MOwNiT – Aproksymacja średniokwadratowa wielomianami algebraicznymi

Przygotował: Szymon Budziak

Problem:

Dla poniższej funkcji:

$$f(x) = x^2 - m \cdot \cos\left(\frac{\pi x}{k}\right)$$

k=1, m=10, [-7, 7]

wyznaczyć jej wartości w n dyskretnych punktach. Następnie w oparciu o te punkty wyznaczyć przybliżenie funkcji wykorzystując aproksymację średniokwadratową wielomianami algebraicznymi. Wykonać eksperymenty numeryczne dla różnej liczby punktów dyskretyzacji oraz układów funkcji bazowych zawierających różną liczbę funkcji. Oszacować błędy przybliżenia. Graficznie zilustrować interesujące przypadki.

Wykres funkcji

Wykres 1: Wykres funkcji podanej w problemie

Aproksymacja średniokwadratowa wielomianami algebraicznymi

Do aproksymacji średniokwadratowej wielomianami algebraicznymi został użyty wzór w postaci macierzowej:

$$\begin{pmatrix} \sum w_{i} & \sum w_{i}x_{i} & \sum w_{i}x_{i}^{2} & \dots & \sum w_{i}x_{i}^{m} \\ \sum w_{i}x_{i} & \sum w_{i}x_{i}^{2} & \sum w_{i}x_{i}^{3} & \dots & \sum w_{i}x_{i}^{m+1} \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \sum w_{i}x_{i}^{m} & \sum w_{i}x_{i}^{m+1} & \sum w_{i}x_{i}^{m+2} & \dots & \sum w_{i}x_{i}^{2m} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{m} \end{pmatrix} = \begin{pmatrix} \sum w_{i}F_{i} \\ \sum w_{i}F_{i}x_{i} \\ \vdots \\ \sum w_{i}F_{i}x_{i}^{m} \end{pmatrix}$$

$$= \begin{pmatrix} \sum w_{i}F_{i} \\ \sum w_{i}F_{i}x_{i} \\ \vdots \\ \sum w_{i}F_{i}x_{i}^{m} \end{pmatrix}$$

$$\underline{G} \cdot A = B$$

Jeżeli:

- 1) $x_0, x_1, ..., x_n$ są różne
- 2) m <= n

to det(G) ≠ 0 -> układ ma jedno rozwiązanie Jednak w praktyce:

- 1) m << n (korzystamy z dużej ilości informacji)
- 2) m wysoki by dobrze przybliżyć funkcję
- 3) m niski by wygładzić błędy
- 4) zwykle m \leq 6

Przykładowe wykresy dla

Wykres 2: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 5 węzłów i stopnia wielomianu 3

Wykres 3: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 12 węzłów i stopnia wielomianu 5

Wykres 4: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 15 węzłów i stopnia wielomianu 6

Wykres 5: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 15 węzłów i stopnia wielomianu 12

Wykres 6: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 25 węzłów i stopnia wielomianu 10

Wykres 7: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 25 węzłów i stopnia wielomianu 15

Wykres 8: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 40 węzłów i stopnia wielomianu 3

Wykres 9: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 45 węzłów i stopnia wielomianu 25

Wykres 10: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 60 węzłów i stopnia wielomianu 30

Błędy obliczeniowe

Błędy obliczeniowe zostały wykonane dla błędu maksymalnego punktów (maksymalny błąd z wartości bezwzględnej różnicy pomiędzy kolejnymi punktami) oraz dla błędu sumy kwadratów punktów (suma kwadratów różnic kolejnych punktów). Liczby węzłów jakie zostały wzięte pod uwagę to: 4, 5, 7, 10, 15, 20, 30, 50 oraz m (stopień wielomianu): 2, 5, 8, 10, 12, 15.

n	m	Is approximation max error	proximation sum square
4	2	39,720	447149,781
5	2	74,296	1558274,095
7	2	42,603	243926,195
10	2	32,913	163247,870
15	2	24,697	103360,347
20	2	82,606	2021834,928
30	2	36,498	371523,720
50	2	19,908	104959,515
4	5	18,921	88175,076
5	5	19,235	101736,768
7	5	18,898	69355,518
10	5	29,640	179831,513
15	5	35,794	315682,230
20	5	19,548	101917,018
30	5	21,556	100850,157
50	5	19,404	79095,846
4	8	19,288	84321,192
5	8	26,093	116412,574
7	8	38,037	290068,935
10	8	15,138	60604,467
15	8	19,134	110209,233
20	8	19,961	96402,768
30	8	19,899	90047,612
50	8	19,962	96899,836
4	10	39,667	277774,633
5	10	11,474	50945,622
7	10	12,348	48299,409
10	10	12,615	49284,785
15	10	32,044	107582,077
20	10	2830,673	491020100,309
30	10	40,447	273766,589
50	10	11,116	50430,088
4	12	11,848	47777,983
5	12	11,623	45002,097
7	12	12,239	47608,040
10	12	50,619	147139,629
15	12	41,207	271037,096
20	12	10,936	50079,650
30	12	11,682	47713,814
50	12	11,322	44425,729
4	15	10,442	43922,945

5	15	14,575	39017,646
7	15	41,800	269707,928
10	15	10,825	49830,512
15	15	11,630	47703,101
20	15	11,334	44180,081
30	15	10,434	43353,587
50	15	11,386	34251,633

Tabela 1: Błąd obliczeniowy dla aproksymacji średniokwadratowej wielomianami algebraicznymi

Z tabeli 1 możemy zauważyć, że minimalny błąd jest dla liczby węzłów 30 oraz stopnia wielomianu równego 15 dla max error. Natomiast dla max square error minimalny błąd jest dla liczby węzłów 50 i stopnia wielomianu 15.

Wykres 11: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 30 węzłów i stopnia wielomianu 15

Wykres 12: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 50 węzłów i stopnia wielomianu 15

Efekt Rungego

W przypadku aproksymacji średniokwadratowej wielomianami algebraicznymi możemy zaobserwować efekt Rungego. Efekt Rungego jest to pogorszenie jakości interpolacji (aproksymacji) wielomianowej, mimo zwiększenia liczby jej węzłów. Początkowo ze wzrostem liczby węzłów *n* przybliżenie poprawia się, jednak po dalszym wzroście *n*, zaczyna się pogarszać, co jest szczególnie widoczne na końcach przedziałów. Dla naszej funkcji efekt Rungego możemy już zaobserwować dla liczby węzłów 13 i stopnia wielomianu równego 13.

Wykres 13: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 13 węzłów i stopnia wielomianu 13

Wykres 14: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 20 węzłów i stopnia wielomianu 20

Wykres 15: Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 40 węzłów i stopnia wielomianu 30

Na przedstawionych wykresach można zauważyć odgięcia na krańcach przedziałów, które są właśnie efektem Rungego, czyli w naszym przypadku błędem aproksymacji.

Literatura:

- [1] Wykłady nr 4 dr Rycerz z przedmiotu MOwNiT
- [2] Wikipedia na temat Aproksymacji średniokwadratowej