Statistical Hypothesis Testing

Motonobu Kanagawa

Introduction to Statistics, EURECOM

March 25, 2024

Outline

- 1 Introduction: The Lady Tasting Tea Experiment
- 2 Procedure of Statistical Hypothesis Testing
- Type 1 Error, Type 2 Error and the Power of a Test
- 4 Test Statistics
- 6 P-Value
- 6 Neyman-Pearson Lemma and Likelihood Ratio Test
- Conclusions and Further Reading

The Lady Tasting Tea Experiment [Fisher, 1937, Chapter II]

- There was a lady who claimed that she can distinguish the tastes of tea with milk made in the following two different ways:

Way M: Milk is first poured into the cup, and tea later.

Way T: Tea is first poured into the cup, and milk later.

- Ronald Fisher [Fisher, 1937] came up with an idea of testing her claim by a randomized experiment.

The Lady Tasting Tea Experiment [Fisher, 1937, Chapter II]

- 1) Let's make 8 cups of tea, of which
 - 4 cups are made in Way M.
 - 4 cups are made in Way T.
- 2) Shuffle the order of the 8 cups randomly:
- For instance, assume that as a result, the cups are ordered as:

- This information was not shared to the lady.
- She only knew that 4 of them were made in M; and the other 4 cups in T.

The Lady Tasting Tea Experiment [Fisher, 1937, Chapter II]

3) Ask the lady

- to taste the 8 cups of tea in the given order; and
- to pick up 4 cups of M from the 8 cups.
- In the end, the lady correctly identified all the 4 cups of M from the 8 cups (i.e., did no mistake).
- Fisher concluded that it is likely that she can distinguish the two ways of making tea.
- What was Fisher's reasoning?

Fisher's Reasoning

- In total, there are 70 different ways of choosing the 4 cups for M from the 8 cups

$$70 = \frac{8!}{4!4!} = \frac{8 \times 7 \times 6 \times 5 \times 4}{4 \times 3 \times 2 \times 1}$$

- Assume that the lady
 - was not able to distinguish the tastes (= null hypothesis); and
 - just did a random guess, picking one of the 70 ways randomly.
- Under this assumption, the probability of correctly identifying 4 cups of M from the 8 cups is $1/70 \approx 0.014$:
- This probability is very small, so we can conclude that
 - It is unlikely that the lady is doing a random guess.
 - i.e., the null hypothesis is unlikely to be true.

Fisher's Reasoning

- Assume instead a situation where the lady
 - correctly identified 3 M cups, but
 - wrongly chose 1 cup.
- There are 16 different ways of choosing 3 M cups correctly and one cup wrongly (Exercise: confirm this).
- Thus, under the null hypothesis (= the lady is doing a random guess),
 - the probability of correctly choosing 3 M cups and wrongly choosing 1 cup is $16/70 \approx 0.23$.
- This probability is "not very small," and therefore
 - we cannot deny the null hypothesis that the lady was doing a random guess.

Fisher's Reasoning

- This example illustrates the idea of statistical hypothesis testing and a randomized experiment.
- In this lecture, we'll learn basics of hypothesis testing.
- For reading, I recommend [Rao, 1973, Chapter 7].

Outline

- 1 Introduction: The Lady Tasting Tea Experiment
- 2 Procedure of Statistical Hypothesis Testing
- 3 Type 1 Error, Type 2 Error and the Power of a Test
- 4 Test Statistics
- 6 P-Value
- 6 Neyman-Pearson Lemma and Likelihood Ratio Test
- Conclusions and Further Reading

Hypothesis Testing: Statistical Proof by Contradiction

Hypothesis testing may be understood as a statistics version of Proof by Contradiction:

Proof by Contradiction (Mathematics)

- 1 To prove a statement A, assume that A is not true;
- Starting from the assumption, derive a statement B that produces a contradiction.
- Conclude that the statement A is true.

- Hypothesis testing starts from defining a null hypothesis H_0 and an alternative hypothesis H_1

Null Hypothesis H_0

The hypothesis that you try to reject in the end.

Alternative Hypothesis H_1

The hypothesis that you try to "prove" (statistically).

Example (The lady tasting tea experiment)

- The null hypothesis H₀:
 - The lady cannot distinguish the tastes of tea of different kinds.
- The alternative hypothesis H_1 :
 - The lady can distinguish the tastes of tea of different kinds.

- Let (Ω, \mathcal{F}) be a measurable space, where
 - \bullet Ω is a sample space, consisting possible outcomes of the experiment.
 - \mathcal{F} is a σ -algebra, i.e., a set of subsets of Ω for which probabilities can be defined.
- For the null H_0 and alternative hypotheses H_1 , define the associated probability distributions P_0 and P_1 on (Ω, \mathcal{F}) :

Distributions under the Null and Alternative Hypotheses

- P_0 is the probability distribution on Ω when the null H_0 is true.
- P_1 is the probability distribution on Ω when the alternative H_1 is true.
- We may write P_0 and P_1 in the form of conditional distribution:

$$P(S \mid H_0) := P_0(S), \quad P(S \mid H_1) := P_1(S), \quad S \in \mathcal{F}.$$

Example (The lady tasting tea experiment)

• The sample space Ω consists of 70 different ways of choosing 4 cups of M from 8 cups:

$$\Omega := \{\omega_1, \omega_2, \dots, \omega_{70}\},\$$

where each $\omega_i \in \Omega$ represents one way of ordering, e.g.,

$$\omega_1:=$$
 M-M-M-M-T-T-T $\omega_2:=$ M-M-M-T-M-T-T-T \ldots $\omega_{69}:=$ M-T-T-T-M-M-M-T

 $\omega_{70} := \text{T-T-T-M-M-M-M}$

Example (The lady tasting tea experiment)

• Under the null hypothesis H_0 , the lady gives a random guess; therefore the distribution P_0 under the null is

$$P_0(\{\omega_1\}) = P_0(\{\omega_2\}) = \cdots = P_0(\{\omega_{70}\}) = 1/70.$$

 Under the alternative hypothesis H₁, let's assume that the lady can identify the correct 4 cups of M with probability 1:

$$P_1(\{\omega_{32}\}) = 1$$
, $P(\{\omega_i\}) = 0$ for all $i \neq 32$,

where $\omega_{32} \in \Omega$ is the correct ordering:

$$\omega_{32} := M-M-T-M-T-T-M.$$

Example (The lady tasting tea experiment)

• Note that the way of defining P_1 is not unique: we may define, e.g.,

$$P_1(\{\omega_{32}\}) = 0.9$$
, $P_1(\{\omega_i\}) = 0.1/69$ for all $i \neq 32$,

- This may represent another alternative hypothesis H'_1 that
 - the lady can distinguish tastes of tea of different kinds
 - but may loose her tasting ability with probability 1/10.

