

# Laboratório – Usando Wireshark para Examinar Quadros Ethernet

# **Topologia**



### **Objetivos**

Parte 1: Examinar os campos do cabeçalho de um quadro Ethernet II

Parte 2: Usar o Wireshark para capturar e analisar quadros Ethernet

### Histórico/Cenário

Quando os protocolos da camada superior se comunicam uns com os outros, os dados fluem para baixo pelas camadas OSI (Open Systems Interconnection) e são encapsulados dentro de um quadro da Camada 2. A composição do quadro depende do tipo de acesso ao meio. Por exemplo, se os protocolos de camada superior forem TCP/IP e o acesso ao meio for Ethernet, o encapsulamento do quadro da Camada 2 será Ethernet II. Isso é comum em um ambiente de LAN.

Ao estudar os conceitos da Camada 2, vale a pena analisar as informações do cabeçalho do quadro. Na primeira parte deste laboratório, você examinará os campos contidos em um quadro Ethernet II. Na Parte 2, você usará o Wireshark para capturar e analisar os campos do cabeçalho de quadros Ethernet II para tráfego local e remoto.

#### Recursos necessários

1 PC (Windows 7, 8 ou 10 com acesso à Internet e Wireshark instalado)

# Parte 1: Examinar os Campos do Cabeçalho de um Quadro Ethernet II

Na Parte 1, você examinará o conteúdo e os campos do cabeçalho de um quadro Ethernet II. Será usada uma captura do Wireshark para examinar o conteúdo nesses campos.

Etapa 1: Analise os tamanhos e as descrições dos campos do cabeçalho Ethernet II.

| Preâmbulo | Endereço<br>Destino | Endereço<br>Origem | Tipo de<br>quadro | Dados            | FCS     |  |
|-----------|---------------------|--------------------|-------------------|------------------|---------|--|
| 8 bytes   | 6 bytes             | 6 bytes            | 2 bytes           | 46 a 1.500 bytes | 4 bytes |  |

#### Etapa 2: Examinar a configuração de rede do PC.

O endereço IP deste host PC é 192.168.1.147, e o gateway padrão tem o endereço IP 192.168.1.1.

```
Microsoft Windows [Version 10.0.16299.64]
(c) 2017 Microsoft Corporation. All rights reserved.
C:\> ipconfig /all
Windows IP Configuration
  Host Name . . . . . . . . . : DESKTOP-C73CBOM
  Primary Dns Suffix . . . . . :
  Node Type . . . . . . . . . : Hybrid
  IP Routing Enabled. . . . . . : No
  WINS Proxy Enabled. . . . . . : No
Ethernet adapter Ethernet:
  Connection-specific DNS Suffix .:
  DHCP Enabled. . . . . . . . . . Yes
  Autoconfiguration Enabled . . . . : Yes
  Link-local IPv6 Address . . . . : fe80::d809:d939:110f+1b7f%20(Preferred)
  Default Gateway . . . . . . . : 192.168.1.1
  DHCP Server . . . . . . . . . : 192.168.1.1
```

#### Etapa 3: Examine os quadros Ethernet em uma captura do Wireshark.

A captura do Wireshark a seguir mostra os pacotes gerados por um ping sendo enviados de um host PC para o gateway padrão. Um filtro foi aplicado ao Wireshark para visualizar somente os protocolos ARP e ICMP. A sessão começa com uma consulta ARP para o endereço MAC do roteador gateway, seguida de quatro requisições e respostas de ping.



