Зобнин Александр Валерьевич, группа ИУ5-61Б, вариант 4

Импорт необходимых библиотек

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Загрузка датасета

```
df = pd.read_csv('heart.csv')
```

Просмотр первых строк

1 1	Просмотр первых строк										
<pre>df.head()</pre>											
- 1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	
0	ope 52	1	0	125	212	0	1	168	0	1.0	
2	53	1	0	140	203	1	0	155	1	3.1	
0 2	70	1	0	145	174	0	1	125	1	2.6	
0	61	1	0	148	203	0	1	161	0	0.0	
2											
4 1	62	0	0	138	294	1	1	106	Θ	1.9	
	ca	thal	tar	aet							
0	2	3		0							
1 2 3	0 0	3 3		0 0							
3 4	1 3	3 2		0 0							
4	3	2		Θ							

Проверим наличие пропусков

```
print("Пропуски по колонкам:")
print(df.isnull().sum())
Пропуски по колонкам:
age
            0
sex
            0
ср
trestbps
            0
chol
            0
            0
fbs
            0
restecg
            0
thalach
            0
exang
```

```
oldpeak 0
slope 0
ca 0
thal 0
target 0
dtype: int64
```

Корреляционный анализ

```
# Строим матрицу корреляции correlation_matrix = df.corr()

# Визуализируем корреляционную матрицу plt.figure(figsize=(12, 8)) sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', square=True) plt.title("Корреляционная матрица признаков") plt.show()
```


Выводы:

- 1. Отсутствие пропущенных значений
 - Датасет не содержит пропущенных данных, что упрощает предварительную обработку и позволяет сразу приступить к построению моделей. Это особенно важно для алгоритмов, чувствительных к пропущенным данным, таких как логистическая регрессия или SVM.
- 2. Корреляция с целевой переменной (target)
 - На основе матрицы корреляции можно выделить несколько признаков, оказывающих значительное влияние на целевую переменную:
 - ср (тип боли в груди) положительно коррелирует с наличием заболевания.
 - thalach (максимальный пульс) также положительно коррелирует.
 - exang (стенокардия при нагрузке) обратно коррелирует.
- 3. Независимость и мультиколлинеарность

 Между многими признаками наблюдается слабая корреляция (менее ±0.2), что говорит о том, что они вносят уникальную информацию в модель и могут быть использованы совместно без риска мультиколлинеарности (например, age и thalach не скоррелированы). Это повышает устойчивость моделей, особенно линейных.

4. Признаки с низкой корреляцией с target

Некоторые признаки, например chol (холестерин) и restecg (ЭКГ в покое), имеют очень слабую связь с наличием заболевания. Это не обязательно делает их бесполезными — они могут быть информативны в сложных, нелинейных моделях, таких как деревья решений или градиентный бустинг, но, вероятно, будут исключены при построении простых линейных моделей.

5. Вывод о пригодности для ML

- Набор данных обладает хорошим качеством: без пропусков, с умеренной размерностью и разнообразными типами признаков (категориальные и числовые).
- Наличие признаков, коррелирующих с целевой переменной, позволяет ожидать приемлемую точность классификации.
- Разумный баланс между признаками с высокой и низкой корреляцией создаёт потенциал для построения как интерпретируемых моделей (логистическая регрессия), так и более сложных, мощных моделей (случайный лес, XGBoost).

Диаграмма рассеивания

```
# Построим диаграмму рассеяния для пары признаков: age и thalach.
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df, x='age', y='thalach', hue='target',
palette='Set1')
plt.title('Диаграмма рассеяния: Возраст vs Максимальный пульс')
plt.xlabel('Возраст')
plt.ylabel('Максимальный пульс (thalach)')
plt.grid(True)
plt.show()
```


Вывод:

Можно наблюдать, что пациенты с более высоким максимальным пульсом чаще имеют положительный диагноз (target = 1).