

Linguaggio SQL: fondamenti

Operatori insiemistici

Operatori insiemistici

- □ Operatore UNION
- □ Operatore INTERSECT
- Operatore EXCEPT

Operatore UNION

○ Operatore insiemistico di unione

A UNION B

- ∑ Esegue l'unione delle due espressioni relazionali
 A e B
 - le espressioni relazionali A e B possono essere generate da istruzioni SELECT
 - richiede la compatibilità di schema tra A e B
 - rimozione dei duplicati
 - UNION rimuove i duplicati
 - UNION ALL non rimuove i duplicati

Trovare il codice dei prodotti di colore rosso o forniti dal fornitore F2 (o entrambe le cose)

P

CodP	NomeP	Colore	Taglia	Magazzino
P1	Maglia	Rosso	40	Torino
P2	Jeans	Verde	48	Milano
P3	Camicia	Blu	48	Roma
P4	Camicia	Blu	44	Torino
P5	Gonna	Blu	40	Milano
P6	Bermuda	Rosso	42	Torino

FP

CodF	CodP	Qta
F1	P1	300
F1	P2	200
F1	P3	400
F1	P4	200
F1	P5	100
F1	P6	100
F2	P1	300
F2	P2	400
F3	P2	200
F4	P3	200
F4	P4	300
F4	P5	400

Trovare *il codice dei prodotti di colore rosso* o forniti dal fornitore F2 (o entrambe le cose)

SELECT CodP

FROM P

WHERE Colore='Rosso'

CodP	NomeP	Colore	Taglia	Magazzino
P1	Maglia	Rosso	40	Torino
P2	Jeans	Verde	48	Milano
P3	Camicia	Blu	48	Roma
P4	Camicia	Blu	44	Torino
P5	Gonna	Blu	40	Milano
P6	Bermuda	Rosso	42	Torino

CodP	
P1	
P6	

Trovare il *codice dei prodotti* di colore rosso o *forniti dal fornitore F2* (o entrambe le cose)

FP

CodF	CodP	Qta
F1	P1	300
F1	P2	200
F1	P3	400
F1	P4	200
F1	P5	100
F1	P6	100
F2	P1	300
F2	P2	400
F3	P2	200
F4	P3	200
F4	P4	300
FΛ	P5	400

SELECT CodP FROM FP WHERE CodF='F2'

Trovare il codice dei prodotti di colore rosso o forniti dal fornitore F2 (o entrambe le cose)

SELECT CodP
FROM P
WHERE Colore='Rosso'
UNION
SELECT CodP
FROM FP
WHERE CodF='F2';

Trovare il codice dei prodotti di colore rosso o forniti dal fornitore F2 (o entrambe le cose)

SELECT CodP

FROM P

WHERE Colore='Rosso'

UNION

SELECT CodP

FROM FP

WHERE CodF='F2';

Trovare il codice dei prodotti di colore rosso o forniti dal fornitore F2 (o entrambe le cose)

UNION ALL: esempio

Trovare il codice dei prodotti di colore rosso o forniti dal fornitore F2 (o entrambe le cose)

SELECT CodP
FROM P
WHERE Colore='Rosso'
UNION ALL
SELECT CodP
FROM FP
WHERE CodF='F2';

UNION ALL: esempio

Trovare il codice dei prodotti di colore rosso o forniti dal fornitore F2 (o entrambe le cose)

SELECT CodP
FROM P
WHERE Colore='Rosso'
UNION ALL
SELECT CodP
FROM FP
WHERE CodF='F2';

Operatore INTERSECT

○ Operatore insiemistico di intersezione

A INTERSECT B

- - le espressioni relazionali A e B possono essere generate da istruzioni SELECT
 - richiede la compatibilità di schema tra A e B

Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

F

CodP	NomeP	Colore	Taglia	Magazzino
P1	Maglia	Rosso	40	Torino
P2	Jeans	Verde	48	Milano
P3	Camicia	Blu	48	Roma
P4	Camicia	Blu	44	Torino
P5	Gonna	Blu	40	Milano
P6	Bermuda	Rosso	42	Torino

F

	CodF	NomeF	NSoci	Sede
	F1	Andrea	2	Torino
	F2	Luca	1	Milano
I	F3	Antonio	3	Milano
	F4	Gabriele	2	Torino
	F5	Matteo	3	Venezia

□ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

SELECT Sede FROM F

F

CodF	NomeF	NSoci	Sede
F1	Andrea	2	Torino
F2	Luca	1	Milano
F3	Antonio	3	Milano
F4	Gabriele	2	Torino
F5	Matteo 3 Ver		Venezia

