

Antiparkinson drugs, Opioid analgetics

László Drimba M.D.

Department of Pharmacology and Pharmacotherapy
University of Debrecen

Extrapyramidal movement disorders

akinetic/hypokinetic rigid syndromes

Parkinson's disease,

<u>hyperkinetic rigid syndromes</u> chorea, tic, athetosis, ballismus

Parkinsonism:

- Etiology:
 - □ dopamine depletion of nigrostriatal dopaminergic pathway→disbalance of dopamin/ACh
 - □ uncontrolled function of GABAergic neurons (c.striatum→ s.nigra, g.pallidus, cortex)
 - □ background:
 - exogenous:
 - □ MPTP (meperidine derivative) \rightarrow MPP+ (selective destruction) \rightarrow new age in therapy, role of MAO inhibitors
 - □ drugs: dopamin receptor antagonists (antipsychotic drugsbutyrophenone/phenotiazine), reserpine (depletes dopamine stores)
 - endogenous:
 - neurotoxins
 - mutation of α-synuclein, LRRK2

Parkinson's disease

Symptoms:

- impaired motorium
 - □ hypo/bradykinesis
 - starting hezitation, freezing
 - mogigraphia
 - □ rigor
 - tremor
- impaired cognitive functions
 - □ cognitive slowing
 - □ dementia
 - □ aphasia
- autonomic symptoms
 - □ hypersalivation
 - obstipation
 - □ hypotension

Parkinson's disease

Pharmacological ways

1.	dopamine substitution: levodopa
2.	 dopamine R agonism: bromocriptin pergolide pramipexole - ropinirole apomorphine rotigotine
3.	MAO/COMT inhibition: □ selegilin □ tolcapone/entacapone
4.	acetylcoline blocking drugs: □ benztropine mesylate

biperiden

Dopamine substitution

- levodopa (Dopaflex®)
 - metabolic precursor of dopamine
 - □ active form in CNS by DOPA decarboxylase
 - □ rapidly absorbed from small intestine
 - □ half-time:1-3 hours
 - □ 3% of administered levodopa enters CNS (first pass metab., peripheral decarb.)
 - peripheral dopa decarboxylase inhibitor
 - **c**arbidopa (1:10)-(1:4)
 - benserazid
 - □ adverse effects:
 - vomiting, nausea (area postrema D2R agonism)
 - cardiac arrhytmias (tachycardia, VES), hypotension
 - dykinesias (choreoathetosis)
 - hallucinations, nightmares, euphoria (th.:clozapine)
 - fluctuation in response
 - □ end of dose wearing off
 - □ on/off phenomenon (unrelated to timing of doses)
 - clinical use
 - levodopa (100 mg) + carbidopa/benserazid sinement/madopar
 - levodopa+carbidopa+COMT inhibitor (entacapone)
 - tolerance in 3-4 years
 - decrease gradually! (abrupt cessation may cause akinetic state)
 - □ CI
 - psychotic patients
 - patients taking MAO-A inhibitor

1	•	, •
bromoci	rın	tine
010111001	- r	

- ergot derivative
- \Box D₂R agonist
- □ a.e.:nausea, vomiting
- □ th.: akinetic crisis, hyperprolactinaemia
- \Box therapeutic dose: 7,5 30 mg

pergolide

- ergot derivative
- \square D₁R and D₂R
- □ more effective, than bromcriptine (combination therapy/refractory cases)
- □ a.e.: cardiac valvulopathy, cardiac arrhythmias

pramipexole - ropinirole

- \square D₃R agonism (not ergot derivative)
- □ monotherapy first line drug in management of early PD
- □ alternative route at levodopa th. fluctuation

apomorhine

- \Box D₂R agonism
- temporary relief of ,,off phenomenon", akinetic crisis
- □ a.e.:nausea, dykinesias, drowsiness
- □ th.: 3-6 mg / max. 10 mg subcutaneous injection

rotigotine

- □ skin patch
- □ early treatment of Parkinson's disease

MAO inhibition

- selegiline (Deprenyl[®])
 - ☐ irreversible inhibitor of MAO-B (at higher dose: MAO-A)
 - □ adjunctive therapy
 - prolonged effect/reduced dose of levodopa
 - reduce on/off, end of dose phenomenon
 - \square th. dose: 2x5mg/day
 - □ a.e.: insomnia
- rasagiline
 - □ more potent (1mg/day)
 - ☐ CI: SSRI, tricyclic antidepressants
 - → serotonin syndrome

