Лекции по математическому анализу для 1 курса ФН2, 3

Власова Елена Александровна 2024-2025 год.

Содержание

1	Вве	едение
	1.1	Элементы теории множеств
	1.2	Кванторные операции
	1.3	Метод математической индукции
2	Множество действительных чисел	
	2.1	Аксиоматика действительных чисел
	2.2	Геометрическая интерпретация \mathbb{R}
	2.3	Числовые промежутки
	2.4	Бесконечные числовые промежутки
	2.5	Окрестности точки
	2.6	Принцип вложенных отрезков (Коши-Кантора)
	2.7	Ограниченные и неограниченные числовые множества
	2.8	Точные грани числового множества
	2.9	Принцип Архимеда
3	Функции или отображения	
	3.1	Понятие функции
	3.2	Ограниченные и неограниченные числовые множества
	3.3	Обратные функции
	3.4	Чётные и нечётные функции
	3.5	Периодические функции
	3.6	Сложная функция (композиция)
	3.7	Основные элементарные функции
4	Числовые последовательности и их пределы	
	4.1	Ограниченные и неограниченные числовые последователь-
		ности
	4.2	Предел числовой последовательности
	4.3	Бесконечные пределы
	4.4	Свойства сходящихся последовательностей
	4.5	Монотонные числовые последовательности
	4.6	Число е
	4.7	Гиперболические функции
	4.8	Предельные точки числового множества
	49	Предельные точки числовых последовательностей 1

Элементарные функции и их пределы

- 1 Введение
- 1.1 Элементы теории множеств
- 1.2 Кванторные операции
- 1.3 Метод математической индукции
- 2 Множество действительных чисел

2.1 Аксиоматика действительных чисел

Определение 2.1.1. *Множесство* \mathbb{R} называется множеством действительных чисел, если элементы этого множества удовлетворяют следующему комплексу условий:

- 1. На множестве \mathbb{R} определена операция сложения "+", то есть задано отображение, которое каждой упорядоченной паре $(x,y) \in \mathbb{R}^2$ ставит в соответствие элемент из \mathbb{R} , называемый суммой x+y и удовлетворяющий следующим аксиомам:
 - (a) $\exists 0 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : x + 0 = 0 + x = x$;
 - (b) $\forall x \; \exists \; npomuвonоложный элемент "-x", такой, что <math>x+(-x)=(-x)+x=0;$
 - (c) Ассоциативность. $\forall x, y, z \in \mathbb{R} : (x+y) + z = x + (y+z);$
 - (d) Коммутативность. $\forall x, y \in \mathbb{R} : x + y = y + x$.
- 2. На \mathbb{R} определена операция умножения "·", то есть $\forall (x,y) \in \mathbb{R}^2$ ставится в соответствие элемент $(x \cdot y) \in \mathbb{R}$.
 - (a) \exists нейтральный элемент $1 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : 1 \cdot x = x \cdot 1 = x;$
 - $(b) \ \forall x \in \mathbb{R} \backslash \{0\} \ \exists \ обратный элемент "x^{-1}", такой, что <math>x \cdot x^{-1} = x^{-1} \cdot x = 1;$
 - (c) Ассоциативность. $\forall x, y, z \in \mathbb{R} \setminus \{0\} : (x \cdot y) \cdot z = x \cdot (y \cdot z);$
 - (d) Коммутативность. $\forall x, y \in \mathbb{R} \setminus \{0\} : x \cdot y = y \cdot x$.

Операция умножения дистрибутивна по отношению к сложению.

$$\forall x, y, z \in \mathbb{R} : (x+y)z = xz + yz$$

- 3. Отношения порядка. Для \mathbb{R} определено отношение " \leq ".
 - (a) $\forall x \in \mathbb{R} : x \leq x$;
 - (b) $\forall x, y \in \mathbb{R} : (x \le y \land y \le x) \implies x = y;$
- 2.2 Геометрическая интерпретация $\mathbb R$
- 2.3 Числовые промежутки
- 2.4 Бесконечные числовые промежутки
- 2.5 Окрестности точки
- 2.6 Принцип вложенных отрезков (Коши-Кантора)

Определение 2.6.1. Пусть $\{x_n\}_{n=1}^{\infty}$ — последовательность некоторых множеств. Если $\forall n \in \mathbb{N} : X_n \supset X_{n+1}$, то эта последовательность называется последовательностью вложенных отрезков.

