=|z||w|。

Notation 1.34. If x_1, \ldots, x_n are complex numbers, we write

$$x_1 + x_2 + \dots + x_n = \sum_{j=1}^{n} x_j$$

我们用一个重要的不等式来结束本节,它通常被称为 Schwarz inequality。

Theorem 1.35. If a_1, \ldots, a_n and b_1, \ldots, b_n are complex numbers, then

$$\left| \sum_{j=1}^{n} a_j \bar{b}_j \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2$$

Proof.

令 $A = \sum |a_j|^2$, $B = \sum |b_j|^2$, $C = \sum a_j \bar{b}_j$, 本证明中 j 取值 1,...,n。如果 B = 0, 那么就有 $b_1 = \cdots = b_n = 0$, 那么结论很清楚。因此假设 B > 0。根据 Theorem 1.31 有

$$\sum |Ba_j - Cb_j|^2 = \sum (Ba_j - Cb_j)(B\overline{a}_j - \overline{CB}_j)$$

$$= B^2 \sum |a_j|^2 - B\overline{C} \sum a_j \overline{b}_j - BC \sum \overline{a}_j b_j + |C|^2 \sum |b_j|^2$$

$$= B^2 A - B|C|^2$$

$$= B(AB - |C|^2)$$

因为在首次求和的每个项都是非负的, 可以知道

$$B(AB - |C|^2) \ge 0$$

又因为 B > 0, 它遵循 $AB - |C|^2 \ge 0$ 。它便是预期的不等式。

Note $|Ba_j-Cb_j|^2$ 为构造项,将其中 Ba_j-Cb_j 视为整体根据 Definition 1.32,可转换为 $(Ba_j-Cb_j)(\overline{Ba_j}-\overline{Cb_j})$,而后者根据 Theorem 1.31 即可写为 $B\overline{a}_j-\overline{Cb_j}$ (这里 $B=\sum |b_j|^2$ 的共轭还是其本身);根据乘法分配律得出第二步后,将之前设定的 A,B,C 带入即可得出 $B(AB-|C|^2)$;最后根据起始的构造项 $|Ba_j-Cb_j|^2$ 必然非负以及之前假设的 B>0 可以得出 $AB-|C|^2\geq 0$;将 A,B,C原本代表的值带入,即 $\sum |a_j|^2\sum |b_j|^2-|\sum a_j\overline{b}_j|\geq 0$ 。

Euclidean Spaces

Definitions 1.36. For each positive integer k, let R^k be the set of all ordered k-tuples

$$\mathbf{x} = (x_1, x_2, \dots, x_k)$$

where x_1, \ldots, x_k are real numbers, called the *coordinates* of \mathbf{x} . The elements of R^k are called points, or vectors, especially when k > 1. We shall denote vectors by boldfaced letters. If $\mathbf{y} = (y_1, \ldots, y_k)$ and if α is a real number, put

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_k + y_k)$$

 $\alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_k)$

so that $\mathbf{x} + \mathbf{y} \in R^k$ and $\alpha \mathbf{x} \in R^k$. This defines addition of vectors, as well as multiplication of a vector by a real number (a scalar). These two operations satisfy the commutative, associative, and distributive laws (the proof is trivial, in view of the analogous for the real numbers) and make R^k into a vector space over the real field. The zero element of R^k (sometimes called the origin or the null vector) is the point $\mathbf{0}$, all of whose coordinates are 0.

We also define the so-called "inner product" (or scalar product) of \mathbf{x} and \mathbf{y} by

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{k} x_i y_i$$

and the *norm* of \mathbf{x} by

$$|\mathbf{x}| = (\mathbf{x} \cdot \mathbf{x})^{1/2} = \left(\sum_{i=1}^{k} x_i^2\right)^{1/2}$$

The structure now defined (the vector space \mathbb{R}^k with the above inner product and norm) is called euclidean k-space.

Theorem 1.37. Suppose $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$, and α is real. Then

- (a) $|\mathbf{x}| \ge 0$;
- (b) $|\mathbf{x}| = 0$ if and only if $\mathbf{x} = \mathbf{0}$;
- (c) $|\alpha \mathbf{x}| = |\alpha||\mathbf{x}|$;
- (d) $|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}||\mathbf{y}|$;
- (e) $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$;
- (f) $|\mathbf{x} \mathbf{z}| \le |\mathbf{x} \mathbf{y}| + |\mathbf{y} \mathbf{z}|$

Proof.

前三项不必赘述,而 (d)是 Schwarz 不等式的间接结论。通过 (d) 可以有

$$|\mathbf{x} + \mathbf{y}|^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y})$$

$$= \mathbf{x} \cdot \mathbf{x} + 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y}$$

$$\leq |\mathbf{x}|^2 + 2|\mathbf{x}||\mathbf{y}| + |\mathbf{y}|^2$$

$$= (|\mathbf{x}| + |\mathbf{y}|)^2$$

这样 (e) 就被证明了。最后替换 (e) 中的 x 为 x - y 以及 y 为 y - z (f) 可以得出 (f)。

Remarks 1.38. Theorem 1.37 (a), (b), and (f) will allow us (see Chap. 2) to regard R^k as a metric space.

 R^1 (the set of all real numbers) is usually called the line, or the real line. Likewise, R^2 is called the plane, or the complex plane (compare Definitions 1.24 and 1.36). In these two cases the norm is just the absolute value of the corresponding real or complex number.

2 Basic Topology

Finite, Countable, and Uncoutable Sets

本节由函数概念的定义开始。

Definition 2.1. Consider two sets A and B, whose elements may be any objects whatsover, and suppose that with each element x of A there is associated, in some manner, an element of B, which we denote by f(x). Then f is said to be a function from A to B (or a mapping of A into B). The set A is called the domain of f (we also say f is defined on A), and the elements f(x) are called the values of f. The set of all values of f is called the range of f.

