## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-179821

(43) Date of publication of application: 26.06.2002

(51)Int.Cl.

CO8J 7/00 B32B 27/34 CO8G 73/10 // CO8L 79:08

(21)Application number : 2001-230272

(71)Applicant : UBE IND LTD

(22)Date of filing:

30.07.2001

(72)Inventor: YAMAMOTO TOMOHIKO

TAKAHASHI TAKUJI

**NARUI KOJI MITSUI HIROTO** 

KOMODA TSUNEHISA

(30)Priority

Priority number: 2000302087 Priority date: 02.10.2000 Priority country: JP

## (54) POLYIMIDE FILM WITH CONTROLLED COEFFICIENT OF LINEAR EXPANSION AND **LAMINATE**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a thin polyimide film composed of 3,3',4,4'biphenyltetracarboxylic acid component and p-phenylenediamine component, namely an aromatic polyimide film capable of giving copper-polyimide film laminates for circuits such as copper-clad laminates with slight curl, especially curl-free laminates with copper foil inside. SOLUTION: This polyimide film, which has been discharge-treated, consists of a polyimide composed of 3,3',4,4'-biphenyltetracarboxylic acid component and p-phenylenediamine component, has a thickness of 35-557  $\mu m$ , coefficient of linear expansion (TD) at 50-200° C of 17 to 24 × 10-6 cm/cm/° C and tensile modulus (TD) of ≥700 kgf/mm2.

### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-179821 (P2002-179821A)

(43)公開日 平成14年6月26日(2002.6.26)

| (51) Int.Cl. <sup>7</sup> | 識別記号                                                       | FI                                                         | テーマコート*(参考)                               |
|---------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|
| C 0 8 J 7/00              | 3 0 3                                                      | C 0 8 J 7/00                                               | 303 4F073                                 |
|                           | CFG                                                        |                                                            | CFG 4F100                                 |
| B 3 2 B 27/34             |                                                            | B 3 2 B 27/34                                              | 4 J 0 4 3                                 |
| C 0 8 G 73/10             |                                                            | C 0 8 G 73/10                                              |                                           |
| // C08L 79:08             |                                                            | C 0 8 L 79:08                                              | Z                                         |
|                           |                                                            | 審查請求 未請求                                                   | 請求項の数6 OL (全7頁)                           |
| (21)出願番号                  | 特願2001-230272(P2001-230272)                                | (71)出願人 00000026<br>宇部興商                                   | 06<br>6株式会社                               |
| (22)出願日                   | 平成13年7月30日(2001.7.30)                                      |                                                            | 学部市大字小串1978番地の96                          |
| (31)優先権主張番号<br>(32)優先日    | 特願2000-302087 (P2000-302087)<br>平成12年10月 2 日 (2000. 10. 2) | 山口県宇                                                       | 学部市大字小串1978番地の10 宇部<br>で会社宇部ケミカル工場内       |
| (33)優先権主張国                | 日本(JP)                                                     | (72)発明者 高橋 卓二<br>山口県宇部市大字小串1978番地の10 宇部<br>興産株式会社宇部ケミカル工場内 |                                           |
|                           |                                                            |                                                            | 特治<br>学部市大字小串1978番地の10 宇部<br>【会社宇部ケミカル工場内 |
|                           |                                                            |                                                            | 最終頁に続く                                    |

### (54) 【発明の名称】 線膨張係数を制御したポリイミドフィルム及び積層体

#### (57)【要約】

【課題】 薄い厚みの3,3',4,4'ービフェニルテトラカルボン酸成分とpーフェニレンジアミン成分系ポリイミドフィルムであって、銅張積層体などの回路用銅ーボリイミドフィルム積層体を製造してもカールの少ない、特に銅箔を内側にしたカールが生じない芳香族ポリイミドフィルムを提供する。

【解決手段】 3, 3, 4, 4, 4, -ビフェニルテトラカルボン酸成分とp-フェニレンジアミン成分とのボリイミドからなり、厚みが $35\sim55\mu$ mで、 $50\sim20$ 0°Cにおける線膨張係数(TD)が $17\sim24\times10$ ° cm/cm/Cで、かつ引張弾性率(TD)が700kgf/mm<sup>-</sup>以上であり、放電処理されてなるボリイミドフィルム。

