

SpiegeLib: An Automatic Synthesizer Programming Library

Jordie Shier, George Tzanetakis, and Kirk McNally

Introduction

- Automatic synthesizer programming (ASP) is the field of research focused on using algorithmic techniques to generate parameter settings and patch connections for synthesizers.
- Research in ASP began in late the 1970s [1] and since then a body of work
 has emerged exploring a variety of methods including evolutionary
 algorithms [2,3] and deep learning techniques [4,5] for automatically
 programming synthesizers.
- This work presents SpiegeLib, an open source software library designed to support continued development in ASP and to promote reproducible research [6] by providing a platform for sharing implementations.
- The name SpiegeLib pays homage to Laurie Spiegel, an early female pioneer in electronic music. It also stands for Synthesizer Programming with Intelligent Exploration, Generation, and Evaluation Library.
- SpiegeLib is inspired by and builds on work by Yee-King et al. [4]

Design of SpiegeLib

- Written in the Python programming language.
- Object-oriented API with base classes for writing custom implementations.
- Components for constructing research pipelines including classes for integrating with and algorithmically programming VST synthesizers as well as evaluating results using objective and subjective methods.
- Currently included algorithms based on prior work are shown in Table 1. Please refer to PDF handout for more information on these algorithms.
- Packaging and delivery through the Python Packaging Index (PyPI).
- Full library documentation and installation instructions available online¹.

Table 1 - Algorithms currently implemented in SpiegeLib

Audio Features	Deep Learning Estimators	Evolutionary Estimators
FFT	MLP [4]	Basic GA [2]
STFT	LSTM [4]	NSGA III [3]
MFCC	LSTM++ [4]	Objective Evaluation
Spectral*	CNN [5]	MFCC Evaluation

^{*}Spectral features include centroid, bandwidth, flatness, roll-off, and contrast

¹ https://spiegelib.github.io/spiegelib/

SpiegeLib Example: Sound Matching Experiment

- In synthesizer sound matching, the goal is to use an algorithm to estimate synthesizer parameters to replicate a target sound as closely as possible.
- In this experiment we attempt to sound match Dexed [7], a VST emulation of the Yamaha DX7 frequency modulation (FM) synthesizer, and compare the different estimator algorithms currently implemented in SpiegeLib.
- For detailed information and to hear results, visit the experiment site via the QR code at the top left corner of this poster, or follow the link blelow¹.

1. Configure VST synthesizer plugin for experiment using SynthVST class

 To reduce the complexity we focus on programming a subset of nine parameters. This turns Dexed into a simple two operator FM synthesizer.

2. Generate datasets and train deep learning models

• Each of the four deep learning estimators is trained over 100 epochs with early stopping if validation loss is stagnant for 10 epochs.

Figure 1 – The DatasetGenerator class generates random patches for a synthesizer and runs audio feature extraction on the resulting audio.

3. Sound matching and evaluation

- A set of 25 target sound files generated from Dexed used for evaluation.
- The mean absolute error (MAE) between MFCCs of the audio target and the results of sound matching is used to evaluate performance.

Figure 2 – The SoundMatch class estimates parameters for a given synthesizer using an instance of an Estimator class.

¹ https://spiegelib.github.io/spiegelib/examples/fm sound match.html

Experimental Results

- Results show that the NSGA III multi-objective genetic algorithm performed the best overall. A summary of all results is shown in Table 2, and a histogram of the results for each estimator is shown in Table 3.
- Results show MAE between MFCCs of the target audio and the synthesized sound match. **Smaller values indicate a closer match.**

Table 2 - Results of MFCC Evaluation

Table 2 - Results of MFCC Evaluation					
Mean	Stdev	Min	Max		
8.55	6.77	1.92	34.12		
6.12	3.76	1.20	19.36		
4.91	6.50	2.12	21.51		
7.88	4.26	2.68	20.89		
2.25	2.58	0.70	11.17		
0.81	0.89	0.001	3.06		
	Mean 8.55 6.12 4.91 7.88 2.25	MeanStdev8.556.776.123.764.916.507.884.262.252.58	MeanStdevMin8.556.771.926.123.761.204.916.502.127.884.262.682.252.580.70		

Future Work

- Planned expansions to the library include adding more deep learning algorithms including different CNN configurations and a generative model.
- Additional programming methods are also planned including interactive approaches and sound matching with vocal imitations.
- Interested researchers and developers are encouraged to contribute.

References

- [1] Justice, James. "Analytic signal processing in music computation." *IEEE Transactions on Acoustics, Speech, and Signal Processing* 27.6 (1979): 670-684.
- [2] Horner, Andrew, James Beauchamp, and Lippold Haken. "Machine tongues XVI: Genetic algorithms and their application to FM matching synthesis." *Computer Music Journal* 17.4 (1993): 17-29.
- [3] Tatar, Kıvanç, Matthieu Macret, and Philippe Pasquier. "Automatic synthesizer preset generation with PresetGen." *Journal of New Music Research* 45.2 (2016): 124-144.
- [4] Yee-King, Matthew John, Leon Fedden, and Mark d'Inverno. "Automatic programming of VST sound synthesizers using deep networks and other techniques." *IEEE Transactions on Emerging Topics in Computational Intelligence* 2.2 (2018): 150-159.
- [5] Barkan, Oren, et al. "InverSynth: Deep Estimation of Synthesizer Parameter Configurations From Audio Signals." *IEEE/ACM Transactions on Audio, Speech, and Language Processing* 27.12 (2019): 2385-2396.
- [6] Vandewalle, Patrick, Jelena Kovacevic, and Martin Vetterli. "Reproducible research in signal processing." *IEEE Signal Processing Magazine* 26.3 (2009): 37-47.
- [7] https://asb2m10.github.io/dexed/