Neural Nonnegative CP Decomposition for Hierarchical Tensor Analysis

Joshua Vendrow, Jamie Haddock, Deanna Needell

JMM MSRI Special Session on Tensor Modeling and Optimization
April 9, 2022

appears in ACSSC 2021 supported by NSF DMS #2211318

Background

Nonnegative Matrix Factorization (NMF)

Given a nonnegative matrix X (X \geq 0), compute nonnegative A and S such that

$$X \approx AS$$

D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788, 1999.

HARVEY MUDD COLLEGE

Nonnegative Matrix Factorization (NMF)

Formulated as the optimization task:

D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788, 1999.

Hierarchical NMF

Neural NMF

Regard the A matrices as weights, and determine S matrices from A matrices, and define

$$q(X,A) := \operatorname{argmin}_{S>0} ||X - AS||_F^2$$

M. Gao et al. "Neural nonnegative matrix factorization for hierarchical multilayer topic modeling," in Proc. Int. Workshop on Comp. Adv. in Multi-Sensor Adaptive Process., 2019.

HARVEY MUDD COLLEGE

Nonnegative CP Decomposition (NCPD)

Given a nonnegative tensor **X** ($X \ge 0$), compute nonnegative $X_1, X_2, ..., X_k$ such that

$$m{X}pprox [\![m{X}_1,m{X}_2,\cdots,m{X}_k]\!] \equiv \sum_{j=1}^r m{x}_j^{(1)}\otimesm{x}_j^{(2)}\otimes\cdots\otimesm{x}_j^{(k)}$$

Our Contributions

Hierarchical Nonnegative CP Decomposition (HNCPD)

Apply a hierarchical NMF onto each factor matrix:

$$oldsymbol{X}_ipprox\widetilde{oldsymbol{X}}_i\equivoldsymbol{A}_i^{(0)}A_i^{(1)}...oldsymbol{A}_i^{(\ell-2)}oldsymbol{S}_i^{(\ell-2)}$$

Neural Nonnegative CP Decomposition (Neural NCPD)

Hierarchical NCPD Model

Neural NMF Branches

Experiments

- CP rank seven tensor of size 40 × 40
 × 40
- Overlapping and non-overlapping blocks of varying size and intensity to form a hierarchical structure
- Positive random noise added to each entry

TABLE I: Topic modeling loss and relative reconstruction loss, $C_{\rm rel}$, on the synthetic dataset for Neural NCPD, Standard HNCPD, HNTF, Neural NMF, and Standard HNMF with two levels of noise over 10 trials. For HNTF we report runs on three re-orderings of the modes the tensor, and for matrix methods we report results for flattening along each mode of the tensor.

		Topic Modeling Loss				Relative Reconstruction Loss							
			$\sigma^2 = 0.1$			$\sigma^2 = 0.4$			$\sigma^{2} = 0.1$			$\sigma^2 = 0.4$	
Method	Mode	7 - 2	7 - 4	4 - 2	7 - 2	7 - 4	4 - 2	r = 7	$r^{(0)} = 4$	$r^{(1)} = 2$	r = 7	$r^{(0)} = 4$	$r^{(1)}=2$
Neural HNCPD		0.043	0.042	0.042	0.087	0.087	0.081	0.119	0.252	0.563	0.454	0.508	0.714
Standard HNCPD		0.106	0.101	0.189	0.145	0.193	0.204	0.119	0.494	0.828	0.454	0.612	0.892
	1	0.163	0.236	0.182	0.171	0.144	0.170	0.119	0.502	0.795	0.454	0.576	0.781
HNTF [12]	2	0.087	0.040	0.101	0.090	0.116	0.142	0.119	0.309	0.665	0.454	0.587	0.765
	3	0.078	0.122	0.106	0.084	0.111	0.164	0.119	0.417	0.713	0.454	0.560	0.747
	1	0.154	0.192	0.105	0.169	0.219	0.127	0.146	0.268	0.593	0.478	0.521	0.705
Neural NMF [9]	2	0.075	0.244	0.146	0.153	0.190	0.160	0.141	0.289	0.585	0.475	0.513	0.710
	3	0.119	0.164	0.110	0.158	0.197	0.140	0.151	0.236	0.576	0.477	0.512	0.693
	l	0.098	0.182	0.052	0.164	0.219	0.139	0.118	0.235	0.558	0.472	0.524	0.707
Standard HNMF	2	0.080	0.199	0.090	0.151	0.213	0.088	0.118	0.245	0.566	0.472	0.505	0.709
	3	0.060	0.165	0.085	0.137	0.193	0.114	0.118	0.233	0.563	0.472	0.503	0.717

