UNIT - 1

- Define the convergence of an infinite series. Show that the nth term of a convergent Q1. series tends to zero. Is the converse true?
- Q2. State and prove comparison test.
- Test the convergence or divergence of the series $1 + \frac{1}{2^2} + \frac{2^2}{2^3} + \frac{3^3}{4^4} + \frac{4^4}{5^5} + \dots$ Q3.
- Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + n} + \frac{1}{n} \right)$. Q4.
- Test for convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$ Q5.
- Q6. State and prove D-Alembert's ratio test.
- Discuss the convergence of the exponential series $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + .$ Q7.
- Q8. State and prove integral test.
- Using the integral test, discuss the convergence of the series $\sum \frac{1}{2n+3}$ Q9.
- Q10. Write about Cauchy's root test.
- Q11. Test the convergence of the series $\left(\frac{2}{3}\right)x + \left(\frac{3}{4}\right)x^2 + \left(\frac{4}{5}\right)x^3 + \dots$
- Q12. State and prove Leibnitz's test.
- Q13. Discuss the convergence of the series $\frac{x}{1+x} \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} \frac{x^4}{1+x^4} + ... (0 < x < 1)$
- Q14. Verify Lagrange's mean value theorem for f(x) = (x-1)(x-2)(x-3) in [0, 4]
- Q15. (a) State Cauchy's mean value theorem.
 - Find 'c' of the Cauchy's mean value theorem for the functions $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{1}{x}$ in [a, b].
- Q16. Find 'c' value of Cauchy's mean value theorem for the function $f(x) = e^x$, g(x)= e-x on [a, b].
- Q17. State Taylor's and Maclaurin's theorems.
- Q18. Verify Mauclaurin's theorem for $f(x) = (1 x)^{5/2}$ with Lagranges form of remainder upto 3 terms in [0,1] at x = 1.

UNIT - 2

- Define linear differential equation. Mention the steps involved in determining Q1. its general solution.
- Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2 \cosh^2 x \sinh x$. Q2.
- Solve $(1 x^2) \frac{dy}{dx} + 2xy = x\sqrt{1 x^2}$. Q3.
- Solve the D.E $\frac{dy}{dx} = \frac{x^2 + y^2 + 1}{2xv}$. Q4.
- Solve $\frac{dy}{dx}$ + 2y tan x = y^2 Q5.
- Solve $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0$. Q6.
- Solve the D.E $y(x^4 y^4 + x^2 y^2 + xy) dx + x(x^4 y^4 x^2 y^2 + xy) dy = 0$ Q7.
- Solve the D.E $(2xy^4e^y + 2xy^3 + y)dx + (x^2y^4e^y x^2y^2 3x)dy = 0$ Q8.

- (Refer Unit-1, Q4)
- (Refer Unit-1, Q8)
- (Refer Unit-1, Q12)
- (Refer Unit-1, Q14)
- (Refer Unit-1, Q15)
- (Refer Unit-1, Q16)
- (Refer Unit-1, Q21)
- (Refer Unit-1, Q25)
- (Refer Unit-1, Q28)
- (Refer Unit-1, Q31)
- (Refer Unit-1, Q35)
- (Refer Unit-1, Q38)
- (Refer Unit-1, Q41)
- (Refer Unit-1, Q56)
- (Refer Unit-1, Q61)
- (Refer Unit-1, Q63)
- (Refer Unit-1, Q64)
- (Refer Unit-1, Q66)
 - (Refer Unit-2, Q1)
- (Refer Unit-2, Q5)
- (Refer Unit-2, Q8)
- (Refer Unit-2, Q10)
- (Refer Unit-2, Q13)
- (Refer Unit-2, Q17)
- (Refer Unit-2, Q22)
- (Refer Unit-2, Q24

