Lecture 3. Inference about multivariate normal distribution

3.1 Point and Interval Estimation

Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. $N_p(\mu, \Sigma)$. We are interested in evaluation of the maximum likelihood estimates of μ and Σ . Recall that the joint density of \mathbf{X}_1 is

$$f(\mathbf{x}) = |2\pi\Sigma|^{-\frac{1}{2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)'\Sigma^{-1}(\mathbf{x} - \mu)\right],$$

for $\mathbf{x} \in \mathbb{R}^p$. The negative log likelihood function, given observations $\mathbf{x}_1^n = {\mathbf{x}_1, \dots, \mathbf{x}_n}$, is then

$$\frac{\ell(\mu, \Sigma \mid \mathbf{x}_1^n)}{2} = \frac{n}{2} \log |\Sigma| + \frac{1}{2} \sum_{i=1}^n (\mathbf{x}_i - \mu)' \Sigma^{-1} (\mathbf{x}_i - \mu) + c$$

$$= \frac{n}{2} \log |\Sigma| + \frac{n}{2} (\bar{\mathbf{x}} - \mu)' \Sigma^{-1} (\bar{\mathbf{x}} - \mu) + \frac{1}{2} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})' \Sigma^{-1} (\mathbf{x}_i - \bar{\mathbf{x}}).$$

On this end, denote the centered data matrix by $\tilde{\mathbf{X}} = [\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n]_{p \times n}$, where $\tilde{\mathbf{x}}_i = \mathbf{x}_i - \bar{\mathbf{x}}$. Let

$$\mathbf{S}_0 = \frac{1}{n}\tilde{\mathbf{X}}\tilde{\mathbf{X}}' = \frac{1}{n}\sum_{i=1}^n \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i'.$$

Proposition 1. The m.l.e. of μ and Σ , that jointly minimize $\ell(\mu, \Sigma \mid \mathbf{x}_1^n)$, are

$$\hat{\mu}^{MLE} = \bar{\mathbf{x}},$$

$$\hat{\Sigma}^{MLE} = \mathbf{S}_0.$$

Note that \mathbf{S}_0 is a biased estimator of Σ . The sample variance–covariance matrix $\mathbf{S} = \frac{n}{n-1}\mathbf{S}_0$ is unbiased.

For interval estimation of μ , we largely follow Section 7.1 of Härdle and Simar (2012). First note that since $\mu \in \mathbb{R}^p$, we need to generalize the notion of intervals (primarily defined for \mathbb{R}^1) to higher dimension. A simple extension is a direct product of marginal intervals: for intervals a < x < b and c < y < d, we obtain a rectangular region $\{(x, y) \in \mathbb{R}^2 : a < x < b, c < y < d\}$.

A confidence region $A \in \mathbb{R}^p$ is composed of the values of a function of (random) observations $\mathbf{X}_1, \ldots, \mathbf{X}_n$. $A = A(\mathbf{X}_1^n)$ is a confidence region of size $1 - \alpha \in (0, 1)$ for parameter μ if

$$P(\mu \in A) \ge 1 - \alpha$$
, for all $\mu \in \mathbb{R}^p$.

(Elliptical confidence region) Corollary 7 in lecture 2 provides a pivot which paves a way to construct a confidence region for μ . Since $\frac{n-p}{p}(\bar{\mathbf{X}}-\mu)'\mathbf{S}_0^{-1}(\bar{\mathbf{X}}-\mu) \sim F_{p,n-p}$ and $P\left((\bar{\mathbf{X}}-\mu)'\mathbf{S}_0^{-1}(\bar{\mathbf{X}}-\mu) < \frac{p}{n-p}F_{1-\alpha;p,n-p}\right) = 1-\alpha$,

$$A = \left\{ \mu \in \mathbb{R}^p : (\bar{\mathbf{X}} - \mu)' \mathbf{S}_0^{-1} (\bar{\mathbf{X}} - \mu) < \frac{p}{n-p} F_{1-\alpha;p,n-p} \right\}$$

is a confidence region of size $1 - \alpha$ for parameter μ .

