Імя, фамилия и номер группы:	

1. По выдаче софта выпишите уравнение ARIMA модели.

2. Рассмотрим уравнение на (y_t) , где (ε_t) — белый шум.

$$y_t - 0.6y_{t-1} - 2y_{t-2} = \varepsilon_t + 3\varepsilon_{t-1}$$

- а) Сколько стационарных и нестационарных решений имеет уравнение?
- б) Являются ли стационарные решения заглядывающими в будущее относительно (ε_t) ?
- 3. Для ETS(AAN) модели известно, что $y_{100}=-3$, $\ell_{100}=-2$, $b_{100}=1$, $\sigma=4$, $\alpha=0.5$, $\beta=0.1$.
 - а) Постройте 95%-й доверительный интервал для y_{102} .
 - б) Выпишите функцию правдоподобия для оценки данной модели по трём наблюдениям 1 .
- 4. Запишите выражение без использования лага

$$\frac{L}{1 - 0.8L + 0.15L^2} y_t$$

5. Идентифицируйте параметры ARIMA модели по уравнению

$$y_t - 0.6y_{t-1} - 0.4y_{t-2} = \varepsilon_t + 0.1\varepsilon_{t-1}$$

6. Рассмотрим стационарный процесс, удовлетворяющий уравнению

$$y_t - 0.8y_{t-1} + 0.12y_{t-2} = 2 + \varepsilon_t + \varepsilon_{t-1}$$

- а) Найдите $E(y_t)$ и $Var(y_t)$;
- б) Первые два значения автокорреляционной и частной автокорреляционной функций.
- 7. Рассмотрим модель $y_i = \beta x_i + u_i$, где $u_i \sim \mathcal{N}(0; \sigma^2)$ и независимы. Известно, что $\sum y_i x_i = -2$, $\sum x_i^2 = 10$, $\sum y_i^2 = 20$, n = 100.

С помощью трёх тестов, LR, LM, W, проверьте гипотезу H_0 : $\beta=2$ и, одновременно, $\sigma=1$.

8. По 1000 наблюдений оценена логит-модель $\hat{\mathbb{P}}(y_i=1)=\Lambda(1.5+0.03i)$. Известно, что $se(\hat{\beta}_1)=0.8$, $se(\hat{\beta}_2)=0.9$, $\widehat{\mathrm{Cov}}(\hat{\beta}_1,\hat{\beta}_2)=-0.001$.

Постройте 95%-й доверительный интервал для $\mathbb{P}(y_i=1\mid i=10).$

 $^{^{1}}$ Конечно, безумие оценивать ETS(AAN) по трём наблюдениям, смысл этого пункта в понимании, как устроена функция правдоподобия

9. Известны результаты оценивания методом максимального правдоподобия без ограничений и с двумя версиями ограничений

Ограничение	\hat{a}	\hat{b}	$d\ell/da$	$d\ell/db$	ℓ	\hat{I}
нет	6	9	?	?	-1000	$ \begin{array}{c c} \hline \begin{pmatrix} 9 & -1 \\ -1 & 4 \end{pmatrix} $
a = 7	?	8	-3	?	-1100	$\begin{pmatrix} 8 & -1 \\ -1 & 3 \end{pmatrix}$
a+b=10	3	?	2	4	-1300	$ \begin{pmatrix} 7 & -1 \\ -1 & 5 \end{pmatrix} $

- а) С помощью LM теста проверьте гипотезу H_0 : a = 7;
- б) С помощью W теста проверьте гипотезу H_0 : a + b = 10;
- 10. Рассмотрим модель $y_i=\beta_1+\beta_2x_i+u_i$, где $u_i\sim\mathcal{N}(0;\sigma^2i^2)$. Найдите эффективную оценку $\hat{\beta}_1$ и $\hat{\beta}_2$.
- 11. Рассмотрим модель $y_i = \beta x_i + u_i$, где структура гетероскедастичности неизвестна. Известно, что x' = (1, 2, 2, -3), y' = (1, 3, 3, -1). Найдите $se(\hat{\beta}), se_{HC0}(\hat{\beta}), se_{HC3}(\hat{\beta})$.
- 12. Проверьте выполнение критерия ранга и критерия порядка для каждого уравнения

$$\begin{cases} Z_t = X_t + Y_t \\ X_t = \beta_1 + \beta_2 R_t + \beta_3 W_t + \beta_4 P_t + \beta_5 S_t + u_t \\ Y_t = \alpha_1 + \alpha_2 W_t + \alpha_3 Z_t + \alpha_4 Q_t + \varepsilon_t \end{cases}$$

Эндогенные переменные: X_t, Y_t, Z_t .

13. Рассмотрим результаты оценивания классификационного алгоритма:

y_i	\hat{p}_i
0	0.6
0	0.2
a	0.9
1	0.8
1	0.5

- а) Нарисуйте ROC кривую и найдите AUC в зависимости от параметра a.
- б) Найдите вероятность того, что случайно выбранное наблюдение класса 1 будет иметь \hat{p} выше, чем у случайно выбранного наблюдения класса 0.