Contents

 Definitions A. Notations 3; B. Wald's approach 3; C. Substance 5; D. Geodesics and geodesic spaces 6; E. Triangles, hinges, and angles 7; F. Definitions 8; G. Length and length spaces 10; H. Embedding theorem 	3
11.	
Bibliography	13

2 CONTENTS

Lecture 1

Definitions

The first synthetic description of curvature is due to Abraham Wald [7] published in 1936; it was his student work, written under the supervision of Karl Menger. This publication was not noticed for about 50 years [3]. In 1941, similar definitions were rediscovered by Alexandr Alexandrov [2].

A Notations

The distance between two points x and y in a metric space \mathcal{X} will be denoted by |x-y| or $|x-y|_{\mathcal{X}}$. The latter notation is used if we need to emphasize that the distance is taken in the space \mathcal{X} .

We will denote by \mathbb{S}^n , \mathbb{E}^n , and \mathbb{H}^n the *n*-dimensional sphere (with angle metric), Euclidean space, and Lobachevsky space respectively. More generally, $\mathbb{M}^n(\kappa)$ will denote the model *n*-space of curvature κ ; that is,

- \diamond if $\kappa > 0$, then $\mathbb{M}^n(\kappa)$ is the *n*-sphere of radius $\frac{1}{\sqrt{\kappa}}$, so $\mathbb{S}^n = \mathbb{M}^n(1)$
- $\diamond \mathbb{M}^n(0) = \mathbb{E}^n,$
- \diamond if $\kappa < 0$, then $\mathbb{M}^n(\kappa)$ is the Lobachevsky *n*-space \mathbb{H}^n rescaled by factor $\frac{1}{\sqrt{-\kappa}}$; in particular $\mathbb{M}^n(-1) = \mathbb{H}^n$.

B Wald's approach

Wald noticed that a typical quadruple x_1, x_2, x_3, x_4 admits model configurations in $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \tilde{x}_4 \in \mathbb{M}^3(\kappa)$ with

$$|\tilde{x}_i - \tilde{x}_j|_{\mathbb{M}^3(\kappa)} = |x_i - x_j|_{\mathcal{X}}$$

for κ in a closed interval, say

$$[\kappa_{\min}(x_1, x_2, x_3, x_4), \kappa_{\max}(x_1, x_2, x_3, x_4)] \subset \mathbb{R}.$$

In $\mathbb{M}^3(\kappa_{\min})$ and $\mathbb{M}^3(\kappa_{\max})$, the points $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \tilde{x}_4$ form degenerate tetrahedrons shown on the diagram (for κ_{\min} it is a convex quadrangle and for κ_{\max} — a triangle with a point inside). In the interior of the interval, the tetrahedron is nondegenerate.

Moreover, one can use $[-\infty, \infty)$ instead of \mathbb{R} and let

$$\kappa_{\min}(x_1, x_2, x_3, x_4) = -\infty$$

if there is almost model quadruple in $\mathbb{M}^3(\kappa)$ for $\kappa \to -\infty$; that is, for any $\varepsilon > 0$ there is a quadruple $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \tilde{x}_4 \in \mathbb{M}^3(-\frac{1}{\varepsilon})$ such that

$$|\tilde{x}_i - \tilde{x}_j|_{\mathbb{M}^3(-\frac{1}{\varepsilon})} \leq |x_i - x_j|_{\mathcal{X}} \pm \varepsilon$$

for all i and j. In this case the interval

$$[\kappa_{\min}(x_1, x_2, x_3, x_4), \kappa_{\max}(x_1, x_2, x_3, x_4)] \subset [-\infty, \infty)$$

is defined for any quadruple.

We will not use these statements further in the sequel, so we omit the proofs. The just wanted to show the first step in the theory.

