Portfolio analysis

Yao-Min Chiang

王大龍目前持有下列股票,其權重如下

彰銀亞太電欧買尬七電支東新0.150.25

- 1.請您計算目前投資組合的期望報酬及報酬標準差
- 2.請您畫出這五個資產所能構建而成的效率前緣,並標出目前投資組合的位置
- 3.目前投資組合是一個有效率的組合嗎?
- **4.**如不是,要如何改進?是以三個資產來組成投資組合較好?還是四個資產?還是五個資產?
- 5.如果只挑三支股票,應該選哪三檔?

1402	1503	2739	2801	3682	3687	
遠東新	士電	寒舍	彰銀	亞太電	歐買尬	
0.00796	0.006538	-0.00647	0.006761	-0.00638	0.016249	
	遠東新	士電	寒舍	彰銀	亞太電	歐買尬
遠東新	0.390567	0.106275	0.087565	0.128384	0.204276	0.223919
士電	0.106275	0.161483	0.058867	0.074734	0.054558	0.225703
寒舍	0.087565	0.058867	0.463461	0.040812	0.17405	0.080734
彰銀	0.128384	0.074734	0.040812	0.179529	0.07829	0.04791
亞太電	0.204276	0.054558	0.17405	0.07829	1.001035	0.262097
歐買尬	0.223919	0.225703	0.080734	0.04791	0.262097	2.26329

(Wo Assets TP = WAYA + WB FB E(Vp)=WAE(VA)+WBE(VB) Var(p) = WA JA + W3 JD + ZWAW3 COULY, KJ

+ 2 WA WS P JA JA

Three assets

More assets

Many assets

Diversification

Average Portfolio Standard Deviation

Number of assets

Total MSK = Mon-systematic Msk + systematic Msk diversifiable

Non-diversifiable

firm-specific

(Beta Msk)

Optimization

Portfolio selection

With risk free asset Capital Allocation Line (CAL)

Sharpe ratio

$$\frac{R_p - R_f}{}$$

Where:

 R_p = Portfolio Return

 R_f = Risk-Free Rate (3-month Treasury Rate is standard)

 σ_p = Portfolio Risk, aka Standard Deviation of Returns

Portfolio selection with risk free asset

5.5 Portfolio Asset Allocation: Expected Return and Risk

Expected Return of the Complete Portfolio

$$\begin{split} E(r_C) &= y \times E(r_p) + (1-y) \times r_f \\ where \quad E(r_C) &= \text{Expected Return of the complete portfolio} \\ E(r_p) &= \text{Expected Return of the risky portfolio} \\ r_f &= \text{Return of the risk free asset} \end{split}$$

Standard Deviation of the Complete Portfolio

$$\sigma_C = y \times \sigma_p$$

where $\sigma_C = \text{Standard deviation of the complete portfolio}$
 $\sigma_P = \text{Standard deviation of the risky portfolio}$

y = Percentage assets in the risky portfolio

Figure 5.6 Investment Opportunity Set

Security Market Line When only consider market risk

Derive CAPM

$$E(r_{A})-r_{f}$$

$$E(r_{A})-r_{f}$$

$$R_{M}$$

$$R_{M}=1$$

$$E(r_{A})-r_{f}$$

$$E(r_{A})-r_{f}$$

$$E(r_{A})-r_{f}$$

$$E(r_{A})-r_{f}$$

$$F(r_{M})-r_{f}$$

$$F(r$$

Capital Asset Pricing Model CAPM

```
E(r_i) = R_f + \beta_i(E(r_m) - R_f)

E(r_i) = \text{return required on financial asset i}

R_f = \text{risk-free rate of return}
```

 β_i = beta value for financial asset i

 $E(r_m)$ = average return on the capital market