- MAO-A
 - norepinehrine, serotonin, dopamine
- MAO-B
 - □ dopamine, serotonin

COMT inhibition

- compensatory activation of COMT (due to inhib. of DOPA decarb.)
 - □ 3-OMD ↑, competition with levodopa (tp. in intestinal mucosa and BBB)
- tolcapone, entacapone
 - □ selective COMT inhibitors
 - □ rapidly absorbed
 - □ half-life: 2 hours
 - □ th.:
 - prolong "on" period
 - reduced levodopa dose
 - □ a.e.:
 - abdominal pain
 - dyskinesias
 - diarrhea
 - hepatotoxicity (tolcapone)
 - □ th. dose:
 - entacapone 3x200mg/day
 - tocapone 5x100 mg/day

Amantadine (Viregyt®)

- antiviral agent
- pharmacodynamic effects:
 - ☐ facilitating dopamine synthesis, release
 - \square antagonism on $A_{2A}R \rightarrow$ potentiating dopaminergic function
 - □ Blocks NMDA (glutamate) R
 - ☐ Anticholinergic property
- clinical use:
 - acute application
 - □ beneficial eff. in rigor, tremor, akinesia
 - \square 2x100mg/day p.o.
- adverse effects:
 - □ depression, irritability, insomnia, agitation, confusion
 - □ acute toxic psychosis
- CI:
 - seizures
 - □ heart failure

Ach blocking drugs

- central acting antimuscarinic preparations
 - □ benztropine mesylate
 - □ biperiden
 - orphenadrine
 - procyclidine
 - □ trihexyphenidyl
- antimuscarinic effect (blocking M₁R, M₃R)
- **a.e.**:
 - □ tachycardia
 - mydriasis
 - □ dry mouth/skin
 - obstipation
 - □ agitation/agression

Akinetic crisis:

- □ akinesis
- □ insuff. swallowing, insuff. respiration
- exsiccosis

■ th::

- □ bromocriptine (5-10mg), pergolide
- \square amantadine inf. (2-3x 200mg) in mild cases
- □ apomorhine inf. in severe cases
- □ supportive th.:
 - antibiotics
 - anticoagulants
 - fluid/electrolyte supplementation

Major (Opioid) analgetics

History:

- opium (opos:"juice"), opiate, opioid
- obtained from"opium poppy" (Papaver somniferum)
- white substance→brown gum = OPIUM
- OPIUM contains alkaloids e.g.: morphine, narcotine, papaverine, etc.

Chemical structure:

- phenantrene derivative
- termed after Morpheus (God of dreams)
- two planar and two aliphatic rings
- N connected substitutive groups

morphine

- □ endogenous opioids
 - endorphins
 - enkephalins
 - dynorphins
- □ naturally occuring (morphine, codein, narcotin)
- □ semisynthetic (heroin, hydromorphone, oxycodone)
- □ synthetic (fentanyl, meperidine, methadon)
- based on chemical structure
 - phenantrenes
 - morphine, codeine, oxycodone
 - □ phenylheptylamines
 - methadone
 - phenylpiperidines
 - diphenoxylate, loperamide
 - fentanyl

Opioid receptors

μR (MOR)

- cortex
- ventral/caudal thalamus
- □ medulla oblongata
- spinal cord (dorsal horn)
- peripherial tissue
- periaqueductal grey
- locus coruleus
- \Box GIT

κR (KOR)

- spinal cord
- hyppocampus, limbic area
- □ GIT

δR (DOR)

- cortex
- □ brain stem
- peripherial tissues

modul, of hormone and NT release

inhibition of resp., sedation,

GIT effect, modul. of NT

psychotomimetic

effects, GIT effect

release

Novel opioid receptors:

ORL1:

orphanin opioid-receptor like subtype 1 endogenous ligand: nociceptin (dynorphin like peptide)

Cellular actions:

- G protein coupled action \rightarrow blocking AC \rightarrow cAMP \downarrow
 - □ blocking VG Ca2+ channels on presynaptic nerve terminals (↓NT release)
 - □ opening K+ channels on postsynaptic neurons (hyperpolarization)

Nociceptive pathways

ascending pathway:

periaqueductal grey, raphe nucleus NTs: serortonine, endogene opioids locus coruleus

NTs: NA, A, D, Ach

inhibited by GABAerg interneurons (tonic inhibitory effect)

peripherial tissue dorsal horn spinothalamic tract thalamus cortex (area postcentralis)

<u>descending</u> (modulatory) pathway:

Opioid analgetics (especially morphine)

Pharmacokinetic features:

- modest absorption from GIT
- □ ineffective per os
 - hydrophilic structures are absorbed poorly
 - high first-pass metabolism (except codein, oxycodone)
- highest concentrations in highly perfused organs
- □ metabolized in liver
 - M_3G , effect on GABAerg $R \rightarrow \uparrow cc. \rightarrow seizures$
 - M₆G (10% of morphine degr.) 4-6x potency comp. to morphine
 - □ metabolite of codeine (pediatric application?)

Opioid analgetics

DEB7ECTOR OF THE PARTY OF THE P

CNS effects:

- analgesia
 - □ reduce sensory and emotional (affective) components of pain
- euphoria
 - pleasent floating sensation with lessened anxiety and distress
- sedation
 - drowsiness
 - □ clouding of mentation
- respiratory depression
 - □ depressed response to CO_2 challenge $\rightarrow Pa_{CO2}\uparrow$
 - □ dose-related
 - □ dangerous in ICP, COPD, asthma
- cough supression
 - supression of cough reflex
 - □ airway obstruction!
- miosis
 - □ no tolerance develops (see later)→diagnostical symp. in opioid intoxication
- truncal rigidity
 - □ spinal cord action, failure in ventillation
- nausea and vomiting
 - □ area postrema-chemoreceptor trigger-zone
- hyperthermia
 - \square anterior hypothalamus μR agonism

٧

Opioid analgetics

Extracranial effects:

- Cardiovascular system
 - □ hypotension
 - central depression of vasomotor system
 - release of histamin
 - □ tachycardia
 - meperidine (pethidine)
 - \square Pa_{CO2} $\uparrow \rightarrow$ cerebral vasodilation \rightarrow ICP \uparrow
- GIT
 - spastic obstipation
 - tonic (persistent contraction)↑
 - motility (rhythmic contr. and relax.)↓
- Biliary tract
 - □ contraction of biliary smooth muscle
 - □ contraction of Oddi sphincter
- Renal
 - □ antidiuretic effect, RBF↓
- Uterus
 - reduce uterine tone
 - □ labour prolongation

М

Opioid analgetics

Therapeutical application:

A 7	
Anal	lgesia

- □ severe, constant pain (cancer, terminal illnesses)
- ☐ fentanyl transdermal system (fentanyl patch, Durogesic®)
- □ PCA vs. fixed interval administr.

Acute pulmonary oedema (ALVF)

- □ preload↓
- □ afterload↓
- □ reduce anxiety, generalised sympatic tone↓
- □ decreases hyperventillation, resp. panic
- \square ACS

Anaesthesia

- □ sedative, anxiolytic, analgesic properties
- □ premedication, ET intubation: 100µg Inj. Fentanyl
- □ epidural/subarachnoideal administration

Supression of cough (antitussive agents)

