♣暗号入門3日の3日目♣ 「代数曲線と暗号プリミティブ」

松尾和人

2007年8月10日13:00-16:10

♣ Diffie-Hellman 鍵共有アルゴリズム (1976) ♣

システム設定					
<i>p</i> :	p : 素数, $b \in [1, p-1]$				
s.t. $\{b^i i\in$	$[0, p-2]$ = $\{1, \dots, p-1\}$				
	鍵ペア生成				
アントニオ					
秘密鍵設定	$K_a \in [1, p-1]$				
公開鍵計算	$K_a' \equiv b^{K_a} mod p$				
	公開鍵 K_a^\prime を公開				
	ブバブ				
秘密鍵設定	$K_b \in [1, p-1]$				
公開鍵計算	$K_b'\equiv b^{K_b}\ mod\ p$				
	公開鍵 K_b^\prime を公開				
共通鍵計算					
アントニオ	$K\equiv K_b^{\prime K_a} mod p$ $K\equiv K_a^{\prime K_b} mod p$				
ババ	$K\equiv K_a^{\prime K_b}$ mod p				
同一の鍵 K を共有できた					

♣ 離散対数問題 ♣

- $\bullet \ K'_* \mapsto K_*$
- Given: p: prime, $b \in [1, p-1]$, $a \in \{b^i | i \in [0, p-2]\}$ Find: $x \in [0, p-2]$ s.t. $a \equiv b^x \mod p$ Ind $_b a := x$
- 簡単: $(x,b,p) \mapsto a \equiv b^x \mod p$ $-x = (x_n x_{n-1} \dots x_1 x_0)_2,$ $a \equiv \prod_{0 \le i \le n} b^{2^{x_i}} \mod p,$ $n = O(\log p)$
- 困難: $(a, b, p) \mapsto x$

- ♣ 離散対数問題の難しさ ♣
- 全数探索
 - -O(p)
- Square-root法
 - $-O\left(\sqrt{l}\right)$
 - -l:p-1の最大素因子
- 指数計算法 (Adleman, 1979)
 - $-L_x(\alpha,\beta) := \exp\left(\beta(\log x)^{\alpha}(\log\log x)^{1-\alpha}\right)$
 - $-O(L_p(1/2,2+o(1)))$
 - $-O(L_p(1/3, 1.903 + o(1)))$

- ♣ Square-root法: PollardのRho法 (1978) ♣
- Monte Carlo (Las Vegas) Algo.
- 空間計算量: O(1)
- パラレル計算可能
- 基本アイディア:バースデイパラドックス の利用

クラスメイトが23人いれば、 同じ誕生日のペアが居る確率は1/2以上

$$1 - 1 \times \frac{364}{365} \times \frac{363}{365} \times \cdots \times \frac{343}{365} = 0.507 \dots$$

$$\sqrt{365} = 19.104...$$

A Birthday Paradox A

 $S : \mathsf{set}, n_0 = \# S$

r個の中に1組も同じ値のペアがない確率:

$$\prod_{i=1}^{r} \frac{n_0 - i + 1}{n_0} = \prod_{i=1}^{r} \left(1 - \frac{i - 1}{n_0} \right)$$

$$< \prod_{i=1}^{r} \exp\left(-\frac{i - 1}{n_0} \right)$$

$$\therefore 1 + x \le e^x$$

$$= \exp\left(\sum_{i=1}^{r} -\frac{i - 1}{n_0} \right)$$

$$= \exp\left(-\frac{r(r - 1)}{2n_0} \right)$$

$$\approx \exp\left(-\frac{r^2}{2n_0} \right)$$

$$r = \sqrt{2(\log 2)n_0} \Rightarrow \exp\left(-\frac{r^2}{2n_0}\right) = 0.5$$

 $\Rightarrow O(\sqrt{n_0})$ 個の中には -致するペアがある確率が高い

♣ Pollardの ρ 法 (原型)の実際 ♣

Given: p = 47, a = 40, b = 11

Find: Ind_ba i.e. x s.t. $a \equiv b^x \mod p$

	1	2	3	4	5
α	35	36	17	9	3
eta	3	41	15	0	28
$a^{lpha}b^{eta}$ mod p	27	43	24	29	<u>30</u>
	6	7	8	9	10
	17	16	37	38	39
	14	7	17	25	8
	15	40	6	13	<u>30</u>

$$a^3b^{28} \equiv a^{39}b^8 \bmod p$$

 \Rightarrow

$$a \equiv b^{(8-28)/(3-39)} \mod p$$

 \Rightarrow

$$x \equiv \frac{8-28}{3-39} \equiv \frac{20}{36} \equiv 21 \mod p - 1$$

♣ Pollardの ρ 法の原型 ♣

Algorithm 1 Pollard's rho.alpha

Input: p: 素数, $a, b \in [1, p-1]$

Output: $x \in [0, p-2]$ s.t. $a \equiv b^x \mod p$

- 1: i := 0
- 2: repeat
- 3: i := i + 1

- 8: Output x and terminate

(平均)時間計算量:

 $O(\sqrt{p}) \rightarrow O(\sqrt{l}), l:p-1$ の最大素因子

(平均)空間計算量:

 $O(\sqrt{p}) \to O(1)$

♣ 指数計算法の実際 ♣

Given: p = 47, a = 40, b = 11

Find: Ind_ba i.e. x s.t. $a \equiv b^x \mod p$

因子基底: $T = \{2, 3, 5, 7, 11, 13\}$

#T個のrelation:

4: Choose
$$\alpha_{i}, \beta_{i} \in [0, p-2]$$
 randomly
5: $c_{i} \equiv a^{\alpha_{i}}b^{\beta_{i}} \mod p-1$
6: **until** $\exists j$ s.t. $1 \leq j < i, c_{j} = c_{i}$
7: $x \equiv (\beta_{j} - \beta_{i})(\alpha_{i} - \alpha_{j})^{-1} \mod p-1$
 $/*\alpha_{i}x + \beta_{i} \equiv \alpha_{j}x + \beta_{j} \mod p-1*/$

$$= Contract = and target in the second state a_{i} and a_{i} a$$

$$\equiv \begin{pmatrix} 11^{\text{Ind}_{11}2} \\ 11^{\text{Ind}_{11}3} \times 11^{\text{Ind}_{11}5} \\ 11^{\text{Ind}_{11}2} \times 11^{\text{Ind}_{11}5} \\ 11^{\text{Ind}_{11}3} \times 11^{\text{Ind}_{11}13} \\ 11^{\text{Ind}_{11}5} \times 11^{\text{Ind}_{11}7} \\ 11^{\text{Ind}_{11}11} \end{pmatrix}$$

 $\mathsf{mod}\ p$

$$\begin{pmatrix}
42 \\
3 \\
29 \\
11 \\
31 \\
1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
Ind_{11}2 \\
Ind_{11}3 \\
Ind_{11}5 \\
Ind_{11}7 \\
Ind_{11}11 \\
Ind_{11}13 \\
Ind_{11}13 \\
Ind_{11}13
\end{pmatrix}$$

$$mod p - 1$$

$$\begin{pmatrix} \text{Ind}_{11}2 \\ \text{Ind}_{11}3 \\ \text{Ind}_{11}5 \\ \text{Ind}_{11}7 \\ \text{Ind}_{11}11 \\ \text{Ind}_{11}13 \end{pmatrix} \equiv \begin{pmatrix} 42 \\ 16 \\ 33 \\ 44 \\ 1 \\ 41 \end{pmatrix} \bmod p-1$$

$$40 \times 11^{33} \equiv 12$$
$$\equiv 2^2 \times 3 \mod p$$

$$Ind_{11}40 \equiv 2Ind_{11}2 + Ind_{11}3 - 33$$

 $\equiv 2 \times 42 + 16 - 33$
 $\equiv 21 \mod p - 1$

♣ 離散対数問題に必要な計算量 ♣

緑:全数探索

黄:Square-root法

赤:指数計算法的方法

- ♣ 離散対数問題の解読コスト ♣
- 解読コストはpのサイズに依存
- 2⁸⁰程度の手間はかけられない と考えられている
- $\Rightarrow 2^{80}$ 程度の手間が必要なpのサイズは?
 - Square-root 法: $\log_2 p \approx 160$
 - 指数計算法 : $\log_2 p \approx 1024$ (?)
- 将来は?(漸近的計算量):
 - Square-root法:log₂ pの指数関数時間
 - 指数計算法 :log₂ pの準指数関数時間

何とかならないか? ⇒ 離散対数問題の一般化

♣ 有限体 ♣

- 有限集合で四則演算が定義されたもの
 - $-\mathbb{F}_p := \{$ 整数を素数pで割った余り $\}$
 - $-\mathbb{F}_{p^d}:=\{\mathbb{F}_p$ 係数のd次多項式の \mathbf{d} $\}$

$$\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$$

4	4	0	1	2	3
3	3	4	0	1	2
2	2	3	4	0	1
1	1	2	3	4	0
0	0	1	2	3	4
+	0	1	2	3	4

		1		2	1
X	U	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0 0 0 0	4	3	2	1

♣ 有限可換群 ♣

- 有限集合で可換な演算が一つ定義され、 単位元、逆元有り
 - $-+\Rightarrow \mathbb{F}_p, (\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$
 - $-+ \Rightarrow (\mathbb{N})$
 - $\times \Rightarrow \mathbb{F}_p \setminus \{0\}, (\mathbb{Q} \setminus \{0\}, \mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\})$
 - $\times \not\Rightarrow (\mathbb{Z})$
- $\mathbb{F}_p^* := \mathbb{F}_p \setminus \{0\}$
- 可換群の演算には+を用いる

