Estruturas Discretas - Primeiro Trabalho

Prof. Marcus Vinicius S. Poggi de Aragão Período de 2017.1

Gabriel Barbosa Diniz 1511211 Lucas Rodrigues 1510848

Mateus Ribeiro de Castro 1213068

14 de Maio de 2017

Observação: Os códigos fontes dos algoritmos referentes aos teoremas provados seguirá em anexo em um arquivo Jupyter Notebook para melhor entendimento, compilação, execução, testes, etc.

1 Primeira Questão (Teorema 1)

Dado o Teorema 1 e sua prova indutiva, deseja-se um algoritmo que, dados x, y e n, determine o quociente descrito. Também se deseja os testes dos algoritmos para os vários valores de x, y e n.

Teorema 1 (n): $x^n - y^n$ é divisível por x - y para quaisquer x e y inteiros e todos os valores de n inteiros e maiores do que zero.

Com as condições mencionadas acima, obtemos o seguinte quociente: $\frac{x^n-y^n}{x-y}$, e a partir do caso base, sabemos que para n=1, o quociente é igual a 1. Também diretamente da argumentação fornecida, tem-se que:

$$x^{n+1} - y^{n+1} = q_{n+1} * (x - y)$$
(1)

$$q_{n+1} = (x^n + y * q_n) \tag{2}$$

E assim então podemos, através da prova indutiva fornecida no enunciado, derivar um algoritmo correspondente que prove este teorema...

Implementação em Python:

```
def coeficiente(x, y, n):
    #Checa se n é positivo e maior que zero
    if(n <= 0):
        print("Parametros invalidos, n menor ou igual a zero!\n")
        return -1
    #Checa se estamos trabalhando com o caso base
    if(n == 1):
        return 1
    #CASO BASE: q1 = 1
    q = 1
    #Será um método iterativo, processando até n
    for i in range(0, n-1):
        q = m.pow(x, (i+1)) + y * q
    return q</pre>
```

Testes do Algoritmo: Os testes se encontram no arquivo Jupyter Notebook juntamente com o gráfico que corresponde ao tempo de execução. Como função de teste, foi implementado uma função em Python que exibe na tela cada caso de teste, tendo chamado a função que obtém o coeficiente. Valores para $x, y \in n$ foram aleatoriamente escolhidos enquanto o valor de i permanecia em ordem. A imagem abaixo demonstra os tempos de execução em formato de gráfico para melhor observação.

Figura 1: Gráfico contendo os tempos de execução para diferentes valores para n.

Conclusão: Observando o gráfico dos testes executados e através da própria análise do algoritmo utilizado, podemos constatar que o parâmetro n exerce grande influência na execução, ou seja, com a variação de n podemos ver que há uma progressão linear temporal e a complexidade em função de n é linear.

Observação Importante: Por questão de eficiência, o algoritmo poderia também ser realizado de forma recursiva, porém decidimos por fazer pela forma iterativa. Caso fosse pela forma recursiva teríamos o seguinte algoritmo com os seguintes tempos de execução:

Implementação Recursiva em Python:

```
def quociente(x, y, n):
    if n == 1:
        return 1
    return x ** (n-1) + y * quociente(x, y, n-1)
```

\boldsymbol{x}	$\mid y \mid$	$\mid n \mid$	Execuções	Tempo Total	Tempo/Execução
2	2	1	18900000	5.006 s	0.000265 ms
2	2	2	5600000	5.074 s	$0.000906~\mathrm{ms}$
2	2	3	2900000	5.136 s	0.001771 ms
2	2	4	2100000	5.190 s	0.002471 ms
2	2	5	1600000	5.176 s	0.003235 ms
2	2	6	1400000	5.255 s	0.003754 ms
2	2	7	1200000	5.373 s	0.004477 ms
2	2	8	1000000	5.285 s	0.005285 ms
2	2	9	900000	5.346 s	0.005940 ms
2	2	10	800000	5.476 s	0.006845 ms

2 Segunda Questão (Teorema 2)

Teorema 2 (k): Seja G = (V, E) um grafo denso. Sabe-se encontrar um caminho Hamiltoniano em G onde |V| >= 3.

