

COOPERATIVE GAME THEORY AND IMPORTANCE QUANTIFICATION

¹EDF R&D - Lab Chatou - PRISME Department ²Institut de Mathématiques de Toulouse ³SINCLAIR AI Lab

ENBIS Spring Meeting 2024

Dortmund, Germany May 16, 2024

Given **random inputs** X_1, \ldots, X_d and a **random output** $G(X_1, \ldots, X_d)$, how much each **input contribute** to $\mathbb{V}(G(X_1, \ldots, X_d))$?

1/18

Given random inputs X_1, \ldots, X_d and a random output $G(X_1, \ldots, X_d)$, how much each input contribute to $\mathbb{V}(G(X_1, \ldots, X_d))$?

This is the importance quantification problem.

G is a deterministic black-box model:

- Numerical model (e.g., simulation codes)
- Learned ML/DL models (e.g., post-hoc interpretations).

The inputs X_1, \ldots, X_d are not necessarily mutually independent.

Given random inputs X_1, \ldots, X_d and a random output $G(X_1, \ldots, X_d)$, how much each input contribute to $\mathbb{V}(G(X_1, \ldots, X_d))$?

This is the importance quantification problem.

G is a deterministic black-box model:

- Numerical model (e.g., simulation codes)
- Learned ML/DL models (e.g., post-hoc interpretations).

The inputs X_1, \ldots, X_d are not necessarily mutually independent.

Recently, many proposed methods rely on **cooperative game theory principles**, which are often **misunderstood**.

Given random inputs X_1, \ldots, X_d and a random output $G(X_1, \ldots, X_d)$, how much each input contribute to $\mathbb{V}(G(X_1, \ldots, X_d))$?

This is the importance quantification problem.

G is a deterministic black-box model:

- Numerical model (e.g., simulation codes)
- Learned ML/DL models (e.g., post-hoc interpretations).

The inputs X_1, \ldots, X_d are not necessarily mutually independent.

Recently, many proposed methods rely on **cooperative game theory principles**, which are often **misunderstood**.

Goals of the presentation:

- Offer a different take on cooperative games for importance quantification purposes.
- Propose an alternative to the drawbacks of the Shapley values.
- Discuss the **fundamental interpretation challenges** related to these methods.

"Cooperative game theory = The art of cutting a cake".

"Cooperative game theory = The art of cutting a cake".


```
Let D=\{1,\ldots,d\} be a set of players, and \mathcal{P}\left(D\right) the set of coalitions.
Let v:\mathcal{P}\left(D\right)\to\mathbb{R} be a chosen value function.

\mathbb{P}\left(D,v\right) formally defines a cooperative game.
```

"Cooperative game theory = The art of cutting a cake".


```
Let D = \{1, ..., d\} be a set of players, and \mathcal{P}(D) the set of coalitions.
Let v : \mathcal{P}(D) \to \mathbb{R} be a chosen value function.

Fig. (D, v) formally defines a cooperative game.
```

Main question:

How to redistribute v(D) to each of the d players?

"Cooperative game theory = The art of cutting a cake".


```
Let D = \{1, ..., d\} be a set of players, and \mathcal{P}(D) the set of coalitions.
```

Let $v: \mathcal{P}(D) \to \mathbb{R}$ be a **chosen value function**.

 (D, \mathbf{v}) formally defines a **cooperative game**.

Main question:

How to redistribute v(D) to each of the d players?

Answer:

By using allocations!

An allocation associates a share of v(D) to inputs individually. It is a mapping $\psi: D \to \mathbb{R}$.

An allocation associates a share of v(D) to inputs individually. It is a mapping $\psi: D \to \mathbb{R}$.

For **importance quantification** two criteria are required:

- Efficiency: $\sum_{i \in D} \psi(i) = v(D)$.
- Nonnegativity: $\forall i \in D, \quad \psi(i) \geq 0.$

We redistribute the whole cake and nothing but the cake.

An allocation associates a share of v(D) to inputs individually. It is a mapping $\psi: D \to \mathbb{R}$.

For **importance quantification** two criteria are required:

- Efficiency: $\sum_{i \in D} \psi(i) = v(D)$.
- Nonnegativity: $\forall i \in D, \quad \psi(i) \geq 0.$

We redistribute the whole cake and nothing but the cake.

 \blacksquare In this case, ψ can be interpreted as a percentage of variance allocated to an input.

