Infinite Series: Let (a_n) be a sequence of real numbers then the formal sum, $a_1 + a_2 + ... + a_n + ...$ of the terms of the sequence (a_n) is called the series associated with (a_n) , denoted as $\sum_{n=1}^{\infty} a_n$.

i.e.,
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

Define (S_n) as,
 $S_1 = a_1$
 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
.....

 $S_n = a_1 + ... + a_n$ this sequence, (S_n) is called the sequence of partial sums of the series (a_n) .

Theorem:

- 1. The infinite series $\sum_{i=1}^{\infty} a_n$ converges iff the sequence of partial sum (S_n) converges.
- 2. Necessary condition for convergent of an infinite series let $\sum_{n=1}^{\infty} a_n$ be a series associated with (a_n) , if series $\sum a_n$ converges to a limit $S, S \in \mathbb{R}$, then $\lim_{n \to \infty} a_n = 0$.

Remarks: The above condition is not sufficient.

Eg:
$$\lim_{n \to \infty} \frac{1}{n} = 0$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

$$\det S_2 = 1 + \frac{1}{2} \ge 1 + \frac{1}{2}$$

$$S_{2^2} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} \ge 1 + 2 \cdot \frac{1}{2}$$

$$S_{2^3} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$\ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

$$\ge 1 + 3 \cdot \frac{1}{2}$$

$$\dots$$

$$S_{2^k} \ge 1 + k \cdot \frac{1}{2}$$

$$\lim_{n \to \infty} S_{2^k} = \infty$$

 $\sum \frac{1}{n}$ is divergent **Note:** If (a_n) is any sequence such that $\lim_{n\to\infty} a_n \neq 0$, then

we can say, $\sum_{n=1}^{\infty} a_n$ does not converges.

Example::

$$((-1)^n)$$

$$S_1 = -1$$

$$S_2 = 0$$

$$S_3 = -1$$

$$S_4 = 0$$

The sequence $\lim_{n\to\infty} (-1)^n$ does not exists, $\sum a_n$ does not converges (cannot say divergent), it is bounded.

Theorem(Cauchy's General Principle for Convergent of a Series): A series $\sum_{n=1}^{\infty} a_n$ converges iff the sequence of partial sums (S_n) is a Cauchy sequence.

i.e., $\sum_{n=0}^{\infty} a_n$ converges, iff for each $\epsilon > 0$ there exists a positive integer N_{ϵ} such that $|S_n - S_m| < \epsilon, \forall m, n \geq N_{\epsilon}$.

In other words, $\sum_{n=1}^{\infty} a_n$ converges iff for any $\epsilon > 0$ there exists a positive integer N_{ϵ} such that $|S_{n+p} - S_n| < 1$

i.e., $|a_{n+1} + a_{n+2} + ... + a_{n+p}| < \epsilon, \forall n \ge N_{\epsilon}, p \ge 1.$

Results: If $\sum_{n=1}^{\infty} a_n = a$, then

- $1. \sum_{n=1}^{\infty} ka_n = ka$
- 2. $\sum_{n=0}^{\infty} a_n = a_0 + a$
- 3. $\sum_{n=2}^{\infty} a_n = a a_1$
- 4. If $\sum_{n=1}^{\infty} a_n = a$, $\sum_{n=1}^{\infty} b_n = b$ then $\sum (a_n + b_n) = a + b$, $\sum (a_n b_n) = a b$ 5. Consider the series, $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$, and $\sum_{n=1}^{\infty} (a_n + b_n)$ or $\sum_{n=1}^{\infty} (a_n b_n)$, then
 - (i) If any two of the above series converges then the third series also converges.
 - (ii) If one of the series is convergent and one of them is divergent, then the third one is divergent.
 - (iii) If any two of the above series are divergent, then the third one may be convergent or divergent.

Positive Term Series: A series $\sum a_n$ is said to be a positive term series, if $a_n \geq 0, \forall n \in \mathbb{N}$. In positive term series, the sequence of partial sums (S_n) is monotonically increasing and bounded below by a_1 .

- 1. A positive term series $\sum a_n$ converges iff the sequence of the partial sum (S_n) is bounded above.
- 2. Pringsheim's Theorem Let (a_n) be a monotonically decreasing sequence of positive terms, if $\sum a_n$ converges then $\lim_{n \to \infty} a_n = 0$ and $\lim na_n = 0$.

Test for Convergence of Positive Series:

- 1. Comparison Test: Let (a_n) and (b_n) be two positive term sequences such that $a_n \leq b_n \forall n \in \mathbb{N}$,
 - (i) If $\sum b_n$ converges, then $\sum a_n$ converges.
 - (ii) If $\sum a_n$ diverges, then $\sum b_n$ diverges.
- 2. Limit Comparison Test: Let (a_n) and (b_n) be two positive term sequences, if $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = l$, where l is a non-zero finite number, then $\sum a_n$ and $\sum b_n$ behave alike.

i.e., if $\sum a_n$ and $\sum b_n$ converges or diverges together.

