CHAPITRE 3

Théorie des ensembles avec Exercices Corrigés

1. Notion d'ensemble et propriétés

1.1. Ensemble.

DÉFINITION 1.1. Un ensemble est une collection d'objets mathématiques (éléments) rassemblés d'après une ou plusieurs propriétés communes. Ces propriétés sont suffisantes pour affirmer qu'un objet appartient ou pas à un ensemble.

Exemple 1.2. (1) E: l'ensemble des étudiants de l'université d'USTO.

- (2) On désigne par \mathbb{N} l'ensemble des entiers naturels $\mathbb{N} = \{0, 1, 2, 3, ...\}$.
- (3) L'ensemble des nombre pairs se note : $P = \{x \in \mathbb{N}/2 \text{ divise } x\}$.
- (4) L'ensemble vide est noté : Ø qui ne contient aucun élément.
- **1.2.** Inclusion. On dit que l'ensemble A est inclus dans un ensemble B lorsque tous les éléments de A appartiennent à B et on note $A \subset B$,

$$A \subset B \Leftrightarrow (\forall x, (x \in A \Rightarrow x \in B)).$$

La négation:

$$A \not\subset B \Leftrightarrow (\exists x, (x \in A \land x \notin B)).$$

EXEMPLE 1.3. (1) On désigne \mathbb{R} l'ensemble des nombre réels on $a : \mathbb{N} \subset \mathbb{R}$.

- (2) On désigne \mathbb{Z} l'ensemble des nombre entiers relatifs, \mathbb{Q} l'ensemble des rationnels on $a: \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
- 1.3. Egalité de deux ensembles : Soient A, B deux ensembles sachant A = B, cela veut dire que :

$$A = B \Leftrightarrow ((A \subset B) \text{et } (A \subset B)).$$

1.4. Différence de deux ensembles. La différence de deux ensembles A, B est un l'ensemble des élements de A qui ne sont pas dans B, noté A - B.

$$A - B = \{x/x \in A \land x \notin B\}.$$

Si $A \subset B$ alors B-A est aussi appelé le complémentaire de A dans B, il est noté C_B^A, A^c .

$$C_B^A = \{x/x \in B \land x \notin A\}.$$

1.5. Opérations sur les ensembles.

1.5.1. L'union. La réunion ou l'union de deux ensembles A et B est l'ensemble des élements qui appartiennent à A ou B, on écrit $A \cup B$.

$$x \in A \cup B \Leftrightarrow (x \in A \lor x \in B).$$

La négation:

$$x \notin A \cup B \Leftrightarrow (x \notin A \land x \notin B).$$

1.5.2. L'intersection. L'intersection de deux ensembles A, B est l'ensemble des élséments qui appartiennent à A et B on note $A \cap B$.

$$x \in A \cap B \Leftrightarrow (x \in A \land x \in B).$$

La négation:

$$x \notin A \cap B \Leftrightarrow (x \notin A \lor x \notin B).$$

REMARQUE 1.4. (1) Si A, B n'ont pas d'élements en commun, on dit qu'ils sont disjoints, alors $A \cap B = \emptyset$.

- $(2)\ B=C_E^A \Leftrightarrow A\cup B=E\ et\ A\cap B=\emptyset.$
- $(3) A B = A \cap B^c.$
- 1.5.3. La différence symétrique. Soient E un ensemble non vide et $A, B \subset E$, la différence symétrique entre deux ensembles A, B est l'ensemble des éléments qui appartiennent à A B ou B A noté $A \Delta B$.

$$A\Delta B = (A - B) \cup (B - A) = (A \cap C_E^B) \cup (B \cap C_E^A) = (A \cup B) - (A \cap B).$$
$$x \in A\Delta B \Leftrightarrow \{x/x \in (A - B) \lor x \in (B - A)\}.$$

1.6. Propriétés des opérations sur les ensembles.

1.6.1. La commutativitée. Quels que soient A,B deux ensembles :

$$A \cap B = B \cap A,$$

$$A \cup B = B \cup A.$$

1.6.2. L'associativitée. Quels que soient A, B, C deux ensembles :

$$A \cap (B \cap C) = (A \cap B) \cap C,$$

$$A \cup (B \cup C) = (A \cup B) \cup C.$$

1.6.3. la distributivitée. Quels que soient A, B, C deux ensembles :

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

1.6.4. L'idempotence.

$$A \cup A = A, A \cap A = A.$$

1.6.5. Lois de Morgan.

$$a)(A \cup B)^c = A^c \cap B^c.$$

$$b)(A \cap B)^c = A^c \cup B^c.$$

PREUVE. Montrons que $(A \cup B)^c \subset A^c \cap B^c$ et $A^c \cap B^c \subset (A \cup B)^c$,

$$(A \cup B)^c \subset A^c \cap B^c$$
:

Soit $x \in (A \cup B)^c \Rightarrow x \notin (A \cup B) \Rightarrow x \notin A \land x \notin B \Rightarrow x \in A^c \land x \in B^c$ ainsi $x \in (A \cup B)^c \Rightarrow x \in (A^c \cap B^c)$, d'où $(A \cup B)^c \subset (A^c \cap B^c)$.

$$A^c \cap B^c \subset (A \cup B)^c$$
:

Soit $x \in (A^c \cap B^c) \Rightarrow x \in A^c \wedge x \in B^c \Rightarrow x \notin A \wedge x \notin B \Rightarrow x \notin (A \cup B)$, d'où $A^c \cap B^c \subset (A \cup B)^c$, ainsi $(A \cup B)^c = A^c \cap B^c$. On suit le même raisonnement pour la seconde relation.