Q9.	A copper ball is heated to a tome	M.13
Q9.	A copper ball is heated to a temperature of 80°C time t = 0, then it is placed in water which is maintained at 30°C. If at t = 3 minutes, the temperature of the ball is reduced to 50°C. Find the time at which the temperature of the ball is 40°C.	
Q10.	A bacterial culture, growing exponentially, increases from 100 to 400 grams in 10 hours. How much was present after 3 hours?	(Refer Unit-2, Q31)
Q11.		(Refer Unit-2, Q37)
Q12.	$x = x^2 + y^2 = a^2$.	(Refer Unit-2, Q40)
	A resistance of 100 obms on in the	(Refer Unit-2, Q48)
Ų13.	A resistance of 100 ohms, an inductance of 0.5 Henry is connected in series with a battery of 20 volts. Find the current in the circuit, if initially there is no current in the circuit.	(D. f U-it 0, 050)
Q14.	An RL circuit has an Emf given (in volts) by 4 sint, a resistance of 100 ohms, an	(Refer Unit-2, Q52)
	inductance of 4 henries with no initial current. Find the current at any time t.	(Refer Unit-2, Q55)
(F) (F)		(Refer Offit-2, Q33)
Q1.	Find the P.I of	
3	(1954년 1958년 1954년 1958년 1일 - 1958년 19	(7.1.11.11.0.00)
Q2.	(i) $(D^2 - 5D + 6) y = e^{4x}$ (ii) $(D^3 + 1)y = 3 + 5e^x$. Solve $(D^2 - 1)y = \cosh 2x$.	(Refer Unit-3, Q2)
Q3.	Solve: $(D^2 - 9)y = \sin 2x$.	(Refer Unit-3, Q8) (Refer Unit-3, Q10)
Q4.	Solve $(D^2 - 4D + 3)y = \sin 3x \cos 2x$.	(Refer Unit-3, Q12)
Q5.	Solve (D ² + 5D + 6)y = e^{2x} + sin x.	(Refer Unit-3, Q13)
Q6.	Solve $(D^2 + 3D + 2)y = e^{-x} + \cos x$.	(Refer Unit-3, Q15)
Q7.	Find the P.I of,	(Refer Unit-3, Q17)
	(i) $(D^2 + 1)y = x^2$. (ii) $(D + 2)^2 y = x^2$.	(Refer Unit-3, Q20)
Q8.	Solve $(D^2 + D - 2)y = x + \sin x$.	
Q9.	Solve the D.E $y''' - 2y' + 2y = 1 + xe^x$.	(Refer Unit-3, Q25)
Q10.	Solve $(D^2 - 5D + 6)y = e^x \sin x$.	(Refer Unit-3, Q30) (Refer Unit-3, Q33)
Q11.	Solve the D.E $(D^2 + 2D + 1)y = x \cos x$.	(Refer Unit-3, Q43)
Q12.	Solve the D.E (D ² + 1) $y = \sec^2 x$ by the method of variation parameters.	(Refer Unit-3, Q47)
Q13.	Solve the D.E. $(D^2 + D) y = \frac{1}{1 + e^x}$.	(1.0.0.0)
Q14.	Consider an electrical circuit containing an inductance L, Resistance R and capacitance C. Let q be the electrical charge on the condenser plate and 'i' be the capacitance C. Let q be the electrical charge on the condenser plate and 'i' be the capacitance C. Let q be the electrical charge on the condenser plate and 'i' be the	
	capacitance C. Let q be the electrical charge of the solution of the circuit at any time. There is applied E.M.F Esinωt in the circuit. Current in the circuit at any time. There is applied E.M.F Esinωt in the circuit. Then find the charge on the capacitor.	(Refer Unit-3, Q51)
Q15.	A particle is executing simple narmonic motion with an article in passing between points	
	time 4 seconds. Find the time requires by the centre of the force and is on which are at distances 4 and 2 meters from the centre of the force and is on	(Refer Unit-3, Q57)
	the same side of it. UNIT - 4	
44 53 53	UNIT-4	
Q1.	Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ for $f(x, y) = \log \sqrt{x^2 + y^2}$.	(Refer Unit-4, Q2)
Q2.	If $x = r \cos \theta$, $y = r \sin \theta$, find $\left(\frac{\partial r}{\partial x}\right)^{k} + \left(\frac{\partial r}{\partial y}\right)^{k}$	(Refer Unit-4, Q3)
Q3.	If $u = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$, then show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$.	(Refer Unit-4, Q4)
Q4.	Find $\frac{\partial^3 f}{\partial x^2}$ for $f(x, y, z) = e^{xyz}$.	(Refer Unit-4, Q6)
Q5.	State and prove Euler's theorem for nomogeneous runctions.	(Refer Unit-4, Q8)
Q6. F	Find $\frac{du}{dx}$ if $u = \sin(x^2 + y^2)$, where $a^2x^2 + b^2y^2 = c^2$.	(Refer Unit-4, Q15)
Q7	Find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$ if $u = f(x + y, x - y)$.	(Refer Unit-4, Q19)
1000	나는 나는 그 그 그 나는 그는 나는 그는 나는 그는 나는 그는 나는 그는	The same of the sa

