$\begin{array}{c} \text{Technical process description AGRAMMON} \\ \text{Draft} \end{array}$

Agrammon Group $2009\text{-}05\text{-}06 /\ 1003$

CONTENTS

Contents

1	Introduction	5
2	Application	7
3	Application::PoultryManure	8
4	${\bf Application:: Poultry Manure:: Cincorp Time}$	10
5	Application::Slurry	12
6	Application::Slurry::Applrate	14
7	Application::Slurry::Cseason	15
8	Application::Slurry::Csoft	17
9	Application::Slurry::Ctech	19
10	Application::SolidManure	21
11	${\bf Application:: Solid Manure:: Cincorp Time}$	23
12	Application::SolidManure::Cseason	25
13	Livestock	27
14	Livestock::DairyCow	30
15	Livestock::DairyCow::Excretion	31
16	${\bf Livestock:: Dairy Cow:: Excretion:: CConcentrates}$	33
17	${\bf Livestock:: Dairy Cow:: Excretion:: CFeed}$	34
18	${\bf Livestock:: Dairy Cow:: Excretion:: CFeed Summer Ratio}$	35
19	${\bf Livestock:: Dairy Cow:: Excretion:: CFeed Winter Ratio}$	37
20	Livestock::DairyCow::Excretion::CMilk	39
21	Livestock::DairyCow::Grazing	40
22	Livestock::DairyCow::Housing	42
23	Livestock::DairyCow::Housing::Floor	45
24	Livestock::DairyCow::Housing::KGrazing	46
25	Livestock::DairyCow::Housing::Type	48
26	$Livestock:: Dairy Cow:: Housing:: Type:: Loose_Housing_Deep_Litter$	50
27	${\bf Livestock::DairyCow::Housing::Type::Loose_Housing_Slurry}$	51
2 8	$Livestock:: Dairy Cow:: Housing:: Type:: Loose_Housing_Slurry_Plus_Solid_Manure$	52
29	${\bf Livestock:: Dairy Cow:: Housing:: Type:: Tied_Housing_Slurry}$	53
30	$Livestock:: Dairy Cow:: Housing:: Type:: Tied_Housing_Slurry_Plus_Solid_Manure$	54
31	Livestock::DairyCow::Yard	55
32	Livestock::Equides	58

CONTENTS

33 Livestock::Equides::Excretion	59
34 Livestock::Equides::Grazing	61
35 Livestock::Equides::Housing	63
36 Livestock::Equides::Housing::KGrazing	65
37 Livestock::Equides::Yard	67
38 Livestock::FatteningPigs	70
39 Livestock::FatteningPigs::Excretion	71
40 Livestock::FatteningPigs::Grazing	74
41 Livestock::FatteningPigs::Housing	76
42 Livestock::FatteningPigs::Housing::AirScrubber	79
43 Livestock::FatteningPigs::Housing::Type	80
44 Livestock::FatteningPigs::Housing::Type::Deep_Litter	81
45 Livestock::FatteningPigs::Housing::Type::Outdoor	82
46 Livestock::FatteningPigs::Housing::Type::Slurry_Conventional	83
47 Livestock::FatteningPigs::Housing::Type::Slurry_Label	84
48 Livestock::FatteningPigs::Housing::UNECEhousingTask	85
49 Livestock::OtherCattle	87
50 Livestock::OtherCattle::Excretion	88
51 Livestock::OtherCattle::Grazing	90
52 Livestock::OtherCattle::Housing	92
53 Livestock::OtherCattle::Housing::Floor	94
54 Livestock::OtherCattle::Housing::KGrazing	95
55 Livestock::OtherCattle::Housing::Type	97
${\bf 56\ Livestock:: Other Cattle:: Housing:: Type:: Loose_Housing_Deep_Litter}$	99
$57\ Livestock::Other Cattle::Housing::Type::Loose_Housing_Slurry$	100
$58\ Livestock::Other Cattle::Housing::Type::Loose_Housing_Slurry_Plus_Solid_Margueres and the control of the $	aure 101
59 Livestock::OtherCattle::Housing::Type::Tied_Housing_Slurry	102
$60\ Livestock:: Other Cattle:: Housing:: Type:: Tied_Housing_Slurry_Plus_Solid_Manufacturer (Solid_Manufacturer) (Solid_Manufacturer)$	ure 103
61 Livestock::OtherCattle::Yard	104
62 Livestock::Pig	107
63 Livestock::Pig::Excretion	108
64 Livestock::Pig::Grazing	112
65 Livestock::Pig::Housing	114

CONTENTS

66 Livestock::Pig::Housing::AirScrubber	117
67 Livestock::Pig::Housing::Type	118
68 Livestock::Pig::Housing::Type::Deep_Litter	119
69 Livestock::Pig::Housing::Type::Outdoor	120
70 Livestock::Pig::Housing::Type::Slurry_Conventional	121
71 Livestock::Pig::Housing::Type::Slurry_Label	122
72 Livestock::Pig::Housing::UNECEhousingTask	123
73 Livestock::Poultry	125
74 Livestock::Poultry::Excretion	128
75 Livestock::Poultry::Housing	130
76 Livestock::Poultry::Housing::AirScrubber	131
77 Livestock::Poultry::Housing::Type	132
78 Livestock::Poultry::Outdoor	136
79 Livestock::SmallRuminants	138
80 Livestock::SmallRuminants::Excretion	139
81 Livestock::SmallRuminants::Grazing	141
82 Livestock::SmallRuminants::Housing	143
83 Livestock::SmallRuminants::Housing::KGrazing	145
84 PlantProduction	147
85 PlantProduction::AgriculturalArea	148
86 PlantProduction::MineralFertiliser	149
87 PlantProduction::RecyclingFertiliser	150
88 Storage	152
89 Storage::Slurry	155
90 Storage::Slurry::EFLiquid	157
91 Storage::SolidManure	161
92 Storage::SolidManure::Poultry	162
93 Storage::SolidManure::Solid	164
94 SummaryByAnimalCategory	166
95 Total	169
96 Input Parameters	170
97 Technical Parameters	178

1 Introduction

AGRAMMON is a model to simulate ammonia emission from farming. It considers livestock (housing, yard, grazing), storage, application, and plant production emissions of seven different animal categories including 26 animal species. The most common housing systems for dairy cows, cattle (tied and loose) and pigs (conventional ans label) are considered as well as several different application techniques. Ammonia emission of a single farm and of entire Switzerland can be calculated. AGRAMMON has been developed by a group of agronomists (SHL, Zollikofen), environmental scientists (Bonjour Engineering GmbH, Lostorf) and computer scientists (Oetiker+Partner AG, Olten) on behalf of the Federal Office for the Environment (FOEN, Ittigen).

The Model is availabel for calculation under http://www.agrammon.ch.

1.1 Structure of the model:

The model consists of computing modules, technical parameters and input parameters.

The **input parameters** include terms such as animal categories, number of animals, details on animal feeding, housing system, storage, application, and plant production. These parameters must be defined by the model users.

The **technical parameters** include terms such as emission rates, emission factors, mobilisation- and immobilisation rates of ammonia and ammonium, proportions of solid and liquid share of the manure. Further information about animal feed like the composition and the amount of the feed, the energy content, and the crude protein content are defined in this section. The technical parameters are assembled by the modellers considering the most recent research results as well as international guidelines (e.g. UNECE 2007) adopted for Switzerland. They can not be changed by the model users.

The process which calculates the ammonia emission by using the input and the technical parameters is split into four main computing modules: production (including excretion, housing, yard, grazing), storage, application, and plant production (see Figure 1). Each module is divided into a number of submodules.

Figure 1: AGRAMMON process structure: livestock, storage, application, plant production

1.2 Structure of the description:

This technical process description shows the modules and submodules, followed by the overall used input parameters and technical parameters summarised in two tables at the end the document.

Modules and submodules are designed in a standardised manner with the following sections: short description, input parameters, technical parameters, output, detailed process description. The short description gives a one line description of the module. Input parameter, technical parameter and output are listed in tables together with unit, value (tech. parameter), formula (output) and description (input and tech. parameter). The detailed process description gives additional information about the process including references.

2 Application

 $Agrammon\ Group - 2008-05-07$

2.1 Short description

Computes the annual NH3 emission from application.

2.2 Input parameters

2.3 Technical parameters

2.4 Output

Parameter	Unit	Formula
$n_out_application$	kg N /a	Annual N flux out of the application.
		Val(n_into_application, Storage) - (Val(nh3_nliquid, Application::Slurry) + Val(nh3_nsolid, Application::SolidManure) + Val(nh3_npoultry, Application::PoultryManure))
${ m nh3_napplication}$	kg N /a	Annual NH3 emission from manure application.
		Val(nh3_nliquid, Application::Slurry) + Val(nh3_nsolid, Application::SolidManure) + Val(nh3_npoultry, Application::PoultryManure)

2.5 Detailed process description

This process summarizes the contribution of the individual manure systems to the total NH3 emission from manure application.

2.5.1 Differences to DYNAMO

The categories "Soil absorptive" and "application before rain" are omitted since the practice is unknown and experimental results are not available (according to the decision of the steering group from 02/07/2007).

The distinction between the categories incorporation of solid manure by chisel plough or plough are omitted since the difference is unclear (according to the decision of the steering group from 02/07/2007).

The category "rapid incorporation" is replaced by "application manure" since slurry is hardly incorporated in Switzerland. The entire category is adapted to UNECE (2007) including new categories.

3 Application::PoultryManure

 $Agrammon\ Group - 2008-03-30$

3.1 Short description

Computes the annual NH3 emission from poultry manure application.

3.2 Input parameters

3.3 Technical parameters

Parameter	Value	Unit	Description
er_App_manure_layers-	0.65	-	Emission rate for manure application. The average
_growers_other_poultry			rate has been derived from Frick et al. (1996) and
			Menzi et al. (1996). The value is based on the
			average emissions from diffrent Swiss experiments.
			Emission based on TAN of slurry.
er_App_manure_turkeys-	0.3	-	Emission rate for manure application. The average
_broilers			rate has been derived from Frick et al. (1996) and
			Menzi et al. (1996). The value is based on the
			average emissions from diffrent Swiss experiments.
			Emission based on TAN of slurry.
TAN_share_solid	0.5	-	Share of TAN in applied solid manure.

3.4 Output

Parameter	Unit	Formula
nh3_npoultry_turkeys_broilers kg N /a N		NH3 emission from solid manure application.
		Tech(er_App_manure_turkeys_broilers) * Tech(TAN_share_solid) * Val(n_into_application_poultryManure_turkeys_broilers, ::Storage) * Val(c_incorp_time, PoultryManure::CincorpTime) * Val(c_season, SolidManure::Cseason);
$n_frompoultry$	kg N /a	N flux out of solid manure application.
		Val(n_into_application_poultryManure, ::Storage) - Out(nh3_npoultry);
nh3_npoultry_layers_growers- _other_poultry	kg N /a	NH3 emission from solid manure application. Tech(er_App_manure_layers_growers_other_poultry) * Tech(TAN_share_solid) Val(n_into_application_poultryManure_layers_growers_other_poultryStorage) * Val(c_incorp_time, PoultryManure::CincorpTime) * Val(c_season, SolidManure::Cseason);
nh3_npoultry	kg N /a	NH3 emission from solid manure application. Out(nh3_npoultry_layers_growers_other_poultry) + Out(nh3_npoultry_turkeys_broilers);

3.5 Detailed process description

This process computes the annual average NH3 emission from poultry manure application. The standard emission factor is corrected according to the TAN content and the application rate, the application technology, the crops to which the manure is applied, respected soft measures during application and the application season, the time lag between application and incorporation, the incorporation technology used, and the proportion of solid manure that is applied on hot days.

The correction factor are based on the same input parameters as the application for solid manure.

3.5.1 References:

Menzi H, Keller M, Katz P, Fahrni M, Neftel A 1997. Ammoniakverluste nach der Anwendung von Mist. Agrarforschung 4:328-331.

Menzi H, Katz P, Frick R, Fahrni M, Keller M 1997: Ammonia emissions following the application of solid manure to grassland. In: Jarvis S.C. and Pain B.F. (Eds.): "Nitrogen Emissions from Grassland", CAB, 265-274.

4 Application::PoultryManure::CincorpTime

Agrammon Group -2008-05-02

4.1 Short description

Correction factor taking into account the time lag between application and incorporation of the poultry manure.

4.2 Input parameters

4.3 Technical parameters

Parameter	Value	Unit	Description
eff_inc_lw1h	-0.95	-	Reduction due to incorporation of solid manure
			within 1 hour. UNECE (2007).
eff_inc_lw4h	-0.8	-	Reduction due to incorporation of solid manure
			within 4 hours. Empirical estimate deduced from
			UNECE (2007). Mean value between the cate-
			gory incorporation within 1 hour and incorpora-
			tion within 8 hours.
eff_inc_lw8h	-0.7	-	Reduction due to incorporation of solid manure
			within 8 hours. Values adapted from UNECE
			(2007) (category Incorporation by plough within
			12 h)
eff_inc_lw1d	-0.55	-	Reduction due to incorporation of solid manure
			within 1 day. Values adapted from UNECE (2007)
			Empirical estimate deduced from Menzi et al.
			(1997).
$ m eff_inc_lw3d$	-0.3	-	Reduction due to incorporation of solid manure
			within 3 days. Empirical estimate deduced from
			Menzi et al. (1997).
$ m eff_inc_gt3d$	-0.1	-	Reduction due to incorporation of solid manure af-
			ter 3 days Empirical estimate deduced from Menzi
			et al. (1997).
eff_inc_none	0.0	-	Basis with no incorporation of solid manure.

4.4 Output

Parameter	Unit	Formula
${\tt c_incorp_time}$	-	Correction factor taking into account the time lag between application and incorporation of the solid manure. 1 + (Val('incorp_lw1h',':SolidManure::CincorpTime') * Tech('eff_inc_lw1h') + Val('incorp_lw4h','::SolidManure::CincorpTime' * Tech('eff_inc_lw4h') + Val('incorp_lw8h','::SolidManure::CincorpTime' * Tech('eff_inc_lw8h') + Val('incorp_lw1d','::SolidManure::CincorpTime' * Tech('eff_inc_lw1d') + Val('incorp_lw3d','::SolidManure::CincorpTime' * Tech('eff_inc_lw3d') + Val('incorp_gt3d','::SolidManure::CincorpTime' * Tech('eff_inc_gt3d') + Val('incorp_none','::SolidManure::CincorpTime' * Tech('eff_inc_none'));

4.5 Detailed process description

This process computes the correction factor for the time lag between application and incorporation of the poultry manure.

4.5.1 References:

Menzi H, Keller M, Katz P, Fahrni M, Neftel A 1997. Ammoniakverluste nach der Anwendung von Mist. Agrarforschung 4:328-331.

Menzi H, Katz P, Frick R, Fahrni M, Keller M 1997: Ammonia emissions following the application of solid manure to grassland. In: Jarvis S.C. and Pain B.F. (Eds.): "Nitrogen Emissions from Grassland", CAB, 265-274.

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

5 Application::Slurry

Agrammon Group -2008-05-07

5.1 Short description

Computes the annual NH3 emission from slurry application.

5.2 Input parameters

5.3 Technical parameters

Parameter	Value	Unit	Description
er_App_cattle_liquid	0.5	-	Emission rate for slurry application based on TAN
			of the slurry. The average rate has been derived
			from Sommer et al (2001b), Sogaard et al (2002),
			Menzi et al (1998), Menzi et al (1997a)
er_App_pigs_liquid	0.4	-	Emission rate for slurry application based on TAN
			of the slurry. The average rate has been derived
			from Sogaard et al (2002)

5.4 Output

Parameter	Unit	Formula
er_App_liquid	-	Emission rate for slurry application based on TAN of the slurry. The average rate has been derived from Sommer et al (2001b), Sogaard et al (2002), Menzi et al (1998), Menzi et al (1997a) and Sogaard et al (2002) if(Val(n_into_storage_liquid, ::Livestock) != 0){ return (Val(n_into_storage_liquid_pigs, ::Livestock) * Tech(er_App_pigs_liquid) + (Val(n_into_storage_liquid, ::Livestock) - Val(n_into_storage_liquid_pigs, ::Livestock)) * Tech(er_App_cattle_liquid) / Val(n_into_storage_liquid, ::Livestock) } else{ return (Tech(er_App_cattle_liquid) + Tech(er_App_pigs_liquid))/2; };
n_remain_liquid	kg N /a	Annual total N remaining on the field from slurry application. Val(n_into_application_liquid, ::Storage) - Out(nh3_nliquid);
nh3_nliquid	kg N /a	Total annual NH3 emission from slurry application. Val(tan_into_application_liquid, ::Storage) * (Out(er_App_liquid) + Val(c_app, Slurry::Applrate)) * Val(c_tech, Slurry::Ctech) * Val(c_soft, Slurry::Csoft) * Val(c_season, Slurry::Cseason);
tan_remain_liquid	kg N /a	Annual N as TAN remaining on field the from slurry/liquid application. Val(tan_into_application_liquid, ::Storage) - Out(nh3_nliquid);

5.5 Detailed process description

This process computes the annual NH3 emission from slurry application. The standard emission factor for slurry application is corrected according to the TAN content and the application rate, the application technology, the crops to which the manure is applied, soft measures applied during application and the application season.