#### 【特許請求の範囲】

【請求項1】 3,3',4,4'ービフェニルテトラカルボン酸成分とpーフェニレンジアミン成分とを必須成分として有するポリイミドからなり、厚みが35~55 $\mu$ mで、50~200 Cにおける線膨張係数(TD)が17~24×10 m c m c m C で、かつ引張弾性率(TD)が700 k g f m 以上であり、その表面が放電処理されてなるボリイミドフィルム

【請求項2】 引張弾性率 (TD) が750~1100 kgf/mm<sup>-</sup>である請求項1記載のポリイミドフィル

【請求項3】 FPCやTAB用の基板材料、中でもCSPやBGAと呼ばれるICパッケージ用の絶縁材料用および積層多層回路基板用等の半導体実装基板用である請求項1記載のボリイミドフィルム。

【請求項4】 3,3',4,4'ーピフェニルテトラカルボン酸成分と $p-フェニレンジアミン成分とを必須成分として有するボリイミドからなり、<math>50\sim200$  でにおける線膨張係数(TD)が $1.7\sim24\cdot10$  で m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m / m

【請求項 5 】 請求項 1 または 4 に記載されたポリイミドフィルムに熱硬化性接着剤シートが積層され、さらに該接着剤層上に剥離フィルムが積層され、所望によりレーザー加工あるいはパンチング加工などの穴開け加工してなる積層体。

【請求項6】 請求項1または4に記載されたポリイミドフィルムに直接あるいは耐熱性接着剤、好適には熱硬化性接着剤を介して金属層、好適には銅層が積層されてなる積層体。

【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】この発明は、3、3、4、4、4、-ビフェニルテトラカルボン酸二無水物とp-フェニレンジアミンとを必須成分として製造されるボリイミドからなり、厚みが35~55 $\mu$ m、50~200℃における線膨張係数(TD)が17~24×10°cm/cm/cm/cm/で以上であり、その表面が放電処理されてなる高弾性率のボリイミドフィルムおよび積層体に関するものである。

### [0002]

【従来の技術】芳香族ポリイミドフィルムは、耐熱性、耐寒性、耐薬品性、電気絶縁性、機械的強度等において優れた特性を有することから、種々の分野で広く利用されている。なかでも、3,3',4,4'ービフェニルテトラカルボン酸成分とpーフェニレンジアミン成分とからなる芳香族ポリイミドフィルム(以下、単にBPDA―PPD系ポリイミドフィルムと略記することもある。)は、特に高耐熱性で耐薬品性に優れ高弾性率である。)は、特に高耐熱性で耐薬品性に優れ高弾性率であ

ることが知られている。従って、このようなタイプの芳香族ポリイミドフィルムは、特にその優れた耐熱性、高弾性率に着目した場合、高精度が求められるテープ・オートメーテッド・ボンディング(TAB)用フィルムキャリアテープの製造に用いる支持体として適しているということができる。

【0003】そして、このTAB用フィルムキャリアテーフの製造に用いる支持体用のBPDAーPPD系ポリイミドフィルムとしては、 $75\mu$ mの厚みのものと $125\mu$ mの厚みのものが主として使用されている。

【0004】このような比較的厚いホリイミドフィルム を使用する場合には、ポリイミドフィルムの片面に耐熱 性接着剤で銅箔を接着・積層した後に成形加工の工程中 にカールが問題となることはなかった。その理由とし て、このような厚いホリイミドフィルムと回路用の銅箔 (通常は電解銅箔) との線膨張係数の差、すなわちTD 方向(長尺ボリイミドフィルムの幅方向を意味する。) のポリイミドフィルムの線膨張係数:20×10°cm /cm/CとTD方向の銅箔の線膨張係数:17×10 "cm/cm/℃との差が小さいことが挙げられてい る。さらに、剛性の高いホリイミドフィルムに対して銅 | 箔は厚み(通常35μm)が半分以下であり、例えばホ リイミドフィルムの片面に耐熱性接着剤で電解銅箔を接 着・積層した銅張積層体に空気中の水分などの影響によ ってカールが生じても、ポリイミドフィルムを内側にし たカールがわずかに生じるのみで成形加工の工程上問題 とならないからである

