Algebraic Topology

Alec Zabel-Mena

21.09.2022

Chapter 1

Categories.

1.1 Categories and Subcategories.

Definition. A category \mathcal{C} is a collection of a class of **objects**, denoted obj \mathcal{C} a collection of sets of **morphisms** $\operatorname{Hom}(A,B)$ for each $A,B \in \operatorname{obj}\mathcal{C}$ and a binary operation $\circ : \operatorname{Hom}(A,B) \times \operatorname{Hom}(B,C) \to \operatorname{Hom}(A,C)$, defined by $(f,g) \to g \circ f$, called **composition** such that:

- (1) Each Hom (A, B) is pairwise disjoint for all $A, B \in \text{obj } \mathcal{C}$.
- (2) \circ is associative when defined; that is if either $(g \circ f) \circ h$ or $g \circ (f \circ h)$ are defined, then $(g \circ f) \circ h = g \circ (f \circ h)$, for morphisms f, g, h.
- (3) For each $A \in \text{obj } \mathcal{C}$, there exists an **identity** morphism $1_A \in \text{Hom } (A, A)$ such that for each $B, C \in \text{obj } \mathcal{C}$, $1_A \circ f = f$ and $g \circ 1_A = g$ for each morphism $f \in \text{Hom } (B, A)$ and $g \in \text{Hom } (A, C)$.

We denote morphisms by $f: A \to B$ instead of $f \in (A, B)$.

Definition. Let \mathcal{C} be a category and $f: A \to B$ a morphism in \mathcal{C} . We call A and B the **domain** and **codomain** of f, respectively, and we call the set $G_f = \{(a, f(a)) : a \in A\} \subseteq B$ the **graph** of f.

- **Example 1.1.** (1) The category of all sets Set has as onjects the class of all sets. The morphisms in Set are all functions $f: A \to B$ where A and B are sets. The composition of Set is the usual composition of functions.
 - (2) The category of all topological spaces Top has as objects all topological spaces, and as morphisms all continuous maps $f: Y \to Y$ from a space X to a space Y. The composition is the usual composition.
 - (3) The category of all groups, Grp has as objects all groups and as morphisms all homomorphisms $f: G \to H$, under the usual composition.
 - (4) The category of rings with unit Rng has as objects all rings with unit, along with all ring homomorphisms $f: R \to K$ to be the morphisms under the usual composition.

Definition. We call a category a **subcategory** of a category \mathcal{C} if obj $\mathcal{A} \subseteq \text{obj } \mathcal{C}, \text{Hom}_{\mathcal{A}}(A, B) \subseteq \text{Hom}_{\mathcal{C}}(A, B)$ for all $A, B \in \mathcal{C}$, and \mathcal{A} inherits the composition of \mathcal{C} .

Example 1.2. (1) The category of all pairs of topological spaces (X, A) where A is a subspace of X, whose morphisms are pairs of continuous maps $f = (f_1, f_2)$ such that $f_1i = jf_2$ where $i: A \to X$ and $j: B \to Y$ are inclusions, is a subcategory of Top. We denote this category Top².

- (2) The category of all **pointed spaces**, Top* is defined with the objects being all pairs $(X, \{x_0\})$, where $x_0 \in X$ with the morphisms of Top². Top* is a subcategory of Top². We call x_0 the **base point**, and we call the morphisms of Top* **pointed maps**.
- (2) The category of all Abelian groups, Ab is a subcategory of Grp. Likewise, the category of all commutative rings with unit is a subcategory of Rng.

1.2 Commutative Diagrams and Congruences.

Definition. A diagram in a category is a directed graph with its vertex set a subset of objects, and whose edge set are morphisms between those objects. We call a diagram **commutative** if for any pair of objects, every pair of morphisms between those objects are equal. That is if A, A' and B, B' are pairs of objects with pairs of morphisms $f: A \to B$, $f: A \to A'$ and $f': A' \to B'$, $g': B \to B'$ we have that $g \circ f' = f \circ g'$

Definition. A **congruence** on a category \mathcal{C} is an equivalence relation \sim on morphisms in \mathcal{C} such that:

- (1) If $f \in \text{Hom}(A, B)$, and $f \sim f'$, then $f' \in \text{Hom}(A, B)$.
- (2) If $f \sim g$ and $f' \sim g'$, then $g \circ f \sim g' \circ f'$.

1.3. FUNCTORS. 5

Figure 1.1: An equivalence relation between morphisms.