- The next step is to decide the level of significance and the critical region for the test.

Significance Level

• Define a small constant $\alpha >$ 0, called the level of significance (e.g., $\alpha = 0.05$ or $\alpha = 0.01$).

Critical Region

- Given a significance level $\alpha > 0$, determine a subset $S_{\alpha} \subset \Omega$ (such that $S_{\alpha} \in \mathcal{F}$), called the critical region, such that
 - **1** the probability of S_{α} under the null H_0 is less than or equal to α :

$$P_0(S_\alpha) \leq \alpha;$$

2 the probability of S_{α} under the alternative H_1

$$P_1(S_\alpha)$$

becomes as large as possible.

Remark

- The second requirement is equivalent to choosing S_{α} so that $P_1(\Omega \setminus S_{\alpha}) = 1 - P_1(S_{\alpha})$ becomes as small as possible.

Example (The lady tasting tea experiment)

- Let's define $\alpha := 0.05$ as our significance level.
- We may define the critical region S_{α} as the singleton set of ω_{32} :

$$S_{\alpha}:=\{\omega_{32}\},$$

where $\omega_{32} := M-M-T-M-T-T-M$ is the correct ordering of 8 cups.

- Then
 - The probability of S_{α} under the null H_0 (the lady cannot distinguish the tastes) is

$$P_0(S_\alpha) = 1/70 \approx 0.014 \le 0.05 = \alpha.$$

② The probability of S_{α} under the alternative H_1 (the lady can perfectly distinguish the tastes) is

$$P_1(S_\alpha) = 1.$$

Example (The lady tasting tea experiment)

- Note that $S_{\alpha} = \{\omega_{32}\}$ is not the only way of defining a critical region.
 - For instance, we may define

$$S_{\alpha} := \{\omega_{31}, \ \omega_{32}, \ \omega_{33}\},\$$

where ω_{31} and ω_{33} are two ways of wrongly identifying one M cup as T.

$$\omega_{31} := M-M-T-M-T-T-M-T,$$

$$\omega_{33} := M-T-M-M-T-T-T-M$$

In this case,

$$P_0(S_\alpha) = 3/70 \approx 0.043 \le 0.05 = \alpha,$$

 $P_1(S_\alpha) = P_1(\{\omega_{32}\}) + P_1(\{\omega_{31}, \omega_{33}\}) = 1 + 0 = 1.$

Example (The lady tasting tea experiment)

• Or even we may define the critical region S_{α} for arbitrary $i=1,2,\ldots,70$ with $i\neq 32$ such that

$$S_{\alpha}:=\{\omega_i\}$$

In this case, we have

$$P_0(S_\alpha) = 1/70 \approx 0.014 \le 0.05 = \alpha,$$

 $P_1(S_\alpha) = 0.$

• Since $P_1(S_\alpha) = 0$, this critical region S_α should not be chosen for our alternative hypothesis H_1 .

Step 3: Obtain a Sample, and Make a Decision

- After deciding a significance level $\alpha>0$ and a critical region $\mathcal{S}_{\alpha}\subset\Omega$, make a statistical decision in the following way:

Statistical decision of whether rejecting H_0 or not

- Obtain a sample $\omega_e \in \Omega$ by performing an experiment.
 - If $\omega_e \in S_\alpha$, we reject the null hypothesis H_0 .
 - If $\omega_e \notin S_\alpha$, we don't reject the null hypothesis H_0 .
- We may say that the test is significant with level α .

Step 3: Obtain a Sample, and Make a Decision

Example (The lady tasting tea experiment)

- Let $\alpha := 0.05$ and $S_{\alpha} := \{\omega_{32}\}.$
- As a result of the experiment, the lady correctly identified the 4 M cups out of 8 cups, i.e.,

$$\omega_e = M-M-T-M-T-T-M = \omega_{32}$$
.

- Thus we have $\omega_e \in S_\alpha$; and thus
- We reject the null hypothesis H_0 that the lady cannot distinguish the tastes of tea of different kinds.
- This test is significant with the level $\alpha = 0.05$.

Remarks on the Testing Procedure

- Ronald Fisher made the following remarks on the testing procedure.

[Fisher, 1937, Section 8]

- It should be noted that the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation.
- Every experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis.
- This means that $\omega_e \notin S_\alpha$ does not prove the null hypothesis H_0 ; we just don't reject the null H_0 .

Remarks on the Testing Procedure

Example (The lady tasting tea experiment)

- Assume that the lady made one mistake: $\omega_e := \omega_{31} \neq \omega_{32}$.
- Then $\omega_e \notin S_\alpha = \{\omega_{32}\}$, and we don't reject the null H_0 .
- But this does not prove the null hypothesis H₀ that the lady cannot distinguish the tastes of tea.

Outline

- 1 Introduction: The Lady Tasting Tea Experiment
- Procedure of Statistical Hypothesis Testing
- 3 Type 1 Error, Type 2 Error and the Power of a Test
- 4 Test Statistics
- P-Value
- 6 Neyman-Pearson Lemma and Likelihood Ratio Test
- Conclusions and Further Reading

Type 1 Error and Type 2 Error

- In hypothesis testing, there are two kinds of errors: Type 1 and Type 2.

Type 1 Error and Type 2 Error

- Type 1 Error:
 - Rejecting the null hypothesis H_0 , when H_0 is true.
- Type 2 Error:
 - Not rejecting the null hypothesis H_0 , when an alternative hypothesis H_1 is true.

Type 1 Error and Type 2 Error

Example (The lady tasting tea experiment)

- Type 1 Error:
 - \bullet Rejecting the null hypothesis H_0 that the lady is doing a random guess
 - when the lady is really doing a random guess (H_0 is true)
- Type 2 Error:
 - Not rejecting that the null hypothesis H₀ that the lady is doing a random guess
 - when the lady has the ability of distinguishing the tastes of tea (H_1 is true)

Type 1 Error and the Level of Significance

- Recall that
 - we reject the null H_0 when $\omega_e \in S_\alpha$;
- we don't reject the null H_0 when $\omega_e \notin S_\alpha$ (i.e., when $\omega_e \in \Omega \backslash S_\alpha$).
- Thus, the probability of making the Type 1 error may be given by

$$P(S_{\alpha} \mid H_0) := P_0(S_{\alpha}) \leq \alpha$$

where the inequality follows from the definition of critical region S_{α} .

- i.e., the level of the significance α is (the upper-bound of) the probability of making the Type 1 error.

