

PRECISION 1A REGULATORS

- OUTPUT CURRENT IN EXCESS OF 1A
- OUTPUT VOLTAGES OF 5; 6; 8; 9; 12; 15; 18; 20; 24V
- THERMAL OVERLOAD PROTECTION
- OUTPUT TRANSITION SOA PROTECTION
- 2% OUTPUT VOLTAGE TOLERANCE
- GUARANTEED IN EXTENDED TEMPERATURE RANGE

DESCRIPTION

The L7800A series of three terminal positive regulators is available in TO-220, TO-220FP and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problem associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adeguate heat sinking is provided, they can deliver over 1A

output current, Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

SCHEMATIC DIAGRAM

March 2003 1/18

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter ²	Value	Unit
V _I	DC Input Voltage (for V_O = 5 to 18V) (for V_O = 20, 24V)	35 40	V V
I _O	Output Current	Internally Limited	mA
P _D	Power Dissipation	Internally Limited	mW
T _{stg}	Storage Temperature Range	-65 to +150	°C
T _{op}	Operating Junction Temperature Range (for L7800AC) (for L7800AB)	0 to +150 -40 to +125	°C °C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter	TO-220	TO-220FP	D ² PAK	Unit
R _{thj-case}	Thermal Resistance Junction-case	3	5	3	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	50	60	62.5	°C/W

SHEMATIC DIAGRAM

CONNECTION DIAGRAM (top view)

ORDERING CODES

TYPE	TO-220	TO-220FP	D ² PAK (*)	OUTPUT VOLTAGE
L7805AB	L7805ABV	L7805ABP	L7805ABD2T	5 V
L7805AC	L7805ACV	L7805ACP	L7805ACD2T	5 V
L7806AB	L7806ABV	L7806ABP	L7806ABD2T	6 V
L7806AC	L7806ACV	L7806ACP	L7806ACD2T	6 V
L7808AB	L7808ABV	L7808ABP	L7808ABD2T	8 V
L7808AC	L7808ACV	L7808ACP	L7808ACD2T	8 V
L7809AB	L7809ABV	L7809ABP	L7809ABD2T	9 V
L7809AC	L7809ACV	L7809ACP	L7809ACD2T	9 V
L7812AB	L7812ABV	L7812ABP	L7812ABD2T	12 V
L7812AC	L7812ACV	L7812ACP	L7812ACD2T	12 V
L7815AB	L7815ABV	L7815ABP	L7815ABD2T	15 V
L7815AC	L7815ACV	L7815ACP	L7815ACD2T	15 V
L7818AB	L7818ABV	L7818ABP	L7818ABD2T	18 V
L7818AC	L7818ACV	L7818ACP	L7818ACD2T	18 V
L7820AB	L7820ABV	L7820ABP	L7820ABD2T	20 V
L7820AC	L7820ACV	L7820ACP	L7820ACD2T	20 V
L7824AB	L7824ABV	L7824ABP	L7824ABD2T	24 V
L7824AC	L7824ACV	L7824ACP	L7824ACD2T	24 V

^(*) Available in Tape & Reel with the suffix "-TR".

