Notazione

Funzioni di più variabili scalari e vettoriali

Definizione

 $f:A\subset\mathbb{R}^n o\mathbb{R}^k$, $n\geq 2$ è una funzione di più variabili

- scalare se k=1
- vettoriale se $k \ge 2$

Grafico

$$\begin{aligned} k &= 1 \\ G_f &:= \{(\underline{p}, f(\underline{p})) : \underline{p} \in A\} \subset \mathbb{R}^{n+1} \end{aligned}$$

Curve di livello

$$n=2,\,k=1,\,t\in\mathbb{R}$$
 $C_t:=\{(x,y)\in A: f(x,y)=t\}$

Insiemistica

 $A\subset \mathbb{R}^n$

Distanza euclidea

Definizione

$$egin{aligned} & \underline{p_1}, \underline{p_2} \in \mathbb{R}^3 \ & \overline{\mathrm{d}(\underline{p_1}, \underline{p_2})} = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2} \ & \mathrm{e} \ \mathrm{detta} \ \mathrm{distanza} \ \mathrm{euclidea} \ \mathrm{tra} \ p_1 \ \mathrm{e} \ p_2 \end{aligned}$$

Intorno

Definizione

Si chiama intorno sferico di $\underline{p_0} \in \mathbb{R}^n$ di raggio r>0 l'insieme $\mathrm{B}(\underline{p_0},r):=\{\underline{p} \in \mathbb{R}^n: \mathrm{d}(\underline{p},\underline{p_0})< r\}$

Frontiera e parte interna

Definizione

 $\underline{p_0} \in \mathbb{R}^n$ si dice punto di frontiera di A se $\mathrm{B}(\underline{p_0},r) \cap A \neq \emptyset \wedge \mathrm{B}(\underline{p_0},r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset \ \ \forall r > 0$ L'insieme di tutti i punti di frontiera di A è detto frontiera di A e si denota con ∂A L'insieme di tutti i punti di A che non sono di frontiera si chiama parte interna di A e si denota con $\mathring{A} := A \setminus \partial A$

Insieme chiuso e aperto

Definizione

A è detto chiuso se ogni punto di frontiera di A appartiene ad A $\partial A\subset A$ A è detto aperto se non contiene alcun punto della sua frontiera $A\cap\partial A=\emptyset$

Insieme limitato

Definizione

A è detto limitato se $\exists r>0:A\subset\mathrm{B}(0,r)$

Punto di accumulazione

Definizione

 $\underline{p_0} \in \mathbb{R}^n$ si dice punto di accumulazione per A se $\mathrm{B}(\underline{p_0},r) \cap (A \setminus \{\underline{p_0}\}) \neq \emptyset \;\; \forall r>0$

Punto isolato

Definizione

 $p_0 \in A$ si dice punto isolato di A se non è un punto di accumulazione

Limite

Definizione

 $f:A\subset \mathbb{R}^n o \mathbb{R}$, p_0 punto di accumulazione di A

$$\exists \lim_{\underline{p}
ightarrow p_0} f(\underline{p}) = l \in \mathbb{R}$$

se

$$\exists \delta > 0: |f(p) - l| < arepsilon \ \ orall arepsilon > 0, p \in \mathrm{B}(p_0, \delta) \cap (A \setminus \{p_0\})$$

Formule

 $f,g:A\subset\mathbb{R}^n o\mathbb{R}$, p_0 punto di accumulazione di A

$$\exists \lim_{p o p_0} f(p) = l \in \mathbb{R}$$
, $\exists \lim_{p o p_0} g(p) = m \in \mathbb{R}$

Somma

$$\exists \lim_{\underline{p} \to p_0} (f(\underline{p}) + g(\underline{p})) = l + m$$

Prodotto

$$\exists \lim_{p o p_0} f(p) \cdot g(p) = l \cdot m$$

Quoziente, $g(p)
eq 0 \ \ orall p \in (A \setminus \{p_0\})$ e m
eq 0

$$\exists \lim_{ \underline{p} o \underline{p_0} } rac{f(\underline{p})}{g(\overline{p})} = rac{l}{m}$$

Composizione, $F:\mathbb{R} \to \mathbb{R}$ continua, h(p):=F(f(p))

$$\exists \lim_{\underline{p} o \underline{p_0}} h(\underline{p}) = F(l)$$

Teorema del confronto

 $f,g,h:A\subset\mathbb{R}^n o\mathbb{R}$, se

$$ullet f(\underline{p}) \leq g(\underline{p}) \leq h(\underline{p}) \ \ orall \underline{p} \in A$$

$$\quad \exists \lim_{\underline{p} \to \underline{p_0}} f(\underline{p}) = \lim_{\underline{p} \to \underline{p_0}} h(\underline{p}) = l \in \mathbb{R} \cup \{\pm \infty\}$$

$$\implies \exists \lim_{{ar p} o p_0} g({ar p}) = l$$

Dimostrazione >

$$\exists \delta_1 > 0: |f(p) - l| < arepsilon \ \ orall arepsilon > 0, p \in \mathrm{B}(p_0, \delta_1)$$

$$\exists \delta_2 > 0: |h(p) - l| < arepsilon \ \ orall arepsilon > 0, p \in \mathrm{B}(p_0, \delta_2)$$

$$\delta = \min(\delta_1, \delta_2)$$

$$\implies l - arepsilon < f(p) \leq g(p) \leq h(p) < l + arepsilon$$

Limite lungo direzioni

Definizione

 $B\subset A$, $f|_B:B o\mathbb{R}$, $f|_B(\underline{p}):=f(\underline{p})$ se $\underline{p}\in B$ si dice funzione restrizione su B

Teorema

 $f:A\subset\mathbb{R}^n o\mathbb{R}$, p_0 punto di accumulazione di A, sono equivalenti:

- $ullet \ \exists \lim_{{\underline p} o {\underline p}_0} f({\underline p}) = l$
- $orall B\subset A$ per cui $\underline{p_0}$ è punto di accumulazione di B $\exists \lim_{\underline{p} o p_0} f|_B(\underline{p})=l$