# Quantitative Data Analysis II

SOC 781

Mlogit review & Count models

## Today we will...

Mlogit example

Cover count models

#### Data: dependent variables

- Pain/Distress: back or joint aches almost every day; K6;
   DSM-III drug and alcohol misuse
  - binary indicators
- DVa: Languishing, Moderate, Flourishing
  - three category Mental Health Continuum
- DVb: Lpd, L, Mpd, M, Fpd, F
  - six category MHC combined with pain/distress indicator
- DVc: Lp&d, Lp, L, Mp&d, Mp, M, Fp&d, Fp, F
  - nine category MHC combined with pain&distress and pain indicators

#### Data: independent variables

- SES index: R's (and S's, if applicable) edu, occup, HHinc, assets
  - standardized → percentile ranks
  - comparable across waves, avoids shift in edu composition (Hendi, 2015)
- Race/ethnicity: NHwhite vs. other
  - not enough minorities to disaggregate
- Period (survey wave); Age (years); Sex (M,F)
  - findings consistent across sex
- Multinomial logistic regression models
  - age-race/ethnicity-SES-period predicted probabilities

#### Competing hypotheses

- H1: Substantial isolated increase in languishing
  - would support DoD narrative
- H2: Relatively consistent languishing but isolated increase in PD
  - suggests something else is going on
    - links between stress and health well-established

#### RQ1: Has "despair" and/or distress uniquely risen?

#### H1: Substantial isolated increase in languishing?



DVa (L, M, F); only L shown; 84% CIs

H2: Consistent languishing, but substantial isolated increase in pain/distress?



DVb (Lpd, L, Mpd, M, Fpd, F); only Lpd shown; 84% CIs

#### RQ1: Has "despair" and/or distress uniquely risen?

H1: Substantial isolated increase in languishing among Nhwhites?



DVa (L, M, F); based on average marginal effects across age; 84% Cls

#### RQ1: Has "despair" and/or distress uniquely risen?

H2: Consistent languishing, but substantial isolated increase in pain/distress among Nhwhites?



DVc (Lp&d, Lp, L, Mp&d, Mp, M, Fp&d, Fp, F); based on average marginal effects across age

## RQ2: Has morbidity increased among poor whites?

Trends in socioeconomic gradient in morbidity among NHwhites



based on binary logits for each respective outcome; 84% CIs; trends in gradients for racial/ethnic minorities relatively consistent (also worse off except HD and cancer); cancer pattern flipped, racial/ethnic gap for cancer also flipped

#### RQ3: Were increases driven by weathering?

Trends in LpdLMF contribution to morbidity prevalence among NHwhites



Difference in proportion computed based on the SES-specific contribution in 2011-2014 subtracted from the SES-specific contribution in 1995-1996 for each respective chronic condition

#### Count outcomes

- DV reflects how many times something has happened
  - Cannot fall below zero
- Possible quirks to consider...
  - often does NOT resemble normal distribution
    - and "clumps" around certain numbers
  - sometimes there are a lot of zeros
    - rare events
  - sometimes zeros not included
    - e.g., only asked how many times among those who had event
  - sometimes going from 0 to 1 is a lot different than from 1 to 2, or 2 to 3...
    - e.g., once you've done it once its easier to do it again
  - sometimes need to consider "exposure"
    - e.g., risk of event occurring

#### Poisson regression: assumptions

• Log(y) is linearly related to unit-changes in covariates

- Events are independent
  - · when the event occurs, it does not affect the prob. of occurring again
- Variance of y equals the mean of y
  - if  $var(y) > \mu$  = overdispersion
  - if  $var(y) < \mu$  = underdispersion

