A próxima propriedade de integrais diz que, se integrarmos a função constante f(x, y) = 1sobre uma região D, obteremos a área de D:

10

$$\iint\limits_{D} 1 \, dA = A(D)$$

A Figura 19 ilustra por que a Equação 10 é verdadeira: um cilindro sólido, cuja base é D e a altura é 1, tem volume $A(D) \cdot 1 = A(D)$, mas sabemos que também podemos escrever seu volume como $\iint_D 1 dA$.

Finalmente, podemos combinar as Propriedades 7, 8 e 10 para demonstrar a seguinte propriedade. (Veja o Exercício 61.)

FIGURA 19 Cilindro com base D e altura 1

11 Se $m \le f(x, y) \le M$ para todo (x, y) em D, então

$$mA(D) \le \iint\limits_D f(x, y) dA \le MA(D)$$

EXEMPLO 6 Utilize a Propriedade 11 para estimar a integral $\iint_D e^{\sin x \cos y} dA$, onde D é o disco com centro na origem e raio 2.

SOLUÇÃO Como $-1 \le \text{sen } x \le 1 \text{ e } -1 \le \cos y \le 1$, temos $-1 \le \text{sen } x \cos y \le 1 \text{ e, por-}$ tanto.

$$e^{-1} \le e^{\operatorname{sen} x \cos y} \le e^{1} = e$$

Assim, usando $m = e^{-1} = 1/e$, M = e e $A(D) = \pi(2)^2$ na Propriedade 11, obtemos

$$\frac{4\pi}{e} \le \iint\limits_{D} e^{\sin x \cos y} dA \le 4\pi e$$

1-6 Calcule a integral iterada.

Exercícios

- **1.** $\int_0^4 \int_0^{\sqrt{y}} -xy^2 \, dx \, dy$
 - **2.** $\int_0^1 \int_{2x}^2 (x y) \, dy \, dx$
- **3.** $\int_{0}^{1} \int_{x^{2}}^{s} (1 + 2y) \, dy \, dx$ **4.** $\int_{0}^{2} \int_{y}^{2y} xy \, dx \, dy$ **5.** $\int_{0}^{1} \int_{0}^{s^{2}} \cos(s^{3}) \, dt \, ds$ **6.** $\int_{0}^{1} \int_{0}^{v} \sqrt{1 v^{2}} \, du \, dv$

7–10 Calcule a integral dupla.

- 7. $\iint_{\Omega} y^2 dA$, $D = \{(x, y) \mid -1 \le y \le 1, -y 2 \le x \le y\}$
- **8.** $\iint \frac{y}{x^5 + 1} dA, \quad D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le x^2\}$
- **9.** $\iint x \, dA$, $D = \{(x, y) \mid 0 \le x \le \pi, 0 \le y \le \text{sen } x\}$
- **10.** $\iint_{\mathbb{R}} x^3 dA, \quad D = \{(x, y) \mid 1 \le x \le e, \ 0 \le y \le \ln x\}$
- 11. Desenhe um exemplo de uma região que seja

- (a) do tipo I, mas não do tipo II
- (b) do tipo II, mas não do tipo I
- 12. Desenhe um exemplo de uma região que seja
 - (a) tanto do tipo I quanto do tipo II
 - (b) nem do tipo I nem do tipo II
- 13–14 Expresse D como a região do tipo I e também como uma região do tipo II. Em seguida, calcule a integral dupla de duas maneiras.
- **13.** $\iint_D x dA$, D é limitada pelas retas y = x, y = 0, x = 1
- **14.** $\iint xy \, dA$, D é limitada pelas curvas $y = x^2$, y = 3x

15–16 Defina as integrais iteradas para ambas as ordens de integração. Então, calcule a integral dupla usando a ordem mais fácil e explique por que ela é mais fácil.

- **15.** $\iint_D y \, dA, D \text{ \'e limitada por } y = x 2, x = y^2$
- É necessário usar uma calculadora gráfica ou computador
- 1. As Homework Hints estão disponíveis em www.stewartcalculus.com
- SCA É necessário usar um sistema de computação algébrica

