

КОРРЕКТОРЫ СПГ741 Интерфейс связи РАЖГ.421412.020 Д7

© ЗАО НПФ ЛОГИКА, 2000, 2011

Корректоры СПГ741 созданы закрытым акционерным обществом "Научно-производственная фирма "Логика".

Исключительное право ЗАО НПФ ЛОГИКА на данную разработку защищается законом.

Воспроизведение любыми способами корректоров может осуществляться только по лицензии ЗАО НПФ ЛОГИКА.

Распространение, применение, ввоз, предложение к продаже, продажа или иное введение в хозяйственный оборот или хранение с этой целью неправомерно изготовленных корректоров запрещается.

Отдельные изменения, связанные с дальнейшим совершенствованием изделия, могут быть не отражены в настоящем 2-м издании.

РОССИЯ, 190020, г. Санкт-Петербург, наб. Обводного канала, 150 Тел./факс: (812) 2522940, 4452745; adm@logika.spb.ru; www.logika.spb.ru

Содержание

1 Подключение	ə	. 4
2 Протокол обы	мена	. 5
2.1 Характе	ристики передачи	. 5
2.2 Формат	запросов	. 5
2.3 Формат	ответов	. 6
2.4 Основнь	ие процедуры обмена	. 7
2.4.1 Уст	ановление сеанса связи	. 7
2.4.2 Чте	ние FLASH-памяти	. 8
2.4.3 Чте	ние ОЗУ	. 8
2.4.4 Зап	росы для работы с архивами	. 9
2.5 Ввод нас	строечных параметров	. 10
2.6 Вывод о	тчетов на печать	. 12
2.7 Обработ	ка ошибок	. 13
2.8 Временн	ые характеристики обмена	. 14
Приложение 1	Организация архивов	. 15
Приложение 2	Организация базы данных	. 16
Приложение 3	Форматы представления чисел	. 22
Приложение 4	Нештатные ситуации	. 24
Приложение 5	Представление тотальных счетчиков	. 26
Приложение 6	Чтение текущих параметров	. 27
Приложение 7	Архивы НС и ИЗМ	. 28

1 Подключение

Корректор может быть непосредственно подключен к персональному компьютеру или другому внешнему устройству по интерфейсу RS-232C. Схема подключения одиночного СПГ741 приведена на рисунке 1.1. При этом длина линии связи не должна превышать 100 м.

Аналогичным образом по RS-232C можно подключить группу до пяти СПГ741 к одному внешнему устройству. Электрическая схема этого варианта подключения приведена на рисунке 1.2. При таком подключении СПГ741 суммарная длина используемых отрезков линий связи не должна превышать 100 м.

Рисунок 1.1 – Подключение одиночного СПГ741 к компьютеру по интерфейсу RS-232C

Рисунок 1.2 – Подключение группы СПГ741 к компьютеру по интерфейсу RS-232C.

Во всех вариантах непосредственного подключения СПГ741 к внешнему устройству по интерфейсу RS-232C, перед началом обмена с ним, линия DTR (108) должна быть переведена в активное состояние (положительный уровень напряжения).

Для подключения СПГ741 (группы СПГ741) к внешним устройствам, находящимся на удалении более 100 м, рекомендуется использовать адаптер АПС45.

При подключении к внешнему устройству группы СПГ741 через адаптер АПС45, общее число приборов в группе может достигать десяти. Суммарная длина линий связи – до 2 км.

2 Протокол обмена

2.1 Характеристики передачи

Обмен СПГ741 с внешним устройством (компьютером) строится по принципу запрос/ответ, причем СПГ741 всегда пассивен, — он не может являться инициатором запроса.

К СПГ741 может быть подключено только одно активное устройство-инициатор запросов.

Обмен с СПГ741 асинхронный, полудуплексный на фиксированной скорости 2400 бит в секунду. Формат передачи данных: один стартовый бит, восемь битов данных, один стоповый бит.

Передача данных – "младшим битом вперед".

2.2 Формат запросов

Запросы передаются в виде кадров фиксированной длины.

Кадры могут быть двух видов: "короткие" и "длинные". Область данных короткого кадра содержит 4 байта, а область данных длинного кадра — 64 байта информации. Длинные кадры предназначены для ввода данных в прибор. Структура короткого и длинного кадров приведена в таблицах 2.1, 2.2 соответственно.

Таблица 2.1 – Структура короткого кадра запрос	ca
--	----

Байт	Содержание
1	Код начала кадра (10Н)
2	Групповой номер прибора (NT)
3	Код запроса
4	Поле 1

Байт	Содержание
5	Поле 2
6	Поле 3
7	Поле 4
8	Контрольная сумма (КС)
9	Код конца кадра (16Н)

Таблица 2.2 – Структура длинного кадра запроса

Байт	Содержание
1	Код начала кадра (10Н)
2	Групповой номер прибора (NT)
3	Код запроса
4	Поле 1
5	Поле 2
:	:
67	Поле 64
68	Контрольная сумма (КС)
69	Код конца кадра (16Н)

В полях 1...4 (1...64) передается собственно блок информации, адресованной прибору.

