

Report No.: SZEMO09110669201

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: sqs internet operations@sqs.com Page: 1 c

FCC REPORT

Application No: SZEMO091106692RF

Applicant: Seecode Technology Ltd & Co KG

Product Name: Bluetooth hands-free system

Operation Frequency: 2.402GHz-2.480GHz **FCC ID:** VUMVOSSORPBV3

Standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2008

Date of Receipt: 2009-11-30

Date of Test: 2009-12-02 to 2010-07-07

Date of Issue: 2010-07-09

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang

Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEMO09110669201

Page: 2 of 59

2 Contents

			Page
2	C	ONTENTS	
3		EST SUMMARY	
4	GI	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	E.U.T OPERATION MODE	6
	4.4	TEST FACILITY	7
	4.5	TEST LOCATION	
	4.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
	4.7	TEST INSTRUMENTS LIST	8
5	TE	EST RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT:	9
	5.2	CONDUCTED PEAK OUTPUT POWER	
	5.3	20DB OCCUPY BANDWIDTH	17
	5.4	CARRIER FREQUENCIES SEPARATION	23
	5.5	HOPPING CHANNEL NUMBER	30
	5.6	DWELL TIME	33
	5.7	BAND EDGE	36
	5.8	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	43
	5.9	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	5.10	RADIATED EMISSION	
		10.1 Radiated emission below 1GHz	
	5.	10.2 Transmitter emission above 1GHz	57-59

Report No.: SZEMO09110669201

Page: 3 of 59

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Passed
Conducted Peak Output Power	15.247 (b)(1)	Passed
20dB Occupied Bandwidth	15.247 (a)(1)	Passed
Carrier Frequencies Separation	15.247 (a)(1)	Passed
Hopping Channel Number	15.247 (b)	Passed
Dwell Time	15.247 (a)(1)	Passed
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Passed
Radiated Emission	15.205/15.209	Passed
Band Edge	15.247(d)	Passed

Remark: Passed: The EUT complies with the essential requirements in the standard.

Failed: The EUT does not comply with the essential requirements in the standard.

Report No.: SZEMO09110669201

Page: 4 of 59

4 General Information

4.1 Client Information

Applicant:	Seecode Technology Ltd & Co KG
Address of Applicant:	Rösrather Strasse 333, 51107 Köln, Germany
Manufacturer:	UNIFAT Technology Ltd
Address of Manufacturer:	7/F., Sui Hong Ind. Bldg., 547-549 Castle Peak Rd., Kwai Chung, N.T., H.K.
Factory	DONGGUAN EASYFAT ELECTONIC MFY. SIMA CHANG PING
Address of Factory:	Sheima Sheung, Shueng ping chang, Dongguan, People's Republic of China

4.2 General Description of E.U.T.

Name:	Bluetooth hands-free system
Trade Mark:	SEECODE
Model:	MHF88
Operation Frequency:	2.402GHz-2.480GHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4QPSK, 8DPSK
Antenna Type:	Integral
Antenna gain:	3dBi
Power Supply:	DC 3.7V 1700mAH(Li-lon battery)
Vehicular charge:	Input 12-24V DC Output 5V == 650mA

Report No.: SZEMO09110669201

Page: 5 of 59

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEMO09110669201

Page: 6 of 59

4.3 E.U.T Operation mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	52 % RH	
Atmospheric Pressure:	1008 mbar	
Test mode:		
Transmitting mode:	Keep the EUT in transmitting mode with modulation.	
Bluetooth mode:	Keep the EUT communicate with other Bluetooth Device.	
charge mode	Keep the EUT charging by battery	
Charge+ Bluetooth mode	Keep the EUT connect to other Bluetooth device, at the same time, charging by battery.	

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEMO09110669201

Page: 7 of 59

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively.

Date of Registration: September 29, 2008. Valid until September 28, 2011.

FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, June 27, 2008.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab
No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China
518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 No tests were sub-contracted.

4.6 Other Information Requested by the Customer

None.

