

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003787

International filing date: 04 March 2005 (04.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-060426
Filing date: 04 March 2004 (04.03.2004)

Date of receipt at the International Bureau: 28 April 2005 (28.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2004年 3月 4日

出願番号
Application Number: 特願 2004-060426

パリ条約による外国への出願に用いる優先権の主張の基礎となる出願の国コードと出願番号
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出願人
Applicant(s): 明治製菓株式会社

2005年 4月 13日

特許庁長官
Commissioner,
Japan Patent Office

小川

【書類名】 特許願
【整理番号】 14685601
【提出日】 平成16年 3月 4日
【あて先】 特許庁長官殿
【国際特許分類】 C12N 15/54
【発明者】
【住所又は居所】 埼玉県坂戸市千代田五丁目3番1号 明治製菓株式会社 ヘルス
・バイオ研究所内
【氏名】 中村 博文
【発明者】
【住所又は居所】 埼玉県坂戸市千代田五丁目3番1号 明治製菓株式会社 ヘルス
・バイオ研究所内
【氏名】 中根 公隆
【発明者】
【住所又は居所】 埼玉県坂戸市千代田五丁目3番1号 明治製菓株式会社 ヘルス
・バイオ研究所内
【氏名】 窪田 英俊
【特許出願人】
【識別番号】 000006091
【住所又は居所】 東京都中央区京橋二丁目4番16号
【氏名又は名称】 明治製菓株式会社
【代理人】
【識別番号】 100075812
【弁理士】 吉武 賢次
【氏名又は名称】
【選任した代理人】
【識別番号】 100091487
【弁理士】 中村 行孝
【氏名又は名称】
【選任した代理人】
【識別番号】 100094640
【弁理士】 紺野 昭男
【氏名又は名称】
【選任した代理人】
【識別番号】 100107342
【弁理士】 横田 修孝
【氏名又は名称】
【手数料の表示】
【予納台帳番号】 087654
【納付金額】 21,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 要約書 1

【書類名】特許請求の範囲

【請求項 1】

62番、122番、128番、165番、221番、395番、および550番の少なくとも1つのアミノ酸残基において変異を有する配列番号2に記載のアミノ酸配列またはその相同体からなる、 β -フルクトフラノシダーゼ変異体。

【請求項 2】

変異が、置換である、請求項1に記載の変異体。

【請求項 3】

置換が、

62番のアミノ酸残基の、アスパラギン酸およびグルタミン酸からなる群から選択される酸性アミノ酸への置換、

122番のアミノ酸残基の、メチオニン、イソロイシン、ロイシン、およびバリンからなる群から選択されるアミノ酸への置換、

128番のアミノ酸残基の、アスパラギンおよびグルタミンからなる群から選択されるアミノ酸への置換、

165番のアミノ酸残基の、トリプトファン、フェニルアラニン、およびチロシンからなる群から選択される芳香族アミノ酸への置換、

221番のアミノ酸残基の、トリプトファン、フェニルアラニン、およびチロシンからなる群から選択される芳香族アミノ酸への置換、

395番のアミノ酸残基の、ロイシン、メチオニン、イソロイシン、およびバリンからなる群から選択されるアミノ酸への置換、および

550番のアミノ酸残基の、セリンおよびスレオニンからなる群から選択されるヒドロキシアミノ酸への置換

である、請求項2に記載の変異体。

【請求項 4】

配列番号2に記載のアミノ酸配列およびその相同体の、170番、300番、313番、および386番目の少なくとも1つのアミノ酸残基において、更に変異を有する、請求項1～3のいずれか一項に記載の変異体。

【請求項 5】

変異が置換である、請求項4に記載の変異体。

【請求項 6】

置換が、

170番のアミノ酸残基の、トリプトファン、フェニルアラニン、およびチロシンからなる群から選択される芳香族アミノ酸への置換、

300番のアミノ酸残基の、トリプトファン、フェニルアラニン、チロシンおよびバリンからなる群から選択されるアミノ酸への置換、

313番のアミノ酸残基の、リジン、アルギニン、およびヒスチジンからなる群から選択される塩基性アミノ酸への置換、および

386番のアミノ酸残基の、リジン、アルギニン、およびヒスチジンからなる群から選択される塩基性アミノ酸への置換

である、請求項5に記載の変異体。

【請求項 7】

40番、379番、および381番の少なくとも1つのアミノ酸残基において変異を有する配列番号2に記載のアミノ酸配列またはその相同体からなる、 β -フルクトフラノシダーゼ変異体。

【請求項 8】

変異が、置換である、請求項7に記載の変異体。

【請求項 9】

置換が、

40番のアミノ酸残基の、アスパラギン酸およびグルタミン酸からなる群から選択され

る酸性アミノ酸への置換、

379番のアミノ酸残基の、システインへの置換、および

381番のアミノ酸残基の、メチオニン、イソロイシン、ロイシン、およびバリンからなる群から選択されるアミノ酸への置換

である、請求項8に記載の変異体。

【請求項10】

請求項1～9のいずれか一項に記載の β -フルクトフラノシダーゼ変異体をコードする、ポリヌクレオチド。

【請求項11】

請求項10に記載のポリヌクレオチドを含んでなる、組換えベクター。

【請求項12】

請求項11に記載の組換えベクターを含んでなる、形質転換体。

【請求項13】

請求項12に記載の形質転換体または請求項1～9のいずれか一項に記載の β -フルクトフラノシダーゼ変異体とスクロースを接触させる工程を含んでなる、フラクトオリゴ糖の製造法。

【書類名】明細書

【発明の名称】 β -フルクトフラノシダーゼ変異体

【発明の属する技術分野】

【0001】

本発明は、ショ糖から特定のフラクトオリゴ糖を選択的かつ効率的に生成する β -フルクトフラノシダーゼ変異体に関するもので、より詳細には、1-ケストースを効率的に生産する β -フルクトフラノシダーゼ変異体およびニストースを効率的に生産する β -フルクトフラノシダーゼ変異体に関するものである。

【従来の技術】

【0002】

一般にフラクトオリゴ糖は、ショ糖のフルクトースに1から3分子のフルクトースがC1とC2の位置で β 結合しているオリゴ糖であり、難消化性の糖質で、腸内のビフィズス菌増殖促進作用、コレステロールなどの脂質代謝改善作用、難う蝕性、ミネラル吸収促進作用などの優れた生理機能を有することが見出されている。フラクトオリゴ糖は、天然には広く植物に分布しており、例えばタマネギ、アスパラガス、キクイモなどに含まれていることが知られているが、最近では、微生物由来の β -フルクトフラノシダーゼの転移反応を利用してショ糖から大量に製造する技術が確立され、工業的に生産されている。現在フラクトオリゴ糖の工業的生産に利用されている β -フルクトフラノシダーゼは、アスペルギルス・ニガー (*Aspergillus niger*) 由来の菌体内 β -フルクトフラノシダーゼを利用している。

【0003】

当該 β -フルクトフラノシダーゼをコードする遺伝子は、WO 97/34004号公報(特許文献1)に開示されている。しかし、当該 β -フルクトフラノシダーゼは、1-ケストース、ニストース、1-フルクトシルニストースの混合物としてフラクトオリゴ糖を生成するため、フラクトオリゴ糖はオリゴ糖混合物のシロップあるいは粉末として製造、提供されている。单一成分として、1-ケストースあるいはニストースを選択的かつ効率的に生産する β -フルクトフラノシダーゼが得られれば、次のような有用性が存在する。すなわち、1-ケストースあるいはニストースを高純度に精製し、結晶化させることによって、フラクトオリゴ糖の生理機能を保持したまま、物性および加工特性上優れた特性を有する单一成分の結晶フラクトオリゴ糖を製造することが可能となる。

【0004】

一方、ショ糖を原料とした結晶1-ケストースの工業的製造法は、例えば、WO 97/21718号公報(特許文献2)に開示されている。すなわち、 β -フルクトフラノシダーゼをショ糖に作用させて1-ケストースに生成させ、クロマト分離法により1-ケストースを純度80%以上に生成した後、これを結晶化原液として純度95%以上の結晶1-ケストースを得る方法である。この方法に用いられる酵素の特性として、ショ糖から1-ケストースへの変換率が高いこと、ニストースの生成量が低いことが工業的製造法において求められている。また同様にニストースを单一成分として製造する場合には、ニストースへの変換率が高いこと、1-フルクトシルニストースの生成量が低いことが工業的製造法において求められている。

【特許文献1】WO 97/34004号公報

【特許文献2】WO 97/21718号公報

【発明の開示】

【発明が解決しようとする課題】

【0005】

本発明は、フラクトオリゴ糖の单一成分、例えば1-ケストースあるいはニストースの製造に適するように反応特性が改善された β -フルクトフラノシダーゼ変異体およびその遺伝子の提供をその目的とする。

【課題を解決するための手段】

【0006】

本発明者らは、配列番号2のアミノ酸配列中の特定位置のアミノ酸残基を他のアミノ酸残基に置換した β -フルクトフラノシダーゼ変異体が、1-ケストースあるいはニストースの製造に適する反応特性を有していることを見出した。

【0007】

すなわち本発明の第一の態様によれば、62番、122番、128番、165番、221番、395番、および550番の少なくとも1つのアミノ酸残基において変異を有する配列番号2に記載のアミノ酸配列またはその相同体からなる、 β -フルクトフラノシダーゼ変異体およびその変異体をコードするポリヌクレオチドが提供される。本発明の第一の態様による変異体によれば、1-ケストースの効率的な製造が可能となる。

【0008】

本発明の第二の態様によれば、40番、379番、および381番の少なくとも1つのアミノ酸残基において変異を有する配列番号2に記載のアミノ酸配列またはその相同体からなる、 β -フルクトフラノシダーゼ変異体およびその変異体をコードするポリヌクレオチドが提供される。本発明の第二の態様による変異体によれば、ニストースの効率的な製造が可能となる。

【0009】

本発明による β -フルクトフラノシダーゼ変異体を用いれば、フラクトオリゴ糖を製造する際の酵素反応液の糖組成を改善することが可能となり、フラクトオリゴ糖の単一成分の効率的な製造が可能となる。すなわち、本発明による β -フルクトフラノシダーゼ変異体によれば、従来と比較して簡便に、かつ安価にフラクトオリゴ糖の単一成分の工業的製造が可能となる点で有利である。

【発明の具体的説明】

【0010】

β -フルクトフラノシダーゼ変異体およびその遺伝子

本発明による第一および第二の態様による変異体は、配列番号2に記載のアミノ酸配列およびその相同体の特定のアミノ酸残基の少なくとも1つに変異が導入されてなるものである。

【0011】

変異が導入されるアミノ酸残基の位置は、配列番号2のアミノ酸配列のアミノ酸残基番号と対応する。

【0012】

本発明において「変異」とは、置換、欠失、および挿入を意味する。

【0013】

「置換」とは、特定のアミノ酸残基が取り除かれ、かつ他のアミノ酸残基が同じ位置に挿入されていることをいう。

【0014】

「欠失」とは、特定のアミノ酸残基が取り除かれていることを意味する。

【0015】

「挿入」とは、特定のアミノ酸残基の前にあるいは後ろに、1個または複数個のアミノ酸残基が挿入されていることをいい、具体的には、特定のアミノ酸残基の α -カルボキシル基あるいは α -アミノ基に、1個または複数個、好ましくは、1個ないし数個、のアミノ酸残基が結合することをいう。

