DSE 210: Probability and Statistics using Python

Worksheet 6 — Modeling dependence between variables

- 1. Would you expect the following pairs of random variables to be uncorrelated, positively correlated, or negatively correlated?
 - (a) The amount of rainfall on a given day and the amount of rainfall the following day.
 - (b) The number of people at the beach on a given day and the number of people skiing that day.
 - (c) A person's age and social security number.
- 2. Correlation and independence. Random variables X and Y take values in $\{-1,0,1\}$. Their joint distribution is given in the following table:

- (a) Are X and Y independent?
- (b) Compute the correlation coefficient between X and Y.
- 3. Covariance and correlation. Random variable X has mean zero and standard deviation 10. Random variable Y is defined by Y = 2X.
 - (a) What is the covariance between X and Y?
 - (b) What is the correlation coefficient between X and Y?
- 4. Each of the following scenarios describes a joint distribution (x, y). In each case, give the parameters of the (unique) bivariate Gaussian that satisfies these properties.
 - (a) x has mean 2 and standard deviation 1, y has mean 4 and standard deviation 0.5, and the correlation between x and y is -0.5.
 - (b) x has mean 1 and standard deviation 1, and y is equal to x.
- 5. More bivariate Gaussians. Roughly sketch the shapes of the following Gaussians $N(\mu, \Sigma)$. For each, you only need to show a representative contour line which is qualitatively accurate (has approximately the right orientation, for instance).

(a)
$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

(b)
$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}$

6. For each of the two Gaussians in the previous problem, check your answer using Python: draw 100 random samples from that Gaussian and plot them.

6 - 1

- 7. Qualitative appraisal of Gaussian parameters. A bivariate Gaussian has covariance matrix $\begin{pmatrix} p & q \\ q & r \end{pmatrix}$. Give precise characterizations, in terms of p, q, r, of when the following are true.
 - (a) The two variables are negatively correlated.
 - (b) The two variables are uncorrelated.
 - (c) One variable is a linear function of the other.
 - (d) The second variable is a constant (i.e. always takes the same value).