SES/RAS 598: Space Robotics and Al

Lecture 1: Course Introduction & State Estimation Overview

Dr. Jnaneshwar Das

Arizona State University School of Earth and Space Exploration

Spring 2025

Lecture Outline

- Course Overview
- State Estimation Fundamentals
- 3 Linear Dynamical Systems
- 4 Next Steps

• **Meeting Times:** Tu/Th 10:30-11:45am

• **Meeting Times:** Tu/Th 10:30-11:45am

• Location: PSF 647

- Meeting Times: Tu/Th 10:30-11:45am
- Location: PSF 647
- Course Components:
 - Assignments (20%)
 - Midterm Project (20%)
 - Final Project (50%)
 - Class Participation (10%)

- Meeting Times: Tu/Th 10:30-11:45am
- Location: PSF 647
- Course Components:
 - Assignments (20%)
 - Midterm Project (20%)
 - Final Project (50%)
 - Class Participation (10%)
- Prerequisites:
 - Linear algebra, calculus, probability theory
 - Python programming with NumPy, SciPy
 - Basic computer vision concepts
 - Linux/Unix systems experience

Course Resources

Recommended Books:

- Probabilistic Robotics (Thrun, Burgard, Fox)
- Optimal State Estimation (Simon)
- Pattern Recognition and Machine Learning (Bishop)

Course Resources

Recommended Books:

- Probabilistic Robotics (Thrun, Burgard, Fox)
- Optimal State Estimation (Simon)
- Pattern Recognition and Machine Learning (Bishop)

• Interactive Tutorials:

- Sensor Fusion
- Parameter Estimation
- Gaussian Processes

Course Resources

Recommended Books:

- Probabilistic Robotics (Thrun, Burgard, Fox)
- Optimal State Estimation (Simon)
- Pattern Recognition and Machine Learning (Bishop)

• Interactive Tutorials:

- Sensor Fusion
- Parameter Estimation
- Gaussian Processes

Required Software:

- Linux OS
- ROS2
- Python with scientific computing libraries

Why State Estimation?

Real-World Applications:

- Mars rover navigation
- Drone flight control
- Satellite attitude determination

Why State Estimation?

• Real-World Applications:

- Mars rover navigation
- Drone flight control
- Satellite attitude determination

• Key Challenges:

- Sensor noise and uncertainty
- Environmental dynamics
- Resource constraints

Why State Estimation?

Real-World Applications:

- Mars rover navigation
- Drone flight control
- Satellite attitude determination

• Key Challenges:

- Sensor noise and uncertainty
- Environmental dynamics
- Resource constraints

• Impact on Space Exploration:

- Autonomous navigation
- Precision landing
- Sample collection

Least Squares Estimation

• Mathematical Foundation:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} (y_i - h(\theta))^2$$

Least Squares Estimation

• Mathematical Foundation:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} (y_i - h(\theta))^2$$

• Key Properties:

- Minimizes squared error
- Optimal for Gaussian noise
- Computationally efficient

Least Squares Estimation

• Mathematical Foundation:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} (y_i - h(\theta))^2$$

• Key Properties:

- Minimizes squared error
- Optimal for Gaussian noise
- Computationally efficient

• Applications:

- Sensor calibration
- Trajectory estimation
- Parameter identification

Maximum Likelihood Estimation

• Principle:

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\theta}{\mathsf{arg}} \max_{i=1}^{n} p(y_i|\theta)$$

Maximum Likelihood Estimation

• Principle:

$$\hat{ heta}_{\mathsf{MLE}} = rg\max_{ heta} \prod_{i=1}^n p(y_i| heta)$$

- Connection to Least Squares:
 - Equivalent under Gaussian assumptions
 - More general framework
 - Handles different noise models

Maximum Likelihood Estimation

• Principle:

$$\hat{ heta}_{\mathsf{MLE}} = rg \max_{ heta} \prod_{i=1}^n p(y_i| heta)$$

- Connection to Least Squares:
 - Equivalent under Gaussian assumptions
 - More general framework
 - Handles different noise models
- Space Applications:
 - Orbit determination
 - Attitude estimation
 - Sensor fusion

State-Space Models

System Dynamics:

$$x_{k+1} = Ax_k + Bu_k + w_k$$
$$y_k = Cx_k + v_k$$

State-Space Models

System Dynamics:

$$x_{k+1} = Ax_k + Bu_k + w_k$$
$$y_k = Cx_k + v_k$$

Components:

- State vector x_k
- Input vector u_k
- Measurement vector y_k
- Process noise w_k
- Measurement noise v_k

Case Study: Mars Rover Navigation

State Variables:

- Position (x, y, z)
- Orientation (roll, pitch, yaw)
- Velocities

Case Study: Mars Rover Navigation

State Variables:

- Position (x, y, z)
- Orientation (roll, pitch, yaw)
- Velocities

Sensors:

- Visual odometry
- Inertial measurement unit (IMU)
- Sun sensors

Case Study: Mars Rover Navigation

State Variables:

- Position (x, y, z)
- Orientation (roll, pitch, yaw)
- Velocities

Sensors:

- Visual odometry
- Inertial measurement unit (IMU)
- Sun sensors

Challenges:

- Wheel slippage
- Varying terrain
- Limited computational resources

Preparation for Next Lecture

Review:

- Matrix operations
- Probability concepts
- Basic Python programming

Preparation for Next Lecture

• Review:

- Matrix operations
- Probability concepts
- Basic Python programming

Setup:

- Install Linux if needed
- Configure ROS2 environment
- Test Python scientific libraries

Preparation for Next Lecture

• Review:

- Matrix operations
- Probability concepts
- Basic Python programming

Setup:

- Install Linux if needed
- Configure ROS2 environment
- Test Python scientific libraries

• Reading:

- Skim Kalman filter basics
- Review assigned papers
- Explore interactive tutorials

Questions?

Thank you!

Contact: jdas5@asu.edu