2309 SE220 Course Outline

Subject Code : SE220

Subject Title : DESIGN AND ANALYSIS OF ALGORITHMS

Course Type : Compulsory

Level : 2 Credits : 3

Teaching Activity : Lecture 45 hours

Class Schedule :

 Class
 Week
 Time
 Classroom
 Date

 D1
 MON
 09:00 -11:50
 C309
 04/09/2023 ~ 17/12/2023

Instructor : Professor Hon-Cheng WONG

Contact Number : 88972052

E-mail Address : hcwong@must.edu.mo

Office : Room A316

Office Hour : Monday 12:00-14:00

Tuesday 09:30-11:30 Wednesday 14:30-17:30 Friday 09:30-12:30

COURSE DESCRIPTION

This course aims to provide an introduction to the analysis and design of algorithms for graduate students. The course will cover: elementary data structures, analyzing and designing algorithms, characterizing running times, divide-and-conquer, probabilistic analysis and randomized algorithms, heapsort, quicksort, medians and order statistics, sorting in linear time, hash tables, binary search trees, dynamic programming, greedy algorithms, elementary graph algorithms, and maximum flow.

TEXTBOOK AND REFERENCE BOOKS

Required Text Book:

1. Book title: *Introduction to Algorithms*

Author/Editor: T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein

Edition: 4

ISBN: 978-0-262-04630-5 Publisher: MIT Press

Date: 2022

Reference Books:

1. Book title: *Introduction to Computation and Programming Using Python*

Author/Editor: J. V. Guttag

Edition: 3

ISBN: 978-0262045780 Publisher: The MIT Press

Date: 2021

1. Book title: Introduction to the Design and Analysis of Algorithms

Author/Editor: A. Levitin

Edition: 3

ISBN: 978-7-302-31185-0

Publisher: Tsinghua University Press

Date: 2013

INTENDED LEARNING OUTCOMES

Upon successful completion of this subject, students will be able to:

- 1. Understand the basic concepts of algorithms
- 2. Compare various algorithms using asymptotic notations
- 3. Understand how to mathematically analyze algorithms
- 4. Understand the probabilistic analysis of algorithms
- 5. Understand various sorting algorithms
- 6. Understand hash tables
- 7. Solve problems using dynamic programming
- 8. Understand maximum flow

Weekly Schedule

Index	Торіс	Hours	Teaching
			Method
1	Introduction; Elementary data structures	3	Lecture
2	Analyzing and designing algorithms	3	Lecture
3	Characterizing running times	3	Lecture
4	Divide-and-Conquer	3	Lecture
5	Probabilistic analysis and randomized	3	Lecture
	algorithms		
6	Heapsort	3	Lecture
7	Quicksort	3	Lecture
8	Midterm	3	
9	Medians and order statistics	3	Lecture
10	Sorting in linear time; Hash tables	3	Lecture
11	Binary search trees	3	Lecture
12	Dynamic programming; Greedy algorithms	3	Lecture
13	Elementary graph algorithms	3	Lecture
14	Maximum flow	3	Lecture
15	Final Exam	3	

ASSESSMENT APPROACH

Assessment method	% weight
1. In-class exercises	10%
2. Midterm	30%
3. Final exam	60%
Total	100 %

Guideline for Letter Grade:

Marks	Grade
93-100	A+
88-92	A
83-87	A-
78-82	B+
72-77	В
68-71	B-
63-67	C+
58-62	C
53-57	C-
50-52	D
0-49	F

Notes:

Students will be assessed on several assessment items (i.e. in-class exercises, midterm, and final exam.).

Midterm and final exam are used to evaluate the student's understanding of the analysis of algorithms.