## Poisson regression

• 
$$Log(y) = b_0 + b_1 x_1 + b_2 x_2 + \cdots$$

• y is the count, bs are estimates of the reg. coef., and xs are predictors

- bs are the log of the expected count
  - NOT log odds

#### Poisson distribution

$$\Pr(y|\mu) = \frac{e^{-\mu}\mu^y}{y!}$$

- $Var(y) = \mu$ : assumes equidispersion (often over, rarely under)
- As  $\mu$  increases probability of zero count decreases rapidly
- As mean of distribution  $\mu$  increases, mass of distribution shifts right
- As  $\mu$  increases distribution approximates normality



#### Count outcome: example

```
gen numpart =.
replace numpart = numwomen if female==0
replace numpart = nummen if female==1
replace numpart=. if numpart>750
tab numpart if nmiss==0
```

Number of opposite-sex (heterosexual) sex partners since 18-years-old

| numpart | Freq. | Percent | Cum.  | 41  | 2   | 0.01 | 96.43 | 101   | 5      | 0.02   | 99.35  |
|---------|-------|---------|-------|-----|-----|------|-------|-------|--------|--------|--------|
|         |       |         |       | 42  | 5   | 0.02 | 96.45 | 103   | 1      | 0.00   | 99.35  |
| 0       | 1,710 | 6.13    | 6.13  | 43  | 1   | 0.00 | 96.45 | 105   | 1      | 0.00   | 99.36  |
| 1       | 7,005 | 25.10   | 31.23 | 45  | 32  | 0.11 | 96.56 | 110   | 2      | 0.01   | 99.36  |
| 2       | 3,044 | 10.91   | 42.13 | 46  | 1   | 0.00 | 96.57 | 120   | 11     | 0.04   | 99.40  |
| 3       | 2,724 | 9.76    | 51.90 | 47  | 2   | 0.01 | 96.57 | 121   | 1      | 0.00   | 99.41  |
| 4       | 1,981 | 7.10    | 58.99 | 48  | 2   | 0.01 | 96.58 | 122   | 4      | 0.01   | 99.42  |
| 5       | 2,137 | 7.66    | 66.65 | 49  | 2   | 0.01 | 96.59 | 125   | 3      | 0.01   | 99.43  |
| 6       | 1,262 | 4.52    | 71.17 | 50  | 336 | 1.20 | 97.79 | 130   | 3      | 0.01   | 99.44  |
| 7       | 621   | 2.23    | 73.40 | 51  | 5   | 0.02 | 97.81 | 137   | 1      | 0.00   | 99.44  |
| 8       | 653   | 2.34    | 75.74 | 52  | 6   | 0.02 | 97.83 | 138   | 1      | 0.00   | 99.45  |
| 9       | 228   | 0.82    | 76.56 | 53  | 1   | 0.00 | 97.84 | 140   | 2      | 0.01   | 99.46  |
| 10      | 1,691 | 6.06    | 82.61 | 54  | 2   | 0.01 | 97.84 | 145   | 1      | 0.00   | 99.46  |
| 11      | 104   | 0.37    | 82.99 | 55  | 5   | 0.02 | 97.86 | 147   | 1      | 0.00   | 99.46  |
| 12      | 516   | 1.85    | 84.84 | 56  | 3   | 0.01 | 97.87 | 150   | 32     | 0.11   | 99.58  |
| 13      | 88    | 0.32    | 85.15 | 57  | 1   | 0.00 | 97.88 | 165   | 1      | 0.00   | 99.58  |
| 14      | 81    | 0.29    | 85.44 | 58  | 1   | 0.00 | 97.88 | 167   | 1      | 0.00   | 99.58  |
| 15      | 697   | 2.50    | 87.94 | 59  | 1   | 0.00 | 97.88 | 170   | 2      | 0.01   | 99.59  |
| 16      | 63    | 0.23    | 88.16 | 60  | 52  | 0.19 | 98.07 | 175   | 3      | 0.01   | 99.60  |
