Practicing Inference Rules

1. Each	of the following littl	e derivati	on has a mistake. What is it?
(a)	1. <i>p</i>	$\vdash q$	A
	The datum and su	iccedent o	cannot differ when using A
(b)	1. Γ	$\vdash p \lor q$	premise
	2. Γ	$\vdash q$	1,∨E
	∨E cannot be use	d in that v	vay.
(c)	1. <i>p</i>	$\vdash p$	A
	2. <i>q</i>	$\vdash q$	A
	3. $p \wedge q$	$\vdash \ p \land q$	1,2,∧I
	∧I does not result	in that da	atum.
(d)	1. Γ, s	$\vdash r$	premise
	2. Γ, q	$\vdash p$	premise
	3. Γ, s, q	$\vdash \ r \supset p$	1,2,∧I
	∧I results in a suc	cedent w	ith ∧ as main connective.
(e)	1. <i>s</i>	$\vdash s$	A
	2. $s \lor w$	\vdash s	1,∨I
	∨I does not chang	ge datum.	
(f)	1. $p \wedge q$	$\vdash p \land q$	A
	2. <i>p</i>	$\vdash \ p \land q$	1,^E
	Cannot eliminate using ∧E.	a conjun	act from a conjunction in datum
(g)	1. <i>r</i>	$\vdash s \lor w$	premise
	2. r	$\vdash s \lor (u$	$v \lor q$)

	Cannot introd	luce a disjund	ct in that way using ∨I.
(h)	 Γ, q 	⊢ <i>p</i>	premise
	2. Δ	$\vdash \neg p$	premise
	3. Γ, Δ	$\vdash \neg q$	
	q is not in the	datum of lin	e 2.
(i)	1. Γ	$\vdash w$	premise
	2. Γ	$\vdash \neg \neg w$	
	Cannot introd	luce double n	legation using ¬I.
(j)	1. Δ	⊢ ¬¬p \	/ <i>r</i> premise
	2. Δ	$\vdash \ p \lor r$	1,¬E
	Can't elimina	te the double	negation in this way.
(k)	1. $p \supset q$	$\vdash p \supset q$	A
	2. q	$\vdash q$	
	3. $p \supset q, q$	$\vdash p$	1,2,⊃E
	Not how ⊃E v	vorks.	
(l)	1. $p \supset q$	$\vdash p \supset q$	A
	2. $p \supset q$	$\vdash p$	1,⊃E
	Not how ⊃E w	vorks	
(m)	1. Γ	$\vdash a$	premise
	2. Δ	$\vdash b$	premise
	3. Γ, Δ	$\vdash a \supset b$	

Not how ⊃I works.

2. Fill in missing items.

(viii)		$\vdash s$ premise
	2. Δ	$\vdash r$ premise
	3. <u>Γ</u>	$\vdash \underline{s \lor w}$
	4. <u>Δ</u>	$\vdash \neg p \lor r$
	5. Γ,Δ	$\vdash \overline{(s \lor w)} \land (\neg p \lor r)$ 3,4, \land I
(ix)	1. Γ	$\vdash \neg p$ premise
	2. Γ, s	<i>⊢</i> ¬ <i>p</i> 1
	3. <u>Γ</u>	⊢ <i>s</i> ⊃ ¬ <i>p</i> 2,⊃I
(x)	1. Γ	$\vdash u \land w$ premise
, ,	2. Γ	⊢ <u>u</u>
	- 3. Γ, s	<u> </u>
	4. Γ	_ ⊢ <i>s</i> ⊃ <i>u</i> 3,⊃I
(xi)	1. Γ	$\vdash a \supset b$ premise
` /	2. Δ	$\vdash a$ premise
	3. Γ, Δ	⊢ <u>b</u>
	<u></u>	_
(xii)	1. Γ	$\vdash x \supset y$ premise
, ,	2. <u>A</u>	$\vdash \overline{x}$ premise
		⊢ <i>y</i> 1,2,⊃E
(xiii)	1. Γ	$\vdash \neg \neg p$ premise
()	2. <u>Γ</u>	⊢ p1,¬E
	_	<u>-</u>
(xiv)	1 Λ	⊢ ¬¬ <u>s</u> premise
(AIV)	 Δ Δ 	⊢ s
	4. <u>△</u>	, o,¬E

(xv)	1. Γ, q 2. Δ, q 3. $\underline{\Gamma, \Delta}$	$\vdash \neg (p \lor s)$ premise $\vdash p \lor s$ premise $\vdash \neg q$ 1,2,¬I
(xvi)	 Γ, p Δ, p Γ, Δ 	$ \vdash q \supset r \qquad \qquad \text{premise} \\ \vdash \frac{\neg (q \supset r)}{\neg p} \qquad \qquad \text{premise} \\ \vdash \overline{\neg p} \qquad \qquad \qquad 1,2,\neg I $
(xvii)	1. $\Gamma, \underline{s \wedge w}$ 2. $\Delta, \underline{s \wedge w}$ 3. Γ, Δ	$ \vdash q \lor \neg r $
(xviii)	 Γ Δ, q Θ, r Γ, Δ, Θ 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(xix)	1. Γ, p 2. Δ 3. Θ, q 4. $\underline{\Gamma, \Delta, \Theta}$	
(xx)	 Γ Δ, x Θ, y Γ, Δ, Θ 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(xxi)	 Γ Δ, <u>r</u> Θ, s Γ, Δ, Θ 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

3.	The following have blanks that are impossible to fill in in accordance
	with our inference rules if we stick to the annotations. Explain why.

The blank would have to be an r given the annotation of line 1, but you can't get line 2 from that in the way indicated.

Given the annotation of line 3, line 2 must have a q in succedent, but you can't get that given line 2 is said to be a rewrite of line 1.

Given the annotation of line 4, the succedent of line 3 must be $s \land q$, but you can't get that since the annotation of line 3 requires that the succedent be a disjunction.

Given the annotation of line 4, the datum of line 2 must either be empty or Δ . But the annotation of 2 requires that the datum be Γ .

premise	⊢	1. Θ	(e)
premise	$\vdash r$	2. Γ, p	
premise	$\vdash r$	3. Δ, q	
1,2,3,∨E	$\vdash r$	4. Γ, Δ, Θ	
1,^E	⊢	5. ⊖	

According to the annoation of line 5, line 1's succedent must be a conjunction, but the annotation of line 4 requires it to be a conjunction.

premise	⊢	1. Γ	(f)
premise	⊢	2. Δ	
premise	$\vdash q$	3. Θ, p	
1,2,∧I	⊢	4. Γ, Δ, Θ	
4	⊢	5. $\Gamma, \Delta, \Theta, p$	
3,5,¬I	$\vdash \neg p$	6. Γ, Δ, Θ	

Given the annotation of line 6, the succedents of lines 4 and 5 must be $\neg q$. But given the annotation of line 4, the succedent must be a conjunction.

Given the annotation of line 2, the main connective of its succedent must be \lor , but then you cannot use $\neg E$ to infer line 3 from line 2.