【0005】しかし、TABを含めてポリイミドフィルムが使用される電子技術分野では、より高精度でより高信頼性、低コストの要求から、ポリイミドフィルムの厚みを小さくする要求が強くなっている。一方、ポリイミドフィルムの線膨張係数に関して、BPDAーPPD系ポリイミドフィルムの厚みを小さくすると線膨張係数が小さくなることが知られている。これは、ポリイミド前駆体のドープを流延製膜する際に面配向が生じ、フィルム厚みが小さい程その傾向が強いためと考えられている。

【0006】このため、FPCやTAB用の基板材料、中でもCSPやBGAと呼ばれるICバッケージ用の絶縁材料用および積層多層回路基板用途に厚みが50μm以下のBPDA-PPD系ポリイミドフィルムを使用することが検討されているが、ポリイミドフィルムの片面に耐熱性接着剤で電解銅箔を150~180℃程度の温度条件で接着・積層した後、室温に冷却したときに線膨張係数の不一致により、あるいは室温で成形加工される銅張積層体に空気中の水分などの影響によって銅箔を内側にして比較的大きなカールが生じやすく、成形加工の工程上問題となる場合がある。

【0007】BPDA-PPD系ポリイミドフィルムの物性を改良する試みは種々なされており、例えば、特開

昭61-264027号公報にはビフェニルテトラカル ボン酸二無水物とp-フェニレンジアミンとから得られ るポリイミドフィルムを低張力下に再熱処理して寸法安 定なポリイミドフィルムを製造する方法が記載されてい る。また、特公平4-6213号公報には線膨張係数比 (送り方向/直行方向)および送り方向の線膨張係数が 特定範囲内にあり寸法安定性に優れたホリイミドフィル ムが記載されている。さらに、特公昭62-60416 号公報、特公昭63-5421号公報、特公昭63-5 422号公報には、流延法での製膜時の芳香族ポリアミ ック酸フィルムの剥離性を改良する方法が記載されてい る。また、特公平3-20130号公報にはビフェニル テトラカルボン酸類およびピロメリット酸類とフェニレ ンジアミンおよびジアミノジフェニルエーテルとの3~ 4成分系ポリイミドフィルムが記載され、特開平4-1 98229号公報や特開平4-339835号公報には 置換もしくは非置換の含窒素複素環化合物を添加する製 造方法が記載されている

【0008】しかし、これらの公知技術では、得られるBPDA-PPD系ポリイミドフィルムの線膨張係数はむしろ小さくなる傾向にあり、35~55μmのポリイミドフィルムであって50~200℃における線膨張係数(TD)が17×10°cm/cm/cm/C以上のものは知られていない。また、他の種類の芳香族テトラカルボン酸成分および/または芳香族ジアミン成分を組み合わせて共重合して得られるホリイミドフィルムは、線膨張係数は17・10°cm/cm/C以上となるが、逆に耐熱性や引張弾性率が低下し、高精度でより高信頼性の要求を満足させることはできない。さらに、これらのボリイミドフィルムには接着性が不十分なものがある。

### [0009]

【発明が解決しようとする課題】この発明の目的は、厚みが35~55μmのBPDAーPPD系ポリイミドフィルムであって、銅張積層体などの回路用銅ーポリイミドフィルム積層体を製造してもカール少なく、自己支持性および接着性を有し、特に銅箔を内側にしたカールが生じない芳香族ポリイミドフィルムおよび該ポリイミドフィルムを使用した積層体を提供することにある。

### [0010]

【課題を解決するための手段】この発明は、3, 3, 4, 4, 4, -ビフェニルテトラカルボン酸成分とp-フェニレンジアミン成分とを必須成分として有するポリイミドからなり、厚みが $35\sim55\mu$ mで、 $50\sim200$ ℃における線膨張係数(TD)が $17\sim24\times10$  "cm/ $\ell$  cm/ $\ell$  で、かつ引張弾性率(TD)が1700 kgf/ $\ell$  /mm 以上であり、その表面が放電処理されてなるポリイミドフィルムに関するものである。また、この発明は、100 は、100 なり、100 なり、10

