1 Sets

1.1 Basic Definitions

```
\mathbb{N} = \{0, 1, 2, \ldots\} \text{ natural numbers}
\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\} \text{ integers}
\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\} \text{ rationals}
\mathbb{R} \text{ - real numbers}
\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\} \text{ complex}
\mathbb{R}^2 \text{ - } 2\text{-}dimensional \text{ real plane}
\mathbb{R}^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{R}\} \text{ n-}dimensional \text{ space}
\mathbb{R}^\infty = \{(x_1, x_2, \ldots) : x_i \in \mathbb{R}\} \text{ space of infinite sequences of reals}
```

1.2 Set Operations

$$A \cup B = \{x : x \in A \text{ or } x \in B\} \text{ union}$$

 $A \cap B = \{x : x \in A \text{ and } x \in B\} \text{ intersection}$
 $A \setminus B = \{x \in A : x \notin B\} \text{ set difference}$
 $A \triangle B = (A \setminus B) \cup (B \setminus A) \text{ symmetric difference}$

1.3 Examples

Let $A_n = \{x_1, \dots, x_n\}$ be an indexed family (where $n \in \mathbb{N}$).

$$\bigcup_{i=1}^{n} A_i = \{x : x \in A_i \text{ for some } i \in \mathbb{N}\}$$

$$\bigcap_{i=1}^{n} A_i = \{x : x \in A_i \text{ for every } i \in \mathbb{N}\}$$

These are generalized to arbitrary indexed families.

2 Functions

A function $f: A \to B$ is a mapping that assigns to each $a \in A$ a unique $b \in B$. $A_f = \{(a, f(a)) : a \in A\}$ is the graph of f. If $f: A \to B$ is a function, then:

- f is injective (1-1) if $\forall a_1, a_2 \in A, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$
- f is surjective (onto) if $\forall b \in B, \exists a \in A : f(a) = b$
- ullet f is bijective if it is both injective and surjective

If $f: A \to B$ is bijective, then there exists a unique function $f^{-1}: B \to A$ called the inverse of f (denoted by $f^{-1} = f_{inv}$).

2.1 Examples of Functions

1.
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$

2.
$$f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x + y$$

3.
$$g: \mathbb{R} \to \mathbb{R}, x \mapsto e^x$$

4.
$$h: \mathbb{R} \to \mathbb{R}, x \mapsto \sin x$$

5.
$$f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2 + 1$$