1. 方阵 A, B 满足 $AB = BA$,则必有 $A^2 - B^2 = (A + B)(A - B)$	。()	
2. 若方阵 $A \in A^k = 0$ ($k > 0$ 为整数),则必有 $ A = 0$ 。 ()	
3. A, B 为同型矩阵,且秩(A)=秩(B),则 $AX = 0$ 与 $BX = 0$	0 是同	同解方	
程组。 ()			
1. n 阶实对称矩阵的特征根必为实数.	()	
2. 若矩阵 A , B 具有相同的秩,则 $AX=0$ 与 $BX=0$ 是同解方程组.	()	
3. 非齐次线性方程组 $AX = \beta(\beta \neq 0)$ 的全部解构成线性空间	R^n 的	一个	
子空间.	()	
1. 若矩阵 A 与 B 相似,则 A 等价于 B .	()	
2. 设 A 是 $m \times n$ 矩阵, $m < n$,且秩 $R(A) = m$,则齐次方程组 $AX = O$ 只有零解.	()	
3. 在欧氏空间中只有零向量的模长为 0.	()	
1. 若两个 n 维非零列向量 α 与 β 正交,则它们线性无关。		,	
2. n 阶矩阵 A 满足 $A^2 - 3A - 2E = O$,其中 E 为 n 阶单位矩阵,则 A 不可逆。	()	
3. 若 T 为线性空间 V 中的正交变换, α_1 , α_2 ··· , α_m ($m>1$) 为 V 中一个	ì		
正交向量组,则 $Tlpha_1$, $Tlpha_2$ …, $Tlpha_m$ 一定是一个正交向量组。	()	
1. 所有 n(n>2)阶反对称矩阵关于矩阵的线性运算构成的线性空间的维数为 n(n+1)/2。	()	
2. 若 n 阶矩阵 A 可逆,则其伴随矩阵 A *也可逆。	()	
3. 设 R "中向量组 α_1 , α_2 …, α_s 线性无关, k_1 , k_2 …, k_s 为不全为零的实数,则			
线性组合 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s \neq 0$ 。	()	
1. 若 n 阶矩阵 A 可逆,则其伴随矩阵 A^* 满足 $(A^*)^{-1} = A ^{-1} A$ 。	()	
2. 若非齐次线性方程组 $AX = b(b \neq 0)$ 有解,则它的解集合构成一个线性空间。	()	
3. 若 T 是欧氏空间 V 中的一个正交变换, V 中向量 $\alpha_1,\alpha_2,\alpha_3$ 线性相	关,贝	则必有	
$T\alpha_1, T\alpha_2, T\alpha_3$ 线性相关。	()	
1 对工作会,吸行防 A D 专 4 D D D		,	
 对于任意 n 阶矩阵 A, B, 有 A+B = A + B 。 n 阶实对称矩阵的特征根必为实数。 		()
3. 同一线性变换在不同基底下的矩阵是合同的。		()

1. 设矩阵 A 与 B 相似,则必有 A , B 同时可逆或不可逆。 2. 向量组 α_1 , α_2 , … , α_m 中,如果 α_1 与 α_m 对应的分量成比例,则向量组 α_1 , α_2 , … , α_m 中线性相差	(关 。()
3. <i>n</i> 阶矩阵 <i>A</i> 是正交矩阵,它的行向量组可作 <i>R</i> " 空间的一组标准正交基。	()
1. 所有 n 阶实对角阵按照矩阵的线性运算规则构成 $R^{n \times n}$ (所有 n 阶方阵构成的线性空间)的一个子空间。	()
2. 设 $\lambda=0$ 是 n 阶方阵 A 的特征值,则方程组 $AX=O$ 有非零解。	()
3. 设 A 为 $s \times n$ 阶矩阵, $r(A)=s$,则 $s > n$ 。	()
1. $A \\mathcal{L} \\mathcal{m} \\mathcal{m}$, 则非齐次线性方程组 $Ax = b \ (b \neq 0)$ 有解。	()
2. 若 $[\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n]$ 为 n 维欧式空间 V 的一个基底, T 为 V 中一个正交变换,则对于任意的 $i, j=0$:1,2,,	n 有
$\left\langle \mathbf{T}\boldsymbol{\varepsilon}_{i},\mathbf{T}\boldsymbol{\varepsilon}_{j}\right\rangle = \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$	()
3. 在五阶行列式中,项 $\alpha_{21}\alpha_{32}\alpha_{45}\alpha_{14}\alpha_{53}$ 的符号为 -1 。	()
1. 对应于 n(n>3)阶实矩阵的相异特征值的实特征向量必是正交的。	()
2. 欧式空间 V 中的向量 α , β 满足 $ \alpha = \beta $,则 $\alpha+\beta$ 与 $\alpha-\beta$ 正交。	()
3. 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 是 R^n 中一个正交向量组,则它们作为列向量组构成的矩阵的秩必为 m 。	()
1. 若矩阵等式 $AX = BX$ 成立,则 $A = B$ 。	()
2. 在线性空间 $P[x]$ 中,定义变换 $T: f(x) \mapsto f(x_0)$,其中 $f(x)$ 是 $P[x]$ 中的多项式, x_0 是	一固定等	实数,
则 T 是线性变换。	()
3. n 维($n \ge 3$)欧几里得空间中,存在两个不同的单位向量,它们的内积是 1。	()

