Fondements mathématiques pour la sécurité informatique Sujet de contrôle du cours de Jean-Luc Stehlé Juin 2012

QCM sans aucun document ni ordinateur. Les calculettes sont autorisées						
Total: 30 questions sur 5 pages Durée: 1h30						
Attenti inform	ion, les mauva atique, il vaut	ises réponses se mieux avouer s	eront pénalisée son ignorance	es. Dans la vie j que de raconto	professionnelle d'u er une bêtise.	n ingénieur en
Chiffre	ment par bloc	avec chaînage.				
Rappel	s de cours : On	rappelle les div	ers modes de c	haînage et/ou d	'utilisation des algo	rithmes par bloc
	CBC (Cipho CTS (Cipho CTR (Coun	ronic Code Booler Block Chaininger Text Stealing TeR = CompTe ut Feedback)	ng) = Vol de texte	chiffré)		
1. On veut chiffrer un message de 550 bits (sans compression) en utilisant DES en mode ECB. De combien de bits se composera le message chiffré ?						
combic	(A) 550	(B) 560	(C) 576	(D) 640	(E) autre valeur	
2. On	veut chiffrer u n de bits se cor	in message de : mposera le messa	550 bits (sans	compression)	en utilisant AES e	n mode ECB. De
	(A) 550	(B) 560	(C) 576	(D) 640	(E) autre valeur	
3. On combie	veut chiffrer u	ffrer un message de se composera le mess (B) 560	550 bits (sans sage chiffré? (C) 576	compression)	en utilisant DES e	n mode CTS. De
	(A) 550			(D) 640	(E) autre valeur	
4. On combies	veut chiffrer u n de bits se cor	in message de : nposera le messa	550 bits (sans	compression)	en utilisant AES e	n mode CTS. De
COMOL	(A) 550		(C) 576	(D) 640	(E) autre valeur	

EPITA_ING1_2014_S2_FMSI

Contrôle sur le cours de Jean-Luc Stehlé

Page 1/5

	-	` .	pression) en uti	isant DES en mode CTS. De	combien
de bits se composera (A) 90	(B) 92	(C) 96	(D) 128	(E) autre valeur	
6. On veut chiffrer unde bits se composera			pression) en uti	isant AES en mode CTS. De	combien
(A) 90	(B) 92	(C) 96	(D) 128	(E) autre valeur	
Rappels de cours sur la	e système de chif	frement AES			
	nte un élément	du corps quotie	nt de Z/2Z [X]	leux éléments Z/2Z, et on consia par l'idéal engendré par le M	
Un élément de K est rej	présenté par la vo	aleur hexadécima	le entre accolade:	de l'octet correspondant.	
Par exemple {72} (soit en	binaire 0111 0010)) représente le poly	$n\hat{o}me\ X^6+X^5+X^4+X$, modulo m[X] sur le corps Z/2Z	
Dans le corps K les ope Z/2Z [X], modulo le po		_		on et la multiplication des polyno otées ⊕et •.	ômes dans
En AES, un mot de 32 quotientée par l'idéal o ordre de degré décrois.	engendré par le j	représente un élé: volynôme X⁴+1 .	ment du quotient Un tel élément es	de l'algèbre K[X] des polynôn t représenté par la suite des 4 c	nes sur K, octets, par
Par exemple {18}{AC}{62	2}{2A}représente le	e polynôme {18}X³+	$-\{AC\}X^2+\{62\}X+\{22\}X$	A_f^3 , modulo X^4+1 sur le corps K	
7. L'addition dans K	est équivalente	à			
	on modulo 64 on modulo 256 ion OR bit à bit				
8. Combien vaut {23 (A) {00}			(D) {81}	(E) autre valeur	
, , ,	,,,,,	, , , ,	, , , ,	、 /	
9. Combien vaut {23 (A) {00}			(D) {81}	(E) autre valeur	
10. Combien vaut {2					
$(A) \{20\}$	(B) 3207	(C) (2B)	(D) {65}	(E) autre valeur	
11. Combien vaut {2 (A) {69}			(D) {81}	(E) autre valeur	
EPITA_ING1_2014	_S2_FMSI				

