AL/2018/10/S-II ්සියලු ම හිමිකම් ඇව්රිණි /ලාලාට பதிப்புரிமையுடையது /All Rights Reserved] இ குடை நில்ல දෙපාර්තමේන්තුව இ குடை சில்ல දෙපාර්තමේන්තු இது இது இது இது இது இது இல்ல දෙපාර්තමේන්තුව இ கூறை நில்ல දෙපාර්තමේන්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம்இள்ளது பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka இ ලංකා විභාග අදපාර්තයමන්තුව ලී ලංකා විභාග අදපාරකයන්නව ලී ලංකා විභාග අදපාරකයන්නව ලී ලංකා විභාග අදපාරකයම්න්ව ලේකා විභාග අදපාරකයම්න් ලේකා විභාග අදපාරකයම්න්ව ලේකා විභාග අදපාරකයම්න්ව ලේකා විභාග අදපාරකයම්න්ව ලේකා විභාග අදපාරකයම්න්ව ලේකා විභාග අදපාරකයම් ලේකා විභාග අදපාරකයම්න්ව ලේකා විභාග අදපාරකයම්න් ලේකා අදපාරකයම්න් ලේකා විභාග අදපාරකයම්න් ලේකා විභාග අදපාරකයම්න් ලේකා අදපාරකයම්න් ලේකා විභාග අදපාරකයම්න් ලේකා අදපාරකයම්න ලේකා අදපාරකයම් ලේකා අදපාරකය අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු <u>கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந்</u> General Certificate of Education (Adv. Level) Examination, August 2018 සංයුක්ත ගණිතය 2018.08.08 / 0830 - 1140 இணைந்த கணிதம் II Combined Mathematics පැය තනයි අමතර කියවීම් කාලය මිනිත්තු 10 යි மூன்று மணித்தியாலம் மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Three hours Additional Reading Time - 10 minutes අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න. විහාග අංකය උපදෙස්: * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ; A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17). * A කොටස: **සියලු ම** පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය. * B කොටස: පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න. st නියමින කාලය අවසන් වූ පසු f A **කොටහෙගි** පිළිතුරු පතුය, f B **කොටහෙගි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න. st පුශ්න පනුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත. * මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි. පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි. (10) සංයුක්ත ගණිතය II I පතුය කොටස පුශ්න අංකය ලකුණු II පතුය 2 3 එකතුව 4 අවසාන ලකුණු 5 6 7 8 අවසාන ලකුණු 9 ඉලක්කමෙන් 10 අකුරෙන් 11 12 සංකේත අංක 13 උත්තර පනු පරීක්ෂක 14 B 15 1 පරීක්ෂා කළේ: 16 2 17 අධීක්ෂණය කළේ: එකතුව

පුතිශතය

•	മതാലത
Λ	and the

1.	සුමට තිරස් මේසයක් මත එකම සරල රේඛාවක් දිගේ එකිනෙක දෙසට එකම u වේගයෙන් චලනය වෙමින් තිබෙන, ස්කන්ධ පිළිවෙළින් $2m$ හා m වූ A හා B අංශු දෙකක් සරල ලෙස ගැටේ. ගැටුමෙන් මොහොතකට
	පසු A අංශුව නිශ්චලතාවට පැමිණෙයි. පුතාාාගති සංගුණකය $rac{1}{2}$ බව ද ගැටුම නිසා B මත යෙදෙන ආවේගයෙහි විශාලත්වය $2mu$ බව ද පෙන්වන්න.
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$\langle \alpha \rangle = \pi \langle \alpha \rangle = \pi \langle \alpha \rangle$
2.	\ 2/
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	\ -/
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
2.	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බීම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක

3.	ස්කන්ධය m වූ P අංශුවක් හා ස්කන්ධය λm වූ Q අංශුවක් අචල, සුමට කප්පියක් උඩින් යන සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව
	තදව ඇතිව, පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලබයි. P අංශුව $rac{g}{2}$ ත්වරණයකින්
	පහළට චලනය වේ. $\lambda=\frac{1}{3}$ බව පෙන්වන්න.
	P අංශුව තිරස් අපුතනස්ථ ගෙබිමක v වේගයෙන් ගැටෙයි නම් හා Q අංශුව කිසිවිටෙකත් $ extstyle eta \lambda m$
	කප්පිය කරා ළඟා නොවේ නම්, P අංශුව බිම ගැටුණු මොහොතේ සිට Q අංශුව උපරිම උසට ළඟා වීමට ගන්නා කාලය සොයන්න. $\bigcirc m$
	5
4.	ස්කන්ධය 1200 kg වූ කාරයක් එන්ජිම කිුයා වීරහිත කර තිරසට $lpha$ කෝණයක් ආනත වූ ඍජු පාරක් දිගේ
	පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sin lpha = rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g = 10~{ m ms^{-2}}$ ලෙස
	ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න.
	කාරය, එම පුතිරෝධයටම යටත්ව $rac{1}{6}\mathrm{ms^{-2}}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විට,
	එහි වේගය $15~\mathrm{ms^{-1}}$ වන මොහොතේ දී එන්ජිමේ ජවය කිලෝචොට් වලින් සොයන්න.

5 .	සුපුරුදු අංකනයෙන්, $3\mathbf{i}$ හා $2\mathbf{i}+3\mathbf{j}$ යනු O අචල මූලයකට අනුබද්ධයෙන් පිළිවෙළින් A හා B ලක්ෂා
	දෙකක පිහිටුම් ඉදෙශික යැයි ගනිමු. C යනු $O\hat{C}A=rac{\pi}{2}$ වන පරිදි OB සරල රේඛාව මත පිහිටි ලක්ෂාය
	යැයි ගනිමු. \overrightarrow{OC} ඉෙදශිකය $\mathbf i$ හා $\mathbf j$ ඇසුරෙන් සොයන්න.
	······································
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක්, BC සැහැල්ලු අවිතනා තන්තුවක් ${UUUUU}/{C}$
	/
	මගින් හා A කෙළවරේ දී යොදන ලද P තිරස් බලයක් මගින් රූපයේ
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45°
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන $ heta$ කෝණය $B/ heta$
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45°
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්තම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.

7.	A හා B යනු S නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=\frac{1}{3}$, $P(B)=\frac{1}{4}$ හා $P(A\cap B)=\frac{1}{6}$ වේ. $P(A B')$, $P(A'\cap B')$ හා $P(B' A')$ සොයන්න; මෙහි A' හා B' මගින් පිළිවෙළින් A හා
	B සිද්ධිවල අනුපූරක සිද්ධි දැක්වේ.
	<u>*************************************</u>
8.	පාටීන් හැර අන් සෑම අයුරකින්ම සමාන වූ රතු බෝල 4 ක් හා කළු බෝල 3 ක් මල්ලක අඩංගු වේ. වරකට එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ,
	(ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	සම්භාවිතාව සොයන්න.

9.	එක එකක් 8 ට අඩු ධන නිබීල පහකට එක මාතයක් පමණක් ඇත. ඒවායේ මධානාාය, මාතය හා මධාසේථය
	6:10:5 අනුපාතවලට පිහිටයි. මෙම නිබීල පහ සොයන්න.
	·
10.	එක්තුරා නගුරයකු උෂ්ණත්වය දින 20ක් සඳහා දිනපතා වාර්තාගත කරන ලදී. මෙම දත්ත කුලකය සඳහා
10.	එක්තරා නගරයක උෂ්ණත්වය දින 20 ක් සඳහා දිනපතා චාර්තාගත කරන ලදී. මෙම දත්ත කුලකය සඳහා මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත
10.	මධානා $lpha$ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත
10.	
10.	මධාෘතාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.
10.	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත ඉහත උෂ්ණත්වවලින් දෙකක් 35° C හා 21° C ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව ඒවා 25° C හා 31° C ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.

È

සියලු ම හිමිකම් ඇව්රිණි / மුඟුට பதிப்புரிமையுடையது /All Rights Reserved]

අබනයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரின், 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

கு**் பூன்ற ஏறிற**க II இணைந்த கணிதம் II Combined Mathematics II

10 S II

* පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න.

