PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-159244

(43)Date of publication of application: 21.06.1996

(51)Int.CI.

F16H 55/48 C08K 3/26 C08K 3/34 C08K 7/14 C08L 61/10

(21)Application number: 06-304045

(71)Applicant: SUI

SUMITOMO BAKELITE CO LTD

(22)Date of filing:

07.12.1994

(72)Inventor:

NOGUCHI MAKOTO

(54) RESIN PULLEY

(57)Abstract:

PURPOSE: To provide a phenol resin pulley formed in such a manner that size precision and a strength are balanced with each other by a method wherein respective specified amounts of glass fibers, mica powder, clay, and wollastonite are contained in novolak type phenol resin.

CONSTITUTION: A resin pulley suitable for the engine parts of an automobile is formed of material prepared in such a manner that, based on 100 pts.wt. novolak type phenol resin, 130–300 pts.wt. glass fibers (a), 30–100 pts.wt. mica powder (b) with an average grain size of 100μm or less, and 30–100 pts.wt. one or more kinds selected from calcium carbonate, clay, and wollastonite (c), the average grain sizes of which are 10μum or less are contained. A number average molecular eight of working novolak type phenol resin is preferably 500–1000. Further, a chopped strand type with an ordinary fiber diameter of 8–15μm and a fiber length of 1–5mm glass fibers (a) is used as the glass fibers (a), and the mica powder (b) is used to suppress wear of a belt due to the glass fibers (a).

LEGAL STATUS

[Date of request for examination]

02.07.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-159244

(43)公開日 平成8年(1996)6月21日

(51) Int.Cl. ⁶ F 1 6 H		識別記号	庁内整理番号	FΙ	技術表示箇所			
C 0 8 K	3/26 3/34 7/14							
C08L		LMS		審査請求	未請求 請求項の数1 OL (全 3 頁)			
(21)出願番号		特願平6 -304045		(71) 出願人	000002141 住友ペークライト株式会社			
(22)出顧日		平成6年(1994)12。	月7日	(72)発明者	東京都品川区東品川2丁目5番8号 野口 誠 東京都千代田区内幸町1丁目2番2号 住 友ペークライト株式会社内			

(54)【発明の名称】 樹脂プーリー

(57)【要約】

【構成】 ノボラック型フェノール樹脂 100重量部に対し、無機基材としてガラス繊維(a) $130\sim300$ 重量部、平均粒径 100μ m以下のマイカ粉(b) $30\sim100$ 重量部、及び平均粒径 100μ m以下の炭酸カルシウム、クレー及びウォラストナイトから選ばれた 100 種又は 100 種以上(c) 100 重量部を含有することを特徴とするフェノール樹脂プーリー。

【効果】 耐摩耗性が極めて良好であり、かつ、寸法精度及び強度が両立して向上しているため、その工業的価値は極めて大きいものである。

【特許請求の範囲】

【請求項1】 フェノール樹脂プーリーにおいて、ノボラック型フェノール樹脂100重量部に対し、無機基材としてガラス繊維(a)130~300重量部、平均粒径100 μ m以下のマイカ粉(b)30~100重量部、及び平均粒径100 μ m以下の炭酸カルシウム、クレー及びウォラストナイトから選ばれた1種又は2種以上(c)30~100重量部を含有することを特徴とするフェノール樹脂プーリー。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、自動車等のエンジン部品として適している樹脂プーリー(歯付プーリーを含む)に関するものである。

[0002]

