

Sparse Information and Regularization

- High-dimensional data usually have a low dimensional structure.
- Important information of HD data is embedded in a few dimensions (sparse) and the rest are non-informative and noise.

 Regularization helps identify the spares informative features and remove the noise.

Image Compression

• Keep the 1% largest coefficients and set the rest to zero.

rel. error = 0.031

A Simple Example

the signal

- Consider a 1-support signal (i.e., all zeros but one).
- Using Hamming Matrix the signal can be measured in a compressed way

Examples of Random Sensing Matrices

Gaussian random matrix

Rademacher matrix (i.i.d. of +1 and -1 entries)

Fourier random matrix (rows are randomly selected DFT vectors)

Compressive Sensing Framework

If the signal is NOT sparse in original domain, we should transform it into a domain with sparse representation.

Signal Reconstruction from Measurements

• We should solve an underdetermined linear system y = Ax

Search for the sparsest signal that agrees with the measurements

minimize
$$\|\boldsymbol{x}\|_0$$
 subject to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$.
 $\|\boldsymbol{x}\|_0 \doteq \#\{i \mid x_i \neq 0\}$

Non-convex and Interactable

Relaxation of L₀ by L₂

$$\|x\|_p = (\sum_i |x_i|^p)^{1/p}$$

Problem is convex when $p \ge 1$

L₂ Norm: fast but inaccurate results

$$\hat{x} = \arg\min_{y = Ax} \|x\|_2$$

 $\boldsymbol{\mathcal{X}}$

 $\hat{x} = (A^T A)^{-1} A^T y$

Relaxation of L₀ by L₁

minimize $\|x\|_1$ subject to Ax = y. Efficiently solvable

Norm Used	Property	Formulation
L2	Fast, Wrong	$\hat{x} = \arg\min_{y = Ax} x _2$
LO	Slow, Correct	$\hat{x} = \arg\min_{y = Ax} \ x\ _0$
L1	Fast, Mild Oversampling	$\hat{x} = \arg\min_{y = Ax} \ x\ _1$

Example 3: CS Applications for Images

Take M=48640 incoherent measurements

 $f_a = \Psi x$ wavelet coefficients (perfectly sparse)

Solve $\min \|x\|_1$ s.t. $\Phi \Psi x = y$

256*256=65536 pixels

Sparse Wavelet Approximation

Wavelet_OMP_SD_main.m

Example 3: CS Applications for Images

original Image

Recover from ~49k Random Measurement

Wavelet_OMP_SD_main.m

Incoherent Sampling

• Coherence between sensing basis Φ and representation basis Ψ

$$\mu(\Phi, \Psi) = \sqrt{n} \cdot \max_{1 \le k, j \le n} |\langle \varphi_k, \psi_j \rangle|.$$

- If these matrices contain correlated elements, the coherence is large. Otherwise, it is small.
- It can be shown that

$$\mu(\Phi,\Psi) \in [1,\sqrt{n}]$$

• Compressive Sampling is mainly concerned with low coherence pairs.

Guaranteed Recovery

• Theorem: Fix f and suppose that the coefficient sequence x of f in the basis Ψ is S-Sparse. Select m measurements in Φ domain uniformly at random, then if

$$m \ge C \cdot \mu^2(\Phi, \Psi) \cdot S \cdot \log n$$

holds for some positive constant C, the solution of L_1 formulation is exact with overwhelming probability.

- Remarks
 - Role of coherence is important, smaller the coherence, the fewer samples are needed.
 - If incoherence is close to 1, only (S log n) samples are needed instead of n.

(Candès and Tao, '04; Donoho, '04):

Signal Recovery from Noisy Measurements and RIP

$$\min \|x\|_{l_1}$$
 subject to $\|Ax - y\|_{l_2} \le \epsilon$

- If restricted isometry property (RIP) holds for the sensing matrix, the signal can be recovered from noisy measurement.
- For each integer S=1,2,..., define the isometry constant $\,\delta_S\,$ of a matrix A as the smallest number such that

$$(1 - \delta_S) \|x\|_{\ell_2}^2 \le \|Ax\|_{\ell_2}^2 \le (1 + \delta_S) \|x\|_{\ell_2}^2$$

holds for all S-sparse vectors x

- What does it mean?
 - Matrix A Preserve the Euclidean length of S-sparse signals
 - Any S columns taken from A are in fact nearly orthogonal

