

Iots (8000 currently) of micro ribbons that can bend slightly
 Make them reflective
 The bends make a diffraction grating that controls how much light goes where
 Scan it with a laser for high light output
 4000 pixel wide frame at 60Hz

VGA mode		Horizontal Timing Specification Horizontal Timing Spec				
Configuration	Resolution(HxV)	a(us)	b(us)	c(us)	d(us)	Pixel clock(MHz)
/GA(60Hz)	640x480	3.8	1.9	25.4	0.6	25
/GA(85Hz)	640x480	1.6	2.2	17.8	1.6	36
SVGA(60Hz)	800x600	3.2	2.2	20	1	40
SVGA(75Hz)	800x600	1.6	3.2	16.2	0.3	49
SVGA(85Hz)	800x600	1.1	2.7	14.2	0.6	56
(GA(60Hz)	1024x768	2.1	2.5	15.8	0.4	65
(GA(70Hz)	1024x768	1.8	1.9	13.7	0.3	75
(GA(85Hz)	1024x768	1.0	2.2	10.8	0.5	95
1280x1024(60Hz)	1280x1024	1.0	2.3	11.9	0.4	108

		signm	
		6 Pin Assignment of VG	
Signal Name	FPGA Pin No.	Description	I/O Standard
VGA_R[0]	PIN_A13	VGA Red[0]	3.3V
VGA_R[1]	PIN_C13	VGA Red[1]	3.3V
VGA_R[2]	PIN_E13	VGA Red[2]	3.3V
VGA_R[3]	PIN_B12	VGA Red[3]	3.3V
VGA_R[4]	PIN_C12	VGA Red[4]	3.3V
VGA_R[5]	PIN_D12	VGA Red[5]	3.3V
VGA_R[6]	PIN_E12	VGA Red[6]	3.3V
VGA_R[7]	PIN_F13	VGA Red[7]	3.3V
VGA_G[0]	PIN_J9	VGA Green[0]	3.3V
VGA_G[1]	PIN_J10	VGA Green[1]	3.3V
VGA_G[2]	PIN_H12	VGA Green[2]	3.3V
VGA_G[3]	PIN_G10	VGA Green[3]	3.3V
VGA G[4]	PIN G11	VGA Green[4]	3.3V
VGA G[5]	PIN G12	VGA Green[5]	3.3V
VGA G[6]	PIN F11	VGA Green[6]	3.3V
VGA G[7]	PIN E11	VGA Green[7]	3.3V
VGA_B[0]	PIN B13	VGA Blue[0]	3.3V
VGA B[1]	PIN G13	VGA Blue[1]	3.3V
VGA B[2]	PIN H13	VGA Blue[2]	3.3V
VGA_B[3]	PIN F14	VGA Blue[3]	3.3V
VGA B[4]	PIN_H14	VGA Blue[4]	3.3V
VGA_B[5]	PIN F15	VGA Blue[5]	3.3V
VGA B[6]	PIN G15	VGA Blue[6]	3.3V
VGA_B[7]	PIN J14	VGA Blue[7]	3.3V
VGA_D[/]	PIN A11	VGA Clock	3.3V
VGA_CLR VGA BLANK N	PIN F10	VGA BLANK	3.3V
VGA_BLANK_N	PIN_FI0	VGA H SYNC	3.3V
VGA_HS VGA VS	PIN_B11		3.3V
VGA_VS VGA SYNC N	PIN_D11	VGA V_SYNC VGA SYNC	3.3V