In addition, if l=0 and $\sum b_n$ converges $\Rightarrow \sum a_n$ converges. If $l=\infty$ and $\sum b_n$ diverges $\Rightarrow \sum a_n$ diverges.

- 3. **D' Alembert's Ratio Test:** Let (a_n) be a sequence of positive terms, such that $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l$, then
 - (i) $\sum a_n$ converges if l < 1. (ii) $\sum a_n$ diverges if l > 1.

 - (iii) Test fails if l=1.
- 4. Cauchy 's Root Test: Let (a_n) be a sequence of positive terms, such that $\lim_{n\to\infty} (a_n)^{\frac{1}{n}} = l$, then
 - (i) $\sum a_n$ converges if l < 1.

- (ii) $\sum a_n$ diverges if l > 1.
- (iii) Test fails if l = 1.
- 5. Raabe 's Test: Let (a_n) be a sequence of positive terms such that $\lim_{n\to\infty} \left(\frac{a_n}{a_{n+1}}-1\right)=l$, then
 - (i) $\sum a_n$ converges if l > 1. (ii) $\sum a_n$ diverges if l < 1.

 - (iii) Test fails if l = 1.
- 6. Logarithm Test: Let (a_n) be a sequence of positive terms, such that $\lim_{n\to\infty} n\log\left(\frac{a_n}{a_{n+1}}\right) = l$, then
 - (i) $\sum a_n$ converges if l > 1. (ii) $\sum a_n$ diverges if l < 1.

 - (iii) Test fails if l = 1.
- 7. Condensation Test: Let (a_n) be a sequence of positive terms, then $\sum a_n$ and $\sum 2^n a_{2^n}$ behave alike. i.e., $\sum a_n$ and $\sum 2^n a_{2^n}$ converges or diverges together.
- 8. Cauchy's Integral Test: Let f be a non-negative monotone decreasing function satisfying, $f(n) = a_n, \forall n \in \mathbb{N}$. Then, the $\sum a_n$ and the improper integral $\int f(x)dx$ behave alike.
 - i.e., $\sum a_n$ and $\int_1^\infty f(x)dx$ converges or diverges together.

Alternating Series: A series whose terms are alternating positive and negative is called an alternating series. An alternating series in the form $\sum_{n=1}^{\infty} (-1)^n a_n$, where (a_n) is either a positive sequence or a negative sequence.

Leibnitz's Test: Let (a_n) be a positive term sequence, and let $\sum (-1)^n a_n$ be an alternating series if $a_n \leq a_{n-1}, \forall n \in \mathbb{N}, \text{ and } \lim_{n \to \infty} a_n = 0, \text{ then the series } \sum_{n=1}^{\infty} (-1)^n a_n \text{ converges.}$

Absolute Convergence of a Series: A series $\sum a_n$ is said to converge absolutely if $\sum |a_n|$ converges. Theorem: Let $\sum a_n$ be any series, if $\sum a_n$ converges absolutely then $\sum a_n$ converges. i.e., absolute converges \Rightarrow converges, Converse is not true. Eg: $\sum \frac{(-1)^n}{n}$.

Conditionally Convergent Series: A series $\sum a_n$ is said to converge conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Abel's Test: Let $\sum a_n$ be convergent and (b_n) be a positive monotone decreasing sequence. Then the series $\sum a_n b_n$ convergent.

Result:

- 1. If $\sum a_n$ and $\sum b_n$ are convergent, then the series $\sum a_n b_n$ converges absolutely if at least one of $\sum a_n$ and $\sum b_n$ converges absolutely.
- 2. If $\sum a_n$ and $\sum b_n$ converges absolutely, then the series $\sum a_n b_n$ converges absolutely and $\sum a_n b_n =$ $\sum a_n \cdot \sum b_n$.

Dirichlet Test: Let (b_n) be a positive monotone decreasing sequence, with $\lim_{n\to\infty} b_n = 0$, and let the sequence of partial sums of the series $\sum a_n$ is bounded, then $\sum a_n b_n$ is convergent.

Result:

- 1. Let $\sum a_n$ be convergent absolutely, let $\sum b_n$ be a bounded sequence, then $\sum a_n b_n$ is convergent.
- 2. The series $\sum \frac{1}{n^p}$, converges if p > 1 (absolutely) diverges if $p \leq 1$

Result: The $\sum \frac{1}{P(n)}$ where P(n) is polynomial of degree k, then the series

- 1. Converges if k > 1
- 2. Diverges if k < 1