1 Handbuch

In diesem Kapitel wird die Syntax der Inputdatei eindeutig definiert. Dabei werden alle möglichen Einträge erläutert, sowie deren hierarchische Struktur dargestellt. Die einzelnen Tags werden gesondert betrachtet, wobei auf die Schreibweise, den Vorläufer (engl. parent) und die zugehörigen Attribute eingegangen wird. Die Anzahl der möglichen Instanzen gibt die Notwendigkeit bzw. die Optionalität der einzelnen Tags wieder.

Kommt in der hierarchischen Struktur ein Name der Syntax (engl. Tag) mehrmals vor, so werden nur beim ersten Mal seine weiteren Unterebenen dargestellt. Die wiederholenden Tags sind alle identisch aufgebaut, allerdings dient die verkürzte Darstellung der besseren Übersicht.

roadNetwork -segments -junctions	0 1 2
Liunctions	2
-tJunction	3
-mainRoad	4
-road	5
-type	6
-planView	6
-referenceLine	7
-geometry	8
-line	9
-arc	9
-spiral	9
-elevationProfile	6
-elevationPoint	7
-elevationRadius	7

-lateralProfile	6
-lateralPoint	7
-lanes	6
-laneSection	7
-leftLanes	8
-lane	9
-laneWidth	10
-constantWidth	11
-laneWidening	11
-restrictedArea	12
-changeMark	13
-laneDrop	11
-restrictedArea	12
-roadMark	10
-material	10
-centerLine	8
-rightLanes	8
-accessRoad	4
-road	5
-intersectionPoint	4
-coupler	4
-couplerArea	5
-streetBorder	6
-laneBorder	7

-connection	5
-roadLink	6
-laneLink	7
-objects	4
-signals	5
-markings	6
-position	7
-absolute	8
-relative	8
-repeat	8
-trafficRules	6
-roadSigns	7
-position	8
-trafficLights	7
-position	8
-controller	7
-control	8
-streetLighting	6
-position	7
-roadworks	6
-position	7
-busStops	5
-onTheStreet	6
-position	7

-busCape	6
-position	7
-busStopBay	6
-position	7
-parkingSpace	5
-alongLine	6
-position	7
-angleToLine	6
-position	7
-trafficIsland	5
-mitVerschwenkung	6
-position	7
-ohneVerschwenkung	6
-position	7
-others	5
-area	6
-outerPoint	7
-position	8
-connectingRadius	7
-xJunction	3
-mainRoad	4
-road	5
-accessRoad	4
-road	5

-coupler	4
-intersectionPoint	4
-nJunction	3
-mainRoad	4
-road	5
-accessRoad	4
-road	5
-coupler	4
-intersectionPoint	4
-roundabout	2
-connectingRoad	2
-road	3
-interfaces	1
-segmentLink	2
-roadLink	3
-closeRoadNetwork	1
-connectingPoints	2

roadNetwork

Der oberste umschließende Tag der Datei beschreibt das gesamte Straßennetz.

Schreibweise <roadNetwork>...

Vorläufer none Instanzen 1 Attribute none

segments

Umfasst die Summe aller einzelnen Segmente. Darunter fallen Kreuzungen, Kreisverkehre und Verbindungsstraßen.

Schreibweise <segments>...</segments>

Vorläufer < roadNetwork>

Instanzen 1 Attribute none

junctions

Die Kreuzungen sind der Oberbegriff für T-, X- und N-Kreuzungen.

Schreibweise <junctions>...</junctions>

Vorläufer <segments>

Instanzen 1

Attribute none

tJunction

Dieser Tag beinhaltet die Informationen des Segmentes einer T-Kreuzung. Über die Angabe des Typs der T-Kreuzung können vom Tool Voreinstellungen für die Parameter getroffen werden. Dabei ist die Anzahl der Haupt- und Nebenstraßen relevant.

Schreibweise <tJunction>...</tJunction>

Vorläufer < junctions>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	String		JT1, JT2, JT3, 	Identifikationsbezeichnung der T-Kreuzung
type	String		M1A,3A	Typ der T-Kreuzung. Eine Hauptstraße und eine Nebenstraße (M1A). Drei Nebenstraßen (3A)

xJunction

Dieser Tag beinhaltet die Informationen des Segmentes einer X-Kreuzung. Über die Angabe des Typs der X-Kreuzung können vom Tool Voreinstellungen für die Parameter getroffen werden. Dabei ist die Anzahl der Haupt- und Nebenstraßen relevant.

Schreibweise <xJunction>...</xJunction>

Vorläufer < junctions>

Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
id	String		JX1, JX2, JX3, 	Identifikationsbezeichnung der X-Kreuzung
type	String		M2A, 4A, 2M	Typ der X-Kreuzung. Eine Hauptstraße und zwei Nebenstraße (M2A). Vier Nebenstraßen (4A). Zwei Hauptstraßen (2M)

nJunction

Dieser Tag beinhaltet die Informationen des Segmentes einer N-Kreuzung.

Schreibweise <nJunction>...</nJunction>

Vorläufer < junctions>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	String		JN1, JN2, JN3,	Identifikationsbezeichnung der N-Kreuzung

roundabout

Dieser Tag beinhaltet die Informationen des Segmentes eines Kreisverkehrs. Über die Angabe des Kreisverkehrstyps können vom Tool Voreinstellungen für die Parameter getroffen werden. Dabei werden nach der Größe der Kreisverkehre und der daraus resultierenden Verkehrsführung unterschieden.

