

Windows version installation and quick run guide Command line & GUI

OPERA Github repo:

Pull requests Issues Marketplace Explore

Go to the releases to download the latest version

Download the installer from "Releases"

Unzip and run OPERA_Installer as administrator

The installer will unpack and initialize quickly

First intro to OPERA, click next when ready

Recommended install options.

It is important to

- For GUI, select add shortcut
- For command line, the shortcut is provided in the unzipped file. Just copy paste it to the desktop.
- Note that if the default installation folder is modified:
- The GUI will adapt automatically
- The command line shortcut location needs to be updated and further instructions will be provided during the first run.

Just click next

Confirm and install.

Wait while downloading and/or installing the runtime. (next time will go faster)

That's it! IT's OPERAtional.

Installed files

OPERA files

Runtime files

> Local Disk (C:) > Program Files > MATL	AB > MATLAB Runtime	> v94
Name	Date modified	Туре
appdata	12/21/2018 10:37	File folder
bin	12/21/2018 11:06	File folder
etc	12/21/2018 10:37	File folder
extern	12/21/2018 10:37	File folder
📜 help	12/21/2018 11:06	File folder
📜 java	12/21/2018 10:36	File folder
📙 lib	12/21/2018 11:06	File folder
mcr	12/21/2018 10:36	File folder
polyspace	12/21/2018 11:03	File folder
remote	12/21/2018 11:05	File folder
resources	12/21/2018 11:06	File folder
📜 runtime	12/21/2018 10:37	File folder
settings	12/21/2018 10:36	File folder
src	12/21/2018 11:05	File folder
📜 sys	12/21/2018 11:06	File folder
toolbox	12/21/2018 11:06	File folder
📙 ui	12/21/2018 11:05	File folder
uninstall	12/21/2018 10:37	File folder
MCR_license.txt	2/3/2015 2:40 PM	Text Document
patents.txt	1/16/2018 3:26 PM	Text Document
trademarks.txt	12/28/2013 2:08	Text Document
VersionInfo.xml	2/23/2018 1:39 PM	XML Documen

For command line only: copy the provided shortcut to your desktop.

It will setup your environment variable and run the application in command line.

Double click the shortcut to run the app

Command line GUI

Ready to run the models

Command line GUI

Accepted Input files are QSAR-ready structures in:

SMILES file:

- Extension .smi
- Tab delimited text file (structure \t ID)
- No headers & no empty lines

🔚 Sample_50.smi 🛚 NC(N) = N 50 - 01 - 1CC1CC2C3CCC4=CC (=0) C=CC4 (C) C3 (F) C (0) CC2 (C) C1 (0) C (=0) C0 CC (=0) OCC (=0) C1 (0) CCC2C3CCC4=CC (=0) CCC4 (C) C3C (=0) CC12C CCC1 (c2cccc2) C (=0) NC (=0) NC1=0 50-06-6 C[N+](CCOC(=0)C(0)(C1CCCCC1)c1ccccc1)(CC)CC 50-10-2CN1C (=0) NC (=0) C (CC) (CC) C1=0 50-11-350-12-4 CCC1 (NC (=0) N (C) C1=0) c1ccccc1 CC (C) C (C) C=CC (C) C1CCC2C (CCCC21C) =CC=C1CC (O) CCC1=C O=P1 (NCCCO1) N (CCC1) CCC1 50-18-0 10 CCC(0)(COC(N)=0)clcccccl 50-19-1 CC(0)C(0)=0 50-21-5 CC12CCC (=0) C=C1CCC1C2C (0) CC2 (C) C (CCC21) C (=0) CO 50-22-6 CC12CCC (=0) C=C1CCC1C2C (0) CC2 (C) C1CCC2 (0) C (=0) CO 50-23-7 CC12CCC3C(CCc4cc(0)ccc43)C1CC(0)C2O 50-27-1 CC12CCC3C (CCc4cc (0) ccc43) C1CCC20 16 ClC(Cl)(Cl)C(clccc(Cl)ccl)clccc(Cl)ccl 50-29-3 OC (=0) c1c (C1) cccc1C1 18 OC (=0) clc (Cl) c (Cl) ccc1Cl c1c2cccc2c2ccc3cccc4ccc1c2c34 50-32-8 CCCCC1C (=0) N (c2cccc2) N (c2cccc2) C1=0 50-33-9 C[N+](CCOC(=0)C1c2cccc2Oc2cccc21)(C(C)C)C(C)C 50-34-0 O=C1CCC(C(=0)N1)N1C(=0)c2cccc2C1=0 50-35-1 COC (=0) C1C2CCC (CC1OC (=0) c1ccccc1) N2C CN1CC(C=C2C1Cc1c[nH]c3cccc2c31)C(=O)N(CC)CC 50-37-3 25 CN1c2[n]c[n](C)c2C(=0)N(CC(C)0)C1=0 50-39-5

