Chapter 1 预备知识

复数基本知识

复数的三种表示方法: $z = x + iy = re^{i\theta}$

复数相等: 实部和虚部都相等

模
$$r=\sqrt{x^2+y^2}=|z|$$

幅角 $\theta = Arg z = arg z + 2k\pi$,是一个集合,每个元素相差 2π ,其中在 $(-\pi, \pi]$ 的 $\theta_0 = arg z$ 称为辐角主值。

- $\mathbf{1}. \, \theta_0 = arg \, z \in (-\pi, \pi]$
- 2. arg 0, arg ∞ 无意义
- 3. 辐角主值可以直接看成平面上的点的对应角,而 $\arctan \frac{y}{x} \in (-\frac{\pi}{2}, \frac{\pi}{2})$ 不行。所以二者有一个类似于分段函数的对应关系式。

欧拉公式: $e^{i\theta} = \cos \theta + i \sin \theta$

复数的运算

复数的加减法——向量的加减法

乘法: $|z_1z_2|=r_1r_2=|z_1||z_2|$; $Arg\ z_1z_2=Arg\ z_1+Arg\ z_2$

除法: $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$

 $Argrac{z_1}{z_2}=Arg~z_1-Arg~z_2$

deMoivre公式: $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

乘方: $z^n = r^n(\cos n\theta + i\sin n\theta) = r^n e^{in\theta}$

开方: $\sqrt[n]{z} = \sqrt[n]{|z|} e^{i\frac{argz+2k\pi}{n}}, k = 0, 1, \cdots, n-1$

k只取0到n-1的n个值,这是因为k取其他整数时,得到的值必是上述n个值的重复出现

Chapter 2解析函数

复变函数

复变函数: w = f(z) = f(x + iy) = u(x, y) + iv(x, y)

极限:
$$\lim_{z o z_0}f(z)=A\Leftrightarrow \lim_{x o x_0,y o y_0}u(x,y)=u_0, \lim_{x o x_0,y o y_0}v(x,y)=v_0$$

连续:
$$\lim_{z \to z_0} f(z) = f(z_0) \Leftrightarrow orall \epsilon > 0$$
, $\exists \ \delta(\varepsilon) > 0$, $\ \ \, \pm 0 < |z-z_0| < \delta$ 时, $|f(z)-f(z_0)| < \varepsilon$

⇔对应的实函数u,v分别连续(左极限=右极限= $f(z_0)$)

在闭区域 \overline{G} 中连续的函数有两个重要性质:

- 1. |f(z)|在 \overline{G} 中有界,并达到它的上下界。
- 2. f(z)在 \overline{G} 中一致连续,即对于任意 $\varepsilon>0$,存在与z无关的 $\delta(\varepsilon)>0$,在 \overline{G} 中的任何两点 z_1,z_2 ,只要满足 $|z_1-z_2|<\delta$,就有 $|f(z_1)-f(z_2)|<\varepsilon$.

若两函数在 z_0 连续,则其 $+,-\times,\div$ (分母 $\neq 0$),复合运算后,在点 z_0 仍连续。

求导:
$$f'(z_0) = \lim_{\Delta z o 0} rac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

微积分回忆内容

连续可导和可微

连续	$f(x_0+\Delta x)=f(x_0)+o(\Delta x)$
偏导数	$f(x_0+\Delta x,y_0)=f(x_0,y_0)+rac{\partial f}{\partial x}\Delta x+o(\Delta x)$
	$f(x_0,y_0+\Delta y)=f(x_0,y_0)+rac{\partial f}{\partial y}\Delta y+o(\Delta y)$
多元可微	$f(x_0+\Delta x,y_0+\Delta y)=f(x_0,y_0)+rac{\partial f}{\partial x}\Delta x+rac{\partial f}{\partial y}\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2})$

1、偏导数存在且偏导数连续,一定可微。

- 2、可微一定可导,可导不一定可微。
- 3、一般看不可导:沿着两条不同方向线趋近某点,不一样推出矛盾

解析性

定义:

\$f(z)\$在\$z_0\$的某个邻域内的**每一点可导** \$\Leftrightarrow\$ \$f(z)\$在\$z_0\$点解析/正则

\$f(z)\$在区域D内的每一点可导 \$\Leftrightarrow\$ \$f(z)\$在区域D内解析/正则

t=1 \$\Leftrightanrow\$ \$f(z)\$在D内的任意点t=1 \$z_0\$ (存在t=1 \$z_0\$的一个邻域) 处均可展开为收敛的幂级数

奇点:不解析的点。

孤立奇点: \$D(z_0,\delta)\$内的唯一奇点。

判别法:

- 同时满足:
 - ①u(x,y),v(x,y)在(x,y)点的邻域内(或D内)可微
 - ②Cauchy-Riemann条件(C-R条件)

\$

\left \{

\begin{array}{}

\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\

\frac{\partial u }{\partial y}=-\frac{\partial v}{\partial x}

\end{array}

\right.

