电子电路与系统基础

理论课第七讲

线性阻性网络典型应用电路

李国林 清华大学电子工程系

线性阻性网络典型电路 大纲

- 网络分类
- 描述线性放大网络的基本参量
 - 增益
 - 本征增益
 - 传递函数(放大倍数)
 - 功率增益
 - 阻抗
 - 输入阻抗,输出阻抗,特征阻抗
 - 噪声
 - 失真
 - 微弱信号处理必须考虑噪声,强信号处理须考察非线性失真
- 线性阻性网络典型应用电路

戴维南诺顿定理给出的网络 参量已经足够描述网络特性

但在考察系统连接时,我们可能更关注一些具有特定物理含义的参量:电路语言、专业术语

一、网络分类

- 阻性网络和动态网络
- 线性网络和非线性网络
- 互易网络和非互易网络
- 对称网络和非对称网络
- 有源网络和无源网络
- 无损网络和有损网络
- 双向网络和单向网络

1.1 阻性网络和动态网络

- Resistance Network and Dynamic Network
- 定义一:
 - 如果网络端口电压和端口电流之间的关系用代数方程可以 完全描述,则为阻性网络
 - 代数方程包括超越方程
 - 如果网络端口电压和端口电流之间的关系还需微分方程方可完全描述,则为动态网络
- 定义二:
 - 无记忆系统为电阻网络
 - 有记忆系统为动态网络
 - N型负阻和S型负阻可以用代数方程描述,但是可形成有记忆网络, 既可归类属于电阻网络(定义一),亦可归类属于动态网络(定 义二)

1.2 线性网络和非线性网络

- Linear Network and Nonlinear Network
- 扣除源的影响后,
- 网络端口电压和端口电流之间的关系方程为线性方程,则为线性网络
- 网络端口电压和端口电流之间的关系方程不能用线性方程描述,则为非线性网络

1.3 互易网络和非互易网络

- Reciprocal Network and Nonreciprocal Network
- 激励和响应位置可以互换的二端口网络是互易网络,激励和响应位置不能互换的二端口网络是非互易网络
- 互易网络一般针对线性网络而定义
 - 由线性电阻、线性电容(无初始电压)、线性电感 (无初始电流)、传输线等互易元件构成的网络是 互易网络
 - 互易定理:线性二端口网络互易,则

$$z_{12} = z_{21}$$
 $y_{12} = y_{21}$ $h_{12} = -h_{21}$ $g_{12} = -g_{21}$

互易

• 互易:激励和响应可以互换位置的电路网络为互易网络

互易

• 互易:激励和响应可以互换位置的电路网络为 互易网络

互易定理

$$\frac{-i_{2,short}}{v_{s1}} = -y_{21} = -y_{12} = \frac{-i_{1,short}}{v_{s2}}$$