Контрольная сумма представляет собой побитно инвертированный младший байт суммы всех предшествующих байтов за исключением кода начала кадра (байты 2...7).

Групповой номер NT может принимать значения $0...99_{10}$ и 255_{10} . Запрос с NT=255 используется при "безадресном" обращении к СПГ741. В этом случае прибор производит обработку запроса, игнорируя действительное значение параметра NT его базы данных.

2.3 Формат ответов

Ответы СПГ741 передаются в виде кадров переменной длины, которая определяется типом обрабатываемого запроса. Обобщенная структура ответа приведена в таблице 2.3. Длина блока данных может составлять 1...64 байт.

При безадресном обращении к прибору (запрос с $NT=255_{10}$), ответ прибора в поле NT будет содержать число 255.

т иолици 2.5	Структура кадра ответа
Байт	Содержание
1	Код начала кадра (10Н)
2	Групповой номер прибора (NT)
3	Код обрабатываемого запроса
:	Блок данных (Х байт)
N	Контрольная сумма (КС)
N+1	Код конца кадра (16Н)

Таблица 2.3 – Структура кадра ответа

2.4 Основные процедуры обмена

2.4.1 Установление сеанса связи

Ниже показано графическое представление запросов, передаваемых внешним устройством, и возможных ответов СПГ741. Порядок передачи байтов соответствует порядку расположения элементов на рисунках при просмотре их слева направо.

Обмен с прибором должен начинаться процедурой установки связи. Для этого внешнее устройство должно передать прибору стартовую последовательность — последовательность не менее чем из шестнадцати байтов FFH. Далее должен быть передан запрос вида:

10H	NT	3FH	00H	00H	00H	00H	КС	16H
На пол	іученны	й запро	с прибо	р долже	ен отве	тить:		
10H	NT	3FH	47	H 2	9H	VX	КС	16H

Здесь 47H 29H – код прибора (СПГ741); VX – идентификатор редакции ПО прибора

Если номер NT в запросе не совпадает с номером NT прибора и не равен 255_{10} (код безадресного запроса), прибор блокирует прием и обработку дальнейший информации вплоть до получения нового блока из 16 байтов FFH. Таким образом, при работе с группой СПГ741, после установки сеанса связи с запрашиваем прибором, дальнейший обмен информацией будет возможен только с ним. Остальные приборы группы будут игнорировать запросы внешнего устройства. Ниже описаны возможные после установления сеанса связи процедуры обмена.

Все приборы, объединенные в группу, должны иметь различные групповые номера NT.

2.4.2 Чтение FLASH-памяти

Запрос чтения FLASH-памяти должен иметь вид:

Здесь A1, A0 — соответственно младший и старший байты номера первой считываемой страницы 64 байта; КС — количество считываемых страниц. Все адресное пространство FLASH разбито на 2048 страниц. Количество считываемых одним запросом страниц — 1...64.

Ответ СПГ741 на запрос чтения FLASH-памяти имеет вид:

10H	NT	45H	страница 1 (64 байта)	КС	16H
10H	NT	45H	страница 2 (64 байта)	КС	16H
			•		
10H	NT	45H	страница К (64 байта)	КС	16H

Каждая страница FLASH заключается в один кадр. Количество кадров в ответе СПГ741 соответствует количеству запрашиваемых странии.

Если при формировании ответа номер текущей передаваемой страницы FLASH достигает 2047 (7FFH), счетчик страниц прибора сбрасывается и оставшиеся страницы передаются начиная с нулевого номера.

2.4.3 Чтение ОЗУ

Запрос чтения ОЗУ прибора имеет вид:

10H	NT	52H	A1	A0	Кб	00H	КС	16H
-----	----	-----	----	----	----	-----	----	-----

Здесь A1, A0 — соответственно младший и старший байты адреса первого считываемого элемента ОЗУ; Кб — количество считываемых байтов ОЗУ. Диапазон допустимых значений адресов — 000H....3FFH. Кб должно находиться в пределах $1...64_{10}$.

Ответ прибора имеет вид:

10H	NT	52H	Дамп ОЗУ (164) байт	КС	16H
-----	----	-----	---------------------	----	-----

Если при формировании ответа адрес текущего передаваемого байта ОЗУ достигает 3FFH, адресный счетчик прибора сбрасывается и оставшиеся байты передаются начиная с нулевого адреса.

2.4.4 Запросы для работы с архивами

СПГ741 поддерживает ряд запросов, позволяющих выводить накопленные им архивные данные.

Запрос поиска записи в часовом архиве:

10H NT 48H гг мм дд чч КС 16H

Здесь гг-мм-дд-чч - заголовок искомой записи: год, месяц, день, час соответственно.

Диапазон допускаемых значений байта чч – 0...23 лес.

Запись, датированная нулем часов, будет относиться интервалу 23...24 ч предыдущих суток;

запись, датированная 23 часами – к интервалу 22...23 ч конца суток.

