1 Kernel Machines

Consider a linear model

$$Y_i = x_i^T \beta^0 + \varepsilon_i, i = 1, \dots, n, x_i \in \mathbb{R}^p$$
 fixed

where $\mathbb{E}\varepsilon = 0$, $Var(\varepsilon) = \sigma^2 I_n$. We have

$$\hat{\beta}^{\text{ols}} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - x_i^T \beta)^2$$
$$= \operatorname{argmin}_{\beta \in \mathbb{R}^p} ||Y - X\beta||^2$$
$$= (X^T X)^{-1} X^T Y.$$

Classical theory:

• $\hat{\beta}^{\text{ols}}$ unbiased,

$$Var(\hat{\beta}^{ols}) = \sigma^2 (X^T X)^{-1} = i^{-1} (\beta^0)$$

Where i is the Fisher information.

• Cramér-Rao lower bound: if an estimator $\tilde{\beta}$ is unbiased then

$$\operatorname{Var}(\tilde{\beta}) - i^{-1}(\beta^0) \underset{\text{positive semi-definite}}{\geq} 0.$$

• If $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$, then $\hat{\beta}^{\text{ols}}$ is the MLE of β^0 . Furthermore $\sqrt{n}(\hat{\beta}^{\text{ols}} - \beta^0) \sim \mathcal{N}(0, n\sigma^2(X^TX)^{-1})$. From this we can derive confidence intervals, hypothesis test, etc.

In a general model with parameter $\theta \in \mathbb{R}^p$, n independent observations, under regularity, we have asymptotic normality, i.e $\sqrt{n}(\hat{\theta}^{\text{MLE}} - \theta^0) \xrightarrow{d} \mathcal{N}(0, I^{-1}(\theta^0))$ (with p fixed).

Question: what happens when p is large relative to n?

- If p > n, $\hat{\beta}^{ols}$ is not even defined.
- If $p \approx n$, $Var(\hat{\beta}^{ols})$ explodes since X^TX is near singular.
- More generally, if $p, n \to \infty$ then asymptotic normality can break down.

Recall the bias-variance decomposition:

$$\operatorname{mse}(\tilde{\beta}) = \mathbb{E}_{\beta^{0},\sigma^{2}} \left[(\tilde{\beta} - \beta^{0})(\tilde{\beta} - \beta^{0}) \right]$$
$$= \mathbb{E}_{\beta^{0},\sigma^{2}} \left\| \tilde{\beta} - \mathbb{E}\tilde{\beta} + \mathbb{E}\tilde{\beta} - \beta^{0} \right\|$$
$$= \operatorname{Var}(\tilde{\beta}) + \left\| \mathbb{E}(\tilde{\beta}) - \beta^{0} \right\|^{2}.$$

We introduce bias to reduce the variance.

1.1 Ridge regression

Define

$$(\hat{\mu}_{\lambda}^{R}, \hat{\beta}_{\lambda}^{R}) = \operatorname{argmin}_{(\mu,\beta) \in \mathbb{R} \times \mathbb{R}^{p}} \left[||Y - \mu \mathbf{1} - X\beta||^{2} + \underbrace{\lambda ||\beta||^{2}}_{\text{penalty for large } \beta} \right].$$

 λ is called a *regularisation* or *tuning* parameter. We shall assume the columns of X have been standardised (mean 0, variance 1).

After standardisation, we can show that

$$\hat{\mu}_{\lambda}^{R} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} = \bar{Y}.$$

Hence, if we replace Y with $Y - 1\bar{Y}$ we can write

$$\hat{\beta}_{\lambda}^{R} = \operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \left[\|Y - X\beta\|^{2} + \lambda \|\beta\|^{2} \right]$$

$$= \underbrace{(X^{T}X + \lambda I_{p})^{-1}}_{\text{always invertible}} X^{T}Y.$$

Theorem 1.1. For $\lambda > 0$ sufficiently small,

$$\operatorname{mse}(\hat{\beta}^{ols}) - \operatorname{mse}(\hat{\beta}_{\lambda}^{R}) = \mathbb{E}\|\hat{\beta}^{ols} - \beta^{0}\|^{2} - \mathbb{E}\|\hat{\beta}_{\lambda}^{R} - \beta^{0}\|^{2} > 0. \tag{*}$$

Proof. We have

$$Y = X\beta^0 + \varepsilon.$$

The bias of $\hat{\beta}_{\lambda}^{R}$ is

$$\mathbb{E}(\hat{\beta}_{\lambda}^{R} - \beta^{0}) = (X^{T}X + \lambda I)^{-1}X^{T}X\beta^{0} - \beta^{0}$$

$$= (X^{T}X + \lambda I)^{-1}(X^{T}X + \lambda I - \lambda I)\beta^{0} - \beta^{0}$$

$$= -\lambda(X^{T}X + \lambda I)^{-1}\beta^{0}.$$

While we have variance

$$\begin{aligned} \operatorname{Var}(\hat{\beta}_{\lambda}^{R}) &= \mathbb{E} \left\| (X^{T}X + \lambda I)^{-1} X^{T} \varepsilon \right\|^{2} \\ &= \sigma^{2} \left[(X^{T}X + \lambda I)^{-1} X^{T} X (X^{T}X + \lambda I)^{-1} \right]. \end{aligned}$$

Then (*) becomes

$$\begin{split} \mathbb{E} \| \hat{\beta}^{\text{ols}} - \beta^{0} \|^{2} - \mathbb{E} \| \hat{\beta}_{\lambda}^{R} - \beta^{0} \|^{2} \\ &= \sigma^{2} (X^{T}X)^{-1} - \sigma^{2} (X^{T}X + \lambda I) X^{T} X (X^{T}X + \lambda I)^{-1} \\ &- \lambda^{2} (X^{T}X + \lambda I)^{-1} \beta^{0} (\beta^{0})^{T} (X^{T}X + \lambda I)^{-1} \\ &= \vdots \\ &= \lambda (X^{T}X + \lambda I)^{-1} \left[\sigma^{2} \left\{ 2I_{p} + \lambda (X^{T}X)^{-1} \right\} - \lambda \beta^{0} (\beta^{0})^{T} \right] (X^{T}X + \lambda I)^{-1}. \end{split}$$

We want to show this is positive definite. This is equivalent to

$$\sigma^{2} \left[2I + \lambda (X^{T}X)^{-1} \right] - \lambda \beta^{0} (\beta^{0})^{T} > 0$$

$$\iff 2\sigma^{2}I - \lambda \beta^{0} (\beta^{0})^{T} > 0$$

$$\iff 2\sigma^{2} ||z||^{2} - \lambda (z^{T}\beta^{0})^{2} > 0 \quad \forall z \in \mathbb{R}^{p}.$$

$$(\dagger)$$

We also have $(z^T\beta^0)^2 \le ||z||^2||\beta^0||^2$ by Cauchy-Schwarz. Hence (†) holds for all $\lambda < \frac{2\sigma^2}{||\beta^0||^2}$.

Singular value decomposition

Suppose n > p, so we can always write $X \in \mathbb{R}^{n \times p}$ as

$$X = UDV^T$$
 ("thin SVD")

where $U \in \mathbb{R}^{n \times p}, V \in \mathbb{P}^{p \times p}$, with orthonormal columns, $D \in \mathbb{R}^{p \times p}$ diagonal with $D_{11} \geq D_{22} \geq \ldots \geq D_{pp} \geq 0$.

The fitted values in ridge regression are

$$\begin{split} \hat{Y}_{\lambda}^{R} &= X \hat{\beta}_{\lambda}^{R} = X (X^{T}X + \lambda I)^{-1}X^{T}Y \\ &= UDV^{T}(VD^{2}V^{T} + \lambda I)^{-1}VDU^{T}Y \quad \text{(using } VV^{T} = V^{T}V = I) \\ &= UD(D^{2} + \lambda I)^{-1}DU^{T}Y \\ &= \sum_{i=1}^{p} U_{j} \frac{D_{jj}^{2}}{D_{jj}^{2} + \lambda} U_{j}^{T}Y \end{split}$$

where U_i denotes the jth column of U. For reference, in OLS regression

$$\hat{Y}^{ols} = X\hat{\beta}^{ols} = X(X^TX)^{-1}X^TY = \sum_{i=1}^p U_i U_i^T Y.$$

So ridge "projects" onto columns of U, but it shrinks jth component by a factor

$$\frac{D_{jj}^2}{D_{jj}^2 + \lambda}.$$

Hence it shrinks small singular values to 0 rapidly.

Note. The matrix $X(X^TX)^{-1}X^TY$ is known as the "hat matrix" and it represents an orthogonal projection onto the column space of X.

The SVD of X is related to principal component analysis.

Definition. The kth principal component $U^{(k)}$ of X and principal direction $v^{(k)}$ of X are defined recursively by

$$v^{(k)} = \mathrm{argmax}_{v \in \mathbb{R}^p} \, ||Xv||^2$$
 subject to $||v|| = 1, \ (v^{(j)})^T X^T X v = 0 \ \forall j < k$

and

$$u^{(k)} = X v^{(k)}$$
.

Lemma 1.2. If $D_{ij} > 0$ for all $j \in \{1, ..., p\}$ then $v^{(k)} = V_k$, $u^{(k)} = D_{kk}U_k$.

Message: ridge is good when the signal (β^0) is large for the top principal components of X.

Computation: we can compute \hat{Y}_{λ}^{R} for any value of λ quickly after doing an SVD, which has cost $\mathcal{O}(np^{2})$.

1.2 *v*-fold cross-validation

We assume that (x_i, Y_i) , i = 1, ..., n is iid from some distribution (random design matrix). Let (x^*, Y^*) be another independent observation from this distribution. We may wish to pick λ minimising the mean-squared prediction error (MSPE) conditional on (X, Y):

$$\mathbb{E}\{(Y^* - (x^*)^T \hat{\beta}_{\lambda}^R(X, Y))^2 | (X, Y)\}.$$

A less ambitious goal is to minimise the MSPE

$$\mathbb{E}\{(Y^* - (x^*)^T \hat{\beta}_{\lambda}^R(X, Y))^2\} = \mathbb{E}\left[\mathbb{E}\{(Y^* - (x^*)^T \hat{\beta}_{\lambda}^R(X, Y))^2 | (X, Y)\}\right]. \quad (\ddagger)$$

We can try to estimate this quantity for different values of λ , using data splitting.

- Let $(X^{(1)}, Y^{(1)}), \ldots, (X^{(v)}, Y^{(v)})$ be groups of data points of roughly equal size. These are called *folds*.
- Let $(X^{(-k)}, Y^{(-k)})$ denote all the folds except the kth.
- Let $\kappa(i)$ be the fold to which sample i (i.e (X_i, Y_i)) belongs.

Our estimator of (‡) is

$$CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left\{ Y_i - x_i^T \underbrace{\hat{\beta}_{\lambda}^R(X^{(-\kappa(i))}, Y^{(-\kappa(i))})}_{\text{using all folds except the ones containing } (x_i, Y_i)} \right\}^2.$$

Then define

$$\lambda_{\text{CV}} = \operatorname{argmin}_{\lambda \in \{l_1, \dots, l_m\}} \text{CV}(\lambda).$$

We use the estimator

$$\hat{\beta}_{\lambda_{\text{CV}}}^{R}(X,Y).$$

How to choose v?

Note.

- The expectation of each summand in $CV(\lambda)$ is almost the same as ‡, which is what we want to estimate. The only difference is the size of the training set. Hence the bias of $CV(\lambda)$ is small when v is large [the extreme of this is v = n, called "leave one out" cross-validation].
- When v is large, the estimator $\hat{\beta}_{\lambda}^{R}(X^{(-k)}, Y^{(-k)})$ is similar for different values of k, which leads to positively correlated summands in $CV(\lambda)$, leading to high variance.
- A common choice is v = 5 or v = 10.

1.3 Kernel trick

We have

$$\hat{Y}_{\lambda}^{R} = X(X^{T}X + \lambda I)^{-1}X^{T}Y.$$

Note that

$$\begin{split} X^T(XX^T + \lambda I) &= (X^TX + \lambda I)X^T \\ &\implies (X^TX + \lambda I)^{-1}X^T = X^T(XX^T + \lambda I)^{-1} \\ &\implies X\underbrace{(X^TX + \lambda I)}_{p \times p}^{-1}X^TY = XX^T\underbrace{(XX^T + \lambda I)}_{n \times n}^{-1}Y. \end{split}$$

The computation cost of the LHS is $\mathcal{O}(np^2 + p^3)$ while the RHS is $\mathcal{O}(pn^2 + n^3)$.

- When $p \gg n$, the 2nd expression is cheaper to compute;
- The fitted values in ridge regression only depend on X through the "Gram matrix" $K = XX^T$, with entries $K_{ij} = \langle x_i, x_j \rangle$.

Suppose we wish to fit a quadratic model:

$$Y_i = x_i^T \beta + \sum_{k,l} x_{ik} x_{il} \theta_{kl} + \varepsilon_i.$$

This can be done with a linear model where we replace the predictors $x_i \in \mathbb{R}^p$ with a new "feature" vector:

$$\phi(x_i) = (x_{i1}, x_{i2}, \dots, x_{ip}, x_{i1}x_{i1}, x_{i1}x_{i2}, \dots, x_{ip}x_{ip}) \in \mathbb{R}^{p+p^2}.$$

We call ϕ a "feature map". Now we have $\mathcal{O}(p^2)$ predictors. If $p^2 \gg n$, to compute ridge fitted values, we want to use the 2nd expression, with cost $\mathcal{O}(p^2n^2+n^3)$.

