# gmena

# April 29, 2025

| [264]: |                                    | Missing Values | Percent Missing |
|--------|------------------------------------|----------------|-----------------|
|        | continent                          | 26525          | 6.176721        |
|        | total_cases                        | 17631          | 4.105627        |
|        | new_cases                          | 19276          | 4.488689        |
|        | new_cases_smoothed                 | 20506          | 4.775111        |
|        | total_deaths                       | 17631          | 4.105627        |
|        | new_deaths                         | 18827          | 4.384133        |
|        | new_deaths_smoothed                | 20057          | 4.670555        |
|        | total_cases_per_million            | 17631          | 4.105627        |
|        | new_cases_per_million              | 19276          | 4.488689        |
|        | new_cases_smoothed_per_million     | 20506          | 4.775111        |
|        | total_deaths_per_million           | 17631          | 4.105627        |
|        | new_deaths_per_million             | 18827          | 4.384133        |
|        | new_deaths_smoothed_per_million    | 20057          | 4.670555        |
|        | reproduction_rate                  | 244618         | 56.962753       |
|        | icu_patients                       | 390319         | 90.891287       |
|        | icu_patients_per_million           | 390319         | 90.891287       |
|        | hosp_patients                      | 388779         | 90.532677       |
|        | hosp_patients_per_million          | 388779         | 90.532677       |
|        | weekly_icu_admissions              | 418442         | 97.440125       |
|        | weekly_icu_admissions_per_million  | 418442         | 97.440125       |
|        | weekly_hosp_admissions             | 404938         | 94.295528       |
|        | weekly_hosp_admissions_per_million | 404938         | 94.295528       |
|        | total_tests                        | 350048         | 81.513617       |
|        | new_tests                          | 354032         | 82.441347       |
|        | total_tests_per_thousand           | 350048         | 81.513617       |
|        | new_tests_per_thousand             | 354032         | 82.441347       |
|        | new_tests_smoothed                 | 325470         | 75.790283       |
|        | new_tests_smoothed_per_thousand    | 325470         | 75.790283       |
|        | positive_rate                      | 333508         | 77.662044       |
|        | tests_per_case                     | 335087         | 78.029737       |
|        | tests_units                        | 322647         | 75.132907       |
|        | total_vaccinations                 | 344018         | 80.109446       |
|        | people_vaccinated                  | 348303         | 81.107269       |
|        | people_fully_vaccinated            | 351374         | 81.822395       |
|        | total_boosters                     | 375835         | 87.518484       |
|        | new_vaccinations                   | 358464         | 83.473401       |
|        | new_vaccinations_smoothed          | 234406         | 54.584745       |

| total_vaccinations_per_hundred             | 344018 | 80.109446 |
|--------------------------------------------|--------|-----------|
| <pre>people_vaccinated_per_hundred</pre>   | 348303 | 81.107269 |
| people_fully_vaccinated_per_hundred        | 351374 | 81.822395 |
| total_boosters_per_hundred                 | 375835 | 87.518484 |
| new_vaccinations_smoothed_per_million      | 234406 | 54.584745 |
| new_people_vaccinated_smoothed             | 237258 | 55.248874 |
| new_people_vaccinated_smoothed_per_hundred | 237258 | 55.248874 |
| stringency_index                           | 233245 | 54.314390 |
| population_density                         | 68943  | 16.054350 |
| median_age                                 | 94772  | 22.068998 |
| aged_65_older                              | 106165 | 24.722018 |
| aged_70_older                              | 98120  | 22.848627 |
| gdp_per_capita                             | 101143 | 23.552575 |
| extreme_poverty                            | 217439 | 50.633740 |
| cardiovasc_death_rate                      | 100570 | 23.419144 |
| diabetes_prevalence                        | 83524  | 19.449742 |
| female_smokers                             | 182270 | 42.444142 |
| male_smokers                               | 185618 | 43.223771 |
| handwashing_facilities                     | 267694 | 62.336326 |
| hospital_beds_per_thousand                 | 138746 | 32.308964 |
| life_expectancy                            | 39136  | 9.113370  |
| human_development_index                    | 110308 | 25.686774 |
| excess_mortality_cumulative_absolute       | 416024 | 96.877059 |
| excess_mortality_cumulative                | 416024 | 96.877059 |
| excess_mortality                           | 416024 | 96.877059 |
| excess_mortality_cumulative_per_million    | 416024 | 96.877059 |

