Computer Architecture

Computer Science & Engineering

Chương 6

Hệ thống lưu trữ và các thiết bị Xuất/Nhập khác

Dẫn nhập

- Đặc tính của các thiết bị ngoại vi thế hiện:
 - Hành vi (chức năng): Nhập (I), Xuất (O), Lưu trữ (storage)
 - Đối tượng tương tác: Người sử dụng hoặc máy
 - Tốc độ truyền: bytes/sec, transfers/sec
- Kết nối tuyến I/O

- Tính ốn định = Độ tin cậy (Dependability) rất quan trọng:
 - Đặc biệt các thiết bị lưu trữ
- Đại lượng đo hiệu suất
 - Thời gian đáp ứng (Latency=response time)
 - Hiệu suất đầu ra (Throughput=bandwidth)
 - Hệ thống để bàn & nhúng
 - Quan tâm chủ yếu là thời gian đáp ứng & đa dạng thiết bị
 - Hệ thống máy chủ (Servers)
 - Chủ yếu là hiệu suất đầu ra & khả năng mở rộng

Độ tin cậy (Dependability)

Phục hồi lại Lỗi

Ngắt quãng dịch vụ Sai lệch với dịch vụ đã đặc tả

- Lỗi: một bộ phận nào đó sinh lỗi của nó
 - Có & có thể không dẫn đến lỗi hệ thống

Đo độ tin cậy

- Mức tin cậy (reliability): thời gian trung bình cho đến khi có lỗi (MTTF=Mean Time To Failure))
- Ngắt dịch vụ: Thời gian trung bình khắc phục lỗi (MTTR= Mean Time to repaire)
- Thời gian trung bình giữa 2 lần lỗi
 - MTBF = MTTF + MTTR (Mean time between failures)
- Tính sẵn sàng (Availability) = MTTF / (MTTF + MTTR)
- Cải thiện tính sẵn sàng
 - Tăng MTTF: tránh lỗi, dự phòng, tiên đoán lỗi
 - Giảm MTTR: cải thiện công cụ & tiến trình tìm và sửa lỗi

Lưu trữ trên đĩa

 Nonvolatile (không tự biến mất), nhiều đĩa từ tính quay quanh 1 trục

BK TP.HCM

Sector & Truy cập

- Mỗi sector là đơn vị khối chứa các thông tin
 - Chỉ số nhận dạng Sector
 - Dữ liệu (512 bytes, hướng 4096 bytes per sector)
 - Mã sửa lỗi (ECC)
 - Trường đồng bộ & Khoảng trống phân cách
- Truy cập 1 sector bao gồm:
 - Trễ hàng vì có nhiều yêu cầu đồng thời
 - Tìm rãnh (Seek): Dịch chuyển đầu từ
 - Rotational latency
 - Vận chuyển dữ liệu (Data transfer)
 - Phí tổn mạch điều khiển (Controller overhead)

Ví dụ: Truy cập đĩa

- Giả sử
 - Sector có 512Bytes, tốc độ quay 15,000rpm, thời gian dò tìm 4ms, tốc độ truyền 100MB/s, Phí tồn đ/khiển 0.2ms, idle disk
- Thời gian đoc trung bình
 - 4ms dò tìm

 - $+ \frac{1}{2} / (15,000/60) = 2 \text{ms}$ rotational latency + 512 / 100 MB/s = 0.005 ms thời gian truyền
 - + 0.2ms trễ do bô đ/khiển
 - = 6.2 ms
- Thời gian thực tế = 25% của nhà sản xuất
 - \blacksquare 1ms+2ms+0.005ms+0.2ms = 3.2ms

BK TP.HCM

Các vấn đề Hiệu suất đĩa

- Nhà sản xuất cho biết thời gian dò tìm trung bình
 - Dựa trên mọi trường hợp dò tìm có thể
 - Tính cục bộ & định thời OS sẽ có số liệu thực tế nhỏ hơn
- Mạch điều khiển sẽ xác định vị trí vật lý trên đĩa
 - Máy tính làm việc vói giá trị luận lý
 - SCSI, ATA, SATA
- Tăng hiệu xuất bằng Cache
 - Truy cập sẵn
 - Tránh dò tìm và trễ vòng quay

