# Report on

# Deep Learning and Applications (CS671)

# Assignment 4



Submitted by:

GROUP - 9

Shashank Kapoor (S22022)

Shubham Patwar (T22108)

Syed Rizwan Ali Quadri (T22113)

# Assignment Problem Statement

In this assignment, the key objective is to deepen understanding of the autoencoders. The major task here is to build an autoencoder to obtain the hidden representation and use it for classification.

#### **Overall Result:**

### Task1:

| PCA<br>Components | Neural Architecture | No. of<br>Epochs | Training<br>Accuracy | Validation<br>Accuracy |
|-------------------|---------------------|------------------|----------------------|------------------------|
| 32                | (128,64,32)         | 9                | 0.9908               | 0.9781                 |
|                   | (256,128,64)        | 18               | 0.9962               | 0.9855                 |
|                   | (512,256,128)       | 8                | 0.9841               | 0.9762                 |
| 64                | (128,64,32)         | 14               | 0.9967               | 0.9805                 |
|                   | (256,128,64)        | 10               | 0.9948               | 0.9810                 |
|                   | (512,256,128)       | 13               | 0.9950               | 0.9810                 |
| 128               | (128,64,32)         | 11               | 0.9979               | 0.9807                 |
|                   | (256,128,64)        | 10               | 0.9959               | 0.9810                 |
|                   | (512,256,128)       | 8                | 0.9913               | 0.9739                 |
| 256               | (128,64,32)         | 9                | 0.9972               | 0.9760                 |
|                   | (256,128,64)        | 9                | 0.9966               | 0.9760                 |
|                   | (512,256,128)       | 9                | 0.9949               | 0.9757                 |

<sup>\*</sup> Mark in bold is Best architecture according to the validation accuracy

#### **Confusion Matrix of the Best Architecture:**

### 1. PCA components=32:

• Neural Architecture: 256, 128,64

| <u>—</u>  | Actual Label |     |     |     |     |     |  |  |
|-----------|--------------|-----|-----|-----|-----|-----|--|--|
| labe      |              | 2   | 4   | 6   | 7   | 8   |  |  |
|           | 2            | 737 | 2   | 5   | 7   | 8   |  |  |
| te        | 4            | 1   | 750 | 3   | 3   | 2   |  |  |
| gi        | 6            | 5   | 5   | 744 | 0   | 5   |  |  |
| oredicted | 7            | 9   | 5   | 0   | 741 | 4   |  |  |
|           | 8            | 7   | 2   | 7   | 3   | 740 |  |  |

Testing Accuracy: 0.9781

Fig.1. Confusion matrix of the best 32 components representation by FCNN (256,128,64)

### 2. PCA components=64:

• Neural Architecture: 512,256,128

| <u></u>   | Actual Label |     |     |     |     |     |  |  |
|-----------|--------------|-----|-----|-----|-----|-----|--|--|
| label     |              | 2   | 4   | 6   | 7   | 8   |  |  |
|           | 2            | 734 | 5   | 6   | 5   | 9   |  |  |
| te        | 4            | 1   | 749 | 6   | 2   | 1   |  |  |
| dic       | 6            | 4   | 3   | 744 | 0   | 8   |  |  |
| oredicted | 7            | 11  | 10  | 0   | 734 | 4   |  |  |
|           | 8            | 11  | 2   | 1   | 4   | 741 |  |  |

Testing Accuracy: 0.9754

Fig.2. Confusion matrix of the best 64 components representation by FCNN (512,256,128)

### 3. PCA components=128:

• Neural Architecture: 256,128,64

| <u></u>  | Actual Label |     |     |     |     |     |  |  |
|----------|--------------|-----|-----|-----|-----|-----|--|--|
| labe     |              | 2   | 4   | 6   | 7   | 8   |  |  |
| <u> </u> | 2            | 737 | 7   | 7   | 7   | 1   |  |  |
| te       | 4            | 3   | 747 | 3   | 5   | 1   |  |  |
| redicte  | 6            | 3   | 0   | 750 | 0   | 6   |  |  |
| ore      | 7            | 7   | 10  | 1   | 739 | 2   |  |  |
|          | 8            | 12  | 6   | 6   | 3   | 732 |  |  |