Definition 2.2. Let A and B be two sets and let f be a mapping of A into B. If $E \subset A$, f(E) is defined to be the set of all elements f(x), for $x \in E$. We call f(E) the *image* of E under f. In this notation, f(A) is the range of f. It is clear that $f(A) \subset B$. If f(A) = B, we say that f maps A onto B. (Note that, according to this usage, onto is more specific than into.)

If $E \subset B$, $f^{-1}(E)$ denotes the set of all $x \in A$ such that $f(x) \in E$. We call $f^{-1}(E)$ the inverse image of E under f. If $y \in B$, $f^{-1}(y)$ is the set of all $x \in A$ such that f(x) = y. If, for each $y \in B$, $f^{-1}(y)$ consists of at most one element of A, then f is said to be a 1-1 (one-to-one) mapping of A into B. This may also be expressed as follows: f is a 1-1 mapping of A into B provided that $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2, x_1 \in A, x_2 \in A$.

(The notation $x_1 \neq x_2$ means that x_1 and x_2 are distinct elements; otherwise we write $x_1 = x_2$.)

Note 简单来说:

- 1. f(E) 是集合 E 通过 f 得到的像 (image)。
- 2. f(A) 是 f 的范围。
- 3. 如果 f(A) = B, 那么称 f 将 A 完全映射至 (onto) B 。
- 4. 而当 $E \subset B$ 且 $x \in A$ 时,反函数 $f^{-1}(E)$ 是集合 E 通过 f 得到的反像 (inverse image)。
- 5. $\forall x \in A$ 通过 f 映射后且满足 $\forall f(x) \in B$ 被称为——映射(1-1 mapping)。

Definition 2.3. If there exists a 1-1 mapping of A onto B, we say that A and B can be put in 1-1 correspondence, or that A and B have the same cardinal number, or, briefly, that A and B are equivalent, and we write $A \sim B$. This relation clearly has the following properties:

It is reflexive: $A \sim A$.

It is symmetric: If $A \sim B$, then $B \sim A$.

It is transitive: If $A \sim B$ and $B \sim C$, then $A \sim C$.

Any relation with these three properties is called an *equivalence relation*.

Note

- 基数 Cardinal number。
- 自反性 Reflexive, 维基百科;
- 对称性 Symmetric;
- 传递性 Transitive。

Definition 2.4. For any positive integer n, let J_n be the set whose elements are the integers $1, 2, \ldots, n$; let J be the set consisting of all positive integers. For any set A, we say:

- (a) A is finite if $A \sim J_n$ for some n (the empty set is also considered to be finnite).
- (b) A is *infinite* if A is not finite.
- (c) A is countable if $A \sim J$.
- (d) A is uncountable if A is neither finite nor countable.
- (e) A is at most countable if A is finite or countable.

Countable sets are sometimes called *enumerable*, or *denumerable*.

For two finite sets A and B, we evidently have $A \sim B$ if and only if A and B contain the same number of elements. For infinite sets, however, the idea of "having the same number of elements" becomes quite vague, whereas the notion of 1-1 correspondence retains its clarity.

Note 可数集 (countable set),是指每个元素都能与自然数集 N 的每个元素之间能建立一一对应的集合;不可数集顾名思义就是无法与自然数集 N 建立一一对应的集合;至多可数集 (at most coutable) 是有限集 (finite) 与可数集 (coutable) 的统称。

Definition 2.7. By a sequence, we mean a function f defined on the set J of all positive integers. If $f(n) = x_n$, for $n \in J$, it is customary to denote the sequence f by the symbol $\{x_n\}$, or sometimes by x_1, x_2, x_3, \ldots The values of f, that is, the elements x_n , are called the terms of the sequence. If A is a set and if $x_n \in A$ for all $n \in J$, then $\{x_n\}$ is said to be a sequence in A, or a sequence of elements of A.

注意一个数列的 x_1, x_2, x_3, \ldots 项不需要是独特的。

由于每个可数集合是一个定义在 J 上一一映射的范围,可将每个可数集合视为一系列不同项的范围。更宽泛来说,任何可数集合中的原始可以被"排列在一个数列上"。

有时可以将定义中的 J 替换为所有非负整数集合,这样可能会更加的方便,例如开始于 0 而不是 1。

Theorem 2.8. Every infinite subset of a countable set A is coutable.

Proof.

假设 $E \subset A$,且 E 为无限的。排列 A 中的元素 x 构建 $\{x_n\}$ 独特数列。构建一个满足如下的数列 $\{n_k\}$:

令 n_1 为最小的正整数使得 $x_{n_1} \in E$ 。选择 n_1, \ldots, n_{k-1} $(k = 2, 3, 4, \ldots)$,令 n_k 为最小的大于 n_{k-1} 的整数使得 $x_{n_k} \in E$ 。

令 $f(k) = x_{n_k}$ (k = 1, 2, 3, ...),我们获取一个 E 与 J 的一一映射关系。

根据定理, 粗略的说可数集合表示了"最小的"无限性: 没有不可数集合可以成为一个可数集合的子集。

Note 一个可数集合 A 的任意无限子集都是可数的。

Definition 2.9. Let A and Ω be sets, and suppose that with each element α of A there is associated a subset of Ω which we denote by E_{α} .

The set whose elements are the sets E_{α} will be denoted by $\{E_{\alpha}\}$. Instead of speaking of sets of sets, we shall sometimes speak of a collection of sets, or a family of sets.

