DISEÑO E IMPLEMENTACIÓN DE LA ELECTRÓNICA DE DISCRIMINACIÓN Y REGISTRO PARA UN TELESCOPIO DE MUONES PORTÁTIL PARA EL ESTUDIO DE RAYOS CÓSMICOS ATMOSFÉRICOS

KAREN JULIET FORERO GUTIÉRREZ JOSE LUIS SALAMANCA COY

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERÍAS FÍSICO-MECÁNICAS ESCUELA DE INGENIERÍAS ELÉCTRICA, ELECTRÓNICA Y DE TELECOMUNICACIONES BUCARAMANGA 2018

DISEÑO E IMPLEMENTACIÓN DE LA ELECTRÓNICA DE DISCRIMINACIÓN Y REGISTRO PARA UN TELESCOPIO DE MUONES PORTÁTIL PARA EL ESTUDIO DE RAYOS CÓSMICOS ATMOSFÉRICOS

KAREN JULIET FORERO GUTIÉRREZ JOSE LUIS SALAMANCA COY

Trabajo de grado para optar al título de Ingeniero Electrónico

Director Luis Alberto Núñez de Villavicencio Martínez Ph.D. en Física

Codirector
Jaime Guillermo Barrero Perez
M.Sc. en Ing. Electrónica

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERÍAS FÍSICO-MECÁNICAS ESCUELA DE INGENIERÍAS ELÉCTRICA, ELECTRÓNICA Y DE TELECOMUNICACIONES BUCARAMANGA 2018

UNIVERSIDAD INDUSTRIAL DE SANTANDER SISTEMA DE TRABAJOS DE GRADO ADMINISTRACIÓN DE TRABAJOS DE GRADO

Fecha Impresión:

12 junio 2018

Pág 1 de 1

Codigo:	18433 Fe	cha Presentacion	: 23-feb-2018
Titulo: Diseño e implemen atmosféricos:	ntación de la electrónica de discriminación y registro par	ra un telescopio de m	nuones portátil para el estudio de rayos cósmicos
Nota Proyecto:	5.0 Fe	cha Registro Nota	a: 08-jun-2018
Estado:	APROBADO		
Tipo Trabajo:	INVESTIGACION		
Estudiantes	7		
Código	Nombre		Programa Académico
2112870	FORERO GUTIERREZ KAREN JULIETH	26-INGENIERIA ELE	CTRONICA
2130538	SALAMANCA COY JOSE LUIS	26-INGENIERIA ELE	CTRONICA
Directores			
Documento	Nombre	Clase	Firma
E-373434	LUIS ALBERTO NUÑEZ DE VILLAVICENCIO MARTINEZ	DIRECTOR	Lu Azinīez
C-91220572	JAIME GUILLERMO BARRERO PEREZ	CODIRECTOR	- Suin Barry P
Calificadores	1400		
Documento	Nombre		Firma
C-87070833	JUAN DAVID BASTIDAS RODRIGUEZ		JUND BASTONS R.
C-7631890	OMAR JAVIER TIJARO ROJAS		On In The
EL TRABAJO DE (INGENIERÍA ELEC CARRERA, SINO T OS IR LE EN TE SE ASTRONOMÍA EN MEDICIONES DE N EN RESUMEN, EL QUE SE TRADUC DE ACONDICIONA Y GENERAR UNA ELECTRÓNICO Y ADICIONALMENTE DISEÑO, CONSTR	UAI SE hace la recomendación de mención par GRADO SUPERA SIGNIFICATIVAMENTE LOS RESULTA TRONICA, NO SOLAMENTE LA APLICACIÓN DE GRAN P AMBIÉN POR LA APROPIACIÓN Y DOMINIO CONCEPTO: E UTILIZARÁN EN LOS DETECTORES DE HAJULAS DE LC LA ESCUELA DE FÍSICA DE LA UNIVERSIDAD INDUSTRI MUONES TRABAJO CONSTA DE UN ACOPLE DE TODAS LAS ET. EE EN EL DESARROLLO FINAL DE UNA APLICACIÓN GRUPO HALLEY, PARA LOGRAR DICHO SISTEMA TUVIE MIENTO DE SEÑAL, PROGRAMAR UN SISTEMA TUVIE MIENTO DE SEÑAL, PROGRAMAR UN SISTEMA DE REG LIBRERÍA PARA UNA RASPBERRY PI, DISEÑAR PCE DESARROLLAR UNA INTERFAZ GRÁFICA DE USUAR E, LOS RESULTADOS DEL TRABAJO DE GRADO PER: UCCIÓN Y CALIBRACIÓN DE UN HODOSCOPIO 9 PIXE OS CÓSMICOS, EL CUAL FUE PRESENTADO EN PERE!	DOS Y ALCANCES E ARTE DE LOS CONOG S FÍSICOS DE LOS RA SO PROYECTOS QUE IAL DE SANTANDER Y APAS DE LAS ASIGN. COMPLETA PRESE RON QUE: REALIZAR ISTRO DE DATOS Y E SS PARA INTEGRAR IO. MITIERON A LOS ES LES PARA LA CARAC	ESPERADOS PARA UN TRABAJO DE GRADO DE CIMIENTOS ADQUIRIDOS A LO LARGO DE LO HAYOS CÓSMICOS. ADEMÁS, LOS RESULTADOS F VIENE DESARROLLANDO EL GRUPO HALLEY DE Y SIRVEN DE BASE PARA PODER ANALIZAR LAS ATURAS VISTAS EN INGENIERÍA ELECTRÓNICA: ENTADA EN UN PROTOTIPO QUE SUPLE UN EL DISEÑO E IMPLEMENTACIÓN DE CIRCUITOS DE COMUNICACIÓN EN UNA FPGA, PROGRAMAF LOS DIFERENTES ELEMENTOS DEL SISTEMA STUDIANTES REALIZAR UN POSTER TITULADO:
	LA LA DASSINAS K	16.01100520	way of
Nombre:	JUAN DAVID BASTIDAS RODRIGUEZ	Nombre:	MAR JAVIER IJARO ROJAS

Yo, <u>Karen Juliet Forero Gutiérre</u>, mayor de edad, vecino de Bucaramanga, identificado con la Cédula de Ciudadanía No. <u>1057593813</u> de <u>Sogamoso</u>, actuando en nombre propio, en mi calidad de autor del trabajo de grado, del trabajo de investigación, o de la tesis denominada(o):

Diseño e implementación de la electrónica de discriminación y registro para un telescopio de muones portátil para el estudio de rayos cósmicos atmosfericos.

hago entrega del ejemplar respectivo y de sus anexos de ser el caso, en formato digital o electrónico (CD o DVD) y autorizo a LA UNIVERSIDAD INDUSTRIAL DE SANTANDER, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use en todas sus formas, los derechos patrimoniales de reproducción, comunicación pública, transformación y distribución (alquiler, préstamo público e importación) que me corresponden como creador de la obra objeto del presente documento. PARÁGRAFO: La presente autorización se hace extensiva no sólo a las facultades y derechos de uso sobre la obra en formato o soporte material, sino también para formato virtual, electrónico, digital, óptico, uso en red, Internet, extranet, intranet, etc., y en general para cualquier formato conocido o por conocer.

EL AUTOR – ESTUDIANTE, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de su exclusiva autoría y detenta la titularidad sobre la misma. PARÁGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR / ESTUDIANTE, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la Universidad actúa como un tercero de buena fe.

Para constancia se firma el presente documento en dos (02) ejemplares del mismo valor y tenor, en Bucaramanga, a los <u>+1ece</u> días del mes de <u>Jonco</u> de Dos Mil

EL AUTOR / ESTUDIANTE:

(Firma) Karen tolero Nombre Karen Juliet Forero Gutiérrez

Nombre Jose Luis Salamanra

ENTREGA DE TRABAJOS DE GRADO, TRABAJOS DE INVESTIGACION O TESIS Y AUTORIZACIÓN DE SU USO A FAVOR DE LA UIS

Yo, Jose Luis Salamanca Coy, mayor de edad, vecino de
Bucaramanga, identificado con la Cédula de Ciudadanía No. 1098 485 495
de Bucaramanga, actuando en nombre propio, en mi calidad de autor del trabajo de
grado, del trabajo de investigación, o de la tesis denominada(o):
Diseño e implementación de la electrónica de discriminación y registro para
un telescopio de muones portátil para el estudio de rayos cósmicos atmosféricos
hago entrega del ejemplar respectivo y de sus anexos de ser el caso, en formato digital o electrónico (CD o DVD) y autorizo a LA UNIVERSIDAD INDUSTRIAL DE SANTANDER, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use en todas sus formas, los derechos patrimoniales de reproducción, comunicación pública, transformación y distribución (alquiler, préstamo público e importación) que me corresponden como creador de la obra objeto del presente documento. PARÁGRAFO: La presente autorización se hace extensiva no sólo a las facultades y derechos de uso sobre la obra en formato o soporte material, sino también para formato virtual, electrónico, digital, óptico, uso en red, Internet, extranet, intranet, etc., y en general para cualquier formato conocido o por conocer.
EL AUTOR – ESTUDIANTE, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de su exclusiva autoría y detenta la titularidad sobre la misma. PARÁGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR / ESTUDIANTE, asumirá toda la
responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la Universidad actúa como un tercero de buena fe.
Para constancia se firma el presente documento en dos (02) ejemplares del mismo valor y tenor, en Bucaramanga, a los <u>13</u> días del mes de <u>Tubro</u> de Dos Mil dieciocho 2019.
EL AUTOR / ESTUDIANTE:

COY

Dedicado a

A mi abuelito Juan, porque lo extraño y siempre quise su compañía para este logro

A mi abuelita Elisa, porque ha sido siempre un ejemplo de mujer y un gran apoyo a lo largo de mi vida.

A mis padres por su apoyo y enseñanzas, ya que han formado a la persona que soy ahora.

A Edwin, por escucharme y apoyarme todos los días.

A mi compañero por su ingenio, genialidad y personalidad que nos llevaron a completar el proyecto con éxito.

Karen Juliet Forero Gutiérrez

Dedicado a

Mi hermana por su compañía y respaldo anímico a lo largo de mi carrera, que me permitieron superar los problemas y cumplir mis objetivos.

Mi padre por su experiencia, enseñanzas, esfuerzo y motivación fomentaron mi desarrollo profesional, a mi madre que gracias a su carisma, temperamento, pensamiento y compromiso construyeron lo que soy como persona, y juntos con su amor y confianza incondicional construyeron una familia que cualquier hijo quisiese tener.

Mi compañera de proyecto, por que sin su paciencia, inteligencia, compresión y compromiso nada de esto sería posible, y finalmente a todas aquellas personas que contribuyeron con su tiempo y conocimientos para lograr culminar satisfactoriamente este proyecto.

Jose Luis Salamanca Coy

Agradecimientos

Al profesor **Jaime Barrero**, por su asesoría, acompañamiento, colaboración y grandes consejos de vida; por su tiempo y enseñanza durante estos últimos meses.

Al profesor **Luis Nuñez**, por su asesoría, acompañamiento y colaboración; por su tiempo y enseñanza durante estos últimos meses.

A nuestros **familiares**, por su apoyo incondicional en esos momentos difíciles, paciencia v enseñanzas.

A *compañeros y amigos*, quienes han presenciado nuestros buenos y malos momentos, que han permitido crear un lazo de amistad.

Al *Grupo Halley*, por acogernos y brindarnos las herramientas necesarias para llevar a cabo el proyecto.

A la Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones (E3T) y a la Universidad Industrial de Santander (UIS)

¡Gracias Infinitas!

Índice General

	Intro	oducciói	n	15
1.	Mar	co teó	rico	18
	1.1.	Rayos	Cósmicos	18
	1.2.		grafía y los muones	18
	1.3.	_	copios	20
	1.4.		iales Centelladores	21
			Centelladores plásticos	$\frac{1}{22}$
	1.5.		ores de Centelleo	22
			etectores de alta sensibilidad (Foto multiplicadores de Silicio - SiPM) .	23
	1.7.		o del arte	25
		1.7.1.	Proyecto Mu-Ray	$\frac{-5}{25}$
			· · · · · · · · · · · · · · · · · · ·	26
		11,12	1 10,0000 2 1111 11 11 11 11 11 11 11 11 11 11 11	
2.	Met	odolog	gía y resultados	28
	2.1.	Interfa	z Analógica	29
		2.1.1.	Etapa de adquisición	29
			2.1.1.1. Caracterización del circuito de adquisición	29
			2.1.1.2. Caracterización señal de salida etapa de adquisición	32
			2.1.1.3. Construcción del segundo panel centellador	33
		2.1.2.	Discriminación de eventos	35
			2.1.2.1. Diseño electrónico	35
			2.1.2.2. Resultados de las pruebas con la interfaz analógica	37
	2.2.	Interfa	z Digital	41
		2.2.1.	FPGA	43
			2.2.1.1. Gestión de funciones	44
			2.2.1.2. Despliegue y contadores	45
			2.2.1.3. Banco de memoria	46
			2.2.1.4. Protocolo de comunicación	48
		2.2.2.	Umbral de detección	51
		2.2.3.	Sensores adicionales	52
			2.2.3.1. Temperatura y presión atmosférica	53
			2.2.3.2. GPS	53
		2.2.4.	Raspberry Pi	54
			2.2.4.1 Interfez de uguerio	57

3.	Detector completo		59	
	3.1.	Prueb	as de verificación de funcionamiento del detector	64
		3.1.1.	Prueba de detección de eventos con variación de umbral	64
		3.1.2.	Prueba de variación de conteos con el cambio de umbral	66
4.	Cor	clusio	nes y recomendaciones	68
	Refe	erencias		69

