Е. А. СИДОРОВА, С. П. ЖЕЛЕЗНЯК

ПРОГРАММНЫЕ СРЕДСТВА РЕАЛИЗАЦИИ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ

Е. А. Сидорова, С. П. Железняк

ПРОГРАММНЫЕ СРЕДСТВА РЕАЛИЗАЦИИ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ

Утверждено методическим советом университета в качестве учебно-методического пособия к выполнению самостоятельной работы УДК 004.4(075.8) ББК 32.972.1я73 С34

Программные средства реализации информационных процессов: Учебно-методическое пособие к выполнению самостоятельной работы / Е. А. Сидорова, С. П. Железняк; Омский гос. ун-т путей сообщения. Омск, 2019. 27 с.

Приведены теоретические сведения о программном обеспечении компьютера, его классификация и характеристики. Описаны функции и состав операционных систем, инструментального и прикладного программного обеспечения. Определены понятия файловой структуры и файловой системы. Представлены контрольные вопросы для самопроверки, примеры тестов и практические задания.

Предназначено для студентов и аспирантов очной и заочной форм обучения всех направлений подготовки (специальностей), изучающих дисциплины информационного профиля: «Информатика», «Информационные технологии», «Компьютерные технологии и информатика», «Информационные системы и базы данных» и др., а также может быть использовано для самостоятельного изучения любыми категориями пользователей персонального компьютера.

Библиогр.: 2 назв. Табл. 3. Рис. 6.

Рецензенты: доктор техн. наук, профессор В. Н. Горюнов; доктор техн. наук, профессор В. А. Нехаев.

[©] Омский гос. университет путей сообщения, 2019

ОГЛАВЛЕНИЕ

Введение	. 5
1. Классификация программного обеспечения	. 6
2. Системное программное обеспечение	. 8
2.1. Классификация и основные функции операционных систем	. 8
2.2. Состав операционной системы	11
2.3. Файловая структура	13
2.4. Файловая система	14
2.5. Основные операционные системы	19
2.6. Служебные программы	20
3. Инструментальное программное обеспечение	21
3.1. Системы программирования	21
3.2. Средства для разработки приложений	21
4. Прикладное программное обеспечение	22
4.1. Прикладное программное обеспечение общего назначения	22
4.2. Прикладное программное обеспечение специализированного	
назначения	23
5. Контрольные вопросы	23
6. Примеры тестовых вопросов	24
7. Задания	25
Библиографический список	26

ВВЕДЕНИЕ

В современном обществе квалифицированный специалист должен владеть навыками применения компьютера в своей профессиональной деятельности. Принципиально важной частью любой вычислительной системы, построенной на основе компьютеров, являются программные средства, обеспечивающие реализацию информационных процессов и решение задач пользователя, в качестве которого может выступать как человек, так и любое устройство, использующее вычислительные ресурсы компьютера.

В пособии рассмотрена классификация программного обеспечения компьютера по различным признакам. Подробно описаны назначение, состав и характеристики программного обеспечения по выполняемым функциям.

Особое место среди всех программных средств занимают операционные системы, обеспечивающие управление ресурсами компьютера и взаимодействие с пользователем. Рассмотрены состав операционной системы и назначение отдельных ее компонентов, приведена краткая характеристика наиболее известных видов операционных систем.

Одной из задач любой операционной системы является управление и обслуживание файловой системы, определяющей порядок хранения и организации файлов на диске. Приведены примеры наиболее распространенных файловых систем и их отличительные особенности.

Библиографический список в конце издания содержит литературу для углубленного изучения данной темы.

1. КЛАССИФИКАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

В основу работы компьютера¹ положен *принцип программного управления*, который состоит в том, что компьютер выполняет действия по заранее заданной программе.

Программа — это последовательность инструкций и данных, позволяющая аппаратному обеспечению ЭВМ выполнять вычисления или функции управления.

Программное обеспечение (англ. *software*) — совокупность программ для ЭВМ и соответствующей документации по их применению. К программному обеспечению (ПО) относятся и данные, с которыми работают программы.

Состав программного обеспечения вычислительной системы называется программной конфигурацией.

По *степени универсальности* ПО разделяется на *тиражные программы* (для широкого распространения) и *программы индивидуального назначения* (для решения задач частных групп пользователей).

По способу распространения ПО делят на коммерческое (Commercial), условно-бесплатное (Shareware, Trial) и свободно распространяемое (Freeware).

Условно-бесплатные программы предусматривают ограничения по функциональности и (или) по сроку использования (программы Shareware могут иметь ограничения по функциональности и (или) по сроку работы; программы Trial не имеют ограничений в функциональности, но имеют ограничения по сроку). Чтобы получить полнофункциональный продукт с неограниченным сроком использования, нужно приобрести лицензию.