# Etapa 4: Examine o conteúdo do cabeçalho Ethernet II de uma requisição ARP.

A tabela a seguir usa o primeiro quadro na captura do Wireshark e exibe os dados nos campos do cabeçalho Ethernet II.

| Campo            | Valor                                    | Descrição                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Preâmbulo        | Não mostrado na captura                  | Este campo contém bits de sincronização, processados pelo hardware da NIC.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Endereço Destino | Broadcast<br>(ff:ff:ff:ff:ff)            | Endereços de Camada 2 para o quadro. Cada endereço tem 48 bits (ou 6 octetos), expressos como 12 dígitos hexadecimais, 0-9, A-F.  Um formato comum é 12:34:56:78:9A:BC.  Os primeiros seis números hexadecimais indicam o fabricante da placa de interface de rede (NIC) e os últimos seis números hexadecimais são o número de série dela.  O endereço destino pode ser broadcast, que contém todos os valores em 1, ou unicast. O endereço origem é sempre unicast. |  |  |  |  |  |  |
| Endereço Origem  | BelkinIn_9f:6b:8c<br>(14:91:82:9f:6b:8c) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Tipo de quadro   | 0x0806                                   | Nos quadros Ethernet II, este campo contém um valor hexadecimal que é usado para indicar o tipo de protocolo de camada superior no campo de dados. Há muitos protocolos de camadas superiores compatíveis com Ethernet II. Dois tipos de quadros comuns são:  Valor Descrição  0x0800 Protocolo IPv4  0x0806 Protocolo de resolução de endereços (ARP)                                                                                                                |  |  |  |  |  |  |
| Dados            | ARP                                      | Contém o protocolo de nível superior encapsulado. O campo de dados varia de 46 a 1.500 bytes.                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| FCS              | Não mostrado na captura                  | Sequência de Verificação de Quadro (FCS), usado pela NIC para identificar erros durante a transmissão. O valor é computado pela máquina emissora, incluindo o endereçamento, o tipo e o campo de dados do quadro. Isso é verificado pelo receptor.                                                                                                                                                                                                                    |  |  |  |  |  |  |

|                                                             | Saptara              | computado pela máquina emissora, incluindo o endereçamento, o tipo e o campo de dados do quadro. Isso é verificado pelo receptor. |  |  |  |  |  |  |
|-------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Qual é a importância do conteúdo do campo Endereço Destino? |                      |                                                                                                                                   |  |  |  |  |  |  |
|                                                             |                      |                                                                                                                                   |  |  |  |  |  |  |
| Por que o PC envia                                          | um broadcast ARP     | antes da primeira requisição ping?                                                                                                |  |  |  |  |  |  |
|                                                             |                      |                                                                                                                                   |  |  |  |  |  |  |
| Qual é o endereco N                                         | MAC origem no prim   | neiro quadro?                                                                                                                     |  |  |  |  |  |  |
| Qual é a ID do forne                                        |                      |                                                                                                                                   |  |  |  |  |  |  |
| Que parte do endere                                         | ` ,                  | , ongom:                                                                                                                          |  |  |  |  |  |  |
| Qual é o número se                                          | rial da NIC de orige | m?                                                                                                                                |  |  |  |  |  |  |

# Parte 2: Usar o Wireshark para capturar e analisar quadros Ethernet II

Na Parte 2, você usará o Wireshark para capturar quadros Ethernet locais e remotos. Em seguida, examinará as informações contidas nos campos do cabeçalho do quadro.

## Etapa 1: Determinar o endereço IP do gateway padrão em seu PC.

Abra uma janela do prompt de comando e digite o comando ipconfig.

Qual é o endereço IP do gateway padrão do PC?

### Etapa 2: Iniciar a captura do tráfego na NIC do seu PC.

a. Feche o Wireshark. Não é necessário salvar os dados capturados.



b. Abra o Wireshark, inicie a captura de dados.



Observe o tráfego que aparece na janela Packet List (Lista de pacotes).



Etapa 3: Filtrar o Wireshark para exibir apenas o tráfego ICMP.

Você pode usar o filtro do Wireshark para bloquear a visibilidade de tráfego indesejado. O filtro não bloqueia a captura de dados indesejados; apenas filtra o que é exibido na tela. Por enquanto, deve ser exibido somente tráfego ICMP.

Na caixa Filter (Filtro) do Wireshark, digite icmp. A caixa deve ficar verde se você digitou corretamente o filtro. Se a caixa estiver verde, clique em **Apply** (Aplicar) (a seta à direita) para aplicar o filtro.



