

Infrared Emitting Diode, 950 nm, GaAs

Description

TSUS540. series are infrared emitting diodes in standard GaAs on GaAs technology, molded in a clear, blue-grey tinted plastic package. The devices are spectrally matched to silicon photodiodes and phototransistors.

Features

- · Low cost emitter
- · Low forward voltage
- · High radiant power and radiant intensity
- Suitable for DC and high pulse current operation
- Standard T-1¾ (Ø 5 mm) package
- Comfortable angle of half intensity $\varphi = \pm 22^{\circ}$
- Peak wavelength $\lambda_p = 950 \text{ nm}$
- · High reliability
- · Good spectral matching to Si photodetectors
- Lead-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Applications

Infrared remote control and free air transmission systems with low forward voltage and comfortable radiation angle requirements in combination with PIN photodiodes or phototransistors.

Absolute Maximum Ratings

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Reverse Voltage		V _R	5	V
Forward current		I _F	150	mA
Peak Forward Current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	300	mA
Surge Forward Current	t _p = 100 μs	I _{FSM}	2.5	Α
Power Dissipation		P _V	210	mW
Junction Temperature		Tj	100	°C
Operating Temperature Range		T _{amb}	- 55 to + 100	°C
Storage Temperature Range		T _{stg}	- 55 to + 100	°C
Soldering Temperature	$t \le 5$ sec, 2 mm from case	T _{sd}	260	°C
Thermal Resistance Junction/ Ambient		R _{thJA}	375	K/W

Rev. 1.4, 08-Apr-04

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward Voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V_{F}		1.3	1.7	V
Temp. Coefficient of V _F	I _F = 100 mA	TK _{VF}		- 1.3		mV/K
Reverse Current	V _R = 5 V	I _R			100	μΑ
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	C _j		30		pF

Optical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Temp. Coefficient of φ _e	I _F = 20 mA	TKφ _e		- 0.8		%/K
Angle of Half Intensity		φ		± 22		deg
Peak Wavelength	I _F = 100 mA	λ_{p}		950		nm
Spectral Bandwidth	I _F = 100 mA	Δλ		50		nm
Temp. Coefficient of λ_p	I _F = 100 mA	TKλ _p		0.2		nm/K
Rise Time	I _F = 100 mA	t _r		800		ns
	I _F = 1.5 A	t _r		400		ns
Fall Time	I _F = 100 mA	t _f		800		ns
	I _F = 1.5 A	t _f		400		ns
Virtual Source Diameter		Ø		2.9		mm

Type Dedicated Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Forward Voltage	$I_F = 1.5 \text{ A}, t_p = 100 \mu \text{s}$	TSUS5400	V_{F}		2.2	3.4	V
		TSUS5401	V _F		2.2	3.4	V
		TSUS5402	V _F		2.2	2.7	V
Radiant Intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	TSUS5400	I _e	7	14	35	mW/sr
		TSUS5401	Ι _e	10	17	35	mW/sr
		TSUS5402	I _e	15	20	35	mW/sr
	$I_F = 1.5 \text{ A}, t_p = 100 \mu \text{s}$	TSUS5400	I _e	60	140		mW/sr
		TSUS5401	I _e	85	160		mW/sr
		TSUS5402	I _e	120	190		mW/sr
Radiant Power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	TSUS5400	φ _e		13		mW
		TSUS5401	φ _e		14		mW
		TSUS5402	φ _e		15		mW

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

Figure 1. Power Dissipation vs. Ambient Temperature

Figure 4. Forward Current vs. Forward Voltage

Figure 2. Forward Current vs. Ambient Temperature

Figure 5. Relative Forward Voltage vs. Ambient Temperature

Figure 3. Pulse Forward Current vs. Pulse Duration

Figure 6. Radiant Intensity vs. Forward Current

Figure 7. Radiant Power vs. Forward Current

Figure 10. Relative Radiant Intensity vs. Angular Displacement

Figure 8. Rel. Radiant Intensity/Power vs. Ambient Temperature

Figure 9. Relative Radiant Power vs. Wavelength

Package Dimensions in mm

