Rodokmeňová metóda v praxi

- Rodokmeňová metóda sa v praxi uplatňuje tak, že na základe načrtnutého rodokmeňa sa určuje typ dedičnosti (či je dedičnosť autozómová alebo gonozómová a či je dominantná alebo recesívna)
- Pri určovaní typu dedičnosti z rodokmeňa platí:
 - Ak sú v rodokmeni prenášači muži jedná sa o autozómovo recesívnu dedičnosť, nebude gonozómová dedičnosť lebo, pri gonozómovej sú muži buď chorý alebo zdravý, nikdy nie prenášači
 - Ak je znak alebo choroba pozorovaná v každej generácii, pôjde o dominantnú dedičnosť
 - Ak sa choroba alebo znak prenáša z otca na syna, potom pôjde o Y viazanú dedičnosť
 - Ak v rodokmeni budú postihnutý iba muži, pôjde buď o Y viazanú dedičnosť alebo o X recesívnu dedičnosť
 - X dominantná dedičnosť sa ťažko rozlišuje od autozómovo dominantnej, platí že pri X dominantnej dedičnosti je postihnutých žien 2x viac, avšak pri menších rodokmeňoch to nemusí byť smerodajné
 - Platí že pri X dominantnej dedičnosti má postihnutý muž všetky dcéry postihnuté a všetkých synov zdravých
- Jednoduchý postup pre určovanie rodokmeňov
 - O Zistenie či je ochorenie dominantné / recesívne ak sú v rodokmeni prenášači, potom bude recesívne
 - Zistenie či je ochorenie gonozómové / autozómové Ak sa v rodokmeni vyskytujú prenášačky iba ženy,
 ide o gonozómové ochorenie, ak sú prenášači aj muži ide o autozómové

Genetika človeka / Humánna genetika

- Samostatný vedný odbor, ktorý sa zaoberá štúdiom genetického materiálu človeka
- Špecifické oblasti humánnej genetiky:
 - o Klinická genetika zaoberá sa diagnostikou, liečbou a prevenciou dedičných chorôb a vrodených chýb
 - Cytogenetika zaoberá sa zmenami počtu a štruktúry chromozómov a ich klinické prejavy
 - Molekulová genetika zaoberá sa poznatkami z oblasti štruktúry a regulácie funkcie génov
- Metódy využívané v genetike človeka:
 - Rodokmeňová metóda Genealogický výskum
 - Výskum dvojčat Gemelologický výskum
 - Populačný výskum
 - Štúdium karyotypov
 - Genetické a biochemické metódy
 - Rodokmeňová metóda (=Genealogický výskum)
 - Podstatou je vytvorenie rodokmeňu, pri ktorom sa sledujú rôzne dedičné ochorenia a ich prenos z generácie na generáciu
 - Človek od ktorého sa začne robiť výskum sa nazýva proband
 - Schéma rodokmeňa sa zapisuje pomocou značiek a symbolov:

•

Chromozómové mutácie (=Aberácie)

- Ide o zmeny v počte alebo v štruktúre chromozómov
- Zmeny v počte chromozómov:
 - Ploidie zmeny v počte chromozómov
 - Polyploidie zmeny v počte celých sad chromozómov
 - V prípade, že má jedinec o 1 chromozóm navyše, tak vzniká trizómia (napr. trizómia 21. chromozómu Downov syndróm)
 - V prípade, že jeden chromozóm chýba, vzniká monozómia (napr. monozómia pohlavného chromozómu u ženy – Turnerov syndróm)
- Zmeny v štruktúre chromozómu
 - Delécia strata časti chromozómu
 - Duplikácia zdvojenie časti chromozómu
 - o Inverzia vzniká tak, že sa časť chromozómu obráti
 - o Translácia časť jedného chromozómu sa presunie na iný chromozóm

