实 验 报 告 平分

少年班 系 06 级 学号 <u>PB06000680</u> 姓名 张力 日期 <u>2007-3-26</u>

实验题目:时间测量中的随机误差分布规律

实验目的:同常规仪器测量时间间隔,通过对时间和频率测量的随机误差分布,学习用统计方法研究物理

现象的过程和研究随机误差分布的规律。

实验仪器:电子秒表、机械节拍器

实验原理:1、仪器原理

机械节拍器能按一定频率发出有规律的声响,前者利用齿轮带动摆作周期运动,后者利用 石英晶体的振荡完成周期运动;

电子秒表用石英晶体振荡器作时标测时,精度可达 0.01s:

2、统计分布规律原理

在近似消除了系统误差的前提下,对时间 t 进行 N 次等精度测量,当 N 趋于无穷大时,各测量值出现的概率密度分布可用正态分布的概率密度函数表示:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\bar{x})^2}{2\sigma^2}}$$

其中
$$\overline{x} = \frac{\displaystyle\sum_{i=1}^n x_i}{n}$$
 , 为测量的算术平均值 ,

$$\sigma = \sqrt{\frac{\displaystyle\sum_{1}^{n} (x_i - \overline{x})^2}{n-1}} \ \ \text{, 为测量列的标准差 ,}$$

$$P(a) = \int_{-a}^{a} f(x)dx , a = \sigma, 2\sigma, 3\sigma$$

利用统计直方图表示测量列的分布规律,简便易行、直观明了。在本实验中利用 f(x)得到概率密度分布曲线,并将其与统计直方图进行比较,在一定误差范围内认为是拟合的,可认为概率密度分布基本符合正态分布,其中的误差是由于环境、仪器、人的判断误差、N的非无穷大等所决定的。

实验步骤:1、检查实验仪器是否能正常工作,秒表归零;

- 2、将机械节拍器上好发条使其摆动,用秒表测量节拍器四个周期所用时间,在等精度条件下重复测量 150-200 次(本实验中测量 150 次),记录每次的测量结果;
- 3、对数据进行处理(计算平均值、标准差、作出相应图表、误差分析等);

数据处理:

实验所测量得到的结果如下:

实 验 报 告 评分:

<u>少年班</u> <u>系</u> <u>06</u> <u>级</u> 学号_PB06000680</u> 姓名<u>张力</u> 日期_2007-3-26

单位:秒

单位:秒				
4T	4T	4T	4T	4T
5.26	5.37	5.33	5.36	5.33
5.31	5.33	5.30	5.33	5.36
5.35	5.32	5.40	5.39	5.35
5.41	5.24	5.34	5.40	5.37
5.37	5.28	5.29	5.31	5.42
5.28	5.35	5.39	5.29	5.42
5.41	5.37	5.40	5.41	5.27
5.42	5.31	5.36	5.37	5.34
5.38	5.39	5.35	5.34	5.31
5.29	5.36	5.33	5.42	5.31
5.27	5.37	5.38	5.33	5.29
5.36	5.38	5.37	5.37	5.34
5.45	5.32	5.40	5.39	5.33
5.39	5.34	5.36	5.36	5.40
5.35	5.30	5.33	5.28	5.34
5.43	5.42	5.36	5.32	5.37
5.31	5.37	5.34	5.27	5.39
5.37	5.43	5.33	5.33	5.29
5.37	5.41	5.39	5.33	5.41
5.34	5.33	5.39	5.28	5.30
5.41	5.37	5.43	5.37	5.37
5.30	5.31	5.32	5.40	5.33
5.44	5.29	5.41	5.34	5.38
5.37	5.41	5.39	5.34	5.32
5.38	5.33	5.31	5.36	5.36
5.30	5.32	5.38	5.31	5.34
5.30	5.40	5.40	5.35	5.30
5.37	5.28	5.37	5.27	5.31
5.24	5.40	5.33	5.37	5.32
5.37	5.35	5.39	5.33	5.27

表一:原始数据(4个周期)

数据分析如下:

最小值:x_{min}=5.24s 最大值:x_{max}=5.45s

平均值: $x = \frac{\sum_{i=1}^{130} x_i}{150} = 5.353s$

实验报告

评分:

<u>少年班</u>系<u>06</u>级

学号_PB06000680

姓名 张力 ___

日期 2007-3-26

标准差:		$\sum_{i=0}^{150} (\chi_i - \overline{x})$	
柳冲在。	$\sigma = 1$	$\frac{1}{150-1} = 0.056$	S

统计频数得下表:

区域起始/s	区域末尾/s	区域中点/s	频数	相对频数/%	累积频数/%
5.24	5.26	5.25	3	2.0	2.0
5.26	5.28	5.27	5	3.3	5.3
5.28	5.30	5.29	11	7.3	12.7
5.30	5.32	5.31	17	11.3	24.0
5.32	5.34	5.33	23	15.3	39.3
5.34	5.36	5.35	18	12.0	51.3
5.36	5.38	5.37	30	20.0	71.3
5.38	5.40	5.39	16	10.7	82.0
5.40	5.42	5.41	17	11.3	93.3
5.42	5.44	5.43	8	5.3	98.7
5.44	5.46	5.45	2	1.3	100.0

表二:节拍器的频数和频率分布表

根据上表利用 ORIGIN 软件辅助,作出统计直方图,并用一条高斯曲线拟合:

图一:节拍器频数和频率的统计直方图和高斯拟合曲线

<u>实 验 报 告</u> 平分

少年班 系<u>06</u>级

学号_PB06000680__

姓名___张力___

日期 2007-3-26

由公式:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\bar{x})^2}{2\sigma^2}}$$
 $P(a) = \int_{-a}^{a} f(x)dx$ 以及 =0.056s 得

P()=0.693 ; P(2)=0.987 ; P(3)=1.000 ;

故由以上图象和计算,知在一定误差范围内,该测量列基本呈正态分布。

而测量结果平均值的标准差可计算得:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{0.0562s}{\sqrt{150}} = 0.005s$$

这也就是测量中的 A 类不确定度 u_A;

另外一方面,在本实验中,由于仪器所造成的误差远小于人的操作所造成的误差,一般地,取人开、停秒表的误差为 0.2s,故 B 类不确定度

 $u_{\rm R}$ = $_{\rm th}$ /C=0.2s/3=0.067s;

合成不确定度
$$U = \sqrt{u_A^2 + u_B^2} = \sqrt{0.005^2 + 0.067^2} = 0.067s, P = 0.68$$

那么结果最后可表成: x=(5.35 3± 0.067)s P=0.6&