Любое несвободное ПО, включая условно-бесплатное, называют **проприетарным** — это ПО, которое имеет собственника, осуществляющего контроль над этим ПО. Проприетарное ПО защищено авторским (патентным) правом, модификация и дальнейшее распространение такого ПО запрещены или строго ограничены.

По *назначению* (выполняемым функциям) ПО делится на системное (общее), инструментальное (обеспечивающее, вспомогательное) и прикладное (специальное) (табл. 1).

Системное ПО — это комплекс программ для управления аппаратными ресурсами вычислительной системы, их обслуживания и организации взаимодействия (интерфейса) с пользователем.

¹ Здесь и далее под термином «компьютер» понимается персональный компьютер (ПК).

Инструментальное ПО представляет собой комплекс специализированных программных средств для создания программного обеспечения.

Прикладное ПО — это программы для выполнения конкретных задач конечного пользователя.

Системное ПО наиболее тесно связано с аппаратными ресурсами компьютера и поэтому находится на самом низком уровне иерархии ПО. Инструментальное и прикладное ПО управляются системными программами и относятся к более высокому уровню, чем системное ПО.

Таблица 1 Состав программного обеспечения по видам

Системное ПО	Инструмен- тальное ПО	Прикладное ПО (ППО)
Операционные	Системы	ППО общего назначения
системы	программирования	Текстовые и графические
		редакторы
Служебное ПО	Средства	Электронные таблицы
(программы-	для разработки	Системы управления базами
утилиты):	приложений	данных (СУБД)
– ремонтные		Интегрированные пакеты
– диагностические		(MS Office, Open Office)
– тестовые		Браузеры (средства просмотра
– архиваторы		веб-документов)
– антивирусы		
		ППО специализированного
		назначения
		Системы автоматизированного
		проектирования (САПР)
		Профессиональное ПО
		(издательские системы,
		экспертные системы,
		системы видеомонтажа и др.)
		Бытовое ПО (обучающие
		программы, игры, развлечения,
		переводчики и др.)

Рассмотренная классификация ПО является условной, так как в настоящее время программные продукты многих фирм стали объединять в себе программные элементы разного вида. Например, операционная система Windows, являясь комплексом системных программ, в своем составе содержит блок

служебных программ для дефрагментации, проверки, очистки диска и др., а также текстовый процессор WordPad и графический редактор Paint, которые относятся к классу прикладных программ.

2. СИСТЕМНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Системное ПО включает в себя операционные системы и служебное ПО (см. табл. 1). Системные программы служат для управления ресурсами компьютера — центральным процессором, памятью, вводом и выводом информации, а также решают задачи обслуживающего характера.

2.1. Классификация и основные функции операционных систем

Операционная система (OC) — это совокупность программ, обеспечивающих общее управление функционированием ЭВМ.

Программы, работающие под управлением конкретной ОС, называют приложениями этой ОС.

ЭВМ первого поколения не имели ОС, они выполняли программы, непосредственно загруженные в оперативное запоминающее устройство (ОЗУ). Все операции по загрузке программы и подготовке данных выполнялись вручную. ОС появились вместе с ЭВМ второго поколения.

ОС обеспечивают три вида интерфейса:

между пользователем и аппаратно-программными средствами компьютера (интерфейс пользователя);

между аппаратным и программным обеспечением (аппаратно-программный интерфейс);

между разными видами ПО (программный интерфейс).

В общем виде классификация ОС представлена на рис. 1.

По *реализации интерфейса пользователя* различают неграфические и графические ОС. *Неграфические* ОС реализуют интерфейс командной строки. Основным устройством управления в них является клавиатура. Управляющие команды вводятся в поле командной строки. Пример такой ОС – MS DOS.

Графические ОС реализуют более сложный тип интерфейса, в котором в качестве органа управления помимо клавиатуры может применяться мышь или другое устройство позиционирования. Работа с графической ОС основана на взаимодействии активных и пассивных элементов управления. Активный

элемент — указатель мыши, *пассивные* элементы — экранные кнопки, флажки, значки, переключатели, раскрывающиеся списки, меню и т. д. Одной из наиболее распространенных графических ОС является Windows.

Рис. 1. Классификация операционных систем

Современные ОС имеют единые правила графического интерфейса для всех программ, предназначенных для применения в среде ОС. Единый графический интерфейс предполагает,

что программы запускаются в единообразных окнах, с которыми можно выполнять единообразные действия (изменить размер, свернуть, закрыть, переместить и др.);

окна имеют стандартные наборы управляющих элементов (поля ввода, списки различных видов, кнопки, пиктограммы и др.);

во всех программах используется единообразное меню;

программы имеют стандартное построение справочной системы;

для обмена данными между программами применяется стандартное средство – буфер промежуточного хранения.