Report No.: SZEMO09110669201

Page: 8 of 59

4.7 Test Instruments list

RE i	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	17-06-2010	16-06-2011	
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	05-11-2009	05-11-2010	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A	
4	Coaxial cable	SGS	N/A	SEL0028	18-06-2008	18-06-2011	
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	05-11-2009	05-11-2010	
6	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	10-11-2009	10-11-2010	
7	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	10-11-2009	10-11-2010	
8	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	02-06-2010	01-06-2011	
9	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	18-12-2009	17-12-2010	
10	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	SEL0080	04-06-2010	03-06-2011	
11	Band filter	Amindeon	82346	SEL0094	02-06-2010	01-06-2011	

RF c	conducted					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)
1	Spectrum Analyzer	Rohde & Schwarz	FSP 30	SEL0154	22-10-2009	21-10-2010
2	Coaxial cable	SGS	N/A	SEL0028	18-06-2008	18-06-2011

Report No.: SZEMO09110669201

Page: 9 of 59

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

Report No.: SZEMO09110669201

Page: 10 of 59

5.2 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Remark:		
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Test Instruments:	Refer to section 4.7 for details		
Test state:	Non-hopping transmitting with all kinds of modulation.		
Test results:	Passed		

Report No.: SZEMO09110669201

Page: 11 of 59

Measurement Data

moderal official parts							
GFSK mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	1.34	30.00	Pass				
Middle	1.50	30.00	Pass				
Highest	1.50	30.00	Pass				
	Pi/4QPSK m	ode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	1.87	30.00	Pass				
Middle	1.14	30.00	Pass				
Highest	1.18	30.00	Pass				
	8DPSK mo	de					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	1.02	30.00	Pass				
Middle	1.16	30.00	Pass				
Highest	1.32	30.00	Pass				

Report No.: SZEMO09110669201

Page: 12 of 59

Test plot as follows:

Date: 4.DEC.2009 09:48:30

Date: 4.DEC.2009 10:49:57

Report No.: SZEMO09110669201

Page: 13 of 59

Date: 4.DEC.2009 11:45:49

Date: 4.DEC.2009 14:06:53

Report No.: SZEMO09110669201

Page: 14 of 59

Date: 4.DEC.2009 14:40:52

Date: 4.DEC.2009 16:27:43

Report No.: SZEMO09110669201

Page: 15 of 59

Date: 7.DEC.2009 11:30:30

Date: 7.DEC.2009 11:54:30

Report No.: SZEMO09110669201

Page: 16 of 59

Date: 7.DEC.2009 12:10:33

Report No.: SZEMO09110669201

Page: 17 of 59

5.3 20dB Occupy Bandwidth

Measurement Data

Taskahannal	20dB Occupy Bandwidth (KHz)			
Test channel	GFSK	Pi/4QPSK	8DPSK	
Lowest	1095	1410	1380	
Middle	1091	1405	1395	
Highest	1095	1400	1390	

Report No.: SZEMO09110669201

Page: 18 of 59

Test plot as follows:

Date: 4.DEC.2009 10:54:52

Date: 4.DEC.2009 10:51:14

Report No.: SZEMO09110669201

Page: 19 of 59

Date: 4.DEC.2009 11:44:49

Date: 4.DEC.2009 14:00:27

Report No.: SZEMO09110669201

Page: 20 of 59

Date: 4.DEC.2009 14:42:20

Date: 4.DEC.2009 16:26:21

Report No.: SZEMO09110669201

Page: 21 of 59

Date: 7.DEC.2009 08:48:17

Date: 7.DEC.2009 11:55:52

Report No.: SZEMO09110669201

Page: 22 of 59

Date: 7.DEC.2009 12:11:40

Report No.: SZEMO09110669201

Page: 23 of 59

5.4 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Test state:	Hopping transmitting with all kind of modulation.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test results:	Passed	

Report No.: SZEMO09110669201

Page: 24 of 59

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1000	940	Pass
Middle	1005	940	Pass
Highest	1000	940	Pass
	Pi/4QPSK mode		
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1000	940	Pass
Middle	1000	940	Pass
Highest	1000	940	Pass
8DPSK mode			
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1000	940	Pass
Middle	1000	940	Pass
Highest	1000	940	Pass

