

Monitorización y Filtrado

LSI - 2016/2017

José Manuel Vázquez Naya jose@udc.es

Contenido

- Monitorización
 - ☐ Herramientas y utilidades
- Filtrado
 - Conceptos generales
 - Firewalls
 - Tipología
 - Arquitecturas
 - □ IpTables

MONITORIZACIÓN

_

- Análisis de logs y/o ejecución de benchmarks para la identificación de problemas y sus causas
- Parámetros que conviene monitorizar:
 - Utilización de memoria
 - Accesos a disco
 - □ Uso de CPU
 - Actividad de red

м

Herramientas de monitorización

Hardware

- dmesg (diagnostic message, mensajes de diagnóstico): es un comando presente en los sistemas operativos Unix que lista el buffer de mensajes del núcleo.
 - Mensajes generados durante el arranque del sistema y durante la depuración de aplicaciones
 - La salida de dmesg se guarda en /var/log/dmesg
- □ **Ismod**: muestra qué módulos arrancables por el Kernel están cargados actualmente (contenido del archivo /proc/modules)
- □ **Ispci**: muestra información sobre los buses PCI en el sistema y los dispositivos conectados a ellos.
 - **Isusb**: similar, para buses USB y dispositivos

Dependencias

Idd (List Dynamic Dependencies): muestra las bibliotecas compartidas que necesita cada programa o biblioteca compartida especificada en la línea de comandos

 Idconfig: se usa para crear, actualizar y borrar enlaces simbólicos para librerías compartidas, en el archivo /etc/ld.so.conf

- Procesos, archivos abiertos, etc.
 - quota
 - □ ulimit
 - □ ...
- Sistema de ficheros
 - ☐ fsck
 - □ mkfs
 - mount

м

Herramientas de monitorización

- Monitorización de inicios de sesión: paquete acct
 - □ apt-get install acct

Utilidades

□ sa: Resumen de la base de datos de accounting de procesos

□ ac: Estadísticas acerca del tiempo de conexión de los usuarios

□ lastcomm: Información acerca de los últimos comandos ejecutados

who: Lista los usuarios que tienen iniciada una sesión

□ last: Fechas de login y logout

lastb: Fechas de intentos erróneos de login

□ uptime: Tiempo que lleva encendido el sistema

м

Herramientas de monitorización

Monitorización de uso de disco

□ du Muestra la cantidad de disco usado

df Muestra la cantidad de disco libre

free Utilización de dispositivos físicos y swapping

Monitorización de procesos

□ ps Lista procesos

□ top Muestra información en tiempo real de los procesos del sistema

□ atop, htop Similares a top

								lsi@debi	ian: /v	ar/lo	g/sy	stat	
<u>A</u> rchi	vo <u>E</u>	ditar	<u>V</u> er	<u>T</u> e	erminal	Ay <u>u</u> da							
ATOP	- deb:	ian			20	12/11/0	05 13:	43:14		7	5724	second	s elapsed
PRC	sys	69.5	58s	us	ser 49	.97s	#proc	132	#zomb	јe	0	#exit	0
CPU	sys	:	13%	us	ser	2%	irq	0%	idle		85%	wait	0%
CPL	avg1	0	.00	a١	/g5 (0.20	avg15	0.50	CSW	3662	923	intr	4660306
MEM	tot	1	.0G	fr	ree 28	7.9M	cache	481.3M	buff	92	.8M	slab	37.1M
SWP	tot	466	. OM	fr	ree 460	5.0M			vmcor			vmlim	971.1M
DSK			sda	bι	ısy	0%	read	32314	write		900	avio	3 ms
DSK		5	sdb		ısy	0%	read	222	write		0	avio	2 ms
NET	tran		t			5436	tcpo	14945	udpi		282	udpo	1245
NET	netw			ip		3538	ipo	17029	ipfrv		0	deliv	
NET	eth0		0%			3437	pcko	16996	si	3 K	•	S0	0 Kbps
NET	lo				cki	103	pcko	103	si	ØK		S0	0 Kbps
								tivity s					
PID			USR		VGROW	RGRO				EXC S		J CMD	1/14
1175					50336K					- S		≨ Xorg	
3180		24s			83612K					- R		_	-terminal
3111		79s			89056K					- S		6 gnome	. '
3109		32s			74484K					- S		metac	
144		57s	0.0		0K	-700l				- S		ata/0	
1875		39s	0.0		5776K	700				- S		6 VBoxS	
1454		35s	1.8		6828K	1064				- S		kerne	
3116		57s	0.0		5092K	776ł				- S			s-daemon
156 3117		56s 68s	0.0		0K	23584F	K 0 K 22384			- S - S		scsi_ nauti	_
311/	0.	005	1.0	005	113.41	23364	22304	401	111-	- 5	0	o Hauti	tus

