PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-024222

(43) Date of publication of application: 26.01.2001

(51)Int.CI.

H01L 33/00

(21)Application number: 11-191452

(71)Applicant: MATSUSHITA ELECTRIC IND

CO LTD

(22)Date of filing:

06.07.1999

(72)Inventor: OKU YASUNARI

KAMEI HIDENORI SHINAGAWA SHUICHI TAKEISHI HIDEMI

(54) GALLIUM NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND ITS MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To improve efficiency of light-emission by making a surface on which a light-transmitting electrode is formed a main-light-taking-out surface side. SOLUTION: A board 1 is overlaid with a buffer layer 2, an n-type contact layer 3, a lightemitting layer 4, a p-type clad layer 5 and a ptype contact layer 6, which are comprised of gallium nitride compound semiconductor, in this order, and further the p-type contact layer 6 is overlaid with a light-transmitting electrode 7, and the light-transmitting electrode 7 is overlaid with a p-side electrode 8, and the ntype contact layer 3 with an n-side electrode 9, in this way a gallium nitride compound semiconductor light-emitting element is constituted. In this element, a plurality of recessed parts 11 are formed on the p-type contact layer 6 depressed from the light-

transmitting electrode 7 side. Thereby the light that is emitted from the light—emitting layer 4 and propagated in a lateral direction in the light—emitting element is easy to take out from the recessed part 11 to the outside of the light—emitting element, and efficiency of light—emission is improved on the whole.

LEGAL STATUS

[Date of request for examination]

07.07.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出廣公開番号 特開2001-24222 (P2001 - 24222A)

(43)公開日 平成13年1月26日(2001.1.26)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H01L 33/00

H01L 33/00

C 5F041

E

審査請求 未請求 請求項の数5 OL (全 8 頁)

(21)出願番号

特顯平11-191452

(22)出顧日

平成11年7月6日(1999.7.6)

(71)出顧人 000005821

松下電器產業株式会社

大阪府門真市大字門真1006番地

(72)発明者 奥 保成

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 亀井 英徳

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100097445

弁理士 岩橋 文雄 (外2名)

最終頁に続く

(54) 【発明の名称】 室化ガリウム系化合物半導体発光素子およびその製造方法

(57)【要約】

【課題】 光透過性電極を形成した面を主光取り出し面 側とし、発光効率を向上させた窒化ガリウム系化合物半 導体発光素子およびその製造方法を提供することを目的 とする。

【解決手段】 基板 1上にそれぞれ窒化ガリウム系化合 物半導体からなるパッファ層2とn型コンタクト層3と 発光層4とp型クラッド層5とp型コンタクト層6とが 順に積層され、さらにp型コンタクト層6上に光透過性 電極7が形成され、光透過性電極7上にはp側電極8 が、n型コンタクト層3上にはn側電極9がそれぞれ形 成された窒化ガリウム系化合物半導体発光素子に対し、 p型コンタクト層6に光透過性電極7側から窪む凹部1 1を複数個形成することにより、発光層4から発せら れ、発光素子内部を横方向に伝播する光が凹部11より 発光素子外部へ取り出されやすくなり、全体として発光 効率が改善される。

【特許請求の範囲】

【請求項1】窒化ガリウム系化合物半導体からなる第一 導電型コンタクト層と発光層と第二導電型コンタクト層 とが積層され、さらに前記第二導電型コンタクト層上に 光透過性電極が形成される窒化ガリウム系化合物半導体 発光素子であって、

前記第二導電型コンタクト層に前記光透過性電極側から 窪む凹部が複数個形成されることを特徴とする窒化ガリ ウム系化合物半導体発光素子。

【請求項2】前記凹部は、前記発光層に達する深さまで 10 形成されることを特徴とする請求項1記載の窒化ガリウ ム系化合物半導体発光素子。

【請求項3】前記凹部の内面が、絶縁性膜により覆われることを特徴とする請求項1または2記載の窒化ガリウム系化合物半導体発光素子。

【請求項4】窒化ガリウム系化合物半導体からなる第一導電型コンタクト層と発光層と第二導電型コンタクト層とを成長させる工程と、前記第二導電型コンタクト層上に光透過性電極を形成する工程と、前記第二導電型コンタクト層に前記光透過性電極側から窪む凹部を形成する 20 ための開口を有するパターンを形成したマスクを前記光透過性電極上に形成する工程と、前記マスクを用いて前記第二導電型コンタクト層側から前記発光層に達する深さまでエッチングを行う工程とを含む窒化ガリウム系化合物半導体発光素子の製造方法。