【0016】

配列番号2に記載のアミノ酸配列およびその相同体に導入される特定変異の数は特に限定されないが、1個ないし数個、あるいは1または2個であることができる。

【0017】

本発明の第一および第二の態様による変異体において、配列番号2に記載のアミノ酸配列およびその相同体に導入される変異は、好ましくは、置換である。

【0018】

本発明の第一の態様による変異体において、配列番号2に記載のアミノ酸配列およびそ

の相同体の62番、122番、128番、165番、221番、395番、および550番のアミノ酸残基に導入される置換は、好ましくは、下記の通りである。

【0019】

62番のアミノ酸残基の、アスパラギン酸およびグルタミン酸からなる群から選択される酸性アミノ酸、特にグルタミン酸、への置換。

【0020】

122番のアミノ酸残基の、メチオニン、イソロイシン、ロイシン、およびバリンからなる群から選択されるアミノ酸、特にメチオニン、への置換。

【0021】

128番のアミノ酸残基の、アスパラギンおよびグルタミンからなる群から選択されるアミノ酸、特にアスパラギン、への置換。

【0022】

165番のアミノ酸残基の、トリプトファン、フェニルアラニン、およびチロシンからなる群から選択される芳香族アミノ酸、特にフェニルアラニン、への置換。

【0023】

221番のアミノ酸残基の、トリプトファン、フェニルアラニン、およびチロシンからなる群から選択される芳香族アミノ酸、特にチロシン、への置換。

【0024】

395番のアミノ酸残基の、ロイシン、メチオニン、イソロイシン、およびバリンからなる群から選択されるアミノ酸、特にロイシン、への置換。

【0025】

550番のアミノ酸残基の、セリンおよびスレオニンからなる群から選択されるヒドロキシアミノ酸、特にセリン、への置換。

【0026】

本発明の第一の態様による変異体においては、配列番号2に記載のアミノ酸配列およびその相同体の、170番、300番、313番、および386番の少なくとも1つのアミノ酸残基において、更に変異、好ましくは、置換、を有していてもよい。これらの変異を有するβ-フルクトフラノシダーゼは、1-ケストースを選択的にかつ効率的に生産できる点で有利である（例えば、WO 99/13059号公報参照）。

【0027】

本発明の第一の態様による変異体において、配列番号2に記載のアミノ酸配列およびその相同体の170番、300番、313番、および386番に導入することができる置換は、好ましくは、下記の通りである。

【0028】

170番のアミノ酸残基の、トリプトファン、フェニルアラニン、およびチロシンからなる群から選択される芳香族アミノ酸、特にトリプトファン、への置換。

【0029】

300番のアミノ酸残基の、トリプトファン、フェニルアラニン、チロシンおよびバリンからなる群から選択されるアミノ酸への置換。

【0030】

313番のアミノ酸残基の、リジン、アルギニン、およびヒスチジンからなる群から選択される塩基性アミノ酸、特にリジンまたはアルギニン、への置換。

【0031】

386番のアミノ酸残基の、リジン、アルギニン、およびヒスチジンからなる群から選択される塩基性アミノ酸、特にリジン、への置換。

【0032】

本発明の第一の態様による変異体において、配列番号2に記載のアミノ酸配列およびその相同体に導入することができる好ましい多重変異としては、165番のアミノ酸残基と、300番のアミノ酸残基と、313番のアミノ酸残基の三重変異、より好ましくは三重置換、が挙げられ、特に好ましくは、165番のアミノ酸残基のフェニルアラニンへの置

換と、300番のアミノ酸残基のバリンへの置換と、および313番のアミノ酸残基のリジンへの置換とからなる三重置換が挙げられる。

【0033】

本発明の第二の態様による変異体において、配列番号2に記載のアミノ酸配列およびその相同体の40番、379番、および381番のアミノ酸残基に導入される置換は、好ましくは、下記の通りである。

【0034】

40番のアミノ酸残基の、アスパラギン酸およびグルタミン酸からなる群から選択される酸性アミノ酸、特にアスパラギン酸、への置換。

【0035】

379番のアミノ酸残基の、システインへの置換。

【0036】

381番のアミノ酸残基の、メチオニン、イソロイシン、ロイシン、およびバリンからなる群から選択されるアミノ酸、特にメチオニン、への置換。

【0037】

本発明による第一および第二の態様による変異体において、「相同体」とは、1個または複数個の変異を有する配列番号2に記載のアミノ酸配列であって、 β -フルクトフラノシダーゼ活性を有するもの、を意味する。変異の数は、1個ないし数個、あるいは1、2、3、または4個であることができる。

【0038】

本発明において、相同体が β -フルクトフラノシダーゼ活性を有するか否かは、例えは、そのアミノ酸配列からなるタンパク質を基質に作用させ、反応産物を検出することにより評価することができ、例えは、実施例2に記載の方法に従って評価することができる。

【0039】

相同体における本発明による特定変異の位置は、配列番号2のアミノ酸配列と当該相同体とを整列することにより、相同体に与えられた配列番号2のアミノ酸残基番号に対応する。例えは、相同体における「62番のアミノ酸残基の変異」とは、その相同体の62番目のアミノ酸残基の変異ではなく、配列番号2のアミノ酸配列の62番のアミノ酸残基に対応する相同体のアミノ酸残基の変異を意味する。

【0040】

配列番号2のアミノ酸配列と当該相同体との整列は、配列同一性を調べるための分析用ソフトウエアを用いて行うことができる。このようなソフトウエアは周知であり、当業者であれば適宜選択して使用することは言うまでもない。例えは、BLAST法 (Basic local alignment search tool; Altschul, S. F. et al., J. Mol. Biol., 215, 403-410 (1990)) を使用して配列番号2のアミノ酸配列と当該相同体とを整列させて、対応するアミノ酸残基を決定することができる。

【0041】

相同体の例としては、1個または複数個（例えは、1個ないし数個）の活性に影響を与えない変異を有する配列番号2に記載のアミノ酸配列が挙げられる。

【0042】

ここで「活性に影響を与えない変異」の例としては、保存的置換が挙げられる。「保存的置換」とは、タンパク質の活性を実質的に改変しないように1若しくは複数個のアミノ酸残基を、別の化学的に類似したアミノ酸残基で置き換えることを意味する。例えは、ある疎水性残基を別の疎水性残基によって置換する場合、ある極性残基を同じ電荷を有する別の極性残基によって置換する場合などが挙げられる。このような置換を行うことができる機能的に類似のアミノ酸は、アミノ酸毎に当該技術分野において公知である。具体例を挙げると、非極性（疎水性）アミノ酸としては、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニン等が挙げられる。極性（中性）アミノ酸としては、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システイン等が挙げられる。陽電荷をもつ（塩基性）アミノ酸としては、ア

ルギニン、ヒスチジン、リジン等が挙げられる。また、負電荷をもつ（酸性）アミノ酸としては、アスパラギン酸、グルタミン酸等が挙げられる。

【0043】

「相同体」の例としては、*Aspergillus*属に属する微生物から生産される β -フルクトフラノシダーゼが挙げられ、例えば、*Aspergillus niger*由来の β -フルクトフラノシダーゼ、*Scopulariopsis brevicaulis*由来の β -フルクトフラノシダーゼ、*Penicillium roquefortii*由来の β -フルクトフラノシダーゼが挙げられる。*Scopulariopsis brevicaulis*由来の β -フルクトフラノシダーゼとしてはWO 99/13059号公報の配列番号1のアミノ酸配列からなるタンパク質（配列番号4）が挙げられる。また、*Penicillium roquefortii*由来の β -フルクトフラノシダーゼとしてはWO 99/13059号公報の配列番号3のアミノ酸配列からなるタンパク質（配列番号6）が挙げられる。

【0044】

本発明によれば、本発明による β -フルクトフラノシダーゼ変異体をコードする遺伝子が提供される。

【0045】

一般に、タンパク質のアミノ酸配列が与えられれば、それをコードするDNA配列は、いわゆるコドン表を参照して容易に定まる。従って、本発明による特定変異が導入された配列番号1のアミノ酸配列およびその相同体、例えば、本発明による特定変異が導入された配列番号1、3、および5のアミノ酸配列、をコードする種々のDNA配列を適宜選択することが可能である。よって、本発明による特定変異が導入された β -フルクトフラノシダーゼ変異体をコードするDNA配列とは、本発明による特定アミノ酸変異に対応するDNA変異を有する β -フルクトフラノシダーゼ遺伝子のみならず、その縮重関係にあるコドンが使用されている以外は同一のDNA配列を有し、かつ β -フルクトフラノシダーゼ変異体をコードするDNA配列をも意味する。例えば、本発明による特定変異が導入された配列番号1、3、および5のアミノ酸配列をコードするDNA配列とは、後述する表3に記載の1以上の変異を有する配列番号1、3、および5のDNA配列のみならず、その縮重関係にあるコドンが使用されている以外は同一のDNA配列を有し、かつ β -フルクトフラノシダーゼ変異体をコードするDNA配列をも意味する。

【0046】

β -フルクトフラノシダーゼ変異体の作製

β -フルクトフラノシダーゼ変異体は、組換えDNA技術、ポリペプチド合成技術などによって作製することができる。組換えDNA技術を用いる場合には、 β -フルクトフラノシダーゼをコードするDNA（例えば、配列番号1、3、または5のDNA配列）を取得し、このDNAに部位特異的変異あるいはランダム変異を発生させてコードするアミノ酸を置換させた後、変異処理を施したDNAを含む発現ベクターで宿主細胞を形質転換し、形質転換細胞を培養することによって β -フルクトフラノシダーゼ変異体を調製することができる。

【0047】

遺伝子の部位特異的変異を導入するための方法は、Gapped duplex法やKunkel法など当業者に周知の方法を用いることができる。これらの方法は、 β -フルクトフラノシダーゼをコードするDNAの特異的部位に突然変異を発生させることに利用することができる。

【0048】

また、ランダム変異を導入するためには、エラーブローンPCR法など一般的に行われている方法が採用できる。変異処理後のDNAの塩基配列は、マキサム・ギルバートの化学修飾法やジデオキシヌクレオチド鎖終結法などにより確認することができ、 β -フルクトフラノシダーゼ変異体のアミノ酸配列は、確認された塩基配列より解読することができる。

【0049】

β -フルクトフラノシダーゼ変異体の生産

β -フルクトフラノシダーゼ変異体は、それをコードするDNA断片を、宿主細胞内で

複製可能でかつ同遺伝子が発現可能な状態で含むDNA分子、特にDNA発現ベクター、に連結してなる組換えベクターを調製し、その組換えベクターを宿主に導入して形質転換体を得、その形質転換体を適当な培養条件下で培養することにより、調製することができる。

【0050】

本発明において利用されるベクターは、使用する宿主細胞の種類を勘案して、ウィルス、プラスミド、コスミドベクターなどから適宜選択することができる。例えば、宿主細胞が大腸菌の場合はpUC、pBR系のプラスミド、枯草菌の場合はpUB系のプラスミド、酵母の場合はYEp、YRp、YCP系のプラスミドベクターが挙げられる。