Type 2 Error and Statistical Power

- On the other hand, the probability of making the Type 2 error is:

$$P_1(\Omega \setminus S_{\alpha}) = 1 - P_1(S_{\alpha}).$$

- Thus, the following ways of choosing a critical region S_{α} are equivalent:
- This probability $P_1(S_\alpha)$ is called the power of the test.
- Power of a Test, $P_1(S_\alpha)$
- The probability of rejecting the null hypothesis H_0 , when the alternative hypothesis H_1 is true.

Recap: Critical Region

Critical Region

- Given a significance level $\alpha > 0$, determine a subset $S_{\alpha} \subset \Omega$ (such that $S_{\alpha} \in \mathcal{F}$), called the critical region, such that
 - **1** the probability of S_{α} under the null H_0 is less than or equal to α :

$$P_0(S_\alpha) = \text{Probability of Type 1 Error} \leq \alpha;$$

2 the probability of S_{α} under the alternative H_1

$$P_1(S_{\alpha}) =$$
Power of the Test

becomes as large as possible.

Remark

- The second requirement is equivalent to choosing S_{α} so that $P_1(\Omega \backslash S_{\alpha}) = \text{Prob.}$ of Type 2 Error $= 1 - P_1(S_{\alpha})$ becomes as small as possible .

Type 1 Error, Type 2 Error, and Power of a Test

- Relations between the Type 1 error, Type 2 error and the power of a test can be summarized as follows:

Reality \ Test	Not Reject <i>H</i> ₀	Reject H ₀
H ₀ is true	(prob. $1-\alpha$)	Type 1 Error (prob. α)
H_1 is true	Type 2 Error (prob. β)	(Power = prob. $1 - \beta$)

Outline

- 1 Introduction: The Lady Tasting Tea Experiment
- Procedure of Statistical Hypothesis Testing
- 3 Type 1 Error, Type 2 Error and the Power of a Test
- Test Statistics
- 6 P-Value
- 6 Neyman-Pearson Lemma and Likelihood Ratio Test
- Conclusions and Further Reading

Test Statistics

- In practice, the determination of a critical region S_{α} is done by defining a test statistic.

Test Statistics

- ullet Let Ω be a sample space.
- A test statistic T is a (measurable) function from Ω to \mathbb{R} :

$$T:\Omega\to\mathbb{R}$$
.

Remark

- Depending on the problem, we may define a different range for a statistic T.
- e.g., $T: \Omega \to \mathbb{Z}$ (where where \mathbb{Z} is the set of all integers).
- A test statistic $T:\Omega\to\mathbb{R}$ summarizes characteristics of an experiment outcome $\omega_e\in\Omega$ into one dimensional value $T(\omega_e)\in\mathbb{R}$.

Test Statistics

- For any (measurable) subset $A \subset \mathbb{R}$, we can define the corresponding subset in Ω by the inverse map of \mathcal{T} as

$$T^{-1}(A) := \{ \omega \in \Omega \mid T(\omega) \in A \} \subset \Omega$$

- Therefore, we can define a critical region $S_{\alpha} \subset \Omega$ by defining a corresponding subset $I_{\alpha} \subset \mathbb{R}$ for T:

$$S_{\alpha} := T^{-1}(I_{\alpha}) = \{ \omega \in \Omega \mid T(\omega) \in I_{\alpha} \} \subset \Omega$$

- We thus call I_{α} a critical region with significance level $\alpha>0$, if it satisfies

$$P_{0,T}(I_{\alpha}) := P_0(T^{-1}(I_{\alpha})) = P_0(S_{\alpha}) \le \alpha,$$

- Here, $P_{0,T}$ is the probability distribution on \mathbb{R} , induced from the test statistic $T: \Omega \to \mathbb{R}$ and the distribution P_0 on Ω under the null H_0 .

Hypothesis Testing with a Test Statistic

- Hypothesis testing of significance level $\alpha>0$ can be carried out, with the test statistic T and the critical region $I_{\alpha}\subset\mathbb{R}$ in the following way:

Hypothesis Testing with a Test Statistic

- Let $\omega_e \in \Omega$ be the outcome of an experiment.
 - Reject the null hypothesis H_0 , if $T(\omega_e) \in I_\alpha$;
 - Not reject the null hypothesis H_0 , if $T(\omega_e) \notin I_{\alpha}$.
- The question is how to choose the critical region $I_{\alpha} \subset \mathbb{R}$.
- To this end, we need to consider the probabilities of Type 1 and 2 errors, and the power of the test.
- This requires considering the distributions of the test statistic T under the null H_0 and alternative H_1 , respectively.

Probability Distributions of a Test Statistic

Distribution of T under the Null Hypothesis H_0

- Let $(\Omega, \mathcal{F}, P_0)$ be the probability space associated with the null hypothesis H_0 .
- Under the null H_0 , the test statistic $T: \Omega \to \mathbb{R}$ can be interpreted as a random variable in \mathbb{R} induced from $(\Omega, \mathcal{F}, P_0)$:

$$T(\omega)$$
, $\omega \sim P_0$

• Then the probability distribution of T under the null hypothesis H_0 , denoted by $P_{0,T}$, is given by

$$P_{0,T}(A) := P_0(T^{-1}(A))$$
 for any measurable $A \subset \mathbb{R}$

Probability Distributions of a Test Statistic

Distribution of T under the Alternative Hypothesis H_1

- Let $(\Omega, \mathcal{F}, P_1)$ be the probability space associated with the alternative hypothesis H_1 .
- Under the alternative H_1 , the test statistic $T: \Omega \to \mathbb{R}$ can be interpreted as a random variable in \mathbb{R} induced from $(\Omega, \mathcal{F}, P_1)$:

$$T(\omega)$$
, $\omega \sim P_1$

• Then the probability distribution of T under the alternative hypothesis H_1 , denoted by $P_{1,T}$, is given by

$$P_{1,T}(A) := P_1(T^{-1}(A))$$
 for any measurable $A \subset \mathbb{R}$

Type 1 Error, Type 2 Error, and Power

- Recall that the Type 1 and Typer 2 errors of a test are defined as:
 - Type 1 Error: rejecting the null H_0 when H_0 is true;
- Type 2 Error: not rejecting the null H_0 when an alternative H_1 is true.
- Since the test rejects H_0 when $T(\omega_e) \in I_\alpha$, the probability of making the Type 1 Error is thus given by

$$P_{0,T}(I_{\alpha})=P_0(T^{-1}(I_{\alpha}))$$

- Since the test does not reject H_0 when $T(\omega_e) \notin I_\alpha$, the probability of making the Type 2 Error is

$$P_{1,T}(\mathbb{R}\backslash I_{\alpha})=1-P_{1,T}(I_{\alpha})$$

- The $Test\ Power$, i.e., the probability of rejecting when H_1 is true, is thus

$$P_{1,T}(I_{\alpha}) = 1 - \mathsf{Prob}$$
. Type 2 Error

Test Statistics: How to Choose the Critical Region

- To summarize, the critical region $I_{\alpha}\subset\mathbb{R}$ should be chosen as follows:

