Reflection session

Step 1:

In pairs of rows, take turns discussing with your neighbors what you read and what you found interesting about it.

- 10 minutes

Visual Channels and Data Mapping

Perception and Cognition

→ Magnitude Channels: Ordered Attributes

Position on common scale Most Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

Position (Common Scale)

Position (Un-aligned Scale)

-stacked bars -stacked area -???

Identity

Spatial Region

Hue sucks for magnitude:

Hue sucks for magnitude:

Hue doesn't suck for identity:

*

Discrimination

Mhichis brighter?

Same distance, but easier. Why?

Mhich is longer?

Same distance, but same. Why!?

Mhich is

correlated?

$$r = 0.35$$

just-noticeable differences (jnd)

The smallest difference necessary to perceive two stimuli as being different.

Why were some distances different?

$$\Delta P = k * \Delta I$$

Weber's Law

Perceived diff

$$\Delta P = k * \Delta I$$

Perceived diff

$$\Delta P = k * \Delta I$$

Actual intensity of Stimulus

Perceived diff

Change in Intensity

$$\Delta P = k \star \Delta I$$

Actual intensity of Stimulus

imagine yourself in a dark room...

bright room, high intensity

$$\Delta P = k * \Delta I$$

super bright light needed

$$\Delta P = k * \frac{\Delta I}{I}$$

Estimation

we under-estimate brightness

we are great at length

Eye-Movement

Visual-Search

"Find the Tomato"

"Find the Tomato"

"Find the Tomato"

one O(1)
eye-move!

recap

Discrimination Weber's Law (jnd)
Estimation Stephen's Power Law
Targeting Eye-Movement

Find the Tomato, part 2

Let's add more distractors...

How would a

computer

search?

Pre-attentive processing

hard-wired many-channels

Pre-attentive processing

hard-wired
many-channels
easy to mess up

Feature Integration Theory

Feature maps for orientation & color [Green]

Treisman's feature integration model [Healey 04]

Fully separable

Size + Hue (Color)

Some interference

Width + Height

Some/significant interference

Red + Green

Major interference

Separable vs. Integral

Change Blindness

Attention

Working Memory

Latency

Time Constant	Value (in seconds)
perceptual processing	0.1
immediate response	1
brief tasks	10

Table 6.1. Human response to interaction latency changes dramatically at these time thresholds. After [Card et al. 91, Table 3].

Magnitude Channels: Ordered Attributes

How do we get this?

Magnitude Channels: Ordered Attributes

How do we get this?

Most ▶

Effectiveness

a. Which of the two is larger?

b. What percentage is the smaller of the larger?

(Cleveland & McGill, 1984)

Figure 16. Log absolute error means and 95% confidence intervals for judgment types in position—length experiment (top) and position—angle experiment (bottom).

Cleveland & McGill's Results

What changes can help perception?

What changes can help perception?

What changes can help perception?

