Organización de Computadoras 2021

Turno Recursantes
Clase 1

Bibliografía

- Organización y Arquitectura de Computadoras Diseño para optimizar prestaciones, Stallings W., Editorial Prentice Hall (5ta edición).
- Organización de Computadoras, Tanenbaum A., Editorial Prentice Hall (4ta edición).
- Estructura de Computadores y Periféricos, Martinez Durá R. et al., Editorial Alfaomega, 2001.
- Arquitectura de Computadores Un enfoque cuantitativo, Hennessy & Patterson., Editorial Mc Graw Hill (1ra edición).
 - http://weblidi.info.unlp.edu.ar/catedras/organiza/
 - Curso "Recursantes Organización de Computadoras" en IDEAS

Conceptos básicos

- Representación de Datos.
 - Números sin signo.
 - Números con signo.
- Operaciones aritméticas
- Banderas de condición
- Otras representaciones:
 - BCH, BCD, Caracteres

Representación de la información

- Para el manejo de la información, las computadoras utilizan el sistema binario.
- En el sistema binario la mínima unidad de información es el BIT, que es una variable que puede tomar 2 valores (niveles eléctricos), a los que típicamente se les asigna (o asocia) 0 y 1.
- De esta manera es más fácil identificar su valor.

Representación de la información (2)

- Es más difícil identificar una variable (eléctrica) de múltiples niveles posibles, que una que solo puede tomar 2.
- Ejemplo :
 - lámpara encendida ó apagada.
 - lámpara encendida con 10 intensidades distintas.

Es más fácil conocer el "estado" de la lámpara en el primer caso (encendida ó apagada), que determinar alguna de las 10 intensidades distintas.

Tipos de datos

Las computadoras manejan <u>2 tipos</u> básicos de datos (binarios):

- Númericos (números)
 - enteros (con/sin signo)
 - reales (con signo)
 - decimales codificados en binario (BCD)
- Alfanuméricos (caracteres)
 - alfabéticos
 - símbolos

- Sin signo: números positivos
 - Binario sin signo (BSS)
- Con signo: números positivos y negativos
 - Módulo y signo (BCS)
 - Complemento a uno (Ca1) Complemento a la base reducida
 - Complemento a dos (Ca2) Complemento a la base
 - Exceso

Números enteros sin signo o Binario sin signo (BSS)

- Se consideran todos los números positivos (incluyendo el 0).
- Cada combinación de bits representa un número BSS distinto. La cantidad de combinaciones distintas depende de la cantidad de bits empleados en la representación y del rango del número a representar.
- La asignación se ordena correlativamente en forma ascendente a partir de 0.

Binario Sin Signo (2)

Ejemplo:

- Quiero representar un número entero positivo en el rango de 0 a 7 (8 números).
- Asignado una combinación por cada número a representar, se necesitan 8 combinaciones.
- Usando 3 bits se tendrán 8 combinaciones.
- Cada combinación se asigna a un número distinto, ordenándolos de forma creciente.

Binario Sin Signo (3)

Resultado:

Representación BSS	Decimal equiv.	
000 —		
001 —	1	8
010		combinaciones
111	7	

256

Binario Sin Signo (4)

Ejemplo: n = 8 bits (combinaciones=256) Representación BSS Decimal 0000000 011111111 -10000000

Notas de Clase 1

Binario Sin Signo (5)

- La cantidad de representaciones distintas depende del número n de bits empleado.
- Si se usan n bits, se pueden representar
 2ⁿ números distintos.
- El rango de un número en BSS es, por lo tanto:

$$0 \longrightarrow (2^n - 1)$$

Números enteros con signo

Existen varias formas de representación de números enteros con signo:

- Binario con Signo BCS (también llamado Módulo y Signo MYS)
- Técnica de Complementos
 - Complemento a 1
 - Complemento a 2
- Técnica de Exceso

Módulo y signo (MYS) o Binario con Signo (BCS)

- ▶ 1 bit representa el signo, y los restantes el valor absoluto (o la magnitud).
- Se acostumbra a usar el bit del extremo izquierdo para el signo (bit n-1), y los bits restantes para la magnitud (n-1 bits restantes).
- En n bits:

n-1	<u>n-2</u>		<u> </u>
SIGNO		MAGNITUD	

Binarios Con Signo (2)

