

# Winning Space Race with Data Science

Himanshu Goswami 10-02-2023



#### Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

## **Executive Summary**

- Summary of methodologies
  - Data collection
  - Data wrangling
  - EDA with Data Visualization
  - EDA with SQL
  - Built interactive map with Folium
  - Built Dashboard with Plotly Dash
  - Predictive Analysis (Classification)
- Summary of all results
  - EDA Result
  - Interactive Analytics
  - Predictive Analysis

#### Introduction

- Project background and context
  - The commercial space age is here, and companies are making space travel affordable for everyone. One of them is SpaceX which is appearing as revolutionary.
  - SpaceX advertises Flacon 9 rocket launches on its website, with a cost of 62 million dollars whereas other charge around 165 million dollars which is way too much if we compare.
  - It's possible because SpaceX can reuse the first stage of rocket launch.
- Answer we are trying to find
  - Predict whether the first stage of SpaceX Falcon 9 rocket will land successfully?
  - What are the factors that impact the success and failure of the landing?



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - SpaceX Rest API
  - Web Scrapping from Wikipedia
- Perform data wrangling
  - One Hot Encoding data fields for Machine Learning Algorithms.
  - Data cleaning Removed Null values and Irrelevant Columns.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - Logistic Regression, KNN, SVM and Decision Tree, these 4 models were built and evaluated for best model out of all

#### **Data Collection**

- The following datasets were collected:-
  - SpaceX launch data that was gathered from SpaceX Rest API.
  - This API gave us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications and landing outcome.
  - The SpaceX REST API endpoint, or URL, starts with api.spacexdata.com/v4/
  - Another popular data source for obtaining Falcon 9 Launch data is web scraping using Wikipedia using Python Package

     BeautifulSoup.



## Data Collection - SpaceX API

Data collection with SpaceX REST calls.

• GitHub URL – Click Here



## **Data Collection - Scraping**

 Web Scrapping from Wikipedia

GitHub URL – Click Here



## **Data Wrangling**

- Checked Null Values
- Performed EDA on various features
- Handled Null Values
- Removed irrelevant features

• GitHub URL – Click Here



#### **EDA** with Data Visualization

• GitHub URL – Click Here













#### **EDA** with SQL

- SQL queries performed:
  - Displaying the names of the unique launch sites in the space mission
  - Displaying 5 records where launch sites begin with the string 'CCA'
  - Displaying the total payload mass carried by boosters launched by NASA (CRS)
  - Displaying average payload mass carried by booster version F9 v1.1
  - List the date when the first successful landing outcome in ground pad was acheived.
  - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
  - List the total number of successful and failure mission outcomes
  - List the names of the booster\_versions which have carried the maximum payload mass. Use a subquery
  - List the records which will display the month names, failure landing\_outcomes in drone ship, booster versions, launch\_site for the months in year 2015.
  - Ranking the count of successful landing\_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.
- GitHub URL <u>Click Here</u>

## Build an Interactive Map with Folium



- GitHub URL Click Here
- Folium HTML Map Click Here

## Build a Dashboard with Plotly Dash





- GitHub URL Click Here
- Charts showing success rates of Launch Sites and Payloads.





## Predictive Analysis (Classification)

- SVM, KNN and Logistic Regression models gave highest and same accuracy of 83% while Decision Tree gave 78% Accuracy.
- Top 3 models have similar confusion matrix too.









GitHub URL – Click Here

#### Results

- KSC LC-39A launch site has highest success rate of 77% as compared to other 3 launch sites.
- The success of SpaceX launches is directly proportional to the time in years. They eventually got better and improved their success rate.
- Launch sites are at a safer distance from cities, well connected to roads, railways and right beside coastal.
- Low weighted payloads have higher success rate than heavier ones.
- SVM, KNN and Logistic Regression models performed best in terms of accuracy so proceeding with any of them will work well.



#### Flight Number vs. Launch Site



- Initial launches of rockets has far less success rate than later ones.
- Sites VAFB SLC-4E and KSC LC 39A, have success rate of more than 77%. Considering them as our launch site would be a good preference.