【従来の技術】自動車等の機構部品の低コスト化、軽量 化の一つとして、各種プーリーの金属からの樹脂化への 代替が行われている。これらのプーリーは、耐熱性、強 度、寸法安定性、ベルトに対する耐摩耗性が要求される が、歯付プーリーは耐熱性、耐摩耗性とともに、使用時 に熱を受けた際の寸法精度、寸法安定性が他のプーリー に比べ特に要求される。従来の樹脂製プーリー用の材料 は、フェノール樹脂に主たる充填材として、(1)綿布 の切片、木粉等の有機基材を含有したもの、(2)ガラ ス繊維と無機質(例えば、ガラスビーズ、シリカ、タル ク等)の組みあせたものを含有したものが検討されてい る。しかし、(1)においては有機基材を用いているた めベルトに対する摩耗については良好であるが、寸法安 定性、耐熱性が劣るという問題がある。(2)において は、樹脂プーリーは自動車機構部品の中でも特に寸法精 度(特に後収縮の際の異方性による成形品寸法の部分的 変化)と強度が求められるため、ガラス繊維による強度 向上とガラスビーズ、シリカ、タルク等の無機基材によ る寸法精度向上を従来の自動車機構部品に用いられてい るフェノール樹脂材料より更に高次元でバランスさせる 必要がある。

[0003]

【発明が解決しようとする課題】本発明は、前記の寸法 精度と強度のバランスがとれたフェノール樹脂プーリー を提供することにある。

[0004]

【課題を解決するための手段】本発明は、ノボラック型フェノール樹脂100重量部に対し、ガラス繊維(a)130~300重量部、平均粒径100 μ m以下のマイカ粉(b)30~100重量部、及び平均粒径100 μ m以下の炭酸カルシウム、クレー及びウォラストナイトから選ばれた1種又は2種以上(c)30~100重量部を含有することを特徴とする摩耗特性が良好で寸法精度と強度がバランスよく優れたフェノール樹脂プーリーに関するものである。

【0005】本発明で使用されるノボラック型フェノール樹脂(以下、ノボラック樹脂という)の数平均分子量は500~1000が好ましい。500以下ではノボラック樹脂の粘度が低すぎるために、成形において溶融樹脂が金型内に残存する空気や樹脂から発生するガスを巻き込み、特に金型で袋小路となっている部分で充填不良を起こしやすくなり、1000以上ではノボラック樹脂の粘度が高すぎるために流動性が悪くなり、本発明のような樹脂量の少ない材料の場合では充填不足となりやすい。

【0006】用いられる充填材としては、ガラス繊維 (a)、マイカ粉 (b)、炭酸カルシウム、クレー又はウォラストナイト (c)という無機基材を使用しているが、これは、他の無機基材に比較して熱膨張係数が低いために温度変化に対する寸法安定性が良好であることによる。ガラス繊維 (a)は、通常繊維径8~15 μ m、繊維長1~5 μ mのチョップドストランドタイプのものであり、配合量はフェノール樹脂100重量部に対して130~300重量部の範囲である。130重量部以下ではフェノール樹脂の欠点である脆さが現れて強度低下が問題となることがあり、300重量部以上ではガラス繊維の配向により異方性を生じ、プーリーとして使用される際に受ける熱により後収縮や部分的寸法変化が大きくなる。

【0007】ガラス繊維とともに使用されるマイカ粉 (b) はリン片状の粉末であり、等方性であることから、不均一な寸法変化を小さくし、またガラス繊維によるベルト摩耗を抑える作用がある。炭酸カルシウム、クレー及びウォラストナイト (c) は球状粉末であり、平均粒径が100μm以下のものが使用される。これらの無機基材はマイカ粉とともに寸法変化を小さくし、シリカ粉、ガラス粉やタルクなどに比較して摩耗特性をの効果がより大きいことがわかった。シリカ粉、ガラス粉やタルクなどは強度や寸法安定性は同等程度であるが、摩耗特性が低下するようになる。粒径がこれより大きいと、成形品の平滑さを損なう原因となったり、ピンポイントゲート等を使用している場合、ゲート詰まりを引き起こす恐れがある。

【0008】使用されるマイカ粉(b)はフェノール樹脂100重量部に対して30~100重量部の範囲であり、且つ、炭酸カルシウム、クレー又はウォラストナイト(c)はフェノール樹脂100重量部に対して30~100重量部である。マイカ粉が30重量部未満であるか、あるいは炭酸カルシウム、クレー又はウォラストナイトが30重量部未満では、前記のマイカ粉あるいは炭酸カルシウム、クレー又はウォラストナイトによる等方性の効果が十分でないため後収縮などの寸法変化の改善効果が小さくなり、摩耗特性も不十分となる。マイカ粉が100重量部を越えるか、あるいは炭酸カルシウム、

