Universität Salzburg Florian Graf

Machine Learning

Übungsblatt 9 20 Punkte

Aufgabe 1. ReLU Aktivierungsfunktion

10 P.

Abbildung 1:

- (a) Schreiben Sie die Funktionsgleichungen der in Abbildung 1 (links) dargestellten Funktionen mithilfe der ReLU-Funktion.
- (b) Approximieren Sie die in Abbildung 1 (rechts) dargestellte Funktion h durch eine affine Summe von 3 ReLU-Funktionen, also als

$$\tilde{h}(x) = a_0 + \sum_{i=1}^{3} a_i \cdot \text{ReLU}(b_i \cdot x + c_i)$$
,

sodass der Fehler $\operatorname{err}(\tilde{h}) := \max_{x \in [-4,4]} |h(x) - \tilde{h}(x)| < 1.5$ ist. Zeichnen Sie die Funktionen \tilde{h} in Abbildung 1 (rechts) ein und erklären Sie ihr Vorgehen.

- (c) Geben Sie die Architektur, sowie die Gewichtsmatrizen und Biasvektoren eines neuronales Netzwerks an, das die Funktion \tilde{h} realisiert.
- (d) Gibt es ein neuronales Netzwerk der gleichen Architektur, aber mit anderen Gewichten und Biasvektoren, das die Funktion \tilde{h} ebenfalls realisiert? Begründen Sie Ihre Antwort.
- (e) Gibt es ein neuronales Netzwerk \tilde{h}_1 mit ReLU-Aktivierungsfunktionen, das die Funktion h exakt realisiert, also mit $\operatorname{err}(\tilde{h}_1)=0$? Begründen Sie Ihre Antwort.

Gegeben sind die folgenden Daten.

- (a) Geben Sie an, ob diese (Trainings-)Daten durch die folgenden Modelle zu 100% korrekt klassifiziert werden können. Begründen Sie ihre Antworten.
 - (i) Lineare Diskriminanzanalyse
 - (ii) Quadratische Diskriminanzanalyse
 - (iii) Logistische Regression
 - (iv) Logistische Regression mit quadratischen Merkmalen

Für Punkt (iv) genügt es nur die 4 groß gezeichneten Datenpunkte zu betrachten.

Wir betrachten nun ein neuronales Netz der Form

$$f(x) = W_2 \operatorname{ReLU}(W_1 x + b_1) ,$$

das nur auf den 4 groß gezeichneten Datenpunkten trainiert wird. Dabei ist $b_1 \in \mathbb{R}^2$, und $W_1 \in \mathbb{R}^{2 \times 2}$ und $W_2 \in \mathbb{R}^{1 \times 2}$. Als Klassifizierungsregel verwenden wir $\hat{y} = 1$ falls f(x) > 0, und $\hat{y} = 0$ falls $f(x) \le 0$.

- (b) Bestimmen Sie eine mögliche Wahl der Parameter W_1, W_2, b_1 , sodass das neuronale Netz die Daten zu 100% korrekt klassifiziert. Erklären Sie ihr Vorgehen.
- (c) Fertigen Sie eine handschriftliche Abbildung der Trainingsdaten und der gelernten Repräsentationen ReLU $(W_1x + b_1)$ an. Zeichnen Sie in beide Abbildungen die Entscheidungsregion ein.
- (d) Wiederholen Sie die Teilaufgaben (b) und (c) für eine zweite Wahl der Parameter. Insbesondere sollte ihre neue Wahl für W_1 nicht ein positives Vielfaches des voherigen W_1 sein.