PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE NOMBRE: ESCUELA DE INGENIERÍA
DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN
IIC2213 — LÓGICA PARA CIENCIAS DE LA COMPUTACIÓN 2021-1

Tarea 3 - Parte A

Matías Duhalde

Sea M una Máquina de Turing que resuelve el problema propuesto en el enunciado.

En primer lugar, M debe verificar que la palabra w que reciba como entrada, tenga el formato correcto, que debe ser de la forma $A\#B\#w_1\#w_2\#...\#w_n$, donde A es el string que representa el posible conjunto oscuro, y $A \in \{0,1\}^n$, B es el string que representa la cantidad de nodos de la forma 1^n , y los strings w_i , con $1 \le i \le n$ corresponden al vector de adyacencia del nodo i, es decir, representa los nodos que están conectados al nodo i mediante una arista. Estos strings pertenecen a $\{0,1\}^n$.

Este primer paso funcionaría como un parser, de manera análoga a como se comprueba que un string corresponda a la codificación de una Máquina de Turing. Por lo tanto, es posible de computar mediante una MT. En caso de que w no sea válido, M inmediatamente rechaza. Este paso se puede realizar en "una sola pasada". Solamente basta comprobar que todos los substrings (delimitados por el símbolo #) tengan el mismo largo n (igual a la cantidad de nodos), que cumplan el formato correcto, y que haya una cantidad n+2 de substrings. Sumado a lo anterior, se debe volver al inicio de w para continuar el algoritmo. De esta manera, la cantidad de **cambios** es constante ($\Theta(1)$).

Posteriormente, se debe comenzar el análisis del conjunto oscuro S, codificado en el input w dentro del substring $A=a_1a_2...a_n$. Para cada a_i , con $1 \le i \le n$, si su valor es 0, entonces el nodo no pertenece al conjunto oscuro S que queremos comprobar. Dado que asumimos que el grafo es no dirigido, no nos interesan sus conexiones, por lo que podemos ignorar todo el substring w_i . Para hacer esto, M sustituye todos caracteres del substring w_i a 0, quedando de la forma 0^n . En el "mejor" caso, ningún carácter en A es 0, o en otras palabras, nuestro conjunto oscuro S es igual a V. Aquí, solo habría que hacer dos **cambios** para realizar esta comprobación. Para el peor caso, en el cual todos los caracteres en A son ceros $(S = \emptyset)$, habría que hacer n iteraciones, en las cuales se lee la posición del carácter a_i , se reemplaza por un carácter auxiliar x para denotar que ya iniciamos la iteración, se va a su substring w_i respectivo, y este se llena de ceros, haciendo dos **cambios** en cada ciclo (ida + vuelta). Además, se realiza un ciclo extra para asegurarse que no hay más ceros en A, totalizando una cantidad de **cambios** igual a 2n + 2, lo que equivale a $\Theta(n)$. Nota: si bien en el peor caso M puede aceptar directamente debido a que S es vacío, y cumple la condición de conjunto oscuro, decidí hacerlo así para mostrar la cantidad de **cambios**. Además, el input será aceptado de iqual manera según lo explicado en el paso siquiente.

