Depth Penetration of Earthquake Rupture Progress on Two Numerical Methods

Seismology and Geomechanics Group Meeting 17 December 2013

T. Ben Thompson

Rupture Depth Penetration

- Two simple paradigms for the depth termination of rupture:
 - Changes in frictional properties velocity strengthening
 - Brittle-ductile transition viscoplasticity, ductile shear zones

Computational Problems

- Near fault physics are very important
 - Temperature anomaly, ductile shear zones (many more!)
 - Requires very fine spatial resolution for rupture meters.
- For wave propagation, the Courant-Friedrich-Lewy (CFL) condition causes big problems!

$$\frac{c\Delta t}{\Delta x} \le 1$$

- Normally, CFL is a global stability condition.
- Idea: Larger elements take longer time steps (less compute time!)
 - Reduces the CFL condition to a local stability condition

Wave Equation

 Idea: Seismic waves are a coupled system of first order advection equations.

$$\sigma = \lambda \operatorname{tr}(\boldsymbol{\epsilon}) \boldsymbol{I} + 2\mu \boldsymbol{\epsilon}$$

$$\rho \ddot{\vec{u}} = \nabla \cdot \boldsymbol{\sigma}$$

$$\boldsymbol{\epsilon} = \frac{1}{2} (\nabla \vec{u}) + (\nabla \vec{u})^T$$
advection: $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}$

• In velocity-stress formulation:

$$\dot{\boldsymbol{\sigma}} = \lambda \operatorname{tr}(\nabla \vec{v}) \boldsymbol{I} + \mu(\nabla \vec{v}) + (\nabla \vec{v})^T)$$

$$\dot{\vec{v}} = \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma}$$

• 1st Time derivative = 1st space derivative

Finite Volume Methods

advection:
$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}$$
 solutions: $u(x,t) = f(x+t)$

- Integrate over one "cell" and one time step
 - Use divergence theorem to consider flux at the boundaries.
 - Consider cell average, \bar{u}_i^n , in semi-discrete update:

$$\frac{\partial \bar{u}_i}{\partial t} = \frac{1}{\Delta x} \left(u(x_i + \frac{\Delta x}{2}, t) - u(x_i - \frac{\Delta x}{2}, t) \right)$$

• Need a method for computing u(x,t)

WENO Reconstruction

- Compute u(x,t) as a shock-preserving local interpolation of grid averages, \bar{u}_i^n .
 - Preferentially weight smooth parts of the solution
- Example of $O(\Delta x^5)$ WENO reconstruction, note the preserved shock!

ADER Scheme

• Taylor expand u(x,t) in time around t_n :

$$u(x,t) = u(x,t_n) + \frac{\partial u}{\partial t}(x,t_n)(t-t_n) + O((t-t_n)^2)$$

- Use governing equation to replace time derivatives with space derivatives. ∂u _ ∂u

$$\overline{\partial t} = \overline{\partial x}$$

$$u(x,t) = u(x,t_n) + \frac{\partial u}{\partial x}(x,t_n)(t-t_n) + O((t-t_n)^2)$$

- We know $\frac{\partial u}{\partial x}$ from the polynomial reconstruction.
- · Works for arbitrary number of Taylor series terms.
- Titarev and Toro (2002), Pelties and others (2012)

Local Time Stepping

Basic code is working

Interseismic Deformation

- Just to be clear: Different problem!
- Initial rupture stresses are driven/affected by:
 - Tectonic loading
 - Stable sliding on the fault
 - Deep, viscoplastic creep especially ductile shear zones
- Time evolution depends on specific viscosity function.
- Goal: efficiently compute creep and temperature over many earthquake cycles for arbitrary viscosity functions.

Quasistatic Viscoplasticity

Governing equations:

$$\dot{\boldsymbol{\sigma}} = \lambda \operatorname{tr}(\boldsymbol{\dot{\epsilon}}) \boldsymbol{I} + 2\mu \boldsymbol{\dot{\epsilon}} - \frac{\mu}{\eta_{eff}} (\boldsymbol{\sigma} - \frac{\operatorname{tr}(\boldsymbol{\sigma}) \boldsymbol{I}}{3})$$

$$\nabla \cdot \boldsymbol{\sigma} = 0$$

$$\dot{\boldsymbol{\epsilon}} = \frac{1}{2} (\nabla \vec{v}) + (\nabla \vec{v})^T$$

$$\text{Maxwell:} \frac{1}{\eta_{eff}} = \text{constant}$$

Power law:
$$\frac{1}{\eta_{eff}} = A\sigma_{eff} \exp(\frac{-Q}{RT})$$

Simplified Equations

Antiplane geometry. No loss of generality!

