Modules

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 26, 2021

Overview

Modules

Projective Modules Covariant Functor Injective Modules Covariant functor

Observe

Let $f:D\to L$ and $\psi:L\to M$ be two homomorphisms. Then we get a homomorphism $\psi\circ f:D\to L$. That means we have the following commutative diagram:

Theorem

Let D,L, and M be R-modules and let $\psi:L\to M$ be an R-module homomorphism. Then the map

$$\psi'(f) = \psi \circ f.$$

is a group homomorphism. If ψ is injective, then ψ' is also injective, i.e.,

if
$$0 \to L \xrightarrow{\psi} M$$
 is exact,

then $0 \to \operatorname{Hom}_R(D,L) \xrightarrow{\psi'} \operatorname{Hom}_R(D,M)$ is also exact.

Theorem

Let D, L, M, and N be R-modules.

(1) If

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\varphi} N \to 0$$
 is exact,

then the associated sequence

$$0 \to \operatorname{Hom}_R(D,L) \xrightarrow{\psi'} \operatorname{Hom}_R(D,M) \xrightarrow{\varphi'} \operatorname{Hom}_R(D,N)$$
 is exact.

- (2) $f: D \to N$ lifts to $F: D \to M$ if and only if $f \in \operatorname{Im} \varphi'$.
- (3) φ' is surjective if and only if every homomorphism from D to N lifts to a homomorphism from D to M.
- (4) $0 \to \operatorname{Hom}_R(D, L) \xrightarrow{\psi'} \operatorname{Hom}_R(D, M) \xrightarrow{\varphi'} \operatorname{Hom}_R(D, N)$ is exact for all D if and only if $0 \to L \xrightarrow{\psi} M \xrightarrow{\varphi} N$ is exact.

Proposition

Let P be an R-module. Then the following are equivalent:

(1) For any R-modules L, M, and N, if

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\varphi} N \to 0$$

is a short exact sequence, then

$$0 \to \operatorname{Hom}_R(P, L) \xrightarrow{\psi'} \operatorname{Hom}_R(P, M) \xrightarrow{\varphi'} \operatorname{Hom}_R(P, N) \to 0$$

is also a short exact sequence.

(2) For any R-modules M and N, if $M \xrightarrow{\varphi} N \to 0$ is exact, then every R-module homomorphism from P into N lifts to an R-module homomorphism into M, i.e., given $f \in \operatorname{Hom}_R(P,N)$, there is a lift $F \in \operatorname{Hom}_R(P,M)$ making the following diagram commute:

$$\begin{array}{c}
P \\
\downarrow f \\
M \xrightarrow{\varphi} N \longrightarrow 0
\end{array}$$

- (3) If P is a quotient of the R-module M, then P is isomorphic to a direct summand of M, i.e., every short exact sequence $0 \to L \to M \to P \to 0$ splits.
- (4) P is a direct summand of a free R-module.

Corollary

- (1) Free modules are projective.
- (2) A finitely generated module is projective if and only if it is a direct summand of a finitely generated free module.
- (3) Every module is a quotient of a projective module.

Covariant Functor

Fix D.

- ▶ Then given R-module X, $\operatorname{Hom}_R(D,X)$ is an abelian group. So $\operatorname{Hom}_R(D,\underline{\hspace{1cm}})$ behaves like a function.
- lacktriangle Moreover, if $f:X\to Y$ is a R-module homomorphism, then there is an associated group homomorphism $\operatorname{Hom}_R(D,f): \operatorname{Hom}_R(D,X) \to \operatorname{Hom}_R(D,Y).$

Roughly speaking, $\operatorname{Hom}_R(D,\underline{\hspace{1cm}})$ maps not only R-modules to abelian groups but also R-module homomorphisms to group homomorphisms. We call this correspondence a covariant functor.

Left Exact Functor

A covariant functor \mathcal{F} is called a *left exact* functor if

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$

is an exact sequence, then

$$0 \to \mathcal{F}(X) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(Y) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(Z)$$

is exact. If

$$0 \to \mathcal{F}(X) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(Y) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(Z) \to 0,$$

 \mathcal{F} is called an exact functor.

Corollary

- (1) For every R-module D, $\operatorname{Hom}_R(D,\underline{\hspace{1em}})$ is a left exact functor.
- (2) P is projective module if and only if $\operatorname{Hom}_R(P,\underline{\hspace{1cm}})$ is an exact functor.