(Simultaneous confidence intervals) Simultaneous confidence intervals for all linear combinations of elements of μ , $\mathbf{a}'\mu$ for arbitrary $\mathbf{a} \in \mathbb{R}^p$, provides confidence of size $1 - \alpha$ for all intervals covering $\mathbf{a}'\mu$ including the marginal means μ_1, \ldots, μ_p . We are interested in evaluating lower and upper bounds $L(\mathbf{a})$ and $U(\mathbf{a})$ satisfying

$$P(L(\mathbf{a}) < \mathbf{a}' \mu < U(\mathbf{a}), \text{ for all } \mathbf{a} \in \mathbb{R}^p) \ge 1 - \alpha, \text{ for all } \mu \in \mathbb{R}^p.$$

First consider a single confidence interval by fixing a particular vector **a**. To evaluate a confidence interval for $\mathbf{a}'\mu$, write new random variables $Y_i = \mathbf{a}'\mathbf{X}_i \sim N_1(\mathbf{a}'\mu, \mathbf{a}'\Sigma\mathbf{a})$ ($i = 1, \ldots, n$), whose squared t-statistic is $t^2(\mathbf{a}) = n\frac{(\mathbf{a}'\mu - \mathbf{a}'\bar{\mathbf{X}})^2}{\mathbf{a}'\mathbf{S}\mathbf{a}} \sim F_{1,n-1}$. Thus, for any fixed **a**,

$$P(t^2(\mathbf{a}) \le F_{1-\alpha,1,n-1}) = 1 - \alpha.$$
 (1)

Next, consider many projection vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_M$ (M is finite only for convenience). The simultaneous confidence intervals of the type similar to (1) are then

$$P\left(\bigcap_{i=1}^{M} \{t^2(\mathbf{a}_i) \le h(\alpha)\}\right) \ge 1 - \alpha,$$

for some $h(\cdot)$. By collecting some facts,

- 1. $\max_{\mathbf{a}} t^2(\mathbf{a}) \le h(\alpha)$ implies $t^2(\mathbf{a}_i) \le h(\alpha)$ for all i.
- 2. $\max_{\mathbf{a}} t^2(\mathbf{a}) = n(\mu \bar{\mathbf{X}})' \mathbf{S}^{-1}(\mu \bar{\mathbf{X}}),$
- 3. and Corollary 7 in lecture 2,

we have for $h(\alpha) = \frac{n-1}{n} \frac{p}{n-p} F_{1-\alpha;p,n-p}$,

$$P\left(\bigcap_{i=1}^{M} \{t^{2}(\mathbf{a}_{i}) \leq h(\alpha)\}\right) \geq P\left(\max_{\mathbf{a}} t^{2}(\mathbf{a}) \leq h(\alpha)\right) = 1 - \alpha.$$

Proposition 2. Simultaneously for all $\mathbf{a} \in \mathbb{R}^p$, the interval

$$\mathbf{a}'\mathbf{\bar{X}} \pm \sqrt{h(\alpha)\mathbf{a}'\mathbf{S}\mathbf{a}}$$

contains $\mathbf{a}'\mu$ with probability $1-\alpha$.

Example 1. From the Golub gene expression data, with dimension d = 7129, take the first and 1674th variables (genes), to focus on the bivariate case (p = 2). There are two populations: 11 observations from AML, 27 from ALL. Figure 1 illustrates the elliptical confidence region of size 95% and 99%. Figure 2 compares the elliptical confidence region with the simultaneous confidence intervals for $\mathbf{a}_1 = (1,0)'$ and $\mathbf{a}_2 = (0,1)'$.

Figure 1: Elliptical confidence regions of size 95% and 99%.

Figure 2: Simultaneous confidence intervals of size 95%

3.2 Hypotheses testing

Consider testing a null hypothesis $H_0: \theta \in \Omega_0$ against an alternative hypothesis $H_1: \theta \in \Omega_1$. The principle of likelihood ratio test is as follows: Let L_0 be the maximized likelihood under $H_0: \theta \in \Omega_0$, and L_1 be the maximized likelihood under $\theta \in \Omega_0 \cup \Omega_1$. The likelihood ratio statistic, or sometimes called Wilks statistic, is then

$$W = -2\log(\frac{L_0}{L_1}) \ge 0$$

The null hypothesis is rejected if the observed value of W is large. In some cases the exact distribution of W under H_0 can be evaluated. In other cases, Wilks' theorem states that for large n (sample size),

$$W \stackrel{\mathcal{L}}{\Longrightarrow} \chi_{\nu}^2$$

where ν is the number of free parameters in H_1 , not in H_0 . If the degrees of freedom in Ω_0 is q and the degrees of freedom in $\Omega_0 \cup \Omega_1$ is r, then $\nu = r - q$.

