Classification supervisée

Méthode des k plus proches voisins

François LE GAC TPE Réalisé dans le cadre du M1 ISIFAR 2018 - 2019

Introduction et cadre théorique

La classification supervisée consiste à prédire à partir d'observations une quantité discrète, souvent binaire, telle que « blanc ou noir », « 0 ou 1 », « malade ou sain », « vrai ou faux ».

Plus formellement, il s'agit d'attribuer à un vecteur $x \in \mathbb{R}^d$ une classe ou étiquette y. Le but de la classification supervisée est de construire une fonction

g: $R^d \rightarrow \{1, ..., M\}$, qui représente la prédiction de y sachant x.

Cette fonction est appelée classificateur.

Soit $(X, Y) \in \mathbb{R}^d \times \{1, ..., M\}$ un couple de variables aléatoires. Le classificateur commet une erreur si $g(X) \neq Y$ et sa probabilité d'erreur L est donnée par

$$L(g) = P(g(X) \neq Y)$$

Le meilleur classificateur possible est défini par

$$g* = argminP(g(X)
eq Y)$$
 $R^d imes \{1, \ldots, M\}$

Ainsi, g*, appelé le **classificateur de Bayes**, dépend de la distribution de (X, Y). On note L*= L(g*) l'erreur associée.

Considérons le cas particulier de la classification binaire. Le classificateur de Bayes est donné par

$$g*(x) = \left\{egin{array}{ll} 1 & si & \eta(x) > 1/2 \ 0 & ext{sinon.} \end{array}
ight.$$

où
$$\eta(x)=P(Y=1|X=x)=\mathbb{E}[Y|X=x]$$

En pratique, la distribution de (X, Y) est inconnue, de sorte que g* ne peut être calculé. L'objectif sera de construire un classificateur gn basé sur un échantillon (Xi, Yi), i = 1, . . . , n, qui s'en approche le plus possible.

Le classificateur g_n peut être basé sur la **règle des k plus proches voisins**. Cette règle consiste à affecter à une nouvelle observation x l'étiquette majoritaire parmi ses « voisins ». On considère les k voisins les plus proches de x, par exemple au sens de la distance euclidienne.

En définissant les poids w_{ni} par w_{ni} = 1/k si Xi fait partie des k plus proches voisins de x et w_{ni} = 0 sinon, le classificateur des plus proches voisins s'écrit

$$g_n(x) = \left\{egin{array}{ll} 1 & si & \sum_{i=1}^n w_{ni} 1_{\{Y_i=1\}} \geq \sum_{i=1}^n w_{ni} 1_{\{Y_i=0\}} \ 0 & ext{sinon}. \end{array}
ight.$$

exemple de classification KNN

La règle des plus proches voisins bénéficie de garanties théoriques.

En particulier, Stone (1977) a démontré que si k ightarrow et k/n ightarrow 0, alors, quelle que soit la loi de (X, Y), $\ \mathbb{E} Ln
ightarrow L*$

Cette propriété s'appelle la consistance universelle

Application de la méthode

Contexte:

$$\begin{bmatrix} X_{1,1} & \dots & X_{1,m} \\ \dots & X_{i,j} & \dots \\ X_{n,1} & \dots & X_{n,m} \end{bmatrix} \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}$$
 où Y est

où Y est discrète et prédéterminée

```
Exemple:
                                                                       Y = "Default" appartient
           duration amount installment age
                                         history
                                                     purpose Default
                     1169
                                   4 67 terrible goods/repair
                                                                       à {0,1}
                     5951
                                            poor goods/repair
                     2096
                                   2 49 terrible
                                                         edu
                     7882
                                            poor goods/repair
                                                                       X train (700 individus)
                24 4870
                                            poor
                                                      newcar
                     9055
                                                         edu
                                            poor
                                                                       X test (300 individus)
```

Coder l'algorithme

	Distance	Classe
d(xi, x1')	0.1	0
d(xi, xn')	10	1

On réarrange et on sélectionne les K vote plus proches voisins.

Choix des distances

Données quantitatives :

>>> Distance Euclidienne :
$$||X-Y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Données qualitatives:

>>> Distance de Hamming :
$$d(X,Y) = \#\{i : x_i \neq y_i\}$$

exemple: Soit x et y deux vecteurs avec 4 classes possibles: { 0, 1, 2, 3 }

$$x1 = (1, 0, 1, 3)$$
 et $y1 = (1, 0, 1, 2)$ >>> D1 = 1

$$x2 = (0, 2, 1, 3)$$
 et $y2 = (1, 2, 3, 0) >>> D2 = 3$

Complexité algorithmique

1ère méthode:

$$||x_i - x_1'|| = \sqrt{||x_i||^2 + ||x_i'||^2 - 2\langle x_i, x_i'\rangle}$$

Complexité	Précision	Temps
O (n^2)	69%	12s

2ème méthode:

Complexité	Précision	Temps
O (n^2)	68%	1s

3ème méthode:

Algorithme de référence : k-d tree

Complexité	Précision	Temps
O(nlog(n))	70%	0.01 s

Choix du nombre de voisins

Le meilleur K sera celui qui fournira la meilleure précision :

Rappel: état de la nature

		1	0
décision	1	VP	FP
	0	FN	VN

$$P = \frac{VP + VN}{VP + FP + FN + VN}$$

Calcul de la précision sur X_test => surapprentissage !

Validation croisée k-fold

Choix du nombre de voisins

Conclusion

Avantages:

- Fonctionnement facile à comprendre
- Facile à implémenter
- La phase d'apprentissage est très rapide
- Se généralise bien aux problèmes de classification multiclasses
- Méthode locale -> robuste aux valeurs extrêmes

Inconvénients:

- La phase de validation est coûteuse en temps
- Sensible au **déséquilibre des classes**
- Méthode non paramétrique -> Fléau de la dimension