Instituto Tecnológico de Costa Rica Área de Ingeniería Mecatrónica MT-5001 Modelos de Sistemas para Mecatrónica Profesor: Ing. Jaime Mora

Elaborado por: Ing. José Miguel Barboza Retana

Práctica semana 4. Derivación compleja.

- Resuelva los siguientes problemas utilizando derivación compleja y el concepto de mapeo conforme, para todos los casos asuma que z = x + iy:
 - 1) Verifique que la función exponencial $f(z) = e^{az}$, donde a es una constante, satisface las ecuaciones de Cauchy-Riemann y demuestre que $f'(z) = ae^{az}$.
 - 2) Determine cuándo las siguientes funciones son analíticas y encuentre la derivada cuando tenga sentido:
 - a) ze^z
 - b) sin(4z)
 - c) zz^*
 - d) cos(2z)
 - 3) Determine el valor que deben tomar las constantes a y b para que la función $w = x^2 + ay^2 2xy + j(bx^2 y^2 + 2xy)$ sea analítica. Para estos valores de a y b encuentre la derivada de w y exprese ambas w y $\frac{dw}{dz}$ como función de z.
 - 4) Encuentre una función v(x, y) de tal forma que dada u(x, y) = 2x(1 y), f(z) = u + jv sea analítica.
 - 5) Dada $u(x,y) = x^2 y^2 + 2x$ encuentre la función conjugada v(x,y) tal que f(z) = u + iv sea una función analítica de z en todo el plano z.
 - 6) Obtenga una función holomorfa f(z) = u(x, y) + v(x, y) si se tiene que $u(x, y) = y^3 3x^2y$ y además se cumple f(0) = j.
 - 7) Demuestre que $\phi(x,y) = e^x(x\cos(y) y\sin(y))$ es una función armónica y encuentre la función conjugada $\psi(x,y)$ que formen una función f(z) analítica. Escriba $f(z = x + iy) = \phi(x,y) + i\psi(x,y)$ como función únicamente de z.
 - 8) Demuestre que $u(x, y) = \sin(x) \cosh(y)$ es armónica y encuentre una función conjugada armónica v(x, y) y exprese u + jv como función de z.

- 9) Encuentre las partes real e imaginaria de las funciones:
 - a) z^2e^{2z}
 - b) sin(2z)

Además, verifique que sean analíticas y calcule sus derivadas.

- 10) Determine los puntos en que los siguientes mapeos no son conformes:
 - a) $w = z^2 1$
 - b) $w = 2z^3 21z^2 + 72z + 6$
 - c) $w = 8z + \frac{1}{2z^2}$