Doświadczenie J14: Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu

Kacper Cybiński^{1, *}

¹Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland (Dated: 6 lipca 2022)

Przedmiotem doświadczenia były pomiary zachowania cząstek alfa w powietrzu: zasięgu, rozrzutu zasięgu (straggling) i zdolności hamującej. W wyniku analizy danych uzyskano szukane zależności, oraz przedstawiono rozważania na temat uzyskanych wyników. Wyznaczono średni zasięg i rozrzut cząstek α w powietrzu jako odpowiednio $\bar{R}=3.253\pm0.002\,\mathrm{cm}$ i $\sigma_r=(8.649\pm0.004)\cdot10^{-2}\,\mathrm{cm}$.

I. WSTEP

Omawiane w tym raporcie doświadczenie ma za zadanie wprowadzić studenta w tematykę badania zachowania naładowanych cząstek w materiałch, oraz pokazanie czego można się dowiedzieć o naturze cząstki, oraz świata w którym wchodzi w interakcję z obserwacji pomiarów. W tym przypadku badaną cząstką jest α , wchodząca w interakcję z powietrzem. Z tego rodzaju interakcji można wyciągnąć w szczególności trzy interesujące nas wielkości, jakimi są zasięg cząstki w powietrzu, rozrzut zasięgu, oraz zdolność hamująca.

II. WSTEP TEORETYCZNY

Ciężkie naładowane cząstki, do których zaliczamy cząstki α przechodząc przez ośrodek tracą energie głównie w wyniku zderzeń z elektronami ośrodka przez który podróżują, gdyż w wyniku tych zderzeń cząstki się jonizują i tracą małą porcję energii. Mimo, że strata w wyniku jednego zderzenia jest niewielka, to po złożeniu wielu zderzeń następujących po sobie sumaryczna strata energii może być znaczna. W szczególności po odpowiednio dużej ilości zderzeń czastka może zostać w pełni zatrzymana, a odległość po jakiej to nastapiło nazwiemy właśnie zasię- $\mathbf{giem} \ R$ cząstki. Teoretycznie wydawać by się mogło, że podczas emisji takich samych cząstek o takiej samej energii ich zasięg powinien być taki sam, lecz ze względu na losową naturę zderzeń, które zabierają energię z cząstki, ten zasięg podlega pewnemu **rozrzutowi** σ_r . Jakkolwiek wielkość R podlega pewnemu rozkładowi, to z dużo większą dokładnością jesteśmy w stanie określić odległość po jakiej wiązka cząstek jest osłabiana o połowę, więc to wydaje się być lepszym pomysłem na definicję zasięgu. Dla rozróżnienia oznaczmy go \bar{R} i nazwiemy zasięgiem średnim. Ostatnia z wielkości, jakie bierzemy na warsztat to zdolność hamująca. Jest ona zdefiniowana jako strata energii na jednostkę długości: S(E) = -dE/dx i w ogólnym przypadku jest dla ciężkich cząstek naładowanych opisywana wzorem Bethego-Blocha. Najbardziej ogólną jego postać można znaleźć w podręczniku A.Strzałkowskiego [1], zaś w warunkach naszych cząstek α , które lecą z prędkością nierelatywistyczną i po uproszczeniach wzór ten ma postać:

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \kappa \frac{\rho z^2 mc^2}{2E} \frac{Z}{A} \log \frac{4m_e c^2 E}{Imc^2} \tag{1}$$

Gdzie $\kappa=0.307$ MeV cm²/g jest wielkością grupującą stałe z orginalnego wzoru, ρ - gęstość ośrodka, z - ładunek cząstki, m - masa cząstki, m_e - masa elektronu. Człon $\frac{Z}{A}$ przedstawia stosunek liczy masowej pierwiastka z którego składa się ośrodek, do liczby atomowej. Jako, że powietrze jest mieszanią przede wszystkim trzech gazów - Azotu, Tlenu i Argonu, to licząc ten ułamek wzięto wyniki dzielenia dla tych trzech pierwiastków, z wagami odpowiadającymi procentowej ich zawartości w powietrzu, tj odpowiednio 78.080% N₂, 20.950% O₂, 0.9340% Ar.

Narysowawszy wykres straty energii w funkcji przebytej drogi widać, że straty energii rosną i osiągają maksimum dla końca toru lotu cząstki, a następnie szybko maleją w wyniku dominacji ekranowania ładunku cząstki przez wychwycone elektrony.

III. UKŁAD POMIAROWY

Układ pomiarowy wykorzystywany w tym doświadczeniu jest widoczny na Rys. 1. Jest to zintegrowany układ firmy ORTEC, model Alpha Aria na który składa się szczelna komora testowa z zamontowaną w środku próbką ²⁴¹Am, która emituje cząstki α , odległego od próbki o 39.5 mm półprzewodnikowego detektora krzemowego, serii zaworów i pompy do manipulowania ciśnieniem powietrza w komorze, oraz ciśnieniomierza. Sygnał wychodzacy z detektora był przekazywany do przedwzmacniacza, a następnie poprzez wzmacniacz liniowy i wielokanałowy analizator amplitudy kierowany do komputera, który zapisywał zliczenia cząstek na detektorze dla poszczególnych 4096 kanałów. Dokładna zasada działania poszczególnych elementów jest opisana a Instrukcji do doświadczenia [2]. Kanały analizatora odpowiadały różnym energiom padających cząstek α , co podlegało kalibracji poprzez zmapowanie numerów kanałów do energii emitowanej przez źródło o dobrze znanej energii jakim był pulser o energii 5.276 MeV.