Для всех запросов архивных записей значение байта "гг" вычисляется по формуле:

$$\Gamma\Gamma = (\Gamma O J - 2000) + 100$$

Здесь гг – год, к которому относится запрашиваемая запись.

Например, заголовок часовой записи за 20 час 01 суток 02 месяца 2001 года будет выглядеть следующим образом: гг-мм-дд-чч = 101-02-01-20.

Ответ на запрос поиска записи в часовом архиве:

10H	NT	48H	блок данных 64 байта	КС	16H
-----	----	-----	----------------------	----	-----

Выводимый блок данных представляет собой область данных часового архива, соответствующую переданному в запросе заголовку.

Запрос поиска записи в суточном архиве:

10H NT 59H	ГГ	MM	ДД	00	КС	16H
------------	----	----	----	----	----	-----

Здесь гг-мм-дд-00 – заголовок искомой записи.

Ответ на запрос поиска записи в суточном архиве:

10H	NT	59H	блок данных 64 байта	КС	16H

Запрос поиска записи в декадном архиве:

10H	NT	41H	ГГ	MM	ДД	00	КС	16H
-----	----	-----	----	----	----	----	----	-----

Здесь гг-мм-дд-00 — заголовок искомой записи: год, месяц, день окончания декады соответственно.

Днями окончания декад считаются 11, 21 и 1 числа месяца для 1, 2, и 3 декад соответственно.

Ответ на запрос поиска записи в декадном архиве:

10H	NT	41H	блок данных 64 байта	КС	16H
2					

Запрос поиска записи в месячном архиве:

10H NT 4DH FF MM	00	00	КС	16H
------------------	----	----	----	-----

Здесь гг-мм-00-00 – заголовок искомой записи.

Ответ на запрос поиска записи в месячном архиве:

-						
	10H	NT	4DH	блок данных 64 байта	КС	16H

Выводимый блок 64 байта представляет собой область данных месячного архива, соответствующую переданному в запросе заголовку.

Структура архивных данных, выводимых в ответах СПГ741, приведена в приложении 1.

2.5 Ввод настроечных параметров

Ввод базы настроечных параметров (базы данных, БД) в СПГ741 осуществляется по описанной ниже процедуре.

Ввод параметра, если он не отнесен к списку оперативных, возможен только при отключенной защите данных (переключатель защиты установлен в нижнее положение). При включенной защите (переключатель защиты в верхнем положении) допускается ввод только оперативных параметров.

Организация базы данных СПГ741 – согласно приложению 2. Запрос ввода параметра БД:

10H NT 44H	N1	N0	00H	00H	КС	16H
------------	----	----	-----	-----	----	-----

Здесь N1, N0 — соответственно младший и старший байты номера параметра. В случае если ввод параметра разрешен, СПГ741 генерирует подтверждение вида:

-	юдтверищени	• ынди.			
	10H	NT	44H	КС	16H

Если ввод параметра запрещен, будет сгенерирован ответ с кодом ошибки 01- "Защита от ввода параметра".

При получении подтверждения ввода прибору должен быть передан блок данных, содержащий значение параметра:

10H	NT	44H	блок данных 64 байта	КС	16H	
-----	----	-----	----------------------	----	-----	--

Структура передаваемого блока данных:

	Байт							
0	1		7	8	9		62	63
В0	B1		B7	20H	20H		20H	0/*

Здесь B0...B7 – ASCII код значения параметра; B0 – старший разряд значения параметра или знак, если значение параметра отрицательное; 0/* – признак "оперативный параметр".

ASCII символ "*" в позиции 0/* устанавливает принадлежность вводимого параметра к списку оперативных. Если этот байт имеет любое другое значение – параметр не будет рассматриваться как оперативный.

Если значение параметра содержит менее восьми значащих цифр, неиспользуемые младшие байты значения должны быть заполнены кодом 20H. Примеры вводимых данных показаны в таблице 2.4.

После приема блока информации СПГ741 анализирует корректность значения вводимого параметра и, если значение корректно, формирует ответ:

10H NT	44H	КС	16H
--------	-----	----	-----

В противном случае формируется ответ с кодом ошибки 02 — "Недопустимые значения параметров запроса". Запись параметра в БД при этом не выполняется.

Чтение параметров БД в их внутреннем представлении может быть выполнено с помощью запроса чтения FLASH-памяти. Форматы хранения параметров – в соответствии с приложением 2.

Таблица 2.4 – Примеры вводимых данных

				Байт					
0	1	2	3	4	5	6	7	63	Примечание
B0	B1	B2	В3	B4	B5	B6	B7	0/*	
-	1		2	5	8	20H	20H	20H	Число минус 1,258
2	0	-	0	1	-	0	1	20H	Установка даты 20-01-2001
5	5	0	1	3	7		2	1	Число 550137,21

				Байт					
0	1	2	3	4	5	6	7	63	Примечание
B0	B1	B2	В3	B4	B5	B6	B7	0/*	
									Число 1 или, при задании
1	20H	20H	20H	20H	20H	20H	20H	20H	единиц измерения давле-
									ния, – код МПа.

