

Микропроцессорные устройства обработки сигналов

Лекция L07 «Устройство адресации»

http://vykhovanets.ru/course67/

Ядро микропроцессора

Устройство адресации

Регистровый файл А

- Хранение промежуточных данных
- Предоставление операндов и получение результатов операций
- Обмен промежуточными данными с другими модулями и памятью

Регистры страниц данных:

DPH (7 бит), **DP** (16 бит), **PDP** (9 бит).

Регистры-указатели:

XSP (23 бита), **XSSP** (23 бита), **XARx** (8*23 бита), **XCDP** (16 бит).

Регистры циклического буфера:

BSAxx (5*16 бит), **BKxx** (3*16 бит).

Временные регистры:

Тх (4*16 бит).

Генератор адресов

- Формирование физических адресов операндов
- Передача физических адресов на шины адреса для чтения и для записи данных

Арифметико-логический блок А

- Сложение, вычитание, сравнение адресов
- Логические и битовые операции с адресами
- Операции арифметических, логических и циклических сдвигов адресов
- Операции модификации регистров в косвенных методах адресации

Регистры модуля А

		45.0
XSSP	SPH	SSP
XSP	SPH	SP
	22-16	15-0
XDP	DPH	DP
-	22-16	15-0
XCDP	CDPH	CDP
	22-16	15-0
XAR7	AR7H	AR7
XAR6	AR6H	AR6
XAR5	AR5H	AR5
XAR4	AR4H	AR4
XAR3	AR3H	AR3
XAR2	AR2H	AR2
XAR1	AR1H	AR1
XAR0	AR0H	AR0
_	22-16	15-0

	15-9		0-0
1	Резерв		PDP
1100		15-0	
то			
T1			
T2			
Т3			
_		15-0	
BSA01			
BSA23			
BSA45			
BSA67			
BSAC			
_		15-0	
ВК03			
BK47			
вкс			

Регистры страниц данных (23 и 9 бит)

DPH, DP-Data Page (High)

PDP - Peripheral Data Page

Регистры-указатели (23 бита)

CDPH, CDP- Coefficient Data Pointer (High)

SPH, SP, SSP- (System) Stack Pointer (High)

XAR0—XAR7 - Extended Auxiliary Registers

Регистры циклического буфера (16 бит)

BK03, BK47, BKC - Buffer size registers

BSA01, BSA23, BSA45, BSA67, BSAC - circular Buffer Start Address registers

Временные регистры (16 бит)

T0—T3 - Temporary registers

Регистры страниц данных

Отображение регистров в адресное пространство памяти

15-0)
00 002Eh DP	
15-7	6-0
00 002Bh Reserved	DPH

00 002Bh — 23-разрядный адрес 16-разрядного слова данных (ВАВ, САВ, DAВ) 00 002Bh — 0000 0000 0000 0000 1011 — адрес слова

Регистры-указатели

	22-16		15-0
XCDP	00 004Fh CDPH	00 0027h	CDP
	22-16		15-0
XAR0	AR0H	00 0010h	AR0
XAR1	AR1H	00 0011h	AR1
XAR2	AR2H	00 0012h	AR2
XAR3	AR3H	00 0013h	AR3
XAR4	AR4H	00 0014h	AR4
XAR5	AR5H	00 0015h	AR5
XAR6	AR6H	00 0016h	AR6
XAR7	AR7H	00 0017h	AR7
	22-16		15-0
XSP	00 004Eh SPH	00 004Dh	SP
XSSP	00 004Eh SPH	00 004Ch	SSP

Временные регистры

Операционное устройство

		39	32	31	16 15		0		
		Gu	ıard	H igh		Lov	N		
	39-32	2 11		31-16	220		21.5	15-0	
AC0	000AhAC0G	00 000	9h	AC0H			00 0008h	AC0L	
AC1	000DhAC1G	00 000	Ch	AC1H			00 000Bh	AC1L	
AC2	0026h AC2G	00 002	5h	AC2H			00 0024h	AC2L	
AC3	002Ah AC3G	00 002	9h	AC3H			00 0028h	AC3L	

