



# **Signaling & Synchronization**Fall 2020

Topic 4

RX Circuitry

Sameh A. Ibrahim
Ain Shams University
ICL

(Courtesy of S. Pamarti – UCLA, S. Palermo – TAMU, E. Alon – UCB, and D. Allstot – UW)

#### **Outline**

- RX Overview
  - Parameters
  - Architecture choices
- RX Amplifiers
  - Pre-amplifiers
  - Bandwidth extension techniques
- Clocked Comparators
  - Circuits
  - Characterization techniques
- Demultiplexing
- RX Sensitivity
  - Offset
  - Noise





## **Receiver Block Diagram**



#### Goals

- High bit rate
- Low power consumption
- Low BER
  - Good voltage/current and timing margins





#### **Receiver Components**

#### Pre-amplifier

- Compensates for average channel loss (not equalization).
- Can be used also for equalization, offset correction, and fix sampler common-mode.
- Must provide gain at high-bandwidth corresponding to full data rate.

#### Sampler / Slicer

- Extracts the data from the received signal.
- Can be implemented with static amplifiers or clockedregenerative amplifiers
  - Clock regenerative amplifiers are more power efficient.

#### De-multiplexer

Separate data to supply multiple, slower, data destinations.





#### **Receiver Parameters**

- RX sensitivity, offsets in voltage and time domain, and aperture time are important parameters
- Minimum eye width is determined by aperture time plus peak-to-peak timing jitter.
- Minimum eye height is determined by sensitivity plus peak-to-peak voltage offset.







#### **Receiver Architecture Choices**



If wide bandwidth, high gain pre-amplifier is available.

#### Option 2

- If received signal is large, or
- If wide bandwidth, high gain pre-amplifier is unavailable.

#### Option 3

- Very low received signal
- Wide bandwidth, but low gain pre-amplifier





#### **Outline**

- RX Overview
  - Parameters
  - Architecture choices
- RX Amplifiers
  - Pre-amplifiers
  - Bandwidth extension techniques
- Clocked Comparators
  - Circuits
  - Characterization techniques
- Demultiplexing
- RX Sensitivity
  - Offset
  - Noise





#### **Pre-Amplifier Goals**

- Provide a large swing input to the sampler/slicer.
- Filter noise outside the received signal bandwidth.
- Issues
  - Power consumption
  - Input offset and its variability
  - High frequency operation





## A Simple Single-Ended Pre-Amplifier



- CMOS inverter is one of the simplest RX pre-amplifiers.
- Termination voltage, V<sub>TT</sub>, should be placed near inverter trip point.
- Issues
  - Limited gain (<20)</li>
  - High PVT variation results in large input referred offset.
  - Single-ended operation makes it both sensitive to and generate supply noise.





#### **Schmitt Trigger Single-Ended Pre-Amplifier**



- Different thresholds for pull-down and pull-up
  - Better noise margin than the inverter
- Reduced sensitivity to high frequency input noise
  - Due to hysteresis of the Schmitt trigger
- Still difficult to operate at high data rates
  - The switching thresholds still vary with process, voltage, and temperature





## **Differential Pre-Amplifiers**

- Differential input amplifiers often used as input stage in high performance serial links.
  - Rejects common-mode noise.
  - Sets input common-mode for the comparator.
- Input stage type (n or p) often set by termination scheme
- High gain-bandwidth product necessary to amplify full data rate signal
- Offset correction and equalization can be merged into the input amplifier.
- Can be used for single-ended RX.
- Output is not fully rail-to-rail.
  - Can cascade stages for more gain.
- Sensitive to supply noise variations









#### **Current Mode Diff. Pre-Amps**



- Input currents are amplified and subtracted from each other using current mirrors.
  - Useful when series termination is used on the receiver.
  - Gain is obtained from current mirror ratio.
  - I–V conversion gain depends on rds of transistors.
- T-line sees R= 1/gm.
  - PVT variations.
  - 1/gm> 50 Ohms is likely





# **Reducing R<sub>in</sub> in Current Mode Pre-Amps**



Negative feedback can be used to reduce R<sub>in</sub>.

$$Z_{in} pprox rac{1}{g_m}iggl(rac{1}{1+A(s)}iggr)$$

 Maintaining loop gain at high frequencies would be power hungry.