【請求項5】窒化ガリウム系化合物半導体からなる第一 導電型コンタクト層と発光層と第二導電型コンタクト層 とを成長させる工程と、前記第一導電型コンタクト層の 表面を露出させる工程と、この露出させた第一導電型コ ンタクト層上に電極を形成する工程とを含む窒化ガリウ 30 ム系化合物半導体発光素子の製造方法であって、

さらに、前記第二導電型コンタクト層上に光透過性電極を形成する工程と、前記第二導電型コンタクト層に前記光透過性電極側から窪む凹部を形成するための開口を有するパターンを形成したマスクを前記光透過性電極上に形成する工程と、前記マスクを用いて前記第二導電型コンタクト層側から前記発光層に達する深さまでエッチングを行う工程とを含み、

前記エッチングを行う工程は、前記第一導電型コンタクト層の表面を露出させる工程と同一工程で行うことを特 40 徴とする窒化ガリウム系化合物半導体発光素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、発光ダイオード等の光デバイスに利用される窒化ガリウム系化合物半導体 発光素子およびその製造方法に関する。

[0002]

【従来の技術】窒化ガリウム系化合物半導体は、可視光 発光デバイスや高温動作電子デバイス用の半導体材料と 50

して多用されており、青色や緑色の発光ダイオードの分野での実用化や青紫色のレーザダイオードの分野での展開が進んでいる。

【0003】この窒化ガリウム系化合物半導体を用いた 発光素子の製造においては、有機金属気相成長法によっ て窒化ガリウム系半導体薄膜結晶を成長させるのが近来 では主流である。この方法は、窒化ガリウム系半導体と してのサファイアやSiC、GaN等からなる基板を設 置した反応管内に、3族元素の原料ガスとして有機金属 化合物ガス(トリメチルガリウム(以下、「TMG」と 称す)、トリメチルアルミニウム(以下、「TMA」と 称す)、トリメチルインジウム(以下、「TMI」と称 す)等)と、5族元素の原料ガスとしてアンモニアやヒ ドラジン等とを供給し、基板温度をおよそ700℃~1 100℃の高温で保持して、基板上にn型層と発光層と p型層とを成長させてこれらを積層形成するというもの である。n型層の成長時にはn型不純物原料ガスとして モノシラン(SiH4)やゲルマン(GeH4)等を、p 型層の成長時にはp型不純物原料ガスとしてビスシクロ ペンタジエニルマグネシウム(Cp2Mg)等を3族元 素の原料ガスと同時に流しながら成長させる。

【0004】この成長形成の後、n型層の表面およびp型層の表面にそれぞれn側電極およびp側電極を形成し、チップ状に分離することによって、発光素子を得ることができる。そして、これらの発光素子をリードフレーム等に固定し、最後にエポキシ樹脂等で封止することにより、発光ダイオードとして完成させる。

【0005】最近の窒化ガリウム系化合物半導体発光素子においては、p型層の表面からp型層、発光層およびn型層の表面にp側電極を、p型層の表面にp側電極として発光層からの光を透過することができる程度の肉薄の光透過性電極をそれぞれ形成し、この光透過性電極の側を主光取り出し面側とする素子構造が主流である。このような構成によれば、素子の同一面側にp側電極及びn側電極を設ける場合においてもp側電極及びn側電極を設ける場合においてもp側電極及びn側電極ではおける短絡を防止することができるとともに、素子サイズを小さくすることができる。