atop

Monitorización de red

□ iftop Muestra conexiones de red

□ iptraf Proporciona estadísticas de red

□ vnstat Monitoriza tráfico de red y almacena log

				lsi@debian: /var,	/log/sysstat				X
<u>A</u> rchivo <u>E</u> ditar	<u>∨</u> er <u>T</u> e	rminal Ay	<u>/u</u> da						
I		195Kb		391Kb	586Kb		781Kb		977Kb
debian.local				=> mad01s09-in	-f23.1e100.net	7	0b	9.84Kb	3.07Kb
				<=			0b	196Kb	61.3Kb
debian.local				=> mail.udc.es			0b	7.80Kb	4.12Kb
				<=			Ob	83.7Kb	80.3Kb
debian.local				=> mad01s09-in	-f15.1e100.net		Ob	1.72Kb	549b
				<=			Ob	27.4Kb	8.56Kb
<u>de</u> bian.local				=> zipi.udc.es			0b	2.37Kb	848b
				<=			0b	10.1Kb	3.49Kb
debian.local				=> mad01s09-in	-f17.1e100.net		0b	1.94Kb	622b
				<=			0b	2.34Kb	749b
debian.local				=> englund.deb	ian.org		160b	32b	374b
				<=			160b	32b	2.77Kb
debian.local				=> 224.0.0.251			0b	0b	92b
				<=			Ob	Ob	0b
TX:	cumm:	38.5KB	peak:	72.3Kb		rates:	160b	23.7Kb	9.63Kb
RX:	0.3111111	629KB	500111	1.15Mb		. 3.000.	160b	320Kb	157Kb
TOTAL:		667KB		1.22Mb			320b	343Kb	167Kb

iftop

- Paquete sysstat (System Statistics)
 - ☐ Contiene múltiples herramientas de monitorización
 - apt-get install sysstat
 - Habilitar en /etc/default/sysstat
 - mpstat

```
Linux 2.6.32-5-686 (debian)
                              05/11/12
                                       i686
                                                   (1 CPU)
11:20:43
                %usr %nice %sys %iowait %irq %soft %steal
                                                              %guest
                                                                      %idle
          all
                     0,06 13,17 0,18
                                           0,00 0,00
                                                                0,00
11:20:43
                 0,03
                                                          0,00
                                                                      86,55
```

iostat

```
avg-cpu: %user %nice %system %iowait %steal %idle
              0,06 13,17 0,18 0,00 86,56
          0,03
                 tps Blk read/s Blk wrtn/s Blk read
                                                         Blk wrtn
Device:
                0,53
                       - <sub>10,54</sub>
                                                7\overline{0}8350
sda
                                     - 6,78
                0,00
                           0,02
                                         0,00
                                                  1122
sdb
```

pidstat

w

- Paquete sysstat (System Statistics)
 - □ sar (System Activity Reporter)
 - -A Muestra información completa (todas las opciones)
 - -b Estadísticas Entrada/Salida
 - -B Estadísticas paginación
 - -c Número de procesos / seg
 - -d Estadísticas Entrada/Salida para cada dispositivo de bloques
 - -m Estadísticas gestión de energía
 - -n Estadísticas de red
 - -r Uso de memoria
 - -S Estadísticas de uso de swapping
 - -u Uso de CPU
 - **...**

- Paquete sysstat (System Statistics)
 - □ sar (System Activity Reporter)

```
root@debian:/var/log# sar -u 2 1
                                    05/11/12
Linux 2.6.32-5-686 (debian)
                                                i686
                                                             (1 CPU)
                                          %system
11:43:15
                                  %nice
                                                     %iowait
                                                                %steal
                                                                           %idle
                        %user
11:43:17
                all
                         0,50
                                   0,00
                                              0,50
                                                        0,00
                                                                  0,00
                                                                           99,00
Media:
                all
                         0,50
                                   0,00
                                              0,50
                                                        0,00
                                                                  0,00
                                                                           99,00
root@debian:/var/log# sar -r 1 1
Linux 2.6.32-5-686 (debian)
                                    05/11/12
                                                i686
                                                             (1 CPU)
11:46:15
                                %memused kbbuffers kbcached kbcommit
            kbmemfree kbmemused
                                                                           %commit
11:46:16
                                    63,84
               374096
                         660376
                                               87484
                                                        425256
                                                                  364604
                                                                             24,12
Media:
               374096
                         660376
                                    63,84
                                               87484
                                                        425256
                                                                  364604
                                                                             24,12
root@debian:/var/log# sar -m 1 1
Linux 2.6.32-5-686 (debian)
                                    05/11/12
                                                i686
                                                             (1 CPU)
11:46:46
                          MHz
11:46:47
                all
                      2671,70
Media:
                all
                      2671,70
```


- Paquete sysstat (System Statistics)
 - □ isag (Interactive System Activity Grapher)
 - /var/log/sysstat/sa[n]

- Monitorización
- Chequeos de integridad
 - □ sxid
 - Chequea que no se produzcan cambios en los atributos suid, sgid
 - □ /etc/sxid.conf
 - TripWire
 - Chequea que no se produzcan cambios en los archivos del sistema
 - □ Cambios de propietario, tamaño, permisos, contenido, etc.
 - □ /etc/tripwire/twpol.txt
 - Configuración y estado actual archivos se cifran con un par de claves
 - □ Site key
 - Local key
 - □ ViperDB

- ... herramientas vistas hasta el momento están pensadas para una máquina local
- ¿Qué pasa en entornos mayores?
 - Uso de herramientas centralizadas de monitorización
 - nagios, ntop, Zabbix, ...
 - Comparación de sistemas de monitorización de redes

En resumen...