- 2.7 Ограниченные и неограниченные числовые множества
- 2.8 Точные грани числового множества
- 2.9 Принцип Архимеда
- 3 Функции или отображения
- 3.1 Понятие функции
- 3.2 Ограниченные и неограниченные числовые множества
- 3.3 Обратные функции
- 3.4 Чётные и нечётные функции
- 3.5 Периодические функции
- 3.6 Сложная функция (композиция)
- 3.7 Основные элементарные функции
- 4 Числовые последовательности и их пределы

Определение 4.0.1. $f: \mathbb{N} \to \mathbb{R}$ — числовая последовательность, т.е. $\{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{R}$.

4.1 Ограниченные и неограниченные числовые последовательности

Определение 4.1.1. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. ограниченной сверху, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M$;
- 2. ограниченной снизу, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \geq M$;
- 3. ограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| \leq M;$
- 4. неограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| > M;$

4.2 Предел числовой последовательности

Определение 4.2.1. Число $a \in \mathbb{R}$ называется пределом числовой последовательности, если $\forall \varepsilon > 0$ существует такой номер n, зависящий от ε , что \forall натурального числа N > n верно неравенство $|x_n - a| < \varepsilon$.

$$\lim_{n \to \infty} x_n = a$$

4.3 Бесконечные пределы

4.4 Свойства сходящихся последовательностей

Теорема 4.4.1 (о единственности предела). Любая сходящаяся последовательность имеет только один предел.

Доказательство. "От противного". Пусть $\{x_n\}_{n=1}^{\infty}$ — сходящаяся последовательность. Предположим, что $\exists \lim_{n\to\infty} x_n = a$ и $\exists \lim_{n\to\infty} x_n = b$, причем $a \neq b$. Пусть для определенности a < b.

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N_1 = N_1(\varepsilon) \in \mathbb{N} : \forall n > N_1 : |x_n - a| < \varepsilon,$$

$$\lim_{n \to \infty} x_n = b \iff \forall \varepsilon > 0 \quad \exists N_2 = N_2(\varepsilon) \in \mathbb{N} : \forall n > N_2 : |x_n - b| < \varepsilon.$$

$$N = \max\{N_1, n_2\} \implies \forall n > N : \begin{cases} |x_n - a| < \varepsilon, \\ |x_n - b| < \varepsilon. \end{cases}$$

Выберем $\varepsilon=\frac{b-a}{4}>0$. Найдем $N_1(\varepsilon),N_2(\varepsilon),N=\max\{N_1,N_2\},$ тогда

$$\forall n > N \quad |x_n - a| < \frac{b - a}{4}, \quad |x_n - b| < \frac{b - a}{4}.$$

Следовательно,

$$0 < b - a = |b - a| = |b - x_n + x_n - a| \le |x_n - b| + |x_n - a| < \frac{b - a}{2},$$

то есть

$$0 < b - a < \frac{b - a}{2}.$$

Мы пришли к противоречию, следовательно, $a = b \implies \{x_n\}_{n=1}^{\infty}$ имеет единственный предел.

Теорема 4.4.2 (об ограниченности сходящейся последовательности). Любая сходящаяся последовательность является ограниченной.

 \mathcal{A} оказательство. Если $\{x_n\}_{n=1}^\infty$ сходится, то

$$\exists \lim_{n \to \infty} = a \in \mathbb{R} \implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |x_n - a| < \varepsilon$$

Пусть
$$\varepsilon=1 \implies \exists N=N(1) \quad \forall n>N: |x_n-a|<1.$$
 Следовательно,

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a| < 1 + |a|.$$

Пусть
$$M_0=1+|a|\Longrightarrow \forall n>N: x_n< M_0.$$
 Пусть $M=\max\{|x_1|,|x_2|,\dots,|x_n|,M_0\},$ тогда $\forall n\in\mathbb{N}: x_n\leq M\Longrightarrow \{x_n\}_{n=1}^\infty$ является ограниченной.

Замечание. Ограниченность является необходимым условием сходимости числовой последовательности. В то же время условие ограниченности не является достаточным для сходимости числовой последовательности. Например, $\{(-1)^n\}_{n=1}^{\infty}$ — ограниченная, но не сходящаяся числовая последовательность.