Theorem 1.2.1. Let C be a category with congruence \sim . Define C/\sim as follows:

- (1) $\operatorname{obj}^{\mathcal{C}}/_{\sim} = \operatorname{obj} \mathcal{C}$.
- (2) $\operatorname{Hom}_{\mathcal{C}_{A}}(A, B) = \{ [f] : f \in \operatorname{Hom}_{\mathcal{C}}(A, B) \}.$
- $(3) [g] \circ [f] = [g \circ f]$

Then \mathcal{C}_{\sim} is a category.

Proof. We have by equivalence that obj \mathcal{C}_{\sim} is a class. Moreover, since \sim partitions \mathcal{C} , it partions all of the Hom (A, B) for each A, B. So each Hom (A, B) is a set, moreover, they are pariwise disjoint by definition of \sim . Now, notice that by hypothesis, composition in \mathcal{C}_{\sim} is well defined, so $[1_A] \circ [f] = [1_A \circ f] = [f]$ and $[g] \circ [1_A] = [g \circ 1_A] = [g]$. This makes \mathcal{C}_{\sim} a category.

Remark. On can think of the category \mathcal{C}_{\sim} as taking all morphisms with they same domain and codomain, and collapsing them into a single morphism.

Definition. Let \mathcal{C} be a catogory and \sim a congruence of \mathcal{C} . We call the category \mathcal{C}/\sim induced by \sim the **quotient category**.

1.3 Functors.

Definition. Let \mathcal{A} and \mathcal{C} be categories. We deine a **covariant functor** to be a map $F: \mathcal{A} \to \mathcal{C}$ such that:

- (1) $A \in \text{obj } \mathcal{A} \text{ implies } F(A) \in \text{obj } \mathcal{C}.$
- (2) If $f: A \to B$ is a morphism in \mathcal{A} , then $F(f): F(A) \to F(B)$ is a morphism in \mathcal{C} .

Figure 1.2: Morphisms in a category with the same domain and codomain get collapsed onto a single morphism in the correspinding quotient category.

Figure 1.3: A covariant functor taking a diagram in on category to a diagram in the other.

- (3) For all morphisms f and g in \mathcal{A} , for which $g \circ f$ is defined, we have that $F(g \circ f) = F(g) \circ F(f)$, and $F(1_A) = 1_{F(A)}$.
- **Example 1.3.** (1) We define the **forgetful functor** the map $F: \mathcal{C} \to \operatorname{Set}$ that takes all objects in \mathcal{C} to their underlying sets, and morphisms in \mathcal{C} to themselves considered as functions under the usual composition. For example the forgetful functor $F: \operatorname{Top} \to \operatorname{Set}$ takes topological spaces X to their underlying sets, and continuous maps to themselves, considered just as functions.
 - (2) The **identity functor** is the functor $I: \mathcal{C} \to \mathcal{C}$ that takes objects and morphisms in \mathcal{C} to themselves.
 - (3) Let M be a topological space. Define F_M : Top \to Top by F_M : $X \to X \times M$, and for each continuous map $f: X \to Y$, $F(f): X \times M \to Y \times M$ is defined by $(x,m) \to (f(x),m)$. Then F_M is a functor.
 - (4) Let $A \in \text{obj } \mathcal{C}$ and take the map $\text{Hom } (A, *) : \mathcal{C} \to \text{Set}$ that takes $A \to \text{Hom } (A, B)$ and for each morphism $f : B \to B'$, $\text{Hom } (A, f) : \text{Hom } (A, B) \to \text{Hom } (A, B')$ is given by $g \to f \circ g$. With call this functor the **covariant Hom functor**, and denote it f_* .

Definition. Let \mathcal{A} and \mathcal{C} be categories. We deine a **contravariant functor** to be a map $G: \mathcal{A} \to \mathcal{C}$ such that:

(1) $A \in \text{obj } \mathcal{A} \text{ implies } G(A) \in \text{obj } \mathcal{C}.$

1.3. FUNCTORS.

- (2) If $f: A \to B$ is a morphism in \mathcal{A} , then $G(f): G(B) \to G(A)$ is a morphism in \mathcal{C} .
- (3) For all morphisms f and g in \mathcal{A} , for which $g \circ f$ is defined, we have that $G(g \circ f) = G(f) \circ G(g)$, and $G(1_A) = 1_{G(A)}$.

Figure 1.4: A contravariant functor taking a diagram in on category to a diagram in the other.

