K^+ Pathway for Code version 2.0

Tim David

January 16, 2018

Todo list

I have kept this in to make code easier to understand. It has no explicit parameters	
in it for the K^+ pathway	9
what about diffusion into the ECS for both Na ⁺ and K ⁺ ?	11
what are the definitions and values of K_{Na_k}, K_{K_s}	13
why do we have $\frac{F_{KIR_i}}{\gamma_i}$ when they have both the same dimensions but one value	
F_{KIR_i} is 750 and the other γ_i is 1970?	15
We should note here that the membrane potential coupling $V_{coupling}^{SMC-EC}$ is an approx-	
imation that assumes the gradient of concentrations is negligible and hence	
only the membrane potential diffusion term is non-zero determined from the	
electro-diffusion theory.	16
diffusion, NaK and BK fluxes defined here	17

Chapter 1

Notes for reading

The following notes, definitions and equations provide the reader with a comprehensive guide to version 1.2 of NVU. The document is set out in sections where each section contains the equations for each compartment, namely neuron, synaptic cleft, astrocyte, perivascular space, smooth muscle cell, endothelial cell, extracellular space and finally the lumen. The reader will find multiple definitions and equations but by dividing the document into sections corresponding to compartments it is hoped that a more clear understanding is obtained. Concentrations as written on the left-hand-side of the o.d.e. are given by the notation of N_j where j can be any specii such as Na⁺of Ca²⁺. True concentrations are written with square brackets as in $[Ca^{2+}]_n$. In point of fact they are equivalent. Subscripts on variable such as concentrations denote the compartment, n=neuron, k=astrocyte, s=synaptic cleft, i=smooth muscle cell, j=endothelial cell, e = extracellular space. Concentrations with "hats" denote those in the ER/SR stores.

1.0.1 Version 1.2 /2.0 difference

The basic difference between version 1.2 and version 2.0 is the new neuron model. This is based on the work of Chang et al [1] and that of Kager et al [9]. For this version the neuron model has 4 compartments; i) soma/axon, ii) dendrite, iii) post synaptic terminal and extracellular space (ECS). Ion channels for Na⁺, and K⁺efflux into the ECS. K⁺is buffered in the ECS and a portion of the K⁺flux is passed into the synaptic cleft compartment. On reaching a certain concentration of K⁺in the synaptic cleft glutamate is pumped into the synaptic cleft. This glutamate is taken up by both the post-synaptic neuron and the astrocyte. The neuron is stimulated by injection of a current of specified value into the soma/axon compartment.

Schematic of the full set of pathways is shown in Figure ??

1.1 Global Constants

\overline{F}	Faraday's constant	$96500 \text{ C mole}^{-1}$
T	Temperature	300 K
R_{gas}	Gas constant	8.315 J mole K^{-1}

Chapter 2

State variables, initial values and parameter values

In the actual Matlab code the state variables are defined as follows

- v_{sa} : membrane potential of soma/axon, mV
- v_d : membrane potential of dendrite, mV
- K_{sa} : K+ concentration of soma/axon, mM
 - K_d : K+ concentration of dendrite, mM
 - Na_d : Na+ concentration of dendrite, mM
 - K_e : K+ concentration of ECS, mM
 - Na_e : Na+ concentration of ECS, mM
- $Buff_e$: Buffer concentration for K+ buffering in ECS, mM

Gating variables

55

60

- m1 : Activation gating variable, soma/axon NaP channel (Na+) m2 : Activation gating variable, soma/axon KDR channel (K+) m3 : Activation gating variable, soma/axon KA channel (K+) m4 : Activation gating variable, dendrite NaP channel (Na+) m5 : Activation gating variable, dendrite NMDA channel (Na+) m6 : Activation gating variable, dendrite KDR channel (K+) m7 : Activation gating variable, dendrite KA channel (K+) m8 : Activation gating variable, soma/axon NaT channel (Na+)
 - h1: Inactivation gating variable, soma/axon NaP channel (Na+) h2: Inactivation gating variable, soma/axon KA channel (K+) h3: Inactivation gating variable, dendrite NaP channel (Na+) h4: Inactivation gating variable, dendrite NMDA channel (Na+) h5: Inactivation gating variable, dendrite KA channel (K+) h6: Inactivation gating variable, soma/axon NaT channel (Na+)

NO pathway

• Ca_n : Ca²⁺in the post-synaptic neuron $nNOS_act_n$: activated NOS in the post-synaptic neuron NO_n : Nitric Oxide in the post-synaptic neuron

Table 2.1: Initial resting values and other parameter values of the neuron model, from Chang et al[1]

Parameters	Values	Units	Description
v_m	-70	mV	membrane petential
$[K^+]_e$	3.5	mM	extracellular space potassium ion concentration
$[K^+]_i$	133.5	mM	intracellular potassium ion concentration of neuron
$[Na^+]_e$	140	mM	extracellular space sodium ion concentration
$[Na^+]_i$	10	mM	intracellular sodium ion concentration of neuron
$[O_2]_0$	2×10^{-2}	mM	baseline concentration of oxygen in the tissue
B_0	0.9	ml/100mg/s	baseline cerebral blood flow
$[O_2]_b$	4×10^{-2}	mM	blood oxygen concentration
J_0	2.5×10^{-2}	mM/s	steady state change in oxygen concentra- tion due to cerebral blood flow
R_a	1.83×10^{5}	Ω	input resistance of dendritic tree
δ_d	4.5×10^{-2}	cm	half-length of dendrite
A_s	1.586×10^{-5}	cm^2	surface area of soma
A_d	2.6732×10^{-4}	cm^2	surface area of dendrite
V_s	2.160×10^{-9}	cm^3	volume of soma
V_d	5.614×10^{-9}	cm^3	volume of dendrite
S_e	4.1179×10^{-6}	cm	volume to surface area ratio of the extra- cellular space
C_m	7.5×10^{-5}	$s/\Omega cm^2$	membrane capacitance
I_{max}	1.48×10^{-3}	mA/cm^2	Na^+/K^+ – ATPase rate
D_{Na^+}	1.33×10^{-5}	cm^2/s	Sodium diffusion coefficient
D_{K^+}	1.96×10^{-5}	cm^2/s	Potassium diffusion coefficient
D_{Cl^-}	2.03×10^{-5}	cm^2/s	Chlorine diffusion coefficient

