

The Infinite Bandwidth Company™

Application Note 15

Practical Switching Regulator Circuits

by Brian Huffman

Overview

A golden power supply that will satisfy every design requirement does not exist. Size, cost, and efficiency are the driving factors for selecting a design, causing each design to be different. This application note covers real-world circuit designs by showing a collection of the most commonly used power supply circuits. Some of the application circuits utilize low-profile surface mount components, while others employ low-cost components.

Every circuit in this application note has been designed, built, and evaluated for stability, temperature, component life, and tolerance (see Figure 1). Judicious design practices have been followed to ensure that the solutions are robust.

Efficiency is often a main concern with switching regulators. To allow a preliminary performance evaluation, efficiency plots for various input and output conditions accompany most circuits.

If the components specified in the schematic are not readily available, alternative components can be found in the cross-reference list in Appendix A. The components in the list are not exact replacements. Their electrical characteristics and physical sizes may be slightly different, but the electrical performance in the circuits will be the same. Appendix A also provides detailed electrical specifications for each power component, making the selection of alternate components easy.

Instead of publishing the operating equations for the buck (step-up), buck-boost (inverting), boost (step-up) and flyback topologies in this application note, Micrel chose to put them into easy-to-use Microsoft® Excel spreadsheets. This dramatically speeds up the design time when there is a need to modify one of the existing circuits.

Figure 1. Designed, Built, and Tested

© 1998 Micrel Incorporated

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

Microsoft is a registered trademark of Microsoft Corporation.

Windows and Windows NT are trademarks of Microsoft Corporation.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

Application Note Contents

Buck Converter—Through Hole		5
MIC4574 (6V-24V to 3.3V/0.5A)	Fig. 1	5
MIC4574 (8V-24V to 5V/0.5A)	Fig. 2	5
MIC4574 (16V-24V to 12V/0.5A)	Fig. 3	5
MIC4575 (6V-24V to 3.3V/1A)	Fig. 4	5
MIC4575 (8V-24V to 5V/1A)	Fig. 5	6
MIC4575 (16V-24V to 12V/1A)	Fig. 6	6
MIC4576 (6V-24V to 3.3V/3A)	Fig. 7	6
MIC4576 (6V-36V to 3.3V/3A)	Fig. 8	6
MIC4576 (8V-24V to 5V/3A)	Fig. 9	7
MIC4576 (8V-36V to 5V/3A)	Fig. 10	7
MIC4576 (16V-36V to 12V/3A)	Fig. 11	7
Buck Converter—Low-Profile Surface Mount		7
MIC4574 (6V–24V to 3.3V/0.5A)		
MIC4574 (8V–24V to 5V/0.5A)		
MIC4574 (16V–24V to 12V/0.5A)		
MIC4575 (6V–24V to 3.3V/1A)		
MIC4575 (8V–24V to 5V/1A)		
MIC4575 (16V-24V to 12V/1A)		
Buck Converter—Lower-Cost Surface Mount		
MIC4574 (6V–24V to 3.3V/0.5A)		
MIC4574 (8V–24V to 5V/0.5A)		
MIC4574 (16V–24V to 12V/0.5A)		
MIC4575 (6V–24V to 3.3V/1A)		
MIC4575 (8V–24V to 5V/1A)		
MIC4575 (16V–24V to 12V/1A)	Fig. 23	10
Buck-Boost Converter—Through Hole		10
MIC4575 (8V-18V to -5V/0.2A)		
MIC4575 (5V to -5V/0.3A)	_	

Microsoft is a registered trademark of Microsoft Corporation.

Windows and Windows NT are trademarks of Microsoft Corporation.

Apple and Macintosh are registed trademarks of Apple Computer, Inc.

