

Mutations somatiques et trajectoires cancéreuses dans la muqueuse orale saine

Zinara LIDAMAHASOLO - M2 MISO

Encadrant: Pierre MARTINEZ

Tuteur: Mikaël SALSON

Centre de Recherche en Cancérologie de Lyon (CRCL)

Equipe « Analyse intégrée de la dynamique du cancer » dirigée par Dr Pierre SAINTIGNY

- Mutations somatiques :
 - Au cours du développement & maintenance.

- Mutations somatiques :
 - Au cours du développement & maintenance.
 - o Potentiel tumorigène: drivers du cancer.

- Mutations somatiques :
 - Au cours du développement & maintenance.
 - o Potentiel tumorigène: drivers du cancer.
- Drivers et tissu sain :
 - Mutations drivers omniprésentes.

- Mutations somatiques :
 - Au cours du développement & maintenance.
 - o Potentiel tumorigène: drivers du cancer.
- Drivers et tissu sain :
 - Mutations drivers omniprésentes.
 - Sélection positive.
 - dN/dS > 1.

- Mutations somatiques :
 - Au cours du développement & maintenance.
 - o Potentiel tumorigène: drivers du cancer.
- Drivers et tissu sain :
 - Mutations drivers omniprésentes.
 - Sélection positive.
 - \blacksquare dN/dS > 1.
 - Les plus incriminés: NOTCH1, TP53, FAT1, FAT3.

A. Contexte

Mutations somatiques :

- Au cours du développement & maintenance.
- Potentiel tumorigène: drivers du cancer.

Drivers et tissu sain :

- Mutations drivers omniprésentes.
- Sélection positive.
 - \blacksquare dN/dS > 1.
 - Les plus incriminés: NOTCH1, TP53, FAT1, FAT3.

Muqueuse orale saine :

 Site le plus commun du principal cancer de la sphère tête-et-cou (carcinome épidermoïde).

A. Contexte

Mutations somatiques :

- Au cours du développement & maintenance.
- Potentiel tumorigène: drivers du cancer.

Drivers et tissu sain :

- Mutations drivers omniprésentes.
- Sélection positive.
 - \blacksquare dN/dS > 1.
 - Les plus incriminés: NOTCH1, TP53, FAT1, FAT3.

Muqueuse orale saine :

- Site le plus commun du principal cancer de la sphère tête-et-cou (carcinome épidermoïde).
- Évolution somatique mal caractérisée.

B. Objectifs

Projet global

• Caractériser la dynamique évolutive somatique de la muqueuse orale saine.

B. Objectifs

Projet global

• Caractériser la dynamique évolutive somatique de la muqueuse orale saine.

+++ Cellules épithéliales +++

B. Objectifs

Projet global

 Caractériser la dynamique évolutive somatique de la muqueuse orale saine.

+++ Cellules épithéliales +++

<u>Stage</u>

 Mettre en place les solutions pour analyser les échantillons.

B. Objectifs

Projet global

 Caractériser la dynamique évolutive somatique de la muqueuse orale saine.

+++ Cellules épithéliales +++

<u>Stage</u>

- Mettre en place les solutions pour analyser les échantillons.
- Estimer la pertinence des méthodes utilisées (prélèvement, analyse des données).

A. Nos jeux de données

27 échantillons

- 15 patients
- WES
- Format BAM

A. Variants avant filtre

A. Variants avant filtre

A. Variants avant filtre

Qualité avant filtre

B. Filtre

• Fréquence allélique (AF) < 0.3

B. Filtre

• Fréquence allélique (AF) < 0.3

La fréquence allélique.

B. Filtre

- Fréquence allélique (AF) < 0.3
- Profondeur de lecture (DP) > 50
- Nombre de reads portant le variant (AO) > 3

La fréquence allélique.

B. Filtre

- Fréquence allélique (AF) < 0.3
- Profondeur de lecture (DP) > 50
- Nombre de reads portant le variant (AO) > 3
- Qualité du variant (QUAL) :
 - o batch1:>100
 - o batch2:>400

La fréquence allélique.

B. Filtre

- Fréquence allélique (AF) < 0.3
- Profondeur de lecture (DP) > 50
- Nombre de reads portant le variant (AO) > 3
- Qualité du variant (QUAL) :
 - o batch1 : > 100
 - o batch2:>400

Histogramme de AF de l'échantillon D181210

Histogramme de AF de l'échantillon D181208

La fréquence allélique.

C. Variants après filtre

Répartition des variants après filtre

C. Variants après filtre

Répartition des variants après filtre

D. Similarité des échantillons

E. Avantage sélectif des 62 gènes drivers du Carcinome Épidermoïde de la Tête et du Cou

• Significatifs:

Gène	nombre_de_mutations	dNdS_faux_sens	dNdS_non_sens	p_globale_ajustée
CREBBP	10	0,0000000	in operation	0.0006718274
CASP8	9	1.2133029	40.8414933	0.0006718274
FAT1	5	0.1296048	2.4311507	0.0007435047
NOTCH1	19	0.8875176	8.4462262	0.0032685884
KDM5C	8	in contribution	e spotosia	0.0064674674
FAT3	11	0.2627164	4 0000000	0.0087696291
HLA-B	25	11.1075040	g sucurities	0.0217561387
HLA-A	45	1.2874269	0.0000000	0.0427825393
MYH9	15	0.1241248	0.4862293	0.0439383395