膨張係数(TD)が $1.7 \sim 2.4 \times 1.0$  c m/c m/C で、剛性 [厚み  $\ell$  厚み  $\ell$  引張弾性率(TD)]が0.8 5 K g f 以上であり、その表面が表面処理、好適には放電処理されてなるボリイミドフィルムに関するものである

【0011】また、この発明は、前記のボリイミドフィルムに熱硬化性接着剤シートが積層され、さらに該接着剤層上に剥離フィルムが積層され、所望によりレーザー加工あるいはパンチング加工などの穴開け加工してなる積層体に関するものである。さらに、この発明は、前記のボリイミドフィルムに直接あるいは耐熱性接着剤、好適には熱硬化性接着剤を介して金属層、好適には銅層が積層されてなる積層体に関するものである。

#### [0012]

【発明の実施の形態】以下にこの発明の好ましい態様を 列記する

- 1) 引張弾性率 (TD) が 7 5 0~ 1 1 0 0 k g f / m m である上記のボリイミドフィルム
- 2) FPCやTAB用の基板材料、中でもCSPやBGAと呼ばれるICバッケージ用の絶縁材料用および積層 多層回路基板用等の半導体実装基板用である上記のボリ イミドフィルム。

【0013】この発明において、3,3',4,4'-ビフェニルテトラカルボン酸成分としては、3,3',4,4'-ビフェニルテトラカルボン酸、これらのハロゲン化物、それらの二無水物、またはそれらのエステルが挙げられるが、なかでも3,3',4,4'-ビフェニルテトラカルボン酸二無水物から好適に導かれる。

【0014】この発明の効果を損なわない範囲で他の芳香族テトラカルボン酸成分を使用してもよい。このような芳香族テトラカルボン酸成分としては、2,3,3',4'ービフェニルテトラカルボン酸二無水物、3,3',4,4'ーベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物などを挙げることができる

【0015】この発明においては芳香族ジアミンとして、p-フェニレンジアミンが使用される。この発明の効果を損なわない範囲で他の芳香族ジアミンを使用してもよい。このような芳香族ジアミン成分としては、4,4'ージアミノジフェニルエーテル、4,4'ージアミノジフェニルエーテル、4,4'ージアミノジフェニルエタン、4,4'ージアミノジフェニルメタン、ビス「4ー(4ーアミノフェノキシ)フェニル〕プロバン、2,2'ービス「4ー(アミノフェノキシ)フェニル〕1,1,3,3,3ーヘキサフルオロプロパン、ビス「4ー(4ーアミノフェノキシ)フェニル〕エーテルなどを挙げることができる。

【0016】この発明において、ポリイミドフィルムは、厚みが $35\sim55\mu$  mであり、好ましくは約 $38\sim50\mu$  mである。ポリイミドフィルムの厚みがこの下限

より小さいと自己支持性が低く、また上限より大きいと 高精度の要求されるフィルム材料として好ましくない。 また、ポリイミドフィルムの引張弾性率の値が前記の範 囲外であると、高精度の要求されるフィルム材料として 好ましくない。

【0017】この発明の線膨張係数を前記の範囲内に制御したポリイミドフィルムは、例えば以下のようにして製造することができる。好適には先ず前記3,3、4,4、一ビフェニルテトラカルボン酸類とpーフェニレンジアミンとをN,NージメチルアセトアミドやNーメチルー2ーピロリドンなどのポリイミドの製造に通常使用される有機極性溶媒中で、好ましくは10~80℃で1~30時間重合して、ポリマーの対数粘度(測定温度:30℃、濃度:0.5g/100ml溶媒、溶媒:Nーメチルー2ーピロリドン)が1.5~5、ポリマー濃度が15~25重量%であり、回転粘度(30℃)が500~4500ポイズであるポリアミック酸(イミド化率:5%以下)溶液を得る

【0018】次いで、例えば上記のようにして得られたポリアミック酸溶液に、好適には、リン化合物を、好ましくはこのポリアミック酸100重量部に対して0.01~5重量部、特に0.01~3重量部、その中でも特に0.01~1重量部の割合で有機リン化合物、好適には(ポリ)リン酸エステル、リン酸エステルのアミン塩あるいは無機リン化合物を添加し、さらに好適には無機フィラーを、特にポリアミック酸100重量部に対して0.1~3重量部のコロイダルシリカ、窒化珪素、タルク、酸化チタン、燐酸カルシウム(好適には平均粒径 $0.005~5~\mu$ m、特に $0.005~2~\mu$ m)を添加してポリイミド前駆体溶液組成物を得る。

