5.7. The mean-reverting Ornstein-Uhlenbeck process is the solution X_t of the stochastic differential equation

$$dX_t = (m - X_t)dt + \sigma dB_t$$

where m, σ are real constants, $B_t \in \mathbf{R}$.

- a) Solve this equation by proceeding as in Exercise 5.5 a).
- b) Find $E[X_t]$ and $Var[X_t] := E[(X_t E[X_t])^2]$.

as Let
$$Y_{+} = X_{+} - m$$
. By Hô's formula, $dY_{+} = dX_{+}$. Hence $dY_{+} = -Y_{+}dI_{+} + \sigma dB_{+}$

Applying 5.5.
$$(\mu=-1)$$

 $Y_{+}=e^{-\frac{1}{2}}Y_{0}+\nabla\int_{0}^{+}e^{(s-+)}dB_{s}$

and finally,

$$X_{t} = m + e^{-t} Y_{0} + \sigma \int_{0}^{t} e^{(s-t)} dBs$$

$$Vor [X_{+}] = e^{2\mu t} (\mathbb{E}[X_{o}^{2}] - \mathbb{E}^{2}[X_{o}]) + \frac{\sigma^{2}}{2\mu} (e^{2\mu t} - 1)$$

$$= e^{-2+\left(\mathbb{E}\left[\chi_{o}^{2}\right] - \mathbb{E}^{2}\left[\chi_{o}\right]\right) - \frac{\sigma^{2}\left(e^{-2+} - 1\right)}{2}$$