Compute the centroids and the medoids of the clusters $C1 = \{x1, x2, x3\}$, $C2 = \{x4\}$; reassign the feature vectors based on the centroids/medoids of C1, C2.

$$x1 = \langle 1, 0 \rangle$$

 $x2 = \langle 0, 1 \rangle$

$$x3 = \langle 2, 2 \rangle$$

$$x4 = <2, 1>$$

$$\frac{C_{1} + C_{1}}{C_{1}} = \frac{C_{1} + C_{1}}{C_{1}} = \frac{C_{1} + C_{1}}{C_{2}} = C_{1}$$

$$C_{2} = C_{2} + C_{2}$$

$$C_{2} = C_{2} + C_{2}$$

$$C_{3} = C_{2} + C_{2}$$

Centroid		
point	91	92
\mathcal{N}_{4}	V0+1 = 1	$\sqrt{1^2+1^2} = \sqrt{2}$
Nz	V1+0 = 1	$\sqrt{2^2+0}=2$
Nz	1+1=12	VO+1 = 1
Ny	1+0 = 1	0
,	-	

$$C_1 = \{n_1, n_2\}$$

$$C_2 = \{ \lambda_3, \lambda_u \}$$

Medoid

C1 intra-distances

$$d(n_1, n_2) = \sqrt{2}$$
 $d(n_1, n_3) = \sqrt{2}$ => with n_1 as medoid
the sum of intradistance
 $d(n_2, n_3) = \sqrt{5}$ is minimal

$$y_1 = \lambda_1$$
 } medoids
 $y_2 = \lambda_4$

distance to medoids

point	91 m	ye hy
N_{1}	0	12
Ne	(2)	2
Nz	15	1
\mathcal{N}_{q}	[2	0

Assignments