

TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1

SGLS247B - SEPTEMBER 2011 - REVISED MARCH 2016

TPS763xx-Q1 Low-Power, 150-mA, Low-Dropout Linear Regulators

Features

- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: -40°C to +125°C Ambient Operating Temperature
 - Device HBM ESD Classification Level 1C
 - Device CDM ESD Classification Level C3
- 150-mA Low-Dropout Regulator
- Output Voltage: 5 V,3.3 V, 3 V, 2.5 V, 1.8 V, 1.6 V, and Variable
- Dropout Voltage, Typically 300 mV at 150 mA
- Thermal Protection
- Overcurrent Limitation
- Less Than 2-µA Quiescent Current in Shutdown
- -40°C to 125°C Operating Junction Temperature Range
- 5-Pin SOT-23 (DBV) Package

Applications

- RF: VCOs, Receivers, ADCs
- Cellular phones
- Bluetooth®
- **Battery-Powered Systems**

3 Description

The TPS763xx-Q1 family of low-dropout (LDO) voltage regulators offers the benefits of low-dropout voltage, low-power operation, and miniaturized packaging. These regulators feature low dropout voltages and quiescent currents compared to conventional LDO regulators. Offered in a 5-pin, small outline integrated-circuit SOT-23 package, the TPS763xx-Q1 series devices are ideal for costsensitive designs and for applications where board space is at a premium.

A combination of new circuit design and process innovation has enabled the usual pnp pass transistor to be replaced by a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the dropout voltage is low-typically 300 mV at 150 mA of load current (TPS76333-Q1)-and is directly proportional to the load current. Since the PMOS pass element is a voltage-driven device, the quiescent current is low (140 µA maximum) and is stable over the entire range of output load current (0 mA to 150 mA). Intended for use in portable systems such as laptops and cellular phones, the low-dropout voltage feature and low-power operation result in a significant increase in system battery operating life.

The TPS763xx-Q1 also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 μ A maximum at $T_1 = 25$ °C.The TPS763xx-Q1 is offered in 1.6-V,1.8-V, 2.5-V, 3-V, 3.3-V, and 5-V fixed-voltage versions and in a variable version (programmable over the range of 1.5 V to 6.5 V).

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
TPS763xx-Q1	SOT-23 (5)	2.90 mm × 1.60 mm	

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Circuit

TPS76316-Q1, TPS76318-Q1, TPS76325-Q1, TPS76301-Q1 TPS76333-Q1, TPS76350-Q1 (fixed-voltage options)

Table of Contents

1	Features 1	9	Application and Implementation	12
2	Applications 1		9.1 Application Information	12
3	Description 1		9.2 Typical Application	12
4	Revision History2	10	Power Supply Recommendations	15
5	Voltage Options 3	11	Layout	15
6	Pin Configuration and Functions 3		11.1 Layout Guidelines	15
7	Specifications4		11.2 Layout Example	15
•	7.1 Absolute Maximum Ratings		11.3 Power Dissipation and Junction Temperature	15
	7.2 ESD Ratings	12	Device and Documentation Support	16
	7.3 Recommended Operating Conditions 4		12.1 Device Support	
	7.4 Thermal Information		12.2 Documentation Support	16
	7.5 Electrical Characteristics5		12.3 Related Links	
	7.6 Typical Characteristics6		12.4 Community Resource	16
8	Detailed Description 10		12.5 Trademarks	16
-	8.1 Overview		12.6 Electrostatic Discharge Caution	17
	8.2 Functional Block Diagram		12.7 Glossary	17
	8.3 Feature Description	13	Mechanical, Packaging, and Orderable	
	8.4 Device Functional Modes11		Information	17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	nanges from Original (September 2011) to Revision B	age
•	Removed 3.8 V, 2.8 V, and 2.7 V output voltage versions from the data sheet	1
•	Removed the TPS76327-Q1, TPS76328-Q1, and TPS76338-Q1 parts from the data sheet	1
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Deleted Dissipation Ratings	6

