```
In [54]: import pandas as pd
    import numpy as np
    from statsmodels.regression.rolling import RollingOLS
    from scipy import stats
    import statsmodels.regression.linear_model as sm
    import statsmodels.tools.tools as sm2
    from statsmodels.regression.linear_model import OLS
    #from pyfinance import PandasRollingOLS
    from statsmodels.api import add_constant
```

Out[308]:

	Market Returns	Returns to the Fama-French size factor	Returns to the Fama-French value factor	Risk-free rate
0	-0.0008	0.0083	0.0041	0.00004
1	0.0122	0.0035	0.0002	0.00004
2	0.0019	0.0012	0.0018	0.00004
3	0.0027	0.0050	-0.0007	0.00004
4	0.0048	0.0033	0.0062	0.00004
1506	0.0052	-0.0008	0.0016	0.00000
1507	0.0010	-0.0015	-0.0030	0.00000
1508	-0.0009	0.0008	-0.0008	0.00000
1509	-0.0007	-0.0004	-0.0018	0.00000
1510	-0.0088	-0.0013	0.0015	0.00000

1511 rows × 4 columns

```
In [296]: #load in ticker.txt - tickers
    ticker = pd.read_csv('ticker.txt', header=None)
    ticker = ticker.reset_index()
    ticker['index'] = ticker['index'] + 1
    ticker.head()
```

Out[296]:

i	ndex	0
0	1	А
1	2	AA
2	3	AAI
3	4	AAON
4	5	AAP

```
In [204]: #load in retdate.txt - return dates
    retdate = pd.read_csv('retdate.txt', sep = " ", header = None)
    retdate.loc[1510]
```

Out[204]: 0 20091231

Name: 1510, dtype: int64

```
In [297]: #load in secdata.txt - securities data
secdata = pd.read_csv('secdata.txt', sep = " ", header = None)
secdata.columns = ['Ticker #', 'Stock Returns', 'Market Capitalizations'
]
secdata.head()
```

Out[297]:

	Ticker #	Stock Returns	Market Capitalizations
0	1	-0.015048	13713091.20
1	1	0.026042	14070202.95
2	1	0.031472	14513021.52
3	1	0.012795	14698719.63
4	1	0.045675	15370089.72

Out[307]:

	Ticker #	Stock Returns	Market Capitalizations	index	0
0	1	-0.015048	13713091.20	1	А
1	1	0.026042	14070202.95	1	Α
2	1	0.031472	14513021.52	1	Α
3	1	0.012795	14698719.63	1	Α
4	1	0.045675	15370089.72	1	Α
2836142	1877	0.000000	580951.00	1877	ZRAN
2836143	1877	-0.008079	576257.50	1877	ZRAN
2836144	1877	0.000000	576257.50	1877	ZRAN
2836145	1877	0.008145	580951.00	1877	ZRAN
2836146	1877	-0.008079	576257.50	1877	ZRAN

2836147 rows × 5 columns

Question 2

We now consider the modern portfolio theory (MPT) approach to estimating volatility. Each step below should be completed using 504, 252, 126, and 63 day rolling windows.

a) Pick a portfolio of 100 securities.

Criteria: 1st 100 securities.

In [60]: secdata

Out[60]:

	Ticker #	Stock Returns	Market Capitalizations
0	1	-0.015048	13713091.20
1	1	0.026042	14070202.95
2	1	0.031472	14513021.52
3	1	0.012795	14698719.63
4	1	0.045675	15370089.72
2836142	1877	0.000000	580951.00
2836143	1877	-0.008079	576257.50
2836144	1877	0.000000	576257.50
2836145	1877	0.008145	580951.00
2836146	1877	-0.008079	576257.50

2836147 rows × 3 columns

```
In [61]: random_tickers = list(range(1,101))
```

Out[62]:

Ticker #	1	2	3	4	5	6	7	8	
0	-0.015048	-0.011842	0.030252	-0.024729	0.000246	-0.004212	-0.072416	-0.038290	0.0
1	0.026042	0.032756	0.008157	0.004754	-0.009089	0.041823	-0.072706	0.033889	0.0
2	0.031472	-0.007478	0.062298	0.014196	0.017848	-0.003608	0.097044	-0.004120	0.0
3	0.012795	-0.007534	0.022848	-0.005184	0.031417	0.022635	0.062683	0.009712	0.0
4	0.045675	0.012042	-0.067014	0.001042	-0.026446	0.034086	0.006064	-0.004809	0.0
1506	0.000990	0.021250	0.009363	0.011190	0.000242	0.034339	0.019135	0.000760	0.0
1507	0.002308	-0.014688	-0.035250	-0.010060	-0.003867	0.012294	0.016327	0.002658	0.0
1508	-0.002303	-0.004348	-0.007692	0.013720	-0.011160	-0.011861	0.012450	-0.001515	0.0
1509	0.025387	0.016843	0.007752	-0.005013	0.006133	0.012147	0.015470	-0.002275	0.0
1510	-0.000965	-0.011043	0.003846	-0.018136	-0.012924	-0.004290	-0.001953	-0.009122	0.0

1511 rows × 1877 columns

Loading [MathJax]/jax/output/HTML-CSS/jax.js

```
In [63]: portfolio_q2_ret = secdata_group[random_tickers]
    portfolio_q2_ret
```

Out[63]:

Ticker #	1	2	3	4	5	6	7	8	
0	-0.015048	-0.011842	0.030252	-0.024729	0.000246	-0.004212	-0.072416	-0.038290	0.0
1	0.026042	0.032756	0.008157	0.004754	-0.009089	0.041823	-0.072706	0.033889	0.0
2	0.031472	-0.007478	0.062298	0.014196	0.017848	-0.003608	0.097044	-0.004120	0.0
3	0.012795	-0.007534	0.022848	-0.005184	0.031417	0.022635	0.062683	0.009712	0.0
4	0.045675	0.012042	-0.067014	0.001042	-0.026446	0.034086	0.006064	-0.004809	0.0
1506	0.000990	0.021250	0.009363	0.011190	0.000242	0.034339	0.019135	0.000760	0.0
1507	0.002308	-0.014688	-0.035250	-0.010060	-0.003867	0.012294	0.016327	0.002658	0.0
1508	-0.002303	-0.004348	-0.007692	0.013720	-0.011160	-0.011861	0.012450	-0.001515	0.0
1509	0.025387	0.016843	0.007752	-0.005013	0.006133	0.012147	0.015470	-0.002275	0.0
1510	-0.000965	-0.011043	0.003846	-0.018136	-0.012924	-0.004290	-0.001953	-0.009122	0.0

Out[64]:

_	Ticker #	1	2	3	4	5	6	7	
	0	13713091.20	32494080.25	1031397.02	237003.60	3004886.52	7.847234e+06	325464.88	6
	1	14070202.95	33558466.90	1039809.72	238130.40	2977576.08	8.175431e+06	301801.76	6
	2	14513021.52	33307513.95	1104587.51	241510.80	3030720.72	8.145930e+06	331089.72	6
	3	14698719.63	33056561.00	1129825.61	240258.80	3125938.20	8.330311e+06	351843.44	6
	4	15370089.72	33454624.30	1054111.31	240509.20	3043268.76	8.614257e+06	353977.00	6
	1506	10467246.96	15921336.52	725246.06	342293.84	3915830.78	1.882777e+08	539539.00	7
	1507	10491404.80	15687485.80	699680.80	338850.24	3900689.82	1.905925e+08	548347.80	7
	1508	10467246.96	15619279.34	694298.64	343499.10	3857159.56	1.883318e+08	555174.62	7
	1509	10732983.20	15882361.40	699680.80	341777.30	3880817.31	1.906195e+08	563763.20	7
	1510	10838179.17	15706973.36	702371.88	335578.82	3830662.88	1.898017e+08	562662.10	7

1511 rows × 1877 columns

```
In [65]: portfolio_q2_cap = secdata_cap_group[random_tickers]
    portfolio_q2_cap
```

Out[65]:

Ticker #	1	2	3	4	5	6	7	
0	13713091.20	32494080.25	1031397.02	237003.60	3004886.52	7.847234e+06	325464.88	6
1	14070202.95	33558466.90	1039809.72	238130.40	2977576.08	8.175431e+06	301801.76	6
2	14513021.52	33307513.95	1104587.51	241510.80	3030720.72	8.145930e+06	331089.72	6
3	14698719.63	33056561.00	1129825.61	240258.80	3125938.20	8.330311e+06	351843.44	6
4	15370089.72	33454624.30	1054111.31	240509.20	3043268.76	8.614257e+06	353977.00	6
•••								
1506	10467246.96	15921336.52	725246.06	342293.84	3915830.78	1.882777e+08	539539.00	7
1507	10491404.80	15687485.80	699680.80	338850.24	3900689.82	1.905925e+08	548347.80	7
1508	10467246.96	15619279.34	694298.64	343499.10	3857159.56	1.883318e+08	555174.62	7
1509	10732983.20	15882361.40	699680.80	341777.30	3880817.31	1.906195e+08	563763.20	7
1510	10838179.17	15706973.36	702371.88	335578.82	3830662.88	1.898017e+08	562662.10	7

Loading [MathJax]/jar/putput/WSML-F66/ieojarnns

For part b:

Standard deviation of portfolio = portfolio volatility.

Equation:

$$\hat{\sigma}_{Portfolio} = \sqrt{w_T \cdot \Sigma \cdot w}$$

where:

- w is portfolio weights
- Σ is covariance matrix
- · the dot-multiplication for matrix multiplication
- $\hat{\sigma}_{Portfolio}$ is the estimated portfolio volatility/standard deviation

```
In [66]: #function to find portfolio standard deviation
    def sd_portfolio(cov_mat, arr_weights):
        if np.isnan(cov_mat).any():
            return cov_mat
        return np.dot(np.dot(np.transpose(arr_weights), cov_mat), arr_weight
        s)**0.5
```

Rolling Window 504

i) Generate a covariance matrixes for generated portfolio.

```
In [67]:
            cov_df_504 = portfolio_q2_ret.rolling(504).cov()
            cov df 504.dropna(inplace = True)
            cov_df_504.drop(cov_df_504.tail(100).index, inplace = True)
            cov_df_504_np = cov_df_504.to_numpy()
            cov df 504
Out[67]:
                   Ticker
                                 1
                                           2
                                                     3
                                                                        5
                                                                                  6
                                                                                           7
                                                                                                     8
                   Ticker
                          0.000438
                                    0.000085
                                              0.000203
                                                       0.000117
                                                                 0.000071
                                                                           0.000140
                                                                                    0.000142
                                                                                              0.000058
              503
                       1
                          0.000085
                                    0.000255
                                              0.000123
                                                       0.000068
                                                                 0.000062
                                                                           0.000122
                                                                                     0.000086
                                                                                              0.000053
                          0.000203
                                    0.000123
                                              0.000910
                                                       0.000135
                                                                 0.000131
                                                                           0.000171
                                                                                     0.000280
                                                                                              0.000100
                          0.000117
                                    0.000068
                                              0.000135
                                                       0.000482
                                                                 0.000065
                                                                           0.000090
                                                                                     0.000122
                                                                                              0.000040
                          0.000071
                                    0.000062
                                              0.000131
                                                       0.000065
                                                                 0.000316
                                                                           0.000070
                                                                                     0.000099
                                                                                              0.000007
                                ...
                                                                       ...
                                                                                 ...
                                                                                                     ...
                          0.000409
             1509
                                    0.000568
                                              0.000574
                                                       0.000460
                                                                 0.000312
                                                                           0.000247
                                                                                     0.000448
                                                                                              0.000218
                                                                                                        0.
                      96
                          0.000689
                                    0.001155
                                              0.001032
                                                       0.000897
                                                                 0.000628
                                                                           0.000641
                                                                                     0.000685
                                                                                              0.000323
                          0.000728
                                    0.000893
                                              0.002917
                                                       0.001070
                                                                 0.000794
                                                                           0.000664
                                                                                     0.000785
                                                                                              0.000371
                          0.000591
                                    0.000803
                                              0.000918
                                                       0.000784
                                                                 0.000431
                                                                           0.000454
                                                                                     0.000610
                                                                                              0.000323
                          0.000938
                                    0.001578
                                              0.001011
                                                       0.000973
                                                                 0.000742
                                                                           0.000784
                                                                                     0.000960
                                                                                              0.000419 0.
```

ii) Estimate the standard deviations of the portfolio over rw (from the last day in the rolling window).

