

## Sumário

### 1. O Problema Central

- A Ambiguidade da Informação
- Falha de Comunicação em Projetos.

### 2. A Estratégia da Solução

- Fundamentos: O uso de Ontologias para criar um significado compartilhado.
- •Tecnologias: A aplicação de RDF e OWL para estruturar e adicionar inteligência aos dados.

### 3. O Projeto Prático: Assistente Virtual

- Arquitetura: O fluxo de converter o modelo BIM, carregá-lo em uma base de conhecimento (Fuseki) e habilitar consultas via SPARQL e um Chatbot.
- •Interação com o Usuário: Funcionalidades de consulta em linguagem natural, com visualização e navegação pelos grafos de conhecimento.

### 4. Conclusão

As Vantagens da Abordagem Semântica e o Resumo do Projeto.

# O Problema: A Ambiguidade da Informação

O Problema: Ambiguidade

Uma mesma palavra pode ter múltiplos significados.

Exemplo: Como um computador sabe a diferença entre a "vela" de um barco e uma "vela" de cera?

Sem contexto, a comunicação falha.



# Problema de Comunicação

O setor AEC (Arquitetura, Engenharia e Construção) utiliza dezenas de softwares diferentes (CAD, BIM, Sketchup, etc.).

Cada software "fala uma língua" diferente, resultando em perda de dados, retrabalho e inconsistências.



# A Solução: A Busca por Significado Compartilhado



- Significado
  Compartilhado: Criar
  um vocabulário
  comum e regras
  explícitas para o
  conhecimento.
- A Visão da Web
  Semântica: Uma "Web
  de Dados" que as
  máquinas conseguem
  entender e processar
  de forma inteligente.

# O que é uma Ontologia?

"Uma especificação explícita e formal de uma conceitualização compartilhada." - Tom Gruber, 1993

Conceitualização: Um modelo abstrato do mundo.

Compartilhada: Um consenso sobre o modelo.

Explícita: Tudo é definido claramente.

Formal: Legível e processável por máquinas

# **Uma Analogia**

Pense numa ontologia como um dicionário superpoderoso para computadores.

Ela não apenas define os conceitos, mas também como eles se relacionam e as regras que os governam.

# Componentes de uma Ontologia

Classes (Conceitos): Grupos de objetos. Ex: fruta, vegetal.

Propriedades (Relações): Conexões entre conceitos. Ex: similar.

Indivíduos (Instâncias): Objetos específicos. Ex: Maçã, cenoura.



**Axiomas (Regras):** Restrições e verdades do domínio.

# Rede Semântica vs. Ontologia

Formalismo: Baixo vs. Alto (Baseado em lógica)

Inferência: Limitada vs. Robusta

Estrutura: Simples (Nós e Arestas) vs. Rica (Axiomas e Regras)

Uma ontologia é uma rede semântica com regras e poder de raciocínio.

# RDF (Resource Description Framework)

Um modelo para descrever recursos através de Triplas.

Estrutura: (Sujeito) --- (Predicado) ---> (Objeto)

**Exemplo:** 

João Trabalha Google



A combinação de triplas forma um Grafo de Conhecimento.

# Exemplo:

### Representação Gráfica



### Representação Formal

| Sujeito | Predicado | Objeto        |
|---------|-----------|---------------|
| Pessoa  | tem       | Primeiro Nome |
| Pessoa  | tem       | Sobrenome     |
| Pessoa  | tem       | Email         |
| Pessoa  | tem       | Telefone      |
| Pessoa  | ouve      | Música        |
| Pessoa  | assiste   | Filme         |
| Pessoa  | gosta de  | Comida        |
| Pessoa  | pratica   | Esporte       |

## RDF em Turtle

Uma sintaxe limpa e concisa para escrever triplas RDF.

```
# Define o indivíduo "Maria"
:Maria a :Pessoa;
:temldade 32;
:trabalhaEm :TechCorp .
```



# Adicionando Inteligência com OWL (Web Ontology Language)

OWL estende o RDF para adicionar regras e restrições lógicas.

Cardinalidade: "Uma Pessoa tem no máximo 2 pais biológicos."

**Domínio e Imagem:** A propriedade trabalhaEm só pode ligar uma Pessoa a uma Empresa.

## Herança e Inferência

Herança (subClassOf): Classes podem herdar propriedades de outras.

Se Gerente é uma subclasse de Funcionário, ele herda tudo de Funcionário.

Inferência (Raciocínio): A capacidade de derivar novos factos a partir das regras existentes, usando um software chamado Raciocinador.

