Zebo Xiong A04907051 amble and stransmitted 38 71 61 5 8 8 8 8 8 8 1. -3 < x < 3, -7 < y < 7, -6 < 2 < 6 glMatrix Model CL-PROJECTION); Two parties lessandine the vectors of Load I dent: +y (); glarthol-3,3,-6,6,7,47) (v. w) (1) glPotote (-90, 1, 0, 0) The state of the state of the glTranslatef(0,6,0) ALCON ANN MONTH The second and the second of the second of the second (8.3-18)

2ebs Ving A049070 \(\)

2. Ux Vy U\(\) Vx Vy V\(\) Wx Wy W\(\)

4 8 6 3 8 3 \(\) 6 8

\[
\text{VW} = W - V = \(\) 2, -2, \(\) \\
\text{Vw} = V - V = (-1, 0, -3)
\]

Two pointers determine the vector;

3. Expilicit form
$$\Rightarrow$$
 V + \Rightarrow (W-V) = VW

Inplicit form \Rightarrow V + \Rightarrow (W-V) = VW

\[
\text{Inplicit form} \(\) \(\) 2 + (-3) \(\) 5 + 5 \(\) + d = 0
\[
\text{D. papamatric equator} \(\) \(\) \(\) \(\) = \(\) 3 + \(\) \(\) \(\) = \(\) \(

$$\frac{1}{3} = (2, -2, 4)$$

$$\frac{1}{3} = (3, -2, 8)$$

Zebo Xiny A084 07651

3. Assume.

Distance: $D_1 = \sqrt{3-V_2} \implies X$ axis Distance: $D_2 = \sqrt{N_1-V_2} \implies Y$ axis

 $D_{1}/D_{2}=W=>D_{1}=WD_{2}$

if we need 1/w, we make $\frac{W^2}{w^2P_2} = \frac{1}{w}$

it means we made Dz to w Dz

glScolef (1, www, 1);

double Dr clistone (V3, V2); Polone Vr (V1, V2); Polone Vr;

> glSalef(1, w+w,1);

1304407651 Zebo Xing P=1/a=1/3 9=3/3=1-P y= 1/3 (2/3) k-1, 1 ≤ k < 10×C=60 gl Begin (GL-POINTS); double y = 0.0; for (int k=1; k=60; k=k+0.1) { y= 1/3 + ()por(2/3, k-1). glvertex2f(k, y); glEnd(); gl Flush(); -100-a7-d 0000 001-c 0000 0 0000 0001-c 0000 0 0000 0001-c 00000 0 0000) translate to (c,a, b

b.
$$((, 3, 6, 1) =) (6, 3, 7, 1)$$

) gltraslote $(6, 3, 7, 1)$;

de \S

2) glScalef $(d, d, d, 1)$;

3) gltraslote $(-6, -3, -7, 1)$;

 $\begin{bmatrix} 0 & 0 & -0 \\ 0 & 1 & -0 \\ 0 & 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$