Out[68]:

Ticker #	1	2	3	4	5	6	7	8	9
0	0.018568	0.043998	0.001397	0.000321	0.004069	0.010625	0.000441	0.008199	0.000216
1	0.018809	0.044861	0.001390	0.000318	0.003980	0.010929	0.000403	0.008369	0.000217
2	0.019375	0.044465	0.001475	0.000322	0.004046	0.010875	0.000442	0.008323	0.000218
3	0.019478	0.043805	0.001497	0.000318	0.004142	0.011039	0.000466	0.008342	0.000219
4	0.020277	0.044135	0.001391	0.000317	0.004015	0.011364	0.000467	0.008265	0.000219
1505	0.013604	0.020282	0.000935	0.000440	0.005093	0.236809	0.000689	0.009864	0.000120
1506	0.013457	0.020469	0.000932	0.000440	0.005034	0.242061	0.000694	0.009756	0.000119
1507	0.013420	0.020067	0.000895	0.000433	0.004990	0.243796	0.000701	0.009732	0.000123
1508	0.013447	0.020065	0.000892	0.000441	0.004955	0.241941	0.000713	0.009759	0.000125
1509	0.013719	0.020300	0.000894	0.000437	0.004960	0.243645	0.000721	0.009688	0.000126

1510 rows × 100 columns

```
In [69]: sd_port_504 = []
for i in range(0, len(cov_df_504_np), 100):
    idx = 0
        sd_port_504.append(sd_portfolio(cov_df_504_np[i:i+100], arr_weights_
        q2_504[idx]))
        idx += 1
        sd_port_504_arr = np.array(sd_port_504)
        sd_port_504_arr
```

```
Out[69]: array([0.00820984, 0.00824556, 0.00823351, ..., 0.03161844, 0.03161853, 0.03161824])
```

iii) Using the market capitalization weights and returns (from the day following the last day in the rolling window) of your securities, calculate the one-day ahead return of the portfolio, \tilde{r}_{p} .

iv) Calculate the standardized outcome, \tilde{z}_p , where $\tilde{z}_p = \frac{\tilde{r}_p}{\hat{\sigma}_p}$ where we make the simplifying assumption that $E[\tilde{r}_p] = 0$.

Out[299]:

	Standardized Outcome
504	2.224203
505	0.684265
506	-0.066881
507	1.336911
508	0.451453

Rolling Window 252

i) Generate a covariance matrixes for generated portfolio.

```
In [72]:
            cov_df_252 = portfolio_q2_ret.rolling(252).cov()
            cov df 252.dropna(inplace = True)
            cov_df_252.drop(cov_df_252.tail(100).index, inplace = True)
            cov_df_252_np = cov_df_252.to_numpy()
            cov df 252
Out[72]:
                   Ticker
                                 1
                                          2
                                                    3
                                                                       5
                                                                                 6
                                                                                           7
                                                                                                    8
                   Ticker
                          0.000583
                                   0.000118
                                             0.000287
                                                       0.000161
                                                                0.000108
                                                                          0.000154
                                                                                    0.000203
                                                                                             0.000078
              251
                       1
                          0.000118
                                   0.000327
                                             0.000146
                                                       0.000086
                                                                0.000071
                                                                          0.000127
                                                                                    0.000116
                                                                                             0.000072
                                    0.000146
                          0.000287
                                             0.000980
                                                       0.000183
                                                                0.000155
                                                                          0.000187
                                                                                    0.000392
                                                                                            0.000126
                          0.000161
                                    0.000086
                                             0.000183
                                                       0.000538
                                                                 0.000077
                                                                          0.000067
                                                                                    0.000177
                                                                                             0.000052
                          0.000108
                                    0.000071
                                             0.000155
                                                       0.000077
                                                                 0.000305
                                                                          0.000057
                                                                                    0.000108
                                                                                             0.000014
                                                             ...
                                                                                                    ...
             1509
                          0.000361
                                    0.000421
                                             0.000348
                                                       0.000372
                                                                 0.000114
                                                                          0.000126
                                                                                    0.000305
                                                                                             0.000147
                                                                                                       0.
                      96
                          0.000467
                                    0.000730
                                             0.000631
                                                       0.000512
                                                                 0.000308
                                                                          0.000345
                                                                                    0.000420
                                                                                             0.000180
                          0.000628
                                    0.001012
                                             0.001642
                                                       0.000609
                                                                0.000306
                                                                          0.000381
                                                                                    0.000467
                                                                                             0.000249
                          0.000455
                                    0.000677
                                             0.000675
                                                       0.000526
                                                                0.000225
                                                                          0.000251
                                                                                    0.000378
                                                                                             0.000226
```

125900 rows × 100 columns

0.000725

ii) Estimate the standard deviations of the portfolio over rw (from the last day in the rolling window).

0.000937

0.000610

0.000317

0.000482

0.000615 0.000217 0.

0.001194

Out[73]:

Ticker #	1	2	3	4	5	6	7	8	9
0	0.018568	0.043998	0.001397	0.000321	0.004069	0.010625	0.000441	0.008199	0.000216
1	0.018809	0.044861	0.001390	0.000318	0.003980	0.010929	0.000403	0.008369	0.000217
2	0.019375	0.044465	0.001475	0.000322	0.004046	0.010875	0.000442	0.008323	0.000218
3	0.019478	0.043805	0.001497	0.000318	0.004142	0.011039	0.000466	0.008342	0.000219
4	0.020277	0.044135	0.001391	0.000317	0.004015	0.011364	0.000467	0.008265	0.000219
									•••
1505	0.013604	0.020282	0.000935	0.000440	0.005093	0.236809	0.000689	0.009864	0.000120
1506	0.013457	0.020469	0.000932	0.000440	0.005034	0.242061	0.000694	0.009756	0.000119
1507	0.013420	0.020067	0.000895	0.000433	0.004990	0.243796	0.000701	0.009732	0.000123
1508	0.013447	0.020065	0.000892	0.000441	0.004955	0.241941	0.000713	0.009759	0.000125
1509	0.013719	0.020300	0.000894	0.000437	0.004960	0.243645	0.000721	0.009688	0.000126

1510 rows × 100 columns

```
In [74]: sd_port_252 = []
for i in range(0, len(cov_df_252_np), 100):
    idx = 0
        sd_port_252.append(sd_portfolio(cov_df_252_np[i:i+100], arr_weights_
        q2_252[idx]))
        idx += 1
        sd_port_252_arr = np.array(sd_port_252)
        sd_port_252_arr
```

```
Out[74]: array([0.00848636, 0.00849811, 0.00850478, ..., 0.03044609, 0.03043997, 0.03041131])
```

iii) Using the market capitalization weights and returns (from the day following the last day in the rolling window) of your securities, calculate the one-day ahead return of the portfolio, \tilde{r}_n .

iv) Calculate the standardized outcome, \tilde{z}_p , where $\tilde{z}_p = \frac{\tilde{r}_p}{\hat{\sigma}_p}$ where we make the simplifying assumption that $E[\tilde{r}_p] = 0$.

Out[76]:

	Standardized Outcome
252	-0.758400
253	-1.348626
254	-0.294432
255	0.541728
256	0.640736
1506	0.397123
1507	0.170497
1508	-0.136179
1509	0.169013
1510	-0.311215

1259 rows × 1 columns

Rolling Window 126
Loading [MathJax]/jax/output/HTML-CSS/jax.js

i) Generate a covariance matrixes for generated portfolio.

```
In [77]:
           cov_df_126 = portfolio_q2_ret.rolling(126).cov()
           cov df 126.dropna(inplace = True)
           cov_df_126.drop(cov_df_126.tail(100).index, inplace = True)
           cov_df_126_np = cov_df_126.to_numpy()
           cov df 126
Out[77]:
                 Ticker
                               1
                                        2
                                                                   5
                                                                             6
                                                                                      7
                                                 3
                                                                                               8
                 Ticker
                                                                      0.000183
                                                                               0.000176 0.000096
             125
                      1
                        0.000528
                                 0.000192
                                           0.000244
                                                    0.000163
                                                             0.000079
                                  0.000408
                                           0.000228
                                                    0.000095
                                                             0.000062
                                                                                        0.000098
                        0.000192
                                                                      0.000162
                                                                               0.000170
                        0.000244
                                  0.000228
                                           0.001045
                                                    0.000181
                                                             0.000174
                                                                      0.000204
                                                                               0.000361
                                                                                        0.000105
                        0.000163
                                  0.000095
                                           0.000181
                                                    0.000595
                                                             0.000054
                                                                      0.000046
                                                                               0.000164
                                                                                        0.000057
                        0.000079
                                  0.000062
                                           0.000174
                                                    0.000054
                                                             0.000228
                                                                      0.000089
                                                                               0.000104
                                                                                        0.000034
            1509
                        0.000177
                                  0.000201
                                           0.000162
                                                    0.000103
                                                             0.000020
                                                                      0.000089
                                                                               0.000153
                                                                                        0.000083
                        0.000233
                                  0.000360
                                           0.000289
                                                    0.000181
                                                             0.000154
                                                                      0.000157
                                                                               0.000230
                                                                                       0.000081
                        0.000241
                                  0.000462
                                           0.000875
                                                    0.000252
                                                             0.000170
                                                                      0.000176
                                                                               0.000315 0.000113
                        0.000180
                                  0.000191
                                           0.000192
                                                    0.000191
                                                             0.000055
                                                                      0.000075
                                                                               0.000078
                                                                                        0.000078
                        0.000197
                                                                     0.000283 0.000283 0.000072 0.
```

138500 rows × 100 columns

ii) Estimate the standard deviations of the portfolio over rw (from the last day in the rolling window).

