The Gene Ontology

The Gene Ontology Consortium

Genetics 224.1: iyad031 (2023) doi.org/10.1093/genetics/iyad031

Gökçe Uludoğan

PhD Candidate

LifeLU Reading Group | 24 October 2024

The Gene Ontology

black = *is a*, **blue** = *part of*, and **orange** = *regulates*

1	L۱
ı	D)
•	,

] G	ene/product	Gene/product name	Annotation qualifier	GO class (direct)	Annotation extension	Contributor	Organism	Evidence	PANTHER family	Туре	Isoform	Reference	Date
) ZI		Zinc finger protein 410		RNA polymerase II cis-regulatory region sequence- specific DNA binding	has input UniProtKB:Q14839 occurs in erythroid lineage cell	UniProt	Homo sapiens	IMP	zinc finger protein pthr46179	protein		PMID:33301730	20210629
) Zi		Zinc finger protein 410		sequence-specific double-stranded DNA binding		ARUK-UCL	Homo sapiens	IDA	zinc finger protein pthr46179	protein		PMID:28473536	20200608
] Zi		Zinc finger protein 410		sequence-specific double-stranded DNA binding	has input UniProtKB:Q14839 occurs in erythroid lineage cell	UniProt	Homo sapiens	IMP	zinc finger protein pthr46179	protein		PMID:33301730	20210629

The Gene Ontology

- The terms used to describe functional characteristics of gene products, which are linked together by relations into a labeled directed acyclic graph (like a hierarchy but with multiple parents allowed).
- It also includes term definitions, synonyms, and relations to terms from external ontologies.
- The GO is available in different editions, including
 - (1) the **"basic" edition**, which includes only core relationship types;
 - (2) the **core ontology,** including additional relationship types; and
 - (3) the **"go-plus"** edition which also includes relationships to terms in other ontologies

GO versions

with most GO-based annotation tools.

Description

Name

plus.owl

go.obo & go.owl	Core ontology. This view includes relationships not in the filtered version of GO including has part and occurs_in. Many of these relationships may not be safe for propagating annotations across, so this version should not be used with legacy GO tools. This version excludes relationships to external ontologies.	http://purl.obolibrary.org/obo/go.obo / http://purl.obolibrary.org/obo/go.owl
go-	This is the fully axiomatised version of the GO. It includes cross-ontology relationships (axioms) and imports additional required ontologies including ChEBL Cell Ontology and Uberon, It also includes a complete set of	http://purl.obolibrary.org/obo/go/extensions/go-

The basic version of the GO, filtered such that the graph is guaranteed to be acyclic and annotations can be propagated up the graph. The relations included are is a, part of, regulates, negatively regulates and positively

basic.obo regulates. This version excludes relationships that cross the 3 GO hierarchies. This version should be used

relationship types including some not in go.obo/go.owl. This version is only available in OWL format.

Permanent URL

plus.owl

https://geneontology.org/docs/download-ontology/

http://purl.obolibrary.org/obo/go/go-basic.obo

Statistics

- The ontology contains about 40K terms, linked together by 88,099
 relationships in the basic edition.
- When relationships to external terms are included, there are **121,698** relationships.

Ontology		Annotations		Gene products and species	
Property	Value	Property	Value	Property	Value
Valid terms	40939 (Δ = -1154)	Number of annotations	7,894,411	Annotated gene products	1,573,444
Obsoleted terms	6965 (Δ = 1202)	Annotations for biological process	2,862,559	Annotated species	5,426
Merged terms	2436 (Δ = 0)	Annotations for molecular function	2,531,611	Annotated species with over 1,000 annotations	184
Biological process terms	26552	Annotations for cellular component	2,500,241		
Molecular function terms	10365	Annotations for evidence PHYLO	3,908,659		
Cellular component terms	4022	Annotations for evidence IEA	1,746,505		
		Annotations for evidence EXP	1,037,435		
		Annotations for evidence OTHER	913,093		
		Annotations for evidence ND	229,103		
		Annotations for evidence HTP	59,616		
		Number of annotated scientific publications	180,792		

Number of GO terms by aspect

Changes in GO terms between releases

https://wiki.geneontology.org/Principles for term obsoletion

Protein function prediction as approximate semantic entailment

Maxat Kulmanov, Francisco J. Guzmán-Vega, Paula Duek Roggli, Lydie Lane, Stefan T. Arold & Robert Hoehndorf

> Nat Mach Intell 6, 220–228 (2024) doi.org/10.1038/s42256-024-00795-w

Gökçe Uludoğan

PhD Candidate

LifeLU Reading Group | 24 October 2024

Motivation

Many function prediction methods rely on sequence similarity to predict functions.

