

14 декабря 2020 года

Градиентный бустинг над деревьями

Вспоминаем идею...

Идея градиентного бустинга

FSAM + минимизация в случае дифференцируемой ф-ии ошибки

Задача регрессии $(x_i, y_i)_{i=1}^m$ дифференцируемая функция ошибки L(y, a) уже есть алгоритм a(x) строим b(x):

$$a(x_i) + b(x_i) = y_i, i \in \{1, 2, ..., m\}.$$

т.е. «в некотором смысле» настраиваемся на невязку

$$b(x_i) \approx y_i - a(x_i)$$

формально надо:

а не

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

$$\sum_{i=1}^{m} L(y_i - a(x_i), b(x_i)) \to \min$$

хотя часто они эквивалентны

Проблема

Задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

может не решаться аналитически

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \to \min_{(b_1, \dots, b_m)}$$

Функция $F(b_1, ..., b_m)$ убывает в направлении антиградиента, поэтому выгодно считать

$$b_i = -L'(y_i, a(x_i)), i \in \{1, 2, ..., m\},$$

новая задача для настройки второго алгоритма:

$$(x_i, -L'(y_i, a(x_i)))_{i=1}^m$$

Алгоритм градиентного бустинга (примитивный вариант)

• Строим алгоритм в виде

$$a_n(x) = \sum_{t=1}^n b_t(x),$$

для удобства можно даже считать, что $a_0(x) \equiv 0$.

• Пусть построен $a_{t}(x)$, тогда обучаем алгоритм $b_{t+1}(x)$ на выборке

$$(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$$

•
$$a_{t+1}(x) = a_t(x) + b_{t+1}(x)$$

Итерационно обучаем сумму алгоритмов...

Вот почему называется градиентный бустинг

Частный случай: регрессия с СКО

$$L(y,a) = \frac{1}{2}(y-a)^{2}$$

$$L'(y,a) = -(y-a)$$

Задача для настройки следующего алгоритма

$$(x_i, y_i - a_t(x_i))_{i=1}^m$$

т.е. очень логично: настраиваемся на невязку!

Частный случай: классификация на два класса

надо найти дифференцируемую функцию ошибки....

- предполагаем, что алгоритм выдаёт вещественные значения
 - делаем функцию похожей на «совпадение»

Частный случай: классификация на два класса

BinomialBoost – логистическая функция ошибки:

$$L(y,a) = \log(1 + e^{-y \cdot a}), a \in (-\infty, +\infty), y \in \{-1, +1\},$$

$$L'(y,a) = -\frac{y}{1 + e^{-y \cdot a}}.$$

Функция ошибки типа Adaboost:

$$L(y,a) = e^{-y \cdot a}, \ a \in (-\infty, +\infty), \ y \in \{-1, +1\},$$

$$L(y,a) = -ye^{-y \cdot a}.$$

здесь что-то выводится явно...

Итерация градиентного бустинга

Как решать задачу

$$(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$$
?

Любым простым методом! Мы уже настраиваемся на нужную функцию ошибки.

Проблема

Шаг в сторону антиградиента

- не приводит в локальный минимум (сразу) ⇒ <mark>итерации</mark>
- мы всё равно не можем сделать такой шаг, а лишь шаг по ответам какого-то алгоритма модели ⇒ не нужно стремиться шагать именно туда

Дальше решение проблем...

Наискорейший спуск

$$\sum_{i=1}^{m} L(y_i, a_t(x_i) + \eta \cdot b_t(x_i)) \to \min_{\eta},$$

$$a_{t+1}(x) = a_t(x) + \eta_t \cdot b_t(x) = \eta_1 \cdot b_1(x) + \dots + \eta_t \cdot b_t(x)$$

Эвристика сокращения – Shrinkage

$$a_{t+1}(x)=a_t(x)+\eta\cdot b_t(x)$$
, $\eta\in(0,1]$ – скорость (темп) обучения (learning rate)

Видно, что число слагаемых (базовых алгоритмов) – шагов бустинга – надо контролировать (при увеличении можем переобучиться)

Чем меньше скорость, тем больше итераций надо

14 декабря 2020 10 слайд из 69

Стохастический градиентный бустинг (Stochastic gradient boosting)

Идея бэгинга Бреймана: bag fraction ~ берём часть всей выборки

- м.б. лучше качество («регуляризация»)
 - быстрее
 - аналог обучения по минибатчам
 - можно вычислить ООВ-ошибки