APPLICATION CIRCUITS

TEST CIRCUITS

Figure 1 : DC Parameter

Figure 2: Load Regulation

Figure 3: Ripple Rejection

ELECTRICAL CHARACTERISTICS OF L7805A (V_I =10V, I_O =1A, T_J = 0 to 150°C (L7805AC), T_J = -40 to 125°C (L7805AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	4.9	5	5.1	V
V _O	Output Voltage	$I_{O} = 5mA \text{ to } 1A$ $P_{O} \le 15W$ $V_{I} = 7.5 \text{ to } 20V$	4.8	5	5.2	V
ΔV _O (*)	Line Regulation	$V_I = 7.5 \text{ to } 25V$ $I_O = 500 \text{ mA}$		7	50	mV
		V _I = 8 to 12V		10	50	mV
		$V_{I} = 8 \text{ to } 12V$ $T_{J} = 25^{\circ}C$		2	25	mV
		$V_I = 7.3 \text{ to } 20V$ $T_J = 25^{\circ}C$		7	50	mV
$\Delta V_{O}(*)$	Load Regulation	I _O = 5mA to 1A		25	100	mV
		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
		I _O = 250 to 750mA		8	50	V
Ιq	Quiescent Current	T _J = 25°C		4.3	6	mA
					6	mA
Δl_{q}	Quiescent Current Change	$V_1 = 8 \text{ to } 25V$ $I_0 = 500 \text{ mA}$			0.8	mA
		$V_{I} = 7.5 \text{ to } 20V$ $T_{J} = 25^{\circ}C$			0.8	mA
		$I_O = 5$ mA to 1A			0.5	mA
SVR	Supply Voltage Rejection	V _I = 8 to 18V f = 120Hz I _O = 500mA		68		dB
V _d	Dropout Voltage	$I_O = 1A$ $T_J = 25$ °C		2		V
eN	Output Noise Voltage	T _A = 25°C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		17		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-1.1		mv/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7806A (V_I =11V, I_O =1A, T_J = 0 to 150°C (L7806AC), T_J = -40 to 125°C (L7806AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	5.88	6	6.12	V
Vo	Output Voltage	$I_O = 5$ mA to 1A $P_O \le 15$ W $V_I = 8.6$ to 21V	5.76	6	6.24	V
ΔV _O (*)	Line Regulation	$V_1 = 8.6 \text{ to } 25V$ $I_0 = 500 \text{ mA}$		9	60	mV
		V _I = 9 to 13V		11	60	mV
		$V_{I} = 9 \text{ to } 13V$ $T_{J} = 25^{\circ}\text{C}$		3	30	mV
		$V_I = 8.3 \text{ to } 21V$ $T_J = 25^{\circ}\text{C}$		9	60	mV
ΔV _O (*)	Load Regulation	I _O = 5mA to 1A		25	100	mV
		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
		I _O = 250 to 750mA		10	50	V
Iq	Quiescent Current	T _J = 25°C		4.3	6	mA
<u> </u>					6	mA
Δl_{q}	Quiescent Current Change	$V_1 = 9 \text{ to } 25V$ $I_O = 500 \text{ mA}$			0.8	mA
		$V_I = 8.6 \text{ to } 21V$ $T_J = 25^{\circ}C$			0.8	mA
		$I_O = 5mA$ to 1A			0.5	mA
SVR	Supply Voltage Rejection	$V_1 = 9 \text{ to } 19V$ $f = 120\text{Hz}$ $I_0 = 500\text{mA}$		65		dB
V_d	Dropout Voltage	$I_O = 1A$ $T_J = 25^{\circ}C$		2		V
eN	Output Noise Voltage	T _A = 25°C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		17		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-0.8		mV/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7808A (V_I =14V, I_O =1A, T_J = 0 to 150°C (L7808AC), T_J = -40 to 125°C (L7808AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	7.84	8	8.16	V
V _O	Output Voltage	$I_{O} = 5mA \text{ to } 1A$ $P_{O} \le 15W$ $V_{I} = 10.6 \text{ to } 23V$	7.7	8	8.3	V
ΔV _O (*)	Line Regulation	$V_I = 10.6 \text{ to } 25V$ $I_O = 500 \text{ mA}$		12	80	mV
		V _I = 11 to 17V		15	80	mV
		$V_I = 11 \text{ to } 17V$ $T_J = 25^{\circ}C$		5	40	mV
		$V_I = 10.4 \text{ to } 23V$ $T_J = 25^{\circ}\text{C}$		12	80	mV
$\Delta V_{O}(*)$	Load Regulation	I _O = 5mA to 1A		25	100	mV
		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
		I _O = 250 to 750mA		10	50	V
Iq	Quiescent Current	T _J = 25°C		4.3	6	mA
<u> </u>					6	mA
Δl_q	Quiescent Current Change	$V_{I} = 11 \text{ to } 25V$ $I_{O} = 500 \text{ mA}$			0.8	mA
		$V_I = 10.6 \text{ to } 23V$ $T_J = 25^{\circ}\text{C}$			0.8	mA
		$I_O = 5mA$ to 1A			0.5	mA
SVR	Supply Voltage Rejection	V _I = 11.5 to 21.5V f = 120Hz I _O = 500mA		62		dB
V_d	Dropout Voltage	$I_O = 1A$ $T_J = 25^{\circ}C$		2		V
eN	Output Noise Voltage	T _A = 25°C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		18		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-0.8		mV/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7809A (V_I =15V, I_O =1A, T_J = 0 to 150°C (L7809AC), T_J = -40 to 125°C (L7809AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	8.82	9	9.18	V
Vo	Output Voltage	$I_O = 5$ mA to 1A $P_O \le 15$ W $V_I = 10.6$ to 23V	8.65	9	9.35	V
