Solubility

"How FAR Does A Reaction Go"? – Chapter 17

Solubility product: K_{sp}

 K_{sp} is the equilibrium constant for a specific reaction: the <u>dissociation of a salt</u> into aqueous solution.

e.g.
$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + C\ell^{-}(aq)$$

 K_{sp} expression for $Ca(OH)_2$:

✓ Generate expressions for K_{sp} and Q_{sp} , and use them to describe the saturation of a salt solution.

Compounds with a larger K_{sp} are more **soluble** than other compounds.

We can measure the **molar solubility** of a compound as the maximum mol/L that can be dissolved (also used is **mass solubility**: g/L)

What is the molar solubility of $KC\ell O_4$ in pure water? $K_{sp} = 1.05 \times 10^{-2}$ for $KC\ell O_4$

Set up the calculation for determining the solubility of Ca(OH)₂:

 K_{sp} for Ca(OH)₂ is 5.5×10⁻⁶, and its solubility is 0.82 g/L (molar solubility 0.011 mol/L).

 \checkmark Calculate solubility from K_{sp} , and vice versa.

What about mixing solutions containing different concentrations of ions?

Relationship	Shift to Equilibrium?	Type of Solution?
Q _{sp} >K _{sp}		
$Q_{sp} = K_{sp}$		
Q _{sp} <k<sub>sp</k<sub>		

Solubility Demo

We will mix: 100 mL of 0.20 M Ag⁺ with 100 mL of either: $\{0.10 \text{ M Cl}^-, 0.10 \text{ M I}^-, \text{ or } 0.025 \text{ M CrO}_4^{2-}\}$

(Total volume: 200 mL)

lon	[ion] after mixing	
Ag ⁺	(present in all 3 mixtures)	
CrO ₄ ²⁻		
Cl-		
-		

Salt(s)	K _{sp}	Q_{sp}
Ag ₂ CrO ₄ (s)	9.0 x 10 ⁻¹²	
	Will there be precipitate?	
AgCl(s)	1.6 x 10 ⁻¹⁰	
	Will there be precipitate?	
AgI(s)	1.5 x 10 ⁻¹⁶	
	Will there be prec	ipitate?

✓ Generate expressions for K_{sp} and Q_{sp} , and use them to describe the saturation of a salt solution.

Salt(s)	Cation	Anion	pH of solution	Effect of adding NH ₃ ?	Effect of add HNO ₃ ?
Ag ₂ CrO ₄ (s)					
AgCl(s)					
Agl(s)					

^{**}Information: Ag⁺ reacts with water *very* weakly to form an oxide (not a hydroxide). The K_a of Ag⁺ is negligible.

Factors that affect solubility:

-Temperature

Note: many K_{sp} reactions are endothermic

-Common-ion effect

-Side Reactions

The molar solubility of $KC\ell O_4$ in pure water was found to be 0.102 M. What is the molar solubility of $KC\ell O_4$ in a 0.0500 M solution of perchloric acid $(HC\ell O_4)$? K_{sp} of $KC\ell O_4 = 1.05 \times 10^{-2}$

Answer: 0.0805 mol/L

Sulfide (S²⁻) is a weak base ($K_b = 1.6 \times 10^{-7}$), and can react with water.

Lead(II) is a transition metal ion with limited solubility in aqueous solutions. The solubility of lead sulfide (PbS) in water will be:

- a. Less than that predicted by the K_{sp}
- b. Greater than that predicted by the K_{sp}
- c. Basically as predicted by the K_{sp}
- d. Cannot tell

Complex Formation

Some metal ions can form *complex ions* that affect their solubility.

AgCl(s)
$$\iff$$
 Ag⁺(aq) + Cl⁻(aq) $K_{sp} = 1.8 \times 10^{-10}$
Ag⁺(aq) + 2 NH₃(aq) \iff [Ag(NH₃)₂]⁺(aq) $K_f = 1.1 \times 10^7$

What is the molar solubility of AgCl in a 0.50 M NH₃ solution?

Answer: 0.022 M

Revisiting the demo:

Salt(s)	Effect of adding NH ₃ ?	Effect of add HNO ₃ ?	Reason for the effect?
Ag ₂ CrO ₄ (s)			
AgCl(s)			
AgI(s)			