MATH 104 – Final Exam - Fall 2006

1.	Find the area between the curves $y = \cos^2 x$ and $y = \sin^2 x$ for x between 0 and
	the smallest positive value of x for which the two curves intersect.

(A) $\frac{1}{4}$

(B) $\frac{1}{2}$

(C) 1

(D) 2

(E) $\frac{3}{2}$

2. Find the volume of the solid obtained by rotating the region bounded by the curves

$$y = x^{3/2}, \qquad y = 0, \qquad x = 4$$

about the x-axis.

(A) 8π

(C) 64π

(D) 192π

(E) 320π

(F) 1024π

3. What is the volume of a solid of revolution generated by rotating around the y-axis the region enclosed by the graph of $y = e^{-x^2}$, the x-axis, and the lines x = 0 and x = 2?

(B) $\pi(1 - e^{-4})$ (C) πe^{-2} (D) $\pi(1 - e^{-2})$ (E) πe^{4} (F) $\pi(e^{4} - 1)$

4. Evaluate the integral.

$$\int_{1}^{e} x (\ln x)^{2} dx$$

(A) $-\frac{e^2}{4} + e - \frac{1}{4}$ (B) $\frac{e}{6}$ (C) $\frac{e^2}{6}$ (D) $\frac{e^2}{2} - e$ (E) $\frac{e^2}{2} - \frac{e}{2}$ (F) $\frac{e^2}{4} - \frac{1}{4}$

5. Evaluate the integral.

$$\int_0^1 \frac{dx}{(4-x^2)^{3/2}}$$

(A) $\frac{\sqrt{3}}{2}$ (B) $\frac{\sqrt{3}}{4} - \frac{1}{2}$ (C) $\frac{\sqrt{3}}{36} - \frac{1}{32}$ (D) $\frac{\sqrt{3}}{12}$ (E) $\frac{\sqrt{3}}{6} - \frac{1}{4}$ (F) $\frac{\sqrt{3}}{8} - \frac{1}{4}$

6. Evaluate the following integral.

$$\int_3^\infty \frac{dx}{x^2 - 4x + 5}$$

(A) $\frac{\sqrt{3}}{2} + \frac{1}{2}$ (B) $\frac{\sqrt{3}}{2} + \frac{1}{4}$ (C) $\frac{\sqrt{3}}{4} + \frac{1}{4}$ (D) $\frac{\pi}{2}$ (E) $\frac{\pi}{4}$ (F) diverges

7. Calculate the volume of	the solid obtained by rotating	the region between the			
graphs of $y = \frac{1}{x^2 - 3x + 1}$	$\frac{1}{2-3x+2}$ and $y=0$ for $4 \le x \le 10$ around the y-axis.				
(A) $2\pi \ln(8/25)$	(B) $2\pi \ln(8/9)$	(C) $4\pi \ln(8/5)$			

(E) $2\pi \ln(16/5)$

(A)
$$\frac{\pi(2\sqrt{2}-1)}{9}$$

(B)
$$\frac{\pi(\sqrt{2}-2)}{3}$$

(C)
$$\frac{\pi(2\sqrt{3}-1)}{9}$$

(F) $2\pi \ln(16/3)$

(D)
$$\frac{\pi(\sqrt{3}-2)}{3}$$

(D) $4\pi \ln(8/3)$

(E)
$$\frac{\pi(2\sqrt{2}-\sqrt{3})}{9}$$

(F)
$$\frac{\pi(3\sqrt{2}-2\sqrt{3})}{3}$$

9. Evaluate the improper integral if possible:

$$\int_{2^{10}}^{\infty} \frac{1}{x^{1.1}} \, dx$$

(C) 50

(D)
$$\frac{1}{2}$$
 (E) $\frac{1}{5}$

(F) 25

10. Find the equation for the line tangent to the curve defined by the parameterization $x = 1 + \frac{1}{t}$, $y = t^3 + 3$ (for t > 0) at the point (x, y) = (2, 4).

(A)
$$y = -3x + 10$$

(B)
$$y = -3x + 14$$

(C)
$$y = 3x - 2$$

(D)
$$y = 3x - 8$$

(E)
$$y = -\frac{x}{3} + \frac{14}{3}$$

(F)
$$y = -\frac{x}{3} + \frac{10}{3}$$

11. The curve given parametrically by

$$x = t^3 - t$$
$$y = \sqrt{3}(t^2 - 1)$$

passes through the origin for two different values of t, and hence contains a loop. What is the arc length of the loop?