Out[78]:

Ticker #	1	2	3	4	5	6	7	8	9
0	0.018568	0.043998	0.001397	0.000321	0.004069	0.010625	0.000441	0.008199	0.000216
1	0.018809	0.044861	0.001390	0.000318	0.003980	0.010929	0.000403	0.008369	0.000217
2	0.019375	0.044465	0.001475	0.000322	0.004046	0.010875	0.000442	0.008323	0.000218
3	0.019478	0.043805	0.001497	0.000318	0.004142	0.011039	0.000466	0.008342	0.000219
4	0.020277	0.044135	0.001391	0.000317	0.004015	0.011364	0.000467	0.008265	0.000219
1505	0.013604	0.020282	0.000935	0.000440	0.005093	0.236809	0.000689	0.009864	0.000120
1506	0.013457	0.020469	0.000932	0.000440	0.005034	0.242061	0.000694	0.009756	0.000119
1507	0.013420	0.020067	0.000895	0.000433	0.004990	0.243796	0.000701	0.009732	0.000123
1508	0.013447	0.020065	0.000892	0.000441	0.004955	0.241941	0.000713	0.009759	0.000125
1509	0.013719	0.020300	0.000894	0.000437	0.004960	0.243645	0.000721	0.009688	0.000126

1510 rows × 100 columns

```
In [79]: sd_port_126 = []
for i in range(0, len(cov_df_126_np), 100):
        idx = 0
        sd_port_126.append(sd_portfolio(cov_df_126_np[i:i+100], arr_weights_
        q2_126[idx]))
        idx += 1
        sd_port_126_arr = np.array(sd_port_126)
        sd_port_126_arr
Out[79]: array([0.00840445, 0.0084857, 0.00841868, ..., 0.02738999, 0.02715904,
```

```
0.02676144])
```

iii) Using the market capitalization weights and returns (from the day following the last day in the rolling window) of your securities, calculate the one-day ahead return of the portfolio, \tilde{r}_n .

iv) Calculate the standardized outcome, \tilde{z}_p , where $\tilde{z}_p = \frac{\tilde{r}_p}{\hat{\sigma}_p}$ where we make the simplifying assumption that $E[\tilde{r}_p] = 0$.

Out[81]:

	Standardized Outcome
126	-1.502669
127	0.066201
128	-0.734973
129	-0.016849
130	0.009584
1506	0.440712
1507	0.189176
1508	-0.151373
1509	0.189431
1510	-0.353660

1385 rows × 1 columns

Rolling Window 63

Loading [MathJax]/jax/output/HTML-CSS/jax.js

i) Generate a covariance matrixes for generated portfolio.

```
In [82]:
            cov_df_63 = portfolio_q2_ret.rolling(63).cov()
            cov df 63.dropna(inplace = True)
            cov_df_63.drop(cov_df_63.tail(100).index, inplace = True)
            cov df 63 np = cov df 63.to numpy()
            cov df 63
Out[82]:
                  Ticker
                                1
                                          2
                                                    3
                                                                       5
                                                                                           7
                                                                                 6
                                                                                                    8
                  Ticker
                                                                                    0.000192 0.000119
              62
                       1
                         0.000632
                                    0.000198
                                             0.000263
                                                       0.000097
                                                                 0.000066
                                                                           0.000207
                         0.000198
                                    0.000391
                                             0.000206
                                                       -0.000027
                                                                 0.000041
                                                                                    0.000150
                                                                                              0.000113
                                                                           0.000140
                         0.000263
                                    0.000206
                                             0.001327
                                                       0.000140
                                                                 0.000238
                                                                           0.000196
                                                                                    0.000387
                                                                                              0.000139
                         0.000097
                                   -0.000027
                                             0.000140
                                                        0.000626
                                                                 0.000007
                                                                           -0.000044
                                                                                    0.000040
                                                                                              0.000023
                         0.000066
                                    0.000041
                                             0.000238
                                                       0.000007
                                                                 0.000237
                                                                           0.000092
                                                                                    0.000085
                                                                                              0.000040
            1509
                         0.000241
                                    0.000316
                                             0.000219
                                                       0.000169
                                                                 0.000143
                                                                           0.000141
                                                                                    0.000228
                                                                                             0.000099
                         0.000248
                                    0.000427
                                             0.000427
                                                       0.000238
                                                                 0.000290
                                                                           0.000161
                                                                                    0.000354
                                                                                              0.000147
                         0.000271
                                    0.000581
                                             0.001058
                                                       0.000278
                                                                 0.000306
                                                                           0.000132 0.000350
                                                                                              0.000154
                      98
                          0.000113
                                    0.000208
                                             0.000064
                                                       0.000106
                                                                 0.000098
                                                                           0.000015 0.000145 0.000074
                                                                           0.000252 0.000140 0.000189
                     100
                         0.000247
                                    0.000608 0.000099
                                                       0.000176 0.000212
```

144800 rows × 100 columns

ii) Estimate the standard deviations of the portfolio over rw (from the last day in the rolling window).

Out[83]:

Ticker #	1	2	3	4	5	6	7	8	9
0	0.018568	0.043998	0.001397	0.000321	0.004069	0.010625	0.000441	0.008199	0.000216
1	0.018809	0.044861	0.001390	0.000318	0.003980	0.010929	0.000403	0.008369	0.000217
2	0.019375	0.044465	0.001475	0.000322	0.004046	0.010875	0.000442	0.008323	0.000218
3	0.019478	0.043805	0.001497	0.000318	0.004142	0.011039	0.000466	0.008342	0.000219
4	0.020277	0.044135	0.001391	0.000317	0.004015	0.011364	0.000467	0.008265	0.000219
1505	0.013604	0.020282	0.000935	0.000440	0.005093	0.236809	0.000689	0.009864	0.000120
1506	0.013457	0.020469	0.000932	0.000440	0.005034	0.242061	0.000694	0.009756	0.000119
1507	0.013420	0.020067	0.000895	0.000433	0.004990	0.243796	0.000701	0.009732	0.000123
1508	0.013447	0.020065	0.000892	0.000441	0.004955	0.241941	0.000713	0.009759	0.000125
1509	0.013719	0.020300	0.000894	0.000437	0.004960	0.243645	0.000721	0.009688	0.000126

1510 rows × 100 columns

```
Out[84]: array([0.00885192, 0.00908816, 0.00906737, ..., 0.01689205, 0.01687095, 0.01685115])
```

iii) Using the market capitalization weights and returns (from the day following the last day in the rolling window) of your securities, calculate the one-day ahead return of the portfolio, \tilde{r}_{p} .

```
In [85]: #getting one-day ahead returns array
         dayahead63 port ret q2 = []
         dayahead63 ret q2 = portfolio q2 ret.loc[63:1510].to numpy()
         dayahead63_w q2 = weights q2_63.loc[63:1510].to_numpy()
         for i in range(0, len(dayahead63_w_q2)):
             dayahead63 port ret q2.append(np.multiply(dayahead63 ret q2[i], daya
         head63 w q2[i])
         dayahead63 port ret q2 arr = np.sum(np.array(dayahead63 port ret q2), ax
         is = 1)
         dayahead63_port_ret_q2_arr
Out[85]: array([ 0.01740121, 0.0116785 , -0.00496981, ..., -0.00414611,
                 0.00514476, -0.009464441)
```

iv) Calculate the standardized outcome, \tilde{z}_p , where $\tilde{z}_p = \frac{\tilde{r}_p}{\hat{\sigma}_n}$ where we make the simplifying assumption that $E[\tilde{r}_p] = 0.$

```
In [86]:
         standardized outcomes 63 q2 = dayahead63 port ret q2 arr / sd port 63 ar
         std_outcomes_63_q2 = pd.DataFrame(standardized_outcomes_63_q2)
         std outcomes 63 q2.index += 63
         std_outcomes_63_q2.rename(columns={0: "Standardized Outcome"}, inplace =
         True)
         std outcomes 63 q2
```

Out[86]:

	Standardized Outcome
63	1.965812
64	1.285023
65	-0.548099
66	-0.525563
67	0.197667
1506	0.706105
1507	0.302347
1508	-0.245447
1509	0.304948
1510	-0.561650

1448 rows × 1 columns

b) Compute bias statistics.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

```
In [87]: bias_stat_q2_504 = np.std(standardized_outcomes_504_q2)
    bias_stat_q2_252 = np.std(standardized_outcomes_252_q2)
    bias_stat_q2_126 = np.std(standardized_outcomes_126_q2)
    bias_stat_q2_63 = np.std(standardized_outcomes_63_q2)
    print(bias_stat_q2_504, bias_stat_q2_252, bias_stat_q2_126, bias_stat_q2_63)

1.1687924023168035 1.0366178517316669 0.9687974333689725 0.946844788289
987
```

Rolling window 63 gives closest bias statistic to 1. ldk why.

Question 3

We now consider the market model approach to estimating volatility. Each step below shouldbe completed using 504, 252, 126, and 63 day rolling windows.

Portfolio from part 2:

```
portfolio q2 ret
In [88]:
Out[88]:
             Ticker
                            1
                                       2
                                                  3
                                                            4
                                                                       5
                                                                                  6
                                                                                            7
                                                                                                       8
                    -0.015048 -0.011842
                                           0.030252 -0.024729
                 0
                                                                0.000246
                                                                          -0.004212 -0.072416 -0.038290
                                                                                                          0.0
                     0.026042
                                0.032756
                                          0.008157
                                                     0.004754
                                                               -0.009089
                                                                           0.041823 -0.072706
                                                                                                0.033889
                                                                                                          0.0
                     0.031472 -0.007478
                                           0.062298
                                                     0.014196
                                                                0.017848
                                                                          -0.003608
                                                                                     0.097044
                                                                                               -0.004120
                                                                                                          0.0
                 2
                     0.012795
                               -0.007534
                                           0.022848
                                                     -0.005184
                                                                0.031417
                                                                           0.022635
                                                                                     0.062683
                                                                                                0.009712
                                                                                                          0.0
                 3
                                0.012042
                     0.045675
                                          -0.067014
                                                     0.001042
                                                               -0.026446
                                                                                               -0.004809 0.0
                                                                           0.034086
                                                                                     0.006064
                     0.000990
                                0.021250
                                           0.009363
                                                     0.011190
                                                                0.000242
                                                                           0.034339
                                                                                     0.019135
                                                                                                0.000760 0.0
              1506
                                          -0.035250
                                                               -0.003867
              1507
                     0.002308
                               -0.014688
                                                     -0.010060
                                                                           0.012294
                                                                                     0.016327
                                                                                                0.002658 0.0
                     -0.002303 -0.004348
                                         -0.007692
                                                     0.013720 -0.011160
                                                                         -0.011861
                                                                                     0.012450 -0.001515 0.0
              1508
                     0.025387
                                0.016843
                                          0.007752
                                                    -0.005013
                                                                0.006133
                                                                           0.012147
                                                                                     0.015470
                                                                                               -0.002275 0.0
              1509
              1510
                    -0.000965 -0.011043
                                          0.003846 -0.018136 -0.012924 -0.004290 -0.001953 -0.009122 0.0
```