Molecular functions arise largely from structure, and proteins with similar structures might have different sequence.

Proteins with similar sequences can have a different set of functions depending on their active sites and the organisms in which they are a part.

Motivation

Methods that use the same sources of information for all three subontologies of GO are **limited**.

 Functions from the MFO subontology can be predicted by a protein sequence or structure, functions from BPO and, to a lesser degree, CCO, inherently rely on multiple proteins being present and interacting in particular ways.

 Predicting BPO and CCO annotations requires different sources of information than predicting MFO annotations.

Motivation

Ontologies are another source of information **rarely exploited** for predicting protein functions.

Ontologies are not just collections of classes but formal theories that define **the meaning of classes** using logic-based languages.

Integrating these formal axioms into ML models allows for **leveraging prior knowledge**, constraining the parameter search space, and improving both the accuracy and efficiency of the learning process, leading to better predictions.

Description Logic provides the framework for ontologies

Description Logic is a family of formal knowledge representation languages used to represent structured knowledge and reasoning in a domain.

Fragments are subsets or variants of DL tailored to specific reasoning tasks.

Examples of fragments:

- **AL** (Attributive Language): Basic fragment, includes conjunction, universal restrictions, and atomic concepts.
- ALC: Adds concept negation to AL.
- **SHOIN**: Adds more expressive power (roles, cardinality restrictions) and is the basis for OWL-DL.

DL **fragments** offer varying levels of expressiveness and reasoning efficiency.

Description Logic

Description Logic is a formalism for representing knowledge with clear distinctions between schema (TBox), facts (ABox), and relationships (RBox).

TBox (Terminological Box)

- Represents the **schema** or **ontology**.
- Contains **axioms** about how concepts and roles relate.
 - Example: Parent
 □ Person (Every parent is a person).
- Used for defining the vocabulary of a domain and relationships among concepts.

ABox (Assertional Box)

- Represents the data or assertions.
- Contains **individuals** (instances) and their relationships.
 - Example: John: Parent (John is a parent).
 - Example: hasChild(John, Mary) (John has a child named Mary).
- Describes facts about individual instances and their roles in the ontology.

RBox (Role Box)

- Describes the roles or relationships between concepts.
- Includes axioms about the properties of roles:
 - \circ **Symmetry**: hasSibling(x, y) \rightarrow hasSibling(y, x)
 - Transitivity: hasAncestor(x, y) ∧
 hasAncestor(y, z) → hasAncestor(x, z).
 - o **Inverse roles**: hasChild(x, y) \rightarrow hasParent(y, x).

Function prediction methods utilize the formal axioms

GoStruct

DeepGO

DeePred

SPROF-GO

TALE

Uses **subsumption axioms (i.e. is-a)** to extract hierarchical relations between classes but **ignore other axioms** in GO.

DeepGO-SE

ESM2 embeddings are projected into an **embedding space** (ELEmbeddings) that is **generated from the axioms** in the GO

ELEmbeddings encode ontology axioms based on **geometric** shapes and geometric relations, and corresponds to a Σ algebra, or 'world model', in which we can determine whether statements are true or false.

