#### 2021.02.03 冬のLAシンポジウム2020

# ラベル付き木に対する索引構造

#### 九州大学 稲永俊介

Towards a complete perspective on labeled tree indexing: new size bounds, efficient constructions, and beyond

情報処理学会 60周年記念論文

#### ラベル付き木

記号の連鎖である**文字列**は, 辺を文字でラベル付けしたパスと見なせる.

ラベル付き木は、文字列の自然な一般化であり、 また文字列集合のコンパクトな表現でもある.



#### ラベル付き木の索引問題

ラベル付き木上の部分パス照合クエリのための データ構造(索引)のサイズとその構築方法を考える.

#### 問題

前処理入力: ラベル付き木 T

クエリ入力: パターン文字列 P

クエリ出力: P と合致する T のすべての部分パス

パス文字列の読み方を2通り考える:

■ 順木 T:パスを 根から葉に向かって読む.

■ 逆木  $T^R$ : パスを 葉 から 根 に向かって読む.

## 順木/逆木の索引問題

#### 順木工



 $\mathsf{DAWG}(\mathcal{T})$   $\checkmark$   $\mathcal{T}$ の部分文字列を  $\bigcirc$  受理するオートマトン



#### 逆木 $\mathcal{T}^R$



パターン
$$P^R = \mathbf{ba}$$



## 順木に対する索引構造

順木Tに対する



順木工

## 逆木に対する索引構造



## **DAWG (Directed Acyclic Word Graph)**

順木Tの部分文字列(部分パス)Xが **左極大** である  $\Leftrightarrow$ 

- (1)  $aX \ge bX$  が T の部分文字列である文字 a, b ( $a \ne b$ ) が存在, or
- (2) X は順木 $\mathcal{T}$ の根で始まる出現を持つ.





- $lacksymbol{\square}$  逆木 $\mathcal{T}^R$  に対する DAWG も同様に定義.
- 文字列に対する DAWG [Blumer et al.] をラベル付き木に拡張.

## Suffix Trees (接尾辞木)

順木 $\Upsilon$ の部分文字列(部分パス) X が 右極大 である  $\Leftrightarrow$  (1) Xa と Xb が  $\Upsilon$  の部分文字列である文字 a, b ( $a \neq b$ ) が存在, or (2) X は順木 $\Upsilon$ の葉で終わる出現を持つ.

# 順木T c a b b c b

#### $SuffixTree(\mathcal{T})$



- □ 逆木 T<sup>R</sup> に対する Suffix Tree も同様に定義.
- 💶 文字列に対する Suffix Tree [Weiner] をラベル付き木に拡張.

## **CDAWG (Compact DAWG)**

順木Tの部分文字列(部分パス)Xが **両極大** である  $\Leftrightarrow$  X は順木T上で左極大かつ右極大である.



- □ 直感: CDAWG は DAWGと Suffix Tree のハイブリッドデータ構造.
- $lacksymbol{\square}$  逆木 $\mathcal{T}^R$  に対する CDAWG も同様に定義.
- 💶 文字列に対する CDAWG [Blumerら] をラベル付き木に拡張.

## ラベル付き木に対する索引構造のサイズ

既存研究 [Mohri et al. / Kosaraju / Kimura & Kashima]

|      |              | 順木工           |    | 逆木 $\mathcal{T}^R$ |               |
|------|--------------|---------------|----|--------------------|---------------|
|      | 索引           | 頂点数           | 辺数 | 頂点数                | 辺数            |
| L    | DAWG         | 2 <i>n</i> -3 |    | 1                  | _             |
| 上界 - | CDAWG        | _             | _  | _                  | _             |
|      | Suffix Tree  | _             | _  | 2 <i>n</i> -3      | 2 <i>n</i> -4 |
|      | Suffix Array | _             |    | n+1                |               |

n: 入力順木/逆木の頂点数

## ラベル付き木に対する索引構造のサイズ

#### 本研究

|      |              | 順木工           |          | 逆木 $\mathcal{T}^R$ |               |
|------|--------------|---------------|----------|--------------------|---------------|
|      | 索引           | 頂点数           | 辺数       | 頂点数                | 辺数            |
| LĦ   | DAWG         | 2 <i>n</i> -3 | $O(n^2)$ | $O(n^2)$           | $O(n^2)$      |
| 上界 - | CDAWG        | 2 <i>n</i> -3 | $O(n^2)$ | 2 <i>n</i> -3      | 2 <i>n</i> -4 |
|      | Suffix Tree  | $O(n^2)$      | $O(n^2)$ | 2 <i>n</i> -3      | 2 <i>n</i> -4 |
|      | Suffix Array | O(            | $n^2$ )  | n.                 | +1            |

n: 入力順木/逆木の頂点数

※ 文字列(パス木) の場合はすべて O(n)

# 索引サイズのタイトな上界・下界を証明

#### 本研究

| _ |                  |
|---|------------------|
| ᆫ | Ħ                |
|   | $\boldsymbol{x}$ |
|   | יו ני            |

|              | 順木で           |          | 逆木 $\mathcal{T}^R$ |               |
|--------------|---------------|----------|--------------------|---------------|
| 索引           | 頂点数           | 辺数       | 頂点数                | 辺数            |
| DAWG         | 2 <i>n</i> -3 | $O(n^2)$ | $O(n^2)$           | $O(n^2)$      |
| CDAWG        | 2 <i>n</i> -3 | $O(n^2)$ | 2 <i>n</i> -3      | 2 <i>n</i> -4 |
| Suffix Tree  | $O(n^2)$      | $O(n^2)$ | 2 <i>n</i> -3      | 2 <i>n</i> -4 |
| Suffix Array | $O(n^2)$      |          | n+1                |               |

