

Pontifícia Universidade Católica de Minas Gerais Bacharelado em Ciência da Computação Projeto e Análise de Algoritmos – 2º Semestre de 2018 Prof^a. Raquel Mini

1ª PROVA

Nome	:		
		_	

Valor: 30 pontos

- 1. (8 pontos) Prove se as seguintes igualdades são corretas ou incorretas.
 - a) $n! = \Omega(n^n)$
 - b) $20n^3 + 10n \log n + 5 = O(n^3)$
 - c) $2^n n + 2^n n \log n = \Theta(2^n)$
 - d) $3\log n + \log(n^{10}) = O(\log n)$
 - e) $\frac{2n^3}{\log n + 1} = O(n^3)$
 - f) $0.001n^3 + 4n^2 = \Omega(n^2)$
 - g) $2^{100} = O(1)$
 - h) $2^n = \Theta(e^n)$
- 2. (8 pontos) Considere o problema de verificar quais pares dos n vetores de números inteiros S₁, S₂, S₃, ..., S_n, cada um com n elementos, são disjuntos (não possuem elementos em comum). Considerando o algoritmo para resolver esse problema apresentado abaixo e também que a operação relevante seja a comparação entre dois elementos dos vetores, responda às seguintes perguntas:

- a) O número de vezes que a operação relevante é realizada depende somente do tamanho da entrada (e não da configuração da entrada)? Explique.
- b) Qual é a configuração de entrada que leva ao pior caso desse algoritmo?
- c) Quantas vezes a operação relevante é executada no pior caso? Estabeleça um somatório ou uma relação de recorrência para indicar o número de vezes que a operação relevante é executada e resolva este somatório ou relação de recorrência.
- d) Represente o número de vezes que a operação relevante é executada utilizando a notação assintótica
 Θ.
- **3.** (8 pontos) Considerando que a operação relevante seja o número de vezes que a operação soma é executada, responda às seguintes questões:
 - a) O que a função faz?
 - b) Escreva a equação de recorrência que descreve o comportamento da função.

- c) Converta esta equação de recorrência para um somatório.
- d) Forneça a fórmula fechada para este somatório.
- e) Escreva a fórmula fechada em notação Θ. Justifique.

```
int Recursiva (int n) {
if (n <= 0)
   return (1);
else
   return (Recursiva(n-1) + Recursiva(n-1));
```

- **4.** (6 pontos) Use o teorema mestre, se possível, para apresentar limites assintóticos firmes para as seguintes recorrências. Justifique suas respostas.
 - a) $T(n) = 4T\left(\frac{n}{2}\right) + n^2$
- b) $T(n) = 4T\left(\frac{n}{2}\right) + n^2 \log n$ c) $T(n) = 4T\left(\frac{n}{2}\right) + n$

Teorema Mestre

Sejam as constantes $a \ge 1$ e b > 1 e f(n) uma função definida nos inteiros não-negativos pela recorrência:

$$T(n) = aT(n/b) + f(n)$$

onde a fração n/b pode significar $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. A equação de recorrência T(n) pode ser limitada assintoticamente da seguinte forma:

- 1. Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = O(n^{\log_b a})$
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. Se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ para alguma constante $\varepsilon > 0$ e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e para n suficientemente grande, então $T(n) = \Theta(f(n))$

Fórmulas:

$\log n = \log_2^n$	$a^{\log b^n} = n^{\log b^a}$	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	$2^{\log n} = n$		
$a = b^{\log b}$	$n^{\frac{1}{\log n}} = n^{\log n^2} = 2$	$\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$	$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$		
$\sum_{i=1}^{n} 1 = n$	$\sum_{i=1}^{n} ia^{i} = \frac{a - (n+1)a^{n+1} + na^{n+2}}{(a-1)^{2}}$	$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$	$4^{\log n} = 2^{2\log n} = 2^{\log n^2} = n^2$		
1 $2\log\log n + \log n + n^{\varepsilon} + n + n^{\varepsilon} + n^{\log n} + n^{\varepsilon} $					

 $1 \prec \log \log n \prec \log n \prec n^{\varepsilon} \prec n \prec n^{c} \prec n^{\log n} \prec c^{n} \prec n^{n} \prec c$

onde ε e c são constantes arbitrárias com $0 < \varepsilon < 1 < c$