

User Manual Rev. 2.0 CC1020/1070DK Development Kit

Table of Contents:

INTRODUCTION	3
CC1020/1070DK DEVELOPMENT KIT CONTENTS	4
CC1020EB EVALUATION BOARD	5
DESCRIPTION	5
VOLTAGE SUPPLY	5
PC-INTERFACE	
CC1020EB SCHEMATICS	
CC1020EB BILL OF MATERIALS	
CC1020EB Layout	
CC1020EMX AND CC1070EM EVALUATION MODULES	
Description	
CC1020EMX-433 SCHEMATIC	
CC1020EMX-433 BILL OF MATERIALS	
CC1020EMX-868/915 SCHEMATIC	
CC1020EMX-868/915 BILL OF MATERIALS	
CC1020EMX ASSEMBLY DRAWINGS	
CC1020EMX LAYOUT	
CC1070EM-433 SCHEMATIC	
CC1070EM-433 BILL OF MATERIALS	
CC1070EM-868/915 SCHEMATIC	
CC1070EM-868/915 BILL OF MATERIALS	
C1070EM ASSEMBLY DRAWINGS	
CC1070EM LAYOUT	
USING THE CC1020/1070DK DEVELOPMENT KIT	
How to set up a transmitter (CC1020 and CC1070)	
How to set up a receiver (CC1020)	
GENERAL INFORMATION	
ADDRESS INFORMATION	33

Introduction

The CC1020 single chip transceiver and the CC1070 single chip transmitter provide extensive features and great flexibility, which make the chips suitable for a very large number of applications and system requirements. The CC1020 and CC1070 are especially suited for narrowband systems. The CC1020/1070DK development kit is primarily designed to make it easy for designers to evaluate transceiver and transmitter performance and in a minimum of time develop their own applications.

The CC1020/1070DK development kit includes two CC1020EB evaluation boards, two CC1020EMX evaluation modules and one CC1070EM evaluation module. The CC1020EMX includes the CC1020 transceiver chip with the external components necessary for operation. The CC1070EM includes the CC1070 transmitter chip with the external components necessary for operation. The evaluation modules are mounted onto the CC1020EB, which is equipped with a voltage regulator and a PC interface circuitry. Using the CC1020EB connected to a PC running the SmartRF® Studio software, various CC1020 and CC1070 system parameters can be changed and tested.

Technical features:

CC1020 :

- RF output power up to +10/+5 dBm programmable in 1 dB steps at 433/868 MHz respectively
- High sensitivity (up to -121 dBm for a 12.5 kHz channel)
- Low Adjacent Channel Power (ACP)
- High Adjacent Channel Rejection (ACR)
- Integrated bit synchronizer
- Image rejection mixer
- Automatic Frequency Control which reduces the crystal accuracy requirement
- Digital RSSI and carrier sense indicator

CC1070 :

- RF output power up to +10/+8 dBm programmable in 1 dB steps at 433/868 MHz respectively
- Low Adjacent Channel Power (ACP)

This user manual describes how to get started with the CC1020/1070DK development kit. You will also find description on the CC1020EB, CC1020EMX, CC1070EM and advice on how to develop your own applications. For details on CC1020 and CC1070 please refer to the corresponding data sheet. For details on how to use the SmartRF® Studio software please refer to the SmartRF® Studio user manual.

CC1020/1070DK Development Kit Contents

Your SmartRF® CC1020/1070DK development kit should contain the following items:

Item	Quantity	Comment
CC1020EB evaluation board	2	
CC1020EMX evaluation module	2	
CC1070EM evaluation module	1	
PC parallel port extension cable	2	
Adapter	6	25-pin D-sub, male-female, 3 m
Antenna	2	SMA male- BNC female
CC1020 samples	5	50Ω, λ/4 monopole, SMA male
CC1070 samples	5	
CC1020/1070 Quick Start User Manual	1	

CC1020EB Evaluation Board

The CC1020EB evaluation board includes the following items:

- 4-10 V to 3 V voltage regulator
- Possibility to apply a 3 V voltage source directly (chosen by the switch on the board)
- Voltage-level interface circuitry between the CC1020 or CC1070 chip (3 V) and the parallel port of the computer (5 V)
- Connector for a PC parallel port cable
- Connectors for modulation data in/out and synchronisation clock output
- 2 x 10 female connectors for connection to CC1020 or CC1070 evaluation module (described later)

Description

The CC1020EB constitutes of three main parts. These are the sockets for the evaluation module (RF-section), the voltage supply and the PC-interface. The CC1020EB includes a number of components for maximum flexibility. However, only a minor part of these components are required in an actual application. Check the CC1020 and CC1070 datasheets for typical application circuits.

