FYS4480 ORAL EXAM, MIDTERM ONE AND TWO HELIUM AND BERYLLIUM USING CIS AND HARTREE-FOCK, PAIRING MODEL

Håkon Kvernmoen

University of Oslo

December 16, 2022

SETUP

Represent states using creation a_p^{\dagger} and annihilation a_q operators (occupation representation/second quantization), obeying

$$\{a_p^{\dagger}, a_q\} = \delta_{pq}, \qquad \{a_p^{\dagger}, a_q^{\dagger}\} = \{a_p, a_q\} = 0$$

p and q are sets of relevant quantum numbers. We need to pick a single particle (SP) computational basis, having n possible single particle states.

3D HO:
$$p = \{n_r, l, m_l, s, m_s\}, \quad a_p^{\dagger} |0\rangle = |p\rangle \longrightarrow \psi_p(\mathbf{x}) = \psi_{n_r l m}(r, \theta, \phi) = \dots$$

Need a Hamiltonian to solve $\hat{H} = \hat{H}_0 + \hat{V}$, with \hat{H}_0 representing single particle energy contributions, and \hat{V} interactions.

Often start with an N-particle ground state ansatz $|\Phi_0\rangle=a_1^\dagger,\dots a_N^\dagger\,|0\rangle$.

And consider excitations of this

1p1h
$$|\Phi_{i}^{a}\rangle = a_{a}^{\dagger}a_{i}|\Phi_{0}\rangle$$

2p2h $|\Phi_{ij}^{ab}\rangle = a_{a}^{\dagger}a_{b}^{\dagger}a_{j}a_{i}|\Phi_{0}\rangle$
NpNh $|\Phi_{ij...}^{ab...}\rangle = a_{a}^{\dagger}a_{b}^{\dagger}\dots a_{j}a_{i}|\Phi_{0}\rangle$

FULL CONFIGURATION INTERACTION (FCI)

Start with *N* particle ground state ansatz $|\Phi_0\rangle$.

Not an eigenstate of \hat{V} and therefor not the true ground state of the system.

By considering every possible N particle state in our system (using $\{a_1^{\dagger}, \dots, a_N^{\dagger}, \dots, a_n^{\dagger}\}$), we can construct our ground state $|\Psi_0\rangle$ as a linear combination of excited states.

$$|\Psi_0\rangle = C_0 |\Phi_0\rangle + \sum_{ai} C_i^a |\Phi_i^a\rangle + \sum_{ai} C_{ij}^{ab} |\Phi_{ij}^{ab}\rangle + \dots$$

Normally solved by considering the Hamiltonian in matrix representation, with elements $H_{XY} = \langle \Phi_X | \hat{H} | \Phi_Y \rangle$, with $X, Y \in \{0p0h, 1p1h \dots NpNh\}$, giving the eigenvalue problem

$$H\mathbf{c} = E\mathbf{c}$$

When solved, the smallest eigenvalue $E^{(0)}$ will yield the ground state energy, and $|\Psi_0\rangle$ can be found by considering the eigenvectors $\mathbf{c}^{(0)} = (C_0, C_i^a \dots C_{ij}^{ab} \dots C_{ij}^{ab} \dots C_{ij}^{ab} \dots$). Excited states can also be found by considering the other eigenvalues and vectors $E^{(i)}, \mathbf{c}^{(i)}$.

Example, pairing interaction: \hat{V} only works between spin-paired states at the same energy level. We let p=1,2,3,4 denote energy levels, with SP states also having a spin $\sigma=\pm$, a total of n=8 SP states.

$$\hat{H} = \hat{H}_0 + \hat{V}, \qquad \hat{H}_0 = \sum_{p\sigma} (p-1)a^{\dagger}_{p\sigma}a_{p\sigma}, \qquad \hat{V} = -\frac{1}{2}g\sum_{pq}a^{\dagger}_{p+}a^{\dagger}_{p-}a_{q-}a_{q+}$$

Diagonal SP Hamiltonian \hat{H}_0 and two body interaction \hat{V} . Consider N=4 particles with total spin S=0, writing $|PQ\rangle=|p+p-q+q-\rangle$ we have a total of six different many body states.

0p0h
$$|12\rangle$$

2p2h $|13\rangle, |14\rangle, |23\rangle, |24\rangle$
4p4h $|34\rangle$

By setting up the matrix $\langle KL | \hat{H} | RS \rangle$, we get a small eigenvalue problem of a 6 × 6 matrix.