Schreibweise < roundabout>...</roundabout>

Vorläufer <segments>

Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
id	String		RA1, RA2, RA3,	Identifikationsbezeichnung der Kreisverkehre
type	String		MR, LR, BR	Typ der Kreisverkehre. Minikreisverkehr mit überfahrbarer Mittelinsel (MR - mini Roundabout).

		Kleiner Kreisverkehr (LR - large Roundabout).
		Großer Kreisverkehr mit Lichtsignalanlage (BR
		- big Roundabout)

connectingRoad

Dieser Tag beinhaltet die Informationen des Segmentes einer Verbindungsstraße.

Schreibweise <connectingRoad>...</connectingRoad>

Vorläufer <segments>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	String		CR1, CR2, CR3,	Identifikationsbezeichnung der Verbindungsstraße

mainRoad

Im folgende Tag wird eine Hauptstraße beschreiben. Dabei werden der Straße, dessen Startund Endpunkt Identifikationsbezeichnungen zugewiesen.

Schreibweise <mainRoad>...</mainRoad>

Vorläufer <tJunction> / <nJunction> / <nJunction> / <roundabout> /

<connectingRoad>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		M1, M2, M3,	Identifikationsbezeichnung der Hauptstraße
idStart	string		M1S, M2S,	Identifikationsbezeichnung des Startpunktes der Hauptstraße
idEnd	string		M1E, M2E,	Identifikationsbezeichnung des Endpunktes der Hauptstraße

accessRoad

Dieser Tag beschreibt eine Nebenstraße. Dabei werden der Straße, dessen Start- und Endpunkt Identifikationsbezeichnungen zugewiesen.

Schreibweise <accessRoad>...</accessRoad>

Vorläufer <tJunction> / <nJunction> / <roundabout> /

<connectingRoad>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		A1, A2, A3,	Identifikationsbezeichnung der Nebenstraße
idStart	string		A1S, A2S,	Identifikationsbezeichnung des Stratpunktes der Nebenstraße
idEnd	string		A1E, A2E,	Identifikationsbezeichnung des Endpunktes der Nebenstraße

road

In diesem Tag wird eine individuelle Straße und die zugehörigen Parameter beschrieben.

Schreibweise <road>...</road>

Vorläufer <mainRoad> / <accessRoad>

Instanzen 1...n

Attribute Fehler! Verweisquelle konnte nicht gefunden werden.

Name	Тур	Einheit	Wertebereich	Beschreibung
name	string			Straßenname
length	double	m	[0, ∞[Länge der Straße

type

Der Typ einer Straße dient zur Kategorisierung und liefert weiterhin für das Tool relevante Voreinstellungen der Parameter. Ein Straßentyp ist so lange gütig, bis ein neuer definiert wird.

Schreibweise <type>...</type>

Vorläufer <**road**>
Instanzen 1...n

Name	Тур	Einheit	Wertebereich	Beschreibung
sOffset	double	m	[0, ∞[Startposition des Straßentyps in s-Koordinaten
type	string		Spielstraße, Stadtstraße, Landstraße, Autobahn, Fahrradweg, Gehweg	Typ der Straße

planView

Dieser Tag beschreibt den Verlauf der Straße aus der Vogelperspektive.

Schreibweise <planView>...</planView>

Vorläufer < road>

Instanzen 1 Attribute none

referenceLine

In diesem Tag wird der geometrische Verlauf der Referenzlinie in der x/y-Ebene beschrieben.

Schreibweise <referenceLine>...</referenceLine>

Vorläufer <planView>

Instanzen 1 Attribute none

geometry

Unter diesem Tag werden die Geometrien der Referenzlinie festgelegt. Die Geometrien entsprechen Geraden, Kreisbögen oder Spiralen. Eine Geometrie wird immer an das Ende oder den Anfang einer bestehenden Geometrie gesetzt. Damit eine Geometrie im Ursprung des straßenbezogenen Koordinatensystems startet, muss für die Parameter "connectToEndOf" und "connectToStartOf" der Wert "0" angegeben werden.

Für die Angabe der Radien wird festgelegt, dass positive Radien eine Linkskrümmung bewirken und negative Radien eine rechtsgekrümmte Kurve darstellen.

Schreibweise <geometry>...</geometry>

Vorläufer < referenceLine>

Instanzen 1...n

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		G1, G2, G3,	Identifikationsbezeichnung der
				Geometrie
length	double	m	[0, ∞[Länge der Geometrie
connectToEndOf	string		0, G1, G2,	Beginne Geometrie im Endpunkt
			G3,	der genannten Geometrie
connectToStartOf	string		0, G1, G2,	Beginne Geometrie im Startpunkt
			G3,	der genannten Geometrie

line

Dieser Tag beschreibt den Geometrietyp einer Geraden, als Teil der Referenzlinie.

Schreibweise line.../>

Vorläufer < geometry>

Instanzen 0...n Attribute none

arc

Der Kreisbogen wird über einen konstanten Radius definiert und wird als geometrischer Teil der Referenzlinie genutzt.

Schreibweise <arc.../>
Vorläufer <**geometry**>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
R	double	m]-∞, ∞[Konstanter Radius des Kreisbogens

spiral

Im folgenden Tag wird das geometrische Element der Klothoide beschrieben. Diese besitzt eine konstant ändernde Krümmung und wird hier über ihren Start und Endradius definiert

Schreibweise <spiral.../>
Vorläufer <**geometry**>

Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
Rs	double	m]-∞, ∞[Radius im Startpunkt der Klothoide
Re	double	m]-∞, ∞[Radius im Endpunkt der Klothoide

elevationProfile

Der Tag beschreibt das Höhenprofil der Straße.

