Содержание

1	Цель работы	3
2	Теоретические основы лабораторной работы	3
3	Протокол измерений	5
4	Задание 1	6
5	Задание 2	6
6	Задание 3	6
7	Задание 4	6
8	Вывол	7

1 Цель работы

- 1. Экспериментальная проверка уравнения состояния идеального газа.
- 2. Определение температуры абсолютного нуля по шкале Цельсия.

2 Теоретические основы лабораторной работы

В том случае, когда состояние газа далеко от области фазовых превращений, его с достаточной степенью точности можно считать идеальным. В качестве идеального газа в работе используется обычный атмосферный воздух.

Для произвольной массы m идеального газа справедливо следующее уравнение состояния

$$pV = \frac{m}{\mu}RT \quad , \tag{1}$$

где p – давление, V – объём, μ – молярная масса, T – абсолютная температура газа, R – универсальная газовая постоянная. Это уравнение называется уравнением Менделеева–Клапейрона.

Нулю абсолютной температуры по шкале Цельсия соответствует значение $t_* = -273, 15^{\circ}C$. Градусы шкалы абсолютной температуры (шкалы Кельвина) и шкалы Цельсия выбраны одинаковыми. Поэтому значение абсолютной температуры связано со значением температуры по шкале Цельсия формулой

$$T(K) = t(^{\circ}C) - t_* = t(^{\circ}) + 273,15^{\circ}C$$
 (2)

Пусть исследуемый газ находиться в цилиндре с контролируемым рабочим объемом $V_{\rm L}$ (см. Рис. 1), масса газа в цилиндре $m_{\rm L}$. Температура t цилиндра с газом поддерживается постоянной. Датчик давления, работающий при комнатной температуре, вынесен за пределы рабочего объема и соединен с последним трубкой. Объем газа $V_{\rm x}$ в этой трубке мал по сравнению с рабочим объемом $V_{\rm L}$. В соединительной трубке также находится газ массой m_x при некоторой неизвестной средней температуре $t_{\rm x}$, лежащей в интервале от комнатной температуры до температуры t рабочего объема.

Рис. 1:

В работе измеряется зависимость давления р газа от величины рабочего объема $V_{\rm L}$ при разных значениях температуры t (от 20° С до 60° С). Выведем соотношение, связывающее рабочий объем и давление газа при постоянной температуре. Общее количество вещества в рабочем объеме и соединительной трубке

$$\nu = \frac{(m_{\rm II} + m_{\rm X})}{\mu} \tag{3}$$

в течение всей работы остается постоянным. Выражая массы газа m ц и m x из уравнения состояния (1), абсолютную температуру из соотношения (2), и подставляя найденные выражения в формулу (3), получим

$$\nu = \frac{pV_{\rm u}}{R(t - t_*)} + \frac{pV_{\rm x}}{R(t - t_*)} \quad . \tag{4}$$

Из этого уравнения найдем искомое соотношение:

$$V_{\rm II} = \frac{\nu R(t - t_*)}{p} - \frac{V_{\rm X}(t - t_*)}{(t_{\rm X} - t_*)} \quad . \tag{5}$$

Из-за перераспределения газа между объемами $V_{\rm u}$ и $V_{\rm x}$ в процессе измерения температура $t_{\rm x}$ может изменяться. Однако, при относительно малой величине $V_{\rm x}$ изменением второго слагаемого в формуле (5) можно пренебречь. Поэтому при неизменной температуре t зависимость

рабочего объема $V_{\rm ц}$ от обратного давления 1/p является линейной. Угловой коэффициент этой зависимости

$$K = \mu R(t - t_*) \tag{6}$$

в свою очередь, линейно меняется с температурой и обращается в нуль при абсолютном нуле температур. Таким образом, изучение зависимости K(t) позволяет найти значение t_{st} .

Рассмотрим другой, более точный, способ определения величины t_* . Если для разных температур измерение давления проводить при одних и тех же значениях объема, то полученные данные легко преобразуются в зависимость давления от температуры при разных значениях рабочего объема газа. Теоретический вид этой зависимости получается из уравнения (5):

$$p = \frac{\nu R(t - t_*)}{V_{\Pi}(1 + x(t))} \approx \frac{\nu R(t - t_*)}{V_{\Pi}} \quad , \tag{7}$$

где $x(t) = \frac{V_{\rm X}(t-t_*)}{V_{\rm L}(t_x-t_*)}$. Справедливость приближенного равенства в формуле (7) обусловлена тем, что значения функции x(t) малы, и для малых x можно воспользоваться формулой приближенных вычислений:

$$(1+x)^{\alpha} \approx 1 + \alpha x \tag{8}$$

В данном случаем $\alpha=-1$. При неизменном рабочем объеме $V_{\rm L}$ график зависимости давления от температуры в соответствии с формулой (7) должен быть почти линейным. Причем давление должно обращаться в нуль как раз при $t=t_*$. Из-за малости функции x(t) отклонение от линейности невелико, и при измерении в ограниченном диапазоне температур практически незаметно. Но, если искать значение t_* с помощью линейной аппроксимации экспериментальной зависимости p(t), продолжая (экстраполируя) аппроксимирующую прямую до пересечения с осью t, то найденное приближенное значение \widetilde{t}_* окажется систематически смещенным влево относительно истинного значения t_* (см. Рис. 2). Причина этого в следующем. Величина x(t) в первом приближении линейно растущая функция температуры, с учетом этого график функции p(t) из

Рис. 2: Жирная линия – экстраполяция реальной параболической зависимости, обычная линия – экстраполяция с помощью аппроксимирующей прямой, проведенной по точкам в рабочем диапазоне температур.

