සියලු ම හිමිකම් ඇවිරිණි/மුඟුப් பதிப்புரிமையுடையது/All Rights Reserved]

(නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

(සංයුක්ත ගණිතය

இணைந்த கணிதம் Combined Mathematics

2019.08.05 / 0830 - <u>1140</u>

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிட<mark>ங்கள்</mark>

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங் Additional Reading Time - 10 minutes

අමතර කියච්මි කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පු<mark>ශ්න</mark> සංවිධානය කර ගැනීමටත් යොදාගන්න.

		 	Γ	 	<u> </u>	1	
ł	විහාග අංකය	ŀ					
1		ł ·		1]_	

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට <mark>අමන</mark>ර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්<mark>න. ඔ</mark>බේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A <mark>කොටසෙහි</mark> පිළිතුරු පතුය, **B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විහාග ශාලාධිපතිට භාර දෙන්න.
- 💥 පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පයෝජනය සඳහා පමණි.

((10) සංයුක්ත ග <mark>ණිත</mark> ය I				
කොටස	පුශ්න අංකය	ලකුණු			
	1				
	2				
	3				
	4				
A .	5				
A	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
В	14				
	15				
	16				
	17				
	එකතුව				

	ළකතුව
ඉලක්කමෙන්	
අකුරින්	

	<u>ආංඛකවා රුංක</u>
උත්තර පතු පරීක්ෂක	
පරීක්ෂා කළේ; 2	
අධීක්ෂණය කළේ:	

	A 90000
1.	ගණිත අභනුගන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\! {\mathbb Z}^+$ සඳහා $\sum_{r=1}^n (2r\!-\!1)=n^2$ බව සාධනය කරන්න.
	······
2	එක \emptyset රූප සටහනක $y=\left 4x-3\right $ හා $y=3-2\left x\right $ හි පුස්තාරවල දළ සටහන් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	ජ නයින් හෝ අන් අයුරකින් හෝ , $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්

		1		
	١			
	_			
			1	
	i			
	ĺ			1
ĺ				

_	
3.	අාගන්ඩ් සටහනක, $\operatorname{Arg}\left(z-2-2i\right)=-\frac{3\pi}{4}$ සපුරාලන z සංකීර්ණ සංඛාහ නිරූපණය කරන ලක්ෂාවල පථයෙහි දළ සටහනක් අඳින්න. ඒ නගීන් හෝ අන් අශුරකින් හෝ, $\operatorname{Arg}\left(z-2-2i\right)=-\frac{3\pi}{4}$ වන පරිදි $\left i\overline{z}+1\right $ හි අවම අගය සොයන්න.
	~
4.	$\left(x^3+rac{1}{x^2} ight)^7$ හි ද්විපද පුසාරණයේ x^6 හි සංගුණකය 35 බව පෙන්වන්න.
	ඉහත ද්විපද පුසාරණයේ x වලින් ස්වායත්ත පදයක් නොපවතින බවත් පෙන්වන්න.
	<u> </u>

5.	$\lim_{x \to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \frac{1}{2\pi} \text{බව පෙන්වන්න.}$
	<u></u>
	[v.1]
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන සන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.

7.	C යනු $t\!\in\!\mathbb{R}$ සඳහා $x=at^2$ සහ $y=2at$ මගින් පරාමිතිකව දෙනු ලබන පරාවලය යැයි ගනිමු; මෙහි $a\! eq\!0$ වේ.
	C පරාවලයට $\left(at^2,2at\right)$ ලක්ෂායෙහි දී වූ අභිලම්බ රේඛාවෙහි සමීකරණය $y+tx=2at+at^3$ මගින් දෙනු ලබන බව පෙන්වන්න.
	C පරාවලය මත $P\equiv (4a,4a)$ ලක්ෂායෙහි දී වූ අභිලම්බ රේඛාවට එම පරාවලය නැවත $Q\equiv (aT^2,2aT)$
	ලක්ෂායක දී හමු වේ. $T=-3$ බව පෙන්වන්න.
8.	
	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මන පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
	ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
	· · · · · · · · · · · · · · · · · · ·
	<i></i>
	[භාලාදනි පිටම බලන්ස

•	$A \equiv (-7,9)$ ලක්ෂාය $S \equiv x^2 + y^2 - 4x + 6y - 12 = 0$ වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.
	S=0 වෘත්තය මත වූ, A ලක්ෂායට ආසන්නතම ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.
	······································
).	$ heta eq (2n+1)\pi$ සඳහා $t= anrac{ heta}{2}$ යැයි ගනිමු; මෙහි $n\in\mathbb{Z}$ වේ. $\cos heta=rac{1-t^2}{1+t^2}$ බව පෙන්වන්න.
	$ an rac{\pi}{12} = 2 - \sqrt{3}$ බව අපෝහන ය කරන්න.

ದಿයලු ම හිමිකම් ඇව්රිනි /முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

gon have අපාර්තුවේන්තුව ල් ලංකා විභාග දෙපාර්තුවේන්ට සිට කියන දෙපාර්තුවේන්තුව ල් ලංකා විභාග දෙපාර්තුවේන්තුව දී நின்ற இது நின்ற අපාර්තුවේන්තුව ල් ලංකා විභාග දෙපාර්තුවේන්තුව දී ලංකා විභාග අදහර්තුවේන්තුව ල් ලංකා විභාග දෙපාර්තුවේන්තුව ල් ලංකා විභාග දෙපාර්තුවේන්තුවේන්තුව ල් ලංකා විභාග දෙපාර්තුවේන්තුව ල් ලංකා විභාග දෙපාර්තුවේන්ත් ප්රදේක්තුවේන්තුවේන්තුවේන්තුවේන්තුවේන්ත්ත් ප්රදේක්තුව

අධාපයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය I இணைந்த கணிதம் **I** Combined Mathematics **I**

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. (a) $p \in \mathbb{R}$ හා $0 යැයි ගනිමු. <math>p^2 x^2 + 2x + p = 0$ සමීකරණයෙහි, 1 මූලයක් **නොවන** බව පෙන්වන්න. α හා β යනු මෙම සමීකරණයෙහි මූල යැයි ගනිමු. α හා β දෙකම තාත්ත්වික බව පෙන්වන්න. p ඇසුරෙන් $\alpha + \beta$ හා $\alpha\beta$ ලියා දක්වා

$$\frac{1}{(\alpha-1)} \cdot \frac{1}{(\beta-1)} = \frac{p^2}{p^2 + p + 2}$$

බව පෙත්වත්න.