5 Voltage Options

VOLTAGE	PART NUMBER	SYMBOL
Variable	TPS76301QDBVRQ1	BAN
1.6 V	TPS76316QDBVRQ1	BAD
1.8 V	TPS76318QDBVRQ1	ВАР
2.5 V	TPS76325QDBVRQ1	BAQ
3 V	TPS76330QDBVRQ1	BAT
3.3 V	TPS76333QDBVRQ1	BAU
5 V	TPS76350QDBVRQ1	BAW

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION	
NAME	NO.	I/O	DESCRIPTION	
EN	3	_	Enable input	
FB	4	I	Feedback voltage (TPS76301-Q1 only)	
GND	2	_	Ground	
IN	1	I	Input supply voltage	
NC	4	_	No connection (fixed-voltage option only)	
OUT	5	0	Regulated output voltage.	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Input voltage	-0.3	10	V
Voltage at EN			٧
Voltage on OUT, FB			٧
Peak output current	Internall	y limited	
Operating junction temperature, T _J	-40	150	°C
Storage temperature, T _{stq}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
\/	Floatroototic discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±500	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM MAX	UNIT
Input voltage, V _I	2.7	10	V
Continuous output current, I _O	0	150	mA
Operating junction temperature, T _J	-40	125	°C

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	UNIT
		5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	205.2	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	11.83	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	34.8	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	12.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	33.9	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over operating free-air temperature range, $V_1 = V_{O(typ)} + 1 \text{ V}$, $I_0 = 1 \text{ mA}$, EN = IN, $C_0 = 4.7 \mu\text{F}$ (unless otherwise noted)