В зависимости *от потребностей пользователей* различают настольные (для ЭВМ индивидуального использования) и серверные (для ЭВМ коллективного использования) ОС. По сравнению с настольными серверные ОС имеют дополнительные компоненты, обеспечивающие поддержку работы множества пользователей компьютерной сети.

Как правило, ОС могут поставляться в «домашней» или профессиональной комплектации. «Домашние» комплектации (Home Edition) ориентированы в первую очередь на использование в домашних компьютерах и содержат

больше инструментов для развлечений и проведения досуга. Профессиональные комплектации ориентированы на деловые приложения и обычно включают в себя больше средств для обеспечения безопасного, надежного и производительного функционирования компьютера.

В комплект поставки ОС может входить большое число служебных и прикладных программ. Так, например, в состав любой современной версии ОС Windows обязательно входят программы для работы в сети Интернет, простые текстовые и графический редакторы, проигрыватель мультимедиафайлов, игры и другие прикладные программы.

Основные функции ОС:

- управление работой устройств ЭВМ;
- управление файловой системой;
- взаимодействие с пользователем ЭВМ;
- управление выполнением программ.

По *полноте реализации* перечисленных функций ОС делятся на однозадачные, многозадачные и многопользовательские.

В однозадачных ОС (MS DOS, PC DOS, PTS-DOS, CP/М и др.) одновременно может выполняться только одна программа. Выполнение другой программы может начаться (продолжиться) только после завершения программы, выполняющейся в текущий момент. В многозадачных ОС (Windows 9x, ME, Mac OS) одновременно могут исполняться несколько программ. Многопользовательские ОС являются многозадачными, но дополнительно к этому имеют средства для разделения ресурсов не только между программами, но и между различными пользователями (Windows NT/2000/XP/7/Vista/8/10, Novell Netware, почти все разновидности UNIX и многие другие ОС).

При запросах программ на доступ к одному и тому же объекту (устройству, файлу) ОС выстраивает запросы в очередь в порядке их поступления и с учетом приоритета программ. *Приоритет программы* — характеристика значимости программы с точки зрения ОС или пользователя ЭВМ.

Современные прикладные программы предъявляют высокие требования к объему необходимой им оперативной памяти. Вследствие этого физического (реального) объема ОЗУ часто оказывается недостаточно для совокупной потребности параллельно исполняемых программ, поэтому современные ОС обеспечивают работу с виртуальной памятью. Виртуальная память выступает

в качестве дополнения к оперативной памяти и является ее частью, расположенной на жестком диске. Она действует как временный носитель информации: ОС определяет, какие данные, находящиеся в оперативной памяти, сравнительно долго не используются системой, и перемещает их в виртуальную память (на жесткий диск), а в случае необходимости возвращает обратно. Такая технология позволяет увеличить эффективность использования оперативной памяти несколькими одновременно работающими программами.

2.2. Состав операционной системы

Операционная система обычно хранится во внешней памяти компьютера — на жестком диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ. Этот процесс называется загрузкой операционной системы.

Основные составные части ОС:

- 1) базовая система ввода-вывода (BIOS);
- 2) загрузчик ОС;
- 3) дисковые файлы (ядро ОС);
- 4) командный процессор;
- 5) внешние команды ОС;
- 6) драйверы устройств.

Базовая система ввода-вывода находится на низшем уровне иерархии ПО. Строго говоря, она является компонентом аппаратных средств компьютера, а не ОС. Программы и данные BIOS записываются («прошиваются») в микросхемы постоянной памяти ПК на этапе производства и, как правило, не изменяются в процессе эксплуатации.

BIOS выполняет несколько функций:

инициализацию ПК, т. е. приведение в исходное состояние всех его элементов при включении питания;

тестирование, т. е. проверку комплектности и работоспособности аппаратных и программных ресурсов ПК (процессора, памяти, драйверов и т. д.);

инициализацию ОС, т. е. считывание с системного диска загрузчика ОС; обработку программных и аппаратных прерываний нижнего уровня, выполняющих служебные процедуры и операции с внешними устройствами; управление стандартными устройствами ввода-вывода ПК.

Загрузчик ОС – короткая программа, находящаяся в первом секторе загрузочного диска. Функция этой программы заключается в считывании в память основных дисковых файлов ОС и передаче им дальнейшего управления ПК.

Дисковые файлы (ядро ОС) дополняют BIOS. Они загружаются в ОЗУ загрузчиком ОС и остаются там постоянно до выключения питания.