Critical Region for a Test Statistic

- Let $T: \Omega \to \mathbb{R}$ be a test statistic.
- Given a significance level $\alpha > 0$, determine a subset $I_{\alpha} \subset \mathbb{R}$, called the critical region, such that
- **1** the probability of I_{α} under the null H_0 is less than or equal to α :

$$P_{0,T}(I_{\alpha}) := P_0(T^{-1}(I_{\alpha})) = \text{Type 1 Error} \leq \alpha;$$

2 the probability of I_{α} under the alternative H_1

$$P_{1,T}(I_{\alpha}) := P_1(T^{-1}(I_{\alpha})) =$$
Power of the Test

becomes as large as possible.

- Let p^* be an unknown probability density function on \mathbb{R} .
- Assume that we know/believe that p^* is Gaussian, with unknown mean $\mu \in \mathbb{R}$ and known variance $\sigma^2 > 0$:

$$p^*(x) = p_{\text{gauss}}(x; \mu, \sigma_0) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$

- Assume that we can perform an experiment to obtain an i.i.d. sample of size n from p^* :

$$x_1,\ldots,x_n\in\mathbb{R}$$

- Assume that we are interested in testing whether the unknown mean μ is equal to some specified value $\mu_0 \in \mathbb{R}$ or not.
- Thus, the null hypothesis \mathcal{H}_0 and alternative hypothesis \mathcal{H}_1 may be defined as

$$H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0.$$

- For instance, assume that μ_0 is the average blood pressure of the whole French population.
- Assume that we are interested in the effect of a certain drug on the blood pressure.
- Let $\omega_e = (x_1, \dots, x_n)$ be the blood pressures of n randomly selected French people, measured after each being treated the drug.
- By testing the null hypothesis H_0 : $\mu = \mu_0$, we could investigate whether the drug is effective in changing the blood pressure or not.

- We can define the sample space $\boldsymbol{\Omega}$ as

$$\Omega := \mathbb{R}^n$$
.

- Each $\omega := (x_1, \dots, x_n) \in \Omega$ represents a possible experiment outcome of n i.i.d. observations.
- Thus, the distribution P_0 on Ω under the null hypothesis H_0 is given by the density function $p_0: \Omega \to \mathbb{R}$:

$$\begin{split} & p_0(\omega) = \prod_{i=1}^n p_{\text{gauss}}(x_i; \mu_0, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x_i - \mu_0)^2}{2\sigma^2}) \\ & = (2\pi\sigma^2)^{-\frac{n}{2}} \exp(-\frac{\sum_{i=1}^n (x_i - \mu_0)^2}{2\sigma^2}), \quad \omega := (x_1, \dots, x_n) \in \Omega. \end{split}$$

- We can define a test statistic $T:\Omega \to \mathbb{R}$ as

$$T(\omega) := T((x_1, \ldots, x_n)) := \frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^n x_i - \mu_0 \right),$$

$$\omega := (x_1, \ldots, x_n) \in \Omega := \mathbb{R}^n.$$

- Consider

$$\omega = (X_1, ..., X_n) \sim P_0$$
 (i.e., $X_1, ..., X_n \sim p(x; \mu_0, \sigma^2)$, i.i.d.)

as a random variable under the null hypothesis H_0 .

- Then the distribution $P_{0,T}$ of the test statistic

$$T(\omega) = T((X_1, \ldots, X_n)) = \frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^n X_i - \mu_0\right)$$

is Gaussian, with mean 0 and variance 1.

- In other words, the density function $p_{0,T}$ of the distribution $P_{0,T}$ of the test statistic T under the null hypothesis H_0 is

$$p_{0,T}(t) := p_{\mathrm{gauss}}(t;0,1) = rac{1}{\sqrt{2\pi}} \exp(-rac{t^2}{2}), \quad t \in \mathbb{R}.$$

Exercise: Prove this.

Hint: First derive the probability distribution of $\frac{1}{n} \sum_{i=1}^{n} X_i$.

To this end, use the following facts (where $X \sim p_{\rm gauss}(x; \mu_0, \sigma^2)$):

- The sum of Gaussian random variables is Gaussian.
- $\mathbb{E}[\frac{1}{n}\sum_{i=1}^{n}X_{i}] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X] = \mu_{0}$
- $\mathbb{V}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]=\frac{1}{n}\mathbb{V}[X]=\frac{\sigma^{2}}{n}$.

- Thus, we may define a critical region I_{α} with significance level $\alpha>0$

$$I_{\alpha} := (-\infty, -c_{\alpha}] \cup [c_{\alpha}, \infty) \subset \mathbb{R}$$

where c_{α} is a constant satisfying

$$P_{0,T}(I_{\alpha}) = \int_{-\infty}^{-c_{\alpha}} p_{0,T}(t)dt + \int_{c_{\alpha}}^{\infty} p_{0,T}(t)dt = \alpha.$$

- For instance, if $\alpha := 0.05$, we can take $c_{\alpha} \approx 1.96$.

Figure 1: From Wikipedia "1.96"

- The tail regions are the critical region I_{α} with $\alpha = 0.05$.
- We reject the null hypothesis H_0 : $\mu=\mu_0$ if

$$T(\omega_e) > 1.96$$
 or $T(\omega_e) < -1.96$

for an experiment outcome $\omega_e = (x_1, \dots, x_n)$.

Test Statistics: Important Points

- A test statistic $T: \Omega \to \mathbb{R}$ summarizes characteristics of an experiment outcome $\omega_e \in \Omega$ into one dimensional value $T(\omega_e) \in \mathbb{R}$.
- This summary $T(\omega_e)$ should capture important characteristics of ω_e for testing the null hypothesis H_0 against an alternative H_1 .
- At the same time, $T:\Omega\to\mathbb{R}$ should be designed so that the distribution $P_{0,T}$ under the null hypothesis H_0 is easy to compute.
 - This is needed to determine the critical region.

