Metody optymalizacji – laboratorium

- zad. 0 Przeczytać opis pakietu JuMP (z języka Julia) w celu zapoznania się z możliwościami.
- zad. 1 Tartak produkuje deski o standardowej szerokości 22 cali (każda deska ma ustaloną długość). Klienci firmy zamawiają jednak deski o mniejszej szerokości (i o tej samej długości, jak deski o standardowej szerokości). Aktualne zamówienia opiewają na 110 desek o szerokości 7 cali, 120 desek o szerokości 5 cali i 80 desek o szerokości 3 cali. Deski o mniejszej szerokości są odcinane z desek o standardowej szerokości. Na przykład firma może podjąć decyzję o przecięciu dużej deski na dwie deski po 7 cali i jedną deskę o szerokości 5 cali. W tym przypadku z deski standardowej tracona jest listwa o szerokości 3 cali. Firma chce wykonać zamówienie w ten sposób, aby zminimalizować ilość odpadów.

Wskazówka: Znajdź wszystkie możliwe sposoby podziału deski o szerokości 22 cali na deski o szerokościach 7, 5 i 3 cali. Przez x_i oznacz liczbę dużych desek rozcinanych *i*-tym sposobem.

Sformułować problem w postaci zadania programowania całkowitoliczbowego. Zapisać go korzystając z pakietu JuMP (z języka Julia) i rozwiązać wywołując solver GLPK (lub Cbc).

Oddzielić model od danych. Dane (szerokość standardowej deski, dane o zamówieniu) powinny być zadawane na ich podstawie powinien być generowany model. Program powinien generować możliwe sposoby podziału deski na podstawie danych o zamówieniu.

zad. 2 Dany jest zbiór zadań $J = \{1, \ldots, n\}$, które muszą być wykonane na jednej maszynie. Dla każdego zadania $j \in J$ dane są: czas potrzebny na wykonanie zadania p_j , waga tego zadania w_j oraz moment gotowości zadania r_j , t.j. moment r_j przed którym zadanie nie może być rozpoczęte.

Znaleźć harmonogram, który minimalizuje $\sum_{j\in J} w_j C_j$, gdzie C_j jest momentem zakończenia zadania j (momenty zakończenia nie są znane na wstępie i powinny być wyznaczone).

Sformułować problem w postaci zadania programowania całkowitoliczbowego. Zapisać go korzystając z pakietu JuMP (z języka Julia) i rozwiązać jakiś egzemplarz problemu wywołując solver GLPK (lub Cbc). Oddzielić model od danych. Dane (liczba zadań n, czasy potrzebne na wykonanie zadań p_j oraz momenty gotowości zadań r_j) powinny być zadawane. Maksymalnie sparametryzować zapis modelu.

zad. 3 Dany jest zbiór zadań $J = \{1, \ldots, n\}$, który musi być wykonany na m maszynach. Dla każdego zadania $i \in J$ dany jest czas potrzebny na wykonanie zadania p_i . Zbiór zadań jest uporządkowany za pomocą relacji poprzedzania. Tzn. jeżeli $i \to j$, to zadanie j nie może się rozpocząć przed ukończeniem zadania i. Harmonogram jest dopuszczalny, jeśli spełnia ograniczenia poprzedzania.

Znaleźć dopuszczalny harmonogram, który minimalizuje całkowity czas potrzebny do wykonania wszystkich zadań oznaczony przez C_{\max} .

Rozważmy przykład podany na rysunku 1: liczba maszyn m=3, liczba zadań n=9, czasy wykonania $p_1=1,\ p_2=2,\ p_3=1,\ p_4=2,\ p_5=1,\ p_6=1,\ p_7=3,\ p_8=6,\ p_9=2$, relacje poprzedzania podane są na rysunku 1 a.

Rysunek 1 b pokazuje dopuszczalny harmonogram w stylu diagramu Gantt'a. $C_{\rm max}=9$ dla tego harmonogramu.

Sformułować problem w postaci zadania programowania całkowitoliczbowego. Zapisać go korzystając z pakietu JuMP (z języka Julia) i rozwiązać jakiś egzemplarz problemu wywołując solver GLPK (lub Cbc). Oddzielić model od danych. Dane (liczba zadań n, liczba maszyn m, czasy potrzebne na wykonanie zadań p_j) powinny być zadawane. Maksymalnie sparametryzować zapis modelu. Program powinien wizualizować rozwiązanie na tekstowej konsoli w stylu diagramu. Taka wizualizacja pozwala łatwo sprawdzić dopuszczalność harmonogramu.