B කොටස

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

11.(a) මීටර 4d ගැඹුරු පතලක චලනය වන සෝපානයක් t=0 කාලයේ දී A ලක්ෂායකින් නිශ්චලතාවේ සිට සිරස් ව පහළට චලනය වීමට පටන් ගනී. එය, පළමුව $\frac{g}{2}$ m s $^{-2}$ නියත ත්වරණයෙන් මීටර d දුරක් චලනය වී ඊළඟට එම චලිතය අවසානයේ ලබාගත් පුවේගයෙන් තව මීටර d දුරක් චලනය වේ. සෝපානය ඉන්පසු A සිට මීටර 4d දුරක් පහළින් පිහිටි B ලක්ෂායේ දී නිශ්චලතාවට පැමිණෙන පරිදි නියත මන්දනයකින් ඉතිරි දුර ද චලනය වේ.

සෝපානයෙහි චලිතය සඳහා පුවේග-කාල වකුයේ දළ සටහනක් අඳින්න.

- **ඒ නයින්**, A සිට B දක්වා පහළට චලිතය සඳහා සෝපානය ගනු ලබන මුළු කාලය සොයන්න.
- (b) පොළොවට සාපේක්ෂව $u \ \mathrm{km} \ \mathrm{h}^{-1}$ ඒකාකාර වේගයකින් උතුරු දිශාවට නැවක් යාතුා කරයි. එක්තරා මොහොතක දී නැවේ සිට, දකුණෙන් නැගෙනහිරට β කෝණයකින්, නැවේ පෙතෙහි සිට $p \ \mathrm{km}$ දුරකින් B_1 බෝට්ටුවක් නිරීක්ෂණය කරනු ලැබේ. මෙම මොහොතේ දී ම, B_2 බෝට්ටුවක් නැවේ සිට බටහිරින් $q \ \mathrm{km}$ දුරකින් නිරීක්ෂණය කරනු ලැබේ. බෝට්ටු දෙකම පොළොවට සාපේක්ෂව $v(>u) \ \mathrm{km} \ \mathrm{h}^{-1}$ ඒකාකාර වේගයෙන් සරල රේඛීය පෙත්වල, නැව අල්ලා ගැනීමේ අපේක්ෂාවෙන් යාතුා කරයි. පොළොවට සාපේක්ෂව බෝට්ටුවල පෙත් නිර්ණය කිරීම සඳහා පුවේග හිකෝණවල දළ සටහන් එකම රූපයක අඳින්න. පොළොවට සාපේක්ෂව B_1 බෝට්ටුවේ පෙත උතුරෙන් බටහිරට $\beta \sin^{-1}\left(\frac{u \sin \beta}{v}\right)$ කෝණයක් සාදන බව පෙන්වා, පොළොවට සාපේක්ෂව B_2 බෝට්ටුවේ පෙත සොයන්න. $\beta = \frac{\pi}{3}$ හා $v = \sqrt{3}u$ යැයි ගනිමු. $3q^2 > 8p^2$ නම්, B_1 බෝට්ටුව B_2 බෝට්ටුවට පෙර නැව අල්ලා ගන්නා බව පෙන්වන්න.
- 12.(a) AB=a හා $B\hat{A}D=\frac{\pi}{6}$ වන පරිදි වූ රූපයේ දැක්වෙන ABCD තුපීසියම, ස්කන්ධය 2m වූ සුමට ඒකාකාර කුට්ටියක ගුරුත්ව කේන්දුය තුළින් වූ සිරස් හරස්කඩකි. AD හා BC රේබා සමාන්තර වන අතර AB රේබාව එය අඩංගු මුහුණතෙහි උපරිම බෑවුම් රේබාවකි. AD අයත් මුහුණත සුමට තිරස් ගෙබිමක් මත ඇතිව කුට්ටිය තබනු ලබයි. රූපයේ දැක්වෙන පරිදි ස්කන්ධය m වූ P අංශුවක් A ලක්ෂායෙහි තබා, එයට \overline{AB} දිගේ u පුවේගයක් දෙනු ලබයි; මෙහි $u^2=\frac{7ga}{3}$ වේ. කුට්ටියට සාපේක්ෂව P හි මන්දනය $\frac{2g}{3}$ බව පෙන්වා, P අංශුව B කරා ළඟා වන විට, කුට්ටියට සාපේක්ෂව P අංශුවෙහි පුවේගය සොයන්න.

