QUESTÕES DE MATEMÁTICA

- 1. [MT] Seja T o operador linear em \mathbb{R}^3 definido por: T(x,y,z)=(2y+z,x-4y,3x). Assinale a afirmação verdadeira.
 - (a) A dimensão da imagem de T é 1 e a dimensão do núcleo de T é 2.
 - (b) A dimensão da imagem de T é 3 e a dimensão do núcleo de T é 0.
 - (c) A dimensão da imagem de T é 2 e a dimensão do núcleo de T é 1.
 - (d) A dimensão da imagem de T é 0 e a dimensão do núcleo de T é 3.
 - (e) A dimensão da imagem de T é 2 e a dimensão do núcleo de T é 2.
- 2. [MT] Seja o sistema de equações lineares nas variáveis $x, y \in z$:

$$x + y - z = 1$$
$$2x + 3y + az = 3$$
$$x + ay + 3z = 2$$

Assinale a alternativa com os valores de a para os quais o sistema possui respectivamente:

- (i) nenhuma solução, (ii) mais de uma solução, (iii) uma única solução.
- (a) (i) a = -3; (ii) a = 2; (iii) $a \neq 2$ e $a \neq -3$
- (b) (i) $a \neq 2$ e $a \neq -3$; (ii) a = 2; (iii) a = -3
- (c) (i) a = 2; (ii) $a \neq 2$ e $a \neq 3$; (iii) a = -3
- (d) (i) a = -3; (ii) $a \neq 2$ e $a \neq -3$; (iii) a = 2
- (e) (i) a = -3; (ii) a = 2; (iii) a = 2 ou a = -3
- 3. [MT] Quantos anagramas distintos podem ser formados com a palavra cochilo? Um anagrama é uma palavra formada pela transposição das letras de outra palavra. Iracema e Rmciaae são dois exemplos de anagramas distintos da palavra América. Observe que a palavra formada não precisa ter sentido.
 - (a) 5040
 - (b) 2520
 - (c) 630
 - (d) 1260
 - (e) 120

4.	$[\mathbf{MT}]$ A equação da reta tangente à parábola $y=x^2$ no ponto $(-2,4)$ é:
	(a) $4x - y + 4 = 0$
	(b) $4x + y + 4 = 0$
	(c) $y - 4x + 4 = 0$
	(d) $4y - x + 4 = 0$
	(e) $4y + x - 4 = 0$
5.	[MT] Se $f(x) = \log_a 1/x$, então $f(a^n)$ é:
	(a) $1/n$
	(b) $-1/n$
	(c) n
	(d) $-n$
	(e) $1/a$
6.	[MT] Considere que custo total para se produzir \mathbf{x} peças por dia em uma fábrica seja dado por $c(x)=\frac{1}{4}x^2+35x+25$ Reais e que o preço de venda de uma peça seja $v(x)=50-\frac{1}{2}x$ Reais. Para maximizar o lucro total, a produção diária, \mathbf{x} , deve ser de:
	(a) 12 peças/dia
	(b) 20 peças/dia
	(c) 15 peças/dia
	(d) 10 peças/dia
	(e) 100 peças/dia
7.	[MT] A distância da origem à reta $4x - 3y - 15 = 0$ é:
	(a) 1/3
	(b) 3
	(c) -3
	(d) $-1/3$
	(e) $2/3$

- 8. [MT] As coordenadas do centro e do raio da circunferência $2x^2+2y^2-10x+6y-15=0$ são:
 - (a) centro = (5, -3) e raio = 15
 - (b) centro = (3/2, 5/2) e raio = 7/2
 - (c) centro = (-5,3) e raio = 15
 - (d) centro = (5/2, -3/2) e raio = 4
 - (e) centro = (-5/2, 3/2) e raio = 4
- 9. [MT] Assinale a proposição logicamente equivalente a $\neg(p \lor q) \lor (\neg p \land q)$
 - (a) $\neg p \land (q \lor \neg q)$
 - (b) $\neg p$
 - (c) $(p \lor q) \land (p \lor \neg q)$
 - (d) $(p \lor q) \lor (p \land \neg q)$
 - (e) p
- 10. [MT] Considere as seguintes proposições:
 - (I) $\neg p \lor q$
 - (II) $\neg (p \land \neg q)$
 - (III) $p \longrightarrow q$
 - (IV) $(V \longrightarrow q) \lor (p \longrightarrow F)$

Quais das proposições acima são logicamente equivalentes ?

- (a) Somente (I)≡(III)
- (b) Somente (I)≡(II)
- (c) Somente (I) \equiv (III) \equiv (III)
- (d) (I) \equiv (III) e (II) \equiv (III) mas (III) $\not\equiv$ (IV)
- (e) (I), (II), (III) e (IV) são todas equivalentes.

- 11. $[\mathbf{MT}]$ O número de seqüências de bits de comprimento 7 que contém um número par de zeros é:
 - (a) 128
 - (b) 64
 - (c) 32
 - (d) 16
 - (e) 8
- 12. [MT] Seja o conjunto $A = \{x \in \mathbb{R}, |x| \ge 1\}$. Qual das alternativas é uma partição do conjunto A.
 - (a) $\{x < -1\}, \{x > 1\}, \{1, -1\}$
 - (b) $\{x \le 0\}, \{x \ge 1\}, \{0\}$
 - (c) $\{x \le -1\}, \{x \ge 3\}, \{1 \le x \le 3\}$
 - (d) $\{x \le -5\}, \{-5 < x \le -3\}, \{-1\}, \{x \ge 1\}$
 - (e) Todas as alternativas são partições de A.
- 13. [MT] Dados dois vetores no espaço euclidiano R4, $u=(1,\,3,\,-2,\,7)$ e $v=(0,\,7,\,2,\,2)$, pode-se afirmar que:
 - (a) o quadrado da norma de u é igual a 58
 - (b) o quadrado da distância entre u e v é dado por 63
 - (c) o quadrado da norma de v é igual a 57
 - (d) os vetores u e v são ortogonais
 - (e) nenhuma das anteriores
- 14. [MT] Uma condição necessária e suficiente para que o sistema Ax=b tenha solução única é:
 - (a) Ax=0 tem solução única.
 - (b) As linhas de A são vetores linearmente independentes.
 - (c) As colunas de A são vetores linearmente independentes que geram um subespaço contendo b.
 - (d) A matriz A é quadrada e não-singular.
 - (e) O posto de A é igual a seu número de linhas.