- **16.** $\iint y^2 e^{xy} dA, D \notin \text{limitada por } y = x, y = 4, x = 0$
- 17-22 Calcule a integral dupla.
- 17. $\iint x \cos y \, dA, D \in \text{limitada por } y = 0, y = x^2, x = 1$
- **18.** $\iint (x^2 + 2y) dA$, *D* é limitada por y = x, $y = x^3$, $x \ge 0$
- **19.** $\iint y^2 dA$, D é a região triangular com vértices (0, 1), (1, 2), (4, 1)
- **20.** $\iint xy^2 dA$, D é limitada por x = 0 e $x = \sqrt{1 y^2}$
- **21.** $\iint (2x y) dA$, D é limitada pelo círculo de centro na origem e
- **22.** $\iint 2xy \, dA$, D é a região triangular com vértices (0, 0), (1, 2) e (0, 3)
- 23-32 Determine o volume do sólido dado.
- **23.** Abaixo do plano x 2y + z = 1 e acima da região limitada por $x + y = 1 e x^2 + y = 1$
- **24.** Abaixo da superfície $z = 2x + y^2$ e acima da região limitada por $x = y^2 e x = y^3$
- **25.** Abaixo da superfície z = xy e acima do triângulo e vértices (1, 1), (4, 1) e (1, 2)
- **26.** Limitado pelo paraboloide $z = x^2 + 3y^2$ e pelos planos x = 0, y = 1, y = x, z = 0
- 27. Limitado pelos planos coordenados e pelo plano 3x + 2y + z = 6
- **28.** Limitado pelos planos z = x, y = x, x + y = 2 e z = 0
- **29.** Limitado pelos cilindros $z = x^2$, $y = x^2$ e pelos planos z = 0,
- **30.** Limitado pelo cilindro $y^2 + z^2 = 4$ e pelos planos x = 2y, x = 0, z = 0 no primeiro octante
- **31.** Limitado pelo cilindro $x^2 + y^2 = 1$ e pelos planos y = z, x = 0, z = 0 no primeiro octante
- **32.** Limitado pelos cilindros $x^2 + y^2 = r^2$ e $y^2 + z^2 = r^2$
- 33. Utilize uma calculadora gráfica ou um computador para estimar a coordenada x dos pontos de intersecção da curva $y = x^4$ e otal M $y=3x-x^2$. Se D é a região limitada por essas curvas, estime
 - 34. Encontre o volume aproximado do sólido no primeiro octante limitado pelos planos y = x, z = 0 e z = x e pelo cilindro $y = \cos x$. (Utilize uma ferramenta gráfica para estimar os pontos de intersecção.)
 - 35-36 Determine o volume do sólido por subtração de dois volumes.
 - **35.** O sólido limitado pelos cilindros parabólicos $y = 1 x^2$, $y = x^2 - 1$ e pelos planos x + y + z = 2, 2x + 2y - z + 10 = 0
 - **36.** O sólido limitado pelo paraboloide cilíndrico $y = x^2$ e pelos planos z = 3y, z = 2 + y
 - 37–38 Esboce o sólido cujo volume é dado pela integral iterada.
 - **37.** $\int_0^1 \int_0^{1-x} (1-x-y) \, dy \, dx$ **38.** $\int_0^1 \int_0^{1-x^2} (1-x) \, dy \, dx$
 - 39-42 Use um sistema de computação algébrica para determinar o volume exato do sólido.

- SCA 39. Abaixo da superfície $z = x^2y^4 + xy^2$ e acima da região limitada pelas curvas $y = x^3 - x$ e $y = x^2 + x$ para $x \ge 0$
 - **40.** Entre os paraboloides $z = 2x^2 + y^2$ e $z = 8 x^2 2y^2$ e dentro do cilindro $x^2 + y^2 = 1$
 - **41.** Limitado por $z = 1 x^2 y^2$ e z = 0
 - **42.** Limitado por $z = x^2 + y^2$ e z = 2y
 - 43-48 Esboce a região de integração e mude a ordem de integração.
 - **43.** $\int_{0}^{1} \int_{0}^{y} f(x, y) dy dx$
- **44.** $\int_{0}^{2} \int_{x^{2}}^{4} f(x, y) dy dx$
- **45.** $\int_0^{\pi/2} \int_0^{\cos x} f(x, y) \, dy \, dx$ **46.** $\int_{-2}^2 \int_0^{\sqrt{4-2}} f(x, y) \, dx \, dy$
- **47.** $\int_{1}^{2} \int_{0}^{\ln x} f(x, y) dy dx$ **48.** $\int_{0}^{1} \int_{\arctan x}^{\pi/4} f(x, y) dy dx$
- 49-54 Calcule a integral trocando a ordem de integração.
- **49.** $\int_0^1 \int_{3^{-}}^3 e^{x^2} dx \, dy$
- **50.** $\int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \cos(x^2) \, dx \, dy$
- **51.** $\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} \, dy \, dx$ **52.** $\int_0^1 \int_x^1 e^{x/y} \, dy \, dx$
- **53.** $\int_{0}^{1} \int_{0}^{\pi/2} \cos x \sqrt{1 + \cos^2 x} \, dx \, dy$
- **54.** $\int_{0}^{8} \int_{3/2}^{2} e^{x^4} dx dy$
- 55-56 Expresse D como a união de regiões do tipo I ou do tipo II e calcule a integral.
- $55. \iint_D x^2 dA$

- 57-58 Use a Propriedade 8 para estimar o valor da integral.
- **57.** $\iint e^{-(x^2+y^2)^2} dA$, Q é o quarto de círculo com centro na origem e raio ½ no primeiro quadrante
- **58.** $\iint_{T} \sec^{4}(x+y) dA, T \in \text{ o triângulo limitado pelas retas } y=0,$ y=2x e x=1
- **59–60** Encontre o valor médio de f na região D
- **59.** f(x, y) = xy, D é o triângulo com vértices, (0, 0), (1, 0) e (1, 3)
- **60.** $f(x, y) = x \operatorname{sen} y$, $D \in \text{limitada pelas curvas } y = 0$, $y = x^2 \operatorname{e} x = 1$
- 61. Demonstre a Propriedade 11.
- **62.** No cálculo de uma integral dupla sobre uma região D, obtivemos uma soma de integrais iteradas como a que segue:

$$\iint_{\Omega} f(x, y) dA = \int_{0}^{1} \int_{0}^{2y} f(x, y) dx dy + \int_{1}^{3} \int_{0}^{3-y} f(x, y) dx dy$$

Esboce a região D e expresse a integral dupla como uma integral iterada com ordem de integração contrária.