CHAPTER 01

집합과 함수

한수 지수한수 로그한수

김 수 환 동의대학교 수학과

Contents

1.1 함수

1.2 지수함수

1.3 로그함수

집합의 정의

이 책에서 다를 집합의 종류

- ① 자연수 집합 : \mathbb{N} 으로 나타내며 $\mathbb{N} = \{1, 2, 3, \dots\}$ 이다.
- ② 정수 집합 : \mathbb{Z} 로 나타내며 $\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$ 이다.
- ③ 유리수 집합 : \mathbb{Q} 로 나타내며 $\mathbb{Q}=\left\{\frac{n}{m}:m,\ n\in\mathbb{Z},\ m\neq 0\right\}$ 이다.
- **4** 무리수 집합 : \mathbb{Q}^c 로 나타내며 $\mathbb{Q}^c = \{ x : x \in \mathbb{R} \}$ 유리수가 아닌 실수 $\}$ 이다. 예를 들어, $\sqrt{3}$, π , e 등은 무리수에 속하는 원소들이다.
- **5** 실수 집합 : \mathbb{R} 로 나타내며 $\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}^c$ 이다.

[그림 1-1] 집합의 포함 관계

구간의 정의

● 구간의 정의

유한 구간의 정의 a 와 b 가 실수일 때

- ① $[a, b] = \{x : a \le x \le b\}$ 를 닫힌 구간 또는 폐구간이라 한다.
- ② $(a, b) = \{x : a < x < b\}$ 를 열린 구간 또는 개구간이라 한다.
- ③ $(a, b] = \{x : a < x \le b\}$ 와 $[a, b] = \{x : a \le x < b\}$ 를 반 닫힌 구간 또는 반 열린 구간이라 한다.

예제 1-3

A = [1, 3]이고 B = (2, 4)일 때, 다음을 구하라.

(a) $A \cup B$

(b) $A \cap B$

(c) A - B

(d) B - A

구간의 정의

무한 구간의 정의 a와 b가 실수일 때

- ① $[a, \infty) = \{x : a \le x\}$ 와 $(-\infty, b] = \{x : x \le b\}$ 를 **닫힌 반직선**이라 한다.
- ② $(a, \infty) = \{x : a < x\}$ 와 $(-\infty, b) = \{x : x < b\}$ 를 열린 반직선이라 한다.
- ③ 실수 집합을 구간으로 나타내면 $\mathbb{R} = (-\infty, \infty)$ 이며 $(-\infty, \infty)$ 를 **직선**이라 한다.

예제 1-4

 $C=[1, \infty)$ 이고 $D=(-\infty, 4)$ 일 때, 다음을 구하라.

(a) $C \cup D$

(b) $C \cap D$

(c) C-D

(d) D-C

구간의 정의

- ∞ 와 관련된 연산

 - $2 \times \cdot \times = \times$
 - \odot ∞ $-\infty$ 와 $\frac{\infty}{\infty}$ 는 값을 알 수 없음(부정)
- 카테시안 곱

카테시안 곱의 정의 두 집합 A 와 B에 대해 $a \in A$ 이고 $b \in B$ 인 모든 순서쌍 (a, b)의 집합을 A와 B의 카테시안 곱(Cartesian product)이라 하고, $A \times B$ 로 나타낸다.

예제 1-5

카테시안 곱의 정의를 이용하여 다음 문제를 풀어라.

- (a) $A = \{1, 2\}$ 이고 $B = \{2, 4, 6\}$ 일 때, $A \times B$ 를 구하라.
- (b) C=[1, 2]이고 D=[3, 4]일 때, $C \times D$ 를 그림으로 나타내라.

절댓값

절댓값

절댓값의 정의 실수 x의 절댓값은 다음과 같이 정의한다.