J. Friedman «Stochastic Gradient Boost» // 1999 http://statweb.stanford.edu/~jhf/ftp/stobst.pdf

14 декабря 2020 11 слайд из 69

Column / Feature Subsampling for Regularization

аналогичная идея с признаками

TreeBoost – градиентный бустинг над деревьями

Решающее дерево:

$$b(x) = \sum_{j} \beta_{j} I[x \in X_{j}]$$

TreeBoost – градиентный бустинг над деревьями

Наша основная задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + \sum_{j} \beta_j I[x \in X_j]) \to \min$$

Разбиваем по областям:

$$\sum_{x_i \in X_i} L(y_i, a(x_i) + \beta_j) \to \min_{\beta_j}$$

если разбиение выбрано и зафиксировано, то в каждой области осталось выбрать оптимальную константу

Наша основная задача

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \to \min_{(b_1, \dots, b_m)},$$

заметим, что

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \approx$$

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \approx$$

$$\sum_{i=1}^{m} \left[L(y_i, a(x_i)) + L'(y_i, a(x_i)) \cdot b_i + \frac{1}{2} L''(y_i, a(x_i)) \cdot b_i^2 \right]$$

(частные производные по второму аргументу функции ошибки)

$$\sum_{i=1}^{m} \left[g_i b_i + \frac{1}{2} h_i b_i^2 \right] \rightarrow \min,$$

$$g_i = L'(y_i, a(x_i)),$$

$$h_i = L''(y_i, a(x_i)).$$

Сделаем оптимизацию с регуляризацией.

Пусть дерево b(x) делит пространство объектов на T областей X_1, \dots, X_T , в каждой области X_i принимает значение β_i .

$$\Phi = \sum_{i=1}^{m} \left[g_i b_i + \frac{1}{2} h_i b_i^2 \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} \beta_j^2 \to \min$$

$$\Phi = \sum_{j=1}^{T} \left[\sum_{x_i \in X_j} \left[g_i \beta_j + \frac{1}{2} h_i \beta_j^2 \right] + \lambda \frac{1}{2} \beta_j^2 \right] + \gamma T =$$

$$= \sum_{j=1}^{T} \left[\beta_j \sum_{x_i \in X_j} g_i + \frac{1}{2} \beta_j^2 \left(\sum_{x_i \in X_j} h_i + \lambda \right) \right] + \gamma T$$

Приравнивая производную к нулю:

$$\beta_j = -\frac{\sum_{x_i \in X_j} g_i}{\sum_{x_i \in X_j} h_i + \lambda}.$$

Минимальное значение (при фиксированной структуре дерева)

$$\Phi_{\min} = -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum_{x_i \in X_j} g_i\right)^2}{\sum_{x_i \in X_j} h_i + \lambda} + \gamma T.$$

Можно использовать при построении дерева для его оценки:

$$Gain = \frac{1}{2} \left(\frac{\sum_{x_i \in X_{\text{left}}} g_i}{\sum_{x_i \in X_{\text{left}}} h_i + \lambda} + \frac{\sum_{x_i \in X_{\text{right}}} g_i}{\sum_{x_i \in X_{\text{right}}} h_i + \lambda} - \frac{\sum_{x_i \in X_{\text{left}}} g_i + \sum_{x_i \in X_{\text{right}}} g_i}{\sum_{x_i \in X_{\text{left}}} h_i + \sum_{x_i \in X_{\text{right}}} h_i + \lambda} - \gamma \right)$$

Не используем какой-то традиционный критерий расщепления. Исходим из функции ошибки!

14 декабря 2020 20 слайд из 69

История продвинутых методов

https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Особенности

	XGBoost	LightGBM	CatBoost
Построение деревьев	По уровням	По листьям	По уровням
	потом добавили по	Leaf-wise (best-first)	однородно
	листьям, но для		
	гистограмм		oblivious trees
Поиск расщеплений	Exact greedy	Гистограммный	
	algorithm (полный	подход	
	перебор)	(использование	
	+	бинов)	
	добавили потом	+	
	гистограммный		
	подход		
	tree_method='hist'		
Нули	+	По умолчанию	
обрабатываются как		use_missing=True	
NaN			

14 декабря 2020 22 слайд из 69

Особенности

	XGBoost	LightGBM	CatBoost
Gradient-based One-	_	Среди малых градиентов	_
Side Sampling	pre-sorted	сэмплируем, но с большим	
(GOSS)	algorithm &	весом	Но есть
	Histogram-		динамический
	based		бустинг!
Exclusive Feature		Связываем разреженные	
Bundling		признаки, которые	
		одновременно не нули	
Дополнительные		Random forest mode	Динамический
фишки			бустинг

