컴퓨터 네트워크

12.1 LAN의 개요 (1/3)

LAN의 정의

- ✓ 제한된 지역 내에 있는 다수의 독립된 컴퓨터 기기들로 하여금 상호 통신이 가능하도록 하는 데이터 통신 네트워크
- ✓ Kenneth J.Thurber와 Harvey A. Freeman의 정의
 - ▶ 단일 기관의 소유일 것
 - ▶ 수마일 범위 이내에 지역적으로 한정되어 있을 것(X)
 - 어떤 종류의 스위칭 기술을 갖고 있을 것
 - 원거리 네트워크의 경우보다 높은 통신 속도를 가질 것

12.1 LAN의 개요 (2/3)

계층 구조

- ✓ Data Link Layer를 2개의 부계층(sub-layer)으로
 - MAC(Medium Access Control)
 - LLC(Logical Link Control)

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer

Logical link Control

Medium Access Control

Physical Layer

OSI 참조모델

Physical Layer

12.1 LAN의 개요 (3/3)

특징

- ✓ 방송(Broadcast) 형태의 패킷 교환
- ✓ 라우팅과 같은 경로 선택 불필요
- ✓ 광대역 전송 매체의 사용으로 고속 통신이 가능
- ✓ 동축케이블 혹은 광케이블 매체의 이용으로 매우 낮은 에러율을 가짐
- ✓ ACK 수신 시간이 짧아져 패킷 지연이 최소화됨

802 프로젝트

			IEEE 8	02.2		
IEEE 802.4 (Token Bus)	IEEE 802.3 (CSMA/ CD)	IEEE 802.5 (Token Ring)	IEEE 802.6 (DQDB)	FDDI (Token Ring)	IEEE 802.11 (CSMA; polling)	IEEE 802.12 (Round Robin; Priority)

1

LLC

MAC

PHY

12.2 LAN의 분류 (1/11)

토폴로지

✓ 성형(Star) : 각 스테이션(station)이 허브(Hub)라고 불리는 중앙 전송 제어 장치와 점대점(Point-to-Point) 링크에 의해 접속되어 있는 형태

▶장점

- 고장 발견이 쉽고 유지 보수가 용이함
- 한 스테이션의 고장이 전체 네트워크에 영향을 미치지 않음
- 한 링크가 떨어져도 다른 링크는 영향을 받지 않음
- 확장이 용이함
- ▶ 단점
 - 중앙 전송 제어 장치가 고장이
 나면 네트워크는 동작이 불가능
 - 설치 시에 케이블링에 많은 노력과 비용이 듦
 - 통신량이 많은 경우 전송 지연이 발생함

12.2 LAN의 분류 (2/11)

- ✓ 버스(Bus)형
 - 하나의 긴 케이블이 네트워크상의 모든 장치를 연결하는 중추 네트워크의 역할을 하는 형태
 - ▶ 탭이나 송신기를 설치하여 노드를 접속하는 다중점(Multipoint) 형태

12.2 LAN의 분류 (3/11)

▶ 장점

- 케이블에 소요되는 비용이 최소
- 각 스테이션의 고장이 네트워크 내의 다른 부분에 아무런 영향을 주지 않음

▶ 단점

- 재구성이나 결합 분리의 어려움
- 탭에서 일어나는 신호의 반사는 신호의 질을 저하시킴
- 기저대역 전송 방식을 사용할 경우 거리에 민감하여 거리가 멀어지면 중계기가 필요함
- 버스 케이블에 결함이 발생하면 전체 스테이션은 모든 전송
 을 할 수 없음
- 스테이션의 수가 증가하면 처리 능력은 급격히 감소함
- 네트워크에 부하가 많으면 응답시간이 늦어짐

12.2 LAN의 분류 (4/11)

- ✓ 트리(Tree)형
 - 성형의 변형으로 트리에 연결된 스테이션은 중앙 전송 제어 장치 (1차 허브)에 연결되어 있지만 모든 장치가 중앙 전송제어 장치에 연결되어 있지 않은 형태
 - 특징은 스타형과 비슷하며 아래 그림과 같이 2차 허브를 위치시 킴으로써 다음과 같은 장점을 얻음
 - 하나의 1차 허브에 더 많은 스테이션을 연결함
 - 각 스테이션 간의 신호의 이동거리를 증가시킴