2.6 Вывод отчетов на печать

Вывод квитанций СПГ741 на принтер осуществляется с помощью адаптера АПС45.

Символьный образ квитанции формируется в памяти прибора. Адаптер АПС45 по описанному ниже протоколу считывает сформированную прибором квитанцию и без дополнительной обработки транслирует ее на принтер.

Передача информации адаптеру АПС45 осуществляется блоками по 64 байта, которые обрамляются в кадры. Максимальная длина передаваемой квитанции — 79 блоков. АПС45 ведет периодический опрос состояния очереди печати СПГ741. Для этого применяется запрос вида:

10H	NT	53H	00H	00H	00H	00H	КС	16H
Ответ	Ответ СПГ741:							
	NT.		NI1	NO	C1	CO	I/C	1611
10H	IN I	53H	INI	N0	CI	CU	КС	16H

Здесь N1, N0 – номер квитанции в очереди СПГ 741, готовой к выводу на печать (младший и старший байты соответственно); С1, С0 – количество блоков 64 байта, содержащихся в квитанции.

Если в ответе C1=C0=0, значит квитанций готовых к распечатке в очереди прибора нет. При появлении в очереди квитанции, она поблочно считывается адаптером.

Запрос чтения блока:

10H	NT	50H	N1	N0	B1	В0	КС	16H
-----	----	-----	----	----	----	----	----	-----

Здесь N1, N0 — номер квитанции в очереди СПГ741; B1, B0 — номер запрашиваемого блока; нумерация блоков начинается с нуля.

Ответ СПГ741:

10H	NT	50H	блок данных 64 байта	КC	16H

Принятый ответ проверяется адаптером на достоверность (целостность КС, наличие управляющих кодов 10H и 16H), после чего из него выделяется блок данных, который затем непосредственно транслируется на принтер.

При успешном завершении печати (отсутствие сбоев, связанных с отсутствием или "заминанием" бумаги и пр.), АПС45 удаляет распечатанную квитанцию из очереди СПГ741.

Запрос удаления квитанции из очереди печати:

10H	NT	43H	N1	N0	00H	00H	КС	16H
Ответ	СПГ74	1:						
101	Н	NT		43H		КС	1	6H

Если при обмене возникают ошибки, СПГ741 генерирует ответы с кодами ошибок по п.2.7.

2.7 Обработка ошибок

При обнаружении нарушений структуры кадра принятого запроса или недостоверности передаваемых в запросе данных, СПГ741 генерирует ответ вида:

10H NT 21H Код ошибки	КС	16H
-----------------------	----	-----

Коды возможных ошибок приведены в таблице 2.5.

Таблица 2.5 - Коды ошибок СПГ741

Код	Ошибка	Причина возникновения
	Нарушение струк-	Нарушена контрольная сумма принятого
000	туры запроса	кадра запроса или код конца кадра.
		Код запроса не опознан.
001	Защита от ввода па-	Обработка запроса ввода параметра базы
001	раметра	данных при включенной защите данных
	Недопустимые зна-	Запрос содержит недостоверные данные
002	чения параметров	
	запроса	
003	Нет данных	Архивная запись не найдена (при запросе
003		поиска записи в архиве)

При разрушении кода начала кадра в принятом запросе или в случае несовпадения переданного в запросе номера NT с фактическим значением NT запрашиваемого прибора, ответ СПГ741 не формируется.

2.8 Временные характеристики обмена

При обмене должны выполняться временные соотношения в соответствии с рисунком 2.1.

- $t1 \ge 4$ мс время между передачей байтов стартовой последовательности;
- $t2 \ge 0$ мс время между передачей байтов запросов;
- $t3 \ge 1 \ c$ время между подачей стартовой последовательности и запросом сеанса;
- $t4 \le 2 c$ максимальное время реакции СПГ741 на запрос.

Рисунок 2.1 – Временные соотношения при обмене

Организация архивов

Структура блока данных, получаемого из архива СПГ741 приведена в таблице П1.1. Формат float — формат представления с плавающей точкой. Описание логической сборки НС приведено в приложении 4. Все параметры представлены в виде четырехбайтовых чисел, предаваемых "младшим байтом вперед". Описания форматов представления чисел в СПГ741 приведены в приложении 3.

Таблица П1.1 – Структура блока архивных данных

				ока архивных данных
№	Параметр	Канал	Формат	Описание
0	TC		float	Время счета
1	НС	СЛ	Лог.	Сборка признаков НС, возникавших на
1	110		сборка	интервале архивирования
2	P1		float	Среднее давление газа
3	t1		float	Средняя температура газа
4	Vp1	TP1	float	Интегральный объем газа в рабочих усло-
4	vpi	111	110at	виях
5	V1		floot	Интегральный объем газа, приведенный к
3	V 1		float	стандартным условиям
6	P2		float	Среднее давление газа
7	t2		float	Средняя температура газа
8	V-2	TP2	fl a a t	Интегральный объем газа в рабочих усло-
8	Vp2	112	float	виях
9	V2		float	Интегральный объем газа, приведенный к
9	V Z		110at	стандартным условиям
10	-		float	Параметр зарезервирован
11	V		floot	Суммарный объем газа, приведенный к
11	V	ОБЩ	float	стандартным условиям
				Суммарный объем газа, приведенный к
12	Vπ		float	стандартным условиям, израсходованный
	,			сверх нормы поставки

Организация базы данных

Введение

База данных корректора делится на разделы: СЛ – служебные параметры; Т1, Т2 – параметры по трубопроводам 1 и 2 соответственно; ОБЩ – общие параметры.

