МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра програмних систем і технологій

Дисципліна

«Ймовірнісні основи програмної інженерії»

Звіт з лабораторної роботи № 3

на тему:

«Двовимірна статистика»

Виконала:	Дрозд Єлизавета Андріївна	Перевірила:	Марцафей А. С.
Група	ІПЗ-12(2)	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		

2022

Мета роботи:

Навчитись використовувати на практиці набуті знання про міри в двовимірній статистиці.

Постановка задачі:

- 1. Намалюйте діаграму розсіювання для даних. Укажіть, чи існує тренд у даних. Якщо так, то вкажіть, чи є це негативним трендом, чи позитивним.
- 2. Знайдіть центр ваги і коваріацію.
- 3. Знайти рівняння лініїї регресії y від x.
- 4. Розрахуйте коефіцієнт кореляції між даними.
- 5. Зробити висновок про залежності.

Побудова математичної моделі:

Формули знаходження центру ваги та коваріації:

2. Regression Lines

C

Consider a sample of bivariate data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ of two related variables X and Y. Let \overline{x} denote the mean of $x_1, x_2, ..., x_n$ and \overline{y} denote the mean of $y_1, y_2, ..., y_n$.

- ightharpoonup The point $G(\bar{x}, \bar{y})$ is called the center of gravity of the data.
- The covariance of the data is defined by: $cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})$.
- An alternative formula for the covariance is: $cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \overline{x} \overline{y}$.

Формули знаходження рівняння лінії регресії:

Consider all lines with equations given by: y = k + mx. Let $d_i = y_i - (k + mx_i)$.

Set $D = \sum_{i=1}^{n} d_i^2$. Among all lines y = k + mx, consider the line that minimizes D. Such a

line is called the *least-squares regression line* that best fits the data. Its coefficients are given by $m = b_1 = \frac{\text{cov}(X,Y)}{\text{Var}(X)}$ and $k = b_0 = \overline{y} - b_1 \overline{x}$.

Note that, the regression line, passes through the center of gravity G of the data as $y = \overline{y} - b_1 \overline{x} + b_1 x$ or $y - \overline{y} = b_1 (x - \overline{x})$.

Формули знаходження коефіцієнта кореляції:

Consider a sample of size n, (x_i, y_i) , i = 1, 2, 3, ..., n, for measured values of two related variables X and Y. Let \overline{x} , \overline{y} , s_x , and s_y denote their means and their standard deviations. The Pearson's sample correlation coefficient r of X and Y is defined as:

$$\dot{r} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Note that the values $\frac{x_i - \overline{x}}{s_x}$ and $\frac{y_i - \overline{y}}{s_y}$ are the z-scores for x_i and y_i , respectively.

Moreover, the above definition can be expressed in any one of the following two forms:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} z_x z_y$$
 or $r = \frac{\text{cov}(X, Y)}{\sigma_x \sigma_y}$

We may also verify that the slope of the regression line of y on x is given by:

$$b_1 = r \frac{\sigma_y}{\sigma_x} = r \frac{s_y}{s_x}$$

70

Псевдокод алгоритму:

```
import matplotlib.pyplot as plt
import sympy as sp
from math import *
s = input('Enter a file name: ')
f1 = open(s, 'r')
f2 = open('output.txt', 'w')
items = f1.read().split()
items.remove(items[0])
time = []
cost = []
while i < len(items):</pre>
    time.append(items[i])
    cost.append(items[j])
    time[k] = time[k].replace(",", ".")
time = [float(i) for i in time]
cost = [int(i) for i in cost]
```

```
task()

plt.scatter(time, cost)

plt.grid(True)

plt.xlabel('time, in minutes')

plt.ylabel('amount, in dollars')

plt.savefig('scatter.png')

fl.close()

f2.close()
```

Випробування алгоритму:

Результат роботи програми при введенні даних із файлу input_10.txt:

"C:\Users\admin\Desktop\2 курс\2 курс 1 семестр\ЙОПІ\LAB3\venv\Scripts\python.exe" "C:/Users/admin/Desktop/2 курс/2 курс 1 семестр/ЙОПІ/LAB3/main.py"
Enter a file name: input in the sit code 0

Результат роботи програми при введенні даних із файлу input_100.txt:

"C:\Users\admin\Desktop\2 курс\2 курс 1 семестр\ЙОПІ\LAB3\venv\Scripts\python.exe" "C:/Users/admin/Desktop/2 курс/2 курс 1 семестр/ЙОПІ/LAB3/main.py"
Enter a file name: 10001-100.171
Process finished with exit code 0

Висновки:

Під час виконання цієї лабораторної роботи я навчилася використовувати здобуті знання про міри в двовимірній статистиці на практиці за допомогою мови програмування Python.