Fundamentals of Image Processing

BIP -DLF - Jean-Christophe Taveau

Why Image Processing?

Measurements - Quantification

- Statistics
- Machine Learning

Why Image Processing?

Measurements of ROI

		Res		0 6			
Results					777		200
YM	Circ.	Feret	FeretX	FeretY	FeretAngle	MinFeret	AR
00 18.500	1.000	1.414	338	18	135	1	1.000
69 36.969	0.112	41.485	324	60	74.624	8.995	6.254
00 22.000	1.000	2.236	325	21	116.565	1.000	2.000
20 33.578	0.123	30.529	346	21	121.608	7.203	5.210
39 35.828	0.095	21.954	314	43	59.931	12.000	2.342
00 25.000	1.000	2.236	334	24	116.565	1.000	2.000
00 27.500	1.000	1.414	345	27	135.000	1.000	1.000
00 28.000	0.785	2.828	347	29	45.000	1.414	2.646
57 32.357	0.621	4.472	335	30	116.565	3.000	1.697
00 30.500	1.000	2.236	347	30	153.435	1.000	2.000
00 32.000	1.000	2.828	314	31	135.000	2.000	1.000
00 31.500	1.000	1.414	318	31	135.000	1.000	1.000
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						

- Objects of Interest (Region of Interest)
- Background

Why Image Processing?

Measurements - Quantification

Columns: Features

					Res	ults				- 8
File	Edit	Font F	Results							te a co
	Area	XM	YM	Circ.	Feret	FeretX	FeretY	FeretAngle	MinFeret	AR _
1	1	338.500	18.500	1.000	1.414	338	18	135	1	1.000
2	113	329.969	36.969	0.112	41.485	324	60	74.624	8.995	6.254
3	2	325.500	22.000	1.000	2.236	325	21	116.565	1.000	2.000
4	51	357.520	33.578	0.123	30.529	346	21	121.608	7.203	5.210
5	67	321.739	35.828	0.095	21.954	314	43	59.931	12.000	2.342
6	2	334.500	25.000	1.000	2.236	334	24	116.565	1.000	2.000
7	1	345.500	27.500	1.000	1.414	345	27	135.000	1.000	1.000
8	2	348.000	28.000	0.785	2.828	347	29	45.000	1.414	2.646
9	7	335.357	32.357	0.621	4.472	335	30	116.565	3.000	1.697
10	2	348.000	30.500	1.000	2.236	347	30	153,435	1.000	2.000
11	4	315.000	32.000	1.000	2.828	314	31	135,000	2.000	1.000
12	1	318.500	31.500	1.000	1.414	318	31	135.000	1.000	1.000

Rows: Samples (ROI)

Properties

Image is characterized by:

- (1) Pixels number \rightarrow Resolution
- Pixels number per unit of length of the object to digitize
- Units : dpi (dots per inch) ou ppp (point par pouce)
- 2 Range of gray levels or colors
- → Dynamic range
- 1-bit, 8-bits (256), 16-bits (2 16 =65536), RGB, etc.

2D array of pixels

2D arrays of pixels in a spreadsheet

2D arrays of pixels in ImageJ

2D arrays of pixels in Python

import numpy as np import matplotlib.pyplot as plt

img = np.arange(25).reshape(5,5)

print(img)

```
[[ 0 1 2 3 4]

[ 5 6 7 8 9]

[ 10 11 12 13 14]

[ 15 16 17 18 19]

[ 20 21 22 23 24]]
```


2D arrays of pixels in Python

import numpy as np
import matplotlib.pyplot as plt

img = np.arange(25).reshape(5,5)
plt.imshow(img,cmap='gray')

Web Python Environment: Google Colab

Coordinates

Coordinates in Python with numpy

0,0				4,0
		Ν	±	
	W	х,у	Е	
		S		
0,4			ii.	4,4

```
import numpy as np
img = np.arange(25).reshape(5,5)

pix_XY00 = img[0,0] # Top left
pix_XY40 = img[0,4] # img[Y,X]
pix_XY04 = img[4,0] # Bottom left
pix_XY44 = img[4,4] # Bottom right
```


Dynamic Range

1 bit = 2 values: 0 (False) or 1 (True)