【0051】

本発明の好ましい態様によれば、組換えベクターとしてプラスミドを使用することができる。プラスミドは形質転換体の選択マーカーを含むのが好ましく、選択マーカーとしては薬剤耐性マーカー、栄養要求マーカー遺伝子を使用することができる。その好ましい具体例としては、使用する宿主細胞が細菌の場合はアンピシリン耐性遺伝子、カナマイシン耐性遺伝子、テトラサイクリン耐性遺伝子などであり、酵母の場合はトリプトファン合成遺伝子（TRP1）、ウラシル合成遺伝子（URA3）、ロイシン合成遺伝子（LEU2）などがあり、カビの場合はハイグロマイシン耐性遺伝子（Hyg）、ビアラホス耐性遺伝子（Bar）、硝酸還元酵素遺伝子（niaD）などが挙げられる。

【0052】

本発明による発現ベクターとしてのDNA分子は、変異遺伝子の発現に必要なDNA配列、例えばプロモーター、転写開始信号、リボゾーム結合部位、翻訳停止シグナル、転写終結シグナルなどの転写調節シグナル、翻訳調節シグナルなどを有しているのが好ましい。

【0053】

プロモーターとしては、挿入断片に含まれる宿主中において機能することができるプロモーターはもちろんのこと、大腸菌においてはラクトースオペロン（lac）、トリプトファンオペロン（trp）等のプロモーター、酵母ではアルコールデヒドロゲナーゼ遺伝子（ADH）、酸性フォスファターゼ遺伝子（PHO）、ガラクトース遺伝子（GAL）、グリセロアルデヒド3リン酸デヒドロゲナーゼ遺伝子（GPD）などのプロモーター、カビでは α -アミラーゼ遺伝子（amy）、セロビオハイドロラーゼI遺伝子（CBHI）等のプロモーターを好ましく用いることができる。

【0054】

宿主としては、宿主-ベクター系が確立されているものであればいずれも利用可能であり、好ましくは、カビ、酵母が挙げられる。宿主細胞の形質転換により得られた形質転換体は、適当な条件で培養し、得られた培養液から一般的な方法によって酵素の分取や精製を行うことにより β -フルクトフラノシダーゼ変異体を得ることができる。また、宿主が枯草菌、酵母、カビの場合には、分泌型ベクターを使用して、菌体外に組換え β -フルクトフラノシダーゼを分泌させることも有利である。

【0055】

形質転換体から生産される本発明による変異体は、次のようにして得ることが出来る。まず前記の宿主細胞を適切な条件下で培養し、得られた培養物から公知の方法、例えば遠心分離により培養上清あるいは菌体を得る。菌体の場合にはこれを適切な緩衝液中に懸濁し、凍結融解、超音波処理、磨碎等により菌体を破碎し、遠心分離またはろ過により組換え新規酵素を含有する菌体抽出物を得る。

【0056】

酵素の精製は、慣用されている分離、精製法を適宜組み合わせて実施することができる。例えば、熱処理のような耐熱性の差を利用する方法、塩沈殿および溶媒沈殿のような溶解性の差を利用する方法、透析、限外ろ過、ゲルろ過およびSDS-ポリアクリルアミドゲル電気泳動のような分子量の差を利用する方法、イオン交換クロマトグラフィーのよう

な電荷の差を利用する方法、アフィニティークロマトグラフィーのような特異的親和性を利用する方法、疎水クロマトグラフィー、逆相クロマトグラフィーのような疎水性の差を利用する方法、更に等電点電気泳動のような等電点の差を利用する方法等が挙げられる。

【0057】

フラクトオリゴ糖の製造

本発明によれば、本発明による形質転換体または本発明による β -フルクトフラノシダーゼ変異体を用いた、フラクトオリゴ糖の製造法が提供される。すなわち、本発明によるフラクトオリゴ糖の製造法は、本発明による形質転換体または本発明による β -フルクトフラノシダーゼ変異体と、スクロースとを接触させることによって実施される。

【0058】

本発明による形質転換体または本発明による β -フルクトフラノシダーゼ変異体と、スクロースとの接触態様およびその条件は、変異体がスクロースに作用可能な様態である限り特に限定されない。溶液中で接触させる場合の好ましい態様を示せば次の通りである。すなわち、スクロースの使用濃度は、用いる糖が溶解されうる範囲であれば、本酵素の比活性、反応温度等を考慮して適宜選択してよいが、5～80%の範囲とするのが一般的であり、好ましくは30～70%の範囲である。糖と酵素との反応における反応温度およびpH条件は、変異体の最適条件下で行うことが好ましく、例えば、30～80°C程度、pH4～10程度の条件下で行うのが一般的であり、好ましくは40～70°C、pH5～7の範囲である。

【0059】

また、変異体の精製の程度も適宜選択することができ、形質転換体の培養上清あるいは菌体破碎物から粗酵素のまま用いることもでき、また、各種精製工程で得られた精製酵素として利用してもよい。さらには各種精製手段を経て単離精製された酵素として用いてもよい。

【0060】

更に酵素は、常法に準じて担体に固定化された状態でスクロースと接触させてもよい。

【0061】

生成したフラクトオリゴ糖は、反応液を公知の方法に従い精製することにより得ることが出来る。例えば、加熱して酵素を失活させた後、活性炭により脱色し、さらに、イオン交換樹脂で脱塩する方法が挙げられる。

【0062】

本発明の第一の態様の変異体をフラクトオリゴ糖の調製に用いると、1-ケストース生成量が増大し、ニストース生成量が抑制される。従って、本発明によれば1-ケストースの選択的な製造法が提供される。すなわち本発明によれば、第一の態様の β -フルクトフラノシダーゼ変異体あるいは第一の態様の β -フルクトフラノシダーゼ変異体をコードするポリヌクレオチドを発現可能な形質転換体と、スクロースを接触させる工程を含んでなる、1-ケストースの製造法が提供される。

【0063】

本発明の第二の態様の変異体をフラクトオリゴ糖の調製に用いると、ニストースの生成量が増大し、1-ケストース生成量が抑制される。従って、本発明によればニストースの選択的な製造法が提供される。すなわち本発明によれば、第二の態様の β -フルクトフラノシダーゼ変異体あるいは第二の態様の β -フルクトフラノシダーゼ変異体をコードするポリヌクレオチドを発現可能な形質転換体と、スクロースを接触させる工程を含んでなる、ニストースの製造法が提供される。

【実施例】

【0064】

本発明を下記例により詳細に説明するが、本発明がこれらの例に限定されることは言うまでもない。

【0065】

実施例1： β -フルクトフラノシダーゼ変異体の作製

β -フルクトフラノシダーゼ遺伝子へのランダム変異の導入は、市販のPCR mutagenesis kit (Gene Morph, Stratagene社)を用いて以下のように行った。鑄型DNAとして、ATCC 20611株 (*A. niger*) 由来の β -フルクトフラノシダーゼ遺伝子を用いた。具体的には、WO 97/34004に記載のプラスミド pAW20-Hygを使用した。PCR反応液は、鑄型DNA 1 μ l、40 mM dNTP 1 μ l、10倍濃度の緩衝液 5 μ l、プライマーとして 5'-GCGAATTCACTGAAGCTCACCACTACCA-3' (N末端) (配列番号7) および 5'-GCGGATCCGGTCAAATTCTCT-3' (C末端) (配列番号8) 250 ng/ml を各 0.5 μ l、Mutazyme 1 μ l、DMSO 5 μ l、滅菌水 36 μ l を加えて 50 μ l とした。反応は 94°C、2 分間の前処理後、94°C、1 分間 (変性ステップ)、50°C、2 分間 (アニーリングステップ)、72°C、2.5 分間 (伸長ステップ) のインキュベーションを 30 サイクル行った。最後に 72°C、3 分間のインキュベーションを行い反応を終了させた。反応液をフェノール・クロロホルム・イソアミルアルコールで抽出し、その後エタノール沈殿を行った。沈殿を TE 緩衝液に溶解後、アガロース電気泳動を行い、特異的に増幅された 1.9 kbp のバンドを常法に従って切り出して DNA 断片を回収した。WO 97/34004 に記載の方法で、1.9 kbp の EcoRI-BamHI 断片を pY2831 の EcoRI-BamHI 部位に挿入したプラスミドを *S. cerevisiae* MS-161 株に酢酸リチウム法で導入し、形質転換体を得た。得られた形質転換体を SD-GF 培地 (0.67% yeast nitrogen base w/o amino acids, 2% スクロース、2% casamino acids, 50 μ g/ml ウラシル) で 30°C、3 日間培養し、 β -フルクトフラノシダーゼ変異体を得た。

【0066】

実施例2： β -フルクトフラノシダーゼ変異体の反応特性の評価

実施例1で作製した β -フルクトフラノシダーゼ変異体を用いてスクロースを基質とした酵素反応を基質濃度 4.8%、pH 7、40°C の反応条件で行い、反応液の糖組成を HPLC 分析した。野生型 β -フルクトフラノシダーゼの酵素反応液の糖組成と比較して、糖組成が変動したものを反応特性が改変された β -フルクトフラノシダーゼ変異体とした。

【0067】

反応特性が改変された β -フルクトフラノシダーゼ変異体の変異点を同定するために、DNA 塩基配列を解析した。ファルマシア社の DNA シークエンスキットを用い、シークエンス反応を行った。反応後のサンプルは、ファルマシア社の DNA シークエンサー (ALF red) を用いて解析を行い、各 DNA 断片の塩基配列を得た。その後、DNA 解析ソフト (DNASIS、日立ソフトウェアエンジニアリング社) にて最終的な塩基配列を得て、ランダム変異の導入された変異点を決定した。その結果、表1 および表2 に示したように、1-kestostose 生成量が増大し、nistose 生成量が抑制される β -フルクトフラノシダーゼ変異体、および nistose 生成量が増大した β -フルクトフラノシダーゼ変異体が得られていることが明らかとなった。

【表 1】

表 1 : 1-ケストース生成量が増大し、ニストース生成量が

抑制された β -フルクトフラノシダーゼ変異体

	F	G	G F	G F ₂	G F ₃	G F ₄
野生型	0.4	22.3	20.5	45.1	11.3	0.3
G 6 2 E	0.6	22.1	21.1	46.0	10.0	0.2
L 1 2 2 M	0.7	22.1	19.7	47.9	9.6	0.0
I 1 2 8 N	0.8	20.7	26.5	45.1	6.5	0.5
V 1 6 5 F	0.6	22.0	19.8	46.8	10.8	0.0
H 2 2 1 Y	0.6	23.8	20.1	45.8	9.5	0.2
Q 3 9 5 L	0.6	22.1	21.4	46.5	9.1	0.2
T 5 5 0 S	0.9	26.3	13.1	48.4	10.4	0.9

F : フルクトース

G : グルコース

G F : スクロース

G F 2 : 1-ケストース

G F 3 : ニストース

G F 4 : 1-フルクトシルニストース

【表2】

表2：ニストースの生成量が増大し、1-ケストース生成量が
抑制された β -フルクトフラノシダーゼ変異体

	F	G	G F	G F ₂	G F ₃	G F ₄
野生型	0.4	22.3	20.5	45.1	11.3	0.3
G 4 0 D	0.6	22.3	20.3	41.6	14.7	0.5
T 3 8 1 M	1.5	23.7	23.9	28.8	19.3	2.8
W 3 7 9 C	1.1	22.6	22.5	36.2	17.0	0.6

