Green Vehicle Routing Problem

Benjamín Orrego del Río

Víctor Martínez campos

Motivación

- Problema: Contaminación vehículos en flotas de reparto
- Desventajas AFV:
 - Baja autonomía combustible
 - Baja disponibilidad de estaciones de recarga de combustible

Definición del problema

- Origenes: VRP
- ¿En que consiste?
- Características conceptuales del modelo: Erdogan y Miller-Hooks (2012).
- Tipo de problema

Estado del Arte

- Variaciones del problema: PRP, GHRP, EMVRP, TDVRP, etc.
- Técnicas usadas:
 - Heurísticas: the saving procedure, insertion procedure, improvement procedure, etc
 - Metaheurísticas: Algoritmos genéticos (GA), Simulated annealing, TS, ant colony optimization, etc
 - Algoritmos exactos: Flagship algorithms, branch and cut, branch and price, backtracking, entre otros.
 - solver comerciales
 - Híbridos: metaheurísticas-exactas, metaheurísticasmetaheurísticas y heurísticas-heurísticas

Estado del Arte

- 1. Metaheurísticas
- 2. Métodos Exactos
- 3. Híbridos
- 4. Solver
- 5. Heurísticas

Propuesta: SA + Swap y SA + 2-opt

Representación

Funcionamiento de los Algoritmos

ón

dataSol

Objetos

combustRemanente: distanciaRecorrida tiempoUsado

Nodo

- id: 0tipo:d
- latitud:-77.494339
- longitud: 37.60851

Restricciones

Name: AB220Customers: 100Stations: 26

MaxTime(min): 660

MaxDistance(miles): 280

Speed(miles\ min): 1.0
 ServiceTime(min):30

RefuelTime(min):15

Propuesta: SA + Swap y SA + 2-opt

- Ventajas
- Desventajas

Arreglos

	Nodo	Nodo	Nodo	Nodo
listaClientes	id: 1tipo:clatitud:-76.076059longitud: 39.068651	id: 2tipo:clatitud:-76.025496longitud: 39.031864	 id: 99tipo:clatitud:-79.597331longitud: 39.016513	id: 100tipo:dlatitud: -77.631801longitud: 36.684050

	Nodo	Nodo	Nodo	Nodo
listaEstaciones	id: 1 tipo:f latitud: -77.612242 longitud: 37.659873	id: 2tipo:flatitud: -77.064593longitud: 38.869453	 id: 24 tipo: f latitud: -78.591852 longitud: 38.914102 	id: 25tipo: flatitud: -80.102566longitud: 37.673553

	dataSol	dataSol	dataSol	dataSol
conjunto		combustRemanente:	combustRemanente:	
DataSolucion			 distanciaRecorrida	distanciaRecorrida
			tiempoUsado	tiempoUsado
DataSolucion				

	Nodo	Nodo	Nodo	Nodo
Solución	id: 0tipo:dlatitud:-77.494339longitud: 37.60851	id: 95tipo:clatitud:-77.543774longitud: 37.327203	 id: 32tipo:clatitud:-78.502582longitud: 39.305657	id: 0tipo:dlatitud:-77.494339longitud: 37.60851

Propuesta: SA + Swap y SA + 2-opt

Ejemplo Solución Instancia

Propuesta: Greedy

- Búsqueda de óptimos locales
- Prioriza agregar clientes sobre estaciones
- Evalua impacto de agregar cada nodo
- Nodos clientes se van eliminando del arreglo listaClientes
- Por construcción asegura ruta factible

Propuesta: SA + Swap

• ¿Manejo infactibilidad?

D0 c1 c4 c8 c5 c40 c14 f2 d0

D0 c1 c40 c8 c5 c4 c14 f2 d0

Cambio Neto: 3 arcos

Propuesta: SA + 2-opt

- ¿Cómo funciona 2-opt?
- ¿Manejo infactibilidad?