Caso base: Temos como teorema de caso base o Grafo completo, pois todo grafo completo com pelo menos 3 vértices contém um ciclo Hamiltoniano. Basta colocar os vértices em uma ordem qualquer e conectá-los em um ciclo. Validando então o caso base.

Hipótese de Indução: Sabe-se encontrar um ciclo Hamiltoniano em um grafo com as especificações especificadas acima e com o número de arestas maior ou igual a k.

Passo indutivo: Deve-se provar que sabe-se encontrar um ciclo Hamiltoniano em um grafo com k-1 arestas que satisfaça as condições do problema. G=(V,E) será esse grafo com k-1 arestas. Pegando um par de vértices não adjacentes v e w em G e considerar o grafo G' que é igual a G mas com v e w conectados. Pela hipótese de indução sabe-se encontrar um ciclo Hamiltoniano com k arestas. Se a aresta (v,w) não está no ciclo então esse ciclo está presente em G, senão (sabendo que a soma das arestas em v e w será no mínimo n) toma-se v como primeiro v0 e v0 como último v0 vértices no ciclo encontrado em v0 e v0 toma dois vértices vizinhos (v0 e v0 para v0 para v0 e v0 para v0 e v0 seteja ligado a v0 e o segundo (v0 para v0 para v0 para v0 e v0 caminho até v0 provando o teorema.

E assim podemos então, através do passo indutivo, obter um algoritmo que prove este teoremas de acordo com as devidas instâncias disponibilizadas para realização de testes e desempenho da CPU no processamento!

Implementação em Python:

#CODIGO

3 Terceira Questão (Teorema 3)

Teorema 3 (k): Em um campeoknato com $k = 2^k$ equipes, sabe-se construir as $2^k - 1$ rodadas de 2^{k-1} jogos onde cada equipe enfrenta uma equipe diferente em cada rodada.

Intuição: Em cada rodada, cada equipe participará de um só jogo, e como cada jogo envolve duas equipes, cada rodada terá $n/2 = 2^{k-1}$ jogos. Como cada equipe só joga com uma outra por rodada, deverão existir $n-1=2^k-1$ rodadas para que cada equipe possa jogar com todas as outras.

Prova: feita por indução matemática usando k como parâmetro de indução. As equipes serão numeradas de e_1 até $e_{2^k}=e_n$.

Caso base (k = 1): temos n = 2. Haverá n - 1 = 1 rodada, com n/2 = 1 jogo. Esse jogo é $[e_1, e_2]$.

Passo indutivo: podemos assumir que o teorema é válido para um certo k (hipótese indutiva). Desejamos provar que, a partir disso, o teorema se torna válido para k + 1. Nesse caso, existem 2^{k+1} equipes.

Divide-se as equipes em dois grupos, A e B de igual tamanho: $\{e_1, ..., e_{2^k}\}$ e $\{e_{2^k+1}, ..., e_{2^{k+1}}\}$. Cada grupo tem 2^k equipes. Neste primeiro momento, trataremos os dois grupos como dois torneios independentes e simultâneos. Pela hipótese indutiva, sabemos resolver esses dois problemas (idênticos), e geramos portanto dois torneios, cada um com $2^k - 1$ rodadas de 2^{k-1} . Como os torneios são simultâneos, a rodada 1 do torneio A ocorrerá ao mesmo tempo que a rodada 1 do torneio B, portanto, ao juntar essas rodadas, teremos 2^k jogos por rodada.

Após esse momento inicial, sabemos que cada equipe do grupo A enfrentou todas as outras equipes de seu grupo. O mesmo vale para o grupo B. Resta, portanto, cada equipe do grupo A enfrentar todas as equipes do grupo B, e vice-versa. Para fazer isso, teremos mais 2^k rodadas de 2^k jogos. Para gerar esses jogos, considere os conjuntos ordenados das equipes do grupo A e do grupo B.

$$a_1 = e_1 \tag{3}$$

$$a_2 = e_2 \tag{4}$$

$$a_{2^k} = e_{2^k} \tag{6}$$

$$b_1 = e_{2^k + 1} \tag{7}$$

$$b_2 = e_{2^k + 2} (8)$$

$$\dots$$
 (9)

$$b_{2k} = e_{2k+1} \tag{10}$$

A primeira rodada deste momento teremos os jogos $[a_1, b_1], [a_2, b_2], ..., [a_{2^k}, b_{2^k}].$

Na segunda rodada, ocorrerá uma rotação nos times de B, de modo que o primeiro time de A enfrentará o último time de B: $[a_1, b_{2^k}]$, $[a_2, b_1]$, ..., $[a_{2^k}, b_{2^k-1}]$.

