NeSS Tutorial-8

Sinusoidal excitation

Q1. Let $vs = 40 \cos 8000t \ V$ in the circuit of Fig. 10.7. Use Thévenin's theorem where it will do the most good, and find the value at t = 0 for (a) iL; (b) vL; (c) iR; (d) is.

Q2. Find Vc(t) in below figure

Phasor representation:

Q3. Let ω = 2000 rad/s and t = 1 ms. Find the instantaneous value of each of the currents given here in phasor form: (a) j10 A; (b) 20 + j10 A; (c) 20 + j(10/20 $^{\circ}$) A.

Reactance of R,L and C

Q4. Apply the voltage $8/\underline{-50^\circ}$ V at a frequency $\omega = 100$ rad/s to a 4 H inductor, and determine the phasor current and the time-domain current.

Q5. In the circuit of Fig. 10.17, both sources operate at ω = 1 rad/s. If IC = 2/28 \circ A and I L = 3/53 \circ A, calculate (a) I s; (b) V s; (c) iR1 (t).

FIGURE 10.17 A three-mesh circuit. Each source operates at the same frequency ω .

Q6. Find the current i(t) in the circuit shown in Fig. 10.20a.

Q7. Use nodal analysis on the circuit of Fig. 10.23 to find V 1 and V 2 .

Superposition:

Q8. Determine the current i through the 40hms resistor of Fig. 10.34.

Thevenin, nortal equivalents:

Q9. For the circuit of Fig. 10.32, find the (a) open-circuit voltage V ab; (b) downward current in a short circuit between a and b; (c) Thévenin equivalent impedance Z ab in parallel with the current source.