Note: According to section 5.4,

Mode	20dB bandwidth (KHz) (worse case)	Limit (KHz) (Carrier Frequencies Separation)
GFSK	1095	730
PI/4QPSK	1410	940
8DPSK	1395	930

Report No.: SZEMO09110669201

Page: 25 of 59

Test plot as follows:

Date: 4.DEC.2009 10:36:01

Date: 4.DEC.2009 10:48:26

Report No.: SZEMO09110669201

Page: 26 of 59

Date: 4.DEC.2009 11:50:34

Date: 4.DEC.2009 14:05:23

Report No.: SZEMO09110669201

Page: 27 of 59

Date: 4.DEC.2009 16:58:46

Date: 4.DEC.2009 16:55:59

Report No.: SZEMO09110669201

Page: 28 of 59

Date: 7.DEC.2009 11:44:44

Date: 7.DEC.2009 11:57:46

Report No.: SZEMO09110669201

Page: 29 of 59

Date: 7.DEC.2009 12:13:42

Report No.: SZEMO09110669201

Page: 30 of 59

5.5 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (b)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Limit:	75channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Hopping transmitting with all kind of modulation.	
Test results:	Passed	

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	75
Pi/4QPSK	79	75
8DPSK	79	75

Report No.: SZEMO09110669201

Page: 31 of 59

Test plot as follows

Date: 7.DEC.2009 14:09:07

Date: 7.DEC.2009 14:06:52

Report No.: SZEMO09110669201

Page: 32 of 59

Date: 7.DEC.2009 14:01:36

Report No.: SZEMO09110669201

Page: 33 of 59

5.6 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Hopping transmitting with all kind of modulation.	
Test results:	Passed	

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	166.4	0.4
	DH3	284.8	0.4
	DH5	322.1	0.4
Pi/4QPSK	2-DH1	166.4	0.4
	2-DH3	284.8	0.4
	2-DH5	322.1	0.4
8DPSK	3-DH1	166.4	0.4
	3-DH3	284.8	0.4
	3-DH5	322.1	0.4

Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

DH1 time slot=0.520(ms)*(1600/ (2*79))*31.6=166.4 ms

DH3 time slot=1.78(ms)*(1600/ (4*79))*31.6=284.8ms

DH5 time slot=3.02 (ms)*(1600/ (6*79))*31.6=322.1ms

Report No.: SZEMO09110669201

Page: 34 of 59

Test plot as follows

Date: 4.DEC.2009 11:15:28

Date: 4.DEC.2009 11:14:40

Report No.: SZEMO09110669201

Page: 35 of 59

Date: 4.DEC.2009 11:13:48

Report No.: SZEMO09110669201

Page: 36 of 59

5.7 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Hopping transmitting with all kinds of modulation.	
Test results:	Passed	

Report No.: SZEMO09110669201

37 of 59 Page:

Test plot as follows:

Date: 4.DEC.2009 10:20:33

2.3 GHz

Date: 4.DEC.2009 10:15:14

Report No.: SZEMO09110669201

Page: 38 of 59

Test mode: GFSK Test channel: Highest

Date: 4.DEC.2009 12:06:59

Report No.: SZEMO09110669201

Page: 39 of 59

Date: 4.DEC.2009 14:15:25

Center 2.353 GHz

Date: 4.DEC.2009 14:25:41

Report No.: SZEMO09110669201

Page: 40 of 59

Date: 4.DEC.2009 16:33:23

Center 2.497 GHz

Date: 4.DEC.2009 16:41:21

Report No.: SZEMO09110669201

Page: 41 of 59

Date: 7.DEC.2009 11:24:43

Start 2.3 GHz

Date: 7.DEC.2009 11:29:35

Report No.: SZEMO09110669201

Page: 42 of 59

Stop 2.518 GHz

Date: 7.DEC.2009 13:24:08

Date: 7.DEC.2009 13:41:12

Report No.: SZEMO09110669201

Page: 43 of 59

5.8 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
	Remark:					
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Test Instruments:	Refer to section 4.7 for details					
Test results:	Passed					

