

Análisis I - Matemática I - Análisis II (C) - Análisis Matemático I (Q)

Práctica 5: Diferenciación - Aplicaciones - Parte 2

Derivadas direccionales

1. Calcular la derivada direccional de f en el punto dado en la dirección del vector \mathbf{v} .

(a)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
, (1,2), $\mathbf{v} = (3,5)$,

(b)
$$f(x, y, z) = xe^y + ye^z + ze^x$$
, $(0, 0, 0)$, $\mathbf{v} = (5, 1, -2)$.

2. Calcular la deriva direccional de f en el punto dado en la dirección que indica el ángulo θ .

(a)
$$f(x,y) = x^3y^4 + x^4y^3$$
, (1,1), $\theta = \pi/6$,

(b)
$$f(x,y) = ye^{-x}$$
, $(0,4)$, $\theta = 2\pi/3$.

- 3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = 4y\sqrt{x}$. Determinar la máxima razón de cambio de f en el punto (4,1) y la dirección en la cual se presenta.
- 4. Encontrar las direcciones en las cuales la derivada direccional de $f(x,y) = ye^{-xy}$ en el punto (0,2) vale 1.
- 5. Sea $f(x,y) = x^{1/3}y^{1/3}$.
 - (a) Usando la definición de derivada direccional, mostrar que

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

y que $\pm \mathbf{e}_1, \pm \mathbf{e}_2$ son las únicas direcciones para las cuales existe la derivada direccional en el origen.

- (b) Mostrar que f es continua en (0,0). ¿Es f diferenciable en (0,0)?
- 6. Consideremos la siguiente función

$$f(x,y) = \begin{cases} \frac{x^3y}{x^6 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Probar que f admite derivadas direccionales en el origen para todo vector unitario $\mathbf{v} \in \mathbb{R}^2$. Sin embargo, f tampoco es continua en el origen.

7. Sea
$$f(x,y) = \begin{cases} \frac{|x|y}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Probar que en el origen f es continua, admite todas las derivadas direccionales, pero f no es diferenciable.

- 8. Supongamos que escalas una montaña cuya forma está dada por la ecuación $z = 1000 0,005x^2 0,01y^2$ donde x, y y z se dan en metros y estás en el punto (60,40,966). El eje de las x positivas va hacia el este y el eje de las y positivas va hacia el norte.
 - (a) Si caminas hacia el sur, ¿empezarás a ascender o descender? ¿Cuál es la razón de cambio en esa dirección?
 - (b) ¿En qué dirección está la máxima pendiente? ¿Cuál es la razón de cambio en esa dirección?

Teorema de la función implícita

- 9. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2 y^3$. Mostrar que sobre la curva de nivel f(x,y) = 0 podemos despejar y en función de x (i.e. $y = \phi(x)$) ¿Es ϕ de clase C^1 en un entorno del cero? ¿Puede aplicarse el teorema de la función implícita en el punto (0,0)?
- 10. Para cada una de los conjuntos de nivel S y los puntos a dados a continuación
 - (a) $S = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 1\} \text{ con } f(x,y) = \frac{1}{4}x^2 y^2 \text{ y } \mathbf{a} = (2,0),$
 - (b) $S = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 3\} \text{ con } g(x, y) = x^5 + y^2 + xy \text{ y } \mathbf{a} = (1, 1),$
 - (c) $S = \{(x, y, z) \in \mathbb{R}^3 : h(x, y, z) = 0\} \text{ con } h(x, y, z) = x^3 + 2y^3 + z^3 3xyz 2y 8$ y $\mathbf{a} = (0, 0, 2),$

resolver los siguientes ítems:

- i. Mostrar que $\mathbf{a} \in \mathcal{S}$.
- ii. Calcular las derivadas parciales de la función en el punto a.
- iii. Determinar si en un entorno del punto \mathbf{a} , el conjunto de nivel resulta ser el gráfico de una función ϕ .
- iv. Calcular la derivada o las derivadas parciales, según corresponda, de cada una de las funciones ϕ que quedan definidas en el ítem anterior.
- 11. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ definida como

$$f(x, y, z) = x^3 - 2y^2 + z^2.$$

- (a) Demostrar que f(x, y, z) = 0 define una función implícita $x = \varphi(y, z)$ en un entorno del punto (1, 1, 1).
- (b) Encontrar $\frac{\partial \varphi}{\partial y}(1,1)$ y $\frac{\partial \varphi}{\partial z}(1,1)$.

Planos y rectas tangentes a superficies de \mathbb{R}^3 dadas de manera implícita

- 12. Para cada una de las siguientes superficies de \mathbb{R}^3 determinar las ecuaciones del plano tangente y la recta normal a la superficie en el punto indicado.
 - (a) $2(x-2)^2 + (y-1)^2 + (z-3)^2 = 10$, (3,3,5),
 - (b) $y = x^2 z^2$, (4, 7, 3),
 - (c) xy + yz + zx = 5, (1, 2, 1).
- 13. Demostrar que el elipsoide $3x^2+2y^2+z^2=9$ y la esfera $x^2+y^2+z^2-8x-6y-8z+24=0$ son tangentes en el punto (1,1,2) (es decir, que tienen el mismo plano tangente en ese punto).
- 14. Demostrar que toda recta normal a la esfera $x^2 + y^2 + z^2 = r^2$ pasa por el centro de la esfera.