

COMPONENTES DE UMA REDE

Componentes de uma rede

- Uma rede é um sistema composto por cabeamento, hardware e software.
- Como em todos os sistemas, para uma rede operar de modo eficiente, deve haver uma correta integração entre os diversos componentes envolvidos para a sua implantação.

Cabeamento

- É a infra-estrutura necessária para a implantação da rede.
- A maior incidência de ruídos e perturbações ocorrem no cabeamento (BER).
- Mais de 85% dos problemas em redes ocorrem devido à:
 - ► Falta de projeto específico de cabeamento;
 - ▶ Má qualidade dos componentes e serviços empregados em sua implementação.

Cabeamento

- Componentes do cabeamento:
 - Tomadas;
 - Patch panels;
 - Cordões de manobra;
 - Infra-estrutura de proteção mecânica.

Cabeamento

- São problemas gerados por cabeamento:
 - congelamento de terminais;
 - perda de conexões a servidores de aplicativos e bancos de dados;
 - travamento de aplicações de rede.
- Estes problemas também podem ser produzidos por defeitos nos equipamentos ativos, o que pode confundir os administradores de rede.

Hardware de Rede

- O hardware da rede, é composto pelos equipamentos ativos. São eles:
 - Servidor;
 - Estações de trabalho;
 - Impressoras e periféricos;
 - Placas adaptadoras de rede (NIC Network Interface Card);
 - Switches;
 - Conversor de mídia;
 - Roteador, entre outros.

Hardware de Rede

SERVIDORES

- Os servidores são utilizados para executar atividades, tais como, gerenciar a rede, banco de dados, segurança, aplicativos, arquivos e backups.
- São computadores com arquitetura interna especial, composta por múltiplos processadores e placas de rede, redundância de fonte, ventiladores e controladora de HD, grande quantidade de memória RAM (até 256GB), grande quantidade de discos rígidos (até 16HD) e componentes com capacidade de substituição sem desligar o computador ("hot-swap").

ESTAÇÕES DE TRABALHO

- São computadores tipo PC, onde são realizadas as tarefas do usuário.
- Na arquitetura cliente-servidor, quanto melhor e mais poderoso for o hardware das estações de trabalho, melhor será o desempenho da rede toda.

Software

- O software é composto pelo sistema operacional da rede, chamado de N.O.S. (Network Operating System).
- A função do N.O.S. é viabilizar o compartilhamento de dispositivos, como discos rígidos, impressoras e outros, entre as estações de trabalho, de modo que esses recursos pareçam locais.

EQUIPAMENTO PARA REDES E APLICAÇÕES

Hub e Repetidores

REPETIDOR

 Os repetidores regeneram o sinal e mantém a integridade da informação que passa por eles, aumentando a distância atingida entre dois pontos. Estes equipamentos operam na camada física do modelo OSI.

HUB

 Os repetidores regenerativos multi-porta deram origem aos hubs, que repetem o sinal gerado em uma porta, para todas as outras.

SWITCH

- Dispositivos da camada de enlace, que operam em alta velocidade de transmissão, capazes de gerenciar e encaminhar o tráfego de informações através de suas portas.
- O Switch segmenta o tráfego da rede, onde cada placa de rede terá o seu caminho próprio e serão interligados através de um controle central (switch fabric) de acordo com as suas necessidades de transmissão.

Arquitetura do Switch

- Switch fabric: encaminha entre as interfaces de entrada e saída;
- Processadores e memória: gerenciamento e montagem da tabela SAT;
- Interfaces: recepção e transmissão nas portas no padrão determinado (100BaseT, 1000BaseSX, etc.).

Classificação

- Os switches são classificados em quatro grupos de acordo com a sua aplicação e o ambiente no qual este será instalado:
- DESKTOP São switches de 8 a 24 portas, sem gerenciamento ou programação.
- WORKGROUP (edge-switch) Fornece o acesso das estações de trabalho a rede, podendo ser gerenciável, e com boa capacidade de tráfego.
- ENTERPRISE (core) Conecta os workgroup switch da rede aos servidores. Normalmente são switches com serviços avançados de gerenciamento, e alta capacidade de transmissão e expansão.
- CAMPUS Atende a interligação com os prédios externos e com os serviços de concessionárias e provedores.

