under Graduate Homework In Mathematics

MarkovProcess

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

Beijing Normal University

ROBEM I Assume $(\mathscr{F}_t : t \geq 0, t \in \mathbb{R})$ is a filtration. For $t \geq 0$ we let $\mathscr{F}_{t+} := \bigcap_{s>t} \mathscr{F}_s$. Prove that $\mathscr{F}_t \subset \mathscr{F}_{t+}$ and $(\mathscr{F}_{t+} : t \geq 0)$ is a filtration.

- 1. Since $(\mathscr{F}_t : t \geq 0, t \in \mathbb{R})$ is a filtration, $\forall s > t$, $\mathscr{F}_s \supset \mathscr{F}_t$, then by the definition of \mathscr{F}_{t+} , $\forall s > t$, $\forall x \in \mathscr{F}_t$, $x \in \mathscr{F}_s$, so $x \in \mathscr{F}_{t+}$. Therefore, $\mathscr{F}_t \subset \mathscr{F}_{t+}$.
- 2. Since $\forall s > t$, \mathscr{F}_s is a σ -algebra, so it is obvious that \mathscr{F}_{t+} is a σ -algebra. $\forall r > t$, $\forall s > r$, $\mathscr{F}_s \supset \mathscr{F}_r \supset \mathscr{F}_t$, then $\bigcap_{s>r} \mathscr{F}_s \supset \bigcap_{s>t} \mathscr{F}_s$, that is $\mathscr{F}_{r+} \supset \mathscr{F}_{t+}$.

ROBEM II Assume $(X_t : t \ge 0, t \in \mathbb{R})$ is a stochastic process on probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Prove that $\forall s, t \ge 0, \varepsilon > 0, \{\rho(X_s, X_t) \ge \varepsilon\} \in \mathscr{F}$.

Lemma 1. $\{\rho(X_s, X_t) < \varepsilon\} = \bigcup_{g \in D} \{\rho(X_s, q) + \rho(X_t, q) < \varepsilon\}, \text{ where } D := E \cap Q^d, E = R^d.$

- 证明. 1. Since $\rho(X_s, X_t) < \rho(X_s, q) + \rho(X_t, q) < \varepsilon$, then $\{\rho(X_s, X_t) < \varepsilon\} \subset \bigcup_{q \in D} \{\rho(X_s, q) + \rho(X_t, q) < \varepsilon\}$,
 - 2. Only need to prove that if $\rho(X_s, X_t) < \varepsilon$, then $\exists q \in D, \rho(X_s, q) + \rho(X_t, q) < \varepsilon$. Since D is dense in E, $\exists q \in D$ s.t. $\rho(X_s, q) \leq \frac{\varepsilon \rho(X_s, X_t)}{4}$, so $\rho(X_t, q) + \rho(X_s, q) \leq \rho(X_t, X_s) + 2\rho(X_s, q) \leq \rho(X_t, X_s) + \frac{\varepsilon \rho(X_s, X_t)}{2} < \varepsilon$.

Lemma 2. $(\Omega, \mathscr{F}, \mathbb{P})$ is a probability space, (E, \mathscr{E}) is a measurable space, (E, ρ) is a distance space. $(X_t : t \geq 0, t \in \mathbb{R})$ is a stochastic process from $(\Omega, \mathscr{F}, \mathbb{P})$ to (E, \mathscr{E}) . If (E, ρ) is separable, then $\mathscr{B}(E)^2 = \mathscr{B}(E^2)$. Moreover, if $\mathscr{E} = \mathscr{B}(E)$, then $\forall \varepsilon > 0, s, t \geq 0, \{\rho(X_s, X_t) \geq \varepsilon\} \in \mathscr{F}$.

