习题一 多元函数的基本概念

专业班级 姓名 学号 一、选择题: 1、平面集合 $\{(x,y)|x>0,y>0\}\cup\{(x,y)|x<0,y<0\}$ 是()。 (B) 闭区域: (C) 开集。 (A) 开区域: 2、平面集合 $\{(x,y)|y \ge 1$ 或 $y \le -1$ }是()。 (A) 闭区域; (B) 既非闭区域又非开闭域; (C) 开区域。 3. $\lim_{x \to 0} \frac{x^3 + y^3}{x^3 + y^2} = ()$ (A) 等于 0; (B) 不存在; (C) 等于 1。 4、定义在 R^2 上的 $f(x, y) = \begin{cases} \frac{1}{(x-1)^2 + (y+1)^2}, & (x,y) \neq (1,-1) \\ 0, & (x,y) = (1,-1) \end{cases}$ 的不连续点集 合是()。 (A) 直线 x=1; (B) 直线 y=-1; (C) 单点集 $\{(1,-1)\}$ 。 二、填空题:

1、设
$$f(x,y) = \frac{2xy}{x^2 + y^2}$$
,则 $f(x+y,x-y) = _______;$
2、若 $f(x+y,y/x) = x^2 - y^2$,则 $f(x,y) = _______;$

3、
$$u = \arcsin \frac{\sqrt{x^2 + y^2}}{z}$$
的定义域是_____。

三、求下列函数的定义域,并作出定义域的图形:

1,
$$z = \sqrt{x - \sqrt{y}}$$
; 2, $z = \ln(1 - (|x| + |y|))$.

四、计算下列极限:

$$1 \cdot \lim_{\substack{x \to 0 \\ y \to 0}} \frac{3 - \sqrt{xy + 9}}{xy};$$

$$2 \cdot \lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - \cos(x^2 + y^2)}{(x^2 + y^2)x^2y^2}$$

五、证明: 极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{x+y}{x-y}$ 不存在。

六、设
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
,问 $f(x,y)$ 在点 $(0,0)$ 处是否连续?。

习题二 偏导数

一、选择题:

- 1、z = f(x,y) 在点 $P_0(x_0, y_0)$ 处的偏导数都存在,则 f(x,y) 在点 P_0 处() (A) 一定连续; (B) 一定不连续; (C) 不一定连续。
- 2、曲线 $\begin{cases} z = \sqrt{1 + x^2 + y^2} \\ x = 1 \end{cases}$ 在点 $(1, 1, \sqrt{3})$ 处的切线与y轴正向间夹角为()
 - (A) $\frac{\pi}{3}$; (B) $\frac{\pi}{6}$; (C) $\frac{\pi}{4}$.
- 3、 $z = \sin y + f(\sin x \sin y)$,其中 f 可微,则 $\sec x \frac{\partial z}{\partial x} + \sec y \frac{\partial z}{\partial y} = ($)
 - (A) 1;
- (B) 2f';
- (C) 0_°

二、填空题:

二、计算题:

2、设 $z = \ln \tan \frac{x}{v}$,求 z_x , z_y 。

4、设
$$z = x \ln(x \sin y)$$
,求 $\frac{\partial^3 z}{\partial x^2 \partial y}$, $\frac{\partial^3 z}{\partial x \partial y^2}$

五、设函数
$$f(x,y) = \begin{cases} \frac{xy^2}{x^4 + y^4}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$

1、计算 $f_x(0,0)$, $f_y(0,0)$; 2、证明f在(0,0)点不连续。

习题三 全微分及其应用

专业址级_		学号	
一、是非题:			
1, z = f(x, y)	(x) 的偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 在点 $P_0(x)$	(x_0,y_0) 存在是 $f(x,y)$ 在点 P_0	丁微的充分必
要条件。	()		
2、若函数 z	$x = f(x,y)$)在点 $P_0(x_0,y_0)$	可微,则偏导数 $f_x(x,y)$,	$f_{\nu}(x,y)$ 在点
$P_0(x_0,y_0)$ 处处			()
二、填空题:			
$1、设 z = e^{xy}$,则 dz _(1,1) =,当 z	$\Delta x = 0.01, \Delta y = 0.02 \text{ft}, dz \mid_{\mathcal{C}}$	=
2 、设 $z = \ln s$	$ \sin\frac{x}{y} $,则 $dz = $		0
3 、设 $z = \ln(1)$	$(1+\frac{x}{y^2})$,则 $dz _{(1,1)}=$		o
三、计算题:			
$1, z = \arcsin$	$\frac{y^2}{x}$, $\Re dz$.		

