Tecnologias Multimédia Aula 6

Manuela. Pereira mpereira@di.ubi.pt

April 14, 2020

1. A tabela abaixo mostra um código para a fonte discreta S, sem memória, com alfabeto de cinco símbolos e respectivas probabilidades:

símbolo	s_0	s_1	s_2	s_3	s_4
probabilidade	0.4	0.15	0.15	0.15	0.15
código	1	10	010	001	000

- (a) Estabeleça um código de Huffman para esta fonte.
- (b) Estabeleça um código de Shannon-Fano para esta fonte.
- (c) Mostre qual destes códigos é o mais eficiente. Se a fonte gerasse 1000 símbolos qual a diferença de débito entre as duas diferentes codificações?
- (d) Compare o melhor dos seus códigos (Huffman e Shannon-Fano) com o código da tabela. Comente a eficiência e a possibilidade de utilização de cada um dos códigos (o seu melhor e o da tabela).
- 2. Uma fonte com alfabeto pertencente ao conjunto de caracteres { 'a', 'b', 'c'}. gerou a seguinte sequência: aaaaaaaaabc
 - (a) Codifique a sequência acima com o algoritmo Huffman.
 - (b) Comparando a codificação de Huffman com a de Shannon, qual seria mais eficiente a codificar esta mensagem? Justifique.
- 3. Seja

$$X = \left\{ \begin{array}{ll} 1 & \text{com probabilidade} & p, \\ 0 & \text{com probabilidade} & 1-p. \end{array} \right.$$

Calcule a entropia de X. Indique para que valores de p a entropia é máxima e para que valores de p a entropia é mínima.

4. Uma dada fonte transmite r=3000 símbolos por segundo de um conjunto de quatro símbolos, com as probabilidades que se seguem:

$\overline{x_i}$	$p(x_i)$
A	1/3
В	1/3
\mathbf{C}	1/6
D	1/6

- (a) Qual o menor débito (em bits) de informação possível (por segundo, considerando codificação por símbolo).
- (b) Considere as codificações estatísticas por símbolo abordadas na disciplina. Com qual consegue uma codificação que permita um débito de informação mais próximo do menor débito possível? Qual o débito conseguido?
- 5. Uma fonte gera símbolos do alfabeto $\{A,B,C,D,E,F\}$, com probabilidades

 $\{0.3, 0.2, 0.15, 0.15, 0.15, 0.05\}$. Qual dos seguintes códigos binários é óptimo para esta fonte?

- \bigcirc {00, 01, 10, 1100, 1101, 1110}
- \bigcirc {10, 11, 011, 010, 001, 000}
- \bigcirc {10,01,011,010,001,000}
- \bigcirc {00, 01, 10, 110, 1110, 1111}
- O Nenhuma das anteriores.
- Um ficheiro codificado com Huffman canónico continha a seguinte informação:
 - 4 DIMRTV
 - 3 .AESU

- (a) Descodifique a mensagem anterior considerando que os ficheiros codificados com o codificador em causa apresentam a seguinte estrutura:
 - N linhas começadas por um número. Nestas linhas, aparece um número inteiro seguido de um espaço e de uma lista de caracteres.
 O número inteiro corresponde ao número de bits usados para codificar os caracteres que aparecem na lista.
 - uma linha vazia
 - $\bullet\,$ o resultado da codificação da mensagem original
- (b) Calcule a largura média, a entropia e a taxa de compressão.

 $H = -\sum_{i} p_{i} * log_{2}(p_{i})$, sendo p_{i} a probabilidade associada aoi símbolo i. $L = \sum_{i} p_{i} * l_{i}$, sendo l_{i} o tamanho de código associada ao símbolo i.

prob	$\begin{array}{c c} \text{\'imbolo} & s_0 \\ \text{babilidade} & 0.4 \\ \text{c\'odigo} & 1 \end{array}$	$ \begin{array}{c cccc} s_1 & s_2 \\ \hline 0.15 & 0.15 \\ \hline 10 & 010 \\ \end{array} $	$ \begin{array}{c cccc} s_3 & s_4 \\ \hline 0.15 & 0.15 \\ \hline 001 & 000 \\ \end{array} $	S1S1 10 <mark>10</mark>	
				1010 SOS2	
0 - SO (0.4)			0		(1)
100 - S1 (0.15)	0	., S2 (0.3)	0		1
101 - S2 (0.15)	1	(0.0)		\$1,\$2,\$3,\$4 (0.6)	
110 - S3 (0.15)	0 S3	3, S4 (0.3)	1		
111 - S4 (0.15)					
00 · S0 (0.4)	0 51	0 SO			
01 · S1 (0.15) 10 · S2 (0.15)	<i>S</i> 2	1 0	S2	\$3	
110 · S3 (0.15)	1 S3	 	S3		
111 - S4 (0.15)	<i>S</i> 4	1	S4 1	S 4	

$$L_H = 0.4 * 1 + 0.15*3 * 4 = 2.2$$
 $M_1000 = 2.2 * 1000 = 2200 \text{ bits}$ $L_S = 2 * 0.7 + 3 * 0.3 = 2.3$ $M_1000 = 2.3 * 1000 = 2300 \text{ bits}$ $H = -0.4 * log2(0.4) - 0.15*log2(0.15) * 4 = 2.171;$

 $\begin{array}{c} {\rm Resoluç\~ao} \ \hbox{-} \ {\rm pg2} \\ aaaaaaaaaabc \end{array}$

$$H2 = -10/12 * log2(10/12) - 2*1/12*log2(1/12) = 0.8167;$$

 $L2 = 1 * 10/12 + 2 * 2/12 = 1.1667;$

Código de Huffman: { 0, 10, 11}

Código de Shannon: { 0, 10, 11}

$$X = \left\{ \begin{array}{ll} 1 & \text{com probabilidade} & p, \\ 0 & \text{com probabilidade} & 1-p. \end{array} \right.$$

p=0.01: 0.01: 1; H = -p.* log2(p) - (1-p).* log2(1-p); plot(p,H)

x_i	$p(x_i)$
A	1/3
В	1/3
\mathbf{C}	1/6
D	1/6

$$H4 = -1/3*log2(1/3)*2 - 1/6*log2(1/6)*2 = 1.9183;$$

L = 2

Para 3000 símbolos, 2*3000 bíts, ou seja 6000 bíts.

Uma fonte gera símbolos do alfabeto $\{A,B,C,D,E,F\}$, com probabilidades $\{0.3,0.2,0.15,0.15,0.15,0.05\}$. Qual dos seguintes códigos binários é óptimo para esta fonte?

- $\bigcirc \ \{00,01,10,1100,1101,1110\}$
- **⊗** {10, 11, 011, 010, 001, 000}
- \bigcirc {10(01)011,010,001,000} \times
- \bigcirc {00, 01, 10, 110, 1110, 1111}
- O Nenhuma das anteriores.

Resolução - pg
6