GPUL XIII Xornadas Libres

Creación de un clúster de Hadoop con Cloudera

David Albela Pérez (@elmadno)

Licencia

Creación de un clúster de Hadoop con Cloudera by David Albela Pérez is licensed under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.

Índice

- Introducción
- Arquitectura
- Requisitos
- Instalación
- HDFS
- MapReduce
- Ecosistema
- Alta Disponibilidad
- Resumen

Computación distribuida

- Procesamiento paralelo en varios cientos o miles de nodos
 - Frameworks como Open MPI o PVM
- Enfocados a distribuir la carga de procesamiento
 - Nodos con alto poder computacional
 - Sistemas separados del almacenamiento

Problemas

- Cuello de botella con gran cantidad de datos
- Hardware caro y programas complejos con sincronización

Grace Murray Hopper

- "In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't try to grow a larger ox"
- "We shouldn't be trying for bigger computers, but for more systems of computers."

Hadoop

- Inspirado en los papers de GFS y MapReduce
- Escalabilidad horizontal
 - Comunicación entre nodos mínima
 - Añadir más nodos incrementa la capacidad y rendimiento
- Construido para commodity hardware

Hadoop

- Plataforma Open Source Java para soluciones Big Data
- Doug Cutting (Lucene, Nutch)
- Componentes
 - Commodity Hardware
 - Sistema de ficheros distribuido (HDFS)
 - Paradigma MapReduce
- Amplio ecosistema (Sqoop, Hive, Pig, Hbase, Mahout, etc.)

Historia

- 2003, Paper Google File System
- 2004, Paper MapReduce publicado por Google
- 2004, Doug Cutting trabajando en Google crea la base de Hadoop para Nutch
- 2006-2008, Doug Cutting se une a Yahoo (web search index)
- Marzo 2006, Apache Hadoop 0.1.0
 - Hadoop es el nombre del peluche de su hijo, un elefante amarillo

Historia

- 2007-2008, The New York Times "convierte" 150 años de historia con Amazon EC2/S3 y Hadoop
 - TIFFs → PDF
 - 4TB + 1.5TB en S3
 - 11M artículos
 - 100 instancias
 - 24 horas
 - Timemachine
 - 405.000 TIFF+XML → PNG+JSON
 - 3,3M de artículos en SGML
 - 36 horas

Historia

- 2009, 3 ingenieros crean Cloudera, más tarde se une Doug Cutting y otros ingenieros como Tom White
- 2010, Framework MapReduce algormitmos genéticos
- 2012, Informe Gartner 4.4M Jobs for Big Data
- 2014, A lot of Startups for Big Data
 - ScalingData 'Killer-app' (email, mensajería instantánea, videojuegos online)
 - SNAP, AmpLAB (Berkeley)

SNAP, ampLab (Berkeley) 2014

- Secuenciador de alineamiento de ADN Open Source
 - http://snap.cs.berkeley.edu/
- Profesor David Patterson (Berkeley, ampLab)
 - RISC, RAID
- Apache Spark (alternativa MapReduce x100 in memory)
 - Integrado con Hadoop 2 YARN
- Caso de Joshua Osborn
 - En solo 90 min. aisló elementos del ADN
 - El 0.2% pertenecían a una bacteria extraña
- Búsqueda para cura contra el cáncer

SNAP

SNAP is built on Spark, and it's already saving lives. Patterson spoke about a recent case where a boy in Wisconsin was suffering from a mysterious illness that had him trapped in a coma for weeks with brain swelling. He was sent to the University of California, San Francisco, where doctors worked with Patterson and AMPLab to process a sample of his DNA using SNAP. In about 90 minutes, the computer had isolated all the human elements, leaving just the .02 percent that wasn't. It belonged to a rare bacterium, which was treated immediately.

"How do you find the needle in the haystack?" Patterson asked. "Get rid of all the hay."