7. 下列说法不正确的是 ()
(A) 相似矩阵有完全相同的特征多项式。
(B) 若 T 是欧式空间 V 中的一个正交变换,则 T 在 V 的任意一个基底
下的矩阵为正交矩阵。
(C) 若 V 是一个 n 维线性空间,则 V 中向量组 $\alpha_1,\alpha_2,,\alpha_m(m>n)$ 的
所有线性组合构成V的一个子空间。
(D) 二次型 X^TAX 与二次型 Y^TBY 等价,二次型 Y^TBY 与二次型
Z^TCZ 等价,则矩阵 A 与 C 等价。
8. $A = B$ 均为 n 阶方阵,则下列结论中成立的是 ()
(A) $ AB = 0$,
(B) $ AB = 0$, $ M A = 0$ $ M = 0$ $ M = 0$.
(C) $AB = 0$, $\bigcup A = 0$ or $B = 0$.
(D) $AB \neq 0$, 则 $ A \neq 0$ 或 $ B \neq 0$ 。
5. n 阶方阵 A 具有 n 个不同的特征值是 A 与对角阵相似的 $ ()$
(A) 充分必要条件 (B) 充分而非必要条件
(C) 必要而非充分条件 (D) 既非充分也非必要条件
$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$
8. 设矩阵 $A = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$, $P = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$, $B = AP$, 则 $ B = ($
8. 设矩阵 $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $B = AP$, 则 $ B = ($
(A) -1 (B) 6 (C) -6 (D) 1
(1) (0)
8. 设齐次线性方程组 $AX = 0$ 的通解为 $X = c_1 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$,则系数矩阵 A 为()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$(2 \ 0 \ -1)$ $(-1 \ 0 \ 2)$
(A) $\begin{pmatrix} -2 & 1 & 1 \end{pmatrix}$ (B) $\begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$ (C) $\begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix}$ (D) $\begin{pmatrix} -2 & -1 & 1 \end{pmatrix}$
7. 矩阵 A,B 满足: $P^TAP=B$, 其中矩阵 P 是可逆矩阵。则下列命题正确的有: ()
(1) 矩阵 $A 与 B$ 是合同关系 (2) 矩阵 $A 与 B$ 是等价关系
(3) 矩阵 $A 与 B$ 的秩相同 (4) 矩阵 $A 与 B$ 可能是相似关系
(A) 1个 (B) 2个 (C) 3个 (D) 4个

8. 设 A , B 是 $n(n > 2)$ 阶方阵, $AB = O$ 且 $B \neq O$,则必有	()
(A) $(A+B)^2 = A^2 + B^2$ (B) $ B \neq 0$ (C) $ B^* \neq 0$ (D) $ A^* = 0$		
8. 线性空间 R ⁵ 中前 3 个分量和为 0 的全体向量构成的子空间的维数是: (A) 2 (B) 3 (C) 4 (D) 5	()
(A) 2 (B) 3 (C) 1 (D) 3		
6. 对于方阵 $A 与 A^{T}$,下面说法错误的是:	()
(A) 它们有相同的特征根 (B) 它们有相同的特征向量		
(c) 它们有相同的特征多项式 (D) 它们的行列式值相同		
5. 在线性空间 R^3 中定义如下变换,其中为线性变换的为	()
(A) $\sigma_1(x_1, x_2, x_3) = (x_1 , x_2, x_3)$ (B) $\sigma_2(x_1, x_2, x_3) = (x_1 + 1, x_2, x_3)$		
(C) $\sigma_3(x_1, x_2, x_3) = (x_1^2, x_2^2, x_3^2)$ (D) $\sigma_4(x_1, x_2, x_3) = (x_2, x_3, 0)$		

2.
$$\begin{vmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & x & \dots & x & x \\ 1 & x & 0 & \dots & x & x \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x & x & \dots & 0 & x \\ 1 & x & x & \dots & x & 0 \end{vmatrix}, x \neq 0$$