තව ද $BE=rac{\sqrt{3}\,a}{2}$ වන පරිදි කුට්ටියෙහි උඩත් මුහුණතෙහි BC මත වූ E ලක්ෂායේ කුඩා සිදුරක් ඇත. කුට්ටියට සාපේක්ෂව චලිතය සැලකීමෙන්, P අංශුව E හි ඇති සිදුරට වැටෙන බව පෙන්වන්න.

(b) දිග a වූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් O අවල ලක්ෂායකට ද අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ද ඇඳා ඇත. අංශුව O ට සිරස් ව පහළින් නිශ්චලව එල්ලී තිබෙන අතර එයට විශාලත්වය $u=\sqrt{kag}$ වූ තිරස් පුවේගයක් දෙනු ලැබේ; මෙහි 2< k<5 වේ. තන්තුව θ කෝණයකින් හැරී තවමත් නොබුරුල්ව තිබෙන විට අංශුවේ v වේගය $v^2=(k-2)ag+2ag\cos\theta$ මගින් දෙනු ලබන බව පෙන්වන්න.

මෙම පිහිටීමේ දී කන්තුවේ ආකතිය සොයන්න.

heta=lpha වන විට තන්තුව බුරුල් වන බව **අපෝහනය** කරන්න; මෙහි $\coslpha=rac{2-k}{3}$ වේ.

13. ස්කත්ධය m වූ P අංශුවක් එක එකක ස්වාභාවික දිග a හා මාපාංකය mg වූ සමාන සැහැල්ලු පුතාහස්ථ තත්තු දෙකක කෙළවර දෙකකට ඇඳා ඇත. එක තත්තුවක නිදහස් කෙළවර A අචල ලක්ෂායකට හා අනික් තත්තුවේ නිදහස් කෙළවර A ට සිරස් ව පහළින් 4a දුරකින් පිහිටි B අචල ලක්ෂායකට ඇඳා ඇත. (රූපය බලන්න.) තත්තු දෙකම නොබුරුල්ව, A ට $\frac{5a}{2}$ දුරක් පහළින් අංශුව සමතුලිතව තිබෙන බව පෙත්වන්න.

 $P \mathfrak{M} + A = X$

P අංශුව දැන්, AB හි මධා ලක්ෂායට ඔසවා එම පිහිටීමේ දී නිසලතාවේ සිට සීරුවෙන් මුදාහරීනු ලැබේ. තත්තු දෙකම නොබුරුල් හා AP තන්තුවේ දිග x වන විට, $\ddot{x}+\frac{2g}{a}\Big(x-\frac{5a}{2}\Big)=0$ බව පෙන්වන්න.

මෙම සමීකරණය $\ddot{X}+\omega^2X=0$ ආකාරයෙන් නැවත ලියන්න; මෙහි $X=x-\frac{5a}{2}$ හා $\omega^2=\frac{2g}{2}$ වේ.

 $\dot{\chi}^2 = \omega^2 (c^2 - \chi^2)$ සූතුය භාවිතයෙන් මෙම චලිතයේ විස්තාරය c සොයන්න.

P අංශුව එහි පහත් ම පිහිටීමට ළඟා වන මොහොතේ දී PB තත්තුව කපනු ලැබේ. තව චලිතයේ දී x=a වන විට අංශුව එහි උච්චතම පිහිටීමට ළඟා වන බව පෙන්වත්න.

P අංශුව x=2a හි වූ එහි ආරම්භක පිහිටීමේ සිට පහළට a දුරක් ද ඊළඟට ඉහළට $\frac{a}{2}$ දුරක් ද චලනය වීමට ගනු ලබන මුළු කාලය $\frac{\pi}{3}\sqrt{\frac{a}{2g}}\left(3+\sqrt{2}\right)$ බව තව දුරටත් පෙන්වන්න.

- - (b) Oxy-තලයේ වූ බල පද්ධතියක් පිළිවෙළින් (-a, 2a), (0, a) හා (-a, 0) ලක්ෂාවල දී කිුිිිියාකරන $3P\mathbf{i} + 2P\mathbf{j}$, $2P\mathbf{i} P\mathbf{j}$ හා $-P\mathbf{i} + 2P\mathbf{j}$ යන බල තුනෙන් සමන්විත වේ; මෙහි P හා a යනු පිළිවෙළින් නිව්ටන හා මීටරවලින් මනින ලද ධන රාශි වේ. O මූලය වටා, පද්ධතියේ දක්ෂිණාවර්ත සූර්ණය, 12Pa Nm බව පෙන්වන්න.

