

- 2. (30%) Consider the single-user RAKE, ZF, and MMSE detectors in CDMA systems. The simulation environment is assumed as follows:
 - It is assumed that user 1 is the desired signal with power σ_i^2 , and the others are the MAI with the same transmit power σ_i^2 .
 - The input SNR_i and SIR_i are defined as

$$SNR_i = \sigma_1^2 / \sigma_n^2$$
; $SIR_i = \sigma_1^2 / \sigma_i^2$.

- Q active user signals are transmitted via independent Rayleigh fading paths with path delays assumed to be uniform over $[0, 5T_c]$ (i.e., L = 5).
- All CDMA signals are BPSK modulated and spread by a random code of length 48 (a random sequence of ±1).
 - Perfect channel estimation is assumed.

Perform the following tasks and **COMMENT on your results**:

- (a) Plot SINR_o (output SINR in dB) of the detectors as a function of SNR_i (from -20 to 20 dB with an increment of 2 dB) with SIR_i = 0 dB and Q = 8. (Using HW2_1_a_2025.m)
- (b) Plot SINR₀ (output SINR in dB) of the detectors as a function of Q (from 1 to 10) with SNR_i = 0 dB and SIR_i = 0 dB. (Using HW2 1 b 2025.m)

criteria:

- Single-user system 去detect user1 訊號,其餘user (Q-1) 為Multi-Access interference
- Detector : RAKE, ZF, MMSE
- Path delays L = 5
- BPSK, processing gain(spreading factor) = N = 48
- Perfect channel estimation assumed.

$$\begin{split} h_q &= \sum_{l=1}^L \alpha_{q,l} c_{q,l} = C_q f_q \\ f_q &= [\alpha_{q,1}, \alpha_{q,2} \dots \alpha_{q,L}]^T \\ C_q &= \begin{pmatrix} c_q[0] & 0 & \cdots & 0 \\ \vdots & c_q[0] & \cdots & \vdots \\ c_q[N-1] & \vdots & \cdots & 0 \\ 0 & c_q[N-1] & \cdots & c_q[0] \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_q[N-1] \end{pmatrix} \end{split}$$

RAKE detector : $d_{RAKER} = h_1$

Zero-forcing detector $: d_{ZF} = H(H^H H)^{-1} e_1$

MMSE detector : $d_{MS} = R_{xx}^{-1} r_{xs}$,如第一題推導的

2.(a)Q = 8, $SIR_i = 0dB$ 畫出 $SIR_o(-20dB \sim 20dB)$,去比對 $SINR_o$ 隨 SNR_i 變化有什麼改變,看不同的 detector對 $SINR_o$ 提升效果

參數設置:

```
%% Parameter Setting
 6
7
         SIR = 0:
                                               % signal-to-CCI ratio
 8
         IPW = 10^{(-SIR/10)};
                                                 % interference power
         Q = 8
                                               % number of active users
9
10
         L = 5
                                               % number of paths (fingers)
         N = 48
                                               % random code length
         trial = 5000;
                                                 % number of Monte Carlo runs
12
13
         SNR = -20:2:20;
                                                 % signal to noise ratio
14
```

這裡有用到Monte Carlo runs,原因是因為無線通訊中的fading. Interference . noise. Spreading code 都是隨機變數,所以只做一次模擬的話,結果較不準確,故做5000次並取平均。 結果:

Comment: 從Fig 1可以觀察到

- 在低 SNR_i 時ZF的表現最差,這是因為ZF用比較暴力(× H^{-1})的方式去消掉ISI($As(k) \xrightarrow{channel} HAs(k) \xrightarrow{ZF} H^{-1}HAs(k) = As(k)$),但他並沒有考慮到雜訊的部分,所以當雜訊很大($H \to singular, H^{-1} \to \infty, H^{-1}n(k) \to \infty$)時,他就會被放大,使得整個系統效能下降。而當 SNR_i 很高時,ZF的表現很好,因為他完美消除ISI
- MMSE他權衡noise和ISI,在高低 SNR_i 表現都很不錯,表現得比ZF更穩定,不過他的計算量會比 ZF高很多,所以適合在低 SNR_i 使用
- RAKE他比較單純在對接收到的訊號進行合併(做match filter× H^H),沒有對MAI進行處理,抗干擾能力較弱($As(k) \xrightarrow{channel} HAs(k) \xrightarrow{RAKE} H^HHAs(k) = GAs(k)$),

