M1: estimation par l'algorithme SAEM

Maud Delattre

Modèle M1

 Y_{ij} : réponse fonctionnelle de la ie perdrix pour une densité de graines d_{ij}

1. Observations

où
$$Y_{ij}|\psi_i=(\lambda_i,h_i)\sim\mathcal{N}(m_{ij},s_{ij}^2)$$
 où
$$m_{ij}=\frac{\sqrt{d_{ij}}-1}{C_{2E}\lambda_i+h_i(\sqrt{d_{ij}}-1)}$$
 et
$$s_{ij}^2=\frac{C_{2V}-C_{2E}^2}{\Delta}\frac{\lambda_i^2(\sqrt{d_{ij}}-1)}{(C_{2E}\lambda_i+h_i(\sqrt{d_{ij}}-1))^3}$$

2. Paramètres individuels

$$\log(\lambda_i) \sim \mathcal{N}(m_{\lambda}, s_{\lambda}^2)$$
, $\log(h_i) \sim \mathcal{N}(m_h, s_h^2)$

Modèles considérés

Plusieurs variantes du modèle (M1)

1. Variance résiduelle seule

$$Y_{ij}|\psi_i \sim \mathcal{N}(m_{ij}, \sigma^2)$$

2. Variance résiduelle ajoutée à la variance mécaniste

$$Y_{ij}|\psi_i \sim \mathcal{N}(m_{ij}, s_{ij}^2 + \sigma^2)$$

3. Variance mécaniste seule

$$Y_{ij}|\psi_i \sim \mathcal{N}(m_{ij}, s_{ij}^2)$$

Plusieurs scénarios

- 1. $\lambda_{pop}=8$; $H_{pop}=0.5$; $\Delta=10$; $std_{\lambda}=0.25*\lambda_{pop}$; $std_{H}=0.25*H_{pop}$
- 2. idem avec $\Delta = 1$ (pour une variance plus grande)
- 3. $\lambda_{pop}=1$; $H_{pop}=5$; $\Delta=0.1$; $std_{\lambda}=0.25*\lambda_{pop}$; $std_{H}=0.25*H_{pop}$
- 4. . . .
- N = 20, 50, 100
- $d_{ij} = (1.1, 2, 3, 5, 10, 15, 25, 50, 100, 200, 400)$ pour Sc1 et Sc2
- $d_{ij} = (1.1, 1.2, 1.3, 1.5, 2, 3, 5, 10, 15, 25)$ pour Sc3

Sc1, résiduelle seule (biais)

Sc1, variance mécaniste + résiduelle (biais)

Sc1, variance mécaniste seule

Sc3, résiduelle seule (biais)

Sc3, variance mécaniste + résiduelle (biais)

Sc3, variance mécaniste seule

