Illustration of SpecEval add-in

Kamil Kovar

Moody's Analytics

Introduction

SpecEval was developed to facilitate interactive and iterative model building process

SpecEval was developed to facilitate interactive and iterative model building process

 Theory provides a lot of intuition ⇒ model improvements are done by humans, not algorithm.

SpecEval was developed to facilitate interactive and iterative model building process

- Theory provides a lot of intuition ⇒ model improvements are done by humans, not algorithm.
- Outputs tailored to humans ⇒ focus on visual, not numeric representation of information.

SpecEval was developed to facilitate interactive and iterative model building process

- Theory provides a lot of intuition ⇒ model improvements are done by humans, not algorithm.
- Outputs tailored to humans ⇒ focus on visual, not numeric representation of information.

Focus on forecasting models \Rightarrow most outputs visualize forecasts.

Backtest forecasts and scenario forecasts.

Applications

'SpecEval illustrated.pdf' includes 8 different applications, complete with discussion and commands.

Applications

'SpecEval illustrated.pdf' includes 8 different applications, complete with discussion and commands.

#	Primary focus	Secondary focus		
1	Basic use of add-in and overview of key output	Iterative and interactive model		
	objects	development process		
2	Basic use of transformations (growth)	Recursive automatic model se-		
		lection		
3	Advanced use of transformation (spread)	Interactive model development		
4	Advanced use of transformation (log and ratio)	-		
5	Unconditinal forecasts I - Exogenously produced	Use for identities		
	forecasts			
6	Unconditiona forecasts II - Systems of multiple	-		
	individual equations			
7	Custom re-estimation	-		
8	Using intermediate objects	-		

Basic application

Czechia IP

Standard trending macroeconomic time series.

Static regression

Consider estimating simple static regression linking growth of industrial production to growth of GDP.

$$dlog(IP_t) = \beta_0 + \beta_1 dlog(GDP_t)$$
 (1)

Static regression

Consider estimating simple static regression linking growth of industrial production to growth of GDP.

$$dlog(IP_t) = \beta_0 + \beta_1 dlog(GDP_t)$$
 (1)

The resulting equation can be evaluated by SpecEval by simply calling:

eq_ip_static.speceval(noprompt)

Regression output

SpecEval report includes standard Eviews output with several adjustments.

Dependent Variable: DLOG(IP) Method: Least Squares Date: 04/05/21 Time: 19:09 Sample (adjusted): 1996Q2 2019Q4 Included observations: 95 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Std. coef.
С	-0.0021	0.0024	-0.88	0.3833	
DLOG(GDP)	1.43	0.24	5.95	0.0000	0.53
R-squared	0.275710	Mean dependent var		0.006554	
Adjusted R-squared	0.267922	S.D. dependent var		0.022229	
S.E. of regression	0.019020	Akaike info criterion		-5.065871	
Sum squared resid	0.033642	Schwarz criterion		-5.012105	
Log likelihood	242.6289	Hannan-Quinn criter.		-5.044146	
F-statistic	35.40165	Durbin-Watson stat		1.420843	
Prob(F-statistic)	0.000000				
Variable					
IP Czechia industrial production GDP Czechia real GDP					

What is important in regression output?

What is important in regression output?

① Coefficient sign \Rightarrow color code positive/negative coefficients.

What is important in regression output?

- **①** Coefficient sign \Rightarrow color code positive/negative coefficients.
- **②** Coefficient size ⇒ include standardized coefficients.

What is important in regression output?

- Coefficient sign \Rightarrow color code positive/negative coefficients.
- ② Coefficient size ⇒ include standardized coefficients.
- Ocefficient significance ⇒ color code different levels of significance.

What is important in regression output?

- **①** Coefficient sign \Rightarrow color code positive/negative coefficients.
- ② Coefficient size ⇒ include standardized coefficients.
- **3** Coefficient significance \Rightarrow color code different levels of significance.

Regression variables might not be known to outside evaluators \Rightarrow include variable descriptions.

What forecasts should we use for forecasting?

What forecasts should we use for forecasting?

SpecEval produces conditional, multistep, dynamic, (recursive) forecasts.

What forecasts should we use for forecasting?

SpecEval produces conditional, multistep, dynamic, (recursive) forecasts.

 We want to know how would given model perform under different environments ⇒ use observed historical data for independent variables (conditional forecasts).

What forecasts should we use for forecasting?

SpecEval produces conditional, multistep, dynamic, (recursive) forecasts.

