Resolução dos Exercícios

Exercício 1A - Realizado com o template de superfície no Excel.

Modelo de regressão

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

$$y = 35.5 + 10.5x_1 + 5.5x_2$$

Figura 1 – Gráfico de superfície de resposta sem interação

Figura 2 – Gráfico de contorno sem interação

Exercício 1B - Realizado com o template de superfície no Excel.

Modelo de regressão

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

$$y = 35.5 + 10.5x_1 + 5.5x_2 + 4x_1x_2$$

Figura 3 – Gráfico de superfície de resposta com interação

Figura 4 – Gráfico de contorno com interação

Exercício 1C - Realizado com o template de superfície no Excel.

Sim, existe alteração. A interação provoca na superfície uma curvatura de acordo com as Figuras 3 e 4, mostrando que qualquer mudança em x1, altera o efeito em x2, que não está presente nas Figuras 1 e 2.

Exercício 2A - Realizado com Action e o software R.

Tratamento	Α	В	Y1	Y2	Y3	Υ
1	-1	-1	27	22	22,8	23,8
2	1	-1	41	36,4	36,7	38
3	-1	1	12	15,9	14,3	14
4	1	1	34	29	33,6	32,2

Tabela 1 – Dados experimentais

A partir da Tabela 1, gerei o gráfico de cubo (Figura 1) com as médias da resposta e o gráfico de interação de AB (Figura 2) utilizando o Action. A princípio não há interação entre A e B.

Análise de variância (ANOVA)