Contrôle sur le cours de Jean-Luc Stehlé Fondements mathématiques pour la sécurité informatique Juin 2012

12. Co	ombien vaut {40} (A) {C0}			(D) {70}	(E) autre valeur
13. Co	ombien vaut {40} (A) {C0}			(D) {1A}	(E) autre valeur
14. Co	ombien vaut {11} (A) {C0}			(D) {1A}	(E) autre valeur
15. La	n multiplication pa	ar {02} dans K	est équivalente	à	
	(B) Un décalag (C) Une permu	ge d'un bit dans la litation circulaire plication par 2 m			
	uatre question sui bre des polynôme P = {11}{01 Q = {11}{00	es sur K , module } { 00 } { 02 }			utilisée en AES, c'est-à-dire ments
16. Qı	uel est l'octet de _l (A) {00}				et Q (E) autre valeur
17. Qı	uel est l'octet de j (A) {00}	•			t Q (E) autre valeur
18. Q	uel est l'octet de j (A) {00}) (E) autre valeur
19. Qı	uel est le terme er (A) {E9}			(D) {01}	(E) autre valeur
20. Qı	uel est le terme er (A) {00}	X de ce produi (B) {4D}	t (C) {5E}	(D) {5F}	(E) autre valeur
21. Qı	uel est l'octet de j (A) {02}	poids faible de c (B) {EB}	•	(D) {5F}	(E) autre valeur

EPITA_ING1_2014_S2_FMSI Contrôle sur le cours de Jean-Luc Stehlé

Page 3/5

22. Étant donné un processeur cadencé à 8 GHz qui génère toutes les clés possibles, en supposant qu'il lui faille 12 tops d'horloge pour générer une clé, quel est l'ordre de grandeur du temps approximatif lui faudra-t-il pour générer toutes les clés possibles d'un système de chiffrement utilisant de l'AES à 128 bits. (A) 1 an (B) 1 million d'années (C) 1 milliard d'années (D) 940 000 milliards d'années (E) Beaucoup plus
Dans la suite de ce QCM, on suppose qu'on travaille avec un processeur 16 bits, cadencé à 4 GHz. On appellera multiplication élémentaire l'opération consistant à multiplier deux entiers non signés à 16 bits pour fournir un résultat stocké sur deux registres de 16 bits. Dans tous les calculs d'ordre de grandeur

Dans la suite de ce QCM, on suppose qu'on travaille avec un processeur 16 bits, cadencé à 4 GHz. On appellera multiplication élémentaire l'opération consistant à multiplier deux entiers non signés à 16 bits pour fournir un résultat stocké sur deux registres de 16 bits. Dans tous les calculs d'ordre de grandeur des temps de calcul, on ne tiendra compte que du nombre de multiplications élémentaires. On négligera donc les additions (qui en général seront simultanées aux multiplications, car les registres résultats fonctionneront comme des accumulateurs) ainsi que les calculs d'indice, les transferts registre mémoire etc. On admettra qu'une multiplication élémentaire se fait en moyenne en 9 tops d'horloge (y compris les additions dans les registres résultats, calculs d'indices, ...)

Dans toute la suite on considère qu'on travaille en arithmétique modulo N, où N est un entier à n bits.

Pour trois entiers u, v, z, on notera $u \equiv v \pmod{z}$ pour dire que la différence (u-v) est un multiple entier de z, donc $u-v=\lambda z$ avec $\lambda \in \mathbb{Z}$.

On travaillera toujours en représentation de Montgomery (un entier modulo N est codé en machine par sa représentation de Montgomery, mais les exposants restent stockés en binaire). On estimera que le temps de calcul de la fonction de Montgomery est équivalent à celui d'une multiplication de deux grands nombres (à n bits). En conséquence, on estimera qu'une multiplication modulo N a un temps de calcul équivalent approximativement au double de celui d'une multiplication de deux grands nombres (à n bits).

