

CiberRato

Artur Pereira / Nuno Lau

Iris Lab/IEETA – DETI/Universidade de Aveiro

Ciber-Rato

- Micro-Rato em ambiente simulado
 - Simulador implementa o labirinto e os corpos dos robôs virtuais
 - Sensores e atuadores disponíveis são iguais em todos os robôs
- Participantes desenvolvem o software de controlo (cérebro) dos robôs
 - Este software toma decisões autonomamente (agentes de software)
- Destinado a equipas que se querem focar na componente de software de um robô

Ambiente

 Labirinto com um ou mais faróis, áreas-alvo, paredes de alturas diferentes e uma grelha de pontos de partida

Desafio

- Partir da posição na grelha de partida e fazer algo
 - por exemplo, visitar todas as áreas-alvo debaixo de faróis e regressar o mais perto possível ao ponto de partida

Corpo do robô virtual

- O robô virtual está equipado com:
 - Sensors
 - Obstacles
 - Beacon
 - Ground
 - Collisions
 - Compass
 - GPS
 - Line
 - Leds
 - Actuators
 - 2 Motors
 - Signaling Leds

- Sensor de obstáculos
 - Medida é inversamente proporcional à distância ao obstáculo mais próximo
 - Ruído gaussiano aditivo
 - Latência

- Sensor de farol:
 - Medida é igual à distância angular do eixo frontal do robô ao farol
 - Ruído gaussiano aditivo
 - Latência

15

Bússola

- Medida é a posição angular do eixo frontal do robô em relação ao Norte virtual
- Ruído gaussiano aditivo
- Latência

- Sensor de contacto
 - Medida binária indica se o robô colidiu
 - Sem ruído
 - Sem latência

- Os sensores têm ruído e latência
- O número de sensores acessíveis por ciclo pode ser limitado
 - Agentes podem ter de indicar os sensores cujas medidas querem receber no ciclo seguinte

Sensor	Range	Resolution	Noise type	Deviation	Latency	On request
Obstacle s.	[0.0, 100.0]	0.1	aditive	0.1	0	yes
Beacon s.	[-180, +180]	1	aditive	2.0	4	yes
Compass	[-180, +180]	1	aditive	2.0	4	yes
Bumper	Yes/No	N/A			0	no
Ground s.	Yes/No	N/A			0	yes

Atuadores

- Locomoção diferencial
 - Controlo do movimento do robô é feito através de 2 motores independentes
 - Motores com ruído gaussiano e inércia

Atuadores

- Modelo dos motores
 - Aproximação de 1^a ordem

$$lin = \frac{out_{right} + out_{left}}{2} \quad rot = \frac{out_{right} - out_{left}}{diam}$$

Com inércia, simulada por um filtro IIR

$$out_{t} = (in_{t} * 0.5 + out_{t-1} * 0.5) * noise$$

Atuadores

- Motores têm ruído e inércia
 - Simulador adiciona ruído às ordens de atuação
 - Inércia impede uma ordem de ter efeito imediatamente
- Os leds são usados para sinalizar eventos

Actuator	Range	Resolution	Noise type	Standard deviation		
Motor	[-0.15, +0.15]	0.001	multiplicative	1.5%		
End led	On/Off	N/A				
Return led	On/Off	N/A				
Beacon led	On/Off	N/A				

Ambiente de simulação

Visualizador

- Apresenta graficamente o estado da simulação
- Mostra o painel de pontuações

Agente

Desenvolvimento de agentes

- Programável em qualquer linguagem e em qualquer sistema operativo
- Comunicação em IP/UDP
- Interação feita através de mensagens XML
 - Há bibliotecas em C, Prolog, Java, Visual Basic