4.5 Монотонные числовые последовательности

Определение 4.5.1. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. возрастающей, если $\forall n \in \mathbb{N} : x_n < x_{n+1}$;
- 2. убывающей, если $\forall n \in \mathbb{N} : x_n > x_{n+1};$
- 3. неубывающей, если $\forall n \in \mathbb{N} : x_n \leq x_{n+1};$
- 4. невозрастающей, если $\forall n \in \mathbb{N} : x_n \geq x_{n+1}$

Для монотонных числовых последовательностей ограниченность является достаточным условием для сходимости.

Теорема 4.5.1 (Вейерштрасса о сходимости монотонных числовых последовательностей). Если последовательность не убывает и ограничена сверху, то она является сходящейся. Если последовательность не возрастает и ограничена снизу, то она является сходящейся. В общем, любая монотонная последовательность сходится.

Доказательство. Пусть $\{x_n\}_{n=1}^{\infty}$ не убывает и ограничена сверху $\implies \exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M \implies$

- \Longrightarrow множество значений этой последовательности $\{x_1, x_2, \ldots, x_n, \ldots\} = A$ является ограниченным сверху числовым множеством \Longrightarrow $\exists \sup A \in \{x_n\}_{n=1}^{\infty} = a$, то есть
- 1. $\forall n \in \mathbb{N} : x_n \leq a$;
- 2. $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : x_N > a \varepsilon$.

 $\{x_n\}_{n=1}^{\infty}$ — неубывающая последовательность, то есть

$$\forall n > N = N(\varepsilon) : x_n \ge x_N \implies$$

$$\implies a - \varepsilon < x_N \le x_n \le a < a + \varepsilon \implies$$

$$\implies a - \varepsilon < x_n < a + \varepsilon \implies |x_n - a| < \varepsilon \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} : \forall n > N : |x_n - a| < \varepsilon \implies$$

$$\implies \exists \lim_{n \to \infty} x_n = a \in \mathbb{R} \implies \{x_n\}_{n=1}^{\infty} \text{ сходится.}$$

Если $\{x_n\}_{n=1}^{\infty}$ — невозрастающая и ограниченная снизу последовательность, то

$$\exists \lim_{n \to \infty} x_n = \inf A, A = \{x_1, x_2, \dots, x_n, \dots\}.$$

Доказательство аналогично.

4.6 Число *е*

4.7 Гиперболические функции

4.8 Предельные точки числового множества

Определение 4.8.1. Точка $a \in \mathbb{R}$ называется предельной точкой множества $X \subset \mathbb{R} \iff$ любая окрестность U(a) содержит бесконечно

много элементов множества X.

Замечание. Множество A называется бесконечным или содержащим бесконечно много элементов, если при вычитании из A любого его конечного подмножества получается непустое множество.

Множество всех предельных точек множества X называется производным множеством для X и обозначается X'.

Утверждение 4.8.1. Точка $a \in \mathbb{R}$ является предельной для $X \subset \mathbb{R} \iff$ в любой проколотой δ -окрестности точки а содержится хотя бы один элемент множества X, m.e.

$$\forall \delta > 0 \quad \exists x \in X \cap \mathring{U}(a).$$

Доказательство. (\Longrightarrow) Необходимость.

a — предельная для $X \subset \mathbb{R} \implies$

 \Longrightarrow любая U(a) содержит бесконечно много элементов из $X\Longrightarrow$ \Longrightarrow $\mathring{U}(a)$ тоже содержит бесконечно много элементов из $X\Longrightarrow$ \Longrightarrow любая \mathring{U} содержит хотя бы один элемент $x\in X$. (\Longleftrightarrow) Достаточность.

$$\forall \delta > 0 \quad \exists x \in X \cap \mathring{U}(a).$$

Выберем любую U(a). Тогда

$$\exists \delta_1 > 0 : \mathring{U}(a) \subset U(a) \implies \exists x_1 \in X : x_1 \in \mathring{U}_{\delta_1}(a).$$

Пусть $\delta_2 = \frac{|x_1 - a|}{2} > 0$. Тогда

$$\exists x_2 \in \mathring{U}_{\delta_2}(a) : x_2 \neq x_1.$$

Пусть $\delta_3 = \frac{|x_2 - a|}{2} > 0$. Тогда

$$\exists x_3 \in \mathring{U}_{\delta_3}(a) : x_3 \neq x_2$$

и т.д. На шаге n:

$$\delta_n = \frac{|x_{n-1} - a|}{2} > 0 \implies \exists x_n \in \mathring{U}_{\delta_n}(a) : x_n \neq x_k, k = 1, 2, \dots, n-1.$$

Таким образом,

$$\exists \{x_n\}_{n=1}^{\infty} \in U(a) : x_n \in X, x_n \neq x_k, n \neq k,$$

а значит, любая окрестность U(a) содержит бесконечно много элементов из $X \implies a$ — предельная точка.

