COMP229: Introduction to Data Science Lecture 16: Metric axioms

Olga Anosova, O.Anosova@liverpool.ac.uk Autumn 2023, Computer Science department University of Liverpool, United Kingdom

Lecture plan

- Metric
- Euclidean metric in $\mathbb R$
- Euclidean metric in \mathbb{R}^n
- *L_s* metric
- Shortest path distance in graphs

Reminder: SLR

- The least-squares regression line minimises the sum of squared vertical distances from points.
- The regression line y=ax+b has $b=\bar{y}-a\bar{x}$, $a=\frac{\sum\limits_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sum\limits_{i=1}^{n}(x_{i}-\bar{x})^{2}} \text{ and passes through the point } (\bar{x},\bar{y}),$ where \bar{x},\bar{y} are the sample means.
- A regression line y = ax + b may not be symmetric with respect to x, y, i.e. swapping x, y may give another regression x = cy + d.
- SLR predictions can be useful, but misleading.

The key questions about data

The real-life question 'what is data?' can be split into the following important subquestions:

What is a single data point? Often it is a sequence of numbers. How many coordinates?

What data points are considered equivalent? Is it an equivalence relation?

If data points are different, how different they are? How can a similarity between points be measured?

The Euclidean metric in \mathbb{R}^n

If data are given as points in \mathbb{R}^n , one of *infinitely many ways* to measure a similarity or a distance between $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ is the *Euclidean metric* $L_2(p,q)$ $=\sqrt{\sum_{i=1}^n(p_i-q_i)^2}$ $=\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_n-q_n)^2}$

The key message of this lecture: there are *infinitely many* other ways to measure a distance, which are often better suited for specific applications.

Axioms for a metric (distance)

Definition 16.1. For any set C of arbitrary elements, a *metric* (distance) is a real-valued function $d: C \times C \to \mathbb{R}$ satisfying the axioms:

- (1) identity: d(p,q) = 0 if and only if p = q;
- (2) symmetry: d(p,q) = d(q,p) for any $p,q \in C$;
- (3) triangle inequality (draw a triangle on p, q, r): $d(p, q) + d(q, r) \ge d(p, r)$ for any $p, q, r \in C$.

The positivity of a metric

Claim 16.2. Any metric from Definition 14.1 satisfies positivity : $d(p, q) \ge 0$ for any $p, q \in C$.

Proof. If we set r=p, then the triangle inequality is $d(p,q)+d(q,p)\geqslant d(p,p)$. Apply the symmetry and identity: $d(p,q)+d(p,q)\geqslant 0$, $d(p,q)\geqslant 0$.

Often the positivity is included in the 1st axiom, but the identity condition can't be missed. Why not? Without it, the trivial example is d(p,q)=0 for all p,q collapses all points together and does not allow any measurement of difference between points.

A 1-dimensional case

Data points can be real numbers, points in \mathbb{R}^n , matrices, images, molecules, people or anything.

In the simplest case when data points are real numbers, e.g. ages of students, how would you measure a distance between numbers $p, q \in \mathbb{R}$?

The Euclidean metric is $L_2(p,q)=|p-q|$. The absolute value of $x\in\mathbb{R}$ is $|x|=\left\{\begin{array}{ll} x & \text{for } x\geqslant 0,\\ -x & \text{for } x<0. \end{array}\right.$

Examples

Problem 16.3. Is d(p,q)=p-q a metric in \mathbb{R} ? **Solution 16.3**. d(p,q)=p-q is not a metric, because the symmetry axiom fails: $d(0,1)\neq d(1,0)$ shows that d(p,q)=p-q isn't a metric on \mathbb{R} .

Problem 16.4. Is $d(p, q) = (p - q)^2$ a metric?

Solution 16.4. No since the triangle axiom fails: $d(-1,0) + d(0,1) = 1^2 + 1^2 = 2 < d(-1,1) = 4$, though the identity and symmetry axioms hold.

The Euclidean metric on \mathbb{R}

Problem 16.5. Is d(p,q) = |p-q| a metric on \mathbb{R} ?

Solution 16.5. Check all the axioms for any real $p, q, r \in \mathbb{R}$.

- (1) |p-q|=0 if and only if p=q, true.
- (2) symmetry: |p-q|=|q-p|, true.
- (3) triangle inequality: if $p \geqslant q \geqslant r$, then

$$|p-q|+|q-r|=(p-q)+(q-r)=p-r=|p-r|,$$

(sketch 3 points in \mathbb{R}). Other cases are easy: for $p \geqslant r \geqslant q$,

$$|p-q|=p-q\geqslant p-r=|p-r|.$$

From \mathbb{R} to \mathbb{R}^2

How to define a metric in \mathbb{R}^2 ?

