Recitation 28: Cross Products and Lines and Curves in Space

Warm up:

If \vec{a} , \vec{b} , and \vec{c} are vectors in 3-space \mathbb{R}^3 , which of the following make sense?

(a) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$ (d) $(\vec{a} \cdot \vec{b}) + \vec{c}$ (g) $\vec{a} \cdot (\vec{b} \times \vec{c})$

(b) $(\vec{a} \cdot \vec{b})\vec{c}$

(e) $(\vec{a} \times \vec{b}) + \vec{c}$ (h) $\vec{a} \times (\vec{b} \cdot \vec{c})$

(c) $(\vec{a} \times \vec{b}) \cdot \vec{c}$

(f) $\vec{a} \cdot (\vec{b} + \vec{c})$

(i) $(\vec{a} \times \vec{b})\vec{c}$

(a) Since $\vec{a} \cdot \vec{b}$ is a scalar, $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$ does **not** make sense. **Solution:**

- (b) Now since $\vec{a} \cdot \vec{b}$ is a scalar, $(\vec{a} \cdot \vec{b})\vec{c}$ does make sense as regular scalar multiplication.
- (c) Since $\vec{a} \times \vec{b}$ is a vector, $(\vec{a} \times \vec{b}) \cdot \vec{c}$ does make sense.
- (d) This is of the form "scalar + vector", which does **not** make sense.
- (e) Since $\vec{a} \times \vec{b}$ is a vector, $(\vec{a} \times \vec{b}) + \vec{c}$ does make sense.
- (f) This is of the form "vector · vector", which **does** make sense.
- (g) This is also of the form "vector \cdot vector", which **does** make sense.
- (h) This is of the form "vector \times scalar", which does **not** make sense.
- (i) Since $\vec{a} \times \vec{b}$ is a vector, this does **not** make sense.

Group work:

Problem 1 Given three dimensional vectors \vec{u} , \vec{v} , and \vec{w} , use dot product or cross product notation to describe the following vectors:

(a) The vector projection of \vec{w} onto \vec{u} .

Learning outcomes:

Recitation 28: Cross Products and Lines and Curves in Space

- (b) A vector orthogonal to both \vec{u} and \vec{v} .
- (c) A vector with the length of \vec{v} and the direction of \vec{w} .
- (d) A vector orthogonal to $\vec{u} \times \vec{v}$ and \vec{w} .

Solution: (a) This is the definition of vector projections.

$$proj_u w = \boxed{\left(\frac{\vec{u} \cdot \vec{w}}{\vec{u} \cdot \vec{u}}\right) \vec{u}}$$

(b) There are many such vectors, but one of them is

$$\vec{u} \times \vec{v}$$

(c) Note that $|\vec{v}|^2 = \vec{v} \cdot \vec{v}$ so that $|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}}$.

$$|\vec{v}| \left(\frac{\vec{w}}{|\vec{w}|} \right) = \boxed{\frac{\sqrt{\vec{v} \cdot \vec{v}}}{\sqrt{\vec{w} \cdot \vec{w}}} \vec{w}}$$

(d)

$$(\vec{u} \times \vec{v}) \times \vec{w}$$

Problem 2 Let $\vec{u} = \langle 5, -1, 8 \rangle$ and $\vec{v} = \langle -2, 10, 5 \rangle$.

- (a) Find a vector that is perpendicular to both \vec{u} and \vec{v} .
- (b) Verify that your answer is perpendicular to both \vec{u} and \vec{v}
- (c) Find a vector of length 7 perpendicular to both \vec{u} and \vec{c} .

