Assignment 04, Question 3&4

Jeff Nguyen

March 26, 2021

University of Southern California Marshall School of Business FBE 543 Forecasting and Risk Analysis

Student Name: Ngoc Son (Jeff) Nguyen

Question 3

a.

$$Y_t = 2.5 + .35Y_{t-1} + \epsilon_t \tag{1}$$

- ARIMA model: ARIMA(1,0,0).
- Stationarity: Stationary as $\sum_{i=1}^{n} |\alpha_i| = .35 < 1$.
- Invertibility: N/A.

b.

$$Y_t = 4.5 - 1.5Y_{t-1} + \epsilon_t - .5\epsilon_{t-1} \tag{2}$$

- ARIMA model: ARIMA(1,0,1).
- Stationarity: Non-Stationary as $\sum_{i=1}^{n} |\alpha_i| = |1.5| > 1$.
- Invertibility: Invertible as $\sum_{i=1}^{n} \beta_i | = .5 < 1$.

c.

$$Y_t = 1.2 - .75Y_{t-1} + .3Y_{t-2} + \epsilon_t \tag{3}$$

- ARIMA model: ARIMA(2,0,0).
- Stationarity: Non-Stationary as $\sum_{i=1}^{n} |\alpha_i| = |-.75| + |.3| = 1.05 > 1$.
- Invertibility: N/A.

d.

$$Y_t = 2.5 - .95Y_{t-1} + \epsilon_t - .5\epsilon_{t-1} - .2\epsilon_t - 2 \tag{4}$$

- ARIMA model: ARIMA(1,0,2).
- Stationarity: Stationary as $\sum_{i=1}^{n} |\alpha_i| = 0.95 < 1$.
- Invertibility: Invertible as $\sum_{i=1}^{n} |\beta_i| = |-.5| + |-.2| = 0.7 < 1$.

e.

$$Y_t = .52 - 1.2Y_{t-1} + \epsilon_t + .2\epsilon_{t-1} \tag{5}$$

- ARIMA model: ARIMA(1,0,1).
- Stationarity: Non-Stationary as $\sum_{i=1}^{n} |\alpha_i| = 1.2 > 1$.
- Invertibility: Invertible as $\sum_{i=1}^{n} |\beta_i| = |.2| = 0.2 < 1$.

f.

$$DY_t = 1.2DY_{t-1} + \epsilon_t \tag{6}$$

- ARIMA model: ARIMA(1,1,0).
- Stationarity: Non-Stationary as $\sum_{i=1}^{n} |\alpha_i| = 1.2 > 1$.
- Invertibility: N/A.

 $\mathbf{g}.$

$$DY_t = .42DY_{t-1} + \epsilon_t - .6\epsilon_{t-1} \tag{7}$$

- ARIMA model: ARIMA(1,1,1).
- Stationarity: Stationary as $\sum_{i=1}^{n} |\alpha_i| = 0.42 < 1$.
- Invertibility: Invertible as $\sum_{i=1}^{n} |\beta_i| = |-.6| = 0.6 < 1$.

h.

$$DY_t = .62Y_{t-1} + \epsilon_t - .6\epsilon_{t-1} \tag{8}$$

- ARIMA model: Incorrect model as LHS and RHS does not have similar order difference term.
- Stationarity: N/A.
- Invertibility: N/A.

i.

$$Y_t = 2.5 + .95DY_{t-1} + \epsilon_t \tag{9}$$

- ARIMA model: Incorrect model as LHS and RHS does not have similar order difference term.
- Stationarity: N/A.
- Invertibility: N/A.

j.

$$Y_t = 1.6 + \epsilon_t - .6\epsilon_{t-1} \tag{10}$$

- ARIMA model: ARIMA(0,0,1).
- Stationarity: Stationary as $\sum_{i=1}^{n} |\beta_i| = |-.6| = 0.6 < 1$.
- Invertibility: Invertible as $\sum_{i=1}^{n} |\beta_i| = |-.6| = 0.6 < 1$.

