MODULE 2 PERCEPTRON NETWORK

Three important units of Perception Nehroaks are:

- 2) Associatory Unit (0 or 1) Fixed (0,1,-1) 1) Sensory unit (0 or 1)
- 3) Response Unit (0,101-1))-variable

Perceptson Learning Rule

Consider a finite n no of 1/p training vectors with their associated target values as x(n) and t(n) where n ranges from 1 to N. The target is either + to or -1. Op y is obtained on the basis of net 1/p calculated of activation in bring applied over net ip.

$$y = f(yin) = \begin{cases} 0 & -0 > \le y_n \le 0 \\ -1 & y_n < -0 \end{cases}$$

weight updation

if y \ t

then when wold + \ \times t_{\times}

else when = wold

a = learning ratage

bnew = bold + ost n

PERCEPTRON TRAINING ALGORITHM [for sungle ofpilass]

Percepteon algorithm can be used for either biracy/bipolar input vectors, having bipolar targets throshold being fixed of variable bias

Step 0: Initialize the weight of bias. Usually it is set to 0. Also initialize learning rate as $(0<\infty \le 1)$ for simplicity it is set to 1.

Step 1: Perform steps 2 to 6 until final stopping condition is false.

Step 2: Perform steps 3 to 5 for each training pour s:t. s=1/p &t=0/p.

Step 3: The 1/p layer condaining input unit is applied with identity activation for i.e. $x_i = s_i$

Step 4. Calculate the opp of the network.
To calculate the opp first obtain net yp.

$$y_{in} = \sum_{i=1}^{n} x_i w_i + b_{ias}$$

There apply adivation for over net 1/p 4 calculate the op.

i.e
$$y = f(y_{in}) = \begin{cases} 1 & y_{in} > 0 \\ 0 & -0 \le y_{in} \le 0 \end{cases}$$

$$\begin{cases} -1 & y_{n} < -0 \end{cases}$$

Step 5: Weight 4 bias adjustment:

compase the value of the adial opp(calculated)

and target @ (desired)

if y #t then

Winew = Wiold + &tx; Winew-Widd=&tx; = DWi

bias new = bold toot

Dbx = dt

else: Int tuggi un stations

Winew = Wiold

Step 6: Train the network until there is no weight change. This is the stopping condition for the network. If this condition is not not not, Start again from Step 2

pleafile = block = anded

PERCEPTRON TESTING ALGORITHM

Step 0: The initial weights to be used here are taken from training algorithm (The final weights obtained during training)

Step 1: For each input vector is, perform steps 2 to 3.

Step 2: Set Activation of the yn unit

Step 3: Obtain response of op unit.

$$y_{in} = b + \sum_{i=1}^{n} x_i \omega_i$$

$$y = f(yin) = \begin{cases} 1 & yin > 0 \\ 0 & -0 \le yin \le 0 \end{cases}$$

$$-1 & yin < 0$$

Q1. Implement AND functions using perception network for bipitals pre targets. Assume the o is o.

Enoch	v1							_ (
\propto_1	\mathfrak{X}_2	at	yin	y	DWI	DW2	∆b ×t	Wi	W2	bo
1	1	1	0	0	1	I	1	1	1	
mi	-1	-1	101	= 11	-1	-	1-1-	Ò	2	0
-1	(+)	-1	2	1	1 -	-1	-1	11	1	-1
-1	1-1	-1	-3	-1	0	0	-0		1	1-1

En	och	2
\cup 1'	· · ·	_

4						-	1		-	Same and distances.
21	1 2/2	t	y'n	y	DW1 Ltx1	AW2 otxi	Ab ≥t	WI	Wz	b
	1 1 - 1 T	1	1	1	0	0	0	1		-1
1	-1	-1	-1	-1	0	0	0	10	100	29
}-1	1	-1	-1	-1	O	0	0	1		-1
1-1	-1	-1	-3	-1	0,	0	0		. 1	-D

AKLAN

$$\begin{aligned}
y &= 1 \\
y &= 1 \\
y &= -1 \\
y &= -1
\end{aligned}$$

$$\begin{aligned}
y &= -1 \\
y &= -1
\end{aligned}$$

$$\begin{aligned}
y &= -1 \\
y &= -1
\end{aligned}$$

$$\begin{aligned}
y &= -1 \\
y &= -1
\end{aligned}$$

$$\begin{aligned}
y &= -1
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
y &= -1
\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

When all the 4 Yp patterns are prisented then I Epoch is completedi

Testing.

$$\omega_1 = 1$$
 $\omega_2 = 1$ $b = -1$
 $y_{in_1} = 1 \times 1 + 1 \times 1 + -1 = 1$
 $y_{in_2} = 1 \times 1 + 1 \times 1 + -1 = -1$
 $y_{in_3} = -1 \times 1 + 1 \times 1 - 1 = -1$
 $y_{in_3} = -1 \times 1 + 1 \times 1 - 1 = -1$
 $y_{in_4} = -1 \times 1 + -1 \times 1 - 1 = -3$
 $y_{in_4} = -1 \times 1 + -1 \times 1 - 1 = -3$

On Implement or for with binary 1/p of bipoles target using perceptron training also ithm upto 3 epochs. Assume value of 10 as 0.2.