两个方向的本征跨导增益相同

$$\frac{v_{2,open}}{i_{s1}} = z_{21} = z_{12} = \frac{v_{1,open}}{i_{s2}}$$

两个方向的本征跨阻增益相同

$$\frac{v_{2,open}}{v_{s1}} = g_{21} = -g_{12} = \frac{-i_{1,short}}{i_{s2}}$$

$$\frac{-i_{2,short}}{i_{s1}} = -h_{21} = h_{12} = \frac{v_{1,open}}{v_{s2}}$$

本征电压增益和反向本征电流增益相同

本征电流增益和反向本征电压增益相同

$$\Delta_T = AD - BC = 1$$

特勒根定理

特勒根定理可以证明如下结论:由线性时不变电阻/电容(无初始电压)/电感(无初始电压)/电感(无初始电流)构成的网络一定是互易网络。

Tellegen's Theorem

• 对于具有相同拓扑结构的两个电路网络, N_1 和 N_2 ,电路 N_1 的所有支路电压 v_k 和电路 N_2 对应支路电流 i_k 之积的和为零

$$\sum_{k=1}^{b} v_k i_k = 0$$
 所有支路电压、电流按 端口关联参考方向定义

- 特勒根(Bernard D.H. Tellegen)于1952发表
 - -特勒根定理是网络理论中最重要的定理之一

互易网络

由线性时不变电阻/电容(无初始 电压)/电感(无初始电流)等互 易元件构成的网络是互易网络

$$\sum_{k=1}^{b} v_k i'_k + v_{s1} i_{out2} + v_{out1} i_{s2} = 0$$

$$= \sum_{k=1}^{b} z_k i_k i'_k + v_{s1} i_{out2} + v_{out1} i_{s2}$$

$$\sum_{k=1}^{b} v'_k i_k + v_{out2} i_{s1} + v_{s2} i_{out1} = 0$$

$$= \sum_{k=1}^{b} z_k i'_k i_k + v_{out2} i_{s1} + v_{s2} i_{out1}$$

$$v_{s1}i_{out2} + v_{out1}i_{s2} = v_{out2}i_{s1} + v_{s2}i_{out1}$$

 $v_{s1}i_{out2} = v_{s2}i_{out1}$

$$\frac{i_{out2}}{v_{s2}} = \frac{i_{out1}}{v_{s1}} \qquad -y_{12} = -y_{21}$$

特勒根定理

 特勒根定理可直接由KVL和KCL推导获得,反之, KVL和KCL亦可从特勒根定理反推获得,因而它 和基尔霍夫定律等价

KVL+KCL→TT

- 适用于所有电路网络

KVL+KCL→II KVL+TT→KCL KCL+TT→KVL

- 如果两个网络完全一致,N₂就是N₁自身,特勒根定理则对应着能量守恒
 - 电路中,元件释放的总功率等于元件吸收的总功率

$$\sum_{k=1}^{b} v_k(t) i_k(t) = \sum_{k=1}^{b} p_k(t) = 0$$

1.4 对称网络和非对称网络

- Symmetrical Network and Nonsymmetrical Network
- 当二端口网络对两个端口看入其端口电压电流关系毫无差别时,则是对称网络。如果从两个端口看存在可区分的差别,则为非对称网络
 - 电对称网络未必物理对称,但物理对称的一定是电对称网络
- 线性二端口网络如果对称,则一定互易
 - 互易未必对称

$$z_{11} = z_{22}$$
 $y_{11} = y_{22}$ $\Delta_h = h_{11}h_{22} - h_{12}h_{21} = 1$ $A = D$
$$z_{12} = z_{21}$$
 $y_{12} = y_{21}$ $h_{12} = -h_{21}$ $\Delta_T = AD - BC = 1$

1.5 有源网络和无源网络

- Active Network and Passive Network
 - 具有向端口外提供电功率能力的网络为有源网络
 - 不具向端口外提供电功率能力的网络为无源网络
- 对于由代数方程描述的阻性网络
 - 如果其端口总吸收功率恒不小于**0**,则无源

$$P = \sum_{k=1}^{n} p_k = \sum_{k=1}^{n} v_k i_k = \mathbf{v}^T \mathbf{i} \ge 0 \qquad (\forall \mathbf{v}, \mathbf{i}, \mathbf{f}(\mathbf{v}, \mathbf{i}) = 0)$$

- 如果存在某种端口负载条件,使得其端口总吸收功率小于**0**的情况可以出现,则有源

$$P = \sum_{k=1}^{n} p_k = \sum_{k=1}^{n} v_k i_k = \mathbf{v}^T \mathbf{i} < 0 \qquad (\exists \mathbf{v}, \mathbf{i}, \mathbf{f}(\mathbf{v}, \mathbf{i}) = 0)$$

1.6 无损网络和有损网络

 Lossless Network and lossy Network

纯由理想电容、电感、传输线构成的网络是无损的 理想变压器、理想环行器、理想回旋器是无损的

- 对于不存在电容、电感的无源阻性网络
 - 如果其端口总吸收功率恒等于**0**,则 为无损网络

$$P = \sum_{k=1}^{n} p_k = \sum_{k=1}^{n} v_k i_k = \mathbf{v}^T \mathbf{i} = 0 \qquad (\forall \mathbf{v}, \mathbf{i}, \mathbf{f}(\mathbf{v}, \mathbf{i}) = 0)$$

- 否则有损

阻性线性N端口网络 无损意味着:

$$R_{ii}=0$$

$$R_{ij} = -R_{ji}$$

$$(i, j = 1, 2, ..., N)$$

$$(R = z, y, h, g)$$

留作练习自行证明

1.7 双向网络和单向网络

- Bilateral Network and Unilateral Network
- 二端口网络中,只有端口A对端口B的作用关系(等效为受控源),反之端口B对端口A没有作用关系,则为单向网络;双向作用都存在则为双向网络
- 如果默认端口A为端口1,端口B为端口2,则单向线性二端口网络满足

$$z_{12} = 0$$
 $z_{21} \neq 0$

$$y_{12} = 0$$
 $y_{21} \neq 0$

$$h_{12} = 0$$
 $h_{21} \neq 0$

•
$$g_{12} = 0$$
 $g_{21} \neq 0$

$$\Delta_T = AD - BC = 0$$

$$z_{12}z_{21}\neq 0$$

$$\Delta_T = AD - BC \neq 0$$

$$\Delta_t = ad - bc \neq 0$$

二、描述线性放大网络的主要参量

- 2.1.1 本征增益Intrinsic Gain
 - 输出端口开路电压、短路电流和输入端口电压电流的线性传递系数
 - 和负载大小无关的增益: 本征增益

$$A_{v0} = \frac{v_2}{v_1}\Big|_{i_2=0} = \frac{1}{A} = g_{21}$$

$$G_{m0} = \frac{-i_2}{v_1}\Big|_{v_2=0} = \frac{1}{B} = -y_{21}$$

$$R_{m0} = \frac{v_2}{i_1} \Big|_{i_2 = 0} = \frac{1}{C} = z_{21}$$

$$A_{i0} = \frac{-i_2}{i_1} \Big|_{v_2=0} = \frac{1}{D} = -h_{21}$$

$$\mathbf{ABCD} = \begin{bmatrix} \frac{1}{A_{v0}} & \frac{1}{G_{m0}} \\ \frac{1}{R_{m0}} & \frac{1}{A_{i0}} \end{bmatrix}$$