- 15. [MT] Não é correto afirmar que:
 - (a) Se as colunas de uma matriz são vetores dois a dois ortogonais, então sua inversa é sua transposta.
 - (b) Se a inversa de uma matriz é ela própria, então toda potência dessa matriz é ela própria ou a identidade.
 - (c) Se uma matriz singular é o produto de duas outras matrizes quadradas, então uma destas também é singular.
 - (d) Se três matrizes quadradas A, B e C satisfazem A(B-C)=0, então A=0 ou B=C.
 - (e) Se A e B são matrizes triangulares inferiores então AB também é triangular inferior.
- 16. [MT] Seis amigos reúnem-se para disputar partidas de xadrez em três tabuleiros diferentes. Calcule o número de partidas diferentes possíveis levando-se em conta os tabuleiros mas não a cor das peças. Isto é, se os jogadores A e B jogam no primeiro tabuleiro é uma partida diferente deles jogando no segundo tabuleiro, mas quem joga com as brancas ou pretas é irrelevante.
 - (a) 15
 - (b) 30
 - (c) 90
 - (d) 120
 - (e) 720

As duas questões a seguir são baseadas no seguinte enunciado:

- Um algoritmo probabilístico A resolve problemas de dois tipos:

{Problemas do tipo 1}: os quais são resolvidos corretamente com probabilidade 3/4, e correspondem a 1/3 do total de problemas.

{Problemas do tipo 2}: os quais são resolvidos corretamente com probabilidade 1/2, e correspondem a 2/3 do total de problemas.

17. [MT] i. Um problema é selecionado aleatoriamente e resolvido pelo algoritmo. Qual a probabilidade de que a resposta obtida seja correta?					
(a) 3/4					
(b) 5/12					
(c) 5/8					
(d) $7/12$					
(e) 3/8					
18. [MT] ii. Verifica-se, utilizando algum método determinístico, que a resposta encontrada pelo algoritmo está realmente correta. Qual a probabilidade de que o problema resolvido seja do tipo 1?					
(a) 4/9					
(b) 3/4					
(c) 7/12					
(d) $3/7$					
(e) $7/3$					
19. [MT] A representação polar do número complexo 5 i é dada por:					
(a) $(5, -90^0)$					
(b) $(5,90^{\circ})$					
(c) $(5,180^0)$					
(d) $(5, -180^{\circ})$					
(e) nenhuma das alternativas					
20. [MT] Se $x = 2 + 2i$ e $y = i$, então, o produto x.y é dado por:					
(a) $2 + 2i$					

(b) 4 + 2i(c) -2 + 2i

(e) nenhuma das alternativas

(d) 4 i

QUESTÕES DE FUNDAMENTOS DA COMPUTAÇÃO

- 21. [FU] Considere dois sistemas A e B compostos por um processador, cache e memória cuja única diferença é a cache de dados. As caches de dados possuem em comum palavras de 2 Bytes, capacidade (por exemplo, 2 KBytes), tamanho de bloco (por exemplo, 8 Bytes por linha) e são implementadas com a mesma tecnologia, porém com organizações diferentes como definidas abaixo:
 - (Cache de A) Cache com mapeamento direto, utilizando políticas write-through e no-write allocate (escritas não utilizam a cache)
 - (Cache de B) Cache 4-way set-associative, utilizando políticas write-back, writeallocate e LRU

Considere as seguintes afirmações para os sistemas A e B executando um mesmo programa típico:

- (I) O sistema A deve possuir um miss rate maior do que B
- (II) O sistema B deve possuir um hit rate menor do que A
- (III) A cache de dados de A é mais rápida do que a de B
- (IV) A cache de dados de A é mais simples de ser implementada do que a de B
- (V) Em média, uma escrita de dados no sistema A é mais rápido do que em B
- (VI) As caches de dados de A e B possuem o mesmo número de linhas

Quais são as afirmações verdadeiras?

- (a) Somente as afirmações (II), (III) e (IV) são verdadeiras
- (b) Somente as afirmações (I), (III) e (VI) são verdadeiras
- (c) Somente as afirmações (I), (III) e (IV) são verdadeiras
- (d) Somente as afirmações (II), (V) e (VI) são verdadeiras
- (e) Todas as afirmações são verdadeiras
- 22. [FU] Para a representação de número ponto flutuante no padrão IEEE, quais das afirmações abaixo são verdadeiras?
 - I) a parte exponencial é polarizada
 - II) existe apenas uma representação do número zero
 - III) todas as representações são normalizadas
 - IV) quando todos os bits da parte exponencial são iguais a um e todos os bits da parte fracionária são zeros, o número representado é + infinito ou -infinito;