Cloudera

- Soporte de Apache Hadoop a empresas
- Certificaciones y cursos para Hadoop
- Modelo de negocio freemium
- CDH (Cloudera Distribution Including Apache Hadoop)
 - Distribución de Open Source
 - Paquetes RPM y Deb (Debian/Ubuntu/Suse)
 - Cloudera Manager

Cloudera CDH

Cloudera Standard

HortonWorks

- Alternativa a Cloudera
- Fundada en 2011
- Servicio HDP análogo a CDH de Cloudera
- Certificaciones
- Partners como Yahoo, Microsoft, Red Hat o SAP
- Integración y soporte en muchas aplicaciones

HortonWorks

Mercado

- Cloudera y HortonWorks:
 líderes de mercado
- Informe Forrester Research Q1 2014:
 - Big Data Hadoop Solutions

Índice

- Introducción
- Arquitectura
- Requisitos
- Instalación
- HDFS
- MapReduce
- Ecosistema
- Alta Disponibilidad
- Resumen

Arquitectura

Arquitectura

- Almacenar y procesar los datos en los mismos nodos
- Planificación de trabajo "data locality"
 - Procesamiento en el mismo nodo donde están los datos
- Separación de los datos bloques (64-128 Mbytes)
 - 1000 discos (210MB/s) en paralelo
 - Lectura 3TB en 15 seg.
- Replicación
 - Mismo bloque replicado en 3 nodos

Arquitectura

- Programación en Java al igual que Hadoop
 - Soporta otros lenguajes (Python, PHP, C, etc.)
- Simplificación del procesamiento
 - Trabajo Map(k1, v1) → list(k2, v2)
 - Recopilación intermedia y envío
 - Trabajo Reduce(k2, list(v2)) → list(v3)

Componentes HDFS

NameNode

- Nodo maestro de HDFS
- Almacena Metadatos
 - FSImage (checkpoint)
 - Edits (edit logs)

DataNode

- Nodos esclavos
- Almacenan los bloques

Componentes HDFS

Secundary NameNode

- Liberar carga al NameNode
- Copia de respaldo de FSImage
 - Siempre en nodo alternativo a NameNode
- Aplica los últimos cambios en FSImage
 - Cada hora
 - Cada 64MBytes

Componentes MapReduce

JobTracker

- Gestor de los trabajos MapReduce
- Hasta 4 intentos por cada trabajo
 - En cada nodo que contiene el dato
- Registra el progreso de los trabajos

Tasktracker

- Ejecuta un trabajo sobre un bloque
- Intenta lanzarse sobre el DataNode que tiene el dato

Alta Disponibilidad

- NameNode Active
- NameNode Standby
 - Sustituye al SecondaryNameNode pero con HA
- JournalNode
 - Almacenan los metadatos de los NameNode
 - Al menos 1/3 deben estar levantados
- ZooKeeper
 - Cuidador del ecosistema de Hadoop
 - Habilitar Failover en HA
 - Por defecto es manual

Índice

- Introducción
- Arquitectura
- Requisitos
- Instalación
- HDFS
- MapReduce
- Ecosistema
- Alta Disponibilidad
- Resumen

Requisitos

- NameNode/Jobtracker
 - Requiere gran cantidad de memoria
 - 8-16 Gb
- DataNode/Tasktracker
 - 2-4 discos SAS/SSD
 - ilmportante! No RAID
 - Dual-Quad core
 - 2 tareas por Tasktracker

Requisitos

- Imágenes VM de Cloudera
 - http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-4-7-x.html
- VirtualBox, KVM o VMWare Player
 - En el taller usaremos VirtualBox
- OS 64-bit
 - 2 cores
 - 4Gb-8Gb RAM
 - 15Gb-30 Gb espacio libre en disco

4 VMs

- Configuración básica
 - 768MB-1536 MB de RAM
 - 1 core
- NAT en eth1
- Hostname: eth2 (internal network)
 - elephant: 192.168.0.1/24
 - tiger: 192.168.0.2/24
 - horse: 192.168.0.3/24
 - monkey: 192.168.0.4/24

Importar VM base

Importar VM base

Importar VM base

Adaptador de Red

Índice

- Introducción
- Arquitectura
- Requisitos
- Instalación
- HDFS
- MapReduce
- Ecosistema
- Alta Disponibilidad
- Resumen

Instalación

- Configuración idioma teclado y zona horaria
- Actualización de paquetes
 - \$ yum update -y
- Instalación de vi mejorado (opcional)
 - \$ yum install nano vim emacs -y
- Detener los servicios de Cloudera Manager
 - Servicio web parando todos los procesos
 - Eliminar servicio en arranque

