In [1]:

```
import pandas as pd
data = pd.read csv("C:\\Users\\kmit\\Desktop\\housing.csv",",")
print(data.head(5))
   longitude
                         housing_median_age
              latitude
                                              total rooms
                                                            total bedrooms
0
     -122.23
                  37.88
                                        41.0
                                                    880.0
                                                                     129.0
1
     -122.22
                 37.86
                                        21.0
                                                   7099.0
                                                                    1106.0
2
     -122.24
                 37.85
                                        52.0
                                                   1467.0
                                                                     190.0
3
     -122.25
                 37.85
                                        52.0
                                                   1274.0
                                                                     235.0
4
     -122.25
                 37.85
                                        52.0
                                                   1627.0
                                                                     280.0
              households
                            median_income median_house_value ocean_proximity
0
        322.0
                     126.0
                                   8.3252
                                                      452600.0
                                                                       NEAR BAY
1
       2401.0
                    1138.0
                                   8.3014
                                                       358500.0
                                                                       NEAR BAY
                                                                       NEAR BAY
2
        496.0
                     177.0
                                   7.2574
                                                       352100.0
3
        558.0
                     219.0
                                   5.6431
                                                       341300.0
                                                                       NEAR BAY
4
        565.0
                     259.0
                                   3.8462
                                                       342200.0
                                                                       NEAR BAY
In [2]:
print("total samples....\n",data.size)
print("Null Values....\n", data.isnull().sum())
#print(data.isnull().count())
total samples....
 206400
Null Values....
                          0
longitude
latitude
                         0
housing median age
                         0
total rooms
                         0
total_bedrooms
                       207
population
                         0
households
                         0
median income
                         0
median_house_value
                         0
ocean proximity
                         0
dtype: int64
```

In [3]:

```
d1 = data.dropna(subset=['total bedrooms'])
print(data.shape,d1.shape)
```

```
(20640, 10) (20433, 10)
```

In [4]:

d1.cov()

Out[4]:

	longitude	latitude	housing_median_age	total_rooms	total_b
longitude	4.014324	-3.957670	-2.758919	1.991284e+02	5.876
latitude	-3.957670	4.563981	0.320091	-1.711788e+02	-6.029
housing_median_age	-2.758919	0.320091	158.553558	-9.923225e+03	-1.700
total_rooms	199.128445	-171.178818	-9923.224538	4.775403e+06	8.567
total_bedrooms	58.768508	-60.299623	-1700.312817	8.567306e+05	1.775
population	227.660858	-263.874646	-4220.630517	2.122942e+06	4.191
households	43.286878	-58.619704	-1457.475788	7.677502e+05	1.578
median_income	-0.059174	-0.323087	-2.828672	8.213000e+02	-6.180
median_house_value	-10499.897668	-35669.333210	154703.602850	3.362452e+07	2.416
4					•

In [5]:

d1.corr()

Out[5]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	ı
longitude	1.000000	-0.924616	-0.109357	0.045480	0.069608	
latitude	-0.924616	1.000000	0.011899	-0.036667	-0.066983	
housing_median_age	-0.109357	0.011899	1.000000	-0.360628	-0.320451	
total_rooms	0.045480	-0.036667	-0.360628	1.000000	0.930380	
total_bedrooms	0.069608	-0.066983	-0.320451	0.930380	1.000000	
population	0.100270	-0.108997	-0.295787	0.857281	0.877747	
households	0.056513	-0.071774	-0.302768	0.918992	0.979728	
median_income	-0.015550	-0.079626	-0.118278	0.197882	-0.007723	
median_house_value	-0.045398	-0.144638	0.106432	0.133294	0.049686	
4					1	•

#corr_cols[1:4] corr_cols.index

Index(['median house value', 'median income', 'total rooms',

'longitude', 'latitude'],

dtype='object')

'housing median age', 'households', 'total bedrooms', 'population',

Out[8]:

```
Polynomial Regression(Housing)3
In [6]:
d1.corr()['median house value']
Out[6]:
longitude
                      -0.045398
latitude
                      -0.144638
housing_median_age
                      0.106432
total rooms
                       0.133294
total bedrooms
                      0.049686
population
                      -0.025300
households
                      0.064894
median_income
                      0.688355
median_house_value
                      1.000000
Name: median house value, dtype: float64
In [7]:
d1.corr()['median_house_value'].sort_values()[::-1]
Out[7]:
median_house_value
                      1.000000
median income
                       0.688355
total rooms
                       0.133294
housing_median_age
                      0.106432
households
                      0.064894
total_bedrooms
                      0.049686
population
                      -0.025300
longitude
                      -0.045398
latitude
                      -0.144638
Name: median_house_value, dtype: float64
In [8]:
corr_cols=d1.corr()['median_house_value'].sort_values()[::-1]
```

In [9]:

```
import matplotlib.pyplot as plt
plt.scatter(d1.median_income,d1.median_house_value)
plt.show()
```


In [10]:

```
plt.subplot(121)
plt.boxplot(d1.median_income)
plt.subplot(122)
plt.boxplot(d1.median_house_value)
plt.show()
```


In [11]:

```
d2=d1[d1.median_income<d1.median_income.quantile(0.8)]
d2.shape</pre>
```

Out[11]:

(16346, 10)

