Serre-Swan 定理

陈昱坤

时间: 2022 年 3 月 18 日

目录

1	定理	证明	1
	1.1	模同态与向量丛同态	1
	1.2	直和	4
	1.3	最后的证明	(

1 定理证明

引理 1.1. 设 ξ 拓扑空间是 B 上的向量丛, 那么由 ξ 的全体 (连续) 截面构成的集合 $\Gamma(\xi)$ 是一个 C(B)-模.

证明. 考虑 $f \in C(B), s \in \Gamma(\xi)$, 定义

$$(fs)(x) = f(x)s(x).$$

容易证明, 由上述规则定义的乘法使得 $\Gamma(\xi)$ 成为 C(B)-模.

下面是 Serre-Swan 定理的陈述:

定理 1.1 (Serre-Swan). 设 B 是紧 Hausdorff 空间. 那么一个 C(B)-模 P 同构于由某个 B 上的向量丛 ξ 的全体截面构成的模 $\Gamma(\xi)$, 当且仅当 P 是有限生成的投射模.

为了证明这个定理, 我们先考虑 ξ 是平凡丛的情形.

命题 1.1. 设 B 是拓扑空间. 那么 C(B)-模 F 同构于某个平凡丛 ξ 诱导的模 $\Gamma(\xi)$, 当且仅当 F 是有限生成的自由模.

证明. 设 ξ 是平凡丛 $B \times \mathbb{R}^n$,由 \mathbb{R}^n 上的基底 e_1, \dots, e_n 诱导出 ξ 上的截面 s_1, \dots, s_n . 对任意的截面 $s \in \Gamma(\xi)$ 和 $b \in B$,有 $s(b) = \sum_{i=1}^n f_i(b)s_i(b)$. 所以 $s \in (s_1, \dots, s_n)$,即 $\Gamma(\xi) \subset (s_1, \dots, s_n)$. 另一方面,对于任意的 $f \in C(B)$, $fs_i \in \Gamma(\xi)$,所以 $(s_1, \dots, s_n) \subset \Gamma(\xi)$. 不难说明, $\Gamma(\xi) = (s_1, \dots, s_n)$ 在模同构的意义下成立. 所以 $\Gamma(\xi)$ 是有限生成的自由模, s_1, \dots, s_n 是它的一组基.

反之, 对于有限生成的自由模 F, 取它的基为 g_1, \dots, g_n . 定义 $\xi = (B \times \mathbb{R}^n, B, \pi)$, 取 \mathbb{R}^n 的基底 e_1, \dots, e_n 对应的截面 s_1, \dots, s_n . 定义映射

$$\ell: \{s_1, \cdots, s_n\} \to F, s_i \mapsto g_i.$$

取其线性延拓 $\tilde{\ell}$: $\Gamma(\xi) \to F$. 这是一个 C(B)-模同构.

1.1 模同态与向量丛同态

定义 1.1. 向量丛之间的**同态**是一组连续映射 $(f,g),f:E_1 \to E_2,g:B_1 \to B_2$, 使得 $g \circ \pi_1 = \pi_2 \circ f$, 并且对于每个 $b \in B_1,f\big|_{\pi^{-1}(b)}:\pi_1^{-1}(b) \to \pi_2^{-1}(g(b))$ 是线性映射.

当底空间 B 相同时,向量丛同态 $f: \xi \to \eta$ 诱导了 C(B)-模同态 $\Gamma(f): \Gamma(\xi) \to \Gamma(\eta), s \mapsto f \circ s$. 这个定义是合理的,因为 $\pi_2 \circ (f \circ s) = \pi_1 \circ s = 1_B$,因此 $f \circ s \neq \eta$ 的截面.

引理 1.2. 设 (E, B, π) 是 n 维向量丛, s_1, \dots, s_ℓ 是 E 的 ℓ 个截面. 如果存在点 b_0 ,使得 $s_1(b_0), \dots, s_\ell(b_0)$ 线性无关,则存在它的一个邻域 U,和 $E|_U$ 的截面 $s_{\ell+1}, \dots, s_n$,使得对 U 上的每个点 b,有 $s_1(b), \dots, s_\ell(b), s_{\ell+1}(b), \dots, s_n(b)$ 线性无关.

