者表現出的電特性很類似(都是在逆向偏壓達到某個值時造成電流的激增)易引起混淆,因此底下特別對 V_{PT} 的量測以及與 V_{BD} 間的分辨作一介紹。由圖5-11,當元件發生貫穿時,次臨界斜率會明顯變大,因此我們可針對不同的 V_{D} 值來量其次臨界特性曲線,當次臨界斜率改變時的 V_{D} 即為 V_{PT} 。此種方式雖然可準確地決定 V_{PT} ,但缺點是耗時,因此業界常採用另一種量測方式。觀察圖5-12,不論 V_{G} 值大或是小,一旦發生貫穿都會引起 I_{D} 的激增。所以,最簡單的量測方式就是固定 $V_{S}=V_{B}=V_{G}=0V$,掃描(sweep) V_{D} 並量測 I_{D} 值,當 I_{D} 達到某個足夠大的預設值(如 $1\mu A$)時的 V_{D} 值就為元件的崩潰電壓(device breakdown voltage) BVD。注意,這個崩潰電壓可能是汲極與基底接面間的接面崩潰電壓 V_{BD} 或是汲極經由基底本體到源極之貫穿電壓 V_{PT} 。然而,經由判斷 I_{D} 是流到基底端(形成 I_{B})或是流到源極端(形成 I_{S}),就可分辨出是 V_{BD} 或是 V_{PT} ,如圖 V_{D} 13之示意圖所示。

圖 5-13 接面崩潰與貫穿的電流路徑示意圖。