Exercise 23.44 - Copy

The potential due to a point charge Q at the origin may be written as $V=rac{Q}{4\pi\epsilon_0 r}=rac{Q}{4\pi\epsilon_0\sqrt{x^2+y^2+z^2}}$

Part A

Calculate E_x using equation $E_x = -rac{\partial V}{\partial x}$.

Express your answer in terms of the given quantities and appropriate constants.

ANSWER:

$$E_x = \frac{Qkx}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}$$

Correct

Part B

Calculate E_y using equation $E_y = -rac{\partial V}{\partial u}$.

Express your answer in terms of the given quantities and appropriate constants.

ANSWER:

$$E_y = Qky(x^2 + y^2 + z^2)^{-\frac{3}{2}}$$

Correct

Part C

Calculate E_z using equation $E_z = - rac{\partial V}{\partial z}$.

Express your answer in terms of the given quantities and appropriate constants.

ANSWER:

$$E_z = Qkz(x^2 + y^2 + z^2)^{-\frac{3}{2}}$$

MasteringPhysics: HW due 6/13 6/12/16, 1:45 PM

Correct