Voltage supply

The user can choose between applying a 4-10 V non-regulated supply voltage or a 3 V regulated supply voltage by setting a switch on the board (SPDT). If a non-regulated supply voltage is applied, an on board regulator generates a regulated 3 V supply. A diode prevents damage if the wrong polarity is used for the non-regulated input. The connector has five contacts as shown in Figure 1. In addition to the three supply voltage contacts, there are two contacts, which can be used to measure the CC1020 or CC1070 DC current. A short jumper is placed between these two contacts for the circuit to work in the default configuration. If you want to measure the DC current, replace the jumper with an ampere meter as shown in Figure 1.

Figure 1: The voltage supply connector with an ampere meter attached

Important: For narrowband applications phase noise is a critical parameter. Make sure your voltage supply has sufficiently low noise performance so as not to degrade your measurements.

PC-interface

The PC-interface is a 5-to/from-3 V level shift circuit, which buffers all control lines. The various CC1020 and CC1070 system parameters can be changed through the PC interface by running the SmartRF® Studio software.

CC1020EB Schematics

Figure 2. CC1020EB top level schematic

Figure 3. CC1020EB voltage regulator schematic

Figure 4. CC1020EB PC interface schematic

CC1020EB Bill of Materials

	Voltage regulator				
Reference	Description	Value	Part		
C4	Capacitor 1206	2.2 uF	C_2U2_1206_X7R_K_10		
C5	Capacitor 1206	2.2 uF	C_2U2_1206_X7R_K_10		
C6	Capacitor 0603	10 nF	C_10N_0603_X7R_K_50		
C7	Capacitor low ESR		Not used		
R3	Resistor 0603		Not used		
R30	Resistor 0603		Not used		
R31	Resistor 0603		Not used		
D1	Diode, Si		BAT254		
S1	SPDT switch		SWITCH_SPDT		
U1	Voltage regulator		LP2985, 3V, National Semiconductor		

PC interface				
Reference	Description	Value	Part	
C8	Capacitor 0603	33 nF	C_33N_0603 _X7R_K_25	
C9	Capacitor 0603	33 nF	C_33N_0603 _X7R_K_25	
Q1	BJT, Si, NPN, small signal		BC846	
Q2	BJT, Si, NPN, small signal		BC846	
Q3	BJT, Si, NPN, small signal		BC846	
Q4	BJT, Si, NPN, small signal		BC846	
Q5	BJT, Si, NPN, small signal		BC846	
R4	Resistor 0603	10 kΩ	R_10K_0603_G	
R5	Resistor 0603	10 kΩ	R_10K_0603_G	
R6	Resistor 0603	10 kΩ	R_10K_0603_G	
R7	Resistor 0603	10 kΩ	R_10K_0603_G	
R8	Resistor 0603	10 kΩ	R_10K_0603_G	
R9	Resistor 0603	10 kΩ	R_10K_0603_G	
R10	Resistor 0603	10 kΩ	R_10K_0603_G	
R11	Resistor 0603	10 kΩ	R_10K_0603_G	
R12	Resistor 0603	10 kΩ	R_10K_0603_G	
R13	Resistor 0603	10 kΩ	R_10K_0603_G	
R14	Resistor 0603	10 kΩ	R_10K_0603_G	
R15	Resistor 0603	10 kΩ	R_10K_0603_G	
R16	Resistor 0603	10 kΩ	R_10K_0603_G	
R17	Resistor 0603	10 kΩ	R_10K_0603_G	
R18	Resistor 0603	10 kΩ	R_10K_0603_G	
R19	Resistor 0603	10 kΩ	R_10K_0603_G	
R20	Resistor 0603	10 kΩ	R_10K_0603_G	
R21	Resistor 0603	10 kΩ	R_10K_0603_G	
R22	Resistor 0603	10 kΩ	R_10K_0603_G	

R23	Resistor 0603	10 kΩ	R_10K_0603_G
R24	Resistor 0603	100 kΩ	R_100K_0603_G
R25	Resistor 0603	100 kΩ	R_100K_0603_G
R26	Resistor 0603	100 kΩ	R_100K_0603_G
R27	Resistor 0603	100 kΩ	R_100K_0603_G
R28	Resistor 0603	100 kΩ	R_100K_0603_G
R29	Resistor 0603		Not used
U2	Hex inverter, oc		74HC05
U3	Hex inverter, oc		74HC05

	Evaluation board				
Reference	Description	Value	Part		
C1	Capacitor 1206	2.2 uF	C_2U2_1206_X7R_K_10		
C2	Capacitor 0603	220 pF	C_220P_0603_NP0_G_50		
C3	Capacitor 0603	33 nF	C_33N_0603_X7R_K_25		
R1	Resistor 0603	470 Ω	R_470_0603_J		
R2	Resistor 0603	470 Ω	R_470_0603_J		
D2	LED, green, SMD		LED_CL150GCD		
D3	LED, yellow, SMD		LED_CL150YCD		
H1	Circuit Board Support				
H2	Circuit Board Support				
H3	Circuit Board Support				
H4	Circuit Board Support				
P1	D-Sub, 25 pin		DSUB_25		
P2	5 pin terminal, screw		SCREW_TERM_5		
P3	Connector, 0.9mm pin female		CONN10_FEMALE		
P4	Connector, 0.9mm pin female		CONN10_FEMALE		
P5	SMA connector		SMA_RA (Right angle)		
P6	SMA connector		SMA_RA (Right angle)		
P7	Pinrow, 2x5		PINROW_2X5		