【0019】このポリイミド前駆体溶液組成物を平滑な表面を有する金属製の支持体表面に連続的に流延して前記溶液の薄膜を形成し、その薄膜を乾燥する際に、120~170℃、2~20分間程度加熱乾燥することにより、固化フィルム中、前記溶媒及び生成水分からなる揮発分含有量が25~40重量%程度の自己支持性フィルムを得る。この自己支持性フィルムにアミノシランカップリング剤などの表面処理剤を塗布処理してもよいし、これをさらに乾燥してもよい。

【0020】次いで、この自己支持性フィルムをレールに沿って駆動するチェーンに取り付けたフィルム把持装置に両端部を把持させて連続加熱炉の挿入し、その際に自己支持性フィルムの乾燥に伴う収縮がほぼ完了する300℃までの工程において、フィルムの把持幅を把持部の0.95倍まで徐々に狭くして処理し[好適には、フィルム把持幅(300℃)/フィルム把持幅(室温)=0.95~0.99倍]、キュア炉内における最高加熱温度:400~525℃程度、特に475~500℃程度の温度が0.5~30分間となる条件で該乾燥フィルムを加熱して乾燥およびイミド化して、残揮発物量0.

4重量%以下程度で、イミド化を完了することによって 長尺状の芳香族ポリイミドフィルムを好適に製造するこ とができる。

【0021】上記のようにして得られた芳香族ポリイミドフィルムを、好適には低張力下あるいは無張力下に200~400℃程度の温度で加熱して応力緩和処理して、巻き取って、フィルム厚みが $35~55~\mu$ m、特に約 $38~50~\mu$ mであって、50~200℃における線膨張係数(TD)が17~24~10 °c m/c m/℃で、かつ引張弾性率(TD)が700~k~g~f/mm<sup>+</sup>以上であるホリイミドフィルムを得ることができる。

【0023】このようにして得られる線膨張係数を制御したホリイミドフィルムは、プラズマ放電処理(真空あるいは常圧プラズマ放電処理)、コロナ放電処理などの少なくとも1つの放電処理、好適には真空プラズマ放電処理を行って、絶縁材料として、例えばFPCやTAB用の基板材料、中でもCSPやBGAと呼ばれるICパッケージ用の絶縁材料用および積層多層回路基板用として好適に使用することができる。

【0024】前記の放電処理は、フィルム表面を処理せずあるいはアセトン、イソプロピルアルコール、エチルアルコールなどの有機溶媒で処理した後行ってもよい。

【0025】前記の真空プラズマ放電処理を行う雰囲気の圧力は特に限定されないが、0. 1~1500Paの範囲が好ましい。前記プラズマ処理を行う雰囲気のガス組成としては、特に限定されないが酸素を含有することが好ましい。あるいは、希ガスを少なくとも20モル%含有していてもよい。希ガスとしてはHe、Ne、Ar、Xeなどが挙げられるが、Arが好ましい。希ガスにCO、N、H、HOなどを混合して使用してもよい。前記プラズマ処理を行うプラズマ照射時間は1秒~10分程度が好ましい。

【0026】この発明の線膨張係数を制御したポリイミドフィルムから銅張積層体を得るための接着剤としては、熱硬化性でも熱可塑性でもよく、例えばエポキシ樹脂、NBRーフェノール系樹脂、フェノールーブチラール系樹脂、エポキシーNBR系樹脂、エポキシーフェノール系樹脂、ポリアミドーエポキシ系樹脂、エポキシーポリエステル系樹脂、エポキシーアクリル系樹脂、アクリル系樹脂、ポリアミドーエポキシーフェノール系樹脂、ポリイミド系樹脂、ポリイミドーエポキシ樹脂、ポリイミドシロキサンーエポキシ樹脂などの熱硬化性接着剤、またはポリアミド系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポリエステル系樹脂、ポ