- 近明. 1. Let \mathscr{C} be all the open set of (E, ρ) , $\mathscr{B}(E)$ be the Borel algebra of (E, ρ) . Then $\mathscr{B}(E) = \sigma(\mathscr{C})$, where $\sigma(\mathscr{C})$ means the σ algebra generated from \mathscr{C} . Then $\mathscr{B}(E^2) = \sigma(\{A \times B : A, B \in \mathscr{C}\}) \supset \sigma(\{A \times E : A \in \mathscr{C}\}) = \sigma(\mathscr{C}) \times E = \mathscr{B}(E) \times E$. By the same way, we can get that $E \times \mathscr{B}(E) \subset \mathscr{B}(E^2)$. $\forall A, B \in \mathscr{B}(E), A \times B$, then $A \times B = (A \times E) \cap (E \times B) \in \mathscr{B}(E) \times E \cap E \times \mathscr{B}(E) \subset \mathscr{B}(E^2)$. Therefore, $\mathscr{B}(E)^2 = \sigma(\{A \times B : A, B \in \mathscr{B}(E)\}) \subset \mathscr{B}(E^2)$. Since (E, ρ) is separable, then $\exists \mathscr{D} \subset \mathscr{C}$, which is a countable topology base of (E, ρ) . Then $\forall A, B \in \mathscr{C}, A \times B \subset \sigma(\mathscr{D}^2)$, and $\sigma(\mathscr{D}^2) \subset \mathscr{B}(E^2)$, so $\mathscr{B}(E^2) = \sigma(D^2)$. Besides, oboviously $\sigma(\mathscr{D}^2) \subset \mathscr{B}(E)^2$. Therefore, $\mathscr{B}(E^2) \subset \mathscr{B}(E)^2$. Then $\mathscr{B}(E^2) = \mathscr{B}(E)^2$.
 - 2. Since $\{(x,y) \in E^2 : \rho(x,y) \geq \varepsilon\} \in \mathcal{B}(E^2) = \mathcal{B}(E)^2$, then $\exists A \in \mathcal{B}(E)^2$ s.t. $\{(x,y) \in E^2 : \rho(x,y) \geq \varepsilon\} = A$. Let $\mathcal{H} := \{B \in \mathcal{B}(E)^2 : \{(X_s,X_t) \in B\} \in \mathcal{F}\}$. Next, we will prove $\mathcal{H} = \mathcal{B}(E)^2$.
 - (a) \mathscr{H} is a σ -algebra: obviously, $E^2 \in \mathscr{H}$. If $B \in \mathscr{H}$, then $\{(X_s, X_t) \in B\} \in \mathscr{F}$. So $\{(X_s, X_t) \in B^c\} = \{(X_s, X_t) \in B\}^c \in \mathscr{F}$. Thus, $B^c \in \mathscr{F}$. If $(B_n \in \mathscr{F} : n \in \mathbb{N}^+)$, then $\{(X_s, X_t) \in B_n\} \in \mathscr{F}$, then $\{(X_s, X_t) \in \bigcup_{n \in \mathbb{N}^+} B_n\} = \bigcup_{n \in \mathbb{N}^+} \{(X_s, X_t) \in B_n\} \in \mathscr{F}$.
 - (b) $\mathscr{H} \supset \{A_1 \times A_2 : A_1, A_2 \in \mathscr{B}(E)\}:$ Since $\{(X_s, X_t) \in A_1 \times A_2\} = \{X_s \in A_1\} \cap \{X_t \in A_2\} \in \mathscr{F}$, then $A_1 \times A_2 \in \mathscr{F}$.

Then, $\{\rho(X_s, X_t) \ge \varepsilon\} = \{(X_s, X_t) \in A\} \in \mathscr{F}.$

SOLION. 1. First way to solve the problem:

Since \mathscr{F} is a σ -algebra, then it is equal to prove that $\forall s,t\geq 0, \varepsilon>0, \{\rho(X_s,X_t)<\varepsilon\}\in\mathscr{F}$. By Lemma 1 and D is countable, only need to prove that $\forall q\in D, \{\rho(X_s,q)+\rho(X_t,q)<\varepsilon\}\in\mathscr{F}$. And obviously, $\{\rho(X_s,q)+\rho(X_t,q)<\varepsilon\}=\bigcup_{p\in D\cap[0,\varepsilon]}\{\rho(X_s,q)< p,\rho(X_t,q)<\varepsilon-p\}$. So only need to prove that $\{\rho(X_s,q)< p,\rho(X_t,q)<\varepsilon-p\}\in\mathscr{F}$. Since $\{\rho(X_s,q)< p,\rho(X_t,q)<\varepsilon-p\}=\{\rho(X_s,q)< p\}\cap\{\rho(X_t,q)<\varepsilon-p\}, \text{ and } (X_t:t\geq 0,t\in\mathbb{R}) \text{ is a stochastic process, then } \{\rho(X_s,q)< p\}, \{\rho(X_t,q)<\varepsilon-p\}\in\mathscr{F}.$

