Monte Python: all run and analyze options

Benjamin Audren

École Polytechnique Fédérale de Lausanne

29/10/2014

Outline

Running

2 Analysis

Outline

- Running
- 2 Analysis

Methods

python montepython/MontePython.py run -h

Choosing the Sampling Method

• flag: -m [MH, NS, CH, IS, Der]

Cholesky Decomposition

Idea

Cosmological parameters are slow to update (CLASS), but **nuisance** parameters can be fast.

If varied together, this distinction is lost.

But, there are correlations between them!

Proposition

Instead of varying all the parameters at each step, we vary **both fast and slow** some of the time, and **only the fast one** the rest of the time.

Metropolis Hastings

Basic Options

- Number of steps: -N 1000
- Jumping factor: -f 1.4
- Jumping strategy: -j [global, sequential, fast]
- Best-fit file: -b, --bestfit best-fit point
- Covmat file: -c, --covmat proposal density
- Restart: -r filename restart from chain?

Metropolis Hastings

Tricks

Computing the likelihood in one point

python montepython/MontePython.py run -o chains/jla -N 1 -f 0

Cholesky decomposition

python montepython/MontePython.py run -o chains/jla -j fast

Nested Sampling

Full description at http://monte-python.readthedocs.org/en/latest/nested.html

Principle

- All options from MultiNest can be used
- Simply use --NS_option_from_MultiNest
- Most important one: --NS_n_live_points 100

Strategy

- separate subfolder (NS)
- chains are translated with info chains/folder/NS

Warning

- To see the options, either edit montepython/nested_sampling.py
- or pip install pymultinest (--user) then run --help

Cosmo Hammer

Full description at http://www.astro.ethz.ch/refregier/research/Software/cosmohammer/

Principle

- All options from CosmoHammer can be used
- Simply use --CH_option_from_CosmoHammer
- Most important one: --CH_walkersRatio

Strategy

- separate subfolder (CH)
- chains are translated with info chains/folder/CH

Doc

• To see the options, either edit montepython/cosmo_hammer.py

Importance Sampling

Syntax

```
run -m IS -o chains/new -p new.param \
--IS_starting_folder chains/old
```

Warning

- new.param and old.param should differ only through the list of experiments, and by a mildly constraining likelihood
- Notably, the updated list of experiment can not contain more nuisance parameters.

Adding a derived parameter

Syntax

```
run -o existing_folder -m Der \
    --Der-target-folder non_existing_folder \
    --Der-param-list Omega_Lambda
```

Warning

You obviously can add only derived parameters known to CLASS

Outline

- Running
- Analysis

Reminder

python montepython/MontePython.py info --help

Options when analyzing

Main options

- compare several folders info folder_1 folder_2
- Remove the mean-likelihood with --no-mean
- Only compute the covmat with --noplot
- Output all sub plots with --all

Using an extra file for plotting options

Alternative to command line

- example in plot_files/example.plot
- syntax: --extra plot_files/example.plot

Using an extra file for plotting options

Alternative to command line

- example in plot_files/example.plot
- syntax: --extra plot_files/example.plot

4 exclusive arguments

- redefine: dict for combining parameters
- to change: dict for renaming
- new scales: dict for rescaling
- to plot: list for plotting new names

Renaming parameters

```
info.to_change = {'Omega_cdm': r'$\Omega_{\rm cdm}$', 'alpha': '$\gamma$'}
info.new_scales = {'$\gamma$': 10}
info.to_plot = [r'$\Omega_{\rm cdm}$', '$\gamma$', 'beta']
```

Full example

```
import matplotlib.pyplot as plt
info.redefine = {'log_alpha': 'log_alpha/math.log(10)',
                 'log_sound_speed_sq': 'log_sound_speed_sq/math.log(10)'}
info.to_change = {'log_alpha': r'$\log_{10}(\alpha)$',
                 'log_sound_speed_sq': r'$\log_{10}(c_\chi^2)$',
                  'Y dm': 'Y'}
               = [r'$\log_{10}(\alpha)$', r'$\log_{10}(c_\chi^2)$', 'Y']
info.to_plot
info.fontsize = 24
info.ticksize = 12
info.ticknumber = 5
info.decimal = 2
info.legend-style = 'top'
info.bins = 16
info.cm = [(0.99843, 0.25392, 0.14765, 1.),]
info.cmaps = [plt.cm.Reds]
```

Beware of non-raw strings

Python is picky about that