However, the part that scales as $\mathcal{O}(p^2n^2)$ is just the computation of the Gram matrix with entries $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$.

The kernel trick offers a shortcut for computing K.

Idea:

$$\left(\frac{1}{2} + x_i^T x_j\right)^2 - \frac{1}{4} = \left(\frac{1}{2} + \sum_k x_{ij} x_{jk}\right)^2 - \frac{1}{4}$$
$$= \sum_k x_{ik} x_{jk} + \sum_{k,l} x_{ik} x_{il} x_{jk} x_{jl}$$
$$= \langle \phi(x_i), \phi(x_j) \rangle = K_{ij}.$$

The LHS can be computed in $\mathcal{O}(p)$ iterations, so we can obtain K in $\mathcal{O}(n^2p)$ iterations, and we can compute the fitted values in ridge regression in $\mathcal{O}(n^2p+n^3)$, which is not worse than the linear model!

Notes.

- For many feature maps ϕ , there are similar shortcuts.
- Instead of focusing on ϕ , we can directly think of the function $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ as a measure of "similarity" between inputs x_i, x_j .

Question: for which similarities k is there a feature map ϕ such that

$$k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
?

1.4 Kernels

Definition. An *inner product space* is a real vector space \mathcal{H} endowed with a map $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ satisfying:

- (i) Symmetry: for all $u, v \in \mathcal{H}$ we have $\langle u, v \rangle = \langle v, u \rangle$;
- (ii) Bilinearity: for all $a, b \in \mathbb{R}$ and all $u, v, w \in \mathcal{H}$ we have

$$\langle au + bv, w \rangle = a\langle u, w \rangle + b\langle v, w \rangle.$$

(iii) Positive-definiteness: we have $\langle u, u \rangle \geq 0$ for all $u \in \mathcal{H}$, with equality if and only if u = 0.

Suppose that regression inputs x_1, \ldots, x_n take values in an abstract set \mathcal{X} (so far we've had $\mathcal{X} = \mathbb{R}^p$, but the x_i 's could be functions; images; graphs; etc.).

Goal: characterise similarity functions $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ for which there is an inner product space \mathcal{H} and a feature map $\phi: \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') = \langle \phi(x), \phi(x') \rangle \quad \forall x, x' \in \mathcal{X}.$$

Definition. A (positive-definite) kernel k is a symmetric map $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for all $n \in \mathbb{N}$ and all $x_1, \ldots, x_n \in \mathcal{X}$, the matrix K with entries $K_{ij} = k(x_i, x_j)$ is positive semi-definite.

Remark. A kernel is not an inner product on \mathcal{X} in general. Indeed, \mathcal{X} does not even need to be a vector space, and k need not be bilinear. However, we do have a version of the Cauchy-Schwarz inequality for kernels.

Proposition 1.3. Let k be a kernel on X. Then

$$k(x, x')^2 \le k(x, x)k(x', x') \quad \forall x, x' \in \mathcal{X}.$$

Proof. Since k is a kernel,

$$\begin{pmatrix} k(x,x) & k(x,x') \\ k(x',x) & k(x',x') \end{pmatrix} \ge 0.$$

Hence this has non-negative determinant and $k(x,x)k(x',x')-k(x,x')^2 \geq 0$.

Proposition 1.4. Any similarity k defined by

$$k(x, x') = \langle \phi(x), \phi(x') \rangle \quad \forall x, x' \in \mathcal{X}$$

is a kernel.

Proof. Symmetry of k is clear. Let $x_1, \ldots, x_n \in \mathcal{X}$ be arbitrary and take any vector $\alpha \in \mathbb{R}^n$. We need to show $\alpha^T K \alpha \geq 0$. Indeed

$$\alpha^T K \alpha = \sum_{i,j} \alpha_i K_{ij} \alpha_j$$

$$= \sum_{i,j} \alpha_i \langle \phi(x_i), \phi(x_j) \rangle \alpha_j$$

$$= \langle \sum_{i=1}^n \alpha \phi(x_i), \sum_{j=1}^n \alpha_j \phi(x_j) \rangle \qquad \text{(linearity of } \langle \cdot, \cdot \rangle \text{)}$$

$$\geq 0. \qquad \text{(positive-definiteness of } \langle \cdot, \cdot \rangle \text{)}$$

Examples of kernels

Proposition 1.5 (Closure property). Suppose $k_1, k_2, ...$ are kernels on \mathcal{X} . Then

- (i) If $\alpha_1, \alpha_2 \geq 0$, then $\alpha_1 k_1 + \alpha_2 k_2$ is a kernel. If $k(x, x') := \lim_{m \to \infty} k_m(x, x')$ exists for all $x, x' \in \mathcal{X}$, then k is a kernel.
- (ii) The pointwise product $k(x, x') = k_1(x, x')k_2(x, x')$ is a kernel.

Some examples of kernels are:

- Linear kernel: $k(x, x') = x^T x'$ (for $\mathcal{X} = \mathbb{R}^p$);
- Polynomial kernel: $k(x, x') = (1 + x^T x')^d$, $d \in \mathbb{N}$ $(\mathcal{X} = \mathbb{R}^p)$. Note $(x, x') \mapsto 1$ is a kernel so this is a kernel by the previous proposition;
- Gaussian kernel: $k(x, x') = \exp\left(-\frac{||x-x'||^2}{2\sigma^2}\right)$, $\sigma^2 > 0$ the bandwidth of the kernel. Indeed note

$$\exp\left(-\frac{||x-x'||^2}{2\sigma^2}\right) = \underbrace{\exp\left(-\frac{||x||^2}{2\sigma^2}\right)}_{:=k_1(x,x')} \exp\left(-\frac{||x'||^2}{2\sigma^2}\right) \underbrace{\exp\left(\frac{x^Tx'}{\sigma^2}\right)}_{:=k_2(x,x')}.$$

It suffices to show k_1, k_2 are kernels. For k_1 we have $k_1(x, x') = \langle \phi(x), \phi(x') \rangle$ where $\phi : \mathbb{R}^p \to \mathbb{R}$ is defined by

$$\phi(x) = \exp\left(-\frac{||x||^2}{2\sigma^2}\right).$$

For k_2 we have that $(x, x') \mapsto x^T x'$ is a kernel and k_2 can be Taylor expanded so is the limit of kernels;

- <u>Sobolev kernel</u>: let $\mathcal{X} = [0, 1]$ and set $k(x, x') = \min(x, x') = \text{Cov}(Wx, Wx')$ where $(W_t)_{t>0}$ a Brownian motion (positive definite as a covariance);
- Jaccard similarity kernel: let $\mathcal{X} = \mathcal{P}(\{1, \dots, p\})$ and set

$$k(x, x') = \begin{cases} \frac{|x \cap x'|}{|x \cup x'|} & \text{if } x \cup x' \neq \emptyset \\ 0 & \text{otherwise} \end{cases}.$$

(For proof this is a kernel see Example Sheet 1.)

Remark. There is no finite-dimensional feature map $\phi : \mathbb{R}^p \to \mathbb{R}^m$ respresenting the Gaussian kernel.

Theorem 1.6 (Moore-Aronzajn Theorem). For every kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, there exists a feature map ϕ taking values in some inner product space \mathcal{H} such that $k(x, x') = \langle \phi(x), \phi(x') \rangle$ for all $x, x' \in \mathcal{X}$.

Proof. Take \mathcal{H} to be the vector space of functions from \mathcal{X} to \mathbb{R} of the form

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X}.$$

In other words, \mathcal{H} is the linear span of functions of the form $f(\cdot, x)$ for $x \in \mathcal{X}$. Our feature map $\phi : \mathcal{X} \to \mathcal{H}$ will be $\phi(x) = k(\cdot, x)$. We now define the inner product $\langle \cdot, \cdot \rangle$ on \mathcal{H} . Let

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X}$$

and

$$g(\cdot) = \sum_{j=1}^{m} \beta_j k(\cdot, x_j').$$

Then define

$$\langle f, g \rangle := \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x'_j) = \sum_{i=1}^{n} \alpha_i g(x_i) = \sum_{j=1}^{m} \beta_j f(x'_j).$$

In particular, the final two expressions show $\langle \cdot, \cdot \rangle$ is well-defined (it doesn't matter how we represent f, g as these linear combinations).

We observe directly from the definition that $\langle \phi(x), \phi(x') \rangle = \langle k(\cdot, x), k(\cdot, x') \rangle = k(x, x')$ as required. We must show $\langle \cdot, \cdot \rangle$ is indeed an inner product. It is certainly bilinear and symmetric. So we show it is positive-definite. Note that

$$\langle f, f \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i k(x_i, x_j) \alpha_j \ge 0$$
 (‡)

since k is a kernel. It remains to show $\langle f, f \rangle$ implies f(x) = 0 for all $x \in \mathcal{X}$.

Note that $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a kernel. Indeed, given functions f_1, \ldots, f_m and $\gamma_1, \ldots, \gamma_n \in \mathbb{R}$ we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_i \langle f_i, f_j \rangle \gamma_j = \langle \sum_{i=1}^{n} \gamma_i f_i, \sum_{j=1}^{n} \gamma_j f_j \rangle \ge 0$$

by (‡).

Now note that

$$f(x)^2 = \langle f, k(\cdot, x) \rangle^2 \leq \langle f, f \rangle \langle k(\cdot, x), k(\cdot, x) \rangle$$

by the Cauchy-Schwarz property for kernels. Hence $\langle f, f \rangle = 0$ implies f(x) = 0 for all $x \in \mathcal{X}$.

Remark. The space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ constructed in the proof has the property that

$$f(x) = \langle f, \underbrace{k(\cdot, x)}_{\phi(x)} \rangle.$$

As a consequence

$$|f(x) - g(x)| = |\langle f - g, k(\cdot, x) \rangle| \le ||f - g||_{\mathcal{H}} k(x, x)^{1/2}.$$

Hence convergence in $(\mathcal{H}, \|\cdot\|)$ implies pointwise convergence.

Lemma 1.7. Let \mathcal{H} be a Hilbert space and $\mathcal{V} \subseteq \mathcal{H}$ a closed subspace. Then $\mathcal{H} = \mathcal{V} \oplus \mathcal{V}^{\perp}$, i.e for any $f \in \mathcal{H}$ we have f = u + v where $u \in \mathcal{V}$ and $v \in \mathcal{V}^{\perp}$ and u, v are unique.

Proof. See Part II Linear Analysis.

Definition. A Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ is a reproducing kernel Hilbert space (RKHS) if for all $x \in \mathcal{X}$, there exists $k_x \in \mathcal{H}$ such that $f(x) = \langle k_x, f \rangle$ for all $f \in \mathcal{H}$.

The function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined by $(x, x') \mapsto \langle k_x, k_{x'} \rangle = k_x(x')$ is known as the reproducing kernel of \mathcal{H} .

Remark. By the Riesz Representation Theorem, it is equivalent to define an RKHS as a Hilbert space where the evaluation operator $E_x: f \mapsto f(x)$ is a continuous linear operator.

The Moore-Aronzajn Theorem says that whenever k is a kernel, there is an inner product space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$ where $f(x) = \langle f, k(\cdot, x) \rangle$ and thus $k(x, x') = \langle k(\cdot, x), k(\cdot, x') \rangle$.

This implies that if $(f_n)_{n\geq 1}$ is Cauchy in \mathcal{H} ,

$$|f_n(x) - f_m(x)| \le \sqrt{k(x,x)} ||f_n - f_m||_{\mathcal{H}} \to 0.$$

Hence $(f_n)_{n\geq 1}$ has a pointwise limit $f^*: \mathcal{X} \to \mathbb{R}$ by completeness of \mathbb{R} . So we can complete \mathcal{H} by including all limits of Cauchy sequences (Hausdorff completion) to obtain a Hilbert space $\overline{\mathcal{H}}$. By construction, $\overline{\mathcal{H}}$ is a RKHS with reproducing kernel k.

Proposition 1.8. If G is a RKHS of functions $f: \mathcal{X} \to \mathbb{R}$ such that $G \supseteq \mathcal{H}$, then $\overline{\mathcal{H}} = G$.

Proof. Example Sheet 1.
$$\Box$$

Notation: from now on the RKHS is \mathcal{H} (i.e $\mathcal{H} = \overline{\mathcal{H}}$).

Examples.

- <u>Linear kernel</u>: $k(x, x') = x^T x'$. Then $\mathcal{H} = \{f : f(x) = x^T \beta, \ \beta \in \mathbb{R}^p\}$. If $f(x) = x^T \beta$ then $||f||_{\mathcal{H}}^2 = ||\beta||$.
- <u>Sobolev kernel</u>: $k(x, x') = \min(x, x')$ with $\mathcal{X} = [0, 1]$. Then \mathcal{H} is the space of continuous functions $f : [0, 1] \to \mathbb{R}$ with f(0) = 0, for which

$$\int_0^1 |f'(x)|^2 \mathrm{d}x < \infty$$

where f' is the weak derivative.

The Representer Theorem

If \mathcal{H} is the RKHS of the linear kernel, we can express ridge regression as

$$\hat{f} = \operatorname{argmin}_{f \in \mathcal{H}} \left\{ \sum_{i=1}^{n} (Y_i - \underbrace{f(x_i)}_{x_i^T \beta})^2 + \lambda \underbrace{||f||_{\mathcal{H}}^2}_{||\beta||^2} \right\}.$$

In kernel ridge regression, we solve this problem in a more general RKHS with kernel k, e.g the Gaussian kernel.

