Universidad de los Andes-Dpto. de Física Mecánica Cuántica I-2014/II

Tarea 7

- 1. Cohen-Tannoudji et al., Complemento MV, ejercicio 1.
- 2. Cohen-Tannoudji et al., Complemento MV, ejercicio 2.
- 3. Cohen-Tannoudji et al., Complemento MV, ejercicio 3.
- 4. Estados tipo "gato de Schrödinger".- Considere un oscilador armónico uni-dimensional, de masa m y frecuencia natural ω . El Hamiltoniano es

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 x^2 \tag{1}$$

Los estados propios de H los marcamos como $|n\rangle$ con energías $E_n = \hbar\omega(n+1/2)$. Trabajaremos con los operadores escalera \hat{a} y \hat{a}^{\dagger} . Los estados propios del operador \hat{a} se denominan estados cuasi-clásicos o estados coherentes, por razones que reforzaremos a continuación.

(a) Considere un número complejo arbitrario α . Demuestre que el estado

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \tag{2}$$

es un estado normalizado del operador destrucción \hat{a} con valor propio α , es decir $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$.

- (b) Calcule el valor esperado de la energía en el estado coherente $|\alpha\rangle$.
- (c) Demuestre que en un estado coherente se tiene siempre la igualdad mínima de incertidumbres de Heisenberg $\Delta x \Delta p = \hbar/2$.
- (d) Suponga que al instante t=0, el oscilador está en el estado coherente $|\alpha_0\rangle$ con $\alpha_0=\rho e^{i\phi}$ donde ρ es un número real positivo. Demuestre que en cualquier instante posterior t el oscilador se encontrará en un estado que se podrá escribir como $|\Psi(t)\rangle = e^{-i\omega t}|\alpha(t)\rangle$. Determine el valor de $\alpha(t)$ en términos de ρ , ϕ , ω y t.
- (e) Como continuación del literal anterior, calcule $\langle x(t) \rangle$ y $\langle p(t) \rangle$. Tome el límite $|\alpha| >> 1$ y justifique por qué estos estados son llamados estados cuasi-clásicos.

Durante el intervalo de tiempo [0,T] se añade al oscilador armónico un acoplamiento adicional dado por

$$\hat{W} = \hbar g (\hat{a}^{\dagger} \hat{a})^2 \tag{3}$$

Suponga que g es mucho más grande que ω y también $\omega T << 1$. Por lo tanto, se puede hacer la aproximación que, durante [0,T], el Hamiltoniano del sistema es simplemente \hat{W} . Al instante t=0, el sistema está en el estado coherente $|\Psi(0)\rangle = |\alpha\rangle$.

- (f) Demuestre que los estados $|n\rangle$ son también estados propios de \hat{W} , y escriba la expansión del estado $|\Psi(t)\rangle$ al instante T en la base $\{|n\rangle\}$.
- (g) En qué se convierte $|\Psi(t)\rangle$ en los casos particulares $T=2\pi/g$ y $T=\pi/g$?.
- (h) Haga ahora $T = \pi/(2g)$. Demuestre que

$$|\Psi(t)\rangle = \frac{1}{\sqrt{2}} (e^{-i\pi/4} |\alpha\rangle + e^{i\pi/4} |-\alpha\rangle) \tag{4}$$

Discuta el significado de este estado de superposición de dos estados cuánticos macroscópicos diferentes cuando $|\alpha| \gg 1$. Estos estados son denominados estados Gato de Schrödinger.