TCP/IP 4 Layer

By CommentLee

목차

- 4계층 소개: Application, Transport, Internet, Link 계층의 기능과 예시 프로토콜
- OSI 7계층과 TCP/IP 4계층 비교
- 캡슐화/역캡슐화 과정

WHY 계층?

• 모듈성 및 독립성: 각 계층은 자신에게 주어진 역할에만 집중

WHY 계층?

- 모듈성 및 독립성: 각 계층은 자신에게 주어진 역할에만 집중
- 표준화와 상호 운용성: 표준이 없다면 일어나는 일?

APPLICATION LAYER

- 우리가 쓰는 프로그램의 계층
- 여기서부터 데이터를 전송한다고 가정.

TRANSPORT LAYER

- Port 번호를 사용하여 최종 도착지인 프로세스에게 세그먼트를 전달.
- 연결, 순서, 오류, 혼잡제어.. 할게 많음.
- 대표2가지: TCP(대부분의 경우), UDP(실시간 중요하다면)

TCP segment

INTERNET LAYER

- TCP또는 UDP의 세그먼트에 헤더를 붙여 패킷화한다
- IP 주소를 이용해서 길을 찾고(routing) 자신 다음의 라우터에게 데이터를 넘겨 준다(실제로 도달할지는 모른다!)

INTERNET LAYER

• 참고: 65536은 이론상 최대고 실제론 MTU=1500바이트로 보냄

Higher-level protocol that uses the services of the IP layer e.g., TCP, UDP, ICMP, ...

LINK 또는 네트워크 인터페이스

• 자료에따라 LINK Layer라고도 부르고 네트워크 인터페이스라고도 부름.

LINK 또는 네트워크 인터페이스

- 패킷을 FRAME이라는 단위로 만들고, MAC 주소(물리적 주소)를 사용하여 같은 로컬 네트워크 내에서 기기를 식별.
- 최종적으로 이 프레임을 0과 1의 전기 신호(비트)로 변환하여 랜선, 광케이블, 공기(Wi-Fi) 등 물리적인 매체를 통해 전송
- CRC로 오류검출가능

캡슐화/역캡슐화 과정

• 혼동주의: link layer까지는 데이터가 이동하면서 여러 번 frame이 제거되고 다시 생성됨.

캡슐화/역캡슐화 과정(2)

				Data		
			HTTP 헤더	Data		
		TCP 헤더	HTTP 헤더	Data		
	IP 헤더	TCP 헤더	HTTP 헤더	Data		
이더넷 헤더	IP 헤더	TCP 헤더	HTTP 헤더	Data	FCS	

브라우저			
HTTP			
ТСР			
IP			
이더넷			

OSI 7계층과의 차이?

- 이론 VS 현실
- OSI 모델: 국제 표준화기구(ISO)에서 만든 이론적 모델

"이상적으로 네트워크를 이렇게 나누자"라는 기준

• TCP/IP 모델: 미국 방위고등연구계획국(ARPA) 주도로 실제 인터넷 통신을 위해 설계된 실무 모델 -->사실상 표준이고 이걸 사용

질문?