Lenguajes Formales y Computabilidad Teoremas: Combo 6

Nicolás Cagliero

July 1, 2025

Lema $Si\ S\subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente computable entonces S es Σ -efectivamente enumerable.

Proof. Supongamos $S \neq \emptyset$. Sea $(\vec{z}, \vec{\gamma}) \in S$ fijo. Sea \mathbb{P} un procedimiento efectivo que computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$. Sea \mathbb{P}_1 un procedimiento efectivo que enumera a $\omega^n \times \Sigma^{*m}$. Entonces el siguiente procedimiento enumera a S:

Etapa 1: Realizar \mathbb{P}_1 con $x \in \omega$ de entrada para obtener $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$.

Etapa 2: Realizar \mathbb{P} con $(\vec{x}, \vec{\alpha})$ de entrada para obtener el valor Booleano e de salida.

Etapa 3: Si e=1 dar como dato de salida $(\vec{x}, \vec{\alpha})$. Si e=0 dar como dato de salida $(\vec{z}, \vec{\gamma})$.

Teorema (Caracterización de conjuntos Σ-r.e.). Dado $S \subseteq \omega^n \times \Sigma^{*m}$, son equivalentes:

- 1. S es Σ -recursivamente enumerable.
- 2. $S=I_F$, para alguna $F:D_F\subseteq\omega^k\times\Sigma^{*l}\to\omega^n\times\Sigma^{*m}$ tal que cada $F_{(i)}$ es Σ -recursiva.
- 3. $S = D_f$, para alguna función Σ -recursiva f.

Proof. (2) \Rightarrow (3). Haremos el caso k = l = 1 y n = m = 2. El caso general es completamente análogo. Nótese que entonces tenemos que

$$S \subseteq \omega^2 \times \Sigma^{*2}$$
 y $F: D_F \subseteq \omega \times \Sigma^* \to \omega^2 \times \Sigma^{*2}$ es tal que $I_F = S$ y $F_{(1)}, F_{(2)}, F_{(3)}, F_{(4)}$ son Σ -recursivas.

Para cada $i \in \{1, 2, 3, 4\}$, sea \mathcal{P}_i un programa el cual computa a $F_{(i)}$. Sea \leq un orden total sobre Σ . Definamos

$$H_i = \lambda t x_1 \alpha_1 \left[\neg Halt^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i) \right]$$

Notar que $D_{H_i}=\omega^2\times \Sigma^*$ y que H_i es Σ -mixta. Además sabemos que la función $Halt^{1,1}$ es $(\Sigma\cup\Sigma_p)$ -p.r. por lo cual resulta fácilmente que H_i es $(\Sigma\cup\Sigma_p)$ -p.r.

Por la Proposición de Independencia del Alfabeto tenemos que H_i es Σ -p.r., lo cual por el Segundo Manantial nos dice que hay un macro:

[IF
$$H_i(V2, V1, W1)$$
 GOTO A1]

Para hacer más intuitivo el uso de este macro lo escribiremos de la siguiente manera:

[IF
$$\neg Halt^{1,1}(V2, V1, W1, \mathcal{P}_i)$$
 GOTO A1]

Para i = 1, 2, definamos

$$E_i = \lambda x t x_1 \alpha_1 \left[x \neq E_{\#1}^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i) \right]$$

Para i = 3, 4, definamos

$$E_i = \lambda t x_1 \alpha_1 \alpha \left[\alpha \neq E_{*1}^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i) \right]$$

Con el mismo análisis que hicimos para H_i llegamos a que cada E_i es Σ -pr. O sea que para cada $i \in \{1,2\}$ hay un macro

[IF
$$E_i(V2, V3, V1, W1)$$
 GOTO A1]

y para cada $i \in \{3,4\}$ hay un macro

[IF
$$E_i(V2, V1, W1, W2)$$
 GOTO A1]

Haremos más intuitiva la forma de escribir estos macros, por ejemplo para i=1, lo escribiremos de la siguiente manera

[IF V2
$$\neq E_{\#1}^{1,1}(V3, V1, W1, \mathcal{P}_1)$$
 GOTO A1]

Ya que la función $f = \lambda x[(x)_1]$ es Σ -p.r. hay un macro

$$[V2 \leftarrow f(V1)]$$

el cual escribiremos de la siguiente manera:

$$[V2 \leftarrow (V1)_1]$$

Similarmente hay macros:

$$[W1 \leftarrow * \leq (V1)_3]$$

$$[V2 \leftarrow (V1)_2]$$

Sea \mathcal{P} el siguiente programa de \mathcal{S}^{Σ} :

```
L1 N20 \leftarrow N20 + 1

[N10 \leftarrow (N20)_1]

[N3 \leftarrow (N20)_2]

[P3 \leftarrow * \leq (N20)_3]

[IF \neg Halt^{1,1}(N10, N3, P3, \mathcal{P}_1) \text{ GOTO L1}]

[IF \neg Halt^{1,1}(N10, N3, P3, \mathcal{P}_2) \text{ GOTO L1}]

[IF \neg Halt^{1,1}(N10, N3, P3, \mathcal{P}_3) \text{ GOTO L1}]

[IF \neg Halt^{1,1}(N10, N3, P3, \mathcal{P}_4) \text{ GOTO L1}]

[IF N1 \neq E_{\#1}^{1,1}(N10, N3, P3, \mathcal{P}_1) \text{ GOTO L1}]

[IF N2 \neq E_{\#1}^{1,1}(N10, N3, P3, \mathcal{P}_2) \text{ GOTO L1}]

[IF P1 \neq E_{*1}^{1,1}(N10, N3, P3, \mathcal{P}_3) \text{ GOTO L1}]

[IF P2 \neq E_{*1}^{1,1}(N10, N3, P3, \mathcal{P}_4) \text{ GOTO L1}]
```

Es claro que este programa computa una proyección, no modifica ni N1 ni P1 así que computa tanto a $p_1^{2,2}$ como a $p_3^{2,2}$. Además, podemos notar que el programa no termina si los valores representados en N1, N2, P1 y P2 no pertenecen a S pues nunca van a cumplirse las 4 comparaciones pues las $F_{(i)}$ no enumeran a esos valores. Entonces, el programa computa $p_1^{2,2}|_S$. Entonces $p_1^{2,2}|_S$ es Σ -computable por lo cual es Σ -recursiva, lo cual prueba (3) ya que $D_{(p_1^{2,2}|_S)}=S$.