MATH 1350,

Exercise Set 8 - Solutions

- 1. (a) How are linear transformations and matrices related?
 - (b) How can we associate a matrix to a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$?
 - (c) How can computations with T on vectors in \mathbb{R}^n be accomplished with the matrix representation of T?

solution:

- (a) Every linear transformation between finite dimensional vector spaces can be represented with a matrix. Conversely, every matrix defines a linear transformation between finite dimensional vector spaces.
- (b) To construct a matrix representation of a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ we begin by choosing a basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ for the domain (here \mathbb{R}^n) and a basis $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ for the codomain (here \mathbb{R}^m). We apply T to each basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ and write the result as a linear combination of $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m$: e.g.

$$T(\mathbf{v}_{1}) = C_{1,1}\mathbf{w}_{1} + C_{2,1}\mathbf{w}_{2} + \dots + C_{m,1}\mathbf{w}_{m}$$

$$T(\mathbf{v}_{2}) = C_{1,2}\mathbf{w}_{1} + C_{2,2}\mathbf{w}_{2} + \dots + C_{m,2}\mathbf{w}_{m}$$

$$\vdots$$

$$T(\mathbf{v}_{n}) = C_{1,n}\mathbf{w}_{1} + C_{2,n}\mathbf{w}_{2} + \dots + C_{m,n}\mathbf{w}_{m}$$

The matrix representation for T with respect to these two bases is matrix whose entries in column i are the coefficients used in the linear combination of $T(\mathbf{v}_i)$ in terms of $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$: e.g. the matrix in this case is

$$\begin{pmatrix} C_{1,1} & C_{1,2} & \dots & C_{1,n} \\ C_{2,1} & C_{2,2} & \dots & C_{2,n} \\ \vdots & \vdots & & \vdots \\ C_{m,1} & C_{m,2} & \dots & C_{m,n} \end{pmatrix}$$

The standard matrix for T is when we choose $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ to be the standard bases for \mathbb{R}^n and \mathbb{R}^n respectively.

(c) If A is the standard matrix for the linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ then $T(\mathbf{v}) = A\mathbf{v}$ for any $\mathbf{v} \in \mathbb{R}^n$, where $A\mathbf{v}$ is matrix multiplication. (Note that A is an $m \times n$ matrix in this case, and \mathbb{R}^n is the set of $n \times 1$ matrices.)

2. Find the standard matrix for each of the following linear transformations.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 given by $T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+3b \\ a-b \end{pmatrix}$.

(b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 given by $T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ a \end{pmatrix}$.

(c)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 given by $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$.

(d)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2a+3b \\ 4b+5c \end{pmatrix}$.

(e)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a + b + c$.

(f)
$$T: \mathbb{R} \to \mathbb{R}^2$$
 given by $T(a) = \begin{pmatrix} a \\ 3a \end{pmatrix}$.

(g)
$$T: \mathbb{R}^4 \to \mathbb{R}^2$$
 given by $T \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a+b \\ c+d \end{pmatrix}$.

solution:

(a) Apply T to the standard basis vectors for \mathbb{R}^2 (domain) and express these in terms of the standard basis for \mathbb{R}^2 (codomain):

$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (-1) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

The coefficients of each linear combination form the columns of the standard matrix:

$$\begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$$
.

Note: This process may seem a little overly complicated when finding the standard matrix; with practice you can often "see" what the standard matrix is without going through the motions of applying T to the standard basis vectors, then expressing the result as a linear combination. However, for non-standard matrix representations (something you will see in a later linear algebra course) it will not be easy to see by inspection. So it will be important to know precisely how a matrix representation is defined.

