ÁLGEBRA A (62) (Cátedra: ESCAYOLA, Rosa María) 1° PARCIAL	.UBAXXI
05/05/2022 - 15 a 16,30 h	Temas 1 y 3

- Enunciado

Sea $\vec{v} \in \mathbb{R}^3$ un vector de norma 1. Si el producto escalar entre el vector \vec{v} y $\vec{w} \in \mathbb{R}^3$ es -18 y ambos vectores forman un ángulo de $\frac{9\pi}{10}$, indicá la única opción que muestra de forma aproximada la norma de \vec{w} :

- a) $||\vec{w}|| \approx -0.053$
- b) $||\vec{w}|| \approx 0,053$
- c) $||\vec{w}|| \approx -18,93$
- d) $||\vec{w}|| \approx 18,93$

Opción correcta: d)

Resolución

Para resolver este ejercicio hay que tener presente que el producto escalar entre vectores se puede calcular como: $\vec{v} \cdot \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \cos(\alpha)$ donde reemplazando los datos nos queda una ecuación para despejar la norma del vector \vec{w} .

- Enunciado

Sea P y Q dos puntos de \mathbb{R}^3 tales que P=(-10;1;-1) y Q=(3;k+2;-1). Indicá qué opción es la única que muestra todos los valores de k de modo que la distancia entre P y Q sea 85.

- a) 84 y 84
- b) 83 y 85
- c) -83 y 85
- d) No existen valores de k posibles.

Opción correcta: b)

Resolución

Lo que debemos plantear aquí es la condición de distancia entre puntos: ||P-Q||=85 y de allí despejar los posibles valores de k. La ecuación nos queda: $\sqrt{(-10-3)^2+(1-(k+2))^2+(-1-(-1))^2}=85$ $\sqrt{169+(-k-1)^2+0}=85 \rightarrow |-k-1|=84$. Por lo que k=83 ó k=-85.

- Enunciado

La proyección del punto (1;3;1) sobre el plano de ecuación $\pi: x-2y+z=2$ es el punto:

- a) (-1; -3; -1)
- b) (1; -2; 1)
- c) (2;1;2)
- d) (3;-1;3)

Opción correcta: c)

Resolución

Para hallar la proyección de (1;3;1) debemos hallar la intersección entre la recta cuya dirección es la misma que la normal, es decir perpendicular al plano, y que pasa por (1;3;1). Dicha recta tiene ecuación $(x;y;z) = \alpha \cdot (1;-2;1) + (1;3;1)$. La intersección con el plano da el punto (2;1;2).

- Enunciado

La distancia entre la recta de ecuación $(x; y; z) = \alpha \cdot (1; 0; -1) + (1; 3; 1)$ y el plano de ecuación $\pi : x - 2y + z = 2$ es

- a) $\sqrt{6}$
- b) 6
- $c) \sqrt{11}$
- d) 2

Opción correcta: a)

Resolución

Para hallar la distancia entre la recta y el plano primero debemos ver si son o no paralelos. Como el producto escalar entre la normal al plano y el vector director de la recta da 0, podemos decir que son paralelos. Para hallar la distancia entonces proyectamos un punto cualquiera de la recta sobre el plano y luego hallamos la distancia entre dicho punto y su proyectado. Si usamos el punto (1;3;1) obtenemos que su proyección es el punto (2;1,2). Luego la distancia es $\sqrt{6}$.

ÁLGEBRA A (62) (Cátedra: ESCAYOLA, Rosa María) 1º PARCIAL	.UBAXXI
05/06/2022 - 15 a 16,30 h	Temas 1 y 3

- Enunciado

Sean los subespacios $S \subset \mathbb{R}^3$ y $T \subset \mathbb{R}^3$ tales que dim(S) = dim(T) = 2. Suponiendo que $S \cap T \neq \emptyset$ y que $S \neq T$, la dimensión de $S \cap T$ es:

- a) 0
- b) 1
- c) 2
- d) 3

Opción correcta: b)

Resolución

Dado que S y T son planos de \mathbb{R}^3 y $S \neq T$ y tienen intersección no vacía tenemos que $S \cap T$ es una recta, luego su dimensión es 1.

- Enunciado

Sea el subespacio S=<(-1;1;1)>, elegí cuál de las siguientes ecuaciones describe S.

- a) $x_1 + x_2 = 0, x_3 x_2 = 0$
- $b) x_1 x_2 = 0, x_3 x_2 = 0$
- c) $x_1 + x_2 = 0$
- d) $x_1 + x_2 = 0, x_3 + x_2 = 0$

Opción correcta: a)

Resolución

Despejando de $x_1 + x_2 = 0$, $x_3 - x_2 = 0$ tenemos que $(x_1; x_2; x_3) = (-x_2; x_2; x_2) = x_2(-1; 1; 1)$. Para las otras opciones, los signos no son correctos.

- Enunciado

La única opción que indica las ecuaciones de las asíntotas de la hipérbola de ecuación $\frac{(x-3)^2}{4} - \frac{(y+1)^2}{9} = 1$ es:

- a) 3x + 2y = -7; -3x + 2y = 11
- b) 3x 2y = 7; -3x 2y = -11
- c) 3x + 2y = 7; -3x + 2y = -11
- d) -3x + 2y = 7; 3x + 2y = -11

Opción correcta: c)

Resolución

La hipérbola de ecuación $\frac{(x-3)^2}{4} - \frac{(y+1)^2}{9} = 1$ tiene como centro a (3,-1) y como semiejes b=3, a=2. Luego, las ecuaciones de las asíntotas se encuentran como $y-(-1)=\pm\frac{b}{a}(x-3)$. Las rectas son: $y+1=\pm\frac{3}{2}(x-3)$. De esta igualdad se obtienen las ecuaciones: 3x+2y=7; -3x+2y=-11.

- Enunciado

Elegí la única opción que indica las coordenadas de los puntos de intersección con los ejes coordenados de la circunferencia de ecuación $x^2 + y^2 - 2x + 4y = 0$:

- a) (0,0),(0,-4),(2,0)
- b) (0,0),(-4,0),(0,2)
- c) (0,0),(0,4),(-2,0)
- d) (0,0),(4,0),(0,-2)

Opción correcta: a)

Resolución

La ecuación $x^2 + y^2 - 2x + 4y = 0$ puede escribirse como $(x-1)^2 + (y+2)^2 = 5$. Para encontrar los puntos de intersección con cada uno de los ejes coordenados, se debe reemplazar por x=0 y se obtiene $y=0 \lor y=-4$. Si se reemplaza por y=0 se obtiene $x=0 \lor x=2$.