(c) $\pi \operatorname{rad} s^{-1}$	(d)	$4~\pi~{\rm rad}~s^{-1}$	
The ratio of angular of a watch is (a) 1:12 (b)	•		
The wheel of a toy car rotates about a fixed axis. It slows down from 400 rps to 200 rps in 2 s. Then, its angular retardation (in rad s ⁻²) is (rps = revolutions per second) (a) 200π (b) 100π (c) 400π (d) None of these			
A wheel is rotating at 900 rpm about its axis. When the			

1. The angular speed of a flywheel making 120 rev min⁻¹ is

(a) $2 \pi \text{ rad s}^{-1}$ (b) $4 \pi^2 \text{ rad s}^{-1}$

deceleration. What is the number of revolutions made by it

(b) 40 (c) 32.6 (d) 15.6

after being switched off, assuming constant angular

before coming to rest?

(a) 12.5

a constant speed of 6 ms⁻¹. Its acceleration is (a) zero (b) 120 ms^{-2} (c) 1.2 ms^{-2} (d) 36 ms^{-2} 9. A particle starts moving along a circle of radius $(20/\pi) \text{ m}$ with constant tangential acceleration. If velocity of the particle is 50 m/s at the end of the second revolution after motion has began, the tangential acceleration (in ms⁻²) is

The motion of a particle may be circular, if

(a) $a_r = 0$, $a_t = 0$ (b) $a_r = 0$, $a_t \neq 0$

(c) $a_r \neq 0$, $a_t = 0$ (d) None of these

after and before the speed is changed.

(a) $a_1 > a_2$ (b) $a_1 = a_2$

6. A body is moving in a circular path with acceleration a. If its

(a) 1:4 (b) 1:2 (c) 2:1 (d) 4:17. The circular orbit of two satellites have radii r_1 and r_2 respectively ($r_1 < r_2$). If angular velocities of satellites are same, then their centripetal accelerations are related as

(c) $a_1 < a_2$ (d) Data insufficient

(a) 1.6 (b) 4 (c) 15.6 (d) 31.25

10. Let a_r and a_t represent radial and tangential accelerations.

8. A particle is moving on a circular track of radius 30 cm with

speed gets doubled, find the ratio of centripetal acceleration