# Appendix to Neonatal Sepsis Detection Using Decision Tree Ensemble Methods: Random Forest and XGBoost

Marwan Al-Bardaji and Nahir Danho

# APPENDIX A - UNMODIFIED DATA

TABLE I CAPTION

|                     | Count  | Mean     | Std     | Min      | 25%      | 50%         | 75%        | Max        |
|---------------------|--------|----------|---------|----------|----------|-------------|------------|------------|
| feats btb mean      | 134668 | -28439.0 | 45112.0 | -99999.0 | -99999.0 | -0.00010418 | 0.00037728 | 0.023877   |
| feats rf mean       | 134668 | -28407.0 | 45133.0 | -99999.0 | -99999.0 | 44.812      | 54.54      | 97.018     |
| feats spo2 mean     | 134668 | -28373.0 | 45154.0 | -99999.0 | -99999.0 | 91.844      | 94.871     | 100.0      |
| feats btb std       | 134668 | -28439.0 | 45112.0 | -99999.0 | -99999.0 | 0.012186    | 0.02       | 0.24101    |
| feats rf std        | 134668 | -28433.0 | 45116.0 | -99999.0 | -99999.0 | 11.001      | 14.686     | 38.089     |
| feats spo2 std      | 134668 | -28437.0 | 45114.0 | -99999.0 | -99999.0 | 2.739       | 4.5539     | 27.82      |
| feats btb max       | 134668 | -28439.0 | 45112.0 | -99999.0 | -99999.0 | 0.053329    | 0.13255    | 1.6416     |
| feats rf max        | 134668 | -28379.0 | 45150.0 | -99999.0 | -99999.0 | 81.389      | 96.0       | 163.22     |
| feats spo2 max      | 134668 | -28368.0 | 45157.0 | -99999.0 | -99999.0 | 100.0       | 100.0      | 100.0      |
| feats btb min       | 134668 | -28439.0 | 45112.0 | -99999.0 | -99999.0 | -0.047756   | -0.031711  | -0.0013959 |
| feats rf min        | 134668 | -28429.0 | 45119.0 | -99999.0 | -99999.0 | 18.111      | 22.778     | 55.333     |
| feats spo2 min      | 134668 | -28386.0 | 45146.0 | -99999.0 | -99999.0 | 70.722      | 81.878     | 100.0      |
| feats btb skew      | 134668 | -28438.0 | 45113.0 | -99999.0 | -99999.0 | 0.13312     | 2.4165     | 14.834     |
| feats rf skew       | 134668 | -28443.0 | 45110.0 | -99999.0 | -99999.0 | -0.092083   | 0.33747    | 12.711     |
| feats spo2 skew     | 134668 | -28441.0 | 45112.0 | -99999.0 | -99999.0 | -1.608      | -0.81382   | 2.5072     |
| feats btb kurtosis  | 134668 | -28425.0 | 45122.0 | -99999.0 | -99999.0 | 1.0974      | 14.668     | 239.58     |
| feats rf kurtosis   | 134668 | -28443.0 | 45110.0 | -99999.0 | -99999.0 | -0.64149    | -0.084224  | 341.28     |
| feats spo2 kurtosis | 134668 | -28437.0 | 45114.0 | -99999.0 | -99999.0 | 0.52569     | 2.8307     | 591.91     |
| feats btb sampAs    | 134668 | -28437.0 | 45114.0 | -99999.0 | -99999.0 | 0.95311     | 2.5452     | 275.82     |
| feats btb sampEn    | 134668 | -28439.0 | 45113.0 | -99999.0 | -99999.0 | 0.34335     | 0.48042    | 1.0138     |
| feats cirk vikt     | 128073 | 1.2967   | 0.49423 | 0.4958   | 0.92919  | 1.2139      | 1.5765     | 5.253      |
| feats bw            | 134668 | 844.64   | 257.06  | 400.0    | 636.0    | 802.0       | 1013.0     | 1498.0     |
| feats sex           | 134668 | 1.5655   | 0.49569 | 1.0      | 1.0      | 2.0         | 2.0        | 2.0        |
| feats pnage days    | 134668 | 31.543   | 23.368  | -0.85139 | 12.372   | 26.915      | 47.071     | 251.16     |