Table 2.2: Rate expressions and parameter values used in the voltage dependent channel currents of the neuron model, from Chang et al[1]

Currents	$g_{Ion,GHK}$	Gates	Voltage dependent rate functions
mA/cm^2	mAcm	$m^p h^q$	
$I_{Na,P}$	2×10^{-6}	m^2h	$\alpha_{m} = \frac{1}{6(1+exp[-(0.143E_{m}+5.67)])}$ $\beta_{m} = \frac{exp[-(0.143E_{m}+5.67)]}{6(1+exp[-(0.143E_{m}+5.67)])}$ $\alpha_{h} = 5.12 \times 10^{-8} exp[-(0.056E_{m}+2.94)]$ $\beta_{h} = \frac{1.6 \times 10^{-6}}{1+exp[-(0.2E_{m}+1.25)]}$
$I_{K,DR}$	10×10^{-5}	m^2	$\alpha_m = 0.016 \frac{E_m + 34.9}{1 - exp[-(0.2E_m + 6.98)]}$ $\beta_m = 0.25 exp[-(0.25E_m + 1.25)]$
$I_{K,A}$	1×10^{-5}	m^2h	$\alpha_{m} = 0.02 \frac{E_{m} + 56.9}{1 - exp[-(0.1E_{m} + 5.69)]}$ $\beta_{m} = 0.0175 \frac{E_{m} + 29.9}{exp[0.1E_{m} + 2.99) - 1}$ $\alpha_{h} = 0.016exp[-(0.056E_{m} + 4.61)]$ $\beta_{h} = \frac{0.5}{1 + exp[-(0.2E_{m} + 11.98)]}$
I_{NMDA}	1×10^{-5}	mh	$\alpha_{m} = \frac{0.5}{1 + exp\left(\frac{13.5 - [K^{+}]}{1.42}\right)}$ $\beta_{m} = 0.5 - \alpha_{m}$ $\alpha_{h} = \frac{1}{2000\left(1 + exp\left[\frac{[K^{+}]_{e} - 6.75}{0.71}\right]\right)}$ $\beta_{h} = 5 \times 10^{-5} - \alpha_{h}$

Chapter 3

Equations for each compartment

70 3.1 Neuron

3.1.1 Nernst potential for Na,K ions in soma and dendrite (Cl constant)

$$E_{K_{sa}} = \frac{RT}{F} ln(\frac{K_e}{K_{sa}}) \tag{3.1.1}$$

$$E_{K_d} = \frac{RT}{F} ln(\frac{K_e}{K_d}) \tag{3.1.2}$$

3.1.2 Leak fluxes of Na,K,Cl in soma and dendrite using HH

$$J_{Kleak_{sa}} = g_{Kleak_{sa}}(v_{sa} - E_{K_{sa}}) \tag{3.1.3}$$

$$J_{Kleak_d} = g_{Kleak_d}(v_d - E_{K_d}) (3.1.4)$$

(3.1.5)

$$J_K leak_s a = \textit{p.gKleak}_s a * (v_s a - E_{K_{sa}}); \qquad J_K leak_d = \textit{p.gKleak}_d * (v_d - E_{K_d});$$

3.1.3 Dendrite (with subscript d)

75 Na flux through NaP channel in dendrite using GHK

$$m4_{\alpha} = \frac{1}{6(1 + exp(-((0.143v_d) + 5.67)))}$$
(3.1.6)

$$m4_{\beta} = \frac{exp(-((0.143v_d) + 5.67))}{6(1 + exp(-((0.143v_d) + 5.67)))}$$
(3.1.7)

$$h3\alpha = 5.12e - 8exp(-((0.056v_d) + 2.94))$$
(3.1.8)

$$h3\beta = \frac{1.6e - 6}{1 + exp(-(((0.2 * v_d)) + 8))}$$
(3.1.9)

$$J_{NaP_d} = (m4^2h3g_{NaP}Fv_d\frac{(Na_d - (exp(\frac{-v_dF}{RT})Na_e)))}{(\frac{RT}{F}(1 - exp(\frac{-v_dF}{RT})))}$$
(3.1.10)

(3.1.11)

$$J_{NMDA_{K_d}} = M(v, Mg)((m5h4g_{NMDA}Fv_d\frac{(K_d - (exp(\frac{v_dF}{RT})K_e)))}{(\frac{RT}{F}(1 - exp(\frac{-v_dF}{RT})))}$$
(3.1.12)

$$M(v, Mg) = \frac{1}{(1+0.33)} Mg exp(-(0.07v_d + 0.7)))$$
(3.1.13)