传输参量描述的就是1端口到2端口的本征增益

2.1.2 考虑信源内阻、负载电阻影响的 电压传递函数: Transfer Function

通常以电压作为信息表征量:电压模电路电压模电路考察电压的传递关系:电压放大倍数

$$H = A_v = \frac{v_L}{v_S} = \frac{y_{21}G_S}{y_{21}y_{12} - (y_{11} + G_S)(y_{22} + G_L)}$$

线性二端口网络对信息的处理结果 二端口网络参量和信源、负载的相互作用后的综合效果

2.1.3 功率增益

$$G_{T} = \frac{P_{L}}{P_{S,\max}} = \frac{\frac{V_{L,rms}^{2}}{R_{L}}}{\frac{V_{S,rms}^{2}}{4R_{S}}} = \frac{4R_{S}}{R_{L}} \left(\frac{V_{L,rms}}{V_{S,rms}} \right)^{2} = \frac{4R_{S}}{R_{L}} \left| \frac{y_{21}G_{S}}{y_{21}y_{12} - (y_{11} + G_{S})(y_{22} + G_{L})} \right|^{2}$$
 在高频,功率容易测量,更多地用功率

绝对值代表模运算

基于功率传输的传递函数

$$= \frac{2}{A\sqrt{\frac{R_L}{R_S} + B\frac{1}{\sqrt{R_S R_L}} + C\sqrt{R_S R_L}} + D\sqrt{\frac{R_S}{R_L}}}$$

射频放大器、滤波器传递函数的一般性定义 $G_T = |H|^2$

基于功率传输的传递函数 和四个本征增益的关系: 同学自行推导并确认

 $4R_{\rm s}$

功率增益和负载、信源内 阻相关 20

2.2 特征阻抗

$$Z_{in,R_I=Z_{02}} = Z_{01}$$
 $Z_{out,R_S=Z_{01}} = Z_{02}$

多端口网络的特征阻抗定义: Z_{01} , Z_{02} ,…, Z_{0n} 为n端口网络n个端口的特征阻抗,只需满足如下要求:当其他n-1个端口端接各自的特征阻抗时,从第i个端口看入的输入阻抗为 Z_{0i} 。

线 性 端 XX 络 的 特 征 阻 抗

$$Z_{01} = Z_{in} = z_{11} - \frac{z_{12}z_{21}}{z_{22} + Z_{02}}$$
 $Z_{02} = Z_{out} = z_{22} - \frac{z_{21}z_{12}}{z_{11} + Z_{01}}$

$$Z_{02} = Z_{out} = z_{22} - \frac{z_{21}z_{12}}{z_{11} + Z_{01}}$$

$$Z_{01} = \sqrt{z_{11} \frac{z_{11} z_{22} - z_{12} z_{21}}{z_{22}}} = \sqrt{\frac{z_{11}}{y_{11}}} = \sqrt{Z_{in,2open} \times Z_{in,2short}}$$

$$Z_{02} = \sqrt{z_{22} \frac{z_{22} z_{11} - z_{21} z_{12}}{z_{11}}} = \sqrt{\frac{z_{22}}{y_{22}}} = \sqrt{Z_{out,1open} \times Z_{out,1short}}$$

最大功率增益: 特征阻抗、最大功率增益都是线性二端口网络的自身属性

$$Z_{01} = \sqrt{\frac{A}{D}} \sqrt{\frac{B}{C}} \qquad Z_{02} = \sqrt{\frac{D}{A}} \sqrt{\frac{B}{C}} \qquad G_{p,\text{max}} = \frac{1}{\left|\sqrt{AD} + \sqrt{BC}\right|^2}$$

射频网络端口对接要求阻抗匹配

传输与反射 散射参量S

Scattering Parameters

反射系数:端口匹配情况

$$s_{11} = \frac{z_{in}(R_L) - R_S}{z_{in}(R_L) + R_S}$$

$$s_{11} = \frac{z_{in}(R_L) - R_S}{z_{in}(R_L) + R_S}$$
 $s_{22} = \frac{z_{out}(R_S) - R_L}{z_{out}(R_S) + R_L}$

$$P_{S,max} - P_{in} = P_R$$

$$=\frac{\overline{v_S^2}}{4R_S}-\overline{\left(\frac{v_S}{R_S+z_{in}}\right)^2z_{in}}$$

传输系数:代表功率传输!

$$s_{21} = 2\sqrt{\frac{R_S}{R_L}} \frac{v_L}{v_S}$$

$$s_{21} = 2\sqrt{\frac{R_S}{R_L}} \frac{v_L}{v_S}$$
 $|s_{21}|^2 = G_T = \frac{P_L}{P_{S,max}}$

$$= \frac{\overline{v_S^2}}{4R_S} \left(\frac{z_{in} - R_S}{z_{in} + R_S} \right)^2 = P_{S,max} |\Gamma_{in}|^2$$

S参量矩阵(知道定义和物理意义, 不必掌握其具体应用)

$$\mathbf{s} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix}$$

如果 $s_{11}=0,s_{22}=0$,双端同时匹配 此时的|s21|2代表最大功率增益

互易网络

$$s_{12} = s_{21}$$

无损网络
$$|s_{11}|^2 + |s_{21}|^2 = 1$$

单向网络
$$s_{21} \neq 0, s_{12} = 0$$

线性阻性网络典型电路 大纲

- 网络分类
- 描述线性放大网络的基本参量
- 线性阻性网络的典型例子
 - 分压、分流
 - 合压、合流
 - 衰减、放大
 - 理想受控源
 - 缓冲器
 - 变压器
 - 阻抗变换
 - 信号的分解与合成
 - 环行器