Índice de figuras

1.	Evolución de cascada de rayos cósmicos		
2.	Hodoscopio con un único plano de detección		
3.	Hodoscopio con dos planos de detección		
4.	Plástico Centellador y sus características		
5.	Proceso de centelleo		
6.	Estructura MPPC		
7.	Señal característica del MPPC		
8.	Proyecto MU-RAY		
9.	Histograma de transmisión del Mt. Vesuvius		
10.	Proyecto DIAPHANE		
11.	Radiografía de la densidad media de La Soufrière de Guadalupe		
12.	Esquema General del proyecto		
13.	Esquema general del proyecto con énfasis en la etapa analógica		
14.	Circuito de adquisición de la señal proveniente del SiPM		
15.	Análisis filtro de alimentación de los fotomultiplicadores de silicio 30		
16.	Filtro pasa-altas característico de la configuración derivativa con frecuencia de		
	corte de $15,6kHz$, usada en el circuito de adquisición		
17.	En la parte superior, el pulso acondicionado (salida de la etapa de adquisición)		
	y en la parte inferior, su espectro en frecuencia para $R_1=4.7k\Omega$, usado para		
	determinar el ancho de banda necesario para la siguiente etapa		
18.	Características temporales del pulso de adquisición		
19.	Fotografía tarjetas de adquisición		
20.	Fotografía paneles centelladores		
21.	Circuito de discriminación		
22.	Señales de la interfaz analógica		
23.	Comparación simulación y señales reales de la etapa de discriminación 39		
24.	Umbral de discriminación		
25.	Señal de salida interfaz analógica		
26.	Esquema general del proyecto resaltando la interfaz digital		
27.	Procesador de propósito específico descrito en la FPGA Spartan 6		
28.	Forma de visualización de contadores disponibles		
29.	Mapa de memoria y dinámica de registro. Contiene 32 posiciones de 40 bits		
	donde se almacena toda la informacion que se desea extraer de la FPGA 47		
30.	Forma de comunicación con FPGA del detector		
31.	Comunicación real entre FPGA y Raspberry		
32.	Prueba de linealidad del DAC6551		
33.	Circuito para generar la tensión de umbral		

34.	Sensores adicionales
35.	Esquema de funcionamiento desde la interfaz hasta la lectura y escritura de
	los pines GPIO en la Raspberry pi
36.	Comunicación entre objetos en C++
37.	Aplicación desarrollada para el detector, pestaña Normal
38.	Aplicación desarrollada para el detector, pestaña Umbral SiPM
39.	Diseño e implementación de la placa de canales
40.	Diseño e implementación de la placa principal 61
41.	Ensamble de la electrónica del detector
42.	Detector completo
43.	Prueba de validación con señal generada
44.	Resultado prueba de validación con señal generada 65
45.	Prueba de validación con señales reales
46.	Resultado prueba de validación con señal real

Índice de tablas

2.1.	Criterios de diseño iniciales para la etapa de discriminación	35
2.2.	Tabla de comunicación FPGA	48
2.3.	Parámetros de tiempo	49
3.1.	Tabla de costos totales del detector construido	64

RESUMEN

TÍTULO: Diseño e implementación de la electrónica de discriminación y registro para un Telescopio de muones portátil para el estudio de rayos cósmicos atmosféricos.¹

AUTORES:

Karen Juliet Forero Gutiérrez ² Jose Luis Salamanca Coy²

Palabras Clave: Detectores de centelleo, Rayos cósmicos, Muongrafía, SiPM.

DESCRIPCIÓN DEL TRABAJO

Este proyecto tiene como objetivo la construcción de un detector de centelleo portátil e independiente para determinar la trayectoria de una partícula cargada que incide sobre el mismo, con el fin de ser utilizado en aplicaciones de muongrafía. Este detector, también llamado hodoscopio, se construye configurando planos de detección multipíxel; los planos se ubican paralelamente sobre el mismo eje de coordenadas con posibilidad de variar la distancia entre los mismos. Su funcionamiento y resolución temporal de detección dependen mayormente del sistema electrónico de discriminación y registro de eventos. Por lo tanto, se propone el diseño de dicho sistema, teniendo en cuenta criterios de bajo consumo y bajo costo en su manufactura.

 $^{^1{\}rm Trabajo}$ de Grado

²Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones. Director: Luis Alberto Núñez de Villavicencio Martínez. Codirector: Jaime Guillermo Barrero

ABSTRACT

TITLE: Design and Implementation of a Register and Discrimination Electronics for a Portable Muon Telescope for the study of Atmospheric Cosmic Rays.¹

AUTHORS:

Karen Juliet Forero Gutiérrez ² Jose Luis Salamanca Coy²

KEYWORDS: Scintillation detector, Particle tracking detectors, Cosmic rays, Muography, SiPM.

DESCRIPTION:

The objective of this project is the building of a portable and independent scintillation detector to determine charged particles trajectory, in order to use it on muon radiography (muography) applications. This detector, also called hodoscope, is built by configuring multipixel detection planes; the planes are placed parallel on the same coordinate axis, having the possibility to modify the distance between them. Its operation and temporal resolution of detection mostly depend on the electronic system of discrimination and registration of events. Henceforth, the mentioned system design is proposed taking into account low fabrication costs and energy-efficient criteria.

 $^{^{1}}$ Bachelor thesis

²Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones. Director: Luis Alberto Núñez de Villavicencio Martínez. Codirector: Jaime Guillermo Barrero

Introducción

Los rayos cósmicos, son partículas subatómicas procedentes del espacio exterior con energía muy elevada (velocidades cercanas a la de la luz). Antes de ingresar a la atmósfera, la radiación cósmica está compuesta en un 98 % por protones y partículas alfa, el resto lo constituyen electrones y partículas pesadas ionizadas; a este conjunto se le denomina "partículas primarias". Una vez que las partículas primarias interactúan con la atmósfera y el campo magnético terrestre, generan un gran número de "partículas secundarias". Por tanto, las partículas que alcanzan el suelo están sujetas a dos elementos fundamentales, la altitud (a mayor altura, menos atmósfera con la cual interaccionar), y la latitud (a mayor latitud, mayor cantidad de partículas desviadas por el campo magnético) [1] [2].

Cuando un rayo cósmico de alta energía llega a la atmósfera terrestre interactúa con los núcleos atómicos de los componentes presentes en esta, provocando una serie de reacciones nucleares que originan nuevas partículas, las cuales interaccionan y dan origen a otras partículas; y así sucesivamente se repite este proceso en cascada. A causa de esas interacciones se pueden generar una gran cantidad de nuevas partículas que decaen al descender; a nivel del mar y a una latitud de unos 45° N, los componentes importantes de estas partículas secundarias son: muones (72 %), fotones (15 %) y neutrones (9 %). Estos corpúsculos integrantes de las cascadas se pueden medir con distintos tipos de detectores de partículas, generalmente basados en la ionización de la materia o en el efecto Cherenkov [1] [2].

No es casualidad que gran parte de las partículas que alcanzan el nivel del mar sean muones, considerando que los muones tienen la capacidad de atravesar grandes estructuras sin decaer o quedarse atrapados. Por estas características, aparece una técnica que usa el mismo principio de la radiografía médica estándar, en la que se mide la atenuación de un flujo de radiación (muones atmosféricos o rayos-X) cuando cruza la materia (grandes estructuras o cuerpo humano) con un dispositivo sensible a medir dicha radiación; esta técnica lleva el nombre de muongrafía.

La muongrafía es una técnica no invasiva, que consiste en la generación de imágenes a partir del flujo de muones atmosféricos que atraviesan diversos materiales [3]. Los campos de aplicación de esta técnica son variados, algunos como, la identificación de materiales radiactivos en contenedores [4], la exploración de la estructura interna de plantas nucleares [5], inspección de pirámides en busca de cámaras ocultas [6], observación de volcanes para monitorear la evolución temporal de sus cámaras magmáticas [7], e incluso el monitoreo de represas para el rastreo de fisuras.

Para realizar muongrafía se necesitan detectores que sean capaces de definir trayectorias y determinar flujo de partículas en el lugar de estudio. Generalmente se emplean hodoscopios conformados por paneles pixelados que varían su sensibilidad dependiendo de la aplicación. Actualmente, existen varios detectores que realizan tomografía de muones [8] [9], estos instrumentos típicamente están conformados por paneles sensibles a la radiación de gran volumen y peso, un sistema electrónico complejo, costoso y de consumo energético considerable. Además, su ensamble requiere una alta complejidad logística para su transporte, instalación y puesta en funcionamiento, lo cual se convierte en un gran obstáculo para que dichos detectores puedan ser ubicados en zonas de difícil acceso.

De allí nace la idea de diseñar y construir un instrumento portátil que posibilite la caracterización del flujo de muones que atraviesan diferentes estructuras en lugares de difícil acceso, con bajo consumo energético, alta versatilidad en su transporte e instalación y electrónica de bajo costo. Con esta idea se concretó esta tesis, que se enmarca en los proyectos del Grupo Halley ¹ para estudiar los fenómenos asociados con la radiación natural proveniente de los rayos cósmicos e incursionar en técnicas como la muongrafía. Los detectores de partículas desarrollados en el Grupo Halley para realizar muongrafía son pioneros en Colombia con el proyecto MuTe y el detector producto de esta tesis; existen también proyectos relacionados en la Universidad de los Andes con un detector ensamblado con electrónica de venta industrial². El lector se encontrará con los pasos y problemáticas abordadas por los autores para dar completa solución a los retos encontrados durante el desarrollo del proyecto.

¹Grupo Halley de Astronomía y Ciencias Aeroespaciales, miembros del Grupo de Relatividad y Gravitación GIRG de la Universidad Industrial de Santander.

²Tesis de grado Universidad de los Andes: Radiografía de Monserrate mediante Muones.

Capítulo 1

Marco teórico

El propósito de esta sección es presentar la información necesaria para contextualizar el proyecto y revisar el estado del arte en materia de hodoscopios.

1.1. Rayos Cósmicos

No se tiene idea precisa del origen y naturaleza de los rayos cósmicos (RC), dependiendo de su energía provienen de procesos físicos en el Sol (baja energía ≈ kiloelectrovoltios), en la galaxia (≈ Megaelectronvoltios) y extragalácticos (mayores a centenas de Gigaelectrovoltios) [2]. Los de media y alta energía parecen estar asociados con cataclismos estelares tales como explosión de supernovas o kilonovas ocurridas por fusiones estelares. Por lo tanto, el estudio de la radiación cósmica aporta valiosas herramientas para avanzar en la comprensión de la dinámica del universo [2].

Los RC primarios se identifican al ser medidos antes de su ingreso a la atmósfera terrestre, su medición se denomina directa. Los RC secundarios son aquellas partículas que se producen luego de las interacciones de los RC primarios con la atmósfera y su medición es llamada indirecta [2]. Al realizar mediciones con instrumentos terrestres, es posible estudiar el comportamiento del flujo de rayos cósmicos secundarios.

1.2. Muongrafía y los muones

La muongrafía es una técnica de construcción de imágenes basada en mediciones de la absorción de muones atmosféricos dentro de la materia. Gracias a su gran poder penetrante, el flujo de muones atmosféricos permite la inspección de cuerpos grandes que con técnicas convencionales sólo pueden ser estudiados superficialmente con resoluciones del orden de unos pocos cientos de metros [10].

El muón es una partícula elemental de la familia de los leptones, con carga negativa, similar al electrón, pero con una masa en reposo aproximadamente 200 veces mayor. Es una partícula inestable, pero con una vida media cercana a los 2.2 ms, la segunda más larga después del neutrón, esto permite que viaje algunos km antes de decaer. Los muones no presentan mayores interacciones y además su masa es suficiente para suprimir los efectos de pérdida de energía por radiación de frenado (bremsstrahlung) [11] [9].

Los muones llegan a la Tierra producto de los rayos cósmicos primarios que impactan la atmósfera terrestre, estos RC primarios (principalmente protones), interactúan con los nucleones de la atmósfera produciendo otros hadrones, en su mayoría piones y kaones, los cuales decaen produciendo muones [2]. En la Figura 1 se muestra un esquema para ilustrar el fenómeno. A la altura del nivel del mar se espera un flujo de muones de 1 muón min⁻¹ cm⁻² sr⁻¹. Para mayor información sobre partículas y su clasificación el lector puede dirigirse a la referencia [12].

Figura 1: Esquema de la evolución de cascada de rayos cósmicos iniciada por hadrones, se muestra la componente electromagnetica y la componente muónica generadas a partir del rayo primario Fuente: [2]

La técnica de muongrafía se puede entender siguiendo dos caminos, dependiendo de la naturaleza y el tamaño del objeto bajo estudio. El primer acercamiento está basado en la medición del ángulo de dispersión que presentan los muones en un volumen pequeño, colocando dos detectores, uno en la parte inferior del objeto y el otro en la superior, esta medición es altamente sensible a materiales con número atómico elevado y es usada por ejemplo para detectar Uranio dentro de contenedores por cuestiones de seguridad [13].

El segundo acercamiento usa los mismos principios básicos de una radiografía medica estándar: medición de la atenuación de la radiación que fluye en una determinada dirección (muones o rayos X) cuando atraviesa materia (roca o músculos y tejido humano) usando un instrumento apto para la aplicación. En este caso se usa solo un detector ubicado en la superficie cercana al objeto a estudiar y en el lado opuesto a la fuente de radiación. La medición permite conocer la opacidad de la estructura comparando el flujo de muones después de atravesar el objeto con el flujo a cielo abierto en el mismo ángulo de visión.

¹sr: siglas de *steradian*, un estereoradian es una unidad de ángulo sólido.

1.3. Hodoscopios

Un hodoscopio es un dispositivo que traza el camino de una partícula cargada mediante un grupo de subdetectores de partículas que proporcionan una información posicional y direccional precisa. La palabra proviene del griego *hodos*, que significa camino y *skopos*, que significa observador [14].

Para determinar cuál es la posición donde se produce la interacción de la partícula con el detector, se construye un Área Activa (AA) de detección con una forma y tamaño establecidos según los requerimientos de la aplicación. El AA suele estar pixelada a modo de matriz o bien confeccionada con distintos planos o zonas de detección. Así, el sistema queda dividido en distintos sub-detectores, cada uno de los cuales proporciona una respuesta distinta (señales con diferente amplitud) ante la incidencia de radiación [2]. Por ejemplo, en la Figura 2 se muestra como se activa un pixel del hodoscopio cuando es atravesado por una partícula cargada.

En determinados estudios es importante, además de la posición, conocer la dirección de la partícula; en estos casos, el diseño del sistema consta de dos o más planos de detección. Obteniendo la posición de interacción de la partícula con cada plano, se puede calcular el ángulo entre ambas posiciones y determinar su dirección [14], en la Figura 3 se muestra un hocoscopio con dos planos de detección, el mapeo en cada plano y la dirección de la partícula, que es determinada usando el vector \vec{r} y los ángulos que este forma con el detector, indicados como α , β y γ en el eje de coordenadas donde \hat{e}_1 , \hat{e}_2 y \hat{e}_3 , son los vectores unitarios en las direcciones de los ejes X, Y y Z, respectivamente. Estos ángulos internos del detector se relacionan geométricamente con los ángulos cenital y azimutal (θ y φ) que serán finalmente los que determinan la dirección de la partícula. Adicionalmente se muestra la separación entre paneles de detección (D) que determinará el ángulo máximo de incidencia en el que una partícula puede ser detectada por los dos paneles del detector (ángulo de aceptancia) [1].

Figura 2: Ejemplo de sistema de detección que proporciona el punto de incidencia de una partícula. Cada cuadrado representa un subdetector. En la figura a) la partícula incidente atraviesa la zona central del detector, en la figura b) El subdetector proporciona la ubicación del píxel activado por la incidencia de la partícula (color amarillo).

