Bravais Lattices & Crystal Structures

Shobhana Narasimhan

JNCASR, Bangalore, India shobhana@jncasr.ac.in

What we'd (ultimately) like to know:

- What are the allowed energies and wavefunctions of electrons in (periodic) solids?
- Why consider only periodic structures?

What we'd (ultimately) like to know:

- What are the allowed energies and wavefunctions of electrons in (periodic) solids?
- Why consider only periodic structures?
 - They are easier to study, because of some special properties of electrons in periodic potentials.
 - Some of the methods we use are applicable only to periodic systems.
 - Very many systems of interest really are crystalline, i.e., they have a periodic structure.

(Will see later what to do for non-periodic cases!)

Periodic Crystal Structures

(In Real Space)

 Crystals possess a structure that is built up out of translationally repeating units (unit cells).

- Crystals possess a structure that is built up out of translationally repeating units (unit cells).
- Every crystal structure consists of:
 - (i) a Bravais Lattice (shape of unit cell & how it repeats). Specified by primitive lattice vectors a, b, c.

- Crystals possess a structure that is built up out of translationally repeating units (unit cells).
- Every crystal structure consists of:
 - (i) a Bravais Lattice (shape of unit cell & how it repeats). Specified by primitive lattice vectors a, b, c.
 - (ii) an Atomic Basis (how many atoms are in the unit cell, and how they are arranged).

a. The Bravais Lattice

Input parameters in pwscf

ibrav

celldm

OR

A, B, C, cosAB, cosBC, cosAC

Bravais Lattices

Enumerated by Auguste Bravais (~1850).

- Infinite lattice of discrete points.
- Arrangement AND Orientation IDENTICAL from all points.
- All points can be specified by:

$$\mathbf{R} = n_1 \mathbf{a} + n_2 \mathbf{b} + n_3 \mathbf{c}$$
, where n_1 , n_2 , n_3 are integers.

- $\{a, b, c\}$ = PRIMITIVE LATTICE VECTORS (PLVs)
- In 2-D: a & b should not be parallel (or anti-parallel).
- In 3-D: a, b & c should not all be in the same plane.

Is this a Bravais Lattice?

Yes, 2-D Square Lattice

Yes, 2-D Square Lattice

Is this a Bravais Lattice?

No.

Is this a Bravais Lattice?

Note that lattice vectors start and end at identical points.

Unit Cells for Bravais Lattices

Primitive (non-primitive) unit cells contain 1 (>1) <u>lattice pt</u>. and generate the whole lattice by translation, without overlapping and without space missing.

e.g., consider the 2-D Hexagonal Lattice:

Unit cell? Primitive?

Unit Cells for Bravais Lattices

Primitive (non-primitive) unit cells contain 1 (>1) lattice pt. and generate the whole lattice by translation, without overlapping and without space missing.

e.g., consider the 2-D Triangular Lattice:

Unit cell? Primitive?

Here we will do "worksheet 1" on 2D Bravais Lattices

- Is this a Bravais Lattice? (assume pattern extends to infinity)
- Draw 2 primitive lattice vectors \underline{a} and \underline{b} .
- Note: Lattice vectors always start and end at identical points!
- Shade a primitive unit cell.

- Is this a Bravais Lattice? (assume pattern extends to infinity)
- Draw 2 primitive lattice vectors \underline{a} and \underline{b} .
- Note: Lattice vectors always start and end at identical points!
- Shade a primitive unit cell.

- Is this a Bravais Lattice? (assume pattern extends to infinity)
- Draw 2 primitive lattice vectors \underline{a} and \underline{b} .
- Note: Lattice vectors always start and end at identical points!
- Shade a primitive unit cell.

The Simple Cubic Lattice

Is it a Bravais Lattice?

The Simple Cubic Lattice

- Yes, it is a Bravais Lattice.
- a, b, c are on possible set of primitive lattice vectors.

The Face Centered Cubic Lattice

Is this a Bravais Lattice?

The Face Centered Cubic Lattice

- Yes, it is a Bravais Lattice.
- *a*, *b*, *c* are a set of possible primitive lattice vectors.

The Face Centered Cubic Lattice

Conventional Cubic Unit Cell

Primitive Unit Cell

In the most general case:

Have to specify the 3 vectors a, b, c

To do this, we need to specify SIX numbers.

```
• a = \text{Length of } a --- A or celldm(1)

• b = \text{Length of } b or b/a --- B or celldm(2)

• c = \text{Length of } c or c/a --- C or celldm(3)

• Angle between b \& c --- cosBC or celldm(4)

• Angle between a \& c --- cosAC or celldm(5)

• Angle between a \& b --- cosAB or celldm(6)
```

For Quantum ESPRESSO (pwscf)

Specify the 6 numbers in green or brown if you put ibrav = 0

3-D Bravais lattices are classified into 14 types

- Cubic
- a = b = c, $\alpha = \beta = \gamma = 90$

Need to specify only a = length of a = celldm(1)

- 3-D Bravais lattices are classified into 14 types
- Hexagonal
- $a = b \neq c$, $\alpha = \beta = 90$ $\gamma = 120$

Need to specify

a = celldm(1) c/a = celldm(3)

- 3-D Bravais lattices are classified into 14 types
- Trigonal (Rhombohedral)
- a = b = c, $\alpha = \beta = \gamma \neq 90$

(5)

ibrav=5

Need to specify

```
a = \text{celldm}(1)

\cos(\gamma) = \text{celldm}(4)
```


3-D Bravais lattices are classified into 14 types

- Tetragonal
- $a = b \neq c$, $\alpha = \beta = \gamma = 90$

(6)

ibrav=6

Need to specify

$$a = \text{celldm}(1)$$

c/a = celldm(3)