- Un 0 en el bit de signo indica que el número es positivo, y un 1 indica que el número es negativo.
- ➤ Los n-1 bits restantes representan el valor absoluto en binario.
- Rango de la magnitud: $0 \rightarrow 2^{n-1} 1$ (comparar con BSS).
- > Rango del número en BCS:

$$-(2^{n-1}-1) \longrightarrow +(2^{n-1}-1)$$
 con 2 ceros

Binarios Con Signo (3)

Ejemplos +
$$32_{10} = 001000000$$
 $-32_{10} = 101000000$ 32 32 $-7_{10} = 100000111$ $-7_{10} = 10101001$ $-41_{10} = 10101001$

Binarios Con Signo (4)

Ejemplo con n= 3 bits 000 = +0001 = +1010 = +2 $011 = +3 = +(2^{n-1}-1)$ 100 = -0101 = -1110 = -2 $111 = -3 = -(2^{n-1} - 1)$

Notas de Clase 1

Binarios Con Signo (5)

Escala numérica
$$n=8$$
 bits

Números $\begin{cases} 00000000 & \longleftarrow +0 \\ 00000000 & \longleftarrow +0 \\ 01111111 & \longleftarrow +(2^{n-1}-1)=+127 \end{cases}$

Números $\begin{cases} 100000000 & \longleftarrow -0 \\ 00000000 & \longleftarrow -0 \\ 00000000 & \longleftarrow -1 \end{cases}$

negativos $\begin{cases} 1000000000 & \longleftarrow -1 \\ 000000000 & \longleftarrow -1 \\ 000000000 & \longleftarrow -1 \end{cases}$

Resumen: BCS (6)

- El primer bit sólo indica el signo.
- Los positivos empiezan con cero (0).
- Los negativos empiezan con uno (1).
- Hay dos representaciones del cero.
- El intervalo es simétrico.
- ❖ Hay 2ⁿ-1 números distintos (si se considera que el 0 es un solo número).

Técnica de Complementos

Definición:

"Se define el complemento de un número A a un número N (con A menor que N) como la cantidad que le falta a A para llegar a N".

Complemento a N de A = N - A

 Propiedad: el complemento a un número N del número (N-A) es igual a A.

Complemento a N de (N-A) = N - (N-A) = A

Técnica de Complementos (2)

Si n es el número de dígitos binarios (bits) a usar para la representación, entonces:

OPCIÓN 1: si N= baseⁿ – 1, es decir N = 2ⁿ -1

Se llama Complemento a la base disminuída, complemento a 1 (Ca1).

OPCIÓN 2: si $N = base^n$, es decir $N = 2^n$

Se llama Complemento a la base,

o: Complemento a 2 (Ca2)

Representación en Ca1

Supongamos que se representarán números en Ca1 usando n bits:

> n-1 0 Número en CA1 de n bits

Representación en Ca1 (2)

Se define:

- Los números positivos se representan igual que en BSS y BCS.
- Los negativos (o complementarios) se obtienen como Ca1 de los positivos:

N° negativo = Ca1 de N° positivo = N - N° positivo donde: $N=2^n-1$

Representación en Ca1 (3)

Ejemplo (n=8): $+7_{10} = 00000111$

entonces:

 -7_{10} = N - 00000111 ,es decir -7_{10} = (2⁸ -1) - 00000111 ,o bien -7_{10} = 111111111 - 00000111 -7_{10} = 11111000

Notas de Clase 1

Representación en Ca1 (4)

Otros ejemplos:

Representación en Ca1 (5)

> Escala numérica con n= 3 bits

$$000 = +0$$
 $001 = +1$
 $010 = +2$
 $011 = +3 = +(2^{n-1} -1)$
 $100 = -3 = -(2^{n-1} - 1)$
 $101 = -2$
 $110 = -1$
 $111 = -0$

Representación en Ca1 (6)

➤ Escala numérica con n=8 bits positivos $\begin{cases} \dots \\ 011111111 - +(2^{n-1}-1)=+127 \\ (2^{n-1}-1)=-127 \end{cases}$ Números $10000000 - (2^{n-1} - 1) = -127$ negativos

Representación en Ca1 (7)

Propiedades:

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Los números complementarios tienen los bits invertidos
- Dos representaciones del cero (+0 y -0)
- Rango de la representación en CA1:

$$-(2^{n-1}-1) \longrightarrow +(2^{n-1}-1)$$

Representación en Ca1 (8)

Dada una cadena de bits ¿qué número decimal representa si lo interpretamos en Ca1?