For some of the questions below we will simply give the standard matrix, without going through the steps.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(c) Apply T to the standard basis vectors for \mathbb{R}^3 (domain) and express these in terms of the standard basis for \mathbb{R}^3 (codomain):

$$T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

The standard matrix for T is,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(d) Apply T to the standard basis vectors for \mathbb{R}^3 (domain) and express these in terms of the standard basis for \mathbb{R}^2 (codomain):

$$T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 4 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

The standard matrix for T is,

$$\begin{pmatrix} 2 & 3 & 0 \\ 0 & 4 & 5 \end{pmatrix}.$$

(e)

 $(1 \quad 1 \quad 1)$

(f)

 $\binom{1}{3}$

(g)

 $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

3. A linear map T has standard matrix

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \end{pmatrix}.$$

- (a) What are the domain and codomain of T (assuming these are vectors spaces of type \mathbb{R}^n)?
- (b) Find a rule for T which describes its output (or image) vector in terms of the entries of an arbitrary input vector from its domain.

solution:

- (a) The domain is \mathbb{R}^3 and the codomain is \mathbb{R}^2 .
- (b) By the definition of the standard matrix, from the columns we see that

$$T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$T\begin{pmatrix}0\\0\\1\end{pmatrix} = 0 \cdot \begin{pmatrix}1\\0\end{pmatrix} + 1 \cdot \begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}0\\1\end{pmatrix}$$

Thus

$$T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = a \cdot T\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \cdot T\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \cdot T\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = a \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} + c \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a+2b \\ 3b+c \end{pmatrix}.$$

4. A linear map T has standard matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

- (a) What are the domain and codomain of T (assuming these are vectors spaces of type \mathbb{R}^n)?
- (b) Find the image under T of each of the standard basis vectors (i.e. find T applied to each of the standard basis vectors).

(c) Find
$$T \begin{pmatrix} 5 \\ -3 \\ 4 \\ 2 \end{pmatrix}$$
.

(d) Find a rule for T which describes its output (or image) vector in terms of the entries of an arbitrary input vector from its domain.

(c)

solution:

(a) The domain is \mathbb{R}^4 and the codomain is \mathbb{R}^3 .

(b) By the definition of the standard matrix, from the columns we see that

$$T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$T \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$T \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$T \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$T \begin{pmatrix} 5 \\ -3 \\ 4 \\ 2 \end{pmatrix} = 5 \cdot T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (-3) \cdot T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 4 \cdot T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 2 \cdot T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= 5 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (-3) \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + 4 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix}.$$
(d)
$$T \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = a \cdot T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \cdot T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + c \cdot T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + d \cdot T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= a \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + d \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a+b \\ b+c \\ c+d \end{pmatrix}.$$

5. Find the standard matrix for each linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ and use it to compute $T(\mathbf{v})$.

(a) Let
$$T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-b \\ c-2a \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$.

(b) Let
$$T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b+c \\ a-2c \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

(c) Let
$$T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3b \\ 2a - 5b \\ a \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$.

solution:

(a) Standard matrix: $\begin{pmatrix} 1 & -1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$.

$$T(\mathbf{v}) = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

(b) Standard matrix: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -2 \end{pmatrix}$.

$$T(\mathbf{v}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$

(c) Standard matrix: $\begin{pmatrix} 0 & 3 \\ 2 & -5 \\ 1 & 0 \end{pmatrix}$.

$$T(\mathbf{v}) = \begin{pmatrix} 0 & 3\\ 2 & -5\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2\\ 7 \end{pmatrix} = \begin{pmatrix} 21\\ -31\\ 2 \end{pmatrix}$$

6. For each pair of linear maps, S and T, find the standard matrices for S, T, and where possible, $S \circ T$ and $T \circ S$.

(a)
$$S: \mathbb{R}^2 \to \mathbb{R}^3$$
 with $S \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \\ a+3b \end{pmatrix}$ and $T: \mathbb{R}^3 \to \mathbb{R}^2$ with $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a+b \\ a-c \end{pmatrix}$.

(b)
$$S: \mathbb{R}^4 \to \mathbb{R}^2$$
 with $S \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a+3b+2c \\ c-2d \end{pmatrix}$ and $T: \mathbb{R}^2 \to \mathbb{R}^3$ with $T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ -a \\ 2b \end{pmatrix}$.

(c)
$$S: \mathbb{R}^2 \to \mathbb{R}^2$$
 with $S \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a+b \\ a-3b \end{pmatrix}$ and $T: \mathbb{R}^2 \to \mathbb{R}^2$ with $T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a-b \\ a+b \end{pmatrix}$.

solution:

- (a) Standard matrix for S: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 3 \end{pmatrix}$.

