รายวิชา 09131201 ระเบียบวิธีเชิงตัวเลขทางด้านคอมพิวเตอร์ (Numerical Methods for Computers)

บทที่ 3 ระบบสมการเชิงเส้น (System of linear equations)

ผศ.ดร.วงศ์วิศรุต เขื่องสตุ่ง

สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

July 28, 2022

Outline

- บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
- 3 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)

- 3.8 วิธีการแยกเมทริกซ์แบบเคราท์ (Crout Decomposition)

- บทที่ 4 ระบบสมการไม่เชิงเส้น
- 📵 บทที่ 5 การประมาณค่าในช่วง

Table of Contents

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 3 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)
- 📵 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 🕠 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕡 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ 🔎 🚙 🕟 🥞

Table of Contents

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
- 3 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)
- 1 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕡 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ 🔎 🚙 🕟 🥞

Table of Contents

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)
- 3.1 วิธีเชิงกราฟ (Graphical Method)
- 3.2 กฎของคราเมอร์ (Cramer's Rule)
- 3.3 วิธีกำจัดตัวไม่ทราบค่าอย่างง่าย (Elimination of Unknown)
- 3.4 วิธีกำจัดแบบเกาส์ (Gauss Elimination Method)
- 3.5 วิธีกำจัดแบบเกาส์-ชอร์ดอง (Gauss-Jordan method)
- 3.6 วิธีทำเมทริกซ์ผกผัน (Matrix Inversion)
- 3.7 วิธีการแยกเมทริกซ์แบบ LU (LU decomposition)
- 3.8 วิธีการแยกเมทริกซ์แบบเคราท์ (Crout Decomposition)
- 3.9 วิธีการแยกเมทริกซ์แบบโชเลสกี (Cholesky Decomposition)

Outline

- 🕦 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- บทที่ 2 รากของสมการ (Root Finding)
- 3 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)
- 3.1 วิธีเชิงกราฟ (Graphical Method)
- 3.2 กฎของคราเมอร์ (Cramer's Rule)
- 3.3 วิธีกำจัดตัวไม่ทราบค่าอย่างง่าย (Elimination of Unknown)
- 3.4 วิธีกำจัดแบบเกาส์ (Gauss Elimination Method)
- 3.5 วิธีกำจัดแบบเกาส์-ซอร์ดอง (Gauss-Jordan method)
- 3.6 วิธีทำเมทริกซ์ผกผัน (Matrix Inversion)
- 3.7 วิธีการแยกเมทริกซ์แบบ LU (LU decomposition)
- 3.8 วิธีการแยกเมทริกซ์แบบเคราท์ (Crout Decomposition)
- 3.9 วิธีการแยกเมทริกซ์แบบโชเลสกี (Cholesky Decomposition)
- 3.10 วิธีเกาส์ไซดอล์ (Gauss Seidel Method)
- 3.11 แบบฝึกหัด 3
- 1 บทที่ 4 ระบบสมการไม่เชิงเส้น 🙃 บทที่ 5 การประมาณค่าในช่วง

การแก้สมการเชิงเส้นที่มีหลายสมการและหลาย ตัวแปร (ตัวไม่ทราบค่า) ซึ่งเรียกว่า ระบบสมการเชิงเส้น (system of linear equations) มีรูปแบบทั่วไปสำหรับ nสมการ และมีตัวแปร n ตัว ดังนี้

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

ซึ่งค่า $(x_1,x_2,...,x_n)$ ที่สอดคล้องกับสมการทุกสมการ เรียกว่าเป็นคำตอบ หรือ ผล เฉลยของระบบสมการ

วิธีเชิงกราฟ (Graphical Method)

วิธีเชิงกราฟ (Graphical Method)

เนื่องจากการแก้ปัญหาในบทนี้ เป็นการแก้ปัญหาเพื่อหาค่ารากของระบบสมการเชิง เส้นดังนั้นจะูพิจารณาจากระบบสมการเชิงเส้นที่ประกอบด้วยสมการ 2 สมการที่มี 2 ตัวแปร ดังนี้

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

ซึ่งทั้งสองสมการสามารถหาค่า x_2 ได้ดังนี้

$$x_2 = -\frac{a_{11}}{a_{12}}x_1 + \frac{b_1}{a_{12}}$$
$$x_2 = -\frac{a_{21}}{a_{22}}x_1 + \frac{b_2}{a_{22}}$$

สมการทั้งสองเป็นสมการเส้นตรง $\mathit{x}_2 = ($ ความชั้น $)\mathit{x}_1 +$ จุดตัดแกน เมื่อนำสมการทั้ง สองมาเขียนกราฟ จุดที่เส้นทั้งสองตัดกัน ก็คือคำตอบรากของระบบสมการนั่นเอง

ระเบียบวิธีเชิงกราฟ (Graphical Method)

์ ตัวอย่างที่ 3.1

จงใช้ระเบียบวิธีเชิงกราฟ (Graphical Method) เพื่อหาค่ารากของสมการ

$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$

ระเบียบวิธีเชิงกราฟ (Graphical Method)

รูปที่ 1: Graphical solution of a set of two simultaneous linear algebraic equations. The intersection of the lines represents the solution

จากระบบสมการเชิงเส้น (system of linear equations) มีรูปแบบทั่วไปสำหรับ nสมการ และมีตัวแปร n ตัว ดังนี้

