Arithmétique : DS du 27 octobre 2021

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

- EXERCICE 1. Soit $A = \mathbb{F}_4[X]/(X^2 + X)$.
 - a) Combien l'anneau A contient-il d'éléments? Combien d'éléments contient le groupe multiplicatif A^* des éléments inversibles de A?
 - b) Combien d'éléments de A^* sont racines de X^3+1 ? Le groupe A^* est-il cyclique?
- EXERCICE 2. Écrire $X^9 X$ comme produit de polynômes irréductibles sur \mathbb{F}_3 .
- EXERCICE 3. Soit $P(X) = X^6 + X^5 + X^3 + X^2 + 1$ dans $\mathbb{F}_2[X]$.
 - a) Calculer X^8 modulo P(X), et en déduire rapidement que P(X) est irréductible.
 - **b)** P(X) est-il primitif?
 - c) Soit α une racine de P(X) dans \mathbb{F}_{64} . Quelles sont les puissances de α dont les polynômes minimaux ne sont pas de degré 6?
 - d) Trouver le polynôme minimal de α^3 .
- EXERCICE 4. On considère le polynôme $P(X) = X^{2^m} + X + 1$.
 - a) Etudier les puissances de X modulo P(X), et en déduire que les facteurs irréductibles de P(X) dans $\mathbb{F}_2[X]$ ont un degré au plus 2m.
 - b) Montrer que si m est une puissance de 2, alors P(X) a un facteur irréductible de degré 2m.
 - c) Remarquer que P(X) est premier avec $X^{2^m} + X$ et en déduire que si m est premier, alors tous les facteurs irréductibles sur \mathbb{F}_2 de P(X) sont de degré 2m, sauf un qui est de degré 2.
- EXERCICE 5. Quels sont les degrés des polynômes irréductibles de $\mathbb{F}_4[X]$ qui divisent $X^{64}+X$? Comparer les décompositions de $X^{64}+X$ en produits de facteurs irréductibles sur $\mathbb{F}_2[X], \mathbb{F}_4[X]$ et $\mathbb{F}_{64}[X]$ pour en déduire qu'un polynôme irréductible de degré 6 dans $\mathbb{F}_2[X]$ n'est pas irréductible dans $\mathbb{F}_4[X]$.