【0006】しかし、上記のようにサファイア基板上に 窒化ガリウム系化合物半導体を積層させた素子構造においては、次のような問題がある。すなわち、結晶成長用 の基板と窒化ガリウム系化合物半導体との屈折率の違い、および窒化ガリウム系化合物半導体発光素子とそれ を封止する樹脂等との屈折率の違いにより、窒化ガリウム系化合物半導体の発光がそれらの界面で多重反射され て干渉したり、反射光が窒化ガリウム系化合物半導体内 部で吸収され発光を効率良く外部に取り出せないという 問題がある。

【0007】このような問題を解決するものとして、特 開平6-291368号公報において、サファイア基板 10

20

上に窒化ガリウム系化合物半導体が積層されてなる発光 素子において、前記窒化ガリウム系化合物半導体の最上 層の表面が非鏡面とされていることを特徴とする窒化ガ リウム系化合物半導体発光素子が提案されている。この 発光素子によれば、サファイア基板と窒化ガリウム系化 合物半導体層との界面で反射した光が非鏡面とされた最 上層で散乱するため、窒化ガリウム系化合物半導体内部 での多重反射が抑制され、光の干渉が少なくなり発光効 率が向上するとされている。

[0008]

【発明が解決しようとする課題】しかしながら、上記の ように窒化ガリウム系化合物半導体の最上層を非鏡面と する構成においても、以下のような問題がある。すなわ ち、この最上層の側を発光素子の主光取り出し面側とす る場合、この最上層の上に発光層からの光を透過させる 程度に肉薄の光透過性電極を形成することとなるが、非 鏡面の最上層に極薄の電極を膜厚均一に形成することは 非常に困難となり、当該電極から窒化ガリウム系化合物 半導体に均一に電流を供給することができず、かえって 発光効率を低下させる原因となるという問題がある。

【0009】本発明において解決すべき課題は、光透過 性電極を形成した面を主光取り出し面側とし、発光効率 を向上させた窒化ガリウム系化合物半導体発光素子およ びその製造方法を提供することである。

[0010]

【課題を解決するための手段】本発明の窒化ガリウム系 化合物半導体発光素子は、光透過性電極が形成されるコ ンタクト層に光透過性電極側から窪む凹部が複数個形成 されることを特徴とする。

【0011】このような構成によれば、発光層から発せ 30 られ、発光素子内部をコンタクト層に平行な方向(横方 向)に伝播する光が、凹部より発光素子の外部に取り出 されやすくなる。すなわち、発光層からの光の取り出し 効率が改善され、全体として発光効率を向上させること が可能となる。

【0012】また、本発明の窒化ガリウム系化合物半導 体発光素子の製造方法は、凹部の形成を第一導電型コン タクト層を露出させるためのエッチングの工程と同一工 程で行うことを特徴とする。

【0013】このような製造方法によれば、凹部形成の 40 ための工程を新たに付加することなく簡便に凹部形成を 行うことができるため、マスクパターンの変更という微 小な工程変更だけで発光効率を向上させることができる 窒化ガリウム系化合物半導体発光素子の製造方法を提供 することができる。

[0014]

【発明の実施の形態】請求項1に記載の発明は、窒化ガ リウム系化合物半導体からなる第一導電型コンタクト層 と発光層と第二導電型コンタクト層とが積層され、さら に前記第二導電型コンタクト層上に光透過性電極が形成 50

される窒化ガリウム系化合物半導体発光素子であって、 前記第二導電型コンタクト層に前記光透過性電極側から 窪む凹部が複数個形成されることを特徴とする窒化ガリ ウム系化合物半導体発光素子としたものである。これに より、発光層から発せられ、発光素子内部を横方向に伝 播する光が、凹部より発光素子外部へ取り出されやすく なる。すなわち、発光素子外部への光の取り出し効率を 改善することができる。

【0015】請求項2に記載の発明は、前記凹部は、前 記発光層に達する深さまで形成されることを特徴とする 請求項1記載の窒化ガリウム系化合物半導体発光素子と したものである。これにより、ダブルヘテロ構造とした 発光素子の光が比較的屈折率の小さい発光層を中心に伝 播しやすいため、その発光層に達する深さまで形成され た凹部より効率よく光を取り出すことができ、発光素子 外部への光の取り出し効率をより高めることができる。

