Clustering en Weka

Laura Rodríguez Navas rodrigueznavas@posgrado.uimp.es

July 10, 2020

En esta práctica se realiza un estudio acerca de la base de datos Iris. Esta BD se distribuye junto a la herramienta Weka.

1. Ejecuta el algoritmo SimpleKMeans usando la herramienta Weka con las distancias Euclídea y Manhattan.

La BD está formada por 4 variables descriptivas y una variable clase. No se aplica preprocesamiento de datos ya que las variables descriptivas son numéricas y no existen valores perdidos en la BD. Además, como la variable de clase puede tomar tres valores, elegimos que el valor de k sea igual a 3.

Figura 1: KMeans con distancia Euclídea.

(a) ¿Cuántas instancias contiene cada grupo?

En la ejecución del algoritmo KMeans con distancia Euclídea (ver Figura 1) se han formado tres grupos: 0, 1 y 2. Los 3 grupos contienen 50 instancias cada uno. En la ejecución del algoritmo KMeans con distancia Manhattan (ver Figura 2) también se han formado los grupos 0, 1 y 2, con el mismo número de instancias cada uno.

Figura 2: KMeans con distancia Manhattan.

(b) ¿Cuáles son los centroides?

Si nos volvemos a fijar en la figura 1, podemos observar los centroides de la ejecución de Kmeans con distancia Euclídea, y si nos volvemos a fijar en la figura 2, podemos observar los centroides de la ejecución de Kmeans con distancia Manhattan. Se muestran más detalladamente en las siguientes figuras:

Final cluster cen	troids:			
		Cluster#		
Attribute	Full Data	0	1	2
	(150.0)	(50.0)	(50.0)	(50.0)
sepallength	5.8433	5.936	5.006	6.588
sepalwidth	3.054	2.77	3.418	2.974
petallength	3.7587	4.26	1.464	5.552
petalwidth	1.1987	1.326	0.244	2.026
class	Iris-setosa	Iris-versicolor	Iris-setosa	Iris-virginica

Figura 3: KMeans centroides con distancia Euclídea.

Final cluster o	entroids:					
		Cluster#				
Attribute	Full Data	0	1	2		
	(150.0)	(50.0)	(50.0)	(50.0)		
sepallength	5.8	5.9	5	6.5		
sepalwidth	3	2.8	3.4	3		
petallength	4.35	4.35	1.5	5.55		
petalwidth	1.3	1.3	0.2	2		
class	Iris-setosa	Iris-versicolor	Iris-setosa	Iris-virginica		

Figura 4: KMeans centroides con distancia Manhattan.

(c) Analiza los centroides. ¿Hay algo destacable en esos centroides? ¿Están los centroides separados en el espacio? ¿Tienen componentes similares?

Los centroides resultantes de la ejecución del algoritmo KMeans con distancia Euclídea y los centroides resultantes de la ejecución del algoritmo KMeans con distancia Manhattan son muy parecidos. Tienen componentes muy similares. Este comportamiento nos podría indicar que en la BD no existen *outliers*, la distancia Manhattan se ve menos afectada por

ellos (es más robusta), y al no presentar diferencias significantes con la distancia Euclídea, este podría ser el motivo de tanta similitud.

En la figura 5 se puede observar que los centroides están separados en el espacio. Aunque los centroides de los grupos 0 y 1 están más cercanos entre ellos. El centroide del grupo 2 es el que está más alejado.

Nota: Solo se muestra el gráfico de los centroides resultantes de la ejecución del algoritmo KMeans con distancia Euclídea, porqué casi es igual al gráfico de los centroides resultantes de la ejecución del algoritmo KMeans con distancia Manhattan.

Figura 5: Representación de los centroides de KMeans con distancia Euclídea.

2. Ejecuta el algoritmo HierarchicalClusterer con tipo de enlace completo y métrica de distancia euclídea, y visualice las gráficas de los puntos agrupados. ¿Alguno de ellas produce grupos bien diferenciados y con fronteras claras?

Nota: Compara que el eje X instance_number y el eje Y vaya variando y muestra cada una de las variables (debes adjuntar las imágenes).

Como se ha comentado anteriormente, la variable de clase puede tomar tres valores, así que volvemos a elegir que el valor de k sea igual a 3 para la ejecución del algoritmo Hierarchical-Clusterer (ver Figura).

Las gráficas donde el eje Y es igual a las variables *sepallebgth* i *sepalwidth* muestran grupos bien diferenciados y con las fronteras claras.

```
Clusterer output
  === Run information ===
  Scheme:
Relation:
                   weka.clusterers.HierarchicalClusterer -N 3 -L COMPLETE -P -A "weka.core.EuclideanDistance -R first-last"
                  iris
150
  Instances:
Attributes:
                  150
5
sepallength
sepalwidth
petallength
petalwidth
class
evaluate on training data
  Test mode:
  === Clustering model (full training set) ===
  Cluster 0 ((((((((0.0:0.03254,0.0:0.03254):0.01754,0.0:0.05008):0.05008,(0.0:0.06514,(0.0:0.03254,0.0:0.03254):0.0326):0.03501):0.03501):0.03501
  Cluster 1 (((((1.0:0.10206,(1.0:0.06508,1.0:0.06508):0.03698):0.0771,1.0:0.17916):0.0424,((1.0:0.09914,(1.0:0.08779,1.0:0.08779):
  Cluster 2 (((((2.0:0.15339,(2.0:0.10972,(2.0:0.06047,2.0:0.06047):0.04924):0.04367):0.10143,((((2.0:0.04383,2.0:0.04383):0.03891,
  Time taken to build model (full training data) : 0.04 seconds
  === Model and evaluation on training set ===
  Clustered Instances
           50 ( 33%)
50 ( 33%)
50 ( 33%)
```

Figura 6: Hierarchical Clustering con distancia Euclídea.

Figura 7: X instance_number con distancia Manhattan.

Figura 8: X instance_number con distancia Manhattan.

Figura 9: X instance_number con distancia Manhattan.

Figura 10: X instance_number con distancia Manhattan.