♣ 離散対数問題の一般化 ♣

● 離散対数問題

- Given: p: 素数, $b \in [1, p-1]$, $a \in \{b^i | i \in [0, p-2]\}$
- Find: $x \in [0, p-2]$ s.t. $a \equiv b^x \mod p$
- (有限体の乗法群上の)離散対数問題
 - $\hat{m G}$ iven: \mathbb{F}_p : 位数 \hat{p} の有限体, $b \in \mathbb{F}_p^*$, $a \in \langle b
 angle$
 - Find: $x \in [0, p-2]$ s.t. $a = b^x$

● 離散対数問題

- Given: G: 有限可換群, $b \in G$, $a \in \langle b \rangle$
- Find: $x \in [0, \#G-1]$ s.t. a = [x]b
- $-a = [x]b = \underbrace{b+b+\dots+b}_{x}$

$$A G = \mathbb{F}_p A$$

Given: $b \in \mathbb{F}_p$, $a \in \langle b \rangle$

Find: $x \in [0, p-1]$ s.t. a = [x]b

#Gが素数なので、

pを160 bit程度にとれば

square-root 法に対し安全

ところが、

 $x \in \mathbb{Z}/(p-1)\mathbb{Z}$ と考えることができるので、

$$x = a/b \in \mathbb{Z}/(p-1)\mathbb{Z}$$

 \Rightarrow

 $T(p) = O((\log p)^2)$ bit-operations

♣ Pollardのρ法の一般化 ♣

Algorithm 2 Pollard's rho.alpha

Input: G: 素数,有限可換群, $a,b \in G$

Output: $x \in [0, \#G - 1]$ s.t. $a \equiv [x]b$

- 1: i := 0
- 2: repeat
- 3: i := i + 1
- 4: Choose $\alpha_i, \beta_i \in [0, \#G-1]$ randomly
- 5: $c_i = [\alpha_i]a + [\beta_i]b$
- 6: until $\exists j$ s.t. $1 \leq j < i, c_j = c_i$
- 7: $x \equiv (\beta_j \beta_i)(\alpha_i \alpha_j)^{-1} \mod \#G$ $/*\alpha_i x + \beta_i \equiv \alpha_j x + \beta_j \mod \#G*/$
- 8: Output x and terminate

(平均)時間計算量:

 $O(\sqrt{\#G}) \to O(\sqrt{l})$, l:#Gの最大素因子

(平均)空間計算量:

$$O(\sqrt{\#G}) \rightarrow O(1)$$

- ♣ 楕円·超楕円曲線暗号 ♣
- Square-root 法は一般に適用可: \sqrt{l} , l:#Gの最大素因子
- 有限可換群 *G* で 指数計算法が適用できないものはあるか?
- ⇒ 代数曲線には可換群の構造を入れられる
- ⇒ 楕円・超楕曲線円暗号 有限体の乗法群上の離散対数問題に基づく 暗号アルゴリズムを (有限体上の)楕円曲線、超楕円曲線の 群構造を利用して実現したもの
- ∴ 暗号アルゴリズム自体の研究は (あまり)行なわれない

♣ 代数曲線の例 ♣

♣ 楕円曲線 ♣

$$E: Y^2 = X^3 + a_4 X + a_6, \ a_i \in \mathbb{F}_p$$

♣ 楕円曲線上の群構造 ♣

$$E: Y^2 = X^3 + a_4 X + a_6, \ a_i \in \mathbb{F}_p$$

$$\downarrow$$

$$\mathbb{F}_n : - \{P - (x, y) \in \mathbb{F}^2 \}$$

$$E(\mathbb{F}_p) := \{P = (x, y) \in \mathbb{F}_p^2 \mid y^2 = x^3 + a_4 x + a_6\} \cup \{P_\infty\}$$

$E(\mathbb{F}_p)$ は有限可換群

$$\#E(\mathbb{F}_p) \approx p$$

♣ 楕円曲線上の加法1 ♣

$$P_1 + P_2 + P_3 + P_4 + P_5 + P_6 = 0$$

♣ 楕円曲線上の加法2 ♣

$$P = (x, y) \Rightarrow -P = (x, -y)$$

♣ 楕円曲線上の加法公式 ♣

$$P_3 = P_1 + P_2$$

$$P_1$$

$$P_3$$

$$P_4$$

$$P_3$$

$$P_4$$

$$P_3$$

$$P_4$$

$$P_4$$

$$P_4$$

$$P_4$$

$$P_5$$

♣ 楕円曲線上の加法公式 ♣

$$E: Y^2 = X^3 + a_4 X + a_6$$
 $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$
 $P_3 = (x_3, y_3) = P_1 + P_2$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq P_2 \\ \frac{3x_1^2 + a_4}{2x_1^2} & \text{if } P_1 = P_2 \\ x_3 = \lambda^2 - x_1 - x_2, \end{cases}$$
 $y_3 = \lambda(x_1 - x_3) - y_1$
逆元計算 乗算