Ao efetuar a análise de variância no R, obtive os valores de p informados na Figura 3. Observa-se que os valores de A e B são menores que o nível de significância de 0,05, portanto são significativos, enquanto o valor da interação AB está abaixo, e não é significativo.

```
Analysis of Variance Table
Response: y
                              F value
             Sum Sq Mean Sq
                      787.32 129.2808
             787.32
                                        3.23e-06
В
             182.52
                      182.52
                              29.9704
                                      0.0005913
                       12.00
              12.00
                               1.9704
Residuals
           8
              48.72
                        6.09
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Figura 3 – Print da tela do R com os valores de p para ANOVA.

Exercício 2B - Realizado com o software R.

Calculando a média geral para obter o coeficiente β_0 .

$$\beta_0 = \frac{23,8 + 38 + 14 + 32,2}{4} = 27$$

Calculando o efeito de A, B e AB para obter os coeficientes β_1 , β_2 e β_{12} .

$$A = \bar{y}_{A^{+}} - \bar{y}_{A^{-}} = \frac{38 + 32,2}{2} - \frac{23,8 + 14}{2} = 16,2$$

$$B = \bar{y}_{B^+} - \bar{y}_{B^-} = \frac{14 + 32,2}{2} - \frac{23,8 + 38}{2} = -7,8$$

$$AB = \bar{y}_{A^{+}} - \bar{y}_{A^{-}} = \frac{32,2 + 23,8}{2} - \frac{14 + 38}{2} = 2$$

Criando o modelo de regressão manualmente, temos:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

$$y = 27 + \frac{16.2}{2}x_1 - \frac{7.8}{2}x_2 + \frac{2}{2}x_1x_2$$

$$y = 27 + 8.1x_1 - 3.9x_2 + 1x_1x_2$$

Criando o modelo de regressão no R usando a função *lm*, temos os mesmos coeficientes de maneira mais automatizada conforme Figura 1.

Figura 1 – Print da tela do R com os coeficientes de regressão.

O valor da interação $\beta_{12} = 1$ demonstra que essa variável será insignificante e sua contribuição é inferior às outras variáveis, ou seja, como visto na Figura 2 não há interação entre A e B. Nosso modelo de regressão então será $y = 27 + 8.1x_1 - 3.9x_2$.

Hipótese Nula se H_0 : $\beta_i = 0$

Hipótese Alternativa se H_0 : $\beta_i \neq 0$

Ao observar os valores de p (Figura 2), percebe-se que A e B são menores que 0,05. Nesse caso, levando em conta o nível de significância de $\alpha = 5\%$ concluímos que os fatores A e B são significativos e a interação AB não é significativa, pois este possui um valor maior que 0,05.

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                          2.58e-10 ***
3.23e-06 ***
             27.0000 0.7124
                                  37.901
                          0.7124
                                  11.370
               8.1000
                                  -5.475 0.000591 ***
В
                          0.7124
              -3.9000
                          0.7124
                                          0.198007
A:B
               1.0000
                                   1.404
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figura 2 – Print da tela do R com valores de p da regressão.

Exercício 3A – Realizado usando o Excel com funções estatísticas.

Após calcular os valores dos 15 efeitos, obtive a porcentagem de influência de cada variável sob a somatória de todos os efeitos, identificando que as variáveis 2, 1 e 12 representam 97,9% dos resultados e o restante parecem ser insignificantes, de acordo com a Tabela 1.

Variável	Efeito	^2	%
14	-2,88	8,27	0,5
23	-1,38	1,89	0,1
34	-1,38	1,89	0,1
124	-1,38	1,89	0,1
4	-0,38	0,14	0,0
123	0,63	0,39	0,0
234	0,63	0,39	0,0
24	1,13	1,27	0,1
13	1,63	2,64	0,2
134	2,13	4,52	0,3
1234	2,13	4,52	0,3
3	2,63	6,89	0,4
12	12,13	147,02	9,0
1	18,63	346,89	21,3
2	33,13	1097,27	67,5

Tabela 1 – Efeitos

Com a visualização gráfica da probabilidade normal na Figura 5, ficam mais claros os pontos ótimos e em contraste com o restante das variáveis, que estão bem próximas de 0. Sendo assim calculei o valor de t crítico que foi de 3,70. Considerando esse valor, podemos dizer que todos as variáveis menores que 3,70 poderão ser desprezadas.

Figura 5 – Gráfico de probabilidade normal

Para a equação temos:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

$$y = 27,31 + \frac{18,63}{2} x_1 + \frac{33,13}{2} x_2 + \frac{12,13}{2} x_1 x_2 + 3,40$$

$$y = 27,31 + 9,31x_1 + 16,56x_2 + 6,06x_1 x_2 + 3,40$$

3B - Realizado com o template de superfície, após conseguir os valores de resposta utilizando o Action para o gráfico de médias da resposta.

Figura 6 – Gráfico de superfície de resposta com interação

Figura 7 – Gráfico de contorno com interação

Exercício 4Bi – Realizado usando o Excel com funções estatísticas e software R.

Após calcular os valores dos 15 efeitos, obtive a porcentagem de influência de cada variável sob a somatória de todos os efeitos, identificando que as variáveis A, B, C, AB e AC representam 98.4% dos resultados e o restante parecem ser insignificantes, de acordo com a Tabela 1.

	Efeito	^2	%
ACD	-0,13	0,02	0,00
ABCD	0,13	0,02	0,00
ABC	-0,38	0,14	0,01
BCD	-0,63	0,39	0,01
AD	1,13	1,27	0,05
CD	1,13	1,27	0,05
D	-1,63	2,64	0,10
ABD	2,88	8,27	0,30
BD	-3,88	15,02	0,55
ВС	3,88	15,02	0,55
С	-10,38	107,64	3,93
AC	-10,63	112,89	4,12
AB	16,88	284,77	10,40
В	18,13	328,52	12,00
Α	43,13	1859,77	67,93

Tabela 1 – Efeitos

Com a visualização gráfica da probabilidade normal na Figura 1, ficam mais claros os pontos ótimos e em contraste com o restante das variáveis, que estão bem próximas de 0.

Sendo assim calculei o valor de t crítico que foi de 10,23. Considerando esse valor, podemos dizer que todos as variáveis menores que 10,23 poderão ser desprezadas.

Figura 1 – Gráfico de probabilidade normal

Utilizando a regressão, temos a equação:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \epsilon$$

$$y = 399,19 + \frac{43,13}{2} x_1 + \frac{18,13}{2} x_2 - \frac{10,38}{2} x_3 + \frac{16,88}{2} x_1 x_2 - \frac{10,63}{2} x_1 x_3 + 9,39$$

$$y = 399,19 + 21,56x_1 + 9,06x_2 - 5,19x_3 + 8,44x_1 x_2 - 5,31x_1 x_3 + 9,39$$

Gerei o gráfico de cubo (Figura 2) com as médias da resposta utilizando o Action.

Figura 2 – Gráfico de médias de resposta

Análise de variância (ANOVA)

Ao efetuar a análise de variância no R, obtive os valores de p informados na Figura 3. Observa-se que os valores de A, B, C, AC e BC são menores que o nível de significância de 0,05, portanto são significativos, enquanto os outros valores estão acima, e não são significativos. Além disso, temos outros valores que também estão abaixo de 0,05.