リイミド系接着剤、ボリイミドシロキサン系接着剤などの熱可塑性接着剤が挙げられる。特に、ボリアミドーエポキシ系樹脂、ポリイミドーエポキシ樹脂系接着剤、ボリイミドシロキサンーエポキシ樹脂系接着剤などの熱硬化性接着剤、ボリイミドシロキサン系接着剤などの熱可塑性接着剤が好適に使用される。

【0027】特に、作業性の点から熱硬化性接着剤シートを使用することが好ましい。この接着剤シートを積層した後、好適にはPET (ボリエステルフィルム)であって剥離剤を処理した保護フィルムを積層することが好ましい。通常は、この積層体をレーザー加工やバンチング加工などの穴明け加工を施した後、銅箔(銅層)と積層して加熱圧着する。

【0028】前記の銅箔としては、表面粗さRzが0.  $5\mu$ m以上で $10\mu$ m以下、特に $7\mu$ m以下である電解 銅箔や圧延銅箔が使用される。このような銅箔はVLP、LP(またはHTE)として知られている。銅箔の厚さは特に制限はないが、 $5\sim35\mu$ m、特に $5\sim20\mu$ mであるものが好ましい。また、銅箔以外の金属層も線膨張係数が銅箔と同等であれば同様に使用することができる。これらの金属(回路用)としては、銅、アルミニウム、金、これら金属の合金が挙げられる

【0029】この発明のホリイミドフィルムを使用して 銅箔との積層体(シート)を形成するには、例えば、前 記のようにして形成された薄膜状の接着剤を介して、ボ リイミドフィルムと金属箔とを80~200℃、特に1 50~180℃の温度で加圧(0.2~30kg/cm う)下にラミネート(張り合わせ)して、積層体を何の 支障もなく容易に連続的に製造することができる。ま た、このようにして得られる積層体は線膨張係数の不一 致によるカールが少なく、銅箔のエッチングなどの工程 で問題となることがない

【0030】また、銅層の積層は前記の接着剤によって 行うことが好ましいが、蒸着および/または電気メッキ などによっておこなってもよい。この場合には、金属蒸 着または金属蒸着と金属メッキ層とで金属層を形成する ことが好ましい。この金属を蒸着する方法としては真空。 蒸着法、スパッタリング法などの蒸着法を挙げることが。 できる。真空蒸着法において、真空度が、10~~1~ Pa程度であり、蒸着速度が5~500nm/秒程度で あることが好ましい。スパッタリング法において、特に DCマグネットスパッタリング法が好適であり、その際 の真空度が13Pa以下、特に0.1~1Pa程度であ り、その層の形成速度が0.05~50nm/秒程度で あることが好ましい。得られる金属蒸着膜の厚みは10  $nm以上、<math>1\mu m$ 以下であり、そのなかでも0.  $1\mu m$ 以上、0. 5μm以下であることが好ましい。この上に 好適には金属メッキにより肉厚の膜を形成することが好 ましい。その厚みは、約1~20μm程度である。

【0031】金属薄膜の材質としては、種々の組み合わ

せが可能である。金属蒸着膜として下地層と表面蒸着金 |属層を有する2層以上の構造としてもよい||下地層とし ては、クロム、チタン、パラジウム、亜鉛、モリブデ ン、ニッケル、コバルト、ジルコニウム、鉄などを単独 で、あるいはこれらの金属の合金あるいはこれらの金属 と銅との合金等が挙げられる。表面層(あるいは中間 層)としては銅が挙げられる。蒸着層上に設ける金属メ ッキ層の材質としては、銅が使用される。金属メッキ層 の形成方法としては、無電解メッキ法および電解メッキ 法のいずれでもよい。また、真空フラズマ放電処理した ホリイミドフィルムの片面に、クロム、チタン、バラジ ウム、亜鉛、錫、モリブデン、ニッケル、コバルト、ジ ルコニウム、鉄などを単独で、あるいはこれらの金属の 合金あるいはこれらの金属と銅との合金の下地金属層を 形成し、その上に中間層として銅の蒸着層を形成した 後、銅の無電解メッキ層を形成し(無電解メッキ層を形 成することは発生したヒンホールをつぶすのに有効であ る」)、あるいは、金属蒸着層の厚みを大きくして、例 えば0.1~1.0μmとして銅などの無電解金属メッ キ層を省略し、表面層として電解銅メッキ層を形成して もよい