E. Avantage sélectif des 62 gènes drivers du Carcinome Épidermoïde de la Tête et du Cou

Significatifs:

E. Avantage sélectif des 62 gènes drivers du Carcinome Épidermoïde de la Tête et du Cou

Non-significatifs:

Sélec posi	p_valeur_ajustée	dNdS_non_sens	dNdS_faux_sens	nombre_de_mutation	Gène
	0.1466849	0.00000	0.6372499	12	KMT2C
	0.2102199	18,93655	2.7857984	6	TP53
i	0.3675089	0,00000	0.4000033	5	BRCA2
	0.8660165	0,00000	1.8106351	6	PIK3CA
	0.8660165	0.00000	2.0057472	5	DDX3X
Sélec néga	0.9401093	6,0000	0.7701560	14	IOTCH2

E. Avantage sélectif des 62 gènes drivers du Carcinome Épidermoïde de la Tête et du Cou

Non-significatifs:

Gène	nombre_de_mutation	dNdS_faux_sens	dNdS_non_sens	p_valeur_ajustée	Sé po
KMT2C	12	0.6372499	j. 0.0000	0.1466849	
TP53	6	2.7857984	18,93655	0.2102199	
BRCA2	5	0.4000035	0.00006	0.3675089	
PIK3CA	6	1.8106351	0.00005	0.8660165	
DDX3X	5	2.0057472	6.00000	0.8660165	
OTCH2	14	0.7701560	Chronit	0.9401093	Sél né

F. Avantage sélectif des autres gènes non drivers

 Gènes (non-)exprimés dans les cellules épithéliales orales :

F. Avantage sélectif des autres gènes non drivers

- Gènes (non-)exprimés dans les cellules épithéliales orales :
 - Human Oral Mucosa Cell Atlas (Williams et al., Cell 2021).

F. Avantage sélectif des autres gènes non drivers

- Gènes (non-)exprimés dans les cellules épithéliales orales :
 - Human Oral Mucosa Cell Atlas (Williams et al., Cell 2021).
- 500 les plus mutés parmi les exprimés :
 - 1,4% sous sélection positive.

F. Avantage sélectif des autres gènes non drivers

- Gènes (non-)exprimés dans les cellules épithéliales orales :
 - Human Oral Mucosa Cell Atlas (Williams et al., Cell 2021).
- 500 les plus mutés parmi les exprimés :
 - 1,4% sous sélection positive.

- 1000 les plus mutés parmi les non-exprimés :
 - 10% sous sélection positive.

G. Fraction de cellules T

H. Néo-antigènes & Altération du nombre de copies

Par échantillon :

30,93% des mutations (10% dans gènes exprimés).

H. Néo-antigènes & Altération du nombre de copies

Par échantillon :

H. Néo-antigènes & Altération du nombre de copies

Par échantillon :

30,93% des mutations (10% dans gènes exprimés).

Néo-antigènes

(2,31% Nouveaux néo-antigènes « ligand fort » par gènes exprimés).

H. Néo-antigènes & Altération du nombre de copies

Par échantillon :

30,93% des mutations (10% dans gènes exprimés).

(2,31% Nouveaux néo-antigènes « ligand fort » par gènes exprimés).

 Absence d'altération du nombre de copies.

- Différences entre batches :
 - Nombre de variants (+++ dans batch2)
 - Qualité de variants (+++ dans batch1)

• Profondeur de séquençage moyenne :

batch1:656,6Xbatch2:327,6X

- Différences entre batches :
 - Nombre de variants (+++ dans batch2)
 - Qualité de variants (+++ dans batch1)

• **Profondeur de séquençage** moyenne :

batch1:656,6Xbatch2:327,6X

	Précision de la prédiction	Nombre	Vrais-positifs	Qualité
Batch1	+	-	+	+

- Différences entre batches :
 - Nombre de variants (+++ dans batch2)
 - Qualité de variants (+++ dans batch1)

• Profondeur de séquençage moyenne :

batch1:656,6Xbatch2:327,6X

	Précision de la prédiction	Nombre	Vrais-positifs	Qualité
Batch1	+	-	+	+
Batch2	-	+	-	-

- Faible taille des échantillons :
 - Filtre:
 - Qualité non vérifiée.
 - Paramètres non calibrés.

- Faible taille des échantillons :
 - Filtre :
 - Qualité non vérifiée.
 - Paramètres non calibrés.
 - O Peu de gènes drivers sous sélection positive.

V. CONCLUSION

- Mise en place des outils pour la suite du projet.
 - Variants
 - Sélection
 - Néo-antigènes

V. CONCLUSION

- Mise en place des outils pour la suite du projet.
 - Variants
 - Sélection
 - Néo-antigènes

Méthodologie adéquate.

- Cytobrosses plus adaptées que biopsies.
- Peu d'erreurs de séquençage récurrentes.
- Gènes attendus retrouvés sous sélection positive.
 - + Nouveaux

V. CONCLUSION

- Mise en place des outils pour la suite du projet.
 - Variants
 - Sélection
 - Néo-antigènes

Méthodologie adéquate.

- Cytobrosses plus adaptées que biopsies.
- Peu d'erreurs de séquençage récurrentes.
- Gènes attendus retrouvés sous sélection positive.
 - + Nouveaux

Perspectives.

- + Grande cohorte avec annotations cliniques.
 - Fumeurs / Non-fumeurs / Patients avec cancer

Merci pour votre attention!