Outline

- 1 Introduction: The Lady Tasting Tea Experiment
- 2 Procedure of Statistical Hypothesis Testing
- 3 Type 1 Error, Type 2 Error and the Power of a Test
- Test Statistics
- P-Value
- 6 Neyman-Pearson Lemma and Likelihood Ratio Test
- Conclusions and Further Reading

P-Value

- Hypothesis testing outputs binary decisions ("Reject" or "Not reject") with a pre-specified significance level $\alpha > 0$.
- Recall that a lower value of α implies that the test is more significant, in the sense that the probability of Type 1 Error (= α) is smaller.
- The *p*-value provides a continuous measure of statistical significance for an experimental outcome $\omega_e \in \Omega$ against the null hypothesis H_0 .
 - A lower *p*-value indicates more that the null hypothesis H_0 fails to explain the characteristics of the observed outcome ω_e .

P-Value

Definition of P-Value [Lehmann and Romano, 2005, Section 3.3]

• For each $\alpha>0$, let $S_{\alpha}\subset\Omega$ be the critical region for the null hypothesis H_0 such that

$$P_0(S_\alpha)=\alpha.$$

Assume that the critical regions are nested:

$$S_{\alpha} \subset S_{\alpha'} \subset \Omega$$
 for all $0 < \alpha < \alpha' < 1$

ullet Then the p-value for an experimental outcome ω_e is defined by

$$p$$
-value := $\mathbf{p}(\omega_e)$:= $\min_{\alpha>0} \alpha$ such that $\omega_e \in \mathcal{S}_{\alpha}$

• i.e., the minimum significance level α such that the critical region S_{α} contains the outcome ω_{e} .

P-Value

- Note that the p-value depends on
 - The definition of the probability distribution P_0 under the null hypothesis H_0 ;
 - The definition of the critical regions S_{α} , $0 < \alpha < 1$ (i.e., the test).

- In practice, p-values are defined for a given test statistic T and the distribution P_0 under the null hypothesis H_0 .

P-Values for a Test Statistic

- Let $T: \Omega \to \mathbb{R}$ be a test statistic with probability distribution $P_{0,T}$ under the null hypothesis H_0 .
- For each $\alpha > 0$, let $I_{\alpha} \subset \mathbb{R}$ be the critical region such that

$$P_{0,T}(I_{\alpha}) = \alpha$$
 for all $0 < \alpha < 1$.

Assume that the critical regions are nested:

$$I_{\alpha} \subset I_{\alpha'} \subset \mathbb{R}, \quad 0 < \alpha < \alpha' < 0.$$

• Then the *p*-value of an observed outcome $\omega_e \in \Omega$ is given by

$$p$$
-value := $\mathbf{p}(\omega_e) = \min_{\alpha>0} \alpha$ such that $T(\omega_e) \in I_{\alpha}$.

- Since $I_{\alpha} \subset I_{\alpha'}$ for $\alpha < \alpha'$, we have

$$S_{\alpha} = \{ \omega \in \Omega \mid T(\omega) \in I_{\alpha} \} \subset \{ \omega \in \Omega \mid T(\omega) \in I_{\alpha'} \} = S_{\alpha'}$$

- Thus, I_{α} being nested implies S_{α} being nested:

$$I_{\alpha} \subset I_{\alpha'} \Longrightarrow S_{\alpha} \subset S_{\alpha'}, \quad 0 < \alpha < \alpha' < 1.$$

- Therefore the definition of the *p*-value for a test statistic $T:\Omega\to\mathbb{R}$ is consistent with the definition of the *p*-value with significant regions S_{α} in the original sample space Ω .

According to the **American Statistical Association**'s Statement on *p*-Values [Wasserstein and Lazar, 2016, Section 2]:

- Informally, a p-value is the probability under a specified statistical model that a statistical summary of the data ... would be equal to or more extreme than its observed value.

- For instance, assume that the critical region \emph{I}_{α} is given by

$$I_{\alpha}:=[c_{\alpha},\infty),$$

for constant c_{α} satisfying

$$c_{\alpha'} < c_{\alpha}$$
 for all $0 < \alpha < \alpha' < 1$

so that

$$I_{lpha}=[c_{lpha},\infty)\subset [c_{lpha'},\infty)=I_{lpha'}$$

- Then the *p*-value is given by

$$\mathbf{p}(\omega_{\mathsf{e}}) = \min_{\alpha>0} \alpha$$
 such that $T(\omega_{\mathsf{e}}) \in [c_{\alpha}, \infty)$

i.e., the minimum significance level α such that the critical region $[c_{\alpha}, \infty)$ contains the test statistic $T(\omega_e)$.

Illustration of P-Value

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Figure 2: This figure illustrates the *p*-value for one-sided critical region of the form $[c_{\alpha}, \infty)$. From Wikipedia "*p*-value".

P-Value: Example of the Location Test of a Gaussian Mean

- Consider again the location test of a Gaussian mean.
- We constructed the two-sided critical regions I_{α} with a significance level $\alpha>0$ as

$$I_{lpha}:=(-\infty,-c_{lpha}]\cup [c_{lpha},\infty)$$

for a constant $c_{\alpha} > 0$ satisfying

$$P_{0,T}(I_{\alpha}) = \int_{-\infty}^{-c_{\alpha}} p_{0,T}(t)dt + \int_{c_{\alpha}}^{\infty} p_{0,T}(t)dt = \alpha.$$

- For instance, if $\alpha := 0.05$, we can take $c_{\alpha} \approx 1.96$.

P-Value: Example of the Location Test of a Gaussian Mean

- Assume that we obtained an experiment outcome $\omega_e := (x_1, \dots, x_n) \in \Omega$ such that

$$T(\omega_e) = \frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^{n} x_i - \mu_0 \right) = 2.24$$

- In this case, the *p*-value is given by

$$\begin{aligned} \mathbf{p}(\omega_e) &= \min_{\alpha > 0} \alpha \quad \text{ such that } T(\omega_e) = 2.24 \in (-\infty, -c_\alpha] \cup [c_\alpha, \infty) \\ &\approx 0.025. \end{aligned}$$

- Thus, the null hypothesis H_0 : $\mu=\mu_0$ would have been rejected if the significance level was set to $\alpha=0.05$ (since $c_{\alpha}\approx 1.96$ for $\alpha=0.05$).

P-Value: Example of the Location Test of a Gaussian Mean

Exercise:

- Derive p-values for the cases where, e.g.,

$$T(\omega_e) = 1.26.$$

$$T(\omega_e) = 3.42.$$

- You can for instance use the table from

https://en.wikipedia.org/wiki/Standard_normal_table

Interpretation and Use of P-Value

- P-values have been widely used in scientific literature.
- However, the interpretation and use of p-values involve a lot of controversy.
- Ronald Fisher, the advocate of p-values, explains that [Fisher, 1934, Section 20]:
 - If P is between 0.1 and 0.9 there is certainly no reason to suspect the hypothesis tested.
 - If it is below 0.02 it is strongly indicated that the hypothesis fails to account for the whole of the facts.
- Here "P" is the p-value, and
- "the hypothesis tested" is the null hypothesis H_0 .