Solution: (a) Let $\vec{u} = \langle 5, -1, 8 \rangle$ and $\vec{v} = \langle -2, 10, 5 \rangle$. Then a vector which is perpendicular to both \vec{u} and \vec{v} is $\vec{w} := \vec{u} \times \vec{v}$. So we calculate

$$\vec{w} = \vec{u} \times \vec{v} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 5 & -1 & 8 \\ -2 & 10 & 5 \end{vmatrix} = (-5 - 80)\hat{\imath} - (25 + 16)\hat{\jmath} + (50 - 2)\hat{k}$$
$$= -85\hat{\imath} - 41\hat{\jmath} + 48\hat{k}$$

(b) To verify perpendicularity, we take the dot product.

$$\vec{u} \cdot \vec{w} = \langle 5, -1, 8 \rangle \cdot \langle -85, -41, 48 \rangle = 5(-85) - 1(-41) + 8(48) = -425 + 41 + 384 = 0$$
$$\vec{v} \cdot \vec{w} = \langle -2, 10, 5 \rangle \cdot \langle -85, -41, 48 \rangle = -2(-85) + 10(-41) + 5(48) = 170 - 410 + 240 = 0$$

(c) A unit vector in the same direction as \vec{w} is

$$\frac{\vec{w}}{|\vec{w}|} = \frac{1}{\sqrt{(-85)^2 + (-41)^2 + 48^2}} \vec{w} = \frac{1}{\sqrt{11210}} \vec{w}.$$

Therefore, a vector with a magnitude of 7 in the same direction as \vec{w} is

$$\vec{t} = \frac{7}{|\vec{w}|}\vec{w} = \boxed{\frac{7}{\sqrt{11210}}\langle -85, -41, 48 \rangle}$$

Problem 3 Find the area of the triangle in \mathbb{R}^3 with vertices at P(2,-1,0), Q(1,1,4) and R(2,-1,6).

Solution: The area of the triangle is $\frac{1}{2}|\vec{PQ} \times \vec{PR}|$.

$$\vec{PR} = \langle 2, -1, 6 \rangle - \langle 2, -1, 0 \rangle = \langle 0, 0, 6 \rangle,$$

$$\vec{PQ} = \langle 1, 1, 4, \rangle - \langle 2, -1, 0 \rangle = \langle -1, 2, 4 \rangle.$$

So

$$\begin{split} \vec{PQ} \times \vec{PR} &= (-\vec{i} + 2\vec{j} + 4\vec{k}) \times 6\vec{k} = -(\vec{i} \times \vec{k}) + 2(\vec{j} \times \vec{k}) + 24(\vec{k} \times \vec{k}) \\ &= -(-\vec{j}) + 2\vec{i} + 0 = \langle 2, 1, 0 \rangle. \end{split}$$

The area of the triangle is $\frac{1}{2}\sqrt{2^2+1^2+0^2}=\frac{\sqrt{5}}{2}$.

Problem 4 Find a vector-valued function for the line segment connecting the points P = (-3, 7, 6) and Q = (5, -4, 7) in such a way that the value at t = 0 is P and the value at t = 1 is Q. Also, find the point two-thirds of the way from P to Q.

Solution: The line segment $\vec{r}(t)$ from P to Q is

$$\begin{split} \vec{r}(t) &= (1-t)P + tQ \\ &= (1-t)\langle -3, 7, 6\rangle + t\langle 5, -4, 7\rangle \\ &= \boxed{\langle -3 + 8t, 7 - 11t, 6 + t\rangle \quad \text{for } 0 \leq t \leq 1}. \end{split}$$

The point two-thirds of the way from P to Q is

$$\vec{r}\left(\frac{2}{3}\right) = \left\langle -3 + 8\left(\frac{2}{3}\right), 7 - 11\left(\frac{2}{3}\right), 6 + \frac{2}{3}\right\rangle$$
$$= \left| \left\langle \frac{7}{3}, -\frac{1}{3}, \frac{20}{3} \right\rangle \right|$$

Problem 5 Find a vector-valued function for the line through the point (1, -2, 3) that is perpendicular to the lines

$$\vec{r}_1(t) = \langle 7, 8, -2 \rangle + t \langle 3, 5, 7 \rangle$$
 and $\vec{r}_2(s) = \langle 4, -3, -7 \rangle + s \langle 4, 9, -1 \rangle$