Theorem 1.9 (Representer Theorem). Let:

- $c: \mathbb{R}^n \times \mathcal{X}^n \times \mathbb{R}^n \to \mathbb{R}$ be an arbitrary loss;
- $J:[0,\infty)\to\mathbb{R}$ be strictly increasing;
- $x_1, \ldots, x_n \in \mathcal{X}, Y \in \mathbb{R}^n$;
- \mathcal{H} an RKHS with representing kernel k;
- $K_{ij} = k(x_i, x_j), i, j \in [n].$

Then \hat{f} minimises

$$Q_1(f) = c(Y, x_1, \dots, x_n, f(x_1), \dots, f(x_n)) + J(||f||_{\mathcal{H}}^2)$$

over $f \in \mathcal{H}$ if and only if $\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{\alpha}_{i} k(\cdot, x_{i})$ and $\hat{\alpha}$ minimises Q_{2} over $\alpha \in \mathbb{R}^{n}$ where

$$Q_2(\alpha) = c(Y, x_1, \dots, x_n, K\alpha) + J(\alpha^T K\alpha).$$

Example. In kernel ridge regression we just need to solve the quadratic program

$$\hat{\alpha} = \operatorname{argmin}_{\alpha \in \mathbb{R}^n} \|Y - K\alpha\|^2 + \lambda \alpha^T K\alpha = (K + I\lambda)^{-1}.$$

Then the fitted values are given by $\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{\alpha}_i k(\cdot, x_i)$.

Intuition: to make a prediction at "test" point x^* the terms in $\hat{f}(x^*)$ that contribute the most are those for training points x_i with similarity $k(x^*, x_i)$ large.

Proof of the Representer Theorem. Note $V = \text{span}\{k(\cdot, x_1), \dots, k(\cdot, x_n)\}$ is a closed (as its finite dimensional) subspace of \mathcal{H} . Hence any $f \in \mathcal{H}$ can be written as f = u + v for $u \in \mathcal{V}$ and $v \in \mathcal{V}^{\perp}$.

We have
$$f(x_i) = \langle k(\cdot, x_i), u + v \rangle = \langle k(\cdot, x_i), u \rangle = u(x_i)$$
. Then

$$||f||_{\mathcal{H}}^2 = ||v||_{\mathcal{H}}^2 + ||u||_{\mathcal{H}}^2.$$

In the expression for Q_1 , the first term only depends on u, and the second term is $J(||f||_{\mathcal{H}}^2) \geq J(||u||_{\mathcal{H}}^2)$ with equality if and only if v = 0. Hence any minimiser

of Q_1 is contained in \mathcal{V} .

So write $f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ for the minimiser. Now note

$$(f(x_1),\ldots,f(x_n))=K\alpha$$

$$||f||_{\mathcal{H}}^2 = \sum_{i,j=1}^n \alpha_i k(x_i, x_j) \alpha_j = \alpha^T K \alpha$$

so therefore for any $f \in \mathcal{V}$, $Q_1(f) = Q_2(\alpha)$. Hence $\hat{f}(\cdot) = \sum_{i=1}^n \hat{\alpha}_i k(\cdot, x_i)$ minimises Q_1 if and only if $\hat{\alpha}$ minimises Q_2 .

Now we will assume that

$$Y_i = f^0(x_i) + \varepsilon_i, \quad \mathbb{E}\varepsilon = 0, \quad \text{Var}(\varepsilon) = \sigma^2 I$$

where $||f^0||_{\mathcal{H}} \leq 1$.

Note. This is equivalent to $cY_i = cf^0(x_i) + c\varepsilon_i$ so $||cf^0||_{\mathcal{H}} = c||f^0||_{\mathcal{H}}$, $Var(c\varepsilon_i) = \sigma^2 c^2$. So the "signal-to-noise ratio" is

$$\frac{\operatorname{Var}(c\varepsilon_i)}{||cf^0||_{\mathcal{H}}^2} = \frac{\operatorname{Var}(\varepsilon_i)}{||f^0||_{\mathcal{H}}} \ge \sigma^2.$$

Theorem 1.10. Let K have eigenvalues $d_1 \ge d_2 \ge ... \ge d_n \ge 0$. Then

$$MSPE(\hat{f}_n) = \frac{1}{n} \mathbb{E} \left\{ \sum_{i=1}^n (f^0(x_i) - \hat{f}_n(x_i))^2 \right\}$$
$$\leq \frac{\sigma^2}{n} \sum_{i=1}^n \frac{d_i^2}{(d_i + \lambda)^2} + \frac{\lambda}{4n}$$
$$\leq \frac{\sigma^2}{n} \frac{1}{\lambda} \sum_{i=1}^n \min\left(\frac{d_i}{4}, \lambda\right) + \frac{\lambda}{4n}.$$

Proof. From the Representer Theorem $(\hat{f}_n(x_1), \dots, \hat{f}_n(x_n))^T = K(K + \lambda I)^{-1}Y$. As $f^0 \in \mathcal{H}$ we have $(f^0(x_1), \dots, f^0(x_n))^T = K\alpha$ for some $\alpha \in \mathbb{R}^n$ (see Example Sheet). Moreover, $||f^0||_{\mathcal{H}}^2 \geq \alpha^T K\alpha$. Let the UDU^T be the eigen-decomposition of K, with $D_{ii} = d_i$. Define $\Theta = U^T K\alpha$. Then

$$n \text{MSPE}(\hat{f}_n) = \mathbb{E} \| K(K + \lambda I)^{-1} \underbrace{(U\Theta + \varepsilon)}_{Y} - \underbrace{U\Theta}_{(f^0(x_1), \dots, f^0(x_n))^T} \|^2$$

$$= \mathbb{E} \| UDU^T (UDU^T + \lambda I)^{-1} (U\Theta + \varepsilon) - U\Theta \|^2$$

$$= \mathbb{E} \| D(D + \lambda I)^{-1} (\Theta + U^T \varepsilon) - \Theta \|^2 \qquad (U^T U = I)$$

$$= \underbrace{\| \{D(D + \lambda I)^{-1} - I\} \varepsilon \|^2}_{:=(1)} + \underbrace{\mathbb{E} \| D(D + \lambda I)^{-1} U^T \varepsilon \|^2}_{:=(2)}. \quad (\mathbb{E}\varepsilon = 0)$$

So

$$(2) = \mathbb{E}[\{D(D+\lambda I)^{-1}U^{T}\varepsilon\}^{T}\{D(D+\lambda I)^{-1}U^{T}\varepsilon\}]$$

$$= \mathbb{E}[\operatorname{tr}(\{D(D+\lambda I)^{-1}U^{T}\varepsilon\}^{T}\{D(D+\lambda I)^{-1}U^{T}\varepsilon\})]$$

$$= \mathbb{E}[\operatorname{tr}(D(D+\lambda I)^{1}\varepsilon\varepsilon^{T}D(D+\lambda I)^{-1})] \qquad \text{(circular property of tr)}$$

$$= \operatorname{tr}(D(D+\lambda I)^{-1}\sigma^{2}ID(D+\lambda I)^{-1})$$

$$= \sigma^{2}\sum_{i=1}^{n} \frac{d_{i}^{2}}{(d_{i}+\lambda)^{2}}.$$

Also

$$(1) = \sum_{i=1}^{n} \frac{\lambda^2 \Theta_i^2}{(d_i + \lambda)^2}.$$

Since $\Theta = DU^T \alpha$, so if $d_i = 0$ then $\Theta_i = 0$. So let D^+ be a diagonal matrix with $D_{ii}^+ = \begin{cases} d_i^{-1} & \text{if } d_i \neq 0 \\ 0 & \text{otherwise} \end{cases}$.

Then,

$$\sum_{i:d_i>0} \frac{\Theta_i^2}{d_i} = \|\sqrt{D^+}\Theta\|^2 = \alpha^T K U D^+ U^T K \alpha$$

$$= \alpha^T U D D^+ D U^T \alpha$$

$$= \alpha^T U D U^T \alpha \qquad (DD^+ D = D)$$

$$= \alpha^T K \alpha < 1.$$

Then

$$(1) = \sum_{i:d_i>0} \frac{\Theta_i^2}{d_i} \frac{d_i \lambda^2}{(d_i + \lambda)^2} \le \max_{1 \le i \le n} \frac{d_i \lambda^2}{(d_i + \lambda)^2} \sum_{i:d_i>0} \frac{\Theta_i^2}{d_i}$$
$$\le \max_{1 \le i \le n} \frac{d_i \lambda^2}{(d_i + \lambda)^2}$$
$$\le \frac{\lambda}{4}. \qquad ((a+b)^2 \ge 4ab)$$

Combining the bounds for (1) and (2) gives the first inequality. Finally, for the final inequality we note that

$$\frac{d_i^2}{(d_i+\lambda)^2} \leq \min\left\{1, \frac{d_i^2}{4d_i\lambda}\right\} = \frac{1}{\lambda}\min\left\{\lambda, \frac{d_i}{4}\right\}.$$

Question: when is the upper bound good?

Random design

Let $(\mathcal{X}, \mathcal{B}, \mathbb{P})$ be a probability space, where \mathcal{X} is a metric space, \mathcal{B} is the Borel σ -algebra on \mathcal{X} . Assume that $x_1, \ldots, x_n \sim^{\text{iid}} \mathbb{P}$.

Theorem 1.11 (Mercer's Theorem). Under mild assumptions on k, \mathbb{P} , there is an orthonormal basis (e_i) of $\mathcal{L}^2(\mathbb{P})$, i.e

$$\int_{\mathcal{X}} e_l(x)e_j(x)d\mathbb{P}(x) = \mathbb{1}\{l=j\}$$

and eigenvalues (μ_i) with $\sum_{i=1}^n \mu_i < \infty$ such that

$$\mu_j e_j(x') = \int_{\mathcal{X}} k(x, x') e_j(x) d\mathbb{P}(x).$$

Furthermore

$$k(x, x') = \sum_{l=1}^{\infty} \mu_l e_l(x) e_l(x')$$

and this series is absolutely convergent.

Proof. Not given.
$$\Box$$

Let $\hat{\mu}_1, \dots, \hat{\mu}_n$ be (random) eigenvalues of K/n. As it turns out, when n is large $\hat{\mu}_i \approx \mu_i$. Let $\gamma = \lambda/n$, then a previous theorem gives

$$MSPE(\hat{f}_{\gamma n}) \le \frac{\sigma^2}{\gamma} \frac{1}{n} \sum_{i=1}^n \min\left(\frac{\hat{\mu}_i}{4}, \gamma\right) + \frac{\gamma}{4}.$$

Then the MSPE is a random variable depending on x_1, \ldots, x_n .

Lemma 1.12.

$$\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}\min\left(\frac{\hat{\mu}_{i}}{4},\gamma\right)\right) \leq \frac{1}{n}\sum_{i=1}^{\infty}\min\left(\frac{\mu_{i}}{4},\gamma\right).$$

Proof. Not given.

This lemma means we can bound

$$\underbrace{\mathbb{E}[\text{MSPE}(\hat{f}_{n\gamma})]}_{\text{over }Y \text{ and } x_1, \dots, x_n} \le \frac{\sigma^2}{\gamma} \frac{1}{n} \sum_{i=1}^{\infty} \min\left(\frac{\mu_i}{4}, \gamma\right) + \frac{\gamma}{4}. \tag{*}$$

Theorem 1.13. Under the assumptions of Mercer's Theorem, there is a sequence $(\gamma_n)_{n\geq 1}$ such that for fixed $\sigma^2>0$,

$$\frac{1}{n}\mathbb{E}\left\{\sum_{i=1}^{n} (f^{0}(x_{i}) - \hat{f}_{\gamma n}(x_{i}))^{2}\right\} = o(n^{-1/2}) \text{ as } n \to \infty.$$

Proof. Let $\phi:[0,\infty)\to[0,\infty)$ be defined by

$$\phi(\gamma) = \sum_{j=1}^{\infty} \min\left(\frac{\mu_j}{4}, \gamma\right).$$

Note ϕ is increasing, and as $\sum_{j=1}^{\infty} \mu_j < \infty$, $\lim_{\gamma \downarrow 0} \phi(\gamma) = 0$. Define $\gamma_n = n^{-1/2} \sqrt{\phi(n^{-1/2})}$, so $\gamma_n = o(n^{-1/2})$. Thus for n large enough, $\phi(\gamma_n) \leq \phi(n^{-1/2})$ and the upper bound in (*) is

$$\sigma^2 \frac{\phi(\gamma_n)}{n\gamma_n} + \frac{\gamma_n}{4} \le \frac{\sigma^2 \phi(n^{-1/2})}{n^{1/2} \sqrt{\phi(n^{-1/2})}} + o(n^{-1/2}) = o(n^{-1/2}).$$

When we know (μ_j) , in some cases we can get a better bound on the MSPE.

Example. If k is the Sobolev kernel and \mathbb{P} is the Lebesgue measure on [0,1], one can show that

$$\frac{\mu_i}{4} = \frac{1}{\pi^2 (2i - 1)^2}.$$

Then for any integer j,

$$\sum_{i=1}^{\infty} \min\left(\frac{\mu_i}{4}, \gamma_n\right) \le \gamma_n j + \sum_{i=j+1}^{\infty} \frac{1}{\pi^2 (2i-1)^2}.$$

So if we take $j = \frac{(\pi^2 \gamma_n)^{-1/2} + 1}{2}$ we get upper bound

$$\frac{\gamma_n}{2} \left(\frac{1}{\sqrt{\pi^2 \gamma_n}} + 1 \right) + \frac{1}{\pi^2} \int_{\frac{(\pi^2 \gamma_n)^{-1/2} + 1}{2}}^{\infty} \frac{1}{(2x - 1)^2} dx$$
$$= \mathcal{O}(\gamma_n^{1/2}) + \mathcal{O}(\gamma_n) = \mathcal{O}(\sqrt{\gamma_n}).$$

By (*) we have

$$\mathbb{E}(\mathrm{MSPE}(\hat{f}_{\gamma_n,n})) \leq \mathcal{O}\left(\frac{\sigma^2}{n\gamma_n}\sqrt{\gamma_n} + \gamma_n\right).$$

Picking $\gamma_n \sim \left(\frac{\sigma^2}{n}\right)^{2/3}$ gives an error of at most $\mathcal{O}\left(\left(\frac{\sigma^2}{n}\right)^{2/3}\right)$.

