Selecting Computations: Supplemental proofs

Included here are all the proofs of the results in the paper. Definitions are included to maintain theorem numbering.

Definition 1. A metalevel probability model is a tuple $(U_1, \ldots, U_k, \mathcal{E})$ consisting of jointly distributed random variables:

- Real random variables U_1, \ldots, U_k , where U_i is the utility of arm i, and
- A countable set \mathcal{E} of random variables, each variable $E \in \mathcal{E}$ being a computation that can be performed and whose value is the result of that computation.

Definition 2. A (countable state, undiscounted) **Markov Decision Process** (MDP) is a tuple $M = (S, s_0, A_s, T, R)$ where: S is a countable set of states, $s_0 \in S$ is the fixed initial state, A_s is a countable set of actions available in state $s \in S$, T(s, a, s') is the transition probability from $s \in S$ to $s' \in S$ after performing action $a \in A_s$, and R(s, a, s') is the expected reward received on such a transition.

Definition 3. Given a metalevel probability model¹ $(U_1, \ldots, U_k, \mathcal{E})$ and a cost of computation c > 0, a corresponding **metalevel decision problem** is any MDP $M = (S, s_0, A_s, T, R)$ such that

$$S = \{\bot\} \cup \{\langle e_1 \dots, e_n \rangle : e_i \in E_i \text{ for all } i,$$

$$for \text{ finite } n \ge 0 \text{ and distinct } E_i \in \mathcal{E}\}$$

$$s_0 = \langle \rangle$$

$$A_s = \{\bot\} \cup \mathcal{E}_s$$

where $\bot \in S$ is the unique terminal state, where $\mathcal{E}_s \subseteq \mathcal{E}$ is a state-dependent subset of allowed computations, and when given any $s = \langle e_1, \ldots, e_n \rangle \in S$, computational action $E \in \mathcal{E}$, and $s' = \langle e_1, \ldots, e_n, e \rangle \in S$ where $e \in E$, we have:

$$T(s, E, s') = P(E = e \mid E_1 = e_1, \dots, E_n = e_n)$$

 $T(s, \bot, \bot) = 1$
 $R(s, E, s') = -c$
 $R(s, \bot, \bot) = \max_{i} \mu_i(s)$

where
$$\mu_i(s) = \mathbb{E}[U_i \mid E_1 = e_1, \dots, E_n = e_n].$$

$$V_M^{\pi}(s) = \mathbb{E}_M^{\pi} \left[\sum_{i=0}^N R(S_i, \pi(S_i), S_{i+1}) \mid S_0 = s \right]$$
 (1)

Theorem 4. The value function of a metalevel decision process $M = (S, s_0, A_s, T, R)$ is of the form

$$V_M^{\pi}(s) = \mathbb{E}_M^{\pi}[-c N + \max_i \mu_i(S_N) \mid S_0 = s]$$

where N denotes the (random) total number of computations performed; similarly for $Q_M^{\pi}(s, a)$.

Proof. Follows immediately from Equation (1) and the definition of the reward function in Definition 3. \Box

Theorem 5. The optimal policy's expected number of computations is bounded by the value of perfect information times the inverse cost 1/c:

$$\mathbb{E}^{\pi^*}[N \mid S_0 = s] \le \frac{1}{c} \left(\mathbb{E}[\max_i U_i \mid S_0 = s] - \max_i \mu_i(s) \right).$$

Further, any policy π with infinite expected number of computations has negative infinite value, hence the optimal policy stops with probability one.

Proof. The first follows as in state s the optimal policy has value at least that of stopping immediately $(\max_i \mu_i(s))$, and as $\mathbb{E} \max_i \mu_i(S_N) \leq \mathbb{E} \max_i U_i$ by Jensen's inequality. The second from Theorem 4. \square

¹Definition 1 made no assumption about the computational result variables $E_i \in \mathcal{E}$, but for simplicity in the following we'll assume that each E_i takes one of a countable set of values. Without loss of generality, we'll further assume the domains of the computational variables $E \in \mathcal{E}$ are disjoint.