Special Feature Circuits	11
MIC4576 Parallel Switching Regulators11	
MIC4575 Low Output-Noise Regulator (5mV Output Ripple) Fig. 2712	
MIC4575 Split ±5V Supplies12	
MIC4575 Adjustable (0V-12V) Output Voltage Regulator Fig. 29 12	
MIC4575 Low Output-Voltage Regulator13	
MIC4575 1A Battery Charger (6–8 cells)13	
MIC4575 0.1A-1A Variable-Current Battery Charger Fig. 32 13	
MIC4575 1A Battery Charger (2–8 Cells)14	
MIC4575 Remote Sensing Regulator14	
MIC4575 6V-18V to Split ±12V/100mA Supplies (PMOS) Fig. 35 15	
MIC4575 1A Battery Charger15	
MIC4575 Improved Adjustable Output-Voltage (0V-12V) Regulator Fig. 3716	
MIC4575 Switchable Battery-Pack Charger16	
MIC4575 Lithium-Ion Battery Charger with End-of-Charge Flag Fig. 3917	
MIC4575 Low Output-Noise Regulator (<1mV) Fig. 40	
Appendix A	18
Component Cross-Reference List18	
Appendix B	20
Suggested Manufacturers List20	
Appendix C	21
Microsoft® Excel Spreadsheet Summary21	
Appendix D	23
Package Thermal Characteristics23	
Appendix E	23
Suggested PC Board Layouts23	
Appendix F	26
Manufacturer's Distributors List	

6V-24V to 3.3V/0.5A Buck Converter Through Hole

Figure 1a. Schematic

Figure 1b. Efficiency

8V-24V to 5V/0.5A Buck Converter Through Hole

Figure 2a. Schematic

Figure 2b. Efficiency

16V–24V to 12V/0.5A Buck Converter Through Hole

Figure 3a. Schematic

Figure 3b. Efficiency

6V-24V to 3.3V/1A Buck Converter Through-Hole

Figure 4a. Schematic

Figure 4b. Efficiency

Note 1 (General): For IC electrical specifications, see the MIC4574, MIC4575, or MIC4576 data sheet.