CC1020EB Assembly Drawing

Figure 5. CC1020EB PCB assembly drawing

CC1020EB Layout

Figure 6. CC1020EB PCB layout. Layer 1 (top) and Layer 2 (bottom)

CC1020EMX and CC1070EM Evaluation Modules

The CC1020EMX evaluation module includes the following items:

- A SmartRF® CC1020 transceiver chip
- Antenna input/output matching network
- Connector for antenna (50 Ω SMA)
- 2 x 10 male connectors for connection to CC1020FB evaluation board

The CC1020EMX is distributed in two versions, 433 MHz and 868/915 MHz, and the difference is the frequency band of operation. The operating frequency band is marked on the CC1020EMX evaluation module.

- The 433 MHz CC1020EMX-433 evaluation module is optimised for 12.5/25 kHz channel spacing
- The 868/915 MHz CC1020EMX-868 evaluation module is optimised for 25 kHz channel spacing

The CC1070EM evaluation module includes the following items:

- A SmartRF® **CC1070** transmitter chip
- Antenna output matching network
- Connector for antenna (50 Ω SMA)
- 2 x 10 male connectors for connection to CC1020EB evaluation board

The CC1070EM is distributed in two versions, 433 MHz and 868/915 MHz, and the difference is the frequency band of operation. The operating frequency band is marked on the CC1070EM evaluation module.

- The 433 MHz CC1070EM-433 evaluation module is optimised for 12.5/25 kHz channel spacing.
- The 868/915 MHz CC1070EM-868 evaluation module is optimised for 25 kHz channel spacing.

Description

The CC1020EMX evaluation module consists of a CC1020 transceiver chip with external components. The CC1070EM evaluation module consists of a CC1070 transmitter chip with external components. The different components are explained below.

The loop filter

The loop filter consists of two resistors (R2 and R3) and three capacitors (C6-C8). C7 and C8 may be omitted in applications where high loop bandwidth is desired. The values mounted on the CC1020EMX and CC1070EM can be used for data rates up to 4.8 kBaud. For higher data rates use the component values calculated in the SmartRF® Studio software program or use the values given in Table 1.

Data rate	Deviation	C6	C7	C8	R2	R3	Comment
(kBaud)	(kHz)	(nF)	(pF)	(pF)	$(k\Omega)$	$(k\Omega)$	
Up to 4.8	Up to ±2.4	220	8200	2200	1.5	4.7	12.5 kHz channel spacing
		100	3900	1000	2.2	6.8	25 kHz channel spacing
9.6	±4.8	56	2200	560	3.3	10	
19.2	±9.6	15	560	150	5.6	18	
38.4	±19.2	3.9	120	33	12	39	
76.8	±38.4	1.0	27	3.3	27	82	
153.6	±76.8	0.2	1.5	-	47	150	

Table 1. PLL loop filter component values for different data rates

Bias resistor

The precision bias resistor R1 is used to set an accurate bias current.

The LOCK signal

A LOCK signal is connected to the PC parallel port interface to be monitored by the SmartRF® Studio software. The signal tells you when the synthesiser frequency is in lock. It is also available at a test pin and is active low.

This digital output can also be configured to other functions. Please refer to the CC1020 and CC1070 data sheets for details.

Input/output matching and filtering

The CC1020 input/output matching network and the CC1070 output matching network are optimised for either 433 MHz or 868 MHz operation.

- The CC1020 input/output matching network consists of L1, L2, C1 and C3 (see Figure 11 and Figure 12)
- The CC1070 output matching network consists of L2, C2 and C3 (see Figure 15 and Figure 16)

The component values are calculated in the SmartRF® Studio software program. Using the specified matching network component values gives an optimum match at the specified operating frequency. Minor tuning of the component values may be necessary to compensate for layout parasitics at other frequencies or other PCB layouts.

The crystal oscillator

The crystal frequency is 14.7456 MHz. The crystal oscillator, X1, circuit has a trimmer capacitor, CT1, which reduces the initial tolerance of the crystal to zero by careful adjustment using a precision frequency counter. The crystal used has ±10 ppm accuracy and changes ±10 ppm over the –10 to +60 °C temperature range. The loading capacitors (C4 and C5) are designed for a 16 pF crystal load. It is also possible to use an external clock signal. Be sure to remove the crystal if an external clock is used. When using a low amplitude sine wave (300 mVpp) as external clock signal the signal must be connected to XOSC_Q1 using a DC block (10 nF). Set XOSC_BYPASS='0' in the INTERFACE register. A full-swing digital external clock can also be used. In this case set XOSC_BYPASS='1' and do not use a DC block capacitor.