Definition 6. Given a metalevel decision problem $M = (S, s_0, A_s, T, R)$, the myopic policy $\pi^m(s)$ is defined to equal $\operatorname{argmax}_{a \in A_s} Q^m(s, a)$ where $Q^m(s, \bot) =$ $\max_{i} \mu_{i}(s)$ and

$$Q^{m}(s, E) = \mathbb{E}_{M}[-c + \max_{i} \mu_{i}(S_{1}) \mid S_{0} = s, A_{0} = E].$$

Theorem 7. Given a metalevel decision problem M = (S, s_0, A_s, T, R) if the myopic policy performs some computation in state $s \in S$, then the optimal policy does too, i.e., if $\pi^m(s) \neq \bot$ then $\pi^*(s) \neq \bot$.

Proof. Observe that the myopic Q-function Equation (6) is equivalently given by

$$Q^m(s,a) = Q^{\perp}(s,a)$$

where \perp is the policy which immediately stops $\perp(s) =$ \perp . Thus $Q^m(s,a) \leq Q^*(s,a)$. If the optimal policy stops in a state $s \in S$ then

$$Q^{\pi^*}(s, a) \le \max_i \mu_i(s),$$

and so the same holds for Q^m , showing the myopic

Definition 8. Given a metalevel decision problem $M = (S, s_0, A_s, T, R), \text{ a subset } S' \subseteq S \text{ of states}$ is closed under transitions if whenever $s' \in S'$, $a \in A_{s'}, s'' \in S$, and T(s', a, s'') > 0, we have $s'' \in S'$.

Theorem 9. Given a metalevel decision problem M = (S, s_0, A_s, T, R) and a subset $S' \subseteq S$ of states closed under transitions, if the myopic policy stops in all states $s' \in S'$ then the optimal policy does too.

Proof. Take any $s^* \in S'$, and note that all states the chain can transition to from s^* are also in S', by transition closure. Defining $m(s) = \max_i \mu_i(s)$, observe the myopic stopping for all such states implies that

$$\mathbb{E}^{\pi}[(m(S_{j+1}) - c) \, 1(j < N) \mid S_0 = s^*]$$

$$\leq \mathbb{E}^{\pi}[m(S_i) \, 1(j < N) \mid S_0 = s^*]$$

holds for all j, and as a result:

$$V^{\pi}(s) = \mathbb{E}^{\pi}[-cN + m(S_N) \mid S_0 = s^*]$$

$$= \mathbb{E}^{\pi}[m(S_0) + \sum_{j=0}^{N-1} (m(S_{j+1}) - c - m(S_j)) \mid S_0 = s$$

$$\leq \max_{s} \mu_i(s^*)$$

Theorem 10. The one-armed Bernoulli decision process with constant arm $\lambda \in [0,1]$ performs at most $\lambda(1-\lambda)/c-3 \leq 1/4c-3$ computations.

Proof. By Definition 6 and Example ??, the myopic policy stops in a state (s, f) when

$$c \ge \mu \max(\mu^+, m) + (1 - \mu_i) \max(\mu^-, m) - \max(\mu, m)$$
(2)

where $\mu = (s+1)/(n+2)$ is the mean utility for arm 2, where n = s + f, $\mu^{-} = \mu - \mu/(n+3)$, and $\mu^{+} =$ $\mu + (1 - \mu)/(n + 3)$ are the posterior means of arm 2 after simulating a failure and a success, respectively. Whenever Equation (2) holds, stopping is preferred to sampling.

Fixing n and maximizing over μ , we get sufficient condition for stopping

$$c \ge \frac{\lambda(1-\lambda)}{(n+3)}$$
 $n \ge \frac{\lambda(1-\lambda)}{c} - 3$ (3)

Since the set of states satisfying Equation (3) is closed under transitions (n only increases), by Theorem 7. Finally, note $\max_{\lambda \in [0,1]} \lambda(1-\lambda) = 1/4$.

