夏のLA 2016

連長圧縮に基づく漸増的最長共通部分列アルゴリズム

<u>稲永 俊介</u> (九州大学) Heikki Hyyrö (タンペレ大学, フィンランド)

背景

背景

文字列の編集距離計算

問題 1 (編集距離)

入力: 文字列 A と文字列 B

出力: $A \in B$ の編集距離 ed(A, B)

□ 編集距離 ed(A, B) は, 文字列 A を B に変換する編集操作(文字の挿入, 削除, 置換)の最小回数

- ロ 以下の式によって D[i,j] を順に埋めていくことで、 D[m,n] = ed(A,B) を O(mn) 時間で計算できる.
 - $D[i, 0] = i \text{ for } 1 \le i \le m$,
 - $D[0,j] = j \text{ for } 1 \le j \le n$,
 - $D[i,j] = \min\{D[i,j-1]+1, D[i-1,j]+1, D[i-1,j-1]+\delta(A[i], B[j])\},$

ただし
$$\delta(A[i], B[j]) = 1$$
 if $A[i] \neq B[j]$, $\delta(A[i], B[j]) = 0$ if $A[i] = B[j]$.

D

B

		a	ר	C	U	g	a	ר
	0	1	2	3	4	5	6	7
t	1							
g	2							
С	3							
a	4							
t	5							
a	6							
t	7							

$$A = \texttt{tgcatat}$$

 $B = \texttt{atccgat}$

$$D[i, 0] = i \text{ for } 1 \le i \le m$$
$$D[0, j] = j \text{ for } 1 \le j \le n$$

D					В				
			a	t	U	U	g	a	t
		0	1	2	ന	4	5	6	7
	ų	1	1	1	2	ന	4	5	6
	b	2	2	2	2	ന	3	4	5
\boldsymbol{A}	U	3	3	3	2	2	3	4	5
	a	4	3	4	3	3	3	3	4
	t	5	4	3	4	4	4	4	3
	a	6	5	4	4	5	5	4	
	t	7	6	5	5	5	6	5	

$$A = \texttt{tgcatat}$$

 $B = \texttt{atccgat}$

$$D[i,j] = \min\{ D[i,j-1]+1, \\ D[i-1,j]+1, \\ D[i-1,j-1]+1 \}$$

D					В				
			a	IJ	U	U	þ	a	IJ
		0	1	2	ന	4	5	6	7
	ų	1	1	1	2	ന	4	5	6
	b	2	2	2	2	ന	ന	4	5
\boldsymbol{A}	U	3	3	3	2	2	ന	4	5
	a	4	3	4	ന	3	ന	ന	4
	ų	5	4	3	4	4	4	4	3
	a	6	5	4	4	5	5	4	4
	t	7	6	5	5	5	6	5	

$$A = \texttt{tgcatat}$$

 $B = \texttt{atccgat}$

$$D[i,j] = \min \{ D[i,j-1]+1, \\ D[i-1,j]+1 \}$$

$$D[i-1,j-1]+1 \}$$

D

B

		a	t	С	С	g	a	t
	0	1	2	3	4	5	6	7
t	1	1	1	2	3	4	5	6
g	2	2	2	2	3	3	4	5
С	3	3	3	2	2	3	4	5
a	4	3	4	3	3	3	3	4
t	5	4	3	4	4	4	4	3
a	6	5	4	4	5	5	4	4
t	7	6	5	5	5	6	5	

$$A = \texttt{tgcatat}$$

 $B = \texttt{atccgat}$

$$D[i,j] = \min \{ D[i,j-1]+1, \\ D[i-1,j]+1, \\ D[i-1,j-1] \}$$

D

B

			_	_			_	
		a	ų	U	U	ტ	a	t
	0	1	2	3	4	5	6	7
t	1	1	1	2	3	4	5	6
g	2	2	2	2	3	3	4	5
С	3	3	3	2	2	3	4	5
a	4	3	4	3	3	3	3	4
t	5	4	3	4	4	4	4	3
a	6	5	4	4	5	5	4	4
t	7	6	5	5	5	6	5	4

$$A = \texttt{tgcatat}$$

 $B = \texttt{atccgat}$

$$D[i,j] = \min \{ D[i,j-1]+1, \\ D[i-1,j]+1, \\ D[i-1,j-1] \}$$

合計 O(mn) 時間

循環文字列

□ $1 \le j \le n$ に対して, $B_j = B[j..n]B[1..j-1]$ とする. すなわち, B_j は B の j 番目の循環文字列である.

循環文字列

- □ $1 \le j \le n$ に対して, $B_j = B[j..n]B[1..j-1]$ とする. すなわち, B_j は B の j 番目の循環文字列である.
- □ 例) 文字列 B = "なつのえるえー" に対して,
 - B₁ = なつのえるえー
 - ・ B_2 = つのえるえ一な
 - ・ $B_3 =$ のえるえーなつ
 - ・ B_4 = えるえーなつの
 - B₅ = るえーなつのえ
 - B₆ = えーなつのえる
 - ・ $B_7 =$ **一**なつのえるえ

循環文字列比較

問題 2 (循環文字列の編集距離)

入力: 文字列 A と文字列 B

出力: $A \ge B$ のすべての循環文字列

 $B_1, ..., B_n$ の編集距離 $ed(A, B_j)$.

