COMP3711: Design and Analysis of Algorithms

Tutorial 1

Asymptotic notation

Asymptotic upper bound

Definition (big-Oh)

f(n) = O(g(n)): There exists constant c > 0 and n_0 such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$.

Equivalent definition: $\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$

Asymptotic lower bound

Definition (big-Omega)

 $\frac{f(n) = \Omega(g(n))}{f(n) \ge c \cdot g(n)}$: There exists constant c > 0 and n_0 such that

Equivalent definition: $\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$

Asymptotic tight bound

Definition (big-Theta)

 $f(n) = \Theta(g(n))$: f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Comparing time complexity

Example:

Algorithm 2 is clearly superior

- T(n) for Algorithm 1 is $O(n^3)$
- T(n) for Algorithm 2 is $O(n^2)$
- Since n^3 grows more rapidly than n^2 , we expect Algorithm 1 to take much more time than Algorithm 2 for large n.

Review: Basic facts on exponents

For all real $a \neq 0$, m and n, we have the following identities:

$$a^{0} = 1$$
 $a^{1} = a$
 $a^{-1} = 1/a$
 $(a^{m})^{n} = (a^{n})^{m} = a^{mn}$
 $a^{m}a^{n} = a^{m+n}$
 $a^{1/n} = \sqrt[n]{a}$

Review: Basic Facts on logarithms

For all real a > 0, b > 0, c > 0, and n:

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b(1/a) = \log_b a^{-1} = -\log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b a = \frac{\log_a a}{\log_a b} = \frac{1}{\log_a b}$$

$$a^{\log_b a} = (b^{\log_b a})^{\log_b a} = (b^{\log_b a})^{\log_b a} = n^{\log_b a}$$

$$4^{\log_2 n} = n^{\log_2 4} = n^2$$

For each of the following statements, answer whether the statement is true or false.

- (a) $1000n + n \log n = O(n \log n)$.
- (b) $n^2 + n \log(n^3) = O(n \log(n^3)).$
- (c) $n^3 = \Omega(n)$.
- (d) $n^2 + n = \Omega(n^3)$.
- (e) $n^3 = O(n^{10})$.
- (f) $n^3 + 1000n^{2.9} = \Theta(n^3)$
- (g) $n^3 n^2 = \Theta(n)$

For each of the following statements, answer whether the statement is true or false.

- (a) $1000n + n \log n = O(n \log n)$. True.
- (b) $n^2 + n \log(n^3) = O(n \log(n^3))$. False.
- (c) $n^3 = \Omega(n)$. True.
- (d) $n^2 + n = \Omega(n^3)$. False.
- (e) $n^3 = O(n^{10})$. True.
- (f) $n^3 + 1000n^{2.9} = \Theta(n^3)$ True.
- (g) $n^3 n^2 = \Theta(n)$ False.

For each pair of expressions (A, B) below, indicate whether A is O, Ω , or Θ of B. Note that zero, one, or more of these relations may hold for a given pair; list all correct ones. Justify your answers.

- (a) $A = n^3 + n \log n$; $B = n^3 + n^2 \log n$.
- (b) $A = \log \sqrt{n}$; $B = \sqrt{\log n}$.
- (c) $A = n \log_3 n$; $B = n \log_4 n$.
- (d) $A = 2^n$; $B = 2^{n/2}$.
- (e) $A = \log(2^n)$; $B = \log(3^n)$.

(d)

(e)

 2^n

 $\log(2^n)$

Solution 2

A Relation: B

(a) $n^3 + n \log n$ Ω, Θ, O $n^3 + n^2 \log n$ (b) $\log \sqrt{n}$ Ω $\sqrt{\log n}$ (c) $n \log_3 n$ Ω, Θ, O $n \log_4 n$

Ω

 Ω, Θ, O

 $2^{n/2}$

 $\log(3^n)$

Solution 2: Step by step

Notes:

- (a) Both are $\Theta(n^3)$, the lower order terms can be ignored. Note that if $A(n) = \Theta(B(n))$, $\Rightarrow A(n) = O(B(n))$ and $A(n) = \Omega(B(n))$.
- (b) After simplifying, $A=\frac{1}{2}\log n$, and $B=\sqrt{\log n}$. Set $m=\log n$. The ratio $\frac{A}{B}=\frac{m}{2\sqrt{m}}=\frac{\sqrt{m}}{2}$. Then $\lim_{n\to\infty}\frac{A}{B}=\lim_{m\to\infty}\frac{A}{B}=\infty$, i.e., $A(n)=\Omega(B(n))$.
- (c) Log base conversion only introduces a constant factor, i.e., $n \log_3 n = n \cdot \log_3 4 \cdot \log_4 n = \Theta(n \log_4 n)$.
- (d) $2^n/2^{n/2} = (2)^{n/2} \to \infty$ as $n \to \infty$. Alternatively, notice that $2^{n/2} = \sqrt{2^n}$.
- (e) After simplifying notice that $A = n \log 2$ and $B = n \log 3$, both of which are $\Theta(n)$.

Suppose $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$. Which of the following are true? Justify your answers.

- (a) $T_1(n) + T_2(n) = O(f(n))$
- (b) $\frac{T_1(n)}{T_2(n)} = O(1)$
- (c) $T_1(n) = O(T_2(n))$

(a) True. From the definition of $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$, there exist constants $c_1, c_2 > 0$ and positive integers n_1, n_2 such that $\forall n > n_1, T_1(n) < c_1 f(n)$ and $\forall n > n_2, T_2(n) < c_2 f(n)$. This implies that,

$$\forall n \geq \max(n_1, n_2), \ T_1(n) + T_2(n) \leq (c_1 + c_2)f(n).$$

Thus,
$$T_1(n) + T_2(n) = O(f(n))$$
.

(b) False. Counterexample: $T_1(n) = n^2$, $T_2(n) = n$, $f(n) = n^2$.

Then
$$T_1(n) = O(f(n)), T_2(n) = O(f(n))$$
 but

$$\frac{T_1(n)}{T_2(n)}=n\neq O(1).$$

(c) False. We can use the same counterexample as in part (b). Note that $T_1(n) \neq O(T_2(n))$

Tutorial 1

Let f(n) and g(n) be non-negative functions. Using the basic definition of Θ -notation, prove that

$$\max(f(n),g(n)) = \Theta(f(n)+g(n)).$$

For any value of n, $\max(f(n), g(n))$ is either equal to f(n) or equal to g(n). Therefore, for all n,

$$\max(f(n),g(n)) \le f(n) + g(n).$$

Using c = 1 and $n_0 = 1$ in the big-Oh definition, it follows that

$$\max(f(n),g(n))=O(f(n)+g(n)).$$

Also, for all n,

$$\max(f(n),g(n)) \ge f(n)$$
 and $\max(f(n),g(n)) \ge g(n)$.

Then

$$2 \cdot \max(f(n), g(n)) \ge f(n) + g(n) \quad \Rightarrow \quad \max(f(n), g(n)) \ge \frac{1}{2}(f(n) + g(n))$$

Then, Using c=1/2 and $n_0=1$ in the definition of Ω ,we get

$$\max(f(n),g(n)) = \Omega(f(n) + g(n)).$$

We have now seen both

$$\max(f(n),g(n)) = O(f(n) + g(n))$$

and

$$\max(f(n),g(n)) = \Omega(f(n)+g(n))$$

proving

$$\max(f(n),g(n)) = \Theta(f(n)+g(n)).$$

In the analysis of the max-subarray algorithms we (will) see nested loops of the form

```
for i = 1 to n

for j = i to n

for k = i to j

do one unit of work
```

In class we give an intuitive explanation as to why this code performs $\Theta(n^3)$ units of work.

Prove this fact rigorously.

The code

for
$$i = 1$$
 to n
for $j = i$ to n
for $k = i$ to j
do one unit of work

does

$$\sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1 = \sum_{i=1}^{n} \sum_{j=i}^{n} (j-i+1) = \sum_{i=1}^{n} \sum_{k=1}^{n-i+1} k$$

units of work (the last equality is from changing indices). Now note that $\sum_{k=1}^t k = \Theta(t^2)$ so

$$\sum_{i=1}^{n} \sum_{k=1}^{n-i+1} k = \sum_{i=1}^{n} \Theta((n-i+1)^{2}) = \sum_{j=1}^{n} \Theta(j^{2}) = \Theta\left(\sum_{j=1}^{n} j^{2}\right) = \Theta\left(\Theta(n^{3})\right) = \Theta(n^{3})$$