| 17      | 41    | 0.15    | 88.31 | 61  | 1   | 0.00 | 98.07 | 200   | 57     | 0.20   | 99.81  |
| 18      | 92    | 0.33    | 88.64 | 62  | 2   | 0.01 | 98.08 | 201   | 1      | 0.00   | 99.81  |
| 19      | 18    | 0.06    | 88.71 | 63  | 3   | 0.01 | 98.09 | 210   | 1      | 0.00   | 99.81  |
| 20      | 904   | 3.24    | 91.94 | 65  | 10  | 0.04 | 98.13 | 222   | 2      | 0.01   | 99.82  |
| 21      | 36    | 0.13    | 92.07 | 66  | 1   | 0.00 | 98.13 | 240   | 1      | 0.00   | 99.82  |
| 22      | 38    | 0.14    | 92.21 | 68  | 2   | 0.01 | 98.14 | 250   | 7      | 0.03   | 99.85  |
| 23      | 28    | 0.10    | 92.31 | 69  | 1   | 0.00 | 98.14 | 253   | 1      | 0.00   | 99.85  |
| 24      | 34    | 0.12    | 92.43 | 70  | 23  | 0.08 | 98.22 | 255   | 1      | 0.00   | 99.86  |
| 25      | 365   | 1.31    | 93.74 | 73  | 3   | 0.01 | 98.23 | 270   | 1      | 0.00   | 99.86  |
| 26      | 13    | 0.05    | 93.79 | 74  | 1   | 0.00 | 98.24 | 280   | 1      | 0.00   | 99.86  |
| 27      | 17    | 0.06    | 93.85 | 75  | 36  | 0.13 | 98.37 | 300   | 20     | 0.07   | 99.94  |
| 28      | 22    | 0.08    | 93.93 | 77  | 1   | 0.00 | 98.37 | 301   | 1      | 0.00   | 99.94  |
| 29      | 5     | 0.02    | 93.94 | 80  | 14  | 0.05 | 98.42 | 336   | 1      | 0.00   | 99.94  |
| 30      | 381   | 1.37    | 95.31 | 82  | 1   | 0.00 | 98.42 | 350   | 3      | 0.01   | 99.95  |
| 31      | 6     | 0.02    | 95.33 | 83  | 1   | 0.00 | 98.43 | 365   | 1      | 0.00   | 99.96  |
| 32      | 12    | 0.04    | 95.37 | 84  | 1   | 0.00 | 98.43 | 380   | 1      | 0.00   | 99.96  |
| 33      | 17    | 0.06    | 95.44 | 85  | 6   | 0.02 | 98.45 | 400   | 1      | 0.00   | 99.96  |
| 34      | 6     | 0.02    | 95.46 | 86  | 2   | 0.01 | 98.46 | 403   | 1      | 0.00   | 99.97  |
| 35      | 84    | 0.30    | 95.76 | 87  | 2   | 0.01 | 98.47 | 450   | 1      | 0.00   | 99.97  |
| 36      | 14    | 0.05    | 95.81 | 89  | 1   | 0.00 | 98.47 | 500   | 6      | 0.02   | 99.99  |
| 37      | 3     | 0.01    | 95.82 | 90  | 7   | 0.03 | 98.50 | 700   | 1      | 0.00   | 100.00 |
| 38      | 2     | 0.01    | 95.83 | 96  | 1   | 0.00 | 98.50 | 750   | 1      | 0.00   | 100.00 |
| 39      | 1     | 0.00    | 95.83 | 99  | 2   | 0.01 | 98.51 |       |        |        |        |
| 40      | 165   | 0.59    | 96.42 | 100 | 230 | 0.82 | 99.33 | Total | 27,908 | 100.00 |        |

#### Count outcome: example

sum numpart if nmiss==0, detail
Mean 8.961481

Std. Dev. 22.9092

Variance 524.8315

Overdispersion

hist numpart if nmiss==0



#### Compare observed and predicted

univariate not account heterogeneity

poisson numpart if nmiss==0, nolog

| numpart | Coef.    | Std. Err. | z       | P> z  | [95% Conf. | Interval] |
|---------|----------|-----------|---------|-------|------------|-----------|
| _cons   | 2.192935 | .0019996  | 1096.68 | 0.000 | 2.189016   | 2.196855  |



