1 Foncteur dérivé de la composition

Définitio 1.1. Une classe d'objets $\mathcal{R} \subset \operatorname{Ob} \mathcal{A}$ est dite adaptée à un foncteur exacte (à gauche ou à droite) F si elle est stable sous sommes directes finies et satisfait aux conditions suivantes :

- 1. Pour F exacte à gauche (/à droite) : F envoie un complexe acyclique de $\mathrm{Kom}^+ \, \mathfrak{R}$ (/ $\mathrm{Kom}^- \, \mathfrak{R}$) dans un comolexe acyclique.
- 2. Pour F exacte à gauche (/à droite) : tout objet de A est un sous-objet (/quotient) d'un objet de R.

Théorème 1.2. Soit \mathcal{A} , \mathcal{B} , \mathcal{C} des catégories abéliennes, $F:\mathcal{A}\to\mathcal{B}$, $G:\mathcal{B}\to\mathcal{C}$ deux foncteurs additifs exactes á gauche. Soit $\mathcal{R}_{\mathcal{A}} \subset \operatorname{Ob} \mathcal{A}$ etc. une classe d'objets adaptée à F (G resp.) et $F(\mathcal{R}_{\mathcal{A}}) \subset \mathcal{R}_{\mathcal{B}}$. Alors les foncteurs dérivés RF, RG, $R(G \circ F)$ existent et le morphisme naturel de foncteur

$$E: R(G \circ F) \to RG \circ RF$$

est un isomorphisme.

On obtient un résultat similaire pour les foncteurs exactes à droite.

Dans la théorie classique, on considère plutôt $R^i(G \circ F)$ et $R^pG(R^qF)$ d'un objet. Ces deux groupes sont reliés par une suite spectrale. Plus précisément, dans cette situation, une suite spectrale encode (tout en perdant quelques informations) l'isomorphisme de foncteurs E.

$\mathbf{2}$ Suites spectrales abstraites

Soit \mathcal{A} une catégorie abélienne. Une suite spectrale dans \mathcal{A} consiste

- $\begin{array}{l} -\text{ d'une famille d'objets dans }\mathcal{A}\text{ de la forme }E=(E_r^{pq},E^n)_{p,q\in\mathbb{Z}\,;\,r\in\mathbb{N}},\\ -\text{ de morphismes }(d_r^{pq}:E_r^{pq}\to E_r^{p+r,q-r+1}\;,\,\alpha_r^{pq}:\mathrm{H}^{pq}(E_r)\to E_{r+1}^{pq}\text{ où }\mathrm{H}^{pq}(E_r)=\mathrm{Ker}\,d_r^{pq}/\operatorname{Im}d_r^{p+r,q-r+1},\\ \end{array}$
- d'une filtration décroisante sur $E^n \forall n$,

soumis aux conditions suivantes:

- 1. $d_r^2 = 0$ ce qui fait de $H^{pq}(E_r)$ la cohomologie de la $r^{i \text{ème}}$ feuille.
- 2. Les α_r^{pq} sont des isomorphisme (d'où on peut calculer les feuilles par récurrence).

Et les conditions optionelles

- 3. L'existence d'un objet de limite (sous les α 's) E^{pq}_{∞} la dernière feuille.
- 4. Pour toute paire (p,q) $\exists r_0$ tel que $d_r^{pq} = d_r^{p+r,q-r+1} = 0 \forall r \geq r_0$. Dans ce cas, tous les E_r^{pq} s'identifient pour $r \geq r_0$ et on denote cela par E_{∞}^{pq} .
- 5. Les filtration sur les E^n relient les objets sur la dernière feuille : les E^{pq}_{∞} et les E^n (sur la diagonale) : Elles soient régilières et on dispose d'isomorphismes $E^{pq}_{\infty} \to F^p E^{p+q}/F^{p+1} E^{p+q}$.

On dit que «la suite spectrale (E_r^{pq}) converge vers (E^n) .»

Théorème 2.1. Sous les conditions du théorème précédent, soit $\mathcal{R}_{\mathcal{A}} = \mathcal{I}_{\mathcal{A}}$ et $\mathcal{I}_{\mathcal{B}}$ assez large. Alors pour tout $X \in Ob \mathcal{A}$ il existe une suite spectrale

$$E_r^{pq} = R^p G(R^q F(X))$$

qui converge vers $E^n = R^n(G \circ F)(X)$.

Dans les application, il se produit souvent (si on travaille avec des compplexes bornés) que les seules objets non-zéros d'une suite spectrale se trouve dans un seul quadrant. Plus d'objets zéros, plus facile la calculation. On dit que E se dégénère à E_r si $d_{r'}^{pq} = 0$ pour $r' \geq r$ et $\forall p, q$.

Un morphisme de suites spectrales soit compatible aux structures mentionnées. Cela fait des suites spectrales une catégorie additive (mais en général non. abélienne).

3 Calculer des suites spectrales

Tout en étant facile la calculation d'une suite spectrale d'un complexe filtré est pénible en général (les filtration canoniques ou stupides sont ok).

Pour un bi-complexe on obtient deux suites spectrales. Si on fixe l'un des superscript, on peut calculer deux cohomologie. En les composant, on obtient

$$\mathrm{H}_{II}^{j}\left(\mathrm{H}_{I}^{i\bullet}(L^{\bullet\bullet})\right) \qquad \text{ et } \qquad \mathrm{H}_{I}^{i}\left(\mathrm{H}_{II}^{\bullet j}(L^{\bullet\bullet})\right)$$

de façon évidente. On a deux filtrations décroisantes

$$F_I^p(\operatorname{tot}(L))^n = \bigoplus_{i+j=n, j \geq p} L^{ij} \qquad \text{ et } \qquad F_{II}^q(\operatorname{tot}(L))^n = \bigoplus_{i+j=n, i \geq q} L^{ij}.$$

La construction d'une suite spectrale pour un complexe filtré produit donc deux suites spectrales : ${}^{\prime}E_r^{pq}$. Et ${}^{\prime\prime}E_r^{pq}$. Si les filtrations de ces suites spectrales sont finies et regilères, les suites spectrales convergent à une limite commune $H^n(\text{tot}(L))$. On peut computer les termes de la deuxième feuille :

Proposition 3.1. On a
$${}^{\prime}E_2^{pq} = \mathrm{H}_I^q \left(\mathrm{H}_{II}^{\bullet p}(L^{\bullet \bullet}) \right), \, {}^{\prime\prime}E_2^{pq} = \mathrm{H}_{II}^p \left(\mathrm{H}_I^{q \bullet}(L^{\bullet \bullet}) \right).$$

C'est utilisé pour la hypercohomologie par exemple. Soit G un foncteur, L un double complexe. Alors, l'hypercohomologie de G par rapport à L est la limite de la suite spectrale E_r^{pq} par rapport à la filtration $F_{II}^qG(\text{tot}(L))=G(F_{II}^q(\text{tot}(L)))$. Pour la cohomologie de deRham par exemple, L est le complexe de deRham, G est le foncteur de sections gobales.

Références

- [1] Danilov, V.I.: Cohomology of algebraic varieties. In Shafarevich, I.R. (ed.): Algebraic Geometry II. Encyclopeadia of Mathematical Sciences 35, Springer-Verlag Berlin Heidelberg, (1996).
- [2] GELFAND, S.I.; MANIN, Yu.I.: Methods of Homological Algebra. Springer-Verlag Berlin Heidelberg, (1996).