\$

注意: 如果满足条件的是孤立的点, 那么只能说f(z)在该点上可导, 而不解析。

- 解析函数的复合函数(加、减、乘、除等解析函数)仍为解析函数;
- 反函数解析法则:设w = f(z)在区域D内单叶解析, $(f^{-1}(w))' = \frac{1}{f'(z)} = \frac{1}{f'[f^{-1}(w)]}$

单叶函数:在区域D上解析的单值复变函数f(z),若对D中任意不同的两点 z_1,z_2 ,有: $f(z_1) \neq f(z_2)$,则说f(z)为D上的单叶函数。

• $f(z) = \bar{z}$ 处处不可微,处处不解析

解析函数 f(z) 退化为常数的充分条件:

- - 1. 导数恒为0 (?)
 - 2. 解析函数的实部、虚部、幅角、模中有1恒为常数
 - 3. $\overline{f(z)}$ 在D上解析

则f(z)在D内恒为常数。

• 另若f(z)在整个复平面解析,见柳维尔定理解析性。

小结:函数 f(x) 在区域D解析的等价条件有:

- 1. 函数 f(x) 在区域 D内可导;
- 2. Re(f),Im(f)在区域D内可微且满足Cauchy-Riemann条件;
- 3. 函数 f(x) 在区域 D内连续且积分与路径无关;
- 4. 函数 f(x) 在区域 D内可展开为幂级数。

调和函数

定义: 如果实函数U(x,y)在区域D内有二阶连续偏导数并满足拉普拉斯方程 $\Delta U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial u^2} = 0, inD,$ 则称U(x,y)为D内的调和函数

定理: f(z) = u(x,y) + iv(x,y)是区域D内的解析函数则u(x,y), v(x,y)在D内均为调和函数

常见初等函数

全部初等函数(多项式函数、指数函数、三角函数、对数函数、幂函数……)在相应的定义域上都是解析的。

指数函数: $w = e^z = e^{x+iy} = e^x(\cos y + i\sin y)$

求导等同实指数函数: $(e^z)' = e^z$ (dz = d(x + iy))

在整个复平面上处处解析。

 e^z 为指数函数、则

 $1.e^{z+w}=e^z\cdot e^w$ 对所有 $z,w\in\mathfrak{C}$ 成立,所以 $(e^z)^n=e^{zn}$

 $2.e^z \neq 0$ 如果z=x为实数,当x > 0, $e^z > 1$, x < 0, $e^z < 1$

 $3.e^z$ 是周期函数,其周期 $T=2n\pi i$ (n为整数, $n\neq 0$)

$$4.e^{rac{\pi}{2}i}=i,e^{\pi i}=-1,e^{rac{3\pi}{2}i}=-i,e^{2\pi i}=1$$

 $5.e^z = 1$ 的充分必要条件是 $z = 2n\pi i$ (n为整数)

$$w=Lnz=lnz+i2k\pi=ln|z|+iArgz=(ln|z|+iargz)+2ki\pi=ln|z|+i(argz+2k\pi)$$

对数函数Lnz是多值函数,有无穷多个分支,k=0时的分支称为对数函数的主支,记:

Lnz = ln|z| + iargz——对数函数主支

显然, $Lnz = lnz + i2k\pi$

基本性质:

$$egin{aligned} Ln(z_1z_2) &= Lnz_1 + Lnz_2 \ Ln(rac{z_1}{z_2}) &= Lnz_1 - Lnz_2(z_2
eq 0) \end{aligned}$$

在原点和负实轴上不解析。

$$Ln(z)' = \frac{1}{z}$$

幂函数: $w=z^{\mu}=e^{\mu Ln\,z}=e^{\mu ln\,z}\cdot e^{2k\pi\mu i},\mu\in C$

幂函数的求导公式: $(z^{\mu})' = \mu z^{\mu-1}$

 $w=z^a$ 的多值性:

- 1. a 为整数——单值函数(左因式为主值,右因式为定值1)
- 2.a 为 p/q——有限值函数;特别地,a 为 1/n——n 值函数
- 3. a 为无理数/虚部不为0的复数——无穷多值

在原点和负实轴上不解析。(可以看作指数函数和对数函数的复合函数。)

三角函数和双曲函数:

\$

\sin z =\frac{e^{iz}-e^{-iz}}{2i}\\
\cos z =\frac{e^{iz}+e^{-iz}}{2}\\
sh z=\frac{e^z-e^{-z}}{2}\\
ch z=\frac{e^z+e^{-z}}{2}
\$

在整个复平面上处处解析。(可以看作指数函数的复合函数。)

和角公式:

$$ch(a+b) = cha \ chb + sha \ shb$$

 $sh(a+b) = sha \ chb + cha \ shb$

性质:

 $1.\sin z, \cos z$ 是以 2π 为周期的周期函数; shz, chz是以 $2\pi i$ 为周期的周期函数

 $2.\sin z$, shz为奇函数; $\cos z$, chz为偶函数

3.一些恒等式仍然成立:

具体需要额外注意的是:

$$ch^2z - sh^z = 1, shz + chz = e^z \ sh(z_1 + z_2) = shz_1chz_2 + chz_1shz_2 \ ch(z_1 + z_2) = chz_1chz_2 + shz_1shz_2$$

4.与三角函数的关系:

\$
sh\iz=isinz;\ch\iz=cosz\\sin\iz=ish\z;\cos\iz=chz
\$

 $5.|\sin z|, |\cos z|$ 不是有界函数