MAT-042: Conceptos preliminares

Felipe Osorio

http://fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Definición 1:

Considere una secuencia de números a_1, a_2, \ldots, a_n . Se define la sumatoria de esta secuencia, como:

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n, \tag{1}$$

donde i denota el índice de la sumatoria, mientras a_i representa un elemento genérico. En este caso, n indica la cantidad de elementos que se están sumando.

Observación:

Es posible apreciar que la suma en (1) puede ser escrita de manera análoga como

$$\sum_{1 \le i \le n} a_i = a_1 + a_2 + \dots + a_n.$$
 (2)

Además, si n=0 el valor de la sumatoria se define como cero.

Sea R un conjunto de índices. Basta considerar el conjunto $R=\{1,2,\ldots,n\}$, para re-escribir la suma en (2) como:

$$\sum_{i \in R} a_i = a_1 + a_2 + \dots + a_n. \tag{3}$$

Observación:

Frecuentemente la notación dada en la Ecuación (3) es utilizada para sumas finitas, esta puede ser adaptada con facilidad para sumas infinitas. Por ejemplo,

$$\sum_{i=1}^{\infty} a_i = \sum_{i \ge 1} a_i = a_1 + a_2 + \cdots.$$

Más formalmente, escribimos

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=1}^{n} a_i.$$

Resultado 1:

Sea a un número real. De este modo,

$$\sum_{i=1}^{n} a = \underbrace{a + a + \dots + a}_{n \text{ términos}} = na.$$

En general, para r < n tenemos

$$\sum_{i=r}^{n} a = (n-r+1) a, \qquad a \in \mathbb{R}.$$

Resultado 2:

Considere la secuencia x_1, x_2, \ldots, x_n y sea a una constante. Entonces,

$$\sum_{i=1}^{n} a x_i = a x_1 + a x_2 + \dots + a x_n = a(x_1 + x_2 + \dots + x_n)$$
$$= a \sum_{i=1}^{n} x_i.$$

En general, sean x_1, x_2, \ldots, x_n y y_1, y_2, \ldots, y_n dos secuencias de números y $a, b \in \mathbb{R}$. Entonces,

$$\sum_{i=1}^{n} (a x_i + b y_i) = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} y_i.$$

Ejemplo (propiedad telescópica):

Considere a_0, a_1, \ldots, a_n una secuencia de números reales, y considere

$$\sum_{i=1}^{n} (a_i - a_{i-1}) = (a_1 - a_0) + (a_2 - a_1) + \dots + (a_{n-1} - a_{n-2}) + (a_n - a_{n-1})$$
$$= -a_0 + (a_1 - a_1) + \dots + (a_{n-1} - a_{n-1}) + a_n$$
$$= a_n - a_0.$$

Ejemplo (suma de una progresión geométrica):

Asuma que $x \neq 1$ y $n \geq 0$. Entonces,

$$a + ax + ax^{2} + \dots + ax^{n} = \sum_{j=0}^{n} ax^{j} = a\left(\frac{1 - x^{n+1}}{1 - x}\right).$$

Las siguientes son igualdades que no satisface la suma:

▶ Sean a_1, \ldots, a_n y b_1, \ldots, b_n dos secuencias de números reales. Entonces, ¹

$$\sum_{i=1}^{n} a_i b_i \neq \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} b_i\right). \tag{4}$$

Un caso particular del anterior es

$$\sum_{i=1}^{n} x_i^2 \neq \left(\sum_{i=1}^{n} x_i\right)^2.$$

▶ En general, si $f: \mathbb{R} \to \mathbb{R}$ es una función no lineal. Entonces

$$\sum_{i=1}^{n} f(x_i) \neq f\left(\sum_{i=1}^{n} x_i\right).$$

Basta notar que la cantidad de términos involucrados en cada uno de los lados de la ecuación anterior es diferente.

En ocasiones disponemos de secuencias números indexados mediante dos (o más) índices, es decir $\{a_{ij}\}$ para $i=1,\ldots,m; j=1,\ldots,n$. Suponga que deseamos sumar todos los elementos del conjunto $\{a_{ij}\}$. Es decir,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} = a_{11} + \dots + a_{1n} + \dots + a_{m1} + \dots + a_{mn}.$$

Notamos fácilmente que podemos intercambiar el orden de las sumas. En efecto,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}$$

Observación:

Se debe resaltar que la operación de intercambiar el orden de las sumas no siempre es válido para series infinitas.