Report No.: SZEMO09110669201

Page: 44 of 59

Report No.: SZEMO09110669201

Page: 45 of 59

Report No.: SZEMO09110669201

Page: 46 of 59

Report No.: SZEMO09110669201

Page: 47 of 59

Report No.: SZEMO09110669201

Page: 48 of 59

Report No.: SZEMO09110669201

Page: 49 of 59

Report No.: SZEMO09110669201

Page: 50 of 59

Report No.: SZEMO09110669201

Page: 51 of 59

Report No.: SZEMO09110669201

Page: 52 of 59

Report No.: SZEMO09110669201

Page: 53 of 59

5.9 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEMO09110669201

Page: 54 of 59

5.10 Radiated Emission

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205				
Test Method:	ANSI C63.4: 20	03					
Test Frequency Range:	30MHz to 25GH	łz					
Test site:	Measurement D	oistance: 3m (Se	emi-Anecho	ic Chambei	·)		
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Peak 1MHz 10Hz Average Value						
Limit:	Frequency Limit (dBuV/m @3m) Remark						
	30MHz-8		40.0		Quasi-peak Value		
	88MHz-216MHz 43.5 Quasi-peak						
	216MHz-9	60MHz)	Quasi-peak Value			
	960MHz-	1GHz	54.0		Quasi-peak Value		
	Above 1	GHz	54.0		Average Value		
			74.0		Peak Value		
Test Procedure:	the ground rotated 360 radiation. b. The EUT wantenna, whatower. c. The antennation ground to depress and the measure. d. For each succase and the meters and degrees to specified B. f. If the emission the limit specified B peak or aversheet.	at a 3 meter ser degrees to determine the mand vertical polar ement. Ispected emission en the antenna the rotatable tafind the maximulation level of the ecified, then test would be report margin would be rage method as	mi-anechoicermine the parameter away from away from one aximum valurizations of the EUT was tuned ble was turnim reading. The EUT in peaking could be also otherwise re-tested of the parameter away from the EUT in peaking could be also otherwise re-tested of the parameter away from the parameter away from the peaking could be also otherwise re-tested of the parameter away from the peaking could be also otherwise re-tested of the peaking the peakin	the interference of a varial meter to foue of the fiethe antennation heights fined from 0 ceak Detect Fold Mode. It may be a varial meter to heights fined from 0 ceak Detect Fold Mode. It mode was a set he emissione by one	ne highest ence-receiving ble-height antenna ur meters above the ld strength. Both a are set to make ged to its worst rom 1 meter to 4 degrees to 360 Function and a 10dB lower than and the peak values ssions that did not using peak, quasi-		
Test Instruments:	Refer to section	4.7 for details					
Test mode:	the worst case	UT in GFSK, P mode is GFSK i	i/4QPSK ar mode.		modes and find out		
		charge mdoe,	and then fo	ound the wo	orst case mode was		
Test results:	Passed						

Report No.: SZEMO09110669201

Page: 55 of 59

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEMO09110669201

Page: 56 of 59

5.10.1 Radiated emission below 1GHz

				Bluetooth I	Mode			
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
36.790	0.60	12.30	28.12	45.85	30.63	40.00	-9.37	Vertical
43.580	0.68	9.93	28.10	53.50	36.01	40.00	-3.99	Vertical
78.500	1.05	7.59	28.00	44.80	25.44	40.00	-14.56	Vertical
132.820	1.28	7.82	27.58	45.97	27.49	43.50	-16.01	Vertical
145.430	1.31	8.57	27.49	46.71	29.10	43.50	-14.40	Vertical
417.030	2.28	16.37	27.46	51.40	42.59	46.00	-3.41	Vertical
44.550	0.70	10.21	28.10	38.32	21.13	40.00	-18.87	Horizontal
145.430	1.31	8.57	27.49	39.51	21.90	43.50	-21.60	Horizontal
207.510	1.45	10.61	27.11	37.73	22.68	43.50	-20.82	Horizontal
218.180	1.51	11.13	27.06	39.46	25.04	46.00	-20.96	Horizontal
419.940	2.29	16.38	27.47	51.39	42.59	46.00	-3.41	Horizontal
836.070	3.35	22.40	26.75	36.17	35.17	46.00	-10.83	Horizontal