Interpretation and Use of P-Value

- The **American Statistical Association**'s Statement on *p*-Values [Wasserstein and Lazar, 2016] explains that
 - 1. P-values can indicate how incompatible the data are with a specified statistical model.
 - 2. *P*-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
 - 3. Scientific conclusions and business or policy decisions should not be based only on whether a *p*-value passes a specific threshold.

Interpretation and Use of P-Value

- 4. Proper inference requires full reporting and transparency.
- 5. A *p*-value, or statistical significance, does not measure the size of an effect or the importance of a result.
- 6. By itself, a *p*-value does not provide a good measure of evidence regarding a model or hypothesis.
- The statement concludes that "No single index should substitute for scientific reasoning."
- See also e.g. [Berger and Sellke, 1987, McShane et al., 2019] and references therein.

Outline

- 1 Introduction: The Lady Tasting Tea Experiment
- Procedure of Statistical Hypothesis Testing
- 3 Type 1 Error, Type 2 Error and the Power of a Test
- 4 Test Statistics
- P-Value
- Neyman-Pearson Lemma and Likelihood Ratio Test
- Conclusions and Further Reading

What is the Most Powerful Test?

- So far we have not discussed how to construct a test statistic.
- A test statistic $T:\Omega\to\mathbb{R}$ and a critical region $I_\alpha\subset\mathbb{R}$ should be constructed so that
 - ullet For a given lpha > 0, the Type 1 Error probability is bounded by lpha

$$P_{0,T}(I_{\alpha})=P_0(T^{-1}(I_{\alpha}))\leq \alpha.$$

The test power

$$P_{1,T}(I_{\alpha})=P_1(T^{-1}(I_{\alpha}))$$

is as large as possible,

where P_0 and P_1 are the probability distributions on Ω under the null H_0 and alternative H_1 hypotheses, respectively.

- The question is how to construct a test statistic with a high test power.

What is the Most Powerful Test?

- One answer is provided by the Neyman-Pearson lemma [Neyman and Pearson, 1933].
- This lemma states that the likelihood ratio test statistic provides the most powerful test.

Likelihood Ratio Test

- Let P_0 and P_1 be the probability distributions on Ω under the null H_0 and alternative H_1 hypotheses, respectively.
- Assume P_0 and P_1 have density functions

$$p_0:\Omega o [0,\infty),\quad p_1:\Omega o [0,\infty)$$

with respect to a base measure ν (e.g., ν is the Lebesgue measure when $\Omega \subset \mathbb{R}^n$.)

- i.e., for any measurable subset $S \subset \Omega$, we have

$$P_0(S) = \int_S p_0(\omega) d\nu(\omega), \quad P_1(S) = \int_S p_1(\omega) d\nu(\omega).$$

Likelihood Ratio Test

- Define a test statistic $T:\Omega \to [0,\infty)$ by

$$T(\omega) := \frac{p_1(\omega)}{p_0(\omega)}, \quad \omega \in \Omega$$

- This is called the likelihood ratio test statistic.
- Define a test of the form
 - Reject the null hypothesis H_0 , if $T(\omega_e) \geq c_\alpha$;
 - Not reject the null hypothesis H_0 , if $T(\omega_e) < c_{\alpha}$,

where $c_{\alpha} \geq 0$ is defined so the Type 1 Error probability becomes $\alpha > 0$.

i.e., we define the critical region I_{α} for the test statistic T as

$$I_{\alpha}=[c_{\alpha},\infty).$$

Neyman-Pearson Lemma

- The Neyman-Pearson Lemma states that

The likelihood ratio test is the most powerful test among all tests with the significance level α .

Neyman-Pearson Lemma

Neyman-Pearson Lemma [Neyman and Pearson, 1933]

- Define $\alpha > 0$ as the level of significance.
- Let $c_{\alpha} > 0$ be a constant such that the critical region defined by

$$S_{\alpha}^* := \mathcal{T}^{-1}([c_{\alpha}, \infty)) = \left\{ \omega \in \Omega \mid \mathcal{T}(\omega) := \frac{p_1(\omega)}{p_0(\omega)} \geq c_{\alpha} \right\}$$

satisfies

$$P_{0,T}([c_{\alpha},\infty)):=P_0(S_{\alpha}^*)=\alpha.$$

- Then the test based on S^*_{α} has the highest power among all tests with the significance level α ;
- i.e., for all $S_{\alpha} \subset \Omega$ such that $P_0(S_{\alpha}) = \alpha$, we have

$$P_1(S_\alpha^*) \geq P_1(S_\alpha).$$

Neyman-Pearson Lemma: Proof

- Since $S_{\alpha}^* \cap S_{\alpha} \subset S_{\alpha}^*$, we have

$$P_0(S_\alpha^* \setminus (S_\alpha^* \cap S_\alpha)) = P_0(S_\alpha^*) - P_0(S_\alpha^* \cap S_\alpha) = \alpha - P_0(S_\alpha^* \cap S_\alpha).$$

- Similarly, since $S_{\alpha}^* \cap S_{\alpha} \subset S_{\alpha}$, we have

$$P_0(S_\alpha \setminus (S_\alpha^* \cap S_\alpha)) = P_0(S_\alpha) - P_0(S_\alpha^* \cap S_\alpha) = \alpha - P_0(S_\alpha^* \cap S_\alpha).$$

- Therefore

$$P_0(S_{\alpha}^* \setminus (S_{\alpha}^* \cap S_{\alpha})) = P_0(S_{\alpha} \setminus (S_{\alpha}^* \cap S_{\alpha})).$$

Neyman-Pearson Lemma: Proof

- Recall that

$$rac{p_1(\omega)}{
ho_0(\omega)} \geq c_lpha, \quad orall \omega \in S_lpha^*, \qquad rac{
ho_1(\omega)}{
ho_0(\omega)} < c_lpha, \quad orall \omega \in \Omega \setminus S_lpha^*$$

- Therefore,

$$p_1(\omega) \ge c_{\alpha} p_0(\omega), \quad \forall \omega \in S_{\alpha}^*.$$

- Thus, for any subset $S \subset S^*_{\alpha}$, we have

$$P_1(S) = \int_S p_1(\omega) d\nu(\omega) \ge \int_S c_\alpha p_0(\omega) d\nu(\omega) = c_\alpha P_0(S).$$

