Anubhav Bhatla

Research Interests

I am broadly interested in Computer Systems & Architecture and Hardware Security. This includes advanced topics such as secure and randomized caches, cache partitioning techniques, and branch predictor designs.

Education

Indian Institute of Technology Bombay

Integrated Bachelor and Master of Technology (Dual Degree) in Electrical Engineering Minor Degree in Computer Science and Engineering

(Nov 2020 - Present)

GPA: 9.13/10

Publications

- A. Bhatla[†], Navneet[†], M. Qureshi, B. Panda. "OASIS: Enabling Provably Secure Randomized Caches at Ultra-Low Cost." Under review at the International Symposium on High-Performance Computer Architecture (HPCA'25)
- o A. Bhatla[†], Navneet[†], B. Panda. "The Maya Cache: A Storage-efficient and Secure Fully-associative Last-level Cache." Presented at the International Symposium on Computer Architecture (ISCA'24) (Paper, Talk, Artifact)

Research Experience

Practical and Secure Randomized Cache Design at Ultra-Low Cost Prof. Biswabandan Panda, IIT Bombay

(Jan 2023 - Present) Research Project

† denotes equal contribution

1. Maya Cache Design

- \circ Thoroughly studied the Mirage cache design which provides security against conflict-based attacks at a high power, storage and area overhead, and observed that > 80% of the entries brought into the last-level cache are dead
- Outilized the idea of Reuse Cache to shrink the Mirage data store, along with a reuse-based smart insertion policy which only inserts an entry into the data store on its second cache access, for efficient utilization of the data store
- \circ Designed a security model for Maya, based on **Markov chains**, and simulated it for 1 trillion cache accesses, along with a mathematical proof to show that no set-associative evictions occur in over 10^{32} cache accesses (10^{16} years)
- o Modelled the Maya cache in the **ChampSim** simulator and **PCACTI** 7nm FinFET to show savings in storage (2%), power (5%), energy (13%), and area (28%), compared to a traditional non-secure set-associative cache
- O Used the CacheFX simulator to show that Maya performs similar to a fully-associative cache against occupancy-based attacks, by estimating the number of encryptions required to break AES and modular exponentiation
- 2. Oasis Cache Design (Collaborator: Prof. Moinuddin Qureshi, Georgia Tech)
 - o Analyzed the practicality and **design complexity** of various state-of-the-art secure LLC designs such as Mirage and Maya, with the aim of designing a simpler and more practical LLC design with very little overheads
 - Observed that increasing the cache associativity along with invalidation of a fraction of cache lines helps provide security against conflict-based attacks without using any tag store-data store decoupling or storage of pointers
 - o Provided "security-on-demand" by providing the user with the option of security in the BIOS. If the user opts for no security, Oasis operates as a traditional non-secure set-associative cache, operating at zero overheads
 - Performed extensive simulations using a modified version of the Mirage bucket-and-balls model, simulated for 1 trillion cache accesses, along with mathematical proofs to show complete security in a system's lifetime
 - o Implemented the Oasis design on the **ChampSim** multi-core simulator and **PCACTI** 7nm FinFET to show a <0.2% performance overhead, a 2% power overhead, 0.9% storage overhead when operating in the secure mode
- 3. Understanding the Security of Randomized Caches (Collaborator: Prof. Sayandeep Saha, IIT Bombay)
 - Performed a thorough security analysis of various state-of-the-art secure cache designs such as Mirage, Maya, and Oasis to understand the minimal set of necessary and sufficient additions required to make the LLC secure
 - Analyzed the effect of various features such as the use of skews, load-balancing insertion policy, tag store-data store decoupling, extra invalid tag ways, and a global random eviction policy on the security guarantee
 - O Working on a **secure** & **morphable** LLC design which requires minimal changes on top of a traditional cache to make it secure by going back to older and simpler cache designs such as **CEASER** and **CEASER-S**

Branch Predictor Partitioning for Performance

(Apr 2024 - Present)

Prof. Dean Tullsen, University of California, San Diego

Research Project

- o Studied the Half&Half branch predictor partitioning technique and how partitioning the branch predictor between threads can help improve performance for certain application pairs running in SMT mode
- O Used the perf tool to identify application pairs from the SPEC2017 benchmark suite which have high conditional branch mis-prediction rates when running in SMT mode on the same core
- O Implemented the branch-alignment algorithm suggested in Half&Half on top of the LLVM compiler to align conditional branches to the appropriate program counter values to ensure that only half of the conditional branch predictor is used
- O Working on identifying prediction-critical workloads that don't perform well when running concurrently with another process in SMT mode, and will benefit from using a partitioned conditional branch predictor