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

ระบบสมการดังกล่าวสามารถเขียนให้อยู่ในรูปแมทริกซ์ได้ดังนี้ $[A]\{X\}=\{B\}$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

และ

$$B = \begin{vmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{vmatrix}$$

ทบทวนคุณสมบัติพื้นฐานของเมทริกซ์

กำหนดให้

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

หรือ $[A]{X} = {B}$ หลักการที่สำคัญของวิธีเครเมอร์ คือการหาค่าตัวกำหนด ($\operatorname{Determinant},\,\operatorname{D}$) แล้ว หาตัวไม่ทราบค่ำ x_i ของระบบสมการดังกล่าว

รูปแบบทั่วไปของกฎของคราเมอร์ (Cramer's Rule) คือ

$$x_i = \frac{|A_i|}{|A|}$$

เมื่อ |A| คือค่าตัวกำหนดของเมทริกซ์ A และ A_i คือค่าตัวกำหนดของเมทริกซ์ A หลังจากที่เมทริกซ์ A ได้เปลี่ยนค่าไปในแนวแถวตั้ง i ด้วยค่าในเวกเตอร์ B

์ ตัวอย่างที่ 3.2

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยกฎของคราเมอร์ (Cramer's Rule)

$$3x_1 + 4x_2 = 10$$

$$5x_1 - 7x_2 = -2$$

ตัวอย่างที่ 3.3

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยกฎของคราเมอร์ (Cramer's Rule)

$$x_1 + 2x_2 + x_3 = 0$$
$$2x_1 + 2x_2 + 3x_3 = 3$$
$$-x_1 - 3x_2 = 2$$

พิจารณาจากระบบสมการเชิงเส้นที่ประกอบด้วยสมการ 2 สมการที่มี 2 ตัวแปร ดังนี้

$$a_{11}x_1 + a_{12}x_2 = b_1 \tag{a}$$

$$a_{21}x_1 + a_{22}x_2 = b_2 (b)$$

แก้ระบบสมการโดยการคูณ a_{21} ในสมการ (a) และ โดยการคูณ a_{11} ในสมการ (b)จะได้

$$a_{21}a_{11}x_1 + a_{21}a_{12}x_2 = b_1a_{21} (c)$$

$$a_{11}a_{21}x_1 + a_{11}a_{22}x_2 = b_2a_{11}$$
 (d)

นำ (d) - (c) จะได้

$$a_{22}a_{11}x_2 - a_{12}a_{21}x_2 = b_2a_{11} - b_1a_{21}$$

ดังนั้น

$$x_2 = \frac{b_2 a_{11} - b_1 a_{21}}{a_{22} a_{11} - a_{12} a_{21}} \tag{e}$$

แทน (e) ใน (a) จะได้

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}} \tag{f}$$

์ ตัวอย่างที่ 3.4

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยวิธีกำจัดตัวไม่ทราบค่าอย่างง่าย (Elimination of Unknown)

$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$

วิธีกำจัดแบบเกาส์ (Gauss Elimination Method)

วิธีกำจัดแบบเกาส์ (Gauss Elimination Method)

วิธีกำจัดแบบเกาส์ (Gauss Elimination Method) ประกอบด้วย 2 ระเบียบวิธีคือ

- 1 วิธีกำจัดแบบเกาส์แบบธรรมดา (Naïve Gauss Elimination Method)
- 2 วิธีกำจัดแบบเกาส์โดยเลือกสมการตัวหลักบางส่วน (Gauss Elimination Method with Partial Pivoting Method)

วิธีการกำจัดแบบเกาส์ สามารถแบ่งออกได้เป็น 2 ขั้นตอน ดังนี้

1. **การกำจัดไปข้างหน้า (Forward Elimination)** ถ้าหากมีระบบสมการที่ ประกอบด้วย 3 สมการย่อย ดังนี้

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
(3.1)

การกำจัดไปข้างหน้าจะเปลี่ยนระบบสมการ (3.1) ให้อยู่ในรูปเมทริกซ์จัตุรัส ทางด้านซ้ายของสมการ และเป็นเมทริกซ์ที่ประกอบด้วยค่าศูนย์ตลอดแถบล่าง ซ้าย ซึ่งมีรูปดังนี้

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_2 \end{bmatrix}$$
(3.2)

ผศ.ดร.วงศ์วิศรุต เขืองสตุ่ง (สาขาวิชาคณิตศาสตร์

2. การแทนค่าย้อนกลับ (Back Substitution) เมื่อสามารถจัดระบบสมการ ให้อยู่ในรูปของสมการ (3.2) ได้แล้ว ก็จะง่ายในการคำนวณหาค่า x_i สำหรับ i=1,2,3 โดยเริ่มจากสมการท้ายสุดก่อน แล้วทำไล่ย้อนกลับขึ้นไป เพื่อหาค่า x_i สำหรับ i=1,2,3 ที่เหลือทีละสมการ ดังนี้

$$x_{3} = \frac{b_{3}''}{a_{33}''}$$

$$x_{2} = \frac{b_{2}' - a_{23}' x_{3}}{a_{22}''}$$

$$x_{1} = \frac{b_{1} - a_{12} x_{2} - a_{13} x_{3}}{a_{11}}$$
(3.3)