# APPENDIX B - PREPROCESSING

# A. Data description after removal of erroneous data points

TABLE II CAPTION

|                     | Count | Mean       | Std       | Min        | 25%         | 50%       | 75%        | Max        |
|---------------------|-------|------------|-----------|------------|-------------|-----------|------------|------------|
| feats btb mean      | 95849 | 0.00020301 | 0.0010439 | -0.028372  | -0.00018921 | 0.0001638 | 0.00056228 | 0.023877   |
| feats rf mean       | 95849 | 50.194     | 11.525    | 8.0081     | 43.223      | 50.542    | 57.607     | 97.018     |
| feats spo2 mean     | 95849 | 93.491     | 3.4743    | 35.618     | 91.363      | 93.521    | 95.971     | 100.0      |
| feats btb std       | 95849 | 0.020122   | 0.014444  | 0.00055649 | 0.011286    | 0.016114  | 0.023798   | 0.24101    |
| feats rf std        | 95849 | 13.479     | 4.3061    | 0.0        | 10.486      | 13.064    | 16.066     | 38.089     |
| feats spo2 std      | 95849 | 4.3072     | 2.7283    | 0.0        | 2.5023      | 3.679     | 5.358      | 27.82      |
| feats btb max       | 95849 | 0.14566    | 0.14853   | 0.001649   | 0.047296    | 0.085492  | 0.18946    | 1.6416     |
| feats rf max        | 95849 | 89.722     | 16.519    | 15.25      | 79.111      | 89.889    | 100.56     | 163.22     |
| feats spo2 max      | 95849 | 99.681     | 0.91062   | 79.078     | 99.944      | 100.0     | 100.0      | 100.0      |
| feats btb min       | 95849 | -0.042934  | 0.026538  | -0.80757   | -0.051221   | -0.037783 | -0.027746  | -0.0013959 |
| feats rf min        | 95849 | 20.076     | 6.851     | 0.39394    | 17.111      | 21.0      | 24.139     | 55.333     |
| feats spo2 min      | 95849 | 74.461     | 14.721    | 0.033333   | 68.122      | 77.822    | 84.444     | 100.0      |
| feats btb skew      | 95849 | 2.1813     | 2.9255    | -5.2424    | -0.0014337  | 0.92294   | 3.8908     | 14.834     |
| feats rf skew       | 95849 | 0.15149    | 0.62641   | -17.822    | -0.16126    | 0.15826   | 0.47455    | 12.711     |
| feats spo2 skew     | 95849 | -1.3403    | 1.1861    | -23.228    | -1.7823     | -1.1137   | -0.61499   | 2.5072     |
| feats btb kurtosis  | 95849 | 20.382     | 31.826    | -1.3333    | 0.74752     | 4.5817    | 27.817     | 239.58     |
| feats rf kurtosis   | 95849 | 0.056369   | 4.3335    | -3.0       | -0.70815    | -0.34926  | 0.16646    | 341.28     |
| feats spo2 kurtosis | 95849 | 4.0127     | 10.32     | -3.0       | 0.31891     | 1.5552    | 4.227      | 591.91     |
| feats btb sampAs    | 95849 | 3.6363     | 5.7169    | 0.065211   | 0.84322     | 1.5616    | 3.8936     | 275.82     |
| feats btb sampEn    | 95849 | 0.41042    | 0.15026   | 0.012408   | 0.3141      | 0.42854   | 0.5171     | 1.0138     |
| feats cirk vikt     | 91550 | 1.2757     | 0.47036   | 0.49672    | 0.92301     | 1.194     | 1.549      | 3.724      |
| feats bw            | 95849 | 839.31     | 258.12    | 400.0      | 636.0       | 789.0     | 1011.0     | 1498.0     |
| feats sex           | 95849 | 1.5601     | 0.49637   | 1.0        | 1.0         | 2.0       | 2.0        | 2.0        |
| feats pnage days    | 95849 | 31.256     | 22.156    | 0.025035   | 12.83       | 26.993    | 46.612     | 134.26     |