Lưu trữ Flash

- Nonvolatile, lưu trữ bán dẫn
 - 100× 1000× nhanh hơn đĩa
 - Nhỏ hơn, tốn ít năng lương tiêu thụ, ổn định hơn
 - Tuy nhiên đắt hơn \$/GB (giữa đĩa và DRAM)

Các loại bộ nhớ Flash

- NOR flash: bit nhớ giống cổng NOR
 - Truy cập ngẫu nhiên
 - Dùng nhớ lệnh trong hệ tống nhúng
- NAND flash: bit nhớ giống cổng NAND
 - Mật độ cao (bits/area), truy cập khối mỗi lần
 - Rẻ hơn
 - Dùng trong USB keys, media storage, ...
- Sau khoảng 1000 lần truy xuất: có vấn đề
 - Không thể dùng thay thế RAM hoặc đĩa
 - Khắc phục vấn đề: ánh xạ lại

Thành phần kết nối

- Cần kết nối giữa các bộ phận như
 - CPU, bộ nhớ, Điều khiển I/O
- Tuyến "Bus": chia sẻ kênh truyền
 - Bao gồm nhóm các đường dây song song truyền dữ liệu và đồng bộ truyền dữ liệu
 - Hiện tượng cổ chai
- Hiệu suất bị ảnh hưởng bởi các yếu tố vật lý như
 - Độ dài đường truyền, số kết nối
- Phương án hiện nay: kết nối tuần tự tốc độ cao: giống mạng

Tuyến "Bus" các loại

- Hai tuyến chính
- Tuyến Bus Processor ← → Memory
 - Khoảng cách gần (ngắn), tốc độ cao
 - Thiết kế phù hợp với tổ chức bộ nhớ
- Tuyến bus I/O
 - Khoảng cách xa hơn, nhiều điểm tiếp nối
 - Chuẩn hóa để dễ sử dụng
 - Nối với tuyến bus "processor-memory" qua cầu nối (Bridge)

Tín hiệu và Đồng bộ tuyến Bus

- Đường dữ liệu (Data lines)
 - Địa chỉ & dữ liệu
 - Riêng biệt hoặc trộn lẫn
- Đường điều khiển
 - Thể hiện loại dữ liệu trên đường truyền, đồng bộ các giao dịch
- Đồng bộ
 - Sử dụng đồng hồ tuyến bus (tấn số thấp hơn)
- Bất đồng bộ
 - Sử dụng cơ chế bắt tay (request/acknowledge)

Một số ví dụ Bus I/O chuẩn

	Firewire	USB 2.0	PCI Express	Serial ATA	Serial Attached SCSI
Intended use	External	External	Internal	Internal	External
Devices per channel	63	127	1	1	4
Data width	4	2	2/lane	4	4
Peak bandwidth	50MB/s or 100MB/s	0.2MB/s, 1.5MB/s, or 60MB/s	250MB/s/lane 1×, 2×, 4×, 8×, 16×, 32×	300MB/s	300MB/s
Hot pluggable	Yes	Yes	Depends	Yes	Yes
Max length	4.5m	5m	0.5m	1m	8m
Standard	IEEE 1394	USB Implementers Forum	PCI-SIG	SATA-IO	INCITS TC T10

TP.HCM

•

Hệ thống x86 PC I/O

Quản lý I/O

- I/O được quản lý trực tiếp bởi OS
 - Nhiều chương trình đồng thời cùng chia sẻ chung các thiết bị I/O
 - Cần được bảo vệ và định thời
 - I/O tạo ngắt quãng bất đồng bộ
 - Giống cơ chế ngoại lệ
 - Lập trình I/O ít phức tạp (Device Driver)
 - OS tạo các dịch vụ trên I/O để các chương trình gọi các dịch vụ thông qua OS