F : フルクトース

G : グルコース

G F : スクロース

G F 2 : 1-ケストース

G F 3 : ニストース

G F 4 : 1-フルクトシルニストース

【0068】

得られた変異とそれに対応するDNA配列は下記の通りであった。下線は変異したDNAを示す。

【表3】

表3：変異部分のアミノ酸残基とDNA配列

G 6 2 E	G A C	<u>G A</u> G	G A C	
	A s p	G l u	A s p	(配列番号9)
L 1 2 2 M	T T C	<u>A</u> T G	C C C	
	P h e	M e t	P r o	(配列番号10)
I 1 2 8 N	T C C	A <u>A</u> C	C C C	
	S e r	A s n	P r o	(配列番号11)
V 1 6 5 F	G C C	<u>T</u> T C	G A C	
	A l a	P h e	A s p	(配列番号12)
H 2 2 1 Y	G T G	<u>T</u> A C	G G C	
	V a l	T y r	G l y	(配列番号13)
Q 3 9 5 L	G C C	C <u>T</u> G	C A G	
	A l a	L e u	G l n	(配列番号14)
T 5 5 0 S	T T T	<u>T</u> C <u>G</u>	G A G	
	P h e	S e r	G l u	(配列番号15)
G 4 0 D	A T C	G <u>A</u> C	G A C	
	I l e	A s p	A s p	(配列番号16)
T 3 8 1 M	T T G	A <u>T</u> G	G G C	
	L e u	M e t	G l y	(配列番号17)
W 3 7 9 C	G T C	T G <u>C</u>	T T G	
	V a l	C y s	L e u	(配列番号18)

【0069】

実施例3：部位指定変異による多重置換体の調製と反応特性の評価

実施例2で得られたV165FとWO97/34004に記載のG300VとH313Kを組み合わせた3重置換変異体を部位特異的変異導入により調製した。具体的には、実施例1および2で調製したV165Fの変異が導入された β -フルクトフラノシダーゼ遺伝子をpUC118(宝酒造)のEcoRI-BamHI部位に挿入したプラスミドを調製した。次いで、WO97/34004号公報の実施例D8と同様の方法でG300VとH313Kの変異を順次導入した。実施例2と同じ方法でDNA塩基配列を調べた結果、目的の部分の塩基配列のみが置換されていることを確認した。

【0070】

3重置換体V165F+G300V+H313Kの反応特性を実施例2の方法に従って調べた結果は表3に記載される通りであった。野生型 β -フルクトフラノシダーゼと比較すると、1-ケストースの糖組成%は約10%増大し、ニストースの生成量は7%減少した。

【表4】

表4：三重置換体の反応特性

	F	G	GF	GF ₂	GF ₃	GF ₄
野生型	0.4	22.3	20.5	45.1	11.3	0.3
V165F/G300V/H313K	1.7	22.5	15.8	55.7	4.3	0.0

F：フルクトース

G：グルコース

GF：スクロース

GF₂：1-ケストース

GF₃：ニストース

GF₄：1-フルクトシルニストース

【配列表】

SEQUENCE LISTING

<110> Meiji Seika Kaisya Ltd.

<120> Mutated β -fructofuranosidase

<130> 146856

<140>

<141>

<160> 18

<170> PatentIn Ver. 2.0

<210> 1

<211> 1905

<212> DNA

<213> Aspergillus niger

<220>

<221> CDS

<222> (1)..(1905)

<400> 1

tca	ta	cac	ctg	gac	acc	acg	gcc	ccg	ccg	ccg	acc	aac	ctc	agc	acc	48
Ser	Tyr	His	Leu	Asp	Thr	Thr	Ala	Pro	Pro	Pro	Pro	Thr	Asn	Leu	Ser	Thr
1			5					10							15	

ctc	ccc	aac	aac	acc	ctc	ttc	cac	gtg	tgg	cgg	ccg	cgc	gcg	cac	atc	96
Leu	Pro	Asn	Asn	Thr	Leu	Phe	His	Val	Trp	Arg	Pro	Arg	Ala	His	Ile	
				20				25					30			

ctg	ccc	gcc	gag	ggc	cag	atc	ggc	gac	ccc	tgc	gcg	cac	tac	acc	gac	144
Leu	Pro	Ala	Glu	Gly	Gln	Ile	Gly	Asp	Pro	Cys	Ala	His	Tyr	Thr	Asp	
	35					40					45					

cca	tcc	acc	ggc	ctc	ttc	cac	gtg	ggg	ttc	ctg	cac	gac	ggg	gac	ggc	192
Pro	Ser	Thr	Gly	Leu	Phe	His	Val	Gly	Phe	Leu	His	Asp	Gly	Asp	Gly	
	50				55					60						

atc	gcg	ggc	gcc	acc	acg	gcc	aac	ctg	gcc	acc	tac	acc	gat	acc	tcc	240
Ile	Ala	Gly	Ala	Thr	Thr	Ala	Asn	Leu	Ala	Thr	Tyr	Thr	Asp	Thr	Ser	
65				70					75				80			

gat	aac	ggg	agc	ttc	ctg	atc	cag	ccg	ggc	ggg	aag	aac	gac	ccc	gtc	288
Asp	Asn	Gly	Ser	Phe	Leu	Ile	Gln	Pro	Gly	Gly	Lys	Asn	Asp	Pro	Val	
	85					90					95					

gcc	gtg	ttc	gac	ggc	gcc	gtc	atc	ccc	gtc	ggc	gtc	aac	aac	acc	ccc	336	
Ala	Val	Phe	Asp	Gly	Ala	Val	Ile	Pro	Val	Gly	Val	Asn	Asn	Thr	Pro		
								100							110		
									105								
acc	tta	ctc	tac	acc	tcc	gtc	tcc	ttc	ctg	ccc	atc	cac	tgg	tcc	atc	384	
Thr	Leu	Leu	Tyr	Thr	Ser	Val	Ser	Phe	Leu	Pro	Ile	His	Trp	Ser	Ile		
									115						125		
										120							
ccc	tac	acc	cgc	ggc	agc	gag	acg	cag	tcg	ttg	gcc	gtc	gcg	cgc	gac	432	
Pro	Tyr	Thr	Arg	Gly	Ser	Glu	Thr	Gln	Ser	Leu	Ala	Val	Ala	Arg	Asp		
									130						140		
										135							
ggc	ggc	cgc	cgc	ttc	gac	aag	ctc	gac	cag	ggc	ccc	gtc	atc	gcc	gac	480	
Gly	Gly	Arg	Arg	Phe	Asp	Lys	Leu	Asp	Gln	Gly	Pro	Val	Ile	Ala	Asp		
									145						160		
										150							
cac	ccc	ttc	gcc	gtc	gac	gtc	acc	gcc	ttc	cgc	gat	ccg	ttt	gtc	ttc	528	
His	Pro	Phe	Ala	Val	Asp	Val	Thr	Ala	Phe	Arg	Asp	Pro	Phe	Val	Phe		
									165						175		
										170							
cgc	agt	gcc	aag	ttg	gat	gtg	ctg	ctg	tcg	ttg	gat	gag	gag	gtg	gcg	576	
Arg	Ser	Ala	Lys	Leu	Asp	Val	Leu	Leu	Ser	Leu	Asp	Glu	Glu	Val	Ala		
									180						190		
										185							
cgg	aat	gag	acg	gcc	gtg	cag	cag	gcc	gtc	gat	ggc	tgg	acc	gag	aag	624	
Arg	Asn	Glu	Thr	Ala	Val	Gln	Gln	Ala	Val	Asp	Gly	Trp	Thr	Glu	Lys		
									195						205		
										200							
aac	gcc	ccc	tgg	tat	gtc	gcg	gtc	tct	ggc	ggg	gtg	cac	ggc	gtc	ggg	672	
Asn	Ala	Pro	Trp	Tyr	Val	Ala	Val	Ser	Gly	Gly	Val	His	Gly	Val	Gly		
									210						220		
										215							
ccc	gcg	cag	ttc	ctc	tac	cgc	cag	aac	ggc	ggg	aac	gct	tcc	gag	ttc	720	
Pro	Ala	Gln	Phe	Leu	Tyr	Arg	Gln	Asn	Gly	Gly	Asn	Ala	Ser	Glu	Phe		
									225						240		
										230							
cag	tac	tgg	gag	tac	ctc	ggg	gag	tgg	tgg	cag	gag	gcg	acc	aac	tcc	768	
Gln	Tyr	Trp	Glu	Tyr	Leu	Gly	Glu	Trp	Trp	Gln	Glu	Ala	Thr	Asn	Ser		
									245						255		
										250							
agc	tgg	ggc	gac	gag	ggc	acc	tgg	gcc	ggg	cgc	tgg	ggg	ttc	aac	ttc	816	
Ser	Trp	Gly	Asp	Glu	Gly	Thr	Trp	Ala	Gly	Arg	Trp	Gly	Phe	Asn	Phe		
									260						270		
										265							
gag	acg	ggg	aat	gtg	ctc	ttc	ctc	acc	gag	gag	ggc	cat	gac	ccc	cag	864	
Glu	Thr	Gly	Asn	Val	Leu	Phe	Leu	Thr	Glu	Glu	Gly	His	Asp	Pro	Gln		
									275						285		
										280							
acg	ggc	gag	gtg	ttc	gtc	acc	ctc	ggc	acg	gag	ggg	tct	ggc	ctg	cca	912	
Thr	Gly	Glu	Val	Phe	Val	Thr	Leu	Gly	Thr	Glu	Gly	Ser	Gly	Leu	Pro		