证明. 取 b_0 附近的一个局部平凡化 $h_\alpha: \pi^{-1}(U_\alpha) \to U_\alpha \times \mathbb{R}^n$. 在 b_0 处, $s_1(b_0), \dots, s_\ell(b_0)$ 线性 无关. 由于 $h_\alpha|_{\pi^{-1}(b_0)}: \pi^{-1}(b_0) \to \{b\} \times \mathbb{R}^n$ 是线性同构, 所以 $P_2h_\alpha(s_1(b_0)), \dots, P_2h_\alpha(s_\ell(b_0))$ 是 \mathbb{R}^n 中的 ℓ 个向量, 因此可以找到向量 $v_{\ell+1}, \dots, v_n$, 使得

$$P_2h_{\alpha}(s_1(b_0)), \cdots, P_2h_{\alpha}(s_{\ell}(b_0)), v_{\ell+1}, \cdots, v_n$$

线性无关. 也就是说

$$Det(P_2h_{\alpha}(s_1(b_0)), \dots, P_2h_{\alpha}(s_{\ell}(b_0)), v_{\ell+1}, \dots, v_n) \neq 0.$$

由于行列式 Det 对于各分量是连续的, 且 $P_2: U_\alpha \times \mathbb{R}^n \to \mathbb{R}^n, (x,v) \mapsto v, h_\alpha$ 和 $s_i, 1 \leq i \leq \ell$ 都是连续的, 所以存在 b_0 的一个开邻域 $U \subset U_\alpha$, 使得对于 $b \in U$, 都有

$$Det(P_2h_{\alpha}(s_1(b)), \cdots, P_2h_{\alpha}(s_{\ell}(b)), v_{\ell+1}, \cdots, v_n) \neq 0.$$

即,

$$P_2h_{\alpha}(s_1(b)), \cdots, P_2h_{\alpha}(s_{\ell}(b)), v_{\ell+1}, \cdots, v_n$$

线性无关. 所以定义

$$s_i(b) = h_{\alpha}^{-1}(b, v_i), \ell + 1 \le i \le n, \forall b \in U,$$

则 s_i 是定义在 U 上的截面,并且对每个 $b \in U, s_1(b), \dots, s_\ell(b), s_{\ell+1}(b), \dots, s_n(b)$ 线性无 关.

命题 1.2. 设 $f: \xi \to \eta$ 是向量丛同态. 以下命题等价:

- (1)imf 是 η 的子丛;
- (2)kerf 是 ξ 的子丛;
- (3)imf 的纤维的维数是局部常数;
- (4)ker f 的纤维的维数是局部常数.

证明. 根据定义,有 (1) \implies (3),(2) \implies (4). 注意到在每个点 $b \in B$ 的纤维上,有 $\dim(\inf|_{\pi_2^{-1}(b)}) + \dim(\ker f|_{\pi_1^{-1}(b)}) = \dim(\pi_1^{-1}(b))$,而 $\dim(\pi_1^{-1}(b))$ 是局部常数,所以 (3) 和 (4) 等价.

(3) \Longrightarrow (1): 任取 $b_0 \in B, s_1, \dots, s_m$ 是 ξ 在点 b_0 处的局部基, t_1, \dots, t_n 是 η 在点 b_0 处的局部基.

不妨设
$$fs_1(b_0), \dots, fs_k(b_0)$$
 张成了空间 $\text{Im} f \Big|_{\pi_2^{-1}(b_0)}$ 以及

$$fs_1(b_0), \cdots, fs_k(b_0), \cdots, t_{k+1}(b_0), \cdots, t_n(b_0)$$

线性无关,于是在 b_0 的邻域 U 上,可以张成线性无关的截面 $fs_1, \dots, fs_k, t_{k+1}, \dots, t_n$. 由于 imf 的纤维的维数是局部常数,因此,不妨假定其在 U 上是局部常数,所以 fs_1, \dots, fs_k 是 imf 限制在 U 上的线性无关的截面,因此 imf 限制在 U 是平凡丛,这就说明了 imf 具有局部平凡化. 因此,它是 η 的子丛.