1.1. Exercise. Let x_1, x_2, x_3, x_4 be a quadruple in a metric space such that $\kappa_{\min}(x_1, x_2, x_3, x_4) = -\infty$. Show that two maximal numbers from the following three are equal to each other.

$$\begin{split} a &= |x_1 - x_2| + |x_3 - x_4|, \\ b &= |x_1 - x_3| + |x_2 - x_4|, \\ c &= |x_1 - x_4| + |x_2 - x_3|. \end{split}$$

1.2. Exercise. Suppose that x_1, x_2, x_3, x_4 in a metric space such that

$$|x_1 - x_2| = |x_1 - x_3| = |x_1 - x_4| = 1,$$

 $|x_2 - x_3| = |x_3 - x_4| = |x_4 - x_1| = 2$

Show that

$$\kappa_{\min}(x_1, x_2, x_3, x_4) = \kappa_{\max}(x_1, x_2, x_3, x_4) = -\infty.$$

C. SUBSTANCE 5

1.3. Exercise. Let x_1, x_2, x_3, x_4 be a quadruple in \mathbb{E}^2 . Suppose that triangle $[x_1x_2x_3]$ is degerate, but $[x_2x_3x_4]$ is not. Show that

$$\kappa_{\min}(x_1, x_2, x_3, x_4) = \kappa_{\max}(x_1, x_2, x_3, x_4) = 0.$$

1.4. Wald-style definition. Let $\kappa \in \mathbb{R}$. A metric space \mathcal{X} has curvature $\geq \kappa$ (or $\leq \kappa$) if any quadruple $x_1, x_2, x_3, x_4 \in \mathcal{X}$ we have $\kappa_{\max}(x_1, x_2, x_3, x_4) \geq \kappa$ (or $\kappa_{\min}(x_1, x_2, x_3, x_4) \leq \kappa$ respectively).

C Substance

1.5. Exercise. Give an example of a quadruple x_1, x_2, x_3, x_4 in a metric space such that there is no isometric quadruple $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \tilde{x}_4 \in \mathbb{E}^3$; that is,

$$|\tilde{x}_i - \tilde{x}_j|_{\mathbb{E}^3} = |x_i - x_j|_{\mathcal{X}}$$

for all i and j.

Consider the space \mathcal{M}_4 of all isometry classes of 4-point metric spaces. Each element in \mathcal{M}_4 can be described by 6 numbers — the distances between all 6 pairs of its points, say $\ell_{i,j}$ for $1 \leq i < j \leq 4$ modulo permutations of the index set (1,2,3,4). These 6 numbers are subject to 12 triangle inequalities; that is,

$$\ell_{i,j} + \ell_{j,k} \geqslant \ell_{i,k}$$

holds for all i, j and k, where we assume that $\ell_{j,i} = \ell_{i,j}$, and $\ell_{i,i} = 0$.

The space \mathcal{M}_4 comes with topology. It can be defined as a quotient topology of the cone in \mathbb{R}^6 by permutations of the 4 points of the space.

Consider the subset $\mathcal{E}_4 \subset \mathcal{M}_4$ of all isometry classes of 4-point metric spaces that admit isometric embeddings into Euclidean space.

- **1.6. Claim.** The complement $\mathcal{M}_4 \setminus \mathcal{E}_4$ has two connected components.
- 1.7. Exercise. Spend 10 minutes trying to prove the claim.

The definition of Alexandrov spaces is based on this claim. Let us denote one of the components by \mathcal{P}_4 and the other by \mathcal{N}_4 . Here \mathcal{P} and \mathcal{N} stand for positive and negative curvature because spheres have no quadruples of type \mathcal{N}_4 and hyperbolic space has no quadruples of type \mathcal{P}_4 .

A metric space, with length metric, that has no quadruples of points of type \mathcal{P}_4 or \mathcal{N}_4 respectively is called an Alexandrov space with non-positive (CAT(0)) or non-negative curvature (CBB(0)).

Let us describe the subdivision into \mathcal{P}_4 , \mathcal{E}_4 , and \mathcal{N}_4 intuitively. Imagine that you move out of \mathcal{E}_4 — your path is a one-parameter family of 4-point metric spaces. The last thing you see

in \mathcal{E}_4 is one of the two plane configurations shown on the diagram. If you see the left configuration then you move into \mathcal{N}_4 ; if it is the one on the right, then you move into \mathcal{P}_4 . More degenerate pictures can be avoided; for example, a triangle with a point on a side. From such a configuration one may move in \mathcal{N}_4 and \mathcal{P}_4 (as well as come back to \mathcal{E}_4).

Here is an exercise, solving which would force you to rebuild a considerable part of Alexandrov geometry. It might be helpful to spend some time thinking about this exercise before proceeding.