Approximate semantic entailment Suppose *O* is an ontology composed of a set of class symbols **C**, relation

symbols **R** and individual symbols **I**, and that it is expressed in the Description Logic ALC (ref. 56). In this logic, each class symbol is considered a class description. If C and D are class descriptions and R is a relation symbol, then the expressions $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall R.C$ and $\exists R.C$ In the ALC Description Logic, axioms can be classified as TBox or

are also considered as class descriptions. ABox axioms. If C and D are class descriptions, a and b are individual symbols, and r is a relation symbol, a TBox axiom has the form $C \sqsubseteq D$, while an ABox axiom has the form C(a) or r(a, b). A TBox is a set of

TBox axioms, and an ABox is a set of ABox axioms. An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$ in \mathcal{ALC} comprises a nonempty domain $\Delta^{\mathcal{I}}$ and an interpretation function \mathcal{I} that satisfies $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all $C \in \mathbb{C}$, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $R \in \mathbb{R}$, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for all $a \in \mathbb{I}$. The interpretation function is extended to concept descriptions as follows:

 $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}, (C \sqcup D)^{\mathcal{I}} := C^{\mathcal{I}} \cup D^{\mathcal{I}},$ $(\forall R.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} | \forall e \in \Delta^{\mathcal{I}} : (d, e) \in R^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}}\},$ (1) $(\exists R.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} | \exists e \in \Delta^{\mathcal{I}} : (d,e) \in R^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\},$ $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} - C^{\mathcal{I}}.$ An interpretation \mathcal{I} is called a model of a TBox if, for all $C \sqsubseteq D$ in the TBox, $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$; and a model of an ABox if, for all R(a,b), $(a^{\mathcal{I}},b^{\mathcal{I}}) \in R^{\mathcal{I}}$ and for all C(a), $a^{\mathcal{I}} \in C^{\mathcal{I}}$. A statement ϕ is semantically entailed by ontology \mathcal{O} (consisting

of TBox and ABox), denoted $O \models \phi$, if and only if every model of O(that is, an interpretation \mathcal{I} that is a model of both ABox and TBox of \mathcal{O}) is also a model of ϕ (Mod(\mathcal{O}) \subseteq Mod(ϕ)). Semantic entailment requires access to all models of \mathcal{O} which are usually infinite; approximate semantic entailment considers only a strict (usually finite) subset

of Mod(\mathcal{O}) and tests whether ϕ is true in each of them^{26,57}.

EL-Embeddings

$$L = \frac{1}{N} \sum_{i=1}^{N} BCELoss(y_{c_i}, y'_{c_i}) + L_{NF1} + L_{NF2} + L_{NF3} + L_{NF4}$$
 (B10)

ELEmbeddings normalizes TBox axioms in one of the following four normal forms:

NF1: $C \sqsubseteq D$, e.g., binding (GO:0005488) SubClassOf: molecular function (GO:0003674)

NF2: $C \sqcap D \sqsubseteq E$, e.g., cutinase activity (GO:0050525) and biological regulation (GO:0065007) SubClassOf: positive regulation of protein kinase B signaling (GO:0051897)

NF3: $C \subseteq \exists R.D$, e.g., positive regulation of arginine biosynthetic process (GO:1900080) SubClassOf: positively regulates (RO:0002213) some arginine biosynthetic process (GO:0006526)

NF4: $\exists R.C \subseteq D$, e.g., part of (BFO:0000050) some conjugation (GO:0000746) SubClassOf: mammary stem cell proliferation (GO:0002174)

$$L_{NF1} = \frac{1}{|NF1|} \sum_{\substack{d \in NF1 \\ d \in NF1}} \max(0, \|f_{\eta}(c) - f_{\eta}(d)\| + r_{\eta}(c) - r_{\eta}(d) - \gamma)$$
(B11)

This loss goes to zero when the n-ball for class c is inside the n-ball for class d for all axioms of the first normal form.

$$L_{NF2} = \frac{1}{|NF2|} \sum_{c,d,e \in NF2} \max(0, ||f_{\eta}(c) - f_{\eta}(d)|| - r_{\eta}(c) - r_{\eta}(d) - \gamma) +$$

$$\max(0, ||f_{\eta}(c) - f_{\eta}(e)|| - r_{\eta}(c) - \gamma) +$$

$$\max(0, ||f_{\eta}(d) - f_{\eta}(e)|| - r_{\eta}(c) - \gamma) +$$

$$\max(0, \min(r_{\eta}(c), r_{\eta}(d)) - r_{\eta}(e) - \gamma)$$
(B12)

$$L_{NF3} = \frac{1}{|NF3|} \sum_{c \in NF3} \max(0, ||f_{\eta}(c) - f_{\eta}(r) - f_{\eta}(d)|| - r_{\eta}(c) - r_{\eta}(d) - \gamma)$$
(B13)