【0016】請求項3に記載の発明は、前記凹部の内面 が、絶縁性膜により覆われることを特徴とする請求項1 または2記載の窒化ガリウム系化合物半導体発光素子と したものである。このような絶縁性膜を介することによ って、窒化物ガリウム系化合物半導体の屈折率とこれを 封止する樹脂等との屈折率との違いを緩和し、発光素子 外部への光取り出し効率をさらに向上させることができ る。また、凹部が第一導電型コンタクト層から第二導電 型コンタクト層に渡って形成されている場合において は、これらの短絡を防止することができる。

【0017】請求項4に記載の発明は、窒化ガリウム系 化合物半導体からなる第一導電型コンタクト層と発光層 と第二導電型コンタクト層とを成長させる工程と、前記 第二導電型コンタクト層上に光透過性電極を形成する工 程と、前記第二導電型コンタクト層に前記光透過性電極 側から窪む凹部を形成するための開口を有するパターン を形成したマスクを前記光透過性電極上に形成する工程 と、前記マスクを用いて前記第二導電型コンタクト層側 から前記発光層に達する深さまでエッチングを行う工程 とを含む窒化ガリウム系化合物半導体発光素子の製造方 法としたものである。これにより、光透過性電極形成工 程における凹部への電極材料の侵入による第一導電型コ ンタクト層と第二導電型コンタクト層との短絡を防止 し、凹部に対応した孔を有する光透過性電極の形成の簡 略化を行うことができる。

【0018】請求項5に記載の発明は、窒化ガリウム系 化合物半導体からなる第一導電型コンタクト層と発光層 と第二導電型コンタクト層とを成長させる工程と、前記 第一導電型コンタクト層の表面を露出させる工程と、こ の露出させた第一導電型コンタクト層上に電極を形成す る工程とを含む窒化ガリウム系化合物半導体発光素子の 製造方法であって、さらに、前記第二導電型コンタクト 層上に光透過性電極を形成する工程と、前記第二導電型 コンタクト層に前記光透過性電極側から窪む凹部を形成

するための開口を有するパターンを形成したマスクを前 記光透過性電極上に形成する工程と、前記マスクを用い て前記第二導電型コンタクト層側から前記発光層に達す る深さまでエッチングを行う工程とを含み、前記エッチ ングを行う工程は、前記第一導電型コンタクト層の表面 を露出させる工程と同一工程で行うことを特徴とする窒 化ガリウム系化合物半導体発光素子の製造方法としたも のである。凹部の形成を第一導電型コンタクト層を露出 させるためのエッチングの工程と同一工程で行うことに より、凹部形成を新たな工程を付加することなく、簡便 10 に行うことができる。

【0019】以下、本発明の実施の形態について、図面 を参照しながら説明する。

【0020】図1は本発明の一実施の形態に係る窒化ガ リウム系化合物半導体発光素子の構造を示す縦断面図で

【0021】図1において、窒化ガリウム系化合物半導 体発光素子は、サファイアからなる基板 1 上に、パッフ ァ層2と、GaNからなるn型コンタクト層3と、In GaNからなる発光層4と、AIGaNからなるp型ク ラッド層5と、GaNからなるp型コンタクト層6とが 順に積層された構造である。なお、本実施の形態におい ては、n型を第一導電型と、p型を第二導電型としてい

【0022】さらに、p型コンタクト層6上のほぼ全面 に光透過性電極フが形成され、光透過性電極フ上にはワ イヤボンディングのためのp側電極8が形成されてい る。一方、n側電極9は、p型コンタクト層6の表面か らn型コンタクト層3に達する深さまでエッチングする ことによって露出させた n 型コンタクト層 3 の表面に形 30 成されている。

【0023】そして、p型コンタクト層6には、光透過 性電極7側から発光層4へ向かって窪む凹部11が複数 個形成されている。この凹部11は、光透過性電極7を 貫いて、p型コンタクト層6からn型コンタクト層3に 達する深さまで形成されている。さらに、凹部11の内 面と光透過性電極7の表面は、絶縁成膜10によって覆 われている。