The *union* of the sets E_{α} is defined to be the set S such that $x \in S$ if and only if $x \in E_{\alpha}$ for at least one $\alpha \in A$. We use the notation

$$(1) S = \bigcup_{\alpha \in A} E_{\alpha}.$$

If A consists of the integers $1, 2, \ldots, n$, one usually writes

$$(2) S = \bigcup_{m=1}^{n} E_m$$

or

$$(3) S = E_1 \cup E_2 \cup \cdots \cup E_n.$$

If A is the set of all positive integers, the usual notation is

$$(4) S = \bigcup_{m=1}^{\infty} E_m.$$

The symbol ∞ in (4) merely indicates that the union of a *countable* collection of sets is taken, and should not be confused with the symbols $+\infty$, $-\infty$, introduced in Definition 1.23.

The intersection of the sets E_{α} is defined to be the set P such that $x \in P$ if and only if $x \in E_{\alpha}$ for every $\alpha \in A$. We use the notation

$$(5) P = \bigcap_{\alpha \in A} E_{\alpha},$$

or

(6)
$$P = \bigcap_{m=1}^{n} E_m = E_1 \cap E_2 \cap \dots \cap E_n,$$

or

(7)
$$P = \bigcap_{m=1}^{\infty} E_m,$$

as for unions. If $A \cap B$ is not empty, we say that A and B intersect; otherwise they are disjoint.

Note

- 元素为 E_{α} 的集合记为 $\{E_{\alpha}\}$,可以称其为集合群 collection of sets 或是类 family of sets。
- S 代表所有 E_{α} 集合的并集;
- P 代表所有 E_{α} 集合的交集。

Remarks 2.11. Many properties of unions and intersections are quite similar to those of sums and products; in fact, the words sum and product were sometimes used in this connection, and the symbols Σ and Π were written in place of \bigcup and \bigcap .

The commutative and associative laws are trivial:

(8)
$$A \cup B = B \cup A; \quad A \cap B = B \cap A.$$

(9)
$$(A \cup B) \cup C = A \cup (B \cup C); \quad (A \cap B) \cap C = A \cap (B \cap C).$$

Thus the omission of parenthese in (3) and (6) is justified.

The distributive law also holds:

$$(10) A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

To prove this, let the left and right members of (10) be denoted by E and F, respectively.

Suppose $x \in E$. Then $x \in A$ and $x \in B \cup C$, that is, $x \in B$ or $x \in C$ (possibly both). Hence $x \in A \cap B$ or $x \in A \cap C$, so that $x \in F$. Thus $E \subset F$.

Next, suppose $x \in F$. Then $x \in A \cap B$ or $x \in A \cap C$. That is, $x \in A$, and $x \in B \cup C$. Hence $x \in A \cap (B \cup C)$, so that $F \subset E$.

It follows that E = F.

We list a few more relations which are easily verified:

$$(11) A \subset A \cup B,$$

$$(12) A \cap B \subset A.$$

If 0 denotes the empty set, then

(13)
$$A \cup 0 = A, \quad A \cap 0 = 0.$$

If $A \subset B$, then

$$(14) A \cup B = B, \quad A \cap B = A.$$

Theorem 2.12. Let $\{E_n\}$, $n = 1, 2, 3, \ldots$, be a sequence of countable sets, and put

$$(15) S = \bigcup_{n=1}^{\infty} E_n.$$

Then S is countable.

Proof.

Let every set E_n be arranged in a sequence $\{x_{nk}\}, k = 1, 2, 3, \ldots$, and consider the infinite array

in which the elements of E_n form the nth row. The array contains all elements of S. As indicated by the arrows, these elements can be arranged in a sequence

$$(17) x_1 1; x_2 1, x_1 2; x_3 2, x_2 2, x_1 3; x_4 1, x_3 2, x_2 3, x_1 4; \dots$$

If any two of the sets E_n have elements in common, these will appear more than once in (17). Hnce there is a subset T of the set of all positive integers such that $S \sim T$, which shows that S is at most coutable (Theorem 2.8). Since $E_1 \subset S$, and E_1 is infinite, S is infinite, and thus countable.

Corollary. Suppose A is at most coutable, and, for every $\alpha \in A$, B_{α} is at most countable. Put

$$T = \bigcup_{\aleph \in A} B_{\alpha} .$$

Then T is at most countable.

T 相当于 (15) 的子集。

Theorem 2.13. Let A be a countable set, and let B_n be the set of all n-tuples (a_1, \ldots, a_n) , where $a_k \in A$ $(k = 1, \ldots, n)$, and the elements a_1, \ldots, a_n need not be distinct. Then B_n is coutable.

Proof.

 B_1 可数是显而易见的,因为 $B_1=A$ 。假设 B_{n-1} 是可数的 $(n=2,3,4,\dots)$ 。 B_n 的元素 形式是

$$(b,a) \quad (b \in B_{n-1}, \alpha \in A).$$

对于每个固定的 b,成对集合(set of pairs)b, a 等同于 A,即是可数的。因此 B_n 是若干可数 集合的并集构成的可数集合。根据 Theorem 2.12, B_n 是可数的。

Corollary. The set of all rational numbers is countable.

Proof.

我们应用 Theorem 2.13 同时 n=2,所有有理数 r 都可以表示为 b/a,其中 a 与 b 都是整数。那么成对集合 (a,b) 就是分数 b/a 的集合,即是可数的。

实际上, 所有代数集合都是可数的。

然而并不是所有的无限集合是可数的,详见下个定理。

Theorem 2.14. Let A be the set of all sequences whose elements are the digits 0 and 1. This set A is uncoutable.

A 集合中的元素数列类似于 1,0,0,1,0,1,1,1,...。

Proof.

