אלגברה לינארית

סמסטר ב' תשפ"ה

שאלה 1

תהי $g:B\mapsto A$ פונקציה B וקבוצה A וקבוצה $g:B\mapsto A$ פונקציה פונקציה מקבוצה ההופכית של $f:A\mapsto B$ ההופכית של f

$$g(f(x)) = x, \quad \forall x \in A$$

וגם

$$f(g(y)) = y, \quad \forall y \in B.$$

אם קיימת קיימת כי ההופכית ה $f^{-1}=g$ מסומנת של מסומנת קיימת ההופכית החופכית החופכית ויחידה אם ורק אם f ורק אם הח"ע ועל.

נניח ההופכית f^{-1} קיימת ונראה כי f חח"ע ועל. נקח f^{-1} כך ש

$$f(x_1) = f(x_2).$$

נפעיל את ההופכית על שני האגפים ונקבל

$$x_1 = f^{-1}(f(x_1)) = f^{-1}(f(x_2)) = x_2.$$

f(x)=y כך ש $x\in A$ כך שקיים על. נקח $y\in B$ קיבלנו כי נוכיח כי חח"ע. נוכיח ליש נוכיח $x=f^{-1}(y)$ לשם כך המועמד הטבעי

$$f(x) = f(f^{-1}(y)) = y$$

f על.

בכיוון הפוך, נניח f חח"ע ועל ונבנה את הופכית. נקח g משום ש g על, בכיוון הפוך, נניח g תחת ע אינה ריקה, g f אינה ריקה, g אינה ההפוכה של g תחת בדיוק. נסמן אותה g כאשר התלות ב־g מודגשת באופן מפורש. לפי הבניה הזו g הינה העתקה מ־g לכל נקודה נתחום

f מחזירה מחזירה בדיוק בקבוצת המטרה). נבדוק כעת כי g היא ההופכית של מחזירה נקודה אחד בדיוק בקבוצת המטרה). נקח בדיוק התמונה ההפוכה של $f(x)\in B$ תחת בדיוק התמונה ההפוכה של g כי g

$$g(f(x)) = x, \quad \forall x \in A.$$

נקח g על פי ההגדרה של $\{g(y)\}$ על חתת g תחת של פי ההגדרה של g ולכן . $y \in B$

$$f(g(y)) = y, \quad \forall y \in B.$$

f הוכחנו כי g היא ההופכית של

 $y \in B$ נותר להוכיח יחידות. נניח g וגם h הופכיות של

$$h(y) = h(\underbrace{f(g(y))}_{=y}) = g(y),$$

 $u\in A$ עבור כל h(f(u))=u כאשר השיוויון האחרון מתקיים כי

2 שאלה

יהיה U,V איזומורפיזם בין מרחבים וקטוריים $\phi:U\mapsto V$ יהיה יהיה איזומורפיזם בין הקיימת לפי שאלה (הקיימת לפי שאלה ל $\phi^{-1}:V\mapsto U$ ההופכית

נזכיר כי ההופכית ϕ^{-1} מקיימת

$$\phi^{-1}(\phi(u)) = u, \quad \forall u \in U \quad \text{and} \quad \phi(\phi^{-1}(v)) = v \quad \forall v \in V.$$

נוכיח כי $\phi^{-1}(v_1)=\phi^{-1}(v_2)$ אם $v_1,v_2\in V$ נפעיל v_1 נפעיל על שני $v_1,v_2\in V$ נוכיח כי $v_2,v_2\in V$ נוכיח כי $v_1,v_2\in V$ נוכיח כי $v_1,v_2\in$

$$\phi^{-1}(v) = \phi^{-1}(\phi(u)) = u.$$

נותר להראות כי ϕ^{-1} העתקה לינארית. נקח $v_1,v_2\in V$ אז

$$\phi(\phi^{-1}(v_1) + \phi^{-1}(v_2)) = \phi(\phi^{-1}(v_1)) + \phi(\phi^{-1}(v_2)) = v_1 + v_2,$$

כאשר השתמשנו בלינאריות של ϕ^{-1} נפעיל ϕ^{-1} על שני האגפים ונקבל

$$\phi^{-1}(v_1) + \phi^{-1}(v_2) = \phi^{-1}(v_1 + v_2).$$

כעת נקח $c \in F$ ו
 $v \in V$ נקח כעת

$$\phi(c\phi^{-1}(v)) = c\phi(\phi^{-1}(v)) = cv.$$

נפעיל את ϕ^{-1} על שני האגפים ונקבל

$$c\phi^{-1}(v) = \phi^{-1}(cv).$$

. הוכחנו כי ϕ^{-1} לינארית