Нелинейный анализ

Кравцов О.В.

17 августа 2017 г.

Вступление

Глава 1

Нелинейные динамические системы

В настоящее время теория нелинейных динамических систем (НДС) представляет собой эффективный математический аппарат, нацеленный на качественное и количественное исследование поведения реальной системы (натуры).

1.1 Введение: фазовое пространство и его свойства

Определение 1.1.1: Фазовое пространство (ФП)

 Φ азовое пространство — это пространство состояний реальной системы; абстрактное математическое пространство, размерность которого определяется числом функций, необходимых для однозначного задания состояния реальной системы в некий момент времени.

 Φ ункции, однозначно задающие состояние реальной системы в момент времени t:

$$x_i(t), \qquad i = \overline{1, n}.$$

Так как по осям координат $\Phi\Pi$ находятся значения $x_i(t)$, можно составить вектор состояния:

$$\vec{x}_i(t) = (x_1(t), x_2(t), \dots, x_n(t)).$$

Тогда эволюция состояния системы будет описана нелинейными (как правило) дифференциальными уравнениями (ДУ) 1 порядка.

$$\frac{dx_i(t)}{dt} = f_i(x_1, x_2, \dots, x_n, a_1, a_2, \dots, a_k)$$
(1.1)

или

$$\frac{d\vec{x}_i(t)}{dt} = \vec{F}(\vec{x}_i(t), t, \vec{a}).$$

где a_j — параметры системы, $j = \overline{1, k}$.

Определение 1.1.2: Фазовая точка

Фазовая (изображающая) точка — это точка $\Phi\Pi$, описывающая настоящее (в данный момент времени) состояние реальной системы.

Рис. 1.1: Фазовая точка x_0 и траектория её движения.

(1.1) — уравнение движения фазовой точки.

Определение 1.1.3: Фазовая траектория (ФТр)

Траектория движения фазовой точки называется фазовой траекторией.

Для решения (1.1) нужно знать начальные условия, то есть координаты точки, из которой выходит фазовая траектория.

$$t = t_0:$$
 $x_i(t_0) = x_0,$ $i = \overline{1, n}$ (1.2)

или

$$\vec{x}_i(t_0) = \vec{x}_0.$$

Если система неподвижна, то фазовая траектория — это фазовая точка.

Определение 1.1.4: Динамическая система (ДС)

Система называется динамической, если она описывается уравнением (1.1) и задание (1.2) полностью определяет её поведение в последующие моменты времени.

Замечание 1.1.5

В геометрии $\Phi\Pi$ стоит отметить, что $\Phi\Pi$ с размерностью:

- n=2k изучает симплектическая геометрия;
- n=2k+1 изучает контактная геометрия.

Замечание 1.1.6

Уравнения движения могут быть записаны и в старших производных. Для того, чтобы свести их к виду (1.1) вводим замену переменных.

$$rac{d^2x_i}{dt^2}=f_i(x_k)$$
 Замена: $y_i=rac{dx_i}{dt}$ Получаем систему: $\left\{ egin{aligned} rac{dy_i}{dt}=f_i(x_k) \ rac{dx_i}{dt}=y_i \end{aligned}
ight.$

Замечание 1.1.7

Число степеней свободы системы равно $\frac{n}{2}$, где n — размерность $\Phi\Pi.$

Более формально ДС принято определять следующим образом:

Определение 1.1.8: Динамическая система (ДС)

Пусть некоторый эволюционный оператор \mathbf{T}^t преобразовывает некоторое начальное состояние \mathbf{P}_0 в момент времени t_0 в $\mathbf{P}(t)$ в момент времени t.

$$T^t: P_0 \to P(t).$$

Тогда под ДС понимается такая система, эволюционный оператор которой определяется соотношением:

$$T^t T^{\tau} = T^{t+\tau}$$
.

То есть время аддитивно, а оператор мультипликативный. При этом подразумевается коммутируемость:

$$T^t T^\tau = T^\tau T^t$$
.

Задание ДС является постановкой задачи Коши. Согласно теореме Коши при заданных (1.2) решение (1.1) существует и оно единственное. Это утверждение приводит к следующим следствиям:

- ФТр не самопересекаются.
- ullet Так как существует и обратная задача Коши (вводится замена t=-t), то пересечение двух и более Φ Тр также невозможно.
- \bullet Если малое шевеление не изменяет Φ Тр системы, то такая система *грубая* и к ней применима теорема Коши. В реальности негрубых систем гораздо больше, чем грубых, и для них существует *горизонт прогноза*.