Secure Cache-line Reallocation in Partitioned Caches (Report)

(Jul 2022 - Nov 2022)

Prof. Virendra Singh, IIT Bombay

Research Project

- O Studied and implemented the UCP and static cache partitioning technique on the Sniper multi-core simulator, along with PASS-P, which provides security against side-channel attacks for dynamic cache-partitioning techniques
- O Conducted a thorough performance analysis on SPEC2006 benchmark pairs, sensitivity to cache associativity and cache size, number of clean re-allocated blocks and the number of dead blocks in the cache
- Proposed and implemented modifications to PASS-P, based on observing a high dead block percentage, to preferentially reallocate dead blocks on every phase change instead of dirty blocks, thereby reducing dead blocks by over 10%

Honours & Awards

- \circ Ranked 4^{th} among 85 students enrolled in the Electrical Department Dual Degree program (2024)
- \circ Scored a perfect 10 SPI (Semester Performance Index) in the 8^{th} academic semester

(2024)

- Sanctioned a grant of INR 420,000 (\$5000) for presenting at ISCA'24, Argentina, as an undergraduate (2024)
- Awarded Undergraduate Research Award by IIT Bombay for excellence in research and development (2023)
- o Acquired the Best Project Award for our extensive analysis & experimentation with NIPIN in EE724 (2023)
- o Received the **Best Project Award** for our design of the 24-channel EEG acquisition system in EE344 (2023)
- Secured All India Rank 266 in Joint Entrance Exam, JEE (Advanced) among 160,000 candidates (2020)
- o Acquired an All India Rank 490 in Joint Entrance Exam, JEE (Main) among 1.1 million candidates (2020)
- o Awarded the Kishore Vaigyanak Protsahan Yojana (KVPY) fellowship with All India Rank 337 (2018)

Teaching & Mentorship Experience

Department Academic Mentor

(May 2024 - Present)

Student Mentorship Program, IIT Bombay

Mentorship

- O Selected as part of a 54-member team handpicked after a rigorous process of meticulous interviews and peer reviews
- O Appointed to personally mentor 6 sophomores with their academics, extra-curricular activities, career paths, and research journeys during the rigorous second year in Electrical Engineering at IIT Bombay
- O Contributed to the department website blog and collected course feedback, providing academic help to 1300+ students

Teaching Assistant

Served as a TA for Electrical Engineering and Computer Science students in the following courses:

o CS683: Advanced Computer Architecture (110+ students) Instructor: Prof. Biswabandan Panda

(2024)

o EE229: Signal Processing (90+ students) Instructor: Prof. Preeti Rao

(2024)

o EE309: Microprocessors (200+ students) Instructor: Prof. Virendra Singh

(2022)

Responsible for creating assignment problems, conducting doubt-solving sessions to help academically weak students, creating tutorial solutions, helping with the course evaluation, and academically mentoring students

Professional Experience

Embedded Software Intern

(May 2023 - Jul 2023)

Texas Instruments India, Bangalore

Internship

- o Created a driver-monitoring application for the AM62Ax Sitara MPU, capable of detecting driver-drowsiness and gaze-detection to ensure that the driver is attentive towards the road which helps reduce the risk of accidents
- O Used the GStreamer media framework to create a new media pipeline which enables stacking of multiple DNN models, required for using multiple DNN models to efficiently and correctly make classifications using just the driver's face
- O Analyzed and documented the **boot flow** of various microprocessors and created a boot loader **porting guide** for the Sitara AM62x MPU which makes it easier to port user applications from a different microprocessor to the AM62x

Selected Academic Projects (Full list)

Sliced-Out-of-Order Core Implementations (Report)

(Jul 2023 - Nov 2023)

Prof. Virendra Singh, IIT Bombay

EE748: Advanced Topics in Computer Architecture

- O Reviewed literature on sliced-OoO cores, such as Load-Slice core, Freeflow core, and Freeway core, which use minimal additional components on top of in-order cores to extract memory-level parallelism
- Implemented the backward dependency algorithm and additional hardware structures proposed by the state-of-the-art Load-Slice core using the gem5 simulator and extended it to implement the modifications suggested by Freeflow core