Example: Noisy Image Recovery

Original Image

Recovered Image

Image Size: 256*256=65K

Recovered from 20K measurements

Motivation: Netflix Prize

- Training Data: ~480K users, ~18K movies, 100 M ratings (1-5), 99 % ratings missing
- \$1 M prize for 10 % reduction in RMSE over Cinematch (a method developed by Netflix)
- BellKor's Pragmatic Chaos declared winners on 9/21/2009
- used ensemble of models including lowrank factorization

	The Game	Revoluti onary Road	Tinker Tailor Soldier Spry	The Imitation Game	
User 1	****	***	?	***	•••
User 2	?	?	****	****	•••
User 3	***	****	?	***	•••
User 4	****	?	****	?	
	•••	•••	•••	•••	•••

Motivation: Multi-Sensors Monitoring

- Hundreds of sensors are used for condition monitoring of industrial assets.
- Different sampling frequencies of sensors and/or their malfunctions will result in missing data.
- Goal is impute the missing values based on the temporal and spatial correlation of sensors.
- This is achievable if the matrix is low rank

	Sensor 1	Sensor 2	Sensor 3	Sensor 4	•••
Engine 1	Property of the safe	alalalah Managapah	Kaladaka kerengan	and a state of the	•••
Engine 2	Property of the party	riderly plant by	riples of the state of the stat	right of the little of	•••
Engine 3	ripleship polari belikar		h-whitelynghi	indulate stands	•••
•••	•••	•••	•••	•••	•••

Matrix Completion Formulation

Assuming the that the matrix is low rank, the missing values can be imputed by solving:

 $min\{rank(Z)\}$

$$P_{\Omega}(X)_{i,j} = \begin{cases} X_{i,j} & \text{if } (i,j) \text{ is observed} \\ 0 & \text{if } (i,j) \text{ is missing} \end{cases}$$

$$\min \{ \operatorname{rank}(Z) \}$$

subject to: $P_{\Omega}(Z) = P_{\Omega}(X)$

Matrix Completion Formulation

Assuming the that the matrix is low rank, the missing values can be imputed by solving:

 $min\{rank(Z)\}$

subject to: $P_{\Omega}(Z) = P_{\Omega}(X)$

Convex Relaxation

 $\min\{||Z||_*\}$

subject to: $P_{\Omega}(Z) = P_{\Omega}(X)$

Singular Value Thresholding (SVT)

Consider the singular value decomposition (SVD) of a matrix $X \in \mathbb{R}^{n_1 \times n_2}$ of rank r.

$$X = U\Sigma V^{T},$$

$$\Sigma = \operatorname{diag}(\{\sigma_{i}\}_{1 \leq i \leq r}),$$

where $U \in \mathbb{R}^{n_1 \times r}$ and $V \in \mathbb{R}^{n_2 \times r}$ matrices with orthogonal columns and σ_i are positive singular values.

For each $\tau \geq 0$, the soft-thresholding operator, S_{τ} is defined by

$$S_{\tau}(X) = US_{\tau}(\Sigma)V^{T},$$

$$S_{\tau}(\Sigma) = \operatorname{diag}\{(\sigma_{i} - \tau)_{+}\},$$

where $(a)_{+}=\max(0,a)$.

Matrix Completion using SVT

SVT can be used to solve the relaxed convex optimization problem:

$$\min\{\|Z\|_*\}$$

subject to: $P_{\Omega}(Z) = P_{\Omega}(X)$

For a fixed $\tau > 0$ and a sequence of $\{\delta_k\}$ of positive step sizes, start with $Y_0 = 0 \in \mathbb{R}^{n_1 \times n_2}$, and for k = 1, 2, ... iteratively compute

$$\begin{cases} Z^k = S_{\tau}(Y^{k-1}) \\ Y^k = Y^{k-1} + \delta_k P_{\Omega}(X - Z^k) \end{cases}$$

Until convergence (i.e., a stopping criterion is reached).

Matrix Completion with Noisy Data

In real life, however, observations are noisy. Therefore, the equality constraint should be relaxed:

$$\min\{\|Z\|_*\}$$

$$\min \left\{ \lambda \|Z\|_* + \frac{1}{2} \|P_{\Omega}(Z) - P_{\Omega}(X)\|_F^2 \right\},$$

For some $\lambda > 0$.

