Linear Algebra Worksheet

- 1. Consider the vectors $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
 - (a) In the x-y plane mark all nine linear combinations $c\vec{v}+d\vec{w}$, with c = -2,0-2 and d = 0,1,2.
 - (b) What shape do all linear combinations $c\vec{v}+d\vec{w}$ fill? A line? The whole plane? Are the vectors \vec{v} and \vec{w} independent?
- 2. Consider the vectors $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.
 - (a) Can you solve the system $x\vec{u} + y\vec{v} + z\vec{w} = \vec{b}$, if $\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$?
 - (b) What if $\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$? How many solutions are there?
 - (c) Are the vectors \vec{u} , \vec{v} and \vec{w} dependent or independent?
 - (d) Use parts (a) (c) to decide if $A=\begin{bmatrix}1&0&2\\0&-1&1\\1&1&0\end{bmatrix}$ is an invertible matrix or not.
- 3. Use Gaussian elimination to find all solutions of:

$$1x - 2y + 3z = 3$$

$$2x + y + 8z = -5$$

$$0x + y + 2z = 1$$

4. Consider the linear system for some constants b and g:

$$x - 2y + 3z = 3$$

$$2x + y + bz = -4$$

$$x + 0y + 1z = g$$

- (a) What constant b makes the system singular (missing a pivot).
- (b) For the value of b found in Part (a), for which values of g, the system has infinitely many solutions?
- (c) Find two distinct solutions of the system for that g.
- 5. Construct a matrix A whose null space contains the vector $\begin{bmatrix} -7\\4\\1 \end{bmatrix}$, and whose column space contains $\begin{bmatrix} 1\\2\\4 \end{bmatrix}$ and $\begin{bmatrix} 2\\3\\0 \end{bmatrix}$.
- 6. Write the complete solution of the following linear system as $x_p + x_n$:

$$x + 2y - z = 1$$

$$3x + 5y + 2z = 3$$

$$2x + y + 13z = 2$$

7. Consider the vectors $v_1 = \begin{bmatrix} 2\\1\\1\\-1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0\\3\\0\\1 \end{bmatrix}$, $v_3 = \begin{bmatrix} -1\\0\\2\\0 \end{bmatrix}$, and $v_4 = \begin{bmatrix} 7\\9\\1\\-1 \end{bmatrix}$. Check whether

 v_1 , v_2 , v_3 and v_4 are independent. If they are not, find a basis for the subspace of R^4 spanned by these vectors.

8. Consider the vectors $b = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$, $a_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $a_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- (a) Find the projection p of b onto the subspace spanned by a_1 and a_2 .
- (b) Find the error vector e = b p and show that it is orthogonal to both a_1 and a_2 .
- 9. Find the line y = C + Dx that best fits the data $(x, y) = \{(0,1), (1,8), (2,8), (3,20)\}.$
- 10. [Understanding projections and projection matrix] Assume $P = A(A^TA)^{-1}A^T$ is a projection matrix.
 - (a) [4 pts.] Show that $P^2 = P$ by multiplying $P = A(A^TA)^{-1}A^T$ by itself and canceling.
 - (b) [3 pts.] Prove (a) geometrically by showing that for any vector b, Pb is the vector in the column space of A closest to b and then use this fact to show $P^2 = P(Pb) = Pb$ for any vector b.
 - (c) [3 pts.] The matrix P as above projects onto the column space of A. Is I P a projection matrix? To which subspace does it project onto?
- 11. Use Gram-Schmidt Process to find an orthogonal basis for the subspace

spanned by
$$a = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, $c = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$.

- 12. Answer each part.
 - (a) If Q_1 and Q_2 are orthogonal matrices, show that Q_1Q_2 is an orthogonal matrix. [Hint: Use $Q^TQ = I$]
 - (b) Show that if for orthogonal vectors, q_1 , q_2 , q_3 , if

$$x_1q_1 + x_2q_2 + x_3q_3 = b$$

then for each i, $x_i = q_i = b$. [Hint: Take the dot product of the two sides with each q_i at a time and use orthonormality conditions, $q_i \cdot q_i = 1$ and $q_i \cdot q_j = 0$ if $i \neq j$, to prove the statement].

(c) The vectors
$$q_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $q_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, $q_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ are orthogonal. Use Part (b), to solve

$$x_1q_1 + x_2q_2 + x_3q_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

13. Let
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 and $I + A = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix}$

- (a) [6 pts.] Compute the eigenvalues and eigenvectors of A and A+I.
- (b) [4 pts.] Find a relationship between eigenvectors and eigenvalues of A and those of

A+I.

14. Find singular value decomposition (SVD) of
$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$
.

15. Use Gram-Schmidt Process to find and orthogonal basis for the subspace spanned by

$$a = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, c = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$