nica, empregam campos magnéticos e não campos eletrostáticos. Qual é a razão disto?

21. Uma corrente muito grande percorre, no sentido horário, as duas bobinas mostradas na Fig. 33-12. Q é o ponto médio da bobina maior, cujas extremidades são P e S. O ponto médio R da bobina menor está inicialmente a uma distância x do ponto Q. Descreva o momento subseqüente do ponto R.

Fig. 33-12 Questão 21.

- 22. No caso de indução mútua, como mostrado na Fig. 33-9, a auto-indução também está presente? Discuta.
- 23. Dispõe-se de duas bobinas circulares chatas idênticas com N espiras cada uma. Os centros das bobinas são mantidos a uma distância fixa um do outro. Qual deve ser a orientação relativa entre as bobinas para

que a indutância mútua M seja máxima? Para qual orientação a indutância mútua será mínima?

- 24. Uma bobina circular de *N* espiras envolve um solenóide longo. A indutância mútua é maior quando a bobina está próxima do centro do solenóide ou quando ela está próxima de uma das extremidades? Justifique sua resposta.
- 25. Um fio é enrolado num cilindro longo, da esquerda para a direita, formando uma camada com n espiras por unidade de comprimento, com uma auto-indutância igual a L_1 , conforme mostra a Fig. 33-13a. Se continuarmos a enrolar, no mesmo sentido mas voltando da direita para a esquerda, como na Fig. 33-13b, de modo a obter uma segunda camada de enrolamento, também com n espiras por unidade de comprimento, qual será, então, o valor da auto-indutância? Explique.

Fig. 33-13 Questão 25.

EXERCÍCIOS E PROBLEMAS

Seção 33-2 Indutância

1E. A indutância de uma bobina compacta de 400 espiras vale 8,0 mH. Calcule o fluxo magnético através da bobina quando a corrente é de 5,0 mA

- **2E.** Uma bobina circular tem um raio de 10,0 cm e é formada por 30,0 espiras de arame muito próximas. Um campo magnético externo de 2,60 mT é perpendicular à bobina. (a) Não havendo corrente na bobina, qual é o fluxo através dela? (b) Quando a corrente na bobina é de 3,80 A, num certo sentido, o fluxo líquido através da bobina é nulo. Qual é a indutância da bobina?
- **3E.** Um solenóide é enrolado com uma única camada de fio de cobre isolado (diâmetro = 2,5 mm). Ele tem 4,0 cm de diâmetro e um comprimento de 2,0 m. (a) Quantas espiras possui o solenóide? (b) Qual é a indutância por metro de comprimento, na região central do solenóide? Suponha que as espiras adjacentes se toquem e que a espessura do isolamento seja desprezível.
- **4P.** Um solenóide longo e estreito, pode ser curvado de modo a formar um toróide. Mostre que, para um solenóide suficientemente longo e estreito, a equação que dá a indutância do toróide (Eq. 33-7) assim formado é equivalente à de um solenóide (Eq. 33-4) com um comprimento apropriado.
- **5P.** Indutores em série. Dois indutores L_1 e L_2 estão ligados em série e separados por uma distância grande. (a) Mostre que a resistência equivalente é dada por

$$L_{\rm eq} = L_1 + L_2.$$

(b) Por que a separação entre os indutores tem de ser grande para que a relação acima seja válida? (c) Qual é a generalização do item (a) para N indutores em série?

6P. Indutores em paralelo. Dois indutores L_1 e L_2 estão ligados em paralelo e separados por uma distância grande. (a) Mostre que a indutância equivalente é dada por

$$\frac{1}{L_{\rm eq}} = \frac{1}{L_{\rm l}} + \frac{1}{L_{\rm 2}}.$$

- (b) Por que a separação entre os indutores tem de ser grande para que a relação acima seja válida? (c) Qual é a generalização do item (a) para N indutores em paralelo?
- **7P.** Uma tira larga de cobre (largura W) é curvada formando um tubo de raio R com duas extensões planas, como mostra a Fig. 33-14. Uma corrente i flui através da tira, distribuída uniformemente sobre sua largura. Fez-se, desse modo, um "solenóide de uma única espira". (a) Deduza uma expressão para o módulo do campo magnético **B** na parte tubular (longe das bordas). (Sugestão: Suponha que o campo magnético fora deste solenóide de uma única espira seja desprezível.) (b) Determine a indutância deste solenóide de uma única espira, desprezando as duas extensões planas.

Fig. 33-14 Problema 7.