# B. Data after standard scaling

TABLE III CAPTION

|                     | Count | Mean        | Std | Min      | 25%      | 50%       | 75%      | Max     |
|---------------------|-------|-------------|-----|----------|----------|-----------|----------|---------|
| feats btb mean      | 95849 | 6.428e-17   | 1.0 | -27.373  | -0.37572 | -0.037554 | 0.34416  | 22.678  |
| feats rf mean       | 95849 | -7.008e-16  | 1.0 | -3.6604  | -0.60485 | 0.030175  | 0.64319  | 4.0628  |
| feats spo2 mean     | 95849 | -4.6673e-16 | 1.0 | -16.658  | -0.61254 | 0.0086296 | 0.71387  | 1.8734  |
| feats btb std       | 95849 | -1.5383e-16 | 1.0 | -1.3546  | -0.61175 | -0.27749  | 0.25455  | 15.293  |
| feats rf std        | 95849 | -1.7911e-17 | 1.0 | -3.1303  | -0.69519 | -0.096462 | 0.60055  | 5.7151  |
| feats spo2 std      | 95849 | 3.4707e-16  | 1.0 | -1.5787  | -0.66155 | -0.23023  | 0.38516  | 8.6184  |
| feats btb max       | 95849 | 1.2715e-16  | 1.0 | -0.96959 | -0.66226 | -0.4051   | 0.29487  | 10.072  |
| feats rf max        | 95849 | 1.027e-17   | 1.0 | -4.5083  | -0.64232 | 0.010129  | 0.65585  | 4.4495  |
| feats spo2 max      | 95849 | 4.7662e-15  | 1.0 | -22.625  | 0.2895   | 0.35051   | 0.35051  | 0.35051 |
| feats btb min       | 95849 | 3.9339e-17  | 1.0 | -28.813  | -0.31225 | 0.19411   | 0.57233  | 1.5652  |
| feats rf min        | 95849 | -6.2789e-17 | 1.0 | -2.8729  | -0.43279 | 0.13485   | 0.59302  | 5.1463  |
| feats spo2 min      | 95849 | 8.8555e-16  | 1.0 | -5.0559  | -0.4306  | 0.22832   | 0.67817  | 1.7349  |
| feats btb skew      | 95849 | 1.1817e-17  | 1.0 | -2.5376  | -0.7461  | -0.43013  | 0.58436  | 4.3249  |
| feats rf skew       | 95849 | 4.0558e-17  | 1.0 | -28.693  | -0.49929 | 0.010799  | 0.51573  | 20.05   |
| feats spo2 skew     | 95849 | -1.1326e-16 | 1.0 | -18.454  | -0.3727  | 0.19105   | 0.61148  | 3.2439  |
| feats btb kurtosis  | 95849 | -7.9114e-17 | 1.0 | -0.68232 | -0.61694 | -0.49647  | 0.23361  | 6.8872  |
| feats rf kurtosis   | 95849 | 1.3601e-16  | 1.0 | -0.7053  | -0.17642 | -0.093604 | 0.025405 | 78.743  |
| feats spo2 kurtosis | 95849 | 5.8921e-17  | 1.0 | -0.67956 | -0.35794 | -0.23814  | 0.020765 | 56.969  |
| feats btb sampAs    | 95849 | -9.2738e-17 | 1.0 | -0.62466 | -0.48857 | -0.3629   | 0.045008 | 47.61   |
| feats btb sampEn    | 95849 | -6.2922e-16 | 1.0 | -2.6488  | -0.64106 | 0.12056   | 0.70993  | 4.0156  |
| feats cirk vikt     | 91550 | -4.6828e-16 | 1.0 | -1.6562  | -0.74984 | -0.1737   | 0.58105  | 5.2052  |
| feats bw            | 95849 | 2.4497e-15  | 1.0 | -1.702   | -0.78764 | -0.19489  | 0.66518  | 2.5519  |
| feats sex           | 95849 | -3.5855e-14 | 1.0 | -1.1285  | -1.1285  | 0.88617   | 0.88617  | 0.88617 |
| feats pnage days    | 95849 | 3.841e-15   | 1.0 | -1.4096  | -0.83166 | -0.1924   | 0.69308  | 4.6488  |

# C. Data after filling missing data points

This corresponds to the final data used in the machine learning models.