Eliminar Cloudera Manager

Eliminar pseudo-distribuido

- Cloudera Quickstart incluye paquetes pseudo-distribuidos
 - sudo yum remove -y hadoop-0.20-conf-pseudo
- Crear configuración base inicial
 - sudo mv /etc/hadoop/conf /etc/hadoop/conf.alternatives
 - \$ sudo mv /etc/hadoop/conf.empty /etc/hadoop/conf
 - + touch /etc/hadoop/conf/hadoop-env.sh

Re-instalar paquetes

- Es necesario reinstalar los paquetes básicos
- Incluyen la configuración de ficheros y servicios
 - \$ sudo yum reinstall -y hadoop-hdfs-namenode hadoop-hdfsdatanode hadoop-0.20-mapreduce-tasktracker hadoop-hdfssecondarynamenode hadoop-0.20-mapreduce-jobtracker
- Habilitar arranque de los servicios
 - \$ for s in `cd /etc/init.d/; Is hadoop*`; do sudo chkconfig \$s on; done

Configuración de Red

- Configurar tarjeta de red eth1
 - Configuración por defecto (NAT)
 - Gestionada por Network-Manager
 - /etc/sysconfig/network-scripts/ifcfg-eth1

```
DEVICE="eth1"
TYPE=Ethernet
B00TPR0T0="dhcp"
NM_CONTROLLED="yes"
DEFROUTE=yes
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
NAME="eth1"
ONB00T=yes
```


Configuración de Red

- Configurar tarjeta de red eth2
 - /etc/sysconfig/network-scripts/ifcfg-eth2

```
DEVICE="eth2"
TYPE=Ethernet
B00TPR0T0="static"
NM_CONTROLLED="no"
IPADDR=192.168.1.1
PREFIX=24
DEFROUTE=yes
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
NAME="eth2"
ONB00T=yes
```


Configuración de Red

- Configurar hosts del cluster
 - /etc/hosts
 - 192.168.1.1 elephant
 - 192.168.1.2 tiger
 - 192.168.1.3 horse
 - 192.168.1.4 monkey
- Configurar hostname
 - /etc/sysconfig/network
 - NETWORKING=yes
 - HOSTNAME=elephant

Clonar VM

- Apagar elephant
 - System → Shut down
- Clonar desde VirtualBox
 - Machine → Clone...
 - Marcar "Reinitialize the MAC address of all network cards"
 - Full clone (copiar los discos)

Índice

- Introducción
- Arquitectura
- Requisitos
- Instalación
- HDFS
- MapReduce
- Ecosistema
- Alta Disponibilidad
- Resumen

HDFS (Hadoop Distributed FileSystem)

- Separa los datos en bloques (64-128 Mbytes)
- Acceso secuencial
 - Única escritura y lectura secuencial
 - Append (HBase)
- NameNode guarda los metadatos
 - Nombre fichero, permisos, fechas
 - Block-ids: bloques del fichero y que DN lo tienen
- DataNode almacena los bloques
 - Replicación x3

HDFS Architecture

Características

- Data locality
- Rack-aware
 - Replica dos bloques en otro mismo rack
- Switch-aware
 - x máquinas en switches distintos, réplicas en distintas LAN
- Anatomy File Read
 - Hadoop pide información al NameNode
 - El NN devuelve los DN en orden de cercanía

NameNode

- Los bloques nunca pasan por el NameNode
 - Se transfieren entre DataNodes o al cliente
- Memory Allocation
 - Memoria suficiente en el NN para guardar los metadatos:
 - 150-200 bytes / ítem
 - 1 ítem / file metadata
 - 1 ítem / bloque
 - ¿Por qué Hadoop es óptimo para ficheros grandes?
 - Fichero 1Gb / 128Mb por bloque = 8 bloques = 9 ítems
 - Fichero 1Gb / 1Mb por bloque = <u>1025 ítems</u>

NameNode

- Si se cae, no hay acceso al HDFS
 - Hadoop soporta Federación de NameNode
 - Útil si no se tiene suficiente memoria física.
 - Almacena Metadatos
 - FSImage (checkpoint)
 - Edits (edit logs)
 - Opción recomendada Alta Disponibilidad
 - NameNode active y standBy
 - JournalNodes (al menos 3)
 - Failover automático con ZooKeeper