SDF/Mol file:

50-01-1

- Extension .sdf/.mol
- Different blocks
- Single or multiple molecules

Sample_50.smi 🖾 🔚 Sample_50.sdf 🚨 50-01-1 -INDIGO-01081610012D 0.0000 0.0000 1.6000 0.0000 0.0000 N 2.4000 1.3856 2.4000 -1.38560.0000 H -0.8000-1.38560.0000 N 10 -2.4000-1.38560.0000 H 11 0.0000 -2.77130.0000 H -0.80001.3856 0.0000 N 13 -2.40001.3856 0.0000 H 0 22 M END 23 > <ChemID> 24 100002.0 25 26 > <CAS>

Descriptors files:

- Extension .csv
- Calculated by PaDEL or CDK
- Continuous and/or fingerprints

d	A	В	C	D	E	F	G	
	Name	nAcid	ALogP	ALogp2	AMR	apol	naAromAtr	n
	100001	0	0	0	0	43.20152	20	
	100002	0	0	0	0	48.0551	22	
	100003	0	0	0	0	39.68152	18	
	100004	0	0	0	0	14.56076	6	
	100005	0	1.8631	3.471142	29.4773	19.8951	0	
	100006	0	0.1248	0.015575	9.7308	27.78793	10	
	100007	0	0	0	0	31.30793	14	
	100008	0	0.4562	0.208118	4.601	29.54793	12	
)	100009	0	0.642	0.412164	5.5021	26.02793	10	
1	100010	0	0	0	0	22.93434	10	
2	100011	0	0.642	0.412164	5.5021	26.02793	10	
3	100012	0	0	0	0	27.78793	12	
1	100013	0	0.789	0.622521	15.0732	21.17434	6	
5	100014	0	0.5906	0.348808	7.7935	20.98076	9	
5	100015	0	1.284	1.648656	11.0042	20.74793	6	
7	100016	0	1.926	3.709476	16.5063	23.84152	6	
3	100017	0	2.568	6.594624	22.0084	26.9351	6	
9	100018	0	0.0686	0.004706	23.2621	18.56152	0	
)	100019	0	0.5729	0.328214	14.2678	23.84152	6	

QSAR-ready structures:

 Option 1: download from the EPA CompTox Dashboard: https://comptox.epa.gov/dashboard/dsstoxdb/batch_search

QSAR-ready structures:

Option 2: run the KNIME QSAR-ready standardization workflow:

https://github.com/kmansouri/QSAR-ready

QSAR-ready structures:

• Option 3 (Coming soon): Use the standardize option in OPERA

Command line: Change directory "cd" to your working folder

Use the commands in the help file or type: "opera –h" for help

C:\Users\kmansouri\Documents\work\Test>opera -h

-e, --Endpoint

--Help

-V, --Version

List endpoints to be calculated.

Display this help file and exit.

Version of the application

```
OPERA2.0
          OPERA models for physchem, environmental fate and tox properties.
                        Version 2.1-beta.1 (January 2019)
 OPERA is a command line application developed in Matlab providing QSAR models predictions as well as
 applicability domain and accuracy assessment. All models are built on curated data from public domain.
 Molecular descriptors are calculated using PaDEL and CDK software.
 Usage: OPERA <input> <output> [Options]
By default, all endpoints will be calculated.
OPERA -s Sample 50.sdf -o predictions.csv -a -x -n -v 2
 opera -d Sample 50.csv -o predictions.txt -e logP BCF -v 1
   -s, --SDF, --MOL, --SMI Structure file containing the molecule(s) to be
                             predicted. IDs will be assigned if the file does not contain molecule names.
                             Molecular descriptors will be calculated using PaDEL software.
   -d. --Descriptors
                             pre-calculated PaDEL descriptors in csv file. If the first column is not
                             "Name" as the standard PaDEL output, molecule IDs will be assinged.
                             Matlab matrix or ascii file containing PaDEL descriptors.
   -i, --MolID
                             Molecule names in csv file.
   -t, --SaltInfo
                             Salt IDs to improve melting point predictions. List provided in Salts.xls
   -l, --Labels
                             Descriptor labels. Necessary if the descriptor file does not contain labels
                             or contains more than the 1444 PaDEL 2D descriptors.
 Output:
   -o, --Output
                             Output file containing the predictions, applicability domain and accuracy
                             information. File extension could be csv or txt. The output will contain by default:
                             Molecule ID, predicted value (pred), Applicability domain (AD), Similarity index
                             (Sim index) and accuracy estimate (Conf index).
   -n, --Neighbors
                             Add 5 nearest neighbors from training set (CAS, InCHiKeys, Observed and predicted values)
   -0, --FullOutput
                             Output file containing all prediction details and used descriptors in csv format.
   -x, --Seperate
                             Separate output file for each endpoint.
 Miscellaneous:
   -v, --Verbose
                             Verbose level: 0=silent (default), 1=minimum details, 2=full details.
                             All endpoints to be calculated (default).
   -c, --Clean
                             Clean temporary files (generated during descriptor calculation.)
   -logP, -BCF...
                             List endpoints to be calculated (case insensitive). 'BCF'/'logBCF', 'BP', 'logP', 'MP',
                             'VP'/'logVP','WS', 'AOH', 'BioDeg', 'RB'/'ReadyBiodeg','HL'/'logHL','KM'/'logKM', 'KOA','Koc'/'logKoc', 'RT', 'pKa', 'logD', 'CERAPP'/'ER', 'COMPARA'/'AR', 'CATMOS/AcuteTox'.
                                                         Groups of Endpoints: 'StrP' (Structural properties), 'PC'/'Physchem', 'EnvFate'/'EF', 'Tox' (ER, AR, AcuteTox)
```


