DESIGNS WITH RANDOM EFFECTS

Chapter 17

LEARNING OBJECTIVES

- Argue whether a factor should be fixed or random
- Write statistical models and their new assumptions when including random effects
- Write statistical model for CRD that includes analysis of subsampling and random block models
- Perform analysis and interpret output in R (finals week Lab)

FIXED AND RANDOM EFFECTS

- Each treatment effect is said to be a fixed effect
 - Effect is repeatedly observable across different EUs
- Responses also affected by uncontrollable variation

$$Y_{ij} = \mu + au_i + E_{ij}$$

- Error terms also affect response but in a much less predictable way
- \mathbf{E}_{ij} 's are your first introduction to random effects
 - Observed effects generated from normal distribution (not repeatable by experimenter)

INFERENCE FOR RANDOM FACTORS

- Fixed factor: variable whose levels are pre-selected
 - Effect on the response is repeatable, call it a fixed effect
- Random factor: variable whose levels are a random sample of all possible levels
 - Effect on response not repeatable without knowledge of level,
 call these random effects
 - Determine whether the variability of the levels produces variability in the response
- With CRD model, cared only about the variability of the EUs, not estimating the individual EU effects
 - If we did the CRD again with new EUs we would expect new random effects, but their variance should be the same

FIXED OR RANDOM?

- Difficult to decide whether a factor is fixed or random
- Fixed factor tips:
 - Levels specifically chosen and only care about inference between these chosen levels
 - Level choices and their effects are repeatable

Random factor tips:

- Levels represent random sample from larger population of possible levels
- Have no control over the choice of levels
- Observed a reasonable number of such levels***
- Care only about estimating variability between effects

BREAD EXAMPLE

- Remember the bread example from early on
 - 3 treatments: rise time = 35, 40, 45
 - 4 loaves of bread per rise time, all from larger batch
- Rise time is a fixed factor because this is set by the experimenter, even though there are a large number of possible rise times
 - In terms of this specific data collection procedure, the levels were not randomly generated, only randomly assigned
- Even if we wanted to consider it as a random factor, we haven't observed many of these levels
 - Our estimate for the rise time variance would be bad

INTERLABORATORY TESTING

- Apolipoproteins (Apo A-I) known to clear cholesterol from arteries
- Compare measured Apo A-I concentrations across laboratory on same reference material
- All of their measurements should give the same value
- Want to determine:
 - Measurement variability between labs (interlaboratory)
 - Measurement variability within lab (intralaboratory)
- Had a total of 28 labs each with 7-10 measurements

INTERLABORATORY TESTING

- Lab is now a factor with 28 levels (random because it is a random sample of all possible labs)
- If we cared about inference for only the 28 labs we would treat it as a fixed factor
- Statistical model has two random effects

$$Y_{ij} = \mu + T_i + E_{ij}$$
 $T_i \sim^{iid} N(0, \sigma_T^2) \ E_{ij} \sim^{iid} N(0, \sigma_E^2)$ $T_i \sim^{iid} N(0, \sigma_T^2)$ Mutually indpt

Notation: use capital Roman letters for random factors, Greek letters for fixed factors

INTERLABORATORY TESTING

- This is not a randomized, comparative experiment because we are not applying any treatment
- lacksquare Goal: Determine whether $\sigma_T^2>0$
- Analysis challenge: measurements with the same lab will have the exact same $T_i = t_i$ level
- Result: repeated measurements from same level of random factor are correlated with each other
- lacksquare How can we estimate the two variances $oldsymbol{\sigma_T^2}$, $oldsymbol{\sigma_E^2}$

MIXED MODELS

- Focus our time on introducing random factors into designs we have already seen
- Introduces models with both fixed and random effects, call these mixed models
- First introduction to this will be an analysis of a CRD with duplicate observations per EU
- Before we just averaged over the duplicates but this is throwing away valuable information!

CRD WITH SUBSAMPLING PAPER AIRPLANES

Replicate our classroom experiment to allow each person to throw paper airplane multiple times.

EU: Paper which is constructed into airplane

OU: Each throw of airplane.

Analyzing each throw as a replicated treatment would be pseudoreplication.

GOLF EXAMPLE

- Recall golfer example when we talked about GRCBDs
 - 10 golfers, 3 tee heights, 5 replicates per tee height
- Not interested in making comparisons between specific golfers so we could consider this to be a random effect
- lacksquare Golfer effect: $B_h \sim^{iid} N(0, \sigma_B^2)$
- Treatment effect: T_i
- lacksquare Golfer/treatment interaction: $B au_{hi}\sim^{iid}N(0,\sigma_{Bt}^2)$
- Interaction effect random because it involves random factor

GRCBD STATISTICAL MODEL

Model looks similar as before, but now with random effects instead

$$Y_{hij} = \mu + B_h + \tau_i + B\tau_{hi} + E_{hij}$$

The result is the following

$$E(Y_{hij}) = \mu + au_i \qquad Var(Y_{hij}) = \sigma_B^2 + \sigma_{Bt}^2 + \sigma_E^2$$

LEARNING OBJECTIVES REVIEW

- Argue whether a factor should be fixed or random
- Write statistical models and their new assumptions when including random effects
- Write statistical model for CRD that includes analysis of subsampling and random block models
- Perform analysis and interpret output in JMP