【0024】上記構成の窒化ガリウム系化合物半導体発 光素子において、p側電極8に正の電圧を、n側電極9 40 に負の電圧をそれぞれ印加すると、p型コンタクト層6 を介してp型クラッド層5からは正孔が、n型クラッド 層を兼用して形成されたn型コンタクト層3からは電子 がそれぞれ発光層4に注入され、これらの正孔と電子の 再結合により発光層4のパンドギャップに対応したエネ ルギーを有する光が発光層4より発せられる。

【0025】凹部11が形成されていない従来の発光素 子構造の場合には、発光層4から発せられた光のうち上 方へ向かう光は、光透過性電極フを介して発光素子外部 へ取り出されるが、他の一部の光は発光素子内部を横方 50 タクト層6を介して発光層4へ注入される。これにより

向へ伝播し窒化ガリウム系化合物半導体からなるp型ク ラッド層 5 および p 型コンタクト層 6 内部への吸収等に より減衰した後、発光素子の側面から発光素子外部へ取 り出されることとなる。

【0026】これに対し、本実施の形態における発光素 子構造の場合には、発光層4から発せられる光のうち横 方向へ伝播する光が凹部11より発光素子外部へ取り出 されやすくなるとともに、光が発光素子内部を伝播する 際の吸収等による減衰が低減されるため、全体として発 光素子外部への光取り出し効率を向上させることができ る。さらに、凹部11の内面が、窒化ガリウム系化合物 半導体の屈折率と、これを封止する封止樹脂または封止 雰囲気の屈折率との間の屈折率を有する絶縁性膜10に より覆われることにより、窒化ガリウム系化合物半導体 の屈折率とこれを封止する樹脂等との屈折率との違いが 緩和され、発光素子外部への光取り出し効率をさらに向 上させることが可能となる。

【0027】また、凹部11はp型コンタクト層6から n型コンタクト層3に達する深さとして、発光素子内部 を横方向に伝播する光を凹部11が形成されたコンタク ト層全体から取り出すことができるようにしている。な お、この凹部11の深さは発光素子内部を横方向へ伝播 する光が到達して取り出される程度、すなわち発光層4 に必ずしも達する必要はないが発光層4のすぐ近く、例 えばp型クラッド層5に達する程度とすればよい。

【0028】特に、この凹部11の深さは、発光層4に 達する深さとするのがより望ましい。例えば、本実施の 形態のように、InGaNからなる発光層4をこれより も屈折率の高いGaNやAIGaNからなるn型コンタ クト層3およびp型クラッド層5で挟んでダブルヘテロ 構造とする場合、光は比較的屈折率の小さい発光層4を 中心に伝播しやすく、その発光層4に達する程度の深さ とした場合には凹部11より効率良く光を取り出すこと が可能となるからである。

【0029】さらに、凹部11の内側面は、深さ方向 (光透過性電極 7 側から発光層 4 側へ向かう方向) に進 むにつれて細くなるようにテーパーが形成されるのが望 ましい。これにより、凹部11の側面から出射した光が このテーパー付きの凹部11の側壁に反射しながら凹部 11上方に導かれ、発光素子外部へと取り出されやすく

【0030】ここで、図2は図1に示す窒化ガリウム系 化合物半導体発光素子の平面図である。図2に示すよう に、p型コンタクト層6のほぼ全面に形成された光透過 性電極7の領域内に、凹部11が複数個形成されてい

【0031】p側電極8に正の電圧を、n側電極9に負 の電圧をそれぞれ印加すると、p側電極8から注入され た電流は光透過性電極7のほぼ全体に広がり、p型コン

発せられる発光層4からの光のうち、光透過性電極7の 下方より発せられた光は光透過性電極フを介して発光素 子外部へ取り出され、その一部は光透過性電極フを通過 する際に一部吸収されて減衰する。一方、凹部11が形 成された領域には光透過性電極フは存在しないため、凹 部11より発光素子外部へ取り出される光は光透過性電 極7によって吸収されることがなく、減衰せずに取り出 される。

