Example

- ❖ Consider R(A, B, C) with FDs $F = \{B \rightarrow C, AC \rightarrow B\}$
- * Decomposition { $R_1(A, B)$, $R_2(B,C)$ } is not dependency preserving
 - Non-trivial FDs in $F_{R1} = \phi$
 - Non-trivial FDs in $F_{R2} = \{B \rightarrow C\}$
 - Therefore, AC \rightarrow B is not in $(F_{R1} \cup F_{R2})^+$
 - That is, $AC \rightarrow B$ is not preserved

r				r1		<i>r</i> 2	
A	В	C		A	В	В	С
a1	b1	c1	 →	a1	b1	b1	c1
a2	b1	c1		a2	b1		

- Inserting a new tuple (a1, b2, c1) into r will violate $AC \rightarrow B$
- But inserting (a1, b2) into r1 and (b2, c1) into r2 does not violate any FDs in F_{R1} and F_{R2} respectively
- Need to compute $r1 \otimes r2$ to detect violate of $AC \rightarrow B$