2-way OoO Superscalar Processor Design (Repository)

(Jul 2022 - Nov 2022)

Prof. Virendra Singh, IIT Bombay

CS683: Advanced Computer Architecture

- O Designed a 2-way Out-of-Order Superscalar processor with a Turing-complete ISA comprising of 17 instructions
- o Implemented key components: Reservation Station, Reorder Buffer, execution pipelines and memory system in VHDL, along with an assembler and a boot loader in Python to dump user instructions into the memory of the processor
- O Conducted thorough software testing for all 17 instructions on GHDL and GTKWave simulations using a testbench

General Purpose GPUs (Report)

(May 2022 - Jul 2022)

Prof. Virendra Singh, IIT Bombay

Summer Project

- o Reviewed **GP-GPU** architecture as well as literature on leveraging a **Decoupled LLC** design for dynamically switching the LLC between private and shared modes, and implemented this design on the GPGPU-Sim simulator
- O Performed various benchmark simulations on the GPGPU-Sim simulator and carefully analyzed the outputs received

24-channel EEG Data Acquisition System (Report, Code)

(Jan 2023 - Nov 2023)

Prof. Siddharth Tallur, IIT Bombay

Research Exposition & EE344: Electronic Design

- o Designed a **24-channel** EEG data-acquisition setup on a **4-layer PCB** using **daisy-chained** ADCs, analog front-end, voltage regulators, and interfacing with the Wi-Fi module, accelerometer, SD Card reader, using **SPI**
- o Implemented an additional 4-channel modular signal acquisition setup with 3D-printed headgear for demo purposes

Optimal Device Design for NIPIN Memory Selector (Report)

(Jan 2024 - Apr 2024)

Prof. Udayan Ganguly, IIT Bombay

EE724: Nanoelectronics

- \circ Performed pen-paper analysis for NIPIN device & verified it using TCAD simulations on Synopsys Sentaurus Workbench
- Optimized the idealty factor to 1.33 by introducing different ratios of Germanium in the p-regions instead of pure Si

CMOS Implementation of Low Power Equi-Prop System (Report)

(Jul 2023 - Nov 2023)

Prof. Udayan Ganguly, IIT Bombay

EE746: Neuromorphic Engineering

- O Implemented Spiking Equilibrium Propagation real-time learning algorithm in 45nm CMOS technology using LTSpice
- \circ Achieved an **energy-efficient** circuit with $82.7\mu W$ total power and only $8.8\mu W$ consumed by the synapse circuit

Voltage-Controlled Oscillator Design (Report)

(Jan 2024 - Apr 2024)

Prof. Rajesh Zele, IIT Bombay

EE619: RF Microelectronics Chip Design

- O Designed and implemented a low-power cross-coupled voltage-controlled oscillator using Cadence Virtuoso
- O Achieved a frequency of 6GHz, phase noise of -117dBc/Hz, tuning range of 28MHz, and a power budget of 3mW

Technical Skills

Languages C, C++, VHDL, Verilog, Python, Assembly (8085), Algorithmic assembly (Aa), Heptagon

Software Intel Quartus, Vivado, Fusion 360, Cadence Virtuoso, Synopsys Sentaurus, LTSpice

Simulators ChampSim, gem5, Sniper, GPGPU-Sim, CacheFX, PCACTI

Courses Undertaken (Full list)

Computer Systems: Advanced Computer Architecture - I, Advanced Computer Architecture - II, Operating Systems, High-Performance Scientific Computing, Microprocessors§

Hardware Design: VLSI Design[§], Algorithmic Design of Digital Systems, RF Microelectronics Chip Design, Testing & Verification of VLSI Circuits, CMOS Analog VLSI Design, Electronic Design, Neuromorphic Engineering, Foundation of VLSI CAD, Nanoelectronics

Computer Science: Data Structure & Algorithms, Design & Analysis of Algorithms, Principles of Data & System Security, Embedded Systems, Discrete Structures

Electrical Engineering: Digital Systems§, Analog Circuits§, Communication Networks, Wireless & Mobile Communication, Information Theory & Coding, Electronic Devices§, Signal Processing§, Control Systems§

§ along with a lab component