One-Way ANOVA

	Fórmula	Legenda	
	ANalysis Of VAriance One-Way ANOVA: existe apenas 1 variável independente (fator) Como se realizasse t-tests entre 3 ou + amostras ao mesmo tempo		Populações de onde se retira as amostras devem ser normalmente distribuídas Homogeneidade de variância Independência de observadores (resultados de uma amostra não pode afetar as outras amostras)
Grand Mean	$\bar{x}_G = \frac{\bar{x}_1 + \bar{x}_2 + \ldots + \bar{x}_k}{k}$	k: quantidade de amostras N: quantidade de valores de todas as amostras $N=n_1+n_2++n_k$	Média das médias de todas as amostras Utilizado quando todas as amostras possuem mesmo tamanho
	$\bar{x}_G = \frac{\sum_{i=1}^{n_1} x_{1_i} + \sum_{i=1}^{n_2} x_{2_i} + \ldots + \sum_{i=1}^{n_k} x_{k_i}}{N}$		Utilizado quando as amostras possuem tamanhos diferentes
Between-Group Variability	Diferença entre amostras. Quanto menor a distância entre as médias das amostras, menor a probabilidade da população (conjunto de amostras) serem significativamente diferentes		
Within-Group Variability	Diferença entre os valores de uma amostra Quanto menor a distância entre os valores de uma amostra , maior a probabilidade da população (conjunto de amostras) serem significativamente diferentes		$\wedge \wedge \wedge$
F-Score	$F = \frac{betweenGroup_{variability}}{withinGroup_{variability}} = \frac{MS_{between}}{MS_{within}}$	$= \frac{SS_{between}/df_{between}}{SS_{within}/df_{within}}$	Quanto maior for F, mais diferente significativamente serão as amostras, tendendo a rejeitar H _o
	$MS_{between} = \frac{\sum n_k (\bar{x}_k - \bar{x}_G)^2}{(k-1)}$	n _k : tamanho de cada amostra x _k : média de cada amostra k: número de amostras N: quantidade total de valores de todas as amostras	
	$MS_{within} = \frac{\sum (x_{k_i} - \bar{x}_k)^2}{N - k}$		
	$SS_{total} = SS_{hetween} + SS_{within} = \sum (x_i - \bar{x}_G)^2$ $df_{total} = df_{hetween} + df_{within} = N - 1$	MS: mean squares SS: sum of squares df: degrees of freedom	
F-Distribution	É sempre One-tailed Test. Quando f-score está na critical region, significa que pelo menos 1 amostra é significativamente diferente		

Multiple Comparison Test

	Fórmula	Legenda	
	Realizado após o ANOVA, para verificar quais amostrar possuem diferença significativa		
Tukey's HSD	Tukey's Honesty Significant Difference (HSD) Só é válido quando todas as amostras possuem mesmo tamanho		Equivalente a Margin of Error
	$HSD = q_{critical} \sqrt{\frac{MS_{within}}{n}} = q_{critical} \sqrt{\frac{S_p}{n}}$	q: Studentized Range Statistic n: tamanho das amostras	As amostras que possuirem o valor absoluto da diferença entre suas médias maior que HSD são consideradas significativamente diferentes
Cohen's D	$d = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{MS_{within}}}$	x ₁ : média da amostra 1 x ₂ : média da amostra 2	Calcula-se Cohen's D para cada par de amostras
Eta Squared	$\eta^2 = \frac{SS_{between}}{SS_{between} + SS_{within}}$	η²> 0.14 é considerado relevante	Equivalente ao r² Indica qual a proporção do total da variação é consequência das diferenças entre os grupos

Links

	Link
F-table	http://www.socr.ucla.edu/Applets.dir/F_Table.html
Q-table	https://www2.stat.duke.edu/courses/Spring98/sta110c/qtable.html
GraphPad	https://www.graphpad.com/quickcalcs/

Pode-se violar o Princípio de:

- Normalidade se:
 o tamanho das amostras for grande

- Homogeneidade se:
 amostras possuem tamanhos
aproximados
 e a razão entre quaisquer 2 variâncias
não seja maior que 4