Schreibweise <elevationProfile>...</elevationProfile>

Vorläufer <**road>**Instanzen 0...n
Attribute none

elevationPoint

In diesem Tag werden Höhenpunkte definiert, wobei die einzelnen Höhenwerte in Abhängigkeit der mitbewegten s-Koordinate angegeben werden.

Schreibweise <elevationPoint.../>
Vorläufer <elevationProfile>

Instanzen 2...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		EP1, EP2, EP3,	Identifikationsbezeichnung des Höhenpunktes
S	double	m	[0, ∞[s-Koordinate des Höhenpunktes
Z	double	m]-∞, ∞[z-Koordinate des Höhenpunktes (Höhenmeter)

elevationRadius

Jeder Punkt des Höhenverlaufs wird durch Kuppen und Wannen ausgerundet. Die Ausrundung erfolgt hier idealisiert durch Kreisbögen. Eindeutig definiert wird dies durch die Angabe eines Höhenpunktes und dem dazugehörigen Ausrundungsradius.

Schreibweise <elevationRadius.../>
Vorläufer <elevationProfile>

Instanzen 1...n

Name	Тур	Einheit	Wertebereich	Beschreibung
pointld	string		EP1, EP2, EP3,	Identifikationsbezeichnung des Höhenpunktes, der ausgerundet werden soll
R	double	m	Abhängig von Straßenkategorie und Planungsgeschwindigkeit	Radius der Ausrundung

lateralProfile

Das Querprofil der Straße kann in Abhängigkeit der mitlaufenden Koordinate s definiert werden. Der laterale Verlauf wird durch lineare, quadratische oder kubische Funktionen beschrieben.

Schreibweise | Schreibweise | Schrei

Vorläufer <**road>**Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		LP1, LP2,	Identifikationsbezeichnung
			LP3,	des Querprofils
S	double	[0, ∞[s-Koordinate des Querprofils
degree	int		1,2,3	Der Grad der Funktion, die das Querprofil beschreibt

lateralPoint

Das Querprofil wird durch die Angabe von Stützstellen berechnet. Die Stützstellen können durch einzelne Koordinaten oder Steigungen des Querprofils angegeben werden. Abhängig vom Grad der Funktion des Querprofils sind dementsprechend viele Stützstellen notwendig.

Schreibweise <lateralPoint.../>
Vorläufer <lateralProfile>

Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		LP1, LP2, LP3,	Identifikationsbezeichnung des lateralen Punktes
t	double	m	[0, ∞[t-Koordinate des Höhenpunktes
h	double	m]-∞, ∞[z-Koordinate des Höhenpunktes des Querprofils
gradient	double	0	[-π, π]	Steigung des Querprofils

lanes

In diesem Tag werden die parallel zur Referenzlinie verlaufenden Fahrbahnen definiert.

Schreibweise <lanes>...</lanes>

Vorläufer <road>

Instanzen 1

Attribute none

Visualisierung

laneSection

Eine Straße lässt sich in einzelne Streckenabschnitte gliedern. Innerhalb eines Streckenabschnittes sollte die Anzahl der Fahrbahnen konstant sein. Ein Streckenabschnitt ist solange gültig, bis ein neuer Streckenabschnitt definiert wird.

Schreibweise <laneSection>...</laneSection>

Vorläufer <lanes>
Instanzen 1...n

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string			Identifikationsbezeichnung des Streckenabschnittes
S	double		[0, ∞[Beginn eines neuen Streckenabschnittes, angegeben in s-Koordinaten

Visualisierung

leftLanes

Die Fahrbahnen auf der linken Seite bzw. die oberhalb der Referenzlinie werden für eine bessere Übersicht zu einer Gruppe zusammengefasst.

Schreibweise <leftLanes>...</leftLanes>

Vorläufer < laneSection>

Instanzen 0...1 Attribute none

lane

Dieser Tag befasst sich mit der genauen Definition der Eigenschaften einer Fahrbahn.

Schreibweise <lane>...</lane>

Vorläufer <leftLanes> / <centerLine> / <rightLanes>

Instanzen 1...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
laneld	string]- ∞, ∞[Identifikationsbezeichnung der Fahrbahn
type	string		Fahrstreifen, Radweg, Gehweg, Sperrfläche, Parkstreifen, Seitenstreifen	Typ der Fahrbahn

laneWidth

Der Tag umfasst die Fahrbahnbreite und dessen Veränderungen über die Länge.

Schreibweise <a href="mailto:schreib

Vorläufer <lane>

Instanzen 1

Attribute none

constantWidth

In diesem Tag wird eine konstanten Fahrbahnbreite definiert.

Schreibweise <constantWidth.../>

Vorläufer < laneWidth>

Instanzen 1

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
sOffset	double	m	[0, ∞[Startposition in s-Koordinaten in Abhängigkeit der zugehörigen laneSection
W	double	m	[0, ∞[Breite des Fahrstreifens

laneWidening

Eine Fahrbahnerweiterung wird in Bezug zum mitbewegten Koordinatensystem angegeben. Die Zunahme der Fahrbahnbreite wird über ein Polynom dritten Grades beschrieben. Allein die Information der Länge, über die sich die Fahrbahnbreite bis auf die vollständige Breite aufbauen soll, definiert das Polynom.

