

ANEXO 1 – Ejercicios a resolver Tarea 2

Apreciado Estudiante, a continuación, se presentan los ejercicios asignados para el desarrollo de Tarea 2 - Métodos para probar la validez de argumentos. Debe seleccionar un grupo de ejercicios A, B, C, D, o, E y enunciarlo en el *Foro de discusión - Unidad 1 - Tarea* 2 - Métodos para probar la validez de argumentos, ningún miembro del grupo podrá escoger la misma asignación.

Usted debe diligenciar la siguiente tabla en el foro (copie y pegue desde aquí), si ya sus compañeros hicieron elecciones con anterioridad, debe registrarlos en cada letra.

Tabla 1 Distribución ejercicios Tarea 2

1. Nombre del estudiante	2. Grupo de ejercicios a desarrollar			
	El estudiante desarrolla el			
	ejercicio A en todos los grupos de			
	ejercicios.			
	El estudiante desarrolla el			
	ejercicio B en todos los grupos de			
	ejercicios.			
	El estudiante desarrolla el			
	ejercicio C en todos los grupos de ejercicios.			
	El estudiante desarrolla el			
	ejercicio D en todos los grupos de ejercicios.			
	El estudiante desarrolla el			
	ejercicio E en todos los grupos de ejercicios.			

Nota: En esta tabla cada estudiante selecciona la letra a realizar para todos los ejercicios de la Tarea 2. Fuente. Autor

Ejercicio 1: Proposiciones y tablas de verdad

Descripción del ejercicio:

A continuación, encontrará las proposiciones simples y el lenguaje simbólico para el desarrollo del ejercicio 1:

Α. **p**: La inteligencia artificial respeta la privacidad las personas.

q: Las personas tienen el control sobre sus datos personales.

r: Las personas tienen problemas éticos relacionados con la discriminación.

$$(p \land q) \Rightarrow (\neg q \lor r)$$

В. **p**: Los países Sudamericanos invierten en energías limpias.

q: Las energías renovables pueden reducir las emisiones de carbono.

$$(p \rightarrow q) \land (q \rightarrow p)$$

C. p: El acoso laboral afecta negativamente la salud mental de los empleados.

Las denuncias de acoso laboral se manejan q: con confidencialidad.

r: Las denuncias de acoso laboral se les brinda la debida atención.

$$p \leftrightarrow (q \land \neg r)$$

D. p: Las empresas innovadoras suelen tener una ventaja competitiva.

q: Las empresas pueden adaptarse rápidamente a los cambios en el mercado.

r: Las empresas pueden enfrentar serias dificultades para mantenerse.

$$(p \land q) \land (\neg q \Rightarrow r)$$

E. p: Los conflictos en la región están influenciados por factores políticos.

q: La guerra del Medio Oriente ha causado millones de desplazados

r: Los recursos naturales son un factor clave en los conflictos.

$$\neg (p \land q) \rightarrow \neg r$$

A partir del argumento que haya seleccionado deberá dar respuesta a los siguientes ítems:

- > Escribir la proposición compuesta del leguaje simbólico en un lenguaje natural.
- Generar una tabla de verdad manualmente a partir del lenguaje simbólico y determinar si el resultado es una tautología, contingencia o contradicción.
- Generar la tabla de verdad a través del simulador tablas de verdad. El paso a paso para el uso del simulador lo podrá encontrar en el Anexo 2 Guía para el desarrollo de la Tarea 2 (ejercicios ejemplo), ubicado en el entorno de aprendizaje en la carpeta Guía de actividades y rúbrica de evaluación Unidad 1- Tarea 2 Métodos para probar la validez de argumentos.
- Realizar un vídeo de 5 minutos máximo, tenga en cuenta las siguientes recomendaciones:
 - 1. El estudiante hace su presentación personal básica en inglés (Nombre, edad, ciudad donde vive y programa en donde que está matriculado) y explica de forma detallada cómo realizó el ejercicio V de su letra escogida (en español).
 - 2. El estudiante debe aparecer en la grabación de frente y sin ningún filtro. Luego explica en pantalla compartida cómo realizó el ejercicio.
 - 3. Para la realización del vídeo puede usar la cámara de un celular, la cámara de una computadora u otra alternativa que se le facilite. También podrá usar la herramienta TEAMS para

la realización de la grabación. Deberá subir el vídeo a una plataforma de vídeos (por ejemplo: YouTube, Loom, OBS, Clipchamp, Screencast, canva, etc) y compartir el enlace sin restricción al tutor asignado (puede configurar en modo oculto si es de su elección)