2.
$$\exists \begin{vmatrix}
0 & 1 & 1 & \dots & 1 & 1 \\
1 & -x & 0 & \dots & 0 & 0 \\
1 & 0 & -x & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots \\
1 & 0 & 0 & \dots & -x & 0 \\
1 & 0 & 0 & \dots & -x & 0 \\
1 & 0 & 0 & \dots & 0 & -x
\end{vmatrix} = \begin{vmatrix}
(n-1)/x & 1 & 1 & \dots & 1 & 1 \\
0 & -x & 0 & \dots & 0 & 0 \\
0 & 0 & -x & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & \dots & -x & 0 \\
0 & 0 & 0 & \dots & -x & 0 \\
0 & 0 & 0 & \dots & -x & 0 \\
0 & 0 & 0 & \dots & 0 & -x
\end{vmatrix}$$

$$= \frac{n-1}{x}(-x)^{n-1} = (n-1)(-1)^{n-1}x^{n-2} \qquad \qquad --2$$

四、 线性方程组
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & \lambda + 2 \\ 1 & \lambda & -2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$
, 问: (本题 13 分)

- (1) 当 和 取何值时, 方程组无解, 有解?
- (2) 当方程组有无穷多组解时,求方程组的通解。

解: 方程组的增广矩阵为:

$$B = \begin{pmatrix} 1 & 2 & 1 & | 1 \\ 2 & 3 & \lambda + 2 & 3 \\ 1 & \lambda & -2 & 0 \end{pmatrix} \xrightarrow{r_2 - 2\eta} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & \lambda & 1 \\ 0 & \lambda - 2 & -3 & -1 \end{pmatrix}$$

$$\xrightarrow{r_3 + (\lambda - 2)r_3} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & \lambda & 1 \\ 0 & 0 & (\lambda - 3)(\lambda + 1) & \lambda - 3 \end{pmatrix}$$
 (5 $\frac{2\eta}{3}$)

则当 $\lambda = -1$ 时,R(A) = 2, R(B) = 3,方程组无解。 (2分)

当
$$\lambda$$
≠-1时, $R(A)$ = $R(B)$,方程组有解。 (1分)

当 $\lambda=3$ 时,R(A)=R(B)=2,方程组有无穷多解。此时,

$$B \to \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 7 & 3 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1 }$$

取 x_3 为自由未知量,则当 $x_3=0$ 时, $x_1=3$, $x_2=-1$,

即方程组有一个特解
$$\eta^* = (3, -1, 0)^T$$
 (1分)

取 $x_3=1$,方程组导出组的基础解系为 $\xi=(-7,3,1)^T$ (2 分)

则方程组的通解为:
$$\eta = k \begin{pmatrix} -7 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$$
, $(k \in \mathbb{R})$ (1分)

解:根据行列式的性质,原行列式等于:

原式 =
$$-\begin{vmatrix} 1 & 3 & -1 & 2 \\ 0 & -5 & 3 & -1 \\ 1 & 4 & 1 & 3 \\ -3 & 1 & 3 & -1 \end{vmatrix} = -\begin{vmatrix} 1 & 3 & -1 & 2 \\ 0 & -5 & 3 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 10 & 0 & 5 \end{vmatrix}$$
 2分
$$= -\begin{vmatrix} -5 & 3 & -1 \\ 1 & 2 & 1 \\ 10 & 0 & 5 \end{vmatrix} = -\begin{vmatrix} -3 & 3 & -1 \\ -1 & 2 & 1 \\ 0 & 0 & 5 \end{vmatrix}$$
 2分
$$= -\begin{vmatrix} -3 & 3 \\ -1 & 2 \end{vmatrix} \times 5 = -(-3 \times 2 + 3) \times 5 = 15$$
 2分

1. 计算行列式
$$|D_n| = \begin{vmatrix} 0 & 2 & 3 & \dots & n-1 & n \\ 1 & 0 & 3 & \dots & n-1 & n \\ 1 & 2 & 0 & \dots & n-1 & n \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 2 & 3 & \dots & 0 & n \\ 1 & 2 & 3 & \dots & n-1 & 0 \end{vmatrix}$$
, 其中 $n > 2$ 。

1. 法一、 $i(i=2,3,\cdots,n)$ 各行减去第一行,然后所有行再加到首行

$$|D_n| = \begin{vmatrix} 0 & 2 & 3 & \dots & n-1 & n \\ 1 & 0 & 3 & \dots & n-1 & n \\ 1 & 2 & 0 & \dots & n-1 & n \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & 0 & n \\ 1 & 2 & 3 & \dots & n-1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 3 & \dots & n-1 & n \\ 1 & -2 & 0 & \dots & 0 & 0 \\ 1 & 0 & -3 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & -(n-1) & 0 \\ 1 & 0 & 0 & \dots & 0 & -n \end{vmatrix} = \begin{vmatrix} n-1 & 0 & 0 & \dots & 0 & 0 \\ 1 & -2 & 0 & \dots & 0 & 0 \\ 1 & 0 & -3 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & -(n-1) & 0 \\ 1 & 0 & 0 & \dots & 0 & -n \end{vmatrix}$$

