From PCA to VQ-VAE

paper: vanilla VQ-VAE (https://arxiv.org/pdf/1711.00937.pdf)

paper: VQ-VAE-2 (https://arxiv.org/pdf/1906.00446.pdf)

The common element in the design of any Autoencoder method is

- to create a latent representation **z** of input **x**
- such that **z** can be (approximately) inverted to reconstruct **x**.

Principal Components Analysis is a type of Autoencoder that produces a latent representation ${\bf z}$ of ${\bf x}$

- \mathbf{x} is a vector of length n: $\mathbf{x} \in \mathbb{R}^n$
- \mathbf{z} is a vector of length $n' \leq n$: $\mathbf{z} \in \mathbb{R}^{n'}$

Usually n' << n: achieving dimensionality reduction

This is accomplished by decomposing ${\bf x}$ into a weighted product of n Principal Components

• $\mathbf{V} \in \mathbb{R}^{n \times n}$

$$\mathbf{x} = \mathbf{z}' \mathbf{V}^T$$

- lacksquare where $\mathbf{z}' \in \mathbb{R}^n$
- lacksquare rows of \mathbf{V}^T are the components

So \mathbf{x} can be decomposed into the weighted sum (with \mathbf{z}' specifying the weights)

- ullet of n component vectors
- ullet each of length n

Since $\mathbf{z}' \in \mathbb{R}^n$: there is **no** dimensionality reduction just yet.

One can view \mathbf{V}^T as a kind of *code book*

• any ${\bf x}$ can be represented (as a linear combination) of the ${\it codes}$ (components) in V^T

$$\mathbf{x} = \mathbf{z}' \mathbf{V}^T$$

 \mathbf{z}' is like a translation of \mathbf{x} , using \mathbf{V} as the vocabulary.

- weights in the codebook
- ullet rather than weights in the standard basis space $I \in \mathbb{R}^{n imes n} = \mathrm{diagonal}(n)$

$$\mathbf{x} = \mathbf{x}I$$

Dimensionality reduction is achieved by defining ${\bf z}$ as a length n' prefix of ${\bf z}$

- ullet $\mathbf{z}=\mathbf{z}'_{1:n'}$
- ullet $\mathbf{z} \in \mathbb{R}^{n'}$

Similarly, we needed only n' components from ${f V}$

- $\bullet \ \mathbb{V}^T = \mathbf{V}_{1:n'}^T$ $\bullet \ \mathbb{V}^T \in \mathbb{R}^{n' \times n}$

We can construct an approximation $\hat{\mathbf{x}}$ of \mathbf{x} using reduced dimension \mathbf{z}' and \mathbb{V} $\hat{\mathbf{x}} = \mathbf{z} \mathbb{V}^T$

The Autoencoder (and variants such as VAE) produces $\mathbf{z^{(i)}}$, the latent representation of $\mathbf{x^{(i)}}$

- directly
- ullet independent of any other training example $\mathbf{x}^{(i')}$ for i
 eq i'

Our goal in using AE's is in generating synthetic data

• the dimensionality reduction achieved thus far was a necessity, not a goal

Vector Quantized Autoencoder

A Vector Quantized VAE is a VAE with similarities to PCA. It creates **z**

- which is an **integer**
- that is the index of a row
- in a codebook with K rows

That is: the input is represented by one of K possible vectors.

The goal is **not necessarily** dimensionality reduction.

Rather, there are some advantages to a **discrete** representation of a continuously-valued vector.

- Each vector
- ullet Drawn from the infinite space of continuously-valued vectors of length n
- ullet Can be approximated by one of K possible vectors of length n

Thus, a sequence of T continuously valued vectors

- ullet can be represented as a sequence of T integers
- over a "vocabulary" defined by the code book

This is analogous to text

- sequence of works
- represented as a sequence of integer indices in a vocabulary of tokens

Once we put complex objects

- like images
- timeseries
- speech

into a representation similar to text

- we can have *mixed type* sequences
 - e.g., words, images

In a subsequent module we will take advantage of mixed type sequences

- to produce an image
- from a text description of the image
- using the "predict the next" element of a sequence technique of Large Language Models

DALL-E: Text to Image

Text input: "An illustration of a baby daikon radish in a tutu walking a dog"

Image output:

Details

Here is diagram of a VQ-VAE

- ullet that creates a latent representation of a 3-dimensional image (w imes h imes 3)
- as a 2-dimensional matrix of integers

There is a bit of notation: referring to the diagram should facilitate understanding the notation.