Solution: Let $\vec{v}_1 = \langle 3, 5, 7 \rangle$ and $\vec{v}_2 = \langle 4, 9, -1 \rangle$. Then \vec{v}_1 is parallel to the line \vec{r}_1 , and similarly for \vec{v}_2 and \vec{r}_2 . So a vector perpendicular to both of the lines \vec{r}_1 and \vec{r}_2 is

$$\vec{n} = \vec{v}_1 \times \vec{v}_2 = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 5 & 7 \\ 4 & 9 & -1 \end{vmatrix}$$
$$= (-5 - 63)\hat{\imath} - (-3 - 28)\hat{\jmath} + (27 - 20)\hat{k}$$
$$= \langle -68, 31, 7 \rangle.$$

So the equation of the line through (1,-2,3) and perpendicular to both \vec{r}_1 and \vec{r}_2 is

$$\vec{r}_3(t) = \langle 1, -2, 3 \rangle + t \langle -68, 31, 7 \rangle$$

$$= \overline{\langle 1 - 68t, -2 + 31t, 3 + 7t \rangle \quad \text{for } -\infty < t < \infty}$$

Problem 6 Show that the curve $\vec{r} = \langle t \cos t, t \sin t, t \rangle$ lies completely on the cone $z^2 = x^2 + y^2$.

Solution: We just need to check that the components of \vec{r} satisfies the given equation. So we compute

$$x^{2} + y^{2} = (t \cos t)^{2} + (t \sin t)^{2}$$

$$= t^{2} \cos^{2} t + t^{2} \sin^{2} t$$

$$= t^{2} (\cos^{2} t + \sin^{2} t)$$

$$= t^{2}$$

$$= z^{2}.$$

Challenge Problems

Problem 7 Find the distance from the point P(-1,4,3) to the line $\langle 8+t,3-3t,-26t\rangle$. Hint: The distance from the point to the line is the distance from the point P and the closest point on the line.

Solution: Let P = (-1,4,3) and, for any time t, let Q(t) = (8+t,3-3t,-26t). Then the distance from P to Q(t) is given by

$$D(t) = \sqrt{(8+t-(-1))^2 + (3-3t-4)^2 + (-26t-3)^2}$$

= $\sqrt{(9+t)^2 + (-1-3t)^2 + (-3-26t)^2}$.

Instead of minimizing the distance D(t), we will minimized the square of the distance $D^2(t)$, which leads to the same point. So

$$D^{2}(t) = (9+t)^{2} + (-1-3t)^{2} + (-3-26t)^{2}.$$

To find the minimum of this function, we differentiate and find critical points

$$\frac{d}{dt}D^{2}(t) = 2(9+t) + 2(-1-3t)(-3) + 2(-3-26t)(-26)$$

$$= (18+2t) + (6+18t) + (156+1352t)$$

$$= 180 + 1372t := 0$$

$$\Rightarrow t = -\frac{180}{1372} = -\frac{45}{343}.$$

Since there is exactly one critical point and since the second derivative is positive (it is the constant 1372), this value of t gives an absolute minimum. Therefore, the distance from P to the line is

$$\sqrt{\left(9 - \frac{45}{343}\right)^2 + \left(-1 - 3\left(-\frac{45}{343}\right)\right)^2 + \left(-3 - 26\left(-\frac{45}{343}\right)\right)^2}$$

Problem 8 Match each of the following curves to the corresponding vector-valued function.

- (a) $(3, t^2, 5)$
- (c) $\langle 3, \sin t, \cos t \rangle$
- (e) $\langle \sin t, \cos t, 2\cos t \rangle$

- (b) $(3, t^2, t)$
- (d) $\langle 3t, 5\sin t, 5\cos t \rangle$
- (f) $\langle 2\cos t, \sin t, \cos(3t) \rangle$

Solution: (a) **Figure 5**. This is a line with both x and z held fixed.

- (b) **Figure 3**. This is a parabola parallel to the yz-plane at x = 3.
- (c) **Figure 2**. This is a circle of radius 1 in the plane x = 3.

- (d) **Figure 1**. The x-component is linear, while the projection onto the yz-plane is a circle of radius 5. So this looks like a "spring".
- (e) **Figure 4**. This is a circle with radius 1 when projected onto the xy-plane.
- (f) **Figure 6**. This one is tricky. Maybe the best way to spot it is that it is an ellipse when projected onto the xy-plane, while the z-component varies between -1 and 1.