ΔV _O (*)	Line Regulation	$V_I = 10.6 \text{ to } 25V$ $I_O = 500 \text{ mA}$		12	90	mV
		V _I = 11 to 17V		15	90	mV
		V _I = 11 to 17V		5	45	mV
		V _I = 10.4 to 23V T _J = 25°C		12	90	mV
ΔV _O (*)	Load Regulation	I _O = 5mA to 1A		25	100	mV
		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
		I _O = 250 to 750mA		10	50	V
Iq	Quiescent Current	T _J = 25°C		4.3	6	mA
					6	mA
Δl_q	Quiescent Current Change	$V_I = 11 \text{ to } 25V$ $I_O = 500 \text{ mA}$			0.8	mA
		$V_I = 10.6 \text{ to } 23V$ $T_J = 25^{\circ}\text{C}$			0.8	mA
		I _O = 5mA to 1A			0.5	mA
SVR	Supply Voltage Rejection	$V_I = 11.5 \text{ to } 21.5V f = 120Hz$ $I_O = 500\text{mA}$		61		dB
V _d	Dropout Voltage	$I_O = 1A$ $T_J = 25$ °C		2		V
eN	Output Noise Voltage	$T_A = 25$ °C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		18		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-0.8		mV/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7812A (V_I =19V, I_O =1A, T_J = 0 to 150°C (L7812AC), T_J = -40 to 125°C (L7812AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	11.75	12	12.25	V
Vo	Output Voltage	$I_O = 5$ mA to 1A $P_O \le 15$ W $V_I = 14.8$ to 27V	11.5	12	12.5	V
ΔV _O (*)	Line Regulation	V _I = 14.8 to 30V I _O = 500 mA		13	120	mV
		V _I = 16 to 22V		16	120	mV
		V _I = 16 to 22V		6	60	mV
		$V_I = 14.5 \text{ to } 27V$ $T_J = 25^{\circ}C$		13	120	mV
ΔV _O (*)	Load Regulation	I _O = 5mA to 1A		25	100	mV
		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
		I _O = 250 to 750mA		10	50	V
Ιq	Quiescent Current	$T_J = 25^{\circ}C$		4.4	6	mA
					6	mA
Δl_{q}	Quiescent Current Change	$V_{I} = 15 \text{ to } 30V$ $I_{O} = 500 \text{ mA}$			0.8	mA
		$V_I = 14.8 \text{ to } 27V$ $T_J = 25^{\circ}\text{C}$			8.0	mA
		$I_O = 5mA \text{ to } 1A$			0.5	mA
SVR	Supply Voltage Rejection	$V_I = 15 \text{ to } 25V$ $f = 120\text{Hz}$ $I_O = 500\text{mA}$		60		dB
V _d	Dropout Voltage	$I_O = 1A$ $T_J = 25$ °C		2		V
eN	Output Noise Voltage	$T_A = 25$ °C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		18		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-1		mV/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7815A (V_I =23V, I_O =1A, T_J = 0 to 150°C (L7815AC), T_J = -40 to 125°C (L7815AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	14.7	15	15.3	V
Vo	Output Voltage	$I_O = 5$ mA to 1A $P_O \le 15$ W $V_I = 17.9$ to 30V	14.4	15	15.6	V
ΔV _O (*)	Line Regulation	$V_I = 17.9 \text{ to } 30V$ $I_O = 500 \text{ mA}$		13	150	mV
ı		V _I = 20 to 26V		16	150	mV
ı		V _I = 20 to 26V T _J = 25°C		6	75	mV
Í		V _I = 17.5 to 30V T _J = 25°C		13	150	mV
ΔV _O (*)	Load Regulation	I _O = 5mA to 1A		25	100	mV
ı		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
Í		I _O = 250 to 750mA		10	50	V
Iq	Quiescent Current	T _J = 25°C		4.4	6	mA
<u> </u>					6	mA
ΔI_q	Quiescent Current Change	$V_I = 17.5 \text{ to } 30V \qquad I_O = 500 \text{ mA}$			0.8	mA
ı		$V_I = 17.5 \text{ to } 30V$ $T_J = 25^{\circ}\text{C}$			0.8	mA
Í		$I_O = 5$ mA to 1A			0.5	mA
SVR	Supply Voltage Rejection	V _I = 18.5 to 28.5V f = 120Hz I _O = 500mA		58		dB
V_d	Dropout Voltage	$I_O = 1A$ $T_J = 25^{\circ}C$		2		V
eN	Output Noise Voltage	T _A = 25°C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-1		mV/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7818A (V_I =27V, I_O =1A, T_J = 0 to 150°C (L7818AC), T_J = -40 to 125°C (L7818AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	17.64	18	18.36	V
Vo	Output Voltage	$I_O = 5$ mA to 1A $P_O \le 15$ W $V_I = 21$ to 33V	17.3	18	18.7	V
ΔV _O (*)	Line Regulation	V _I = 21 to 33V I _O = 500 mA		25	180	mV
		V _I = 24 to 30V		28	180	mV
		V _I = 24 to 30V		10	90	mV
		$V_I = 20.6 \text{ to } 33V$ $T_J = 25^{\circ}\text{C}$		5	180	mV
ΔV _O (*)	Load Regulation	I _O = 5mA to 1A		25	100	mV
		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
		I _O = 250 to 750mA		10	50	V
Ιq	Quiescent Current	$T_J = 25^{\circ}C$		4.5	6	mA
					6	mA
ΔI_q	Quiescent Current Change	$V_1 = 21 \text{ to } 33V$ $I_0 = 500 \text{ mA}$			0.8	mA
		$V_{I} = 21 \text{ to } 33V$ $T_{J} = 25^{\circ}C$			8.0	mA
