Reducing the effect of nominal background samples on signal sample systematics using an adversarial neural network in the tW dilepton channel

Christian Kirfel

18th of September 2019





### Outline

- tW and tt separation
- Artificial neural networks and adversarial neural networks as a possible solution
- Introduction to hyperparameters
- Preliminary training results for an adversarial neural network

## tW and tt separation





- Problem: Cross-sections of tW about 10 times smaller than  $t\bar{t}$
- Interference in NLO order
- ullet Instead of applying cut  $\longrightarrow$  Neural networks

## Setup of the classifier

### Hyper-parameter scan results

- Input: 14 variables motivated by a BDT variable scan.
- ullet Hidden layers: 6 elu layers imes 128 nodes each
- Output layer: 1 sigmoid node
- Optimisation: SGD, learning rate = 0.06, momentum = 0.3, no nesterov, no decay
- Duration: 600 epochs

## Simple network results



Separation







ROC curve

Losses

### Adversarial Neural Networks

- Neural networks have no info on systematic uncertainties
- Introduction of a second, adversarial network classifying between nominal and systematic
- Combined loss function  $\mathcal{L}_{adversarial}\left(\theta_f, \theta_t\right) = \mathcal{L}(\theta_f) \lambda \mathcal{L}(\theta_f, \theta_r)$
- Network 1: signal/background separation
- Network 2: nominal/systematic separation
- Expectation: network 1 succeeds, network 2 fails

# Setup of the ANN



## ANN

|       | Discriminator | Adversary |
|-------|---------------|-----------|
| tī    | 0             | 1         |
| tW DR | 1             | 1         |
| tW DS | 1             | 0         |

### ANN setup

### Hyper-parameter scan results

- Input: 14 variables motivated by a BDT variable scan.
- ullet Hidden layers: 6 elu layers imes 128 nodes each
- Output layer: 1 sigmoid node
- Optimisation: SGD, learning rate = 0.06, momentum = 0.3, no nesterov, no decay
- Duration: 600 epochs

### ANN results



0.0975 0.0999 0.0922 0 50 100 150 200 250 100 150 400 0 0 50 100 150 200 250 100 150 400 0 0 50 100 150 200 250 100 350 400 0 0 50 100 150 200 250 100 350 400 0 0 50 100 150 200 250 300 350 400 Epoch

Separation Losses

# Second setup

11 £

# Conclusions

### Improvement plans

### Assumption

Labelling  $t\bar{t}$  as a nominal sample results in a strong bias

#### Possible solution

- Randomly label tt events as either nominal or systematic
- Add additional weighting to the  $t\bar{t}$  sample for the adversarial network only
- ullet Exclude the  $t\bar{t}$  sample for the adversarial training completely

## Applied fixes

### Re-labelling

|       | Discriminator | Adversary |
|-------|---------------|-----------|
| tī    | 0             | 1/0       |
| tW DR | 1             | 1         |
| tW DS | 1             | 0         |

## Weighting tt for the adversary

- Applying an additional weight to the  $\ensuremath{t\bar{t}}$  events for the adversarial training only
- Varied the weights between 0.0 and 1.0

fixes

# ttbar weights for the adversarial training









Weight = 1



splitting

# Conclusions