Θεώρημα 0.0.1. Έστω A ένα σύνολο k ακεραίων, τότε $|2A| \ge 2k-1$. Aν A είναι ένα σύνολο k ακεραίων και αν |2A| = 2k-1, τότε το A είναι αριθμητική πρόοδος.

Απόδειξη. Έστω

$$A = \{a_0, a_1, a_2, \dots, a_{k-1}\}\$$

όπου

$$a_0 < a_1 < a_2 < \dots < a_{k-1}$$
.

Τότε το 2A περιέχει τους k το πλήθος ακεραίους $2a_i$ για $i=0,1,\ldots,k-1$, και τους k-1 το πλήθος ακεραίους $a_{i-1}+a_i$ για $i=0,1,\ldots,k-1$. Καθώς

$$2a_{i-1} < a_{i-1} + a_i < 2a_i$$

για i = 0, 1, ..., k - 1,προκύπτει ότι $|2A| \ge 2k - 1$.

Aν |2A| = 2k-1, τότε κάθε στοιχείο του συνόλου 2A είναι της μορφής $2a_i$ ή $a_{i-1}+a_i$. Επίσης παρατηρούμε ότι

$$a_{i-1} + a_i < a_{i-1} + a_{i+1} < a_i + a_{i+1}$$

και

$$a_{i-1} + a_i < 2a_i < a_i + a_{i+1}$$

για $i=1,\ldots,k-2$. Έπεται λοιπόν ότι

$$2a_i = a_{i-1} + a_{i+1}$$

, ή ισοδύναμα ότι

$$a_i - a_{i-1} = a_{i+1} - a_i$$

για $i=1,\ldots,k-2$. Συνεπώς το σύνολο A είναι αριθμητική πρόοδος και η απόδειξη του θεωρήματος είναι πλήρης. \Box