- (a) somente I.
- (b) somente I e IV.
- (c) somente I, II e IV.
- (d) somente IV.
- (e) todas são verdadeiras.
- 23. [FU] De acordo com o teorema de DeMorgan, o complemento de $X + Y \cdot Z$ é:
 - (a) $\overline{X} + \overline{Y} \cdot \overline{Z}$
 - (b) $\overline{X} \cdot \overline{Y} + \overline{Z}$
 - (c) $\overline{X} \cdot (\overline{Y} + \overline{Z})$
 - (d) $\overline{X} \cdot \overline{Y} \cdot \overline{Z}$
 - (e) $\overline{\overline{X} \cdot \overline{Y} + \overline{Z}}$
- 24. [FU] Num processador superescalar com emissão dinâmica de instruções para o estágio de execução, o circuito com a lógica de emissão de instruções (algoritmo de Tomasulo, ou algoritmo do placar) tem as seguintes funções:
 - (I) computar, em tempo de execução, o grafo de dependências entre as instruções;
 - (II) manter a ordem de execução das instruções segundo o código fonte;
 - (III) trocar a ordem de execução das instruções, segundo o código fonte;
 - (IV) tolerar a latência dos acessos à memória;
 - (V) expor a latência dos acessos à memória.
 - (a) Somente as alternativas (I), (II) e (IV) são verdadeiras.
 - (b) Somente as alternativas (I), (III) e (IV) são verdadeiras.
 - (c) Somente as alternativas (I), (II) e (V) são verdadeiras.
 - (d) Somente as alternativas (I), (III) e (V) são verdadeiras.
 - (e) Todas as alternativas são verdadeiras.
- 25. [FU] Dada uma lista linear de n+1 elementos ordenados e alocados sequencialmente, qual é o número médio (número esperado) de elementos que devem ser movidos para que se faça uma inserção na lista, considerando-se igualmente prováveis as n+1 posições de inserção?

- (a) n/2
- (b) (n+2)/2
- (c) (n-1)/2
- (d) n(n+3+2/n)/2
- (e) (n+1)/2
- 26. [FU] A respeito da representação de um grafo de n vértices e m arestas é correto dizer que:
 - (a) a representação sob a forma de matriz de adjacência exige espaço $\Omega(m^2)$.
 - (b) a representação sob a forma de listas de adjacência permite verificar a existência de uma aresta ligando dois vértices dados em tempo O(1).
 - (c) a representação sob a forma de matriz de adjacência não permite verificar a existência de uma aresta ligando dois vértices dados em tempo O(1).
 - (d) a representação sob a forma de listas de adjacência exige espaço $\Omega(n+m)$.
 - (e) todas as alternativas estão corretas.
- 27. [FU] Considere as afirmações abaixo, onde o alfabeto das linguagens é sempre dado por $\Sigma = \{0, 1\}$.
 - (I) A linguagem fomada por todas as cadeias $x \in \Sigma^*$ onde após cada dois zeros **consecutivos** sempre ocorrem **pelo menos** dois uns. Note que: os uns não precisam ser consecutivos, nem precisam ocorrer **imediatamente** após os zeros.
 - (II) Se L é livre de contexto e R é regular, então a linguagem $\{y \mid \text{ para algum } x, z \in \Sigma^* \text{ temos } xyz \in L \text{ e } xz \in R\}$ é **sempre** livre de contexto.
 - (III) A linguagem $\{uv|u,v\in\Sigma^*,\ \mathrm{com}\ u\neq v\}$ não é livre de contexto.
 - (IV) Dados dois autômatos finitos, A_1 e A_2 , **sempre** podemos **decidir** se são equivalentes, isto é, se aceitam a **mesma** linguagem.
 - (V) Dada uma máquina de Turing, M, e um número inteiro $k \ge 0$, **sempre** podemos decidir se a linguagem aceita por M tem **pelo menos** k cadeias distintas.

Escolha a afirmação correta:

- (a) As afirmações (II), (III) e (IV) são verdadeiras.
- (b) Há duas afirmações falsas entre (I), (II) e (V).
- (c) Há duas afirmações verdadeiras entre (I), (IV) e (V).
- (d) Entre todas as cinco afirmações, pelo menos 3 (três) são falsas.

(e) Não é possível determinar se a afirmação (V) é verdadeira ou falsa, para uma máquina de Turing genérica e um $k \ge 0$ genérico.

28. [FU] Qual das seguintes afirmações é falsa?

- (a) Todo autômato finito não determinístico com transições vazias pode ser reduzido para um autômato finito determinístico.
- (b) Nem todo autômato com pilha não determinístico pode ser reduzido para um autômato com pilha determinístico.
- (c) Toda máquina de Turing com $N \geq 1$ fitas pode ser reduzida para uma máquina de Turing padrão.
- (d) Para se provar que uma linguagem é regular basta usar o lema do bombeamento (pumping lemma) de linguagens regulares.
- (e) Máquinas de Turing aceitam linguagens geradas por gramáticas irrestritas.
- 29. [FU] Considere a função Pot que calcula x^n , para x real e n inteiro:

```
Function Pot(x: real; n: integer): real;
 begin
    if x = 0
    then
      Pot := 0
    else
      if n = 0
      then
        Pot := 1
      else
        if n < 0
        then
          Pot := 1/Pot(x,abs(n))
        else
          if odd(n)
          then
            Pot := x * sqr(Pot(x,(n-1) div 2))
            Pot := sqr(Pot(x,n div 2))
    end;
```

Seja T(n) o tempo de execução da função Pot para as entradas x e n. A ordem de T(n) é:

- (a) T(n) = O(1)
- **(b)** $T(n) = O(\log n)$
- (c) T(n) = O(n)
- (d) $T(n) = O(n \log n)$
- (e) $T(n) = O(n^2)$
- 30. [FU] Seja P o problema de ordenar, usando comparação, $n \ge 1$ elementos e \mathcal{C} a classe dos algoritmos que resolvem P. O limitante inferior de \mathcal{C} é:
 - (a) $\Omega(1)$
 - (b) $\Omega(\log n)$
 - (c) $\Omega(n)$
 - (d) $\Omega(n \log n)$
 - (e) $\Omega(n^2)$
- 31. [FU] Quais algoritmos de ordenação têm complexidade $\mathcal{O}(n \log n)$ para o melhor caso, onde n é o número de elementos a ordenar.
 - (a) Insertion Sort e Quicksort
 - (b) Quicksort e Heapsort
 - (c) Bubble Sort e Insertion Sort
 - (d) Heapsort e Insertion Sort
 - (e) Quicksort e Bubble Sort
- 32. [FU] Qual dos seguintes mecanismos é o menos recomendado para se implementar regiões críticas em sistemas operacionais?
 - (a) Semáforo
 - (b) Espera ocupada
 - (c) Troca de mensagens
 - (d) Monitores
 - (e) Variáveis de condição