TABLE I: Topic modeling loss and relative reconstruction loss, $C_{\rm rel}$, on the synthetic dataset for Neural NCPD, Standard HNCPD, HNTF, Neural NMF, and Standard HNMF with two levels of noise over 10 trials. For HNTF we report runs on three re-orderings of the modes the tensor, and for matrix methods we report results for flattening along each mode of the tensor.

		Topic Modeling Loss				Relative Reconstruction Loss							
			$\sigma^2 = 0.1$		$\sigma^{2} = 0.4$		$\sigma^2 = 0.1$			$\sigma^2 = 0.4$			
Method	Mode	7 - 2	7 - 4	4 - 2	7-2	7 - 4	4 - 2	r = 7	$r^{(0)} = 4$	$r^{(1)} = 2$	r = 7	$r^{(0)} = 4$	$r^{(1)} = 2$
Neural HNCPD		0.043	0.042	0.042	0.087	0.087	0.081	0.119	0.252	0.563	0.454	0.508	0.714
Standard HNCPD		0.106	0.101	0.189	0.145	0.193	0.204	0.119	0.494	0.828	0.454	0.612	0.892
	1	0.163	0.236	0.182	0.171	0.144	0.170	0.119	0.502	0.795	0.454	0.576	0.781
HNTF [12]	2	0.087	0.040	0.101	0.090	0.116	0.142	0.119	0.309	0.665	0.454	0.587	0.765
	3	0.078	0.122	0.106	0.084	0.111	0.164	0.119	0.417	0.713	0.454	0.560	0.747
	1	0.154	0.192	0.105	0.169	0.219	0.127	0.146	0.268	0.593	0.478	0.521	0.705
Neural NMF [9]	2	0.075	0.244	0.146	0.153	0.190	0.160	0.141	0.289	0.585	0.475	0.513	0.710
	3	0.119	0.164	0.110	0.158	0.197	0.140	0.151	0.236	0.576	0.477	0.512	0.693
	1	0.098	0.182	0.052	0.164	0.219	0.139	0.118	0.235	0.558	0.472	0.524	0.707
Standard HNMF	2	0.080	0.199	0.090	0.151	0.213	0.088	0.118	0.245	0.566	0.472	0.505	0.709
	3	0.060	0.165	0.085	0.137	0.193	0.114	0.118	0.233	0.563	0.472	0.503	0.717

TABLE I: Topic modeling loss and relative reconstruction loss, $C_{\rm rel}$, on the synthetic dataset for Neural NCPD, Standard HNCPD, HNTF, Neural NMF, and Standard HNMF with two levels of noise over 10 trials. For HNTF we report runs on three re-orderings of the modes the tensor, and for matrix methods we report results for flattening along each mode of the tensor.

