Twisted Twin: A Collaborative and Competitive Memory Management Approach in HTAP Systems

Jiani Yang, Sai Wu*, Yong Wang, Dongxiang Zhang, Yifei Liu, Xiu Tang, Gang Chen

ZHEJIANG UNIVERSITY

Zhejiang University, Huawei

Introduction

Query Execution

- Add vectorized engine for OLAP
- Support row/column storage reads

Resource Scheduling

■ Shared buffer split into row/column

Data Synchronization

■ Use Delta Table to store updates and periodically sync with column store.

Tidal Workload reveals opportunity

Real workloads show a clear tidal pattern:

- Daytime → OLTP dominates (transactions, risk checks)
- Nighttime → OLAP dominates (batch jobs, reports)

Problems

Question 1: What data should be loaded into the column store?

Question 2: How to allocate limited

buffer pool between row and column store?

Question 3: How to choose an appropriate frequency for data synchronization, and how update costs be considered during column selection?

Question 4: How to smartly rebalance resources to boost overall utilization?

- > Real-time response
- **≻**Adaptive adjustment

 $\sum \prod_{i \in G_l} p_l x_i f_l$

 $x_i \in \{0,1\}, i \in M.$

Subject to $\sum w_i x_i \leq M_{\text{col}}$,

Large problem Highly coupled search space Components

Limitations of Current Approaches

Relying on experienced DBAs for manual tuning

ALTER TABLE customer COLVIEW(companyid, name); SET ROW_STORE_BUFFER = 80G; SET COLUMN_STORE_BUFFER = 20G;

- **■** Experience-based, suboptimal
- Costly and time-consuming
- Poor adaptability to workload shifts

Methodology

Optimization Goal

■Ensure OLTP throughput as the first priority, and maximize OLAP performance on top of it

Two-Phase Strategy

- ■Phase 1: Static configuration
- ■Phase 2: Dynamic tuning (invokes static configuration when needed)

> Column Selection → Knapsack Problem Variant

- Limited memory space → knapsack with limited capacity
- Reading from column store is cheaper than row store → item value
- A query can use column-store scan only if all its required columns are in memory → knapsack with dependency constraints

Problem Formulation: ■ New variable z_l to replace nonlinear terms: Nonlinear Integer **Programming Problem**

■ Solution: Graph modeling + clustering compression. \blacksquare Result: Variables reduced from K to K'.

Data Synchronization

> Cost-Model Based Data Synchronization Strategy

■ Data updates are uniformly distributed over [0, T], with a total of b updates.

■ A synchronization is triggered whenever the number of records reaches the

> Illustration of Data Synchronization

threshold α , leading to a total of $\frac{b}{\alpha}$ synchronizations

■ Building a cost model for read/sync: $Cost_{read}(t) = w_0N(t) + w_1$;

■ Total cost is a convex function: $Cost\Delta = \frac{b}{\alpha}(w2\alpha + w3) + v(\frac{w0\alpha}{2} + w1)$

■ Taking the derivative of the total cost function and setting it to

- **■** Trade-off:
- Frequent synchronization increases overhead, while infrequent synchronization degrades OLAP query performance.
- Column Selection Impact: Columns with excessive synchronization costs should be excluded despite potential benefits.

Memory Allocation

> The Impact of Buffer Allocation Between Row and Column

hot data, reducing I/O and improving TPS.

■ OLTP: More memory helps cache

■ OLAP: More memory keeps more

columns in memory, minimizing I/O from

Bayesian-based Memory Allocation

AP Workload Process ! **Performance Estimator** <<-Update

■ Bayesian Optimization Workflow

- 1. Collect samples & costs 2. Build surrogate model
- Select candidate (e.g., EI)
- 4. Evaluate & update
- 5. Repeat the iteration until convergence, and finally obtain the optimal allocation

Dynamic Tuning

> Predict Future Workloads, Plan Ahead

■ Use historical load patterns to forecast future trends

> Trigger Timing Selection

- Taking the cost of column loading into account, how to determine the
- appropriate timing to trigger a static algorithm for memory reallocation? ■ We propose a greedy algorithm: reconfigure when benefits outweigh costs.