Schreibweise <laneWidening>...</laneWidening>

Vorläufer < laneWidth>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
sOffset	double	m	[0, ∞[Startposition des ersten Polynoms in s-Koordinaten in Abhängigkeit der zugehörigen laneSection
ds ₁	double	m	[0, ∞[Länge in s-Koordinaten über die sich die Spurerweiterung bzw. das Polynom aufbauen soll

Visualisierung

restrictedArea

Eine Sperrfläche wird von zwei Polynomen dritten Grades eingeschlossen. Dabei wird das zweite Polynom, wie im vorherigen Abschnitt, durch eine Länge entlang der s-Koordinate bestimmt. Die Markierungen der Sperrfläche lassen sich durch eine Zeichennummer, die in der StVO definiert ist, angeben.

Schreibweise <restrictedArea>...</restrictedArea>
Vorläufer <laneWidening> / <laneDrop>

Instanzen 0...1

Name	Тур	Einheit	Wertebereich	Beschreibung
signNumber	int		In der StVO definierte Nummern	Die Sperrfläche ist in der StVO genormt

sOffset	double	m	[0, ∞[Startposition des zweiten Polynoms in
				s-Koordinaten in Abhängigkeit des
				Startpunktes des ersten Polynoms
ds ₂	double	m	[0, ∞[Länge in s-Koordinaten über die sich
				die Spurerweiterung bzw. das
				Polynom aufbauen soll

Visualisierung

changeMark

Eine Änderung der Sperrflächenmarkierung ist anhand folgender in der Abbildung erläuterten Parametern möglich.

Schreibweise <changeMark.../>
Vorläufer <restrictedArea>

Instanzen 1

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
angle	double	0	[0, ∞[Winkel der Quermarkierung
color	string		weiß, orange, blau, grün	Farbe der Straßenmarkierung
width	double	m	[0, ∞[Breite der Quermarkierungen
spaceBetween	double	m	[0, ∞[Lateraler Abstand zwischen den Quermarkierungen
spaceToSolid	double	m	[0, ∞[Longitudinaler Abstand der Quermarkierungen

Visualisierung

laneDrop

Für eine Fahrbahnverengung gelten die gleichen Bedingungen wie für die Fahrbahnerweiterung. In diesem Fall baut sich die Fahrbahnbreite allerdings über die Länge ab.

Schreibweise <a href="mailto:schreib

Vorläufer <laneWidth>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
sOffset	double	m	[0, ∞[Startposition des ersten Polynoms in s-Koordinaten in Abhängigkeit der zugehörigen laneSection
ds1	double	m	[0, ∞[Länge in s-Koordinaten über die sich die Spurerweiterung bzw. das Polynom abbauen soll

roadMark

Die Angabe der Straßenmarkierungen geht immer von der äußeren Kante der jeweiligen Fahrbahnbreite, betrachtet aus dessen Fahrtrichtung, aus.

Schreibweise <roadMark.../>

Vorläufer <lane> / <markings>

Instanzen 1

Name	Тур	Einheit	Wertebereich	Beschreibung
sOffset	double	m	[0, ∞[Startposition der Längsmarkierung in s-Koordinaten in Abhängigkeit der zugehörigen laneSection
tOffset	double	m	[0, ∞[Startposition der Längsmarkierung in t-Koordinaten in Abhängigkeit der zugehörigen laneSection
type	string		Solid, broken, solid solid, solid broken, broken solid, broken broken	Typ der Straßenmarkierung (Orientierung bei Doppellinien von innen nach außen, Für die Mittellinie von links nach rechts)
color	string		weiß, orange, blau, grün	Farbe der Straßenmarkierung
width	double	m	[0, ∞[Breite der Straßenmarkierung
lengthOfMark	double	m		Länge der der gestrichelten Markierung

material

Durch die Definition eines Fahrbahnmaterials kann die Fahrbahnreibung sowie die Oberflächenrauheit ermittelt werden. Die Angaben für das Material sind so lange gültig, bis für eine s-Koordinate neue Informationen über das Material vorliegen.

Schreibweise <material.../>

Vorläufer <lane>
Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
sOffset	double	m	[0, ∞[Startposition in s-Koordinaten in Abhängigkeit der zugehörigen laneSection
surface	string			Oberflächenmaterial
friction	double		[0, ∞[Reibungswert des Materials

roughness	double	[0, ∞[Oberflächenrauheit des Materials

centerLine

Der Referenzlinie wird eine Fahrbahn zugewiesen, die keine Breite besitzt, nur aus einer Straßenmarkierung besteht und als Mittellinie bezeichnet wird.

Schreibweise <centerLine>...</centerLine>

Vorläufer < laneSection>

Instanzen 0...1 Attribute none

rightLanes

Die Fahrbahnen auf der rechten Seite bzw. die unterhalb der Referenzlinie werden für eine bessere Übersicht zu einer Gruppe zusammengefasst.

Schreibweise <rightLanes>...</rightLanes>

Vorläufer < laneSection>

Instanzen 0...1 Attribute none

intersectionPoint

Zur Erstellung einer Kreuzung aus zwei einzelnen Straßen, ist die Angabe eines Kreuzungsmittelpunktes notwendig. Dafür wird zunächst eine der Straßen fixiert und dessen Koordinatensystem für das gesamte Segment festgelegt. In s-Koordinaten, ausgehend von dem jeweiligen Startpunkt der Straßen, wird auf beiden Straßen die Lage des Kreuzungsmittelpunktes definiert. Durch die Angabe eines Differenzwinkels zwischen den beiden Straßen, können diese eindeutig zueinander positioniert werden.