Các lệnh I/O

- Thiết bị I/O devices được quản lý bằng phần cứng điều khiển I/O
 - Vận chuyển dữ liệu (từ I/O hay đến I/O)
 - Các tác vụ đồng bộ với phần mềm
- Thanh ghi lệnh (Command registers)
 - Ra lệnh thiết bị thực hiện
- Thanh ghi trạng thái (Status registers)
 - Mô tả trạng thái tức thời của thiết bị
- Thanh ghi dữ liệu (Data registers)
 - Ghi (write): chuyển dữ liệu đến thiết bị
 - Đọc (read): chuyển dữ liệu từ thiết bị

Truy xuất các thanh ghi I/O

- Ánh xạ như địa chỉ bộ nhớ (Memory mapped)
 - Thanh ghi được địa chỉ hóa như không gian bộ nhớ
 - Giải mã địa chỉ sẽ tự phân biệt
 - OS thực hiện cơ chế chuyển đổi địa chỉ sao cho chỉ có OS mới truy cập được
- Lệnh I/O chuyên biệt
 - Tôn tại các lệnh chuyên biệt để truy xuất các thanh ghi I/O
 - Chỉ thực thi trong (kernel mode)
 - Ví dụ: x86

Cơ chế Dò quét (polling)

- Kiểm tra thanh ghi trạng thái liên tục
 - Nếu thiết bị sẵn sàng, thực hiện tác vụ I/O
 - Nếu lỗi, thực hiện biện pháp giải quyết
- Thông dụng trong các hệ thống nhỏ hoặc các hệ thống nhúng không đòi hỏi hiệu suất cao, do:
 - Thời gian xử lý dễ tiên đoán trước
 - Giá thành phần cứng thấp
- Trong các hệ thống khác: phí thời gian
 CPU (busy for waiting)

BK TP.HCM

Ngắt quãng (interrupts)

- Khi thiết bị sẵn sàng hoặc xuất hiện lỗi
 - Bộ điều khiển thiết bị ngắt quãng CPU
- Ngắt quãng cũng giống một ngoại lệ
 - Nhưng không đồng bộ với lệnh đang thực thi
 - Kích khởi bộ xử lý ngắt quãng tại thời điểm giữa các lệnh
 - Cung cấp thông tin đến thiết bị tương ứng
- Ngắt quãng có thứ tự ưu tiên
 - Khác thiết bị quan trọng có chế độ ưu tiên cao
 - Ngắt quãng có ưu tiên cao hơn có thể ngắt ưu tiên thấp hơn

- Hoạt động theo cơ chế dò quét & ngắt quãng
 - CPU chuyển dữ liệu giữ bộ nhớ và các thanh ghi dữ liệu của I/O
 - Tốn thời gian cho các thiết bị tốc độ cao
- Truy cập bộ nhớ trực tiếp (DMA)
 - OS cấp địa chỉ bắt đầu trong bộ nhớ
 - Điều khiển I/O controller vận chuyển đến/từ bộ nhớ một cách chủ động
 - Bô điều khiển I/O ngắt quãng khi hoàn tất hay lỗi xảy ra

Đo hiệu xuất I/O

- Hiệu xuất I/O phụ thuộc vào:
 - Phần cứng: CPU, bộ nhớ, đ/khiển & buses
 - Phần mềm: Hệ điều hành, Hệ quản trị dữ liệu, ứng dụng
 - Tải: mức độ yêu cầu truy xuất & mẫu
- Khi thiết kế hệ thống I/O system cần hài hòa "thời gian đáp ứng" & hiệu xuất đầu ra

Hiệu xuất giữa I/O & CPU

Amdahl's Law

 Không thể bỏ qua hiệu xuất I/O khi gia tăng hiệu xuất tính toán (song song hóa) của CPU

Ví dụ:

- Đo đạc cho thấy 90s (CPU time), 10s (I/O time)
- Số CPU tăng gấp đôi mỗi năm và I/O không đổi

Year	CPU time	I/O time	Elapsed time	% I/O time
now	90s	10s	100s	10%
+2	45s	10s	55s	18%
+4	23s	10s	33s	31%
+6	11s	10s	21s	47%

(Redundant Array of Inexpensive (Independent) Disks)

