1 El pont de Wheatstone

Considerem el següent circuit

Les resistències R_1 i R_2 són conegudes, mentre que el valor de la resistència R_v es pot controlar a voluntat (és variable) i R_x és una resistència desconeguda el valor de la qual volem saber. Aquesta disposició s'anomena pont de Wheatstone i es fa servir per esbrinar (amb molta precisió) el valor d'una resistència. Es diu que el pont està equilibrat quan la diferència de potencial entre els punts A i B és zero, és a dir, quan no passa intensitat per R_5 . En la pràctica, al lloc de la resistència R_5 s'hi posa un galvanòmetre, aparell que es capaç de detectar el pas del corrent en un sentit o altre, de forma que podem saber quan es troba equilibrat el pont.

El nostre objectiu és trobar la relació entre R_1 , R_2 , R_v i R_x . Aplicarem el mètode de Maxwell (una variant del de Kirchhoff) per escriure les equacions que permeten resoldre el problema. D'aquesta manera, tenim els corrents circulants I_1 , I_2 i I_3 i podem escriure les equacions per cada malla

$$\begin{cases}
-V = (I_1 - I_2)R_1 + (I_1 - I_3)R_v \\
0 = I_2R_2 + (I_2 - I_1)R_1 + (I_2 - I_3)R_5 \\
0 = I_3R_x + (I_3 - I_2)R_5 + (I_3 - I_1)R_v
\end{cases}$$

quan el pont està equilibrat

$$I_2 = I_3$$

i les dues darreres equacions es poden escriure com

$$\begin{cases} 0 = I_3 R_2 + (I_3 - I_1) R_1 \\ 0 = I_3 R_x + (I_3 - I_1) R_v \end{cases} \rightarrow \begin{cases} I_3(R_2 + R_1) = I_1 R_1 \\ I_3(R_x + R_v) = I_1 R_v \end{cases}$$

dividint les equacions i suposant que I_1 i I_3 són les dues diferents de zero, tenim

$$\frac{Y_3(R_2 + R_1)}{Y_3(R_x + R_v)} = \frac{Y_1R_1}{Y_1R_v}$$

d'on

$$(R_2 + R_1)R_v = (R_x + R_v)R_1$$

fent distributives i simplificant

$$R_2R_v + R_1R_v = R_xR_1 + R_vR_1$$

i finalment

$$R_x = \frac{R_2 R_v}{R_1}$$

on recordem que, R_1 , R_2 són conegudes, i R_v pren el valor adequat perquè el pont estigui equilibrat.