# 0.1 #### Data Preprocessing

| [265]: |                                 | Missing Values | Percent Missing |
|--------|---------------------------------|----------------|-----------------|
|        | continent                       | 26525          | 6.176721        |
|        | total_cases                     | 17631          | 4.105627        |
|        | new_cases                       | 19276          | 4.488689        |
|        | new_cases_smoothed              | 20506          | 4.775111        |
|        | total_deaths                    | 17631          | 4.105627        |
|        | new_deaths                      | 18827          | 4.384133        |
|        | new_deaths_smoothed             | 20057          | 4.670555        |
|        | total_cases_per_million         | 17631          | 4.105627        |
|        | new_cases_per_million           | 19276          | 4.488689        |
|        | new_cases_smoothed_per_million  | 20506          | 4.775111        |
|        | total_deaths_per_million        | 17631          | 4.105627        |
|        | new_deaths_per_million          | 18827          | 4.384133        |
|        | new_deaths_smoothed_per_million | 20057          | 4.670555        |
|        | population_density              | 68943          | 16.054350       |
|        | median_age                      | 94772          | 22.068998       |
|        | aged_65_older                   | 106165         | 24.722018       |
|        | aged_70_older                   | 98120          | 22.848627       |

| gdp_per_capita             | 101143 | 23.552575 |
|----------------------------|--------|-----------|
| cardiovasc_death_rate      | 100570 | 23.419144 |
| diabetes_prevalence        | 83524  | 19.449742 |
| female_smokers             | 182270 | 42.444142 |
| male_smokers               | 185618 | 43.223771 |
| hospital_beds_per_thousand | 138746 | 32.308964 |
| life_expectancy            | 39136  | 9.113370  |
| human_development_index    | 110308 | 25.686774 |

### Feature Selection and Derivation

# 0.2~### Exploratory Data Analysis

# Visualizations

|       | total_cases  | total_deaths | gdp_per_capita | life_expectancy |
|-------|--------------|--------------|----------------|-----------------|
| count | 4.118040e+05 | 4.118040e+05 | 328292.000000  | 390299.000000   |
| mean  | 7.365292e+06 | 8.125957e+04 | 18904.182986   | 73.702098       |
| std   | 4.477582e+07 | 4.411901e+05 | 19829.578099   | 7.387914        |
| min   | 0.000000e+00 | 0.000000e+00 | 661.240000     | 53.280000       |
| 25%   | 6.280750e+03 | 4.300000e+01 | 4227.630000    | 69.500000       |
| 50%   | 6.365300e+04 | 7.990000e+02 | 12294.876000   | 75.050000       |
| 75%   | 7.582720e+05 | 9.574000e+03 | 27216.445000   | 79.460000       |
| max   | 7.758668e+08 | 7.057132e+06 | 116935.600000  | 86.750000       |











# Correlation Analysis





# 1 Uncovering Response Patterns: Clustering Analysis of Global COVID-19 Data

### 1.1 Clustering Methodology: K-means and Hierarchical Approaches

This section leverages two complementary clustering techniques: K-means and agglomerative hierarchical clustering to uncover groups of countries whose COVID-19 trajectories and outcomes share similar patterns. After normalizing key pandemic indicators alongside socioeconomic variables, K-means partitions nations into compact clusters; and hierarchical clustering builds a nested tree of country groupings without prespecifying the number of clusters. Together, these methods provide a robust foundation for revealing how underlying social and economic factors shaped the global progression of the pandemic.

