COL352 Lecture 26

Contents

1	Recap	1
2	Definitions	1
3	Content	1
4	Closure properties	1

1 Recap

Started closure properties last time.

2 Definitions

Definition 1

A language L is said to be co-Turing recognizable if its complement is Turing recognizable.

3 Content

4 Closure properties

Decidable languages The class of decidable languages is closed under $\cap, \cup, \cdot, *$ and complementation.

- 1. \cap copy x to tape 2, simulate M_1 on tape 1, M_2 on tape 2, and if both accept x, accept x else reject x.
- 2. \cup similar.
- 3. · construct 2-tape NTM for $L_1 \cdot L_2$: Non-deterministically cut a suffix of x from tape 1, and paste on tape 2, and then simulate both.
- 4. * while $x \neq \epsilon$: non-deterministically cut a nonempty prefix of x from tape 1, and paste on tape 2, simulate M on tape 2, and if M rejects its input, then reject x. After the while loop is over, accept x.
- 5. complementation swap q_{acc}, q_{rej} in the DTM (not the NTM).

Turing-recognizable languages The class of Turing recognizable languages is closed under \cap , \cup , \cdot , * – same constructions in case of decidable languages, just take care of the possibility of non-terminating runs in the proof (just stay positive and think the iff version instead of arguing about the strings not in the language).

Question 1

Is the class of Turing recognizable languages closed under complementation?

Question 2

Is there a language which is recognizable but not decidable?

Question 3

Give an explicit unrecognizable language.

Note 1

co-Turing recognizable is not the same as unrecognizable.

For instance, if L is regular, then L^c is also regular, so both L, L^c are recognizable as well as co-recognizable.

Note 2

L is co-recognizable is equivalent to saying that there exists a Turing machine M such that $x \notin L$ iff M on x halts and rejects – for a construction, swap accepting and rejecting states in the TM of L^c .

Observation 1

If L is decidable then L is recognizable.

If L is decidable then L is co-recognizable (since L decidable $\implies L^c$ decidable $\implies L^c$ recognizable).

Theorem 1

A language L is decidable iff L is recognizable as well as co-recognizable.

Proof. The forward direction is as in the previous observation.

For the backward diretion, suppose L is recognizable as well as co-recognizable. Let M be a DTM which recognizes L and M' be a DTM which recognizes L^c . Consider the 2-tape DTM D which on input x does the following:

- 1. Copy x from tape 1 to tape 2.
- 2. Simulate M on tape 1 and M' on tape 2 in parallel.
- 3. If M halts earlier, abort M' and follow M's decision. Else if M' halts earlier, abort M and invert M''s decision. The other case never arises, since either x is in L or in L^c , so either M accepts x or M' accepts x.

Note that if D accepts x, then $x \in L$ and if D rejects x, then $x \in L$.

By construction, D is a decider for L, so L is decidable.

Goal: Construct an unrecognizable language.

Recall the proof of the fact that $2^{\mathbb{N}}$ is uncountable from COL202.

Flipping the incidence matrix diagonal is equivalent to considering $\{i \mid i \notin S_i\}$ and this set is different from each S_j .

Recall that the set of TMs over any fixed finite alphabet Σ is countable (using binary encoding).

Let M_w be the DTM whose description is w where $w \in \Sigma$, and if w is not the description of any DTM, then we define M_w to be the DTM where $q_0 = q_{rej}$, $\Gamma = \Sigma \cup \{ _ \}$, $Q = \{q_{acc}, q_{rej}\}$.

Now consider the set of strings w_i in Σ^* , and for each of those, consider M_{w_i} in Σ^* . Let A be a matrix where $a_{ij} = 1$ iff M_{w_i} accepts w_j , and 0 otherwise.

Define **DIAG** = $\{w \in \Sigma^* \mid M_w \text{ does not accept } w\}$.

Theorem 2

DIAG is unrecognizable.

Proof. Suppose not. Let R be a DTM that recognizes **DIAG**. Then $R = M_w$ for some $w \in \Sigma^*$. Does R accept w?

If M_w accepts w, then by the definition of **DIAG**, $w \notin \mathbf{DIAG}$. But M_w recognizes **DIAG**, so by assumption since M_w accepts w, we have $w \in \mathbf{DIAG}$, which is a contradiction.

If M_w doesn't accept w, it follows that $w \notin \mathbf{DIAG}$ from the fact that M_w recognizes \mathbf{DIAG} . But from the definition of \mathbf{DIAG} , since M_w doesn't accept w, $w \in \mathbf{DIAG}$, which is a contradiction.