 $J_N M D A_{K_d} = ((m5.*h4.*p.gNMDA_GHk*p.Farad.*v_d.*(K_d - (exp(-v_d/p.ph).*K_e)))./(p.ph*(1-exp(-v_d/p.ph).*K_e))) + ((mb.*h4.*p.gNMDA_GHk*p.Farad.*v_d.*(K_d - (exp(-v_d/p.ph).*K_e))))) + ((mb.*h4.*p.gNMDA_GHk*p.Farad.*v_d.*(K_d - (exp(-v_d/p.ph).*K_e)))))))$

K flux through KDR channel in dendrite using GHK

$$m6_{\alpha} = \frac{0.016((v_d + 34.9))}{(1 - exp(-((0.2 * v_d) + 6.98))))}$$
(3.1.14)

$$m6_{\beta} = 0.25exp(-((0.025 * v_d) + 1.25))$$
 (3.1.15)

$$J_{KDR_d} = m6^2 \frac{g_{KDR} F v_d}{\left(\frac{RT}{F} (1 - \frac{-v_d F}{RT})K_e\right)} \frac{\left(\frac{RT}{F} (1 - \frac{-v_d F}{RT})\right)}{\left(\frac{RT}{F} (1 - \frac{-v_d F}{RT})\right)}$$
(3.1.16)

K flux through KA channel in dendrite using GHK

$$m7_{\alpha} = \frac{0.02((v_d + 56.9)}{(1 - exp(-((0.1v_d) + 5.69))))}$$

$$m7_{\beta} = \frac{0.0175((v_d + 29.9)}{(exp(((0.1 * v_d) + 2.99)) - 1))}$$

$$h5_{\alpha} = 0.016exp(-((0.056v_d) + 4.61))$$
(3.1.19)

$$m7_{\beta} = \frac{0.0175((v_d + 29.9))}{(exp(((0.1 * v_d) + 2.99)) - 1))}$$
(3.1.18)

$$h5_{\alpha} = 0.016 exp(-((0.056v_d) + 4.61))$$
 (3.1.19)

$$h5_{\beta} = \frac{0.5}{(1 + exp(-((0.2 * v_d) + 11.98)))}$$
(3.1.20)

$$J_{KA_d} = m7^2 h5 \frac{g_{KA}}{g_{KA}} F v_d \frac{\left(K_d - \left(exp\left(\frac{-v_d F}{RT}\right) K_e\right)\right)}{\left(\frac{RT}{F}\left(1 - \frac{-v_d F}{RT}\right)\right)}$$
(3.1.21)

3.1.4 Soma/Axon (with subscript sa)

K flux through KDR channel in soma using GHK

$$m2_{\alpha} = \frac{0.016((v_{sa} + 34.9))}{(1 - exp(-((0.2v_{sa}) + 6.98))))}$$
(3.1.22)

$$m2_{\beta} = 0.25exp(-((0.025v_{sa}) + 1.25))$$
 (3.1.23)

$$J_{KDR_{sa}} = m2^{2} \frac{g_{KDR} F v_{sa}}{\left(\frac{RT}{F} \left(1 - \frac{-v_{sa}F}{RT}\right)K_{e}\right)} \left(\frac{RT}{F} \left(1 - \frac{-v_{sa}F}{RT}\right)\right)}$$
(3.1.24)

(3.1.25)

K flux through KA channel in soma using GHK input current

$$m3_{\alpha} = \frac{0.02(v_{sa} + 56.9)}{(1 - exp(-(0.1v_{sa} + 5.69)))}$$

$$m3_{\beta} = \frac{0.0175(v_{sa} + 29.9)}{(exp(0.1v_{sa} + 2.99) - 1))}$$

$$h2_{\alpha} = 0.016exp(-(0.056v_{sa} + 4.61))$$
(3.1.26)
(3.1.27)

$$m3_{\beta} = \frac{0.0175(v_{sa} + 29.9)}{(exp(0.1v_{sa} + 2.99) - 1))}$$
(3.1.27)

$$h2_{\alpha} = 0.016 exp(-(0.056v_{sa} + 4.61))$$
 (3.1.28)

$$h2_{\beta} = \frac{0.5}{1 + exp(-(0.2v_{sa} + 11.98))}$$
(3.1.29)

$$J_{KA_{sa}} = m3^{2}h2g_{KA}Fv_{sa}\frac{(K_{sa} - (exp(\frac{-v_{sa}F}{RT})K_{e}))}{(\frac{RT}{F}(1 - \frac{-v_{sa}F}{RT}))}$$
(3.1.30)

(3.1.31)

flux through the NaK-ATPase pump

$$J_{pump1_{sa}} = (1 + (\frac{K_{init_e}}{K_e}))^{-2} (1 + (\frac{Na_{init_{sa}}}{Na_{sa}}))^{-3}$$
(3.1.32)

$$J_{pump1init_{sa}} = 0.0312 (3.1.33)$$

$$J_{pump1_d} = (1 + (\frac{K_{init_e}}{K_e}))^{-2} (1 + (\frac{Na_{init_d}}{Na_d}))^{-3}$$
(3.1.34)

$$J_{pump1init_d} = 0.0132 (3.1.35)$$

$$(3.1.36)$$

3.1.5Total ion fluxes

I have kept this in to make code easier to understand. It has no explicit parameters in it for the K^+ pathway

