Machine Learning

Roteiro...

- Neste tutorial: Curso rápido de Machine Learning
- Próximo tutorial: Características de Machine Learning no Spark

Machine Learning: Aplicações

- Prever fraude
- Saber se um candidato a empréstimo será bom pagador
- Classificar uma doença
- Prever se aluno vai abandonar o curso
- Anteceder a ocorrência de uma epidemia
- Reconhecer um caractere manuscrito
- Reconhecer uma imagem ou uma música

Churn

CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
619	France	Female	42	2	0	1	1	1	10134888	1
608	Spain	Female	41	1	8380786	1	0	1	11254258	0
502	France	Female	42	8	1596608	3	1	0	11393157	1
699	France	Female	39	1	0	2	0	0	9382663	0
850	Spain	Female	43	2	12551082	1	1	1	790841	0
645	Spain	Male	44	8	11375578	2	1	0	14975671	1
822	France	Male	50	7	0	2	1	1	100628	0
376	Germany	Female	29	4	11504674	4	1	0	11934688	1
501	France	Male	44	4	14205107	2	0	1	749405	0
684	France	Male	27	2	13460388	1	1	1	7172573	0
528	France	Male	31	6	10201672	2	0	0	8018112	0
497	Spain	Male	24	3	0	2	1	0	7639001	0
476	France	Female	34	10	0	2	1	0	2626098	0
549	France	Female	25	5	0	2	0	0	19085779	0
635	Spain	Female	35	7	0	2	1	1	6595165	0
616	Germany	Male	45	3	14312941	2	0	1	6432726	0
653	Germany	Male	58	1	13260288	1	1	0	509767	1
549	Spain	Female	24	9	0	2	1	1	1440641	0
587	Spain	Male	45	6	0	1	0	0	15868481	0
726	France	Female	24	6	0	2	1	1	5472403	0
732	France	Male	41	8	0	2	1	1	17088617	0
636	Spain	Female	32	8	0	2	1	0	13855546	0

Como funciona?

619 France Female 608 Spain Female 11254258 8 1596608 502 France Female 11393157 699 France Female 9382663 850 Spain Female 2 12551082 790841 376 Germany Female 501 France Male 684 France Male 7172573 8018112 7639001 549 France Female 6595165 616 Germany Male 6432726 653 Germany Male 509767

549 Spain Female

726 France Female

732 France Male

1440641

5472403

Treinamento do Modelo

Modelo

Classificação: Não

O que é um Modelo?

Como sei que a classificação está correta?

- Não vai acertar sempre!
- Podemos medir a performance do modelo e assim prever como vai se comportar no mundo real
- Além de treinar o modelo, precisamos testa-lo antes de aplica-lo na vida real

Como funciona?

Treinamento do Modelo

Teste do Modelo

	Sim	Não		
Sim	50	10		
Não	5	45		

Acurácia: percentual de acertos

Classificar Outras Clientes

Conceitos

- ☐ Classe: é o que se busca prever ou classificar
 - ☐ Ex: Espécie de planta, doença do paciente, se o cliente é bom pagador
- ☐ Dimensão ou Atributo: são as características usadas como parâmetros para classificar
- ☐ Instância: é uma observação
- ☐ Relação: conjunto de dados

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
6.4	3.2	4.5	1.5	I. versicolor
6.9	3.1	4.9	1.5	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor
6.5	2.8	4.6	1.5	I. versicolor
5.7	2.8	4.5	1.3	I. versicolor

Conceitos

- ☐Classe é também um atributo
- ☐ Atributos nominais ou numéricos
- ☐Classificação binária, multiclasse e multilabel

Considerações Sobre o Modelo

- ☐ Depende do Algoritmo utilizado
- ☐ Pode perder a eficiência
- ☐ Muito específico do negócio

Regressão

- Quando a classe é contínua
- Exemplo: prever a potência de um motor

Consumo	Cilindros	Cilindradas	RelEixoTraseiro	Peso	Tempo	TipoMotor	Transmissao	Marchas	Carburadors	HP
21	6	160	39	262	1646	0	1	4	4	110
21	6	160	39	2875	1702	0	1	4	4	110
228	4	108	385	232	1861	1	1	4	1	93
214	6	258	308	3215	1944	1	0	3	1	110
187	8	360	315	344	1702	0	0	3	2	175
181	6	225	276	346	2022	1	0	3	1	105
143	8	360	321	357	1584	0	0	3	4	245
244	4	1467	369	319	20	1	0	4	2	62
228	4	1408	392	315	229	1	0	4	2	95
192	6	1676	392	344	183	1	0	4	4	123
178	6	1676	392	344	189	1	0	4	4	123
164	8	2758	307	407	174	0	0	3	3	180

Métricas de Erros

- Previsão de valores numéricos (reais, inteiros)
- Métricas diferentes da previsão de categorias
- Uso:
 - Regressão clássica
 - Regressão ML
 - Series Temporais
 - Etc.

Root Mean Squared Error (RMSE) Independente de Escala

• O desvio padrão da amostra da diferença entre o previsto e o teste

Previsto	Realizado	Dif. ao Quad.
3,34	3,00	0,1156
4,18	4,00	0,0324
3,00	3,00	0
2,99	3,00	1E-04
4,51	4,50	1E-04
5,18	4,00	1,3924
8,18	4,50	13,5424

$$RMSE = \sqrt{\frac{\sum_{I=1}^{N} (p_i - t_i)^2}{N}}$$

RMSE =
$$\sqrt{\frac{15,083}{7}}$$

$$RMSE = 1,46$$

