Math 255A' Lecture 6 Notes

Daniel Raban

October 9, 2019

1 Applications of The Hahn-Banach Theorem

The last application we will go over is not in Conway's textbook.

1.1 Banach limits

Let $\mathbb{F} = \mathbb{R}$ and $\ell^{\infty} = \ell^{\infty}(\mathbb{N})$. Then $c = \{(x_n) \in \ell^{\infty} : \lim_n x_n \text{ exists}\}$ is a closed subspace. lim is a bounded linear functional on c, so we can extend it to all of ℓ^{∞} .

Theorem 1.1. There exists an $L \in (\ell^{\infty})^*$ such that

- 1. $L(x) = \lim_n x_n \text{ for all } x \in c$,
- 2. $L(x) \geq 0$ if $x_n \geq 0$ for all n,
- 3. $L(\sigma(x)) = L(x)$, where $\sigma(x) = (x_2, x_3, ...)$.

Proof. Let $M = \{x - \sigma(x) : x \in \ell^{\infty}\}$, which is a linear subspace of ℓ^{∞} . We will apply a corollary of Hahn-Banach to get an L that kills M and $L((1,1,\ldots)) = 1$.

Claim: dist(1 = (1, 1, ...), M) = 1. Let $x - \sigma(x) \in M$. Then

$$dist(\mathbf{1}, x - \sigma(x)) = \sup_{n} |1 - (x_n - x_{n+1})|.$$

Since $(x_n) \in \ell^{\infty}$, the right hand side gets arbitrarily close to 1 when x_n is close to $\inf_m x_m$. So there exists an $L \in (\ell^{\infty})^*$ such that L(M) = 0, $L(\mathbf{1}) = 1$ and ||L|| = 1. This covers property 3.

For property 2, use ||L|| = 1 and $L(\mathbf{1}) = 1$. It's similar to the fact that if μ is a signed measure, then $|\mu|(X) = |\mu(X)| \implies \mu = 0$.

For property 1, suppose $x \in c$ and let $\alpha := \lim_n x_n$. We claim that $\|\sigma^n(x)\| - \alpha \mathbf{1}\| \to 0$ as $n \to \infty$; this is a rewording of $\alpha := \lim_n x_n$. So $L(x) = L(\sigma^n(x)) \to \alpha L(\mathbf{1}) = \alpha$.

Corollary 1.1. $c_0 \subseteq \ker L$.

1.2 Dual of quotients by subspaces

Let X be a normed space, and let $M \leq X$ (i.e. M is a closed subspace).

Definition 1.1. The **annihilator** of M is $M^{\perp} := \{L \in X^* : L|_M = 0\}.$

Theorem 1.2. Let X be a normed space, and let $M \leq X$. Then the map $X^*/M^{\perp} \to M^*$ sending $f + M^{\perp} \mapsto f|_{M}$ is an isometric isomorphism.

Proof. This map is linear. We need to show that it is surjective and that $||f|_M|| = ||f| + M^{\perp}||$. We have the inequality \leq . The rest of the proof follows from the following claim: Given $g \in M^*$, there exists some $f \in X^*$ such that $f|_M = g$ and ||f|| = ||g||. This is just Hahn-Banach.

Theorem 1.3. Let $O: X \to X/M$ be the quotient map. Then the map $(X/M)^* \to M^{\perp} \subseteq X^*$ given by $g \mapsto g \circ Q$ is an isometric isomorphism.

Proof. Any v inM^{\perp} defines a linear functional on X/M. We want it to be bounded with the same norm:

$$||f|| = \sup\{|f(x)| : x \in X, ||x|| \le 1\} \implies f(x) \le ||f|| \cdot ||x + M^{\perp}||$$

for all x. And Q is surjective.

1.3 The double dual

We can keep taking the dual spaces of dual spaces to get $X^*, X^{**}, X^{***}, \dots$

Definition 1.2. The **natural map** $X \to X^{**}$ is given by $x \mapsto \hat{x}$, where $\hat{x}(f) = f(x)$.

Lemma 1.1. The natural map is isometric.

Proof. Since $|\hat{x}(f)| \leq ||f|| \cdot ||x||$, we have $||\hat{x}|| \leq ||x||$. Equality is by Hahn-Banach.