令 E 为集合 A 中的一个可数子集,且令 E 由数列 s_1, s_2, s_3, \ldots 构成。再构建一个满足以下条件的数列 s。如果在 s_n 中的第 n 个小数是 1,令 s 的第 n 个小数为 0,以此类推。那么数列 s 至少有一处是有别于所有 E 中的成员;因此 $s \notin E$ 。但是陷入 $s \in A$,因此 E 是 A 的一个合理子集。

我们证明了所有 A 集合的可数子集是合理的子集。对于 A 是不可数的也同理(否则 A 将会是 A 合理的子集,这是荒谬的)。

Metric Spaces

Definition 2.15. A set X, whose elements we shall call *points*, is said to be a *metirc space* if with any two points p and q of X there is associated a real number d(p,q), called the *distance* from p to q, such that

- (a) d(p,q) > 0 if $p \neq q$; d(p,p) = 0;
- (b) d(p,q) = d(q,p);
- (c) $d(p,q) \leq d(p,r) + d(r,q)$, for any $r \in X$.

任何拥有上述三个性质的函数都被称为距离函数 distance function, 或者度规 metric。

Examples 2.16. The most important examples of metric spaces, from our standpoint, are the euclidean spaces R^k , especially R^1 (the real line) and R^2 (the complex plane); the distance in R^k is defined by

(19)
$$d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}| \quad (\mathbf{x}, \mathbf{y} \in R^k).$$

Note

- 欧几里得空间的距离概念抽象化后,即度量空间 (Metric Space)。
- (a) 正定性, (b) 对称性, (c) 三角不等式。

Definition 2.17. By the *segment* (a,b) we mean the set of all real numbers x such that a < x < b.

By the interval [a, b] we mean the set of all real numbers x such that $a \le x \le b$.

Occasionally we shall also encounter "half-open intervals" [a,b) and (a,b]; the first consists of all x such that $a \le x < b$, the second of all x such that $a < x \le b$.

If $a_i < b_i$ for i = 1, ..., k, the set of all points $\mathbf{x} = (x_1, ..., x_k)$ in \mathbb{R}^k whose coordinates satisfy the inequalities $a_i \le x_i \le b_i$ $(1 \le i \le k)$ is called a k-cell. Thus a 1-cell is an interval, a 2-cell is a rectangle, etc.

If $\mathbf{x} \in R^k$ and r > 0, the open (or closed) ball B with center at \mathbf{x} and radius r is defined to be the set of all $\mathbf{y} \in R^k$ such that $|\mathbf{y} - \mathbf{x}| < r$ (or $|\mathbf{y} - \mathbf{x}| \le r$).

We call a set $E \subset \mathbb{R}^k$ convex if

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in E$$

whenever $\mathbf{x} \in E$, $\mathbf{y} \in E$, and $0 < \lambda < 1$.

Note

- Segment 开区间 (a,b)
- Interval 闭区间 [a, b]
- k-cell k-方格
- R^k 空间定义开/闭球 (open/closed ball)
- ball 和 k-cell 都是凸的 (convex)

k-cell

Definition 2.18. Let X be a metirc space. All points and sets mentioned below are understood to be elements and subsets of X.

- (a) A neighborhood of p is a set $N_r(p)$ consisting of all q such that d(p,q) < r, for some r > 0. The number r is called the radius of $N_r(p)$.
- (b) A point p is a *limit point* of the set E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.
- (c) If $p \in E$ and p is not a limit point of E, then p is called an *isolated point* of E.
- (d) E is *closed* if every limit point of E is a point of E.
- (e) A point p is an interior point of E if there is a neighborhood N of p such that $N \subset E$.
- (f) E is open if every point of E is an interior point of E.
- (g) The *complement* of E (denoted by E^c) is the set of all points $p \in X$ such that $p \notin E$.

- (h) E is perfect if E is closed and if every point of E is a limit point of E.
- (i) E is bounded if there is a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- (j) E is dense in X if every point of X is a limit point of E, or a point of E (or both). 注意 R^1 的邻域为线段,而 R^2 的邻域是圆圈的内点们。

Note

- 邻域 neighborhood: 到 p 点距离小于 r 的集合 (r > 0);
- 极限点 limit point: 所有邻域存在一个与 p 不同的点,无论半径多小(例如一维空间的开闭区间 $(a,b],\ a < b,\ a,b \in R$ 的 a,b 点皆为极限点,a 虽然不属于 (a,b],但是其右侧总是会有一个点 p 使得 p-a>0,b 同理。二维空间集合的边间点亦是如此,以此类推所有的边界点皆为极限点);
- 孤立点 isolated point: 例如 $S = \{0\} \cup [1,2]$ 的 0 点为孤立点;
- 闭 closed: 如果所有极限点都属于 E, 那么 E 为闭 (例如一维空间 S = [a,b], a < b, $a,b \in R$, S 为 closed。特例: 在孤立点构成的度量空间中,任何子集都是即开又闭);
- 内点 interior point: 用一维空间解释就是 $S = [a, b], \ a < b, \ a, b \in R$ 且 $p \in (a, b), \ m \land p$ 为 S 的内点;
- π open: 如果 E 中任意一点都是内点, E 为开;
- 补集 complement: $\forall p \in X \perp \forall p \notin E \text{ 那么 } X \text{ 为 } E \text{ 补集};$
- 完全 perfect: 一个闭集中每一个点都是它的极限点,那么该集合为完全;
- 有界的 bounded: 如果集合中任意一点都在某个 r 为实数的邻域内,那么该集合为有界的;
- 稠密 dense: X 中任意一点都是 E 的一个极限点或者 E 中的一点(例如有理数在实数上 稠密,Theorem 1.20 (b) 中证明了)。

Theorem 2.19. Every neighborhood is an open set.

Proof.

考虑一个邻域 $E=N_r(p)$,并令 q 为 E 的任意一点。那么则有一个正实数 h 满足 d(p,q)=r-h.

