# Modèles démographiques

Enseignement Scientifique - Terminale

### 1. Exemple introductif: Population de la France entre 1980 et 2015 (en millions d'habitants)

| Palier     | Année | Population | Variation |
|------------|-------|------------|-----------|
| numéro $n$ |       | u(n)       | absolue   |
| 0          | 1980  | 53,9       |           |
| 1          | 1985  | 55, 3      |           |
| 2          | 1990  | 56, 7      |           |
| 3          | 1995  | 57,8       |           |
| 4          | 2000  | 59, 0      |           |
| 5          | 2005  | 61, 2      |           |
| 6          | 2010  | 62,8       |           |
| 7          | 2015  | 64, 4      |           |

Sources: Insee

On considère une population dont l'effectif évolue par palier, passant de la valeur u(n) au palier n à l'effectif u(n+1) au palier n+1.

Vocabulaire: Pour  $n \in \mathbb{N}$ , on appelle variation absolue la différence u(n+1) - u(n).

#### Question:

1. Compléter le tableau ci-contre

## 2. Outil mathématique : Évolution linéaire

• On parle d'évolution linéaire lorsque pour une population, la variation absolue est (presque) constante d'un palier à l'autre. En notant r cette constante, on peut modéliser l'évolution par une suite arithmétique de raison r. On a u(n+1)-u(n)=r, soit u(n+1)=u(n)+r, pour tout  $n\in\mathbb{N}$ .

$$u(0) \xrightarrow{+r} u(1) \xrightarrow{+r} u(2) \xrightarrow{+r} u(3) \cdots$$

Le nombre d'habitants s'exprime en fonction de n par :



• Dans le cas d'une évolution linéaire, les points de coordonnées  $(n; u_n)$  sont (presque) alignés.

On peut alors ajuster le nuage de points par une droite d'équation y = ax + b, par exemple :

- à l'aide d'un tableur (outil "courbe de tendance") ou de la calculatrice (outil RÉGLIN(ax+b))
- en prenant a = r pour coefficient directeur puis en calculant b à l'aide d'un point de la droite.

## 3. Modélisation mathématique de la population française (1980-2015)

Modèle 1 : avec une suite arithmétique

| Palier     | Année | Population $u(n)$ du | Variation   |
|------------|-------|----------------------|-------------|
| numéro $n$ |       | modèle               | absolue $r$ |
| 0          | 1980  | 53,9                 |             |
| 1          | 1985  | 55, 4                | 1,5         |
| 2          | 1990  | 56,9                 | 1, 5        |
| 3          | 1995  | 58,4                 | 1, 5        |
| 4          | 2000  | 59,9                 | 1,5         |
| 5          | 2005  | 61,4                 | 1,5         |
| 6          | 2010  | 62,9                 | 1,5         |
| 7          | 2015  | 64, 4                | 1, 5        |

Modèle 2 : avec une droite d'ajustement



#### Questions

- 1. Doc. 1 Calculer les variations absolues et compléter la colonne 4 du tableau. Commentez.
- 2. Doc. 2 Indiquer comment reconnaître une évolution dite linéaire.
- 3. **Doc. 2** Compléter la formule encadrée.
- 4. **Doc. 1 et 3** Pourquoi avoir choisi r = 1, 5 dans le modèle 1 ? Le modèle linéaire est-il adapté ?
- 5. Doc. 3 En exploitant les modèlisations, estimer le nombre d'habitants en France en 2030. En 2100. \end{enumerate}