Since slurry is hardly incorporated in Switzerland, no correction for incorporaation was made for slurry application.

5.5.1 References:

Frick R, Menzi H, Katz P 1996. Ammoniakverluste nach der Hofdüngeranwendung. FAT-Bericht Nr. 486

Menzi H, Frick R, Kaufmann R 1997a. Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich-Reckenholz. 107pp.

Katz P.E. 1996. Dissertation: Ammoniakemissionen nach der Gülleanwendung auf Grünland. Diss. ETH Nr. 11382. Dissertation. Eidgenössische Technische Hochschule Zürich.

6 Application::Slurry::Applrate

Agrammon Group -2008-05-01

6.1 Short description

Correction factor taking into account the slurry application rate per ha and the TAN content of the slurry as compared to the emission rate occurring with a standard application rate of 30~m3 and a TAN content of 1.15~kg N /m3.

6.2 Input parameters

Parameter Unit		Description	
dilution_parts_water	1:x	Specific slurry dilution. TAN contents have been calcu-	
		lated based on a standard dilution of 1:1 with a TAN	
		content of 1.15 kg N $/$ m3.	
appl_rate	$\mathrm{m}3~/\mathrm{ha}$	Application rate, mean volume of slurry applied on a ha	
		per deployment.	

6.3 Technical parameters

Parameter	Value	Unit	Description
norm_er	0.5	-	Standard emission of 50% of the applied TAN cal-
			culated based on an equation published by Menzi
			\mid et al (1998) using a TAN standard of 1.15 kg \mid m3 \mid
			for an 1:1 dilution, with application rate (AR)
			standard of 30 m3 /ha and average swiss meteo-
			rological conditions: ((19.41 * TAN_standard +
			$\mid 4.02 * 1.15$ - $9.51) * (0.0214 * ARstandard + 0.36) \mid$
			/ (AR_standard * TAN-standard)))

6.4 Output

Parameter	Unit	Formula
TAN_content	-	TAN content of the slurry compared to the emission rate occuring with a standard application rate of 30 m3 and a TAN content of 1.15 kg N /m3. 2.3*(1/(In(dilution_parts_water)+1))
c_app	-	Correction factor taking into account the slurry application rate per ha and the TAN content of the slurry. (((19.41*Out(TAN_content) + 4.02*1.15 - 9.51)*(In(appl_rate)*0.0214 + 0.36)) / (In(appl_rate) * Out(TAN_content)) - Tech(norm_er));

6.5 Detailed process description

This process computes the correction factor as a function of the application rate and the TAN content of the slurry. The equation has been described by Menzi et al (1998). The correction factor is calculated based on the slurry application rate per ha and the TAN content of the slurry compared to the emission rate occurring with a standard application rate of 30~m3 and a TAN content of 1.15~kg~N~/m3.

6.5.1 References:

Menzi H, Katz, PE, Fahrni M, Neftel A, Frick R 1998. A simple empirical model based on regression analysis to estimate ammonia emissions after manure application. Atmospheric Environment 32:301-307.

7 Application::Slurry::Cseason

 $Agrammon\ Group - 2008-05-06$

7.1 Short description

Correction factor of the standard emission rate of the season for slurry application.

7.2 Input parameters

Parameter	Unit	Description
appl_summer	%	Share of slurry applied June to August.
appl_autumn_winter_spring	%	Share of slurry applied September to May.

7.3 Technical parameters

Parameter	Value	Unit	Description
c_summer	0.15	-	Correction factor for the application of slurry in
			summer (June to August): Model calculation ac-
			cording to the model of Katz (Menzi et al. 1997b)
			with meteorological data from Liebefeld 1993-2002:
			average from March to November 12°C, 70% rel-
			ative air humidity, 1.15 kg/m3 TAN, 30 m3/ha re-
			sulting in a loss of 50.6% TAN; summer 17.8°C
			resulting in a loss of 56.7% TAN $(+12\%)$. Value
			chosen for cal-culation: $+15\%$
c_autumn_winter_spring	-0.05	-	Correction factor for the application of slurry in
			autumn, winter and spring (Sept to May): Model
			calculation according to the model of Katz (Menzi
			et al. 1997b) with meteorological data from Liebe-
			feld 1993-2002: average from March to Novem-
			ber $12\text{Å}^{\circ}\text{C}$, 70% relative air humidity, 1.15 kg/m3
			\mid TAN, 30 m3/ha resulting in a loss of 50.6% TAN; \mid
			spring/autumn/winter 9°C resulting in a loss of
			48.1% TAN (-4.8%). Value chosen for calculation:
			-5%

7.4 Output

Parameter	Unit	Formula
appl_autumn_winter_spring	-	
		<pre>if (In(appl_autumn_winter_spring) > 1) { return (In(appl_autumn_winter_spring)/100); }else{ return (In(appl_autumn_winter_spring)); };</pre>
appl_summer	-	
		<pre>if (In(appl_summer) > 1) { return (In(appl_summer)/100); }else{ return (In(appl_summer)); };</pre>
c_season	-	Correction factor of the standard emission rate depending on season of application.
		(1 + (Out(appl_summer) * Tech(c_summer) + Out(appl_autumn_winter_spring) * Tech(c_autumn_winter_spring)));

7.5 Detailed process description

This process computes the correction factor for the seasons the slurry is applied.

7.5.1 References:

Menzi H, Frick R, Kaufmann R 1997. Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich-Reckenholz. 107pp.

Frick R, Menzi H 1997. Hofdüngeranwendung: Wie Ammoniakverluste vermindern? Auch einfache Massnahmen wirken. FAT Bericht Nr. 496.

8 Application::Slurry::Csoft

 $Agrammon\ Group - 2008-04-22$

8.1 Short description

Correction factor of the standard emission rate if different kind of "soft measures" are respected/applied.

8.2 Input parameters

Parameter	Unit	Description		
appl_evening	%	Share of slurry applied in the evening after 18:00.		
appl_hotdays	-	Proportion of slurry applied on hot days.		
		Possible values: never, rarely, sometimes, frequently		

8.3 Technical parameters

Parameter	Value	Unit	Description
c_evening	-0.2	-	Correction factor of the emission rate if slurry is applied in the evening (after 18h) (Menzi et al 1997; Frick and Menzi 1997). Assumption based on a single experiment with an application after 18h in August at a temperature of >20Å °C: reduction of the emission by 38%, the reduction of the emission averaged over the whole year is only 50%, i.e0.2 The correction is omitted for solid manure since infiltration into soil does not occur.
c_hotdays_frequently	0.1	-	Correction factor of the emission rate if slurry is applied frequently on hot days. Loss calculated according to the model of Katz (Menzi et al. 1997b) at $17\hat{A}^{\circ}C$ (i.e. $+5\hat{A}^{\circ}C$) compared to the reference temperature of $12\hat{A}^{\circ}C$ (other parameters: 70% rela-tive air humidity, 1.15 kg/m3 TAN, 30 m3/ha) resulting in a loss of 19.22 kg N/ha at $17\ \hat{A}^{\circ}C$ and 55.7% TAN, respectively (compared to 17.45 kg N/ha and 50.6% TAN at $12\hat{A}^{\circ}C$, respectively) which corresponds to an increase of 10.1% (rounded to 10%).
c_hotdays_sometimes	0.0	-	Correction factor of the emission rate if slurry is applied sometimes on hot days (estimation based on Menzi et al (1997)).
c_hotdays_rarely	-0.1	-	Correction factor of the emission rate if slurry is applied rarely on hot days (estimation based on Menzi et al (1997)).
c_hotdays_never	-0.2	-	Correction factor of the emission rate if slurry is applied never on hot days (estimation based on Menzi et al (1997)).

8.4 Output

Parameter	Unit	Formula
c_hotdays	-	Correction factor of the emission rate if slurry is applied on hot days. my \$key = "c_hotdays_" . In(appl_hotdays); return Tech(\$key);
c_soft	-	Correction factor of the emission rate if slurry is applied by considering different kinds of "soft measures". if (In(appl_evening) > 1) { return (1 + ((In(appl_evening)/100) * Tech(c_evening) + Out(c_hotdays))); } else { return (1 + (In(appl_evening) * Tech(c_evening) + Inch(c_evening) + Inch(c_e
		Out(c_hotdays))); };

8.5 Detailed process description

This process computes the correction factor if different soft measures for slurry application are respected.

8.5.1 References:

Menzi H, Frick R, Kaufmann R 1997. Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich-Reckenholz. 107pp.

Frick R, Menzi H 1997. Hofdüngeranwendung: Wie Ammoniakverluste vermindern? Auch einfache Massnahmen wirken. FAT Bericht Nr. 496.

9 Application::Slurry::Ctech

 $Agrammon\ Group - 2008-05-01$

9.1 Short description

Computes the correction factor depending on the slurry application technology used.

9.2 Input parameters

Parameter	Unit	Description
share_splash_plate	%	Share of slurry applied with splash plate.
share_trailing_hose	%	Share of slurry applied with trailing hose.
share_trailing_shoe	%	Share of slurry applied with trailing shoes.
$share_shallow_injection$	%	Share of slurry applied with shallow injection.
share deep injection	%	Share of slurry applied with deep injection.

9.3 Technical parameters

Parameter	Value	Unit	Description
red_splash_plate	0.0	-	There is no reduction for broadcasting with splash plate as to this way of applying slurry all the other
			methods are compared to.
red_trailing_hose	-0.3	-	Reduction efficiency as compared to broadcasting applying trailing hose. Adopted from UNECE (2007), Frick and Menzi (1997) and Menzi et al. (1997).
red_trailing_shoe	-0.5	-	Reduction efficiency as compared to broadcasting applying trailing shoe. Adopted from UNECE (2007), Frick and Menzi (1997) and Menzi et al. (1997).
red_shallow_injection	-0.7	-	Reduction efficiency as compared to broadcasting applying shallow injection. Adopted from UNECE (2007), Frick and Menzi (1997) and Menzi et al. (1997).
red_deep_injection	-0.8	-	Reduction efficiency as compared to broadcasting applying deep injection. Adopted from UN-ECE(2007), Frick and Menzi (1997) and Menzi et al. (1997).

9.4 Output

Parameter	Unit	Formula
share_shallow_injection	-	Share if (In(share_shallow_injection) > 1) { return (In(share_shallow_injection)/100); } else{ return (In(share_shallow_injection)); };
share_deep_injection	-	Share if (In(share_deep_injection) > 1) { return (In(share_deep_injection)/100); } else{ return (In(share_deep_injection)); };
share_splash_plate	-	Share if (In(share_splash_plate) > 1) { return (In(share_splash_plate)/100); } else{ return (In(share_splash_plate)); };
share_trailing_shoe	-	Share if (In(share_trailing_shoe) > 1) { return (In(share_trailing_shoe)/100); } else{ return (In(share_trailing_shoe)); };
c_{tech}	-	Reduction factor for the emission due to the used application technology as compared to broadcasting. 1 + (Out(share_deep_injection) * Tech(red_deep_injection) + Out(share_shallow_injection) * Tech(red_shallow_injection) + Out(share_trailing_shoe) * Tech(red_trailing_shoe) + Out(share_trailing_hose) * Tech(red_trailing_hose) + Out(share_splash_plate) * Tech(red_splash_plate));
share_trailing_hose	-	Share if (In(share_trailing_hose) > 1) { return (In(share_trailing_hose)/100); } else{ return (In(share_trailing_hose)); }; };

9.5 Detailed process description

This process computes the correction factor according to the technology used for the slurry application.

9.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. UNECE executive body for the convention on long-range transboundary air pollution, Working Group on Strategies and Review, EB.AIR/WH.5/2007/13/ 16 July 2007, Genf. 35p.

Frick R, Menzi H 1997. Hofdüngeranwendung: Wie Ammoniakverluste vermindern? Auch einfache Massnahmen wirken. FAT Bericht 496.

Menzi H, Frick R, Kaufmann R 1997. Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich-Reckenholz. 107pp.

10 Application::SolidManure

Agrammon Group -2008-03-30

10.1 Short description

Computes the annual NH3 emission from solid manure application.

Attention: simplified model based on total N output from storage!!!

10.2 Input parameters

10.3 Technical parameters

Parameter	Value	Unit	Description
er_App_manure_dairycows-	0.8	-	Emission rate for manure application. The average
_cattle_pigs			rate has been derived from Frick et al. (1996) and
			Menzi et al. (1996). The value is based on the
			average emissions from diffrent Swiss experiments.
			Emission based on TAN of slurry.
er_App_manure_horses-	0.7	-	Emission rate for manure application. The average
$_$ other equides $_$ small ruminants			rate has been derived from Frick et al. (1996) and
			Menzi et al. (1996). The value is based on the
			average emissions from diffrent Swiss experiments.
			Emission based on TAN of slurry.
TAN_share_solid	0.5	-	Share of TAN in applied solid manure.

10.4 Output

Parameter	Unit	Formula
nh3_nsolid_horses- _otherequides_smallruminants	kg N /a	NH3 emission from solid manure application. Tech(er_App_manure_horses_otherequides_smallruminants) * Tech(TAN_share_solid) Val(n_into_application_manure_horses_otherequides_smallruminant ::Storage) * Val(c_incorp_time, SolidManure::CincorpTime) * Val(c_season, SolidManure::Cseason);
nh3_nsolid_dairycows_cattle- _pigs	kg N /a	NH3 emission from solid manure application. Tech(er_App_manure_dairycows_cattle_pigs) * Tech(TAN_share_solid) Val(n_into_application_manure_dairycows_cattle_pigs, ::Storage) * Val(c_incorp_time, SolidManure::CincorpTime) * Val(c_season, SolidManure::Cseason);
nh3_nsolid	kg N /a	NH3 emission from solid manure application. Out(nh3_nsolid_dairycows_cattle_pigs) + Out(nh3_nsolid_horses_otherequides_smallruminants);
$n_{from solid}$	kg N /a	N flux out of solid manure application. Val(n_into_application_manure, ::Storage) - Out(nh3_nsolid);

10.5 Detailed process description

This process computes the annual average NH3 emission from solid manure application (liquid/solid and deep litter). The standard emission factor is corrected according to the TAN content and the application rate, the application technology, the crops to which the manure is applied, respected soft measures during application and the application season, the time lag between application and incorporation, the incorporation technology used, and the proportion of solid manure that is applied on hot days.

10.5.1 References:

Menzi H, Keller M, Katz P, Fahrni M, Neftel A 1997. Ammoniakverluste nach der Anwendung von Mist. Agrarforschung 4:328-331.

Menzi H, Katz P, Frick R, Fahrni M, Keller M 1997: Ammonia emissions following the application of solid manure to grassland. In: Jarvis S.C. and Pain B.F. (Eds.): "Nitrogen Emissions from Grassland", CAB, 265-274.

11 Application::SolidManure::CincorpTime

Agrammon Group -2008-05-02

11.1 Short description

Correction factor taking into account the time lag between application and incorporation of the solid manure.

11.2 Input parameters

Parameter	$_{ m Unit}$	Description
incorp_lw1h	%	Share of incorporated solid manure within 1 hour.
incorp_lw4h	%	Share of incorporated solid manure within 4 hours.
incorp_lw8h	%	Share of incorporated solid manure within 8 hours.
incorp_lw1d	%	Share of incorporated solid manure within 1 day.
incorp_lw3d	%	Share of incorporated solid manure within 3 days.
incorp_gt3d	%	Share of incorporated solid manure after 3 days.
incorp_none	%	Share of solid manure not incorporated.

11.3 Technical parameters

Parameter	Value	Unit	Description
eff_inc_lw1h	-0.9	-	Reduction due to incorporation of solid manure
			within 1 hour. UNECE (2007).
eff_inc_lw4h	-0.7	-	Reduction due to incorporation of solid manure
			within 4 hours. Empirical estimate deduced from
			UNECE (2007). Mean value between the cate-
			gory incorporation within 1 hour and incorpora-
			tion within 8 hours.
eff_inc_lw8h	-0.5	-	Reduction due to incorporation of solid manure
			within 8 hours. Values adapted from UNECE
			(2007) (category Incorporation by plough within
			12 h)
eff_inc_lw1d	-0.35	-	Reduction due to incorporation of solid manure
			within 1 day. Values adapted from UNECE (2007)
			Empirical estimate deduced from Menzi et al.
<u> </u>			(1997).
eff_inc_lw3d	-0.3	-	Reduction due to incorporation of solid manure
			within 3 days. Empirical estimate deduced from
<u> </u>	0.1		Menzi et al. (1997).
eff_inc_gt3d	-0.1	-	Reduction due to incorporation of solid manure af-
			ter 3 days Empirical estimate deduced from Menzi
			et al. (1997).
eff_inc_none	0.0	_	Basis with no incorporation of solid manure.