Cuando es positivo (bit mas significativo en 0):

Como siempre:

$$01100000 = 1 \times 2^6 + 1 \times 2^5 = 64 + 32 = 96$$

Representación en Ca1 (9)

- Cuando es negativo, puedo hacer dos cosas:
- ✓ Hago el Ca1 del número negativo para obtener el positivo:

Ej.

11100000

= - 31

11100000

 \longrightarrow 00011111 = +31

Representación en Ca1 (10)

- ✓ Otro método:
 - ✓el "peso" del primer dígito ahora es –(2ⁿ⁻¹ –1)
 - ✓el resto de los dígitos tienen todos peso positivo (como en BSS y BCS).

Ejemplo:

$$111000000 = -1x(27 - 1) + 1x26 + 1x25 =$$
= -127 + 64 + 32 = -31

- ✓ Otro método:
 - ✓ Aplicar la definición de Ca1 = $(2^n 1)$ N°

Resumen Ca1 (11)

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Hay dos ceros (uno positivo y otro negativo)
- El intervalo es simétrico
- ❖ Hay 2ⁿ-1 números distintos (si se considera que el 0 es un solo número)

Representación en Ca2

Supongamos que se representarán números en Ca2 usando n bits :

> n-1 0 Número en CA2 de n bits

Representación en Ca2 (2)

Se define:

- Los números positivos se representan igual que en BSS y BCS y Ca1
- Los negativos (o complementos) se obtienen como Ca2 de los positivos:

N° negativo= Ca2 de N° positivo = N - N° positivo donde: $N=2^n$

Representación en Ca2 (3)

Ejemplo (n=8)
$$+32_{10}$$
= 00100000

entonces:

$$-32_{10} = N - 00100000$$

$$-32_{10} = 2^8 - 00100000$$

$$-32_{10} = 100000000 - 00100000$$

es decir:

Representación en Ca2 (4)

Hagamos la cuenta en base 2

Representación en Ca2 (5)

Regla práctica:

$$+32_{10} = 001000000 \leftarrow$$
 "mirando" desde la derecha

$$-32_{10} = 11100000$$

- ✓ Los dígitos en rojo se copiaron igual
- ✓ Los dígitos en azul se invirtieron

Representación en Ca2 (6)

- Otra opción: sumar 1 al Ca1+32₁₀=00100000
 - 1) Ca1 de $+32_{10}$ =11011111
 - 2) Sumando 1 al Ca1 de +32₁₀ 11011111

$$+ 1$$
 $-32_{10} = 111000000$ en Ca2

Representación en Ca2 (7)

> Escala numérica con n= 3 bits

$$000 = +0$$
 $001 = +1$
 $010 = +2$
 $011 = +3 = +(2^{n-1} -1)$
 $100 = -4 = -(2^{n-1})$
 $101 = -3$
 $110 = -2$
 $111 = -1$

Representación en Ca2 (8)

➤ Escala numérica con n=8 bits Números 00000000 ← +0 positivos $01111111 + (2^{n-1}-1)=+127$ Números $10000000 \leftarrow -(2^{n-1}) = -128$ negativos

Representación en Ca2 (9)

Propiedades:

- Los positivos empiezan con cero (0).
- Los negativos empiezan con uno (1).
- Una sola representación del cero (porqué?).
- Rango de representación en CA2:

$$-(2^{n-1}) \rightarrow +(2^{n-1}-1)$$

(porqué?)

Representación en Ca2 (10)

Para obtener el Ca2 de un número puedo:

- ✓ Opción 1: aplicar la definición : bⁿ N^o
- ✓ Opción 2: calcular el Ca1 y sumarle 1 al resultado.
- ✓ Opción 3: usar regla práctica, "mirando" el número desde la derecha, repetir los dígitos binarios hasta el primer bit en 1 inclusive, y luego invertir los demás bits.

Representación en Ca2 (11)

Dada una cadena de bits ¿qué número decimal representa si lo interpretamos en Ca2?