$$I \qquad 3M \text{ or } 4M$$

♣ 楕円曲線上の加算速度 ♣

\mathbb{F}_p 上の演算コスト:

$$ab: M = O((\log p)^2)$$

$$a+b: O(\log p) \ll M$$

$$a^{-1}: I \approx 20M$$

$$-a : O(1)$$

加算: $I + 3M \approx 23M$

2倍算: $I+4M\approx 24M$

解読計算量が同じであるならば、 通常の離散対数問題ベースの暗号のほうが 20倍以上速いであろう。

逆に、同一の安全性を得るためにpのサイズを1/5以下にできれば、

楕円曲線暗号のほうが速くなりそうだ。

♣ 楕円暗号の速度 ♣

楕円暗号の安全性

$$- \# E(\mathbb{F}_p) = O(p)$$

Square-root 法のみ適用可
 Eの適切な選択の下:

$$O\left(\sqrt{\#E(\mathbb{F}_p)}\right) = O\left(\sqrt{p}\right)$$

 \mathbb{F}_p^* に対する指数計算法的方法と $E(\mathbb{F}_p)$ に対するsquare-root法の計算量を合わせると:

\mathbb{F}_p^*	$E(\mathbb{F}_p)$	
512	120?	4.3
1024	160?	6.4
2048	220?	9.3

♣ 参考:安全な楕円曲線の構成 ♣

Algorithm 3 安全な楕円曲線の構成

Input: p: 素数

Output: A secure elliptic curve E and $\#E(\mathbb{F}_p)$

- 1: repeat
- 2: repeat
- 3: Choose an elliptic curve E randmly
- 4: Compute $N=\#E(\mathbb{F}_p)$ /*ここが楽しい*/
- 5: **until** N : prime $\neq p$
- 6: **until** E satisfies MOV condition
- 7: Output $E, \#E(\mathbb{F}_p)$ and terminate

♣ 種数gの超楕円曲線 ♣

$$C: Y^2 = X^{2g+1} + f_{2g}X^{2g} + \dots + f_1X + f_0,$$

 $f_i \in \mathbb{F}_p$

♣ 超楕円曲線上の群構造 ♣

$$C: Y^2 = X^{2g+1} + f_{2g}X^{2g} + \dots + f_1X + f_0,$$

 $f_i \in \mathbb{F}_p$

$$C(\mathbb{F}_p) := \{ P = (x, y) \in \mathbb{F}_p^2 \mid y^2 = x^{2g+1} + \dots + f_0 \} \cup \{ P_{\infty} \}$$

 $C(\mathbb{F}_p)$ は群構造を持たない

♣ 超楕円曲線上の群構造 ♣

$$C: Y^{2} = X^{2g+1} + f_{2g}X^{2g} + \dots + f_{1}X + f_{0}, \quad C: Y^{2} = X^{2g+1} + f_{2g}X^{2g} + \dots + f_{1}X + f_{0}, \quad f_{i} \in \mathbb{F}_{p}$$

$$\mathcal{J}_C(\mathbb{F}_p) := \{D = \{P_1, \dots, P_n \in C(\mathbb{F}_{p^g}) \setminus \{P_\infty\}\} \mid n \leq g, D^p = D\}$$

$$C(\mathbb{F}_p)\subseteq \mathcal{J}_C(\mathbb{F}_p)$$

$\mathcal{J}_C(\mathbb{F}_p)$ は有限可換群

$$\#\mathcal{J}_C(\mathbb{F}_p) pprox p^g$$

♣ 超楕円曲線上の加法公式 (g=2) ♣

$$D_3 = D_1 + D_2$$
, $D_i = \{P_{i1}, P_{i2}\}$

♣ Mumford 表現 ♣

$$C: Y^2 = F(X), F \in \mathbb{F}_p[X],$$

$$\deg F = 2g + 1$$

$$D = \{P_1, \dots, P_n \in C(\mathbb{F}_{p^g}) \setminus \{P_\infty\}\} \mid n \le g, D^p = D,$$
$$P_i = (x_i, y_i)$$

$$\Downarrow$$

$$\exists 1 (U,V) \in (\mathbb{F}_p[X])^2 \text{ s.t.}$$
 $U = \prod_{1 \leq i \leq n} (X - x_i),$
 $\deg U > \deg V,$
 $U \mid F - V^2,$
 $y_i = V(x_i).$

