Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Рубежный контроль №2 по дисциплине «Методы машинного обучения» на тему

«Методы обработки текстов»

Выполнил: студент группы ИУ5и-22М Джин Шуо

Москва — 2024 г.

Варианты заданий

Группа	Классификатор№1	Классификатор№2
ИУ5И-22М	RandomForestClassifier	LogisticRegression

текст программы

```
from sklearn.datasets import fetch 20newsgroups
from sklearn.model selection import train test split
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear model import LogisticRegression
from sklearn.metrics import classification report, accuracy score
categories = ['alt.atheism', 'comp.graphics', 'sci.space', 'talk.religion.misc']
newsgroups = fetch 20newsgroups(subset='all', categories=categories)
X train, X test, y train, y test = train test split(newsgroups.data, newsgroups.target,
test size=0.3, random state=42)
# CountVectorizer
count vectorizer = CountVectorizer()
X_train_counts = count vectorizer.fit transform(X train)
X test counts = count vectorizer.transform(X test)
# TfidfVectorizer
tfidf vectorizer = TfidfVectorizer()
X train tfidf = tfidf vectorizer.fit transform(X train)
X test tfidf = tfidf vectorizer.transform(X test)
# CountVectorizer
# Классификатор№1RandomForestClassifier
rf classifier = RandomForestClassifier(random state=42)
rf_classifier.fit(X_train_counts, y_train)
```

```
y pred rf counts = rf classifier.predict(X test counts)
print("RandomForestClassifier with CountVectorizer")
print(classification report(y test, y pred rf counts))
print("Accuracy:", accuracy score(y test, y pred rf counts))
# Классификатор№2LogisticRegression
lr classifier = LogisticRegression(max iter=1000, random state=42)
lr classifier.fit(X train counts, y train)
y pred lr counts = lr classifier.predict(X test counts)
print("LogisticRegression with CountVectorizer")
print(classification report(y test, y pred lr counts))
print("Accuracy:", accuracy score(y test, y pred lr counts))
# TfidfVectorizer
# Классификатор№1RandomForestClassifier
rf classifier.fit(X train tfidf, y train)
y pred rf tfidf = rf classifier.predict(X test tfidf)
print("RandomForestClassifier with TfidfVectorizer")
print(classification report(y test, y pred rf tfidf))
print("Accuracy:", accuracy score(y test, y pred rf tfidf))
# Классификатор№2LogisticRegression
lr classifier.fit(X train tfidf, y train)
y pred lr tfidf = lr_classifier.predict(X_test_tfidf)
print("LogisticRegression with TfidfVectorizer")
print(classification report(y test, y pred lr tfidf))
print("Accuracy:", accuracy score(y test, y pred lr tfidf))
```

экранные формы с примерами выполнения программы

RandomForest(RandomForestClassifier with CountVectorizer				
	precision	recall	f1-score	support	
0	0.88	0.92	0.90	224	
1	0.82	0.98	0.89	297	
2	0.95	0.90	0.93	307	
3	0.93	0.68	0.78	189	
- NB2					
accuracy			0.89	1017	
macro avg	0.90	0.87	0.88	1017	
weighted avg	0.89	0.89	0.88	1017	
Accuracy: 0.8	Accuracy: 0.8869223205506391				
LogisticRegre	ession with	CountVecto	rizer		
	precision	recall	f1-score	support	
0	0.91	0.94	0.92	224	
1	0.96	0.98	0.97	297	
2	0.96	0.95	0.95	307	
3	0.91	0.86	0.88	189	
accuracy			0.94	1017	
macro avg	0.93	0.93	0.93	1017	
weighted avg	0.94	0.94	0.94	1017	
macro avg	0.93	0.92	0.92	1017	
weighted avg	0.93	0.93	0.93	1017	
Accuracy: 0.9311701081612586					

Список литературы

[1] Гапанюк Ю. Е. LAB_MMO__DATA_STORYЛабораторная работа №1Создание "истории о данных" (Data Storytelling)// GitHub. — 2024. — Режим доступа:https://github.com/ugapanyuk/courses_current/wiki/MMO_RK_2