Table 8. Pin Function Descriptions						
Pin No.	Mnemonic	Description				
1 to 10, 14 to 23, 39 to 48	G0 to G9, B0 to B9, R0 to R9	Red, Green, and Blue Pixel Data Inputs (TTL Compatible). Pixel data is latched on the rising edge of CLOCK. R0, G0, and B0 are the least significant data bits. Unused pixel data inputs should be connected to either the regular printed circuit board (PCB) power or ground plane.				
11	BLANK	Composite Blank Control Input (TTL Compatible). A Logic 0 on this control input drives the analog outputs, IOR, IOB, and IOG, to the blanking level. The BLANK signal is latched on the rising edge of CLOCK. While BLANK is a Logic 0, the RO to R9, GO to G9, and B0 to B9 pixel Inputs are ignored.				
12 lot	SYNC	Composite Sync Control Input (TTL Compatible). A Logic 0 on the SYNC input switches off a 40 IRE current source. This is internally connected to the IOG analog output. SYNC does not override any other control or data input; therefore, it should only be asserted during the blanking interval. SYNC is latched on the rising edge of CLOCK. If sync information is not required on the green channel, the SYNC input should be tied to Logic 0.				
13, 29, 30	VAA	Analog Power Supply (5 V \pm 5%). All V _{AA} pins on the ADV7123 must be connected.				
24	CLOCK	Clock Input (TTL Compatible). The rising edge of CLOCK latches the R0 to R9, G0 to G9, B0 to B9, SYNC, and BLANK pixel and control inputs. It is typically the pixel clock rate of the video system. CLOCK should be driven by a dedicated TTL buffer.				
25, 26	GND	Ground. All GND pins must be connected.				
27, 31, 33	IOB, IOG, IOR	Differential Red, Green, and Blue Current Outputs (High Impedance Current Sources). These RGB video outputs are specified to directly drive RS-343A and RS-170 video levels into a doubly terminated 75 Ω load. If the complementary outputs are not required, these outputs should be tied to ground.				
28, 32, 34	IOB, IOG, IOR	Red, Green, and Blue Current Outputs. These high impedance current sources are capable of directly driving a doubly terminated 75 Ω coaxial cable. All three current outputs should have similar output loads whether or not they are all being used.				
35	COMP	Compensation Pin. This is a compensation pin for the internal reference amplifier. A 0.1 μ F ceramic capacitor must be connected between COMP and V_{AA} .				
36	V _{REF}	Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).				

Bitmapped
Frame buffer holds a separate rgb color for every pixel
bitGen just grabs the pixel based on hCount and vCount and splats it to the screen
Chews up a LOT of memory
Well... a lot of memory from a 5710/6710 VLSI chip point of view...

3 Types of bitGen

- Character/Glyph-based
 - ▶ Break screen into nxm pixel chunks (e.g. 8x8)
 - ▶ For each chunk, point to one of k nxm glyphs
 - ▶ Those glyphs are stored in a separate memory
 - ▶ For 8x8 case (for example)
 - glyph number is hCount and vCount minus the low three bits
 - ▶ glyph bits are the low-order 3 bits in each of hCount and vCount
 - ▶ Figure out which screen chunk you're in, then reference the bits from the glyph memory

40

3 Types of bitGen Direct Graphics ▶ Look at hCount and vCount to see where you are on the screen ▶ Depending on where you are, force the output to a particular color ▶ Tedious for complex things, nice for large, static things parameter BLACK = 3' b 000, WHITE = 3' b111, RED = 3' b100; // paint a white box on a red background always@(*) if (~bright) rgb = BLACK; // force black if not bright // check to see if you' re in the box else if (((hCount >= 100) && (hCount <= 300)) && ((vCount >= 150) && (vCount <= 350))) rgb = WHITE; else rgb = RED; // background color

VGA Memory Requirements
► 1280x1024 VGA (bitmapped)
► 1,320,720 pixels
► 24 bits per pixel
► One 32 bit word per pixel?
► 1,321 K-words with 32-bit words for 1280x1024
► 5.25 Mbytes

VGA Memory Requirements

- ▶ 80 char by 60 line display (8x8 glyphs)
 - ▶ 4800 locations
 - ▶ Each location has one of 256 char/glyphs
 - ▶ 8-bits per location
 - ▶ 2 locations per 16-bit word?
 - ▶ 2400 words for the frame buffer
 - ▶ Each char/glyph is (say) 8x8 pixels
 - ▶ results in 640x480 display...
 - ▶ 8x8x256 bits for char/glyph table
 - ▶ 16kbits (1k words) for char/glyph table

55

VGA Memory Requirements

- ▶ 80 char by 60 line display (8x8 glyphs)
 - ▶ 4800 locations
 - ▶ Each location has one of 64 char/glyphs
 - ▶ 6-bits per location
 - ▶ 4 locations per 24-bit word?
 - ▶ 1200 words for frame buffer?
 - ▶ Each char/glyph is (say) 8x8 pixels
 - results in 640x480 display...
 - ▶ 8x8x64 bits for char/glyph table
 - ▶ 4kbits for char/glyph table (32 words, 128 b/word)
 - ▶ Will this fit on your chip?

Tbird VGA Assignment

Get VGA working
Start with full-screen flood
then play around with direct VGA graphics
Take the Tbird state machine
outputs are six lights
Define six regions of the screen
Make those regions change color when the state machine says the lights should be on