Matrix Completion with Noisy Data

$$\min \left\{ \lambda \|Z\|_* + \frac{1}{2} \|P_{\Omega}(Z) - P_{\Omega}(X)\|_F^2 \right\},$$

If the PFBS (Proximal Forward-Backward Splitting) method is used, the following iterative algorithm for solving this problem can be obtained:

$$\begin{cases} Z^k = S_{\lambda \delta_{k-1}}(Y^{k-1}), \\ Y^k = Z^k + \delta_k P_{\Omega}(X - Z^k) \end{cases}$$

Until convergence (i.e., a stopping criterion is reached).

Some theoretical results can be found in Ref. 1 and 2.

Example

```
2.466 1.153 -7.324 1.214 -1.517 -0.304 -2.04
                                                                                                                      2.383
%Generating original matrix
                                                                        11.09 -7.026 0.885 -5.155
                                                                                                  -3.33 14.58 11.08
                                                                                                                      4.589
n1 = 10; n2 = 8;
                                                                        2.521 6.269 -21.59
                                                                                            5.667 -3.008 -6.959 -10.53
                                                                                                                      4.991
A = randi([-20,20],n1,n2);
                                                                        -6.835 6.415 -6.321
                                                                                            4 99
                                                                                                  1 456 -11 71 -10 29 -1 782
r = 2;
[U, S, V] = svd(A);
                                                                        -12 75 2 116 15 49 0 744
                                                                                                  5 532
                                                                                                        -8 97 -2 851 -8 264
if n1 < n2
                                                                        4.237 -4.477
                                                                                     5.305 -3.528 -0.759
                                                                                                        7.909
                                                                                                                7.21
                                                                                                                      0.853
    s = diag(S); s(r+1:end)=0; S=[diag(s) zeros(n1,n2-n1)];
                                                                        16.03 -5.505
                                                                                     -11.6 -3.408 -6.143 14.99 8.305
                                                                                                                      8.966
                                                                                     8.087 -5.829 -1.474
    s = diag(S); s(r+1:end)=0; S=[diag(s); zeros(n1-n2,n2)];
                                                                        7.485 -7.445
                                                                                                        13.37 11.97
                                                                                                                      1.741
                                                                        -8.605 -3.455 23.99 -3.744 5.132 0.321 6.179
                                                                                                                      -8.03
                                                                       -0.696 4.11 -10.22 3.513 -0.841 -5.706 -6.784
X = U* S* V';
X0 = X;
                                                                        2.466 1.153 -7.324 1.214 -1.517 -0.304
                                                                                                                -2.04
                                                                                                                      2.383
%Removing 20% of the observations
                                                                        11.09 -7.026
                                                                                     0.885 -5.155
                                                                                                  -3.33
                                                                                                        14.58
                                                                                                                11.08
                                                                                                                      4.589
A = [rand(n1, n2) >= 0.80];
                                                                           0 6.269
                                                                                    -21.59 5.667 -3.008 -6.959
                                                                                                                   0
                                                                                                                     4.991
X(A) = 0;
m = sum(sum(A==0));
                                                                        -6.835 6.415
                                                                                         0
                                                                                            4.99
                                                                                                  1.456 -11.71 -10.29
                                                                                                                      -1.782
                                                                                                         -8.97 -2.851
                                                                       -12 75 2 116
                                                                                     15 49 0 744 5 532
                                                                                                                         0
                                                                X =
                                                                        4 237 -4 477
                                                                                     5.305 -3.528 -0.759
                                                                                                        7 909
                                                                                                                   0
                                                                                                                     0.853
                                                                        16.03 -5.505
                                                                                                                8.305
                                                                                                                      8 966
                                                                                     -11.6 -3.408
                                                                                                      0 14.99
                                                                                     8.087 -5.829 -1.474 13.37
                                                                           0 -7.445
                                                                                                                   0
                                                                                                                         0
                                                                           0 -3.455 23.99
                                                                                               0 5.132
                                                                                                            0 6.179
                                                                                                                         0
                                                                       -0.696 4.11 -10.22 3.513
                                                                                                     0 -5.706 -6.784 1.553
```


References

- [1] Jian-feng Cai, Emmanuel J. Candes, And Zuowei Shen. A Singular Value Thresholding Algorithm For Matrix Completion. Technical Report.
- [2] Emmanuel J. Cand`es and Benjamin Recht. Exact Matrix Completion via Convex Optimization.
- [3] Trevor Hastie, Rahul Mazumder, Jason D. Lee, Reza Zadeh, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares.