Особенности

	XGBoost	LightGBM	CatBoost
Подвыборка	subsample	_	feature_fraction
Категориальные	_	+	+
признаки			Smoothed target encoding
			Можно ОНЕ для всех с числом категорий < one_hot_max_size
			Жадные комбинации категориальных признаков

Игнорирование нулей / NaN

https://mlexplained.com/2018/01/05/lightgbm-and-xgboost-explained/

Гистограммный подход (Histogram based algorithm)

каждый вещественный признак дискретизуется – разбивается на бины

теперь число порогов, которые надо посмотреть ~ число бинов

14 декабря 2020 26 слайд из 69

CatBoost = Category + Boosting: проблема смещения

Smoothed target encoding для категориальных признаков

При построении дерева значение в листе = сумма антиградиентов получается утечка мы оцениваем значение в точке, зная метку на ней!

Динамический бустинг

- случайная перестановка обучения
- оценивания значения, используя информацию до рассматриваемой точки в таблице

oblivious trees один предикат на каждом уровне

14 декабря 2020 27 слайд из 69

CatBoost = Category + Boosting

работает «из коробки»

с параметрами по умолчанию

Современные реализации градиентного бустинга

sklearn.ensemble.	GradientBoostingRegressor
	GradientBoostingClassifier
XGBoost (eXtreme Gradient Boosting)	https://github.com/dmlc/xgboost
LightGBM, Light Gradient Boosting Machine	https://github.com/Microsoft/LightGBM
CatBoost	https://github.com/catboost/catboost

14 декабря 2020 29 слайд из 69

Параметры градиентного бустинга

Параметры, определяющие тип бустинга

objective	– какая задача решается, какая целевая функция и в каком
// loss_function	формате будет ответ
booster	– какой бустинг проводить: над решающими деревьями, линейный
	или dart
boosting type	- Igb: gbdt / dart (Dropouts meet Multiple Additive Regression Trees) /
3_ 11	goss / rf
tree_method	– как строить деревья
	(grow_policy - порядок построения дерева: на следующем шаге
	расщеплять вершину, ближайшую к корню, или на которой ошибка
	максимальна)
base_score	– начальный ответ на всех объектах (bias)
eval_metric	– значения какой функции ошибки смотреть на контроле (как
	правило, задание этого параметра не означает, что эту функцию
	будем минимизировать при настройке бустинга)

14 декабря 2020 30 слайд из 69

DART: Dropouts meet Multiple Additive Regression Trees

Вместо

$$a_n(x) = \sum_{t=1}^n b_t(x)$$

берём подмножество построенных деревьев $Q = \mathrm{randsubset}(\{1, 2, ..., n\})$ пытаемся дополнить их

$$b_{t+1} = \arg\min_{b} \sum_{i=1}^{m} L(y_i, \sum_{t \in Q} b_t(x_i) + b(x_i))$$

потом нужна поправка, что смещали ответ не всего ансамбля (подробно об это не будем)

$$a_n(x) = \sum_{t=1}^{n} b_t(x) + \eta b_{t+1}(x)$$

http://proceedings.mlr.press/v38/korlakaivinayak15.pdf

Параметры градиентного бустинга

Основные параметры

	· · · · · · · · · · · · · · · · · · ·
<pre>learning_rate (eta)</pre>	– темп (скорость) обучения
n_estimators	– число итераций бустинга (базовых алгоритмов)
(num_iterations)	
// iterations	

14 декабря 2020 32 слайд из 69

Параметры градиентного бустинга

Параметры ограничивающие сложность дерева

```
max depth

    максимальная глубина

gamma

    порог на уменьшение функции ошибки при расщеплении в

                        дереве
min child weight

    минимальная сумма весов объектов в потомках

max_delta_step
                        - порог на изменение весов
max leaves

    максимальное число вершин в дереве

num leaves
min split gain
                        - порог на изменение loss-функции
(min gain to split)
min child samples

    минимальное число объектов в листьях

(min data in leaf)
                        - минимальная сумма весов объектов в листе, минимальное
min sum hessian in leaf
                        число объектов, при котором делается расщепление
```

```
/ subsample_freq (int, optional (default=0)) — частота взятия подвыборок // sampling_frequency
```

Что такое веса

min_child_weight – «minimum sum of instance weight (hessian) needed in a child» max_delta_step – «Maximum delta step we allow each tree's weight estimation to be»

