MAST30001 Stochastic Modelling

Tutorial Sheet 6

You've probably already seen/done some of these before, but it's useful to do them yourselves/see them again!

1. Let $X \sim \text{Exponential}(\lambda)$, with $\lambda > 0$. Prove that $\mathbb{P}(X > s + t | X > t) = \mathbb{P}(X > s)$ for every s, t > 0.

$$\mathbb{P}(X>s+t|X>t) = \frac{\mathbb{P}(X>s+t,X>t)}{\mathbb{P}(X>t)} = \frac{\mathbb{P}(X>s+t)}{\mathbb{P}(X>t)} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} = e^{-\lambda s} = \mathbb{P}(X>s).$$

2. Let $(X_i)_{i\in\mathbb{N}}$ be independent random variables with $X_i \sim \text{Exponential}(\lambda_i)$. Find the distribution of $Y_n = \min_{i \le n} X_i$.

$$\mathbb{P}(Y_n > y) = \mathbb{P}(\cap_{i=1}^n \{X_i > y\}) = \prod_{i=1}^n \mathbb{P}(X_i > y) = \prod_{i=1}^n e^{-\lambda_i y} = e^{-(\sum_{i=1}^n \lambda_i)y},$$

so $Y_n \sim Exponential(\sum_{i=1}^n \lambda_i)$.

- 3. Let (V_i) the jid Exponentia D) random variables, and let Whe a Geometric (p) random variable that is independent of the other variables.
 - (a) Find the moment generating function $\mathbb{E}[e^{tT_1}]$ of T_1 .

(b) Let $Y = \sum_{i=1}^{n} T_i$. Find the distribution of Y.

We'll find the MGF of Y (which characterizes its distribution).

$$\mathbb{E}[e^{tY}] = \mathbb{E}[e^{t\sum_{i=1}^{N} T_i}] = \sum_{n=1}^{\infty} \mathbb{E}[e^{t\sum_{i=1}^{N} T_i} | N = n] \mathbb{P}(N = n)$$

$$= \sum_{n=1}^{\infty} \mathbb{E}[e^{t\sum_{i=1}^{n} T_i} | N = n] \mathbb{P}(N = n) = \sum_{n=1}^{\infty} \mathbb{E}[e^{t\sum_{i=1}^{n} T_i}] \mathbb{P}(N = n),$$

where we have used independence of N from the T_i variables in the last line. Now use the fact that the T_i are i.i.d. as usual to see that for $t < \lambda$ the above is equal to

$$\sum_{n=1}^{\infty} \left(\mathbb{E}[e^{tT_1}] \right)^n \mathbb{P}(N=n) = \sum_{n=1}^{\infty} \left(\frac{\lambda}{\lambda-t} \right)^n \mathbb{P}(N=n) = \frac{p}{1-p} \sum_{n=1}^{\infty} \left(\frac{\lambda(1-p)}{\lambda-t} \right)^n.$$

For $t < \lambda p$ this is equal to

$$\frac{\lambda p}{\lambda p - t}.$$

This is the MGF of an Exponential(λp) distribution, hence $Y \sim Exponential(\lambda p)$.

4. Let $X \ge 0$ be a random variable satisfying

(*)
$$\mathbb{P}(X > s + t | X > t) = \mathbb{P}(X > s)$$
, for all $s, t \ge 0$.

Show that $X \sim \text{Exponential}(\lambda)$, for some $\lambda \geq 0$.

Let $G(s) = \mathbb{P}(X > s)$. [Note that G(s) > 0 for every s otherwise the conditioning in (*) above is not well defined.] The property (*) can be rewritten as G(t + s) = G(t)G(s) for every $t, s \ge 0$. By induction $G(nt) = G(t)^n$ for each n and each $t \ge 0$. This shows that $G(n) = G(1)^n$ and $G(1/n) = G(1)^{1/n}$ for every $n \in \mathbb{N}$. It follows that for any non-negative rational number r = m/n,

$$G(r) = G(m/n) = G(1/n)^m = (G(1)^{1/n})^m = G(1)^r.$$

Now note that G is right continuous since 1-G is (1-G) is a cdf), so for any $t \ge 0$ and rationals $t_n \downarrow t$ we have

$$G(t) = \lim_{n \to \infty} G(t_n) = \lim_{n \to \infty} G(1)^{t_n} = G(1)^t.$$

If G(1) = 1 then $\mathbb{P}(X > n) = 1$ for all n so $\mathbb{P}(X = \infty) = 1$. This corresponds to the case of $\lambda = 0$. Otherwise 0 < G(1) < 1 and we can write $G(1) = e^{-\lambda}$ for some $\lambda > A$ and $G(t) = G(1)^t$ says that $\mathbb{P}(X) \geq t$ is each t herefore t.

https://powcoder.com

Add WeChat powcoder