□ codeine, oxycodone

Diarrhea

□ never if diarrhea is associated with infection

Opioid analgetics

Alternative routes of administration

- □ i.v. application
 - rapid effect
 - respiratory depression
- rectal suppositories
 - morphine, hydromorphone
- transdermal patch
 - fentanyl TTS
- □ intranasal application
 - avoiding first pass metabolism
 - butorphanol
- \square PCA
 - demanded application of preprogrammed dose
- □ i.m. injection

endorfins

- □ hypophysis: POMC \rightarrow ACTH + α -MsH + β endorphin
 - µR affinity↑
 - supraspinal/spinal analgesia, sedation, inhibition of respiration

dynorphins

- □ dynorphin A, dynorphin B
 - κR affinity↑
 - supraspinal/spinal analgesia, slowed GIT motility

enkephalins

- □ met-enkephalin, leu-enkephalin
 - δR affinity↑
 - supraspinal/spinal analgesia, slowed GIT motility
 - modulation of hormone and neurotransmitter release

•		morphine (heroin) diacetyl derivative of morphine (lipophylic structure!!!) rapid crossing of blood-brain barrier→rush↑ less emetic dependence!
	cod	eine
		IA: 20% (analgesic potency)
		no euphoria, no addiction
		antitussive activity
		active metabolite: M6G
		combined with paracetamol, acetaminpohen
	met	hadone
		bioavailability↑→oral application
		long term acting
		potent analgesic effect
		μR agonism
		blocking NMDA R
		 blocking monoamine reuptake system
		lower euphoriac effect
		used treating morphine/diamorphine addiction

pethidine (meperidine):
no sedative effects (rest

- □ antimuscarinic action
- □ hallucinogenic, convulsant effect (active metabolite-normeperidine)
- □ no uterus relaxation (analgesia during labor)
- □ a.e.: Serotonin syndrome (co-application with MAO-inhibitors)

fentanyl, sufentanyl

- □ 100x analgesic effect
- □ anaesthesia practice
- □ PCA, patch

tramadol

- \square weak μ R agonist
- □ less potent (analgesia)
- □ no resp. depressive effect
- □ nausea, vomitus!

buprenorphine

- partial μR agonism, κR antagonism
- □ long-term action
- □ detoxification of heroine abusers
- □ respiratory depression!

- diphenoxylate, diphenoxin, loperamide
 - peripherial effect, no pass to CNS
 - □ dipehenoxylate + atropin= Reasec®
 - obstipation
- Opioid antagonists
 - \square μ R, δ R, κ R antagonism
 - □ ANTIDOTUM!
 - □ naloxone
 - 0,1mg-0,4mg i.v.
 - short half-life (intox. relapse)
 - "over-shoot" effect (rebound NA, ACh release)
 - 10 mg naloxone : 25 mg heroin
 - naltrexone
 - half-life: 10 hours \rightarrow prolonged effect
 - oral application

Opioid analgetics

	. 1	1	
1	tο	Aror	00
l .	- 10	lerar	ILC

- □ 2-3 weeks at therapeutic dose
- background: persistent activation of opioid receptors
 - up regulation of cAMP system
 - receptor recycling
 - receptor endocytosis
 - receptor uncoupling
 - structural dysfunction in opioid receptors
- □ tolerance to euphoriac effect, analgesic effect, anxiolytic effect
- □ no tolerance to respiratory depression, miosis!!!!!

2. physical dependence

- □ withdrawal/abstinence syndrome (lasting days)
 - autonomic: rhinorrhea, lacrimation, mydriasis, diarrhea, vomitting, piloerection
 - seizures, myoclonus
 - hyperthermia

3. psychologic dependence

- compulsive use/craving (drug seeking behaviour)
- □ elevated incidence at MD's!!!

Opioid analgetics

Detoxication methods

DEGRECO MEDICO

- supportive therapy
 - fluid/electrolyte suppl.
 - anticonvulsive agents: BZD
 - antipsychotics
 - antihypertensive:
 - □ clonidin (α₂R agonism)-central acting sympatholytic drug
 - \square β R blockers
- methadon substitution
 - long acting μR agonist
 - less euphoriac effect
 - receptor occupancy no effect when morphine/heroin applied
 - dose reduction
- □ naltrexon therapy
 - long acting μ R, δ R, κ R antagonism
 - **p.**o.
 - application after withdrawal symptoms
- ☐ Ultra short opioid detoxification
 - i.v. naloxone/naltrexone
 - massive withdrawal symptoms
 - supportive therapy !!!!