BACS HW11

109062710

5/5/2021

Question 1

- a. Let's dig into what regression is doing to compute model fit
- i. Plot Scenario 2, storing the returned points

```
pts <- data.frame(
    x = c(
        -4.704724, 3.966620, 3.448928, 11.861426, 11.473157,
        20.662193, 18.462001, 27.909883, 25.709691, 35.416420,
        32.957382, 41.887572, 41.369880, 49.652955, 7.331619
),
    y = c(
        4.682789, -1.593332, 14.096971, 7.472177, 22.465133,
        16.537685, 31.879314, 25.951867, 41.293496, 29.089927,
        45.826250, 39.550129, 50.010331, 48.615637, 5.728810
)
)</pre>
```

ii. Run a linear model of x and y points to confirm the R2 value reported by the simulation

```
regr <- lm(y ~ x, data = pts)
summary(regr)</pre>
```

```
##
## lm(formula = y \sim x, data = pts)
##
## Residuals:
      Min 1Q Median 3Q
##
                                    Max
## -10.299 -6.970 -2.898 6.492 12.215
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9885 3.6651 1.361
                                          0.197
## x
               0.9370
                         0.1362 6.878 1.12e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.298 on 13 degrees of freedom
## Multiple R-squared: 0.7844, Adjusted R-squared: 0.7678
## F-statistic: 47.3 on 1 and 13 DF, p-value: 1.123e-05
```

iii. Add line segments to the plot

1. Get values of \hat{y} (estimated values)

```
y_hat <- regr$fitted.values
y_hat</pre>
```

```
## 1 2 3 4 5 6 7
## 0.5801637 8.7052424 8.2201632 16.1027022 15.7388929 24.3490507 22.2874633
## 8 9 10 11 12 13 14
## 31.1401607 29.0785733 38.1738112 35.8696843 44.2373025 43.7522233 51.5134926
## 15
## 11.8582578
```

2. Add segments

```
plot(pts)
abline(lm(pts$y ~ pts$x))
segments(pts$x, pts$y, pts$x, y_hat, col="red", lty="dotted")
```


iv. Use only ptsx, ptsy, y_hat and mean(ptsy) to compute SSE, SSR and SST, and verify R^2

```
sse <- sum((fitted(regr) - mean(pts$y))^2)
ssr <- sum((fitted(regr) - pts$y)^2)
sst <- sse + ssr
r2 <- 1 - (ssr / sst)</pre>
```

b. Comparing scenarios 1 and 2, which do we expect to have a stronger R^2 ?

For the first scenario, R^2 will be very close to +1 since most of the data points are sitting at or close to the increasing regression line. However, the second scenario's R^2 value won't be as high as the first scenario's, but it still will be near 1.

In this case, the first scenario will have a stronger R^2 .

c. Comparing scenarios 3 and 4, which do we expect to have a stronger R^2 ?

In the third scenario, the R^2 will be close to -1 since most of the data points are sitting on or close to the decreasing regression line. However, the fourth scenario's R^2 value won't be as high as the third scenario's, but it still will be near -1.

In this case, the third scenario will have a stronger R^2 , but in a decreasing manner.

```
qplot(auto$cylinders, xlab = 'Cylinders', ylab = 'Count',
    main='Frequency Histogram: Number of Cylinders', binwidth = 1)
```

Frequency Histogram: Number of Cylinders


```
qplot(auto$horsepower, xlab = 'Horsepower', ylab = 'Count', binwidth = 10,
    main='Frequency Histogram: Horsepower')
```

Frequency Histogram: Horsepower


```
ggplot(data = auto, aes(x = weight, y = mpg)) +
  geom_point() +
  geom_smooth(method = lm) +
  xlab('MPG') +
  ylab('Weight') +
  ggtitle('MPG vs. Weight: Entire Sample')
```

```
## `geom_smooth()` using formula 'y ~ x'
```

MPG vs. Weight: Entire Sample

ii. Report a correlation table of all variables, rounding to two decimal places

```
##
## Correlation method: 'pearson'
## Missing treated using: 'pairwise.complete.obs'
```



```
library("PerformanceAnalytics")
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
##
       first, last
## Attaching package: 'PerformanceAnalytics'
```

```
## The following object is masked from 'package:graphics':
##
## legend
```

chart.Correlation(variables, histogram=TRUE, pch=19)

iii. From the visualizations and correlations, which variables seem to relate to mpg?

From the correlation graph, seems like cylinders, displacement, horsepower, and weight relare to mpg. However, they are negatively correlated. Besides, weight is the only variable with the correlation value closest -1 meaning it's the most negatively correlated variable against mpg.

iv. Which relationships might not be linear?

The relationships between mpg with displacement, horsepower and weight are not linear, indicated by the moon-shaped curve that the data points follow. Refer to the graph in (iii)

v. Are there any pairs of independent variables that are highly correlated r > 0.7?

Yes, there are cylinders, displacement, horsepower and weight. The values can be seen in (ii) and (iii) answers.

b. Let's create a linear regression model where mpg is dependent upon all other suitable variables

```
simple_regr <- lm(mpg ~ cylinders + displacement + horsepower + weight + acceleration
+ year + factor(origin), data=auto)
summary(simple_regr)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cylinders + displacement + horsepower + weight +
       acceleration + year + factor(origin), data = auto)
##
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -9.0095 -2.0785 -0.0982 1.9856 13.3608
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
                      -1.795e+01 4.677e+00 -3.839 0.000145 ***
## (Intercept)
## cylinders
                       -4.897e-01 3.212e-01 -1.524 0.128215
## displacement
                        2.398e-02 7.653e-03
                                              3.133 0.001863 **
## horsepower
                       -1.818e-02 1.371e-02 -1.326 0.185488
                       -6.710e-03 6.551e-04 -10.243 < 2e-16 ***
## weight
## acceleration
                       7.910e-02 9.822e-02 0.805 0.421101
                       7.770e-01 5.178e-02 15.005 < 2e-16 ***
## year
## factor(origin)Europe 2.630e+00 5.664e-01 4.643 4.72e-06 ***
## factor(origin)Japan 2.853e+00 5.527e-01 5.162 3.93e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.307 on 383 degrees of freedom
## Multiple R-squared: 0.8242, Adjusted R-squared: 0.8205
## F-statistic: 224.5 on 8 and 383 DF, p-value: < 2.2e-16
```

i. Which independent variables have a 'significant' relationship with mpg at 1% significance?