Traditional PCA

- Principal Component Analysis reduces data dimensions by finding a low-rank representation of data.
- Suppose $X = [x_1 x_2 ... x_p]$ is the centered matrix data.
- A low-rank representation of X is given by X = L + E; where L is a low-rank matrix and E is noise.
- The low-rank subspace L can be found by solving

$$\arg\min_{L} \|X - L\|_F^2 \quad s.t. \operatorname{rank}(L) \leq k$$

This problem can be solved via truncated SVD:

$$L = U\Sigma V' = \sum_{i \leq k} \sigma_i \mathbf{u}_i \mathbf{v}_i'$$

PCA in Presence of Outliers

• Similar to regression, PCA is highly sensitive to outliers.

 Assuming outliers are sparse, Robust PCA can retrieve the correct low-rank structure

Robust PCA Applications

- Face recognition
- Anomaly detection
- Denoising
- Text mining
- Web mining
- Image and video repair
- Video Surveillance

Robust PCA

- M is the observed data matrix
- *L* is a low-rank matrix (to be estimated)
- S is a matrix of sparse outliers (to be estimated)

By finding L and S, we can retrieve low-dimensional linear structure from non-ideal observations.

Robust PCA Formulation

- L is low-rank
- S is sparse
- L and S could be found by solving

$$\begin{aligned} &\min\{\operatorname{rank}(L) + \lambda \|S\|_0\} \\ &\text{subject to:} \qquad M = L + S \\ &\operatorname{rank}(L) = \#\{\sigma(L) \neq 0\} \qquad \|S\|_0 = \#\{S_{ij} \neq 0\} \\ &\text{Intractable}!!!! \end{aligned}$$

Robust PCA Formulation

$$\min\{\operatorname{rank}(L) + \lambda \|S\|_0\}$$
 subject to: $M = L + S$
$$\operatorname{rank}(L) = \#\{\sigma(L) \neq 0\} \qquad \|S\|_0 = \#\{S_{ij} \neq 0\}$$

$$\bigcap_{i = 1}^{K} Convex \text{ Relaxation}$$

$$\|S\|_1 = \sum_{i = 1}^{K} |S_{ij}|$$
 Nuclear norm: sum of singular values
$$\lim_{i \to 1} |S_{ij}| = \lim_{i \to 1} |S_{ij}|$$

This is also known as Principal Component Pursuit (PCP)

See Chandrasekaran, Sanghavi, Parrilo, Willsky ('09)

Solving RPCA

· Review of Augmented Langrangian Multipliers Method:

$$\begin{aligned} & \text{minf}(X), & \text{subject to} & \text{h}(X) = 0, \\ & \text{L}(X,Y,\mu) = \text{f}(X) + \langle Y, \text{h}(X) \rangle + \frac{\mu}{2} \|\text{h}(X)\|_F^2 \end{aligned}$$

(General Method of Augmented Lagrange Multiplier)

```
1: µ≥ 1.
```

2: while not converged do

3: Solve $X_{k+1} = \underset{X}{\operatorname{arg min}} L(X, Y_k, \mu_k)$.

4: $Y_{k+1} = Y_k + \mu_k h(\hat{X}_{k+1});$

5: Update μ_k to μ_{k+1} .

6: end while

Output: Xk.

Solving RPCA

· Augmented Langrangian Multiplier form:

$$\begin{split} &l(L,S,Y) = \|L\|_* + \lambda \|S\|_1 + \langle Y, M - L - S \rangle + \frac{\mu}{2} \|M - L - S\|_F^2. \\ &l(L,S,Y;\mu) = \|L\|_* + \lambda \|S\|_1 + \frac{\mu}{2} \left\| M - L - S + \frac{Y}{\mu} \right\|_2^2 + \frac{\mu}{2} \left\| \frac{Y}{\mu} \right\|_2^2 \end{split}$$

Main Idea:

Given S and Y, Update L

and Y, Opdate L
$$\arg\min_{L} \|L\|_{*} + \frac{\mu}{2} \left\| M - L - S + \frac{Y}{\mu} \right\|_{F}^{2} \qquad \sum_{N=M-S+\frac{Y}{\mu}}^{X=M-S+\frac{Y}{\mu}} L = D_{1/\mu}(X) = US_{1/\mu}(\Sigma)V^{T}$$

· Given L and Y, Update S

$$\arg\min_{S} \lambda \|S\|_{1} + \frac{\mu}{2} \left\| M - L - S + \frac{Y}{\mu} \right\|_{F}^{2} \qquad \Longrightarrow \qquad S_{ij} = S_{\frac{\lambda}{\mu}}(X) = \operatorname{sgn}(X) \max(|X| - \frac{\lambda}{\mu}, 0)$$

· Given L and S, Update Y

$$Y_{k+1} = Y_k + \mu(M - L - S)$$

Iteration until Convergence

Solving RPCA - Algorithm

$$l(L, S, Y) = ||L||_* + \lambda ||S||_1 + \langle Y, M - L - S \rangle + \frac{\mu}{2} ||M - L - S||_F^2.$$

· Algorithm:

```
1: initialize: S_0 = Y_0 = 0, \mu > 0.

2: while not converged do

3: compute L_{k+1} = \mathcal{D}_{\lambda/\mu}^{1}(M - S_k - \mu^{-1}Y_k); (soft-thresholding on singular values by \frac{1}{\mu})

4: compute S_{k+1} = S_{\lambda/\mu}^{\mu}(M - L_{k+1} + \mu^{-1}Y_k); (soft-thresholding scalar entries by \frac{\lambda}{\mu})

5: compute Y_{k+1} = Y_k + \mu(M - L_{k+1} - S_{k+1});
```

6: end while

7: output: L, S.

Robust PCA for Noisy Data

$$M = L + S + E$$

- L is low-rank, S is sparse, E is noise
- L and S could be found by solving

$$\min\{\|L\|_* + \lambda \|S\|_1\}$$

subject to: $||M - (L + S)||_F < \delta$

References

- [1] Martin J Wainwright. Structured regularizers for high-dimensional problems: Statistical and computational issues. Annual Review of Statistics and Its Application, 1:233–253, 2014.
- [2] Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep K Raviku- mar. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. In Advances in Neural Information Processing Systems, pages 1348–1356, 2009.
- [3] Sparse Representation and Low-Rank Representation for Biometrics -- Theory, Algorithms, and Applications, ICB 2013 Short Course
- [4] John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in neural information pro- cessing systems, pages 2080–2088, 2009.
- [5] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust prin-cipal component analysis? Journal of the ACM (JACM), 58(3):11, 2011.

Motivation

- · In practice, high-dimensional data
 - are noisy;
 - often have functional structure that makes them smooth
 - sometimes contain sparse features.
- Decomposition of an observation into these three elements have various applications, including:
 - Denoising
 - Sparse feature learning
 - Image background retrieval
 - Function estimation in presence of outliers and noise
 - Anomaly detection

Sparse Smooth Decomposition (SSD)

• Objective: To decompose an HD noisy observation into functional mean, sparse features, and noise (Yan et al., 2017): $y = \mu + a + e$

Assumptions

- Functional mean is smooth.
- Features are sparse features and exhibit a different structure from the functional mean

Two-step Approach: Smoothing + Detection

Methods	Edge Based	Thresholding Based	Region Based
Criterion	Look for discontinuity	Look for largest	Look for similarity
Output	Edge	Region	Region
Preprocessing	Smoothing	Smoothing	Smoothing, need a seed point to start
Postprocessing	Close the Edge to get boundary	Clean small areas	Clean small areas
Algorithms	Sobel Edge Detection ^[1] Jump Regression ^[2]	Ostu's Glocal method ^[4] Nick's Local method ^[4]	

Some issues:

- Smoothing blurs the boundaries of defect regions;
- Smoothing is inaccurate in presence of anomaly;
- Often, a post-processing task is required to connect detected boundaries;

SSD Formulation

Let's begin with 1D case: $y = \mu + a + e$ $y = B\theta + B_a\theta_a + e$ argmin $_{\theta,\theta_a} \lambda \theta' R\theta + \gamma ||\theta_a||_1 + ||e||^2$, s. t. $y = B\theta + B_a\theta_a + e$