Note 2: Surface-mount component

8V–24V to 5V/1A Buck Converter Through Hole

Figure 5a. Schematic

Figure 5b. Efficiency

16V-24V to 12V/1A Buck Coverter Through-Hole

Figure 6a. Schematic

Figure 6b. Efficiency

6V-24V to 3.3V/3A Buck Converter Through Hole

Figure 7a. Schematic

Figure 7b. Efficiency

6V-36V to 3.3V/3A Buck Converter Through Hole

Figure 8a. Schematic

Figure 8b. Efficiency

8V–24V to 5V/3A Buck Converter Through Hole

Figure 9a. Schematic

Figure 9b. Efficiency

8V-36V to 5V/3A Buck Converter Through Hole

Figure 10a. Schematic

Figure 10b. Efficiency

16V-36V to 12V/3A Buck Converter Through Hole

Figure 11a. Schematic

Figure 11b. Efficiency

6V-24V to 3.3V/0.5A Buck Converter Low-Profile Surface Mount

Figure 12a. Schematic

Figure 12b. Efficiency

8V-24V to 5V/0.5A Buck Converter Low-Profile Surface Mount

Figure 13a. Schematic

Figure 13b. Efficiency

16V–24V to 12V/0.5A Buck Converter Low-Profile Surface Mount

Figure 14a. Schematic

Figure 14b. Efficiency

6V-24V to 3.3V/1A Buck Converter Low-Profile Surface Mount

Figure 15a. Schematic

Figure 15b. Efficiency

8V–24V to 5V/1A Buck Converter Low-Profile Surface Mount

Figure 16a. Schematic

Figure 16b. Efficiency

16V–24V to 12V/1A Buck Converter Low-Profile Surface Mount

Figure 17a. Schematic

Figure 17b. Efficiency

6V-24V to 3.3V/0.5A Buck Converter Lower-Cost Surface Mount

Figure 18a. Schematic

Figure 18b. Efficiency

8V–24V to 5V/0.5A Buck Converter Lower-Cost Surface Mount

Figure 19a. Schematic

Figure 19b. Efficiency

16V-24V to 12V/0.5A Buck Converter Lower-Cost Surface Mount

Figure 20a. Schematic

Figure 20b. Efficiency

6V-24V to 3.3V/1A Buck Converter Lower-Cost Surface Mount

Figure 21a. Schematic

Figure 21b. Efficiency

8V-24V to 5V/1A Buck Converter Lower-Cost Surface Mount

Figure 22a. Schematic

Figure 22b. Efficiency

16V–24V to 12V/1A Buck Converter Lower-Cost Surface Mount

Figure 23a. Schematic

Figure 23b. Efficiency

8V–18V to –5V/0.2A Buck-Boost Converter Through Hole

Figure 24a. Schematic

Figure 24b. Efficiency

5V to -5V/0.3A Buck-Boost Converter **Through Hole**

- $\begin{array}{ll} \mbox{Nichicon} & \mbox{UPL1V151MPH, ESR} = 0.12\Omega \\ \mbox{Nichicon} & \mbox{UPL1C681MPH, ESR} = 0.065\Omega \\ \mbox{Motorola} & \mbox{1N5819} \\ \mbox{Coiltronics} & \mbox{PL52A-15-500, DCR} = 0.054\Omega \end{array}$ C1 C2 D1 L1

Figure 25a. Schematic

Figure 25b. Efficiency

Parallel Switching Regulators

Figure 26.

Low Output-Noise Regulator (5mV Output Ripple)

Figure 27.

Split ±5V Supply

Figure 28.

Adjustable Output-Voltage Regulator (0V-12V)

Figure 29.

Low Output-Voltage Regulator (1V)

Figure 30.

1A Battery Charger (6-8 cells)

Figure 31.

0.1A-1A Variable-Current Battery Charger

Figure 32.

1A Battery Charger (2-8 Cells)

Figure 33.

Remote-Sensing Regulator

Figure 34.

6V-18V to Split ±12V/100mA Supply

Figure 35.

1A Battery Charger

Figure 36.

Improved Adjustable Output-Voltage (0V-12V) Regulator

Figure 37.

Switchable Battery-Pack Charger

Figure 38.

Lithium-Ion Battery Charger with End-of-Charge Flag

Figure 39.

Low Output-Noise Regulator (<1mV)

Figure 40.

Appendix A

Component Cross-Reference List

Micrel provides this cross-reference list to make it easier to choose alternate power components. This becomes necessary when the standard components are not readily available or the manufacturer is not an approved vendor.

The components in this list are not exact replacements. Their electrical characteristics and physical sizes may be slightly different, but their performance in the circuit will be the same. Also, detailed electrical specifications are provided for each power component so that if you need an alternate component, you can choose it intelligently.

Through-Hole Components

Capacitors

	Nichicon	Sanyo	Panasonic	United Chemi-Con
	(Electrolytic)	(Electrolytic)	(Electrolytic)	(Electrolytic)
220μF/16V/0.16Ω/0.460A	UPL1C221MPH	16MV220GX	ECA1CFQ271	LXF16VB271M10x12.5
330μF/16V/0.12Ω/0.595A	UPL1C331MPH	16MV330GX	ECA1CFQ331L	LXF16VB331M8x15
680μF/16V/0.065Ω/1.02A	UPL1C681MPH	16MV560GX	ECA1CFQ681L	LXF16VB681M10x20
1000μF/16V/0.047Ω/1.41A	UPL1C102MPH	16MV1000GX	ECA1CFQ122L	LXF16VB102M10x30
47μF/35V/0.34Ω/0.27A	UPL1V470MEH	35MV68GX	ECA1VFQ560	LXF35VB680M6.3x11.5
150μF/35V/0.12Ω/0.595A	UPL1V151MPH	35MV150GX	ECA1VFQ151L	LXF35VB181M8x15
470μF/35V/0.046Ω/1.42A	UPL1V471MPH	35MV680GX	ECA1VFQ561L	LXF35VB5611M10x30
33μF/63V/0.35Ω/0.33A	UPL1J330MEH	63MV82GX	ECA1JFQ390	LXF63VB33M6.3x15
68μF/63V/0.17Ω/0.5A	UPL1J680MPH	63MV150GX	ECA1JFQ680	LXF63VB820M8x20
470μF/63V/0.039Ω/1.42A	UPL1J471MRH	63MV680GX	ECA1JFQ471L	LXF63VB561M12.5x40