In [89]: portfolio_q2_cap

Out[89]:

Ticker #	1	2	3	4	5	6	7	
0	13713091.20	32494080.25	1031397.02	237003.60	3004886.52	7.847234e+06	325464.88	6
1	14070202.95	33558466.90	1039809.72	238130.40	2977576.08	8.175431e+06	301801.76	6
2	14513021.52	33307513.95	1104587.51	241510.80	3030720.72	8.145930e+06	331089.72	6
3	14698719.63	33056561.00	1129825.61	240258.80	3125938.20	8.330311e+06	351843.44	6
4	15370089.72	33454624.30	1054111.31	240509.20	3043268.76	8.614257e+06	353977.00	6
1506	10467246.96	15921336.52	725246.06	342293.84	3915830.78	1.882777e+08	539539.00	7
1507	10491404.80	15687485.80	699680.80	338850.24	3900689.82	1.905925e+08	548347.80	7
1508	10467246.96	15619279.34	694298.64	343499.10	3857159.56	1.883318e+08	555174.62	7
1509	10732983.20	15882361.40	699680.80	341777.30	3880817.31	1.906195e+08	563763.20	7
1510	10838179.17	15706973.36	702371.88	335578.82	3830662.88	1.898017e+08	562662.10	7

1511 rows × 100 columns

In [90]: df_weights = df_weights_q2_504
df_weights

Out[90]:

Ticker #	1	2	3	4	5	6	7	8	g
0	0.018568	0.043998	0.001397	0.000321	0.004069	0.010625	0.000441	0.008199	0.000216
1	0.018809	0.044861	0.001390	0.000318	0.003980	0.010929	0.000403	0.008369	0.000217
2	0.019375	0.044465	0.001475	0.000322	0.004046	0.010875	0.000442	0.008323	0.000218
3	0.019478	0.043805	0.001497	0.000318	0.004142	0.011039	0.000466	0.008342	0.000219
4	0.020277	0.044135	0.001391	0.000317	0.004015	0.011364	0.000467	0.008265	0.000219
				•••	•••	•••	•••		•••
1505	0.013604	0.020282	0.000935	0.000440	0.005093	0.236809	0.000689	0.009864	0.000120
1506	0.013457	0.020469	0.000932	0.000440	0.005034	0.242061	0.000694	0.009756	0.000119
1507	0.013420	0.020067	0.000895	0.000433	0.004990	0.243796	0.000701	0.009732	0.000123
1508	0.013447	0.020065	0.000892	0.000441	0.004955	0.241941	0.000713	0.009759	0.000125
1509	0.013719	0.020300	0.000894	0.000437	0.004960	0.243645	0.000721	0.009688	0.000126

Out[20]:

Ticker #	1	2	3	4	5	6	7	8	
0	-0.015088	-0.011882	0.030212	-0.024769	0.000206	-0.004252	-0.072456	-0.038330	0.0
1	0.026002	0.032716	0.008117	0.004714	-0.009129	0.041783	-0.072746	0.033849	0.0
2	0.031432	-0.007518	0.062258	0.014156	0.017808	-0.003648	0.097004	-0.004160	0.0
3	0.012755	-0.007574	0.022808	-0.005224	0.031377	0.022595	0.062643	0.009672	0.0
4	0.045635	0.012002	-0.067054	0.001002	-0.026486	0.034046	0.006024	-0.004849	0.0
1506	0.000990	0.021250	0.009363	0.011190	0.000242	0.034339	0.019135	0.000760	0.0
1507	0.002308	-0.014688	-0.035250	-0.010060	-0.003867	0.012294	0.016327	0.002658	0.0
1508	-0.002303	-0.004348	-0.007692	0.013720	-0.011160	-0.011861	0.012450	-0.001515	0.0
1509	0.025387	0.016843	0.007752	-0.005013	0.006133	0.012147	0.015470	-0.002275	0.0
1510	-0.000965	-0.011043	0.003846	-0.018136	-0.012924	-0.004290	-0.001953	-0.009122	0.0

```
In [21]: mkt_risk_prem_df = pd.DataFrame(ffdata['Market Returns'] - ffdata['Risk-
free rate'])
    mkt_risk_prem_df.rename(columns={0:"Market Risk Premium"}, inplace= True
)
    mkt_risk_prem_df = mkt_risk_prem_df.reindex(eqt_risk_prem_df.index)
    mkt_risk_prem_df
```

Out[21]:

	Market Risk Premium
0	-0.00084
1	0.01216
2	0.00186
3	0.00266
4	0.00476
1506	0.00520
1507	0.00100
1508	-0.00090
1509	-0.00070
1510	-0.00880

1511 rows × 1 columns

$$\hat{\sigma}_p^2 = Var(\tilde{r}_p) = w^T \hat{\beta} \hat{\sigma}_M^2 \hat{\beta}^T w + w^T \hat{\Delta} w$$

Rolling Window 504

i) Use OLS to estimate the market betas for each stock:

```
In [116]: betas_q3_504 = np.zeros(shape=(1007,1))
          for col index in range(eqt risk prem df.shape[1]):
               ri minus rf = eqt risk prem df.iloc[:, col index]
               rm_minus_rf = mkt_risk_prem_df[["Market Risk Premium"]]
               col beta = []
               for i in range(1007):
                   model = OLS(ri minus rf[i:i+503], add constant(rm minus rf[i:i+5
          031))
                   res = model.fit()
                   beta = res.params[1]
                   col beta.append(beta)
               betas_q3_504 = np.c_[betas_q3_504, col_beta]
          betas_q3_504
                             , 1.58613189, 1.40039744, ..., 2.1813825 , 1.6023306
Out[116]: array([[0.
          7,
                   2.27424324],
                             , 1.58505739, 1.39895521, ..., 2.18106146, 1.6026596
                  [0.
          7,
                  2.27349407],
                             , 1.56852779, 1.38326599, ..., 2.15678101, 1.6166927
                  [0.
          6,
                  2.2867706 ],
                  . . . ,
                             , 1.04940178, 1.71999022, ..., 1.42024318, 1.0752302
                  [0.
          5,
                  1.69069858],
                             , 1.04934783, 1.71996254, ..., 1.42025387, 1.0754745
                  [0.
          7,
                  1.69115285],
                             , 1.04899455, 1.72005751, ..., 1.42046858, 1.0750120
                  [0.
          8,
                  1.68990684]])
```

```
In [117]: betas_df_q3_504 = pd.DataFrame(betas_q3_504).drop(0, axis = 1)
    betas_df_q3_504
```

Out[117]:

	1	2	3	4	5	6	7	8	9
0	1.586132	1.400397	2.201703	1.143659	0.984847	1.567119	1.805154	0.771245	1.559725
1	1.585057	1.398955	2.201317	1.139775	0.979738	1.564692	1.801294	0.769244	1.564287
2	1.568528	1.383266	2.199448	1.143749	0.980552	1.562290	1.839123	0.762197	1.543885
3	1.565407	1.383734	2.198504	1.141111	0.979743	1.561133	1.843936	0.760247	1.543489
4	1.563436	1.384451	2.197515	1.141732	0.976663	1.560020	1.838144	0.760024	1.542143
1002	1.049304	1.718971	1.326889	1.149744	0.822715	0.948279	1.031868	0.537028	1.998436
1003	1.049207	1.719024	1.326736	1.149722	0.822565	0.948359	1.033234	0.536986	1.998578
1004	1.049402	1.719990	1.325560	1.148348	0.822522	0.949578	1.031047	0.537483	1.995442
1005	1.049348	1.719963	1.325524	1.148276	0.822531	0.949600	1.031096	0.537497	1.995745
1006	1.048995	1.720058	1.325445	1.147740	0.822563	0.949548	1.030476	0.537204	1.996368

1007 rows × 100 columns

ii) Estimate the variance of the market, $\hat{\sigma}_{M}^{2} = Var(\tilde{r}_{M})$ and the idiosyncratic variance, $\hat{\sigma}_{i}^{2} = Var(\tilde{\epsilon}_{i})$, of each security in your portfolio.

```
In [309]: #variance of market returns
    var_rm_q3_504 = list(ffdata['Market Returns'].rolling(504).var().dropna
    ())
    var_rm_q3_504 = var_rm_q3_504[:-1]
    pd.DataFrame(var_rm_q3_504)
```

Out[309]:

0

- 0.000046
- 1 0.000047
- 2 0.000046
- 3 0.000046
- **4** 0.000046
- ...
- 1002 0.000484
- 1003 0.000484
- **1004** 0.000484
- 1005 0.000484
- 1006 0.000484

```
In [50]: var_e_q3_504 = np.zeros(shape=(1007,1))
         for col index in range(eqt risk prem df.shape[1]):
             ri minus rf = eqt risk prem df.iloc[:, col index]
             rm_minus_rf = mkt_risk_prem_df[["Market Risk Premium"]]
             col_vars = []
             for i in range(1007):
                 model = OLS(ri minus rf[i:i+503], add constant(rm minus rf[i:i+5
         031))
                 res = model.fit()
                 varis = res.resid
                 col vars.append(np.var(varis))
             var = q3_504 = np.c [var = q3_504, col_vars]
         var_e_q3_504
                            , 0.00032241, 0.00016527, ..., 0.00090192, 0.0007921
Out[50]: array([[0.
         4,
                 0.00088757],
                            , 0.00032204, 0.00016512, ..., 0.00090189, 0.0007920
                 [0.
         7,
                 0.00088745],
                            , 0.00032268, 0.0001648 , ..., 0.00090647, 0.0007862
                 [0.
         8,
                 0.00088911],
                            , 0.00027802, 0.00092841, ..., 0.00367989, 0.0011591
                 [0.
         9,
                 0.00199991],
                            , 0.00027791, 0.00092886, ..., 0.00368292, 0.0011573
                 [0.
         3,
                 0.00199361],
                            , 0.00027757, 0.00092886, ..., 0.0036828 , 0.0011573
                 [0.
         5,
                 0.00198985]])
```

Out[52]:

	1	2	3	4	5	6	7	8	9
0	0.000322	0.000165	0.000687	0.000422	0.000270	0.000510	0.000968	0.000170	0.000248
1	0.000322	0.000165	0.000685	0.000421	0.000271	0.000510	0.000958	0.000167	0.000249
2	0.000323	0.000165	0.000685	0.000421	0.000271	0.000510	0.000940	0.000166	0.000251
3	0.000321	0.000165	0.000679	0.000421	0.000271	0.000510	0.000929	0.000166	0.000251
4	0.000322	0.000165	0.000679	0.000421	0.000269	0.000510	0.000922	0.000166	0.000251
1002	0.000278	0.000929	0.003222	0.000736	0.000539	0.000473	0.001003	0.000275	0.002759
1003	0.000278	0.000928	0.003221	0.000733	0.000539	0.000473	0.001009	0.000275	0.002759
1004	0.000278	0.000928	0.003220	0.000731	0.000539	0.000475	0.001006	0.000275	0.002754
1005	0.000278	0.000929	0.003222	0.000732	0.000539	0.000475	0.001006	0.000275	0.002755
1006	0.000278	0.000929	0.003222	0.000731	0.000539	0.000475	0.001006	0.000275	0.002754

1007 rows × 100 columns

iii) Using the market capitalization weights (from the last day in the rolling window)of your securities, estimate the variance and standard deviation of your portfolio.