Cuando es positivo:

Como siempre

$$01100000=1 \times 2^{6} + 1 \times 2^{5} = 64+32=96$$

Representación en Ca2 (12)

Cuando es negativo, puedo hacer:

✓ Complementar (en CA2) el número y obtener el positivo. Ejemplo:

11100000

00100000 = +32

Representación en Ca2 (13)

✓ Otro método: el peso que tiene el bit más significativo ahora es –(2ⁿ⁻¹) y el resto de los bits con pesos positivos como siempre

$$111000000 = -1x27 + 1x26 + 1x25$$
$$= -128 + 64 + 32 = -32$$

Resumen Ca2 (14)

- Los positivos empiezan con cero (0).
- Los negativos empiezan con uno (1).
- Hay un solo cero.
- Hay un negativo más.
- El rango de números es asimétrico.
- Hay 2ⁿ números distintos.

Técnica de Exceso

 La representación de un número A en exceso E es la que corresponde de sumar al número A el valor constante E (o exceso).

Exceso E de A = A + E

 Dado un <u>número A representado en exceso E</u>, el número A se obtiene <u>RESTANDO</u> al número en exceso el valor constante E (exceso).

$$A = (Exceso E de A) - E$$

El signo del número A es el que se obtiene de la resta.

Representación en Exceso 2ⁿ⁻¹

Ejemplo:

Supongamos n=6, y E =
$$2^{n-1}$$
 = 2^5 = 32

Número en E

Número decimal

$$000000_2 = 0 - 32 = -32_{10} = -2^{(6-1)}$$

$$= 32 - 32 = 0_{10}$$

$$= 63 - 32 = 31_{10} = 2^{(6-1)} - 1$$

Representación en Exceso 2ⁿ⁻¹

Rango de representación de E 2ⁿ⁻¹

$$-2^{(n-1)} \le x \le 2^{(n-1)}-1$$

- Una sola representación del 0.
- No sigue la regla de las representaciones anteriores: los positivos empiezan con 1, y los negativos con 0.
- Rango asimétrico.

Sistemas Posicionales

$$3574_{10} = 3000 + 500 + 70 + 4$$
$$= 3 \times 10^{3} + 5 \times 10^{2} + 7 \times 10^{1} + 4 \times 10^{0}$$

3 unidades de mil + 5 centenas + 7 decenas + 4 unidades

Teorema Fundamental de la Numeración

$$N^{\circ} = \sum_{i=-m}^{n} (digito)_{i} \times (base)^{i}$$

... +
$$x_4 \times B^4 + x_3 \times B^3 + x_2 \times B^2 + x_1 \times B^1 + x_0 \times B^0 + x_{-1} \times B^{-1} + x_{-2} \times B^{-2} + ...$$

Sistema Decimal

Ejemplo en Base 10

Dígitos {0,1,2,3,4,5,6,7,8,9}

$$3,1416_{10} = 3x10^{0} + 1x10^{-1} + 4x10^{-2} + 1x10^{-3} + 6x10^{-4}$$
... + $x_{4} \times B^{4} + x_{3} \times B^{3} + x_{2} \times B^{2} + x_{1} \times B^{1} + x_{0} \times B^{0} + x_{-1} \times B^{-1} + x_{-2} \times B^{-2} + ...$

Sistema Binario

<u>Ejemplo en Base 2</u>

Dígitos {0,1}

$$1001,1_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1}$$

$$= 8 + 0 + 0 + 1 + 0,5$$

$$= 9,5_{10}$$

Sistema Hexadecimal

<u>Ejemplo en Base 16</u>

■ Dígitos $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$ 10,11,12,13,14,15 $2CA,8_{16} = 2 \times 16^2 + C \times 16^1 + A \times 16^0 + 8 \times 16^{-1}$ = 512 + 192 + 10 + 0,5 $= 714,5_{10}$

Números en punto fijo (1)

- Se considera que todos los números a representar tienen exactamente la misma cantidad de dígitos y la coma fraccionaria está siempre ubicada en el mismo lugar.
- En sistema decimal sería:

0,23 ó 5,12 ó 9,11

En los ejemplos cada número tiene tres dígitos, y la coma está a la derecha del mas significativo.

Números en punto fijo (2)

- En sistema binario: $11,10 (3,5)_{10} \acute{o} 01,10 (1,5)_{10} \acute{o} 00,11 (0,75)_{10}$ Hay 4 dígitos y la coma está entre el 2^{do} y 3^{er} dígito.
- La diferencia principal entre la representación en el papel y su almacenamiento en computadora, es que no se guarda coma alguna, se supone que está en un lugar determinado.