В ядре ОС выделяют несколько *подсистем*, каждая из которых отвечает за выполнение той или иной задачи:

файловая система (отвечает за размещение информации на устройствах хранения);

система управления памятью (размещает программы в памяти);

система управления программами (осуществляет запуск и выполнение программ);

система связи с драйверами устройств (отвечает за взаимодействие с внешними устройствами);

система обработки ошибок;

служба времени (предоставляет всем программам информацию о системном времени).

Командный процессор (интерпретатор команд) — специальная программа, которая расшифровывает и выполняет команды, вводимые пользователем с клавиатуры, или полученные из командного файла². Эта программа находится в файле cmd.exe (в ранних OC - command.com) на диске, с которого загружается OC. Некоторые команды пользователя, например, копирование (copy) или просмотр содержимого диска (dir), командный процессор выполняет сам. Такие команды называются внутренними.

Внешние команды ОС — это программы, поставляемые вместе с ОС в виде отдельных файлов. Они выполняют действия обслуживающего характера, например, форматирование, проверку дисков и др. Для выполнения внешней команды ОС командный процессор находит на диске соответствующую программу, загружает ее с диска в ОЗУ и передает ей управление. По окончании работы программы командный процессор удаляет ее из оперативной памяти.

Драйверы устройств — это специальные программы, которые дополняют BIOS и обеспечивают обслуживание новых или нестандартное использование

 $^{^{2}}$ Текстовый файл с набором команд и расширением .bat или .cmd.

имеющихся устройств. Драйверы требуются в тех случаях, когда обмен информацией с устройствами должен происходить иначе, чем определено в BIOS.

Для упрощения процесса подключения новых устройств к ПК разработана технология *Plug & Play* («Подключи и используй»). Эта технология позволяет ОС автоматически распознать подключение устройства к ЭВМ и начать работать с ним. Обнаружив новое устройство, ОС пытается подыскать к нему подходящий драйвер и автоматически (или по запросу к пользователю) устанавливает его.

2.3. Файловая структура

Закодированная информация хранится в ПК на магнитных дисках.

Имена дисков обозначаются латинскими буквами с двоеточием: A:, B: – гибкие магнитные диски (дискеты), $C:, D:, \ldots$ – логические разделы (тома) жесткого диска. Количество разделов жесткого диска и объем памяти каждого из них задаются при первоначальной инсталляции (установке) ОС в зависимости от потребностей пользователя. За разделами жесткого диска следуют компакт-диски (CD, DVD), флеш-накопители.

Информация на дисках хранится в файлах. **Файл** — это группа взаимосвязанных данных, объединенных общим названием. В качестве файла может выступать программа, обычный текст, массив данных и т. д. Размер файла измеряется в байтах или более крупных единицах измерения информации.

Имя (название) файла состоит из двух частей: собственно имени и типа файла (расширения имени), которые при написании разделяются точкой, например, *command.com* или *omчem.docx*. Как правило, тип файла характеризует принадлежность к основной программе, с помощью которой файл был создан и может быть открыт, или его назначение, например:

```
.bat, .com, .exe — исполняемые файлы;
.bmp, .jpg, .gif — файлы рисунков и изображений;
.doc, .docx — текстовые документы Word;
.xls, .xlsx, .xlsm — электронные таблицы Excel;
.zip, .rar .7z — архивные файлы;
.tmp — временные файлы;
.bak — резервные копии файлов.
```

При выполнении операций одновременно с группой файлов можно задать *шаблон* (маску) имени, в котором символ «*» обозначает любое количество любых символов (или их отсутствие), знак «?» – один символ, например:

. – все файлы;

lab*.rar – все файлы, имя которых начинается на *lab*, имеющие расширение *rar* (*lab.rar*, *lab3.rar*, *lab-25.rar*, *laboratory.rar* и др.);

год_200?.doc – все файлы, имена которых строго соответствуют указанному обозначению за исключением того, что на месте вопросительного знака находится любой символ.

Файлы регистрируются в каталогах (папках).

Иерархическая структура, в виде которой операционная система отображает файлы и папки, называется файловой структурой. Она напоминает обычную библиотеку, в которой книги (файлы) систематизированы по тематическим разделам и подразделам (каталогам и подкаталогам).

Полное имя файла состоит из имени файла и пути доступа к файлу. Путь доступа характеризует местоположение файла в ПК и представляет собой последовательность из имени диска и имен каталогов, которые при записи разделяются знаком «√». Пример полного имени файла приведен на рис. 2.

Рис. 2. Пример полного имени файла

Это означает, что для доступа к файлу $\Gamma pynna~46a.doc$ нужно выбрать диск D, а затем последовательно открыть папки, перечисленные в пути доступа.

Процесс обеспечения доступа к файлам и папкам и их содержимому называется навигацией по файловой структуре.