තව ද පද්ධතිය, විශාලත්වය 5P N වූ තනි සම්පුයුක්ත බලයකට තුලා වන බව පෙන්වා, එහි දිශාව හා කිුයා රේඛාවේ සමීකරණය සොයන්න.

දැන්, අතිරේක බලයක් පද්ධතියට ඇතුළත් කරනු ලබන්නේ නව පද්ධතිය දක්ෂිණාවර්ත සූර්ණය $24\,Pa\,\,\mathrm{N}\,\mathrm{m}$ වූ යුග්මයකට තුලා වන පරිදි ය. අතිරේක බලයෙහි විශාලත්වය, දිශාව හා කිුිිිිියා රේඛාවේ සමීකරණය සොයන්න.

- 15.(a) බර W හා දිග 2a වූ ඒකාකාර AB දණ්ඩක A කෙළවර රළු තිරස් බිමක් මත හා B කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව තබා ඇත. දණ්ඩ බිත්තියට ලම්බ සිරස් තලයක පිහිටන අතර, එය තිරස සමග θ කෝණයක් සාදයි; මෙහි $\tan \theta = \frac{3}{4}$ වේ. AC = x ලෙස දණ්ඩ මත වූ C ලක්ෂායට බර W වූ අංශුවක් සවිකර ඇත. අංශුව සහිත දණ්ඩ සමතුලිතතාවයේ ඇත. දණ්ඩ හා බිම අතර ඝර්ෂණ සංගුණකය $\frac{5}{6}$ වේ. $x \leq \frac{3a}{2}$ බව පෙන්වන්න.
 - (b) යාබද රූපයෙහි පෙන්වා ඇති රාමු සැකිල්ල, AB, BC, AC, CD හා AD සැහැල්ලු දඬු පහක් ඒවායේ කෙළවරවලින් නිදහසේ සන්ධි කර සාදා ඇත. AB = a, BC = 2a, AC = CD හා $CAD = 30^\circ$ බව දී ඇත. බර W වූ භාරයක් D හි එල්ලෙන අතර පිළිවෙළින් A හා B හි දී **රූපයේ දක්වා ඇති දිශාවලට** කියාකරන P හා Q සිරස් බලවල ආධාරයෙන් AB තිරස් ව හා AC සිරස් ව රාමු සැකිල්ල සිරස් තලයක සමතුලිනව තිබේ. Q හි අගය W ඇසුරෙන් සොයන්න. බෝ අංකනය භාවිතයෙන් පුතායාබල සටහනක් ඇඳ, **ඒ නයින්**, දඬු පහේ පුතායාබල සොයා, මෙම පුතායාබල ආතති ද තෙරපුම් ද යන්න පුකාශ කරන්න.

16.අරය a වූ ඒකාකාර ඝන අර්ධ ගෝලයක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $rac{3}{8}a$ දුරකින් පිහිටන බව පෙන්වන්න.

අරය a, උස a හා ඝනත්වය ρ වූ ඒකාකාර ඝන ඍජු වෘත්තාකාර සිලින්ඩරයකින් අරය a වූ අර්ධ ගෝලාකාර කොටසක් කපා ඉවත් කරනු ලැබේ. දැන්, යාබද රූපයේ දැක්වෙන පරිදි සිලින්ඩරයේ ඉතිරි කොටසෙහි වෘත්තාකාර මුහුණකට අරය a හා ඝනත්වය $\lambda\rho$ වූ ඒකාකාර ඝන අර්ධ ගෝලයක වෘත්තාකාර මුහුණක සවි කරනු ලබන්නේ, ඒවායේ සමමිතික අක්ෂ දෙක සම්පාත වන පරිදි ය. මෙලෙස සාදාගනු ලබන S වස්තුවෙහි ස්කන්ධ කේන්දුය, එහි සමමිතික අක්ෂය මත, ගැටියේ O කේන්දුයේ සිට $\frac{(11\lambda+3)a}{4(2\lambda+1)}$ දුරකින් පිහිටන බව පෙන්වන්න.

