

LICENCE DE MECANIQUE 2EME ANNEE MODULE 2A002

TRAVAUX DIRIGES DE THERMODYNAMIQUE

Année 2018-2019

FEUILLE 1:

CALCULS DE DERIVEES PARTIELLES, FORMES DIFFERENTIELLES, DIFFERENTIELLES TOTALES EXACTES

1. Dérivées partielles : Soit la fonction z = f(x, y) = axy, où a est une constante donnée. Calculer les dérivées partielles $\left(\frac{\partial z}{\partial x}\right)_{y}$ et $\left(\frac{\partial z}{\partial y}\right)_{x}$.

Exprimer la forme différentielle dz en fonction de dx et dy.

Quelle est la fonction g telle que x = g(y, z)? Calculer les dérivées partielles $\left(\frac{\partial x}{\partial y}\right)_z$ et $\left(\frac{\partial x}{\partial z}\right)_y$.

Quelle est la fonction h telle que y = h(x, z)? Calculer les dérivées partielles $\left(\frac{\partial y}{\partial x}\right)_z$ et $\left(\frac{\partial y}{\partial z}\right)_x$. Vérifier que l'on a $\left(\frac{\partial z}{\partial x}\right)_y = \left(\frac{\partial x}{\partial z}\right)_y^{-1}$ et $\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$

2. Soit la fonction f(x, y) dont la différentielle est $df = \frac{a}{y} \left(1 + \frac{b}{y} \right) dx - \frac{ax}{y^2} \left(1 + \frac{2b}{y} \right) dy$.

Que valent $\left(\frac{\partial f}{\partial x}\right)_y$ et $\left(\frac{\partial f}{\partial y}\right)_x$? En déduire $\left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_y\right)_x = \left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_x\right)_y$. Déterminer la fonction f(x,y), avec $f(x_0,y_0) = f_0$

3. Soit la différentielle $\delta f = a \frac{dx}{x} - b \frac{dy}{y} = X(x,y) dx + Y(x,y) dy$.

Que valent Xet Y? En déduire $\left(\frac{\partial X}{\partial y}\right)_x$ et $\left(\frac{\partial Y}{\partial x}\right)_y$ et montrer l'égalité entre les deux. En déduire que δf est une différentielle totale exacte notée df. Déterminer la fonction f(x,y), avec $f(x_0,y_0)=f_0$

4. Montrer que la forme différentielle $\delta f = y dx - x dy$ n'est pas une différentielle totale exacte. Montrer que $\frac{1}{y^2}$ est un facteur intégrant de f, c'est-à-dire que $\frac{1}{y^2} \delta f$ est une différentielle totale exacte.

On considère le chemin $\mathcal{C}(\mathbb{R}^2)$ défini sur la figure ci-dessous:

Calculer les intégrales $I_1 = \oint_{\mathcal{C}} \delta f$, et $I_2 = \oint_{\mathcal{C}} \frac{1}{v^2} \delta f$. Commenter les résultats.

FEUILLE 2:

EQUATIONS D'ETAT

Exercice 1. De la loi d'état aux coefficients thermoélastiques : exemple pour un liquide.

Soit une quantité déterminée de liquide caractérisée par trois variables d'état : température T, pression p et volume V. L'équation d'état est donnée : $V(T,p) = V_0[1 + a(T-T_0) - b(p-p_0)]$, où a, b, V_0, p_0, T_0 sont des constantes données. V_0 est le volume de référence $V_0 = V(T_0, p_0)$.

- a) Quelles sont les unités de a, b, V_0, p_0 ? Justifier, par des arguments physiques, que l'on a nécessairement b > 0.
- b) On considère un état d'équilibre (T,p). A partir de cet état, le liquide subit une transformation élémentaire réversible puis atteint l'état d'équilibre (T+dT,p+dp). Exprimer la variation de volume élémentaire, dV, associée à cette transformation.
- c) Exprimer le coefficient de dilatation isobare, α , et le coefficient de compressibilité isotherme, χ , en fonction respectivement de a et b au voisinage du point (T_0, p_0) .
- d) En déduire l'expression du coefficient de variation de pression isochore β du système en fonction de a, b, p.

Exercice 2 : Des coefficients thermoélastiques à l'équation d'état : exemple pour un gaz.