Support Vector Machines

Suppose we have data $(x_i, Y_i)_{i \in [n]}$ where $x_i \in \mathbb{R}^p$, $Y_i \in \{-1, 1\}$. Suppose the two response classes can be separated by a hyperplane through the origin. Let β be a unit vector which is normal to the hyperplane.

There could be many separating hyperplanes. One way of choosing a single one of these is to maximise an empty margin, i.e

$$\max_{\substack{M>0\\\beta\in\mathbb{S}^{p-1}}} M \text{ subject to } Y_i x_i^T \beta \geq M \text{ for all } i\in[n].$$

Reparameterising by $\beta \to \beta/M$, this problem becomes

$$\max_{\beta \in \mathbb{R}^p} \frac{1}{\|\beta\|} \text{ subject to } Y_i x_i^T \beta \ge 1 \text{ for all } i \in [n]$$

or equivalently

$$\min_{\beta \in \mathbb{R}^p} \|\beta\|^2 \text{ subject to } Y_i x_i^T \beta \ge 1 \text{ for all } i \in [n].$$

Instead, what if just a few samples fall on the wrong side of the margin? A different estimator, known as a support vector classifier replaces the constraint $Y_i x_i^T \beta \geq 1$ with a penalty $\left[(1 - Y_i) x_i^T \beta \right]_{\perp}$.

Remark. This works even if there is no separating hyperplane.

So our problem is

$$\min_{\beta \in \mathbb{R}^p} \left[\lambda \|\beta\|^2 + \sum_{i=1}^n (1 - Y_i x_i^T \beta)_+ \right].$$

 λ is a tuning parameter which balances "maximum margin" objective and penalty.

In general, we may want to estimate a hyperplane which does not pass through the origin; $x^T \beta + \mu = 0$. We can define a similar optimisation:

$$\min_{\substack{\beta \in \mathbb{R}^p \\ \mu \in \mathbb{R}}} \left[\lambda \|\beta\|^2 + \sum_{i=1}^n (1 - Y_i(x_i^T \beta + \mu))_+ \right].$$

If \mathcal{H} is the RKHS for the linear kernel, this problem can be written as

$$(\hat{\mu}, \hat{f}) = \operatorname{argmin}_{(\mu, f) \in \mathbb{R} \times \mathcal{H}} \left[\sum_{i=1}^{n} (1 - Y_i (f(x_i) + \mu))_+ + \lambda ||f||_{\mathcal{H}}^2 \right]$$

where $\hat{f}(x) = x^T \hat{\beta}$.

A support vector machine is defined by this optimisation with a generic RKHS \mathcal{H} with reproducing kernel k.

<u>Prediction</u>: given $(\hat{\mu}, \hat{f})$ and a new input x^* we predict $\hat{Y}^* = \operatorname{sgn}(\hat{f}(x^*) + \hat{\mu})$.

Note. In \mathcal{X} the separating 'hyperplane' is not necessarily linear, but upon mapping (via ϕ) to \mathcal{H} (i.e $x \mapsto \phi(x) = k(\cdot, x)$) it becomes a hyperplane since the class boundary $\{x \in \mathcal{X} : f(x) + \mu = 0\}$ is mapped to $\{k(\cdot, x) : \langle k(\cdot, x), f \rangle_{\mathcal{H}} + \mu = 0\}$.

Using a slight generalisation of the Representer Theorem (see Example Sheet 1), we can show that

$$\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot)$$

where

$$(\hat{\alpha}, \hat{\mu}) = \operatorname{argmin}_{(\alpha, \mu) \in \mathbb{R}^n \times \mathbb{R}} \sum_{i=1}^n (1 - Y_i (K_i^T \alpha + \mu))_+ + \lambda \alpha^T K \alpha$$

where $K_{ij} = k(x_i, x_j)$.

Remark. We can have $\hat{\alpha}_i = 0$ for some i, so we do not use the corresponding x_i at all in the estimator.

Kernel Logistic Regression

We have standard logistic regression

$$\log \frac{\mathbb{P}(Y_i = 1)}{\mathbb{P}(Y_i = -1)} = x_i^T \beta.$$

Maximising the likelihood with (x_i, Y_i) , $i \in [n]$ is equivalent to solving

$$\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \log \left(1 + \exp(-Y_i x_i^T \beta) \right).$$

As in ridge regression, we may wish to penalise $\|\beta\|^2$:

$$\min_{\beta \in \mathbb{R}^p} \left[\sum_{i=1}^n \log \left(1 + \exp(-Y_i x_i^T \beta) \right) + \lambda \|\beta\|_2^2 \right].$$

This is the same as

$$\min_{f \in \mathcal{H}} \left[\sum_{i=1}^{n} \log \left(1 + \exp(-Y_i f(x_i)) \right) + \lambda ||f||_{\mathcal{H}}^2 \right]$$

where \mathcal{H} is the linear RKHS.

In kernel logistic regression we build the class boundary $\hat{f}(\cdot)$ by solving this problem with an arbitrary RHKS.

Question: how does this compare with the Support Vector Machine?

In each case, the objective is

$$\sum_{i=1}^{n} l(Y_i f(x_i)) + \lambda ||f||_{\mathcal{H}}^2$$

with $l(z) = (1-z)_+$ and $l(z) = \log(1+e^{-z})$ for the SVM and logistic regression respectively.

1.5 Large-scale Kernel Machines

Suppose for a kernel k, there is a feature map $\phi: \mathcal{X} \to \mathbb{R}^q$. Let $K_{ij} = k(x_i, x_j)$

and
$$\Phi = \begin{pmatrix} \phi(x_1) \\ \vdots \\ \phi(x_n) \end{pmatrix} \in \mathbb{R}^{n \times q}$$
 so that $K = \Phi \Phi^T$.

Consider kernel ridge regression. There are two ways of computing the fitted values:

$$K(\underbrace{K+I\lambda}_{n\times n})^{-1}Y$$
 or;

$$\Phi(\underbrace{\Phi^T \Phi + \lambda I}_{q \times q})^{-1} \Phi^T Y.$$

These have costs $\mathcal{O}(n^3)$ and $\mathcal{O}(q^3 + nq^2)$ respectively. So when n is much larger than q, we want to use the latter expression.

In other kernel machines, it is helpful to have a low rank kernel matrix $K = \Phi \Phi^T$.

Example. Consider the optimisation problem resulting from the representer theorem

$$\min_{\alpha \in \mathbb{R}^n} \left[c(Y, x_1, \dots, x_n, K\alpha) + \lambda \alpha^T K\alpha \right].$$

The gradient of the penalty term is $2\lambda K\alpha$. Computing this has cost $\mathcal{O}(n^2)$ (since K is $n \times n$), but if $K = \Phi \Phi^T$ (q < n) we can compute $2\lambda \Phi \Phi^T \alpha$ in $\mathcal{O}(nq)$ iterations.

Problem: what if there is no feature map ϕ onto \mathbb{R}^q with $q \ll n$? For example, the Gaussian kernel.

Idea: find an approximation $\hat{\Phi}$ such that $K \approx \hat{\Phi}\hat{\Phi}^T$. Our approach will be to develop a random feature map $\hat{\Psi}: \mathcal{X} \to \mathbb{R}^b$ satisfying

$$\mathbb{E}[\hat{\Psi}(x)^T \hat{\Psi}(x')] = k(x, x') \text{ for all } x, x' \in \mathcal{X}.$$

Then, we can let $\hat{\Psi}_i$, $i \in [L]$ be iid copies of $\hat{\Psi}$; define the approximate feature map

$$\hat{\phi}: x \mapsto \frac{1}{\sqrt{L}}(\hat{\Psi}_1(x), \dots, \hat{\Psi}_L(x)) \in \mathbb{R}^{b \times L}.$$

Then $\hat{\phi}(x)^T \hat{\phi}(x') = \frac{1}{L} \sum_{i=1}^L \hat{\Psi}_i(x)^T \hat{\Psi}_i(x')$. In particular $\mathbb{E}[\hat{\phi}(x)^T \hat{\phi}(x)] = k(x, x')$ and $\operatorname{Var}[\hat{\phi}(x)^T \hat{\phi}(x)] = \mathcal{O}(L^{-1})$.

Then approximate $K \approx \hat{\Phi}\hat{\Phi}^T$ where $\hat{\Phi} = \begin{pmatrix} \hat{\phi}(x_1) \\ \vdots \\ \hat{\phi}(x_n) \end{pmatrix}$. In some cases the error

$$||K - \hat{\Phi}^T \hat{\Phi}||$$

is small with $Lb \ll n$.

Random Fourier Feature

Theorem 1.14 (Bochner). Let $k : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ be a continuous kernel. Then k is shift-invariant (there exists h such that k(x, x') = h(x - x')) if and only if there exists c > 0 and some distribution F in \mathbb{R}^p such that if $W \sim F$, then

$$k(x, x') = c\mathbb{E}[e^{i(x-x')^T W}] = c\mathbb{E}[\cos((x-x')^T W)].$$

Proof. Not given.

Example. If $k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$ is the Gaussian kernel, then we have the representation in the theorem with $W \sim \mathcal{N}(0, \sigma^{-2}I)$.

We can use the theorem to construct a random feature map

$$\hat{\Psi}(x) = \sqrt{2c}\cos(W^T x + U) \in \mathbb{R}$$

where $W \sim F$, $U \sim \text{Unif}(-\pi, \pi)$ are independent.

Lemma 1.15.

$$\mathbb{E}(\hat{\Psi}(x)\hat{\Psi}(y)) = k(x,y) \text{ for all } x, y \in \mathbb{R}^p.$$

Proof. The LHS is

$$\begin{aligned} &2c\mathbb{E}[\cos(W^Tx+U)\cos(W^Ty+U)]\\ &=2c\mathbb{E}[\left[\cos(W^Tx)\cos U-\sin(W^Tx)\sin U\right]\times\left[\cos(W^Ty)\cos U-\sin(W^Ty)\sin U\right]]\\ &=c\mathbb{E}[\cos(W^Tx)\cos(W^Ty)+\sin(W^Tx)\sin(W^Ty)] \qquad \text{(since }\mathbb{E}[\cos u\sin u]=0)\\ &=c\mathbb{E}[\cos(W^T(x-y))]\\ &=k(x,y). \end{aligned} \tag{Bochner's Theorem)}$$

2 The Lasso & Beyond

Consider the standard linear model

$$Y = X\beta^0 + \varepsilon$$
, $\mathbb{E}\varepsilon = 0$, $\operatorname{Var}\varepsilon = \sigma^2 I$.

Then

$$MSPE(\hat{\beta}^{ols}) = \frac{1}{n} \mathbb{E} ||X\beta^{0} - X\hat{\beta}^{ols}||$$

$$= \frac{1}{n} \mathbb{E} [tr((\beta^{0} - \hat{\beta}^{ols})(\beta^{0} - \hat{\beta}^{ols})X^{T}X^{)}]$$

$$= \frac{1}{n} tr \left(\underbrace{\mathbb{E} [(\beta^{0} - \hat{\beta}^{ols})(\beta^{0} - \hat{\beta}^{ols})^{T}]}_{Var(\hat{\beta}^{ols})} X^{T}X\right)$$

$$= \frac{1}{n} tr(\sigma^{2}(X^{X})^{-1}X^{T}X)$$

$$= \frac{1}{n} tr(\sigma^{2}I_{p}) = \frac{\sigma^{2}p}{n}.$$

Let $S\{k: \beta_k^0 \neq 0\}$ be the "relevant" predictors.

Question: what if $s := |S| \ll p$?

The model $Y=X_s\beta_s^0+\varepsilon$, where X_s is the matrix with columns which are columns of X with index in S, and β_s^0 are the coefficients for predictors in S. So if we fit a model with design matrix X_s instead of X, we get $\text{MSPE}=\frac{\sigma^2 s}{n}\ll\frac{\sigma^2 p}{n}$.

In practice, we don't know S, but we can try to estimate it (variable selection).

Best subset regression

Fit every model with a subset $M \subseteq \{1, \dots, p\}$ of the predictors. Then choose the best M by cross-validation.

Problem: there are 2^p possibilities, which is too large even for relatively small p.

Forward selection

This is a greedy way of approximating best subset regression.

- 1. Start by fitting intercept-only model;
- 2. Add to the model the predictor that decreases the sum-of-squares residuals the most;
- 3. Repeat step 2 until we have m predictors.

We treat m as a tuning parameter, chosen by cross-validation.