TRN0 00 000Fh
TRN1 00 0038h

Регистры циклического буфера

```
AR0H:, AR1H: BSA01 00 0032h
                                                                       + AR0, AR1
AR2H:, AR3H: BSA23 00 0033h
                                                                       + AR2, AR3
AR4H:, AR5H: BSA45 00 0034h
                                                                       + AR4, AR5
AR6H:, AR7H: BSA67 00 0035h
                                                                       + AR6, AR7
       CDPH: BSAC 00 0036h
                                                                       + CDP
                                           15 - 0
               BK03 00 0019h
                                                                        AR0 - AR3
               BK47 00 0030h
                                                                        AR4 – AR7
               BKC 00 0031h
                                                                        CDP
```

```
#define H 131
#define BK 1024
                                                         ARxH:0000h
                                                                        Начало страницы
int h[H], x[BK]; y[BK], s;
                                                         ARxH:BSAxx
                                                                         Начало буфера
for(t = 0, t++, t < BK) {
                                                             +0000h
 s = 0:
                                                         ARxH:BSAxx
 for(i = 0; i++; i < H) {
                                                                         Текущее слово
                                                              +ARx
   s += ((long)h[i]*x[(t-i+BK)%BK])>>15;
                 y(\tau) = \sum h(i) \times x(\tau - i)
 y[t] = s;
                                                                         Конец буфера
                                                         ARXH:BSAXX
                                                              +BKxx
```

Методы адресации

Прямая адресация

Косвенная адресация

Операнд	Модификация
*ARx, *CDP	ARx, CDP не изменяется
*ARx+, *CDP+	XARx, CDP увеличивается на 1 (2)¹ после генерации адреса
*ARx-, *CDP-	XARx, CDP уменьшается на 1 (2)¹ после генерации адреса
*+ARx	XARx увеличивается на 1 (2)¹ перед генерацией адреса
*–ARx	XARx уменьшается на 1 (2)¹ перед генерацией адреса
$*(ARx + T0), *(ARx + T0B)^{2}$	XARx увеличивается на T0 после генерации адреса
*(ARx – T0), *(ARx – T0B) 2	XARx уменьшается на T0 после генерации адреса
*ARx(T0)	XARх не изменяется, T0 используется как базовый ³
*(ARx + T1)	XARx увеличивается на Т1 после генерации адреса
*(ARx – T1)	XARx уменьшается на Т1 после генерации адреса
*ARx(T1)	XARх не изменяется, Т1 используется как базовый ³
*ARx(#k16), *CDP(#k16)	XARx, CDP не изменяется, k16 используется как смещение ⁴
+ARx(#k16) ,+CDP(#k16)	XARx, CDP увеличивается на k16 перед генерацией адреса

Примечания:

- ¹ Изменение регистра на 1 происходит, если операнд слово, на 2 если двойное слово;
- ² Режим адресации с обратным порядком бит, при котором 0 бит старший, а 15 (31, 39) младший;
- ³ При базовой адресация адрес операнда равен XARx плюс T0, расширенный со знаком до 23 бит.
- ⁴ Адрес операнда равен XARx плюс k16, расширенная со знаком до 23 бит.

Циклическая адресация

sт2_55 - регистр состояния 2 микропроцессора 00 004Bh

15	14	13	12	11	10	9	8
ARMS	Rese	erved	DBGM	EALLOW	RDM	Reserved	CDPLC
R/W-0	R-	11b	R/W-1	R/W-0	R/W-0	R-0	R/W-0
7	6	5	4	3	2	1	0
AR7LC	AR6LC	AR5LC	AR4LC	AR3LC	AR2LC	AR1LC	AR0LC
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

MOV #3, BK03 BSET AR1LC AMOV #010000h, XAR1 MOV #0A02h, BSA01 MOV *AR1+, AC0 MOV *AR1+, AC0 MOV *AR1+, AC0 MOV *AR1+, AC0

- ; Размер циклического буфера в ВК03
- ; Настройка циклической адресации через AR1
- ; Загрузка номера страницы в AR1H и очистка AR1
- ; Загрузка стартового адреса буфера в BSA01
- ; Пересылка в AC0 из 01 0A02 + AR1 = 01 0A02h
- ; Пересылка в AC0 из 01 0A02 + AR1 = 01 0A03h
- ; Пересылка в AC0 из 01 0A02 + AR1 = 01 0A04h
- ; Пересылка в AC0 из 01 0A02 + AR1 = 01 0A02h