1.7. Produit Cartesien. Soient A, B deux ensembles , $a \in A, b \in B$ on note $A \times B = \{(a, b), a \in A, b \in B\}$ l'ensemble $A \times B$ est l'ensemble des couples (a, b) pris dans cet ordre il est appelé ensemble produit cartésien des ensemble A et B.

REMARQUE 1.5. Si A et B sont des ensembles finis et si on désigne par :

CardA: le nombre des éléments de A.

CardB: le nombre des éléments de B. on aura :

$$Card(A \times B) = CardA \times CardB.$$

EXEMPLE 1.6. a) Soit
$$E = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{1, 2, 3, 4, 5, 6\}, B = \{2, 4, 6, 8\}$$

(1) $A \subset E, B \subset E$.

A n'est pas inclus dans B car $1 \in A \land 1 \notin B$. B n'est pas inclus dans A car $8 \in B \land 8 \notin A$.

(2)
$$A \cap B = \{2, 4, 6\}, A \cup B = \{1, 2, 3, 4, 5, 6, 8\}.$$

(3)
$$A - B = \{1, 3, 5\}, B - A = \{8\}.$$

(4)
$$A\Delta B = \{1, 3, 5, 8\}.$$

b)
$$A = \{1, 2\}, B = \{1, 2, 3\}$$

$$A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\},\$$

$$B \times A = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\},\$$

$$A \times B \neq B \times A$$
, $car(3,2) \in B \times A$, $et(3,2) \notin A \times B$.

2. Applications et relations d'équivalences

2.1. Application.

DÉFINITION 2.1. On appelle application d'un ensemble E dans un ensemble F une loi de correspondance (ou une relation de correspondance) permettant d'associer à tout $x \in E$ un unique élément $y \in F$ où E est l'ensemble de départ et F est l'ensemble d'arrivé.

L'élément y associé à x est l'image de x par f, on note $x \longmapsto y/y = f(x)$.

Exemple 2.2. Soit l'application suivante :

- (1) $f_1: \mathbb{N} \longrightarrow \mathbb{N}$ $n \longmapsto 4n+2.$
- (2) $f_2 : \mathbb{R} \longmapsto \mathbb{R}$ $x \longmapsto 5x + 3$.

2.2. Image directe et image réciproque.

2.2.1. a) L'image directe. Soit $f: E \longmapsto F$ et $A \subset E$, on appelle image de A par f un sous ensemble de F, noté f(A) tel que

$$f(A) = \{ f(x) \in F/x \in A \},\$$

sachant que $f(A) \subset F$, et que A, f(A) sont des ensembles.

2.2.2. b) L'image réciproque. Soit $f: E \mapsto F$ et $B \subset F$, on appelle l'image réciproque de B par f, la partie de E notée $f^{-1}(B)$ telle que

$$f^{-1}(B) = \{ x \in E / f(x) \in B \},\$$

sachant que $f^{-1}(B) \subset E$, et que $B, f^{-1}(B)$ sont des ensembles.

Exemple 2.3. (1) Soit f l'application définie par :

$$f: [0,3] \longmapsto [0,4]$$

 $x \longmapsto f(x) = 2x + 1$

Trouver f([0,1])?

$$f([0,1]) = \{f(x)/x \in [0,1]\} = \{2x + 1/0 \le x \le 1\},$$
 on $a : 0 \le x \le 1 \Rightarrow 0 \le 2x \le 2 \Rightarrow 1 \le 2x + 1 \le 3$, alors $f([0,1]) = [1,3] \subset [0,4]$.

(2) Soit f l'application définie par :

$$g: [0,2] \longmapsto [0,4]$$
$$x \longmapsto f(x) = (2x-1)^2$$

Calculer $f^{-1}(\{0\}), f^{-1}(]0, 1[)$.

$$f^{-1}(\{0\}) = \{x \in [0,2]/f(x) \in \{0\}\} = \{x \in [0,2]/f(x) = 0\} = \{x \in [0,2]/(2x-1)^2 = 0\} = \{\frac{1}{2}\}.$$

$$f^{-1}([0,1]) = \{x \in [0,2]/f(x) \in]0,1[\} = \{x \in [0,2]/0 < (2x-1)^2 < 1\},$$

$$On \ a : (2x-1)^2 > 0 \ est \ verifi\'ee \ \forall x \in \mathbb{R} - \{\frac{1}{2}\}, x \in [0,2]. \ D'autre \ part$$

$$(2x-1)^2 < 1 \Rightarrow |2x-1| < 1 \Rightarrow -1 < 2x-1 < 1 \Rightarrow 0 < x < 1,$$

et donc $x \in]0,1[$, en regroupant les deux inégalités, on obtient

$$f^{-1}(]0,1[)=([0,\frac{1}{2}[\cup]\frac{1}{2},2])\cap]0,1[=]0,\frac{1}{2}[\cup]\frac{1}{2},1[.$$

2.2.3. 1) La surjection.