11.4 Output

Unit	Formula
-	Correction factor taking into account the time lag between application and incorporation of the solid manure.
	1 + (Out(incorp_lw1h) * Tech(eff_inc_lw1h) + Out(incorp_lw4h) * Tech(eff_inc_lw4h) + Out(incorp_lw8h) * Tech(eff_inc_lw8h) + Out(incorp_lw1d) * Tech(eff_inc_lw1d) + Out(incorp_lw3d) * Tech(eff_inc_lw3d) + Out(incorp_gt3d) * Tech(eff_inc_gt3d) + Out(incorp_none) * Tech(eff_inc_none));
-	Share of incorporated solid manure within 1 day.
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
-	Share of incorporated solid manure within 3 days.
	$\begin{array}{lll} & \text{if } (\text{In}(\text{incorp_lw3d}) > 1) & \{ \text{ return } (\text{In}(\text{incorp_lw3d})/100) \ \} \\ & \text{else} \ \{ \text{ return } (\text{In}(\text{incorp_lw3d})); \\ & \}; \end{array}$
-	Share of not-incorporated solid manure.
	<pre>if (In(incorp_none) > 1) { return (In(incorp_none)/100) } else { return (In(incorp_none)); };</pre>
-	Share of incorporated solid manure within 4 hour.
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
-	Share of incorporated solid manure within 1 hour.
	<pre>if (In(incorp_lw1h) > 1) { return (In(incorp_lw1h)/100) } else { return (In(incorp_lw1h)); };</pre>
-	Share of incorporated solid manure within 8 hour.
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
_	Share of incorporated solid manure after 3 days.
	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$
	-

11.5 Detailed process description

This process computes the correction factor for the time lag between application and incorporation of the solid manure.

11.5.1 References:

Menzi H, Keller M, Katz P, Fahrni M, Neftel A 1997. Ammoniakverluste nach der Anwendung von Mist. Agrarforschung 4:328-331.

${\bf 12}\quad {\bf Application:: Solid Manure:: Cseason}$

 $Agrammon\ Group - 2008-05-06$

12.1 Short description

Correction factor of the standard emission rate of the season for solid manure application.

12.2 Input parameters

Parameter	Unit	Description
$appl_summer$	%	Share of solid manure applied June to August.
appl_autumn_winter_spring	%	Share of solid manure applied September to May.

12.3 Technical parameters

Parameter	Value	Unit	Description
c_summer	0.15	_	Correction factor for the application of solid ma-
			nure in summer (June to August): Model calcu-
			lation according to the model of Katz (Menzi et
			al. 1997b) with meteorological data from Liebe-
			feld 1993-2002: average from March to Novem-
			ber $12\text{Å}^{\circ}\text{C}$, 70% relative air humidity, 1.15 kg/m3
			TAN, 30 m3/ha resulting in a loss of 50.6% TAN;
			summer 17.8°C resulting in a loss of 56.7% TAN
			(+12%). Value chosen for cal-culation: $+15%$.
c_autumn_winter_spring	-0.05	_	Correction factor for the application of solid ma-
			nure in autumn, winter and spring (Sept to May):
			Model calculation according to the model of Katz
			(Menzi et al. 1997b) with meteorological data
			from Liebefeld 1993-2002: average from March to
			November 12°C, 70% relative air humidity, 1.15
			m kg/m3~TAN,30~m3/ha~resulting~in~a~loss~of~50.6%
			TAN; spring/autumn/winter 9°C resulting in a
			loss of 48.1% TAN (-4.8%). Value chosen for cal-
			culation: -5%.

12.4 Output

Parameter	Unit	Formula
appl_autumn_winter_spring	-	
		<pre>if (In(appl_autumn_winter_spring) > 1) { return (In(appl_autumn_winter_spring)/100); }else{ return (In(appl_autumn_winter_spring)); };</pre>
appl_summer	_	
		<pre>if (In(appl_summer) > 1) { return (In(appl_summer)/100); }else{ return (In(appl_summer)); };</pre>
c_season	-	Correction factor of the standard emission rate depending on season of application.
		(1 + (Out(appl_summer) * Tech(c_summer) + Out(appl_autumn_winter_spring) * Tech(c_autumn_winter_spring)));

12.5 Detailed process description

This process computes the correction factor for the seasons the solid manure is applied.

12.5.1 References:

Menzi H, Frick R, Kaufmann R 1997. Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich-Reckenholz. 107pp.

Frick R, Menzi H 1997. Hofdüngeranwendung: Wie Ammoniakverluste vermindern? Auch einfache Massnahmen wirken. FAT Bericht Nr. 496.

13 Livestock

 $Agrammon\ Group - 2008-05-07$

13.1 Short description

Collects the annual NH3 emission and the N flux for transfer into storage.

13.2 Input parameters

13.3 Technical parameters

13.4 Output

Parameter	Unit	Formula
n_into_storage	kg N /a	Annual N flux (liquid and solid share) from housing and yard into the storage from all animals.
		Sum(n_from_cattle, Livestock::OtherCattle) + Sum(n_from_dairycow, Livestock::DairyCow) + Sum(n_from_pig, Livestock::Pig) + Sum(n_from_fattening_pig, Livestock::FatteningPigs) + Sum(n_from_equides, Livestock::Equides) + Sum(n_from_other, Livestock::SmallRuminants) + Sum(n_from_poultry, Livestock::Poultry);
nh3_ngrazing	kg N /a	Annual NH3 emission from all grazing areas and Poultry outdoor activities.
		Sum(nh3_ngrazing, Livestock::OtherCattle::Grazing) + Sum(nh3_ngrazing, Livestock::DairyCow::Grazing) + Sum(nh3_ngrazing, Livestock::Pig::Grazing) + Sum(nh3_ngrazing, Livestock::FatteningPigs::Grazing) + Sum(nh3_ngrazing, Livestock::Equides::Grazing) + Sum(nh3_ngrazing, Livestock::SmallRuminants::Grazing) + Sum(nh3_nfree_range, Livestock::Poultry::Outdoor);
tan_into_storage_poultry- _turkeys_broilers	kg N /a	Annual N flux (poulty manure) as TAN from housing and yard into the storage from poultry.
		Sum(tan_from_poultry_turkeys_broilers, Livestock::Poultry);
nh3_nyard	kg N /a	Annual NH3 emission from all yards.
		Sum(nh3_nyard, Livestock::OtherCattle::Yard) + Sum(nh3_nyard, Livestock::Equides::Yard) + Sum(nh3_nyard, Livestock::DairyCow::Yard);
n_into_storage_solid_horses- _otherequides_smallruminants	kg N /a	Annual N flux (solid share) from housing and yard into the storage from all animals besides poultry.
		Sum(n_solid_from_equides, Livestock::Equides) + Sum(n_solid_from_other, Livestock::SmallRuminants);
nh3_nhousing	kg N /a	Annual NH3 emission from all housings.
		Sum(nh3_nhousing, Livestock::OtherCattle::Housing) + Sum(nh3_nhousing, Livestock::DairyCow::Housing) + Sum(nh3_nhousing, Livestock::SmallRuminants::Housing) + Sum(nh3_nhousing, Livestock::Pig::Housing) + Sum(nh3_nhousing, Livestock::FatteningPigs::Housing) + Sum(nh3_nhousing, Livestock::Equides::Housing) + Sum(nh3_nhousing, Livestock::Poultry::Housing);
n_remain_pasture	kg N /a	Annual N remaining on pasture from all grazing areas.
		Sum(n_remain_pasture, Livestock::OtherCattle::Grazing) + Sum(n_remain_pasture, Livestock::DairyCow::Grazing) + Sum(n_remain_pasture, Livestock::Pig::Grazing) + Sum(n_remain_pasture, Livestock::FatteningPigs::Grazing) + Sum(n_remain_pasture, Livestock::Equides::Grazing) + Sum(n_remain_pasture, Livestock::SmallRuminants::Grazing) + Sum(n_remain_free_range, Livestock::Poultry::Outdoor);
n_into_storage_solid- _dairycows_cattle_pigs	kg N /a	Annual N flux (solid share) from housing and yard into the storage from all animals besides poultry.
		Sum(n_solid_from_cattle, Livestock::OtherCattle) + Sum(n_solid_from_dairycow, Livestock::DairyCow) + Sum(n_solid_from_pig, Livestock::Pig) + Sum(n_solid_from_fattening_pig, Livestock::FatteningPigs);
n excretion Seite 28/200	kg N/a	Total annual N excreted by all animals. ex / 1003/ 2009-05-06 May 6, 2009
		Sum(n_excretion, Livestock::OtherCattle) + Sum(n_excretion, Livestock::Pig) + Sum(n_excretion, Livestock::FatteningPigs) + Sum(n_excretion, Livestock::Equides) + Sum(n_excretion, Livestock::Equides) + Sum(n_excretion, Livestock::Equides)

13.5 Detailed process description

This process summarizes the annual NH3 emission from livestock (housing, yard and grazing) for all animal categories. Further it calculates the N flux into storage from housing and yard. The manure is splited in solid and liquid/slurry.

14 Livestock::DairyCow

 $Agrammon\ Group - 2008-02-29$

14.1 Short description

Collects the annual emission of NH3 and the N flux for dairy cows.

14.2 Input parameters

14.3 Technical parameters

14.4 Output

Parameter	Unit	Formula
tan_solid_from_dairycow	kg N /a	Annual N flux as TAN from dairy cows housing and yard, solid fraction.
		Val('tan_outhousing_solid', DairyCow::Housing) + Val('tan_outyard_solid', DairyCow::Yard);
tan_from_dairycow	kg N /a	Annual N flux as TAN from dairy cow housing and yard.
		Val(tan_outhousing, DairyCow::Housing) + Val(tan_outyard, DairyCow::Yard);
n_solid_from_dairycow	kg N /a	Annual N flux from dairy cows housing and yard, solid fraction.
		Val('n_outhousing_solid', DairyCow::Housing) + Val('n_outyard_solid', DairyCow::Yard);
n_from_dairycow	kg N /a	Annual N flux from dairy cows housing and yard.
		Val('n_outhousing', DairyCow::Housing) + Val('n_outyard', DairyCow::Yard);
nh3_ndairycow	kg N /a	Annual NH3 emission from dairy cows housing, yard and grazing (production).
		Val('nh3_nhousing', DairyCow::Housing) + Val('nh3_nyard', DairyCow::Yard) + Val('nh3_ngrazing', DairyCow::Grazing);
n_excretion	kg N /a	Annual N excreted by dairy cows.
		Val('n_excretion', DairyCow::Excretion);
tan_liquid_from_dairycow	kg N /a	Annual N flux as TAN from dairy cow housing and yard, liquid fraction.
		Val('tan_outhousing_liquid', DairyCow::Housing) + Val('tan_outyard_liquid', DairyCow::Yard);
n_liquid_from_dairycow	kg N /a	Annual N flux from dairy cows housing and yard, liquid fraction.
		Val('n_outhousing_liquid', DairyCow::Housing) + Val('n_outyard_liquid', DairyCow::Yard);

14.5 Detailed process description

This process summarizes the annual emission of NH3 for dairy cows from housing, yard and grazing. Further it summarizes the annual N flux from the housing to the storage for dairy cows.

15 Livestock::DairyCow::Excretion

Agrammon Group -2008-03-30

15.1 Short description

Computes the annual N excretion of a number of dairy cows as a function of the milk yield and the feed ration.

15.2 Input parameters

Parameter	Unit	Description
dairy_cows	-	Number of dairy cows in barn.

15.3 Technical parameters

Parameter	Value	Unit	Description
standard_N_excretion	115	kg N /a	Annual standard N excretion for a dairy
			cow according to Flisch et al. (2009).
share_Nsol	0.60	-	Nsol content of excreta. Derived from
			e.g. Peterson et al. (1998) or Burgos et
			al. (2005).
feed_influence_on_Nsol	1	kg Nsol /kg N	Proportion of N (calculated from feed ra-
			tion correction) excreted as Nsol. De-
			rived from e.g. Peterson et al. (1998).

15.4 Output

Parameter	Unit	Formula
dairy_cows	-	Number of dairy cows in barn.
		In('dairy_cows');
n_sol_excretion	kg N /a	Annual soluble N excreted by a specified number of animals.
		Tech(share_Nsol) * Out(n_excretion) + (Out(n_excretion) - Tech(standard_N_excretion)*In('dairy_cows') * Val(cmilk_yield, Excretion::CMilk)) * Tech(feed_influence_on_Nsol);
n_excretion_animal	kg N /a	Annual mean total N excreted per animal.
		Tech(standard_N_excretion) * Val(cmilk_yield, Excretion::CMilk) * Val(c_feed_ration, Excretion::CFeed);
n_excretion	kg N /a	Annual total N excreted by a specified number of animals.
		Tech(standard_N_excretion) * Val(cmilk_yield, Excretion::CMilk) * Val(c_feed_ration, Excretion::CFeed) * In('dairy_cows');

15.5 Detailed process description

This process calculates the annual N excretion (total N and Nsol (urea plus measured total ammoniacal nitrogen)) of a number of dairy cows as a function of the milk yield and the supplied feed ration. Nitrogen surpluses from increased nitrogen uptake are primarily excreted as Nsol in the urine. Eighty percent of the increased N excretion is therefore added to the Nsol fraction.

The standard N excretion was taken from the official Swiss fertilizer guidelines. These values were compiled on the basis of official feeding recommendations (RAP 1999) by a group of feeding experts under

the lead of H. Menzi. Even though the methodology used is not documented in detail, it was well known to the authors of DYNAMO.

15.5.1 References:

Burgos SA, Robinson PH, Fadel JG, DePeters EJ 2005. Ammonia volatilization potential: Prediction of urinary urea nitrogen output on lactating dairy cows. Agriculture, Ecosystems and Environment 111:261-269.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

RAP 1999. Fütterungsempfehlungen und Nährwerttabelle für Wiederkäuer. 4. überarbeitete Auflage, 327p, Landwirtschaftliche Lehrmittelzentrale, Zollikofen.

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

16 Livestock::DairyCow::Excretion::CConcentrates

Agrammon Group -2007-07-12

16.1 Short description

Computes the correction factor for the annual N excretion of a dairy cow as a function of the amount and type of concentrates used.

16.2 Input parameters

Parameter	Unit	Description
$amount_summer$	kg/d	Amount of concentrates in summer per animal per day.
amount_winter	kg/d	Amount of concentrates in winter per animal per day.

16.3 Technical parameters

Parameter	Value	Unit	Description
par_a_summer	0.04	d /kg	Parameter a of linear regression a + b*x.
par_b_summer	-0.04	-	Parameter a of linear regression a + b*x.
par_a_winter	0.01	d /kg	Parameter a of linear regression a + b*x.
par_b_winter	-0.005	-	Parameter b of linear regression a + b*x.

16.4 Output

Parameter	Unit	Formula
c_concentrates_summer	-	Calculation of correction to exretions with 0.3, 0.5, 1, 2, 3, 4, 6 kg of concentrate (barley and wheat) per cow per day, taking into account the amount of roghage substituted by the concentrate (according to the energy content) and the relative differnce of the protein content of the roughage and the concentrate. Results used to calculate a regression for % modification of N excretion due to concentrate quantity summer. Standard for Summer = 1 kg animal-1 day-1. Tech(par_a_summer) + Tech(par_b_summer) * In('amount_summer');
c_concentrates_winter	-	Calculation of correction to exretions with 0.3, 0.5, 1, 2, 3, 4, 6 kg of concentrate (barley and wheat) per cow per day, taking into account the amount of roghage substituted by the concentrate (according to the energy content) and the relative differnce of the protein content of the roughage and the concentrate. Results used to calculate a regression for % modification of N excretion due to concentrate quantity summer. Standard for Winter = 2 kg animal-1 day-1. Tech(par_a_winter) + Tech(par_b_winter) * In('amount_winter');

16.5 Detailed process description

This formula takes into account the amount of concentrates used per cow during the winter and summer feeding period. The correction is based on the fact that concentrates (grains) can specifically balance the energy to protein ratio, thus reducing the crude protein.

16.5.1 References:

Flückiger E 1989. Stickstoff- und Mineralstoffumsatz von Milchkühen in Abhängigkeit von Rationentyp und Produktionsphase unter besonderer Berücksichtigung umweltrelevanter Aspekte. Diss ETH Nr 8865.

17 Livestock::DairyCow::Excretion::CFeed

Agrammon Group -2008-02-19

17.1 Short description

Computes the correction factor for the annual N excretion of a dairy cow as a function of the summer and winter feed ration, and the amount and type of concentrates used.

17.2 Input parameters

17.3 Technical parameters

Parameter	Value	Unit	Description
d_summer	0.55	-	Duration of summer feeding period (200 days). Av-
			erage for different altitude zones.
d_winter	0.45	-	Duration of the winter feeding period (165 days).
			Average for different altitude zones.