Total ion fluxes in soma

$$J_{Na_{tot_{sa}}} = J_{NaP_{sa}} + J_{Naleak_{sa}} + J_{Napump_{sa}} + J_{NaT_{sa}}$$

$$(3.1.37)$$

$$J_{K_{tot_{sa}}} = J_{KDR_{sa}} + J_{KA_{sa}} + J_{Kleak_{sa}} + J_{Kpump_{sa}}$$

$$(3.1.38)$$

$$J_{leak_{totsa}} = g_{leak_{sa}}(v_{sa} - E_{Cl_{sa}}) \tag{3.1.39}$$

(3.1.40)

Total ion fluxes in dendrite

$$J_{Na_{tot_d}} = J_{NaP_d} + J_{Naleak_d} + J_{Napump_d} + J_{Na_{NMDA_d}}$$

$$(3.1.41)$$

$$J_{K_{tot_d}} = J_{KDR_d} + J_{KA_d} + J_{Kleak_d} + J_{Kpump_d} + J_{K_{NMDA_d}}$$
(3.1.42)

$$J_{leak_{tot_d}} = g_{leak_d}(v_d - E_{Cl_d}) \tag{3.1.43}$$

(3.1.44)

Total ion fluxes in soma and dendrite

$$J_{tot_{sa}} = J_{Na_{tot_{sa}}} + J_{K_{tot_{sa}}} + J_{leak_{tot_{sa}}}$$

$$(3.1.45)$$

$$J_{tot_d} = J_{Na_{tot_d}} + J_{K_{tot_d}} + J_{leak_{tot_d}}$$

$$(3.1.46)$$

(3.1.47)

Tissue oxygen

95

$$J_{pump2_0} = 0.0952 (3.1.48)$$

$$J_{pump2_{O2_0}} = 1 (3.1.49)$$

$$CBF = CBF_{init} \frac{R^4}{R_{init}^4} (3.1.50)$$

(3.1.51)

Note The pump functions could look like this

From Functions could look like this
$$J_{pump2_O} = 2\left(1 + \frac{O2_0}{(((1-\alpha_{O2})O2_0) + \alpha_{O2}O2_0))}\right)^{-1}$$

$$J_{pump2_{O2_0}} = 2*\left(1 + O2_0./(((1-p.alpha_O2)*p.O2_0) + p.alpha_O2*p.O2_0)\right).^{-1}$$

3.2 Conservation equations for neuron compartment

change in concentration of Na,K in the soma

$$\frac{dK_{sa}}{dt} = \frac{-A_s}{FV_s} J_{K_{tot_{sa}}} + \frac{D_k(V_d + V_s)}{2dhod^2V_s} (K_d - K_{sa})$$
(3.2.1)

change in concentration of Na,K in the dendrite

$$\frac{dK_d}{dt} = \frac{-A_d}{FV_d} J_{K_{tot_{sa}}} + \frac{D_k (V_d + V_s)}{2dhod^2 V_s} (K_{sa} - K_d)$$
(3.2.3)

3.3 Extra Cellular Space (ECS with subscript e)

change in buffer for K+ in the extracellular space

$$\frac{dBuff_e}{dt} = \frac{\mu K_e(B_0 - Buff_e)}{1 + exp(-((K_e - 5.5)./1.09))} - \mu Buff_e$$
(3.3.1)

(3.3.2)

change in concentration of Na,K in the extracellular space

$$\frac{dK_e}{dt} = \frac{1}{Ff_e} \left(\frac{A_s J_{K_{tot_{sa}}}}{V_s} + \frac{A_d J_{K_{tot_d}}}{V_d} \right) \tag{3.3.3}$$

(3.3.4)

what about diffusion into the ECS for both Na⁺and K⁺?

K⁺ concentration in the SC

$$\frac{dN_{K_s}}{dt} = k_C f(t) - \frac{dN_{K_k}}{dt} + J_{BK_k} + \frac{R_s}{\tau_s} \left\{ [K^+]_e - [K^+]_s \right\}$$
(3.3.5)

 τ_s is defined in equation 3.8.5 and has a value of 2.8 secs. $[K^+]_e$ is the potassium concentration in the ECS and $[K^+]_s$ is the potassium concentration in the synaptic cleft. Na⁺ concentration in the SC

$$\frac{\mathrm{d}N_{Na_s}}{\mathrm{d}t} = -k_C f(t) - \frac{\mathrm{d}N_{Na_k}}{\mathrm{d}t} \tag{3.3.6}$$

HCO₃ concentration in the SC

$$\frac{\mathrm{d}N_{HCO_{3_s}}}{\mathrm{d}t} = -\frac{\mathrm{d}N_{HCO_{3_k}}}{\mathrm{d}t} \tag{3.3.7}$$

100

Cl concentration in the synaptic cleft is derived by assuming electro-neutrality:

$$[\mathrm{Cl}^{-1}]_s = [\mathrm{Na}^+]_s + [\mathrm{K}^+]_s - [\mathrm{HCO}_3^{-1}]_s$$
 (3.3.8)

3.4 Astrocyte (with subscript k)

 \mathbf{K}^+ concentration in the \mathbf{AC} :

$$\frac{\mathrm{d}N_{K_k}}{\mathrm{d}t} = -J_{K_k} + 2J_{NaK_k} + J_{NKCC1_k} + J_{KCC1_k} - J_{BK_k}$$
(3.4.1)