【0032】凹部11の開口の大きさは、凹部11を形 成する数にもよるが、開口を大きくするとそれに伴い光 10 透過性電極7の面積が小さくなるため発光層4へ注入さ れる電流密度が高くなる。一方、開口を小さくすると開 口の形成が困難となるため、凹部11の深さを制御しに くくなる。したがって、凹部11の開口の大きさとその 数には適当な範囲が存在するが、本発明者らの知見によ れば、発光素子サイズを約350μm×350μmとす る場合、凹部 1 1 の開口の大きさを $0.5 \mu m \phi$ から 5μmφの範囲とし、その総面積が光透過性電極フの面積 の0. 1%から50%の範囲となるように凹部11の個 数を調整するときに光取り出し効率の向上が顕著に認め 20 られている。

【0033】次に、本実施の形態に係る窒化ガリウム系 化合物半導体発光素子の製造工程について図面を参照し ながら説明する。

【〇〇34】図3から図5は、図1に示す窒化ガリウム 系化合物半導体素子の製造工程を示す縦断面図である。 なお、本実施の形態においては、チップ状に分割された 素子状態での製造工程を説明するが、実際の製造工程に おいては、図面に示す発光素子が二次元的に配列された ウエハ状態で各工程が実施される。

【0035】図3に示すように、まず、サファイアから なる基板 1 上に有機金属気相成長法により窒化ガリウム 系化合物半導体からなるパッファ層2とn型コンタクト 層3と発光層4とp型クラッド層5とp型コンタクト層 6とを順に成長させたウエハを準備した後、蒸着法とフ ォトリソグラフィ法を用いてp型コンタクト層 6上に光 透過性電極フを形成する。

【0036】次に、図4に示すように、光透過性電極7 と露出したp型コンタクト層6上に熱CVD法によりS i O2からなる絶縁膜21を堆積させる。さらに、この 絶縁膜21にフォトリソグラフィ法を用い、光透過性電 極7に複数の凹部11を形成するための複数の孔12お よびn型コンタクト層3の表面の一部を露出させるため の空間13を形成し、次のエッチングのためのマスクと する。

【0037】このマスクを用いて反応性イオンエッチン グ等により、図5に示すように、露出させたp型コンタ クト層6の表面側からn型コンタクト層3に達するまで エッチングを行うことによって、n型コンタクト層3の 表面を露出させるとともに光透過性電極7の上に形成し 50 リアガスとしての窒素ガスと水素ガスと、TMA用のキ

た孔12からn型コンタクト層3に達する深さまで凹部 11を形成する。

【0038】その後、光透過性電極7上の絶縁膜21の 一部をエッチングにより除去させ、露出させた光透過性 電極7の表面上および露出させた n 型コンタクト層3の 表面上に、それぞれ p 側電極 8 および n 側電極 9 を蒸着 法およびフォトリソグラフィ法により形成する。さら に、熱CVD法とフォトリソグラフィ法により光透過性 電極7と凹部11の内面を被覆するSiO2等からなる 絶縁性膜10を形成する。そして、ダイシングまたはス クライブ等によりチップ状に分離することにより、図1 に示す窒化ガリウム系化合物発光素子が得られる。

[0039]

40

【実施例】以下、本発明の窒化ガリウム系化合物半導体 発光素子の製造方法の具体例について図面を参照しなが ら説明する。以下の実施例において、窒化ガリウム系化 合物半導体の成長方法としては有機金属気相成長法を用 いるが、成長方法はこれに限定されるものではなく、分 子線エピタキシー法や有機金属分子線エピタキシー法等 を用いることも可能である。

【〇〇4〇】(実施例)まず、表面が鏡面に仕上げられ たサファイアの基板1を反応管内の基板ホルダーに載置 した後、基板1の表面温度を1000℃に10分間保 ち、水素ガスを流しながら基板を加熱することにより、 基板1の表面に付着している有機物等の汚れや水分を取

【0041】次に、基板1の表面温度を550℃にまで 降下させ、主キャリアガスとしての窒素ガスと、アンモ ニアと、TMAを含むTMA用のキャリアガスとを流し 30 ながら、AINからなるパッファ層2を25nmの厚さ