R is the roughness matrix that can be defined by $R = D^T D$ where D is the first difference matrix

SSD via Iterative Thresholding Algorithm

$$\operatorname{argmin}_{\theta,\theta_a} \lambda \theta' R \theta + \gamma ||\theta_a||_1 + ||e||^2, s.t. \ y = B \theta + B_a \theta_a + e$$

Propose an optimization algorithm based on ITA (Daubechies, et al, 2004)

Iterative Thresholding Algorithm

In the k^{th} iteration, update $\mu^{(k)}$ and $\theta_a^{(k)}$ by $\mu^{(k)} = H(y - B_a \theta_a^{(k-1)})$, $H = B(B'B + \lambda I)^{-1}B'$ is the projection matrix $\theta_a^{(k)} = T_{\tau^{(k)}}(\theta_a^{(k-1)} - c^{(k)}B_a'(B_a\theta_a^{(k-1)} + \mu^{(k)} - y))$

$$c^{(k)} = \frac{2}{L'} \tau^{(k)} = \frac{\gamma}{L}$$

- p = 1, convex optimization
 - $-T(\cdot)$ is the soft-thresholding operator.

Accelerated Algorithm for SSD

Nesterov's acceleration (Beck and Teboulle, 2009)

$$- x_a^{(k)} = T_{\tau^{(k)}} \left(\theta_a^{(k-1)}, c^{(k)}, B_a, \mu^{(k)}, y \right)$$

$$- t_{k+1} = (1 + \sqrt{1 + 4t_k^2})/2$$

$$- \ \theta_a^{(k+1)} = x_a^{(k)} + \frac{t_{k-1}}{t_{k+1}} \left(x_a^{(k)} - x_a^{(k-1)} \right)$$

 $\begin{cases} y_B^{(k)} = H(y - B_S \theta_S^{(k-1)}) \\ \theta_S^{(k)} = \text{softthreshold}(x^{(k-1)} + \frac{2}{L} B_S'(y - B_S \theta_S^{(k-1)} - y_B^{(k)}), \frac{\gamma}{L}) \end{cases}$

Convergence Rate & Error Bound of ITA Algorithm for SSD

Restricted isometry property

$$\begin{array}{l} - \ \, \delta_{3s+1} \ \, \text{is RIP constant which satisfies (for all s-sparse vector} \, \theta_{a1}, \theta_{a2}) \\ (1-\delta_{3s+1})||\theta_{a1}-\theta_{a2}||_2^2 \leq ||(I-H)(B_a\theta_{a1}-B_a\theta_{a2})||_2^2 \leq (1+\delta_{3s+1})||\theta_{a1}-\theta_{a2}||_2^2 \end{array}$$

Theorem
$$\begin{split} & \text{If } \rho_s = \underline{L\delta_{3s+1}((I-H)B_a) < 1}, \text{ the anomaly estimation in the k^{th} iteration of the algorithm with $\lambda = 0$ is bounded by } \\ & \|\theta_a^{(k)} - \theta_a^*\|_2 \leq \underline{(\rho_s)^k \|\theta_a^{(0)} - \theta_a^*\|_2} + \underline{\frac{L}{1-\rho_s} \|B_a^T(I-H)\epsilon\|_2} \end{split}$$

Linear convergence rate

Estimation error

- Noiseless case: $||\epsilon||_2 = 0$, perfect recovery
- Noisy case: detect anomaly with $B_a \perp \epsilon$

Generalization of SSD to 2D Case (Images)

Generalization of SSD to 2D Case (Images)

$$\begin{aligned} & \underset{\theta,\theta_{S}}{\operatorname{argmin}} \, \|\tilde{\mathbf{e}}\|^{2} + \theta' R \theta + \gamma |\theta_{S}|_{1}, \; s.t. \, y = \big(B_{1} \otimes B_{2}\big) \theta + \big(B_{S,1} \otimes B_{S,2}\big) \theta_{S} + \tilde{\mathbf{e}} \\ & y: \; n_{1}n_{2} \times 1 \\ & H: k_{1}k_{2} \times k_{1}k_{2} \end{aligned} \qquad \qquad \qquad \begin{aligned} & \left\{ y_{B}^{(k)} = H(y - B_{S}\theta_{S}^{(k-1)}) \\ & \theta_{S}^{(k)} = \operatorname{softthreshold}(x^{(k-1)} + \frac{2}{L}B_{S}'(y - B_{S}\theta_{S}^{(k-1)} - y_{B}^{(k)}), \frac{\gamma}{L} \big) \end{aligned} \end{aligned}$$