33. [FU] Como o procedimento abaixo deve ser completado para que ele seja capaz de ordenar um vetor de n elementos ($n \le 100$) em ordem crescente.

```
type VetorType = array[0..100] of integer;
  procedure Ordena(n: integer; var a: VetorType);
   var i,j,x: integer;
   begin
     for i := 2 to n do
        begin
          x := a[i];
          j := i - 1;
          While x < a[j] do
            begin
              a[i+j] := a[j];
              ____;
            end:
       end;
     end;
(a) a[j] := x; j := j - 1; a[j] := x;
(b) a[i] := x; j := j + 1; a[i] := x;
(c) a[0] := x; j := j - 1; a[j+1] := x;
(d) a[i] := x; j := j - 1; a[j+1] := x;
(e) a[0] := x; j := j + 1; a[j] := x;
```

- 34. [FU] Sejam [6, 4, 2, 1, 3, 5, 8, 7, 9] e [7, 4, 3, 2, 1, 6, 5, 10, 9, 8, 11] as sequências produzidas pelo percurso em pré-ordem das árvores binárias de busca T1 e T2, respectivamente. Assina-le a afirmação incorreta:
 - (a) T1 possui altura mínima dentre todas as árvores binárias com 9 nós.
 - (b) T1 é uma árvore AVL.
 - (c) T1 é uma árvore rubro-negra.
 - (d) T2 possui altura mínima dentre todas as árvores binárias com 11 nós.
 - (e) T2 é uma árvore rubro-negra.

35. [FU] Que valores são impressos quando o seguinte algoritmo, escrito em Pascal, é executado?

```
Program P;
var a,b:integer;
Procedure Mist(x:integer; var y:integer);
begin
         x := y + a + 1;
         y := x + b + 1
end
begin
         a:=1; b:=2;
         Mist(a,b);
         Write(a,b)
end.
(a) 1 2
(b) 3 1
 (c) 3 5
(d) 1 7
 (e) 4 	 7
```

- 36. [FU] Seja G = (V, E) um grafo simples conexo não-euleriano. Queremos construir um grafo H que seja euleriano e que contenha G como subgrafo. Considere os seguintes possíveis processos de construção:
 - (I) Acrescenta-se um novo vértice, ligando-o a cada vértice de G por uma aresta.
 - (II) Acrescenta-se um novo vértice, ligando-o a cada vértice de grau ímpar de G por uma aresta.
 - (III) Cria-se uma nova cópia G' do grafo G e acrescenta-se uma aresta ligando cada par de vértices correspondentes.
 - (IV) Escolhe-se um vértice arbitrário de G e acrescentam-se arestas ligando este vértice a todo vértice de grau ímpar de G.
 - (V) Duplicam-se todas as arestas de G.
 - (VI) Acrescentam-se arestas a G até se formar o grafo completo com |V| vértices.

Quais dos processos acima sempre constroem corretamente o grafo H?

```
(a) Somente (II) e (IV)
```

- (b) Somente (II), (IV) e (V)
- (c) Somente (III), (V) e (VI)
- (d) Somente (II), (IV), (V) e (VI)
- (e) Somente (I), (III), (IV) e (V)

37. [FU] Considere o programa:

```
program p;
  var n: integer;
  function f(n: integer; var k:integer): integer;
    var p,q:integer;
  begin (* f *)
    if n < 2
      then begin
             f := n;
             k := 0
           end
      else begin
             f := f(n-1, p) + f(n-2, q);
             k := p + q + 1
           end;
    write(n,' ',k,'; ')
  end (* f *);
  begin
    n := 4;
    write(f(3,n),n)
  end.
```

Quais os valores impressos pelo programa?

```
(a) 1 0; 0 0; 2 1; 1 0; 3 2; 2 4
```

- (b) 1 4; 0 0; 2 1; 1 0; 3 2; 2 2
- (c) 1 0; 0 0; 2 1; 1 0; 3 2; 2 2
- (d) 1 0; 0 0; 2 1; 1 0; 3 2; 2 3
- (e) 1 4; 0 4; 2 4; 1 4; 3 4; 2 4

- 38. [FU] A complexidade desse Algoritmo da questão anterior é :
 - (a) $O(\log_2 n)$
 - (b) O(n)
 - (c) $O(n \log_2 n)$
 - (d) $\Omega(n \log_2 n)$
 - (e) $\Omega(n^2)$
- 39. [FU] O uso de associações é muito importante em programação orientada a objetos. Considere agora as afirmações abaixo, relativas ao uso de associações:
 - I. A multiplicidade de uma associação é uma restrição imposta a essa associação que de-fine o número de instâncias das classes envolvidas nesse relacionamento.
 - II. A ordenação não é considerada uma restrição a associações, já que ordena as instâncias envolvidas no relacionamento que caracteriza a associação em questão.
 - III. O uso de papéis só é permitido em associações reflexivas binárias, pois em outros tipos de associações os papéis causam problemas na modelagem das classes.