Примеры негрубых систем: изменение индекса Доу Джонса, погода. Также существуют системы только с вероятностными уравнениями, для которых даже невозможно записать уравнение движения (1.1).

Пример 1.1.9: Обычная ДС

$$\ddot{x}(t)+b\dot{x}(t)+ax(t-\tau)=0 \qquad \text{Замена:} \frac{dx}{dt}=y$$
 Получаем систему:
$$\begin{cases} \frac{dy}{dt}=-by-ax(t-\tau)\\ \frac{dx}{dt}=y \end{cases}$$

Определение 1.1.10: Фазовый портрет

Совокупность Φ Tp, соответствующих различным начальным условиям или значениям параметров называется фазовым портретом.

Поведение ФТр дает информацию о поведении системы. Существуют методы, которые позволяют не решая систему уравнений, а исходя только из вида правой части (1.1) получить представление о поведении ФТр системы. Это и есть задача качественной теории ДУ.

Определение 1.1.11: Фазовая плоскость (ФПл)

Фазовая плоскость — это $\Phi\Pi$ с размерностью 2.

Уравнения, описывающие эволюцию ДС:

$$\begin{cases} \frac{dx_1}{dt} = f_1(x_1, x_2, t) \\ \frac{dx_2}{dt} = f_2(x_1, x_2, t). \end{cases}$$
(1.3)

Уравнение ФТр получаем из (1.3):

$$\frac{dx_1}{dx_2} = \frac{f_1(x_1, x_2, t)}{f_2(x_1, x_2, t)}.$$

Разнообразие поведения Φ Тр на Φ Пл ограничено теоремой Бендиксона-Пуанкаре. Φ Тр может:

- уйти на бесконечность;
- уткнуться в особую точку;
- намотаться на предельный цикл.

Особые точки, они же неподвижные точки или стационарные точки определяются из уравнения (1.4).

$$f_i(x_1, x_2, \dots, x_n) = 0, \qquad i = \overline{1, n}.$$
 (1.4)

9

Определение 1.1.12: Автономная ДС

Если в правой части (1.1) при заданных значениях параметров время не входит в него явно, то такая ДС называется автономной.

$$\frac{d\vec{x}}{dt} = \vec{F}(\vec{x}, \vec{a}).$$

1.1.1 Особые точки и особые траектории

Рассмотрим ФПл:

$$\begin{cases} \frac{dx_1}{dt} = f_1(x_1, x_2) \\ \frac{dx_2}{dt} = f_2(x_1, x_2). \end{cases}$$

Уравнение ФТр:

$$\frac{dx_1}{dx_2} = \frac{f_1(x_1, x_2)}{f_2(x_1, x_2)}.$$

- 1. Центр
- 2. Фокус
- 3. Узел
- 4. Предельный цикл
- 5. Седло

В $\Phi\Pi$ л нет других особых точек (OT), кроме указанных, за исключением того случая, когда OT сближаются, а затем сливаются.

Анализ таких ситуаций относится к разделу современной математики, который называется теорией структурной устойчивости или $meopue\@ifnextcolor=\end{mode}$ катастроф.

Определение 1.1.13: Аттрактор

ОТ или области $\Phi\Pi$ любой размерности, притягивающие Φ Тр, называются аттракторами.

1.2 Теорема Лиувилля-Остроградского

Рассмотрим в n-мерном $\Phi\Pi$ автономную \Box С.

$$\frac{d\vec{x}}{dt} = \vec{f}(\vec{x}(t)),\tag{1.5}$$

где $\vec{x} = (x_1, x_2, \dots, x_n), \vec{f} = (f_1, f_2, \dots, f_n).$

Вблизи точки \vec{x} элемент $\Phi\Pi$ равен:

$$d\Gamma = dx_1 dx_2 \cdot \ldots \cdot dx_n.$$

Пусть D — область $\Phi\Pi$, тогда объём в этой области равен:

$$V = \int_{D} d\Gamma.$$

Область D образуют точки $\Phi\Pi$, которые можно рассматривать как точки разных Φ Тр в каждый момент времени. Это ϕ азовая капля объёма V в момент времени t.