DÉFINITION 2.4. L'image f(E) de E par f est une partie de F. Si tout élément de F est l'image par f d'au moins un élément de E, on dit que f est une application surjective de E dans F on a: f(E) = F.

$$fest \ surjective \Leftrightarrow (\forall y \in F), (\exists x \in E)/f(x) = y.$$

Exemple 2.5. Les applications suivantes sont-elles surjective?

(1) $f_1: \mathbb{N} \longrightarrow \mathbb{N}$ $n \longmapsto 4n+2.$

 f_1 n'est pas surjective, en effet si on suppose qu'elle est surjective c'est à dire $\forall y \in \mathbb{N}, \exists n \in \mathbb{N}/4n + 1 = y \Longrightarrow n = \frac{y-1}{4}, \text{ or } n = \frac{y-1}{4} \notin \mathbb{N} \text{ contradiction } f_1$ n'est pas surjective.

- (2) $f_2: \mathbb{R} \longmapsto \mathbb{R}$ $x \longmapsto 5x + 3.$ $f_2 \text{ est surjective } car: \forall y \in \mathbb{R}, \exists x \in \mathbb{R}/5x + 3 = y \Longrightarrow x = \frac{y-3}{5} \in \mathbb{R}.$
- 2.2.4. 2) *L'injection*.

DÉFINITION 2.6. Quand on a deux éléments dictincts de E correspondent pas f à deux image différentes de F, f est dite application injective, on a alors :

$$(fest\ injective) \Leftrightarrow (\forall x_1, x_2 \in E, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)),$$

ou

$$(fest\ injective) \Leftrightarrow (\forall x_1, x_2 \in E, f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$$

Exemple 2.7. Les applications suivantes sont-elles injerctive?

(1)
$$f_1: \mathbb{N} \longmapsto \mathbb{N}$$

 $n \longmapsto 4n+2.$
 $f_1 \text{ est injective car } : \forall n_1, n_2 \in \mathbb{N}, f(x_1) = f(x_2) \Rightarrow 4n_1 + 2 = 4x_2 + 2 \Rightarrow 4n_1 = 4n_2 \Rightarrow n_1 = n_2.$

- (2) $f_2: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto 5x + 3.$ $f_2 \text{ est injective car } : \forall x_1, x_2 \in \mathbb{R}, f(x_1) = f(x_2) \Rightarrow 5x_1 + 3 = 5x_2 + 3 \Rightarrow 5x_1 = 5x_2 \Rightarrow x_1 = x_2.$
- 2.2.5. 3) La bijection. f est une application bijective si elle injective et surjective, c'est à dire tout élément de F est l'image d'un unique élément de E, f est bijective si et seulement si :

$$(\forall y \in F), (\exists! x \in E), (f(x) = y). (\exists! \text{ signifie unique})$$

EXEMPLE 2.8. (1) f_1 n'est pas bijective car elle n'est pas surjective.

(2) f_2 est bijective.

REMARQUE 2.9. Lorsque une application f est bijective cela veut dire que l'application inverse f^{-1} existe. f^{-1} est aussi bijective de F sur E et $(f^{-1})^{-1} = f$.

Exemple 2.10. f_2 est bijective et sa bijection est définie par :

$$f_2^{-1}: \mathbb{R} \longmapsto \mathbb{R}$$
$$y \longmapsto \frac{y-3}{5}.$$

2.2.6. 4) La composition d'application. Soient E, F, G des ensembles et deux applications f, g telles que

$$f: E \longmapsto F, \ g: F \longmapsto G$$

 $x \longmapsto f(x) = y, y \longmapsto g(y) = z$

On définit l'application

$$g \circ f : E \longmapsto G$$

 $x \longmapsto g \circ f(x) = z.$

PROPOSITION 2.11. (1) Si f et g sont injectives $\Rightarrow g \circ f$ est injective.

(2) Si f et g sont surjectives $\Rightarrow g \circ f$ est surjective.

PREUVE. (1) Supposons que f et g sont injectives, montrons que $g \circ f$ est injective :

 $\forall x_1, x_2 \in E, g \circ f(x_1) = g \circ f(x_2)$ puisque g est injective on aura :

$$g(f(x_1)) = g(f(x_2)) \Rightarrow f(x_1) = f(x_2)$$

 $puisque\ f\ est\ injective\ ainsi:$

$$g \circ f(x_1) = g \circ f(x_2) \Rightarrow x_1 = x_2,$$

 $g \circ f$ est injective.