$$\mathcal{J}_C(\mathbb{F}_p) = \{(U, V) \in (\mathbb{F}_p[X])^2 \mid$$

$$\operatorname{lc}(U) = 1,$$

$$\operatorname{deg} V < \operatorname{deg} U \leq g,$$

$$U \mid F - V^2 \}$$

♣ 超楕円曲線上の加法公式 ♣

Transcrib	Majorish have convince veduced divisory D. (II II) D. (II II)	
Input	Weight two coprime reduced divisors $D_1 = (U_1, V_1), D_2 = (U_2, V_2)$	
Output	A weight two reduced divisor $D_3 = (U_3, V_3) = D_1 + D_2$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2 .	4M
	$\overline{z_1 \leftarrow u_{21} - u_{11}}; \ z_2 \leftarrow u_{21}z_1; \ z_3 \leftarrow z_2 + u_{10} - u_{20};$	
	$r \leftarrow u_{10}(z_3 - u_{20}) + u_{20}(u_{20} - u_{11}z_1);$	
2	If $r = 0$ then call the sub procedure.	_
3	Compute $I_1 \equiv 1/U_1 \mod U_2$.	I + 2M
	$\overline{w_0 \leftarrow r^{-1}}; \ i_{11} \leftarrow w_1 z_1; \ i_{10} \leftarrow w_1 z_3;$	
4	Compute $S \equiv (V_2 - V_1)I_1 \mod U_2$. (Karatsuba)	5M
	$\frac{v_1 \leftarrow v_{20} - v_{10}; \ w_2 \leftarrow v_{21} - v_{11}; \ w_3 \leftarrow i_{10}w_1; \ w_4 \leftarrow i_{11}w_2;}{w_1 \leftarrow v_{20} - v_{10}; \ w_2 \leftarrow v_{21} - v_{11}; \ w_3 \leftarrow i_{10}w_1; \ w_4 \leftarrow i_{11}w_2;}$	0111
	$s_1 \leftarrow (i_{10} + i_{11})(w_1 + w_2) - w_3 - w_4(1 + u_{21});$	
	$s_0 \leftarrow w_3 - u_{20}w_4$;	
5	If $s_1 = 0$ then call the sub procedure.	
6	Compute $U_3 = s_1^{-2}((S^2U_1 + 2SV_1)/U_2 - (F - V_1^2)/(U_1U_2))$.	I + 6M
0		1 T OM
	$w_1 \leftarrow s_1^{-1}$;	
	$u_{30} \leftarrow w_1(w_1(s_0^2 + u_{11} + u_{21} - f_4) + 2(v_{11} - s_0w_2)) + z_2 + u_{10} - u_{20};$	
	$u_{31} \leftarrow w_1(2s_0 - w_1) - w_2;$	
	$u_{32} \leftarrow 1$;	
7	Compute $V_3 \equiv -(SU_1 + V_1) \mod U_3$.(Karatsuba)	5M
	$\overline{w_1 \leftarrow u_{30} - u_{10}}; \ w_2 \leftarrow u_{31} - u_{11};$	
	$w_3 \leftarrow s_1 w_2$; $w_4 \leftarrow s_0 w_1$; $w_5 \leftarrow (s_1 + s_0)(w_1 + w_2) - w_3 - w_4$	
	$v_{30} \leftarrow w_4 - w_3 u_{30} - v_{10};$	
	$v_{31} \leftarrow w_5 - w_3 u_{31} - v_{11};$	
Total		2I + 21M

