A Regularized Linear Dynamical System Framework for Multivariate Time Series **Analysis - Supplemental Materials**

Zitao Liu and Milos Hauskrecht

Computer Science Department, University of Pittsburgh, 210 South Bouquet St., Pittsburgh, PA, 15260 USA

Notations

We use the following notations in this supplemental material. The notation is consistent with the original paper.

- $\hat{\mathbf{z}}_{t|t-1} = \mathbb{E}[\mathbf{z}_t | \{\mathbf{y}\}_1^{t-1}]$ is the *priori* estimation
- $\hat{\mathbf{z}}_{t-1|t-1} = \mathbb{E}[\mathbf{z}_{t-1}|\{\mathbf{y}\}_1^{t-1}]$ is the *posteriori* estimation.
- $P_{t|t-1} = \mathbb{E}[(\mathbf{z}_t \hat{\mathbf{z}}_{t|t-1})(\mathbf{z}_t \hat{\mathbf{z}}_{t|t-1})^{'}]$ is the *priori* estimate error covariance.
- $P_{t-1|t-1} = \mathbb{E}[(\mathbf{z}_{t-1} \hat{\mathbf{z}}_{t-1|t-1})(\mathbf{z}_{t-1} \hat{\mathbf{z}}_{t-1|t-1})^{'}]$ is the *posteriori* estimate error covariance.
- $\hat{\mathbf{z}}_{t|T} \equiv \mathbb{E}[\mathbf{z}_{t}|\mathbf{y}], M_{t|T} \equiv \mathbb{E}[\mathbf{z}_{t}\mathbf{z}_{t}'|\mathbf{y}], M_{t,t-1|T} \equiv$ $\mathbb{E}[\mathbf{z}_{t}\mathbf{z}_{t-1}^{'}|\mathbf{y}], P_{t|T} = \mathbb{VAR}[\mathbf{z}_{t}|\mathbf{y}], \text{ and } P_{t,t-1|T}$ $VAR[\mathbf{z}_{t}\mathbf{z}_{t-1}^{'}|\mathbf{y}]$

Theorem 1 Proof

Theorem 1. Generalized gradient descent with a fixed step size $\rho \leq 1/(||Q^{-1}||_F \cdot ||\sum_{t=1}^{T-1} \mathbb{E}[\mathbf{z}_t\mathbf{z}_t'|\mathbf{y}]||_F + \lambda_2)$ for minimizing eq.(7) has convergence rate O(1/k), where k is the number of iterations.

 ${\it Proof.}\ h(A)$ is differentiable with respect to A, and its gradient is $\nabla h(A) = Q^{-1}(A\sum_{t=1}^{T-1} \mathbb{E}[\mathbf{z}_t \mathbf{z}_t' | \mathbf{y}] \sum_{t=2}^{T} \mathbb{E}[\mathbf{z}_t \mathbf{z}_{t-1}' | \mathbf{y}]) + \lambda_2 A$. Using simple algebraic manipulation we arrive at

$$|| \nabla h(X) - \nabla h(Y)||_{F}$$

$$= ||Q^{-1}(X - Y) \sum_{t=1}^{T-1} \mathbb{E}[\mathbf{z}_{t}\mathbf{z}'_{t}|\mathbf{y}] + \lambda_{2}(X - Y)||_{F}$$

$$\leq ||Q^{-1}||_{F} \cdot || \sum_{t=1}^{T-1} \mathbb{E}[\mathbf{z}_{t}\mathbf{z}'_{t}|\mathbf{y}]||_{F} \cdot ||X - Y||_{F}$$

$$+ \lambda_{2} \cdot ||X - Y||_{F}$$

$$= (||Q^{-1}||_{F} \cdot || \sum_{t=1}^{T-1} \mathbb{E}[\mathbf{z}_{t}\mathbf{z}'_{t}|\mathbf{y}]||_{F} + \lambda_{2}) \cdot ||X - Y||_{F}$$

Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

The inequality holds because of the sub-multiplicative property of Frobenius norm. Since we know for eq.(7), $\min_A h(A) + \lambda_2 ||A||_*$, and h(A) has Lipschitz continuous gradient with constant $||Q^{-1}||_F \cdot ||\sum_{t=1}^{T-1} \mathbb{E}[\mathbf{z}_t \mathbf{z}_t' | \mathbf{y}]||_F + \lambda_2$, according to (Shor 1968) (Fornasier 2008), we have

$$\left\| h(A^{(k)}) + \lambda_2 \|A^{(k)}\|_* - h(A^{(*)}) - \lambda_2 \|A^{(*)}\|_* \right\|$$

$$\leq \left\| A^{(0)} - A^* \right\|_F^2 / 2tk$$

where $A^{(0)}$ is the initial value and A^* is the optimal value for A; k is the number of iterations.