DataNode

- Almacenamiento
 - Bloques de datos
 - Pueden ir en distintos discos
 - Sin RAID
 - Guarda un checksum del bloque
 - Verificación del bloque: lectura
- Enviá heartbeart al NN para indicar disponibilidad
 - Si en 10 min. el NN no detecta un DN → DN muerto
 - NN solicita réplicar los bloques del DN muerto
 - El bloque pasa de DN a DN, nunca por NN

Configuración

- core-site.xml
 - fs.default.name: hdfs://elephant:8020
 - Identifica el NameNode
- hdfs-site.xml
 - dfs.name.dir: /disk1/dfs/nn,/disk2/dfs/nn
 - Ruta de los metadatos de NameNode
 - dfs.data.dir: /disk1/dfs/dn,/disk2/dfs/dn
 - Ruta de los datos de DataNode (más checksum)
 - dfs.http.address: elephant:50070
 - Servicio web información HDFS

Otros parámetros

- core-site.xml
 - hadoop.tmp.dir
 - Ruta temporal, por defecto /tmp/hadoop-\${user-hadoop}
- hdfs-site.xml
 - dfs.block.size
 - Tamaño bloque de datos, por defecto 64Mb
 - dfs.replication
 - Número de bloques replicados, por defecto 3
 - dfs.datanode.du.reserved
 - Espacio reservado por disco no ocupado por los bloques de HDFS en los DataNodes. Recomendable al menos 10Gb

Iniciar servicios

elephant

- Namenode
 - # service hadoop-hdfs-namenode start
- tiger
 - Secundary NameNode
 - # service hadoop-hdfs-secundarynamenode start
- All nodes
 - DataNode
 - # service hadoop-hdfs-datanode start

Índice

- Introducción
- Arquitectura
- Requisitos
- Instalación
- HDFS
- MapReduce
- Ecosistema
- Alta Disponibilidad
- Resumen

Características

- Paralelización automática y distribuída
- Tolerancia a fallos
- Herramientas de monitorización
- Soporte para cualquier lenguaje con Hadoop Streaming
- Los datos intermediarios se escriben en el disco local
- Terminología
 - Job: Mapper, Reducer y una lista de entradas
 - **Task**: Unidad de trabajo
 - Un Job se divide en Tasks

MapReduce

Fases

Mapper

Input: datos de origen

Output: clave, valor

Shuffle & sort

Reordenación de los datos salida de Map

Reduce

- Input: salida Mapper reordenados
- Output: clave, valor resultado esperado
- Tasks: Las define el desarrollador

Componentes

JobTracker

- Gestiona los trabajos MapReduce
- Si una tarea falla, se encarga de lanzarla de nuevo
- Soporta HA
 - JobTracker Activo y Standby

TaskTracker

- Ejecuta las tareas MapReduce en un nodo
- Cada TaskTracker ejecuta por defecto 2 tareas
- Envía heartbeats al JobTracker

Versiones

MRv1

- MapReduce clásica
- Normalmente un solo JobTracker
- Limitación de 1000 nodos para el JobTracker

MRv2 / YARN

- JobTracker → Resource Manager
- TaskTracker → NodeManager
 - Actúa como JobTracker en el nodo
- Ventaja: RM solo reparte la carga entre los distintos nodos

Configuración

- mapred-site.xml
 - mapred.local.dir
 - Rutal local para fichero intermediarios
 - mapred.job.tracker
 - Especifica el JobTracker
 - mapred.system.dir
 - Ruta de ficheros compartidos durante la ejecución
 - mapreduce.jobtracker.staging.root.dir
 - Ficheros de configuración en HDFS

Otros parámetros

- mapred-site.xml
 - mapred.tracktracker.map.task.maximum
 - Nº máximo de tareas Map (40-60)
 - mapred.tracktracker.reduce.task.maximum
 - Nº máximo de tareas Reduce (1.5 * cores)

Iniciar servicios

- horse
 - JobTracker
 - # service hadoop-0.20-mapreduce-jobtracker start
- All nodes
 - TaskTracker
 - # service hadoop-0.20-mapreduce-tasktracker start

Índice

- Introducción
- Arquitectura
- Requisitos
- Instalación
- HDFS
- MapReduce
- Ecosistema
- Alta Disponibilidad
- Resumen

Ecosistema

Ecosistema

- Data Integration
 - Flume, Sqoop
- Batch Processing
 - Hive, Pig
- Database NoSQL
 - HBase
 - NoSQL column-oriented
- Machine Learning & Data Mining
 - Mahout

