

EtherCAT 應用實戰班

主站控制晶片系統架構

傳統的接配線

- 配線複雜度
- 參數設定

EtherCAT接配線

On the Fly

- 資料存取的表現類似過站不停的高鐵
- -火車(Ethernet Frame)不會停止在任一站
- -每個車廂長度可以改變
- -取出或放入資料在各自的車廂內進行

■環型

■樹狀

■星型

EtherCAT Overview

Frame Processing Order on the System

NEXTW CONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE 5

EtherCAT Overview

EtherCAT接線

彈性的結構-可任意地擴展

- 一個Master最高可連接65535個從站。
- 採用標準的乙太網配線

標準EtherCAT配置程序

ESI – EtherCAT Salve Information

Parameters – **Network Topology** Cycle Time Dsitributed Clock (DC) Process Data Objects (PDO) for each slave

ENI – EtherCAT Network Information

Object of CANOpen

- CiA 401 for IO
- CiA 402 for Motion F

* 以安川ΣV驅動器為例

PDO Mapping Objects	Receive PDO Mapping (1600h to 1603h)
	Transmit PDO Mapping (1A00h to 1A03h)

Index	類型				
0x0000 ~ 0x0FFF	設備型態	Manufacturer Specific User Parameter Configuration (270 Position User Unit (2701h)			
0x1000 ~ 0x1FFF	通訊類型	Manufacturer Specific Objects	Velocity User Unit (2701h)		
0x2000 ~ 0x5FFF	製造商定義		Acceleration User Unit (2703h)		
0x6000 ~ 0x9FFF	CANOpen定義				
0xA000 ~ 0xFFFF	保留	Homing Mode	Homing Method (6098h) Homing Speeds (6099h)		
			Homing Speeds (6099h)		

ECM-SK不需配置

- · 僅支援CoE的IO及Drive
- · 各子站長度與內容固定
- 最多支援40子站

CSP(Cyclic Sync Position)

RxPDO Controlword (6040h) Target Position (607Ah)

TxPDO Statusword (6041h) Position Actual Value Torque Actual Value (6077h) Error Code (603Fh)

ECM-SK介紹

- · LED指示燈
- · SPI介面
- GPIO
- CONFIG
 - USB / SPI
 - -Test / Normal
 - -12 / 16 bytes for each slave
 - -FIFO abandon enable / disable

EtherCAT Connector (J2 RJ45)

Reset Button(SW1) GPIO / Config. (J1)

ECM-SK整合測試環境

- USB Connect
- Net Setup
- State Control
- SDO
- Alarm Clear
- Servo Control
- IO Control
- CSC
- Home

State Control

- · Ether CAT總共包含4個State
 - Init
 - PreOP (設定)
 - SafeOP
 - OP (操作)
- State轉換耗時(特別是PreOP->SafeOP)
- · 須確定State切換成功後再繼續操作
- · 指令 SET_STATE(0x01)

SET AXIS

- · 設定各子站類型(Drive或IO,預設為IO)
- ·不同子站類型會有不同的PDO
- 注意連線順序
- ·每個Group可設定8個子站,最多有5個Group
- 可從回傳值得到實際偵測到的子站數量

· 指令 SET_AXIS(0x02)

SET DC

- · 設定EtherCAT的週期時間(預設為1000us)
- ·週期時間單位為us
- · 週期時間對低可設250,代表每250us資料 就會交換一次

• 指令 SET_DC(0x03)

Drive Mode

- · I0沒有此項設定
- CSP Cyclic Synchronous Position (預設)
- CSV Cyclic Synchronous Velocity
- CST Cyclic Synchronous Torque
- DC Snyc 子站使用Dsitributed Clock來同步
- · 指令 DRIVE_MODE(0x06)

DCSYNC 與 Free Run

- · FREE RUN各子站間非同步
 - 各子站根據自己內部時間來處理EtherCAT資料
 - 與主站的週期、其他子站的週期及EtherCAT資料到達時間無關
- · DCSYNC高精度時間同步模式
 - 所有子站與第一個有DC的子站同步
 - 以第一個有DC的子站的時間作為基準時間,再 用此基準時間作為所有子站的參考時間,加上 傳輸延時、抖動等時間誤差產生同步信號

SDO Control

- · Service Data Objects 非週期性資料交換
- 針對子站上的各項參數進行設定或讀取
- · Object定義請參考子站手冊

Index	Sub	Name	Data Type	Access	PDO Mapping	Value	EEPROM
6098h	0	Homing Method	SINT	RW	Yes	0 to 35 (Default: 35)	No

■ Data Description

例 安川 Σ V

Value (Method)	Data Description
0	No homing operation required
1	Homing on the negative limit switch and index pulse
2	Homing on the positive limit switch and index pulse
7 to 14	Homing on the home switch and index pulse
24	Homing on the home switch Same homing as Method 8 (without an index pulse)
28	Homing on the home switch Same homing as Method 12 (without an index pulse)
33, 34	Homing on index pulse
35	Homing on the current position