Funcionamento

- 1. Switch constrói uma tabela **SAT** (**Source Adress Table**) com os endereços MAC, que estão localizados em cada porta;
- 2. Quando uma máquina transmite um quadro, o endereço de destino é pesquisado na SAT
- 3. Se encontrado o quadro será transportado diretamente para a porta de destino.
- 4. Quando o endereço não é encontrado na SAT, o switch realiza um **broadcast** perguntado a todas as portas sobre o endereço (*flooding*).

Broadcast Storm:

- Os computadores também realizam broadcast para a atualização de suas tabelas de IP e MAC, sendo assim, quanto maior a rede, maior a quantidade de broadcast, podendo consumir quase toda banda (broadcast storm).
- Alguns switches possuem controle de broadcast, reservando no máximo 25% da banda para tráfego de broadcast.

Parâmetros de desempenho

- O tráfego de dados da rede depende da capacidade dos switches para encaminhar os pacotes corretamente e o no menor tempo.
- Duas métricas são as mais utilizadas para determinar esta capacidade:
 - BANDA TOTAL DE TRANSMISSÃO ("forwarding bandwidth"-FBW) em Gbps
 - TAXA DE ENCAMINHAMENTO ("forwarding rate" FR) em Mpps (milhões de pacotes por segundo,)

Parâmetros de desempenho

BANDA TOTAL DE TRANSMISSÃO (FBW)

- A banda total de transmissão deve ser suficiente para evitar o bloqueio, contemplando o tráfego total das portas.
- Considerando um switch de 24 portas de 100 Mbps e duas portas de uplink 1Gbps, a FBW será:
 - -FBW = 24x100Mbps + 2x1Gbps = 4,4Gbps
- Nos switches classificados como enterprise (core switch) ou campus, o valor de FBW deve ser multiplicado por 2, para atender o tráfego crítico a que estes equipamentos são submetidos.

Parâmetros de desempenho

TAXA DE ENCAMINHAMENTO (FR)

- É o tempo de processamento interno do Switch, para encaminhar o quadro da porta de entrada para a de saída. Se este processo for demorado pode ocorrer "overflow", e resultar na perda de pacotes.
- A velocidade de processamento do quadro depende da taxa de transmissão do switch.

TAXA DE TRANSMISSÃO (Mbps)	QUANTIDADE DE QUADROS TRANSMITIDOS
10	14.881
100	148.809,5
1000	1.488.095,2

Considerando um switch com 24 portas de 100Mbps e duas portas de uplink 1Gbps, temos:

FR=24x148.809,5pps+2x.1488.095,2pps=6.547.618,4pps

Gerenciamento de Switches

SWITCHES NÃO GERENCIÁVEIS

 São equipamentos sem recursos de configuração pelo administrador, mas podem incorporar recursos como auto-negociação (10/100/1000 Mbps e half ou fullduplex), auto MDI/MDIX e até priorização de tráfego, já programados pelo fabricante.

SWITCHES GERENCIÁVEIS

 Os switches gerenciáveis oferecem aos administradores de redes a possibilidade de configurar recursos e a informações estatísticas do equipamento. O gerenciamento pode ser executado localmente ou remotamente através de interface WEB, SNMP (Simple Network Management Protocol) e Telnet.

CARACTERÍSTICAS E RECURSOS DOS SWITCHES

Modo de Operação

- Cut-through, o endereço de destino é lido, então o quadro será diretamente encaminhado para o destino. È o método mais rápido, porém o menos seguro, pois não verifica erros no quadro.
- Store-and-Forward, o quadro é totalmente recebido, faz-se a verificação de erro pelo FCS, e se o quadro for válido, será encaminhado. Este método é utilizado sempre que as portas estiverem com velocidades diferentes. Ele é mais lento, porém o mais confiável.
- Modified Cut-through, os primeiros 64 bytes são verificados quanto a erros. Se não houver erros o frame é encaminhado. Ele é um meio termo entre os dois anteriores. Também é denominado de "fragment-free switching".