$$D = D(t),$$

$$V = \int_{D(t)} d\Gamma.$$

Теорема 1.2.1: (Лиувилля-Остроградского)

$$rac{dV}{dt} = \int\limits_{D(t)} {
m div} ec{f} d\Gamma, \qquad$$
где $ec{f} = rac{dec{x}}{dt}.$

Доказательство. За время au координаты точек области D изменятся.

$$x_i(t) \xrightarrow{\tau} x_i(t+\tau).$$

Тогда и область D и объём V также изменятся соответственно.

$$D(t) \xrightarrow{\tau} D(t+\tau).$$

$$V(t) \xrightarrow{\tau} V(t+\tau)$$
.

Учитывая тот факт, что ФТр не пересекаются, можно утверждать, что между $x_i(t)$ и $x_i(t+\tau)$ существует взаимно однозначное соответствие.

$$x_i(t+\tau) = \phi(x_1, x_2, \dots, x_n, \tau).$$

Обозначим: $y_i=x_i(t+\tau)$, тогда $y_i=\phi(x_1,x_2,\ldots,x_n,\tau),\quad i=\overline{1,n}$. Это соотношение можно интерпретировать как преорбразование системы координат (x_1,x_2,\ldots,x_n) в систему координат (y_1,y_2,\ldots,y_n) . В новой системе координат элемент $\Phi\Pi$ равен:

$$d\tilde{\Gamma} = dy_1 dy_2 \cdot \ldots \cdot dy_n$$
.

Два элемента $\Phi\Pi\ d\Gamma$ и $d\tilde{\Gamma}$ связаны якобианом преобразования.

$$d\tilde{\Gamma} = \mathrm{J}d\Gamma, \qquad \mathrm{где} \ \mathrm{J} = \left| \frac{\partial (y_1, y_2, \dots, y_n)}{\partial (x_1, x_2, \dots, x_n)} \right|.$$

Получаем выражение для объёма:

$$V(t+\tau) = \int_{D(t)} d\tilde{\Gamma} = \int_{D(t)} Jd\Gamma.$$
 (1.6)

Пусть τ достаточно малый интервал: $\tau = dt$.

Используя уравнение движения (1.5) в координатном виде можно записать следующее соотношение:

$$y_i = x_i(t+\tau) = x_i(t+dt) = x_i(t) + dx_i = x_i(t) + f_i dt.$$

Тогда

$$J = \det\left(\frac{\partial y_i}{\partial x_k}\right) = \det\left(\frac{\partial x_i}{\partial x_k} + dt \frac{\partial f_i}{\partial x_k}\right) = \det(\hat{E} + \hat{F}dt),$$

где
$$\hat{E}_{(n\times n)}$$
 — единичная матрица, $\hat{F}=\left(\frac{\partial f_i}{\partial x_k}\right),\, F_{ik}=\frac{\partial f_i}{\partial x_k},\, (i,k)=\overline{1,n}.$

Раскладываем J в ряд Тейлора по степеням dt с точностью до бесконечно малого 2 порядка:

$$\det\left(\frac{\partial y_i}{\partial x_k}\right) = 1 + \mathrm{Tr}\Big(\frac{\partial f_i}{\partial x_k}\Big) dt + o((dt)^2), \qquad \text{где } \mathrm{Tr}\Big(\frac{\partial f_i}{\partial x_k}\Big) = \mathrm{div} \vec{f}.$$

Таким образом, якобиан равен:

$$J \approx 1 + \operatorname{div} \vec{f} dt. \tag{1.7}$$

Из выражений (1.6) и (1.7) получаем:

$$V(t+\tau) = V(t) + dt \int\limits_{D(t)} {\rm div} \vec{f} d\Gamma \quad \Rightarrow \quad \frac{dV}{dt} = \int\limits_{D(t)} {\rm div} \vec{f} d\Gamma.$$

Следствие 1.2.2

Величина фазового объёма гамильтоновых систем не изменяется с течением времени. Рассмотрим гамильтонову систему:

$$\begin{cases}
\frac{dP_i}{dt} = -\frac{\partial \mathcal{H}}{\partial x_i} \\
\frac{dx_i}{dt} = \frac{\partial \mathcal{H}}{\partial P_i}.
\end{cases}$$
(1.8)