 $\frac{\alpha}{\alpha-1}$ හා $\frac{\beta}{\beta-1}$ මූල වන වර්ගජ සමීකරණය $(p^2+p+2)x^2-2(p+1)x+p=0$ මගින් දෙනු ලබන බවත්, මෙම මූල දෙකම ධන වන බවත් පෙන්වන්න.

- (b) c හා d යනු **නිශ්ශන** තාත්ත්වික සංඛාහ දෙකක් යැයි ද $f(x) = x^3 + 2x^2 dx + cd$ යැයි ද ගනිමු. (x-c) යන්න f(x) හි සාධකයක් බවත්, (x-d) මගින් f(x) බෙදූ විට ශේෂය cd බවත් දී ඇත. c හා d හි අගයන් සොයන්න. c හා d හි මෙම අගයන් සඳහා, $(x+2)^2$ මගින් f(x) බෙදූ විට ශේෂය සොයන්න.
- 12. (a) P_1 හා P_2 යනු පිළිවෙළින් $\left\{A,B,C,D,E,1,2,3,4\right\}$ හා $\left\{F,G,H,I,J,5,6,7,8\right\}$ මගින් දෙනු ලබන කුලක දෙක යැයි ගනිමු. $P_1 \cup P_2$ න් ගනු ලබන වෙනස් අකුරු 3 කින් හා වෙනස් සංඛාාංක 3 කින් යුත්, අවයව 6 කින් සමන්විත මුරපදයක් සෑදීමට අවශාව ඇත. පහත එක් එක් අවස්ථාවේ දී සෑදිය හැකි එවැනි වෙනස් මුරපද ගණන සොයන්න:
 - (i) අවයව 6 ම P න් පමණක් ම තෝරා ගනු ලැබේ,
 - (ii) අවයව 3 ක් P_1 න් ද P_2 න් අනෙක් අවයව 3 ද තෝරා ගනු ලැබේ.

$$(b) \ r \in \mathbb{Z}^+$$
සඳහා $U_r = \frac{1}{r(r+1)(r+3)(r+4)}$ හා $V_r = \frac{1}{r(r+1)(r+2)}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $V_r - V_{r+2} = 6\,U_r$ බව පෙන්වන්න.

ඒ නයින්,
$$n\in\mathbb{Z}^+$$
 සඳහා $\sum_{r=1}^n U_r=rac{5}{144}-rac{(2n+5)}{6(n+1)(n+2)(n+3)(n+4)}$ බව පෙන්වන්න.

 $r \in \mathbb{Z}^+$ සඳහා $W_r = U_{2r-1} + U_{2r}$ යැයි ගනිමු.

$$n \in \mathbb{Z}^+$$
 සඳහා $\sum_{r=1}^n W_r = \frac{5}{144} - \frac{(4n+5)}{24(n+1)(n+2)(2n+1)(2n+3)}$ බව **අපෝහන**ය කරන්න.

ඒ නයින්, $\sum_{r=1}^{\infty}W_{r}$ අපරිමිත ශ්‍රේණිය අභිසාරී බව පෙන්වා එහි ඓකාය සොයන්න.

$$\mathbf{13}.(a)$$
 $\mathbf{A} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$ හා $\mathbf{C} = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$ යනු $\mathbf{A}\mathbf{B}^{\mathrm{T}} = \mathbf{C}$ වන පරිදි වූ නාහස යැයි

ගනිමු; මෙහි $a,b\!\in\!\mathbb{R}$ වේ.

a=2 හා b=1 බව පෙන්වන්න.

තව ද ${f C}^{-1}$ නොප**වතින** බව පෙන්වන්න.

 ${f P}=rac{1}{2}({f C}-2{f I})$ යැයි ගනිමු. ${f P}^{-1}$ ලියා දක්වා, $2{f P}({f Q}+3{f I})={f P}-{f I}$ වන පරිදි ${f Q}$ නාහසය සොයන්න; මෙහි ${f I}$ යනු ගණය 2 වන ඒකක නාහසය වේ.

- (b) $z,z_1,z_2\in\mathbb{C}$ යැයි ගනිමු.
 - (i) Re $z \le |z|$, 800

(ii)
$$z_2 \neq 0$$
 සඳහා $\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|}$

බව පෙන්වන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(rac{z_1}{z_1+z_2}
ight) \leq rac{\left|z_1
ight|}{\left|z_1+z_2
ight|}$ බව **අපෝහනය** කරන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right)+\operatorname{Re}\left(\frac{z_2}{z_1+z_2}\right)=1$ බව සතාහපනය කර,

 $z_1, z_2 \in \mathbb{C}$ සඳහා $\left|z_1 + z_2\right| \leq \left|z_1\right| + \left|z_2\right|$ බව පෙන්වන්න.

(c)
$$\omega = \frac{1}{2} \left(1 - \sqrt{3} i \right)$$
 යැයි ගනිමු.

 $1+\omega$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r(>0) හා $\theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$ යනු නිර්ණය කළ යුතු නියත වේ.

ද මුවාවර් පුමේයය භාවිතයෙන්, $(1+\omega)^{10}+(1+\overline{\omega})^{10}=243$ බව පෙන්වන්න.

14.(a)
$$x \neq 3$$
 සඳහා $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ යැයි ගනිමු.