Delenie + Vznik mutácií

- Delenie mutácií

- Podľa typu zasiahnutej bunky:
 - Gametické postihujú genetický materiál pohlavnej bunky
 - Somatické postihujú genetický materiál telovej bunky + môžu byť príčinou vzniku rakoviny
- Podľa vzniku:
 - Spontánne náhodné
 - Indukované umelo vytvorené v laboratórnych podmienkach
- o Podľa rozsahu:
 - **Génové** mutácie ktoré postihujú iba 1 gén
 - Chromozómové mutácie ktoré postihujú 1 celý chromozóm
 - Genómové vedú k zmene počtu chromozómov v jadre bunky
- o Podľa lokalizácie:
 - Jadrové postihujú genetický materiál nachádzajúci sa v jadre bunky
 - Mimojadrové postihujú genetický materiál nachádzajúci sa v cytoplazme (Prokaryotická bunka), v mitochondriách (Eukaryotická bunka) alebo v Chloroplastoch (Eukaryotická rastlinná bunka)
- Podľa zlučiteľnosti so životom:
 - Vitálne zlučiteľné so životom
 - Letálne nezlučiteľné so životom

Vznik mutácií

- Za vznik mutácií môže mutagén, ten prenikne do jadra, aby mohol zreagovať s DNA, čím vznikne tzv.
 predmutačný gén
- Predmutačný gén
 - Ak sa stabilizuje, tak vznikne mutácia
 - Ak sa vráti do pôvodného stavu, vtedy nastáva reparácia (nedôjde ku vzniku mutácie)

Mutácie

- Mutácie sú dedičné zmeny, ktoré sa prejavujú ako trvalé a jedinečné zmeny znakov a vlastností organizmu
- Sú podmienené zmenami DNA
- Mutácia vždy závisí so zmenou genotypu, ale fenotypovo sa prejaviť nemusí
- Mutácie sú základným predpokladom pre evolúciu
- Mutácie sú:
 - O Náhle dochádza k ním náhle, skokom
 - Neusmernené organizmus nemá možnosť si mutácie vyberať
 - o **Trvalé** sú prenášané na potomstvo
 - o **Jedinečné** mutáciami môže vzniknúť nová alela alebo genotyp

Mutagény

- Sú zodpovedné za vznik mutácií
- o Poznáme 3 kategórie mutagénov:
 - fyzikálne Röntgenové žiarenie, UV žiarenie ...
 - chemické rôzne chemické postreky ...
 - biologické napr. onkogénne vírusy sú schopné včleniť svoju DNA do génomu hostiteľa

Antimutagény

- o Látky, ktoré znižujú frekvenciu mutácií
- o Antioxidanty ako vitamín C, vitamín E, karotenoidy ...

Typy dedičnosti

- Dedičnosť delíme podľa viacerých kritérií:

1. Podľa typu zasiahnutého chromozómu

- o **Autozómová** dedičnosť viazaná na telové chromozómy
- o **Gonozómová** dedičnosť viazaná na pohlavné chromozómy

2. Podľa sily prejavenia alel

- o **Dominantná** choroba alebo znak je kódovaný dominantnou alelou
- o Recesívna choroba alebo znak je kódovaný recesívnou alelou

3. Podľa vzťahu alel

- [A červená farba, a biela farba]
- Úplná dominancia heterozygot (Aa) je červený
- o S neúplnou dominanciou heterozygot (Aa) je ružový
- o Kodominancia heterozygot (Aa) je červený aj biely (napr. červený s bielymi bodkami)

Modelové organizmy

- Organizmy používané v biológií pri rôznych pokusoch
- (Mendel pre sformovanie genetických zákonov používal len 1 organizmus hrach siaty)
- Vhodným modelovým organizmom je taký, ktorý má
 - o Krátky životný cyklus, takže môžeme sledovať viacej generácií v pomerne krátkom čase
 - Veľký počet produkovaných semien, respektíve potomkov
 - o Nenáročné udržiavanie a pestovanie, respektíve chovanie
 - Ľahko pozorovateľné znaky
 - Malá veľkosť genómu
- Vhodné organizmy
 - o Baktérie ako napríklad Escherichia coli
 - Kvasinky
 - o Vinná muška
 - o Rastlina Arábovka
 - o Pšenica siata
 - Myš (hlodavce)