(2) Supposons que f et g sont surjectives c'est à dire f(E) = F, g(F) = G, montrons que $g \circ f$ est surjective :

$$g \circ f(E) = g(f(E)) = g(F) = G$$

d'après la surjectivitée de f, g d'où le résultat.

REMARQUE 2.12. Il s'ensuit que la composée de deux bijection et une bijection. En particulier, la composition de $f: E \longmapsto F$ et sa réciproque $f^{-1}: F \longmapsto E$ est l'application indentitée $Id_E, f^{-1} \circ f = Id_E, f \circ f^{-1}) = Id_F$.

- 2.2.7. c) Propriétés des applications. Soit $f: E \longmapsto F$ on a :
- (1) $A \subset B \Rightarrow f(A) \subset f(B)$.
- $(2) \ f(A \cup B) = f(A) \cup f(B).$
- (3) $f(A \cap B) \subset f(A) \cap f(B)$.

PREUVE. (1) Soit $y \in f(A)$ alors $\exists x \in A/f(x) = y$, or $A \subset B \Rightarrow x \in B$ donc $y = f(x) \in f(B)$ d'où $f(A) \subset f(B)$.

(2) Soit

$$y \in f(A \cup B) \Leftrightarrow \exists x \in A \cup B/f(x) = y$$
$$\Leftrightarrow \exists x \in A/f(x) = y \lor \exists x \in B/f(x) = y$$
$$\Leftrightarrow y \in f(A) \lor y \in f(B)$$
$$\Leftrightarrow y \in f(A) \cup f(B),$$

ainsi $f(A \cup B) = f(A) \cup f(B)$.

Soit

$$y \in f(A \cap B) \Rightarrow \exists x \in A \cap B/f(x) = y$$
$$\Rightarrow \exists x \in A/f(x) = y \land \exists x \in B/f(x) = y$$
$$\Rightarrow y \in f(A) \land y \in f(B)$$
$$\Rightarrow y \in f(A) \cap f(B),$$

ainsi $f(A \cap B) \subset f(A) \cap f(B)$.

EXEMPLE 2.13. $f(x) = x^2$, A = [-1, 0], B = [0, 1], $A \cap B = \{0\}$, f(A) = [0, 1], f(B) = [0, 1],

$$f(A) \cap f(B) = [0, 1], f(A \cap B) = f(\{0\}) = \{0\} \neq [0, 1] = f(A) \cap f(B).$$

L'égalité : $f(A \cap B) = f(A) \cap f(B)$ est vérifiée lorsque f est injective.

PROPOSITION 2.14. Soit $f: E \longmapsto F, g: F \longmapsto G$ on a:

- (1) $g \circ f$ est injective, alors f est injective.
- (2) $g \circ f$ est surjective, alors g est surjective.
- (3) $g \circ f$ est bijective, alors f est injective et g est surjective.
- PREUVE. (1) Soit $x_1, x_2 \in E/f(x_1) = f(x_2)$, alors $g(f(x_1)) = g(f(x_2))$ comme $g \circ f$ est injective ainsi $x_1 = x_2$ d'où f est injective.
- (2) On a $f(E) \subset F \Rightarrow g \circ f(E) \subset g(F) \subset G$, puisque $g \circ f$ est surjective, alors $g \circ f(E) = G$, ainsi $G \subset g(F)$ d'où G = g(F), g est surjective

3. Relations Binaires dans un ensemble

DÉFINITION 3.1. Soient $x \in E, y \in F$ une relation \mathcal{R} entre x et y est une correspondance entre x et y. Le couple (x,y) vérifie la relation \mathcal{R} , on note $x\mathcal{R}y$, si E=F la relation est dite binaire.

EXEMPLE 3.2. (1) $\forall x, y \in \mathbb{N}, x\mathcal{R}y \Leftrightarrow x \text{ dévise } y, \mathcal{R} \text{ est une relation binaire.}$

- (2) $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x > y$.
- (3) $A \subset E, B \subset F, ARB \Leftrightarrow A \subset B$.
- **3.1. Propriétés des relations binaires.** Soient \mathcal{R} une relation binaire dans l'ensemble E et $x, y, z \in E$, on dit que \mathcal{R} est une relation
 - (1) Réflexive : $(\forall x \in E)$, $(x\mathcal{R}x)$.
 - (2) Symétrique : $(\forall x \in E), (\forall y \in E), (x\mathcal{R}y \Rightarrow y\mathcal{R}x).$
 - (3) Antisymétrique : $((\forall x \in E), (\forall y \in E), ((x\mathcal{R}y) \land (y\mathcal{R}x)) \Rightarrow (x = y)).$
 - (4) Transitive : $(\forall x, y, z \in E), ((x\mathcal{R}y) \land (y\mathcal{R}z)) \Rightarrow (x\mathcal{R}z).$

Définition 3.3. Une relation est dite relation déquivalence si elle est réflexive, symétrique et transitive.

