Projeções Geométricas Planas

Projeções Geométricas Planas

A (imagem da) projeção de um ponto é a intersecção da projetante com o plano.

Exemplos

Projeção Perspetiva

Projeção Paralela

Nota: É um caso particular da Projeção Perspectiva

Uma classificação das projeções no desenho técnico

Central ou Cónica (Perspectiva)

Paralela

Oblíqua

Ortogonal

Simples

Axonométrica

Isométrica

Dimétrica

Trimétrica

Cotada

Dupla

Múltipla

Método Europeu, do 1.º Diedro ou Método E

Método Americano, do 3.º Diedro ou Método A

$$P' = P_P = M_{projecão}$$
 . P

PROJEÇÕES ORTOGONAIS MÚLTIPLAS

(Método Europeu)

PROJEÇÕES ORTOGONAIS MÚLTIPLAS

(Método Europeu)

As diferenças entre os métodos A e E baseiam-se nas relações entre:

- (1) Observador
- (2) Objeto
- (3) Plano de projeção.

Método A: (3) entre (1) e (2)

Método E: (2) entre (1) e (3)

É usual aproveitar-se o quadrante livre para uma representação do objeto noutro tipo de projeção (oblíqua, no exemplo ao lado).

Matemática da Projeção Ortogonal

$$P' = M_{ORT} \cdot P$$

Alçado Principal:

$$\mathbf{M}_{\mathsf{ORT}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Planta:

$$\mathbf{M}_{ORT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Z

etc.

Prós e contras:

- + Mostra as dimensões exatas das faces paralelas ao plano de projeção.
- Pode ser difícil avaliar a forma tridimensional do objecto.

Composição de Transformações na Projeção Ortogonal

Conhecendo-se a matriz Mort do Alçado Principal e recordando que

$$\mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

facilmente se prova que M_{ORT} . $R_x(90^\circ)$ coincide com a matriz da Planta:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Conclusão:

A interpretação geométrica com base em rotações é uma solução alternativa mais simples à dedução matemática direta de cada matriz de projeção, bastando ter-se a matriz do alçado principal e rodar-se previamente o objeto em torno do eixo adequado.

Método A

3D Flash Animator

Método E

3D Studio Max

Projeção Oblíqua

$$P(0, 0, -1) \rightarrow P'(\ell \cos \alpha, \ell \sin \alpha, 0)$$

Direção de projeção:

DOP = P - P' =
$$\begin{bmatrix} -\ell \cos \alpha \\ -\ell \sin \alpha \\ -1 \end{bmatrix}$$

 ℓ – fator de redução ou de encurtamento (*Foreshortening Ratio*)

α – ângulo de fuga

(valores medidos no espaço da imagem)

Plano de projeção: xy

Projeção Oblíqua

- $P (0, 0, z) \rightarrow P' (-z \ell \cos \alpha, -z \ell \sin \alpha, 0)$

Ponto genérico:

$$\mathsf{M}_{\mathsf{OBL}} = \begin{bmatrix} 1 & 0 & -\ell \cos \alpha & 0 \\ 0 & 1 & -\ell \sin \alpha & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Projeção Oblíqua

As projeções oblíquas são determinadas/caracterizadas

- Pelo ângulo β que as projetantes fazem com o plano de projecção (z=0) (ℓ é função de β)
- Pela orientação das projetantes, independentemente do ângulo com o plano de projecção (embora a amplitude de α possa ser qualquer, habitualmente usam-se valores de 45° ou 30°).

(Na prática não se usam valores $\ell > 1$; nestes exemplos fez-se $\alpha = 45^{\circ}$)

Regras da Projeção Oblíqua

- R1) O plano de projeção deverá ser paralelo às faces mais irregulares do objeto ou às que contêm formas curvas.
- R2) O plano de projeção deverá ser paralelo à face de maior comprimento do objeto.
- R3) A regra R1 tem preferência sobre R2.

Projeção Axonométrica

Objeto e seu Sistema de Coordenadas (SC):

Ação sobre o objeto, visualizando-se o alçado principal:

Tratamento matemático, para o caso geral:

$$M_{AX} = M_{ORT} \cdot R_X(\gamma) \cdot R_Y(\theta)$$

$$(em z=0)$$

Desenho Axonométrico

ISOMETRIA

$$A = B = 30^{\circ}$$

Scale ratios (fatores de escala) do desenho: $r_1 = r_2 = r_3 = 1$ (ou <u>relação das dimensões 1:1:1</u>)

DIMETRIA

Desenho Axonométrico

TRIMETRIA

Desenho Axonométrico

Cubo de aresta = 5 cm

A=42° B=7°

Desenho dimétrico de relação 1:1:0.5

feito à mão com o auxílio de esquadro próprio:

Projeção Axonométrica

$$\theta = \arctan \sqrt{\frac{1}{1}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}{1}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}{1}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}}}} = \frac{\sqrt{\frac{1}{1}}}{\sqrt{\frac{1}}} = \frac{\sqrt{\frac{1}}}{\sqrt{\frac{1}}}} = \frac{\sqrt{\frac{1}}}}{\sqrt{\frac{1}}}} = \frac{\sqrt{\frac{1}}}{\sqrt{\frac{1}}}} = \frac{\sqrt{\frac{1}}}{\sqrt$$

Aplicação – Cálculo de alguns fatores de escala (ou de redução) de uma projeção:

i.
$$A = B = 30^{\circ}$$

$$r_{1} = r_{2} = r_{3} \approx 0.81650$$
ii. $A = 36^{\circ}50'$ $B = 16^{\circ}20'$

$$r_{1} = r_{2} \approx 0.88346 \qquad r_{3} \approx 0.66257$$
iii. $A = 54^{\circ}16'$ $B = 23^{\circ}16'$

$$r_{1} \approx 0.63432 \qquad r_{2} \approx 0.95128 \qquad r_{3} \approx 0.83229$$

NOTA: Todos os fatores de escala da Projeção (em itálico, para distinção) são inferiores aos respectivos fatores de escala no Desenho Axonométrico. Neste, o maior desses valores, em cada um dos casos, seria sempre igual a 1 (o que se justifica pela comodidade do desenho manual e da leitura de comprimentos).

Projeção vs Desenho

81,65:100

projecção isamétrico desenho isométrico

100:100

Exemplos de Aplicação (jogos estratégia)

Projeção Axonométrica

Uma projeção axonométrica é determinada/caracterizada

Pelos ângulos que os eixos coordenados locais ao objeto fazem com o plano de projeção

ou

Pelos três fatores de escala

ou

Pelos ângulos entre os eixos coordenados depois de projetados (na prática: pelos ângulos A e B).

CONCLUSÕES sobre a **AXONOMETRIA**:

- ✓ O paralelismo de linhas é preservado...
- ✓ ... mas os ângulos não o são;
- ✓ Os comprimentos são medidos usando-se fatores de escala correspondentes às 3 direções axiais*.

Justificação do nome AXONOMETRIA (i.e., medida segundo os eixos).

Projeção Perspetiva (I)

Plano de projeção em z=d ≠ 0 e centro de projeção C na origem:

$$\frac{x_{p}}{d} = \frac{x}{z}$$

$$\frac{y_{p}}{d} = \frac{y}{z}$$

$$\frac{y_{p}}{d} = \frac{z}{z}$$

$$\frac{y_{p}}{d} = \frac{z}{z}$$

$$\frac{z}{z} = \frac{z}{z}$$

$$\frac{z}{z} = \frac{z}{z}$$

Coordenadas da imagem de P:

$$\mathbf{P'} = \begin{bmatrix} \mathbf{X}_{\mathbf{p}} \\ \mathbf{y}_{\mathbf{p}} \\ \mathbf{z}_{\mathbf{p}} \end{bmatrix}$$

Projeção Perspetiva (I)

Coordenadas homogéneas de P':

Estas coordenadas podem obter-se das de P pela aplicação da matriz M_{PER} :

em que

$$M_{PER} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

Projeção Perspetiva (11)

Plano de projeção em z=0 e centro de projeção C em (0,0,d) com d ≠ 0:

$$\frac{x_p}{d} = \frac{x}{d-z} \longrightarrow x_p = \frac{x}{1-z/d}$$

$$\frac{y_p}{d} = \frac{y}{d-z} \qquad \Longrightarrow \qquad y_p = \frac{y}{1 - z / d}$$

$$\begin{bmatrix} x \\ y \\ 0 \\ 1-z/d \end{bmatrix} = M'_{PER} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \Longrightarrow M'_{PER} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}$$

$$d \rightarrow \infty \implies M'_{PER} \rightarrow M_{ORT}$$

M'_{PER} aplica-se ao plano de projeção z=0, como nas outras projeções anteriores

Exemplos de aplicação (jogos de estratégia)

Exemplo em jogo de estratégia com maior realismo

Rome Total War

"The first thing noticeable about the game is its graphical beauty"

GameSpot: 91% "...realistic, cinematic-style battles."

Wargamer

Projeção Perspetiva

Implicações do paralelismo das direções principais do objeto com as direções axiais

Duas famílias de arestas paralelas a XY

Modelo: Paralelepípedo alinhado com XYZ... (caixa sem tampa nem fundo)

deslocado para a esquerda...

e também para baixo.

2 pontos de fuga

Uma família de arestas paralelas a XY

3 pontos de fuga

Nenhuma família de arestas paralelas a XY

Projeção Perspetiva

Identifique e localize os pontos de fuga:

