Programare declarativă

Functori, functori aplicativi, monoizi1

Traian Florin Şerbănuță

Departamentul de Informatică, FMI, UNIBUC traian.serbanuta@fmi.unibuc.ro

9 decembrie 2016

Cutii și computații

Tipuri parametrizate — "cutii"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemple

- Clasa de tipuri opțiune asociază unui tip a, tipul Maybe a
 - cutii goale: Nothing
 - cutii care țin un element x de tip a: Just x
- Clasa de tipuri listă asociază unui tip a, tipul [a]
 - cutii care țin 0, 1, sau mai multe elemente de tip a: [1, 2, 3], [], [5]

Tipuri parametrizate — "cutii"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemplu: tip de date pentru arbori binari

 Un arbore este o "cutie" care poate ține 0, 1, sau mai multe elemente de tip a:

Nod 3 Nil (Nod 4 (Nod 2 Nil Nil) Nil), Nil, Nod 3 Nil Nil

Generalizare: Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- Maybe a descrie rezultate de computații deterministe care pot eșua
 - computații care eșuează: Nothing
 - computații care produc un element de tipul dat: Just 4
- [Int] descrie liste de rezultate posibile ale unor computații nedeterministe
 - care pot produce oricare dintre rezultatele date: [1, 2, 3], [], [5]

Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- IO a descrie computații care atunci când se execută produc rezultate de tip a
 - getLine :: IO String, getChar :: IO Char
- **Either** e a descrie rezultate de tip a ale unor computații deterministe care pot eșua cu o eroare de tip *e*
 - Right 5 :: Either e Int reprezintă rezultatul unei computații reușite
 - Left "OOM":: Either String a reprezintă o excepție de tip String

Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemplu: tipul funcțiilor de sursă dată

- t -> a descrie computații care atunci când primesc o intrare de tip t produc un rezultat de tip a
 - (++ "!") :: String -> String este o computație care dat fiind un șir, îi adaugă un semn de exclamare
 - length :: String -> Int este o computație care dat fiind un şir, îi prduce lungimea acestuia
 - id :: String -> String este o computație care produce șirul dat ca argument

Clase de tipuri pentru cutii si computatii?

Întrebare

Care sunt trăsăturile comune ale acestor tipuri parametrizate care pot fi gândite intuitiv ca cutii care conțin elemente / computații care produc rezultate?

Problemă

Putem proiecta clase de tipuri care descriu funcționalități comune tuturor acestor tipuri?

Functori

Problemă

Formulare cu cutii

Dată fiind o funcție f :: a -> b și o cutie ca care conține elemente de tip a, vreau să să obțin o cutie cb care conține elemente de tip b obținute prin transformarea elementele din cutia ca folosind funcția f (și doar atât!)

Formulare cu computații

Dată fiind o funcție $f::a \rightarrow b$ și o computație ca care produce rezultate de tip a, vreau să să obțin o computație cb care produce rezultate de tip b obținute prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)

Exemplu — liste

Dată fiind o funcție $f:: a \rightarrow b$ și o listă la de elemente de tip a, vreau să să obțin o lista de elemente de tip b transformând fiecare element din la folosind funcția f (și doar atât!)

Definiție

```
class Functor f where fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b
```

Dată fiind o funcție f :: a -> b și ca :: f a, fmap produce cb :: f b obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)

Instanță pentru liste

```
instance Functor [] where
fmap = map
```

Instante

class Functor f where

$$fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b$$

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b

```
instance Functor Arbore where
  fmap f Nil = Nil
  fmap f (Nod x I r) = Nod (f x) (fmap f I) (fmap f r)
```

Instante

class Functor f where

 $fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b$

Instanță pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

Instanță pentru tipul funcție fmap :: $(a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)$

class Functor f where

fmap :: (a -> b) -> f a -> f b

Instanțe

```
Instanță pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

instance Functor (Either e) where
fmap _ (Left x) = Left x
fmap f (Right y) = Right (f y)
```

Instanță pentru tipul funcție fmap :: $(a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)$ instance Functor (->) a where
fmap f g = f . g -- sau, mai simplu, fmap = (.)