(4) \Longrightarrow (2): 设 s_1, \dots, s_m 是 ξ 在点 b_0 处的一个局部基. 设 k 是点 b_0 处的 im f 的纤维的维数, 不失一般性地, 假设 fs_1, \dots, fs_k 张成了 im f 在 b_0 处的纤维. 因此

$$fs_i(b_0) = \sum_{j=1}^k a_{ij}(b_0) fs_j(b_0), k+1 \le i \le m.$$

于是定义 $s_i' = s_i - \sum_{j=1}^k a_{ij}(b_0)fs_j(b_0), k+1 \leq j \leq m$,有 $fs_i' = 0$,因此,它们张成了 $\ker f\big|_{\pi_1^{-1}(b_0)}$. 由 Det 的连续性可知,存在 b_0 的开邻域 U,使得 ξ 在其上的截面截面 s_{k+1}', \dots, s_m' 线性无关,并且它们都落在 $\ker f$ 之中.又因为 $\ker f$ 每个点的纤维是局部常数的,所以截面给出了 $\ker f$ 的局部平凡化. 因此 $\ker f$ 是向量处,因而是 ξ 的子处.

从证明过程中可以看出:

推论 1.1. 设 $f: \xi \to \eta$ 的丛同态. 那么对于每个点 $b \in B$, 存在它的邻域 U, 使得对任意的 $b' \in U$, 都有 $\dim(\inf \cap \pi_2^{-1}(b)) \leq \dim(\inf f \cap \pi_2^{-1}(b'))$.

引理 1.3. 设 B 是正规空间,U 是 x 的一个邻域.s 是 U 上向量丛 ξ 的截面. 那么存在 X 上 ξ 的截面 s', 和 $b_0 \in U$ 的邻域 W, 使得 s'(b) = s(b), $\forall b \in U$.

证明. 由于 B 是正规的, 所以存在 b 的邻域 V 和 W, 使得 $\overline{V} \subset U$, $\overline{W} \subset V$. 运用 Urysohn 引理, 存在函数 $\varphi: B \to [0,1]$, 使得 $\varphi|_{\overline{W}} = 1, \varphi|_{B \setminus V} = 0$. 定义 $s'(b) = \varphi(b)s(b)$ 即可.

推论 1.2. 设向量丛 $\xi = (E, B, \pi)$, 那么对任意的 $b \in B$, 存在截面 s_1, \dots, s_n , 使得它们限制 在 b 的某个邻域上线性无关.

这一小节的目标是证明如下定理:

定理 1.2. 设 B 是正规空间 (normal space). 给定 C(B)-模同态 $F: \Gamma(\xi) \to \Gamma(\eta)$, 存在唯一的丛同态 $f: \xi \to \eta$, 使得 $F = \Gamma(f)$.

我们证明, 如果 f 存在, 则必定唯一.

证明. 设 f,g 都是满足条件的向量丛同态. 对任意的 $e \in E(\xi)$, 和点 $b \in B$, 我们可以构作一U 上的局部截面 s, 使得 s(b) = e. 因为 B 是正规的, 所以根据引理1.3, 存在一整体截面 s', 使得 s'(b) = e. 因此,

$$f(e) = fs'(b) = (\Gamma(f)s')(b) = (\Gamma(g)s')(b) = gs'(b) = g(e).$$

所以 f = g.

引理 1.4. 设 B 是正规空间, $s \in \Gamma(\xi)$ 且 $s(b_0) = 0$,那么存在 $s_1, \dots, s_n \in \Gamma(\xi)$, $a_1, \dots, a_n \in C(B)$,使得 $a_i(b_0) = 0$,且 $s = \sum a_i s_i$.