Ejercicio 2: Aplicación de la lógica fundamental

Descripción del ejercicio:

A continuación, encontrará los argumentos para el desarrollo del ejercicio 2:

- A. Si la educación en línea ha ganado popularidad en los últimos años y las herramientas tecnológicas no mejoran la experiencia de aprendizaje, entonces los cursos virtuales permiten estudiar a cualquier hora/lugar o la educación híbrida combina métodos presenciales como en línea.
- **B.** Si el arte digital ha transformado la forma en que se consume el arte o las redes sociales no permiten a los artistas llegar a pequeñas audiencias, entonces las exposiciones virtuales permiten visitar museos desde casa.
- C. El consumo de contenido en streaming ha desplazado a la televisión tradicional si y solo si, las plataformas de streaming ofrecen acceso instantáneo a una amplia variedad de contenido y las suscripciones a plataformas de streaming han aumentado en los últimos años.
- **D.** Si la alimentación saludable contribuye a una vida activa, entonces el ejercicio regular no reduce el riesgo de enfermedades crónicas, por lo tanto, dormir al menos siete horas por noche mejora la salud mental.
- E. La desigualdad económica afecta el acceso a la educación si y solo sí, la pobreza extrema limita el acceso a servicios básicos de salud, y si la pobreza extrema no limita el acceso a servicios básicos de salud entonces los programas de asistencia social pueden reducir la pobreza.

- > Definir cuáles son las proposiciones simples que intervienen en el argumento.
- Identificar los conectores que intervienen en el argumento.
- Construir el lenguaje simbólico correspondiente al argumento.
- > Determinar si el argumento es una tautología, contradicción o contingencia a través del simulador de tablas de verdad. (Ver Anexo 2 - Guía para el desarrollo de la Tarea 2 (ejercicios <u>ejemplo).</u>

Ejercicio 3: Demostración de un argumento usando las reglas de la inferencia lógica

Descripción del ejercicio:

A continuación, encontrará un argumento para el desarrollo del ejercicio 3, usted deberá identificar e indicar las leyes de inferencia y las premisas utilizadas en cada uno de los pasos para la demostración del argumento.

A. Expresión simbólica

[(p
$$\vee$$
 q) \wedge (p \rightarrow r) \wedge (q \rightarrow s)] \rightarrow (r \vee s)

P1:
P2:
P3:
Conclusión:
Ley utilizada:

B. Expresión simbólica

[(
$$\mathbf{p} \rightarrow \mathbf{q}$$
) \wedge ($\mathbf{q} \rightarrow \mathbf{t}$)] \rightarrow ($\mathbf{p} \rightarrow \mathbf{t}$)

P1:
P2:
Conclusión:
Ley utilizada:

C. Expresión simbólica

$$[p \land q] \rightarrow q$$

P1:

P2:

Conclusión: Ley utilizada:

D. Expresión simbólica

$$\textbf{[(p \lor q) \land (\sim p)]} \rightarrow q$$

P1:

P2:

Conclusión:

Ley utilizada:

E. Expresión simbólica

$$[r] \rightarrow (r \lor s)$$

P1:

Conclusión:

Ley utilizada:

A partir del argumento en lenguaje simbólico deberá dar respuesta a los siguientes ítems:

- ➤ Deducir las premisas (P1, P2, P3...) y la conclusión.
- > Defina la ley de inferencia que representa el lenguaje simbólico dado.
- > Adjuntar un pantallazo del simulador de tablas de verdad que demuestre la tautología de la ley de inferencia.

Ejercicio 4: Problemas de aplicación

Descripción del ejercicio:

A continuación, encontrará la expresión simbólica, las premisas y la conclusión de un argumento para el desarrollo del ejercicio 4:

A. Expresión simbólica:

[(p
$$\rightarrow$$
 q) \land (q \rightarrow r) \land (\sim r) \land (p \lor s)] \rightarrow s

Premisas dadas:

P1: $p \rightarrow q$ **P2:** $q \rightarrow r$ **P3:** ∼r

P4: p v s

Tabla 1 Demostración por leyes de inferencia. Ejercicio A.

Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	¿Incorrecto?	
P5: p → r	Silogismo	P1, P2		
	Hipotético			
P6: ~p	MTT	P2, P3		
P7: s	MTT	P4 ,P6		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio A. Fuente. Autor

В. Expresión simbólica:

$$\textbf{[(p \rightarrow r) \land (\sim r) \land (\sim p \rightarrow q) \land (q \rightarrow s)] \rightarrow s}$$

Premisas dadas:

P1: $p \rightarrow r$

P2: ~r

P3: $\sim p \rightarrow q$

P4: $q \rightarrow s$

Tabla 2Demostración por leyes de inferencia. Ejercicio B

Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	Incorrecto?	
P5: ~ p	MTT	P1, P2		
P6: ~ p → s	Silogismo	P3,P4		
	Disyuntivo			
P7: s	MPP	P6, p5		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio B. Fuente. Autor

C. Expresión simbólica:

[(p V q)
$$\Lambda$$
 (p \rightarrow r) Λ (q \rightarrow r)] \rightarrow (r V s)

Premisas dadas:

P1: (p V q)

P2: $(p \to r)$

P3: $(q \rightarrow r)$

Tabla 3Demostración por leyes de inferencia. Ejercicio C

Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	Incorrecto?	
P4: r	Silogismo	P1, P2,		
	Disyuntivo	P3		
P5: r V s	Ley de Adición	P4		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio C. Fuente. Autor

D. Expresión simbólica:

[(p
$$\rightarrow$$
q) Λ (q \rightarrow r) Λ (\sim r) Λ (p V s) Λ (\sim t)] \rightarrow (s Λ \sim t)

Premisas dadas:

P1: $(p \to q)$

P2: (q→r)

P3: (~r)

P4: (p V s)

P5: (~t)

Tabla 4

Demostración por leyes de inferencia. Ejercicio D

-				
Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	Incorrecto?	
P6: p→r	Silogismo	P2, P3		
	Hipotético			
P7: ∼p	MTT	P6, P3		
P8: s	Simplificación	P4, P7		
P9: s Λ~t	Adjunción	P8, P5		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio D. Fuente. Autor

E. Expresión simbólica:

[(p
$$\land$$
 q) \land (q \rightarrow r) \land (s \rightarrow ~r) \land (s \lor t)] \rightarrow t

Premisas dadas:

P1: $(p \land q)$

P2: $(q \rightarrow r)$

P3: (s→~r)

P4: (s V t)

Tabla 5 Demostración por leyes de inferencia. Ejercicio E

Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	Incorrecto?	
P5: q	Ley de adición	P1		_
P6: r	MPP	P2, P5		
P7:~s	MTT	P3, P6		
P8: t	MTP	P6		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio E. Fuente. Autor

A partir de la expresión simbólica seleccionada, el estudiante deberá:

Definir las proposiciones simples, tendrá la libertad de definirlas bajo una descripción basada en un contexto académico o social. Las proposiciones simples deben contener 1. Sujeto, 2. Verbo y 3. **Predicado**.

Ejemplo:

- p: Andrés estudia cálculo integral
- **q**: Andrés resuelve los ejercicios
- r: Andrés aprueba la evaluación
- > Remplazar las variables expresadas simbólicamente y llevarlas al lenguaje natural. Las proposiciones simples deben ser de autoría de cada estudiante, por lo que de encontrar proposiciones iguales entre estudiantes se considerara como copia y se tomaran las medidas correctivas estipuladas por la UNAD (Rubrica).
- Complete la tabla de demostración de la validez del argumento mediante leyes de inferencia lógica. Analizar la tabla de la demostración e indicar si las premisas construidas y las leyes aplicadas son correctas o incorrectas y justificar porque es correcta o incorrecta

Nota:

Apreciado estudiante, tenga en cuenta que la valoración máxima de esta actividad es de 125 puntos, para aprobar deberá lograr una calificación superior o iqual a 75 puntos.

Para tener en cuenta:

El estudiante tendrá para su consulta el Anexo 2 - Guía para el desarrollo de la Tarea 2 (ejercicios ejemplo), en este documento se presentará a manera de ejemplo el desarrollo de ejercicios similares a los planteados en la tarea. También podrá utilizar la Plantilla Tarea 2 como documento base para la realización del informe final o entregable de la Tarea 2.