3.1 分压器/分流器

$$v_{out} = \frac{R_2}{R_1 + R_2} v_{in}$$

$$i_{out} = \frac{G_2}{G_1 + G_2} i_{in}$$

合压、合流

$$v_{TH} = v_{out} = v_{in1} + v_{in2}$$
 $i_N = i_{out} = i_{in1} + i_{in2}$ $R_{TH} = R_1 + R_2$ $G_N = G_1 + G_2$

信号合成

$$R_{TH} = R_N = \frac{R_1 R_2}{R_1 + R_2}$$

$$v_{out} = v_{TH} = i_N R_N = \left(\frac{v_{in1}}{R_1} + \frac{v_{in2}}{R_2}\right) \frac{R_1 R_2}{R_1 + R_2} \qquad i_{out} = i_N = \frac{v_{TH}}{R_{TH}} = \left(\frac{i_{in1}}{G_1} + \frac{i_{in2}}{G_2}\right) \frac{G_1 G_2}{G_1 + G_2}$$

$$= \frac{R_2}{R_1 + R_2} v_{in1} + \frac{R_1}{R_1 + R_2} v_{in2}$$

$$G_N = \frac{1}{R_{TH}} = \frac{1}{R_1 + R_2} = \frac{G_1 G_2}{G_1 + G_2}$$

$$i_{out} = i_N = \frac{v_{TH}}{R_{TH}} = \left(\frac{i_{in1}}{G_1} + \frac{i_{in2}}{G_2}\right) \frac{G_1 G_2}{G_1 + G_2}$$

$$=\frac{R_2}{R_1+R_2}v_{in1}+\frac{R_1}{R_1+R_2}v_{in2} \\ \qquad \qquad \text{ind } \frac{G_2}{G_1+G_2}i_{in1}+\frac{G_1}{G_1+G_2}i_{in2}$$

叠加定理理解:两个分压系数为权重

叠加定理理解:两个分流系数为权重

电阻分压网络在DAC中的应用例

$D_2D_1D_0$	C ₇ C ₆ C ₀	V _{out} /V _{REF}
000	0000001	0
001	0000010	0.125
010	00000100	0.25
011	00001000	0.375
100	00010000	0.5
101	00100000	0.625
110	01000000	0.75
111	10000000	0.875

$$V_{out} = V_{REF} \left(\frac{D_2}{2} + \frac{D_1}{4} + \frac{D_0}{8} \right)$$
$$= \frac{1}{8} V_{REF} \left(2^2 D_2 + 2^1 D_1 + 2^0 D_0 \right)$$

29

DAC输入输出转移特性曲线

电阻分压网络在ADC中的应用例

ADC输入输出转移特性曲线

DAC/ADC 核心部件

开关和比较器实现需要非线性电阻参与: 例如晶体管

3.2 衰减/放大

- 衰减和放大都属信号电平调整电路
 - 以功率高低为电平大小标准
 - 衰减: 向低处调整: 输出功率低于输入功率
 - 放大: 向高处调整: 输出功率高于输入功率
- 衰减网络可以采用电阻分压、分流网络
 - 电阻网络消耗能量,故而输出功率低于输入功率
 - 串臂、并臂电阻,L型、T型、π型电阻网络,都是电阻衰减网络
- 放大网络则需非互易受控源或负阻
 - 非互易受控源和负阻都是有源元件,具有将直流电能转换为交流 电能的能力
 - 第4章讨论具体实现方案
 - 本节只讨论线性受控源作为单向放大器的核心部件

3.2.1 匹配衰减器

这是一个匹配衰减器,求其特征阻抗和衰减系数

两端匹配则最大功率传输

$$G_T = \frac{P_L}{P_{s,max}} = G_{p,max}$$

电阻网络有损耗

$$G_{p,\max} < 1$$

$$G_{p,\text{max}} < 1$$
 $G_{p,\text{max}}(dB) < 0dB$

衰减系数就是功率增益倒数

$$L = \frac{1}{G_{p,\text{max}}} \qquad L(dB) = -G_{p,\text{max}}(dB)$$

$$L(dB) = -G_{p,\max}(dB)$$

特征阻抗

$$Z_{01} = \sqrt{(R_1 \parallel R_2) \cdot (R_1 \parallel (R_2 + R_3))} = \sqrt{(58 \parallel 303) \cdot (58 \parallel (303 + 97))} = 49.7\Omega \approx 50\Omega$$

$$Z_{02} = \sqrt{(R_3 \parallel R_2) \cdot (R_3 \parallel (R_2 + R_1))} = \sqrt{(97 \parallel 303) \cdot (97 \parallel (303 + 58))} = 75.0\Omega$$