Para el último paso, $A = a_1 a_2 ... a_n$ queda de la forma $\{x,1\}^n$. Para cada carácter de A tal que $a_i = 1$, debemos revisar si alguno de los otros nodos del conjunto oscuro está conectado por una arista a este. Dado que en el paso anterior eliminamos todas las conexiones a los nodos que no son del conjunto oscuro, y sólo permanecen intactas las conexiones de los nodos en S, basta con revisar el i-ésimo carácter de cada w_j , con $1 \le j \le n$. Si encontramos un 1, significa que hay una conexión entre un nodo del conjunto oscuro y el nodo que estamos revisando actualmente (que también es del conjunto oscuro), por lo que M rechaza. Si revisamos todos los 1s en A, y no nos encontramos con caracteres 1 en los i-ésimos caracteres de w_j , M acepta. De esta manera, ningún par de nodos $\{s_1, s_2\}$ en S se encuentran conectados, y S efectivamente corresponde a un conjunto oscuro de G. Tenemos que en el mejor caso, ningún carácter de A es 1, por lo que se acepta inmediatamente, luego de dos **cambios** que toma en realizar esta verificación. En el peor caso, todos los caracteres a_i de A, tienen el valor 1. De esta manera, para cada carácter a_i , se reemplaza por un carácter auxiliar x para denotar que ya iniciamos la iteración, y se revisa el i-ésimo carácter de los substrings w_j . Para el carácter $a_1 = 1$, se revisa el primer carácter de w_1 , de w_2 , hasta w_n . Para el $a_2 = 1$, se revisa el segundo carácter de a_1 , a_2 , hasta a_2 , hasta a_3 , hasta el carácter a_3 , para el cual se revisa el a_3 -ésimo (último) carácter de a_3 , hasta a_4 , cada iteración toma dos **cambios** (ida + vuelta), más 1 **cambio**

para darse cuenta que no hay más 1s, por lo que en el peor caso, se producen un total de 2n + 1 cambios, lo cual corresponde a una cantidad lineal de **cambios** $\Theta(n)$.

Podemos comprobar que el lenguaje de M corresponde a aquel pedido en el enunciado. Si w no cumple el formato, M rechaza a w y $w \notin L(M)$. En caso contrario, se aplica el algoritmo descrito anteriormente. Si para algún par de nodos $\{s_i, s_j\} \subseteq S$, con $1 \le i \le n$ y $1 \le j \le n$ se cumple que existe una arista conectando s_i y s_j , entonces, el j-ésimo carácter de w_i y el i-ésimo carácter de w_j serán 1, lo cual será detectado por la última parte del programa y se rechazará el w, y $w \notin L(M)$. Si no se detecta ningún par de este tipo, M acepta a w y $w \in L(M)$. Por lo tanto, L(M) corresponde a las palabras que de la forma $a_1...a_n\#C(G)$, tal que el conjunto representado por los nodos donde $a_i = 1$ corresponde a un conjunto oscuro de G. Además, según lo descrito en los párrafos anteriores, M tiene una complejidad de **cambios** lineal acotada por $\Theta(n)$.

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA

Departamento de Ciencia de la Computación IIC2213 — Lógica para ciencias de la Computación 2021-1

Tarea 3 - Parte B

NOMBRE:

Matías Duhalde

Sea \hat{M} una Máquina de Turing no-determinista que resuelve el problema propuesto en el enunciado.

 \hat{M} recibe un string de la forma D#C(G), donde D representa el largo del conjunto oscuro que queremos encontrar en G, y es de la forma 1^k , con $0 \le k \le n$, y n la cantidad de nodos del grafo G. En primer lugar, \hat{M} comprueba que el string D tenga el formato correcto, lo cual se puede realizar comparándolo con el primer substring de C(G), que es de la forma 1^n y representa la cantidad de nodos del grafo. La comparación puede realizarse bit por bit, lo que tomaría en el peor caso (cuando k=n) una cantidad de cambios lineal en base a n, acotada por $\Theta(n)$. En caso de no cumplir con el formato, se rechaza w.

El segundo paso, es añadir un string A de la forma 0^n entre D y C(G), delimitado por #s, quedando la entrada w de la forma D#A#C(G). Para hacer esto, basta con extender el string D hacia la izquierda con ceros hasta llegar a un largo n (hacer padding), colocar un #, y posteriormente colocar 1s a la izquierda del # hasta generar un string de largo k, que correspondería al nuevo substring D. Finalmente, se deben sustituir todos los caracteres del string A a ceros, llegando hasta el carácter # a la derecha de A. Hacer el padding usaría una cantidad 2n de cambios, alternando bit a bit entre D y el primer substring de C(G). Luego, generar el string 1^k a la izquierda tomaría 2k cambios. En el peor caso, k=n, por lo que estaría acotado por 2n. Finalmente, reemplazar los 1s del string A por ceros tomaría un solo cambio. De esta manera, en este paso los cambios están acotados por $\Theta(n)$.

