3750 Tutorial 2 - Least Square Calculations

Theory

for a given multi-variable function
$$f(x_1, x_2, ..., x_N)$$
, a minimum occurs when: $\partial f = 0$, $\partial f = 0$, ..., $\partial f = 0$

if we apply this same idea to an error function, we can minimize the error.

when defining the magnitude of a vector, we have 3 choices; i) 1-norm $(|x| = \xi |x|)$ ii) 2-norm $(|x| = |\xi|x|)^2$ iii) ∞ -norm (|x| = max|x|)

The choose to use the 2-norm squared, as this allows us to use calculus; $|x| = \xi |x|^2$

Data Fitting: (approximation)

let $f(x) = ax^2 + bx + C$ where LHS = data 'y' valve

RHS = function of data

'x' valves with unknown

a screte data: who constant coefficients a, b, c

i) for discrete data; non, data constant coefficient $E(a,b,c) = E(RHS - LHS)^2 = E(ax^2 + bx + c - f(x))^2$

-> error should be zero 'in on ideal world'

ii) for continuous data;

$$E(a_1b_1c) = \int (ax^2 + bx + c - f(x))^2 dx$$

-> used to check error associated with a taylor approximation (not obtained data)

In each case, you want to minimize the ever state, to find ophinal selections for your constants. ie. $E(a,b,c) = \sum_{i=1}^{N} (ax_i^2 + bx_i + c - f(x_i))^2$ find, $\frac{\partial E}{\partial a} = 0 = \dots$ $\frac{\partial E}{\partial b} = 0 = \dots$ $\frac{\partial E}{\partial c} = 0 = \dots$ -> this will result in simultaneous equations, use matrices to solve for a, b, c... Why is approximation good? (vs. interpolation) -> allows reasonable data fitting to imperfect data (all experimental data will be imperfect) -> our easily expand general form to suit only relationship you wat. ie $f(x)=a\sqrt{x}+bx+cln(x)+d$. matrix representation for solving a,b in f(x)=ax+b $E(\alpha, b) = \sum_{i=1}^{n} (\alpha x_i + b - f(x_i))^2$ i) error function $\frac{\partial E}{\partial t} = 2 \times \left[\frac{x}{x} \left[(\alpha x_i + b - f(x_i))^* \right] = 0$ [1] ii) find portious as required $\frac{\partial E}{\partial x} = 2 \frac{\partial E}{\partial x} \left(\alpha x_i + b - f(x_i) \right)^{\frac{1}{2}} = 0 \quad [2]$ $[i] \rightarrow 2a \xi x_i^2 + 2b \xi x_i = 2\xi x_i f(x_i)$ III) separate equations by unknown coefficients $[2] \rightarrow 2\alpha \xi x_i + 2b \xi i = 2\xi f(x_i)$ $\mathcal{E}_{x_i}^2$ \mathcal{E}_{x_i} [a] = $\mathcal{E}_{x_i}(x_i)$ | w) formulate as equations

.....