There are five independent variables that have significant relationships with mpg at 1% significance, namely displacement, weight, year, factor(origin)Europe, and factor(origin)Japan.

ii. Looking at the coefficients, is it possible to determine which independent variables are the most effective at increasing mpg? If so, which ones, and if not, why not?

We can't determine which and which are effective since all the independent variables are not standardized.

- c. Let's try to resolve some of the issues with our regression model above.
- i. Create fully standardized regression results: are these slopes easier to compare?

```
auto_sd <- cbind(scale(auto[1:7]), auto$origin)
colnames(auto_sd)[8] <- "origin"
auto_sd <- as.data.frame(auto_sd)
auto_sd$origin <- factor(auto$origin, labels = origins)
simple_regr_std <- lm(mpg ~ cylinders + displacement + horsepower + weight + accelera
tion + year + factor(origin), data=auto_sd)
summary(simple_regr_std)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cylinders + displacement + horsepower + weight +
      acceleration + year + factor(origin), data = auto sd)
##
## Residuals:
##
       Min
                1Q Median
                                 30
                                        Max
## -1.15432 -0.26630 -0.01259 0.25440 1.71182
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
                     -0.13213
                                0.03155 -4.187 3.50e-05 ***
## (Intercept)
## cylinders
                     -0.10703 0.07020 -1.524 0.12821
## displacement
                      0.32149
                                0.10261
                                          3.133 0.00186 **
## horsepower
                     -0.08967 0.06761 -1.326 0.18549
                                0.07130 -10.243 < 2e-16 ***
## weight
                     -0.73028
## acceleration
                      0.02796 0.03472 0.805 0.42110
## year
                       0.07257 4.643 4.72e-06 ***
## factor(origin)Europe 0.33696
## factor(origin)Japan 0.36556
                                0.07082 5.162 3.93e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4236 on 383 degrees of freedom
## Multiple R-squared: 0.8242, Adjusted R-squared: 0.8205
## F-statistic: 224.5 on 8 and 383 DF, p-value: < 2.2e-16
```

ii. Regress mpg over each non significant independent variable, individually. Which ones become significant when we regress mpg over them individually?

```
mpg_cyl.lm <- lm(mpg ~ cylinders, data = auto_sd)
summary(mpg_cyl.lm)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cylinders, data = auto_sd)
##
## Residuals:
       Min
                     Median
##
                 1Q
                                  30
                                          Max
## -1.82463 -0.40784 -0.08113 0.32660 2.29555
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.731e-16 3.180e-02 0.00
## cylinders -7.776e-01 3.184e-02 -24.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6295 on 390 degrees of freedom
## Multiple R-squared: 0.6047, Adjusted R-squared: 0.6037
## F-statistic: 596.6 on 1 and 390 DF, p-value: < 2.2e-16
```

```
mpg_hp.lm <- lm(mpg ~ horsepower, data = auto_sd)
summary(mpg_hp.lm)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ horsepower, data = auto sd)
## Residuals:
##
       Min
                1Q Median
                                   3Q
                                           Max
## -1.73876 -0.41757 -0.04402 0.35401 2.16836
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.213e-16 3.175e-02
                                      0.00
## horsepower -7.784e-01 3.179e-02 -24.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6285 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
```

```
mpg_acc.lm <- lm(mpg ~ acceleration, data = auto_sd)
summary(mpg_acc.lm)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ acceleration, data = auto sd)
##
## Residuals:
      Min
              1Q Median
                              30
                                     Max
## -2.3048 -0.7195 -0.1536 0.6151 2.9775
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.427e-16 4.582e-02 0.000
## acceleration 4.233e-01 4.588e-02 9.228 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9071 on 390 degrees of freedom
## Multiple R-squared: 0.1792, Adjusted R-squared: 0.1771
## F-statistic: 85.15 on 1 and 390 DF, p-value: < 2.2e-16
```

All of them became significant.

iii. Plot the density of the residuals: are they normally distributed and centered around zero?

```
mpg_cyl.res <- resid(mpg_cyl.lm)
plot(density(mpg_cyl.res), main = "Density Distribution of MPG ~ Cylinders")</pre>
```

Density Distribution of MPG ~ Cylinders


```
mpg_hp.res <- resid(mpg_hp.lm)
plot(density(mpg_hp.res), main = "Density Distribution of MPG ~ Horsepower")</pre>
```

Density Distribution of MPG ~ Horsepower


```
mpg_acc.res <- resid(mpg_acc.lm)
plot(density(mpg_acc.res), main = "Density Distribution of MPG ~ Acceleration")</pre>
```

Density Distribution of MPG ~ Acceleration

They are all normally distributed and centered around zero.

Reference:

R SQUARED: SST, SSE AND SSR (https://rinterested.github.io/statistics/rsquare.html)

The Correlation Coefficient (r) (https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module9-Correlation-Regression/PH717-Module9-Correlation-Regression4.html)

Significance Codes in R (https://www.statology.org/significance-codes-in-r/)