Александра Игоревна Кононова / illinc@mail.ru +7-985-148-32-64 (телефон), +7-977-977-97-29 (WhatsApp), gitlab.com/illinc/raspisanie

МИЭТ

25 сентября 2021 г.— актуальную версию можно найти на https://gitlab.com/illinc/otik

Регламент

См. https://gitlab.com/illinc/otik/

Дополнительные баллы:

- бонусные задания л/р;
- ② вычитка материала 1-4 балла за принятое замечание, 2-8 за принятое исправление;
- $oldsymbol{0}$ пополнение списка литературы (-1)-(+8) баллов.

Экзамен (оценка):

$$\frac{5}{1}$$
 86 - 100

$$\begin{array}{r}
 4 & 70 - 85 \\
 3 & 50 - 69
 \end{array}$$

$$\frac{3}{2}$$
 0 - 49

Консультации — см. gitlab.com/illinc/raspisanie

Теория информации — математическая теория, посвящённая измерению информации, её потока, «размеров» канала связи и т. п., особенно применительно к средствам связи:

$$x\in X \sim I(x)$$
 x — сообщение, $X=\{x,p(x)\}$ — источник (сл. процесс/сл. величина). Дискретное x может состоять из символов или быть отдельным символом.

Информация — нематериальная сущность, при помощи которой с любой точностью можно описывать реальные (материальные), виртуальные (возможные) и понятийные сущности.

- I(x):
 Новизна (неизмеряемость в быту).
 Объёмный (длина измерение в технике).

Простые коды (2)

Вероятностный (снятая неопределённость — измерение в ТИ).

Энтропия и информация

- 1865 г. Рудольф Клаузиус ввёл в статистическую физику понятие энтропии — меры уравновешенности [Дж/К].
- 1877 г. Людвиг Больцман установил связь энтропии с вероятностью.
- 1901 г. Макс Планк определил энтропию как $H = k \cdot \ln(\Omega)$, где k — коэффициент Больцмана [Дж/K].
- 1921 г. Роналд Фишер ввёл термин «информация» (информация, которую можно извлечь из имеющихся данных, имеет предел).
- 1928 г. Ральф Хартли логарифмическая мера информации для равновероятных событий.
- 1948 г. Клод Шеннон вычисление количества информация и энтропии.

Основное соотношение между энтропией и информацией:

Простые коды (1) Простые коды (2)

$$I + rac{\log_2 e}{k} H = const$$
 [бит] $\left(rac{dI}{dt} = -rac{\log_2 e}{k} rac{dH}{dt}
ight.$ [бит/с] $ight).$

Предмет теории информации. Источник информации Вероятностная мера информации Задачи: измерение информации Кодирование и структуры данных

Виды источников информации

По сообщениям:

- дискретные (цифровые)/непрерывные (аналоговые);
- дискретные: качественные/количественные.

Элемент качественной информации — символ $a \in A$ (множество A — алфавит); конечная последовательность символов — слово $x \in A^+$ (строка, фраза).

Источник символов алфавита A (можно прочитать строку):

- 1 стационарный (вероятность символа не зависит от времени/позиции: только от контекста) / нестационарный (при сдвиге вероятности меняются);
- марковский источник вероятность символа определяется состоянием; состояние изменяется после порождения символа (новое состояние однозначно определяется предыдущим и порождённым символом); марковский источник порядка m — вероятность символа на i-м шаге зависит от m предыдущих символов: i - 1, i - 2, ..., i - m;
- 📵 стационарный источник без памяти вероятность символа $a \in A$ постоянна (равна p(a));
- lacktriangle равновероятный источник вероятность символа $a\in A$ постоянна и одинакова для всех символов (равна $\frac{1}{|A|}$);

равновероятный \subseteq стационарный без памяти \subseteq марковский \subseteq стационарный

Предмет теории информации. Источник информации Вероятностная мера информации Задачи: измерение информации Кодирование и структуры данных

Виды источников информации

Бит — количество информации в сообщении, уменьшающем неопределённость знания в два раза.