In.	Genus 3 HEC $C: Y^2 = F(X)$, $F = X^7 + f_5 X^5 + f_4 X^4 + f_3 X^3 + f_2 X^2 + f_1 X + f_0$;	
	Reduced divisors $D_1 = (U_1, V_1)$ and $D_2 = (U_2, V_2)$.	
	$U_1 = X^3 + u_{12}X^2 + u_{11}X + u_{10}, V_1 = v_{12}X^2 + v_{11}X + v_{10},$	
	$U_2 = X^3 + u_{22}X^2 + u_{21}X + u_{20}, V_2 = v_{22}X^2 + v_{21}X + v_{20};$	
Out.	Reduced divisor $D_3 = (U_3, V_3) = D_1 + D_2$,	
	$U_3 = X^3 + u_{32}X^2 + u_{31}X + u_{30}, V_3 = v_{32}X^2 + v_{31}X + v_{30};$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2	14M + 12A
	$t_1 = u_{11}u_{20} - u_{10}u_{21}$; $t_2 = u_{12}u_{20} - u_{10}u_{22}$; $t_3 = u_{20} - u_{10}$; $t_4 = u_{21} - u_{11}$; $t_5 = u_{22} - u_{12}$; $t_6 = t_4^2$;	·
	$t_7 = t_3t_4$, $t_8 = u_{12}u_{21} - u_{11}u_{22} + t_3$; $t_9 = t_3^2 - t_1t_5$; $t_{10} = t_2t_5 - t_7$; $r = t_8t_9 + t_2(t_{10} - t_7) + t_1t_6$;	
2	If $r = 0$ then call the Cantor algorithm	_
3	Compute the pseudo-inverse $I = i_2 X^2 + i_1 X + i_0 \equiv r/U_1 \mod U_2$	4M + 4A
'	$i_2 = t_5 t_8 - t_6$; $i_1 = u_{22} i_2 - t_{10}$; $i_0 = u_{21} i_2 - (u_{22} t_{10} + t_0)$;	,
4	Compute $S' = s_2'X^2 + s_1'X + s_0' = rS \equiv (V_2 - V_1)I \mod U_2$ (Karatsuba, Toom)	10M + 31A
	$t_1 = v_{10} - v_{20}$; $t_2 \stackrel{?}{=} v_{11} - v_{21}$; $t_3 \stackrel{?}{=} v_{12} - v_{22}$; $t_4 = t_2 i_1$; $t_5 = t_1 i_0$; $t_6 = t_3 i_2$; $t_7 = u_{22} t_6$;	
	$t_8 = t_4 + t_6 + t_7 - (t_2 + t_3)(i_1 + i_2); t_9 = u_{20} + u_{22}; t_{10} = (t_9 + u_{21})(t_8 - t_6);$	
	$t_9 = (t_9 - u_{21})(t_8 + t_6); s_0' = -(u_{20}t_8 + t_5); s_2' = t_6 - (s_0' + t_4 + (t_1 + t_3)(t_0 + t_2) + (t_{10} + t_9)/2);$	
	$s'_1 = t_4 + t_5 + (t_9 - t_{10})/2 - (t_7 + (t_1 + t_2)(i_0 + i_1));$	
5	If $s_2' = 0$ then call the Cantor algorithm	_
6	Compute S , w and $w_i = 1/w$ s.t. $wS = S'/r$ and S is monic	I + 7M
	$t_1 = (rs'_2)^{-1}$; $t_2 = rt_1$; $w = t_1s'_2$; $w_i = rt_2$; $s_0 = t_2s'_0$; $s_1 = t_2s'_1$;	
7	Compute $Z = X^5 + z_4 X^4 + z_3 X^3 + z_2 X^2 + z_1 X + z_0 = SU_1$ (Toom)	4M + 15A
	$t_6 = s_0 + s_1$; $t_1 = u_{10} + u_{12}$; $t_2 = t_6(t_1 + u_{11})$; $t_3 = (t_1 - u_{11})(s_0 - s_1)$; $t_4 = u_{12}s_1$;	
	$z_0 = u_{10}s_0$; $z_1 = (t_2 - t_3)/2 - t_4$; $z_2 = (t_2 + t_3)/2 - z_0 + u_{10}$; $z_3 = u_{11} + s_0 + t_4$; $z_4 = u_{12} + s_1$;	
8	Compute $U_t = X^4 + u_{t3}X^3 + u_{t2}X^2 + u_{t1}X + u_{t0} =$	13M + 26A
	$(S(Z+2w_iV_1)-w_i^2((F-V_1^2)/U_1))/U_2$ (Karatsuba) $t_1=s_0z_3;\ t_2=(u_{22}+u_{21})(u_{t3}+u_{t2});\ t_3=u_{21}u_{t2};\ t_4=t_1-t_3;\ u_{t3}=z_4+s_1-u_{22};$	
	$t_5 = s_1 z_4 - u_{22} u_{t3}$;	
	$u_{t2} = z_3 + s_0 + t_5 - u_{21}$; $u_{t1} = z_2 + t_6(z_4 + z_3) + w_i(2v_{12} - w_i) - (t_5 + t_2 + t_4 + u_{20})$;	
	$u_{t0} = z_1 + t_4 + s_1 z_2 + w_i(2(v_{11} + s_1 v_{12}) + w_i u_{12}) - (u_{22} u_{t1} + u_{20} u_{t3});$	
9	Compute $V_t = v_{t2}X^2 + v_{t1}X + v_{t0} \equiv wZ + V_1 \mod U_t$	8M + 11A
	$t_1 = u_{t3} - z_4$; $v_{t0} = w(t_1u_{t0} + z_0) + v_{10}$; $v_{t1} = w(t_1u_{t1} + z_1 - u_{t0}) + v_{11}$;	
	$v_{l2} = w(t_1u_{l2} + z_2 - u_{t1}) + v_{12}; \ v_{l3} = w(t_1u_{l3} + z_3 - u_{t2});$	
10	Compute $U_3 = X^3 + u_{32}X^2 + u_{31}X + u_{30} = (F - V_t^2)/U_t$	7M + 11A
	$t_1 = 2v_{l3}; \ u_{32} = -(u_{l3} + v_{l3}^2); \ u_{31} = f_5 - (u_{l2} + u_{32}u_{l3} + t_1v_{l2});$	
	$u_{30} = f_4 - (u_{t1} + v_{t2}^2 + u_{32}u_{t2} + u_{31}u_{t3} + t_1v_{t1});$	
11	Compute $V_3 = v_{32}X^2 + v_{31}X + v_{30} \equiv V_t \mod U_3$	3M + 3A
<u></u>	$v_{32} = v_{t2} - u_{32}v_{t3}$; $v_{31} = v_{t1} - u_{31}v_{t3}$; $v_{30} = v_{t0} - u_{30}v_{t3}$;	7 1 70 17 1 440 4
Total		I + 70M + 113A