- □ 動機:生物学的配列の比較など.
- □ 素朴な方法では、各循環文字列 B_j に対して O(mn) 時間 \Rightarrow 合計 $O(mn^2)$ 時間かかる.
- □ より効率のよい方法はあるだろうか?

右端の文字追加は簡単

B[1..5]

		C	а	യ	t	a
	0	1	2	3	4	5
a	1	1	1	2	3	4
g	2	2	2	1	2	3
С	3	2	3	2	2	3
t	4	3	3	3	2	3
а	5	4	3	4	3	2

B[15]B[1]									
		С	а	g	t	а	С		
	0	1	2	3	4	5	6		
а	1	1	1	2	3	4	5		
g	2	2	2	1	2	3	4		
С	3	2	3	2	2	3	3		
t	4	3	3	3	2	3	4		
а	5	4	3	4	3	2	3		

- □ 最後の列の値だけが変化する
 - \Rightarrow 右端の文字追加は O(m) 時間でできる.

左端の文字削除は簡単ではない

B[15]] <i>B</i> [1]
-------	----------------

		С	а	യ	t	а	С
	0	1	2	ന	4	5	6
а	1	1	1	2	3	4	5
g	2	2	2	1	2	3	4
С	ന	2	ന	2	2	ന	3
t	4	ന	3	ന	2	3	4
а	5	4	3	4	3	2	3

B[2..5]B[1]

		а	യ	t	а	С
	0	1	2	ന	4	5
а	1	0	1	2	3	4
g	2	1	0	1	2	3
С	ß	2	1	1	2	2
t	4	3	2	1	2	3
a	5	4	3	2	1	2

□ 左端の文字を削除すると、最悪の場合には DP 表の すべての列 に影響が及んでしまう!

既存手法

アルゴリズム	左端削除の時間	領域
Landau et al. (1998)	O(m+n)	O(mn)
Schmidt (1998)	O(m+n)	O(mn)
Kim & Park (2004)	O(m+n)	O(mn)
Hyyrö et al. (2015)	O(m+n)	O(mn)

- □ 前述のとおり、DP 表をそのまま保持すると O(mn) 時間かかってしまう.
- □ そこで、既存研究では DP 表の非明示的表現 (差分表現)を保持し、それを上手く更新している.

提案手法

アルゴリズム	左端削除の時間	領域
Landau et al. (1998)	O(m+n)	O(mn)
Schmidt (1998)	O(m+n)	O(mn)
Kim & Park (2004)	O(m+n)	O(mn)
Hyyrö et al. (2016)	O(m+n)	O(mn)
提案手法	O(m+n)	O(ml + nk)

- □ より省領域な左端削除アルゴリズムを提案する.
- ロ ここで, $k (\leq m)$ と $l (\leq n)$ はそれぞれ, 文字列 A と B の 連長圧縮 のサイズ.

文字列の連長圧縮 (RLE)

- □ 文字列 A 中の同一文字の連続を, その文字の連続長で表現する圧縮法 (Run Length Encoding, RLE).
 - 例) RLE(aaabbcccccbb) = $a^3b^2c^5b^2$
- □ RLE(A) 中の同一文字の連の個数を, RLE(A) の サイズ という.
 - 上の例では、サイズは 4.
- □ m を文字列 A の長さ, k を RLE(A) のサイズ とすると, 必ず k ≤ m が成り立つ.

連長圧縮文字列の編集距離計算

□ ed(RLE(A), RLE(B)) の動的計画法の表 D を kl 個のブロックに分割する [Arbel et al. 2002].

連長圧縮文字列の編集距離計算

- ロ ブロックの境界の値だけを陽に保持する $\Rightarrow O(ml + nk)$ 領域で済む.
- ロ ブロック内の値は、逐次計算できる.

境界に含まれる セルの個数は O(ml + nk).

Key Lemmas

動的計画表の差分表現を DR とし, 左端文字の削除後の差分表現を DR'とする.

補題 1 [Hyyrö et al., 2016]

 $DR'[i,j] \neq DR[i,j]$ を満たすセルは 表全体で O(m+n) 個しかない.

補題 2

各ブロックの上下左右のそれぞれの境界中には, $DR'[i,j] \neq DR[i,j]$ なるセルが O(1) 個しかない.

一致ブロックの処理

- □ 動的計画法の表の一致ブロック内では, 値は対角線に伝搬する.
- ロ よって、その差分表現の一致ブロック内でも、 $DR'[i,j] \neq DR[i,j]$ なる値は、左/上の境界から右/下の境界へと伝搬する.

不一致ブロックの処理

- ロ 不一致ブロック内では、 $DR'[i,j] \neq DR[i,j]$ を 満たすセルのパスは枝分かれする可能性がある.
- ロ 左/上の境界中の O(1) 個の各始点から、深さ優先探索で $DR'[i,j] \neq DR[i,j]$ を満たすパスをトレースする.

主結果

定理

文字列 A と文字列 B に対して,以下を満たす編集距離 ed(A, B) の DP 表の差分表現が存在する.

- *O*(*ml* + *nk*) 領域
- 文字列 B の左端文字の削除に対して,
 O(m+n) 時間で更新可能

証明) 前述のアルゴリズムと補題 1,2 より.

•
$$m=|A|$$

•
$$n = |B|$$

•
$$k = |RLE(A)|$$

•
$$l = |RLE(B)|$$