Figure 7: Illustration of Time Interval Merging

Experiments

 $Cost_{sync}(t) = w_2N(t) + w_3$

zero: $\frac{d\text{Cost}\Delta}{d\alpha} = -\frac{bw_3}{\alpha^2} + \frac{vw_0}{2} = 0$

■ Solving for the optimal threshold: $\alpha *= \sqrt{\frac{2bw_3}{vw_0}}$

> Metrics

■ Metric for measuring OLTP performance

TPS (System Throughput)

(User Demand)

Metric for measuring OLAP performance $Impr = (T_{GaussDB} - T_{GaussDB-HTAP})/T_{GaussDB} \times 100\%$

Performance improvement compared to the original GaussDB (row-store only)

> Benchmark Construction

■ Query arrival patterns + synthetic benchmarks (ChBenchmark, HyBench)

■ OLTP/OLAP query rates extracted from anonymized logs

> Overall Performance

$HyBench(\mathcal{M}_{total} = 80G)$												
Method	Sta	tic-7:1	Sta	tic-1:1	Stat	ic-1:7	S	ГММ	T^2	-static	tic T^2 -c	ynamic
Method	FR	Impr	FR	Impr	FR	Impr	FR	Impr	FR	Impr	FR	Impr
HAMCS	1.00	13.56%	1.00	22.20%	0.912	23.11%	1.00	27.95%	1.00	28.06%	1.00	35.88%
IPNC	1.00	15.74%	1.00	32.12%	0.936	39.41%	1.00	34.98%	1.00	36.45%	1.00	48.70%
GACC	1.00	12.03%	1.00	40.62%	0.940	44.29%	1.00	39.38%	1.00	42.49%	1.00	50.28%
T^2 -CS-Approx	1.00	16.39%	1.00	49.33%	0.953	60.03%	1.00	46.97%	1.00	49.92%	1.00	65.90%
T^2 -CS	1.00	18.13%	1.00	51.36%	0.956	60.69%	1.00	51.17%	1.00	54.44%	1.00	67.07%

During a One-Day Simulation

■ When memory is tight, the model prioritizes OLTP throughput, allocating most memory to the row store and maintaining high FR.

Ni _{total}		3G	15G	30G	60G
	$\mathcal{M}_{\mathrm{col}}$	2.55	7.53	15.01	29.95
STMM	FR	0.59	0.70	0.98	1.00
	Impr	15.98%	20.08%	18.18%	36.78%
	$\mathcal{M}_{ m col}$	0.02	0.11	9.12	32.06
T^2 -static	FR	0.85	0.93	1.00	1.00
	Impr	1.13%	1.64%	16.49%	39.33%
T ² -dynamic	FR	0.86	0.95	1.00	1.00
i -dynamic	Impr	7.78%	11.89%	22.54%	53.69%

> Evaluation with varying memory limitation

$\mathcal{M}_{ ext{total}}$		5G	15G	30G	60G
	$\mathcal{M}_{\mathrm{col}}$	2.55	7.53	15.01	29.95
STMM	FR	0.59	0.70	0.98	1.00
	Impr	15.98%	20.08%	18.18%	36.78%
	$\mathcal{M}_{ m col}$	0.02	0.11	9.12	32.06
T^2 -static	FR	0.85	0.93	1.00	1.00
	Impr	1.13%	1.64%	16.49%	39.33%
T^2 -dynamic	FR	0.86	0.95	1.00	1.00
i -dynamic	Impr	7.78%	11.89%	22.54%	53.69%

Effect of Reallocation Trigger **Algorithm**

■ The percentages in the figure represent the percentage reduction in total time relative to the static algorithm.

> Analysis of Different Column Selection Algorithms

■ Although some competing methods occasionally achieve performance similar to that of T^2 , they are prone to getting trapped in local optima, leading to a higher max loss.

Method	Hyb	ench	CH-benCHmark			
Method	Max loss	Max Time	Max loss	Max Time		
HAMCS	-41.29%	0.003s	-25.99%	0.00s		
IPNC	-8.42%	0.08s	-19.49%	0.17s		
GACC	-7.62%	18.17s	-7.17%	8.69s		
T ² -CS-Approx	-2.55%	10.10s	-3.49%	9.06s		
T^2 -CS	-	45.58s	-	65.93s		

Comparative Analysis of T² Versus Fixed Ratio **Memory Allocation**

