Tech Specification - Circuit Simulator

Adam Rehman, Brandon Cann, Xin Wang $^{\rm 1}$

May 15, 2020

¹document compiled by Xin Wang

Contents

1	Overview			
	1.1	Product Requirements	2	
	1.2	Assumptions	2	
	1.3	Out of scope	2	
	1.4	Open Questions	2	
2	Approach			
	2.1	Program flowchart		
	2.2	Git management		
		Milestones		

1 Overview

Please see document: ELEC40006 Specification Q3 for information provided to the team.

1.1 Product Requirements

- Program must be able to read a SPICE netlist which the user inputs.
 - Program should recognise supported circuit elements e.g. R, L and C
 - Program should recognise and extract parameters for .tran function
- Program must perform Transient Analysis based on the netlist provided.
- \bullet Program must output result of simulation in a .csv format.

1.2 Assumptions

- User input adheres to the SPICE netlist format
- Netlist contains only the following elements:
 - Resistor
 - Capacitor
 - Inductor
 - Independent sources
 - Dependent sources

1.3 Out of scope

- This program applies only to transient analysis based on input provided by the user. It does not support AC analysis.
- Complex components such as BJTs and MOSFETs are not supported.
- A user interface is not required, program executes when input file is inputted.

1.4 Open Questions

- What the data structure to store the circuit should be?
- Does the program check if circuit input is correct?
- Is there any efficiency expectations?

• Program should be written in C++? Python is so much more programmer-friendly.

2 Approach

2.1 Program flowchart

Figure 1: Program flowchart

2.2 Git management

The feature each teammate is responsible for will be implemented in a feature branch until it is fully tested and other teammates are familiarised with its interface.

Xin Wang will be in charge of Git repo management responsibilities.

2.3 Milestones

- v1.0:
 - Basic nodal analysis possible with resistor and independent sources.
 - Transient not possible yet, only calculates one instance in time.
- v2.0:
 - Transient analysis ability implemented.
 - Dependent sources supported.
- v3.0:
 - Capacitor and Inductor supported.
- Codebase optimisation.
- v4.0:
 - Non-linear components supported.
- Codebase optimisation.