Port Trunking

- O Trunk ou Link Aggregation (IEEE802.3ad)
 possibilita a união várias interfaces físicas
 (portas) para formar uma interface lógica,
 variando de 2 a 8 portas;
- O objetivo é aumentar a banda passante, com a mesma estrutura de backbone;
- A configuração do trunk pode ser feita manualmente (static trunk) ou automática através do protocolo LACP (Link Aggregation Control Protocol).

VLAN

- A VLAN (Virtual LAN), padronizada pelo IEEE802.1Q, é um conceito baseado na criação de um grupo dentro da rede, que participa de um segmento lógico independente.
- Entre as vantagens temos:
 - Restringe o tráfego de broadcast a VLAN, evitando a degradação da rede (broadcast storm);
 - Independe da topologia física;
 - Proporciona segurança restringido o trafego de dados somente dentro da VLAN;
- A VLAN pode ser por porta, mac adress, protocolo ou tag (VID – Vlan Identify);

VLAN

- O quadro Ethernet recebe uma identificação formada por 4 bytes, inseridos entre os campos Endereço de Origem e Tipo e Largura de Dados.
- Os dois primeiros bytes informam que existe uma VLAN (VLAN Protocol ID) e que os dois próximos bytes contêm as Tag Control Information (TCI). No TCI existem 3 campos o PRIORITY, CFI e VLAN ID (VID).

QUADRO PADRÃO IEEE802.3 EM REDE COM VLAN

TAMANHO DO QUADRO MIN-64bytes e MAX 1522 bytes

ENDEREÇO DE ENDEREÇO DE PREAMBULO FRAME LARGURA DADOS DESTINO ORIGEM DELIMITER DE DADOS 7 bytes 1 bytes 6 bytes 0-46 bytes 46-1500 bytes SINCRONISMO 3 bits 1 bit 12 bits 2 bytes VLAN PROTOCOL ID = 0X8100 PRIORITY VLAN ID

2 bytes

O campo PRIORITY possui 3 bits, e é utilizado para classificação do tráfego, possibilitando a implementação de QoS.

VLAN

Spanning Tree

- O Spanning Tree (IEEE802.1d) é um protocolo que gerencia os links entre os switch, de tal forma que provê redundância e evita a ocorrência de loops;
- Só um caminho pode existir entre dois equipamentos, caso contrário haverá duplicação de mensagens;
- O STP (Spanning Tree Protocol) organiza as interligações na rede através de uma árvore binária, definindo caminhos únicos entre os pontos;
- Quando encontra redundâncias, escolhe um caminho de acordo com as regras pré-configuradas, e o outro mantém inativo.

Controle de Acesso a Rede

- Para aumentar a segurança da rede, alguns switches possuem recursos de desabilitar as portas não utilizadas;
- O controle de acesso, permite o usuário autenticar na porta do switch, através do protocolo IEEE802.1x – Port Based Network Access Control, que estabelece uma ligação ponto-a-ponto com um servidor de autenticação e o usuário (host suplicante), que deve solicitar autorização ao autenticador, que busca a lista dos usuários cadastrados no servidor de autenticação radius, para dar acesso a porta do switch.
- O recurso Port Security permite ao administrador da rede configurar os endereços MAC (fonte) que podem acessar a porta do switch.
- Alguns switch possuem recursos de filtros de endedreço MAC, afim de bloquear o acesso a rede destes MACs.

Port Mirror

- O sniffer é um software que monitora e analisa o tráfego de uma rede;
- No tempo do hub, um computador com o sniffer era conectado a rede e ficava escutando toda movimentação dos dados;
- Com o switch o tráfego da rede é segmentado, e a porta do switch só recebe os pacotes endereçados a ela, não permitindo a análise correta da rede;
- Com o recurso Port Mirror, é possível encaminhar o tráfego do switch para uma determinada porta.

IGMP - Tráfego de Multicast

- A tecnologia multicast é a base de um serviço de rede no qual um único fluxo de dados, proveniente de uma determinada fonte, pode ser enviado simultaneamente para diversos hosts;
- O Protocolo IGMP (Internet Group Management Protocol) permite a economia de banda, transmitindo um único stream de pacotes para vários hosts;
- O custo dos recursos da rede é reduzido através da economia de banda passante nos enlaces e de processamento em servidores e equipamentos da rede;
- Aplicado geralmente em aplicações multimídia e vídeoconferências.