【0042】その後、TMAのキャリアガスを止めて1 050℃まで昇温させた後、主キャリアガスとしての窒 素ガスと水素ガスとを流しながら、新たにTMGを含む TMG用のキャリアガスと、SiH4ガスとを流して、 SiをドープしたGaNからなるn型コンタクト層3を 2μmの厚さで成長させた。

【0043】n型コンタクト層3を成長後、TMG用の キャリアガスとSiH4ガスを止めて基板1温度を75 O℃にまで降下させ、750℃において、主キャリアガ スとしての窒素ガスを流し、新たにTMG用のキャリア ガスと、TMIを含むTMI用のキャリアガスとを流し ながら、アンドープの I n0.2 G a 0.8 Nからなる単一量 子井戸構造の発光層4を3 nmの厚さで成長させた。

【0044】発光層4を成長後、TMI用のキャリアガ スを止め、TMG用のキャリアガスを流しながら基板1 温度を1050℃に向けて昇温させながら、引き続き図 示しないアンドープのGaNを4nmの厚さで成長させ た。基板1温度が1050℃に達したら、新たに主キャ

10

ャリアガスと、Cp2Mgを含むCp2Mg用のキャリア ガスとを流しながら、MgをドープさせたA 10.15 Ga 0.85 Nからなる p 型クラッド層 5 を O. 1 μ m の厚さで 成長させた。

【OO45】p型クラッド層5を成長後、TMG用のキ ャリアガスを止め、引き続きMgをドープさせたGaN からなるρ型コンタクト層6を0. 1μmの厚さで成長 させた。

【OO46】p型コンタクト層6を成長後、TMG用の キャリアガスと、Cp2Mg用のキャリアガスとを止 め、主キャリアガスとアンモニアとをそのまま流しなが ら、基板1の温度を室温程度にまで冷却させて、基板1 の上に窒化ガリウム系化合物半導体が積層されたウェハ 一を反応管から取り出した。

【0047】このようにして形成した窒化ガリウム系化 合物半導体からなるパッファ層2、n型コンタクト層 3、発光層4、p型クラッド層5およびp型コンタクト 層6の積層構造に対し、その表面上に蒸着法により、二 ッケル(Ni)と金(Au)とをそれぞれ5nmの厚さ で全面に積層した後、フォトリソグラフィ法とウェット 20 エッチング法により、光透過性電極フを形成した。

【0048】この後、光透過性電極7と露出したp型コ ンタクト層6の上に熱CVD法によりSiO2からなる 絶縁膜21を0.5μmの厚さで堆積させ、フォトリソ グラフィ法と反応性イオンエッチング法により、絶縁膜 21に複数の孔12および空間13を形成し、光透過性 電極7に複数の凹部11を形成するとともに p型コンタ クト層6の表面の一部を露出させるための絶縁膜21か らなるマスクを形成した。ここで、孔12は開口直径約 2 μ m の円形とし、後に p 側電極 5 (パッド電極) を形 30 成する領域を除いて10 µmの間隔で碁盤の目状に配置 した。

【0049】次に、上記マスクを用いて、塩素系ガスを 用いた反応性イオンエッチング法により、露出させたp 型コンタクト層6の表面側からp型コンタクト層6とp 型クラッド層5と発光層4を約0.3μmの深さで除去. して、n型コンタクト層3の表面を露出させるととも に、光透過性電極7上の絶縁膜21に形成した孔12か ら、光透過性電極7とp型コンタクト層6とp型クラッ ド層5と発光層4とをエッチングして、n型コンタクト 40 層3に達する深さの凹部11を形成した。凹部11は、 開口の口径が約2μm、底部の径が約1μmの空洞とし て形成された。

【0050】その後、一旦、絶縁膜21をウェットエッ チング法により除去して、蒸着法およびフォトリソグラ フィ法により、光透過性電極7の表面上の凹部11が形 成されていない領域と、露出させたn型コンタクト層3 の表面上とに、0. 1 μ m 厚のチタン(Ti)と0. 5 μm厚のAuとを積層して、それぞれρ側電極8とn側 電極9とを形成した。さらに、熱CVD法とフォトリソ 50 うことにより、凹部形成のための工程を新たに付加する

