Exercise 1. Let $p(x) \subseteq L(A)$ and let $\varphi(x; y) \in L(A)$ be a formula that defines, when restricted to $p(\mathcal{U})$, an equivalence relation with finitely many classes (a *finite equivalence relation*). Prove that there is a finite equivalence relation definable over A that coincides with $\varphi(x; y)$ on $p(\mathcal{U})$.

Exercise 2. Let T be a consistent theory. Suppose that all completions of T are of the form $T \cup S$ for some set S of quantifier-free sentences (for example, $T = T_{acf}$). Prove that, if all completion of T have elimination of quantifiers, so does T.

Hint: prove that for every formula $\varphi(x)$ there are some quantifier-free sentences σ_i and quantifier-free formulas $\psi_i(x)$ such that

$$\sigma_i \vdash \varphi(x) \leftrightarrow \psi_i(x), \qquad T \vdash \bigvee_{i=1}^n \sigma_i, \quad \text{and} \quad \sigma_i \vdash \neg \sigma_j \text{ for } i \neq j.$$

For a counter example consider the empty theory in the language with a single unary predicate.

Exercise 3. Show that the claim in the exercise above fails when the theories *S* have arbitrary complexity.

Hint: let *T* be the empty theory in the language with a single unary predicate.

Exercise 4. Let $\varphi(z) \in L(A)$ be a consistent formula. Prove that, if $a \in \operatorname{acl}(A, b)$ for every $b \models \varphi(z)$, then $a \in \operatorname{acl}(A)$. Prove the same claim with a type $p(z) \subseteq L(A)$ for $\varphi(z)$.

Exercise 5. Let $a \in \mathcal{U} \setminus \text{acl} A$. Prove that \mathcal{U} is A-isomorphic to some $\mathcal{V} \leq \mathcal{U}$ such that $a \notin \mathcal{V}$.

Exercise 6. Let *C* be a finite set. Prove that if $C \cap M \neq \emptyset$ for every model *M* containing *A*, then $C \cap \operatorname{acl}(A) \neq \emptyset$.

Hint: by induction on the cardinality of C. Suppose there is a $c \in C \setminus \operatorname{acl}(A)$, then there is $\mathcal{V} \simeq \mathcal{U}$ such that $A \subseteq \mathcal{V} \preceq \mathcal{U}$ and $c \notin \mathcal{V}$. Apply the induction hypothesis to $C' = C \cap \mathcal{V}$ with \mathcal{V} for \mathcal{U} .

Exercise 7. Prove that for every $A \subseteq N$ there is an M such that $acl A = M \cap N$.

Hint: let \bar{c} be an enumeration of N. Let $p(\bar{x}) = \operatorname{tp}(\bar{c}/A)$. Consider the type

$$p(x) \ \cup \ \left\{ \neg \left[\psi(b,\bar{x}) \land \exists^{\leq n} y \psi(y,\bar{x}) \right] \ : \ b \in N \, \smallfrown \, \operatorname{acl}(A), \ \psi(y,x) \in L(A), \ n < \omega \right\}$$

Exercise 8. Let $\varphi(x) \in L(\mathcal{U})$ and fix an arbitrary set A. Prove that the following are equivalent

- 1. there is some model M containing A and such that $M \cap \varphi(\mathcal{U}) = \emptyset$;
- 2. there is no consistent formula $\psi(z_1,...,z_n) \in L(A)$ such that

$$\psi(z_1,\ldots,z_n) \to \bigvee_{i=1}^n \varphi(z_i).$$

Exercise 9. Prove that a in strongly minima theory every infinite algebraically closed set is a model.

Exercise 10. Prove that a countable strongly minima theory is either ω -categorical or has infinitely many countable models.