Schreibweise <intersectionPoint>...</intersectionPoint>

Vorläufer <tJunction> / <xJunction> / <nJunction> / <roundabout>

Instanzen 1...n

Name	Тур	Einheit	Wertebereich	Beschreibung
setReferenceRoad	string			Straße, die als Referenz festgelegt wird, sodass das Koordinatensystem der Straße für das gesamte Segment referenziert wird

adRoadId	string			Straße, die relativ zur Referenzstraße gedreht und verschoben werden soll
angleToReferenceRoad	double	rad	[0, ∞[Winkel, den die Straße zur Referenzstraße besitzen soll
iPOnMainRoad	double	m	[0, ∞[Position des Schnittpunktes auf der Referenzstraße
iPOnAccessRoad	double	m	[0, ∞[Position des Schnittpunktes auf der zu positionierenden Straße

coupler

In diesem Tag wird der Kreuzungsbereich definiert und die Spurführung in einer Kreuzung erstellt.

Schreibweise <coupler>...</coupler>

Vorläufer <tJunction> / <nJunction> / <roundabout>

Instanzen 1...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		CL1, CL2, CL3,	Identifikationsbezeichnung der Fahrbahn

couplerArea

Die Grenzen des Kreuzungsbereiches werden vom Kreuzungsmittelpunkt aus definiert. Diese können sowohl symmetrisch als auch unsymmetrisch ausgeführt sein. Für den symmetrischen Fall reicht die Angabe einer Länge, sodass ausgehend vom Kreuzungsmittelpunkt in jede Straßenrichtung die Grenzen bestimmt werden können.

Schreibweise <couplerArea>...</couplerArea>

Vorläufer <coupler>

Instanzen 1

Name	Тур	Einheit	Wertebereich	Beschreibung
type	string		sym, unsym	Für den symmetrischen (sym) Typen reicht die einmalige Angabe eines sOffsets unter diesem Tag. Für den unsymmetrischen (unsym) Fall müssen die sOffsets für die einzelnen Straßen oder Fahrspuren angegeben werden.
sOffset	double	m	[0, ∞[Startposition in s-Koordinaten ausgehend vom Kreuzungsmittelpunkt

Visualisierung

- **(a)** Symmetrischer Kreuzungsbereich
- **(b)** Unsymmetrisch für jede Straße einzeln
- **(c)** Unsymmetrisch für jede Fahrspur einzeln

streetBorder

Für einen unsymmetrischen Kreuzungsbereich können die Grenzen ausgehend vom Kreuzungsmittelpunkt für jede Straßenrichtung individuell angegeben werden.

Schreibweise <streetBorder>...</streetBorder>

Vorläufer <couplerArea>

Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
roadld	string			Angabe der Straßenbezeichnung auf der die Grenze des Kreuzungsbereiches definiert wird
sOffset	double	m	[0, ∞[Abstand in s-Koordinaten ausgehend vom Kreuzungsmittelpunkt in Richtung der Straße

laneBorder

Der höchste Detaillierungsgrad bei der Definition des Kreuzungsbereiches entsteht durch die individuelle Angabe der Bereichsgrenzen für jede Fahrbahn.

Schreibweise <laneBorder.../>
Vorläufer <streetBorder>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
laneId	string			Angabe der Fahrspurbezeichnung auf der die Grenze des Kreuzungsbereiches definiert wird
sOffset	double	m	[0, ∞[Abstand in s-Koordinaten ausgehend vom Kreuzungsmittelpunkt in Richtung der Fahrspur

connection

In diesem Tag werden die Verbindungsstraßen innerhalb des Kreuzungsbereiches erstellt. Für den Fall, dass alle logischen Verbindungsstraßen erstellt werden sollen erfolgt dies automatisiert durch das Tool.

Eine weitere Möglichkeit für eine vollständige individuelle Gestaltung der Verbindungsstraßen ist die Definition einer eigenständigen Straße für jede Verbindung.

Schreibweise <connection>...</connection>

Vorläufer <coupler>

Instanzen 1

Name	Тур	Einheit	Wertebereich	Beschreibung
type	string		all, single	"all" steht dafür, dass alle möglichen Fahrrouten automatisiert erstellt werden. Für die Erstellung einzelner (single) individueller Straßen ist die Definition der nächsten Tags erforderlich.

roadLink

Für den Fall, dass die Verbindungsstraßen individuell erstellt werden sollen, gilt es zunächst die Verbindungspunkte zu definieren. Die Verbindungspunkte entstehen durch die Schnittpunkte des Kreuzungsbereiches mit den Referenzlinien.

Schreibweise <roadLink>...</roadLink>

Vorläufer < connection>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
fromId	string			Angabe des Punktes einer Straße, die den Start der Verbindungsstraße darstellt
told	string			Angabe der des Punktes einer Straße, die das Ende der Verbindungsstraße darstellt

laneLink

Die Verbindungsstraße wird für jede Fahrbahn der Straße individuell erstellt. Diese besteht aus Geraden und einem Kreisbogen. Durch die Angabe eines Radius, der mindestens erreicht werden soll, lässt sich ein Kreisbogen konstruieren. Dafür werden die Fahrbahnenden tangential in den Kreuzungsbereich verlängert, bis sich jeweils zwei Geraden an den definierten Kreisbogen anschmiegen.

Schreibweise <laneLink.../>
Vorläufer <roadLink>

Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
fromId	string			Angabe der des Punktes einer Fahrbahn, die
				den Start der Verbindungsstraße darstellt
told	string			Angabe der des Punktes einer Fahrbahn, die
				das Ende der Verbindungsstraße darstellt
minR	double	m	[-∞, ∞[Kleinster Radius, den der Kreisbogen der
				Verbindungsstraße besitzen soll

objects

Dieser Tag beinhaltet alle Informationen zu den Objekten eines Segmentes.

