Computability - Exercise 9

All questions should be answered formally and rigorously unless stated otherwise

Due: June 11, 2020

Question 1

In this question, we consider closure properties of P and NP. Let $L_1, L_2 \in P$ and $L_3, L_4 \in NP$. Prove the following claims.

- 1. $\overline{L_1} \in P$.
- 2. $L_3 \cap L_4 \in NP$.
- 3. $L_1 \cdot L_2 \in P$.
- 4. $L_3 \cdot L_4 \in NP$.

Question 2

We define the class coNP = $\{\overline{L} : L \in NP\}$. It is unknown whether NP = coNP. Prove the following claims.

- 1. (Not for submission) If P = NP, then NP = coNP.
- 2. If $NP \subseteq coNP$, then NP = coNP.
- 3. $conp \subseteq Exptime$.
- 4. If P = NP then EXPTIME = NEXPTIME.

Hint: For a language $L \in \text{NEXPTIME}$, consider a language $L' = \{w \# 1^{2^{|w|^d}} : w \in L\}$ (i.e., we pad w with the unary representation of $2^{|w|^d}$), where d is a wisely-chosen constant.

Question 3

Let p be some polynomial, and let $N = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}} \rangle$ be an NTM such that for every input $x \in L(N)$ there exists an accepting run of N on x of length at most p(|x|).

Prove that $L(N) \in NP$.

Question 4 (Not for submission)

König's Lemma: Let T be a rooted tree with infinitely many nodes, such that each node has finitely many children. Then, T contains a ray, that is, there exists an infinite sequence x_0, x_1, x_2, \ldots of nodes, where x_0 is the root of T, and for each $i \in \mathbb{N}$, x_i is a child of x_{i-1} .

- 1. Prove König's lemma.
- 2. Aladdin consumed too much coffee and thought about the following (wrong) idea: Given an NTM N, we build an equivalent NTM N', such that that every run of N' on every input w halts:
 - Nondeterministically write an integer $n \in \mathbb{N}$.
 - Simulate N on w for n steps.
 - If N accepted within n steps, accept. Otherwise, reject.

Explain Aladdin's mistake.

3. Recall that we defined the runtime function of an NTM N to be

$$t_N(n) = \max_{w \in \Sigma^*, |w| < n} \{ \text{length of the longest run of } N \text{ on } w \}$$

Prove that the runtime of an NTM is well defined. That is, prove that for every deciding NTM N and $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $t_N(n) = k$.

Question 5

In the subset sum problem, the goal is to determine whether in a set $S \subseteq \mathbb{N}$ (given in binary) there is subset whose sum is $k \in \mathbb{N}$. Formally, the language is defined as follows.

 $SUBSET - SUM = \{\langle S, k \rangle : S \text{ contains a subset whose sum is } k \}.$

- 1. Show that $SUBSET SUM \in NP$ by describing an NTM N that decides SUBSET SUM in polynomial time (with respect to the input size).
- 2. Show that $SUBSET SUM \in NP$ by describing a polynomial time verifier for this language.
- 3. The language UNARY SUBSET SUM is defined similarly, but the numbers are given in unary. That is, $S \subseteq \{1^n : n \in \mathbb{N}\}$ and then

$$UNARY - SUBSET - SUM = \{\langle S, 1^k \rangle : S \text{ contains a subset whose sum of lengths is } k\}.$$

Show that $UNARY - SUBSET - SUM \in P$.