On considère un système thermodynamique fluide simple caractérisé par les trois variables d'état : température T, pression p et volume V.

a) A partir de la définition du coefficient de dilatation isobare α et du coefficient de compressibilité isotherme χ , montrer que l'on a toujours :

$$\left(\frac{\partial}{\partial p}(\alpha V)\right)_T = -\left(\frac{\partial}{\partial T}(\chi V)\right)_p$$

b) On suppose que le fluide est un gaz pour lequel α et χ sont donnés par :

$$\alpha = \frac{a}{pV} + \frac{b}{T^2V}$$
 et $\chi = \frac{T}{V} f(p)$

où a et b sont des constantes et f(p) est une fonction, inconnue à ce stade, qui depend de la pression p. En utilisant la relation du (a), déterminer la fonction f(p).

c) Déterminer l'équation d'état du gaz.

Exercice 3: Domaine de validité du modèle du gaz parfait

On souhaite prévoir l'augmentation de volume qui résulte du chauffage isobare d'une mole de diazote dans les deux cas suivants :

Cas A :
$$T_A = 125$$
 K et $p_A = 60$ atm
Cas B : $T_B = 400$ K et $p_B = 60$ atm

- a) On assimile le comportement du diazote à celui d'un gaz parfait. Calculer la valeur du coefficient de dilatation isobare α dans les cas A et B.
- b) On considère maintenant que le diazote est un gaz réel et que son comportement est correctement décrit par l'équation de Van der Waals, où \overline{V} est le volume molaire :

$$\left(p + \frac{a}{\overline{V}^2}\right)\left(\overline{V} - b\right) = RT$$

avec les valeurs approchées a = 0.1 Pa. m⁶ mol⁻², $b = 3 \times 10^{-5}$ m³ mol⁻¹. On utilisera une valeur approchée de la constante des gaz parfaits $R \sim 8$ J.mol⁻¹.K⁻¹.

- i. Donner l'expression du coefficient de variation de pression isochore β et celle du coefficient de compressibilité isotherme χ en fonction de p, \overline{V} , T, a, b et R. En déduire l'expression du coefficient de dilatation isobare α .
- ii. Calculer à la main la valeur numérique de α dans les cas A et B sachant que la résolution de l'équation de Van der Waals, du 3^e degré en volume molaire \overline{V} du gaz donne :

Cas A:
$$\overline{V}_A = 8 \times 10^{-5} \text{ m}^3 \text{ mol}^{-1}$$

Cas B:
$$\overline{V}_B = 5 \times 10^{-4} \text{ m}^3 \text{ mol}^{-1}$$

c) On se propose de comparer les deux hypothèses (a) et (b). L'équation de Van der Waals peutelle être légitimement remplacée par celle du gaz parfait dans les cas A et B ? Justifier votre réponse.

FEUILLE 3: TRAVAIL ECHANGE

Exercice 1: Travail reçu par un fluide au cours d'un cycle

Dans le diagramme de Clapeyron p(V), le point M représentant l'état d'un fluide décrit un cycle rectangulaire dans le sens trigonométrique ; le volume varie entre $V_1 = 2l$ et $V_2 = 4l$, la pression entre $p_1 = 3$ bar et $p_2 = 4$ bar.

- 1) Rappeler l'expression générale du travail élémentaire échangé par un fluide avec le milieu extérieur lors d'une transformation réversible. Est-ce une différentielle totale exacte ?
- 2) Calculer le travail échangé par le fluide avec le milieu extérieur au cours du déplacement de *M* le long des quatre côtés du rectangle. En déduire le travail échangé après un cycle. Commenter.
- 3) Même question si le cycle est décrit dans le sens opposé. Commenter.

Exercice 2: Calculs de différents travaux reçus par un gaz parfait

Une masse m de gaz parfait (de constante r) est enfermée dans une enceinte étanche de section S, dont on peut faire varier le volume en déplaçant un piston de masse M selon une direction horizontale (on négligera les forces de frottement entre le piston et la paroi). Les parois de l'enceinte sont supposées diathermes. La pression et la température du milieu extérieur sont respectivement p_a et T_a . Le gaz est initialement à l'équilibre thermodynamique avec le milieu extérieur.