这是一个连接50Ω系统和75Ω系统的匹配衰减网络

参 量 一与传 递 函

$$S_{R_S=50\Omega,R_L=75\Omega}$$

$$= \begin{bmatrix} 0 & 0.0997 \\ 0.0997 & 0 \end{bmatrix}$$

$$S_{R_S=50\Omega,R_L=50\Omega}=?$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ G_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & R_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ G_3 & 1 \end{bmatrix} = \begin{bmatrix} 1 + G_3 R_2 & R_2 \\ G_1 + G_3 + G_1 G_3 R_2 & 1 + G_1 R_2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 + 303/97 & 303 \\ 1/58 + 1/97 + 303/(58 \times 97) & 1 + 303/58 \end{bmatrix} = \begin{bmatrix} 4.124 & 303\Omega \\ 0.0814S & 6.224 \end{bmatrix}$$

$$H = \frac{2}{A\sqrt{\frac{R_L}{R_S} + B\frac{1}{\sqrt{R_S}R_L} + C\sqrt{R_S}R_L} + D\sqrt{\frac{R_S}{R_L}}}$$
 基于功率传输的传递函数
= ______ = 0.0997 = -20

$$= \frac{2}{4.124 \times \sqrt{\frac{75}{50}} + 303 \times \frac{1}{\sqrt{75 \times 50}} + 0.0814 \times \sqrt{75 \times 50} + 6.224 \times \sqrt{\frac{50}{75}}} = 0.0997 = -20dB$$

$$G_T = |H|^2 = 0.00994 = -20dB$$
 $G_{p,\text{max}} = \frac{1}{\left|\sqrt{AD} + \sqrt{BC}\right|^2} = \dots$

电子电路与系统基础

20dB的匹配衰减器

流控流源 压控压源 压控流源 流控压源 理想受控源 3.2.2 $A_i \cdot i_i$ $G_m \cdot v_i$ v_{i} v_{i} 阻 0 0 抗矩阵 Z R_m 理 导纳矩阵 想 y 线 性 混合矩阵 0 h 受 控 逆 源 混矩阵 0 g 38

种 基 器 可 随 意

放大器 阻 抗 矩阵 导纳矩阵 混 合矩阵 逆 混矩 阵

电压放大器

$$\begin{bmatrix} R_i & 0 \\ A_v R_i & R_o \end{bmatrix}$$

$$\begin{bmatrix} R_i & 0 \\ A_v R_i & R_o \end{bmatrix} \quad \begin{bmatrix} R_i & 0 \\ -G_m R_i R_o & R_o \end{bmatrix} \quad \begin{bmatrix} R_i & 0 \\ -A_i R_o & R_o \end{bmatrix}$$

$$\begin{bmatrix} R_i & 0 \\ -A_i R_o & R_o \end{bmatrix}$$

$$\begin{bmatrix} R_i & 0 \\ R_m & R_o \end{bmatrix}$$

$$\begin{bmatrix} G_i & 0 \\ -A_v G_o & G_o \end{bmatrix} \qquad \begin{bmatrix} G_i & 0 \\ G_m & G_o \end{bmatrix} \qquad \begin{bmatrix} G_i & 0 \\ A_i G_i & G_o \end{bmatrix} \qquad \begin{bmatrix} G_i & 0 \\ -R_m G_i G_o & G_o \end{bmatrix}$$

$$\begin{bmatrix} G_i & 0 \\ G_m & G_o \end{bmatrix}$$

$$\begin{bmatrix} G_i & 0 \\ A_i G_i & G_o \end{bmatrix}$$

$$\begin{bmatrix} G_i & 0 \\ -R_m G_i G_o & G_o \end{bmatrix}$$

$$\begin{bmatrix} R_i & 0 \\ -A_v R_i G_o & G_o \end{bmatrix} \quad \begin{bmatrix} R_i & 0 \\ G_m R_i & G_o \end{bmatrix} \quad \begin{bmatrix} R_i & 0 \\ A_i & G_o \end{bmatrix} \quad \begin{bmatrix} R_i & 0 \\ -R_m G_o & G_o \end{bmatrix}$$

$$egin{bmatrix} R_i & 0 \ G_m R_i & G_o \end{bmatrix}$$

$$\begin{bmatrix} R_i & 0 \\ A_i & G_o \end{bmatrix}$$

$$\begin{bmatrix} R_i & 0 \\ -R_m G_o & G_o \end{bmatrix}$$

$$G = G$$

$$\begin{bmatrix} G_i & 0 \\ -G_m R_o & R_o \end{bmatrix}$$

$$\begin{bmatrix} G_i & 0 \\ -G_m R_o & R_o \end{bmatrix} \quad \begin{bmatrix} G_i & 0 \\ -A_i G_i R_o & R_o \end{bmatrix} \quad \begin{bmatrix} G_i & 0 \\ R_m G_i & R_o \end{bmatrix}$$

$$\begin{bmatrix} G_i & 0 \\ R_m G_i & R_o \end{bmatrix}$$

h

Z

四种基本放大器的最适参量矩阵

最适参量矩阵定义: (1) 谁更接近于理想受控源? 和外接负载有关

(2) 谁物理意义更清晰? (对受控源而言,物理意义更清晰的就是理想受控源) 40

放大器的基本功用

- 信号放大: 能量转换
 - 电压、电流、功率等放大
 - 从有源性上考察: P_{Σ} <0或 $G_{p,max}$ >1: 留作作业证明
 - 第4章研究如何将直流能量转换为交流能量