17.4 Output

Parameter	Unit	Formula
c_feed_ration	-	Feed ration correction factor for annual N excretion.
		1 + (Tech(d_summer) * Val(c_summer_ration, CFeedSummerRatio) + Tech(d_winter) * Val(c_winter_ration, CFeedWinterRatio) + Tech(d_summer) * Val(c_concentrates_summer, CConcentrates) + Tech(d_winter) * Val(c_concentrates_winter, CConcentrates));

17.5 Detailed process description

This process accounts for the fact, that special rations can result in higher or lower N excretions as compared to standard excretions from Flisch et al. (2009). A differentiated consideration of the duration of the summer and winter feeding period according to farm location (altitude etc.) is possible but was not implemented for the emission inventory.

17.5.1 References:

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

18 Livestock::DairyCow::Excretion::CFeedSummerRatio

Agrammon Group -2008-02-19

18.1 Short description

Computes the correction factor for the annual N excretion of a dairy cow as a function of the summer feed ration.

18.2 Input parameters

Parameter	Unit	Description
share_hay_summer	%	Proportion of animals receiving hay in summer.
share_maize_silage_summer	%	Proportion of animals receiving maize silage in summer.
share_maize_pellets_summer	%	Proportion of animals receiving maize pellets in summer.

18.3 Technical parameters

Parameter	Value	Unit	Description
c_hay_summer	-0.05	-	Modification of annual N excretion by adding hay
			to the standard ration during the summer feeding
			period.
$c_{maize_silage_summer}$	-0.08	-	Modification of annual N excretion by adding
			maize silage to the standard ration during summer
			feeding period.
c_maize_pellets_summer	-0.04	-	Modification of annual N excretion by adding
			maize pellets to the standard ration during sum-
			mer feeding period.

18.4 Output

Parameter	Unit	Formula
c_summer_ration	-	Summer feed ration correction factor for annual N excretion.
		Tech(c_hay_summer) * Out('share_hay_summer') + Tech(c_maize_silage_summer) * Out('share_maize_silage_summer') + Tech(c_maize_pellets_summer) * Out('share_maize_pellets_summer');
share_hay_summer	-	Share
		<pre>if (In('share_hay_summer') > 1) { return (In('share_hay_summer')/100); } else { return (In('share_hay_summer')); };</pre>
share_maize_silage_summer	-	Share
		<pre>if (In('share_maize_silage_summer') > 1) { return (In('share_maize_silage_summer')/100); } else { return (In('share_maize_silage_summer')); };</pre>
share_maize_pellets_summer	-	Share
		<pre>if (In('share_maize_pellets_summer') > 1) { return (In('share_maize_pellets_summer')/100); } else { return (In('share_maize_pellets_summer')); };</pre>

18.5 Detailed process description

This process calculates the correction factor for N excretion during the summer feeding period as compared to the standard excretion values of Walther et al. (2001). The average feed ration considered for the standard excretion presented in Walther et al. (2001) was calculated as average of four summer and four winter standard rations using dsummer and dwinter mentioned above. To calculate the N excretion of farm-specific summer rations, excretions were calculated with the same model used by the authors of Walther et al. (2001) (based on official feeing recommendations (RAP 1999)) using proportions of the specific feed typically used on farms (expert assumptions). No correction was considered for grass and grass silage, because grass is used by virtually all farms during the summer feeding period und because the crude protein content of grass silage is not much lower than that of grass. The thus calculated summer excretions were then expressed as

18.5.1 References:

RAP 1999. Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer. 4. überarbeitete Auflage. LMZ Zollikofen. Walther U, Ryser JP, Flisch R (Eds.) 2001. Grundlagen für die Düngung im Ackerund Futterbau 2001. Agrarforschung 8:1-80.

19 Livestock::DairyCow::Excretion::CFeedWinterRatio

Agrammon Group -2008-05-02

19.1 Short description

Computes the correction factor for the annual N excretion of a dairy cow as a function of the winter feed ration.

19.2 Input parameters

Parameter	Unit	Description
share_maize_silage_winter	%	Proportion of animals receiving maize silage in winter.
share_grass_silage_winter	%	Proportion of animals receiving grass silage in winter.
share_maize_pellets_winter	%	Proportion of animals receiving maize pellets in winter.
share_potatoes_winter	%	Proportion of animals receiving potatoes in winter.
share_beets_winter	%	Proportion of animals receiving beets in winter.

19.3 Technical parameters

Parameter	Value	Unit	Description
c_grass_silage_winter	0.027	-	Modification of annual N excretion by adding grass
			silage to the standard ration during winter feeding
			period.
c_maize_silage_winter	-0.016	-	Modification of annual N excretion by adding
			maize silage to the standard ration during winter
			feeding period.
c_maize_pellets_winter	-0.014	-	Modification of annual N excretion by adding
			maize pellets to the standard ration during win-
			ter feeding period.
c_potatoes_winter	0.01	-	Modification of annual N excretion by adding
			potatoes to the standard ration during the win-
			ter feeding period.
c_beets_winter	0.019	-	Modification of annual N excretion by adding
			beets to the standard ration during the winter
			feeding period.

19.4 Output

Parameter	Unit	Formula
share_maize_pellets_winter	-	Share if (In('share_maize_pellets_winter') > 1) { return (In('share_maize_pellets_winter')/100); } else { return (In('share_maize_pellets_winter')); };
share_potatoes_winter	-	Share if (In('share_potatoes_winter') > 1) { return (In('share_potatoes_winter')/100); } else { return (In('share_potatoes_winter')); };
share_beets_winter	-	Share if (In('share_beets_winter') > 1) { return (In('share_beets_winter')/100); } else { return (In('share_beets_winter')); };
c_winter_ration	-	Winter feed ration correction factor for annual N excretion. Tech(c_grass_silage_winter) * Out('share_grass_silage_winter') + Tech(c_maize_silage_winter) * Out('share_maize_silage_winter') + Tech(c_maize_pellets_winter) * Out('share_maize_pellets_winter') + Tech(c_potatoes_winter) * Out('share_potatoes_winter') + Tech(c_beets_winter) * Out('share_beets_winter');
share_maize_silage_winter	-	Share if (In('share_maize_silage_winter') > 1) { return (In('share_maize_silage_winter')/100); } else { return (In('share_maize_silage_winter')); };
share_grass_silage_winter	-	Share if (In('share_grass_silage_winter') > 1) { return (In('share_grass_silage_winter')/100); } else { return (In('share_grass_silage_winter')); };

19.5 Detailed process description

This process calculates the correction factor for the N excretion during the winter feeding period as compared to the standard excretion values of Walther et al. (2001). The average feed ration considered for the standard excretion presented in Walther et al. (2001) was calculated as average of four summer and four winter standard rations using dsummer and dwinter mentioned above. To calculate the N excretion of farm-specific winter rations, excretions were calculated with the same model used by the authors of Walther et al. (2001) (based on official feeding recommendations (RAP 1999)) using proportions of the specific feed typically used on farms (expert assumptions). No correction was considered for hay, because hay is used by virtually all farms during the winter feeding period. The thus calculated winter excretions were then expressed as

19.5.1 References:

RAP 1999. Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer. 4. überarbeitete Auflage. LMZ Zollikofen. Walther U,Ryser JP, Flisch R (Eds.) 2001. Grundlagen für die Düngung im Acker- und Futterbau 2001. Agrarforschung 8:1-80.

${\bf 20 \quad Livestock:: Dairy Cow:: Excretion:: CMilk}$

 $Agrammon\ Group - 2008-02-29$

20.1 Short description

Computes the correction factor for the annual N excretion of a dairy cow as a function of the milk yield.

20.2 Input parameters

Parameter	Unit	Description
milk_yield	kg/a	Annual milk yield per dairy cow.

20.3 Technical parameters

Parameter	Value	Unit	Description
standard_milk_yield	6500	kg/a	Annual standard milk yield per dairy cow.
a_high	0.02	-	For milk yield > 6500
a_low	0.1	-	For milk yield < 6500

20.4 Output

Parameter	Unit	Formula
cmilk_yield	-	Milk yield correction factor for annual N excretion.
		<pre>my \$a; if (In('milk_yield') > Tech(standard_milk_yield)) {</pre>

20.5 Detailed process description

This process describes the relationship between the milk yield and the N excretion. While the N excretion decreases by 10

20.5.1 References:

Flisch R, Sinaj S, Charles R, Richner W (Eds.) 2009. Grundlagen für die die Düngung im Acker- und Futterbau 2009 (GRUDAF), Agrarforschung 16.2.

21 Livestock::DairyCow::Grazing

 $Agrammon\ Group - 2008-04-23$

21.1 Short description

Computes the annual NH3 emission from grazing dairy cows.

21.2 Input parameters

Parameter	Unit	Description	
grazing_days	d/a	Average grazing days per year.	
grazing_hours	h /d	Average grazing hours per day.	

21.3 Technical parameters

Parameter	Value	Unit	Description
er_dairycow_grazing	0.05	-	Emission rate for the calculation of the annual NH3
			emission during grazing for dairy cows. 5% Ntot
			(conversion with a portion of Nsol of 60% : EF 8.3%
			TAN; value based on Table 1 (Mean emission rate
			of 3.1% N excreted; range: 1.6-5.7% for grazing
			cows on a sward fertilized with 250 kg N/y of
			Bussink (1992) and Table 3 (Mean emission rate
			of 3.3% N excreted; range: 0.0-7.4% for grazing
			cows on a sward fertilized with 250 kg N/y of
			Bussink (1994)). The corresponding value is rather
			lower for Switzerland since the level of fertilization
			is lower resulting in a lower level for crude protein.
			The N level in the fodder of the sward fertilized
			with 250 kg N/y (31 g/kg d.m.; Table 4) is compa-
			rable to values common for Switzerland (Bussink
			(1994)). The EF chosen includes a safety margin.

21.4 Output

Parameter	Unit	Formula
grazing_days	d /a	Grazing days per year.
		In(grazing_days);
nh3_ngrazing	kg N /a	Annual total NH3 emission from all grazing dairy cows.
		Out(n_into_grazing) * Tech(er_dairycow_grazing);
$n_{into_grazing}$	kg N /a	Annual total N excretion during grazing for dairy cows.
		Val(n_excretion, Excretion) * In(grazing_days) / 365 * In(grazing_hours) / 24;
n_remain_pasture	kg N /a	Annual N input on pasture.
		Out(n_into_grazing) - Out(nh3_ngrazing);
nh3_ngrazing_animal	kg N /a	Annual NH3 emission per dairy cow from grazing.
		<pre>if(Val(dairy_cows, Excretion) != 0){ return Out(nh3_ngrazing) / Val(dairy_cows, Excretion); } else { return 0; };</pre>
n_sol_into_grazing	kg N /a	Annual soluble N (TAN) excretion during grazing for dairy cows.
		Val(n_sol_excretion, Excretion) * In(grazing_days) / 365 * In(grazing_hours) / 24;
grazing_hours	h /d	Grazing hours per day.
		In(grazing_hours);

21.5 Detailed process description

This process calculates the annual NH3 emission from grazing dairy cows based on the total N excreted on the pastures. The N excreted is calculated according to the time the animals spend on the pasture. It assumes that the excretions on the pasture are proportional to the time the animals are grazed.

21.5.1 References:

Bussink DW 1992. Ammonia volatilization from grassland receiving nitrogen fertilizer and rotationally grazed by dairy cattle. Fertilizer Research 33:257-265.

Bussink DW 1994. Relationship between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertilizer Research 38:111-121.

Jarvis SC, Hatch DJ, Lockyer DR 1989. Ammonia fluxes from grazed grassland: annual losses from cattle production systems and their relation to nitrogen inputs. Journal of Agricultural Science 113:99-108.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Ross CA, Jarvis SC 2001. Measurement of emission and deposition pattern of ammonia from urine in grass swards. Atmospheric environment 35:867-875.

22 Livestock::DairyCow::Housing

 $Agrammon\ Group - 2008-04-22$

22.1 Short description

Computes the annual NH3 emission from dairy cow housing systems.

22.2 Input parameters

22.3 Technical parameters

22.4 Output

Parameter	Unit	Formula
tan_outhousing_liquid	kg N /a	Annual N flux as TAN out of housing, slurry or liquid fraction of manure from dairy cows.
		Out(n_outhousing) * Val(share_liquid, Housing::Type) * Out(share_tan_out);
$n_outhousing_liquid$	kg N /a	Annual N flux out of housing, slurry or liquid fraction of manure from dairy cows.
		Out(n_outhousing) * Val(share_liquid, Housing::Type);
$n_outhousing$	kg N /a	Annual N flux out of the housing.
		Out(n_into_housing) - Out(nh3_nhousing);
n_into_housing	kg N /a	Annual N flux into the house.
		Val(n_excretion, Excretion) - Val(n_into_grazing, Grazing) - Val(n_into_yard, Yard);
tan_outhousing	kg N /a	Annual N flux as TAN out of the housing.
		Out(n_sol_into_housing) - Out(nh3_nhousing);
nh3_nhousing	kg N /a	Annual NH3 emission from dairy cow housing systems per animal place.
		(Val(n_sol_excretion, Excretion) - Val(n_sol_reduction_house, Yard)) * Val(k_grazing, Housing::KGrazing) * Val(er_housing, Housing::Type) * Val(k_area, Housing::Type) * Val('c_UNECE', Housing::Floor);
n_sol_into_housing	kg N /a	Annual N flux as TAN into the house.
		Val(n_sol_excretion, Excretion) - Val(n_sol_into_grazing, Grazing) - Val(n_sol_into_yard, Yard);
tan_outhousing_solid	kg N /a	Annual N flux as TAN out of housing from solid fraction of manure.
		Out(n_outhousing) * (1 - Val(share_liquid, Housing::Type)) * Out(share_tan_out);
n_outhousing_solid	kg N /a	Annual N flux out of housing from solid fraction of manure.
		Out(n_outhousing) * (1 - Val(share_liquid, Housing::Type));
share_tan_out	-	Share of TAN for interface to storage, the same share is assumed for solid and liquid parts of output. Mineralization and immobilization are considerd in the storage module.
		$ \begin{array}{ccccccccccccccccccccccccccccccccccc$

22.5 Detailed process description

This process calculates the NH3 emission in dairy cow housing depending on the N excretion and the housing systems. The NH3 emission is assumed to be proportional to the total N excretion of the animals because the contaminated surfaces will primarily drive emission, which will remain active even when animals are on the pasture or exercise yard.

A proportional correction is applied according to the area per animal.

A correction is applied if the part of the day grazing is above a defined grazing hours per days.

22.5.1 Definition of System boundaries for the housing Process:

For housing systems with integrated exercise yards, it is difficult to distinguish between emissions from housing, exercise yard and storage. For these housingtypes the emission may be only validated for the sum of housing, exercise yard and storage emission.

23 Livestock::DairyCow::Housing::Floor

Agrammon Group -2008-03-30

23.1 Short description

Computes the annual NH3 reduction due to a grooved floor in housing systems.

23.2 Input parameters

Parameter	Unit	Description
UNECE_category_1mitigation_options_forhousing_systems_for_dairycows	-	UNECE category 1 mitigation options for housing systems for other cattle(none, toothed scrapper running over a grooved floor).
		Possible values: toothed_scrapper_running_over_a_grooved_floor, none

23.3 Technical parameters

Parameter	Value	Unit	Description
red_UNECE	0.25	-	Reduction efficiency as compared to cubicle house
			(UNECE 2007, paragraph 57, table 4).

23.4 Output

Parameter	Unit	Formula	
c_UNECE	-	Reduction factor for the emission due to the use of a grooved floor in housing systems. if (In('UNECE_category_1_mitigation_options_for_housing_system eq 'toothed_scrapper_running_over_a_grooved_floor'){ return (1 - Tech('red_UNECE')); } else { return 1; };	ns_for_dairy_cov

23.5 Detailed process description

This submodul calculates the annual NH3 reduction due to a grooved floor in housing systems according to the UNECE guideline 2007.

23.5.1 References

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

24 Livestock::DairyCow::Housing::KGrazing

Agrammon Group -2008-04-1

24.1 Short description

Computes the correction factor for the reduction of the housing emission if the number of grazing hours per day does increase a specific limit.

24.2 Input parameters

24.3 Technical parameters

Parameter	Value	Unit	Description
k_grazing_reduction_lw5h	0	-	Reduction of housing emissions to 0% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw12h	0.2	-	Reduction of housing emissions to 20% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw22h	0.5	-	Reduction of housing emissions to 50% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_gt22h	1.0	-	Reduction of housing emissions to 100% due to ex-
			tensive grazing/alping and milking using a mobile
			milking parlor. Empirical estimation.