Schreibweise <objects>...</objects>

Vorläufer <tJunction> / <nJunction> / <roundabout> /

<connectingRoad>

Instanzen 0...n Attribute none

signals

Objekte, die eine signalisierenden Einfluss auf den Fahrer haben, werden zur besseren Übersicht zu der Gruppe der Signale zusammengefasst.

Schreibweise <signals>...</signals>

Vorläufer <objects>

Instanzen 0...n Attribute none

markings

Dieser Tag beschreibt die Straßenmarkierungen. Darunter fallen hauptsächlich Quermarkierungen, Sondermarkierungen sowie Warnmarkierungen.

Schreibweise <markings>...</markings>

Vorläufer <signals>

Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		MK1, MK2, MK3,	Identifikationsbezeichnung der Markierung
signNumber	int		In der StVO definierte Nummern	In der StVO genormte Markierungen

position

Die Position der einzelnen Objekte wird über diesen Tag bestimmt. Diese kann absolut oder relativ zu Objekten oder Punkten realisiert werden.

Schreibweise <position>...</position>

Vorläufer alle Objekte die positioniert werden

Instanzen 1

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		M1, M2, M3,	Identifikationsbezeichnung der Position

absolute

Bei der absoluten Positionierung werden die Positionskoordinaten aus dem Ursprung des Koordinatensystems des Segmentes angegeben.

Schreibweise <absolute.../>
Vorläufer <absolute.../>

Instanzen 0...1

Name	Тур	Einheit	Wertebereich	Beschreibung
xOffset	double	m	[0, ∞[Startposition in x-Koordinaten in Abhängigkeit des Koordinatensystems des Segmentes und der zugehörigen Referenzstraße
yOffset	double	m]-∞, ∞[Startposition in y-Koordinaten in Abhängigkeit des Koordinatensystems des Segmentes und der zugehörigen Referenzstraße

zOffset	double	m]-∞, ∞[Startposition in z-Koordinaten in Abhängigkeit
				des Koordinatensystems des Segmentes und
				der zugehörigen Referenzstraße
hdg	double	rad]-∞, ∞[Rotation des Objektes um die z-Achse
roll	double	rad]-∞, ∞[Rotation des Objektes um die s-Achse
pitch	double	rad]-∞, ∞[Rotation des Objektes um die t-Achse

relative

Die relative Positionierung bezieht sich auf ein Objekt oder einen bestimmten Punkt des Segmentes.

Instanzen 0...1

Name	Тур	Einheit	Wertebereich	Beschreibung
relativeObjectId	string			Positionierung relativ zum genannten Objekt
idOfStartPoint	string			Positionierung relativ zum genannten Punkt
sOffset	double	m	[0, ∞[Absatnd in s-Koordinaten in Abhängigkeit des gewählten Punktes oder Objektes
tOffset	double	m]-∞, ∞[Absatnd in t-Koordinaten in Abhängigkeit des gewählten Punktes oder Objektes
zOffset	double	m]-∞, ∞[Abstand in z-Koordinaten in Abhängigkeit des gewählten Punktes oder Objektes
hdg	double	rad]-∞, ∞[Rotation des Objektes um die z-Achse
roll	double	rad]-∞, ∞[Rotation des Objektes um die s-Achse

pitch	double	rad]-∞, ∞[Rotation des Objektes um die t-Achse

repeat

In diesem Tag kann ein bereits bestehendes Objekt durch die Angabe eines Richtungsvektors beliebig oft kopiert und angeordnet werden.

Schreibweise <repeat.../>
Vorläufer <position>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
objectId	string			Positionierung relativ zum genannten Objekt
number	int		[1, ∞[Anzahl der wiederholenden Objekte
distance	double	m	[0, ∞[Abstand zwischen zwei Objekten
orientationS	double	m]-∞, ∞[Orientierung des Richtungsvektors in s-Richtung vom Ursprung des ersten Objektes aus
orientationT	double	m]-∞, ∞[Orientierung des Richtungsvektors in t-Richtung vom Ursprung des ersten Objektes aus
orientationZ	double	m]-∞, ∞[Orientierung des Richtungsvektors in z-Richtung vom Ursprung des ersten Objektes aus

trafficRules

Die Verhaltensregeln eines Straßennetzes werden durch Verkehrsschilder, Lichtsignalanlage oder die Rechts-vor-Links-Regelung vorgegeben.

Schreibweise <trafficRules>...</trafficRules>

Vorläufer <signals>

Instanzen 1

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		TR1, TR2, TR3,	Identifikationsbezeichnung der Verkehrsregeln
type	string		LSA, VS, RvL	Typ der Verkehrsregeln Lichtsignalanlage (LSA), Verkehrsschilder (VS), Rechts-vor-Links (RvL)

roadSigns

In diesem Tag werden die Verkehrsschilder eines Straßennetzes über die zugehörigen Zeichennummern der StVO definiert.

Schreibweise <roadSigns>...</roadSigns>

Vorläufer <trafficRules>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		RS1, RS2, RS3,	Identifikationsbezeichnung der Verkehrsschilder
signNumber	int		In der StVO definierte Nummern	Die Verkehrsschilder sind in der StVO genormt

trafficLights

In diesem Tag werden die Lichtsignalanlagen eines Straßennetzes über die zugehörigen Zeichennummern der StVO definiert.