• 2차 허브로 네트워크를 분리하거나 해당 네트워크의 우선 순위를 부가함

12.2 LAN의 분류 (5/11)

- ✓ 링(Ring)형
 - ▶ 닫힌 루프 형태로 각 스테이션이 단지 자신의 양쪽 스테이션과 전용으로 점 대 점으로 연결된 형태

- ▶장점
 - 단순하며 설치와 재구성이 쉬움
 - 장애가 발생한 스테이션을 쉽게 찾음
 - 스테이션의 수가 늘어나도 네트워크의 성능에는 별로 영향을 미 치지 않음
 - 성형보다 케이블링에 드는 비용이 적음
- ▶ 단점
 - 링을 제어하기 위한 절차가 복잡하여 기본적인 지연이 존재함
 - 단방향 전송이기 때문에 링에 결함이 발생하면 전체 네트워크를 사용할 수 없기 때문에 이를 해결하기 위해 이중 링을 사용함
 - 새로 스테이션을 추가하기 위해서는 물리적으로 링을 절단하고 스테이션을 추가해야 함

12.2 LAN의 분류 (6/11)

전송매체

- ✓ 트위스티드 페어
 - 두 줄의 도선을 쌍으로 꼬아서 만든 케이블로 어느 정도의 잡음에 대한 내성을 가지고 있는 케이블
 - ▶ 비차폐 트위스티드 페어(Unshielded Twisted Pair, UTP)
 - 기존의 전화 시스템에 사용되는 매체이기 때문에 별도의 설치 비용이 들지 않음
 - 전송 속도에 제한이 있어 비교적 소규모의 LAN 환경에 쓰임
 - CATEGORY 3(~16Mbps), CATEGORY 4(~20Mbps), CATEGORY 5(~100Mbps), CATEGORY 6(~200Mbps, ~250Mbps)
 - > 차폐 트위스티드 페어(Shielded Twisted Pair, STP)
 - UTP의 간섭과 잡음의 영향을 줄인 것
 - 비용이 비싸고 작업하기 어려움

12.2 LAN의 분류 (7/11)

- ✓ 동축케이블
 - ▶ 트위스티드 페어보다 우수한 주파수 특성을 가지고 있으므로 높은 주파수와 빠른 데이터 전송이 가능
 - > 기저대역 전송 방식의 동축케이블
 - ▶ 디지털 신호를 그대로 전송하는 경우
 - ▶ 광대역 방식의 동축 케이블에 비해 비용이 저렴함
 - 주파수 분할 다중화 방식을 이용하여 다중 채널을 사용할 수 없음
 - 주로 버스 토폴로지에서 사용
 - > 광대역 전송 방식의 동축케이블
 - 아날로그 신호로 전송하며 해당 대역폭을 할당하여 사용
 - 주파수 분할 다중화를 통해 독립적인 채널을 가짐
 - 여러 개의 빌딩간 또는 대규모의 공장 등에서 많이 사용

12.2 LAN의 분류 (8/11)

- ✓ 광케이블
 - 데이터 신호의 빛에 의해 전송
 - 전자기파의 간섭에 무관하며, 트위스티드 페어나 동축 케이블 에서 지원할 수 없는 높은 속도를 제공
 - 철저한 보안이 요구되는 경우에 사용
 - 케이블에 스테이션을 접속하기가 어렵기 때문에 허브, 고속의 링 또는 점대점 구성에 이용
 - ▶ LAN에서 현재 FDDI(Fiber Distributed Data Interface)와 DQDB(Distributed-Queue, Dual-bus), 기가비트 고속 이더 넷 등에서 사용

12.2 LAN의 분류 (9/11)

전송신호

- ✓ 기저대역(Baseband) 전송방식
 - 디지털 신호를 그대로 전송하는 방식
 - ▶ 10Mbps 혹은 이 보다 높은 전송율을 가지는 하나의 전송 채널을 사용

- ▶ 보통 이진데이터를 맨체스터 혹은 차등(differential) 맨체스터 부호화 방식을 사용(중계기 필요)
- 버스 토폴로지에 주로 사용
- ▶ 최대 1km로 거리에 제한
- ▶ 멀티포인트(Multipoint) 혹은 멀티드롭(Multidrop) 구성상에서 시간 분할 다중화 방식(TDM)을 사용하여 데이터를 전송
- ✓ 광대역(Broadband) 전송방식
 - 아날로그 신호로 변조하여 전송하는 방식
 - 디지털 신호에 비해 먼 거리로의 전송이 가능
 - 한번에 한 방향으로만 전송이 가능
 - ▶ 여러 개의 채널을 사용하기 위해 주파수 분할 다중화 방식(FDM) 을 사용 : RF(Radio Frequency) 모뎀

