

Clean your city efficiently with limited resource you have

Akhter Al Amin (0905056) , A.K.M.Asif Ud Doula(0905090)

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology

Motivation

- ☐ Most third world country's city like Dhaka produce 4600 – 5110 tons waste/ day.
- ☐ For the lack of resources ,only 40% waste can be managed properly.

Our Contribution

- ☐ We have performed analytical modeling and simulation of our proposed algorithm.
- ☐ We have proposed a better algorithm for WCVR and optimizing its performance.

Primary Constraints

- ☐ Lack of budget.
- ☐ Less number of waste collector.
- ☐ Lack of time.

System Model

Empty dustbin Full dustbin

Data

Plan/ Route/

Schedule

Sending participators Server

paths and capacity.

Hosting full Depot positions on Map

Optimization using ruin and recreate principle

Objective

This problem is an optimization problem. Where we have to traverse a Directed Multigraph, G(BUDUS,E) B = Set of bins,

- D = set of depots
- S = set of disposal sites,
- $N = Number of vehicle { 0,1,2....K}.$

Clean city Going to dump station Collecting

when vehicle is full.

Garbage Collector

Objective function of cost which will be minimized:

- $f = \sum_{i,j,k=0}^{N} (\phi_k y_k + Bk \sum \prod_{ij} x_{ij} + \frac{\theta_k}{k} (\sum S_{jk} S_{ik})).$
- $\phi_k y_k$ =The fixed cost of vehicle 'k'
- B_k = Hourly driver wage rate.
- ^θk = Hourly driver wage rate.
- $\binom{\theta}{k} \left(\sum S_{ik} S_{ik} \right) = \text{Wage rate * service time.}$

Experimental Outcome

Outcome with real-time data

garbage

Number of days are needed to fill a bin in different areas.

Comparison between ruin and repair method optimization algorithm with respect to cost and number of bins traversed for small number of nodes.

Scalability and Uncertainty Issues

- ☐ Our algorithm must be scalable for handling highly congested cities.
- ☐ More generalization over existing VRP algorithms.
- ☐ In cities like Dhaka there is probable stage to face that uncertain waste appearance.

☐ This uncertainty, handled by participatory sensing application of our system which will handle the crowd-source part.

References

- 1. Imran Magsood & Guo H. Huang (2003)" A Two-Stage Interval-Stochastic Programming Model for Waste Management under Uncertainty", Journal of the Air & Waste Management Association, 53:5, 540-552.
- "Success Stories in the Waste Management," http://www.ccap.org/.
- Gerhard Schrimpf, Johannes Schneider, Hermann Stamm-Wilbrandt and Gunter Dueck (2000) "Record Breaking Optimization Results Using the Ruin and Recreate Principle", Journal of Computational Physics 159, 139–171.