Lista 4

Prof. Marcio Valk Disciplina: Inferência B

- 1. Uma caixa contém 2 moedas. Uma apresenta cara com probabilidade 0,5 (equilibrada) e a outra apresenta cara com probabilidade 0,6 (viesada). Uma delas é escolhida aleatoriamente e lançada 3 vezes. Deseja-se saber se a moeda selecionada é a equilibrada ou a viesada.
 - a) Defina um teste para decidir entre $H_0: \theta = 0.5$ e $H_1: \theta = 0.6$.
 - b) Calcule as probabilidades de erro tipo I e II.
- 2. Em 1000 lançamentos de uma moeda, foram observadas 560 caras e 440 coroas. É razoável assumir que a moeda é equilibrada?
- 3. Em uma determinada cidade o número de acidentes com automóveis em dado ano segue a distribuição de Poisson. Nos últimos anos a média do número de acidentes por ano foi 15, e este ano foi 10. É correto afirmar que o número de acidentes está diminuindo?
- 4. Seja X_1, \ldots, X_n i.i.d. uniforme $(\theta, \theta + 1)$. Para testar $H_0: \theta = 0$ versus (vs.) $H_1: \theta > 0$, temos dois testes concorrentes:

$$\phi_1(X_1)$$
: Rejeita H_0 se $X_1 > 0.95$,

$$\phi_2(X_1)$$
: Rejeita H_0 se $X_1 + X_2 > C$,

- a) Encontre o valor de C para o qual ϕ_2 tenha o mesmo tamanho que ϕ_1 .
- b) Calcule a função poder de cada teste. Desenhe a função poder de cada teste.
- c) ϕ_2 é mais poderoso que ϕ_1 ?
- d) Mostre como encontrar um teste que tenha o mesmo tamanho de ϕ_2 , mas que seja mais poderoso que ϕ_2 .
- 5. Seja X_1, \ldots, X_n a.a. de uma v.a. X com função de densidade dada por

$$f(x) = \theta x^{\theta - 1}, \quad 0 < x < 1, \quad \theta > 0.$$

- a) Mostre que o teste mais poderoso para testar $H_0: \theta = 1$ vs. $H_1: \theta = 2$ rejeita H_0 , se e somente se, $\sum_{i=1}^n -\log x_i \le a$, em que a é uma constante.
- b) Sendo n=2 e $\alpha=(1-\log 2)/2$, qual é a região crítica?
- 6. Seja X_1, \ldots, X_n a.a. de uma v.a. X com função de densidade $N(0, \sigma^2)$.
 - a) Encontre o teste uniformemente mais poderoso (UMP) para testar $H_0: \sigma^2 = \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$
 - b) Seja $\alpha=0.05,\,n=9$ e $\sigma_0^2=9.$ Faça o gráfico da função poder.
- 7. Para amostras de tamanho n=1,4,16,64,100 de uma população normal com média μ e variância conhecida σ^2 , faça o gráfico da função poder dos seguintes testes da razão de verossimilhança (TRV's). Tome $\alpha=0.05$.
 - a) $H_0: \mu \le 0$ vs. $H_1: \mu > 0$.
 - b) $H_0: \mu = 0$ vs. $H_1: \neq 0$.

8. Uma a.a. X_1,\dots,X_n é retirada de uma população Pareto com densidade

$$f(x|\theta,\nu) = \frac{\theta\nu^{\theta}}{r^{\theta+1}} I_{\nu,\infty}(x), \ \theta > 0, \ \nu > 0.$$

- a) Encontre os EMV's de θ e ν .
- b) Mostre que o TRV

 $H_0: \theta = 1, \ \nu \text{ desconhecido}, \quad vs \quad H_1: \theta \neq 1, \ \nu \text{ desconhecido},$

tem região critica da forma $\{x: T(x) \le c_1 \text{ ou } T(x) \ge c_2\}$, em que $0 < c_1 < c_2$ e

$$T = \log \left[\frac{\prod_{i=1}^{n} X_i}{(\min_i X_i)^n} \right].$$

- 9. Suponhamos que temos duas amostras de variáveis aleatórias independentes: $X_1 \dots, X_n$ são $\exp(\theta)$ e $Y_1 \dots, Y_n$ são $\exp(\mu)$. Encontre o TRV de $H_0: \theta = \mu$ vs. $H_1: \theta \neq \mu$.
- 10. Um caso especial da família de distribuições normal é quando a média e a variância são relacionadas, como por exemplo a família $N(\theta, a\theta)$. Se estamos interessados em testar esse relacionamento, independente do valor de θ , nos deparamos com um problema chamado problema do parâmetro "nuisance".
 - a) Encontre o TRV de $H_0: a=1$ vs. $H_1: a\neq 1$ baseado em uma amostra X_1, \ldots, X_n de uma família $N(\theta, a\theta)$, em que θ é desconhecido.
 - b) Um problema similar ocorre quando a família é $N(\theta, a\theta^2)$. Assim, se X_1, \ldots, X_n são i.i.d. $N(\theta, a\theta^2)$, quando θ é desconhecido, encontre o TRV de $H_0: a=1$ vs. $H_1: a \neq 1$.

D (