1. <u>Test 12-16</u>

From Harvested File: duybt__Function.doc

Without Templates

Theorem 1: $an \times n + ... + a1 \times + a0$ is $O(\times n)$ for any real numbers an, ..., a0 and any nonnegative number n.

With Templates

an xn + ... + a1 x + a0 is O(xn) for any real numbers an , ..., a0 and any nonnegative number n .

From Harvested File: he__deceives_Report-no-appendix.doc

Without Templates

Theorem 1: calling makeLayer with valid inputs (a list of weights and two non-zero natural numbers) returns a valid layer recognized by isLayer. ("layers.lisp")

Theorem 2: calling makeNetwork with valid inputs (a list of non-zero natural numbers and a list of weights) returns a valid network recognized by isNetwork. ("networks.lisp")

With Templates

calling makeLayer with valid inputs (a list of weights and two non-zero natural numbers) returns a valid layer recognized by isLayer. ("layers.lisp")

calling makeNetwork with valid inputs (a list of non-zero natural numbers and a list of weights) returns a valid network recognized by isNetwork.

("networks.lisp")

From Harvested File: duybt__Function.doc

Without Templates

Theorem 4: $an \times n + ... + a1 \times + a0$ is $\theta(\times n)$ for any real numbers an, ..., a0 and any nonnegative number n.

Let f(x) and g(x) be functions from a set of real numbers to a set of real numbers.

Then

- 1. If f(x)/g(x) = 0, then f(x) is o(g(x)). Note that if f(x) is o(g(x)), then f(x) is O(g(x)).
- 2. If $f(x)/g(x) = \infty$, then g(x) is o(f(x)).
- 3. If $f(x)/g(x) < \infty$, then f(x) is $\theta(g(x))$.
- 4. If $f(x)/g(x) < \infty$, then f(x) is O(g(x)).

For example,

$$(4x^3 + 3x^2 + 5)/(x^4 - 3x^3 - 5x - 4)$$
= $(4/x + 3/x + 5/x + 4)/(1 - 3/x - 5/x + 3 - 4/x + 4) = 0$.

Hence

$$(4x3 + 3x2 + 5)$$
 is $o(x4 - 3x3 - 5x - 4)$,
or equivalently, $(x4 - 3x3 - 5x - 4)$ is $\omega(4x3 + 3x2 + 5)$.

Let us see why these rules hold. Here we give a proof for 4. Others can be proven similarly.

Proof: Suppose $f(x)/g(x) = C_1 < \infty$.

By the definition of limit this means that

 $\forall \varepsilon > 0$, $\exists n_0$ such that $|f(x)/g(x) - C1| < \varepsilon$ whenever $x > n_0$

Hence $-\varepsilon < f(x)/g(x) - C1 < \varepsilon$

Hence $-\varepsilon + C1 < f(x)/g(x) < \varepsilon + C1$

In particular $f(x)/g(x) < \varepsilon + C1$

Hence $f(x) < (\varepsilon + C1)g(x)$

Let $C = \varepsilon + C1$, then f(x) < Cg(x) whenever $x > n_0$.

Since we are interested in non-negative functions f and g, this means that $|f(x)| \le \mathbb{C} |g(x)|$

Hence f(x) = O(g(x)).

With Templates

an xn + ... + a1 x + a0 is $\theta(xn)$ for any real numbers an , ..., a0 and any nonnegative number n .

Let f(x) and g(x) be functions from a set of real numbers to a set of real numbers.

Then

- 1. If f(x)/g(x) = 0, then f(x) is o(g(x)). Note that if f(x) is o(g(x)), then f(x) is O(g(x)).
- 2. If $f(x)/g(x) = \infty$, then g(x) is o(f(x)).
- 3. If $f(x)/g(x) < \infty$, then f(x) is $\theta(g(x))$.

4. If $f(x)/g(x) < \infty$, then f(x) is O(g(x)).

For example,

$$(4x3 + 3x2 + 5)/(x4 - 3x3 - 5x - 4)$$

$$= (4/x + 3/x2 + 5/x4)/(1 - 3/x - 5/x3 - 4/x4) = 0.$$

Hence

$$(4x3 + 3x2 + 5)$$
 is $o(x4 - 3x3 - 5x - 4)$,

or equivalently,
$$(x4 - 3x3 - 5x - 4)$$
 is $\omega(4x3 + 3x2 + 5)$.

Let us see why these rules hold. Here we give a proof for 4. Others can be proven similarly.

Proof: Suppose $f(x)/g(x) = C_1 < \infty$.

By the definition of limit this means that

 $\forall \epsilon > 0$, $\exists n0$ such that $|f(x)/g(x) - C1| < \epsilon$ whenever x > n0

Hence
$$-\varepsilon < f(x)/g(x) - C1 < \varepsilon$$

Hence
$$-\varepsilon + C1 < f(x)/g(x) < \varepsilon + C1$$

In particular $f(x)/g(x) < \varepsilon + C1$

Hence
$$f(x) < (\epsilon + C1)g(x)$$

Let
$$C = \varepsilon + C1$$
, then $f(x) < Cg(x)$ whenever $x > n0$.

Since we are interested in non-negative functions f and g, this means that $|f(x)| \le C |g(x)|$

Hence
$$f(x) = O(g(x))$$
.

test