#### Payload vs. Launch Site



- At VAFB SLC-4E site, no rockets were launched for payload more than 10,000 Kg.
- Even though CCAFS SLC-40 site has less success rate, but it faced no failure after 6500 Kg payload.
- Site KSC LC-39A is highly successful for weights under 5500 Kg.

#### Success Rate vs. Orbit Type



- ES-L1, GEO, HEO are orbits with high altitude (35,000+ Km) and all of them have success rate of 100%.
- Strangely, GTO is also a high-altitude orbit but with least success rate out of all!
- SSO orbit is a low level (600 Km) orbit with 100% success rate.

## Flight Number vs. Orbit Type



- LEO orbit faced 2 initial failures then success rate stay high after that.
- SSO orbit never faced any failure. 5/5 successful launches.
- GTO and ISS orbits are important ones and that's why we see many launches for them.
- VLEO has become SpaceX favorite lately because of Starlink Project.

## Payload vs. Orbit Type



- SpaceX has sent heaviest payloads on VLEO orbit which has low altitude.
- Light payload rockets has been sent on farthest orbits.
- SpaceX has been more successful with payloads over 7000kg than lighter payloads.

## Launch Success Yearly Trend



- For 3 years 2010-12, there was not even a single successful launch.
- 2013 was the breakthrough year for SpaceX.
- SpaceX had seen growing success rate from 2013 to 2020.

#### All Launch Site Names

- Query :- SELECT DISTINCT Launch\_Site FROM SPACEXTBL
- Result :-

#### Launch\_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

# Launch Site Names Begin with 'CCA'

- Query :- SELECT \* FROM SPACEXTBL WHERE Launch\_Site LIKE 'CCA%' LIMIT 5;
- Result :-

| Date           | Time<br>(UTC) | Booster_Version | Launch_Site     | Payload                                                             | PAYLOAD_MASSKG_ | Orbit        | Customer           | Mission_Outcome | Landing<br>_Outcome    |
|----------------|---------------|-----------------|-----------------|---------------------------------------------------------------------|-----------------|--------------|--------------------|-----------------|------------------------|
| 04-06-<br>2010 | 18:45:00      | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon Spacecraft<br>Qualification Unit                             | 0               | LEO          | SpaceX             | Success         | Failure<br>(parachute) |
| 08-12-<br>2010 | 15:43:00      | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon demo flight C1, two<br>CubeSats, barrel of Brouere<br>cheese | 0               | LEO<br>(ISS) | NASA<br>(COTS) NRO | Success         | Failure<br>(parachute) |
| 22-05-<br>2012 | 07:44:00      | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon demo flight C2                                               | 525             | LEO<br>(ISS) | NASA<br>(COTS)     | Success         | No attempt             |
| 08-10-<br>2012 | 00:35:00      | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX CRS-1                                                        | 500             | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt             |
| 01-03-<br>2013 | 15:10:00      | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX CRS-2                                                        | 677             | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt             |

## Total Payload Mass Launched by NASA (CRS)

- Query :- SELECT SUM(PAYLOAD\_MASS\_\_KG\_)
   FROM SPACEXTBL WHERE Customer = 'NASA (CRS)'
- Result :-

```
SUM(PAYLOAD_MASS__KG_)
45596
```

## Average Payload Mass by F9 v1.1

- Query :- SELECT AVG(PAYLOAD\_MASS\_\_KG\_) FROM SPACEXTBL
   WHERE Booster\_Version LIKE 'F9 v1.1';
- Result :-

AVG(PAYLOAD\_MASS\_\_KG\_)
2928.4

## First Successful Ground Landing Date

- Query :- SELECT Date FROM SPACEXTBL
   WHERE `Landing\_Outcome` = "Success (ground pad)" LIMIT 1;
- Result :-

Date

22-12-2015

#### Successful Drone Ship Landing with Payload between 4000 and 6000

- Query :- SELECT Booster\_Version FROM SPACEXTBL
   WHERE `Landing\_Outcome` = "Success (drone ship)"
   AND PAYLOAD\_MASS\_\_KG\_ BETWEEN 4000 AND 6000;
- Result :-