# Exemplo Inferência

### O que declaramos:

Gerente é subclasse de Funcionário.

Maria é um Gerente.

### O que o Raciocinador infere:

Maria também é uma Funcionário. (Fato novo!)

### BIM e IFC

**BIM (Building Information Modeling):** Um processo para criar e gerir informações de um projeto de construção.

**IFC (Industry Foundation Classes):** O padrão de dados aberto que permite a interoperabilidade no BIM.





O IFC é, na sua essência, uma gigantesca ontologia para a construção civil.

# Traduzindo IFC para a Web Semântica: ifcOWL

A especificação **ifcOWL** representa o esquema IFC usando a linguagem **OWL**.

Isto permite-nos carregar o "dicionário" da construção civil numa base de conhecimento semântica.

# Ontologia com Protégé

**Protégé:** Um editor de ontologias gratuito e de código aberto.

Ele é usado para visualizar e entender a complexa estrutura da ifcOWL antes de construir as nossas consultas.



# Apresentando o Assistente Virtual Semântico para Projetos BIM

Conectando a Teoria à Prática: Até agora, vimos a teoria. Mas como podemos usá-la para resolver um problema real?

O Desafio: Como um engenheiro ou arquiteto pode, de forma intuitiva, extrair informações valiosas de um modelo BIM complexo?





# O Projeto: Consulta Inteligente

## a Modelos BIM

O Projeto: Um Assistente Virtual para BIM

- 1. **Objetivo:** Permitir a consulta de modelos BIM em linguagem natural.
- 2. Interface Principal:
  - Chatbot para interação por texto.
  - Visualização de Grafo interativa.
  - Construtor de Consultas para auxiliar o utilizador.



# Arquitetura da Solução

Frontend: HTML5, Tailwind CSS, Vis.js

Backend: Python + Flask, NLU,

spaCy

Base de Conhecimento: Apache Jena Fuseki (SPARQL)







# Passo 1: Preparando a Base de Conhecimento

Passo 1: Preparação dos Dados

- Leitura do ficheiro .ifc
   com a biblioteca
   lfcOpenShell.
- 2. Conversão para RDF (.ttl) com a biblioteca rdflib.
- 3. Carregamento
  automático no servidor
  Fuseki com o nosso script
  de setup.



# Passo 2: A Base de Conhecimento com Fuseki e SPARQL



Passo 2: A Base de Conhecimento

- Apache Jena Fuseki: O nosso servidor de grafos (Triplestore) que armazena a ontologia.
- 2.SPARQL: A linguagem de consulta padrão para RDF, usada para interrogar a base de conhecimento.

## Passo 3: Executando o Chatbot



Passo 3: Como Executar o Chatbot
Para colocar o chatbot em
funcionamento:

- Execute o arquivo setup.py para preparar o ambiente.
- 2. Em seguida, execute o arquivo app.py.
- 3. Abra o navegador e acesse: <a href="http://localhost:5000">http://localhost:5000</a>

## Pergunta Simples e Grafo Focado

#### Assistente Virtual Semântico BIM v2.0

Faca uma pergunta ou use o construtor de consultas abaixo.

o que o 'Single-family house' contém?

A propriedade 'contém' para 'Singlefamily house' é: house - site.

Demo 1: Pergunta e Grafo Simples

Usuário: "qual o material do 'floor'?"

Resultado: Resposta textual + Grafo

focado no objeto consultado.



# Pergunta Simples e Grafo Focado



# Visualização da Ontologia Completa



# Visualização da Ontologia Completa



# Visualização da Ontologia Completa



# Destacando as Relações



# Destacando as Relações











## O Construtor de Consultas



# Vantagens da Abordagem Semântica

Vantagens da Nossa Abordagem

- Conhecimento
   Acessível: Transforma dados
   BIM complexos em respostas
   simples.
- Flexibilidade: Novos projetos (.ifc) podem ser carregados sem alterar o código da aplicação.
- Exploração Intuitiva: O grafo interativo oferece uma forma muito mais rica de explorar o projeto do que tabelas estáticas.

Acessível

Flexível

Intuitivo

## Resumo e Conclusões

### Conclusões

- Ontologias (como a ifcOWL) estruturam formalmente o conhecimento de domínios complexos.
- Tecnologias da Web Semântica (RDF, SPARQL) são a base para construir aplicações de conhecimento.
- A combinação de Fuseki, spaCy e Flask permite a criação de assistentes virtuais poderosos.
- Demonstrámos que é prático e viável consultar modelos BIM de forma conversacional.

# Muito Obrigado!