Все задачи этого листка относятся к материалу модуля 2 и будут приниматься в модуле 3 в качестве бонусных.

10.0-b. Докажите, что инъективное банахово пространство (см. листок 6) дополняемо в любом содержащем его банаховом пространстве.

10.1-b. 1) Докажите, что c_0 недополняемо в ℓ^{∞} .

2) Приведите пример неинъективного банахова пространства.

Указание. Можно действовать следующим образом:

- а) Докажите, что \mathbb{N} можно представить в виде несчетного объединения $\mathbb{N} = \bigcup_{i \in I} A_i$ счетных множеств A_i так, что $A_i \cap A_j$ конечно при $i \neq j$. (Подсказка: вместо \mathbb{N} удобнее брать \mathbb{Q}).
- b) Докажите, что для каждого $f \in (\ell^{\infty})^*$, обращающегося в нуль на c_0 , множество тех $i \in I$, для которых $f(\chi_{A_i}) \neq 0$, не более чем счетно.
- с) Докажите, что на ℓ^{∞}/c_0 не существует счетного множества непрерывных линейных функционалов, разделяющего точки.
- d) Докажите, что c_0 недополняемо в ℓ^{∞} .
- **10.2-b. 1)** Докажите, что если банахово пространство X топологически изоморфно Y^* для некоторого банахова пространства Y, то оно дополняемо в X^{**} .
- 2) Решите задачу 5.9-b с помощью п. 1 и задачи 10.1-b.
- **10.3-b.** Пусть X и Y банаховы пространства и $S \in \mathcal{B}(Y^*, X^*)$. Обязательно ли существует такой $T \in \mathcal{B}(X, Y)$, что $S = T^*$?
- **10.4-b.** Отождествим $(\ell^1)^*$ с ℓ^∞ (см. задачу 7.1) и рассмотрим пространство c_0 как подмножество в $(\ell^1)^*$. Найдите ${}^{\perp}c_0$ и $({}^{\perp}c_0)^{\perp}$.
- **10.5-b.** Пусть X нерефлексивное банахово пространство. Покажите, что в X^* существует замкнутое векторное подпространство N, для которого $N \neq ({}^{\perp}N)^{\perp}$.
- **10.6-b.** Придумайте пример инъективного оператора $T \in \mathcal{B}(X,Y)$ между банаховыми пространствами X и Y, такого, что $\operatorname{Im} T^*$ не плотен в X^* . (Указание: X обязано быть нерефлексивным см. лекцию.)
- **10.7-b.** Пусть X, Y нормированные пространства и $T \in \mathcal{B}(X, Y)$.
- 1) Докажите, что $T = \varkappa \sigma$, где \varkappa инъективный, а σ открытый оператор.
- 2) Докажите, что $T=\mu \tau$, где μ топологически инъективный оператор с замкнутым образом, а τ оператор с плотным образом.
- 3) Сформулируйте и докажите утверждения о единственности разложений из пп. 1 и 2.

Определение 10.1. Оператор $T \in \mathcal{B}(X,Y)$ называется *строгим*, если он осуществляет открытое отображение X на $\operatorname{Im} T$ и $\operatorname{Im} T$ замкнут в Y.

10.8-b. Докажите, что если X и Y — банаховы пространства, то оператор T осуществляет открытое отображение X на ${\rm Im}\, T$ тогда и только тогда, когда ${\rm Im}\, T$ замкнут в Y.

Разложение оператора. Пусть X, Y — нормированные пространства и $T \in \mathcal{B}(X, Y)$. Положим $\operatorname{Coim} T = X / \operatorname{Ker} T$ (кообраз T). Из свойств факторпространств (см. лекцию) следует существование коммутативной диаграммы

$$\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
Q & & \downarrow J \\
\operatorname{Coim} T & \xrightarrow{\widetilde{T}} & \overline{\operatorname{Im} T}
\end{array}$$
(1)

в которой Q — факторотображение и J — тождественное вложение.

10.9-b. Докажите, что следующие свойства оператора $T \in \mathcal{B}(X,Y)$ эквивалентны:

- (1) T строгий;
- (2) для любого разложения из п. 1 задачи 10.7-b оператор \varkappa топологически инъективен и имеет замкнутый образ;
- (3) для любого разложения из п. 2 задачи 10.7-b оператор τ открыт;
- (4) оператор \tilde{T} из разложения (1) топологический изоморфизм.

10.10-b (*«усиленная лемма Серра»*). Пусть X,Y,Z — банаховы пространства, $S \in \mathcal{B}(X,Y)$, $T \in \mathcal{B}(Y,Z)$ и TS = 0. Докажите, что следующие утверждения эквивалентны:

- (1) последовательность $X \xrightarrow{S} Y \xrightarrow{T} Z$ точна и $\operatorname{Im} T$ замкнут;
- (2) последовательность $X^* \stackrel{S^*}{\longleftarrow} Y^* \stackrel{T^*}{\longleftarrow} Z^*$ точна и $\operatorname{Im} S^*$ замкнут.

Как следствие, цепной комплекс банаховых пространств точен тогда и только тогда, когда точен его сопряженный комплекс.

10.11-b (*«лемма Серра»*). Пусть X,Y,Z — банаховы пространства, $S \in \mathcal{B}(X,Y), T \in \mathcal{B}(Y,Z)$ и TS = 0. Предположим, что операторы S и T имеют замкнутые образы. Постройте изометрический изоморфизм ($\ker T / \operatorname{Im} S$)* $\cong \ker S^* / \operatorname{Im} T^*$.

Как следствие, если C — цепной комплекс банаховых пространств со строгими дифференциалами, то $H^n(C^*) \cong H_n(C)^*$.