290

295

300

atc	gtg	ccg	cag	gtc	tcc	agt	atc	cac	gat	atg	ctg	tgg	gcg	gcg	ggt	960
Ile	Val	Pro	Gln	Val	Ser	Ser	Ile	His	Asp	Met	Leu	Trp	Ala	Ala	Gly	
305				310						315					320	
gag	gtc	ggg	gtg	ggc	agt	gag	cag	gag	ggt	gcc	aag	gtc	gag	tcc	tcc	1008
Glu	Val	Gly	Val	Gly	Ser	Glu	Gln	Glu	Gly	Ala	Lys	Val	Glu	Phe	Ser	
				325				330							335	
ccc	tcc	atg	gcc	ggg	ttt	ctg	gac	tgg	ggg	tcc	agc	gcc	tac	gct	gcg	1056
Pro	Ser	Met	Ala	Gly	Phe	Leu	Asp	Trp	Gly	Phe	Ser	Ala	Tyr	Ala	Ala	
				340			345					350				
gcg	ggc	aag	gtg	ctg	ccg	gcc	agc	tcg	gcg	gtg	tcg	aag	acc	agc	ggc	1104
Ala	Gly	Lys	Val	Leu	Pro	Ala	Ser	Ser	Ala	Val	Ser	Lys	Thr	Ser	Gly	
				355			360				365					
gtg	gag	gtg	gat	cgg	tat	gtc	tcg	tcc	gtc	tgg	ttg	acg	ggc	gac	cag	1152
Val	Glu	Val	Asp	Arg	Tyr	Val	Ser	Phe	Val	Trp	Leu	Thr	Gly	Asp	Gln	
				370			375				380					
tac	gag	cag	gcg	gac	ggg	tcc	ccc	acg	gcc	cag	cag	ggg	tgg	acg	ggg	1200
Tyr	Glu	Gln	Ala	Asp	Gly	Phe	Pro	Thr	Ala	Gln	Gln	Gly	Trp	Thr	Gly	
				385			390			395			400			
tcg	ctg	ctg	ctg	ccg	cgc	gag	ctg	aag	gtg	cag	acg	gtg	gag	aac	gtc	1248
Ser	Leu	Leu	Leu	Pro	Arg	Glu	Leu	Lys	Val	Gln	Thr	Val	Glu	Asn	Val	
				405			410					415				
gtc	gac	aac	gag	ctg	gtg	cgc	gag	gag	ggc	gtg	tcg	tgg	gtg	gtg	ggg	1296
Val	Asp	Asn	Glu	Leu	Val	Arg	Glu	Glu	Gly	Val	Ser	Trp	Val	Val	Gly	
				420			425				430					
gag	tcg	gac	aac	cag	acg	gcc	agg	ctg	cgc	acg	ctg	ggg	atc	acg	atc	1344
Glu	Ser	Asp	Asn	Gln	Thr	Ala	Arg	Leu	Arg	Thr	Leu	Gly	Ile	Thr	Ile	
				435			440				445					
gcc	cgg	gag	acc	aag	gcg	gcc	ctg	ctg	gcc	aac	ggc	tcg	gtg	acc	gcg	1392
Ala	Arg	Glu	Thr	Lys	Ala	Ala	Leu	Leu	Ala	Asn	Gly	Ser	Val	Thr	Ala	
				450			455				460					
gag	gag	gac	cgc	acg	ctg	cag	acg	gcg	gcc	gtc	gtg	ccg	tcc	gcg	caa	1440
Glu	Glu	Asp	Arg	Thr	Leu	Gln	Thr	Ala	Ala	Val	Val	Pro	Phe	Ala	Gln	
				465			470			475			480			
tcg	ccg	agc	tcc	aag	ttc	ttc	gtg	ctg	acg	gcc	cag	ctg	gag	tcc	ccc	1488
Ser	Pro	Ser	Ser	Lys	Phe	Phe	Val	Leu	Thr	Ala	Gln	Leu	Glu	Phe	Pro	
				485			490				495					

g c g a g c g c g c g c t c g t c c c c g c t c c a g t c c g g g t t c g a a a t c c t g g c g	5 0 0	5 0 5	5 1 0	1 5 3 6
Ala Ser Ala Arg Ser Ser Pro Leu Gln Ser Gly Phe Glu Ile Leu Ala				
t c g g a g c t g g a g c g c a c g g c c a t c t a c t a c c a g t t c a g c a a c g a g t c g	5 1 5	5 2 0	5 2 5	1 5 8 4
Ser Glu Leu Glu Arg Thr Ala Ile Tyr Tyr Gln Phe Ser Asn Glu Ser				
c t g g t c g t c g a c c g c a g c c a g a c t a g t g c g g c g g c g c c c a c g a a c c c c	5 3 0	5 3 5	5 4 0	1 6 3 2
Leu Val Val A s p A r g S e r G l n T h r S e r A l a A l a A l a P r o T h r A s n P r o				
g g g c t g g a t a g c t t t a c t g a g t c c g g c a a g t t g c g g t t g t t c g a c g t g	5 4 5	5 5 0	5 5 5	1 6 8 0
G l y L e u A s p S e r P h e T h r G l u S e r G l y L y s L e u A r g L e u P h e A s p V a l				
a t c g a g a a c g g c c a g g a g c a g g t c g a g a c g t t g g a t c t c a c t g t c g t c	5 6 5	5 7 0	5 7 5	1 7 2 8
I l e G l u A s n G l y G l n G l u G l n V a l G l u T h r L e u A s p L e u T h r V a l V a l				
g t g g a t a a c g c g g t t g t c g a g g t g t a t g c c a a c g g g c g c t t t g c g t t g	5 8 0	5 8 5	5 9 0	1 7 7 6
V a l A s p A s n A l a V a l V a l G l u V a l T y r A l a A s n G l y A r g P h e A l a L e u				
a g c a c c t g g g c g a g a t c g t g g t a c g a c a a c t c c a c c c a g a t c c g c t t c	5 9 5	6 0 0	6 0 5	1 8 2 4
S e r T h r T r p A l a A r g S e r T r p T y r A s p A s n S e r T h r G l n I l e A r g P h e				
t t c c a c a a c g g c g a g g g c g a g g t g c a g t t c a g g a a t g t c t c c g t g t c g	6 1 0	6 1 5	6 2 0	1 8 7 2
P h e H i s A s n G l y G l u G l y G l u V a l G l n P h e A r g A s n V a l S e r V a l S e r				
g a g g g g c t c t a t a a c g c c t g g c c g g a g a g a a a t	6 2 5	6 3 0	6 3 5	1 9 0 5
G l u G l y L e u T y r A s n A l a T r p P r o G l u A r g A s n				

<210> 2
<211> 635
<212> PRT
<213> Aspergillus niger

<400> 2				
S e r T y r H i s L e u A s p T h r T h r A l a P r o P r o P r o T h r A s n L e u S e r T h r	1	5	10	15
L e u P r o A s n A s n T h r L e u P h e H i s V a l T r p A r g P r o A r g A l a H i s I l e	20	25	30	
L e u P r o A l a G l u G l y G l n I l e G l y A s p P r o C y s A l a H i s T y r T h r A s p				

35

40

45

Pro Ser Thr Gly Leu Phe His Val Gly Phe Leu His Asp Gly Asp Gly
50 55 60

Ile Ala Gly Ala Thr Thr Ala Asn Leu Ala Thr Tyr Thr Asp Thr Ser
65 70 75 80

Asp Asn Gly Ser Phe Leu Ile Gln Pro Gly Gly Lys Asn Asp Pro Val
85 90 95

Ala Val Phe Asp Gly Ala Val Ile Pro Val Gly Val Asn Asn Thr Pro
100 105 110

Thr Leu Leu Tyr Thr Ser Val Ser Phe Leu Pro Ile His Trp Ser Ile
115 120 125

Pro Tyr Thr Arg Gly Ser Glu Thr Gln Ser Leu Ala Val Ala Arg Asp
130 135 140

Gly Gly Arg Arg Phe Asp Lys Leu Asp Gln Gly Pro Val Ile Ala Asp
145 150 155 160

His Pro Phe Ala Val Asp Val Thr Ala Phe Arg Asp Pro Phe Val Phe
165 170 175

Arg Ser Ala Lys Leu Asp Val Leu Leu Ser Leu Asp Glu Glu Val Ala
180 185 190

Arg Asn Glu Thr Ala Val Gln Gln Ala Val Asp Gly Trp Thr Glu Lys
195 200 205

Asn Ala Pro Trp Tyr Val Ala Val Ser Gly Gly Val His Gly Val Gly
210 215 220

Pro Ala Gln Phe Leu Tyr Arg Gln Asn Gly Gly Asn Ala Ser Glu Phe
225 230 235 240

Gln Tyr Trp Glu Tyr Leu Gly Glu Trp Trp Gln Glu Ala Thr Asn Ser
245 250 255

Ser Trp Gly Asp Glu Gly Thr Trp Ala Gly Arg Trp Gly Phe Asn Phe
260 265 270

Glu Thr Gly Asn Val Leu Phe Leu Thr Glu Glu Gly His Asp Pro Gln
275 280 285

Thr Gly Glu Val Phe Val Thr Leu Gly Thr Glu Gly Ser Gly Leu Pro
290 295 300

Ile Val Pro Gln Val Ser Ser Ile His Asp Met Leu Trp Ala Ala Gly
305 310 315 320

Glu Val Gly Val Gly Ser Glu Gln Glu Gly Ala Lys Val Glu Phe Ser
325 330 335

Pro Ser Met Ala Gly Phe Leu Asp Trp Gly Phe Ser Ala Tyr Ala Ala
340 345 350

Ala Gly Lys Val Leu Pro Ala Ser Ser Ala Val Ser Lys Thr Ser Gly
355 360 365

Val Glu Val Asp Arg Tyr Val Ser Phe Val Trp Leu Thr Gly Asp Gln
370 375 380

Tyr Glu Gln Ala Asp Gly Phe Pro Thr Ala Gln Gln Gly Trp Thr Gly
385 390 395 400

Ser Leu Leu Leu Pro Arg Glu Leu Lys Val Gln Thr Val Glu Asn Val
405 410 415

Val Asp Asn Glu Leu Val Arg Glu Glu Gly Val Ser Trp Val Val Gly
420 425 430

Glu Ser Asp Asn Gln Thr Ala Arg Leu Arg Thr Leu Gly Ile Thr Ile
435 440 445

Ala Arg Glu Thr Lys Ala Ala Leu Leu Ala Asn Gly Ser Val Thr Ala
450 455 460

Glu Glu Asp Arg Thr Leu Gln Thr Ala Ala Val Val Pro Phe Ala Gln
465 470 475 480

Ser Pro Ser Ser Lys Phe Phe Val Leu Thr Ala Gln Leu Glu Phe Pro
485 490 495

Ala Ser Ala Arg Ser Ser Pro Leu Gln Ser Gly Phe Glu Ile Leu Ala
500 505 510

Ser Glu Leu Glu Arg Thr Ala Ile Tyr Tyr Gln Phe Ser Asn Glu Ser
515 520 525

Leu Val Val Asp Arg Ser Gln Thr Ser Ala Ala Ala Pro Thr Asn Pro
530 535 540

Gly Leu Asp Ser Phe Thr Glu Ser Gly Lys Leu Arg Leu Phe Asp Val
545 550 555 560

Ile Glu Asn Gly Gln Glu Gln Val Glu Thr Leu Asp Leu Thr Val Val
565 570 575

Val Asp Asn Ala Val Val Glu Val Tyr Ala Asn Gly Arg Phe Ala Leu
580 585 590

Ser Thr Trp Ala Arg Ser Trp Tyr Asp Asn Ser Thr Gln Ile Arg Phe
595 600 605

Phe His Asn Gly Glu Gly Glu Val Gln Phe Arg Asn Val Ser Val Ser
610 615 620

Glu Gly Leu Tyr Asn Ala Trp Pro Glu Arg Asn
625 630 635

<210> 3

<211> 1809

<212> DNA

<213> Penicillium roqueforti

<220>

<221> CDS

<222> (1)..(1809)

<400> 3

gtt gat ttc cat acc ccg att gac tat aac tcg gct ccg cca aac ctt 48
Val Asp Phe His Thr Pro Ile Asp Tyr Asn Ser Ala Pro Pro Asn Leu
1 5 10 15

tct acc ctg gca aac gca tct ctt ttc aag aca tgg aga ccc aga gcc 96
Ser Thr Leu Ala Asn Ala Ser Leu Phe Lys Thr Trp Arg Pro Arg Ala
20 25 30

cat ctt ctc cct cca tct ggg aac ata ggc gac ccg tgc ggg cac tat 144
His Leu Leu Pro Pro Ser Gly Asn Ile Gly Asp Pro Cys Gly His Tyr
35 40 45

acc gat ccc aag act ggt ctc ttc cac gtg ggt tgg ctt tac agt ggg 192
Thr Asp Pro Lys Thr Gly Leu Phe His Val Gly Trp Leu Tyr Ser Gly
50 55 60

att tcg gga gcg aca acc gac gat ctc gtt acc tat aaa gac ctc aat 240
Ile Ser Gly Ala Thr Thr Asp Asp Leu Val Thr Tyr Lys Asp Leu Asn
65 70 75 80

ccc gat gga gcc ccg tca att gtt gca gga gga aag aac gac cct ctt 288
Pro Asp Gly Ala Pro Ser Ile Val Ala Gly Gly Lys Asn Asp Pro Leu
85 90 95

tct gtc ttc gat ggc tcg gtc att cca agc ggt ata gac ggc atg cca 336
Ser Val Phe Asp Gly Ser Val Ile Pro Ser Gly Ile Asp Gly Met Pro