证明. 令 $s \in \Gamma(\xi)$, 且 s(b) = 0, 设 s_1, \dots, s_n 是点 b 附近的 ξ 的局部基, 所以 $s(b) = \sum_{i=1}^n c_i(b)s_i(b), b \in \overline{U}$. 根据 Tietze 扩张定理, 存在映射 $a_i \in C(B)$, 使得 $a_i|_{\overline{U}} = c_i$. 定义 $s'(b) = \sum_{i=1}^n a_i(b)s_i(b)$ 即有

$$a_i(b_0) = c_i(b_0) = 0.$$

定理 1.3. 设 B 是一个正规空间, $I_b := \{ f \in C(B) : f(b) = 0 \}$, 则 I_b 是 C(B) 的理想. 映射 $b_{\xi} : s \mapsto s(b)$ 给出了线性空间的同构 $\Gamma(\xi)/I_b\Gamma(\xi) \simeq \pi^{-1}(b)$.

证明. 这显然是一个同态. 它显然是一个满射, 因为对于任意的 $u \in \pi^{-1}(b)$, 存在一个截面 $s \in \Gamma(\xi)$, 使得 s(b) = u.

我们再证明它是单的. 设 s(b)=t(b), 我们证明 $s\sim t$. 事实上, 取 s'=s-t, 则 s(b)=0, 因此存在 $s_1,\dots,s_n\in\Gamma(\xi)$, $a_1,\dots,a_n\in C(B)$, 使得 $a_i(b)=0$, 且 $s'=\sum a_is_i$. 因此 $s\sim t$. 所以这是单射.

定理1.2的证明. 我们已经证明了唯一性. 现在我们证明存在性. 映射 $F: \Gamma(\xi) \to \Gamma(\eta)$ 诱导了映射 $f_b: \Gamma(\xi)/I_b\Gamma(\xi) \to \Gamma(\eta)/I_b\Gamma(\eta)$, 以及 $\tilde{f}_b: \pi_1^{-1}(b) \to \pi_2^{-1}(b)$, $s(b) \to F(s)(b)$.

$$\Gamma(\xi) \xrightarrow{F} \Gamma(\eta)$$

$$\downarrow^{p_{\xi}} \downarrow \qquad \qquad \downarrow^{p_{\eta}}$$

$$\Gamma(\xi)/I_{b}\Gamma(\xi) \xrightarrow{f_{b}} \Gamma(\eta)/I_{n}\Gamma(\eta)$$

$$\downarrow^{b_{\xi}} \downarrow \qquad \qquad \downarrow^{b_{\eta}}$$

$$\pi_{1}^{-1}(b) \xrightarrow{\tilde{f}_{b}} \pi_{2}^{-1}(b)$$

我们说明, 这实际上给出了丛同态 $f: \xi \to \eta, u \mapsto \tilde{f}_{\pi_1(u)}(u)$. 注意到 f 限制到每个点 b 的 纤维上恰好是 \tilde{f}_b , 这是一个线性映射, 并且有 $\pi_2(\tilde{f}_{\pi_1(u)}(u)) = \pi_1(u)$. 因此, 我们只要验证 f 的 连续性即可. 对任意的点 $b \in B$, 考虑它附近的一个局部平凡化 $h_\alpha: \pi_1^{-1}(U_\alpha) \to U_\alpha \times \mathbb{R}^n$. 设 e_1, \dots, e_n 是 \mathbb{R}^n 的基底, 取 s_1, \dots, s_n 是 $h_\alpha^{-1}(b, e_n), \dots, h_\alpha^{-1}(b, s_n)$ 在 ξ 上延拓后的整体截面. 则对于 $e \in E(\xi), \pi_1(e) \in U_\alpha$, 有

$$P_2(h_{\alpha}(e)) = \sum_{i=1}^{n} a_i(P_2(h_{\alpha}(e)))e_i, a_i \in C(\mathbb{R}^n).$$

所以

$$h_{\alpha}(e) = (\pi_1(e), \sum_{i=1}^n a_i(P_2(h_{\alpha}(e)))e_i)$$

因此,有

$$e = \sum_{i=1}^{n} a_i(P_2(h_\alpha(e))) s_i(\pi_1(e)), a_i \in C(\mathbb{R}^n)$$

于是

$$f(e) = \sum_{i=1}^{n} a_i(P_2(h_\alpha(e))) f(s_i(\pi_1(e))) = \sum_{i=1}^{n} a_i(P_2(h_\alpha(e))) F(s_i) (\pi_1(e))$$

由于上式中的函数都是连续的, 所以 f 连续.

