Reply to Office Action of July 18, 2006

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1.-8. (Cancelled)

9. (Currently Amended) A process for the continuous preparation of a silane of the formula I

 $R^6R^5CH-R^4CH-SiR^1R^2R^3$ (I), which comprises continuously reacting a silane of the formula II $HSiR^1R^2R^3$ (II), with an alkene of the formula III

 $R^6R^5CH=CHR^4$ (III),

 $\underline{R^6R^5C = CHR^4}$ (III),

in the presence of an iridium compound of the formula IV as catalyst

 $[(diene)IrCl]_2 \hspace{1cm} (IV),$

and free diene as cocatalyst, where

 R^1 , R^2 , R^3 are each a monovalent Si-C-bonded, unsubstituted or halogen-substituted C_1 - C_{18} -hydrocarbon radical, a chlorine atom or a C_1 - C_{18} -alkoxy radical,

Reply to Office Action of July 18, 2006

R⁴, R⁵, R⁶ are each a hydrogen atom, a monovalent C₁-C₁₈-hydrocarbon radical optionally bearing one or more F, Cl, OR, NR'₂, CN or NCO substituents, a chlorine atom, a fluorine atom or a C₁-C₁₈-alkoxy radical, where 2 radicals R⁴, R⁵, R⁶ together with the carbon atoms to which they are bound may form a cyclic radical,

R is a hydrogen atom or a monovalent C₁-C₁₈-hydrocarbon radical and

diene is a C₄-C₅₀-hydrocarbon compound optionally bearing one or more F, Cl, OR, NR₂,

CN or NCO substituents and has at least two ethylenic C=C double bonds, with the reaction temperature being 30-200°C and the reaction pressure being 0.11-50.0 Mpa, in a mol ratio of alkene (III) to silane (II) such that 0.01 to 100 mol% of (III) is present in excess over (II) when said catalyst is present.

- 10. (Previously Presented) The process of claim 9, wherein R^1 , R^2 and R^3 are C_1 - C_6 -alkyl radicals, C_1 - C_6 -alkoxy radicals, or mixtures thereof.
- 11. (Previously Presented) The process of claim 9, wherein R^5 and R^6 are C_1 - C_6 -alkyl radicals, C_1 - C_6 -alkoxy radicals, or mixtures thereof.
- 12. (Previously Presented) The process of claim 9, wherein R⁴ is selected from the group consisting of hydrogen, methyl, and ethyl.
- 13. (Previously Presented) The process of claim 9, wherein free diene is added as cocatalyst in a concentration of from 1×10^{-6} to 1 mol%, based on the silane component of the formula II.
- 14. (Previously Presented) The process of claim 9, wherein the reaction temperature is 60-100°C.
- 15. (Previously Presented) The process of claim 9, wherein the catalyst of the formula IV is [(cycloocta-1c,5c-diene)IrCl]₂.

Atty Dkt No. WAS 0678 PUSA

S/N: 10/521,377

Reply to Office Action of July 18, 2006

16. (Previously Presented) The process of claim 15, wherein the cocatalyst is 1,5-cyclooctadiene.

17. (Cancelled)

- 18. (Currently Amended) The process of claim 9, wherein the alkene of formula (III) is present in [[0.01]] <u>0.1</u> mol percent to [[100]] <u>10</u> mol percent stoichiometric excess relative to the silane of formula (II).
- 19. (Previously Presented) The process of claim 9, wherein reacting takes place in an aprotic solvent.
- 20. (Previously Presented) The process of claim 19, wherein the aprotic solvent comprises silane (I).
- 21. (Previously Presented) The process of claim 9, further comprising separating silane (I) and leaving a high boiling residue, and recycling at least a portion of the high boiling residue as catalyst to the step of reacting.
- 22. (Previously Presented) The process of claim 9 wherein the free diene is not the same as the diene of the catalyst (IV).