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

How to 1−1 절댓값을 풀어쓰는 방법

- 단계 1 : 절댓값 안의 모든 식을 □에 담는다.
- **②** 단계 2 : *y*= |□|일 때

$$y = \begin{cases} \Box, & \Box \ge 0 \\ -\Box, & \Box < 0 \end{cases}$$

로 풀어쓴 후, $\square \ge 0$ 과 $\square < 0$ 을 정리한다.

절댓값

예제 1-6

다음 식들을 절댓값 기호 없이 나타내라.

(a)
$$y = |x - 1|$$

(b)
$$y = |x^2 - 4|$$

정리 1-1 절댓값의 기본 성질

a와 b가 실수일 때, 다음이 성립한다.

(1)
$$|a| = |-a|$$

(2)
$$|ab| = |a||b|$$

(3)
$$|a+b| \le |a| + |b|$$
 : 삼각 부등식

(4)
$$r > 0$$
일 때 $|x| < r \Leftrightarrow -r < x < r$

(5)
$$r > 0$$
일 때 $|x| > r \Leftrightarrow x < -r$ 또는 $x > r$

절댓값

예제 1-7

다음 부등식을 풀어라.

(a)
$$|x-1| < 3$$

(b)
$$|2x+1| > 1$$

예제 1-8

다음 부등식을 풀어라.

(a)
$$|-x+2| \le 3$$

(b)
$$|-3x-2| \ge 4$$

예제 1-9

다음 부등식을 풀어라.

(a)
$$|x^2 - 1| \le 2$$

(b)
$$|x^2 + x - 1| \ge 1$$

함수의 정의

함수란? 공집합이 아닌 두 집합 사이의 원소들 사이에 특별한 관계가 있을 때,
그 원소들을 연결하는 관계

함수의 정의 공집합이 아닌 두 집합 X와 Y가 있다. X의 각 원소 x에 대해 Y의 단 하나의 원소 y가 대응할 때, 이 대응 규칙 f를 X에서 Y로의 **함수**(function)라 한다. 이때 X를 함수 f의 정의역, Y를 공변역, f(X)를 치역이라 한다.

[그림 1-4] 함수의 정의

함수의 정의

예제 1-10

다음 중 대응관계가 함수인 것을 찾아라. 대응관계가 함수일 때, 정의역, 치역, 공변역을 구하라.

(a)

(b)

(c)

(d)

함수의 종류

● 함수의 종류

다항함수 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ 형태의 함수를 **다항함수**라 하고,

 $a_n \neq 0$ 이면 f(x)를 n차 다항함수라 한다. 예 $y = x^2 + x + 1$, $y = \frac{1}{3}x - \frac{1}{4}$

함수의 종류

유리함수
$$g(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$
 형태의 함수를 유리함수라 한

다. 예
$$y = \frac{1}{x}$$
, $y = \frac{2x-3}{3x+1}$

무리함수
$$h(x) = \sqrt[p]{a_n x^n + \dots + a_1 x + a_0}$$
 또는 $h(x) = \sqrt[p]{\frac{a_n x^n + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0}}$

형태의 함수를 무리함수라 한다. 예
$$y = \sqrt{x+1}$$
, $y = \sqrt[3]{\frac{x-2}{x+2}}$

How to 1-2 대수적 함수의 정의역을 구하는 방법

- ↑ 주어진 함수가 다항함수이면 정의역은 R 이다.
- ② 주어진 함수가 유리함수이면 정의역은 $\mathbb{R} \{x : x \text{ 에서 유리함수의 분모가 0 이다.}\}$ 이다.
- ③ 주어진 함수가 무리함수이면 정의역은 p 값에 따라 달라진다.
 - p가 홀수이면 근호 안에 있는 함수의 정의역이 무리함수의 정의역이 된다.
 - p가 짝수이면 무리함수의 정의역은 $\{x:x\}$ 에서 근호 안의 함숫값이 0보다 크거나 같다. $\}$ 이다.

함수의 종류

예제 1-11

다음 함수의 정의역을 구하라.