# Etapa 4: Na janela do prompt de comando, fazer ping no gateway padrão do seu PC.

Na janela de comando, faça ping no gateway padrão usando o endereço IP registrado na Etapa 1.

## Etapa 5: Interromper a captura de tráfego na NIC.

Clique no ícone Stop Capture (Parar captura) para interromper a captura de tráfego.



#### Etapa 6: Examine a primeira requisição (ping) de eco no Wireshark.

A janela principal do Wireshark é dividida em três seções: o painel Packet List (Lista de pacotes) (superior), o painel **Packet Details** (Detalhes do pacote) (intermediária) e o painel **Packet Bytes** (Bytes do pacote) (inferior). Se você tiver selecionado a interface correta para captura de pacotes na Etapa 3, o Wireshark deverá exibir as informações ICMP no painel Packet List (Lista de pacotes), como mostrado no exemplo a seguir.



- a. No painel Packet List (Lista de pacotes) [seção superior], clique no primeiro quadro listado. Você deverá ver Echo (ping) request (Requisição [ping] de eco) no cabeçalho Info (Informações). A linha será destacada em azul.
- b. Examine a primeira linha no painel Packet Details (Detalhes do pacote) [seção intermediária]. Essa linha apresenta o tamanho do quadro; 74 bytes neste exemplo.
- c. A segunda linha no painel Packet Details (Detalhes do pacote) mostra que se trata de um quadro Ethernet II. Os endereços MAC de origem e de destino também são exibidos.
   Qual é o endereço MAC da NIC do PC?

Qual é o endereço MAC do gateway padrão? \_\_\_\_\_

 d. Clique no sinal de mais (+) no início da segunda linha para obter informações adicionais sobre o quadro Ethernet II. Observe que o sinal de mais (+) muda para o sinal de menos (-).

Que tipo de quadro é exibido?

| e. | As duas últimas linhas exibidas na parte intermediária fornecem informações sobre o campo de dados do |
|----|-------------------------------------------------------------------------------------------------------|
|    | quadro. Observe que os dados contêm informações do endereço IPv4 origem e destino.                    |

Qual é o endereço IP origem? \_\_\_\_\_\_Qual é o endereço IP destino?

f. Clique em qualquer linha na seção intermediária para destacar a parte do quadro (hexadecimal e ASCII) no painel Packet Bytes (Bytes do pacote) [seção inferior]. Clique na linha Internet Control Message Protocol (Protocolo ICMP) na seção intermediária e examine o que está destacado no painel Packet Bytes (Bytes do pacote).