## **Bandwidth Extension: Terminology**

- BW extension ratio (BWER) = f<sub>3dB, ext</sub> / f<sub>3dB, ref</sub>
- Settling Time (1%) reduction ratio (STRR) =  $\tau_{s, ref} / \tau_{s, ext}$
- Rise Time (10-90%) reduction ratio (RTRR) =  $\tau_{r, ref}$  /  $\tau_{r, ext}$
- BWER, STRR & RTRR hard to maximize simultaneously.
  - Optimize for desired application.







# **BW Extension: Shunt Peaking**



$$Z(s) = \frac{R + sL}{1 + sRC + s^2LC}$$

$$m = \frac{R^2C}{L} \qquad \omega_0 = \frac{1}{RC}$$

$$Z_N(s) = \frac{1 + s / m \omega_0}{1 + s / \omega_0 + s^2 / m \omega_0^2}$$

$$m = \sqrt{2} \rightarrow 1.84X \& 1.5dB$$
 Peaking

- Introduces a pole-zero pair.
- L improves impedance with freq.





## **BW Extension: Bridged Shunt Peaking**



$$Z_{N}(s) = \frac{1 + \left(\frac{1}{m}\right) \frac{s}{\omega_{0}} + \left(\frac{k_{B}}{m}\right) \frac{s^{2}}{\omega_{0}^{2}}}{1 + \frac{s}{\omega_{0}} + \left(\frac{k_{B} + 1}{m}\right) \frac{s^{2}}{\omega_{0}^{2}} + \left(\frac{k_{B}}{m}\right) \frac{s^{3}}{\omega_{0}^{3}}}$$

$$m = \frac{R^2C}{L} \quad \omega_0 = \frac{1}{RC} \quad k_B = \frac{C_B}{C}$$



$$m = 2.4, k_B = 0.3 \rightarrow 1.83X$$
 flat

• C<sub>B</sub> is inductor parasitics.





#### **Bridged-Shunt Peaking Advantages**

| <b>K</b> <sub>B</sub> | m    | STRR | RTRR | BWER |
|-----------------------|------|------|------|------|
| 0.0                   | 1.4  | 0.70 | 2.18 | 1.84 |
| 0.1                   | 2.84 | 2.40 | 1.74 | 1.69 |
| 0.3                   | 2.4  | 1.39 | 1.87 | 1.83 |

- Incorporates inductor parasitics (Add more CB if needed).
- Maximum BW possible with flat gain (No 1.5dB peaking)
- m ↑, L↓ → Smaller Area
- Area overhead for added C<sub>B</sub> minimal





## **BW Extension: Series Peaking**





$$Z_N(s) = \frac{1}{1 + s/\omega_0 + s^2/m\omega_0^2}$$
  $m = \frac{R^2C}{L}$   $\omega_0 = \frac{1}{RC}$ 

- Lack of zero
- Inferior to shunt peaking
- $m = 2 \rightarrow 1.41x$

$$Z_{N}(s) = \frac{1}{1 + \frac{s}{\omega_{0}} + \left(\frac{1 - k_{C}}{m}\right) \frac{s^{2}}{\omega_{0}^{2}} + \left(\frac{k_{C}(1 - k_{C})}{m}\right) \frac{s^{3}}{\omega_{0}^{3}}} \qquad k_{C} = \frac{C}{C}$$

Extra Pole







# **Bridged-Shunt-Series Peaking**





| k <sub>c</sub> | <b>K</b> <sub>B</sub> | <i>m</i> <sub>1</sub> | <b>m</b> <sub>2</sub> | STRR | RTRR | BWER |
|----------------|-----------------------|-----------------------|-----------------------|------|------|------|
| 0.4            | 0.0                   | 6.3                   | 2.6                   | 1.32 | 2.73 | 3.47 |
|                | 0.16                  | 8                     | 2.2                   | 1.46 | 2.78 | 3.11 |
|                | 0.2                   | 6                     | 2.4                   | 0.71 | 2.89 | 4.00 |
|                | 0.3                   | 8                     | 2.4                   | 0.95 | 2.66 | 3.92 |
| 0.5            | 0.1                   | 6                     | 2                     | 0.75 | 2.91 | 3.40 |
|                | 0.2                   | 6                     | 2                     | 0.77 | 2.88 | 3.53 |