VQ-VAE

In general, we assume the input has #S spatial dimensions

- ullet where each location in the spatial dimension is a vector of length n
- ullet input shape $(n_1 imes n_2 \ldots imes n_{\#S} imes n)$

We will explain this diagram in steps.

First, we summarize the notation in a single spot for easy subsequent reference.

Notation summary

term	shape	meaning	
S	$(n_1 imes n_2 \dots \ imes n_{\#S})$	Spatial dimensions of $\#S$ -dimensional input	_
x	$\mathbb{R}^{S imes n}$	Input	_
D		length of latent vectors (Encoder output, Quantized Encoder output, Codebook entry)	_
\mathcal{E}		Encoder function	-
$\mathrm{z}_e(\mathbf{x})$	$\mathbb{R}^{S\times D}$	Encoder output over each location of spatial dimension	_
		$\mathbf{z}_e(\mathbf{x}) = \mathcal{E}(\mathbf{x})$	-
$\mathbf{z}_e(\mathbf{x})$	\mathbb{R}^D	Encoder output at a single representative spatial location	_
		$\mathbf{z}_e(\mathbf{x}) = \mathcal{E}(\mathbf{x})$	_
K		number of codes	
E	$\mathbb{R}^{K\times D}$	Codebook/Embedding	_
		K codes, each of length ${\cal D}$	_
$e \in \mathbf{E}$	\mathbb{R}^D	code/embedding	_
${f z}$	$\{1,\ldots,K\}^{S imes D}$	latent representation over all spatial dimensions	
\mathbf{z}	$\{1,\ldots,K\}$	Latent representation at a single representative spatial location	_
		one integer per spatial location	_
\$ \z	\x }\$	$\mathrm{integer} \in [1 \dots K]$	Index k of $e_k \in \mathbf{E}$ that is closest to $\mathbf{z}_e(\mathbf{x})$
		$k = \operatorname*{argmin}_{j \in [1,K]} \left \mathbf{z}_e(\mathbf{x}) - \mathbf{e}_j ight _2$	
		actually: encoded as a OHE vector of length ${\cal K}$	
$\mathbf{z}_q(\mathbf{x})$	\mathbb{R}^D	Quantized $\mathbf{z}_e(\mathbf{x})$	_
		$\mathbf{z}_q(\mathbf{x}) = e_k$ where $k = qr\{\z$	\x}\$
		i.e, the element of codebook that is closest to $\mathbf{z}_e(\mathbf{x})$	
		$\mathbf{z}_q(\mathbf{x}) pprox \mathbf{z}_e(\mathbf{x})$	_
$\tilde{\mathbf{x}}$	n	Output: reconstructed x	_

term	shape	meaning	
		\$ \x	\z_q(\x) }\$
\mathcal{D}	$\mathbb{R}^{n'} o \mathbb{R}^n$	Decoder	

Quanitization

Let S denote the spatial dimensions, e.g. $S=(n_1 imes n_2)$ for 2D

So input $\mathbf{x} \in \mathbb{R}^{S imes n}$

ullet n features over S spatial locations

The input \mathbf{x} is transformed in a sequence of steps

- Encoder output (continuous value)
- Latent representation (discrete value)
 - Quantized (continuous value)

In the first step, the *Encoder* maps input ${f x}$

- ullet to Encoder output $\mathbf{z}_e(\mathbf{x})$
- ullet an alternate representation of D features over S^\prime spatial locations

(For simplicity, we will assume $S^\prime = S$)

Notational simplification

In the sequel, we will apply the same transformation **to each element** of the spatial dimension