Testing Accuracy: 0.9762

Testing Accuracy: 0.9728

Fig.3. Confusion matrix of the best 64 components representation by FCNN (512,256,128)

### 4. PCA components=256:

• Neural Architecture: 256,128,64

| <u></u>  | Actual Label |     |     |     |     |     |  |  |
|----------|--------------|-----|-----|-----|-----|-----|--|--|
| label    |              | 2   | 4   | 6   | 7   | 8   |  |  |
|          | 2            | 731 | 8   | 4   | 6   | 10  |  |  |
| te       | 4            | 0   | 743 | 4   | 7   | 5   |  |  |
| redicted | 6            | 2   | 10  | 739 | 0   | 8   |  |  |
| ore      | 7            | 8   | 5   | 1   | 739 | 6   |  |  |
|          | 8            | 9   | 6   | 2   | 2   | 740 |  |  |

Fig.4. Confusion matrix of the best 64 components representation by FCNN (512,256,128)

Task 2:

| Autoencoder | Bottleneck Size | Average reconstruction training Error | Average reconstruction validation Error | Average reconstruction testingError |
|-------------|-----------------|---------------------------------------|-----------------------------------------|-------------------------------------|
| 1 Layer     | 32              | 0.0198                                | 0.0200                                  | 0.0201                              |
| Autoencoder | 64              | 0.0131                                | 0.0134                                  | 0.0134                              |
|             | 128             | 0.0093                                | 0.0095                                  | 0.0096                              |
|             | 256             | 0.0084                                | 0.0086                                  | 0.0087                              |
| 3 Layer     | 32              | 0.0251                                | 0.0255                                  | 0.0256                              |
| Autoencoder | 64              | 0.0196                                | 0.0200                                  | 0.0201                              |
|             | 128             | 0.0207                                | 0.0213                                  | 0.0213                              |
|             | 256             | 0.0254                                | 0.0260                                  | 0.0259                              |

## 1. 1-layer Autoencoder Image Reconstruction:

### • 32 Bottleneck Size Autoencoder



Fig. original vs reconstructed image from 1 layer Autoencoder with 32 Bottleneck size

#### • 64 Bottleneck Size Autoencoder



Fig. original vs reconstructed image from 1 layer Autoencoder with 64 Bottleneck size

#### • 128 Bottleneck Size Autoencoder



Fig. original vs reconstructed image from 1 layer Autoencoder with 128 Bottleneck size

#### • 256 Bottleneck Size Autoencoder



Fig. original vs reconstructed image from 1 layer Autoencoder with 256 Bottleneck size

### 2. 3-layer Autoencoder Image Reconstruction:

#### 32 Bottleneck Size Autoencoder Training Image Reconstructed Image

Fig. original vs reconstructed image from 3 layer Autoencoder with 32 Bottleneck size



• 128 Bottleneck Size Autoencoder



Fig. original vs reconstructed image from 3 layer Autoencoder with 128 Bottleneck size

# • 256 Bottleneck Size Autoencoder



Fig. original vs reconstructed image from 3 layer Autoencoder with 256 Bottleneck size

Task3:

| Encoder outputs | Neural Architecture | No. of<br>Epochs | Training<br>Accuracy | Validation<br>Accuracy |
|-----------------|---------------------|------------------|----------------------|------------------------|
| 32              | (128,64,32)         | 19               | 0.9956               | 0.9797                 |
|                 | (256,128,64)        | 17               | 0.9921               | 0.9789                 |
|                 | (512,256,128)       | 16               | 0.9871               | 0.9736                 |
| 64              | (128,64,32)         | 13               | 0.9949               | 0.9818                 |
|                 | (256,128,64)        | 12               | 0.9928               | 0.9768                 |
|                 | (512,256,128)       | 13               | 0.9906               | 0.9812                 |
| 128             | (128,64,32)         | 13               | 0.9978               | 0.9739                 |
|                 | (256,128,64)        | 13               | 0.9965               | 0.9778                 |
|                 | (512,256,128)       | 10               | 0.9913               | 0.9770                 |
| 256             | (128,64,32)         | 9                | 0.9954               | 0.9768                 |
|                 | (256,128,64)        | 10               | 0.9949               | 0.9741                 |
|                 | (512,256,128)       | 13               | 0.9955               | 0.9752                 |