12.2 LAN의 분류 (11/11)

매체 접근 제어(Medium Access Control: MAC) 방식

- ✓ 공유하고 있는 전송매체에 대한 채널의 할당에 대한 문제를 해결하는 방식
 - > CSMA/CD
 - 스테이션이 채널의 상태를 미리 감지해 충돌을 피하는 방식
 - ▶ 토큰 링
 - 토큰이라는 짧은 프레임을 사용하여 데이터를 보낼 권리를 정하여 데이터를 정하는 방식
 - ▶ 토큰 버스
 - 토큰 링 방식과 이더넷이 결합된 형태로 물리적으로는 버스 형태를 띄지만 논리적으로는 토큰 링 방식을 사용하는 매체
 접근 제어 방식

12.4 CSMA/CD (1/7)

개요

- ✓ 많은 스테이션의 사용자가 하나의 회선에 동시에 접근하면 신호 가 겹쳐서 신호가 손상되거나 신호 자체가 소실될 가능성이 생김
- ✓ 충돌을 피하면서 많은 양의 프레임을 전송하기 위해서는 매체 접 근 제어 메커니즘이 필요
- ✓ CSMA/CD (Carrier Sense Multiple Access/Collision Detection): IEEE 802.3
- ✓ 이더넷 (Ethernet)

			IEEE 8	02.2			L
IEEE 802.4 (Token Bus)	IEEE 802.3 (CSMA/ CD)	IEEE 802.5 (Token Ring)	IEEE 802.6 (DQDB)	FDDI (Token Ring)	IEEE 802.11 (CSMA; polling)	IEEE 802.12 (Round Robin; Priority)	M P1

12.4 CSMA/CD(2/7)

정의

✓ 스테이션이 채널의 상태를 감지해 충돌을 피하는 매체 접근 방식 CSMA/CD의 발전과정

12.4 CSMA/CD(2/7)

충돌 검출 반송파 감지 다중접송(CSMA/CD; Carrier sense multiple access with collision detection)

- ✓ CDMA 방식에 충돌을 처리하는 절차를 더함
- ✔ 유선 링크의 경우 충돌을 확인 할수 있음(유선 이더넷에 사용)
- ✓ 프레임 전송과 동시에 다른 포트를 이용하여 충돌 발생을 감지
- ✓ 충돌시 충돌 신호(jamming signal)을 보냄
- ✓ 충돌 발생시 재전송을 요구
- ✓ 두번 째 충돌을 줄이기 위해 대기
- ✓ 지속적인 백오프 방법에서 대기 시간재전송 알고리즘
 - ▶ i번의 충돌이 발생하였다면, 0과 2ⁱ⁻¹사이의 임의의 수를 선택 하여 그만큼의 슬롯 타임 동안 대기

12.4 CSMA/CD(3/7)

동작과정

12.4 CSMA/CD(5/7)

채널 획득 방법

- ✓ Non-persistent 방식
- ✓ 1-persistent 방식
- ✓ P-persistent 방식

12.4 CSMA/CD(6/7)

특징

- ✓ 보통 기저대역은 맨체스터 디지털 부호화 방식을 사용
- ✓ 광대역에서는 디지털/아날로그 부호화(차등 PSK)를 사용함
- ✓ 회선의 제어권이 모든 스테이션에 분배되어 있음
- ✓ 1 Mbps에서 100Mbps까지의 데이터 전송 속도를 제공
- ✓ 통신량이 적을 때는 90% 이상으로 회선 이용율이 높음
- ✓ 지연 시간을 예측하기 어려움

12.4 CSMA/CD(7/7)

프레임 형식

7 bytes	1 byte	6 bytes	6 bytes	2 bytes		44 ~ 150	00 bytes		4 bytes
Preamble	SFD	DA	SA	Length	DSAP	SSAP	Control	Info	CRC

LLC Data

- ✓ SFD: Start Frame Delimiter DSAP: Destination Service Access Point 물리적인 규격
 - ✓ <데이터 전송속도(Mbps단위)> <신호> <사용할 수 있는최대 거리(100m 단위)>

