CODE

338

diaphragm shear or flexural forces around openings or other discontinuities shall satisfy the requirements for collectors in 18.12.7.6 and 18.12.7.7.

COMMENTARY

discontinuities in diaphragms. Figure R18.12.3.2 shows an example. Such elements can be subjected to earthquake axial forces in combination with bending and shear from earthquake or gravity loads.

Fig. R18.12.3.2—Example of diaphragm subject to the requirements of 18.12.3.2 and showing an element having confinement as required by 18.12.7.6.

R18.12.4 Cast-in-place composite topping slab diaphragms

R18.12.4.1 A bonded topping slab is required so that the floor or roof system can provide restraint against slab buckling. Reinforcement is required to ensure the continuity of the shear transfer across precast joints. The connection requirements are introduced to promote a complete system with necessary shear transfers.

R18.12.5 Cast-in-place noncomposite topping slab diaphragms

R18.12.5.1 Composite action between the topping slab and the precast floor elements is not required, provided that the topping slab is designed to resist the design earthquake forces.

R18.12.6 Minimum thickness of diaphragms

R18.12.6.1 The minimum thickness of concrete diaphragms reflects current practice in joist and waffle systems and composite topping slabs on precast floor and

18.12.4 *Cast-in-place composite topping slab diaphragms*

18.12.4.1 A cast-in-place composite topping slab on a precast floor or roof shall be permitted as a structural diaphragm, provided the cast-in-place topping slab is reinforced and the surface of the previously hardened concrete on which the topping slab is placed is clean, free of laitance, and intentionally roughened.

18.12.5 Cast-in-place noncomposite topping slab diaphragms

18.12.5.1 A cast-in-place noncomposite topping on a precast floor or roof shall be permitted as a structural diaphragm, provided the cast-in-place topping slab acting alone is designed and detailed to resist the design earthquake forces.

18.12.6 Minimum thickness of diaphragms

18.12.6.1 Concrete slabs and composite topping slabs serving as diaphragms used to transmit earthquake forces shall be at least 50 mm thick. Topping slabs placed over precast