

PDR Modelling with KOSMA-τ

M. Röllig, V. Ossenkopf-Okada, C. Bruckmann

I. Physikalisches Institut, Universität zu Köln

The KOSMA-τ PDR Code

- 1-D, spherical geometry
 - power-law density profile
 - isotropic illumination
- self-consistent solution of energy- and chemical balance and radiative transfer
- self-shielding of H₂, CO (FGK, Draine & Bertoldi 1997, Visser et al. 2009)
- full dust RT and temp.
 computation for varying dust distribution

The KOSMA-τ PDR Code

- 1-D, spherical geometry
 - power-law density profile
 - isotropic illumination
- self-consistent solution of energy- and chemical balance and radiative transfer
- self-shielding of H₂, CO (FGK, Draine & Bertoldi 1997, Visser et al. 2009)
- full dust RT and temp.
 computation for varying dust distribution
- clumpy cloud composition
 - stochastic clump ensemble
 - KOSMA-τ 3D
 (Andree-Labsch et al. 2017)

Chemistry in KOSMA-τ

- Rate equation approach
- Steady-state chemistry
 - LAPACK: DGESV, DGELSD (least squares), DGESVX (w. equilibration)
- modular chemistry
 - user selects species, code selects reactions, creates conservation equations and computes Jacobian
- isotopologue chemistry: ¹³C and ¹⁸O
 - update to the fractionation reaction from Langer et al. 84 (Mladenovic & Roueff,2014)
 - isotopic reaction set (Röllig et al. 2013)
- Standard database: UDfA 2012 (McElroy et al. 2013)

Chemistry in KOSMA-τ

- Standard database: UDfA 2012
 - reactions with H₂* overcome activation energy
 - CH⁺ and SH⁺ formation (Agundez et al. 2010, Nagy et al. 2012)
 - cyclic and linear-isomers included (new branching ratios from Chabot et al. 2013) with all isotopologues
 - I-C₃H₃+, I-C₃H₂+, I-C₃H₂, I-C₃H
 - additions
 - Fluorine chemistry (Neufeld et al. 2005)
 - Photodissociation of CS₂, N₂O (van Dishoeck et al.)
 - H₂ formation
 - Chemi- & physisorption (Cazaux & Tielens 2002,04,10)

- Coupling of gas-phase and surface chemistry
- Steady-state chemistry
- Rate equation approach (Hasegawa et al. 1992,1993)
- Processes included:
 - adsorption
 - desorption only from 2 top layers
 - thermal desorption
 - photo-desorption photo-dissociative desorption
 - photo-dissociation on grains
 - CR induced photo-desorption/diss.
 - H₂-formation induced desorption
 - chemistry induced desorption
 - surface-surface processes

(only neutrals, no sticking of H₂)

(Aikawa et al. 1996)

(binding energies from UDfA + updates)

(photo cross-section like gas-phase)

 $(eg.JH_2O +hv \rightarrow OH + H Andersson + 08)$

(equivalent to gas-phase)

(Hasegawa & Herbst 1993)

(Willacy et al. 1994, 2007)

(Minissale et al. 2015, Cazaux et al. 2015)

(Langmuir-Hinshelwood)

 $n = 10^4 cm^{-3}$ $\chi = 10^4$ small chemical network

 $n = 10^4 cm^{-3}$ $\chi = 10^4$ small chemical network

 $n = 10^4 cm^{-3}$ $\chi = 10^4$ small chemical network

 $n = 10^4 cm^{-3}$ $\chi = 10^4$ small chemical network

- surface-surface processes (Langmuir-Hinshelwood)
- exoenergetic reactions may lead to desorption (Minissale et al. 2015, Cazaux et al. 2016)

- surface-surface processes (Langmuir-Hinshelwood)
- exoenergetic reactions may lead to desorption of the product (Minissale et al. 2015, Cazaux et al. 2016)

Chemical details with impact

Esplugues et al. 2016

KOSMA-τ with "comparable" setup

Chemical details with impact

Esplugues et al. 2016

→ significantly different ice composition

KOSMA-τ with "comparable" setup plus

(theoretical BRs) $JCO + JO \rightarrow CO_2$ (22%) $JCO + JO \rightarrow JCO_2$ (78%)