Backward algorithm for rLDS

Algorithm 1 EM: E-step Backward algorithm for rLDS

- Output from Kalman filter algorithm: $\{\hat{\mathbf{z}}_{t|t-1}\}_{t=2}^T$, $\{\hat{\mathbf{z}}_{t|t}\}_{t=1}^T$,
- $\{P_{t|t}\}_{t=1}^{T}, \{P_{t|t-1}\}_{t=2}^{T} \text{ and } \{K_{t}\}_{t=1}^{T}.$ Current step LDS parameters: $\Omega = \{A, C, Q, R, \xi, \Psi\}.$ PROCEDURÉ:
- 1: // Initialize the recrusion
- 2: $M_{T|T} = P_{T|T} + \hat{\mathbf{z}}_{T|T} \hat{\mathbf{z}}_{T|T}'$
- 3: $J_{T-1} = P_{T-1|T-1}A'(P_{T|T-1})^{-1}$
- 4: $P_{T-1|T} = P_{T-1|T-1} + J_{T-1}(P_{T|T} P_{T|T-1})J'_{T-1}$ 5: $\hat{\mathbf{z}}_{T-1|T} = \hat{\mathbf{z}}_{T-1|T-1} + J_{T-1}(\hat{\mathbf{z}}_{T|T} A\hat{\mathbf{z}}_{T-1|T-1})$ 6: $P_{T,T-1|T} = (I K_TC)AP_{T-1|T-1}$

- 7: $M_{T,T-1|T}=P_{T,T-1|T}+\hat{\mathbf{z}}_{T|T}\hat{\mathbf{z}}_{T-1|T}$ 8: // Start the recrusion
- 9: **for** $t = T-1 \to 1$ **do**
- $M_{t|T} = P_{t|T} + \hat{\mathbf{z}}_{t|T} \hat{\mathbf{z}}_{t|T}'$ 10:
- $J_{t-1} = P_{t-1|t-1}A'(P_{t|t-1})^{-1}$ 11:
- $P_{t,t-1|T} = P_{t|t}J'_{t-1} + J_t(P_{t+1,t|T} AP_{t|t})J'_{t-1}$
- $M_{t,t-1|T} = P_{t,t-1|T} + \hat{\mathbf{z}}_{t|T} \hat{\mathbf{z}}'_{t-1|T}$
- $\hat{\mathbf{z}}_{t-1|T} = \hat{\mathbf{z}}_{t-1|t-1} + J_{t-1}(\hat{\mathbf{z}}_{t|T} A\hat{\mathbf{z}}_{t-1|t-1})$
- $P_{t-1|T} = P_{t-1|t-1} + J_{t-1}(P_{t|T} P_{t|t-1})J'_{t-1}$

16: **end for**

OUTPUT: $\{\hat{\mathbf{z}}_{t-1|T}\}_{t=1}^T$, $\{M_{t|T}\}_{t=1}^T$ and $\{M_{t,t-1|T}\}_{t=1}^T$.

Transformation from eq.(4) to eq.(5).

We will use the following rules to show the mathematical transformation from eq.(4) to eq.(5).

- $Q^{-1} = LL'$ (Q is a PSD matrix)
- $tr(A_{k\times l}B_{l\times m}C_{m\times n}) = vec(A')'(I_k \otimes B) vec(C)$
- $\operatorname{vec}(A_{k \times l} B_{l \times m}) = (B' \otimes I_k) \operatorname{vec}(A)$

By using the above rules, we can have

$$arg \min_{A} \frac{1}{2} \sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}}[(\mathbf{z}_{t} - A\mathbf{z}_{t-1})'Q^{-1}(\mathbf{z}_{t} - A\mathbf{z}_{t-1})] + \frac{\lambda_{3}}{2} \|A\|_{F}^{2}$$

$$\Leftrightarrow arg \min_{A} \frac{1}{2} \sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}}[\mathbf{z}'_{t-1}A'LL'A\mathbf{z}_{t-1}] - \frac{1}{2} \sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}}[\mathbf{z}'_{t-1}A'LL'\mathbf{z}_{t}]$$

$$- \frac{1}{2} \sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}}[\mathbf{z}'_{t}LL'A\mathbf{z}_{t-1}] + \frac{\lambda_{3}}{2} \|A\|_{F}^{2}$$

$$\Leftrightarrow arg \min_{A} \frac{1}{2} \sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}} \Big[Tr[L'A\mathbf{z}_{t-1}\mathbf{z}'_{t-1}A'L] \Big] + \frac{\lambda_{3}}{2} \|A\|_{F}^{2}$$