TABLE IV CAPTION

|                     | Count | Mean        | Std | Min      | 25%      | 50%       | 75%      | Max     |
|---------------------|-------|-------------|-----|----------|----------|-----------|----------|---------|
| feats btb mean      | 95849 | 6.428e-17   | 1.0 | -27.373  | -0.37572 | -0.037554 | 0.34416  | 22.678  |
| feats rf mean       | 95849 | -7.008e-16  | 1.0 | -3.6604  | -0.60485 | 0.030175  | 0.64319  | 4.0628  |
| feats spo2 mean     | 95849 | -4.6673e-16 | 1.0 | -16.658  | -0.61254 | 0.0086296 | 0.71387  | 1.8734  |
| feats btb std       | 95849 | -1.5383e-16 | 1.0 | -1.3546  | -0.61175 | -0.27749  | 0.25455  | 15.293  |
| feats rf std        | 95849 | -1.7911e-17 | 1.0 | -3.1303  | -0.69519 | -0.096462 | 0.60055  | 5.7151  |
| feats spo2 std      | 95849 | 3.4707e-16  | 1.0 | -1.5787  | -0.66155 | -0.23023  | 0.38516  | 8.6184  |
| feats btb max       | 95849 | 1.2715e-16  | 1.0 | -0.96959 | -0.66226 | -0.4051   | 0.29487  | 10.072  |
| feats rf max        | 95849 | 1.027e-17   | 1.0 | -4.5083  | -0.64232 | 0.010129  | 0.65585  | 4.4495  |
| feats spo2 max      | 95849 | 4.7662e-15  | 1.0 | -22.625  | 0.2895   | 0.35051   | 0.35051  | 0.35051 |
| feats btb min       | 95849 | 3.9339e-17  | 1.0 | -28.813  | -0.31225 | 0.19411   | 0.57233  | 1.5652  |
| feats rf min        | 95849 | -6.2789e-17 | 1.0 | -2.8729  | -0.43279 | 0.13485   | 0.59302  | 5.1463  |
| feats spo2 min      | 95849 | 8.8555e-16  | 1.0 | -5.0559  | -0.4306  | 0.22832   | 0.67817  | 1.7349  |
| feats btb skew      | 95849 | 1.1817e-17  | 1.0 | -2.5376  | -0.7461  | -0.43013  | 0.58436  | 4.3249  |
| feats rf skew       | 95849 | 4.0558e-17  | 1.0 | -28.693  | -0.49929 | 0.010799  | 0.51573  | 20.05   |
| feats spo2 skew     | 95849 | -1.1326e-16 | 1.0 | -18.454  | -0.3727  | 0.19105   | 0.61148  | 3.2439  |
| feats btb kurtosis  | 95849 | -7.9114e-17 | 1.0 | -0.68232 | -0.61694 | -0.49647  | 0.23361  | 6.8872  |
| feats rf kurtosis   | 95849 | 1.3601e-16  | 1.0 | -0.7053  | -0.17642 | -0.093604 | 0.025405 | 78.743  |
| feats spo2 kurtosis | 95849 | 5.8921e-17  | 1.0 | -0.67956 | -0.35794 | -0.23814  | 0.020765 | 56.969  |
| feats btb sampAs    | 95849 | -9.2738e-17 | 1.0 | -0.62466 | -0.48857 | -0.3629   | 0.045008 | 47.61   |
| feats btb sampEn    | 95849 | -6.2922e-16 | 1.0 | -2.6488  | -0.64106 | 0.12056   | 0.70993  | 4.0156  |
| feats cirk vikt     | 95849 | 0.0031612   | 1.0 | -1.6562  | -0.74468 | -0.17128  | 0.57615  | 5.2052  |
| feats bw            | 95849 | 2.4497e-15  | 1.0 | -1.702   | -0.78764 | -0.19489  | 0.66518  | 2.5519  |
| feats sex           | 95849 | -3.5855e-14 | 1.0 | -1.1285  | -1.1285  | 0.88617   | 0.88617  | 0.88617 |
| feats pnage days    | 95849 | 3.841e-15   | 1.0 | -1.4096  | -0.83166 | -0.1924   | 0.69308  | 4.6488  |

### APPENDIX C - KNN IMPUTER

KNN Imputing is an algorithm used to fill in missing values. The missing value will be predicted in reference to the mean of the neighbors.

### APPENDIX D - HYPERPARAMTER TUNING PROCEUDURE FOR RANDOM FOREST

1) Hyperparameter spaces notation: The following notation is used to define the entire hyperparameter space H of q different parameters:

$$H = P_1 \times \dots \times P_q = \bigotimes_i P_i \tag{1}$$

Each hyperparameter space  $P_i$  corresponds to hyperparameter i and consists of the set of possible hyperparameter values that can be chosen. The following notation for the sets is used:

$$[a, b, s] =$$
All real values from a to b (including b)  
with step sizes of s starting from a (2)

The size or cardinality of the hyperparameter space is given by |H|.