	PARAMET	ER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
			$3.25 \text{ V} > \text{VI} \ge 2.7 \text{ V}, \ 2.5 \text{ V} \ge \text{V}_{\text{O}} \ge 1.5 \text{ V}, \ \text{I}_{\text{O}} = 1 \text{ mA}$ to 75 mA, T _J = 25°C	0.98V _O	Vo	1.02V ₀	
			$3.25~\text{V} > \text{VI} \geq 2.7~\text{V},~2.5~\text{V} \geq \text{V}_{\text{O}} \geq 1.5~\text{V},~\text{I}_{\text{O}} = 1~\text{mA}$ to 75 mA,	0.97V _O	Vo	1.03V _o	
		TPS76301-Q1	$V_{\rm I} \ge 3.25$ V, 5 V \ge V $_{\rm O} \ge 1.5$ V, I $_{\rm O} = 1$ mA to 100 mA, $T_{\rm J} = 25^{\circ}{\rm C}$	0.98V _o	Vo	1.02V ₀	٧
			$V_1 \ge 3.25 \text{ V}, 5 \text{ V} \ge V_0 \ge 1.5 \text{ V}, I_0 = 1 \text{ mA to } 100 \text{ mA},$	0.97V ₀	Vo	1.03V _O	
			$V_{\rm I} \ge 3.25$ V, 5 V \ge V $_{\rm O} \ge 1.5$ V, I $_{\rm O} = 1$ mA to 150 mA, $T_{\rm J} = 25^{\circ}{\rm C}$	0.975V _O	Vo	1.025V ₀	
			$V_1 \ge 3.25 \text{ V}, 5 \text{ V} \ge V_0 \ge 1.5 \text{ V}, I_0 = 1 \text{ mA to } 150 \text{ mA},$	0.9625V _O	Vo	1.0375V _O	
			$V_I = 2.7 \text{ V}, \text{ 1 mA} < I_O < 75 \text{ mA}, T_J = 25 ^{\circ}\text{C}$	1.568	1.6	1.632	
			$V_I = 2.7 \text{ V}, \text{ 1 mA} < I_O < 75 \text{ mA}, T_J = 25 ^{\circ}\text{C}$	1.552	1.6	1.648	
		TD976216 O1	$V_1 = 3.25 \text{ V}, \text{ 1 mA} < I_0 < 100 \text{ mA}, T_J = 25^{\circ}\text{C}$	1.568	1.6	1.632	V
		TPS76316-Q1	$V_{I} = 3.25 \text{ V}, 1 \text{ mA} < I_{O} < 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	1.552	1.6	1.648	V
			$V_{I} = 3.25 \text{ V}, 1 \text{ mA} < I_{O} < 150 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	1.56	1.6	1.64	
		V _I 3.25 V, 1 mA < I _O < 150 mA, T _J = 25°C	1.536	1.6	1.664		
		V _I = 2.7 V, 1 mA < I _O < 75 mA, T _J = 25°C	1.764	1.8	1.836		
			V _I = 2.7 V, 1 mA < I _O < 75 mA	1.746	1.8	1.854	
V _O Output voltage			V _I = 3.25 V, 1 mA < I _O < 100 mA, T _J = 25°C	1.764	1.8	1.836	
	TPS76318-Q1	V _I = 3.25 V, 1 mA < I _O < 100 mA	1.746	1.8	1.854	V	
		V _I = 3.25 V, 1 mA < I _O < 150 mA, T _J = 25°C	1.755	1.8	1.845		
			V _I = 3.25 V, 1 mA < I _O < 150 mA	1.733	1.8	1.867	
			I _O = 1 mA to 100 mA, T _J = 25°C	2.45	2.5	2.55	V
			I _O = 1 mA to 100 mA	2.425	2.5	2.575	
		TPS76325-Q1	I _O = 1 mA to 150 mA,, T _J = 25°C	2.438	2.5	2.562	
			I _O = 1 mA to 150 mA	2.407	2.5	2.593	
		TPS76330-Q1	I _O = 1 mA to 100 mA, T _J = 25°C	2.94	3	3.06	V
			I _O = 1 mA to 100 mA	2.91	3	3.09	
			I _O = 1 mA to 150 mA, T _J = 25°C	2.925	3	3.075	
			I _O = 1 mA to 150 mA	2.888	3	3.112	
			I _O = 1 mA to 100 mA, T _J = 25°C	3.234	3.3	3.366	
			I _O = 1 mA to 100 mA	3.201	3.3	3.399	
		TPS76333-Q1	-				V
			$I_0 = 1 \text{ mA to } 150 \text{ mA}, T_J = 25^{\circ}\text{C}$	3.218	3.3	3.382	1
			I ₀ = 1 mA to 150 mA	3.177	3.3	3.423	
			I _O = 1 mA to 100 mA, T _J = 25°C	4.875	5	5.125	
		TPS76350-Q1	I _O = 1 mA to 100 mA	4.825	5	5.175	V
			$I_0 = 1 \text{ mA to } 150 \text{ mA}, T_J = 25^{\circ}\text{C}$	4.750	5	5.15	
			I _O = 1 mA to 150 mA	4.80	5	5.2	
2)	Quiescent current (GND)	terminal current)	$I_0 = 0$ mA to 150 mA, $T_J = 25^{\circ}C^{(1)}$		85	100	μΑ
			I _O = 0 mA to 150 mA, see			140	
	Standby current		EN < 0.5 V, T _J = 25°C		0.5	1	μΑ
			EN < 0.5 V			2	-
'n	Output noise voltage		BW = 300 Hz to 50 kHz, Co = 10 μF, T _J = 25°C ⁽²⁾		140		μV
SRR	Ripple rejection		$f = 1 \text{ kHz, } Co = 10 \mu F, T_J = 25^{\circ}C^{(2)}$		60		dB
	Current limit		$T_{J} = 25^{\circ}C, see^{(3)}$	0.5	0.8	1.5	Α
	Output voltage line regula	tion (ΔVO/VO), (see ⁽³⁾))	$V_0 + 1 \text{ V} < V_1 \le 10 \text{ V}, V_1 \ge 3.5 \text{ V}, T_J = 25^{\circ}\text{C}$		0.04	0.07	%/V
		,, ()	$V_0 + 1 \ V < V_1 \le 10 \ V, \ V_1 \ge 3.5 \ V$			0.1	
ÍН	EN high level input		See ⁽²⁾		1.4	2	V
'IL	EN low level input		See ⁽²⁾	0.5	1.2		v
	EN input current		EN = 0 V		-0.01	-0.5	
	Liv input culterit		EN = IN		-0.01	-0.5	μа

⁽¹⁾ Minimum IN operating voltage is 2.7 V or $V_{O(typ)} + 1$ V, whichever is greater. (2) Test condition includes: output voltage $V_O = 0$ V (for variable device FB is shorted to V_O) and pulse duration = 10 ms.

