${\bf Abstract}$

Normal, Correction

Le Kicking Sport

Ewen Le Bihan

2020-06-08

1 Modélisation du mouvement de la structure

1.1

 \vec{F}_1 Réaction du support

 \vec{F}_2 Poids

Cas n°1 À l'endroit En train de se balancer

Cas n°2 À l'envers Au repos

1.2

vector from sphere to soil label vec F_-1 ; vector from sphere to summit vec F_-2 Correction à partir de $l\dot{a}$

 $\vec{v} \begin{cases} \text{Direction} & \text{Tangeante à la trajectoire} \\ \text{Sens} & \text{Sens du mouvement} \\ \text{Norme} & \text{Variable} \\ \text{Pt d'application} & \text{Masse } m \end{cases}$

1.3

1.3.1

a=x Car x alterne entre valeurs positives et négatives $\Longrightarrow b=y$ (par élimination) $T_1=5\,\mathrm{s}$ $T_2=2.5\,\mathrm{s}$

1.3.2

$$T = 2\pi \sqrt{\frac{l}{g}}$$
$$= 2\pi \sqrt{\frac{4.15}{9.81}}$$
$$= 5.37 \,\mathrm{s}$$

 ${\cal T}_1$ représente la période des oscillations.

1.3.3

Le prof avait la flemme de rédiger, en gros c'est la relation entre x et y

2 Étude énergétique du mouvement du système

2.1

Pointillés E_p

Continu E_c

2.2

$$E_m = E_c + E_p$$

graph $\{ line f(t) = 900 \}$

2.3

$$h = l - l\cos\theta$$
$$= l(1 - \cos\theta)$$

$$\begin{split} E_m &= E_c + E_{pp} \\ &= \frac{1}{2} m v^2 + mgh \\ &= \frac{1}{2} m (l\omega)^2 + mgh \\ &= \frac{1}{2} m \left(l \frac{d\theta}{dt} \right)^2 + mgl(1 - \cos \theta) \\ &= \frac{1}{2} m l \left(\frac{d\theta}{dt} \right)^2 + mgl(1 - \cos \theta) \\ &\text{On dérive...} \end{split}$$