(B)
$$4\sqrt{2}$$

(C)
$$4\sqrt{3}$$

(E)
$$3\sqrt{2}$$

(F)
$$3\sqrt{3}$$

12. Find the area inside one leaf (i.e., one loop) of the graph of $r = 4 \sin 4\theta$.									
(A)	$\frac{\pi}{8}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{2}$	(D) π	(E) 2π	(F) 4π			
13. Fine	d the limit	t.	$\lim_{x \to 0} \frac{\cos}{e^x}$	$\frac{8x-1}{x-1}$					

(D) 0

(E) 1

14. Find the limit of the sequence
$$\left\{\frac{1}{2}\ln(n^2+1) - \ln(2n+1)\right\}$$
.

(C) -1

(A) -2 (B) $-\ln 2$ (C) 0 (D) $\ln 2$ (E) 2 (F) sequence diverges

15. Determine whether the series is convergent or divergent. If it is convergent, find its sum. $\stackrel{\infty}{\longrightarrow} 1 + 2^n$

$$\sum_{n=1}^{\infty} \frac{1+2^n}{6^n}$$

(A) 1/3 (B) 1/2 (C) 7/10 (D) 3/2 (E) 27/10 (F) divergent

16. How many of the following series converge?

(B) π

$$\sum_{n=1}^{\infty} (\sqrt{2})^n, \qquad \sum_{n=1}^{\infty} \frac{1}{n}, \qquad \sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n, \qquad \sum_{n=1}^{\infty} \frac{2^n - 1}{3^n}, \qquad \sum_{n=1}^{\infty} \frac{n^2}{n^2 + 1}.$$

(A) none of these series converge

(B) just one series converges

(C) two series converge

(A) 1/e

(D) three series converge

(F) no finite limit

(E) four series converge

(F) all five series converge

17. Which statement below is true about the following series?

• (I)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{1+n^2} = \frac{1}{2} - \frac{1}{5} + \frac{1}{10} - \dots$$

• (II)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{1+n^2} = \frac{1}{2} - \frac{2}{5} + \frac{3}{10} - \dots$$

• (III)
$$\sum_{n=2}^{\infty} \frac{(-1)^n \ln n}{1+n^2} = \frac{\ln 2}{5} - \frac{\ln 3}{10} + \frac{\ln 4}{17} - \dots$$

- (A) (I) diverges, (II) converges conditionally, (III) converges absolutely
- (B) (I) diverges, (II) converges absolutely, (III) converges conditionally
- (C) (I) and (III) converge conditionally, (II) converges absolutely
- (D) (I) and (II) converge absolutely, (III) converges conditionally
- (E) (I) and (III) converge absolutely, (II) converges conditionally
- (F) (I) and (III) converge conditionally, (II) diverges
- 18. Find the precise interval of convergence of the series

$$\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n3^n}.$$

$$(A) (-1,1]$$

(B)
$$[-1,1)$$

(C)
$$\left(-\frac{1}{3}, \frac{5}{3}\right]$$

(D)
$$\left[-\frac{1}{3}, \frac{5}{3} \right)$$

(E)
$$\left[0, \frac{4}{3}\right]$$

(F)
$$\left(0, \frac{4}{3}\right]$$

19. Which of the following is the beginning of the Maclaurin series for $\ln (1 + x^3)$?

(A)
$$x^3 - \frac{x^6}{2} + \frac{x^9}{3} - \frac{x^{12}}{4} + \dots$$

(B)
$$\frac{x^3}{3} - \frac{x^6}{6} + \frac{x^9}{9} - \frac{x^{12}}{12} + \dots$$

(C)
$$x^3 - 2x^6 + 3x^9 - 4x^{12} + \dots$$

(D)
$$1 + 2x^3 + 3x^6 + 4x^9 + \dots$$

(E)
$$\frac{x^3}{3} + \frac{x^6}{6} + \frac{x^9}{9} + \frac{x^{12}}{12} + \dots$$

(F)
$$x^3 + \frac{x^6}{2} + \frac{x^9}{3} + \frac{x^{12}}{4} + \dots$$

20. Let $F(x) = \int_0^x e^{-t^2} dt$. Which of the following is the beginning of the Maclaurin series for F?

(A)
$$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

(B)
$$x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \dots$$

(C)
$$x - \frac{x^2}{2} + \frac{x^4}{6} - \frac{x^6}{24} + \dots$$

(D)
$$1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots$$

(E)
$$x - \frac{x^3}{3} + \frac{x^5}{15} - \frac{x^7}{105} + \dots$$

(F)
$$x + \frac{x^3}{3} + \frac{x^5}{15} + \frac{x^7}{105} + \dots$$