Springer Texts in Statistics

Advisors:

George Casella Stephen Fienberg Ingram Olkin

F.M. Dekking C. Kraaikamp H.P. Lopuhaä L.E. Meester

A Modern Introduction to Probability and Statistics

Understanding Why and How

With 120 Figures

Frederik Michel Dekking
Cornelis Kraaikamp
Hendrik Paul Lopuhaä
Ludolf Erwin Meester
Delft Institute of Applied Mathematics
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

Whilst we have made considerable efforts to contact all holders of copyright material contained in this book, we may have failed to locate some of them. Should holders wish to contact the Publisher, we will be happy to come to some arrangement with them.

British Library Cataloguing in Publication Data
A modern introduction to probability and statistics. —
(Springer texts in statistics)
1. Probabilities 2. Mathematical statistics
I. Dekking, F. M.
519.2

Library of Congress Cataloging-in-Publication Data

A modern introduction to probability and statistics : understanding why and how / F.M. Dekking ... [et al.].

p. cm. — (Springer texts in statistics)
Includes bibliographical references and index.
ISBN 1-85233-896-2

1. Probabilities—Textbooks. 2. Mathematical statistics—Textbooks. I. Dekking, F.M. II. Series.

QA273.M645 2005 519.2—dc22

ISBN 1852338962

2004057700

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

ISBN-10: 1-85233-896-2 ISBN-13: 978-1-85233-896-1

Springer Science+Business Media springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Printed in the United States of America 12/3830/543210 Printed on acid-free paper SPIN 10943403

Preface

Probability and statistics are fascinating subjects on the interface between mathematics and applied sciences that help us understand and solve practical problems. We believe that you, by learning how stochastic methods come about and why they work, will be able to understand the meaning of statistical statements as well as judge the quality of their content, when facing such problems on your own. Our philosophy is one of *how* and *why*: instead of just presenting stochastic methods as cookbook recipes, we prefer to explain the principles behind them.

In this book you will find the basics of probability theory and statistics. In addition, there are several topics that go somewhat beyond the basics but that ought to be present in an introductory course: simulation, the Poisson process, the law of large numbers, and the central limit theorem. Computers have brought many changes in statistics. In particular, the bootstrap has earned its place. It provides the possibility to derive confidence intervals and perform tests of hypotheses where traditional (normal approximation or large sample) methods are inappropriate. It is a modern useful tool one should learn about, we believe.

Examples and datasets in this book are mostly from real-life situations, at least that is what we looked for in illustrations of the material. Anybody who has inspected datasets with the purpose of using them as elementary examples knows that this is hard: on the one hand, you do not want to boldly state assumptions that are clearly not satisfied; on the other hand, long explanations concerning side issues distract from the main points. We hope that we found a good middle way.

A first course in calculus is needed as a prerequisite for this book. In addition to high-school algebra, some infinite series are used (exponential, geometric). Integration and differentiation are the most important skills, mainly concerning one variable (the exceptions, two dimensional integrals, are encountered in Chapters 9–11). Although the mathematics is kept to a minimum, we strived

to be mathematically correct throughout the book. With respect to probability and statistics the book is self-contained.

The book is aimed at undergraduate engineering students, and students from more business-oriented studies (who may gloss over some of the more mathematically oriented parts). At our own university we also use it for students in applied mathematics (where we put a little more emphasis on the math and add topics like combinatorics, conditional expectations, and generating functions). It is designed for a one-semester course: on average two hours in class per chapter, the first for a lecture, the second doing exercises. The material is also well-suited for self-study, as we know from experience.

We have divided attention about evenly between probability and statistics. The very first chapter is a sampler with differently flavored introductory examples, ranging from scientific success stories to a controversial puzzle. Topics that follow are elementary probability theory, simulation, joint distributions, the law of large numbers, the central limit theorem, statistical modeling (informal: why and how we can draw inference from data), data analysis, the bootstrap, estimation, simple linear regression, confidence intervals, and hypothesis testing. Instead of a few chapters with a long list of discrete and continuous distributions, with an enumeration of the important attributes of each, we introduce a few distributions when presenting the concepts and the others where they arise (more) naturally. A list of distributions and their characteristics is found in Appendix A.

With the exception of the first one, chapters in this book consist of three main parts. First, about four sections discussing new material, interspersed with a handful of so-called Quick exercises. Working these—two-or-three-minute—exercises should help to master the material and provide a break from reading to do something more active. On about two dozen occasions you will find indented paragraphs labeled *Remark*, where we felt the need to discuss more mathematical details or background material. These remarks can be skipped without loss of continuity; in most cases they require a bit more mathematical maturity. Whenever persons are introduced in examples we have determined their sex by looking at the chapter number and applying the rule "He is odd, she is even." Solutions to the quick exercises are found in the second to last section of each chapter.