2. Second way to solve the problem:

Since $E \subset \mathbb{R}^d$, $\mathscr{E} = E \cap \mathscr{B}^d$, so (E, ρ) can be a separable distance space, where ρ is the distance in \mathbb{R}^d . By Lemma 2, we get $\{\rho(X_s, X_t) \geq \varepsilon\} \in \mathscr{F}$.

ROBEM III Let $\mathscr{D}_X := \{\mu_J^X : J \in S(I)\}$ be the family of finite-dimentional distributions of a stochastic process $(X_t : t \geq 0, t \in \mathbb{R})$. $\forall (s_1, s_2) \in S(I)$ and $J = (t_1, \dots, t_n) \in S(I)$, write $K_1 := (s_1, s_2, t_1, \dots, t_n) \in S(I)$, $K_2 := (s_2, s_1, t_1, \dots, t_n) \in S(I)$. Take $A_1, A_2 \in \mathscr{E}, B \in \mathscr{E}^n$, prove that

$$\mu_{K_1}^X(A_1 \times A_2 \times B) = \mu_{K_2}^X(A_2 \times A_1 \times B)$$

and

$$\mu_{K_1}^X(E \times E \times B) = \mu_{K_2}^X(E \times E \times B) = \mu_J^X(B)$$

SOLTION. By the definition of $\mu_J^X(H) := \mathbb{P}\{(X_{t_1}, \cdots, X_{t_n}) \in H\}$, where $J = (t_1, \cdots, t_n) \in S(I)$, $H \in \mathcal{F}$. Then

$$\mu_{K_{1}}^{X}(A_{1} \times A_{2} \times B)$$

$$= \mathbb{P}(\{(X_{s_{1}}, X_{s_{2}}, X_{t_{1}}, \cdots, X_{t_{n}}) \in A_{1} \times A_{2} \times B\})$$

$$= \mathbb{P}(\{X_{s_{1}} \in A_{1}, X_{s_{2}} \in A_{2}, (X_{t_{1}}, \cdots, X_{t_{n}}) \in B\})$$

$$= \mathbb{P}(\{(X_{s_{2}}, X_{s_{1}}, X_{t_{1}}, \cdots, X_{t_{n}}) \in A_{1} \times A_{2} \times B\})$$

$$= \mu_{K_{2}}^{X}(A_{1} \times A_{2} \times B)$$

$$(1)$$

Especially, when $A_1 = A_2 = E$, the equation is true as well. So only need to prove: $\mu_{K_1}^X(E \times E \times B) = \mu_J^X(B)$. And

$$\mu_{K_{1}}^{X}(E \times E \times B)
= \mathbb{P}(\{X_{s_{1}} \in E, X_{s_{2}} \in E, (X_{t_{1}}, \dots, X_{t_{n}}) \in B\})
= \mathbb{P}(\{X_{s_{1}} \in E\}) \mathbb{P}(\{X_{s_{2}} \in E\}) \mathbb{P}(\{(X_{t_{1}}, \dots, X_{t_{n}}) \in B\})
= \mathbb{P}(\{(X_{t_{1}}, \dots, X_{t_{n}}) \in B\})
= \mu_{I}^{X}(B)$$
(2)

ROBEM IV Assume $(\tau_k : k \in \mathbb{N}^+)$ is an i.i.d sequence of r.v. with exponential distribution with parameter $\alpha > 0$. Let $S_n := \sum_{k=1}^n \tau_k$. For $t \geq 0, t \in \mathbb{R}$, let:

$$N_t := \sum_{n=1}^{\infty} \mathbb{1}_{\{S_n \le t\}}, X_t := \sum_{n=1}^{\infty} \mathbb{1}_{\{S_n < t\}}$$

Prove that N and X are modifications of each other, but they are not indistinguishable.