24.4 Output

Parameter	Unit	Formula
Parameter k_grazing	Unit	Formula The correction factor for the reduction of the housing emission depending on the number of grazing hours per day and the grazing days per year. if (Val('grazing_hours', ':Grazing') < 5){ return ((365.0-Val('grazing_days', ':Grazing')) + ((1-Tech(k_grazing_reduction_lw5h))*Val('grazing_days', ':Grazing'))) / 365.0; } elsif (Val('grazing_hours', ':Grazing') < 12.0){ return ((365.0-Val('grazing_days', ':Grazing')) + ((1-Tech(k_grazing_reduction_lw12h))*Val('grazing_days', ':Grazing'))) / 365.0;
		$\label{eq:continuous_series} \left.\begin{array}{lll} \text{elsif} & (\text{Val('grazing_hours', ':Grazing')} &< 22.0) & \text{return} & (365.0-\text{Val('grazing_days', ':Grazing')}) &+ & ((1-\text{Tech(k_grazing_reduction_lw22h}))*\text{Val('grazing_days', ':Grazing')})) &> 365.0; \\ \text{lesif} & (\text{Val('grazing_hours', ':Grazing')} &> &= 22.0) & \text{return} & (365.0-\text{Val('grazing_days', ':Grazing')}) &+ & ((1-\text{Tech(k_grazing_reduction_gt22h}))*\text{Val('grazing_days', ':Grazing')} &> & (1-\text{Tech(k_grazing_reduction_gt22h}))*\text{Val('grazing_days', ':Grazing')} &> & (1-\text{Tech(k_grazing_reduction_gt22h}))*\text{Val('grazing_reduction_gt22h}) &> & (1-\text{Tech(k_grazing_reduction_gt22h}))*\text{Val('grazing_reduction_gt22h}) &> & (1-\text{Tech(k_grazing_reduction_gt22h}))*\text{Val('grazing_reduction_gt22h}) &> & (1-\text{Tech(k_grazing_reduction_gt22h}))*\text{Val('grazing_reduction_gt22h}) &> & (1-\text{Tech(k_grazing_reduction_gt22h}) &> & (1-\text{Tech(k_grazing_reduction_gt22h}) &> & (1-\text{Tech(k_grazing_reduction_gt22h}$
		ing'))) / 365.0; } else { return 1; # no correction };

24.5 Detailed process description

This process calculates the correction factor for the non proportional change of the housing emission according to the grazing hours per day (Webb et al. 2005). It is based on an empirical estimation of Menzi and Katz (1997). The concept has been lately supported by measurements in the UK (Defra 2005), where reductions comparable to those assumed by Menzi and Katz (1997) were reported.

24.5.1 References:

Department for Environment, Food & Rural Affairs, Defra 2002. Ammonia in the UK. DEFRA Publications, London. Menzi H, Katz PE 1997. A differentiated approach to calculate ammonia emissions from animal husbandry. In: Voermans JAM and Monteny GJ (Eds): "Ammonia and odour emissions from animal production facilities", Proc. International Symposium, Vinkeloord, NL, 6-10 October 1997, 35-42.

Webb J, Misselbrook TH 2005. A mass-flow model of ammonia emissions from UK livestock production. Atmospheric environment $38:\ 2163-2176.$

25 Livestock::DairyCow::Housing::Type

 $Agrammon\ Group - 2008-02-19$

25.1 Short description

Selects the emission rate and other correction factors for the specific housing types for dairy cows.

25.2 Input parameters

Parameter	Unit	Description
housing_type	-	Type of housing. Possible values: Loose_Housing_Deep_Litter, Loose_Housing_Slurry, Loose_Housing_Slurry_Plus_Solid_Manure, Tied_Housing_Slurry_Plus_Solid_Manure, Tied_Housing_Slurry
dimensioning_barn	-	Number of available animal places.

25.3 Technical parameters

25.4 Output

Parameter	Unit	Formula
housing_type	-	Housing type (needed in other modules).
		<pre>In('housing_type');</pre>
area_increase	-	Factor on what barn size does increase the regularized minimal, limited to 0.5.
		<pre>if((Val(dairy_cows, ':Excretion') < In('dimensioning_barn')) and (Val(dairy_cows, ':Excretion') != 0)) { if(In('dimensioning_barn') >= (Val(dairy_cows, ':Excretion') * 1.5)) { return 0.5;</pre>
		<pre>} else { if(Val('dairy_cows', ':Excretion') > 0){ return((In('dimensioning_barn') / Val(dairy_cows, ':Excretion')) -1); }else { return 0; }</pre>
		<pre>} else { return 0.0; };</pre>
share_liquid	-	Liquid share for the housing type.
		Val(share_liquid, 'Type::' . In('housing_type'));
er_housing	-	Emission rate for the housing type.
		Val('er_housing', 'Type::' . In('housing_type'));
k_area_type	-	Correction factor for the housing type area.
		Val(k_area, 'Type::' . In('housing_type'));
share_solid	-	Solid share for the housing type.
		Val(share_solid, 'Type::' . In('housing_type'));
k_area	-	Correction factor for area per animal.
		1 + (Out(area_increase) * Out(k_area_type));

25.5 Detailed process description

This process selects the correction factor for the specific housing types for dairy cows. Among these correction factors are the emission rate for the housing type, the correction factor for the housing type area, the correction factor for the area per animal, the liquid and solid share for the housing type as well as the factor on what barn size increases the regularized minimal (limited to 0.5).

26 Livestock::DairyCow::Housing::Type::Loose Housing Deep Litter

Agrammon Group -2008-04-18

26.1 Short description

Describes correction factors for the loose housing deep litter system for dairy cows.

26.2 Input parameters

26.3 Technical parameters

Parameter	Value	Unit	Description
er	0.183	-	Emission rate for the loose housing deep litter
			system for dairy cows. According to the consen-
			sus obtained in the workshop at ART Tänikon
			02/11/07: 11% Ntot; convered using Nsol of 60%:
			EF 18.3% TAN. Reference value UNECE(2007):
			11 kg NH3 = 8% TAN.
share_liquid	0	-	For the loose housing deep litter system 100%
			of the manure goes into the solid manure stor-
			age/application.
k_area	0.5	-	According to the consensus obtained in the work-
			shop at ART TÃ α nikon 02/11/07: it is assumed
			that additional surfaces are entirely used since bar-
			riers are hardly fea-sible. The emission is increased
			by 5% per 10% of additional surfaces up to a max-
			imum of 50% additional surface.

26.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		Tech(er);
$share_solid$	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share_liquid);
k_area	-	Correction factor for area per animal.
		Tech(k_area);

26.5 Detailed process description

This process describes the correction factors for the loose housing deep litter system for dairy cows such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

26.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. UNECE executive body for the convention on long-range transboundary air pollution, Working Group on Strategies and Review, EB.AIR/WH.5/2007/13/16 July 2007, Genf. 35p.

27 Livestock::DairyCow::Housing::Type::Loose Housing Slurry

Agrammon Group -2008-04-18

27.1 Short description

Describes correction factors for the loose housing slurry system for dairy cows.

27.2 Input parameters

27.3 Technical parameters

Parameter	Value	Unit	Description
er	0.183	-	Emission rate for the loose housing slurry sys-
			tem for dairy cows. According to the consen-
			sus obtained in the workshop at ART Tänikon
			02/11/07: 11% Ntot; converted using Nsol of $60%$:
			EF 18.3% TAN. Reference value UNECE(2007):
			11 kg HN3 = 8% TAN.
share_liquid	1	-	For the loose housing slurry system 100% of the
			manure goes into the liquid fraction of the stor-
			m age/application.
k_area	0.5	-	According to the consensus obtained in the work-
			shop at ART TÃ α nikon 02/11/07: it is assumed
			that additional surfaces are entirely used since bar-
			riers are hardly fea-sible. The emission is increased
			by 5% per 10% of additional surfaces up to a max-
			imum of 50% additional surface.

27.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share_liquid);
k_area	-	Correction factor for area per animal.
		Tech(k_area);

27.5 Detailed process description

This process describes the correction factors for the loose housing slurry system for dairy cows such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

27.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. UNECE executive body for the convention on long-range transboundary air pollution, Working Group on Strategies and Review, EB.AIR/WH.5/2007/13/16 July 2007, Genf. 35p.

28 Livestock::DairyCow::Housing::Type::Loose_Housing_Slurry-Plus Solid Manure

Agrammon Group -2008-04-18

28.1 Short description

Describes correction factors for the loose housing liquid solid system for dairy cows.

28.2 Input parameters

28.3 Technical parameters

Parameter	Value	Unit	Description
er	0.183	-	Emission rate for the loose housing liquid solid
			system for dairy cows. According to the consen-
			sus obtained in the workshop at ART Tänikon
			02/11/07: 11% Ntot; converted using Nsol of 60%:
			EF 18.3% TAN. Reference value UNECE(2007):
			11 kg NH3 = 8% TAN.
share_liquid	0.57	-	For the loose housing liquid-solid system 57% of
			the N of the manure goes into the liquid manure
			storage.
k_area	0.5	-	According to the consensus obtained in the work-
			shop at ART TÃ α nikon 02/11/07: it is assumed
			that additional surfaces are entirely used since bar-
			riers are hardly fea-sible. The emission is increased
			by 5% per 10% of additional surfaces up to a max-
			imum of 50% additional surface.

28.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing type.
		Tech(share_liquid);
er_housing	_	Emission rate for specific housing type.
		Tech(er);
share_solid	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share_liquid);
k_area	-	Correction factor for area per animal.
		Tech(k_area);

28.5 Detailed process description

This process describes the correction factors for the loose housing liquid solid system for dairy cows such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

28.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. UNECE executive body for the convention on long-range transboundary air pollution, Working Group on Strategies and Review, EB.AIR/WH.5/2007/13/ 16 July 2007, Genf. 35p.

29 Livestock::DairyCow::Housing::Type::Tied Housing Slurry

 $Agrammon\ Group - 2008-04-18$

29.1 Short description

Describes correction factors for the tied housing slurry system for daiy cows.

29.2 Input parameters

29.3 Technical parameters

Parameter	Value	Unit	Description
er	0.067	-	Emission rate for the tied housing slurry system for
			dairy cows. According to the consensus obtained
			in the workshop at ART TÃ α nikon 02/11/07: 4%
			Ntot; converted using Nsol of 60%: EF 6.7% TAN.
share_liquid	1	-	For the tied housing slurry system 100% of the
			manure goes into the liquid fraction of the stor-
			m age/application.
k_area	0	-	Additional surfaces are not used.

29.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing
		type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		Tech(er);
share_solid	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share liquid);
		· - ·
k_area	-	Correction factor for area per animal.
		Tech(k area);

29.5 Detailed process description

This process describes the correction factors for the tied housing slurry system for dairy cows such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

30 Livestock::DairyCow::Housing::Type::Tied_Housing_Slurry_Plus-Solid Manure

 $Agrammon\ Group - 2008-04-18$

30.1 Short description

Describes correction factors for the tied housing liquid solid system for dairy cows.

30.2 Input parameters

30.3 Technical parameters

Parameter	Value	Unit	Description
er	0.067	-	Emission rate for the tied housing liquid solid sys-
			tem for dairy cows. According to the consensus obtained in the workshop at ART TÃ\(\tilde{A}\)mikon 02/11/07: 4\% Ntot, converted using Nsol of 60\%: EF 6.7\% TAN.
share_liquid	0.57	-	For the tied housing liquid solid system 57% of the
			manure goes into the liquid fraction of the stor-
			m age/application.
k_area	0	-	Additional surfaces are not used.

30.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		Tech(er);
share_solid	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share_liquid);
k_area	-	Correction factor for area per animal.
		Tech(k_area);

30.5 Detailed process description

This process describes the correction factors for the tied housing liquid solid system for dairy cows such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

31 Livestock::DairyCow::Yard

Agrammon Group -2008-03-30

31.1 Short description

Computes the annual NH3 emission from dairy cow on exercise yards based on the access time and if the the basic feeding is on the yard.

31.2 Input parameters

Parameter	Unit	Description	
yard_days	d/a	Access to exercise yard in days per year.	
exercise_yard	-	Exercise yard: not available, available: roughage is not supplied in the exercise yard, available: roughage is partly supplied in the exercise yard, available: roughage is exclusively supplied in the exercise yard. Possible values: available_roughage_is_exclusively_supplied_in_the_available_roughage_is_not_supplied_in_the_exercise available_roughage_is_partly_supplied_in_the_exercise not_available	_yard,
floor_properties_exercise_yard	-	Floor properties(solid floor, unpaved floor, perforated floor, paddock or pasture used as exercise yard). Possible values: paddock_or_pasture_used_as_exercise_yard, perforated_floor, unpaved_floor, solid_floor	

31.3 Technical parameters

Parameter	Value	Unit	Description
er_yard	0.7	-	Emission rate for TAN on yard.
share_available_roughage_is-	0.6	-	Share of excretion per day for animals with
_exclusively_supplied_in_the-			roughage exclusively on the yard.
_exercise_yard			
share_available_roughage_is-	0.2	-	Share of excretion per day for animals with
_partly_supplied_in_the-			roughage partly on the yard.
_exercise_yard			
share_available_roughage-	0.1	-	Share of excretion per day for animals with
$_{\rm is_not_supplied_in_the-}$			roughage not supplied in the yard.
_exercise_yard			
red_floor_properties_solid-	0.0	-	Reduction efficiency according to Reidy and
_floor			Menzi.
red_floor_properties_unpaved-	0.5	-	Reduction efficiency according to Reidy and
_floor			Menzi.
red_floor_properties-	0.8	-	Reduction efficiency according to Reidy and
_perforated_floor			Menzi.
red_floor_properties_paddock-	0.9	-	Reduction efficiency according to Reidy and
_or_pasture_used_as-			Menzi.
_exercise_yard			

31.4 Output

Parameter	Unit	Formula	
n_into_yard	kg N /a	Annual N excretion on yard for a defined animal category.	
		Val(n_excretion, Excretion) * (In('yard_days') / 365) * Out(share_excretion_yard);	
tan_outyard_solid	kg N /a	Annual N flux as TAN from solid part out of yard into storage.	
		0;	
nh3_nyard_animal	kg N /a	Annual NH3 emission per anmimal from yard.	
		<pre>if(Val(dairy_cows, Excretion) != 0){ return Out(nh3_nyard) / Val(dairy_cows, Excretion); } else { return 0; };</pre>	
share_excretion_yard	-	Share of excretion on the yard according the stay on yard. If the basic feeding is on the yard the share_basicfeeding is assumed. Otherwise the share is selected according to the access.	
		if(In('exercise_yard') eq 'avail-able_roughage_is_not_supplied_in_the_exercise_yard') { return Tech('share_available_roughage_is_not_supplied_in_the_} elsif(In('exercise_yard') eq 'avail-able_roughage_is_partly_supplied_in_the_exercise_yard') { return Tech('share_available_roughage_is_partly_supplied_in_t} elsif(In('exercise_yard') eq 'avail-able_roughage_is_exclusively_supplied_in_the_exercise_yard') { return Tech('share_available_roughage_is_exclusively_supplied_} elsif(In('exercise_yard') eq 'not available') { return 0;	he_exercise_yard
nh3 nyard	kg N /a	Annual NH3 emission from yard.	
mio_nyard	Kg IV / a	Out(n_sol_into_yard) * Tech(er_yard) * (1 - (Out(c_floor_properties_exercise_yard)));	
n_sol_reduction_house	-	Reduction of excerteion in housing according to extensive use of the Yard, when the basic feeding is on the yard.	
		if(In('exercise_yard') eq 'avail-able_roughage_is_exclusively_supplied_in_the_exercise_yard') { return (Val(n_sol_excretion, Excretion) * (In('yard_days') / 365) * Out(share_excretion_yard) * 0.5); } else { return 0.0; }	
n_outyard	kg N /a	Annual N flux out of yard.	
		Out(n_into_yard) - Out(nh3_nyard);	
n_sol_into_yard	kg N /a	Annual soluble N excretion on yard for a defined animal category.	
		Val(n_sol_excretion, Excretion) * (In('yard_days') / 365) * Out(share_excretion_yard);	
n_outyard_liquid	kg N /a	Annual N flux from liquid part out of yard.	
		Out(n_into_yard) - Out(nh3_nyard);	
n_outyard_solid	kg N /a	Annual N flux from solid part out of yard.	
		0;	
tan_outyard_liquid	kg N /a	Annual N flux as TAN from liquid part out of yard into storage.	
Seite 56/200	model t	ex ^{Out} 603,52009105_66rd) - Out(nh3_nyard);	
seite 30/200	illouci.t	ex / 10034 2003-03200 = 101dy 0, 2003	

31.5 Detailed process description

32 Livestock::Equides

 $Agrammon\ Group - 2008-02-29$

32.1 Short description

Collects the annual emission of NH3 and the N flux for equides.