Examples:

Usage: OPERA <argument_list>

General command: "OPERA <input> <output> <options> " no specific order for the arguments.

>opera -s Sample_50.sdf -o predictions.csv -logP -v 1

Using the sample sdf file (50 chemicals) to calculate logP only in minimum verbose mode (v=1). Endpoints names (only) are case insensitive.

>opera -s Sample_50.sdf -o predictions.csv

Simplest command specifying only the input and output. By default, OPERA will calculate all endpoints and output them to the same file in silent mode (V=0 by default).

opera -d PadelDesc.csv -o predictions.csv -LOGP -BCF -v 2

Running one of the previous commands will generate the descriptor file "PadelDesc.csv" for this list of chemicals that you can use to run other models.

>opera -d PadelDesc.csv -o predictions.csv -physchem -v 2 -s Sample_50.sdf

This runs a list of models at the same time without running all of them. "physchem" or "pc" will run 10 models.

>opera -s Sample_50.smi -o predictions.csv -CATMOS -v 1

This will run CATMoS models only using "CATMoS" or "AcuteTox" (case insensitive).

opera -s Sample_50.sdf -o predictions.csv -all -n -x -v 1 -c

This will run all models. "-n" to get the nearest neighbors and their experimental and predicted data. "-x" will output each one of them in a separate file. "-c" or"-clean" to delete generated descriptors afterwards.

This will run all toxicity endpoints including CERAPP (ER), CoMPARA (AR) and CATMoS (AcuteTox).

>opera -s Sample_50.sdf -d PadelDesc.csv -o predictions.csv -Tox -n -x -v 1

OPERA2.0

```
C:\Users\kmansouri\Documents\work\Test>opera -s Sample_50.sdf -o predictions.csv -v 1
All properties will be calculated:
<u>General structural prope</u>rties, Physchem, Env. fate and Tox Endpoints (CERAPP, CoMPARA and CATMoS)
====== Molecular Descriptors =======
PaDEL calculating 2D descriptors...
End of descriptors calculation: 50 molecules calculated.
PaDEL generating fingerprints...
End of fingerprint generation: 50 molecules calculated.
CDK 2.0 calculating 2D descriptors...
End of descriptors calculation: 50 molecules calculated.
====== Loading Input Files =======
Loading of PaDEL descriptors file...
The number of input molecules is: 50
Checking loaded variables.
The number of loaded PaDEL descriptors is: 1444
Loading of fingerprints file...
The number of loaded fingerprints bits is: 10145
Loading of CDK descriptors file...
The number of loaded CDK descriptors is: 286
====== Running The Models =======
Generating the general structural properties...
----- PhysChem properties ------
Predicting LogP values (Log10)...
Predicting MP values (Deg. C)...
Predicting BP values (Deg. C)...
Predicting LogVP values (Log10 mmHg)...
Predicting LogWS values (Log10 M)...
Predicting LogHL values (Log10 atm-m3/V)...
Predicting RT values (Mins.)...
Predicting LogKOA values (Log10)...
Predicting pKa values (unitless)...
Predicting LogD values (Log10)...
----- Env. Fate Endpoints -----
Predicting LogOH values (Log10 cm3/molecule-sec)...
Predicting LogBCF values (Log10)...
Predicting Biodeg. half-life values (Log10 days)...
Predicting Ready-Biodegradability (Binary 0/1)...
Predicting LogKm half-life values (Log10 days)...
Predicting LogKoc values (Log10 L/Kg)...
----- Toxcity Endpoints
Predicting Estrogen Receptor Activity (CERAPP)...
Predicting Androgen Receptor Activity (CoMPARA)...
Predicting Acute Oral Tox. endpoints (CATMoS)...
50 molecules predicted
```

Sample output:

In this example, all endpoints were predicted and the output is written in a single file "predictions.csv".