♣ 超楕円暗号の速度 ♣

● 群演算一回あたりのコスト

$$-g = 1:I + 3M = 23M \text{ if } I = 20M$$

 $-g = 2:I + 25M = 45M \text{ if } I = 20M$

$$-g = 2:I+25M = 45M \text{ if } I = 20M$$

$$-g = 3:I+70M = 90M$$
 if $I = 20M$

● 超楕円暗号の安全性

$$- #E(\mathbb{F}_p) = O(p)$$

$$\to$$

$$#\mathcal{J}_C(\mathbb{F}_p) = O(p^g)$$

- Square-root 法のみ適用可(?) C の適切な選択の下: $O\left(\sqrt{\#\mathcal{J}_C(\mathbb{F}_p)}\right)$

♣ 超楕円暗号の速度 ♣

• 解読に 2^{80} 程度の手間がかかる $p = 2^{160/g}$

$$-g=1:p\approx 2^{160}$$

$$-g=2:p\approx 2^{80}$$

$$- g = 3 : p \approx 2^{54}$$

● 群演算一回あたりのコスト

$$-g = 1: I_{160} + 3M_{160} = 23M_{160}$$

$$-g = 2: I_{80} + 25M_{80} = 45M_{80}$$

$$-g = 3: I_{54} + 70M_{54} = 90M_{54}$$

 $\Rightarrow 23M_{160} > 45M_{80} > 90M_{54}$???

♣ 超楕円曲線上の離散対数問題に対する指数計算法♣

- Adleman-DeMarrais-Huang (1991)
 - 因子基底:素数 < s \rightarrow U の既約因子の \deg < s
 - 計算量: $O(L_{p^{2g+1}}(1/2,c<2.181))$, $\log p < (2g+1)^{0.98}$, $g \to \infty$
 - 改良の計算量: $O(L_{p^g}(1/2,*),$ $p^g \to \infty$ Enge, Gaudry-Enge
 - ⇒ 種数の大きな曲線は暗号利用不可
- Gaudry (1997)
 - 因子基底:U の既約因子の $\deg = 1$
 - 計算量: $O(p^2)$
 - 改良の計算量: $O(p^{2-2/g})$ Gaudry-Harley, Thériault, Nagao, Gaudry-Thomé-Thériault-Diem

♣ Gaudryの指数計算法(簡易版) ♣

$$p = 7$$

$$C: Y^{2} = X^{13} + 5X^{12} + 4X^{11} + 6X^{9}$$
$$+2X^{8} + 6X^{7} + 5X^{4} + 5X^{3}$$
$$+X^{2} + 2X + 6$$

#
$$\mathcal{J}_C(\mathbb{F}_p) = 208697$$
: 18 bit 素数

$$D_a = (X^6 + 2X^5 + 4X^4 + X^3 + 5X^2 + 3, 4X^5 + 5X^3 + 2X^2 + 5X + 4)$$

$$D_b = (X^5 + 6X^3 + 3X^2 + 1, 3X^4 + X^3 + 4X^2 + X + 3)$$

Find $\operatorname{Ind}_{D_b}D_a$ s.t. $D_a = [\operatorname{Ind}_{D_b}D_a]D_b$.

$$C(\mathbb{F}_p) = \{P_{\infty}, (1,1), (1,6), (2,1), (2,6), (4,1), (4,6)(5,3), (5,4), (6,3), (6,4)\}$$