์ ตัวอย่างที่ 3.5

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยวิธีกำจัดแบบเกาส์แบบธรรมดา (Naïve Gauss Elimination Method)

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$
$$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$$
$$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$$

ตัวอย่างที่ 3.6

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยวิธีกำจัดแบบเกาส์แบบธรรมดา (Naïve Gauss Elimination Method)

$$4x_1 - 2x_2 - x_3 = 40$$
$$x_1 - 6x_2 + 2x_3 = -28$$
$$x_1 - 2x_2 + 12x_3 = -86$$

้ ปัญหาที่อาจเกิดขึ้นจากวิธีการกำจัดแบบเกาส์

- ปัญหาที่เกิดจากการหารด้วยศูนย์ (Division by Zero)
 ปัญหานี้เกิดขึ้นเมื่อสัมประสิทธิ์เข้าใกล้ศูนย์ หรือเป็นศูนย์
- ปัญหาค่าคลาดเคลื่อนปัดเศษ (Round-off Errors)
 ค่าคลาดเคลื่อนปัดเศษจะมีผลอย่างมาก เมื่อระบบสมการมีหลายสมการ เพราะ ว่าคำตอบของตัวแปร จะขึ้นอยู่กับค่าตัวแปรก่อนหน้า
- ปัญหาระบบสมการในสภาวะไม่เหมาะสม (ill-Conditioned System)
 เมื่อเปลี่ยนแปลงสัมประสิทธิ์ไปไม่มาก แต่ทำให้คำตอบที่ได้เปลี่ยนแปลงไปมาก

์ ปัญหาที่อาจเกิดขึ้นจากวิธีการกำจัดแบบเกาส์

ตัวอย่างที่ 3.7

การหาคำตอบของระบบสมการในสภาวะไม่เหมาะสม

$$x_1 + 2x_2 = 10$$
$$1.1x_1 + 2.2x_2 = 10.4$$

วิธีกำจัดแบบเกาส์โดยเลือกสมการตัวหลักบางส่วน (Gauss Elimination Method with Partial Pivoting Method)

เราสามารถสรุปได้ว่าปัญหาในภาพรวมนั้นเกิดจากค่าคลาดเคลื่อนปัดเศษ และการ หารด้วยศูนย์ ค่าคลาดเคลื่อนปัดเศษสามารถแก้ไขให้ลดน้อยลงได้ โดยการใช้เครื่อง คอมพิวเตอร์ที่สามารถเก็บตัวเลขนัยสำคัญได้มากขึ้น ส่วนการหารด้วยศูนย์นั้น สามารถแก้ไขได้ด้วยการเลือกตัวหลัก (pivoting) และ/หรือ การจัดสเกล (scaling)

ตัวอย่างที่ 3.8

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยวิธีกำจัดแบบเกาส์โดยเลือกสมการตัว หลักบางส่วน (Gauss Elimination Method with Partial Pivoting Method)

$$0.0003x_1 + 3.0000x_2 = 2.0001$$

 $1.0000x_1 + 1.0000x_2 = 1.0000$

กำหนดให้ใช้ทศนิยม
$$3$$
 ตำแหน่ง และค่าจริง คือ $x_1=rac{1}{3}$ และ $x_2=rac{2}{3}$

วิธีกำจัดแบบเกาส์โดยเลือกสมการตัวหลักบางส่วน (Gauss Elimination Method with Partial Pivoting Method)

Significant Figures	<i>x</i> ₂	<i>x</i> ₁	Absolute Value of Percent Relative Error for x ₁
3	0.667	-3.33	1099
4	0.6667	0.0000	100
5	0.66667	0.30000	10
6	0.666667	0.330000	1
7	0.6666667	0.3330000	0.1

รูปที่ 2: However, due to subtractive cancellation, the result is very sensitive to the number of significant figures carried in the computation

วิธีกำจัดแบบเกาส์โดยเลือกสมการตัวหลักบางส่วน (Gauss Elimination Method with Partial Pivoting Method)

แต่ถ้าใช้ระบบสมการ แล้วสลับแถวก่อนการคำนวณ จะได้

$$1.0000x_1 + 1.0000x_2 = 1.0000$$
$$0.0003x_1 + 3.0000x_2 = 2.0001$$

Significant Figures	x ₂	x 1	Absolute Value of Percent Relative Error for x ₁
3	0.667	0.333	0.1
4	0.6667	0.3333	0.01
5	0.66667	0.33333	0.001
6	0.666667	0.333333	0.0001
7	0.6666667	0.3333333	0.00001

รูปที่ 3: This case is much less sensitive to the number of significant figures in the computation

วิธีกำจัดแบบเกาส์โดยเลือกสมการตัวหลักบางส่วน (Gauss Elimination Method with Partial Pivoting Method)

ตัวอย่างที่ 3.9

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยวิธีกำจัดแบบเกาส์แบบธรรมดา (Naïve Gauss Elimination Method) และวิธีกำจัดแบบเกาส์โดยเลือกสมการตัวหลักบาง ส่วน (Gauss Elimination Method with Partial Pivoting Method) พร้อม เปรียบเทียบคำตอบกับผลเฉลยแม่นตรง(ค่าจริง)

$$0.729x_1 + 0.81x_2 + 0.9x_3 = 0.6867$$
$$x_1 + x_2 + x_3 = 0.8338$$
$$1.331x_1 + 1.21x_2 + 1.1x_3 = 1.0000$$