Rather than explicitly iterating over each location we write

$$\mathbf{z}_e(\mathbf{x}) \in \mathbb{R}^D$$

to denote a representative element of $\mathrm{z}_e(\mathbf{x})$ at a single location $s=(i_1,\ldots,i_{\#S})$

$$\mathbf{z}_e(\mathbf{x}) = \mathbf{z}_e(\mathbf{x})_s$$

We will continue the transformation at the single representative location

ullet and implicitly iterate over all locations $s\in S$

The continuous (length D) Encoder output vector $\mathbf{z}_e(\mathbf{x})$

- ullet is mapped to a latent representation $q(\mathbf{z}|\mathbf{x})$
- which is a **discrete** value (integer)

$$k=q(\mathbf{z}|\mathbf{x})\in\{1,\ldots,K\}$$

where k is the *index* of a row \mathbf{e}_k in codebook \mathbf{E}

$$\mathbf{e}_k = \mathbf{E}_k \in \mathbb{R}^D$$

k is chosen such that \mathbf{e}_k is the row in \mathbf{E} closest to $\mathbf{z}_e(\mathbf{x})$

$$egin{array}{lcl} k &=& q(\mathbf{z}|\mathbf{x}) \ &=& rgmin_{j \in \{1,\ldots,K\}} \|\mathbf{z}_e(\mathbf{x}) - \mathbf{e}_j\|_2 \end{array}$$

We denote the codebook vector

- ullet closest to representative encoder output $\mathbf{z}_e(\mathbf{x})$
- ullet as $\mathbf{z}_q(\mathbf{x})$

$$\mathbf{z}_q(\mathbf{x}) \in \{1, \dots, K\} = \mathbf{e}_k$$

The Decoder tries to invert the codebook entry $\mathbf{e}_k = \mathbf{z}_q(\mathbf{x})$ so that $\tilde{\mathbf{x}} = \mathcal{D}(\mathbf{z}_q(\mathbf{x}))$

$$ilde{\mathbf{x}} \;\; = \;\; \mathcal{D}(\mathbf{z}_q(\mathbf{x}))$$

$$pprox$$
 x

Discussion

Why do we need the CNN Encoder?

The input \mathbf{x} is first transformed into an alternate representation

- the number and shape of the spatial dimensions are preserved (not necessary)
- ullet but the number of features is transformed from n raw features to $D \geq n$ synthetic features
 - typical behavior for, e.g., an image classifier

The part of the VQ-VAE after the initial CNN

- reduces the size of the **feature dimension** from D to 1
- this is the primary source of dimensionality reduction
 - lacktriangledown the raw n of image input is usually only n=3 channels

It may be useful for the CNN to down-sample spatial dimension S to a smaller S^\prime For example

- 3 layers of stride 2 CNN layers
- ullet will reduce a 2D image of spatial dimension $(n_1 imes n_2)$
- to spatial dimension $(\frac{n_1}{8} \times \frac{n_2}{8})$

This replaces each $(8 \times 8 \times n)$ patch of raw input

- ullet into a single vector of length D
- ullet that summarizes the (8×8) the patch

One possible role (not strictly necessary) for the CNN Encoder

- is to replace a large spatial dimensions
- by smaller "summaries" of local neighborhoods (patches)

Why quantize?

Quantization

- ullet converts the continuous $\mathbf{z}_e(\mathbf{x})$
- into discrete $q(\mathbf{z}|\mathbf{x})$
- ullet representing the approximation $\mathbf{z}_q(\mathbf{x}) pprox \mathbf{z}_e(\mathbf{x})$

The Decoder inverts the approximation.

Why bother when the Quantization/De-Quantization is Lossy?

One motivation comes from observing what happens if we quantize and flatten the #S'-dimensional spatial locations to a one-dimensional vector.

Quantizing replaces each patch with a single integer index.

ullet the integer is the index of an *image token* within a list of K possible tokens

By flattening the quantized higher dimensional matrix of patches, we convert the input

- into a sequence of image tokens
- ullet over a "vocabulary" defined by the codebook ${f E}$.