Punto Fijo: Rango y Resolución

Rango: diferencia entre el número mayor y el menor

Resolución: diferencia entre dos números consecutivos

 Por ejemplo, dado un número decimal de 3 dígitos, con la coma después del 1er dígito:

Rango: es de 0,00 a 9,99 ó [0,00...9,99]

Resolución: es 0,01

$$2,32 - 2,31 = 0,01 \text{ o } 9,99 - 9,98 = 0,01$$

Punto Fijo: Rango y Resolución (2)

Si mantenemos tres dígitos y desplazamos la coma hasta la derecha del último dígito:

Rango: es de 000 a 999 ó [000...999]

Resolución: es 1

- Aumenta el rango y disminuye la resolución, es decir hay un compromiso entre rango y resolución.
- En cualquier caso, siempre hay 10³ números distintos.

Ejemplo en BSS con 4 bits

4 parte ent. y 0 parte frac.

_ _ _ _

Rango: [0...15]

Resolución: 0001 - 0000 =

 $0001_2 = 1_{10}$

Binario	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Ejemplo en ... (1)

3 parte ent. y 1 parte frac.

- - - , -

Rango: [0...7,5]

Resolución: 000,1 - 000,0 =

 $000,1_2 = 0,5_{10}$

Binario	Decimal
0,000	0
000,1	0,5
001,0	1
001,1	1,5
010,0	2
010,1	2,5
011,0	3
011,1	3,5
100,0	4
100,1	4,5
101,0	5
101,1	5,5
110,0	6
110,1	6,5
111,0	7
111,1	7,5

Dagimal

Dinaria

Ejemplo en ... (2)

2 parte ent. y 2 parte frac.

--,--

Rango: [0...3,75]

Resolución: 00,01 - 00,00 =

 $0,01_2 = 0,25_{10}$

Binario	Decimal
00,00	0
00,01	0,25
00,10	0,5
00,11	0,75
01,00	1
01,01	1,25
01,10	1,5
01,11	1,75
10,00	2
10,01	2,25
10,10	2,5
10,11	2,75
11,00	3
11,01	3,25
11,10	3,5
11,11	3,75

4

Ejemplo en ... (3)

1 parte ent. y 3 parte frac.

- , - - -

Rango: [0...1,875]

Resolución: 0,001 - 0,000 =

 $0,001_2 = 0,125_{10}$

Decimal
0
0,125
0,25
0,375
0,5
0,625
0,75
0,875
1
1,125
1,25
1,375
1,5
1,625
1,75
1,875

4

Ejemplo en ... (4)

```
parte ent. y 4 parte frac.
```

, - - - -

Rango: [0...0,9375]

Resolución:,0001 - ,0000 =

 $,0001_2 = 0,0625_{10}$

Dillalio	Decimal
,0000	0
,0001	0,0625
,0010	0,125
,0011	0,1875
,0100	0,25
,0101	0,3125
,0110	0,375
,0111	0,4375
,1000	0,5
,1001	0,5625
,1010	0,625
,1011	0,6875
,1100	0,75
,1101	0,8125
,1110	0,875
,1111	0,9375

Decimal

Rinario

Al convertir un número decimal a binario tendremos 2 situaciones: sin error y con error.

- 1) Sin error: supongamos que queremos convertir el número decimal 3,125.
 - Sin restricción en la cantidad de bits a usar
 - \bullet 3,125₁₀ = 11,001₂
 - Con restricción, por ejemplo 3 bits para parte entera y 4 bits para parte fraccionaria
 - $\mathbf{3,}125_{10} = 011,0010_2$

Representación y error (2)

- 2) Con error: supongamos que queremos convertir el número decimal 3,2.
 - 3 bits para parte fraccionaria:
 - $011,001_2 = 3,125_{10}$ Error = 3,2-3,125=0,075
 - $011,010_2 = 3,250_{10}$ Error = 3,2-3,25 = -0,05
 - 4 bits para parte fraccionaria:
 - $011,0011_2 = 3,1875_{10}$ Error = 3,2 3,1875 = 0,0125
 - 5 bits para parte fraccionaria:
 - $011,00111_2 = 3,21875_{10}$ Error =3,2-3,21875=-0,01875

Representación y error (3)

- El error más pequeño es 0,0125.
- Conclusión: en lugar de representar 3,2 puedo representar 3,1875 usando sólo 4 bits para la parte fraccionaria y cometiendo un error de 0,0125.