## **BW Extension: Symmetric T-Coil**



- $L_1=L_2$
- Maximum flat BW
  - m = 2,  $k=-1/2 \rightarrow 2.83x$







# **BW Extension: Asymmetric T-Coil**



$$k_m = M / \sqrt{L_1 L_2}$$

$$m_2 = \frac{R^2 C}{L_2}$$

| <b>k</b> <sub>C</sub> | k <sub>m</sub> | <b>m</b> <sub>1</sub> | m <sub>2</sub> | STRR | RTRR | BWER |
|-----------------------|----------------|-----------------------|----------------|------|------|------|
| 0.1                   | 0.7            | 4.0                   | 1.6            | 1.90 | 4.20 | 4.63 |
|                       | 0.6            | 3.5                   | 1.6            | 1.32 | 4.50 | 4.92 |
|                       | 0.6            | 3.5                   | 1.2            | 1.57 | 4.43 | 5.59 |
|                       | 0.7            | 4.1                   | 1.6            | 2.91 | 4.19 | 4.66 |
| 0.2                   | 0.6            | 5.5                   | 2.4            | 1.94 | 3.39 | 4.14 |
|                       | 0.6            | 3.0                   | 2.0            | 1.23 | 3.91 | 4.51 |
|                       | 0.5            | 4.0                   | 2.4            | 1.42 | 3.80 | 4.86 |
|                       | 0.7            | 4.6                   | 2.2            | 4.11 | 3.35 | 3.34 |
| 0.3                   | 0.5            | 4.0                   | 2.8            | 1.54 | 3.40 | 3.93 |
|                       | 0.4            | 3.5                   | 2.0            | 1.09 | 3.45 | 3.98 |
|                       | 0.4            | 4.0                   | 2.8            | 1.10 | 3.52 | 4.54 |
|                       | 0.6            | 5.0                   | 2.6            | 3.70 | 3.06 | 3.07 |





#### **BW Extension: Negative capacitance**



- Active reduction of capacitance
  - Use positive feedback to obtain effective negative capacitance.
- Have to sustain loop gain past the signal bandwidth.
  - Difficult and/or power hungry





#### **Outline**

- RX Overview
  - Parameters
  - Architecture choices
- RX Amplifiers
  - Pre-amplifiers
  - Bandwidth extension techniques
- Clocked Comparators
  - Circuits
  - Characterization techniques
- Demultiplexing
- RX Sensitivity
  - Offset
  - Noise





## **RX Clocked Comparators**

- Also called regenerative amplifier, sense-amplifier, flipflop, latch.
- Samples the continuous input at clock edges and resolves the differential to a binary 0 or 1.
- Characteristics
  - Offset and hysteresis (hysteresis is data dependent)
  - Sampling aperture, timing resolution, uncertainty window
  - Regeneration gain, voltage sensitivity, metastability
  - Random decision errors, input-referred noise







#### **Regenerative Latch Basics**



- Track phase: Some amplification is achieved (normal and regenerative)
- Hold/Reset phase: In some versions, more amplification (+ve feedback) is achieved. In other versions, the held value is reset.

#### Requirements

**Operation** 

- Low input capacitance
- Small setup-hold window, high sampling bandwidth
- Low power consumption





#### **Dynamic Comparator Circuits**





**Strong-Arm Latch** 

CML Latch

- To form a flip-flop
  - After strong-arm latch, cascade an R-S latch
  - After CML latch, cascade another CML latch
- Strong-Arm flip-flop has the advantage of no static power dissipation and full CMOS output levels.





## **StrongARM Latch Operation**



4 operating phases: reset, sampling, regeneration, and decision





## StrongARM Latch: Sampling Phase

- Sampling phase starts when clk goes high, t<sub>0</sub>, and ends when PMOS transistors turn on, t<sub>1</sub>.
- M1 pair discharges X/X'.
- M2 pair discharges out+/-.

$$\frac{v_{out}(s)}{v_{in}(s)} = \frac{g_{m1}g_{m2}}{sC_{out}C_x \left(s + \frac{g_{m2}(C_{out} - C_x)}{C_{out}C_x}\right)}$$

$$\approx \frac{g_{m1}g_{m2}}{s^2C_{out}C_x} = \frac{1}{s^2\tau_{s1}\tau_{s2}}$$
where  $\tau_{s1} \equiv C_x/g_{m1}, \tau_{s2} \equiv C_{out}/g_{m2}$ 







## StrongARM Latch: Regeneration

- Regeneration phase starts when PMOS transistors turn on, t<sub>1</sub>, until decision time, t<sub>2</sub>.
- Assume M1 is in linear region and circuit no longer sensitive to v<sub>in</sub>.
- Cross-coupled inverters amplify signals via positivefeedback:













#### **Conventional RS Latch**

 RS latch holds output data during latch pre-charge phase.

