CMPUT 367

Roderick Lan

Contents

1	Net	ıral Networks	2
	1.1	Recursion/Iteration Process (Forward Prop)	2
	1.2	Train Weights	3
	1.3	Recursive Process (Backprop)	3

Lecture 12 - Feb 29

1 Neural Networks

Neuron takes some input $x_1 \cdots x_d$

$$z = w_1 x_1 + \dots + w_d x_d + b$$

$$= \sum_i w_i x_i + b$$

$$= w^{\top} x + b$$

$$y = f(z) \qquad \text{(activation function)}$$

NN layers usually fully connected. Input layer - data features Output layer - prediction Hidden layers (≥ 1)

Suppose the weights (params) of a neural network is known. How can we compute the output of the neural network?

1.1 Recursion/Iteration Process (Forward Prop)

1. Initialization

• first layer is simply features

2. Recursion Step

Assume $y^{(l-1)}$ is known; Calculate $y^{(l)}$

$$\begin{split} z_i^{(l)} &= \sum_{j=1}^{d^{(l-1)}} w_{ij}^{(l)} y_j^{(l-1)} + b_i^{(l)} \\ y_i^{(l)} &= f(z_i^{(l)}) \end{split}$$

3. Termination

• when the output layer's value is computed

Matrix Vector:

$$\mathbf{z}^{(l)} = \mathbf{W}^{(l)} \mathbf{y}^{(l-1)} + \mathbf{b}^{(l)}$$
$$\mathbf{y}^{(l)} = f(\mathbf{z}^{(l)})$$
$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}^{(1)} & \mathbf{y}^{(2)} & \cdots & \mathbf{y}^{(m)} \end{bmatrix}^{\top}$$

$$\mathbf{Z}^{(l)} = \mathbf{Y}^{(l-1)}\mathbf{W}^{(l)} + \begin{bmatrix} - & \mathbf{b}^{\top} & - \\ - & \mathbf{b}^{\top} & - \\ & \vdots & \\ - & \mathbf{b}^{\top} & - \end{bmatrix}$$

1.2 Train Weights

$$\theta = (w^{(1)}, b^{(1)}, \cdots, w^{(L)}, b^{(L)})$$
$$\theta^{(\text{new})} \leftarrow \theta^{(\text{old})} - \nabla_{\theta} J(\theta^{(\text{old})})$$

Basic Idea: Apply chain rule top-down

1.3 Recursive Process (Backprop)

- $1. \ \, \textbf{Initialization}$
- 2. Recursion
- 3. Termination