Example

- (1) If F is a field, every F-module (F-vector space) is projective.
- (2) $\mathbb Z$ is a projective $\mathbb Z$ -module (because it is free). We can show this directly as follows: suppose $f:\mathbb Z\to N$ is a $\mathbb Z$ -module homomorphism and $\varphi:M\to N$ is a surjective homomorphism. f is uniquely determined by n=f(1). Then f can be lifted to a homomorphism $F:\mathbb Z\to M$ by F(1)=m where $\varphi(m)=n$.

Example

(3) \mathbb{Z} -module $\mathbb{Z}/n\mathbb{Z}$ is not projective for $n \geq 2$. Consider the following short exact sequence

$$0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/n\mathbb{Z} \to 0.$$

After taking $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\underline{\hspace{1em}})$, we get

$$0 \to 0 \xrightarrow{n'} 0 \xrightarrow{\pi'} \mathbb{Z}/n\mathbb{Z} \to 0$$

which is not exact at $\mathbb{Z}/n\mathbb{Z}$.

(4) \mathbb{Q}/\mathbb{Z} is not projective.

$$0 \to \mathbb{Z} \to \mathbb{Q} \xrightarrow{\pi} \mathbb{Q}/\mathbb{Z} \to 0$$

does not split since $\mathbb Q$ contains no submodule isomorphic to $\mathbb Q/\mathbb Z.$

- (5) \mathbb{Z} -module \mathbb{Q} is not projective.
- (6) The direct sum of two projective modules is again projective.

Theorem

Let D,M, and N be R-modules and let $\varphi:M\to N$ be an R-module homomorphism. Then the map

$$\varphi'(f) = f \circ \varphi.$$

is a group homomorphism. If φ is surjective, then φ' is injective, i.e.,

if
$$M \xrightarrow{\varphi} N \to 0$$
 is exact,

then $0 \to \operatorname{Hom}_R(N,D) \xrightarrow{\varphi'} \operatorname{Hom}_R(M,D)$ is also exact.

Theorem

Let D, L, M, and N be R-modules.

(1) If

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\varphi} N \to 0$$
 is exact,

then,

$$0 \to \operatorname{Hom}_R(N,D) \xrightarrow{\varphi'} \operatorname{Hom}_R(M,D) \xrightarrow{\psi'} \operatorname{Hom}_R(L,D)$$
 is exact.

- (2) $f: L \to D$ lifts to $F: M \to D$ if and only if $f \in \operatorname{Im} \psi'$.
- (3) ψ' is surjective if and only if every homomorphism from L to D lifts to a homomorphism from M to D.
- (4) $0 \to \operatorname{Hom}_R(N,D) \xrightarrow{\varphi'} \operatorname{Hom}_R(M,D) \xrightarrow{\psi'} \operatorname{Hom}_R(L,D)$ is exact for all D if and only if $L \xrightarrow{\psi} M \xrightarrow{\varphi} N \to 0$ is exact.

Proposition

Let Q be an R-module. Then the following are equivalent:

(1) For any R-modules L, M, and N, if

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\varphi} N \to 0$$

is a short exact sequence, then

$$0 \to \operatorname{Hom}_R(N,Q) \xrightarrow{\varphi'} \operatorname{Hom}_R(M,Q) \xrightarrow{\psi'} \operatorname{Hom}_R(L,Q) \to 0$$

is also a short exact sequence.

(2) For any R-modules L and M, if $0 \to L \xrightarrow{\psi} M$ is exact, then every R-module homomorphism from L into Q lifts to an R-module homomorphism of M into Q, i.e., given $f \in \operatorname{Hom}_R(L,Q)$, there is a lift $F \in \operatorname{Hom}_R(M,Q)$ making the following diagram commute:

(3) If Q is a submodule of the R-module M, then Q is a direct summand of M, i.e., every short exact sequence $0 \to Q \to M \to N \to 0$ splits.

Contravariant Functor

Given D, $\operatorname{Hom}_R(\underline{\hspace{0.4cm}},D)$ has a name, a *contravariant functor*. ('contravariant' means 'direction revsersing'). A contravariant functor $\mathcal F$ is called a *left exact* functor if

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$

is an exact sequence, then

$$0 \to \mathcal{F}(Z) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(Y) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(X)$$

is exact. If

$$0 \to \mathcal{F}(Z) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(Y) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(X) \to 0,$$

 \mathcal{F} is called an exact functor.