An allocation associates a share of v(D) to inputs individually. It is a mapping $\psi: D \to \mathbb{R}$.

For importance quantification two criteria are required:

- Efficiency: $\sum_{i \in D} \psi(i) = v(D)$.
- Nonnegativity: $\forall i \in D, \quad \psi(i) \geq 0.$

We redistribute the whole cake and nothing but the cake.

How can we define efficient and nonnegative allocations?

The Harsanyi set

The Harsanyi (1963) dividends of a cooperative game (D, v) are defined as :

$$\mathcal{D}_{\nu}(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} \nu(B).$$

It is a mapping $\mathcal{D}_{\mathbf{v}}(A):\mathcal{P}\left(D\right)\to\mathbb{R}$.

They can be interpreted as the **added value** produced by each **coalition**.

They **always** sum-up to v(D):

$$\sum_{A\in\mathcal{P}(D)}\mathcal{D}_{\boldsymbol{v}}(A)=\boldsymbol{v}(\boldsymbol{D}).$$

The Harsanyi set

The **Harsanyi** (1963) dividends of a cooperative game (D, v) are defined as:

$$\mathcal{D}_{\mathbf{v}}(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} \mathbf{v}(B).$$

It is a mapping $\mathcal{D}_{\mathbf{v}}(A):\mathcal{P}\left(D\right)\to\mathbb{R}$.

They can be interpreted as the **added value** produced by each **coalition**.

They **always** sum-up to v(D):

$$\sum_{A\in\mathcal{P}(D)}\mathcal{D}_{\boldsymbol{v}}(A)=\boldsymbol{v}(\boldsymbol{D}).$$

The Harsanyi set of allocations (Vasil'ev and Laan 2001) are aggregations of the Harsanyi dividends:

$$\frac{\psi(i)}{\psi(i)} = \sum_{A \in \mathcal{P}(D) \; : \; i \in A} \lambda_i(A) \mathcal{D}_v(A), \quad \text{where} \quad \begin{cases} \forall i \in D, \forall A \in \mathcal{P}(D) \, , \; \lambda_i(A) \geq 0, \\ \forall A \in \mathcal{P}(D) \, , \; \sum_{i \in D} \lambda_i(A) = 1. \end{cases}$$

The Harsanyi set

The Harsanyi (1963) dividends of a cooperative game (D, v) are defined as:

$$\mathcal{D}_{\nu}(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A|-|B|} \nu(B).$$

It is a mapping $\mathcal{D}_{\mathbf{v}}(A):\mathcal{P}(D)\to\mathbb{R}$.

They can be interpreted as the **added value** produced by each **coalition**.

They **always** sum-up to v(D):

$$\sum_{A\in\mathcal{P}(D)}\mathcal{D}_{\mathbf{v}}(A)=\mathbf{v}(D).$$

The Harsanyi set of allocations (Vasil'ev and Laan 2001) are aggregations of the Harsanyi dividends:

$$\frac{\psi(i)}{\psi(i)} = \sum_{A \in \mathcal{P}(D) \ : \ i \in A} \lambda_i(A) \mathcal{D}_{\mathbf{v}}(A), \quad \text{where} \quad \begin{cases} \forall i \in D, \forall A \in \mathcal{P}(D) \ , \ \lambda_i(A) \geq 0, \\ \forall A \in \mathcal{P}(D), \ \sum_{i \in D} \lambda_i(A) = 1. \end{cases}$$

They are always efficient.

 \square Nonnegative if ν is monotonic.

It is the case for $\mathbb{V}(\mathbb{E}[G(X) \mid X_{\Delta}])$.

Egalitarian redistribution: the Shapley values

The Shapley (1951) values are the egalitarian redistribution of the dividends.

Egalitarian redistribution: the Shapley values

The Shapley (1951) values are the egalitarian redistribution of the dividends.

In **global SA (GSA)**, Owen (2014) introduced the **Shapley effects**.

The Shapley values with the choice $v(A) = \mathbb{V}(\mathbb{E}[G(X) \mid X_A])$.

$$\mathsf{Sh}_i = \sum_{A \in \mathcal{P}(D): i \in A} \frac{S_A}{|A|},$$

where the **Harsanyi dividends** become S_A : the **Sobol' indices**.

Egalitarian redistribution: the Shapley values

The Shapley (1951) values are the egalitarian redistribution of the dividends.

In **global SA (GSA)**, Owen (2014) introduced the **Shapley effects**.

