Is vagueness rational?

Presentation of Bachelor-Thesis

Benjamin Steinert

Philosophische Fakultät Seminar für Sprachwissenschaft

11.06.2018

Misinterpretation

(https://xkcd.com/1984/)

Problem Statement

- Why is language vague?
- Which processes enable us to understand vague adjectives like tall?
- What is the exact semantics of such vague terms?
- Is vagueness rational?

Contents

Pragmatics and Game Theory

RSA - Model

Simulation

Simulation Results

Discussion

Pragmatics and Game Theory

- Pragmatics is a subfield of linguistics.
- (Evolutionary) Game theory analyzes strategic interaction between individuals/agents.
- An evolutionary stable strategy cannot be further improved by other strategies in a population.

Adjectival vagueness in language use

Characteristics of vague adjectives:

- Existence of borderline cases.
- Threshold semantics.

Schematic presentation of crisp and vague denotations

(a) Crisp meaning function, according to $P(\theta)$ in figure (c).

(d) Uncertainty about the exact value of θ .

RSA - Model

- The rational speech acts model (RSA model) is a cognitive model of language-understanding and -production.
- Bayes' theorem: $P(A \mid B) \propto P(B \mid A) \cdot P(A)$.
- An informative speaker chooses utterances, depending on their informativity for a hypothetical literal listener.
- A pragmatic listener infers world states (given a message) by reasoning about the speaker model and taking into account alternative messages.

Extension to RSA by Bergen & Goodman (2012)

Agents are defined by **types**, that represent the semantic understanding:

Literal listener:

$$P_{L0}(w \mid m, [\mu, \sigma, \alpha]) = \llbracket m \rrbracket^{w,\mu,\sigma} \cdot Pr(w)$$

Informative speaker:

$$P_{S1}(m \mid w, [\mu, \sigma, \alpha]) \propto exp(\alpha \cdot log(P_{L0}(w \mid m, [\mu, \sigma, \alpha])))$$

Pragmatic listener:

$$P_{L_1}(w \mid m, [\mu, \sigma, \alpha]) \propto P_{S_1}(m \mid w, [\mu, \sigma, \alpha]) \cdot Pr(w)$$
:

With: w = world state (e.g. height), m = message.

Pr = Prior.

 $\mu, \sigma =$ Threshold parameters,

 $\alpha =$ "Rationality" parameter

Implementation of vagueness

Literal vague meaning of tall and not-tall:

Literal listener L_0 - **Posterior**

$$P_{L0}(w \mid m, [\mu, \sigma, \alpha]) = \llbracket m \rrbracket^{w,\mu,\sigma} \cdot Pr(w)$$
:

Informative speaker S_1 - Posterior

$$P_{S1}(m \mid w, [\mu, \sigma, \alpha]) \propto exp(\alpha \cdot log(P_{L0}(w \mid m, [\mu, \sigma, \alpha])))$$
:

(b) S1-type: $\mu = 1.5$, $\sigma = 0.3$, $\alpha = 100$

Simulation

Pragmatic listener L_1 - Posterior

$$P_{L_1}(w \mid m, [\mu, \sigma, \alpha]) \propto P_{S_1}(m \mid w, [\mu, \sigma, \alpha]) \cdot Pr(w)$$
:

Simulation

Goal of simulation

- · Agents behave according to RSA.
- Examine effect of different semantic beliefs.
- Find out best strategy.

RSA - Model

Measure of communicative success: Expected Utility

The **Expected Utility (EU)** is calculated as followed:

$$EU(t_{1}, t_{2}) = \sum_{w} \sum_{m} 0.5 \cdot \left[P_{S_{1}}(m \mid w, t_{1}) \cdot P_{L_{1}}(w \mid m, t_{2}) \cdot Pr(w) + P_{S_{1}}(m \mid w, t_{2}) \cdot P_{L_{1}}(w \mid m, t_{1}) \cdot Pr(w) \right]$$

Simulation set-up

In the simulation, the types are combined from the following parameter spaces:

$$\mu \sim \{0, 0.1, 0.2, ..., 1.9\}$$

$$\sigma \sim \{0.001, 0.1, 0.2, ..., 1.9\}$$

$$\alpha \sim \{1, 5, 10, 50, 100\}$$

$$M = \{short, not - short, tall, not - tall\}$$

Simulation Results / EU data

The **Expected Utility** values are displayed in a **heatmap** visualization. Color-key-mapping:

Simulation

Effect of parameter α

Effect of parameter μ

Simulation

Effect of parameter σ

Pragmatics and Game Theory

RSA - Model

Discussion

Interaction effect of parameters α and σ

(a) Effect of σ on EU-scores with $\alpha = 1$.

(b) Effect of σ on EU-scores with $\alpha = 10$.

(c) Effect of σ on EU-scores with $\alpha = 50$.

Evolutionary stable strategies

With S = set of possible strategies. Strategy s_i is an ESS, if for all $s_j \neq s_i \in S$:

$$1.EU(s_i, s_i) \ge EU(s_j, s_i)$$
 and $2.EU(s_i, s_j) > EU(s_j, s_j)$

The only ESS is:

$$\mathit{type_{opt}} = \left[\mu = 0.8, \sigma = 0.5, \alpha = 100\right]$$

Discussion and Conclusion

- Pragmatic recursive reasoning allows for interpretation of vague adjectives.
- Rational agents can make use of vagueness.
- · Vagueness indeed seems to be rational.

Thank you!