#### Booster\_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

#### Total Number of Successful Mission Outcomes

- Query :- SELECT COUNT(Mission\_Outcome) AS Success\_Outcome
   FROM SPACEXTBL WHERE Mission\_Outcome LIKE 'Succ%';
- Result :-

Success\_Outcome 100

# **Boosters Carried Maximum Payload**

Query :- SELECT Booster\_Version, PAYLOAD\_MASS\_\_KG\_ FROM SPACEXTBL
 WHERE PAYLOAD\_MASS\_\_KG\_ = (SELECT MAX(PAYLOAD\_MASS\_\_KG\_)
 FROM SPACEXTBL)

• Result :-

| Booste | er_Version | PAYLOAD_MASS | KG_   |
|--------|------------|--------------|-------|
| F9 E   | 35 B1048.4 |              | 15600 |
| F9 E   | 35 B1049.4 |              | 15600 |
| F9 E   | 35 B1051.3 |              | 15600 |
| F9 E   | 35 B1056.4 |              | 15600 |
| F9 E   | 35 B1048.5 |              | 15600 |
| F9 E   | 35 B1051.4 |              | 15600 |
| F9 E   | 35 B1049.5 |              | 15600 |
| F9 E   | 35 B1060.2 |              | 15600 |
| F9 E   | 35 B1058.3 |              | 15600 |
| F9 E   | 35 B1051.6 |              | 15600 |
| F9 E   | 35 B1060.3 |              | 15600 |
| F9 E   | 35 B1049.7 |              | 15600 |

#### 2015 Launch Records

- Query :- SELECT \* FROM SPACEXTBL
   WHERE Landing\_Outcome LIKE 'Success%'
   AND Date BETWEEN ('2015-01-01' and '2015-12-31') ORDER BY Date DESC;
- Result :-

| time_utc_ | booster_version | launch_site     | payload        | payload_masskg_ | orbit        | customer                  | mission_outcome | landing_outcome      |
|-----------|-----------------|-----------------|----------------|-----------------|--------------|---------------------------|-----------------|----------------------|
| 14:39:00  | F9 FT B1031.1   | KSC LC-39A      | SpaceX CRS-10  | 2490            | LEO<br>(ISS) | NASA (CRS)                | Success         | Success (ground pad) |
| 17:54:00  | F9 FT B1029.1   | VAFB SLC-4E     | Iridium NEXT 1 | 9600            | Polar<br>LEO | Iridium<br>Communications | Success         | Success (drone ship) |
| 05:26:00  | F9 FT B1026     | CCAFS LC-<br>40 | JCSAT-16       | 4600            | GTO          | SKY Perfect JSAT<br>Group | Success         | Success (drone ship) |
| 04:45:00  | F9 FT B1025.1   | CCAFS LC-<br>40 | SpaceX CRS-9   | 2257            | LEO<br>(ISS) | NASA (CRS)                | Success         | Success (ground pad) |
| 21:39:00  | F9 FT B1023.1   | CCAFS LC-<br>40 | Thaicom 8      | 3100            | GTO          | Thaicom                   | Success         | Success (drone ship) |
|           |                 | CCAFS LC-       |                |                 |              | SKY Perfect ISAT          |                 |                      |

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Query :- SELECT \* FROM SPACEXTBL

  WHERE `Landing\_Outcome` LIKE 'Success%'

  AND Date BETWEEN '2010-06-04' AND '2017-03-20' ORDER BY Date DESC;
- Result :-

| Success (drone ship) | Success | Thaicom                   | GTO          | 3100 | Thaicom 8                               | CCAFS LC-<br>40 | F9 FT B1023.1 | 21:39:00 | 2016-05-<br>27 |
|----------------------|---------|---------------------------|--------------|------|-----------------------------------------|-----------------|---------------|----------|----------------|
| Success (drone ship) | Success | SKY Perfect JSAT<br>Group | GTO          | 4696 | JCSAT-14                                | CCAFS LC-<br>40 | F9 FT B1022   | 05:21:00 | 2016-05-<br>06 |
| Success (drone ship) | Success | NASA (CRS)                | LEO<br>(ISS) | 3136 | SpaceX CRS-8                            | CCAFS LC-<br>40 | F9 FT B1021.1 | 20:43:00 | 2016-04-<br>08 |
| Success (ground pad) | Success | Orbcomm                   | LEO          | 2034 | OG2 Mission 2 11 Orbcomm-OG2 satellites | CCAFS LC-<br>40 | F9 FT B1019   | 01:29:00 | 2015-12-       |