Diodes

	Motorola	GI	IR
	(Schottky)	(Schottky)	(Schottky)
1A/40V	1N5819	1N5819	11DQ04
1A/60V	MBR160	SB160	11DQ06
3A/40V	1N5822	1N5822	31DQ04
3A/60V	MBR360	SB360	31DQ06

Inductors

	Coiltronics	Renco	Sumida
	(Toroidal Cores)	(Rod Cores)	(Button Cores)
10μH/0.5A	PL52A-10-500		
15μH/0.5A	PL52A-15-500		
33μH/3A	PL52C-33-1000		
68μH/1A	PL52B-68-500	RL-1283-68-43	RCH106-680K
68μH/3A	PL52D-68-2000		
100μH/0.5A	PL52A-100-250	RL-1284-100-43	RCH875-101K
150μH/1A	PL52B-150-500	RL-1283-150-43	RCH110-151K
220μH/0.5A	PL52A-220-250	RL-1284-220-43	RCH106-221K

Surface-Mount

Capacitors

	AVX	Tokin	Sprague
Low Profile	(Tantalum)	(Ceramic)	(Tantalum)
330μF/6.3V/0.1Ω/1.149A	TPSE337M006R0100		593D337X06R3E2W
220μF/10V/0.1Ω/1.149A	TPSE227M010R0100		593D227X0010E2W
68μF/20V/0.15Ω/0.938A	TPSE686M020R0150		593D686X0020EZW
10μF/35V/0.3Ω/0.663A	TPSD106M035R0300		593D106X0035E2W
22μF/35V/0.3Ω/0.632A	TPSE226M035R0300		593D226X0035E2W
10μF/35V		C55Y5U1E106Z	
22μF/35V		C25Y5U1E226Z	
10μF/50V		C55Y5U1H106Z	
			_

	Sanyo	Nichicon
Lower-Cost	(Electrolytic)	(Electrolytic)
470μF/16V/0.17Ω/0.45A	16CV470GX	
68μF/35V/0.34Ω/0.28A	35CV68GX	
220μF/35V/0.17Ω/0.45A	35CV220GX	
47μF/50V/0.4Ω/0.18A		UUX1H470MNT1GS

Diodes

	Motorola	GI	IR
	(Schottky)	(Schottky)	(Schottky)
1A/30V	MBRS130LT3		
1A/40V	MBRS140T3	SS14/SS24	10MQ040
1A/60V		SS16/SS26	
3A/40V	MBRS340T3	SS34	330WQ04F
3A/60V	MBRS360T3	SS36	330WQ06F

Inductors

	Coiltronics	Coilcraft	Bi
	(Toroidal Cores)	(Button Cores)	(Toroidal Cores)
100μH/0.5A	CTX100-2P	DO3316P-104	_
220μH/0.5A	CTX250-4P	DO3316P-224	
68μH/1A	CTX68-4P	DO3316P-683	HM77-11003
150μH/1A	CTX150-4	DO5022P-154	
33μH/3A			HM77-30004
68μH/3A			HM77-29006

Appendix B

Suggested Manufacturers List

Micrel supplies this list of manufacturers to save you time in selecting components. Micrel makes no claims about these companies except that they provide components necessary in switching power supplies.

Capacitors

AVX Corp.

801 17th Ave. South Myrtle Beach, SC 29577 Tel: (803) 448-9411 Fax: (803) 448-1943

Nichicon (America) Corporation

927 East State Parkway Schaumburg, IL 60173 Tel: (708) 843-7500 Fax: (708) 843-2798

Panasonic

6550 Katella Avenue PANAZIP 17A-11 Cypress, CA 90630 Tel: (714) 373-7857 Fax: (714) 373-7102

Sanyo Video Components (USA) Corp.