Retomando el resultado de la Ecuación (4), es válido considerar

$$\left(\sum_{i=1}^{m} a_i\right)\left(\sum_{j=1}^{n} b_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j,$$

para comprender mejor esta ecuación, considere un caso especial

$$\left(\sum_{i=1}^{2} a_i\right) \left(\sum_{j=1}^{3} b_j\right) = (a_1 + a_2)(b_1 + b_2 + b_3)$$

$$= (a_1b_1 + a_1b_2 + a_1b_3) + (a_2b_1 + a_2b_2 + a_2b_3)$$

$$= \sum_{i=1}^{2} \left(\sum_{j=1}^{3} a_ib_j\right).$$

Asimismo

$$\left(\sum_{i=1}^{n} x_{i}\right)^{2} = \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{j=1}^{n} x_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}$$

Retomando el resultado de la Ecuación (4), es válido considerar

$$\left(\sum_{i=1}^{m} a_i\right)\left(\sum_{j=1}^{n} b_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j,$$

para comprender mejor esta ecuación, considere un caso especial

$$\left(\sum_{i=1}^{2} a_i\right) \left(\sum_{j=1}^{3} b_j\right) = (a_1 + a_2)(b_1 + b_2 + b_3)$$

$$= (a_1b_1 + a_1b_2 + a_1b_3) + (a_2b_1 + a_2b_2 + a_2b_3)$$

$$= \sum_{i=1}^{2} \left(\sum_{j=1}^{3} a_ib_j\right).$$

Asimismo,

$$\left(\sum_{i=1}^{n} x_i\right)^2 = \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_j\right) = \sum_{i=1}^{n} \sum_{i=1}^{n} x_i x_j.$$

Ejemplo:

Otras sumas útiles (que pueden ser probadas usando inducción) son:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

Existe una notación análoga para productos. Considere la siguiente definición

Definición 2:

Sea a_1, a_2, \ldots, a_n una secuencia de números. Se define la productoria de esta secuencia, como:

$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdots a_n.$$

En general, podemos escribir

$$\prod_{i\in R}a_i,$$

donde R representa un conjunto de índices. Note que si no existe algún entero $i\in R$, el producto se define con el valor uno.

Ejemplo (factorial de un número):

Un ejemplo del uso de productorios es:

$$1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n = \prod_{j=1}^{n} j = n!$$

que se denomina n factorial. Evidentemente,

$$n! = (n-1)! n.$$

Recuerde que 0! por definición es 1.2

 $^{^{2}}$ Para n=1, tenemos $1!=0!\cdot 1\Longrightarrow 0!=1!/1=1.$

Resultado (Teorema del Binomio):

Si a y b son números reales y n es un entero positivo, entonces el producto $(a+b)^n$ puede ser escrito como

$$(a+b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^{n-k} b^k.$$

Usaremos la notación,

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Ejemplo (cuadrado del binomio):

Considere

$$(a+b)^2 = \sum_{k=0}^{2} {2 \choose k} a^{2-k} b^k = {2 \choose 0} a^2 b^0 + {2 \choose 1} a^1 b^1 + {2 \choose 2} a^0 b^2.$$

Notando que,

$$\binom{2}{0} = \frac{2!}{0!(2-0)!} = 1, \quad \binom{2}{1} = \frac{2!}{1!(2-1)!} = 2, \quad \binom{2}{2} = \frac{2!}{2!(2-2)!} = 1,$$

obtenemos,

$$(a+b)^2 = a^2 + 2ab + b^2$$

Ejemplo:

Suponga que disponemos de 4 ratones R_1,R_2,R_3 y R_4 y se desea calcular el número de subconjuntos que podemos formar con 2 ratones. Note que,

$$R_1R_2,\ R_1R_3,\ R_1R_4,\ R_2R_3,\ R_2R_4,\ R_3R_4.$$

En efecto, podemos contar el número de combinaciones que es posible formar escogiendo 2 ratones desde un conjunto de 4 elementos, como:

$${4 \choose 2} = \frac{4!}{2!(4-2)!} = \frac{1 \cdot 2 \cdot 3 \cdot 4}{2!2!} = 6.$$

Ejemplo:

Considere

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{n-k} 1^{k} = \sum_{k=0}^{n} {n \choose k}$$
$$= {n \choose 0} + {n \choose 1} + {n \choose 2} + \dots + {n \choose n}$$

Definición 3:

La derivada de una función f(x) con respecto a la variable x es una función $f'(x)=\operatorname{d} f(x)/\operatorname{d} x$ definida por

$$f'(x) = \frac{\mathrm{d} f(x)}{\mathrm{d} x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Si esta función es definida para $x=x_0$, la función f(x) se dice diferenciable en $x=x_0$.

