Capítulo 5

Capa de Enlace de Datos Generalidades

Application

Transport

Network

Link

Physical

- Limitaciones de los canales de comunicación
 - ☐ Cometen errores ocasionales.
 - Tienen una tasa de datos finita.
 - ☐ Hay retardo de propagación.
- Meta necesaria:
 - lograr una comunicación confiable y eficiente entre dos máquinas adyacentes, o sea conectadas por un canal de comunicaciones.
- Problema: ¿Cómo cumplir con este requisito?

- Solución: definir una capa debajo de la capa de red (CR) que se encargue de esto.
 - Dicha capa se llama capa de enlace de datos (CED)
 - Un protocolo de CED hace que las líneas de comunicación parezcan perfectas o al menos bastante buenas.

Funciones de la CED

- ☐ Control de flujo: evitar que emisor rápido sature a receptor lento.
 - Uso de protocolos de tubería estudiados en capa de transporte.

■ Entramado:

- En el canal de difusión solo hay un stream de bits
- Problema: ¿Cómo detectar inicio y fin de cada trama?
- Solución: Usualmente se usa patrón especial de bits para ello (llamado bandera)
- No lo estudiaremos: si alguien tiene la curiosidad está en el libro.

- Funciones de la CED (continuación)
 - Detección y corrección de errores
 - No lo vemos porque la teoría la estudiarán con Penazzi.
 - Manejo de colisiones
 - Ocurren en canales de difusión usados por varias máquinas
 - Cuando dos máquinas intentan transmitir tramas al mismo tiempo ocurre colisión.

- ¿Por qué estudiar la capa de enlace de datos?
 - Toda organización, incluso los hogares tienen sus redes LAN.
 - Saber sobre la CED ayuda a comprender el funcionamiento de las LAN.
 - Hay LAN cableadas (e.g. Ethernet) y LAN inalámbricas (e.g. WiFi).
 - Hay que diseñar, configurar y administrar redes LAN.
 - Para comprender los protocolos que resuelven los problemas de diseño de las LAN.
 - Para control de flujo, control de colisiones, control de errores.

Aprenderemos:

- 1. Tramas de CED y su manejo
- 2. Fundamentos de comunicación de tramas en CED
- Necesidad de canales de difusión
- 4. Necesidad del control de colisiones

- Informaciones que debería contener una trama de capa de enlace de datos:
 - encabezado: suele contener: direcciones del origen y de destino; a veces la longitud de la trama, etc.
 - campo de carga útil (el contenido que se quiere enviar).
 - un terminador final (para control de errores)

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data (Pad	Check- sum
))		-
(b)	Preamble So F		Source address	Length	Data	Pad	Check- sum

Formato de trama Ethernet

Aprenderemos:

- 1. Tramas de CED y su manejo
- 2. Fundamentos de comunicación de tramas en CED
- Necesidad de canales de difusión
- 4. Necesidad del control de colisiones

Fundamentos de la comunicación en la capa de enlace de datos

Se trabaja con:

- Confirmaciones de recepción de tramas
- Temporización de reenvío
- Retransmisiones de tramas (perdidas o dañadas)
- Uso de números de secuencia en las tramas (para identificar tramas duplicadas).
- Llevar a caballito (piggybacking) para aprovechar mejor el canal de comunicaciones.
- Control de flujo (para evitar que emisor sature a receptor más lento) – go back N, repetición selectiva.

Aprenderemos:

- 1. Tramas de CED y su manejo
- Fundamentos de comunicación de tramas en CED
- 3. Necesidad de canales de difusión
 - Para entender qué problema existe si no se los usa y qué tipos de canales de difusión existen.
- Necesidad del control de colisiones

Necesidad de Canales de Difusión

- Situación: es costoso e incómodo hacer que todo par de máquinas de una organización están conectadas directamente entre sí por dos canales (dedicados exclusivamente para ellas).
 - Si hay n máquinas daría n * (n-1) conexiones
- Problema: Encontrar una alternativa más económica para conectar varias máquinas entre sí.

Necesidad de Canales de Difusión

Solución: Usar canales de difusión.

- En un canal de difusión están conectadas varias máquinas que quieren transmitir tramas por el canal.
- Si una máquina envía un mensaje, todas las demás lo reciben.

Evaluación

- Esta es una alternativa mucho más económica.
- Pero según veremos los canales de difusión introducen algunos problemas nuevos de diseño.

Canales de Difusión

Tipos de canales de difusión

- Inalámbricos

- En su forma más simple las máquinas se comunican entre sí sin uso de cables.
- P.ej. por uso de señales de radio o de microondas.

Cableados

- Las máquinas se comunican entre sí por medio de cables.
- P.ej. De un cable coaxial salen cables a distintas máquinas.
- P.ej. de un concentrador salen cables a distintas máquinas (es la idea de triple o de zapatilla).

Aprenderemos:

- 1. Tramas de CED y su manejo
- Fundamentos de comunicación de tramas en CED
- Necesidad de canales de difusión
- 4. Necesidad del control de colisiones

Necesidad de Control de Colisiones

- Si dos tramas se transmiten en forma simultánea en un canal de difusión:
 - ☐ Se traslapan en el tiempo y la señal resultante se altera.
 - ☐ Este evento se llama colisión
- Problema: ¿cómo evitar colisiones?
 - O sea, ¿cómo hacer para que ellas no ocurran, o que ocurran lo menos posible?

Necesidad de Control de Colisiones

- Solución: definir una subcapa de la capa de enlace de datos que se encargue del control de colisiones.
 - Esta subcapa de la CED se llama subcapa de control de acceso al medio (SCAM).
 - La subcapa MAC es una subcapa inferior de la CED.

Subcapa de control de acceso al medio

¿Por qué estudiar la SCAM?

- Para comprender cómo se organizan, diseñan, y funcionan las LAN cableadas e inalámbricas.
- Para entender cómo los distintos tipos de LAN hacen control de colisiones.
 - Para esto se usan protocolos de control de colisiones.

Necesidad de Control de Colisiones

- En una red de difusión el asunto clave es cómo determinar quién puede usar el canal cuando hay competencia por él.
- Protocolos de acceso múltiple PAM: se usan para determinar quién sigue en un canal de difusión.

Soluciones al control de colisiones

Soluciones Inalámbricas

- P.ej: estación base (access point) que coordina la comunicación entre hosts.
 - ❖ Se usa protocolo 802.11 (WIFI)

Soluciones al control de colisiones

Soluciones Cableadas

- P.ej: Ethernet cuando varias máquinas se enchufan a un concentrador (Hub) o a un mismo cable (cable coaxial).
 - Ethernet usa protocolo CSMA/CD para control de colisiones.