уравнения (7) оказывается параболой выпуклой вверх. Аппроксимирующая прямая, параметры которой найдены по точкам в рабочем диапазоне температур, идет практически по касательной к этому графику, «промахиваясь» мимо истинного значения t_* , как изображено на Рис. 1. Однако, можно показать, что разность $\widetilde{t_*}-t_*$ при малом отношении $V_x/V_{\rm ц}$ должна убывать обратно пропорционально объему $V_{\rm ц}$. Поэтому, правильное значение температуры абсолютного нуля

$$t_* = \lim_{1/V_{\mathfrak{U}} \to 0} \widetilde{t_*} \quad , \tag{9}$$

линейным продолжением графика зависимости t_* от $V_{\rm L}$ к значению $V_{\rm L}=0$.

3 Протокол измерений

4 Задание **1**

Для каждой из таблица 1.1-1.5 вычислить давление газа p по формуле

$$p = p_0 + \frac{\Delta p_1 + \Delta p_2}{2} \tag{10}$$

обратное давление 1/p и заполнить пятую и шестую колонки таблиц.

5 Задание 2

По данным таблиц 1.1-1.5 для температур $t_1,t_2...t_5$ построить на одной координатной сетке графики зависимости рабочего объема $V_{\rm L}$ от обратного давления 1/p . Убедится, что зависимость $V_{\rm L}$ от p во всех пяти случаях является прямолинейной.

График 1 приведён в Приложении 1. Зависимости линейные.

6 Задание 3

Перенести значения рабочих температур $t_1, t_2...t_5$ во второй столбец таблицы 2.1. Для каждого из графиков $V_{\rm u}$ от 1/p рассчитать угловой коэффициент K по МНК. Построить теоретическую зависимость K(t). По найденным экспериментальным точкам найти угловой коэффициент K и свободное слагаемое K для зависимости K(t). Рассчитать температуру абсолютного нуля:

$$t_* = -\frac{C}{A} \tag{11}$$

найти погрешности A и C и вычислить погрешность температуры абсолютного нуля:

$$\Delta t_* = t_* \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta C}{C}\right)^2} \tag{12}$$

Таблица 1.1: Зависимость углового коэффициента графика $V_{\rm u}(1/p)$ от температуры газа

1	Τ ,	- I - I
№ п.п.	t, °C,	К, Дж
1	16, 5	8707
2	32, 6	9035
3	44, 1	9308
4	50, 1	9486
5	59, 2	9759

$$A = (24, 4 \pm 1, 3);$$
 $C = (8269 \pm 57);$ $t_* = (-339 \pm 145)^{\circ}C$ (13)

График 2 K(t) приведён в Приложении 1.

7 Задание 4

По данным таблиц 1.1-1.5 заполнить таблицу 2.2. Для каждого из объемов в таблице 2.2 найти значение обратного объема $1/V_{\rm u}$ и рассчитать величину t_* .

Пользуясь таблицей 2.2 для значений объема цилиндра 50, 90, 120 мл на одной координатной сетке построить графики p(t), убедится, что они «идут» прямолинейно. с угловым коэффициентом A' и свободным слагаемым C'. Используя таблицу 2.2 построить зависимость $\widetilde{t}_*(1/V_{\mathrm{II}})$

Таблица 2.2										
<u>Уц</u> , мл	50	60	70	80	90	100	110	120		
t, C	р, кПа									
16,5	160,10	135,75	116,85	103,40	92,25	83,75	76,05	70,00		
32,6	166,05	141,05	122,05	107,60	96,15	86,65	79,20	72,70		
44,1	171,05	144,65	124,70	110,40	99,05	89,05	81,45	74,65		
50,5	172,95	147,15	126,70	112,25	100,45	90,80	82,70	75,95		
59,2	176,05	149,75	129,55	114,40	102,40	92,45	84,65	77,85		
1/ <u>V</u> ц, мл^(-1)	0,0200	0,0167	0,0143	0,0125	0,0111	0,0100	0,0091	0,0083		
t*~, C	-407,861	-395,4283	-385,53635	-384,7579	-369,7046	-388,03108	-363,90092103	-368,0399819		

Зависимости p(t) для 50, 90 и 120 мл приведены в Графике 3 Приложении 1.

$$A' = (3310 \pm 690); \quad C' = (-340.7 \pm 9, 2)$$
 (14)

Зависимость $\widetilde{t_*}(1/V_{\tt L})$ приведена в Графике 4 в Приложении 1.

8 Вывод

В ходе этой лабораторной работы я рассчитал температуру абсолютного нуля двумя способами. Через график $K(t)~(-339\pm145)^{\circ}C$ и через $\widetilde{t_*}(1/V_{\rm IL})~(-340.7\pm9,2)^{\circ}C$. Первое близко к табличному значению с учетом погрешности.