title here

Felipe B. Pinto 61387 – MIEQB

25 de novembro de 2023

I	Resumo	2
II	Introdução	3
1	Procedimento Experimental	3
2	Montagem Experimental	3
3	??	3
4	Modelos usados	3
III	Resultados Experimentais e Discussões	5
1	Determinar o valor de k'_{La} de transferencia de Oxigênio no meio biológico antes da inoculação	6
2	Determinação da concentração celular máxima que poderia alcançar no sistema estudado (válida a equação logística). Simular a curva de crescimento e	_
	comparar com os dados experimentais	7
IV	Conclusão	10
V	Bibliografia	11
VI	Anéxos	12

I - Resumo

A realização desta atividade tem como objetivo a perceção do funcionamento da transferência de oxigénio em sistemas biológicos.

Neste trabalho foi usado um reator batch com agitação e arejamento através de um dispersor de oxigénio com uma cultura de microrganismos aeróbica. Para se variar a concentração de oxigénio usou-se um respirómetro e para analisar essa variação utilizou-se um medidor de oxigénio

II - Introdução

1 Procedimento Experimental

2 Montagem Experimental

3 ??

$$Q_{\mathcal{O}_2} = k'_{La}(C^*_{\mathcal{O}_2} - C_{\mathcal{O}_2}) = \frac{\mathrm{d}C_{\mathcal{O}_2}}{\mathrm{d}t} \implies \ln(C^*_{\mathcal{O}_2} - C_{\mathcal{O}_2}) = \ln C^*_{\mathcal{O}_2} - k'_{La}t$$

implica que $\ln(C_{\mathcal{O}_2}^* - C_{\mathcal{O}_2}) \times t$ plota uma reta $y = a \, x + b$ onde $k'_{L\,a} = -a$ e $C_{\mathcal{O}_2}^* = \exp(b)$. Encontrando $k'_{L\,a}$ podemos plotar o gráfico de $Q_{\mathcal{O}_2} \times t$.

 $C_{\mathbf{0}_2}^*$

$$C_{\mathrm{O_2}}^* = 1.16 \, \frac{\mathrm{mmol_{\mathrm{Ar}}}}{\mathrm{L}} \, \frac{20.95 \, \mathrm{mmol_{\mathrm{O_2}}}}{100 \, \mathrm{mmol_{\mathrm{Ar}}}} \, \frac{32 \, \mathrm{mg}}{\mathrm{mmol}} \cong 7.78 \, \mathrm{mg/L}$$

4 Modelos usados

4.1 Modelo de Verhulst

$$x = \frac{x_{\text{max}} x_0 \exp(\mu_{\text{max}} t)}{x_{\text{max}} - x_0 (1 - \exp(\mu_{\text{max}}) t)} = \frac{\exp(\mu_{\text{max}} t)}{x_0^{-1} - x_{\text{max}}^{-1} (1 - \exp(\mu_{\text{max}} t))}$$

Encontrando μ_{max} e x_{max} para cada modelo podemos prever os respectivos valores de x e assim encontrar o que mais se aproxima dos valores experimentais.

4.2 Método de Malthus

$$\frac{\mathrm{d}X}{\mathrm{d}t} = \mu X \implies \ln X = \mu t + \ln X_0; \quad \mu = \mu_{\max}$$

4.3 Método de Euler

$$\mu_i = \frac{x_i - x_{i-1}}{t_i - t_{i-1}} x_i^{-1} \quad \mu = \mu_{\text{max}} - \frac{\mu_{\text{max}}}{x_{\text{max}}} x$$

4.4 Método dos 3 pontos

$$\mu_i = \frac{x_{i+1} - x_{i-1}}{t_{i+1} - t_{i-1}} x_i^{-1} \quad \mu = \mu_{\text{max}} - \frac{\mu_{\text{max}}}{x_{\text{max}}} x$$

III – Resultados Experimentais e Discussões

1~ Determinar o valor de $k_{L\,a}^\prime$ de transferencia de Oxigênio no meio biológico antes da inoculação

2 Determinação da concentração celular máxima que poderia alcançar no sistema estudado (válida a equação logística). Simular a curva de crescimento e comparar com os dados experimentais.

2.1 Método de Malthus

Figura 1: Curva aplicando o modelo de Malthus de onde pela porção exponencial no tempo de $\ln x$ podemos traçar uma regreção linear que segue o método de Malthus

2.2 Método de Euler

2.3 Método dos 3 pontos

2.4 Método Polinômial

Figura 2: Grafico $X/(\text{mg/L}) \times t/\text{min}$ apresentando o método polinomial com um polinômio de 3º grau, pelo método polinomial $\mathrm{d}x/\mathrm{d}t=y$.

$$\mu = \frac{\mathrm{d}x/\,\mathrm{d}t}{x} = \frac{-11.85\,\mathrm{E} - 5\,t^2 - 11.76\,\mathrm{E} - 3\,t + 4.16}{x}$$

Figura 3: Grafico $\mu \times x$ para valores obtidos de μ a partir da equação polinomial de 3º grau obtida no método polinomial, os valores para $x \ge 804.42$ foram desconsiderados para maximizar R^2

2.5 Comparando

Figura 4: Grafico $x \times t$ para valores experimentais e valores previstos pelos modelos estudados, o valor de 10.5 foi reduzido de t para eliminar o *outliner* e acomodar a previsão dos modelos

IV - Conclusão

V – Bibliografia

VI – Anéxos