 $x \neq 3$ සඳහා f(x) හි වයුත්පන්නය, f'(x) යන්න $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝන්මුබ, y – අන්තෘඛණ්ඩය හා හැරුම් ලක්ෂා දක්වමින්, y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

 $x \neq 3$ සඳහා $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$ **බව දී ඇත.** y = f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂාවල x - 0ණ්ඩාංක

සොයන්න.

(b) යාබද රූපයෙන් පතුලක් සහිත සෘජු වෘත්තාකාර කේතු ඡිත්නකයක ආකාරයෙන් වූ බේසමක් පෙන්වයි. බේසමෙහි ඇල දිග 30 cm ක් ද උඩත් වෘත්තාකාර දාරයෙහි අරය පතුලෙහි අරය මෙන් දෙගුණයක් ද වේ. පතුලේ අරය r cm යැයි ගනිමු.

බේසමේ පරිමාව $V\,\mathrm{cm}^3$ යන්න $0\!<\!r\!<\!30$ සඳහා

$$V = rac{7}{3} \pi r^2 \sqrt{900 - r^2}$$
 මගින් දෙනු ලබන බව පෙන්වන්න.
බේසමේ පරිමාව උපරිම වන පරිදි r හි අගය සොයන්න.

- 15.(a) $0 \le \theta \le \frac{\pi}{4}$ සඳහා $x = 2\sin^2\theta + 3$ ආදේශය භාවිතයෙන්, $\int\limits_3^4 \sqrt{\frac{x-3}{5-x}} \,\mathrm{d}x$ අගයන්න.
 - (b) හින්න භාග භාවිතයෙන්, $\int \frac{1}{(x-1)(x-2)} \, \mathrm{d}x$ සොයන්න.

$$t > 2$$
 සඳහා $f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} dx$ යැයි ගනිමු.

t>2 සඳහා $f(t)=\ln{(t-2)}-\ln{(t-1)}+\ln{2}$ බව **අපෝහනය** කරන්න.

කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int \ln{(x-k)}\,\mathrm{d}x$ සොයන්න; මෙහි k යනු තාත්ත්වික නියතයකි.

ඒ නයින්, $\int f(t) \, \mathrm{d}t$ සොයන්න.

(c) a හා b නියත වන $\int\limits_{a}^{b}f(x)\,\mathrm{d}x=\int\limits_{a}^{b}f(a+b-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්,

$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1 + e^x} dx$$
 බව පෙන්වන්න.

ඒ නයින්, $\int_{-x}^{\pi} \frac{\cos^2 x}{1 + e^x} \, \mathrm{d}x$ හි අගය සොයන්න.

16. 12x-5y-7=0 හා y=1 සරල රේඛාවල ඡේදන ලක්ෂාය වන A හි ඛණ්ඩාංක ලියා දක්වන්න.

 $oldsymbol{l}$ යනු මෙම රේඛාවලින් සෑදෙන සුළු කෝණයෙහි සමච්ඡේදකය යැයි ගනිමු. $oldsymbol{l}$ සරල රේඛාවේ සමීකරණය සොයන්න.

P යනු l මත වූ ලක්ෂායක් යැයි ගනිමු. P හි ඛණ්ඩාංක $(3\lambda+1,2\lambda+1)$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි λ \in \mathbb{R} වේ.

 $B\equiv (6,0)$ යැයි ගනිමු. B හා P ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S+\lambda U=0$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි $S\equiv x^2+y^2-7x-y+6$ හා $U\equiv -3x-2y+18$ වේ.

S=0 යනු AB විෂ්කම්භයක් ලෙස ඇති වෘත්තයෙහි සමීකරණය බව **අපෝහනය** කරන්න.

 $U\!=\!0$ යනු $l\!\!\!/$ ව ලම්බව, B හරහා යන සරල රේඛාවේ සමීකරණය බව පෙන්වන්න.

සියලු $\lambda \in \mathbb{R}$ සඳහා $S + \lambda U = 0$ සමීකරණය සහිත වෘත්ත මත වූ ද B වලින් පුහින්න වූ ද අචල ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.

S=0 මගින් දෙනු ලබන වෘත්තය, $S+\lambda\,U=0$ මගින් දෙනු ලබන වෘත්තයට පුලම්බ වන පරිදි λ හි අගය සොයන්න.

17. (a) $\sin A$, $\cos A$, $\sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A+B)$ ලියා දක්වා, $\sin (A-B)$ සඳහා එවැනි පුකාශනයක් ලබා ගන්න.

$$2 \sin A \cos B = \sin (A+B) + \sin (A-B)$$
 803

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

බව **අපෝහනය** කරන්න.

ඒ නයින්, $0<\theta<\frac{\pi}{2}$ සඳහා $2\sin3\theta\cos2\theta=\sin7\theta$ විසඳන්න.

- (b) ABC හිකෝණයක BD=DC හා AD=BC වන පරිදි D ලක්ෂාය AC මත පිහිටා ඇත. $B\hat{A}C=\alpha$ හා $A\hat{C}B=\beta$ යැයි ගනිමු. සුදුසු හිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $2\sin\alpha\cos\beta=\sin(\alpha+2\beta)$ බව පෙන්වන්න. $\alpha:\beta=3:2$ නම්, ඉහත (a) හි අවසාන පුතිඵලය භාවිතයෙන්, $\alpha=\frac{\pi}{6}$ බව පෙන්වන්න.
- $(c) \ 2 an^{-1} x + an^{-1} (x+1) = rac{\pi}{2}$ විසඳන්න. ඒ නයින්, $\cos \left(rac{\pi}{4} rac{1}{2} an^{-1} \left(rac{4}{3}
 ight)
 ight) = rac{3}{\sqrt{10}}$ බව පෙන්වන්න.

