

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Sprawozdanie

Techniki Pomiarowe

Przetworniki analogowo-cyfrowe i cyfrowo-analogowe – budowa i zastosowanie

Ćwiczenie 12

Borsuk Piotr Technologie Przemysłu 4.0 Rok 2, Semestr 4, Grupa nr. 1 Rok akademicki 2023/2024

Zadanie 1. Badanie działania toru przetwarzania A/C-C/A

1. Schemat pomiarowy

Rys. 1 Schemat blokowy toru przetwarzania A/C-C/A

Rys. 2 Układ do obserwacji działania toru przetwarzania A/C-C/A

1.2 Tabela pomiarowa

Amplituda napięcia	Amplituda napięcia wyjściowego	Ilość poziomów napięcia wyjściowego
wejściowego	U_{wy}	N
$U_{ m we}$	[V]	
[V]		
1	1	3
2	1,66	5
3	2,68	8
4	3,64	11
5	4,64	14
6	4,96	15
7	4,96	15

W miarę wzrostu amplitudy napięcia wejściowego, amplituda napięcia wyjściowego również rośnie. Można zauważyć ogólny trend wzrostowy.

Jednakże, dla większych wartości amplitudy napięcia wejściowego, różnica w amplitudzie napięcia wyjściowego staje się mniejsza. Na przykład, przy U_{we} =6V, różnica pomiędzy U_{wy} dla N=6 i N=7 jest znikoma (4,96V w obu przypadkach), ponieważ U_{wy} osiągnęło granicę wynoszącą 5V.

W miarę wzrostu ilości poziomów napięcia wyjściowego, amplituda napięcia wyjściowego również rośnie. Jest to zgodne z oczekiwaniami, ponieważ większa liczba poziomów oznacza większą precyzję w przetwarzaniu i wyjściowe napięcie może być bardziej zbliżone do oczekiwanego.

Zadanie 2 Wyznaczenie charakterystyk i błędów statycznych przetwornika A/C z bezpośrednim porównaniem oraz przetwornika C/A z sumowaniem prądów.

2.1 Schemat pomiarowy

Rys. 3. Schemat pomiarowy

2.3 Tabela pomiarowac

Nr. diod y	Wartoś ć binarna	napięcie wejściow e U _{AC} ↑ [V]	napięcie wejściow e U _{AC} ↓ [V]	napięcie teor. komutacji U_{ACt} [V]	$\begin{array}{c} blad\\ komutacji\\ \Delta_{kAC}(m)\\ [\ V\] \end{array}$	$\begin{array}{c} blad \\ histerezy \\ \Delta_{hAC}(m) \\ [\ V\] \end{array}$
0	0000	0	0	0,000	0,000	0
1	0001	0,291	0,284	0,344	0,060	0,007
2	0010	0,631	0,652	0,688	0,057	0,021
3	0011	1,033	1,012	1,031	0,019	0,021
4	0100	1,384	1,373	1,375	0,009	0,011
5	0101	1,766	1,739	1,719	0,047	0,027
6	0110	2,122	2,098	2,063	0,059	0,024
7	0111	2,475	2,466	2,406	0,069	0,009
8	1000	2,831	2,842	2,750	0,092	0,011
9	1001	3,190	3,212	3,094	0,118	0,022
10	1010	3,548	3,590	3,438	0,153	0,042
11	1011	3,909	3,973	3,781	0,192	0,064
12	1100	4,267	4,174	4,125	0,142	0,093
13	1101	4,619	4,535	4,469	0,150	0,084
14	1110	4,891	4,885	4,813	0,079	0,006
15	1111	5,251	5,253	5,156	0,097	0,002

Nr. diod y	Wartoś ć binarna	napięcie wyjściow e U _{CA} ↑ [V]	napięcie wyjściow e U _{CA} ↓ [V]	Napięcie teor. komutacji UCAt [V]	Błąd komutacji $\Delta_{kCA}(m)$ [V]	$\begin{array}{c} b \\ 4 \\ h \\ 5 \\ \Delta_{hCA}(m) \\ \\ [V] \end{array}$
0	0000	0	0,092	0,000	0,092	0,092
1	0001	0,366	0,341	0,344	0,022	0,025
2	0010	0,675	0,683	0,688	0,013	0,008
3	0011	1,001	1,011	1,031	0,030	0,01
4	0100	1,315	1,346	1,375	0,060	0,031
5	0101	1,642	1,650	1,719	0,077	0,008
6	0110	1,982	2,049	2,063	0,081	0,067
7	0111	2,306	2,618	2,406	0,212	0,312
8	1000	2,617	2,784	2,750	0,133	0,167
9	1001	2,964	2,983	3,094	0,130	0,019
10	1010	3,311	3,311	3,438	0,127	0
11	1011	3,637	3,638	3,781	0,144	0,001
12	1100	3,951	4,016	4,125	0,174	0,065
13	1101	4,277	4,288	4,469	0,192	0,011
14	1110	4,622	4,586	4,813	0,227	0,036
15	1111	4,948	4,948	5,156	0,208	0

2.2Zastosowane wzory

$$\begin{split} U_t &= n * \frac{Z}{16} \\ \Delta_{kAC}(m) &= \max \left\{ \left| U_t - U \downarrow \right| ; \left| U_t - U \uparrow \right| \right\} \\ \Delta_{hAC}(m) &= \left| U \downarrow - U \uparrow \right|, \end{split}$$

Gdzie:

Z – zakres przetwornika

 $n-numer\ diody$

2.3Przykładowe obliczenia.