- 2) Hyperparameter tuning procedure: Random Forest: The hyperparameter tuning procedure started with the following hyperparameter space using the notation in equations (1) and (2)
  - The hyperparameter search procedure started with a cross-validated random halving search

$$H_{\rm initial} = \bigotimes_{i \in {\rm Random~forest~hyperparameters}} P_i$$
 where 
$$P_{n~{\rm estimators}} = [10, 1000, 10],$$
 
$$P_{\rm maximum~depth} = [1, 30, 1], P_{\rm maximum~features} = [1, 30, 1],$$
 
$$P_{\rm minimum~samples~split} = [1, 30, 1], P_{\rm minimum~samples~leaf} = [1, 30, 1]$$

After the cross-validated random halving search, the following hyperparameters achieved the best performance.

$$n$$
 estimators = 160, maximum depth = 4, maximum features = 2,  
minimum samples split = 3, minimum samples leaf = 29 (4)

After the cross-validated random halving search, the model performed with a mean ROC AUC of 0.84 with a standard error of 0.11

• First cross-validated grid search iteration - In the next cross-validated grid search iteration the model was tuned for the *n* estimator, maximum features, and maximum depth hyperparameters. The hyperparameter space consisted of:

$$H_{\text{first grid search}} = \bigotimes_{i \in \text{Random forest hyperparameters}} P_i$$

$$\text{where} \quad P_{n \text{ estimators}} = [140, 200, 10],$$

$$P_{\text{maximum depth}} = [1, 8, 1], P_{\text{maximum features}} = [1, 5, 1],$$

$$P_{\text{minimum samples split}} = \{3\}, P_{\text{minimum samples leaf}} = \{29\}$$

After the first iteration of the cross-validated grid search, the following hyperparameters achieved the best performance.

$$n$$
 estimators = 150, maximum depth = 1, maximum features = 2,  
minimum samples split = 3, minimum samples leaf = 29 (6)

After the first iteration of the cross-validated grid search, the model performed with a mean ROC AUC of 0.82 with a standard error of 0.12

• Second iteration of cross-validated grid search - In the next cross-validated grid search iteration, the model was tuned for the minimum samples split and the minimum samples leaf. The hyperparameter space consisted of:

$$H_{\text{second grid search}} = \bigotimes_{i \in \text{Random forest hyperparameters}} P_i$$

$$\text{where} \quad P_{n \text{ estimators}} = \{150\},$$

$$P_{\text{maximum depth}} = \{1\}, P_{\text{maximum features}} = \{2\},$$

$$P_{\text{minimum samples split}} = [2, 5, 1], P_{\text{minimum samples leaf}} = [20, 30, 1]$$

$$(7)$$

After the second iteration of the cross-validated grid search, the following hyperparameters achieved the best performance.

$$n$$
 estimators = 160, maximum depth = 4, maximum features = 2,  
minimum samples split = 3, minimum samples leaf = 23 (8)

After the second iteration of the cross-validated grid search, the model performed with a mean ROC AUC of 0.84 with a standard error of 0.11.

- 3) Hyperparameter Tuning Procedure for XGBoost: The hyperparameter tuning procedure started with the following hyperparameter space using the notation in equations (1) and (2).
  - The hyperparameter search procedure started with a cross-validated random halving search.

$$H_{\text{initial}} = \bigotimes_{i \in \text{XGBoost hyperparameters}} P_{i}$$

$$\text{where} \quad P_{n \text{ estimators}} = [10, 500, 10],$$

$$P_{\text{maximum depth}} = [1, 10, 1], P_{\text{learning rate}} = [0.01, 1, 0.01],$$

$$P_{\text{minimum child weight}} = [0.5, 1.5, 0.01], P_{\text{gamma}} = [0, 0.5, 0.01],$$

$$P_{\text{column sample by tree}} = [0.5, 1, 0.01], P_{\text{subsample}} = [0.5, 1, 0.01],$$

$$P_{\text{lambda}} = \{1\}, P_{\text{alpha}} = \{1\}, P_{\text{scale positive weight}} = \{232.78\}$$

After the cross-validated random halving search, the following hyperparameters achieved the best performance:

$$n \ \text{estimators} = 100, \text{maximum depth} = 1,$$
 
$$\text{learning rate} = 0.34, \text{minimum child weight} = 0.86,$$
 
$$\text{gamma} = 0.36, \text{column sample by tree} = 0.93,$$
 
$$\text{subsample} = 0.6, \text{lambda} = 1,$$
 
$$\text{alpha} = 1, \text{scale positive weight} = 232.78$$
 
$$(10)$$

After the cross-validated random halving search, the model performed with a ROC AUC of 0.84 with a standard error of 0.11