Información Información Información

Información

Información Información Información

rmación Información

Información Información Información

Información

Información
Información

Información

FILTRADO

Introducción

Seguridad perimetral

- Arquitectura y elementos de red que proporcionan seguridad a una red interna frente a una red externa (generalmente Internet)
- Los firewalls son el principal "vigilante" de la entrada a un equipo a través de la red

- Un firewall (cortafuegos) es cualquier mecanismo, ya sea software o hardware, que filtra el tráfico entre redes
 - Separan zonas de confianza (trusted zones) de zonas potencialmente hostiles (untrusted zones)
 - Analizan, registran y pueden bloquear el tráfico
 - □ Deniegan intentos de conexión no autorizados (en ambos sentidos)
 - Se utilizan principalmente para prevenir ataques desde el exterior hacia equipos de una red interna
 - También utilizados para controlar el uso de la red por parte de los equipos internos
 - □ Pueden actuar en distintas capas del modelo TCP/IP

Introducción

Firewalls

 Escenario básico en el que un firewall controla el acceso de los clientes en una red externa (no fiable) a servidores en una red interna (fiable)

- El tráfico es autorizado o denegado dependiendo de la política de seguridad implementada en el firewall
- Cada dominio de confianza puede incluir una o varias redes

- Idealmente, un firewall debe tener las siguientes características:
 - Todo tráfico de "dentro a fuera" (saliente) y de "fuera a dentro" (entrante) debe pasar a través del firewall
 - Sólo aquel tráfico autorizado, según la política de seguridad (reglas), puede continuar su camino
 - El firewall debe ser completamente inatacable
- Ningún firewall cumple estos requisitos al 100%, pero todos tratan de acercarse a ellos

- Ventajas
 - □ Primera línea de defensa frente a ataques
 - Mantienen a usuarios no autorizados fuera de la red protegida
 - Prohíben el uso de servicios potencialmente vulnerables (e.g. telnet, SMTP, etc.)
 - Permiten la salida desde el interior
 - Punto único para implantar una política de seguridad
 - □ Punto único para realizar análisis y monitorización del tráfico
 - Registro de accesos, intentos de intrusión, gestión de alarmas de seguridad, auditorías, etc.

- Limitaciones
 - No protegen contra ataques que no pasen por el firewall
 - Desde red interna a red interna
 - □ Ej.: Amenazas internas: usuarios negligentes o malintencionados, wifi mal protegida, virus en memorias USB, etc.

- Desde red externa a red interna sin pasar por el firewall
 - ☐ Ej.: Conexiones wifi, móviles, módems, etc.

Introducción

Firewalls

 El uso de un firewall debe ser siempre parte de una política de seguridad global

¡De nada sirve tener una puerta blindada si dejo las ventanas abiertas!

TIPOS DE FIREWALLS

- ☐ Filtrado estático o sin estado (*stateless*)
- ☐ Filtrado dinámico o con estado (stateful)

Filtrado a nivel de aplicación

1

Tipos de firewalls

Filtrado de paquetes

- Router de filtrado de paquetes
 - Aplica un conjunto de reglas a cada paquete IP y retransmite o descarta dicho paquete
 - Normalmente, se configura para filtrar paquetes que van en ambas direcciones (desde y hacia red interna)

- **Filtrado de paquetes** (packet filtering)
 - ☐ Filtrado estático o sin estado (*stateless*)

- ☐ Filtrado dinámico o con estado (stateful)
- Filtrado a nivel de aplicación

1

Tipos de firewalls

Filtrado estático de paquetes (stateless)

- Generalmente operan en las capas3 (red) y 4 (transporte)
- Las reglas de filtrado se basan en información contenida en el paquete de red
 - □ **Direcciones IP** de origen y destino (ej.: 192.168.1.1)
 - Números de puerto de origen y destino (ej.: 23, 80, etc.)
 - ☐ **Tipo de tráfico** (TCP, UDP, ICMP)

Filtrado estático de paquetes (stateless)

- No almacenan información del contexto
 - ☐ Se decide acerca de cada paquete individualmente
- Se configuran como una lista de reglas basadas en correspondencias con los campos de la cabecera IP o TCP
 - ☐ Si hay una correspondencia en una de las reglas, se realiza la acción asociada (aceptar, retransmitir, descartar, ...)
 - Si no hay correspondencia, se realiza una acción predeterminada:
 - Descartar por defecto (política restrictiva)
 - □ Todo lo que no está expresamente permitido está prohibido
 - Más seguridad, mayor "molestia" para los usuarios finales
 - Aceptar por defecto (política permisiva)
 - □ Todo lo que no está expresamente prohibido está permitido
 - ☐ Más comodidad, escasa seguridad. El administrador debe reaccionar ante nuevas amenazas a medida que se van descubriendo