සියලු ම හිමිකම් ඇවරුම් (ගුගුට පුණිට්පුලිකෙපයුකු)/All Rights Reserved]

(නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus)

අධායන පොදු සහකික පතු (උසස් පෙළ) විහාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

க**்புன்ற மறிறம** இணைந்த கணிதம் Combined Mathematics [10]

2019.08.07 / 0830 - 1140

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න භෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන <mark>පු</mark>ශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

🛠 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

II

II

II

- A කොටස (පුශ්න 1 10) සහ B කොටස (පුශ්න 11 17).
- * A emoots:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා ඓ නම්, ඔබට අමතර ලියන <mark>කඩදාසි</mark> භාවිත කළ හැකි ය.

- * B කොටස:
 - පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. <mark>ඔබේ පි</mark>ළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය**, B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග <mark>ශාලාධිපති</mark>ට භාර දෙන්න.
- 💥 පුශ්න පතුයෙහි **B කොවස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- st මෙම පුශ්න පතුයෙහි g මlphaත් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත <mark>ගණිතය II</mark>		
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
	5	
A	6	
N	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

	<u> </u>
ඉලක්කමෙන්	
අකුරින්	

		ගංෂකත අංක
උත්තර පතු පරීක්ෂ	ක	
පරීක්ෂා කළේ:	1 2	
අධීක්ෂණය කළේ:		

	A Gance
1.	එක එකක ස්කන්ධය m වූ A , B හා C අංශු තුනක් එම පිළිවෙළින්, සුමට තිරස් මේසයක් මත සරල රේඛාවක තබා ඇත. A අංශුවට u පුවේගයක් දෙනු ලබන්නේ එය B අංශුව සමග සරල ලෙස ගැටෙන පරිදි ය. A අංශුව සමග ගැටුන පසු, B අංශුව චලනය වී C අංශුව සමග සරල ලෙස ගැටේ. A හා B අතර පුතාහාගති සංගුණකය e වේ. පළමු ගැටුමෙන් පසුව B හි පුවේගය සොයන්න.
	B හා C අතර පුතාාගති සංගුණකය ද e වේ. B සමග ගැටුමෙන් පසුව C හි පුවේගය ලියා දක්වන්න.
	······
	······································
2.	තිරස් හා සිරස් සංරචක පිළිවෙළින් \sqrt{ga} හා $\sqrt{6ga}$ සහිත පුවේගයකින් තිරස් ගෙබිමක් මත වූ O ලක්ෂායක සිට අංශුවක් පුක්ෂේප
	කරනු ලැබේ. රූපයේ දැක්වෙන පරිදි, එකිනෙකට <i>a</i> තිරස් දුරකින් පිහිටි
	උස a හා b වූ සිරස් තාප්ප දෙකකට යාන්තමින් ඉහළින් අංශුව යයි. $\sqrt{6ga}$ a b උස a වූ තාප්පය පසු කරන විට අංශුවේ පුවේගයෙහි සිරස් සංරචකය
	$2\sqrt{g}a$ බව පෙන්වන්න. $\sqrt{\frac{1}{\sqrt{g}a}}$ \sqrt{a}
	$b=rac{5a}{2}$ බව තවදුරටත් පෙන්වන්න.
	<i></i>
ORO-0500	

 $oldsymbol{3}$. රූපයෙහි A,B හා C යනු ස්කන්ධ පිළිවෙළින් m,m හා M වූ අංශු වේ. Aහා B අංශු සැහැල්ලු අවිතනා තන්තුවකින් සම්බන්ධ කර ඇත. සුමට තිරස් මේසයක් මත වූ C අංශුව, මේසයේ දාරයට සවිකර ඇති සුමට කුඩා කප්පියක්

	.,,
	*

4. ස්කන්ධය M kg හා P kW නියන ජවයකින් යුත් කාරයක් තිරසට lpha කෝණයකින් ආනත සෘජූ මාර්ගයක් දිගේ පහළට චලනය වේ. එහි චලිතයට R (> $Mg\sinlpha$) N නියත පුතිරෝධයක් ඇත. එක්තරා මොහොතක දී කාරයේ ත්වරණය $a \, {
m m \, s^{-2}}$ වේ. මෙම මොහොතේ දී <mark>කාර</mark>යේ පුවේගය සොයන්න. 1000P

	ට කාරයට චලනය විය ෂ	3	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
44,444,414,414,414,414,414,414,414,414,	**********************		
2			
	********************	*********************	

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

	. එක එකක ස්කන්ධය m වූ A හා B අංශු දෙකක්, අවල සුමට කප්පියක් මතින් යන සැහැල්ලු	11111111	<u> </u>
	අවිතනාෳ තත්තුවක දෙකෙළවරට ඈඳා සමතුලිතතාවයේ එල්ලෙයි. A ට සිරස්ව a දුරක්		
	ඉහළින් වූ ලක්ෂායකින් නිශ්චලතාවයේ සිට මුදා හරින ලද ස්කන්ධය m ම වූ C කුඩා)
		C	
	A හා C අතර ගැටුම සිදු වන මොහොතේ දී තන්තුවේ ආවේගය ද ඉහත ගැටුමෙන්	1	
	මොහොතකට පසු B ලබා ගන්නා පුවේගය ද නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා		
	දක්වන්න.		
		√ Å	B
		m	"
	· · · · · · · · · · · · · · · · · · ·		
	······································	••••••••••	

6.	සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබ <mark>ද්ධ</mark> යෙන් A හා B ලක්ෂ x දෙකක පිහිටුම් දෛද්	ශික පිළිමෙ	වළින්
	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D ද		
	3	ඉ හින්න ල	ක්ෂා
	දෙකෙහි පිහිටුම් දෛශික සොයන්න.	9 හින්න ල	ක්ෂා
		3හින්න ල 	ක්ෂා
		3ුභිත්ත ල 	ක්ෂා
		දු හින්න ල	ක්ෂා
		ඉහින්න ල	ක්ෂා
		ඉහින්න ල	ක්ෂා
		ඉහින්න ල	ක්ෂ ා
		ඉහින්න ල	ක්ෂා
		දුහින්න ල	ක්ෂප
		ඉහින්න ල	ක්ෂප
		ඉහින්න ල	ක්ෂ ා
		ූභින්න ල	ක්ෂා
		දුභින්න ල	ක්ෂා
>		ෘභින්න ල	ක්ෂා
		ූභින්න ල	ales
3		ූභින්න ල	ales
		ූභින්න ල	ක්ෂා

