BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI Second Semester 2018–2019 Course Handout (Part II)

Date: 7.01.2019

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : BITS F417 / ME F423

Course Title : Microfluidics and its applications

Instructor-in-Charge : V. MeenakshiCo-instructor : Aravinda Raghavan

I. Course Description:

Microfluidics is about manipulating fluids in miniaturized systems at the micro/ nano liter scale. This subject is now one of the frontiers in interdisciplinary research that has many applications; for example, in developing novel health care devices. An important advancement that has propelled research in this area is the ability to build micron scale structures using soft-lithography which doesn't require clean room facility. In this course, a student will learn the physics behind microfluidic devices through lectures, computer simulations, and lab work.

Here is a glimpse of the topics in this course: Dimensional analysis and scaling laws, Navier-Stokes equation, simulation of fluid flow in micro-channels, diffusion, mixing and separation of microfluids, controlling flows – pumps and valves, soft-lithography, principle behind microfluidics-enabled technologies such as ink-jet technology, lab-on-a-chip devices.

II. Learning outcomes

- A. Dimensional and scaling analysis of fluid flow.
- B. Fabricating micron scale structures using soft-lithography.
- C. Analyzing microfluidic flow using COMSOL computer simulation.
- D. Surveying the various application of microfluidics.

III. Text Books:

1. *Fundamentals and applications of microfluidics* by Nam-Trung Nguyen and Steven T. Wereley, Artech House, 2002.

Reference Books:

- 1. Introduction to Microfluidics, by Patrick Tabeling, Oxford University Press, 2005.
- 2. *Theoretical Microfluidcs*, by Henrik Bruus, Oxford Master Series in Condensed Matter Physics, 2008.

III. Course Plan:

Lecture No.	Topics to be covered				
1-2	Introduction to microfluidics — Physics at the microscale, role of various intermolecular forces.				
3-6	Dimensional analysis and scaling laws to understand fluid flow.				
7-13	Navier-Stokes equation and application to obtain certain exact solutions.				
14-20	Introduction to flow simulation using computers - Meshing, discretization and simulation using COMSOL multiphysics software				
20-25	Diffusion, mixing and separation of fluids in Microsystems - Analysis of dispersion phenomena, Passive and active mixing, Chaotic mixing.				
25-30	Introduction to microfabrication techniques - Photolithography- etching – embossing, Soft-lithographic patterning, mask design				
30-35	Experimental flow characterization – MicroPIV, Fluorescent microscopy				
35-41	Application of microfluidics - Micropumps and microvalves, Lab-on-a-chip devices, micromixers				
42	Conclusion				

IV. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & time	Nature of Component
Mid-semester	90 min	30%		Closed Book
exam			13/3 3.30 - 5.00 PM	
Lab project and		35%		Experimental work (Open
Simulation				Book) and Take home
assignment				
Comprehensive	3 hours	35%	07/05 AN	Closed Book
exam				

V. Make-up policy:

It is applicable to the following two cases and it is permissible on production of evidential documents.

- (i) Debilitating illness.
- (ii) Out of station with prior permission from the Institute.
- **VI.** All notices will be displayed on the Physics Group Notice Board.
- **VII. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructors, BITS F417