Источник с двумя равновероятными состояниями симметричная монета

- 2 возможных варианта
- Решка 1 вариант

Неопределённость уменьшилась в 2 раза: I(P) = 1 бит

- Две симметричные монеты
- Первая вверх орлом 2 раза (+1 бит) Ο.
- 2 раза (+1 бит) 0P Вторая — вверх решкой
 - I(OP) = 2 бита 4 возможных варианта

Требования к мере информации I(x)

- **1** $I(x) \ge 0$.
- **2** Вероятностный подход: $I(x) = f(p_x)$.
- $oldsymbol{0}$ Объёмный подход: I(x) монотонно связана с затратами на передачу
 - два равновероятных сообщения 0 и 1 (1 бит), четыре 00, 01, 10, 11 (2 бита) и т. д.: $f\left(\frac{1}{2}\right)=1, \ f\left(\frac{1}{4}\right)=2, \ f\left(\frac{1}{8}\right)=3,\ldots$

Простые коды (2)

• затраты на передачу независимых сообщений складываются: $I(x_1,\dots,x_n) = I(x_1)+\dots+I(x_n)$

при этом вероятности независимых событий умножаются $f(p_1 \times ... \times p_n) = f(p_1) + ... + f(p_n)$.

Формула Хартли для равновероятных событий

Источник X порождает N равновероятных сообщений x $(\forall x \in X : p(x) = p = \frac{1}{N}).$

$$I(x) = I(X) = I = \log_2 N = -\log_2(p)$$
 или $2^I = N$

где I(x) — количество информации в сообщении x; I(X) — среднее кол-во информации в одном сообщении источника X.

Если N = 2. то I = 1 бит.

Подбрасывание монеты

.. 4 варианта 2 бита

Угадывание слов по словарю

..... 175 слов 7,5 бит

.а.и.а 122 слова 6,9 бит

р.б.т. 4 слова 2 бита

Количество информации I в сообщении с вероятностью p(x):

$$I(x) = -\log_2 p(x)$$

Свойства:

- **1** Неотрицательность: $I(x) \ge 0, x \in X$.
- **2** Монотонность: $x_1, x_2 \in X, p(x_1) \ge p(x_2) \to I(x_1) \le I(x_2)$.
- $oldsymbol{0}$ Аддитивность: для независимых сообщений x_1,\ldots,x_n $I(x_1,\ldots,x_n)=\sum_{i=1}^n I(x_i)$

Простые коды (2)

Для равновероятных событий соответствует формуле Хартли.

Среднее количество информации дискретного источника $X = \{x, p(x)\}$:

$$I(X) = \sum_{x_i \in X} \left(p(x_i) \cdot I(x_i) \right) = -\sum_{x_i \in X} \left(p(x_i) \cdot \log_2 p(x_i) \right)$$

Количество информации в тексте

Из источника символов X можно прочитать текст $\vec{x} = x_1 x_2 \dots x_k$

- **1** Источник без памяти: сообщения $x_1, x_2, \dots x_k$ независимы $p(\vec{x}) = p(x_1) \cdot p(x_2) \cdot \ldots \cdot p(x_k)$ $I(\vec{x}) = I(x_1) + I(x_2) + \ldots + I(x_k)$
- Источник с памятью:

$$p(\vec{x}) = p(x_1) \cdot p(x_2|x_1) \cdot \dots \cdot p(x_k|x_1x_2 \dots x_{k-1})$$

$$I(\vec{x}) = I(x_1) + I(x_2|x_1) + \dots + I(x_k|x_1x_2 \dots x_{k-1})$$

Если источник марковский порядка m:

$$I(\vec{x}) = I(x_1) + \ldots + I(x_i | x_{i-m} \ldots x_{i-1}) + \ldots + I(x_k | x_{k-1} \ldots x_{k-1})$$

Модель источника: X неизвестен

Оценка алфавита A_1 и вероятностей источника по сообщению: $x = \ll \text{молоко} \gg$

