DUST 2018

3rd International Conference on Atmospheric Dust

Villa Romanazzi Carducci - Bari, Italy | 29-31 May, 2018

DustSafe:

global insights into the composition and hazard of household dusts through citizenled science

Why are indoor dusts a potential problem and why Citizen-Science approach?

- Fine particles contaminants readily absorbed.
- Young children most at risk
 - higher absorption rates (e.g. Pb)
 - more hand mouth activity.
- Growing need for more effective and inclusive public engagement processes to support environmental health knowledge

Jane.entwistle@northumbria.ac.uk

DustSafe THE PROJECT

context DustSafe Initial Results Next steps Outcomes

DustSafe 2017-2021

Phase 1:

- Engage citizens to collect and submit vacuum dust.
- characterise metals/metalloids by XRF
- Information on the science related to dust and contaminants, and on what to do next where elevated contaminants are identified.

Phase 2:

Dust 360°

Further characterisation - microbial components, mineralogy, magnetic signature, allergens, flame retardants, pesticides, fibres/micro-plastics ...

DustSafe 'phase 1' approach

- Advertise the program via media and existing email databases / Facebook.
- Citizens register online and complete household questionnaire [house age, home/household characteristcs]
- Vacuum dust mailed/collected for XRF analysis [and XRD in Australia].
- Summary report returned by email.
- Maps and graphs of suburb level data to be generated on program web site.

DustSafe

http://www.360dustanalysis.com

Jane.entwistle@northumbria.ac.uk

DustSafe RESULTS

context DustSafe Initial Results Next steps Outcomes

DustSafe UK pilot [Newcastle Biomonitoring Study]

Raised Pb levels in our urban soils – backtracking particles into homes; deposition on crops Raising environmental health knowledge

DustSafe UK pilot [Newcastle Biomonitoring Study]

DustSafe UK [Newcastle Biomonitoring Study]

Q: What is the typical conc. of potentially harmful elements (PHE) in indoor vacuum dust?

'Global' indoor vacuum dust

	Median (mg/kg) by XRF		
Element	Australia (n=95)	Newcastle (UK) (n = 51)	Canada (Rasmussen et al. 2013) (n = >1000)
Arsenic	13	5.66	7.7
Cadmium	<lod< th=""><th><lod< th=""><th>3.8</th></lod<></th></lod<>	<lod< th=""><th>3.8</th></lod<>	3.8
Chromium	66	54.2	1.01
Copper	173	119	217
Manganese	189	243	no data
Nickel	31	34.8	73.3
Lead	405	212	119
Zinc	931	664	749

<LOD - below the limit of detection

Q: What is the typical conc. of PHE in indoor vacuum dust?

Jane.entwistle@northumbria.ac.uk

DustSafe OUTCOMES?

context DustSafe Initial Results Next steps Outcomes

Outcomes

Contribute to international resource and databank.

- Assist in characterising hazards from dust and risks in the home environment.
- Metadata explored using GIS for investigation of spatial trends.
- Develop Environmental Health knowledge

THANK YOU

Jane A. Entwistle (Northumbria University, UK)

Gabriel Filippelli (Indiana University-Purdue University, USA)
Mark P. Taylor & Paul Harvey (Macquarie University, Australia)
Ming-Hung Wong (The Education University of Hong Kong, Hong Kong)

And the wider team

N. America