Бит-реверсивная адресация

$$c(i) = \sum_{\tau=0}^{N-1} x(\tau) \times \omega_N^i(\tau), \quad \omega_N^i = \exp(-2\pi j i \tau/N), \quad w_N^i = \exp(-2\pi j i/N).$$

*(ARx -TxB) *(ARx+TxB) AR0= 01100000 T0 = 0000010001100000 (+0) + 00000100 = 01100100 (+4)+ 00000100 = 01100010 (+2)+ 00000100 = 01100110 (+6)+ 00000100 = 01100001 (+1)+ 00000100 = 01100101 (+5)

+ 00000100

+ 00000100

= 01100011 (+3)

= 01100111 (+7)

Примечание. Реализована путем сложения (вычитания) с обратным распространением переноса (заема).

Режимы адресации

Базовая		Постфиксная		Префиксная	
Сигнальный режим (ARMS = 0)					
*ARn	PPP0 0001	*ARn+	PPP0 0011	*+ARn	PPP1 1001
*ARn(T0)	PPP0 1011	*ARn-	PPP0 0101	*-ARn	PPP1 1011
*ARn(T1)	PPP1 0111	*(ARn + T0)	PPP0 0111	*+ARn(#K16)	PPP0 1111
*ARn(#K16)	PPP0 1101	*(ARn - T0)	PPP0 1001	11	
		*(ARn + T0B)	PPP1 1101		
		*(ARn - T0B)	PPP1 1111		
		*(ARn + T1)	PPP1 0011		
		*(ARn - T1)	PPP1 0101		
Режим управлени	ия (ARMS = 1)				
*ARn	PPP0 0001	*ARn+	PPP0 0011	*+ARn(#K16)	PPP0 1111
*ARn(T0)	PPP0 1011	*ARn-	PPP0 0101		
*ARn(#K16)	PPP0 1101	*(ARn + T0)	PPP0 0111		
*ARn(short(#k3))	PPP1 xxx1	*(ARn - T0)	PPP0 1001		

ARMS – AR Mode Switch (переключатель режимов косвенной адресации: ARMS=0 – интенсивная обработка сигнала, ARMS=1 – обычные приложения).

Кодирование адресов

- Непосредственная: #k3, ..., #K16, #k16, #k23.
- Абсолютная: *abs(#a16) [DPH], *#a23, port(#a16).
- Регистровая: ACx, TRNx, Tx, ARx, CDP, ...
- Прямая: @a7 [XDP, XSP], port(@a7) [PDP].
- Косвенная: *ARx, *CDP, *ARx±, *CDP±, *±ARx.
- Базовая: *ARx(k16), *CDP(k16), *+ARx(k16).
- Индексная: *ARx(Tx), *(ARx±Tx), *+CDP(k16).
- Циклическая: [CR.] *ARx±,*±ARx,*(ARx±Tx), *CDP±, *+ARx(k16), *+CDP(k16) [BSAxx, BKxx].

Примеры адресации

```
• Непосредственная адресация #:
  - константа (k3, k4, k5, k6);
  - байт (K8, k8);
  - слово (k9, k12, k16, K16);
  - полуторное слово (k23).
    MOV #1Fh, DPH
• Регистровая адресация R.
    BCLR AR0, AC0
• Абсолютная адресация *#:
  - *abs(#a16);
  - *#a23:
  - port(#a16).
   PSH *abs16(#1234h)
• Прямая адресация @a7:
  - через DP @a7 (CPL=0);
  - через SP @a7 (CPL=1);
  - через PDP port(@a7);
  - битовая @k5.
   MOV @#-12, T0
   AND #FFEFh, port(@#1232h)
   BTST @30, AC3
```

```
Косвенная адресация *R, *±R, *R±:
  - не модифицирующая *R;
  - постфиксная *R+, *R-;
  - префиксная *+R, *-R.
    MOV *CDP+, T2
    BSET *-AR2, AC1
  Базовая адресация *+R(k16):
  - не модифицирующая *R(k16);
  - модифицирующая *+R(k16).
    MOV AR3, high byte(*CDP(#4))
    BNOT *+AR4(#3), AC2
  Индексная адресация *(R\pm R), *R(R):
  - знаковая *R(R);
  - беззнаковая *(R±R);
  - реверсивная *(R±RB).
    MOV *AR1(T1) << #16, AC0
    MAS *(AR6-T0), *CDP, AC2
    BNOT *(AR2+T0B), AC3
• Циклическая адресация.
   ADD.CR dual(*CDP+), AC0, AC1
```