The Shapley values with the choice $v(A) = \mathbb{V}(\mathbb{E}[G(X) \mid X_A])$.

$$\mathsf{Sh}_i = \sum_{A \in \mathcal{P}(D): i \in A} \frac{S_A}{|A|},$$

where the **Harsanyi dividends** become S_A : the **Sobol' indices**.

- They quantify the importance of dependent inputs.
- They have been extensively studied in the GSA literature.

However, the Shapley effects have a practical drawback.

However, the Shapley effects have a practical drawback.

An exogenous input can have a non-zero share of importance.

This is **Shapley's joke**. (looss and Prieur 2019)

$$G(X) = X_1 + X_2, \quad X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \rho \\ 0 & 1 & 0 \\ \rho & 0 & 1 \end{pmatrix} \right)$$

$$Sh_1 = 0.5 - \rho^2/4$$
, $Sh_2 = 0.5$, $Sh_3 = \rho^2/4$.

However, the Shapley effects have a practical drawback.

An **exogenous input** can have a **non-zero share of importance**.

This is **Shapley's joke**. (looss and Prieur 2019)

$$G(X) = X_1 + X_2, \quad X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \rho \\ 0 & 1 & 0 \\ \rho & 0 & 1 \end{pmatrix} \right)$$

$${
m Sh_1} = 0.5 -
ho^2/4, \quad {
m Sh_2} = 0.5, \quad {
m \underline{Sh_3}} =
ho^2/4.$$

To solve this issue, we proposed to use **a proportional redistribution of the dividends** (Ortmann 2000).

It led to the definition of the proportional marginal effects (PME) (Herin et al. 2023).

However, the Shapley effects have a practical drawback.

An exogenous input can have a non-zero share of importance.

$$G(X) = X_1 + X_2, \quad X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \rho \\ 0 & 1 & 0 \\ \rho & 0 & 1 \end{pmatrix} \right)$$

$$Sh_1 = 0.5 - \rho^2/4$$
, $Sh_2 = 0.5$, $Sh_3 = \rho^2/4$.

To solve this issue, we proposed to use **a proportional redistribution of the dividends** (Ortmann 2000).

It led to the definition of the proportional marginal effects (PME) (Herin et al. 2023).

Proposition (Exogeneity detection). Under mild assumptions on the probabilistic structure of X,

$$PME_i = 0 \iff X_i \text{ is exogenous.}$$

In practice, they tend to "discriminate more" than the Shapley values when the inputs are highly correlated.

Estimation

Estimating the PME/Shapley effects \iff Estimating v(A) for every $A \in \mathcal{P}(D)$.

Two settings:

- You can sample your model at will (Monte Carlo): Requires a number proportional to d!(d-1) model evaluations (Song, Nelson, and Staum 2016).

 The estimation cost can be substantially lowered by giving-up precision.
- You only have access to an i.i.d. sample (Given-data): The nearest-neighbor procedure requires 2^d estimates (Broto, Bachoc, and Depecker 2020a).

These methods are time-consuming and scale exponentially with the number of inputs, but the estimates can be recycled to compute both indices at once.

Transmittance performance of an **optical filter** composed of 13 consecutive layers (Vasseur et al. 2010).

The inputs I_1, \ldots, I_{13} represent the **refractive index error** of each layer.

These errors are (highly) correlated due to the manufacturing process.

The numerical model computes the **transmittance error w.r.t. the** "perfect filter" over several wavelengths.

Transmittance performance of an **optical filter** composed of 13 consecutive layers (Vasseur et al. 2010).

The inputs I_1, \ldots, I_{13} represent the **refractive index error** of each layer.

These errors are (highly) correlated due to the manufacturing process.

The numerical model computes the transmittance error w.r.t. the "perfect filter" over several wavelenaths.

Optical Filter

We only have access to an i.i.d. input-output sample (n = 1000).

The indices are computed using a **nearest-neighbors approach** (Broto, Bachoc, and Depecker 2020b).

Parallelized implementation using the R package sensitivity (\sim 4min runtine, 8 cores).

Arbitrarily chosen number of neighbors: 6.

Scenario: We want to build a surrogate model (Gaussian process*) of this numerical model.

Using the whole dataset: $Q^2 = 99.48\%$.

Feature selection:

- First threshold: 2.5% importance.
 - Shapley effects: No features removed.
 - **PME**: I_1 and I_3 are removed, $Q^2 = 99.14\%$.
- Second threshold: 5% importance.
 - Shapley effects: No features removed.
 - **PME**: 7 inputs are removed, $Q^2 = 98.79\%$.