LC filter

An LC-filter attenuates the spurious emission in transmit mode.

- For CC1020 at 433 MHz the LC filter is a T-type filter topology (L70, L71 and C72) in Figure 11
- For CC1020 at 868 MHz the LC filter is a π -type filter topology (C71, C72 and L70) in Figure 12
- For CC1070 the LC filter is a T-type filter topology for both 433 MHz and 868/915 MHz (L71, L72 and C71) in Figure 15 and Figure 16

Power supply decoupling and filtering

Power supply decoupling and filtering must be used. The placement and size of the decoupling capacitors and the power supply filtering are very important to achieve the best performance for narrowband applications. The CC1020EMX and CC1070EM evaluation modules should be used as reference designs and should be followed very closely. The PCB Gerber-files are available from the Chipcon web site (http://www.chipcon.com).

LNA EN and PA EN

CC1020 has two digital output pins, PA_EN and LNA_EN, which can be used to control an external LNA, PA or an external Rx/Tx switch. Both PA_EN and LNA_EN are used to control the external Rx/Tx switch on the CC1020EMX. These outputs can also be used as general digital output control signals. Please see the CC1020 data sheet for details. PA_EN and LNA_EN are connected to two LEDs on the CC1020EB. In order to utilize this option, two 0 Ω resistors, R25 and R26, must be soldered onto the CC1020EMX.

CC1070 has one digital output pin, PA_EN, which can be used to control an external PA. This output can also be used as general digital output control signals. Please see the CC1070 data sheet for details. PA_EN is connected to a LED on the CC102EB. In order to utilize this option, a 0 Ω resistor, R25, must be soldered onto the CC1070EM.

The configuration interface

The microcontroller uses 3 or 4 I/O pins for the configuration interface (PDI, PDO, PCLK and PSEL). PDO should be connected to an input at the microcontroller. PDI, PCLK and PSEL must be microcontroller outputs. One I/O pin can be saved if PDI and PDO are connected together and a bi-directional pin is used at the microcontroller. Please see the CC1020 and CC1070 data sheets for details.

In the CC1020/1070DK all configuration data is initialised by the SmartRF® Studio software.

DIO and DCLK

The modulation input/output (DIO for CC1020 and DI for CC1070) and the data clock (DCLK) are connected to separate connectors. The connectors are of type SMA female.

The CC1020 and CC1070 can be used with NRZ (Non-Return-to-Zero) data or Manchester (also known as bi-phase-level) encoded data. CC1020 can also synchronize the data from the demodulator and provide the data clock at DCLK.

CC1020 and CC1070 can be configured for three different data formats:

Synchronous NRZ mode:

In transmit mode CC1020 and CC1070 provide the data clock at DCLK, and DIO (DI) is used as data input. Data is clocked into CC1020 and CC1070 at the rising edge of DCLK. The data is modulated at RF without encoding.

In receive mode CC1020 performs the synchronization and provides the received data clock at DCLK and data at DIO. The data should be clocked into the interfacing circuit at the rising

edge of DCLK as shown in Figure 7. As an option the LOCK pin can be used as data output in this mode during reception. Please see the CC1020 data sheet for further details.

Synchronous Manchester encoded mode:

In transmit mode CC1020 and CC1070 provide the data clock at DCLK, and DIO (DI) is used as data input. Data is clocked into CC1020 and CC1070 at the rising edge of DCLK and should be in NRZ format. The data is modulated at RF with Manchester code. The encoding is done by CC1020 and CC1070. In this mode the effective bit rate is half the baud rate due to the coding.

In receive mode CC1020 performs the synchronization and provides received data clock at DCLK and data at DIO. CC1020 does the decoding and NRZ data is presented at DIO. The data should be clocked into the interfacing circuit at the rising edge of DCLK as shown in Figure 8. As an option the LOCK pin can be used as data output in this mode during reception. Please see the CC1020 data sheet for further details.

Transparent Asynchronous UART mode:

In transmit mode CC1020 and CC1070 use DIO (DI) as data input. The data is modulated at RF without synchronization or encoding.

With CC1020 in receive mode the raw data signal from the demodulator is sent to the output (DIO). No synchronization or decoding of the signal is performed in CC1020 and should be done by the interfacing circuit. As an option the DCLK pin can be used as data output in this mode during reception. See Figure 9. Please see the CC1020 data sheet for further details.

Manchester encoding and decoding:

In the *Synchronous Manchester* encoded mode CC1020 and CC1070 use Manchester coding when modulating the data. The CC1020 also performs the data decoding and synchronization. The Manchester coding is based on transitions; a "0" is encoded as a low-to-high transition, a "1" is encoded as a high-to-low transition. See Figure 10.

