1

计算理论导论

习题二: 正则表达式、泵引理

中国人民大学 信息学院 崔冠宇 2018202147

- 1. Design REs: 1.18 (b)(e)(l)(n).
- (b) $\{w | w \text{ contains at least three } 1s \}$,
- (e) $\{w | w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length} \}$,
- (l) $\{w | w \text{ contains an even number of } 0s, \text{ or contains exactly two } 1s\},$
- (n) All strings except the empty string.

解:

- (b) 思路: 三个 1 之间可以有任意字符。于是可得 $(o+1)^*1(o+1)^*1(o+1)^*1(o+1)^*$, 或 Σ^* 1 Σ^* 1 Σ^* 1 Σ^* 2 Σ^* 2 Σ^* 1 Σ^* 2 Σ^* 3 Σ^* 1 Σ^* 2 Σ^* 3 Σ^* 1 Σ^* 2 Σ^* 3 Σ^* 1 Σ^* 1 Σ^* 2 Σ^* 3 Σ^* 1 Σ^* 1 Σ^* 2 Σ^* 3 Σ^* 3 Σ^* 3 Σ^* 1 Σ^* 1 Σ^* 2 Σ^* 3 Σ^* 3 Σ^* 1 Σ^* 1 Σ^* 2 Σ^* 3 $\Sigma^$
- (e) 思路: 先根据要求写出两个语言,再用 + 并起来。于是可得 $o((o+1)(o+1))^* + 1((o+1)(o+1))^*(o+1)$,或 $o(\Sigma\Sigma)^* + 1(\Sigma\Sigma)^*\Sigma$ 。
- (l) 思路: 对于前半部分,可以先设计一个 DFA,再将其转化为 RE; 对于后半部分,可以直接写出。于是可得 (1+o1*o)*+ o*1o*1o*。
- (n) 思路:可以直接写出。于是可得 (o+1)(o+1)*,或 $\Sigma\Sigma^*$ 。
- **2.** RE \rightarrow NFA and NFA \rightarrow DFA: **1.17**
- **a.** Give an NFA recognizing the language (o1 \cup 001 \cup 010)*.
- **b.** Convert this NFA to an equivalent DFA. Give only the portion of the DFA that is reachable from the start state.

解:

- **a.** 先分别设计出接受 01、001、010 的 NFA, 然后将其组装成识别 (01 ∪ 001 ∪ 010) 的 NFA, 再将其构造成识别 (01 ∪ 001 ∪ 010)* 的 NFA, 最后将其化简。
- (1) 识别 o1 的 NFA:

(2) 识别 oo1 的 NFA:

(3) 识别 o10 的 NFA:

(4) 识别 (o1∪oo1∪o1o)* 的 NFA:

化简为一个不含 ε 边的四状态 NFA:

b. 运用 **Lemma 1.19** 将其转换为等价的 DFA $A = (Q', \Sigma, \delta', q'_0, F')$ 。 其中 $Q' = \mathcal{P}(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\},$

$$q_0' = \{q_0\} = \{1\},\,$$

$$F' = \{q \in Q' | q \cap F \neq \emptyset\} = \{\{1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{1,2,3,4\}\},$$

 $\delta'(R,a) = \bigcup_{q \in R} E(\delta(q,a))$ 由下表给出:

	О	1
Ø	Ø	Ø
{1}	{2}	Ø
{2}	{3}	$\{1, 4\}$
{3}	Ø	{1}
{4}	{1}	Ø
$\{1, 2\}$	$\{2, 3\}$	$\{1, 4\}$
$\{1, 3\}$	{2}	{1}
$\{1, 4\}$	$\{1, 2\}$	Ø
$\{2, 3\}$	{3}	$\{1, 4\}$
$\{2,4\}$	$\{1, 3\}$	$\{1, 4\}$
$\{3, 4\}$	{1}	{1}
$\{1, 2, 3\}$	$\{2, 3\}$	$\{1,4\}$
$\{1, 2, 4\}$	$\{1, 2, 3\}$	$\{1,4\}$
$\{1, 3, 4\}$	$\{1, 2\}$	{1}
$\{2, 3, 4\}$	$\{1,3\}$	$\{1,4\}$
$\{1, 2, 3, 4\}$	$\{1, 2, 3\}$	$\{1, 4\}$

在上表中从 $\{1\}$ 开始进行遍历(用红色表示),发现仅有 \emptyset 、 $\{1\}$ 、 $\{2\}$ 、 $\{3\}$ 、 $\{1,2\}$ 、 $\{1,4\}$ 、 $\{2,3\}$ 可被遍历到,绘制对应的 DFA 如下图:

3. DFA \rightarrow RE: **1.21** Use the procedure described in **Lemma 1.60** to convert the following finite automata to regular expressions.