Formula:

$$\hat{\sigma}_p^2 = Var(\tilde{r}_p) = w^T \hat{\beta} \hat{\sigma}_M^2 \hat{\beta}^T w + w^T \hat{\Delta} w$$

```
In [99]:
             df weights 504 = df weights.tail(1007)
             df_weights_504
 Out[99]:
             Ticker
                           1
                                    2
                                             3
                                                                5
                                                                         6
                                                                                  7
                                                                                           8
                                                                                                     9
                    0.018565
                              0.027973
                                       0.001530
                                                0.000238
                                                         0.005111
                                                                  0.066085
                                                                            0.000360
                                                                                              0.000279
               503
                                                                                     0.009388
                    0.018351
                              0.027784
                                       0.001531
                                                0.000238
                                                         0.005027
                                                                  0.067496
                                                                            0.000358
                                                                                              0.000273
               504
                                                                                     0.009413
               505
                    0.018299
                              0.027789
                                       0.001563
                                                0.000236
                                                         0.005035
                                                                  0.067324
                                                                            0.000378
                                                                                     0.009300
                                                                                              0.000273
               506
                    0.018792
                              0.028031
                                       0.001533
                                                0.000237
                                                         0.005063
                                                                  0.066842
                                                                            0.000377
                                                                                     0.009191
                                                                                              0.000277
                    0.018690
                              0.027641
                                       0.001549
                                                0.000233
                                                         0.005003
                                                                  0.067839
                                                                            0.000374
                                                                                     0.008993
                                                                                              0.000275
               507
                                       0.000935
                                                0.000440
                                                                                              0.000120
               1505
                    0.013604
                              0.020282
                                                         0.005093
                                                                  0.236809
                                                                            0.000689
                                                                                     0.009864
                    0.013457
                              0.020469
                                       0.000932
                                                0.000440
                                                         0.005034
                                                                  0.242061
                                                                            0.000694
                                                                                     0.009756
                                                                                              0.000119
               1506
                                                0.000433
                    0.013420
                              0.020067
                                       0.000895
                                                         0.004990
                                                                  0.243796
                                                                            0.000701
                                                                                     0.009732
                                                                                              0.000123
               1507
               1508
                    0.013447
                              0.020065
                                       0.000892
                                                0.000441
                                                         0.004955
                                                                  0.241941
                                                                            0.000713
                                                                                     0.009759
                                                                                              0.000125
                             0.020300
                                       0.000894
                                                0.000437
                                                         0.004960
                                                                  0.243645
                                                                            0.000721
                                                                                     0.009688
                                                                                              0.000126
               1509
                    0.013719
            1007 rows × 100 columns
In [133]:
            var port q3 504 = []
             for i in range(len(df weights 504)):
                 diag_mat = np.diag(vars_df_q3_504.iloc[i])
                 res = var portfolio(df weights 504.iloc[i], betas df q3 504.iloc[i],
             var rm q3 504[i], diag mat)
                 var port q3 504.append(res)
             arr var q3 504 = np.array(var port <math>q3 504)
             arr var q3 504
Out[133]: array([6.63549209e-05, 6.72981929e-05, 6.70513956e-05, ...,
                     4.47347672e-04, 4.46184599e-04, 4.46173349e-04])
In [134]:
            arr sd q3 504 = np.sqrt(arr var q3 504)
             arr sd q3 504
Out[134]: array([0.00814585, 0.00820355, 0.00818849, ..., 0.0211506 , 0.02112308,
                     0.021122821)
```

iv) Using the market capitalization weights and returns (from the day following the last day in the rolling window) of your securities, calculate the one-day ahead return of the portfolio, r_n .

v) Calculate the standardized outcome, z_p , where $z_p = \frac{\dot{r}_p}{\hat{\sigma}_p}$ where we make the simplifying assumption that $E[r_p] = 0$.

Out[147]:

	Standardized Outcome
504	2.241673
505	0.687769
506	-0.067248
507	1.343726
508	0.453598
1506	0.572534
1507	0.245258
1508	-0.196028
1509	0.243561
1510	-0.448067

1007 rows × 1 columns

Rolling Window 252

Loading [MathJax]/jax/output/HTML-CSS/jax.js

i) Use OLS to estimate the market betas for each stock:

```
In [137]:
          betas_q3_252 = np.zeros(shape=(1259,1))
           for col_index in range(eqt_risk_prem_df.shape[1]):
              ri minus rf = eqt risk prem df.iloc[:, col index]
              rm_minus_rf = mkt_risk_prem_df[["Market Risk Premium"]]
              col beta = []
              for i in range(1259):
                   model = OLS(ri minus rf[i:i+251], add constant(rm minus rf[i:i+2
          511))
                   res = model.fit()
                   beta = res.params[1]
                   col beta.append(beta)
              betas q3 252 = np.c [betas q3 252, col beta]
          betas q3 252
                             , 1.9319157 , 1.56218804, ..., 2.6725418 , 1.8120748
Out[137]: array([[0.
          6,
                   2.30861338],
                             , 1.93020096, 1.56099466, ..., 2.67307771, 1.8153182
                  [0.
          3,
                   2.3086432 ],
                             , 1.91678797, 1.5441574 , ..., 2.66836787, 1.8508778
                  [0.
          7,
                  2.30164876],
                  ...,
                             , 1.13115708, 1.93123882, ..., 1.57264432, 1.1709713
                  [0.
          4,
                  1.68377417],
                             , 1.12920755, 1.93157658, ..., 1.57335547, 1.1702091
                  [0.
          4,
                  1.67916135],
                             , 1.14018041, 1.91684191, ..., 1.58306463, 1.1652043
          9,
                   1.69638467]])
```

```
In [138]: betas_df_q3_252 = pd.DataFrame(betas_q3_252).drop(0, axis = 1)
    betas_df_q3_252
```

Out[138]:

	1	2	3	4	5	6	7	8	9
0	1.931916	1.562188	2.317098	1.147359	0.955836	1.385805	2.060276	0.899883	1.342231
1	1.930201	1.560995	2.321713	1.143028	0.955016	1.386188	2.056838	0.895685	1.346941
2	1.916788	1.544157	2.322160	1.195700	0.968974	1.372672	2.155587	0.874056	1.352562
3	1.913509	1.542065	2.354886	1.184452	0.960986	1.348913	2.160270	0.871213	1.352927
4	1.905218	1.541584	2.366488	1.183212	0.951547	1.339436	2.155961	0.868018	1.363342
1254	1.129996	1.931494	1.456411	1.198005	0.573958	0.833084	0.977473	0.467603	2.888859
1255	1.130210	1.932652	1.455659	1.196772	0.573242	0.833962	0.980778	0.467705	2.887693
1256	1.131157	1.931239	1.455531	1.197119	0.573145	0.835204	0.977920	0.467129	2.889860
1257	1.129208	1.931577	1.453296	1.198668	0.573467	0.835939	0.976104	0.466884	2.887394
1258	1.140180	1.916842	1.456712	1.199883	0.564602	0.844310	0.976781	0.461114	2.883868

1259 rows × 100 columns

ii) Estimate the variance of the market, $\hat{\sigma}_{M}^{2} = Var(\tilde{r}_{M})$ and the idiosyncratic variance, $\hat{\sigma}_{i}^{2} = Var(\tilde{\epsilon}_{i})$, of each security in your portfolio.

```
In [140]: var_e_q3_252 = np.zeros(shape=(1259,1))
          for col index in range(eqt risk prem df.shape[1]):
              ri minus rf = eqt risk prem df.iloc[:, col index]
              rm_minus_rf = mkt_risk_prem_df[["Market Risk Premium"]]
              col_vars = []
              for i in range(1259):
                  model = OLS(ri minus rf[i:i+251], add constant(rm minus rf[i:i+2
          511))
                  res = model.fit()
                  varis = res.resid
                  col_vars.append(np.var(varis))
              var e q3_252 = np.c [var e q3_252, col_vars]
          var_e_q3_252
                             , 0.00039619, 0.00020445, ..., 0.00094436, 0.0005457
Out[140]: array([[0.
          4,
                  0.00077488],
                             , 0.00039566, 0.00020412, ..., 0.00094415, 0.0005471
                  [0.
          4,
                  0.00077478],
                             , 0.00039614, 0.00020326, ..., 0.0009464 , 0.0005350
                  [0.
          6,
                  0.00077391],
                             , 0.00027243, 0.00088567, ..., 0.0024766 , 0.0007879
                  [0.
          2,
                  0.00138948],
                             , 0.00026971, 0.00088678, ..., 0.00248556, 0.0007875
                  [0.
          1,
                  0.00137423],
                             , 0.00026425, 0.00087663, ..., 0.00248117, 0.0007877
                  [0.
          3,
                  0.001363 ]])
```

In [141]: vars_df_q3_252 = pd.DataFrame(var_e_q3_252).drop(0, axis = 1)
 vars_df_q3_252

Out[141]:

	1	2	3	4	5	6	7	8	9
0	0.000396	0.000204	0.000711	0.000472	0.000259	0.000552	0.001117	0.000185	0.000216
1	0.000396	0.000204	0.000707	0.000470	0.000259	0.000552	0.001101	0.000179	0.000218
2	0.000396	0.000203	0.000707	0.000481	0.000258	0.000551	0.001063	0.000177	0.000218
3	0.000393	0.000203	0.000699	0.000481	0.000257	0.000553	0.001029	0.000177	0.000218
4	0.000393	0.000203	0.000701	0.000481	0.000254	0.000552	0.001016	0.000177	0.000220
1254	0.000274	0.000891	0.002006	0.000372	0.000411	0.000232	0.000821	0.000233	0.002552
1255	0.000274	0.000888	0.002007	0.000371	0.000410	0.000230	0.000833	0.000233	0.002547
1256	0.000272	0.000886	0.002007	0.000371	0.000410	0.000233	0.000824	0.000232	0.002542
1257	0.000270	0.000887	0.002008	0.000370	0.000410	0.000233	0.000823	0.000232	0.002542
1258	0.000264	0.000877	0.002007	0.000371	0.000407	0.000231	0.000823	0.000231	0.002543

1259 rows × 100 columns

iii) Using the market capitalization weights (from the last day in the rolling window)of your securities, estimate the variance and standard deviation of your portfolio.