下界

|              | 順木で           |               | 逆木 $\mathcal{T}^R$ |               |
|--------------|---------------|---------------|--------------------|---------------|
| 索引           | 頂点数           | 辺数            | 頂点数                | 辺数            |
| DAWG         | 2 <i>n</i> -3 | $\Omega(n^2)$ | $\Omega(n^2)$      | $\Omega(n^2)$ |
| CDAWG        | 2 <i>n</i> -3 | $\Omega(n^2)$ | 2 <i>n</i> -3      | 2 <i>n</i> -4 |
| Suffix Tree  | $\Omega(n^2)$ | $\Omega(n^2)$ | 2 <i>n</i> -3      | 2 <i>n</i> -4 |
| Suffix Array | $\Omega(n^2)$ |               | n+1                |               |

#### 順木に対する DAWG の辺数の下界



n/2 個の異なる文字



辺数:  $n/2 \times n/2 = \Omega(n^2)$ 

#### 順木工に対する線形領域索引は存在するか?

|              | 順木 ${\mathcal T}$ |               | 逆木 $\mathcal{T}^{\mathit{R}}$ |               |
|--------------|-------------------|---------------|-------------------------------|---------------|
| 索引           | 頂点数               | 辺数            | 頂点数                           | 辺数            |
| DAWG         | 2 <i>n</i> -3     | $\Theta(n^2)$ | $\Theta(n^2)$                 | $\Theta(n^2)$ |
| CDAWG        | 2 <i>n</i> -3     | $\Theta(n^2)$ | 2 <i>n</i> -3                 | 2 <i>n</i> -4 |
| Suffix Tree  | $\Theta(n^2)$     | $\Theta(n^2)$ | 2 <i>n</i> -3                 | 2 <i>n</i> -4 |
| Suffix Array | $\Theta(n^2)$     |               | n+1                           |               |



n: 入力順木/逆木の頂点数

【難しさ】 辺をポインタで明示的に保持すると、 最悪時にはどう頑張っても  $\Theta(n^2)$  領域必要.

簡潔データ構造を用いたとしても  $\Omega(n^2)$  ビット必要.

#### 

|              | 順木工           |               | 逆木 $\mathcal{T}^{\mathit{R}}$ |               |
|--------------|---------------|---------------|-------------------------------|---------------|
| 索引           | 頂点数           | 辺数            | 頂点数                           | 辺数            |
| DAWG         | 2 <i>n</i> -3 | $\Theta(n^2)$ | $\Theta(n^2)$                 | $\Theta(n^2)$ |
| CDAWG        | 2n-3          | $\Theta(n^2)$ | 2 <i>n</i> -3                 | 2 <i>n</i> -4 |
| Suffix Tree  | $\Theta(n^2)$ | $\Theta(n^2)$ | 2 <i>n</i> -3                 | 2 <i>n</i> -4 |
| Suffix Array | $\Theta(n^2)$ |               | n+1                           |               |

n: 入力順木/逆木の頂点数

#### 定理 [本研究]

順木Tに対する DAWG の O(n) 領域コンパクト表現 が存在し、それを O(n) 時間で構築できる.

このコンパクト表現を用いて<u>木上の双方向パターン照合</u>を  $O(m \log \sigma + occ)$  時間で実行できる.

n: 入力木の頂点数, m: パターン長,  $\sigma$ : アルファベットサイズ, occ: パターンの出現回数

# DAWG( $\mathcal{T}$ ) と SuffixTree( $\mathcal{T}^R$ ) の関係



#### 順木工に対する線形領域索引

 $\mathsf{DAWG}(\mathcal{T})$  の  $\mathsf{O}(n^2)$  個あるすべての辺を,  $\mathsf{SuffixTree}(\mathcal{T}^R)$  上で  $\mathsf{O}(n)$  領域だけを使ってシミュレート

SuffixTree( $\mathcal{T}^R$ ) をサイズ  $O(\sigma)$  の  $O(n/\sigma)$  個のクラスタに分解する

各クラスタ中に、**適切に選んだ** DAWGの辺を陽に保持しておき、 残りのDAWG 辺は組合せ的性質を 利用して逐次的に復元する





## まとめと未解決問題

□ ラベル付き木に対する索引構造のサイズに関する タイトな上界と下界を与えた.

|              | 順木工           |               | 逆木 $\mathcal{T}^{\mathit{R}}$ |               |
|--------------|---------------|---------------|-------------------------------|---------------|
| 索引           | 頂点数           | 辺数            | 頂点数                           | 辺数            |
| DAWG         | 2n-3          | $\Theta(n^2)$ | $\Theta(n^2)$                 | $\Theta(n^2)$ |
| CDAWG        | 2n-3          | $\Theta(n^2)$ | 2 <i>n</i> -3                 | 2 <i>n</i> -4 |
| Suffix Tree  | $\Theta(n^2)$ | $\Theta(n^2)$ | 2 <i>n</i> -3                 | 2 <i>n</i> –4 |
| Suffix Array | $\Theta(n^2)$ |               | n+1                           |               |

- 順木に対する DAWG の O(n) 領域表現を与えた.
  - → 木上の双方向パターン照合をO(n)領域で初実現.
- ◆ 順木に対する CDAWG の O(n) 領域表現は存在するか?