 $\Phi(N)$ représente l'indicateur d'Euler de N.

 $\Phi(N)$ est égal au nombre de d'entiers positifs inférieurs à N et premiers à N.

23. Le temps de calcul de l'algorithme de calcul d'une addition modulo N, est, par rapport au nombre de bits de N est

(A) linéaire (B) quadratique (C) subexponentiel (D

(D) exponentiel

(E) Autre réponse

24. Le temps de calcul de l'algorithme de calcul d'une multiplication modulo N, est, par rapport au nombre de bits de N est

(A) linéaire

(B) quadratique

(C) subexponentiel

(D) exponentiel

(E) Autre réponse

25. Le temps de calcul de l'algorithme de calcul d'une division modulo N, est, par rapport au nombre de bits de N est

(A) linéaire

(B) quadratique

(C) subexponentiel

(D) exponentiel

(E) Autre réponse

On utilisera en RSA un exposant public égal à $d=2^{16}+1$ et un exposant privé c de l'ordre de grandeur de N, avant approximativement autant de bits à 1 que de bits à 0.

Dans la suite, on supposera toujours que le nombre n de bits de N est égal à 1024.

Pour les signatures électroniques, on dispose d'un algorithme de hachage calculant des empreintes à 128 bits. On ne tiendra pas compte des temps de calculs de cet algorithme de hachage.

EPITA_ING1_2014 S2 FMSI

Contrôle sur le cours de Jean-Luc Stehlé Fondements mathématiques pour la sécurité informatique Juin 2012

Page 4/5

- 26. On veut mettre en œuvre RSA, en travaillant à 1024 bits. (On travaille modulo N où N est un nombre à n=1024 bits). Quel est approximativement le temps de calcul pour le chiffrement d'un message de 1 Mo (Megaoctet) utilisant la clé publique du destinataire? (On `ne demande pas un résultat précis, mais simplement un ordre de grandeur, à 50% près)
 - (A) Moins d'une seconde
 - (B) 2 secondes
 - (C) 1 minute
 - (D) 2 minutes
 - (E) Autre réponse
- 27. On veut mettre en œuvre RSA, en travaillant à 1024 bits. (On travaille modulo N où N est un nombre à n=1024 bits). Quel est approximativement le temps de calcul pour le déchiffrement d'un message de 1 Mo utilisant la clé privée ? (On ne demande pas un résultat précis, mais simplement un ordre de grandeur, à 50% près)
 - (A) Moins d'une seconde
 - (B) 1.2 secondes
 - (C) 2 minutes
 - (D) 4 minutes
 - (E) Autre réponse
- 28. On veut chiffrer un flux de données par RSA en utilisant la clé publique du destinataire. Quel débit maximal, en Megabits par seconde, peut-on atteindre en supposant que toute la puissance du processeur est dédiée au chiffrement ? (On ne demande pas un résultat précis, mais simplement un ordre de grandeur, à 50% près)
 - (A) 1 Mbps
- (B) 2 Mbps
- (C) 4 Mbps
- (D) 8 Mbps
- (E) Plus de 50 Mbps
- 29. Quel est le temps de calcul d'une signature électronique d'un message de 256 Mo par son expéditeur (utilisant sa clé privée en RSA) ? (On ne demande pas un résultat précis, mais simplement un ordre de grandeur, à 50% près)
 - (A) moins de 5 millisecondes
 - (B) 10 millisecondes
 - (C) 30 milliseconde
 - (D) 60 millisecondes
 - (E) Plus d'un dixième de seconde
- 30. Quel est le temps de vérification par le destinataire de la signature électronique de la question précédente ? (On ne demande pas un résultat précis, mais simplement un ordre de grandeur, à 50% près)
 - (A) moins de 1 milliseconde
 - (B) 1.7 millisecondes
 - (C) 3.2 millisecondes
 - (D) 6.6 millisecondes
 - (E) Plus d'un centième de seconde