Formula:

$$\hat{\sigma}_p^2 = Var(\tilde{r}_p) = w^T \hat{\beta} \hat{\sigma}_M^2 \hat{\beta}^T w + w^T \hat{\Delta} w$$

```
In [142]:
            df weights 252 = df weights.tail(1259)
             df weights 252
Out[142]:
             Ticker
                           1
                                    2
                                             3
                                                               5
                                                                        6
                                                                                  7
                                                                                           8
                                                                                                    9
                    0.014672
                             0.034202
                                      0.001147
                                                0.000248
                                                         0.004016
                                                                  0.032580
                                                                           0.000359
                                                                                              0.000256
               251
                                                                                    0.007714
                    0.014634
                             0.033957
                                       0.001150
                                                0.000233
                                                         0.004031
                                                                  0.032230
                                                                           0.000350
                                                                                              0.000253
               252
                                                                                    0.007694
               253
                    0.014417
                             0.033738
                                       0.001083
                                                0.000234
                                                         0.004051
                                                                  0.032946
                                                                           0.000339
                                                                                    0.007724
                                                                                              0.000252
               254
                    0.014450
                             0.033630
                                       0.001037
                                                0.000234
                                                         0.004070
                                                                  0.033326
                                                                           0.000330
                                                                                    0.007730
                                                                                              0.000244
                    0.014070
                             0.033624
                                       0.001045
                                                0.000230
                                                         0.004048
                                                                  0.033202
                                                                           0.000328
                                                                                    0.007761
                                                                                              0.000248
               255
                                       0.000935
                                                0.000440
                                                                                              0.000120
              1505
                    0.013604
                             0.020282
                                                         0.005093
                                                                  0.236809
                                                                           0.000689
                                                                                    0.009864
                    0.013457
                             0.020469
                                       0.000932
                                                0.000440
                                                         0.005034
                                                                  0.242061
                                                                           0.000694
                                                                                    0.009756
                                                                                              0.000119
              1506
                    0.013420
                             0.020067
                                       0.000895
                                                0.000433
                                                         0.004990
                                                                  0.243796
                                                                           0.000701
                                                                                    0.009732
                                                                                              0.000123
              1507
              1508
                    0.013447
                             0.020065
                                       0.000892
                                                0.000441
                                                         0.004955
                                                                  0.241941
                                                                           0.000713
                                                                                    0.009759
                                                                                              0.000125
                             0.020300
                                      0.000894
                                                0.000437
                                                         0.004960
                                                                  0.243645
                                                                           0.000721
                                                                                    0.009688
                                                                                              0.000126
              1509
                    0.013719
            1259 rows × 100 columns
In [143]:
            var port q3 252 = []
             for i in range(len(df weights 252)):
                 diag_mat = np.diag(vars_df_q3_252.iloc[i])
                 res = var portfolio(df weights 252.iloc[i], betas df q3 252.iloc[i],
            var rm q3 252[i], diag mat)
                 var port q3 252.append(res)
            arr var q3 252 = np.array(var port q3 252)
            arr var q3 252
Out[143]: array([7.10001196e-05, 7.15088950e-05, 7.13106077e-05, ...,
                     2.80209391e-04, 2.79455380e-04, 2.78235687e-04])
In [144]:
            arr sd q3 252 = np.sqrt(arr var q3 252)
             arr sd q3 252
Out[144]: array([0.00842616, 0.00845629, 0.00844456, ..., 0.01673946, 0.01671692,
                     0.0166804 1)
```

iv) Using the market capitalization weights and returns (from the day following the last day in the rolling window) of your securities, calculate the one-day ahead return of the portfolio, r_n .

v) Calculate the standardized outcome, \tilde{z}_p , where $\tilde{z}_p = \frac{\tilde{r}_p}{\hat{\sigma}_p}$ where we make the simplifying assumption that $E[\tilde{r}_p] = 0$.

```
In [146]: standardized_outcomes_252_q3 = dayahead252_port_ret_q3_arr / arr_sd_q3_2
52
    std_outcomes_252_q3 = pd.DataFrame(standardized_outcomes_252_q3)
    std_outcomes_252_q3.index += 252
    std_outcomes_252_q3.rename(columns={0: "Standardized Outcome"}, inplace
    = True)
    std_outcomes_252_q3
```

Out[146]:

S	tandardized Outcome
252	-0.763818
253	-1.355296
254	-0.296531
255	0.545255
256	0.646344
1506	0.722503
1507	0.309746
1508	-0.247685
1509	0.307758
1510	-0.567399

1259 rows × 1 columns

Rolling Window 126

Loading [MathJax]/jax/output/HTML-CSS/jax.js

i) Use OLS to estimate the market betas for each stock:

```
In [148]:
          betas q3 126 = np.zeros(shape=(1385,1))
           for col_index in range(eqt_risk_prem_df.shape[1]):
              ri minus rf = eqt risk prem df.iloc[:, col index]
              rm_minus_rf = mkt_risk_prem_df[["Market Risk Premium"]]
              col beta = []
              for i in range(1385):
                   model = OLS(ri minus rf[i:i+125], add constant(rm minus rf[i:i+1
          251))
                   res = model.fit()
                   beta = res.params[1]
                   col beta.append(beta)
              betas q3 126 = np.c [betas q3 126, col beta]
          betas_q3_126
                             , 1.8587196 , 1.74873984, ..., 2.68095759, 1.5151042
Out[148]: array([[0.
          9,
                   2.36746127],
                             , 1.85954524, 1.74715317, ..., 2.67584122, 1.5196995
                  [0.
          8,
                   2.37150663],
                             , 1.87006592, 1.71116045, ..., 2.74035345, 1.6172243
                  [0.
          2,
                  2.33411603],
                  ...,
                  [0.
                             , 1.18005442, 1.8923816 , ..., 1.65167118, 0.9846047
          7,
                  2.01873032],
                             , 1.181316 , 1.8953813 , ..., 1.62771547, 0.9696146
                  [0.
          3,
                  2.030000541,
                             , 1.17989873, 1.89854685, ..., 1.6231458 , 0.9557467
          7,
                   2.0378085511)
```

```
In [149]: betas_df_q3_126 = pd.DataFrame(betas_q3_126).drop(0, axis = 1)
    betas_df_q3_126
```

Out[149]:

	1	2	3	4	5	6	7	8	9
0	1.858720	1.748740	2.090839	0.863111	0.797002	1.536315	2.082316	0.950925	1.132253
1	1.859545	1.747153	2.090576	0.861535	0.799008	1.546799	2.076093	0.945995	1.132293
2	1.870066	1.711160	2.140906	0.853506	0.832043	1.503603	2.209823	0.932673	1.136640
3	1.860781	1.719649	2.121365	0.852611	0.824514	1.499804	2.184585	0.932889	1.142616
4	1.855515	1.710480	2.139003	0.877110	0.857206	1.489830	2.152956	0.922099	1.178655
1380	1.177943	1.872456	1.285212	0.903495	0.548774	0.877056	1.121534	0.447239	1.635484
1381	1.178430	1.873308	1.284081	0.902287	0.547696	0.878505	1.132335	0.446102	1.637488
1382	1.180054	1.892382	1.269821	0.900144	0.550474	0.888848	1.134361	0.449499	1.629157
1383	1.181316	1.895381	1.273381	0.885996	0.552735	0.893454	1.139273	0.439229	1.626673
1384	1.179899	1.898547	1.262461	0.873377	0.551200	0.896687	1.144386	0.433780	1.616631

1385 rows × 100 columns

ii) Estimate the variance of the market, $\hat{\sigma}_{M}^{2} = Var(\tilde{r}_{M})$ and the idiosyncratic variance, $\hat{\sigma}_{i}^{2} = Var(\tilde{\epsilon}_{i})$, of each security in your portfolio.

```
Out[302]: array([5.67710298e-05, 5.74354641e-05, 5.62886000e-05, ...
1.29130537e-04, 1.28452760e-04, 1.28360577e-04])
```

```
In [151]: var_e_q3_126 = np.zeros(shape=(1385,1))
          for col index in range(eqt risk prem df.shape[1]):
              ri minus rf = eqt risk prem df.iloc[:, col index]
              rm_minus_rf = mkt_risk_prem_df[["Market Risk Premium"]]
              col_vars = []
              for i in range(1385):
                   model = OLS(ri minus rf[i:i+125], add constant(rm minus rf[i:i+1
          25]))
                   res = model.fit()
                   varis = res.resid
                   col_vars.append(np.var(varis))
              var e q3_126 = np.c [var e q3_126, col_vars]
          var_e_q3_126
                             , 0.00033091, 0.00023457, ..., 0.00089622, 0.0006101
Out[151]: array([[0.
          7,
                  0.00083786],
                             , 0.00033016, 0.00023392, ..., 0.00089916, 0.0006110
                  [0.
          3,
                  0.00083976],
                             , 0.0003314 , 0.00023348, ..., 0.00089376, 0.0005843
                  [0.
          4,
                  0.000836031,
                             , 0.00014199, 0.00045503, ..., 0.00159275, 0.0005720
                  [0.
          9,
                  0.00125177],
                  [0.
                             , 0.00014195, 0.0004573 , ..., 0.00159915, 0.0005670
          3,
                  0.00124892],
                             , 0.00014161, 0.00045658, ..., 0.00159687, 0.0005547
                  [0.
          2,
                   0.0012489 ]])
```

In [152]: vars_df_q3_126 = pd.DataFrame(var_e_q3_126).drop(0, axis = 1)
 vars_df_q3_126

Out[152]:

	1	2	3	4	5	6	7	8	9
0	0.000331	0.000235	0.000796	0.000553	0.000191	0.000413	0.001187	0.000131	0.000167
1	0.000330	0.000234	0.000791	0.000548	0.000191	0.000424	0.001148	0.000119	0.000166
2	0.000331	0.000233	0.000789	0.000550	0.000188	0.000421	0.001074	0.000118	0.000166
3	0.000325	0.000237	0.000765	0.000549	0.000188	0.000425	0.001007	0.000118	0.000171
4	0.000325	0.000237	0.000766	0.000551	0.000190	0.000423	0.000982	0.000118	0.000177
1380	0.000145	0.000470	0.001286	0.000267	0.000243	0.000147	0.000671	0.000142	0.001309
1381	0.000142	0.000470	0.001285	0.000267	0.000243	0.000145	0.000701	0.000141	0.001309
1382	0.000142	0.000455	0.001271	0.000266	0.000242	0.000150	0.000702	0.000140	0.001305
1383	0.000142	0.000457	0.001280	0.000262	0.000242	0.000150	0.000703	0.000138	0.001314
1384	0.000142	0.000457	0.001265	0.000253	0.000242	0.000151	0.000698	0.000134	0.001310

1385 rows × 100 columns

iii) Using the market capitalization weights (from the last day in the rolling window)of your securities, estimate the variance and standard deviation of your portfolio.