#### Count outcome: example

• Does number of partners differ by sex?

| SOTT | Female | SUM | Number | If | Number | Does | Does

-> female = 0

| Variable | Obs    | Mean     | Std. Dev. | Min | Max |
|----------|--------|----------|-----------|-----|-----|
| numpart  | 12,214 | 14.11544 | 31.74637  | 0   | 750 |

-> female = 1

| Variable | Obs    | Mean     | Std. Dev. | Min | Max |
|----------|--------|----------|-----------|-----|-----|
| numpart  | 15,694 | 4.950363 | 10.59282  | 0   | 365 |

- Appears so, but need to test
  - Poisson model

poisson numpart i.female if nmiss==0

| numpart  | Coef.     | Std. Err. | z       | P> z  | [95% Conf. | <pre>Interval]</pre> |
|----------|-----------|-----------|---------|-------|------------|----------------------|
| 1.female | -1.047808 | .0043211  | -242.49 | 0.000 | -1.056278  | -1.039339            |
| _cons    | 2.647269  | .0024084  | 1099.19 | 0.000 | 2.642549   | 2.65199              |

- Who's the constant?
   exp(2.647)=14.11
- Female exp(-1.048)=0.35
- What does this mean?
- (14.11 4.95) / 14.11 = 0.65
- 14.11 (14.11\*0.65) = 4.95

```
gen male=.
replace male=1 if female==0
replace male=0 if female==1
poisson numpart i.male if nmiss==0
```

| numpart         | Coef. | Std. Err. | z | P> z | [95% Conf.           | Interval] |
|-----------------|-------|-----------|---|------|----------------------|-----------|
| 1.male<br>_cons |       |           |   |      | 1.039339<br>1.592429 |           |

• exp(1.599461) = 4.95

#### Factor and percentage changes

Incident rate ratio (IRR) more informative than ORs

| poisson numpart | c.age##c.age | i.female | i.nonwhite | c.educ | i.married | if nmiss==0, | ırr |
|-----------------|--------------|----------|------------|--------|-----------|--------------|-----|
| numpart         | IRR St       | d. Err.  | z Pi       | > z    | [95% Conf | . Intervall  |     |

| numpart     | IRR      | Std. Err. | z       | P> z  | [95% Conf. | Interval] |
|-------------|----------|-----------|---------|-------|------------|-----------|
| age         | 1.125314 | .0008983  | 147.90  | 0.000 | 1.123555   | 1.127076  |
| c.age#c.age | .9988228 | 8.20e-06  | -143.44 | 0.000 | .9988067   | .9988389  |
| 1.female    | .3470288 | .0015064  | -243.80 | 0.000 | .3440887   | .349994   |
| 1.nonwhite  | .9782051 | .0050396  | -4.28   | 0.000 | .9683774   | .9881325  |
| educ        | 1.009942 | .0006978  | 14.32   | 0.000 | 1.008575   | 1.011311  |
| 1.married   | .5723129 | .0024113  | -132.46 | 0.000 | .5676064   | .5770584  |
| _cons       | 1.132287 | .0225371  | 6.24    | 0.000 | 1.088965   | 1.177332  |

 Being female decreases the expected number of partners by a factor of 0.35, or 65%, holding all else constant

#### Who, and what's the constant?

listcoef, percent

|             | b                  | z                  | P> z  | 용             | %StdX         | SDofX    |
|-------------|--------------------|--------------------|-------|---------------|---------------|----------|
| age         | 0.1181             | 147.905            | 0.000 | 12.5          | 645.1         | 17.010   |
| c.age#c.age | -0.0012            | -143.443           | 0.000 | -0.1          | -86.6         | 1708.765 |
| l.female    | -1.0583<br>-0.0220 | -243.803<br>-4.277 | 0.000 | -65.3<br>-2.2 | -40.8<br>-0.9 | 0.496    |
| educ        | 0.0099             | 14.317             | 0.000 | 1.0           | 2.9           | 2.915    |
| 1.married   | -0.5581            | -132.458           | 0.000 | -42.8         | -24.3         | 0.500    |
| constant    | 0.1242             | 6.242              | 0.000 |               |               |          |

