

Hand Shadow Puppet Recognition

Team Members

Syed Rifat Raiyan — 180041205

Zibran Zarif Amio — **180041209**

CSE 4836

Pattern Recognition Lab

Introduction

Hand Shadow Puppetry

Definition:

Hand Shadow Puppetry, also known as *shadowgraphy* or *ombromanie* is the art of performing a story or show using images made by hand shadows. It can be called "cinema in silhouette".

How does it work?

The puppeteer places his **hands between a light source and a translucent screen** to create shadows or silhouettes that resemble different **animals**.

Screen

Puppeteer

Motivation

Our Inspiration to Pursue the Topic

- **Novelty factor** To the best of our knowledge, **no** explicitly vision-related work or dataset exists on this topic of hand shadow puppet classification.
 - ➤ Some of the closely related works, however, will be mentioned in a bit...
- Utility
 - ✓ **Tool for teaching** performance art
 - ✓ **Recreational app** for kids
 - ✓ Enabling the development of sophisticated algorithms for automatic **recognition**, **classification**, or even **generation** of ombromanie performances
- Nostalgia incentivized by childhood memories during the load-shedding days.

Problem Formulation

The Precise Statement of the Problem

To classify 2D silhouette images of hand shadow puppets based on the animal being portrayed by the hands of the puppeteer.

Related Work and Dataset

Research Literature on Shadow Puppetry

As mentioned before, we **haven't found any prominent work** on hand shadow puppet image classification.

Prominent Works: (closely related topics)

- In **Robotics**,
 - (Huang *et al.*)[1] introduced a framework that enables **robotic arms** to **perform hand shadow puppetry** by matching shape correspondences of input image.
- In Human-Computer Interaction,
 - (Zhang *et al.*)[2] worked on **emulating** the movements and body **gestures of a performer** on **Chinese shadow puppets** using Kinect sensor.
 - (Carr *et al.*)[3] built a real-time **Indonesian shadow puppet** storytelling application using the Microsoft Kinect sensor capable of **mimicking full-body actions** of user.
- In Computer Graphics,
 - (Huang et al.)[4] generated **3D models** of animals from shadow puppet images.

Dataset:

• Human Posture Silhouettes [5] - 4,800 binary images of silhouettes used for **human posture recognition**.

Our Work

What the project entails

- **Data Collection** Gathered a total of **8,340 images** of hand shadow puppets.
 - ✓ From 45 professional hand shadow puppeteer clips and 22 amateur clips.
 - ✓ Across 11 classes.

- **Benchmarking** Established benchmarks for the dataset.
 - ✓ With **12** baseline pre-trained Pytorch image classification architectures.
 - ✓ Found **efficacy of convolutional models over transformer-based models** in silhouette classification.

Data Collection and Preprocessing

Dataset Statistics

General statistical analysis of the dataset

Class Label	# of samples		
Bird	808		
Chicken	820		
Cow	635		
Crab	695		
Deer	802		
Dog	831		
Elephant	735		
Moose	716		
Panther	763		
Rabbit	763		
Snail	772		

Classes

Examples of some sample images

Variations

- ✓ Different species of animals. (Low intra-class similarity)
- ✓ Different orientations.
- ✓ Different background colors.
- ✓ **Inter-class similarity** between some classes.
- ✓ Different hand structures (more **diversity**).

Pro:Novice ratio ≈ 80:20

Results

Tentative Benchmarking Results

Models	Val. Accuracy (%)		
	Top-1	Top-2	Top-3
ViTL32 (307M)	73.93	81.42	86.83
SwinV2B	83.06	88.25	92.85
ConvNeXt Large	83.35	88.11	92.10
GoogLeNet (23M)	83.38	88.54	93.04
MNasNet13	83.54	87.77	90.79
VGG16 (138M)	83.54	87.95	91.70
MaxViT	84.37	89.72	93.76
DenseNet201 (20.2M)	85.79	90.09	92.21
MobileNetV3Large (5.4M)	86.11	90.25	93.52
RegNetX32GF	86.45	91.46	93.34
ResNet152 (60.4M)	86.80	91.46	94.13
InceptionV3 (23.9M)	88.27	93.65	95.42

• Key Takeaways

- ✓ **Inception V3 outperforms** every other model by \sim 2%.
- ✓ Light-weight model **MobileNetV3Large** perform exceptionally **well**, despite having the lowest parameters (**mobile app!**).

- **ResNet152** comparatively less compact (2nd best)
 - ViTL32 too many overlaps and outliers (worst performance!)
 - See our report for more...

Results

Attention Heatmaps

DenseNet201's dense block 4 (last layer) attention weights (using GradCam) –

Fig. 6: Attention Heatmaps of 2 samples from each class.

Common-sense distinguishing features

- ✓ **Bird** wingspan, beak
- ✓ **Chicken** comb
- ✓ **Cow** horn, concave head
- ✓ Crab appendages
- ✓ **Deer** horns
- ✓ **Dog** slanted head, ears
- ✓ **Elephant** tusks
- ✓ **Moose** upright horns
- ✓ **Panther** eyes and ears
- ✓ **Rabbit** small hands and mouth
- ✓ **Snail** shell, antennae

Results

Error Analysis

Most of the misclassifications are among visually similar classes.

predicted: birdFrames Ground Truth: crab predicted: dogFrames

Ground Truth: panther

predicted: mooseFrames

Limitations

Scopes of improvement

- Our work still has some ground to build upon,
 - ✓ Introducing samples with **more diversified** hand/palm/wrist structures.
 - ✓ Exploring **two different approaches** to classify RGB images of the hand
 - ➤ Feature Extraction after **RGB** to grayscale silhouette conversion (using pre-processing DIP techniques).
 - ➤ Utilizing **depth information** and coordinates of **hand landmarks** as features (using MediaPipe).
 - ✓ Yields high accuracy in Sign Language Recognition tasks, as per recently published research works.

Silhouette/

Shadow

RGB Input

Image of puppeteer's

hand

Conclusion and Future Work

Summary of our contributions

- We introduce the **first documented dataset** on Ombromanie/Hand Shadow Puppet images for image classification.
- We provide a **detailed statistical analysis** of our dataset.
- We employ a range of **12 image classification models** as baselines to perform **benchmarking** for the dataset.
- We provide **visualizations** of the models' **feature space** and **attention** tendencies.
- Our **findings** are,
 - ✓ Convolutional models outperform transformer-based models in silhouette classification.
 - ✓ May be due to insufficient training samples.

References

Works Cited in This Presentation

- [1] Z. Huang, V. K. Madaram, S. Albadrani, and T. V. Nguyen, "Shadow puppetry with robotic arms," in *Proceedings of the 25th ACM international conference on Multimedia*, pp. 1251–1252, 2017.
- [2] H. Zhang, Y. Song, Z. Chen, J. Cai, and K. Lu, "Chinese shadow puppetry with an interactive interface using the kinect sensor," in *Computer Vision–ECCV* 2012. Workshops and Demonstrations: Florence, Italy, October 7-13, 2012, Proceedings, Part I 12, pp. 352–361, Springer, 2012.
- [3] B. M. Carr and G. J. Brown, "Shadow puppetry using the kinect," 2014.
- [4] M. Huang, S. Mehrotra, and F. Sparacino, "Shadow vision," 1999.
- [5] https://www.kaggle.com/datasets/deepshah16/silhouettes-of-human-posture