# 1 Integration \$493,507

#### 1.1 Tricks \$495

Linearität \$495

$$\int k(u+v) = k\left(\int u + \int v\right)$$

Partialbruchzerlegung \$15,498

$$\int \frac{f(x)}{P_n(x)} dx = \sum_{k=1}^n \int \frac{A_k}{x - r_k} dx$$

Elementartransformation \$496

$$\int f(\lambda x + \ell) \, dx = \frac{1}{\lambda} F(\lambda x + \ell) + C$$

Partielle Integration \$497

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Potenzenregel \$496

$$\int u^n \cdot u' = \frac{u^{n+1}}{n+1} + C \qquad n \neq -1$$

Logaritmusregel \$496

$$\int \frac{u'}{u} = \ln|u| + C$$

Allgemeine Substitution S497 x = g(u), und dx = g'(u) du

$$\int f(x) \, \mathrm{d}x = \int (f \circ g) \, g' \, \mathrm{d}u = \int \frac{f \circ g}{(g^{-1})' \circ g} \, \mathrm{d}u$$

Universal substitution \$504

$$t = \tan(x/2)$$
  $\sin(x) = \frac{2t}{1+t^2}$   $dx = \frac{2 dt}{1+t^2}$   $\cos(t) = \frac{1-t^2}{1+t^2}$ 

Womit

$$\int f(\sin(x), \cos(x), \tan(x)) dx = \int g(t) dt$$

# 1.2 Uneigentliches Integral \$520

$$\int_{a}^{\infty} f \, dx = \lim_{B \to \infty} \int_{a}^{B} f \, dx$$

$$\int_{-\infty}^{b} f \, dx = \lim_{A \to -\infty} \int_{A}^{b} f \, dx$$

$$\int_{-\infty}^{\infty} f \, dx = \lim_{A \to +\infty} \int_{A}^{B} f \, dx$$

Wenn f im Punkt  $u \in (a, b)$  nicht definiert ist.

$$\int_{a}^{b} f \, dx = \lim_{\epsilon \to +0} \int_{a}^{u-\epsilon} f \, dx + \lim_{\delta \to +0} \int_{u+\delta}^{b} f \, dx \quad (1.2.1)$$

#### 1.3 Cauchy Hauptwert \$523

Der C.H. (oder PV für *Principal Value* auf Englisch) eines uneigentlichen Integrals ist der Wert, wenn in einem Integral wie (1.2.1) beide Grenzwerte mit der gleiche Geschwindigkeit gegen 0 sterben.

C.H. 
$$\int_{a}^{b} f \, dx = \lim_{\epsilon \to +0} \left( \int_{a}^{u-\epsilon} f \, dx + \int_{u+\epsilon}^{b} f \, dx \right)$$

Zum Beispiel  $x^{-1}$  ist nicht über  $\mathbb R$  integrierbar, wegen des Poles bei 0. Aber intuitiv wie die Symmetrie vorschlagt

C.H. 
$$\int_{-\infty}^{\infty} \frac{1}{x} \, \mathrm{d}x = 0$$

# 1.4 Majorant-, Minorantenprinzip und Konvergenzkriterien \$521,473,479,481

Gilt für die Funktionen  $0 < f(x) \le g(x)$  mit  $x \in [a, \infty)$ 

konvergiert 
$$\int_{a}^{\infty} g \, dx \implies \text{konvergiert } \int_{a}^{\infty} f \, dx$$

Die selbe gilt umgekehrt für Divergenz. Wenn  $0 < h(x) \le f(x)$ 

divergiert 
$$\int_{a}^{\infty} h \, dx \implies \text{divergiert } \int_{a}^{\infty} f \, dx$$

g und h heißen Majorant und Minorant bzw.

# 2 Implizite Ableitung s448

$$(af)' = af' \qquad (u(v(x)))' = u'(v)v'$$

$$(uv)' = u'v + uv' \qquad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$\left(\sum u_i\right)' = \sum u_i' \qquad (\ln u)' = \frac{u'}{u}$$

$$(f^{-1})' = \frac{1}{f'(f^{-1}(x))}$$

Alle normale differenziazions regeln für f(x) gelten. Allgemeiner für die implizite Funktion F(x,y) = 0

$$dy = y' dx$$
  $\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}y' = 0$ 

# 3 Differentialgeometrie

#### 3.1 Ebene \$250 Kurven

#### 3.1.1 Darstellungen und Umwanldung

Sei  $\Lambda: x=\phi(t),\,y=\psi(t),t\in I$  eine glatte Jordankurve. Beispiel im Abb. 1.



Abbildung 1: Die ebene Kurve  $\Lambda(t)$  kann Explizit y(x) (in diesem Fall nicht), Implizit u(x,y) = 0, Polar  $r(\varphi)$  oder in Parameterform (x(t), y(t)) dargestellt werden.

#### Polar zu Kartesian

$$r = \sqrt{x^2 + y^2}$$
  $\tan \varphi = y/x$   
 $x = r \cos \varphi$   $y = r \sin \varphi$ 

Parametrisch zu explizit Sei  $\dot{\phi} \neq 0$  oder  $\dot{\psi} \neq 0$ . Im Falle  $\dot{\phi} \neq 0$ , wechselt  $\dot{\phi}$  in der Umgebung von t das Vorzeichen nicht,  $\phi$  ist dort streng monoton. Daher gilt

$$t = \phi^{-1}(x)$$
  $y = \psi(t) = \psi \circ \phi^{-1}(x) = f(x)$ 

Wenn  $\dot{\psi} \neq 0$  ist dann  $x = \phi \circ \psi^{-1}(y)$ 

## 3.1.2 Tangente und Normalvektor S251,252

Für eine ebene Kurve  $\Lambda(t)$   $\tau, t \in I$ , der Vektor  $\dot{\Lambda}(\tau)$  ist immer an  $\Lambda(\tau)$  tangent.  $\ddot{\Lambda}(\tau)$  ist zur Kurve normal.

$$\dot{\mathbf{\Lambda}} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\dot{y}}{\dot{x}} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}$$

$$\ddot{\mathbf{\Lambda}} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\ddot{y}\dot{x} - \ddot{x}\dot{y}}{\dot{x}^3}$$

Man kann auch die Tangentengleichung und die Normalengleichung zur Zeitpunkt  $\tau$  finden

$$T: y - \psi(\tau) = \frac{\dot{\psi}}{\dot{\phi}}(x - \phi(\tau))$$

$$N: y - \psi(\tau) = -\frac{\dot{\phi}}{\dot{\psi}}(x - \phi(\tau))$$

## 3.1.3 Krümmung und Krümmungsradius \$254

Siehe Tab. 1 für die Rechnungsformeln und Abb. 2 für eine graphische Deutung.

$$\kappa = \lim_{\Delta s \to 0} \frac{\Delta \theta}{\Delta s} = \frac{\mathrm{d}\theta}{\mathrm{d}s} \qquad R = 1/\kappa$$

Eine gerade hat  $\kappa=0$  und  $R=\infty$ . Entsprechend der Orientierung der x-Achse, entspricht einer  $\kappa>0$  eine Linkskrümmung und  $\kappa<0$  eine Rechtskrümmung.

Der Krümmungskreis hat Maßzahl  $\rho=1/|\kappa|$  und Mittelpunkt  $P_c$ gemäß

$$P_c = \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{\kappa} \hat{\boldsymbol{n}}$$

Wobei  $\hat{\boldsymbol{n}} = \ddot{\boldsymbol{\Lambda}}^0$  ist der Normalenvektor.

#### 3.1.4 Konvexität

Sei die Kurve  $\Lambda$  durch  $f \in C^2$  auf [a, b] gegeben.

- f ist auf (a,b) konvex (bzw. konkav), wenn  $\kappa \geq 0$  (bzw.  $\kappa \leq 0$ )  $\forall x \in (a,b)$ .
- f ist auf (a, b) streng konvex (bzw. konkav), wenn  $\kappa > 0$  (bzw.  $\kappa < 0$ )  $\forall x \in (a, b)$ .
- Hat in  $\Lambda$  in P einen Wendepunkt, dann  $\kappa(P) = 0$ .

#### 3.1.5 Evoluten und Evolventen S262



Abbildung 2: Krümmung und Krümmungskreisradien

#### 3.2 Raumkurven \$263

## Literatur

- [1] An2E Vorlesungen an der Hochschule für Technik Rapperswil und der dazugehörige Skript, *Dr. Bern-hard Zgraggen*, Frühlingssemester 2020
- [2] Taschenbuch der Mathematik, 10. überarbeitete Auflage, 2016 (1977), Bronstein, Semendjajew, Musiol, Mühlig, ISBN 978-3-8085-5789-1
- [3] Mathematik 2: Lehrbuch für ingenieurwissenschaftliche Studiengänge, 2012, 7. Auflage, XII, Springer Berlin, Albert Fetzer, Heiner Fränkel, ISBN-10 364224114X, ISBN-13 9783642241147

## Notation

Rot markierte Zahlen wie zB \$477 sind Hinweise auf die Seiten im "Bronstein" [2]

# License

An2E-ZF (c) by Naoki Pross

 $\mbox{{\tt An2E-ZF}}$  is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported License.

You should have received a copy of the license along with this work. If not, see

http://creativecommons.org/licenses/by-sa/4.0/

| Ebene Kurven                             | <b>Kartesich</b> $y = f(x)$                                  | $\mathbf{Polar}  r(\varphi)$                                                                                                   | Parameter $c(t) = (x(t), y(y))$                                                                                                                               |
|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anstieg S448                             | f,                                                           | $\frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}$                                                            | $\dot{x}/\dot{y}$                                                                                                                                             |
| Fläche <b>S493</b>                       | $\int\limits_a^b  f(x)  \; \mathrm{d} x$                     | $\frac{1}{2} \int_{\alpha}^{\beta} r(\varphi)^2  \mathrm{d}\varphi$                                                            | $rac{1}{2}\int\limits_{t_0}^{t_1}x\dot{y}-\dot{x}y\;\mathrm{d}t=rac{1}{2}\int\limits_{t_0}^{t_1}\mathrm{det}(oldsymbol{c},\dot{oldsymbol{c}})\;\mathrm{d}t$ |
| Bogenlänge S251, 514                     | $\int_{a}^{b} \sqrt{1 + (f')^2}  \mathrm{d}x$                | $\int\limits_{\mathbb{R}}^{\beta}\sqrt{(r')^2+r^2}\mathrm{d}\varphi$                                                           | $\int\limits_{t}^{t_{1}}\sqrt{\dot{x}^{2}+\dot{y}^{2}}\;\mathrm{d}t=\int\limits_{t}^{t_{1}}\left c\right \;\mathrm{d}t$                                       |
| Krümmung $\kappa$ S254                   | $\frac{f''}{\sqrt{1+(f')^2}^3}$                              | $\frac{2(r')^2 - rr'' + r^2}{\sqrt{r^2 + (r')^2}}$                                                                             | $rac{\dot{y}\dot{x}-\ddot{x}\dot{y}}{\sqrt{\dot{x}^2+\dot{y}^2}}=rac{\det(\dot{oldsymbol{c}},\ddot{oldsymbol{c}})}{ \dot{oldsymbol{c}} ^3}$                 |
| Rotations<br>volumen um $x$ ${\bf 5516}$ | $\pi \left  \int_{\mathcal{I}}^{b} y^2  \mathrm{d}x \right $ | $\pi \left  \int\limits_{t_{\star}}^{t_{1}} y \dot{x}  \mathrm{d}t \right $                                                    | $\pi \left  \int_{\mathcal{L}}^{\beta} r^2 \sin^2 \varphi(r' \cos \varphi - r \sin \varphi)  d\varphi \right $                                                |
| Rotationsoberfläche um $x$ S515          | $2\pi \int_{-1}^{b}  y  \sqrt{1 + (y')^2}  \mathrm{d}x$      | $2\pi \int_{-1}^{1}  r\sin(\varphi)  \sqrt{(r')^2 + r^2}  d\varphi  2\pi \int_{-1}^{t_1}  y  \sqrt{\dot{x}^2 + \dot{y}^2}  dt$ | $ arphi ^{t_1}  arphi ^{t_1} = 2\pi \int  y  \sqrt{\dot{x}^2 + \dot{y}^2}  \mathrm{d}t$                                                                       |