100

105

110

act	ctt	ctg	tat	acc	tct	gta	tca	ta	c	ctc	cca	atc	ca	c	tgg	tcc	atc	384
Thr	Leu	Leu	Tyr	Thr	Ser	Val	Ser	Tyr	Leu	Pro	Ile	His	Trp	Ser	Ile			
	115				120						125							
ccc	ta	ac	cc	cgg	gga	agc	gag	aca	caa	tcc	ttg	gcc	gtt	tcc	ta	t	gac	432
Pro	Tyr	Thr	Arg	Gly	Ser	Glu	Thr	Gln	Ser	Leu	Ala	Val	Ser	Tyr	Asp			
	130				135						140							
ggt	ggt	ca	ac	ttc	ac	aag	ctc	aa	caa	ggg	ccc	gtg	atc	cct	ac	g	480	
Gly	Gly	His	Asn	Phe	Thr	Lys	Leu	Asn	Gln	Gly	Pro	Val	Val	Ile	Pro	Thr		
	145				150					155					160			
cct	ccg	ttt	gct	ctc	aa	gtc	ac	cc	gt	ttc	cgt	gac	ccc	ta	gtt	ttc	528	
Pro	Pro	Phe	Ala	Leu	Asn	Val	Thr	Ala	Phe	Arg	Asp	Pro	Tyr	Val	Phe			
	165				170						175							
caa	agc	cca	att	ctg	gac	aaa	tct	gtc	aa	gt	acc	caa	gga	aca	tgg		576	
Gln	Ser	Pro	Ile	Leu	Asp	Lys	Ser	Val	Asn	Ser	Thr	Gln	Gly	Thr	Trp			
	180				185						190							
tat	gtc	gc	cc	ata	tct	ggc	gg	gtc	ca	gg	gt	gtc	gg	cct	tgt	cag	ttc	624
Tyr	Val	Ala	Ile	Ser	Gly	Gly	Val	His	Gly	Val	Gly	Pro	Cys	Gln	Phe			
	195				200					205								
ctc	ta	cgt	cag	aa	gac	gca	ga	tt	ca	ta	t	gg	ga	ta	ctc	gg	672	
Leu	Tyr	Arg	Gln	Asn	Asp	Ala	Asp	Phe	Gln	Tyr	Trp	Glu	Tyr	Leu	Gly			
	210				215					220								
caa	tgg	tgg	aag	gag	ccc	ctt	aa	ac	act	tgg	gga	aag	gg	gt	ga	tgg	720	
Gln	Trp	Trp	Lys	Glu	Pro	Leu	Asn	Thr	Thr	Trp	Gly	Lys	Gly	Asp	Trp			
	225				230					235					240			
gcc	ggg	gg	tg	gg	gc	tt	aa	tt	ga	gt	gg	aa	gt	tt	ag	ct	768	
Ala	Gly	Gly	Trp	Gly	Phe	Asn	Phe	Glu	Val	Gly	Asn	Val	Phe	Ser	Leu			
	245				250					255								
aat	gca	ga	gg	ta	gt	ga	ga	gg	ga	ta	tt	ca	ta	ac	ctc	gg	816	
Asn	Ala	Glu	Gly	Tyr	Ser	Glu	Asp	Gly	Glu	Ile	Phe	Ile	Thr	Leu	Gly			
	260				265						270							
gct	ga	gg	tg	gg	ga	cc	at	gt	tt	cct	ca	gt	tc	tcc	tct	at	cgc	864
Ala	Glu	Gly	Ser	Gly	Leu	Pro	Ile	Val	Pro	Gln	Val	Ser	Ser	Ile	Arg			
	275				280						285							
gat	atg	ctg	tgg	gt	ac	gg	aa	gt	ac	aa	at	ga	gg	tct	gt	ac	912	
Asp	Met	Leu	Trp	Val	Thr	Gly	Asn	Val	Thr	Asn	Asp	Gly	Ser	Val	Thr			
	290				295						300							

ttc aag cca acc atg gcg ggt gtg ctt gac tgg ggc gtg tcg gca tat	960		
Phe Lys Pro Thr Met Ala Gly Val Leu Asp Trp Gly Val Ser Ala Tyr			
305	310	315	320
gct gct gca ggc aag atc ttg ccg gcc agc tct cag gca tcc aca aag	1008		
Ala Ala Ala Gly Lys Ile Leu Pro Ala Ser Ser Gln Ala Ser Thr Lys			
325	330	335	
agc ggt gcc ccc gat cgg ttc att tcc tat gtc tgg ctc act gga gat	1056		
Ser Gly Ala Pro Asp Arg Phe Ile Ser Tyr Val Trp Leu Thr Gly Asp			
340	345	350	
cta ttc gag caa gtg aaa gga ttc cct acc gct caa caa aac tgg acc	1104		
Leu Phe Glu Gln Val Lys Gly Phe Pro Thr Ala Gln Gln Asn Trp Thr			
355	360	365	
ggg gcc ctc tta ctg ccg cga gag ctg aat gtc cgc act atc tct aac	1152		
Gly Ala Leu Leu Leu Pro Arg Glu Leu Asn Val Arg Thr Ile Ser Asn			
370	375	380	
gtg gtg gat aac gaa ctt tcg cgt gag tcc ttg aca tcg tgg cgc gtg	1200		
Val Val Asp Asn Glu Leu Ser Arg Glu Ser Leu Thr Ser Trp Arg Val			
385	390	395	400
gcc cgc gaa gac tct ggt cag atc gac ctt gaa aca atg gga atc tca	1248		
Ala Arg Glu Asp Ser Gly Gln Ile Asp Leu Glu Thr Met Gly Ile Ser			
405	410	415	
att tcc agg gag act tac agc gct ctc aca tcc ggc tca tct ttt gtc	1296		
Ile Ser Arg Glu Thr Tyr Ser Ala Leu Thr Ser Gly Ser Ser Phe Val			
420	425	430	
gag tct ggt aaa acg ttg tcg aat gct gga gca gtg ccc ttc aat acc	1344		
Glu Ser Gly Lys Thr Leu Ser Asn Ala Gly Ala Val Pro Phe Asn Thr			
435	440	445	
tca ccc tca agc aag ttc ttc gtg ctg aca gca aat ata tct ttc ccg	1392		
Ser Pro Ser Ser Lys Phe Phe Val Leu Thr Ala Asn Ile Ser Phe Pro			
450	455	460	
acc tct gcc cgt gac tct ggc atc cag gct ggt ttc cag gtt tta tcc	1440		
Thr Ser Ala Arg Asp Ser Gly Ile Gln Ala Gly Phe Gln Val Leu Ser			
465	470	475	480
tct agt ctt gag tct aca act atc tac tac caa ttc tcc aac gag tcc	1488		
Ser Ser Leu Glu Ser Thr Thr Ile Tyr Tyr Gln Phe Ser Asn Glu Ser			
485	490	495	
atc atc gtc gac cgc agc aac acg agt gct gcg gcg aga aca act gct	1536		
Ile Ile Val Asp Arg Ser Asn Thr Ser Ala Ala Ala Arg Thr Thr Ala			

500

505

510

g g g a t c c t c a g t g a t a a c g a g g c g g g a c g t c t g c g c c t c t t c g a c g t g 1584
 Gly Ile Leu Ser Asp Asn Glu Ala Gly Arg Leu Arg Leu Phe Asp Val
 515 520 525

t t g c g a a a t g g a a a a g a a c a g g t t g a a a c t t t g g a g a c t c a c t a t c g t g 1632
 Leu Arg Asn Gly Lys Glu Gln Val Glu Thr Leu Glu Leu Thr Ile Val
 530 535 540

g t g g a t a a t a g t g t a c t g g a a g t a t a t g c c a a t g g a c g c t t t g c t c t a 1680
 Val Asp Asn Ser Val Leu Glu Val Tyr Ala Asn Gly Arg Phe Ala Leu
 545 550 555 560

g g c a c t t g g g c t c g g t c t t g g t a c g c a a c t c g a c t a a a a t t a a c t t c 1728
 Gly Thr Trp Ala Arg Ser Trp Tyr Ala Asn Ser Thr Lys Ile Asn Phe
 565 570 575

t t c c a t a a c g g c g t g g g a a g c g a c a t t c g a a a g a t g t g a c g g t c t t t 1776
 Phe His Asn Gly Val Gly Glu Ala Thr Phe Glu Asp Val Thr Val Phe
 580 585 590

g a a g g a c t g t a t g a t g c c t g g c c a c a a g g a a g 1809
 Glu Gly Leu Tyr Asp Ala Trp Pro Gln Arg Lys
 595 600

<210> 4
 <211> 603
 <212> PRT
 <213> Penicillium roqueforti

<400> 4
 Val Asp Phe His Thr Pro Ile Asp Tyr Asn Ser Ala Pro Pro Asn Leu
 1 5 10 15