- We want to know how would given model perform under different environments ⇒ use observed historical data for independent variables (conditional forecasts).
- Often interested in longer forecasts, not just one-step ahead ⇒ use multi-step dynamic forecasts.

What forecasts should we use for forecasting?

SpecEval produces conditional, multistep, dynamic, (recursive) forecasts.

- We want to know how would given model perform under different environments ⇒ use observed historical data for independent variables (conditional forecasts).
- Often interested in longer forecasts, not just one-step ahead ⇒ use multi-step dynamic forecasts.
- We want to know how well would given model work in different historical situations ⇒ use coefficients estimated on historically available data (recursive forecasts).

Which horizons?

Which horizons?

• For one step forecasts one can rely on regression statistics (R-squared, information criteria).

Which horizons?

- For one step forecasts one can rely on regression statistics (R-squared, information criteria).
- Estimation minimizes one-step forecast errors.

Which horizons?

- For one step forecasts one can rely on regression statistics (R-squared, information criteria).
- Estimation minimizes one-step forecast errors.
- Multistep forecasts are more likely reveal structural issues.
 - ⇒ Focus on multi-step forecasts and use multiple horizons.

Which horizons?

- For one step forecasts one can rely on regression statistics (R-squared, information criteria).
- Estimation minimizes one-step forecast errors.
- Multistep forecasts are more likely reveal structural issues.
 - \Rightarrow Focus on multi-step forecasts and use multiple horizons.

In-sample or out-of sample?

Which horizons?

- For one step forecasts one can rely on regression statistics (R-squared, information criteria).
- Estimation minimizes one-step forecast errors.
- Multistep forecasts are more likely reveal structural issues.
 - ⇒ Focus on multi-step forecasts and use multiple horizons.

In-sample or out-of sample?

• In-sample: Behavior of final estimated equation ("Is the estimated equation good at explaining historical movements?").

Which horizons?

- For one step forecasts one can rely on regression statistics (R-squared, information criteria).
- Estimation minimizes one-step forecast errors.
- Multistep forecasts are more likely reveal structural issues.
 - ⇒ Focus on multi-step forecasts and use multiple horizons.

In-sample or out-of sample?

- In-sample: Behavior of final estimated equation ("Is the estimated equation good at explaining historical movements?").
- Out-of-sample: Behavior of proposed model ("Is the model a good model for given varaible.").

Which horizons?

- For one step forecasts one can rely on regression statistics (R-squared, information criteria).
- Estimation minimizes one-step forecast errors.
- Multistep forecasts are more likely reveal structural issues.
 - ⇒ Focus on multi-step forecasts and use multiple horizons.

In-sample or out-of sample?

- In-sample: Behavior of final estimated equation ("Is the estimated equation good at explaining historical movements?").
- Out-of-sample: Behavior of proposed model ("Is the model a good model for given varaible.").

SpecEval allows inclusion of multiple horizons and choice of in-sample or out-of-sample forecasting.

Forecast performance: How to convey information?

Two basic ways of conveying forecast performance information:

- Numerical: Summary statistic like RMSE.
- **Graphical**: Display individual forecasts together with actual.

Forecast performance: How to convey information?

Two basic ways of conveying forecast performance information:

- Numerical: Summary statistic like RMSE.
- **Graphical**: Display individual forecasts together with actual.

Basic trade-off: graphs conveys more usable information, but are hard to compare across specifications.

Forecast performance: How to convey information?

Two basic ways of conveying forecast performance information:

- Numerical: Summary statistic like RMSE.
- **Graphical**: Display individual forecasts together with actual.

Basic trade-off: graphs conveys more usable information, but are hard to compare across specifications.

SpecEval includes both types of information.

Forecast performance: Graphical info

Forecasts problematic in beginning of sample and also during Great Recession.

• IP fell substantially more than GDP during Great recession.

Forecast performance: Numerical info

Static equation is overall worse than ARMA benchmark.

• Likely related to large forecast errors in beginning of sample.

```
eq_ip_static.speceval(spec_list="eq_arma",
use_names="t", graph_add_backtest="gdp[r]")
```

The large forecast errors in beginning of sample likely caused by short estimation samples \Rightarrow low information value. How can we address this using SpecEval ?

The large forecast errors in beginning of sample likely caused by short estimation samples \Rightarrow low information value. How can we address this using SpecEval ?

 Confirm there is problem with estimated coefficients → coefficient stability.

```
eq_ip_static.speceval(exec_list="normal stability")
```

The large forecast errors in beginning of sample likely caused by short estimation samples \Rightarrow low information value. How can we address this using SpecEval ?

