Quiz 4

Q1

Solve $T(n) = 4T(\frac{n}{2}) + n$ using he master theorem:

1. a = ?

Answer: 4

2. b = ?

Answer: 2

3. f(n) = ?

Answer: n

4. To make $f(n) = O(n^{(\log_b a) - \epsilon})$, the largest possible value for ϵ is ?

Answer: 1

Q2

Solve $T(n)=3T(\frac{n}{2})+n$ using the master theorem. Which of the following is ture?

- 1. $f(n) = O(n^{(log_b a) \epsilon})$
- 2. $f(n) = \Theta(n^{log_b a})$
- 3. $f(n) = \Omega(n^{(\log_b a) + \epsilon})$
- 4. None of the above is true

Answer: Option 1

Q3

Solve $T(n) = 9T(\frac{n}{3}) + n^2$ using the master theorem. Which of the following is ture?

- 1. $f(n) = O(n^{(log_b a) \epsilon})$
- 2. $f(n) = \Theta(n^{\log_b a})$
- 3. $f(n) = \Omega(n^{(\log_b a) + \epsilon})$
- 4. None of the above is true

Answer: Option 2

Q4

Solve $T(n) = 9T(\frac{n}{3}) + n^3 log n$ using the master theorem. Which of the following is ture?

- 1. $f(n) = O(n^{(\log_b a) \epsilon})$
- 2. $f(n) = \Theta(n^{\log_b a})$

- 3. $f(n) = \Omega(n^{(log_b a) + \epsilon})$
- 4. None of the above is true

Answer: Option 3

Q5

Solve $T(n) = 9T(\frac{n}{3}) + n^2 log n$ using the master theorem. Which of the following is ture?

- 1. $f(n) = O(n^{(\log_b a) \epsilon})$
- 2. $f(n) = \Theta(n^{\log_b a})$
- 3. $f(n) = \Omega(n^{(\log_b a) + \epsilon})$
- 4. None of the above is true

Answer: Option 4

Q6

When using the master theorem to solve a recurrence, after we find a constant $\epsilon>0$ such that $f(n)=\Omega(n^{(\log_b a)+\epsilon})$, what is the name of the condition we also need to check?

Answer: regularity