Ser Thr Leu Ala Asn Ala Ser Leu Phe Lys Thr Trp Arg Pro Arg Ala
 20 25 30

His Leu Leu Pro Pro Ser Gly Asn Ile Gly Asp Pro Cys Gly His Tyr
 35 40 45

Thr Asp Pro Lys Thr Gly Leu Phe His Val Gly Trp Leu Tyr Ser Gly
 50 55 60

Ile Ser Gly Ala Thr Thr Asp Asp Leu Val Thr Tyr Lys Asp Leu Asn
 65 70 75 80

Pro Asp Gly Ala Pro Ser Ile Val Ala Gly Gly Lys Asn Asp Pro Leu
 85 90 95

Ser Val Phe Asp Gly Ser Val Ile Pro Ser Gly Ile Asp Gly Met Pro
100 105 110

Thr Leu Leu Tyr Thr Ser Val Ser Tyr Leu Pro Ile His Trp Ser Ile
115 120 125

Pro Tyr Thr Arg Gly Ser Glu Thr Gln Ser Leu Ala Val Ser Tyr Asp
130 135 140

Gly Gly His Asn Phe Thr Lys Leu Asn Gln Gly Pro Val Ile Pro Thr
145 150 155 160

Pro Pro Phe Ala Leu Asn Val Thr Ala Phe Arg Asp Pro Tyr Val Phe
165 170 175

Gln Ser Pro Ile Leu Asp Lys Ser Val Asn Ser Thr Gln Gly Thr Trp
180 185 190

Tyr Val Ala Ile Ser Gly Gly Val His Gly Val Gly Pro Cys Gln Phe
195 200 205

Leu Tyr Arg Gln Asn Asp Ala Asp Phe Gln Tyr Trp Glu Tyr Leu Gly
210 215 220

Gln Trp Trp Lys Glu Pro Leu Asn Thr Thr Trp Gly Lys Gly Asp Trp
225 230 235 240

Ala Gly Gly Trp Gly Phe Asn Phe Glu Val Gly Asn Val Phe Ser Leu
245 250 255

Asn Ala Glu Gly Tyr Ser Glu Asp Gly Glu Ile Phe Ile Thr Leu Gly
260 265 270

Ala Glu Gly Ser Gly Leu Pro Ile Val Pro Gln Val Ser Ser Ile Arg
275 280 285

Asp Met Leu Trp Val Thr Gly Asn Val Thr Asn Asp Gly Ser Val Thr
290 295 300

Phe Lys Pro Thr Met Ala Gly Val Leu Asp Trp Gly Val Ser Ala Tyr
305 310 315 320

Ala Ala Ala Gly Lys Ile Leu Pro Ala Ser Ser Gln Ala Ser Thr Lys
325 330 335

Ser Gly Ala Pro Asp Arg Phe Ile Ser Tyr Val Trp Leu Thr Gly Asp
340 345 350

Leu Phe Glu Gln Val Lys Gly Phe Pro Thr Ala Gln Gln Asn Trp Thr

355

360

365

Gly	Ala	Leu	Leu	Leu	Pro	Arg	Glu	Leu	Asn	Val	Arg	Thr	Ile	Ser	Asn
370							375					380			
Val	Val	Asp	Asn	Glu	Leu	Ser	Arg	Glu	Ser	Leu	Thr	Ser	Trp	Arg	Val
385				390				395					400		
Ala	Arg	Glu	Asp	Ser	Gly	Gln	Ile	Asp	Leu	Glu	Thr	Met	Gly	Ile	Ser
				405				410					415		
Ile	Ser	Arg	Glu	Thr	Tyr	Ser	Ala	Leu	Thr	Ser	Gly	Ser	Ser	Phe	Val
				420				425					430		
Glu	Ser	Gly	Lys	Thr	Leu	Ser	Asn	Ala	Gly	Ala	Val	Pro	Phe	Asn	Thr
				435			440					445			
Ser	Pro	Ser	Ser	Lys	Phe	Phe	Val	Leu	Thr	Ala	Asn	Ile	Ser	Phe	Pro
				450		455					460				
Thr	Ser	Ala	Arg	Asp	Ser	Gly	Ile	Gln	Ala	Gly	Phe	Gln	Val	Leu	Ser
				465		470				475			480		
Ser	Ser	Leu	Glu	Ser	Thr	Thr	Ile	Tyr	Tyr	Gln	Phe	Ser	Asn	Glu	Ser
				485			490					495			
Ile	Ile	Val	Asp	Arg	Ser	Asn	Thr	Ser	Ala	Ala	Ala	Arg	Thr	Thr	Ala
				500			505					510			
Gly	Ile	Leu	Ser	Asp	Asn	Glu	Ala	Gly	Arg	Leu	Arg	Leu	Phe	Asp	Val
				515			520					525			
Leu	Arg	Asn	Gly	Lys	Glu	Gln	Val	Glu	Thr	Leu	Glu	Leu	Thr	Ile	Val
				530			535				540				
Val	Asp	Asn	Ser	Val	Leu	Glu	Val	Tyr	Ala	Asn	Gly	Arg	Phe	Ala	Leu
				545			550				555			560	
Gly	Thr	Trp	Ala	Arg	Ser	Trp	Tyr	Ala	Asn	Ser	Thr	Lys	Ile	Asn	Phe
				565			570					575			
Phe	His	Asn	Gly	Val	Gly	Glu	Ala	Thr	Phe	Glu	Asp	Val	Thr	Val	Phe
				580			585					590			
Glu	Gly	Leu	Tyr	Asp	Ala	Trp	Pro	Gln	Arg	Lys					
				595			600								

<210> 5

<211> 1839

<212> DNA

<213> Scopulariopsis brevicaulis

<220>

<221> CDS

<222> (1).. (1839)

<400> 5

caa cct acg tct ctg tca atc gac aat tcc acg tat cct tct atc gac 48
Gln Pro Thr Ser Leu Ser Ile Asp Asn Ser Thr Tyr Pro Ser Ile Asp
1 5 10 15

tac aac tcc gcc cct cca aac ctc tcg act ctt gcc aac aac agc ctc 96
Tyr Asn Ser Ala Pro Pro Asn Leu Ser Thr Leu Ala Asn Asn Ser Leu
20 25 30

ttc gag aca tgg agg ccg agg gca cac gtc ctt ccg ccc cag aac cag 144
Phe Glu Thr Trp Arg Pro Arg Ala His Val Leu Pro Pro Gln Asn Gln
35 40 45

atc ggc gat ccg tgt atg cac tac acc gac ccc gag aca gga atc ttc 192
Ile Gly Asp Pro Cys Met His Tyr Thr Asp Pro Glu Thr Gly Ile Phe
50 55 60

cac gtc ggc tgg ctg tac aac ggc aat ggc gct tcc ggc gcc acg acc 240
His Val Gly Trp Leu Tyr Asn Gly Asn Gly Ala Ser Gly Ala Thr Thr
65 70 75 80

gag gat ctc gtc acc tat cag gat ctc aac ccc gac gga gcg cag atg 288
Glu Asp Leu Val Thr Tyr Gln Asp Leu Asn Pro Asp Gly Ala Gln Met
85 90 95

atc ctt ccg ggt ggt gtg aat gac ccc att gct gtc ttt gac ggc gcg 336
Ile Leu Pro Gly Gly Val Asn Asp Pro Ile Ala Val Phe Asp Gly Ala
100 105 110

gtt att ccc agt ggc att gat ggg aaa ccc acc atg atg tat acc tcg 384
Val Ile Pro Ser Gly Ile Asp Gly Lys Pro Thr Met Met Tyr Thr Ser
115 120 125

gtg tca tac atg ccc atc tcc tgg agc atc gct tac acc agg gga agc 432
Val Ser Tyr Met Pro Ile Ser Trp Ser Ile Ala Tyr Thr Arg Gly Ser
130 135 140

gag acc cac tct ctc gca gtg tcg tcc gac ggc ggt aag aac ttc acc 480
Glu Thr His Ser Leu Ala Val Ser Ser Asp Gly Gly Lys Asn Phe Thr
145 150 155 160

aag ctg gtg cag ggc ccc gtc att cct tcg cct ccc ttc ggc gcc aac 528
Lys Leu Val Gln Gly Pro Val Ile Pro Ser Pro Pro Phe Gly Ala Asn

165

170

175

gtg acc agc tgg cgt gac ccc ttc ctg ttc caa aac ccc cag ttc gac	576		
Val Thr Ser Trp Arg Asp Pro Phe Leu Phe Gln Asn Pro Gln Phe Asp			
180	185	190	
tct ctc ctc gaa agc gag aac ggc acg tgg tac acc gtt atc tct ggt	624		
Ser Leu Leu Glu Ser Glu Asn Gly Thr Trp Tyr Thr Val Ile Ser Gly			
195	200	205	
ggc atc cac ggt gac ggc ccc tcc gcg ttc ctc tac cgt cag cac gac	672		
Gly Ile His Gly Asp Gly Pro Ser Ala Phe Leu Tyr Arg Gln His Asp			
210	215	220	
ccc gac ttc cag tac tgg gag tac ctt gga ccg tgg tgg aac gag gaa	720		
Pro Asp Phe Gln Tyr Trp Glu Tyr Leu Gly Pro Trp Trp Asn Glu Glu			
225	230	235	240
ggg aac tcg acc tgg ggc agc ggt gac tgg gct ggc cgg tgg ggc tac	768		
Gly Asn Ser Thr Trp Gly Ser Gly Asp Trp Ala Gly Arg Trp Gly Tyr			
245	250	255	
aac ttc gag gtc atc aac att gtc ggt ctt gac gat gat ggc tac aac	816		
Asn Phe Glu Val Ile Asn Ile Val Gly Leu Asp Asp Asp Gly Tyr Asn			
260	265	270	
ccc gac ggt gaa atc ttt gcc acg gta ggt acc gaa tgg tcg ttt gac	864		
Pro Asp Gly Glu Ile Phe Ala Thr Val Gly Thr Glu Trp Ser Phe Asp			
275	280	285	
ccc atc aaa ccg cag gcc tcg gac aac agg gag atg ctc tgg gcc gcg	912		
Pro Ile Lys Pro Gln Ala Ser Asp Asn Arg Glu Met Leu Trp Ala Ala			
290	295	300	
gac aac atg act ctc gag gac ggc gat atc aag ttc acg cca agc atg	960		
Gly Asn Met Thr Leu Glu Asp Gly Asp Ile Lys Phe Thr Pro Ser Met			
305	310	315	320
gcg ggc tac ctc gac tgg ggt cta tcg gcg tat gcc gcc gct ggc aag	1008		
Ala Gly Tyr Leu Asp Trp Gly Leu Ser Ala Tyr Ala Ala Gly Lys			
325	330	335	
gag ctg ccc gct tct tca aag cct tcg cag aag agc ggt gcg ccg gac	1056		
Glu Leu Pro Ala Ser Ser Lys Pro Ser Gln Lys Ser Gly Ala Pro Asp			
340	345	350	
cgg ttc gtg tcg tac ctg tgg ctc acc ggt gac tac ttc gag ggc cac	1104		
Arg Phe Val Ser Tyr Leu Trp Leu Thr Gly Asp Tyr Phe Glu Gly His			
355	360	365	