 Each additional year of education increases the number of expected partners by a factor of 1.01, or 1%, holding all else constant

#### Marginal effects

- Marginal effect:  $\Delta$  in the predicted rate given a  $\Delta$  in X
  - holding all other Xs constant
    - Is there a meaningful way to hold all other Xs constant?
- Average marginal effect (AME): the average of the marginal effect for all observations
  - Likely, no one is "average." What about underrepresented groups?
- Marginal effect at the mean (MEM): all other Xs held at their means
  - Many mean values are often meaningless (e.g., dummy Xs)
- Marginal effect at representative values (MER): all other Xs held at substantively meaningful values
  - What are "meaningful" values? Can become quickly overwhelmed with details

#### Average marginal effect (AME)

• Avg.  $\Delta$  in predicted rate for  $\Delta$  in X, holding all else constant

poisson numpart c.age##c.age i.female i.nonwhite c.educ i.married if nmiss==0, irr mchange

|          | Change | p-value |
|----------|--------|---------|
| age      |        |         |
| +1       | 0.096  | 0.000   |
| +SD      | 0.046  | 0.000   |
| Marginal | 0.101  | 0.000   |
| female   |        |         |
| 1 vs 0   | -9.272 | 0.000   |
| nonwhite |        |         |
| 1 vs 0   | -0.196 | 0.000   |
| educ     |        |         |
| +1       | 0.089  | 0.000   |
| +SD      | 0.262  | 0.000   |
| Marginal | 0.089  | 0.000   |
| married  |        |         |
| 1 vs 0   | -4.961 | 0.000   |

- On average, a one-year increase in age is associated with a 0.096 increase in the rate of partners
- Being female decreases the expected number of partners by 9.272, on average

## Marginal effect at the mean (MEM)

poisson numpart c.age##c.age i.female i.nonwhite c.educ i.married if nmiss==0, irr mchange, atmeans

|          | Change  | p-value |
|----------|---------|---------|
| age      |         |         |
| +1       | 0.103   | 0.000   |
| +SD      | -1.413  | 0.000   |
| Marginal | 0.115   | 0.000   |
| female   |         |         |
| 1 vs 0   | -12.072 | 0.000   |
| nonwhite |         |         |
| 1 vs 0   | -0.223  | 0.000   |
| educ     |         |         |
| +1       | 0.101   | 0.000   |
| +SD      | 0.298   | 0.000   |
| Marginal | 0.101   | 0.000   |
| married  |         |         |
| 1 vs 0   | -5.701  | 0.000   |

- For respondents average on all characteristics, a one-year increase in age is associated with a 0.103 increase in the rate of partners
- Being female decreases the expected number of partners by 12.072, when all characteristics are held at global means

## Marginal effect at representative values (MER)

| mchange | female, | at(female=1 | nonwhite=0 | educ=12 ma | rried=0 age= | 40) |
|---------|---------|-------------|------------|------------|--------------|-----|
|         |         | Change      | p-value    |            |              |     |
| female  |         | -14.219     | 0.000      |            |              |     |
|         | age     | female      | nonwhite   | educ       | married      |     |

| • | Among those who are white, HS  |
|---|--------------------------------|
|   | educated, age 40, and married  |
|   | being female decreases the     |
|   | expected number of partners by |
|   | 14.219                         |

| mcha | nge female,   | at(female=1 | nonwhite=0 | educ=12 | married=1 | age=40) |
|------|---------------|-------------|------------|---------|-----------|---------|
|      |               | Change      | p-value    |         |           |         |
| fema | ale<br>1 vs 0 | -8.138      | 0.000      |         |           |         |
|      | age           | female      | nonwhite   | edu     | c marri   | .ed     |
| at   | 40            | 1           | 0          | 1       | 2         | 1       |

