ArangoDB

1

Três Versões

Enterprise, Oasis e Community.

2

Principais Vantagens

Consolidação, performance simplificada, redução de complexidade, tolerância a falhas.

3

Principais Serviços

Replicação Datacenter-Datacenter, integração LDAP, backups automatizados, entre outros.

MongoDB

1

Três Versões

Clusters compartilhados, clusters dedicados, clusters dedicados multirregionais.

2

Principais Vantagens

Seguro para dados confidenciais, projetado para a produtividade desenvolvedor.

3

Principais Serviços

Monitoramento e alertas, cópia de segurança, triggers sem servidor, entre outros.

Modelo Lógico vs ArangoDB

Modelo Lógico vs MongoDB


```
{
    hora:"2020-08-06 15:00:00",
    data:"2020-08-06",

ALUNO:{
    nome_aluno:"Julia",
    idioma_aluno: "inglês"
    email: 0"julia@gmail.com"
    },

PROFESSOR:{
        nome_prof:"Jorge",
        idioma_prof:"inglês"
    }
}
```

Conexão ArangoDB

```
arangosh> db._createDatabase("_system");
arangosh> var users = require("@arangodb/users");
arangosh> users.save("root@_system", "1234");
arangosh> users.grantDatabase("root@_system", "_system");
shell> arangosh --server.username "root@_system" --server.database _system
```


Conexão MongoDB

Log in to your account

Inserção ArangoDB

Sintaxe

For x in [{"_nome":"Luis Felipe", "_email":"luis@gmail.com"}] insert x in teste1

Exemplo

For alu in [
{"_nome_aluno":"Carol","_email_aluno":"carol@gmail.com","_idioma_aluno":"inglês"},
l insert alu in aluno

For prof in [{"_nome_prof": "Jorge", "_idioma_prof": "inglês"}] insert prof in Professor

For ag in [{"_hora": "15:00:00","_data": "2020-07-30","_from": "aluno/10871","_to": "professor/6847"}] insert ag in agenda {"_data":"2020-07-30","_from":"aluno/10871","_hora":"15:00:00","_id":"agenda/21015","_key":"21015","_rev":"_bMDcKMa----", {"_data":"2020-07-30","_from":"aluno/10872","_hora":"15:00:00","_id":"agenda/21016","_key":"21016","_rev":"_bMDcKMa--A"," {"_data":"2020-07-30","_from":"aluno/10873","_hora":"15:00:00","_id":"agenda/21017","_key":"21017","_rev":"_bMDcKMa--C"," {"_data":"2020-07-30","_from":"aluno/10874","_hora":"15:00:00","_id":"agenda/21018","_key":"21018","_rev":"_bMDcKMa--E"," {"_data":"2020-07-30","_from":"aluno/10875","_hora":"16:00:00","_id":"agenda/21019","_key":"21019","_rev":"_bMDcKMa--G"," {"_data":"2020-07-30","_from":"aluno/10876","_hora":"16:00:00","_id":"agenda/21020","_key":"21020","_rev":"_bNDcKMa--I"," {"_data":"2020-07-30","_from":"aluno/10877","_hora":"17:00:00","_id":"agenda/21021","_key":"21021","_rev":"_bMDcKMa--K"," {"_data":"2020-07-30","_from":"aluno/10878","_hora":"17:00:00","_id":"agenda/21022","_key":"21022","_rev":"_bNDcKMa--M"," {"_data":"2020-08-03","_from":"aluno/10879","_hora":"15:00:00","_id":"agenda/21023","_key":"21023","_rev":"_bMDcKMa--0"," {"_data":"2020-08-03","_from":"aluno/12034","_hora":"15:00:00","_id":"agenda/21024","_key":"21024","_rev":"_bMDcKMi---","

Inserção MongoDB

```
db.aluno.insert(
{nome_aluno: "Julia", idioma_aluno: "inglês", email:
"julia@gmail.com"},
{nome_aluno: "Gabriela", idioma_aluno: "francês", email:
"gabriela@gmail.com"},
{nome_aluno: "Rafael", idioma_aluno: "espanhol", email:
"rafael@gmail.com"},
{nome_aluno: "Elisa", idioma_aluno: "inglês", email:
"elisa@gmail.com"}
)
```

Insert to Collection

Seleção ArangoDB

```
for alu in aluno
for prof in professor
for ag in agenda
filter ag.from == alu.id
filter ag.to == prof.id

return distinct {
   Aluno: alu,
   Professor: prof,
   Agenda: ag
}
```

Seleção MongoDB

db.aluno.find() db.professor.find() db.agenda.find()

Exclusão ArangoDB

LET doc = DOCUMENT('professor/7045')
REMOVE doc IN professor

LET doc = DOCUMENT('professor/6939')
REMOVE doc IN professor

Exclusão MongoDB


```
db.aluno.remove({ nome_aluno: {$gt:"Elisa" }})
db.agenda.remove({ hora: {$gt:"17:00:00" }})
```