32.2 Input parameters

32.3 Technical parameters

32.4 Output

Parameter	Unit	Formula
n_solid_from_equides	kg N /a	Annual N flux from equides housing and yard, solid fraction.
		Val('n_outhousing_solid', Equides::Housing) + Val('n_outyard_solid', Equides::Yard);
n_liquid_from_equides	kg N /a	Annual N flux from equides housing and yard, liquid fraction.
		Val('n_outhousing_liquid', Equides::Housing) + Val('n_outyard_liquid', Equides::Yard);
tan_from_equides	kg N /a	Annual N flux as TAN from dairy cow housing and yard.
		Val(tan_outhousing, Equides::Housing) + Val(tan_outyard, Equides::Yard);
tan_solid_from_equides	kg N /a	Annual N flux as TAN from equides housing and yard, solid fraction.
		Val('tan_outhousing_solid', Equides::Housing) + Val('tan_outyard_solid', Equides::Yard);
tan_liquid_from_equides	kg N /a	Annual N flux as TAN from dairy cow housing and yard, liquid fraction.
		Val('tan_outhousing_liquid', Equides::Housing) + Val('tan_outyard_liquid', Equides::Yard);
n_excretion	kg N /a	Annual N excreted by equides.
		Val('n_excretion', Equides::Excretion);
$n_{from_equides}$	kg N /a	Annual N flux from equides housing and yard.
		Val('n_outhousing', Equides::Housing) + Val('n_outyard', Equides::Yard);
nh3_nequides	kg N /a	Annual NH3 emission from equides housing, yard and grazing (production).
		Val('nh3_nhousing', Equides::Housing) + Val('nh3_nyard', Equides::Yard) + Val('nh3_ngrazing', Equides::Grazing);

32.5 Detailed process description

This process summarizes the annual emission of NH3 for equides from housing, yard and grazing. Further it summarizes the annual N flux from the housing to the storage for equides.

33 Livestock::Equides::Excretion

 $Agrammon\ Group - 2008-02-22$

33.1 Short description

Computes the annual N excretion of horses, mules and asses.

33.2 Input parameters

Parameter	Unit	Description
animalcategory	-	Animal category (horses younger than 3 years, horses older than 3 years, mules, ponies and asses). Possible values: horses_younger_than_3yr, mules, ponies_and_asses, horses_older_than_3yr
animals	-	Number of other animals for the selected type in barn.

33.3 Technical parameters

Parameter	Value	Unit	Description
standard_N_excretion_horses-	42	kg N /a	Annual standard N excretion for other animal
_younger_than_3yr			category (horses younger than 3 years) accord-
			ing to Flisch et al. (2009).
$standard_N_excretion_horses-$	44	kg N /a	Annual standard N excretion for other animal
$_$ older $_$ than $_3$ yr			category (horses older than 3 years) according
			to Flisch et al. (2009).
$standard_N_excretion_mules$	25.1	kg N /a	Annual standard N excretion for other ani-
			mal category (mules) according to Flisch et al.
			(2009).
$standard_N_excretion_ponies-$	15.7	kg N /a	Annual standard N excretion for other animal
_and_asses			category (asses and ponies) according to Flisch
			et al. (2009).
share_Nsol_horses_younger-	0.4	-	Nsol content of excreta from horses younger
$_{ m than}_{ m 3yr}$			than 3 years. Derived from e.g. Peterson et
			al. (1998) or Burgos et al. (2005).
share_Nsol_horses_older-	0.4	_	Nsol content of excreta from horses older than 3
_than_3yr			years. Derived from e.g. Peterson et al. (1998)
			or Burgos et al. (2005).
$share Nsol_mules$	0.4	-	Nsol content of excreta from mules. Derived
			from e.g. Peterson et al. (1998) or Burgos et
			al. (2005).
share_Nsol_ponies_and_asses	0.4	=	Nsol content of excreta from asses and ponies.
			Derived from e.g. Peterson et al. (1998) or
			Burgos et al. (2005).

33.4 Output

Parameter	Unit	Formula
n_sol_excretion	kg N /a	Annual soluble N excreted by a specified number of animals.
		Out(share_Nsol) * Out(n_excretion);
standard_N_excretion	kg N /a	Annual standard N excretion for specified other animal category according to Flisch et al. (2009).
		my \$key = "standard_N_excretion_" . In('animalcategory'); return Tech(\$key);
animals	-	Number of other animals for the selected type in barn.
		In(animals);
n_excretion	kg N /a	Annual N excreted by a specified number of animals.
		Out(standard_N_excretion) * In(animals);
share_Nsol	-	Nsol content of excreta of other animal category. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
		my \$key = "share_Nsol_" . In('animalcategory'); return Tech(\$key);

33.5 Detailed process description

This process calculated the annual N excretion of the animal categories listed above. The standard N excretion was taken from the official Swiss fertilizer guidelines. The Nsol content of the excreta is based on e.g. Peterson et al. (1998) or Burgos et al. (2005). These values were compiled on the basis of official feeding recommendations (Flisch et al. 2009) by H. Menzi.

33.5.1 References:

Burgos SA, Robinson PH, Fadel JG, DePeters EJ 2005. Ammonia volatilization potential: Prediction of urinary urea nitrogen output on lactating dairy cows. Agriculture, Ecosystems and Environment 111:261-269.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

34 Livestock::Equides::Grazing

 $Agrammon\ Group - 2008-02-22$

34.1 Short description

Computes the annual NH3 emission from grazing of equides, such as horses, mules, asses.

34.2 Input parameters

Parameter	Unit	Description	
grazing_days	d/a	Average grazing days per year.	
grazing_hours	h /d	Average grazing hours per day.	

34.3 Technical parameters

Parameter	Value	Unit	Description
er_equides_grazing	0.05	-	Emission rate for the calculation of the annual NH3
			emission during grazing of equides. 5% Ntot (con-
			version with a protion of Nsol of 40%: EF 12.5%
			TAN). The emission rate is derived from Bussink
			et al. (1992, 1994), Jarvis et al. (1989), Peterson
			et al. (1998) and Ross and Jarvis (2001). (taking
			into account the generally low fertilization rate of
			Swiss pastures.)

34.4 Output

Parameter	Unit	Formula
$grazing_days$	d /a	Grazing days per year.
		In(grazing_days);
nh3_ngrazing	kg N /a	Annual NH3 emission from equides from grazing.
		Out(n_into_grazing) * Tech(er_equides_grazing);
n_into_grazing	kg N /a	Annual N excretion during grazing for equides.
		Val(n_excretion, Excretion) * In(grazing_days) / 365 * In(grazing_hours) / 24;
n_remain_pasture	kg N /a	Annual N input on pastures.
		Out(n_into_grazing) - Out(nh3_ngrazing);
n_sol_into_grazing	kg N /a	Annual solable N (TAN) excretion during grazing for equides.
		Val(n_sol_excretion, Excretion) * In(grazing_days) / 365 * In(grazing_hours) / 24;
grazing_hours	h /d	Grazing hours per day.
		In(grazing_hours);

34.5 Detailed process description

This process calculates the annual NH3 emission from grazing of equides (horses, mules, asses) based on the total N excreted on the pastures. The N excreted is calculated according to the time the animals spend on the pasture. It assumes that the excretions on the pasture are proportional to the time the animals are grazed.

34.5.1 References:

Bussink DW 1992. Ammonia volatilization from grassland receiving nitrogen fertilizer and rotationally grazed by dairy cattle. Fertilizer Research 33:257-265.

Bussink DW 1994. Relationship between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertilizer Research 38:111-121.

Jarvis SC, Hatch DJ, Lockyer DR 1989. Ammonia fluxes from grazed grassland: annual losses from cattle production systems and their relation to nitrogen inputs. Journal of Agricultural Science 113:99-108.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Ross CA, Jarvis SC 2001. Measurement of emission and deposition pattern of ammonia from urine in grass swards. Atmospheric environment 35:867-875.

35 Livestock::Equides::Housing

Agrammon Group -2008-02-22

35.1 Short description

Computes the annual NH3 emission from equides housing systems.

35.2 Input parameters

35.3 Technical parameters

Parameter	Value	Unit	Description
er_housing	0.11	-	Emission rate for loose housing with liquid, solid
			manure system is assumed (for TAN 0.275 and
			Nsol 40%).

35.4 Output

Parameter	Unit	Formula
tan_outhousing_liquid	kg N /a	Annual N flux as TAN out of housing, slurry or liquid fraction of N flux.
		0
n_outhousing_liquid	kg N /a	Annual N flux out of housing, slurry or liquid fraction of N flux.
		0
$n_outhousing$	kg N /a	Annual N flux out of the housing.
		Out(n_into_housing) - Out(nh3_nhousing);
n_into_housing	kg N /a	Annual N flux into the house.
		Val(n_excretion, Excretion) - Val(n_into_grazing, Grazing);
tan_outhousing	kg N /a	Annual N flux as TAN out of the housing.
		Out(n_sol_into_housing) - Out(nh3_nhousing);
nh3_nhousing	kg N /a	Annual NH3 emission from equides housing systems. per animal place.
		Val(n_excretion, Excretion) * Tech(er_housing) * Val(k_grazing, Housing::KGrazing)
n_sol_into_housing	kg N /a	Annual N flux as TAN into the house.
		Val(n_sol_excretion, Excretion) - Val(n_sol_into_grazing, Grazing);
tan_outhousing_solid	kg N /a	Annual N flux as TAN out of housing, manure fraction of N flux.
		Out(tan_outhousing);
$n_outhousing_solid$	kg N /a	Annual N flux out of housing, manure fraction of N flux.
		Out(n_outhousing);

35.5 Detailed process description

This process calculates the NH3 emission in equides housing depending on the N excretion and the housing systems. The NH3 emission is assumed to be proportional to the total N excretion of the animals because

the contaminated surfaces will primarily drive emissions, which will remain active even when animals are on the pasture or exercise yard.

A proportional correction is applied according to the area per animal.

A correction is applied if the part of the day grazing is above a defined grazing hours per days.

35.5.1 Definition of System boundaries for the housing Process:

For housing systems with integrated exercise yards, it is difficult to distinguish between emissions from housing, exercise yard and storage. For these housingtypes the emission may be only validated for the sum of housing, exercise yard and storage emission.

36 Livestock::Equides::Housing::KGrazing

Agrammon Group -2008-04-1

36.1 Short description

Computes the correction factor for the reduction of the housing emission if the number of grazing hours per day does increase a specific limit.

36.2 Input parameters

36.3 Technical parameters

Parameter	Value	Unit	Description
k_grazing_reduction_lw5h	0	-	Reduction of housing emissions to 0% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw12h	0.2	-	Reduction of housing emissions to 20% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw22h	0.5	-	Reduction of housing emissions to 50% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_gt22h	1.0	-	Reduction of housing emissions to 100% due to ex-
			tensive grazing/alping. Empirical estimation.

36.4 Output

Parameter	Unit	Formula
k_grazing	-	The correction factor for the reduction of the housing emission depending on the number of grazing hours per day and the grazing days per year.
		<pre>if (Val('grazing_hours', '::Grazing') < 5){ return (</pre>

36.5 Detailed process description

This process calculates the correction factor for the non proportional change of the housing emission according to the grazing hours per day (Webb et al. 2005). It is based on an empirical estimation of Menzi and Katz (1997). The concept has been lately supported by measurements in the UK (Defra 2005), where reductions comparable to those assumed by Menzi and Katz (1997) were reported.

36.5.1 References:

Department for Environment, Food & Rural Affairs, Defra 2002. Ammonia in the UK. DEFRA Publications, London. Menzi H, Katz PE 1997. A differentiated approach to calculate ammonia emissions from animal husbandry. In: Voermans JAM and Monteny GJ (Eds): "Ammonia and odour emissions from animal production facilities", Proc. International Symposium, Vinkeloord, NL, 6-10 October 1997, 35-42. Webb J, Misselbrook TH 2005. A mass-flow model of ammonia emissions from UK livestock production. Atmospheric environment 38: 2163-2176.

37 Livestock::Equides::Yard

Agrammon Group -2008-03-30

37.1 Short description

Computes the annual NH3 emission from equides on exercise yards based on the access time and if the the basic feeding is on the yard.

37.2 Input parameters

Parameter	Unit	Description
yard_days	d /a	Access to exercise yard in days per year.
yard_hours	h /d	Access to exercise yard in hours per day.
floor_properties_exercise_yard	-	Floor properties (solid_floor, unpaved_floor, pad-dock_or_pasture_used_as_exercise_yard). Possible values: paddock_or_pasture_used_as_exercise_yard, unpaved_floor, solid_floor

37.3 Technical parameters

Parameter	Value	Unit	Description
er_yard	0.35	-	Emission rate for TAN on yard. Empirical estima-
			tion Kupper/Menzi, Keck(1997, Misselbrook et al.
			(2001)
red_floor_properties_unpaved-	0.5	-	Reduction efficiency according to Reidy and
_floor			Menzi.
red_floor_properties_solid-	0.0	-	Reduction efficiency according to Reidy and
_floor			Menzi.
red_floor_properties_paddock-	0.9	-	Reduction efficiency according to Reidy and
_or_pasture_used_as-			Menzi.
_exercise_yard			

37.4 Output

Parameter	Unit	Formula
n_into_yard	kg N /a	Annual N excretion on yard for a defined animal category.
		Val(n_excretion, Excretion) * ((In('yard_days') / 365) * (In('yard_hours') / 24));
tan_outyard_solid	kg N /a	Annual N flux as TAN from solid part out of yard into storage.
		0;
nh3_nyard_animal	kg N /a	Annual NH3 emission per anmimal from yard.
		<pre>if(Val(animals, Excretion) != 0){ return Out(nh3_nyard) / Val(animals, Excretion); } else { return 0; };</pre>
n_sol_into_yard	kg N /a	Annual soluble N excretion on yard for a defined animal category.
		Val(n_sol_excretion, Excretion) * ((In('yard_days') / 365) * (In('yard_hours') /24));
nh3_nyard	kg N /a	Annual NH3 emission from yard.
		Out(n_sol_into_yard) * Tech(er_yard) * (1 - (Out(c_floor_properties_exercise_yard)));
n_outyard_liquid	kg N /a	Annual N flux from liquid part out of yard.
		Out(n_into_yard) - Out(nh3_nyard);
$n_outyard_solid$	kg N /a	Annual N flux from solid part out of yard.
		0;
tan_outyard_liquid	kg N /a	Annual N flux as TAN from liquid part out of yard into storage.
		Out(n_sol_into_yard) - Out(nh3_nyard);
tan_outyard	kg N /a	Annual N flux as TAN out of yard into storage.
		Out(n_sol_into_yard) - Out(nh3_nyard);
$n_outyard$	kg N /a	Annual N flux out of yard.
		Out(n_into_yard) - Out(nh3_nyard);
c_floor_properties_exercise- _yard	-	Reduction factor for the emission due to the use of the floor properties in housing systems.
		<pre>if (In('floor_properties_exercise_yard') eq 'unpaved_floor'){ return Tech('red_floor_properties_unpaved_floor'); } elsif (In('floor_properties_exercise_yard') eq 'solid_floor'){ return Tech('red_floor_properties_solid_floor'); } elsif (In('floor_properties_exercise_yard') eq 'paddock_or_pasture_used_as_exercise_yard'){ return Tech('red_floor_properties_paddock_or_pasture_used_as_exercise_} else{ return 0; };</pre>

37.5 Detailed process description

37.5.1 References:

Keck M 1997: Ammonia emission and odour thresholds of cattle houses with exercise yards. In: Voermans JAM and Monteny GJ (Eds): "Ammonia and odour emissions from animal production facilities", Proc. International Symposium, Vinkeloord, NL, 6-10 October 1997, 349-354. Misselbrook TH, Webb J, Chadwick DR, Ellis S, Pain BF 2001. Gaseous emissions from outdoor concrete yards used by livestock. Atmospheric Environment 35:5331-5338.

38 Livestock::FatteningPigs

Agrammon Group -2008-02-19

38.1 Short description

Collects the annual emission of NH3 and the N flux for fattening pigs.

38.2 Input parameters

38.3 Technical parameters

38.4 Output

Parameter	Unit	Formula
tan_solid_from_fattening_pig	kg N /a	Annual N flux as TAN from fattening pigs housing, liquid fraction.
		Val(tan_outhousing_solid, FatteningPigs::Housing);
tan_from_fattening_pig	kg N /a	Annual N flux as TAN from fattening pigs housing.
		Val(tan_outhousing, FatteningPigs::Housing);
nh3_nfattening_pig	kg N /a	Annual NH3 emission from fattening pigs housing and grazing (production).
		Val(nh3_nhousing, FatteningPigs::Housing) + Val(nh3_ngrazing, FatteningPigs::Grazing);
n_solid_from_fattening_pig	kg N /a	Annual N flux from fattening pigs housing, solid fraction.
		Val(n_outhousing_solid, FatteningPigs::Housing);
tan_liquid_from_fattening- _pig	kg N /a	Annual N flux as TAN from fattening pigs housing, liquid fraction.
		Val(tan_outhousing_liquid, FatteningPigs::Housing);
n_from_fattening_pig	kg N /a	Annual N flux from fattening pigs housing.
		Val(n_outhousing, FatteningPigs::Housing);
n_excretion	kg N /a	Annual N excreted by fattening pigs.
		Val(n_excretion, FatteningPigs::Excretion);
n_liquid_from_fattening_pig	kg N /a	Annual N flux from fattening pigs housing, liquid fraction.
		Val(n_outhousing_liquid, FatteningPigs::Housing);

38.5 Detailed process description

This process summarizes the annual emission of NH3 for fattening pigs from housing and grazing. And it summarizes the annual N flux from housing to the storage for fattening pigs.

