Dynamic Prediction with fPCA

Dynamic prediction

- \blacktriangleright With observations up to t_m , predict outcomes (or probabilities of outcome) after that time point
- Prediction updates with new observations

Functional Concurrent Regression (FCR)

- Goal: to predict future track based on observed track
- For a subject i, we observe a function over t

$$Y_i(t) = f_0(t) + b_i(t) + \epsilon_i(t)$$

ightharpoonup We usually observe Y_i on a series of discrete t_{ij}

$$Y_{ij} = f_0(t_{ij}) + b_i(t_{ij}) + \epsilon_{ij}, \quad j = 1...J_i$$

where $\epsilon_{ij} \sim N(0, \sigma_{\epsilon^2})$.

Subject-specific random effect

$$b_i(t) = \sum_{k=1}^c u_{ik} B_k(t)$$

where $\boldsymbol{u_i} \sim N(0, \Gamma)$

Dynamic prediction

- When there is no covariate in the model, this is essentially a fPCA problem.
 - **B** is a matrix of eigenfunctions
 - ▶ u is a matrix of PC scores/loadings
- ▶ Use fPCA to estimate f_0 , Γ and σ_{ϵ}
- For a new subject with observations up to t_m , estimate its score:

$$\hat{\boldsymbol{u}} = E(\boldsymbol{u}|\boldsymbol{y}) = \hat{\boldsymbol{\Gamma}}\boldsymbol{B}^{T}(\boldsymbol{B}\hat{\boldsymbol{\Gamma}}\boldsymbol{B}^{T} + \hat{\sigma}_{\epsilon}^{2}\boldsymbol{I}_{m})$$

With the estimated score, we can predict its outcome in following time points

$$\hat{\boldsymbol{Y}} = \hat{\boldsymbol{f}}_0 + \boldsymbol{B}^T \hat{\boldsymbol{u}}$$

Simulated child growth data

▶ Predict length-for-age, observed with noise

FPCA on observed LAZ

Prediction of new partially observed sample

Prediction of new partially observed sample

Prediction of new partially observed sample

Next steps

- Establish interval prediction
- ? fPCA on pooled prediction, instead of original functions observed with noise
- Extension to exponential family data