• 信号缓冲: 基本放大器的单向性

- 隔离源和负载

• 电压缓冲器: 电压增益为1的压控压源: 电压跟随器

• 电流缓冲器: 电流增益为1的流控流源: 电流跟随器

Buffer 一般默认缓冲器增益为1;增益不为1,也可称缓冲,因为起到缓冲隔离作用

• 信号线性转换: 线性描述关系

- 电压转电流 linear VI converter

• 压控流源

- 电流转电压

• 流控压源

linear IV converter

Trans-conductance Amplifier

Trans-impedance Amplifier

Amplifier

Voltage Amplifier

Current Amplifier

Follower

$$R_i >> R_S, R_o << R_L \qquad v_L \approx v_S$$

缓冲器

电压缓冲器: 电压增益为1的接近理想压控压源的电压放大器电流缓冲器: 电流增益为1的接近理想流控流源的电流放大器

分流,非线性失真,重载

全流,非线性失真很小
$$\mathbf{h} \approx \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$$
 $R_i \ll R_S, R_o \gg R_L \qquad i_L \approx i_S$

3.3 理想变压器

- 理想变压器
 - 理想传输网络, 理想阻抗变换网络

理想变压器端口描述方程理想变压器元件约束条件

$$v_1 = nv_2$$
 $v_{out} = \frac{1}{n}v_{in}$
 $i_1 = -\frac{1}{n}i_2$ $i_{out} = ni_{in}$

$$p_{out} = v_{out}i_{out} = v_{in}i_{in} = p_{in}$$

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} n & 0 \\ 0 & \frac{1}{n} \end{bmatrix} \begin{bmatrix} v_2 \\ -i_2 \end{bmatrix}$$

$$\mathbf{ABCD} = \begin{bmatrix} n & 0 \\ 0 & \frac{1}{n} \end{bmatrix}$$

网络参量描述

$$P_{\Sigma} = v_1 i_1 + v_2 i_2 = 0$$

理想变压器是无损传输网络 1端口吸收的功率全部从2端口释放出去 电流从端口1同名端流入,从端口2同名 端流出

$$\mathbf{ABCD} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} n & 0 \\ 0 & \frac{1}{n} \end{bmatrix} \qquad \Delta_T = AD - BC = 1$$
 理想变压器是

$$\Delta_T = AD - BC = 1$$

理想变压器是
互易网络

$$\mathbf{abcd} = \frac{1}{\Delta_T} \begin{bmatrix} D & B \\ C & A \end{bmatrix} = \begin{bmatrix} \frac{1}{n} & 0 \\ 0 & n \end{bmatrix}$$

$$\mathbf{z} = \frac{1}{C} \begin{bmatrix} A & \Delta_T \\ 1 & D \end{bmatrix}$$

习惯于采用变压器符号描述 不用其等效电路

$$\mathbf{y} = \frac{1}{B} \begin{bmatrix} D & -\Delta_T \\ -1 & A \end{bmatrix}$$

无法用y参量表述

$$\mathbf{g} = \frac{1}{A} \begin{bmatrix} C & -\Delta_T \\ 1 & B \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{n} \\ \frac{1}{n} & 0 \end{bmatrix} \quad \mathbf{g}$$
参量:有等效电路

具有h参量的互易网络,如果h₁₂是阻性代数值, 则总可以抽象出理想变压器

阻抗变换

$$v_{1} = nv_{2}$$

$$i_{1} = -\frac{1}{n}i_{2}$$

$$Z_{in} = \frac{v_{1}}{i_{1}} = \frac{nv_{2}}{\frac{i_{2}}{n}} = n^{2} \frac{v_{2}}{-i_{2}} = n^{2}R_{L}$$

源的变换

$$v_1 = nv_2; \quad i_1 = -\frac{1}{n}i_2$$

$$v_2 = \frac{1}{n}v_1 = \frac{1}{n}(v_S - i_1R_S) = \frac{1}{n}(v_S + \frac{1}{n}i_2R_S) = \frac{v_S}{n} + \frac{R_S}{n^2}i_2$$

源变换后,由于变压器无损,源的能力不会变:额定功率相等

单端转双端 悬浮转双端

单端转悬浮

单端信号:端口的一个端点接地

双端信号:端口的两个端点对地电压相位相反

悬浮:两端相对电 压确知,但绝对电 位非自身所能确定, 可由外接电路确定

双端转单端双端转悬浮

三端口变压器

$$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 0 & \frac{N_1}{N_2} \\ -\frac{N_1}{N_2} & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 & n \end{bmatrix} \begin{bmatrix} i_1 \\ -n & 0 \end{bmatrix} \begin{bmatrix} v_2 \end{bmatrix}$$

二端口理想变压器混合参量

$$\begin{bmatrix} v_1 \\ v_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{N_1}{N_3} \\ 0 & 0 & \frac{N_2}{N_3} \\ -\frac{N_1}{N_3} & -\frac{N_2}{N_3} & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ v_3 \end{bmatrix}$$

三端口理想变压器混合参量

互感变压器满足一定条件即可抽象为理想变压器

(a) 三端口电感绕制方式

理想变压器是无损网络: 某端口吸收功率必然在其他端口全部输出

(b) 三端口理想变压器信号分解

率是两个信源额定功率之和? 如果有可能,给出阻抗条件。

三端口环行器四端口... 五端口...