2.1 The Lasso

$$(\hat{\mu}_{\lambda}^{L}, \hat{\beta}_{\lambda}^{L}) \in \operatorname{argmin}_{(\mu,\beta) \in \mathbb{R} \times \mathbb{R}^{p}} \left[\frac{1}{2n} \|Y - \mu \mathbf{1} - X\beta\|^{2} + \lambda \|\beta\|_{1} \right]$$

where $\|\beta\|_1 = \sum_{k=1}^p |\beta_k|$. As we did for ridge regression, we can remove μ by standardising the columns of X and centering the response Y:

$$\hat{\beta}_{\lambda}^L \in \operatorname{argmin}_{\beta \in \mathbb{R}^p} \left[\frac{1}{2n} \|Y - X\beta\|^2 + \lambda \|\beta\|_1 \right].$$

Note that $\hat{\beta}_{\lambda}^{L}$ minimises

$$||Y - X\beta||^2$$
 subject to $||\beta||_1 \le ||\hat{\beta}_{\lambda}^L||_1$.

Similarly, $\hat{\beta}_{\lambda}^{R}$ minimises

$$||Y - X\beta||^2$$
 subject to $||\beta|| \le ||\hat{\beta}_{\lambda}^R||$.

Fact: in general, $\hat{\beta}_{\lambda}^{R}$ has all non-zero entries, whereas $\hat{\beta}_{\lambda}^{L}$ can have many entries equal to zero.

Prediction error of the Lasso (slow rate)

Assume the columns of X are standardised, and Y is the centred response

$$Y = X\beta^0 + \varepsilon - \bar{\varepsilon} \mathbf{1}.$$

Further assume $\varepsilon \in \mathcal{N}(0, \sigma^2 I)$.

Theorem 2.1. Let $\hat{\beta}$ be any Lasso solution with $\lambda = A\sigma\sqrt{\log(p)/n}$. Then with probability $\geq 1 - 2p^{-(A^2/2-1)}$,

$$\frac{1}{n} \|X(\beta^0 - \hat{\beta})\|^2 \le 4A\sigma \sqrt{\frac{\log p}{n}} \|\beta^0\|_1.$$

Remarks.

- Instead of bounding the MSPE (the expectation of the LHS) we bound the SPE with high-probability;
- This is called the "slow rate" with respect to n, since we know the MSPE usually decreases as $\mathcal{O}(n^{-1})$ (e.g MSPE of $\hat{\beta}^{\text{ols}}$).
- However, we trade the factor of p in the numerator with $\sqrt{\log p} \|\beta^0\|_1$, which can be much smaller than in OLS in general.
- We make no assumptions about X!

Lemma 2.2. Let
$$||X^T \varepsilon||_{\infty} = \max_k |(\varepsilon^T X)_k|$$
 and let $\Omega = \left\{\frac{||X^T \varepsilon||_{\infty}}{n} \le \lambda\right\}$ then
$$\mathbb{P}(\Omega) \ge 1 - 2p^{-(A^2/2 - 1)}.$$

Proof of slow rate. By the definition of $\hat{\beta}$

$$\frac{1}{2n} \| \underbrace{Y - X\hat{\beta}}_{X(\beta^0 - \hat{\beta}) + \varepsilon - \mathbf{1}\bar{\varepsilon}} \|^2 + \lambda \|\hat{\beta}\|_1 \le \frac{1}{2n} \| \underbrace{Y - X\beta^0}_{\varepsilon - \mathbf{1}\bar{\varepsilon}} \|^2 + \lambda \|\beta^0\|_1.$$

Since $X^T \mathbf{1} = 0$, rearranging terms (and using the previous lemma) gives

$$\begin{split} \frac{1}{2n} \| X(\beta^0 - \hat{\beta}) \|^2 &\leq \frac{1}{n} \varepsilon^T X(\beta^0 - \hat{\beta}) + \lambda \| \beta^0 \|_1 - \lambda \| \hat{\beta} \|_1 \\ &\leq \| \varepsilon^T X \|_{\infty} \| \beta^0 - \hat{\beta} \|_1 + \lambda \| \beta^0 \|_1 - \lambda \| \hat{\beta} \|_1 \\ &\leq \lambda \left[\| \beta^0 - \hat{\beta} \|_1 + \| \beta^0 \|_1 - \| \hat{\beta} \|_1 \right]. \end{split}$$
 (On Ω)

Thus by the triangle inequality

$$\frac{1}{n} \|X(\beta^0 - \hat{\beta})\|^2 \le 4\lambda \|\beta^0\|_1.$$

Concentration Inequalities

Definition. We say a random variable W is σ -sub-Gaussian for some parameter $\sigma > 0$ if

$$\mathbb{E}[e^{\alpha(W - \mathbb{E}W)}] \le e^{\frac{\alpha^2 \sigma^2}{2}}.$$

Proposition 2.3. If W is σ -sub-Gaussian, then

$$\mathbb{P}(W - \mathbb{E}W \ge t) \le e^{-\frac{t^2}{2\sigma^2}}.$$

Proof. Apply Markov's inequality to $bbP(W - \mathbb{E}W \ge t) = \mathbb{P}(\exp(\alpha(W - \mathbb{E}W)) \ge \exp(\alpha t))$ and minimise over α (Chernoff bound).

All bounded random variables are sub-Gaussian.

Lemma 2.4. If W is a random variable taking values in [a,b], then it is $\left(\frac{b-a}{2}\right)$ -sub-Gaussian.

Proof. See Part III Topics in Statistical Theory.

Proposition 2.5. Let W_1, \ldots, W_n be independent random variables where W_i is σ_i -sub-Gaussian. Let $\gamma \in \mathbb{R}^n$. Then $\gamma^T W = \sum_{i=1}^n \gamma_i W_i$ is sub-Gaussian with parameter $\sqrt{\sum_{i=1}^n \gamma_i^2 \sigma_i^2}$.

Proof. Without loss of generality, assume $\mathbb{E}W_i = 0$ for all $i \in [n]$. Then

$$\mathbb{E}\left[\exp\left(\alpha\sum_{i=1}^n\gamma_iW_i\right)\right] = \prod_{i=1}^n\mathbb{E}\left[\exp\left(\alpha\gamma_iW_i\right)\right] \leq \exp\left(\alpha^2\sum_{i=1}^n\frac{\gamma_i^2\sigma_i^2}{2}\right).$$

Recall:

Lemma 2.6. Let $||X^T \varepsilon||_{\infty} = \max_k |(\varepsilon^T X)_k|$ and let $\Omega = \left\{\frac{||X^T \varepsilon||_{\infty}}{n} \le \lambda\right\}$ then $\mathbb{P}(\Omega) > 1 - 2n^{-(A^2/2 - 1)}$.

We will prove a stronger result:

Lemma. Suppose $(\varepsilon_i)_{i=1}^n$ are independent mean zero random variables, and are sub-Gaussian with common parameter σ . Let $\lambda = A\sigma\sqrt{\frac{\log p}{n}}$. Then

$$\mathbb{P}\left(\frac{\|X^T\varepsilon\|}{n} \le \lambda\right) \ge 1 - 2p^{-(A^2/2 - 1)}.$$

Proof. We have

$$\mathbb{P}\left(\frac{\|X^T\varepsilon\|_{\infty}}{n} > \lambda\right) \leq \sum_{j=1}^p \mathbb{P}\left(\frac{|X_j^T\varepsilon|}{n} > \lambda\right)$$
$$= \sum_{j=1}^p \left[\mathbb{P}\left(\frac{X_j^T}{n} > \lambda\right) + \mathbb{P}\left(-\frac{X_j^T\varepsilon}{n} > \lambda\right)\right].$$

By the previous proposition, $\pm \frac{X_j^T \varepsilon}{n}$ is mean zero sub-Gaussian with parameter $\left(\frac{\sigma^2 \|X_j\|^2}{n}\right)^{1/2} = \frac{\sigma}{\sqrt{n}}$. Hence, the above expression is bounded above by

$$2p \exp\left(-\frac{\lambda^2}{\left(2\frac{\sigma^2}{n}\right)}\right) = 2p \exp\left(-A^2 \frac{\log p}{2}\right) = 2p^{1-A^2/2}.$$

Now we recall some facts from complex analysis.

Proposition 2.7. Let $C \subseteq \mathbb{R}^d$ be convex.

- (i) Let $f_1, \ldots, f_m : C \to \mathbb{R}$ be convex and $c_1, \ldots, c_m \geq 0$. Then $c_1 f_1 + \ldots + c_m f_m$ is convex.
- (ii) Let $A: \mathbb{R}^m \to \mathbb{R}^d$ be affine (A(x) = Mx + b). Let $D = A^{-1}(C) = \{x : A(x) \in C\}$ and let $f: C \to \mathbb{R}$ be convex. Then D is convex and the composition $f \circ A: D \to \mathbb{R}$, $x \mapsto f(A(x))$ is a convex function.
- (iii) If $f: C \to \mathbb{R}$ is twice continuously differentiable with C open, then
 - (a) f is convex if and only if its Hessian H(x) is positive semi-definite for all $x \in C$:
 - (b) f is strictly convex if its Hessain H(x) is positive definite for all $x \in C$.

Lagrangian method

Consider a problem of the form

minimise
$$f(x)$$
 subject to $g(x) = 0$ $x \in C \subseteq \mathbb{R}^d$

where $g: C \to \mathbb{R}^b$. Let c^* be the optimal value. The *Lagrangian* of this problem is defined as

$$: (x,\theta) = f(x) + \theta^T g(x), \ \theta \in \mathbb{R}^b.$$

Note that for all θ ,

$$\inf_{x \in C} L(x, \theta) \le \inf_{\substack{x \in C \\ g(x) = 0}} L(x, \theta) = c^*.$$

The Lagrangian method involves finding θ^* such that the minimiser x^* of the LHS in the above has $g(x^*) = 0$, in which case this is a minimiser of the original problem.

Subgradient

Definition. Given a convex $C \subseteq \mathbb{R}^d$, convex $f: C \to \mathbb{R}$, define the *subdifferential of* f *at* $x \ \partial f(x) \subseteq \mathbb{R}^d$ defined by

$$\partial f(x) = \{ v \in \mathbb{R}^d : f(y) \ge f(x) + v^T (y - x) \quad \forall y \in C \}.$$

An element $v \in \partial f(x)$ is called a *subgradient* of f at x.

Proposition 2.8. If $f: C \to \mathbb{R}$ is convex and differentiable at $x \in \text{int}(C)$, then

$$\partial f(x) = {\nabla f(x)}.$$

Proposition 2.9. If $f, g: C \to \mathbb{R}$ are convex with $int(C) \neq \emptyset$, then

$$\partial(\alpha f)(x) = \alpha \partial f(x) = {\alpha v : v \in \partial f(x)}$$

for all $\alpha \in \mathbb{R}$. Also

$$\partial (f+g)(x) = \partial f(x) + \partial g(x) = \{v+w : v \in \partial f(x), w \in \partial g(x)\}.$$

Karush-Kuhn-Tucker (KKT) conditions

Proposition 2.10. Given $f: C \to \mathbb{R}$ convex, $x^* \in \operatorname{argmin}_{x \in C} f(x)$ if and only if $0 \in \partial f(x^*)$.

Proof. Trivial.
$$\Box$$

Subdifferenital of $\|\cdot\|_1$

By the triangle inequality,

$$||tx + (1-t)y||_1 \le t||x||_1 + (1-t)||y||_1 \ \forall t \in (0,1)$$

so $||cdot||_1$ is convex. Let $A = \{k_1, \ldots, k_m\} \subseteq \{1, \ldots, d\}$. For $x \in \mathbb{R}^d$ we write x_A for the vector $(x_{k_1}, \ldots, x_{k_m}) \in \mathbb{R}^m$. For $X \in \mathbb{R}^{n \times d}$ we write X_A for the matrix with columns $(X_{k_1}, \ldots, X_{k_m})$. We also write x_{-j} and x_{-jk} for $x_{\{j\}^c}$ and $x_{\{j,k\}^c}$ respectively. Also X_A^T and X_A^{-1} denote $(X_A)^T$ and $(X_A)^{-1}$ respectively.

We also define the sgn function by

$$sgn(x_i) = \begin{cases} -1 & \text{if } x_i < 0\\ 0 & \text{if } x_i = 0\\ 1 & \text{if } x_i > 0 \end{cases}$$

for $x_i \in \mathbb{R}$. For $x \in \mathbb{R}^d$ we define $\operatorname{sgn}(x) == (\operatorname{sgn}(x_1), \dots, \operatorname{sgn}(x_d))$.

Proposition 2.11. For $x \in \mathbb{R}^d$, let $A = \{j : x_i \neq 0\}$. Then

$$\partial ||x||_1 = \{ v \in \mathbb{R}^d : ||v||_{\infty} \le 1, \ v_A = \operatorname{sgn}(x_A) \}.$$

Proof. Let $g_j: \mathbb{R}^d \to \mathbb{R}$ be defined by $x \mapsto |x_j|$. Define $g = \sum_{j=1}^d g_j$ so $g(x) = \|x\|_1$ for all $x \in \mathbb{R}^d$. Then by a previous proposition, $\partial g(x) = \sum_{j=1}^d \partial g_j(x)$. When $x_j \neq 0$, g_j is differentiable at x so $\partial g_j(x) = \{\partial g_j(x)\} = \{\operatorname{sgn}(x_j)e_j\}$, where $e_j \in \mathbb{R}^d$ has all entries 0 except jth entry 1.

