Abstraction in Fixpoint Logics

Tim Willemse (TU/e)

Joint work with Maciek Gazda, Sjoerd Cranen, Wieger Wesselink

May 9, 2014

DMCD

Department of Mathematics and Computer Science

Outline

2/19

Fixpoint Logics for Verification

Boolean Equation Systems

Abstraction

Conclusions and Outlook

Department of Mathematics and Computer Science

Fixpoint Logics for Verification

3/18

TU/e Technische Universiteit Eindhoven University of Technology

Fixpoint Logics for Verification

4/18

Example (All Work...)

Always w(ork)...

Department of Mathematics and Computer Science

Fixpoint Logics for Verification

1/18

Example (All Work...)

$$X \stackrel{\nu}{=} w \wedge \Box X$$

Fixpoint Logics for Verification

4/18

Example (All Work...)

$$X \stackrel{\nu}{=} w \wedge \Box X$$

Compute where X holds by approximation:

- $X^0 = \{s_0, s_1, s_2, s_3\}$
- $X^1 = \{s_0, s_2, s_3\}$
- $X^2 = \{s_0, s_3\}$
- $X^3 = \emptyset$

Department of Mathematics and Computer Science

Fixpoint Logics for Verification

1/18

Example (All Work...)

$$\begin{array}{ccc} X & \stackrel{\nu}{=} & Y \\ Y & \stackrel{\mu}{=} & (w \wedge \Box X) \vee (p \wedge \Box Y) \end{array}$$

Fixpoint Logics for Verification

4/18

Example (All Work...)

$$\begin{array}{ccc} X & \stackrel{\nu}{=} & Y \\ Y & \stackrel{\mu}{=} & (w \wedge \Box X) \vee (p \wedge \Box Y) \end{array}$$

Convert to Boolean Equation System:

$$X_{s_0} \stackrel{\nu}{=} Y_{s_0}$$

$$X_{s_1} \stackrel{\nu}{=} Y_{s_1}$$

$$X_{s_2} \stackrel{\nu}{=} Y_{s_2}$$

$$X_{s_3} \stackrel{\nu}{=} Y_{s_3}$$

$$Y_{s_0} \stackrel{\mu}{=} X_{s_2} \wedge X_{s_3}$$

$$Y_{s_1} \stackrel{\mu}{=} Y_{s_0}$$

$$Y_{s_2} \stackrel{\mu}{=} X_{s_1}$$

$$Y_{s_3} \stackrel{\mu}{=} X_{s_2}$$

 X_{s_i} is true iff $s_i \in X$; same for Y

Department of Mathematics and Computer Science

Outline

5/18

Fixpoint Logics for Verification

Boolean Equation Systems

Abstraction

Conclusions and Outlook

A Boolean Equation is an equation of the form

$$X \stackrel{\mu}{=} f_X$$

fixpoint equality; can also be $\stackrel{\nu}{=}$

Department of Mathematics and Computer Science

Boolean Equation Systems

6/18

A Boolean Equation is an equation of the form

$$X \stackrel{\mu}{=} f_X$$

propositional variable

Boolean Equation Systems

6/18

A Boolean Equation is an equation of the form

$$X \stackrel{\mu}{=} f_X$$

propositional formula; propositional variables occur only positively

Department of Mathematics and Computer Science

Boolean Equation Systems

6/18

A Boolean Equation is an equation of the form

$$X \stackrel{\mu}{=} f_X$$

Semantics: the least (resp. largest) Boolean satisfying the equation.

A Boolean Equation is an equation of the form

$$X \stackrel{\mu}{=} f_X$$

Semantics: the least (resp. largest) Boolean satisfying the equation.

Example

- $X \stackrel{\mu}{=} true$: solution to X is true
- $X \stackrel{\mu}{=} X$: solution to X is false
- $(X \stackrel{\mu}{=} Y)$: solution to X is determined by Y.

Department of Mathematics and Computer Science

Boolean Equation Systems

7/18

A Boolean Equation System is a sequence of the form

$$(X_1 \stackrel{\sigma_1}{=} f_1) \cdots (X_n \stackrel{\sigma_n}{=} f_n)$$

Semantics assigns a solution to each predicate variable

$$[\emptyset] \theta = \theta \qquad [(X \stackrel{\sigma}{=} f)\mathcal{E}] \theta = [\mathcal{E}] \theta [X := F_{\sigma}]$$

where θ is a propositional environment and:

$$F_{\mu}/F_{\nu}$$
 is the least/greatest F satisfying: $F = [f]([\mathcal{E}]\theta[X := F])$

Outline 8/18

Fixpoint Logics for Verification

Boolean Equation Systems

Abstraction

Conclusions and Outlook

Department of Mathematics and Computer Science

Abstraction

0/18

- Efficient algorithms for solving BESs:
 - Gauß Elimination or directly via semantics
 - Parity game solvers: Zielonka's algorithm, Small Progress Measures
- Succinct representation of large/infinite BESs:
 - PBESs: first-order logic + fixpoints
- ► How to solve large/infinite BESs?

