2011-(02)feb-02: dag 5

Flera beteckningar för mängdbegrepp

 $x \in A$ x är ett element i A.

 $y \notin A$ y är inte ett element i A.

 $A \subseteq B$ A är en delmängd till B; A kan vara B.

 $x \in A \Rightarrow x \in B$ ($x \in B \ \forall \ x \in A$)

 $\exists x \in B : x \in A$

A ⊂ B A är en delmängd (äkta delmängd) till B;

A kan inte vara B.

 $\exists x \in B : x \in A, \exists x \in B : x \notin A$

|A| Antalet element i A

A:s kardinalitet (ordning)

 $|\emptyset| = 0$ $|\{\emptyset\}| = 1$

Operationer på mängder

A U B Unionen av A och B

 $\{x \mid x \in A \ v \ x \in B\}$

A n B Snittet (skärningen) av A och B

 $\{x \mid x \in A \land x \in B\}$

A \ B Differansmängden (differansen mellan A och B)

A^c Komplementmängden (komplementet till A)

$$\{x \mid x \notin A\}$$

Skrivs även (A eller CA (den innan i sans-teckensnitt istället för sans-serif)

 $A \cap B$

 $\mathcal{P}(A)$ Potensmängden till A Mängden av alla A:s delmängder.

$$\mathcal{P}(\mathsf{A}) = \{\mathsf{B} \mid \mathsf{B} \subseteq \mathsf{A}\}$$

 $A \setminus B$

 A^{C}

Exempel:

$$\mathcal{P}(\{\emptyset, 1, \pi\}) = \{\emptyset, \{\emptyset\}, \{1\}, \{\pi\}, \{\emptyset, 1\}, \{\emptyset, \pi\}, \{1, \pi\}, \{\emptyset, 1, \pi\}\}\$$

Kan även skivas:

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$
$$A \subseteq B \Rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$$

 $C \subseteq A, A \subseteq B \Rightarrow C \subseteq B$

Associativa lagen: (A \cup B) \cup C = A \cup (B \cup D)

 $(A \cap B) \cap C = A \cap (B \cap D)$

Kommutativa lagen: $A \cup B = B \cup A$

 $A \cap B = B \cap A$

Distributiva lagen: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

De Morgans lag:
$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

Identitetslagar: $A \cup A = A$

$$\begin{array}{l} \mathsf{A} \; \mathsf{\cap} \; \mathsf{A} = \mathsf{A} \\ \mathsf{A} \; \mathsf{\cap} \; \mathcal{U} = \mathsf{A} \\ \mathsf{A} \; \mathsf{\cup} \; \varnothing = \mathsf{A} \end{array}$$

Absorptionslagen: $A \cup (A \cap B) = A \cap (A \cup B) = A$

Dubbelt komplement: $(A^c)^c = A$

Inverslagar: A
$$\cup$$
 A^c = \mathcal{U} A \cap A^c = \emptyset

Dominanslagar:
$$A \cap \emptyset = \emptyset$$
 $(A \cap B = B \text{ omm } B \subseteq A)$
 $A \cup \mathcal{U} = \mathcal{U}$ $(A \cup B = B \text{ omm } B \supseteq A)$

Om A, B disjunkta (A
$$\cap$$
 B = \emptyset):

$$|\mathsf{A} \, \cup \, \mathsf{B}| = |\mathsf{A}| \, + \, |\mathsf{B}|$$

I allmänhet: (ej disjunkta eller disjunkta)

$$|A \cup B| = |A| + |B| - |A \cap B|$$

9 5 6 2

Exempel: Hur många tal x, $1 \le x \le 1000$ är delbara med minst en av 4 och 7?

Låt
$$A = \{x \in \mathbb{N} \mid 1 \le x \le 1000, 4 | x\}$$
 $|A| = \frac{1000}{4} = 250$
 $B = \{x \in \mathbb{N} \mid 1 \le x \le 1000, 7 | x\}$ $|B| = \left| \frac{1000}{7} \right| = 142$

A
$$\cap$$
 B = {x \in N | 1 \leq x \leq 1000, mgm(4; 7) = 28|x}
|A \cap B| = $\left|\frac{1000}{28}\right|$ = 35

$$|A \cup B| = |A| + |B| - |A \cap B| = 250 + 142 - 35 = 357$$

Produktmängden:

$$A \times B = \{(a; b) \mid a \in A, b \in B\}$$
 × Kartesisk produkt

Mängden av alla par med vänsterelement från A och högerelement från B. Paren är ordnade, (a; b) \neq (b; a).