Jak widać po opisie układu doświadczalnego, zamiast wyznaczania szukanych zachowań cząstki α dla różnych oddaleń próbki od detektora postanowiono emulować różne grubości warstwy powietrza poprzez modulację ciśnienia, tj ilości cząstek powietrza na objętość, przy stałej odległości. Jako, że odległość z ciśnieniem wiążą się linowo, to jest to bardzo naturalna zmiana w założeniach doświadczenia. Funkcję kalibracyjną tutaj dopasowywano na podstawie

^{*} e-mail: k.cybinski@student.uw.edu.pl

następujących trzech informacji: a) odległość do detektora w ciśnieniu atmosferycznym $1023\,\mathrm{hPa}$ wynosi $39.5\,\mathrm{mm}$ b) w czasie wykonywania pomiarów rzeczywiste ciśnienie atmosferyczne wynosiło $1004.9\,\mathrm{hPa}$ c) minimalne uzyskiwane ciśnienie w komorze to $0.004\,\mathrm{mBa}$.

Rysunek 1: Zdjęcie przedstawiające układ doświadczalny [3]

IV. ANALIZA I OMÓWIENIE WYNIKÓW

W toku doświadczenia dokonano kilkunastu pomiarów dla różnych wartości ciśnienia w komorze, co jest widoczne na Rys. 2. Każdy z pomiarów miał charakter widma energetycznego, zaś ciśnienie mierzone było poprzez wartość napięcia na woltomierzu podłączonym do barometru. Zmierzono wartości napięcia dla ciśnienia maksymalnego i minimalnego, a następnie dopasowano do tych pomiarów funkcję liniową, która służyła do przeliczania napięć na ciśnienia w barach, a te dalej na grubości warstwy absorbenta. Zliczenia w kanałach były za to przeliczane na energię cząstek zgodnie z procedurą opisaną wcześniej. Dane użyte do kalibracji energii widoczne są na Rys. 3. Surowe dane z Rys. 2 zostały następnie przetłumaczone na wartości, które nas docelowo interesują: energię i grubość absorbenta w cm. Zostało to przedstawione na Rys. 4.

Idąc za wskazaniami [4] do danych widocznych na Rys. 4 dopasowywano rozkład Gaussa. Następnie wartości całkowitych liczb zliczeń w funkcji grubości absorbenta nam dają krzywą absorpcji, z której jesteśmy w stanie odczytać średni zasięg jako $\bar{R}=3.253\pm0.002\,\mathrm{cm}$ i rozrzut zasięgu jako $\sigma_r=(8.649\pm0.004)\cdot10^{-2}\,\mathrm{cm}$, co jest wartościami zgodnymi z oczekiwaniami co do rzędu wielkości opartymi o wyniki zaprezentowane w publikacji [4]. Wykres przedstawiający krzywą absorpcji i wynikającą z niej pochodną

Rysunek 2: Wykres przedstawiający wszystkie zarejestrowane widma wraz z napięciami - ciśnieniami dla których zostały zarejestrowane.

Rysunek 3: Wykres przedstawiający widma zarejestrowane do kalibracji korelacji numer kanału - energia

Rysunek 4: Wykres przedstawiający wszystkie zarejestrowane widma docelowych jednostkach.

- krzywą liczbowo-zasięgową widoczny jest na Rys. 5.

Rysunek 5: Wykres przedstawiający krzywą absoropcji wraz z zaznaczonym średnim zasięgiem \bar{R} i krzywą zmiany liczby zliczeń w postaci funkcji Gaussowskiej o wartości oczekiwanej \bar{R} i wariancji σ_r .

Kolejną szukaną charakterystyką była energia cząstki w zależności od grubości absorbenta. Wykres ten uzyskano poprzez naniesienie wartości oczekiwanych widocznych na Rys. 4 na odpowiadające im grubości absorbentów. Uzyskanie tych danych jest niezbędnym krokiem do wyznaczenia zdolności hamującej $-\mathrm{d}E/\mathrm{d}x$ w funkcji grubości absorbenta, ponieważ dla naszych dyskretnych danych pomiarowych wartość tych strat energii była wyliczana jako $-\mathrm{d}E/\mathrm{d}x = -\Delta E/\Delta x$ gdzie pod ΔE rozumiemy różnicę energii dla dwóch kolejnych punktów pomiarowych, czy odpowiednio Δx różnicę grubości. Dane te są widoczne na Rys. 7. Widać jednoznacznie, że dane pomiarowe odpowiadające zdolności hamującej układają się w kształt przewidywany teoretycznie, tj. rosną do pewnego maksimum po to, a następnie gwałtownie spaść.

Rysunek 6: Wykres przedstawiający energię cząstek α w funkcji grubości absorbenta.

Rysunek 7: Wykres przedstawiający siłę hamującą w funkcji grubości absorbenta.

V. PODSUMOWANIE

W warunkach laboratorium w zasięgu studenta można było wyznaczyć ważne charakterystyki dla ciężkiej cząstki naładowanej w powietrzu, jaką jest cząstka α . Przeprowadzono serię pomiarów, które następnie wykalibrowano, dopasowano do nich funkcje i w efekcie uzyskano pożądane zależności. Udało się wyznaczyć krzywą absorpcji cząstek α w powietrzu, zależność energii cząstki od grubości absorbenta, oraz zdolność hamującą w funkcji grubości absorbenta. Wyznaczono również średni zasięg i rozrzut cząstek α w powietrzu jako odpowiednio $\bar{R}=3.253\pm0.002\,\mathrm{cm}$ i $\sigma_r=(8.649\pm0.004)\cdot10^{-2}\,\mathrm{cm}.$

^{1]} Wstęp do fizyki jądra atomowego - A. Strzałkowski

² Instrukcja do doświadczenia

^[3] Strona Pracowni dla Zaawansowanych

^[4] P. Ouseph, A. Mostovych Am. J Phys., Vol. 46, No.7 (1978), dostęp 05.07.2022