解:

(1)

1. 增加新的起始、接受状态:

2. 去掉状态 1:

3. 去掉状态 2:

于是最终结果为 a*b(a+ba*b)*。

(2)

1. 增加新的起始、接受状态:

2. 去掉状态 1:

3. 去掉状态 2:

4. 去掉状态 3:

于是最终结果为 ε +(aa*b+ba*b)((b+aa+ab)a*b)*(ε +a)。

4. Let *L* be a regular language. Let $L_0 \subseteq L$. Is L_0 necessarily regular? Why?

解: L_0 不一定是正则的,反例如下:

设 $\Sigma = \{\mathbf{o}, \mathbf{1}\}$,取 $L = (\mathbf{o} + \mathbf{1})^* = \Sigma^*$, $L_0 = \{\mathbf{o}^n \mathbf{1}^n | n \ge 0\}$ 。因为 L 能写成正则表达式,所以 L 是正则语言;同时容易看出 $L_0 \subseteq L$,下面证明 L_0 不是正则的。

若不然,假设 L_0 为正则语言,设其由泵引理得到的泵长度为 p。考察串 $w = \mathbf{o}^p \mathbf{1}^p$,由于 $|w| \ge p$,利用泵引理得到 w 可以写成 xyz 三部分,其中 |y| > 0 且 $|xy| \le p$ 。由于 $|xy| \le p$,因此 y 只可能具有 $\mathbf{o}^k(k>0)$ 的形式,于是 $xyyz = \mathbf{o}^{p+k}\mathbf{1}^p \notin L_0$,矛盾,即 L_0 不是正则语言。

5. A language L is called finite if it contains finitely many strings. Prove that every finite language is regular.

证明思路: 考虑到正则语言与正则表达式的等价性,用构造有限语言的正则表达式的方法来证明。证明分两步,先证明任意单个(有限长)字符串 w 是正则表达式;再应用加法规则证明结论。

证明: 设有限语言 $L = \{w_i | 1 \le i \le n\}$ 。

- 1. 先证明任意有穷字符串 $w = a_1 a_2 \cdots a_m$ 是正则表达式。因为每个单字符都是正则表达式,反复应用**有限次**正则表达式的连接规则,可得 w 是正则表达式。
- 2. 在证明 L 可用正则表达式表出。由上一步证明,各 w_i 是正则表达式,反复应用**有限次**加法规则可得 $\sum_{i=1}^{n} w_i = w_1 + w_2 + \cdots + w_n$ 是正则表达式。

因为L有对应的正则表达式,根据正则表达式与正则语言的等价性,有限语言L是正则语言。 \square

- **6.** Use the Pumping Lemma to prove that the following languages over $\Sigma = \{0,1\}$ are not regular.
- (a) The language L_1 consisting of all palindromes. A palindrome is a string that equals its own reverse, such as 00100 or 110011.
- (b) The language L_2 consisting of all strings in which the number of 1's is exactly three times the number of o's.

- (c) The language $L_3 = \{www|w \in \{0,1\}^*\}$.
- **解:** 假设上述各 L_i 为正则语言,设 p 是泵引理给出的泵长度。
- (a) 取 $w = \mathbf{o}^p \mathbf{n} \mathbf{o}^p$ 。若 w 能被写成 xyz 的形式,其中 |y| > 0, $|xy| \le p$,则 y 一定具有 $\mathbf{o}^k (k > 0)$ 的形式,于是 $xyyz = \mathbf{o}^{p+k} \mathbf{n} \mathbf{o}^p \notin L_1$,矛盾。
- (b) 取 $w=\mathbf{o}^p\mathbf{1}^{3p}$ 。类似于上面的讨论,y 一定具有 \mathbf{o}^k 的形式,于是 $xyyz=\mathbf{o}^{p+k}\mathbf{1}^{3p}\notin L_2$,矛盾。
- (c) 取 $w=\mathbf{o}^p\mathbf{1o}^p\mathbf{1o}^p\mathbf{1}$ 。类似于上面的讨论,y 一定具有 \mathbf{o}^k 的形式,于是 $xyyz=\mathbf{o}^{p+k}\mathbf{1o}^p\mathbf{1o}^p\mathbf{1} \notin L_3$,矛盾。