$$\begin{aligned} & \underset{\theta}{\operatorname{APG algorithm}} \\ & \underset{\theta}{\operatorname{Complexity}} & \underbrace{ \begin{array}{c} \operatorname{APG algorithm} \\ O(k_{1}^{3}k_{2}^{3} + 6n_{1}^{2}n_{2}^{2}k_{1}k_{2}) \end{aligned} } \end{aligned}$$

$$\begin{aligned} & \underset{\theta}{\operatorname{Define}} \; R = \lambda_{1}B_{2}'B_{2} \otimes D_{1}'D_{1} + \lambda_{2}D_{2}'D_{2} \otimes B_{1}'B_{1} + \lambda_{1}\lambda_{2}D_{2}'D_{2} \otimes D_{1}'D_{1} \\ & H = H_{2} \otimes H_{1} & H_{i} = B_{i}(B_{i}'B_{i} + \lambda_{i}D_{i}'D_{i})^{-1}B_{i}', \; i = 1, 2 \text{ size } n_{i} \times n_{i} \end{aligned}$$

$$\begin{aligned} & \underset{\theta}{\operatorname{APG algorithm}} & \underbrace{ \left\{ Y_{B}^{(k)} = H_{1}(Y - B_{S_{1}}\Theta_{S}^{(k-1)}B_{S_{2}}') H_{2} \\ \Theta_{S}^{(k)} = \operatorname{softthreshold}(X^{(k-1)} + \frac{2}{L}B_{S_{1}}'(Y - B_{S_{1}}X^{(k-1)}B_{S_{2}}' - Y_{B}^{(k)})B_{S_{2}}, \frac{\gamma}{L} \right)} \end{aligned}$$

$$\end{aligned} \end{aligned}$$

$$\begin{aligned} & \underset{\theta}{\operatorname{Complexity}} & \underbrace{ \begin{array}{c} O(k_{1}^{3} + k_{2}^{3} + 6n_{1}^{2}k_{1} + 6n_{2}^{2}k_{2}) \end{array} } \end{aligned}$$

References

[1] Yan, H., Paynabar, K., Shi, J., (2017) Anomaly Detection in Images With Smooth Background via Smooth-Sparse Decomposition, *Technomtrics*, Vol 59, Issue 1.

Ridge Regression

Assuming the observations are centered, Ridge estimates can be computed by

$$\arg\min \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \theta)^2 + \lambda \|\theta\|^2$$

$$\hat{\theta} = (X^T X + \lambda I)^{-1} X^T y$$

- λ≥0 is the tuning parameter controls the amount of shrinkage
- λ is chosen based on some prediction criteria (MSE) using CV or independent validation data set

Ridge Regression

Evaluate ridge regression for a new test point x:

$$\hat{f}(x) = x^T \hat{\theta} = x^T (X^T X + \lambda I)^{-1} X^T y = x^T X^T (X^T X + \lambda I)^{-1} y = y^T (X X^T + \lambda I)^{-1} X x$$

Only depends on the inner product of predictors

The equality above is true because of the Matrix inversion lemma:

$$X^{T}(XX^{T} + \lambda I)^{-1} = (X^{T}X + \lambda I)^{-1}X^{T}$$

Kernel as Inner Product

- k(x,y) equivalent to first compute feature $\phi(x)$, and then perform inner product $k(x,y) = \phi(x)^{\mathsf{T}}\phi(y)$
- A dataset $D = \{x_1, x_2, x_3 ... x_n\}$

• Compute pairwise kernel function $k(x_i, x_j)$ and form a $n \times n$ kernel matrix (Gram matrix)

•
$$K = \begin{pmatrix} k(x_1, x_2) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{pmatrix}$$

Kernel Ridge Regression

 $\hat{f}(x) = \hat{\theta}^T x = y^T (XX^T + \lambda I)^{-1} Xx$ only depends on inner products

$$XX^{T} = \begin{pmatrix} x_{1}x_{1}^{T} & \dots & x_{1}x_{n}^{T} \\ \vdots & \ddots & \vdots \\ x_{n}x_{1}^{T} & \dots & x_{n}x_{n}^{T} \end{pmatrix} \qquad Xx = \begin{pmatrix} x_{1}x \\ \vdots \\ x_{n}x \end{pmatrix}$$

 x_i is the row vector corresponding to the i^{th} row of the matrix X.