Rysunek 1: (a) Relacje poprzedzania. (b) Wizualizacja dopuszczalnego harmonogramu z całkowitym czasem potrzebnym do wykonania wszystkich zadań równym 9.

zad. 4 * Dany jest zbiór R złożony z p typów odnawialnych zasobów R_1, R_2, \ldots, R_p . Zasoby te są limitowane, tj. dla każdego R_i , $i = 1, \ldots, p$ podany jest limit N_i jednostek. Limity są stałe – nie zmieniają się w całym okresie planowania.

Dany jest zbiór czynności $Z=\{1,...,n\}$. Dla każdej czynności $j\in Z$ dany jest czas jej wykonania t_j (w jednostkach czasowych) oraz wektor ${\pmb r}_j=[r_1,r_2,\ldots,r_p]$ opisujący zapotrzebowanie na poszczególne zasoby R_1,R_2,\ldots,R_p , tzn. opisujący ilość jednostek zasobów zużywanych podczas wykonywania czynności j. Na czynności zbioru Z nałożone są ograniczenia kolejnościowe (Z jest częściowo uporządkowany). Ograniczenia kolejnościowe mogą być reprezentowane za pomocą grafu, w którym wierzchołki odpowiadają czynnością, a łuki określają poprzedzanie. Jeśli $k\to l$, to czynność l nie może być rozpoczęta przed ukończeniem czynności k.

Należy znaleźć harmonogram minimalizujący czas wykonania całego przedsięwzięcia. Harmonogram jest dopuszczalny jeśli spełnia ograniczenia kolejnościowe oraz przydział zasobów, zgodny z zapotrzebowaniem, nie przekracza podanych limitów w każdym momencie okresu planowania.

Sformułować problem w postaci zadania programowania całkowitoliczbowego. Zapisać go korzystając z pakietu JuMP (z języka Julia) i rozwiązać egzemplarz problemu (patrz poniżej) wywołując np. solver GLPK (lub Cbc). Oddzielić model od danych. Maksymalnie sparametryzować zapis modelu. Program powinien wizualizować rozwiązanie, np. na tekstowej konsoli, w stylu diagramu Gantt'a. Drukować również zapotrzebowanie na zasoby dla każdego momentu okresu planowania. Taka wizualizacja pozwala łatwo sprawdzić dopuszczalność harmonogramu.

Przykład egzemplarza problemu

Dane: liczba czynności n=8, jeden typ zasobów (np. programiści) p=1, limit zasobu $N_1=30$,

Czynność j	Czynności poprzedzając	e Czasy wykonania t_j Za	potrzeb. na zasoby $\mathbf{r}_j = [r_1]$
1	_	50	9
2	1	47	17
3	1	55	11
4	1	46	4
5	2	32	13
6	$3{,}4$	57	7
7	4	15	7
8	5,6,7	62	17

^{*}Problem występuje podczas planowania i rozdziału zasobów np. w projekcie programistycznym.

Graf poniżej opisuje ograniczenia kolejnościowe.

Rozwiązania problemów przedstawić w sprawozdaniu, plik pdf, które powinno zawierać:

1. modele

- (a) definicje zmiennych decyzyjnych (opis, jednostki),
- (b) ograniczenia wraz z interpretacją (nie umieszczać źródeł modelu),
- (c) funkcje celu wraz z interpretacją,
- 2. wyniki oraz ich interpretację.

Model, zmienne w sprawozdaniu zapisujemy matematycznie (nie w języku julia) - zob. na stronie przykład opisu modelu.

Do sprawozdania należy dołączyć pliki w języku julia (*.jl). Pliki powinny być skomentowane: **imię i nazwisko** autora, komentarze zmiennych, zaetykietowane ograniczenia oraz komentarz ograniczeń.

Uwaga: Za zadania 1, 2, 3 (zadania obowiązkowe) można otrzymać co najwyżej ocenę dobrą. Zadania te będą punktowane następująco: zad. 1 - 10pkt, zad. 2 - 8pkt, zad. 3 - 12pkt i można otrzymać ocenę dst za 20pkt, dst+ za 25 pkt i db za 30pkt. Zad. 4 jest dodatkowe - jest na ocenę db+ lub bdb.