Transform Data

Strategic and Competitive Intelligence

Filippo Chiarello

filippochiarello.90@gmail.com

What you will learn

dplyr is a functional grammar of data manipulation

Which **actions** can be done on data?

Makes data manipulation easy:

- By **constraining** your options, it helps you think about your data manipulation challenges.
- It provides simple verbs, functions that correspond to the most common data manipulation tasks
- Help you translate your thoughts into code

filter: Pick observations by their values

arrange: Reorder the rows

select: Pick variables by their names

mutate: Create new variables (functions of existing variables)

summarise: Collapse many values down to a single summary

group by:changes the scope of each verb to operating on groups of observations

All verbs work similarly:

- 1 The first argument is a data frame.
- 2 The subsequent arguments gives specification about the verbs.
- 3 The result is a new data frame.

output_df <- filter(input_df, color=="blue")

color	value		color	value	
blue	1		blue	1	
black	2		blue	3	
blue	3		blue	4	
blue	4		O Litro	\ \ \ \ \ \ \	ı I £
black	5		ουιρ	out_d	1
inpl	ıt_di	f			

Subset observations based on their values

color	value		color	value
blue	1		blue	1
black	2		blue	3
blue	3		blue	4
blue	4		outro	
black	5		ουιμ	out_a
inpl	ıt_di	f		

Subset observations based on their values

Logical operators

output_df <- arrange(input_df, color)</pre>

color	value		color	value
4	1		1	2
1	2		2	5
5	3		3	4
3	4		4	1
2	5		5	3
input_df outp			outpu	ıt_df

output_df <- mutate(input_df, double = value*2)

color	value
blue	1
black	2
blue	3
blue	4
black	5

input_df

color	value	double
blue	1	2
black	2	4
blue	3	6
blue	4	8
black	5	10

output_df

output_df <- summarise(input_df, total = sum(value)</pre>

color	value
blue	1
black	2
blue	3
blue	4
black	5

tot	al
15	5

output_df <- summarise(input_df, total = sum(value)

summarise() is not terribly useful unless we pair it with group_by()

blue	1
black	2
blue	3
blue	4
black	5

15

group_by changes the unit of analysis from the complete dataset to individual groups.

> by_color <- group_by(input_df, color)

> **summarise**(by_color, total = sum(value))

color	value
blue	1
black	2
blue	3
blue	4
black	5

color	total
blue	8
black	7

> input_df <- import_csv("mydata.csv")

> by_color <- group_by(input_df, color)

> output_df <- summarise(by_color, total = sum(value))

Combining multiple operations with the pipe

Takes the member in the left and passes it as first argument of the function in the right

- > input_df <- import_csv("mydata.csv")
- > by_color <- group_by(input_df, color)
- > output_df <- summarise(by_color, total = sum(value))

output_df <- import_csv("mydata.csv") %>%
group_by(color) %>%
summarise(total = sum(value))

Exercise

TransformData.R

- 1: Find all flights that had an arrival delay of two or more hours
- 2: Find all flights that flew to Houston (IAH or HOU)
- 3. Find all flights that departed between midnight and 6am (inclusive)
- 4: Compare air_time with arr_time dep_time. What do you expect to see?
- 5: Find the 10 most delayed flights
- 6: Look at the number of cancelled flights per day. Is there a pattern?
- 7: Is the proportion of cancelled flights related to the average delay?
- 8: What time of day should you fly if you want to avoid delays as much as possible?
- 9: Create your own questions [2]
- 10: Answer to a questions make by a colleague [2]