7.	තිරස සමග පිළිවෙළින් a හා $rac{\pi}{3}$ කෝණ සාදන AP හා BP
	සැහැල්ලු අවිතනා තන්තු දෙකක් මගින් තිරස් සිවිලිමකින්
	එල්ලා ඇති බර W වූ P අංශුවක්, රූපයේ දැක්වෙන පරිදි
	සමතුලිතතාවයේ පවතී. AP තත්තුවේ ආතතිය, W හා $lpha$
	ඇසුරෙන් සොයන්න.
	ඒ නයින්. මෙම ආතතියේ අවම අගයක් එයට අනුරූප $lpha$ හි අග

	,	•	,	, c., ,	'				. ,	

										,,,,,,,,,
										> × + + + + + + + +
 		 ******	,,,,,,,,,,	 	 				,	********
 		 		 	 		 	,,,	*******	*******

8. දිග 2a හා බර W වූ ඒකාකාර AB දණ්ඩක් එහි A කෙළවර රළු තිරස් ගෙබීමක් මත ද B කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව ද තබා ඇත. බිත්තියට ලම්බ සිරස් තලයක දණ්ඩ සමතුලිකතාවයේ තබා ඇත්තේ A කෙළවරේ දී බිත්තිය දෙසට යෙදූ විශාලත්වය P වන තිරස් බලයක් මගිනි. රූපයේ F හා R මගින් පිළිවෙළින් A හි දී සර්ෂණ බලය හා අභිලම්බ පුතිකියාව දක්වා ඇත. B හි දී බිත්තිය මගින් ඇති කරන පුතිකියාව, රූපයේ පෙන්වා ඇති පරිදි $\frac{W}{2}$ දණ්ඩ හා ගෙබීම අතර සර්ෂණ සංගුණකය $\frac{1}{4}$ ද නම්, $\frac{W}{4} \le P \le \frac{3W}{4}$ බව පෙන්වන්න.

4 4 4

		,		 	 	 	· • • • • •	 	 • • • • •	 	 	<i></i> .	.
	<i></i>			 	 	 		 	 	 	 	• • • • • •	٠

	,,,,,,,		,	 	 	 		 	 	 	 	<i>.</i> ,	

9.	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=rac{3}{5}$, $P(A\cap B)=rac{3}{5}$	2
	හා $P(A'\cap B)=rac{1}{10}$ බව දී ඇත. $P\left(B ight)$ හා $P(A'\cap B')$ සොයන්න; මෙහි A' හා B' වලින් පිළිවෙළින් A හ	20
	B හි අනුපූරක සිද්ධි දැක්වේ.	
		.
	······································	
	<u></u>	1
		•
		1
		·
	······································	
10.	එක එකක් 5 ට අඩු ධන නිඛිල පහකට මාතයන් දෙකක් ඇති අතර ඉන් එකක් 3 වේ. ඒවායේ මධානායෙ හ	э
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. <mark>මෙම</mark> නිබිල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. <mark>මෙම නි</mark> බිල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.	
	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මේම නිඛිල පහ සොයන්න.	-
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛල පහ සොයන්න.	
	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ව සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.	
	මධාපස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.	
	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛල පහ සොයන්න.	
	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිබ්ල පහ සොයන්න.	
	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.	
	මධාපස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිබ්ල පහ සොයන්න.	
	මධාපස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.	
	මධාපස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිබිල පහ සොයන්න,	

II

((නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

ර්තුමේන්තුව ලී ලංකා විභාග දෙපාර්තු නිසුවූ දැන්වේ සිදුවේ පාර්තුම් සිදුවේ සිදුවේ සිදුවේ දැන්වේ දැන්වේ සිදුවේ සිදුව

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය

இணைந்த கணிதம் II

Combined Mathematics H

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

B කොටස

- $11.\,(a)\,\,P$ හා $\,Q\,$ මෝටර් රථ දෙකක් සෘජු පාරක් දිගේ නියත ත්වරණ සහිතව එකම දිශාවක් $\overline{\mathcal{O}}$ චලනය වේ. කාලය t=0 හි දී P හි පුවේගය u m s $^{-1}$ ද Q හි පුවේගය (u+9) m s $^{-1}$ ද වේ. P හි නියත ත්වරණය $f \text{ m s}^{-2}$ ද Q හි නියත ත්වරණය $\left(f + \frac{1}{10}\right) \text{ m s}^{-2}$ ද වේ.
 - (i) $t \ge 0$ සඳහා P හා Q හි චලිතවලට, එකම රූපයක හා
 - (ii) $t \ge 0$ සඳහා P ට සාපේක්ෂව Q හි චලිතයට, වෙනම රූපයක,

පුවේග-කාල වකුවල දළ සටහන් අඳින්න.