Figura 3: Hodoscopio con dos planos de detección, el mapeo en cada plano (pixel amarillo) y la dirección de la partícula que es determinada usando el vector r (color vino) y los ángulos que este forma con el detector, mostrados como α , β y γ en el eje de coordenadas donde \hat{e}_1 , \hat{e}_2 y \hat{e}_3 , son los vectores unitarios en las direcciones de los ejes X, Y y Z, respectivamente. Los ángulos, cenital θ y azimutal φ serán los que finalmente determinan la dirección de la partícula. D es la distancia entre paneles que influye en el ángulo de aceptancia del detector.

1.4. Materiales Centelladores

Un material centellador es aquel que exhibe luminiscencia al ser atravesado por radiación ionizante. El material absorbe parte de la energía incidente y la reemite en forma de luz, típicamente en el espectro visible o en los alrededores del mismo [10].

La emisión de luz se rige por dos fenómenos. La fluorescencia, donde el proceso de luminiscencia es rápido (ns a μ s) y la fosforescencia que es un proceso de producción de luminiscencia lento(μ s a ms, o incluso horas), en la práctica solo la fluorescencia es útil para detectar radiación ionizante [15].

Los materiales centelladores se dividen principalmente en dos familias. Por una parte se encuentran los inorgánicos que son cristales de haluros alcalinos, tienen en general alta densidad y alto número atómico Z, por lo que son principalmente empleados para la detección de partículas γ y en general, no se emplean en la detección de partículas cargadas [10] [16].

Por otro lado, los centelladores orgánicos pertenecen a la clase de los compuestos aromáticos. Son moléculas planares construidas con anillos de benceno como el tolueno y antraceno. Se forman combinando una sustancia en mayor concentración, el solvente, y uno o varios componentes en menor concentración, los solutos, que generalmente son los responsables del centelleo. Se utilizan principalmente para detección de partículas β y electrones rápidos. Se pueden encontrar en forma de cristales, soluciones líquidas, plásticos centelladores y en estado gaseoso [10] [16].

A continuación se describen algunas generalidades del plástico centellador utilizado en el detector:

1.4.1. Centelladores plásticos

Los centelladores plásticos son ampliamente usados en física nuclear y de altas energías. Estos constan de un plástico base con un material centellador disuelto. Los plásticos base más utilizados son el poliestireno, el polimetilmetacrilato (acrílico) y poliviniltolueno [17].

El material centellador se conforma con una concentración del orden de 1% en peso del centellador primario (por ejemplo, PPO) y de 0,03% en peso del corredor de longitud de onda (WLS por sus siglas del ingles "wavelenght shifter") (por ejemplo, POPOP) ¹. Cuando una partícula ionizante atraviesa el centellador, el material primario emite en el ultravioleta (UV). El WLS absorbe los fotones UV y reemite en una longitud de onda mas larga. Según lo demande la aplicación, se puede agregar un segundo WLS, para ajustar el espectro de la luz de centelleo con la respuesta espectral del foto-detector. Algunos ejemplos de barras de plástico centellador fabricadas por Fermilab [18] se muestran en la Figura 4a y en la Figura 4b se muestra los espectros de absorción y emisión de fluorescencia para PPO y POPOP.

Figura 4: a) Barras centelladoras plásticas fabricadas por Fermilab, fuente: [19]; b) Espectros de absorción y emisión de fluorescencia: a. del PPO, b. del POPOP, fuente: [17, pag. 519]

1.5. Detectores de Centelleo

Cuando una partícula cargada atraviesa la materia, disipa su energía al ionizar y/o excitar las moléculas del material. Esta ionización y/o excitación es la base la mayoría de instrumentos utilizados para la detección y medición de dichas partículas [16]. Existe gran variedad de instrumentos detectores de radiación ionizante, en este apartado se revisa la teoría básica de detectores de centelleo.

La detección de la radiación ionizante por luz de centelleo es una de las técnicas más antiguas registradas [10]. La propiedad de centelleo fue descubierta por Sir William Crooks en 1903, estudiada junto a Erich Regener durante los años 1908 a 1930 y observada durante sus experimentos al bombardear una pantalla de sulfuro de zinc con rayos α , estos primeros

 $^{^{1}\}mathrm{PPO}$ centellador primario 2,5-difelinozaxol y POPOP centellador primario 5-fenilozaxol [17].

intentos fueron registrados con el ojo humano como detector [16].

El principio de medición de los detectores de centelleo ha permanecido esencialmente sin cambios. La función de un centellador es doble: primero, generar luz causada por la excitación de sus moléculas; y, segundo, debe transferir esta luz ya sea directamente o a través de una guía de luz a un receptor óptico (fotomultiplicador, fotodiodo, etc.) [20]. En la Figura 5 se ilustra el proceso de centelleo en las barras usadas en el proyecto DIAPHANE [21]. La luz que emite el plástico centellador es de color azul (photon bleu), la fibra óptica recolecta la luz y la reemite en color verde (photon vert) y actúa como guía de luz para dirigir el fotón hasta el fotomultiplicador. Las paredes del centellador están cubiertas con un reflector (basado en TiO2) para evitar pérdidas de fotones.

Figura 5: Proceso de centelleo en las barras usadas en el proyecto DIAPHANE [21]. La luz que emite el plástico centellador es de color azul (photon bleu), la fibra óptica reemite en color verde (photon vert) y dirige el fotón hasta el fotomultiplicador. El compuesto TiO2 es una cubierta reflectora para evitar pérdida del fotón generado. Las siglas WLS provienen de "wavelength shifter". Fuente: [22]

1.6. Foto detectores de alta sensibilidad (Foto multiplicadores de Silicio - SiPM)

El SiPM (silicon photomultiplier) pertenece a la familia de los MPPCs (multi-pixel photon counter). Es un dispositivo opto-semiconductor que usa múltiples píxeles con diodos de avalancha APD (avanlache photodiode) operados en modo Geiger. Cuando la tensión de polarización aplicada a un fotodiodo de avalancha es configurada en un valor mayor que la tensión de ruptura, una salida saturada (descarga Geiger) es producida para una entrada especifica de luz; la condición donde el APD opera a ese nivel de tensión es llamado "modo Geiger". Una vez que la descarga Geiger es iniciada, continua tanto tiempo como el campo eléctrico en el APD sea mantenido; para detener la descarga Geiger es necesario un elemento externo al APD que estabilice el valor de su tensión, para esto se usa la técnica del "resistor de quenching" conectado en serie con el APD para detener rápidamente el crecimiento de la avalancha dentro del mismo. Por tanto, la forma de onda de salida será un pulso con un tiempo de subida muy corto causado por la descarga Geiger y un tiempo de decaimiento o descarga relativamente largo debido al proceso de detención de la avalancha Geiger, hecho por la resistencia de quenching¹ [Figura 7b].

La estructura básica (un píxel) es la combinación de un APD en modo Geiger y una

¹Quenching: palabra del idioma ingles que significa terminar o extinguir

resistencia de quenching, en la Figura 6a se muestra la estructura básica de un MPPC, un gran número de píxeles conectados en paralelo y arreglados en dos dimensiones. Cada píxel en un MPPC entrega un pulso de la misma amplitud cuando detecta un fotón. Los pulsos generados por detección de múltiples píxeles se superponen en un único pulso de salida, teniendo así una amplitud proporcional al número de fotones detectados simultáneamente. En la Figura 7b se muestran los pulsos de salida característicos de un MPPC obtenidos al ser iluminado con luz discreta al nivel adecuado para contar fotones y usando el esquema mostrado en la Figura 7a. Se observa que los pulsos están separados entre sí acorde al número de fotoelectrones detectados (1 p.e, 2 p.e y 3 p.e) [23]. En el caso de la presente propuesta, el MPPC usado es el S13360-1350CS de Hamamatsu [24][Figura 6b] aplicado para detectar el centelleo, de manera que el conteo de fotones será relevante para configurar el umbral de discriminación óptimo, es decir, durante el proceso de caracterización del instrumento (fuera del alcance del proyecto). Para mayor información sobre los SiPM el lector puede revisar las referencias [25] [26]

Figura 6: a) Estructura simplificada del SiPM, fuente: [23] y b) MPPC de la serie S13360 de Hamamatsu, fuente: [24]

Figura 7: a) Diagrama de bloques para evaluar un MPPC usando osciloscopio y b) Forma de pulso cuando se amplifica 120 veces, las diferentes curvas corresponden a la cantidad de fotoelectrones detectados (p.e). Fuente: [23]

1.7. Estado del arte

A continuación se presenta un breve recorrido por dos proyectos con gran trayectoria en la muongrafía. Existen otros proyectos que pueden ser de interés para el lector y que puede revisar en las referencias [27] [13] [4] [5] [28].

1.7.1. Proyecto Mu-Ray

El mayor objetivo de la colaboración MU-RAY es la construcción de un telescopio de muones con una resolución angular elevada, adquisición de datos en tiempo real y área activa (AA) amplia, que sea capaz de funcionar en las zonas aledañas a un volcán. El proyecto MU-RAY usa barras centelladoras con forma triangular [Figura 8a] que le dan al telescopio una resolución espacial elevada en comparación al uso de barras con sección trasversal rectangular. La luz de centelleo es recolectada por fibras ópticas y leída por SiPM's. El telescopio de muones está compuesto por dos módulos X-Y principales con un área sensible (AA) de 4 m², un módulo auxiliar es usado para realizar mediciones de posibles eventos que vienen en la dirección opuesta a la fuente de radiación principal, ocasionados por cascadas de rayos cósmicos; y permite la medición del tiempo de vuelo del muón¹. La electrónica de adquisición está basada en el chip SPIROC (SiPM Read-Out Chip) ASIC, este chip ha sido desarrollado por el grupo OMEGA², específicamente para lectura de SiPM a una baja potencia, diseñado para entregar información de cada uno de sus 36 canales. La tarjeta donde se encuentra este chip (slave board) es controlada por una tarjeta madre que se encarga de la lectura y transferencia de datos. En modelos actuales del telescopio, el chip SPIROC ha sido actualizado con el chip EASIROC que tiene 32 canales.

Este proyecto fue inicialmente ideado para el volcán Vesuvius en la bahía de Nápoles (Italia) por el alto riesgo de erupción y antecedentes de dicho volcán. La transmisión de datos en ese volcán se realiza usando los recursos tecnológicos del *Vesuvian Observatory*. En la Figura 8b se muestra un panel del detector Mu-Ray y en la Figura 8c se muestra la estructura modular, la dirección del telescopio puede ser ubicada usando la base giratoria de la estructura. Algunos resultados obtenidos en el monte Vesuvius son observados en la Figura 9. Para mayor información, el lector puede dirigirse a las referencias [9] [7] [3] [29].

Figura 8: a) Barras de sección transversal triangular usadas en el proyecto Mu-Ray, fuente: [7]; b) Vista de un modulo con 32 barras centelladoras, la fibra óptica y su conector es visible; c) La estructura del detector con los tres planos X-Y montados. Para orientar la plataforma se usa la base giratoria visible en la parte inferior de la imagen, fuente: [9] [3].

Figura 9: En la parte superior, un histograma de transmisión del Mt. Vesuvius después de una semana de instalación del detector. En la parte inferior, una foto del Mt. Vesuvius tomada desde el punto de observación del detector. Fuente: [9]

1.7.2. Proyecto DIAPHANE

DIAPHANE es el primer proyecto europeo de tomografía aplicada a la volcanología. Comenzó en 2008 con la colaboración de tres instituciones francesas: IPG Paris, IPM Lyon y Géosciences Rennes para promover la muongrafía en las comunidades científicas French Earth Science y Particle Physics. Los primeros objetivos del proyecto fueron realizar elecciones tecnológicas para el telescopio de muones y definir un diseño adecuado para las condiciones geográficas difíciles de los volcanes en las Antillas Menores, en particular en las islas de Guadalupe y Martinica. El diseño del telescopio usa centelladores plásticos de sección transversal rectangular que forman píxeles, fibras ópticas, fotomultiplicadores y electrónica de lectura que cuenta con un módulo de sincronización de reloj comandado por un GPS [22].

La forma y el diseño mecánico tienen límites en peso y construcción de módulos aptos para las normas de transporte, ya que para acceder a algunas de las zonas de detección de los volcanes se debe usar helicóptero. Un detector estándar comprende tres planos de detección XY autónomos, con bajo consumo de potencia y registro automático de la estampa de tiempo. La construcción de eventos es cuasi-online con procesos de análisis de coincidencias vía software y transferencia de datos vía WiFi, accesibles directamente de forma remota. El detector es alimentado a través de paneles solares para hacerlo autónomo [21] [8].

Para mayor información, el lector puede referirse a las referencias: [8] [21] [22] [30]. En la Figura 10 se muestra un detector del proyecto DIAPHANE instalado en el lado sur del volcán La Soufrière y en la Figura 11 se muestra el resultado obtenido en el mismo volcán

 $^{^{1}\}mathrm{Tiempo}$ de vuelo del muón: tiempo que tarda el muón en atravesar el detector

²OMEGA (Organisation de Micro-Electronique Générale Avancée)

con una resolución de 20 metros.

Figura 10: A la izquierda: Plano de detección con 16 x 16 barras centelladoras, conectadas mediante fibras ópticas a los fotomultiplicadores multiánodo (MAPMT) y al sistema de Read-Out. A la derecha: el detector de 3 planos instalado en La Soufrière(Zona Sur). Fuente: [21]

Figura 11: Radiografía de la densidad media de La Soufrière de Guadalupe en el plano norte-sur, obtenida con el detector DIAPHANE, los colores representan la densidad del material analizado, indicados en la barra de la parte derecha. Fuente: [22]

Capítulo 2

Metodología y resultados

A continuación se describe la metodología del diseño planteado en esta tesis. El instrumento construido es un detector de centelleo formado por doce barras de plástico centellador distribuidas en dos paneles y organizadas en dos planos X-Y de tres barras que forman 9 píxeles. La luz generada por la interacción de una partícula cargada con cada una de las barras es recolectada por una fibra óptica, la cual, en uno de sus extremos está acoplada a un fotomultiplicador de silicio (SiPM) que convierte la señal lumínica en una señal eléctrica. Posteriormente, un sistema electrónico acondiciona, discrimina, digitaliza y registra los eventos asociados a partículas que atraviesan el instrumento. Estos datos junto con el tiempo de ocurrencia, geolocalización del detector, presión atmosférica y temperatura, se agrupan en un archivo con formato de alta portabilidad y se entregan para su posterior análisis. Es necesario recalcar que este proyecto de investigación está limitado a la entrega del sistema electrónico que permita generar el archivo de datos, este archivo no será analizado ni interpretado por los autores.