If VO < 2.5 V and $V_{lmax} = 10 \text{ V}$, $V_{lmin} = 3.5 \text{ V}$:

Electrical Characteristics (continued)

over operating free-air temperature range, $V_1 = V_{O(typ)} + 1 \text{ V}$, $I_O = 1 \text{ mA}$, EN = IN, $C_o = 4.7 \mu F$ (unless otherwise noted)

	PARAME	TER	TEST CONDITIONS	MIN TY	P MAX	UNIT
		I _O = 0 mA, T _J = 25°C	0.	2		
			I _O = 1 mA, T _J = 25°C		3	
		I _O = 50 mA, T _J = 25°C	12	0 150		
		I _O = 50 mA		200		
	TPS76325-Q1	I _O = 75 mA, T _J = 25°C	18	0 225	\ /	
		1P5/6325-Q1	I _O = 75 mA		300	mV
			I _O = 100 mA, T _J = 25°C	24	0 300	
			I _O = 100 mA		400	
			I _O = 150 mA, T _J = 25°C	36	0 450	
			I _O = 150 mA		600	
			I _O = 0 mA, T _J = 25°C	0.	2	
		tt voltage TPS76333-Q1	I _O = 1 mA, T _J = 25°C		3	mV
			I _O = 50 mA, T _J = 25°C	10	0 125	
			I _O = 50 mA		166	
	Daniel de la contraction de la		I _O = 75 mA, T _J = 25°C	15	0 188	
DO	Dropout voltage		I _O = 75 mA		250	
			I _O = 100 mA, T _J = 25°C	20	0 250	
			I _O = 100 mA		333	
			I _O = 150 mA, T _J = 25°C	30	0 375	
			I _O = 150 mA		500	
			I _O = 0 mA, T _J = 25°C	0.	2	
			I _O = 1 mA, T _J = 25°C		2	
			I _O = 50 mA, T _J = 25°C	6	0 75	
			I _O = 50 mA		100	
		TD070050 04	I _O = 75 mA, T _J = 25°C	9	0 113	.,
		TPS76350-Q1	I _O = 75 mA		150	mV
			I _O = 100 mA, T _J = 25°C	12	0 150	
			I _O = 100 mA		200	
			I _O = 150 mA, T _J = 25°C	18	0 225	
			I _O = 150 mA		300	

7.6 Typical Characteristics

Figure 2. TPS76318-Q1 Output Voltage vs Output Current

Typical Characteristics (continued)

Figure 3. TPS76350-Q1 Output Voltage vs Output Current

Figure 4. TPS76325-Q1 Output Voltage vs Free-Air Temperature

Figure 5. TPS76318-Q1 Output Voltage vs Free-Air Temperature

Figure 6. TPS76350-Q1 Output Voltage vs Free-Air Temperature

Figure 7. TPS76350-Q1 Ground Current vs Free-Air Temperature

Figure 8. Output Noise vs Frequency

Typical Characteristics (continued)

Figure 9. Output Impedance vs Frequency

Figure 10. TYPS76325-Q1 Dropout Voltage vs Free-Air Temperature

Figure 11. TPS76325-Q1 Ripple Rejection vs Frequency

Figure 12. TPS76318-Q1 Line Transient Response

Figure 13. TPS76318-Q1 Load Transient Response

Figure 14. TPS76350-Q1 Line Transient Response

Typical Characteristics (continued)