Filtrado estático de paquetes (stateless)

Ejemplos de aplicación de reglas en el siguiente escenario:

PC-1 debe disponer de acceso a Internet

Filtrado estático de paquetes (stateless)

Debe poder accederse al Servidor Web desde cualquier equipo de Internet, excepto PC-A

¿Estas reglas son suficientes?

acción	origen	puerto	destino	puerto
bloquear	84.132.58.21	*	*	*
permitir	*	*	193.147.41.100	80
bloquear	*	*	*	*

Filtrado estático de paquetes (stateless)

Intento de acceso al Servidor Web IP DST P_SRC IP_SRC P_DST Atraviesa PC-A el firewall 84.132.58.21 81.97.121.8 193.147.41.100 2222 80 Interfaz-1 Interfaz-2 193.147.40.1 193.147.41.1 Debe poder accederse al LAN Servidor Web desde cualquier equipo de Internet, excepto PC-A Filtro de paquetes PC-1 Servidor Web 193.147.41.20 193.147.41.100

acción	origen	puerto	destino	puerto
bloquear	84.132.58.21	*	*	*
permitir	*	*	193.147.41.100	80
bloquear	*	*	*	*

acción	origen	puerto	destino	puerto
bloquear	84.132.58.21	*	*	*
permitir	*	*	193.147.41.100	80
bloquear	*	*	*	*

- ¿Cómo lo solucionamos?
 - □ Nueva regla para permitir paquetes procedentes del Servidor Web, con puerto de origen 80 y puerto de destino superior a 1023

acción	origen	puerto	destino	puerto
bloquear	84.132.58.21	*	*	*
permitir	*	*	193.147.41.100	80
permitir	193.147.41.100	80	*	>1023
bloquear	*	*	*	*

Filtrado estático de paquetes (stateless)

Debe poder accederse al Servidor Web desde cualquier equipo de Internet, excepto PC-A

PC-1 debe disponer de acceso a Internet

acción	origen	puerto	destino	puerto
bloquear	84.132.58.21	*	*	*
permitir	*	*	193.147.41.100	80
permitir	193.147.41.100	80	*	>1023
bloquear	*	*	*	*

Filtrado estático de paquetes (stateless)

Debe poder accederse al Servidor Web desde cualquier equipo de Internet, excepto PC-A

PC-1 debe disponer de acceso a Internet

acción	origen	puerto	destino	puerto
bloquear	84.132.58.21	*	*	*
permitir	*	*	193.147.41.100	80
permitir	193.147.41.100	80	*	>1023
permitir	193.147.41.20	*	*	80
bloquear	*	*	*	*

Filtrado estático de paquetes (stateless)

Debe poder accederse al Servidor Web desde cualquier equipo de Internet, excepto PC-A

PC-1 debe disponer de acceso a Internet

bloquear

acción	origen	puerto	destino	puerto
bloquear	84.132.58.21	*	*	*
permitir	*	*	193.147.41.100	80
permitir	193.147.41.100	80	*	>1023
permitir	193.147.41.20	*	*	80
permitir	*	80	193.147.41.20	>1023

Filtrado estático de paquetes (stateless)

Debe poder accederse al Servidor Web desde cualquier equipo de Internet, excepto PC-A

PC-1 debe disponer de acceso a Internet

Problema

Filtro de

paquetes

Intento de ataque (paquete manipulado)

IP_SRC IP_DST		P_SRC	P_DST
130.206.192.24	193.147.41.20	80	3333

Atraviesa el firewall

Servidor Web 193.147.41.100

Interfaz-2

193.147.41.1

PC-1 193.147.41.20

LAN

					100.147.41.100
	acción	origen	puerto	destino	puerto
	bloquear	84.132.58.21	*	*	*
	permitir	*	*	193.147.41.100	80
	permitir	193.147.41.100	80	*	>1023
	permitir	193.147.41.20	*	*	80
>	permitir	*	80	193.147.41.20	>1023
AD	bloquear	*	*	*	*

- Problema: no podemos distinguir una respuesta legítima de un intento de ataque
- ¿Cómo podemos solucionarlo?
 - □ Beneficiándonos de los indicadores proporcionados por las conexiones
 TCP, podemos diferenciar entre paquetes que inician una conexión (SYN, !ACK) y paquetes que pertenecen a una conexión ya establecida (ACK)
 - Indicador ACK: una vez que se ha establecido una conexión, se activa el indicador ACK del segmento TCP para reconocer los segmentos enviados desde el otro lado
 - Aceptar paquetes procedentes del puerto 80 de cualquier equipo, originados como respuesta a alguna llamada

acción	origen	puerto	destino	puerto	Indicador
permitir	*	80	193.147.41.20	*	ACK

acción	origen	puerto	destino	puerto	Indicador
permitir	193.147.41.20	*	*	80	
permitir	*	80	193.147.41.20	*	ACK

acción	origen	puerto	destino	puerto	Indicador
permitir	193.147.41.20	*	*	80	
permitir	*	80	193.147.41.20	*	ACK

acción	origen	puerto	destino	puerto	Indicador
permitir	193.147.41.20	*	*	80	
permitir	*	80	193.147.41.20	*	ACK

