Дискретная математика. Лекция 25.02.

С. В. Ткаченко

25.02.2022

Высказывание - это предложение, смысл которого может быть истинным или ложным.

Если суждение, составляющее смысл некоторого высказывания, истинно, то высказывание истинно.

Если суждение, составляющее смысл некоторого высказывания, ложно, то высказывание ложно.

Истинность и ложность называются логическими, или истинностными, значениями высказываний.

Сложное высказывание - это высказывание, составленное из других высказываний с помощью логических операций.

Элементарное высказывание - это высказывание, которое представляет собой только одно утверждение. Такие высказывания утверждают что-то о *свойствах* объекта или об *отношениях* между объектами (чаще всего - двумя).

Обозначение высказываний: А, В, С, ...

значения высказываний: Л - ложь, И - истина.

Операции над высказываниями

Пусть даны два произвольных высказывания А и В.

1. Отрицанием высказывания А называется высказывание, истинное тогда и только тогда, когда высказывание А ложно.

Обозначается \bar{A} (или $\neg A, A'$), читается "не A".

2. Конъюнкцией двух высказываний А и В называется высказывание, истинное тогда и только тогда, когда оба высказывания истинны.

Обозначается $A \wedge B$ (или A&B), читается "А и В".

3. **Дизъюнкцией** двух высказываний A и B называется высказывание, ложное тогда и только тогда, когда оба высказывания ложны.

Обозначается $A \vee B$, читается "А или В".

4. **Импликацией** двух высказываний A и B называется высказывание, ложное тогда и только тогда, когда A истинно, а B ложно.

Обозначается $A \to B$ (или $A \supset B$, $A \Rightarrow B$), читается "А влечет В"(или "если А, то В", "из А следует В").

5. **Эквивалентностью** двух высказываний A и B называется высказывание, истинное тогда и только тогда, когда истинностные значения A и B совпадают.

Обозначается $A \sim B$, читается "А эквивалентно В".

6. Суммой по $\mod 2$ двух высказываний A и B называется высказывание, истинное тогда и только тогда, когда истинностные значения A и B различны.

Обозначается $A \oplus B$, читается "A сумма по модулю 2 В".

7. Штрих Шеффера - антиконъюнкция.

Антиконъюнкцией двух высказываний A и B называется высказывание, ложное тогда и только тогда, когда оба высказывания истинны.

Обозначается $(A|B) = \overline{(A \wedge B)}$, читается "А штрих Шеффера В".

8. Стрелка Пирса - антидизъюнкция.

Антидизъюнкцией двух высказываний A и B называется высказывание, истинное тогда и только тогда, когда оба высказывания ложны.

Обозначается $(A\downarrow B)=\overline{(A\vee B)},$ читается "А стрелка пирса В".

Булевы функции. Представления булевой функции формулой алгебры высказываний

Булевой функцией $f(x_1,...,x_n)$ называется произвольная n-местная функция, действующая из множества $\{0,1\}^n$ во множество $\{0,1\}$:

 $f(x_1,...,x_n):\{0,1\}^n \to \{0,1\}$ аргументы функции $x_1,...,x_n$ принимают значения 0 или 1, функция f также принимает значения 0 или 1.

Пусть значению Π соответствует значение 0, значению Π соответствует значение 1.

Тогда каждой формуле алгебры высказываний F можно поставить в соответствие булеву функцию f.

Представление булевой функции таблицей истинности.

x_1	x_2	x_3	Число	$f(x_1, x_2, x_3)$
0	0	0	0	f(0, 0, 0)
0	0	1	1	f(0, 0, 1)
0	1	0	2	f(0, 1, 0)
0	1	1	3	f(0, 1, 1)
1	0	0	4	f(1, 0, 0)
1	0	1	5	f(1, 0, 1)
1	1	0	6	f(1, 1, 0)
1	1	1	7	f(1, 1, 1)

Каждая строка таблицы - двоичная запись числа из множества $\{0,1,2,...,2^n-1\}$

Пример. $f(x_1, x_2, x_3) = \bar{x_3} \rightarrow (x_1 \sim x_2)$

x_1	x_2	x_3	$\bar{x_3}$	$x_1 \sim x_2$	$f(x_1, x_2, x_3)$
0	0	0	1	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	0	1
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	1	1

Если булева функция f зависит от n переменных $(x_1,...,x_n)$, то существует ровно 2^{2^n} различных n-местных булевых функций.

При n=1: $2^{2^n}=2^{2^1}=4$ функции.

При n=2: $2^{2^n}=2^{2^2}=16$ функций.

При n=3: $2^{2^n}=2^{2^3}=256$ функций.

Булева функция $f(x_1,..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$ существенно зависит от переменной x_i , если существует такой набор значений $\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n$, что

$$f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) \neq f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n).$$

В этом случае x_i называют cyщественной переменной, в противном случае x_i называют фиктивной переменной.

Булевы функции одной переменной

	Переменная х	0	1	
Название	Обозначение			Фиктивная
константа ноль	$f_0 = 0$	0	0	X
тождественная х	$f_1 = x$	0	1	
отрицание х	$f_2 = \bar{x}$	1	0	
константа единица	$f_3 = 1$	1	1	X

Булевы функции двух переменных

	Переменная х	0	0	1	1	
Название	Обозначение					Фиктивные
константа ноль	$f_0 = 0$	0	0	0	0	x, y
конъюнкция	$f_1 = x \wedge y$	0	0	0	1	
запрет по у	$f_2 = \overline{(x \to y)}$	0	0	1	0	
тождественная х	$f_3 = x$	0	0	1	1	У
запрет по х	$f_4\overline{(y\to x)}$	0	1	0	0	
тождественная у	$f_5 = y$	0	1	0	1	x
сумма по mod 2	$f_6 = x \oplus y$	0	1	1	0	
дизъюнкция	$f_7 = x \vee y$	0	1	1	1	
стрелка Пирса	$f_8 = x \downarrow y$	1	0	0	0	
эквивалентность	$f_9 = x \sim y$	1	0	0	1	
отрицание у	$f_{10} = \bar{y}$	1	0	1	0	
конверсия	$f_{11} = y \to x$	1	0	1	1	
отрицание х	$f_{12} = \bar{x}$	1	1	0	0	У
импликация	$f_{13} = x \to y$	1	1	0	1	
штрих Шеффера	$f_{14} = x y$	1	1	1	0	
константа единица	$f_{15} = 1$	1	1	1	1	x, y

 Φ ормула алгебры высказываний - это сложное высказывание, составленное из элементарных высказываний с помощью операций 1 - 8.

Пример.

 $\overline{\Pi}$ усть высказывание X принимает значение Π , высказывание Y - Π , высказывание Z - Π ,

тогда формула

$$A = (Y \land (Z \to X)) \lor (\bar{X} \sim \bar{Y})$$

примет значение

$$A = (\Pi \wedge (\Pi \to \Pi)) \vee (\Pi \sim \Pi) = (\Pi \wedge \Pi) \vee \Pi = \Pi \vee \Pi = \Pi.$$