Figura 12: Esquema General del proyecto

En la Figura 12 se muestra el esquema general del proyecto producto de esta tesis, para

facilidad de presentación de metodología y resultados obtenidos, se divide este esquema general en dos grandes etapas que abarcan el sistema analógico y el sistema digital por separado; seguidamente se ahondará en cada uno de ellos.

2.1. Interfaz Analógica

La etapa analógica es la primera parte del detector y abarca los subsistemas contenidos en el recuadro amarillo mostrado en la Figura 13, está conformada por la "etapa de adquisición" y la "discriminación de eventos", en este apartado se encontrará con la metodología de implementación y los resultados de esta interfaz.

Figura 13: Esquema general del proyecto con énfasis en la etapa analógica que abarca la "etapa de adquisición" y la "discriminación de eventos"

2.1.1. Etapa de adquisición

La etapa de adquisición se asocia a las tarjetas de circuito impreso en las que funcionan los foto-multiplicadores de silicio (SiPM). Esta etapa es el primer tratamiento que se le da a la señal obtenida del sensor principal (SiPM) y fue entregada a los autores completamente funcional, de manera que, se hizo muy importante analizar su diseño para conocer los requerimientos de la siguiente etapa y plantear mejoras en cuanto a distribución y cableado dentro del panel. A continuación se presentan en detalle los análisis, diseños y ensambles que se realizaron para esta etapa.

2.1.1.1. Caracterización del circuito de adquisición

Inicialmente se realizó un análisis del diseño electrónico para caracterizar esta etapa y determinar parámetros de la señal eléctrica que se va a tratar en la siguiente parte. En la Figura 14 se muestra el circuito correspondiente a la etapa de adquisición; el diodo D_1

representa al SiPM, y la fuente HV ($High\ Voltage$) corresponde a la fuente de polarización programable dedicada a los SiPM (56V a $25^{\circ}C$) del fabricante Hamamatsu.

Figura 14: Circuito de adquisición de la señal proveniente del SiPM

En la parte izquierda del esquemático de la Figura 14 se encuentra el filtro de alimentación, que se utiliza para eliminar las componentes de altas frecuencias que pueda provenir de la fuente Hamamatsu, la función de transferencia de este filtro se puede observar en la ecuación 2.1, con esta función y el valor de R_2 y C_4 se analizó el ancho de banda del filtro y la respuesta a un escalón unitario (este ocurre al momento de encender la fuente) con las funciones "bode" y "step" de MATLAB, las gráficas se pueden observar en la Figura 15.

$$H(s) = \frac{\frac{1}{R_2 C_4}}{s + \frac{1}{R_2 C_4}} \tag{2.1}$$

Figura 15: El diagrama de bode del filtro pasa bajas con $R_2 = 1k\Omega$ y $C_4 = 100nF$ con frecuencia de corte igual a 1,59kHz (derecha). La respuesta del filtro al escalón unitario con tiempo de asentamiento de $400\mu s$ (izquierda)

En el diagrama de Bode de la Figura 15 se puede apreciar que la frecuencia de corte se encuentra en 1,59kHz, de manera que no se verán variaciones de alta frecuencia en la polarización del SiPM. Por otro lado, la gráfica de la respuesta al escalón unitario entrega la información del tiempo que tarda el sistema (filtro pasa-bajas R_2C_4) en llegar al voltaje impuesto por la fuente Hamamatsu, este tiempo es de aproximadamente de 400μ s y debe ser considerado para comenzar a registrar datos validos del SiPM.

Al avanzar en el análisis de los elementos del circuito, se determinó la función de transferencia del filtro pasa altas de entrada al amplificador operacional (ecuación 2.2) que, a su vez, se refiere a la corriente por el capacitor C_3 en función de la corriente por el SiPM; Z_3 representa la impedancia formada por C_3 y R_3 .

$$\frac{I_{Z_3}}{I_{SiPM}} = \frac{C_3 R_5 s}{C_3 (R_5 + R_3) s + 1}$$
 (2.2)

$$V_{out} = -R_1 I_{Z_3} (2.3)$$

Llegados a este punto, la tensión de salida del operacional (2.3) dependerá de la corriente I_{Z_3} y del valor de la resistencia de realimentación R_1 elegida. En efecto, se llega a la forma característica de la configuración usada, un derivador, esta configuración es ideal para amplificar exclusivamente el cambio de corriente en el SiPM, rechazando las componentes de baja frecuencia que provienen de la corriente inversa en el SiPM, causada por el nivel de HV de la fuente de polarización; en la figura 16 se observa el filtro pasa-altas modelado con la ecuación 2.2, resaltando la frecuencia de corte (15,6kHz). Finalmente, cabe anotar que la resistencia R_4 se coloca para acoplar impedancias con las lineas de transmisión elegidas.

Figura 16: Filtro pasa-altas característico de la configuración derivativa con frecuencia de corte de 15,6kHz, usada en el circuito de adquisición.

2.1.1.2. Caracterización señal de salida etapa de adquisición

Inicialmente, se buscó comprender el comportamiento en frecuencia de la señal de salida de la etapa de adquisición, para ello, se registró la señal correspondiente a un evento asociado al paso de una partícula cargada por un canal del detector(señal roja) y con la ayuda de MATLAB se le aplicó la transformada rápida de Fourier, FFT(señal azul), (ver Figura 17), con la que se puede deducir el ancho de banda de la señal analizada; esta información es muy útil para la elección de componentes en la siguiente etapa (discriminación de partículas).

La señal roja en la Figura 17 se obtuvo del osciloscopio Tektronix TBS2000 a 500MS/s, permitiendo que la FFT, señal azul, tenga una mayor aproximación a su forma continua. Sobre el espectro se aprecia el punto máximo en frecuencia que se usó como para determinar el ancho de banda de la señal analizada (20MHz).

Figura 17: En la parte superior, el pulso acondicionado (salida de la etapa de adquisición) y en la parte inferior, su espectro en frecuencia para $R_1 = 4.7k\Omega$, usado para determinar el ancho de banda necesario para la siguiente etapa

Continuando con el análisis de la señal de salida de esta etapa, se observó su comportamiento en tiempo. En la Figura 18 se aprecia la caracterización temporal del pulso de adquisición; este análisis permitió obtener criterios de diseño (ganancia máxima y slew rate) para la siguiente etapa de discriminación de partículas.

Figura 18: En la parte superior izquierda se muestra el tiempo de bajada de un pulso (30ns); en la parte superior derecha la duración total del pulso(158ns) y su amplitud(800mV); en la parte inferior se muestra una toma de datos con persistencia infinita, resaltando la amplitud máxima observada(1,39V) y el tiempo de bajada de las señales medidas(30ns)

Resulta provechoso resaltar en la Figura 18 que la amplitud de los pulsos es variable y depende de la cantidad de energía depositada por la partícula que incida en el detector. También se observa que el tiempo de bajada de la mayoría de los pulsos es igual, esta es una característica dada por el conjunto barra centelladora, fibra óptica y SiPM, es decir, una característica propia del detector.

2.1.1.3. Construcción del segundo panel centellador

Anteriormente se explicó que la etapa de adquisición se resume en las tarjetas de circuito impreso que funcionan dentro de los paneles centelladores, así que, para su construcción se realizó un diseño pensado para la optimización del cableado que distribuye la alimentación, con el fin de mejorar el método de ensamble de los paneles centelladores; en la Figura 19 se puede apreciar el resultado final de las tarjetas.

Seguidamente, se fabricaron y ensamblaron 6 canales que conforman el panel centellador 2, mostrado en la parte superior izquierda de la Figura 20, en dicha figura también se aprecia la optimización lograda con el cableado de alimentación al comparar los dos paneles. Con el

fin de reducir la cantidad de cables dentro del panel, se agregaron tarjetas impresas que hacen puentes de alimentación entre las tarjetas principales; en la parte inferior de la Figura 20 se observa el panel centellador 2 en proceso de ensamble con énfasis en las tarjetas mencionadas.

Figura 19: Fotografía tarjetas de adquisición, se observa la implementación de las placas de circuito impreso correspondientes al esquema de la Figura 14

Figura 20: Fotografía paneles centelladores: en la parte superior izquierda se encuentra el panel centellador 2 construido durante el proyecto; en la parte superior derecha, el panel centellador 1 entregado al iniciar el proyecto, cada uno de ello sse encuentra dentro de su caja negra correspondiente. En la parte inferior se aprecia un acercamiento de la electrónica de adquisición, haciendo énfasis en las tarjetas propuestas para compartir la alimentación en el panel

2.1.2. Discriminación de eventos

Avanzando en el desarrollo del proyecto, se entra en la siguiente etapa analógica (discriminación de eventos), en donde se desarrolló una interfaz que permite discriminar la amplitud del pulso adquirido al interpretarlo como una señal binaria que indica presencia o ausencia de partículas cargadas que atraviesen las barras del detector. Para ello, se hizo necesario convertir las señales eléctricas con duración del orden de centenas de nanosegundos y variaciones de nivel en milivoltios, provenientes de la etapa de adquisición, en cambios de nivel digital (señal binaria); estos cambios de nivel digital son compatibles con los niveles lógicos de tensión en las entradas de la siguiente etapa (niveles CMOS de 3,3V), que corresponde a la interfaz digital (ver sección 2.2). Adicionalmente, el tiempo de bit es menor o igual que el tiempo del pulso para evitar aumentar el tiempo muerto del detector (refiere al tiempo en el cual el detector no registra posibles eventos a la entrada).

Para lograr esta clasificación se usó un umbral de detección variable que garantiza un registro libre del ruido característico de los sensores usados (fotomultiplicadores de silicio(SiPM)) y además permite a los usuarios finales del detector, realizar diversos estudios físicos y estadísticos. Dicho lo anterior, ahora se mostrará detalladamente la forma como los autores estructuraron el diseño y lo desarrollaron.

2.1.2.1. Diseño electrónico

El reto para esta etapa fue desarrollar un sistema electrónico de bajo costo con componentes de alta disponibilidad en el mercado que cumplieran con los requerimientos identificados en velocidad, ganancia, ancho de banda, niveles lógicos adecuados de salida, entre otros (ver tabla 2.1); los autores propusieron diversos diseños que mejoraron con el avance del proyecto y la revisión del estado del arte, si el lector esta interesado en los diseños propuestos que no se presentan en este reporte, puede dirigirse al repositorio de GitHub del proyecto.

Criterio	Valor	
Ancho de banda	>>20MHz	
Slew Rate	$>>110V/\mu s$	
Tiempo de bit mínimo	>20ns	
Nivel lógico de salida	Niveles CMOS 3,3V	
Ganancia	≤ 2.38	

Tabla 2.1: Criterios de diseño iniciales para la etapa de discriminación

Con los criterios identificados y una revisión técnica de electrónica de discriminación en detectores [31] [26] [32] [30], se llegó al diseño mostrado en la figura 21, una etapa de inversión para acondicionar el pulso y el comparador que discrimina eventos correspondientes a partículas atravesando el detector, usando la tensión de referencia V_{ref} como umbral de detección.

Figura 21: Circuito de discriminación, en el recuadro se muestra el diseño para un canal y se indica que la tarjeta analógica tiene 12 canales. Se muestra una etapa de inversión para acondicionar el pulso y el comparador que discrimina eventos correspondientes a partículas atravesando el detector, usando la tensión de referencia V_{ref} como umbral de detección. El circuito que proporciona la tensión de umbral V_{ref} viene desde un conversor digital-analógico(ver sección 2.2.2) que se omite en la figura por simplicidad.

Para la elección de los componentes se usó el método de figuras de mérito, al tener en cuenta parámetros de selección que cumplieran con los criterios de diseño requeridos; en caso de que el lector desee profundizar en esta selección, las figuras de mérito de los componentes se encuentran disponibles en el repositorio de GitHub. Ahora, se realizará un recorrido por los aspectos de mayor relevancia en el diseño presentado.

Las señales que vienen de la etapa de adquisición, en total 12, son transmitidas mediante líneas de transmisión con impedancia característica de 50Ω , estos cables coaxiales deben tener la misma longitud para evitar retardos en las líneas. Estas señales son conectadas a la tarjeta analógica que contiene los 12 canales por medio de conectores tipo SMA con la precaución de acoplar las impedancias para evitar reflexiones indeseadas.

Posteriormente, estas señales ingresan a una etapa de inversión con ganancia de 2,2[V/V]; esta parte incluye un amplificador operacional (OPAMP) en configuración inversora, la resistencia de entrada y de realimentación se calcularon teniendo en cuenta la ganancia máxima y las recomendaciones del fabricante del operacional usado, OPA2691 [33].

Una vez que la señal ha sido invertida, ingresa al discriminador; esta parte consta de un comparador con histéresis con el disposotivo TLV3502 [34]; se optó por este tipo de comparación para lograr dos niveles de referencia que garanticen menor probabilidad de error en la detección de eventos, ya que la duración del pulso en los momentos de mayor amplitud es muy corta $\approx 1ns$. Para ello, se le agrega al comparador una realimentación positiva, configurando la conmutación en dos momentos diferentes.

Para la asignación de valores de resistencias de histéresis (R_2 y R_3 en el esquema de la figura 21) se realizó el análisis del circuito en los momentos de cambio de estado, llegando

a la ecuación 2.4 que representa el ancho de histéresis (V_{HD}) , donde V_{pol} es el voltaje de polarización.

$$V_{HD} = V_{pol} \frac{R_2}{R_3 + R_2} \tag{2.4}$$

El valor del ancho de histéresis viene dado por el umbral mínimo que le permite al detector separar señales que corresponden a partículas cargadas vistas como cantidad de foto-electrones generados en el SiPM, del ruido inherente al SiPM [23].

Este valor límite de tensión mínima se asignó al calcular el voltaje equivalente de salida de la etapa de inversión (ecuación 2.4) para la tensión $V_1 = 90mV$ obtenida de la etapa de adquisición; esta cantidad se relaciona con 3 foto-electrones generados por el SiPM (30mV se asocian a un foto-electrón) y garantiza un nivel adecuado para la supresión del nivel de ruido.

$$V_{HD} = 2.2(V_1) = 2.2 \times 90 \times 10^{-3} \tag{2.5}$$

$$V_{HD} = 0.198V (2.6)$$

De esta manera, con el valor de V_{HD} y de V_{pol} se obtuvo una relación para asignar el valor a las resistencias de histéresis (ecuación 2.7).

$$R_3 = 17,7R_2 \tag{2.7}$$

Además, se logró concluir que a la resistencia R_2 se le debe asignar un valor alto debido a su comportamiento como carga del circuito generador de umbral de detección, ya que esta podría afectar su característica de DC; por otro lado R_3 no puede tener un valor significativo, puesto que forma un filtro pasa-bajas con la capacitancia parásita de entrada al comparador (pin 1, V+, en circuito de la Figura 21) y su valor afecta el tiempo de restablecimiento de este filtro; el cual no puede superar la duración promedio de la salida discriminada.

