

# Trigonometría

Módulo 2: Identidades Trigonométricas



- Una **identidad trigonométrica** es una igualdad que contiene funciones trigonométricas y una o más variables, y que es válida para todos los valores donde las variables están definidas.
- De las definiciones de las funciones circulares se obtienen las identidades trigonométricas:

gonométricas:  

$$sen^{2}\theta + \cos^{2}\theta = 1$$

$$1 + \tan^{2}\theta = \sec^{2}\theta$$

$$1 + \cot^{2}\theta = \csc^{2}\theta$$

$$\cot\theta = \frac{1}{\tan\theta}$$

$$\cot\theta = \frac{1}{\tan\theta}$$

$$\cot\theta = \frac{1}{\cos\theta}$$

$$\cot\theta = \frac{1}{\tan\theta}$$

$$\cot\theta = \frac{1}{\cos\theta}$$

$$\cot\theta = \frac{1}{\cos\theta}$$

$$\cot\theta = \frac{1}{\cos\theta}$$

• Para probar que una igualdad es una identidad trigonométrica se debe transformar uno de los dos miembros de la igualdad ( generalmente el más complicado ), en el otro. Otra forma es desarrollar cada miembro, por separado, y obtener el mismo resultado.

#### Ejemplo 1

Demostrar las identidades:

(a) 
$$\csc \theta + \cot \theta = \frac{\sin \theta}{1 - \cos \theta}$$

(b) 
$$\frac{\tan^3 \theta}{1 + \tan^2 \theta} + \frac{\cot^3 \theta}{1 + \cot^2 \theta} = \frac{\csc^2 \theta \sec^2 \theta - 2}{\sec \theta \csc \theta}$$



En algunos problemas de aplicación se usan los conceptos de **ángulo de elevación**, **ángulo de depresión** y **puntos cardinales**.

**Angulo de elevación**: ángulo entre una recta horizontal y la visual a un objeto que está sobre la horizontal.



**Angulo de depresión**: ángulo entre una recta horizontal y la visual a un objeto que está bajo la horizontal.



#### Ejemplo 1

Desde el extremo superior de un faro ubicado a 80 metros sobre el nivel del mar, los ángulos de depresión de dos rocas en la misma dirección del observador son 75° y 15°. Determinar la distancia que las separa.

#### Ejemplo 2

Desde un punto A de un plano, el ángulo de elevación de una colina de 3.300 pies sobre el nivel del plano, es de 60°. Un globo asciende verticalmente desde A con velocidad uniforme; después de 5 minutos el ángulo de elevación de la cima de la colina desde el globo es de 30°. Encontrar la velocidad con que asciende el globo.