FMI, Info, Anul I Logică matematică și computațională

Seminar 13

- (S13.1) Să se axiomatizeze următoarele clase de mulțimi:
 - (i) mulțimile care au între 3 și 5 elemente;
 - (ii) multimile nevide care au mai puțin de 7 elemente;
- (iii) multimile care au între 20 și 300 elemente;
- (iv) multimile care au cel putin 10 elemente.
- (S13.2) Să se axiomatizeze următoarele clase de grafuri:
 - (i) grafurile complete;
 - (ii) grafurile cu proprietatea că orice vârf are exact o muchie incidentă;
- (iii) grafurile infinite;
- (iv) grafurile care au cel puţin un ciclu de lungime 3.

(S13.3) Să se axiomatizeze:

- (i) clasa multimilor strict ordonate care au un element minimal;
- (ii) clasa multimilor strict ordonate care au un element maximal;
- (iii) clasa mulțimilor strict ordonate cu proprietatea că orice element are un unic succesor.

Definiția 1. O \mathcal{L} -teorie T se numește completă dacă pentru orice enunț φ , avem că $\varphi \in T$ sau $\neg \varphi \in T$.

(S13.4) Pentru orice \mathcal{L} -structură \mathcal{A} , definim

$$Th(\mathcal{A}) := \{ \varphi \mid \varphi \text{ este enunţ şi } \mathcal{A} \vDash \varphi \}.$$

Demonstrați că Th(A) este o teorie completă.

(S13.5) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de relație de aritate 2, notat cu $\dot{<}$. Fie Γ o mulțime de enunțuri ce conține axiomele de ordine strictă, totală și ce admite măcar un model infinit. Să se arate că există un model \mathcal{A} pentru Γ în care, mai mult, $(\mathbb{Q}, <)$ se scufundă, i.e. există $f: \mathbb{Q} \to A$ (necesar injectivă) cu proprietatea că pentru orice $q, r \in \mathbb{Q}, q < r$ dacă și numai dacă $f(q) \dot{<}^{\mathcal{A}} f(r)$.