$$G = H^H H = \begin{pmatrix} h_1^H h_1 & h_1^H h_2 & \cdots & h_1^H h_Q \\ \vdots & \vdots & \ddots & \vdots \\ h_Q^H h_1 & h_Q^H h_2 & \cdots & h_Q^H h_Q \end{pmatrix}$$
對角線元素 $h_i^H h_i$ 為processing gain,非對角元素為 $h_i^H h_j$

(不同user的干擾) ,雖然這裡的IPW是固定值 $SIR_i = 0dB$, $SINR_{RAKE} \approx \frac{K}{1 + \frac{P_i}{P_s}}$,,當高 SNR_i 時

通常會先用RAKE最大化SNR,再用ZF.MMSE做二次處理去消掉MAI。結論:

- ZF適合在高SNR;時使用,低SNR反而會放大雜訊
- MMSE適合在低SNR,時使用,會去權衡雜訊和Interference
- RAKE無法有效對抗MAI,通常用於multi-path補償

2.(b)不同的Q(1~10),固定 $SNR_i=0dB$ 和 $SIR_i=0dB$ 畫出 $SINR_o$,去看當越來越多user加入後,RAKE, ZF, MMSE三個的抗干擾能力為何

Fig2 是這次助教要求的數字,Fig 3是我想知道若是user數量再上升會有什麼事發生

Comment: 從Fig 2.3可以觀察到

- RAKE下降的最快,因為他不會主動去消除MAI,他是用在合併multi-path,因此當Q增多,干擾變強,RAKE沒辦法對抗,所以SINR。表現就會急劇下降(對干擾適應差)
- ZF他是完美消除ISI,當Q增加時,ZF會去inverse Q*Q的矩陣,計算量有變大。SINR仍然會下降,但下降的比RAKE緩慢
- MMSE有去權衡干擾和雜訊,去做整體最佳化的選擇,抗干擾能力最好,並且他不像ZF會放大雜訊,表現也較穩定,尤其在Q很大時(看Fig3)

這次助教要我們用的是SNR = 0dB但若是我們把SNR調大,如上三圖所示,可以很明顯看到當我們 SNR = 100dB,因為ZF只要考慮干擾,SNR又很大,雜訊幾乎可忽略,所以表現比MMSE還要好。總結:

Detector	概念	優點	缺點
RAKE $d_{RAKER} = h_1$	利用multi–path合併,增強訊號	可以用multi–path增強訊 號強度,計算量最低	無法消除MAI,抗干擾能力差
ZF $d_{ZF} = H(H^H H)^{-1} e_1$	完全消除干擾,但可能放大雜訊	在干擾較強時能有效去除 干擾(SNR很大時可用)	需要矩陣反轉,數值不穩 定,雜訊會被放大
$MMSE$ $d_{MS} = R_{xx}^{-1} r_{xs}$	在干擾和雜訊之間做折衷	平衡干擾與雜訊,穩定性 較好	計算量較大,需要雜訊資 訊

- 3. (50%) Consider the SIC and the PIC detector with the Rake receiver in CDMA systems, respectively. The simulation environment is assumed as follows:
 - Q = 3 active user signals are transmitted via independent Rayleigh fading paths with path delays assumed to be uniform over $[0, 5T_c]$ (i.e., L = 5).
 - All CDMA signals are BPSK modulated and spread by a random code of length 48 (a random sequence of ±1).
 - Perfect channel estimation is assumed.
 - The input SNR_i is defined as

$$SNR_i = \sigma_i^2 / \sigma_n^2$$

- The relative power levels of the three users are fixed and given by $SNR_1 = X dB$, $SNR_2 = (X-6) dB$, and $SNR_3 = (X-12) dB$.
- The decision is performed according to

$$Dec(x) = \begin{cases} 1, & \text{if } Real(x) \ge 0 \\ -1, & \text{if } Real(x) < 0 \end{cases}$$