К системным относятся параметры, которые являются исходными данными для системных функций самого вычислителя, а также для приведения измеряемых параметров к конечным вычисляемым данным

Параметры по трубопроводам – это описания датчиков, участвующих в измерениях, описания констант и единиц физических величин.

Общие параметры – описания датчиков, сигналы которых не поступают в расчеты коммерческих параметров, описания связанных с этими датчиками констант и единиц физических величин.

1 Служебные параметры

Таблица П2.1 – Служебные параметры

№	Обозн.	Пример значения	Описание
0	СП	3	Схема учета (потребления) газа
1	ПИ	60	Период опроса датчиков, с. Ноль соответствует минимально возможному периоду (менее 1,5 c)
2	NT	18	Сетевой номер прибора
3	ИД	123456	Идентификатор прибора для внешнего устройства
4	Рк	760	Константа барометрического давления, мм. рт. ст.
5	$r_{\rm C}$	0,8	Плотность сухого природного газа кг/м ³
6	Xa	0,07	Молярная доля азота в природном газе
7	Xy	0,02	Молярная доля углеводорода в природном газе
8	rв	0,05	Относительное влагосодержание в газе
9	ДО	27-06-00	Календарь. Дата пуска
10	TO	19-35-00	Время
11	КЧ	±0,1	Коррекция хода часов
12	ДЗ	25-02	День перехода на зимнее время
13	ДЛ	25-02	День перехода на летнее время
14	CP	01	Расчетные сутки
15	ЧР	00	Расчетный час

No	Обозн.	Пример значения	Описание
16	ПС	0	Вкл/Выкл автоматической печати суточных отчетов
17	ПД	0	Вкл/Выкл автоматической печати декадных отчетов
18	ПМ	0	Вкл/Выкл автоматической печати месячных отчетов
19	Vд	99999	Суточная норма поставки газа
20	ЦД	1000	Вес импульса для сигнала ДОЗА м ³

2 Параметры по каналам

Таблица П2.2 – Параметры по каналам

№	Обозн.	Пример значения	Описание
			Константы параметров по трубе 1
50	P1ĸ	10000	Константа давления газа
51	ΔΡ1κ	25000	Договорное значение перепада давления
52	t1к	20	Константа температуры газа
53	Qp1ĸ	10000	Константа объемного расхода в рабочих условиях
			Единицы измерений параметров по трубе 1
54	[P1ĸ]	МПа	Размерность Р1 и Р1к (МПа, кПа, кгс/см 2 , кгс/м 2)
55	[ΔP1κ]	кПа	Размерность Δ Р1 и Δ Р1к (МПа, кПа, кгс/см ² ,
33		KIIa	Krc/m ²)
56	[t1]	°C	Размерность t1, °C
57	[Qp1]	м3/час	Размерность Q1, м3/час
			Константы параметров по трубе 2
58	Р2к	10000	Константа давления газа
59	ΔΡ2κ	25000	Договорное значение перепада давления
60	t2ĸ	20	Константа температуры газа
61	Qp2к	10000	Константа объемного расхода в рабочих условиях
			Единицы измерений параметров по трубе 2
62	[P2ĸ]	МПа	Размерность Р2 и Р2к (МПа, кПа, кгс/см 2 , кгс/м 2)
63	[ΔΡ2κ]	кПа	Размерность Δ P2 и Δ P2к (МПа, кПа, кгс/см ² ,
			Krc/m ²)
64	[t2]	°C	Размерность t2, °C
65	[Qp2]	м3/час	Размерность Q2, м3/час

№	Обозн.	Пример значения	Описание
			Константы параметров по каналу ОБЩ
66	-	-	Зарезервирован
67	-	-	Зарезервирован
68	-	_	Зарезервирован
69	ı	-	Зарезервирован
70	ı	_	Зарезервирован
71	ı	-	Зарезервирован
72	ı	_	Зарезервирован
73	ı	-	Зарезервирован
			E ^ OEHI
			Единицы измерений по каналу ОБЩ
74	[ΔP3]	кПа	Размерность Δ P3 (МПа, кПа, кгс/см ² , кгс/м ²)
75	[Рб]	кПа	Размерность Рб (МПа, кПа, кгс/см 2 , кгс/м 2)
76	[P3]	кПа	Размерность Р3 (МПа, кПа, кгс/см 2 , кгс/м 2)
77	[P4]	кПа	Размерность Р4 (МПа, кПа, кгс/см 2 , кгс/м 2)
78	[t3]	°C	Размерность t3, °C

3 Описания датчиков

3.1 Подключаемые датчики

Корректор имеет следующие входы для подключения электрических сигналов от датчиков:

- пять входов (ПД1...ПД5) для подключения давления или перепада давления;
- два входа (TC1, TC2) для подключения термопреобразователей сопротивления;
- два входа (СГ1, СГ2) для подключения счетчиков преобразователей объема газа.