Consider testing hypotheses on μ and Σ of multivariate normal distribution, based on n-sample $\mathbf{X}_1, \ldots, \mathbf{X}_n$.

case I: $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0, \quad \Sigma$ is known.

In this case, we know the exact distribution of the likelihood ratio statistic

$$W = n(\bar{\mathbf{x}} - \mu_0)' \Sigma^{-1}(\bar{\mathbf{x}} - \mu_0) \sim \chi_p^2,$$

under H_0 .

case II: $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$, Σ is unknown.

The m.l.e. under H_1 are $\hat{\mu} = \bar{\mathbf{x}}$ and $\hat{\Sigma} = \mathbf{S}_0$. The restricted m.l.e. of Σ under H_0 is $\hat{\Sigma}_{(0)} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mu_0)(\mathbf{x}_i - \mu_0)' = \mathbf{S}_0 + \delta \delta'$, where $\delta = \sqrt{n}(\bar{\mathbf{x}} - \mu_0)$. The likelihood ratio statistic is then

$$W = n \log |\mathbf{S}_0 + \delta \delta'| - n \log |\mathbf{S}_0|.$$

It turns out that W is a monotone increasing function of

$$\boldsymbol{\delta}' \mathbf{S}^{-1} \boldsymbol{\delta} = n(\bar{\mathbf{x}} - \mu_0) \mathbf{S}^{-1} (\bar{\mathbf{x}} - \mu_0),$$

which is the Hotelling's $T^2(n-1)$ statistic.

case III: $H_0: \Sigma = \Sigma_0$, $H_1: \Sigma \neq \Sigma_0$, μ is unknown.

We have the likelihood ratio statistic

$$W = -n\log|\Sigma_0^{-1}\mathbf{S}_0| - np + n\operatorname{trace}(\Sigma_0^{-1}\mathbf{S}_0).$$

This is the case where the exact distribution of W is difficult to evaluate. For large n, use Wilks' theorem to approximate the distribution of W by χ^2_{ν} with the degrees of freedom $\nu = p(p+1)/2$.

Next, consider testing the equality of two mean vectors. Let $\mathbf{X}_{11}, \dots, \mathbf{X}_{1n_1}$ be i.i.d. $N_p(\mu_1, \Sigma)$ and $\mathbf{X}_{21}, \dots, \mathbf{X}_{2n_2}$ be i.i.d. $N_p(\mu_2, \Sigma)$.

case IV: $H_0: \mu_1 = \mu_2, \quad H_1: \mu_1 \neq \mu_2, \quad \Sigma$ is unknown. Since

$$\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_2 \sim N_p(\mu_1 - \mu_2, \frac{n_1 + n_2}{n_1 n_2} \Sigma),$$

 $(n_1 + n_2 - 2)\mathbf{S}_P \sim W_p(n_1 + n_2 - 2, \Sigma),$

we have Hotelling's \mathbb{T}^2 statistic for two-sample problem

$$T^{2}(n_{1}+n_{2}-2)=\frac{n_{1}n_{2}}{n_{1}+n_{2}}(\bar{\mathbf{X}}_{1}-\bar{\mathbf{X}}_{2})'\mathbf{S}_{P}^{-1}(\bar{\mathbf{X}}_{1}-\bar{\mathbf{X}}_{2}),$$

and by Theorem 5 in lecture 2

$$\frac{n_1 + n_2 - p - 1}{(n_1 + n_2 - 2)p} T^2(n_1 + n_2 - 2) \sim F_{p, n_1 + n_2 - p - 1}.$$

Similar to case II above, the likelihood ratio statistic is a monotone function of $T^2(n_1 + n_2 - 2)$.