Finalmente, es importante resaltar que tanto los OPAMP's, como los comparadores tienen filtros en la alimentación (capacitores de desacoplo) para evitar ruido en la polarización y los valores asignados son recomendados por el fabricante. Además, los dispositivos usados para el diseño son duales, es decir, cada uno soporta dos canales de detección; esto con el fin de reducir costo y tamaño de la tarjeta analógica.

2.1.2.2. Resultados de las pruebas con la interfaz analógica

Después de describir la forma del diseño implementado por los autores, ahora se presentan las señales eléctricas obtenidas con el sistema analógico bajo prueba. El diseño seleccionado (Figura 21) se simuló en el software TINA TI [35] usando el pulso de salida de la etapa de adquisición (señal roja en la Figura 17), como entrada al esquema de simulación; de esta forma, se pudo observar el comportamiento de los dispositivos bajo las respuestas características de las etapas simuladas ante una señal real.

Inicialmente, se muestra el resultado general de las señales analógicas obtenidas en simulación y las señales medidas desde la electrónica diseñada y construida por los autores (figura 22). En la sección 3 se muestra el resultado de las tarjetas impresas finales, implementando

los 12 canales; pero ese resultado tuvo varias versiones preliminares que permitieron a los autores depurar el diseño en sus diversas versiones, el lector puede revisar las versiones del diseño implementado en tarjetas impresas en el repositorio de GitHub

Figura 22: Señales de la interfaz analógica; en la parte superior se muestra el resultado de simulación y en la parte inferior la imagen tomada desde el osciloscopio con las señales reales medidas bajo pruebas.

De la Figura 22 se puede observar por inspección la similitud de las señales medidas y simuladas con ayuda de los indicadores mostrados en la imagen; es importante notar que los resultados coinciden con los cálculos realizados y características deseadas, por ejemplo, la amplitud del pulso de color azul (señal etapa de inversión) es -2,2 veces la amplitud el pulso rojo (señal etapa de adquisición); en efecto, coinciden tanto en forma como en características temporales con las señales esperadas para esta etapa. A continuación, se muestran con más detalle las comparaciones realizadas.

Figura 23: Comparación simulación y señales reales de la etapa de discriminación, a la izquierda se muestra la salida de la etapa de inversión y a la derecha la señal de salida de la etapa de discriminación o comparación.

En la Figura 23 se graficaron sobre la misma imagen las señales medidas y las señales simuladas del bloque "discriminación" para poder compararlas apropiadamente; a la izquierda del gráfico mencionado se observa la señal de salida de la etapa de inversión, la señal simulada (color rojo) no alcanza la misma amplitud de la señal real, este podría ser un efecto de la resolución en voltaje del osciloscopio; en los demás aspectos, como, tiempos de subida, duración del pulso y forma general, se puede apreciar que se obtuvo el comportamiento similar y aceptable para los resultados esperados.

En cuanto a la parte derecha de la Figura 23 se observa la señal de salida del comparador o discriminador donde se aprecian los sobreimpulsos de la señal real que no se ven en simulación, además que el tiempo de bajada en la conmutación es ligeramente mayor en la señal real al igual que el tiempo de subida; estas diferencias muestran los efectos inevitables de la implementación.

Otra parte importante del diseño que se mencionó en la sección 2.1.2.1 es la tensión de umbral que ingresa al comparador y es el nivel usado para discriminar eventos, este umbral no es un nivel único, ya que, como se describió anteriormente, el comparador tiene histéresis. Así que, la conmutación se realiza en dos momentos diferentes, como se muestra en la figura 24.

Figura 24: Umbral de discriminación, en la parte superior se muestran las señales de entrada y salida del comparador, en azul la señal de salida de la etapa de inversión, en rojo el umbral de detección y en fucsia la señal de salida del comparador o discriminador; en la parte inferior se muestra un acercamiento a la señal de umbral

Finalmente, la salida de la interfaz analógica es el pulso cuadrado con niveles lógicos CMOS 3.3V mostrado en la figura 25, este pulso tiene lógica inversa por la forma en la que se usa el comparador, la cual es recomendada por el fabricante [34]; en la parte superior izquierda se muestra el ancho del pulso en la escala de tiempo predeterminada (100ns) para observarlo junto a las demás señales de la etapa analógica; en seguida, en la parte superior derecha se amplió la escala de tiempo a 20ns para poder observar el valor de los sobre impulsos generados. En la parte inferior se muestran los tiempos de bajada (izquierda) y de subida (derecha) que son iguales a 5.6ns; en todas las imagenes se observa que la amplitud es 3.3V. Aunque, el valor en tiempo de subida y bajada es de 1.5ns de acuerdo al datasheet [34]

y el modelo de simulación del dispositivo comparador usado (TLV3502), los resultados en amplitud, forma y duración son aceptados como correctos para ingresar a la siguiente etapa (interfaz digital), ya que cumple con los niveles de amplitud permitidos (CMOS 3,3V) y los cambios de nivel son suficientemente rápidos para ser detectados por la FPGA.

Figura 25: Señal de salida de la interfaz analógica, en la parte superior izquierda se muestra el ancho del pulso en la escala de tiempo predeterminada (100ns) para observarlo junto a las demás señales de la etapa analógica; en seguida, en la parte superior derecha cambio la escala de tiempo a 20ns para poder observar el valor de los sobre impulsos generados. En la parte inferior se muestran los tiempos de bajada (izquierda) y de subida(derecha) que son iguales a 5,6ns

2.2. Interfaz Digital

La interfaz digital inicia con las 12 señales de salida de la interfaz analógica (señales discriminadas); esta parte esta implementada, en esencia, con una FPGA Spartan 6 sobre la tarjeta $Mimas\ V_2\ [36]$ y una Raspberry Pi 2. Con la FPGA se recolectan las señales discriminadas por un voltaje de umbral generado desde un circuito que incluye un conversor digital a analógico DAC6551 [37], que es controlado desde la Raspberry Pi 2; estas señales se concatenan con una estampa temporal dada por la señal PPS (por sus siglas en inglés $Pulse\ Per\ Second$) de un GPS (Venus638FLPx [38]) y el reloj interno de la FPGA 1 , la información registrada en la FPGA es recolectada de forma síncrona por la Raspberry mediante el estándar de comunicación SPI (Syncronous Peripheral Interface) y cumpliendo con el protocolo establecido para la comunicación con el procesador descrito en la FPGA.

Además, la Raspberry contiene una interfaz de usuario que permite interactuar con el detector, al visualizar información relevante y generar un archivo de alta portabilidad de forma sencilla; este archivo de salida contiene la información recolectada de los eventos,

datos de temperatura, presión atmosférica y geolocalización entre otras variables relevantes para el detector.

Figura 26: Esquema general del proyecto resaltando la interfaz digital en el recuadro rojo, donde se muestran los bloques que la conforman: FPGA, Rapsberry Pi 2, DAC, GPS y sensor de presión atmosférica y temperatura además del resultado de entrega de esta interfaz; un archivo de salida en formato plano

En esta sección el lector encontrará la descripción de los elementos que componen la interfaz digital; en la Figura 26 se muestra el esquema general del proyecto y se hace énfasis (en rojo) a esta interfaz. En primera instancia, se describen los elementos que tienen relación directa con la interfaz analógica, el DAC (Digital to Analog Converter) y la FPGA(Field-Programmable Gate Array).

En principio, en la FPGA se encuentra el procesador de propósito específico, que se diseñó para llevar el conteo de eventos (ver sección 2.2.1.2) y almacenarlos de forma ordenada en el interior de una memoria RAM (ver sección 2.2.1.3); además del protocolo de comunicación dispuesto para obtener la información asociada al evento desde la Raspberry pi.

Por otro lado, el DAC seleccionado permite entregar la tensión de umbral necesaria para la discriminación y es controlado desde la Raspberry Pi. También encontrará la descripción y características de los sensores utilizados para las mediciones de variables atmosféricas y de geolocalización. Finalmente, se explicará la estrategia implementada en la Raspberry Pi para la adquisición, registro y almacenamiento de toda esta información en un archivo portable. Después de este preámbulo se ahondará en cada uno de los elementos.

¹El reloj de la tarjeta utilizada es de 100MHz por defecto, sin embargo este se puede aumentar haciendo uso de overclock

2.2.1. FPGA

En la Figura 27 se puede observar el procesador de propósito específico que se diseñó para retener y agregar una estampa temporal a los eventos (partículas cargadas que atraviesan el detector); principalmente, esta compuesto por 4 bloques; comenzando por el bloque "Protocolo de comunicación", que se encarga de la comunicación mediante el estándar SPI que se dispuso para que la Raspberry pueda interactuar con la FPGA; en segundo lugar, el bloque "Despliegue y contadores" que, por un lado, lleva el conteo de partículas que atraviesan el detector, el flujo por segundo de partículas y el conteo de errores en la comunicación Raspberry-FPGA, y por otro lado se encarga del despliegue de los conteos mencionados en el display y leds dispuestos en la tarjeta *Mimas V2*.

En tercer lugar, el bloque "Banco de memoria" que contiene una memoria RAM en la cual se registra la información de los eventos, el conteo de errores en la comunicación y el flujo por segundo, este bloque también genera una señal que indica un evento registrado en la memoria RAM; por último, se tiene el bloque "Gestión de Funciones" que contiene una máquina de estados encargada de administrar los eventos provenientes de la comunicación (flancos de subida o bajada de las señales SPI), paso de partículas (eventos) o del mismo sistema (posición máxima en la RAM, fallos en la comunicación, entre otros) y, a su vez, es responsable de controlar los 3 bloques descritos anteriormente. En realidad, esta es una representación simplificada del contenido del procesador, si el lector desea profundizar puede dirigirse al repositorio de GitHub

DESCRIPCIÓN DEL PROCESADOR EN LA FPGA

Figura 27: Procesador de propósito específico descrito en la FPGA Spartan 6; en rojo se pueden observar las 12 señales de la etapa de discriminación (Partículas), en *Banco de memoria* se detectan los cambios de alto a bajo de dichas señales y se envía una alerta (Evento) a la Raspberry, esta iniciará la conversación con la FPGA teniendo en cuenta el protocolo de comunicación (ver sección 2.2.1.4) por medio de las entradas Enable, CLK y MOSI(en azul); en caso de que los datos sean incorrectos, la corroboración de bits (checksum) aumentará en uno los errores de comunicación y volverá a corroborar, en caso contrario, el bloque *Gestión de funciones* cargará la posición de memoria solicitada en el *Protocolo de comunicación* y agregará la trama de checksum correspondiente a los datos para enviarlos por la línea MISO(señal vinotinto) hacia la Raspberry Pi.

2.2.1.1. Gestión de funciones

Este bloque contiene principalmente una máquina de estados, que permite:

- Desplegar en los periféricos de visualización el número de partículas registradas en la FPGA, el número de partículas registradas el segundo inmediatamente anterior y el número de errores en la comunicación (Ver Figura 28).
- Iniciar o detener la comunicación y cargar los bits de la posición de RAM solicitada en el bloque de *Protocolo de Comunicación* (Ver sección 2.2.1.4) en caso de que la corroboración (checksum) sea correcta.
- Reiniciar la RAM y los contadores, es decir, lleva a cero la posición de la RAM y los conteos.

Controlar la dinámica de registro de la información referente a cada evento, además de almacenar en la RAM los bits correspondientes al número de eventos registrados, el flujo de partículas y el número de errores en la comunicación (ver Figura 29).

La máquina de estados es compleja y por simplicidad se omite en este reporte, en caso de tener interés en la estructura completa puede dirigirse al repositorio de GitHub.

2.2.1.2. Despliegue y contadores

Este bloque contiene tres contadores, uno para el número de partículas que atraviesan el detector, otro para el número de eventos por segundo del segundo inmediatamente anterior y por último uno para el número de errores en la comunicación; cada contador esta formado por un contador BCD de tres dígitos y uno binario, en el caso del número de partículas son 27 bits mientras que en el número de errores y número de eventos son 7 bits, esta forma de los contador se implementó para desplegar cantidades enteras en los display 7 segmentos y los leds de la FPGA. El despliegue de dichos indicadores se controla desde la Raspberry por medio del protocolo de comunicación descrito en la FPGA, y finalmente, es el bloque Gestión de funciones quien selecciona cual indicador mostrar, estas tres cantidades se pueden extraer a través de las posiciones 31 y 32 de la RAM de la FPGA, por medio del protocolo de comunicación implementado.

La forma como se visualizan los resultados de los conteos se puede apreciar en la Figura 28.

Figura 28: Forma de visualización de contadores disponibles; en la imagen se muestra un ejemplo de como se visualizan los números desplegados desde la FPGA $Mimas\ V2$, para este ejemplo el número que se está desplegando es el 106216, las unidades de mil se despliegan en los leds y las centenas en los display de 7 segmentos

2.2.1.3. Banco de memoria

Este bloque contiene la memoria RAM como elemento central, y otras estructuras que aseguran una correcta dinámica de registro y almacenamiento de datos asociados con partículas incidentes en el detector. Dentro de las estructuras mencionadas se encuentran, por ejemplo, contadores y multiplexores; por simplicidad se muestra la forma de organización y disposición de la RAM y se deja la oportunidad al lector de profundizar en el bloque al ingresar al repositorio de GitHub

Con cada evento proveniente de la discriminación y detectado por la FPGA, se genera una señal para cambiar de posición de escritura en la RAM; al realizar este cambio se mantiene la información del evento en la posición inmediatamente anterior, lo que quiere decir que los datos relacionados con eventos de partículas incidentes se almacenan y los nuevos eventos se escriben en diferentes posiciones para evitar pérdida de información. La memoria RAM tiene capacidad para mantener la información en 30 posiciones diferentes antes de retornar a la posición inicial. Adicionalmente, esta memoria tiene 2 posiciones reservadas para otros datos relevantes del detector, que se muestran en la Figura 29.