Report No.: SZEMO09110669201

Page: 57 of 59

5.10.2 Transmitter emission above 1GHz

Worse case n	node:	GFSK	Test o	hannel:	Lowest	Remark	κ:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2327.750	6.02	29.76	39.75	43.76	39.79	74.00	-34.21	Vertical
2398.250	6.34	30.03	38.87	43.57	41.07	74.00	-32.93	Vertical
2400.000	6.34	30.03	38.87	43.59	41.09	74.00	-32.91	Vertical
4804.000	9.36	34.25	41.53	45.37	47.45	74.00	-26.55	Vertical
7206.000	13.38	37.23	40.98	46.49	56.12	74.00	-17.88	Vertical
9608.000	13.39	37.99	37.56	41.92	55.74	74.00	-18.26	Vertical
12010.000	16.45	39.10	39.09	42.09	58.55	74.00	-15.45	Vertical
2327.750	6.02	29.76	39.75	43.62	39.65	74.00	-34.35	Horizontal
2398.250	6.34	30.03	38.87	44.00	41.50	74.00	-32.50	Horizontal
2400.000	6.34	30.03	38.87	43.81	41.31	74.00	-32.69	Horizontal
4804.000	9.36	34.25	41.53	44.22	46.30	74.00	-27.70	Horizontal
7206.000	13.38	37.23	40.98	45.61	55.24	74.00	-18.76	Horizontal
9608.000	13.39	37.99	37.56	41.51	55.33	74.00	-18.67	Horizontal
12010.000	16.45	39.10	39.09	40.77	57.23	74.00	-16.77	Horizontal

Worse case r	node:	GFSK	Test	channel:	Lowest	Remark	C :	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit	Polarization
2327.750	6.02	29.76	39.75	31.03	27.06	54.00	-26.94	Vertical
2398.250	6.34	30.03	38.87	31.15	28.65	54.00	-25.35	Vertical
2400.000	6.34	30.03	38.87	31.18	28.68	54.00	-25.32	Vertical
4804.000	9.36	34.25	41.53	31.04	33.12	54.00	-20.88	Vertical
7206.000	13.38	37.23	40.98	31.30	40.93	54.00	-13.07	Vertical
9608.000	13.39	37.99	37.56	28.37	42.19	54.00	-11.81	Vertical
12010.000	16.45	39.10	39.09	27.60	44.06	54.00	-9.94	Vertical
2327.750	6.02	29.76	39.75	31.21	27.24	54.00	-26.76	Horizontal
2398.250	6.34	30.03	38.87	31.08	28.58	54.00	-25.42	Horizontal
2400.000	6.34	30.03	38.87	31.12	28.62	54.00	-25.38	Horizontal
4804.000	9.36	34.25	41.53	31.02	33.10	54.00	-20.90	Horizontal
7206.000	13.38	37.23	40.98	31.37	41.00	54.00	-13.00	Horizontal
9608.000	13.39	37.99	37.56	28.44	42.26	54.00	-11.74	Horizontal
12010.000	16.45	39.10	39.09	27.60	44.06	54.00	-9.94	Horizontal

Report No.: SZEMO09110669201

Page: 58 of 59

Worse case mode: GFSK Test channel: Middle Remark: Peak

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2400.000	6.34	30.03	38.87	43.78	41.28	74.00	-32.72	Vertical
2483.500	6.22	30.32	39.53	43.95	40.96	74.00	-33.04	Vertical
4882.000	10.57	34.35	40.33	46.04	50.63	74.00	-23.37	Vertical
7323.000	12.91	37.31	40.40	45.35	55.17	74.00	-18.83	Vertical
9764.000	13.89	38.03	37.94	40.47	54.45	74.00	-19.55	Vertical
12205.000	17.95	39.23	39.30	40.86	58.74	74.00	-15.26	Vertical
2400.000	6.34	30.03	38.87	43.59	41.09	74.00	-32.91	Horizontal
2483.500	6.22	30.32	39.53	48.20	45.21	74.00	-28.79	Horizontal
4882.000	10.57	34.35	40.33	50.12	54.71	74.00	-19.29	Horizontal
7323.000	12.91	37.31	40.40	46.11	55.93	74.00	-18.07	Horizontal
9764.000	13.89	38.03	37.94	40.46	54.44	74.00	-19.56	Horizontal
12205.000	17.95	39.23	39.30	40.62	58.50	74.00	-15.50	Horizontal