48P. Dois fios longos e paralelos, cada um de raio a, cujos centros estão separados por uma distância d, são percorridos por correntes iguais em sentidos opostos. Mostre que, desprezando o fluxo dentro dos pró-

prios fios, a indutância de um comprimento I deste par de fios é dada por

$$L = \frac{\mu_0 l}{\pi} \ln \frac{d - a}{a}.$$

Veja o Exemplo 31-3. (Sugestão: Calcule o fluxo através de um retângulo que tem os fios como lados.)

Seção 33-3 Auto-indução

9E. Num dado instante, a corrente e a fem induzida num indutor têm os sentidos indicados na Fig. 33-15. (a) A corrente está crescendo ou decrescendo? (b) A fem vale 17 V e a taxa de variação da corrente é 25 kA/s; qual é o valor da indutância?

Fig. 33-15 Exercício 9.

10E. Um indutor de 12 H transporta uma corrente constante de 2.0 A. De que modo podemos gerar uma fem auto-induzida de 60 V no indutor?

11E. Um solenóide cilíndrico longo com 100 espiras/cm tem um raio de 1,6 cm. Suponha que o campo magnético que ele produz seja paralelo ao eixo do solenóide e uniforme em seu interior. (a) Qual é a sua indutância por metro de comprimento? (b) Se a corrente variar a uma taxa de 13 A/s, qual será a fem induzida por metro?

12E. A indutância de uma bobina compacta é tal que uma fem de 3,0 mV é induzida quando a corrente varia a uma taxa de 5,0 A/s. Uma corrente constante de 8,0 A produz um fluxo magnético de 40 μ Wb através de cada espira, (a) Calcule a indutância da bobina. (b) Quantas espiras tem a bobina?

13P. A corrente i que percorre um indutor de 4,6 H varia com o tempo t, conforme é mostrado no gráfico da Fig. 33-16. A resistência do indutor vale 12Ω . Determine a fem induzida % durante os intervalos de tempo (a) de t=0 até t=2 ms; (b) de t=2 ms até t=5 ms; (c) de t=5 ms até t=6 ms. (Ignore o comportamento nas extremidades dos intervalos.)

Fig. 33-16 Problema 13.

Seção 33-4 Circuitos RL

14E. A corrente num circuito *RL* atinge um terço de seu valor de equilíbrio em 5,00 s. Calcule a constante indutiva de tempo.

15E. Em termos de τ_L , quanto tempo devemos esperar para que a corrente num circuito RL cresça e fique a 0.100% de seu valor de equilíbrio?

16E. A corrente num circuito RL cai de 1.0 A para 10 mA no primeiro segundo após a remoção da bateria do circuito. Sendo L=10 H, calcule a resistência R do circuito.

17E. Quanto tempo, após a remoção da bateria, a diferença de potencial através do resistor num circuito RL (com L=2.00 H, R = 3.00 Ω) decai a 10.0% de seu valor inicial?

18E. (a) Considere o circuito RL da Fig. 33-5. Em termos da fem \mathscr{E} da bateria, qual é a fem \mathscr{E}_L imediatamente após a chave ter sido fechada em a? (b) Qual é a fem \mathscr{E}_L quando $t = 2.0 \tau_L$? (c) Em termos de τ_L em que instante a fem \mathscr{E}_L será exatamente igual à metade da fem \mathscr{E} da bateria?

19E. Um solenóide de indutância igual a 6,30 μ H está ligado em série a um resistor de 1,20 k Ω . (a) Ligando-se uma bateria de 14,0-V a esse par, quanto tempo levará para que a corrente através do resistor atinja 80,0% de seu valor final? (b) Qual é a corrente através do resistor no instante t=1,0 τ_t ?

20E. O fluxo total através de uma certa bobina de $0.75\,\Omega$ de resistência vale 26 mWb, quando é percorrida por uma corrente de $5.5\,A$. (a) Calcular a indutância da bobina. (b) Se uma bateria de $6.0\,V$ for subitamente ligada à bobina, quanto tempo levará para que a corrente cresça de 0 até $2.5\,A$?

21P. Suponha que a fem da bateria no circuito da Fig. 33-6 varie com o tempo t de tal modo que a corrente seja dada por $t(t) = 3.0 \pm 5.0t$, onde t é dado em ampères e t em segundos. Faça $R = 4.0 \Omega$, L = 6.0 H e determine uma expressão para a fem da bateria em função do tempo. (Sugestão: Aplique o teorema das malhas.)