2.4. Файловая система

Порядок, определяющий способ организации, хранения и именования данных на носителях информации в ПК, называется файловой системой.

Файловая система является частью ОС и включает в себя совокупность всех файлов на диске;

структуры данных, используемых для управления файлами (каталоги, таблицы распределения свободного и занятого пространства на диске и др.);

комплекс системных программ для управления файлами (создание, уничтожение, чтение, запись, именование, поиск файлов и другие операции).

К современным файловым системам предъявляют дополнительные требования: возможность шифрования файлов, разграничение доступа к файлам (например, при открытии файла одним из пользователей для других этот же файл временно будет доступен в режиме «только чтение») и др.

Чтобы на диске можно было хранить информацию, диск должен быть отформатирован, т. е. должна быть создана физическая (выполняется на специальном оборудовании на заводе-изготовителе) и логическая структура диска. При физическом (низкоуровневом) форматировании на диске размечаются концентрические дорожки, которые делятся на секторы. При логическом (высокоуровневом) форматировании на диске создаются корневой каталог и таблица размещения файлов, которая обычно записывается в начале диска.

Рис. 3. Логическая структура диска

Пространство для размещения файлов выделяется отдельными блоками смежных секторов на диске — кластерами (рис. 3). **Кластер** — минимальный участок памяти (группа смежных секторов на диске), который может быть выделен для хранения файла. В разных файловых системах кластеры имеют разный размер. Размер кластера (количество секторов в нем) кратен степени двойки. Минимальный размер кластера — 512 (2⁹) байт, максимальный — 64 КБ (2¹⁶ байт).

Файл может занимать один или несколько кластеров, в том числе и несмежные кластеры. Части файла могут быть разбросаны по диску, что снижает скорость доступа к нему. Для более эффективного доступа к данным файла следует размещать его в соседних кластерах. Для этого используют специальные программы дефрагментации диска.

Все файловые системы построены на принципе: *один кластер хранит данные только одного файла*, поэтому для хранения файла отводится целое число кластеров (минимум один). Например, если размер файла составляет 40 байт, а размер кластера 4 КБ, реально занят информацией файла будет только 1 % отведенного для него места.

На рис. 4 приведен пример, который наглядно показывает, что при размере кластера 32 КБ файл размером 37,5 КБ занял на диске 64 КБ (два кластера), т. е. потребовал памяти в 1,7 раза больше своего фактического размера.

Для исключения подобных ситуаций целесообразно уменьшать размер кластеров, но для сокращения объема адресной информации и повышения скорости файловых

Рис. 4. Сведения о размере файла и занимаемом им объеме памяти на диске

операций размер кластеров, наоборот, следует увеличить. В связи с этим при форматировании съемных носителей для хранения информации размер кластера рекомендуется выбирать в зависимости от количества и специфики файлов, с которыми обычно работает пользователь.

В настоящее время для ПК наиболее распространены две файловые системы – FAT и NTFS.

Файловая система в виде FAT (от англ. *File Allocation Table* – таблица размещения файлов) была разработана в 1976 – 1977 гг. Биллом Гейтсом и Марком МакДональдом. Эта система представляет собой классическую архитектуру файловой системы, она применялась в ОС семейств DOS и Windows (кроме семейства Windows NT) и до сих пор широко применяется для флешнакопителей.

Существуют разные версии FAT. Они отличаются количеством бит для хранения номера кластера. Этот параметр обычно указывается в названии версии (например, в системе FAT32 для номера кластера предусмотрено 32 бита) и определяет другие характеристики FAT:

FAT12 была предназначена для дискет;

FAT16 — для дисков малого объема (размер тома — до 4 Γ Б), разработана в 1987 г., структура имени файла 8.3;

FAT32 — размер тома — до 128 ΓE , размер файла — до 4 ΓE , разработана в 1996 ΓE ., начала применяться в OC Windows 95, допускает длинные имена файлов (до 255 символов).

Усовершенствованная FAT32 – exFAT (от англ. *Extended* FAT – расширенная FAT) – проприетарная файловая система для флеш-накопителей, размер файла может превышать 4 ГБ.

Некоторые характеристики FAT приведены в табл. 2 и 3, FAT12 и FAT16 в настоящее время не используются.

Таблица 2 Файловые системы FAT

Файловая
системаКоличество кластеров
на дискеFAT12Менее 4085FAT164085 – 65524FAT32Более 65524

Таблица 3 Размер кластера FAT32

Размер диска,	Размер кластера
ГБ	по умолчанию, КБ
До 0,5	Не поддерживается
От 0,5 до 8	4
От 8 до 16	8
От 16 до 32	16
От 32	32

Для томов объемом более 32 ГБ рекомендуется NTFS.

