Ejercicio. Buscar una raíz entre 1 y 2 entre $f(x) = x^3 + 4x^2 - 10$ con n=10, ϵ =0.001 y Δ =0.001 utilizando:

- a) el método de la bisección
- b) el método del punto fijo
- c) el método de la secante
- d) el método del Regula Falsi
- e) el método de Newton

Ejercicio 1. Buscar una raíz entre 1 y 2 entre $f(x) = x^3 + 4x^2 - 10$ con n=10, ϵ =0.001 y Δ =0.001 utilizando:

a) el método de la bisección

10	= n		$\Delta =$	0.001		= 3	0.001
i	a	b	С	h	f(a)	f(b)	f(c)
1	1	2	1.5	1	-5	14	2.375
2	1	1.5	1.25	0.5	-5	2.375	-1.797
3	1.25	1.5	1.375	0.25	-1.797	2.375	0.162
4	1.25	1.375	1.313	0.125	-1.797	0.162	-0.848
5	1.313	1.375	1.348	0.0625	-0.848	0.162	-0.351
6	1.348	1.375	1.359	0.03125	-0.351	0.162	-0.096
7	1.359	1.375	1.367	0.015625	-0.096	0.162	0.032
8	1.359	1.367	1.363	0.0078125	-0.096	0.032	-0.032
9	1.363	1.367	1.365	0.00390625	-0.032	0.032	0.00007

b) el método del punto fijo

		_		
10	= n		Δ =	0.001
i	\mathbf{x}_0	x = g(x)	h	
1	1	2	1	
2	2	0.83333	1.1667	
3	0.83333	2.4828	1.6494	
4	2.4828	0.62129	1.8615	
5	0.62129	3.4829	2.8616	
6	3.4829	0.38370	3.0992	
7	0.38370	5.9452	5.5615	
8	5.9452	0.16913	5.7761	
9	0.16913	14.182	14.013	
10	14.182	0.039617	13,973	

$\varepsilon = 0.001$

c) el método de la secante

10	= n		$\Delta =$	0.001		= 3	0.001
1	1	2	1.2632	-0.2632	-5	14	-1.602
2	1	1,2632			-5	-1.602	
	1.2632	1	1.3873	-0.1241	-1.602	-5	0.265
3	1.3873	1.2632			-1.602	0.265	
	1.3873	1.2632	1.3697	0.0176	0.265	-1.602	0.0739
4	1.3873	1.3697			0.265	0.0739	
	1.3697	1.3873	1.3628	0.0068	0.0739	0.265	-0.03956
5	1.3697	1.3628		-	0.0739	-0.03956	
	1.3628	1.3697	1.3652	-0.002406	-0.03956	0.0739	-0.0004956

d) el método del Regula Falsi

10	= n		$\Delta =$	0.001		= 3	0.001
i	a	b	c	h	f(a)	f(b)	f(c)
1	1	2	1.2632	-0.2632	-5	14	-1.602
2	1.2632	2	1.3388	-0.075639	-1.602	14	-0.43018
3	1.3388	2	1.3585	-0.019739	-0.43018	14	-0.11013
4	1.3585	2	1.3635	-0.0050358	-0.11013	14	-0.027954
5	1.3635	2	1.3648	-0.0012951	-0.027954	14	-0.0071797
6	1.3648	2	1.3651	-0.00032195	-0.0071797	14	-0.0017884

e) el método de Newton

10	= n		$\Delta =$	0.001		ε =	0.001
i	a	b	C	h	f(a)	f'(a)	f(c)
1	1	\setminus	1.45454	-0.45454	-5	11	1.5401
2	1.45454	\setminus	1.3689	0.08564	1.5401	17.983	0.060712
3	1.3689	\times	1.3652	0.003663	0.060712	16.573	-0.0004947