 $\lambda=2$ යැයි ද A යනු S වස්තුවෙහි වෘත්තාකාර ගැටිය මත වූ ලක්ෂෳයක් යැයි ද ගනිමු.

මෙම S වස්තුව රළු සිරස් බිත්තියකට එරෙහිව සමතුලිතව තබා ඇත්තේ, A ලක්ෂායට හා සිරස් බිත්තිය මත වූ B අචල ලක්ෂායකට ඇඳා ඇති සැහැල්ලු අවිතනා තත්තුවක ආධාරයෙනි. මෙම සමතුලිත පිහිටීමේ දී S හි සමමිතික අක්ෂය බිත්තියට ලම්බව පිහිටන අතර S හි අර්ධ ගෝලාකාර පෘෂ්ඨය B ලක්ෂායට 3a දුරක් සිරස් ව පහළින් වූ C ලක්ෂායේ දී බිත්තිය ස්පර්ශ කරයි. (යාබද රූපය බලන්න.) O,A,B හා C ලක්ෂා බිත්තියට ලම්බ සිරස් තලයක පිහිටයි.

 μ යනු බිත්තිය හා S හි අර්ධ ගෝලීය පෘෂ්ඨය අතර ඝර්ෂණ සංගුණකය නම්, $\mu \geq 3$ බව පෙන්වන්න.

- 17. (a) අංයතනයක එක්තරා රැකියාවකට අයදුම් කරන සියලු ම අයදුම්කරුවන් අභියෝගානා පරීක්ෂණයකට පෙනීසිටීම අවශා වේ. මෙම අභියෝගානා පරීක්ෂණයෙන් A ලේණියක් ලබන අය රැකියාව සඳහා තෝරාගනු ලබන අතර, ඉතිරි අයදුම්කරුවන් සම්මුඛ පරීක්ෂණයකට මුහුණ දිය යුතු ය. අයදුම්කරුවන්ගෙන් 60% ක් A ලේණි ලබන බව ද ඒ අයගෙන් 40% ක් ගැහැනු අය බව ද සමීක්ෂණයක දී සොයා ගෙන ඇත. සම්මුඛ පරීක්ෂණයට මුහුණ දෙන අයදුම්කරුවන්ගෙන් 10% ක් පමණක් තෝරාගනු ලබන අතර එයින් 70% ක් ගැහැනු අය වෙති.
 - (i) මෙම රැකියාව සඳහා පිරිමි අයකු තෝරාගනු ලැබීමේ,
 - (ii) රැකියාවට තෝරාගනු ලැබූ පිරිමි අයකු අභියෝගාන පරීක්ෂණයට A ශේණියක් ලබා තිබීමේ, සම්භාවිතාව සොයන්න.
 - (b) එක්තරා රෝහලක රෝගීන් 100 දෙනකුගේ පුතිකාර ලබා ගැනීමට පෙර රැඳී සිටි කාල (මිනිත්තුවලින්) එක් රැස් කරනු ලැබේ. එම එක් එක් කාලයෙන් මිනිත්තු 20ක් අඩු කිරීමෙන් ලැබෙන අන්තර එක එකක් 10න් බෙදීමෙන් ලැබෙන අගයන්ගේ වහප්තිය පහත වගුවෙන් දෙයි.

අගයන්ගේ පරාසය	රෝගීන් ගණන
-2 - 0	30
0 - 2	40
2 - 4	15
4 – 6	10
6 – 8	5

මෙම වගුවෙහි දී ඇති වාහප්තියෙහි මධානාපය හා සම්මත අපගමනය නිමානය කරන්න.

ඒ නයින්, රෝගීන් 100 දෙනා රැඳී සිටි කාලවල මධානාසය μ සහ සම්මත අපගමනය σ නිමානය කරන්න. σ තිමානය කරන්න $\kappa = \frac{\mu - M}{\sigma}$ මගින් අර්ථ දක්වනු ලබන කුටිකතා සංගුණකය κ නිමානය කරන්න; මෙහි M යනු රෝගීන් 100 දෙනා රැඳී සිටි කාලවල මාතය වේ.