

terminology for probability theory

example

exercise 1

terminology for probability theory

example

Flip a coin 3 times and record the side facing up each times

Sample space $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH\}$

Events:

```
{all heads} = {HHH}
{get at least one head} = {HTT, THT, TTH}
{get at least two heads} = {HHT, HTH, THH, HHH}
```

exercise 1

Roll two dice, each with numbers 1–6.

Describe the event of rolling a total of 7 with the two dice.

the algebra of events

- Often we are interested in combinations of two or more events
- ullet Events are sets (i.e. subsets of the sample space Ω) so we can do the usual set operations
- Assume sample space with two events $m{A}$ and $m{B}$
 - ► complement \overline{A} (also denoted A^c or A') all elements of S that are not in A
 - subset $A \subset B$ all elements of A are also elements of B
 - union $A \cup B$ all elements of Ω that are in A or B
 - intersection $A \cap B$ all elements of Ω that are in A and B
- These operations can be represented graphically using Venn diagrams