3.2 Описания датчиков

Все датчики описываются с помощью обобщенной системы параметров (таблица $\Pi 2.3$). Отведенная под описания датчиков область БД начинается с параметра N 100.

В зависимости от типа датчика, для его описания используется только часть параметров из приведенного в таблице П2.3 полного перечня (см. табл. П2.5). Тем не менее, на описание одного датчика в БД корректора, всегда резервируется место под полный набор параметров. Нумерация параметров описаний датчиков приведена в таблице П2.4.

Таблица П2.3 – Система обозначений параметров

Обозн.	Описание
ВД	Использование датчика. 0=ВЫК, 1=ВКЛ
ТД	Тип датчика
ВΠ	Верхний предел номинального диапазона
ΗП	Нижний предел номинального диапазона
	Вес (цена) импульса преобразователя объемного расхода
КС	Поправка на высоту столба разделительной жидкости датчиков
ICC	давления
КВ	Поправка для компенсации мультипликативной составляющей
	погрешности датчика давления
КН	Поправка для компенсации аддитивной составляющей погреш-
	ности датчика давления
УВ	Описание верхней уставки
УН	Описание нижней уставки
VH	Для датчиков V0 – начальное значение показаний

Таблица П2.4 – Нумерация параметров описаний датчиков

	 		<u> </u>						
Пара-			Номеј	ра пара	метров	для дат	чиков		
метр	ПД1	ПД2	ПД3	ПД4	ПД5	TC1	TC2	СГ1	СГ2
ВД	100	111	122	133	144	155	166	177	188
ТД	101	112	123	134	145	156	167	178	189
ВΠ	102	113	124	135	146	157	168	179	190
НΠ	103	114	125	136	147	158	169	180	191
ЦИ	104	115	126	137	148	159	170	181	192
КС	105	116	127	138	149	160	171	182	193
КВ	106	117	128	139	150	161	172	183	194
КН	107	118	129	140	151	162	173	184	195
УВ	108	119	130	141	152	163	174	185	196
УН	109	120	131	142	153	164	175	186	197
VH	110	121	132	143	154	165	176	187	198

Таблица П2.5 – Группировка параметров описаний датчиков

Попомоти	1,5		Датчики		
Параметр	P1P4	ΔΡ1ΔΡ3	Рб	t1t3	Qp1, Qp2
ВД	+	+	+	+	+
ТД	+	-	-	+	-
ВП	+	+	+	-	+
ΗП	-	-	-	1	+

Пополкоти			Датчики		
Параметр	P1P4	ΔΡ1ΔΡ3	Рб	t1t3	Qp1, Qp2
ЦИ	-	-	-	-	+
КС	+	-	-	1	-
КВ	+	+	+	ı	-
КН	+	+	+	ı	-
УВ	+	+	-	-	+
УН	+	+	-	1	+
VH	-	-	-	-	+

3.3 Датчики и входные цепи

В зависимости от схемы потребления (параметр СП) к одному и тому же входу (входной цепи) корректора могут подключаться датчики с выходными сигналами, пропорциональными различным информативным параметрам, как показано в таблице П2.6. Например, при СП=0 ко входу ПДЗ подключается датчик с выходным сигналом, пропорциональным $\Delta P1$, а при СП=1 к этому же входу подключается датчик P2.

Таблица	Π_{26}	- Подключение датчиков	
таолица	114.0	TIODICITIO TOTAL TRINOB	

Входн.		Подключаемый датчик в схеме						
цепь	СП=0	СП=1	СП=2	СП=3	СП=4	СП=5	СП=6	
ПД1	P1	P1	P1	P1	P1	P1	P1	
ПД2	ΔΡ3	ΔΡ3	ΔΡ3	ΔΡ2	ΔΡ2	ΔΡ3	ΔΡ3	
ПД3	ΔP1	P2	P2	P2	P2	ΔP1	ΔP1	
ПД4	Рб	Рб	ΔP1	Рб	ΔP1	Рб	P3	
ПД5	Р3	Р3	ΔΡ2	ΔP1	Р3	Р3	P4	
TC1	t1	t1	t1	t1	t1	t1	t1	
TC2	t2	t2	t2	t2	t2	t3	t3	
СГ1	Qp1	Qp1	Qp1	Qp1	Qp1	Qp1	Qp1	
СГ2	Qp2	Qp2	Qp2	Qp2	Qp2	-	-	

4 Формат хранения параметров БД

Каждый параметр настроечной БД корректора хранится во FLASH в 16-ти байтах. Формат области представлен в таблице Π 2.7. Начальный адрес области БД во FLASH-памяти – 200H.

