Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Etching 刻蚀 Part II: Wet 湿法

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Etching Methods

■ Wet Etching 湿法刻蚀

■ Dry Etching 干法刻蚀

CMP and other methods

Wet Etching - References

Wet Etching Recipes

http://ieeexplore.ieee.org/iel4/84/11954/00546406.pdf http://ieeexplore.ieee.org/iel4/84/11954/01257354.pdf

https://cleanroom.byu.edu/chemical_etching.html

Guide to references on III-V semiconductor chemical etching

http://www.sciencedirect.com/science/article/pii/S0927796X00000279

Metal Dissolution in Acids

Metal Dissolution in Acids

Strong Acids + Strong Oxidants

Piranha H_2SO_4 : H_2O_2 = 3:1 dissolves most metals and organics

Aqua Regia (王水) HCI: HNO3 = 3:1 even dissolves Au, Pt

SiO₂ etching

- Alkali (NaOH, etc) slowly etches SiO₂
 - \square SiO₂ + 2NaOH = Na₂SiO₃ + H₂O
- HF strongly etches SiO₂
 - \Box SiO₂ + 6HF = H₂SiF₆ + 2H₂O

glass art by HF etch

- Buffered HF (BHF/BOE)
 - → HF + NH₄F
 - lower etch rate
 - safer for use

Cu etching

• $Cu + 2FeCl_3 = CuCl_2 + 2FeCl_2$

Selectivity for Wet Etch

Films	Etchant	Mask	
SiO ₂	HF	PR	
Si	КОН	Si ₃ N ₄	
GaAs	H ₃ PO ₄ + H ₂ O ₂	PR	
GaP	KOH + K ₃ [Fe(CN) ₆]	SiO ₂	
Cu	FeCl ₃	PR	
Au	KI + I ₂	PR	

most wet etch recipes are isotropic, except KOH etch for Si

Isotropy for Wet Etch

- Wet etch is usually isotropic
- Exceptions
 - some etching for single crystals
 - KOH etch Si

isotropic A = 0

- HNO₃ + HF
 - **□** isotropic etch

Isotropic wet etching: Agitation

Isotropic wet etching: No Agitation

Q: why?

Si etching

KOH

- anisotropic etch
- □ etch rate (111):(110):(100) ~ 1:600:400
- □ mask: SiO₂, Si₃N₄, Cr/Au, ...

Anisotropic wet etching: (100)

Anisotropic wet etching: (110)

Other chemistries

- TMAH: Tetramethyl ammonium hydroxide
- Ethylene diamine pyrochatecol

- Single Crystalline Si Solar Cells
 - KOH anisotropic etch

optical trapping and antireflection

- Si cantilever beam
 - KOH anisotropic etch

Micro-Electro-Mechanical Systems (MEMS)

III-V etching

- GaAs, AlGaAs, InGaAs

 - \square NH₄OH + H₂O₂
- AlGaAs
 - when AI > 70%, HF and HCI etch
- InP, InGaP, InAIP
 - HCI
- GaN, InGaN
 - no reliable wet etchants ...

Etch Stops

InGaP / GaAs

lattice matched epitaxy

□ $H_3PO_4 + H_2O_2$ only etches GaAs

HCI only etches InGaP

Emitter

Etch Stops

highly p-dope Si is resistant to KOH

Etch Stops

Silicon based 'Michigan Probe' for neuroscience

Electrochemical Etch

Anodization (阳极氧化) - Porous Si

Anodization - Porous Al₂O₃

layer

Thin-Film Si from SOI wafers

compound eyes

'epidermal' electronics

Thin-Film Si from Si (111)

KOH etches faster for Si (100) than (111)

- Thin-film Si solar cells
 - High efficiency (Single Crystal)
 - Flexible
 - Low cost (wafer reuse)

GaN on Si (111)

KOH etches faster for Si (100) than (111)

Release; transfer

GaAs Device Liftoff

- GaAs and AlAs
 - lattice matched growth
 - AlAs is selectively etched by HF
- flexible III-V devices

GaAs

solar cells

LED

Epitaxy Liftoff

Materials	Sacrificial layers	Substrates	Release methods
Si	SiO ₂	Si	HF wet etch
Si (111)	-	Si (111)	KOH wet etch
Ge	SiO ₂	Si	HF wet etch
SiC	SiO ₂	Si	HF wet etch
GaAs / InGaP	AlAs	GaAs	HF / HCI wet etch
GaAs / InGaP	InAIP	GaAs	HCI wet etch
InGaAs / InP	InGaAs	InP	FeCl ₃ wet etch
GaN	ZnO	sapphire	HCI wet etch
GaN	-	Si (111)	KOH wet etch
InAs	InGaSb	GaSb	NH₄OH wet etch

Bio-degradable Materials

Materials that can be dissolved in the body.

Biodegradable Suture

Cardiovascular Stent

Bone Scaffold

Biocompatible and Degradable Materials

Organic: PLGA, PLA, silk, ...

□ Metals: Mg, Ca, Zn, Fe, ...

□ Semiconductors: Si, Ge, ...

Bio-degradable Electronics

Si devices that can be dissolved by body fluids.