SOUTHON. Since $S_n = \sum_{k=1}^n \tau_k$, where $(\tau_k : k \in \mathbb{N}^+)$ is i.i.d., then by SLLN $\frac{S_n}{n} \to \mathbb{E}(\tau_1) < \infty$. So $S_n \to \infty$, then N_t, X_t are all well-defined r.v.. Since $\forall t \geq 0, t \in \mathbb{R}$, $\mathbb{P}(\{N_t \neq X_t\}) = \mathbb{P}(\{S_n = t, \exists n \in \mathbb{N}^+\})$. Since $(\tau_k, k \in \mathbb{N}^+)$ are all continuous i.i.d. r.v., then $(S_n, n \in \mathbb{N}^+)$ are all continuous r.v.. Therefore, $\mathbb{P}(\{S_n = t, \exists n \in \mathbb{N}^+\}) = \sum_{n=1}^{\infty} \mathbb{P}(\{S_n = t\}) = 0$. So N and X are modifications. And $\forall \omega \in \Omega$, $t := \tau_1(\omega)$, $N_t = 1 \neq X_t = 0$, then $\{N_t = X_t, \forall t \geq 0, t \in \mathbb{R}\} = \emptyset$. Thus, N and X are not indistinguishable.

ROBEM V Assume T is non-negetive r.v. with distribution function F continuous on \mathbb{R} . Let $X_t = \mathbb{1}_{\{T \leq t\}}$. Prove that X is stochastically continuous.

SOUTION. $\forall \varepsilon > 0, t \geq 0, t \in \mathbb{R}, \ s \to t^+, \ \mathbb{P}(|X_s - X_t| \geq \varepsilon) = \mathbb{P}(\{X_s - X_t \geq \varepsilon\}) = \mathbb{P}(\{X_s = 1, X_t = 0\}) = \mathbb{P}(\{t < T \leq s\}) = F(s) - F(t) \to 0$. In the same way, we can get $s \to t^-$, $\mathbb{P}(|X_s - X_t| \geq \varepsilon) \to 0$. Therefore, X is stochastically continuous.

ROBEM VI Assume $I = \mathbb{Z}^+$, then the stochastic process $X = (X_0, X_1, \cdots)$ is a r.v. from Ω to E^{∞} . Define the distribution of X, μ_X , as follows:

$$\mu_X(A) = \mathbb{P}(X \in A), A \in \mathscr{E}^{\infty}$$

Then stochastic process X, Y are equivalent $\iff \mu_X = \mu_Y$.

SOUTION. 1. If X, Y are equivalent, so $\forall J \in S(\mathbb{N}), \forall A \in E^{|J|}, \mu_J^X(A) = \mathbb{P}(\{(X_{t_1}, \cdots, X_{t_n}) \in A, (t_1, \cdots, t_n) = J\}) = \mathbb{P}(\{(Y_{t_1}, \cdots, Y_{t_n}) \in A\})$. Since $\mathscr{E}^{\infty} = \sigma(\mathscr{C})$, where $\mathscr{C} := \{A_J \times \prod_{i \in J^c} E_i : J \in S(\mathbb{N})\}$ is a semialgebraic set. Then $\forall A_J \times \prod_{i \in J^c} E_i \in \mathscr{C}$,

$$\mu_{X}(A)$$

$$=\mathbb{P}(X \in A_{J} \times \prod_{i \in J^{c}} E_{i})$$

$$=\mathbb{P}((X_{t_{1}}, \dots, X_{t_{n}}) \in A_{J}, X_{i} \in E_{i}, i \in J^{c})$$

$$=\mathbb{P}((X_{t_{1}}, \dots, X_{t_{n}}) \in A_{J})$$

$$=\mu_{J}^{X}(A)$$

$$=\mu_{J}^{Y}(A)$$

$$=\mu_{Y}(A)$$
(3)

By the measure extension theorem, $\mu_X(A) = \mu_Y(A), \forall A \in \mathscr{E}^{\infty}$.

2. If $\mu_X(A) = \mu_Y(A), \forall A \in \mathscr{E}^{\infty}$, then by the discussion above, we get easliy X, Y are equivalent.

 a_{\cdot}