- On the other hand,

$$p_1(\omega) < c_{\alpha} p_0(\omega), \quad \forall \omega \in \Omega \backslash S_{\alpha}^*.$$

- Thus, for all $S' \subset \Omega \backslash S^*_{\alpha}$,

$$P_1(S') = \int_{S'} p_1(\omega) d\nu(\omega) < \int_{S'} c_{\alpha} p_0(\omega) d\nu(\omega) = c_{\alpha} P_0(S').$$

Neyman-Pearson Lemma: Proof

- Since

$$S:=S_{\alpha}^*ackslash(S_{lpha}^*\cap S_{lpha})\subset S_{lpha}^*,\quad S':=S_{lpha}ackslash(S_{lpha}^*\cap S_{lpha})\subset \Omegaackslash S_{lpha}^*,$$

and since

$$P_0(S_{\alpha}^* \setminus (S_{\alpha}^* \cap S_{\alpha})) = P_0(S_{\alpha} \setminus (S_{\alpha}^* \cap S_{\alpha})),$$

we have

$$P_1(S_{lpha}^* \setminus (S_{lpha}^* \cap S_{lpha})) \geq c_{lpha} P_0(S_{lpha}^* \setminus (S_{lpha}^* \cap S_{lpha})) \ = c_{lpha} P_0(S_{lpha} \setminus (S_{lpha}^* \cap S_{lpha})) > P_1(S_{lpha} \setminus (S_{lpha}^* \cap S_{lpha})).$$

Therefore

$$P_{1}(S_{\alpha}^{*}) = P_{1}(S_{\alpha}^{*} \setminus (S_{\alpha}^{*} \cap S_{\alpha})) + P_{1}((S_{\alpha}^{*} \cap S_{\alpha}))$$

$$> P_{1}(S_{\alpha} \setminus (S_{\alpha}^{*} \cap S_{\alpha})) + P_{1}((S_{\alpha}^{*} \cap S_{\alpha})) = P_{1}(S_{\alpha}).$$

Thus the proof completes.

- Consider again testing the location of a Gaussian mean.
- Let p^* be an unknown probability density function on \mathbb{R} .
- Assume that we know/believe that p^* is Gaussian, with unknown mean $\mu \in \mathbb{R}$ and known variance $\sigma^2 > 0$:

$$p^*(x) = p_{\text{gauss}}(x; \mu, \sigma_0) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$

- Assume that we can perform an experiment to obtain an i.i.d. sample of size n from p^* :

$$x_1,\ldots,x_n\in\mathbb{R}$$

- Assume that we are interested in testing whether the unknown mean μ is equal to some specified value $\mu_0 \in \mathbb{R}$ or not.

- Thus, the null hypothesis H_0 is defined as

$$H_0: \mu = \mu_0.$$

- For simplicity, we consider a simple alternative hypothesis H_1 where the unknown mean μ is another specified value $\mu_1 \neq \mu_0$:

$$H_1: \mu = \mu_1.$$

- We can define the sample space Ω as

$$\Omega := \mathbb{R}^n$$
.

- Each $\omega := (x_1, \dots, x_n) \in \Omega$ represents a possible experiment outcome of n i.i.d. observations.
- Thus, the distribution P_0 on Ω under the null hypothesis H_0 is given by the density function $p_0: \Omega \to \mathbb{R}$:

$$p_0(\omega) = \prod_{i=1}^n p_{\text{gauss}}(x_i; \mu_0, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x_i - \mu_0)^2}{2\sigma^2})$$
$$= (2\pi\sigma^2)^{-\frac{n}{2}} \exp(-\frac{\sum_{i=1}^n (x_i - \mu_0)^2}{2\sigma^2}), \quad \omega := (x_1, \dots, x_n) \in \Omega.$$

- Similarly, the density function p_1 of P_1 under the alternative is given by, for $\omega := (x_1, \ldots, x_n)$,

$$p_1(\omega) = \prod_{i=1}^n p_{\text{gauss}}(x_i; \mu_1, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp(-\frac{\sum_{i=1}^n (x_i - \mu_1)^2}{2\sigma^2})$$

- The likelihood ratio test statistic is thus given by, for $\omega:=(x_1,\ldots,x_n)$,

$$T(\omega) := \frac{p_1(\omega)}{p_0(\omega)} = \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu_1)^2 - \sum_{i=1}^n (x_i - \mu_0)^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{\sum_{i=1}^n (x_i^2 - 2x_i\mu_1 + \mu_1^2) - \sum_{i=1}^n (x_i^2 - 2x_i\mu_0 + \mu_0^2)}{2\sigma^2}\right)$$

$$= \exp\left(\frac{2(\mu_1 - \mu_0) \sum_{i=1}^n x_i - n(\mu_1^2 - \mu_0^2)}{2\sigma^2}\right)$$

- Therefore, the test is given by the critical region determined by the threshold

$$\exp(\frac{2(\mu_1 - \mu_0) \sum_{i=1}^n x_i - n(\mu_1^2 - \mu_0^2)}{2\sigma^2}) \ge c_\alpha$$

where $c_{\alpha} \geq 0$ is such that we have $P_0(S_{\alpha}) = \alpha$ for the critical region

$$S_{\alpha} := \{\omega := (x_1, \ldots, x_n) \in \mathbb{R} \mid T(\omega) \geq c_{\alpha}\}$$

- Taking the logarithm in the both sides, we have

$$\frac{2(\mu_{1} - \mu_{0}) \sum_{i=1}^{n} x_{i} - n(\mu_{1}^{2} - \mu_{0}^{2})}{2\sigma^{2}} \ge \log(c_{\alpha})$$

$$\iff (\mu_{1} - \mu_{0}) \frac{1}{n} \sum_{i=1}^{n} x_{i} \ge \frac{1}{2} \left(2\sigma^{2} \log(c_{\alpha}) + (\mu_{1}^{2} - \mu_{0}^{2})\right)$$

$$(\mu_1 - \mu_0) \frac{1}{n} \sum_{i=1}^n x_i \ge \frac{1}{2} \left(2\sigma^2 \log(c_\alpha) + (\mu_1^2 - \mu_0^2) \right)$$

-Thus, if $(\mu_1-\mu_0)>0$ (i.e., $\mu_1>\mu_0$), the rejection threshold is given by

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} \geq \frac{1}{2(\mu_{1}-\mu_{0})}\left(2\sigma^{2}\log(c_{\alpha})+(\mu_{1}^{2}-\mu_{0}^{2})\right)=:r_{\alpha}$$

- If $(\mu_1 - \mu_0) < 0$ (i.e., $\mu_1 < \mu_0$), the rejection threshold is given by

$$\frac{1}{n} \sum_{i=1}^{n} x_i \le \frac{1}{2(\mu_1 - \mu_0)} \left(2\sigma^2 \log(c_\alpha) + (\mu_1^2 - \mu_0^2) \right) =: \ell_\alpha$$

- Note that, under the null H_0 where $x_1, \ldots, x_n \sim p_{\rm gauss}(t; \mu_0, \sigma)$ (i.i.d.), we have

$$\frac{1}{n}\sum_{i=1}^n x_i \sim p_{\text{gauss}}(t; \mu_0, \sigma^2/n).$$

- Thus, we can derive the rejection threshold r_{lpha}

$$\frac{1}{n}\sum_{i=1}^n x_i \geq r_\alpha$$

directly as r_{α} satisfying

Type 1 Error Probability =
$$\int_{t_0}^{\infty} p_{\text{gauss}}(t; \mu_0, \sigma^2/n) dt = \alpha$$
.