最后, 我们证明 $F = \Gamma(f)$, 这只需注意到 $F(s)(b) = \tilde{f}_b(s(b)) = f(s(b)) = (f \circ s)(b) = (\Gamma(f)(s))(b)$ 即可.

1.2 直和

对于任意给定的向量丛 $\pi_1: E_1 \to B$ 和 $\pi_2: E_2 \to B$. 它们的**直和**是

$$E_1 \oplus E_2 := \{(v_1, v_2) \in E_1 \times E_2 : \pi_1(v_1) = \pi_2(v_2)\},\$$

投影映射 $\pi: E_1 \oplus E_2 \to B$, $(v_1, v_2) \mapsto \pi_1(v_1) = \pi_2(v_2)$. 为了说明这是一个向量丛, 只要注意到如下两件事即可:

- 对于给定的向量丛 $\pi: E \to B, A$ 是 B 的子空间, 那么 $\pi: \pi^{-1}(A) \to A$ 使得 A 成为一个向量丛, 称作 E 在 A 上的限制.
- 对于给定的向量丛 $\pi_1: E_1 \to B_1$ 和向量丛 $\pi_2: E_2 \to B_2$, 那么 $\pi_1 \times \pi_2: E_1 \times E_2 \to B_1 \times B_2$ 是一个向量丛. 其中局部平凡化 $h_\alpha: \pi_1^{-1}(U_\alpha) \to U_\alpha \times \mathbb{R}^n, h_\beta: \pi_2^{-1}(U_\beta) \to U_\beta \times \mathbb{R}^m$, 诱导出局部平凡化

$$h_{\alpha} \times h_{\beta} : (\pi_1 \times \pi_2)^{-1}(U_{\alpha} \times U_{\beta}) \to (U_{\alpha} \times U_{\beta}) \times (\mathbb{R}^n \times \mathbb{R}^m).$$

因此, 当 E_1 , E_2 具有相同的底空间时, $E_1 \times E_2$ 限制在 $B = \{(b,b) \in B \times B\}$ 是一个向量丛, 即 $E_1 \oplus E_2$ 是一个向量丛.

定义 1.2. 向量丛 $\xi = (E, B, \pi)$ 上的**内积**, 是一个连续映射 $\langle \cdot, \cdot \rangle : E \oplus E \to \mathbb{R}$, 它在每一个点的纤维上是一个线性空间的内积.

定理 1.4. 如果底空间 B 是仿紧的, 那么向量丛 $\xi = (E, B, \pi)$ 上存在一个内积.

证明. 在局部上有平凡化 $h_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$, 在 $U_{\alpha} \times \mathbb{R}^{n}$ 上可以定义内积:

$$\langle (p, (x^1, \dots, x^n)^T), (p, (y^1, \dots, y^n)^T) \rangle_{\mathbb{R}^n} = \sum_{i=1}^n x^i y^i.$$

因此, 可以将 $E \oplus E$ 限制在 U_{α} 上, 在其上有内积

$$\langle \cdot, \cdot \rangle_{\alpha} : E \oplus E \big|_{U_{\alpha}} \to \mathbb{R}, (u, v) \mapsto \langle h_{\alpha}(u), h_{\alpha}(v) \rangle_{\mathbb{R}^{n}}.$$

取局部平凡化的开集族 U_{α} 作为 B 的一个开覆盖, 那么存在从属于该覆盖的单位分拆 $\varphi_{\beta}: B \to [0,1]$, 其中 $\mathrm{supp}\varphi_{\beta}$ 在某个 U_{α} 之中, $\mathrm{supp}\varphi_{\beta}$ 是局部有限的, 并且 $\sum_{\beta} \varphi_{\beta} = 1$. 由此, 可以定义

$$\langle u, v \rangle := \sum_{\beta} \varphi_{\beta}(\pi(u)) \langle u, v \rangle_{\alpha(\beta)}.$$

它是 E 上的一个内积.