 $2, u = \ln(x^x y^y z^z), 菜 du o$

3、 $z = x2^{xy}$, 求 dz 及 dz |_(1,0) \circ

四、研究函数 $f(x,y) = \sqrt{x^2 + y^2}$ 在 (0,0) 点的可微性。

五、证明
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$$
在 $(0,0)$ 点可微。

习题四 多元复合函数的求导法则

- 一、求下列复合函数的导数或偏导数:
- 1, $u = x^y$, $x = \sin t$, $y = \cos t$, $\mathbb{U} u'(t) = \underline{\hspace{1cm}}$
- 2. $z = u^2 + vw$, u = x + y, $v = x^2$, w = xy, $y = \frac{\partial z}{\partial x}|_{(1,0)} = \frac{\partial z}{\partial y}|_{(1,0)} = \frac{\partial z}{\partial$
- 4、说 $w = \frac{1}{u}$, $u = \sqrt{x^2 + y^2 + z^2}$, 则 $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = \underline{\hspace{1cm}}$
- 5、设 $z = \frac{y}{f(x^2 y^2)}$, 其中f可微, 则 $\frac{1}{x}\frac{\partial z}{\partial x} + \frac{1}{y}\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$
- 二、求下列函数的二阶偏导数,其中f有连续的二阶导数或偏导数:

1.
$$z = f(x^2 + y^2)$$
, $\stackrel{?}{x} \frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$;

2.
$$z = f(x, y, \frac{x}{y}), \implies \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y};$$

三、函数u(x,t)有二阶连续偏导数,引入 $\xi=x-at$, $\eta=x+at$ ($a\neq 0$ 为常数)后变为 $u(\xi,\eta)$,问方程 $\frac{\partial^2 u}{\partial t^2}=a^2\frac{\partial^2 u}{\partial x^2}$ 变为什么形式?你能写出一个满足此方程的函数 $u(\xi,\eta)$ 吗?

习题五 隐函数微分法

一、设
$$\cos(x^2 + yz) = xz + y$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 。

二、设
$$e^z - xyz = 0$$
,求 $\frac{\partial^2 z}{\partial x^2}$ 。

三、证明方程 $ax+by+cz=F(x^2+y^2+z^2)$ (其中F(u)有连续导数)所确定的

函数
$$z = z(x, y)$$
 满足 $(cy - bz)\frac{\partial z}{\partial x} + (az - cx)\frac{\partial z}{\partial y} = bx - ay$

四、设
$$\begin{cases} z = x^2 + y^2 \\ x^2 + 2y^2 + 3z^2 = 20 \end{cases}$$
,求 $\frac{dy}{dx}$ 及 $\frac{dz}{dx}$ 。

扭、设
$$x = e^u \cos v$$
, $y = e^u \sin v$, $z = uv$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

六、设
$$u = f(x, y, z) = xy^2z^3$$
,而 x, y, z 满足方程 $x^2 + y^2 + z^2 - 3xyz = 0$,设
$$z = z(x, y)$$
是由上述方程所确定的隐函数, $z(1,1) = 1$,求 $\frac{\partial u}{\partial x}|_{(1,1)}$ 。

习题六 方向导数与梯度

专业班级	姓名	学号	
一、是非题:			
1 、 若 z = f(x, y)	E点 $P(x_0, y_0)$ 处沿任	一方向的方向导数	数均存在,则
$f(x,y) \not \equiv P_0(x_0,y_0)$	处必可微。		()
2、若 u = F(x, y, z) 回	处必可微。 آ微,则方向 $\left\{ \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \right\}$	$\left(\frac{\partial F}{\partial z}\right)$ 是 u 在点 (x,y,z)	z) 处变化率最大
的方向。			()
二、填空题:			
$1、设 f(x,y,z) = x^2$	$+2y^2+3z^2+xy+3x-$	$2y-6z$,则 $\operatorname{grad} f(0,$, 0, 0)=
	f(1, 1, 1) =	o	
	-xy+y³ 在点(1,2)沿		上的方向导数
$\frac{\partial z}{\partial l} \Big _{(1,2)} = \underline{\hspace{1cm}}$			
三、计算题:			
1 、求函数 $u = 3x^2 + x$ 向上的方向导数。	$z^2-2yz+2xz$ 在点 $M(1)$, 2, 3) 处沿点 (-1, 1, -	-2)至(5,4,0)方

2、求函数 $u = x^2 + y + z^2$ 在球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 上点 $M(x_0, y_0, z_0)$ 处沿该点外法线方向的方向导数。

3、已知
$$\vec{\alpha} = y^2 \vec{i} + 2xy \vec{j} - xz^2 \vec{k}, u = z^2 - x^2 y$$
,试在 $M(-1,-1,1)$ 处计算

(1) $(\vec{\alpha} \cdot \operatorname{grad} u)|_{M}$,

(2) $(\vec{\alpha} \times \operatorname{grad} u)|_{M}$

4、设 $f(x,y,z) = \ln(x+y+z+\sqrt{1+(x+y+z)^2})$,它在点(1,1,1)处沿哪个方向的变化率最大?求出这个方向的方向余弦及f在点(1,1,1)处的最大变化率。

5、求函数 $f(x,y) = 1 - (\frac{x^2}{a^2} + \frac{y^2}{b^2})$ 在点 $M(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}})$ 处沿曲线 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 在这点内法线方向上的方向导数。