LISTING OF THE CLAIMS

1. (Previously Presented) A method for making a fog resistant thermoplastic article, comprising:

exposing an aromatic thermoplastic polymer article to an aqueous environment sufficient to result in a fog resistant aromatic thermoplastic polymer article,

wherein the fog resistant aromatic thermoplastic polymer article has a greater fog resistance when compared to the aromatic thermoplastic polymer article prior to exposing; and wherein the aromatic thermoplastic polymer article comprises a composition comprising an aromatic thermoplastic polymer and an ionic anti-fog additive.

- 2. (Original) The method of claim 1, wherein the exposing comprises exposing to steam, exposing to water vapor, immersing in water, spraying with water, misting with water, or combinations comprising at least one of the foregoing.
- 3. (Original) The method of claim 1, wherein the exposing is performed for greater than or equal to about 20 minutes.
- 4. (Original) The method of claim 1, wherein the exposing is performed for greater than or equal to about 45 minutes.
- 5. (Original) The method of claim 1, wherein the aromatic thermoplastic polymer article comprises a composition comprising aromatic polycarbonate, polyphenylene ether, aromatic polyester, polyphenylene ether/styrene blend, aromatic polyamide, polyethylene terephthalate, blends thereof, or a combination comprising at least one of the foregoing polymers.
- 6. (Original) The method of claim 5, wherein the aromatic thermoplastic polymer article comprises a composition comprising polycarbonate, an aromatic polycarbonate, a (co)polyestercarbonate, an aromatic (co)polyestercarbonate, blends thereof, or a combination comprising at least one of the foregoing polymers.
 - 7. (Canceled)

- 8. (Previously Presented) The method of claim 1, wherein the ionic anti-fog additive is a sulfonic acid salt.
- 9. (Original) The method of claim 8, wherein the sulfonic acid salt is according to the formula:

$$R^{1}$$
 SO_{3} R^{5} R^{4}

wherein Q is nitrogen or phosphorus; R^1 is a C_1 - C_{40} alkyl group, a C_1 - C_{40} haloalkyl group, a C_6 - C_{40} aryl group, a $(C_6$ - C_{12} aryl) C_1 - C_{40} alkyl group, or a $(C_1$ - C_{40} alkyl) C_6 - C_{12} aryl group; and R^2 , R^3 , R^4 and R^5 are each independently hydrogen, a C_1 - C_{20} alkyl group, a C_1 - C_{20} hydroxyalkyl group, or a C_6 - C_{12} aryl group.

- 10. (Original) The method of claim 8, wherein the sulfonic acid salt is a tetraalkyl ammonium salt of a sulfonic acid, a trialkyl(hydroxyalkyl) ammonium salt of a sulfonic acid, tetraalkyl phosphonium salt of a sulfonic acid, a trialkyl(hydroxyalkyl) phosphonium salt of a sulfonic acid, or combinations comprising at least one of the foregoing sulfonic acid salts.
- 11. (Previously Presented) The method of claim 21, wherein the ionic or non-ionic anti-fog additive is present in an amount of about 0.1 to about 10 weight percent based on the total weight of the composition.
- 12. (Previously Presented) The method of claim 21, wherein the non-ionic anti-fog additive is a polysiloxane-polyether copolymer, a poly(propylene glycol)-poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol).

- 13. (Original) The method of claim 12, wherein the polysiloxane-polyether copolymer comprises a backbone of a methyl-substituted siloxane, phenyl-substituted siloxane, random copolymer of methyl and phenyl substituted siloxane, block copolymer of methyl and phenyl substituted siloxane, or star polymer of methyl and phenyl substituted siloxane, or star polymer of methyl and phenyl substituted siloxane; and wherein polyether is bonded to one or more ends of the siloxane backbone, grafted onto the siloxane, or both.
- 14. (Original) The method of claim 12, wherein the polysiloxane-polyether copolymer is according to the formula

wherein n is about 3 to about 5000; and R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} are each independently hydrogen, a C_1 - C_{20} alkyl group, a C_6 - C_{12} aryl group, a $(C_1$ - C_{20} alkyl) C_6 - C_{12} aryl group, a $(C_6$ - C_{12} aryl) C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy, or polyether group, with the proviso that at least one of R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , or R^{15} is a polyether group.

- 15. (Original) The method of claim 1, wherein the fog resistant aromatic thermoplastic polymer article is free of an anti-fog coating.
- 16. (Previously Presented) A method for making a fog resistant thermoplastic article, comprising:

blending an aromatic thermoplastic polymer and an ionic or a non-ionic anti-fog additive to form a blend;

molding the blend to form a thermoplastic article; and exposing the thermoplastic article to an aqueous environment according to claim 21.

17. (Previously Presented) A method for making a fog resistant thermoplastic article, comprising:

exposing a thermoplastic article to an aqueous environment sufficient to result in a fog resistant thermoplastic article,

wherein the fog resistant thermoplastic article has a greater fog resistance when compared to the thermoplastic article prior to exposing; and

wherein the thermoplastic article comprises a composition comprising polycarbonate, an aromatic polycarbonate, a (co)polyestercarbonate, an aromatic (co)polyestercarbonate, blends thereof, or a combination comprising at least one of the foregoing polymers; and an ionic anti-fog additive.

- 18. (Original) A fog resistant article prepared from the method of claim 1.
- 19. (Original) A fog resistant article prepared from the method of claim 16.
- 20. (Original) A fog resistant article prepared from the method of claim 17.

21. (Previously Presented) A method for making a fog resistant thermoplastic article, comprising:

exposing an aromatic thermoplastic polymer article to an aqueous environment sufficient to result in a fog resistant aromatic thermoplastic polymer article,

wherein the fog resistant aromatic thermoplastic polymer article has a greater fog resistance when compared to the aromatic thermoplastic polymer article prior to exposing; and

wherein the aromatic thermoplastic polymer article comprises a composition comprising an aromatic thermoplastic polymer and an ionic or non-ionic anti-fog additive,

wherein the aromatic thermoplastic polymer comprises polyphenylene ether, aromatic polyester, polyphenylene ether/styrene blend, aromatic polyamide, polyethylene terephthalate, blends thereof, or a combination comprising at least one of the foregoing polymers.