Neuro-Computer-Architektur

Innovative Rechnerarchitekturen

Johannes Elsmann, Max Taube

21. Januar 2016

HTWK Leipzig

Ablauf

Künstliche neuronale Netze

Motiv

Architekturen

MY-NEUPOWER

TrueNorth

Gepulste Neuronale Netze

Ausblick

Künstliche neuronale Netze

Künstliche neuronale Netze

- · Zweig der künstlichen Intelligenz
- · nach biologischem Vorbild
- · Netz aus "Neuronen"
- · liefert Ausgabewert zu Eingaben
- · kann von Beispielen lernen

Neuron

[&]quot;ArtificialNeuronModel deutsch" von Chrislb. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons

Netzwerk

Tafazoli M, Baseri H, Alizadeh E, Shakeri M. Modeling of Direct Methanol Fuel Cell Using the Artificial Neural Network. ASME. J. Fuel Cell Sci. Technol. 2013

Künstliche neuronale Netze

- · lernen durch anpassen von Gewichten
- · verschiedene Lernalgorithmen
- · anlernen von Eingabe-Ausgabe-Paaren

Anwendung

Besonders geeignet wenn wenig systematisch nutzbares Wissen vorliegt.

- · Texterkennung
- · Bilderkennung
- · Gesichtserkennung
- · Prognosen
- · Frühwarnsysteme
- · KI in Spielen und Simulationen

Motiv

Von Neumann Stärken

Stärken der von Neumann Architektur sind

- · Universeller Einsatz
- · Synchrone / Getaktete Verarbeitung
- · Logik / Algorithmik
- Geschwindigkeit

Von Neumann Schwächen

Die von Neumann Architektur zeigt in bestimmten Einsatzgebieten schlechte Performanz.

Schwierige Einsatzgebiete bei zeitkritischer Betrachtung sind bspw.

- · Verarbeitung hochdimensionaler (verrauschter) Daten
- · Gesichts- und Spracherkennung / Allg. Mustererkennung
- · Sensoren-Netzwerke

Für die Verarbeitung in Echtzeit ist je nach Anwendungsgebiet zum Teil ein sehr hoher Energieaufwand nötig.

Motiv KNN Nutzung

Der Einsatz von **Künstlich Neuronalen Netzen** ist in den vorgestellten Problemgebieten zum Teil sehr erfolgreich. Ihre Simulation unter der von Neumann Architektur verhindert jedoch teilweise theoretische Vorteile.

Motiv Neuro Architektur

Durch Entwicklung einer geeigneten Architektur für KNN erhofft man sich

- · Hoch skalierbare Netzwerke
- · Massive Parallelität
- · Sehr geringen Energieaufwand
- · Fehlertoleranz
- · Geschwindigkeit

Vorbild dafür sind die Fähigkeiten des menschlichen Gehirns bei gerade einmal 20W Energieverbrauch.

Profitierende Anwendungsgebiete

Von der Entwicklung von Neuro Chips profitieren vor allem zeitkritische Anwendungsgebiete, die bereits jetzt (theoretisch) von KNN profitieren.

- · Autonomes Fahren
- · Echtzeit Video Analyse
- · Sensoren Netzwerke

Architekturen

MY-NEUPOWER

- · von Hitachi Microcomputer System Ltd. (1998)
- · SIMD parallel Computer
- · Neuronen als eigene Processing-Elements
- · Broadcast-Bus zwischen allen PEs
- · SCSI interface
- · 25 MHz
- · 512 physische Neuronen
- · bis zu 4096 logische Neuronen

MY-NEUPOWER

Yasunaga, Moritoshi, Akio Yamada, and Tatsuo Okahashi. "Performance of a bus-based parallel computer with integer-representation processors applied to artificial neural network and parallel Al domains" IFFE, 1998.

MY-NEUPOWER

Sugisaka, Masanori, and Zhi-Jun Liu. "The application of a neurocomputer for a control problem." Artificial Life and Robotics 3.4. 1999.