	10BASE5	10BASE2	10BASE-T	10BROD36	10BASE-FP
전송매체	동축케이블 (50 ohm)	동축케이블 (50 ohm)	비차폐 트위스티드 페어	동축케이블 (50 ohm)	광케이블
신호방식	기저대역 (맨체스터)	기저대역 (맨체스터)	기저대역 (맨체스터)	광대역 (DPSK)	맨체스터 (ON/OFF)
토폴로지	버스	버스	성형	버스/트리	성형
세그먼트 최대길이(m)	500		100	1800	500
세그먼트 당 노드의 수	100	30	-	-	33

12.5 토큰 링(Token Ring)(1/4)

개요

- ✓ 각 스테이션이 교대로 데이터를 보내게 함으로써 공유 매체의 충 돌 방지
- ✓ IEEE 802.5

정의

- ✓ 링 형태로 네트워크를 구성하고, 토큰 패싱 방식을 사용하여 매체 를 접근하는 방식
- ✓ 토큰(Token)이라는 짧은 길이의 프레임을 사용하여 데이터를 보 낼 수 있는 자격을 한정하며 스테이션은 자신의 차례가 되어서야 데이터를 전송

1			IEEE 8	02.2			LLC
IEEE 802.4 (Token Bus)	IEEE 802.3 (CSMA/ CD)	IEEE 802.5 (Token Ring)	IEEE 802.6 (DQDB)	FDDI (Token Ring)	IEEE 802.11 (CSMA; polling)	IEEE 802.12 (Round Robin; Priority)	MAC PHY

12.5 토큰 링(Token Ring)(2/4)

토큰 패싱(token passing)

✓ 네트워크에서의 토큰 순환을 조절하는 메커니즘

a. 네트워크 상에 free token 순환 중

b. E로 전송할 데이터를 가지고 있는 B가 free token을 잡고, 데이터를 E로 전송함

c. E는 수신한 프레임을 복사하고 다시 네트워크로 전송함

d. B는 수신한 프레임을 페기하고 free token을 네트워크로 전송함

12.5 토큰 링(Token Ring)(3/4)

특징

- ✓ 이더넷과 마찬가지로 NIC의 6바이트 주소를 이용해 주소를 지정
- ✓ 차등 맨체스터 디지털 부호화 방식을 사용
- ✓ 4Mbps에서 최고 16Mbps까지의 데이터 전송률을 지원 우선순위와 예약
 - ✓ 사용자가 정의하거나 높은 우선순위를 갖는 스테이션이 더욱 많이 네트워크를 사용할 수 있게 하기 위해 우선순위를 부여함
 - ✓ 동작원리
 - ① 높은 우선 순위를 가진 스테이션은 낮은 우선순위 예약을 삭제하고, 자신의 우선 순위로 대체
 - ② 동일한 우선 순위를 갖는 스테이션들 간에는 먼저 예약한 스 테이션이 토큰을 확보
 - ③ 예약을 한 스테이션은 'free' 토큰이 생기면 전송

12.5 토큰 링(Token Ring)(4/4)

프레임 형식

- ✓ 데이터 프레임
- ✓ 토큰 프레임
- ✓ 중지 프레임

1 byte	1 byte	1 byte	6 bytes	6 bytes		~ 4500 b	ytes		4 bytes	1 byte	1 byte
SD	AC	FC	DA	SA	DSAP	SSAP	Control	Info	CRC	ED	FS

a. 일반적인 데이터 프레임 형식

 1 byte
 1 byte
 1 byte
 1 byte

 SD
 AC
 ED

 SD
 ED

b. 토큰 프레임 형식

c, 중지 프레임 형식

✓ SD : Start Delimiter AC : Access Control

✓ FC : Frame Control ED : End Delimiter

✓ FS : Frame Status

12.6 토큰 버스(Token Bus)(1/3)

개요 및 정의

- ✓ 이더넷과 토큰 링의 특징을 결합한 형태
- ✓ 물리적으로는 버스 접속형태이지만 논리적으로는 토큰 패싱 방식을 사용하여 매체를 제어하는 방식
- ✓ 스테이션들은 논리적인 링 형태로 구성
- ✓ 실시간(real-time) 처리가 요구되는 공장 자동화와 같은 응용에 적 용

특징

- ✓ 주로 동축 케이블을 전송매체로 사용
- ✓ 기저대역 모드나 캐리어 대역 모드(Carrier Band Mode)에서 동작

12.6 토큰 버스(Token Bus)(3/3)

프레임 형식

1 ~ bytes	1 byte	1 byte	6 bytes	6 bytes		~ 819	1 bytes		4 bytes	1 byte
Preamble	SD	FC	DA	SA	DSAP	SSAP	Control	Info	CRC	ED