$$\begin{split} U_{ACt} &= n * \frac{Z}{16} = 5 * \frac{5,5}{16} = 1,833 \text{ [V]} \\ \Delta_{kAC}(m) &= \max\{\left|U_{ACt} - U\downarrow\right|; \left|U_{ACt} - U\uparrow\right|\} \\ &= \max\{\left|1,100 - 1,033\right|; \left|1,100 - 1,012\right|\} = 0,088 \text{ [V]} \\ \Delta_{hAC}(m) &= \left|1,033 - 1,012\right| = 0,021 \text{ [V]} \end{split}$$

2.4Obserwacje i wykresy

Napięcie komutacji (zarówno teoretyczne, jak i rzeczywiste) wydaje się rosnąć wraz z numerem diody. Oznacza to, że proces komutacji staje się bardziej wymagający elektrycznie, gdy przełączamy się między kolejnymi diodami. Jest to zrozumiałe, ponieważ większe wartości napięcia mogą być potrzebne do szybkiego przełączenia się między diodami w celu zachowania spójności sygnału wyjściowego.

Błąd komutacji może być związany z opóźnieniem lub niedokładnością w procesie przełączania się między diodami, podczas gdy błąd histerezy może wynikać z różnic w charakterystykach przełączania między wzrostem a spadkiem napięcia.

Pomimo obserwacji błędów komutacji, napięcie teoretyczne komutacji wydaje się być stosunkowo stabilne dla różnych numerów diody. Wartość ta oscyluje wokół wartości zbliżonej do rzeczywistego napięcia komutacji dla większości przypadków, co sugeruje pewną spójność w działaniu układu.

Rys. 4. Porównanie napięć wejściowych i teor.

Rys. 5. Porównanie napięć wyjściowych i teor.

Zadanie 4. Obserwacja przebiegów w wybranych punktach przetwornika A/C z dwukrotnym całkowaniem.

4.1 Schemat pomiarowy

Rys. 6. Schemat pomiarowy.

Rys. 7. Parametry przebiegu napięcia całkowania w przetworniku z dwukrotnym całkowaniem

4.2 Tabela pomiarowa

Ux	Um	T ₁	T ₂
[V]	[V]	[ms]	[ms]
1,01	220	20,2	5,6
2,02	372	20	11,2
3,08	528	20	15,6
3,97	686	20	20,8

Amplituda maksymalna (U_m) wydaje się rosnąć wraz ze wzrostem napięcia wejściowego (U_x) .). Jest to zgodne z oczekiwaniami, ponieważ większe napięcie wejściowe prowadzi do większej amplitudy sygnału na wyjściu po jednokrotnym całkowaniu.

Dla różnych wartości napięcia wejściowego czas całkowania pierwszego T1 jest taki sam, natomiast czas całkowania drugiego T2 się wydłuża.

Wnioski

W zadaniu 1 zwiększając amplitudę napięcia wejściowego do 6V, zaobserwowaliśmy, że napięcie wyjściowe osiągnęło swoją maksymalną wartość, która wynosiła 5V. Ten stan został osiągnięty po przekroczeniu 15 poziomów napięcia wyjściowego. Innymi słowy, mimo dalszego zwiększania amplitudy napięcia wejściowego, napięcie wyjściowe pozostało na poziomie 5V.

W zadaniu 2 w trakcie badania przekształcania sygnałów z analogowych na cyfrowe zauważono, że napięcie na wyjściu jest niższe niż na wejściu. Im większa amplituda sygnału wejściowego, tym mniejsza różnica między napięciem wejściowym a wyjściowym, co wynika z większej precyzji kwantyzacji. Kwant to najmniejsza jednostka zmiany wartości sygnału, która może być zarejestrowana przez cyfrowy przetwornik analogowo-cyfrowy (A/C). Jest to związane z rozdzielczością przetwornika, która określa, jak dokładnie sygnał analogowy jest dzielony na dyskretne wartości cyfrowe. Im większa rozdzielczość (większa liczba bitów), tym mniejszy kwant, co oznacza, że przetwornik może dokładniej reprezentować sygnał analogowy.

Wzrost napięcia wejściowego Ux nie wpływał na czas T1, który pozostał stały dla wszystkich poziomów napięcia. Jednakże zauważono, że wraz z większym nadawanym napięciem Ux , zarówno wartość Um jak i czas T2 również wzrastały.

Bibliografia:

- https://upel.agh.edu.pl/pluginfile.php/325574/mod_resource/content/11/C
 https://upel.agh.edu.pl/pluginfile.php/325574/mod_resource/content/11/C
 https://upel.agh.edu.pl/pluginfile.php/325574/mod_resource/content/11/C
 https://upel.agh.edu.pl/pluginfile.php/325574/mod_resource/content/11/C
- Zatorski A., Sroka R.: Podstawy metrologii elektrycznej. Kraków, Wydawnictwa AGH 2011.

Notatki z laboratoriów:

Techniki Pomiarowe - laboratorium

4. Obserwacja przebiegów w wybranych punktach przetwornika A/C z dwukrotnym całkowaniem.

U. [V]	Um vn(V)	T ₁ [ms]	T ₂ [ms]
101	220	20,2	5,6
2,020	342	20,0	11,2
3,08	528	20	15.6
8,97	686	20	20,8

3.04.2024 Or

 Badanie odporności na zakłócenia o różnych częstotliwościach multimetru z calkującym przetwornikiem A/C.

frai	Umn	Umas	Umac-Uma [V]
[Hz]	[V]	[V]	[0]
20			
30			
40			
50			
60			
70			
80			
90			
100			
110			
120			N CONTRACTOR

Ir inž. Piotr Piwowar

112