Page 4 of 21

14046019667 From: Mary Kilgore

Serial No.: 10/632,491 Art Unit: 1732

Please amend the present application as follows:

Claims

The following is a copy of Applicant's claims that identifies language being added with

underlining ("___") and language being deleted with strikethrough ("---"), as is applicable:

1. (Currently amended) A method for forming a masonry unit, said method comprising the

steps of:

raising a pallet to a bottom surface of a mold;

inserting a filler plug into the side of the mold between a partition plate and a pallet;

dispensing mix into the mold;

compressing the mix with a shoe; and

responsive to the compressing, forming a masonry unit with a filler plug effect in the

compressed mix whereby a masonry unit having a filler plug effect is provided.

2. (Original) The method of claim 1, further including the step of removing the filler plug.

3. (Original) The method of claim 1, further including the step of stripping the architectural

concrete masonry unit from the mold by lowering the pallet.

4. (Currently amended) The method of claim 1, wherein the step of forming includes

forming a bottom bevel in the compressed mix such that a masonry unit with a bottom bevel is

formed.

-2-

PAGE 4/21 * RCVD AT 5/26/2006 9:55:49 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/10 * DNIB:2738300 * CSID:14046019667 * DURATION (mm-ss):11-40

5. (Currently amended) The method of claim 1, wherein the step of forming includes

forming a mortar buffer surface in the compressed mix such that a masonry unit with a mortar

buffer surface is formed.

6. (Cancelled)

To:

7. (Currently amended) The method of claim 1, wherein the step of forming further

includes forming an substantially constant angle of inclination between a front surface and

opposing side surfaces, a top surface, and a bottom surface of the compressed mix corresponding

to a masonry unit to be formed by compressing the mix with the shoe against opposing side

gussets and the filler plug.

8. (Previously presented) The method of claim 7, wherein the compressing the mix with the

shoe against opposing side gussets and the filler plug includes compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug.

9. (Currently amended) The method of claim 8, wherein the compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes forming the filler plug effect in the compressed mix with an

compressing the mix with the shoe against approximately 30 degree angled surface of the filler

plug, the 30 degree angled surface-referenced from a bottom surface of the filler plug.

-3-

10. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes forming the filler plug effect in the compressed mix with

compressing the mix with the shoe against an angled surface of the filler plug having an angular

range of approximately 10-60 degrees, the range referenced from a bottom surface of the filler

plug.

To: Page 6 of 21

11. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes forming the filler plug effect in the compressed mix with

compressing the mix with the shoe against an angled surface of the filler plug having a width of

approximately 7/32 inch.

12. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes forming the filler plug effect in the compressed mix with

compressing the mix with the shoe against an angled surface of the filler plug having a width in

the range of approximately 1/16 inch - 1/2 inch.

13. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes forming compressing the mix with an the angular surface

-4-

PAGE 6/21 * RCVD AT 5/26/2008 9:55:49 AM (Eastern Daylight Time) * 8VR:USPTO-EFXRF-3/10 * DNIB:2738300 * CSID:14046019567 * DURATION (mm-ss):11-40

14046019667 From: Mary Kilgore Page 7 of 21

Serial No.: 10/632,491

Art Unit: 1732

between the front and top surfaces of the compressed mix with of the shoe having an angle of

approximately 150-30 degrees between a bottom surface of the shoe and the angled surface.

14. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes forming compressing the mix with an the angular surface

between the front and top surfaces of the compressed mix of the shoe havingwith an angle in a

range of approximately 120 17010-60 degrees between a bottom surface of the shoe and the

angled surface.

To:

15. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes forming compressing the mix with an the angular surface

between the front and top surfaces of the compressed mix of the shoe having with -a width in the

range of approximately 1/16 inch - 1/2 inch.

16. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes compressing forming the mix with an the angular surface

between the front and top surfaces of the compressed mix of the shoe havingwith -a width of

approximately 7/32 inch.

-5-

PAGE 7/21 * RCVD AT 5/26/2006 9:55:49 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/10 * DNIS:2738300 * CSID:14046019667 * DURATION (mm-ss):11-40

17. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes forming compressing the mix with the shee against thethe

angled surface between the front and side surfaces of the compressed mix with of the opposing

side gussets having an angle of approximately 150-30 degrees between a partition plate in contact

with the opposing side gussets and the angled surface of the opposing side gussets.

18. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes eompressing forming the mix with the shee against the angled

surface between the front and side surfaces of the compressed mix with of the opposing side

gussets having an angle in a range of approximately 120 - 170 degrees between a partition plate

in contact with the opposing side gussets and the angled surface of the opposing side gussets.

19. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes compressing forming the mix-with the shoe against the angled

surface between the front and side surfaces of the compressed mix with of the opposing side

gussets having a width in the range of approximately 1/16 inch - ½ inch.

20. (Currently amended) The method of claim 8, wherein compressing the mix with an

angular surface of the shoe against an angular surface of the opposing side gussets and an angular

surface of the filler plug includes eompressing forming the mix with the shoe against the angled

-6-

PAGE 8/21 * RCVD AT 5/26/2006 9:55:49 AM (Eastern Daylight Time) * SVR:USPTO-EFXRF-3/10 * DNIB:2738300 * CSID:14046019667 * DURATION (mm-ss):11-40

surface between the front and side surfaces of the compressed mix with of the opposing side

gussets having a width of approximately 7/32 inch.

21. (Canceled)

To: Page 9 of 21

22. (Previously presented) The method of claim 1, wherein the step of inserting a filler plug

includes the step of inserting a plurality of filler plugs substantially simultaneously.

23. (Currently amended) The method of claim 1, further including forming a bottom corner

bevel in the compressed mix corresponding to at least one of a segmented retaining wall block, a

concrete masonry unit, and an architectural concrete masonry unit by using a "T" portion of the

filler plug, the "T" portion having a beveled surface.

24. (Currently amended) A method for forming masonry units, said method comprising the

steps of:

raising a pallet to contact a bottom surface of a mold having gussets connected to internal

surfaces of the mold;

inserting a plurality of filler plugs substantially simultaneously into the side of the mold

between a plurality of partition plates and the pallet;

dispensing mix into the mold;

compressing the mix with a shoe; and

-7-

Serial No.: 10/632,491

Art Unit: 1732

responsive to the compressing, forming a plurality of masonry units with-beveled-edge surfaces on the compressed mix corresponding to a masonry unit, each masonry unit having athe beveled-edge surfaces joining a front surface to a top surface, a bottom surface, and side surfaces.