#### [0032]

【実施例】以下にこの発明の実施例を示す。以下の各例において、ポリイミドフィルムの物性測定は以下の方法によって行った。なお、以下の測定値は特記した場合を除き25℃での測定値である。

【0033】線膨張係数 (50~200℃) 測定:30 0℃で30分加熱して応力緩和したサンブルをTMA装 置(引張りモード、2g荷重、試料長10mm、20℃ /分)で測定した。

引張弾性率: ASTM D882に従って測定 (MD) 加熱収縮率: JIS C2318に従って測定 (200 ℃)

【0034】カール:銅箔として18μmの電解銅箔 (三井金属鉱業株式会社製、3EC-VLP、Rz約6 μm、幅40mm)とポリイミドフィルム(幅48mm)とを厚み25μmのポリイミドシロキサンーエボキシ系接着剤シート(宇部興産社製、ユピタイト)とを、接着条件:予備加熱3分後180℃、360分間、20kg/cmプレスした銅張積層体を23℃で65%の調湿した雰囲気で24時間放置後、一端を平板上に固定し他端から平板までの高さをカールとして評価した。接着強度:上記のカール測定前の銅張積層体について90。剥離強度を引張速度:50mm/分で測定した。

#### 【0035】実施例1

反応容器に、N, Nージメチルアセトアミド100重量 部に、p-フェニレンジアミン5.897重量部および3, 3', 4, 4'ービフェニルテトラカルボン酸二無水物16.019重量部を加えて、窒素気流下、<math>40で3時間攪拌し、重合反応させてポリマー濃度18重量 %、ボリマーの対数粘度(測定温度:30 C、濃度: 0.5 g/100m l 溶媒、溶媒:N, Nージメチルアセトアミド)が1.8、溶液粘度1800ホイズ(30 C、回転粘度計)のボリアミック酸溶液を得た このポリアミック酸溶液に、ボリアミック酸100 重量部に対して0.1 重量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩および0.5 重量部の割合(固形分基準)で平均粒径0.08  $\mu$  mのコロイダルシリカを添加して均一に混合して、ポリイミド前駆体溶液組成物を得た

【0036】このポリイミド前駆体溶液組成物を、Tダイのスリットより連続的に押出し、平滑な金属支持体上に薄膜を形成した。この薄膜を120~160℃で10分間加熱後、支持体から剥離して、揮発分含有量が34.4重量%の自己支持性フィルムを形成し、さらにこれを乾燥し揮発分含有量を28.5重量%とした。

【0037】次いで、この自己支持性フィルムをレールに沿って駆動するチェーンに取り付けたフィルム把持装置に両端部を把持させて連続加熱炉の挿入し、その際に自己支持性フィルムの乾燥に伴う取縮がほぼ完了する300℃までの工程において、フィルムの把持幅を把持部の0.95倍[フィルム把持幅(300C)/フィルム把持幅(室温)=0.95]まで徐々に狭くして処理し、キュア炉内における最高加熱温度:500 C程度の温度が0.5 分間となる条件で該乾燥フィルムを加熱して乾燥およびイミド化して、残揮発物量0.4 重量%以下で、イミド化が完了した厚み $50\mu$  mの長尺状ポリイミドフィルムを製造した。得られたポリイミドフィルムについて、 $\Delta r/He/H/O_2$ ガス流通下、放電密度6.2 k w・min/m の条件でフィルムの両面を低温プラズマ放電処理した

【0038】この低温フラズマ放電処理ポリイミドフィルムと剥離処理した厚み $20\mu$ mのPETフィルムと厚み $25\mu$ mのポリイミドシロキサンーエボキシ熱硬化型接着剤との積層シートとを積層して、接着剤積層体を得た。この、接着剤積層体からPETフィルムを引き剥がして、 $18\mu$ mの電解銅箔(三井金属鉱業株式会社製、3EC-VLP、 $Rz約6\mu$ m、幅40mm)と、180℃、360分間、20kg/cm²プレスして、銅張積層体を得た。また、この低温プラズマ放電処理ポリイミドフィルムおよび銅張積層体の評価結果を次に示す。