Принято обозначение: $\operatorname{div} \vec{f} = \Lambda$. Тогда

$$\begin{split} &\Lambda = \sum_{i=1}^n \left(\frac{\partial \dot{x}_i}{\partial x_i} + \frac{\partial \dot{p}_i}{\partial p_i} \right) = \left[\text{подставляем (1.8)} \right] \\ &= \sum_{i=1}^n \left(\frac{\partial}{\partial x_i} \frac{\partial \mathcal{H}}{\partial P_i} + \frac{\partial}{\partial p_i} \frac{\partial \mathcal{H}}{\partial x_i} \right) = 0 \\ &\Lambda = 0 \quad \Rightarrow \quad \frac{dV}{dt} = 0 \quad \Rightarrow \quad V = const. \end{split}$$

Следствие 1.2.3

Пусть область D достаточно мала так, чтобы подынтегральное выражение в (1.2.1) можно было считать постоянным.

$$\frac{dV}{dt} = V \operatorname{div} \vec{f}$$

$$\frac{1}{V} \frac{dV}{dt} = \operatorname{div} \vec{f} = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}.$$

Рассмотрим частный случай, когда f_i — линейная функция координат.

$$f_i = \sum_{k=1}^n a_{ik} x_k \quad \Rightarrow \quad \frac{1}{V} \frac{dV}{dt} = \sum_{k=1}^n a_{ii} = \Lambda \quad \Rightarrow$$

$$\Rightarrow V(t) = V_0 \exp(\Lambda t), \quad \text{где } V_0 \equiv V(0).$$

1.3 Математические модели и классификация ДС

Существует две основные модели: поток и отображение.

1.3.1 Модель-поток (flows)

Модель задаётся ДУ:

$$\frac{dx_i}{dt} = f_i(\{x_k(t)\}, \{a_j\}, t), \qquad (i, k) = \overline{1, n}; j = \overline{1, m}.$$
(1.9)

Определение 1.3.1: Модель-поток

Модель вида (1.9), в которой время непрерывно, называется модель-поток.

Уравнение (1.9) можно записать в векторном виде:

$$\frac{d\vec{x}}{dt} = \vec{f}(\vec{x}(t), \vec{a}, t). \tag{1.10}$$

Часто удобно считать правую часть уравнения (1.9) не зависящей явно от времени t. Это всегда можно сделать введя динамическую переменную, численно совпадающую со временем.

$$\frac{dx_{n+1}}{dt} = 1 \quad \Rightarrow \quad x_{n+1} = t.$$

В этом случае $\Phi\Pi$ является расширенным $\Phi\Pi$.

1.3.2 Модель-отображение (maps)

Это класс моделей, в которых время дискретно: $\{t_n\}, n \in \mathbb{Z}$. Номер n момента времени t_n принимается за независимую переменную.

Пример 1.3.2

Тогда уравнения движения модели-отображения выражают значения динамических переменных в момент времени (n+1) через значение динамических переменных в момент времени n.

$$\vec{X}(n+1) = \vec{M}(\vec{X}(n), \vec{a}).$$
 (1.11)

Определение 1.3.3: Модель-отображение

Модель вида (1.11), в которой время дискретно, называется модельотображение.

Рассмотрим источники этих моделей. Пусть реальная система имеет характерный временной масштаб T.

• За состоянием потока x(t) следят в избранные моменты времени t_n , а не в произвольные. Эти t_n разделены интервалом $\tau \approx T$.

Замечание

 $\tau \leq T$, но ни в коем случае не $\tau > T$.

Таким образом,

$$\vec{x}(t_0+n au)=\vec{x}_n$$
 — временной ряд.

• Условие $\tau >> T$ используется для численного решения уравнения (1.9); потоки (1.9) заменяем отображениями (1.11), то есть дискретными разностными схемами для потоков.

Пример 1.3.4: Метод ломаных Эйлера

$$x_{n+1} = x_n + hf(x_n), \quad h << T.$$

• Источником модели-отображения являются также системы, в которых дискретный счет времени.