Definition 11. Given a metalevel decision problem $M = (S, s_0, A_s, T, R)$, and a constant $\lambda \in \mathbb{R}$, define $M_{\lambda} = (S, s_0, A_s, T, R_{\lambda})$ to be M with an additional action of known value λ , defined by:

$$R_{\lambda}(s, E, s') = R(s, E, s')$$

$$R_{\lambda}(s, \bot, \bot) = \max\{\lambda, R(s, \bot, \bot)\}$$

Theorem 12. Given a metalevel decision problem $M = (S, s_0, A_s, T, R)$, there exists a real interval I(s)for every state $s \in S$ such that it is optimal to stop in state s in M_{μ} iff $\mu \notin I(s)$. Furthermore, I(s) contains $\max_i \mu_i(s)$ whenever it is nonempty.

Proof. With $m(s) = \max_i \mu_i(s)$, the utility of a policy π starting in state s of M_{μ} is

$$V_{M_{\mu}}^{\pi}(s) = \mathbb{E}_{\pi}[-c N + \max(\mu, m(S_N)) \mid S_0 = s]$$

and the utility of stopping in this state $\max(\mu, m(s_0))$. We wish to show that the set of μ such that

$$\max_{\pi} \mathbb{E}_{\pi}[-c\,N + \max(\mu, m(S_N)) - \max(\mu, m(S_0)) \mid S_0 = s] \leq 0$$

forms an interval.

Observe that for any random variable X, $\mathbb{E}[\max(\mu, X)]$ is monotonically increasing in μ with subderivative between zero and one. As a result, for any v_1 $= \mathbb{E}^{\pi}[m(S_0) + \sum_{j=0}^{N-1} (m(S_{j+1}) - c - m(S_j)) \mid S_0 = s^* \text{for } \mu < v, \text{ and monotonically decreasing thereafter.}$ Therefore, the set if μ such that this expression is at $\mathbb{E}[\max(\mu, X)] - \max(\mu, v_1)$ is monotonically increasing Therefore, the set if μ such that this expression is at \square most v_2 forms an interval, containing v_1 if non-empty.

> Applying this with $v_1 = m(s_0)$ and $v_2 = \mathbb{E}_{\pi}[c N]$, and observing that the union of intervals containing a point is an interval containing that point, gives the result.

Definition 13. A metalevel probability model $\mathcal{M} = (U_1, \ldots, U_k, \mathcal{E})$ has **independent actions** if the computational variables can be partitioned $\mathcal{E} = \mathcal{E}_1 \cup \cdots \cup \mathcal{E}_k$ such that the sets $\{U_i\} \cup \mathcal{E}_i$ are independent of each other for different i.

Definition 14. Given a metalevel decision problem $M = (S, s_0, A_s, T, R)$ with independent actions, the **blinkered policy** π^b is defined by $\pi^b(s) = \operatorname{argmax}_{a \in A_s} Q^b(s, a)$ where $Q^b(s, \bot) = \bot$ and

$$Q^b(s, E_i) = \sup_{\pi \in \Pi_i^b} Q^{\pi}(s, E_i)$$
 (4)

for $E_i \in \mathcal{E}_i$, where Π_i^b is the set of policies π where $\pi(s) \in \mathcal{E}_i$ for all $s \in S$.

Definition 15. Given a metalevel decision problem $M = (S, s_0, A_s, T, R)$ with independent actions, a **one-action metalevel decision problem** for i = 1, ..., k is the metalevel decision problem $M_{i,m}^1 = (S_i, s_0, A_{s_0}, T_i, R_i)$ defined by the metalevel probability model $(U_0, U_i, \mathcal{E}_i)$ with $U_0 = m$.