The last section of each chapter is devoted to exercises, on average thirteen per chapter. For about half of the exercises, answers are given in Appendix C, and for half of these, full solutions in Appendix D. Exercises with both a short answer and a full solution are marked with \boxplus and those with only a short answer are marked with \boxdot (when more appropriate, for example, in "Show that ..." exercises, the short answer provides a hint to the key step). Typically, the section starts with some easy exercises and the order of the material in the chapter is more or less respected. More challenging exercises are found at the end.

Much of the material in this book would benefit from illustration with a computer using statistical software. A complete course should also involve computer exercises. Topics like simulation, the law of large numbers, the central limit theorem, and the bootstrap loudly call for this kind of experience. For this purpose, all the datasets discussed in the book are available at http://www.springeronline.com/1-85233-896-2. The same Web site also provides access, for instructors, to a complete set of solutions to the exercises; go to the Springer online catalog or contact textbooks@springer-sbm.com to apply for your password.

Delft, The Netherlands January 2005 F. M. Dekking C. Kraaikamp H. P. Lopuhaä L. E. Meester

Contents

1	$\mathbf{W}\mathbf{h}$	y probability and statistics?	1
	1.1	Biometry: iris recognition	1
	1.2	Killer football	3
	1.3	Cars and goats: the Monty Hall dilemma	4
	1.4	The space shuttle Challenger	5
	1.5	Statistics versus intelligence agencies	7
	1.6	The speed of light	9
2	Out	tcomes, events, and probability	13
	2.1	Sample spaces	13
	2.2	Events	14
	2.3	Probability	16
	2.4	Products of sample spaces	18
	2.5	An infinite sample space	19
	2.6	Solutions to the quick exercises	21
	2.7	Exercises	21
3	Cor	nditional probability and independence	25
	3.1	Conditional probability	25
	3.2	The multiplication rule	27
	3.3	The law of total probability and Bayes' rule	30
	3.4	Independence	32
	3.5	Solutions to the quick exercises	35
	3 6	Exercises	37

37	~
X	Contents

4	Dis	crete random variables	41
	4.1	Random variables	41
	4.2	The probability distribution of a discrete random variable \ldots	43
	4.3	The Bernoulli and binomial distributions	45
	4.4	The geometric distribution	48
	4.5	Solutions to the quick exercises	50
	4.6	Exercises	51
5	Cor	ntinuous random variables	57
	5.1	Probability density functions	57
	5.2	The uniform distribution	60
	5.3	The exponential distribution	61
	5.4	The Pareto distribution	63
	5.5	The normal distribution	64
	5.6	Quantiles	65
	5.7	Solutions to the quick exercises	67
	5.8	Exercises	68
6	Sim	ulation	71
	6.1	What is simulation?	71
	6.2	Generating realizations of random variables	72
	6.3	Comparing two jury rules	75
	6.4	The single-server queue	80
	6.5	Solutions to the quick exercises	84
	6.6	Exercises	85
7	Exp	pectation and variance	89
	7.1	Expected values	89
	7.2	Three examples	93
	7.3	The change-of-variable formula	94
	7.4	Variance	96
	7.5	Solutions to the quick exercises	99
	7.6	Exercises	99
8	Cor	nputations with random variables	103
	8.1	Transforming discrete random variables	103
	8.2	Transforming continuous random variables	104
	8.3	Jensen's inequality	106

		Contents	Λ_1
	8.4 Extremes		108
	8.5 Solutions to the quick exercises		110
	8.6 Exercises		111
9	Joint distributions and independence		115
	9.1 Joint distributions of discrete random variables	• • • • • • • • • •	115
	9.2 Joint distributions of continuous random variab	oles	118
	9.3 More than two random variables		122
	9.4 Independent random variables		124
	9.5 Propagation of independence		125
	9.6 Solutions to the quick exercises		126
	9.7 Exercises		127
10	Covariance and correlation		135
	10.1 Expectation and joint distributions		135
	10.2 Covariance		138
	10.3 The correlation coefficient		141
	10.4 Solutions to the quick exercises		143
	10.5 Exercises		144
11	More computations with more random variab	les	151
	11.1 Sums of discrete random variables		151
	11.2 Sums of continuous random variables		154
	11.3 Product and quotient of two random variables		159
	11.4 Solutions to the quick exercises		162
	11.5 Exercises		163
12	The Poisson process		167
	12.1 Random points		167
	12.2 Taking a closer look at random arrivals		168
	12.3 The one-dimensional Poisson process		171
	12.4 Higher-dimensional Poisson processes		173
	12.5 Solutions to the quick exercises		176
	12.6 Exercises		176
13	The law of large numbers		181
	13.1 Averages vary less		181
	13.2 Chebyshey's inequality		183