Définition 3.4. Une relation est dite relation d'ordre si elle est réflexive, antisymétrique et transitive.

EXEMPLE 3.5. (1) $\forall x, y \in \mathbb{N}, x\mathcal{R}y \Leftrightarrow x = y \text{ est une relation d'équivalence.}$

- (2) $A \subset E, B \subset F, ARB \Leftrightarrow A \subset B$ est une relation d'ordre, en effet :
 - (a) $\forall A \subset E, A \subset A \Leftrightarrow \mathcal{R} \text{ est réflexive.}$
 - (b) $\forall A, B \in E, ((A \subset B) \land (B \subset A)) \Rightarrow A = B \Leftrightarrow \mathcal{R} \text{ est antisymétrique.}$
 - (c) $\forall A, B, C \in E, ((A \subset B) \land (B \subset C)) \Rightarrow A \subset C \Leftrightarrow \mathcal{R} \text{ est transitive.}$

(3) $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x \leq y$, est une relation d'ordre.

DÉFINITION 3.6. une relation d'ordre dans un ensemble E est dite d'ordre total si deux éléments quelconques de E sont comparables, $\forall x, y \in E$, on a $x\mathcal{R}y$ ou $y\mathcal{R}x$. Une relation d'ordre est dite d'ordre partiel si elle n'est pas d'ordre total.

EXEMPLE 3.7. $- \forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x < y$, est une relation d'ordre total.

- (1) \mathcal{R} est réflexive : $\forall x \in \mathbb{R}, x \leq x \Leftrightarrow x\mathcal{R}x$.
- (2) \mathcal{R} est antisymétrique : $\forall x, y \in \mathbb{R}, ((x\mathcal{R}y) \land (y\mathcal{R}x)) \Leftrightarrow ((x \leq y) \land (y \leq x)) \Rightarrow x = y.$
- (3) \mathcal{R} est transitive : $\forall x, y, z \in \mathbb{R}, ((x\mathcal{R}y) \land (y\mathcal{R}z)) \Leftrightarrow ((x \leq y) \land (y \leq z)) \Leftrightarrow y \leq z \Rightarrow x \leq z \Leftrightarrow x\mathcal{R}z$.
- (4) \mathcal{R} est une relation d'ordre total car $\forall x, y \in \mathbb{R}, x \leq ou \ y \leq x$.
- Soient $(x,y), (x',y') \in \mathbb{R}^2$; $(x,y)\mathcal{R}(x',y') \Leftrightarrow (x \leq x') \land (y \leq y')$ est une relation d'ordre partiel, en effet : $\exists (1,2), (3,0) \in \mathbb{R}^2$, et (1,2) n'est pas en relation avec (3,0), et (3,0) n'est pas en relation avec (1,2).
- **3.2.** Classe d'équivalence. Soit \mathcal{R} une relation d'équivalence, on appelle classe déquivalence d'un élément $x \in E$ l'ensemble des éléments $y \in E$ qui sont en relation \mathcal{R} avec x on note C_x , où

$$\overline{x} = C_x = \dot{x} = \{ y \in E / x \mathcal{R} y \}$$

DÉFINITION 3.8. L'ensemble des classes d'équivalence d'éléments de E est appelée ensemble quotient de E par \mathcal{R} , il est noté $E_{/\mathcal{R}}$,

$$E_{/\mathcal{R}} = \{\dot{x}/x \in E\}$$

EXEMPLE 3.9. $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x^2 - x = y^2 - y, \mathcal{R}$ est une relation d'équivalence car :

- (1) $\forall x \in \mathbb{R}, x^2 x = x^2 x \Leftrightarrow x \mathcal{R} x \Leftrightarrow \mathcal{R} \text{ est refléxive.}$
- $(2) \ \forall x,y \in {\rm I\!R}, x\mathcal{R}y \Leftrightarrow x^2-x=y^2-y \Leftrightarrow y^2-y=x^2-x \Leftrightarrow y\mathcal{R}x, \mathcal{R} \ est \ sym\'etrique.$
- (3) $\forall x, y, z \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x^2 x = y^2 y \wedge y^2 y = z^2 z \Leftrightarrow x^2 x = z^2 z \Leftrightarrow z\mathcal{R}x, \mathcal{R} \text{ est transitive.}$

Cherchons les classes d'équivalence suivantes : $C_0, \overline{1}, \dot{2}, C_{\frac{1}{2}}$.