^{* 5/2} Matérn covariance kernel, constant trend.

Links with combinatorics

To define suitable indices, recall that we took the following steps:

- 1. We chose of a value function $\mathbf{v}: \mathcal{P}(D) \to \mathbb{R}$.
- 2. We defined the Harsanyi dividends of v as: $\forall A \in \mathcal{P}(D)$, $\mathcal{D}_v(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A|-|B|} v(B)$.

Links with combinatorics

To define suitable indices, recall that we took the following steps:

- 1. We chose of a value function $\mathbf{v}:\mathcal{P}\left(D\right)\to\mathbb{R}.$
- 2. We defined the Harsanyi dividends of v as: $\forall A \in \mathcal{P}(D)$, $\mathcal{D}_v(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A|-|B|} v(B)$.

This approach is intimately linked to a well-known equivalence in the field of combinatorics.

Proposition (Möbius inversion on power-sets (Rota 1964; Kung, Rota, and Hung Yan 2012)).

For any two set functions $v:\mathcal{P}\left(D\right)\to\mathbb{R},\;\phi:\mathcal{P}\left(D\right)\to\mathbb{R},$ the following equivalence holds:

$$\forall A \in \mathcal{P}(D), \quad \mathbf{v}(A) = \sum_{B \in \mathcal{P}(A)} \phi(B), \quad \Longleftrightarrow \quad \forall A \in \mathcal{P}(D), \quad \phi(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} \mathbf{v}(B).$$

We went from the **right-hand side** to the **left-hand side** of the equivalence: the **input-centric approach**.

Illustration: Linear model with interaction and Gaussian inputs

Consider the model:

$$G(X) = X_1 + X_2 X_3, \quad X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \rho \\ 0 & 1 & 0 \\ \rho & 0 & 1 \end{pmatrix} \right)$$

and recall that $\mathcal{D}_{\nu}(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} \mathbb{V}\left(\mathbb{E}\left[G(X) \mid X_{B}\right]\right)$.

Illustration: Linear model with interaction and Gaussian inputs

Consider the model:

$$G(X) = X_1 + X_2 X_3, \quad X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \rho \\ 0 & 1 & 0 \\ \rho & 0 & 1 \end{pmatrix} \right)$$

and recall that $\mathcal{D}_{\nu}(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} \mathbb{V}\left(\mathbb{E}\left[G(X) \mid X_{B}\right]\right)$.

Traditional FANOVA (normalized) Independent inputs (**Sobol' indices**)

$$\begin{split} \mathcal{D}_{\nu}(1) &= 0.5 \quad \mathcal{D}_{\nu}(2) = 0, \quad \mathcal{D}_{\nu}(3) = 0, \\ \mathcal{D}_{\nu}(12) &= 0, \quad \mathcal{D}_{\nu}(13) = 0, \quad \mathcal{D}_{\nu}(23) = 0.5, \\ \mathcal{D}_{\nu}(123) &= 0 \end{split}$$

 \square Sobol' indices are "interactions effects" due to G.

Input-centric approach (normalized)

Dependent inputs

$$\begin{split} \mathcal{D}_{\nu}(1) &= 0.5 \quad \mathcal{D}_{\nu}(2) = 0, \quad \mathcal{D}_{\nu}(3) = \rho^{2}/2, \\ \mathcal{D}_{\nu}(12) &= \rho^{2}/2, \quad \mathcal{D}_{\nu}(13) = -\rho^{2}/2, \quad \mathcal{D}_{\nu}(23) = 0.5, \\ \mathcal{D}_{\nu}(123) &= -\rho^{2}/2 \end{split}$$

 \square Correlated inputs \implies unclear interpretation.

Effects due to interaction and effects due to dependence are entangled.

Shapley effects with dependent inputs

Hence, the precise interpretation of

$$\mathcal{D}_{v}(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} \mathbb{V}\left(\mathbb{E}\left[G(X) \mid X_{B}\right]\right)$$

is still an open question : it is an entangled mixture of effects due to interaction and dependence.

Shapley effects with dependent inputs

Hence, the precise interpretation of

$$\mathcal{D}_{\nu}(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} \mathbb{V}\left(\mathbb{E}\left[G(X) \mid X_{B}\right]\right)$$

is still an open question: it is an entangled mixture of effects due to interaction and dependence.