1 byte = 8 bits = 256 gray levels

$$00000000 = 0_{10}$$

$$11111111 = 2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0} = 2^{8} - 1 = 255$$

Other storages: 16bits, float32, float64

Dynamic Range of Color Image

$$color = Red + Green + Blue = 8 + 8 + 8 = 24 bits$$

$$color = Hue + Saturation + Value = 8 + 8 + 8 = 24 bits$$

color = 3-channel image (+ 4th for alpha or transparency)

Dynamic Range of RGB color image

```
import numpy as np
import matplotlib.pyplot as plt
import skimage as ski
```

```
cup = ski.data.coffee()
```

cup.ndim # Return the dim. number

import skimage as ski

cup = ski.data.coffee()
plt.imshow(cup)

→ <matplotlib.image.AxesImage at 0x79e68539c850>

[12] cup.ndim

3

Dynamic Range of RGB color image

```
[ import skimage as ski
    cup = ski.data.coffee()
    plt.imshow(cup)
   <matplotlib.image.AxesImage at 0x79e68539c850>
      50
     100
     150 -
     200 -
     250
     300
     350
                            200
                                     300
                  100
                                               400
                                                         500
```

```
import numpy as np
import matplotlib.pyplot as plt
import skimage as ski

cup = ski.data.coffee()

cup.shape # Return the H x W x Ch

(400, 600, 3)
```


Storage 2D → 1D

0	1	2	3	4		20	21	22	23	24
---	---	---	---	---	--	----	----	----	----	----

Storage 2D → 1D

Storage 2D → 1D

```
index = 9
# Wrong !!
right_neighbor = 9 + 1
```


Other Storages: color image

Planar RGB images shape: (3,5,5)

Other Storages

- → Volume (3D) with voxels
- → RGB Volume (4D)
- \rightarrow Stack of *n* 2D images (*n*D)

Translation, Rotation, Flip, Scaling

0,0		4,0	Rotation +	0,0
			Scaling	70
	2,2		44	EA X 3
0,4		4,4		4.4

Translation, Rotation, Flip, Scaling

Popular Image manipulation

Clustering

Data Augmentation (Deep Learning)

O o	. 2	4	6 6	44	5	_م	5	P _s
5 1 1	حو			99			5	9
3 و ا	3	9	5	£	Ţ	1	P	یک
9 2	5	1	ුර	3	₅ 5	8	ک	6
5 45	9	b	,3	7	0	H	٦	4
55 2	P	5	sk.	2	S	9	٩	5
4 2	<u>ئ</u> ،	, F	9.	8	٥	?	1	4 A
9 6	, J	₄⊱	ş	7	٩	4	٩	9
O 。 C	*	_o 0	્રક	ુ	9	7	B	, \
بر بر	,5	O	ع	_° و	?	0	<u>·</u>	0

Translation, Rotation, Flip, Scaling

Translation, Rotation, Flip, Scaling

```
# Pseudo-code
for each pixel(x',y') of output:
   out[y',x'] = calc_intensity(img,T)
```

Interpolation Schemes

- → Nearest Neighbor
- → Bilinear Interpolation
- → Bicubic Interpolation

-rom Wikipedia

Geometrical Transforms

Translation, Rotation, Flip, Scaling

→ Bilinear Interpolation

$$I_{20,14.5} = rac{15-14.5}{15-14} \cdot 91 + rac{14.5-14}{15-14} \cdot 210 = 150.5, \ I_{21,14.5} = rac{15-14.5}{15-14} \cdot 162 + rac{14.5-14}{15-14} \cdot 95 = 128.5, \ I_{20.2,14.5} = rac{21-20.2}{21-20} \cdot 150.5 + rac{20.2-20}{21-20} \cdot 128.5 = 146.1.$$

Accumulating Transforms

→ Repeating many small rotations of 2° over 360°.

```
rotated = cup
angle = 360 / 180
for i in range(180):
   rotated = ski.transform.rotate(rotated, angle, resize=False)

plt.imshow(rotated)
```


Accumulating Transforms

→ Using 2D matrix of 3x3. Accumulating Transforms = Multiplying matrices

Accumulating Transforms

Fundamentals of Image Processing

BIP -DLF - Jean-Christophe Taveau

Pipeline

Image Enhancement

- Brightness/contrast
- Non Uniform Illumination
- Noise Removal

Segmentation

- Threshold
- Math. Morphology

Image Enhancement

Principle - Brightness / Contrast

Transfer Function: $Y = a \cdot x + b$

Image Enhancement

Principle - Normalization

v' = (v - min) / (max - min)