කාලය t=0 හි දී P මෝටර් රථය Q මෝටර් රථයට වඩා මී<mark>ටර 200 ක් ඉදිරියෙන් සිටි බව තවදුරටත් දී</mark> ඇත. P පසුකර යැමට Q මගින් ගනු ලබන කාලය සොය<mark>න්න.</mark>

(b) සමාන්තර සෘජු ඉවුරු සහිත පළල a වූ ගඟක් u ඒකාකාර පුවේගයෙන් ගලයි. රූපයෙහි, A, B, C හා Dයන ඉවුරු මත වූ ලක්ෂෳ සමචතුරසුයක ශීර්ෂ <mark>වේ. ජ</mark>ලයට සාපේක්ෂව නියත $v\left(>u
ight)$ වේගයෙන් චලනය වන $B_{_{1}}$ හා $B_{_{2}}$ බෝට්ටු දෙකක් එකම මොහොතක A සිට ඒවායේ ගමන් ආරම්භ කරයි. B බෝට්ටුව පළමුව \overrightarrow{AC} දිගේ C වෙත ගොස් ඉන්පසු $Car{D}$ දිශාවට ගඟ දි<mark>ගේ ඉහළට</mark> D වෙත යයි. B_2 බෝට්ටුව පළමුව AB දිශාවට ගඟ දිගේ පහළට B වෙත ගොස් ඉන්පසු BD දිගේ D වෙත යයි. එකම රූපයක, B_1 හි A සිට C දක්වා ද B_2 හි B සිට D දක්වා ද චලිත සඳහා පුවේග තිුකෝණවල දළ සටහත් අඳින්න.

ඒ නයින්, A සිට C දක්වා චලිතයේ දී B_1 බෝට්ටුවේ චේගය $\frac{1}{\sqrt{2}}\Big(\sqrt{2\,v^2-u^2}\,+u\Big)$ බව පෙන්වා B සිට Dදක්වා චලිතයේ ${r \over k}$ $B_{
m p}$ බෝට්ටුවේ වේගය සොයන්න.

 B_1 හා B_2 බෝට්ටු දෙකම එකම මොහොතක දී D වෙත ළඟා වන බව තවදුරටත් පෙන්වන්න.

12.(a) රූපයෙහි ABC හා LMN නිකෝණ, $A\hat{C}B=L\hat{N}M=rac{\pi}{3}$ හා $A\hat{B}C=L\hat{M}N=rac{\pi}{2}$ වූ BC හා MN අඩංගු මුහුණත් සුමට ති්රස් ගෙබිමක් මත තබන ලද පිළිවෙළින් X හා Yසර්වසම සුමට ඒකාකාර කුඤ්ඤ දෙකක $\overline{\mathbf{v}}$ රුත්ව කේන් \mathbf{c} තුළින් වූ සිරස් හරස්කඩ වේ. ස්කන්ධය 3m වූ X කුඤ්ඤය ගෙබිම මත චලනය වීමට

නිදහස් වන අතර Y කූඤ්ඤය **අවලව** තබා ඇත. AC හා LNරේඛා අදාළ මුහුණත්වල උපරිම බැවුම් රේඛා වේ. A හා L හි සවිකර ඇති සුමට කුඩා කප්පි දෙකක් මතින් යන සැහැල්ල අවිතනා තන්තුවක දෙකෙළවර ස්කන්ධ පිළිවෙළින් m හා 2mවූ P හා Q අංශු දෙකකට ඇඳා ඇත. රූපයේ පරිදි ආරම්භක පිහිටීමේ දී, තන්තුව නොබුරුල්ව හා AP = AL = LQ = a වන ලෙස P හා Q අංශු පිළිවෙළින් AC හා LN මත අල්වා තබා ඇත. පද්ධතිය නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Y වෙත

යාමට X ගනු ලබන කාලය, a හා g ඇසුරෙන් නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබා ගන්න.

(b) රූපයේ පෙන්වා ඇති පරිදි සුමට සිහින් ABCDE බටයක් සිරස් තලයක සවිකර ඇත. දිග $2\sqrt{3}a$ වූ AB කොටස සෘජු වන අතර එය B හි දී අරය 2a වූ BCDE වෘත්තාකාර කොටසට ස්පර්ශක වේ. A හා E අන්ත O කේන්දුයට සිරස්ව ඉහළින් පිහිටයි. ස්කන්ධය m වූ P අංශුවක් A හි දී බටය තුළ තබා නිශ්චලතාවයේ සිට සීරුවෙන් මුදා හරිනු ලැබේ. \overrightarrow{OA} සමග $\theta\left(\frac{\pi}{3} < \theta < 2\pi\right)$ කෝණයක් \overrightarrow{OP} සාදන විට P අංශුවේ වේගය, v යන්න, $v^2 = 4ga(2-\cos\theta)$ මගින් දෙනු ලබන බව පෙන්වා, එම මොහොතේ දී P අංශුව මත බටයෙන් ඇති කරන පුතිකියාව සොයන්න.

P අංශුව A සිට B දක්වා චලිතයේ දී එය මත බටයෙන් ඇති කරන පුතිකිුිිිිියාව ද සොයන්න.

P අංශුව B පසු කරන විට P අංශුව මත බටයෙන් ඇති කරන පුතිකිුයාව ක්ෂණිකව වෙනස් වන බව පෙන්වන්න.

13. තිරසට $\frac{\pi}{6}$ කෝණයකින් ආනත සුමට අචල තලයක උපරිම බෑවුම් රේඛාවක් මත OA = a හා AB = 2a වන පරිදි O පහළම ලක්ෂාය ලෙස ඇතිව O, A හා B ලක්ෂා එම පිළිවෙළින් පිහිටා ඇත. ස්වාභාවික දිග a හා පුතාහස්ථතා මාපාංකය mg වූ සැහැල්ලු පුතාහස්ථ තන්තුවක එක් කෙළවරක් O ලක්ෂායට ඇඳා ඇති අතර අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ඇඳා ඇත. P අංශුව B ලක්ෂාය කරා ළඟා වන තෙක් තන්තුව OAB රේඛාව දිගේ අදිනු ලැබේ. ඉන්පසු P

අංශුව නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. B සිට A දක්වා P හි චලින සමීකරණය, $0 \le x \le 2a$ සඳහා, $\ddot{x} + \frac{g}{a} \left(x + \frac{a}{2} \right) = 0$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි AP = x වේ.

 $y=x+rac{a}{2}$ යැයි ගෙන ඉහත චලිත සමීකරණය $rac{a}{2} \le y \le rac{5a}{2}$ සඳහා $\ddot{y}+\omega^2 y=0$ ආකාරයෙන් නැවත ලියන්න; මෙහි $\omega=\sqrt{rac{g}{a}}$ වේ.

ඉහත සරල අනුවර්තී චලිතයේ කේන්දුය සොයා $\dot{y}^2=\omega^2\,(c^2-y^2\,)$ සූතුය භාවිතයෙන්, c විස්තාරය හා A වෙත ළඟා වන විට P හි පුවේගය සොයන්න.

O වෙත ළඟා වන විට P හි පුවේගය $\sqrt{7ga}$ බව පෙන්වන්න.

B සිට O දක්වා චලනය වීමට P මගින් ගනු ලබන කාලය $\sqrt{\frac{a}{g}}\left\{\cos^{-1}\left(\frac{1}{5}\right)+2k\right\}$ බවත් පෙන්වන්න; මෙහි $k=\sqrt{7}-\sqrt{6}$ වේ.

P අංශුව O වෙත ළඟා වන විට, තලයට ලම්බව O හි සවිකර ඇති සුමට බාධකයක් හා එය ගැටෙයි. බාධකය හා P අතර පුතාහාගති සංගුණකය e වේ. $0 < e \le \frac{1}{\sqrt{7}}$ නම්, පසුව සිදු වන P හි චලිතය සරල අනුවර්තී **නොවන** බව පෙන්වන්න.

14.(a) OACB යනු සමාන්තරාසුයක් යැයි ද D යනු AC මත AD:DC=2:1 වන පරිදි වූ ලක්ෂාය යැයි ද ගනිමු. O අනුබද්ධයෙන් A හා B ලක්ෂාවල පිහිටුම් දෙශික පිළිවෙළින් λa හා a හා a වේ; මෙහි a වේ. \overrightarrow{OC} හා \overrightarrow{BD} දෙශික, a, a හා a අැසුරෙන් පුකාශ කරන්න.

දැන්, \overrightarrow{OC} යන්න \overrightarrow{BD} ට ලම්බ වේ යැයි ගනිමු. $3\left|\mathbf{a}\right|^2\lambda^2+2(\mathbf{a}\cdot\mathbf{b})\lambda-\left|\mathbf{b}\right|^2=0$ බව පෙන්වා $\left|\mathbf{a}\right|=\left|\mathbf{b}\right|$ හා $A\hat{O}B=\frac{\pi}{3}$ නම්, λ හි අගය සොයන්න.

(b) කේන්දුය O හා පැත්තක දිග 2a වූ \overrightarrow{ABCDEF} සවිධි ෂඩසුයක තලයෙහි වූ බල තුනකින් පද්ධතියක් සමන්විත වේ. මූලය O හි ද Ox-අක්ෂය \overrightarrow{OB} දිගේ ද Oy-අක්ෂය \overrightarrow{OH} දිගේ ද ඇතිව බල හා ඒවායේ කුියා ලක්ෂා, සුපුරුදු අංකනයෙන්, පහත වගුවේ දක්වා ඇත; මෙහි H යනු CD හි මධා ලක්ෂාය වේ. (P නිව්ටන වලින් ද a මීටර වලින් ද මනිනු ලැබේ.)

කුියා ලක්ෂපය	පිහිටුම් දෛශිකය	බලය
A	$a\mathbf{i} - \sqrt{3}a\mathbf{j}$.	$3P\mathbf{i} + \sqrt{3}P\mathbf{j}$
C	$a\mathbf{i} + \sqrt{3}a\mathbf{j}$	$-3P\mathbf{i} + \sqrt{3}P\mathbf{j}$
E	-2ai	-2√3P j

පද්ධතිය යුග්මයකට තුලා වන බව පෙන්වා, යුග්මයේ ඝූර්ණය සොයන්න. දැන්, \overrightarrow{FE} දිගේ කිුිිියා කරන විශාලත්වය 6P N වූ අතිරේක බලයක් මෙම පද්ධතියට ඇතුළත් කරනු ලැබේ. නව පද්ධතිය ඌනනය වන තනි බලයේ විශාලත්වය, දිශාව හා කිුිිිිිිිිිි පේඛාව සොයන්න.

15.(a) එක එකක දිග 2a වූ AB හා BC ඒකාකාර දඬු දෙකක් B හි දී සුමට ලෙස සත්ධි කර ඇත. AB දණ්ඩේ බර W ද BC දණ්ඩේ බර 2W ද වේ. A කෙළවර අවල ලක්ෂාකට සුමට ලෙස අසව් කර ඇත. AB හා BC දඬු යටී අත් සිරස සමග පිළිවෙළින් α හා β කෝණ සාදමින් මෙම පද්ධතිය සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ, C හි දී රූපයේ පෙන්වා ඇති BC ට ලම්බ දිශාව ඔස්සේ යෙදූ $\frac{W}{2}$ බලයක් මගිනි. $\beta = \frac{\pi}{6}$ බව පෙන්වා, B සන්ධියේ දී AB දණ්ඩ මගින් BC දණ්ඩ මත යොදන පුතිකියාවෙහි තිරස් හා සිරස් සංරචක සොයන්න. $\tan \alpha = \frac{\sqrt{3}}{9}$ බවත් පෙන්වන්න.

(b) රූපයෙහි පෙන්වා ඇති රාමු සැකිල්ල ඒවායේ කෙළවරවල දී සුමට ලෙස ස<mark>න්ධි</mark> කළ AB,BC,BD,DC හා AC සැහැල්ලු දඬු පහ<mark>කින්</mark> සමන්විත වේ.