Утверждение 4.8.2. Если точка $a \in \mathbb{R}$ является предельной точкой для множества $X \subset \mathbb{R}$, то

$$\exists \{x_n\}_{n=1}^{\infty} \subset X : \lim_{n \to \infty} x_n = a.$$

Доказательство. a — предельная точка для $X \subset \mathbb{R} \iff \forall \delta > 0$ $\mathring{U}_{\delta}(a)$ содержит хотя бы одну точку множества X (по утверждению 1). Выберем $\{\delta_n\}_{n=1}^{\infty}$, $\delta_n = \frac{1}{n} > 0$, тогда

$$\forall n \in \mathbb{N} \quad \exists x_n \in X : x_n \in \mathring{U}_{\delta_n}(a),$$

то есть

$$0<|x_n-a|<\frac{1}{n}.$$

T.к. $\lim_{n\to\infty}\frac{1}{n}=0$,

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : \frac{1}{n} < \varepsilon,$$

а значит,

$$|x_n - a| < \frac{1}{n} < \varepsilon \implies \lim_{n \to \infty} x_n = a.$$

Теорема 4.8.1 (принцип Больцано-Вейерштрасса). Любое ограниченное бесконечное числовое множество имеет хотя бы одну предельную точку.

Доказательство. Пусть X — бесконечное ограниченное множество, то есть $\exists I_1 = [a_1, b_1] : X \subset [a_1, b_1]$. Пусть $c_1 = \frac{a_1 + b_1}{2}$, т.е. середина отрезка I_1 .

Так как множество X бесконечное, то либо отрезок $[a_1, c_1]$, либо отрезок $[c_1, b_1]$ содержит бесконечно много элементов множества X. Обозначим ту половину отрезка I_1 , которая содержит бесконечно много элементов множества X через $I_2 = [a_2, b_2], I_2 \subset I_1$. Выразим длину отрезка I_2 :

$$|I_2| = b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{|I_1|}{2}.$$

На отрезке I_2 содержится бесконечно много элементов множества X. Пусть $c_2 = \frac{a_2+b_2}{2}$ — середина I_2 , тогда либо $[a_2,c_2]$, либо $[c_2,b_2]$ содержит бесконечно много элементов множества X. Обозначим ту половину I_2 , где бесконечно много элементов множества X через $I_3 = [a_3,b_3]$. Тогда

$$|I_3| = \frac{|I_1|}{2^2}$$

и т.д. На шаге n: $I_n = [a_n, b_n], c_n = \frac{a_n + b_n}{2}$ — середина I_n, I_n содержит бесконечно много элементов из X, тогда либо $[a_n, c_n]$, либо $[c_n, b_n]$ содержит бесконечно много элементов из $X \implies I_{n+1} = [a_{n+1}, b_{n+1}] \subset I_n$ и содержит бесконечно много элементов из X. Таким образом, мы получили последовательность вложенных отрезков $\{I_n\}_{n=1}^\infty: I_1\supset I_2\supset\ldots\supset I_n\supset I_{n+1}\supset\ldots$

$$|I_n| = \frac{|I_1|}{2^{n-1}} \implies \lim_{n \to \infty} \frac{|I_1|}{2^{n-1}} = 0 \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |I_n| < \varepsilon.$$

По принципу Коши-Кантора $\exists !$ общая точка c, т.е. $\forall n \in \mathbb{N} : c \in I_n$.

$$\forall U(c) \quad \exists \varepsilon > 0 \quad U_{\varepsilon}(c) \subset U(c) \implies \exists n \in \mathbb{N} : I_n = [a_n, b_n] \subset U_{\varepsilon}(c)$$
 (например, $|I_n| < \frac{\varepsilon}{2}$).

Отрезок I_n содержит бесконечно много элементов множества X по построению последовательности $\{I_n\}_{n=1}^{\infty} \implies$ окрестность U(c) содержит бесконечно много элементов из $X \implies c$ — предельная.