 Among those who are white, HS educated, age 40, and NOT married being female decreases the expected number of partners by 8.138

#### Ideal types

mtable, at(female=(0 1) married=0 nonwhite=0 educ=12 age=40) pr(0/100) width(3)

|   | female | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    | 23    | 24    | 25    |
|---|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1 | 0      | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.005 | 0.008 | 0.014 | 0.022 | 0.031 | 0.043 | 0.055 | 0.066 | 0.076 | 0.082 | 0.086 | 0.085 | 0.080 | 0.073 | 0.063 |
| 2 | 1      | 0.001 | 0.004 | 0.015 | 0.038 | 0.071 | 0.107 | 0.135 | 0.146 | 0.138 | 0.116 | 0.087 | 0.060 | 0.038 | 0.022 | 0.012 | 0.006 | 0.003 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|   | 26     | 27    | 28    | 29    | 30    | 31    | 32    | 33    | 34    | 35    | 36    | 37    | 38    | 39    | 40    | 41    | 42    | 43    | 44    | 45    | 46    | 47    | 48    | 49    | 50    | 51    | 52    |
| 1 | 0.053  | 0.043 | 0.033 | 0.025 | 0.018 | 0.013 | 0.009 | 0.006 | 0.004 | 0.002 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2 | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|   | 53     | 54    | 55    | 56    | 57    | 58    | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    | 71    | 72    | 73    | 74    | 75    | 76    | 77    | 78    | 79    |
| 1 | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2 | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|   | 80     | 81    | 82    | 83    | 84    | 85    | 86    | 87    | 88    | 89    | 90    | 91    | 92    | 93    | 94    | 95    | 96    | 97    | 98    | 99    | 100   |       |       |       |       |       |       |
| 1 | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |       |       |       |       |       |       |
| 2 | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |       |       |       |       |       |       |

- Should all sum to 1 for males and females, respectively
  - cut off at 100
- Doesn't make a whole lot of sense for DV with such a range

## Ideal types: differences

mchange female, at(married=0 nonwhite=0 educ=12 age=40) pr(0/100) ///
stat(from to change p) brief

|         | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| female  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| From    | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.001  | 0.002  | 0.005  | 0.008  | 0.014  | 0.022  | 0.031  | 0.043  |
| To      | 0.001  | 0.004  | 0.015  | 0.038  | 0.071  | 0.107  | 0.135  | 0.146  | 0.138  | 0.116  | 0.087  | 0.060  | 0.038  | 0.022  | 0.012  | 0.006  | 0.003  |
| 1 vs 0  | 0.001  | 0.004  | 0.015  | 0.038  | 0.071  | 0.107  | 0.135  | 0.146  | 0.137  | 0.115  | 0.085  | 0.056  | 0.030  | 0.008  | -0.010 | -0.025 | -0.040 |
| p-value | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
|         | 17     | 18     | 19     | 20     | 21     | 22     | 23     | 24     | 25     | 26     | 27     | 28     | 29     | 30     | 31     | 32     | 33     |
| female  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| From    | 0.055  | 0.066  | 0.076  | 0.082  | 0.086  | 0.085  | 0.080  | 0.073  | 0.063  | 0.053  | 0.043  | 0.033  | 0.025  | 0.018  | 0.013  | 0.009  | 0.006  |
| To      | 0.001  | 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 1 vs 0  | -0.053 | -0.066 | -0.076 | -0.082 | -0.085 | -0.085 | -0.080 | -0.073 | -0.063 | -0.053 | -0.043 | -0.033 | -0.025 | -0.018 | -0.013 | -0.009 | -0.006 |
| p-value | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
|         | 34     | 35     | 36     | 37     | 38     | 39     | 40     | 41     | 42     | 43     | 44     | 45     | 46     | 47     | 48     | 49     | 50     |
| female  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| From    | 0.004  | 0.002  | 0.001  | 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| To      | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 1 vs 0  | -0.004 | -0.002 | -0.001 | -0.001 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| p-value | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
|         | 51     | 52     | 53     | 54     | 55     | 56     | 57     | 58     | 59     | 60     | 61     | 62     | 63     | 64     | 65     | 66     | 67     |
| female  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| From    | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| To      | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 1 vs 0  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| p-value | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 1.000  | 1.000  | 1.000  | 1.000  | 1.000  | 1.000  | 1.000  |
| 4       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