මෙහි AB = CB = a ද CD = 2a ද $B\hat{A}C = \frac{\pi}{6}$ ද බව දී ඇත. රාමු සැකිල්ල A හි දී අචල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. D සන්ධියේ දී W භාරයක් එල්ලා, AC සිරස්ව ද CD තිරස්ව ද ඇතිව සිරස් තලයක රාමු සැකිල්ල සමතුලිතව තබා ඇත්තේ C සන්ධියේ දී AB දණ්ඩට සමාන්තරව රූපයේ පෙන්වා ඇති දිශාවට යෙදූ P බලයක් මගිනි. බෝ අංකනය භාවිතයෙන් D,B හා C සන්ධි සඳහා පුතාාබල සටහනක් අඳින්න.

ඒ නයින්,

- (i) ආතති ද තෙරපුම් ද යන්න පුකාශ කරමින් දඬු පහේම පුතාහබල, හා
- (ii) P හි අගය සොයන්න.

- ${f 16.}$ (i) අරය a වූ තුනී ඒකාකාර අර්ධ වෘත්තාකාර කම්බියක ස්කන්ධ කේන්දය එහි කේන්දයේ සිට ${2a\over \pi}$ දුරකින් ද
 - (ii) අරය a වූ තුනී ඒකාකාර අර්ධ ගෝලාකාර කබොළක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $\frac{a}{2}$ දුරකින් ද පිහිටන බව පෙන්වන්න.

කේන්දුය O හා අරය 2a වූ තුනී ඒකාකාර අර්ධ ගෝලාකාර කබොළකට රූපයේ දැක්වෙන පරිදි දිග $2\pi a$ වූ AB සෘජු කොටසකින් ද BD විෂ්කම්භය AB ට ලම්බ වන පරිදි, අරය a වූ BCD අර්ධ වෘත්තාකාර කොටසකින් ද සමන්විත ඒකාකාර කම්බියකින් සාදනු ලැබූ ABCD තුනී මීටක් දෘඪ ලෙස සවි කිරීමෙන් හැන්දක් සාදා ඇත. A ලක්ෂාය අර්ධ ගෝලයේ ගැට්ට මත ඇති අතර OA යන්න AB ට ලම්බ ද OD යන්න AB ට සමාන්තර ද වේ. තව ද BCD යන්න OABD හි තලයේ පිහිටා ඇත. අර්ධ ගෝලයේ ඒකක වර්ගඵලයක ස්කන්ධය σ ද මීටෙහි ඒකක දිගක ස්කන්ධය $\frac{a\sigma}{2}$ ද වේ. හැන්දේ ස්කන්ධ කේන්දුය, OA සිට පහළට $\frac{2}{19\pi}\Big(8\pi-2\pi^2-1\Big)a$ දුරකින් ද O හා D හරහා යන රේඛාවේ සිට $\frac{5}{19}a$ දුරකින් ද Oහා D හරහා යන රේඛාවේ සිට $\frac{5}{19}a$ දුරකින් ද Oහා Oහරහා යන රේඛාවේ සිට Oව පහළට පහිටන බව පෙන්වන්න.

රඑ තිරස් මේසයක් මත, අර්ධ ගෝලාකාර පෘෂ්ඨය එය ස්පර්ශ කරමින්, හැන්ද තබා ඇත. අර්ධ ගෝලාකාර පෘෂ්ඨය හා මේසය අතර ඝර්ෂණ සංගුණකය $\frac{1}{7}$ කි. \overrightarrow{AO} දිශාවට A හි දී යොදනු ලබන තිරස් බලයක් මගින් OD සිරස්ව ඇතිව හැන්ද සමතුලිතතාවයේ තැබිය හැකි බව පෙන්වන්න.

- 17.(a) ආරම්භයේ දී එක එකක් සුදු පාට හෝ කළු පාට වූ, පාටින් හැර අන් සෑම අයුරකින්ම සමාන බෝල 3 ක් පෙට්ටියක අඩංගු වේ. දැන්, පාටින් හැර අන් සෑම අයුරකින්ම පෙට්ටියේ ඇති බෝලවලට සමාන සුදු පාට බෝලයක් පෙට්ටිය තුළට දමා ඉන්පසු සසම්භාවී ලෙස බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. පෙට්ටියේ ඇති බෝලවල ආරම්භක සංයුති හතර සම සේ භවා වේ යැයි උපකල්පනය කරමින්,
 - (i) ඉවතට ගත් බෝලය සුදු පාට එකක් වීමේ,
 - (ii) ඉවතට ගත් බෝලය සුදු පාට එකක් බව දී ඇති විට ආරම්භයේ දී පෙට්ටිය තුළ හරියටම කළු පාට බෝල 2 ක් තිබීමේ,

සම්භාවිතාව සොයන්න.

(b) μ හා σ යනු පිළිවෙළින් $\left\{x_i:i=1,2,...,n\right\}$ අගයන් කුලකයේ මධානාසය හා සම්මත අපගමනය යැයි ගනිමු. $\left\{\alpha x_i:i=1,2,...,n\right\}$ අගයන් කුලකයේ මධානාසය හා සම්මත අපගමනය සොයන්න; මෙහි α යනු නියනයකි.

එක්තරා සමාගමක සේවකයින් 50 දෙනකුගේ මාසික වැටුප් පහත වගුවේ සාරාංශගත කර ඇත:

මාසික වැටුප (රුපියල් දහසේ ඒවායින්)	සේවකයින් ගණන
5 – 15	9
15 – 25	11
25 – 35	14
35 – 45	10
45 – 55	6

සේවකයින් 50 දෙනාගේ මාසික වැටුප්වල මධානාසය හා සම්මත අපගමනය නිමානය කරන්න.

වසරක ආරම්භයේ දී එක් එක් සේවකයාගේ මාසික වැටුප p% වලින් වැඩි කරනු ලැබේ. ඉහත සේවකයින් 50 දෙනාගේ නව මාසික වැටුප්වල මධානාය රුපියල් $29\ 172$ බව දී ඇත. p හි අගය හා සේවකයින් 50 දෙනාගේ නව මාසික වැටුප්වල සම්මත අපගමනය නිමානය කරන්න.