Границі

Теоретичні відомості:

 ε -околом числа а називають множину чисел x, такі що $|x-a|<\varepsilon$ (коли треба ввести декілька околів беруть ε та δ)

Означення границі за Коші: кажуть, що функція f(x) має границю в точці x_0 , якщо існує такий δ -окіл точки x_0 , для x з котрого, значення f(x)належать деякому ε -околу точки a. Тоді точку a називають границею функції f(x). Записують $\lim_{x\to x_0} f(x) = a$

Важливі границі та наближення:

- $\lim_{x\to 0} \frac{\sin x}{x} = 1$ (перша чудова границя)
- $\lim_{x\to\infty} (1+\frac{1}{x})^x = e \approx 2.718$ (друга чудова границя)

При $x \to 0$ наближено (так звані асимптотичні наближення):

- $x \approx \sin x \approx \tan x \approx \ln(1+x)$
- $\cos x \approx 1 \frac{x^2}{2}$
- $e^x \approx 1 + x$
- $(1+x)^a \approx 1+ax$

Вправи:

- 1. Дано 2 функції f(x) та g(x), у яких існують границі при $x \to x_0$, рівні a та bвідповідно. Доведіть за означенням, що:
 - $\lim_{x\to x_0} f(x) + g(x) = a + b$

 - $\lim_{x \to x_0} f(x) * g(x) = a * b$ $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b} (b \neq 0)$
- 2. Доведіть єдиність існування границі методом від супротивного
- 3. Знайдіть наступні границі:

 - $\lim_{x \to -2} \frac{x+2}{x^2-x-6}$ $\lim_{x \to 0} \frac{\lg x}{x}$ $\lim_{x \to \infty} (\frac{3x+1}{3x})^{x-1}$ $\lim_{x \to 1} \frac{\ln(x)}{x^2+x-2}$
- 4. Приведіть приклади таких функцій f(x), для яких виконується:
 - $\lim_{x\to\infty}f(x)=b$, де b довільна константа
 - $\lim_{x\to a} f(x) = \infty$, де a довільна константа
 - $\lim_{x\to a} f(x)$ не існує
- 5^* . Знайдіть такі границі (n та m натуральні):

 - $\lim_{x \to 1} \frac{x + x^2 + \dots + x^n n}{x 1}$ $\lim_{x \to 1} (\frac{m}{1 x^m} \frac{n}{1 x^n})$