Filtrado estático de paquetes (stateless)

Problema: El indicador ACK también se puede manipular

acción	origen	puerto	destino	puerto	Indicador
permitir	193.147.41.20	*	*	80	
permitir	*	80	193.147.41.20	*	ACK

М

Tipos de firewalls

- Los firewalls de filtrado estático de paquetes deciden sobre cada paquete individualmente, no tienen en cuenta información del contexto en el que se envía el paquete
 - No podemos distinguir entre una respuesta legítima y un ataque
- Continuamos teniendo el mismo problema, podemos recibir ataques mediante paquetes manipulados
- Solución:
 - □ El firewall debe conocer el estado de la conexión

- **Filtrado de paquetes** (packet filtering)
 - ☐ Filtrado estático o sin estado (*stateless*)
 - ☐ Filtrado dinámico o con estado (stateful)

Filtrado a nivel de aplicación

Ŋ

Tipos de firewalls

Filtrado dinámico de paquetes (stateful)

- También llamados firewalls de inspección de estado o con estado
- Los paquetes se analizan dentro de un contexto
- Mantienen una tabla con el estado de las conexiones activas
 - Una entrada por cada conexión actualmente establecida
 - Se permitirá el tráfico para aquellos paquetes que encajan en el perfil de alguna de las conexiones establecidas

Filtrado dinámico de paquetes (stateful)

 Ejemplo de tabla de estado de conexiones de un firewall de filtrado dinámico

Source Address	Source Port	Destination Address	Destination Port	Connection State
192.168.1.100	1030	210.22.88.29	80	Established
192.168.1.102	1031	216.32.42.123	80	Established
192.168.1.101	1033	173.66.32.122	25	Established
192.168.1.106	1035	177.231.32.12	79	Established
223.43.21.231	1990	192.168.1.6	80	Established
2122.22.123.32	2112	192.168.1.6	80	Established
210.922.212.18	3321	192.168.1.6	80	Established
24.102.32.23	1025	192.168.1.6	80	Established
223.21.22.12	1046	192.168.1.6	80	Established

Filtrado dinámico de paquetes (stateful)

 Problema anterior: Paquete manipulado que no ha sido originado a raíz de una llamada desde nuestra red

Filtrado dinámico de paquetes (stateful)

Reglas

acción	origen	puerto	destino	puerto
permitir	193.147.41.20	*	*	80

Filtrado dinámico de paquetes (stateful)

Se guarda el estado de la conexión

puerto

80

destino

130.206.192.24

Tabla de estado de conexiones

puerto

3333

origen

193.147.41.20

PC-1 debe disponer de acceso a Internet

Acceso a Servidor Web externo

IP_SRC IP_DST		P_SRC	P_DST
193.147.41.20	130.206.192.24	3333	80

Reglas

acción	origen	puerto	destino	puerto
permitir	193.147.41.20	*	*	80

Filtrado dinámico de paquetes (stateful)

Interfaz-1

193.147.40.1

Filtro de paquetes

Se trata de una respuesta a una conexión activa

Interfaz-2

193.147.41.1

Respuesta del servidor

IP_SRC	IP_DST	P_SRC	P_DST
130.206.192.24	193.147.41.20	80	3333

Reglas

acción	origen	puerto	destino	puerto
permitir	193.147.41.20	*	*	80

Filtrado dinámico de paquetes (stateful)

Solución al escenario con un firewall de filtrado dinámico de paquetes

Debe poder accederse al Servidor Web desde cualquier equipo de Internet, excepto PC-A

PC-1 debe disponer de acceso a Internet

El firewall deberá bloquear cualquier otro intento de conexión

acción	origen	puerto	destino	puerto
bloquear	84.132.58.21	*	*	*
permitir	*	*	193.147.41.100	80
permitir	193.147.41.20	*	*	80
bloquear	*	*	*	*

.

Tipos de firewalls

Filtrado estático (stateless) vs filtrado dinámico (stateful)

- Filtrado estático
 - Más rápidos que el filtrado dinámico
 - ☐ Mejor funcionamiento en entornos con mucho tráfico
 - Más vulnerables a ataques de seguridad
 - Ejemplos: ipchains (Linux), firewall de Windows XP SP2
- Filtrado dinámico
 - Más seguros
 - □ Más lentos en entornos con mucho tráfico y pocos recursos hardware
 - □ Ejemplos: iptables (Linux), firewalls personales (ej.: Zone Alarm, Norton Personal Firewall, etc.)