Chemical details with impact

Esplugues et al. 2016

→ significantly different ice composition

KOSMA-τ with "comparable" setup **plus**

(measured BRs) $JCO + JO \rightarrow CO_2$ (4%) $JCO + JO \rightarrow JCO_2$ (96%)

- surface-surface processes (Langmuir-Hinshelwood)
- exoenergetic reactions may lead to desorption of both products (Minissale et al. 2015, Cazaux et al. 2016)

- So far assumed that all products desorb with full reaction enthalpy
- Now, we assume that formation energy is distributed across products
 - analogue to free particle decay: $\frac{E_1}{E_2} = \frac{m_1}{m_2}$, : $\frac{E_1}{E_{tot}} = \eta_1 = \frac{m_1}{m_1 + m_2}$
 - $\begin{array}{ll} \bullet & P_{des,i} = e^{-\frac{E_{bind,i}}{\epsilon_i \eta_i \Delta H_r/N_i}}, & \overline{P_{des,i}} = 1 P_{des,i} \\ \bullet & \text{H}_2 \text{ always desorbs} \end{array}$

$$(1-P_{des,1}) \times (1-P_{des,2})$$
 $(1-P_{des,1}) \times P_{des,2}$ $P_{des,1} \times (1-P_{des,2})$ $P_{des,1} \times P_{des,2}$

Röllig et al., in prep

Some example branching rates

• JOH + JO
$$\rightarrow$$
 JO_2 + H $7 \times 10^{-5}(0.019)$
• JOH + JO \rightarrow JO_2 + H $5.7 \times 10^{-4}(-)$
 O_2 + JH $0.11(-)$
 JO_2 + JH $0.89(0.981)$
• JH₂O₂ + JH \rightarrow JH_2 O + OH $0.002(0.021)$
• JH₂O + JOH $0.16(-)$
 JH_2 O + JOH $0.83(0.979)$
• JHCO + JH \rightarrow JCO + H₂ $0.65(0.47)$
• JHCO + JH \rightarrow JCO + JH₂ $0.35(-)$
 CO + JH₂ $0.35(-)$

BRs depend on the energy redistribution.

Other distribution schemes?

 $ICO + IH_2 = 0 (0.53)$

Questions & Concerns

- Binding energies Yes, but which one? (see Wakelam et al. 2017)
- How about surfaces of very small grains? PAHs?
 - Very important for H₂ formation
 - excitation of small hydrocarbons, H₂, high-J CO
- Cross sections of surface photo-processes
 - Important for PDRs because of FUV attenuation/shielding
 - Photodesorption yields?
- Numerical stability? Convergence/steady-state?
 - Including/excluding of
 - · desorption processes
 - grain + gas phase species
 - initial abundances! PDRs are different from dark cloud models
 - Any technical/numerical comments in your papers are much appreciated.
- (Column) density is no observable.

Density is no observable

Column density is no observable

Line intensities are observed

gas+dust phase

Line	$\int T_{mb}dv$ [K km/s]
CO J=1-0	5.8
CO J=2-1	7.3
CO J=3-2	4.3
CO J=4-3	1.4
[CII] 158µm	2.3
[CI] 609 µm	8.7
[CI] 370µm	2.3

gas phase

Line	$\int T_{mb}dv$ [K km/s]
CO J=1-0	0.66
CO J=2-1	0.55
CO J=3-2	0.14
CO J=4-3	0.016
[CII] 158µm	2.1
[CI] 609 µm	9.5
[CI] 370µm	2.6

lower column densities higher intensities!

Excitation matters

gas cooling is significantly reduced in the absence of CO

→ gas temperatur increases

Questions & Concerns

- Densities and column densities are good for inter-model comparison but are no observables.
- Calibrate model against ,derived' (column) densities? Which ones? Derived under which conditions?
 - We need to make sure that model (column) densities can be compared to ,observed' ones.
- Alternatively one could apply radiative transfer and compare against measured intensities!
 - But then we need to know the density/temperature structure.

It might be time for a follow-up round of the PDR-Benchmark.

Thank you for your attention!