```
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value
           1 7439.1 7439.1 515.2597 1.503e-08
                             91.0173 1.205e-05 ***
В
           1 1314.1 1314.1
                             29.8225 0.0006008 ***
C
              430.6
                      430.6
                             78.8961 2.041e-05 ***
A:B
           1 1139.1
                    1139.1
                             31.2771 0.0005147 ***
A:C
              451.6
                      451.6
B:C
          1
               60.1
                       60.1
                              4.1602 0.0757149
A:B:C
           1
                0.6
                        0.6
                              0.0390 0.8484487
Residuals 8 115.5
                       14.4
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figura 3 – Print da tela do R com os valores de p para ANOVA sem repetição

Realizado com o template de superfície, após conseguir os valores de resposta utilizando o Action para o gráfico de médias da resposta.

Figura 4 – Gráfico de contorno com interação das variáveis A e B fixas.

Figura 5 – Gráfico de contorno com interação das variáveis A e C fixas.

4Bii – Realizado usando o Excel com funções estatísticas e software R.

Após calcular os valores dos 15 efeitos, obtive a porcentagem de influência de cada variável sob a somatória de todos os efeitos, identificando que as variáveis AB e AC representam 90,57% dos resultados e o restante parecem ser insignificantes, de acordo com a Tabela 1.

	Efeitos	^2	%
Α	0,00	0,00	0,00
В	0,00	0,00	0,00
С	0,00	0,00	0,00
D	0,00	0,00	0,00
ACD	-0,13	0,02	0,00
ABCD	0,13	0,02	0,00
ABC	-0,38	0,14	0,03
BCD	-0,63	0,39	0,09
AD	1,13	1,27	0,29
CD	1,13	1,27	0,29
ABD	2,88	8,27	1,88
ВС	3,88	15,02	3,42
BD	-3,88	15,02	3,42
AC	-10,63	112,89	25,71
AB	16,88	284,77	64,86

Tabela 1 – Efeitos

Com a visualização gráfica da probabilidade normal na Figura 1, ficam mais claros os pontos ótimos e em contraste com o restante das variáveis, que estão bem próximas de 0.

Sendo assim calculei o valor de t crítico que foi de 5,20. Considerando esse valor, podemos dizer que todos as variáveis menores que 5,20 poderão ser desprezadas.

Figura 1 – Gráfico de probabilidade normal

Utilizando a regressão, temos a equação:

$$y = \beta_0 + \beta_{12}x_1x_2 + \beta_{13}x_1x_3 + \epsilon$$

$$y = 399,19 + \frac{16,88}{2}x_1x_2 - \frac{10,63}{2}x_1x_3 + 3,67$$

$$y = 399,19 + 8,44x_1x_2 - 5,31x_1x_3 + 3,67$$

Gerei o gráfico de cubo (Figura 2) com as médias da resposta utilizando o Action, obtidos da tabela de repetições.

Figura 2 – Gráfico de médias de resposta

Figura 3 – Gráfico de contorno com interação das variáveis A e B fixas.

Figura 4 – Gráfico de contorno com interação das variáveis A e C fixas.