• First cross iteration validated grid search - maximum

$$H_{\text{first grid search}} = \bigotimes_{i \in \text{XGBoost hyperparameters}} P_i$$

$$\text{where} \quad P_{n \text{ estimators}} = [50, 150, 10],$$

$$P_{\text{maximum depth}} = [1, 3, 1], P_{\text{learning rate}} = [0.24, 0.34, 0.44],$$

$$P_{\text{minimum child weight}} = [0, 0.96, 0.01], P_{\text{gamma}} = \{0.36\},$$

$$P_{\text{column sample by tree}} = \{0.93\}, P_{\text{subsample}} = \{0.6\},$$

$$P_{\text{lambda}} = \{1\}, P_{\text{alpha}} = \{0\}, P_{\text{scale positive weight}} = \{232.78\}$$

After the first iteration of the cross-validated grid search, the following hyperparameters achieved the best performance.

$$n$$
 estimators = 140, maximum depth = 1,  
learning rate = 0.34, minimum child weight = 0,  
gamma = 0.36, column sample by tree = 0.93,  
subsample = 0.6, lambda = 1,  
alpha = 0, scale positive weight = 232.78

After the first iteration of the cross-validated grid search, the model performed with a ROC AUC of 0.84 with a standard error of 0.09

• Second iteration of cross-validated grid search - In the next cross-validated grid search iteration, the model was tuned for the minimum samples split, and minimum samples leaf. The hyperparameter space consisted of

$$\begin{split} H_{\text{second grid search}} &= \bigotimes_{i \in \text{XGBoost hyperparameters}} P_i \\ \text{where} \quad P_{n \text{ estimators}} &= \{140\}, \\ P_{\text{maximum depth}} &= \{1\}, P_{\text{learning rate}} &= \{0.34\}, \\ P_{\text{minimum child weight}} &= \{0\}, P_{\text{gamma}} &= [0, 0.41, 0.01], \\ P_{\text{column sample by tree}} &= [0.87, 0.98, 0.01], P_{\text{subsample}} &= [0.55, 0.65, 0.01], \\ P_{\text{lambda}} &= \{1\}, P_{\text{alpha}} &= \{0\}, P_{\text{scale positive weight}} &= \{232.78\} \end{split} \end{split}$$

After the second iteration of the cross-validated grid search, the following hyperparameters achieved the best performance.

$$n$$
 estimators = 140, maximum depth = 1,  
learning rate = 0.34, minimum child weight = 0,  
gamma = 0, column sample by tree = 0.92,  
subsample = 0.6, lambda = 1,  
alpha = 0, scale positive weight = 232.78

After the second iteration of the cross-validated grid search, the model performed with a ROC AUC of 0.84 with a standard error of 0.09.

• Third iteration of cross-validated grid search - In the third cross-validated grid search iteration, the model was tuned for the alpha and lambda hyperparameters. The hyperparameter space consisted of

$$H_{\text{third grid search}} = \bigotimes_{i \in \text{XGBoost hyperparameters}} P_{i}$$

$$\text{where} \quad P_{n \text{ estimators}} = \{140\},$$

$$P_{\text{maximum depth}} = \{1\}, P_{\text{learning rate}} = \{0.34\},$$

$$P_{\text{minimum child weight}} = \{0\}, P_{\text{gamma}} = \{0\},$$

$$P_{\text{column sample by tree}} = \{0.92\}, P_{\text{subsample}} = \{0.6\},$$

$$P_{\text{lambda}} = [0.8, 1.2, 0.01], P_{\text{alpha}} = [0, 0.2, 0.01],$$

$$P_{\text{scale positive weight}} = \{232.78\}$$

After the third iteration of the cross-validated grid search, the following hyperparameters achieved the best performance.

$$n$$
 estimators = 140, maximum depth = 1,  
learning rate = 0.34, minimum child weight = 0,  
gamma = 0, column sample by tree = 0.92,  
subsample = 0.6, lambda = 0.86,  
alpha = 0.17, scale positive weight = 232.78

After the third iteration of the cross-validated grid search, the model performed with a ROC AUC of 0.84 with a standard error of 0.09.

### APPENDIX E - MODEL PERFORMANCE BEFORE AND AFTER HYPERPARAMETER TUNING





Fig. 1. The results of the AUC ROC for both Random Forests and XGBoost





.



Fig. 2. Feature importance of Random Forest



Fig. 3. Feature importance of XGBoost

### APPENDIX G - ROC AUC SCORE DEPENDENCE ON HYPERPARAMTERS



Fig. 4. Parameters impact the ROC AUC score for both Random Forest and XGBoost