Convert the following finite automata into equivalent regular expressions.

1. M=(Q, Σ , δ , q_0 , F) with

Q={q₀, q₁, q₂, q₃, q₄}
$$\sum = \{0, 1\}$$
 F={q₄}, and δ is defined by

δ	0	1
q_0	q_1	q_3
q_1	q_1	q_4
q_2	q_2	q_1
q_3	q_4	q_3
q_4	q_2	q_4

2. M=(Q, Σ , δ , q_0 , F) with

δ	0	1
q_0	q_2	q_1
q_1	q_1	q_3
q_2	q_2	q_1
q ₃	q_3	q_3

3. M=(Q, Σ , δ , q_0 , F) with

Q={q₀, q₁, q₂, q₃, q₄, q₅, q₆, q₇}
$$\Sigma = \{0, 1\}$$
 F={q₃}, and δ is defined by

δ	0	1
q_0	q_1	q_0
q_1	q_0	q_2
q_2	q_3	q_1
q_3	q_3	q_0
q_4	q_3	q_5
q_5	q_6	q_4
q_6	q_5	q_6
q_7	q_6	q_3