Fermat and Euler theorems

Udaya Parampalli

Department of Computing and Information Systems University of Melbourne

July, 2017

Euler Phi function

Definition

Two numbers a and b are relatively prime if gcd(a, b) is 1.

Definition

Euler phi function(or Euler totient function): For $n \ge 1$, let $\phi(n)$ denote the number of integers less than n but are relatively prime to n.

Definition

Reduced set of residues mod n: For $n \ge 1$, the reduced set of residues, R(n) is defined as set of residues modulo n which are relatively prime to n.

Example:
$$\phi(6) = 2$$
: Observe, $gcd(1,6) = 1, gcd(2,6) = 2, gcd(3,6) = 3, gcd(4,6) = 2, gcd(5,6) = 1$. Then $R(6) = \{1,5\}$. Hence $\phi(6) = 2$.

Some Relations

Fact

$$\phi(p) = p - 1$$
, for any prime p.

This is easy and follows from definition of a prime number.

Fact

$$\phi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1),$$

for any prime p and any integer $a \ge 1$.

Example: $\phi(8) = 4$, the numbers which are multiple of 2 are $\{2,4,6,8\}$ and hence the relatively prime numbers are all odd numbers up to 7, i.e $R(8) = \{1,3,5,7\}$.

Some Relations, cont.

Fact

 $\phi(pq) = (p-1)(q-1)$, for any pair of primes p and q.

$$n = \prod_{i=1}^{\tau} p_i^{a_i} = p_1^{a_1} \ p_2^{a_2} \cdots p_{\tau}^{a_{\tau}} \ ,$$

where τ is a positive number, p_i are primes and $a_i \geq 1$ and Π is the symbol for product.

$$\phi(n) = \phi(\Pi_{i=1}^{\tau} p_i^{a_i}) = \phi(p_1^{a_1} p_2^{a_2} \cdots p_{\tau}^{a_{\tau}}),$$

From the fact on $\phi(p^a)$ given before we can write,

$$\phi(n) = \prod_{i=1}^{\tau} p_i^{a_i-1}(p_i-1)).$$

Bijection

Let m and n are relatively prime number, $X = \mathbf{Z}_{mn}$, $Y = \mathbf{Z}_m \times \mathbf{Z}_n$. Then the mapping

$$f: X \to Y, f(x) = ((x \mod m), x \mod n),$$

is a bijection.

Example: $X := \mathbf{Z}_6$, $Y = \mathbf{Z}_2 \times \mathbf{Z}_3$. The function f given below is a bijection:

$X = \mathbf{Z}_6$	\rightarrow	$\mathbf{Z}_2 imes \mathbf{Z}_3$
0	\rightarrow	(0,0)
1	\rightarrow	(1, 1)
2	\rightarrow	(0,2)
3	\rightarrow	(1,0)
4	\rightarrow	(0, 1)
5	\rightarrow	(1,2)

Table: $f: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$

Chinese Remainder Theorem (CRT)

Let n_1 , n_2 be pair-wise relatively prime integers, he system of simultaneous congruences

$$x \equiv a_1 \pmod{n_1},$$

$$x \equiv a_2 \pmod{n_2},$$

has a unique solution modulo $n = n_1 n_2$.

Note that the mapping $f: \mathbf{Z}_{n_1 \ n_2} \to \mathbf{Z}_{n_1} \times \mathbf{Z}_{n_2}$ given by $f(x) \to x \mod n_1$, $x \mod n_2$ is a bijection.

The proof has two points. First show that the function is one-to-one. If there exists two elements x and y such that

$$x \mod n_1 = y \mod n_1,$$

and

$$x \mod n_2 = y \mod n_2$$
,

then x-y is divisible by both n_1 and n_2 . Since n_1 and n_2 are relatively prime, x-y is divisible by n_1 $n_2=n$. Hence x and y are identical equal modulo n. This proves that the function is one-to-one. In the next slide, we give an explicit construction for the inverse function which proves that the map is onto. Hence the f is bijection.