When $x_i = 0$,

$$v \in \partial g(x_j) \iff g_j(y) \ge g_j(x) + v^T(y - x) \ \forall y \in \mathbb{R}^d$$

$$\iff |y_j| \ge |x_j| + v^T(y - x) \ \forall y \in \mathbb{R}^d$$

$$\iff |y_j| \ge v^T(y - x) \ \forall y \in \mathbb{R}^d.$$

We claim this holds if and only if $v_j \in [-1, 1]$ and $v_{-j} = 0$. Indeed if $v_{-j} = 0$ the above becomes $|y_j| \ge v_j y_j$ which holds as long as $v_j \in [-1, 1]$. Conversely, taking $y \in \mathbb{R}^d$ with $y_j = 0$ and $y_{-j} = x_{-j} + v_{-j}$ gives $0 = |y_j| \ge |v_{-j}|^2$, implying $v_{-j} = 0$. Taking $y \in \mathbb{R}^d$ with $y_{-j} = 0$ and $y_j = \operatorname{sgn}(v_j)$ gives $1 \ge |\operatorname{sgn}(v_j)| = |y_j| \ge v_j \operatorname{sgn}(v_j) = |v_j|$.

The proposition now follows from $\partial g(x) = \sum_{j=1}^{d} \partial g_j(x)$.

Lasso solutions

We have

$$Q_{\lambda}(\beta) = \frac{1}{2n} ||Y - X\beta||_{2}^{2} + \lambda ||\beta||_{1}.$$

KKT says that $0 \in \partial Q_{\lambda}(\hat{\beta}^{L}_{\lambda})$ for any solution $\hat{\beta}^{L}_{\lambda}$. This is equivalent to

$$-\frac{1}{n}X^{T}(Y - X\hat{\beta}_{\lambda}^{L}) + \lambda\hat{v} = 0$$

 $\text{for } \hat{v} \in \partial \|\hat{\beta}^L_{\lambda}\|_1 \text{, i.e } \|\hat{v}\|_{\infty} \leq 1 \text{ and } \hat{v}_{\hat{S}_{\lambda}} = \text{sgn}(\hat{\beta}^L_{\lambda,\hat{S}_{\lambda}}) \text{, where } \hat{S}_{\lambda} = \{k: \hat{\beta}^L_{\lambda,k} \neq 0\}.$

It turns out the Lasso fitted values are unique!

Proposition 2.12. Fix $\lambda > 0$, suppose $\beta^{(1)}, \beta^{(2)}$ are two lasso solutions. Then $X\beta^{(1)} = X\beta^{(2)}$.

Proof. We have $Q_{\lambda}(\beta^{(1)}) = Q_{\lambda}(\beta^{(2)}) = c^*$, the optimal value of Q_{λ} . By strict convexity of $\|\cdot\|_2^2$,

$$\|Y - \frac{X\beta^{(1)}}{2} - \frac{X\beta^{(2)}}{2}\| \leq \frac{\|Y - X\beta^{(1)}\|_2^2}{2} + \frac{\|Y - X\beta^{(2)}\|_2^2}{2}$$

with equality if and only if $X\beta^{(1)}=X\beta^{(2)}$. We'll show this is an equality. We construct a chain of inequalities

$$\begin{split} c^* & \leq Q_{\lambda} \left(\frac{\beta^{(1)} + \beta^{(2)}}{2} \right) \\ & = \frac{1}{2n} \| Y - \frac{X\beta^{(1)}}{2} - \frac{X\beta^{(2)}}{2} \|_2^2 + \lambda \| \frac{\beta^{(1)}}{2} + \frac{\beta^{(2)}}{2} \|_1 \\ & \leq \frac{1}{4n} \| Y - X\beta^{(1)} \|_2^2 + \frac{1}{4n} \| Y - X\beta^{(2)} \|_2^2 + \lambda \| \frac{\beta^{(1)} + \beta^{(2)}}{2} \|_1 \\ & \leq \frac{1}{4n} \| Y - X\beta^{(1)} \|_2^2 + \frac{1}{4n} \| Y - X\beta^{(2)} \|_2^2 + \lambda \| \frac{\beta^{(1)}}{2} \|_1 + \| \frac{\beta^{(2)}}{2} \|_1 \\ & = \frac{Q_{\lambda}(\beta^{(1)}) + Q_{\lambda}(\beta^{(2)})}{2} = c^*. \end{split}$$

Hence all of these inequalities are in fact equalities. The equality at (*) implies $X\beta^{(1)}=X\beta^{(2)}$.

Define the equicorrelation set

$$\hat{E}_{\lambda} = \{k : \frac{1}{n} | X_k^T (Y - X \hat{\beta}_{\lambda}^L) | = \lambda \}$$

which is well defined, since $X\hat{\beta}_{\lambda}^{L}$ does not depend on the choice of $\hat{\beta}_{\lambda}^{L}$. The KKT conditions tell us that \hat{E}_{λ} contains all non-zero entries in $\hat{\beta}_{\lambda}^{L}$, i.e \hat{S}_{λ} .

Proposition 2.13. If $\operatorname{rank}(X_{\hat{E}_{\lambda}}) = |\hat{E}_{\lambda}|$, then $\hat{\beta}_{\lambda}^{L}$ is unique.

Proof. Say $\beta^{(1)}, \beta^{(2)}$ are lasso solutions. We know $\beta^{(1)}_{-\hat{E}_{\lambda}} = \beta^{(2)}_{-\hat{E}_{\lambda}} = 0$ so

$$X(\beta^{(1)} - \beta^{(2)}) = X_{\hat{E}_{\lambda}}(\beta^{(1)}_{\hat{E}_{\lambda}} - \beta^{(2)}_{\hat{E}_{\lambda}}) = 0$$

by uniqueness of the fitted values. If $X_{\hat{E}_{\lambda}}$ has full column rank, the only solution is $\beta_{\hat{E}_{\lambda}}^{(1)} - \beta_{\hat{E}_{\lambda}}^{(2)} = 0$.

Variable selection

How good is the lasso at recovering the non-zero entries of β^0 ? When do we have $\operatorname{sgn}(\hat{\beta}_{\lambda}^L) = \operatorname{sgn}(\beta^0)$?

In the lectures we'll deal with the noiseless case $Y=X\beta^0$ (see Example Sheet for more general case).

Define $S = \{k : \beta_k^0 \neq 0\}$ and $N = S^c$. Assume without loss of generality that $S = \{1, \ldots, s\}$. Assume $\operatorname{rank}(X_s) = s$. Define $\Delta = X_N^T X_S (X_S^T X_S)^{-1} \operatorname{sgn}(\beta_S^0)$ so $\Delta_k = ((X_S^T X_S)^{-1} X_S^T X_k) \operatorname{sgn}(\beta_S^0)$, for k > s. Note that $(X_S^T X_S)^{-1} X_S^T X_k$ represents the coefficients in regression of non-significant variables X_k onto significant variables X_S .

Fix $\lambda > 0$ and define conditions

- (A) $\|\Delta\|_{\infty} \leq 1$ (irrepresentable condition);
- (B) $|\beta_k^0| > \lambda |\operatorname{sgn}(\beta_S^0)^T (X_S^T X_S)_k^{-1}|$ for all $k \in S$ (strong signal);
- (C) There exists a lasso solution $\hat{\beta}^L_{\lambda}$ with $\mathrm{sgn}(\hat{\beta}^L_{\lambda}) = \mathrm{sgn}(\beta^0)$.

Theorem 2.14. $A \ \mathcal{E} \ B \ imply \ C, \ and \ C \ implies \ A.$

Proof. Write $\hat{\beta} = \hat{\beta}_{\lambda}^{L}$, $\hat{S} = \{k : \hat{\beta} \neq 0\}$. The KKT conditions for the lasso say

$$\frac{1}{n}X^TX(\beta^0 - \hat{\beta})$$

where $\|\hat{v}\|_{\infty} \leq 1$ and $v_{\hat{S}} = \operatorname{sgn}(\hat{\beta}_S)$. Blockwise, this is

$$\frac{1}{n} \begin{pmatrix} X_S^T X_S & X_S^T X_N \\ X_N^T X_S & X_N^T X_N \end{pmatrix} \begin{pmatrix} \beta_S^0 - \hat{\beta}_S \\ -\hat{\beta}_N \end{pmatrix} = \lambda \begin{pmatrix} \hat{v}_S \\ \hat{v}_N \end{pmatrix}. \tag{(I)}$$

First we show C implies A: if $sgn(\hat{\beta}) = sgn(\beta^0)$ then $\hat{v}_S = sgn(\beta_S^0)$ and $\hat{\beta}_N = 0$. The top block of (I) gives

$$\frac{1}{n}X_S^T X_S(\beta_S^0 - \hat{\beta}_S) = \lambda \operatorname{sgn}(\beta_S^0).$$

Since X_S has full rank, $X_S^T X_S$ is invertible and $\beta_S^0 - \hat{\beta}_S = n\lambda (X_S^T X_S)^{-1} \operatorname{sgn}(\beta_S^0)$. Plugging this into the bottom block of (I) gives

$$\lambda \frac{1}{n} X_N T X_S (n(X_S^T X_S)^{-1} \operatorname{sgn}(\beta_S^0)) = \lambda \hat{v}_N$$

so

$$\Delta = X_N^T X_S (X_S^T X_S)^{-1} \operatorname{sgn}(\beta_S^0) = \hat{v}_N.$$

Since $||v||_{\infty} \le 1$ we have $||\Delta||_{\infty} \le 1$, i.e (A).

Now we show A & B imply C: it is enough to exhibit $(\hat{\beta}, \hat{v})$ satisfying (I) with $\operatorname{sgn}(\hat{\beta}) = \operatorname{sgn}(\beta^0)$. Take

$$(\hat{\beta}_S, \hat{\beta}_N) = (\beta_S^0 - \lambda n(X_S^T X_S)^{-1} \operatorname{sgn}(\beta_S^0), 0)$$

$$(\hat{v}_S, \hat{v}_N) = (\operatorname{sgn}(\beta_S^0), \Delta).$$

It is easy to verify this solves (I). By condition (A), $\|\Delta\|_{\infty} \leq 1$ so $\|\hat{v}\|_{\infty} \leq 1$. Now we just check $\operatorname{sgn}(\hat{\beta}) = \operatorname{sgn}(\beta^0)$. Condition (B) gives that $\operatorname{sgn}(\beta^0_S) = \operatorname{sgn}(\hat{\beta}_S)$, and $\hat{\beta}_N = 0 = \beta^0_N$. Finally, we need $\hat{v}_{\hat{S}} = \operatorname{sgn}(\hat{\beta}_{\hat{S}})$. But by construction, $\hat{S} = S$ and we showed that $\hat{v}_S := \operatorname{sgn}(\beta^0_S) = \operatorname{sgn}(\hat{\beta}_S)$.

Prediction & Estimation (fast rates)

Return to a noisy linear model

$$Y = X\beta^0 + \varepsilon - \bar{\varepsilon}\mathbf{1}$$

where ε_i are independent and σ -sub-Gaussian random variables.

Definition. Given $X \in \mathbb{R}^{n \times p}$ and $S \subseteq \{1, \dots, p\}$ non-empty, define the *compatibility factor*

$$\phi^{2} = \inf_{\substack{\delta \in \mathbb{R}^{p} \\ \delta_{S} \neq 0} \|\delta_{N}\|_{1} < 3\|\delta_{S}\|_{1}} \frac{\frac{1}{n} \|X\delta\|_{2}^{2}}{\frac{1}{s} \|\delta_{S}\|_{1}^{2}}$$

for s := |S|.

Remark. This is similar to a variational characterisation of the smallest eigenvalue c_{\min} of $\frac{1}{n}X^TX$:

$$c_{\min} = \inf_{\substack{\delta \in \mathbb{R}^p \\ \delta \neq 0}} \frac{\delta^T(\frac{1}{n}X^TX)\delta}{\delta^T\delta} = \inf_{\substack{\delta \in \mathbb{R}^p \\ \delta \neq 0}} \frac{\frac{1}{n}\|X\delta\|_2^2}{\|\delta\|_2^2}.$$

 ϕ^2 is sometimes called a "restricted eigenvalue". Note that

$$\|\delta_S\|_1 = \operatorname{sgn}(\delta_S)^T \delta_S \le \sqrt{s} \|\delta_S\|_2 \le \sqrt{s} \|\delta\|_2.$$

Hence $\phi^2 \ge c_{\min}$.

The compatibility condition says $\phi^2 > 0$. In high-dimensions (p > n) we have $c_{\min} = 0$, but we can have $\phi^2 > 0$ for some S.