4.9 Предельные точки числовых последовательностей

Определение 4.9.1. Точка $a \in \mathbb{R}$ называется предельной точкой числовой последовательно $\{x_n\}_{n=1}^{\infty} \iff$ любая окрестность U(a) содержит бесконечно много элементов последовательности $\{x_n\}_{n=1}^{\infty}$.

Замечание. Если a — предельная точка $\{x_n\}_{n=1}^{\infty}$, то любая U(a) содержит какую-либо подпоследовательность $\{x_n\}_{n=1}^{\infty}$.

Пример: $\{x_n\}_{n=1}^{\infty}, x_n = (-1)^n$.

Теорема 4.9.1. Точка $a \in \mathbb{R}$ является предельной для $\{x_n\}_{n=1}^{\infty} \iff \exists \{x_{n_k}\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{n_k} = a.$

Доказательство. Докажем необходимость. Пусть a — предельная точка последовательности $\{x_n\}_{n=1}^{\infty}$. Выберем $\{\varepsilon_n\}_{n=1}^{\infty}, \varepsilon_n = \frac{1}{n} > 0$.

Для n=1 $U_{\varepsilon_1=1}(a)$ содержит ∞ много элементов \Longrightarrow $\exists x_{n_1} \in U_{\varepsilon_1}(a)$, т.е. $|x_{n_1}-a|<1$.

Для n=2 $U_{\varepsilon_2=\frac12}(a)$ содержит ∞ много элементов \Longrightarrow $\exists n_2>n_1: x_{n_2}\in U_{\varepsilon_2}(a),$ т.е. $|x_{n_2}-a|<\frac12.$

Для n=3 $U_{\varepsilon_3=\frac{1}{3}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_3>n_2: x_{n_3}\in U_{\varepsilon_3}(a)$, т.е. $|x_{n_3}-a|<\frac{1}{3}$ и т.д. Для n=k $U_{\varepsilon_k=\frac{1}{k}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_k>n_{k-1}:$

Для n=k $U_{\varepsilon_k=\frac{1}{k}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_k > n_{k-1}: x_{n_k} \in U_{\varepsilon_k}(a)$, т.е. $|x_{n_k}-a|<\frac{1}{k} \Longrightarrow \{x_{n_k}\}_{k=1}^{\infty}$ является подпоследователь-

ностью последовательности $\{x_n\}_{n=1}^{\infty} \implies \forall k \in \mathbb{N} : |x_{n_k} - a| < \frac{1}{k}$.

$$\lim_{k \to \infty} \frac{1}{k} = 0 \implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall k > N : \frac{1}{k} < \varepsilon \implies$$

$$\implies \forall k > N \quad |x_{n_k} - a| < \frac{1}{k} < \varepsilon \implies \exists \lim_{k \to \infty} x_{n_k} = a.$$

Докажем достаточность.

Пусть $\exists \{x_{n_k}\}_{k=1}^{\infty}: \lim_{k\to\infty} x_{n_k} = a$. Выберем любую U(a) и найдем такое $\varepsilon > 0$, что $U_{\varepsilon}(a) \subset U(a)$:

$$\exists N = N_{\ell}(\varepsilon) \in \mathbb{N} \quad \forall k > N : |x_{n_k} - a| < \varepsilon \implies x_{n_k} \in U_{\varepsilon}(a) \subset U(a).$$

Следовательно, U(a) содержит бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а значит a — предельная.

Теорема 4.9.2. $Ecnu \exists \lim_{n\to\infty} x_n = a$, то а является предельной точкой для $\{x_n\}_{n=1}^{\infty}$, причем единственной.

Доказательство. a — предельная, если $\lim_{n\to\infty} x_n = a$ (по теореме 1).

Докажем единственность предельной точки для $\{x_n\}_{n=1}^{\infty}$ "от противного". Пусть $\exists b \neq a, b$ — предельная точка $\{x_n\}_{n=1}^{\infty}$, тогда $|b-a| \geq \delta > 0$. Т.к. $a = \lim_{n \to \infty} x_n$, любая ε -окрестность точки содержит бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а именно все, начиная с номера $N(\varepsilon) + 1$, т.е. $\forall n > n(\varepsilon)$. Вне $U_{\varepsilon}(a)$ может содержаться не более конечного числа элементов $\{x_n\}_{n=1}^{\infty}$ (возможно x_n с номерами $1, 2, \ldots, N(\varepsilon)$).

Выберем
$$\varepsilon = \frac{\delta}{4} > 0$$
.