For each model, the predicted value is associated with applicability domain and accuracy estimates.

1	S	T	U	V	W	X	Υ	Z	AA	AB	AC	AD
1	LogP_prec	AD_LogP	AD_index	Conf_inde	MP_pred	AD_MP	AD_index	Conf_inde	BP_pred	AD_BP	AD_index	Conf_inde L
2	-1.16675	1	0.480419	0.514066	56.96995	0	0.845536	0.591406	257.4774	0	0.148019	0.459055
3	1.865338	1	0.900462	0.860512	240.0609	1	0.886896	0.77831	391.2263	0	0.156367	0.289241
4	2.220271	1	0.908599	0.854532	225.4009	1	0.868502	0.769243	418.5021	0	0.198701	0.29612
5	1.418476	1	0.888307	0.832005	178.3617	1	0.907997	0.792323	255.0721	0	0.102487	0.429512
6	3.263077	1	0.475522	0.511194	113.4288	1	0.423574	0.396192	303.5064	1	0.218644	0.377263
7	1.250174	1	0.88672	0.826925	140.6504	1	0.870612	0.678357	244.3635	0	0.199114	0.408801
8	1.661618	1	0.884391	0.880548	140.7473	1	0.869315	0.704217	313.0569	0	0.227134	0.451173
9	8.521042	0	0.423516	0.451172	109.0241	1	0.918952	0.808039	388.1919	0	0.288908	0.478521
10	0.794911	1	0.916139	0.831594	53.26655	1	0.889102	0.805115	300.1238	0	0.215153	0.397557
11	-1.34435	1	0.542563	0.511082	70.8003	1	0.862021	0.603289	300.3755	0	0.275189	0.513219
12	-0.76893	1	0.880398	0.785205	45.61057	1	0.87657	0.805093	208.6963	1	0.419094	0.402072
13	2.075537	1	0.885388	0.774448	190.2265	1	0.890244	0.776764	400.3502	0	0.227297	0.322959
14	1.653221	1	0.887992	0.897769	221.5952	1	0.91094	0.869202	389.2867	0	0.161782	0.29391
15	2.635143	1	0.863338	0.699103	270.1702	1	0.856718	0.608162	382.0755	0	0.189731	0.315207
16	3.907586	1	0.87718	0.772113	196.6646	1	0.881577	0.794906	372.7094	1	0.273881	0.367613
17	6.91244	1	0.871424	0.810684	104.6093	1	0.899273	0.844186	350.3782	1	0.549401	0.606396
18	2.64288	1	0.919871	0.754499	157.4414	1	0.94492	0.84299	293.8553	1	0.729356	0.715913
19	3.536705	1	0.611748	0.663621	147.8905	1	0.94981	0.796142	300.6033	1	0.552324	0.69184
20	6.128521	1	0.947304	0.88721	223.6441	1	0.978058	0.708651	485.9157	0	0.937575	0.871229
-4	E .	predictions	+								1	4

OPERA prediction report on the EPA Dashboard

https://comptox.epa.gov/dashboard

AD_logP (0/1):

Global applicability domain considering the whole chemical space of the model.

AD index [0-1]:

Local applicability domain based on the similarity to the 5 nearest neighbors

Conf index [0-1]:

Accuracy estimate based on the predictions of the 5 nearest neighbors.

More details in the QMRF reports available on the EPA dashboard, the Github repo and the JRC QSAR database

Optional and only for expert users of command line:

Run add2path.bat as admin to permanently edit system %PATH%.

Only needed to install for all users or to use in a pipeline/ workflow.

Run only ONCE to avoid truncated path!

Thank you!

Register on the GitHub repo for the updates https://github.com/NIEHS/OPERA

References:

- [1] Mansouri K. et al. J Cheminform (2018) https://doi.org/10.1186/s13321-018-0263-1.
- [2] Mansouri, K. et al. SAR and QSAR in Env. Res. (2016). https://doi.org/10.1080/1062936X.2016.1253611
- [3] Williams A. J. et al. J Cheminform (2017) https://doi.org/10.1186/s13321-017-0247-6
- [4] The CompTox Chemistry Dashboard (https://comptox.epa.gov/dashboard)
- [5] JRC QSAR Model Database https://qsardb.jrc.ec.europa.eu/qmrf/endpoint

Your feedback will be appreciated!
Kamel.mansouri@nih.gov
kmansouri@ils-inc.com
mansourikamel@gmail.com