Monitor: An Abnormality Detection Approach for Buildings Energy Consumption

Haroon Rashid

Pushpendra Singh

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Buildings consume 39% of energy

Residential buildings

Commercial buildings

Energy wastage → abnormalities

Reasons for energy wastage:

Duct leakage in HVAC

Source: Google Images

Energy wastage → abnormalities

Reasons for energy wastage:

Duct leakage in HVAC

Lights ON during day hours

Source: Google Images

Energy wastage → abnormalities

Reasons for energy wastage:

Duct leakage in HVAC

Lights ON during day hours

Wrong AC settings

Source: Google Images

Energy wastage results in abnormalities

Reasons for

Fig: Box plots on hourly power consumption of a home for 15 days

Using smart meters for abnormality detection

- Allows real-time communication between grid and the meter
- Allows logging of different energy parameters such as voltage, current, power factor, etc.

Fig: Smart Meter [1]

Half of US customers have smart meters installed [2]

Issues with existing approaches

Lower abnormality detection accuracy

Simple thresholding methods result in false positives [1]

Fig: Every day follows a different energy consumption

Ignoring contextual information [2]

Issues with existing approaches

• Evaluated on either residential or commercial buildings [1]

Fig: Energy consumption signature of commercial & residential buildings

Problem statement

Develop an abnormality detection approach that will:

Improve abnormality detection accuracy

Work in both residential and commercial buildings

Proposed method: Monitor

Data Input

Dimensionality reduction

Data Input

Dimensionality reduction

Fig: Hourly power consumption of four days

Data Input -> Dimensionality reduction

Data Input

Dimensionality reduction Abnormality flagging

Abnormality flagging

- Compute density for each day's consumption with Local Outlier Factor (LOF)[1]
- Normalize density values in the range of 0 to 1.

Fig: Lower dimensional representation

Data Input

Dimensionality reduction

Dataset: IIIT-D energy dataset

16 weeks of data at hourly average sampling rate

Two faculty apartments

- Size: Three bedrooms, a hall and a kitchen
- Family size: Four (at max.)
- Appliances: Fridge, AC, lighting and cooking appliances

Lecture block & HVAC chiller

- Lecture block: 12 classrooms having lights, fans and HVAC equipment
- HVAC chiller: A 100kW equipment for removing heat from the circulating water of HVAC system

Power consumption patterns in the used dataset

Power consumption patterns in the used dataset

Baseline methods

• **ADM-I** [1]

Computes abnormality score for all days with respect to one day having highest density

Day with highest density

• **ADM-II** [2]

Computes abnormality score for each day with respect to the centers of all the clusters

Cluster centers

^[1] Bellala et al. Towards an understanding of campus-scale power consumption, BuildSys, 2011

^[2] Arjunan et al. Multi-user energy consumption monitoring and anomaly detection, BuildSys, 2015

Results

Fig: Power signature of an apartment for one month

Fig: Lower dimensional representation of one month data

Results

Fig: Power signature of an apartment for one month

Fig: Lower dimensional representation of one month data

Results

Accuracy metric: ROC curve → AUC

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

Accuracy metric: ROC curve → AUC

Monitor increases AUC by 17%

Monitor reduces false positives (+)

Method	A1	A2	Lecture block	Chiller
ADM-I	15	9	7	20
ADM-II	0	1	2	2
Monitor	0	2	0	0

Table: False positives with different methods

Monitor has more false negatives (-)

Method	A1	A2	Lecture block	Chiller
ADM-I	0	0	2	0
ADM-II	1	1	2	2
Monitor	1	1	3	1

Table: False negatives with different methods

Limitations

Limitations

 Anomaly detection not in real-time

Limitations

 Anomaly detection not in real-time

Manual anomaly search

timestamp	power
2013-02-24 00:10:00	533.8
2013-02-24 00:20:00	666.4
2013-02-24 00:30:00	1052.9
2013-02-24 00:40:00	1048.8
2013-02-24 00:50:00	1189.5
2013-02-24 01:00:00	1145
2013-02-24 01:00:00	1145
2013-02-24 00:50:00	1189.5
	1048.8

Conclusion

- Improves abnormality detection accuracy
 - Reduces false positives by a large margin
- Works for both residential and commercial scenarios

Thank You!

haroonr@iitd.ac.in https://loneharoon.github.io

Looking for a Postdoc position:)

Annexure

Effect of k on abnormality score

Effect of aggregation methods

MDS: Example

Power consumption

Power consumption

Dissimilarity matrix

	Day1	Day2	Day3	Day4
Day1	0	2789	1194	2699
Day2	2789	0	2516	254
Day3	1194	2516	0	2371
Day4	2699	254	2371	0

$$dist(day_x, day_y) = \sqrt{\sum_{i=1}^{n=24} (day_x^i - day_y^i)^2}$$

Power consumption

$$dist(day_x, day_y) = \sqrt{\sum_{i=1}^{n=24} (day_x^i - day_y^i)^2}$$

Dissimilarity matrix

	Day1	Day2	Day3	Day4	
Day1	0	2789	1194	2699	
Day2	2789	0	2516	254	
Day3	1194	2516	0	2371	
Day4	2699	254	2371	0	
·					

→ Dimensionality reduction → Abnormality flagging Data Input