Question 4

a. Do a three-period ahead forecasting using the given initial values and statistics. Write 95% confidence interval for each forecast.

a)

$$Y_t = 1.6 + .75Y_{t-1} + \epsilon_t$$
 given:
 $y_0 = 2$ (11)
 $\sigma^2 = 1.21$

```
y_0 <- 2
sigmaSq <- 1.21
alpha_0 <- 1.6
alpha_1 <- .75

f <- function(y_t) {alpha_0 + alpha_1*y_t}
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)</pre>
```

Forecast Variable	Forecasted Value	d 95% Confidence Interval Equation	95% Confidence Interval
$\overline{Y_1^F} = 1.6 + .75Y_0$	3.1	$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[0.944, 5.256]
$Y_2^F =$	3.925	$Y_{t+2}^F \pm 1.96\sqrt{\sigma^2(1+\alpha^2)}$	[1.23, 6.62]
$1.6 + .75Y_1$ $Y_3^F =$	4.54375	$Y_{t+3}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_1^4)}$	[1.5884518,7.4990482]
$1.6 + .75Y_2$			

b)

$$Y_t = 2.5 + .3Y_{t-1} + \epsilon_t$$
 given: $y_0 = 10$ $\sigma^2 = 6.25$ (12)

```
y_0 <- 10
sigmaSq <- 6.25
alpha_0 <- 2.5
alpha_1 <- .3

f <- function(y_t) {alpha_0 + alpha_1*y_t}
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)</pre>
```

Forecast Variable	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$\overline{Y_1^F} = 2.5 + .3Y_0$	5.5	$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[0.6, 10.4]
$Y_2^F =$	4.15	$Y_{t+2}^F \pm 1.96 \sqrt{\sigma^2 (1 + \alpha^2)}$	[-1.975,9.2657502]
$2.5 + .3Y_1$ $Y_3^F =$ $2.5 + .3Y_2$	3.745	$Y_{t+3}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_1^4)}$	[-1.3897231,8.8797231]

c)

$$Y_t = 1.2 - .2Y_{t-1} + \epsilon_t$$
 given:
$$y_0 = 1.5$$

$$\sigma^2 = .49$$

$$(13)$$

```
y_0 <- 1.5
sigmaSq <- .49
alpha_0 <- 1.2
alpha_1 <- .2

f <- function(y_t) {alpha_0 - alpha_1*y_t}
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)</pre>
```

Forecast Variable	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_1^F =$	0.9	$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[-0.472, 2.272]
$ 1.22Y_0 Y_2^F = 1.22Y_1 $	1.02	$Y_{t+2}^F \pm 1.96\sqrt{\sigma^2(1+\alpha^2)}$	[-0.379171,2.419171]

Forecast Variable	Forecasted Value	l 95% Confidence Interval Equation	95% Confidence Interval
$ \overline{Y_3^F} = 1.22Y_2 $	0.996	$Y_{t+3}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_1^4)}$	[-0.4042468,2.3962468]

d)

$$Y_t = 2.5 - .8Y_{t-1} + \epsilon_t$$
 given:
$$y_0 = 6$$

$$\sigma^2 = 3.69$$

$$(14)$$

```
y_0 <- 6
sigmaSq <- 3.69
alpha_0 <- 2.5
alpha_1 <- .8

f <- function(y_t) {alpha_0 - alpha_1*y_t}
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)</pre>
```

Forecast Variable	Forecasted Value	d 95% Confidence Interval Equation	95% Confidence Interval
$\overline{Y_1^F} =$	-2.3	$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[-6.0650371, 1.4650371]
$2.58Y_0$ $Y_2^F =$	4.34	$Y_{t+2}^F \pm 1.96 \sqrt{\sigma^2 (1 + \alpha^2)}$	[-0.4816,9.1616]
$ 2.58Y_1 Y_3^F = 2.58Y_2 $	-0.972	$Y_{t+3}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_1^4)}$	[-6.3621867,4.4181867]

e)

$$Y_t = -.5Y_{t-1} + \epsilon_t$$
 given:
$$y_0 = -1.6$$

$$\sigma^2 = 1.44$$

$$(15)$$

```
y_0 <- -1.6
sigmaSq <- 1.44
alpha_0 <- 0
alpha_1 <- -.5

f <- function(y_t) {alpha_0 + alpha_1*y_t}
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)</pre>
```