2001 Sanyo Avenue San Diego, CA 92173 Tel: (619) 661-6835 Fax: (619) 661-1055

Sprague Electric

Lower Main Street 60005 Sanford, ME 04073 Tel: (207) 324-4140

Tokin America, Inc.

155 Nicholson Lane San Jose, CA 95134 Tel: (408) 432-8020 Fax: (408) 434-0375

United Chemi-Con Inc.

9801 West Higgins Road, Suite 430

Rosemount, IL 60018 Tel: (708) 696-2000 Fax: (708) 696-9278

Diodes

General Instruments (GI)

10 Melville Park Road Melville, NY 11747 Tel: (516) 847-3222 Fax: (516) 847-3150

International Rectifier Corp.

233 Kansas Streeet El Segundo, CA 90245 Tel: (310) 322-3331 Fax: (310) 322-3332

Motorola Inc.

3102 North 56th St., MS 56-126 Phoenix, AZ 85018

Tel: (800) 521-6274 Fax: (602) 952-4190

Heat Sinks

Aavid Engineering, Inc.

67 Primrose Drive Laconia, NH 03246 Tel: (603) 528-3400 Fax: (603) 528-1478

Thermalloy

2021 West Valley View Lane

P.O. Box 810839 Dallas, TX 75381 Tel: (214) 243-4321 Fax: (214) 241-4656

Inductors

Bi Technologies

4200 Bonita Place Fullerton, CA 92635 Tel: (714) 447-2345 Fax: (714) 447-2500

Coilcraft

1102 Silver Lake Road Cary, IL 60013

Tel: (708) 639-2361 Fax: (708) 639-1469

Coiltronics

6000 Park of Commerce Boulevard

Boca Raton, FL 33487 Tel: (407) 241-7876 Fax: (407) 241-9335

Dale Electronics

East Highway 50 Yankton, SD 57078 Tel: (605) 665-9301 Fax: (605) 665-0817

Renco

60 Jefryn Boulevard East Deerpark, NY 11729 Tel: (516) 586-5566 Fax: (516) 586-5562

Sumida Electric

5999 New Wilke Road

Suite 110

Rolling Meadows, IL 60008

Tel: (708) 956-0666 Fax: (708) 956-0702

Resistors

KRL/Bantry Components, Inc.

160 Bouchard Street Manchester, NH 03103 Tel: (603) 668-3210 Fax: (603) 624-0634

Appendix C

Microsoft® Excel Spreadsheet Summary

Determining the operating conditions for a switching regulator requires dozens of calculations. Doing this with a handheld calculator can take hours, but when the equations are put into a spreadsheet, this takes only a few seconds. Micrel provides Microsoft® Excel spreadsheets for buck (step-up) and buck-boost (inverting), boost (step-up) and flyback switching regulator topologies. The spreadsheets perform computer aided design, not computer generated design. It is the responsibility of the user to verify spreadsheet results by building the circuit and measuring component stress under all expected operating conditions.

Figure C1 shows the buck regulator spreadsheet. It is divided into three columns. The first column contains all the input variables. You can change any variable in this column, such as input voltage, switching frequency, and inductor value. You might change these variables to observe the sensitivity of the circuit, to test for worst-case conditions, or to set a tolerance on component characteristics.

The second column contains the resulting operating conditions for all power components. You select the power components based upon these values. Most worst-case operating conditions occur at the minimum input voltage, but not in every case. To ensure a reliable design, vary the input voltage over its entire operating range and use the worst-case value to select components.

The third column itemizes the power losses. The largest contributors to efficiency losses are the IC switch (Pd_IC_Switch) and diode (Pd_Diode). For heat sink design, the IC's power dissipation result (Pd_IC) makes sizing of the heat sink quick and easy.