默认地结点为端口另一端点

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 & R & -R \\ -R & 0 & R \\ R & -R & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix}$$

z参量矩阵:无损网络

R:跨阻控制系数

(R > 0)

特征阻抗

$$\mathbf{z} = \begin{bmatrix} 0 & R & -R \\ -R & 0 & R \\ R & -R & 0 \end{bmatrix}$$

旋转对称矩阵描述旋转对称结构

$$\begin{bmatrix} a_1 & a_2 & . & a_n \\ a_n & a_1 & . & a_{n-1} \\ . & . & . & . \\ a_2 & a_3 & . & a_1 \end{bmatrix}$$

旋转对称结构 三个端口并无差别 故而特征阻抗相等

$$Z_{01} = Z_{02} = Z_{03} = Z_0 = ?$$

Rotational-symmetric matrix

征 阻 抗 定 求

端口对接关系,只需列写元件约束即可

$$v_2 + i_2 Z_0 = 0$$

$$v_1 - Ri_2 + Ri_3 = 0$$

$$v_3 + i_3 Z_0 = 0$$

$$v_2 - Ri_3 + Ri_1 = 0$$

$$v_3 - Ri_1 + Ri_2 = 0$$

$$i_1 = i_{test}$$
 6个方程6个未知量

端口1加测试电流:加流求压,求输入阻抗

$$\begin{bmatrix} v_{1} \\ v_{2} \\ v_{2} \\ \end{bmatrix} = \begin{bmatrix} \frac{2Z_{0}R^{2}}{Z_{0}^{2} + R^{2}} \\ -\frac{Z_{0}R(R + Z_{0})}{Z_{0}^{2} + R^{2}} \\ -\frac{Z_{0}R(R - Z_{0})}{Z_{0}^{2} + R^{2}} \\ i_{1} \\ i_{2} \\ \vdots \\ \frac{R(R + Z_{0})}{Z_{0}^{2} + R^{2}} \\ \frac{R(R - Z_{0})}{Z_{0}^{2} + R^{2}} \\ \end{bmatrix}$$

端口功率

$$P_1 = v_1 i_1 = Z_0 i_{test} i_{test} = Z_0 i_{test}^2$$

端口1吸收功率

$$P_2 = v_2 i_2 = -Z_0 i_{test} i_{test} = -Z_0 i_{test}^2$$
 在端口**2**全部释放出去

$$P_3 = v_3 i_3 = 0$$

 $P_3 = v_3 i_3 = 0$ 端口**3**没有释放吸收任何功率

Circulator:环行器的含义:端口匹配时,前一端口吸收功率全 部送到下一端口,为该端口匹配负载所吸收:如果不匹配, 则有部分功率反射回去,送到再下一个端口: 留作作业确认

环行器的散射参量是最适参量

$$\mathbf{z} = \begin{bmatrix} 0 & R & -R \\ -R & 0 & R \\ R & -R & 0 \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

端口1 加源 测试

端口**2** 加源 测试

端口3 加源 测试

散射参量恰当地描述了其环行特性:

1/信号只能从端口1环行到端口2(s_{21} =- $1,s_{31}$ =0),从端口2环行到端口3(s_{32} =- $1,s_{12}$ =0),从端口3环行到端口1(s_{13} =- $1,s_{23}$ =0)

 $2/s_{11}=0$,端口1匹配无反射 $R_1=R=Z_{01}$,端口1吸收端口1所接信源的额定功率

3/ s₂₁=-1,端口1吸收功率(电信号)环行至端口2,端口2匹配负载吸收环行过来的全部功率,同时信号反相

4/s₃₁=0,端口1功率全部被端口2匹配负载吸收,端口3将不会有信号传输 讨来

同理, s_{22} =0,...; s_{32} =-1,...; s_{12} =0,...。 s_{33} =0,...; s_{13} =-1,...; s_{23} =0,....

共用收发天线的信号分离

端口阻抗匹配:可完成收发分离 否则会相互干扰:作业分析

作业1 匹配衰减器

根据对偶性给出T性电阻衰减器的设计公式 并根据公式设计一个50Ω系统到75Ω系统转 换的20dB匹配衰减器,并给出该T型电阻衰 减器的z参量和s参量矩阵

对偶:

串联/并联、回路/结点 电阻/电导 特征阻抗/特征导纳 T/π

李国林 电子电路与系统基础

$R_2 = 0.5 (\beta - \beta^{-1}) \sqrt{Z_{01} Z_{02}}$

$$R_{1} = \frac{1}{\frac{1}{Z_{01}} \frac{\beta + \beta^{-1}}{\beta - \beta^{-1}} - \frac{1}{R_{2}}}$$

$$R_{3} = \frac{1}{\frac{1}{Z_{02}} \frac{\beta + \beta^{-1}}{\beta - \beta^{-1}} - \frac{1}{R_{2}}}$$

$$\beta = 10^{\frac{L}{20}}$$

教材练习3.9.5

清华大学电子工程系 2020年春季学期

作业2 理想变压器实现阻抗匹配

负载电阻和信源内阻具有什么关系时,负载电阻可获得最大功率?此时信源输出多少功率?变压器消耗多少功率?负载消耗多少功率?

