COMP 2404 Final Exam Review - Fall 2018

- Section 1 -- Basics of C++ development
 - Linux platform
 - Types of shell
 - Basic Unix commands, I/O redirection
 - Types of Unix platforms
 - Program building
 - Compiling vs linking: what are they, what commands are used
 - Source files, object files, executables
 - Makefiles
 - Basic language features
 - Terminology
 - Expressions, statements, blocks, scope (local vs global)
 - Operators, operands, arity, precedence, associativity
 - Functions
 - Global vs member functions
 - Function declaration vs implementation
 - Function design
 - Types of parameters (input, output, input-output)
 - Parameter passing (pass by value, pass by reference by reference, pass by reference by pointer)
 - References: what they are, what they are not, how they are used
 - Programming conventions
 - Naming conventions, indentation, commenting
- Section 2 -- Basics of C++ classes
 - Class definition
 - Binary scope resolution operator ::
 - Access specifiers (public, private, protected)
 - Code organization: separating code into header and source files
 - Class interface: how you interact with a class, the set of its public members
 - Constructors and destructors
 - Default arguments
 - Types of constructors: default ctor, copy ctor, conversion ctor
 - Destructors: order of execution
 - Copy constructors: what are they, what they do, when are they called

- Memory management
 - Stack vs heap
 - Pointers
 - What are they, why are they used, how are they used
 - Operators: arrow operator, address-of operator, dereferencing operator
 - Differences between pointers and references
 - Parameter passing with pointers
 - Memory allocation: static vs dynamic
 - Memory leaks
 - Dynamic memory allocation: new, delete
 - 4 kinds of arrays:
 - Statically allocated array of objects
 - Statically allocated array of object pointers
 - o Dynamically allocated array of objects
 - Dynamically allocated array of object pointers
- Section 3 -- Basics of object-oriented design
 - Software engineering overview
 - Software development life cycle (development process): requirements analysis, design, implementation, testing
 - OO design principles
 - Information hiding
 - Data abstraction: separating implementation from class interface
 - Encapsulation: grouping data together that belongs together
 - Principle of least privilege
 - Object design categories
 - Types of objects: collection classes, control, view, entity
 - What are they, what do they do, why?
 - Collection classes
 - Documenting design
 - UML, UML, UML
 - Classes: attributes, operations (access specifier)
 - Associations: composition, inheritance
 - Composition: directionality, multiplicity
 - Inheritance: abstract or not
 - NO COLLECTION CLASSES, NO GLOBAL FUNCTIONS
 - No getters, setters, ctors, dtors

- Section 4 -- Essential object-oriented techniques
 - Encapsulation
 - Composition
 - Member initializer syntax
 - Order of ctor, dtor
 - Constants (objects, data members, member functions)
 - Friendship
 - Static class members
 - Linked lists (insertion, deletion, cleanup)
 - Singly, doubly, with/without a tail
 - Inheritance
 - Terminology: base class, derived class
 - Member access
 - Base class initializer syntax
 - Ctor, dtor order of execution
 - Types of inheritance: public, private, protected
 - Multiple inheritance: diamond problem (multiple inclusion, virtual inheritance)
 - Design patterns
 - Types: structural, behavioural, creational
 - Façade, Factory, Observer, Strategy, anti-patterns
 - Polymorphism
 - What is polymorphism
 - Dynamic binding
 - Virtual functions
 - Abstract classes using pure virtual functions
 - Behaviour classes, Strategy design pattern
 - Overloading
 - Function overloading
 - Operator overloading
 - cascading
 - Templates
 - Function templates
 - Class templates (collection classes)
 - Exception handling
 - Dealing with faults, fault prevention, fault detection, fault tolerance
 - Why exception handling vs inline error handling
 - Try, throw, catch
 - Stack unwinding

- Section 5 -- C++ library
 - o STL
 - Iterators
 - Sequence containers (vector, list, deque)
 - Associative containers (map, set)
 - Container adapters (stack, queue)
 - algorithms
 - Files and streams
 - Input streams
 - Output streams
 - Files
 - Error state flags
- Final exam
 - o 3 hours
 - Covers all the course material
 - Out of 100 marks
 - Concept questions (all multiple choice): 40 marks
 - 40 questions, 1 mark each
 - Programming and UML:60 marks
 - 4 questions
 - o BRING:
 - Campus card
 - Pencil, erasers
 - ASSIGNED SEATING !!!!!! Check Grades in cuLearn on Monday for Row and Seat numbers
 - NO QUESTIONS -- sorry! :-(