Deriválási összefoglaló

Elemi függvények deriváltjai

•
$$f(x) = c$$
 \Rightarrow $f'(x) = 0$

•
$$f(x) = x^a$$
 \Rightarrow $f'(x) = ax^{a-1}$ $(a \in \mathbb{R} \text{ tetsz\"oleges})$

•
$$f(x) = e^x$$
 \Rightarrow $f'(x) = e^x$

•
$$f(x) = a^x$$
 \Rightarrow $f'(x) = \log(a) \cdot a^x$ $(a > 0 \text{ tetszőleges})$

•
$$f(x) = \ln x$$
 \Rightarrow $f'(x) = \frac{1}{x}$

•
$$f(x) = \log_a x$$
 $\Rightarrow f'(x) = \frac{1}{\log a} \cdot \frac{1}{x} \quad (a > 0, a \neq 1 \text{ tetsz\"oleges})$

•
$$f(x) = \sin x$$
 \Rightarrow $f'(x) = \cos x$

•
$$f(x) = \cos x$$
 \Rightarrow $f'(x) = -\sin x$

•
$$f(x) = \tan x$$
 \Rightarrow $f'(x) = \frac{1}{\cos^2 x}$

•
$$f(x) = \cot x$$
 \Rightarrow $f'(x) = \frac{-1}{\sin^2 x}$

•
$$f(x) = \arcsin x$$
 \Rightarrow $f'(x) = \frac{1}{\sqrt{1-x^2}}$

•
$$f(x) = \arccos x$$
 \Rightarrow $f'(x) = -\frac{1}{\sqrt{1-x^2}}$

•
$$f(x) = \arctan x$$
 \Rightarrow $f'(x) = \frac{1}{1+x^2}$

Deriválási szabályok

- Összegfüggvény deriváltja: (f+g)'(x) = f'(x) + g'(x).
- Szorzatfüggvény deriváltja: $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$. Speciálisan: $(cf)'(x) = c \cdot f'(x)$ konstans c mellett.
- Hányadosfüggvény deriváltja: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$. Speciálisan: $\left(\frac{1}{g}\right)'(x) = \frac{-g'(x)}{g^2(x)}$.
- \bullet Inverzfüggvény deriváltja: $g=f^{-1}$ jelöléssel $g'(x)=\frac{1}{f'(g(x))}.$
- Összetett függvény deriváltja (láncszabály): h(x) = f(g(x)) jelöléssel $h'(x) = f'(g(x)) \cdot g'(x)$.

Minta feladatok. Határozza meg a deriváltat!

•
$$f(x) = x^8 - 3x^4 + 12x - \frac{24}{x^3}$$

•
$$f(x) = \frac{x^2 - 1}{x^2 + 1} + x\sqrt[4]{x}$$

•
$$f(x) = x^{2017} + 2017^x + 2017^{2017}$$

$$f(x) = \log_8 x + \log_8 5$$

•
$$f(x) = x(x+1)\sin(3x) - \cos(3x)$$

•
$$f(x) = \frac{e^{-2x}}{10 + e^{-2x}}$$

•
$$f(x) = xe^{-x^2} + 2.45^x \sin(2\pi x)$$

•
$$f(x) = \ln(2 + \cos^2(2x))$$