- 1) Disegnare i fasori corrispondenti alle tensioni V_1 , V_2 relative a due bipoli collegati in serie, sapendo che si tratta di tensioni sinusoidali alla stessa frequenza f = 50Hz, con valori efficaci $V_1 = 3V$ e $V_2 = 4V$ e fasi $\phi_1 = 180^\circ$, $\phi_2 = 90^\circ$. Calcolare il valore efficace, il valore massimo e la fase della somma risultante V e scriverne l'espressione analitica in funzione del tempo.
- 2) Disegnare i fasori corrispondenti alle correnti I_1 , I_2 I_3 relative a tre bipoli collegati in parallelo, sapendo che si tratta di correnti sinusoidali alla stessa frequenza f = 100Hz, con valori efficaci $I_1 = 2A$, $I_2 = 5A$ e $I_3 = 4A$ e fasi rispettivamente pari a $\phi_1 = -135^\circ$, $\phi_2 = 30^\circ$ e $\phi_3 = 60^\circ$. Calcolare il valore efficace, il valore massimo e la fase della somma risultante I e scriverne l'espressione analitica in funzione del tempo.
- 3) Calcolare la potenza reattiva Q di un condensatore con reattanza capacitiva $X_C = 25\Omega$, alimentato con una tensione V = 10V. Calcolare inoltre il valore massimo ed il valore efficace della corrente ed indicare la relazione di fase tra corrente e tensione.
- 4) Un bipolo RC serie con $C = 40\mu F$ assorbe la potenza attiva P = 50W e la corrente I = 0.5A. Calcolare la resistenza, le tensioni parziali V_R e V_C , la potenza reattiva e la tensione totale V_R supponendo una frequenza f = 50Hz. Disegnare i fasori delle tensioni.
- 5) Un bipolo RC parallelo, avente $R = 150\Omega$ e $C = 15\mu F$, viene alimentato con una tensione di 15V alla frequenza f = 200Hz. Calcolare la potenza attiva, la potenza reattiva, la corrente nella resistenza, la corrente nella capacità e la corrente totale. Disegnare i fasori delle correnti.
- 6) Un circuito RC serie, alimentato con tensione di 50V, è caratterizzato da una potenza attiva pari a 15W e da una potenza reattiva pari a -12VAR. Calcolare il valore efficace della corrente, la resistenza R e la reattanza capacitiva. Scrivere inoltre le espressioni analitiche delle potenze istantanee associate alla resistenza ed alla capacità.
- 7) Calcolare le potenze P e Q di un circuito RC parallelo avente $R = 10\Omega$ e $C = 100\mu F$, alimentato con una tensione di 10V alla frequenza di 50Hz. Scrivere inoltre le espressioni analitiche delle potenze istantanee associate alla resistenza ed alla capacità.
- 8) Calcolare le potenze P e Q di un circuito RL parallelo avente $R=10\Omega$ ed $L=1\mu H$, alimentato con una tensione di 10V alla frequenza di 50Hz.

- 9) Un circuito RL serie, alimentato con tensione di 50V, è caratterizzato da una potenza attiva pari a 15W e da una potenza reattiva pari a 12VAR. Calcolare il valore efficace della corrente, la resistenza R e la reattanza induttiva. Scrivere inoltre le espressioni analitiche delle potenze istantanee associate alla resistenza ed all'induttanza.
- 10) Un bipolo RLC parallelo assorbe le potenze P = 0.5W, Q_L = 0.8VAR, S = 0.7VA ed è alimentato con tensione V = 15V alla frequenza f = 50Hz.
 Calcolare: R, L, C, le correnti parziali e quella totale. Disegnare il diagramma vettoriale delle correnti ed il triangolo delle potenze.
- 11) Un condensatore, alimentato a 1KHz con tensione V = 10V assorbe la corrente I = 100mA. Calcolare la capacità C, la reattanza capacitiva, la suscettanza capacitiva e la frequenza alla quale la corrente assorbita diventa 500mA.
- 12) Del circuito in figura calcolare: 1) il vettore corrente, 2) il vettore tensione V_C , 3) il vettore tensione V_R , 4) le potenze P Q S. Per la tensione del generatore si ipotizzi $V_{IN} = 10V(valore efficace)$ e fase 0° .

13) Del circuito in figura calcolare: 1) il vettore corrente, 2) il vettore tensione V_L , 3) il vettore tensione V_R , 4) le potenze P Q S. Per la tensione del generatore si ipotizzi $V_{IN} = 10V(valore efficace)$ e fase $+30^{\circ}$.

14) Del circuito in figura calcolare: 1) l'impedenza equivalente, 2) il vettore corrente, 3) le potenze P Q S,
4) la capacità e l'induttanza. Si ipotizzi X_C = 30Ω, X_L = 70Ω, I = 0.8A con fase 0°, f = 100Hz.
Disegnare, sul piano di Gauss, i fasori relativi alla tensione V_{IN} ed alla corrente.

15) Ipotizzando I₁ di modulo 1A e fase 0°, calcolare: 1) l'impedenza Z_{AB} equivalente, 2) il vettore V_{AB}, 3) le potenze P Q S. Disegnare, sul piano di Gauss, i fasori relativi alla tensione V_{AB} ed alla corrente I₁.

16) Del circuito in figura calcolare: 1) il vettore I_1 , 2) le potenze P Q S. Si ipotizzi: $X_L = 60\Omega$, V = 10V con fase 0° , f = 100Hz. Disegnare, sul piano di Gauss, i fasori relativi alla tensione V ed alla corrente I_1 .

17) Del circuito in figura calcolare: 1) l'impedenza Z_{AB} equivalente, 2) la corrente efficace I_1 , 3) le potenze P Q S, 4) la capacità e l'induttanza. Si ipotizzi $X_C = 50\Omega$, $X_L = 60\Omega$, V = 10V con fase 0° , f = 100Hz. Disegnare, sul piano di Gauss, i fasori relativi alla tensione V ed alla corrente I_1 .

18) Del circuito in figura sia data la corrente I_3 di valore efficace 4A e fase 0° ; calcolare: 1) le correnti I_1 ed I_2 , 2) la tensione V_{AB} , 3) le potenze P, Q, S.

Disegnare i fasori relativi a ciascuna tensione e corrente.

19) Calcolare l'impedenza equivalente e l'ammettenza equivalente ai morsetti AB ipotizzando f = 50Hz.

20) Calcolare l'impedenza equivalente e l'ammettenza equivalente ai morsetti AB ipotizzando f = 50Hz.

21) Calcolare i valori efficaci delle correnti in tutti i rami del circuito ipotizzando $P_1 = 20W$, $P_2 = 30W$, $Q_L = 15VAR$, V = 10V. Calcolare la potenza reattiva dell'induttanza.

22) Calcolare i valori efficaci delle correnti in tutti i rami del circuito ipotizzando $P_1 = 70W$, $P_2 = 40W$, $Q_L = 25VAR$, V = 20V e $cos(\Phi_C) = 0.8$. Calcolare la potenza reattiva del solo condensatore.