For all but very simple problems, this approach is unfeasible. In general, we have to consider

$$\binom{n}{N} = \frac{n!}{N!(n-N)!}$$

many body states. Taking our pairing model example, lifting the S=0 restriction yields 70 different states. This is still possible, but increasing both n and N results in disaster

$N\downarrow/n \rightarrow$	8	32	64	128
4	70	10^{4}	10^{5}	10^{7}
8		10^{7}	10^{9}	10^{12}
16		10^{8}	10^{14}	10^{19}
32			10^{18}	10^{30}

Table. NB: Order of magnitude values

FCI

Pros:

- ▶ Provides exact solutions within a truncated basis set
- Understandable and relatively easy to set up
- ► Excited states thrown into the bargain

Cons:

- Computational complexity, bad scaling
- ▶ Only possible for tiny systems, with few states and particles.
- ► Practically only a benchmarking tool

CONFIGURATION INTERACTION (CI)

Follows the same methodology as FCI, but due to its large computational time, the many body states are also truncated.

Different truncation levels can be chosen, for instance only include (in addition to $|\Phi_0\rangle$) 1p1h excitations (CIS) or 2p2h excitations (CID).

Truncation relies on an a priori ranking of the importance of different excited states, which contributions to include might not be obvious.

Considering our paring model example, we can exclude the 4p4h ($|34\rangle$) contributions from $\langle KL | \hat{H} | RS \rangle$, giving only the ground state ansatz and 2p2h excitations.

This reduces the matrix $6 \times 6 \rightarrow 5 \times 5$, showing how truncation is beneficial from a computational point of view.

Pros:

- Understandable and relatively easy to set up
- Excited states thrown into the bargain
- ► Reduces the problem of FCI
- ▶ When adding contributions, we approach the exact energy (FCI).

Cons:

- ► Still quite computationally expensive
- ▶ Bad scaling for higher contributions
- ▶ What contributions to include might not be obvious

HARTREE-FOCK (HF)

Hartree-Fock methods approximate two body interactions as a mean field potential. $|\Phi_0\rangle = a_1^{\dagger}, \dots a_N^{\dagger}|0\rangle$.

$$E[\Phi^{\mathrm{HF}}] = \sum_{i}^{N} \langle i|h|i\rangle + \frac{1}{2} \sum_{ij}^{N} \langle ij|\hat{v}|ij\rangle_{\mathrm{AS}}$$
 $L[\Phi^{\mathrm{HF}}] = E[\Phi^{\mathrm{HF}}] - \sum_{pq}^{n} \epsilon_{pq} (\langle p|q\rangle - \delta_{pq})$

CUSTOM TITLE

CUSTOM SUBSECTION WITH FOOTNOTE

This frame has a custom title and a custom subtitle.¹

¹This is a footnote. See also Author (2022).

TYPOGRAPHICS

These examples follow the Metropolis Theme

- ► Regular
- ► Alert
- ► Italic
- ► Bold

LISTS

Items

- ► Cats
 - British Shorthair
- ► Dogs
- ► Birds

Enumerations

- 1. First
 - 1.1 First subpoint
- 2. Second
- 3. Last

Descriptions

Apples Yes Oranges No

Oranges INC

Grappes No

TABLE

Table. Largest cities in the world (source: Wikipedia)

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

FIGURES

BLOCKS

Default

Block content.

Alert

Block content.

Example

Block content.

MATHS

EQUATIONS

► A numbered equation:

$$y_t = \beta x_t + \varepsilon_t \tag{1}$$

► Another equation:

$$\mathbf{Y} = \boldsymbol{\beta}\mathbf{X} + \boldsymbol{\varepsilon}_t$$

THEOREM

▶ Theorems are numbered consecutively.

Theorem 1 (Example Theorem)

Given a discrete random variable X, which takes values in the alphabet \mathcal{X} and is distributed according to $p: \mathcal{X} \to [0,1]$:

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
 (2)

MATHS

DEFINITIONS

▶ Definition numbers are prefixed by the section number in the respective part.

Definition 1.1 (Example Definition)

Given a discrete random variable X, which takes values in the alphabet \mathcal{X} and is distributed according to $p: \mathcal{X} \to [0,1]$:

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
(3)

MATHS EXAMPLES

Examples are numbered as definitions.

Example 1.1 (Example Theorem)

Given a discrete random variable X, which takes values in the alphabet \mathcal{X} and is distributed according to $p: \mathcal{X} \to [0,1]$:

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
(4)

Part I

DEMO PRESENTATION PART 2

REFERENCES I

Author, Example (2022). "Reference Title". In: *Journal of Examples* 0.0, pp. 1–10.