Infinite strike-slip fault.

$$\vec{v} = (0, 0, v_z(x, y))$$

 σ_{zx}, σ_{zy} are non-zero.

$$\dot{\boldsymbol{\epsilon}} = \nabla \vec{v}$$

$$\vec{\tau} = (\sigma_{xz}, \sigma_{yz}, 0)$$

$$\dot{\boldsymbol{\sigma}} = \lambda \operatorname{tr}(\dot{\boldsymbol{\epsilon}}) \boldsymbol{I} + 2\mu \dot{\boldsymbol{\epsilon}} - \frac{\mu}{\eta_{eff}} (\boldsymbol{\sigma} - \frac{\operatorname{tr}(\boldsymbol{\sigma}) \boldsymbol{I}}{3})$$

simplifies to:
$$\frac{\partial \vec{\tau}}{\partial t} = \mu \nabla v_z - \frac{\mu}{\eta} \vec{\tau}$$
 still have: $\nabla \cdot \vec{\tau} = 0$

still have:
$$\nabla \cdot \vec{\tau} = 0$$

Numerical Difficulties

- Velocity evolution, but no time derivative of velocity!
- In general, nonlinear viscosity.
 - Requires Newton's method iterations.
- Non-symmetric linearized operator.
 - Rules out fast matrix solver methods like the conjugate gradient method.

Projection Method

Idea: Expand velocity as a Taylor Series.

$$\frac{\partial \vec{\tau}}{\partial t} = \mu \nabla (v_z^n + \frac{\partial v_z}{\partial t} \Delta t + O(\Delta t^2)) - \frac{\mu}{\eta} \vec{\tau}$$

- Split-step update:
 - Step 1: Update the stress ignoring changes in the velocity.
 - Step 2: Evolve the velocity and force a divergence free stress.
- "Projection" stress is explicitly projected onto a divergence free function space.

2nd Order Projection

Given:
$$\vec{\tau}_n, \vec{\tau}_{n-1}, v_n$$

Step 1:
$$\frac{1}{2\Delta t} (3\hat{\tau}_{n+1} - 4\vec{\tau}_n + \vec{\tau}_{n-1}) = \mu \nabla(v_n) - \frac{\mu}{\eta} \hat{\tau}_{n+1}$$

initial value problem for $\vec{\tau}$

solution is: $\hat{\tau}_{n+1}$

Step 2:
$$\frac{1}{2\mu\Delta t}(3\vec{\tau}_{n+1} - 3\hat{\tau}_{n+1}) = \nabla(\frac{\partial v}{\partial t}\Delta t) \approx \nabla(v_{n+1} - v_n)$$

but
$$\nabla \cdot \vec{\tau_{n+1}} = 0$$

take div:
$$\frac{-3}{2\mu\Delta t}(\nabla \cdot \hat{\tau}_{n+1}) = \nabla^2(v_{n+1} - v_n)$$

Poisson equation!

Adding the two steps gives the original equation

Projection Method – Benefits

- Both steps are provably $O(\Delta t^2)$
- ODE is easy to solve.
- Poisson is easy to solve very quickly FFT, Multigrid
 - Note: Boundary Conditions are applied in the Poisson step.
- Nonlinearity is restricted to the ODE.
- Improves on Zienkiewicz and Cormeau (1974) and Hughes and Taylor (1978)

Example

100 years after a 2 meter slip, plate rate far field in upper layer. 10km elastic layer over viscoelastic half space, fault is locked.

I need to do much more verification and convergence testing

Conclusions

- Very efficient elastic wave propagation is possible with existing techniques
 - Local time stepping (ADER)
- Projection method gives a much easier quasistatic viscoplasticity problem
 - ODE + Poisson vs. Nonlinear, asymmetric elliptic
- I have a lot of work to do.
 - Convergence tests!