(a)
$$y = x - 1$$

(c)
$$y = \frac{1}{x-1}$$

(e)
$$y = \sqrt{x-1}$$

(b)
$$y = 2x^3 + 4x + 5$$

(d)
$$y = \frac{x+1}{x^2 - 5x + 4}$$

(f)
$$y = \sqrt[3]{x+1}$$

예제 1-12

$$y = \frac{x-1}{x-1}$$
의 정의역을 구하라.

일대일대응

● 일대일대응

일대일 대응의 정의 $f: X \rightarrow Y$ 라 할 때

- ① 만일 $x_1 \neq x_2$ 인 모든 x_1 , x_2 에 대해 $f(x_1) \neq f(x_2)$ 가 성립하면 f를 일대일 함수 또는 단사함수라 한다.
- ② 만일 f(X) = Y이면 f = 위로의 함수 또는 전사함수라 한다.
- ③ 함수 f 가 단사함수이면서 전사함수이면, f 를 **일대일 대응** 또는 **전단사함수**라 한다.

예제 1-13

다음 표에서 f(x)는 단사함수인가?

\overline{x}	1	2	3	4	5	6
f(x)	0	2	7	1	2	4

일대일대응

How to 1-3 단사함수 확인 방법 : 수평선 검사

- ① 정의역 위에 y = f(x)를 그린다.
- 2x 축에 평행하게 수평선을 그었을 때, 모든 수평선이 그래프와 한 번 이하로 만나면, 주어진 함수는 정의역에서 단사함수라 판정한다. x 축에 평행하게 수평선을 그었을 때 어느 한 수평선이라도 그래 프와 두 번 이상 만나면, 주어진 함수는 정의역에서 단사함수가 아니라고 판정한다.

예제 1-14

다음 함수가 단사함수인지를 판정하라.

(a)
$$y = x^2$$

(b)
$$y = -x^2$$
, 정의역 = $(-\infty, 0]$

예제 1-15

다음 함수의 정의역과 치역을 구하라.

(a)
$$y = x + 1$$

(b)
$$y = x^2 + 2$$

(c)
$$y = \sqrt{x+1}$$

(d)
$$y = \sqrt{x-2} + 3$$

합성함수

합성함수

합성함수의 정의 두 함수 $f: X \rightarrow Y, g: Y \rightarrow Z$ 에 대해 $h: X \rightarrow Z$ 를

$$h(x) = (g \circ f)(x) = g(f(x))$$

라 정의하면, 함수 h = f와 g의 **합성함수**라 한다.

[그림 1-5] 합성함수의 그래프

합성함수

예제 1-16

 $f(x) = x^2 + 2x$ 일 때, 다음을 계산하라.

(a) f(1)

(b) f(h)

(c) f(x+1)

(d) $f(x^2)$

How to 1-4 <mark>합성함수를 구하는 방법</mark>

- ① f(x)와 g(x)에 대해 $(f \circ g)(x) = f(g(x))$ 를 구하는 방법
 - ① f(x) 의 x에 \square 를 대입하여 $f(\square)$ 를 구한다.
 - (2) $f(\square)$ 의 식에 있는 \square 의 자리에 g(x)를 대입하면 그 결과가 합성함수가 된다.
- 2 f(x)와 g(x)에 대해 $(g \circ f)(x) = g(f(x))$ 를 구하는 방법
 - ① 우선 g(x)의 x에 \square 를 대입하여 $g(\square)$ 를 구한다.
 - (2) $g(\square)$ 의 식에 있는 \square 의 자리에 f(x)를 대입하면 그 결과가 합성함수가 된다.

합성함수

예제 1-17

다음 함수들에 대해 $g \circ f$ 와 $f \circ g$ 를 구하라.

(a)
$$f(x) = x^2$$
, $g(x) = x - 1$

(b)
$$f(x) = \frac{1}{x}$$
, $g(x) = x^2 + 2$

지수

● 지수

제곱의 정의 n이 자연수일 때 어떤 수 a를 거듭하여 n번 곱한 것을 a의 n제곱이라 하고, a^n 으로 나타낸다. 이때 a를 **밑수**, n을 지수라 한다.