 $=(-1)^{n-1}(n-1)n!$ (2 分)

法二、各列提出公因子

$$|D_n| = \begin{vmatrix} 0 & 2 & 3 & \dots & n-1 & n \\ 1 & 0 & 3 & \dots & n-1 & n \\ 1 & 2 & 0 & \dots & n-1 & n \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 2 & 3 & \dots & 0 & n \\ 1 & 2 & 3 & \dots & n-1 & 0 \end{vmatrix} = n! \begin{vmatrix} 0 & 1 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & 1 & \dots & 1 \\ 1 & 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 1 & 0 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & 1 & \dots & 0 \end{vmatrix}$$

$$(2 \%)$$

$$= n! \begin{vmatrix} n-1 & n-1 & n-1 & n-1 & \dots & n-1 \\ 1 & 0 & 1 & 1 & \dots & 1 \\ 1 & 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 1 & 0 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & 1 & \dots & 0 \end{vmatrix} = n!(n-1) \begin{vmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & 1 & \dots & 1 \\ 1 & 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 1 & 0 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & 1 & \dots & 0 \end{vmatrix}$$
 (2 $\frac{h}{h}$)

$$= n!(n-1) \begin{vmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 0 & -1 & 0 & 0 & \dots & 0 \\ 0 & 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & -1 \end{vmatrix} = (-1)^{n-1}(n-1)n!$$
 (2 $\frac{1}{2}$)

2. 计算
$$n$$
阶行列式 $|D_n|=$
$$\begin{vmatrix} x & 0 & 0 & \cdots & 0 & a_n \\ -1 & x & 0 & \cdots & 0 & a_{n-1} \\ 0 & -1 & x & \cdots & 0 & a_{n-2} \\ 0 & 0 & -1 & \cdots & 0 & a_{n-3} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & a_2 \\ 0 & 0 & 0 & \cdots & -1 & a_1+x \end{vmatrix}$$
, 其中 $n>2$ 。

2. 法一、第 i 行 x^{i-1} 加到第一行 $i = 2, 3, \dots, n$

$$|D_n| = \begin{vmatrix} x & 0 & 0 & \dots & 0 & a_n \\ -1 & x & 0 & \dots & 0 & a_{n-1} \\ 0 & -1 & x & \dots & 0 & a_{n-2} \\ 0 & 0 & -1 & \dots & 0 & a_{n-3} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -1 & a_1 + x \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & \dots & 0 & a_n + \sum_{i=1}^{n-2} a_{n-i} x^i + (a_1 + x) x^{n-1} \\ -1 & x & 0 & \dots & 0 & a_{n-1} \\ 0 & -1 & x & \dots & 0 & a_{n-2} \\ 0 & 0 & -1 & \dots & 0 & a_{n-3} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -1 & a_1 + x \end{vmatrix}$$
(3 $\mbox{$\beta$}$)

$$= (x^{n} + \sum_{i=1}^{n} a_{i} x^{n-i})(-1)^{1+n} \begin{vmatrix} -1 & x & 0 & \dots & 0 \\ 0 & -1 & x & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -1 \end{vmatrix} = (x^{n} + \sum_{i=1}^{n} a_{i} x^{n-i})(-1)^{1+n} (-1)^{n-1} = x^{n} + \sum_{i=1}^{n} a_{i} x^{n-i}$$

(3分)

法二、按照第一行展开

$$|D_n| = \begin{vmatrix} x & 0 & 0 & \dots & 0 & a_n \\ -1 & x & 0 & \dots & 0 & a_{n-1} \\ 0 & -1 & x & \dots & 0 & a_{n-2} \\ 0 & 0 & -1 & \dots & 0 & a_{n-3} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -1 & a_1 + x \end{vmatrix} = xD_{n-1} + (-1)^{n+1}a_n \begin{vmatrix} -1 & x & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & x \\ 0 & 0 & 0 & -1 \end{vmatrix} = xD_{n-1} + a_n$$

(2分) (2分)

$$\overrightarrow{\text{III}} D_2 = \begin{vmatrix} x & a_2 \\ -1 & a_1 + x \end{vmatrix} = x^2 + a_1 x + a_2 \tag{1 }$$

从而推得
$$D_3 = x(x^2 + a_1x + a_2) + a_3 = x^3 + \sum_{i=1}^3 a_i x^{3-i}, ..., |D_n| = x^n + \sum_{i=1}^n a_i x^{n-i}$$
 (3 分)