$$- \sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}} \Big[Tr[L'A(\mathbb{E}_{\mathbf{z}}[\mathbf{z}_{t-1}\mathbf{z}'_{t-1}])A'L \Big] + \frac{\lambda_{3}}{2} \|A\|_{F}^{2}$$

$$- \sum_{t=2}^{T} Tr \Big[L'A(\mathbb{E}_{\mathbf{z}}[\mathbf{z}_{t}\mathbf{z}'_{t-1}])A'L \Big]$$

$$\Leftrightarrow arg \min_{A} \frac{1}{2} Tr \Big[L'A(\sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}}[\mathbf{z}_{t-1}\mathbf{z}'_{t-1}])A'L \Big] + \frac{\lambda_{3}}{2} Tr \Big[A'A \Big]$$

$$\Rightarrow arg \min_{A} \frac{1}{2} Tr \Big[L'ABA'L - 2L'DA'L + \lambda_{3}A'A \Big]$$

$$\Leftrightarrow arg \min_{A} 0.5 \operatorname{vec}(A'L)'(I_{d} \otimes B) \operatorname{vec}(A'L)$$

$$- \operatorname{vec}(L)'(I_{d} \otimes D) \operatorname{vec}(A'L) + 0.5\lambda_{3} \operatorname{vec}(A')' \operatorname{vec}(A')$$

$$\Leftrightarrow arg \min_{A} 0.5 \operatorname{vec}(A')'(Q^{-1} \otimes \sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}}[\mathbf{z}_{t-1}\mathbf{z}'_{t-1}] + \lambda_{3}I_{d^{2}}) \operatorname{vec}(A')$$

$$- \operatorname{vec}(L)'(L' \otimes \sum_{t=2}^{T} \mathbb{E}_{\mathbf{z}}[\mathbf{z}_{t}\mathbf{z}'_{t-1}]) \operatorname{vec}(A')$$

Kalman filter algorithm for rLDS

Algorithm 2 Kalman filter algorithm for rLDS

INPUT: Current step LDS parameters: $\Omega = \{A, C, Q, R, \xi, \Psi\}$. PROCEDURE:

- 1: // Initialize the recrusion
- 2: $\hat{\mathbf{z}}_{1|1} = \boldsymbol{\xi}$ and $P_{1|1} = \Psi$.
- 3: // Start the recrusion
- 4: for $t = 2 \rightarrow T$ do
- // Time Update:
- $\hat{\mathbf{z}}_{t|t-1} = A\hat{\mathbf{z}}_{t-1|t-1}$
- $P_{t|t-1} = AP_{t-1|t-1}A' + Q$ 7:
- // Measure Update:
- $K_t = P_{t|t-1}C'(CP_{t|t-1}C' + R)^{-1}$ $\hat{\mathbf{z}}_{t|t} = \hat{\mathbf{z}}_{t|t-1} + K_t(\mathbf{y}_t C\hat{\mathbf{z}}_{t|t-1})$ $P_{t|t} = P_{t|t-1} K_tCP_{t|t-1}$ 9:
- 10:
- 11:

OUTPUT: $\{\hat{\mathbf{z}}_{t|t-1}\}_{t=2}^T$, $\{\hat{\mathbf{z}}_{t|t}\}_{t=1}^T$, $\{P_{t|t}\}_{t=1}^T$, $\{P_{t|t-1}\}_{t=2}^T$ and

Production and Billing Data Results

In *Production and Billing* data, we increase the training size to 90 and use the rest 10 observations for tesing. The prediction results are shown in Table 1.

Table 1: Average-MAPE results on Production and Billing dataset with 90 training and 10 testing.

# of hidden states	2	3	4	5	6	7	8
EM	4.8707	5.9996	5.2047	4.7732	4.4478	5.3245	4.6278
SubspaceID	4.7880	5.5328	6.9020	6.0295	4.5284	5.5099	5.2205
StableLDS	4.9024	5.4111	6.4988	6.0295	4.5323	5.5099	5.2205
$rLDS_{\mathcal{C}}$	4.7880	5.5328	6.9020	6.0295	4.5284	5.5099	5.2205
$rLDS_R$	4.5521	4.9543	5.1984	4.5455	4.4150	4.2961	3.8780
# of hidden states	10	12	14	16	18	20	30
EM	5.2038	5.1908	3.5408	4.2521	4.0159	4.1269	3.8743
SubspaceID							
Subspaceid	5.2182	5.1707	5.7206	5.0139	4.1461	4.7801	3.7662
StableLDS	5.2182 5.2182	5.1707 5.1707	5.7206 5.7206	5.0139 5.0139	4.1461 4.1461	4.7801 4.7801	3.7662 3.7662