Пример:

$$L_{i} = \frac{1}{2}(y_{i} - a_{i})^{2}$$

$$h_{i} = L_{i}'' = 1$$

- это как бы вес одного объекта

Параметры градиентного бустинга

Параметры формирования подвыборок

subsample /	– какую часть объектов обучения использовать для построения
bagging_fraction	одного дерева
colsample_bytree/	 какую часть признаков использовать для построения одного
feature_fraction	дерева
colsample_bylevel	– какую часть признаков использовать для построения
	расщепления в уровне
colsample_bynode	 какую часть признаков использовать для построения
	расщепления в вершине
scale_pos_weight	 для сбалансирования позитивных и негативных весов
/ class_weight	– веса классов
<pre>// bootstrap_type</pre>	– тип бутстрепа (для Bayesian bootstrap есть bagging temperature)

Параметры регуляризации

reg_alpha	– коэффициент L1-регуляризации
	– коэффициент L2-регуляризации
// 12_leaf_reg	

Параметры градиентного бустинга

Остальные

Verbosity / silent	– вывод информации при обучении
n_jobs	- число используемых потоков
random_state	– инициализация генератора псевдослучайных чисел
missing	– что обозначает пропуски
<pre>importance_type</pre>	– как вычислять важность ("gain", "weight", "cover", "total_gain" or
	"total_cover")
num_parallel_tree	– для режима RF
/ subsample_for_bin	– число объектов для бинов

- CPU / GPU
- хранить модель в ОЗУ

Параметры градиентного бустинга

fit

early_stopping_round	– если на отложенном контроле заданная функция ошибки не				
(fit)	уменьшается такое число итераций, обучение останавливается				
sample_weight	– веса объектов				
eval_metric	– метрика качества				
callbacks	– какие функции вызывать после каждой итерации				

Сумма бустингов

Качество может улучшиться, но оптимальные параметры меняются!

GBM: Концепция чёрного ящика

```
T, # as.data.frame
distribution="gaussian", # распределение... лучше всего gaussian
n.trees=ntrees, # число деревьев (лучше больше, а потом выбрать)
shrinkage=0.07, # скорость сходимости
verbose=TRUE, # вывод сообщений
interaction.depth=12 # сложность модели
class sklearn.ensemble.GradientBoostingClassifier
(loss='deviance', # в классификации - логистическая регрессия или AdaBoost
learning rate=0.1, , # скорость сходимости
n estimators=100, # число деревьев
subsample=1.0,
min samples split=2,
min samples leaf=1,
min weight fraction leaf=0.0,
max depth=3, # глубина
max features=None) # сколько признаков смотреть для расщепления
```

model <- gbm(is client cancel~. , # название целевой переменной

14 декабря 2020 39 слайд из 69

Что означает «распределение»

пусть ошибки распределены по нормальному закону

$$p(y \mid x) = \operatorname{const} \cdot e^{-\frac{(y - h(x))^2}{2\sigma^2}}$$

метод максимального правдоподобия

$$\prod_{i} p(y_{i} \mid x_{i}) \sim \prod_{i} e^{\frac{-(y_{i} - h(x_{i}))^{2}}{2\sigma^{2}}} \rightarrow \max$$

$$\operatorname{const} \cdot \sum_{i} (y_{i} - h(x_{i}))^{2} \rightarrow \min$$

Что означает «распределение»

пусть ошибки ~ распределение Лапласа

$$p(y \mid x) = \operatorname{const} \cdot e^{-\alpha|y-h(x)|}$$

метод максимального правдоподобия

$$\prod_{i} p(y_i \mid x_i) \sim \prod_{i} e^{-\alpha |y_i - h(x_i)|} \to \max$$

это эквивалентно минимизации такой ошибки

$$\operatorname{const} \cdot \sum_{i} |y_{i} - h(x_{i})| \to \min$$

Встроенные способы контроля

встроенный

универсальный

14 декабря 2020 42 слайд из 69

Встроенные способы контроля

существенно быстрее 2 мин – 2 сек

- не перестраивают ансамбль с начала
- нечестный контроль упрощённый способ выбора порогов (хитрость!)
 - сразу получаем с шагом 1
 - результаты похожи

14 декабря 2020 43 слайд из 69

Разные метрики качества

Объём выборки subsample (ed Бозон)

Опять, больше – лучше (в XGBoost это не всегда так)

14 декабря 2020 45 слайд из 69

Число деревьев: n_estimators

scikit-learn

lightgbm

14 декабря 2020 46 слайд из 69

Число деревьев: n_estimators

Здесь уже нет логики «чем больше, тем лучше»

Для разной глубины – разное оптимальное число деревьев

14 декабря 2020 47 слайд из 69

Число деревьев: n_estimators (ed Бозон)

14 декабря 2020 48 слайд из 69

Пример малого, нормального и большого темпов

14 декабря 2020 49 слайд из 69

num_leaves = 3

num_leaves = 10

60

n_estimators

80

100

верно ли, что для малых деревьев нет большого темпа?

