# Calcolo integrale

# Andrea Canale

# May 20, 2025

# Contents

| 1        | Pri                                     | mitive di una funzione                         | <b>2</b> |  |  |
|----------|-----------------------------------------|------------------------------------------------|----------|--|--|
|          | 1.1                                     | Integrale indefinito di $f$                    | 2        |  |  |
| <b>2</b> | Calcolo delle primitive di una funzione |                                                |          |  |  |
|          | 2.1                                     | Integrazione per parti                         | 3        |  |  |
|          | 2.2                                     | Esempio                                        | 3        |  |  |
|          | 2.3                                     | Integrazione per sostituzione                  | 3        |  |  |
|          |                                         | 2.3.1 Esempio                                  | 4        |  |  |
|          | 2.4                                     | Integrazione di frazioni                       | 4        |  |  |
| 3        | Fur                                     | nzione definita a tratti                       | 4        |  |  |
| 4        | Inte                                    | ntegrale definito                              |          |  |  |
| 5        | Inte                                    | egrabilità                                     | 5        |  |  |
|          | 5.1                                     | Funzione di Direchlet                          | 6        |  |  |
| 6        | For                                     | mula del punto medio con n suddivisioni        | 6        |  |  |
|          | 6.1                                     | Stimare l'errore                               | 6        |  |  |
| 7        | Proprietà di base degli integrali       |                                                |          |  |  |
|          | 7.1                                     | Linearità                                      | 7        |  |  |
|          | 7.2                                     | Additività rispetto al dominio di integrazione | 7        |  |  |
| 8        | Val                                     | ore medio di una funzione                      | 7        |  |  |
| 9        | Teo                                     | orema della media integrale                    | 7        |  |  |
|          | 9.1                                     | Dimostrazione                                  | 7        |  |  |

| 10 | Teorema di Torricelli-Barrow(Primo teorema fondamentale del |                                                                                                                                   |    |  |  |  |
|----|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
|    | calc                                                        | olo integrale o di enumerazione)                                                                                                  | 8  |  |  |  |
|    | 10.1                                                        | Dimostrazione                                                                                                                     | 8  |  |  |  |
| 11 | Fun                                                         | zione integrale o di accumulazione di $f$                                                                                         | 9  |  |  |  |
| 12 | Teo                                                         | rema fondamentale del calcolo integrale                                                                                           | 10 |  |  |  |
|    | 12.1                                                        | $Dimostrazione \dots \dots$ | 10 |  |  |  |
|    |                                                             | 12.1.1 Osservazioni                                                                                                               | 11 |  |  |  |
|    | 12.2                                                        | Osservazioni                                                                                                                      | 11 |  |  |  |
| 13 | Inte                                                        | grali impropri                                                                                                                    | 11 |  |  |  |
|    | 13.1                                                        | Osservazioni                                                                                                                      | 12 |  |  |  |
|    | 13.2                                                        | Formula di valuzione                                                                                                              | 12 |  |  |  |
|    | 13.3                                                        | Esempio fondamentale                                                                                                              | 13 |  |  |  |
|    |                                                             | 13.3.1 Osservazioni                                                                                                               | 13 |  |  |  |
|    | 13.4                                                        | Condizione necessaria di convergenza                                                                                              | 13 |  |  |  |

## 1 Primitive di una funzione

Si dice primitiva o antiderivata di una funzione f, una funzione F la cui derivata è uguale alla funzione di partenza.

Valgono inoltre i seguenti fatti:

- Se g è una primitiva di f, allora g(x) + c dove  $c \in \mathbb{R}$  è una primitiva di f. Esistono infinite primitive
- Se  $g \in h$  sono due primitive di f, allora g(x) h(x) = c. Le primitive sono univoche a meno di costanti additive.

