CS464
Fall 2019
Term Project
Presentation

Listen to What Poster Says: Music Generation Based on Movie Posters

Outline

- Introduction
- Project Description
- Datasets
- Methods & Results for Poster Recognition
- Methods & Results for Soundtrack Generation
- Conclusion

Introduction

The aim of the project:

Predicting the genre of the movie poster, and producing a convenient soundtrack according to the genre.

Project Description

The main problem:

Can an original soundtrack be generated for a movie just by looking at the movie's poster?

By using a Machine Learning pipeline,

First, inference of a poster (with CNN)

Then, generating an original soundtrack for that particular genre (with RNN).

Poster Recognition

http://www.imdb.com/ title/tt114709	Toy Story (1995)	8.3	Animation Adventure Comedy	https://images- na.ssl-images- amazon.com/images/M/ MV5BMDU2ZWJ1MjktMTRh My00ZTA5LWEzNDgtYmNm ZTEwZTViZWJkXkEyXkFq cGdeQXVyNDQ2OTk4MzI@ V1_UX182_CR0,0,182 ,268_ALjpg
http://www.imdb.com/ title/tt113497	Jumanji (1995)	6.9	Action Adventure Family	https://images- na.ssl-images- amazon.com/images/M/ MV5BZTk2ZmUwYmEtNTcw ZS00YmMyLWFkYjMtNTRm ZDA3YWExMjc2XkEyXkFq cGdeQXVyMTQxNzMzNDI@ V1_UY268_CR10,0,18 2,268_ALjpg
http://www.imdb.com/ title/tt113228	Grumpier Old Men (1995)	6.6	Comedy Romance	https://images- na.ssl-images- amazon.com/images/M/ MV5BMjQxM2YyNjMtZjUx Yy000GYyLTg0MmQtNGE2 YzNjYmUyZTY1XkEyXkFq cGdeQXVyMTQxNzMzNDI@ V1_UX182_CR0,0,182 ,268_ALjpg

Initial Genre Distribution:

4412 action, 1545 animation, 9136 comedy, 9297 drama, 1859 horror images

After Data Manipulation:

1445 action, 1688 animation, 1700 comedy, 1335 drama, 1243 horror with a total of 7254 images

LeNet Architecture

RasNet20 Architecture

Custom Model Architecture

Adam Optimizer

For each Parameter w^j

(*j subscript dropped for clarity*)

$$\nu_t = \beta_1 * \nu_{t-1} - (1 - \beta_1) * g_t$$

$$c_t = \beta_2 * c_t + (1 - \beta_2) * g^2$$

$$s_t = \beta_2 * s_{t-1} - (1 - \beta_2) * g_t^2$$

$$\Delta\omega_t = -\eta \frac{\nu_t}{\sqrt{s_t + \epsilon}} * g_t$$

$$\omega_{t+1} = \omega_t + \Delta\omega_t$$

 η : Initial Learning rate

 g_t : Gradient at time t along ω^j

 ν_t : Exponential Average of gradients along ω_i

 s_t : Exponential Average of squares of gradients along ω_j

 $\beta_1, \beta_2: Hyperparameters$

RESULTS

LeNet

- 30

		precision	recall	f1-score	support
- 150					
	0	0.28	0.28	0.28	325
	1	0.29	0.62	0.39	116
- 120	2	0.32	0.40	0.35	214
	3	0.60	0.32	0.42	546
	4	0.29	0.36	0.32	282
- 90					
	accuracy			0.36	1483
	macro avg	0.36	0.40	0.35	1483
- 60	weighted avg	0.41	0.36	0.36	1483

- 125						
			precision	recall	f1-score	support
- 100		0	0.37	0.30	0.33	388
		1	0.25	0.67	0.37	94
		2	0.37	0.33	0.35	301
		3	0.38	0.33	0.35	338
- 75		4	0.37	0.36	0.37	362
	accur	асу			0.35	1483
	macro	avg	0.35	0.40	0.35	1483
- 50	weighted	avg	0.37	0.35	0.35	1483

- 25

Custom Model

Soundtrack Generator

Action: 12,000 => 10,000 => 120,000 notes

Animation: 22,203 notes

Comedy: 6,600 notes

Drama: 6,000 notes

Horror: 10,000 notes

RNN

LSTM

Inputs:	Outputs:	Nonlinearities:	Vector operations:	
X _t Current input	C _t New updated memory	Sigmoid layer	X Scaling of information	ι
C _{t-1} Memory from last LSTM unit	h _t Current output	tanh Tanh layer	+ Adding information	ľ
h _{t-1} Output of last LSTM unit		b Bias		

First Model

- LSTM(512)
- Dropout(0.3)
- LSTM(256)
- Dense(256)
- Dropout(0.3)
- Dense(number of notes)
- Activation(softmax)
- Categorical cross-entropy, rmsprop as optimizer

Result

- Loss value: 11.0
- Meaningless output
- Same notes through the whole soundtrack

Second Model

- Bidirectional(512)
- Dropout(0.3)
- Bidirectional(512)
- Dense(number of notes)
- Activation(softmax)
- Categorical cross-entropy, rmsprop as optimizer

Results

- Loss value: 0.08
- Output sounds nice
- However, all of the outputs includes very similar melody to soundtrack of Pirates of Caribbean. Overfit!

Action Output

Dataset Review

- More data
- Balanced data

Results

This time, it sounds original and different than the songs from dataset

Comedy Output

Final Model

- Bidirectional(512)
- Bidirectional(512)
- Bidirectional(512)
- BatchNorm()
- Dropout(0.3)
- Dense(256)
- Activation(relu)
- BatchNorm()
- Dropout()
- Dense(number of notes)
- Activation(softmax)
- Categorical cross-entropy, rmsprop as optimizer

Result

- Unique outputs
- Increased performance vs low number of notes (overfit)

Previous Comedy Output

New Comedy Output

Example Soundtracks

Action (pirates of the caribbean - second model):

https://drive.google.com/file/d/1XjTmf1daCb1JLsw3pZv4hYoDUaKjyWis/view?usp=sharing

Action (second model):

https://drive.google.com/file/d/1sSGdeC_SYvSwx9C4lt845sEnbNvboYbb/view?usp=sharing

Horror (second model):

https://drive.google.com/file/d/1JFYrT3J1bTxGkt7njCp6sZEsCpMkhP_k/view?usp=sharing

Comedy (second model):

https://drive.google.com/file/d/1I48Y4LzXFneHvktSBcRKovbOdeiQYfsV/view?usp=sharing

Comedy (final model):

https://drive.google.com/file/d/1p60R99gRXLWf9For36IObNqv7sakdon8/view?usp=sharing

Conclusion

Poster Prediction:

44% accuracy, difficulties with posters that do not obey universal patterns

Music Generation:

Original soundtracks generated, belong to a certain genre