Heinrich-Heine-Universität

Prof. Dr. Marcus Zibrowius Jan Hennig

10.05.2024

Homologische Algebra Blatt 5

1 | Stegreiffragen: Repreäsentierbarkeit

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Was sind die repräsentierende Objekte für die Funktoren, die eine kleine Kategorie auf die Menge der Objekte/Morphismen/komponierbaren Morphismen abbildet?
- (b) Was ist das repräsentierende Objekt für die Identität $id_{\mathbf{Set}} \colon \mathbf{Set} \to \mathbf{Set}$?

2 | Repräsentierbarkeit

Finden Sie die representierenden Objekte für die folgenden Funktoren:

- (a) $\operatorname{Hom}(-\times A, B) \colon \mathbf{Set}^{op} \to \mathbf{Set}$, der eine Menge X auf die Menge der Abbildungen $X \times A \to B$ abbildet.
- (b) $\mathcal{T}: \mathbf{Top}^{op} \to \mathbf{Set}$, der einen topologischen Raum auf die Menge der offenen Abbildungen schickt und stetige Abbildungen auf deren Urbildfunktion
- (c) Was ändert sich, wenn für $\mathcal{T}: \mathbf{Top}^{op} \to \mathbf{Set}$ abgeschlossene Mengen genommen werden?
- (d) Path: $\mathbf{Top} \to \mathbf{Set}$, der einen topologischen Raum auf die Menge der Pfade abbildet.
- (e) Loop: $\mathbf{Top}_* \to \mathbf{Set}$, der einen topologischen Raum auf die Menge der (punktierten) Schleifen abbildet.

3 | Nicht-Repräsentierbarkeit

Es gibt den Slogan "die meisten Funktoren sind nicht repräsentierbar".

- (a) Zeigen Sie, dass der kovariante(!) Potenzmengenfunktor nicht repräsentierbar ist.
- (b) Zeigen Sie, dass repräsentierbare Funktoren $F: \mathcal{C} \to \mathbf{Set}$ Monomorphismen erhalten.

4 | edaYon oder: Wie falsch dualisiert wurde

Es gibt das Yoneda Lemma für ko- und kontravariante Funktoren. Folgende Version gibt es aber nicht. Sei $F: \mathcal{C} \to \mathbf{Set}$ ein Funktor und c ein Objekt von \mathcal{C} .

- (a) Zeigen Sie, dass es keine natürliche Bijektion $\operatorname{Hom}(F, \operatorname{Hom}_{\mathcal{C}}(c, -)) \cong F(c)$ gibt.
- (b) Können Sie den Fehler identifizieren, der hier bei dualisieren passiert ist?

5 | Äquivalenzen sind verträglich mit Repräsentierbarkeit ★

Seien $F: \mathcal{C} \to \mathbf{Set}$ und $G: \mathcal{D} \to \mathbf{Set}$ zwei Funktoren, $H: \mathcal{C} \to \mathcal{D}$ eine Äquivalenz von Kategorien, sodass GH und F natürlich isomorph sind.

- (a) Zeigen Sie: G ist repräsentierbar $\Rightarrow F$ ist repräsentierbar.
- (b) Zeigen Sie: F ist repräsentierbar $\Rightarrow G$ ist repräsentierbar.