Schreibweise <trafficLights>...</trafficLights>

Vorläufer <trafficRules>

Instanzen 0...n

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		TL1, TL2, TL3,	Identifikationsbezeichnung der Lichtsignalanlagen
signNumber	int		In der StVO definierte Nummern	Die Lichtsignalanlagen sind in der StVO genormt

controller

In einer Steuereinheit werden dynamische Verkehrsschilder und Lichtsignalanlagen zusammengefasst, damit diese über eine Schnittstelle angesprochen werden können.

Schreibweise <controller>...</controller>

Vorläufer <trafficRules>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		CR1, CR2, CR3,	Identifikationsbezeichnung der Steuereinheiten

control

Über die Identifikationsbezeichnung werden die einzelnen dynamischen Signale der Steuereinheit zugewiesen.

Schreibweise <control.../>
Vorläufer <controller>

Instanzen 1...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
signalld	string			Angabe der Identifikationsbezeichnungen von Signalen, die zu einer Steuereinheit zusammengefasst werden sollen

streetLighting

Die Angabe der Straßenbeleuchtung dient der Sicherheit und erhöht den Realitätsgrad des Straßennetzes.

Schreibweise <streetLighting>...</streetLighting>

Vorläufer <signals>

Instanzen 0...n Attribute ToDo

roadworks

Dieser Tag beinhaltet Objekte, die auf eine Baustelle hinweisen und diese darstellen. Definiert werden diese Objekte über die Zeichennummern der StVO.

Schreibweise <roadworks>...</roadworks>

Vorläufer <signals>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		RW1, RW2, RW3,	Identifikationsbezeichnung der Baustellenobjekte
signNumber	int		In der StVO definierte Nummern	Die Baustellenobjekte sind in der StVO genormt

busStops

Das Anlegen von Bushaltestellen hat sowohl Einfluss auf die geometrischen Eigenschaften eines Straßennetzes als auch auf die Szenarienvielfalt. Eine genaue Definition der Haltestellenart findet in den folgenden Tags statt.

Schreibweise <busStops>...</busStops>

Vorläufer <objects>

Instanzen 0...n Attribute none

onTheStreet

Die Bushalstestelle auf der Straße hat keinen Einfluss auf die Straßenführung und besteht lediglich aus einer zugehörigen Straßenmarkierung.

Schreibweise <onTheStreet>...</onTheStreet>

Vorläufer <busStops>

Instanzen 0...n Attribute ToDo

busCape

Für einen Haltestellenkap wird der Bordstein des Gehweges nur für die Haltestelle bis an die den Fahrbahnrand herangezogen, sodass der Bus die Fahrbahn nicht verlassen muss.

Schreibweise <busCape>...</busCape>

Vorläufer <bushlered
 <bushlered >

Instanzen 0...n Attribute ToDo

busStopBay

Eine Haltestellenbucht beschreibt einen Haltebereich für den Bus auf einer separaten Fahrbahn.

Schreibweise <busStopBay>...</busStopBay>

Vorläufer <bushlered
 <bushlered >

Instanzen 0...n Attribute ToDo

parkingSpace

Parkflächen entlang der Straße haben einen Einfluss auf das Verkehrsgeschehen und sind somit relevante Objekte des Straßennetzes.

Schreibweise <parkingSpace>...</parkingSpace>

Vorläufer <objects>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		PS1, PS2,	Identifikationsbezeichnung der
			PS3,	Parkfläche
width	double		[0, ∞[Breite einer Parkfläche
length	double		[0, ∞[Länge einer Parkfläche
markings	boolean		true, false	Markierungen der einzelnen Parkfläche

alongLine

Die einzelnen Parkplätze können längs zum Straßenverlauf angeordnet werden.

Schreibweise <alongLine>...</alongLine>

Vorläufer <parkingSpace>

Instanzen 0...n Attribute ToDo

angleToLine

Die einzelnen Parkplätze können in einem Winkel zur Referenzlinie der Straße angeordnet werden.

Schreibweise <angleToLine>...</angleToLine>

Vorläufer <parkingSpace>

Instanzen 0...n Attribute ToDo

trafficIsland

Verkehrsinseln dienen der sichereren Führen der Fußgängerströme über Straßen und verändern den geometrischen Verlauf der Straße.

Schreibweise <trafficIsland>...</trafficIsland>

Vorläufer <objects>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		TI1, TI 2, TI 3,	Identifikationsbezeichnung der Verkehrsinseln

mitVerschwenkung

Bei Verkehrsinseln mit verschwenkter Fahrbahn bleibt die Fahrbahnbreite konstant und die Spurführung verläuft um die Verkehrsinsel.

Schreibweise <mitVerschwenkung>...</mitVerschwenkung>

Vorläufer <trafficIsland>

Instanzen 0...n
Attribute ToDo

ohneVerschwenkung

Bei Verkehrsinseln ohne Verschwenkung der Fahrbahn wird die Insel auf die bestehende Straße gesetzt und die Fahrbahnbreite ist in diesen Bereichen geringer.

Schreibweise <ohneVerschwenkung>...</ohneVerschwenkung>

Vorläufer <trafficIsland>

Instanzen 0...n Attribute ToDo

others

Fällt ein Objekt unter keinen der bisher genannten Tags, so kann ein beliebiges Objekt definiert werden. Diese Objekte werden durch einzelne Polygone beschrieben, die durch die Angabe einer Höhe einen Volumenkörper darstellen.