Таблица П2.7 – Формат хранения параметров БД

Байт	Описание	Примечание
0	Сборка флагов состояния параметра	
1	Зарезервирован	Системная область
2	Зарезервирован	Системная область
3	Зарезервирован	
4	ASCII код параметра, байт 0 (MSB)	
5	ASCII код параметра, байт 1	
6	ASCII код параметра, байт 2	
7	ASCII код параметра, байт 3	ASCII код параметра
8	ASCII код параметра, байт 4	АЗСП код параметра
9	ASCII код параметра, байт 5	
10	ASCII код параметра, байт 6	
11	ASCII код параметра, байт 7 (LSB)	
	Форматированное представление, байт 0	
13	Форматированное представление, байт 1	ра во внутреннем фор-
14	Форматированное представление, байт 2	мате
15	Форматированное представление, байт 3	

Сборка флагов состояния параметра (PRM_OPER — оперативный параметр):

	-	-	-	-	-	-	-	PRM OPER
--	---	---	---	---	---	---	---	----------

ASCII-области параметров "размерность" (единицы измерений) не заполняются. Коды единиц измерений хранятся только во внутреннем представлении.

Вариативность единиц измерений в СПГ741 предусмотрена только для давления. Остальные измеряемые параметры (температура, объем, расход) имеют фиксированные единицы измерений. Области БД, соответствующие единицам измерений этих параметров не используются в работе корректора. Принято следующее кодирование единиц измерений давления: $0x00=\kappa\Pi a$; $0x01=M\Pi a$; $0x02=\kappa\Gamma c/cm^2$; $0x03=\kappa\Gamma c/m^2$.

При анализе байта, содержащего код единиц измерений, следует выделять только два его младших бита.

При вводе параметров "размерность" (п. 2.5 настоящего документа) в поле значения параметра должно передаваться ASCII-представление кода соответствующих единиц измерений: $0=\kappa\Pi a$; $1=M\Pi a$; $2=\kappa rc/cm^2$; $3=\kappa rc/m^2$.

Форматы представления чисел

1 Двоичный формат

В СПГ741 используется только беззнаковый формат представления двоичных чисел.

Двоичные параметры могут быть как однобайтными, так и состоя-

2 Формат с плавающей точкой (float-формат)

В СПГ741 используется 32-разрядная арифметика с плавающей точкой. Числа представляются в виде 24-разрядной мантиссы и 8-разрядного двоичного порядка. Знак числа хранится в старшем разряде мантиссы. Общее математическое представление чисел в формате с плавающей точкой:

$$A = (-1)^{s} \cdot f \cdot 2^{e-127} \tag{\Pi3.1}$$

где: f – мантисса; e – двоичный порядок; s – знак.

$$f = \sum_{k=0}^{23} a(k) \cdot 2^{-k} \tag{\Pi3.2}$$

где: a(k) – бит мантиссы с номером "к".

Значение мантиссы всегда находится в пределах:

$$1 \le f < 2 \tag{\Pi3.3}$$

Из (П3.3) очевидно, что старший (нулевой) бит мантиссы всегда равен единице. Ввиду этого, нулевой бит не включается в запись float числа. Его место замещено знаковым битом. Бит мантиссы, следующий за знаковым битом, имеет вес (показатель степени k в формуле П3.2) равный минус 1.

Запись числа с плавающей точкой иллюстрирована в таблице ПЗ.1

Таблица ПЗ.1 – Запись числа в формате с плавающей точкой

- *************************************	Top.				
	FLOAТ-число				
старший байт			младший байт		
Двоичный		мантисса			
порядок	старший байт		младший байт		
xxxx xxxx	s·xxx xxxx	XXXX XXXX	XXXX XXXX		

Пример. Перевод в десятичное представление float-числа:

"Подразумеваемая единица" (исключенный старший бит мантиссы)

Нештатные ситуации

Информация о нештатных ситуациях (НС) хранится в памяти корректора в виде четырехбайтовой логической сборки. Каждый бит сборки соответствует "своей" НС. Перечень НС приведен в таблице П4.1. Номера НС соответствуют номерам битов в сборке. Нулевой номер соответствует младшему биту сборки.

Таблица П4.1 – Перечень НС

Номер	Обозн.	Описание
0		Разряд батареи (напряжение батареи меньше 3,2 В)
1		ЗАРЕЗЕРВИРОВАНО
2	HC02	Перегрузка по цепям питания датчиков давления (только
		для модели 02)
3		Активный уровень сигнала на дискретном входе D2
4		Сигнал Qp по каналу т1 меньше нижнего предела
5		Сигнал Qp по каналу т2 меньше нижнего предела
6		Сигнал Qp по каналу т1 превысил верхний предел
7	HC07	Сигнал Qp по каналу т2 превысил верхний предел
8	HC 08	ЗАРЕЗЕРВИРОВАНО
9	HC 09	Сигнал на входе ПД1 вне диапазона
10	HC 10	Сигнал на входе ПД2 вне диапазона
11	HC 11	Сигнал на входе ПДЗ вне диапазона
12	HC 12	Сигнал на входе ПД4 вне диапазона
13	HC 13	Сигнал на входе ПД5 вне диапазона
14	HC 14	Температура t1 вне диапазона -52+92 °C
15	HC 15	Температура t2 вне диапазона -52+92 °C
16	HC16	Параметр Р1 вышел за пределы уставок Ув, Ун
17	HC17	Параметр ДР1 вышел за пределы уставок Ув, Ун
18	HC18	Параметр Qp1 вышел за пределы уставок Ув, Ун
19	HC19	Параметр Р2 вышел за пределы уставок Ув, Ун
20	HC20	Параметр ДР2 вышел за пределы уставок Ув, Ун
21	HC21	Параметр Qp2 вышел за пределы уставок Ув, Ун
22	HC22	Параметр ДРЗ вышел за пределы уставок Ув, Ун
23	HC23	Параметр РЗ вышел за пределы уставок Ув, Ун
24		Параметр Р4 вышел за пределы уставок Ув, Ун