The Manchester coding ensures that the signal has a constant DC component, which is necessary in some FSK demodulators. Using this mode also ensures compatibility with the CC400/CC900 designs.

Figure 7. Synchronous NRZ mode

Figure 8. Synchronous Manchester encoded mode

Figure 9. Transparent Asynchronous UART mode

Figure 10. Manchester encoding

CC1020EMX-433 Schematic

Figure 11. CC1020EMX-433 MHz schematic

CC1020EMX-433 Bill of Materials

RF part 433 MHz				
Reference	Description	Value	Part	
C1	Capacitor 0402	10 pF	C_10P_0402_NP0_J_50	
C2	Capacitor 0402		Not used	
C3	Capacitor 0402	5.6 pF	C_5P6_0402_NP0_J_50	
C4	Capacitor 0402	22 pF	C_22P_0402_NP0_J_50	
C5	Capacitor 0402	12 pF	C_12P_0402_NP0_J_50	
C6	Capacitor 0603	220 nF	C_220N_0603_X7R_K_50	
C7	Capacitor 0402	8.2 nF	C_8N2_0402_X7R_K_25	
C8	Capacitor 0402	2.2 nF	C_2N2_0402_X7R_K_25	
C10	Capacitor 1206	10 uF	C_10U_1206_X7R_M_6P3	
C12	Capacitor 0402	220 pF	C_220P_0402_NP0_J_50	
C36	Capacitor 0402	68 pF	C_68P_0402_NP0_J_50	
C38	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50	
C39	Capacitor 0402	220 pF	C_220P_0402_NP0_J_50	
C40	Capacitor 0402	12 pF	C_12P_0402_NP0_J_50	
C41	Capacitor 0402	10 nF	C_10N_0402_X7R_K_25	
C46	Capacitor 0402	68 pF	C_68P_0402_NP0_J_50	
C47	Capacitor 0402	33 pF	C_33P_0402_NP0_J_50	
C52	Capacitor 0402	150 pF	C_150P_0402_NP0_J_50	
C60	Capacitor 0402	220 pF	C_220P_0402_NP0_J_50	
C71	Capacitor 0402		Not used	
C72	Capacitor 0402	4.7 pF	C_4P7_0402_NP0_J_50	
C80	Capacitor 1206	2.2 uF	C_2U2_1206_X7R_K_10	
C81	Capacitor 0402	33 nF	C_33N_0402_X7R_K_25	
C90	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50	
C94	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50	
CT1	Trimmer Capacitor		C_3-10P_TRIM_NP0	
L1	Inductor 0402	33 nH	L_33N_0402_J	
L2	Inductor 0402	22 nH	L_22N_0402_J	
L21	EMI filter bead		L_BEAD_102_0603	
L21	Inductor 0402	1.2 nH	L_1N2_0402_S	
L70	Inductor 0402	47 nH	L_47N_0402_J	
L71	Inductor 0402	39 nH	L_39N_0402_J	
P2	Surface-mount SMA, straight		SMA_SMD	
P3	Connector, 0.9mm pin, male		CONN10_MALE	
P4	Connector, 0.9mm pin, male		CONN10_MALE	
R1	Resistor 0402	82 kΩ	R_82K_0402_F	
R2	Resistor 0402	1.5 kΩ	R_1K5_0402_G	
R3	Resistor 0402	4.7 kΩ	R_4K7_0402_G	
R4	Resistor 0402	1 kΩ	R_1K0_0402_J	
R5	Resistor 0402	1 kΩ	R_1K0_0402_J	
R8	Resistor 0402	33 Ω	R_33_0402_G	
R10	Resistor 0402	82 Ω	R_82_0402_G	
R25	Resistor 0402		Not used	

R26	Resistor 0402	Not used
U1	Single chip transceiver	CC1020
U2	GaAs SPDT switch, DC – 3.0 GHz	SW_456
X1	Crystal, HC-49-SMD	X14.7456/10/10/16