Ejemplo:

Considere
$$f(x)=x^2+x$$
, luego
$$f'(x)=\lim_{h\to 0}\frac{(x+h)^2+(x+h)-x^2-x}{h}$$

$$=\lim_{h\to 0}\frac{x^2+2xh+h^2+x+h-x^2-x}{h}$$

$$=\lim_{h\to 0}2x+1+h=2x+1$$

Ejemplo:

Considere

$$f(x) = \frac{1}{x+1}, \qquad x \neq -1.$$

En este caso,

$$f'(x) = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{x+h+1} - \frac{1}{x+1} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{x+1-(x+h+1)}{(x+h+1)(x+1)} \right)$$
$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{-h}{x^2+xh+2x+h+1} \right) = \frac{-1}{x^2+2x+1}$$
$$= \frac{-1}{(x+1)^2}, \qquad x \neq -1.$$

Tenemos que f(x) = 1/(x+1) no es diferenciable en x = -1.

Preliminares: Reglas de diferenciación

Observación:

Es tedioso calcular el procedimiento anterior para cada función f(x). Se desea una manera eficiente de calcular derivadas para funciones que habitualmente surgen en cálculo.

Ejemplo:

Considere la función f(x) = u(x)v(x), donde u(x) y v(x) son funciones diferenciables. Desde la definición de derivada tenemos³

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{u(x+h)v(x+h) - u(x)v(x)}{h}$$

$$\stackrel{?}{=} u(x)v'(x) + v(x)u'(x).$$

 $^{^3}$ La notación $\stackrel{?}{=}$ quiere decir que Ud. debe verificar los detalles! ;)

Preliminares: Reglas de diferenciación

Reglas de diferenciación:

Sean u y v funciones de x y a,c,n constantes. Entonces,

(a)
$$\frac{\mathrm{d} c}{\mathrm{d} x} = 0$$

(b)
$$\frac{\mathrm{d}(cu)}{\mathrm{d}x} = c\frac{\mathrm{d}u}{\mathrm{d}x}$$
.

$$(\mathsf{c}) \ \frac{\mathrm{d}(u+v)}{\mathrm{d}\,x} = \frac{\mathrm{d}\,u}{\mathrm{d}\,x} + \frac{\mathrm{d}\,v}{\mathrm{d}\,x}.$$

$$(\mathrm{d}) \ \frac{\mathrm{d}(uv)}{\mathrm{d}\,x} = u \frac{\mathrm{d}\,v}{\mathrm{d}\,x} + v \frac{\mathrm{d}\,u}{\mathrm{d}\,x}.$$

(e)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u}{v} \right) = \frac{1}{v^2} \left(v \frac{\mathrm{d}u}{\mathrm{d}x} - u \frac{\mathrm{d}v}{\mathrm{d}x} \right).$$

(f)
$$\frac{\mathrm{d}(u^n)}{\mathrm{d}x} = nu^{n-1}\frac{\mathrm{d}u}{\mathrm{d}x}.$$

Definición 4 (Regla de la cadena):

Suponga que y=f(u) y u=g(x), donde f(u) y g(x) son funciones diferenciables. Entonces, y=f(g(x)) y la derivada de y con relación a x es:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x} = f'(g(x))g'(x).$$

Observación:

La derivada de $f^{\prime}(x)$ es llamada la segunda derivada de f(x) y anotamos

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$$
, $\frac{\mathrm{d}^2 f(x)}{\mathrm{d} x^2}$, $f''(x)$.

Análogamente podemos anotar f'''(x) para la tercera derivada. Mientras que la n-ésima derivada, escrita como:

$$\frac{\mathrm{d}^n f(x)}{\mathrm{d} x^n}$$
, o bien $f^{(n)}(x)$,

es obtenida mediante diferenciar y = f(x) n veces.