#### K-means



Observing the elbow plot, a distinct bend occurs around K=3 or K=4. Prior to this point, there is a steep decline in inertia, suggesting that increasing the number of clusters significantly reduces inter-cluster variance. However, beyond K=4, the decrease in inertia becomes less pronounced, indicating that adding more clusters provides diminishing returns in terms of reducing the overall dispersion within the clusters. Therefore, based on the Elbow method, the optimal number of clusters for this K-means analysis is likely 4.

```
K-means Cluster Analysis
Cluster 0:
- total_cases_per_million: 12823.23
- total_deaths_per_million: 195.96
- case_fatality_rate: 0.02
- gdp_per_capita: 4198.00
- hospital_beds_per_thousand: 1.63
- median_age: 20.62
- population_density: 132.94
- human_development_index: 0.55
Cluster 1:
- total_cases_per_million: 205142.18
- total_deaths_per_million: 1099.18
- case_fatality_rate: 0.01
- gdp_per_capita: 16884.35
- hospital_beds_per_thousand: 2.84
- median age: 30.40
- population_density: 215.00
- human_development_index: 0.74
Cluster 2:
- total_cases_per_million: 392245.99
- total_deaths_per_million: 2628.22
- case_fatality_rate: 0.01
- gdp_per_capita: 35570.52
- hospital_beds_per_thousand: 4.50
- median_age: 39.54
- population_density: 418.67
- human_development_index: 0.86
Cluster 3:
- total_cases_per_million: 441115.30
- total_deaths_per_million: 1720.20
- case_fatality_rate: 0.00
- gdp_per_capita: 18211.36
- hospital_beds_per_thousand: 13.80
- median_age: 30.02
- population_density: 19347.50
- human_development_index: 0.72
```

---

#### K-means Interpretation

Cluster 0 is characterized by very low case and death burdens alongside low income and young populations. On average, these countries have only about 12,800 cases and 196 deaths per million, a case–fatality rate around 2 percent, GDP per capita of roughly \$4,200, and fewer than two hospital beds per thousand people. With a median age of about 20 and an HDI near 0.55, this cluster likely captures lower resource, youthful nations that saw relatively limited spread or reporting of COVID. For Cluster 1, its countries average around 205,000 cases and 1,100 deaths per million, GDP per capita of \$16,900, about 2.8 beds per thousand, and a median age of 30. An HDI of ~0.74 places them solidly in the lower-middle to upper-middle development range. This cluster represents nations with moderate socioeconomic development and a correspondingly moderate impact from the pandemic.

Cluster 2 includes some of the wealthiest, most heavily affected and often most densely populated countries. They report the highest case counts and deaths but maintain a very low CFR, reflecting extensive testing and health system capacity. With GDP per capita around \$35,600, nearly five hospital beds per thousand people, median age near 40, and HDI of 0.86, these are high-income or advanced economy nations that experienced widespread, but ultimately well managed outbreaks. Cluster 3 is somewhat of an outlier: extremely high density paired with very high case counts, yet a moderate death toll and near-zero CFR. Their GDP per capita and HDI are similar to Cluster 1, but the large number of beds and young median age suggest small, city-state or specialized jurisdictions places like Singapore or Hong Kong where dense populations, abundant health infrastructure, and aggressive testing drive up case detection while keeping deaths comparatively in check.

Together, these four groups trace a spectrum from low-resource, low-impact countries, through mid-level economies with moderate outbreaks, to wealthy nations with heavy but contained spread, and finally to very high-density city-states or micro-jurisdictions with intense testing and capacity.

### **Hierarchical Clustering**



### **Dendrogram Interpretation**

The dendrogram reveals a two way division at the highest level: on one side a dense cluster of low income, young population countries with relatively few cases and deaths, and on the other all remaining nations, which themselves split into middle income, moderate impact countries and a group of wealthy, high density or micro jurisdictions experiencing very high case counts but low fatality rates. Closer to the leaves, tight clusters pairs or trios of nearly identical neighbors or microstates that merge at very low distances, reflecting almost indistinguishable COVID and so-cioeconomic profiles. At intermediate heights, broader groupings coalesce to distinguish emerging economy nations from both low resource settings and advanced economies, underscoring the gradations in infrastructure, age structure, and pandemic response. Overall, the dendrogram confirms not only confirms three natural tiers: low-impact, low-resource countries, through middle-income moderate-outbreak nations, to high-capacity, high-impact jurisdictions, but also highlights the pronounced gap between the lowest resource countries and the rest of the world.