

中山大学理工学院 2013 学年 2 学期 期中 12 级微电子 2+2 模拟电子技术 试卷 (A)

	_年级 _	专业	姓名		3号	
老师姓名:				考试成绩	:	

1. Assuming all diodes to be ideal, draw the output waveform for each rectifier circuit. (15%)

Input waveform	Rectifier configurations	Output Waveforms
	$v_{I} \stackrel{+}{\overset{\bullet}{\longrightarrow}} D \qquad R \stackrel{\bullet}{\overset{\bullet}{\nearrow}} v_{O}$ (a)	
	"off" + "on" - v ₀ + - "off" "off" - "off"	
(b)	$v_{l} \stackrel{i_{D}}{\longleftrightarrow} C \stackrel{i_{L}}{\longleftrightarrow} v_{o}$ $C \stackrel{i_{L}}{\longleftrightarrow} v_{o}$ $C \stackrel{i_{L}}{\longleftrightarrow} v_{o}$ $C \stackrel{i_{L}}{\longleftrightarrow} v_{o}$	

2. Assume all diodes to be ideal. Figure out the types of the below logic gates and write the relevant truth tables (10%)

	(a):	gate			(b):	gate	
v_A	v_B	v_C	V _Y	v_A	v_B	v_C	v_Y
0	0	0	0	0	0	0	
0	0	1	ſ	0	0	1)
0	1	0	1	0	1	0	
0	1	1		0	1	1	
1	0	0		1	0	0	
1	0	1		1	0	1	
1	1	0		1	1	0	
1	1	1		1	1	1	4

Note: logic "1" means high voltage, i.e., around 5V, and logic "0" means low voltage, i.e., around 0V.

3. Assuming the diodes to be ideal, find the values of I and V in the following circuits (20%)

4. Fill in the blank areas (30%)

	(1)	The single-crysta	l formed by pure	e semiconductor	materials is called	semiconductor
--	-----	-------------------	------------------	-----------------	---------------------	---------------

- (2) The materials containing impurity atoms are called _____semiconductors, or doped semiconductors.
- (3) In *n*-type semiconductors, the impurities are from group ____ elements, e.g. Phosphorus.
- (4) In *p*-type semiconductors, the impurities are from group ____ elements, e.g. Boron.
- (5) The majority carriers in n-type materials are _____.
- (6) The minority carriers in n-type materials are
- (7) When doing DC analysis, the capacitor can be treated as _____ circuit and the inductor can be treated as _____ circuit. When doing AC analysis, the independent voltage source can be treated as _____ circuit. (select open or short)
- (8) The condition of a BJT working in active regions is that the BE junction is _____ bias and the BC junction is _____ bias. As for BJT working in saturation region, the condition is that the BE junction is _____ bias and the BC junction is _____ bias. (select forward or reverse)
- (9) For a BJT amplifier with common-emitter configuration, the input terminal is ______, and the out terminal is ______.
- 5. (20%) A BJT cascade amplifier is shown below. Assuming $V_{BE(on)}$ is 0.7 V,
 - (1) Calculate the dc bias voltages $(V_B, V_C \text{ and } V_E)$ and collector current (I_C) of each stage;
 - (2) Calculate the input impedance, output impedance and the overall ac voltage gain.

6. Assuming $V_{BE(on)}$ is 0.7 V, calculate the constant current I in the following circuit. (5%)

The End