Flume

- Integración de Datos
 - Cada servidor enviar sus logs a unos o varios agentes Flume
 - Soporta encriptado y compresión
- Agente
 - Almacena los datos en memoria
 - Envía a HDFS cuando alcanza un tamaño
- Canales de memoria
 - Establece tamaño caché
 - Comunica Agente con la fuente origen y el HDFS
 - Data Serialization Avro, Thift

Flume

Sqoop

- Integración de Datos
 - BD relacional ↔ HDFS
 - Soporte JDBC
 - Descargar el driver para el SGBD
 - Para MySQL /usr/share/java/mysql-connector-java.jar
 - Conectores alternativos (Netezza, Teradata, etc.)
- Sqoop ver. 2
 - Funciona como servicio
 - Disponible desde varios clientes
 - Requiere del driver JDBC en los clientes
 - Interfaz web: WebHDFS o Http FS

Sqoop

- Instalación
 - \$ yum install -y sqoop
 - Is /usr/share/java/mysql-connector-java.jar
- Importación tabla de MySQL
 - \$ sqoop import \
- --connect jdbc:mysql://localhost/myDatabase \
- --table myTable --fields-terminated-by '\t' \
- --username myUser --password myPassword

Hive

- Desarrollado en Facebook para análisis de datos
- HiveQL
 - Consultas SQL sobre HDFS
 - Selects con Joins, Group by, Having, Order By
 - Lanza trabajos MapReduce

MetaStore

- Gestor de metadatos en DB relacional (MySQL, Derby)
- MetaStore Local
- Shared MetaStore
 - Múltiples usuarios ejecutan Hive compartido

Hive

Hive

- Instalación
 - \$ sudo yum install -y hive mysql-server libmysql-java
 - Crear MetaStore
 - mysql> create database metastore;
 - Schema /usr/lib/hive/scripts/metastore/upgrade/mysql/hiveschema-0.10.0.mysql.sql;
 - Configurar Hive
 - /etc/hive/conf/hive-site.xml

Pig

- Desarrollado por Yahoo! Para análisis de datos
- Alternativa a Hive
 - No usa sentencias SQL
- Pig Latin
 - Lenguaje de control de flujo
 - Define bolsas a través del intérprete Grunt
 - Soporta JOINs y filtros
 - Sentencia STORE almacena el resultado en HDFS

Pig

- Instalación
 - \$ yum install -y pig
- Ejemplo
 - \$ pig
 - Definir bolsas:
 - grunt> texts = LOAD 'binary_texts' AS (id_text:int, binary_file_id:int, english:chararray, spanish:chararray, created_date:chararray);
 - grunt> files = LOAD 'binary_files' AS (id_file:int, file:chararray, desc:chararray);

- Bases de datos NoSQL
 - Orientado a columnas
- Sobre HDFS
 - Permite almacenar datos de poco tamaño
 - Operaciones APPEND
 - Familias de tablas
- Integración con Hive y Pig
- Acceso
 - hbase shell, Java API, Thrift, RESTful

ZooKeeper

- Servicio centralizado de alta disponibilidad
- Gestiona el cluster de HBase

HBase Master

Nodo maestro para el cliente Hbase

HBase RegionServer

- Recide los datos y procesa las peticiones
- Solo en nodos esclavos

- Instalación
 - sudo yum install -y hbase zookeeper-server hbasemaster hbase-regionserver
- Configuración
 - Por defecto Standalone
 - /etc/hadoop/conf/hdfs-site.xml
 - dfs.datanode.max.xcievers
 - Límite ficheros que puede servir a la ver (4096)
 - hbase.cluster.distributed
 - Habilitar HBase en modo distribuido
 - hbase.rootdir
 - Ruta en HDFS de los datos de HBase

- Ejemplos
 - Crear tabla test
 - \$ hbase shell
 - hbase> create 'test', 'data'
 - Insertar filas
 - hbase> put 'test', 'row1', 'data:1', 'value1'
 - Verificar tabla
 - hbase> scan 'test'
 - Obtener fila
 - hbase> get 'test', 'row1'

Hue

- Contenedor web de aplicaciones de Hadoop
- Gestión de grupos y usuarios
- Hace más cómodo el uso de herramientas de Hadoop