М

Tipos de firewalls

- Ventajas de los firewalls de filtrado de paquetes
 - Generalmente, bajo coste
 - Cualquier router suele incorporar un firewall de filtrado de paquetes
 - ☐ Bajo impacto en el rendimiento de la red
 - El filtrado estático es más rápido que el dinámico
 - Útiles para realizar un control general de una red, reduciendo el tráfico dirigido hacia la red interna
 - Adecuadamente configurados, proporcionan protección contra algunos ataques que se aprovechan de vulnerabilidades de TCP/IP (ej.: ciertos casos de IP spoofing)

Filtrado de paquetes

- Limitaciones de los firewalls de filtrado de paquetes
 - 1. Problemas para gestionar protocolos como el "FTP Activo":

Funcionamiento del FTP Activo

- El cliente se conecta desde un puerto aleatorio no privilegiado (>1024) al puerto de control del servidor (21)
- Cuando el cliente desea iniciar una transmisión de datos, envía un comando PORT al servidor, indicando el puerto en el que permanecerá a la escucha para recibir datos
- El servidor envía los datos desde el puerto 20 al puerto indicado por el cliente

- Limitaciones de los firewalls de filtrado de paquetes
 - 1. Problemas para gestionar protocolos como el "FTP Activo":

- Limitaciones de los firewalls de filtrado de paquetes
 - 1. Problemas para gestionar protocolos como el "FTP Activo":

- Limitaciones de los firewalls de filtrado de paquetes
 - 1. Problemas para gestionar protocolos como el "FTP Activo":

- Limitaciones de los firewalls de filtrado de paquetes
 - 1. Problemas para gestionar protocolos como el "FTP Activo":

Filtrado de paquetes

- Limitaciones de los firewalls de filtrado de paquetes
 - 1. Problemas para gestionar protocolos como el "FTP Activo":
 - No se puede gestionar de forma óptima con firewalls de filtrado de paquetes
 - Necesario control a nivel de aplicación

NOTA: Si el firewall del cliente bloquea el FTP Activo, posiblemente el servidor active el FTP Pasivo (si dispone de él y si el firewall del servidor lo permite)

- □ FTP Pasivo: Ambas conexiones (control y datos) se inician desde el cliente (al 21 y a un puerto aleatorio)
- Menos seguro para el servidor

- Limitaciones de los firewalls de filtrado de paquetes
 - 2. No admiten esquemas de autenticación avanzada de usuarios
 - el control se limita a IP
 - No pueden evitar ataques que se aprovechan de vulnerabilidades a nivel de aplicación
 - Si el firewall permite una aplicación, todas las funciones de la misma estarán permitidas
 - Ejemplo: explotación de vulnerabilidades
 - ☐ Aplicación Web vulnerable a SQL Injection
 - http://www.mydomain.com/products/products.asp?productid= 123; DROP TABLE Products

- **Filtrado de paquetes** (packet filtering)
 - ☐ Filtrado estático o sin estado (*stateless*)
 - ☐ Filtrado dinámico o con estado (stateful)
- Filtrado a nivel de aplicación

r,

Tipos de firewalls Filtrado a nivel de aplicación

- Capaces de interpretar paquetes a nivel de aplicación
 - Mayor capacidad de análisis y de control de tráfico
 - Más complejos, pues deben conocer el funcionamiento de aplicaciones específicas (ej.: FTP, HTTP, SMTP, TELNET, etc.)
 - Suelen combinarse con filtrado de paquetes

Filtrado a nivel de aplicación

Ejemplo: FTP Activo

Filtrado a nivel de aplicación

- Ventajas
 - Mejor control de conexiones para ciertos protocolos
 - Permiten gestionar conexiones relacionadas (ej.: FTP)
 - □ Identificación de ataques a nivel de aplicación
 - Detección de software malicioso (virus, *malware*, etc.) y de ciertos patrones de ataque (ej.: SQL Injection, buffer overflow, etc.)
 - Filtrado de contenidos (*spam*, URLs prohibidas, etc.)
 - ☐ Mayor capacidad de *logging*
 - Al analizar el tráfico en más detalle, también se puede registrar en más detalle (ej: directorio FTP, URL, etc.)

М

Tipos de firewalls

Filtrado a nivel de aplicación

- Limitaciones
 - Menor rendimiento
 - Debe analizarse el contenido del paquete
 - ☐ Restringidos a un conjunto de protocolos
 - Generalmente HTTP, FTP, TELNET, SMTP, etc.
 - Problemas con protocolos recientes o propietarios
 - ☐ Siguen sin resolver el problema de la autenticación a nivel de usuario

ARQUITECTURAS DE FIREWALLS

Arquitecturas de firewalls

- Además de las configuraciones simples vistas hasta el momento, son posibles configuraciones más complejas
- Aspectos importantes:
 - Nº de firewalls a utilizar
 - □ Tipo de firewalls
 - Ubicación en la red
- Examinaremos las arquitecturas más habituales

Escenario básico

Escenario básico de uso de un firewall

Escenario básico

Escenario básico de uso de un firewall

¿Dónde situar un Servidor Web?

