REGULATION BY EFFECTOR AND ALLOSTERY

Dr. Zhiyi Wei SUSTC

Effector

- The activity of proteins is controlled is by binding regulatory molecules, termed effector ligands or effectors
- Effectors can be as small as a proton or as large as another protein
 - pH-induced conformational changes, such as Bohr effect of Hb

Hb's O2 binding efficiency modulated by effectors

Effector amplifies biological effects via cooperativity

- Rapid and massive biological response is hard to achieve with a linear system
- Amplification allows a single molecule to regulate many copies of a target protein or pathway
- Signal amplification can be achieved by covalent modification or by cooperativity

Cooperative binding by effectors

- Cooperativity is only present in oligomeric proteins
 - Multiple effector ligand binding sites
- Cooperative binding
 - Cooperativity between binding sites for the same ligand on a protein
 - Depending on the ligand binding induced a conformational change of the protein

Cooperativity can be positive or negative

- Positive cooperativity
 - Binding of one molecule of a ligand to a protein makes it easier for a second molecule of that ligand to bind
 - Protein activation
- Negative cooperativity
 - Binding of the second molecule is more difficult
 - Protein inhibition

EGFR and negative cooperativity

Negative cooperative binding is usually asymmetric

Rabbit muscle creatine kinase and negative cooperativity

Enzyme activities highly depend on effectors

- Effector ligand binds to active sites of enzymes instead of substrates,
 which is a common mechanism for enzyme inhibition
- Feedback-inhibition (negative feedback)
 - Many metabolic enzymes are inhibited by their own product or by the product of an enzyme downstream from them in the same metabolic pathway

Effector and allostery

- Some effectors can cause conformational changes at distant sites
 - Binding at a site distinct from the enzyme's catalytic site or from the site through which the protein's function is mediated
 - The most common type of regulatory effector
- Allostery ("another structure" in Greek)
 - Allosteric protein
 - Allosteric effector
 - Allosteric activator: stabilizes the more active form
 - Allosteric inhibitor: stabilizes the less active form
- Allosteric effector can be another protein or small molecule
 - Monomeric protein (allosteric protein) is often regulated by another protein (allosteric effector)
 - Small ligands (allosteric effector) regulate oligomeric protein (allosteric protein)

absence of signal molecules.

Enzyme and allosteric regulation

signal molecules to be active.

Allosteric regulation

Sequential conformational change

Preexisting conformational equilibrium

ATCase (aspartate transcarbamoylase)

- ATCase catalyzes the formation of Ncarbamoyl aspartate (pyrimidine synthesis from carbamoyl phosphate and L-aspartate).
- Allosteric inhibitor: cytidine triphosphate (CTP), the end-product of pyrimidine synthesis
- Allosteric activator: ATP, the end-product of purine biosynthesis
- CTP is a feedback inhibitor and shuts down ATCase when pyrimidine levels are high; ATP activates the enzyme when purine levels are high and pyrimidines are needed to pair with them to make nucleic acids.

In hetero-oligomeric enzymes, the regulatory site is often located on a different subunit from the active site

Disruption of function without disrupting the active site or ligand-binding site

- Disruption of a protein
 - Drug
 - Mutation
- Introduction of disruption into any part of the protein may lead to activity lost that depends on the propagation of a conformational change
 - The binding of drug directly to the active site or functional ligandbinding site, or a mutation at these sites
 - Drugs or mutations may also disrupt a protein's function by binding elsewhere and interfering with the conformational transitions necessary for function
 - In the absence of structural information, one should not automatically assume that any mutation that disrupts a protein's function must be in the active site or that any molecule that inhibits function does so

Binding of anti-viral compounds to the rhinovirus coat protein

- The binding blocks entry of the virus into host cells
- The binding does not happen in the site on the virus that binds the cellsurface virus receptor
- They bind to an unrelated site where they stabilize the structure of the coat protein
- The binding prevents the structural rearrangements required for receptor-mediated virus entry into the cell

Understanding of protein allostery provides new thinks in drug design

Binding of gene regulatory proteins to DNA

- Binding of gene regulatory proteins to DNA is often controlled by ligand-induced conformational changes
- Gene expression is regulated by activators and repressors
- Activators and repressors are under the control of specific regulatory ligands
 - Co-activators and co-repressors
 - Small molecules
 - Metal ions
 - proteins
 - Their binding determines whether or not the activator or repressor can bind to DNA

DtxR and Fe²⁺

- Expression of the gene encoding diphtheria toxin is under the control of a specific repressor, DtxR
- Binding of DtxR to its operator sequence is controlled in turn by the concentration of Fe2+ in the bacterial cell
- Iron acts as a co-repressor by binding to DtxR and inducing a conformational change that allows the DNA-recognition motif in the repressor to fit into the major groove of DNA
- The absence of bound iron, the repressor adopts a conformation in which DNA binding is sterically blocked

Allostery provides another level of regulation in protein function control