In [12]:

```
plt.subplot(121)
plt.boxplot(d2.median_income)
plt.subplot(122)
plt.boxplot(d2.median_house_value)
plt.show()
```


In [13]:

```
import matplotlib.pyplot as plt
plt.scatter(d2.median_income,d2.median_house_value)
plt.show()
```


In [14]:

```
import matplotlib.pyplot as plt
plt.scatter(d2.median_income,d2.median_house_value/10000)
plt.show()
```


In [35]:

20610

20611

20612

20613 20614

20615

20616

20617

20618

20619

20620

20621 20622

20623

20624

20625

20626

```
d3=d2.drop(corr_cols.index[2:],axis=1)
d3=d3.drop(['ocean_proximity'],axis=1)
print(d3.shape)
d3
d3.median_house_value = d3.median_house_value/100000
print(d3)
```

print(d3)	
(16346	, 2)	
	median_income	<pre>median_house_value</pre>
4	3.8462	3.422
5	4.0368	2.697
6	3.6591	2.992
7	3.1200	2.414
8	2.0804	2.267
9	3.6912	2.611
10	3.2031	2.815
11	3.2705	2.418
12	3.0750	2.135
13	2.6736	1.913
14	1.9167	1.592
15	2.1250	1.400
16	2.7750	1.525
17	2.1202	1.555
18	1.9911	1.587
19	2.6033	1.629
20	1.3578	1.475
21	1.7135	1.598
22	1.7250	1.139
23	2.1806	0.997
24	2.6000	1.326
25	2.4038	1.075
26	2.4597	0.938
27	1.8080	1.055
28	1.6424	1.089
29	1.6875	1.320
30	1.9274	1.223
31	1.9615	1.152
32	1.7969	1.104
33	1.3750	1.049

1.3631

1.2857

1.4934

1.4958

2.4695

2.3598

2.0469

3.3021

2.2500

2.7303

4.5625

2.3661

2.4167

2.8235

3.0739

4.1250

2 1667

0.455

0.470

0.483

0.534

0.580

0.575

0.551

0.708

0.634

0.991

1.000

0.775

0.670

0.655

0.872

0.720

0 038

20628	2.5952	0.924
20629	2.0943	1.083
20630	3.5673	1.120
20631	3.5179	1.072
20632	3.1250	1.156
20633	2.5495	0.983
20634	3.7125	1.168
20635	1.5603	0.781
20636	2.5568	0.771
20637	1.7000	0.923
20638	1.8672	0.847
20639	2.3886	0.894

[16346 rows x 2 columns]

In [51]:

```
import numpy as np
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
plt.scatter(d3["median income"],d3["median house value"],color='b')
#print(sample1.head(1))
testsize=(int)(d3.shape[0]*0.30)
train=d3[:-testsize]
    #print(train.shape)
test=d3[-testsize:]
    #print(test.shape)
train x=train['median income']
train_x=train_x[:,np.newaxis]
train_y=train['median_house_value']
train_y=train_y[:,np.newaxis]
test_x = test['median_income']
test_x = test_x[:,np.newaxis]
test y=test['median house value']
test_y=test_y[:,np.newaxis]
train_x.shape
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=3, include_bias=True)
X_train_poly = poly_features.fit_transform(train_x)
X_test_poly = poly_features.fit_transform(test_x)
print(train_x,X_poly)
print(".....",X_train_poly.shape,train_y.shape,X_test_poly.shape,test_y.shape)
lm1=linear model.LinearRegression()
lm1.fit(X_train_poly,train_y)
train_pred=lm1.predict(X_train_poly)
#train_y-train_pred
#plt.scatter(train.median_income, train.median_house_value)
test_pred=lm1.predict(X_test_poly)
    #plt.scatter(test_x,test_y)
plt.plot(test x,test pred,'r+')
print("MSE : ",mean_squared_error(test_y,test_pred), "\tRMSE:",np.sqrt(mean_squared_error(t
    #print(sample1.median_income.size,train.median_income.size)
plt.show()
[[ 3.8462]
 [ 4.0368]
 [ 3.6591]
 . . . ,
 [ 1.75 ]
 [ 1.9583]
         ]] [[ 3.8462
                            14.79325444 56.89781523]
 [ 1.7
                16.29575424 65.78270072]
   4.0368
                13.38901281 48.99173677]
 3.6591
```

```
1.9583
                              7.50996083]
                 3.83493889
 [ 1.7
                 2.89
                              4.913
                                        ]]
...... (11443, 4) (11443, 1) (4903, 4) (4903, 1)
                        RMSE: 0.919117660344
MSE: 0.844777273557
In [26]:
import matplotlib.pyplot as plt
plt.boxplot(d3.total_bedrooms)
plt.show()
AttributeError
                                          Traceback (most recent call last)
<ipython-input-26-e1b635c37c1d> in <module>()
      1 import matplotlib.pyplot as plt
---> 2 plt.boxplot(d3.total_bedrooms)
      3 plt.show()
~\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, na
me)
   3079
                    if name in self._info_axis:
                        return self[name]
   3080
-> 3081
                    return object.__getattribute__(self, name)
   3082
            def __setattr__(self, name, value):
   3083
AttributeError: 'DataFrame' object has no attribute 'total_bedrooms'
In [ ]:
```