I Alphabet et mot

Définition : Alphabet

Un alphabet est un ensemble Σ fini, dont les éléments sont des lettres.

Définition: Mot

Un mot m d'un alphabet Σ est une suite finie $m_1, ..., m_n$ de lettres de Σ , et on note $m = m_1...m_n$. n est la taille de m, qu'on note |m|.

Le mot vide (contenant aucune lettre) est noté ε .

Attention : ε est un mot, pas une lettre.

On définit aussi :

- Σ^* : l'ensemble des mots sur Σ .
- $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}.$
- Σ^n l'ensemble des mots de longueur n sur Σ .

Définition : Égalité de mots

Deux mots $u = u_1...u_n$ et $v = v_1...v_p$ sur le même alphabet Σ sont égaux s'ils ont la même longueur (n = p) et si pour tout $i \in \{1,...,n\}, u_i = v_i$.

Définition: Concaténation et puissance

La concaténation de deux mots $u = u_1...u_n$ et $v = v_1...v_p$ est :

 $uv = u_1...u_n v_1...v_p$

Elle est aussi parfois notée $u \cdot v$.

Si u est un mot, on définit $u^0 = \varepsilon$ et $u^k = \underbrace{uu...u}_{k}$.

Exercice 1.

Soient Σ un alphabet, $a, b \in \Sigma$ et $u \in \Sigma^*$. On suppose au = ub. Montrer que a = b et qu'il existe $k \in \mathbb{N}$ tel que $u = a^k$.

Définition : Préfixe, suffixe, facteur, sous-mot

- u est un préfixe de m s'il existe un mot v tel que m = uv.
- u est un suffixe de m s'il existe un mot v tel que m = vu.
- u est un facteur (substring en anglais) de m s'il existe des mots v, w tels que m = vuw.
- u est un sous-mot (subsequence en anglais) de m si u est une sous-suite (ou : suite extraite) de m.

Exemple : abc est un sous-mot de aabacb, mais pas un facteur.

I.1 Implémentation d'un mot avec une chaîne de caractères

Rappels d'utilisation d'une chaîne de caractères (string) :

```
let s = "abc" (* défini une chaîne de caractères *)
s.[1] (* donne 'b' *)
String.length s (* donne 3 *)
"abc" ^ "def" (* concaténation *)
```

Remarque : Contrairement à array, le type string est immuable (on ne peut pas modifier un caractère d'une chaîne de caractères).

Exercice 2. Écrire une fonction sous_mot : string -> string -> bool qui teste si un mot est un sous-mot d'un autre, en complexité linéaire.

II Langage

Définition : Langage

Un langage L sur un alphabet Σ est un ensemble de mots de Σ .

De façon équivalente, L est un langage si $L \subseteq \Sigma^*$ ou encore $L \in \mathcal{P}(\Sigma^*)$.

Exemples:

- 1. L'ensemble $L_0 = \{\varepsilon, a, bab\}$ sur $\Sigma = \{a, b\}$.
- 2. L'ensemble L_1 des mots du dictionnaire français sur $\Sigma = \{a, b, ..., z\}$.
- 3. L'ensemble L_2 des formules arithmétiques sur $\Sigma = \{0, ..., 9, +, -, /, *\}$.
- 4. L'ensemble L_3 des programmes OCaml sur $\Sigma = \{a, ..., z, !, <, >, ...\}$.

Définition : Concaténation

La concaténation $L_1\overline{L_2}$ de $\overline{L_1}$ et $\overline{L_2}$ est définie par :

$$L_1L_2 = \{m_1m_2 \mid m_1 \in L_1, m_2 \in L_2\}$$

 L_1L_2 est donc l'ensemble des mots obtenus par concaténation d'un mot de L_1 et d'un mot de L_2 .

Exercice 3.

- 1. Soit $L_1 = \{a, ab\}$ et $L_2 = \{\varepsilon, b, bba\}$. Déterminer L_1L_2 .
- 2. Quel lien a t-on entre $|L_1L_2|$ et $|L_1||L_2|$, dans le cas général ?

Exercice 4.

- 1. La concaténation de deux langages est-elle commutative ? Associative ? _____
- 2. Quel est l'élément neutre de la concaténation ? L'élément absorbant ?

La concaténation est distributive par rapport à l'union : $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$.

Définition : Puissance

On définit la puissance L^n du langage L par récurrence :

$$L^0 = \{\varepsilon\}$$

$$L^n = L^{n-1}L, \text{ pour } n \ge 1$$

Dit autrement : $L^n = \underbrace{L \cdot ... \cdot L}_n = \{m_1 \cdot ... \cdot m_n \mid m_1 \in L, ..., m_n \in L\}.$

Exemple : Σ^n est l'ensemble des mots de longueur n sur l'alphabet Σ .

Exercice 5.

Soit L un langage.

- 1. À quelle condition a t-on $L \subseteq L^2$?
- 2. Quel lien a t-on entre L^2 et $\{u^2 \mid u \in L\}$?

Définition : Étoile de Kleene

On définit l'étoile (de Kleene) L^{\ast} d'un langage L par :

$$L^* = \bigcup_{k \in \mathbb{N}} L^k$$

 L^* est donc l'ensemble des mots obtenus par concaténation d'un nombre quelconque de mots de L. Remarque : L^* contient toujours ε , car $L^0 = \{\varepsilon\}$.

Exercice 6.

Montrer que $(L^*)^* = L^*$.

