

First Labs on Real-Time Scheduling

Guohao DAI

November 4th, 2022

Exercise 1

1. Simulate the following task configuration on one core using *deadline monotonic*.

	First release	WCET	D	P
T_1	0	2	5	5
T_2	0	2	4	10

- a) No deadline missed in the computed scheduling: the task set is schedulable if we computed the scheduling on the feasibility interval.
- b) The worst-case response times of the T_1 is 4 and T_2 is 2.

- 2. When we set T_1 as the first priority and T_2 as the second priority, the results of the simulated scheduling are as follows:
 - "No deadline missed in the computed scheduling: the task set is schedulable if we computed the scheduling on the feasibility interval."

Exercise 2

1. Let's assume the following independant task configuration.

	First release	WCET	D	P
T_1	0	2	6	6
T_2	0	4	10	10
T_3	0	2	20	20

It is schedulable by a fixed priority.

2. Same question with the following independant task configuration.

	First release	WCET	D	P
T_1	0	2	6	6
T_2	0	4	10	10
T_3	0	2	9	20

- It is not schedulable by a fixed priority. However, it is schedulable by a Earliest Deadline First: "No deadline missed in the computed scheduling: the task set is schedulable if we computed the scheduling on the feasibility interval."

3. Same question with the following independant task configuration.

	First release	WCET	D	P
$\mid T_1 \mid$	0	2	6	6
T_2	0	4	8	10
T_3	0	2	9	20

- It is not schedulable by a fixed priority. However, it is schedulable by a Earliest Deadline First: "No deadline missed in the computed scheduling: the task set is schedulable if we computed the scheduling on the feasibility interval."

Exercise 3

In this exercise we investigate another dynamic scheduling policy: LLF (Least Laxity First). This policy selects the task to run among the ready tasks according to a dynamic priority called 'laxity': the smaller the laxity, the higher the priority. Li(t), the laxity of a task i at time t can be computed by

$$Li(t) = Deadline - remaining(t)$$

where remaining(t) is the remaining capacity of the task at time t. Let's assume the following independent task configuration.

	First release	WCET	D	P
T_1	0	3	8	8
T_2	0	4	9	9

Result of scheduling simulation in Earliest Deadline First

- Result of scheduling simulation in Least Laxity First

- Through the two scheduling simulation results, the *Earliest Deadline First* algorithm has fewer context switches and preemptions under this task configuration. So it will consume less extra resources and have better performance.

Exercise 4

In this exercise we investigate the effect of non preemption on scheduling.

1. Let's assume the following independant task configuration.

	First release	WCET	D	P
T_1	0	1	3	3
$\mid T_2 \mid$	0	3	9	9

- Result of scheduling simulation in *Preemptive Rate Monotonic*

Result of scheduling simulation in *Non Preemptive Rate Monotonic*

- In preemptive scheduling, once a task needs to be scheduled (preempted), the CPU will
 context switch. Therefore, context switching will be more frequent in this scheduling
 mode.
- In non-preemptive scheduling, the CPU does not respond to preemption (interrupts). Correspondingly, this mode will have fewer context switches
- 2. Same question with the following independant task configuration.

	First release	WCET	D	Р
T_1	0	2	3	3
T_2	0	3	9	9

- Result of scheduling simulation in *Preemptive Rate Monotonic*

- Result of scheduling simulation in Non Preemptive Rate Monotonic

- In this task configuration, the task set is only schedulable in preemptive mode.
- In non-preemptive mode, T_1 missed its deadline(absolute deadline = 6; completion time = 7).

Exercise 5
Let's assume the following dependant task configuration:

	First release	WCET	D	P
T_1	0	1	10	10
T_2	2	1	8	10
T_3	0	2	10	10
T_4	0	1	10	10
T_5	0	1	10	10
T_6	0	8	15	20

We have the following precedence constraints:

- T_1 and T_2 have to complete execution before T_3 starts,
- T_3 has to complete execution before T_4 and T_5 .
- 1. It is not schedulable using the rate monotonic approach presented in the lectures.

Scheduling simulation, Processor proc1:

- Task must have period equal to deadline : cannot apply the selected scheduler with this task set.

- Task must have period equal to deadline : cannot apply the selected scheduler with this task set.

2. It is schedulable using the Earliest Deadline First approach presented in the lectures.