Baseado nas afirmações acima, escolha a opção correta:

- (a) As três afirmações são falsas.
- (b) As três afirmações são verdadeiras.
- (c) Apenas a afirmação I é verdadeira.
- (d) As afirmações I e II são verdadeiras.
- (e) Apenas a afirmação III é verdadeira.
- 40. [FU] Na modelagem de classes usando UML (Unified Modeling Language) é recomendável especificar a multiplicidade dos relacionamentos (associações). Um tipo muito comum de multiplicidade é a um-para-muitos. Nos casos abaixo, diga qual é o caso que se trata de uma associação um-para-muitos, seguindo a notação "associação (classe1, classe2)".
 - (a) Votar (Presidente, Eleitor)
 - (b) Casar (Marido, Esposa)
 - (c) Torcer (Time, Torcedor)
 - (d) Escrever (Livro, Autor)
 - (e) Assinar (Revista, Assinante)

QUESTÕES DE TECNOLOGIA DA COMPUTAÇÃO

- 41. [TE] Sobre os operadores da Álgebra Relacional, é correto afirmar que:
 - (a) O operador de SELEÇÃO seleciona as colunas de uma tupla que satisfazem a uma determinada condição.
 - (b) O número de tuplas resultantes da aplicação do operador de PROJEÇÃO em uma dada relação R é sempre igual ao número de tuplas de R.
 - (c) O número de tuplas resultantes da aplicação do operador de JUNÇÃO em duas relações R e S é sempre maior do que o número de tuplas resultantes do PRO-DUTO CARTESIANO de R e S.
 - (d) A aplicação das operações de UNIÃO e INTERSEÇÃO requerem que as relações envolvidas sejam compatíveis quanto à união.
 - (e) O número de tuplas resultantes da aplicação do operador de SELEÇÃO em uma relação R é sempre menor do que o número de tuplas de R.
- 42. [TE] Considere os esquemas das relações abaixo:

Empregado(rg, nome, rua, cidade, rg-gerente), onde o atributo "rg" é chave da relação Empregado.

Empresa(cod, nome, cidade), onde o atributo "cod" é chave da relação Empresa.

Trabalha(rg-emp, cod-empresa, salario), onde "rg-emp"referencia o atributo "rg"na relação Empregado, "cod-empresa"referencia o atributo "cod"na relação Empresa e os atributos "rg-emp"e "cod-empresa"formam a chave da relação trabalha.

A consulta expressa em Cálculo Relacional {e.nome | $e \in \text{Empregado } AND \ t \in \text{Trabalha } AND \ a \in \text{Empresa } AND \ \text{e.rg} = \text{t.rg-emp } AND \ \text{t.cod-empresa} = \text{a.cod } AND \ \text{e.cidade} = \text{a.cidade} \}$ tem como melhor tradução a consulta:

- (a) "Quais são os nomes dos empregados que trabalham na cidade em que moram?"
- (b) "Quais são os nomes dos gerentes dos empregados que trabalham na cidade em que moram?"
- (c) "Quais são os nomes dos empregados que trabalham em alguma cidade?"
- (d) "Quais são os nomes dos gerentes dos empregados?"
- (e) "Quais os nomes dos empregados que trabalham na cidade em que mora o seu gerente?"
- 43. [TE] Considere uma relação A com 1000 registros e taxa de ocupação de 5 registros por página de disco e uma relação B com 800 registros e taxa de ocupação de 16 registros por página de disco.

Quantos acessos a disco são necessários para fazer a junção de A com B usando o algoritmo de laço aninhado usando bloco, onde o bloco disponível de memória para realizar a junção é de 22 páginas e A é a relação externa do laço?

- (a) 455
- (b) 500
- (c) 809
- (d) 810
- (e) 700
- 44. [TE] Assinalar a opção correta acerca das sentenças abaixo:
 - I. Os níveis de isolamento de uma transação SQL são: Read Uncommitted, Read Committed, Repeatable Read e Serializable.
 - II. Atomicidade e Durabilidade são garantidas pelo Gerenciador de Recuperação do SGBD.
 - III. São propriedades de uma transação: Atomicidade, Consistência, Integridade e Durabilidade.
 - (a) Apenas I é verdadeira.
 - (b) Apenas I e II são verdadeiras.
 - (c) Apenas II e III são verdadeiras.
 - (d) Apenas I e III são verdadeiras.
 - (e) Todas são verdadeiras
- 45. [TE] Considere os seguintes esquemas de relação:

```
Departamentos (codDepto, nome, gerente)
Empregados (codEmp, nome, codDepto, salario)
```

Considere também que o atributo cod Depto na relação Empregados é uma chave estrangeira que faz referência à relação Departamentos. Suponha a seguinte consulta formulada na linguagem SQL:

```
SELECT d.codDepto
FROM Empregados e, Departamentos d
WHERE e.codDepto = d.codDepto
GROUP BY d.codDepto
HAVING AVG(sal) > ALL (SELECT e.sal
FROM Empregados e, Departamentos d
WHERE e.codDepto = d.codDepto
AND d.nome = 'vendas)
```

Escolha, dentre as afirmativas abaixo, a correta:

- (a) A consulta retorna os códigos dos departamentos cujos empregados têm salário maior do que a média dos salários dos empregados que trabalham no departamento de vendas.
- (b) A consulta retorna os códigos dos departamentos cujos empregados têm salário maior do que os salários dos empregados que trabalham no departamento de vendas.
- (c) A consulta retorna os códigos dos departamentos cuja média de salário dos seus empregados é maior do que a média dos salários dos empregados que trabalham no departamento de vendas.
- (d) A consulta está formulada incorretamente.
- (e) Nenhuma das afirmativas acima está correta.
- 46. [TE] A respeito da gramática G abaixo,

S -> a A a

S -> b A b

A -> b

A -> epsilon

considere as afirmativas:

I. $G \in SLR(1)$.

II. G é LL(1).

III. G é sensível ao contexto.

É correto afirmar que:

- (a) Somente I é verdadeira
- (b) Somente II é verdadeira
- (c) Somente III é verdadeira
- (d) Somente I e III são verdadeiras
- (e) Todas as 3 afirmativas são verdadeiras
- 47. [TE] Considere os filtros espaciais da média (\mathbf{m}) e Mediana (\mathbf{M}) aplicados em imagens em níveis de cinza f e g. Qual par de termos ou expressões a seguir $\mathbf{n}\mathbf{\tilde{a}o}$ está associado, respectivamente, a características gerais de \mathbf{m} e \mathbf{M} ?