Escenario básico

Escenario básico de uso de un firewall

Opción 1: Servidor completamente expuesto a ataques

Arquitecturas de firewalls Escenario básico

Escenario básico de uso de un firewall

Opción 2: Servidor en red interna

Escenario básico

Escenario básico de uso de un firewall

Opción 2: Servidor en red interna

- Solución: DMZ (DeMilitarized Zone, zona desmilitarizada)
 - Suele utilizarse para ubicar servidores de acceso público, sin comprometer la seguridad de la red interna

☐ Si un atacante supera el firewall externo adquiere acceso a la DMZ, pero no a la red interna

- Solución: DMZ (DeMilitarized Zone, zona desmilitarizada)
 - Suele utilizarse para ubicar servidores de acceso público, sin comprometer la seguridad de la red interna

☐ Si un atacante supera el firewall externo adquiere acceso a la DMZ, pero no a la red interna

Arquitecturas de firewalls Doble DMZ

- Se utilizan dos DMZs
 - DMZ externa: servidores de acceso público
 - DMZ interna: servidores internos
 - Protegidos de ataques desde red externa y desde equipos internos

IPTABLES

'n,

- Firewall de filtrado de paquetes integrado en el kernel de Linux
 - Stateful
 - ☐ Con algunas funciones de firewall de aplicación
- Usa chains o cadenas para controlar distintos flujos de tráfico: entrada, salida, entrada desde la red local, etc.
- Permite establecer reglas en base a parámetros de un paquete (como la dirección IP origen/destino, el puerto origen/destino, el protocolo, etc.) y lo que hay que hacer con ese paquete (aceptarlo, rechazarlo, generar una respuesta, modificarlo, etc.)
- Las cadenas se agrupan en tablas

- Es posible añadir módulos que incrementan la funcionalidad (log, estadísticas, etc.)
- Soporta distintos protocolos (TCP, UDP, ICMP, etc)
- Soporta interfaces de origen/destino de paquetes (eth0, eth1, etc.)
- Muy estable, rápido y seguro

- Tablas
 - Las tablas contienen cadenas, que son listas de reglas
 - ☐ Se referencian con la opción -t tabla
 - Existen 5 tablas:
 - filter: filtrado de paquetes (tabla por defecto)
 - nat: traducción de direcciones de red
 - mangle: modificación paquetes (TOS, TTL, mark)
 - raw: configura excepciones en el seguimiento de los paquetes de las conexiones
 - security: Permite a módulos de seguridad de Linux (SELinux) implementar reglas de filtrado

×

iptables

Cadenas (chains)

- Agrupan un tipo de tráfico
- □ Existen dos tipos:
 - Definidas por iptables. Por ejemplo, la tabla filter tiene definidas las cadenas:
 - INPUT: tráfico con destino la propia máquina
 - OUTPUT: tráfico generado en la propia máquina
 - □ FORWARD: tráfico que llega a la máquina, pero no es su destino final
 - Definidas por el usuario. Por ejemplo:
 - Tráfico de entrada desde máquinas de la red local
 - Tráfico http procedente de cualquier máquina
 - ...

- Funcionamiento (para la tabla filter)
 - Cuando un paquete llega (eg. Tarjeta Ethernet) el kernel analiza el destino del paquete.
 - Si el paquete tiene como destino la propia máquina, el paquete se envía a la cadena INPUT. Si consigue pasar por esta cadena, entonces la máquina recibe el paquete
 - Si el paquete tiene como destino otra máquina:
 - □ Si el kernel soporta *forwarding*: el paquete se envía a la cadena **FORWARD**. Si consigue pasar por esta cadena, el paquete será reenviado
 - □ Sino (o no sabe como redireccionarlo): el paquete se descarta

in to lal a

- Funcionamiento (para la tabla filter)
 - Un programa ejecutándose la misma máquina en la que se está ejecutando el firewall puede enviar paquetes
 - Esos paquetes se envían a la cadena OUTPUT
 - ☐ Si consiguen pasar por esta cadena, continúan su camino, en caso contrario, se descartan

Reglas

- □ Las reglas son como comandos que se le pasan a iptables para que realice una determinada acción (como bloquear o dejar pasar un paquete) basándose en parámetros como la dirección IP origen/destino, el puerto origen/destino, el protocolo, etc.
- □ Cada regla dice: "si la cabecera del paquete coincide con esto, aquí está lo que se debe hacer con el paquete"
- ☐ Si el paquete no encaja en la regla, se pasa a la siguiente regla. Si se agotan todas las reglas, se aplica la política por defecto de la cadena (ACEPTAR/DENEGAR)
- □ Se procesan en orden
 - Si no se especifica otra cosa, en el orden en el que fueron insertadas
- ☐ Se aplican sobre una cadena

