§9. Определенный интеграл

П.1. Интегральные суммы Дарбу

Пусть на отрезке [a;b] задана некая непрерывная функция f(x). Разобьем отрезок на n частей таких, что $a = x_0 < x_1 < \dots < x_n = b$. Введем обозначения $m_i =$ $\min f(x)$ на отрезке $[x_{i-1};x_i]$, $M_i=\max f(x)$ на отрезке $[x_{i-1};x_i]$ и $\Delta x_i=x_i-x_{i-1}$. Тогда можно ввести понятия верхней и нижней суммы Дарбу: $S(n) = \sum_{i=1}^n M_i \Delta x_i$ – верхняя сумма Дарбу (на рисунке изображена серым, равна площади описанной

ступенчатой фигуры), $ho(n) = \sum_{i=1}^n m_i \Delta x_i$ – нижняя сумма Дарбу (на рисунке изображена зеленым, равна площади вписанной ступенчатой фигуры). При этом всегда выполняется неравен- $\min_{[a:b]} f(x) (b-a) \le \rho_n \le S_n \le \max_{[a:b]} f(x) (b-a)$ ство a).

П.2. Интегральные суммы Римана. Определенный интеграл

Пусть на отрезке [a;b] задана некая функция f(x). Разобьем отрезок на n частей таких, что $a=x_0 < x_1 <$ $\cdots < x_n = b$. Введем обозначение $\Delta x_i = x_i - x_{i-1}$. Выберем точки $\xi_i \in [x_{i-1}; x_i]$, тогда $f(\xi_i) \Delta x_i$ будет соответствовать площади i-го прямоугольника. А выражение $\sigma_n =$ $\sum_{i=1}^n f(\xi_i) \Delta x_i$ будет называться интегральной суммой Римана для f(x) на отрезке [a;b] и равно площади ступенчатой фигуры на этом отрезке.

Если при любых разбиениях отрезка [a;b] таких, что максимальная длина разбитого отрезка стремится к нулю (при любом выборе ξ_i) и сумма σ_n стремится к одному и тому же пределу, то говорят, что функция интегрируема на этом отрезке, а предел называется определенным интегралом. $I=\lim_{\max \Delta x_i o 0} \sum_{i=1}^n f(\xi_i) \Delta x_i =$

 $\int_a^b f(x)dx$. Если функция непрерывна на [a;b], то она интегрируема на [a;b].

Замечание. $\rho_n \leq \sigma_n \leq S_n$, т.к. для любого i выполняется $m_i \leq f(\xi_i) \leq M_i$.

Теорема 8. Для существования интеграла функции f(x) на отрезке [a;b]необходимо и достаточно, чтобы предел $\lim_{n\to\infty}(S_n-\rho_n)$ существовал и был равен нулю.

Замечание. Определенный интеграл – площадь криволинейной трапеции под графиком функции f(x).

§10. Свойства определенного интеграла

П.1. Основные свойства

- 1. Линейность
 - a. $\int_a^b cf(x)dx = c \int_a^b f(x)dx.$
- b. $\int_a^b (f_1(x) + f_2(x)) dx = \int_a^b f_1(x) dx + \int_a^b f_2(x) dx$. Теорема 9 (о знаке интеграла). Пусть некая функция $f(x) \ge 0$ на отрезке [a;b] и пусть существует интеграл $\int_a^b f(x)dx$. Тогда $\int_a^b f(x)dx \geq 0$.

Доказательство. $\int_a^b f(x) dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$. $\Delta x_i > 0$, так как b > a, $f(\xi_i) \ge 0$ так как $f(x) \ge 0$. Выходит, $\sum_{i=1}^n f(\xi_i) \Delta x_i \ge 0$, и, следовательно, $\int_a^b f(x) dx \ge 0$.

Следствие. Пусть $f(x) \geq \varphi(x)$ на отрезке [a;b] и существуют интегралы $\int_a^b f(x) dx$, $\int_a^b \varphi(x) dx$. Тогда $\int_a^b f(x) dx \geq \int_a^b \varphi(x) dx$. Для доказательства достаточно рассмотреть интеграл разности этих функций.

3. $\int_a^b f(x)dx = -\int_b^a f(x)dx$. (во втором случае $\Delta x_i < 0$).

Следствие. $\int_a^a f(x) dx = 0$.

4. Теорема 10 (о разбиении промежутка интегрирования). Пусть некий отрезок [a;b] разбит на отрезки [a;c] и [c;b]. Тогда $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

<u>Доказательство.</u> Такое разбиение подразумевает, что точка c является точкой деления. Тогда $\sum_{i=1}^n f(\xi_i) \Delta x_i = \sum_{i=1}^n f(\xi_i) \Delta x_i$ (до c) + $\sum_{i=1}^n f(\xi_i) \Delta x_i$ (после c). Таким образом, при $\max \Delta x_i \to 0$ выполняется $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.

5. Оценка определенного интеграла. Пусть на некотором отрезке [a;b] выполняется неравенство $m \leq f(x) \leq M$, где $M = \max f(x)$ на отрезке [a;b], $m = \min f(x)$ на отрезке [a;b]. Тогда $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$.

