o Dérivées : polynômes et fractions rationnellles

Pour les fonctions qui suivent, on déterminera leur dérivée et leur tableau de variation :

$$f(x) = 3x^3 - 4x^2 - 3x + 2$$

$$g_1(x) = \frac{4x - 3}{1x + 1}$$

$$g_2(x) = \frac{4x + 3}{1x - 1}$$

$$h(x) = \frac{2x + 3}{2x^2 + 4}$$

$$i(x) = \frac{5x^2 + 3}{4x + 5}$$

Correction:

$$f'(x) = 9x^2 - 8x - 3$$
$$\Delta = 172 > 0$$

Il y a deux solutions réelles distinctes qui sont :

$$x_1 = \frac{8 + \sqrt{172}}{18} \approx 1.1730487249224$$

$$x_2 = \frac{8 - \sqrt{172}}{18} \approx -0.28415983603356$$

$$x_2 < x_1$$

$$f(x_1) \approx -2.1808218645678$$

$$f(x_2) \approx 2.4606572555143$$

$$g_1'(x) = \frac{7}{(1x+1)^2}$$
$$g_2'(x) = \frac{-7}{(1x-1)^2}$$

x	-∞	$-\frac{1}{1}$ $+\infty$		
$g_1'(x)$	+			
$g_1(x)$	-∞ +α	+∞		

x	-∞	<u>l</u> +∞
$g_2'(x)$	-	-
g ₂ (x)	+∞ -∞	+∞

$$h'(x) = \frac{-4x^2 - 12x + 8}{(2x^2 + 4)^2}$$
$$\Delta = 272 > 0$$

On a donc deux solutions réelles distinctes :

$$x_1 = \frac{12 - \sqrt{272}}{-8} \approx 0.56155281280883$$
$$x_2 = \frac{12 + \sqrt{272}}{-8} \approx -3.5615528128088$$
$$x_2 < x_1$$

x	$-\infty$		x_2		x_1		+∞
h'(x)		_	0	+	0	_	
h(x)	0		$h(x_2)$		$h(x_1)$		0

$$h(x_1) = \approx 0.81179681918585$$

 $h(x_2) = \approx -0.13827748487357$

$$i'(x) = \frac{20x^2 + 50x - 12}{(4x+5)^2}$$
$$\Delta = 3460 > 0$$

On a donc deux solutions réelles distinctes :

$$x_1 = \frac{-50 - \sqrt{3460}}{40} \approx -2.7205441169853$$

$$x_2 = \frac{-50 + \sqrt{3460}}{40} \approx 0.22054411698527$$

$$x_1 < x_2$$

$$f(x_1) = \approx -6.8013602924632$$

$$f(x_2) = \approx 0.55136029246319$$