- (1) $C_0 = \{ y \in E/0\mathcal{R}y \}, 0\mathcal{R}y \Leftrightarrow y^2 y = 0, \text{ ainsi } C_0 = \{0, 1\}.$
- (2) $\overline{1} = \{ y \in E/1\mathcal{R}y \}, y^2 y = 1 1 = 0, \text{ ainsi } \overline{1} = \{0, 1\}.$
- (3) $\dot{2} = \{ y \in E/2\mathcal{R}y \}, y^2 y = 2, \ ainsi \ \dot{2} = \{-1, 2\}.$
- $(4) \ \ C_{\frac{1}{2}} = \{ y \in E/\tfrac{1}{2}\mathcal{R}y \}, y^2 y = \tfrac{1}{4} \tfrac{1}{2} = -\tfrac{1}{4}, \ ainsi \ C_{\frac{1}{2}} = \{ \tfrac{1}{2} \}.$

4. Exercices Corrigés

Exercice 7. On considère les ensembles suivants :

$$A = \{1, 2, 5\}, B = \{\{1, 2\}, 5\}, C = \{\{1, 2, 5\}\}, D = \{\emptyset, 1, 2, 5\}, E = \{5, 1, 2\}, F = \{\{1, 2\}, \{5\}\}, G = \{\{1, 2\}, \{5\}, 5\}, H = \{5, \{1\}, \{2\}\}.$$

- (1) Quelles sont les relations d'égalité ou d'inclusion qui existent entre ces ensembles?
- (2) Déterminer $A \cap B$, $G \cup H$, E G.
- (3) Quel est le complémentaire de A dans D.

SOLUTION. (1) On remarque $A = E, A \subset D, E \subset D, B \subset G, F \subset G$.

(2)
$$A \cap B = \{5\}, G \cup H = \{5, \{1\}, \{2\}, \{1, 2\}, \{5\}\}, E - G = \{1, 2\}.$$

(3)
$$C_D^A = \{\emptyset\}.$$

EXERCICE 8. Etant donné A, B et C trois parties d'un ensemble E,

- a) Montrer que :
 - (1) $(A \cap B) \cup B^c = A \cup B^c$.
 - (2) $(A B) C = A (B \cup C)$.
 - (3) $A (B \cap C) = (A B) \cup (A C)$.
- b) Simplifier:
 - $(1) \ \overline{(A \cup B)} \cap (C \cup \overline{A}).$
 - (2) $\overline{(A \cap B)} \cup \overline{(C \cap \overline{A})}$.

SOLUTION . a) Montrons que :

 $(1) \ (A\cap B)\cup B^c=A\cup B^c.$

$$Soit \ x \in (A \cap B) \cup B^c \Leftrightarrow x \in (A \cap B) \lor x \in B^c,$$

$$x \in (A \cap B) \cup B^c \Leftrightarrow (x \in A \land x \in B) \lor (x \notin B)$$

$$\Leftrightarrow (x \in A \lor x \notin B) \land (x \in B \lor x \notin B)$$

$$\Leftrightarrow x \in (A \cup B^c) \land x \in (B \cup B^c)$$

$$\Leftrightarrow x \in (A \cup B^c) \cap E$$

$$\Leftrightarrow x \in A \cup B^c.$$

 $Car\ E = B^c \cup B\ et\ A \cup B^c\ est\ un\ sous\ ensemble\ se\ E.$

(2)
$$(A - B) - C = A - (B \cup C)$$
. Soit $x \in (A - B) - C$ on a:
 $x \in (A - B) - C \Leftrightarrow (x \in A \land x \notin B) \land (x \notin C)$
 $\Leftrightarrow x \in A \land (x \notin B \land x \notin C)$
 $\Leftrightarrow x \in A \land (x \in B^c \cap C^c)$
 $\Leftrightarrow x \in A \land x \notin (B \cup C)$ Lois Morgan
 $\Leftrightarrow x \in A - (B \cup C)$.

$$(3) \ A - (B \cap C) = (A - B) \cup (A - C).$$

$$x \in A - (B \cap C) \Leftrightarrow (x \in A \land (x \notin B \land x \notin C))$$

$$\Leftrightarrow (x \in A \land x \notin B) \land (x \in A \land x \notin C)$$

$$\Leftrightarrow x \in (A - B) \land x \in (A - C)$$

$$\Leftrightarrow x \in (A - B) \cap (A - C).$$

- b) Simplifions
 - $(1) \ \overline{(A \cup B)} \cap \overline{(C \cup \overline{A})}.$

$$\overline{(A \cup B)} \cap \overline{(C \cup \overline{A})} = (\overline{A} \cap \overline{B}) \cap (\overline{C} \cap A)
= (\overline{A} \cap A) \cap (\overline{B} \cap \overline{C})
= \emptyset \cap (\overline{B} \cap \overline{C})
= \emptyset.$$

 $(2) \ \overline{(A \cap B)} \cup \overline{(C \cap \overline{A})}.$

$$\overline{(A \cap B)} \cup \overline{(C \cap \overline{A})} = (\overline{A} \cup \overline{B}) \cup (\overline{C} \cup A)
= (\overline{A} \cup A) \cup (\overline{B} \cup \overline{C})
= E \cup (\overline{B} \cup \overline{C})
= E.$$

