(due Friday, September 18, by 5:00 p.m. CDT)

Please include your name (with your last name underlined), your NetID, and your section number at the top of the first page. *No credit will be given without supporting work.*

4. A fair 6-sided die is rolled.

If the outcome is 1 or 2, then two (2) fair coins are tossed.

If the outcome is 6 or 5 or 4 or 3, then three (3) fair coins are tossed.

Let X be the number of coins tossed. Let Y be the number of **Tails** observed.

a) Construct the joint probability distribution of (X, Y).

"Hint": There are 2 possible values for X, 4 possible values for Y.

You have $p_X(x)$ and $p_{Y|X}(y|x)$.

Write the values of the joint p.m.f. p(x, y) in a 2×4 rectangular array.

$$p_X(2) = \frac{2}{6} = \frac{1}{3}.$$
 $p_X(3) = \frac{4}{6} = \frac{2}{3}.$

(Y | X = x) has a Binomial $(n = x, p = \frac{1}{2})$ distribution.

$$p_{Y|X}(0|2) = \frac{1}{4}.$$
 $p_{Y|X}(1|2) = \frac{2}{4}.$ $p_{Y|X}(2|2) = \frac{1}{4}.$

$$p_{Y|X}(0|3) = \frac{1}{8}.$$
 $p_{Y|X}(1|3) = \frac{3}{8}.$ $p_{Y|X}(2|3) = \frac{3}{8}.$ $p_{Y|X}(3|3) = \frac{1}{8}.$

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}.$$
 \Rightarrow $p(x,y) = p_X(x) \cdot p_{Y|X}(y|x).$

		у				
		0	1	2	3	$p_{X}(x)$
x	2	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{1}{12}$	0	$\frac{1}{3}$
	3	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{3}{12}$	$\frac{1}{12}$	$\frac{2}{3}$
	$p_{\mathrm{Y}}(y)$	$\frac{2}{12}$	$\frac{5}{12}$	$\frac{4}{12}$	$\frac{1}{12}$	1

b) Construct the probability distribution of E(X|Y).

"Hint": There are 4 possible values for Y. ... Meh, no one reads the hints anyway...

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}.$$

$(X \mid Y = 0)$				
Х	prob.	$x \cdot \text{prob}$.		
2	$\frac{1/12}{2/12} = 0.50$	1.00		
3	$\frac{1/12}{2/12} = 0.50$	1.50		
	1.00	2.50		

$$(X | Y = 2)$$

$$x prob. x \cdot prob.$$

$$2 \frac{1/12}{4/12} = 0.25 0.50$$

$$3 \frac{3/12}{4/12} = 0.75 2.25$$

$$1.00 2.75$$

$$(X \mid Y = 1)$$

X	prob.	$x \cdot \text{prob}$.
2	$\frac{2/12}{5/12} = 0.40$	0.80
$3 \qquad \frac{3/12}{5/12} = 0.60$		1.80
	1.00	2.60

$$(X \mid Y = 3)$$

X	prob.	$x \cdot \text{prob}$.
2	$\frac{0}{1/12} = 0.00$	0.00
3	$\frac{1/12}{1/12} = 1.00$	3.00
	1.00	3.00

E(X|Y) is a random variable, a function of random variable Y.

If Y = y, then E(X | Y) = E(X | Y = y).

E(X|Y):

у	E(X Y = y)	prob.
0	2.50	$\frac{2}{12}$
1	2.60	<u>5</u> 12
2	2.75	$\frac{4}{12}$
3	3.00	1/12
		1

3. Every month, the government of Neverland spends X million dollars purchasing guns and Y million dollars purchasing butter. Since the people become disobedient if they do not have food, the amount spent monthly on butter is always at least 2 million dollars. However, there is a law that prevents the government of Neverland spending more than 5 million dollars on guns in one month. In addition, the government of Neverland cannot afford to spend more than 8 million dollars per month on guns and butter. Suppose that the joint density function for (X, Y) is

$$f(x,y) = \frac{7x + 2y}{375}$$
, $x \ge 0$, $y \ge 2$, $x \le 5$, $x + y \le 8$, zero otherwise.

X - guns, Y - butter.

Recall:

$$f_X(x) = \frac{60 + 26x - 6x^2}{375} = \frac{2(5+3x)(6-x)}{375}, \quad 0 \le x \le 5.$$

$$f_{Y}(y) = \begin{cases} \frac{35+4y}{150} & 2 \le y \le 3\\ \frac{448-80y+3y^{2}}{750} = \frac{(56-3y)(8-y)}{750} & 3 \le y \le 8 \end{cases}$$

Suppose that 1 million dollars is spent on guns in a given month. What is the probability that more than 5 million dollars is spent on butter during this month? That is, find $P(Y > 5 \mid X = 1)$.

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{7x + 2y}{60 + 26x - 6x^2},$$
 $2 < y < 8 - x$

$$f_{Y|X}(y|1) = \frac{7+2y}{80},$$
 $2 < y < 7.$

$$P(Y > 5 \mid X = 1) = \int_{5}^{7} \frac{7 + 2y}{80} dy = \frac{7y + y^{2}}{80} \begin{vmatrix} y = 7 \\ y = 5 \end{vmatrix} = \frac{38}{80} = \frac{19}{40} = 0.475.$$

Suppose that more than 1 million dollars is spent on guns in a given month. What is the probability that more than 5 million dollars is spent on butter during this month? That is, find $P(Y > 5 \mid X > 1)$.