กำหนดให้ใช้ทศนิยม 4 ตำแหน่ง และค่าจริง คือ $x_1=0.2245,\ x_2=0.2814$ และ $x_3=0.3279$

วิธีกำจัดแบบเกาส์-ชอร์ดอง (Gauss-Jordan method)

วิธีกำจัดแบบเกาส์-ชอร์ดอง (Gauss-Jordan method)

พิจารณาระบบสมการทั่วไปอยู่ในรูป $[A]\{X\}=\{B\}$ จะได้

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
(3.4)

จากนั้นทำการกำจัดไปข้างหน้า ในทำนองเดียวกับที่ใช้วิธีการกำจัดแบบเกาส์ จะได้

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1^* \\ b_2^* \\ b_3^* \end{bmatrix}$$
(3.5)

ดังนั้น จะได้

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1^* \\ b_2^* \\ b_2^* \end{bmatrix}$$
 (3.6)

วิธีกำจัดแบบเกาส์-ชอร์ดอง (Gauss-Jordan method)

ตัวอย่างที่ 3 10

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยวิธีกำจัดแบบแกาส์-ชอร์ดอง (Gauss-Jordan method)

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$
$$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$$
$$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$$

การหาค่ารากของระบบสมการทั่วไปที่อยู่ในรูป $[A]\{X\}=\{B\}$ ด้วยการดำเนินการ ของเมทริกซ์ กระทำได้โดยนำเมทริกซ์ผกผันของเมทริกซ์สัมประสิทธิ์ A^{-1} คูณเข้า ทางซ้ายตลอดสมการดังบึ้

$$A^{-1}AX = X = A^{-1}B$$

เมื่อ $A^{-1}A = I$ โดยที่ I คือ เมทริกซ์เอกลักษณ์ (Identity Matrix)

การหาเมทริกศ์ผกผันจากเมทริกศ์ที่กำหนดให้ ทำได้โดยง่ายด้วยใช้วิธีของเกาส์ชอร์ ดอง สมมติว่ามีเมทริกซ์ A ขนาด 3 imes 3 สำหรับการหาเมทริกซ์ผกผัน A^{-1} จะใช้การ ดำเนินการตามแถวกับเมทริกซ์ในสมการต่อไปนี้

$$[A|I] = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ให้อยู่ในรูปแบบ

$$[I|A^{-1}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11}^* & a_{12}^* & a_{13}^* \\ a_{21}^* & a_{22}^* & a_{23}^* \\ a_{31}^* & a_{32}^* & a_{33}^* \end{bmatrix}$$

ตัวอย่างที่ 3.11

จงหาผลเฉลยของระบบสมการต่อไปนี้ ด้วยวิธีทำเมทริกซ์ผกผัน (Matrix Inversion)

$$4x_1 - 4x_2 = 400$$
$$-1x_1 + 4x_2 - 2x_3 = 400$$
$$-2x_2 + 4x_3 = 400$$

ระเบียบวิธีการแยกแบบ LU (LU decomposition) เป็นกรรมวิธีแก้ระบบสมการ โดยทำการแยกเมทริกซ์สัมประสิทธิ์ [A] ออกเป็นเมทริกซ์ L และ เมทริกซ์ U(Lower & Upper Triangular matrix)

นั่นคือ ระบบสมการ $[A]\{X\}=\{B\}$ จะอยู่ในรูป $[L][\mathit{U}]\{X\}=\{B\}$ เมื่อ

$$L = \begin{bmatrix} l_{11} & 0 & 0 & \cdots & 0 \\ l_{21} & l_{22} & 0 & \cdots & 0 \\ l_{31} & l_{32} & l_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn} \end{bmatrix} \quad \text{way} \quad U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$(3.7)$$

จากระบบของสมการเชิงเส้นซึ่งเขียนเป็นรูปเมทริกซ์ได้ดังนี้

$$[A]{X} = {B} (3.8)$$

จะได้

$$[A]{X} - {B} = 0$$

จากสมการ (3.8) เขียนให้อยู่ในรูปของเมทริกซ์สามเหลี่ยมบน โดยวิธีการกำจัดไป ข้างหน้าของวิสีกำจัดแบบเกาส์ จะได้

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
(3.9)

จากสมการ (3.9) สามารถเขียนในรูปแบบของเมทริกซ์อย่างง่าย จะได้

$$[U]{X} - {D} = 0$$

ผศ.ดร.วงศ์วิศรุต เขื่องสตุ่ง (สาขาวิชาคณิตศาสตร์ Numerical Methods for Computers

สมมติว่ามีเมทริกซ์สามเหลี่ยมล่าง (lower diagonal matrix) คือ

$$L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix}$$
 (3.10)

โดยมีสมบัติ $[L]\left([U]\{X\}-\{D\}\right)=[A]\{X\}-\{B\}$ เมื่อใช้สมบัติการกระจายของ การคูณเมทริกซ์ และเทียบสัมประสิทธิ์ จะได้

$$[L][U]=[A]$$
 และ $[L]\{D\}=\{B\}$

สมการข้างบนเรียกว่า ${f LU\ decomposition\ vov}$ [A]