Atualização ArangoDB

LET key = PARSE_IDENTIFIER("professor/6847").key
UPDATE key WITH { _idioma_prof: "francês" } IN professor

LET key = PARSE_IDENTIFIER("aluno/10871").key
UPDATE key WITH { _idioma_aluno: "francês" } IN aluno

Atualização MongoDB

```
db.agenda.update({hora: {$gt:"15:00:00"}}, {$set: { data:"2020-08-20"}}, {multi:true}) db.agenda.update({hora: {$gt:"17:00:00"}}, {$set: { data:"2020-08-15"}}, {multi:true})
```

```
__id: ObjectId("5f7688f68e7f82a0c033ddd3")
nome_prof: "Maristela"
idioma_prof: "ingles"

1    __id: ObjectId("5f7688f68e7f82a0c033ddd3")
2    nome_prof: "Maristela "
3    idioma_prof: "ingles "

CANCEL UPDATE
```

Pontos Positivos e Negativos do ArangoDB

- 1. Linguagem AQL é bem simples de entender.
- Documentação oficial é boa e fácil de encontrar.
- 3. Por ser um pouco conhecido, tem vários vídeos no Youtube de tutoriais.
- 4. Por ter a versão *community,* fica melhor de testar a aplicação antes de adquirir a versão paga.

 Quando precisa fazer joins com várias tabelas, não é muito bom, vários valores vêm repetidos e é difícil visualizá-los.

Pontos Positivos e Negativos do MongoDB

- Quando os dados não se encaixam no modelo relacional;
- 2. Quando seus dados são na verdade objetos;
- 3. Quando sua aplicação valida a consistência dos dados, não o banco;
- 4. Quando o projeto da aplicação é orientado ao domínio;
- 5. Quando seu projeto precisa se adaptar a mudancas;
- 6. Quando a escalabilidade é importante;
- 7. Quando inovação não é um problema.

1. Ao manusear o MongoDB Atlas, não foi o esperado para conseguir programar, pois o site é bem difícil de achar as informações que precisa. Ao procurar os tutoriais, existem vários jeitos de programar, mas nenhum foi possível executar no MongoDB Atlas, e nem no Colab. O único caminho foi seguindo as instruções de encaixar as informações que precisava no site, ele foi me conduzindo, mas não era o meu esperado para executar os códigos.

Comparação entre ArangoDB e MongoDB

MongoDB

Como o MongoDB tem duas versões, baixado e o site, é possível programar pelo prompt de comando quando o programa é instalado. Mas na interface dele, é impossível.

Não foi possível encontrar aonde se programa, só tem apenas a direção que o próprio programa te dá, de como adicionar o Database e as Collections, e assim inserindo os dados, como também te permite alterar ou excluir. Pelo comando, é possível usar os códigos, mas com a falta de algumas informações não foi possível continuar. E no site MongoDB Atlas, percebi que é a mesma coisa que o programa baixado, ele te direciona o que fazer e o que colocar para criar e inserir. Usando pelo Colab, não foi possível usar os códigos, pois a maioria não funcionava, e ao procurar informações, percebi que existem diversos tipos de códigos, cada um de forma diferente, mas com a mesma função, exemplo: .insert()

.insert_one()

.insert_many()

Assim como todos os outros.

Comparação entre ArangoDB e MongoDB

ArangoDB

Na versão community do ArangoDB inclui a interface web, facilitando assim a criação e os testes nas coleções.

A documentação oficial é boa, fácil de achar e bem explicada, tanto para a instalação quanto para a linguagem utilizada para manipular os dados.

Como um banco de dados multi-model, o ArangoDB minimiza componentes para se manter, reduzindo a complexidade das tecnologias que uma aplicação utiliza.

Flexível e com suporte a linguagens de programação (como Python) e por ser uma solução completa e livre.

O ArangoDB é um SGBD que trabalha com grafos porque permite armazenar vértices e arestas com propriedades, e oferece funcionalidades para o uso de grafos.

Comparação entre ArangoDB e MongoDB

Chegamos a conclusão que o ArangoDB ser melhor, devido a sua facilidade de programação, o fácil acesso a documentação e por ter uma interface web que auxilia na criação e nas consultas das coleções.

Principais Referências

ArangoDB

https://www.arangodb.com/docs/stable/

https://www.arangodb.com/docs/stable/aql/

https://youtu.be/4C4zqhXwCKs

MongoDB

https://www.mongodb.com/cloud/atlas

https://medium.com/leroy-merlin-brasil-tech/devo-usar-nosql-e-mongodb-951693aa0d34

https://docs.mongodb.com/manual/reference/method/db.collection.remove/