【0039】フィルム厚み:50μm

50~200℃の線膨張係数M(TD):22.5×1 0°c m/c m/℃

引張弾性率(TD): 749kgf/mm<sup>2</sup>

銅張積層体のカール:銅箔を外側にして1.0mm

接着強度: 1. 3 k g/c m

#### 【0040】実施例2

支持体から剥離後の乾燥処理を省いた他は実施例1と同様にして、揮発分含有量が34重量%の自己支持性フィ

ルムを形成した。次いで、この自己支持性フィルムをレ ールに沿って駆動するチェーンに取り付けたフィルム把 持装置に両端部を把持させて連続加熱炉の挿入し、その 際に実施例1と同様にして自己支持性フィルムの乾燥に 伴う収縮がほぼ完了する300℃までの工程において、 フィルムの把持幅を徐々に狭くして処理し[フィルム把 |持幅(300℃)/フィルム把持幅(室温)=0.9 5〕、キュア炉内における最高加熱温度:500℃程度 の温度が0.5分間となる条件で該乾燥フィルムを加熱 して乾燥およびイミド化して、残揮発物量0.4重量% |以下で、イミド化が完了した厚み50μmの長尺状ポリ イミドフィルムを製造した。このポリイミドフィルムを 低温プラズマ放電処理した。このポリイミドフィルムを 使用した他は実施例1と同様にして、接着剤積層体およ び銅張積層体を得た。この低温フラズマ放電処理ポリイ ミドフィルムおよび銅張積層体の評価結果を次に示す。

【0041】フィルム厚み:50μm

50~200℃の線膨張係数M(TD):22.3×1 0°c m/c m/℃

引張弹性率 (TD) : 731kgf/mm\*

-銅張積層体のカール:銅箔を外側にして 1. 0 mm

接着強度: 1. 3 k g/c m

#### 【0042】比較例1

従来法に従って、揮発分含有量が28.5 重量%の自己支持性フィルムをレールに沿って駆動するチェーンに取り付けたフィルム把持装置に両端部を把持させて連続加熱炉の挿入し、その際に自己支持性フィルムの乾燥に伴う収縮がほぼ完了する300℃までの工程において、フィルムの把持幅を変化させないようにして処理し、500℃程度の温度が0.5分間となる条件で該乾燥フィルムを加熱して乾燥およびイミド化して、残揮発物量0.4 重量%以下で、イミド化が完了した厚み50μmの長尺状ポリイミドフィルムを製造した。このポリイミドフィルムを低温プラズマ放電処理した。このポリイミドフィルムを使用した他は実施例1と同様にして、接着剤積層体および銅張積層体を得た。この低温プラズマ放電処理ホリイミドフィルムおよび銅張積層体の評価結果を次に示す。

【0043】フィルム厚み:50μm

50~200℃の線膨張係数M(TD):15.4×1 0°c m/c m/℃

引張弾性率 (TD): 896kgf/mm<sup>-</sup>

銅張積層体のカール:銅箔を内側にして20.0mm

接着強度:1. 2 k g/c m

#### [0044]

【発明の効果】この発明は以上説明したように構成されているので、以下に記載のような効果を奏する。この発明ボリイミドフィルムは、銅張積層体を製造してもカールが少なく、特に銅箔を内側にしたカールが生じない回路用銅ーボリイミドフィルム積層体絶縁材料を提供する

### ことが可能である。

### フロントページの続き

(72) 発明者 光井 洋人

山口県宇部市大字小串1978番地の10 宇部

興産株式会社宇部ケミカル工場内

(72)発明者 菰田 倫久

山口県宇部市大学小串1978番地の10 宇部

興産株式会社宇部ケミカル工場内

F ターム(参考) 4F073 AA01 BA31 BB01 CA21

4F100 AB01C AB17C AK42 AK49A

AROOB BAO2 BAO3 BAO7

BATOA BATOB BATOC DCTT

EJ62A GB43 JA02A JB13G

JK07A JL04 JL14B YY00A

4J043 PA02 QB31 RA35 SA06 TA14

TA22 UA121 UA122 UA131

UA132 UA151 UB011 UB121

UB131 UB152 UB402 VA011