		$I_O = 5mA \text{ to } 1A$			0.5	mA
SVR	Supply Voltage Rejection	$V_I = 22 \text{ to } 32V$ $f = 120\text{Hz}$ $I_O = 500\text{mA}$		57		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2		V
eN	Output Noise Voltage	$T_A = 25$ °C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-1		mV/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7820A (V_I =28V, I_O =1A, T_J = 0 to 150°C (L7820AC), T_J = -40 to 125°C (L7820AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	19.6	20	20.4	V
Vo	Output Voltage	$I_O = 5$ mA to 1A $P_O \le 15$ W $V_I = 23$ to 35V	19.2	20	20.8	V
ΔV _O (*)	Line Regulation	$V_1 = 23 \text{ to } 35V$ $I_0 = 500 \text{ mA}$			200	mV
		V _I = 26 to 32V			200	mV
		$V_{I} = 26 \text{ to } 32V$ $T_{J} = 25^{\circ}C$			100	mV
		$V_{I} = 23 \text{ to } 32V$ $T_{J} = 25^{\circ}C$			200	mV
ΔV _O (*)	Load Regulation	I _O = 5mA to 1A		25	100	mV
		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
		I _O = 250 to 750mA		10	50	V
Ιq	Quiescent Current	T _J = 25°C		4.5	6	mA
					6	mA
ΔI_q	Quiescent Current Change	$V_1 = 23 \text{ to } 35V$ $I_0 = 500 \text{ mA}$			8.0	mA
		$V_{I} = 23 \text{ to } 35V$ $T_{J} = 25^{\circ}C$			0.8	mA
		$I_O = 5mA$ to 1A			0.5	mA
SVR	Supply Voltage Rejection	V _I = 24 to 35V		56		dB
V_d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2		V
eN	Output Noise Voltage	T _A = 25°C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		20		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-1		mV/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7824A (V_I =33V, I_O =1A, T_J = 0 to 150°C (L7824AC), T_J = -40 to 125°C (L7824AB), unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	23.5	24	24.5	V
Vo	Output Voltage	$I_{O} = 5 \text{mA to 1A}$ $P_{O} \le 15 \text{W}$ $V_{I} = 27.3 \text{ to 38V}$	23	24	25	V
ΔV _O (*)	Line Regulation	$V_1 = 27 \text{ to } 38V$ $I_0 = 500 \text{ mA}$		31	240	mV
ı		V _I = 30 to 36V		35	240	mV
Í		$V_{I} = 30 \text{ to } 36V$ $T_{J} = 25^{\circ}C$		14	120	mV
ı		V _I = 26.7 to 38V T _J = 25°C		31	240	mV
ΔV _O (*)	Load Regulation	I _O = 5mA to 1A		25	100	mV
Í		$I_O = 5$ mA to 1.5A $T_J = 25$ °C		30	100	V
ı		I _O = 250 to 750mA		10	50	V
Iq	Quiescent Current	T _J = 25°C		4.6	6	mA
<u> </u>					6	mA
ΔI_q	Quiescent Current Change	$V_1 = 27.3 \text{ to } 38V \qquad I_O = 500 \text{ mA}$			0.8	mA
Í		$V_I = 27.3 \text{ to } 38V$ $T_J = 25^{\circ}\text{C}$			0.8	mA
Í		$I_O = 5mA$ to 1A			0.5	mA
SVR	Supply Voltage Rejection	V _I = 28 to 38V		54		dB
V_d	Dropout Voltage	I _O =1 A T _J = 25°C		2		V
eN	Output Noise Voltage	T _A = 25°C B =10Hz to 100KHz		10		μV/V _O
R _O	Output Resistance	f =1KHz		20		mΩ
I _{sc}	Short Circuit Current	V _I = 35V T _A = 25°C		0.2		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output Voltage Drift			-1.5		mV/°C

^(*) Load and Line Regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

APPLICATION INFORMATION

DESIGN CONSIDERATION

The L7800A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-circuit Protection that limits the maximum current the circuit will pass, and Output transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with capacitor if the regulator is connected to the power supply filter with long lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33mF or larger tantalum, mylar or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtained with the arrangement is 2V greater than the regulator voltage.

The circuit of figure 6 can be modified to provide supply protection against short circuit by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three terminal regulator Therefore a four ampere plastic power transistor is specified.

Figure 4 : DC Parameter

Figure 5 : DC Parameter

Figure 6 : DC Parameter

Figure 7 : DC Parameter

TO-220 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
DIA.	3		3.2	0.118		0.126

D²PAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		0.409
E1		8.5			0.335	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.016	
V2	0°		8°	0°		8°

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com