Suma y resta en binario

Una suma en binario se realiza en forma similar a una suma decimal, se suman dígito (binario o bit) a dígito (binario o bit) los n dígitos (bits) de cada número, empezando por los menos significativos (derecha) y considerando los arrastres hacia las posiciones siguientes a la izquierda.

La resta en binario se realiza en forma similar a una suma decimal. A veces es más sencillo pasar el sustraendo a su complementario y luego sumar.

Suma y resta en binario (2)

- Cuando se suman o restan 2 números es útil detectar ciertas situaciones resultantes de la operación.
- ➤ Por ejemplo, si el resultado es cero, o es negativo o positivo.
- ➤ Una situación que puede ocurrir también, es que el resultado no entre en la cantidad de bits usados para la representación.

Suma y resta en binario (3)

Ejemplos en decimal:

1) sumar 2 números de 1 cifra

2) sumar 2 números de 1 cifra

Bits de condición (banderas)

- ✓ Para atender las situaciones antes mencionadas el procesador usa unos bits internos denominados <u>BITS DE CONDICIÓN</u> (o flags) que reflejan el resultado de una operación aritmética previa.
- ✓ Sus valores ("estados") permiten tomar decisiones tales como decidir si se toma un camino u otro (transferencia de control), o relaciones entre números (mayor, menor, iqual).

 Notas de Clase 1

Banderas aritméticas

- Z (cero): vale 1 si el resultado de la operación son todos bits 0.
- C (carry): en la suma vale 1 si hay acarreo del bit más significativo; en la resta vale 1 si hay 'borrow' hacia el bit más significativo.
 - Cuando la operación involucra números sin signo, C=1 indica una condición fuera de rango.

Banderas aritméticas

- N (negativo): igual al bit más significativo del resultado.
 - Es 1 si el resultado es negativo
- ❖ V (overflow): en 1 indica una condición de fuera de rango (desborde) en Ca2.
 - El resultado no se puede expresar con el número de bits utilizado.

Suma en Ca2 y desborde

- Overflow (desborde): ocurre cuando al sumar 2 números, el resultado no entra en la cantidad de bits usados.
- Cuando hay Overflow en la suma?
 - ■Sumando dos números + y el resultado es –
 - ■Sumando dos números y el resultado es +
- Cuando NO hay Overflow en la suma?
 - Sumando números de distinto signo.

Resta en Ca2 y desborde

- Overflow (desborde): ocurre cuando al restar 2 números, el resultado no entra en la cantidad de bits usados.
- Cuando hay Overflow en la resta?
 - Restar a un número + un y el resultado es -
 - Restar a un número un + y el resultado es +
- Cuando NO hay Overflow en la resta?
 - Restando números de igual signo.

Bits de condición para la <u>suma</u>

Bits de condición para la suma

Operación

NZVC

Ca₂

- ✓ Ca2 incorrecto
- ✓ Sin signo correcto

Bits de condición para la suma

Operación

NZVC

Ca₂

BSS

$$+\frac{-3}{-3}$$

✓ Sin signo incorrecto

Bits de condición para la suma

Operación

NZVC

Ca2

- ✓ Ca2 incorrecto
- ✓ Sin signo incorrecto

Bits de condición para la resta

Operación

NZVC

Ca₂

- ✓ Ca2 incorrecto
- ✓ Sin signo correcto

Bits de condición para la resta

Operación

NZVC

Ca₂

$$\begin{array}{c}
1 \longrightarrow 0101 & 1001 \\
\hline
0111 & \\
\hline
1110
\end{array}$$

- ✓ Ca2 correcto
- ✓ Sin signo incorrecto

Pensar el algoritmo de suma.

