# 2024 / 25

**School of Science and Computing** 

+353 (0)51 302037

**☑** Eleanor.Reade@setu.ie

www.wit.ie/schools/science\_computing



# **Module Descriptor**

Physics 2 (Computing and Mathematics)

**Short Title:** Physics 2

**Department:** Computing and Mathematics

Credits: 5 Level: Introductory

# Description of Module / Aims

This module is designed to introduce the student to additional fundamental physics principles and will augment the content covered in the semester one physics module (Physics I). Problem-solving skills will be developed and used to analyse physical situations. The integrated practical programme will enhance the student's experimental, logical thinking and report-writing skills.

# **Programmes**

|           | hostage/sem                                                          | nester/status        |
|-----------|----------------------------------------------------------------------|----------------------|
| COMP-0547 | BEng (Hons) in Electrical and Automation Engineering (International) | 1 / 2 / M            |
|           | (WD ETRIC BI)                                                        |                      |
| COMP-0547 | BEng (Hons) in Information Engineering (International) (WD_EEELC_BI) | $1\ /\ 2\ /\ { m M}$ |
| COMP-0547 | BSc (Hons) in Applied Computing (International) (WD_KACCM_BI)        | 1/2/M                |
| COMP-0547 | BSc (Hons) in Applied Computing (WD_KACCM_B)                         | 1/2/M                |
| COMP-0547 | BSc (Hons) in Applied Computing (WD KCOMP B)                         | 1/2/M                |
| COMP-0547 | BSc (Hons) in Computer Science (WD KCMSC B)                          | 1/2/M                |
| COMP-0547 | BSc (Hons) in the Internet of Things (International) (WD KINTT BI)   | 1/2/M                |
|           |                                                                      | , ,                  |

# **Indicative Content**

- Thermal Physics: Temperature and temperature scales; Expansion of solids; Heat capacity and latent heats; Heat transfer
- Electromagnetism: Electric forces and fields; Electric Potential and electric potential energy; Capacitance and dielectrics; Magnetism and electromagnetic induction
- DC circuits: Kirchoff's Laws; Series and parallel circuits
- AC circuits: AC current and voltage: Impedance and phase angle; Analysis of series and parallel RC circuits
- Semiconductor Theory: Band Theory of solids; Intrinsic and extrinsic semiconductors; p-n junction diode and thermistor
- Application of measurement principles to a range of sensors

# **Learning Outcomes**

On successful completion of this module, a student will be able to:

- 1. Describe and explain the fundamental physics principles underlying the concepts outlined in the indicative content.
- 2. Compute routine expressions related to simple AC and DC electrical circuits.
- 3. Apply problem-solving skills to find solutions to a range of practical and theoretical problems.
- 4. Describe and discuss the practical application of the physics concepts introduced related to a number of physical devices.
- 5. Record and analyse experimental data in an accurate manner.
- 6. Report on and critically assess a range of experiments relating to the course content.

# Learning and Teaching Methods

- Lectures
- Laboratory work
- Live and video-based demonstrations
- Tutorial/revision sheets provided on moodle
- Self-directed learning

# **Learning Modes**

| $\mathbf{F}/\mathbf{T}$ Hours | P/T Hours |
|-------------------------------|-----------|
| 36                            |           |
| 24                            |           |
| 75                            |           |
|                               | 36<br>24  |

### **Assessment Methods**

|                           | Weighting | Outcomes Assessed |
|---------------------------|-----------|-------------------|
| Final Written Examination | 60%       | 1,2,3,4           |
| Continuous Assessment     | 40%       |                   |
| Assignment                | 40%       | 5,6               |
| 0                         |           | ,                 |

#### **Assessment Criteria**

<40%: Unable to interpret and describe key concepts of the specific knowledge domain(s).

40%-49%: Be able to interpret and describe key concepts of the specific knowledge domain(s).

50%-59%: Ability to discuss key concepts of the specific knowledge domain and ability to discover and integrate related knowledge in other knowledge domains.

60%-69%: Be able to solve problems within the specific knowledge domain(s) by experimenting with the appropriate skills and tools.

70%–100%: All the above to an excellent level. Be able to analyse and design solutions to a high standard for a range of both complex and unforeseen problems through the use and modification of appropriate skills and tools.

### Essential Material(s)

• "Materials provided on Moodle." http://moodle.wit.ie

### Supplementary Material(s)

- "Podcasts such as." Tech Weekly, Science Friday, Science Weekly, More or less
- Giancoli, G.C. Physics, Principles with Applications. 6th Ed. NY: Prentice-Hill, 2013.
- Johnson, K. Physics for You. NY: Stanley Thornes, 2011.
- O'Regan, D. Real-World Physics. NY: Folens, 2000.
- Walker, J.S. Physics Technology Update. 4th Ed. NY: Pearson International, 2014.

#### Requested Resources

• Science Lab: Physics