 $\#C(\mathbb{F}_p) = 11$

因子基底:

$$T = \{(1,1), (2,1), (4,1), (5,3), (6,3)\}$$

$$[9343]D_b = ($$

$$X^{5} + 6X^{4} + 6X^{3} + 5X^{2} + 6X + 4,$$

 $X^{4} + X^{3} + X^{2} + 4X + 6)$

$$X^{5} + 6X^{4} + 6X^{3} + 5X^{2} + 6X + 4 =$$

$$(X - 1)^{2}(X - 4)^{2}(X - 5)$$

$$X^4 + X^3 + X^2 + 4X + 6 \mid_{X=1} = 6$$

$$X^4 + X^3 + X^2 + 4X + 6 \mid_{X=4} = 1$$

$$X^4 + X^3 + X^2 + 4X + 6 \mid_{X=5} = 3$$

 \Rightarrow

$$[9343]D_b = -[2](1,1) + [2](4,1) + (5,3)$$

$$\begin{pmatrix}
[9343]D_b \\
[120243]D_b \\
[121571]D_b \\
[120688]D_b \\
([151649]D_b)
\end{pmatrix} = \begin{pmatrix}
-2 & 0 & 2 & 1 \\
0 & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
-2 & 0 & 2 & 1 & 0 \\
0 & -2 & 1 & 1 & -2 \\
-1 & 0 & 2 & -1 & -1 \\
2 & 1 & 0 & 2 & 0 \\
1 & 0 & 1 & -2 & 1
\end{pmatrix}
\begin{pmatrix}
(1,1) \\
(2,1) \\
(4,1) \\
(5,3) \\
(6,3)
\end{pmatrix}$$

$$\begin{pmatrix} \operatorname{Ind}_{D_b}(1,1) \\ \operatorname{Ind}_{D_b}(2,1) \\ \operatorname{Ind}_{D_b}(4,1) \\ \operatorname{Ind}_{D_b}(5,3) \\ \operatorname{Ind}_{D_b}(6,3) \end{pmatrix} \equiv \begin{pmatrix} 85159 \\ 114347 \\ 182999 \\ 22360 \\ 136908 \end{pmatrix} \operatorname{mod} \# \mathcal{J}_C(\mathbb{F}_p)$$

$$D_a + [105454]D_b =$$

(1,1) + [2](2,1) + (4,1) - (6,3)

$$\begin{array}{ll} \operatorname{Ind}_{D_b}D_a & \equiv & \operatorname{Ind}_{D_b}(1,1) + 2\operatorname{Ind}_{D_b}(2,1) \\ & + \operatorname{Ind}_{D_b}(4,1) - \operatorname{Ind}_{D_b}(6,3) \\ & - 105454 \\ & \equiv & 85159 + 2 \times 114347 \\ & + 182999 - 136908 \\ & - 105454 \\ & \equiv & 45793 \bmod \# \mathcal{J}_C(\mathbb{F}_p) \end{array}$$

♣ 計算量評価 ♣

$$\begin{pmatrix} [9343]D_b \\ [120243]D_b \\ [121571]D_b \\ [120688]D_b \\ [151649]D_b \end{pmatrix} = \begin{pmatrix} \cdots \\ \cdots \\ \vdots \\ (6,3) \end{pmatrix}$$

- #T = O(p)
- 一行を得るために必要な試行回数
 - -g次モニック多項式の数: $O(p^g)$
 - 1次式の積に分解する g次モニック多項式の数: $O(p^g/g!)$
 - $\Rightarrow O(g!)$
- Jacobian 上の加算: $O(g^2(\log p)^2)$
- 多項式の因数分解: O(g³(log p)³)
- $\Rightarrow O(g!g^3p(\log p)^3)$

♣ Gaudryの指数計算の計算量 ♣ 疎行列の線形代数:

$$O(gp^2(\log \#G)^2) = O(g^3p^2(\log p)^2)$$

トータル:

$$O(g!g^3p(\log p)^3) + O(g^3p^2(\log p)^2)$$

小種数曲線に対しては $\tilde{O}(p^2)$ と考えられる

一方、種数gの曲線に対するrho法の計算量: $\tilde{O}(\sqrt{\#G}) = O(p^{g/2})$

∴ 種数が4を越える曲線に対して、 rhoより速くなる可能性有

♣ アルゴリズムの最適化 ♣

発想 (Gaudry. Harley):

行列作成と線形代数の計算量のバランスをとる

因子基底をより小さく取る

#
$$T = O(p^r)$$
, $0 < r < 1$ とする

$$\tilde{O}(p) + \tilde{O}(p^2) \rightarrow$$

$$\tilde{O}\left(\frac{p^g}{p^{rg}}p^r\right) + \tilde{O}\left(p^{2r}\right) = \tilde{O}\left(p^{g+(1-g)r} + p^{2r}\right)$$

$$r = \frac{g}{g+1} \Rightarrow$$

$$\tilde{O}\left(p^{g+(1-g)r}+p^{2r}\right)=\tilde{O}\left(p^{2g/(g+1)}\right)$$

種数が3を越える曲線に対して、 rhoより速くなる可能性有

♣ 超楕円暗号の安全性 ♣

- 準指数時間計算量ではなく指数時間計算量gにより効果が異なる