NTFS (от англ. *New Technology File System* — файловая система новой технологии) разработана в 1993 г. Это стандартная файловая система для ОС Microsoft Windows NT, рекомендуется для Windows 7 и более поздних версий.

Характеристики NTFS: размер кластера -4 KБ, размер тома - до 2^{64} байт (т. е. 16 экзабайт, 1 экзабайт = 1 миллиард гигабайт).

Преимущества NTFS по сравнению с FAT32: быстродействие, надежность, сжатие и шифрование файлов, разграничение доступа, квотирование (ограничение на максимальный объем дискового пространства, занимаемый файлами тех или иных пользователей), журналирование (ведение журнала, хранящего список изменений, выполняемых с файловой системой, для обеспечения ее целостности и надежности работы) и др.

Выполним сравнение FAT32 и NTFS на примере одного тома на диске объемом 120 ГБ и файла размером 10 КБ.

В FAT32 для диска более 32 ГБ размер кластера равен 32 КБ (см. табл. 3). Файл размером 10 КБ займет один кластер, останется 32 - 10 = 22 КБ незанятого пространства.

В NTFS размер кластера 4 КБ. Файл займет три кластера, останется 12-10=2 КБ незанятого пространства.

Таким образом, переход от FAT32 к NTFS позволяет более оптимально использовать жесткий диск при наличии большого количества мелких файлов в системе.

В 2012 г. появилась REFS (от англ. *Resilient File System* – устойчивая файловая система). Она разработана с целью устранения недостатков NTFS (повысить надежность сохранения информации и самой файловой структуры, минимизировать потери данных, обеспечить работу с большим количеством данных). Рекомендуется для ОС Windows 10, занимает около 700 МБ.

Отличие REFS от NTFS заключается в следующем:

REFS содержит механизмы защиты, проверки, поддержки и исправления целостности данных на дисках в автоматическом режиме;

REFS имеет более высокую производительность;

теоретический размер тома на диске с REFS – 262 144 экзабайта (у NTFS – 16);

- в REFS ограничение длины пути к файлу составляет 32768 символов (в NTFS 255 символов);
- в REFS не поддерживаются имена файлов DOS (т. е. получить доступ к папке $C:\Program\ Files\$ по пути $C:\progra\sim 1\$ в ней не получится). В NTFS эта возможность сохранялась для совместимости с предыдущими версиями ΠO ;
- в REFS используется технология полного шифрования данных BitLocker (в NTFS технологии сжатия и шифрования средствами файловой системы).

В настоящее время сферу применения REFS пока ограничивает то, что ее нельзя использовать для системных и съемных дисков, она доступна только для систем хранения.

Узнать, какая файловая система используется на диске, можно в окне свойств диска на вкладке *Общие* (рис. 5). При форматировании диска имеется возможность выбора файловой системы и размера кластера (рис. 6).

Рис. 5. Информация о файловой системе жесткого диска

Рис. 6. Пример установки параметров при форматировании съемного диска

2.5. Основные операционные системы

Самой популярной ОС в мире является *Windows*, разработанная корпорацией Microsoft. По данным сайта *Netmarketshare.com*, в сентябре 2018 г. общая доля основных версий этой ОС на настольных ПК составляла более 88 %.

Наряду с развитием Windows разными фирмами было разработано множество других ОС. Наиболее известными и распространенными из них являются следующие:

Unix — многозадачная многопользовательская ОС. UNIX-системы являются основными для суперкомпьютеров и серверов, широко применяются для встраиваемых систем и мобильных устройств;

Linux — Unix-подобная ОС. Единственная ОС в мире, распространяемая бесплатно (существует более 600 версий). Основным преимуществом этой системы является открытость программного кода, что позволяет любому пользователю сконфигурировать ОС под свои нужды. Но это свойство ОС Linux является и ее недостатком, поскольку требует от пользователя соответствующего уровня подготовки. Эту ОС применяют в первую очередь программисты и веб-разработчики. Linux-системы характеризуются высокой надежностью и мало подвержены заражению компьютерными вирусами. Наиболее распространенными являются версии Ubuntu, OpenSUSE, Linuxmint;

Mac OS — разработана корпорацией Apple специально для компьютеров Macintosh, поэтому распространена в основном в США. Отличается надежностью, стабильностью и удобством работы, интересным и практичным дизайном, однако имеет негибкий пользовательский интерфейс, а ее стоимость значительно дороже Windows.

Представленные операционные системы активно развиваются, появляются их новые версии, учитывающие современные возможности аппаратного обеспечения и потребности пользователей.

