Unified Simplified Grapheme Acoustic Modeling for Medieval Latin LVCSR

THINKTech

Lili Szabó, Péter Mihajlik, András Balog, Tibor Fegyó

lili@speechtex.com

Motivation

• Digitizing medieval charters when optical character recognition in not sufficient

Challenges

- Latin is not spoken natively
- There is no available speech database, and it is resource-heavy to create one
- Many variants/dialects exists, and we can only make guesses about the pronunciation
- The pronunciation mainly depends on
- the **era** of the read text
- the **georaphical region** where the text originates from
- the **native language** of the speaker

Text data

- In-domain (Monasterium): medieval charters (HU)
- -480k/35k token/type
- Background (Latin Library): historical texts
- -1.3M/115k token/type

Spelling variants

jam		iam	
judex		iudex	
gracia		gratia	

Language model

- 3-gram language model
- Kneser-Ney smoothing

System diagram

- Interpolating the two corpora
- SRILM [2]

Perplexity measures on test

Table 1: Perplexity/OOV rate (%)

Corpus	CZ	HU	PL	All
Monasterium	551/11.8	82/0.9	3130/18.3	479/10.5
Latin Library	3266/7.8	3549/1.6	2305/5.5	2992/9.7
Interpolated	924/3.9	82/0.9	2288/5.5	672/3.5

Speech data

- CZ: 76 hours
- HU:
- -G2P model: 567 hours
- -GRA and USG models: 112 hours
- PL: 31 hours
- RO: 35 hours

Test data

- Independent medieval charters read by historians
- Region of test text origin: CZ, HU, PL • Native language of test speakers: CZ,

Acoustic model

HU, PL, SK

- 6-hidden-layer DNN
- 2000 neurons per layer
- p-norm activation function
- 7000-11000 senones (softmax size)
- Kaldi toolkit [1]

Dimensions of data

- Training text Language CZ Model HU Medieval GRA Latin ASR Acoustic G2P Model USG SK Speaker Evaluate
- - **GRA**: baseline grapheme model **G2P**: grapheme-to-phoneme model **USG**: Unified Simplified Grapheme model

Test text

- gary (HU), mixed
- Bohemia (CZ), Kingdom of Hungary (HU), Kingdom of Poland (PL)
- Speech data: Czech (CZ), Hungarian (HU), Polish (PL), Romanian (RO)
- Native language of test speakers: CZ, HU, PL, Slovak (SK)
- Model type: GRA, G2P, USG

- Region of training text: Kingdom of Hun-
- Region of test text origin: Kingdom of

Figure 1: Medieval Latin Speech Recognizer

Baseline Grapheme Model

- All graphemes are trained
- Only those grapheme models are retained that are part of the Latin alphabet, e.g.
- -keeping model of r
- throwing away model of ř

Table 2: Word Error Rate (WER[%]) results for monolingual grapheme-based acoustic models of Czech, Hungarian, Polish and Romanian (CZ, HU, PL, RO).

	S				
AM Language	CZ	HU	PL	SK	\sum
CZ	53.6	73.8	62.9	45.7	59.0
HU				29.1	
PL	65.0	67.6	46.4	51.1	57.5
RO	53.6	69.1	44.7	43.8	52.8

Knowledge-based grapheme-to-phoneme (G2P) mapping

Figure 2: Latin digraph context-insensitive rewrite rules and context-sensitive rewrite rules. V: vowel, VP: palatal vowel, ^VP: everything but a palatal vowel, C: consonant, *: zero or any, ^: beginning of word, $\lceil stx \rceil$: not s, t or x.

Table 3: WER[%] for Czech-Latin sourcetarget G2P model. Acoustic model training set: 76 hours.

	Latin Test Text					
Speaker	CZ	HU	PL	\sum		
CZ			49.1			
HU			58.7			
PL	53.3	18.2	53.2	41.6		
SK	30.3	30.0	44.0	34.8		
\sum_{i}	43.9	28.9	50.8	41.2		

Table 4: WER[%] for Hungarian-Latin source-target G2P model. Acoustic model training set: 567 hours.

	Latin Test Text					
Speaker	CZ	HU	PL	\sum		
CZ	19.4	6.4	28.0	17.9		
HU			20.2			
PL	28.9	15.4	41.3	28.5		
SK	20.4	9.1	22.9	17.5		
\overline{C}	22.6	12.5	28 1	21 1		

Unified Simplified Grapheme (USG) Model

• Utilizing many available language resources in the hopes that statistical variations help generalizing over different pronunciations

Table 5: Simplification examples for the unified model.

Language	CZ	HU	PL	RC
Orthographic form	řekl	őz	miś	apa
USG transcription	rekl	ΟZ	mis	apa

Table 6: WER[%] for all the three-language

USG models. Speaker CZ HU PL SK \sum AM Language CZ+HU+PL 28.2 28.2 27.7 22.4 26.6 CZ+HU+RO 23.3 21.4 23.9 19.2 **21.9** CZ+PL+RO 24.6 33.1 25.6 19.8 25.8 HU+PL+RO 24.8 21.5 25.7 20.7 23.2

WER[%] for USG model of Czech, Hungarian, Polish and Romanian (CZ+HU+PL+RO).

_							
		Latin Test Text					
	Speaker	CZ	HU	PL	\sum		
	CZ	20.4	11.8	30.7	21.0		
	HU	21.1	14.6	25.7	20.5		
	PL	23.0	10.0	25.7 33.0	22.0		
	SK	14.5	12.7	24.8	17.3		
	$\overline{\sum}$	19.9	12.2	29.0	20.4		

Conclusions

- Knowledge-based G2P modeling is good, but time consuming and restricted
- Four-language USG modeling is the best
- It is able to generalize over different speaker test sets

References

- [1] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
- [2] Stolcke, A.: Srilm an extensible language modeling toolkit. In: In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP). pp. 901–904 (2002)