グラフィ法により、光透過性電極7の表面と凹部11の 内面とを被覆するO. 2μm厚のSiO2からなる絶縁 性膜10を形成した。

【0051】この後、サファイアの基板1の裏面を研磨 して100μm程度にまで薄くし、スクライブによりチ ップ状に分離した。このチップを電極形成面側を上向き にしてステムに接着した後、チップのp側電極8とn側 電極9とをそれぞれステム上の電極にワイヤで結線し、 樹脂モールドして発光ダイオードを作製した。

【0052】この発光ダイオードを20mAの順方向電 流で駆動したところ、ピーク波長470mmの青色で発 光した。このときの発光出力は2. OmWであり、順方 向動作電圧は3.5∨であった。

【0053】なお、本実施例では、凹部11を形成する 際に、凹部11の光透過性電極7を窒化ガリウム系化合 物半導体からなる積層構造と同一工程で反応性イオンエ ッチング法で除去したが、凹部11の光透過性電極フを 事前に単独に除去しても構わない。例えば、ウェハ一全 面に形成したNiとAuの積層をウェットエッチングし て光透過性電極フをパターニングするときに同時に凹部 11の光透過性電極7を除去することもできる。

【0054】また、本実施例において、凹部11の開口 の形状を円形としたが、これに限定されるものではな く、凹部11の形成に支障のない範囲で任意の形状をと ることができる。

【0055】(比較例)上記実施例との比較のために、 凹部11を形成しない窒化ガリウム系化合物半導体発光 素子を作製した。

【0056】具体的には、上記実施例において、光透過 性電極7の上の絶縁膜21に孔12を形成せずに、光透 過性電極フを絶縁膜21で全面覆った状態で塩素系ガス を用いた反応性イオンエッチング法により、露出させた p型コンタクト層6の表面側から、p型コンタクト層6 とρ型クラッド層5と発光層4とを約0.3μmの深さ で除去して、n型コンタクト層3の表面を露出させた。 他は、実施例と同様の手順により発光ダイオードを作製 した。この発光ダイオードを20mAの順方向電流で駆 動したところ、ピーク波長と順方向動作電圧は実施例と 同様であったが、発光出力は1.2mWと低かった。 [0057]

【発明の効果】以上のように本発明によれば、光透過性 電極が形成されるコンタクト層に光透過性電極側から窪 む凹部が複数個形成されることにより、発光層から発せ られた光のうち横方向へ進む光が凹部から発光素子外部 へ取り出されるため全体として光取り出し効率が向上 し、窒化ガリウム系化合物半導体発光素子の発光効率を 格段に向上させることができる。

【0058】また、凹部の形成を第一導電型コンタクト 層を露出させるためのエッチングの工程と同一工程で行

ことなく簡便に凹部形成を行うことができるため、マス クパターンの変更という微小な工程変更だけで発光効率 を向上させることができる窒化ガリウム系化合物半導体 発光素子の製造方法を提供することができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態に係る窒化ガリウム系化 合物半導体発光素子の構造を示す縦断面図

【図2】図1に示す窒化ガリウム系化合物半導体発光素 子の平面図

【図3】図1に示す窒化ガリウム系化合物半導体発光素 10 子の製造工程を示す縦断面図

【図4】図1に示す窒化ガリウム系化合物半導体発光素 子の製造工程を示す緩断面図

【図5】図1に示す窒化ガリウム系化合物半導体発光素

子の製造工程を示す縦断面図 【符号の説明】

- 1 基板
- 2 パッファ層
- 3 n型コンタクト層
- 4 発光層
- 5 p型クラッド層
- 6 p型コンタクト層
- 7 光透過性電極
- 0 8 p側電極
 - 9 n 側電極
 - 10 絶縁性膜
 - 11 凹部

【図1】

[図3]

【図2】

【図4】

【図5】

フロントページの続き

(72)発明者 品川 修一

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 武石 英見

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Fターム(参考) 5F041 AA03 AA04 CA04 CA12 CA33 CA34 CA40 CA46 CA57 CA65 CA74 CA76 CA88 CA93 DA07 DA44