Niska średnia prędkość tramwajów w Warszawie

Kapibara Tramwajara

Nasz zespół

Piotr SzkodaDusza Zespołu

Clara Chami

Dyrektor

Kreatywny

Kornelia Błaszczuk

Implementator

Anton Basan

Poszukiwacz Źródeł

Paweł Spirydowicz

Ewaluator

Niska średnia prędkość tramwajów w Warszawie

Tramwaje często zatrzymując się na przystankach nie mogą z nich odjechać od razu po wejściu pasażerów, bo właśnie wtedy sygnały świetlne zmieniają się na zakaz wjazdu...

Główne przyczyny problemu

- Konflikt dużej ilości pojazdów na skrzyżowaniach
- Infrastruktura łącząca ruch pojazdów kołowych z tramwajami, co skutkuje obecnością wielu faz ruchu drogowego
- Czynnik ludzki nieuważność (w tym wymuszenia pierwszeństwa)

Skutki problemu

- Opóźnienia w codziennych podróżach
- Zanieczyszczenia powietrza, m.in. wybór auta zamiast komunikacji miejskiej w związku z niedogodnościami
- Wzrost liczby wypadków drogowych

Analiza źródeł

Przedstawione wyniki wskazują, że bardzo korzystny dla płynności ruchu tramwajów oraz czasu oczekiwania przed skrzyżowaniem, jest krótki cykl sygnalizacyjny.

Wybrane wyniki analizy czasu oczekiwania i przejazdu przez skrzyżowanie z sygnalizacją świetlną

	Cykl sygnalizacji [s]								
		50			70			90	
	udział sygnału dopuszczającego przejazd tramwaju [%]								
	30	50	70	30	50	70	30	50	70
[s]	11	6	2	17	9	3	22	11	4
[e]	11	8	4	16	11	6	21	14	7
[poc./h]	210	280	360	160	250	350	150	230	310
_i [s]	18	13	10	23	15	11	24	16	12
	[s] [poc./h]	[s] 11 [poc./h] 210	udział sygn 30 50 [s] 11 6 [s] 11 8	udział sygnatu dop 30 50 70 [s] 11 6 2 [s] 11 8 4 [poc./h] 210 280 360	50	50 70 udział sygnału dopuszczającego p 30 50 70 30 50 [s] 11 6 2 17 9 [s] 11 8 4 16 11 [poc./h] 210 280 360 160 250	50 70	50 70	Solution Solution

Układ faz sygnalizacji wielofazowej:

- a) Typowej
- b) Z rozdzieloną fazą korzystniejsza dla tramwaju

Szybkie tramwaje w Poznaniu

Poznański szybki tramwaj to odcinek bezkolizyjnej, ułożonej w przekopie oraz na estakadzie trasy tramwajowej. Rozwiązanie to pozwala na jazdę z prędkością 70 km/h.

Powstała jako alternatywa dla droższego metra.

Komunikacja tramwajowa w Krakowie

Wyświetlany sygnał w postaci litery "D" oznacza, że motorniczy zamyka w danym momencie drzwi, a następnie **bezzwłocznie** rusza z przystanku.

Nasz cel

- Upłynnić ruch na skrzyżowaniach
- Zautomatyzować stare odcinki
- Rozbudować system sygnalizacji

Persony

Sebastian 30 lat Obywatel m. st. Warszawa

Sebastian codziennie wstaje dwie godziny przed pracą, gdyż jest zestresowany, że straci bonus za punktualność.

Dane:

- mieszka na Białołęce, dojeżdża na Śródmieście tramwajem nr 17.
- Buduje doświadczenie w rozwijającej się firmie IT
- Spłaca kredyt

Problemy:

 Stres związany z niepewnością wywołaną przez funkcjonowanie ZTM

Pamela 20 lat Studentka w Warszawie

Studiuje medycynę na WUW. Przeprowadziła się na studia i przeżyła zawód związany ze skutecznością komunikacji miejskiej.

Dane:

- Codziennie dojeżdża z Annopola na uniwersytet tramwajem numer
 4.
- Jest eko-świadoma, zatem zależy jej na używaniu komunikacji miejskiej.

Problemy:

 Zmęczona studiami medycznymi i długimi dojazdami, nie znajduje czasu na naukę.

Bogusia 70 lat Emerytka

Bogusia ma problemy zdrowotne. Przez swój wiek jest zmuszona korzystać z komunikacji miejskiej.

Dane:

- Jej mąż zmarł cztery lata temu. Bogusia często odwiedza jego grób.
- Regularnie musi dojeżdżać do lekarza.
- Nie posiada samochodu, nie ma krewnych w mieście.

Problemy:

 Zmęczona wydłużającymi się podróżami tramwajem.

All rights more

Drights mercad

All rights more

Nasze pierwsze pomysły

Automatyczne dobieranie trasy do przystanku Separacja torów od jezdni

Wykorzystanie sztucznej inteligencji do usprawnienia ruchu

Latające tramwaje

Zmiany tras tramwajów

Synchronizacja świateł z rozkładami jazdy tramwajów

Szlabany blokujące przejazd samochodom

Ogólna koncepcja rozwiązania

1

Czujnik umieszczony w szynie, po której porusza się tramwaj 2A

Nie ma tramwaju = faza dla niego zostaje pominięta 2B

Obecność tramwaju = faza dla niego odbywa się

Jak chcemy to osiągnąć?

Funkcjonalności krytyczne

Funkcjonalności dodatkowe

Wykrywanie tramwaju	Rogatki				
Sterowanie światłami	Sygnał dla kierowców				
Zwiększenie częstotliwości fazy tramwaju					

Wykrywanie tramwaju

Wykorzystamy przycisk Tact Switch podłączony pod ESP32.

Umieszczony w szynach zmniejsza ryzyko wykrycia obiektu innego niż tramwaj.

W rzeczywistym systemie można wykorzystać, m.in.. czujnik niezajętości toru, detektor indukcyjny czy podczerwony.

Sygnalizacja świetlna

 Algorytm zarządzający fazami ruchu, związany z danymi pozyskiwanymi przy pomocy systemu wykrywania pojazdu szynowego

Naszym celem jest minimalizacja czasu postoju tramwaju przy jednoczesnej maksymalizacji przepustowości ruchu na skrzyżowaniu.

Rogatki

Funkcjonalność dodatkowa

- ✓ Zabezpiecza przejazd tramwaju przed wtargnięciami
- ✓ Zmniejszenie liczby wypadków
- x Nie jest to uniwersalne rozwiązanie

Model projektu

Skrzyżowanie alei "Solidarności" i Jana Pawła II.

- 4 przystanki
- 8 linii
- tory zostaną przedstawione ich zabawkowym odpowiednikiem.

Dalsze plany

Połączenie czujnika z ESP32

Napisanie programu obsługującego światła

Montaż czujnika w torach

Potencjalne ryzyka i problemy naszego projektu

- Napisanie programu sterującego światłami
- Zainstalowanie czujnika w torach
- Uproszczenie skrzyżowanie w ramach przygotowania makiety
- Model tramwaju nie automatyczny
- Potrzeba wysokich nakładów siły roboczej w celu modernizacji dotychczasowych skrzyżowań
- Ryzyko utrudnienia ruchu samochodowego i pieszego w ramach usprawnienia tramwajów
- Ryzyko nieopłacalności rozwoju tramwajów w porównaniu z rozwojem metra