3-D Bravais lattices are classified into 14 types

- Orthorhombic
- $a \neq b \neq c$, $\alpha = \beta = \gamma = 90$

Need to specify

$$a = \text{celldm}(1)$$
; $b/a = \text{celldm}(2)$; $c/a = \text{celldm}(3)$

3-D Bravais lattices are classified into 14 types

- Monoclinic
- $a \neq b \neq c$, $\alpha = \beta = 90 \neq \gamma$

Monoclinic P ibrav=12

Base-centered monoclinic ibrav=13

```
Need to specify a = \text{celldm}(1); b/a = \text{celldm}(2); c/a = \text{celldm}(3); \cos(\gamma) = \text{celldm}(4)
```


3-D Bravais lattices are classified into 14 types

- Triclinic
- $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90$

Need to specify

```
a = \text{celldm}(1); b/a = \text{celldm}(2); c/a = \text{celldm}(3); \cos(\gamma) = \text{celldm}(4); \cos(\beta) = \text{celldm}(5); \cos(\alpha) = \text{celldm}(6)
```


b. The Crystal Structure

Input parameters in pwscf

nat

ntyp

ATOMIC_POSITIONS

 To get the crystal structure, one attaches an atomic basis every point in the Bravais Lattice.

Primitive Unit Cell

- Smallest possible unit cell for a given crystal structure.
- Depending on the crystal structure, it may contain only one atom, or it may contain more than one atom.
- One can always choose to work with a larger (nonprimitive) unit cell. Such a cell is called a supercell.

Crystal Structures that are also Bravais lattice types

- In many cases, the crystal structure itself is a Bravais lattice type (e.g., BCC or FCC)
- Then (and ONLY THEN) there is only one atom in the primitive unit cell.
- THEN (in input for pwscf):
- nat = 1
- ntyp = 1
- ATOMIC_POSITIONS: put one atom anywhere you want (usually at 0.0 0.0 0.0)

- Is this a Bravais Lattice?
- If yes, find a set of primitive lattice vectors.
- If no, find the Bravais lattice and basis.

No, it is not a Bravais lattice. View from red and blue points is different!

To generate whole structure:

FCC Bravais lattice + 2-atom basis: $(0,0,0) + (\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$


```
ibrav = 2
nat = 2
ntyp = 1
ATOMIC_POSITIONS
... 0.0 0.0 0.0
... 0.25 0.25 0.25
```

Here we will do "worksheet 2" on crystal structures

2D Crystals

- Find the 2D Bravais lattice and basis for this (infinite) pattern.
- Draw two (primitive) lattice vectors.
- Find the primitive unit cell. How many atoms (dots) does it contain?

2D Crystals

- Find the 2D Bravais lattice and basis for this (infinite) pattern.
- Draw two (primitive) lattice vectors.
- Find the primitive unit cell. How many atoms (dots) does it contain?

2D Crystals

8-atom basis:

2D Crystals

- Find the 2D Bravais lattice and basis for this (infinite) pattern.
- Draw two (primitive) lattice vectors.
- Find the primitive unit cell. How many atoms (dots) does it contain?

WORKSHEET 2 WORKSHEET 2 WORKSHEET 2 WORKSHEET 2

This is a Bravais lattice.
You can do a pwscf calculation with

ibrav=3, nat=1,nytp=1, one atom placed at 0.0 0.0 0.0

If you instead choose to work with a supercell and ibrav=1, give nat, ntyp and ATOMIC POSITIONS

WORKSHEET 2 WORKSHEET 2 Body Centered Cubic Structure

Conventional Cubic Unit Cell

Primitive Unit Cell

WORKSHEET 2 Body Centered Cubic Structure


```
ibrav = 1
nat = 2
ntyp = 1
ATOMIC_POSITIONS
... 0.0 0.0 0.0
... 0.5 0.5 0.5
```

WORKSHEET 2 The Rock Salt (NaCI) Structure

- This is obviously not a Bravais lattice! (Why?)
- Find a Bravais lattice and basis.
- Give nat, ntyp and ATOMIC_POSITIONS

WORKSHEET? The Rock Salt (NaCI) Structure

OR

Miller Indices

Way of specifying planes/directions in crystal.

<u>Plane:</u> (hkl)

- 1) Take intercepts on the LVs $a, b, c = n_1, n_2, n_3$
- 2) Take reciprocals of intercepts = 1/n₁,1/n₂,1/n₃
- 3) [Usually] multiply by factor m so that all 3 nos. are now integers:h=m/n₁,k=m/n₂,l=m/n₃.

Note: For FCC,BCC, usually use a, b, c for conventional cubic cell (non-primitive).

Miller Indices

- Consider the following 2 planes in a cubic crystal.
- What are their Miller indices?

Here we will do "worksheet 3" on Miller indices

BCC (110) Surface

- Draw the 2D arrangement of atoms on a BCC(110) surface.
- Make sure you mark lengths in units of a (side of conventional cubic unit cell of BCC)
- Draw two PLVs.
- Draw the boundaries of a primitive unit cell.
- To do later: get the coordinates of atoms in the top 3 layers.

Topmost (surface) layer

Topmost (surface) layer

R. Nix

FCC (110) Surface

- Draw the 2D arrangement of atoms on a FCC(110) surface.
- Make sure you mark lengths in units of a (side of conventional cubic unit cell of FCC)
- Draw two PLVs.
- Draw the boundaries of a primitive unit cell.
- To do later: get the (x,y,z) coordinates of atoms in the first three layers.

Topmost (surface) layer

Chegg