รูปที่ 4: The steps in LU decomposition

วิธีกำจัดแบบเกาส์สามารถหา [L] และ [U] ที่เท่ากับเมทริกซ์ [A] ได้ โดยขั้นตอนการ กำจัดไปท้างหน้า โดยพิจารณาจากระบบสมการ

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
(3.11)

ชั้นตอนแรก กำจัด
$$a_{21}$$
 โดย $R_2-(R_1 imes f_{21})$ เมื่อ $f_{21}=rac{a_{21}}{a_{11}}$ กำจัด a_{31} โดย $R_3-(R_1 imes f_{31})$ เมื่อ $f_{31}=rac{a_{31}}{a_{11}}$ จะได้

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & a'_{32} & a'_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b'_1 \\ b'_2 \\ b'_3 \end{bmatrix}$$

ต่อไป กำจัด
$$a_{32}'$$
 โดย $R_3-(R_2 imes f_{32})$ เมื่อ $f_{32}=rac{a_{32}'}{a_{22}'}$ จะได้

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b'_1 \\ b'_2 \\ b''_3 \end{bmatrix}$$

ดังนั้น เมทริกซ์ [A] สามารถเขียนอยู่ในรูป

$$[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ f_{21} & a'_{22} & a'_{23} \\ f_{31} & f_{32} & a''_{33} \end{bmatrix}$$

นั่นคือ
$$[A]=[L][\mathit{U}]$$
 เมื่อ

$$[U] = egin{bmatrix} a_{11} & a_{12} & a_{13} \ 0 & a'_{22} & a'_{23} \ 0 & 0 & a''_{33} \end{bmatrix}$$
 และ $[L] = egin{bmatrix} 1 & 0 & 0 \ f_{21} & 1 & 0 \ f_{31} & f_{32} & 1 \end{bmatrix}$

ผศ.ดร.วงศ์วิศรต เขื่องสต่ง (สาขาวิชาคณิตศาสตร์ Numerical Methods for Computers 49/81

ตัวอย่างที่ 3 12

จงหาเมทริกซ์ [L] และเมทริกซ์ [U] โดยวิธีกำจัดแบบเกาส์ เมื่อกำหนด

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$
$$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$$
$$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$$

ข้อสังเกต 3.1

สังเกตว่า [L] และ [U] ที่ได้จากวิธีกำจัดแบบเกาส์ จะแตกต่างจาก [L] และ [U] ที่ได้ จากวิธีลดรูปด้วยเมทริกซ์ LU คือสมาชิกในแนวเส้นทะแยงมุมของ [L] ที่ได้จากวิธี กำจัดแบบเกาส์ มีค่าเท่ากับ 1 เรียกว่า Doolittle Decomposition หรือ Fractorization แต่เมทริกซ์ [U] ที่ได้จากวิธีลดรูปด้วยเมทริกซ์ LU มีสมาชิกในแนว เส้นทะแยงมุมเท่ากับ 1 และเรียกว่าวิธีการแยกเมทริกซ์แบบเคราท์ (Crout Decomposition)

วิธีการแยกเมทริกซ์แบบเคราท์ (Crout Decomposition)

พิจารณาระบบสมการ 4 สมการ ซึ่งเมทริกซ์สัมประสิทธิ์สามารถเขียนได้ดังนี้

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} & u_{14} \\ 0 & 1 & u_{23} & u_{24} \\ 0 & 0 & 1 & u_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{32} & a_{43} & a_{44} \end{bmatrix}$$

$$(3.12)$$

การหา [L] และ [U] ด้วยวิธีลดรูปเมทริกซ์แบบเคราท์ ใช้วิธีคูณเมทริกซ์ และ โดย พิจารณาด้านซ้ายของสมการ (3.12) จะได้

$$\begin{bmatrix} l_{11} & l_{11}u_{12} & l_{11}u_{13} & l_{11}u_{14} \\ l_{21} & l_{21}u_{12} + l_{22} & l_{21}u_{13} + l_{22}u_{23} & l_{21}u_{14} + l_{22}u_{24} \\ l_{31} & l_{31}u_{12} + l_{32} & l_{31}u_{13} + l_{32}u_{23} + l_{33} & l_{31}u_{14} + l_{32}u_{24} + l_{33}u_{34} \\ l_{41} & l_{41}u_{12} + l_{42} & l_{41}u_{13} + l_{42}u_{23} + l_{43} & l_{41}u_{14} + l_{42}u_{24} + l_{43}u_{34} + l_{44} \end{bmatrix}$$

$$(3.13)$$

รูปที่ 5: คอลัมน์แรก แถวแรก

พิจารณาเมทริกซ์ที่ได้เทียบกับเมทริกซ์ [A] จะได้

- 1. คอลัมน์ 1 แถว 1
 - คอลัมน์แรกของเมทริกซ์ [L] คือ $l_{11}=a_{11}, l_{21}=a_{21}, l_{31}=a_{31}, l_{41}=a_{41}$ หรือ $l_{i1}=a_{i1}$ สำหรับทุก i=1,2,...,n
 - แถวแรกของเมทริกซ์ [U] คือ $u_{12}=rac{a_{12}}{l_{11}},u_{13}=rac{a_{13}}{l_{11}},u_{14}=rac{a_{14}}{l_{11}}$ หรือ $u_{1j}=rac{a_{1j}}{l_{11}}$ สำหรับทุก j=2,...,n