对于所有满足 d(q,s) < h 的点 s,有

$$d(p, s) \le d(p, q) + d(q, s) < r - h + h = r,$$

使得 $s \in E$ 。因此 q 是 E 的一个内点。

Note 所有邻域都是开的。

Theorem 2.20. If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

Proof.

假设 p 有一个邻域 N,其仅包含了有限点的 E。令 q_1, \ldots, q_n 为 $N \cap E$ 的这些点,它们有别与点 p,且令

$$r = \min_{1 \le m \le n} d(p, q_m)$$

(我们使用这个记号来表示最小的 $d(p,q_1),\ldots,d(p,q_n)$)。一个有限集的最小值很明显是正数,因此 r>0。

邻域 $N_r(p)$ 包含了除了点 q 的 E 即 $q \neq p$,使得 p 不是 E 的一个极限点。这与定理自身相悖。

Note 简单来说,假设 p 有一个邻域是有限集合,那么就一定会有 r 满足 $\min_{1 \le m \le n} d(p, q_m)$,也就是有最小距离存在;然而这与 Definition 2.18 (b) 相悖,即与"无论半径多小"的定义相悖,因此 p 不是一个极限点。因此,如果 p 是一个极限点,那么它的任何邻域都有无限个点。

Corollary. A finite point set has no limit points.

Examples 2.21. Let us consider the following subsets of R^2 :

- (a) The set of all complex z such that |z| < 1.
- (b) The set of all complex z such that $|z| \leq 1$.
- (c) A nonempty finite set.
- (d) The set of all integers.
- (e) The set consisting of the numbers 1/n (n = 1, 2, 3, ...). Let us note that this set E has a limit point (namely, z = 0) but that no point of E is a limit point of E; we wish to stress the difference between having a limit point and containing one.
- (f) The set of all complex numbers (that is, R^2).

(g) The segment (a, b).

Let us note that (d), (e), (g) can be regarded also as subsets of R^1 . Some properties of these sets are tabulated below:

	Closed	Open	Perfect	Bounde
(a)	No	Yes	No	Yes
(b)	Yes	No	Yes	Yes
(c)	Yes	No	No	Yes
(d)	Yes	No	No	No
(e)	No	No	No	Yes
(f)	Yes	Yes	Yes	No
(g)	No		No	Yes

In (g), we left the second entry blank. The reason is that the segment (a,b) is not open if we regard it as a subset of \mathbb{R}^2 , but it is an open subset of \mathbb{R}^1 .

Theorem 2.22. Let $\{E_{\alpha}\}$ be a (finite or infinite) collection of sets E_{α} . Then

(20)
$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} (E_{\alpha}^{c}).$$

Proof.

令 A 与 B 分别为 (20) 的左右成员。如果 $x \in A$,那么 $x \notin \bigcup_{\alpha} E_{\alpha}$,因此对于任何 α 而言 $x \notin E_{\alpha}$,因此对于所有 α 而言 $x \in E_{\alpha}^{c}$,使得 $x \in \bigcap E_{\alpha}^{c}$ 。所以 $A \subset B$ 。

相反的,如果 $x \in B$,那么对于所有 α 而言 $x \in E_{\alpha}^{c}$,因此对于任何 α 而言 $x \notin E$,因此 $x \notin \bigcup_{\alpha} E_{\alpha}$,使得 $x \in (\cup_{\alpha} E_{\alpha})$ 。所以 $B \subset A$ 。

综上所述
$$A = B$$
。

Theorem 2.23. A set E is open if and only if its complement is closed.

Proof.

首先,假设 E^c 是闭的。选 $x \in E$,且 $x \notin E^c$,且 x 不是 E^c 的一个极限点。因此 x 存在一个邻域 N 使得 $E^c \cap N$ 是空集,也就是说 $N \subset E$ 。因此 x 是 E 的一个内点,且 E 是开的。

接着,假设 E 是开的。令 x 为 E^c 的一个极限点。那么 x 的所有邻域包含 E^c 的一个点,使得 x 不是 E 的一个内点。由于 E 是开的,这意味着 $x \in E^c$ 。即遵循了 E^c 是闭的。

Corollary. A set F is closed if and only if its complement is open.

Theorem 2.24.

- (a) For any collection $\{G_{\alpha}\}$ of open sets, $\cup_{\alpha} G_{\alpha}$ is open.
- (b) For any collection $\{F_{\alpha}\}\$ of closed sets, $\cap_{\alpha}F_{\alpha}$ is closed.
- (c) For any finite collection G_1, \ldots, G_n of open sets, $\bigcap_{i=1}^n G_i$ is open.
- (d) For any finite collection F_1, \ldots, F_n of closed sets, $\bigcup_{i=1}^n F_i$ is closed.

Proof.

令 $G = \bigcup_{\alpha} G_{\alpha}$ 。如果 $x \in G$ 那么对一些 α 而言,有 $x \in G_{\alpha}$ 。因为 x 是 G_{α} 的一个内点,同时也是 G 的一个内点,所以 G 是开的。即证明了 (a)。

根据 Theorem 2.22,

$$\left(\bigcap_{\alpha} F_{\alpha}\right)^{c} = \bigcup_{\alpha} (F_{\alpha}^{c})$$

且 F_{α}^{c} 是开的,根据 Theorem 2.23。因此 (a) 意为 (21) 是开的,因此 $\cap_{\alpha}F_{\alpha}$ 是闭的。

接着令 $H = \bigcap_{i=1}^n G_i$ 。对于任何 $x \in H$,存在 x 半径 r_i 的邻域 N_i ,使得 $N_i \subset G_i$ (i = 1, ..., n)。令

$$r = \min(r_1, \dots, r_n)$$

且令 N 为 x 半径 r 的邻域。那么对于 $i=1,\ldots,n$ 而言 $N\subset G_i$ 使得 $N\subset H$,所以 H 是开的。

