The group G is isomorphic to the group labelled by [20, 1] in the Small Groups library. Ordinary character table of $G \cong C5 : C4$:

	1a	4a	4b	2a	5a	5b	10a	10b
χ_1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	1	1
χ_3	1	E(4)	-E(4)	-1	1	1	-1	-1
χ_4	1	-E(4)	E(4)	-1	1	1	-1	-1
χ_5	2	0	0	-2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$
χ_6	2	0	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$
χ_7	2	0	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$
χ_8	2	0	0	-2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$

Trivial source character table of $G \cong C5$: C4 at p = 2:

Normalisers N_i		N_1			N_2		
p-subgroups of G up to conjugacy in G		P_1			P_2		
Representatives $n_j \in N_i$	1 <i>a</i>	5b	5a	1a	5b	5a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	4	4	4	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	4	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	2	2	2	2	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,20)]) \cong \mathbb{C}^2$

 $P_3 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,20),(1,2,3,5)(4,18,7,20)(6,19,9,16)(8,14,11,17)(10,15,13,12)]) \cong C4$

 $N_1 = Group([(1,2,3,5)(4,18,7,20)(6,19,9,16)(8,14,11,17)(10,15,13,12),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,20),(1,4,8,12,16)(2,6,10,14,18)(3,7,11,15,19)(5,9,13,17,20)]) \cong C5:C4 \\ N_2 = Group([(1,2,3,5)(4,18,7,20)(6,19,9,16)(8,14,11,17)(10,15,13,12),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,20),(1,4,8,12,16)(2,6,10,14,18)(3,7,11,15,19)(5,9,13,17,20)]) \cong C5:C4 \\ N_3 = Group([(1,2,3,5)(4,18,7,20)(6,19,9,16)(8,14,11,17)(10,15,13,12),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,20),(1,4,8,12,16)(2,6,10,14,18)(3,7,11,15,19)(5,9,13,17,20)]) \cong C5:C4 \\ N_4 = Group([(1,2,3,5)(4,18,7,20)(6,19,9,16)(8,14,11,17)(10,15,13,12),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,20),(1,4,8,12,16)(2,6,10,14,18)(3,7,11,15,19)(5,9,13,17,20)]) \cong C5:C4 \\ N_4 = Group([(1,2,3,5)(4,18,7,20)(6,19,14,18)(13,12),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,20),(1,4,8,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)(18,12)$