## 1.1 Integrale indefinito di f

L'insieme di tutte le primitive di f formano l'integrale indefinito di f:

$$\int_{a}^{b} x^{2} dx$$

# 2 Calcolo delle primitive di una funzione

Per calcolare le primitive di funzioni elementari seguiamo la seguente tabella:

| Funzione                 | Primitiva                              |
|--------------------------|----------------------------------------|
| k                        | kx                                     |
| $x^n$                    | $\frac{x^{n+1}}{n+1} + C, \ n \neq -1$ |
| 1/x                      | $\ln x  + C$                           |
| $e^x$                    | $e^x + C$                              |
| $\sin x$                 | $-\cos x + C$                          |
| $\cos x$                 | $\sin x + C$                           |
| $\frac{1}{1+x^2}$        | arctan(x) + c                          |
| $\frac{1}{\sqrt{1+x^2}}$ | arcsin(x) + c                          |

### 2.1 Integrazione per parti

L'integrazione per parti viene usata quando abbiamo integrali del tipo

$$\int_{a}^{b} (fg)' = f'g + fg'$$

In questo caso vale la seguente formula:

$$\int_{a}^{b} fg' = fg - \int_{a}^{b} f'g$$

fe gvanno decise in base a cosa è più comodo derivare e poi integrare.

### 2.2 Esempio

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + c$$

### 2.3 Integrazione per sostituzione

L'integrazione per sostituzione viene usata quando abbiamo integrali del tipo

$$\int_{a}^{b} (F \ o \ f)(x) f'(x)$$

In questi casi otteniamo:

$$\int_{a}^{b} (F \ o \ f)(x) f'(x) = \int_{a}^{b} f(y) dy \ \text{con} \ y = f(x)$$

Solitamente nelle funzioni di cui vogliamo avere la primitiva, la forma non è esattamente quella di questa tabella, allora dobbiamo andare a crearci la forma correttamente moltiplicando e dividendo per un certo valore.

#### 2.3.1 Esempio

$$\int 2e^{3x}$$

Qui potremmo usare la sostituzione, tuttavia manca la derivata di 3x che è 3. Inoltre 2 può essere portato fuori perchè una costante moltiplicata per una funzione integrata non cambia. Otteniamo quindi:

$$2\int e^{3x}\cdot 3\cdot \frac{1}{3}$$

Ora portiamo fuori $\frac{1}{3}$ che non ci serve nella forma 4 della tabella, ora possiamo applicare la formula:

$$\frac{2}{3} \int e^{3x} \cdot 3 = \frac{2e^{3x}}{3} + c$$

### 2.4 Integrazione di frazioni

| Funzione                    | Primitiva         |
|-----------------------------|-------------------|
| $\frac{g'(x)}{g(x)}$        | $\log  g(x)  + c$ |
| $\frac{g'(x)}{1+(g'(x))^2}$ | arctan g(x)  + c  |

## 3 Funzione definita a tratti

Una funzione definita a tratti è una funzione dove ci sono valori costanti per un certo intervallo.



# 4 Integrale definito

L'integrale definito permette di calcolare l'area tra la funzione e l'asse x per un determinato intervallo, approssimativamente possiamo seguire questi passi:

- Dividiamo l'area sottostante ad una funzione in  $n \geq 1$  sottoparti di ampiezza  $\frac{b-a}{n}$ . Più questo valore è maggiore, minore sarà l'errore di approssimazione
- Scegliamo dei punti(in arancione)  $x_i = a + i + \frac{i(b-a)}{n}$  che formeranno i rettangoli
- Segliamo i punti di campionamento  $z_i \in [x_{i-1}, x_i]$  sul lato del rettangolo, che definiscono una nuova funzione costante a tratti fatta dalle tangenti orizzontali nei punti.



Questa nuova funzione costante a tratti (quella delimitata dai rettangoli) è definita come  $g(x)=f(z_i)$ 

L'area formata da questi rettangoli è detta **area del plurirettangolo** ed è un'approssimazione dell'area del grafico di f. Quest'area è la somma delle aree dei singoli rettangoli:  $\sum_{1}^{n} f(z_i) = S_n(f; z_1, ..., z_n)$ . Questa sommatoria è detta somma di **Reimann** 

Per rendere più precisa questa approssimazione, l'integrale definito può essere scritto come:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_n(f; z_1, ..., z_n)$$

# 5 Integrabilità

Se esiste finito  $\lim_{n\to\infty} S_n(f;z_1,...,z_n)$ , la funzione si dice **integrabile**.

Si può dimostrare che:

- Funzioni continue su [a, b] sono integrabili
- Funzioni monotone e limitate su [a, b] sono integrabili
- Funzioni con un numero finito di punti di discontinuità(di prima o seconda specie) sono integrabili

#### 5.1 Funzione di Direchlet

Un esempio di funzione non integrabile è la funzione di Direchlet che è definita come: f(x) =

$$\begin{cases} 1 \text{ se } x \in \mathbb{Q} \\ 0 \text{ se } x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$$
 (1)

In questo caso avremmo due diversi valori del limite e quindi non esisterebbe.