Figure 15. TPS76350-Q1 Load Transient Response

Figure 16. Typical Regions of Stability Compensation Series Resistance (CSR) vs Output Current

Figure 17. Typical Regions of Stability Compensation Series Resistance (CSR) vs Added Ceramic Capacitance

Figure 18. Typical Regions of Stability Compensation Series Resistance (CSR) vs Output Current

Figure 19. Typical Regions of Stability Compensation Series Resistance (CSR) vs Added Ceramic

8 Detailed Description

8.1 Overview

The TPS763xx-Q1 low-dropout (LDO) regulators are new families of regulators which have been optimized for use in battery-operated equipment and feature low dropout voltages, low quiescent current (140 μ A), and an enable input to reduce supply currents to less than 2 μ A when the regulator is turned off.

8.2 Functional Block Diagram

TPS76316/18/25/30/33/50-Q1

8.3 Feature Description

8.3.1 Regulator Protection

The TPS763xx-Q1 pass element has a built-in back diode that safely conducts reverse currents when the input voltage drops below the output voltage (for example, during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage is anticipated, external limiting might be appropriate.

The TPS763xx-Q1 also features internal current limiting and thermal protection. During normal operation, the TPS763xx-Q1 limits output current to approximately 800 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to below 140°C, the regulator operation resumes.

8.4 Device Functional Modes

8.4.1 Normal Operation

The device regulates to the nominal output voltage under the following conditions:

- The input voltage is at least as high as V_{IN(min)}.
- The input voltage is greater than the nominal output voltage added to the dropout voltage.
- The enable voltage is greater than V_{EN(min)}.
- The output current is less than the current limit.
- The device junction temperature is less than the maximum specified junction temperature.

8.4.2 Dropout Operation

If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode of operation, the output voltage is the same as the input voltage minus the dropout voltage. The transient performance of the device is significantly degraded because the pass device is in the linear region and no longer controls the current through the LDO. Line or load transients in dropout can result in large output voltage deviations.

8.4.3 Disabled

The device is disabled under the following conditions:

- The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising threshold.
- The device junction temperature is greater than the thermal shutdown temperature.
- The input voltage is less than UVLO_{falling}.

Table 1 shows the conditions that lead to the different modes of operation.

Table 1. Device Functional Mode Comparison

OPERATING		PARAMETER					
MODE	V _{IN}	V _{EN}	I _{OUT}	T_J			
Normal mode	$V_{IN} > V_{OUT(nom)} + V_{DO}$ and $V_{IN} > V_{IN(min)}$	$V_{EN} > V_{EN(high)}$	I _{OUT} < I _{LIM}	T _J < 125°C			
Dropout mode	$V_{IN(min)} < VIN < V_{OUT(nom)} + V_{DO}$	$V_{EN} > V_{EN(high)}$	_	T _J < 125°C			
Disabled mode (any true condition disables the device)	V_{IN} < UVLO _{falling}	V _{EN} < V _{EN(low)}	_	T _J > 165°C ⁽¹⁾			

(1) Approximate value for thermal shutdown

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS763xx-Q1 low-dropout (LDO) regulators are new families of regulators which have been optimized for use in battery-operated equipment and feature low dropout voltages, low quiescent current (140 μ A), and an enable input to reduce supply currents to less than 2 μ A when the regulator is turned off.

The TPS763xx-Q1 uses a PMOS pass element to dramatically reduce both dropout voltage and supply current over more conventional PNP pass element LDO designs. The PMOS pass element is a voltage-controlled device that, unlike a PNP transistor, does not require increased drive current as output current increases. Supply current in the TPS763xx-Q1 is essentially constant from no-load to maximum load.

Current limiting and thermal protection prevent damage by excessive output current and/or power dissipation. The device switches into a constant-current mode at approximately 1 A; further load reduces the output voltage instead of increasing the output current. The thermal protection shuts the regulator off if the junction temperature rises above 165°C. Recovery is automatic when the junction temperature drops approximately 25°C below the high temperature trip point. The PMOS pass element includes a back diode that safely conducts reverse current when the input voltage level drops below the output voltage level.

