CM	СМ7-31Б	Nº2	1	Низаметдинов Ф.Р	
МГТУ	C	Сопротивление материалов			
		Изгиб			
Денисов М.А.			Вариант 8		

При построении эпюр слева направо определение реакций в заделке не требуется.

Сумма моментов относительно точки А:

$$Rb*2l-3ql*^{3/2}l=0$$

 $Rb=\frac{9}{4}ql$

Сумма всех сил на вертикальное направление:

Ra+Rb-3ql=0

 $Ra=\frac{3}{4}ql$

Сумма моментов относительно точки А:

Rb=ql/2

Сумма всех сил на вертикальное направление:

Ra+Rb-2ql=0

 $Ra=\frac{3}{2}ql$

Сумма моментов относительно центра окружности:

-MR-PR=0

MR = -PR

Сумма сил на вертикальное направление:

R(y)=P

Сумма сил на горизонтальное направление:

R(x)=P

Сумма моментов относительно точки $A: ql^2/2+ql^2+Rb(y)*l=0$

 $Rb(y) = -\frac{3}{2} ql$

Сумма всех сил на вертикальное направление:

Rb(y)+Ra(y)=0

 $Ra(y)=\frac{3}{2}ql$

Задание 1

Пункт 1)

Сумма моментов относительно точки А:

$$-MR-3ql^2^3/2-ql^2-ql^2=0$$

$$MR = -\frac{13}{2} ql^2$$

Сумма всех сил на вертикальное направление:

Покажем вид средний линии при нагружении

Численные данные:

$$\sigma_{\tau} := 200 \cdot 10^6$$
 Pa
 $n_{\tau} := 2$

$$E := 2 \cdot 10^{11} Pa$$

$$1 := 0.5 \text{ m}$$

$$D := 20 \cdot 10^{-3} \text{ m}$$

Вид сечения

$$h = 0,1D$$

$$W_X = \frac{\pi D^2 \cdot h}{4} = \frac{\pi D^2 \cdot 0.1 \cdot D}{4} = \frac{\pi D^3}{40}$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_{\text{x}}} = \frac{13 \cdot q \cdot l^2 \cdot 40}{2 \cdot \pi \cdot D^3} = \frac{260 q \cdot l^2}{\pi \cdot D^3}$$

$$\sigma_{max} \leq \frac{\sigma_{\tau}}{n_{\tau}}$$

$$\frac{260q{\cdot}l^2}{\pi{\cdot}D^3} \leq \frac{\sigma_{\tau}}{^n\tau}$$

$$[q] = \frac{\sigma_{\tau} \cdot \pi \cdot D^3}{260 \cdot 1^2 \cdot n_{\tau}} = \frac{200 \cdot 10^6 \cdot 3.14 \cdot 0.02^3}{260 \cdot 0.5^2 \cdot 2} = 38.646 \frac{N}{m}$$

Пункт 3)

Приложим единичную нагрузку (силу) в крайней точке стержня и построим эпюру единичного момента.

$$\sigma_{\rm B} = \frac{1}{{\rm E} \cdot {\rm I}_{\rm X}} \left({\rm M}_1 \cdot {\rm M}_{\rm X} \right) = \frac{1}{{\rm E} \cdot {\rm I}_{\rm X}} \cdot \left[\frac{{\rm q} \cdot {\rm l}^2}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot {\rm l}^2 - \frac{{\rm q} \cdot {\rm l}^3}{12} \cdot \frac{1}{2} \cdot {\rm l} + \frac{3}{2} \cdot {\rm q} \cdot {\rm l}^2 \cdot {\rm l} \cdot \frac{3}{2} \cdot {\rm l} + \frac{3}{2} \cdot {\rm q} \cdot {\rm l}^2 \cdot \frac{1}{2} \cdot \frac{5}{3} \cdot {\rm l}^2 \dots \right. \\ \left. + \frac{-{\rm q} \cdot {\rm l}^3}{12} \cdot \frac{3}{2} \cdot {\rm l} + 4 \cdot {\rm q} \cdot {\rm l}^2 \cdot {\rm l} \cdot \frac{5}{2} \cdot {\rm l} + \frac{5}{2} \cdot {\rm q} \cdot {\rm l}^2 \cdot {\rm l} \cdot \frac{1}{2} \cdot \frac{8}{3} \cdot {\rm l} - \left(\frac{-{\rm q} \cdot {\rm l}^3}{12} \right) \cdot \frac{5}{2} \cdot {\rm l} \right. \right]$$

$$\begin{split} \sigma_{\rm B} &= \frac{1}{{\rm E} \cdot {\rm I}_{\rm X}} \frac{\left(4 \cdot {\rm q} \cdot {\rm I}^4 - {\rm q} \cdot {\rm I}^4 + 54 {\rm q} \cdot {\rm I}^4 + 30 {\rm q} \cdot {\rm I}^4 - 3 \cdot {\rm q} \cdot {\rm I}^4 + 240 \cdot {\rm q} \cdot {\rm I}^4 + 80 {\rm q} \cdot {\rm I}^4 - 5 {\rm q} \cdot {\rm I}^4\right)}{24} = \frac{399 {\rm q} \cdot {\rm I}^4}{24 {\rm E} \cdot {\rm I}_{\rm X}} \\ {\rm I}_{\rm X} &= \frac{\pi \cdot {\rm D}^3 \cdot {\rm h}}{4} = \frac{\pi \, {\rm D}^4}{40} = 1.257 \times {\rm m}^{4-8} \\ \sigma_{\rm B} &= 0.016 \quad {\rm m} \end{split}$$