250 Temel Sayılar Teorisi Problemi

23 Ekim 2024

İçindekiler

Hoşgeldiniz	3
1 Tam Sayıların Bölünmesi	4
Kavnakca	(

Hoșgeldiniz

Bu kitap, Waclaw Sierpinski'nin 250 Problems in Elementary Number Theory (Sierpinski (1970)) kitabının Türkçeye uyarlanmasıyla oluşturulmuştur.

1 Tam Sayıların Bölünmesi

- 1. $n^2 + 1$ sayısının n + 1'e bölünecek şekilde tüm pozitif tam sayı n değerlerini bulunuz.
- 2. $x^3 3$ sayısının x 3'e bölünecek şekilde tüm $x \neq 3$ tam sayılarını bulunuz.
- 3. $4n^2 + 1$ sayısının 5'e ve 13'e bölünmesini sağlayan sonsuz sayıda pozitif tam sayı n'nin bulunduğunu kanıtlayınız.³
- 4. Her pozitif tam sayı n için $3n^3 + 26n 27$ sayısının 169'a bölündüğünü kanıtlayınız.
- 5. k=0,1,2,... için $22^{6k+2}+3$ sayısının 19'a bölündüğünü kanıtlayınız.⁵
- 6. $2^{70} + 3^{70}$ sayısının 13'e bölündüğünü gösteriniz.
- 7. $20^{15} 1$ sayısının $11 \cdot 31 \cdot 61$ çarpanına bölündüğünü kanıtlayınız.
- 1 Bu koşulu sağlayan yalnızca bir pozitif tam sayı vardır: n=1. Gerçekten de $n^2+1=n(n+1)-(n-1)$ 'dir; bu nedenle, $n+1\mid n^2+1$ ise, $n+1\mid n-1$ olur. Bu, pozitif tam sayılar için yalnızca n-1=0 olduğunda mümkündür, yani n=1 olmalıdır.
- $^2x-3=t$ olarak tanımlayalım. Böylece, $t,\,t\neq 0$ olacak şekilde bir tam sayı olur ve $t\mid (t+3)^3-3$, bu da $t\mid 3^3-3$ yani $t\mid 24$ koşuluna eşdeğerdir. Bu nedenle, t'nin 24'ün bir tam sayı böleni olması gerekli ve yeterlidir. Bu durumda, $t,\,\pm 1,\,\pm 2,\,\pm 3,\,\pm 4,\,\pm 6,\,\pm 8,\,\pm 12,\,\pm 24$ sayılarından biri olmalıdır. x=t+3 için şu değerleri elde ederiz: $-21,\,-9,\,-5,\,-3,\,-1,\,0,\,1,\,2,\,4,\,5,\,6,\,7,\,9,\,11,\,15,\,$ ve 27.
- 3 Örneğin, 65k+56aritmetik dizisindeki tümnsayıları (burada $k=0,1,2,\ldots$), istenen özelliğe sahiptir. Gerçekten de, n=65k+56için, $k\geq 0$ tam sayısı ile $n\equiv 1\pmod 5$ ve $n\equiv 4\pmod 13$ olur. Bu nedenle, $4n^2+1\equiv 0\pmod 5$ ve $4n^2+1\equiv 0\pmod 13$ olur. Böylece, $5\mid 4n^2+1$ ve $13\mid 4n^2+1$.
- 4 İddiamızı tümevarım yöntemiyle kanıtlayacağız. 169 | $3^6-26-27=676=4\cdot 169$ olduğunu biliyoruz. Sonraki adımda, $3^{3(n+1)+3}-26(n+1)-27-(3^{3n+3}-26n-27)=26(3^{3n+3}-1)$ elde ederiz. Ancak, 13 | 3^3-1 , bu nedenle 13 | $3^{3(n+1)}-1$ ve 169 | $26(3^{3n+3}-1)$ 'dir. Tümevarım yöntemiyle kanıt hemen ortaya çıkar.
- $^52^6=64\equiv 1\pmod 9$ olduğuna göre, k=0,1,2,... için $2^{6k}\equiv 1\pmod 9$ elde ederiz. Bu nedenle $2^{6k+2}\equiv 2^2\pmod 9$ olur ve her iki taraf da çift olduğundan, $2^{6k+2}\equiv 2^2\pmod 18$ elde ederiz. Buradan $2^{6k+2}=18t+2^2$ elde ederiz, burada $t\geq 0$ bir tam sayıdır. Ancak, Fermat'ın küçük teoremine göre, $2^{18}\equiv 1\pmod 19$ 'dur ve $2^{18t}\equiv 1\pmod 19$ olur, t=0,1,2,... için. Böylece, $2^{6k+2}\equiv 2^{18t+4}\equiv 2^4\pmod 19$ olur; buradan da $2^{6k+2}+3\equiv 2^4+3\equiv 0\pmod 19$ elde edilir ve bu da kanıtlanması gereken şeydir.
- ⁶Fermat'ın küçük teoremine göre, $2^{12} \equiv 1 \pmod{13}$ olduğundan, $2^{60} \equiv 1 \pmod{13}$ elde ederiz. Ayrıca, $2^5 \equiv 6 \pmod{13}$ olduğu için, $2^{10} \equiv -3 \pmod{13}$ elde ederiz. Öte yandan, $3^3 \equiv 1 \pmod{13}$ 'tür, bu da $3^{69} \equiv 1 \pmod{13}$ ve $3^{70} \equiv 3 \pmod{13}$ anlamına gelir. Bu nedenle, $2^{70} + 3^{70} \equiv 0 \pmod{13}$ olur, yani $13 \mid 2^{70} + 3^{70}$, bu da kanıtlanması gereken şeydir.
- 7 Açıkça görülüyor ki, $20^{15}-1$ sayısının her bir asal böleni olan 11, 31 ve 61'in $20^{15}-1$ 'i böldüğünü göstermek yeterlidir. $2^5\equiv -1\pmod{11}$ ve $10\equiv -1\pmod{11}$ olduğundan, $10^5\equiv -1\pmod{11}$, bu da $20^5\equiv 1\pmod{11}$ ve $20^{15}\equiv 1\pmod{11}$ anlamına gelir. Dolayısıyla 11 | $20^{15}-1$. Sonra, $20\equiv -11\pmod{31}$ olduğundan, $20^2\equiv 121\equiv -3\pmod{31}$ 'dir. Bu nedenle, $20^3\equiv (-11)(-3)=33\equiv 2\pmod{31}$ ve $20^{15}\equiv 2^5\equiv 1\pmod{31}$ olur. Böylece, $31\mid 20^{15}-1$. Son olarak, $3^4\equiv 20\pmod{61}$ ve bu da $20^{15}\equiv 3^{60}\equiv 1\pmod{61}$ anlamına gelir (Fermat'ın küçük teoremine göre); bu nedenle $61\mid 20^{15}-1$.