Reglas

☐ Ejemplo:

```
iptables -t filter -A INPUT -s 10.10.102.9 -j DROP
```

 añade (-A) una nueva de regla de filtrado de paquetes (tabla filter) que rechaza (DROP) cualquier paquete que entra en la máquina (cadena INPUT) procedente de un ip origen (-s) concreta (en este caso la 10.10.102.9)

Option	Description
-s address	Specifies the source address of packets for a rule.
-d address	Specifies the destination address of packets for a rule.
-sport port#	Specifies the source port number for a rule.
-dport port#	Specifies the destination port number for a rule.
-p protocol	Specifies the protocol type for a rule.
-i interface	Specifies the input network interface.
-o interface	Specifies the output network interface.
-j action	Specifies the action that is taken for a rule.
-m match	Specifies a match parameter that should be used within the rule. The most common match used is state, which creates a stateful packet filtering firewall.
-A chain	Specifies the chain used.
-L chain	Lists rules for a certain chain. If no chain is given, all chains are listed.
-P policy	Specifies the default policy for a certain chain type.
-D number	Deletes a rule for a chain specified by additional arguments. Rules start at number 1.
-R number	Replaces a rule for a chain specified by additional arguments. Rules start at number 1.
-F chain	Removes all rules for a certain chain. If no chain is specified, it removes all rules for all chains.

Más ejemplos...

Más ejemplos...

```
#Permitir conexiones entrantes al servidor ssh
user@debian:~# iptables -A INPUT -p tcp --dport ssh -j ACCEPT
user@debian:~# iptables -L
Chain INPUT (policy ACCEPT)
                                       destination
target prot opt source
ACCEPT tcp -- anywhere
                                                           tcp dpt:ssh
                                       anywhere
Chain FORWARD (policy ACCEPT)
                                       destination
target
          prot opt source
Chain OUTPUT (policy ACCEPT)
          prot opt source
                                       destination
target
```


Más ejemplos...

```
# Funcionalidad de FW de aplicación:
# Permitimos conexiones establecidas o relacionadas
user@debian:~# iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT
```


.

- Las reglas de iptables NO son persistentes
- Para guardarlas

```
#Guardar las reglas en un archivo
iptables-save -c > /etc/iptables.rules
```

Para cargarlas

```
#Restaurar las reglas a partir de un archivo iptables-restore < /etc/iptables.rules
```

□ Se puede automatizar, añadiendo un script en /etc/network/if-pre-up.d

```
#!/bin/sh
iptables-restore < /etc/iptables.rules
exit 0</pre>
```


Es buena idea crear un script en el que vayamos insertando las reglas

```
# Limpiar reglas existentes
iptables -F
# Añadir nuevas reglas
# Aceptar trafico por la interfaz de loopback
iptables -A INPUT -i lo -j ACCEPT
# Acceso desde otra MV por ssh
iptables -A INPUT -p tcp -s 10.10.102.139 --dport 22 -j ACCEPT
# Acceso desde otra MV al servidor de rsyslog
iptables -A INPUT -p tcp -s 10.10.102.139 --dport 514 -j ACCEPT
# Acepta trafico de entrada de conexiones previamente establecidas y relacionadas
iptables -A INPUT -m conntrack --ctstate ESTABLISHED, RELATED -j ACCEPT
# Listar reglas en formato detallado (-v)
iptables -L -v
# Guardar las reglas
iptables-save -c > /etc/iptables.rules
```


۲

- Política por defecto
 - ☐ Si un paquete pasa por todas las reglas y no encaja con ninguna, se le aplica la política por defecto para esa cadena (INPUT, OUTPUT o FORWARD)
 - □ La política por defecto se puede cambiar con la opción -P (si no se indica lo contrario, es ACCEPT)

```
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT
```


Política por defecto

```
# Establecer política por defecto
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT

# Limpiar reglas existentes
<...>

# Añadir nuevas reglas
<...>

# Listar reglas en formato detallado (-v)
<...>

# Guardar las reglas
<...>
```


- Política por defecto
 - Si se activan políticas por defecto restrictivas, hay que tener cuidado con borrar las reglas
 - □ El borrado de las reglas no modifica las políticas

Desactivar firewall

```
# Restaurar políticas por defecto
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT

# Limpiar reglas existentes
iptables -F
```


м

- ¿y el tráfico IPv6?
 - □ ip6tables

Port knocking

- Consiste en enviar una secuencia de paquetes a un sistema que abra un puerto que anteriormente estaba cerrado
- Puede ser interesante como complemento a una política de seguridad

M

Bibliografía recomendada

- W. Stallings, Fundamentos de seguridad en redes: aplicaciones y estándares. Pearson Educación, 2003.
- W. R. Cheswick, et al., *Firewalls and Internet security: repelling the wily hacker*. Addison-Wesley Professional, 2003.
- W. J. Noonan & I. Dubrawsky. Firewall fundamentals. Cisco Press, 2006.