1	V 100	1	A.F. B	20		Ut i		+	MI SEEL!	
χ_1	χ_{2}	t	yin	y	DWI	AW2 at12	Δb	Wi	W ₂	bo
6 1 /6	4	UI D	0	0	AP1 (12) 3	120	J.J.	11,	1	,
1	0	1	2	1	0	0	0	1	1	1.00
0	1 1	1.	2	1	0	0	0	1	1	1
0	0	<u>-</u>		14	.0	b	-1	-1	121	0
1	1	1	2		0	0	0		11	0
1	0	1	l	i	0	0	0	14	11	0
0	\ \	1	1	i	0	0	0	1		0
0	0	-1	0	0	0	0	-1	ı	1-1	-1
1	1	1	2	1	0	0	0		1	-1
al.	Ó	id !	ó	0		O		2	-17	0
0		1	BI	1	0	0	0	.,2	l mil	
0	0	-1	0	0	0	0	Ø-1	2		-1)

$$y = f(y_{in}) = \begin{cases} 1 & y_{in} > 0.2 \\ 0 & -0.2 \le y_{in} \le 0.2 \end{cases}$$

$$y_{in} = 0$$

$$y_{in} = 0$$

$$y_{in} = 0$$

$$y_{in} = 0 + 0$$

$$y_{in 3} = 0 \times 1 + 1 \times 1 + 1 = 2$$
 $y_{in 3} = 0 \times 1 + 1 \times 1 + 1 = 2$
 $y_{in 4} = 0 + 0 + 1 = 1$
 $y_{in 5} = 1 \times 1 + 1 \times 1 + 0 = 2$
 $y_{in 5} = 1 \times 1 + 1 \times 1 + 0 = 2$

$$\begin{array}{ll}
\langle -0.2 & y_{in} = \omega_1 \eta_1 + \omega_2 \eta_2 + b \\
y_{in} = 1 \times 1 + 0 + 0 = 1 \\
y_{in} = 0 + 1 + 0 = 1 \\
y_{in} = 0 + 0 + 0 \\
y_{in} = 1 \times 1 + 1 \times 1 + -1 = 2 \\
y_{in} = 1 \times 1 + 0 - 1 = 0 \\
y_{in} = 0 \times 2 + 1 \times 1 + 0 = 3
\end{array}$$

yin12=0+0+0=0

Scanned by CamScanner

Find the weight required to perform the Jollowing classification using perception network. The vectors (1,1,1,1) & (-1,1,-1,-1) are belonging to the class so have target value 1. Vectors (1,1,1,-1) & (1,-1,-1,1) are not belonging to the class so have target value -1. Assume learning rate is 1. & 0 = 0.2

1					7 8	1		110		1		أدو		
	X	χ_2	χ_3	χ_{4}	t	DW,	DW2	DW3	Δωμ	y	ym	1/2	Wz L	,
	- [11	1	ol	1	1		4		- 1		1		
	-1	11	 -	<u>-1</u>	b		3			1				
		11		0-1;	\neg			1						
	 *	-1	-1	1-1	70			0	1 -	ć			3	
	1 -				ĮQ.	C		1 8	(1		

	1				1							
	Yin	y in	DW,	DW2 Ltn2	Dwg	1		Wil	W2	ω ₃	Wy	b
			ωι λι	arr ₂	&ta₃	xtxy	æt			00		
	0,0	0	1-6			1111	1:	11	1	1	1	1
	-1	-1	-1	1	-1	1-1	1	0	2	0	0	2
1 = 30	4	1	-1	= 100 =	-1	ì	-1	-1	1 1	1	11-	 +1
44.000	. .	1		2 00	17.	1-1	-1	-2	2	0	0	0
1 1 1 1 1 1 1	-	4 0		1	1	1	1	-1	3	1	1	li.
446	3	1	d	0	O	0	0	-02	6 3	61	l@,	12
	3	1	1 1 = 8 m	1-1-2			<u>_</u>	-2	2	0	2	0
$\mathcal{L} = \mathcal{L}$	-2	x - 1 1	0	0	0	0	0	-2	2	0	2	0
	2		0	0	0	0	0	-2	2	0	2	0
	2	This	0	0	0	0	0	-2	2	0	2	0
2 4 .	-2	-1	0	0	0	0	6	-2	2	0	2	
	-2	-1	0	0	0	0	0	-2	2	0	2	0
	-2 2 2 2		7 0 0 0 0	0 0 0	0 0	0 0 0	0 0 0	-2 -2 -2 -2	2 2 2 2 2	0 0 0	2 2 2 2	

$$y = f(y_{in}) = \begin{cases} 1 & y_{in} < 0.2 \\ 0 & -0.2 \leq y_{in} \leq 0.2 \end{cases}$$

$$y_{in} = y_{in} = y_{in} < 0.2$$

$$y_{in} = 0$$

$$y_{in} =$$

4=-1

Classify 2-D 1/p pattern shown in the fix using Perception 1/w. The symbol + indicate data to be 1 4 · → -1. The patterns of E are I, F. For pattern I, target is +1 of for F target is -1.

*	*	¥ 73
44	*	X
* 73	*	χ ₃ ¥
1	Т	

*	*	*
*	*	¥
*	Kinga	. A
	F	

d	=	1
0	2	٥

										į.		
	1	X₂	73	Яq	×5	χ <u>-</u> g	スマ	χδ	χq	yin	yo	Ł
I)	1	1	-1	1 - 1	- 4	36.	. 19	1			1
F	1		l	1	1 h	1		-1	-1			-1