8. Her pozitif tam sayı m ve a > 1 tam sayısı için

$$\left(\frac{a^m-1}{a-1},a-1\right)=(a-1,m)$$

eşitliğinin sağlandığını kanıtlayınız.⁸

- 9. Her pozitif n sayısı için $3\cdot (15^5+25^5+\cdots+n^5)$ sayısının $13^3+23^3+\cdots+n^3$ 'e bölündüğünü kanıtlayınız.
- 10. $1^n+2^n+\cdots+(n-1)^n$ sayısının n'e bölünmesini sağlayan tümn>1tam sayılarını bulunuz.
- 11. Pozitif tam n sayısı için $a_n=2^{2n+1}-2^{n+1}+1$ ve $b_n=2^{2n+1}+2^{n+1}+1$ sayılarından hangisinin 5'e bölünüp, hangisinin bölünmediğini tespit ediniz.

$$\frac{a^m-1}{a-1} = (a^{m-1}-1) + (a^{m-2}-1) + \dots + (a-1) + m \tag{1}$$

ve $a-1\mid a^k-1$ ifadesinin $k=0,1,2,\ldots$ için geçerli olduğunu dikkate alarak, $d\mid m$ elde ederiz. Bu nedenle, a-1 ve m sayılarının $d>\delta$ ortak bir böleni olsaydı, (1) eşitliğine göre $\delta\mid \frac{a^m-1}{a-1}$ olurdu ve a^m-1 ile a-1 sayıları $\delta>d$ ortak bir bölenine sahip olurdu ki bu imkânsızdır. Bu nedenle, d, a-1 ve m sayılarının en büyük ortak bölenidir ve bu kanıtlanması gereken şeydir.

 $[\]overline{{}^8d=\left(rac{a^m-1}{a-1},a-1
ight)}$ olarak tanımlayalım. Aşağıdaki eşitliği göz önünde bulunduralım:

Kaynakça

Sierpinski, Waclaw. 1970. 250 problems in elementary number theory. American Elsevier Publishing Company.