9/10 points (90%)

Quiz, 10 questions

✓ Congr	ratulations! You passed!	Next Item
~	1 / 1 points	
	h notation would you use to denote the 3rd layer's activation is the 7th example from the 8th minibatch?	ons when the
	$a^{[8]\{3\}(7)}$	
	$a^{[3]\{7\}(8)}$	
0	$a^{[3]\{8\}(7)}$	
Сон	rrect	
	$a^{[8]\{7\}(3)}$	
✓	1/1 points	
2. Which with?	h of these statements about mini-batch gradient descent d	o you agree
	You should implement mini-batch gradient descent an explicit for-loop over different mini-batches, so t algorithm processes all mini-batches at the same tire (vectorization).	hat the
0	One iteration of mini-batch gradient descent (computing single mini-batch) is faster than one iteration of batch g	_

descent.

Correct

90%)

Jptimizatio	on algorithms	9/10 points (9
Quiz, 10 questions	Training one epoch (one pass through the training set) using minibatch gradient descent is faster than training one epoch using batch gradient descent.	
	1/1 points	
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
	Un-selected is correct	
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.	
	Un-selected is correct	
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	Correct	
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.	
	Correct	

1/1

9/10 points (90%)

Quiz, 10 questions

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.			
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.			
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.			
Correct				
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.			

0/1 points

Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$\theta_1 = 10^{\circ} C$$

Jan 2nd:
$$\theta_2 10^{\circ} C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

This should not be selected

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 10, v_2^{corrected} = 7.5$$

$$v_2 = 7.5, v_2^{corrected} = 10$$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = e^t \alpha_0$$

Correct

$$\alpha = \frac{1}{1+2*t} \alpha_0$$

9/10 points (90%)

/

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing eta will create more oscillations within the red line.

Un-selected is correct

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

9/10 points (90%)

Quiz, 10 questions

(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
1/1 points
Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)
Try better random initialization for the weights Correct
Try using Adam Correct
Try initializing all the weights to zero Un-selected is correct
Try tuning the learning rate α
Try mini-batch gradient descent Correct

9/10 points (90%)

Quiz, 10 questions

points

10.

Which of the following statements about Adam is False?

- The learning rate hyperparameter α in Adam usually needs to be tuned.
- Adam should be used with batch gradient computations, not with mini-batches.

Correct

- Adam combines the advantages of RMSProp and momentum
- We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,$ $\varepsilon=10^{-8}$)