Corollary

- (1) For every R-module D, $\operatorname{Hom}_R(\underline{\hspace{1em}},D)$ is a left exact functor.
- (2) Q is injective module if and only if $\operatorname{Hom}_R(\underline{\hspace{1em}},Q)$ is an exact functor.

Definition

- ightharpoonup A \mathbb{Z} -module A is called *divisible* if A=nA for all nonzero integers n.
- ▶ In general, for an integral domain R, a R-module A is called divisible if A = rA for all nonzero $r \in R$.

Example

 \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are divisible.

Proposition

Let Q be an R-module.

- (1) (Baer's Criterion) The module Q is injective if and only if for every left ideal I of R, any R-module homomorphism $g: I \to Q$ can be extended to an R-module homomorphism $G: R \to Q$.
- (2) If R is a P.I.D.(that is, every ideal is principal), then Q is injective if and only if rQ = Q for every nonzero $r \in R$.
- (3) In particular, a \mathbb{Z} -module is injective if and only if it is divisible.
- (4) When R is a P.I.D., quotient modules of injective R-modules are again injective.

Example

- (1) Since \mathbb{Z} is not divisible, \mathbb{Z} is not an injective \mathbb{Z} -module.
- (2) \mathbb{Q} is an injective \mathbb{Z} -module.
- (3) Since $\mathbb Z$ is P.I.D and $\mathbb Q$ is injective, $\mathbb Q/\mathbb Z$ is an injective $\mathbb Z$ -module.
- (4) A direct sum of divisible \mathbb{Z} -modules is again divisible. Hence a direct sum of injective \mathbb{Z} -modules is again injective.
- (5) Suppose R is an integral domain (that is, ab=0 implies a=0 or b=0). An R-module A is said to be a divisible R-module if rA=A for every nonzero $r\in R$. The proof of Proposition 3 shows that an injective R-module is divisible.
- (6) In a field F, every F-module is injective.

Modules L_{Modules} LInjective Modules

Corollary

Every \mathbb{Z} -module is a submodule of an injective \mathbb{Z} -module.

Modules

Modules

Injective Modules

Theorem

Let R be a ring with 1 and let M be an R-module. Then M is contained in an injective R-module.

Step 1

Let M be a left R-module where R is a ring with 1.

- (a) Show that $\operatorname{Hom}_{\mathbb{Z}}(R,M)$ is a left R-module under the multiplication $(r\varphi)(r')=\varphi(r'r)$.
- (b) Suppose that $0 \to A \xrightarrow{\psi} B$ is an exact sequence of R-modules. Prove that if every homomorphism $f: A \to M$ lifts to a homomorphism $F: B \to M$ with $f = F \circ \psi$, then every homomorphism $f': A \to \operatorname{Hom}_{\mathbb{Z}}(R,M)$ lifts to a homomorphism $F': B \to \operatorname{Hom}_{\mathbb{Z}}(R,M)$ with $f' = F' \circ \psi$.
- (c) Prove that if Q is an injective R-module, then $\operatorname{Hom}_{\mathbb{Z}}(R,Q)$ is also an injective R-module.

Step 2

This exercise proves that every left R-module M is contained in an injective left R-module.

- (a) Show that M is contained in an injective \mathbb{Z} -module Q.
- (b) Show that $\operatorname{Hom}_R(R,M) \subset \operatorname{Hom}_{\mathbb{Z}}(R,M) \subset \operatorname{Hom}_{\mathbb{Z}}(R,Q)$.
- (c) Use the R-module isomorphism $M\cong \operatorname{Hom}_R(R,M)$ and the previous exercise to conclude that M is contained in an injective module.

Modules

Modules

Injective Modules

Exercise

Let P_1 and P_2 be R-modules. Prove that $P_1 \oplus P_2$ is a projective R-module if and only if both P_1 and P_2 are projective.

Modules

Modules

Injective Modules

Exercise

Let Q_1 and Q_2 be R-modules. Prove that $Q_1 \oplus Q_2$ is a injective R-module if and only if both Q_1 and Q_2 are injective.

Exercise

This exercise completes the proof of Proposition 2. Suppose that Q is an R-module with the property that every short exact sequence $0 \to Q \to M_1 \to N \to 0$ splits and suppose that the sequence $0 \to L \xrightarrow{\psi} M$ is exact. Prove that every R-module homomorphism $f: L \to Q$ can be lifted to an R-module homomorphism $F: M \to Q$ with $f = F \circ \psi$.

The End