Otras representaciones

- BCH
- BCD
- Caracteres

Sistema hexadecimal codificado en binario (BCH)

- Los dígitos hexadecimales se convierten uno a uno en binario
- Para representar un dígito hexadecimal se utilizará siempre 4 bits
- Se asocia cada dígito con su valor en binario puro

BCH	Dígito hexadecimal 0 1	Código BCH 0000 0001
	2	0010
	3	0011
	4	0100
	5	0101
	6	0110
	7	0111
	8	1000
	9	1001
	A	1010
	В	1011
	C	1100
	D	1101
	E	1110
	F	1111

Notas de Clase 1

Sistema decimal codificado en binario (BCD)

- Los dígitos decimales se convierten uno a uno en binario
- Para representar un dígito decimal se requerirán 4 bits
- Se asocia cada dígito con su valor en binario puro

Dígito decimal	Código BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD

Notar que hay 6 representaciones binarias que no se usan en la representación BCD:

1010 (A)

1011 (B)

1100 (C)

1101 (D)

1110 (E)

1111 (F)

Eso significa que si aparece un número binario mayor a 9, no es BCD.

Notas de Clase 1

- BCD tiene dos ámbitos de aplicación:
- Operaciones de E/S y comunicaciones con periféricos

Los números se codifican usando <u>8 bits por dígito</u> (un byte) : *BCD desempaquetado.*

> En cálculos aritméticos

Los números se codifican usando <u>4 bits por dígito:</u> *BCD empaquetado.*

BCD Desempaquetado sin signo

- Por cada dígito se usan 8 bits
 - Los 4 bits menos significativos representan el número decimal (dígitos de 0 a 9).
 - Los 4 bits más significativos se completan con "1".
 - **≻**Ejemplo

834 = 111111000 111110011 111110100

= F8 F3 F4

BCD Desempaquetado con signo

- Por cada dígito se usan 8 bits
- Los 4 bits menos significativos representan el número decimal (dígitos 0 al 9)
- Los 4 bits más significativos del último dígito representan el signo:
 - \succ C₁₆= 1100 representa al signo +
 - $\triangleright D_{16} = 1101$ representa al signo -

BCD Desempaquetado con signo

Ejemplo:

$$+834 = 11111000 11110011 11000100$$

$$= F8 F3 C4$$

Los 4 bits que acompañan al último dígito indican el signo.

BCD Desempaquetado con signo

Ejemplo:

$$-834 = 11111000 11110011 11010100$$
 $= F8 F3 D4$

BCD Empaquetado con signo

- Por cada dígito decimal se usan 4 bits.
- Si faltan bits para completar el byte se rellena con 0 en la posición más significativa.

Ejemplo:

```
- + 834 = 10000011 \ 01001100 = 83 \ 4C
```

$$-34 = 00000011 \ 01001101 = 03 \ 4D$$

- ➤ De las 16 representaciones posibles con 4 bits, usamos 10 para los dígitos 0 al 9
- Nos sobran 6 combinaciones de 4 bits
- ➤ Al sumar dos dígitos BCD, se nos presentan dos casos :
 - ♦la suma es ≤ 9
 - ❖la suma es > 9

Suma ≤ 9

 decimal
 BCD

 +
 41
 0100 0001

 22
 0010 0010

 63
 0110 0011

■ Suma > 9

- Cuando la suma de los dos dígitos da >9 podemos compensar (ajustar) el resultado para tener en cuenta la "distancia" entre BCH y BCD.
- Eso se consigue generando el "acarreo" originado por las 6 combinaciones no usadas.
- Conclusión: cuando la suma de los dígitos es
 - > 9 hay que sumar 6 en ese dígito.

Ejemplo

Notas de Clase 1

Representación alfanumérica

- Letras (mayúsculas y minúsculas)
- Dígitos decimales (0, ..., 9)
- Signos de puntuación
- Caracteres especiales
- "Caracteres" u órdenes de control

Ejemplo

A cada símbolo un código en binario

Ejemplo: x, y, α , β , #, @, [,]

Algunos códigos

FIELDATA

- 26 letras mayúsculas + 10 dígitos + 28 caracteres especiales
- Total 64 combinaciones ⇒ Código de 6 bits

ASCII

American Standard Code for Information Interchange

- FIELDATA + minúsculas + ctrl
- Total 128 combinaciones ⇒ Código de 7 bits

Algunos códigos (2)

- ASCII extendido
 - ASCII + multinacional + semigráficos + matemática
 - Código de 8 bits
- EBCDIC Extended BCD Interchange Code
 - similar al ASCII pero de IBM
 - Código de 8 bits