D0 c1 c4 c8 c5 c40 c14 f2 d0

D0 c1 c40 c5 c8 c4 c14 f2 d0

Cambio Neto: 2 arcos

Funcionamiento

Solo Greedy dist: 360.360596 milla tiempo:645.360657 min

Solo SA+Swap dist: 305.178009 milla tiempo: 590.178040 min

Solo SA+2-OPT dist: 353.313995 milla tiempo: 638.314026 min

Experimentos

Set de datos:

- set AB usado por Andelmin y Bartolini (2017)
- 40 instancias con #clientes entre 50 y 100
- Todos los clientes son alcanzables desde el depósito.
- Cada instancia posee información sobre el número de clientes, número de estaciones, tiempo máximo de cada ruta, velocidad (milla/min), tiempo de servicio(min) y tiempo de recarga(min).
- AB = AB1 U AB2
- AB2
 - Vehículos tienen menos autonomía de combustible (distancia máxima menor)
 - Viajan a mayor velocidad (60 [milla/hora])

Estación:

- Subsistema Linux WSL2 para Windows11 64-bits, utilizando un computador LENOVO 82H7 con un procesador 11th Gen Intel(R) Co-re(TM) i7-1165G7 de 2.8GHz, con una memoria RAM 8192 MB.
- Código escrito en C++ usando compilador g++ (Ubuntu 9.4.0).

Experimentos

- Experimento 1:
 Comparar el desempeño de los tres algoritmos por separado en las instancias del set AB1.
 Los parámetros de SA son alpha = 0.8 y T=665.
- Experimento 2: Idem, pero para instancias de AB2

Experimento 3:

Se mide el impacto de la temperatura T inicial con y alpha = 0.8 fijo en SA. Se compara el desempeño de SA con swap y con 2-opt en las instancias del set AB2. Se utilizan las temperaturas T=100, T=50 y T=10.

Resultados

Valores promedio	CalidadSolucion	nClientes	nClientes sin atender	nvehiculos	tiempo Ejecucion
AB1Greedy	1683,781690	71,10	10,15	7,6	0,001428550
AB1_2opt	1525,566571	73,25	8	6.2	0,018343150
ABL Swap	1510,167380	73,25	8	6,2	0,014878200

Cuadro 1: Valores promedio para las instancias del set AB1 del experimento 1

Valores promedio	CalidadSolucion	nClientes	nClientes sin atender	nvehiculos	tiempo Ejecucion
AB2Greedy	1537,813425	73,25	8	6,2	0,00134450
AB2_2opt	1525,566571	73,25	8	6,2	0,01834315
AB2.Swap	1510,167380	73,25	8	6,2	0,01487820

Cuadro 2: Valores promedio para las instancias del set AB2 del experimento 2

Temperatura AB2_2opt	CalidadSolucion Prom	nClientes Prom	nvehiculos Prom	tiempo Ejecución Prom
100	1533,486646	73,25	6,2	0,00769455
50	1524,600549	73,25	6,2	0,00691155
10	1533,213696	73,25	6,2	0,0047513

Cuadro 3: Resultados del experimento 3 para SA más 2-opt con $\alpha=0.8$ constante

Temperatura AB2_Swap	CalidadSolucion Prom	nClientes Prom	nvehiculos Prom	tiempo Ejecucion Prom
100	1522,133582	$73,\!25$	6,2	0,00635715
50	1517,010974	73,25	6,2	0,00585845
10	1526,411865	73,25	6,2	0,00405385

Cuadro 4: Resultados del experimento 3 para SA más Swap con $\alpha=0.8$ constante

Experimentos

Experimento 4:

Se mide el impacto de la tasa de enfriamiento alpha en SA con una temperatura T=100 fija. Se compara el desempeño de SA con swap y con 2-opt en las instancias del set AB2. Se utilizan las tasas alpha=0.99, alpha=0.80 y alpha=0.50

Resultados

Tasa Enfriamiento AB2_2opt	CalidadSolucion Prom	nClientes Prom	nvehiculos Prom	tiempo Ejecucion Prom
0,5	1534,6283750	73,25	6,2	0,00382370
0,8	1533,4866460	73,25	6,2	0,00769455
0,99	1510,693958	73,25	6,2	0,12637840