IGMP - Tráfego de Multicast

- Os hosts expressam sua vontade de participar de um grupo de transmissão (video-conferência, e-learning, news, video, etc.).
- Na camada 3, os endereços dos grupos vão de 224.0.0.0 até 239.255.255.255.
- Na camada 2, o MAC é resolvido iniciando com 01:80:c2
 + 3 bytes baseados no IP do grupo.
- O switch que possue recurso IGMP, detecta os dispositivos que fazem parte do grupo de multicast, e monta a tabela de multicast otimizando o tráfego entre os membros do grupo.

Interfaces das portas

As interfaces do switch podem suportar:

- Auto-negociação em half e full-duplex;
- Auto-MDI\MDI-X, com detecção automática de conexão crossover;
- O controle de fluxo nas interfaces do switch está relacionada com a distribuição irregular do tráfego e o tamanho limitado dos buffers de memória da porta. O alto fluxo, pode gerar overflow, devido a porta sobrecarregada, não receber informação até esvaziar o buffer;
- Numa rede LAN com mais de um switch, a interligação dos mesmos pode ser feita por empilhamento (stack) ou cascateamento.

Switch Nível 3

- Os switches (L2) resolveram o problema de segmentação dos domínios de colisão, e com o crescimento das redes, o domínio de broadcast passou a ser um limitador;
- O switch L3 permite associar sub-redes IP a VLANs;
- O switch L3 tem capacidade de roteamento em alta velocidade, com recursos de QoS (Quality of Service) na camada 3.

Switch Nível 4

- O switch de nível 4 atua sobre as 4 primeiras camadas do Modelo OSI;
- Além das características do switch L3 agrega recursos avançados de QoS (Quality of Service – Qualidade de Serviço), tal como, reservar largura de banda para o tráfego de informações de acordo com a aplicação e gerência de tráfego por tipo de serviço;
- Permite resolver o problema de latência na rede com relação aos dados críticos.

Roteadores

 Os roteadores são equipamentos que pertencem a Camada de Rede do modelo OSI, capazes de encaminhar pacotes pela rede, compatibilizando protocolos e oferecendo conectividade entre LANs e WANs.

Características dos Roteadores

Os roteadores possuem as funções de:

- Encaminhar pacotes, por meio de protocolos de roteamento (RIP, OSPF, EGP, BGP, IGRP, EIGRP, entre outros)
- Compatibilizar os protocolos de comunicação de rede;
- Possue recursos de segurança;
- Implementar serviços de QoS (RSVP, CAR, VoIP,...);
- Implementa recursos de multicast (IGMP);
- Disponibilizar recurso de acesso a rede DHCP (Dynamic Host Configuration Protocol), NAT (Network Address Translator) e DNS (Domain Name System);

Roteadores

Interfaces de rede

- A interface de rede é o dispositivo que conecta o computador ao meio físico de interligação da rede.
- O padrão de barramento atual é o PCI (Peripheral Component Interconnect), podendo chegar a um barramento de 8Gbps (PCI Express x32);
- A placa de rede pode implementar recursos de priorização de pacotes, Vlan, entre outros.

ACESSÓRIOS PARA REDES E APLICAÇÕES

Transceivers Ethernet

- Na camada física do modelo IEEE802.3 existe um módulo responsável pela transmissão e recepção dos sinais (*transceiver*), que está diretamente ligado ao meio de transmissão (UTP,coaxial ou fibra). Os transceivers são acessórios que convertem sinais de uma base fixa para conexões UTP ou fibra óptica.
- No padrão Gigabit Ethernet a interface para conexão do transceiver, chama-se Gigabit Interface Converter (GBIC) e são dispositivos hot-swappable.

GBIC

- Possuem estrutura metálica para reduzir as interferências eletromagnéticas;
- Implementam os padrões:

- 1000BaseT
- 1000BaseSX conector SC
- 1000BaseLX conector SC
- 1000BaseLH conector SC .