39 Livestock::FatteningPigs::Excretion

Agrammon Group -2008-04-22

39.1 Short description

Computes the annual N excretion of fattening pigs as a function of the crude protein and the energy content of the feed ration.

39.2 Input parameters

Parameter	Unit	Description
fattening_pigs	-	Number of fattening pigs for the selected type in
		barn.
feeding_phase_1_crude-	g /kg	Crude protein content of feed ration during phase
_protein		1.
feeding_phase_2_crude-	g /kg	Crude protein content of feed ration during phase
_protein		2.
feeding_phase_3_crude-	g/kg	Crude protein content of feed ration during phase
_protein		3.
energy_content	MJ VES /kg	Energy content of feed ration.

39.3 Technical parameters

Parameter	Value	Unit	Description
standard_N_excretion-	13	kg N /a	Annual standard N excretion for fattening
_fattening_pigs			pigs according to Flisch et al. (2009).
$standard_energy_content-$	13.5	MJ VES	Standard energy content of a feed ration for
_fattening_pigs			fattening pigs (BLW, SRVA, LBL 2003).
$standard_crude_protein-$	170	g CP /kg	Standard crude protein content of a feed ra-
_fattening_pigs			tion for fattening pigs (BLW, SRVA, LBL
			2003).
cfeed_fattening_pigs	0.008	-	Correction factor for feed with reduced crude
			protein content for fatteing pigs (BLW, SRVA,
			\mid LBL 2003). A diffrence from 10 g CP \mid kg \mid
			leads to $8 0/0$.
minimal_N_excretion-	10.9	kg N /a	Annual minimal N excretion for fattening pigs
_fattening_pigs			according to Flisch et al. (2009).
share_Nsol	0.7	-	Nsol content of excreta from fattening pigs.
			Derived from e.g. Peterson et al. (1998) or
			Burgos et al. (2005).
phase_1_3_duration	0.151	d	Feeding phase 1 of a 3-phase-feeding duration
			as part of the year.
phase_2_3_duration	0.321	d	Feeding phase 2 of a 3-phase-feeding duration
			as part of the year.
phase_3_3_duration	0.528	d	feeding phase 3 of a 3-phase-feeding duration
			as part of the year.
phase_1_2_duration	0.359	d	Feeding phase 1 of a 2-phase-feeding duration
			as part of the year.
phase_2_2_duration	0.641	d	Feeding phase 2 of a 2-phase-feeding duration
			as part of the year.

39.4 Output

Parameter	Unit	Formula
n_sol_excretion	kg N /a	Annual soluble N excreted by a specified number of fattening pigs.
		Tech(share_Nsol) * Out(n_excretion);
${\rm minimal_N_excretion}$	kg N /a	Minimal annual N excretion for fattening pigs according to Walther et al. (2001).
		Tech(minimal_N_excretion_fattening_pigs);
crude_protein	kg N /a	Crude protein content of feed ration - for 1-, 2- or 3-phase-feeding.
		if (In(feeding_phase_3_crude_protein) == 0) { if ((In(feeding_phase_1_crude_protein) > 100) && (In(feeding_phase_1_crude_protein) > 100)) } { (In(feeding_phase_2_crude_protein)*Tech(phase_1_2_duration) In(feeding_phase_1_crude_protein)*Tech(phase_2_2_duration) } else { if (In(feeding_phase_1_crude_protein) > 100) } In(feeding_phase_1_crude_protein) } else { print STDERR "Crude protein must be more than 1000!"}} else { if ((In(feeding_phase_1_crude_protein) > 100) && (In(feeding_phase_2_crude_protein) > 100) && (In(feeding_phase_3_crude_protein) > 100)) && (In(feeding_phase_3_crude_protein) > 100)) } { (In(feeding_phase_3_crude_protein) > 100) } { (In(f
cfeed	-	Correction factor for feed with reduced crude protein content (BLW, SRVA, LBL 2003).
		Tech(cfeed_fattening_pigs);
standard_crude_protein	g CP /kg	Annual standard N excretion for fattening pigs according to Walther et al. (2001).
		Tech(standard_crude_protein_fattening_pigs);
fattening_pigs	-	Number of fattening pigs of a specific category.
		In(fattening_pigs);
$standard_N_excretion$	kg N /a	Annual standard N excretion for fattening pigs according to Walther et al. (2001).
		Tech(standard_N_excretion_fattening_pigs);
n_excretion	kg N /a	Annual total N excreted by a specified number of fattening pigs.
		<pre>if(In('energy_content') != 0){ Out(standard_N_excretion) * (1 - (Out(standard_crude_protein) - Out('crude_protein')) * Out(cfeed)) * (Out(standard_energy_content) / In('energy_content')) * In(fattening_pigs); } else { print STDERR "Energy Content can not be 0, use default value!"; return 0; };</pre>
$standard_energy_content$	MJ VES	Standard energy content of the feed ration for fattening pigs.
		Tech(standard_energy_content_fattening_pigs);

39.5 Detailed process description

This process calculates the annual N excretion (total N and Nsol) of fattening pigs according to the crude protein and energy content of the feed ration.

39.5.1 References:

BLW, SRVA, LBL 2003. Weisungen zur Beruecksichtigung von Ökofuttern in der Suisse-Bilanz. 2003. Burgos SA, Robinson PH, Fadel JG, DePeters EJ 2005. Ammonia volatilization potential: Prediction of urinary urea nitrogen output on lactating dairy cows. Agriculture, Ecosystems and Environment 111:261-269.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

40 Livestock::FatteningPigs::Grazing

Agrammon Group -2008-02-29

40.1 Short description

Computes the annual NH3 emission from grazing fattening pigs.

40.2 Input parameters

40.3 Technical parameters

Parameter	Value	Unit	Description
er_fattening_pig_grazing	0.2	-	Emission rate for the calculation of the annual NH3
			emission during grazing for fattening pigs. Sommer
			et al. (2001) give a yearly volatilization loss from
			one sow with piglets of 4.8 kg N resulting in a loss
			of 20% TAN assuming an N excretion/sow/y of 35
			kg N (Flisch et al. (2009)).

40.4 Output

Parameter	Unit	Formula
nh3_ngrazing	kg N /a	Annual NH3 emission from all fattening pigs from grazing. Out(n_sol_into_grazing) * Tech(er_fattening_pig_grazing);
share_grazing	-	Share of N excretion during outdoor activities for a defined animal category. If fattening pig housing type is 'Outdoor' 100% is assumed. if(Val('housing_type', 'Housing::Type') eq 'Outdoor'){ return 1; }else { return 0; # no correction };
n_into_grazing	kg N /a	Annual N excretion during grazing for fattening pigs. Val('n_excretion', 'Excretion') * Out(share_grazing);
n_remain_pasture	kg N /a	Annual N input on pastures. Out(n_into_grazing) - Out(nh3_ngrazing);
n_sol_into_grazing	kg N /a	Annual soluble N (TAN) excretion during grazing for fattening pigs. Val('n_sol_excretion', 'Excretion') * Out(share_grazing);

40.5 Detailed process description

This process calculates the annual NH3 emission from grazing fattening pigs based on the N excreted on the pastures. The N excreted is calculated according to the time the animals spend on the pasture. It assumes that the excretions on the pasture are proportional to the time the animals are grazed.

40.5.1 References:

Bussink DW 1992. Ammonia volatilization from grassland receiving nitrogen fertilizer and rotationally grazed by dairy cattle. Fertilizer Research 33:257-265.

Bussink DW 1994. Relationship between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertilizer Research 38:111-121.

Jarvis SC, Hatch DJ, Lockyer DR 1989. Ammonia fluxes from grazed grassland: annual losses from cattle production systems and their relation to nitrogen inputs. Journal of Agricultural Science 113:99-108

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Ross CA, Jarvis SC 2001. Measurement of emission and deposition pattern of ammonia from urine in grass swards. Atmospheric environment 35:867-875.

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

41 Livestock::FatteningPigs::Housing

 $Agrammon\ Group - 2009-02-22$

41.1 Short description

Computes the annual NH3 emission from fattening pigs housing systems.

41.2 Input parameters

41.3 Technical parameters

41.4 Output

Parameter	Unit	Formula
tan outhousing liquid	kg N /a	Annual N flux as TAN out of housing, slurry or liquid
_		fraction from fattening pigs.
		if(Val(housing_type, Housing::Type) eq 'Outdoor'){ 0 }else { Out(n_outhousing) * Val('share_liquid', 'Housing::Type') * Out(share_tan_out) };
n_outhousing_liquid	kg N /a	Annual N flux out of housing, slurry or liquid fraction from fattening pigs.
		<pre>if(Val(housing_type, Housing::Type) eq 'Outdoor'){ 0 }else { Out(n_outhousing) * Val('share_liquid', 'Housing::Type') };</pre>
$n_outhousing$	kg N /a	Annual N flux out of the housing.
		if(Val('housing_type', 'Housing::Type') eq 'Outdoor'){ 0 }else { Out(n_into_housing) - Out(nh3_nhousing) };
n_into_housing	kg N /a	Annual N flux into the house.
		Val('n_excretion', 'Excretion') - Val('n_into_grazing', 'Grazing');
tan_outhousing	kg N /a	Annual N flux as TAN out of the housing.
		<pre>if(Val(housing_type, Housing::Type) eq 'Outdoor'){ 0 }else { Out(n_sol_into_housing) - Out(nh3_nhousing) };</pre>
nh3_nhousing	kg N /a	Annual NH3 emission from fattening pig housing systems. per animal place.
		Val('n_sol_excretion', 'Excretion') * Val('er_housing', 'Housing::Type') * Val('c_air_scrubber', 'Housing::AirScrubber') * (1 - Val('c_UNECE_housing_task', 'Housing::UNECEhousingTask'));
n_sol_into_housing	kg N /a	Annual N flux as TAN into the house.
		Val('n_sol_excretion', 'Excretion') - Val('n_sol_into_grazing', 'Grazing');
tan_outhousing_solid	kg N /a	Annual N flux as TAN out of housing, manure fraction of N flux from fattening pigs.
		<pre>if(Val(housing_type, Housing::Type) eq 'Outdoor'){ 0 }else { Out(n_outhousing) * (1 - Val('share_liquid', 'Housing::Type')) * Out(share_tan_out) };</pre>
n_outhousing_solid	kg N /a	Annual N flux out of housing, manure fraction of N flux from fattening pigs.
		<pre>if(Val('housing_type', 'Housing::Type') eq 'Outdoor'){ 0 }else { Out(n_outhousing) * (1 - Val('share_liquid', 'Housing::Type')) };</pre>
share_tan_out	-	Share of TAN for interface to storage, the same share is assumed for solid and liquid parts of output. Mineralization and immobilization are considerd in the storage module.

41.5 Detailed process description

This process calculates the NH3 emission in fattening pig housing depending on the N excretion and the housing systems. The NH3 emission is assumed to be proportional to the total N excretion of the animals because the contaminated surfaces will primarily drive emissions, which will remain active even when animals are on the pasture or exercise yard.

A proportional correction is applied according to the area per animal.

A correction is applied if the part of the day grazing is above a defined grazing hours per days.

41.5.1 Definition of System boundaries for the housing Process:

For housing systems with integrated exercise yards, it is difficult to distinguish between emissions from housing, exercise yard and storage. For these housingtypes the emission may be only validated for the sum of housing, exercise yard and storage emission.

42 Livestock::FatteningPigs::Housing::AirScrubber

Agrammon Group -2008-03-30

42.1 Short description

Computes the annual NH3 reduction due to an exhaust air scrubber in fattening pig housing systems.

42.2 Input parameters

Parameter	Unit	Description
air_scrubber	-	Air exhaust scrubber (none, acid, biotrickling_filter).
		Possible values: acid, biotrickling, none

42.3 Technical parameters

Parameter	Value	Unit	Description
red_acid_air_scrubber	0.9	-	Reduction efficiency as compared to group-housed
			on fully and partly slatted floors (UNECE 2007,
			paragraph 71, table 5).
red_biotrickling_filter_air-	0.7	-	Reduction efficiency as compared to group-housed
_scrubber			on fully and partly slatted floors (UNECE 2007,
			paragraph 71, table 5).

42.4 Output

Parameter	Unit	Formula
c_air_scrubber	-	Reduction factor for the emission due to the use of an air exhaust scrubber in housing systems.
		<pre>if (In('air_scrubber') eq 'acid'){ return (1 - Tech('red_acid_air_scrubber')); } elsif(In('air_scrubber') eq 'biotrickling'){ return (1 - Tech('red_biotrickling_filter_air_scrubber')); } elsif(In('air_scrubber') eq 'none'){ return 1; } else{ print STDERR "invalid air_scrubber defined!"; return 1; }</pre>

42.5 Detailed process description

This submodul calculates the annual NH3 reduction due to an exhaust air scrubber in fattening pig housing systems according to the UNECE guideline 2007.

42.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

43 Livestock::FatteningPigs::Housing::Type

Agrammon Group -2008-02-19

43.1 Short description

Selects the emission rate and other correction factors for the specific housing types for fattening pigs.

43.2 Input parameters

Parameter	Unit	Description
housing_type	-	Type of housing.
		Possible values: Deep_Litter, Outdoor, Slurry_Label, Slurry_Conventional

43.3 Technical parameters

43.4 Output

Parameter	Unit	Formula
housing_type	-	Housing type (needed in other modules).
		In(housing_type);
share_liquid	-	Liquid share for the housing type.
		Val(share_liquid, 'Type::' . In(housing_type));
er_housing	-	Emission rate for the housing type.
		Val(er_housing, 'Type::' . In(housing_type));
share_solid	-	Solid share for the housing type.
		Val(share_solid, 'Type::' . In(housing_type));

43.5 Detailed process description

This process selects the correction factor for the specific housing types for fattening pigs. Among these correction factors are the emission rate for the housing type, the correction factor for the housing type area, the correction factor for the area per animal, the liquid and solid share for the housing type as well as the factor on what barn size increases the regularized minimal (limited to 0.5).

44 Livestock::FatteningPigs::Housing::Type::Deep Litter

 $Agrammon\ Group - 2008-04-18$

44.1 Short description

Describes correction factors for the label deep litter fattening pig housing system.

44.2 Input parameters

44.3 Technical parameters

Parameter	Value	Unit	Description
er	0.157	-	Emission rate for the label deep litter fattening
			pig housing system. According to the consen-
			sus obtained in the workshop at ART Tänikon
			02/11/07: 12.81 % Ntot; converted using Nsol of
			70%: EF 18.3 % TAN
share_liquid	0	-	For the label deep litter fattening pig housing sys-
			tem 100% of the manure goes into solid manure
			storage/application.

44.4 Output

Parameter	Unit	Formula
share_liquid	-	Liquid part of Ntot for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	Solid part of Ntot for selected housing type.
		1-Tech(share_liquid);

44.5 Detailed process description

This process describes the correction factors for the label deep litter fattening pig housing system such as the housing specific emission rate, the liquid share and solid share.

45 Livestock::FatteningPigs::Housing::Type::Outdoor

 $Agrammon\ Group - 2008-04-18$

45.1 Short description

Describes emission rates for outdoor fattening pigs. Outdoor fattening pics do not have any housing emissions.

45.2 Input parameters

45.3 Technical parameters

Parameter	Value	Unit	Description
er	0	-	Emission rate for outdoor fattening pigs (equal to
			zero because all emissions are listed under grazing).
share_liquid	0	-	For the outdoor fattening pigs 0% of the ma-
			nure goes into the liquid fraction for stor-
			age/application.

45.4 Output

Parameter	Unit	Formula
share_liquid	-	Liquid part of Ntot for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	For the outdoor fattening pigs 0% of the manure goes into the solid fraction for storage/application.
		0

45.5 Detailed process description

This process describes the correction factors for outdoor fattening pigs such as the housing specific emission rate, the liquid share and solid share. Outodoor fattening pigs do not have any housing emissions, as everything is excreted on pasture.

46 Livestock::FatteningPigs::Housing::Type::Slurry Conventional

 $Agrammon\ Group - 2008-04-18$

46.1 Short description

Describes correction factors for the conventional slurry fattening pig housing system.

46.2 Input parameters

46.3 Technical parameters

Parameter	Value	Unit	Description
er	0.243	-	Emission rate for the conventional slurry fatten-
			ing pig housing system. According to the consensus obtained in the workshop at ART TÃ α nikon 02/11/07: 17 % Ntot; converted using Nsol of 70%: EF 24.3 % TAN.
share_liquid	1	-	For the conventional slurry fattening pig housing system 100% of the manure goes into the liquid
			fraction for storage/application.