<sup>\*</sup> Mark in bold is Best architecture according to the validation accuracy

### **Confusion Matrix of the Best Architecture:**

1-hidden layer autoencoder components=32:

• Neural Architecture: 128,64,32

| <u> </u>       | Actual Label |     |     |     |             |             |  |  |
|----------------|--------------|-----|-----|-----|-------------|-------------|--|--|
| predicted labe |              | 2   | 4   | 6   | 7           | 8           |  |  |
| <del>0</del>   | 2            | 736 | 3   | 3   | 13          | 4           |  |  |
| ţe             | 4            | 2   | 745 | 6   | 3           | 3           |  |  |
| ë              | 6            | 4   | 2   | 743 | 1           | 9           |  |  |
| <u>ore</u>     | 7            | 6   | 4   | 1   | 747         | 1           |  |  |
|                | 8            | 8   | 4   | 13  | 9           | 725         |  |  |
|                |              |     |     | Te  | sting Accur | acy: 0.9739 |  |  |

Fig.1. Confusion matrix of the best 32 components representation by FCNN (128,64,32)

#### 1-hidden layer autoencoder components=64:

• Neural Architecture: 128,64,32

| <u> </u>       | Actual Label |     |     |     |             |             |  |  |
|----------------|--------------|-----|-----|-----|-------------|-------------|--|--|
| predicted labe |              | 2   | 4   | 6   | 7           | 8           |  |  |
| <u> </u>       | 2            | 737 | 2   | 6   | 9           | 5           |  |  |
| ;te            | 4            | 1   | 744 | 6   | 6           | 2           |  |  |
| i <del>ğ</del> | 6            | 4   | 3   | 747 | 0           | 5           |  |  |
| ore            | 7            | 8   | 7   | 1   | 740         | 3           |  |  |
|                | 8            | 18  | 5   | 5   | 1           | 730         |  |  |
|                |              |     |     | Tes | ting Accura | cv: 0 97444 |  |  |

Fig.2. Confusion matrix of the best 64 components representation by FCNN (128,64,32)

#### 1-hidden layer autoencoder components=128:

• Neural Architecture: 256,128,64

| <u></u>        | Actual Label |     |     |     |             |             |  |
|----------------|--------------|-----|-----|-----|-------------|-------------|--|
| predicted labe |              | 2   | 4   | 6   | 7           | 8           |  |
| <u>~</u>       | 2            | 732 | 5   | 4   | 15          | 3           |  |
| te             | 4            | 6   | 741 | 3   | 7           | 2           |  |
| 흥              | 6            | 7   | 2   | 744 | 2           | 4           |  |
| )Te            | 7            | 5   | 8   | 0   | 744         | 2           |  |
| <u> </u>       | 8            | 13  | 6   | 7   | 7           | 726         |  |
|                |              |     |     | Tes | ting Accura | cy: 0.97154 |  |

Fig.3. Confusion matrix of the best 64 components representation by FCNN (256,128,64)

### 1-hidden layer autoencoder components=256:

• Neural Architecture: 128,64,32

| <u> </u>       |   | Actual Label |     |     |       |            |             |  |  |
|----------------|---|--------------|-----|-----|-------|------------|-------------|--|--|
| predicted labe |   |              | 2   | 4   | 6     | 7          | 8           |  |  |
| <u></u>        | 2 |              | 720 | 9   | 10    | 6          | 14          |  |  |
| ě              | 4 |              | 2   | 748 | 4     | 5          | 0           |  |  |
| g              | 6 |              | 3   | 6   | 744   | 0          | 6           |  |  |
| )re            | 7 |              | 8   | 8   | 0     | 740        | 3           |  |  |
| <u> </u>       | 8 |              | 8   | 10  | 7     | 6          | 728         |  |  |
|                |   |              |     |     | Testi | ng Accurac | v· 0 969697 |  |  |