作业3 信号合成

Ideal Transformer

$$\begin{bmatrix} v_1 \\ v_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{N_1}{N_3} \\ 0 & 0 & \frac{N_2}{N_3} \\ -\frac{N_1}{N_3} & -\frac{N_2}{N_3} & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ v_3 \end{bmatrix}$$

$$v_3 = \alpha v_{S1} + \beta v_{S2}$$

选作:用如图所示电路实现信号合成,请给出合成端口 v_3 的电压表达式,确认信号合成系数 α : β 和匝数比成正比 N_1 : N_2 关系

有无可能匹配? 负载同时获得两个信源输出的额定功率

作业4 负阻放大器

证明: (1) 当端口2开路或短路时,环行器端口1吸收的功率全部从端口3送出,为端口3匹配负载吸收

(2)选作:当端口2为负阻时,环行器端口3获得功率高于端口1 吸收功率,以端口2为内部端口,以端口1为输入端口,以端口3 为输出端口,求该二端口网络的输入电阻、输出电阻和功率增益

讲义练习3.10.9

作业5 理想回旋器

Gyrator

理想回旋器是一种二端口网络,其端口描述方程为

$$v_1 = -ri_2 \qquad v_2 = ri_1$$

- (1) 假设我们可以实现理想受控源,如何实现回旋器
- (2)给出回旋器的6个网络参量及等效电路(如果存在)
- (2)证明:回旋器可实现对偶变换---它可以将电容C转换为电感L,将电感L转换为电容C,将并联RLC转换为串联GCL,将恒压源转换为恒流源,将开路转换为短路,...
 - (4) 理想回旋器是有源的还是无源的? 是无损还是有损?

讲义练习3.11.8

作业6 无损网络

- 证明无损阻性线性二端口网络的网络参量 具有如下特性
 - -证明其一即可

$$R_{11} = 0$$

$$R_{22}=0$$

$$R_{11} = 0$$
 $R_{22} = 0$ $R_{12} = -R_{21}$ $z \gg \pm$

$$g_{11} = 0$$

$$g_{22} = 0$$

$$g_{11} = 0$$
 $g_{22} = 0$ $g_{12} = -g_{21}$

$$AC = 0$$

$$BD = 0$$

$$AC = 0$$
 $BD = 0$ $AD + BC = 1$ $ABCD$ 参量

作业7网络单向化及其有源性

• 已知某双向阻性网络的z参量矩阵为

$$\mathbf{z} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

$$R_{21}R_{12} \neq 0$$

$$R_{11} > 0$$

$$R_{22} > 0$$

$$\mathbf{Z} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

- (1) 已知该网络有源,请给出该网络的有源性条件
- (2)请设法将该双向有源网络转化为单向有源网络(提示:和无损二端口网络连接)
- (3) 选作:证明变换后的单向网络(基本放大器)的'最大功率增益大于1'等价于'双向网络的有源性条件'

作业8二端口网络连接关系分析

反馈输出点和放大输入点不同: 串联 反馈输入点和放大输出点相同: 并联

串并连接h相加

串串连接z相加

反馈输出点和放大输入点不同: 串联 反馈输入点和放大输出点不同: 串联

并串连接g相加

反馈输出点和放大输入点相同: 并联 反馈输入点和放大输出点不同: 串联

作业8 二端口网络连接(选作)

- 确认并画出两个二端口网络的连接关系
- 获得两个二端口网络的合适参量,根据网络连接关系求总网络参量
 - 并串连接g相加,则分别求g参量,再相加
- 求逆,考察 A_{vo} $\rightarrow \infty$ 时,四种连接关系接近哪种理想受控源?
 - 并串连接g相加,g求逆获得h,考察是否接近理想流控流源?

— ...

CAD 作业

(这里用仿真工具替代列 方程解方程的过程,只是 需要根据环行器特性对结 果给出正确的解读)

$$\mathbf{y} = \begin{bmatrix} 0 & G & -G \\ -G & 0 & G \\ G & -G & 0 \end{bmatrix}$$

仿真时取G=20mS

- 理论分析该环行器的端口特征阻抗,以及在端接各自特征阻抗 条件下的**S**参量矩阵
- 假设端口1为源,端口2,端口3为负载,仿真确认如下结论:
 - 如果端口2匹配,端口1吸收功率全部被端口2负载吸收
 - 如果端口2不匹配,端口3匹配,端口3匹配负载吸收了端口2反射功率
 - 如果端口2不匹配,端口3不匹配,端口1信源内阻匹配,分析信源实际 输出多大功率?如何理解?
 - 如果三个端口阻抗都不匹配,对仿真结果如何解释?

由于将环行器抽象 为阻性网络,因此 环行反射是瞬间完 成的,如果在各个 端口添加传输线, 则可观测到反射叠 加的全过程