Theorem 2.15. Suppose $\phi^2 > 0$, let $\lambda^* = A\sigma\sqrt{\frac{\log p}{n}}$ with $A > 2\sqrt{2}$. Then with probability $\geq 1 - 2p^{-(A^2/8-1)}$ we have for all $\lambda \geq \lambda^*$ that

$$\underbrace{\frac{1}{n} \|X(\beta^0 - \hat{\beta}_{\lambda}^L)\|_2^2}_{prediction} + \underbrace{\lambda \|\beta^0 - \hat{\beta}_{\lambda}^L\|_1}_{estimation} \le \frac{16\lambda^2 s}{\phi^2}.$$

Corollary 2.16. If $\lambda = \lambda^*$,

$$\frac{1}{n} \|X(\beta^0 - \hat{\beta}_{\lambda^*}^L)\|_2^2 \le \frac{16A^2 \log p}{\phi^2} \frac{\sigma^2 s}{n}$$

and

$$\|\beta^0 - \hat{\beta}_{\lambda^*}^L\|_1 \le \frac{16A\sigma s}{\phi^2} \sqrt{\frac{\log p}{n}}.$$

Proof of theorem. Let $\hat{\beta}=\hat{\beta}^L_{\lambda}$. We have from a previous result that $\Omega=\{\frac{2\|X^T\varepsilon\|_{\infty}}{n}\leq \lambda\}$ has $\mathbb{P}(\Omega)\geq 1-2p^{-(A^2/8-1)}$ and on Ω

$$\frac{1}{n} \|X(\hat{\beta} - \beta^0)\|_2^2 + 2\lambda \|\hat{\beta}\|_1 \le \lambda \|\hat{\beta} - \beta^0\|_1 + 2\lambda \|\beta^0\|_1. \tag{(II)}$$

Let $a = ||X(\hat{\beta} - \beta^0)||^2/(n\lambda)$. Dividing (II) through by λ gives

$$a + 2(\|\hat{\beta}_S\|_1 + \|\hat{\beta}_N\|_1) \le \|\hat{\beta}_S - \beta_S^0\|_1 + \|\hat{\beta}_N\|_1 + 2\|\beta_S^0\|_1.$$

Hence

$$a + \|\hat{\beta}_N\|_1 \le \|\hat{\beta}_S - \beta_S^0\|_1 + 2\|\beta_S^0\|_1 - 2\|\hat{\beta}_S\|_1$$
$$\le \|\hat{\beta}_S - \beta_S^0\|_1 + 2\|\hat{\beta}_S - \beta_S^0\|_1$$
$$= 3\|\hat{\beta}_S - \beta_S^0\|_1$$

so adding $\|\hat{\beta}_S - \beta_S^0\|_1$ to both sides gives

$$a + \|\hat{\beta} - \beta^0\|_1 \le 4\|\hat{\beta}_S - \beta_S^0\|_1. \tag{(III)}$$

Let $\delta = \hat{\beta} - \beta^0$, so we have $\|\delta_N\|_1 \leq 3\|\delta_S\|_1$ and hence

$$\phi^2 \le \frac{\frac{1}{n} \|X(\hat{\beta} - \beta^0)\|_2^2}{\frac{1}{n} \|\hat{\beta}_S - \beta_S^0\|_1} \implies \|\hat{\beta}_S - \beta_S^0\|_1 \le \sqrt{\frac{s}{n}} \frac{1}{\phi} \|X(\beta^0 - \hat{\beta})\|_2.$$

Plugging this into (III):

$$\frac{1}{n} \|X(\hat{\beta} - \beta^0)\|_2^2 + \lambda \|\beta^0 - \hat{\beta}\|_1 \le \frac{4\lambda}{\phi} \sqrt{\frac{s}{n}} \|X(\hat{\beta} - \beta^0)\|_2. \tag{(IV)}$$

This implies

$$\frac{1}{\sqrt{n}} \|X(\hat{\beta} - \beta^0)\|_2 \le \frac{4\lambda s}{\phi}$$

so plugging into (IV) gives the desired inequality.

The compatibility condition

- $\phi^2 > 0$ is a weaker assumption that the smallest eigenvalue of $\frac{1}{n}X^TX$, c_{\min} , is positive;
- If p > n, $c_{\min} = 0$ but we can have $\phi^2 > 0$;
- We want to prove that if the rows x_i of X are centered iid random variables, under certain conditions on covariance $\Sigma^0 = \mathbb{E}[x_1x_1^T] = \mathbb{E}[\frac{1}{n}XX^T]$, and certain assumptions on the tails of x_1 , we can have $\phi^2 > 0$ for all subsets S of a given size, with high probability.

Define

$$\phi_{\Sigma}^2(S) = \inf_{\substack{\delta: \delta_S \neq 0 \\ \|\delta_N\|_1 \leq 3 \|\delta_S\|_1}} \frac{\delta^T \Sigma \delta}{\frac{1}{|S|} \|\delta_S\|_1^2}.$$

Lemma 2.17. Suppose $\phi_{\Theta}^2(S) > 0$ and Σ is such that $\max_{j,k} |\Theta_{jk} - \Sigma_{jk}| \le \frac{\phi_{\Theta}^2(S)}{32|S|}$. Then $\phi_{\Sigma}^2(S) \ge \frac{\phi_{\Theta}^2(S)}{2}$.

Proof. For simplicity, we will neglect dependence on S. Write s = |S| and define $B = \{\delta \in \mathbb{R}^p : \|\delta_S\|_1 = 1, \|\delta_N\|_1 \leq 3\}$. Note

$$\phi_{\Theta}^2(S) = |S| \inf_{\delta \in B} \delta^T \Theta \delta \ \forall \Theta.$$

Now for $\delta \in B$

$$s\delta^{T}\Sigma\delta = s\delta^{T}\Theta\delta - s\delta^{T}(\Theta - \Sigma)\delta$$
$$\geq \phi_{\Theta}^{2} - s|\delta^{T}(\Theta - \Sigma)\delta|.$$

Note

$$|\delta^{T}(\Theta - \Sigma)\delta| \leq ||\delta||_{1} ||(\Theta - \Sigma)\delta||_{\infty}$$
 (Hölder)
$$\leq ||\delta||_{1}^{2} \max_{j,k} |\Theta_{jk} - \Sigma_{jk}|$$
 (Hölder)
$$\leq ||\delta||_{1}^{2} \frac{\phi_{\Theta}^{2}}{32s}.$$

As $\delta \in B$ we have $\|\delta\|_1 = \|\delta_S\|_1 + \|\delta_N\|_1 \le 4$. Hence,

$$s\delta^T \Sigma \delta \ge \phi_{\Theta}^2 - s \frac{4^2 \phi_{\Theta}^2}{32s} = \frac{\phi_{\Theta}^2}{2}$$

for any $\delta \in B$, so taking the infimum over $\delta \in B$ gives the result.

Plan:

• If the rows of X are iid with covariance Σ^0 then $\hat{\Sigma} = \frac{1}{n} X^T X$ is an estimate of Σ^0 ;

- Use concentration inequalities to find high probability bounds for $\max_{j,k} \left| \Sigma_{jk}^0 \hat{\Sigma}_{jk} \right|;$
- Apply the previous lemma to argue $\phi_{\hat{\Sigma}}^2 \geq \frac{1}{2}\phi_{\Sigma^0}^2$.

Question: when can we assume $\phi_{\Sigma^0}^2 > 0$?

Example. Take $\Sigma^0 = I$ (predictors uncorrelated). Then $\phi_{\Sigma^0}^2(S) > c_{\min}(\Sigma^0) = 1$ for any subset $S \subseteq \{1, \ldots, p\}$.

Concentration Inequalities Continued

Goal: obtain tail bounds on products of sub-Gaussian random variables.

Definition. We say a random variable W satisfies the Bernstein condition with parameters (σ, b) , where $\sigma, b > 0$ if

$$\mathbb{E}(|W - \mathbb{E}W|^k) \le \frac{1}{2}k!\sigma^2b^{k-2} \text{ for } k = 2, 3, \dots$$

Proposition 2.18 (Bernstein's inequality). Let W_1, \ldots, W_n be independent random variables with mean μ . Suppose that W_i is Bernstein (σ, b) for all $i \in [n]$. Then

$$\mathbb{E}[e^{\alpha(W_i - \mu)}] \le \exp\left(\frac{\frac{\alpha^2 \sigma^2}{2}}{1 - b|\alpha|}\right) \text{ for all } |\alpha| < 1/b$$

and

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}-\mu \geq t\right) \leq \exp\left(-\frac{nt^{2}}{2(\sigma^{2}+bt)}\right) \ \forall t>0.$$

Proof. Fix i, let $W = W_i$. Then for $|\alpha| < 1/b$

$$\mathbb{E}(e^{\alpha(W-\mu)}) = \mathbb{E}\left(1 + \alpha(W-\mu) + \sum_{k=2}^{\infty} \frac{\alpha^k (W-\mu)^k}{k!}\right)$$

$$\leq \mathbb{E}\left(1 + \sum_{k=2}^{\infty} \frac{|\alpha|^k |W-\mu|^k}{k!}\right)$$

$$= 1 + \sum_{k=2}^{\infty} \frac{|\alpha|^k \mathbb{E}(|W-\mu|^k)}{k!} \qquad \text{(Fubini)}$$

$$\leq 1 + \frac{\sigma^2 \alpha^2}{2} \sum_{k=2}^{\infty} |\alpha|^{k-2} b^{k-2} \qquad \text{(Bernstein condition)}$$

$$= 1 + \frac{\sigma^2 \alpha^2}{2} \frac{1}{1 - |\alpha|b} \qquad (|\alpha| < 1/b)$$

$$\leq \exp\left(\frac{\alpha^2 \sigma^2 / 2}{1 - |\alpha|b}\right).$$

For the tail bound we have

$$\mathbb{E}\left(e^{\alpha\sum_{i=1}^{n}\frac{W_{i}-\mu}{n}}\right) = \prod_{i=1}^{n} \mathbb{E}\exp\left(\frac{\alpha(W_{i}-\mu)}{n}\right)$$

$$\leq \exp\left(\frac{n(\alpha/n)^{2}\sigma^{2}/2}{1-b|\alpha/n|}\right) \ \forall |\alpha/n| < 1/b$$

so by Markov's inequality

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i} - \mu \ge t\right) = \mathbb{P}\left(\exp\left(\frac{\alpha}{n}\sum_{i=1}^{n}W_{i} - \mu\right) \ge e^{\alpha t}\right)$$

$$\le \exp\left(n\frac{(\alpha/n)^{2}\sigma^{2}/2}{1 - b|\alpha/n|} - \alpha t\right) \ \forall |\alpha/n| < 1/b.$$

Taking $\alpha/n = \frac{t}{bt+\sigma^2} \in (0,1/b)$ gives the result.

Lemma 2.19. Let W, Z be sub-Gaussian with parameters σ_W, σ_Z respectively. Then WZ is $Bernstein(8\sigma_W\sigma_Z, 4\sigma_W\sigma_Z)$ [W, Z need not be independent].

Proof. We have

$$\begin{split} \mathbb{E}(W^{2k}) &= \mathbb{E}\left[\int_0^\infty \mathbbm{1}\{y < w^{2k}\}\mathrm{d}y\right] = \int_0^\infty \mathbb{P}(y < W^{2k})\mathrm{d}y \\ &= 2k\int_0^\infty t^{2k-1}\mathbb{P}(|W| > t)\mathrm{d}t \\ &\leq 4k\int_0^\infty t^{2k-1}\exp\left(-\frac{t^2}{2\sigma_W^2}\right)\mathrm{d}t \\ &= 2^{k+1}\sigma_W^{2k} ! \end{split}$$

by Fubini's Theorem. Also, for any random variable Y we have $\mathbb{E}|Y - \mathbb{E}Y|^k \le 2^k \mathbb{E}[|Y|^k]$ by the binomial theorem and Jensen. Hence

$$\mathbb{E}[|WZ - \mathbb{E}[WZ]|^k] \le 2^k \mathbb{E}[|WZ|^k] \le 2^k \sqrt{\mathbb{E}[W^{2k}]\mathbb{E}[Z^{2k}]}$$
$$\le k! 2^{2k+1} (\sigma_W \sigma_Z)^k$$
$$= \frac{k!}{2} (8\sigma_W \sigma_Z)^2 (4\sigma_W \sigma_Z)^{k-2}.$$

Random Design

Theorem 2.20. Suppose the rows of X are iid, and each entry of X is v-sub-Gaussian. Let $\hat{\Sigma} = \frac{1}{n}X^TX$ and $\Sigma^0 = \mathbb{E}\hat{\Sigma}$. Define "worst case" compatibility factors:

$$\phi_{\hat{\Sigma},s}^2 = \min_{S:|S|=s} \phi_{\hat{\Sigma}}^2(S), \quad \phi_{\Sigma^0,s}^2 = \min_{S:|S|=s} \phi_{\Sigma^0}^2(S).$$

Suppose $\phi_{\Sigma^0,s}^2 > c > 0$. Then

$$\mathbb{P}(\sigma_{\hat{\Sigma},s}^2 \ge \frac{\phi_{\Sigma^0,s}^2}{2}) \ge 1 - 2p^{\left(2 - M\frac{n}{s^2 \log p}\right)}$$

for some constant M > 0 independent of n, s and p.

Remarks.

- This theorem says the compatibility condition holds uniformly over all S of size s with high probability if $\frac{n}{s^2 \log p}$ is large, i.e $s \ll \sqrt{n/\log p}$.
- The condition $\phi_{\Sigma^0,s}^2 > 0$ holds for c being the smallest eigenvalue of Σ^0 .
- The theorem does <u>not</u> require X_{ij}, X_{ik} for $k \neq j$ to be independent or even uncorrelated.

