Dernière mise à jour	Informatique	Denis DEFAUCHY
30/01/2022	5 - Fonctions récursives	INT3 – Sujet

Nom

Interrogation Récursivité

Note

Exercice 1: Codes très simples

liste L non vide > Prod([1,2,3,4	1)					
1104([1/2/07						
						1-1
estion 2: Créez	ne fonction réc	cursive Reverse	(Char) qui re	envoie l'in	verse d'une	
aine de caractère						
	1					
Reverse('12345')						1-
Reverse('12345') 321'						1-
Reverse('12345') 321'						1-

Dernière mise à jour	Informatique	Denis DEFAUCHY
30/01/2022	5 - Fonctions récursives	INT3 – Sujet

Exercice 2: Exercices plus complexes

Soit une fonction f définie de $\mathbb R$ dans $\mathbb R$ dont on cherche la solution supposée unique et existante x_s sur [a,b] telle que $f(x_s)=0$. On appelle x_n la solution numérique obtenue par dichotomie qui devra être précise à un ε près, c'est-à-dire $|x_s-x_n|\leq \varepsilon$.

Le principe de résolution consiste à calculer le milieu m de [a,b] et d'étudier le signe de f(a)f(m). Si $f(a)f(m) \le 0$, le nouvel intervalle de recherche est [a,m], sinon [m,b].

Question 1: Proposer une fonction récursive Dichotomie(f,a,b,Eps) renvoyant x_n comme proposé ci-dessus

Question 2: Proposer une fonction récursive Insertion(t,L) qui renvoie une liste dans laquelle t est inséré à sa place dans L supposée triée par ordre croissant – L n'est pas modifiée – PAS de Dichotomie attendue

modifiée – PAS de Dichotomie attendue

Dernière mise à jour	Informatique	Denis DEFAUCHY
30/01/2022	5 - Fonctions récursives	INT3 – Sujet

Exercice 3: Complexité d'algorithmes récursifs

Soit la suite définie par :

$$u_0 = 1, n \ge 1, u_{n+1} = \begin{cases} u_n + 1 & \text{si } u_n < 1 \\ \frac{u_n}{2} & \text{sinon} \end{cases}$$

On propose le code suivant :

```
def rec(n):
    if n==0:
        return 1
    else:
        Un_m1 = rec(n-1)
        if Un_m1 < 1:
            Un = Un_m1 + 1
        else:
            Un = Un_m1 / 2
        return Un</pre>
```

Question 1: Donner et démontrer la complexité de la fonction rec proposée

Dernière mise à jour	Informatique	Denis DEFAUCHY
30/01/2022	5 - Fonctions récursives	INT3 – Sujet

On propose maintenant le code que certains d'entre vous auraient pu réaliser :

```
def rec(n):
    if n==0:
        return 1
    else:
        if rec(n-1) < 1:
            Un = rec(n-1) + 1
        else:
            Un = rec(n-1) / 2
        return Un</pre>
```

Question 2: Donner et démontrer la complexité de la nouvelle fonction rec proposée

Dernière mise à jour	Informatique	Denis DEFAUCHY
30/01/2022	5 - Fonctions récursives	INT3 – Sujet

Question 3: Compléter le tableau suivant en précisant la complexité dans chaque cas

1	Auto-appel 1 fois au rang n-1 $C(n) = C(n-1) + O(n^{\alpha})$		
2	Auto-appel $\gamma>1$ fois au rang n-1 γ constant $C(n)=\gamma C(n-1)+\ O(n^{\alpha})$		
31	Auto-appel 1 fois au rang n/2	$\alpha = 0$	
32	$C(n) = C\left(\frac{n}{2}\right) + O(n^{\alpha})$	$\alpha \geq 1$	
41		$\alpha = 0$	
42	Auto-appel $\gamma>1$ fois au rang n/γ γ constant $C(n)=\gamma C\left(\frac{n}{\gamma}\right)+\ O(n^{\alpha})$	$\alpha = 1$	
43		$\alpha \geq 2$	
5	Auto-appel aux rangs n-1 et n-2 $C(n) = aC(n-1) + bC(n-2) + O(1)$		

Dernière mise à jour	Informatique	Denis DEFAUCHY
30/01/2022	5 - Fonctions récursives	INT3 – Sujet

Question 4: Pour chacun des algorithmes proposés, donner le cas du tableau précédent, la valeur des paramètres $(\alpha, \gamma...)$ et la complexité

Algorithme	Cas	Paramètres	Complexité $\mathcal{C}(n)$
ef f(n):			<u> </u>
if n==1:			
return 1			
else:			
return $f(n-1) + 2*f(n-2)$			
ef f(n):			
if n==1:			
return 1 else:			
S = f(n-1)			
for i in range(n):			
S+= i			
return S			
ef f(n):			
if n==1:			
return 1			
else:			
return $f(n-1) + f(n-1)$			
ef f(n):			
if n==1:			
return 1			
else:			
return f(n-1)			
ef f(n):			
if n==1:			
return 1			
else:			
S = f(n-1) + f(n-1)			
<pre>for i in range(n):</pre>			
S+= i			
return S			
<pre>lef f(n): if n==1:</pre>			
return 1			
else:			
S = f(n-1) + f(n-1) + f(n-1)			
for i in range(n):			
S += i			
return S			
lef f(n):			
if n==1:			
return 1			
else:			
n1 = n//2			
n2 = n-n//2			
S = f(n1) + 2*f(n2)			
<pre>for i in range(n):</pre>			
S += i			
return S			
ef f(n):			
if n==1:			
return 1			
else: $N = n//2$			
<pre>n = n//2 return 2*f(N)</pre>			
ef f(n):			
<pre>if n==1:</pre>			
return 1			
else:			
S = 0			
a = f(n-1)			
for i in range (10):			
S += a/n			