TrueNorth - Idee

Die genannten Motive für Neuro-Computer beziehen sich auf aktuelle Forschung und somit auch auf TrueNorth.

Zudem sind die Ziele der TrueNorth Architektur

- Anstelle Modellierung des Gehirns, Nachbildung der Funktionalität
- · Approximation der Echtzeitverarbeitung des Gehirns

TrueNorth - Architektur

Eigenschaften der TrueNorth Architektur ganz im Sinne der genannten Motive.

- · Skalierbar
- · Massive Parallelität
- · Geringer Energieaufwand (slow clock 1MHz)
- · Vollständig ereignisgesteuert
- · Vollständig rekonfigurierbar

TrueNorth - Architektur

Die TrueNorth-Architektur baut auf der KNN Terminologie auf. Die CMOS Schaltkreise haben die folgenden Entsprechungen.

Neuronen Berechnung
Synapsen Speicher (Verbindungsnetzwerk)
Axone Kommunikation (Ausgang)
Dendriten Kommunikation (Eingang)

TrueNorth - Architektur

Compass

Compass ist ein Simulator für die TrueNorth-Architektur. Simulation auf IBM Blue Gene/Q Supercomputer in Zahlen:

- · 262144 Prozessoren
- · 256TB Hauptspeicher
- · 256 · 10⁶ TrueNorth Kerne
- · Je Kern 65 · 10⁹ Neuronen
- · Je Kern 16 · 10¹² Synapsen

Compass

Simulation auf IBM Blue Gene/Q Supercomputer in Zahlen:

- · Simuliert damit 3× soviele Neuronen wie geschätzt im Gehirn vorhanden sind
- · Simulation nur 388× langsamer als Echtzeit

Gepulste Neuronale Netze

Gepulste Neuronale Netze sind eine Weiterentwicklung hinsichtlich eines natürlicheren Lernvorgangs.

Hauptmerkmal ist die Einführung der Zeitabhängigkeit im Operationszyklus.

Das bedeutet konkret:

- · Schwellenwert zur Aktivierung eines Neurons kann über Zeit erreicht werden
- · Schwellenwert bleibt erhalten und fällt über Zeit.

Gepulste Neuronale Netze - Architektur

Gepulste Neuronale Netze - Neuron

Ausblick

Architekturfusion

Bei IBM Research plant man in der Forschung in Zukunft aktuelle Chips mit Neuro-Chips zu fusionieren.

Autonomes Fahren

Jüngst haben die USA für die Forschung für Autonomes Fahren ein Budget von vier Milliarden Dollar bekannt gegeben.

Hinsichtlich der verfolgten Ziele könnte das für die Neuro-Computer-Forschung ebenfalls positive Auswirkungen haben.

Quellen

Dharmendra S. Modha.

Introducing a Brain-inspired Computer.

http://www.research.ibm.com/articles/brain-chip.shtml.

Dean A. Pomerleau.

Neral Network Vision For Robot Driving.

https://www.ri.cmu.edu/pub_files/pub2/pomerleau_dean_1995_1/pomerleau_dean_1995_1.pdf.

Robert Preissl, Theodore M. Wong, and Pallab Datta.

Compass: A scalable simulator for an architecture for Cognitive Computing.

http://www.modha.org/blog/SC12/SC2012 Compass.pdf.

Jae-sun Seo, Bernard Brezzo, and Yong Liu.

A 45nm CMOS Neuromorphic Chip with a Scalable Architecture for Learning in Networks of Spiking Neurons. http://www.modha.org/papers/013.CICC2.pdf.

Masanori Sugisaka and Zhi-Jun Liu.

The application of a neurocomputer for a control problem.

Artificial Life and Robotics, 3(4):260-264, 1999.

Moritoshi Yasunaga, Akio Yamada, and Tatsuo Okahashi.

Performance of a bus-based parallel computer with integer-representation processors applied to artificial neural network and parallel ai domains.

In Knowledge-Based Intelligent Electronic Systems, 1998. Proceedings KES'98. 1998 Second International Conference on, volume 3, pages 519–527. IEEE, 1998.