- Sử dụng nhiều đĩa nhỏ thay vì 1 đĩa thật lớn
- Song song hóa để cải thiện hiệu suất
- Thêm đĩa để tạo thông tin dự trữ (dư thừa)
- Xây dựng hệ thống lưu trữ với an toàn dữ liệu cao
 - Đặc biệt có khả năng thay nóng
- RAID 0
 - Không có thông tin dư thừa ("AID"?)
 - Thông tin chứa liên tiếp theo mảng trên các đĩa
 - Tuy vậy: không tăng hiệu xuất truy cập

RAID 1 & 2

- RAID 1: Đối xứng "Mirroring"
 - Số đĩa: N + N, sao chép dữ liệu giống nhau
 - Dữ liệu đồng thời được ghi trên cả 2 đĩa
 - Trong trường hợp lỗi, đọc đĩa đối xứng
- RAID 2: Mã sửa lỗi
 - Số đĩa: N + E (e.g., 10 + 4)
 - Tách dữ liệu ở mức bit trên toàn bộ N
 - Tạo E-bit ECC (theo giải thuật)
 - Quá phức tạp → không dùng trong thực tế

RAID 3: Parity mức bit xen kẽ

- Số đĩa: N + 1
 - Dữ liệu phân mảnh, chứa trên toàn bộ N đĩa ở mức byte
 - Đĩa dư thêm chứa thông tin parity
 - Truy cập (đọc): đọc cùng lúc nhiều đĩa
 - Truy cập (ghi): tạo parity mới tương ứng và ghi cùng lúc trên nhiều đĩa
 - Trường hợp lỗi: dùng thông tin parity để khôi phục dữ liệu bị mất.

Không thông dụng

RAID 4: Parity mức khối xen kẽ

- Số đĩa: N + 1
 - Dữ liệu phân mảnh, chứa trên toàn bộ N đĩa ở mức khối
 - Đĩa dư thêm chứa thông tin parity cho 1 nhóm khối
 - Truy cập (đọc): Chỉ đọc những đĩa chứa khối cần đọc
 - Truy cập (ghi):
 - Đọc đĩa chứa khối bị thay đối và đĩa parity
 - Tính lại parity mới, cập nhật đĩa chứa dữ liệu và đĩa parity
 - Khi có lỗi
 - Sử dụng parity để khôi phục dữ liệu lỗi

Không thông dụng

So sánh RAID 3 & RAID 4

RAID 5: Parity phân tán

- Số đĩa: N + 1
 - Giống RAID 4, nhưng các khối parity phân tán khắp trên các đĩa
 - Tránh hiện tượng "cổ chai" với đĩa parity
- Thông dụng

RAID 6: P + Q Dw thwa

- Số đĩa: N + 2
 - Tương tự RAID 5, nhưng 2 đĩa chứa parity
 - Sửa lỗi tốt hơn do có parity dư thừa
- Đa RAID
 - Nhiều hệ thống tân tiến sử dụng phương thức dư thừa thông tin để sửa lỗi tương tự với hiệu suất tốt hơn

Kết luận về RAID

- RAID cải thiện hiệu suất và tính sẵn sàng
 - Tính sẵn sàng cao đòi hỏi "thay nóng"
- Giả sử lỗi đĩa độc lập, không có mối quan hê
 - Khả năng phục hồi thấp
- Tham khảo thêm "Hard Disk Performance, Quality and Reliability"

Tiêu chí thiết kế hệ thống I/O

- Thỏa mãn các yêu cầu thời gian đáp ứng (latency)
 - Cho các tác vụ quan trọng (time-critical)
 - Khi hệ thống không tải (unloaded)
 - Cộng latency của các phần
- Tối đa Hiệu xuất đầu ra (throughput)
 - Phát hiện vị trí "cổ chai" "weakest link"
 - Cấu hình hoạt động ở mức băng thông tối đa
 - Cân bằng toàn bộ hệ thống
 - Khi hệ thống có tải, việc phân tích rất phức tạp
 - Cần sử dụng mô hình "xếp hàng" hoặc mô phỏng

BK

Máy chủ (Servers)

