Eniversidad de Huelva

GRADO EN INGENIERÍA INFORMÁTICA

FUNDAMENTOS DE COMPUTADORES

Examen de Septiembre (04/09/2017)

APELLIDOS	l:		
NOMBRE:		_DNI Nº:	GRUPO:

1 (6 puntos).- La puerta de garaje de la figura funciona de la siguiente manera:

- Cuando un coche se acerca a la misma es detectado por el sensor de ultrasonidos y la puerta comienza a subir.
- La puerta permanece arriba mientras el coche está pasando (detectado por el sensor fotoeléctrico) y luego baja.
- Por último, si la puerta está bajando y se detecta otro coche en las inmediaciones debe empezar a subir de nuevo.

Se pide:

- a) Tabla de verdad del circuito ordenando las entradas en orden alfabético **de derecha a izquierda**. Determinar el número de salidas necesario para controlar la puerta. (2 puntos)
- **b**) Resolver el circuito mínimo de control mediante puertas NAND. (2 puntos)
- c) Resolver el circuito de control mediante decodificadores y puertas OR. Se dispone de decodificadores de un máximo de 4 salidas y una única línea de habilitación G activa a nivel alto. (1 punto)
- **d**) Escribir un módulo VHDL en el que se modelen las expresiones mínimas del circuito de control obtenidas en el apartado b). (1 punto)

2 (4 puntos).- Un sistema digital posee una entrada **E** (sincronizada con la señal de reloj CLK) y una salida **S**. Si la salida S está inactiva, ésta sólo se activará tras permanecer la entrada E a nivel alto durante un mínimo de tres periodos de reloj consecutivos. Si la salida S está activa, ésta se desactivará tras adoptar la entrada E un nivel bajo durante tres periodos de reloj, sean éstos consecutivos o no.

Realizar una máquina de tipo MOORE cuyo comportamiento se corresponda con el del sistema descrito anteriormente mediante el empleo de un REGISTRO y una PAL, representando:

- a) El diagrama de estados del sistema. (2.5 puntos)
- **b**) La tabla de estados del sistema. (1 punto)
- c) El diagrama lógico del sistema. (0.5 puntos)

Ejercicio 1

a) Tabla de verdad del circuito.

SU	SF	PAR	PAB	SP	ВР
0	0	0	0	0	1
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	Χ	Х
0	1	0	0	1	0
0	1	0	1	Χ	Χ
0	1	1	0	0	0
0	1	1	1	Χ	Χ
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1	1	Χ	Х
1	1	0	0	1	0
1	1	0	1	Χ	Χ
1	1	1	0	0	0
1	1	1	1	Χ	Χ

$$SP = \sum_{4} (4, 8, 9, 12) + \sum_{\phi} (3, 5, 7, 11, 13, 15)$$

$$BP = \sum_{4} (0, 2) + \sum_{\phi} (3, 5, 7, 11, 13, 15)$$

b) Simplificación por Karnaugh de las funciones SP y BP, transformación de las expresiones mínimas obtenidas para su implementación mediante puertas NAND y diagrama lógico del circuito completo.

SF SU PAB	PAB PAR SF SU 00		11	10
00	0	0	Χ	0
01	1	0	Χ	1
11	1	0	Χ	X
10_	_1	0	Х	x

$$SP = SU \overline{PAR} + SF \overline{PAR} = \overline{SU \overline{PAR} + SF \overline{PAR}} = \overline{SU \overline{PAR}} \cdot \overline{SF \overline{PAR}}$$

SF SU OO		01	11	10
00	1	1	Х	0
01	0	0	Χ	0
11	0	0	Χ	х
10	0	0	Χ	Х

$$BP = \overline{SU} \overline{SF} \overline{PAB} = \overline{\overline{SU} \overline{SF} \overline{PAB}}$$

c) Implementación del circuito completo mediante decodificadores y puertas OR.

d) Módulo VHDL de las funciones mínimas SP y BP.

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY EFC_17_S IS

PORT ( SU : IN STD_LOGIC;

SF : IN STD_LOGIC;

PAR : IN STD_LOGIC;

PAB: IN STD_LOGIC;

SP: OUT STD_LOGIC;

BP : OUT STD_LOGIC);

END EFC_17_S;

ARCHITECTURE A_EFC_17_S OF EFC_17_S IS

BEGIN

SP <= (SU AND NOT PAR) OR (SF AND NOT PAR);

BP <= NOT SU AND NOT SF AND NOT PAB;

END A_EFC_17_S;
```

Ejercicio 2

a) Diagrama de estados del sistema.

b) Tabla de estados del sistema.

q ₂	qı	qo	Ε	\mathbf{Q}_{2}	Q_1	Qo	D_2	D_1	D_0	S
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	0	1	0	0
0	1	0	0	0	0	0	0	0	0	0
0	1	0	1	0	1	1	0	1	1	0
0	1	1	0	1	0	0	1	0	0	1
0	1	1	1	0	1	1	0	1	1	1
1	0	0	0	1	0	1	1	0	1	1
1	0	0	1	1	0	0	1	0	0	1
1	0	1	0	0	0	0	0	0	0	1
1	0	1	1	1	0	1	1	0	1	1

c) Diagrama lógico del sistema.