Here, we translate the n-ball for class d using relation vector r and minimize the non-overlap between the translated n-ball and the n-ball for class c.

$$L_{NF4} = \frac{1}{|NF4|} \sum_{r, r \in NF4} \max(0, ||f_{\eta}(c) + f_{\eta}(r) - f_{\eta}(d)|| + r_{\eta}(c) - r_{\eta}(d) - \gamma)$$
(B14)

DeepGO-SE variants

- DeepGATGO-SE
 - Integrating PPI information

- DeepGATGOMF-SE
 - Including MF annotations

- DeepGATGOMF-SE-Pred
 - Utilizing predicted MF terms

Experiments

- UniProtKB/Swiss-Prot split by sequence similarity (DIAMOND)
- neXtProt dataset
- Metrics
 - Protein-centric
 - F_max
 - S_min
 - AUPR
 - Class-centric
 - AUC

- Naïve
 - Sequence features that are learned directly or using features derived from tools such as InterProScan
- MLP
 - InterPro domains or ESM2 embeddings.
- DeepGOCNN
 - Sequence + CNN
- DeepGOZero
 - InterPro domains + EL-embeddings
- DeepGraphGO
 - InterPRO domains + PPI
- TALE
 - Transformers + hierarchical loss for GO
- SPROF-GO
 - ProtT5-XL-U50 + hierarchical loss for GO + label diffusion

		-		_
ole 1 Predicti			ar function	ns on the
iProtKB/Swis	s-Prot data	set		
ale e al	F	C:	ALIDD	AUG
thod	Fmax	S min	AUPR	AUC
ive	0.321	14.568	0.180	0.500
_P	0.321	14.606	0.195	0.500
LP (ESM2)	0.517	12.197	0.508	0.830
eepGOCNN	0.404	13.741	0.365	0.749
epGOZero	0.483	12.722	0.444	0.749
pGraphGO	0.416	14.077	0.357	0.673
epGO-SE	0.554	11.681	0.552	0.874
epoo-sc		************************	100000000000000000000000000000000000000	AND THE RESIDENCE OF THE PERSON OF THE PERSO
	0.525	11.137	0.523	0.861
epGOGAT-SE	0.525			
eepGOGAT-SE	0.020			
eepGOGAT-SE	0.020			
epGOGAT-SE	0.020			

niProtKB/Swiss-Prot dataset lethod

Fmax
0.294

Table 4 | Prediction results for molecular functions on the neXtProt dataset

Method	F max	S min	AUPR	AUC
Naive	0.360	10.340	0.165	0.500
MLP	0.347	10.371	0.194	0.493
MLP (ESM2)	0.382	9.985	0.292	0.730
DeepGOCNN	0.348	10.641	0.270	0.599
DeepGOZero	0.337	10.662	0.261	0.573
DeepGraphGO	0.330	10.573	0.270	0.558
TALE	0.344	10.673	0.238	0.640
SPROF-GO	0.352	10.331	0.270	0.652

10.093

10.254

0.324

0.291

0.386

0.375

0.744

0.700

DeepGOGAT-SE

DeepGOGATMF-SE-Pred

DeepGO-SE

DeepGOGAT-SE

Table 5 | Prediction results for biological processes on the neXtProt dataset

Method	F max	S min	AUPR	AUC
Naïve	0.308	32.987	0.183	0.500
MLP	0.310	32.033	0.206	0.502
×				

Naïve	0.308	32.987	0.183	0.50
MLP	0.310	32.033	0.206	0.502
MLP (ESM2)	0.336	30.044	0.305	0.682