通过获取补集, (d) 遵循 (c):

$$\left(\bigcup_{i=1}^n F_i\right)^c = \bigcap_{i=1}^n (F_i^c)$$

Note 对于 (a) 而言,利用了开集的定义 Definition 2.18 (f),也就是说 x 可以是 G 的任意一点,且因为 $x \in G_{\alpha}$ 都是内点,满足开集定义。

对于 (b) 而言, 将 Theorem 2.23 应用在 Theorem 2.22 即可得出结论。

对于 (c) 而言,H 是有限个数开集的交集,那么对于每个构成 H 的 G_i 而言都有一个 N_i 作为 x 的邻域,那么在有限个集合内肯定可以找到最小的邻域(最小半径 r),又因为该最小的 邻域为所有 G_i 的子集,即 $N \subset G_i$, $i=1,\ldots,n$,因此有 $N \subset H$ 。最后因为对于任意 $x \in H$ 而言,上述论证的 $N_x \subset H$ 都成立,即符合开集定义。

对于 (d) 而言, 再次将 Theorem 2.23 应用在 (c) 上即可得出结论。 简言之:

• 任意多的开集的并集仍然是开的;

- 任意多的闭集的交集仍然是闭的;
- 有限个的开集的交集仍然是开的;
- 有限个的闭集的并集仍然是闭的。

Definition 2.26. If X is a metric space, if $E \subset X$, and if E's denotes the set of all limit points of E in X, then the *closure* of E is the set $\overline{E} = E \cup E'$.

Note E' 为所有极限点的集,那么 $\overline{E} = E \cup E'$ 为闭包(例如一维空间 $(a,b), a < b, a,b \in R$ 有极限点 a,b, 那么 $\overline{E} = (a,b) \cup a \cup b = [a,b]$)。

Theorem 2.27. If X is a metric space and $E \subset X$, then

- (a) \overline{E} is closed,
- (b) $E = \overline{E}$ if and only if E is closed,
- (c) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

By (a) and (c), \overline{E} is the smallest closed subset of X that contains E.

Proof.

- (a) 如果 $p \in X$ 且 $p \notin \overline{E}$, 那么 p 既不是 E 的点也不是 E 的极限点。因此 p 有一个邻域不与 E 相交。那么 \overline{E} 的补集是开的。因此 \overline{E} 是闭的。
- (b) 如果 $E = \overline{E}$, 那么 (a) 意味着 E 是闭的。如果 E 是开的,那么 $E' \subset E$ (根据 Definitions 2.18 (d) 与 2.26),因此 $\overline{E} = E$ 。
- (c) 如果 F 是闭的且 $F \supset E$, 那么 $F \supset F'$, 因此 $F \supset E'$ 。所以 $F \supset \overline{E}$ 。

Note 对于 (c) 而言,如果 $E \subset F$,那么 E 的极限点要么属于 F 的内点,要么属于 F 的极限点;而根据闭集的定义,闭集中所有的极限点都属于闭集,所以 $E \cup E' \subset F$,即 $\overline{E} \subset F$ 。

Theorem 2.28. Let E be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Then $y \in \overline{E}$. Hence $y \in E$ if E is closed.

Proof.

如果 $y \in E$ 那么 $y \in \overline{E}$ 。假设 $y \notin E$ 。那么对于所有的 h > 0 存在一个点 $x \in E$ 使得 y - h < x < y,不然的话 y - h 会是 E 的一个上界。因此 y 是 E 的一个极限点,所以 $y \in \overline{E}$ 。 \square

Note 如果 E 是闭集,而 $y \notin E$ 时,那么总会有 h > 0 使得 y - h < y 为 E 的上界,那么与 $y = \sup E$ 相悖。

Remark 2.29. Suppose $E \subset Y \subset X$, where X is a metric space. To say that E is an open subset of X means that to each point $p \in E$ there is associated a positive number r such that the conditions d(p,q) < r, $q \in X$ imply that $q \in E$. But we have already observed (Examples 2.16) that Y is also a metric space, so that our definitions may equally well be made within Y. To be quite explicit, let us say that E is open relative to Y if to each $p \in E$ there is associated an r > 0 such that $q \in E$ whenever d(p,q) < r and $q \in Y$. Examples 2.21(g) showed that a set may be open relative to Y without being an open subset of X. However, there is a simple relation between these concepts, which we now state.

Note 根据 Examples 2.16 与 2.21 (g) 引入相对开集这个概念,在下面的定理中证明相对开集 E 与 Y 和 X 的关系。

Theorem 2.30. Suppose $Y \subset X$. A subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.

Proof.

假设 E 是相对 Y 是开。每个 $p \in E$ 都存在一个正数 r_p 满足 $d(p,q) < r_p$, $q \in Y$ 意味着 $q \in E$ 。令 V_p 为所有 $q \in X$ 的集,使得 $d(p,q) < r_p$,并且定义

$$G = \bigcup_{p \in E} V_p$$

那么根据 Theorems 2.19 与 2.24 可知 G 是 X 的一个子开集。

因为对于所有 $p \in E$ 而言 $p \in V_p$, 即 $E \subset G \cap Y$ 。

对于 V_p 而言,对于每个 $p \in E$ 有 $V_p \cap Y \subset E$,使得 $G \cap Y \subset E$ 。因此 $E = G \cap Y$,这样该定理的一半被证明了。

相反的,如果 G 在 X 中是开的,且对于每个 $x \in E$ 而言 $E = G \cap Y$ 有一个邻域 $V_p \subset G$ 。 那么 $V_p \cap Y \subset E$,使得 E 相对 Y 是开的。