This yields an image representation • similar to the representation of text Thus, we open the possibility of processing sequences of mixed text and image tokens.

Quantized image embeddings mixed with Text: preview of DALL-E

The Large Language Model operates on a sequence of text tokens

- where the text tokens are fragments of words
- when run autoregressively
 - concatenating each output to the initial input sequence
 - the LLM shows an ability to produce a "sensible" continuation of an initial "thought"

Suppose we train a LLM on input sequences

- that start with a sequence of text tokens describing an image
- followed by a separator [SEP] token
- followed by a sequence of of quantized image tokens

```
<text token> <text token> ... <text token> [SEP] <image token> <image token> ...
```

What continuation will our trained LLM produce given prompt

```
<text token> <text token> ... <text token> [SEP]
```

Hopefully:

- a sequence of image tokens
- that can be reconstructed
- into an image matching the description given by the text tokens!

That is the key idea behind a Text to Image model called DALL-E that we will discuss in a later module.

There remains an important technical detail

- the embedding space of text and image are distinct
- they need to be merged into a common embedding space

We will visit these issues in the module on CLIP.

Loss function

The Loss function for the VQ-VAE entails several parts

- Reconstruction loss
 - enforcing constraint that reconstructed image is similar to input

$$ilde{\mathbf{x}} pprox \mathbf{x}$$

- Vector Quantization (VQ) Loss:
 - enforcing similarity of quantized encoder output and actual encoder output

$$\mathbf{z}_q(\mathbf{x}) pprox \mathbf{z}_e(\mathbf{x})$$

- Commitment Loss
 - a constraint that prevents the Quantization of $\mathbf{z}_e(\mathbf{x})$ from alternating rapidly between code book entries

The Reconstruction Loss term is our familiar: Maximize Likelihood

ullet written to minimize the negative of the log likelihood, as usual $p(\mathbf{x}|\mathbf{z}_q(\mathbf{x}))$

The Vector Quantization Loss is more complex

$$\|\mathrm{sg}(\mathbf{z}_e(\mathbf{x})) - \mathbf{z}_q(\mathbf{x})\|$$

The sg operator is the Stop Gradient operator. We will explain this in more detail below and give reference to a VectorQuantizer layer type.

Commitment Loss:

$$\|\mathbf{z}_e(\mathbf{x}) - \operatorname{sg}(\mathbf{z}_q(\mathbf{x}))\|$$

The Commitment and Vector Quantization losses are similar except for the placement of the Stop Gradient.

The Stop Gradient in the Commitment Loss prevents a change in the Embeddings from affecting the Encoder weights (and thus, $z_e(\mathbf{x})$).

The Stop Gradient of the Vector Quantization Loss prevents a change in the Encoder weights (and thus, $z_e(\mathbf{x})$) from affecting the embeddings.

This prevents a feedback loop

- Encoder updating $\mathbf{z}_e(\mathbf{x})$ reduces Reconstruction Loss assuming embeddings remain constant
- But changing Encoder output results in embeddings being updated
- So embeddings do not remain constant
- The net effect may not be a reduction in Reconstruction Loss

Which parts of the architecture are responsible for each Loss component

- The Decoder is responsible for the Reconstruction Loss (through the term $\tilde{\mathbf{x}}$
- The Encoder (through the term $\mathbf{z}_e(\mathbf{x})$ is responsible for
 - The Reconstruction Loss
 - The Commitment Loss
- ullet The embeddings ${\mathbb E}$ are updated via the Vector Quantizer Loss
 - Does not affect the Encoder or Decoder weights

Straight Through Estimation (discussed below) causes the gradient from Reconstruction Loss to "by-pass" $\mathbb E$

effectively, for the purpose of gradient/weight update:

$$\mathbf{z}_q(\mathbf{x}) = \mathbf{z}_e(\mathbf{x})$$

If there were no Vector Quantizer Loss, the Reconstruction Loss would not lead to Embeddings $\mathbb E$ being updated