There are three pull-down menus: one for selecting a Micrel IC, one for selecting an inductor core material, and one for doing worst-case analysis on a selected parameter. The Micrel parts list shows all the devices that are available for a design. The list includes both the 52kHz (LM257X) and the 200kHz (MIC457X) parts. The operating warning window uses the selected IC's peak switch current, input voltage range, and output voltage range to determine if an operating condition exceeds its limit.

The second pull-down menu has two core materials to choose from, either a powdered iron type 52 (#52) or a ferrite (Fe). The inductor core material has a minuscule effect on the overall efficiency and was included only for completeness.

Worst case analysis has been automated for user convenience. The program sweeps the input voltage from the minimum input voltage (Vin_Min) to the maximum input voltage (Vin_Max). The output current is fixed at it's original value. Once the calculation is complete the results are displayed in a graph.

Note that the list box exhibits a strange behavior. The program will not rerun if you select the same item in the list box two times in a row. To rerun a parameter, you must select the

Figure C1. Buck Regulator Excel Spreadsheet

Micrel Application Note 15

None item first and then click on the desired parameter.

Efficiency varies widely for various input voltages and load conditions. Therefore, a macro has been written that sweeps both the input voltage and the output current over the entire operating region. The resulting efficiency is then automatically displayed in a graph. To run the macro, click the efficiency button.

Equations in the second and third columns are protected and cannot be inadvertently changed. You can defeat the protection feature, however, by selecting the Tools button from the top menu bar, clicking the protection menu item, selecting the unprotect sheet option, and entering "Micrel" for the password. Now any equation or formatting in the active spreadsheet can be changed. It is advisable to make a backup copy of the spreadsheet program prior to removing the protection.

The spreadsheets were created in Microsoft® Excel 5.0 for Windows™ and run under Windows™3.1, Windows NT™, and Windows 95™.

The diskette and spreadsheets can also be used with Microsoft® Excel 5.0 for the Macintosh® or newer. For System 7.5 or later, the PC Exchange control panel must be "on." System 7.1 or earlier requires Apple® File Exchange (included on the System Software disks) to mount the DOSformatted diskette and copy the file to the hard disk.

Definition of Terms

Input & Output Vin: input voltage Vout: output voltage lout: output current

Component Parameters

L: inductance

L DCR: inductor DC resistance

Diode_Vf: catch diode forward voltage drop

Cin: input capacitor value

Cin_ESR: input capacitor equivalent series resistance

Cout: output capacitor value

Cout_ESR: output capacitor equivalent series resistance

IC Parameters

IC fs: switching frequency

IC Rsw: internal switch equivalent resistance

IC_Vs: internal switch equivalent voltage

IC_Iq: quiescent current IC ton: switch turn-on time IC toff: switch turn-off time

Inductor Core Loss Constants

Ci: core loss contant

d: core loss frequency exponent p: core loss flux density exponent

U: permeability of core

Resulting Operating Conditions

Mode: indicates whether the regulator is in continuous or

discontinuous mode

DC: duty cycle

DC_Prim: (1 – duty cycle)

L_lavg: average inductor current

L_lpp: peak-to-peak inductor ripple current

L_lpk: peak inductor current L_RMS: inductor RMS current

IC_Sw_RMS: IC Switch RMS current Diode RMS: diode RMS current

Cin RMS: input capacitor RMS current

Cout_RMS: output capacitor RMS current

Input_lavg: average input current

 Δ Vout ESR: output ripple voltage caused by the ESR of

the output capacitor

Resulting Power Dissipation

Pd IC Ig: power loss due to guiescent current Pd_IC_AC: power loss due to switching times

Pd_IC_Switch: switch conduction loss

Pd_IC: total IC loss

Pd_Diode: diode power loss

Pd_Cin: input capacitor power loss

Pd Cout: output capacitor power loss

Pd_L_Cu: power loss due to the DCR of the inductor

Pd_L_Core: power loss due to core material

Pd L: total inductor loss

P loss: sum of all the power losses

Efficiency: output power divided by input power

Appendix D

Package Thermal Characteristics

Designing the proper heat sink requires defining the thermal resistance of the package and heat sink. This is relatively straightforward for a TO-220 package in which the heat sink is attached to the part, but not for DIP and SO packages in which the external heat sink is the PC board. The physical size of the PC board can dramatically affect the thermal dissipation of the package.

