Gruppövning 1 - Grupp A19

Max Hagman, Felix Bjerhem Aronsson February 2, 2022

1. (a) Formeln för en triangels area är $\frac{b \cdot h}{2}$. Utgår man ifrån detta så får man att basen kan representeras av $||\overrightarrow{P_1P_3}||$ (eller $\overrightarrow{P_1P_2}$). Höjden, däremot, går inte att representera direkt utav någon vektorn baserad på punkterna P_1 , P_2 och P_3 . För att få höjden tar man $\overrightarrow{P_1P_2}$ projektion på den linje som har riktningsvektor $\overrightarrow{P_1P_3}$, som blir basen till en triangel med $||\overrightarrow{P_1P_2}||$ som hypotenusa. Enligt Pytagoras sats kan man då få höjden på denna nya triangel genom $\sqrt{||\overrightarrow{P_1P_2}||^2 - (\frac{|\overrightarrow{P_1P_3} \cdot \overrightarrow{P_1P_2}|}{||\overrightarrow{P_1P_3}||})^2}$.

Om man sedan multiplicerar denna höjden, med $\|\overrightarrow{P_1P_3}\|$ så får man formeln för triangelns area enligt följande:

$$\frac{\sqrt{\|\overrightarrow{P_1P_2}\|^2 - (\frac{|\overrightarrow{P_1P_3}.\overrightarrow{P_1P_2}|}{\|\overrightarrow{P_1P_3}\|})^2 \cdot \|\overrightarrow{P_1P_3}\|}}{2} \tag{1}$$

Om vi sedan applicerar denna formel på triangeln med hörnen $P_1=(1,1),\ P_2=(4,2)$ och $P_3=(-1,7),$ så har vi vektorerna:

$$v = P_1 - P_2 = \begin{pmatrix} 5 \\ -5 \end{pmatrix}$$
$$u = P_1 - P_3 = \begin{pmatrix} 2 \\ -6 \end{pmatrix}$$

Om man sedan kan stoppa in i formeln för att få arean:

$$\frac{\sqrt{||\boldsymbol{v}||^2 - (\frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{||\boldsymbol{u}||})^2} \cdot ||\boldsymbol{u}||}{2} = \frac{\sqrt{\sqrt{50}^2 - (\frac{5 \cdot 2 + (-5) \cdot (-6)}{\sqrt{40}})^2} \cdot \sqrt{40}}{2} = 10 \quad (2)$$

(b) Med tre godtyckliga punkter på en linje, P_a , P_b och P_c , kan vi bilda tre st vektorer, \boldsymbol{v} , \boldsymbol{u} och \boldsymbol{w} . Då punkterna ligger på en linje får alla vektorer samma riktning. Alltså är minsta vinkeln, α , blir då 0. Uttrycket i roten ur blir då:

$$||\boldsymbol{v}||^2 - (\frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{||\boldsymbol{u}||})^2 = ||\boldsymbol{v}||^2 - (\frac{||\boldsymbol{u}|| \cdot ||\boldsymbol{v}|| \cos(0)}{||\boldsymbol{u}||})^2 = ||\boldsymbol{v}||^2 - ||\boldsymbol{v}||^2 = 0$$

Detta leder till att vi får: $\frac{\sqrt{0}\cdot\|u\|}{2}=\frac{0}{2}=0$. Alltså är arean av den triangeln som $P_a,\,P_b$ och P_c bildar 0.

2. Då vi har punkterna A, B och C i rummet får vi vektorerna $\boldsymbol{v}=\overrightarrow{AB},$ $\boldsymbol{u}=\overrightarrow{AC}$ och $\boldsymbol{w}=\overrightarrow{BC}.$