Learning Domain-Specific Heuristics with Graph Convolutional Networks

Matheus Z. Marcon advisor: Felipe Meneguzzi

matheus.marcon@edu.pucrs.br

Heuristic Planning

- Planning can become expensive.
- Heuristics focus the search on nodes that seem more promising.
- Might trade optimality, completeness and precision for performance.

Heuristic Planning

- Heuristics need to be informative.
- Off-the-shelf heuristics might suffer from poor performance in complex scenarios.

Domain-specific Heuristics

- Domain-independent fail to capture domain singularities.
- Specific design needs expert domain knowledge.
 - → Might be unfeasible for real world problems.

Domain-specific Heuristics

- Domain-independent fail to capture domain singularities.
- Specific design needs expert domain knowledge.
 - → Might be unfeasible for real world problems.

How to find a solution independently of human knowledge?

Graph Convolutional Networks (GCNs):

- Graph-based model with node-wise heuristic values as output.

Dataset

PDDL benchmark domains problem generators.

source: Joerg Hoffman, FF Domain Collection

https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html

Used domains: Blocksworld-4ops and Logistics

n subgraphs for each task

so Initial State for given task

• • •

Sg Goal State for given task

Graph building 8 **Initial State for given task** S0 A* search accuracy speed hFF heuristic ... Sg Expansion level: 0

Expansion level: 1

• • •

• • •

• • •

• • •

S1 2

• • •

n subgraphs for each task

n subgraphs for each task

$$L_h(g) = \frac{1}{N} \sum_{i=1}^{N} (\hat{h}_{i,g} - h_{i,g}^*)^2$$

perfect heuristics for each node

Inference

- Nodes must be expanded before feeding the network.

- Inference happens in constant time.

Conclusions

- Our approach is unable to learn semantic information.
- Good results can be achieved through exhaustive training.
- Unfeasible for large domain instances.

Future Work

- Employ different GCN implementations (varying graph sizes).
- Investigate different network architectures.
- Improve node sampling techniques for graph generation.