· 指令 SDO_RD(0x07)、 SDO_WR

Alarm Clear

- · 僅能在OP狀態下使用
- 清除驅動器上的警告
- 部分警告無法清除,請參閱子站說明

Alarm Code	Alarm Name	Meaning	Servomotor Stop Method	Alarm Reset
100h	Overcurrent or Heat Sink Overheated	An overcurrent flowed through the IGBT. Heat sink of the SERVOPACK was overheated.	Gr.1	N/A
300h	Regeneration Error	Regenerative circuit or regenerative resistor is faulty.	Gr.1	Available
320h	Regenerative Overload	Regenerative energy exceeds regenerative resistor capacity.	Gr.2	Available
330h	Main Circuit Power Supply Wiring Error	 Setting of AC input/DC input is incorrect. Power supply wiring is incorrect. 	Gr.1	Available
400h	Overvoltage	Main circuit DC voltage is excessively high.	Gr.1	Available
410h	Undervoltage	Main circuit DC voltage is excessively low.	Gr.2	Available

• 指令 ALM_CLR(0x10)

Servo Control

- 激磁 / 解激磁
- · 僅驅動子站在OP狀態可使用
- · 馬達必須激磁後才會轉(Homing也一樣)

• 指令 SV_ON(0x11)、 SV_OFF(0x12)

IO Slave Control

· 針對IO子站讀取Input狀態及設定Output

· 指令 IO_RD(0x13)、IO_WR(0x14)

Cyclic Synchronous Command

- 每個週期時間各驅動子站的目標
- · 依據先前DRIVE_MODE所設定之模式
- · CSP為絕對位置

• 指令 CSP(0x15)、CSV(0x16)、CST(0x17)

Homing

- ·僅有驅動子站有Homing模式
- 執行歸原點動作前,請先用SDO_WR設定相關參 數

Index	SubIndex	Name	Size	Value	Description
6060h	0	Modes of Operation	1 Byte	6	Homing Mode
6098h	0	Homing Method	1 Byte	0~35	Set Homing Method

- · Homing完成或中止後會回到原本的Drive Mode
- 指令 GO_HOME(0x18) · ABORT_HOME(0x19)

Homing Method

Value (Method)	Data Description		
0	No homing operation required		
1	Homing on the negative limit switch and index pulse		
2	Homing on the positive limit switch and index pulse		
7 to 14	Homing on the home switch and index pulse		
24	Homing on the home switch Same homing as Method 8 (without an index pulse)		
28	Homing on the home switch Same homing as Method 12 (without an index pulse)		
33, 34	Homing on index pulse		
35	Homing on the current position		

EC01M IO

- · ECM01上提供6個Input及6個Output
- ·此IO直接由IC腳位拉出,需自行設計隔離電路
- High \rightarrow 3.3V Low \rightarrow 0V

• 指令 LIO_RD(0x21) · LIO_WR(0x22)

創造自己的控制程序

- Visual Stdio IDE (最新版本2019)
- 提供C++/C#/VB. NET的編輯環境
- 針對個人或小型組織免費
- 專業版定價USD499

動態函式庫

- 動態函式庫
 - NEXTWUSBLib. d11 (C++/C#/VB)
 - NEXTWUSBLib. h + NEXTWUSBLib. lib (C++)
 - NEXTWUSB_dotNET_XXB. dll (C#/VB)
- 基礎函式
 - OpenECMUSB
 - CloseECMUSB
 - ECMUSBWrite
 - ECMUSBRead

控制IO Slave

- Step 1 加入參考
- Step 2 Open USB
- Step 3 Change to OP state
- Step 4 Write Output
- Step 5 Change to Init state
- Step 6 Close USB

控制Drive Slave

- · Step 1 加入參考
- Step 2 Open USB
- Step 3 Change to PreOP state
- Step 4 Set AXIS · Set DC · Set DRIVE Mode
- Step 5 Change to OP state
- Step 6 Servo On
- Step 7 CSP / CSV / CST
- Step 8 Servo Off
- Step 9 Change to Init state
- Step 10 Close USB

練習

- · 同時控制Drive和IO
 - 利用Output的LED顯示目前速度段

加減速規劃

- · 為何要設計加減速?
 - Drive會有最大加速度的限制
 - 過大的加減速會造成機台振動,降低精度
 - 過大加減速易造成馬達損壞或電流過大發熱
- 常見的速度規劃形式
 - 梯型速度規劃
 - 加速段、定速段及減速段
 - S型速度規劃
 - 加速度連續,避免抖動
 - 通常以3次多項式或5次多項式來實現

練習

- 設計一個梯型加減速度
 - Case 1 已知加速度、最高速度、最高速度 持續時間、減速度
 - Case 2 已知加速度、最高速度、減速度、 總距離
 - 提示:依據總距離計算最高速度持續時間