Hue

- Herramientas
 - Hive UI
 - Impala UI
 - File Browser
 - Job Browser
 - Job Designer
 - Oozle Workflow Editor
 - Shell UI

Hue

- Instalación
 - \$ sudo yum install -y hue
 - sudo service hue start
- Configuración
 - /etc/hadoop/conf/hdfs-site.xml
 - dfs.webhdfs.enable
 - Habilitar con "yes" el acceso HDFS
 - /etc/hue/hue.ini
 - webhdfs_url=http://elephant:14000/webhdfs/v1/
 - jobtracker_host=horse
 - server_host=elephant

Mahout

- Herramienta para Machine-Learning
- Facilita la extración de conocimiento
- Incluye algoritmos para Data Mining
 - Recomendación de objetos
 - Clustering o agrupamiento
 - Clasificación
 - Frecuencias de objetos

Mahout

- Integración con Scala & Spark
 - write one, run everywhere
 - Alternativa distribuida para R
- Ejemplos
 - http://mahout.apache.org/users/classification/breimanexample.html

Índice

- Introducción
- Arquitectura
- Requisitos
- Instalación
- HDFS
- MapReduce
- Ecosistema
- Alta Disponibilidad
- Resumen

Alta Disponibilidad

- Si el NameNode cae
 - No se tiene acceso al clúster HDFS
 - SecundaryNameNode solo replica FSImage
- Si el JobTracker cae
 - No se pueden lanzar trabajos MapReduce

Alta Disponibilidad

- NameNode with HA
 - NameNode Active
 - NameNode StandBy
 - SecundaryNameNode no se usa
- JournalNode
 - Almacena los metadatos
 - Los NN necesitan los metadatos actualizados siempre
 - Más de la mitad por cada NN
- ZooKeeper
 - Failover automático

Alta Disponibilidad

Resumen

- Hemos visto
 - Componentes básicos de Hadoop
 - Configuración en modo clúster
 - HDFS
 - Paradigma MapReduce
 - Algunas aplicaciones del ecosistema de Hadoop
 - Configuración alta disponibilidad

Seguridad

- Cualquiera con acceso al clúster
 - Controlar el acceso a los datos
 - No hay autenticación de usuario
 - \$ sudo -u hdfs hadoop fs -ls -R /
 - No soporta cifrado de disco en CDH4
- Soluciones
 - Aislar el clúster
 - Configurar Kerberos
 - http://www.cloudera.com/content/cloudera/en/document ation/cdh4/latest/CDH4-Security-Guide/CDH4-Security-Guide.html

- http://hadoop.apache.org
- http://cutting.wordpress.com
- http://www.cloudera.com/content/cloudera/en/documentation/cd h4/latest/
- http://hortonworks.com
- http://www.gartner.com/newsroom/id/2207915
- https://gigaom.com/2013/03/04/the-history-of-hadoop-from-4nodes-to-the-future-of-data/
- http://blogthinkbig.com/hadoop-open-source-big-data/
- https://gigaom.com/2014/08/02/the-lab-that-created-sparkwants-to-speed-up-everything-including-cures-for-cancer/

- http://wikibon.org/wiki/v/The_Hadoop_Wars:_Cloudera_and_Hort onworks%E2%80%99_Death_Match_for_Mindshare
- http://open.blogs.nytimes.com/2007/11/01/self-service-proratedsuper-computing-fun/
- http://open.blogs.nytimes.com/2008/05/21/the-new-york-timesarchives-amazon-web-services-timesmachine/
- http://www.norbertogallego.com/cloudera-punta-de-lanza-debig-data/2013/07/19/
- http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html
- http://research.google.com/archive/mapreduce-osdi04slides/index-auto-0007.html

- https://forxa.mancomun.org/projects/mapreduceags/
- https://musicbrainz.org/
- http://db-engines.com/en/system/Cassandra%3BHBase %3BMongoDB
- http://www.bdisys.com/27/1/17/BIG%20DATA/HADOOP
- http://www.cloudera.com/content/cloudera/en/training/library/ap ache-hadoop-ecosystem.html

- http://gethue.com/
- http://pig.apache.org
- http://hive.apache.org
- http://sqoop.apache.org
- http://hbase.apache.org
- http://mahout.apache.org
- http://flume.apache.org