Example (All Work...)

$$\begin{array}{ccc} X & \stackrel{\nu}{=} & Y \\ Y & \stackrel{\mu}{=} & (w \wedge \Box X) \vee (p \wedge \Box Y) \end{array}$$

Infinite Boolean Equation System:

$$Y_{s_0} \stackrel{\mu}{=} X_{s_2} \wedge X_{s_3} \wedge \dots$$

$$Y_{s_1} \stackrel{\mu}{=} Y_{s_0}$$

$$Y_{s_2} \stackrel{\mu}{=} X_{s_1}$$

$$Y_{s_3} \stackrel{\mu}{=} X_{s_2}$$

$$\vdots$$

Department of Mathematics and Computer Science

Abstraction

11/18

How to deal with infinite BESs:

- ▶ In process theory simulation relations
- ▶ In propositional logic logical consequence

Definition (Consistent Consequence)

Essentially, add the following rule to a proof system for logical consequence:

$$\frac{\Gamma \cup \{X \Rightarrow Y\} \vdash f_X \Rightarrow f_Y \quad \mathsf{block}(X) = \mathsf{block}(Y)}{\Gamma \vdash X \Rightarrow Y}$$

For bound variables X, Y: Y is a consistent consequence of X iff $\vdash X \Rightarrow Y$

Example (All Work...)

Is a consistent consequence of the BES:

 $\vdash U_0 \Rightarrow X_{s_0} \text{ and } \vdash U_2 \Rightarrow X_{s_2} \text{ and } \vdash U_2 \Rightarrow X_{s_3} \text{ and } \dots;$ $\vdash W_0 \Rightarrow Y_{s_0} \text{ and } \vdash W_2 \Rightarrow Y_{s_2} \text{ and } \vdash W_2 \Rightarrow Y_{s_3} \text{ and } \dots;$

Department of Mathematics and Computer Science

Abstraction

12/18

Example (All Work...)

$$X_{s_0} \stackrel{\nu}{=} Y_{s_0} \qquad Y_{s_0} \stackrel{\mu}{=} X_{s_2} \wedge X_{s_3} \wedge \dots$$

$$X_{s_1} \stackrel{\nu}{=} Y_{s_1} \qquad Y_{s_1} \stackrel{\mu}{=} Y_{s_0}$$

$$X_{s_2} \stackrel{\nu}{=} Y_{s_2} \qquad Y_{s_2} \stackrel{\mu}{=} X_{s_1}$$

$$X_{s_3} \stackrel{\nu}{=} Y_{s_3} \qquad Y_{s_3} \stackrel{\mu}{=} X_{s_2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

Is a consistent consequence of the BES:

e.g.:
$$\vdash W_0 \Rightarrow Y_{s_0}$$
 follows if $W_0 \Rightarrow Y_{s_0} \vdash U_2 \Rightarrow X_{s_2} \land X_{s_3} \land ...$

Example (All Work...)

Is a consistent consequence of the BES:

e.g.:
$$\vdash W_2 \Rightarrow Y_{s_2}$$
 follows if $W_2 \Rightarrow Y_{s_2} \vdash U_1 \land U_2 \Rightarrow X_{s_1}$

Department of Mathematics and Computer Science

Abstraction

13/18

Theorem (Soundness)

If Y is a consistent consequence of X then X's solution implies that of Y

Abstraction works... but how well?

- Is there a comparable abstraction framework for transition systems?
- ▶ Which class of infinite BESs become potentially tractable to solve?

Generalised Kripke Modal Transition Systems

- May transitions
- Must hyper transitions

Generalised mixed simulation

Department of Mathematics and Computer Science

15/18

Theorem

Generalised Kripke Modal Transition Systems with generalised mixed simulation and BESs with consistent consequence are equally powerful for model checking

Theorem

Consistent consequence "abstractions" can be exponentially smaller than in generalised mixed simulation abstractions

Abstraction 16/18

Definition (Completeness for class C of BESs)

Consistent Consequence is complete for $\mathcal C$ iff for all $\mathcal E \in \mathcal C$

if equation $X \stackrel{\sigma}{=} f$ in \mathcal{E} has solution *true* for X then there must be a (finite) BES \mathcal{E}' with equation $X' \stackrel{\sigma}{=} f'$ satisfying

- $\vdash X' \Rightarrow X$
- ► X' has solution true

Theorem (Completeness Classes)

Consistent consequence is complete for:

- Greatest fixpoint-only (infinite) BESs
- Least fixpoint-only (infinite) BESs without infinite conjunctions

Department of Mathematics and Computer Science

Outline 17/18

Fixpoint Logics for Verification

Boolean Equation Systems

Abstraction

Conclusions and Outlook

- ▶ Consistent consequence is an abstraction framework for BESs
 - coinductive generalisation of logical consequence
 - abstractions remain within the same formalism
 - theory extends to PBESs
- Independent of application domain!
 - model checking
 - equivalence/simulation checking
 - real-time model checking
- Consistent consequence based tooling:

 - CEGAR......future work

Department of Mathematics and Computer Science