20

Fundamentals of Computer Technology. Laboratory

ATC

Architecture and Computer Technology
Departamento de Automática
Universidad de Alcalá

Practice 1

BASIC CONCEPTS. INTRODUCTION TO THE USE OF EQUIPMENT

Objectives:

The aim of this practice is that the students have a first contact with the lab and become familiar with the management of the basic instrumentation.

FIRST PART

Verification of the truth table of a NAND gate

Duration of practice: 2 hours

Instrumentation in the lab

- Power supply
- Digital multimeter
- Connectors

Material the student must bring

Common to all practices

The equipment needed (per pair) will be:

- Breadboard (placa de inserción)
- flat nose pliers (alicates de punta plana)
- Wire stripper, scissors (Electrician), wire cutters or similar (pelacables,, tijeras de electricista)
- Small screwdriver (destornillador pequeño)
- Thin wire to connect components (without threads and rigid with the thickness suitable for insertion). (cable para conexión)

Specific to this practice

- Integrated circuit 7400: two-input NAND gates.
- LED.
- Two resistors of 1K and one of 2K2.
- · Microswitchs.

Fundamentals of Computer Technology. Laboratory

Architecture and Computer Technology
Departamento de Automática
Universidad de Alcalá

Characteristics of CI 7400:

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test C	onditions
V _{IH}	Input HIGH Voltage	2.0			٧	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	٧	V _{CC} = MIN, I _{IN} :	= – 18 mA
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V _{CC} = MIN, I _{OH} or V _{IL} per Tru	= MAX, V _{IN} = V _{IH} th Table
Va	Output LOW Voltage		0.25	0.4	٧	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN$,
V _{OL}	Output LOW Voltage		0.35	0.5	٧	I _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
l	Input HIGH Current			20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$	
I IH	I _{IH} Input HIGH Current			0.1	mA	$V_{CC} = MAX$, $V_{IN} = 7.0 V$	
l _{IL}	Input LOW Current			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX	
	Power Supply Current						
Icc	Total, Output HIGH			1.6	mA	V _{CC} = MAX	
	Total, Output LOW			4.4			

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

Practice Development:

For practical development we use the circuit shown in the following figure. The photograph is an indication to facilitate mounting components, do not follow exactly the assembly shown therein.

Fundamentals of Computer Technology. Laboratory

Architecture and Computer Technology
Departamento de Automática
Universidad de Alcalá

1. Assembly and performance

Assemble the previous circuit and verify the truth table of the NAND gate.

Α	В	NAND
0	0	
0	1	
1	0	
1	1	

Measure the input and output voltages for the different values of the truth table.

Fundamentals of Computer Technology. Laboratory

Architecture and Computer Technology
Departamento de Automática
Universidad de Alcalá

A	В	NAND
(Voltios)	(Voltios)	(Voltios)

SECOND PART

Functions with NAND gates

Duration of practice: 2 hours

1. 3-input NAND gate

Assemble the circuit and verify the truth table.

Making a 3-input NAND gate with two input NAND gates. Apply de Morgan laws.

Α	В	С	NAND
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Fundamentals of Computer Technology. Laboratory
Architecture and Computer Technology
Departamento de Automática Universidad de Alcalá

2. logic Functions

Deduce the logic function performed by the following circuit.

Describe the truth table of the logic function.

Α	В	С	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	