TD n°2 Théorie de la mesure

Polisano Kévin

10 octobre 2010

Exercice 1

Notons $A = \{x \in X, f(x) \ge a\}$ on a alors $a\chi_A \le f$.

On intègre sur X:

$$a \int_X \chi_A \leqslant \int_X f \Leftrightarrow \boxed{\mu(A) \leqslant \frac{1}{a} \int_X f}$$

Exercice 2

Supposons f non finie presque partout, ainsi il existe un ensemble B non négligeable ($\mu(B) > 0$) sur lequel f prend au moins une valeur infinie.

 $B=\cap_n A_n$ convient. D'après l'exercice précédent :

$$\mu(A_n) \leqslant \frac{1}{n} \int_{\mathbb{R}} |f| d\mu$$

Par ailleurs la suite (A_n) est décroissante donc :

$$\mu(B) = \mu(\cap_n A_n) = \lim_{n \to +\infty} \mu(A_n)$$

Ainsi en passant à la limite on a :

$$0 < \mu(B) \leqslant \lim_{n \to +\infty} \frac{1}{n} \int_{\mathbb{R}} |f| d\mu$$

D'où

$$\boxed{\int_{\mathbb{R}} |f| d\mu = +\infty}$$

Par conséquent f n'est pas intégrable sur \mathbb{R} .

Par contraposée on a le résultat voulu.

Exercice 3

Notons $f_n(x) = ne^{-n|x|}$, (f_n) est une suite de fonctions Riemann intégrables sur \mathbb{R} car $ne^{-n|x|} = O(\frac{1}{n^2})$.

La suite (f_n) converge simplement vers la fonction nulle.

S'il existait une telle fonction $g \in L^1$ majorant les f_n , alors les hypothèses du théorème de convergence dominée serait vérifiées et on aurait :

$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n d\mu = \int_{\mathbb{R}} f d\mu$$

Or un rapide calcul (les f_n étant paires) montre que :

$$\int_{\mathbb{R}} f_n d\mu = 2$$

Contradiction. On en conclut qu'il n'existe pas de telle fonction g.

Exercice 4

Considérons la suite de terme général $\alpha_n = \frac{1}{n}$ et :

$$f_n: x \longmapsto f_n(x) = f(x)\sin(\frac{\pi}{x})^{\alpha_n}$$

Et notons $B = \{\frac{1}{k}, k \in \mathbb{N}^*\}$. Les fonctions f_n sont nulles sur l'ensemble B, qui est négligeable car union dénombrable de singletons.

Donc la suite (f_n) admet une limite presque partout et :

$$\forall n \in \mathbb{N}^*, |f_n(x)| \leqslant f(x)$$

où f est une fonction Lesbegue intégrable.

D'après le théorème de convergence dominée on a donc :

$$\lim_{n \to +\infty} \int_{[0,1]} f_n d\mu = \int_{[0,1]} f d\mu$$

Exercice 6

Notons $S_N(x) = \sum_{N=1}^{N} |f_n(x)|$. La suite de fonctions (S_N) est naturellement croissante.

Pour x fixé, la suite $(S_N(x))$ soit converge soit diverge vers $+\infty$ (dans tous les cas sa limite $\ell(x) \in \mathbb{R}$).

Donc la suite de fonctions (S_N) converge vers une fonction $f:\Omega\to\bar{\mathbb{R}}$.

Les deux hypothèses du théorème de convergence monotone sont ainsi vérifiées, donc :

$$\int_{\Omega} \lim_{N \to +\infty} F_N d\mu = \lim_{N \to +\infty} \int_{\Omega} F_N d\mu \iff \int_{\Omega} \sum_n |f_n| d\mu = \sum_n \int_{\Omega} |f_n| d\mu < +\infty$$

On en déduit que la fonction $x \mapsto \sum_n |f_n(x)|$ est intégrable donc d'après l'exercice 2 qu'elle est finie p.p, autrement dit que $\sum_n |f_n|$ converge p.p sur Ω . La série de fonctions est absolument convergente donc convergente (car \mathbb{R} est complet).

$$\sum_{n} f_{n} \text{ converge p.p sur } \Omega$$

Notons maintenant $P_N = \sum_{-N}^{N} f_n$, on a :

$$\forall N \in \mathbb{N}, \forall x \in \Omega, |P_N(x)| \leqslant \sum_{-N}^N |f_n(x)| \leqslant \sum_{n} |f_n(x)|$$

Et on a vu que la fonction $x \mapsto \sum_n |f_n(x)| \in L^1(\Omega)$.

