$$+\frac{1}{11}$$
 $+^3 = 64$

2 i)
$$y = (x-2)^2$$

4)
$$2x-7x^{2}+3=0$$
 $y=x^{2}$ so $y^{2}=x^{2}$

$$-12y^2 - 7y + 3 = 0$$

$$(2y-1)(y-3)=0$$

$$2y-1=0$$
 or $y-3=0/$
 $y=1/2$ $y=3$

$$(\sqrt{2})^2 = 2c \quad \text{or} \quad 3^2 = 2c$$

$$\sqrt{4} = 2c \quad 9 = 2c$$

5)
$$y = 8\sqrt{x} + x$$

$$y = 8x^{2} + x$$

$$dy = 4x^{2} + 1 = 4\left(\frac{1}{\sqrt{x}}\right) + 1$$

$$= \frac{7}{3}$$

6)
$$(x-5)(x+2)(x+5)$$

 $(x-5)(x^2+7x+10)$
 $x^3+7x^2+10x-5x^2-35x-50$
 $x^3+2x^2-25x-50$

(+2)

$$(ii)$$
 $y^2 + 2y > 0$

$$(x) y=x^3-kx^2+x-3$$

i)
$$dy = 3x^2 - 2kx + 1$$

$$3(1)^{2}-2(1)+1$$

$$3-2(1)+1=0$$

$$4-2(1)=0$$

$$1=2$$

$$\frac{1}{1}$$
 $\frac{d^2y}{dx^2} = 6x - 2k = 6x - 4 = 2$
= $6x - 4 = 2$

8iv)
$$\frac{3x^{2}-4x+1}{3x^{2}-4x+1}=0$$

$$\frac{3x^{2}-4x+1}{3x-1}=0$$

$$\frac{3x-1}{3x-1}=0$$

$$\frac{3x-1}{3x-1}=0$$

a) i)
$$(x-2)^2 + (y-1)^2 = 10^2$$
 $x^2 + 4x + 4 + y^2 - 2y + 1 = 100$
 $x^1 - 4x + y^2 - 2y + 5 = 100$
 $x^2 - 4x + y^2 - 2y = 95$
 $x^2 - 4x + y^2 - 2y - 95 = 0$

11)
$$(5,k)$$
 K>6
 $6^2 - 4(5) + y^2 - 2y - 95 = 0$
 $25 - 20 + y^2 - 2y - 95 = 0$
 $y^2 - 2y - 90 = 0$
 $+2 \pm \sqrt{4 + 4 \cdot 90} = +2 \pm \sqrt{364}$
 $= 2 \pm \sqrt{4 \cdot 364}$
would have been $= 2 \pm \sqrt{4 \cdot 364}$
easier to use \pm equation $= 2 \pm 2\sqrt{6}1$

ニノニンタノ

9.111) centre (2.1) pout (3.4).

Distance between pourts =
$$\sqrt{5^2 + 8^2}$$
= $\sqrt{25 + 64}$

in) Tangent at (8,9)

Gradient of normal through (2,1) (8,4)

$$\begin{array}{l}
-4y = 4 \\
-4y = 4 \\
4 - 4
\end{array}$$

$$\begin{array}{l}
y-y_1 = m(x-x_1) \\
y-9 = -\frac{3}{4}(x-8) \\
y=-\frac{3}{4}x+6+9
\end{array}$$

$$y = -\frac{3}{4}x+15$$

10) i)
$$2x^2-6x+11$$

$$2(x^2-3x)+11$$

$$2((x-\frac{3}{2})^2-\frac{9}{4})+11$$

$$2(x-\frac{3}{2})^2+\frac{13}{2}$$

ii)
$$y = 2x^2 - 6x + 11$$
 from $2(x-3x)^2 + \frac{13}{2}$
vertex $y = (3x, 13x)$

$$y = 2x^{2} - 6x + 11$$

$$14 - 7x = 2x^{2} - 6x + 11$$

$$= 2x^{2} + x - 3$$

$$0 = (2x + 3)(x - 1)$$

$$0 = 2x + 3$$

$$x = -3$$

$$x = -3$$

$$x = -3$$

$$y = 14 + 7x^{3/2} \quad \text{or} \quad y = 14 - 7$$

$$y = 14 + 2\frac{1}{2}$$

$$y = 7$$

$$(-3/2, 4\frac{9}{2})$$

$$(-3/2, 4\frac{9}{2})$$