

<u>ВНИМАНИЕ!</u> Техника полиномиального движения есть довольно мощный инструмент, однако к нему стоит относиться крайне осознанно и осторожно! Любое подобное решение на олимпиаде расценивается как *счётное*, потому малейшая ошибка/неправильное понимание, описание может стоить вам задачи.

Понятие проективной плоскости \mathbb{RP}^2 достаточно широкое: так, для изучения и доказательства свойств нам будет удобнее смотреть на него как на пучок плоскостей и прямых, проходящих через точку O(0,0,0) пространства \mathbb{R}^3 , с точки зрения использования бывает полезным и "более привычное плоское".

Всякая moчкa в \mathbb{RP}^2 задаётся **тремя** координатами $[a_0:b_0:c_0]$ с точностью до пропорциональности и отождествляется с **прямой в** \mathbb{R}^3 , проходящей через точки O и $X(a_0,b_0,c_0)$.

Всякая npямая в \mathbb{RP}^2 также задаётся **тремя** координатами $[k_0:l_0:m_0]$ с точностью до пропорциональности и отождествляется **плоскостью в** \mathbb{R}^3 , задаваемую уравнением $k_0x + l_0y + m_0z = 0$.

Здесь и далее нас будет интересовать семейство \mathcal{F} отображений $f: \mathbb{RP}^1 \to \mathbb{RP}^2$ проективной прямой, играющей роль времени (по аналогии с \mathbb{RP}^2 она задаётся двумя координатами t_1 и t_2), в проективную плоскость, для которых

$$f(t_1, t_2) = [P(t_1, t_2) : Q(t_1, t_2) : R(t_1, t_2))],$$

- где P, Q, R однородные многочлены равной степени, взаимно простые в совокупности. Степенью зависимости точки $A = f(t_1, t_2)$ называется число $d = \deg P$. Аналогично вводится определение степени зависимости для прямых.
- **1.** Докажите, что отображение, задающее линейное движение точки по прямой в \mathbb{RP}^2 есть элемент \mathcal{F} .
- **2.** Точка A степени не больше a и точка B степени не больше b совпадают в a+b+1 положении (различных элементах \mathbb{RP}^1). Тогда A и B всегда совпадают.
- **3.** (Лемма о сложении степеней) Если степень точки A не больше a, а степень точки B не больше b, то степень прямой AB не больше a+b. Сформулируйте двойственное утверждение для прямых.
- **4.** Докажите, что центральная проекция и параллельный перенос сохраняют степень точки. Выведите отсюда, что проективное преобразование одной прямой (или же пучка прямых) в другую сохраняет степень точки.
- **5.** (Лемма об удвоении степени на конике) Точка A лежит на конике \mathcal{C} , а точка B движется по прямой ℓ со степенью b. Тогда вторая точка пересечения прямой AB с \mathcal{C} движется по \mathcal{C} со степенью не больше 2b.
- **6.** Окружность ω касается прямой ℓ , а точка X проективно движется по ω . Тогда точка пересечения касательной к ω в X с ℓ также движется проективно.
- 7. Точка X проективно движется по окружности \mathcal{C} , а I фиксированная точка, не лежащая на \mathcal{C} . Движется ли проективно $IX \cap \mathcal{C}$, отличная от X?
- **8.** Прямая ℓ проективно вращается в пучке точке P. Точка $S \neq P$ фиксирована. Движется ли основание перпендикуляра из точки S на ℓ проективно?

Реальные задачи

- 9. Пусть I инцентр ΔABC , а Γ его описанная окружность. Прямая AI повторно пересекает Γ в точке D. Пусть E точка на дуге BDC окружности Γ , а F точка на стороне BC, для которых $\angle BAF = \angle CAE = \frac{1}{2}BAC$. Докажите, что прямая через точку D и середину IF пересекает прямую EI на Γ .
- **10.** Пусть H ортоцентр ABC, а ℓ_1 и ℓ_2 прямые через H, перпендикулярные друг другу. Прямая ℓ_1 пересекает BC и продолжение AB в точках D и Z соответственно, а прямая ℓ_2 пересекает BC и продолжение AC в точках E и X соответственно. Пусть Y точка, такая что $YD \parallel AC$ и $YE \parallel AB$. Докажите, что точки X,Y и Z лежат на одной прямой.
- **11.** В остроугольном треугольнике ABC проведены высоты AD, BE и CF, а также отмечена точка пересечения медиан G. Лучи DG, EG и FG повторно пересекают описанную окружность треугольника DEF в точках D', E' и F' соответственно. Докажите, что AD', BE' и CF' пересекаются в одной точке.
- **12.** Дан треугольник ABC с центром описанной O и точка X внутри него. Пусть $P,\,Q,\,R$ основания перпендикуляров из X на стороны $AB,\,AC$ и BC соответственно. Средняя линия треугольника ABC, параллельная BC, пересекает прямую PQ в точке T. Докажите, что ортополюс прямой OX относительно треугольника ABC лежит на прямой TR.
- 13. В остроугольном треугольнике ABC точки O, I центры описанной и вписанной окружностей, P произвольная точка на отрезке OI, точки P_A , P_B и P_C вторые точки пересечения прямых PA, PB и PC с окружностью ABC. Докажите, что биссектрисы углов BP_AC , CP_BA и AP_CB конкуррентны.
- **14.** Пусть Ω описанная окружность остроугольного треугольника ABC. Точки M и N середины дуг BC окружности Ω , содержащей и не содержащей точку A соответственно. Серединный перпендикуляр к отрезку AN пересекает стороны AB и AC в точках X и Y соответственно. Описанная окружность треугольника XYN повторно пересекает Ω в точке Z. Докажите, что прямая MZ проходит через ортоцентр треугольника ABC.
- **15.** Пусть ABC остроугольный треугольник с центром O описанной окружности Ω и инцентром I. Точка S середина дуги BC окружности Ω , **не содержащая** точку A. Точки E и F взяты на прямой OI так, что BE и CF перпендикулярны OI. Точка X взята так, что $XE \perp AC$ и $XF \perp AB$. Точка Y взята так, что $YE \perp SC$ и $YF \perp SB$. Наконец, точка D взята на BC так, что $DI \perp BC$. Докажите, что точки X, Y и D коллинеарны.