1.8. Advanced exercise. Assume \mathcal{X} is a complete metric space with length metric (see Section 1G), containing only quadruples of type \mathcal{E}_4 . Show that \mathcal{X} is isometric to a convex set in a Hilbert space.

In the definition above, one can take $\mathbb{M}^3(\kappa)$ instead of Euclidean space. In this case, one obtains the definition of spaces with curvature bounded above or below by κ (CAT(κ) or CBB(κ)). The parameter κ has three interesting choices -1, 0, and 1; the rest can be obtained from these three applying rescaling.

D Geodesics and geodesic spaces

Let \mathcal{X} be a metric space and \mathbb{I} a real interval. A distance-preserving map $\gamma \colon \mathbb{I} \to \mathcal{X}$ is called a geodesic¹; in other words, $\gamma \colon \mathbb{I} \to \mathcal{X}$ is a geodesic if

$$|\gamma(s) - \gamma(t)|_{\mathcal{X}} = |s - t|$$

for any pair $s, t \in \mathbb{I}$.

If $\gamma \colon [a,b] \to \mathcal{X}$ is a geodesic such that $p = \gamma(a), q = \gamma(b)$, then we say that γ is a geodesic from p to q. In this case, the image of γ is denoted by [pq], and, with abuse of notations, we also call it a geodesic. We may write $[pq]_{\mathcal{X}}$ to emphasize that the geodesic [pq] is in the space \mathcal{X} .

¹Others call it differently: *shortest path, minimizing geodesic*. Also, note that the meaning of the term *geodesic* is different from what is used in Riemannian geometry, altho they are closely related.

In general, a geodesic from p to q need not exist and if it exists, it need not be unique. However, once we write [pq] we assume that we have chosen such geodesic.

A geodesic path is a geodesic with constant-speed parameterization by the unit interval [0,1].

A metric space is called geodesic if any pair of its points can be joined by a geodesic.

E Triangles, hinges, and angles

Triangles. Given a triple of points p, q, r in a metric space \mathcal{X} , a choice of geodesics ([qr], [rp], [pq]) will be called a triangle; we will use the short notation $[pqr] = [pqr]_{\mathcal{X}} = ([qr], [rp], [pq])$.

Given a triple $p, q, r \in \mathcal{X}$ there may be no triangle [pqr] simply because one of the pairs of these points cannot be joined by a geodesic. Also, many different triangles with these vertices may exist, any of which can be denoted by [pqr]. If we write [pqr], it means that we have chosen such a triangle.

Model triangles. Given three points p, q, r in a metric space \mathcal{X} , let us define its model triangle $[\tilde{p}\tilde{q}\tilde{r}]$ (briefly, $[\tilde{p}\tilde{q}\tilde{r}] = \tilde{\Delta}(pqr)_{\mathbb{E}^2}$) to be a triangle in the Euclidean plane \mathbb{E}^2 such that

$$|\tilde{p}-\tilde{q}|_{\mathbb{E}^2} = |p-q|_{\mathcal{X}}, \qquad |\tilde{q}-\tilde{r}|_{\mathbb{E}^2} = |q-r|_{\mathcal{X}}, \qquad |\tilde{r}-\tilde{p}|_{\mathbb{E}^2} = |r-p|_{\mathcal{X}}.$$

The same way we can define the hyperbolic and the spherical model triangles $\tilde{\triangle}(pqr)_{\mathbb{H}^2}$, $\tilde{\triangle}(pqr)_{\mathbb{S}^2}$ in the Lobachevsky plane \mathbb{H}^2 and the unit sphere \mathbb{S}^2 . In the latter case, the model triangle is said to be defined if in addition

$$|p-q| + |q-r| + |r-p| < 2 \cdot \pi.$$

In this case, the model triangle again exists and is unique up to an isometry of \mathbb{S}^2 .

Model angles. If $[\tilde{p}\tilde{q}\tilde{r}] = \tilde{\triangle}(pqr)_{\mathbb{E}^2}$ and |p-q|, |p-r| > 0, the angle measure of $[\tilde{p}\tilde{q}\tilde{r}]$ at \tilde{p} will be called the model angle of the triple p, q, r and will be denoted by $\tilde{\lambda}(p\frac{q}{r})_{\mathbb{E}^2}$.