III Langages réguliers

Définition: Langage régulier (ou: langage rationnel)

L'ensemble $\operatorname{Reg}(\Sigma)$ des langages réguliers sur Σ est défini par :

- $\operatorname{Reg}(\Sigma)$ contient tous les langages finis.
- $\operatorname{Reg}(\Sigma)$ est stable par union, concaténation et étoile de Kleene.
- Reg(Σ) est le plus petit ensemble de langages ayant ces propriétés (si P est un ensemble de langages contenant les langages finis et stable par union, concaténation et étoile de Kleene, alors Reg(Σ) $\subseteq P$).

Définition inductive équivalente :

Propriété

- Tout langage fini est régulier.
- Si L_1 et L_2 réguliers alors $L_1 \cup L_2$ est régulier.
- Si L_1 et L_2 réguliers alors L_1L_2 est régulier.
- Si L est régulier alors L^* est régulier.

Par récurrence immédiate, si $L_1, ..., L_n$ sont réguliers alors $L_1 \cup ... \cup L_n$ et $L_1L_2...L_n$ sont réguliers.

Attention:

- Une union infinie de langages réguliers n'est pas forcément régulière.
- Un langage particulier n'est pas forcément stable par concaténation.

Exemples:

- 1. Soit m un mot. Alors $\{m\}$ est fini donc est un langage régulier, qu'on note aussi m par abus de langage.
- 2. Σ est fini donc est régulier. Σ^* est l'étoile d'un langage régulier donc est régulier.
- 3. Soit m un mot. L'ensemble des mots ayant comme facteur m est égal à $\Sigma^* m \Sigma^*$ donc est un langage régulier.
- 4. Soit $m = m_1 \cdots m_n$ un mot. L'ensemble des mots ayant comme sous-mot m est égal à $\Sigma^* m_1 \Sigma^* m_2 \cdots \Sigma^* m_n \Sigma^*$ donc est un langage régulier.

Exercice 7.

Montrer que les langages suivants sont réguliers sur $\Sigma = \{a, b\}$:

- 1. Mots commençants par a: ______
- 2. Mots commençants par a et finissant par b : _____
- 3. Mots de taille paire : _____
- 4. Mots de taille impaire : _____

IV Expressions régulières

Les expressions régulières sont une notation plus concise pour représenter un langage régulier :

Définition: Expression régulière (ou : expression rationnelle)

L'ensemble des expressions régulières sur un alphabet Σ est le plus petit langage \mathcal{R} sur $\Sigma \cup \{\emptyset, \varepsilon, |, *, (,)\}$ vérifiant :

- $\forall a \in \Sigma, a \in \mathcal{R}$
- $\emptyset \in \mathcal{R}, \varepsilon \in \mathcal{R}$
- $\forall e_1, e_2 \in \mathcal{R}, (e_1|e_2) \in \mathcal{R} \text{ et } (e_1e_2) \in \mathcal{R}$
- $\forall e \in \mathcal{R}, e^* \in \mathcal{R}$

Remarque : On utilise parfois + à la place de |.

On peut les représenter informatiquement par le type OCaml :

```
type 'a regexp =
    | Vide | Epsilon | L of 'a (* L a désigne la lettre a *)
    | Union of 'a regexp * 'a regexp
    | Concat of 'a regexp * 'a regexp
    | Etoile of 'a regexp
```

Définition : Langage d'une expression régulière

Si e est une expression régulière, on définit son langage associé L(e) récursivement :

- $L(a) = \{a\} \text{ si } a \in \Sigma$
- $L(\emptyset) = \emptyset$, $L(\varepsilon) = \{\varepsilon\}$
- $L(e|e') = L(e) \cup L(e')$
- L(ee') = L(e)L(e')
- $L(e^*) = L(e)^*$

Remarques:

- Par abus de langage, on confond souvent e et L(e).
- Une expression régulière n'est donc qu'une façon plus pratique de décrire un langage régulier, en enlevant les accolades et en remplaçant ∪ par |. C'est cette notation qui est utilisée dans les éditeurs de texte.

Théorème

Soit L un langage. L est régulier si et seulement si il existe une expression régulière e telle que L = L(e).

Exemples:

- $(a|b)^*$: ensemble de tous les mots $(= \Sigma^*)$.
- $(a|b)^*bb$: mots finissant par bb.

Exercice 8.

Donner une expression régulière pour les langages suivants, sur $\Sigma = \{a, b\}$:

- 1. Mots contenant au plus un a:
- 2. Mots de taille $n \equiv 1 \mod 3$:
- 3. Mots contenant un nombre pair de a : _____
- 4. Mots contenant un nombre impair de a : _____
- 5. Écritures en base 2 des entiers divisibles par 4 :

V Équivalence d'expressions régulières

Définition : Équivalence d'expressions régulières

Deux expressions régulières e_1 et e_2 sont dites équivalentes, noté $e_1 \equiv e_2$, si elles définissent le même langage, c'est-à-dire si $L(e_1) = L(e_2)$.

Exemple: $(ab)^*a \equiv a(ba)^*$.

Théorème

Pour une expression régulière e:

- 1. $e\emptyset \equiv \bot$
- $2. \ e\{\varepsilon\} \equiv \underline{\hspace{1cm}}$
- 3. $e \cup \emptyset \equiv$
- 4. $\emptyset^* \equiv$ ______
- 5. $\varepsilon^* \equiv$
- 6. $(e_1|e_2)e_3 \equiv$ _____
- 7. $e_1(e_2e_3) \equiv$ _____

VI Induction structurelle