- 1) Calculer la pression p_0 du gaz, sa température T_0 ainsi que le volume V_0 de la chambre à l'instant initial, en fonction de p_a et T_a .
- 2) Le gaz est comprimé en appliquant un effort ponctuel $\vec{F} = \vec{F}_C$ constant au piston, dirigé selon la direction de déplacement de celui-ci. La pression p_a et la température T_a sont maintenues constantes tout au long de l'opération. Le gaz atteint un nouvel état d'équilibre thermodynamique, à cause des frottements (négligés dans le calcul du travail) ce qui rend la transformation irréversible.
 - a. Calculer la pression p_I , la température T_I et le volume V_I du gaz correspondant au nouvel état d'équilibre atteint à la fin de la transformation.
 - b. Calculer le travail de la force \vec{F} , puis le travail de la force de pression p_a , et enfin le travail total échangé entre le gaz et le milieu extérieur lors de la transformation.
- 3) On souhaite à présent atteindre le même état d'équilibre final que précédemment, mais cette foisci par une transformation réversible.
 - a. Comme dans la question précédente, la pression p_a et la température T_a sont maintenues constantes tout au long de l'opération. Quel type de transformation obtient-on? Calculer le travail à fournir au gaz pour l'amener de l'état initial à l'état final, en fonction des variables d'état. Quel effort $\overrightarrow{F_1}(V)$ faut-il appliquer au piston?
 - b. On étudie à présent la transformation réversible suivante, qui comporte deux étapes.
- Etape 1 : réduction de volume isobare à la pression p_0 , jusqu'à atteindre le volume V_1 .
- Etape 2 : évolution isochore, jusqu'à atteindre la pression p_1 et la température T_1 .

Cette transformation est-elle possible si l'on maintient constante la température T_a ? On suppose que la pression p_a est quant à elle maintenue constante tout au long de la transformation. Quel effort $\overrightarrow{F_2}$ faut-il appliquer au piston lors des étapes 1 et 2 ? Calculer le travail reçu par le fluide une fois la transformation terminée.

c. Comparer les travaux obtenus aux questions 2b, 3a et 3b. Commenter.

FEUILLE 4: PREMIER PRINCIPE

Exercice 1 : Travail et quantité de chaleur reçus par un gaz parfait

Une masse m de gaz parfait (avec r la constante du gaz et γ le rapport des chaleurs spécifiques) est initialement en équilibre thermodynamique avec le milieu extérieur, à la température T_a et à la pression p_a . Son volume initial est V_0 .

- 1) Calculer en fonction des données le travail W et la quantité de chaleur Q échangés avec l'extérieur pour amener le gaz à la pression p_1 et à la température T_a , pour les deux transformations suivantes :
 - Compression isotherme;
 - Compression adiabatique réversible, suivie d'un refroidissement isochore ;

Représenter schématiquement ces deux transformations sur le diagramme de Clapeyron. Quelle est la transformation la moins coûteuse ?

- 2) On étudie à présent un compresseur à deux étages, dans lequel on enchaîne successivement les opérations suivantes :
 - Compression adiabatique réversible jusqu'à la pression p'_1 ;
 - Refroidissement isobare jusqu'à la température T_a ;
 - Compression adiabatique réversible jusqu'à la pression p_1 ;
 - Refroidissement isobare jusqu'à la température T_a ;

Représenter cette transformation sur le diagramme de Clapeyron. Quel est l'intérêt d'un compresseur à plusieurs étages ?

Exercice 2 : Détente de Joule d'un gaz parfait et d'un gaz de Van der Waals

On considère un dispositif constitué de deux réservoirs de même volume V_0 dont les parois sont rigides et adiabatiques, communiquant par l'intermédiaire d'un robinet. Initialement, à l'état 0, le réservoir A contient n moles d'un gaz en équilibre à la température T_0 et le réservoir B est vide.

On ouvre le robinet, le gaz se répartit dans les deux réservoirs et atteint un nouvel équilibre à la température T_1 .

- 1) $Gaz \ parfait$: En utilisant la loi de Joule (on note $\overline{C_v}$ la capacité calorifique molaire à volume constant), calculer T_1 .
- 2) Gaz de Van der Waals: la loi d'état est donnée par : $\left(p + \frac{n^2 a}{V^2}\right)(V nb) = nRT$, où R est la constante universelle des gaz parfaits, a et b sont des constantes données positives.

La différentielle de l'énergie interne du gaz s'exprime par :

$$dU = n\overline{C_v}dT + \frac{n^2a}{V^2} dV,$$

Où la capacité calorifique molaire à volume constant $\overline{C_v}$ est une constante. Donner l'expression de l'énergie interne de ce gaz en fonction de T et V, en notant $U_0 = U(T_0, V_0)$ l'énergie interne du gaz occupant le volume V_0 à la température T_0 . Ce gaz suit-il la loi de Joule ?