		Topic Modeling Loss				Relative Reconstruction Loss							
			$\sigma^2 = 0.1$			$\sigma^2 = 0.4$			$\sigma^2 = 0.1$			$\sigma^2 = 0.4$	
Method	Mode	7 - 2	7 - 4	4 - 2	7 - 2	7 - 4	4 - 2	r = 7	$r^{(0)} = 4$	$r^{(1)} = 2$	r = 7	$r^{(0)} = 4$	$r^{(1)} = 2$
Neural HNCPD		0.043	0.042	0.042	0.087	0.087	0.081	0.119	0.252	0.563	0.454	0.508	0.714
Standard HNCPD		0.106	0.101	0.189	0.145	0.193	0.204	0.119	0.494	0.828	0.454	0.612	0.892
	1	0.163	0.236	0.182	0.171	0.144	0.170	0.119	0.502	0.795	0.454	0.576	0.781
HNTF [12]	2	0.087	0.040	0.101	0.090	0.116	0.142	0.119	0.309	0.665	0.454	0.587	0.765
	3	0.078	0.122	0.106	0.084	0.111	0.164	0.119	0.417	0.713	0.454	0.560	0.747
	1	0.154	0.192	0.105	0.169	0.219	0.127	0.146	0.268	0.593	0.478	0.521	0.705
Neural NMF [9]	2	0.075	0.244	0.146	0.153	0.190	0.160	0.141	0.289	0.585	0.475	0.513	0.710
	3	0.119	0.164	0.110	0.158	0.197	0.140	0.151	0.236	0.576	0.477	0.512	0.693
	l	0.098	0.182	0.052	0.164	0.219	0.139	0.118	0.235	0.558	0.472	0.524	0.707
Standard HNMF	2	0.080	0.199	0.090	0.151	0.213	0.088	0.118	0.245	0.566	0.472	0.505	0.709
	3	0.060	0.165	0.085	0.137	0.193	0.114	0.118	0.233	0.563	0.472	0.503	0.717

Fig. 2: (Top left) Data tensor **X** with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD, and HNTF approximations of **X**. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

Fig. 2: (Top left) Data tensor **X** with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD, and HNTF approximations of **X**. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

Fig. 2: (Top left) Data tensor **X** with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD, and HNTF approximations of **X**. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

Fig. 2: (Top left) Data tensor **X** with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD, and HNTF approximations of **X**. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

Fig. 2: (Top left) Data tensor **X** with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD, and HNTF approximations of **X**. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

Twitter Political Data Set

- A data set of tweets sent by political candidates during the 2016 election season
- We subset the tweets from eight politicians, four Republicans and four Democrats:

Hillary Clinton, Tim Kaine, Martin O'Malley, Bernie Sanders, Ted Cruz, John Kasich, Marco Rubio, and Donald Trump.

J. Littman, L. Wrubel, and D. Kerchner, "2016 United States Presidential Election Tweet Ids," 2016.

Twitter Political Data Set

- We use a bag-of-words (12,721 words in corpus) representation of all tweets made by a candidate
- We bin all tweets made by a candidate each 30 days (from Feb to Dec 2016)
- Resulting tensor is size

J. Littman, L. Wrubel, and D. Kerchner, "2016 United States Presidential Election Tweet Ids," 2016.

Neural NCPD in Twitter Political Data Set

Fig. 3: A three-layer Neural NCPD on the Twitter dataset at ranks r = 8, $r^{(0)} = 4$ and $r^{(1)} = 2$. At each rank, we display the top keywords and topic heatmaps for candidate and temporal modes.

Neural NCPD in Twitter Political Data Set

Fig. 3: A three-layer Neural NCPD on the Twitter dataset at ranks r = 8, $r^{(0)} = 4$ and $r^{(1)} = 2$. At each rank, we display the top keywords and topic heatmaps for candidate and temporal modes.

Neural NCPD in Twitter Political Data Set

Fig. 3: A three-layer Neural NCPD on the Twitter dataset at ranks r = 8, $r^{(0)} = 4$ and $r^{(1)} = 2$. At each rank, we display the top keywords and topic heatmaps for candidate and temporal modes.

Standard NCPD in Twitter Political Data Set

Fig. 5: Ranks 4 and 2 Standard NCPD of the Twitter dataset. At each rank, we display the top five keywords and candidate and temporal mode heatmaps.

Twitter Political Data Set Numerical Results

TABLE II: Relative reconstruction loss, $C_{\rm rel}$, on the Twitter political dataset for Neural NCPD, Standard NCPD, Standard HNCPD, and HNTF at ranks r=8, $r^{(0)}=4$, and $r^{(1)}=8$. For HNTF we display the loss given the three possible arrangements of the tensor.

Method	r = 8	$r^{(0)} = 4$	$r^{(1)} = 2$
Neural NCPD	0.834	0.883	0.918
Standard NCPD	0.834	0.889	0.919
Standard HNCPD	0.834	0.931	0.950
HNTF-1 [12]	0.834	0.890	0.927
HNTF-2 [12]	0.834	0.909	0.956
HNTF-3 [12]	0.834	0.895	0.942

Thank you!

Questions?