Definition 1.3. X is **reflexive** if $\hat{X} = X^{**}$; i.e. the natural map is surjective.

Example 1.1. Let $1 . Then <math>L^p(\mu)$ is reflexive by Riesz representation.

Example 1.2. Id dim $X < \infty$, then X is reflexive.

Example 1.3. $c_0 = C_0(\mathbb{N})$ is not reflexive. c_0^* is the collection of signed finite measures on \mathbb{N} , which is $\ell^1(\mathbb{N})$ by Riesz-representation. So c_0^{**} is $\ell^{\infty}(\mathbb{N})$, which is bigger than c_0 .

1.4 Optimal transport

Let (X, ρ) be a metric, and let $\mu, \nu \in \operatorname{Prob}(X)$. We want to move the mass according to the distribution μ to that of ν . This is called the **transport problem**. For infinitesimal regions dx, dy, think of $\lambda(dx, dy)$ as how much mass moves from dx to dy. We interpret $\lambda \in \operatorname{Prob}(X \times X)$.

 λ has to satisfy

$$\sum_{dy} \lambda(dx, dy) = \mu(dx), \qquad \sum_{dx} \lambda(dx, dy) = \nu(dy)$$

so we want

$$\lambda(A \times X) = \mu(A), \qquad \lambda(X \times B) = \nu(B)$$

for all measurable $A, B \subseteq X$.

Definition 1.4. A measure λ with these properties is called a **coupling** of μ, ν .

Call the collection of all such couplings C.

Example 1.4. The product measure $\lambda = \mu \times \nu$ is a coupling.

Let's suppose it costs us to move mass from dx to dy. Then we want to find λ and estimate

$$\min_{\lambda \in C} \int \rho(x, y) \, d\lambda(x, y).$$

This is not the inf because it is weak*-continuous.

Obstructions: Suppose $f \in L$, the collection of 1-Lipschitz functions $X \to \mathbb{R}$. Then for $\lambda \in C$,

$$\int f \, d\mu - \int f \, d\nu = \int (f(x) - f(y)) \, d\lambda(x, y) \le \int |f(x) - f(y)| \, d\lambda(x, y) \le \int \rho \, d\lambda.$$

Theorem 1.4. Let $D := \sup_{f \in L} |\int f d\mu - \int f d\nu|$. Then there exists a $\lambda \in C$ such that $\int \rho d\lambda = D$.

Remark 1.1. This theorem says that these obstructions are the only ones.

Proof. Equivalently, by Riesz representation, we want $\phi \in C(X \times X)^*$ (which corresponds to λ) such that

- 1. (coupling) $\phi(f(x)\cdot 1(y)) = \int f d\mu$ and $\phi(1(x)\cdot g(y)) = \int g d\nu$ for all $f,g\in C(X)$,
- 2. (minimizer) $\phi(\rho) = D$,
- 3. (probability measure) $\|\phi\| = \phi(\mathbb{1}_{X \times X}) = 1$.

So define $M := \{f(x) + g(y) + a\rho(x,y); f,g \in C(X), a \in \mathbb{R}\} \subseteq C(X \times Y)$. Define ψ on M by

$$\psi(f+g+a\rho) = \int f \, d\mu + \int g \, d\nu + aD.$$

We need to check that ψ is well-defined and $\|\psi\|_{M^*} \leq 1$. Taking b = 0, 1 it follows from the claim: If $f + g + a\rho \leq b$, then $\psi(f + g + a\rho) \leq b$. It is equivalent to show that if $f + g \leq b + a\rho$ for all x, y then $\int f d\mu + \int g d\nu \leq b + aD$.

Case 1: $a \leq 0$. This is straightforward and is in the online notes.

Case 2: a > 0. We may assume a = 1. Rewrite this as $f(x) \le \inf_y [b - g(y) + \rho(x, y)] =: h(x) \in L$. Then $f \le h \le b - g(x)$, so

$$\int f \, d\mu \le \int h \, d\mu \le \int d \, d\nu + D \le b - \int g \, d\nu + D.$$

- Start with b g(x)
- Draw cones at each point on the graph.
- Take h to be the minimum of the cones.

Then applying Hahn-Banach to ψ gives ϕ .