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$
provided $P(B) > 0.$

$$P(B) = P(X > 1)$$

$$= \int_{1}^{5} \frac{60 + 26x - 6x^{2}}{375} dx$$

$$= \frac{60x + 13x^{2} - 2x^{3}}{375} \begin{vmatrix} x = 5 \\ x = 1 \end{vmatrix}$$

$$= \frac{304}{375} \approx 0.810667.$$

$$P(A \cap B) = P(Y > 5 \cap X > 1) = \int_{1}^{3} \left(\int_{5}^{8-x} \frac{7x + 2y}{375} \, dy \right) dx$$

$$= \int_{1}^{3} \left(\frac{7xy + y^{2}}{375} \right) \left| \frac{y = 8-x}{y = 5} \, dx \right| = \int_{1}^{3} \frac{7x \left(8-x \right) + \left(8-x \right)^{2} - 35x - 25}{375} \, dx$$

$$= \int_{1}^{3} \frac{39 + 5x - 6x^{2}}{375} \, dx = \frac{39x + 2.5x^{2} - 2x^{3}}{375} \left| \frac{x = 3}{x = 1} \right| = \frac{46}{375} \approx 0.122667.$$

$$P(Y > 5 \mid X > 1) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{46}{375}}{\frac{304}{375}} = \frac{46}{304} = \frac{23}{152} \approx 0.151316.$$

k) Find E(Y | X = x), the expected amount spent on butter during a month when x million dollars is spent on guns.

$$E(Y \mid X = x) = \int_{2}^{8-x} y \cdot \frac{7x + 2y}{60 + 26x - 6x^{2}} dy = \frac{\frac{7}{2}xy^{2} + \frac{2}{3}y^{3}}{60 + 26x - 6x^{2}} \Big|_{y=2}^{y=8-x}$$

$$= \frac{\frac{7}{2}x(8-x)^{2} + \frac{2}{3}(8-x)^{3} - 14x - \frac{16}{3}}{60 + 26x - 6x^{2}}$$

$$= \frac{2016 + 492x - 240x^{2} + 17x^{3}}{6(60 + 26x - 6x^{2})} = \frac{336 + 138x - 17x^{2}}{12(5 + 3x)}, \quad 0 \le x \le 5.$$

Suppose that 2.5 million dollars is spent on butter in a given month. What is the probability that more than 2 million dollars is spent on guns during this month? That is, find $P(X > 2 \mid Y = 2.5)$.

For
$$2 < y < 3$$
, $f_{Y}(y) = \frac{35 + 4y}{150}$.
 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_{Y}(y)} = \frac{14x + 4y}{175 + 20y}$, $0 < x < 5$.
 $f_{X|Y}(x|2.5) = \frac{14x + 10}{225}$, $0 < x < 5$.
 $P(X > 2 \mid Y = 2.5) = \int_{2}^{5} \frac{14x + 10}{225} dx = \frac{7x^{2} + 10x}{225} \begin{vmatrix} x = 5 \\ x = 2 \end{vmatrix}$
 $= \frac{177}{225} = \frac{59}{75} \approx 0.786667$.

m) Suppose that 5 million dollars is spent on butter in a given month. What is the probability that more than 2 million dollars is spent on guns during this month? That is, find $P(X > 2 \mid Y = 5)$.

For
$$3 < y < 8$$
, $f_{Y}(y) = \frac{448 - 80y + 3y^{2}}{750}$.
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_{Y}(y)} = \frac{14x + 4y}{448 - 80y + 3y^{2}}, \qquad 0 < x < 8 - y.$$

$$f_{X|Y}(x|5) = \frac{14x + 20}{123}, \qquad 0 < x < 3.$$

$$P(X > 2 \mid Y = 5) = \int_{2}^{3} \frac{14x + 20}{123} dx = \frac{7x^{2} + 20x}{123} \begin{vmatrix} x = 3 \\ x = 2 \end{vmatrix} = \frac{55}{123} \approx 0.447154.$$

Find E(X | Y = y), the expected amount spent on guns during a month when n) y million dollars is spent on butter.

For
$$2 < y < 3$$
, $f_{X|Y}(x|y) = \frac{14x + 4y}{175 + 20y}$, $0 < x < 5$.

$$E(X \mid Y = y) = \int_{0}^{5} x \cdot \frac{14x + 4y}{175 + 20y} dx = \frac{\frac{14}{3}x^{3} + 2x^{2}y}{175 + 20y} \Big|_{x=0}^{x=5} = \frac{350 + 30y}{105 + 12y},$$

$$2 < y < 3.$$

For
$$3 < y < 8$$
, $f_{X|Y}(x|y) = \frac{14x + 4y}{448 - 80y + 3y^2}$, $0 < x < 8 - y$.

$$E(X | Y = y) = \int_{0}^{8-y} x \cdot \frac{14x + 4y}{448 - 80y + 3y^{2}} dx = \frac{\frac{14}{3}x^{3} + 2x^{2}y}{448 - 80y + 3y^{2}} \Big|_{x=0}^{x=8-y}$$

$$= \frac{14(8-y)^{3} + 6(8-y)^{2}y}{3(56-3y)(8-y)} = \frac{14(8-y)^{2} + 6(8-y)y}{3(56-3y)}$$

$$= \frac{896 - 176y + 8y^{2}}{3(56-3y)} = \frac{8(14-y)(8-y)}{3(56-3y)}, \qquad 3 < y < 8.$$

$$E(X | Y = y)$$

$$= \begin{cases} \frac{350 + 30y}{105 + 12y} & 2 < y < 3 \\ \frac{896 - 176y + 8y^{2}}{168 + 9y} & 3 < y < 8 \end{cases}$$

$$\begin{cases} 105 + 12y \\ \frac{896 - 176y + 8y^2}{168 - 9y} \\ 3 < y < 8 \end{cases}$$