Instante

class Functor f where fmap :: (a -> b) -> f a -> f b

Instantă pentru tipul I/O fmap :: $(a \rightarrow b) \rightarrow IO a \rightarrow IO b$

• Folosind notatia do

Folosind operatorul de legare

Instanțe

class Functor f where fmap :: (a -> b) -> f a -> f b

Instanță pentru tipul I/O fmap :: $(a \rightarrow b) \rightarrow IO a \rightarrow IO b$

Folosind notatia do

instance Functor IO where

fmap f ioa =
$$do$$

 x <- ioa
 return (f x)

Folosind operatorul de legare

fmap f ioa = ioa
$$>= (\ x -> return (f x))$$

Sau, mai scurt,

$$fmap f ioa = ioa >>= (return . f)$$

Exemple

```
Main> fmap (*2) [1..3]
Main> fmap (*2) (Just 200)
Main> fmap (*2) Nothing
Main> fmap (*2) (+100) 4
Main> fmap (*2) (Right 6)
Main> fmap (*2) (Left 1)
Main> fmap (show . (*2) . read) getLine >>= putStrLn
```

Exemple

```
Main> fmap (*2) [1..3]
[2,4,6]
Main> fmap (*2) (Just 200)
Just 400
Main> fmap (*2) Nothing
Nothing
Main> fmap (*2) (+100) 4
208
Main> fmap (*2) (Right 6)
Right 12
Main> fmap (*2) (Left 135)
Left 135
Main> fmap (show . (*2) . read) getLine >>= putStrLn
123
246
```

Proprietăți ale functorilor

- Argumentul f al lui Functor f definește o transformare de tipuri
 - f a este tipul a transformat prin functorul f
- fmap defineste transformarea corespunzătoare a functiilor
 - fmap :: (a -> b) -> (f a -> f b)

Contractul lui fmap

- fmap f ca e obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)
- Abstractizat prin două legi:

```
identitate fmap id == id
compunere fmap (f . g) == fmap f . fmap g
```

Categorii și Functori

Categorii

O categorie C este dată de:

- O clasă |ℂ| a obiectelor
- Pentru oricare două obiecte A, B ∈ |C|,
 o mulțime C(A, B) a săgeților "de la A la B"
 f ∈ C(A, B) poate fi scris ca f : A → B
- Pentru orice obiect A o săgeată $id_A: A \rightarrow A$ numită identitatea lui A
- Pentru orice obiecte A, B, C, o operație de compunere a săgeților
 : ℂ(B, C) × ℂ(A, B) → ℂ(A, C)

Bartosz Milewski — Category: The Essence of Composition

Compunerea este asociativă și are element neutru id

Exemplu: Categoria Set

Obiecte: multimi

• Săgeți: funcții

Identități: Funcțiile identitate

Compunere: Compunerea funcțiilor

- Obiectele: tipuri
- Săgețiile: funcții între tipuri

• Identități: funcția polimorfică id

```
Prelude> :t id id :: a -> a
```

• Compunere: funcția polimorfică (.)

```
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
```

- Obiecte: o clasă restânsă de tipuri din |Hask|
 - Exemplu: tipuri de forma [a]
- Săgeți: toate funcțiile din Hask între tipurile obiecte
 - Exemple: concat :: [[a]] -> [a], words :: [Char] -> [String],
 reverse :: [a] -> [a]

Exemple

Liste obiecte: tipuri de forma [a]

Optiuni obiecte: tipuri de forma Maybe a

Arbori obiecte: tipuri de forma Arbore a

Comenzi I/O obiecte: tipuri de forma IO a

Funcții de sursă t obiecte: tipuri de forma t -> a

De ce categorii?

(Des)compunerea este esența programării

- Am de rezolvat problema P
- O descompun în subproblemele P₁,...P_n
- Rezolv problemele $P_1, \dots P_n$ cu programele $p_1, \dots p_n$
 - Eventual aplicând recursiv procedura de față
- Compun rezolvările $p_1, \dots p_n$ într-o rezolvare p pentru problema inițială

Categoriile rezolvă problema compunerii

- Ne forţează să abstractizăm datele
- Se poate acționa asupra datelor doar prin săgeți (metode?)
- Forțează un stil de compunere independent de structura obiectelor

Functori

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F : \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

Bartosz Milewski — Functors

Functori în Haskell

În general un functor $F : \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