Nas próximas rodadas, continuará ocorrendo essa rotação, até que na 2^k -ésima rodada deste momento teremos: $[a_1, b_2], [a_2, b_3], ..., [a_{2^k-1}, b_{2^k}], [a_{2^k}, b_1].$

O total destes dois momentos é $(2^k - 1) + (2^k) = 2^{k+1} - 1$ rodadas de 2^k jogos, o que está de acordo com o teorema.

Implementação em Python:

```
# Start é um argumento opcional, usado pela recursão
# O retorno eh uma lista de rounds
# Um round eh uma lista de jogos
# Um jogo eh uma tupla indicando os dois times
def tournament(k, start = 1):
   # Caso base
   if k == 1:
       return [[(start, start+1)]]
   # MOMENTO 1 - divide em dois
   # Recursao
   t1 = tournament(k-1, start)
   t2 = tournament(k-1, 2**(k-1)+start)
   # Unir os rounds dos dois torneios
   t = []
   for i in range(len(t1)):
       t.append(t1[i] + t2[i])
   # MOMENTO 2 - ciclo
   # Geracao das listas de times
   times1 = range(start, 2**(k-1)+start)
   times2 = range(2**(k-1)+start, 2**(k)+start)
   # z vai ser a variavel que faz o ciclo
   for z in range(len(times1)):
        # Estamos em um round
        round = []
        for i in range(len(times1)):
            # Estamos em um par dentro do ciclo
            # index1 eh simplesmente i
            # index2 muda de modo a fazer o ciclo no segundo grupo
            index1 = i
            index2 = (i + z) % len(times2)
            game = (times1[index1], times2[index2])
            round.append(game)
        # Adicionamos esse round ao conjunto de rounds, t
        t.append(round)
   return t
```

Exemplo: Tendo k=3, esse foi o resultado gerado pela implementação em Python:

Round	Game 01	Game 02	Game 03	Game 04
1.	1 vs 2	3 vs 4	5 vs 6	7 vs 8
2.	1 vs 3	2 vs 4	5 vs 7	6 vs 8
3.	1 vs 4	2 vs 3	5 vs 8	6 vs 7
4.	1 vs 5	2 vs 6	3 vs 7	4 vs 8
5.	1 vs 6	2 vs 7	3 vs 8	4 vs 5
6.	1 vs 7	2 vs 8	3 vs 5	4 vs 6
7.	1 vs 8	2 vs 5	3 vs 6	4 vs 7

Testes: A tabela abaixo ilustra os resultados dos testes. O maior valor de k para o qual o algoritmo gerou as rodadas foi 13.

k	Execuções	Tempo Total	Tempo/Execução
1	5824144	5.000 s	0.000858 ms
2	483736	5.000 s	0.010336 ms
3	138066	5.000 s	0.036215 ms
4	40868	5.000 s	0.122346 ms
5	12244	5.000 s	0.408365 ms
6	3467	5.001 s	1.442483 ms
7	805	$5.005 \mathrm{\ s}$	6.217466 ms
8	199	5.012 s	25.184733 ms
9	47	$5.099 \mathrm{\ s}$	108.490558 ms
10	11	5.044 s	458.524899 ms

Conclusão: O algoritmo derivado da prova indutiva tem várias limitações. Ele não permite um número arbitrário de equipes, somente potências de 2. A sua execução é demorada e exige que sejam feitas muitas chamadas recursivas, da ordem de 2^k . Apesar disso, tem resultados corretos e possui uma explicação interessantíssima. Uma característica dele é que é determinístico: não incorpora nenhum fator de aleatoriedade quanto à geração das rodadas e partidas.