- This shows that the rejection threshold r_{α} does not depend on the value of μ_1 , as long as $\mu_1 > \mu_0$.

- This means that the likelihood ratio test is the uniformly most powerful for a composite alternative hypothesis

$$H_1: \mu > \mu_0$$

- Similarly, if $\mu_1 < \mu_0$ we can derive the threshold ℓ_{lpha} as the one satisfying

Type 1 Error Probability =
$$\int_{-\infty}^{\ell_{\alpha}} p_{\text{gauss}}(t; \mu_0, \sigma^2) dt = \alpha$$
.

- This shows that the rejection threshold ℓ_{α} does not depends on the value of μ_1 , as long as $\mu_1 < \mu_0$
- This means that the likelihood ratio test is the uniformly most powerful for a composite alternative hypothesis

$$H_1: \mu < \mu_0$$

- However, this shows that there does not exist a uniformly most powerful test for a composite alternative hypothesis $H_1: \mu \neq \mu_0$, i.e.,

$$H_1: \mu < \mu_0 \quad \text{or} \quad \mu_0 < \mu$$

- This is because, when the true unknown mean μ satisfies $\mu > \mu_0$, then the test based on the right rejection threshold

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geq r_{\alpha}$$

is the most powerful,

- while when the true unknown mean μ satisfies $\mu < \mu_0$, then the test based on the left rejection threshold

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\leq\ell_{\alpha}$$

becomes the most powerful.

Important Points to Remember

- The likelihood ratio test depends on how we define an alternative hypothesis.
 - This is true for any test, because the test power (or the Type 2 error) is defined for a given alternative hypothesis.
- For a composite alternative hypothesis (where the alternative contains a variable parameter), there might be no uniformly most powerful test.
- Anyway, the likelihood ratio test and the Neyman-Pearson lemma provides a guideline to design a powerful test.

Outline

- 1 Introduction: The Lady Tasting Tea Experiment
- 2 Procedure of Statistical Hypothesis Testing
- 3 Type 1 Error, Type 2 Error and the Power of a Test
- 4 Test Statistics
- 6 P-Value
- 6 Neyman-Pearson Lemma and Likelihood Ratio Test
- Conclusions and Further Reading

Some Key Points to Remember

- To design a test, we need to specify the distribution P_0 on the space Ω of experiment outcomes (or data) under the null hypothesis H_0 .
- We should be careful that P_0 may be misspecified.
- For instance, consider the example of testing the location of a Gaussian mean.
- We assumed that the data $\omega = (x_1, \dots, x_n)$ are i.i.d. with a Gaussian distribution with known variance $\sigma^2 > 0$.
 - The knowledge of the variance $\sigma^2 > 0$ is not available in practice, and we need to estimate it from data.
 - This requires modifying the testing procedure, and results in the Student t-test.

Some Key Points to Remember

- More generally, the Gaussian assumption itself may be misspecified.
- Under such a misspecification, the Type 1 Error probability

$$P_{0,T}(I_{\alpha}) = P_0(T^{-1}I_{\alpha})$$

may be deviated from a desired level α of significance.

- Thus, in general we should define a null hypothesis H_0 with a weaker assumption about the data distribution P_0 .

Some Key Points to Remember

- To derive a critical region $I_{\alpha} \subset \mathbb{R}$, we need to be able to calculate the probability of I_{α} under the null H_0

$$P_{0,T}(I_{\alpha})=P_0(T^{-1}(I_{\alpha})).$$

- This may not be easy in general, in particular when we pose a less restrictive assumption about P_0 .
- A modern approach to this purpose is the bootstrap method, developed by Bradley Efron (See [Efron and Hastie, 2016, Section 10]).
 - This method uses Monte Carlo (or simulations) to approximate the distribution P_{0,T} under the null.
 - The approach can be used for a wide range of problems and easy to implement.

Further Reading

- Again, I recommend you to have a look at [Rao, 1973].
- The following are recommendations for further reading.

Introduction to Hypothesis Testing and Design of Experiments [Fisher, 1934, Fisher, 1937]

Introduction to the Neyman-Pearson Theory (or the Frequentist Theory) [Neyman and Pearson, 1933]

About the Conflicts between the Fisher and Neyman-Pearson Theories [Lehmann, 1993] [Efron and Hastie, 2016, Sections 2 and 4]

Further Reading

P-values and Statistical Significance

[Berger and Sellke, 1987] [Wasserstein and Lazar, 2016] [McShane et al., 2019]

Connections between the Likelihood Ratio Test and the KL Divergence

[Rao, 1973, Section 7a. 3] [Eguchi and Copas, 2006]

Berger, J. O. and Sellke, T. (1987).

Testing a point null hypothesis: The irreconcilability of p values and evidence.

Journal of the American Statistical Association, 82(397):112–122.

Efron, B. and Hastie, T. (2016). Computer Age Statistical Inference. Cambridge University Press.

Eguchi, S. and Copas, J. (2006). Interpreting kullback–leibler divergence with the neyman–pearson lemma.

Journal of Multivariate Analysis, 97(9):2034–2040.

Macmillan.

Lehmann, E. L. (1993).

The fisher, neyman-pearson theories of testing hypotheses: one theory or two?

Journal of the American statistical Association, 88(424):1242–1249.

Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses (Third Edition). Springer Science & Business Media.

Abandon statistical significance.

The American Statistician, 73(sup1):235–245.

Neyman, J. and Pearson, E. S. (1933).

On the problem of the most efficient tests of statistical hypotheses.

Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 231(694-706):289–337.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley New York.

Wasserstein, R. L. and Lazar, N. A. (2016). The ASA Statement on p-Values: Context, Process, and Purpose. *The American Statistician*, 70(2).