The same way we define $\tilde{\mathcal{L}}(p_r^q)_{\mathbb{M}^2(\kappa)}$; in particular, $\tilde{\mathcal{L}}(p_r^q)_{\mathbb{H}^2}$ and $\tilde{\mathcal{L}}(p_r^q)_{\mathbb{S}^2}$. We may use the notation $\tilde{\mathcal{L}}(p_r^q)$ if it is evident which of the model spaces is meant.

1.9. Exercise. Show that for any triple of point p, q, and r, the function

$$\kappa \mapsto \tilde{\measuredangle}(p_r^q)_{\mathbb{M}^2(\kappa)}$$

is nondecreasing in its domain of definition.

Hinges. Let $p, x, y \in \mathcal{X}$ be a triple of points such that p is distinct from x and y. A pair of geodesics ([px], [py]) will be called a hinge and will be denoted by $[p_y^x] = ([px], [py])$.

F Definitions

In this section we write inequalities that describe the sets $\mathcal{E}_4 \cup \mathcal{P}_4$ and $\mathcal{E}_4 \cup \mathcal{N}_4$ from Section 1C.

Curvature bounded below. Let p, x, y, z be a quadruple of points in a metric space. If the inequality

$$\tilde{\angle}(p_y^x)_{\mathbb{E}^2} + \tilde{\angle}(p_z^y)_{\mathbb{E}^2} + \tilde{\angle}(p_x^z)_{\mathbb{E}^2} \leqslant 2 \cdot \pi$$

holds, then we say that the quadruple meets CBB(0) comparison.

1.10. Definition. A metric space \mathcal{X} has nonnegative curvature in the sense of Alexandrov (briefly, $\mathcal{X} \in CBB(0)$ if CBB(0) comparison holds for any quadruple in \mathcal{X} such that each model angle in $\mathbf{0}$ is defined.

If instead of \mathbb{E}^2 , we use \mathbb{S}^2 or \mathbb{H}^2 , then we get the definition of CBB(1) and CBB(-1) comparisons. Note that $\tilde{\lambda}(p_y^x)_{\mathbb{E}^2}$ and $\tilde{\lambda}(p_y^x)_{\mathbb{H}^2}$ are defined if $p \neq x$, $p \neq y$, but for $\tilde{\lambda}(p_y^x)_{\mathbb{S}^2}$ we need in addition, $|p-x|+|p-y|+|x-y|<2\cdot\pi$.

More generally, one may apply this definition to $\mathbb{M}^2(\kappa)$. This way we define $CBB(\kappa)$ comparison for any real κ .

- **1.11. Exercise.** Show that \mathbb{E}^n is CBB(0).
- **1.12. Exercise.** Show that a metric space \mathcal{X} is CBB(0) if and only if for any quadruple of points $p, x_1, x_2, x_3 \in \mathcal{X}$ there is a quadruple of points $q, y_1, y_2, y_3 \in \mathbb{E}^3$ such that

$$|p - x_i|_{\mathcal{X}} \geqslant |q - y_i|_{\mathbb{E}^2}$$
 and $|x_i - x_j|_{\mathcal{X}} \leqslant |y_i - y_j|_{\mathbb{E}^2}$

for all i and j.

1.13. Exercise. Show that \mathbb{R}^2 with metric induced by a norm is CBB(0) if and only if it is isometric to the Euclidean plane \mathbb{E}^2 .

Curvature bounded above. Given a quadruple of points p, q, x, y in a metric space \mathcal{X} , consider two model triangles $[\tilde{p}\tilde{x}\tilde{y}] = \tilde{\triangle}(pxy)_{\mathbb{E}^2}$ and $[\tilde{q}\tilde{x}\tilde{y}] = \tilde{\triangle}(qxy)_{\mathbb{E}^2}$ with common side $[\tilde{x}\tilde{y}]$.

9

If the inequality

$$|p-q|_{\mathcal{X}} \leq |\tilde{p}-\tilde{z}|_{\mathbb{R}^2} + |\tilde{z}-\tilde{q}|_{\mathbb{R}^2}$$

holds for any point $\tilde{z} \in [\tilde{x}\tilde{y}]$, then we say that the quadruple p, q, x, y satisfies CAT(0) comparison.

1.14. Definition. A metric space X has nonpositive curvature in the sense of Alexandrov (briefly, $\mathcal{X} \in CAT(0)$ if CAT(0) comparison holds for any quadruple in \mathcal{X} .

