end	PHYMAC MM7	24/10-6
	Error Control Codhe - MM7	
	Linear systematic block code	
	A code word:	
	An (n,k) Data Icheck) Code K-bit r-bit	
	N-bit code	
	A code is a mapping	
	Data Cade # 2 K 2 K bit N bit	
	2 legal Code Words 2 possible words	
	(2 - 2) illesal words (we want to detect these)	
	Model: channel code Tx Rx Data	

Jend	PHY/MAC MM7	24/10-16
	The Check bits are calculated by the parity equations:	3
	Binit numbering: $C_1 C_2 C_3 \ldots C_n = d_1 d_2 \ldots d_k r_1 \ldots r_2$	
	M1 = CK+1 = P11 · d1 + P21 d2 + + PK2 dK	
	ro = < n = P + 2 ' d2 + P = d2 + . + P K d K	
	rr = Ckrr = P1rd1 + - + PKrdK	
	and also Lesand:	
	C1 = d1 d: data bit) Bino	ary numbers
	Ch = do C: code bits il mo Ck = dk r: check bits P: parity constants	dulo-2
	Modulo - 2 calculations	
	A B A + B A · B O O O O O O 1 1 O 1 1 1 O 1 1 1 O 1	
	XOR AND	

aemd	PHY/MAC MM7 8-4/10-16
	Hamming metric Hamming weight: The number or ones in the word
	Hammins distance: The number of places the two
	Exs 2
	C1= 100 001
	Cg = 01-0 1-01
	$\omega(\bar{c}_1) = 3$ - number of one $d(\bar{c}_1,\bar{c}_2) = 4$ - nr places the two differ
	Theorem $\omega(c_1+c_2)=d(c_1,c_2)$
	$\frac{E \times s}{C_1 + C_2} = 110110 \omega = 4$
	d C C4 , C2 \ = 4
	Minimum distance & Cor almin) The minimum distance that can be found
	between any two code words in a code.
	Theorem: (S=is equal to the weight of the "Iishtest" code word in a linear code
	apart from the all-zero word