STA732

Statistical Inference

Lecture 08: Equivariant estimation

Yuansi Chen

Spring 2023

Duke University

https://www2.stat.duke.edu/courses/Spring23/sta732.01/

Recap from Lecture 07

- 1. Formulate equivariant estimation under location models
 - Three parts: family, loss, estimator
- 2. Formulate general equivariant estimation

Goal of Lecture 08

- 1. Maximal invariant statistic
- 2. Construct minimum risk equivariant (MRE) estimator
- 3. Pitman estimator of location
- 4. Properties of the MRE

Chap. 10.2 in Keener or Chap. 3 in Lehmann and Casella

Maximal invariant statistic

Q: what will be the form of MRE in equivariant location estimation?

We are back to the location estimation problem.

The general case is skipped

Location invariant function

A function h on \mathbb{R}^n is called location invariant if h(x+a)=h(x) for all $x\in\mathbb{R}^n, a\in\mathbb{R}$.

Example: A location invariant statistic

$$Y(X) = \begin{pmatrix} X_1 - X_n \\ \vdots \\ X_{n-1} - X_n \end{pmatrix}$$

is location invariant

In fact, any location invariant statistic is a function of Y

Suppose h(X) is an arbitrary location invariant function, take $a=-X_n$, we have

$$h(X) = h(X - X_n \mathbf{1}) = h(Y_1, \dots, Y_{n-1}, 0).$$

For the above reason, Y is called maximal invariant Y carries at least as much information about X an any other invariant statistics h(X)!

Every location equivariant estimator has a decomposition

Lem. Lehmann-Casella 3.1.6

If δ_0 is a location equivariant estimator, then any other estimator is location equivariant if and only if it can be written as

$$\delta(X) = \delta_0(X) - U(X)$$

where the statistic U is location invariant.

Remark: combined with the observation in the previous slide, the decomposition is $\delta(X) = \delta_0(X) - v(Y)$, where Y is maximal invariant.

7

proof: simply go through the definitions

Construct minimum risk equivariant (MRE) estimator

MRE estimators are constructed by conditioning on Y

Thm. 10.4 in Keener and 3.1.10 in Lehmann Casella

Consider equivariant estimation of a location parameter with an invariant loss ρ . Suppose δ_0 is an equivariant estimator with finite risk. Suppose for a.e. $y \in \mathbb{R}^{n-1}$, there is a value $v^* = v^*(y)$ that minimizes

$$\mathbb{E}_0 \left[\rho(\delta_0(X) - v) \mid Y = y \right]$$

over $v \in \mathbb{R}$. Then an MRE estimator is given by

$$\delta_0(X)-v^*(Y).$$

q

proof idea: 1. Use the decomposition of an equivariant estimator; 2. make appear the conditonal on ${\cal Y}$ and use tower property

Strategy to compute MRE

According to Thm 10.4, the strategy to compute MRE is

- 1. Find an equivariant estimator δ_0 : $\delta_0(X) = X_n$ works, just need to check it has finite risk
- 2. Need the conditional distribution of X_n given Y
- 3. Minimize the expectation $\mathbb{E}_0\left[\rho(\delta_0(X)-v)\mid Y=y\right]$

Compute MRE (1)

- 1. Take $\delta_0=X_n$
- 2. The joint density of Y and X_n under P_0 is

$$f(y_1+x_n,\dots,y_{n-1}+x_n,x_n)$$

The marginal density of Y is

$$\int f(y_1+t,\dots,y_{n-1}+t,t)dt$$

3. The expectation $\mathbb{E}_0\left[\rho(\delta_0(X)-v)\mid Y=y\right]$ is

$$\frac{\int \rho(t-v)f(y_1+t,\dots,y_{n-1}+t,t)dt}{\int f(y_1+t,\dots,y_{n-1}+t,t)dt}$$

Compute MRE (2)

$$\min_{v \in \mathbb{R}} \frac{\int \rho(t-v) f(y_1+t,\ldots,y_{n-1}+t,t) dt}{\int f(y_1+t,\ldots,y_{n-1}+t,t) dt}$$

Since $y_i = x_i - x_n$, applying change of variables $t \leftarrow x_n - u$, we obtain the equivalent expression

$$\min_{v \in \mathbb{R}} \frac{\int \rho(x_n-v-u) f(x_1-u,\dots,x_{n-1}-u,x_n-u) du}{\int f(x_1-u,\dots,x_{n-1}-u,x_n-u) du}$$

Because our final MRE is $\delta^*(x) = x_n - v^*(y)$, δ^* is

$$\arg\min_{d}\frac{\int\rho(d-u)f(x_1-u,\dots,x_{n-1}-u,x_n-u)du}{\int f(x_1-u,\dots,x_{n-1}-u,x_n-u)du}$$

Pitman estimator of location

Pitman estimator of location under squared error loss

Under squared error loss $\rho(d-u)=(d-u)^2,$ the MRE is unique and can be found explicitly

$$\delta^*(X) = \frac{\int u f(X_1-u,\dots,X_n-u) du}{\int f(X_1-u,\dots,X_n-u) du}$$

called Pitman estimator

Example: i.i.d. uniform with unknown mean

$$X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} U(\theta-\tfrac{b}{2},\theta+\tfrac{b}{2}), b \text{ known.}$$
 Find MRE under squared error loss. Is it unbiased?

Example: i.i.d. exponential variables

Suppose $\epsilon_1,\ldots,\epsilon_n$ are i.i.d. standard exponential variables. $X_i=\theta+\epsilon_i.$ Determine the MRE of θ under squared error loss.

Properties of MRE

MRE under squared error loss for location family is unbiased

Lem. Lehmann-Casella 3.1.23

Under squared error loss and location family,

- If $\delta(X)$ is equivariant with constant bias $b \neq 0$, then $\delta(X) b$ is unbiased and equivariant with smaller risk than $\delta(X)$
- · MRE is unique and unbiased
- If UMVU exists and is location equivariant, then it is MRE

proof:

A comparison of MRE and uniform minimum risk unbiased (UMRU)

1. Loss:

- MRE requires the loss to be invariant, and it is loss-dependent
- For any convex loss, if complete sufficient statistic T exists, the UMVU and UMRU are constructed in the same way (Rao-Blackwellization)

2. Admissibility:

- UMVU are not always admissible (often inadmissible in problems that lack symmetry or are in high dimension)
- Pitman estimators are usually admissible (Stein, 1959)

Summary

- MRE can be constructed by conditioning on the maximal invariant statistic
- MRE has explicit form under squared error loss and location family: Pitman's estimator
- MRE vs. UMVU

What is next?

• Bayesian estimation

Thank you