Formula:

$$\hat{\sigma}_p^2 = Var(\tilde{r}_p) = w^T \hat{\beta} \hat{\sigma}_M^2 \hat{\beta}^T w + w^T \hat{\Delta} w$$

df weights 126 = df weights.tail(1385)

In [153]:

```
df weights 126
Out[153]:
             Ticker
                           1
                                    2
                                             3
                                                                5
                                                                         6
                                                                                  7
                                                                                            8
                                                                                                     9
                    0.018116
                              0.037240
                                       0.001599
                                                0.000318
                                                         0.004287
                                                                  0.015935
                                                                            0.000463
                                                                                              0.000257
                125
                                                                                     0.008304
                    0.017800
                              0.037490
                                       0.001569
                                                0.000324
                                                         0.004315
                                                                  0.016075
                                                                            0.000474
                                                                                              0.000257
               126
                                                                                     0.008177
                                                0.000328
               127
                    0.017727
                              0.038398
                                       0.001550
                                                         0.004267
                                                                  0.015777
                                                                            0.000474
                                                                                     0.008146
                                                                                              0.000264
                    0.017547
                              0.038386
                                       0.001501
                                                0.000322
                                                         0.004119
                                                                  0.015748
                                                                            0.000472
                                                                                     0.008176
                                                                                              0.000255
                                                0.000323
                    0.017530
                              0.038236
                                       0.001515
                                                         0.004116
                                                                  0.015692
                                                                            0.000479
                                                                                     0.008088
                                                                                              0.000256
                129
                                       0.000935
                                                0.000440
                                                                            0.000689
                                                                                              0.000120
               1505
                    0.013604
                              0.020282
                                                         0.005093
                                                                  0.236809
                                                                                     0.009864
                    0.013457
                              0.020469
                                       0.000932
                                                0.000440
                                                         0.005034
                                                                  0.242061
                                                                            0.000694
                                                                                     0.009756
                                                                                              0.000119
               1506
                                                0.000433
                    0.013420
                              0.020067
                                       0.000895
                                                         0.004990
                                                                  0.243796
                                                                            0.000701
                                                                                     0.009732
                                                                                              0.000123
               1507
               1508
                    0.013447
                              0.020065
                                       0.000892
                                                0.000441
                                                         0.004955
                                                                  0.241941
                                                                            0.000713
                                                                                     0.009759
                                                                                              0.000125
                    0.013719
                              0.020300
                                       0.000894
                                                0.000437
                                                         0.004960
                                                                  0.243645
                                                                            0.000721
                                                                                     0.009688
                                                                                              0.000126
               1509
            1385 rows × 100 columns
In [154]:
            var port q3 126 = []
             for i in range(len(df weights 126)):
                 diag_mat = np.diag(vars_df_q3_126.iloc[i])
                 res = var portfolio(df weights 126.iloc[i], betas df q3 126.iloc[i],
             var rm q3 126[i], diag mat)
                 var port q3 126.append(res)
             arr var q3 126 = np.array(var port q3 126)
             arr var q3 126
Out[154]: array([6.97628889e-05, 7.02152997e-05, 6.97454828e-05, ...,
                     1.08765762e-04, 1.07983400e-04, 1.08278851e-04])
In [155]:
             arr sd q3 126 = np.sqrt(arr var q3 126)
             arr sd q3 126
Out[155]: array([0.00835242, 0.00837946, 0.00835138, ..., 0.01042908, 0.01039151,
                     0.010405711)
```

iv) Using the market capitalization weights and returns (from the day following the last day in the rolling window) of your securities, calculate the one-day ahead return of the portfolio, r_n .

v) Calculate the standardized outcome, z_p , where $z_p = \frac{\dot{r}_p}{\hat{\sigma}_p}$ where we make the simplifying assumption that $E[r_p] = 0$.

```
In [158]: standardized_outcomes_126_q3 = dayahead126_port_ret_q3_arr / arr_sd_q3_1
26
    std_outcomes_126_q3 = pd.DataFrame(standardized_outcomes_126_q3)
    std_outcomes_126_q3.index += 126
    std_outcomes_126_q3.rename(columns={0: "Standardized Outcome"}, inplace
    = True)
    std_outcomes_126_q3
```

Out[158]:

	Standardized Outcome
126	-1.512030
127	0.067040
128	-0.740896
129	-0.016961
130	0.009658
1506	1.164179
1507	0.498764
1508	-0.397552
1509	0.495093
1510	-0.909543

1385 rows × 1 columns

Rolling Window 63

i) Use OLS to estimate the market betas for each stock:

```
In [159]:
          betas q3 63 = np.zeros(shape=(1448,1))
           for col_index in range(eqt_risk_prem_df.shape[1]):
               ri minus rf = eqt risk prem df.iloc[:, col index]
               rm_minus_rf = mkt_risk_prem_df[["Market Risk Premium"]]
               col beta = []
               for i in range (1448):
                   model = OLS(ri_minus_rf[i:i+62], add_constant(rm_minus_rf[i:i+62])
          ]))
                   res = model.fit()
                   beta = res.params[1]
                   col beta.append(beta)
               betas q3 63 = np.c [betas q3 63, col beta]
          betas_q3_63
Out[159]: array([[0.
                             , 2.05281222, 1.6314848 , ..., 2.75372606, 1.2764953
          8,
                   2.98277006],
                             , 2.02427953, 1.61056927, ..., 2.7743287 , 1.3806743
                  [0.
          3,
                   3.00345426],
                             , 2.02989276, 1.61751051, ..., 2.95940282, 1.5551235
                  [0.
          9,
                   2.94348151],
                  ...,
                             , 1.17241229, 1.90870263, ..., 2.19046177, 0.8616258
                  [0.
          8,
                   2.04912328],
                             , 1.17280462, 1.90645963, ..., 2.19202489, 0.8599611
                  [0.
          6,
                   2.044744991,
                             , 1.17361875, 1.90209361, ..., 2.19155911, 0.8424587
          6,
                   2.10855709]])
```

```
In [160]: betas_df_q3_63 = pd.DataFrame(betas_q3_63).drop(0, axis = 1)
    betas_df_q3_63
```

Out[160]:

	1	2	3	4	5	6	7	8	9
0	2.052812	1.631485	2.467977	0.149854	0.834601	1.489859	2.200903	0.891679	1.255516
1	2.024280	1.610569	2.470555	0.134584	0.813522	1.469599	2.103833	0.854639	1.232819
2	2.029893	1.617511	2.626662	0.150088	0.836575	1.398232	2.441186	0.785010	1.221262
3	2.002958	1.605841	2.581234	0.202040	0.870995	1.430943	2.490066	0.782768	1.185146
4	1.986856	1.585203	2.553937	0.221884	0.851413	1.438855	2.489432	0.773026	1.202064
1443	1.155123	1.901754	1.162571	0.910696	0.745226	0.835353	1.144480	0.652799	1.932211
1444	1.152748	1.883088	1.184261	0.903087	0.751742	0.834111	1.189235	0.650191	1.972411
1445	1.172412	1.908703	1.270773	0.916972	0.768153	0.839263	1.201479	0.652601	2.109775
1446	1.172805	1.906460	1.270128	0.914495	0.766944	0.837897	1.198084	0.654865	2.110638
1447	1.173619	1.902094	1.272323	0.905755	0.772203	0.841758	1.190653	0.665431	2.118114

1448 rows × 100 columns

ii) Estimate the variance of the market, $\hat{\sigma}_{M}^{2} = Var(\tilde{r}_{M})$ and the idiosyncratic variance, $\hat{\sigma}_{i}^{2} = Var(\tilde{\epsilon}_{i})$, of each security in your portfolio.

```
In [162]: var_e_q3_63 = np.zeros(shape=(1448,1))
           for col index in range(eqt risk prem df.shape[1]):
               ri_minus_rf = eqt_risk_prem_df.iloc[:, col_index]
               rm_minus_rf = mkt_risk_prem_df[["Market Risk Premium"]]
               col vars = []
               for i in range(1448):
                    model = OLS(ri minus rf[i:i+62], add constant(rm minus rf[i:i+62
           1))
                    res = model.fit()
                    varis = res.resid
                    col vars.append(np.var(varis))
               var e q3 63 = np.c [var e q3 63, col vars]
           var_e_q3_63
Out[162]: array([[0.00000000e+00, 3.88278167e-04, 2.37273297e-04, ...,
                    1.09215757e-03, 3.43703982e-04, 1.21146211e-03],
                   [0.00000000e+00, 3.88152295e-04, 2.37854832e-04, ...,
                    1.09327570e-03, 4.02094536e-04, 1.21369986e-03],
                   [0.00000000e+00, 3.88324918e-04, 2.44060545e-04, ...,
                    1.10035869e-03, 3.47754641e-04, 1.21060880e-03],
                   [0.00000000e+00, 8.87651773e-05, 3.92475094e-04, ...,
                    1.01033499e-03, 2.89565134e-04, 1.13675361e-03],
                   [0.00000000e+00, 8.87462678e-05, 3.96649166e-04, ...,
                    1.04796946e-03, 2.89027862e-04, 1.13307292e-03],
                   [0.00000000e+00, 8.87714491e-05, 3.95288783e-04, ...,
                    1.04857770e-03, 2.82756791e-04, 9.51713160e-04]])
In [163]: vars df q3 63 = pd.DataFrame(var e q3 63).drop(0, axis = 1)
           vars df q3 63
Out[163]:
                       1
                               2
                                       3
                                                        5
                                                                6
                                                                        7
                                                                                8
                                                                                         9
              0 0.000388 0.000237 0.000973 0.000625 0.000196 0.000434 0.001506 0.000115 0.000176
              1 0.000388 0.000238 0.000956 0.000614 0.000199 0.000435 0.001449 0.000096 0.000178
              2 0.000388 0.000244
                                0.000970
                                         0.000616  0.000198  0.000428  0.001276  0.000087
                                                                                   0.000179
              3 0.000378 0.000244
                                 0.000919
                                          0.000632
                                                  0.000203 0.000431
                                                                  0.001189 0.000087
                                                                                   0.000186
                0.000379
                        0.000252
                                0.000918
                                         0.000634
                                                  0.000189 0.000431 0.001156 0.000086 0.000191
            1443 0.000090
                         0.000399
                                 0.001592
                                         0.000142 0.000184 0.000189
                                                                  0.000300
                                                                          0.000104 0.001438
            1444 0.000090 0.000392 0.001582 0.000144 0.000183 0.000189 0.000361 0.000104 0.001416
            1445 0.000089 0.000392 0.001560 0.000144 0.000182 0.000202 0.000365 0.000104 0.001352
                0.000089 0.000397 0.001578 0.000145 0.000182 0.000204 0.000368 0.000103 0.001369
            1447 0.000089 0.000395 0.001578 0.000147 0.000184 0.000206 0.000371 0.000098 0.001365
           1448 rows × 100 columns
```

df weights 63

df_weights_63 = df weights.tail(1448)

iii) Using the market capitalization weights (from the last day in the rolling window) of your securities, estimate the variance and standard deviation of your portfolio.