If we do the same for spherical model triangles $[\tilde{p}\tilde{x}\tilde{y}] = \tilde{\Delta}(pxy)_{\mathbb{S}^2}$ and $[\tilde{q}\tilde{x}\tilde{y}] = \triangle(qxy)_{\mathbb{S}^2}$, then we arrive at the definition of CAT(1) comparison. One of the spherical model triangles might undefined; it happens if

$$|p-x| + |p-y| + |x-y| \ge 2 \cdot \pi$$
 or $|q-x| + |q-y| + |x-y| \ge 2 \cdot \pi$.

In this case, it is assumed that CAT(1) comparison automatically holds for this quadruple.

We can do the same for $\mathbb{M}^2(\kappa)$. In this case, we arrive at the definition of $CAT(\kappa)$ comparison. However, we will mostly consider CAT(0) comparison and occasionally CAT(1) comparison; so, if you see CAT(κ), then it is safe to assume that κ is 0 or 1.

Here CAT is an acronym for Cartan, Alexandrov, and Toponogov, but usually pronounced as "cat" in the sense of "miauw". The term was coined by Mikhael Gromov in 1987. Originally, Alexandrov used \mathfrak{R}_{κ} domain; this term is still in use.

1.15. Exercise. Show that a metric space \mathcal{U} is CAT(0) if and only if for any quadruple of points p, q, x, y in \mathcal{U} there is a quadruple $\tilde{p}, \tilde{q}, \tilde{x}, \tilde{y}$ in \mathbb{E}^2 such that

$$\begin{split} |\tilde{p} - \tilde{q}| \geqslant |p - q|, & |\tilde{x} - \tilde{y}| \geqslant |x - y|, \\ |\tilde{p} - \tilde{x}| \leqslant |p - x|, & |\tilde{p} - \tilde{y}| \leqslant |p - y|, \\ |\tilde{q} - \tilde{x}| \leqslant |q - x|, & |\tilde{q} - \tilde{y}| \leqslant |q - y|. \end{split}$$

1.16. Exercise. Assume that a quadruple of points in a metric space satisfies CBB(0) and CAT(0) comparisons for all labelings. Show that it is isometric to a quadruple in \mathbb{E}^3 .

The definitions stated in the previous section can be applied to any metric space. However, interesting things happen only for the so-called *geodesic* or at least *length spaces*.

G Length and length spaces

Length. A curve is defined as a continuous map from a real interval \mathbb{I} to a metric space. If $\mathbb{I} = [0, 1]$, then the curve is called a path.

1.17. Definition. Let \mathcal{X} be a metric space and $\alpha \colon \mathbb{I} \to \mathcal{X}$ be a curve. We define the length of α as

length
$$\alpha := \sup_{t_0 \leqslant t_1 \leqslant \dots \leqslant t_n} \sum_i |\alpha(t_i) - \alpha(t_{i-1})|.$$

A curve α is called rectifiable if length $\alpha < \infty$.

The following theorem is assumed to be known; see [4, 5].

1.18. Theorem. Length is a lower semi-continuous with respect to the pointwise convergence of curves.

More precisely, assume that a sequence of curves $\gamma_n \colon \mathbb{I} \to \mathcal{X}$ in a metric space \mathcal{X} converges pointwise to a curve $\gamma_\infty \colon \mathbb{I} \to \mathcal{X}$; that is, for any fixed $t \in \mathbb{I}$ we have $\gamma_n(t) \to \gamma_\infty(t)$ as $n \to \infty$. Then

$$\underline{\lim}_{n \to \infty} \operatorname{length} \gamma_n \geqslant \operatorname{length} \gamma_{\infty}.$$

Note that the inequality \bullet might be strict. For example, the diagonal γ_{∞} of the unit square can be approximated by stairs-like polygonal curves γ_n with sides parallel to the sides of the square (γ_6 is on the picture). In this case

length
$$\gamma_{\infty} = \sqrt{2}$$
 and length $\gamma_n = 2$

for any n.

Length spaces. Let \mathcal{X} be a metric space. If for any $\varepsilon > 0$ and any pair of points $x, y \in \mathcal{X}$, there is a path α connecting x to y such that

length
$$\alpha < |x - y| + \varepsilon$$
,

then $\mathcal X$ is called a length space and the metric on $\mathcal X$ is called a length metric.