BSET *(AR7+T0), AR5

Мнемоника команд

```
BTSTCLR k4, Smem, TCx
MOV HI(ACy << T2), Ymem
MOV [uns(]high_byte(Smem)[)], dst
MOV high_byte(Smem) << #SHIFTW, ACx
ADD.CR dual(Lmem), ACx, Acy
MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], Acx
MOV [uns(] [rnd(]HI[(saturate](ACx << Tx)[)))], Smem
```

```
Smem, Lmem, Cmem, Xmem, Ymem — метод адресации операнда в памяти
Baddr – метод адресации бита в регистре
kx (Kx) – непосредственная беззнаковая (знаковая) константа разрядности х
U, uns – беззнаковый операнд
low_byte (high_byte) – младший (старший) байт
#SHIFTW — знаковая константа числа сдвигов
mmap() – память отображения регистров
port() – адресное пространство ввода-вывода
dbl — 32-разрядный операнд в памяти
dual – двойной доступ к памяти
НІ (LO) – старшие (младшие) 16 разрядов аккумулятора
pair – регистровая пара
R, rnd – округление, saturate - насыщение
<instruction>.CR (.LR) – принудительная циклическая (линейная) адресация
```

Кодирование команд

MOV Smem, dst

0 – прямая адресация, 1 – не прямая адресация.

mov dst 1010 FDDD AAA

Smem

AAAA AAA:	I Smem	AAAA AAAI	Smem	FSSS FDDD	dst
0001 0001	ABS16(#k16)	PPP0 0111	*(ARn + T0)	0000	Accumulator 0 (AC0)
	, ,			0001	Accumulator 1 (AC1)
0011 0001	*(#k23)	PPP0 1001	*(ARn – T0)	0010	Accumulator 2 (AC2)
0101 0001	port(#k16)	PPP0 1011	*ARn(T0)	0011	Accumulator 3 (AC3)
0111 0001	*CDP	PPP0 1101	*ARn(#K16)	0100	Temporary register 0 (T0)
1001 0001	*CDP+	PPP0 1111	*+ARn(#K16)	0101	Temporary register 1 (T1)
1011 0001	*CDP-	PPP1 0011	*(ARn + T1)		. , ,
1101 0001	*CDP(#K16)	PPP1 0101	*(ARn – T1)	0110	Temporary register 2 (T2)
1111 0001	*+CDP(#K16)	PPP1 0111	*ARn(T1)	0111	Temporary register 3 (T3)
PPP0 0001	*ARn	PPP1 1001	*+ARn	1000	Auxiliary register 0 (AR0)
PPP0 0011	*ARn+	PPP1 1011	*–ARn	1001	Auxiliary register 1 (AR1)
PPP0 0101	*ARn–	20 PENSONON SS 10 ANNO 2500		1010	Auxiliary register 2 (AR2)
FFF00101	ANI	PPP1 1101	*(ARn + T0B)	1011	Auxiliary register 3 (AR3)
		PPP1 1111	*(ARn – T0B)	1100	Auxiliary register 4 (AR4)
DDD VOT 5		LIOTO DOFIACTO	1101	Auxiliary register 5 (AR5)	
	•	ного регистр ивной модиф	1110	Auxiliary register 6 (AR6)	
_	к оит-реверс годов адреса	-	1111	Auxiliary register 7 (AR7)	

Вычисление адресов

Xmem, Ymem – косвенный метод адресации: *ARx, *ARx±, *(ARx±Tx), *ARx(T0).

Стет – косвенная адресация коэффициентов: *CDP, *CDP±, *(CDP+T0).

Smem – прямой или косвенный метод адресации (поле AAAAAAAI): @A...A, *abs16(#k16), *(#k23), port(#k16), *CDP, *CDP+, *CDP-, *CDP(#K16), *+CDP(#K16), *ARx, *ARx±, *±ARx, *(ARx±Tx), *(ARx±T0B), *ARx(T0), *ARn(#K16), *+ARn(#K16), *ARn(k8).