Formula:

In [164]:

$$\hat{\sigma}_{p}^{2} = Var(\tilde{r}_{p}) = w^{T} \hat{\beta} \hat{\sigma}_{M}^{2} \hat{\beta}^{T} w + w^{T} \hat{\Delta} w$$

```
Out[164]:
             Ticker
                                   2
                                                                                7
                          1
                                                              5
                                                                                                  9
                    0.019876
                             0.039362
                                      0.001319
                                               0.000330
                                                        0.003897
                                                                 0.013208
                                                                          0.000505
                                                                                   0.007949
                                                                                            0.000241
                62
                    0.019960
                             0.040117
                                      0.001373 0.000328 0.003792
                                                                 0.013172
                                                                          0.000508
                                                                                   0.007900 0.000238
                    0.019807
                             0.039649
                                      0.001360
                                               0.000336
                                                        0.003860
                                                                 0.013410
                                                                          0.000537
                                                                                            0.000233
                                                                                   0.007826
                    0.019982
                             0.040530
                                      0.001374
                                               0.000334
                                                        0.003871
                                                                 0.013246
                                                                          0.000521
                                                                                   0.007873
                                                                                            0.000229
                             0.038668
                                      0.001337
                                               0.000330
                                                        0.003896
                                                                 0.013063
                                                                          0.000520
                                                                                   0.007886
                                                                                            0.000228
                66
                    0.019650
                 •••
              1505
                    0.013604
                             0.020282
                                      0.000935
                                               0.000440
                                                        0.005093
                                                                 0.236809
                                                                          0.000689
                                                                                   0.009864
                                                                                            0.000120
              1506
                    0.013457
                             0.020469
                                      0.000932
                                               0.000440
                                                        0.005034
                                                                 0.242061
                                                                          0.000694
                                                                                   0.009756
                                                                                            0.000119
                             0.020067
                                      0.000895
                                               0.000433
                                                        0.004990
                                                                 0.243796
                                                                          0.000701
                                                                                   0.009732
                                                                                            0.000123
              1507
                    0.013420
              1508
                    0.013447
                             0.020065
                                      0.000892
                                               0.000441
                                                        0.004955
                                                                 0.241941
                                                                          0.000713
                                                                                   0.009759
                                                                                            0.000125
              1509 0.013719 0.020300 0.000894 0.000437 0.004960 0.243645
                                                                         0.000721 0.009688 0.000126
            1448 rows × 100 columns
In [165]:
           var port q3 63 = []
            for i in range(len(df weights 63)):
                 diag mat = np.diag(vars df q3 63.iloc[i])
                 res = var portfolio(df weights 63.iloc[i], betas df q3 63.iloc[i], v
            ar_rm_q3_63[i], diag mat)
                 var port q3 63.append(res)
            arr var q3 63 = np.array(var port q3 63)
            arr var q3 63
Out[165]: array([7.63172963e-05, 8.01567192e-05, 8.07554042e-05, ...,
                     1.09152319e-04, 1.08705594e-04, 1.09124494e-04)
            arr_sd_q3_63 = np.sqrt(arr_var_q3_63)
In [166]:
            arr sd q3 63
Out[166]: array([0.00873598, 0.00895303, 0.0089864 , ..., 0.0104476 , 0.0104262 ,
```

0.010446271)

iv) Using the market capitalization weights and returns (from the day following the last day in the rolling window) of your securities, calculate the one-day ahead return of the portfolio, r_n .

v) Calculate the standardized outcome, \tilde{z}_p , where $\tilde{z}_p = \frac{\tilde{r}_p}{\hat{\sigma}_p}$ where we make the simplifying assumption that $E[\tilde{r}_p] = 0$.

Out[168]:

	Standardized Outcome
63	1.991902
64	1.304419
65	-0.553037
66	-0.527825
67	0.198191
1506	1.133099
1507	0.485674
1508	-0.396848
1509	0.493445
1510	-0.906012

1448 rows × 1 columns

b) Compute bias statistics.

```
In [169]: bias_stat_q3_504 = np.std(standardized_outcomes_504_q3)
    bias_stat_q3_252 = np.std(standardized_outcomes_252_q3)
    bias_stat_q3_126 = np.std(standardized_outcomes_126_q3)
    bias_stat_q3_63 = np.std(standardized_outcomes_63_q3)
    print(bias_stat_q3_504, bias_stat_q3_252, bias_stat_q3_126, bias_stat_q3_63)
1 3118478769931892 1 1320711225951727 1 0749500838326524 1 057843577865
```

1.3118478769931892 1.1320711225951727 1.0749500838326524 1.057843577865 541

Question 5

```
In [239]: #randomized portfolio indices
stocks = pd.read_csv("fifty_portfolios.csv")
stocks = stocks[0:50]
stocks.head()
```

Out[239]:

	984	1236	505	1235	1552	1732	918	863	169	1157	 349	1588	1731	616	5
0	1757	1199	1673	1702	1511	86	1428	307	170	159	 1044	238	1060	1646	13
1	1212	1755	1549	1121	193	1270	679	34	1816	1626	 1247	484	141	32	5
2	425	1082	1616	784	1197	1067	215	410	1752	1081	 1785	1797	341	997	2
3	1006	110	980	273	682	1473	887	289	989	1341	 508	792	2	1356	13
4	26	1386	766	1435	466	1792	1865	1491	17	79	 1577	1685	1088	247	

5 rows × 100 columns

```
In [240]: best_rolling_window_q3 = 63
    print("Best Rolling Window Market Model:", 63)
```

Best Rolling Window Market Model: 63

```
In [241]:
           betas_df_q3_63
Out[241]:
```

```
2
                                  3
                                                                            7
                                                                                      8
             1
                                                       5
                                                                 6
                                                                                                 9
   0 2.052812
                1.631485
                           2.467977
                                     0.149854
                                                0.834601
                                                         1.489859
                                                                     2.200903
                                                                               0.891679
                                                                                         1.255516
      2.024280
                1.610569
                           2.470555
                                     0.134584
                                                0.813522
                                                          1.469599
                                                                     2.103833
                                                                               0.854639
                                                                                         1.232819
      2.029893
                1.617511
                           2.626662
                                     0.150088
                                                0.836575
                                                          1.398232
                                                                     2.441186
                                                                               0.785010
                                                                                         1.221262
      2.002958
                1.605841
                           2.581234
                                     0.202040
                                                0.870995
                                                          1.430943
                                                                     2.490066
                                                                               0.782768
                                                                                         1.185146
      1.986856
                1.585203
                           2.553937
                                     0.221884
                                                0.851413
                                                          1.438855
                                                                     2.489432
                                                                               0.773026
                                                                                         1.202064
             ...
                       ...
                                                      ...
                                                                 ...
                                                                           ...
     1.155123
                1.901754
                           1.162571
                                     0.910696
                                                0.745226
                                                          0.835353
                                                                     1.144480
                                                                               0.652799
                                                                                         1.932211
1443
     1.152748
                1.883088
                           1.184261
                                     0.903087
                                                0.751742
                                                          0.834111
                                                                     1.189235
                                                                               0.650191
                                                                                         1.972411
1445
     1.172412
                1.908703
                           1.270773
                                     0.916972
                                                0.768153
                                                          0.839263
                                                                     1.201479
                                                                               0.652601
                                                                                         2.109775
     1.172805
                1.906460
                           1.270128
                                     0.914495
                                                0.766944
                                                          0.837897
                                                                     1.198084
                                                                               0.654865
                                                                                         2.110638
                1.902094
     1.173619
                           1.272323
                                     0.905755
                                                0.772203 0.841758
                                                                    1.190653
                                                                               0.665431
                                                                                         2.118114
```

1448 rows × 100 columns

```
df weightz = secdata_cap_group.iloc[:, :].apply(lambda x: x.div(x.sum
In [242]:
          ()), axis=1)
          df weightz
```

Out[242]:

Ticker #	1	2	3	4	5	6	7	8	9
0	0.001326	0.003143	0.000100	0.000023	0.000291	0.000759	0.000031	0.000586	0.000015
1	0.001345	0.003207	0.000099	0.000023	0.000285	0.000781	0.000029	0.000598	0.000015
2	0.001385	0.003178	0.000105	0.000023	0.000289	0.000777	0.000032	0.000595	0.000016
3	0.001399	0.003145	0.000108	0.000023	0.000297	0.000793	0.000033	0.000599	0.000016
4	0.001456	0.003169	0.000100	0.000023	0.000288	0.000816	0.000034	0.000594	0.000016
									•••
1506	0.000934	0.001421	0.000065	0.000031	0.000350	0.016806	0.000048	0.000677	300000.0
1507	0.000936	0.001399	0.000062	0.000030	0.000348	0.016996	0.000049	0.000678	9000000
1508	0.000935	0.001395	0.000062	0.000031	0.000345	0.016821	0.000050	0.000679	9000000
1509	0.000959	0.001419	0.000062	0.000031	0.000347	0.017025	0.000050	0.000677	9000000
1510	0.000977	0.001415	0.000063	0.000030	0.000345	0.017102	0.000051	0.000669	9000000

1511 rows × 1877 columns

```
In [243]:
            def market beta(w, b):
                  return np.dot(np.transpose(w), b)
Loading [MathJax]/jax/output/HTML-CSS/jax.js
```

a)

Date: 12/30/2005 (idx loc = 503)

```
In [304]: betas63_q3_2005 = []
    for i in range(50):
        beta_m = betas_df_q3_63.iloc[63]
        weights = df_weightz[list(stocks.iloc[i])].iloc[63]
        betas_market = market_beta(weights, beta_m)
        betas63_q3_2005.append(betas_market)
        betas63_q3_2005[0:5]
Out[304]: [0.052476585476291554,
        0.060517796382025806,
        0.05266254554281719,
        0.04484296288982689,
        0.05008550819633388]
```

Date: 12/31/2007 (idx loc = 1005)

```
In [305]: betas63_q3_2007 = []
    for i in range(50):
        beta_m = betas_df_q3_63.iloc[942]
        weights = df_weightz[list(stocks.iloc[i])].iloc[942]
        betas_market = market_beta(weights, beta_m)
        betas63_q3_2007.append(betas_market)
        betas63_q3_2007[0:5]
Out[305]: [0.04844186126740678,
        0.05022385833208992,
        0.04548861529658407,
        0.05461929366595343,
        0.061548261018475034]
```

Date: 12/31/2009 (idx loc = 1510)

```
In [306]: betas63_q3_2009 = []
    for i in range(50):
        beta_m = betas_df_q3_63.iloc[1447]
        weights = df_weightz[list(stocks.iloc[i])].iloc[1447]
        betas_market = market_beta(weights, beta_m)
        betas63_q3_2009.append(betas_market)
    betas63_q3_2009[0:5]

Out[306]: [0.041969788001929145,
        0.03609766003979558,
        0.0571643240845565,
        0.05099314794069944,
        0.06269323967843796]
```

b)

Date: 12/30/2005 (idx loc = 503)

```
In [293]: #excludes the first 63 days
    rp_2005 = 1/63*np.sum((dayahead63_port_ret_q3_arr[378:441] - np.array(ff
    data['Risk-free rate'])[441:504]))
    rp_2005

Out[293]: 0.0010859704382670666

In [290]: rm_2005 = 1/63*np.sum((np.array(ffdata['Market Returns'])[441:504] - np.
    array(ffdata['Risk-free rate'])[441:504]))
    rm_2005

Out[290]: 8.365079365079375e-05
```

Date: 12/31/2007 (idx loc = 1005)

Date: 12/31/2009 (idx loc = 1510)