Geneticky modifikované organizmy (GMO)

- Sú to také organizmy, ktorých genetický základ bol úmyselne pozmenený vnesením alebo odstránením nejakého génu/génov
- Geneticky modifikované potraviny
 - Vznikli z dôvodu výhodnosti pre výrobcu alebo spotrebiteľa ako napríklad:
 - Nižšia cena výrobku
 - Dlhšia trvanlivosť
 - Lepšia výživová hodnota
 - o Pôvodný zámer geneticky modifikovaných potravín bola lepšia ochrana úrody
 - Dnes sa toto úsilie sústreďuje najmä na ochranu rastlín proti chorobám zapríčinenými hmyzom a vírusmi ako aj na zvýšenú odolnosť voči herbicídom
- Počiatky GMO
 - o Prvé GMO boli baktérie a to hlavne E. Coli
 - Ako posledné boli vypracované metódy prenosu génov do rastlín a živočíchov
- Ako sa pripravujú GMO
 - Geneticky modifikovať môžeme tak, že:
 - Do neho (transgénneho organizmu) vložíme nejaký gén
 - Že jeden alebo viac génov odstránime (Knock-out)
- Využitie GMO
 - Farmácia a Medicína štúdium chorôb, vývoj liekov
 - Potravinárstvo
 - Poľnohospodárstvo zlepšenie technologických vlastností, navýšenie nutričnej hodnoty
 - o Priemysel výroba aminokyselín, bielkovín, škrobu, atď...
- Príklady na GMO:
 - BT-kukurica modifikovaná z dôvodu väčšej odolnosti voči škodcom (Pestuje sa aj na Slovensku)
 - + Ďalšie: Sója, Bavlník, Repka olejná, Ľuľok zemiakový
- Konzervačná biológia
 - o zaoberá sa klonovaním so cieľom zachovať ohrozené druhy živočíchov

Výhody GMO

- o Bezpečná technológia, ktorá je kontrolovaná
- o Menšia spotreba chemických prostriedkov a chemikálií
- O Viacej citlivé voči životnému prostrediu
- o Riešenie globálnych problémov ako napríklad hladomor

- Nevýhody GMO

- o Narúšajú rovnováhu v ekosystéme
- Potenciálne zdravotné problémy
- Nechcené a nepredvídateľné dopady

Výskum dvojčat (Gemelologický výskum)

- Dizygotné (dvojvaječné)
 - o 2 vajíčka, každé oplodnené jednou spermiou
- Monozygotné (jednovaječné)
 - o 1 vajíčko oplodnené jednou spermiou
 - Vždy majú rovnaké pohlavie
- Z genetického hľadiska sú zaujímavejšie jednovaječné dvojčatá
 - o Majú rovnakú genetickú výbavu ale nie sú totožné
 - Je možné na nich sledovať aj vplyv prostredia
- V prípade jednovaječných dvojčat sú vyživované jednou spoločnou placentou a prípade dvojvaječných dvojčat sú vyživované dvomi rozdielnymi placentami

Ochorenia viazané na chromozómy

- Autozómovo dedičné choroby:
 - Autozómovo recesívne:
 - Cystická fibróza abnormálnosť vonkajších sekrečných funkcií, ide o produkciu hustého hlienu prieduškami
 - Albinizmus neschopnosť syntetizovať (tvoriť) melanín (farbivo)
 - Celiakia neschopnosť tráviť lepok
 - Autozómovo dominantné:
 - Polydaktýlia viacprstosť
 - Porucha dentínu spôsobuje žltý vzhľad koruniek a rýchle opotrebovanie
- Gonozómovo dedičné choroby:
 - X viazané recesívne:
 - Hemofília chorobná nezrážanlivosť krvi
 - Daltonizmus farbosleposť