## 6 Formula del punto medio con n suddivisioni

Per approssimare il valore di un integrale definito, possiamo usare la formula del punto medio con n suddivisioni:

$$\int_{a}^{b} f(x) dx \simeq \left(\sum_{i=1}^{n} f(z_{i})\right) \cdot \frac{b-a}{n}$$

Cioè la sommatoria di f calcolata nei punti medi  $z_i$  dei punti di suddivisione, cioè l'altezza del rettangolo, moltiplicata per  $\frac{b-a}{n}$  che sarebbe la base dei rettangoli. I punti di suddivisione devono essere equidistanti tra loro.

#### 6.1 Stimare l'errore

Possiamo stimare l'errore di questa approssimazione usando il seguente teorema: Sia f di classe  $C^2$  (derivabile due volte con derivate continue) in [a,b], allora definito k il massimo tra [a,b] di  $|f^{''}(x)|$ , abbiamo che l'errore massimo commesso da questa stima sarà minore di:

$$\frac{k}{24} \cdot \frac{(b-a)^3}{n^2}$$

## 7 Proprietà di base degli integrali

### 7.1 Linearità

Se f e g sono definite su [a,b] e sono integrabili su [a,b] e prendo due numeri  $\alpha$  e  $\beta$ , allora  $\alpha f + \beta g$  è integrabile su [a,b] e vale:

$$\int_{a}^{b} \alpha f + \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

## 7.2 Additività rispetto al dominio di integrazione

Se f è integrabile su [a,b] e  $c \in (a,b)$ , allora f è integrabile su (a,c) e su [c,b] e vale:

$$\int_a^b f = \int_a^c f + \int_c^b f$$

# 8 Valore medio di una funzione

Attraverso l'integrale definito, possiamo anche calcolare il valore medio di una funzione su un intervallo [a,b] come:

$$\int_{a}^{b} f(x) dx$$

# 9 Teorema della media integrale

Sia  $f:[a,b]\to\mathbb{R}$  continua, allora  $\exists c\in[a,b]$  tale che:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Osserviamo che il teorema si può riscrivere come  $\exists c \in [a, b]$  tale che

$$(b-a) \cdot f(c) = \int_{a}^{b} f(x) dx$$

#### 9.1 Dimostrazione

Per Weierstrass questa funzione ha sicuramente un minimo e un massimo locale in [a, b], poniamo questi due punti come  $x_m$  e  $x_M$ . Allora vale:

$$m \le f(x) \le M \ \forall x \in [a, b]$$

Per monotonia dell'integrale allora vale:

$$\int_{a}^{b} m \le \int_{a}^{b} f(x) \le \int_{a}^{b} M$$

Dato che M e n sono due funzioni costanti, allora il loro integrale varrà rispettvamente: m(b-a) e M(b-a) perchè l'area che si va a costruire sotto questa funzione sarà o un rettangolo o un quadrato(la cui area è base per altezza cioè m(b-a))

Quindi otteniamo:

$$m(b-a) \le \int_a^b f(x) \le M(b-a)$$

Ora dividiamo per (b-a) e otteniamo:

$$m \le \frac{1}{(b-a)} \int_a^b f(x) \le M$$

Ma questo termine è proprio la media integrale, quindi per il teorema dei valori intermedi,  $\exists c \in [a, b]$  tale che:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)$$

# 10 Teorema di Torricelli-Barrow(Primo teorema fondamentale del calcolo integrale o di enumerazione)

Data  $f:[a,b]\to\mathbb{R}$  continua, se F è una primitiva di f, allora:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) = F(x)|_{a}^{b}$$

Grazie a questo teorema, possiamo calcolare l'integrale definito in modo esatto da una primitiva.

#### 10.1 Dimostrazione

Dato  $n \in \mathbb{R}$  consideriamo le suddivisioni di [a,b] in n sottointervalli di ampiezza  $\frac{b-a}{n}$ 

$$a = x_0 < x_1 < \ldots < x_n = b$$

Notiamo che  $x_i - x_{i-1} = \frac{b-a}{n}$  possiamo riscrivere F(b) - F(a) come:

$$F(b) - F(a) = F(x_n) - F(x_0)$$

espandendo il calcolo otteniamo:

$$F(x_n - x_0) = [F(x_n) - F(x_{n-1})] + [F(x_{n-1} - F(x_{n-2}))] + \cdots [F(x_n) - F(x_n)]$$

Questo si può ulteriormente riscrivere come

$$\sum_{i=1}^{n} F(x_i) - F(x_{i-1})$$

Dato che F è una primitiva di f, allora F è derivabile in [a,b] e lo sarà anche in  $[x_{i-1},x_i]$ , inoltre è continua.