Proof. By a previous lemma,

$$\mathbb{P}\left(\phi_{\hat{\Sigma},s}^2 \ge \frac{\phi_{\Sigma^0,s}^2}{2}\right) \ge \mathbb{P}\left(\max_{j,k}|\hat{\Sigma}_{jk} - \Sigma_{jk}^0| \le \frac{\phi_{\Sigma^0,s}^2}{32s}\right)$$
$$\ge 1 - p^2 \min_{j,k} \mathbb{P}\left(|\hat{\Sigma}_{jk} - \Sigma_{jk}^0| \ge \frac{\phi_{\Sigma^0,s}^2}{32s}\right)$$

so it suffices to show

$$\min_{j,k} \mathbb{P}\left(|\hat{\Sigma}_{jk} - \Sigma_{jk}^0| \ge \frac{\phi_{\Sigma^0,s}^2}{32s}\right) \le 2p^{-M\frac{n}{s^2\log p}}$$

for some M > 0. Indeed note

$$\mathbb{P}\left(|\hat{\Sigma}_{jk} - \Sigma_{jk}^0| \ge \frac{\Sigma_{\Sigma^0,s}^2}{32s}\right) = \mathbb{P}\left(\left|\sum_{i=1}^n \frac{X_{ij}X_{ik}}{n} - \Sigma_{jn}^0\right| \ge \frac{\phi_{\Sigma^0,s}^2}{32s}\right).$$

Since $X_{ij}X_{ik}$ is a product of independent v-sub-Gaussian random variables, it is Bernstein($8v^2, 4v^2$). By Bernstein's inequality we then have

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} \frac{X_{ij} X_{ik}}{n} - \Sigma_{jn}^{0}\right| \ge \frac{\phi_{\Sigma^{0},s}^{2}}{32s}\right) \le 2 \exp\left(-\frac{n\left(\frac{\phi_{\Sigma^{0},s}^{2}}{32s}\right)^{2}}{2\left(64v^{4} + 4v^{2}\left(\frac{\phi_{\Sigma^{0},s}^{2}}{32s}\right)\right)}\right)$$

and

$$-\frac{n\left(\frac{\phi_{\Sigma^{0},s}^{2}}{32s}\right)^{2}}{2\left(64v^{4}+4v^{2}\left(\frac{\phi_{\Sigma^{0},s}^{2}}{32s}\right)\right)} = -\frac{n}{s^{2}}C'\frac{(\phi_{\Sigma^{0},s}^{2})^{2}}{C''+\frac{\phi_{\Sigma^{0},s}^{2}}{s}}$$

and

$$C' \frac{(\phi_{\Sigma^{0},s}^{2})^{2}}{C'' + \frac{\phi_{\Sigma^{0},s}^{2}}{s}} \ge \frac{(\phi_{\Sigma^{0},s}^{2})^{2}}{C'' + \phi_{\Sigma^{0},s}^{2}}$$
$$\ge \frac{C^{2}}{C'' + C}$$

where the last inequality follows since the penultimate term is increasing in $\phi_{\Sigma^0,s}^2$ and $\phi_{\Sigma^0,s}^2 > 0$. Hence the desired inequality holds with $M = C' \frac{C^2}{C'' + C}$.

Computing $\hat{\beta}_{\lambda}^{L}$

The lasso objective is of the form

$$f(x) = g(x) + \sum_{j=1}^{d} h_j(x_j), \quad x \in \mathbb{R}^d$$

whee g is convex and differentiable, h_j is convex.

Coordinate descent

Initialise at $x^{(0)} \in \mathbb{R}^d$. For each m = 1, ..., M set

$$\begin{split} x_1^{(m)} &= \operatorname{argmin}_{x_1 \in \mathbb{R}} f(x_1, x_2^{(m-1)}, x_3^{(m-1)}, \dots, x_d^{(m-1)}) \\ x_2^{(m)} &= \operatorname{argmin}_{x_2 \in \mathbb{R}} f(x_1^{(m)}, x_2, x_3^{(m-1)}, \dots, x_d^{(m-1)}) \\ &\vdots \\ x_d^{(m)} &= \operatorname{argmin}_{x_d \in \mathbb{R}} f(x_1^{(m)}, x_2^{(m)}, x_3^{(m)}, \dots, x_d). \end{split}$$

Lemma 2.21. Suppose $A_0 = \{x \in \mathbb{R}^d : f(x) \le f(x^{(0)})\}$ is compact. Then

- $(i) \ f(x^{(m)}) \rightarrow f(x^*) \ as \ m \rightarrow \infty, \ where \ x^* \in \mathrm{argmin}_{x \in A_0} \, f(x);$
- (ii) If x^* is the unique minimiser, then $x^{(m)} \to x^*$.

Proof. Not given.
$$\Box$$

For the lasso, each coordinate descent step is

$$\hat{\beta}_k^{(m)} = \operatorname{argmin}_{\beta \in \mathbb{R}} \left\{ \frac{1}{2n} \|R - X_k \beta\|^2 + \lambda |\beta| \right\}$$

where

$$R := Y - \sum_{j=1}^{k-1} X_j \hat{\beta}_j^{(m)} - \sum_{j=k+1}^p X_j \hat{\beta}_j^{(m-1)}.$$

This objective is strictly convex, hence it has a unique solution, which satisfies the following KKT condition:

$$-\frac{1}{n}X_k^T R + \hat{\beta}_k^{(m)} + \lambda \hat{v} = 0$$

where $\hat{v} \in [-1, 1]$, and if $\hat{\beta}_k^{(m)} \neq 0$, $\hat{v} = \operatorname{sgn}(\hat{\beta}_k^{(m)})$.

The solution is given by

$$\hat{\beta}_k^{(m)} = S_{\lambda}(X_k^T R/n)$$

where

$$S_{\lambda}(u) := \operatorname{sgn}(u)(|u| - \lambda)_{+}$$

is the "soft-thresholding" function.

For fixed λ , we can find $\hat{\beta}_{\lambda}^{L}$ by coordinate descent. Suppose we want to compute $\hat{\beta}_{\lambda}^{L}$ for λ in $\lambda_{0} > \ldots > \lambda_{L}$. Warm starts:

- Find $\hat{\beta}_{\lambda_0}^L$
- For $\ell = 1, ..., L$, find $\hat{\beta}_{\lambda_{\ell}}^{L}$ by CD initialised at $\hat{\beta}_{\lambda_{\ell-1}}$.

Active set strategy:

- 1. Initialise $A_{\ell} = \{k : \hat{\beta}_{\lambda_{\ell-1},k}^L \neq 0\}$
- 2. Perform coordinate descent only on coordinates in A_{ℓ} to obtain $\hat{\beta}$ (with $\hat{\beta}_i = 0 \text{ for all } j \notin A_\ell$
- 3. Let $V=\{k:|X_k^T(Y-X\hat{\beta})>\lambda_\ell\}$ be the coordinates where the KKT conditions are violated.
- 4. If V is empty, set $\hat{\beta}_{\lambda_{\ell}} = \hat{\beta}$. Otherwise, update $A_{\ell} \to A_{\ell} \cup V$ and go back to step 2.

Extensions of the Lasso

The square-root Lasso

Prediction and estimation error bounds for the Lasso required setting $\lambda =$ $A\sigma\sqrt{\log p/n}$. Although to do this, we need to know $\sigma!$ Instead we can try to estimate σ . Define

$$\hat{\sigma}_{\lambda}^{L} = \frac{1}{\sqrt{n}} \|Y - X\hat{\beta}_{\lambda}^{L}\|.$$

If $\hat{\beta}_{\lambda}^{L}$ is accurate, then $\hat{\sigma}_{\lambda}^{L}$ should be accurate.

Idea: find optimal λ by setting $\lambda = \lambda_0$, then iterating

- Find $\hat{\beta}$ by solving Lasso(λ)
- Set $\hat{\sigma} = \frac{1}{\sqrt{n}} \|Y X\hat{\beta}\|$
- Set $\lambda = A\hat{\sigma}\sqrt{\log p/n}$.

This is equivalent to alternating minimising with respect to β and σ , the objective

$$Q_{\gamma}^{\text{sq}}(\beta, \sigma) = \frac{1}{2n\sigma} \|Y - X\beta\|^2 + \frac{\sigma}{2} + \gamma \|\beta\|_1$$

where $\gamma = A\sqrt{\log n/p}$, $\lambda = \gamma \sigma$.

A more direct route to minimising $Q_{\gamma}^{\text{sq}}(\beta, \sigma)$ is to minimise

$$\min_{\sigma>0} Q_{\gamma}^{\text{sq}}(\beta, \sigma) = \frac{1}{\sqrt{n}} \|Y - X\beta\| + \gamma \|\beta\|_1 := Q_{\gamma}^{\text{sq}}(\beta)$$

with respect to β , provided $Y \neq X\beta$. A minimiser of $Q_{\gamma}^{sq}(\beta)$ is called the square-root Lasso estimator, written $\hat{\beta}_{\gamma}^{sq}$. Contrast the loss with

$$Q_{\lambda}^{L}(\beta) = \frac{1}{2n} ||Y - X\beta||^{2} + \lambda ||\beta||_{1}.$$

Define $\hat{\sigma}_{\gamma}^{\text{sq}} = \frac{1}{\sqrt{n}} \|Y - X \hat{\beta}_{\gamma}^{\text{sq}}\|$. From this definition, we can see that if $\lambda = \hat{\sigma}_{\gamma}^{\text{sq}} \gamma$, then

$$\hat{\beta} \in \operatorname{argmin}_{\beta} Q_{\gamma}^{\operatorname{sq}}(\beta) \iff \hat{\beta} \in \operatorname{argmin}_{\beta} Q_{\lambda}^{2}(\beta).$$

Conclusion: square-root Lasso is simply a reparameterisation of the regular path of the Lasso.

Theorem 2.22. Consider a model $Y = X\beta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Let $\hat{\beta}$ be a square-root Lasso estimator with $\gamma = B\sqrt{\log p/n}$, $B > 2\sqrt{2}$. Consider an asymptotic regime: $n, p \to \infty$ with $\frac{s \log p}{n} \to 0$ and compatibility factor $\phi^2 > c > 0$. Then with probability tending to 1,

$$\frac{1}{n} \|X(\beta^0 - \hat{\beta})\|^2 \le \frac{17B^2 \log p}{\phi^2} \frac{s\sigma^2}{n} \quad and$$
$$\|\beta^0 - \hat{\beta}\|_1 \le \frac{17B\sigma s}{\phi^2} \sqrt{\log p/n}.$$

Proof. Let $\hat{\sigma} := \hat{\sigma}_{\gamma}^{\text{sq}} = \frac{1}{\sqrt{n}} \|Y - X\hat{\beta}\|$. So $\hat{\beta}$ is a Lasso estimator with parameter $\lambda = \hat{\sigma}\gamma$. Take $\lambda_j = \sigma A_j \sqrt{\log p/n}$ for j = 1, 2, ..., where $2\sqrt{2} < A_1 < B < A_2$ with $16A^2 \le 17B^2$ (this implies $16A_2 < 17B$).

Strategy:

- Show that $\lambda_1 \leq \hat{\sigma}\gamma \leq \lambda_2$ with high probability.
- \bullet By a previous theorem, $\hat{\beta}^L_{\lambda_1}, \hat{\beta}^L_{\lambda_2}$ are "accurate".
- Deduce from this that $\hat{\beta} = \hat{\beta}_{\hat{\sigma}\gamma}^L$ is "accurate".

In the Example Sheet we'll show there exists a sequence $a_n \to 0$ such that on a sequence of events $\Omega_n^{(1)}$ with $\mathbb{P}(\Omega_n^{(1)}) \to 1$, we have

$$1 - a_n \le \frac{\sigma}{\hat{\sigma}_{\lambda_j}^L} \le 1 - a_n \text{ for } j = 1, 2.$$

Hence on $\Omega_n^{(1)}$, for n large enough,

$$\gamma_1 := \frac{\lambda_1}{\hat{\sigma}_{\lambda_1}^L} = \frac{\sigma}{\hat{\sigma}_{\lambda_1}^L} A_1 \sqrt{\frac{\log p}{n}} \le (1 + a_n) A_1 \sqrt{\frac{\log p}{n}}$$
$$\le B \sqrt{\frac{\log p}{n}}$$
$$= \gamma.$$

And similarly,

$$\gamma \le \gamma_2 := \frac{\lambda_2}{\hat{\sigma}_{\lambda_2}^L}.$$

Note $\hat{\sigma}_{\lambda_j}^L = \hat{\sigma}_{\gamma_j}^{\text{sq}}$ for j = 1, 2. We'll show $\gamma_1 \leq \gamma$ implies $\hat{\sigma}_{\gamma_1}^{\text{sq}} \leq \hat{\sigma}_{\gamma}^{\text{sq}}$. By optimality,

$$\begin{split} &\frac{1}{\sqrt{n}} \|Y - X \hat{\beta}_{\gamma_{1}}^{\text{sq}}\| + \gamma_{1} \|\hat{\beta}_{\gamma_{1}}^{\text{sq}}\| \leq \frac{1}{\sqrt{n}} \|Y - X \hat{\beta}_{\gamma}^{\text{sq}}\| + \gamma_{1} \|\hat{\beta}_{\gamma}^{\text{sq}}\|_{1} \\ &\frac{1}{\sqrt{n}} \|Y - X \hat{\beta}_{\gamma}^{\text{sq}}\| + \gamma_{1} \|\hat{\beta}_{\gamma}^{\text{sq}}\| \leq \frac{1}{\sqrt{n}} \|Y - X \hat{\beta}_{\gamma_{1}}^{\text{sq}}\| + \gamma_{1} \|\hat{\beta}_{\gamma_{1}}^{\text{sq}}\|_{1}. \end{split} \tag{(I)}$$

Adding these and rearranging,

$$(\underbrace{\gamma - \gamma_{1}}_{>0})(\|\hat{\beta}_{\gamma_{1}}^{sq}\|_{1} - \|\hat{\beta}_{\gamma}^{sq}\|_{1}) \ge 0$$

$$\implies \|\hat{\beta}_{\gamma_1}^{sq}\| \ge \|\hat{\beta}_{\gamma}^{sq}\|_1.$$

Plugging this into (I) gives

$$\hat{\sigma}_{\gamma_1}^{\mathrm{sq}} = \frac{1}{\sqrt{n}} \|Y - X\hat{\beta}_{\gamma_1}^{\mathrm{sq}}\| \le \frac{1}{\sqrt{n}} \|Y - X\hat{\beta}_{\gamma}^{\mathrm{sq}}\| = \hat{\sigma}_{\gamma}^{\mathrm{sq}}.$$