K⁺ flux through the Ca²⁺mediated BK channel:

$$J_{BK_k} = \frac{g_{BK_k}}{F} w_k \left(v_k - E_{BK_k} \right) \tag{3.4.2}$$

 g_{BK_k} is evaluated in the code using

 $\texttt{g_BK_k}_{\sqcup} = _{\sqcup} \texttt{p.G_BK_k} * \texttt{1e-12}_{\sqcup} / _{\sqcup} \texttt{p.A_ef_k}; _{\sqcup} \texttt{the}_{\sqcup} \texttt{value}_{\sqcup \sqcup} \texttt{p.G_BK_k}$

is 225 (as listed in the parameter list in Astrocyte.m)

¹model estimation

$V_{ m spine}$	dentritic spine volume	$8 \times 10^{-8} \text{ nL}$	[15]
$\kappa_{ m ex}$	decay rate constant of internal Ca ²⁺ concentration	$1.6 \times 10^3 \text{ s}^{-1}$	[15]
$[\mathrm{Ca^{2+}}]_{\mathrm{rest}}$	resting internal calcium concentration	$0.1~\mu\mathrm{M}$	[15]
$\lambda_{ m buf}$	buffer capacity	20 (dim.less)	[15]
$V_{ m max,nNOS}$	s maximum nNOS activation rate	$25\times10^{-3}~\mu\mathrm{M}$	$M.E.^1$
$K_{\rm m,nNOS}$	Michaelis constant	9.27×10^{-2}	[8]
$\mu_{\mathrm{deact},n}$	rate constant at which nNOS is deactivated	0.0167 s^{-1}	[4]
$K_{\mathrm{m},A}$	Michaelis constant	$650~\mu\mathrm{M}$	[15]
$K_{\mathrm{m},B}$	Michaelis constant	$2800~\mu\mathrm{M}$	[15]
v_n	neuronal membrane potential	-0.04 V	M.E. but see Kager et al model maybe -0.05 -or -0.06 $\rm V$
$G_{ m M}$	conductance of NMDA receptor	$4.6 \times 10^4 \text{ fS}$	[15]
$P_{\mathrm{Ca}}/P_{\mathrm{M}}$	ratio of NMDA receptor permeability to Ca ²⁺ to permeability to monovalent ions	3.6 (dim.less)	[15]
$[\mathrm{Ca^{2+}}]_{\mathrm{ex}}$	external calcium concentration	$2\times10^3~\mu\mathrm{M}$	[15]
[M]	concentration of monovalent ions	$1.3{ imes}10^5~\mu{ m M}$	[15]
α_v	voltage-dependent Mg^{2+} block parameter	$-80 \ { m V}^{-1}$	[15]
β_v	voltage-dependent Mg^{2+} block parameter	0.02 V	[15]
$n_{\mathrm{NR2},A}$	average number of NR2A NMDA receptors	0.63 (dim.less)	[15]
$n_{{ m NR}2,B}$	average number of NR2A NMDA receptors	11 (dim.less)	[15]
Q_1	Ca ²⁺ -CaM binding constant	$1.9{ imes}10^5~{ m \mu}{ m M}^{-1}$	[5]
Q_2	Ca ²⁺ -CaM binding constant	$2.1{ imes}10^5~{ m \mu}{ m M}^{-1}$	[5]
Q_3	Ca ²⁺ -CaM binding constant	$0.4{ imes}10^5~{ m \mu}{ m M}^{-1}$	[5]
Q_4	Ca ²⁺ -CaM binding constant	$0.26{ imes}10^5~{ m \mu}{ m M}^{-1}$	[5]
$V_{\max,\mathrm{NO},n}$	maximum catalytic rate of neuronal NO production	4.22 s^{-1}	[2]
$[\mathcal{O}_2]_n$	O_2 concentration in the neuron	$200~\mu\mathrm{M}$	M.E.
$K_{\mathrm{m,O2},n}$	Michaelis constant for nNOS for O_2	$243~\mu\mathrm{M}$	[3]
$[L-Arg]_n$	L-Arg concentration in the neuron	100 μΜ	[3]
	n Michaelis constant for nNOS for L-Arg	1.5 μΜ	[2]
$k_{\mathrm{O2},n}$	O ₂ reaction rate constant	9.6×10^{-6} μM^{-2} s^{-1}	[10]
x_{nk}	distance between centres of NE and AC	$25~\mu m$	M.E.
$D_{ m c,NO}$	NO diffusion coefficient	$3300~\mu m^2 s^{-1}$	[12]

Open probability of the BK channel (s^{-1}):

$$\frac{\mathrm{d}w_k}{\mathrm{d}t} = \phi_w \left(w_\infty - w_k \right) \tag{3.4.3}$$

$$\phi_w = \psi_n \cosh(\frac{v_k - v_3}{2v_4}) \tag{3.4.4}$$

$$v_3 = -\frac{v_5}{2} tanh \left[\frac{[Ca^{2+}]_k - Ca_3}{Ca_4} \right] + v_6$$
(3.4.5)

$\overline{\psi_n}$	characteristic time scale for BK channel	$2.664s^{-1}$
v_4	measure of the spread of w_{∞}	8 millivolts
v_5	shift in w_{∞} as a function of Ca^{2+}	15 millivolts
v_6	BK open probability constant	-55 millivolts
Ca_3	BK open probability constant	$0.4~\mu\mathrm{M}$
Ca_4	BK open probability constant	$0.35~\mu\mathrm{M}$
EET_{si}	hiftEET dependent voltage shift	$2~{ m mV}~M^{-1}$

Equilibrium state BK-channel as a function of the concentration of EET in the astrocytic cytosol:

 $w_{\infty} = 0.5 \left(1 + \tanh \left(\frac{v_k EET_{shift} [EET]_k - v_3}{v_4} \right) \right)$ (3.4.6)

3.4.1 Fluxes into and out of the astrocyte

 K^+ flux

110

$$J_{K_k} = \frac{g_{K_k}}{F} (v_k - E_{K_k}) \tag{3.4.7}$$

Cl and K⁺ flux through the KCC1 channel

$$J_{KCC1_k} = C_{input} \frac{g_{KCC1_k}}{F} \frac{R_g T}{F} ln\left(\frac{K_s C l_s}{K_k C l_k}\right)$$
(3.4.8)

Na⁺, K⁺ and Cl flux through the NKCC1 channel

$$J_{NKCC1_k} = C_{input} \frac{g_{NKCC1_k}}{F} \frac{R_g T}{F} ln\left(\frac{Na_s K_s Cl_s^2}{Na_k K_k Cl_k^2}\right)$$

$$(3.4.9)$$

Flux through the sodium potassium pump

$$J_{NaK_k} = J_{NaK_{max}} \frac{Na_k^{1.5}}{Na_k^{1.5} + K_{Na_k}^{1.5}} \frac{K_s}{K_s + \frac{K_{K_s}}{K_s}}$$
(3.4.10)

what are the definitions and values of K_{Na_k}, K_{K_s}

\overline{F}	Faraday's constant	$9.649 \times 10^4 \text{ C mol}^{-1}$	
R_q	Gas constant	$8.315~{ m J~mol^{-1}K^{-1}}$	
$T^{"}$	Temperature	300 K	
g_{K_k}	Specific ion conductance of potassium	$40 \times 10^3 \ \Omega^{-1} \mathrm{m}^{-2}$	[14]
g_{Na_k}	Specific ion conductance of sodium	$1.314 \times 10^3 \ \Omega^{-1} \mathrm{m}^{-2}$	[14]
K_{Na_k}		$40 \times 10^3 \ \Omega^{-1} \mathrm{m}^{-2}$	[14]
g_{Na_k}	Specific ion conductance of sodium	$1.314{\times}10^{3}~\Omega^{-1}{\rm m}^{-2}$	[14]
g_{NBC_k}	Specific ion conductance of the NBC cotransporter	$7.57{\times}10^2~\Omega^{-1}{\rm m}^{-2}$	[14]
g_{KCC1_k}	Specific ion conductance of the KCC1 cotransporter	$10~\Omega^{-1} {\rm m}^{-2}$	[14]
g_{NKCC1_k}	Specific ion conductance of the NKCC1 cotransporter	$55.4 \ \Omega^{-1} \mathrm{m}^{-2}$	[14]
$J_{NaK_{max}}$	Maximum flux through the NaKATPase pump	$1.42{\times}10^{-3}~\mu{\rm M}~{\rm ms}^{-1}$	[14]
g_{BK_k}	Specific ion conductance of the BK channel	$1.16{\times}10^3~\Omega^{-1}{\rm m}^{-2}$	[7]
C_{input}	Block function to switch the channel on and off	0;1[-]	

3.5 Perivascular Space (with subscript p)

 K^+ concentration in the PVS (in μM):

$$\frac{dK_p}{dt} = \frac{J_{BK_k}}{R_k \frac{1}{R_{pa}}} + \frac{J_{KIR_i}}{R_{ps}} + \frac{J_{TRPV_k}}{R_k \frac{1}{R_{pa}}}$$
(3.5.1)

The ODE for the PVS Ca²⁺ concentration is

$$\frac{\mathrm{d}Ca_p}{\mathrm{d}t} = -\frac{J_{TRPV_k}}{VR_{pa}} + \frac{J_{VOCC_i}}{VR_{ps}} - Ca_{decay_k}(Ca_p - Ca_{min_k})$$
(3.5.2)

(3.5.3)

R_{pa}	Volume ratio of PVS to AC	$10^{-3} [-]$	[13]
R_{ps}	Volume ratio of PVS to SMC	10^{-3} [-]	[13]
Ca_{decay_k}	Rate of decay of Ca ²⁺ in the PVS	$0.5 \ s^{-1}$	
Ca_{min_k}	steady state value of Ca^{2+} in PVS	2 mM	

3.6 Smooth Muscle Cell

Flux through the sodium potassium pump (in $\mu M \ s^{-1}$):

$$J_{NaK_i} = F_{NaK} \tag{3.6.1}$$

$\overline{F_{NaK}}$	Rate of the potassium influx by the sodium potas-	$4.32{ imes}10^{-2}~{ m \mu M~s^{-1}}$	[11]
	sium pump		

G_{Cli}	Whole-cell conductance for Cl ⁻ current	$1.34 \times 10^{-3} \ \mu M \ mV^{-1}s^{-1}$	[11]
v_{Cli}	Reversal potential for Cl ⁻ channels.	$-25.0~\mathrm{mV}$	[11]

Potassium flux through potassium channel (in $\mu M~s^{-1}$):

$$J_{K_i} = \frac{G_{K_i}}{v_i} (v_i - E_{K_i}) \tag{3.6.2}$$

$\overline{G_{Ki}}$	Whole-cell conductance for K ⁺ efflux.	$4.46 \times 10^{-3} \ \mu M \ mV^{-1}s^{-1}$	[11]
vK_i	Nernst potential	$-94~\mathrm{mV}$	[11]

Flux through KIR channels in the SMC (in μ M s⁻¹):

$$J_{KIR_i} = \frac{F_{KIR_i}g_{KIR_i}}{\gamma_i}(v_i - v_{KIR_i})$$
(3.6.3)

why do we have $\frac{F_{KIR_i}}{\gamma_i}$ when they have both the same dimensions but one value F_{KIR_i} is 750 and the other γ_i is 1970 ?