Evidently, any geodesic space is a length space.

1.19. Exercise. Show that any compact length space is geodesic.

Induced length metric. Directly from the definition, it follows that if $\alpha \colon [0,1] \to \mathcal{X}$ is a path from x to y (that is, $\alpha(0) = x$ and $\alpha(1) = y$), then

length
$$\alpha \geqslant |x - y|$$
.

Set

$$||x - y|| = \inf\{ \text{ length } \alpha \}$$

where the greatest lower bound is taken for all paths from x to y. It is straightforward to check that $(x,y) \mapsto \|x-y\|$ is an ∞ -metric; that is, $(x,y) \mapsto \|x-y\|$ is a metric in the extended positive reals $[0,\infty]$. The metric $\|*-*\|$ is called the induced length metric.

- **1.20. Exercise.** Let \mathcal{X} be a complete length space. Show that for any compact subset $K \subset \mathcal{X}$ there is a compact path-connected subset $K' \subset \mathcal{X}$ that contains K.
- **1.21. Exercise.** Suppose $(\mathcal{X}, |*-*|)$ is a complete metric space. Show that $(\mathcal{X}, |*-*|)$ is complete.

Let A be a subset of a metric space \mathcal{X} . Given two points $x, y \in A$, consider the value

$$|x-y|_A = \inf_{\alpha} \{ \operatorname{length} \alpha \},$$

where the greatest lower bound is taken for all paths α from x to y in A. In other words, $|*-*|_A$ denotes the induced length metric on the subspace A. (The notation $|*-*|_A$ conflicts with the previously defined notation for distance $|x-y|_{\mathcal{X}}$ in a metric space \mathcal{X} . However, most of the time we will work with ambient length spaces where the meaning will be unambiguous.)

H Embedding theorem

The main part of the following theorem is due to Alexandr Alexandrov [1]. The last part is very difficult; it was proved by Aleksei Pogorelov [6].

1.22. Theorem. A metric space \mathcal{X} is isometric to the surface of a convex body in the Euclidean space if and only if \mathcal{X} is a geodesic CBB(0) space that is homeomorphic to \mathbb{S}^2 .

Moreover, X determines the convex body up to congruence.

The convex body above is a compact convex subset in \mathbb{E}^3 ; we assume that it does not lie in a line but might degenerate to a plane figure, say F. In the latter case, its surface is defined as two copies of F glued along the boundary. For nondegenerate convex body B, its surface is its boundary ∂B equipped with the induced length metric.

The only-if part of the theorem is the simplest; we will give a complete proof of it eventually. The if part will be sketched. We will not touch the last part.

Index

```
[**], 6
CAT, 9
CBB, 8
\mathbb{I}, 6
[**], 8 \tilde{\triangle}, 7 \tilde{\measuredangle}
\tilde{\lambda}(*_*), 7 [***], 7
curve, 10
geodesic, 6
geodesic path, 7
geodesic space, 7
hinge, 8
hyperbolic model triangle, 7
induced length metric, 11
length, 10
length metric, 10
length space, 10
model angle, 7
model triangle, 7
path, 10
rectifiable curve, 10
spherical model triangles, 7
triangle, 7
```

Bibliography

- [1] А. Д. Александров. Внутренняя геометрия выпуклых поверхностей. 1948.
- [2] A. Alexandroff. "The inner geometry of an arbitrary convex surface". C. R. (Doklady) Acad. Sci. URSS (N.S.) 32 (1941), 467–470.
- [3] V. N. Berestovskii. "Spaces with bounded curvature and distance geometry". Sibirsk. Mat. Zh. 27.1 (1986), 11–25, 197.
- [4] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. Vol. 33. Graduate Studies in Mathematics. 2001. [Русский перевод: Бураго Д. Ю., Бураго Ю. Д., Иванов С. В. «Курс метрической геометрии», 2004.]
- [5] A. Petrunin. Pure metric geometry: introductory lectures. 2023. arXiv: 2007. 09846 [math.MG].
- [6] А. В. Погорелов. Однозначная определённость общих выпуклых поверхностей. Монографии института математики, вып. И. 1952.
- A. Wald. "Begründung einer Koordinatenlosen Differentialgeometrie der Flächen".
 Ergebnisse eines mathematischen Kolloquium 6 (1935), 24–46.