20

14 декабря 2020 50 слайд из 69

Нет логики «уменьшили темп в 2 раза – число деревьев надо увеличить в 2 раза»!

Есть стратегия – сделать очень маленький темп и очень много деревьев

(но для настройки других параметров не годится)

Совет:

- зафиксируйте достаточно большое число деревьев, которое ещё можно быстро построить
 - **Hactpoute** learning rate
- настраивайте другие параметры (первым делом глубину),
 но помните, что оптимальный темп может поменяться!

14 декабря 2020 52 слайд из 69

14 декабря 2020 53 слайд из 69

Сложность деревьев: число листьев

learning_rate = 0.9

деревьев построено достаточно

learning_rate = 0.2

та же задача!

есть тонкость: для каждой сложности своё оптимальное число деревьев

14 декабря 2020 54 слайд из 69

Сложность деревьев: глубина

14 декабря 2020 55 слайд из 69

Ограничение на расщепления / листья

14 декабря 2020 56 слайд из 69

Ограничение на расщепления / листья

Здесь могут быть большие оптимальные значения (10 – 50 – 1000), но параметры менее значимые, чем другие...

Деревья для GBM

Малой глубины (3 – 6).

- смещённые (high bias), разброс ниже, чем в глубоких
 - смещение как раз устраняется бустингом
 - модель не должна переобучаться ⇒ простая
 - быстрее строить

Здесь есть понятие оптимальной глубины!

Тонкости

Бутстрепа обычно нет... но есть случайные подвыборки и подмножества признаков

Совет

- выбрать критерий расщепления (вид бустинга) из логики
 - выбрать число деревьев и темп обучения (это согласованные параметры)

для настройки можно немного деревьев

- настроить сложность деревьев (варьируя их число) как и в RF самый важный параметр
 - увеличить число деревьев, взять маленький темп обучения
 - использовать сумму нескольких gbm

Важно

Значения gbm могут выходить за пределы отрезка!

Вообще говоря, не важно, как их вернуть обратно...

Приложение GBM: задача скоринга (TKS)

tcs_customer_id bureau_cd	bki_request_date	inf_confirm_date	type	status	open_date	final_pmt_date	fact_close_date	credit_limit	currency	outstanding	next_pmt	curr_balar
1 2	12Aug2011	20Jul2011	99	00	13May2011	11May2012	2	28967	RUB	24606,00000	2743,00000	
1 1	12Aug2011	18Feb2009	99	13	27Feb2008	26Feb2009	26Feb2009	30000	RUB	0,00000		
1 1	12Aug2011	21Apr2009	99	13	28Jun2007	30Jun2008	20Apr2009	19421	RUB	0,00000		
1 1	12Aug2011	18Aug2009	9	13	15Jul2008	17Aug2009	17Aug2009	11858	RUB	0,00000		
1 1	12Aug2011	06Sep2010	99	13	09May2009	10May2010	08Sep2010	19691	RUB	0,00000		
1 1	12Aug2011	28Jul2011	7	52	07Sep2010	07Sep2040)	10000	RUB			
1 1	12Aug2011	01Aug2011	9	00	31Aug2010	31Aug2015	;	169000	RUB			
1 1	12Aug2011	03Aug2011	9	00	04Mar2009	03Mar2014	1	300000	RUB			
1 3	12Aug2011	09Jul2008	9	00	28Jun2007	30Jun2008	3	19421	RUB	1761,00000		198
1 3	12Aug2011	19Sep2008	9	00	27Feb2008	26Feb2009)	30000	RUB	15517,00000		163
1 3	12Aug2011	14Sep2010	9	13	09May2009	10May2010	06Sep2010	19691	RUB	0,00000		
1 3	12Aug2011	11Jul2011	9	00	31Aug2010	31Aug2015	i	169000	RUB		0,00000	433

Решение = GBM + RF + Линейная регрессия

14 декабря 2020 61 слайд из 69

Приложение GBM: задача скоринга (TKS)