Nernst potential of the KIR channel in the SMC (in mV):

$$v_{KIR_i} = z_1 K_p - z_2 (3.6.4)$$

Conductance of KIR channel (in $\mu \rm M~mV^{-1}~s^{-1}):$

$$g_{KIR_i} = exp(z_5v_i + z_3K_p - z_4)$$
(3.6.5)

c_{wi}	Translation factor for Ca^{2+} dependence of K_{Ca} channel activation sigmoidal.	0.0 μΜ	[11]
eta_i	Translation factor for membrane potential dependence of \mathbf{K}_{Ca} channel activation sigmoidal.	$0.13~\mu\mathrm{M}^2$	[11]
$v_{Ca_{3i}}$	Half-point for the K_{Ca} channel activation sigmoidal.	-27 mV	[11]
R_{Ki}	Maximum slope of the K_{Ca} activation sigmoidal.	12 mV	[11]
z_1	Model estimation for membrane voltage KIR channel	$4.5 \times 10^{3} \ {\rm mV} \ {\rm \mu M}^{-1}$	[<mark>6</mark>]
z_2	Model estimation for membrane voltage KIR channel	112 mV	[<mark>6</mark>]
z_3	Model estimation for the KIR channel conductance	$4.2 \times 10^2 \text{ mV}^{-1} \text{s}^{-1}$	[<mark>6</mark>]
z_4	Model estimation for the KIR channel conductance	$12.6 \ \mu M \ mV^{-1}s^{-1}$	[<mark>6</mark>]
z_5	Model estimation for the KIR channel conductance	$\text{-}7.4{\times}10^{-2}~\mu\mathrm{M}~\mathrm{mV}^{-2}\mathrm{s}^{-1}$	[6]

F_{KIR_i}	Scaling factor of potassium efflux through the KIR	750 mV μM^{-1}
	channel	

IP₃ degradation (in μ M s⁻¹):

120

$$J_{degrad_i} = k_{di}I_i (3.6.6)$$

k_{di}	Rate constant of IP ₃ degradation	0.1 s^{-1}	[11]

We should note here that the membrane potential coupling $V_{coupling_i}^{SMC-EC}$ is an approximation that assumes the gradient of concentrations is negligible and hence only the membrane potential diffusion term is non-zero determined from the electro-diffusion theory.

 K^+ concentration in the SMC (in μM):

$$\frac{\mathrm{d}[K_i^+]}{\mathrm{d}t} = J_{Na/K_i} - J_{KIR_i} - J_{K_i} \tag{3.6.7}$$

γ_i	Change in membrane potential by a scaling factor	$1970~{\rm mV}~{\rm \mu M^{-1}}$	[11]
λ_i	Rate constant for opening	45.0 s^{-1}	[11]

3.7 Endothelial Cell

Potassium efflux through the $J_{BK_{Caj}}$ channel and the $J_{SK_{Caj}}$ channel (in $\mu M \ s^{-1}$):

$$J_{K_j} = G_{totj}(v_j - v_{K_j}) \left(J_{BK_{Caj}} + J_{SK_{Caj}} \right)$$

$$(3.7.1)$$

G_{totj}	Total potassium channel conductivity.	6927 pS	[11]
v_{Kj}	K ⁺ equilibrium potential	$-80.0~\mathrm{mV}$	[11]

Potassium efflux through the $J_{BK_{Caj}}$ channel (in $\mu M s^{-1}$):

$$J_{BK_{Caj}} = 0.2 \left(1 + \tanh \left(\frac{(\log_{10}[Ca^{2+}]_j - c)(v_j - b_j) - a_{1j}}{m_{3bj}(v_j + \frac{a_{2j}}{2}(\log_{10}[Ca^{2+}]_j - c) - b_j)^2 + m_{4bj}} \right) \right) (3.7.2)$$

Potassium efflux through the $J_{SK_{Caj}}$ channel (in $\mu M s^{-1}$):

$$J_{SK_{Caj}} = 0.3 \left(1 + \tanh\left(\frac{\log_{10}[Ca^{2+}]_j - m_{3sj}}{m_{4sj}}\right) \right)$$
(3.7.3)

\overline{c}	Model constant, further explanation see reference	-0.4 µM	[11]
b_j	Model constant, further explanation see reference	$-80.8~\mathrm{mV}$	[11]
a_{1j}	Model constant, further explanation see reference	$53.3~\mu\mathrm{M}~\mathrm{mV}$	[11]
a_{2j}	Model constant, further explanation see reference	$53.3 \; {\rm mV} \; {\rm \mu M}^{-1}$	[11]
m_{3bj}	Model constant, further explanation see reference	$1.32{ imes}10^{-3}~{ m \mu M}~{ m mV}^{-1}$	[11]
m_{4bj}	Model constant, further explanation see reference	$0.30~\mu\mathrm{M}~\mathrm{mV}$	[11]
m_{3sj}	Model constant, further explanation see reference	-0.28 μM	[11]
m_{4sj}	Model constant, further explanation see reference	$0.389~\mu{ m M}$	[11]