定理 1.5 (Swan 定理). 设 $\xi = (E, B, \pi)$ 是仿紧空间 B 上的向量丛, E_0 是 E 的子丛, 那么存在子丛 $E_0^{\perp} \subset E$, 使得 $E_0 \oplus E_0^{\perp} \approx E$.

证明. 由于 B 仿紧, 所以 E 上存在一内积 $\langle \cdot, \cdot \rangle : E \oplus E \to \mathbb{R}$. 在每一个点 $b \in B$ 的纤维 $\pi^{-1}(b)$ 上, 可以指定空间 $(\pi|_{E_0})^{-1}(b)$ 的正交补. 于是定义

$$E_0^{\perp} = \bigcup_{b \in B} [(\pi \big|_{E_0})^{-1}(b)]^{\perp}.$$

我们证明它是 E 的子丛. 注意到其它条件自然满足, 我们只要证明 E_0^{\perp} 存在局部平凡化即可.

由于该问题的局部的, 所以不妨假设 E 是一个平凡丛, 即 $E=B\times\mathbb{R}^n.E_0$ 作为 E 的子丛未必平凡, 但是其存在局部平凡化 $h_\alpha:(\pi\big|_{E_0})^{-1}\to U_\alpha\times\mathbb{R}^\ell, \ell< n$. 也就说, 将 E_0 限制在 U_α 是一个平凡丛. 因此, 存在 ℓ 个在每个点 $b\in U_\alpha$ 的纤维上线性无关的截面 s_1,\cdots,s_ℓ .

在固定的点 $b_0 \in U_\alpha$ 上, $s_1(b_0)$, \cdots , $s_\ell(b_0)$ 线性无关. 它们同时也是 $E|_{U_\alpha}$ 的截面. 根据引理, 存在开集 U, 和 $E|_U$ 的截面 $s_{\ell+1}, \cdots, s_n$, 使得对于任意的 $b \in U$,

$$s_1(b), \dots, s_{\ell}(b), s_{\ell+1}(b), \dots, s_n(b)$$

线性无关. 不失一般性地, 假设 $U = U_{\alpha}$.

运用 Gram-Schmidt 正交化过程, 可以得到线性无关的截面 $s_1',\cdots,s_\ell',s_{\ell+1}',\cdots,s_n'$ (注意 到内积的连续性). 并且在每个纤维上, s_1',\cdots,s_ℓ' 是 $E_0|_{U_0}$ 的基. 考虑映射

$$f: U_{\alpha} \times \mathbb{R}^{n-\ell} \to \pi^{-1}(U_{\alpha}) \cap E_0^{\perp}, (b, (x^1, \cdots, x^{n-\ell})^T) \mapsto \sum_{i=1}^{n-\ell} x^i s_{\ell+i}(b),$$

这是一个连续双射, 故而给出了 E_0^{\perp} 的局部平凡化.

定理 1.6. B 是紧 Hausdorff 空间, 对于每个向量丛 $\pi: E \to B$, 存在一个向量丛 $\pi': E' \to B$, 使得 $E \oplus E'$ 是平凡丛.

证明. 设 $\{U_{\alpha}\}$ 是 B 的一个覆盖, 其中, 每个 U_{α} 都对应于一个局部平凡化 $\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$. 由于 B 是紧的, 所以可以假设覆盖只有有限个, 即 U_{1}, \dots, U_{m} . 取从属于覆盖 $\{U_{i}\}_{i=1}^{m}$ 的单位分拆 $\psi_{i}: U_{i} \to [0, 1]$, 定义

$$\iota_i: \mathbb{R}^n \to \mathbb{R}^{n \times m}, (x^1, \cdots, x^n) \mapsto (\underbrace{0, \cdots, 0}_{ni \uparrow}, x^1, \cdots, x^n, \underbrace{0, \cdots, 0}_{n(m-i-1) \uparrow}).$$

考虑函数

$$f: E \to B \times \mathbb{R}^{n \times m}, v \mapsto (\pi(v), \sum_{i=1}^{m} \psi_i(\pi(v))(\iota_i(P_2(\varphi_i(v))))).$$

其中, $P_2: B \times \mathbb{R}^n \to \mathbb{R}^n$, $(x,u) \mapsto u$. 这显然是连续单射, 并且在每个点的纤维上是线性单射. 因此 $E \approx f(E)$. 而 f(E) 是 $B \times \mathbb{R}^{n \times m}$ 的子丛.

