Московский физико-технический университет Факультет общей и прикладной физики

Лабораторная работа № 3.4.2

(Общая физика: электричество и магнетизм)

Закон Кюри-Вейса

Работу выполнил: Коляскин Дмитрий, 622 группа

Преподаватель лабораторных работ: Холин Дмитрий Игоревич

г. Долгопрудный 2017 год

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Оборудование: катушка самоиндукции с образцом из гадолиния, термостат, частометр, цифровой вольтметр, LC-автогенератор, термопара медь-константин.

1. Историческая справка

Ферромагнетики обладают свойством намагничиваться даже в слабых магнитных полях. Впервые количественную теорию ферромагнетизма разработал французский физик Вейсс в 1907 году. В настоящей работе для изучения температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри (то есть в парамагнитной области) используется закон Кюри-Вейса (который назван так по аналогии с законом Кюри для парамагнетиков).

Закон выражается следующей математической формулой:

$$\chi = \frac{C}{T - \Theta_p} \sim \frac{1}{T - \Theta_p},\tag{1}$$

где χ — магнитная восприимчивость, С — постоянная Кюри, зависящая от вещества, T — абсолютная температура в кельвинах, Θ_p — парамагнитная температура Кюри, К.

2. Теоретическое введение

При повышении температуры Т возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле) - по закону Кюри.

Рис. 1: Теоретический график зависимости обратной магнитной восприимчивости от температуры

При $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках (под влиянием обменных сил) это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ , в котором добавка к температуре Θ_p — некая температура, называемая парамагнитной точкой Кюри. Она близка к Θ , но немного больше ее (см. рис.1). Оказывается, что у ферромагнетиков закон Кюри должен быть заменён законом Кюри-Вейсса (1). Эта формула хорошо описывает поведение ферромагнитных веществ после их перехода в парамагнитную фазу при заметном удалении температуры от 0, но недостаточно точна при $T \approx \Theta$.

В нашей работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в интервале комнатных температур.

3. Экспериментальная установка

Рис. 2: Схема эксперементальной установки

Схема установки для проверки закона Кюри-Вейсса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LС-автогенератора.

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (50 кГц), поэтому для уменьшения вихревых токов образец из готовлен из мелких кусочков размером 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Закон Кюри- Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim T - \Theta_p \sim \frac{1}{\tau^2 - \tau_0^2}$$

где au_0 — период колебаний без образца.

Для нагрева используется термостат. Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медноконстантановой

термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом , а другой погружён в воду. Концы термопары подключены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится ≤ 0.5 °C. Чувствительность термопары k=24 град/мВ.

4. Ход работы

Запишем данные установки: k=24 град/мВ, $\tau_0=6.95636$ мкс, $\sigma_{\Delta U}=0.012$ мВ, $\sigma_{T_{\rm B}}=0.1^{\circ}C, \sigma_{\tau}=0.01$ мкс. Так как нам нужно, чтобы разница была не более половины градуса, то мы вычисляем максимальное напряжение, при котором допустимо измерение:

$$U_m = \frac{T_d}{k} = \frac{0.5}{24} \approx 0.021 \text{mB}$$

Теперь снимем показания вольтметра и частометра при температуре термостата равной $14~^{\circ}C$, и проведем такой опыт при 14 разных температурах, повышая после каждого измерения температуру термостата на два градуса. При этом температуру образца будем считать по следующей формуле:

$$T_0 = T_{\rm R} + \Delta U k$$

Результаты занесем в таблицу 1.

