Aufgabe 4

Gegeben ist die kontextfreie Grammatik $G=(V,\Sigma,P,S)$ mit $\Sigma=\{a,b\},N=\{S,A,B\}$ und $P=\{$

$$S \to A$$

$$S \to B$$

$$A \to aAb$$

$$B \to AA$$

$$B \to bBa$$

$$A \to a$$

flaci.com/Gr3rgt2vg

Geben Sie eine äquivalente Grammatik in Chomsky-Normalform an.

Kann auch so geschrieben werden: $P = \{$

$$S \rightarrow A \mid B$$

$$A \rightarrow aAb \mid a$$

$$B \rightarrow AA \mid bBa$$

}

}

(a) Elimination der ϵ -Regeln

— Alle Regeln der Form $A \to \epsilon$ werden eliminiert. Die Ersetzung von A wird durch ϵ in allen anderen Regeln vorweggenommen.

☑ Nichts zu tun

(b) Elimination von Kettenregeln

— Jede Produktion der Form $A \to B$ mit $A, B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren. —

$$P = \{$$

$$S \to aAb \mid a \mid AA \mid bBa$$
$$A \to aAb \mid a$$

 $B \rightarrow AA \mid bBa$

}

(c) Separation von Terminalzeichen

— Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_σ ersetzt und die Menge der Produktionen durch die Regel $S_\sigma \to \sigma$ ergänzt.

$$P = \{$$

 $P = \{$ $S \rightarrow T_a C \mid a \mid AA \mid T_b D$ $A \rightarrow T_a C \mid a$ $B \rightarrow AA \mid T_b D$ $T_a \rightarrow a$ $T_b \rightarrow b$ $C \rightarrow AT_b$ $D \rightarrow BT_a$

}