

Data description: daily historical sales data for group of shops.

sales_train	Shops	items	item_categories
ID - an Id that represents a (Shop, Item) tuple within the test set	shop_id - unique identifier of a shop	item_id - unique identifier of a product	item_category_id - unique identifier of item category
item_cnt_day - number of products sold. You are predicting a monthly amount of this measure	shop_name - name of shop date - date in format dd/mm/yyyy	item_name - name of item	item_category_name - name of item category
item_price - current price of an item	date_block_num - a consecutive month number, used for convenience. Jan 2013 is 0, Feb 2013 is 1, Oct 2015 is 33		

Train data

	date	date_block_num	shop_id	item_id	item_price	item_cnt_day	item_category_id
0	02.01.2013	0	59	22154	999.00	1.0	37
1	03.01.2013	0	25	2552	899.00	1.0	58
2	05.01.2013	0	25	2552	899.00	-1.0	58
3	06.01.2013	0	25	2554	1709.05	1.0	58
4	15.01.2013	0	25	2555	1099.00	1.0	58

Main objective(s) of this analysis:

Predict Future Sales:

The task is to forecast the total amount of products sold in every shop for the test set. Note that the list of shops and products slightly changes every month. Creating a robust model that can handle such situations is part of the challenge.

Cleaning Data:

Issues and Actions.

NULLS

Duplicates

Data describe before cleaning

40.016343

1 data.describe().T

item_category_id 2928492.0

1 data.isnull().sum()

date 0
date_block_num 0
shop_id 0
item_id 0
item_price 0
item_cnt_day 0
item_category_id 0
dtype: int64

1 data.duplicated().sum()
6

1 data = data.drop_duplicates()

75% count mean max date_block_num 2928492.0 33.0 14.569761 9.422953 0.0 14.0 23.0 shop_id 2928492.0 33.002959 16.225424 0.0 item id 2928492.0 10200.280910 6324.396874 0.0 4477.0 9355.0 15691.0 22169.0 item price 2928492.0 889.361584 1718.152833 -1.0 999.0 59200.0 item_cnt_day 2928492.0 1.248337 1.0 2169.0 1.0

17.098103 0.0

28.0

40.0

55.0

83.0

Reviewing the outlier:

The maximum for the item price 100,000, as 300,000 cannot even be due to plausible anomalies.

Some negative values which has no meaning, the other outliers can be due to plausible anomalies, for LSTM it's not necessary to remove it.

Action for outlier:

Key findings:

1. Top Sellers shop_id and shops name:

	shop_name	shop_id
6	Воронеж (Плехановская, 13)	6
25	Москва ТРК "Атриум"	25
27	Москва ТЦ "МЕГА Белая Дача II"	27
28	Москва ТЦ "МЕГА Теплый Стан" II	28
31	Москва ТЦ "Семеновский"	31
42	СПб ТК "Невский Центр"	42
54	Химки ТЦ "Мега"	54
57	Якутск Орджоникидзе, 58	57

Key findings:

2. Top Sellers items_id and item name:

Key findings:

3. Last 2 month score more high in the whole 3 years:

Correlation:

4. Heatmap for showing the correlation between the data features:

Reviewing the models:

Next steps

The 2 models looks like underfit:

- 1. We need to add more layers and increase the epochs.
- 2. Get dummies for the categorical features .

That will require more time and some computer with high RAM.

Project link:

https://github.com/khairy84/Sales-LSTM-Time-series