- (a) $\mathbf{m}(f+g) = \mathbf{m}(f) + \mathbf{m}(g)$; $\mathbf{M}(f+g) \neq \mathbf{M}(f) + \mathbf{M}(g)$
- (b) ruído gaussiano; ruído impulsivo
- (c) convolução; filtro estatístico da ordem
- (d) preservação de pequenos componentes; não preservação de pequenos componentes
- (e) filtragem com preservação de contornos; filtragem sem preservação de contornos
- 48. [TE] A convolução da máscara $[-1\ 2\ -1]$ com uma linha de uma imagem contendo uma seqüência de pixels do tipo $[\dots 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\dots]$ resulta na transformação (sem considerar efeitos de borda):
 - (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais próximos
 - (b) [...0 0 0 0 0 0 0 0 0 ...] e representa o laplaciano no espaço discreto
 - (c) [...0 0 0 0 0 0 0 0 0 ...] e representa uma erosão morfológica
 - (d) [...1 1 1 1 1 1 1 1 1 ...] e é equivalente a um filtro passa-baixas
 - (e) $[\dots 7\ 9\ 11\ 13\ 15\ 17\ 19\dots]$ e é equivalente a um filtro passa-altas
- 49. [TE]Considere as afirmações abaixo:
 - I. Um terminal raster apresentará o efeito "pisca-pisca" quando a cena for muito complexa.
 - II. Uma célula de vizinhança 4 no algoritmo de boundary-fill sempre preenche a região interior completamente quando a borda da região de preenchimento tiver largura de 2 pixels.
 - III. No algoritmo do ponto médio para traçado de círculos, se
 - f(xM,yM) = r2 x2 y2 < 0, o ponto (xM,yM) é interior à circunferência
 - IV. Em uma cena composta apenas de objetos convexos, a eliminação de superfícies ocultas restringe-se à remoção das faces posteriores (back faces).
 - V. No mapeamento janela-viewport, mantendo-se a viewport fixa e aumentando-se o tamanho da janela provoca-se o efeito de zoom-in.
 - (a) Apenas I II III são verdadeiras
 - (b) Apenas II IV V são verdadeiras
 - (c) Todas são verdadeiras
 - (d) Todas são falsas
 - (e) Apenas I II são verdadeiras.
- 50. **[TE]** Considere o plano definido pelos pontos A(10, 0, 0), B(0, 10, 0) e C(2, 2, 20). A projeção do ponto D(20, 20, 10) sobre o plano dadao. segundo a direção de projeção U=(-5, -10, -15) é:

- (a) (300/13, 40/13, -100/13)
- (b) (150/13, 80/13, -200/13)
- (c) (150/13, 40/13, -200/13)
- (d) (300/13, 80/13, -100/13)
- (e) (300/13, 40/13, -200/13)
- 51. [TE] Quando se aplica um filtro passa-baixas (low-pass filter) a uma imagem com dimensões 100x100 em tons de cinza (grayscale) com todos os pixels na cor preta, a imagem resultante
 - (a) Fica reduzida à metade das dimensões da imagem original
 - (b) Fica ampliada ao dobro das dimensões da imagem original
 - (c) Tem as mesmas dimensões da imagem original, com todos os pixels na cor preta
 - (d) Tem as mesmas dimensões da imagem original, com todos os pixels na cor branca
 - (e) Nenhuma das afirmações acima é correta
- 52. [TE] A notação da Unified Modeling Language (UML) que descreve a seqüência de atividades com suporte para comportamento condicional usando branches e merges e comportamento paralelo usando forks é:
 - (a) Casos de uso.
 - (b) Diagrama de sequência.
 - (c) Diagrama de classes.
 - (d) Diagrama de atividades.
 - (e) Diagrama de estados.
- 53. [TE] Dentre as afirmações dadas a seguir, assinale a afirmação falsa.
 - (a) O objetivo dos testes é detectar erros.
 - (b) Os testes aplicados a um software também devem ter controle de versões.
 - (c) As atividades de teste começam após o término da fase de codificação.
 - (d) Testes devem verificar não somente se o software faz o que é desejado, mas também se ele não faz algo indesejado.
 - (e) As atividades de teste compreendem, entre outras, o projeto, a especificação e a implementação de casos de teste.
- 54. [TE] Os pontos de função em um software são calculados estimando-se as seguintes características do software:

- (a) Entradas e saídas externas, interações com usuários, interfaces externas, e arquivos utilizados pelo sistema.
- (b) Tamanho do código, entradas e saídas externas, interfaces externas, e produtividade do sistema.
- (c) Complexidade do produto, experiência pessoal, prazo, número de pessoas envolvidas, e confiabilidade.
- (d) Tamanho do código, produtividade do sistema, experiência pessoal, prazo, e arquivos utilizados pelo sistema.
- (e) Volatilidade da plataforma de desenvolvimento, entradas e saídas externas, número de pessoas envolvidas, interações com usuários, e confiabilidade.
- 55. [TE] No desenvolvimento em espiral, cada loop representa uma fase do processo de software. Identifique abaixo a opção que contém os quatro setores que compõem cada loop do desenvolvimento em espiral:
 - (a) Definição dos requisitos, análise, projeto e testes.
 - (b) Descrição dos objetivos, planejamento, identificação dos riscos e testes.
 - (c) Requisitos, desenvolvimento, validação e evolução.
 - (d) Identificação dos riscos, projeto, implementação e testes.
 - (e) Definição de objetivos, avaliação e redução dos riscos, desenvolvimento e validação, e planejamento.
- 56. [TE] Suponha que são dados 3 valores inteiros, A, B e C, em ordem decrescente, representando os lados de um triângulo. Cada valor deve estar entre 1 e 100. O programa deve fornecer como saída o tipo do triângulo (eqüilátero, isósceles, escaleno, retângulo) ou a mensagem "entradas inválidas" caso os valores não representem um triângulo válido. Qual dos conjuntos de teste abaixo poderiam ser usados nos testes de valores-limite para esse programa?
 - (a) (5, 3, 4), (0, 0, 0), (10, 5, 5)
 - (b) (101, 20, 5), (1, 0, 0), (30, 1, -1)
 - (c) (3, 4, 7), (12, 9, 6), (1,1,1)
 - (d) (2, 2, 2), (3, 5, 8), (5, 5, 5)
 - (e) (0,0,0), (minint, maxint, maxint), (0, 0, -1) onde maxint representa o maior inteiro possível e minint, o menor.
- 57. [TE] O código abaixo implementa uma função que calcula o MDC de dois números inteiros usando o algoritmo de Euclides:

```
function mdc (int a, int b)
   int temp, value;
  a := abs(a);
  b := abs(b);
   if (a = 0) then
          value := b;
                         // béo MDC
   else if (b = 0) then
        exceção;
        else
            repeat
                   temp := b;
                   b := a \mod b;
                   a := temp;
            until (b = 0)
            value := a;
        end if;
  return value;
end mdc
```

Qual dos conjuntos de teste dados a seguir poderiam ser usados para atender ao critério de todos os ramos?

```
(a) \{(0,3), (4,-2), (5,4)\}

(b) \{(0,-1), (4,0), (-1,0)\}

(c) \{(6,3), (4,2), (0,0)\}

(d) \{(12,9), (0,2), (4,0)\}

(e) \{(3,5), (-1,-1), (9,4)\}
```

58. [TE]A percepção humana é um processo ativo fundamental na interação humanocomputador. Duas classes importantes de teorias que explicam a maneira como percebemos são representadas pelas abordagens construtivista e ecológica. Assinale a alternativa incorreta:

- (a) A abordagem construtivista possibilita entender como a informação que chega à retina é decomposta em partes significativas.
- (b) A abordagem ecológica possibilita entender as propriedades visuais de objetos em termos de quanto esses objetos evocam ações a serem realizadas sobre eles.
- (c) Affordance é um conceito relacionado à abordagem construtivista.
- (d) Psicólogos Gestaltistas foram os primeiros a descrever princípios gerais subjacentes ao processo de organização perceptual.
- (e) São princípios da Gestalt para organização perceptual: proximidade, similaridade, fecho, continuidade e simetria.
- 59. [TE] Os modelos de ciclo de vida surgidos na área de Interação Humano-computador apresentam uma tradição mais forte de foco no usuário, quando comparados aos modelos de ciclo de vida da Engenharia de Software. Assinale a alternativa incorreta:
 - (a) O desenvolvimento de protótipos é parte integral do design iterativo centrado no usuário porque possibilita que designers testem suas idéias com usuários.
 - (b) O modelo de ciclo de vida Estrela surgiu de um trabalho empírico de observação de como os designers de interface de usuário trabalhavam.
 - (c) O modelo de ciclo de vida Estrela não especifica a ordem em que as atividades devem ser realizadas.
 - (d) O modelo de ciclo de vida Estrela é centrado na avaliação; sempre que uma atividade é completada, seu resultado deve ser avaliado.
 - (e) No modelo de ciclo de vida Estrela o projeto deve iniciar com a avaliação de uma situação existente.
- 60. [TE] Avaliação de interface de usuário, em sentido amplo, envolve coletar dados sobre a usabilidade de um design ou produto. Constituem tipos de avaliação:
 - (I) Avaliação rápida, na qual os designers obtêm um feedback informal de usuários ou consultores.
 - (II) Testes de usabilidade, que envolvem avaliar o desempenho de usuários típicos na realização de tarefas em laboratório.
 - (III) Estudos de campo, que são realizados em ambientes reais para verificar o impacto do design em atividades naturais do usuário em seu contexto.
 - (IV) Avaliação preditiva, em que especialistas aplicam seu conhecimento a respeito de usuários típicos visando prever problemas de usabilidade.

Estão corretas:

- (a) Somente (I) e (III)
- (b) Somente (II) e (IV)
- (c) Somente (I), (II) e (IV)
- (d) Somente (II), (III) e (IV)
- (e) Todas as afirmações (I), (II), (III) e (IV).
- 61. [TE] Considere o seguinte problema de programação linear:

Max
$$c_1x + c_2y$$

Sujeito a $x + y \ge 3$
 $x \ge 1$
 $y \ge 1$

Então:

- (a) Como (λ, λ) é solução viável para $\lambda \geq 3/2$, então não existe solução ótima.
- (b) Como (λ,λ) é solução viável para $\lambda \geq 3/2$, então existe um número infinito de soluções ótimas.
- (c) Existe uma solução ótima apenas se $c_1 \leq 0$ e $c_2 \leq 0$.
- (d) (1,2) ou (2,1) é necessariamente uma solução ótima.
- (e) O problema dual é inviável.
- 62. [TE]Dado um perceptron simples de duas entradas e um bias , cujos pesos são w1 = 0.5, w2 = 0.4 e w0 = -0.3, respectivamente, assinalar a resposta correta:
 - (a) o perceptron realiza a função NOR
 - (b) o perceptron realiza a função $AN\!D$
 - (c) o perceptron realiza a função OR
 - (d) o perceptron realiza a função XOR
 - (e) nenhuma das alternativas
- 63. [TE] Considere o programa Prolog:

```
blabla([],L,L).
blabla([X|L1],L2,[X|L3]):- blabla(L1,L2,L3).
```

Quantas possíveis respostas a interrogação abaixo fornece (considerando o backtracking)?