Loss function

$$\mathcal{L}(\mathbf{x}, \mathcal{D}(\mathbf{e})) = ||\mathbf{x} - \mathcal{D}(\mathbf{e})||_2^2$$
 Reconstruction Loss $+||\mathrm{sg}[\mathcal{E}(x)] - \mathbf{e}||_2^2$ VQ loss, codebook loss: train codebook $+\beta||\mathrm{sg}[\mathbf{e}] - \mathcal{E}(\mathbf{x})||_2^2$ Commitment Loss: force $E(\mathbf{x})$ to be clowhere $\mathbf{e} = \mathbf{z}_q(\mathbf{x})$

Need the stop gradient operator sg to control the mutual dependence

• of $\mathcal{E}(\mathbf{x})$ and \mathbf{e}

Straight-through Estimation and the Stop Gradient operator sg

Gradient Descent is the algorithm that we use to find values for a model's weights that minimize the model's Loss Function.

Recall: it works by recursively (backwards from head to input) layer by layer

- updating the partial of the Loss with respect to the layer's inputs
 - respectively: the partial of the Loss with respect to each operation

But there is a problem in the Quantization operation

- argmin is not differentiable!
- ullet it is not continuous at the point that its value switches between k and k'
 eq k
 - For example,
 - $\circ~$ Non-unique arguments: when $\mathbf{e}_k = \mathbf{e}_{k'}$ for k
 eq k'
 - \circ small changes in the arguments cause a change from k to k'

The non-differentiability of certain operators led to the creation of the Stop Gradient operator sg

$$egin{array}{lll} \mathrm{sg}(\mathbf{x}) &=& \mathbf{x} \ rac{\partial \, \mathrm{sg}(\mathbf{x})}{\partial \mathbf{y}} &=& 0 & ext{for all } \mathbf{y} \end{array}$$

It is the identity operation on the Forward pass.

But on the Backward pass (Gradient Descent) it treats its argument as if it were a constant.

Straight through estimation

The Stop Gradient operator can be used in conjunction with Straight Through Estimation.

Let's recall the definition of the Loss Gradient

Let

$$\mathcal{L}_{(l)}' = rac{\partial \mathcal{L}}{\partial \mathbf{y}_{(l)}}$$

denote the derivative of $\mathcal L$ with respect to the output of layer l, i.e., $\mathbf y_{(l)}$.

This is called the **loss gradient**.

- although we state this with respect to a "layer-ed" architecture this is for notational convenience only
- the same if true if we replace "layer" with "operator" whose input is denoted $\mathbf{y}_{(l-1)}$ and output denoted $\mathbf{y}_{(l)}$

Back propagation inductively updates the Loss Gradient from the output of layer l to its inputs (e.g., prior layer's output $\mathbf{y}_{(l-1)}$)

- Given $\mathcal{L}'_{(l)}$
- Compute $\mathcal{L}'_{(l-1)}$
- Using the chain rule

$$egin{array}{lll} \mathcal{L}'_{(l-1)} & = & rac{\partial \mathcal{L}}{\partial \mathbf{y}_{(l-1)}} \ & = & rac{\partial \mathcal{L}}{\partial \mathbf{y}_{(l)}} rac{\partial \mathbf{y}_{(l)}}{\partial \mathbf{y}_{(l-1)}} \ & = & \mathcal{L}'_{(l)} rac{\partial \mathbf{y}_{(l)}}{\partial \mathbf{y}_{(l-1)}} \end{array}$$

The loss gradient "flows backward", from $\mathbf{y}_{(L+1)}$ to $\mathbf{y}_{(1)}$.

This is referred to as the backward pass.