Name	Description	Туре		
TCS_CUSTOMER_ID	Идентификатор клиента	ID		
BUREAU_CD	Код бюро, из которого получен счет	numeric		
BKI_REQUEST_DATE	Дата, в которую был сделан запрос в бюро	date		
CURRENCY	Валюта договора (ISO буквенный код валюты)	string		
RELATIONSHIP	Тип отношения к договору	string		
	1 - Физическое лицо			
	2 - Дополнительная карта/Авторизованный пользователь			
	4 - Совместный]		
	5 - Поручитель]		
	9 - Юридическое лицо]		
OPEN_DATE	Дата открытия договора	date		
FINAL_PMT_DATE	Дата финального платежа (плановая)	date		
TYPE	Код типа договора	string		
	1 — Кредит на автомобиль			
	4 — Лизинг. Срочные платежи за наем/пользование транспортным средством, предприятием или оборудованием и т.п.			
	6— Ипотека— ссудные счета, имеющие отношение к домам, квартирам и прочей недвижимости. Ссуда выплачивается циклично согласно договоренности до тех пор, пока она не будет полностью выплачена или возобновлена.			
	7 — Кредитная карта	1		
	9 — Потребительский кредит	1		
	10 — Кредит на развитие бизнеса	1		
	11 — Кредит на пополнение оборотных средств	1		
	12 — Кредит на покупку оборудования	1		
	13 — Кредит на строительство недвижимости			
	14 — Кредит на покупку акций (например, маржинальное кредитование)			
	99 — Другой	1		
	Дисциплина (своевременность) платежей. Строка составляется из кодов состояний счета на			
PMT_STRING_84M	моменты передачи банком данных по счету в бюро, первый символ - состояние на дату	string		
	PMT_STRING_START, далее последовательно в порядке убывания дат.			
	0 — Новый, оценка невозможна			
	X — Нет информации			
	1 — Оплата без просрочек			
	А — Просрочка от 1 до 29 дней]		

14 декабря 2020 62 слайд из 69

Приложение GBM: предсказание правильности ответов студентов на вопросы тестов

Разработать алгоритм, который предсказывает правильность ответа на вопросы теста.

Зачем?

для рекомендательной системы (алгоритм решает за студента тест и сообщает ему «потенциально неприятные для него» вопросы).

GMAT, SAT, ACT

Победитель – LibFM

# Team Name \$5,000 • 241 teams score @ Entries						
1 Steffen Rendle *	0.24598	16				
2 Alexander D'yakonov *	0.24729	38				
3 ekla *	0.24745	87				
4 PlanetThanet & Birutas 🎩	0.24772	51				

14 декабря 2020 63 слайд из 69

Обычно:

- контекстная рекомендация
- коллаборативная фильтрация

Наша идея:

свести задачу о рекомендациях к задаче классификации (регрессии)

пара «студент-вопрос» ~ признаковое описание генерация кучи признаков

Примеры признаков

Пусть ответы студента: correct, incorrect, correct, correct, incorrect

$$\begin{aligned} & \mathbf{IQ} \sim \frac{+1 - 1 + 1 + 1 + 1 - 1}{6} \\ & \mathbf{weighted} \ \mathbf{IQ} \sim \frac{+1 w_1 - 1 w_2 + 1 w_3 + 1 w_4 + 1 w_5 - 1 w_6}{w_1 + w_2 + w_3 + w_4 + w_5 + w_6} \end{aligned}$$

веса измеряют «похожесть вопросов»

$$w_{j} = \frac{2}{1+\left|\,t-t_{_{j}}\,\right|^{0.3}} - 1$$
 или $w_{j} = 1-\sqrt{\left|\,t-t_{_{j}}\,\right|}$

 t_{j} – время ответа на ј-й вопрос,

t – время ответа на этот вопрос.

Ещё веса:

Корреляция столбцов матрицы «студент-ответ»

Аналогично:

Признак «сложность вопроса» (здесь усредняются ответы на данный вопрос)

Простые признаки:

- время ответа
- 1/(число ответов всего)

SVD-признаки

Восстановление матрицы с помощью SVD-преобразования (даже по подматрице)

Решение

gbm + glm + NN (CLOP)

Опять: хорошо «смешиваются» разные алгоритмы... Как настраивать – чуть позже...

Литература

A. Natekin, A. Knoll Gradient boosting machines, a tutorial // Front Neurorobot. 2013; 7: 21.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/

все статьи по XGBoost, LightGBM, CatBoost

14 декабря 2020 68 слайд из 69