2.6. Служебные программы

Служебное ПО занимает промежуточное место между системным и прикладным ПО и представляет собой программы вспомогательного назначения (утилиты – от лат. *utilitas* – польза), которые либо расширяют и дополняют соответствующие возможности ОС, либо решают самостоятельные важные задачи. К ним относятся:

программы контроля, тестирования и диагностики, которые используются для проверки правильности функционирования устройств компьютера и для обнаружения неисправностей в процессе эксплуатации, указывают причину и место неисправности;

программы оптимизации и контроля качества дискового пространства;

программы для управления памятью, обеспечивающие более гибкое использование оперативной памяти;

программы восстановления информации, форматирования, защиты данных; программы-упаковщики (архиваторы), которые позволяют записывать информацию на дисках более плотно и объединять несколько файлов в один

архивный файл;

антивирусные программы, предназначенные для предотвращения заражения компьютерными вирусами и ликвидации последствий заражения вирусами;

коммуникационные программы, организующие обмен информацией между компьютерами;

программы для записи на компакт-диски и др.

Часть утилит входит в состав ОС, как правило, это программы обслуживания. Наиболее популярные среди них следующие программы:

Форматирование — предназначена для разметки дорожек и создания файловой структуры на носителе информации;

Дефрагментация (оптимизация) диска — позволяет повысить скорость доступа к информации и объединить данные, принадлежащие одному файлу, в одной непрерывной области данных;

Проверка диска — выявляет нарушения целостности файловой системы и физические ошибки, связанные с дефектами жесткого диска;

Очистка диска — позволяет удалить временные файлы, созданные разнообразными приложениями, и очистить корзину Windows.

Многие служебные программы функционируют автономно (независимо) от ОС, например, программы-инсталляторы обеспечивают установку сложных программных комплексов, содержащих большое число разнообразных файлов и требующих определенных изменений в настройках компьютера.

3. ИНСТРУМЕНТАЛЬНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

В отличие от прикладного и системного ПО инструментальное ПО предназначено для использования в ходе проектирования, разработки и сопровождения других программ. К нему относятся системы программирования и средства для разработки приложений (см. табл. 1).

3.1. Системы программирования

Система программирования — это система для разработки новых программ на конкретном языке программирования. Обычно она включает в себя следуюшие компоненты:

- входной язык программирования (алгоритмический язык высокого уровня);
 - транслятор с входного языка на машинный язык;
 - интегрированную среду разработки;
 - редактор текстов программ;
 - библиотеки типовых модулей;
 - редактор связей (компоновщик);
 - встроенную справочную службу;
 - пошаговый отладчик и др.

Популярные современные системы программирования – Microsoft Visual Studio, Embarcadero RAD Studio.

3.2. Средства для разработки приложений

Средства для разработки приложений используются в ходе разработки, корректировки или развития других прикладных или системных программ.

По своему назначению указанные средства близки к системам программирования. К ним относятся:

средства подготовки мультимедийных приложений (презентаций, анимационных роликов, звуковых записей и др.);

различные специализированные редакторы;

средства компоновки программ;

отладочные программы, т. е. программы, помогающие находить и устранять ошибки в программе;

вспомогательные программы, реализующие часто используемые системные действия, и т. п.

Учитывая факт непрерывной интеграции видов ПО, инструментальные средства можно считать обособленным подклассом прикладного ПО, как, например, оболочки для создания прикладных программ (например, Microsoft PowerPoint, $Adobe\ Flash^3$ и др.).

4. ПРИКЛАДНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Прикладное ПО предназначено для выполнения определенных задач и рассчитано на непосредственное взаимодействие с пользователем. Различают прикладное ПО общего назначения и прикладное ПО специализированного назначения, некоторые виды которых приведены в табл. 1.

4.1. Прикладное программное обеспечение общего назначения

Прикладное ПО общего назначения – совокупность программ для решения общих универсальных задач. Эти программы используются большинством пользователей компьютера (см. табл. 1).

Одним из наиболее распространенных прикладных программных средств реализации информационных процессов является офисный пакет приложений *Microsoft Office*, в состав которого входит ПО для работы с различными типами документов: текстами, электронными таблицами, базами данных, электронной почтой и др.

³ Adobe Flash (ранее – Macromedia Flash), или просто Flash, – мультимедийная платформа компании Adobe для создания веб-приложений или мультимедийных презентаций. Широко используется для создания рекламных баннеров, анимации, игр, воспроизведения на вебстраницах видео- и аудиозаписей.

Microsoft Office поставляется в нескольких редакциях, различающихся между собой составом пакета и ценой. Наиболее популярны следующие приложения этого пакета:

Word – текстовый процессор;

Excel – табличный процессор;

PowerPoint – приложение для подготовки электронных презентаций;

Access – система управления базами данных;

Outlook – персональный информационный менеджер с функциями почтового клиента для работы с электронной почтой;

Visio – векторный графический редактор.