Preliminares: Máximos y mínimos

Preliminares: Máximos y mínimos

- ▶ Una gran cantidad de información sobre la función y = f(x) está contenida en la derivada dy/dx = f'(x).
- La segunda derivada f''(x) permite obtener información sobre la curvatura de la función f(x).
- Un punto x_0 tal que $f'(x_0)=0$ es llamado un punto crítico
- ▶ Si un punto x_* satisface $f'(x_*) = 0$ y $f''(x_*) > 0$, este es un mínimo local.
- ▶ Si $f'(x_*) = 0$ y $f''(x_*) < 0$, entonces x_+ es un máximo local.

Preliminares: Reglas de diferenciación

Ejemplo:

Determine el máximo de la función

$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 17.$$

Diferenciando, obtenemos

$$f'(x) = 4x^3 - 24x^2 + 44x - 24 = 4(x - 1)(x - 2)(x - 3),$$

$$f''(x) = 12x^2 - 48x + 44 = 4(3x^2 - 12x + 11).$$

Los puntos críticos ocurren en $x=1,\ x=2$ y x=3. Note que,

$$f(1) = 8,$$
 $f''(1) = 8 > 0,$

de modo que el punto (1,8) es un mínimo local de f(x). Mientras que,

$$f(2) = 9,$$
 $f''(2) = -4 < 0,$

es decir, (2,9) es un máximo local.

Preliminares: Máximos y mínimos

Dos funciones fundamentales son:

$$f(x) = a^x,$$
 $g(x) = \log_a(x),$

las funciones exponencial y logarítmica,4 respectivamente

Si m es un entero positivo, entonces

$$a^m = \underbrace{a \cdot a \cdots a}_{m \text{ veces}}.$$

Mientras que, para n entero positivo, $a^{1/n}$ denota la raíz n-ésima de a. Tenemos también,

$$a^{m/n} = (a^{1/n})^m, \qquad a^{-m/n} = \frac{1}{a^{m/n}}.$$

Asimismo,

$$a^m \cdot a^n = a^{m+n}, \qquad \frac{a^m}{a^n} = a^{m-n}.$$

Finalmente

$$(ab)^n = a^n b^n, \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

⁴Definida para cualquier número $a \in \mathbb{R}$ positivo.

Para $y=a^x$ podemos preguntar: ¿Cuál es el valor de x para y dado? La solución es $x=\log_a y \ (y>0)$. Esto es, x es el logaritmo de y en base a.

Propiedades:

Suponga que $a>0\ (a\neq 1)$ y que $x,\ y$ son positivos. Entonces,

- (a) $\log_a(xy) = \log_a x + \log_a y$.
- (b) $\log_a(x/y) = \log_a x \log_a y$.
- (c) $\log_a 1 = 0$, y $\log_a a = 1$.
- (d) $\log_a(x^y) = y \log_a x$.
- (e) Si a < 1, $\log_a x$ es una función creciente de x.
- (f) Si 0 < a < 1, $\log_a x$ es una función decreciente de x.

Es conveniente definir logaritmos usando como base $e \approx 2.71828183...$ En efecto,

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Sea $f(x) = \log_a x$. Entonces,

$$\frac{\operatorname{d} f(x)}{\operatorname{d} x} = \lim_{h \to 0} \frac{\log_a(x+h) - \log_a x}{h} = \lim_{h \to 0} \frac{1}{h} \log_a \Big(\frac{x+h}{x}\Big),$$

pero

$$\frac{1}{h}\log_a\left(\frac{x+h}{x}\right) = \frac{x}{xh}\log_a\left(1+\frac{h}{x}\right) = \frac{1}{x}\log_a\left(1+\frac{h}{x}\right)^{x/h}.$$

Sea u=x/h, como $h\to 0$ tenemos que $u\to \infty$. De ahí que

$$\frac{\mathrm{d}}{\mathrm{d}\,x}\log_a x = \frac{1}{x}\lim_{u\to\infty}\log_a\left(1+\frac{1}{u}\right)^u,$$

como $e = \lim_{u \to \infty} (1 + 1/u)^u$, sigue

$$\frac{\mathrm{d}}{\mathrm{d}x}\log_a x = \frac{1}{x}\log_a e.$$

Para a=e, obtenemos $\mathrm{d}\log_e(x)/\,\mathrm{d}\,x=1/x$. Por esta razón \log_e es llamado logaritmo natural.⁵