Theorem 16. Given a metalevel decision problem $M = (S, s_0, A_s, T, R)$ with independent actions, let M^1_{i,λ_i} be the ith one-action metalevel decision problem for $i = 1, \ldots, k$. Then for any $s \in S$, whenever $E_i \in A_s \cap \mathcal{E}_i$ we have:

$$Q_M^b(s, E_i) = Q_{M_{i, \mu_{-i}^*}^*}^*(s_i, E_i)$$

where $\mu_{-i}^* = \max_{j \neq i} \mu_j(s)$.

Proof. Fix a state s, a $E_i \in A_s$ and take any $\pi \in \Pi_i^b$. Note that such policies are equivalent to polices π' on $M_{1,m}^1$, and all such policies are represented. Consider $Q^{\pi}(s, E_i)$. As $\pi(s) \in \mathcal{E}_i$ for all $s \in S$, by action independence $\mu_j(S_n) = \mu_j(s)$. By this and Theorem 4, then,

$$Q_M^{\pi}(s, E_i) = \mathbb{E}_M^{\pi}[-cN + \max(\mu_i(S_N), m_i) \mid S_0 = s, A_0 = E_{\mathfrak{p}}$$
 the Hoeffding inequality, obtain:

Noting that $\mu_i(S_N)$ is a function only of $(S_N)_i$, and that since But then this is exactly $Q^*_{M^1_{i,\mu^*_{-i}}}(s_i, E_i)$. Taking the supremum over π gives the result.

Theorem 17. Λ_i^b is bounded from above as

$$\Lambda_{\alpha}^{b} \leq \frac{N\overline{X}_{\beta}^{n_{\beta}}}{n_{\alpha}} \Pr(\overline{X}_{\alpha}^{n_{\alpha}+N} \leq \overline{X}_{\beta}^{n_{\beta}})$$

$$\Lambda_{i|i\neq\alpha}^{b} \leq \frac{N(1-\overline{X}_{\alpha}^{n_{\alpha}})}{n_{i}} \Pr(\overline{X}_{i}^{n_{i}+N} \geq \overline{X}_{\alpha}^{n_{\alpha}}) \quad (5)$$

Proof. For the case $i \neq \alpha$, the probability that the ith arm is finally chosen instead of α is $\Pr(\overline{X}_i^{n_i+N} \geq \overline{X}_{\alpha}^{n_{\alpha}})$.

 $X_i \leq 1$, therefore $\overline{X}_i^{n_i+N} \leq \overline{X}_{\alpha}^{n_{\alpha}} + \frac{N(1-\overline{X}_{\alpha}^{n_{\alpha}})}{N+n_i}$. Hence, the intrinsic value of blinkered information is at most:

$$\begin{split} \frac{N(1-\overline{X}_{\alpha}^{n_{\alpha}})}{N+n_{i}} \Pr(\overline{X}_{i}^{n_{i}+N} \geq \overline{X}_{\alpha}^{n_{\alpha}}) \\ \leq \frac{N(1-\overline{X}_{\alpha}^{n_{\alpha}})}{n_{i}} \Pr(\overline{X}_{i}^{n_{i}+N} \geq \overline{X}_{\alpha}^{n_{\alpha}}) \quad (6) \end{split}$$

Proof for the case $i = \alpha$ is similar.

Theorem 18. The probabilities in Equation (5) are bounded from above as

$$\Pr(\overline{X}_{\alpha}^{n_{\alpha}+N} \leq \overline{X}_{\beta}^{n_{\beta}}) \leq 2 \exp\left(-\varphi(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{\beta}^{n_{\beta}})^{2} n_{\alpha}\right)$$

$$\Pr(\overline{X}_{i|i\neq\alpha}^{n_{\alpha}+N} \geq \overline{X}_{\beta}^{n_{\beta}}) \leq 2 \exp\left(-\varphi(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}})^{2} n_{i}\right)$$
(7)

where
$$\varphi = \min\left(2(\frac{1+n/N}{1+\sqrt{n/N}})^2\right) = 8(\sqrt{2}-1)^2 > 1.37.$$

Proof. Equation (7)) follow from the observation that if $i \neq \alpha$, $\overline{X}_i^{n_i+N} > \overline{X}_{\alpha}^{n_i}$ if and only if the mean \overline{X}_i^N of N samples from n_i+1 to n_i+N is at least $\overline{X}_{\alpha}^{n_i} + (\overline{X}_{\alpha}^{n_i} - \overline{X}_i^{n_i}) \frac{n_i}{N}$.

