Search Insert Position

Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

	nts

 $1 \le \text{nums.length} \le 10^4$.

 $-10^4 \le \text{nums[i]} \le 10^4$.

nums contains distinct values sorted in ascending order.

 $-10^4 \le \text{target} \le 10^4$.

You must write an algorithm with O(log n) runtime complexity.

The first row is nums.length

Second row is nums list

The last row is target

Example:

Input:	nums = [1,3,5,6], target = 5
4	
1356	
5	
Output:	2
2	

Input:	nums = [1,3,5,6], target = 2
4	
1356	
2	
Output:	1
1	

Input:	nums = [1,3,5,6], target = 7
4	
1356	
7	
Output:	4
4	