Sede
Torino
Milano
Milano
Torino
Venezia

□ Trovare *le città che sono* sia sede di fornitori, sia magazzino di prodotti

SELECT Magazzino FROM P

P

CodP	NomeP	Colore	Taglia	Magazzino
P1	Maglia	Rosso	40	Torino
P2	Jeans	Verde	48	Milano
P3	Camicia	Blu	48	Roma
P4	Camicia	Blu	44	Torino
P5	Gonna	Blu	40	Milano
P6	Bermuda	Rosso	42	Torino

Magazzino
Torino
Milano
Roma
Torino
Milano
Torino

 □ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

SELECT Sede
FROM F
INTERSECT
SELECT Magazzino
FROM P;

Equivalenza con altri operatori

- ∠ L'operazione di intersezione può essere eseguita anche mediante
 - il join
 - l'operatore IN

Equivalenza con il join

- □ La clausola FROM contiene le relazioni interessate dall'intersezione
- □ La clausola WHERE contiene condizioni di join tra gli attributi presenti nella clausola SELECT delle espressioni relazionali A e B

Equivalenza con il join: esempio

□ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

SELECT Sede

FROM F, P

WHERE F.Sede=P.Magazzino;

Equivalenza con l'operatore IN

- □ Una delle due espressioni relazionali diviene un'interrogazione nidificata mediante l'operatore IN
- ☐ Gli attributi nella clausola SELECT esterna, uniti da un costruttore di tupla, costituiscono la parte sinistra dell'operatore IN

Equivalenza con IN: esempio

□ Trovare le città che sono sia sede di fornitori, sia magazzino di prodotti

SELECT Magazzino
FROM P
WHERE Magazzino IN (SELECT Sede
FROM F);

Operatore EXCEPT

○ Operatore insiemistico di differenza

A EXCEPT B

- ∑ Sottrae l'espressione relazionale B all'espressione relazionale A
 - richiede la compatibilità di schema tra A e B

□ Trovare le città che sono sede di fornitori, ma non magazzino di prodotti

CodP	NomeP	Colore	Taglia	Magazzino
P1	Maglia	Rosso	40	Torino
P2	Jeans	Verde	48	Milano
P3	Camicia	Blu	48	Roma
P4	Camicia	Blu	44	Torino
P5	Gonna	Blu	40	Milano
P6	Bermuda	Rosso	42	Torino

F

CodF	NomeF	NSoci	Sede
F1	Andrea	2	Torino
F2	Luca	1	Milano
F3	Antonio	3	Milano
F4	Gabriele	2	Torino
F5	Matteo	3	Venezia

□ Trovare le città che sono sede di fornitori, ma non magazzino di prodotti

SELECT Sede FROM F

F

CodF	NomeF	NSoci	Sede
F1	Andrea	2	Torino
F2	Luca	1	Milano
F3	Antonio	3	Milano
F4	Gabriele	2	Torino
F5	Matteo	3	Venezia

Sede
Torino
Milano
Milano
Torino
Venezia

□ Trovare le città che sono sede di fornitori, ma non magazzino di prodotti

SELECT Magazzino FROM P

P

CodP	NomeP	Colore	Taglia	Magazzino
P1	Maglia	Rosso	40	Torino
P2	Jeans	Verde	48	Milano
P3	Camicia	Blu	48	Roma
P4	Camicia	Blu	44	Torino
P5	Gonna	Blu	40	Milano
P6	Bermuda	Rosso	42	Torino

Magazzino
Torino
Milano
Roma
Torino
Milano
Torino

□ Trovare le città che sono sede di fornitori, ma non magazzino di prodotti

SELECT Sede
FROM F
EXCEPT
SELECT Magazzino
FROM P;

Torino
Milano
Milano
Torino
Venezia

Torino

Venezia

Equivalenza con l'operatore NOT IN

- ∠ L'operazione di differenza può essere eseguita anche mediante l'operatore NOT IN
 - l'espressione relazionale B è nidificata all'interno dell'operatore NOT IN
 - gli attributi nella clausola SELECT dell'espressione relazionale A, uniti da un costruttore di tupla, costituiscono la parte sinistra dell'operatore NOT IN

Equivalenza con l'operatore NOT IN: esempio

Trovare le città che sono sede di fornitori, ma non magazzino di prodotti

SELECT Sede
FROM F
WHERE Sede NOT IN (SELECT Magazzino FROM P);

