Name: Shivani Patel GSI: Madeline Brandt DISC #: 103

Math 55, Handout 3.

RULES OF INFERENCE.

- 1.1. An argument form is a sequence of compound propositions involving propositional variables
- 1.2. An argument form is valid is no matter which particular propositions are substituted for the propositional variables
- 1.3. A fallacy is a form of incorrect reasoning which leads to invalid arguments
- 1.4. Common fallacies are fallacy of affirming the conclusion, fallacy of denying the hypoth-COSIS
- Q1. Draw the truth table for the tautology behind the Rule of Resolution. ((pvq) A (1pvr)) (qvr)

Р	9	r	((pvg) N(zpvr)	((PV9) N(7PVr)) → (9Vr)
F	F	F	F	Τ
F	F	T	F	T
F	Ť	F	Ţ	†
F	T	†	Τ	†
T	F	F	F	Ť
Ť	F	T	T	T
T	Т	F	F	Т
T	†	4	Ť	T

Q2. Give a non-mathematical example of universal modus tollens.

O P(x) = "x is a programmer"

1 2(a), babies do not know how to code

(3 D(x) = "x knows how to code

(5): 1P(a): Bables are not programment

 \mathfrak{B} Then, $\forall x (p(x) \rightarrow Q(x)) : All$ programmers know how to code INTRODUCTION TO PROOFS.

2.1. A theorem is a statement that can be shown to be true.

A lemma, proposition, result, corollary are also theorems.

- 2.2. A conjecture is a statement that is being proposed to be a true statement, usually on the basis of some partial evidence, a heuristic argument, or the intution of an expert.
- 2.3. Common proof methods are

- Direct proofs

- proof by contraposition
- proof by contradiction
There are also vacuous and trivial proofs.

Q3. A theorem states that conditions A, B, C, D are equivalent. What is the minimal number of implications you need to prove to prove the theorem?

- Q4. Prove directly that a product of two rational numbers is rational. given: $\frac{1}{b}$ and $\frac{1}{d}$ are rational numbers with a,b,C,d integers (b,d+0), prove: $\frac{1}{b} \times \frac{1}{d}$ is a rational $\frac{1}{b} \times \frac{1}{d} = \frac{1}{b} \times$
- Q5. Given the true fact that $\sqrt{2}$ is irrational, what method of proof will you use to show that $\sqrt{2} + 1$ is irrational? Give your proof.
- proof by contradiction
- -Assume that $\sqrt{2} + 1$ is rational such that $\sqrt{2} + 1 = \frac{m}{n}$ where $m, n \in \mathbb{N}$ and m and n are relatively prime

-Then,
$$\sqrt{2} + 1 = \frac{m}{n}$$

$$\sqrt{2} = \frac{M}{n} - 1$$

$$\sqrt{2} = \frac{m-n}{n} \leftarrow contradiction part$$

 $\sqrt{2}$ is irrational and $\underline{m-n}$ is rational by definition.

$$F$$
 and T = False

therefore V2+1 cannot be rational due to V2 being irrational