În Haskell o instantă Functor f este dată de

- Un tip f a pentru orice tip a (deci f trebuie sa fie tip parametrizat)
- Pentru orice două tipuri a și b, o funcție

$$fmap :: (a -> b) -> (f a -> f b)$$

Compatibilă cu identitățile și cu compunerea

fmap
$$id == id$$

fmap $(g \cdot f) == fmap g \cdot fmap f$

pentru orice f :: a -> b si g :: b -> c

Functori aplicativi

Problemă

- Folosind fmap putem transforma o funcție h :: a -> b într-o funcție între cutii/computații fmap h :: f a -> f b
- Dar ce se întâmplă dacă avem o funcție cu mai multe argumente
 E.g., cum trecem de la h :: a -> b -> c la h' :: f a -> f b -> f c
- putem încerca să folosim fmap

Problemă

- Folosind fmap putem transforma o funcție h :: a -> b într-o funcție între cutii/computații fmap h :: f a -> f b
- Dar ce se întâmplă dacă avem o funcție cu mai multe argumente
 E.g., cum trecem de la h :: a -> b -> c la h' :: f a -> f b -> f c
- putem încerca să folosim fmap
- Dar, deoarece h :: a -> (b -> c), avem că fmap h :: f a -> f (b -> c)
- Putem aplica fmap h la o valoare fa :: f a şi obţinem fmap h fa :: f (b -> c)
- Problemă: Cum transformăm o cutie care conține o funcție într-o funcție între cutii
- Dacă avem asta, putem transforma funcții cu oricâte argumente.

Definiție

```
class Functor f \Rightarrow Applicative f where pure :: a \rightarrow f a (<*>) :: <math>f(a \rightarrow b) \rightarrow f(a \rightarrow b)
```

- Orice instanță a lui Applicative trebuie să fie instanță a lui Functor
- pure transformă o valoare într-o computație minimală care are acea valoare ca rezultat, si nimic mai mult!
- (<*>) ia o computație care produce funcții și o computație care produce argumente pentru funcții și obține o computație care produce rezultatele aplicării funcțiilor asupra argumentelor

Proprietate importantă

- fmap f $x == pure f <_*> x$
- Se defineste operatorul (<\$>) prin (<\$>) = fmap

Instanțe

```
class Functor f \Rightarrow Applicative f where pure :: a \rightarrow f a (<*>) :: <math>f(a \rightarrow b) \rightarrow f(a \rightarrow b)
```

Instanță pentru tipul opțiune

Instantă pentru tipul eroare

Instanțe

```
class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

Instanță pentru tipul opțiune
instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
Just f <*> x = fmap f x
```

Instantă pentru tipul eroare

```
instance Applicative (Either a) where
  pure = Right
  Left e <*> _ = Left e
  Right f <*> x = fmap f x
```

Instante

```
class Functor f \Rightarrow Applicative f where pure :: a \rightarrow f a (<*>) :: <math>f(a \rightarrow b) \rightarrow f(a \rightarrow b)
```

Instanță pentru tipul computațiilor nedeterministe (liste)

Instanță pentru tipul computațiilor I/O

Instanțe

```
class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Instanță pentru tipul computațiilor nedeterministe (liste)
instance Applicative [] where

pure x = [x]
fs <*> xs = [f x | f <- fs, x <- xs]
```

Instanță pentru tipul computațiilor I/O

```
instance Applicative IO where
  pure = return
  iof <*> iox = do
    f <- iof
    x <- iox
  return (f x)</pre>
```

Clasa de tipuri Applicative

Instanțe

```
class Functor f \Rightarrow Applicative f where pure :: a \rightarrow f a (<*>) :: <math>f(a \rightarrow b) \rightarrow f(a \rightarrow b)
```

Instantă pentru tipul functiilor de sursă dată

Clasa de tipuri Applicative

pure :: a -> f a

class Functor f => Applicative f where

Instanțe

```
(<*>) :: f (a -> b) -> f a -> f b

Instanță pentru tipul funcțiilor de sursă dată
instance Applicative ((->) t) where
  pure :: a -> (t -> a)
  pure x = \ _ -> x
  (<*>) :: (t -> (a -> b)) -> (t -> a) -> (t -> b)
  f <*> g = \ x -> f x (g x)
```