クレー又はウォラストナイトが100重量部を越えると、基材中のガラス繊維の割合が小さくなり、フェノール樹脂の欠点である脆さが現れ、強度低下が問題となる。なお、ガラス繊維とともに併用される上記無機基材において、成形品寸法の部分的変化の低減化に対する効果としては、マイカ粉は等方性であるだけでなくそのリン片状という特性からその改善効果が最も大きい。

【0009】本発明では、前記ノボラック樹脂、硬化剤としてヘキサミンを使用し、前記無機基材、必要に応じ着色材、離型剤、硬化促進剤等を配合し、ミキシングロール等を用いて混合、混練後粉砕して得た材料を、圧縮成形、トランスファー成形、あるいは射出成形して、樹脂プーリーを得る。このプーリーは通常、金属製インサートを中央に有する。

[0010]

【作用】本発明のフェノール樹脂プーリーは、ガラス繊 (a) を含有することにより機械的強度を良好にし、 更にガラス繊維がベルトを摩耗させるという欠点を改良 し寸法安定性を良好にするためにマイカ粉(b)、及び 炭酸カルシウム、クレー又はウォラストナイトが配合されている。従って、プーリー自体及び相手材を摩耗させることが殆どなく、寸法精度及び機械的強度も良好である。

[0011]

【実施例】以下に、実施例及び比較例について説明する。表1に示す組成の配合物をミキシングロールで混合後粉砕して成形材料を得た。この成形材料を圧縮成形してプーリー及び曲げ強さ測定のためのテストピースを得た。成形条件は金型温度180℃である。プーリーの特性及びテストピースの特性を表1に併せて示した。プーリーの摩耗性、ベルトの摩耗性は、プーリーを通常のゴムを主体としたベルトで100℃空気中、5000rpm、600時間のモーターリングテスト後、プーリー、ベルトの摩耗状態を目視で評価した。また、プーリーの 寸法安定性は、前記モーターリングテストによるプーリーの劣化状態で評価した。

[0012]

【表1】

		実施 例				比較例			
		1	2	3	4	1	2	3	4
	ノボラック型(1)								
組	フェノール樹脂	21	21	21	21	21	21	21	21
成	ヘキサメチレン								
1 1	テトラミン	4	4	4	4	4	4	4	4
重	ガラス繊維	5 2	40	52	5 2	52	5 2	72	0
量	マイカ粉 (2)	10	16	10	10	10	10		7 2
96	炭酸がクウム(3)			10)	
ı	クレー (4)	10	16)	
1	92521711 (5)				10			1	
l	シリカ粉 (6)					10	{		[
t i	タルク (7)						10	i	
	その他	3	3	3	3	3	3	3	3
曲	「強さ(IPa) (8)	140	130	140	140	140	120	170	8.0
ブー	リーの寸法							}	
3	松本(%)	0.12	0.11	0.12	0.12	0.12	0.13	0.15	0.09
摩料	【特性 ブーリー	0	0	0	0	0	0	0	Δ
(9) ベルト	0	0	0	0	0	0	×	0

こりかりない。

- 注(1) ノボラック型フェノール樹脂の数平均分子量800
- (2) マイカ粉の平均粒径80 μm
- (3) 炭酸カルシウムの平均粒径80μm
- (4) クレーの平均粒径80 μm
- (5) ウォラストナイトの平均粒径80μm
- (6) シリカ粉の平均粒径 8 0 μm
- (7) タルクの平均粒径80 μm
- (7) JIS K 7203による(成形:トランスファ成形)
- (8) ◎: 摩耗殆どなし ○: 摩耗小 △: 摩耗中 ×: 摩耗大

[0013]

【発明の効果】本発明のフェノール樹脂プーリーは、主たる基材としてガラス繊維(a)、マイカ粉(b)、及び炭酸カルシウム、クレー又はウォラストナイト(c)

を含有していることにより、耐摩耗性が極めて良好であ り、かつ、寸法精度及び強度が両立して向上しているた

め、その工業的価値は極めて大きいものである。