Es importante resaltar la forma definida para empaquetar la información en los bits de cada posición de la RAM, ya que estos datos son enviados por el protocolo de comunicación comenzando por el bit más significativo (bit 0) hasta el menos significativo (bit 39) y deben ser claros para que desde la Raspberry pi pueda identificarlos e interpretarlos correctamente. En la Figura 29 se ilustra la dinámica de la RAM y la distribución de bits asignada; se observan las 32 posiciones de la RAM, cada una con 39 bits. La estructura de los datos almacenados en la RAM se puede observar en los recuadros azul, verde y rojo; en el caso de los eventos (cuadro azul) los primeros 12 bits son los canales de las barras centelladoras que conforman los dos paneles, los siguientes 28 bits corresponden al tiempo transcurrido (con precisión de aproximadamente 10ns) desde el último flanco de reloj de la señal PPS del GPS utilizado y finalmente el ultimo bit estará en alto si en el segundo inmediatamente anterior llegó la señal PPS, o bajo si ha pasado más de un segundo y la señal PPS se ha mantenido en bajo. En la posición 30 (cuadro verde) se almacena el conteo total de eventos, los primeros 12 bits (0-11) contienen los contadores BCD, mientras que los siguientes 28 bits corresponden a un numero binario que corresponde a las unidades de mil de este contador. En la posición 31 se encuentra el contador de los errores en la comunicación y el del flujo de partículas, en cada uno los primeros 12 bits(0 -11 y 20-31) se encuentran los contadores BCD correspondiente a las centenas decenas y unidades del conteo, mientras que en las siguientes 7 posiciones se encuentra un numero binario que representa las unidades de mil.

Figura 29: Mapa de memoria y dinámica de registro. Contiene 32 posiciones de 40 bits donde se almacena toda la información que se desea extraer de la FPGA.

2.2.1.4. Protocolo de comunicación

En este bloque se ejecuta la comunicación de la FPGA con la Raspberry para la transmisión y recepción de información; el protocolo se basa en el estándar SPI, con la Raspberry como maestro y la FPGA como esclavo; este bloque tiene la capacidad de:

- Transformar una entrada en paralelo en una salida serial, eliminando el bit más significativo y agregando el checksum, calculado al final de la trama serial; esta salida corresponde a la señal MISO.
- Entregar un vector de bits en paralelo a partir de una entrada serial correspondientes a la señal MOSI; donde el primer bit serial será el más significativo de la salida. Además verifica el checksum del mensaje para definir si los bits llegaron correctamente.

Para lograr cumplir con estas capacidades, este bloque contiene otros en su interior, si el lector desea profundizar en este tema puede dirigirse al repositorio de GitHub

Los bloques anteriormente mencionados en conjunto con el resto del procesador descrito en la FPGA permiten comunicar la FPGA con dispositivos programables (en el caso de este proyecto una Raspberry Pi) que puedan generar las señales de la Figura 30, la comunicación está basada en el estándar SPI que junto a las tramas de checksum para corroboración de datos y los bits definidos en la Tabla 2.2 conforman el protocolo designado para comunicarse de manera exitosa con la FPGA.

Tabla 2.2: Tabla de comunicación FPGA

Bits Acción | Checksum | Fi

Bit MSB	Bits Acción	Checksum	Función		
1	10000	010	Borrar RAM		
1	11000	011	Reinicia los contadores		
			(Errores, partículas y flujo por segundo)		
1	11100	100	Desplegar Errores		
1	11110	101	Desplegar Conteo		
			Entrega por MISO lo que		
0	Pos_RAM	suma de bits	se encuentra en la posición		
			de RAM solicitada.		

Figura 30: Forma de comunicación con FPGA del detector; para iniciar la comunicación con la FPGA se debe utilizar el estándar SPI, la primera trama de bits M1-M6 son los bits de información, los tres siguientes M7,M8,M9 son los bits de checksum (estos se envían desde la Raspberry), (ver tabla 2.2); a) si el primer bit está en bajo se deberán adquirir los 59 bits siguientes, donde PMSB a PLSB son los bits correspondiente a las barras centelladoras, los bits de TMSB a TLSB son los correspondientes a la estampa de tiempo asignada en la FPGA, mientras que los bits de EMSB a ELSB son la posición de escritura actual en la posición de RAM y finalmente CMSB a CLSB son los bits de checksum. b)Si el primer bit (M1) está en alto, solo será necesario escribir los nueve primeros bits ya que la FPGA no responderá nada. En la Tabla 2.3 se observa el valor de los tiempos t_{SUCS} , t_{SCLK} y t_{CS}

Tabla 2.3: Parámetros de tiempo

Parámetro	Símbolo	Mínimo	Unidades
CS en bajo antes del primer flanco de subida de CLK_SPI	t_{SUCS}	20	ns
Periodo de CLK_SPI	t_{SCLK}	40	ns
Tiempo de carga de bits	t_{CB}	30	ns
Tiempo en alto de CS	t_{CSH}	30	ns

En la Figura 31 se puede observar la valides del protocolo de comunicacion diseñado, las señales en verde azul y rojo que corresponden a CS,CLK y MOSI respectivamente, estas son

generadas por la Raspberry y acordes a lo planteado en la tabla 2.2, mientras que en rosado se evidencia la respuesta de la FPGA ante la solicitud realizada por la Raspberry (en este caso particular se esta solicitando una posicion de RAM).

Figura 31: Comunicación real entre FPGA y Raspberry. En verde se observa la señal CS que indica el inicio y fin de la comunicación, en azul la señal CLK con la cual se sincronizan los datos (Flanco de subida indica el cambio de un bit y flanco de bajada la lectura del mismo) a una velocidad de 4MHz, la señal en rojo corresponde a la linea de MOSI con el primer bit en bajo indicando que se desea obtener la información de una posición de RAM, y finalmente en rosado se observa la respuesta de la FPGA que contiene lo indicado en el protocolo de comunicación (Ver Figura 30).

2.2.2. Umbral de detección

Para generar la tensión de umbral requerida en la etapa de discriminación, se utilizó un convertidor digital a análogo (DAC6551 [37]) de 12 bits con interfaz serial de comunicación de tres hilos por medio del estándar SPI. Este DAC está probado para aplicaciones industriales y garantiza una buena linealidad. Su comportamiento lineal se observó al variar la tensión de umbral asignada desde la Raspberry Pi y medir en dos puntos; por un lado, la salida del DAC6551 y del otro lado, la entrada al comparador que corresponde al voltaje de histéresis (punto V+ en la Figura 21). El resultado de la prueba se muestra en la Figura 32, donde se aprecia el comportamiento lineal de ambas tensiones, se observa una diferencia que corresponde a los cambios de histéresis asignados, la cual disminuye al aumentar el umbral asignado haciendo a las dos curvas muy cercanas.

Figura 32: Prueba de linealidad del DAC6551; en azul se observa la salida del DAC6551 y en naranja se muestra la medición de la tensión de histéresis (punto V+ en la Figura 21)

Es importante mencionar que este DAC necesita un voltaje de referencia externo, para este caso 3.3V; y que la Raspberry se comunica con el por medio del puerto auxiliar del SPI, ya que se prefería dejar el puerto principal dedicado para la comunicación Raspberry-FPGA y de esta manera reducir la longitud de las pistas de CLK, MOSI, MISO con el objetivo de maximizar la tasa de BPS (bits por segundo) en la transmisión de datos principal.

En la Figura 33 se puede apreciar un circuito para aumentar la corriente de la tensión de referencia, puesto que la salida del DAC es de baja potencia, podría deformarse por las cargas vistas en las resistencias de histéresis en el circuito de discriminación (21), por ello, se vio la necesidad de agregar una configuración extra a la salida que aumente la potencia entregada. Este esquema es básicamente un seguidor de tensión, que por medio de un transistor BJT y una carga capacitiva, aumenta la potencia de salida total y mitiga el ruido provocado por el cambio de impedancia durante la conmutación del comparador. Pensando

en que el voltaje de umbral es DC (corriente continua) se optó por usar un amplificador de instrumentación (INA128 [39]), que es destacable por sus parámetros de alta impedancia de entrada ($\approx 10^{10}\Omega$), lo que reduce la carga del DAC mejorando su rendimiento. Por otro lado el offset de entrada ($\approx 500\mu V$ [39]) es un valor aceptable que no afecta la precisión del voltaje de comparación, correspondiente a $800\mu V$, este último valor viene de la tensión de referencia es de 3,3V dividida en los 12 bits de resolución del DAC.

Los capacitores de desacoplo en la polarización del DAC y del operacional se colocaron siguiendo las recomendaciones del fabricante.

Figura 33: Circuito para generar la tensión de umbral; se usa un DAC6551 conectado a un seguidor de tensión con un transistor BJT y una carga capacitiva para aumentar la potencia de salida total

2.2.3. Sensores adicionales

En este apartado se describen los sensores adicionales usados para el proyecto, los cuales realizan mediciones esenciales para el funcionamiento del detector; en primera instancia, la electrónica es capaz de realizar mediciones de temperatura y presión atmosférica con el sensor BMP180 [40], estas medidas son importantes para conocer las condiciones atmosféricas básicas bajo las cuales estará trabajando el detector, ya que las variaciones significativas de la temperatura pueden afectar el comportamiento normal de los SiPM, generando variaciones en la tasa de eventos.

Por otra parte, se utilizó un GPS(Venus638FLPx [38]) para conocer las condiciones de geo-posicionamiento del detector cuando sea llevado a campo; además, es fundamental para la sincronización temporal de la interfaz digital al usar la señal PPS (Pulse-Per-Second). A continuación se describen las características más relevantes de los sensores usados.

Figura 34: Sensores adicionales. En el lado izquierdo se encuentra el sensor de temperatura y humedad utilizado (BMP180), en el lado derecho el GPS elegido (Venus638FLPx)

2.2.3.1. Temperatura y presión atmosférica

El sensor de temperatura y presión atmosférica utilizado es el BMP180 de Bosch [40], sobre la tarjeta impresa desarrollada por $Sparkfun^1$, el BMP180 consta de un sensor piezo-resistivo, un convertidor analógico a digital (con 16 bits de resolución) y una unidad de control con EEPROM que contiene bits de calibración para compensar el offset, la dependencia de la temperatura y otros parámetros; estas características son configurables desde una interfaz serial I^2C , usada para la comunicación con el sensor.

2.2.3.2. GPS

Un criterio para la configuración Raspberry-GPS-FGPA (ver Figura 26) es la necesidad de generar un archivo de datos que contenga una referencia temporal global con una muy buena precisión y resolución, ya que estos datos permiten hacer estudios dinámicos. Asimismo, las variables de geo-posicionamiento pueden ser un factor que afecte el flujo de partículas por el detector con parámetros como la altura a nivel del mar y la latitud.

Por lo anterior, era necesario la elección de un GPS que tuviese la señal PPS (Pulso Por Segundo) como uno de sus periféricos. Con esta señal y haciendo uso del reloj de la FPGA, se agrega otra estampa temporal con resolución de 10 ns y rango de un segundo a cada evento detectado; esta información de tiempos se envía hacia la Raspberry, donde, además de recibir la información, se obtiene el tiempo UTC dispuesto en un registro del GPS y con la señal PPS se realiza la corrección de este tiempo cada segundo, con el fin de establecer una sincronización temporal con la información recibida desde la FPGA. Es muy importante esta sincronización, ya que la información temporal es utilizada para estudios dinámicos y se hace indispensable al implementar dos detectores y ubicarlos en puntos distantes; la forma como se correlacionarían los datos será con el tiempo agregado (UTC más el tiempo añadido por la FPGA) a cada partícula detectada.

¹SparkFun Barometric Pressure Sensor Breakout - BMP180

El GPS utilizado es el Venus638FLPx [38], este se encuentra en la tarjeta impresa diseñada por $SparkFun^1$ y contiene entre sus periféricos la señal PPS, una interfaz serial y otra I^2C para la comunicación con el GPS, adicionalmente se realza entre sus similares ya que cuenta con un TTFF($Time\ To\ First\ Fix^2$) de 29 segundos el cual es aceptable para nuestro detector y se debe tener en cuenta para comenzar el registro de datos.

2.2.4. Raspberry Pi

Como plataforma principal se utilizó la Raspberry Pi que en resumen es un ordenador del tamaño de una tarjeta de crédito, esta se compone de una placa base sobre la que se monta un procesador (BCM2835 [41]), un chip gráfico, memoria RAM y algunos periféricos que dependen del modelo elegido.

Los primeros modelos fueron lanzados en 2006 por la Fundación Raspberry Pi^3 con el objetivo de estimular la enseñanza de las ciencias informáticas en las escuelas de todo el mundo, por su bajo costo, facilidades de uso y tamaño.

Para este proyecto se eligió el modelo Raspberry Pi 2 Model B ya que cumplía con los requerimientos necesarios para desarrollar el proyecto y existían unidades en el Grupo Halley. Esta plataforma tiene la capacidad de soportar diversos sistemas operativos, desde GNU/Linux hasta versiones de Windows, para el caso de este proyecto, utiliza Raspbian 9 [42] (Distribución de GNU/Linux basado en Debian para Raspberry Pi).

En este punto, el reto planteado fue cómo adquirir las variables de interés (atmosféricas, geo-posicionamiento y datos de la FPGA) de forma eficiente (utilizando pocos recursos de CPU), eficaz y sencilla para generar un archivo con toda la información relevante y adicionalmente brindar una interfaz amigable como herramienta para que los interesados puedan interactuar con el detector.

Para resolver este problema se revisaron y probaron varias librerías que permitieran el uso de los pines $GPIO(General\ Purpose\ Input\ Output)$ con un lenguaje de medio nivel $(C\ o\ C++)$ para hacer uso eficiente de los recursos del sistema, de tal manera que el procesador no se ocupe en procesos innecesarios. Entre las librerías consultadas se hizo una preselección de las más relevantes; estas fueron, primero $WiringPi\ [43]$, que contiene funciones similares a la plataforma de $Arduino\ y$ por tanto es la más popular, sencilla y limitada en cuanto a las utilidades de los pines GPIO.

Al continuar con la consulta, se encontró la librería BCM2835 [44], la de más bajo nivel entre sus semejantes, que brinda control sobre las interrupciones del sistema y el acceso a los registros del kernel de la Raspberry Pi, y por esta razón es la más eficiente pero aun así no la más eficaz, pues el esfuerzo y tiempo para cumplir con el objetivo propuesto en la parte digital era mucho mayor que con la librería *PIGPIO* [45], librería con la cual se resolvió el problema en las fechas establecidas y con un rendimiento favorable, esta última librería contiene mayor utilidad de los pines GPIO que *WiringPi* y es más sencilla que BCM2835

¹SparkFun Venus GPS with SMA Connector

²TTFF es el tiempo que requiere un GPS para recibir datos de navegación de los satélites disponibles y calcular la posición

³Fundación Raspberry Pi

pues la administración de las interrupciones y manejo de pines GPIO se ejecutan desde funciones preestablecidas sin la necesidad de recurrir a los registros del kernel, pero brindando un rendimiento muy similar al uso directo de ellos.