Все программные продукты Microsoft Office представлены на официальном сайте https://products.office.com, где можно подробно ознакомиться с особенностями работы каждого из приложений и руководством по их эксплуатации.

4.2. Прикладное программное обеспечение специализированного назначения

Прикладное ПО специализированного назначения — совокупность программ для решения более узких задач и профессиональных задач различных предметных областей (см. табл. 1).

Профессиональные программные продукты в настоящее время получили широкое развитие. Это бухгалтерские системы (1С:Бухгалтерия), математические пакеты (MathCAD), геоинформационные системы (2ГИС), гипертекстовые системы (электронные словари, энциклопедии, учебники), автоматизированные системы научных исследований и многие другие.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1) Назовите и охарактеризуйте основные виды программного обеспечения.
- 2) Что входит в состав системного программного обеспечения?
- 3) Каковы назначение и состав операционной системы?
- 4) Дайте определение понятий «файл» и «полное имя файла».
- 5) Что такое файловая система и как она организована?
- 6) Приведите примеры программ-утилит.

6. ПРИМЕРЫ ТЕСТОВЫХ ВОПРОСОВ

Вопрос № 1 (несколько верных ответов)

В состав программного обеспечения вычислительных систем входят ...

Варианты ответов:

- 1) системное ПО;
- 2) служебное ПО;
- 3) функциональное ПО;
- 4) информационное ПО.

Вопрос № 2 (один верный ответ)

Что такое операционная система?

Варианты ответов:

- 1) комплекс программ, обеспечивающий управление функционированием компьютера;
 - 2) программа обработки баз данных;
 - 3) программа, позволяющая избавляться от вирусов;
 - 4) программа, позволяющая редактировать текст.

Вопрос № 3 (один верный ответ)

Расширение .exe в имени файла указывает на то, что этот файл является...

Варианты ответов:

- 1) исполняемой программой;
- 2) текстовым документом;
- 3) графическим файлом;
- 4) программой на языке программирования.

Вопрос № 4 (один верный ответ)

Минимальный участок памяти на диске для хранения файла – это ...

Варианты ответов:

- 1) кластер;
- 2) архив;
- 3) утилита;
- 4) папка;
- 5) сектор.

Вопрос № 5 (один верный ответ)

Аббревиатура FAT расшифровывается как ...

Варианты ответов:

- 1) таблица размещения файлов;
- 2) протокол обмена данными;
- 3) физические атрибуты диска;
- 4) фатальная ошибка в программе.

7. ЗАДАНИЯ

Задание 1. Пользователь работал с файлом в папке **Преподаватели**. Затем он последовательно переместился вверх на один уровень файловой структуры, далее — вниз на один уровень и потом еще раз вниз на один уровень. В результате он оказался в папке **F:\Задания\Программы\Контроль**. Укажите путь доступа к файлу, с которым работал пользователь.

Задание 2. Из представленного списка выберите файлы, имена которых удовлетворяют маске **m?*.mp***:

man.mp4	metro.tmp	mmm.cpp
mart.mpeg	mtr.map	mp3.mp
ram.mp3	album.mp3	music.mdp
mp.cpp	merg.kmp	m.mp3

Задание 3. Предложите три примера имен файлов, которые удовлетворяют маске *лаб??.*.

Задание 4. Вычислите количество кластеров и объем памяти, который займет файл размером 3991 КБ на диске размером 16 ГБ с файловой системой FAT32. Сколько пространства, не занятого информацией, останется из отведенного для файла места на диске?

Задание 5. Вычислите количество кластеров и объем памяти, который займет файл размером 2708 КБ на диске размером 500 ГБ с файловой системой NTFS. Сколько пространства, не занятого информацией, останется из отведенного для файла места на диске?

Библиографический список

- 1. Трофимов В. В. Информатика: В 2 т.: Учебник / В. В. Трофимов, М. И. Барабанова. М.: Юрайт, 2018. Т. 1. 553 с.
- 2. Гаврилов М. В. Информатика и информационные технологии: Учебник / М. В. Гаврилов, В. А. Климов. М.: Юрайт, 2018. 383 с.

Учебное издание

СИДОРОВА Елена Анатольевна, ЖЕЛЕЗНЯК Светлана Петровна

ПРОГРАММНЫЕ СРЕДСТВА РЕАЛИЗАЦИИ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ

Учебно-методическое пособие

Редактор Н. А. Майорова

Подписано в печать 25.01.2019. Формат $60 \times 84^{-1}/_{16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 1,7. Уч.-изд. л. 1,9. Тираж 250 экз. Заказ

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35