Recall that the **Shapley effects** for an input $i \in D$ is defined as:

$$\mathsf{Sh}_i = \sum_{A \in \mathcal{P}(D), i \in A} \frac{\mathcal{D}_{\boldsymbol{v}}(A)}{|A|}.$$

which is an **egalitarian aggregation of a (not so clear) mixture of interaction and dependence effects**.

Shapley effects with dependent inputs

Hence, the precise interpretation of

$$\mathcal{D}_{\mathbf{v}}(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} \mathbb{V}\left(\mathbb{E}\left[G(X) \mid X_{B}\right]\right)$$

is still an open question: it is an entangled mixture of effects due to interaction and dependence.

Recall that the **Shapley effects** for an input $i \in D$ is defined as:

$$\mathsf{Sh}_i = \sum_{A \in \mathcal{P}(D), i \in A} \frac{\mathcal{D}_{\boldsymbol{v}}(A)}{|A|}.$$

which is an **egalitarian aggregation of a (not so clear) mixture of interaction and dependence effects**.

In conclusion:

The choice $v(A) = \mathbb{V}\left(\mathbb{E}\left[G(X) \mid X_A\right]\right)$, leads to an <u>uncharacterized</u> quantification when the inputs are dependent.

Solution: Generalized Hoeffding decomposition (l. et al. 2024).

Conclusion

Key messages:

- Cooperative game theory: Resourceful for building interpretable importance indices.
- Harsanyi dividends: Links the field to combinatorics through Möbius inversion.
- Shapley values: Egalitarian redistribution (\neq fair).
- PME: Allow to detect exogenous inputs, more descriminative.
- **Estimation**: VERY time-consuming (but embarrassingly parallel).

Conclusion

Key messages:

- Cooperative game theory: Resourceful for building interpretable importance indices.
- Harsanyi dividends: Links the field to combinatorics through Möbius inversion.
- **Shapley values:** Egalitarian redistribution (\neq fair).
- PME: Allow to detect exogenous inputs, more descriminative.
- **Estimation**: VERY time-consuming (but embarrassingly parallel).

Challenges and open questions:

- Estimation: More efficient estimation schemes.
- Interpretation: FANOVA with dependent inputs (I. et al. 2024).
- Allocations: Properties of other allocations? (e.g., weighted Shapley)

References i

- Benoumechiara, N., and K. Elie-Dit-Cosaque. 2019. "Shapley effects for sensitivity analysis with dependent inputs: bootstrap and kriging-based algorithms" [in en]. Publisher: EDP Sciences, ESAIM: Proceedings and Surveys 65:266–293. issn: 2267-3059, accessed December 13, 2023. https://doi.org/10.1051/proc/201965266. https://www.esaim-proc.org/articles/proc/abs/2019/01/proc196511/proc196511.html.
- Broto, B., F. Bachoc, and M. Depecker. 2020a. "Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution." SIAM/ASA Journal on Uncertainty Quantification 8:693–716.
- 2020b. "Variance Reduction for Estimation of Shapley Effects and Adaptation to Unknown Input Distribution." SIAM/ASA Journal on Uncertainty Quantification 8 (2): 693–716. ISSN: 2166-2525. https://doi.org/10.1137/18M1234631. https://epubs.siam.org/doi/10.1137/18M1234631.
- Harsanyi, J. C. 1963. "A Simplified Bargaining Model for the n-Person Cooperative Game." Publisher: [Economics Department of the University of Pennsylvania, Wiley, Institute of Social and Economic Research, Osaka University], International Economic Review 4 (2): 194–220. ISSN: 0020-6598. https://doi.org/10.2307/2525487. https://www.jstor.org/stable/2525487.
- Herin, M., M. I., V. Chabridon, and B. looss. 2023. "Proportional marginal effects for global sensitivity analysis." Preprint. https://hal.science/hal-03825935.
- I., M., N. Bousquet, F. Gamboa, B. looss, and J. M. Loubes. 2024. "Hoeffding decomposition of black-box models with dependent inputs." Preprint. https://hal.science/hal-04233915.