무선랜의 개요 및 정의

- ✓ 이동성, 편리성, Ad hoc 네트워킹, 유선으로 연결되기 어려운 곳에 대한 서비스 등에 대한 요구에 의해 나타난 기술
- ✓ 복잡한 배선의 번거로움을 없애고 무선으로 LAN을 구축하기 위한 통신규격
- ✓ 무선 LAN은 한정된 공간 내에서 유선 케이블 대신 무선 주파수 또는 빛을 사용하여 허브에서 각 단말기까지 네트워크 환경을 구 축하는 것
- ✓ 유선랜의 케이블 대신 전파(RF)나 빛으로 구성되는 네트워크
- ✓ 기기간의 데이터 교환을 전파나 광신호 등으로 변환하여 무선으로 송수신하는 시스템

무선 랜의 특징

- ✓ 복잡한 배선이 필요 없고, 단말기의 재배치 시 용이
- ✓ 이동 중에도 통신이 가능
- ✓ 빠른 시간 내에 네트워크 구축이 가능
- ✓ 유선 LAN에 비하여 상대적으로 낮은 전송 속도
- ✓ 신호 간섭 발생

✓ HiperLAN: High Performance Radio LAN

무선랜의 특징

✓ 무선랜은 기존의 유선랜과는 다른 전송매체 사용으로 유선랜과는 다른 특징을 갖는다.

무선랜의 장단점

장점	단점
•케이블을 필요로 하지 않으므로 이동이 자유롭다. •주변환경이 깔끔하게 정리된다. •네트워크 구축비용이 절감된다. •네트워크 유지 및 보수 등이 용이하다.	•전파를 사용하는 다른 기기의 간섭을 받는다. •유선랜에 비해 상대적으로 느린 전송 속도를 제공한다. •Hidden Terminal Problem이 발생한다.

400

hidden-terminal problem? exposed-terminal problem

□ hidden-terminal 문제

- ① A가 B로 전송 중임
- ② C가 B로 전송 원함
- ③ C는 ② 의 사실 감지 못함

□ exposed-terminal 문제

- ① B가 A로 전송중임
- ② C가 D로 전송원함
- ③ *C*는 ② 의 사실 감지하고 D로 전송 못함

전송매체별 분류

- ✓ 전파(Radio)
 - 용도에 따른 주파수 분배
 - 기기에 따라 사용 주파수 대역폭의 제한으로 동일 기기간의 간섭 발생

종류	주파수 영역	용 도	전파 특성
VLF	3KHz~30KHz	-장거리 무선항해, 해저통신	지표면 전파
LF	30KHz~300KHz	-장거리 무선항해, 항해위치 확인기	시표한 현패
MF	300KHz~3MHz	-AM라디오, 해상라디오, 무선방향탐지(RDF), 긴급구조주파수	대류권 전파
HF	3MHz~30MHz	-아마추어라디오, 민간통신, 국제방송, 군사통신, 장거리 항공기	전리층 전파
VHF	30MHz~300MHz	-VHF 텔레비전, 이동전화, 셀 방식라디오, 페이징, 마이크로파링크	
UHF	300MHz~3GHz	-UHF 텔레비전, 이동전화, 위성마이크로파, 레이더 통신	가시거리 전파 우주공간 전파
SHF	3GHz~30GHz	-지상마이크로파, 위성마이크로파, 레이더 통신	
EHF	30GHz~300GHz	-레이더, 위성, 실험용 통신	우주공간 전파

- ▶ LoS(Line of Sight)란?
 - 가시선 통신을 말하며 전파통신보다 적외선통신에서 중
 요하게 여겨진다.

적외선(Infrared)

- ✓ 주로 일대일 통신의 애드혹 네트워크 구성에 사용됨
- ✓ 효율적인 통신을 위해 LoS 보장 필요
- ✓ 적외선이 벽, 천장 및 다른 장애물을 통과할 수 없음
- ✓ 주로 실내에서 무선 LAN을 구축하고자 할 때 주로 사용
- ✔ 수신측과 송신측간에 아무런 장애물이 없는 송신기와 수신기가 필요
- ✓ 빌딩 혹은 벽과 같은 장애물이 있는 환경에서는 송신기가 넓은 각도로 빛을 퍼트리기 위해 적외선을 광학적으로 발산시키는 발산(diffused) IR 기술을 사용