CC1020EMX-868/915 Schematic

Figure 12. CC1020EMX-868/915 MHz schematic

CC1020EMX-868/915 Bill of Materials

RF part 868 MHz						
Reference	Reference Description Value Part					
C1	Capacitor 0402	47 pF	C_47P_0402_NP0_J_50			
C2	Capacitor 0402		Not used			
C3	Capacitor 0402	10 pF	C_10P_0402_NP0_J_50			
C4	Capacitor 0402	22 pF	C_22P_0402_NP0_J_50			
C5	Capacitor 0402	12 pF	C_12P_0402_NP0_J_50			
C6	Capacitor 0603	100 nF	C_100N_0603_X7R_K_50			
C7	Capacitor 0402	3.9 nF	C_3N9_0402_X7R_K_25			
C8	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50			
C10	Capacitor 1206	10 uF	C_10U_1206_X7R_M_6P3			
C12	Capacitor 0402	220 pF	C_220P_0402_NP0_J_50			
C36	Capacitor 0402	68 pF	C_68P_0402_NP0_J_50			
C38	Capacitor 0402	1 nF	C_1N0_0402_X7R_K_50			
C39	Capacitor 0402	47 pF	C_47P_0402_NP0_J_50			
C40	Capacitor 0402	12 pF	C_12P_0402_NP0_J_50			
C41	Capacitor 0402	270 pF	C_270P_0402_NP0_J_50			
C46	Capacitor 0402	68 pF	C_68P_0402_NP0_J_50			
C47	Capacitor 0402	5.6 pF	C_5P6_0402_NP0_J_50			
C52	Capacitor 0402	47 pF	C_47P_0402_NP0_J_50			
C60	Capacitor 0402	220 pF	C_220P_0402_NP0_J_50			
C71	Capacitor 0402	8.2 pF	C_8P2_0402_NP0_J_50			
C72	Capacitor 0402	8.2 pF	C_8P2_0402_NP0_J_50			
C80	Capacitor 1206	2.2 uF	C_2U2_1206_X7R_K_10			
C81	Capacitor 0402	33 nF	C_33N_0402_X7R_K_25			
C90	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50			
C94	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50			
CT1	Trimmer Capacitor		C_3-10P_TRIM_NP0			
L1	Inductor 0402	82 nH	L_82N_0402_J			
L2	Inductor 0402	3.6 nH	L_3N6_0402_J			
L21	EMI filter bead		L_BEAD_102_0603			
L22	Inductor 0402	2.2 nH	L_2N2_0402_J			
L70	Inductor 0402	5.1 nH	L_5N1_0402_J			
L71	Resistor 0402	0 Ω	R_0_0402			
P2	Surface-mount SMA, straight		SMA_SMD			
P3	Connector, 0.9mm pin, male		CONN10_MALE			
P4	Connector, 0.9mm pin, male		CONN10_MALE			
R1	Resistor 0402	82 kΩ	R_82K_0402_F			
R2	Resistor 0402	2.2 kΩ	R_2K2_0402_G			
R3	Resistor 0402	6.8 kΩ	R_6K8_0402_G			
R4	Resistor 0402	1 kΩ	R_1K0_0402_J			
R5	Resistor 0402	1 kΩ	R_1K0_0402_J			
R8	Resistor 0402	33 Ω	R_33_0402_G			
R10	Resistor 0402	82 Ω	R_82_0402_G			
R25	Resistor 0402		Not used			

R26	Resistor 0402	Not used
U1	Single chip transceiver	CC1020
U2	GaAs SPDT switch, DC – 3.0 GHz	SW_456
X1	Crystal, HC-49-SMD	X14.7456/10/10/16

CC1020EMX Assembly Drawings

Figure 13. CC1020EMX PCB top level assembly drawing

CC1020EMX Layout

Figure 14. CC1020EMX PCB layout. Layer 1 (top) and Layer 2 (bottom)

CC1070EM-433 Schematic

Figure 15. CC1070EM-433 MHz schematic

CC1070EM-433 Bill of Materials

	RF part 433 MHz					
Reference	Peference Description Value Part					
C2	Capacitor 0402	2.2 pF	C_2P2_0402_NP0_C_50			
C3	Capacitor 0402	5.6 pF	C_5P6_0402_NP0_J_50			
C4	Capacitor 0402	22 pF	C_22P_0402_NP0_J_50			
C5	Capacitor 0402	12 pF	C_12P_0402_NP0_J_50			
C6	Capacitor 0603	220 nF	C_220N_0603_X7R_K_50			
C7	Capacitor 0402	8.2 nF	C_8N2_0402_X7R_K_25			
C8	Capacitor 0402	2.2 nF	C_2N2_0402_X7R_K_25			
C10	Capacitor 1206	10 uF	C_10U_1206_X7R_M_6P3			
C38	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50			
C41	Capacitor 0402	47 pF	C_47P_0402_NP0_J_50			
C42	Capacitor 0402	68 pF	C_68P_0402_NP0_J_50			
C46	Capacitor 0402	68 pF	C_68P_0402_NP0_J_50			
C60	Capacitor 0402	220 pF	C_220P_0402_X7R_K_50			
C71	Capacitor 0402	4.7 pF	C_4P7_0402_NP0_J_50			
C80	Capacitor 1206	2.2 uF	C_2U2_1206_X7R_K_10			
C81	Capacitor 0402	33 nF	C_33N_0402_X7R_K_25			
C92	Capacitor 0402	10 nF	C_10N_0402_X7R_K_25			
C93	Capacitor 0402	10 nF	C_10N_0402_X7R_K_25			
CT1	Trimmer Capacitor		C_3-10P_TRIM_NP0			
L2	Inductor 0402	22 nF	L_22N_0402_J			
L71	Inductor 0402	47 nF	L_47N_0402_J			
L72	Inductor 0402	47 nF	L_47N_0402_J			
P2	Surface-mount SMA, straight		SMA_SMD			
P3	Connector, 0.9mm pin, male		CONN10_MALE			
P4	Connector, 0.9mm pin, male		CONN10_MALE			
R1	Resistor 0402	82 kΩ	R_82K_0402_F			
R2	Resistor 0402	1.5 kΩ	R_1K5_0402_G			
R3	Resistor 0402	4.7 kΩ	R_4K7_0402_G			
R6	Resistor 0402	82 Ω	R_82_0402_G			
R8	Resistor 0402	33 Ω	R_33_0402_G			
R25	Resistor 0402		Not used			
U3	Single chip transmitter		CC1070			
X1	Crystal, HC-49-SMD		X14.7456/10/10/10/16			

