Analyse 2 SMI-2 TD1 2022-2023

Série 1:

Exercice 1 : Calculer les primitives des fonctions suivantes :

a) $\ln x$ b) $\ln^2 x$ c) $x \ln x$ d) $\frac{x}{\cos^2}$ c) $x^2 e^x$

Exercice 2: Calculer:

a) $\int xe^{x^2}dx$ b) $\int \frac{1}{x(\ln x)^3}dx$ c) $\int \frac{1}{e^x+1}dx$ d) $\int \sin^3 x.\cos^2 x \ dx$

e) $\int_{1}^{e} \frac{1}{x(1+lnx)^{2}} dx$ f) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos^{2}x} dx$ g) $\int_{0}^{\frac{\pi}{2}} \sin 2x \cdot e^{\sin x} dx$.

Exercice 3 : Calculer la limite de la suite:

a) $u_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{\sqrt{n^2 + k^2}}$ b) $v_n = \sum_{k=1}^n \frac{n}{(n+k)^2}$ c) $w_n = \sum_{k=1}^{n-1} \frac{k}{k^2 + n^2}$.

Exercice 4

1) Soit f une fonction réellle continue sur $]0, +\infty[$ qui vérifie $f(x) + f(\frac{1}{x}) = A$, pour tout $x \in]0, +\infty[$, A étant une constante réelle donnée.

En posant $u = \frac{1}{x}$, déterminer $I(a) = \int_{\frac{1}{a}}^{a} (1 + \frac{1}{x^2}) f(x) dx$ en fonction de a et $A, a \ge 1$.

2) En déduire $\int\limits_{\frac{1}{a}}^{a}(1+\frac{1}{x^2})arctan\sqrt{x}\,dx \text{ et } \int\limits_{\frac{1}{a}}^{a}(1+\frac{1}{x^2})(lnx)^7\,dx,\,a\geq 1.$

Exercice 5:

- 1) Calculer la valeur de l'intégrale $I_1 = \int_0^1 \frac{1}{1+x^2} dx$.
- 2) En intégrant I_1 par parties, déterminer la valeur de l'intégrale $I_2 = \int_0^1 \frac{1}{(1+x^2)^2} dx$.
- 3) Retrouver la valeur de I_2 en lui appliquant le changement de variable u = arctanx.

Exercice 6: On considère $I_n(\theta) = \int_0^\theta \frac{1}{(cosx)^n} dx$ où $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ et $n \in \mathbb{N}$.

- 1. a) Calculer $I_0(\theta)$.
 - b) Calculer $I_1(\theta)$ en posant t = sinx.
- 2. En intégrant $I_n(\theta)$ par parties, déterminer $I_{n+2}(\theta)$ en fonction de $I_n(\theta)$.

Exercice 7:

- 1) Calculer $\int_0^\theta \frac{1}{1+\cos^2 x} dx$ pour $\theta \in]0, \frac{\pi}{2}[$ en posant t=tanx.
- 2) En déduire la valeur de $\int_0^{\frac{\pi}{2}} \frac{1}{1+\cos^2 x} dx$.
- 3) Montrer que $\int_{\frac{\pi}{2}}^{\pi} \frac{1}{1+\cos^2 x} dx = \int_0^{\frac{\pi}{2}} \frac{1}{1+\cos^2 x} dx$ et en déduire la valeur de $\int_0^{\pi} \frac{1}{1+\cos^2 x} dx$.
- 4) Calculer $\int_0^{\pi} \frac{x}{1+\cos^2 x} dx$ en posant $u = \pi x$.

Exercice 8: Soit $F(u) = \int_{0}^{u} \frac{1}{2 + \cos x} dx$, $u \in \mathbb{R}$.

- 1) En posant $t = tan \frac{x}{2}$, calculer F(u) pour $u \in]-\pi,\pi[$.
- 2) Calculer $F(-\pi)$ et $F(\pi)$.
- 3) Montrer que pour tout $k \in \mathbb{Z}$: $F(u+2k\pi) = F(u) + F(2k\pi), \forall u \in \mathbb{R}$.

Exercice 9: Calculer les primitives des fonctions suivantes:

a) $\frac{x+1}{(x-1)(x^2-2x+5)}$ b) $\frac{x^2+3x}{(x^2+1)(x+1)^2}$ c) $\frac{x^2+2}{x^3+1}$ d) $\frac{tanx}{1+cosx}$.