Kernel ridge regression: replace the inner products by a kernel function

$$XX^{T} \to K = \left[k(x_{i}, x_{j})\right]_{n \times n}$$

$$Xx \to k_{x} = \left[k(x_{i}, x)\right]_{n \times 1}$$

$$\hat{f}(x) = \hat{\theta}^{T} x = y^{T} (K + \lambda I)^{-1} k_{x}$$

Kernel Ridge Regression - Example

Xtrain = (1:100)/100;
Yt = sin(Xtrain*10)+(Xtrain*2).^2;
Ytrain = Yt + 0.2*randn(1,100);
N = 1000;
Xtest = linspace(min(Xtrain),max(Xtrain),N);
Xtrain=Xtrain(:); Ytrain=Ytrain(:); n =
length(Xtrain);Xtest=Xtest(:);
lambda = 0.04;
c = 0.04;
kernel1 = exp(-dist(Xtrain').^2 ./ (2*c));
kernel2 = exp(-pdist2(Xtrain, Xtest).^2 ./ (2*c));
yhatRBF = Ytrain' * ((kernel1 + lambda *
eye(size(kernel1))) \ kernel2);

clc

clear all

Another Look to Ridge Regression

• Suppose a set of observation, $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ are given. To estimate a regression function, we minimize the following empirical loss function:

$$\arg\min \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{H}}^2$$

Where $\ensuremath{\mathcal{H}}$ is the Reproducible Kernel Hilbert Space.

Loosely speaking A **Hilbert space** is a (possibly) infinite dimensional linear space established with a dot product.

Representer Theorem

• The minimizer over the RKHS \mathcal{H} , of the regularized empirical loss function:

$$\arg\min_{f} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{H}}^2$$

Can be represented by the expression

$$f^{\lambda}(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$$

• Therefore, minimizing over the possibly infinite dimensional Hilbert space boils down to minimizing over \mathbb{R}^n .

RKHS

- Loosely speaking, a Hilbert space is a (possibly) infinite dimensional linear space established with a dot product.
- For example, Square integrable functions $L_2[a, b]$ (i.e., the integral of the squared function is finite), is Hilbert space and the norm is calculated by

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx$$

• $k(\cdot,\cdot)$ is a Reproducing Kernel Hilbert Space (RKHS) of \mathcal{H} if $\forall f \in \mathcal{H}$,

$$f(x) = \langle k(x, \cdot), f(\cdot) \rangle.$$

Kernel Ridge Regression

According to the Representer Theorem

$$\hat{f} = \operatorname*{argmin}_{f \in \mathcal{H}} rac{1}{2} \sum_{i=1}^n (y^{(i)} - f(x^{(i)}))^2 + rac{\lambda}{2} \|f\|_{\mathcal{H}}^2$$

$$\hat{f}(\cdot) = \sum_{j=1}^n lpha_j \mathbb{K}(\cdot, x^{(j)})$$

$$\begin{split} \| \sum_{j=1} \alpha_j \mathbb{K}(\cdot, x^{(j)}) \|_{\mathcal{H}}^2 &= \sum_{i,j=1} \alpha_i \alpha_j \langle \mathbb{K}(\cdot, x^{(i)}), \mathbb{K}(\cdot, x^{(j)}) \rangle_{\mathcal{H}} \\ &= \sum_{i,j=1}^n \alpha_i \alpha_j \mathbb{K}(x^{(i)}, x^{(j)}) = \sum_{i,j=1}^n \alpha_i \alpha_j K_{ij} \\ &= \alpha^T \mathbf{K} \alpha \end{split}$$

Thus,

$$\hat{lpha} = \operatorname*{argmin}_{lpha \in \mathbb{R}^n} \, rac{1}{2} \|y - \mathbf{K} lpha\|_2^2 + rac{\lambda}{2} lpha^T \mathbf{K} lpha$$

$$\hat{\alpha} = (\mathbf{K} + \lambda \mathbf{I})^{-1} y$$