Worse case mode: GFSK Test channel: Middle Remark: Average	
--	--

Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over limit	Polarization
2400.000	6.34	30.03	38.87	31.00	28.50	54.00	-25.50	Vertical
2483.500	6.22	30.32	39.53	30.85	27.86	54.00	-26.14	Vertical
4882.000	10.57	34.35	40.33	31.41	36.00	54.00	-18.00	Vertical
7323.000	12.91	37.31	40.40	31.59	41.41	54.00	-12.59	Vertical
9764.000	13.89	38.03	37.94	28.20	42.18	54.00	-11.82	Vertical
12205.000	17.95	39.23	39.30	27.50	45.38	54.00	-8.62	Vertical
2400.000	6.34	30.03	38.87	31.01	28.51	54.00	-25.49	Horizontal
2483.500	6.22	30.32	39.53	30.83	27.84	54.00	-26.16	Horizontal
4882.000	10.57	34.35	40.33	31.36	35.95	54.00	-18.05	Horizontal
7323.000	12.91	37.31	40.40	31.57	41.39	54.00	-12.61	Horizontal
9764.000	13.89	38.03	37.94	28.20	42.18	54.00	-11.82	Horizontal
12205.000	17.95	39.23	39.30	27.47	45.35	54.00	-8.65	Horizontal

Report No.: SZEMO09110669201

Page: 59 of 59

Worse case mode: GFSK Test channel: Highest Remark: Peak

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.500	6.22	30.32	39.53	53.71	50.72	74.00	-23.28	Vertical
2500.000	5.76	30.37	39.15	43.72	40.70	74.00	-33.30	Vertical
4960.000	10.43	34.45	41.03	44.73	48.58	74.00	-25.42	Vertical
7440.000	12.72	37.37	40.01	45.29	55.37	74.00	-18.63	Vertical
9920.000	14.24	38.08	37.78	40.44	54.98	74.00	-19.02	Vertical
12400.000	17.55	39.34	39.48	40.93	58.34	74.00	-15.66	Vertical
2483.500	6.22	30.32	39.53	43.98	40.99	74.00	-33.01	Horizontal
2500.000	5.76	30.37	39.15	44.04	41.02	74.00	-32.98	Horizontal
4960.000	10.43	34.45	41.03	44.48	48.33	74.00	-25.67	Horizontal
7440.000	12.72	37.37	40.01	44.67	54.75	74.00	-19.25	Horizontal
9920.000	14.24	38.08	37.78	40.91	55.45	74.00	-18.55	Horizontal
12400.000	17.55	39.34	39.48	42.50	59.91	74.00	-14.09	Horizontal

worse case mode: GFSK Test channel: Highest Remark: Average	Worse case mode:	GFSK	Test channel:	Highest	Remark:	Average
---	------------------	------	---------------	---------	---------	---------

Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over limit	Polarization
2483.500	6.22	30.32	39.53	30.52	27.53	54.00	-26.47	Vertical
2500.000	5.76	30.37	39.15	30.54	27.52	54.00	-26.48	Vertical
4960.000	10.43	34.45	41.03	32.01	35.86	54.00	-18.14	Vertical
7440.000	12.72	37.37	40.01	31.46	41.54	54.00	-12.46	Vertical
9920.000	14.24	38.08	37.78	27.19	41.73	54.00	-12.27	Vertical
12400.000	17.55	39.34	39.48	27.87	45.28	54.00	-8.72	Vertical
2483.500	6.22	30.32	39.53	30.58	27.59	54.00	-26.41	Horizontal
2500.000	5.76	30.37	39.15	30.60	27.58	54.00	-26.42	Horizontal
4960.000	10.43	34.45	41.03	31.99	35.84	54.00	-18.16	Horizontal
7440.000	12.72	37.37	40.01	31.47	41.55	54.00	-12.45	Horizontal
9920.000	14.24	38.08	37.78	27.18	41.72	54.00	-12.28	Horizontal
12400.000	17.55	39.34	39.48	27.86	45.27	54.00	-8.73	Horizontal

Remark: The disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.