#### **Location of Launch Sites**



- Safest place to launch a rocket is none other but a coastline.
- In above pics we can see 1 Site (VAFB SLC-4E) is located at western coast of USA while other 3 are located on the eastern coast of USA.

#### Success/Failed Launches of Sites









VAFB SLC-4E Site

KSC LC-39A Site

CCAFS SLC-40 Site

CCAFS LC-40 Site

- VAFB SLC-4E: 10 Rockets launched with 40% Success Rate.
- KSC LC-39A: 13 Rockets launched with 77% Success Rate.
- CCAFS SLC-40: 7 Rockets launched with 43% Success Rate.
- CCAFS LC-40: 26 Rockets launched with 27% Success Rate.

### Proximities of Launch Site: VAFB SLC-4E



Distance from Coastline & Railway



Distance from Highway & City

- 1.44 Km away from Coastline
- 1.26 Km away from Railway
- 5.58 Km away from Major Highway (Ocean Avenue)
- 14 Km away from Nearest City (Lompoc)

### Proximities of Launch Site: KSC LC-39A





Distance from Highway & Railway

Distance from Coastline & City

- 3.92 Km away from Coastline
- 0.69 Km away from Railway
- 0.84 Km away from Major Highway (Kennedy Parkway North)
- 14.77 Km away from Nearest City (Titusville)

### Proximities of Launch Site: CCAFS SLC-40



Distance from Highway & Coastline



Distance from Railway



Distance from City

- 0.87 Km away from Coastline
- 1.29 Km away from Railway
- 0.59 Km away from Major Highway (Samuel C Phillips Parkway)
- 18 Km away from Nearest City (Canaveral)

### Proximities of Launch Site: CCAFS LC-40



Distance from Highway & Coastline



Distance from Railway



Distance from City

- 0.94 Km away from Coastline
- 1.34 Km away from Railway
- 0.65 Km away from Major Highway (Samuel C Phillips Parkway)
- 18 Km away from Nearest City (Canaveral)



#### Success Launch Counts For All Sites



- Site KSC LC-39A has highest success launch rate as compared to other 3 sites.
- CCAFS SLC-40 has lowest success rate. It could be because initially this site was used when SpaceX started.

## Launch Site with Highest Launch Success Ratio



- Out of all sites, KSC LC-39A came out with highest Launch Success Ratio.
- 77% Launches had been successful for SpaceX at this site.
- 23% Launches failed here.

## < Dashboard Screenshot 3>





 Low Weighted Payloads have higher success chances than heavy weighted payloads.



# Classification Accuracy



- Logistic Regression, SVM and KNN algorithms topped the chart with 83% Accuracy each.
- Decision Tree couldn't cope up with other 3 and gave 78% accuracy.

#### **Confusion Matrix**







- Confusion Matrix of winner models SVM, LR & KNN are same.
- We can see an error rate in top right quadrant where it is predicting "Rocket will Land" but it didn't land.

#### Conclusions

- KSC LC-39A site has highest rate of launching rockets successfully. Picking this site
  would be preferable.
- For high altitude we can choose these orbits ES-L1, GEO, HEO. These three orbits have very high success rate.
- For low altitude we can choose this orbit SSO.
- Boosters F9 FT B1021.2, 1022, 1026, 1031.2 are successful with for Drone Ship Landing with weights between 4000Kg and 6000Kg.
- Low weighted payloads perform better than heavier ones.
- SVM, KNN and Logistic Regression models were best in terms of prediction accuracy with 83% accuracy each.

48

# Appendix

• GitHub repository with all files -

https://github.com/HimGos/IBM-Data-Science-Project

• Interactive Map – Map Link