In fact, Chinese Remainder theorem gives a construction method to obtain the inverse function. Let

$$N_1 = n/n_1 = n_2, N_2 = n/n_2 = n_1.$$

Choose

$$M_1 = (N_1)^{-1} \pmod{n_1}$$

and

$$M_2 = (N_2)^{-1} \pmod{n_2}$$

.

Then the solution to the simultaneous congruences is given by

$$x = a_1 (N_1 M_1) + a_2 (N_2 M_2) \pmod{n}.$$

You can immediately verify that x determined as above satisfies the congruences (This is because $N_1 \mod n_2 = 0$ and $N_2 \mod n_1 = 0$)

Chinese Remainder Theorem (CRT)

If n_1, n_2, \ldots, n_k are pair-wise relatively prime integers, k being a positive integer, the system of simultaneous congruences

$$x \equiv a_1 \pmod{n_1},$$
 $x \equiv a_2 \pmod{n_2},$
 $x \equiv a_3 \pmod{n_3},$
 \dots
 $x \equiv a_k \pmod{n_k},$

has a unique solution modulo $n = n_1 n_2 \dots n_k$.

Let

$$N_i = n/n_i$$

for i = 1, 2, ..., k.

Choose

$$M_i = (N_i)^{-1} \pmod{n_i},$$

for i = 1, 2, ..., k.

Then the solution is given by

$$x = \sum_{i=1}^{k} a_i N_i M_i \pmod{n}.$$

Euler's Theorem

Theorem

If
$$a \in \mathbf{Z}_n^{\star}$$
, then $a^{\phi(n)} = 1 \pmod{n}$.

Proof: Let $R(n) = \{r_1, r_1, \ldots, r_{\phi(n)}\}$, be reduced set of residues modulo n. Now consider the set a $R(n) = \{a$ r_1, a r_1, \ldots, a $r_{\phi(n)}\}$. Since a is relatively prime to n, the set aR(n) is identically equal to R(n). Note that the process of multiplying a only rearranges the residues in R(n). Hence we can multiply all the elements in R(n) and equate with the multiplication of all the elements of a R(n). Hence we can write:

$$r_1 \times r_2 \cdots \times r_{\phi(n)} = (ar_1) \times (ar_2) \cdots \times (ar_{\phi(n)}).$$

Note that r_i s are relatively prime to n and hence we can cancel r_i in the above equation by multiplying r_i^{-1} to both the side of the equation. Then the above equation simplifies to

 $1 = a^{\phi(n)}$. Hence the result.

Fermat's Theorem

Theorem

Let p be a prime number, then if gcd(a, p) = 1, then

$$a^{p-1} = 1 \ (mod \ p).$$

This is the particular case of Euler's Theorem when n is prime.

Fermat's Little Theorem

Theorem

Let p be a prime number,

$$a^p = a \pmod{p}$$
, for any integer a.

When a is relatively prime, the theorem follows from the Fermatss theorem. When a is multiple of p, the result is trivially true.

RSA: Key Generation by entities

Before starting any transactions, Alice(A) and Bob(B) will set up the following key initializations.

Alice will do the following:

- Generate two large and distinct primes p_A and q_A of almost equal size.
- **2** Compute $n_A = p_A q_A$ and $\phi_A = (p_A 1)(q_A 1)$.
- **3** Select a random integer e_A , such that $GCD[e_A, \phi_A] = 1$.
- **①** Compute the integer d_A such that

$$e_A d_A \equiv 1 \pmod{\phi_A}$$
.

(Use Extended Euclidean Algorithm).