For any δ , the probability that $\overline{X}_i^{n_i+N}$ is greater than $\overline{X}_{\alpha}^{n_i}$ is less than the probability that $\mathbb{E}[X_i] \geq \overline{X}_i^n + \delta$ or $\overline{X}_i^N \geq \mathbb{E}[X_i] + \overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_i^{n_i} - \delta + (\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_i^{n_i}) \frac{n_i}{N}$, thus, by the union bound, less than the sum of the probabilities:

$$\Pr(\overline{X}_{i}^{n_{i}+N} \geq \overline{X}_{\alpha}^{n_{i}})$$

$$\leq \Pr(\mathbb{E}[X_{i}] - \overline{X}_{i}^{n_{i}} \geq \delta)$$

$$+ \Pr\left(\overline{X}_{i}^{N} - \mathbb{E}[X_{i}] \geq \overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}} - \delta + (\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}}) \frac{n_{i}}{N}\right)$$
(8)

Bounding the probabilities on the right-hand side us-Eng the Hoeffding inequality, obtain:

$$\Pr(\overline{X}_{i}^{n_{i}+N} \geq \overline{X}_{\alpha}^{n_{\alpha}}) \leq \exp(-2\delta^{2}n_{i}) + \exp\left(-2\left((\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}})\left(1 + \frac{n_{i}}{N}\right) - \delta\right)^{2}N\right)$$
(9)

Find δ for which the two terms on the right-hand side of Equation (9) are equal:

$$\exp(-\delta^{2}n) = \exp\left(-2\left((\overline{X}_{\alpha} - \overline{X}_{i})(1 + \frac{n_{i}}{N}) - \delta\right)^{2}N\right)$$
(10)
Solve Equation (10) for δ : $\delta = \frac{1 + \frac{n_{i}}{N}}{1 + \sqrt{\frac{n_{i}}{N}}}(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}}) \geq$

Solve Equation (10) for δ : $\delta = \frac{-1}{1+\sqrt{n_i}}(X_{\alpha} - X_i) \ge 2(\sqrt{2}-1)(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_i^{n_i})$. Substitute δ into Equation (9)

and obtain

$$\Pr(\overline{X}_{i}^{n_{i}} \geq \overline{X}_{\alpha}^{n_{\alpha}})$$

$$\leq 2 \exp\left(-2\left(\frac{1 + \frac{n_{i}}{N}}{1 + \sqrt{\frac{n_{i}}{N}}}(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}})\right)^{2} n_{i}\right)$$

$$\leq 2 \exp(-8(\sqrt{2} - 1)^{2}(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}})^{2} n_{i})$$

$$= 2 \exp(-\varphi(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}})^{2} n_{i}) \tag{11}$$

Derivation for the case $i = \alpha$ is similar.

Corollary 19. An upper bound on the VOI estimate Λ_i^b is obtained by substituting Equation (7) into Equation (5).

$$\Lambda_{\alpha}^{b} \leq \hat{\Lambda}_{\alpha}^{b} = \frac{2N\overline{X}_{\beta}^{n_{\beta}}}{n_{\alpha}} \exp\left(-\varphi(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{\beta}^{n_{\beta}})^{2} n_{\alpha}\right)$$

$$\Lambda_{i|i\neq\alpha}^{b} \leq \hat{\Lambda}_{i}^{b} = \frac{2N(1 - \overline{X}_{\alpha}^{n_{\alpha}})}{n_{i}} \exp\left(-\varphi(\overline{X}_{\alpha}^{n_{\alpha}} - \overline{X}_{i}^{n_{i}})^{2} n_{i}\right)$$
(12)