run ant

July 5, 2022

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from functools import lru_cache

[]: def boundary_1(x, y):
    if (x**2 + y**2) <= 2:
        return True
    return False

def boundary_2(x, y):
    if ((x-2.5)/30)**2 + ((y-2.5)/40)**2 < 1:
        return True
    return False

def boundary_3(x,y):
    if ((x-0.25)/3)**2 + ((y-0.25)/4)**2 < 1:
        return True</pre>
```

1 Bill: A Clueless Hungry Ant

2 Question 1

return False

[]: from ant import Ant

2.1 Initialize Bill

```
[]: bill = Ant(boundary_function=boundary_1, x0=0, y0=0, workers=8)
print('Below are the admissible transition points')
bill.show_transition_points()
```

```
Hi! My name is Bill, and I am a clueless ant is search for food!

In my search for food, I will start from (0, 0)

Please wait while I calculate all the transition points that I can visit (even I should not be aware of them xD)

Ok, I am ready to go!

Below are the admissible transition points
```


2.2 Solutions

2.2.1 Markov Solution

```
[]: bill.get_markov_solution()
```

Bill has to make 4.5 steps on average to reach the food. Poor Bill!

2.2.2 Recursive Solution

```
[]: avg_steps, data_recursive = bill.calculate_avg_steps_recursive(0.00001)
    fig, ax = plt.subplots(1)
    data_recursive.plot.scatter(x='steps', y='p_t', ax = ax)
    plt.show()
```

Bill has to make 4.499706268310547 steps on average to reach the food. Poor Bill!

2.2.3 Monte Carlo Simulation

Bill has to make 4.4993782 steps on average to reach the food. Poor Bill!

3 Question 3

3.1 Initialize Bill

```
[]: bill = Ant(boundary_function=boundary_3, x0=0, y0=0, workers=8)
print('Below are the admissible transition points')
bill.show_transition_points()
```

Hi! My name is Bill, and I am a clueless ant is search for food! In my search for food, I will start from (0, 0) Please wait while I calculate all the transition points that I can visit (even I should not be aware of them xD) Ok, I am ready to go! Below are the admissible transition points

3.2 Solutions

3.2.1 Markov Solution

```
[]: bill.get_markov_solution()
```

Bill has to make 13.992053058411814 steps on average to reach the food. Poor Bill!

3.2.2 Recursive Solution

```
[]: avg_steps, data_recursive = bill.calculate_avg_steps_recursive(0.00001)
fig, ax = plt.subplots(1)
data_recursive.plot.scatter(x='steps', y='p_t', ax = ax)
plt.show()
```

Bill has to make 13.990874270320726 steps on average to reach the food. Poor Bill!

3.2.3 Monte Carlo Solution

Bill has to make 13.99642 steps on average to reach the food. Poor Bill!

4 Bonus Section. An expensive scenario: large boundary

4.1 Initialize Bill

```
[]: bill = Ant(boundary_function=boundary_2, workers=7)
print('Below are the admissible transition points')
bill.show_transition_points()
```

Hi! My name is Bill, and I am a clueless ant is search for food! In my search for food, I will start from (0, 0) Please wait while I calculate all the transition points that I can visit (even I should not be aware of them xD)

Ok, I am ready to go!

Below are the admissible transition points

4.2 Solutions

4.2.1 Markov Solution

```
[]: bill.get_markov_solution()
```

Bill has to make 1163.726257998394 steps on average to reach the food. Poor Bill!

4.2.2 Recursive Solution

```
[]: avg_steps, data_recursive = bill.calculate_avg_steps_recursive(0.00005)
fig, ax = plt.subplots(1)
data_recursive.plot.scatter(x='steps', y='p_t', ax = ax)
plt.show()
```

Bill has to make 1163.2636139069193 steps on average to reach the food. Poor Bill!

4.2.3 Monte Carlo Simulation

Bill has to make 1163.5556565999998 steps on average to reach the food. Poor Bill!

[]: