2018-2019学年第一学期

计算方法

第八讲:插值法与最小二乘法-3 第三章§4

主讲人: 张治国 zgzhang@szu.edu.cn

上节课回顾

- 介绍了如何估计 *n* 次插值多项式的余项(即截断 误差)。
- 指出了高次插值多项式的问题(并非多项式的次数越高,精度就越高)。
- 分段线性和二次Lagrange插值是可以克服高次插值多项式弊端的常用的插值法,但要注意节点的选择。

本节课内容

第三章 插值法与最小二乘法

- § 4 Newton插值
 - 4-1 均差
 - 4-2 Newton插值公式及其余项
 - 4-3 差分
 - 4-4 等距节点的Newton插值公式
 - 4-5 Newton插值法算法设计

§ 4 Newton插值

- 设已知函数 f(x) 在 n+1个节点 x_0, x_1, \dots, x_n 上的函数值 依次为: f_0, f_1, \dots, f_n 。
- Newton插值法的插值基函数:

$$\begin{cases} \varphi_0(x) = 1 \\ \varphi_j(x) = (x - x_0)(x - x_1) \cdots (x - x_{j-1}) = \prod_{i=0}^{j-1} (x - x_i), \quad j = 1, 2, \dots, n \end{cases}$$
(4.1)

§ 4 Newton插值

• 利用它们组合成如下形式的 n 次多项式:

$$P_n(x) = \sum_{j=0}^n a_j \varphi_j(x) = a_0 + \sum_{j=1}^n a_j \prod_{k=0}^{j-1} (x - x_k)$$
 (4.2)

其中, a_0, a_1, \dots, a_n 为待定参数。

• 比如:

$$P_1(x) = a_0 + a_1(x - x_0)$$

$$P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

§ 4 Newton插值

• 插值多项式满足条件:

$$P_n(x_i) = f_i, \qquad i = 0, 1, \dots, n$$

- $P_n(x_i) = a_0 + \sum_{j=1}^n a_j \prod_{k=0}^{j-1} (x_i x_k) = f_i, \quad i = 0, 1, \dots, n$
- 因此解方程可得

$$a_0 = f_0, \quad a_1 = \frac{f_1 - f_0}{x_1 - x_0},$$

$$\frac{f_2 - f_0}{x_2 - x_0} - \frac{f_1 - f_0}{x_1 - x_0}$$

$$a_2 = \frac{x_2 - x_0}{x_2 - x_1}, \dots$$

• 为得到参数 a_i 的一般表达式,引入均差的定义。

• 定义4.1 设f(x) 在互异的节点 x_0, x_1, \dots, x_n 上的函数值为 f_0, f_1, \dots, f_n ,称

$$f[x_i, x_k] = \frac{f_k - f_i}{x_k - x_i}, \quad k \neq i$$

为f(x)关于 x_i, x_k 的一阶均差(差商)。

称
$$f[x_i, x_j, x_k] = \frac{f[x_i, x_k] - f[x_i, x_j]}{x_k - x_j}$$
, $i \neq j \neq k$ 为 $f(x)$ 关于 x_i, x_j, x_k 的二阶均差。

一般地,称 $f[x_0, x_1, \dots, x_{k-1}, x_k] = \frac{f[x_0, x_1, \dots, x_{k-2}, x_k] - f[x_0, x_1, \dots, x_{k-2}, x_{k-1}]}{x_k - x_{k-1}}$ 为 f(x) 关于 x_0, x_1, \dots, x_k 的k 阶均差。

• 利用数学归纳法可证 f(x) 关于点 x_0, x_1, \dots, x_k 的 k 阶均差 是 f(x) 在这些点上的函数值的线性组合(过程略),即

$$f[x_0, x_1, \dots, x_{k-1}, x_k] = \sum_{j=0}^k f(x_j) \prod_{i=0, i \neq j}^k \frac{1}{x_j - x_i}$$
(4.4)

- 上式表明: 均差与节点的排列顺序无关。
- 对调 $f[x_0, x_1, \dots, x_{k-1}, x_k]$ 中任意两个节点的位置,结果不变。

• 因此,均差具有对称性:

$$f[x_0,\dots,x_i,\dots,x_j,\dots,x_n] = f[x_0,\dots,x_j,\dots,x_i,\dots,x_n], \quad i \neq j$$

• 进而可推导出:

$$f[x_{0}, x_{1}, \dots, x_{k-1}, x_{k}] = f[x_{k-1}, x_{1}, \dots, x_{0}, x_{k}]$$

$$= \frac{f[x_{k-1}, x_{1}, \dots, x_{k-2}, x_{k}] - f[x_{k-1}, x_{1}, \dots, x_{k-2}, x_{0}]}{x_{k} - x_{0}}$$

$$= \frac{f[x_{1}, \dots, x_{k}] - f[x_{0}, x_{1}, \dots, x_{k-1}]}{x_{k} - x_{0}}$$
(4.5)

• 利用上式可推导出均差表(下页)。

• 均差的列表计算:均差表(以n=4为例)

X_k	$f(x_k)$	$f[x_k, x_{k+1}]$	$f[x_k, x_{k+1}, x_{k+2}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}, x_{k+4}]$
x_0	f_0				
		$f[x_0, x_1]$			
x_1	f_1		$f[x_0, x_1, x_2]$		
		$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$	
x_2	f_2		$f[x_1, x_2, x_3]$		$f[x_0, x_1, x_2, x_3, x_4]$
		$f[x_2, x_3]$		$f[x_1, x_2, x_3, x_4]$	
x_3	f_3		$f[x_2, x_3, x_4]$		
		$f[x_3, x_4]$			
X_4	f_4				

• 设 $x \in [a,b], x \neq x_i (i = 0,1,\dots,n)$, 由一阶均差定义得 $f(x) = f(x_0) + f[x,x_0](x-x_0), \qquad x \neq x_0 \tag{4.6}$

• 由(4.5)可知

$$f[x, x_0, \dots, x_k] = \frac{f[x, x_0, \dots, x_{k-1}] - f[x_0, x_1, \dots, x_k]}{x - x_k}$$

继而得到

$$f[x, x_0, \dots, x_{k-1}] = f[x_0, x_1, \dots, x_k] + f[x, x_0, \dots, x_k](x - x_k)$$
(4.7)
$$(k = 1, 2, \dots, n)$$

• 利用(4.7)将(4.6)递推展开为 $f(x) = f(x_0) + \{f[x_0, x_1] + f[x, x_0, x_1](x - x_1)\}(x - x_0)$ $= f(x_0) + f[x_0, x_1](x - x_0) + f[x, x_0, x_1](x - x_1)(x - x_0)$ $= \cdots$

$$= f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2] \prod_{j=0}^{1} (x - x_j) + \cdots$$

+
$$f[x_0, x_1, \dots, x_n] \prod_{j=0}^{n-1} (x - x_j) + f[x, x_0, \dots, x_n] \prod_{j=0}^{n} (x - x_j)$$

$$f(x) = f(x_0) + \sum_{k=1}^{n} f[x_0, x_1, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j) + f[x, x_0, \dots, x_n] \prod_{j=0}^{n} (x - x_j)$$

$$= N_n(x) + R_n(x)$$

• 因此有
$$N_n(x) = f(x_0) + \sum_{k=1}^n f[x_0, x_1, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j)$$
 (4.9)

$$R_n(x) = f[x, x_0, \dots, x_n] \prod_{j=0}^{n} (x - x_j)$$
 (4.10)

- 因为 $R_n(x_i) = f[x_i, x_0, \dots, x_n] \prod_{j=0}^n (x_i x_j) = 0$,所以 $N_n(x_i) = f(x_i)$, $i = 0, 1, \dots, n$
- $N_n(x)$ 满足插值条件,称之为 f(x) 的 n 次Newton插值多项式,并称 $R_n(x)$ 为 $N_n(x)$ 的插值余项。

• 由于插值多项式的唯一性,n 次Lagrange插值多项式和 n 次Newton插值多项式是等价的。因此余项的估计

$$R_n(x) = f[x, x_0, \dots, x_n] \omega_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
 (4.11)

其中, $\xi \in (a,b)$ 且依赖于 x_o

• 同时得到均差与导数的关系:

$$f[x, x_0, \dots, x_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

• 视 x 为一个节点,对于 $f[x_0, x_1, \dots, x_k]$, $k = 0,1,\dots,n$,可推 广得出,必存在一个位于节点间的 ξ ,使

$$f[x_0, x_1, \dots, x_k] = \frac{f^{(k)}(\xi)}{k!}$$
 (4.12)

- 余项公式(4.10)的计算需要 f(x) 的值,并不实用。
- 因为 k 阶均差接近常数时, k+1 阶均差就会接近于0, 此时有 $f(x) \approx N_k(x)$ 。
- 实用的余项近似公式:

$$R_{k}(x) = f(x) - N_{k}(x)$$

$$\approx f[x_{0}, x_{1}, \dots, x_{k+1}] \prod_{j=0}^{k} (x - x_{j})$$
(4.13)

• 上式可以直接利用均差表估计误差。

- Newton插值注意事项
- 1. 在Newton插值法中,应避免使用高阶插值多项式。
- 2. 在采用分段插值时,应选择靠近插值点的节点作为分段 插值公式中的节点。先判断插值点 x 所在的子区间,结 合插值多项式次数,选择靠近 x 的节点。

- 例1 已知 f(x) 的函数表如下表所示,用分段三次Newton 插值多项式计算 f(0.596) 的近似值,并估计误差。
- 解: 首先, 生成均差表。

X_i	$f(x_i)$	$f[x_{i}, x_{i+1}]$	$\begin{bmatrix} f[x_i, x_{i+1}, \\ x_{i+2}] \end{bmatrix}$	$ \begin{cases} f[x_i, x_{i+1}, \\ x_{i+2}, x_{i+3}] \end{cases} $	$ \begin{bmatrix} f[x_i, x_{i+1}, x_{i+2}, \\ x_{i+3}, x_{i+4}] \end{bmatrix} $	$ f[x_i, x_{i+1}, x_{i+2}, x_{i+3}, x_{i+4}, x_{i+5}] $
0.4	0.41075	, , , , , , , , , , , , , , , , , , ,	<i>x</i> _{i+2} J	x_{i+2}, x_{i+3}	<i>x</i> _{i+3} , <i>x</i> _{i+4} J	$x_{i+3}, x_{i+4}, x_{i+5}$
		1.116				
0.55	0.57815	(0.28			
		1.186		0.1973		
0.65	0.69675		0.35892		0.03146	
		1.27573		0.21303		-4.9231×10^{-4}
0.80	0.88811		0.43348		0.03114	
		1.38410		0.2286		
0.90	1.02652		0.52492			
		1.51533				
1.05	1.25382					

解:插值点 x = 0.596,可选择节点0.40, 0.55, 0.65, 0.80。
 因此

$$N_3(x) = 0.41075 + (x - 0.4)\{1.116 + (x - 0.55)[0.28 + 0.1973(x - 0.65)]\}$$
$$f(0.596) \approx N_3(0.596) = 0.63191$$

• 截断误差

$$|R_3(x)| \approx 0.03146 \cdot |(x-0.40)(x-0.55)(x-0.65)(x-0.80)|$$

• 故 $|R_3(0.596)| \approx 4.656 \times 10^{-6}$

• 当 x 位于表末: $x_{n-1} < x < x_n$ 时,为提高精度,采用公式:

$$N_{n}(x) = f(x_{n}) + f[x_{n}, x_{n-1}](x - x_{n}) + f[x_{n}, x_{n-1}, x_{n-2}](x - x_{n})(x - x_{n-1})$$

$$+ \dots + f[x_{n}, x_{n-1}, \dots, x_{0}](x - x_{n})(x - x_{n-1}) \dots (x - x_{1})$$

$$= f(x_{n}) + \sum_{i=1}^{n} f[x_{n}, x_{n-1}, \dots, x_{n-k}] \prod_{i=1}^{k-1} (x - x_{n-j})$$

$$(4.14)$$

故(4.14)中的各阶均差都可在均差表中找到。

• Newton插值与Lagrange插值方法比较: 当增加一个节点时, Newton插值法的公式只需增加一项, 且前面计算结果可用, 因此更便于计算机上实现。

4-3 差分

• 等距节点插值是常见的插值方法,设有 n+1 个等距的插值节点: $x_k = x_0 + kh$, $k = 0,1,\dots,n$,其中 $h = (x_n - x_0)/n$ 为步长。

• 差分的定义

定义4.2 设f(x) 在等距节点 $x_k = x_0 + kh$, $k = 0,1,\dots,n$, 上的函数值为 f_k , 称

$$\Delta f_k = f_{k+1} - f_k \tag{4.15}$$

$$\nabla f_k = f_k - f_{k-1} \tag{4.16}$$

分别为 f(x) 在 $x = x_k$ 处的一阶向前差分和一阶向后差分。 符号 Δ 和 ∇ 分别称为向前差分算子和向后差分算子。

4-3 差分

• 一般称 f(x) 在两个相邻节点 $x_k, x_{k+1}(x_{k-1})$ 上的 m-1 阶向前(后)差分的差为 f(x) 在 $x = x_k$ 处的 m 阶向前(后)差分,记作

$$\Delta^{m} f_{k} = \Delta^{m-1} f_{k+1} - \Delta^{m-1} f_{k} \tag{4.17}$$

$$\nabla^m f_k = \nabla^{m-1} f_k - \nabla^{m-1} f_{k-1} \tag{4.18}$$

• 利用数学归纳法可得出一个关系 (4.19) $\Delta^m f_{\iota} = \nabla^m f_{\iota+m}, m 为任意正整数$

4-3 差分

• 当节点等距时,均差 $f[x_0,x_1,\dots,x_k]$ 可用 k 阶差分表示:

$$f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0} = \frac{\Delta f_0}{h}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\Delta f_1 - \Delta f_0}{2h^2} = \frac{\Delta^2 f_0}{2h^2}$$

- \rightarrow 股地 $f[x_0, x_1, \dots, x_k] = \frac{\Delta^k f_0}{k! h^k}, \quad (k = 1, 2, \dots)$ (4.20)
- 类似地,可得 $f[x_0, x_1, \dots, x_k] = f[x_k, x_{k-1}, \dots, x_0] = \frac{\nabla^k f_k}{k! h^k}, \quad (k = 1, 2, \dots) \quad (4.21)$
- 根据均差与导数关系,由(4.20)可得

$$\Delta^{k} f_{0} = h^{k} f^{(k)}(\xi) , \quad \xi \in (x_{0}, x_{k})$$
 (4.22)

- 设节点 $x_k = x_0 + kh$, $k = 0,1,\dots,n$, 记 $x = x_0 + th$, t > 0。 则 $x x_k = (t k)h$, $k = 0,1,\dots,n$ 。
- 由(4.20)式,得

$$f[x_0, x_1, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j) = \frac{\Delta^k f_0}{k! h^k} t(t-1) \dots (t-k+1) h^k$$
$$= \frac{\Delta^k f_0}{k!} \prod_{j=0}^{k-1} (t-j)$$

• 因此由(4.9), Newton插值公式可简化为Newton向前(差分)插值公式

$$N_n(x_0 + th) = f_0 + \sum_{k=1}^n \frac{\Delta^k f_0}{k!} \prod_{j=0}^{k-1} (t - j)$$
 (4.23)

余项可表示为

$$R_n(x_0 + th) = \frac{f^{n+1}(\xi)}{(n+1)!}t(t-1)\cdots(t-n)h^{n+1} = \frac{\Delta^{n+1}f_0}{(n+1)!}t(t-1)\cdots(t-n) \quad (4.25)$$

• 类似地, Newton向后(差分)插值公式

$$N_n(x_n + th) = f_n + \sum_{k=1}^n \frac{\nabla^k f_0}{k!} \prod_{j=0}^{k-1} (t+j)$$
 (4.26)

相应的余项可表示为

$$R_n(x_n + th) = \frac{f^{n+1}(\xi)}{(n+1)!}t(t+1)\cdots(t+n)h^{n+1} = \frac{\nabla^{n+1}f_n}{(n+1)!}t(t+1)\cdots(t+n)$$
(4.28)

• 向前插值公式和向后插值公式的各阶向前向后差分计算可以列出差分表,以n=4为例:

$f(x_k)$	Δf_k	$\Delta^2 f_k$	$\Delta^3 f_k$	$\Delta^4 f_k$
$f(x_0)$				
	Δf_0			
$f(x_1)$		$\Delta^{\!2}f_0$		
	Δf_1		$\Delta^3 f_0$	
$f(x_2)$		$\Delta^2 f_1$		$\Delta^{\!4}f_0$
	Δf_2		$\Delta^3 f_1$	
$f(x_3)$		$\Delta^{\!2} f_2$		
	Δf_3			
$f(x_4)$				

• 利用向前、向后差分的关系(4.19),计算向前、向后差分可用同一张表。

• 例2 给定 $f(x) = \cos(x)$ 的函数表如下:

k	0	1	2	3	4	5	6
x_k	0.0	0.1	0.2	0.3	0.4	0.5	0.6
$f(x_k)$	1.0000	0.99500	0.98007	0.95534	0.92106	0.87758	0.82534

• 用四次Newton插值法计算 cos(0.048) 及 cos(0.566) 的近似值,并估计误差。

• 解: 首先制作差分表

$f(x_k)$	Δf_k	$\Delta^2 f_k$	$\Delta^3 f_k$	$\Delta^4 f_k$	$\Delta^{\!\scriptscriptstyle 5} f_{\scriptscriptstyle k}$	$\Delta^6 f_k$
1.0000						
	-0.00500					
0.99500		-0.00993				
	-0.01493		0.00013			
0.98007		-0.00980		0.00012		
	-0.02473		0.00025		-0.00002	
0.95534		-0.00955		0.00010		0.00001
	-0.03428		0.00035		-0.00001	
0.92106		-0.00920		0.00009		
	-0.04348		0.00044			
0.87758		-0.00876				
	-0.05224					
0.82534						

• 易知 h = 0.1, 当 x = 0.048 时, $t = \frac{x - x_0}{h} = 0.48$

$$N_4(x_0 + th) = f_0 + \Delta f_0 t + \frac{\Delta^2 f_0}{2!} t(t-1) + \frac{\Delta^3 f_0}{3!} t(t-1)(t-2) + \frac{\Delta^4 f_0}{4!} t(t-1)(t-2)(t-3)$$

$$= f_0 + t \left(\Delta f_0 + (t - 1) \left(\frac{\Delta^2 f_0}{2!} + (t - 2) \left(\frac{\Delta^3 f_0}{3!} + (t - 3) \left(\frac{\Delta^4 f_0}{4!} \right) \right) \right) \right)$$

$$=1.0000+0.48\cdot\left(-0.00500-0.52\left(\frac{-0.00993}{2}-1.52\left(\frac{0.00013}{6}-2.53\times\frac{0.00012}{24}\right)\right)\right)$$

 $= 0.99884 \approx \cos(0.048)$

$$|R_4(0.0048)| \le \left| \frac{M_5}{5!} t(t-1)(t-2)(t-3)(t-4) \right| h^5 = 1.5845 \times 10^{-7}$$

$$M_5 = |\sin 0.6| = 0.565$$

本节课小结

- · 介绍了Newton插值法的插值基函数。
- 通过定义均差得到Newton插值公式及其余项的计算公式。
- · 对于等距节点插值,通过定义差分得到等距节点的Newton插值公式及其余项的计算公式。

作业

习题三: 7(1)(3)

【选做】7(3)用MATLAB编程实现(50分)

作业上交日期:2018年11月6日

下节课内容

第三章 插值法与最小二乘法 § 5 Hermite插值 § 6 三次样条插值