3.3 Hypothesis testing when p > n

In the high dimensional situation where the dimension p is larger than sample size (p > n-1) or $p > n_1 + n_2 - 2$, the sample covariance \mathbf{S} is not invertable, thus the Hotelling's T^2 statistic, which is essential in the testing procedures above, cannot be computed. We survey important proposals for testing hypotheses on means in high dimension, low sample size data.

A basic idea in generalizing a test procedure for the p > n case is to base the test on a computable test statistic which is also an estimator for $\|\mu - \mu_0\|$ or $\|\mu_1 - \mu_2\|$.

In case II (one sample), Dempster (1960) proposed to replace \mathbf{S}^{-1} in Hotelling's statistic by $(\operatorname{trace}(\mathbf{S})\mathbb{I}_p)^{-1}$. He showed that under $H_0: \mu = \mathbf{0}$,

$$T_D = \frac{n\bar{\mathbf{X}}'\bar{\mathbf{X}}}{\mathrm{trace}(\mathbf{S})} \sim F_{r,(n-1)r},$$
 approximately,

for $r = \frac{(\operatorname{trace}(\Sigma))^2}{\operatorname{trace}(\Sigma^2)}$, a measure of sphericity of Σ . An estimator \hat{r} of r is used in testing.

Bai and Saranadasa (1996) proposed to simply replace \mathbf{S}^{-1} in Hotelling's statistic by \mathbb{I}_p , yielding $T_B = n\bar{\mathbf{X}}'\bar{\mathbf{X}}$. However $\bar{\mathbf{X}}'\bar{\mathbf{X}}$ is not an unbiased estimator of $\mu'\mu$ since $E(\bar{\mathbf{X}}'\bar{\mathbf{X}}) = \frac{1}{n}\mathrm{trace}(\Sigma) + \mu'\mu$. They showed that the standardized statistic

$$M_B = \frac{n\bar{\mathbf{X}}'\bar{\mathbf{X}} - \operatorname{trace}(\mathbf{S})}{\widehat{\operatorname{sd}}(n\bar{\mathbf{X}}'\bar{\mathbf{X}} - \operatorname{trace}(\mathbf{S}))} = \frac{n\bar{\mathbf{X}}'\bar{\mathbf{X}} - \operatorname{trace}(\mathbf{S})}{\sqrt{\frac{2(n-1)n}{(n-2)(n+1)}\left(\operatorname{trace}(\mathbf{S}^2) - \frac{1}{n}(\operatorname{trace}(\mathbf{S}))^2\right)}}$$

has asymptotic N(0,1) distribution for $p, n \to \infty$.

Srivastava and Du (2008) proposed to replace \mathbf{S}^{-1} in Hotelling's statistic by $D_{\mathbf{S}} = \operatorname{diag}(\mathbf{S})$. Then $T_S = n\bar{\mathbf{X}}'D_{\mathbf{S}}^{-1}\bar{\mathbf{X}} - \frac{n-1}{n-3}p$ can be used to estimate $\frac{n(n-1)}{n-3}\|D_{\Sigma}^{\frac{1}{2}}\mu\|^2$, which is zero under $H_0: \mu = \mathbf{0}$. Srivastava and Du's test statistic is then

$$M_S = \frac{T_S}{\widehat{\mathrm{sd}}(T_S)} = \frac{n\bar{\mathbf{X}}'D_{\mathbf{S}}^{-1}\bar{\mathbf{X}} - \frac{n-1}{n-3}p}{\sqrt{2\mathrm{trace}(\mathbf{R}^2) - \frac{p^2}{n-1}}},$$

which has asymptotic N(0,1) distribution for $p, n \to \infty$. Here $\mathbf{R} = D_{\mathbf{S}}^{-\frac{1}{2}} \mathbf{S} D_{\mathbf{S}}^{-\frac{1}{2}}$ is the sample correlation matrix.

