0.1 Simulazione e sintesi

Per tale componente è stata effettuata una simulazione behavioural, durante la quale sono stati cambiati sia gli operandi in ingresso che il carry in ingresso. I risultati ottenuti sono osservabili in fig.1.

													13	4.000 n		
Name	Value	0 ns	20 ns	40 ns		60 ns		80 ns		100 ns		120 ns		140	is	160 ns
▶ ™ x[3:0]	1111	00	00	K	0001		Х	0011		X	0111				1111	
▶ ■ x[3:0] ▶ ■ y[3:0]	0111		0000			X	0001		X	0011		X	0 11		_X	1111
Ūa c_in	1															
▶ ■ s[3:0]	0111	00	00	0001	0010	0011	0101	0100	0110	1010	1011	1111	0 11	011	0 (1110
▶ ■6 s[3:0] 1 c_out	1															
104 -																

Figure 1: Simulazione behavioural del Ripple Carry Adder.

Si è proceduto poi alla sintesi del componente utilizzando diversi valori di lunghezza in bit delle stringhe, ottenuti cambiando il parametro generico width: a fronte di ogni valore n scelto, attraverso l'utilizzo del report di sintesi, sono stati ricavati i seguenti termini:

- numero di slices, relativo dunque all'area occupata;
- minimum period (inteso come reciproco della massima frequenza di funzionamento), relativo dunque al ritardo.

Si sono inoltre utilizzati due registri per i valori in ingresso ed in uscita, in modo tale da evitare eventuali ritardi dovuti all'utilizzo di blocchi I/O dell'FPGA che avrebbero potuto alterare i risultati dell'esperimento. I risultati, in funzione del numero di bit, sono riportati in fig.2. Si noti come, nel caso dell'area, i risultati siano perfettamente coerenti con l'andamento lineare teorico già descritto precedentemente. Nel caso del minimum period, invece, l'andamento risulta migliore nel caso pratico che in quello teorico: ciò è dovuto al fatto che, in fase di sintesi, il tool effettua un'ottimizzazione dell'architettura del componente, sfruttando a pieno le matrici di interconnessione tra i CLB presenti nell'FPGA per ridurre i ritardi del circuito.

```
[group style=group size=2 by 1,horizontal sep=2cm, yticklabel style=font=, xticklabel style=font=] [legend style=font=, anchor=north, at=(0.70,0.16), xmin=0,xmax=128, ymin = 0, ymax = 900, grid=major, width=0.5height=,xlabel= Numero di bit, ylabel=Numero di slice] coordinates (0,0) (4, 19) (8, 42) (16, 96) (32, 227) (64,411) (128, 844); [legend style=anchor=north, at=(0.50,0.95), xmin=0,xmax=128, ymin = 0, ymax = 5, grid=major, width=0.5height=, xlabel= Numero di bit, ylabel=Minimum period (ns)] coordinates (0,0) (4, 1.429) (8, 2.054) (16, 2.351) (32, 2.848) (64, 3.690) (128, 4.130);
```

images/grafici-sintesi.png

Figure 2: Grafici dei risultati ottenuti post-sintesi in funzione del numero di bit.