Calculer la température finale T_1 du gaz en fonction de V_0 , T_0 , $\overline{C_v}$, n et a. Le gaz s'est-il réchauffé ou refroidi au cours de la détente ?

Exercice 3 : travail thermo-mécanique / travail mécanique

On utilise deux méthodes différentes pour soulever un objet cylindrique de masse M, la première thermo-mécanique (Fig.1A) et la seconde purement mécanique (Fig.1B). L'exercice consiste à comparer les travaux échangés avec le milieu extérieur durant les deux opérations. la pression atmosphérique p_0 est constante et uniforme. Le poids est cylindrique de section S et s'élève de z_1 à z_2 .

- 1. Dans le cas de la figure 1A, l'objet coulisse sans frottement dans un tube et joue le rôle de piston. L'ensemble (tube+piston) constitue un réservoir adiabatique qui contient une masse m de gaz parfait (de chaleur massique à pression constante c_p). Le système à considérer est constitué du gaz, dont l'état initial est caractérisé par (T₁, V₁) et l'état final par (T₂, V₂). Calculer la pression extérieure p_{ext} en fonction de p₀, M, g, S et montrer que celle-ci est constante. Calculer le travail W_A qui doit être échangé par ce système avec le milieu extérieur pendant la transformation, en fonction de m, c_v, r, T₁, T₂, puis en fonction de la variation d'enthalpie du gaz.
- 2. Dans le cas de la figure 1B, le système est constitué du seul objet, et on néglige les frottements de l'air. On suppose que l'objet est constitué d'un matériau solide homogène (sa capacité calorifique est notée C_p), et que sa température ne varie pas significativement au cours de la transformation. Ecrire le premier principe entre l'état initial à z_1 et l'état final à z_2 en n'oubliant pas de tenir compte ici de la variation d'énergie potentielle du système. Calculer le travail W_B qui doit être échangé par ce système avec le milieu extérieur pendant la transformation, en fonction de M, g, z_1, z_2 .
- 3. En utilisant d'une part l'expression de la pression extérieure du cas 1A, et d'autre part la relation entre le volume V du gaz et l'altitude z de l'objet, comparer W_A et W_B. Quelle est la méthode la plus avantageuse ?

Exercice 4 : Apport de chaleur par une résistance chauffante

Un cylindre fermé horizontal est divisé en deux compartiments A et B par un piston coulissant librement sans frottement. Le piston et les parois du cylindre sont adiabatiques, sauf la paroi S_B qui est diatherme. Deux résistances R_A et R_B sont placées chacune dans un réservoir, prêtes à être alimentées. On néglige dans tout l'exercice les capacités thermiques du piston et des résistances chauffantes.

Les compartiments A et B contiennent chacun une mole de gaz parfait, initialement à la température T_0 . Initialement les deux compartiments occupent le même volume V_0 . On note γ le rapport des capacités calorifiques du gaz, R la constante universelle des gaz parfaits.

I. Première étape.

Le gaz du compartiment A est porté très lentement à la température T_1 à l'aide de la résistance chauffante R_A . La résistance R_B n'est pas alimentée et donc ne chauffe pas dans cette étape. La paroi diatherme S_B est maintenue en contact thermique avec un thermostat à la température T_0 (Figure 1). En fin d'étape le système est à l'état d'équilibre 1. On suppose la transformation réversible.

- 1. Equilibre initial 0 : Exprimer les pressions p_{A_0} et p_{B_0} en fonction de T_0 , V_0 et R.
- 2. Equilibre final 1 : Justifier que $p_{A_1} = p_{B_1}$ et préciser ce que vaut $V_{A_1} + V_{B_1}$. Que vaut T_{B_1} ?
- 3. En déduire l'expression des volumes V_{A_1} et V_{B_1} en fonction de T_0 , T_1 , V_0 et R. De quel côté se déplace le piston ?
- 4. En déduire l'expression de la pression p_{A_1} en fonction de T_0 , T_1 , V_0 et R.
- 5. Exprimer les variations d'énergie interne $(\Delta U_A)_{01}$ du gaz à l'intérieur du compartiment A et $(\Delta U_B)_{01}$ du gaz à l'intérieur du compartiment B en fonction des températures T_0 , T_1 et C_v , la capacité calorifique molaire du gaz parfait. En déduire la variation d'énergie interne $(\Delta U_{A+B})_{01}$ du système (A+B).
- 6. On choisit comme système le gaz à l'intérieur du compartiment B. Qu'est-ce qui permet de dire que la transformation est isotherme? Représenter la transformation sur un diagramme de Clapeyron. Exprimer le travail $W_{B_{01}}$ et la quantité de chaleur $Q_{B_{01}}$ échangés par ce système avec le milieu extérieur en fonction de de T_0 , T_1 , et R.
- 7. On choisit comme système le gaz à l'intérieur du compartiment A. Calculer la quantité de chaleur $Q_{A_{01}}$ échangée par ce système avec la résistance chauffante en fonction de T_0 , T_1 , R et γ .