5 3.8 Extracellular Space

diffusion, NaK and BK fluxes defined here

$$\frac{d[K]_e}{dt} = -VRJ_{diff} + J_K - J_{NaK}$$
 (3.8.1)

where

$$J_{diff} = \frac{1}{\tau_s} (K_e - K_s) \tag{3.8.2}$$

$$J_K = G_K w_i (v_i - E_K) \tag{3.8.3}$$

$$J_{NaK} = F_{NaK} \tag{3.8.4}$$

The flux J_K and the open probability w_i are defined in equations ?? to ??. and

$$\tau_s = \frac{(\Delta x_s)^2}{2D_K} \tag{3.8.5}$$

$$D_K = \frac{D_{free}}{\lambda_0^2} \tag{3.8.6}$$

here Δx_s is the effective diffusion distance and D_{free} is the diffusion coefficient of potassium in a free medium, λ_0 the tortuosity factor since diffusion is hindered by the narrow confines of the extracellular space. At this time volume ratios are used only for the transfer of potassium from the synaptic cleft to the ECS.

3.9 Lumen

Δx_s	10^{-4}	m	average distance across two adjacent astrocyte arms
D_{free}	4.58×10^{-9}	$m^2 s^{-1}$	potassium diffusion coefficient in free media
λ_0	1.6	non-dimensional	tortuosity factor
G_K	4.46×10^{-3}	$\mu MmV^{-1}s^{-1}$	whole SMC conductance for K^+ efflux
E_K	-94	mV	Nernst potential for the SMC BK channel
F_{NaK}	4.32×10^{-2}	$\mu M s^{-1}$	rate of K^+ influx by the sodium/potassium pump.

Bibliography

145

150

160

- Chang, J. C.; Brennan, K. C.; He, D.; Huang, H.; Miura, R. M.; Wilson,
 P. L. and Wylie, J. J. (2013): A Mathematical Model of the Metabolic and
 Perfusion Effects on Cortical Spreading Depression, PloS one, Vol. 8, No. 8 p. e70469.
- [2] Chen, K. and Popel, A. S. (2006): Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells, Free Radical Biology and Medicine, Vol. 41, No. 4 pp. 668–680.
 - [3] Chen, K. and Popel, A. S. (2007): Vascular and perivascular nitric oxide release and transport: Biochemical pathways of neuronal nitric oxide synthase (NOS1) and endothelial nitric oxide synthase (NOS3), Free Radical Biology and Medicine, Vol. 42, No. 6 pp. 811–822.
 - [4] Comerford, a.; Plank, M. J. and David, T. (2008): Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model., Journal of biomechanical engineering, Vol. 130, No. 1 p. 011010.
 - [5] Crouch, T. H. and Klee, C. B. (1980): Positive cooperative binding of calcium to bovine brain calmodulin., Biochemistry, Vol. 19, No. 16 pp. 3692–3698.
 - [6] Filosa, J. a.; Bonev, A. D.; Straub, S. V.; Meredith, A. L.; Wilkerson, M. K.; Aldrich, R. W. and Nelson, M. T. (2006): Local potassium signaling couples neuronal activity to vasodilation in the brain., Nature neuroscience, Vol. 9, No. 11 pp. 1397–1403.
- [7] Gonzalez-Fernandez, B., J.M. Ermentrout (1994): On the Origin and Dynamics of the Vasomotion of Small Arteries, Mathematical Biosciences, Vol. 167, No. 2 pp. 127–167.
 - [8] Hayashi, Y.; Nishio, M.; Naito, Y.; Yokokura, H.; Nimura, Y.; Hidaka, H. and Watanabe, Y. (1999): Regulation of neuronal nitric-oxide synthase by calmodulin kinases, Journal of Biological Chemistry, Vol. 274, No. 29 pp. 20597–20602.
 - [9] Kager, H.; Wadman, W. J. and Somjen, G. G. (2000): Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations., Journal of neurophysiology, Vol. 84, No. 1 pp. 495–512.

- [10] Kavdia, M.; Tsoukias, N. M. and Popel, A. S. (2002): Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes., American Journal of Physiology, Heart and Circulatory Physiology, Vol. 282, No. 6 pp. H2245– H2253.
- [11] Koenigsberger, M.; Sauser, R.; Bény, J.-L. and Meister, J.-J. (2006): Effects of arterial wall stress on vasomotion., Biophysical journal, Vol. 91, No. 5 pp. 1663–1674.
 - [12] Malinski, T.; Taha, Z.; Grunfeld, S.; Patton, S.; Kapturczak, M. and Tomboulian, P. (1993): Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors., Biochemical and Biophysical Research Communications, Vol. 193, No. 3 pp. 1076–1082.

175

- [13] Nagelhus, E.; Horio, Y. and Inanobe, A. (1999): Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal muller cells is mediated by a coenrichment of kir4. 1 and aqp4 in specific membrane domains, Glia, Vol. 63, No. 1 pp. 47–54.
- [14] Østby, I.; Øyehaug, L.; Einevoll, G. T.; Nagelhus, E. A.; Plahte, E.; Zeuthen, T.; Lloyd, C. M.; Ottersen, O. P. and Omholt, S. W. (2009): Astrocytic Mechanisms Explaining Neural-Activity-Induced Shrinkage of Extraneuronal Space, PLoS Computational Biology, Vol. 5, No. 1 pp. 1–12.
- [15] Santucci, D. M. and Raghavachari, S. (2008): The effects of NR2 subunitdependent NMDA receptor kinetics on synaptic transmission and CaMKII activation, PLoS Computational Biology, Vol. 4, No. 10.