N: 414720 Mean: 137.016 StdDev: 57.807

StdDev: 57.807 Mod-Value: 112 Cour

Min: 0 Max: 255

Mode: 180 (7480) Count: 1131

Image Enhancement

Non Uniform Illumination - Subtract Background

Removing the Baseline

- Polynomial Functions
- Rolling Ball

Denoising - Filters

Principle - Convolution

Denoising - Filters

Principle - Noise

Impulse Noise (Salt and Pepper)

N: 65536 Min: 0 Mean: 127.974 Max: 255

StdDev: 28.161 Mode: 128 (62339)

Value: 167 Count: 0

Gaussian Noise

N: 65536 Mean: 127.915 StdDev: 24.918

Value: 176

Min: 26 Max: 232

Mode: 129 (1092) Count: 171

Denoising - Filters

Principle - Noise

Denoise Filters:

- Mean 3x3
- Median 3x3

219	216	218
207	0	184
174	195	184

Mean 3x3: All the weights are equal to 1:

Median 3x3: Sorting + Median value

Principle - Noise

Linear Filters:

- Mean
- Weighted Mean

Non-linear Filters:

- Median ***

Separating ROI from background

Methods

- Threshold
- Edges
- Clustering

Binary (1bit) Image

Analyze

Measurements

					Res	ults				□ €
File	Edit	Font F	Results		700	777		-77		100 - 10
	Area	XM	YM	Circ.	Feret	FeretX	FeretY	FeretAngle	MinFeret	AR
1	1	338.500	18.500	1.000	1.414	338	18	135	1	1.000
2	113	329.969	36.969	0.112	41.485	324	60	74.624	8.995	6.254
3	2	325.500	22.000	1.000	2.236	325	21	116.565	1.000	2.000
4	51	357.520	33.578	0.123	30.529	346	21	121.608	7.203	5.210
5	67	321.739	35.828	0.095	21.954	314	43	59.931	12.000	2.342
6	2	334.500	25.000	1.000	2.236	334	24	116.565	1.000	2.000
7	1	345.500	27.500	1.000	1.414	345	27	135.000	1.000	1.000
8	2	348.000	28.000	0.785	2.828	347	29	45.000	1.414	2.646
9	7	335.357	32.357	0.621	4.472	335	30	116.565	3.000	1.697
10	2	348.000	30.500	1.000	2.236	347	30	153,435	1.000	2.000
11	4	315.000	32.000	1.000	2.828	314	31	135,000	2.000	1.000
12	1	318.500	31.500	1.000	1.414	318	31	135.000	1.000	1.000
J	-0.5		Aleman regulation to	acception to the	Scarce St. 475, c. C	242 DSC 1462	53-0-00-0%	Assessment of the Bull W		

- Euclidian Distance : $\sqrt{(x0-x1)} \ ^2 + (y0 - x1)^2$ Pixel connectivity

Analyze - Measurements

- Distance north-south-east-west (city-block or Manhattan). | |x0 - x1| + |y0-y1|

0 1 2 3 4 5 6 7 8

9 0 1 2 3 4 5 617. Begarning Step with a labelled dataset (measurements/features + labels).

2. Prediction Step with an unknown dataset (measurements).

Distance

- Euclidean Distance :

$$\sqrt{(x0 - x1)^2 + (y0 - y1)^2}$$

Pixel connectivity

- Distance north-south-east-west (city-block or Manhattan):

$$|x0 - x1| + |y0-y1|$$

- Distance 8-directions (chessboard):

$$\max(|x0 - x1|, |y0-y1|)$$

Pixel connectivity

- Distance 4-pixel connectivity: factor = 1.273
- Distance 8-pixel connectivity: factor = 0.9
- Factor = NSEW (1.0) + Diagonals ($\sqrt{2}$)

 $A(0,0) \Leftrightarrow B(20,5)$

Length = Pixel_Number / connectivity_factor

Counting

Table L			
Xi	Yi		
Xj	Yj		

Counting

Table K				
×	Y			
Xn	Yn			

Xn	Yn	
		X
Tabl	e L	X
Xi	Yi	X
Xj	Yj	

Table K				
X	Υ			
Xn	Yn			
Xi	Yi			
Xj	Yj			
Xw	Yw			

◆ 25 Objects

Table K				
X	Υ			
Xn	Yn			
Xi	Yi			
Xj	Yj			
Xw	Yw			

Table L

Xi Yi

Xj Yj

23 Objects ▶

Bounding Box - Size

Axis-Aligned Bounding Box

Oriented Bounding Box

Size - Feret's Diameters

Size: Max. Feret Diameter x Min. Feret Diameter

Size - Ellipse

Ellipse

- → Major Axis
- → Minor Axis
- \rightarrow Angle
- → Centroid

Shape Descriptors

```
Circularity = (4 . Area) / \sqrt{(Perimeter)}
```

Roundness = 4. area / (Max_diameter . 2)

Shape Factor = Perim . 2 / (4 . area)

Aspect ratio = Max_diameter / Min_diameter

Compacity = $\sqrt{(4 / \text{Area}) / \text{Max_diameter}}$

Shape Descriptors

Circularity: 4π *area/sqrt(perimeter)

- A value of 1.0 indicates a perfect circle.
- As the value approaches 0.0, it indicates an increasingly elongated shape.
- Values may not be valid for very small particles.

Aspect ratio: major axis/minor axis.

Roundness: 4 . area / $(\pi*sqrt(major axis))$

Solidity: area/convex area.

#	Label	Area	Circ.	AR	Round	Solidity
1	Α	5312	0.335	1.604	0.624	0.701
2	Α	5327	0.369	1.605	0.623	0.706
3	Α	5304	0.328	1.603	0.624	0.699
4	Α	5325	0.314	1.604	0.624	0.703
5	А	5322	0.325	1.601	0.625	0.702

Analyze - Machine Learning

Principle

- 1. Learning Step with a labelled dataset (measurements/features + labels).
- 2. Prediction Step with an unknown dataset (measurements).

Digital Image

Pipeline

Image Enhancement

- Brightness/contrast
- Non Uniform Illumination
- Noise Removal

Segmentation

- Threshold
- Math. Morphology

Image Enhancement

Principle - Brightness / Contrast

Transfer Function: $Y = a \cdot x + b$

Image Enhancement

Principle - Normalization

v' = (v - min) / (max - min)

N: 414720 Mean: 137.016 StdDev: 57.807

StdDev: 57.807 Mod-Value: 112 Cour

Min: 0 Max: 255

Mode: 180 (7480) Count: 1131

Image Enhancement

Non Uniform Illumination - Subtract Background

Removing the Baseline

- Polynomial Functions
- Rolling Ball

Denoising - Filters

Principle - Noise

Impulse Noise (Salt and Pepper)

N: 65536 Min: 0 Mean: 127.974 Max: 255

StdDev: 28.161 Mode: 128 (62339)

Value: 167 Count: 0

Gaussian Noise

N: 65536 Mean: 127.915 StdDev: 24.918

Max: 232 Mode: 129 (1092) Count: 171

Min: 26

Value: 176

Denoising - Filters

Principle - Noise

Denoise Filters:

- Mean 3x3
- Median 3x3

219	216	218
207	0	184
174	195	184

Mean 3x3: All the weights are equal to 1:

Median 3x3: Sorting + Median value

Principle - Noise

Linear Filters:

- Mean
- Weighted Mean

Non-linear Filters:

- Median ***

Separating ROI from background

Methods

- Threshold
- Edges
- Clustering

Binary (1bit) Image

Analyze

Measurements

					Res	ults				□ €
File	Edit	Font F	Results		700	777		-77		100 - 10
	Area	XM	YM	Circ.	Feret	FeretX	FeretY	FeretAngle	MinFeret	AR
1	1	338.500	18.500	1.000	1.414	338	18	135	1	1.000
2	113	329.969	36.969	0.112	41.485	324	60	74.624	8.995	6.254
3	2	325.500	22.000	1.000	2.236	325	21	116.565	1.000	2.000
4	51	357.520	33.578	0.123	30.529	346	21	121.608	7.203	5.210
5	67	321.739	35.828	0.095	21.954	314	43	59.931	12.000	2.342
6	2	334.500	25.000	1.000	2.236	334	24	116.565	1.000	2.000
7	1	345.500	27.500	1.000	1.414	345	27	135.000	1.000	1.000
8	2	348.000	28.000	0.785	2.828	347	29	45.000	1.414	2.646
9	7	335.357	32.357	0.621	4.472	335	30	116.565	3.000	1.697
10	2	348.000	30.500	1.000	2.236	347	30	153,435	1.000	2.000
11	4	315.000	32.000	1.000	2.828	314	31	135,000	2.000	1.000
12	1	318.500	31.500	1.000	1.414	318	31	135.000	1.000	1.000
J	-0.5		Aleman regulation to	acception to the	Scarce St. 475, c. C	202 DSC 1627	53-0-00-0%	Assessment of the Bull W		

- Euclidian Distance : $\sqrt{(x0-x1)} \ ^2 + (y0 - x1)^2$ Pixel connectivity

Analyze - Measurements

- Distance north-south-east-west (city-block or Manhattan). | |x0 - x1| + |y0-y1|

0 1 2 3 4 5 6 7 8

9 0 1 2 3 4 5 617 & arring Step with a labelled dataset (measurements/features + labels).

2. Prediction Step with an unknown dataset (measurements).

- Euclidean Distance :

$$\sqrt{(x0 - x1)^2 + (y0 - y1)^2}$$

Pixel connectivity

- Distance north-south-east-west (city-block or Manhattan):

$$|x0 - x1| + |y0-y1|$$

- Distance 8-directions (chessboard):

$$\max(|x0 - x1|, |y0-y1|)$$

Pixel connectivity

- Distance 4-pixel connectivity: factor = 1.273
- Distance 8-pixel connectivity: factor = 0.9
- Factor = NSEW (1.0) + Diagonals ($\sqrt{2}$)

 $A(0,0) \Leftrightarrow B(20,5)$

Length = Pixel_Number / connectivity_factor

Counting

Table L				
Xi	Yi			
Xj	Yj			

Counting

Table K				
X	Y			
Xn	Yn			

Xi

Χj

	Y	X	Υ
1	Yn	Xn	Yn
		Xi	Yi
ıbl	e L	Xj	Yj
	Yi	Xw	Yw
	Yj		

Table K

◆ 25 Objects

Tabl	Table K				
X	Υ				
Xn	Yn				
Xi	Yi				
Xj	Yj				
Xw	Yw				

23 Objects ▶

Bounding Box - Size

Axis-Aligned Bounding Box

Oriented Bounding Box

Size - Feret's Diameters

Size: Max. Feret Diameter x Min. Feret Diameter

Size - Ellipse

Ellipse

- → Major Axis
- → Minor Axis
- \rightarrow Angle
- → Centroid

Shape Descriptors

```
Circularity = (4 . Area) / \sqrt{(Perimeter)}
```

Roundness = 4. area / (Max_diameter . 2)

Shape Factor = Perim . 2 / (4 . area)

Aspect ratio = Max_diameter / Min_diameter

Compacity = $\sqrt{(4 / \text{Area}) / \text{Max_diameter}}$

Shape Descriptors

Circularity: 4π *area/sqrt(perimeter)

- A value of 1.0 indicates a perfect circle.
- As the value approaches 0.0, it indicates an increasingly elongated shape.
- Values may not be valid for very small particles.

Aspect ratio: major axis/minor axis.

Roundness: 4 . area / $(\pi*sqrt(major axis))$

Solidity: area/convex area.

#	Label	Area	Circ.	AR	Round	Solidity
1	Α	5312	0.335	1.604	0.624	0.701
2	Α	5327	0.369	1.605	0.623	0.706
3	Α	5304	0.328	1.603	0.624	0.699
4	Α	5325	0.314	1.604	0.624	0.703
5	А	5322	0.325	1.601	0.625	0.702

Analyze - Machine Learning

Principle

- 1. Learning Step with a labelled dataset (measurements/features + labels).
- 2. Prediction Step with an unknown dataset (measurements).

Analyze - Machine Learning

Deep

Deep Learning - End to End Approach

Convolutional Neural Network (CNN)