- lacktriangledown A_1 koi-8, равновероятные символы: $p=\frac{1}{256}$, $I(x)=6\cdot\log_2(256)=48$ (бит) **2** A_1 — русский алфавит, равновероятные: $p = \frac{1}{33}$, $I(x) = 6 \cdot \log_2(33) \approx 30.3$
- **3** A_1 Unicode 12.1, равновероятные: $p = \frac{1}{137994}, I(x) \approx 6 \cdot 17, 1 \approx 102, 4$
- $A_1 = \{\kappa, \pi, \kappa, o\}$, равновероятные: $p = \frac{1}{4}$, $I(x) = 6 \cdot \log_2(4) = 12$
- **5** $A_1 = \{\kappa, \pi, \kappa, o\}$ или koi-8, неравновероятные, стац-й источник без памяти:
 - o (3) + к (1) + л (1) + м (1): $p(o) = \frac{3}{6}, p(\kappa) = p(\pi) = p(M) = \frac{1}{6}$ $I(x) = -3 \cdot \log_2(\frac{3}{6}) - \log_2(\frac{1}{6}) - \log_2(\frac{1}{6}) - \log_2(\frac{1}{6}) = 3 \cdot \log_2(2) + 3 \cdot \log_2(6) \approx 10.8$
- $oldsymbol{0} A_1 = \{ \kappa, \pi, \kappa, o \}$ или koi-8, марковский источник первого порядка:

предыдущий	$p(\kappa)$	$p(\pi)$	p(M)	p(o)
_	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
К, Л, М	0	0	0	1
0	$\frac{1}{2}$	$\frac{1}{2}$	0	0

$$\begin{split} I(x) &= -\log_2(\frac{1}{4}) - \log_2(1) - \\ &- \log_2(\frac{1}{2}) - \log_2(1) - \\ &- \log_2(\frac{1}{2}) - \log_2(1) = \\ &= 2 + 1 + 1 = 4 \end{split}$$

 $m{0}\ A_1 = \{$ молоко, чай $\}$, равновероятные символы: $p = \frac{1}{2}, I(x) = 1$

Простые коды (2)

8 $A_1 = \{\text{молоко}\}: p = 1, I(x) = 0$

Предмет теории информации. Источник информации Вероятностная мера информации Задачи: измерение информации Кодирование и структуры данных Простые коды (1)

Задачи (равновероятный источник)

- Найти количество информации в событии «три разные симметричные монеты выпали все вверх решкой».
- Найти количество информации в источнике «три разные симметричные монеты».

- Найти количество информации в событии «две из трёх неразличимых симметричных монет выпали вверх решкой, третья — орлом».
- Найти количество информации в источнике «три неразличимые симметричные монеты».
- Найти количество информации в событии «из урны с 3 белыми и 5 чёрными шарами извлекли чёрный шар».
- Найти количество информации в событии «из урны с 3 белыми и 5 чёрными шарами извлекли белый шар».
- Найти количество информации в источнике «урна с 3 белыми и 5 чёрными шарами».

Задачи (стационарный источник с памятью)

- Источник X генерирует последовательность подстрок «хрю» и «мяу» (с равной вероятностью), не разделяя их (например, «хрюхрюхрюмяухрюмяумяухрюмяумяу...»). Из случайного места последовательности (не обязательно с начала подстроки) читается три символа подряд (сообщение x). Найти количество информации в событии «x = pюх».

```
• x= \kappa a; • x= \kappa y; • x= \epsilon \kappa.
• x= \kappa ap; • x= y \kappa;
```

Подсказка: основная проблема в том, что часть символов — одинаковые. Пусть они разные...

Простые коды (2)

Или: пусть всего 2N >> 1 слов, то есть N «ку» и N «кукареку»...