El tercer paso, consiste en configurar el string A para representar un posible conjunto oscuro. Sea q_A el estado actual de \hat{M} y δ su función de transición, entonces $\delta(q_A, 0) = \{(q_A, 0, \leftarrow), (q_A, 1, \leftarrow)\}$. Al llegar al carácter # a la izquierda de A, \hat{M} cambia de estado. Aquí comienza el no-determinismo de \hat{M} . Se generan todos los strings posibles A, que representan a todos los subconjuntos de V, que posteriormente serán evaluados para ver si corresponden a un conjunto oscuro. Un ejemplo de los conjuntos generados para n=3, y los pasos que se siguen para cada resultado, se puede ver en la figura 1. Este paso no requiere de ningún cambio $(\Theta(1))$.

Una vez generado el string A, se debe verificar que este cumpla la condición de que el tamaño del subconjunto que representa sea k, o en otras palabras, que A tenga una cantidad k de caracteres 1. Para

Figure 1: Ejemplo de strings A generados para n=3

esto, se compara D con A uno a uno, tal que haya misma cantidad de caracteres 1 en ambos substrings. Con $D = d_1 d_2 ... d_k = 1^k$ y $A = a_1 a_2 ... a_n$, se aplicaría la siguiente heurística. Se borra d_1 (se substituye por ϵ), y se busca el primer $a_i = 1$ en A, con $1 \le i \le n$. Si se encuentra, se reemplaza temporalmente por x, y se vuelve al comienzo de D (es decir d_2), y se repite el procedimiento. Si en algún momento no se encuentra ningún carácter en A tal que $a_i = 1$, significa que la cantidad de nodos en A es menor que k, por lo que termina la ejecución de esta rama. Si se eliminan todos los caracteres de D, se elimina el carácter #, y se revisa si queda algún a_i en A tal que $a_i = 1$. Si se encuentra este caso, también se termina la ejecución, ya que la cantidad de nodos en A es mayor a k. Si esto no ocurre, se vuelve al inicio de w, y en el camino se reemplazan los caracteres auxiliares x por 1. En el peor caso, el largo k de D es n, por lo que se deben realizar 2n cambios. Entonces, la cantidad de cambios en este paso está acotada por $\Theta(n)$.

Al llegar a este punto, sólo bastaría en realizar la comprobación si A representa a un conjunto oscuro de G. Para hacer esto, sólo basta verificar si el string w resultante pertenece al lenguaje de la Máquina de Turing M definida en el ítem anterior, por lo que podemos ocuparla como subrutina. Además, sabemos que la cantidad de cambios de esta máquina está acotada por $\Theta(n)$. Sumando lo descrito en los párrafos anteriores, podemos concluir que la cantidad de cambios de una ejecución de \hat{M} también está acotada por $\Theta(n)$.

El lenguaje de \hat{M} corresponde a aquel pedido en el enunciado. Si w no cumple el formato, se rechaza y $w \notin L(\hat{M})$. En caso contrario, de manera no-determinística se generan todos los subconjuntos posibles de V. \hat{M} se detiene para aquellas máquinas donde el largo del subconjunto es distinto a k. Para los casos donde el largo del subconjunto es k, se pasa w modificada a M. Si M acepta al input, entonces \hat{M} también acepta, y $w \in L(\hat{M})$. Si por otro lado en ninguna ejecución de \hat{M} , M acepta, entonces $w \notin L(\hat{M})$. Por lo tanto, el lenguaje $L(\hat{M})$ de \hat{M} corresponde a las palabras w de la forma $1^k \# C(G)$ tal que C(G) es una codificación de un grafo, y existe un conjunto oscuro de tamaño k en G.