EEL 316 Minor Test I Semester II 2014-2015

Answer all questions (Q.1: 20 marks, Q.2: 20 marks)

Full Marks: 40

[10]

1. The transfer function H(f) of a filter (with impulse response h(t)) that is matched to a pulse g(t) having area 1 and support [0,T] is given by

$$|H(f)| = A \operatorname{sinc}^2\left(\frac{fT}{3}\right), \quad \operatorname{angle}(H(f)) = -\frac{2\pi fT}{3}, \quad A, T > 0.$$
(a) Find $g(t)$ and sketch its plot, labeling the relevant portions.

(b) Find T_{rms} , the r.m.s. duration of g(t), given by

$$T_{rms} = \left[rac{\int_0^T t^2 |g(t)|^2 dt}{\int_0^T |g(t)|^2 dt}
ight]^{1/2} \, .$$

2. Consider the case of binary signaling over an AWGN channel in a bit interval [0, T] with waveforms $s_1(t)$ (for symbol '1') and $s_0(t)$ (for symbol '0'), where the received signal is given by

$$x(t) = \left\{ egin{array}{ll} s_0(t) + w(t) & ext{if symbol '0' is transmitted,} \\ s_1(t) + w(t) & ext{if symbol '1' is transmitted,} \end{array}
ight.$$

 $0 \le t \le T$, where $s_0(t)$ and $s_1(t)$ are given by

$$s_0(t) = \begin{cases} -\frac{2A_0t}{T} & \text{for } 0 \leq t \leq \frac{T}{2}, \\ \frac{2A_0(t-T)}{T} & \text{for } \frac{T}{2} < t \leq T, \\ 0 & \text{otherwise,} \end{cases} \quad s_1(t) = A_1 \left[\text{rect} \left(\frac{t - (3T/4)}{T/2} \right) - \text{rect} \left(\frac{t - (T/4)}{T/2} \right) \right],$$

where $0 < A_1 < A_0$. The additive noise w(t) is a real-valued zero-mean white Gaussian random process with power spectral density $N_0/2$. The a priori probability of occurrence of symbol '0' is p_0 and that of symbol '1' is p_1 . The receiver is implemented by passing x(t) through a matched filter of impulse response h(T-t) followed by sampling at t=T. Thus the receiver makes the

decision
$$\int_0^T x(t)h(t)dt \stackrel{?}{\underset{<}{\stackrel{>}{>}}} \lambda$$
, and $h(t)$ satisfies the condition $\int_0^T s_1(t)h(t)dt > \int_0^T s_0(t)h(t)dt$. The

threshold λ can be chosen to be either λ_{ML} or λ_{MAP} .

- Find h(t) which minimizes the average symbol error probability (SEP), and satisfies $h(3T/4) = A_0 + 2A_1$, for an ML receiver as well as a MAP receiver, and sketch it, labeling the relevant portions.
 - (b) If an ML receiver is used, and h(t) is as in (a), find A_1/A_0 such that $\lambda_{ML} = 0$. Find the corresponding average SEP $P_{e,ML}$ in terms of A_1 , T, and N_0 . [6]
 - (c) If a MAP receiver is used with h(t) is as in (a) and A_1/A_0 is as in (b), find λ_{MAP} and the corresponding average SEP $P_{e,MAP}$ in terms of A_1 , T, N_0 , and p_1/p_0 . [4]
 - (d) For $A_1^2T = 16N_0$ and $p_1 = \sqrt{e}/(1+\sqrt{e})$, calculate $P_{e,MAP}/P_{e,ML}$, where $P_{e,ML}$ is as in (a) and $P_{e,MAP}$ is as in (b).