Let's try
$$|p_1 - q_1| + |p_2 - q_2|$$
 for $p = (p_1, p_2)$ and $q = (q_1, q_2)$.

This distance between (0,0) and (2,2) is |2-0|+|2-0|=4.

Is it the shortest path?

The metric axioms of L_2

Claim 16.6. The Euclidean metric $L_2(p,q) = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}$ satisfies the metric axioms.

Proof. The identity and symmetry axioms are easy. The triangle inequality for $\triangle pqr$ in terms of vectors $\vec{u} = \overrightarrow{pq}, \vec{v} = \overrightarrow{qr}$ says that $|\vec{u} + \vec{v}| \leq |\vec{u}| + |\vec{v}|$. Any vector \vec{w} has angle 0 with itself, so $\vec{w} \cdot \vec{w} = |\vec{w}|^2$.

Then $(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) \leq |\vec{u}|^2 + 2|\vec{u}| \cdot |\vec{v}| + |\vec{v}|^2$ follows from Cauchy's inequality $\vec{u} \cdot \vec{v} \leq |\vec{u}| \cdot |\vec{v}|$.

Other metrics on \mathbb{R}^n

Definition 16.7. For any real $s \geqslant 1$ and $p, q \in \mathbb{R}^n$, the

$$L_s$$
-metric is $L_s(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^s\right)^{1/s}$.

For s=1, $L_1(p,q)=\sum\limits_{i=1}^n|p_i-q_i|$ is also called the

Manhattan metric.

When $s \to +\infty$, the limit case gives the **max** (or Chebyshev) metric $L_{\infty}(p,q) = \max_{i=1,\dots,n} |p_i - q_i|$.

The balls in other metrics

Problem 16.8. p = (4,0), q = (0,3). Find L_1, L_{∞} . What is the unit ball $B = \{p \in \mathbb{R}^2 : L_{\infty}(p,0) \leq 1\}$?

$$B = \{ p \in \mathbb{R}^2 : L_1(p, 0) \leq 1 \}$$
?

Solution 16.8. Manhattan has vertical avenues (north-to-south), horizontal streets (east-to-west), hence it's known as taxicab (or Manhattan) L_1 -metric.

$$L_1(p,q) = |4-0| + |0-3| = 7.$$

$$L_2(p,q) = \max\{|4-0|, |0-3|\} = 4.$$

The yellow square is the ball of radius $\varepsilon=1$ in L_{∞} .

The unit ball in L_1 is the square $|x \pm y| \le 1$.

L_{∞} as a chessboard distance

 L_{∞} gives the minimum number of moves a king requires to move between two chessboard squares.

Here are the L_{∞} distances from the square F6.

Reminder: new formula for π

Indeed in L_1 the value of a geometric analog to π is 4.

 L_1 is a handy tool to measure the differences in discrete frequency distributions.

Graphs with vertices and edges

Definition 16.9. A (unoriented) **graph** is a pair (vertices, edges), where **vertices** V form a finite set of |V| elements, and **edges** form a set E defined by unordered pairs of vertices.

|V| = number of vertices, |E| = number of edges. Other names: graph = network, vertex = node, edge = link (or connection), oriented = directed.

The graph with a single edge connecting two vertices (labelled by 1,2) can be described by the pair $(\{1,2\},\{(1,2)\})$ or by the pair $(\{1,2\},\{(2,1)\})$. Sometimes only the number of vertices with the list of edges is used: $|V| = 2,\{(1,2)\}$.

More conventions and examples

For any vertex v, the pair (v, v) represents a **loop** at v (one edge connecting a vertex to itself).

For |V|=2, the list $\{(1,1)\}$ denotes the graph consisting of one loop and the isolated vertex 2.

For vertices u, v, the repeated pair (u, v), (u, v) in a list represents a **double** edge between u, v. The list (1, 2), (2, 3), (3, 1) represents a triangular cycle.

A metric graph

Definition 16.10. A graph G is **connected** if any two vertices are connected by a **path** (sequence) of edges e_1, \ldots, e_k such that any successive edges e_i, e_{i+1} share a vertex for $i = 1, \ldots, k-1$.

Let associate to every edge a non-negative length or weight. The length of any path is the sum of lengths of its edges. For any vertices u, v, the **shortest path distance** (or **graph geodesic**) is the length of a shortest path from u to v.

Time to revise and ask questions

- A metric (distance) should satisfy the axioms of identity, symmetry, triangle inequality.
- $L_s(p,q) = \left(\sum_{i=1}^n |p_i q_i|^s\right)^{1/s}$ in \mathbb{R}^n , $s \geqslant 1$.

Problem 16.11. Is the shortest path distance of any connected graph a metric?