所以, 根据上一个定理, 存在向量丛 E', 使得 $E \oplus E' \approx B \times \mathbb{R}^{n \times m}$.

1.3 最后的证明

引理 1.5. 设向量丛 $\xi \oplus \eta \approx \zeta$, 则 $\Gamma(\xi) \oplus \Gamma(\eta) = \Gamma(\zeta)$.

证明. 根据定义, 有 $E(\zeta) = \{(u,v) \in E(\xi) \times E(\eta) : \pi_1(u) = \pi_2(v)\}$. 投影映射 $p_1 : E(\zeta) \to E(\xi), (u,v) \mapsto u, p_2 : E(\zeta) \to E(\eta), (u,v) \mapsto v$. 映射

$$i: \Gamma(\xi) \oplus \Gamma(\eta) \to \Gamma(\zeta), (s_1, s_2) \to s = (s_1, s_2)$$

的逆映射为

$$j: \Gamma(\zeta) \to \Gamma(\xi) \oplus \Gamma(\eta), s \mapsto (p_1 \circ s, p_2 \circ s).$$

它们都是 C(B)-模同态. 所以在 C(B)-模同构意义下, 有 $\Gamma(\xi) \oplus \Gamma(\eta) = \Gamma(\zeta)$.

引理 1.6. 模 M 是有限生成的投射模, 当且仅当它是有限生成自由模的直和项.

证明. 充分性. 设 $F = M \oplus N$, F 是有限生成的自由模, e_1, \cdots, e_n 是 F 的基. 考虑到 $F/N \simeq M$, 所以存在同构映射 $\varphi: F/N \to M$. 我们证明, $\varphi(e_1 + N), \cdots, \varphi(e_n + N)$ 是 M 的生成元. 事实上, 对于任意的 $m \in M$, 因为 φ 是同构映射, 所以存在 $f \in F$, 使得 $\varphi^{-1}(m) = f + N$, $f \in F$. 又因为 e_1, \cdots, e_n 是 F 的基, 所以存在 $r_i \in R$, $i = 1, \cdots, n$, 使得 $f = \sum_{i=1}^n r_i e_i$. 所以 $\varphi^{-1}(m) = \sum_{i=1}^n r_i (e_i + N)$, 再将 φ 作用在两端, 有

$$m = \varphi(\varphi^{-1}(m)) = \varphi(\sum_{i=1}^{n} r_i(e_i + N)) = \sum_{i=1}^{n} r_i \varphi(e_i + N).$$

必要性. 设 $F'=M\oplus N,M$ 是有限生成的投射模,F' 是自由模. 设 $\{m_1,\cdots,m_n\}$ 是 M 的生成集, $\{f_j\}_{j\in J}$ 是 F' 的生成集. 由于 $F=M\oplus N$, 所以存在分裂正合列

$$0 \longrightarrow N \longrightarrow F' \stackrel{p}{\longrightarrow} M \longrightarrow 0.$$

对于每个 m_i , 存在 $y_i \in F$, 使得 $p(y_i) = x_i$. 并且有 $y_i = \sum_{j \in J} r_{ij} f_j$. 注意到 r_{ij} 只有有限项非零,记非零系数 r_{ij} 对应的项为 f_{ij} ,则

$$y_i = \sum r_{ij} f_{ij}.$$

定义 F' 的子模 $F = (f_{i_j})$. 它显然是一个自由模, 并且 $p' = p\big|_F$ 是一个满同态. 因此, 有正合列

$$0 \longrightarrow \ker p' \longrightarrow F \xrightarrow{p'} M \longrightarrow 0.$$

又因为 M 是投射模, 所以上面的正合列分裂, 故有 $F = \ker p' \oplus M$.