Note 证明的一开始"假设 E 是相对 Y 是开"利用了 Remark 2.29 的结论(而 Remark 2.29 的前半结论是由 Examples 2.16 所得出的):"to each point $p \in E$ there is associated a positive number r such that the conditions $d(p,q) < r, \ q \in X$ imply that $q \in E$ "。接下来,Theorem 2.19 说的是 "所有邻域都是开集",而证明中 Theorem 2.24 (a) 说的是若干开集的并集也是开集。简言之 p 在 X 上有邻域,且对所有 $p \in E$ 有效,那么 $G = \bigcup_{} V_p$ 在 X 中是开的。

又因为对于所有的 $p \in E$ 都有 $p \in Vp$, 那么就有 $E \subset G$; 同时 $E \subset Y$, 所以有 $E \subset G \cap Y$.

而证明中设定的 V_p 本身就是 p 点在 Y 上的邻域,即 $V_p \cap Y \subset E$; 这又对于所有 $p \in E$ 生效,即 $G \cap Y \subset E$ 。结合上面的结论有 $E \subset G \cap Y \subset E$,即 $E = G \cap Y$ 。

而 E 相对 Y 为开的证明就简单多了,因为 $p \in E$ 在 G 上的邻域有 $V_p \subset G$,而 $G \cap Y = E$ 且 $V_p \subset G$ 可知 $V_p \cap Y \subset E$,即 $p \in E$ 在 Y 上的邻域满足 Theorem 2.19,再结合 Theorem 2.24 (a),可得结论。

性质:集合的开性质是相对的。相对 Y 的开集 E,对于更大的 X 来说不一定是开的。要证明对于更大的 X 是开,就必须要引入 X 的开子集 G。

Compact Sets

Definition 2.31. By an *open cover* of a set E in a metric space X we mean a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subset \bigcup_{\alpha} G_{\alpha}$.

Note 开覆盖 open cover。

Definition 2.32. A subset K of a metric space X is said to be *compact* if every open cover of K contains a *finite* subcover.

More explicitly, the requirement is that if $\{G_{\alpha}\}$ is an open cover of K, then there are finitely many indices $\alpha_1, \ldots, \alpha_n$ such that

$$K \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$$
.

紧性 compactness 这个概念在数学分析中非常的重要,特别是它连接了连续性这个概念(第四章)。

很明显所有的有限集都是紧的。 R^k 上存在大类无限紧集将会在 Theorem 2.41 中提及。 我们之前观察到的(Remark 2.29)如果 $E \subset Y \subset X$,那么 E 有可能相对 Y 是开的,而不需要相对 X 是开的。开这个属性因此取决于 E 所嵌入的空间,对于闭这个属性亦是如此。

Note

- 紧集 compact set: 任何开覆盖都存在有限的子覆盖。
- 若一个集合是紧集,可以称这个集合具有紧性 compact。
- 紧性实际上是一种拓扑性质。

Theorem 2.33. Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if K is compact relative to Y.

凭借这个定理,在许多情况下,我们能够将紧集本身视为度量空间,而无需关注任何嵌入空间。尽管讨论开空间,或者闭空间的意义不大(每个度量空间 X 是其自身的一个开子集,以及一个闭子集),但是讨论紧度量空间却是很有意义的。

Proof.

假设 K 是相对 X 紧的,且令 $\{V_{\alpha}\}$ 为相对 Y 是开的集合类,使得 $K \subset \cup_{\alpha} V_{\alpha}$ 。根据 Theorem 2.30,存在若干相对 X 是开的集合 G_{α} ,使得对于所有 α 有 $V_{\alpha} = Y \cap G_{\alpha}$;又因为 K 是相对 X 紧的,我们有

$$(22) K \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$$

对于一些有限数量索引 $\alpha_1, \ldots, \alpha_n$ 。因为 $K \subset Y$, (22) 意味着

$$(23) K \subset V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$$

这证明了 K 是相对 Y 紧的。

相反的, 假设 K 是相对 Y 紧的, 令 $\{G_{\alpha}\}$ 为 X 开子集的类, 其覆盖了 K, 且令 $V_{\alpha} = Y \cap G_{\alpha}$ 。 那么 (23) 将包含一些 $\alpha_1, \ldots, \alpha_n$; 又因为 $V_{\alpha} \subset G_{\alpha}$, (23) 意味着 (22)。

Note 首先是证明 K 相对 Y 紧: 假设 K 相对 X 紧。根据条件 $K \subset Y$ 可以设定 V_{α} 为 K 在 Y 上的子覆盖,那么根据开覆盖的定义有 $K \subset \cup_{\alpha} V_{\alpha}$; 利用 Theorem 2.30 - Y 上的子集 V 当 且仅当 $V = Y \cap G$ 且 G 为 X 的开集时,V 相对 Y 开,那么对于所有的 α 则有 $V_{\alpha} = Y \cap G_{\alpha}$; 根据假设 K 相对 X 紧,那么在 X 上存在有限的子覆盖,即 $K \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$; 而先前的设定的 V_{α} 与 G_{α} 因为子覆盖是有限的,那么可以建立 $V_{\alpha_1} = Y \cap G_{\alpha_1}, \ldots, V_{\alpha_n} = Y \cap G_{\alpha_n}$ 这样——对应的关系,对于 $K \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$ 可以在子集符两边做与 Y 的交集,即

$$Y \cap K \subset Y \cap (G_{\alpha_1} \cup \dots \cup G_{\alpha_n})$$

$$\subset (Y \cap G_{\alpha_1}) \cup \dots \cup (Y \cap G_{\alpha_n})$$

$$\subset V_{\alpha_1} \cup \dots \cup V_{\alpha_n}$$

又因为 $K \subset Y$ 那么 $Y \cap K = K$,所以上述简化为 $K \subset V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$,也就是说 V_{α} 是 K 在 Y 上有限的子覆盖,即证明了 K 是相对 Y 紧的。

其次是证明 K 相对 X 紧: 假设 K 相对 Y 紧。令 $\{G_{\alpha}\}$ 为 K 在 X 上的开覆盖子集的类,利用 Theorem 2.30 有 $V_{\alpha}=Y\cap G_{\alpha}$,那么根据 (23) 可以推导出 (22)。即证明了 K 是相对 X 紧的。

Theorem 2.34. Compact subsets of metric spaces are closed.