| _  |                                                                                                          |      |      |      |     |      |      |      |      |      |      |      |      |      |      |     |     |         |       |            |                 |         | _ |
|----|----------------------------------------------------------------------------------------------------------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|-----|-----|---------|-------|------------|-----------------|---------|---|
| >  | Fran                                                                                                     | ne : | 118  | : 7  | 4 b | yte: | 5 0  | n w  | ire  | (592 | 2 b: | its) | ), 7 | 74 ł | oyte | es  | cap | tured ( | (592  | bits) on i | nterface 0      |         | ۸ |
| >  | Ethe                                                                                                     | erne | et : | II,  | Sr  | c: [ | Del: | 1_d  | d:00 | :91  | (00  | 0:26 | 5:b9 | e:do | 1:00 | 0:9 | 1), | Dst: E  | Belki | nIn_9f:6b: | 8c (14:91:82:9f | :6b:8c) |   |
| >  | > Internet Protocol Version 4, Src: 192.168.1.147, Dst: 192.168.1.1                                      |      |      |      |     |      |      |      |      |      |      |      |      |      |      |     |     |         |       |            |                 |         |   |
| ~  | ✓ Internet Control Message Protocol                                                                      |      |      |      |     |      |      |      |      |      |      |      |      |      |      |     |     |         |       |            |                 |         |   |
|    | 1                                                                                                        | уре  | :: 8 | 3 (1 | Ech | ) (p | oing | 3) 1 | requ | est) | )    |      |      |      |      |     |     |         |       |            |                 |         |   |
|    | 0                                                                                                        | ode  | e: 6 | 9    |     |      |      |      |      |      |      |      |      |      |      |     |     |         |       |            |                 |         |   |
|    | 0                                                                                                        | hed  | ksı  | um:  | 0x4 | 1d26 | 5 [  | cor  | rect | ]    |      |      |      |      |      |     |     |         |       |            |                 |         | V |
| _  |                                                                                                          |      |      |      |     |      | _    |      |      |      |      |      |      |      |      |     |     |         |       |            |                 |         | _ |
| 00 | 900                                                                                                      | 14   | 91   | 82   | 9f  | 6b   | 8c   | 00   | 26   | b9   | dd   | 00   | 91   | 08   | 00   | 45  | 00  |         | k&    | E.         |                 |         |   |
| 00 | 10                                                                                                       | 00   | 3с   | 19   | с3  | 00   | 00   | 80   | 01   | 00   | 00   | с0   | a8   | 01   | 93   | с0  | a8  | .<      |       |            |                 |         |   |
| 00 | 920                                                                                                      | 01   | 01   | 98   | 00  | 4d   | 26   | 00   | 01   | 00   | 35   | 61   | 62   | 63   | 64   | 65  | 66  |         | м&    | .5abcdef   |                 |         |   |
| 00 | 930                                                                                                      | 67   | 68   | 69   | 6a  | 6b   | 6c   | 6d   | 6e   | 6f   | 70   | 71   | 72   | 73   | 74   | 75  | 76  | ghi     | jklmn | opgrstuv   |                 |         |   |
| 00 | 940                                                                                                      | 77   | 61   | 62   | 63  | 64   | 65   | 66   | 67   | 68   | 69   |      |      |      |      |     |     | wabo    | defg  | hi         |                 |         |   |
|    | O Internet Control Message Protocol (icmp), 40 bytes Packets: 179 · Displayed: 8 (4.5%) Profile: Default |      |      |      |     |      |      |      |      |      |      |      |      |      |      |     |     |         |       |            |                 |         |   |

O que dizem os dois últimos octetos destacados? \_\_\_\_\_

g. Clique no próximo quadro na seção superior e examine um quadro de resposta de eco. Observe que os endereços MAC de origem e de destino foram invertidos porque esse quadro foi enviado do roteador gateway padrão como uma resposta ao primeiro ping.

Que dispositivo e endereço MAC são exibidos como endereço destino?

### Etapa 7: Reiniciar a captura de pacotes no Wireshark.

Clique no ícone Start Capture (Iniciar captura) para iniciar uma nova captura do Wireshark. Você receberá uma janela pop-up perguntando se deseja salvar os pacotes capturados em um arquivo antes de iniciar uma nova captura. Clique em **Continue without Saving** (Continuar sem salvar).



- Etapa 8: Na janela do prompt de comando, fazer ping em <u>www.cisco.com</u>.
- Etapa 9: Parar a captura de pacotes.

### Etapa 10: Examinar os novos dados no painel packet list (lista de pacotes) do Wireshark.

No primeiro quadro de requisição (ping) de eco, quais são os endereços MAC de origem e de destino? Origem: \_\_\_\_\_

Destino:

Quais são os endereços IP origem e destino contidos no campo de dados do quadro?

Origem:

# Laboratório – Usando Wireshark para Examinar Quadros Ethernet

| Destino:                              |                                                                                                                           |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                       | eços que você recebeu na Etapa 6. O único endereço que mudou reço IP destino mudou e o endereço MAC de destino permaneceu |
|                                       |                                                                                                                           |
| Reflexão                              |                                                                                                                           |
| O Wireshark não exibe o campo Preâmbu | lo de um cabeçalho do quadro. O que o preâmbulo contém?                                                                   |
|                                       |                                                                                                                           |