Perform the following tasks and **COMMENT on your results**:

- (a) Perform SIC detection on the three users in the order of descending power levels, i.e., 1, 2, 3. Plot the average bit error rate of the three users as a function of input SNR₁ (from −10 to 20 dB with an increment of 5 dB). (Using HW2 2 SIC 2025.m)
- (b) Perform SIC detection on the three users in the order of ascending power levels, i.e., 3, 2, 1. Plot the average bit error rate of the three users as a function of input SNR1 (from -10 to 20 dB with an increment of 5 dB). (Using HW2_2_SIC_2025.m)
- (c) Perform PIC detection on the three users. Plot the average bit error rate of the three users as a function of input SNR₁ (from -10 to 20 dB with an increment of 5 dB). (Using HW2 2 PIC 2025.m)
- (d) Compare the results in (a)-(c). Which detection scheme is the best for such a scenario? Why?

criteria:

- 在multi-users去detect 各個user訊號,並比較用SIC.PIC detector他們的錯誤率
- Path delays L = 5
- BPSK, processing gain(spreading factor) = N = 48
- Perfect channel estimation assumed.
- $SNR_1 = XdB$, $SNR_2 = X 6dB$, $SNR_3 = X 12dB$ 3(a)(b)

 SIC_a 是從訊號最強到最弱的開始detect,detect完後重建該訊號從總訊號扣除,繼續detect下一個 SIC_b 是從訊號最弱到最強的開始detect,detect完後重建該訊號從總訊號扣除,繼續detect下一個

Comment:

可以看到Fig 4在SNR相同的情況下, SIC_a 的BER會比 SIC_b 還低,這是因為從比較強的訊號開始判斷,比較容易判斷正確,所以可以比較有效從總訊號扣除(剩下的干擾也就較小,因為剩下的s中,要判斷的是訊號最強那個)。但若是用 SIC_b 的方法,弱的比較難解出來,因為還有比自己強的干擾在,所以detect不容易成功。

結論:SICa比SICb好用

3.(c)

使用PIC去同時估計所有訊號

Comment:

- 在低SNR時,因為PIC會同時估計並消除所有user的干擾,這種初始detect錯誤,所以去影響到抵銷的結果,使得產生error progation的效應,所以BER較高。
- 在高SNR時,BER表現都很好10⁻⁴以下,所以在高SNR下,PIC干擾消除能力比較好。不過可以看到在SNR15-20反而BER提高了,原因可能是因為PIC會用前一輪的detect 結果去抵銷干擾,若是存在誤差,會影響到最終BER
- 相較於SIC,SIC可以先處理一個訊號,降低干擾後再detect下一個,而PIC同時處理所有訊號,所以更容易受到初始錯誤的影響。

3.(d)

考慮 SIC_a , SIC_b , PIC, 我認為 SIC_a 會是最好的detect, 原因如下:

1.在高或低SNR表現最好:因為PIC在低SNR表現較差, SIC_a 能先檢測最強的訊號,並從總訊號中移除,降低後續檢測的干擾,因此 BER 在低 SNR 下仍能維持較好的表現。

$2.SIC_a$ vs SIC_b :

- ullet SIC_a 透過先檢測強訊號,確保後續檢測時的干擾更少,因此 BER 下降較快。
- SIC_b 在低 SNR 時表現最差,因為最弱訊號的檢測誤差較大,影響後續訊號的干擾消除,使得 BER 很高。

$3.SIC_a$ vs PIC

• PIC雖然能夠同時處理所有訊號(delay較小) ,但它在低 SNR 時受到error propagation影響, 導致 BER 較高。

結論

Detector	BER	Complexity	Delay	Power control
SIC_a (先detect較強訊號)	最佳	中間(要逐個detect和消除訊號)	長	Reliable detection for weak users.
SIC_b (先detect較弱訊號)	最差	中間(和SIC _a 相同)	長	要求高(因為power 不平均detect BER很 大)
PIC	中間	最高(要同時檢測所有訊號)	最短	要求高(大家power 最好差不多)