Пример 1.3.5: Динамика популяций

u — количество особей,

n — номер поколения.

$$u_{n+1} = u_n + u_{n-1}.$$

 Φ Тр этой системы с начальными условиями $u_1=1, u_2=1$ — это числа Φ ибоначчи.

1.3.3 Классификация ДС

Определение 1.3.6: Автономная ДС

Если ДС задана моделью потоков:

$$\frac{dx_i}{dt} = f_i(\{x_k(t)\}, \{a_j\}), \qquad (i, k) = \overline{1, n}; j = \overline{1, m},$$
 (1.12)

а в правую часть не входит время явно и все параметры не зависят от времени, то такая ДС называется автономной.

Определение 1.3.7: Неавтономная ДС

Если в правую часть входит явно время и существует такое a_j , зависящее от времени, то такая ДС называется неавтономной.

Данные определения справедливы и для модели-отображения, где вместо (1.12) используется уравнение:

$$\vec{X}(n+1) = \vec{M}(\{\vec{X}(n)\}, \{\vec{a}\}). \tag{1.13}$$

Определение 1.3.8: Локальная диссипация

Для ДС-потока локальной диссипацией $G(\vec{x})$ в точке \vec{x} ФП принято называть дивергенцию поля фазовых скоростей в этой точке, взятой с обратным знаком.

$$G(\vec{x}) = -\operatorname{div} \dot{\vec{x}} = -\sum_{i=1}^{n} \frac{\partial \dot{x_i}}{\partial x_i} = -\operatorname{div} \vec{f}.$$

Из теоремы Лиувилля-Остроградского следует, что для малого V вблизи точки \vec{x} получаем уравнение:

$$\frac{1}{V}\frac{dV}{dt} = {\rm div} \vec{f} \qquad \Rightarrow \qquad \frac{1}{V}\frac{dV}{dt} = -G(\vec{x}).$$

Это означает, что относительная скорость изменения фазового объема равна диссипации с обратным знаком.

15

Определение 1.3.9: Диссипативная система

Системы, для которых $G(\vec{x}) \neq 0$ во всех точках $\Phi\Pi$ называют диссипативными.

Определение 1.3.10: Консервативная система

Системы, для которых $G(\vec{x})=0$ во всех точках $\Phi\Pi$ называют консервативными.

Замечание 1.3.11

Согласно этому определению консервативность — это сохранение фазового объема, а не энергии.

Любые гамильтоновые системы являются консервативными, но все консервативные системы являются гамитоновыми.

Пример 1.3.12

$$\begin{cases} \dot{x} = yz \\ \dot{y} = xz \qquad \Rightarrow \qquad G(\vec{x}) = 0 \\ \dot{z} = xy \end{cases}$$
 (1.14)

Однако система не гамильтонова.

Рассмотрим диссипацию для системы , заданной моделью-отображением (1.11). Для одного отображения:

$$V' = JV$$
, где $J = \det\left(\frac{\partial M_i}{\partial x_i}\right)$.

Найдем локальную диссипацию:

• для потока:

$$G(\vec{x}) = -\frac{1}{V} \frac{dV}{dt} = -\frac{d \ln|V|}{dt}.$$

• для отображения:

$$G(\vec{x}) = -rac{\Delta \ln |V|}{\Delta n} = \left[\Delta n = 1 - \text{локальность}
ight] = -\Delta \ln |V|$$

$$= -(\ln |V'| - \ln |V|) = -(\ln |JV| - \ln |V|) = -\ln |J|.$$

Таким образом, локальная диссипация для модели-отображения — это логарифм абсолютной величины якобиана, взятый с обратным знаком.

$$G(\vec{x}) = -\ln|\mathbf{J}|.$$

Глава 2

Хаос и фракталы

Глава 3

Диссипативные системы. Синергетика

Оглавление

Вступление				3
1	Нелинейные динамические системы			5
	1.1	Введе	ние: фазовое пространство и его свойства	5
		1.1.1	Особые точки и особые траектории	9
	1.2	Teope	ма Лиувилля-Остроградского	9
	1.3	Мател	матические модели и классификация ДС	12
		1.3.1	Модель-поток (flows)	12
		1.3.2	Модель-отображение (maps)	13
		1.3.3	Классификация ДС	14
2	2 Xaoc и фракталы		17	
3	З Диссипативные системы. Синергетика		19	