5 Alice's Public key is (n_A, e_A) . Alice's Private key is d_A .

Similarly, Bob will also initialize the key parameters. Let **Bob's Public key be** (n_B, e_B) and **Bob's Private key be** d_B ,

RSA Public encryption

Here we assume that Bob wants to send a message to Alice. $Encryption \ at \ B$

- **1** Get A's Public Key (n_A, e_A) .
- ② Choose a message M as an integer in the interval $[0, n_A 1]$.
- **3** Compute $c = M^{e_A} \pmod{n_A}$.
- Send the cipher text c to A.

Decryption at A

1 To recover m compute $M = c^{d_A} \mod n_A$ using the secret d_A .

Proof of RSA Decryption

Since $e_A d_A \equiv 1 \pmod{\phi_A}$, by the extended Euclidean algorithm it is possible to find k such that

$$e_A d_A = 1 + k \phi_A = 1 + k(p_A - 1)(q_A - 1)$$

(Run Extended Euclidean algorithm on $(e_A, \phi(n_A))$ or $(d_A, \phi(n_A))$.) From Fermat' theorem we get,

$$M^{p_A-1} \equiv 1 \pmod{p_A}$$
.

Hence,

$$M^{e_Ad_A} \equiv M^{1+k(p_A-1)(q_A-1)} \equiv M \; (M^{(p_A-1)})^{(q_A-1)} \equiv M \; (mod \; p_A).$$

Similarly,

$$M^{e_Ad_A} \equiv M^{1+k(p_A-1)(q_A-1)} \equiv M \ (M^{(q_A-1)})^{(p_A-1)} \equiv M \ (mod \ q_A).$$

Since, p_A and q_A are distinct primes, it follows from Chinese Remainder Theorem that

$$M^{e_A d_A} \equiv M \pmod{n_A}$$
.

This implies,

$$c^{d_A}=(M^{e_A})^{d_A}\equiv M\ (mod\ n_A).$$

More serious proof of RSA Decryption

Note that we need to prove

$$(M^{e_A})^{d_a}=M^{e_A}$$
 $d_A=M$ mod n_A .

If M is relatively prime to n_A , then this implies $(M, p_A) = (M, q_A) = 1$. Then the arguments in the previous slides prove the result.

You can also see this as an application of Eulers's theorem. Note that,

$$e_A d_A = 1 + k \phi_A = 1 + k(p_A - 1)(q_A - 1).$$
 (1)

Then

$$M^{e_A \ d_A} = M^{1+k\phi_A} = M \ M^{k\phi_A} = M \ (M^{\phi_A})^k = M$$

as $M^{\phi_A} = 1 \mod n_A$ (Eulers's theorem).

However, again note that to be able to use Fermat's or Euler's theorem, we need $(M, n_A) = 1$.

What if M is not relatively prime to n?

Note that the probability that M is not relatively prime to n_A is very small $(1/p_A+1/q_A-1/(p_Aq_A))$. If we just ignore this possibility we are done. But, if you are serious and want to prove the RSA result for all $M < n_A$, then see the following.

Case when M is not relatively prime to n_A .

In this case M is divisible by either p_A or q_A . If it is divisible by both p_A and q_A , then M=0 mod n_A and hence the RSA result is trivially true. Then with out loss of generality assume that p_A divides M and hence we can write M=c p_A . Then we must have $(M,q_A)=1$ (Otherwise, M is also multiple of q_A and hence identically equal to 0 mod n_A).

Now we can use Fermat's theorem

$$M^{(q_A-1)}=1 \bmod q$$

Then taking $(k(p_A-1))^{th}$ power on either side of the above equation, we get,

$$M^{k(p_A-1)(q_A-1)} = 1 \mod q_A,$$

where k is as in (1). This implies

$$M^{k(p_A-1)(q_A-1)} = 1 + k' q_A.$$

Multiplying each side by $M = cp_A$, we get

$$M^{k(p_A-1)(q_A-1)+1} = M + k' \ c \ p_A \ q_A = M + k'' \ n_A.$$

Taking $mod n_A$ on both sides gives the result.