22P. No instante t = 0, lígamos uma bateria em série com um indutor e um resistor. A tabela abaixo dá a diferença de potencial, em volts, através do indutor após a ligação da bateria. Determinar (a) a fem da bateria e (b) a constante de tempo do circuíto.

t (ms)	$V_{L}(V)$	t(ms)	$V_t(V)$
1,0	18,2	5.0	5,98
2,0	13,8	6,0	4,53
3.0	10.4	7.0	3,43
4.0	7.90	8.0	2,60

23P. Uma diferença de potencial de 45,0 V é subitamente aplicada a uma bobina com L=50.0 mH e $R=180~\Omega$. Qual é a taxa de crescimento da corrente após l,20 ms?

24P. Um núcleo toroidal de madeira, com uma seção transversal quadrada, tem um raio interno de 10 cm e um raio externo de 12 cm. Ele é enrolado com uma camada de fio (de diâmetro 1,0 mm e resistência por metro de 0,02 Ω /m). Quais são (a) a indutância do toróide assim formado e (b) a sua constante de tempo indutiva? Ignore a espessora do isolamento.

25P. Na Fig. 33-17, $\mathscr{E} = 100 \text{ V}$, $R_1 = 10.0 \Omega$, $R_2 = 20.0 \Omega$, $R_3 = 30.0 \Omega$ e L = 2.00 H. Determine os valores de i_1 e i_2 (a) imediatamente após o fechamento da chave S; (b) muito tempo depois do fechamento de S; (c) imediatamente após S ser aberta outra vez; (d) muito tempo depois da abertura de S.

Fig. 33-17 Problema 25.

26P. No circuito mostrado na Fig. 33-18, % = 10 V, $R_1 = 5.0 \Omega$, $R_2 = 10 \Omega$ e L = 5.0 H. Considere as situações: (I) a chave S acaba de ser fechada e (II) a chave S ficou fechada durante muito tempo. Calcule para estas situações: (a) a corrente i_1 através de R_1 , (b) a corrente i_2 através de R_3 , (c) a corrente i através da chave, (d) a diferença de potencial através de R_3 , (e) a diferença de potencial através de L e (f) di/dt.

Fig. 33-18 Problema 26.

27P. Na Fig. 33-19, o componente no ramo superior é um fusível ideal de 3,0 A. Ele possui resistência nula, desde que a corrente que o atravessa seja menor do que 3,0 A. Quando a corrente atinge 3,0 A, ele "queima" e, conseqüentemente, passa a ter resistência infinita. A chave S é fechada no instante t = 0. (a) Em que instante o fusível se queima? (b) Faça um gráfico da corrente i através do indutor em função do tempo. Marque o instante em que o fusível se queima.

Fig. 33-19 Problema 27.

28P*. No circuito mostrado na Fig. 33-20, a chave S é fechada no instante t = 0. A partir desse momento, a fonte de corrente constante, através da variação de sua fem, mantém uma corrente constante i saindo de seu terminal superior. (a) Deduza uma expressão para a corrente através do indutor em função do tempo. (b) Mostre que a corrente através

do resistor é igual à corrente através do indutor no instante t = (L/R)In 2.

Fig. 33-20 Problema 28.

Seção 33-5 Energia Armazenada num Campo Magnético

29E. A energia armazenada num certo indutor é 25,0 mJ quando a corrente é 60,0 mA. (a) Calcular a indutância. (b) Que corrente é necessária para a energia magnética armazenada ser quatro vezes maior?

30E. Considere o circuito da Fig. 33-6. Em temos da constante de tempo, em que instante após a ligação da bateria, a energia armazenada no campo magnético do indutor terá metade do seu valor no estado de equilíbrio?

31E. Uma bobina com uma indutância de 2,0 H e uma resistência de 10 Ω é subitamente ligada a uma bateria de resistência desprezível com $\mathscr E$ = 100 V. (a) Qual será a corrente de equilíbrio? (b) Que quantidade de energia estará armazenada no campo magnético quando essa corrente for atingida?

32E. Uma bobina com uma indutância de 2,0 H e uma resistência de 10 Ω é subitamente ligada a uma bateria de resistência desprezível com $\mathscr E$ = 100 V. Após 0,10 s de a ligação ter sido feita, quais são as taxas com que (a) a energia está sendo armazenada no campo magnético, (b) a energia térmica está aparecendo e (c) a energia está sendo fornecida pela bateria?

33P. Suponha que a constante de tempo indutiva para o circuito da Fig. 33-6 seja de 37,0 ms e que a corrente no circuito seja zero no instante *t* = 0. Em que instante a taxa de dissipação de energia no resistor é igual à taxa com que a energia está sendo armazenada no indutor?

