Objectives

- 1. (Theoretical Intuition) Understand the basic definitions of the polar curve, including polar coordinate, polar equation, tangent, visualization, area and arc-length, etc
- 2. (Practical Visualization) Simple sketching of polar curve for modeling purpose
- 3. (Mathematical Model) Be able to set up mathematical model based on the intuition, mental visualization and/or simple sketching
- 4. (Computation) Compute the area and length given a polar equation. Find the tangent line of a polar curve.

Useful Formulas

- 1. (10.4) Area of Polar Curve: $A = \int_a^b \frac{1}{2} r^2 d\theta$
- 2. (10.4) Length of a Curve with Polar Equation: $L = \int_a^b \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta$ Notice: This formula can be derived from the usual formula for the length of a curve
- 3. Trigonometry Double-Angle Identities: Increase/Reduce the power
 - (a) $sin(2\theta) = 2sin(\theta)cos(\theta)$
 - (b) $cos(2\theta) = 2cos^2(\theta) 1 = 1 2sin^2(\theta) = cos^2(\theta) sin^2(\theta)$
- 4. Trigonometry Angle Identities: Useful for computation
 - (a) $sin(\theta) = -sin(\theta + \pi)$; $cos(\theta) = -cos(\theta + \pi)$
 - (b) $sin(\theta) = sin(\theta \pi)$; $cos(\theta) = -cos(\theta \pi)$
 - (c) $cos(\theta) = cos(-\theta)$; $sin(\theta) = -sin(-\theta)$

Sine&Cosine Graphs

Note: $sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} = cos(\frac{\pi}{6})$; $sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} = cos(\frac{\pi}{4})$

Sketch Polar Curve (Trigonometry)

Even though you can still follow the same method for sketching parametric curve that we talked about in the first tutorial, there is a faster way to sketch polar curve because of the symmetries, periods and smoothness of the sine and cosine graphs. Consider the polar equation r = f(t), such that $(x,y)=(r\cos(t),r\sin(t))$. (Example: Question2, $r = \cos 2\theta$)

1. Get intuition by sketching the r-t graph. Make your self a table that pay extra attentions to some convenient points: t=0, $t=\frac{\pi}{2}$, $t=\pi,t=\frac{3\pi}{2}$, as well as the 'gaps' between any of the two consecutive points

Note: May need to add more points if the graphs are stretched or compressed. For example, need to consider $t = \frac{\pi}{4}$ (more than just this) as well for the graph $r = \cos(2t)$.

	θ	0	$\frac{\pi}{4}$	$\frac{2\pi}{4}$	$\frac{3\pi}{4}$	$\frac{4\pi}{4}$	$\frac{5\pi}{4}$	$\frac{6\pi}{4}$	$\frac{7\pi}{4}$	$\frac{8\pi}{4}$
For example:	r									
	$\frac{\cos(\theta)}{\sin(\theta)}$									
	$\sin(\theta)$									
	X									
	у									

- 2. Using (10.3)symmetry to help you sketch faster!
 - (a) If a polar equation is unchanged when θ is replaced by $-\theta$, then the curve is symmetric about the polar axis.
 - (b) If the equation is unchanged when r is replaced by -r, or when θ is replaced by $\theta + \pi$, then the curve is symmetric about the pole. (This means that the curve remains unchanged if we rotate it through 180 about the origin.)
 - (c) If the equation is unchanged when θ is replaced by $\pi \theta$, then curve is symmetric about the vertical line $\theta = \frac{\pi}{2}$.

Additional Problems and Reminders

- 1. Find the area enclosed by the polar curve $r = 1 + cos(\theta)$ and the y-axis for $x \leq 0$
- 2. Find the arc length of the polar curve in (1), $0 \le \theta \le \pi$

Note: These two questions are from your past test. Everything you need to solve these questions are all in this handout. Work hard and get ready for the quiz next week:)

Reminder: MAT235 Quiz1: October.2 Wednesday Tutorial; Please take the quiz in the tutorial that you enrolled in Acorn. You will get a 0 for writing a quiz in different tutorial: (Always write something to solve the problem. You are guaranteed a 0 for writing nothing.