Zadania do deklaracji (poniedziałek)

Zadanie 1 Oblicz jakobian przekształcenia ze współrzędnych kartezjańskich do współrzędnych sferycznych (oraz zrozum jak działa to przekształcenie; najlepiej to sobie narysować).

Zadanie 2 Oblicz $\int_S y dx dy$ gdzie $S=\{(x,y): \left(x-\frac{a}{2}\right)^2+y^2=\left(\frac{a}{2}\right)^2, x\geq 0\}$ (półkoło o środku w $(\frac{a}{2},0)$ i promieniu $\frac{a}{2})$

Zadanie 3 Rozważ całkę $\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} \, dy dx$. Przejdź na zmienne polarne (biegunowe) i uprość tą całkę (zmień granice całkowania i funkcję podcałkową). Nie musisz jej obliczać! Wskazówka: Narysuj region po którym całujemy. Wskazówka 2: google *Change of Variables in Multiple Integrals*.

Zadanie 4 Niech zadanie 3 liczy się za dwa punkty. Jeśli ktoś się nie zgadza to proszę o kontakt indywidualny.

Zadanie 5 Podaj przykład zbioru $A \subset \mathbb{R}$ o mierze $\lambda_1(A) = 1$, takiego, że $\int_A x^2 dx = +\infty$.

Zadanie 6 Oblicz:

- 1. $\int_{T} \cos(x+y) dx dy$, gdzie T- pełen trójkąt ograniczony prostymi o równaniach: x=0,y=x,x=y;
- 2. $\int_{K(0,1)} xy dx dy$, gdzie K(0,1) to koło o środku w (0,0) oraz promieniu 1;
- 3. $\int_{K_{+1}} z dx dy dz$, gdzie $K_{+-} = \{ \boldsymbol{x} \in \mathbb{R}^3 : x > 0, y < 0, ||\boldsymbol{x}|| < 1 \}$
- 4. $\int_{P_{1,2}} (x^2 + y^2) dx dy$, gdzie $P_{1,2}$ pierścień kołowy ("pełny") na płaszczyźnie, o środku 0 i promieniu 1 (wewnętrznym) oraz 2 (zewnętrznym)
- 5. objętość walca obrotowego o wysokości h i promieniu podstawy r,
- 6. * Objętość "pełnego" torusa powstałego przez obrót koła w płaszczyźnie "x, z" o środku (R,0,0) i promieniu r wokół osi z (0 < r < R)

7.
$$\int_{D_{\alpha}} (x-y) dx dy \text{ gdzie } D_{\alpha} = \{ \boldsymbol{x} \in \mathbb{R}^2 : x \ge 1, x - \frac{1}{x^{\alpha}} \le y \le x + \frac{1}{x^{\alpha}} \} \text{ dla } \alpha > 0$$

- 8. pole powierzchni elipsy o równaniu $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 9. $\int_R (x-y)e^{x^2-y^2}dxdy$, gdzie R to pole ograniczone przez krzywe $x+y=1, x+y=3, x^2-y^2=-1, x^2-y^2=1$

1