Schreibweise <others>...</others>

Vorläufer <**objects**>
Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		O1, O2, O3,	Identifikationsbezeichnung der beliebigen
				Objekte

area

Für ein beliebiges Objekt wird der Polygonfläche eine Farbe sowie eine Höhe zugewiesen. Die Polygonfläche wird in einem Abstand parallel zur x/y-Ebene aufgespannt.

Schreibweise <area>...</area>

Vorläufer <others>

Instanzen 1

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
zOffset	double	m]-∞, ∞[Abstand der Ebene zur Nullebene
hight	double	m	[0, ∞[Identifikationsbezeichnung der beliebigen Objekte
color	string		Alle Farben möglich	Farbe der Fläche

outerPoint

Zur Bestimmung des Polygons werden einzelne Punkte positioniert, die die Fläche aufspannen.

Schreibweise <outerPoint>...</outerPoint>

Vorläufer <area>
Instanzen 2...n

Name	Тур	Einheit	Wertebereich	Beschreibung
id	string		P1, P2, P3,	Identifikationsbezeichnung der Eckpunkte eines beliebigen Objektes

connectingRadius

Damit die einzelnen Punkte eine Fläche ergeben, werden jeweils zwei Punkte miteinander verbunden. Dies erfolgt durch die Angabe eines Radius für einen Kreisbogen. Wird der Wert des Radius gleich Null gesetzt, so wird die Verbindung durch eine Gerade realisiert.

Schreibweise <connectingRadius.../>

Vorläufer <area>
Instanzen 1...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
fromId	string			Identifikationsbezeichnung des Eckpunktes von dem aus die Verbindung beginnen soll
told	string			Identifikationsbezeichnung des Eckpunktes in den die Verbindung münden soll
R	double	m]-∞, ∞[Radius des Kreisbogens, der zwei Punkte miteinander verbindet. Für R=0 wird eine Gerade verwendet
length	double	m	[0, ∞[Länge der Verbindungsstrecke

interfaces

In diesem Tag werden die einzelnen erstellten Segmente zu einem Straßennetz zusammengesetzt. Bisher ist jedes Segment voneinander unabhängig und besitzt sein eigenes Koordinatensystem. Nun wird ein Segment ausgewählt und zu einem globalen Koordinatensystem über einen Differenzwinkel und Versatz angeordnet. Die anderen Segmente werden relativ zu dem ersten bzw. bereits positionierten Segmenten angeordnet.

Schreibweise <interfaces>...</interfaces>

Vorläufer < roadNetwork>

Instanzen 1

Name	Тур	Einheit	Wertebereich	Beschreibung
setReferenceSegment	string			Auswahl eines Segmentes, das zu einem Globalen Koordinatensystem positioniert wird
angleOffset	double	rad]-∞, ∞[Differenzwinkel zwischen dem globalen Koordinatensystem und dem Koordinatensystem des Segmentes
xOffset	double	m]-∞, ∞[Abstand in x-Richtung zwischen dem globalen Koordinatensystem und dem Koordinatensystem des Segmentes
yOffset	double	m]-∞, ∞[Abstand in y-Richtung zwischen dem globalen Koordinatensystem und dem Koordinatensystem des Segmentes

Visualisierung

segmentLink

Dieser Tag setzt ein Segment an ein bereits positioniertes Segment des Straßennetztes.

Schreibweise <segmentLink>...</segmentLink>

Vorläufer <interfaces>

Instanzen 0...n

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
fromId	string			Identifikationsbezeichnung des bereits positionierten Segmentes, das verbunden werden soll
told	string			Identifikationsbezeichnung des Segmentes, das verbunden werden soll

roadLink

Zur eindeutigen Verknüpfung zweier Segmente wird von jedem Segment jeweils ein Verbindungspunkt einer Straße benötigt. Aufgrund der geometrischen und der tangentialen Übereinstimmung der Straßen im Verbindungspunkt ist das Segment eindeutig positioniert.

Schreibweise <roadLink.../>
Vorläufer <reentlink>

Instanzen 1

Attribute

Name	Тур	Einheit	Wertebereich	Beschreibung
fromId	string			Identifikationsbezeichnung des Straßenpunktes des bereits positionierten Segmentes
told	string			Identifikationsbezeichnung des Straßenpunktes des zu verbindenden Segmentes

closeRoadNetwork

Die Funktion closeRoadNetwork ermöglicht das Schließen von Lücken im Straßennetz. Durch die Angabe der zu verbindenden Punkte erfolgt die Erstellung einer Verbindungsstraße automatisiert. Die erstellte Verbindungsstraße besteht aus den geometrischen Elementen der Gerade, des Kreisbogens und der Klothoide.

Schreibweise <closeRoadNetwork>...</closeRoadNetwork>

Vorläufer < roadNetwork>

Instanzen 1

Attribute none

connectingPoints

Als Input der Funktion werden die zu verbindenden Punkte der Segmente angegeben.

Schreibweise <connectingPoints.../>
Vorläufer <closeRoadNetwork>

Instanzen 1

Name	Тур	Einheit	Wertebereich	Beschreibung
segmentId1	string			Identifikationsbezeichnung des ersten
				Segmentes
roadld1	string			Identifikationsbezeichnung des
				Straßenpunktes des ersten Segmentes, der
				den Startpunkt der Verbindungsstraße
				darstellt
segmentId2	string			Identifikationsbezeichnung des zweiten
				Segmentes
roadld2	string			Identifikationsbezeichnung des
				Straßenpunktes des zweiten Segmentes,
				der den Endpunkt der Verbindungsstraße darstellt