II. Deuxième étape.

Le système étant à l'état 1, la paroi S_B est maintenant isolée et rendue adiabatique. On n'alimente plus la résistance R_A qui ne chauffe donc plus, et on chauffe très lentement la résistance R_B dans le compartiment B, (voir Figure 2), jusqu'à ce que le piston revienne à sa position initiale de l'état 0. Le système est alors à l'état d'équilibre 2.

Figure 2

- 1. Quelle est la nature de la transformation subie par le gaz du compartiment A? Donner l'expression des pressions à l'état 2, p_{A_2} et p_{B_2} en fonction de T_0 , T_1 , V_0 , R et γ .
- 2. Exprimer les températures finales T_{A_2} et T_{B_2} dans chacun des compartiments en fonction de T_0 , T_1 et γ .
- 3. Quelles sont les variations d'énergie interne $(\Delta U_A)_{12}$ du gaz du compartiment A et $(\Delta U_B)_{12}$ de celui du compartiment B et $(\Delta U_{A+B})_{12}$ pour l'ensemble (A+B) en fonction des températures T_{A2} , T_0 , T_1 , T_2 et T_3 ?
- 4. Exprimer la quantité de chaleur $Q_{R_{B12}}$ échangée avec la résistance chauffante R_B en fonction de T_0 , T_1 , R et γ .

Exercice 5 : Remplissage d'un réservoir initialement vide, et éjection d'air par un réservoir

Un réservoir indéformable de volume $V_R = 100$ litres, dont les parois sont rendues adiabatiques grâce à un isolant thermique, est muni d'un robinet permettant de le mettre en communication avec l'air atmosphérique extérieur. On assimilera l'air extérieur à un gaz parfait diatomique de masse molaire M = 29 g.mol⁻¹, de pression $p_a = 1$ bar et de température $T_a = 300$ K, constantes. On considèrera que les échanges de chaleur par le goulot du réservoir sont négligeables sur la durée de l'expérience, pour le cas 1 et pour le cas 2.

Cas 1 : On suppose dans un premier temps que l'on a fait le vide dans le réservoir (robinet fermé). On ouvre le robinet de sorte que l'air pénètre dans le réservoir juste le temps d'obtenir l'équilibre mécanique mais pas l'équilibre thermique avec l'extérieur puis on referme le robinet. On notera p_I la pression et T_I la température de l'air dans le réservoir à l'issue du remplissage. On nomme m_I la masse d'air qui pénètre effectivement dans le réservoir. On notera V_a le volume occupé par la masse m_I d'air avant son entrée dans le réservoir. La pression dans l'air extérieur est constante égale à la pression atmosphérique p_a .

- 1) Justifier la valeur $\gamma = 1,4$ pour l'air extérieur.
- 2) Quelle est la pression p_1 à l'intérieur du réservoir lorsque le remplissage de l'enceinte est terminé?
- 3) On choisit pour système l'ensemble constitué de la masse m_l d'air qui pénètre effectivement dans le réservoir et de l'intérieur du réservoir. Exprimer le travail échangé par ce système avec l'extérieur au cours du remplissage, en fonction de V_a et p_a .