정리 1-2 지수의 성질

a > 0, b > 0이고 m과 n이 실수일 때, 다음이 성립한다.

(1)
$$a^0 = 1$$

(2)
$$a^m a^n = a^{m+n}$$

(3)
$$(a^m)^n = a^{mn}$$

(4)
$$(ab)^m = a^m b^m$$

예제 1-18

다음 식을 간단히 하라.

(a)
$$\sqrt[3]{a^5} \times \sqrt{a^7}$$

(b)
$$\sqrt[4]{9} \div \sqrt[6]{27}$$

(c)
$$\sqrt[3]{a^2} \times a^{\frac{1}{4}} \div a^2$$

(d)
$$\sqrt[4]{4} \times \sqrt[3]{16} \div \sqrt{\sqrt[6]{2}}$$

지수

제곱근의 정의 n이 2 이상의 자연수일 때

$$x^n = a$$

를 만족하는 x를 a의 n제곱근이라 하고, $x = \sqrt[n]{a}$ 로 나타낸다.

지수함수

● 지수함수

지수함수의 정의 a>0이고 $a\neq 1$ 이라 하자. x가 실수일 때

$$y = a^x$$

을 지수함수라 한다. 이때 a를 **밑**수, x를 지수라 한다.

[그림 1-6] $y = a^x$ 의 그래프

지수함수

● 지수함수의 예제

[그림 1-7] $y=2^x$ 과 $y=3^x$ 의 그래프

[그림 1-8]
$$y = \left(\frac{1}{2}\right)^x$$
과 $y = \left(\frac{1}{3}\right)^x$ 의 그래프

로그

● 로그

로그의 정의 a>0, $a\neq 1$ 일 때 x>0인 x에 대해 $a^p=x$ 가 성립하면

$$p = \log_a x$$

로 나타내고, p = a를 밑수로 하는 로그라 한다. 이때 $x = \log_a x$ 의 진수라 한다.

정리 1-3 로그의 성질

a > 0, $a \ne 1$ 이고 x > 0, y > 0일 때, 다음이 성립한다.

(1) $\log_a 1 = 0$, $\log_a a = 1$

(2) $\log_a x + \log_a y = \log_a x y$

(3) $\log_a x - \log_a y = \log_a \frac{x}{y}$

(4) r이 실수일 때, $\log_a x^r = r \log_a x$

로그

예제 1-19

다음 식을 간단히 하라.

- (a) $\log_3 243$
- (c) $\log_2 \frac{2}{3} + \log_2 \frac{3}{16}$

- (b) $\log_2 \frac{1}{32}$
- (d) $\log_4 \frac{4}{3} \log_4 \frac{2}{3}$

상용로그와 자연로그의 정의 밑수가 10인 로그를 상용로그라 하며, 이 경우

$$\log_{10} x = \log x$$

와 같이 밑수 10을 생략한다. $2.71828 \cdots$ 인 무리수를 e로 나타내는데, 밑수가 e인 로그를 자연로그라 하며, 다음과 같이 간략하게 표기한다.

$$\log_e x = \ln x$$

로그함수

● 로그함수

로그함수의 정의 a>0이고 $a\neq 1$ 이라 하자. x가 양의 실수일 때

$$y = \log_a x$$

를 로그함수라 한다. 이때 a를 **밑**수, x를 진수라 한다.

[그림 1-9] $y = \log_a x$ 의 그래프

로그함수

[그림 1-10] $y = \log_{10} x$ 와 $y = \ln x$ 의 그래프

[그림 1-11] $y=2^x$ 과 $y=\log_2 x$ 의 그래프

27/28

ightharpoonup 지수함수와 로그함수의 관계: $\log_a x = y \Leftrightarrow x = a^y$

예제 1-20

다음 문제를 풀어라.

- (a) $\log_3 x = 4$ 일 때, x의 값을 구하라.
- (b) 4^y= 3일 때, y의 값을 구하라.

Thank you!