Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 27/06/2016	M.M. Clément L. Cariou Dr. Héctor Fernando Gómez García Dr. Víctor Manuel Romero Medina	Creación del programa para incorporarse en el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
	a) Ecuaciones diferenciales
	a) Aplicación de las ecuaciones diferenciales de
NO APLICA	primer orden
NO APLICA	b) Principios de automatización y robótica
	b) Resolución de sistemas armónicos

Nombre de la asignatura	Departamento o Licenciatura
Física clásica	Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
1 - 1	ID0102	8	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Seminario	32	32	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir los principales conceptos, leyes y magnitudes de la física para el conocimiento de un marco metodológico en problemas relacionados con fenómenos físicos.

Objetivo procedimental

Aplicar los conceptos, leyes y magnitudes de la física en el análisis de sistemas y para la solución de problemas relacionados con fenómenos físicos en el campo de la ingeniería.

Objetivo actitudinal

Potenciar el auto aprendizaje y el trabajo colaborativo para la realización de experimentos de laboratorio fortaleciendo los valores sobre la cultura del esfuerzo y del trabajo.

Unidades y temas

Unidad I. INTRODUCCIÓN A LA FÍSICA

Explicar la importancia de las mediciones, el manejo de datos y el uso de vectores para la solución de problemas de ingeniería.

- 1) La física y su entorno
- 2) Sistemas de medida y unidades de medición
 - a) Estándares del Sistema Internacional y del Sistema Inglés
 - b) Análisis dimensional
 - c) Conversión de unidades
 - d) Estimaciones y cálculos de orden de magnitud y precisión
- 3) Operaciones con vectores y su descomposición
 - a) Sistemas coordenados
 - b) Cantidades vectoriales y escalares
 - c) Algunas propiedades y componentes de los vectores y vectores unitarios

d) Aplicaciones vectoriales en equilibrio estático de cuerpo rígido: fuerzas y momento de una fuerza

Unidad II. DINÁMICA DE CUERPO RÍGIDO

Describir las ecuaciones de movimiento para emplearlas en aplicaciones de ingeniería.

- 1) Cinemática
 - a) Rapidez, velocidad y aceleración
 - b) Movimiento uniformemente acelerado
 - c) Caída libre de cuerpos
 - d) Velocidad relativa
 - e) Movimiento de proyectiles y movimiento circular
 - f) Cinemática del movimiento circular uniforme y circular no uniforme
- 2) Cinética
 - a) Leyes de Newton y sus aplicaciones en física e ingeniería
 - b) Cinética del movimiento circular uniforme y circular no uniforme
 - c) Ley de la gravitación universal y las leyes de Kepler

Unidad III. ENERGÍA, TRABAJO Y POTENCIA

Describir las nociones de trabajo y de energía para su aplicación en las leyes de conservación en física.

- 1) Trabajo hecho por una fuerza constante y por una fuerza variable
- 2) Energía cinética y energía potencial
- 3) Fuerzas conservativas
- 4) Ley de conservación de la energía

- a) Conservación de la energía mecánica b) Conservación de la energía con fuerzas disipativas 5) Potencia. Unidad IV. IMPULSO Y CANTIDAD DE MOVIMIENTO (MOMENTUM) Describir las nociones de impulso y de cantidad de movimiento para su aplicación en las leyes de conservación en física. 1) Momentum e impulso a) Conservación del momentum lineal b) Colisiones elásticas en 1, 2 y 3 dimensiones c) Colisiones inelásticas 2) Rotación y momentum angular a) Energía cinética de rotación y el momento de inercia b) Dinámica de la rotación de un cuerpo rígido c) Conservación del momentum angular
 - 3) Sistema de partículas
 - a) Centro de masa y centro de gravedad
 - b) Cantidad de movimiento del centro de masa

Unidad V. ÓPTICA

Demostrar las leyes que rigen la propagación de la luz y sus propiedades así como su comportamiento a través de diferentes herramientas de óptica.para la solución de problemas de ingeniería

1) Óptica geométrica

- a) Rayos de luz
- b) Reflexión y espejos planos y curvos
- c) Refracción, principio de Fermat y ley de Snell. Fibras ópticas
- 2) Lentes e instrumentos ópticos
 - a) Lentes, la lupa, el ojo humano y la cámara fotográfica
 - b) El microscopio y el telescopio
- 3) Óptica ondulatoria
 - a) Ondas de luz
 - b) Interferencia, diferentes tipos de interferencia y el interferómetro
 - c) Difracción y principio de Fresnel, diferentes tipos de difracción. CD y discos blu-ray
 - d) Difracción de rayos X y estructura cristalina

Actividades que promueven el aprendizaje

Docente

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos. Realizar foros para la discusión de temas o problemas.

Estudiante

Realizar tareas asignadas
Participar en el trabajo individual y en equipo
Resolver casos prácticos
Discutir temas en el aula
Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales (ejercicios, investigación, ensayos, lecturas, etc.)	20
Evidencias equipo (problemas, casos, proyectos, etc.)	30
Evidencias grupales (asambleas, lluvias de ideas, etc.)	20
Total	100

Fuentes de referencia básica

Bibliográficas

- ¿ GIANCOLI D. C. (2007). Física, principios con aplicaciones, volumen 2, sexta edición. México: PEARSON EDUCACIÓN
- ¿ HALLIDAY, D., RESNIK, R. S, KRANE K. S. (2006). Física, quinta edición. Mexico: CECSA.
- ¿ HEWITT P. G. (1995). Física conceptual, segunda edición. México: Adisson Wesley Iberoamericana.
- ¿ MÖLLER K. D. (2007). OPTICS, Segunda edición. US: Springer Verlag New York
- ¿ SERWAY R. A., JEWETT J. W. (2011). Principles of Physics volume 1, quinta edición. US: BROOKS/COLE CENGAGE.

Web gráficas

.

Fuentes de referencia complementaria

Bibliográficas

- ¿ BAUER W., WESTFALL G. D. (2011). Física para ingeniería volumen 1 y 2, segunda edición. México: McGraw Hill
- ¿ BEER F. P, JOHNSTON R. E, HEINZ M. K. (2010). Mecánica vectorial para ingenieros, 9a ed. México: McGraw-Hill Interamericana,
- ¿ GETTYS, W.E., KELLER, F.J. y SKOVE, M.J. . (2005). Física para ciencias e ingeniería (Segunda Edición, Tomo I y II). México: Editorial McGraw-Hill.
- ¿ HIBBELER, R. C., CERA, J. (2004). Estática: mecánica vectorial para ingenieros, 10a ed. México: Pearson
- ¿ HIBBELER, R. C., CERA, J. (2004). Dinámica : mecánica vectorial para ingenieros, 10a ed. México: Pearson

- ¿ LANDAU L. D., LIFSHITZ E. M. (1970). Mecánica, volume 1, segunda edición. España: Reverté.
- ¿ MARION J. B. Dinámica clásica de las partículas y sistemas, España: REVERTE,
- ¿ SEARS ZEMANSKY, Y. (1998). Física universitaria. 9 ed. México: Adisson Wesley Iberoamericana.
- ¿ TRIPLER P. A., MOSCA G. (2005). Física para la ciencia y la tecnología, volumen 1 y 2, quinta edición. España : Reverté.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Contar con licenciatura en Física, ingeniería mecánica eléctrica, mecánica o mecatrónica. Preferentemente nivel de maestría en el área de Física

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia como investigador en las áreas de Física o desarrollo de funciones o proyectos en laboratorios.