The heat sink manufacturers have thoroughly characterized their heat sinks for TO-220 packages. For these packages, you can choose either a clip-on or screw-mount heat sink. The clip-on heat sinks offer the lowest labor cost to mount, but they can attain only about a 15° to 30°C/W case-to-ambient thermal coefficient. Alternatively, screw-mount types can reach a 5° to 10°C/W case-to-ambient thermal coefficient. The following Thermalloy part numbers are examples of each mounting option.

Heat-Sink Style	Thermalloy No.	$^{ extsf{ heta}}$ CA
Clip on	6045	30°C/W
Screw mount	6099B	12°C/W

Most data sheets give the worst-case thermal resistance coefficients of TO-220, DIP, and SO packages. That is, the packages are characterized in free air, and the thermal resistance coefficients do not take into account the heat-sinking effect of the PC board. Table D1 gives a more

reasonable junction-to-ambient thermal resistance for the various package types. Note that one square inch of PC board copper area was used to make these measurements. Additional copper area will lower the thermal resistance further.

Package Style	$\theta_{\sf JA}$
TO-220	50°C/W
TO-263	50°C/W
8-Pin DIP	90°C/W
16-Pin SO	100°C/W

Table D1. Package Thermal Coefficients (1 in² Cu)

The numbers in Table C1 are a good starting point to determine the IC's junction temperature rise, but they can vary widely. Many factors affect these numbers, including PC board size and thickness as well as the number of layers, copper area, and copper thickness. Furthermore, a component like the diode or inductor can either heat up the IC or act as a heat sink.

For best thermal performance use as much copper as possible. Every pin should have a generous amount of PC board copper, especially the ground (GND) and input pin (VIN). One exception to this rule is the switch pin (SW), which should be designed just wide enough to handle the switch current, minimizing the radiated EMI. Copper provides the best transfer of heat to the surrounding area. Even double-sided or multilayered boards help in removing the heat from the IC.

Appendix E

Suggested PC Board Layouts

To achieve proper performance, printed circuit (PC) board layouts are provided for the various IC package types. Poor PC board layout can have dramatic effects on the operation of a power supply. Reduced efficiency, increased EMI, and spurious oscillations are just some of the results of a poor layout. Here are a few recommendations that should be followed:

- The inductor, filter capacitors, diode, and IC should be physically close to one another and on the same side of the PC board. Keep the trace length between these components below 0.25 inches.
- All the high-current traces must be on the same PC board layer. Do not use vias to connect the power traces.
- 3) Use a single-point ground, not a ground plane.
- 4) For the adjustable parts, connect the center tap of the voltage divider network (R1, R2 in Figure 15a) as close to the feedback pin as possible. Stray capacitance and pickup on this node can cause erratic switching behavior.
- 5) Connect the ground return of the divider network as close to the ground pin as possible. Bizarre switching action can occur if the ground is returned through a high-current path.

In 95 percent of the cases where a power supply is malfunctioning, the cause is more than likely that the inductor is physically too small rather than poor PC board layout.

The inductor is a power component and is selected based upon its value and current rating. An inductor's current-handling capability is directly related to its physical size. A physically large inductor can handle higher peak currents than a small one of the same value. Just like a 10Ω , 10W resistor can handle more current than a 10Ω , 1/4W resistor. A $100\mu H$, 3A inductor should be at least the size of your thumb. If it is not, its value can rapidly decrease or even go to zero (saturate the core) when operated beyond its rated limit. When this occurs, the DC-DC converter can exhibit erratic behavior.