CC1070EM-868/915 schematic

Figure 16. CC1070EM-868/915 MHz schematic

CC1070EM-868/915 bill of materials

RF part 868 MHz				
Reference	Description	Value	Part	
C2	Capacitor 0402	1.5 pF	C_1P5_0402_NP0_C_50	
C3	Capacitor 0402	10 pF	C_10P_0402_NP0_J_50	
C4	Capacitor 0402	22 pF	C_22P_0402_NP0_J_50	
C5	Capacitor 0402	12 pF	C_12P_0402_NP0_J_50	
C6	Capacitor 0603	100 nF	C_100N_0603_X7R_K_50	
C7	Capacitor 0402	3.9 nF	C_3N9_0402_X7R_K_25	
C8	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50	
C10	Capacitor 1206	10 uF	C_10U_1206_X7R_M_6P3	
C38	Capacitor 0402	1 nF	C_1N_0402_X7R_K_50	
C41	Capacitor 0402	680 pF	C_680P_0402_X7R_K_50	
C42	Capacitor 0402	68 pF	C_68P_0402_NP0_J_50	
C46	Capacitor 0402	68 pF	C_68P_0402_NP0_J_50	
C60	Capacitor 0402	220 pF	C_220P_0402_X7R_K_50	
C71	Capacitor 0402	3.3 pF	C_3P3_0402_NP0_J_50	
C80	Capacitor 1206	2.2 uF	C_2U2_1206_X7R_K_10	
C81	Capacitor 0402	33 nF	C_33N_0402_X7R_K_25	
C92	Capacitor 0402	10 nF	C_10N_0402_X7R_K_25	
C93	Capacitor 0402	10 nF	C_10N_0402_X7R_K_25	
CT1	Trimmer Capacitor		C_3-10P_TRIM_NP0	
L2	Inductor 0402	6.8 nH	L_6N8_0402_J	
L71	Inductor 0402	12 nH	L_12N_0402_J	
L72	Inductor 0402	12 nH	L_12N_0402_J	
P2	Surface-mount SMA, straight		SMA_SMD	
P3	Connector, 0.9mm pin, male		CONN10_MALE	
P4	Connector, 0.9mm pin, male		CONN10_MALE	
R1	Resistor 0402	82 kΩ	R_82K_0402_F	
R2	Resistor 0402	2.2 kΩ	R_2K2_0402_G	
R3	Resistor 0402	6.8 kΩ	R_6K8_0402_G	
R6	Resistor 0402	82 Ω	R_82_0402_G	
R8	Resistor 0402	33 Ω	R_33_0402_G	
R25	Resistor 0402		Not used	
U3	Single chip transmitter		CC1070	
X1	Crystal, HC-49-SMD		X14.7456/10/10/10/16	

C1070EM Assembly Drawings

Figure 17. CC1070EM PCB top level assembly drawing

CC1070EM Layout

Figure 18. CC1070EM PCB layout. Layer 1 (top) and Layer 2 (bottom)

Using the CC1020/1070DK Development Kit

The purpose of the CC1020/1070DK development kit is to give users of the integrated CC1020 transceiver and CC1070 transmitter hands-on experience with the chips. Typical setups of the CC1020/1070DK are shown in Figure 19 and Figure 20. Each of the CC1020EB evaluation boards is connected to a PC to be programmed by the SmartRF® Studio software.

How to set up a transmitter (CC1020 and CC1070)

The data signal that you want to send in transmit mode can be of either Manchester or NRZ code.

The CC1020 and CC1070 have a built-in test pattern generator that generates a PN9 pseudo random bit sequence. The *PN9_ENABLE* bit in the *MODEM* register enables the PN9 generator. Please refer to the CC1020 and CC1070 data sheets for further details.

The PN9 generator can be used for transmission of 'real-life' data when measuring narrow-band ACP (Adjacent Channel Power), modulation bandwidth or occupied bandwidth.

The transmitted signal can be studied on a spectrum analyser, sent out on the antenna (see note below) or sent to the receiver via a cable with an attenuator attached.