Proof.

 $\Diamond K$ 为度量空间 X 的一个紧子集。我们应该证明 K 的补集是 X 上的一个子开集。

假设 $p\in X,\ p\notin K$ 。如果 $q\in K$,令 V_q 与 W_q 分别为 p 与 q 的邻域,它们的半径小于 $\frac{1}{2}d(p,q)$ (详见 Definition 2.18 (a))。由于 K 是紧的,那么在 K 中存在有限数量的点 q_1,\ldots,q_n 使得

$$K \subset W_{q_1} \cup \cdots \cup W_{q_n} = W$$
.

如果 $V = V_{q_1} \cup \cdots \cup V_{q_n}$,那么 $V \neq p$ 的一个邻域,且不与 W 相交。因此 $K \subset K^c$,所以 $p \neq K^c$ 的一个内点。

Note 度量空间的紧子集是闭的; 度量空间的紧集都是有界的.

Theorem 2.35. Closed subsets of compact sets are compact.

Proof.

假设 $F \subset K \subset X$, F 是闭的(相对于 X),且 K 是紧的。令 $\{V_{\alpha}\}$ 为 F 的一个开覆盖。如果 F^{c} 临近 $\{V_{\alpha}\}$,我们得到一个 K 的开覆盖 Ω 。由于 K 是紧的,那么存在一个有限的子类 Φ 覆盖 K,也覆盖了 F。如果 F^{c} 是 Φ 的一个成员,我们将其从 Phi 中移除并保持 F 的一个开覆盖。综上所述, $\{V_{\alpha}\}$ 的一个有限的子类覆盖了 F。

Note 紧集的子闭集是紧的。

Corollary. If F is closed and K is compact, then $F \cap K$ is compact

Proof.

Theorem 2.24 (b) 以及 2.34 展示了 $F \cap K$ 是闭的;由于 $F \cap K \subset K$ 。Theorem 2.35 展示了 $F \cap K$ 是紧的。

Note 闭集与紧集的交集是紧的。

Theorem 2.36. If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then $\cap K_{\alpha}$ is nonempty.

Proof.

从 $\{K_{\alpha}\}$ 中固定一个成员 K_1 并令 $G_{\alpha} = K_{\alpha}^c$ 。假设 K_1 中没有点属于所有的 K_{α} 。那么集合 G_{α} 形成了 K_1 的一个开覆盖;又因为 K_1 是紧的,存在有限数量的索引 $\alpha_1, \ldots, \alpha_n$ 使得 $K_1 \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$ 。但是这就意味着

$$K_1 \cap K_{\alpha_1} \cap \cdots \cap K_{\alpha_n}$$

为空,与假设相悖。 □

Corollary. If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$ (n = 1, 2, 3, ...), then $\bigcap_{1}^{\infty} K_n$ is not empty.

Note 如果 $\{K_n\}$ 是一个非空紧集的数列,使得 $K_n \supset K_{n+1}$ (n = 1, 2, 3, ...),那么 $\bigcap_{1}^{\infty} K_n$ 不为空。

Theorem 2.37. If E is an infinite subset of a compact set K, then E has a limit point in K.

Proof.

如果 K 中没有点是 E 的极限点,那么每个 $q \in K$ 将会有一个邻域 V_{α} ,其包含了 E 中至 多一个点(命名 q,如果 $q \in E$)。很明显 $\{V_q\}$ 没有有限子类可以覆盖 E;对 K 也是同理,因为 $E \subset K$ 。这与 K 的紧性相悖。

Note 如果 E 是紧集 K 的无限子集, 那么 E 在 K 中存在极限点。

Theorem 2.38. If $\{I_n\}$ is a sequence of intervals in R^1 , such that $I_n \supset I_{n+1}$ (n = 1, 2, 3, ...), then $\bigcap_{n=1}^{\infty} I_n$ is not empty.

Proof.

如果 $I_n = [a_n, b_n]$,令 E 为所有 a_n 的集合。那么 E 是非空且有上界的(为 b_1)。令 x 称为 E 的上确界。如果 m 与 n 是正整数,那么

$$a_n \le a_{m+n} \le b_{m+n} \le b_m ,$$

使得对每个 m 有 $x \leq b_m$ 。 很显然 $a_m \leq x$,可知对 $m = 1, 2, 3, \ldots$ 有 $x \in I_m$ 。

Theorem 2.39. Let k be a positive integer. If $\{I_n\}$ is a sequence of k-cells such that $I_n \supset I_{n+1}$ (n = 1, 2, 3, ...), then $\bigcap_{1}^{\infty} I_n$ is not empty.

Theorem 2.40. Every k-cell is compact.

Perfect Sets

WIP

Connected Sets

WIP

3 Numerical Sequences and Series

4 CONTINUITY 36

4 Continuity

5 DIFFERENTIATION 37

5 Differentiation

6 The Riemann-Stiltjes Integral

7 Sequences and Series of Functions

8 Some Special Functions

9 Functions of Several Variables

10 Integration of Differential Forms

11 The Lebesgue Theory