

Professor: Dr. Vicente Angelo de Sousa Junior DCO1020 - COMUNICAÇÕES MÓVEIS

Projeto II

Execução:

- 1. Trabalho individual
- 2. Pontuação final dependerá de todas as etapas do projeto
 - a. Código bem comentado e atendendo os requisitos deste documento;
 - b. Relatório em LaTex (no *template* fornecido pelo professor) contendo os gráficos seguidos de discussões e questionamentos endereçados neste documento. Referencie o documento com todo material usado (isso é muito importante);
- 3. A entrega deve conter: um arquivo zip com duas pastas: (i) **code**, com os códigos separados por pastas distintas para cada experimento; (ii) **report**, com o relatório em LaTex (**arquivos fontes e pdf**);
- 4. Na pasta de cada experimento deve ter um arquivo chamado **README.txt**. Lendo as instruções desse arquivo, um usuário conseguirá rodar seu código e obter os gráficos do seu relatório. Isso precisa ser feito sem consulta ao projetista do código (você) e é um item muito importante da avaliação final do projeto.
- 5. Data da entrega: 10/09/2019

Nota importante: as entregas devem ser feitas via SIGAA. O professor pode rodar os arquivos .m (Matlab) e .tex (Latex) para verificar se sua execução está acontecendo sem erros.

Objeto do projeto:

Um sinal transmitido em um sistema de comunicação sem fio sofre essencialmente três tipos de atenuações: (i) perda de percurso (desvanecimento de larga escala), em função da distância entre transmissor e receptor; (ii) sombreamento (desvanecimento de larga escala), causado por reflexão em grandes obstáculos (e.g. bloqueio de sinal por terrenos e construções); e (iii) desvanecimento de pequena escala (fading), devido adifração de ondas quando atravessam uma fenda ou atingem objetos de tamanho equivalente a seu comprimento de onda. Este projeto tem o objetivo de incentivar o aluno a modelar e estudar os efeitos de pequena escala do canal em um sistema de comunicação digital sem fio. Para tal, o objetivo é modelar o processo de modulação e demodulação digital, e mostrar seu desempenho em canais com ruído e com desvanecimento de pequena escala.

Experimento 01: Modelagem da transmissão e recepção digital em canal AWGN (ruído branco)

Modelar a transmissão binária de um sinal antipodal sem formatação de pulso (transmissão em banda-base). Verificar desempenho em um canal AWGN, considerando que a energia de bit é igual a 1. Utilize a Eb/No como parâmetro de entrada do modelo e esboce os seguintes gráficos:

Professor: Dr. Vicente Angelo de Sousa Junior DCO1020 - COMUNICAÇÕES MÓVEIS

- Gráfico da constelação antes e após a inserção de ruído. Faça um gráfico ao lado do outro. Usar marcadores e cores diferentes para distinguir as duas constelações.
 - a. Faça esses gráficos para a Eb/No igual a 5dB quando 100 bits forem transmitidos e recebidos;
 - b. Faça esses gráficos para a Eb/No igual a 10dB quando 100 bits forem transmitidos e recebidos;

Pode ser três gráficos na mesma figura em um grid 1x3.

- ii. Gráfico da Taxa de Erro de Bit (BER) versus Eb/No para o modelo simuladoe gráfico da Probabilidade de Erro de Bit (Pe teórica) vsEb/No (verificar nos livros de referência). Varie a Eb/No de 0 a 10 dB e faça as duas curvas juntas (no mesmo gráfico). Faça a curva teórica em linha cheia e os pontos simulados como pontos da curva com marcadores. Insira legenda para identificar cada curva. Exiba os gráficos com o eixo das ordenadas em escala logarítmica.
 - a. Faça esse gráfico considerando 1000 bits transmitidos para estimar a BER;
 - b. Faça esse gráfico considerando 10000 bits transmitidos para estimar a BER:
 - c. Faça esse gráfico considerando 100000 bits transmitidos para estimar a BER.

Analise os gráficos da parte (i) e disserte sobre a influência da Eb/No na constelação do sinal. Analise os gráficos da parte (ii) e disserte sobre a influência da Eb/No no erro de transmissão. Disserte sobre a comparação entre a Pe e a BER. Apresente seus resultados através de um mini-relatório.

Responda as seguintes perguntas:

- Qual o motivo da constelação do sinal com ruído se apresentar como uma nuvem em torno do ponto transmitido?
- O que se pode afirmar ao comparar a BER e a Pe em relação ao número de bits transmitidos para estimar a BER?
- Qual o comportamento da BER quando a potência do sinal recebido aumenta?

Experimento 02: Modelagem da transmissão e recepção digital em canal com desvanecimento plano (Rayleigh Fading Channel)

- Repita o experimento 1, mas agora considerando que o canal também sofre desvanecimento plano (Rayleigh Fading Channel).
- Crie um gráfico que contenha as curvas simulada e teórica para o caso AWGN e para o caso desvanecimento plano + AWGN (quatro curvas no mesmo gráfico).
- Continue modelando a transmissão binária de um sinal antipodal.
- Prove a formulação matemática da probabilidade de erro de bit teórica em canais com desvanecimento Rayleigh.

Professor: Dr. Vicente Angelo de Sousa Junior DCO1020 - COMUNICAÇÕES MÓVEIS

 Faça os gráficos para valores de Eb/No de 0 a 35 dB. Atenção: para esse caso (Eb/No até 35 dB), o tamanho da sequência de bits transmitida deve ser bem escolhido de modo a gerar confiabilidade nos resultados (pesquise e disserte sobre isso no mini-relatório).

Você deve criar uma interface gráfica para organizar seu protótipo. Nela você pode acionar cada curva desejada e configurar os parâmetros de entrada do seu sistema. Uma sugestão de interface gráfica é mostrada na figura a seguir.

Dica para construção do protótipo

- 1. Gere uma sequência aleatória de bits a ser transmitida, seguindo uma distribuição uniforme. Não é necessária a formatação de pulso, pois se deseja estimar a BER em banda-base;
- 2. Calcule a potência do ruído AWGN através da Eb/No de entrada (dica: **randn** gera amostras aleatórias gaussianas de média zero e variância 1).
- 3. Gere a sequência de bits recebida após ser modificada pelo canal (ruído aditivo);
- 4. Modele o processo de recepção pelo cálculo da distância mínima entre cada símbolo recebido e os símbolos possíveis da constelação. Decida pelo símbolo mais próximo (receptor ótimo). Reconstrua o vetor de bits decodificados.
- 5. Calcule a BER, comparando a sequência de bits decodificados com a sequência de bits transmitida.

Dicas:

- 1. Os comandos **randint** ou **randi** (depende da versão do Matlab) geram uma sequência aleatória de inteiros;
- 2. Evite laços **FOR**, trabalhe com vetores ou matrizes para realizar todo o processo de transmissão/canal/recepção.

Atenção: somente os gráficos não serão pontuados com nota máxima. A sua discussão é parte essencial do trabalho.

Professor: Dr. Vicente Angelo de Sousa Junior DCO1020 - COMUNICAÇÕES MÓVEIS

Referências

Simon Haykinand Michael Moher, Communication Systems (ou sua versão em português, Sistemas de Comunicação), 5th Edition, bookman, 2011.

John G. Proakis, MasoudSalehi, Gerhard Bauch, Contemporary Communication Systems Using MATLAB®, Third Edition, CENGAGE, 2011 (esselivropodeserencontrado com o seguintetítulo: Modern Communications Systems Using MATLAB, 3rd Edition).