Предмет теории информации. Источник информации
Вероятностная мера информации
Задачи: измерение информации
Кодирование и структуры данных
Простые коды (1)

Задачи (равновероятный источник) Задачи (стационарный источник без памяти) Задачи (стационарный источник с памятью) Задачи (построение модели источника) Оценить алфавит и построить модели источника: а) равновероятную, б) стационарную без памяти, в) марковскую первого порядка для сообщения x, по модели оценить I(x) и I(y).

- **1** x = xрюхрюхрюмяухрюмяумяухрюмяумяу (30 символов, 5 «хрю» (0) и 5 «мяу» (1) 0001011011); y = pюх.В тексте 5 двухбуквенных сочетаний, начинающихся с «ю»: 2 «юх» и 3 «юм»
- (50 символов, 5 «ку» (0) и 5 «кукареку» (1) аналогично); $y = \kappa a p$.

Кодирование и структуры данных

Кодирование — преобразование дискретной информации

$$x \in X = A_1^+ \rightarrow code(x) \in A_2^+$$

смена алфавита, сжатие, защита от шума, шифрование.

Декодирование — обратное преобразование $code(x) \rightarrow x$

x — сообщение, исходный текст, исходная строка, блок;

X — источник сообщений;

 A_1 — первичный алфавит (до преобразования);

 A_2 — вторичный (алфавит конечного представления).

Простые коды (2)

Обычно A_1 — байты, исходные тексты x — бинарные файлы.

- $oldsymbol{0}$ Первичный алфавит A_1
- Оптимальность (неизбыточность)

- модель источника!
- Избыточность (в том числе помехоустойчивость)
- lacktriangle Вторичный алфавит A_2 ($A_2 = \{0,1\}$ двоичный код)
- Однозначная декодируемость [должна быть!]
- **6** Разделяемость код code(x) любой последовательности $x = \overline{a_1 \dots a_n}$ единственным образом разделим на кодовые слова $c_i = code(a_i), a_i \in A_1$:
 - коды фиксированной ширины $a, b, c \to 00, 01, 10$;
 - коды с разделителем -1, 11, 111 (0 как разделитель символов);
 - префиксные коды (дерево) 0, 10, 11;
 - прочие например, 11, 1110111, 11100111.

Основы теории информации и кодирования. Изме

Первая теорема Шеннона (для сжатия): $|code(X)| \ge I(X)$

M: усреднение по источнику X!

При отсутствии помех средняя длина кода может быть сколь угодно близкой к средней информации сообщения.

Следствия:

- 🚺 не существует архиватора, который любой файл сжимает до 8 байт:
- не существует архиватора, который любой блок из 9 байт сжимает до 8 байт.
- не существует и такого архиватора, который любой блок из N+1 бит сжимает ровно до N бит, ни при каком N.

Кодирование с $|code(X)| \to I(X)$ и $|code(x)| \to I(x)$ — оптимальное.

Оптимальное кодирование источника X

Пусть X порождает последовательность из 2^N возможных символов.

- **1** Равновероятный источник (I(X) = N) кодирование отдельных символов кодами фиксированной ширины N бит.
- Стационарный источник без памяти, порождающий символы с разными постоянными вероятностями (I(X) < N) — кодирование отдельных символов кодами переменной ширины: коды Хаффмана, методы семейства арифметического кодирования.
- Стационарный источник с памятью, порождающий символы. с вероятностями, зависящими от контекста (I(X) < N) кодирование сочетаний символов: словарные методы семейства LZ77 (словарь=текст) и семейства LZ78 (отдельный словарь в виде дерева/таблицы).

Если изначально каждый символ записан кодом фиксированной ширины из N бит \Rightarrow сжатие для \bigcirc и \bigcirc .

Метод кодирования и его реализация

Идея кодирования:
$$x = A_1^+, x \in X \leftrightarrow code(x) \in A_2^+$$

Ha практике: первичный алфавит — байты, исходный текст — произвольной длины nбайт; причём там может встречаться любой символ или их комбинация.

Алгоритм кодирования:

- собственно алгоритм;
- представление данных.