- 4) En appliquant le premier principe de la thermodynamique au système choisi, exprimer T_I en fonction de T_a et γ . Calculer T_I
- 5) Exprimer le volume V_a en fonction de V_R et γ . Calculer le volume V_a puis la masse m_I .
- 6) On ferme le robinet et on retire l'isolant qui recouvrait les parois du reservoir, ce qui rend les parois diathermes. L'air à l'intérieur du réservoir atteint alors un nouvel état d'équilibre. Quelle est la température T_1' de l'air à l'issue de cette transformation?
- 7) Quelle est la quantité de chaleur Q qui a traversé les parois du réservoir entre l'état initial (réservoir vide) et l'état final atteint à la question 6)? On exprimera Q en fonction de V_a et p_a . Calculer la valeur numérique de Q.
- Cas 2: Le réservoir, muni de sa couche isolante, est maintenant rempli d'air à la température $T_0 = 300$ K et la pression p_0 est 5% plus élevée que la pression atmosphérique, p_a . On ouvre le robinet de manière à ramener la pression de l'air dans le réservoir à la pression atmosphérique. La surpression initiale étant très faible, on supposera que l'air restant dans le réservoir à l'état d'équilibre final a subi une transformation réversible. On notera T_3 la température de l'air dans le réservoir à l'issue de cette transformation.

- 1) En considérant comme système l'air restant dans le réservoir à l'état final, exprimer le rapport des températures T_3/T_0 en fonction de γ , p_0 et p_a .
- 2) On note Δp la surpression initiale dans le réservoir $(p_0 = p_a + \Delta p)$, et on pose $\Delta T = T_0 T_3$. Justifier que $T_3 < T_0$ et donc que $\Delta T > 0$. Montrer que $\frac{\Delta T}{T_0} \approx \frac{\gamma - 1}{\gamma} \frac{\Delta p}{p_a}$. Pour établir cette expression, on utilisera la propriété : $(1 + x)^{\beta} \approx 1 + \beta x$ pour $x \ll 1$. Calculer la

Pour établir cette expression, on utilisera la propriété : $(1+x)^{\beta} \approx 1 + \beta x$ pour $x \ll 1$. Calculer la valeur numérique de $\frac{\Delta T}{T_0}$. Commenter.

Exercice 6 (facultatif): refroidissement d'un gaz parfait.

On désire refroidir une mole de gaz parfait diatomique en lui faisant subir une suite de compressions isothermes suivies de détentes adiabatiques réversibles. Ce gaz est contenu dans un cylindre fermé par un piston glissant sans frottement. Initialement, le gaz est à la température T_0 , sa pression est p_0 .

- 1) Dans une première opération, on comprime le gaz de manière isotherme jusqu'à la pression p_1 puis on le détend de manière adiabatique réversible jusqu'à p_0 .
 - a) Quelle est la température T_1 en fin d'évolution adiabatique ? Montrer que $T_1 < T_0$.
 - b) Représenter cette opération dans un diagramme de Clapeyron.
 - c) Calculer le travail W_i et la quantité de chaleur Q_i mis en jeu au cours de l'évolution isotherme ainsi que le travail W_a mis en jeu au cours de l'évolution adiabatique. En déduire le travail total reçu par le gaz au cours de cette première opération. Pour chaque calcul, préciser les signes et commenter.
- 2) Le gaz étant dans l'état (T_1, p_0) , on recommence la même opération (compression isotherme jusqu'à p_1 puis détente adiabatique réversible jusqu'à p_0).
 - a) Compléter le diagramme de Clapeyron précédent.
 - b) Donner l'expression de la température T_n obtenue à la fin de la n^{ième} opération.
 - c) Application : $T_0 = 300 \, \text{K}$, $p_0 = 1 \, \text{atm}$, $p_1 = 3 \, \text{atm}$. Pour quelle valeur de n le gaz atteint il une température inférieure ou égale à $T_0/3$?
- 3) On suppose maintenant qu'au cours de chaque opération, l'étape de compression et la détente adiabatique sont irréversibles. A la fin de la compression, la température du gaz est égale à la température initiale T_0 . Pour réaliser cette transformation irréversible, on soumet le piston à la pression extérieure p_1 tout au long de l'étape de compression puis on le lâche de façon qu'au cours de la détente adiabatique de p_1 à p_0 la pression appliquée soit constamment la pression atmosphérique p_0 .
 - a) Calculer le travail W_i et la quantité de chaleur Q_i mis en jeu au cours de la première compression.
 - b) Calculer la température T_1 obtenue à la fin de la première détente adiabatique ainsi que le travail W_a échangé par le gaz au cours de cette détente. Conclusions ?

