FICHE PRATIQUE

Utiliser un oscilloscope

L'oscilloscope est un outil d'observation et d'analyse de signaux électriques.

1 Principe et constitution

Un oscilloscope est un appareil qui permet de visualiser l'évolution d'une tension électrique en fonction du temps.

Il **se branche aux bornes d'un dipôle** (générateur ou récepteur) dont on veut observer le signal de la tension.

2 Préréglages

En l'absence de signal à l'entrée et si la base de temps n'est pas enclenchée, un trait horizontal au centre de l'écran doit être observé (il correspond à une tension nulle):

Pour centrer ce trait horizontal, agir sur les boutons de réglage « Y Pos » et « X Pos ».

3 Analyse d'un signal à l'oscilloscope

a. À l'aide de la base de temps

La **base de temps** permet de définir l'échelle horizontale de la représentation graphique sur l'écran. Une **division** (div) représente un carreau de l'écran.

EXEMPLE

Mesure d'un signal de fréquence de 440 Hz.

b. À l'aide de la sensibilité verticale

La **sensibilité verticale** permet de définir l'échelle verticale de la représentation graphique sur l'écran. Une division (div) représente un carreau de l'écran. La représentation graphique doit occuper tout l'écran.

EXEMPLE

Mesure d'un signal d'amplitude 6 V.