Программная реализация:

- дополнение исходного текста при необходимости (обычно нулями) и обрезка декодированного текста до длины n;
- при сжатии: анализ сжатия/увеличения (запись кода или копии);

Простые коды (2)

формирование и чтение заголовка.

$$(n \ \mathsf{байт}) \leftrightarrow \begin{cases} \mathsf{модель} \ X \\ x \in A_1^+ \end{cases} \leftrightarrow \begin{cases} \mathsf{модель} \ X, \\ \mathsf{алгоритм} \ \mathsf{кодирования}, \\ \mathsf{параметры} \ \mathsf{кодирования}, \end{cases} \leftrightarrow \begin{cases} \mathsf{заголовок}, \\ \mathsf{данные} \ y \ (m \ \mathsf{байт}) \end{cases}$$

Предмет теории информации. Источник информации Вероятностная мера информации Задачи: измерение информации Кодирование и структуры данных Простые коды (1)

Метод кодирования и его реализация

Формат файла

- Сигнатура (обычно первые 2-4 байта для общепринятых форматов)
 - быстрое распознавание типа файла (свой/чужой).
- Метаданные (заголовок)
 - версия формата;
 - исходная длина файла;
 - смещение начала данных, их размер и формат;
 - тип сжатия, параметры для распаковки (обычно чем нестандартнее модель источника, тем объёмнее);
 - тип защиты от помех, параметры для восстановления;

- зарезервированные поля для выравнивания;
- контрольная сумма заголовка;
- контрольная сумма файла и т. д.
- Данные
 - могут включать вложенные заголовки (контейнеров) с сигнатурами.

Алгоритм работает с блоком длины N байт (после кодирования M байт) — файл дополняется до kN и нарезается на блоки:

Блоки по
$$N \to M$$
 байт: $(n$ байт) $\leftrightarrow egin{cases} n, \\ k$ блоков по $N, \\ (k-1)N < n \leqslant kN \end{cases} \leftrightarrow egin{cases} n, \\ \mathrm{алгоритм}, \\ kM$ байт

Алгоритм заменяет подстроку $c_i...c_i$ на некоторый кортеж α_i — предваряем кортеж α_i префиксом $p = c_k$ (выбираем самый редкий символ): $c_i...c_i \to p \alpha_i$, вхождения $p=c_k$ как символа экранируем (заменяем на $p\,\alpha_0$ такое, что никакое $\alpha_i \neq \alpha_0$ и не начинается с α_0):

$$\begin{cases} ...(c_i...c_j)...c_k...\\ c_i - \mathsf{байты} \end{cases} \leftrightarrow ...(\alpha_i)...c_k... \leftrightarrow \begin{cases} \mathsf{алгоритм},\\ \mathsf{значение} \ \mathsf{префикса} \ p = c_k,\\ ...p \ \alpha_i \ ...p \ \alpha_0... \end{cases}$$

где c_i, p — символы (байты), α_i, α_0 — цепочки символов (байтов).

 $x \in A_1 \leftrightarrow y \in A_2$ без сжатия, защиты от помех и шифрования

Простейший базовый код (подразумевается):

 $oldsymbol{0}$ байт памяти \leftrightarrow беззнаковое целое число $0\dots B-1$ (обычно: октет $\leftrightarrow 0...255$) натуральный двоичный код \Longrightarrow биты байта имеют номер.

Порядок байтов (если файл читается и записывается на одной платформе не важен и также подразумевается):

- \bullet N байтов $(\gamma_0, \dots, \gamma_{N-1}), N=2^s \leftrightarrow \mathsf{б}$ еззнаковое целое число $0 \dots B^N-1$;
- $oldsymbol{2}$ N битов, N произвольное \leftrightarrow беззнаковое целое число $0\dots 2^N-1$.

Простые коды (фиксированной ширины): беззнаковое целое (код) \leftrightarrow ?

- $3 0...127 \leftrightarrow$ символ из таблицы ASCII;
- знаковые числа:
- числа с плавающей или фиксированной запятой;
- нестандартные цифровые коды (ДДК, Грея, Джонсона) и т. д.