Tabla ASCII

<u>Dec</u>	H	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Нх	Oct	Html CI	<u>hr</u>
0	0	000	NUL	(null)	32	20	040	@#32;	Space	64	40	100	a#64;	0	96	60	140	& # 96;	8
1	1	001	SOH	(start of heading)	33	21	041	@#33;	!	65	41	101	a#65;	A	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042	@#3 4 ;	rr	66	42	102	B ;	В	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	# ;	#	67	43	103	a#67;	C				c	
4	4	004	EOT	(end of transmission)	36	24	044	\$	ş				D					d	
5				(enquiry)	37	25	045	a#37;	육	69	45	105	%#69;	E				e	
6	6	006	ACK	(acknowledge)	38			a#38;	6	70			a#70;					f	
7			BEL	(bell)	39	27	047	'	1	71			G		103	67	147	g	g
8		010		(backspace)				a#40;		72			@#72;					4 ;	
9				(horizontal tab))					a#73;					i	
10		012		(NL line feed, new line)				@# 4 2;					a#74;					j	
11		013		(vertical tab)				a#43;		75			a#75;					k	
12		014		(NP form feed, new page)				¢#44;		76			a#76;					l	
13		015		(carriage return)				a#45;		77			a#77;					m	
14		016		(shift out)				a#46;					a#78;					n	
15		017		(shift in)	l			a#47;					a#79;					o	
		020		(data link escape) 📗				a#48;					6#8O;					p	
		021		(device control 1)				a#49;					a#81;					q	
			DC2	(device control 2)				6#50;					6#82;					r	
				(device control 3)				3					6#83 ;					s	
				(device control 4)				6#52;					a#84;					t	
				(negative acknowledge)				5					U					a#117;	
				(synchronous idle)				a#54;		I			4#86;					v	
				(end of trans. block)				a#55;					%#87 ;					a#119;	
				(cancel)				a#56;					X					x	
		031		(end of medium)				a#57;					6#89;					y	
		032		(substitute)				6#58;					¢#90;					z	
			ESC	(escape)				6#59;	-				a#91;	_				6#123;	
		034		(file separator)				4#60;					6#92;					a#124;	
		035		(group separator)				=					۵#93;	_				6#125;	
		036		(record separator)				>		ı			a#94;					~	
31	1F	037	បន	(unit separator)	63	3F	077	?	?	95	5F	137	6#95 ;	_	127	7F	177		DEL

Una extensión al ASCII

128	Ç	144	É	160	á	176	100 100 100	193	Т	209	₹	225	ß	241	±
129	ü	145	æ	161	í	177	******	194	Т	210	π	226	Γ	242	≥
130	é	146	Æ	162	ó	178		195	H	211	IL	227	π	243	≤
131	â	147	ô	163	ú	179		196	-	212	F	228	Σ	244	(
132	ä	148	ö	164	ñ	180	4	197	+\	213	F	229	σ	245	J
133	à	149	ò	165	Ñ	181	da	198	Æ\	214	П	230	μ	246	÷
134	å	150	û	166	=	182	1	199	ŀ	215	#	231	τ	247	æ
135	ç	151	ù	167	۰	183	TT T	200	L	216	+	232	Φ	248	۰
136	ê	152	_	168	3	184	7	201	ΙĒ	217	J	233	•	249	
137	ë	153	Ö	169	M	185	#	202	쁘	218	Г	234	Ω	250	
138	è	154	Ü	170	A	186		203	ΤĒ	219		235	δ	251	$\sqrt{}$
139	ï	156	£	171	1/2	187	ī	204	ŀ	220		236	60	252	_
140	î	157	¥	172	1/4	188	ī	205	=	221		237	ф	253	2
141	ì	158	\overline{A}	173	j	189	Ш	206	#	222		238	ε	254	
142	Ä	159	f	174	«	190	4	207	<u>_</u>	223		239	\wedge	255	
143	Å	192	L	175	»	191	٦	208	Ш	224	α	240	≡		
											_				

mayor información ...

- Capítulo 8: Aritmética del computador (8.1., 8.2., 8.3.)
 - Stallings, 5ta Ed.
- Apéndice 8A: Sistemas de Numeración
 - Stallings, 5ta Ed.
- Sistemas enteros y Punto fijo
 - Apunte 1 de Cátedra
- Capítulo 3: Lógica digital y representación numérica
 - Apuntes COC Ingreso 2013