Номер	Обозн.	Описание
25	HC25	Текущее суточное значение V по каналу ОБЩ превыша-
23	11023	ет норму поставки
26	HC26	Отрицательное значение Кп по каналу 1
27	HC27	Отрицательное значение Кп по каналу 2
28	HC28	ЗАРЕЗЕРВИРОВАНО
29	HC29	ЗАРЕЗЕРВИРОВАНО
30	HC30	ЗАРЕЗЕРВИРОВАНО
31	HC31	ЗАРЕЗЕРВИРОВАНО

Представление тотальных счетчиков

Счетчики тотальных параметров состоят из двух частей:

- основная часть значение счетчика на момент завершения последнего часа;
- текущее приращение счетчика.

Основная часть хранится во FLASH в виде 8-байтовой области; текущее приращение – 4-байтовое FLOAT-число, хранящееся в ОЗУ.

Формат тотальных параметров, хранящихся во FLASH: четыре младших байта — целая часть счетчика в двоичном представлении, четыре старших байта — дробная часть во FLOAT представлении.

В конце часа эти две части суммируются и записываются во FLASH. Текущее приращение после этого зануляется.

Чтобы получать данные параметры в реальном масштабе времени программа верхнего уровня также должна суммировать эти две компоненты. Для получения значений, изменяющихся только раз в час, достаточно читать лишь основную часть счетчика.

Полный перечень тотальных параметров СПГ741 и их структура отображены в таблице П5.1.

Таблица П5.1 – Тотальные парамтеры

Параметр		Адрес текущего приращения (HEX)
Тотальный объем в рабочих условиях по трубе 1	0000	02bc
Тотальный объем в рабочих условиях по трубе 2	0008	02cc
Тотальный объем в стандартных условиях по трубе 1	02100	02c0
Тотальный объем в стандартных условиях по трубе 2	02108	02d0
Тотальный объем газа сверх нор- мы по потребителю	02110	02de
Тотальный объем в стандартных условиях по потребителю	02118	02da
Тотальное время интегрирования	02120	02ac

Чтение текущих параметров

1 Прямые измеряемые параметры

Прямые измеряемые параметры хранятся в ОЗУ. Карта памяти приведена в таблице Пб.1. В скобках в шапке таблицы указаны начальные адреса канальных буферов.

Все параметры хранятся в 4-байтовом FLOAT представлении. Младший байт имеет "младший" адрес.

№	T1 (228H)	T2 (244H)	ОБЩ (260Н)
0	P1	P2	ΔΡ3
1	ΔP1	ΔΡ2	Рб
2	t1	t2	Р3
3	Qp1	Qp2	P4
4	Q1	Q2	t3

2 Прочие параметры для чтения

Календарь и часы:

- year = 0f3h
- month = 0f4h
- day = 0f5h
- watch_hh = 0f6h
- watch mm = 0f7h
- watch_ss = 0f8h

Сборка текущих HC (LSB – MSB) – 0224H...0227H

Архивы НС и ИЗМ

Архивы НС и ИЗМ хранятся во FLASH-памяти и имеют начальные адреса 3894H и 3ВВ4H соответственно. Глубина архивов 100 записей. Длина записей — 8 байт для архива НС и 24 байта для архива ИЗМ. Структура записей приведена в таблицах П7.1, П7.2.

Изначально область FLASH, отведенная под архивы ИЗМ и НС, заполнена нулями. О наличии записи в архив свидетельствует байт префикса 10H в соответствующей позиции.

Если флаг HC установлен в 1, это означает что в соответствующий момент времени HC появилась; если флаг установлен в 0-HC устранилась.

Таблица П7.1 – Структура записи в архив НС

No	Байт	Формат
0	Префикс 10Н	
1	Год	
2	Месяц	
3	День	Двоичный — — — — — — — — — — — — — — — — — — —
4	Час	двоичный
5	Минута	
6	Код НС	
7	Флаг НС (младший бит)	

Таблица П7.2 – Структура записи в архив ИЗМ

No	Байт	Формат
0	Префикс 10Н	
1	Год	- Двоичный
2	Месяц	
3	День	
4	Час	
5	Минута	
6	-	
7	-	
822	Содержание изменения	Symbol
23	-	-