FEUILLE 5 : SECOND PRINCIPE

Exercice 1 : Quantité de chaleur - Entropie

On considère un système thermodynamique fermé constitué par N moles d'un gaz parfait, de capacités calorifiques C_p et C_v constantes. On note R la constante universelle des gaz parfaits. On rappelle que pour une transformation réversible d'un gaz parfait, en choisissant T et V comme variables indépendantes, on a :

$$\delta Q^{rev} = C_v dT + p dV$$

- 1. Est-ce que δQ^{rev} est une différentielle totale exacte? Montrer-le mathématiquement.
- 2. Vérifier que 1/T est un facteur intégrant de δQ^{rev} . Physiquement, quelle différentielle totale exacte obtient-on? Déterminer la fonction correspondante en fonction de T et V.

Exercice 2: Expérience de Joule

1) Une enceinte dont les parois sont adiabatiques, indéformables et imperméables est constituée de deux compartiments de même volume $V_0 = 1$ litre. Le premier contient un gaz parfait à la pression $p_0 = 1$ atm et à la température $T_0 = 400$ K. Le deuxième compartiment est vide.

On retire la cloison séparant les 2 compartiments. Quelles sont la température et la pression dans l'enceinte, dans l'état d'équilibre final ? Quelle est la variation d'entropie du gaz ?

2) On repart du même état initial que précédemment, et on retire simultanément l'isolation des parois extérieures et la cloison intérieure. Les parois sont alors diathermes et en contact avec un thermostat dont la température est $T_{\text{ext}} = 300 \text{ K}$.

- i. Quelles sont la température et la pression dans l'enceinte, dans l'état d'équilibre final?
- ii. Calculer la variation d'entropie du gaz et l'entropie échangée avec le thermostat. En déduire la production d'entropie dans le gaz. Application numérique : R = 8.31 J/mole/K et $\gamma = 1.4$.
- iii. On considère maintenant le système constitué par le thermostat. Quelle est l'entropie échangée par ce système avec l'extérieur? Quelle est la production d'entropie de ce système? En déduire la variation d'entropie du système (gaz + thermostat). Quel est son signe?

Exercice 3: Contact de deux solides de températures différentes

On met en contact deux solides, de capacités calorifiques différentes C_1 et C_2 , le premier étant initialement à la température T_1 , et le second à la température $T_2 > T_1$.

On suppose les variations de volume négligeables, les capacités calorifiques constantes (indépendantes de la température), et la transformation adiabatique et irréversible.

- 1) Calculer la température finale d'équilibre, T_f , du système constitué des deux solides.
- 2) Calculer la variation d'entropie ΔS du système en fonction des données du problème.
- 3) Dans le cas particulier où $C_1 = C_2$, déterminer la température d'équilibre T_f et la variation d'entropie ΔS et vérifier la compatibilité de la transformation avec le second principe.
- 4) Dans le cas particulier $C_2 \gg C_1$, on pose $\varepsilon = \frac{c_1}{c_2} \ll 1$.
 - i. Effectuer un développement limité à l'ordre 1 en ε et déterminer la température d'équilibre T_f et la variation d'entropie ΔS . Caractériser la transformation et sa compatibilité avec le second principe.
 - ii. Que devient l'analyse précédente si on limite le développement limité à l'ordre 0 en ε ?

Exercice 4: Compression d'un gaz parfait.

Un cylindre vertical de section S, dont les parois sont diathermes, contient N moles d'un gaz parfait. Le cylindre est fermé par un piston qui coulisse verticalement sans frottement, et dont la masse est négligée. L'air extérieur est à la pression p_0 et à la température T_0 . Le système est alors en équilibre thermodynamique (équilibre initial). On dépose soudainement sur le piston une masse M. Dans le nouvel état d'équilibre thermodynamique atteint (équilibre final), la pression du gaz est p_1 .

- a) Faire un schéma de l'expérience, et définir le système sur lequel les bilans seront effectués.
- b) Que vaut la température du gaz à l'équilibre initial et à l'équilibre final ? Justifier les réponses.
- c) Que vaut la pression du gaz à l'équilibre initial? Justifier la réponse. Exprimer la pression p_1 à l'équilibre final, en fonction de p_0 , M, S, et g et en déduire que $p_1/p_0 > 1$.
- d) Exprimer le travail et la quantité de chaleur échangés lors de la transformation entre l'équilibre initial et l'équilibre final, en fonction de N, R, T_0 et du rapport p_1/p_0 . Préciser leur signe.
- e) Exprimer la variation d'entropie ΔS du gaz lors de la transformation, en fonction de N, R, et du rapport p_1/p_0 . Quel est le signe de ΔS ?
- f) Exprimer la production d'entropie S_{pr} lors de cette transformation, en fonction de N, R, et du rapport p_1/p_0 .
- g) Dans le cas où $(p_1/p_0 1) \ll 1$, et en utilisant le développement limité : $\ln(1 + \epsilon) \sim \epsilon \frac{\epsilon^2}{2}$ pour $\epsilon \ll 1$, calculer le signe de S_{pr} . Que peut-on en déduire sur la transformation?
- h) Quel est le signe de S_{pr} dans le cas général ?