34P. Uma bobina está ligada em série com um resistor de 10,0-kΩ. Quando uma bateria de 50,0 V é ligada ao circuito, a corrente atinge o valor de 2,00 mA após 5,00 ms. (a) Determine a indutáncia da bobina. (b) Que quantidade de energia está armazenada na bobina neste momento?

35P. Para o circuito da Fig. 33-6, suponha que $\mathcal{E} = 10.0 \text{ V}$, $R = 6.70 \Omega$ e L = 5.50 H. A bateria é ligada no instante t = 0. (a) Que quantidade de energia é fornecida pela bateria durante os dois primeiros segundos? (b) Que parte dessa energia está armazenada no campo magnético do indutor? (c) Que parte desta energia foi dissipada no resistor?

36P. Um solenóide, com comprimento de 80 cm e raio de 5,00 cm, consiste em 3,000 espiras distribuídas uniformemente ao longo de seu comprimento. Sua resistência total é de 10,0 Ω . Decorridos 5,00 ms da ligação deste solenóide a uma bateria de 12,0 V, (a) que quantidade de energia está armazenada em seu campo magnético e (b) que quantidade de energia foi fornecida pela bateria até esse instante? (Despreze os efeitos das extremidades.)

37P. Prove que, quando a chave S da Fig. 33-5 é girada da posição a para a posição b, toda a energia armazenada no indutor aparece como energia térmica no resistor.

Seção 33-6 Densidade de Energia de um Campo Magnético

38E. Um solenóide tem um comprimento de 85.0 cm e seção transversal de área igual a 17.0 cm². Existem 950 espiras de fio transportando uma corrente de 6,60 A. (a) Calcule a densidade de energia do campo magnético no interior do solenóide. (b) Determine, nessa região, a energia total armazenada no campo magnético. (Despreze os efeitos das extremidades.)

39E. Um indutor toroidal de 90,0 mH delimita um volume de 0,0200 m². Sabendo-se que a densidade média de energia no toróide é de 70,0 J/m², qual é a corrente?

40E. Qual deve ser o módulo de um campo elétrico uniforme para que tenha a mesma densidade de energia de um campo magnético de $0.50\,\mathrm{T}^9$

41E. O campo magnético no espaço interestelar de nossa galáxia tem um módulo de aproximadamente $10^{-10}\,\mathrm{T}$. Que quantidade de energia é armazenada, neste campo, num cubo de 10 anos-luz de aresta? (Para comparação, note que a estrela mais próxima está distante 4,3 anos-luz e que o raio de nossa galáxia é aproximadamente 8×10^4 anos-luz.)

42E. Use o resultado do Exemplo 33-5 para obter uma expressão para a indutância de um comprimento *l* do cabo co-axial.

43E. Uma espira circular de 50 mm de raio transporta uma corrente de 100 A. (a) Determine a intensidade do campo magnético no centro da espira. (b) Calcule a densidade de energia no centro da espira.

44P. (a) Determine uma expressão para a densidade de energia em função da distância radial para o toróide do Exemplo 33-1. (b) Integrando a densidade de energia por todo o volume do toróide, calcule a energia total armazenada no campo do toróide; suponha i=0,500 A. (c) Usando a Eq. 33-24, calcule a energia armazenada no toróide diretamente da indutância e compare o resultado com o do item (b).

45P. Um determinado comprimento de fio de cobre transporta uma corrente de 10 A uniformemente distribuída. Calcular (a) a densidade de energia do campo magnético e (b) a densidade de energia do campo elétrico na superfície do fio. O diâmetro do fio é 2.5 mm e sua resistência por unidade de comprimento é de 3,3 Ω /km.

46P. (a) Qual é a densidade de energia do campo magnético da Terra cujo módulo vale 50 µT? (b) Supondo que tal campo seja relativamente constante ao longo de uma distância pequena, quando comparada com o raio da Terra e, desprezando as variações próximas dos pólos magnéticos, quanta energia seria armazenada entre a superfície da Terra e uma casca esférica 16 km acima da superfície?

Seção 33-7 Indução Mútua

47E. Duas bobinas estão em posições fixas. Quando na bobina 1 não há corrente e na bobina 2 existe uma corrente que cresce numa taxa constante de 15.0 A/s, a fem na bobina 1 vale 25.0 mV. (a) Qual é indutância mútua destas bobinas? (b) Quando não há corrente na bobina 2 e a bobina 1 é percorrida por uma corrente de 3,60 A, qual é o fluxo através da bobina 2?

