Name:	***************************************
Roll No.:	
Invigilator's Signature:	
	EW)/SEM-1/M-101/2010-11 0-11
MATHEM	IATICS – I
Time Allotted: 3 Hours	Full Marks: 70
The figures in the mar	gin indicate full marks.
Candidates are required to give as far a	their answers in their own words as practicable.
GRO	UP - A
(Multiple Choice 1. Choose the correct alternate	tives for any ten of the following: $10 \times 1 = 10$
then $\begin{bmatrix} 0 & \alpha & \beta \\ \beta & 0 & 0 \\ 1 & -\alpha & \alpha \end{bmatrix}$ a) 6 c) -6 ii) If $y = e^{ax+b}$, then (a) ae^{b} c) $a^{b}e^{ax}$	b) $\frac{3}{2}$ d) 3. $y_5)_0 =$ b) $a^5 e^b$ d) none of these.
1165	[Turn over

iii) If Rolle's theorem is applied to $f(x) = x(x^2 - 1)$ in [0, 1], then C =

a) 1

b) (

- c) $-\frac{1}{\sqrt{3}}$
- d) $\frac{1}{\sqrt{3}}$.

iv) If u + v = x, uv = y, then $\frac{\partial (u, v)}{\partial (x, y)} =$

al u-v

b) u

c) u+v

d) $\frac{u}{v}$

v) The value of $\int_{-\pi/2}^{\pi/2} \sin^7 \theta \ d\theta$ is

- a) $\frac{6.4.2}{7.5.3.1}$
- b) $\frac{\lfloor 6}{ \mid 7}$

c) 0

d) $\frac{2.(6.4.2)}{7.5.3.1}$.

vi) The sequence $\left\{ (-1)^n \frac{1}{n} \right\}$ is

- a) convergent
- b) oscillatory
- c) divergent
- d) none of these.

1165

vii) If
$$\vec{\alpha} = 3\hat{i} - 2\hat{j} + \hat{k}$$
, $\vec{\beta} = 2\hat{i} - \hat{k}$, then $(\vec{\alpha} \times \vec{\beta})$. $\vec{\alpha}$ is equal to

- a) $(1+\hat{j}+\hat{k})$
- b) 1+ k

c) $\hat{i} - \hat{k}$

d) 0.

- a) symmetric
- b) skew-symmetric
- c) singular
- d) orthogonal.
- ix) The value of t for which

 $\overrightarrow{f} = (x + 3y) \hat{i} + (y - 2z) \hat{j} + (x + tz) \hat{k}$ is solenoidal is

a) 2

b) - 2

c) 0

- d) 1.
- x) The distance between two parallel planes x + 2y z = 4and 2x + 4y - 2z = 3 is
 - a) $\frac{5}{\sqrt{24}}$

b) $\frac{5}{24}$

c) $\frac{11}{\sqrt{24}}$

d) none of these.

1165

3

[Turn over

- xi) In the M.V. theorem $f(h) = f(o) + hf^{\dagger}(oh)$; $0 < \theta < 1$ if $f(x) = \frac{1}{1+x}$ and h = 3, then value of θ is
 - a) 1

b) $\frac{1}{3}$

c) $\frac{1}{\sqrt{2}}$

- d) none of these.
- xii) The series $\sum \frac{1}{np}$ is convergent if
 - a) $p \ge 1$

b) p > 1

c) p < 1

d) $p \leq 1$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. If
$$y = (x^2 - 1)^n$$
, then show that

$$(x^2-1)y_{n+2} + 2xy_{n+1} - n(n+1)y_n = 0$$
. Hence find $y_n(0)$.

3. Using M.V.T. prove that

$$x > \tan^{-1} x > \frac{x}{1 + x^2}, \ 0 < x < \pi/2.$$

1165

4. Show that

$$\begin{bmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1+d \end{bmatrix} = abcd \left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right).$$

5. Test the nature of the series

$$\left(\frac{1}{3}\right)^2 + \left(\frac{1 \cdot 2}{3 \cdot 5}\right)^2 + \left(\frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7}\right)^2 + \dots$$

6. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors, then show that

$$\left[\overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{b} \times \overrightarrow{c} \quad \overrightarrow{c} \times \overrightarrow{a}\right] = [a \ b \ c]^{2}.$$

7. If
$$u = \tan^{-1} \frac{x^2 - y^2}{x - y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \sin 2u$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- $3 \times 15 = 45$
- 8. a) Determine the conditions under which the system of equations x + y + z = 1, x + 2y z = b, $5x + 7y + az = b^2$, admits of
 - i) only one solution
 - ii) no solution
 - iii) many solutions.

1165

5

[Turn over

- b) Find the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
- c) Find whether the following series is convergent:

$$\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots\ldots$$

- 9. a) If $f(x) = x^2$, $g(x) = x^3$ on [1, 2], is Cauchy's mean value theorem applicable? If so, find ξ .
 - b) If $I_n = \int \frac{\cos n\theta}{\cos \theta} d\theta$, show that $(n-1) \left(I_n + I_{n-2} \right) = 2 \sin (n-1) \theta.$ Hence evaluate $\int \left(4 \cos^2 \theta 3 \right) d\theta.$
 - c) If $r = |\overrightarrow{r}|$, where $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$, prove that $\overrightarrow{\nabla} (r^n) = nr^{n-2} \overrightarrow{r}.$
- 10. a) Find $\frac{\partial (u, v)}{\partial (r, \theta)}$, where $u = x^2 2y^2$, $v = 2x^2 y^2$ $\frac{\partial (r, \theta)}{\partial (r, \theta)}$ and $x = r \cos \theta$, $y = \sin \theta$.

1165

- b) Verify Green's theorem for $\overrightarrow{F} = (xy + y^2)^1 + x^2$ where the curve C in bounded by y = x and $y = x^2$.
- c) Evaluate: $\int_{0}^{a} \int_{0}^{x} \int_{0}^{y} x^3 y^2 z dz dy dx.$
- 11. a) Find the maxima and minima of the function $x^3 + y^3 3x + 12y + 20$. Also find the saddle point.
 - b) State Cayley- Hamilton theorem and verify the same for the matrix $A = \begin{bmatrix} 1 & 2 \\ \cdot 2 & -1 \end{bmatrix}$. Find A^{-1} and A^{8} .
 - c) Show that Curl $\nabla f = 0$,

where
$$f(x, y, z) = x^2y + 2xy + z^2$$
.

12. a) Given the function = $\frac{xy(x^2 - y^2)}{x^2 + y^2}$, $(x, y) \neq (0, 0)$ = 0 , (x, y) = (0, 0)

Find from definition f_{xy} (0, 0) and f_{yx} (0, 0) . Is $f_{xy} = f_{yx}$?

b) Integrate by Charging the order of integration

$$\int_{0}^{a} \int_{x^2/a}^{2a-x} xy \, dy \, dx.$$

c) If F(p, v, t) = 0, show that

$$\left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_{v \text{ constant}} \times \left(\frac{\mathrm{d}v}{\mathrm{d}p}\right)_{t \text{ constant}} \times \left(\frac{\mathrm{d}t}{\mathrm{d}v}\right)_{p \text{ constant}} = -1.$$