 Conventional RS latch rising output transitions first, followed by falling transition.







#### **Optimized RS Latch**

- Optimizing RS latch for symmetric pull-up and pulldown paths allows for considerable speed-up.
- During evaluation, large driver transistors are activated to change output data and the keeper path is disabled.
- During pre-charge, large driver transistors are tri-stated and small keeper cross-coupled inverter activated to hold data.

[Nikolic, JSSC Jun. 2000]







## **CML Latch Operation**



At the beginning of regeneration phase

$$V_{out}(0) = G_{m1}R_DV_{in}$$

Then

$$G_{m3} V_{out} = \frac{V_{out}}{R_D} + C_L \frac{dV_{out}}{dt}$$

$$V_{out}(t) = G_{m1} R_D V_{in} \exp \frac{G_{m3} t}{C_L} \exp \frac{-t}{R_D C_L}$$





## **Comparison of SA and CML Comparator (1)**





- CML latch has higher sampling gain with small input pair.
- StrongARM latch has higher sampling bandwidth.
  - For CML latch increasing input pair also directly increases output capacitance.
  - For SA latch increasing input pair results in transconductance increasing faster than capacitance.





## Low-Voltage SA (1)



But requires Clk and Clk\_b.





## Low-Voltage SA (2)



- Similar stacking to conventional SA latch
- However, now P0 and P1 are initially on during evaluation which speeds up operation at lower voltages.
- Requires clk & clk\_b.





# **Charge-Steering Concept**



- Tail current sources converted into a charge source.
- Two phases: Reset Phase (CK Low) and Amplification Phase (CK High)
- In Reset phase, C<sub>T</sub> is discharged and V<sub>out</sub> Reset
- In amplification phase, charge redistribution occurs between C<sub>D</sub> and C<sub>T</sub>. V<sub>out</sub> difference exists based on V<sub>in</sub>.





# **Charge-Steering Comparator**



- Cross-coupled pairs added for regeneration.
- Two-phase design has contention between cross-coupled pair and differential pair.
- Three-phase design resolves this issue and results in better sensitivity.
- Overall, low power operation is achieved. (66 μW at 6 GHz with 1-mV sensitivity)





#### **RX Demultiplexing**

- Demultiplexing allows for lower clock frequency relative to data rate.
- Gives extra regeneration and precharge time in comparators.
- Need precise phase spacing, but not as sensitive to duty-cycle as TX multiplexing.







#### 1:4 Demultiplexing



- Increased demultiplexing allows for higher data rate at the cost of increased input or pre-amp load capacitance.
- Higher multiplexing factor more sensitive to phase offsets in degrees





#### **Outline**

- RX Overview
  - Parameters
  - Architecture choices
- RX Amplifiers
  - Pre-amplifiers
  - Bandwidth extension techniques
- Clocked Comparators
  - Circuits
  - Characterization techniques
- Demultiplexing
- RX Sensitivity
  - Offset
  - Noise





#### **Receiver Sensitivity**

 RX sensitivity is a function of the input referred noise, offset, and minimum latch resolution voltage.

$$v_S^{pp} = 2v_n^{rms} \sqrt{SNR} + v_{min} + v_{offset^*}$$

- Gaussian (unbounded) input referred noise comes from input amplifiers, comparators, and termination.
  - A minimum signal-to-noise ratio (SNR) is required for a given bit-error-rate (BER). For BER =  $10^{-12}$  ( $\sqrt{\text{SNR}}$  = 7)
- Minimum latch resolution voltage comes from hysteresis, finite regeneration gain, and bounded noise sources.

Typical 
$$v_{\min} < 5mV$$

Input offset is due to circuit mismatch (primarily V<sub>th</sub> mismatch) & is most significant component if uncorrected.