Sfruttiamo il teorema di Lagrange per riscrivere  $F(x_i) - F(x_{i-1})$  come

$$F'(z_i)(x_i - x_{i-1}) = f(x)(x_i - x_{i-1})$$

Quindi otteniamo

$$F(b) - F(a) = \sum_{i=1}^{n} F(x_i) - F(x_{i-1}) = \sum_{i=1}^{n} f(z_i)(x_i - x_{i-1})$$

Ma questo si può ulteriormente riscrivere come:

$$\sum_{i=1}^{n} f(z_i) \frac{b-a}{n} = S_n(f; z_1, ..., z_n)$$

cioè sono proprio le somme di Reimann.

Ora passiamo al limite, essendo f intrabile(poichè continua), otteniamo:

$$F(b) - F(a) = \lim_{n \to \infty} S_n(f; z_1, ..., z_n) = \int_a^b f$$

# 11 Funzione integrale o di accumulazione di f

Dato  $f:[a,b]\to\mathbb{R}$  integrabile (e continua), costruiamo una funzione del tipo  $x\in[a,b]\mapsto\int_{x_0}^x f(t)dt$ 

Questa funzione associa ad x, l'area da  $x_0$  a x se  $x>x_0$ . Se  $x=x_0$  darà come valore 0, se  $x< x_0$ , allora restituirà  $-\int_x^{x_0} f$ 

Questa funzione viene detta funzione integrale di f su [a,b] centrata in  $x_0$ 

## 12 Teorema fondamentale del calcolo integrale

Sia  $f:[a,b]\to\mathbb{R}$  continua, fissato  $x_0\in[a,b]$ , consideriamo la funzione integrale

$$F(x) = \int_{x_0}^x f(t)dt \ \forall x \in [a, b]$$

Allora F è derivabile in [a,b] e  $F^{'}(x)=f(x)$  cioè F è la primitiva che si annulla in  $x_0$ 

Questo teorema lega il calcolo differenziale con quello integrale.

#### 12.1 Dimostrazione

Fissato  $\overline{x}$ , vogliamo dimostrare  $F'(\overline{x}) = f(\overline{x})$ , cioè

$$\lim_{h \to 0} \frac{F(\overline{x} + h) - F(\overline{x})}{h} = f(\overline{x})$$

Dimostriamo il caso dove h > 0

Riscriviamo  $F(\overline{x} + h) - F(\overline{x})$  come:

$$\int_{x_0}^{\overline{x}+h} f(t) dt - \int_{x_0}^{x} f(t) dt$$

Per l'addittività dell'integrale otteniamo:

$$\int_{x_0}^{\overline{x}} f(t) \ dt + \int_{\overline{x}}^{\overline{x}+h} f(t) \ dt - \int_{x_0}^{x} f(t) \ dt = \int_{\overline{x}}^{\overline{x}+h} f(t) \ dt$$

Dunque riscrivendo la derivata si ottiene:

$$\frac{F(\overline{x}+h) - F(\overline{x})}{h} = \frac{1}{h} \int_{\overline{x}}^{\overline{x}+h} f(t) dt$$

Ora dato che f è continua, per il teorema della media integrale  $\exists c_h \in [\overline{x}, \overline{x} + h]$  tale che:

$$\frac{1}{h} \int_{\overline{x}}^{\overline{x}+h} f(t) dt = \frac{F(\overline{x}+h) - F(\overline{x})}{h} = f(c_h)$$

Ora passiamo al limite per  $h\to 0$  e notiamo che  $c_h\to \overline{x}$  perchè  $\overline{x}+0=\overline{x}$  Otteniamo quindi:

$$\lim_{h\to 0} \frac{F(\overline{x}+h) - F(\overline{x})}{h} = \lim_{h\to 0} f(c_h) = f(\overline{x})$$

Abbiamo quindi dimostrato il teorema

#### 12.1.1 Osservazioni

- Se h < 0 si pone  $h \to 0^-$ . Se h > 0 si può anche porre  $h \to 0^+$  per essere più precisi
- Se h=a (l'estremo sinistro dell'intervallo), si pone  $h\to 0^+$ , se h=b (l'estremo destro dell'intervallo), si pone  $h\to 0^-$

#### 12.2 Osservazioni

Questo teorema non ci permette di calcolare esplicitamente una primitiva, ad esempio

$$\int_0^x e^{-t^2} dt$$

Non può essere calcolata esplicitamente, tuttavia sappiamo che esiste. Inoltre data la funzione integrale F(x), possiamo approssimare la sua derivata  $F^{'}=f(x)$  con i test di monotonia e convessità.