Clasa de tipuri Applicative

Exemple

```
Main> pure "Hey" :: [String]
Main> pure "Hey" :: Maybe String
Main> [(*0),(+100),(^2)] <_{*} > [1,2,3]
Main> [(+),(*)] <_{*} > [1,2] <_{*} > [3,4]
Main> (++) <$> ["ha", "heh", "hm"] <*> ["?", "!", "."]
Main> filter (>50) \$ (*) <\$> [2,5,10] <*> [8,10,11]
Main> (++) <$> getLine <*> getLine >>= putStrLn
hello
 world!
```

ZipList

Idee: în loc să privim listele ca computații nedeterministe, le privim ca fluxuri de date.

```
newtype ZipList a = ZipList { getZipList :: [a]}
instance Functor ZipList where
  fmap f (ZipList xs) = ZipList (fmap f xs)

instance Applicative ZipList where
  pure x = repeat x
  ZipList fs <*> ZipList xs =
      ZipList (zipWith (\ f x -> f x) fs xs)
```

ZipList

Exemple

```
Main> getZipList $ (+) <$> ZipList [1,2,3] <*> ZipList
   [100,100,100]
[101,102,103]
Main> getZipList $ (+) <$> ZipList [1,2,3] <*> ZipList
   [100.100..]
[101.102.103]
Main> getZipList $ max <$> ZipList [1,2,3,4,5,3] <_{\star} ZipList
    [5, 3, 1, 2]
[5.3.3.4]
Main> getZipList $ (,,) <$> ZipList "dog" <*> ZipList "cat"
   <*> ZipList "rat"
[('d','c','r'),('o','a','a'),('g','t','t')]
```

Proprietăți ale functorilor aplicativi

```
identitate pure id <_*> v = v

compoziție pure (.) <_*> u <_*> v <_*> w = u <_*> (v <_*> w)

homomorfism pure f <_*> u

Consecintă: fmap f x == f <_*> x == pure <math>f <_*> x
```

Monoizi

Monoizi

Data.Monoid.Monoid

```
class Monoid m where
    mempty :: m
    mappend :: m -> m -> m

Monoidul listelor
instance Monoid [a] where
    mempty = []
    mappend = (++)
```

Monoide booleene

```
Monoidul conjunctiv
newtype AII = AII { getAII :: Bool }

instance Monoid AII where
mempty = AII True
AII x 'mappend' AII y = AII (x && y)
```

```
Monoidul disjunctiv
```

Data.Monoid.Any

```
newtype Any = Any { getAny :: Bool }
instance Monoid Any where
    mempty = Any False
    Any x 'mappend' Any y = Any (x || y)
```

Monoide numerice

```
Monoidul aditiv
                                                Data Monoid Sum
newtype Sum a = Sum { getSum :: a }
instance Num a => Monoid (Sum a) where
        mempty = Sum 0
        Sum x 'mappend' Sum y = Sum (x + y)
Monoidul multiplicativ
                                             Data.Monoid.Product
newtype Product a = Product { getProduct :: a }
instance Num a => Monoid (Product a) where
        mempty = Product 1
        Product x 'mappend' Product y = Product (x * y)
```

La ce sunt buni Monoizii?

Data.Foldable.foldMap

Agregare într-un monoid:

```
foldMap :: Monoid m \Rightarrow (a \rightarrow m) \rightarrow [a] \rightarrow m foldMap f = foldr (mappend . f) mempty
```

Exemple

Monoidul endomorfismelor

```
newtype Endo a = Endo { appEndo :: a -> a }
instance Monoid (Endo a) where
    mempty = Endo id
    Endo f 'mappend' Endo g = Endo (f . g)
```

• Multimea functiilor din A în A are structură de monoid

Relația între foldr și foldMap

foldMap în funcție de foldr

```
foldMap :: Monoid m \Rightarrow (a \rightarrow m) \rightarrow [a] \rightarrow m foldMap f = foldr (mappend . f) mempty
```

foldr în funcție de foldMap

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f z t = appEndo (foldMap (Endo . f) t) z
```

Observație: $f :: a \rightarrow (b \rightarrow b)$ translatează un element din a într-un endomorfism peste b