CSC-411 Artificial Intelligence

Introduction to Machine Learning

Clustering

Clustering

 In general a grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Types of Clustering

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

A Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The objective is find K centroids and the assignment of points to clusters/centroids so as to minimize the sum of distances of the points to their respective centroid

K-means Algorithm

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-means Calculations

- To find the distance of a data point from the centroid we can use any mathematical distance formula like Manhattan distance or Euclidean distance etc.
- Example: Distance of point A (2,5) from a centroid K1 (6, 8) calculated using Manhattan distance would be:

$$X1 = 2$$
, $X2 = 6$
 $Y1 = 5$, $Y2 = 8$
Manhattan Distance $X = |2-6| = |-4| = 4$
Manhattan Distance $Y = |5-8| = |-3| = 3$
Distance of point A from $K1 = 4 + 3 = 7$

 Use the same formula to calculate the distances of "each" point from "every" centroid.

K-means Calculations

- To find new centroid, find the average of all X values and all Y values to generate a new centroid X_{New} , Y_{New}
- Example: if we have 3 data points in a cluster A, B, C, then the new Centroid will be calculated as:

$$\frac{X_A + X_B + X_C}{3} = X_{new}$$

$$\frac{Y_A + Y_B + Y_C}{3} = Y_{New}$$

• Do this to calculate the centroids for all K clusters.

Pick 3
initial Y
cluster
centers
(randomly)

Y

Assign
each point
to the closest
cluster
center

Y

Move
each cluster
center
to the mean
of each cluster

Reassign
points
closest to a
different new
cluster center

Q: Which points are reassigned?

K-Means Example, Step 4 ...

move cluster centers to cluster means

Limitations of K-means

- K-means has problems when clusters are of different:
 - sizes
 - densities
 - non-globular shapes
- K-means has problems when the data contains outliers.