Ideal set of sub spaces of a Euclidean space

Shigeo Hattori

February 24, 2020

bayship.org@gmail.com

https://github.com/bayship-org/mathematics https://orcid.org/0000-0002-2297-2172

Conjecture 1

1 Prerequisites are only some first chapters of graduate level texts of general 2 topology; (1). **Definition 1.1** (Ideal set in terms of a topological space). Take $\forall (X,T)$ as a 4 topological space where T is the topology. Take $\forall K$ as a set of sub spaces of (X,T). K is said an ideal set (of sub spaces) in terms of (X,T) if (*1 $\stackrel{\text{and}}{\wedge} \dots$ and ∧*3). K is said an ideal(*1) set (of sub spaces) in terms of (X,T) if *1. For convenience, we may omit words inside the parentheses, i.e.," (of sub spaces)". 1. take $\forall (k,j) :\in K^2$, then $\exists f$ as an ambient isotopy in terms of (X,T) such that f takes k to j; Sub definition: (f takes k to j). That is, decompose k as $(X_k, T_k) := k$; then $f[X_k * \{1\}]$ can be regarded as a bijection from X_k to X_j . 17 **2.** take $\forall (K_k, K_j)$ as a pair of subsets of K such that: $\exists f$ as an ambient isotopy 18 in terms of (X,T) such that f takes K_k to K_j ; 20 Sub definition: (f takes K_k to K_j). That is: Define a relation L on $K_k * K_j$ 21 as $(k,j) \in L \equiv (f \text{ takes } k \text{ to } j)$. Then L is a bijection.

3. $\exists g$ as an ambient isotopy in terms of (X,T) such that: take $\forall t :\in [0,1]$, then $g[X*[0,t]]$ takes K_k to K_j ;	23 24
As a supplement, needless to say, you need to normalize $g[\ X*[0,t]\]$ to regard it as an ambient isotopy.	25 26 27
•	28
Definition 1.2 (To identify). Take $\forall (s,t)$, then s is said to identify t if it holds that: take $\forall (m_1, m_2, m_3)$ as three distinct mathematicians; (m_1, m_2) respectively define (s,t) with identical texts; m_3 defines that $(s \text{ of } m_1)=(s \text{ of } m_2)$; it is implied that $(t \text{ of } m_1)=(t \text{ of } m_2)$ for all cases.	29 30 31 32
For example, take $\forall Z$ as a set of multiple integers; take $\forall x : \in Z$, then Z is not said to identify x . To prove that, take $\forall Z_1$ as a set of multiple integers; take $\forall x_1 : \in Z_1$; take $\forall Z_2$ as a set of multiple integers; take $\forall x_2 : \in Z_2$; let $Z_1 = Z_2$; though $x_1 \neq x_2$ for some case. Contrary, let $y = x + 1$ then x is said to identify y . To prove that, take $\forall Z_1$ as a set of multiple integers; take $\forall x_1 : \in Z_1$; take $\forall y_1 := x_1 + 1$; take $\forall Z_2$ as a set of multiple integers; take $\forall x_2 : \in Z_2$; take $\forall y_2 := x_2 + 1$; let $x_1 = x_2$; then $y_1 = y_2$.	33 34 35 36 37 38 39 40 41
Conjecture 1.1. Take $\forall (X,T,M)$ as a Euclidean space where the topology T is defined by M as a metric table. Needless to say, (X,T,M) is not defined any coordinate system. Take $\forall K$ as an ideal(*1) set in terms of (X,T) such that (X,T,M) identifies K . Then $\exists C$ as a countable collection such that $(*1 \ \stackrel{\text{and}}{\wedge} \dots \stackrel{\text{and}}{\wedge} *5)$.	42 43 44 45 46 47
1. take $\forall (K_1, K_2) :\in C^2$;	48
2. K_1 is an ideal set in terms of (X,T) ;	49
3. (X,T,M) identifies K_1 ;	50
4. (K_1, K_2) are disjoint;	5 1
5. K is a union of C:	52

For example, the dimension of (X,T) is 2; $K = K_1 \cup K_2$ where $K_{i \in \{1,2\}} = \{x \mid x \text{ is a curved line } \wedge^{\text{and}} \text{ both ends of } x \text{ are open } \wedge^{\text{and}} \text{ length}(x) = i \}$; assuming	
$K_{\forall i}$ is ideal.	57
References	58
[1] Glen E. Bredon, Topology and Geometry, Springer, ISBN 978-1-4419-3103-0	59