<u>Доказательство.</u> $\sum_{i=1}^n m \Delta x_i \leq \sum_{i=1}^n f(\xi_i) \Delta x_i \leq \sum_{i=1}^n M \Delta x_i$. Первая и последняя части соответственно равны m(b-a) и M(b-a). Средняя же часть равна определенному интегралу.

Замечание. $\int_a^b 1 dx = b - a$.

Следствие. Пусть некоторая функция f(x) на отрезке [a;b] по модулю не превосходит M. Тогда $\left|\int_a^b f(x)dx\right| \leq M(b-a)$.

6. <u>Теорема 11 (неравенство Коши-Буняковского).</u> Пусть некоторая функция f(x) на отрезке [a;b] является произведением двух других функций $f_1(x)$ и $f_2(x)$ и существуют интегралы $\int_a^b f_1^2(x) dx$; $\int_a^b f_2^2(x) dx$; $\int_a^b f_1(x) f_2(x) dx$. Тогда выполняется неравенство $\left| \int_a^b f_1(x) f_2(x) dx \right| \leq \sqrt{\int_a^b f_1^2(x) dx} \sqrt{\int_a^b f_2^2(x) dx}$.

Доказательство. Рассмотрим интеграл $\int_a^b \left(\lambda f_1(x) + f_2(x)\right)^2 dx = \lambda^2 \int_a^b f_1^2(x) dx + 2\lambda \int_a^b f_1(x) f_2(x) dx + \int_a^b f_2^2(x) dx \geq 0$. Представим его в виде $\lambda^2 I_{11} + 2\lambda I_{12} + I_{22} \geq 0$. Так как это выражение является квадратным трехчленом, то оно имеет не более одного корня, а значит $\frac{D}{4} = \lambda^2 (I_{12}^2 - I_{11} I_{22}) \leq 0$, $\lambda^2 > 0$, ее можно опустить. Тогда получаем $\left(\int_a^b f_1(x) f_2(x) dx\right)^2 \leq \int_a^b f_1^2(x) dx \int_a^b f_2^2(x) dx$.

Замечание. Рассмотрим непрерывное множество функций c на отрезке [a;b]. По определению, скалярное произведение двух кусочно-непрерывных на отрезке [a;b] функций (f_1f_2) равно интегралу $\int_a^b f_1(x)f_2(x)dx$. Величину ||f||, равную $\sqrt{(ff)}$ будем называть нормой функции f. Тогда для двух функций f_1 и f_2 из множества c будет выполняться равенство $(f_1f_2) \leq ||f_1||_c ||f_2||_c$. Это другая форма записи неравенства Коши-Буняковского.

П.2. Теорема о среднем

Теорема 12 (о среднем). Пусть некоторая функция f(x) непрерывна на отрезке [a;b]. Тогда существует такая точка $\xi \in (a;b)$, что $f(\xi) = \frac{\int_a^b f(x) dx}{b-a}$.

Доказательство. f(x) принимает на отрезке [a;b] все значения между $M=\max_{[a;b]}f(x)$ и $m=\min_{[a;b]}f(x)$. И $m(b-a)\leq \int_a^b f(x)dx\leq M(b-a)$. Следовательно, $m\leq \frac{\int_a^b f(x)dx}{b-a}\leq M$. А значит, найдется такая точка $\xi\in(a;b)$, что $f(\xi)=\frac{\int_a^b f(x)dx}{b-a}$. $y_{\rm cp}=\frac{\int_a^b f(x)dx}{b-a}$ обобщает среднее значение последовательности $\frac{\sum_{k=1}^n a_k}{n}=a_{\rm cp}$.

Геометрический смысл теоремы о среднем: $f(\xi)(b-a)=\int_a^b f(x)dx$. В правой части выражения записана площадь криволинейной трапеции, которая равна площади прямоугольника, площадь которого записана в левой части выражения.

П.З. Производная интеграла по верхнему пределу

Пусть некоторая функция f(x) непрерывна на отрезке [a;b]. Рассмотрим интеграл $\int_a^x f(t)dt$, где a < x < b, причем $\int_a^x f(t)dt$ будет функцией от x.

Теорема 13. $\left(\int_a^x f(t)dt\right)' = f(x)$.

Доказательство. Возьмем $\int_a^x f(t)dt$ за I(x). Тогда $I(x+\Delta x)-I(x)=\int_a^{x+\Delta x} f(t)dt-\int_a^x f(t)dt=\int_x^{x+\Delta x} f(t)dt=$ (по теореме о среднем) $=f(\xi)\Delta x; \xi\in [x;x+\Delta x]$. Тогда $\lim_{\Delta x\to 0} \frac{\Delta I}{\Delta x}=\lim_{\Delta x\to 0} \frac{\Delta I}{\Delta x}=\lim_{\Delta x\to 0} \frac{f(\xi)\Delta x}{\Delta x}=\lim_{\Delta x\to 0} f(\xi)=f(x)$. Следовательно, существует такой I'(x)=f(x).

Следствие. $d(\int_a^x f(t)dt) = f(x)dx$.