- **Example 1.4.** (1) Let F be a field, and Vec the category of all finite dimensional vector spaces over F, whose morphisms are linear transformations. Define the map $T : \text{Vec} \to \text{Vec}$ by taking $T : V \to V^{\perp}$, and $T : f \to f^{T}$. That is T takes vector spaces to their dual spaces, and linear transformation to their transpose. T is a contravariant functor called the **dual space functor**.
 - (2) Define $\operatorname{Hom}(*,B):\mathcal{C}\to\mathcal{C}$ by taking $\operatorname{Hom}(*,B):A\to\operatorname{Hom}(A,B)$ and for each morphism $g:A\to A'$ in \mathcal{C} , $\operatorname{Hom}(f,B):\operatorname{Hom}(A',B)\to\operatorname{Hom}(A,B)$ is defined by taking $h\to h\circ g$. This is analogous to the covariant Hom functor, and we call it the **contravariant Hom functor.**

Definition. We call a morphism $f: A \to B$ an **equivalence** if there exists a morphism $g: B \to A$ such that $f \circ g = 1_B$ and $g \circ f = 1_A$

Theorem 1.3.1. Let \mathcal{A} and \mathcal{C} be categories, and $F: \mathcal{A} \to \mathcal{C}$ be a functor. If f is an equivalence in \mathcal{A} , then F(f) is an equivalence in \mathcal{C} .

Proof. Suppose that F is a covariant functor. Notice that if $f: A \to B$ is an equivalence, then there is a $g: B \to A$ with $f \circ g = 1_B$ and $g \circ f = 1_A$. Then $F(f \circ g) = F(f) \circ F(g) = F(1_B) = 1_{F(B)}$, and $F(g \circ f) = F(g) \circ F(f) = F(1_A) = 1_{F(A)}$.

Likewise, if F is contravariant, notice that $F(f): B \to A$ and $F(g): A \to B$. Then $F(f \circ g) = F(g) \circ F(f) = 1_{F(A)}$, and $F(g \circ f) = F(f) \circ F(g) = 1_{F(B)}$. In eithe case, we find that F(f) is an equivalence in C.

Chapter 2

Homotopy, Convexity, and Connectedness.

2.1 Homotopy

Definition. If X and Y are topological spaces, and $f_0: X \to Y$ and $f_1: X \to Y$ are continuous maps, we say that f_0 is **homotopic** to f_1 if there exists a continuous map $F: X \times I \to Y$ with $F(x,0) = f_0(x)$ and $F(x,1) = f_1(x)$. We write $f_0 \simeq f_1$ and call F a **homotopy**. We also write $F: f_0 \simeq f_1$ to denote a homotopy between f_0 and f_1 .

Lemma 2.1.1 (The Pasting Lemma). Let X is a topological space that is covered by open sets $\{X_n\}$. If Y is some topological space for which there exist unique maps $f_n: X_n \to Y$ that coincide in the intersections of their domains, then there exists a unique map $f: X \to Y$ such that $f|_{X_n} = f_n$, for all n.

Lemma 2.1.2. Homotopy between continuous maps is an equivalence relation.

Proof. Let $f: X \to Y$ be a continuous map. Define $F: X \times I \setminus Y$ by $(x,t) \to f(x)$ for all $(x,t) \in X \times I$. Then F is continuous by definition; moreover, F(x,0) = F(x,1) = f(x), making $f \simeq f$.

Now suppose there exist a homotopy $F: f \simeq g$ for maps $f: X \to Y$ and $g: X \to Y$. Define the map $G: X \times I \to Y$ by $(x,t) \to F(x,1-t)$. G is the composition of continuous maps, so G is continuous, moreover, G(x,0) = F(x,1) = g(x) and G(x,1) = F(x,0) = f(x), so that $g \simeq f$.

Lastly, suppose that $F: f \simeq g$ and $G: g \simeq h$ for maps f, g, h. Define the map $H: X \times I \to Y$ by:

$$H(x,t) = \begin{cases} F(x,2t), & \text{if } 0 \le t \le \frac{1}{2} \\ G(x,2t-1), & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Notice that F and G conicide in their domains which cover X. Therefore, by the pasting lemma, H is continuous. Now notice also that $H(x,0) = F(x,2\cdot 0) = F(x,0) = f(x)$ and $H(x,1) = G(x,2\cdot 1-1) = G(x,1) = h(x)$. This makes $f \simeq h$.