On a donc (P_N) qui converge simplement vers $\sum_n f_n$ finie p.p, et les P_N dominées par une fonction de $L^1(\Omega)$ donc le théorème de convergence dominée s'applique :

$$\lim_{N \to +\infty} \int_{\Omega} P_N d\mu = \int_{\Omega} \sum_n f_n d\mu \Leftrightarrow \sum_n \int_{\Omega} f_n d\mu = \int_{\Omega} \sum_n f_n d\mu$$

Exercice 8

1. Posons $f(x) = \ln(\cos(x)) + \frac{x^2}{2}$, $f'(x) = -\tan(x) + x$, $f''(x) = -\tan^2(x) \le 0$.

Ainsi f' décroissante d'où $f'(x) \leq f'(0) = 0$, donc f décroissante et :

$$\forall x \in [0, \frac{\pi}{2}], f(x) \leqslant f(0) = 0 \iff \ln(\cos(x)) \leqslant -\frac{x^2}{2}$$

2. On effectue le changement de variable affine $x = \frac{y}{\sqrt{n}}$ on obtient :

$$\int_0^{\frac{\pi}{2}\sqrt{n}} \cos^n(\frac{y}{\sqrt{n}}) dy$$

Posons $f_n(y) = \cos^n(\frac{y}{\sqrt{n}})\chi_{[0,\frac{\pi}{2}\sqrt{n}]}$, les $f_n \in L^1(\mathbb{R})$ et par ailleurs :

$$|f_n(x)| \leqslant \exp\left(n\ln\cos\frac{y}{\sqrt{n}}\right)\chi_{[0,\frac{\pi}{2}\sqrt{n}]} \stackrel{1}{\leqslant} e^{-\frac{y^2}{2}}$$

Le théorème de convergence dominée s'applique :

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n d\mu = \int_0^{+\infty} (\lim_{n \to +\infty} f_n) d\mu$$

Enfin $\cos(\frac{y}{\sqrt{n}}) = 1 - \frac{y^2}{2n} + o(\frac{1}{n^2})$. Par composition de DL:

$$\ln \cos \frac{y}{\sqrt{n}} = -\frac{y^2}{2n} + o(\frac{1}{n^2}) \Rightarrow n \ln \cos \frac{y}{\sqrt{n}} = -\frac{y^2}{2} + o(\frac{1}{n})$$

On en déduit que $\lim_{n\to +\infty} n \ln\cos\frac{y}{\sqrt{n}} = -\frac{y^2}{2}$ et par continuité de l'exponentielle on en déduit que $\lim_{n\to +\infty} f_n(y) = e^{-\frac{y^2}{2}}$ d'où finalement :

$$\lim_{n \to +\infty} \sqrt{n} \int_0^{\frac{\pi}{2}} \cos^n(x) d\mu = \int_0^{+\infty} e^{-\frac{x^2}{2}} d\mu$$

Exercice 9

1. Posons $f_n(x) = x^p \ln(x)^q \left(1 - \frac{x}{n}\right)^n \chi_{[0,n]}$ de sorte que :

$$\int_0^n x^p \ln(x)^q \left(1 - \frac{x}{n}\right)^n dx = \int_0^{+\infty} f_n(x) dx$$

En passant à l'exponentielle :

$$\left(1 - \frac{x}{n}\right)^n = \exp\left[n\ln\left(1 - \frac{x}{n}\right)\right]$$

Comme au voisinage de l'infini $\ln\left(1-\frac{x}{n}\right)\sim -\frac{x}{n}$ l'argument de l'exponentielle a pour limite -x et par continuité on a montré que :

$$\lim_{n \to +\infty} \left(1 - \frac{x}{n}\right)^n = e^{-x} \Rightarrow \lim_{n \to +\infty} f_n(x) = x^p \ln(x)^q e^{-x}$$

Donc (f_n) converge simplement vers la fonction $f: x \mapsto x^p \ln(x)^q e^{-x}$.

Par ailleurs une rapide étude de fonction montre que :

$$\forall x \in [0, 1[, \ln(1-x) \leqslant -x]$$

Pour x > 0, puisque \mathbb{R} est archimédien il existe $n_0(x)$ tel que $\forall n \geq n_0(x), 0 \leqslant \frac{x}{n} < 1$.

$$\forall x > 0, \exists n_0(x), \forall n \ge n_0(x), \ln\left(1 - \frac{x}{n}\right) \le \frac{x}{n} \Leftrightarrow \left(1 - \frac{x}{n}\right)^n \le e^{-x}$$

remarque: En fait la dernière inégalité est elle vraie pour tout $n \in \mathbb{N}$, puisque quand bien même $\frac{x}{n} \geqslant 1$ alors $\left(1 - \frac{x}{n}\right)^n \leqslant 0 < e^{-x}$. Donc on a la majoration suivante des f_n :

$$\forall n \in \mathbb{N}, \forall x > 0, |f_n(x)| \leq x^p \ln(x)^q e^{-x} = f(x)$$

Posons p = -1 + e avec e > 0, et écrivons :

$$x^{-1+\frac{e}{2}}(x^{\frac{e}{2q}}\ln(x))^q e^{-x}$$

On sait que $x^a \ln(x) \to 0$ quand $x \to 0$ où $a = \frac{e}{2q} > 0$ donc le deuxième terme tend vers 0 quand $x \to 0$. Et $b = -1 + \frac{e}{2} > -1$ donc au voisinage de 0 on a :

$$f(x) = o(x^b)$$
 avec $b > -1$

Donc f est intégrable en 0. Et $\lim_{x\to +\infty} f(x) = 0$ donc f intégrable sur $[0, +\infty[$.

Les hypothèses du théorème de convergence dominée s'applique et on en conclut :

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} f(x) dx$$