∞ FURTHEST **∞**

Given N coordinates on an xy-plane, find the coordinates whose distance from the origin (the coordinates (0,0)) is the highest.

Distance between coordinates (X_1,Y_1) and (X_2,Y_2) is

$$\sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}$$

Input

The first line contains an integer N ($1 \le N \le 1000$), the number of coordinates. Each of the following N lines contains integers X_i and Y_i ($-10000 \le X_i, Y_i \le 10000$) separated by a space, denoting coordinates (X_i, Y_i).

Output

Output the coordinates whose distance from the origin is the highest in the same format as the input.

Example

Input	Output
5	-6 4
2 2	
4 -4	
-6 4	
7 0	
-4 -5	