Brocard Point

Yff's Inequality

Reporter: Yukang LI

Professor: Zhiqin Lu

CONTENTS

Introduction

Method 1: Abi-Khuzam Inequality

Method 2: Marian Dincă Function

Introduction

Brocard Point

In a triangle ABC with sides a, b, and c, there is exactly one point P such that the line segments AP, BP, and CP form the same angle, ω , with the respective sides c, a, and b, namely that

 $\angle PAB = \angle PBC = \angle PCA = \omega$ The point P is the first **Brocard point** of the triangle ABC and the ω is called the **Brocard angle** of the triangle. This angle has the property

 $cot\omega = cotA + cotB + cotC$ where A,B,C are three vertex angles in the triangles

Introduction

How to find Brocard Point

As in the diagram right, form a circle through points A and B, tangent to edge BC of the triangle (the center of this circle is at the point where the perpendicular bisector of AB meets the line through point B that is perpendicular to BC). Symmetrically, form a circle through points B and C, tangent to edge AC, and a circle through points A and C, tangent to edge AB. These three circles have a common point, the first Brocard point of triangle ABC.

Introduction

Yff's Inequality

Yff's inequality was introduced by the American mathematician Peter Yff in 1963. let ΔABC be a triangle, let ω be the brocard angle of ΔABC . Then, Yff's inequality is $8\omega^3 \leq ABC$

where A,B,C are three angles of the triangle measure in radians.

Method 1 : Abi-Khuzam Inequality

Given:
$$cot\omega = cotA + cotB + cotC$$

 $csc^2\omega = csc^2A + csc^2B + csc^2C$,
 $\omega \leq \frac{\pi}{6}$

By considering a decreasing steadily function $\frac{\sin x}{x}$ in the interval

$$0 < x < \frac{\pi}{2}$$

then, since the $\omega \leq \frac{\pi}{6}$, it implies $\frac{\sin \omega}{\omega} \geq \frac{3}{\pi}$, and $\frac{\pi}{3\omega} \geq csc \omega$. Applying the inequality between the arithmetic and geometric mean, we can obtain:

$$\frac{csc^{2}A + csc^{2}B + csc^{2}C}{3} \ge \sqrt[3]{cscAcscBcscC}^{2}$$
then, we can further get:
$$(\frac{\pi}{3\omega})^{2} \ge csc^{2}\omega \ge 3(\sqrt[3]{cscAcscBcscC})^{2}$$

Method 1: Abi-Khuzam Inequality

Let
$$sin x = x \prod_{n=1}^{\infty} [1 - (\frac{x}{\pi n})^2] = x P(x),$$

Then we have

$$P(x_1)P(x_2)P(x_3) = \prod_{i=1}^{3} \prod_{n=1}^{\infty} \left[1 - \left(\frac{x_i}{\pi n}\right)^2\right]$$

after using inequality between arithmetic-geometiric mean, we can get :

$$P(x_1)P(x_2)P(x_3) \le \prod_{n=1}^{\infty} [1 - (\frac{1}{3n})^2]^3 = [P(\frac{\pi}{3})]^3 = (\frac{3\sqrt{3}}{2\pi})^3$$

Abi-Khuzam inequality states :

$$sinAsinBsinC \le ABC(\frac{3\sqrt{3}}{2\pi})^3$$

Then, We can use $sin x = \frac{1}{csc \ x}$ compute this formula, finally, we get: $2\omega \le \sqrt[3]{ABC}$

В

Method 2 : Marian Dincă Function

then v

Let f

then v

then, i

Method 2: Marian Dincă Function

Addition inequality

Jensen's inequality

For a real convex function f(x), numbers $x_1, x_2 \cdots x_n$ in its domain, and positive scalar α_i , Jensen's inequality states as:

$$f(\frac{\sum \alpha_i x_i}{\sum \alpha_i}) \le \frac{\sum \alpha_i f(x_i)}{\sum \alpha_i}$$

Inequality of arithmetic and geometric means

we have that for any list of n nonnegative real numbers x_1 , $x_2 \cdots \cdots x_n$,

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 + \dots + x_n}$$

THANKS