A logic low on the enable input, EN shuts off the output and reduces the supply current to less than 2 µA. EN should be tied high in applications where the shutdown feature is not used.

9.2 Typical Application

A typical application circuit is shown in Figure 20.

Note: TPS76316-Q1, TPS76318-Q1, TPS76325-Q1, TPS76301-Q1 TPS76333-Q1, TPS76350-Q1 (fixed-voltage options)

Figure 20. Typical Application Circuit

Typical Application (continued)

9.2.1 Design Requirements

Table 2 lists the design requirements.

Table 2. Design Parameters

PARAMETER	DESIGN REQUIREMENTS
Input voltage	2.7 to 10 V
Output voltage	2.5 to 6.45 V
Output current	0 to 150 mA

9.2.2 Detailed Design Procedure

9.2.2.1 External Capacitor Requirements

Although not required, a 0.047 µF or larger ceramic bypass input capacitor, connected between IN and GND and located close to the TPS763xx-Q1, is recommended to improve transient response and noise rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source.

Like all low dropout regulators, the TPS763xx-Q1 requires an output capacitor connected between OUT and GND to stabilize the internal loop control. The minimum recommended capacitance value is 4.7 μ F and the ESR (equivalent series resistance) must be between 0.3 Ω and 10 Ω . Capacitor values of 4.7 μ F or larger are acceptable, provided the ESR is less than 10 Ω . Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described above. Most of the commercially available 4.7- μ F surface-mount solid tantalum capacitors, including devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above.

Table 3. Capacitor Selection

PART NO.	MFR.	VALUE	MAX ESR	SIZE (H × L × W)
T494B475K016AS	KEMET	4.7 µF	1.5 Ω	$1.9 \times 3.5 \times 2.8$
195D106x0016x2T	SPRAGUE	10 μF	1.5 Ω	$1.3 \times 7.0 \times 2.7$
695D106x003562T	SPRAGUE	10 μF	1.3 Ω	$2.5 \times 7.6 \times 2.5$
TPSC475K035R0600	AVX	4.7 µF	0.6 Ω	2.6 × 6.0 × 3.2

9.2.2.2 Output Voltage Programming

The output voltage of the TPS76301-Q1 adjustable regulator is programmed using an external resistor divided as shown in figure 21. The output voltage is calculated using Equation 1.

$$V_0 = 0.995 \times VREF \times (1 + R1/R2)$$

where

- V_{REF} = 1.192 V typical (the internal reference voltage)
- 0.995 is a constant used to center the load regulator (1%)

or (1%) (1)

Resistors R1 and R2 should be chosen for approximately 7- μ A divider current. Lower value resistors can be used, but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 169 k Ω to set the divider current at 7 μ A and then calculate R1 using Equation 2.

Line Reg. (mV) =
$$(\% / V) \times \frac{V_O(V_{lmax} - (V_O + 1))}{100} \times 1000$$
 (2)

Figure 21. TPS76301-Q1 Adjustable LDO Regulator Programming

Table 4. Output Voltage Programming Guide

OUTPUT VOLTAGE (V)	DIVIDER RESISTANCE (kΩ) ⁽¹⁾								
OUTPUT VOLTAGE (V)	R1	R2							
2.5	187	169							
3.3	301	169							
3.6	348	169							
4	402	169							
5	549	169							
6.45	750	169							

^{(1) 1%} values shown.

9.2.3 Application Curves

10 Power Supply Recommendations

These devices are designed to operate from an input voltage supply range from 2.7 V to 10 V. The input voltage range must provide adequate headroom in order for the device to have a regulated output. This input supply must be well-regulated and stable. Although not required, a 0.047-µF or larger ceramic bypass input capacitor, connected between IN and GND and located close to the TPS763xx-Q1, is recommended to improve transient response and noise rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source.