References ii

- looss, B., and C. Prieur. 2019. "Shapley effects for Sensitivity Analysis with correlated inputs: Comparisons with Sobol' Indices, Numerical Estimation and Applications." International Journal for Uncertainty Quantification 9 (5): 493–514.
- Kung, J. P. S., G. C. Rota, and C. Hung Yan. 2012. Combinatorics: the Rota way. OCLC: 1226672593. New York: Cambridge University Press. ISBN: 978-0-511-80389-5.
- Ortmann, K. M. 2000. "The proportional value for positive cooperative games." Mathematical Methods of Operations Research (ZOR) 51 (2): 235–248.
- Owen, A. B. 2014. "Sobol' Indices and Shapley Value." SIAM/ASA Journal on Uncertainty Quantification 2 (1): 245–251. issn: 2166-2525. $https://doi.org/10.1137/130936233. \ https://epubs.siam.org/doi/10.1137/130936233.$
- Owen, A. B., and C. Prieur. 2017. "On Shapley Value for Measuring Importance of Dependent Inputs." SIAM/ASA Journal on Uncertainty Quantification 5 (1): 986–1002.
- Plischke, E., G. Rabitti, and E. Borgonovo. 2021. "Computing Shapley Effects for Sensitivity Analysis." Publisher: Society for Industrial and Applied Mathematics, SIAM/ASA Journal on Uncertainty Quantification 9 (4): 1411–1437. https://doi.org/10.1137/19M1304738. https://epubs.siam.org/doi/abs/10.1137/19M1304738.
- Rota, G. C. 1964. "On the foundations of combinatorial theory I. Theory of Möbius Functions." Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2 (4): 340–368. ISSN: 1432-2064. https://doi.org/10.1007/BF00531932.

References iii

- Shapley, L. S. 1951. Notes on the n-Person Game II: The Value of an n-Person Game. Research Memorandum ATI 210720. Santa Monica, California: RAND Corporation.
- Song, E., B.L. Nelson, and J. Staum. 2016. "Shapley effects for global sensitivity analysis: Theory and computation." SIAM/ASA Journal on Uncertainty Quantification 4:1060–1083.
- Vasil'ev, V., and G. van der Laan. 2001. The Harsanyi Set for Cooperative TU-Games. Working Paper 01-004/1. Tinbergen Institute Discussion Paper. https://www.econstor.eu/handle/10419/85790.
- Vasseur, O., M. Claeys-Bruno, M. Cathelinaud, and M. Sergent. 2010. "High-dimensional sensitivity analysis of complex optronic systems by experimental design: applications to the case of the design and the robustness of optical coatings." Chinese Optics Letters 8(s1):21–24.

To go further

More on the Proportional Marginal Effects (PME)

(HAL/arXiv/ResearchGate)

Proportional marginal effects for global sensitivity analysis

Margot Herin^a, Marouane Il Idrissi^{b,c,d}, Vincent Chabridon^{b,c}, Bertrand Iooss^{b,c,d,e}

Sorbonne Université, Laboratoire d'Informatique de Paris 6, 4 place Jussieu, 75005 Paris, France.
*BDF Lab Chatou, 6 Quai Waiter, 7840 Chatou, France
*SINCLAIR AI Lab., Saciap, France
d'Institut de Mathématiques de Toulouse, 31062 Toulouse, France
*Corresponding Author. Franch Josterdon Gossified fr

More about the links with combinatorics

(HAL/arXiv/ResearchGate)

On the coalitional decomposition of parameters of interest

 $\label{eq:marouane II Idrissi^{a,b,c,e}, Nicolas Bousquet^{a,b,d}, Fabrice Gamboa^c, Bertrand Iooss^{a,b,c}, Jean-Michel Loubes^c$

^aEDF Lab Chatou, 6 Quai Watier, 78401 Chatou, France ^bSINCLAIR AI Lab., Saclay, France ^cInstitut de Mathématiques de Toulouse, 31062 Toulouse, France ^dSorbonne Université, LPSM, 4 place Jussieu, Paris, France

Generalized FANOVA indices for dependent inputs (HAL/arXiv/ResearchGate)

Hoeffding decomposition of black-box models with dependent inputs

 $\label{eq:marouane II Idrissia,b,c,e} Marouane II Idrissia,b,c,e, Nicolas Bousquet^{a,b,d}, Fabrice Gamboa^c, Bertrand Iooss^{a,b,c}, Jean-Michel Loubes^c$

^aEDF Lab Chatou, 6 Quai Watier, 78401 Chatou, France ^bSINCLAIR AI Laboratory, Saclay, France ^cInstitut de Mathématiques de Toulouse, 31062 Toulouse, France ^dSorbonne Université, LPSM, 4 place Jussieu, Paris, France ^cCorresponding Author - Email: libirissi m@gmail.com

THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?