Q7. Find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$ if u = f(x + y, x - y).

Q8. If u = f(r, s, t) and $r = \frac{x}{y}, s = \frac{y}{z}, t = \frac{z}{x}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$

(Refer Unit-4, Q24)

Q9. If $x = r \cos \theta$, $y = r \sin \theta$, find $\frac{\partial(r, \theta)}{\partial(x, y)}$ and $\frac{\partial(x, y)}{\partial(r, \theta)}$.

(Refer Unit-4, Q28)

Q10. If x + y + z = u, y + z = uv, z = uvw then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$

(Refer Unit-4, Q31)

Q11. If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$. $u = r \sin \theta \cos \phi$, $v = r \sin \theta \sin \phi$, $w = r \sin \theta$ then find $J\left(\frac{x, y, z}{r \theta \phi}\right)$.

- (Refer Unit-4, Q34)
- Q12. Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them.
- (Refer Unit-4, Q37)
- Q13. Find Taylor's series expansion of function of $f(x) = \sqrt{1 + x + y^2}$ in powers of (x 1)and y upto second degree terms.
- (Refer Unit-4, Q41)
- Q14. Examine the function for extreme values $f(x, y) = x^4 + y^4 2x^2 + 4xy 2y^2$
- (Refer Unit-4, Q54) (Refer Unit-4, Q57)

Q15. Find the extreme values of $f(x, y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 7$. Q16. Find the maximum and minimum distance of the point (1, 2, 3)

(Refer Unit-4, Q63)

from the shpere $x^2 + y^2 + z^2 = 1$.

UNIT - 5

Q1.

Q5.

crazy notes jntuk

(i)
$$\int_{0}^{3} \int_{-x}^{x} xy \, dx \, dy$$

(ii) $\int_{0}^{\infty} \int_{0}^{x} \left(\frac{e^{-y}}{y} \right) dx dy$

(Refer Unit-5, Q2)

Q2. Evaluate $\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} r^{2} \cos\theta dr d\theta$

(Refer Unit-5, Q10)

(Refer Unit-5, Q19)

Evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{\sqrt{1-x^2}} \int_{-\infty}^{\sqrt{(1-x^2-y^2)}} xyz \, dx \, dy \, dz$

(Refer Unit-5, Q26)

By change of order of integration evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x^2 + y^2) dy dx$

(Refer Unit-5, Q33)

Evaluate $\int_{-\infty}^{2\sqrt{2x-x^2}} (x^2 + y^2) dydx$ by changing into polar coordinates. Find the area bounded by the lines x = 0, y = 1, x = 1 and y = 0. Q6.

(Refer Unit-5, Q45)

Using double integral find the area bounded by the parabolas Q7. $y^2 = 4ax$ and $x^2 = 4ay$.

(Refer Unit-5, Q47)

Evaluate ∭xy²zdxdydz taken through the positive Q8. octant of the sphere: $x^2 + y^2 + z^2 = a^2$.

- (Refer Unit-5, Q58)
- Find by using triple integrals, the volume of the tetrahedron bounded by the planes Q9. x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{v} + \frac{z}{c} = 1$

OR

Find the volume the tetrahedron bounded by the coordinate planes and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

(Refer Unit-5, Q63)