SFP

- Com a utilização dos conectores de fibra tipo Small Form Factory (SFF), o tamanho do transceiver pode ser reduzido, possibilitando uma maior densidade de portas.
- Esta versão foi denominada mini-GBIC, porém comercialmente é mais conhecida como SFP (Small Form-Factor Plug-in).
- Todas as características do GBIC são mantidas

Conversores de mídia Ethernet

- Os conversores de mídia são dispositivos utilizados para compatibilizar dois meios físicos diferentes;
- Sua aplicação mais comum é a interface entre fibra óptica e UTP;
- Os conversores podem ser classificados em:
 - Repetidor
 - Bridge
 - Gerenciáveis
 - Não gerenciáveis

Conversores Gerenciáveis

- Nos equipamentos gerenciáveis utilizam os protocolos SNMP, RMON, porta local via CLI (Command Line Interface), telnet, etc.
- Quando o número de conversores é grande, podem ser utilizado um chassis que fornece alimentação, com hot-swap e gerenciamento.

Print servers

- Os print servers permitem que vários usuários compartilhem o uso de impressoras localizadas em qualquer ponto de uma rede Ethernet.
- Permitem que vários tipos de impressoras possam ser conectadas a uma ampla escala de protocolos de redes locais.
- Podem atender a mais de uma impressora e suportam padrões serial e paralelo.
- As solicitações de impressão provenientes dos vários usuários da rede são tratados por ordem de chegada, ou seja, quando a impressora está disponível, os serviços são passados a ela.

Print Servers

No break

- Os no-break ou Uninterruptible Power Supply (UPS) são dispositivos capazes de manter a alimentação dos equipamentos através de baterias no caso de falta de energia na empresa.
- A rede elétrica fornece uma corrente alternada (onda senoidal) de 60Hz.
- Os UPS podem ser On-Line, Linha Interativa, Off-line ou short break.

No break

- Existem UPS gerenciáveis com as características citadas abaixo:
 - Desligam corretamente o servidor por comando via interface serial;
 - Monitoram graficamente a rede elétrica 24 horas;
 - Podem ser acoplados a detectores de fumaça;
 - Podem mandar mensagens para o pager do administrador de rede, comunicando falhas;
 - Podem, via modem, comunicar as outras LANs da
 WAN que a LAN em questão está prestes a sair do ar.

TÓPICOS EM LANs

Cluster

- Cluster é um conjunto de servidores que são administrados por um software específico e interligados por um switch dedicado de alta-velocidade;
- Para rede será apresentada a figura de um único servidor e o software de cluster realiza o balanceamento da carga.

Storage

- Network Attached Storage (NAS): onde um equipamento com vários HD em RAID, esta ligado diretamente aos switches da rede.
- Storage Área Network (SAN): é uma rede dedicada a transportar dados entre os equipamentos de storage e os servidores, podendo inclusive estar localizada num site diferente dos servidores.

Gerenciamento de rede

- A complexidade das redes corporativas atuais necessitam cada vez mais de ferramentas de monitoração e de gerenciamento.
- Os motivos que tornam necessários o emprego destas ferramentas são:
 - Redes cada vez mais extensas dificultam a sua administração;
 - Melhorar e manter controle sobre a qualidade dos serviços da rede;
 - Redes muito complexas (grande número de usuários);
 - Redução do tempo de manutenção;
 - Administração por definição de políticas e serviços de acesso dos usuários;

Sistema de Gerenciamento

- O protocolo utilizado para o gerenciamento da rede é o SNMP (Simple Network Management Protocol). Atualmente existem outras extensões do SNMP sendo:
 - RMON (Remote Monitoring) com facilidades para monitoração e coleta de informações. É limitado à camada MAC e Ethernet.
 - RMON-2 Coleta de informações mais abrangente.
 Suporta camadas superiores (3 a 7). Monitora protocolos de aplicação e pode visualizar o tráfego vindo de fora.
 - SNMP-V2 Oferecendo uma estrutura de segurança melhorada, MIB e SMI com novos tipos de dados.

Projeto Lógico Hierárquico

- A crescente demanda por serviços das redes de computadores reflete diretamente na complexidade dos projetos lógicos.
- Assim foi desenvolvida uma técnica de projeto hierárquico baseada em 3 camadas.

Camada de Acesso

- Faz a conexão às estações dos usuários e outros terminais (impressoras, telefones IP, etc...)
- Possui grande número de portas com funções da camada de link de dados
- Controles aplicáveis ao acesso tais como:
 - Rate-limiting por porta
 - IEEE 802.1x
 - Marcação de VLANs
 - Priorização de tráfego por porta e 802.1p.