รูปที่ 6: คอลัมน์ 2 แถว 2

2. คอลัมน์ 2 แถว 2

- คอลัมน์ 2 ของเมทริกซ์ [L] คือ $l_{22}=a_{22}-l_{21}u_{12},\ l_{32}=a_{32}-l_{31}u_{12},\\ l_{42}=a_{42}-l_{41}u_{12},\\ หรือ <math>l_{i2}=a_{i2}-l_{i1}u_{12}$ สำหรับทุก i=2,3,...,n
- แถว 2 ของเมทริกซ์ [U] คือ $u_{23}=\frac{a_{23}-l_{21}u_{13}}{l_{22}},\ u_{24}=\frac{a_{24}-l_{21}u_{14}}{l_{22}}$ หรือ $u_{2j}=\frac{a_{2j}-l_{21}u_{1j}}{l_{22}}$ สำหรับทุก j=3,4,...,n

รูปที่ 7: คอลัมน์ 3 แถว 3

3. คอลัมน์ 3 แถว 3

- คอลัมน์ 3 ของเมทริกซ์ [L] คือ $l_{33}=a_{33}-l_{31}u_{13}-l_{32}u_{23},$ $l_{43}=a_{43}-l_{41}u_{13}-l_{42}u_{23}$ หรือ $l_{i3}=a_{i3}-l_{i1}u_{13}-l_{i2}u_{23}$ สำหรับทุก i=3,4,...,n
- แถว 3 ของเมทริกซ์ [U] คือ $u_{34}=\frac{a_{34}-l_{31}u_{14}-l_{32}u_{24}}{l_{33}},$ หรือ $u_{3j}=\frac{a_{3j}-l_{31}u_{1j}-l_{32}u_{2j}}{l_{33}}$ สำหรับทุก i=4,5,...,n

รูปที่ 8: คอลัมน์ 4 แถว 4

- 🚺 4. คอลัมน์ 4 แถว 4
 - คอลัมน์ 4 ของเมทริกซ์ [L] คือ $l_{44}=a_{44}-l_{41}u_{14}-l_{42}u_{24}-l_{43}u_{34}$ หรือ $l_{i4}=a_{i4}-l_{i1}u_{14}-l_{i2}u_{24}-l_{i3}u_{34}$ สำหรับทุก i=4,5,...,n

สำหรับสูตรทั่วไปของ Crout Decomposition

$$l_{i1} = a_{i1} \quad \forall i = 1, 2, ..., n$$
 (3.14)

$$u_{i1} = \frac{a_{1j}}{l_{11}} \quad \forall j = 2, 3, ..., n$$
 (3.15)

สำหรับ i = 2, 3, ..., n - 1,

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}, \quad \forall i = j, j+1, ..., n$$
 (3.16)

$$u_{jk} = \frac{a_{jk} - \sum_{i=1}^{j-1} l_{ij} u_{ik}}{l_{ij}} \quad \forall k = j+1, j+2, ..., n$$
 (3.17)

$$l_{nn} = a_{nn} - \sum_{k=1}^{n-1} l_{nk} u_{kn}, \quad \forall i = j, j+1, ..., n$$
(3.18)

ตัวอย่างที่ 3.13

กำหนดระบบสมการข้างล่างนี้ จงแยก [A] ออกเป็น [L] และ [U] โดยวิธี Crout Decomposition

$$2x_1 - 5x_2 + x_3 = 12$$
$$-x_1 + 3x_2 - x_3 = -8$$
$$3x_1 - 4x_2 + 2x_3 = 16$$

จากวิธีลดรูปด้วยเมทริกซ์ LU สามารถหา
$$\{X\}$$
ได้จากคุณสมบัติของ
$$[L]\left([U]\{X\}-\{D\}\right)=[A]\{X\}-\{B\} \text{ จะได้ } [L]\{D\}=\{B\} \text{ นั่นคือ}$$

$$\begin{bmatrix}l_{11} & 0 & 0\\l_{21} & l_{22} & 0\\l_{31} & l_{32} & l_{33}\end{bmatrix}\begin{bmatrix}d_1\\d_2\\d_3\end{bmatrix}=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix}$$

จะได้

$$\begin{bmatrix} l_{11} d_1 \\ l_{21} d_1 + l_{22} d_2 \\ l_{31} d_1 + l_{32} d_2 + l_{33} d_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

ด้วยคุณสมบัติการเท่ากันของเมทริกซ์ จะได้

$$l_{11}d_1 = b_1 \Rightarrow d_1 = \frac{b_1}{l_{11}}$$

$$l_{21}d_1 + l_{22}d_2 = b_2 \Rightarrow d_2 = \frac{b_2 - l_{21}d_1}{l_{22}}$$

$$l_{31}d_1 + l_{32}d_2 + l_{33}d_3 = b_3 \Rightarrow d_3 = \frac{b_3 - l_{31}d_1 - l_{32}d_2}{l_{33}}$$