Таблица 1: Результаты измерений

Nº	$T_{\scriptscriptstyle \rm B},{}^{\circ}C$	ΔU , мВ	T_o , °C	τ , MKC	$ au^2 - au_0^2, \text{MKC}^2$	$\frac{1}{\tau^2 - \tau_0^2}$, MKC ⁻²
1.	14.23	0.001	14.254	7.937	14.605	0.068
2.	16.12	-0.017	15.712	7.872	13.577	0.074
3.	18.12	-0.018	17.688	7.755	11.749	0.085
4.	20.1	-0.018	19.668	7.568	8.884	0.113
5.	22.1	-0.017	21.692	7.358	5.749	0.174
6.	24.11	-0.018	23.678	7.193	3.348	0.299
7.	26.08	-0.018	25.648	7.121	2.318	0.431
8.	28.1	-0.012	27.812	7.079	1.721	0.581
9.	30.09	-0.017	29.682	7.055	1.382	0.724
10.	32.08	-0.018	31.648	7.036	1.114	0.897
11.	34.08	-0.017	33.672	7.022	0.918	1.09
12.	36.09	-0.019	35.634	7.013	0.791	1.264
13.	38.08	-0.018	37.648	7.005	0.679	1.473
14.	40.08	-0.019	39.624	6.999	0.595	1.681

Таблица 2: Погрешности

$N_{ar{o}}$	σ_{T_o}	$\sigma_{ au^2- au_0^2}$, MKC ²	$\sigma_{\frac{1}{\tau^2 - \tau_0^2}}, \text{ MKC}^{-2}$
1.	0.10	0.159	0.001
2.	0.10	0.157	0.001
3.	0.10	0.155	0.001
4.	0.10	0.151	0.002
5.	0.10	0.147	0.004
6.	0.10	0.144	0.013
7.	0.10	0.142	0.027
8.	0.10	0.142	0.048
9.	0.10	0.141	0.074
10.	0.10	0.141	0.113
11.	0.10	0.14	0.13
12.	0.10	0.14	0.152
13.	0.10	0.14	0.185
14.	0.10	0.14	0.211
_			

Посчитаем погрешности:

$$\sigma_{T_o} = \sqrt{\sigma_{T_B}^2 + \sigma_{dUk}^2}$$

$$\sigma_{\tau^2 - \tau_0^2} = \frac{d(\tau^2 - \tau_0^2)}{d\tau} \sigma_{\tau} = 2\tau \sigma_{\tau}$$

$$\sigma_{\frac{1}{\tau^2 - \tau_0^2}} = \frac{d\left(\frac{1}{\tau^2 - \tau_0^2}\right)}{d\tau} \sigma_{\tau} = \frac{2\tau}{(\tau^2 - \tau_0^2)^2} \sigma_{\tau}$$

По результатам вычисления погрешностей составим таблицу 2.

На основе таблиц 1 и 2 построим графики зависимости величин $au^2- au_0^2$ и $\dfrac{1}{ au^2- au_0^2}$ от температуры образца.

На графике рис. 3 проведем прямую через последние 7 точек и аппроксимируем ее к оси абсцисс. Результаты занесем в таблицу 3.

На графике рис.4 видно, что наблюдается излом в райне третей точки графика.

Рис. 3: Зависимость $\frac{1}{\tau^2 - \tau_0^2}$ от температуры образца

Таблица 3: Расчет апроксимированной прямой y = ax + b

	Estimate	Standard Error
b	-1.816	0.082
a	0.087	0.002

Рис. 4: Зависимость $au^2 - au_0^2$ от температуры образца

Таким образом, это и есть искомая точка Кюри Θ , которая наблюдается в ожидаемом для нее месте (согласно табличным данным, $\Theta=16~^{\circ}C$). На графике рис.3 видно, что график превращается в почти параллельную оси абсцисс прямую, близкую к нулю, также в районе $16~^{\circ}C$.

По результатам таблицы 3 получаем прямую

$$\frac{1}{\tau^2 - \tau_0^2} = 0.087 \cdot T_o - 1.816$$

При 0 по оси ординат парамагнитная температура Кюри $\Theta_p = \frac{1,1816}{0,087} \approx 20,83~^{\circ}C.$ Погрешность полученной величины

$$\sigma_{\Theta_p} = \Theta_p \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2} = 1.05^{\circ} C$$

5. Вывод

По результатам проделанной работы мы высчитали парамагнитную точку Кюри для гадолиния:

$$\Theta_p = (20.83 \pm 1.05) \, ^{\circ}C$$

Как и предполагалось в теоретическом введении, эта температура выше обычной точки Кюри, которая примерно равна 16–17 °C.

Полученный результат достаточно хорошо согласуется с табличными данными, где точка Кюри гадолиния $\Theta_{\scriptscriptstyle \rm T}=16~^{\circ}C.$