Целые неотрицательные числа: от 0 до $2^N - 1$.

Для
$$N=4$$
 — целые 0 до $2^4-1=16-1=15$:

0	1	2	3	4	5	6	7
0000	0001	0010	0011	0100	0101	0110	0111
8	9	A (10)	B (11)	C (12)		E (14)	F (15)
					(13)		
1000	1001	1010	1011	1100	1101	1110	1111

Циклическая арифметика по модулю 2^N : то есть $(2^N - 1) + 1 = 0$.

$$2^N \equiv 0$$

$$x = 1 \cdot \operatorname{bit}[0] + \ldots + 2^{N-1} \cdot \operatorname{bit}[N-1] =$$

$$= \alpha_0 \cdot \text{bit}[0] + \ldots + \alpha_{N-1} \cdot \text{bit}[N-1].$$

Код со смещением

Целые числа (возможно — знаковые) в произвольном диапазоне $\left[a,b\right]$

— для $x \in [a, b]$ записываем беззнаковое число y = x - a натуральным двоичным кодом.

Целые знаковые числа, 0 и ближайшие к 0 положительные представляются как беззнаковые, циклическая арифметика по модулю 2^N : $(-1)=0-1\equiv 2^N-1$, $(-2)\equiv 2^N-2$, ... $(-2^{N-1})\equiv 2^N-2^{N-1}=2^{N-1}$ (считается отрицательным).

Целые числа от -2^{N-1} до $+2^{N-1}-1$:

0	+1	+2	+3	+4	+5	+6	+7	
0000	0001	0010	0011	0100	0101	0110	0111	
	-1	-2	-3	-4	-5	-6	-7	-8
	1111	1110	1101	1100	1011	1010	1001	1000

$$(-x) = 0 - x = (-1 - x) + 1 = (\sim x) + 1;$$
 $max + 1 = min.$

 $p + \Delta$ $m_2m_3m_4...m_{n+1}$ s $n + w \, n + w - 1$ n n - 1

$$(-1)^{s} \cdot 2^{p} \cdot \overline{0,1} m_{2} m_{3} m_{4} \dots m_{n+1}$$
$$p_{min} \leqslant p \leqslant p_{max}$$

 $m_2m_3m_4...m_{n+1}$ 000...000 $n + w \, n + w - 1$ n n - 10

$$(-1)^s \cdot 2^{p_{min}} \cdot \overline{0,0m_2m_3m_4\dots m_{n+1}}$$

000...000 000...0 $n + w \cdot n + w - 1$ $n \quad n-1$

$$(-1)^s \cdot 0$$

s111 . . . 111 000...0 $n + w \, n + w - 1$

$$(-1)^s \cdot \infty$$

111...111 $qxx \dots x$

 $n + w \, n + w - 1$ n n - 1

Нециклическая неассоциативная арифметика:
$$x + (y + z) \neq (x + y) + z$$

32 = 1 + 8 + 23 бита — одинарная точность, float

$$2^{-126} \leqslant |x| \leqslant 2^{127} \cdot (2 - 2^{-23})$$
$$2^{-1022} \leqslant |x| \leqslant 2^{1023} \cdot (2 - 2^{-52})$$

$$64=1+11+52$$
 бита — двойная, $double$

Округление: к ближайшему чётному, к ближайшему
$$|\infty$$
, к 0 , к $+\infty$ (вверх), к $-\infty$ (вниз)

C/C++: float \subseteq double \subseteq long double $\subset \mathbb{R}$, но даже long double $\neq \mathbb{R}$

Предмет теории информации. Источник информации Вероятностная мера информации Задачи: измерение информации Кодирование и структуры данных Простые коды (1) Простые коды (2)

Числа с плавающей запятой (IEEE 754) Код Бодо

0

Избыточный невзвешенный рефлексный (при переходе между кодовыми комбинациями изменяется только один бит) нециклический $(max+1 \neq min)$ двоичный код

Для N битов — целые 0 до N:

