Notation					
	$\mathbf{z} = (\mathbf{x}, y)$	$\mathbf{x} \in \mathcal{X}$	instance/features (e.g., "picture" or actua	l pixel values)	
given to us	$\mathcal{Z} = \mathcal{X} imes \mathcal{Y}$	$y \in \mathcal{Y}$	labels, e.g., binary classification uses $\mathcal{Y} = \{0,1\}$ or $\{-1,1\}$		
	$\mathbf{z}_i \sim \mathcal{D}$		observed realizations		
	$S = (\mathbf{z}_1, \dots, \mathbf{z}_m)$		data set, $m=\#$ observations		
we choose	$h:\mathcal{X} o\mathcal{Y}$		classifier, often parameterized by $\mathbf{w} \in \mathbb{R}^d$		
		${\cal H}$	set of classifiers, $h \in \mathcal{H}$		
	$\ell:\mathcal{H} imes\mathcal{Z} o\mathbb{R}^+$		loss function, usually non-negative, often bounded or Lipschitz		
metrics	$L_{\mathcal{D}}(h) \stackrel{ ext{def}}{=} \mathbb{E}_{\mathbf{z}}$	$_{\mathbf{z}\sim\mathcal{D}}$ $\ell(h,\mathbf{z})$	true risk (this is what we care about)	same as "testing" erro	r [theoretical]
	$\widehat{L}_S(h) \stackrel{\text{def}}{=} \frac{1}{m}$	$\sum_{i=1}^m \ell(h, \mathbf{z}_i)$	empirical risk	same as "training" erro	or [observable]

There are many other interesting setups, such as unsupervised, active, adversarial, online learning, but our setup is sufficient to convey the main issues

^{*} This is the standard setup for **supervised**, **passive**, **statistical**, **batch** learning.