Teniendo definidas las herramientas para el uso de los pines GPIO, se procedió a establecer la plataforma de desarrollo para implementar la interfaz de usuario; esta elección se realizó por tres razones; soporte, compatibilidad y rendimiento de los frameworks para desarrollo de aplicaciones (Eclipse, NetBeans, Qt y CodeLite) en Raspbian, bajo estos tres criterios se decidió utilizar Qt, que es un entorno de programación amigable basado en C++ y tiene numerosas librerías que agilizan la creación de aplicaciones sin descuidar el rendimiento de la CPU.

En síntesis, el trabajo realizado por los autores se ilustra gráficamente en la Figura 35 al interior del recuadro amarillo y se puede describir en los siguientes incisos:

- 1. La creación de una clase envoltorio (Wrapper class) con la cual se puedan utilizar las funciones de la librería PIGPIO necesarias para adquirir la información generada por el detector y administrar los eventos y ejecuciones en multihilo utilizadas por dicha librería pero incompatibles con el funcionamiento de Qt, es decir, una clase que enlace la librería PIGPIO con el entorno Qt.
- 2. Diseñar una interfaz gráfica que brinde las herramientas u opciones para que los usuarios finales desarrollen las investigaciones y/o pruebas con un grado mínimo de complejidad y también tengan la posibilidad de modificar las condiciones relevantes para cada prueba (ver Figura 37 y 38).
- 3. Integrar la interfaz diseñada junto a la clase creada bajo dinámica de ejecución de aplicaciones Qt (ver Figura 36), para generar un archivo .dat con la información requerida por el usuario.

Figura 35: Esquema de funcionamiento desde la interfaz hasta la lectura y escritura de los pines GPIO en la Raspberry pi; al interior del recuadro amarillo se aprecia el trabajo realizado por los autores en la Raspberry Pi, que incluye la clase envoltorio que enlaza la librería PIGPIO con Qt y su integración con la interfaz gráfica diseñada para generar el archivo de salida

Hasta ahora se ha resumido el trabajo realizado, ahora se explicarán los conceptos estudiados y estructuras implementadas para la consecución del mismo. Para comenzar, es necesario tener claro el concepto de clases y objetos en C++ (se recomienda el texto de la referencia [46]), ya que al manejarlos surge la pregunta ¿Cómo comunicarse entre objetos?; desde ahí parte la solución dada por los autores, que está basada en la figura 36 y es una respuesta eficaz encontrada en Qt. Así que, para responder esa pregunta se recurrió al concepto de Signals and Slots (señales y ranuras) en Qt y que cada objeto puede o no contenerlas; una señal es básicamente una alerta con información que un objeto emite en alguna situación sin preocuparse de su relevancia para otro objeto, por ejemplo, el clic en un widget o el fin de una ejecución multihilo; mientras que una ranura es una forma de introducirse en un objeto para cambiar una propiedad o ejecutar alguna función desde otro objeto, la forma como se accede a dichas ranuras es por medio de señales.

Teniendo estos conceptos claros, una de las funciones principales de la clase creada para que Qt interactuara con la librería PIGPIO fue el enlace de procesos en multihilo provenientes de eventos por flancos de subida, bajada o por tiempo de los pines GPIO, esto es de alta relevancia pues mediante la señal "Evento" (ver Figura 27) se da una alerta para iniciar la comunicación oportuna con la FPGA para extraer la información depositada en la RAM de la FPGA (ver Figura 29) que corresponde a datos de partículas incidentes en el detector.

Figura 36: Comunicación entre objetos mediante "señales y ranuras" en ingles "signals and slots" [47].

Bajo los conceptos anteriormente mencionados se desarrolló gran parte del aplicativo que se muestra a continuación y, con el cual se puede generar el archivo de datos del detector de partículas descrito en este documento (si el lector desea profundizar puede dirigirse al repositorio de GitHub dispuesto para este proyecto).

2.2.4.1. Interfaz de usuario

Con el objetivo de darle al usuario un entorno amigable para interactuar con el detector, generar un archivo de forma sencilla y sin conocer a profundidad lo realizado por los autores, se diseñó una interfaz de usuario que brinda dichas comodidades y que adicionalmente despliega información relevante in situ en función a lo que se desee analizar, por lo anterior se crearon dos pestañas en la aplicación (ver Figura 37 y 38) cada una dispuesta para un propósito distinto. Es importante mencionar que en futuros avances del proyecto este número de pestañas podrá aumentar en función a la tarea que se desee desarrollar.

Figura 37: Aplicación desarrollada en Qt y ejecutándose en la Raspberry pi 2 dispuesta para el detector. En esta pestaña se muestra el numero de partículas totales , el flujo de partículas que atraviesan el detector por segundo y por minuto, estos datos se extraen de la FPGA, ademas se puede cambiar el nombre del archivo el cual se guardara en /home/pi con extensión .dat, adicionalmente se establece un umbral fijo para lo toma de datos y se puede configurar la fecha hasta la que se desea registrar datos, la fecha de inicio se establece en el momento en que se da click en el botón Inicio y es este el que da comienzo al registro de la información ademas de reiniciar todos los contadores, en el lado derecho del título se puede elegir que contadores se desean desplegar en la FPGA y en la parte inferior se despliegan variables como la temperatura la presión atmosférica y la ubicación geográfica.

Figura 38: Aplicación desarrollada en Qt y ejecutándose en la Raspberry pi 2 dispuesta para el detector. Esta pestaña contiene lo necesario para realizar un estudio del número de partículas que atraviesan el detector en función al umbral de discriminación asignado, en este se observa el número de partículas desde que se cambio el umbral, el flujo de estas por segundo y por minuto, por otra parte permite establecer los límites del umbral en el que se desea observar el comportamiento, adicionalmente configurar la resolución (Intervalo) y el tiempo que se desea esperar con cada umbral, no obstante contiene una barra de progreso en la que de manera rápida se puede intuir el tiempo restante para finalizar la prueba y al igual que en la pestaña normal se puede configurar el nombre del archivo, el contador a desplegar en la FPGA y visualizar variables como temperatura presión atmosférica y geo-posicionamiento. Cabe mencionar que en esta pestaña el botón de inicio crea dos archivo, uno con la información que se extrae de la FPGA (Bits del estado de las barras centelladoras en el instante casi inmediato a un evento, el tiempo de ocurrencia y las variables adquiridas por los sensores implementados) y otro archivo con extensión .csv que contiene el numero de partículas junto al umbral asignado en el tiempo que se destino desde la interfaz, con este último se puede graficar de forma sencilla esta relación.

Capítulo 3

Detector completo

Después de realizar pruebas de funcionamiento para un solo canal, se realizó el diseño para 12 canales teniendo en cuenta las siguientes precauciones:

- Las pistas de salida de cada canal en la tarjeta analógica (placa canales) se diseñaron con longitud similar con mínima diferencia entre ellas, con el fin de evitar retardos en los pulsos digitales.
- El ancho de las pistas de salida de cada canal en la tarjeta analógica (canales) se estableció en el mínimo valor permitido por el fabricante, para evitar limitar el ancho de banda de los pulsos discriminados.
- Las características de las pistas de comunicación se fijaron bajo parámetros que permitieron aumentar la velocidad de transmisión sin pérdidas de información por el medio.
- El diseño es versátil para agregar mayor cantidad de canales para futuros proyectos.
- El tamaño de las tarjetas finales para el detector es limitado para mantener el objetivo de portabilidad planteado.

Este diseño fue realizado en la herramienta Circuit Maker, que es una comunidad abierta y colaborativa respaldada por Altium LLC, de manera que, el diseño de hardware se trabajó manteniendo la idea de conocimiento libre; en caso de que el lector quiera ver los diseños, puede encontrarlos en el repositorio de GitHub. A continuación se presentan tres figuras que constrastan el diseño y la implementación realizada.

En la Figura 39 se observa la placa de canales o analógica, donde se aprecia la implementación de la etapa de discriminación de eventos para 12 canales.

Figura 39: Diseño e implementación de la placa de canales, en la parte izquierda se observa el diseño realizado visto en 3D y en la parte derecha el diseño implementado

En la Figura 39 se aprecia la placa principal, que abarca toda la interfaz digital, incluyendo los sensores adicionales, el conversor digital a analógico, conexión para FPGA- Rapsberry, además de las conexiones para la placa de canales actual y una expansión extra de 12 canales. Adicionalmente esta placa contiene la entrada de alimentación para el detector y la distribución de la misma para los módulos de canales.

Figura 40: Diseño e implementación de la placa principal, en la parte izquierda se observa el diseño realizado visto en 3D y en la parte derecha el diseño implementado

Finalmente, se presenta la forma de ensamble de la electrónica del detector en la Figura 41 con los módulos organizados de tal forma que, la placa de canales se ubique en la parte superior, en el medio la placa principal y en la base del diseño la FPGA y la Raspberry Pi.

Figura 41: Ensamble de la electrónica del detector, en la imagen se observa diseño en 3D e implementación; la electrónica fue diseñada para ser modular, con la placa de canales en la parte superior, en el medio la placa principal y en la base del diseño la FPGA y Raspberry Pi

Al tener la electrónica de discriminación y registro funcional se ensambló el detector completo mostrado en la Figura 42, finalizando así el alcance del proyecto inicialmente planteado.

Figura 42: Ensamble del detector completo, los paneles centelladores se observan cerrados en sus cajas metálicas, la electrónica de discriminación funcional y la interfaz en la pantalla conectada a la Raspberry Pi

Una característica importante del detector ensamblado es su bajo costo, es importante mencionar que en un sistema comercial como los módulos NIM ¹ cuesta alrededor de 30 millones de pesos colombianos, ensamblando el equivalente a la electrónica presentada en esta tesis. La tabla de costos totales se relaciona a continuación

¹Ortec Amtek Electronics

Tabla 3.1: Tabla de costos totales del detector construido

Elemento	Cantidad	Precio unitario [COP]	Total [COP]
Fotomultiplicadores de Silicio	12	\$168,000	\$2,016,000
Barras centelladoras	12	\$1,170	\$14,040
Fibra óptica	12	\$2,625	\$31,500
Cajas metálicas	2	\$300,000	\$600,000
Conector SMA hembra	24	\$2,856	\$68,544
Terminal SMA macho (cable)	24	\$6,150	\$147,600
Cable RG-174 (metros)	15	\$1,300	\$19,500
Ferrita beads	12	\$330	\$3,960
Componentes pasivos varios	1	\$80,000	\$80,000
DAC6551	1	\$10,920	\$10,920
TLV3502	6	\$10,740	\$64,440
OPA2691ID	6	\$13,470	\$80,820
OPA691ID	12	\$13,290	\$159,480
INA128U	1	\$31,650	\$31,650
Raspberry Pi 2 Model B	1	\$250,000	\$250,000
MimasV2-Spartan 6	1	\$149,850	\$149,850
Conectores alimentación e interconexión	1	\$12,000	\$12,000
Diodos led SMD0805	4	\$250	\$1,000
Venus GPS Sparkfun	1	\$179,850	\$179,850
BMP180	1	\$30,000	\$30,000
Transistor MMBT2222A	1	\$1,154	\$1,154
TOTAL		\$1'922,268	

3.1. Pruebas de verificación de funcionamiento del detector

El alcance del proyecto finalizó con la entrega del archivo de datos en formato .dat, aunque para verificar la electrónica del detector, se realizaron dos pruebas que demuestran la validez del trabajo realizado, estas pruebas de verificación de funcionamiento se llevan a cabo con el fin de corroborar el comportamiento del detector bajo parámetros conocidos y variaciones esperadas. A continuación se presenta la dinámica de las pruebas y sus resultados.

3.1.1. Prueba de detección de eventos con variación de umbral

El esquema para la primera prueba realizada se observa en la Figura 43; esta prueba consiste en establecer una señal con características conocidas a la entrada del sistema analógico, por medio de un generador de señales. Los parámetros elegidos para esta prueba se muestran en la Figura 43b, el pulso presenta: duración de 49,2ns, amplitud de 276mV y frecuencia de 4kHz.

Esta señal conocida ingresa a cada canal analógico y se compara con el umbral asignado que aumenta cada minuto con un paso de 10mV, la electrónica de registro (FPGA-Raspberry)

almacena los conteos por minuto; estos conteos deben coincidir con sesenta veces el valor de la frecuencia de la señal generada, es decir, 240000 conteos por minuto siempre y cuando la señal supere el umbral de detección; cuando el umbral supere a la señal conocida el detector debe detener el registro. Este comportamiento se evidenció al realizar la prueba mencionada para una variación de umbral entre 0,16V a 0,42V. El resultado de la primera prueba se muestra en la Figura 44, donde se observa el comportamiento para un canal(izquierda) y para los 12 canales(derecha); allí se aprecia que el comportamiento de los canales difiere, esto puede ser producido por el error asociado al valor de resistencias usadas($\pm 5\%$).

Figura 43: Prueba de validación con señal generada.a) Esquema de la prueba de validación con señal generada para un canal analógico; con los datos contenidos en el archivo de datos se genera el gráfico mostrado en la parte inferior del esquema; b)Forma de pulso generada para la primera prueba

Figura 44: Resultado prueba de validación con señal generada evidenciando la forma esperada. A la izquierda se muestra el resultado para un canal y a la derecha el resultado para los 12 canales

Al observar la Figura 44, se evidencia la validez del trabajo realizado ya que los conteos se mantienen en el valor constante esperado(240000) sin importar el cambio de umbral, y el cambio de nivel al detener el registro, que idealmente sería completamente vertical, ocurre

en un valor menor a los 10mV; este valor es una característica de la electrónica diseñada y se debe caracterizar para pruebas futuras.

3.1.2. Prueba de variación de conteos con el cambio de umbral

Seguidamente se llevó a cabo la segunda prueba de validación, el esquema para esta prueba se muestra en la Figura 45; esta vez los conteos provienen de las señales entregadas por los paneles centelladores, es decir, señales reales, y el umbral se programa para realizar un cambio de 120mV cada 30 minutos. El comportamiento esperado en esta prueba es un decrecimiento de conteos con el aumento del umbral.

Figura 45: Prueba de validación con señales reales, los conteos se asocian a señales entregadas por los paneles centelladores y el umbral se programa para realizar un cambio cada 30 minutos

Se realizó la prueba variando desde 0V a 3,3V con un paso de 120mV y se obtuvo el resultado mostrado en la Figura 46, en donde se puede observar el comportamiento esperado, un decrecimiento de conteos con el aumento de umbral.

Figura 46: Resultado prueba de validación con señal generada evidenciando la forma esperada

Con estas dos pruebas realizadas los autores dan por finalizado su trabajo con el detector, dejándolo verificado en funcionamiento general y dando vía libre a la realización de pruebas de validación de detección con simulación.