Figure 19. Equipment set-up in transmit mode

How to set up a receiver (CC1020)

With CC1020 in receive mode an RF generator can be connected to the antenna input to provide an ideal RF signal to the circuit board for testing the receiver. Use FSK modulation with appropriate deviation and modulation rate. If you do not have the equipment to send FSK modulation, you can use an RF generator with FM modulation and use an external function generator to modulate the signal with a square wave. If you are in NRZ or UART mode the modulating signal should be equal to the bitrate/2 (= baudrate/2) when sending alternating 0's and 1's. If you are in Manchester mode the modulating frequency should be equal to bitrate/2 (= baudrate/4) when sending alternating 0's and 1's. The RF signal can also come from the transmitter via the antenna. An oscilloscope can be used to observe the signal that is being received.

CC1020 has a built-in feature called AFC (Automatic Frequency Control) that can be used to compensate for frequency drift. The average frequency offset of the received signal (from the nominal IF frequency) can be read in the *AFC* register and can be used to compensate for frequency offsets between transmitter and receiver. Monitor the AFC value and change the RF generator frequency until AFC is close to 0 Hz.

Figure 20. Equipment set-up in receive mode

Important: The use of radio transceivers is regulated by international and national rules. Before transmitting an RF signal onto the air using an antenna, please contact your local telecommunication authorities to check if you are licensed to operate the transceiver or transmitter.

General Information

Document Revision History

Revision	n Date	Description/Changes
2.0	November 2004	CC1020EMX reference design changed from 4 layer PCB to 2 layer PCB

Disclaimer

Chipcon AS believes the information contained herein is correct and accurate at the time of this printing. However, Chipcon AS reserves the right to make changes to this product without notice. Chipcon AS does not assume any responsibility for the use of the described product; neither does it convey any license under its patent rights, or the rights of others. The latest updates are available at the Chipcon website or by contacting Chipcon directly.

To the extent possible, major changes of product specifications and functionality will be stated in product specific Errata Notes published at the Chipcon website. Customers are encouraged to sign up for the Developer's Newsletter for the most recent updates on products and support tools.

When a product is discontinued this will be done according to Chipcon's procedure for obsolete products as described in Chipcon's Quality Manual. This includes informing about last-time-buy options. The Quality Manual can be downloaded from Chipcon's website.

Compliance with regulations is dependent on complete system performance. It is the customer's responsibility to ensure that the system complies with regulations.

Trademarks

SmartRF® is a registered trademark of Chipcon AS. SmartRF® is Chipcon's RF technology platform with RF library cells, modules and design expertise. Based on SmartRF® technology Chipcon develops standard component RF circuits as well as full custom ASICs based on customer requirements and this technology.

All other trademarks, registered trademarks and product names are the sole property of their respective owners.

Life Support Policy

This Chipcon product is not designed for use in life support appliances, devices, or other systems where malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Chipcon AS customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Chipcon AS for any damages resulting from any improper use or sale.

© 2004, Chipcon AS. All rights reserved.

Address Information

Web site: http://www.chipcon.com E-mail: wireless@chipcon.com **Technical Support Email:** support@chipcon.com

Technical Support Hotline: +47 22 95 85 45

Headquarters:

Chipcon AS Gaustadalléen 21 NO-0349 Oslo **NORWAY**

Tel: +47 22 95 85 44 Fax: +47 22 95 85 46

E-mail: wireless@chipcon.com

US Offices:

Chipcon Inc., Western US Sales Office 19925 Stevens Creek Blvd. Cupertino, CA 95014-2358 USA

Tel: +1 408 973 7845 Fax: +1 408 973 7257

Email: <u>USsales@chipcon.com</u>

Sales Office Germany:

Chipcon AS Riedberghof 3 D-74379 Ingersheim **GERMANY**

Tel: +49 7142 9156815 Fax: +49 7142 9156818

Email: Germanysales@chipcon.com

Chipcon Inc., Eastern US Sales Office 35 Pinehurst Avenue Nashua, New Hampshire, 03062 USA

Tel: +1 603 888 1326 Fax: +1 603 888 4239

Email: eastUSsales@chipcon.com

Sales Office Asia:

Chipcon AS Unit 503, 5/F Silvercord Tower 2, 30 Canton Road Tsimshatsui, Hong Kong Tel: +852 3519 6226 Fax: +852 3519 6520

Email: Asiasales@chipcon.com

Sales Office Korea & South-East Asia:

Chipcon AS 37F, Asem Tower 159-1 Samsung-dong, Kangnam-ku Seoul 135-798 Korea Tel: +822 6001 3888

Fax: +822 6001 3711 Email: KAsiasales@Chipcon.com

Sales Office Japan:

Chipcon AS #403, Bureau Shinagawa 4-1-6, Konan, Minato-Ku, Tokyo, Zip 108-0075 Japan

Tel: +81 3 5783 1082 Fax: +81 3 5783 1083

Email: Japansales@chipcon.com

Chipcon AS is an ISO 9001:2000 certified company

SWRU052 Page 33 of 33