หรือเขียนให้อยู่ในรูปทั่วไป คือ

$$d_{i} = \frac{b_{i} - \sum_{j=1}^{i-1} l_{ij} d_{j}}{l_{ii}}$$

สำหรับ i=2,3,...,n และ j=1,2,...,n-1

จาก $[U]\{X\}=\{D\}$ จะสามารถแทนค่าเมทริกซ์ [U] และ $\{D\}$ ที่หาได้ในสมการ ดังนี้

$$\begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

จะได้

$$\begin{bmatrix} x_1 + u_{12}x_2 + u_{13}x_3 \\ x_2 + u_{23}x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

โดยคุณสมบัติการเท่ากันของเมทริกซ์ จะได้

$$x_3 = d_3$$

$$x_2 + u_{23}x_3 = d_2 \Rightarrow x_2 = d_2 - u_{23}x_3$$

$$x_1 + u_{12}x_2 + u_{13}x_3 = d_1 \Rightarrow x_3 = d_1 - u_{12}x_2 - u_{13}x_3$$

หรือเขียนให้อยู่ในรูปทั่วไป คือ

$$x_n = d_n$$

$$x_i = d_i - \sum_{j=i+1}^n u_{ij} x_j$$

สำหรับ
$$i=n-1,n-2,...,2,1$$
 และ $j=n-2,n-1,...,2,1$

ตัวอย่างที่ 3.14

จากตัวอย่างที่ 3.13 จงหาผลเฉลยของระบบสมการต่อไปนี้ โดยวิธี Crout Decomposition

$$2x_1 - 5x_2 + x_3 = 12$$
$$-x_1 + 3x_2 - x_3 = -8$$
$$3x_1 - 4x_2 + 2x_3 = 16$$

วิธีการแยกเมทริกซ์แบบโชเลสกี เป็นการหาเมทริกซ์ [L] และ [U] เมื่อเมทริกซ์ สัมประสิทธิ์ [A] เป็นเมทริกซ์สมมาตร (Symmetric Matrix) คือ $a_{ij}=a_{ji}$ ของ ทุกค่า i และ j หรือ $[A]=[A]^T$ แต่พิจารณา $[U]=[L]^T$ ดังนั้น $[A]=[L][L]^T$ นั่นคือ

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33}0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} & l_{13} & l_{14} \\ 0 & l_{22} & l_{23} & l_{24} \\ 0 & 0 & l_{33} & l_{34} \\ 0 & 0 & 0 & l_{n4} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$(3.19)$$

- 4 ロ b (個 b (重 b (重 b) 重 ・ 夕久の

พิจารณาด้านซ้ายของสมการ (3.19) โดยคูณเมทริกซ์ [L] และ $[L]^T$ จะได้

$$\begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} & l_{11}l_{41} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31} + l_{22}l_{32} & l_{41}l_{21} + l_{22}l_{42} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^2 + l_{32}^2 + l_{33}^2 & l_{41}l_{31} + l_{32}l_{42} + l_{33}l_{43} \\ l_{11}l_{41} & l_{41}l_{21} + l_{22}l_{42} & l_{31}l_{41} + l_{32}l_{42} + l_{33}l_{43} & l_{41}^2 + l_{42}^2 + l_{43}^2 + l_{44}^2 \end{bmatrix}$$

นำสมการข้างบนเทียบกับเมทริกซ์ [A] โดยคุณสมบัติการเท่ากันของเมทริกซ์ จะได้ lacktriangle คอลัมน์ 1

$$l_{11}^2 = a_{11} \Rightarrow l_{11} = \sqrt{a_{11}}$$

$$l_{11}l_{21} = a_{21} \Rightarrow l_{21} = \frac{a_{21}}{l_{11}}$$

$$l_{11}l_{31} = a_{31} \Rightarrow l_{31} = \frac{a_{31}}{l_{11}}$$

$$l_{11}l_{41} = a_{41} \Rightarrow l_{41} = \frac{a_{41}}{l_{11}}$$

→ 4 분 > 4 분 > 분 9 Q C

🐽 คอลัมน์ 2

$$l_{21}^2 + l_{22}^2 = a_{22} \Rightarrow l_{22} = \sqrt{a_{22} - l_{21}^2}$$

$$l_{21}l_{31} + l_{22}l_{32} = a_{32} \Rightarrow l_{32} = \frac{a_{32} - l_{21}l_{31}}{l_{22}}$$

$$l_{41}l_{21} + l_{22}l_{42} = a_{42} \Rightarrow l_{42} = \frac{a_{42} - l_{41}l_{21}}{l_{22}}$$

• คอลัมน์ 3

$$l_{31}^2 + l_{32}^2 + l_{33}^2 = a_{33} \Rightarrow l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2}$$
$$l_{31}l_{41} + l_{32}l_{42} + l_{33}l_{43} = a_{43} \Rightarrow l_{43} = \frac{a_{43} - l_{31}l_{41} - l_{32}l_{42}}{l_{33}}$$

คอลัมน์ 4

$$l_{41}^2 + l_{42}^2 + l_{43}^2 + l_{44}^2 = a_{44} \Rightarrow l_{44} = \sqrt{a_{44} - l_{41}^2 - l_{42}^2 - l_{43}^2}$$

รูปแบบทั่วไปของการหาสัมประสิทธิ์ต่างๆ เป็นดังนี้

$$l_{ki} = \frac{a_{ki} - \sum_{j=1}^{i-1} l_{ij} l_{kj}}{l_{ii}} \quad \forall i = 1, 2, ..., k-1$$
 (3.20)

$$l_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} l_{kj}^2}$$
 (3.21)