Capítulo 4

Conclusiones y recomendaciones

- En este proyecto se diseñó e implementó el sistema electrónico para un hodoscopio portátil, la interfaz analógica tiene la capacidad de llevar señales producto de partículas cargadas y con suficiente energía a una señal de nivel digital compatible con CMOS 3,3V; por otro lado, la interfaz digital cumple con el objetivo de generar un archivo portable con la información relevante del detector. Al juntar las dos etapas se construyó un detector de partículas que se establece como base para futuros proyectos que lo complementen y lo mejoren.
- Las mejoras propuestas e implementadas por los autores para el ensamble de los paneles fueron de gran utilidad para el grupo de investigación Halley, ya que fueron usadas para la construcción de paneles centelladores con 60 barras.
- El protocolo de comunicación descrito por los autores para la comunicación con la FPGA usando el estándar SPI, es versátil, ya que fue diseñado para comunicarse con cualquier plataforma o dispositivo electrónico que pueda generar las señales como maestro, es decir, la Raspberry Pi puede ser reemplazada o actualizada a una de sus nuevas versiones sin presentar problemas de compatibilidad.
- El diseño final del detector fue pensado de forma modular para tener la posibilidad de agregar más canales de detección, es decir, aumentar la cantidad de píxeles para tener mayor área activa. Con la FPGA que se utilizó es posible ampliar el detector en 12 canales al agregar otra tarjeta analógica, sin modificar los demás elementos.
- Si se desea aumentar la velocidad de la comunicación entre FPGA y Raspberry a más de 10MHz, es recomendable incrementar la frecuencia del reloj en la FPGA, lo que además mejorará la resolución temporal del detector a un valor menor a 10ns por su relación directa con la frecuencia del reloj de la FPGA.
- Para cambiar las resistencias que determinan el ancho de histéresis en el diseño analógico, se debe tener en cuenta que, a la resistencia R₂ se le debe asignar un valor alto debido a su comportamiento como carga del circuito generador de umbral de detección, ya que esta podría afectar su característica de DC; por otro lado R₃ no puede tener un valor significativo, puesto que forma un filtro pasa-bajas con la capacitancia parásita de entrada al comparador (pin 1, V+, en circuito de la Figura 21) y su valor afecta el tiempo de restablecimiento de este filtro; el cual no puede superar la duración promedio de la salida discriminada.

- Para la realización de este proyecto se contrastó con éxito la teoría, simulación y efectos de implementación, solucionando los inconvenientes presentados al usar los conocimientos adquiridos durante la carrera de pregrado y algunos nuevos conseguidos durante el desarrollo del proyecto en el área de física de altas energías; la experiencia de un trabajo interdisciplinar enriquece las capacidades académicas y de investigación de los individuos involucrados al conocer aplicaciones reales y enfrentarse a retos científicos con miras a aplicaciones industriales, lo cual genera una formación integral que amplía la perspectiva del profesional en formación.
- El conocimiento y experiencias adquiridos por los autores durante el desarrollo de esta tesis, son completamente abiertos para que la comunidad científica o los aficionados puedan proponer mejoras a partir de una base avalada por la Universidad Industrial de Santander con sus dependencias E^3T y la Escuela de Física, por medio del Grupo Halley. Esto con el fin de crear redes de conocimiento colaborativo para avanzar en las aplicaciones de la muongrafía en Colombia.
- Para futuras mejoras, si se pretende incrementar el número de registros en la memoria RAM, se recomienda tener en cuenta el aumento en el número de bits por la línea MOSI de la comunicación con la FPGA, puesto que esta cantidad tiene relación directa con el número de registros totales.
- En futuras versiones, se recomienda incluir en los datos extraíbles de la FPGA, la información del número de coincidencias entre barras centelladoras y entre paneles para disminuir la cantidad de datos a transmitir entre FPGA y Raspberry, lo que además reduce la carga del procesador en la Raspberry Pi.

Bibliografía

- [1] D. Sierra, "Cálculo de parámetros para el telescopio de muones, mute-uis." Reporte-Halley-UIS-MuTe-001-2016., 2016.
- [2] M. Spurio, Particles and Astrophysics. Versoix, Switzerland: Springer, 2015.
- [3] P. Noli, F. Ambrosino, L. Bonechi, A. Bross, L. Cimmino, R. D'Alessandro, V. Masone, N. Mori, P. Giuseppe, A. Pla-Dalmau, G. Saracino, E. Scarlini, and P. Strolin, "Muography of the Puy de Dôme," *Annals of Geophysics*, vol. 604401, no. 1, 2017.
- [4] G. Jonkmans, V. Anghel, C. Jewett, and M. Thompson, "Nuclear waste imaging and spent fuel verification by muon tomography," *Annals of Nuclear Energy*, vol. 53, no. Supplement C, pp. 267 273, 2013.
- [5] J. Perry, M. Azzouz, J. Bacon, K. Borozdin, E. Chen, J. Fabritius, E. Milner, H. Miyadera, C. Morris, J. Roybal, Z. Wang, B. Busch, K. Carpenter, A. A. Hecht, K. Masuda, C. Spore, N. Toleman, D. Aberle, and Z. Lukić, "Imaging a nuclear reactor using cosmic ray muons," *Journal of Applied Physics*, vol. 113, no. 18, p. 184909, 2013.
- [6] L. W. Alvarez, J. A. Anderson, F. El Bedwei, J. Burkhard, A. Fakhry, A. Girgis, A. Goneid, F. Hassan, D. Iverson, G. Lynch, Z. Miligy, A. Hilmy, M. Sharkawi, and L. Yazolino, "Search for Hidden Chambers in the Pyramids," SCIENCE, no. 167, pp. 832–839, 1970.
- [7] A. Anastasio, F. Ambrosino, D. Basta, L. Bonechi, M. Brianzi, A. Bross, S. Callier, A. Caputo, R. Ciaranfi, L. Cimmino, R. D'Alessandro, L. D'Auria, C. de La Taille, S. Energico, F. Garufi, F. Giudicepietro, A. Lauria, G. Macedonio, M. Martini, V. Masone, C. Mattone, M. Montesi, P. Noli, M. Orazi, G. Passeggio, R. Peluso, A. Pla-Dalmau, L. Raux, P. Rubinov, G. Saracino, E. Scarlini, G. Scarpato, G. Sekhniaidze, O. Starodubtsev, P. Strolin, A. Taketa, H. Tanaka, and A. Vanzanella, "The MU-RAY detector for muon radiography of volcanoes," Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 732, pp. 423–426, 2013.
- [8] N. Lesparre, D. Gibert, and J. Marteau, "Bayesian dual inversion of experimental telescope acceptance and integrated flux for geophysical muon tomography," *Geophysical Journal International*, vol. 188, no. 2, pp. 490–497, 2012.
- [9] F. Ambrosino, A. Anastasio, D. Basta, L. Bonechi, M. Brianzi, A. Bross, S. Callier, A. Caputo, R. Ciaranfi, L. Cimmino, R. D'Alessandro, L. D'Auria, C. de La Taille, S. Energico, F. Garufi, F. Giudicepietro, A. Lauria, G. Macedonio, M. Martini, V. Masone, C. Mattone, M. C. Montesi, P. Noli, M. Orazi, G. Passeggio, R. Peluso, A. Pla-Dalmau, L. Raux, P. Rubinov, G. Saracino, E. Scarlini, G. Scarpato, G. Sekhniaidze,

- O. Starodubtsev, P. Strolin, A. Taketa, H. K. M. Tanaka, A. Vanzanella, and L. Viliani, "The mu-ray project: detector technology and first data from mt. vesuvius," *Journal of Instrumentation*, vol. 9, no. 02, p. C02029, 2014.
- [10] G. F. Knoll, Radiation detection and measurement. USA: John Wiley and Sons, 4 ed., 2010.
- [11] F. Halzen, A Martin, Quarks and leptons. New York, USA: John Wiley and Sons, 1984.
- [12] P. data group, Review of particle physics. California, USA: Regents of the University of California, 2010.
- [13] S. Riggi, V. Antonuccio-Delogu, M. Bandieramonte, U. Becciani, A. Costa, P. L. Rocca, P. Massimino, C. Petta, C. Pistagna, F. Riggi, E. Sciacca, and F. Vitello, "Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the muon portal detector," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 728, no. Supplement C, pp. 59 68, 2013.
- [14] J. M. Blasco, Contribuciones al procesado hardware de la señal para detectores de radiación de alta resolución espacial con lectura por matriz de fotodiodos: diseño de un prototipo funcional basado en FPGA. PhD thesis, Departamento de Ingeniería Electrónica. Universidad de Valencia, 2013.
- [15] C. Leroy and P. Rancoita, *Principles of radiation interaction in matter and detection*. Toh Tuck Link, Singapore: World Scientific, 2012.
- [16] J. B. Birks, D. W. Fry, L. Costrell, and K. Kandiah, *The Theory and Practice of Scintillation Counting*. London, England: Elsevier, 1964.
- [17] M. Wilches, L. F. Ruiz, and M. Hernandez, *Bioingeniería VI*. Medellin, Colombia: Universidad de Antioquia, 2007.
- [18] A. Pla-Dalmau, A. Bross, and V. Rykalin, "Extruding plastic scintillator at fermilab," vol. 1, pp. 102 104 Vol.1, 11 2003.
- [19] A. Pla-Dalmau, A. D. Bross, and K. L. Mellott, "Low-cost extruded plastic scintillator," Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 466, no. 3, pp. 482–491, 2001.
- [20] C. Grupen and B. Shwartz, *Particle Detectors*. Cambridge, USA: C. Grupen and B. A. Shwartz, 2 ed., 2008.
- [21] J. Marteau, D. Gibert, N. Lesparre, F. Nicollin, P. Noli, and F. Giacoppo, "Muons to-mography applied to geosciences and volcanology," *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, vol. 695, no. Supplement C, pp. 23 28, 2012. New Developments in Photodetection NDIP11.
- [22] D. Gibert, K. Marteau-Bazouni, and J. Marteau, "Radiographier les volcans avec les rayons cosmiques," *Reflets de la Physique*, no. 32, pp. 14 18, 2013.

- [23] Hamamatsu Photonics K.K, Handbook Si APD, MPPC.
- [24] Hamamatsu Photonics K.K, MPPC (Multi-Pixel Photon Counter) S13360 series datasheet.
- [25] V. Golovin and V. Saveliev, "Novel type of avalanche photodetector with geiger mode operation," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 518, no. 1, pp. 560 564, 2004. Frontier Detectors for Frontier Physics: Proceedin.
- [26] P. Buzhan, B. Dolgoshein, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, A. Pleshko, E. Popova, S. Smirnov, Y. Volkov, L. Filatov, S. Klemin, and F. Kayumov, "The advanced study of silicon photomultiplier," *Advanced Technology and Particle Physics*, pp. 717–728, 2011.
- [27] A. Clarkson, D. Hamilton, M. Hoek, D. Ireland, J. Johnstone, R. Kaiser, T. Keri, S. Lumsden, D. Mahon, B. McKinnon, M. Murray, S. Nutbeam-Tuffs, C. Shearer, C. Staines, G. Yang, and C. Zimmerman, "Geant4 simulation of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 746, no. Supplement C, pp. 64–73, 2014.
- [28] V. A. Kudryavtsev, N. J. Spooner, J. Gluyas, C. Fung, and M. Coleman, "Monitoring subsurface co2 emplacement and security of storage using muon tomography," *International Journal of Greenhouse Gas Control*, vol. 11, no. Supplement C, pp. 21 24, 2012.
- [29] F. Beauducel, A. Bross, S. Buontempo, L. D'Auria, Y. Déclais, G. De Lellis, G. Festa, P. Gasparini, D. Gibert, K. Hoshina, G. Iacobucci, N. Lesparre, G. Macedonio, A. Marotta, J. Marteau, M. Martini, G. Miele, P. Migliozzi, C. A. Moura, M. Orazi, A. Pla-Dalmau, O. Pisanti, S. Pastor, R. Peluso, P. Rubinov, G. Scarpato, G. Sekhniaidze, P. Strolin, H. Taira, M. Tanaka, H. K. M. Tanaka, A. Tarantola, T. Uchida, M. Vassallo, I. Yokoyama, and A. Zollo, "The mu-ray project: Summary of the round-table discussions," Earth, Planets and Space, vol. 62, pp. 145–151, Feb 2010.
- [30] N. Lesparre, J. Marteau, Y. Déclais, D. Gibert, B. Carlus, F. Nicollin, and B. Kergosien, "Design and operation of a field telescope for cosmic ray geophysical tomography," *Geoscientific Instrumentation, Methods and Data Systems*, vol. 1, pp. 33–42, 2012.
- [31] A. Rivetti, CMOS Front-End Electronics for Radiation Sensors. Boca Raton, USA: CRC Pressb Taylor & Francis Group, 2015.
- [32] M. S. Haro and L. Arnaldi, "The data acquisition system of the latin american giant observatory (lago)," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 820, pp. 34 39, 2016.
- [33] Texas Instruments Incorporated, OPA2691 Dual Wideband, Current-Feedback operational amplifier data sheet.
- [34] Texas Instruments Incorporated, TLV3502-Q1, 4.5-ns Rail-to-Rail High-Speed Comparator data sheet.

- [35] Texas Instruments Incorporated, "TINA TI." http://www.ti.com/tool/TINA-TI. v9.3.150.328 SF-TI.
- [36] Numato Systems Pvt. Ltd., Mimas V2 Spartan 6 FPGA Development Board with DDR SDRAM data sheet.
- [37] Texas Instruments Incorporated, DACx551-Q1 Automotive 16-, 12-Bit, Ultralow-Glitch, Voltage-Output DAC data sheet.
- [38] SkyTraq Technology, Inc., Venus638FLPx Datasheet.
- [39] Texas Instruments Incorporated, INA12x Precision, Low-Power Instrumentation Amplifiers.
- [40] Bosch Sensortec, Restricted data sheet BMP180 Digital pressure sensor.
- [41] Broadcom Corporation, BCM2835 ARM Peripherals.
- [42] Raspberry Pi Foundation, Debian Project, "TINA TI." https://www.raspbian.org/FrontPage. v9.
- [43] WiringPI, GPIO Interface library for the Raspberry Pi, "WiringPI." http://wiringpi.com.
- [44] M. McCauley, "C library for broadcom bcm 2835 as used in raspberry pi." http://www.airspayce.com/mikem/bcm2835/.
- [45] PiGPIO Collaboration, "C library for the raspberry to control of the general purpose input outputs (gpio)." http://abyz.me.uk/rpi/pigpio/.
- [46] B. Eckel, Thinking in C++. MindView Inc., 1999.
- [47] The Qt Company Ltd., "Signals and slots." http://doc.qt.io/archives/qt-4.8/signalsandslots.html, 2016.