11 Layout

11.1 Layout Guidelines

Layout is a critical part of good power-supply design. There are several signal paths that conduct fast-changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power-supply performance. To help eliminate these problems, the IN pin should be bypassed to ground with a low ESR ceramic bypass capacitor with an X5R or X7R dielectric.

Equivalent series inductance (ESL) and equivalent series resistance (ESR) must be minimized to maximize performance and ensure stability. Every capacitor (C_{IN}, C_{OUT}) must be placed as close as possible to the device and on the same side of the PCB as the regulator itself.

Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use of vias and long traces is strongly discouraged because these circuits may impact system performance negatively, and even cause instability.

11.2 Layout Example

Figure 24. Recommended Layout

11.3 Power Dissipation and Junction Temperature

Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature allowable to avoid damaging the device is 150°C. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$ and the actual dissipation, P_D , which must be less than or equal to $P_{D(max)}$.

The maximum-power-dissipation limit is determined using Equation 3.

$$P_{D(max)} = T_{J(max)} - T_A / R_{\theta JA}$$

where

- T_{.l(max)} is the maximum allowable junction temperature
- R_{BJA} is the thermal resistance junction-to-ambient for the package, see Thermal Information
- T_A is the ambient temperature

(3)

Power Dissipation and Junction Temperature (continued)

Use Equation 4 to calculate the regulator dissipation.

$$P_D = (V_I - V_O) \times I_O \tag{4}$$

Power dissipation resulting from quiescent current is negligible.

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Documentation Support

12.2.1 Related Documentation

TPS793xx-Q1 Ultralow-Noise, High-PSRR, Fast RF 200-mA Low-Dropout Linear Regulators, SGLS162

12.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPS763-Q1	Click here	Click here	Click here	Click here	Click here
TPS76301-Q1	Click here	Click here	Click here	Click here	Click here
TPS76316-Q1	Click here	Click here	Click here	Click here	Click here
TPS76318-Q1	Click here	Click here	Click here	Click here	Click here
TPS76325-Q1	Click here	Click here	Click here	Click here	Click here
TPS76330-Q1	Click here	Click here	Click here	Click here	Click here
TPS76333-Q1	Click here	Click here	Click here	Click here	Click here
TPS76350-Q1	Click here	Click here	Click here	Click here	Click here

Table 5. Related Links

12.4 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS76301QDBVRG4Q1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	BAN	Samples
TPS76301QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	BAN	Samples
TPS76316QDBVRG4Q1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ВАО	Samples
TPS76318QDBVRG4Q1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ВАР	Samples
TPS76318QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ВАР	Samples
TPS76325QDBVRG4Q1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	BAQ	Samples
TPS76330QDBVRG4Q1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ВАТ	Samples
TPS76333QDBVRG4Q1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	BAU	Samples
TPS76333QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	BAU	Samples
TPS76350QDBVRG4Q1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	BAW	Samples
TPS76350QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	BAW	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

17-Mar-2017

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sh/Rr): The defines "Green" to mean Pb-Free (RoHS compatible) and free of Bromine (Rr), and Antimony (Sh) based flame retardants (Br or Sh do not exceed 0.1% by weight

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS763-Q1:

Catalog: TPS763

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jan-2016

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

*All dimensions are nominal	1	1		1								
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS76301QDBVRG4Q1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76301QDBVRQ1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76316QDBVRG4Q1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76318QDBVRG4Q1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76318QDBVRQ1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76325QDBVRG4Q1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76330QDBVRG4Q1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76333QDBVRG4Q1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76333QDBVRQ1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76350QDBVRG4Q1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS76350QDBVRQ1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3

www.ti.com 25-Jan-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS76301QDBVRG4Q1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76301QDBVRQ1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76316QDBVRG4Q1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76318QDBVRG4Q1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76318QDBVRQ1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76325QDBVRG4Q1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76330QDBVRG4Q1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76333QDBVRG4Q1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76333QDBVRQ1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76350QDBVRG4Q1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS76350QDBVRQ1	SOT-23	DBV	5	3000	182.0	182.0	20.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4073253/P

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC MO-178.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.