gac	ttc	ccc	acc	ccg	cag	cag	aat	tgg	acc	ggc	tcg	ctt	ttg	ctt	ccg	1152	
Asp	Phe	Pro	Thr	Pro	Gln	Gln	Asn	Trp	Thr	Gly	Ser	Leu	Leu	Leu	Pro		
370					375						380						
cgt	gag	ctg	agc	gtc	ggg	acg	att	ccc	aac	gtt	gtc	gac	aac	gag	ctt	1200	
Arg	Glu	Leu	Ser	Val	Gly	Thr	Ile	Pro	Asn	Val	Val	Asp	Asn	Glu	Leu		
385					390					395					400		
gct	cgc	gag	acg	ggc	tct	tgg	agg	gtt	ggc	acc	aac	gac	act	ggc	gtg	1248	
Ala	Arg	Glu	Thr	Gly	Ser	Trp	Arg	Val	Gly	Thr	Asn	Asp	Thr	Gly	Val		
405										410					415		
ctt	gag	ctg	gtc	act	ctg	aag	cag	gag	att	gct	cgc	gag	acg	ctg	gct	1296	
Leu	Glu	Leu	Val	Thr	Leu	Lys	Gln	Glut	Ile	Ala	Arg	Glu	Thr	Leu	Ala		
420									425					430			
gaa	atg	acc	agc	ggc	aac	tcc	ttc	acc	gag	gcg	agc	agg	aat	gtc	agc	1344	
Glu	Met	Thr	Ser	Gly	Asn	Ser	Phe	Thr	Glu	Ala	Ser	Arg	Asn	Val	Ser		
435									440					445			
tcg	ccc	gga	tct	acc	gcc	ttc	cag	cag	tcc	ctg	gat	tcc	aag	ttc	ttc	1392	
Ser	Pro	Gly	Ser	Thr	Ala	Phe	Gln	Gln	Ser	Leu	Asp	Ser	Lys	Phe	Phe		
450									455					460			
gtc	ctg	acc	gcc	tcg	ctc	tcc	ttc	cct	tcg	tcg	gct	cgc	gac	tcc	gac	1440	
Val	Leu	Thr	Ala	Ser	Leu	Ser	Phe	Pro	Ser	Ser	Ala	Arg	Asp	Ser	Asp		
465									470					475		480	
ctc	aag	gct	ggt	ttc	gag	atc	ctg	tcg	tcc	gag	ttt	gag	tcg	acc	acg	1488	
Leu	Lys	Ala	Gly	Phe	Glu	Ile	Leu	Ser	Ser	Glu	Phe	Glu	Ser	Thr	Thr		
485										490					495		
gtc	taa	taa	caaa	ttt	tcc	aaa	gag	tcc	atc	atc	att	gac	cgg	agc	aac	1536	
Val	Tyr	Tyr	Gln	Phe	Ser	Asn	Glu	Ser	Ile	Ile	Ile	Asp	Arg	Ser	Asn		
500									505					510			
tcg	agt	gct	gcc	gcc	ttg	act	acc	gat	gga	atc	gac	acc	cgc	aac	gag	1584	
Ser	Ser	Ala	Ala	Ala	Leu	Thr	Thr	Asp	Gly	Ile	Asp	Thr	Arg	Asn	Glu		
515									520					525			
ttt	ggc	aag	atg	cgc	ctg	ttt	gat	gtt	gtc	gag	ggt	gac	cag	gag	cgt	1632	
Phe	Gly	Lys	Met	Arg	Leu	Phe	Asp	Val	Val	Glu	Gly	Asp	Gln	Glu	Arg		
530									535					540			
atc	gag	acg	ctc	gat	ctc	act	att	gtg	gtt	gat	aac	tcg	atc	gtt	gag	1680	
Ile	Glu	Thr	Leu	Asp	Leu	Thr	Ile	Val	Val	Asp	Asn	Ser	Ile	Val	Glu		
545									550					555		560	
gtt	cat	gcc	aac	ggg	cga	ttc	gct	ctg	agc	act	tgg	gtt	cgt	tcg	tgg	1728	
Val	His	Ala	Asn	Gly	Arg	Phe	Ala	Leu	Ser	Thr	Trp	Val	Arg	Ser	Trp		

565

570

575

tac gag tcg tcc aag gac atc aag ttc ttc cac gat ggc gac agc acg 1776
 Tyr Glu Ser Ser Lys Asp Ile Lys Phe Phe His Asp Gly Asp Ser Thr
 580 585 590

gtt cag ttc tcg aac atc acc gtc tac gag gga ctg ttt gac gcc tgg 1824
 Val Gln Phe Ser Asn Ile Thr Val Tyr Glu Gly Leu Phe Asp Ala Trp
 595 600 605

ccg gag cgg gcc agg 1839
 Pro Glu Arg Ala Arg
 610

<210> 6
 <211> 613
 <212> PRT
 <213> *Scopulariopsis brevicaulis*

<400> 6
 Gln Pro Thr Ser Leu Ser Ile Asp Asn Ser Thr Tyr Pro Ser Ile Asp
 1 5 10 15

Tyr Asn Ser Ala Pro Pro Asn Leu Ser Thr Leu Ala Asn Asn Ser Leu
 20 25 30

Phe Glu Thr Trp Arg Pro Arg Ala His Val Leu Pro Pro Gln Asn Gln
 35 40 45

Ile Gly Asp Pro Cys Met His Tyr Thr Asp Pro Glu Thr Gly Ile Phe
 50 55 60

His Val Gly Trp Leu Tyr Asn Gly Asn Gly Ala Ser Gly Ala Thr Thr
 65 70 75 80

Glu Asp Leu Val Thr Tyr Gln Asp Leu Asn Pro Asp Gly Ala Gln Met
 85 90 95

Ile Leu Pro Gly Gly Val Asn Asp Pro Ile Ala Val Phe Asp Gly Ala
 100 105 110

Val Ile Pro Ser Gly Ile Asp Gly Lys Pro Thr Met Met Tyr Thr Ser
 115 120 125

Val Ser Tyr Met Pro Ile Ser Trp Ser Ile Ala Tyr Thr Arg Gly Ser
 130 135 140

Glu Thr His Ser Leu Ala Val Ser Ser Asp Gly Gly Lys Asn Phe Thr
 145 150 155 160

Lys Leu Val Gln Gly Pro Val Ile Pro Ser Pro Pro Phe Gly Ala Asn
165 170 175

Val Thr Ser Trp Arg Asp Pro Phe Leu Phe Gln Asn Pro Gln Phe Asp
180 185 190

Ser Leu Leu Glu Ser Glu Asn Gly Thr Trp Tyr Thr Val Ile Ser Gly
195 200 205

Gly Ile His Gly Asp Gly Pro Ser Ala Phe Leu Tyr Arg Gln His Asp
210 215 220

Pro Asp Phe Gln Tyr Trp Glu Tyr Leu Gly Pro Trp Trp Asn Glu Glu
225 230 235 240

Gly Asn Ser Thr Trp Gly Ser Gly Asp Trp Ala Gly Arg Trp Gly Tyr
245 250 255

Asn Phe Glu Val Ile Asn Ile Val Gly Leu Asp Asp Asp Gly Tyr Asn
260 265 270

Pro Asp Gly Glu Ile Phe Ala Thr Val Gly Thr Glu Trp Ser Phe Asp
275 280 285

Pro Ile Lys Pro Gln Ala Ser Asp Asn Arg Glu Met Leu Trp Ala Ala
290 295 300

Gly Asn Met Thr Leu Glu Asp Gly Asp Ile Lys Phe Thr Pro Ser Met
305 310 315 320

Ala Gly Tyr Leu Asp Trp Gly Leu Ser Ala Tyr Ala Ala Ala Gly Lys
325 330 335

Glu Leu Pro Ala Ser Ser Lys Pro Ser Gln Lys Ser Gly Ala Pro Asp
340 345 350

Arg Phe Val Ser Tyr Leu Trp Leu Thr Gly Asp Tyr Phe Glu Gly His
355 360 365

Asp Phe Pro Thr Pro Gln Gln Asn Trp Thr Gly Ser Leu Leu Leu Pro
370 375 380

Arg Glu Leu Ser Val Gly Thr Ile Pro Asn Val Val Asp Asn Glu Leu
385 390 395 400

Ala Arg Glu Thr Gly Ser Trp Arg Val Gly Thr Asn Asp Thr Gly Val
405 410 415

Leu Glu Leu Val Thr Leu Lys Gln Glu Ile Ala Arg Glu Thr Leu Ala

420

425

430

Glu	Met	Thr	Ser	Gly	Asn	Ser	Phe	Thr	Glu	Ala	Ser	Arg	Asn	Val	Ser	
435							440					445				
Ser	Pro	Gly	Ser	Thr	Ala	Phe	Gln	Gln	Ser	Leu	Asp	Ser	Lys	Phe	Phe	
450							455				460					
Val	Leu	Thr	Ala	Ser	Leu	Ser	Phe	Pro	Ser	Ser	Ala	Arg	Asp	Ser	Asp	
465							470				475				480	
Leu	Lys	Ala	Gly	Phe	Glu	Ile	Leu	Ser	Ser	Glu	Phe	Glu	Ser	Thr	Thr	
														495		
485							490									
Val	Tyr	Tyr	Gln	Phe	Ser	Asn	Glu	Ser	Ile	Ile	Ile	Asp	Arg	Ser	Asn	
							505								510	
Ser	Ser	Ala	Ala	Ala	Leu	Thr	Thr	Asp	Gly	Ile	Asp	Thr	Arg	Asn	Glu	
							515							525		
Phe	Gly	Lys	Met	Arg	Leu	Phe	Asp	Val	Val	Glu	Gly	Asp	Gln	Glu	Arg	
							530				535				540	
Ile	Glu	Thr	Leu	Asp	Leu	Thr	Ile	Val	Val	Asp	Asn	Ser	Ile	Val	Glu	
							545				550				560	
Val	His	Ala	Asn	Gly	Arg	Phe	Ala	Leu	Ser	Thr	Trp	Val	Arg	Ser	Trp	
							565				570				575	
Tyr	Glu	Ser	Ser	Lys	Asp	Ile	Lys	Phe	Phe	His	Asp	Gly	Asp	Ser	Thr	
							580				585				590	
Val	Gln	Phe	Ser	Asn	Ile	Thr	Val	Tyr	Glu	Gly	Leu	Phe	Asp	Ala	Trp	
							595				600				605	
Pro	Glu	Arg	Ala	Arg												
610																

<210> 7

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 7

g c g a a t t c a t g a a g c t c a c c a c t a c c a

<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 8
gcggatcccg gtcaatttct ct 22

<210> 9
<211> 9
<212> DNA
<213> *Aspergillus niger*

<220>
<221> CDS
<222> (1)..(9)

$\langle 400 \rangle$ 9
 g a c g a g g a c
 Asp Glu Asp
 1

<210> 10
<211> 9
<212> DNA
<213> *Aspergillus niger*

<220>
<221> CDS
<222> (1)..(9)

$\langle 400 \rangle$ 10 t t c c t g c c c Phe Leu Pro l	9
---	---

<210> 11
<211> 9
<212> DNA
<213> *Aspergillus niger*

<220>
<221> CDS

<222> (1).. (9)

<400> 11

t c c a t c c c c
S e r I l e P r o
l

9

<210> 12

<211> 9

<212> DNA

<213> Aspergillus niger

<220>

<221> CDS

<222> (1).. (9)

<400> 12

g c c t t c g a c
A l a P h e A s p
l

9

<210> 13

<211> 9

<212> DNA

<213> Aspergillus niger

<220>

<221> CDS

<222> (1).. (9)

<400> 13

g t g t a c g g c
V a l T y r G l y
l

9

<210> 14

<211> 9

<212> DNA

<213> Aspergillus niger

<220>

<221> CDS

<222> (1).. (9)

<400> 14

g c c c t g c a g
A l a L e u G l n

9

<210> 15
 <211> 9
 <212> DNA
 <213> Aspergillus niger

<220>
 <221> CDS
 <222> (1)..(9)

<400> 15
 t t t t c g g a g
 Phe Ser Glu
 1
 9

<210> 16
 <211> 9
 <212> DNA
 <213> Aspergillus niger

<220>
 <221> CDS
 <222> (1)..(9)

<400> 16
 a t c g a c g a c
 Ile Asp Asp
 1
 9

<210> 17
 <211> 9
 <212> DNA
 <213> Aspergillus niger

<220>
 <221> CDS
 <222> (1)..(9)

<400> 17
 t t g a t g g g c
 Leu Met Gly
 1
 9

<210> 18
 <211> 9

<212> DNA

<213> Aspergillus niger

<220>

<221> CDS

<222> (1)..(9)

<400> 18

g t c t g c t t g

Val Cys Leu

1

9

【書類名】要約書

【要約】

【課題】 フラクトオリゴ糖の製造に適するように反応特性が改善された β -フルクトフラノシダーゼ変異体の提供。

【解決手段】 本発明によれば、特定のアミノ酸残基において変異を有する配列番号2に記載のアミノ酸配列またはその相同体からなる、 β -フルクトフラノシダーゼ変異体が提供される。

【選択図】 なし

出願人履歴

0 0 0 0 6 0 9 1

19900803

新規登録

東京都中央区京橋2丁目4番16号

明治製菓株式会社