Camada de Concentração

- Concentra os uplinks dos switches de acesso.
- Agrega as políticas de Segurança e QoS.
- Recursos de filtragem e classificação em camada de link de dados, camada de rede e camada de transporte (modelo OSI).
- Funções de roteamento de VLANs.
- Agregação de uplinks (trunk).

Camada de Concentração

- Poderemos dispor de Switch L3 desempenhando funções de concentração e núcleo;
- Os anéis de acesso podem ser utilizados como redundância de topologia e balanceamento de tráfego.
- O número de Switches por anel deve ser definido em função do tráfego esperado.

Camada de Núcleo

 A camada de núcleo é onde estão os switches de altíssima velocidade com recursos de redundância e alta-disponibilidade.

Projeto Redundante

- Pode ser aplicado a nível de hardware e/ou topologia.
- A redundância pode ser aplicada em qualquer uma das camadas do projeto hierárquico ou em todas as camadas.
- A redundância de hardware pode ser feita com equipamentos que utilizam redundância de fonte de alimentação, redundância de topologia, recursos VRRP, podendo ocorrer entre switches, entre switches e roteadores, ou entre switches e servidores, por meio de recursos de Spanning-tree e trunk.

Projeto Redundante

Redes Pequenas	
Não há administradores	SWITCH WORKGROUP
Aplicações comuns sem requisitos de QoS e/ou priorização de pacotes	
Rede de médio porte	
Necessidade de controle de acesso e controle de banda	MANAGED
Criação de grupos de usuários e isolamento de tráfego (VLAN)	SWITCH
Gerenciamento de rede a distância (SNMP)	
Redes com grande número de estações	
Aplicações de RTP e sensiveis a perda de pacotes (vídeo conferencia, VoIP,)	CORE L3 SWITCH
Necessidade de filtros L3 E L4	

Rede de uma Pequena Empresa

- Em pequenas empresas, um switch de 24 ou 48 portas pode atender a todas as máquinas inclusive o servidor.
- O switch deverá ser non-blocking, implementando funções de gerenciamento e configurações de agregação de porta
- A implementação de QoS é necessária se houver previsão de tráfego de voz e vídeo conferência.
- Nas ligações WAN é importante à existência de um firewall entre a rede e o roteador, e quando necessário, um servidor Proxy para controlar o aceso a internet.

Rede de uma Pequena Empresa

CENÁRIO PEQUENA EMPRESA

Rede de uma Empresa de Médio Porte

- Numa rede com diversas máquinas e tipos de tráfego diferenciados, organizados em departamentos e setores, o gerenciamento e a qualidade de serviço tornam-se imprescindíveis.
- É importante verificar a necessidade de recursos de segurança, prioridade de pacotes e separação da rede por Vlans.
- Neste caso, é comum utilizar backbones de alta velocidade.
- O **switch concentrador** condensa o tráfego vindo dos switches de acesso, e poderá ser um switch Layer 2 ou 3, com capacidade de transmissão suficiente para agregar todo o tráfego.
- O switch de núcleo (core switch), comumente é um switch de layer 3, com recursos de alta disponibilidade. O core switch Layer 3, implementa recursos de gerenciamento e QoS, com interfaces 1000BaseT, 1000BaseSX e 10GBaseSX.
- Não se recomenda o uso de conversores de mídia em backbones internos aos prédios, porque diminui a eficiência, deve-se utilizar transceivers GBIC conectados em interfaces do switch.

Rede de uma Empresa de Médio Porte

Rede de uma Empresa de Grande Porte

- Uma rede corporativa de grande porte, geralmente possui muitos segmentos de rede com um sistema complexo de backbone, atuando com mais de um protocolo de rede.
- Os recursos da rede de médio porte são incorporados nesta rede.
- Em redes corporativas de grande porte é comum o uso de conexões VPN (Virtual Private Network) para usuários externos.
- É necessário a utilização de zonas DMZ, sistema de firewall e proxy.
- As conexões críticas devem conter recursos de redundância e tráfego em 1Gbps e 10Gbps.

Rede de uma Empresa de Grande Porte

Fim