Fig.4. Confusion matrix of the best 64 components representation by FCNN (128,64,32)

Task4:

| Bottleneck<br>size | Neural Architecture | No. of<br>Epochs | Training<br>Accuracy | Validation<br>Accuracy |
|--------------------|---------------------|------------------|----------------------|------------------------|
| 32                 | (128,64,32)         | 13               | 0.9902               | 0.9697                 |
|                    | (256,128,64)        | 13               | 0.9856               | 0.9697                 |
|                    | (512,256,128)       | 22               | 0.9882               | 0.9726                 |
| 64                 | (128,64,32)         | 8                | 0.9893               | 0.9702                 |
|                    | (256,128,64)        | 10               | 0.9890               | 0.9779                 |
|                    | (512,256,128)       | 15               | 0.9923               | 0.9779                 |
| 128                | (128,64,32)         | 8                | 0.9923               | 0.9757                 |
|                    | (256,128,64)        | 11               | 0.9948               | 0.9744                 |
|                    | (512,256,128)       | 11               | 0.9924               | 0.9755                 |
| 256                | (128,64,32)         | 10               | 0.9937               | 0.9639                 |
|                    | (256,128,64)        | 10               | 0.9938               | 0.9778                 |
|                    | (512,256,128)       | 12               | 0.9945               | 0.9710                 |

<sup>\*</sup> Mark in bold is Best architecture according to the validation accuracy

### **Confusion Matrix of the Best Architecture:**

1. 3-hidden layer autoencoder components=32:

• Neural Architecture: 256,128,64

| <u> </u>                  |   | Actual Label |     |     |     |     |  |  |
|---------------------------|---|--------------|-----|-----|-----|-----|--|--|
| ape                       |   | 2            | 4   | 6   | 7   | 8   |  |  |
| <u> </u>                  | 2 | 716          | 8   | 12  | 15  | 8   |  |  |
| te                        | 4 | 0            | 744 | 4   | 7   | 4   |  |  |
| di                        | 6 | 1            | 5   | 747 | 1   | 5   |  |  |
| predicted labe            | 7 | 13           | 13  | 0   | 732 | 1   |  |  |
| <u> </u>                  | 8 | 12           | 10  | 16  | 8   | 713 |  |  |
| Testing Accuracy: 0.96232 |   |              |     |     |     |     |  |  |

Fig.1. Confusion matrix of the best 32 components representation by FCNN (256,128,64)

#### 2. 3-hidden layer autoencoder components=64:

• Neural Architecture: 256,128,64

| <u> </u>                  |  |   |     | Actual | Label |     |     |
|---------------------------|--|---|-----|--------|-------|-----|-----|
| label                     |  |   | 2   | 4      | 6     | 7   | 8   |
| <u> </u>                  |  | 2 | 723 | 4      | 6     | 15  | 11  |
| ţě                        |  | 4 | 2   | 738    | 7     | 8   | 4   |
| predicted                 |  | 6 | 3   | 5      | 746   | 1   | 4   |
|                           |  | 7 | 7   | 7      | 0     | 740 | 5   |
|                           |  | 8 | 4   | 7      | 16    | 6   | 726 |
| Testing Accuracy: 0.96785 |  |   |     |        |       |     |     |

Fig.2. Confusion matrix of the best 64 components representation by FCNN (256,128,64)

#### 3. 3-hidden layer autoencoder components=128:

• Neural Architecture: 128,64,32

| <u> </u>       |                            |   |     | Actual | Label |     |     |
|----------------|----------------------------|---|-----|--------|-------|-----|-----|
| аре            |                            |   | 2   | 4      | 6     | 7   | 8   |
| <del>0</del>   |                            | 2 | 733 | 6      | 2     | 10  | 8   |
| ţe             |                            | 4 | 1   | 746    | 6     | 5   | 1   |
| predicted labe |                            | 6 | 2   | 6      | 741   | 1   | 9   |
|                |                            | 7 | 6   | 6      | 1     | 743 | 3   |
| <u> </u>       |                            | 8 | 10  | 10     | 12    | 4   | 723 |
|                | Testing Accuracy: 0.971278 |   |     |        |       |     |     |