- Úng dụng ngày càng được chạy trên máy chủ
 - Web search, office apps, virtual worlds, ...
- Yêu cầu máy chủ làm trung tâm dữ liệu càng lớn
 - Đa xử lý, liên kết mạng, lưu trữ "khủng"
 - Không gian & năng lượng tiêu thụ hạn chế
- Thiết bị xây dựng trên dạng rack 19"
 - Dưới dạng nhiều module 1.75" (1U)

Rack-Mounted Servers

Sun Fire x4150 1U server

Sun Fire x4150 1U server

Ví dụ: Thiết kế hệ thống I/O

- Giả sử hệ thống Sun Fire x4150 với
 - Tải làm việc: đọc các khối đĩa 64KBytes
 - Mỗi tác vụ cần 200,000 lệnh ứng dụng & 100,000 lệnh thuộc OS
 - Mỗi CPU: 109 lệnh/giây
 - FSB: 10.6 GB/giây tốc độ tối đa
 - DRAM DDR2 667MHz: 5.336 GB/giây
 - PCI-E $8 \times$ bus: 8×250 MB/sec = 2GB/sec
 - Đĩa: tốc độ quay 15,000 rpm, thời gian dò 2.9ms,
 Tốc độ truyền dữ liệu 112MB/giây
- Tốc độ I/O tối đa để đảm bảo yêu cầu trên
 - Đọc random và tuần tự

Thiết kế hệ thống I/O (tt.)

- Tốc độ I/O với tốc độ xử lý CPUs
 - Mỗi core: $10^9/(100,000 + 200,000) = 3,333$ tác vụ
 - 8 cores: 26,667 ops/sec (3,333x8) tác vu/giây
- Đọc ngẫu nhiên, Tốc độ I/O với đĩa
 - Giả sử thời gian dò tìm là 25% theo thông số
 - Time/op = seek + latency + transfer = 2.9 ms/4 + 4 ms/2 + 64 KB/(112 MB/s) = 3.3 ms
 - Mỗi giây là 1000ms → 1000ms/3.3ms = 303 op/s
 - 303 ops/sec per disk, 2424 ops/sec for 8 disks
- Đọc liên tục: 112MB/s / 64KB = 1750 ops/sec per disk và 14,000 ops/sec for 8 disks

Thiết kế hệ thống I/O (tt.)

- PCI-E I/O rate
 - 2GB/sec / 64KB = 31,250 ops/sec
- DRAM I/O rate
 - 5.336 GB/sec / 64KB = 83,375 ops/sec
- FSB I/O rate
 - Giả sử ½ peak rate được duy trì
 - 5.3 GB/sec / 64KB = 81,540 ops/sec per FSB
 - 163,080 ops/sec for 2 FSBs
- Nơi yếu nhất (weakest link): chính là đĩa
 - 2424 ops/sec random, 14,000 ops/sec sequential
 - Tất cả các bộ phận khác đều thỏa mãn để đáp ứng đòi hỏi truy xuất đĩa

Ví dụ: Tính độ tin cậy đĩa

- Nếu nhà sản xuất cho biết giá trị MTTF là 1,200,000 giờ (140 năm)
 - Sẽ hiểu rằng nó làm việc cho đến khi đó (140 năm)
- Sai: Đó chỉ là thời gian trung bình đến khi lỗi có thể xảy ra
 - Phân bố lỗi ?
 - Lỗi sẽ ra sao khi có 1000 đĩa?
 - Bao nhiêu lỗi xảy ra trong năm

Annual Failure Rate (AFR) =
$$\frac{1000 \text{ disks} \times 8760 \text{ hrs/disk}}{1200000 \text{ hrs/failure}} = 0.73\%$$

Tổng kết chương

- Đo hiệu xuất thiết bị I/O
 - Throughput, response time
 - Dependability and cost also important
- 2 loại tuyến "Buses" kết nối các thành phần CPU, memory, thiết bị đ/khiển I/O
 - Cơ chế hoạt động: Polling, interrupts, DMA
- Đo đạc hiệu xuất I/O
 - TPC, SPECSFS, SPECWeb
- RAID
 - Cải thiện hiệu xuất và độ tin cậy

