§1. Геометрический смысл дифференциальных уравнений

Установим геометрический смысл нормального уравнения

$$y' = f(x, y) \tag{1}$$

и его решения φ . Имеем

$$\varphi'(x) = f(x, \varphi(x))$$

на некотором промежутке E. Пусть $x_0 \in E$, $y_0 = \varphi(x_0)$. Тогда

$$\varphi'(x_0) = f(x_0, y_0).$$

Таким образом, значение функции f в точке (x_0, y_0) определяет наклон касательной к интегральной кривой в этой точке (рис. 1).

Рис. 1. Значение $f(x_0,y_0)$ определяет касательную к интегральной кривой, проходящей через точку (x_0,y_0)

Если каждой точке (x,y) области определения функции f сопоставить вектор, направленный под углом $\operatorname{arctg} f(x,y)$ к оси абсцисс, то получится так называемое **поле направлений** уравнения (1). Таким образом, задать уравнение (1) — всё равно, что задать поле направлений.

Задачу нахождения решений уравнения (1) можно сформулировать на геометрическом языке: найти все гладкие кривые, в каждой своей точке касающиеся заданного поля направлений (рис. 2).

Векторное поле, построенное в некоторых точках, даёт примерное представление о поведении интегральных кривых. Такое поле может быть использовано для предварительного качественного исследования дифференциального уравнения, построения эскизов интегральных кривых и контроля найденных решений.

Рассмотрим один способ построить приближение к интегральной кривой. Взяв некоторую точку (x_0,y_0) в качестве начальной, будем двигаться по направлению поля в точке (x_0,y_0) до точки с абсциссой $x_1=x_0+h$, ординату которой обозначим через y_1 . От точки (x_1,y_1) продолжим движение вдоль поля до точки (x_2,y_2) , где $x_2=x_1+h$, но теперь по направлению поля в (x_1,y_1) .

Рис. 2. Поле направлений уравнения y' = y + x; интегральная кривая, проходящая через точку $x_0 = 0$, $y_0 = -1/2$ (красным цветом); ломаные Эйлера с шагом h = 0.8 (синим цветом) и h = 0.4 (чёрным цветом), проходящие через эту же точку

Продолжая этот процесс дальше, получаем **ломаную Эйлера**. Аналогично она строится и влево от точки (x_0, y_0) .

Ломаная Эйлера даёт приближение интегральной кривой уравнения, проходящей через точку (x_0, y_0) . Приближение тем точнее, чем меньше шаг h (рис. 2). Исходя из условия

$$\frac{y_{k+1} - y_k}{x_{k+1} - x_k} = f(x_k, y_k),$$

получаем формулы для координат вершин ломаной:

$$x_{k+1} = x_k + h$$
, $y_{k+1} = y_k + f(x_k, y_k)h$.

Ломаную Эйлера лучше всего строить с помощью компьютера. Существует другой, родственный способ, который удобно использовать при построении эскизов кривых вручную — $memod\ usoknuh$.

Определение. *Изоклиной* I_k уравнения (1) называют множество уровня функции f:

$$I_k = \{(x, y) \in \text{dom } f \mid f(x, y) = k\}.$$

Изоклина пересекается различными интегральными кривыми под одним и тем же углом. Построив достаточно частую сеть изоклин, можно приближённо изобразить интегральную кривую. Для этого нужно вести линию от одной изоклины к другой, пересекая их под соответствующими углами.

На рис. З изображено несколько изоклин и одна интегральная кривая уравнения y' = x + y. Синим цветом обозначена **нулевая изоклина** I_0 , отделяющая области убывания и возрастания решений.

Поясним геометрический смысл уравнения

$$P(x,y) dx + Q(x,y) dy = 0.$$
 (2)

Рис. 3. Изоклины и интегральная кривая уравнения y' = x + y

Пусть r(t) = (x(t), y(t)) — его параметрическое решение на E. Тогда при любом $t \in E$

$$P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t) = 0.$$
(3)

Рассмотрим векторное поле F = (P, Q). Тогда равенство (3) равносильно

$$F(r(t)) \cdot r'(t) = 0.$$

Вектор r'(t) касается интегральной кривой в точке (x(t),y(t)). Значит, любая интегральная кривая уравнения (2) в каждой своей точке (x,y) перпендикулярна вектору F(x,y) (рис. 4).

Рис. 4. Интегральные кривые и особая точка уравнения $x \, dx + y \, dy = 0$.

Таким образом, задать уравнение (2) — всё равно, что определить векторное поле на плоскости. Решить это уравнение — значит, найти кривые, перпендикулярные заданному полю.

§2. Уравнение в полных дифференциалах

Определение. Уравнение

$$P(x,y) dx + Q(x,y) dy = 0$$
(4)

называют *уравнением в полных дифференциалах* в области G, если для него существует *потенциал*, то есть такая дифференцируемая функция u, что для всех $x,y \in G$

$$du = P(x, y) dx + Q(x, y) dy.$$

Теорема 2.1 (общее решение УПД). Пусть $G \subset \mathbb{R}^2$ — область, функция $u \colon G \to \mathbb{R}$ дифференцируема, $u'_x = P$, $u'_y = Q$. Тогда функция $y = \varphi(x)$ — решение уравнения (4) на промежутке E, если и только если она дифференцируема на E и при некотором $C \in \mathbb{R}$ неявно задана уравнением

$$u(x,y) = C.$$

Доказательство. Достаточность. Дифференцируя равенство $u(x,\varphi(x))=C$ по переменной $x\in E$, находим

$$u'_x(x,\varphi(x)) + u'_y(x,\varphi(x))\varphi'_x \equiv 0.$$

Так как $u'_x = P, u'_y = Q$, то по определению функция φ является решением уравнения (4) на E.