 $^{^{5}}$ A continuación, siempre anotaremos \log para el indicar el logaritmo natural

Ejemplo:

Considere x_1, x_2, \ldots, x_n tal que $x_i > 0$ para $i = 1, \ldots, n$. Note que

$$\log\left(\prod_{i=1}^{n} x_{i}^{1/n}\right) = \log\left(x_{1}^{1/n} \cdot x_{2}^{1/n} \cdots x_{n}^{1/n}\right)$$

$$= \log(x_{1}^{1/n}) + \log(x_{2}^{1/n}) + \cdots + \log(x_{n}^{1/n})$$

$$= \frac{1}{n}\log(x_{1}) + \frac{1}{n}\log(x_{2}) + \cdots + \frac{1}{n}\log(x_{n})$$

$$= \frac{1}{n}\sum_{i=1}^{n}\log(x_{i})$$

Definición 5 (función exponencial):

La función exponencial, $\exp(x)$ es definida por la siguiente suma infinita, válida para todo número real x,

$$\exp(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Observación:

Usando el Teorema del binomio, es posible mostrar que:

$$\exp(x) = e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n,$$

y adicionalmente, $\exp(x+y) = \exp(x) \exp(y)$.

Reglas de diferenciación:

Sea u función de x y a una constante. Entonces,

$$(\mathsf{a}) \ \frac{\mathrm{d} \log_a u}{\mathrm{d} \, x} = (\log_a e) \frac{1}{u} \frac{\mathrm{d} \, u}{\mathrm{d} \, x}.$$

(b)
$$\frac{\mathrm{d}\log u}{\mathrm{d}x} = \frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x}.$$

(c)
$$\frac{\mathrm{d} a^u}{\mathrm{d} x} = (\log_e a) a^u \frac{\mathrm{d} u}{\mathrm{d} x}.$$

$$(\mathsf{d}) \ \frac{\mathrm{d}\, e^u}{\mathrm{d}\, x} = e^u \frac{\mathrm{d}\, u}{\mathrm{d}\, x}.$$

Preliminares: Derivadas parciales

Si y = f(u, v), la derivada parcial de y con relación a u es:

$$\frac{\partial f(u,v)}{\partial u} = \lim_{h \to 0} \frac{f(u+h,v) - f(u,v)}{h}.$$

Análogamente la derivada partial de y con respecto a v, adopta la forma:

$$\frac{\partial f(u,v)}{\partial v} = \lim_{h \to 0} \frac{f(u,v+h) - f(u,v)}{h}.$$

De este modo, calcular derivadas parciales no es más difícil que calcular derivadas ordinarias.

Observación:

La definión de derivadas parciales de mayor orden debería ser natural. En efecto,

$$\frac{\partial^2 f(u,v)}{\partial u^2} = \frac{\partial}{\partial u} \left(\frac{\partial f(u,v)}{\partial u} \right),$$

y análogamente para $\partial^2 f(u,v)/\partial v^2$ o $\partial^2 f(u,v)/\partial u\partial v$.

Objetivo:

Dada una función f(x), ¿podemos determinar una función F(x) con la propiedad que F'(x) sea igual a f(x)?

Cualquier función con tal propiedad será llamada antiderivada o integral definida de f(x).

Para f(x) dada, debemos determinar una función y=F(x) tal que $\mathrm{d}\,y/\,\mathrm{d}\,x=f(x)$. La notación convencional para tal solución es:

$$y = F(x) = \int f(x) dx,$$

donde el símbolo \int es llamado integral, mientras que f(x) se dice el integrando

Algunas integrales:

(a)
$$\int dx = x + c.$$

(b)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
, para $n \neq -1$.

(c)
$$\int x^{-1} dx = \log(x) + c$$
.

(d)
$$\int e^{ax} dx = \frac{1}{a}e^{ax} + c$$
.

(e)
$$\int \sin(x) dx = -\cos(x) + c.$$

(f)
$$\int \cos(x) \, \mathrm{d} x = \sin(x) + c.$$

(g)
$$\int af(x) dx = a \int f(x) + c.$$

(h)
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$
.

(i)
$$\int F'(f(x))f'(x) dx = F(f(x)) + c$$
.