In questo modo partendo da una funzione integrale, possiamo approssimare la funzione di partenza.

## 13 Integrali impropri

Gli integrali impropri(o generalizzati) sono integrali dove almeno un estremo di integrazione è  $\infty$ .



Guardiamo il caso del tipo  $\int_a^{+\infty}$ :

Sia  $f:[a,+\infty]\to\mathbb{R}$  continua con  $a\in\mathbb{R}$  si pone:

$$\int_{a}^{+\infty} f(x) \ dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) \ dx$$

Se il limite esiste.

Questo limite è il valore dell'integrale improprio di f su  $[a, +\infty]$ . Abbiamo 3 casi:

- L'integrale si dice convergente se il limite è finito
- L'integrale si dice divergente se il limite è infinito
- L'integrale si dice indeterminato se il limite è non esiste

#### 13.1 Osservazioni

Se  $f(x) \ge 0 \forall x \ge 0$ , allora

$$\int_{a}^{x} f(x) \ dx$$

è crescente, infatti per il teorema fondamentale si ha

$$F^{'}(b) = f(b) \ge 0$$

### 13.2 Formula di valuzione

La formula di valutazione permette di studiare integrali impropri, ad esempio poniamo

$$\int_{1}^{+\infty} \cos x \ dx$$

Questo si può riscrivere come

$$\lim_{b \to +\infty} \int_{1}^{+\infty} \cos x \ dx$$

Adesso integriamo ed otteniamo:

$$\lim_{b \to +\infty} \left[ sinx \right]_1^b$$

Per il teorema di Torricelli-Barrow questo si può riscrivere come:

$$\lim_{b\to\infty} sinb - sin1$$

Ma sappiamo che  $\lim_{b\to\infty} sinb$  non esiste quindi l'integrale è indeterminato.

#### 13.3 Esempio fondamentale

Consideriamo  $f(x) = \frac{1}{x^{\alpha}}$  su  $[1, +\infty]$  e studiamo la funzione di accumulazione  $F(x) = \int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$ , le primitive di  $\frac{1}{x^{\alpha}}$  sono:

$$\begin{cases} log|x| + c & \text{se } \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha} + c & \text{se } \alpha \neq 1 \end{cases}$$

Per la formula di valutazione se  $\alpha=1,$  otteniamo:

$$\int_{1}^{+\infty} \frac{1}{x} dx = \lim_{b \to +\infty} [logx]_{1}^{b} = \lim_{b \to +\infty} (logb - log1) = +\infty$$

Se ora imponiamo  $\alpha \neq 1$ , otteniamo

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \lim_{b \to +\infty} \left[ \frac{x^{1-\alpha}}{1-\alpha} \right]^{b}$$

Questo limite dà:

$$\begin{cases} +\infty \text{ se } 1 - \alpha > 0 \leftrightarrow \alpha < 1 \\ \frac{1}{\alpha - 1} \text{ se } 1 - \alpha < 0 \leftrightarrow \alpha > 1 \end{cases}$$

Quindi in questo caso l'integrale converge se  $\alpha > 1$  e diverge se  $a \le 1$ .

#### 13.3.1 Osservazioni

- La convergenza/divergenza dell'integrale dipende dalla velocità con cui ftende a 0 per  $x\to\infty$
- L'estremo di integrazione 1 può essere sostituito con qualsiasi  $\alpha>0$  perchè f non è continua in 0
- Notare l'analogia con le serie

## 13.4 Condizione necessaria di convergenza

Per capire se un integrale converge, diverge o non esiste esiste la condizione necessaria di convergenza:

Data  $f \in [a, +\infty]$  continua, se  $\int_a^{+\infty} f$  converge e se  $\exists l = \lim_{x \to +\infty} f(x)$ , allora l = 0