Fig.3. Confusion matrix of the best 64 components representation by FCNN (128,64,32)

#### 4. 3-hidden layer autoencoder components=256:

• Neural Architecture: 256,128,64

| <u> </u>                    | Actual Label |     |     |     |     |     |
|-----------------------------|--------------|-----|-----|-----|-----|-----|
| ape                         |              | 2   | 4   | 6   | 7   | 8   |
| predicted labe              | 2            | 719 | 15  | 5   | 13  | 7   |
| ;te                         | 4            | 2   | 752 | 3   | 1   | 1   |
| ë                           | 6            | 8   | 8   | 737 | 0   | 6   |
| ore                         | 7            | 8   | 14  | 1   | 734 | 2   |
|                             | 8            | 18  | 5   | 8   | 7   | 721 |
| Testing Accuracy: 0.9652174 |              |     |     |     |     |     |

Fig.4. Confusion matrix of the best 64 components representation by FCNN (256,128,64)

Task 5:

| Noisy in<br>training Data<br>(in %) | 1 layer<br>Autoencoder<br>Architecture | Average reconstruction training Error | Average reconstruction validation Error | Average reconstruction testingError |
|-------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------|
| 20                                  | (784,64,784)                           | 0.0150                                | 0.0153                                  | 0.0153                              |
| 40                                  | (784,64,784)                           | 0.0214                                | 0.0217                                  | 0.0217                              |

### 3. 1-layer Autoencoder:

- Autoencoder Architecture (784,64,784)
  - o 20% noisy



Fig. original vs reconstructed image from 1 layer Autoencoder with 64 Bottleneck size



Fig. original vs reconstructed image from 1 layer Autoencoder with 64 Bottleneck size



Fig. original vs reconstructed image from 1 layer Autoencoder with 64 Bottleneck size

• Autoencoder Architecture (784,64,784)



Fig. original vs reconstructed image from 1 layer Autoencoder with 64 Bottleneck size



Fig. original vs reconstructed image from 1 layer Autoencoder with 64 Bottleneck size



Fig. original vs reconstructed image from 1 layer Autoencoder with 64 Bottleneck size

| Noisy in training<br>Data (in %) | 1 layer Autoencoder<br>Architecture | No. of<br>Epochs | Training<br>Accuracy | Validation<br>Accuracy | Testing<br>Accuracy |
|----------------------------------|-------------------------------------|------------------|----------------------|------------------------|---------------------|
| 20                               | (128,64,32)                         | 12               | 0.9935               | 0.9802                 | 0.9760              |
|                                  | (256,128,64)                        | 10               | 0.9914               | 0.9789                 | 0.9723              |
|                                  | (512,256,128)                       | 10               | 0.9870               | 0.9752                 | 0.9734              |
| 40                               | (128,64,32)                         | 10               | 0.98998              | 0.97154                | 0.9618              |
|                                  | (256,128,64)                        | 12               | 0.9923               | 0.9736                 | 0.9647              |
|                                  | (512,256,128)                       | 13               | 0.9893               | 0.9720                 | 0.9634              |

Fig.: classification accuracy on the training, validation and test set for the different architectures of FCNN classification model.

#### Task 6:

• Weights Visualization of the one hidden layer Autoencoder with the best representation 64 in our case.



Fig. Weights Visualization of the one hidden layer for 64 size in bottleneck

• Weights Visualization of the one hidden layer autoencoder with the best representation **64** in our case, with 20% denoising Data.



Fig. Weights Visualization of the one hidden layer for 64 size in bottleneck and 20% denoising

• Weights Visualization of the one hidden layer autoencoder with the best representation **64** in our case, with 40% denoising Data.



Fig. Weights Visualization of the one hidden layer for 64 size in bottleneck and 40% denoising