#### Graphing predicted probabilities



#### Model fit: Informal assessment



## Negative binomial regression model (NBRM)

- Adds parameter to reflect unobserved heterogeneity among observations
  - recall how model with covariates better reflects observed counts vs. univariate model
    - now adjust based on what we can't observe (assumptions) to deal with overdispersion

| Variable                 | PRM     | NBRM   |
|--------------------------|---------|--------|
| numpart                  |         |        |
| Age of respondent        | 1.125   | 1.117  |
|                          | 147.90  | 44.33  |
|                          | 0.000   | 0.000  |
| c.age#c.age              | 0.999   | 0.999  |
|                          | -143.44 | -46.07 |
|                          | 0.000   | 0.000  |
| 1                        | 0.347   | 0.346  |
|                          | -243.80 | -73.58 |
|                          | 0.000   | 0.000  |
| 1                        | 0.978   | 0.932  |
|                          | -4.28   | -3.78  |
|                          | 0.000   | 0.000  |
| Highest year of school~d | 1.010   | 1.021  |
|                          | 14.32   | 8.33   |
|                          | 0.000   | 0.000  |
| 1                        | 0.572   | 0.585  |
|                          | -132.46 | -36.02 |
|                          | 0.000   | 0.000  |
| Constant                 | 1.132   | 1.240  |
|                          | 6.24    | 3.33   |
|                          | 0.000   | 0.001  |

```
nbreg numpart c.age##c.age i.female i.nonwhite c.educ i.married if nmiss==0, irr
estimates store NBRM
/*compare with Poisson*/
quietly poisson numpart c.age##c.age i.female i.nonwhite c.educ i.married ///
if nmiss==0, irr
estimates store PRM
estimates table PRM NBRM, b(%9.3f) t p(%9.3f) varlabel ///
stats(alpha N) eform vsquish
```

- Smaller standard errors
- Comparable coef. and p-values
  - likely because such large sample
- Typically, more impactful on predicted counts

## Negative binomial regression model (NBRM)

• Compare the probability of only 1 partner from Poisson (left) and NBRM (right)





## Negative binomial regression model (NBRM)



 Note how small the confidence intervals are for the PRM

- The PRM substantially underestimates the number of 0 partners
  - and does so with extra precision
- However, the probability of zero looks extremely high for the NBRM

#### Comparing models: informal



- Insights?
- Hmmm, maybe moving from 0-1 is a unique process?
  - Also moving from 1 to 2?
- Is 9-10, and 10-11 also unique?
  - Or is this clumping?
  - Same with 19-20 and 20-21?

#### Other techniques

- Zero-truncated count models
  - When sample excludes those who did not experience event
    - tpoisson and tnbreg
- Hurdle regression model
  - When moving from 0-1 is different than moving to others
- Zero-inflated count models
  - When lots of zeros
    - Zip and zinb
      - Zinb may be overkill

#### Exposure time

One major issue with modeling count outcomes is exposure time may differ

 For example, does it make sense to control for age when modeling number of sexual partners?

- What about education?
  - Younger folks not have chance to complete
- How about marriage?
  - Younger folks not yet married
- Some techniques to deal with this, also event history modeling
  - Not getting into this, just be aware

#### Next Monday we will...

- Practice mlogit and count models
- Workshop projects
- Prep for presentations