That is:

- the upstream Loss Gradient $\mathcal{L}'_{(l)}$ is modulated by the local gradient $\frac{\partial \mathbf{y}_{(l)}}{\partial \mathbf{y}_{(l-1)}}$
- ullet where the "layer" is the operation transforming input $\mathbf{y}_{(l-1)}$ to output $\mathbf{y}_{(l)}$

What happens when the operation implemented by the function that takes $\mathbf{y}_{(l-1)}$ to $\mathbf{y}_{(l)}$ is either

- non-differentiable
- or has zero derivative almost everywhere
- non-deterministic (e.g., tf.argmin when two inputs are identical)

This is the case with any type of quantization operation (uses tf.argmin) resulting in

$$egin{array}{ll} ullet rac{\partial \mathbf{y}_{(l)}}{\partial \mathbf{y}_{(l-1)}} \ &= 0 \ ullet &= 0 \ &= \mathcal{L}_{(l)} \ &= 0 \ \end{array}$$

So the quantization operation disconnects the gradient flow from the Decoder backwards to the Encoder.

Hence, the notion of a Straight Through Estimator is developed

- identity operation on forward pass with local derivation $\frac{\partial \mathbf{y}_{(l)}}{\partial \mathbf{y}_{(l-1)}}$ defined to be equal to 1

We see this in the <u>Colab (https://keras.io/examples/generative/vq_vae/)</u> implementation of Vector Quantization (the VectorQuantizer layer)

```
class VectorQuantizer(layers.Layer):
    ...
    def call(self, x):
        # Straight-through estimator.
        quantized = x + tf.stop_gradient(quantized - x)
```

Code similar to the <u>VectorQuantizer</u> <u>of the paper's authors</u> (<u>https://github.com/deepmind/sonnet/blob/v1/sonnet/python/modules/nets/vqvae.py)</u> The last line is a <u>"straight through estimator"</u> (https://www.hassanaskary.com/python/pytorch/deep%20learning/2020/09/19/intuitive-explanation-of-straight-through-estimators.html)

- On the forward pass: identity assignment quantized = quantized
- On the backward pass, the Loss gradient is passed through unchanged from upstream
 - i.e, from output (the tensor quantizer) to the *layer input* (denoted by formal parameters x, don't confuse it with the VQ-VAE's input)
 - this is because the tf.stop_gradient causes the enclosed expression to be treated as a constant
 - \circ hence will contribute 0 to the loss gradient back propagation

So

- tf.stop_gradient kills the gradient along one path
- the Straight Through Estimator passes it through unchanged

In the VQ-VAE, straight through estimation

- passes the gradient from the Decoder input back to the Encoder outputs
- ignoring the quantization
- allowing the Encoder to adapt to reduce Reconstruction Loss

Learning the distribution of latents

For a VAE, we assume a functional form for the prior distribution of latents $q(\mathbf{z})$

usually Normal

The authors wish to do away with an assumption of the prior distribution $q(\mathbf{z})$.

Retaining spatial/temporal dimensions in $\mathbf{z}_q(\mathbf{x})$ is key to achieving this goal.b

The authors *flatten* the spatial/temporal dimensions

- Assume (for example) a two dimensional ${f Z}$ with h rows and w columns
- $\mathbf{Z}_{i}^{(\mathbf{i})}$ denotes the vector of length D at row i, column j of \mathbf{Z}
- Flatten ${f Z}$ into a sequence $[{f z}_1,{f z}_2,\dots]$
 - lacksquare where \mathbf{z}_k is the quantization of $\mathbf{Z}_c^{(r)}$
 - \circ for $r = \operatorname{int}(\frac{k}{w}), c = (k \mod w)$

The authors then learn an autoregressive model for sequences

$$p(\mathbf{z}_{k+1}|\mathbf{z}_1,\ldots,\mathbf{z}_k)$$

by using some Autoregressive model (e.g, PixelCNN) to predict \mathbf{z}_k from its predecessors.

The Autoressive model

- learns \mathbf{z}_k . Doesn't assume what type of distribution it comes from
- can be sampled
 - seed the model with \mathbf{z}_1 , generate the rest of the sequence
 - lacktriangle append predicted \mathbf{z}_k to sequence upon which \mathbf{z}_{k+1} is conditioned
- Is trained *subsequent* to learning the Embeddings
 - future research: learn them jointly

Thus, adding the Autoregressive step facilitates generating new sample sequences from which to generate synthetic examples.

```
In [2]: print("Done")
```

Done