Chen and Qin (2010) improves the two-sample test for mean vectors from that of Bai and Saranadasa (1996). In testing $H_1: \mu_1 = \mu_2$, Bai and Saranadasa (1996) proposed to use $T_B = \bar{\mathbf{X}}_1'\bar{\mathbf{X}}_2 - \frac{n_1+n_2}{n_1n_2} \operatorname{trace}(\mathbf{S}_P)$. The substraction of $\operatorname{trace}(\mathbf{S}_P)$ is to make sure that $E(T_B) = \|\mu_1 - \mu_2\|^2$. Chen and Qin (2010) proposed to not use $\operatorname{trace}(\mathbf{S}_P)$, by considering

$$T_C = \frac{\sum_{i \neq j}^{n_1} \mathbf{X}'_{1i} \mathbf{X}_{1j}}{n_1(n_1 - 1)} + \frac{\sum_{i \neq j}^{n_2} \mathbf{X}'_{2i} \mathbf{X}_{2j}}{n_2(n_2 - 1)} - 2 \frac{\sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{X}'_{1i} \mathbf{X}_{2j}}{n_1 n_2}.$$

Since $E(T_C) = \|\mu_1 - \mu_2\|^2$, Chen and Qin proposed to test based on T_C .

There are many other ideas, including:

- 1. The test statistic is essentially the maximum of p normalized marginal mean differences (Cai et al., 2013);
- 2. Use a generalized inverse of S, denoted by S^- or S^{\dagger} , to replace S^{-1} ;
- 3. Estimate Σ in a way that is invertible;
- 4. Reduce the dimension p of the random vector \mathbf{X} by $\mathbf{Z} = h(\mathbf{X}) \in \mathbb{R}^d$, for d < n, then apply the traditional theory of hypothesis testing.

_____Next lecture is on linear dimension reduction—principal component analysis.

References

- Bai, Z. and Saranadasa, H. (1996), "Effect of high dimension: by an example of a two sample problem," *Statist. Sinica*, 6, 311–329.
- Cai, T. T., Liu, W., and Xia, Y. (2013), "Two-Sample Test of High Dimensional Means under Dependency," To appear in Journal of the Royal Statistical Society: Series B.
- Chen, S. X. and Qin, Y.-L. (2010), "A two-sample test for high-dimensional data with applications to gene-set testing," *The Annals of Statistics*, 38, 808–835.
- Dempster, A. P. (1960), "A significance test for the separation of two highly multivariate small samples," *Biometrics*, 16, 41–50.
- Srivastava, M. S. and Du, M. (2008), "A test for the mean vector with fewer observations than the dimension," *Journal of Multivariate Analysis*, 99, 386–402.

In evaluating the MLE of Σ for MVN, one can use the following famous result.

Lemma 3 (von Neumann). For any $m \times m$ symmetric matrices A and B with eigenvalues $\sigma_A = (\sigma_{A1}, \ldots, \sigma_{Am})'$ and $\sigma_B = (\sigma_{B1}, \ldots, \sigma_{Bm})'$ in decreasing order,

$$|trace(A'B)| \le \sigma'_A \sigma_B$$
,

and the equality holds when A and B have the same eigenvectors.

A general version of von Neumann inequality is:

Lemma 4 (von Neumann). For any $m \times n$ matrices A and B with vectors of singular values σ_A and σ_B in decreasing order,

$$|trace(A'B)| \le \sigma'_A \sigma_B$$

and the equality holds when A and B are simulateneously diagonazable.

The problem was to minimize the negative log-likelihood $\log |\Sigma| + \operatorname{trace}(\Sigma^{-1}S_0)$. The parameter, assumed to be nonnegative definite, is eigen-decomposed into $U\Lambda U'$. Likewise, we can eigen-decompose the real symmetric matrix $S_0 = VDV'$.

$$\log |\Sigma| + \operatorname{trace}(\Sigma^{-1}S_0) = \log |\Lambda| + \operatorname{trace}(U\Lambda^{-1}U'VDV')$$

$$\geq \log |\Lambda| + \operatorname{trace}(\Lambda^{-1}D)$$

$$= \sum_{i=1}^{p} \log(\lambda_i) + \operatorname{trace}(d_i/\lambda_i)$$

$$= \sum_{i=1}^{p} (a_i - \log(a_i)) + \log(d_i),$$

where $a_i = d_i/\lambda_i$, and minimized when $a_i = 1$.