Figure 1. MIC4574-5.0BWM 14-lead SOIC (Layout for Figure 18a)

Solder Side

Silk Screen

Component Side

Figure 2. MIC4574-5.0BN 8-pin DIP (Layout for Figure 4a)

Solder Side

Silk Screen

Component Side

Figure 3.
MIC4575-5.0BT/MIC4576-5.0BT
5-lead TO-220
(Layout for Figure 9a)

Solder Side

Silk Screen

Component Side

Figure 4.
MIC4575-5.0BU/MIC4576-5.0BU
5-lead TO-263
(Layout for Figure 22a)

Solder Side

Silk Screen

Component Side

Appendix F

Manufacturer's Distributors List

Micrel provides this list of distributors to make it easier for you to acquire components. An attempt has been made to ensure that the information is accurate; however, this list is subject to change without notice.

Coiltronics Distributors

Armor Electronics (North-East Area)

1055 East Street Tweksbury, MA 01876 Tel: (508) 640-1499 Fax: (506) 640-1570

Component Distributors Inc. (Alabama Area)

908 B Merchant Walk Huntsville, AL 35801 Tel: (800) 888-0331 Tel: (205) 536-8850 Fax: (800) 808-2067 Fax: (205) 533-3919

(Georgia Area)

5950 Crooked Creek Road

Suite 150

Norcross, GA 30092 Tel: (800) 874-7029 Tel: (770) 441-3320 Fax: (770) 449-1712

(Texas Area)

710 East Park Blvd.

Suite 108

Plano, TX 75074 Tel: (800) 848-4234 Tel: (214) 578-2644 Fax: (214) 578-2208

(Colorado Area)

3979 East Arapahoe Road

Suite 102, Bidg. 1 Littleton, CO 80122 Tel: (800) 551-7357 Tel: (303) 770-6214 Fax: (303) 770-6057

(Florida Area)

2510 Kirby Ave. N.E.

Suite 109

Palm Bay, FL 32905 Tel: (800) 558-2351 Tel: (407) 724-9910 Fax: (800) 292-6579 Fax: (407) 729-6579

(Virginia Area)

1111 Knoll Mist Lane Gaitherburg, MD 20879 Tel: (800) 293-2080 Tel: (301) 527-0113 Fax: (301) 527-0115

(California Area)

1028 Opal Street San Diego, CA 92109

Tel: (800) 372-1580 Tel: (619) 272-1580 Fax: (619) 272-2362

Bravo Electronics (West Coast Area)

610 Palomar Ave.

Sunnyvale, CA 94086-2913

Tel: (800) 392-6318 Tel: (408) 733-9090 Fax: (408) 733-8555

Singel 3

Alcom Electronics (Belgium)

2550 Kontich Tel: + 32 (34) 58.30.33 Fax: + 32 (34) 58.31.26

E V Johanssen Electronik (Denmark)

Titangade 15 2200 Copenhagen N Tel: + 45 35 86 90 22 Fax: + 45 35 86 90 00

Hy-Line Power Components (Germany)

Inseklammerstr. 10 82008 Unterhaching Tel: + 49 (89) 6 14 90 10 Fax: + 49 (89) 6 14 09 60

Metl (United Kingdom)

Countax House
Haseley Trading Estate
Stadhampton Road
Great Haseley
Oxford OX44 7PF
Tel: + 44 (1844) 278781
Fax: + 44 (1844) 278746

Westech Electronics (Pte.), Ltd. (Singapore)

12 Lorong Bakar BATU #05-07 Kolam Ayer Industrial Park

Singapore 1334 Tel: + 65 743 63 55 Fax: + 65 746 13 96

TCE Sel (Italy)

Nia Trento 59

20021 Ospiate Di Bollate

Milano

Tel: + 39 (2) 3501203 Tel: + 39 (2) 3501205 Fax: + 39 (2) 3501924

Tritech Ltd. (Israel)

4, Ha'Yetzira St. P.O. Box 2436 43100 Ra'Anana Tel: +972 (9) 917277 Fax: +972 (9) 982616

Application Note 15 Micrel MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.