ตัวอย่างที่ 3.15

กำหนดระบบสมการข้างล่างนี้ จงแยก [A] ออกเป็น [L] และ $[U] = [L]^T$ โดยธีการ แยกเมทริกซ์แบบโชเลสกี (Cholesky Decomposition))

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix}$$
 (3.22)

วิธีเกาส์ไซดอล์ (Gauss Seidel Method)

วิธีเกาส์ไซดอล์ (Gauss Seidel Method)

กำหนดระบบสมการ n สมการ หรือในรูปเมทริกซ์ $[A]\{X\}=\{B\}$ ดังนี้

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

โดยที่สมาชิกในแนวทแยงมุมของเมทริกซ์มีค่าไม่เท่ากับศูนย์ นั่นคือ $a_{ii}
eq 0$ สำหรับ i = 1, 2, 3, ..., n จัดรูปสมการจะได้

$$x_1 = (b_1 - a_{12}x_2 - \dots - a_{1n}x_n)/a_{11}$$

$$x_2 = (b_2 - a_{21}x_1 - \dots - a_{2n}x_n)/a_{22}$$

$$\vdots$$

$$x_n = (b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{nn-1}x_{n-1})/a_{nn}$$

วิธีเกาส์ไซดอล์ (Gauss Seidel Method)

ค่าเริ่มต้นโดยที่ x_i ทุกตัวที่ไม่ทราบค่ามีค่าเท่ากับศูนย์ ยกเว้น x_i ที่ต้องการหา ดังนั้น $x_1=b_1/a_{11}$ แทนค่า $x_1=b_1/a_{11}$ และ $x_i=0$ สำหรับ i=1,2,3,...,n เพื่อหาค่า x_2 ทำจนกระทั่งครบทั้ง n สมการ ทำซ้ำหลายๆ ครั้ง ตั้งแต่สมการแรกจนถึง สมการสดท้าย จนกระทั่งได้ค่าน้อยกว่า ϵ_s ตามที่ต้องการ นั่นคือ

$$|\epsilon_{a,i}| = \left| \frac{x_i^j - x_i^{j-1}}{x_i^j} \right| 100\% < \epsilon_s \tag{3.23}$$

สำหรับทุก i=1,2,...,n โดยที่ j คือ x_i ที่หาค่าได้ปัจจุบัน และ j-1 คือ x_i ที่หา ค่าได้ ก่อนหน้า

วิธีเกาส์ไซดอล์ (Gauss Seidel Method)

ตัวอย่างที่ 3 16

จงหาผลเฉลยของระบบสมการต่อไปนี้ โดยวิธีเกาส์ไซดอล์ (Gauss Seidel Method)

$$3x_1 - 0.1x_2 - 0.2x_3 = 8.5$$
$$0.1x_1 + 7x_2 - 0.3x_3 = 2$$
$$0.3x_1 - 0.2x_2 + 10x_3 = 10$$

เมื่อค่าคำตอบของระบบสมการ คือ $x_1=0, x_2=0, x_3=0$ และกำหนดให้ $\epsilon_{\rm s}=0.01$

แบบฝึกหัด 3

1. จงหาผลเฉลยของระบบสมการต่อไปนี้ โดยวิธีกำจัดแบบเกาส์ (Gauss Elimination Method)

$$-12x_1 + x_2 - 8x_3 = -80$$
$$x_1 - 6x_2 + 4x_3 = 13$$
$$-2x_1 - x_2 + 10x_3 = 90$$

2. จงหาผลเฉลยของระบบสมการต่อไปนี้

$$x_1 + 7x_2 - 4x_3 = -51$$
$$4x_1 - 4x_2 + 9x_3 = 62$$
$$12x_1 - x_2 + 3x_3 = 8$$

- โดยวิธีกำจัดแบบเกาส์ (Gauss Elimination Method)
- โดยวิธีเกาส์ชอร์ดอง (Gauss-Jordan method)
 - โดยวิธีเกาส์ไซดอล์ (Gauss Seidel Method) ($\epsilon_s=5\%$)

แบบฝึกหัด 3

3. จงหาผลเฉลยของระบบสมการต่อไปนี้ โดยวิธีลดรูปเมทริกซ์แบบเคราท์ (Crout Decomposition)

$$x_1 + x_2 + x_3 = -5$$
$$x_1 + 2x_2 + 2x_3 = 6$$
$$x_1 + 2x_2 + 3x_3 = 8$$

4. จงหาผลเฉลยของระบบสมการต่อไปนี้ โดยวิธีลดรูปเมทริกซ์แบบโชเลสกี (Cholesky Decomposition)

$$9x_1 + 6x_2 + 12x_3 = 174$$
$$6x_1 + 13x_2 + 11x_3 = 236$$
$$12x_1 + 11x_2 + 26x_3 = 308$$

◆ロト ◆問 ト ◆ 重 ト ◆ 重 ・ 夕 Q (~)

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)
- 🐠 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕡 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ 🔎 🦽 🕡

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)
- 1 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 📵 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕜 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ 🚬 🧫 🗼

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 3 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)
- 📵 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕜 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ 🚬 🧫 🗼

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น (system of linear equations)
- 📵 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕜 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