 Standard matrix for T: $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$.

 Standard matrix for $S \circ T$: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 4 & 1 & -3 \end{pmatrix}$.

 Standard matrix for $T \circ S$: $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -3 \end{pmatrix}$.
- (b) Standard matrix for S: $\begin{pmatrix} 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & -2 \end{pmatrix}$. Standard matrix for T: $\begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 2 \end{pmatrix}$. $S \circ T$ is undefined.

Standard matrix for
$$T \circ S$$
: $\begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 0 \\ -1 & -3 & -2 & 0 \\ 0 & 0 & 2 & -4 \end{pmatrix}$.

(c) Standard matrix for S: $\begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$.

Standard matrix for T: $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

Standard matrix for $S \circ T$: $\begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -2 & -4 \end{pmatrix}$.

Standard matrix for $T \circ S$: $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & -2 \end{pmatrix}$.

7. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with

$$T \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $T \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix}$.

Find the standard matrix for T.

solution:

To find the standard matrix for T we need to know how T maps the standard basis vectors. To find this we first express the standard basis vectors in terms of the vectors $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$

where the action of T is known. Thus we solve the systems

$$x_1 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + y_1 \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

and

$$x_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + y_2 \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

for x_1, y_1, x_2 and y_2 . We can solve these simultaneously with the following augmented matrix.

$$\begin{pmatrix}
2 & 3 & | 1 & | 0 \\
3 & -1 & | 0 & | 1
\end{pmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{pmatrix}
1 & 3/2 & | 1/2 & | 0 \\
3 & -1 & | 0 & | 1
\end{pmatrix} \xrightarrow{R_2 - 3R_1} \begin{pmatrix}
1 & 3/2 & | 1/2 & | 0 \\
0 & -11/2 & | -3/2 & | 1
\end{pmatrix}$$

$$\xrightarrow{-\frac{2}{11}R_2} \begin{pmatrix}
1 & 3/2 & | 1/2 & | 0 \\
0 & 1 & | 3/11 & | -2/11
\end{pmatrix} \xrightarrow{R_2 - \frac{3}{2}R_2} \begin{pmatrix}
1 & 0 & | 1/11 & | 3/11 \\
0 & 1 & | 3/11 & | -2/11
\end{pmatrix}$$

This yields

$$\frac{1}{11} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \frac{3}{11} \cdot \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

and

$$\frac{3}{11} \cdot \binom{2}{3} + \left(-\frac{2}{11}\right) \cdot \binom{3}{-1} = \binom{0}{1}.$$

Using this we have

$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{11} \cdot T \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \frac{3}{11} \cdot T \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \frac{1}{11} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{3}{11} \cdot \begin{pmatrix} 8 \\ 8 \end{pmatrix} = \begin{pmatrix} 25/11 \\ 7/11 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{3}{11} \cdot T \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \frac{-2}{11} \cdot T \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \frac{3}{11} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \frac{2}{11} \cdot \begin{pmatrix} 8 \\ 8 \end{pmatrix} = \begin{pmatrix} -13/11 \\ -19/11 \end{pmatrix}$$

It follows that the standard matrix for T is

$$\begin{pmatrix} 25/11 & -13/11 \\ 7/11 & -19/11 \end{pmatrix}.$$

8. Consider the maps,

$$T_1 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$$
 and $T_2 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$.

- (a) Find the standard matrix for the map $(T_1 + T_2)$.
- (b) Find the standard matrix for the map $(5T_1)$.
- (c) Find the standard matrices for the maps $(T_2 \circ T_1)$ and $(T_1 \circ T_2)$.

solution:

(a) Standard matrix for T_1 : $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Standard matrix for T_2 : $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Standard matrix for $T_1 + T_2$: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

- (b) Standard matrix for $5T_1$: $5 \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & -5 \end{pmatrix}$
- (c) Standard matrix for $T_1 \circ T_2$: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Standard matrix for $T_2 \circ T_1$: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$