	Infrared(적외선)	Radio(전파)
전송률	최대 4Mbps	54Mbps(추후 100Mbps)
시스템	간단	복잡
장애물	통과 어려움	비교적 통과
대역폭	좁음	넓음
네트워크 구성	Ad hoc	Ad hoc, Infrastructure
감쇄율	쉽게 감쇄됨	비교적 덜 감쇄됨

토폴로지별 분류

- ✓ 애드혹 네트워크
 - 노드들에 의해 자율적으로 구성되는 네트워크로 AP같은 기반기 기를 사용하지 않고 노드들 스스로 연결을 맺어 서로 통신하며 자체적으로 라우팅을 하는 네트워크
 - ▶ 노드의 접속과 이동이 자유로워 네트워크 토폴로지가 동적으로 변화한다.
- ✔ 인프라스트럭처 네트워크
 - ▶ AP라는 중간 매개체를 기반으로 구성되는 네트워크
 - > 모든 노드들은 AP에 접속되고 AP를 통해서 데이터를 전송한다.
 - 네트워크의 전송범위는 AP의 전송범위에 따라 결정되며 전송범위 확장을 위해 복수개의 AP 연결이 가능하다.

무선랜 전송기술

다중접속(Multiple Access)

✓ 노드나 지국이 멀티포인트나 공통 링크를 사용할 때 링크에 대한 접속을 조절할 수 있는 다중접속 프로토콜이 필요

ALOHA

하와이어로 '안녕하세요'라는 인사말

ALOHA Network

- ✓ Additive Links On-line Hawaii Area network의 약어
- ✓ 1968년 하와이 대학에서 연구 개발한 무선 통신 패킷 교환망을 갖는 컴퓨터 네트워크
- ✓ 하와이 군도의 4개 섬에 분산된 7개의 캠퍼스에서 사용하고 있는 각종 컴퓨터 및 단말을 하나의 통신망으로 구성하여 하는 것을 목 적으로 한 최초의 근거리 통신망
- ✓ 송신과 수신 주파수가 조금 다름(전송은 407MHz, 수신은 413MHz)
- ✓ 9600bps의 속도로 패킷을 전송(지금 9600bps는 느린 속도지만 그 당시는 굉장한 속도)
- ✓ 제록스 사의 Palo Alto 연구소에서 ALOHA를 근간으로 하여 Ethernet을 개발

무선랜 전송기술

ALOHA 규칙

- ✓ 다중접속 : 송신할 프레임을 가진 모든 지국은 프레임을 송신
- ▼ 확인응답 : 프레임 전송 후 확인응답을 기다리고 시간내에 응답을 받지 못하면 프레임을 잃어버렸다고 간주하고 재전송을 시도

순수 ALOHA 네트워크에서의 프레임

Slotted ALOHA network

무선랜 전송기술

임의접속 방법의 진화

- ✓ MA : Multiple Access
- ✓ CSMA : Carrier Sense Multiple Access
- ✓ CSMA/CD : Collision Detection
- ✓ CSMA/CA : Collision Avoidance

무선랜 전송기술

CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)

- ✓ 무선 환경에서 매체 제어를 위해 유선랜의 CSMA/CD를 변형하여 무선 환경에 적합하도록 고안
 - CSMA/CD는 물리적 회선으로 케이블을 사용하고 모든 스테이션에게 신호가 전달 되므로 회선의 신호레벨 측정 후 데이터의 충돌 여부를 확인하고 이에 대처할 수 있다.
 - ▶ 무선 환경에서는 전파의 전송거리에 한계가 있으므로 충돌을 감지하는데 어려움이 따름
 - > 충돌을 미리 회피하는 방식으로 충돌에 대비하였음
 - 휴지 상태라 하더라도 전송을 늦추어서 충돌을 회피
 - 사전에 예비 신호를 보냄

CSMA/CA를 이용한 Frame 전송

- 1. RTS(Return to Signal) : 프레임을 전송하겠다는 요청 신호를 보낸다.
- 2. CTS(Claer to Signal) : 프레임을 전송 해도 된다는 확인 신호를 보낸다.
- 3. Frame : 프레임을 전송한다.
- 4. ACK : ACK신호를 보내 전송을 받았다 고 알려준다.
- ❖ 장점 : 보내려는 데이터 이전에 예비신 호를 보내는 방법을 통해 충돌을 예방
- ❖ 단점: 네트워크의 사용빈도가 많아져 네트워크가 복잡해지면 충돌방지의 신 호가 흐르는 속도가 매우 느려진다. 데 이터의 전송이 지연되는 단점이 있다.

