Algebra with Only 0s and 1s!

Real-valued variable

Boolean variable

Variable may take any A variable assigned real number (e.g. x = 3.1234567)

either 0 or 1 (e.g. x = 0 or x = 1)

Boolean Operators

0 and 1 are also called "False" and "True" or "No" and "Yes"

George Boole 1815-1864

Real Operators

NOT

AND

0RX

+

Functions

Describing a real-valued function...

Words

f is a function of TWO real variables s.t. the output is the sum of their squares

Table

x y	f(x,y)
0 0	0
1 2	5
1.2 1	2.44
1 1	2

Formula

$$f(x) = x^2 + y^2$$

That table seems to be missing a "few" entries!

Boolean Functions

A Boolean function just takes Boolean arguments and gives a Boolean result.

Example: f(True, True) = True

The most common Boolean functions take 1 or 2 arguments.

There are exactly four 1-argument Boolean functions!

There are 16 two-argument functions, but only 5 are commonly used!

Boolean Functions

Describing a Boolean function (inputs and outputs: 0 and 1)

Words

f is a function of TWO binary (Boolean) variables s.t. the output is 1 if and only if exactly one of the two inputs is 1

Table

X	У	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

Formula

?

A table works fine now! It's called a "truth table."

NOT, AND, OR

X	NOT X
0	1
1	0

Also written $\frac{x}{x}$

X	У	x AND y
0	0	0
0	1	0
1	0	0
1	1	1

Also written *xy*

Also written *x*+*y*

Playing with Functions...

Describe these functions in English:

$$x\overline{x}$$
 xx $x+\overline{x}$ $(xy+\overline{x}y\overline{)}$

Playing with Functions...

How about Boolean formulae ("formulas") for:

- A function of two variables x,y that evaluates to 1 iff x and y are not equal
- A function of two variables x, y that evaluates to 1 iff $x \ge y$

Digital Logic Gates

X	NOT X
0	1
1	0

Also written $\frac{x}{x}$

NOT is often shown as just the small circle on another gate.

<i>\</i>	()	/ /		D y	
()	0	0		
() 1	L	0		
1	L ()	0		
1	L 1	L	1		
Also written _X					X

XY

X	У	x OR y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
	Also written		

x+*y*

XOR

Χ	У	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

Python uses ~, &, |, and ^ to represent NOT, AND, OR, and XOR, respectively.

Finding the Formula!

The Minterm Expansion Principle

Consider this function...

<u>Words</u>	<u>Truth Table</u>	<u>Formula</u>	
	x y	x XOR y	
A function of	0 0	0	
TWO binary	0 1	1	$\overline{x}v$
inputs x,y	1 0	1	\ \ \\
where the	1 1		ХУ
output is 1 iff $x \neq v$	1 1	<u> </u>	

$$f(x, y) = \overline{x}y + x\overline{y}$$

From Formula to Circuit!

Words

<u>Table</u>

Formula

f is a function of TWO binary (Boolean) variables s.t. the output is 1 if and only if exactly one of the two inputs is 1

X	У	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

$$\overline{x}y + x\overline{y}$$

<u>Circuit</u>

From Formula to Circuit!

<u>Words</u>	<u>Table</u>	<u> </u>
f is a function of TWO binary	x y	f(x,y
(Boolean) variables s.t. the output is 1 if and only if exactly one of the two inputs is 1	0 0 0 1 1 0 1 1	0 1 1 0

<u>Formula</u>

 $\overline{x}y + x\overline{y}$

You Try It!

The Minterm Expansion Principle

Consider this function...

Words Truth Table Formula

A function of TWO binary inputs x,y where the output is 1 iff $x \ge y$

Circuit

Try This One...

Consider this function...

<u>Words</u>

Truth Table

Formula

A function of THREE binary inputs *x,y,z* where the output is 1 iff the number of 1's is odd

Circuit

This is called an "odd parity" circuit

A Circuit for Adding!

A Circuit for Adding!

Base 2 Addition
(4-bit unsigned)

+ 1 0 0 1

+ 1 FA FA FA

A Circuit for Adding!

X	У	carry _{in}	carry	out SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
•••				
•••				
•••				
1	1	1	1	1

Properties of Boolean Functions

All the "usual" Boolean functions commute:

$$f(x, y) = f(y, x)$$

AND, OR, and XOR associate:

$$f(f(x, y), z) = f(x, f(y, z))$$

e.g., (x AND y) AND z = x AND (y AND z)

Implementing Gates with Relays

And AND...

Integrated Circuits

3_mm

http://personalpages.manchester.ac.uk/staff/p.dudek/projects/scamp

http://www.helicon.co.uk

AND, OR, NOT Is a "Universal Set"

De Morgan's Laws:

$$\overline{xy} = \overline{x} + \overline{y}$$

$$\overline{x+y} = \overline{x} \overline{y}$$

Are there other universal sets of gates?

Augustus De Morgan 1806-1871