0	1	2	3	4	
0000	0001	0011	0111	1111	
	0010	0101	1011		
	0100	1001	1101		
	1000	0110	1110		
		1010			
		1100			

Коды Грея и Джонсона

Код Грея — неизбыточный невзвешенный рефлексный циклический двоичный код

0	1	2	3	4	5	6	7
0000	0001	0011	0010	0110	0111	0101	0100
8	9	Α	В	С	D	Е	F
1100	1101	1111	1110	1010	1011	1001	1000

Код Джонсона — избыточный невзвешенный рефлексный циклический двоичный код

0	1	2	3	4	5	6	7
0000	0001	0011	0111	1111	1110	1100	1000

ASCII и Unicode

ASCII-128 символов и семибитная (\sim однобайтовая) кодировка ASCIT Code Chart

	0	1	2	3	4	5	6	7	8	9	ΙA	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!	=	#	\$	%	&		()	*	+	,		•	/
3	0	1	2	3	4	5	6	7	8	9		.:	٧		^	?
4	@	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	0
5	Р	Q	R	S	T	U	٧	W	Х	Υ	Z]	\]	^	1
6	`	а	b	С	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	S	t	u	٧	W	Х	у	Z	{		}	ł	DEL
-																

Unicode — 137 994 символ (в версии 12.1) и набор кодировок: UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE)

UTF-8 (до 6 байт) 1 байт Oaaa aaaa 2 байта 110x xxxx 10xx xxxx

3 байта 1110 xxxx 10xx xxxx 10xx xxxx

4 байта 1111 0xxx 10xx xxxx 10xx xxxx 10xx xxxx

5 байт 1111 10xx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx

6 байт 1111 110x 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx

Числа с плавающей запятой (IEEE 754)

ASCII и Unicode

Предмет теории информации. Источник информации Вероятностная мера информации Задачи: измерение информации Кодирование и структуры данных Простые коды (1) Простые коды (2)

Каждой букве или знаку соответствует определённая комбинация кратковременных (точка) и втрое более длинных (тире) импульсов тока, разделённых бестоковым интервалом, равным длительности точки.

Для разделения букв в словах и цифр в многозначных числах применяется тройной бестоковый интервал, заканчивающий каждую комбинацию.

Для разделения слов в тексте служит пятикратный бестоковый интервал.

$$A_2 = \{\cdot, -,$$
 межсимвольный интервал, межсловный интервал $\}$

Код Бодо (Дональд Мюррей)

Международный телеграфный код №2 (ITA2) + + 00000 = MTK-2

Русский шрифт		E	III		V	Т	A	И	н	o	С	P	x	д	л	3	У	Ц	М	Φ	й	Г	п	ы	Б	В		к	ж	Ь	Я			
Цифры Латинский шрифт		3	вод строк	Пробел	зврат каретн	5	-	8	,	9		ч	щ	кто там?)	+	7	:		Э	Ю ^(3В)	ш	0	5	?	2	Цифры	(=	1	1	уквы лат.	Буквы рус.	
		E	Перс		Возв	т	A	I	N	o	s	R	н	D	L	z	U	С	М	F	J	G	P	Y	В	w		ĸ	v	х	Q		Ф	
1 2 Ведущие	1	•					•				•			•		•	•			•	•			•	•	•	•	•		•	•	•		
	2		•	-	-		•	•				•			•		•	•			•	•	•			•	•	•	•		•	•		
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
отверстия	3			•				•	•		•		•				•	•	•	•			•	•				•	•	•	•	•		
	4				•				•	•		•		•				•	•	•	•	•			•		•	•	•	•		•		
	5					•		ļ		•			•		•	•			•			•	•	•	•	•	•		•	•	•	•		

фиксированной ширины 5, режимы

ТЄИМ

www.miet.ru

Александра Игоревна Кононова / illinc@mail.ru +7-985-148-32-64 (телефон), +7-977-977-97-29 (WhatsApp), gitlab.com/illinc/raspisanie https://gitlab.com/illinc/otik/

