MATH 420 - FALL 2019 ASSIGNMENT 2

Note: Most of these problems are taken from *Partial Differential Equations*, by L.C. Evans. In the following you may assume that U is a bounded open subset of \mathbb{R}^n with smooth boundary ∂U , unless otherwise stated.

- (1) (Existence of a partition of unity)
 - (a) Let U, V be open sets with $V \subset\subset U$. Show that there exists a smooth function ζ such that $\zeta = 1$ on V and $\zeta = 0$ near ∂U .

Hint: take $V \subset\subset W \subset\subset U$ and mollify χ_W .

(b) Assume $U \subset\subset \cup_{i=1}^N V_i$ for bounded open sets V_i . Show that there exist C^{∞} functions ζ_i with support in V_i such that $0 \leqslant \zeta_i \leqslant 1$ and

$$\sum_{i=1}^{N} \zeta_i(x) = 1, \quad x \in U.$$

(2) Fix $1 \leq p < \infty$. Show that there does *not* exist a bounded linear operator

$$T: L^p(U) \to L^p(\partial U),$$

such that $Tu = u|_{\partial U}$ whenever $u \in C(\overline{U}) \cap L^p(U)$.

(3) (Chain rule) Assume $F:\mathbb{R}\to\mathbb{R}$ is C^1 with F' bounded. Suppose $u\in W^{1,p}(U)$ for some $1\leqslant p<\infty$. Show

$$v := F(u) \in W^{1,p}(U)$$
, and $v_{x_i} = F'(u)u_{x_i}$, $i = 1, ..., n$.

- (4) Assume that $1 \leq p < \infty$. Recall that $u^+ = \max(u, 0)$ and $u^- = -\min(u, 0)$.
 - (a) Show that if $u \in W^{1,p}(U)$ then $|u| \in W^{1,p}(U)$.
 - (b) Show that $u \in W^{1,p}(U)$ implies $u^+, u^- \in W^{1,p}(U)$ and

$$Du^{+} = \begin{cases} Du & \text{a.e. on } \{u > 0\} \\ 0 & \text{a.e. on } \{u \leqslant 0\}. \end{cases}$$

and

$$Du^{-} = \begin{cases} 0 & \text{a.e. on } \{u \geqslant 0\} \\ -Du & \text{a.e. on } \{u < 0\}. \end{cases}$$

Hint: consider the function

$$F_{\varepsilon}(s) = \begin{cases} (s^2 + \varepsilon^2)^{1/2} - \varepsilon, & s \geqslant 0 \\ 0, & s < 0 \end{cases}$$

and show $u^+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$.

- (c) Show that if $u \in W^{1,p}(U)$ then Du = 0 a.e. on $\{u = 0\}$.
- (5) Consider the operator

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}u_{x_i})_{x_j} + cu.$$

Prove that there exists a constant $\mu>0$ such that the corresponding bilinear form $B[\cdot,\cdot]$ satisfies the hypotheses of the Lax-Milgram Theorem, provided

$$c(x) \geqslant -\mu, \quad x \in U.$$