CFLs and CFGs

valid parenthesizations:

What about a (FG for palindromes? $(\text{over } \Sigma = \{a_{3}b_{3}\})$ $S \rightarrow \{ | a S a | b S b | a | b$

Formal Definition of CFLs/CFGs

A CFG is quadruple $G = (N, \Sigma, P, S)$ where: X : finite set of non-terminal symbols X : finite set of non-terminal symbols X : finite set of non-terminal symbols X : finite set of terminal symbols X : finit

 $A = L(ab^*c)$ $S \rightarrow ABC$ $A \rightarrow a$ $C \rightarrow c$ $B \rightarrow bB \mid \mathcal{L}$

we can find a CFG for every regular expression!

Notes:

* We use small letters for terminals

* o o capital o o non-terminals

* o o a, p, v, ... for

sentential forms (strings in (NUZ)*)

sentential torms (surings iv. ...)
that we define later.

Defining the CFL cornesponding to a CFG d if p can be derived from & by replacing one occurance of one non-terminal A with x where $A \rightarrow x$ is a production $x \rightarrow x$ $\alpha \xrightarrow{n+1} \beta$ if $\exists 8 s.t.$ $A \stackrel{n}{\rightleftharpoons} V$ and $S \stackrel{l}{\rightleftharpoons} B$ palindromes: * S is a Sa is a bSb a is a bbg S 3 abba \neq abSba $\frac{2}{\alpha}$ abbbba

$$L(G) = \left\{ x \in z^{*} : S \xrightarrow{*} x \right\}$$

* d \((NUZ) \(\) is called a sentential form if $S_{R}^{*} \propto$.

* A sentential form is called a sentence if it consists of only terminals.

L(a) = set of all sentences of G.

* The set of all syntactically valid strings for python language forms a CFL.

* < html> --- < /html)

<if-stmt> > if <bool-expr> then <stmt> else <stmt>