 Confirm there is problem with estimated coefficients → coefficient stability.

```
eq_ip_static.speceval(exec_list="normal stability")
```

Exclude early observations → restrict backtesting sample.

```
eq_ip_static.speceval(tfirst_test="2000q1")
```

The large forecast errors in beginning of sample likely caused by short estimation samples \Rightarrow low information value. How can we address this using SpecEval ?

 Confirm there is problem with estimated coefficients → coefficient stability.

```
eq_ip_static.speceval(exec_list="normal stability")
```

Exclude early observations → restrict backtesting sample.

```
eq_ip_static.speceval(tfirst_test="2000q1")
```

• Use final coefficient estimates \rightarrow in-sample forecasting.

```
eq_ip_static.speceval(oos="f")
```

Coefficient stability

Coefficient on GDP in beginning of sample is negative.

Dahsed line: Full sample coefficient

Blue lines: Confidence interval

Adjusted forecasting

Both adjustments change the conclusions about performance of static equation.

Setting horizons

SpecEval allows user to easily set the horizons for either of the outputs.

Setting horizons

SpecEval allows user to easily set the horizons for either of the outputs.

Consider evaluating static regression with and without constant for multiple horizons:

```
eq_ip_static.speceval(spec_list="eq_ip_static*",
  horizons_forecast="1 2 4 8 16 40 80",
  horizons_graph="4 8 40", alias="with without")
```

	Forecast horizons (# of steps ahead)							
Specification	1	2	4	8	16	40	80	Avg.
with	1.56	2.77	4.84	8.22	13.7	37.7	103	24.6
without	1.51	2.59	4.38	7.44	13.5	39.9	104	24.7

Great Recession forecasts: Remedy

The forecast summary graph showed that the decline during Great Recession was smaller than in reality \rightarrow include interaction with recession dummy.

$$dlog(IP_t) = \beta_0 + \beta_1 dlog(GDP_t) + \beta_2 D_t^{recession} dlog(GDP_t)$$
 (2)

Great Recession forecasts: Remedy

The forecast summary graph showed that the decline during Great Recession was smaller than in reality \rightarrow include interaction with recession dummy.

$$dlog(IP_t) = \beta_0 + \beta_1 dlog(GDP_t) + \beta_2 D_t^{recession} dlog(GDP_t)$$
 (2)

Focus on analysis of sub-sample performance:

```
eq_ip_static.speceval(spec_list="eq_ip_static_dummy",
    subsamples="2008q3-2009q4,2011q3-2013q2",
    horizons_forecast="1 2 4 8",oos="f", alias="normal dummy")
```

Sub-sample forecast performance

Including recession dummy interaction helps substantially in Great Recession.

Important information about model can be obtained from scenario forecasts.

Important information about model can be obtained from scenario forecasts.

SpecEval allows easy way to create (conditional) scenario forecasts by simply specifying list of scenarios.

Important information about model can be obtained from scenario forecasts.

SpecEval allows easy way to create (conditional) scenario forecasts by simply specifying list of scenarios.

 Scenario forecasts for independent variables need to be included in the workfile, or loaded by pre-prepared subroutine.

```
eq_ip_dummy.speceval(scenarios="bl su sd")
```

The equation with recession dummy leads to IP falling permanently and substantially behind the GDP \rightarrow use recession-and-recovery dummy variable instead.

Decomposition graphs

In presence of multiple regressors scenario forecasts can be hard to understand \Rightarrow SpecEval includes forecast decomposition graphs.

• Single scenario decomposition and scenario difference decomposition.

Other applications

SpecEval allows customization in terms of...

SpecEval allows customization in terms of...

 ...how are forecasts displayed (transformations, inclusion of additional series).

SpecEval allows customization in terms of...

- ...how are forecasts displayed (transformations, inclusion of additional series).
- ...how are forecasts **created** (input outside forecasts, multiple equation models).

SpecEval allows customization in terms of...

- ...how are forecasts displayed (transformations, inclusion of additional series).
- ...how are forecasts created (input outside forecasts, multiple equation models).

Additionally, all SpecEval outputs can be stored for further analysis.

Spread transformation I

Policy rates are main source of variation in market rates, so that forecasts from different models look very similar \Rightarrow focus on spread transformation.

Spread transformation II

Transformation in forecast graphs can be usefully combined with inclusion of additional variables.

Spread transformation III

Transformation can be important in scenario analysis.