Definition. For any continuous map $f: X \to Y$ we define the **homotopy class** of f to be the equivalence class of all continuous maps homotopic to f. That is:

$$[f] = \{g : X \to Y : g \text{ is continous and } g \simeq f\}$$

Lemma 2.1.3. Let $f_0: X \to Y$, $f_1: X \to Y$ and $g_0: X \to Y$, $g_1: X \to Y$ be continuous maps. If $f_0 \simeq f_1$ and $g_0 \simeq g_1$, then $g_0 \circ f_0 \simeq g_1 \circ f_1$. That is $[g_0 \circ f_0] = [g_1 \circ f_1]$.

Proof. Let $F: f_0 \simeq f_1$ and $G: g_0 \simeq g_1$ be the homotopies of f_0 into f_1 and g_0 into g_1 , respectively. Define the map $H: X \times I \to Y$ by taking $(x,t) \to G(f_0(x),t)$. Then we have that H is continuous by composition, and that $H(x,0) = G(f_0(x),0) = g_0(f_0(x))$, and $H(x,1) = G(f_0(x),1) = g_1(f_0(x))$. Thus we see that $g_0 \circ f_0 \simeq g_1 \circ f_0$.

Now define the map $K: X \times I \to Y$ by $K = g_1 \circ F$. We have that K is continuous by composition, and that $K(x,0) = g_1 \circ f_0$ and $K(x,1) = g_1 \circ f_1$, making $g_1 \circ f_0 \simeq g_1 \circ f_1$.

Theorem 2.1.4. Homotopy is a congruence on the category Top.

Proof. The proof follows by lemmas 2.1.2 and 2.1.3.

Definition. We call the quotient category of Top induced by homotopy the **homotopy** category and denote it hTop.

Definition. A continuous map $f: X \to Y$ is a **homotopy equivalence** if there exists a continuous map $g: Y \to X$ such that $f \circ g \simeq 1_Y$ and $g \circ f \simeq 1_X$. We say that the spaces X and Y have the same **homotopy type** if there exists a homotopy equivalence.

Definition. We call a continuous map **nullhomotopic** if it is homotopic to a constant map.

Example 2.1. The space of complex numbers $\mathbb C$ and the unit circle S^1 have the same homnotopy type.

Definition. Let Y and Z be topological spaces, and $X \subseteq Y$ a subspace of Y. If $f: X \to Z$ is a continuous map, then we call the map $g: Y \to Z$ defined by $g \circ i = f$ an **extension** of f, where $i: X \to Y$ is the inclusion map.

Theorem 2.1.5. Let $f: S^n \to Y$ be a continuous map into a topological space Y. The following are equivalent:

- (1) f is nullhomotopic.
- (2) f can be extended to a continuous map $B^{n+1} \to Y$.
- (3) There exists a constant map $k: S^n \to Y$, taking $x \to f(x_0)$, for all $x \in S^n$, such that $f \simeq k$, for $x_0 \in S^n$.

Proof. Notice that (3) implies (1) immediately. Now suppose that f is nullhomotopic. Then there exists a constant map $k: X \to Y$, such that for some $x_0 \in S^n$, $k: x \to x_0$ for all $x \in S^n$ implies that $f \simeq k$. Now, define the map $g: B^{n+1} \to Y$ by:

$$g(x) = \begin{cases} y_0, & \text{if } 0 \le ||x|| \le \frac{1}{2} \\ F(\frac{x}{||x||}, 2 - 2||x||), & \text{if } \frac{1}{2} \le ||x|| \le 1 \end{cases}$$

2.1. HOMOTOPY

Notice, that if $||x|| = \frac{1}{2}$, then $g(x) = F(2x, 1) = y_0$. Therefore, by the pasting lemma, g is continuous. Moreover, if ||x|| = 1, g(x) = F(x, 0) = f, which makes g an extension of f.

Now, suppose that there exists an extension $g: B^{n+1} \to Y$ of f. Since S^n is a subspace of B^{n+1} , we have that $g \circ i = g|_{S^n} = f$, where $i: Y \to S^n$ is an inclusion. Now, let $x_0 \in S^n$ and define the constant map $k: S^n \to Y$ by taking $x \to f(x_0)$ for all $x \in S^n$. Additionally, define the map $F: S^N \times I \to Y$ given by $F(x,t) = g((1-t)x + x_0t)$. We have that F is continuous by composition of continuous maps, and that F(x,0) = g(x) = f(x), since F has the domain $S^n \times I$, and that $F(x,1) = g(x_0) = f(x_0)$, since F has the domain $S^n \times I$. This makes $f \simeq k$ with F as the associated homotopy.

Bibliography

- [1] J. Munkres, Topology. New York, NY: Pearson, 2018.
- [2] J. Rotman, An Introduction to Algebraic Topology. New York, NY: Springer-Verlag, 1988.