推论 1.3. 设 B 是紧 Hausdorff 空间, ξ 是 B 上的向量丛, 则 $\Gamma(\xi)$ 是有限生成的投射模.

证明. 根据定理1.6, 存在 B 上的向量丛 η , 使得 $\xi \oplus \eta \approx \zeta$ 是平凡丛. 于是有

$$\Gamma(\xi) \oplus \Gamma(\eta) = \Gamma(\zeta).$$

根据命题 $1.1,\Gamma(\zeta)$ 是有限生成的自由模, 所以 $\Gamma(\xi)$ 是有限生成的投射模.

定理1.1的证明. 设 P 是有限生成的投射 C(B)-模, 我们证明它同构于某个 B 上向量丛 ξ 的截面全体 $\Gamma(\xi)$.

根据定义, 存在有限生成自由模 F 和模 N, 使得 $P \oplus N = F$. 在命题1.1中, 我们已经证明, 存在平凡丛 ζ , 使得 $F = \Gamma(\zeta)$. 因为 P 是投射模, 所以存在幂等映射 $p: F \to F$, 使得 $P \simeq \text{im} p$. 再由定理1.2, 存在唯一的丛同态 $\tilde{p}: \zeta \to \zeta$, 使得 $\Gamma(\tilde{p}) = p$.

我们只要证明 $\operatorname{im} \tilde{p} = \xi$ 是 ζ 的子丛即可. 也就是要证明 ξ 在每一个点上的的纤维的维数的局部常数. 考虑到 $p^2 = p$, 所以在每一点 $b \in B, \tilde{p}\big|_{\pi^{-1}(b)}: \pi^{-1}(b) \to \pi^{-1}(b)$ 也满足 $(\tilde{p}\big|_{\pi^{-1}(b)})^2 = \tilde{p}\big|_{\pi^{-1}(b)}$. 设向量丛 ζ 的维数是 n, 那么在每一个点上, 有

$$\dim(\ker \tilde{p}\big|_{\pi^{-1}(b)}) + \dim(\operatorname{im} \tilde{p}\big|_{\pi^{-1}(b)}) = n.$$

固定点 $b_0 \in B$, 在 b_0 的纤维上, $\dim(\ker \tilde{p}|_{\pi^{-1}(b_0)}) = h$, $\dim(\operatorname{im} \tilde{p}|_{\pi^{-1}(b_0)}) = k$, 则 h + k = n. 注意到 $\ker \tilde{p} = \operatorname{im}(1 - \tilde{p})$, 所以根据推论1.1, 在 b_0 的某个邻域 U 上的任意点 b, 都有

$$\dim(\ker \tilde{p}\big|_{\pi^{-1}(b)}) \ge h, \dim(\operatorname{im} \tilde{p}\big|_{\pi^{-1}(b)}) \ge k,$$

但是 $\dim(\ker \tilde{p}|_{\pi^{-1}(b)}) + \dim(\operatorname{im}\tilde{p}|_{\pi^{-1}(b)}) = n$, 所以只能有

$$\dim(\ker \tilde{p}\big|_{\pi^{-1}(b)}) = h, \dim(\operatorname{im} \tilde{p}\big|_{\pi^{-1}(b)}) = k$$

因此, ξ 在每一个点上的的纤维的维数的局部常数, 故 ξ 是 ζ 的子丛. 注意到

$$P \simeq \operatorname{im} p = \operatorname{im} \Gamma(\tilde{p}) = \Gamma(\operatorname{im} \tilde{p}) = \Gamma(\xi),$$

所以 P 同构于向量丛 ξ 的截面全体 $\Gamma(\xi)$.

参考文献

- [1] Swan, Richard G. "Vector Bundles and Projective Modules." Transactions of the American Mathematical Society, vol. 105, no. 2, American Mathematical Society, 1962, pp. 264–77.
- [2] Allen Hatcher, Vector Bundles and K-Theory, Version 2.2, November 2017.