#### **Latch Resolution**

Taking CML latch as an example



output equal to 80% of the final value.

$$V_{sens} = \frac{0.8I_{SS}}{G_{m1}} \exp\left(-\frac{G_{m3}R_D - 1}{2R_DC_L f_{CK}}\right)$$

Including Hysteresis, worst case resolution becomes

$$V_{sens} = \frac{0.8I_{SS}}{(1-\kappa)G_{m1}} \left(1 + \kappa \exp{\frac{G_{m3}R_D - 1}{2R_DC_Lf_{CK}}}\right) \exp{\left(-\frac{G_{m3}R_D - 1}{2R_DC_Lf_{CK}}\right)}$$
 Where  $\kappa = \exp{\left(-\frac{1}{2R_DC_Lf_{CK}}\right)}$ 





# **RX Sensitivity & Offset Correction**

 RX sensitivity is a function of the input referred noise, offset, and min latch resolution voltage.

$$v_S^{pp} = 2v_n^{rms} \sqrt{SNR} + v_{min} + v_{offset^*}$$
 Typical Values:  $v_n^{rms} = 1mV_{rms}$ ,  $v_{min} + v_{offset^*} < 6mV$   
For BER =  $10^{-12}$  ( $\sqrt{SNR} = 7$ )  $\Rightarrow v_S^{pp} = 20mV_{pp}$ 

 Circuitry is required to reduce input offset from a potentially large uncorrected value (>50mV) to near 1mV.







#### **Input Referred Offset**

The input referred offset is primarily a function of V<sub>th</sub> mismatch and a weaker function of β (mobility) mismatch.

$$\sigma_{V_t} = \frac{A_{V_t}}{\sqrt{WL}}, \quad \sigma_{\Delta \beta / \beta} = \frac{A_{\beta}}{\sqrt{WL}}$$

- To reduce input offset 2x, we need to increase area 4x.
  - Not practical due to excessive area and power consumption.
  - Offset correction necessary to efficiently achieve good sensitivity.
- Ideally the offset coefficients are given by the design kit and Monte Carlo is performed to extract offset sigma.
- Here are some common values:
  - $A_{Vt} = 1 \text{mV} \mu \text{m per nm of } t_{ox}$ .
    - For 90nm technology,  $t_{ox}=2.8$ nm  $\rightarrow A_{Vt} \sim 2.8$  mV $\mu$ m.
  - A<sub>β</sub> is generally near 2%µm.





# **Offset Correction Range & Resolution**

- Generally circuits are designed to handle a minimum variation range of  $\pm 3\sigma$  for 99.7% yield.
- Example: Input differential transistors W=4μm, L=150nm

$$\sigma_{V_t} = \frac{A_{V_t}}{\sqrt{WL}} = \frac{2.8mV\mu m}{\sqrt{4\mu m \cdot 150nm}} = 3.6mV, \quad \sigma_{\Delta\beta/\beta} = \frac{A_{\beta}}{\sqrt{WL}} = \frac{2\%\mu m}{\sqrt{4\mu m \cdot 150nm}} = 2.6\%$$

- If we assume (optimistically) that the input offset is only dominated by the input pair V<sub>t</sub> mismatch, we would need to design offset correction circuitry with a range of about ±11mV.
- If we want to cancel within 1mV, we would need an offset cancellation resolution of 5bits, resulting in a worst-case offset of

$$1LSB = \frac{\textbf{Offset Correction Range}}{2^{\text{Resolution}} - 1} = \frac{22mV}{2^5 - 1} = 0.65mV$$





#### **Current-Mode Offset Correction Example**

 Differential current injected into input amplifier load to induce an input-referred offset that can cancel the inherent amplifier offset.

 Can be made with extended range to perform link margining\*.

 Passing a constant amount of total offset current for all the offset settings allows for constant output common-mode level.

 Offset correction performed both at input amplifier and in individual receiver segments of the 2-way interleaved architecture.



[Balamurugan, JSSC Apr. 2008]

<sup>\*</sup> Introducing offset and get BER to establish an eye.





## **Capacitive Offset Correction Example**

- A capacitive imbalance in the sense-amplifier internal nodes induces an input-referred offset.
- Pre-charges internal nodes to allow more integration time for more increased offset range.
- Additional capacitance does increase sense-amp aperture time.
- Offset is trimmed by shorting inputs to a common-mode voltage and adjusting settings until an even distribution of "1"s and "0"s are observed.
- Offset correction settings can be sensitive to input commonmode.