$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[-1.552, 3.152]
$Y_{t+2}^F \pm 1.96\sqrt{\sigma^2(1+\alpha^2)}$	[-3.0296159,2.2296159]
$Y_{t+3}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_1^4)}$	[-2.4945545,2.8945545]
Y	$\frac{1}{t+2} \pm 1.96\sqrt{\sigma^2(1+\alpha^2)}$

Do a long-run (unconditional) forecasting and write 95% confidence interval.

a)

$$Y_t = 1.6 + .75Y_{t-1} + \epsilon_t$$
 given:
$$y_0 = 2$$

$$\sigma^2 = 1.21$$
 (16)

```
alpha_0 <- 1.6
alpha_1 <- .75
y_0 <- 2
sigmaSq <- 1.21

yLR <- alpha_0 / (1 - alpha_1)
sigmaSq_yLR <- sigmaSq / (1 - alpha_1^2)
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)</pre>
```

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{1.6}{0.75}$	6.4	$Y_{LR} \pm 1.96\sqrt{\frac{\sigma^2}{1-\alpha_1^2}}$	[3.1404344, 9.6595656]

b)

$$Y_t = 2.5 + .3Y_{t-1} + \epsilon_t$$
 given: $y_0 = 10$ $\sigma^2 = 6.25$ (17)

```
alpha_0 <- 2.5
alpha_1 <- .3
y_0 <- 10
sigmaSq <- 6.25

yLR <- alpha_0 / (1 - alpha_1)
sigmaSq_yLR <- sigmaSq / (1 - alpha_1^2)</pre>
```

```
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)
```

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{2.5}{0.3}$	3.5714286	$Y_{LR} \pm 1.96\sqrt{\frac{\sigma^2}{1-\alpha_1^2}}$	[-1.5651671, 8.7080243]

c)

$$Y_t = 1.2 - .2Y_{t-1} + \epsilon_t$$
 given: (18) $y_0 = 1.5$ $\sigma^2 = .49$

```
alpha_0 <- 1.2
alpha_1 <- -.2
y_0 <- 1.5
sigmaSq <- .49

yLR <- alpha_0 / (1 - alpha_1)
sigmaSq_yLR <- sigmaSq / (1 - alpha_1^2)
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)</pre>
```

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{1.2}{-0.2}$	1	$Y_{LR} \pm 1.96\sqrt{\frac{\sigma^2}{1-\alpha_1^2}}$	[-0.4002916, 2.4002916]

d)

$$Y_t = 2.5 - .8Y_{t-1} + \epsilon_t$$
 given: (19) $\sigma^2 = 3.69$

```
alpha_0 <- 2.5
alpha_1 <- -.8
y_0 <- 6
sigmaSq <- 3.69

yLR <- alpha_0 / (1 - alpha_1)
sigmaSq_yLR <- sigmaSq / (1 - alpha_1^2)
y_1 <- f(y_0)</pre>
```

$y_2 \leftarrow f(y_1)$		
y_2		
0		
$y_3 \leftarrow f(y_2)$		
J_0 - \J/		

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{2.5}{-0.8}$	1.3888889	$Y_{LR} \pm 1.96\sqrt{\frac{\sigma^2}{1-\alpha_1^2}}$	[-4.8861729, 7.6639506]

e)

$$Y_t = -.5Y_{t-1} + \epsilon_t$$
 given:
$$y_0 = -1.6$$

$$\sigma^2 = 1.44$$
 (20)

```
alpha_0 <- 0
alpha_1 <- -.5
y_0 <- -1.6
sigmaSq <- 1.44

yLR <- alpha_0 / (1 - alpha_1)
sigmaSq_yLR <- sigmaSq / (1 - alpha_1^2)
y_1 <- f(y_0)
y_2 <- f(y_1)
y_3 <- f(y_2)</pre>
```

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{0}{-0.5}$	0	$Y_{LR} \pm 1.96\sqrt{\frac{\sigma^2}{1-\alpha_1^2}}$	[-2.7158557, 2.7158557]