?- blabla(L1,L2,[a,b]).

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5
- 64. [TE]Sobre o protocolo IP (Internet Protocol), é correto afirmar:
 - (a) O tamanho do cabeçalho do IPv4 é fixado em 96 bits;
 - (b) O espaço de endereçamento do IPv4 e do IPv6 é de 32 e 128 bits, respectivamente;
 - (c) O cabeçalho IP inclui informação sobre o protocolo de camada de enlace empregado;
 - (d) A classe C de endereços IPv4 reserva 16 bits para endereço de rede;
 - (e) O roteamento IP associa o endereço IP com o número de porta em nível de transporte.
- 65. [TE] Duas tecnologias utilizadas para acesso residencial à Internet são ADSL e *Cable Modem*. Qual afirmação é incorreta?
 - (a) Ambas permitem taxas de transmissão diferentes para upstream e downstream
 - (b) Os canais de *upstream* e *downstream* da tecnologia ADSL não necessitam de contenção de acesso
 - (c) Os canais de *upstream* e *downstream* da tecnologia *Cable Modem* necessitam de contenção de acesso
 - (d) ADSL utiliza par trançado dedicado para cada residência
 - (e) Cable Modem utiliza cabo compartilhado para diversas residências

- 66. [TE] Os endereços IP são divididos em classes. Qual afirmação é incorreta?
 - (a) Existem mais redes classe B do que classe A
 - (b) Uma rede classe C permite mais hosts do que uma rede classe B
 - (c) A classe D é dedicada a endereços multicast
 - (d) Máscaras podem dividir o campo Rede do endereço IP em Rede e Sub-rede para facilitar o roteamento interno
 - (e) NAT (Tradução de Endereço de Rede) é utilizada em redes com vários *hosts* que se conectam à Internet através de poucos endereços IP
- 67. [TE] Considere os seguintes parâmetros de Qualidade de Serviço (QoS) para transmissão multimídia: confiabilidade, atraso, *jitter* e largura de banda. Considere ainda que estes parâmetros possam ter tolerância alta (A), média (M) ou baixa(B). Qual das alternativas está abaixo da tolerância mínima da aplicação?

Aplicação	Confiabilidade	Atraso	Jitter	Largura de banda
(a) Correio Eletrônico	A	В	В	В
(b) Acesso Web	A	M	В	${ m M}$
(c) Vídeo Sob Demanda	В	M	A	A
(d) Telefonia	В	A	A	${ m M}$
(e) Vídeo Conferência	В	A	В	A

- 68. [TE] A comunicação entre processos em um sistema distribuído pode ser realizada por um mecanismo conhecido como RPC chamada de procedimento remoto. Sobre este mecanismo, assinale a opção correta abaixo:
 - (a) Processos comunicantes compartilham o mesmo espaço de endereçamento.
 - (b) Os stubs cliente e servidor são responsáveis pela conversão de formato dos parâmetros de entrada e saída, caso haja necessidade.
 - (c) A geração dos stubs é comumente realizada por compilação a partir de uma especificação de interface realizada em uma linguagem de execução de interface (IEL).
 - (d) O mecanismo faz uso de uma porta fixa, de número 8080, para comunicar diferentes processos e serviços entre computadores de um sistema distribuído.
 - (e) A falha de um cliente RPC gera uma chamada dita orfã no servidor que neste caso repassa sempre os resultados do procedimento remoto para um proxy de retorno especificado na chamada

- 69. [TE] Sobre algoritmos de exclusão mútua em sistemas distribuídos é correto afirmar que:
 - (a) O algoritmo centralizado tem como principal desvantagem o alto número de troca de mensagens.
 - (b) O algoritmo distribuído é totalmente independente da ordem dos eventos do sistema distribuído.
 - (c) A maioria simples de permissões dos participantes para entrada em região crítica é suficiente para garantir a exclusão mútua no algoritmo distribuído.
 - (d) No algoritmo do token , a exclusão mútua é garantida por uma concessão de bloqueio fornecida pelo gerente que mantém uma lista de tokens.
 - (e) Três mensagens são suficientes para fechar o ciclo de concessão, liberação e nova concessão de acesso no algoritmo do token.
- 70. [TE] Um sistema distribuído pode manter diferentes cópias de um mesmo item de dado a fim de melhorar o desempenho de leitura e aumentar a disponibilidade de acesso. A modificação deste item de dado é realizada de acordo com protocolos de consistência de cópias. Assinale a alternativa correta sobre esses protocolos.
 - (a) O protocolo baseado em cópia primária permite sempre a atualização da cópia mais próxima e difunde o novo valor via unicast para todos os nós que mantém uma outra cópia.
 - (b) A atualização de todas as cópias, no protocolo baseado em cópia primária, é realizada através de um processo síncrono, onde o cliente é liberado para continuar o fluxo de execução imediatamente após ter solicitado a atualização da cópia primária.
 - (c) Nos protocolos baseados em quorum, os conflitos leitura-escrita e escrita-escrita são evitados por autorizações de bloqueio (lock) emitidas por um coordenador central ou sequenciador.
 - (d) Protocolos baseados em coerência de cache são mecanismos de consistência de cópias que repassam a responsabilidade de manter essa consistência para os servidores que detém cópias.
 - (e) No protocolo de replicação ativa, todas as réplicas são atualizadas através de uma única operação de escrita realizada por um mecanismo de multicast totalmente ordenado.