ILP	0.310	32.033	0.206	0.502	
MLP (ESM2)	0.336	30.044	0.305	0.682	
DeepGOCNN	0.286	32.152	0.235	0.571	

VILF (ESIVIZ)	0.550	30.044	0.303	0.002	
DeepGOCNN	0.286	32.152	0.235	0.571	
DeepGOZero	0.329	31.999	0.263	0.553	
DeepGraphGO	0.322	31.861	0.240	0.558	
TALE	0.280	32.973	0.221	0.533	
					П

DeepGOZero	0.329	31.999	0.263	0.553	
DeepGraphGO	0.322	31.861	0.240	0.558	
TALE	0.280	32.973	0.221	0.533	
SPROF-GO	0.312	31.164	0.251	0.620	
DeepGO-SE	0.349	30.170	0.312	0.683	
					Т

30.218

30.653

0.312

0.293

0.666

0.694

0.350

0.339

Method	$F_{ m max}$			S_{\min}			AUPR			AUC		
	MFO	BPO	CCO	MFO	BPO	CCO	MFO	BPO	CCO	MFO	BPO	CCO
ESM	0.545	0.432	0.721	11.827	39.227	9.358	0.539	0.402	0.724	0.866	0.869	0.918
ESM + GO axioms	0.549	0.426	0.719	11.876	39.749	9.462	0.539	0.394	0.721	0.868	0.859	0.913
ESM + GO PLus	0.552	0.426	0.717	11.750	39.686	9.645	0.550	0.393	0.728	0.867	0.861	0.907
axioms												
DeepGO-SE	0.554	0.432	0.721	11.681	39.419	9.499	0.552	0.401	0.730	0.874	0.864	0.914
ESM + GAT	0.535	0.432	0.730	11.978	39.201	8.809	0.536	0.404	0.802	0.837	0.878	0.927
ESM + GAT + GO	0.521	0.430	0.727	12.229	39.460	8.743	0.516	0.398	0.733	0.860	0.873	0.927
axioms												
ESM + GAT + GO	0.517	0.432	0.731	12.321	39.382	8.706	0.513	0.400	0.735	0.855	0.861	0.923
PLus axioms												
DeepGOGAT-SE	0.525	0.435	0.736	11.137	39.123	8.634	0.523	0.404	0.743	0.861	0.876	0.930
MF + GAT	-	0.453	0.671	-	37.070	9.693	-	0.430	0.721	-	0.833	0.844
MF + GAT + GO	-	0.444	0.666	-	37.737	9.853	-	0.428	0.713	-	0.824	0.831
axioms				9								
MF + GAT + GO		0.444	0.668	-	37.649	9.803	-	0.426	0.716	-	0.827	0.832
PLus axioms												
DeepGOGATMF-SE	_	0.448	0.668	-	37.299	9.809	-	0.428	0.679	_	0.831	0.835
MF-Pred + GAT	_	0.455	0.699	-	38.943	9.868	-	0.422	0.760	-	0.864	0.895
MF-Pred + GAT +	-	0.441	0.690	-	39.328	10.031	-	0.406	0.696	-	0.852	0.876
GO axioms												
MF-Pred + GAT +		0.443	0.691	-	39.705	10.003	1 -	0.407	0.749	-	0.853	0.881
GO PLus axioms												
DeepGOGATMF-SE-	-	0.444	0.694	-	39.098	9.907	-	0.409	0.753	-	0.855	0.884
Pred												
able D2: Ablation study to analyze contributions of GO and GOPlus ontology axioms, PPIs, experimental and predicted												
TE annotations and Sa	•	3.00				- 100 011		, 1			т. ш. р.	

MF annotations, and Semantic Entailment to the performance

DeepGO-SE Overview

- Enhances protein function prediction by combining:
 - Protein sequence features from pretrained language model (ESM2)
 - o GO knowledge and protein-protein interactions (PPIs)
- **Zero-shot prediction** similar to DeepGOZero.

Key Takeaways

- Knowledge-enhanced models outperform those without background knowledge.
- GO function prediction benefits from a hierarchical, separate approach (?).
- Models based on ESM2 generalize well to unseen proteins.

Challenges and Future Work

 Best results achieved by combining sequence and PPIs, but novel proteins often lack known interactions.

 Integrating PPI prediction methods based on sequence and structure for novel proteins.