What is claimed is:

1	1.	A position sensor comprising:							
2		a frame;							
3		a spool rotatably mounted to the frame;							
4		a cable windable about the spool and having a distal end adapted to be							
5	affixed to an	object to be sensed, wherein the spool rotates as the cable winds and							
6	unwinds in relation to movement of the object, the spool operable to travel along a								
7	substantially!	inear path in response to the rotational movement of the spool;							
8		and a sensing means adapted to sense the position of the spool along its							
9	substantially	linear path.							
1	2.	The position sensor of claim 1 wherein the sensing means includes a Hall-							
2	effect transdu	cer operably disposed to a target magnet movable in cooperation with the							
3	movement of	the spool.							
1	3.	The position sensor of claim 2 wherein the Hall-effect transducer is							
2	mounted to th	ne exterior of said frame.							
1	4.	The position sensor of claim 1 wherein the spool travels along a linear							
2	path that is pa	arallel to the rotational axis of the spool.							
1	5.	The position sensor of claim I wherein the spool has a threaded							
2	engagement v	with the frame to cause the linear travel of the spool as the spool rotates.							

1

2

3

1

2

3

- 1 6. The position sensor of claim 1 wherein the spool has a threaded extension 2 that is threadedly engaged with a threaded opening in the frame.
- The position sensor of claim 6 wherein the frame has a bushing having threads formed therein and the threaded extension has mating threads.
- 1 8. The position sensor of claim 1 wherein the pitch of the threaded
 2 engagement causes the spool to travel a distance along its linear path about the width of
 3 the cable for each 360 degrees of rotation of the spool.
 - 9. The position sensor of claim 6 wherein the sensor includes a backlash mechanism to prevent backlash within the threaded engagement between the threaded extension and the frame.
 - 10. The position sensor of claim 9 wherein the backlash mechanism comprises a spring adapted to create a constant bias on the threaded extension to force the threaded extension against the threaded opening in the frame to prevent backlash therebetween.
- 1 11. The position sensor of claim 9 wherein the backlash mechanism comprises 2 a spring adapted to create a constant bias on the rotatable spool to force the threaded 3 extension against the threaded opening in the frame to prevent backlash therebetween.
- The position sensor of claim 10 wherein the sensing means comprises a 1 12. position of the spool. 2 sensor affixed to the arm to sense the

1	13. The position sensor of claim 12 wherein there is a magnet affixed to the									
2	frame and the sensor comprises a Hall effect sensor that cooperates with the magnet to									
3	sense the position of the arm.									
1	14. The position sensor of claim 1 wherein a recoil spring biases the rotational									
2	movement of the spool to cause the cable to wind up on the spool.									
1	15. The position sensor of claim 14 wherein the recoil spring has one end									
2	affixed to the rotatable spool and another end is fixed with respect to the frame.									
1	16. The position sensor of claim 1 wherein the recoil spring is a spiral spring									
2	having an outer end and an inner end and wherein the outer end is affixed to the rotatable									
3	spool and the inner end is fixed with respect to the frame.									
l	17. The position sensor of claim 1 wherein the inner end of the spiral spring is									
2	affixed to a hub that is rotatably fixed with respect to the frame but is movable linearly									
3	along with the linear travel of the spool.									
l	18. The position sensor of claim 17 wherein the spool has a hollowed out area									
2	and the spiral spring is located within the hollowed out area within the spool.									
1	19. The position sensor of claim 18 wherein a cover plate covers the hollowed									
2	out area enclosing the spiral spring within the spool.									
1	20. A position sensor, comprising a frame, a spool rotatably affixed within the									
2	frame about a central axis of rotation, a feed point opening in said frame located in close 16									

- 3 proximity to the spool, and a cable passing through the feed point opening and adapted to
- 4 be wound around the spool to form a plurality of individual windings adjacent to but not
- 5 overlapping each other, the spool adapted to move linearly along its axis of rotation as the
- 6 cable is wound or unwound about the spool
- 1 21. The position sensor of claim 20 wherein the spool is threadedly engaged to
- 2 the frame.
- 1 22. The position sensor of claim 20 wherein the spool has a threaded
- 2 extension extending therefrom and which is threadedly engaged through a threaded
- 3 opening in the frame.
- 1 23. The position sensor of claim 22 wherein the linear movement of the spool
- 2 through one full rotation is about one cable width.
- The position sensor of claim 22 wherein the extension has male threads
- 2 that interengage female threads formed in the frame

1

25.

2	constant force against the threaded extension to prevent backlash in the threaded								
3	engagement between the threaded extension and the frame.								
l	26. The position sensor of claim 23 wherein the recoil spring has an outer end								
2	affixed to the spool and an inner end that is prevented from rotating but can move linearly								
3	with respect to the frame.								
1	27. The position sensor of claim 26 wherein inner end is affixed to a hub that								
2	is linearly movable but is prevented from rotational movement with respect to the frame.								
I	28. The position sensor of claim 27 wherein the hub is affixed to the frame by								
2	means of at least one pin that extends between the hub and the frame and the at least one								
3	pin slidingly interfits in the hub to allow the hub to move linearly with respect to the								
4	frame.								
1	29. A method of operating a sensor comprising a rotatable spool and a cable								
2	windable about the spool, the cable having a distal end adapted to be affixed to an object								
3	to be sensed, comprising the steps of:								
4	linearly translating the spool in correlation to the rotational movement of the								
5	spool.								
ì	30. The method of claim 29 wherein the linear translation of the spoo								
2	maintains cable windings in substantial alignment with the distal end.								
	10								

The position sensor of claim 20 wherein a backlash mechanism creates a

7

8

9

10

3	31.	The	method	of	claim	29	further	comprising	the	step	of	temperature
4	compensating	a sigi	nal provi	ded	by the	sen	sor.					

- 5 32. The method of claim 29 further comprising the step of offset adjusting the sensing means.
 - 33. The sensor of claim 1 wherein the sensing means further includes a magnet in moveable cooperation with the rotating spool and adapted to translate linearly proximate the Hall effect sensor such that the Hall effect sensor provides a position related signal relative to a position of the magnet.
- 11 34. The sensor of claim 33 further comprising an adjustment mechanism to 12 adjust an offset between the Hall effect sensor and the magnet.
- 13 35. The sensor of claim 1 wherein the sensing means includes temperature sensitive elements, the sensor further comprising a temperature compensation element.
- 15 36. The sensor of claim 35 wherein the temperature compensation element includes an electronic compensation circuit.
- The sensor of claim 35 wherein the compensation element comprises a temperature sensitive metal.
- 19 38. The sensor of claim 33 further comprising a reference Hall-effect chip
 20 mounted in fixed relation to the magnet and a circuit operable to compensate for a
 21 difference in outputs from the Hall-effect sensor and the reference Hall-effect sensor.