Para probar estos resultados basta diferenciar. Por ejemplo, para notar (d),

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{a} e^{ax} + c \right) = e^{ax},$$

mientras que (i) sigue por la regla de la cadena. Note que

$$\frac{\mathrm{d}}{\mathrm{d} x} \big(F(f(x)) + c \big) = \frac{\mathrm{d} F}{\mathrm{d} u} \frac{\mathrm{d} u}{\mathrm{d} x}.$$

Si definimos, u = f(x) tenemos

$$\frac{\mathrm{d}}{\mathrm{d}x}\big(F(f(x))+c\big)=F'(u)\frac{\mathrm{d}f}{\mathrm{d}x}=F'(f(x))f'(x),$$

lo que prueba el resultado.

Ejemplo:

Considere,

$$\int (x^3 + 4x^5) \, \mathrm{d} \, x = \int x^3 \, \mathrm{d} \, x + 4 \int x^5 \, \mathrm{d} \, x = \frac{x^4}{4} + \frac{4}{6} x^6 + c,$$

con c una constante arbitraria.

Ejemplo:

Suponga que deseamos calcular

$$\int (1+x^2)^5 2x \,\mathrm{d}\,x.$$

Sea $u=1+x^2$, entonces $\mathrm{d}\,u/\,\mathrm{d}\,x=2x$. De ahí que,

$$\int (1+x^2)^5 2x \, \mathrm{d} \, x = \int u^5 \, \mathrm{d} \, u = \frac{u^6}{6} + c = \frac{(1+x^2)^6}{6} + c.$$

Suponga que u y v son funciones diferenciables de x. Entonces,

$$\frac{\mathrm{d}}{\mathrm{d} x} u(x)v(x) = u(x)\frac{\mathrm{d} v}{\mathrm{d} x} + v(x)\frac{\mathrm{d} u}{\mathrm{d} x}.$$

Integrando ámbos lados, obtenemos

$$\int \frac{\mathrm{d}}{\mathrm{d} x} u(x) v(x) \, \mathrm{d} x = \int u(x) \frac{\mathrm{d} v}{\mathrm{d} x} \, \mathrm{d} x + \int v(x) \frac{\mathrm{d} u}{\mathrm{d} x} \, \mathrm{d} x.$$

Este resultado es escrito usualmente como:

$$\int u \, \mathrm{d} \, v = uv - \int v \, \mathrm{d} \, u,$$

que es conocido como integración por partes.

Ejemplo:

Considere,

$$\int xe^x \, \mathrm{d} \, x,$$

y escoja u=x y $\mathrm{d}\,v=e^x\,\mathrm{d}\,x.$ Entonces, $\mathrm{d}\,u=\mathrm{d}\,x$ y $v=e^x.$ Integrando por partes, tenemos

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + c.$$

Suponga que $F(x)=\int f(x)\,\mathrm{d}\,x$ es cualquier antiderivada de f(x). Entonces el área bajo la curva y=f(x) entre x=a y x=b, dada por:

$$\int_{a}^{b} f(x) dx = F(b) - F(a),$$

es la integral definida de f(x) entre x=a y x=b. En ocasiones anotamos

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

Ejemplo:

Considere,

$$\int_1^2 x^3 \, \mathrm{d} \, x = \frac{x^4}{4} \Big|_1^2 = \frac{2^4}{4} - \frac{1^4}{4} = 4 - \frac{1}{4} = \frac{5}{4}.$$

Propiedades:

(a)
$$\int_{a}^{a} f(x) dx = 0$$
.

(b)
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
.

(c)
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$
.

Integrales de la forma:

$$\int_0^\infty e^{-x} \, dx, \qquad \int_0^1 \log(x) \, dx, \qquad \int_{-\infty}^\infty \frac{1}{1 + x^2} \, dx,$$

son conocidas como integrales impropias. Por ejemplo,

$$\int_{0}^{\infty} e^{-x} dx = \lim_{b \to \infty} \int_{0}^{b} e^{-x} dx = \lim_{b \to \infty} (-e^{-x}) \Big|_{0}^{b}$$
$$= \lim_{b \to \infty} (1 - e^{-b}) = 1,$$

es una integral impropia convergente, mientras que

$$\int_0^\infty e^x \, \mathrm{d} \, x = \lim_{b \to \infty} \int_0^b e^x \, \mathrm{d} \, x = \lim_{b \to \infty} (e^b - 1) = +\infty,$$

es una integral impropia divergente.