Heoбxoдимость. На промежутке E верно тождество

$$P(x, \varphi(x)) + Q(x, \varphi(x))\varphi'(x) \equiv 0.$$

Левая часть этого равенства совпадает с полной производной функции u по переменной x. Поэтому

$$\frac{d}{dx}u(x,\varphi(x)) \equiv 0.$$

Следовательно, $u(x, \varphi(x)) \equiv C$.

Замечание. Теорема 2.1 говорит о том, что интегральные кривые уравнения в полных дифференциалах — это линии уровня его потенциала.

Определение. Уравнение

$$P(x) dx + Q(y) dy = 0 (5)$$

называют уравнением с разделёнными переменными.

Следствие 2.2 (общее решение УРП). Пусть $P \in C(a,b), Q \in C(c,d)$. Тогда функция $y = \varphi(x)$ — решение уравнения на промежутке E, если и только если она дифференцируема на E и при некотором $C \in \mathbb{R}$ неявно задана уравнением

$$\int P(x) dx + \int Q(y) dy = C.$$

Доказательство. Положим

$$u(x,y) = \int P(x) dx + \int Q(y) dy.$$

Производные $u'_x = P$, $u'_y = Q$ непрерывны, поэтому u — дифференцируемая функция в области $(a,b) \times (c,d)$. По теореме 2.1 получаем требуемое.

Утверждение 2.3 (необходимое условие УПД). Пусть (4) — уравнение в полных дифференциалах с потенциалом $u \in C^2(G)$. Тогда

$$P_y' = Q_x'. (6)$$

Доказательство. Поскольку $u \in C^2(G)$, то смешанные производные функции u совпадают. Следовательно,

$$P'_y = (u'_x)'_y = (u'_y)'_x = Q'_x.$$

Теорема 2.4 (признак УПД¹). Пусть $G \subset \mathbb{R}^2$ — односвязная область, $P,Q \in C^1(G), P_y' = Q_x', (x_0,y_0) \in G$. Тогда уравнение (4) — уравнение в полных дифференциалах в области G с потенциалом

$$u(\widetilde{x}, \widetilde{y}) = \int_{\gamma(\widetilde{x}, \widetilde{y})} P(x, y) \, dx + Q(x, y) \, dy, \tag{7}$$

где $\gamma(\widetilde{x},\widetilde{y})$ — произвольный кусочно-гладкий путь в области G, соединяющий точки (x_0,y_0) (начало пути) u $(\widetilde{x},\widetilde{y})$.

Продемонстрируем на примере другой способ нахождения потенциала.

Пример 2.5. Решим уравнение $e^{-y} dx - (2y + xe^{-y}) dy = 0$.

Решение. Область определения уравнения — вся плоскость.

Необходимое условие уравнения в полных дифференциалах

$$(e^{-y})'_y = (-2y - xe^{-y})'_x = -e^{-y}$$

выполняется на всей области определения. Если это действительно уравнение в полных дифференциалах, то необходимо его потенциал удовлетворяет системе

$$\begin{cases} u'_x = e^{-y}, \\ u'_y = -(2y + xe^{-y}). \end{cases}$$

При фиксированном y из первого уравнения системы находим

$$u(x,y) = e^{-y}x + C(y),$$

 $^{^{1}}$ см., например, [1, §51, п.5]

где функция C зависит только от y. Подставляя найденное выражение во второе уравнение системы, получаем

$$C'(y) = -2y,$$

откуда $C(y) = -y^2$.

Найденная функция $u(x,y)=e^{-y}x-y^2$ непрерывно дифференцируема в области задания уравнения. Непосредственным вычислением убеждаемся, что её частные производные совпадают с коэффициентами уравнения. Следовательно, исходное уравнение — уравнение в полных дифференциалах, найденная функция u — его потенциал, а общий интеграл по теореме 2.1 имеет вид

$$u(x,y) = C,$$

то есть

$$xe^{-y} - y^2 = C.$$

Замечание. Применяя способ нахождения потенциала, указанный в примере 2.5, необходимо внимательно следить за областями определения участвующих функций. Например, рассмотрим в полуплоскости x>0 уравнение

$$\frac{-y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy = 0.$$

Если упустить из виду, что первообразная

$$\int \frac{-y}{x^2 + y^2} \, dx$$

находится по-разному при y=0 и при $y\neq 0$, то можно прийти к функции $u(x,y)=-\arctan\frac{x}{y}$. Эта функция не может служить потенциалом на всей указанной полуплоскости, поскольку она не определена в точках оси x, а потенциал должен быть определён и непрерывно дифференцируем во всей области.

В действительности потенциалом будет функция

$$u(x,y) = \begin{cases} -\arctan \frac{x}{y}, & \text{ если } y > 0, \\ -\pi/2, & \text{ если } y = 0, \\ -\pi - \arctan \frac{x}{y}, & \text{ если } y < 0, \end{cases}$$

получаемая, например, с помощью криволинейного интеграла (7).

Ссылки

[1] Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа, 2001