48E. A bobina 1 tem $L_1 = 25$ mH e $N_1 = 100$ espiras. A bobina 2 tem $L_2 = 40$ mH e $N_2 = 200$ espiras. As bobinas são mantidas em posições fixas e o coeficiente de indução mútua para elas vale M = 3.0 mH. A corrente na bobina 1 está crescendo na taxa de 4.0 A/s e num certo instante vale 6.0 mA. Neste instante, (a) qual é o fluxo Φ_{12} através da bobina 1 e qual é a fem auto-induzida nesta bobina? (b) qual é o fluxo Φ_{21} através da bobina 2 e qual é a fem nela induzida mutuamente?

49P. Duas bobinas estão ligadas conforme mostra a Fig. 33-21. Suas indutâncias valem L_1 e L_2 . O coeficiente de indutância mútua é M. (a) Mostre que a combinação pode ser substituída por uma única bobina de indutância equivalente dada por

$$L_{\rm eq} = L_1 + L_2 + 2M.$$

(b) Como as bobinas da Fig. 33-21 deveriam ser ligadas para que a indutância equivalente fosse dada por

$$L_{\rm eq} = L_1 + L_2 - 2M2$$

(Este problema é uma extensão do Problema 5, tendo sido eliminada a exigência de que a distância entre as bobinas deveria ser muito grande.)

Fig. 33-21 Problema 49.

50P. Uma bobina C, com N espiras, é colocada em volta de um solenóide longo S, de raio R e n espiras por unidade de comprimento, como mostra a Fig. 33-22. Mostre que o coeficiente de indutância mútua para a combinação bobina-solenóide é dado por

$$M = \mu_0 \pi R^2 n N$$

Explique por que M não depende da forma, do tamanho ou da possível falta de um enrolamento compacto da bobina.

Fig. 33-22 Problema 50.

51P. Uma bobina com N_2 espiras é enrolada em torno de um toróide com N_1 espiras, como mostra a Fig. 33-23. O raio interno do toróide é a, seu raio externo é b e sua altura é b. Mostre que o coeficiente de indutância mútua M para a combinação toróide-bobina é

$$M = \frac{\mu_0 N_1 N_2 h}{2\pi} \ln \frac{b}{a}.$$

Fig. 33-23 Problema 51.

52P. A Fig. 33-24 mostra, em seção transversal, dois solenóides coaxiais. Mostre que o coeficiente de indutância mútua *M* para um comprimento *I* desta combinação solenóide-solenóide é dado por

$$M = \pi R_1^2 l \mu_0 n_1 n_2,$$

Onde n_1 e n_2 são os respectivos números de espiras por unidade de comprimento e R_1 é o raio do solenóide interno. Por que M depende de R_1 e não de R_2 ?

Fig. 33-24 Problema 52.

53P. Uma bobina retangular com N espiras estreitamente espaçadas está localizada nas proximidades de um fio retilíneo longo como mostra a Fig. 33-25. (a) Qual é o coeficiente da indutância mútua M desse sistema? (b) Calcular M para N = 100, a = 1.0 cm, b = 8.0 cm e I = 30 cm.

Fig. 33-25 Problema 53.

PROBLEMAS ADICIONAIS

54. O circuito 1 na Fig. 33-26 consiste em um amperímetro em série com uma bateria e uma bobina 1. O circuito 2 consiste na bobina 2 e num galvanômetro balístico de resistência R; o galvanômetro pode medir a carga que se move através dele. Quando a chave S está fechada, a leitura da corrente de equilíbrio no amperímetro é i_p A carga total que passa através do galvanômetro durante o tempo que a corrente no circuito 2 atinge o equilíbrio é Q. Determine a indutância mútua M entre as bobinas 1 e 2.

Fig. 33-26 Problema 54.

- 55. Dois solenóides fazem parte do indutor de faíscas de um automóvel. Quando a corrente num dos solenóides cai de 6.0 A até zero em 2,5 ms, uma fem de 30 kV é induzida no outro solenóide. Qual é a indutância mútua M entre os solenóides?
- **56.** Na Fig. 33-27, um fio retilíneo longo se encontra no mesmo plano que um triângulo equilátero formado com um fio de comprimento 3S. O fio longo é paralelo a um lado do triângulo e está a uma distância d do vértice mais próximo. Qual é a indutância mútua M do fio e do triângulo?

Fig. 33-27 Problema 56.

57. A chave S na Fig. 33-28 é fechada no instante $t \le 0$ e é aberta no instante t = 0. Quando a corrente i_1 através de L_1 e R_1 e a corrente i_2 através de L_2 e R_2 atingirão pela *primeira* vez, valores iguais, e qual é este valor comum?

Fig. 33-28 Problema 57.