Cuadro 5: Resultados del experimento 4 para SA más 2
opt con T=100 constante

Tasa Enfriamiento AB2_Swap	CalidadSolucion Prom	nClientes Prom	nvehiculos Prom	tiempo Ejecucion Prom
0,5	1529,209500	73,25	6,2	0,00318150
0,8	1522,133582	73,25	6,2	0,00635715
0,99	1470,317276	73,25	6,2	0,10087005

Cuadro 6: Resultados del experimento 4 para SA más Swap con T=100 constante

Conclusiones

Se concluye que algoritmo de búsqueda Greedy genera una calidad de solución similar a los otros algoritmos, pero con un tiempo de computación un orden de magnitud menor. El efecto del aumento de velocidad y menor autonomía de combustible en las instancias AB2 implica un mejor resultado inicial para Greedy y resultados más homogéneos entre los tres algoritmos. Además, el efecto del aumento de velocidad y menor autonomía de combustible en las instancias AB2 implica un mejor resultado inicial para Greedy y resultados más homogeneos entre los tres algoritmos.

Se concluye que el algoritmo que mejores resultados genera es SA más swap, el cual se desempeña mejor con una tasa de enfriamiento alpha de 0.99. Swap genera una mayor variación en las rutas de vehículos, esto combinado con una tasa de enfriami ento alpha de 0.99 (mayor número de iteraciones) permite una fuerte exploración inicial.

Se concluye que para esta implementación en particular, no es claro el efecto de la temperatura en los algoritmos de SA más heurísticas.

Representación

Algoritmo implementado

Representación

Párametros:

Instance numClients numStations maxTime maxDistance speed serviceTime refuelTime int i = numClients

int s = 1

int Distance

int VehiculoMaxDistance

int VehiculoMaxTime

Matriz para instancia AB101

NodelD	NodeType	Longitud	Latitud
0	d	-77.4943926500	37.6085124500
1	f	-77.6122426000	37.6598733400
•••			•••
1	С	-80.2164056600	36.7724658500
2	С	-77.1808549400	39.6921523900

string sol = ""

int calidadSol

Solución para instancia AB105

String sol = "Nuevo vehiculo D/F0 1c 2c 3c 4c 5c 6c 18f D/F0fin 385 Nuevo vehiculo D/F0 7c 8c 9c 10c ... Distancia total 2.543, 7 vehículos, Tiempo de ejecución: 0.00032 segundos"

Calidad: 2.534 7 vehículos usados Tiempo: 0.00032

En la implementación se usó a GBJ como si fuera Backtracking.

Experimentos

Para GBJ se usaron las instancias de AB101 a AB110 en donde iban variando entre tener 50 o 75 clientes y entre 22 a 26 estaciones de gasolina.

Instancia	Tiempo ejecución [s]	# Vehículos	Calidad solución
AB101 (50c y 22e)	0.00009	16	6460
AB102 (50c y 22e)	0.00083	12	4280
AB103 (50c y 22e)	0.00021	15	5669
AB104 (50c y 26e)	0.00032	7	2543
AB105 (75c y 22e)	0.004	10	3479
AB106 (75c y 22e)	0.007	24	9792
AB107 (75c y 22e)	0.0012	22	8718
AB108 (75c y 22e)	0.0011	20	7574
AB109 (75c y 25e)	0.0053	21	7922
AB110 (75c y 25e)	0.0033	22	8502

Resultados

- AB101 AB102 AB103
- AB104
- AB105 AB106 AB107 AB108
- AB109 AB110

Aportes y conclusiones

Propuesta: GBJ

- Dificultad del problema.
- GBJ como BT en GVRP.
- Mejoras a implementación.

Comparativa

Algoritmo	GBJ	SA + 2 opt	SA + Swap	Greedy
Calidad Solución (rango)	[2543 - 9792]	[1510 - 1525]	[1470-1529]	[1537-1680]
Tiempo Ejecución (rango)	Orden 10^-5 a 10^-3	Orden 10^-3	Orden 10^-3 a 10-2	Orden 10^-3
Cantidad Vehículos (rango)	[7 - 24]	[6-7]	[6-7]	[6-7]
Clientes Atendidos (rango)	[50 - 75]			
Cli sin visitar prom		8	8	8

Green Vehicle Routing Problem

Benjamín Orrego del Río

Víctor Martínez campos

