

Master in Applied Econometrics and Forecasting

Time Series Analysis and Forecasting

Class #7: ARIMA Models for Nonstationary Time Series

Jorge Caiado, PhD

CEMAPRE/REM/ISEG, University of Lisbon, <u>jcaiado@iseg.ulisboa.pt</u>

Nonstationary model in the mean

The mean function of a nonstationary model can be represented essentially by two models: **deterministic trend** models and **stochastic trend** models.

For a deterministic trend model, one can use the linear trend model,

$$X_t = a + bt + a_t$$

or the quadratic trend model,

$$X_t = a + bt + ct^2 + a_t.$$

Linear trend model

Quadratic trend model

Sample ACF and PACF of a linear trend model

Sample ACF and PACF of a quadratic trend model

Random Walk (RW) Model

A special case of the nonstationary models is the stochastic trend model,

$$X_t = X_{t-1} + a_t,$$

where a_t is white noise. This is the so-called "random walk without drift" model.

Random Walk (RW) Model with Drift

The RW model with drift is defined by

$$X_t = c + X_{t-1} + a_t,$$

where c is the drift.

What is the difference between the RW without drift ant the RW with drift?

Sample: 2 500

Included observations: 499

Sample ACF and PACF of a RW model without drift

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı	ı	1	0.990	0.990	492.08	0.000
ı	ılı l	2	0.980	-0.014	975.14	0.000
	ığı	3	0.970	0.020	1449.7	0.000
	ı[ı	4	0.960	-0.029	1915.4	0.000
	ıÌı	5	0.951	0.024	2372.9	0.000
	ıbı	6	0.942	0.027	2822.8	0.000
	ıĎı	7	0.934	0.023	3265.7	0.000
ı	ılı	8	0.925	0.004	3701.7	0.000
	ılı	9	0.917	0.001	4131.1	0.000
	ılı l	10	0.909	-0.036	4553.2	0.000
	ıb	11	0.901	0.042	4968.9	0.000
ı	ւի	12	0.893	0.009	5378.5	0.000

Sample: 2 500

Included observations: 499

Sample ACF and PACF of a RW model with drift

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6 7 8	0.986 0.980 0.973 0.966 0.959 0.952 0.944	0.000 -0.006 -0.004 -0.014 -0.011 -0.019	495.20 984.67 1468.4 1946.4 2418.6 2884.9 3345.1 3799.2	0.000 0.000 0.000 0.000 0.000 0.000
		9 10 11 12	0.930	0.000	4247.4 4689.7 5126.4 5557.3	0.000

Source: Gloria Gonzalez-Rivera (2013)

ARIMA Model

A general model for representing nonstationary nonseasonal time series is given by the autoregressive integrated moving average ARIMA(p,d,q) model

$$(1 - \emptyset_1 B - \dots - \emptyset_p B^p)(1 - B)^d X_t = (1 - \theta_1 B - \dots - \theta_q B^q) a_t$$

or

$$\emptyset_p(B)(1-B)^d X_t = \theta_q(B)a_t,$$

where $(1-B)^d$ is the differencing operator of order d, for $d \ge 1$, $\emptyset_p(B)$ is a stationary autoregressive (AR) operator, $\theta_q(B)$ is an invertible moving average (MA) operator and a_t is a zero mean white noise.

Some important special cases of the ARIMA model are ARIMA(0,1,0), ARIMA(1,1,0), ARIMA(0,1,1) and ARIMA (1,1,1) models.

ARIMA(1,1,0) Model

The ARIMA(1,1,0) model is defined by

$$(1 - \emptyset_1 B)(1 - B)X_t = a_t$$

where is a a_t white noise.

Simulation of an ARIMA(1,1,0) model (time series plot, SACF and SPACF):

$$(1 - 0.75B)(1 - B)X_t = a_t$$

ARIMA(p,d,q) Modeling

Once the differentiating d parameter is established, then since $Y_t = (1 - B)^d X_t$ is stationary, apply the ARMA techniques previously discussed to the differenced time series Y_t .

In general, when fitting an ARIMA(p,d,q) to a set of time series, the following procedures are useful:

- 1. Plot the time series data and try to understand patterns
- 2. If needed, transform time series data to stabilize variance (use Box-Cox's power transformation)
- 3. If needed, transform time series data to make it stationary (use differencing transformations).
- 4. Examine the sample ACF and PACF of the differenced time series data and try to identify possible candidate models
- 5. Check the residuals from chosen models and, if needed, try modified models
- 6. Use model selection criteria (AIC, HQ, SBC) to select the "best model"
- 7. Use the model to compute forecasts