EXERCICE 9. Soient E = [0, 1], F = [-1, 1], et G = [0, 2] trois intervalles de \mathbb{R} . Considérons l'application f de E dans G définie par :

$$f(x) = 2 - x,$$

et l'application g de F dans G définie par :

$$q(x) = x^2 + 1$$

 $f^{-1}(\{0\}) = \emptyset.$

- (1) Déterminer $f(\{1/2\}), f^{-1}(\{0\}), g([-1,1]), g^{-1}[0,2]).$
- (2) L'application f est-elle bijective? justifier.
- $(3)\ L'application\ g\ est\text{-elle bijective ? justifier}.$

SOLUTION. (1) (a)
$$f(\{1/2\}) = \{f(x) \in [0,2]/x = 1/2\},\$$

 $f(1/2) = 3/2 \in [0,2], \ alors:$
 $f(\{1/2\}) = \{3/2\}.$
(b) $f^{-1}(\{0\}) = \{x \in [-1,1]/f(x) = 0\}.$
On $a f(x) = 2 - x = 0 \Rightarrow x = 2 \notin [-1,1], \ alors:$

(c)
$$g([-1,1]) = \{g(x) \in [0,2]/x \in [-1,1]\}, \text{ on } a \ x \in [-1,0] \cup [0,1].$$

$$x \in [-1, 0] \Rightarrow -1 \le x \le 0$$

$$\Rightarrow 0 \le x^2 \le 1$$

$$\Rightarrow 1 \le x^2 + 1 \le 2$$

$$\Rightarrow g(x) \in [1, 2] \subset [0, 2]$$

$$d$$
'où $g([-1,0]) = [1,2]$

$$x \in]0,1] \Rightarrow 0 < x \le 1$$

$$\Rightarrow 0 < x^2 \le 1$$

$$\Rightarrow 1 < x^2 + 1 \le 2$$

$$\Rightarrow g(x) \in]1,2] \subset [0,2]$$

$$d'où g(]0,1]) =]1,2], g([-1,1]) = [1,2].$$

$$(d) g^{-1}([0,2]) = \{x \in [-1,1]/g(x) \in [0,2]\}, on a$$

$$g(x) \in [0,2] \implies 0 \le x^2 + 1 \le 2$$

$$\implies -1 \le x^2 \le 1$$

$$\implies (-1 < x^2 < 0) \lor (0 < x^2 < 1)$$

l'ingalité $(-1 \le x^2 < 0)$ n'a pas de solutions.

$$0 \le x^2 \le 1 \Leftrightarrow 0 \le |x| \le 1 \Leftrightarrow -1 \le x \le 1.$$

Ainsi

$$q^{-1}([0,2]) = \emptyset \cup [-1,1] = [-1,1].$$

- (2) Comme $f^{-1}(\{0\}) = \emptyset$ c'est à dire l'élément $0 \in [0, 2]$ n'admet pas d'antécédent par f dans [-1, 1] donc f n'est pas surjetive et par suite n'est pas bijective.
- (3) L'application g est paire donc g(-1) = g(1) or $-1 \neq 1$ donc g n'est pas injective d'où g ne peut être bijective, aussi on remarque que $g([-1,1]) = [1,2] \neq [0,2]$ donc g n'est pas surjecive, alors n'est pas aussi bijective.

EXERCICE 10. On définit sur \mathbb{R}^2 la relation \mathcal{R} par :

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow x+y=x'+y'$$

- (1) Montrer que \mathcal{R} une relation d'équivalence.
- (2) Trouver la classe d'équivalence du couple (0,0).

Solution. \mathcal{R} est une classe d'équivalence si et seulement si elle est réfléxive et symétrique et transitive.

(1) a) \mathcal{R} est réfléxive si et seulement si $\forall (x,y) \in \mathbb{R}^2, (x,y)\mathcal{R}(x,y)$

$$(x,y)\mathcal{R}(x,y) \Leftrightarrow x+y=x+y$$
.

D'où \mathcal{R} est réfléxive.

b) R est symétrique si et seulement si

$$\forall (x,y), (x',y') \in \mathbb{R}^2, (x,y)\mathcal{R}(x',y') \Rightarrow (x',y')\mathcal{R}(x,y)$$
$$(x,y)\mathcal{R}(x',y') \Rightarrow x+y=x'+y'$$
$$\Rightarrow x'+y'=x+y$$
$$\Rightarrow (x',y')\mathcal{R}(x,y)$$

D'où \mathcal{R} est symétique.

c) \mathcal{R} est transitive si et seulement si

$$\forall (x, y), (x', y'), (x'', y'') \in \mathbb{R}^2, (x, y)\mathcal{R}(x', y') \land (x', y')\mathcal{R}(x'', y'') \Rightarrow (x, y)\mathcal{R}(x'', y'')$$

$$(x,y)\mathcal{R}(x',y') \wedge (x',y')\mathcal{R}(x'',y'') \Rightarrow \begin{cases} x+y=x'+y' \\ \wedge \\ x'+y'=x''+y'' \end{cases}$$
$$\Rightarrow x+y=x''+y''$$
$$\Rightarrow (x,y)\mathcal{R}(x'',y'')$$

D'où \mathcal{R} est transitive, Ainsi \mathcal{R} est une relation d'équivalence.

