实验目的	
(1) 3 解摩尔位置传感器的原理和工作	F方法
(2)学习用程尽位置传感器刺激小位	
(3)掌握用機梁弯曲法测定材料的	
	7
	ro w
实验原理	
⇒賣曲法測励化權量原理	
- 极长为L厚为a, 宽为b的切	切矩形梁,水平对解的放置在相距为d_
	题加一向下的拉力Mg,梁的福度为少,
	E也随之改变AY,在此过程,梁中存在一
个力がる あいしなりはけんか	あいてきとかけせは はい物はまめない
理解核梁发生改变,即可从用杨允	模量来描写材料的性质即:E= Angd3 40°boy
⇒Ay的测量	40 00g
(1).用星級 議直接渎数测量.	
通过凌舰显懒镜:①测量锅刀	上刻度线、
② 随	PIN下沉的距离,从而刷得梁的繁度变化量DY.
(2)用程序位置传感器间接测量	
铜刀刀通过其上方的杠杆组	件5将殭尔元件ID伸A两块N极相对的
磁铁之间,这样横梁在砝码拉力	作用下院度变化AY鞋化成了霾尔传感露在
磁场中竖直方向的位置变化07,沒	B杆杠两臂之间由比例系数为K.则△Z=k△)
霍尔电压的变化量与霍尔元件位	置变化量之间的关系为:DUN=K'DZ
K 为定值,由爱尔元件的参数磁场	大小,工作电流等因素决定。
则由上本综合得: AUH= K'KAY	
	的位 v/m)、霍尔位置传感器的灵敏度高,
但它能检测的位物量较小压合于偿	如位的量及机械振动的测量。

实验仪器							
杨氏横量刚	位仅 ; 年	阳卷尺	,螺旋	测定器	,游标	卡尺;	在尺
							-
实验步骤与	数据记录						
啸-步: 打开	杨氏模量派	则定仪拉	力检测	仪开关。.			
第二步: 用卷	尺测量金属	丝原长, 作	射辆轴	转轴到标	足的筆	正部出	,并在纸上
临幕	出光杆杠。	测量出	光杠杆草	数D.(自	于仅强	不同,我	们只需要量
#13	器上价标	注的光标	L杆常数	(即可。)		7	
第三步: 用螺	旋测微仪	测量金属	处直经	,在固定	通馬	7	
丝内	在上、中、下(如圆竹木)处分别	测量图面	欧人	+	
平方	自由金属丝	的直径。	序将b组	数据求平	均值.		
南加步: 凋整	价有平台至2	水平 ,并将	望正镇和	4行于女射	镜,	ф	
对准	测定仪顶	部的刻度	,并凋塑	目號及物	镑的.		
焦距	,使刻度清明	ń			- +	*	A
第五步: 過聲	力的旋钮。	改变力,在	拉力检测	MY可读/		/	7191
出具	体柱确的值	。增压镜	观察刻度	,旋钮/	D		
	至台色刻度			. /	I		
JR0/15	刘归爱, 随行	根据测量	标准来做	如实验			
被打							_
记录数据得。							
金属丝原长为:	724mm	(2)射	镜發轴	到标尺的	全直距离	H: 696	mm,
朮杠杆常数 Ω):29mm						
测量钢丝直线	₹ d : 0.513m	M.					
测量钢丝伸长	星与砝码版	量增量的	关条				
测量贝数	0	2	_3	@	B	©	
Mi‡k9	0		2	3	4	_5	
x/mm_	10	16	23	27.5	31	3Ь.	
ΔΧ	71.5	15	13	\	\	\	

(iK-641K)

实验数据处理
利用原始数据及 $F = E(\Delta l)$
⇒ 首先利用钢丝直经求出其精彩面积.
又J=0-513mm, MF=立J
$\overline{R} = \overline{L} \overline{F}^2$
= Tu 14 2 2 ·
=====================================
⇒再利用△ス末出杨氏模量最佳值
$\sqrt{4} = \frac{1}{2} \times \sqrt{3} \times \sqrt{3}$ $\sqrt{4} = \frac{3 \times 724}{2 \times 696} \times 15.2$ $\sqrt{5} = \frac{3 \times 724}{2 \times 696} \times 15.2$ $\sqrt{6} = \frac{3 \times 724}{2 \times 696} \times 15.2$ $\sqrt{6} = \frac{3 \times 724}{2 \times 696} \times 15.2$ $\sqrt{6} = \frac{3 \times 724}{2 \times 696} \times 15.2$ $\sqrt{6} = \frac{3 \times 724}{2 \times 696} \times 15.2$ $\sqrt{6} = \frac{3 \times 724}{2 \times 696} \times 15.2$ $\sqrt{6} = \frac{3 \times 724}{2 \times 696} \times 15.2$
= 29 x15.2 =3.26 x10" N/m
- 0.2/T + 44 T/C 0.
⇒计算不确定度
利用 E = 8FLH · → > InE=InF+InI+InH-2Ind-InD-InAX
⇒ 計算不确定度 利用 $E = \frac{8FLH}{\pi\alpha'D} \cdot \frac{1}{\Delta X}$ ⇒ $InE = InF + InI + InH - 2Ind - InD - In\Delta X$ $\frac{dE}{E} = \frac{dF}{E} + \frac{dI}{H} + \frac{dA}{A} = \frac{dD}{\Delta X}$ $\frac{dE}{E} = \frac{(UE)^2}{(UE)^2} \cdot \frac{(UE)^2}{(UE)^2} \cdot$
MR - THE STATE OF
E V(F)+(T)+(H)T(A) (O) (AX)
スF为自变量,无A类不确定度,B类不确定度为UFB= 0.0029k9
又I,H,D为一次性测量数据,无A类不确固定,B类不确定分别为:
UIB = 0-8 = 0.47 mm UHB = 0.8 = 0.47 mm UDB = 0.02 = 0.012 mm
又d共测量6次,A类不确定度为. UdA=1-11× (di-d) = 0.000002 x
UdA=1-11x 1=(d1-d) = 30
≈ 0.00029 mm
B类不确定度为: UdB= <u>0.02</u> =0.012mm 总不确定度为: Ud= JUdA+UdB=J(0.012) ² +(0.01029) ² ≈ 0.012mm
总不确定度为: Ud= JUda+UdB=J(0.012)→ (0.00029)→ 0.012mm
スΔX相当于3次等精度测量、A类不确定度为: UΔXA= -19x (ΔXI-ΔX)= -19x
≈1.55 mm ·
B类不确定度: Max B= 0.5 = 0.29
京不确定度: Uax=JUaxa+Uaxa=1.58mm.
A ALDER A

思	考题
(I).	①弹性限度内,材料的形变与外力成正14
	②、胡克定律成立,即弹艇限度内,弹簧的弹力F与形变量xi成正比,即F=kx
(2)	影响实验结果因素:①实验仪器精度
	②拉伸康度
	③ 环境因系
	企 人为因素
	为什么加力、减力取平均:①消除系统误差
	② 提高实验精度
	③验证胡克定律
	①利用光学于涉原理测量 ②利用原子力显微镜进行测量。 ②利用扫描微点显微镜进行测量
_	②利用扫描储道显微镜进行测量
	④利用光栅尺桩行测量.

原始记录						
金属丝原长上:	724 mm					
欠射镜转轴 新	林尺的生	题稿H· b	96mm			
光杠杆常数D	. 29 mm					
测量钢丝直经	d: (单位 n	nm)				
	a	2	3	(A)	(5)	<i>®</i>
d	0.513	0.512	0.513	0:512	0.513	v·513
ā			0.513			
测量钡丝伸长	自祛恐怖	量增量的	关条:			
测量次数	0	(2)	3	@	⑤	6
M, [kg	D		2	3	4	5.
7/mm	10	16	23	17.5	31	36.
Δχ	6	7	4.5	3.5	5	
(íK-HiX)						
					7	
					<u></u>	Town.
					2~	<u> </u>
						v