$$\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$
 — svarar mot punkter i planet

Induktionsbevis

För att visa ett påstående $P(n) \forall n \in \mathbb{N}$ räcker det att visa:

1) P(0)

bas (0 är lägsta talet i mängden)

$$P(k) \Rightarrow P(k+1) \quad \forall \ k \in \mathbb{N}$$

steg

$$1 + 2 + ... + n = \frac{n(n+1)}{n}$$

2) För alla $k \in \mathbb{N}$

$$(P(m) \forall m \in \mathbb{N}, m < k) \Rightarrow P(k)$$

Ty: Antag att 1) eller 2) gäller, men P(n) falskt för någpt $n \in \mathbb{N}$.

Då finns ett minst $n_0 \in \mathbb{N}$ med $P(n_0)$ falskt.

Fall 1) $n_0 = 0$?

Nej, P(0) sann annars (basen) n_0) k+1, något $k \in \mathbb{N}$, där P(k) sann (m minst), steget get P(n_0) sann.

2) P(m) sant för alla $m \in \mathbb{N}$, $m < n_0$ (n_0 minsta m, P falskt), så $P(m_0)$ sann. Omöjligt i båda fallen så påståendet stämmer.

Rekursion

Exempel: På hur många olika sätt kan en $2 \times n$ gång läggas med 2×1 plattor? Kalla antalet p_n .

$$p_3$$

$$p_3 = 3$$

$$p_2$$

$$p_2 = 2$$

Svårt att finna en "formel", lätt med rekursion.

$$p_0 = p_1 = 1$$

$$p_2$$
, p_3 , p_4 , $p_5 = 2$, 3, 5, 8

Man kommer fram till en funktion med hjälp av tidigare värden.

$$P_n = F_{n+1}$$
, F_n är Fibonaccitalen.

$$\begin{split} F_0 &= 0, & F_1 &= 1 \\ F_n &= F_{n-1} + F_{n-2}, & n &= 2, 3, \dots \end{split}$$

Rekursion: Om G(n; f) är definierad för alla $n \in \mathbb{N}$ och $f: \{0, 1, ..., n-1\} \rightarrow X$

så finns precis en funktion f(n), $n \in \mathbb{N}$.

1)
$$\begin{cases} f(0) & \text{given} & \text{bas} \\ f(k+1) & \text{best\"{a}ms av } k, f(k) & \text{steg} \end{cases}$$

2)
$$f(n) = G(n; f) \ge 0, 1, ..., n - 1$$

Exempel: Visa med induktion att

$$P(n) : F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Antag sant för m < k, visa att definitionen är sann för m = k

$$k = 0, 1, ...$$

$$k = 2, 3, ...$$

Om funktionen säger att $f: X \to Y$ (X och Y är mängder) Exakt en pil från varje $x \in X$. (Injektiv)

X är f:s domän, defintionsmängd Y är f:s kodomän, målmängd (värdemängd)

(ibland: $f = \{(x, f(x)) \mid x \in X\} \subseteq X \times Y$)

Sammansättning av funktioner

(konkatenering, konkatination inkorrekt)

$$f: X \rightarrow Y, g: Y \rightarrow Z$$

 $g \circ f : X \to Z$ definieras av $(g \circ f)(x) = g(f(x))$ (skrivs ibland (alltid av läraren), men bör inte skrivas, gf)

Viktiga typer av funktioner

Injektion: alla $y \in Y$ är bilder av högst ett $x \in X$

[\Leftrightarrow ekvivalent y = f(x) högstt en lösning x \in X för alla y \in Y \Leftrightarrow (f(x₁) = f(x₂) \Rightarrow x₁ = x₂)]

Surjektion:

Samma sak fast minst ett instället för högst ett.

Bijektion:

Exakt ett, med andra ord surjektion och injektion samtidigt.

Surjektion:

Givet $z \in Z$ så finns $y \in Y$ med

$$z = g(x)$$
, men $y = f(x)$, något $x \in X$ (f surjektiv)

så
$$z = g(x) = g(f(x)) = (g \circ f)(x)$$
 så $g \circ f$ surjektiv.