(2) Trouvons la classe d'équivalence du couple (0,0).

$$C((0,0)) = \{(x,y) \in \mathbb{R}^2/(x,y)\mathcal{R}(0,0)\}$$

$$= \{(x,y) \in \mathbb{R}^2/x + y = 0\}$$

$$= \{(x,y) \in \mathbb{R}^2/y = -x\}$$

$$= \{(x,-x)/x \in \mathbb{R}\}.$$

EXERCICE 11. On définit sur \mathbb{R}^2 la relation T par

$$(x,y)T(x',y') \Leftrightarrow |x-x'| \le y'-y$$

- $(1)\ \textit{V\'erfier que T est une relation d'ordre. Cet ordre est-il total ?}$
- (2) Soit $(a,b) \in \mathbb{R}^2$, représenter l'ensemble $\{x,y\} \in \mathbb{R}^2/(x,y)T(a,b)\}$.

SOLUTION. T est une relation d'ordre si et seulement si elle est réfléxive et antisymétrique et transitive.

(1) a) \mathcal{R} est réfléxive si et seulement si $\forall (x,y) \in \mathbb{R}^2, (x,y)\mathcal{R}(x,y)$

$$(x,y)\mathcal{R}(x,y) \Leftrightarrow |x-x| \le y-y \Rightarrow 0 \le 0$$
.

D'où T est réfléxive.

b) T est anti-symétrique si et seulement si

$$\forall (x,y), (x',y') \in {\rm I\!R}^2, ((x,y)T(x',y')) \land ((x',y')T(x,y)) \Rightarrow (x,y) = (x',y')$$

$$(x,y)T(x',y') \wedge (x',y')T(x,y) \Rightarrow \begin{cases} |x-x'| \leq y'-y \\ et \\ |x'-x| \leq y-y' \end{cases}$$

$$\Rightarrow 2|x-x'| \leq 0$$

$$\Rightarrow |x-x'| = 0$$

$$\Rightarrow x = x'$$

$$\Rightarrow y'-y \geq 0 \wedge y-y' \geq 0$$

$$\Rightarrow y'-y \geq 0 \wedge y'-y \leq 0$$

$$\Rightarrow y'-y = 0 \Rightarrow y = y'.$$

D'où (x,y) = (x',y'), alors T est anti-symétique. c) T est transitive si et seulement si

$$\forall (x,y), (x',y'), (x'',y'') \in \mathbb{R}^2, ((x,y)T(x',y')) \land ((x',y')T(x'',y'')) \Rightarrow (x,y)T(x'',y'')$$

$$(x,y)T(x',y') \wedge (x',y')T(x",y") \Rightarrow \begin{cases} |x-x'| \leq y'-y \\ et \\ |x'-x"| \leq y"-y' \end{cases}$$

$$\Rightarrow \begin{cases} -y'+y \leq x-x' \leq y'-y \\ et \\ -y"+y' \leq x'-x" \leq y"-y' \end{cases}$$

$$\Rightarrow -y"+y \leq x'-x" \leq y"-y'$$

$$\Rightarrow |x-x"| \leq y"-y$$

$$\Rightarrow (x,y)T(x",y")$$

 $\label{eq:condition} \textit{D'où T est transitive, alors $c'est un relation $d'ordre$.}$

L'ordre n'est pas total car $\exists (x,y) = (2,3)$ et (x',y') = (4,3) tels que si on suppose que $(x,y)T(x',y') \Rightarrow |2-4| \leq 0$ ce qui absurde. De plus $(x',y')T(x,y) \Rightarrow |4-2| < 0$ faux.

(2) Soit $(a,b) \in \mathbb{R}^2$, déterminons l'ensemble $\{x,y\} \in \mathbb{R}^2/(x,y)T(a,b)\}$.

$$\begin{split} (x,y)T(a,b) &\iff |x-a| \le b-y \\ &\iff (x-a)^2 - (y-b)^2 \le 0 \\ &\iff [(x-a) + (y-b)][(x-a) - (y-b)] \le 0 \\ &\iff [(x-a+y-b) \ge 0 \land (x-a) - (y-b) < 0] \\ \lor & [(x-a+y-b) < 0 \land (x-a) - (y-b) \ge 0]. \end{split}$$

on pose:

 D_{p_1} : le demi-plan fermé d'équations $(x-y-a+b) \geq 0$. D_{p_2} : le demi-plan ouvert d'équations (x+y-a-b) < 0. D_{p_3} : le demi-plan ouvert d'équations (x-y-a+b) < 0. D_{p_4} : le demi-plan fermé d'équations $(x+y-a-b)\geq 0.$ D'où

$$(a,b) = \{x,y\} \in \mathbb{R}^2/(x,y)T(a,b)\} = (D_{p_1} \cap D_{p_2}) \cup (D_{p_3} \cap D_{p_4})$$