Exercice 5 (facultatif) : Expérience de Clément et Desormes

Cette expérience est utilisée pour mesurer le rapport γ des capacités calorifiques d'un gaz parfait. On note R la constante universelle des gaz parfaits.

Un ballon (voir figure) de volume V_b dont les parois sont indéformables et diathermes contient un gaz que l'on supposera parfait, initialement à la température ambiante $T_0=T_a$ et sous une pression p_0 légèrement supérieure à la pression atmosphérique p_a . Ce ballon possède un robinet (R0) permettant un contact du gaz avec l'extérieur et un manomètre sensible qui permet de mesurer la pression du gaz à l'intérieur du ballon.

L'expérience se déroule en 2 étapes :

Etape 1 : On ouvre le robinet (R0) le temps juste nécessaire à l'établissement de l'équilibre mécanique, mais pas de l'équilibre thermique. La détente peut alors être considérée comme adiabatique et réversible. On referme le robinet. On note p_1 la pression et T_1 la température du gaz dans le ballon à l'issue de cette première étape. On choisit comme système le gaz qui reste dans le ballon à l'issue de cette première étape.

Etape 2 : Le robinet étant fermé, on laisse le gaz atteindre l'équilibre thermique dans le ballon. Pendant cette étape, on supposera que l'atmosphère extérieure est un thermostat à température T_a fixe. On note p_2 la pression du gaz dans le ballon à l'issue de cette étape.

- 1. Que vaut la pression p_1 à la fin de la première étape ? On note V_0 le volume occupé initialement par le système. Représenter la transformation de l'étape 1 dans un diagramme de Clapeyron p(V).
- 2. Exprimer T_1 en fonction de T_a , p_a , p_0 et γ . Le gaz dans le ballon à la fin de l'étape 1 est-il plus chaud ou plus froid que l'atmosphère ? Exprimer le nombre N de moles contenues dans le système, en fonction de V_b , p_0 , p_a , T_a , γ , R.
- 3. On suppose la surpression initiale très petite, ce qui permet d'exprimer p_0 sous la forme $p_0 = p_a + \Delta p$, avec $\frac{\Delta p}{p_a} \ll 1$. En utilisant l'approximation $(1+x)^\alpha \simeq 1 + \alpha x$ lorsque $x \ll 1$, montrer que $: \frac{T_1 T_a}{T_1} \simeq \frac{1 \gamma}{\gamma} \frac{\Delta p}{p_a}$.
- 4. Quelle est la température T₂ à la fin de l'étape 2? En déduire (en donnant la justification) que la transformation de l'étape 2 est irréversible. Calculer la pression p₂ du gaz dans le ballon à l'issue de l'étape 2 en fonction de p_a, T_a, et T₁.
- 5. On note $\Delta p' = p_2 p_a$. Déduire des questions (3) et (4) une relation approchée entre $\Delta p'$, Δp et γ .
- 6. Application numérique. On mesure $\Delta p = 0,35$ bar et $\Delta p' = 0,1$ bar. Calculer la valeur approchée de γ . S'agit-il d'un gaz monoatomique ou diatomique ?
- 7. Donner l'expression du travail et de la quantité de chaleur échangés par le système avec le milieu extérieur lors de l'étape 1 (W_{01}, Q_{01}) puis lors de l'étape 2 (W_{12}, Q_{12}) , en fonction de N, R, γ, T_1 et T_a . Quelle est la variation totale d'énergie interne du système à l'issue des deux étapes ?
- 8. Calculer la variation d'entropie du système ainsi que la production d'entropie au cours de l'étape 1 puis au cours de l'étape 2, en fonction de N, R, γ, T₁ et T_a. Démontrer de façon rigoureuse que le second principe est satisfait et conclure.