Heaps

Goldsmiths Computing

Motivation

- · interesting non-trivial data structure
- asymptotically efficient support for many operations:
 - comparison sort
 - priority queues
- · component of efficient algorithms for
 - · graph traversal
 - selection of k^{th} largest element

Operations

maximum return the maximum element
extract-max! remove and return the maximum element
insert![o] insert the object o into the heap
size how many elements are currently stored?

Insert

```
Require: heap :: Heap
function INSERT!(heap,object)

s ← NEXT(heap)

p ← PARENT(s)

while p ≠ NIL ∧ p.key < object do

s.key ← p.key

s ← p; p ← PARENT(p)

end while

s.key ← object

end function
```


Complexity analysis

- new element goes at the bottom of the tree
- in principle could be moved up h times, with constant work each time

$$\Rightarrow \Theta(h) = \Theta(\log(N))$$

Constructing a heap incrementally

```
function MAKE-HEAP(S)
H \leftarrow \text{new Heap}()
\text{for } 0 \leq i < \text{Length}(S) \text{ do}
\text{INSERT!}(H,S[i])
\text{end for}
\text{return } H
\text{end function}
```

Complexity analysis

to build a heap with *N* elements, incrementally:

- each incremental addition takes $\Omega(h)$ time (h is the *current* height of the tree)
- in the worst case, there are $\frac{N}{2}$ nodes with height $\log(N)$
 - $\Rightarrow \Omega(N \log(N))$, and in fact $\Theta(N \log(N))$)

Other operations

maximum trivial extract-max! see next term