37TT	~
XII	Contents

	13.3 The law of large numbers
	13.4 Consequences of the law of large numbers
	13.5 Solutions to the quick exercises
	13.6 Exercises
14	The central limit theorem
	14.1 Standardizing averages
	14.2 Applications of the central limit theorem
	14.3 Solutions to the quick exercises
	14.4 Exercises
15	Exploratory data analysis: graphical summaries207
	15.1 Example: the Old Faithful data
	15.2 Histograms
	15.3 Kernel density estimates
	15.4 The empirical distribution function
	15.5 Scatterplot
	15.6 Solutions to the quick exercises
	15.7 Exercises
16	Exploratory data analysis: numerical summaries
	16.1 The center of a dataset
	16.2 The amount of variability of a dataset
	16.3 Empirical quantiles, quartiles, and the IQR
	16.4 The box-and-whisker plot
	16.5 Solutions to the quick exercises
	16.6 Exercises
17	Basic statistical models
	17.1 Random samples and statistical models
	17.2 Distribution features and sample statistics
	17.3 Estimating features of the "true" distribution
	17.4 The linear regression model
	17.5 Solutions to the quick exercises
	17.6 Exercises

		Contents	XIII
18	The bootstrap		. 269
	18.1 The bootstrap principle		. 269
	18.2 The empirical bootstrap		. 272
	18.3 The parametric bootstrap		. 276
	18.4 Solutions to the quick exercises		. 279
	18.5 Exercises		. 280
19	Unbiased estimators		. 285
	19.1 Estimators		. 285
	19.2 Investigating the behavior of an estimator		. 287
	19.3 The sampling distribution and unbiasedness		. 288
	19.4 Unbiased estimators for expectation and variance		. 292
	19.5 Solutions to the quick exercises		. 294
	19.6 Exercises		. 294
20	Efficiency and mean squared error		. 299
	20.1 Estimating the number of German tanks		. 299
	20.2 Variance of an estimator		. 302
	20.3 Mean squared error		. 305
	20.4 Solutions to the quick exercises		. 307
	20.5 Exercises		. 307
21	Maximum likelihood		. 313
	21.1 Why a general principle?		. 313
	21.2 The maximum likelihood principle		. 314
	21.3 Likelihood and loglikelihood		. 316
	21.4 Properties of maximum likelihood estimators		. 321
	21.5 Solutions to the quick exercises		. 322
	21.6 Exercises		. 323
22	The method of least squares		. 329
	22.1 Least squares estimation and regression		. 329
	22.2 Residuals		. 332
	22.3 Relation with maximum likelihood		. 335
	22.4 Solutions to the quick exercises		. 336
	22.5 Exercises		. 337

23	Confidence intervals for the mean
	23.1 General principle
	23.2 Normal data
	23.3 Bootstrap confidence intervals
	23.4 Large samples
	23.5 Solutions to the quick exercises
	23.6 Exercises
24	More on confidence intervals
	24.1 The probability of success
	24.2 Is there a general method?
	24.3 One-sided confidence intervals
	24.4 Determining the sample size
	24.5 Solutions to the quick exercises
	24.6 Exercises
25	Testing hypotheses: essentials
	25.1 Null hypothesis and test statistic
	25.2 Tail probabilities
	25.3 Type I and type II errors
	25.4 Solutions to the quick exercises
	25.5 Exercises
26	Testing hypotheses: elaboration
	26.1 Significance level
	26.2 Critical region and critical values
	26.3 Type II error
	26.4 Relation with confidence intervals
	26.5 Solutions to the quick exercises
	26.6 Exercises
27	The <i>t</i> -test
	27.1 Monitoring the production of ball bearings
	27.2 The one-sample <i>t</i> -test
	27.3 The t-test in a regression setting
	27.4 Solutions to the quick exercises
	27.5 Exercises

		Contents	XV
28	Comparing two samples		. 415
	28.3 Two samples with unequal variances 28.4 Large samples 28.5 Solutions to the quick exercises 28.6 Exercises		. 422 . 424
A	Summary of distributions		. 429
В	Tables of the normal and t-distributions		431
C	Answers to selected exercises		. 435
D	Full solutions to selected exercises		445
Ref	ferences		. 475
Lis	t of symbols		. 477
Ind	lex		. 479