46.4 Output

Parameter	Unit	Formula
share_liquid	-	Liquid part of Ntot for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	Solid part of Ntot for selected housing type.
		1-Tech(share_liquid);

46.5 Detailed process description

This process describes the correction factors for the conventional slurry fattening pig housing system such as the housing specific emission rate, the liquid share and solid share.

47 Livestock::FatteningPigs::Housing::Type::Slurry Label

 $Agrammon\ Group - 2008-04-18$

47.1 Short description

Describes correction factors for the label slurry fattening pig housing system.

47.2 Input parameters

47.3 Technical parameters

Parameter	Value	Unit	Description
er	0.486	-	Emission rate for the label slurry fattening pig
			housing system. According to the consensus
			obtained in the workshop at ART Tänikon
			02/11/07: 34 % Ntot; converted using Nsol of 70%:
			EF 48.6 % TAN.
share_liquid	1	-	For the label slurry fattening pig housing system
			100% of the manure goes into the liquid fraction
			for storage/application.

47.4 Output

Parameter	Unit	Formula
share_liquid	-	Liquid part of Ntot for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	Solid part of Ntot for selected housing type.
		1-Tech(share_liquid);

47.5 Detailed process description

This process describes the correction factors for the label slurry fattening pig housing system such as the housing specific emission rate, the liquid share and solid share.

${\bf 48} \quad Live stock:: Fattening Pigs:: Housing:: UNECE housing Task$

 $Agrammon\ Group - 2008-03-30$

48.1 Short description

Computes the annual NH3 reduction due to UNECE housing tasks.

48.2 Input parameters

Parameter	Unit	Description
UNECE_category_1mitigation_options_forhousing_systems_forfattening_pigs	-	UNECE housing tasks for partly slatted floor: with scraper (concrete_slats), with flush channels(no areation), with flush channels(areation), with flush gutters/tubes (no areation), with flush gutters/tubes (areation), with channels slanted walls(concrete slats), with channel slanted walls (metal slats), with scraper (metal slats). Possible values: with_channel_slanted_walls_metal_slats, with_channels_slanted_walls_concrete_slats, with_flush_channels_areation, with_flush_gutters_tubes_areation, with_flush_gutters_tubes_no_areation, with_scraper_concrete_slats, with_scraper_metal_slats, none

48.3 Technical parameters

Parameter	Value	Unit	Description
red_PSF_with_scraper-	0.4	-	Reduction efficiency as compared to group-housed
_concrete_slats			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_flush-	0.5	-	Reduction efficiency as compared to group-housed
$_{channels_no_areation}$			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_flush-	0.6	-	Reduction efficiency as compared to group-housed
$_{channels_areation}$			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_flush_gutters-	0.6	-	Reduction efficiency as compared to group-housed
_tubes_no_areation			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_flush_gutters-	0.6	-	Reduction efficiency as compared to group-housed
_tubes_areation			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_channels-	0.6	-	Reduction efficiency as compared to group-housed
_slanted_walls_concrete_slats			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_channel-	0.65	_	Reduction efficiency as compared to group-housed
$_$ slanted $_$ walls $_$ metal $_$ slats			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_with_scraper-	0.5	-	Reduction efficiency as compared to group-housed
$_$ metal $_$ slats			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).

48.4 Output

Parameter	Unit	Formula
c_UNECE_housing_task	_	Reduction factor for the emission due to UNECE housing systems tasks for fully and partly slatted floors.
		if (In('UNECE_category_1_mitigation_options_for_housing_systems_for_fattening_peq "with_scraper_concrete_slats") { return
		} elsif(In('UNECE_category_1_mitigation_options_for_housing_systems_for_fattenineq "with_flush_channels_no_areation") { return Tech('red_PSF_with_flush_channels_no_areation');
		} elsif(In('UNECE_category_1_mitigation_options_for_housing_systems_for_fattenin eq
		} elsif(In('UNECE_category_1_mitigation_options_for_housing_systems_for_fattenin eq "with_flush_gutters_tubes_no_areation"){ return Tech('red_PSF_with_flush_gutters_tubes_no_areation');
		} elsif(In('UNECE_category_1_mitigation_options_for_housing_systems_for_fattenineq "with_flush_gutters_tubes_areation") { return Tech('red_PSF_with_flush_gutters_tubes_areation');
		} elsif(In('UNECE_category_1_mitigation_options_for_housing_systems_for_fattenineq_with_channels_slanted_walls_concrete_slats"){ Tech('red_PSF_with_channels_slanted_walls_concrete_slats');
		} elsif(In('UNECE_category_1_mitigation_options_for_housing_systems_for_fattenin eq "with channel slanted walls metal slats"){ return
		Tech('red_PSF_with_channel_slanted_walls_metal_slats'); } elsif(In('UNECE_category_1_mitigation_options_for_housing_systems_for_fattenineq "with_scraper_metal_slats"){ Tech('red_PSF_with_with_scraper_metal_slats');
		<pre> Techn red_rsr_with_with_scraper_inetal_stats); state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state </pre>

48.5 Detailed process description

This submodul calculates the annual NH3 reduction due to an air exhaust scrubber in fattening pig housing systems according to the UNECE guideline 2007.

48.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

49 Livestock::OtherCattle

 $Agrammon\ Group - 2008-02-29$

49.1 Short description

Collects the annual emission of NH3 and the N flux for cattle (apart from dairy cows).

49.2 Input parameters

49.3 Technical parameters

49.4 Output

Parameter	Unit	Formula
nh3_ncattle	kg N /a	Annual NH3 emission from cattle housing, yard and grazing (production).
		Val(nh3_nhousing, OtherCattle::Housing) + Val(nh3_nyard, OtherCattle::Yard) + Val(nh3_ngrazing, OtherCattle::Grazing);
tan_solid_from_cattle	kg N /a	Annual N flux as TAN from cattle housing and yard, solid fraction.
		Val(tan_outhousing_solid, OtherCattle::Housing) + Val(tan_outyard_solid, OtherCattle::Yard);
tan_from_cattle	kg N /a	Annnual N flux as TAN from cattle housing and yard.
		Val(tan_outhousing, OtherCattle::Housing) + Val(tan_outyard, OtherCattle::Yard);
tan_liquid_from_cattle	kg N /a	Annual N flux as TAN from cattle housing and yard, liquid fraction.
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
n_excretion	kg N /a	Annual N excreted by cattle.
		Val(n_excretion, OtherCattle::Excretion);
n_liquid_from_cattle	kg N /a	Annual N flux from cattle housing and yard, liquid fraction.
		Val(n_outhousing_liquid, OtherCattle::Housing) + Val(n_outyard_liquid, OtherCattle::Yard);
n_solid_from_cattle	kg N /a	Annual N flux from cattle housing and yard, solid fraction.
		Val(n_outhousing_solid, OtherCattle::Housing) + Val(n_outyard_solid, OtherCattle::Yard);
n_from_cattle	kg N /a	Annual N flux from cattle housing and yard.
		Val(n_outhousing, OtherCattle::Housing) + Val(n_outyard, OtherCattle::Yard);

49.5 Detailed process description

This process summarizes the annual emission of NH3 for cattle (apart from dairy cows) from housing, yard and grazing. Further it summarizes the annual N flux from housing and yard to the storage for cattle.

50 Livestock::OtherCattle::Excretion

Agrammon Group -2008-02-28

50.1 Short description

Computes the annual N excretion of cattle (apart from dairy cows) as a function of the feed ration.

50.2 Input parameters

Parameter	Unit	Description
animalcategory	-	Animal category (suckling cows, 1 year old heifers, 2 years old heifers, 3 years old heifers, fattening calves, calves of suckling cows, beef cattle). Possible values: beef_cattle, calves_suckling_cows, fattening_calves, heifers_1st_yr, heifers_2nd_yr, heifers_3rd_yr, suckling_cows
animals	-	Number of animals for the selected type in barn.

50.3 Technical parameters

Parameter	Value	Unit	Description
standard_N_excretion_heifers-	25	kg N /a	Annual standard N excretion for a 1 year old
_1st_yr			heifer, according to Flisch et al. (2009).
standard_N_excretion_heifers-	40	kg N /a	Annual standard N excretion for a 2 year old
_2nd_yr			heifer, according to Flisch et al. (2009).
standard_N_excretion_heifers-	55	kg N /a	Annual standard N excretion for a 3 year old
_3rd_yr			heifer, according to Flisch et al. (2009).
standard_N_excretion_beef-	33	kg N /a	Annual standard N excretion for a beefcattle,
_cattle			according to Flisch et al. (2009).
standard_N_excretion-	13	kg N /a	Annual standard N excretion for a fattening-
_fattening_calves			calves, according to Flisch et al. (2009).
standard_N_excretion-	80	kg N /a	Annual standard N excretion for a suckling cow,
_suckling_cows			according to Flisch et al. (2009).
standard_N_excretion_calves-	34	kg N /a	Annual standard N excretion for calves of suck-
_suckling_cows			ling cows, according to Flisch et al. (2009).
share_Nsol_heifers_1st_yr	0.6	-	Nsol content of excreta for 1 year old heifers.
			Derived from e.g. Peterson et al. (1998) or
			Burgos et al. (2005).
share_Nsol_heifers_2nd_yr	0.6	-	Nsol content of excreta for 2 years old heifers.
			Derived from e.g. Peterson et al. (1998) or
			Burgos et al. (2005).
share_Nsol_heifers_3rd_yr	0.6	-	Nsol content of excreta for 3 years old heifers.
			Derived from e.g. Peterson et al. (1998) or
			Burgos et al. (2005).
$share Nsol_beef_cattle$	0.6	-	Nsol content of excreta for beefcattle. Derived
			from e.g. Peterson et al. (1998) or Burgos et
			al. (2005).
share_Nsol_fattening_calves	0.6	-	Nsol content of excreta for fattening calves. De-
			rived from e.g. Peterson et al. (1998) or Burgos
			et al. (2005).
share_Nsol_suckling_cows	0.6	-	Nsol content of excreta for suckling cows. De-
			rived from e.g. Peterson et al. (1998) or Burgos
			et al. (2005).

share_Nsol_calves_suckling-	0.6	-	Nsol content of excreta for suckling cows. De-
_cows			rived from e.g. Peterson et al. (1998) or Burgos
			et al. (2005).

50.4 Output

Parameter	Unit	Formula
$n_sol_excretion$	kg N /a	Annual soluble N excreted by an animalgroup of selected cattle category. Out(share_Nsol) * Out(n_excretion);
n_excretion_animal	kg N /a	Annual mean total N excreted of an animal of selected cattle category. Out(standard_N_excretion);
standard_N_excretion	kg N /a	Annual standard N excretion for specified animal category according to Flisch et al. (2009). my \$key = "standard_N_excretion_" . In('animalcategory'); return Tech(\$key);
animals	-	Number of animals for the selected cattle category in barn. In(animals);
n_excretion	kg N /a	Annual total N excreted by an animal group of selected cattle category. Out(standard_N_excretion) * In(animals);
share_Nsol	-	Nsol content of excreta for a specific cattle category. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005). my \$key = "share_Nsol_" . In('animalcategory'); return Tech(\$key);

50.5 Detailed process description

This process calculates the annual N excretion of a number of cattle as a function of the supplied feed ration. The standard N excretion was taken from the official Swiss fertilizer guidelines. The Nsol content of the excreta is based on e.g. Peterson et al. (1998) or Burgos et al. (2005). These values were compiled on the basis of official feeding recommendations (Flisch et al. 2009) by H. Menzi. A detailed documentation will be prepared in the framework of the new revision of the document in the course of summer 2007.

50.5.1 References:

Burgos SA, Robinson PH, Fadel JG, DePeters EJ 2005. Ammonia volatilization potential: Prediction of urinary urea nitrogen output on lactating dairy cows. Agriculture, Ecosystems and Environment 111:261-269.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

51 Livestock::OtherCattle::Grazing

 $Agrammon\ Group - 2008-04-23$

51.1 Short description

Computes the annual NH3 emission from grazing cattle.

51.2 Input parameters

Parameter	Unit	Description	
grazing_days	d/a	Average grazing days per year.	
grazing_hours	h /d	Average grazing hours per day.	

51.3 Technical parameters

Parameter	Value	Unit	Description
er_cattle_grazing	0.05	-	Emission rate for the calculation of the annual NH3
			emission during grazing for cattle. 5% Ntot (con-
			version with a portion of Nsol of 60%: EF 8.3%
			TAN; value based on Table 1 (Mean emission rate
			of 3.1% N excreted; range: 1.6-5.7% for grazing
			cows on a sward fertilized with 250 kg N/y) of
			Bussink (1992) and Table 3 (Mean emission rate of
			3.3% N excreted; range: 0.0-7.4% for grazing cows
			on a sward fertilized with 250 kg N/y) of Bussink
			(1994). The corresponding value is rather lower for
			Switzerland since the level of fertilization is lower
			resulting in a lower level for crude protein. The
			N level in the fodder of the sward fertilized with
			250 kg N/y (31 g/kg d.m.; Table 4) is comparable
			to values common for Switzerland (Bussink (1994).
			The EF chosen includes a safety margin.

51.4 Output

Parameter	Unit	Formula
grazing_days	d /a	Grazing days per year.
		In(grazing_days);
nh3_ngrazing	kg N /a	Annual NH3 emission from all grazing cattle.
		Out(n_into_grazing) * Tech(er_cattle_grazing);
n_into_grazing	kg N /a	Annual N excretion during grazing for a defined cattle category.
		Val(n_excretion, Excretion) * In(grazing_days) / 365 * In(grazing_hours) / 24;
n_remain_pasture	kg N /a	Annual N input on pastures.
		Out(n_into_grazing) - Out(nh3_ngrazing);
nh3_ngrazing_animal	kg N /a	Annual NH3 emission per cattle form grazing.
		<pre>if(Val(animals, Excretion) != 0){ return Out(nh3_ngrazing) / Val(animals, Excretion); } else { return 0; };</pre>
n_sol_into_grazing	kg N /a	Annual soluble N (TAN) excretion during grazing for a defined cattle category.
		Val(n_sol_excretion, Excretion) * In(grazing_days) / 365 * In(grazing_hours) / 24;
grazing_hours	h /d	Grazing hours per day.
		In(grazing_hours);

51.5 Detailed process description

This process calculates the annual NH3 emission from grazing cattle based on the total N excreted on the pastures. The N excreted is calculated according to the time the animals spend on the pasture. It assumes that the excretions on the pasture are proportional to the time the animals are grazed.

51.5.1 References:

Bussink DW 1992. Ammonia volatilization from grassland receiving nitrogen fertilizer and rotationally grazed by dairy cattle. Fertilizer Research 33:257-265.

Bussink DW 1994. Relationship between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertilizer Research 38:111-121.

Jarvis SC, Hatch DJ, Lockyer DR 1989. Ammonia fluxes from grazed grassland: annual losses from cattle production systems and their relation to nitrogen inputs. Journal of Agricultural Science 113:99-108.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Ross CA, Jarvis SC 2001. Measurement of emission and deposition pattern of ammonia from urine in grass swards. Atmospheric environment 35:867-875.

52 Livestock::OtherCattle::Housing

 $Agrammon\ Group - 2008-04-22$

52.1 Short description

Computes the annual NH3 emission from cattle housing systems.

52.2 Input parameters

52.3 Technical parameters

52.4 Output

Parameter	Unit	Formula
tan outhousing liquid	kg N /a	Annual N flux as TAN out of housing, slurry or liquid
		fraction from cattle.
		Out(n outhousing) * Val(share liquid, Housing::Type) *
		Out(in_outhousing) var(share_inquid, frousingrype) Out(share tan out);
n_outhousing_liquid	kg N /a	Annual N flux out of housing, slurry or liquid fraction from cattle.
		Hom cattle.
		Out(n_outhousing) * Val(share_liquid, Housing::Type);
n outhousing	kg N /a	Annual N flux out of housing.
	1.81, / 4	Timadi Iv nax out of nousing.
		Out(n_into_housing) - Out(nh3_nhousing);
n into housing	kg N /a	Annual N flux into the house.
		Val(n_excretion, Excretion) - Val(n_into_grazing, Grazing) - Val(n into yard, Yard);
tan_outhousing	kg N /a	Annual N flux as TAN out of housing.
		Out(n sol into housing) - Out(nh3 nhousing);
nh3_nhousing	kg N /a	Annual NH3 emission from cattle housing systems per
		animal place.
		Val(n_sol_excretion, Excretion) * Val(k_grazing, Hous-
		ing::KGrazing) * Val(er_housing, Housing::Type) * Val(k_area, Housing::Type) * Val(c_UNECE, Housing::Floor);
		indusingType) var(e_e1vLoE; indusingTool);
$n_sol_into_housing$	kg N /a	Annual N flux as TAN into the house.
		Val(n sol excretion, Excretion) - Val(n sol into grazing,
		Grazing) - Val(n_sol_into_yard, Yard);
Ann and housing 11.1	1 N /	A
tan_outhousing_solid	kg N /a	Annual N flux as TAN out of housing, solid manure fraction of N flux.
		Out(n_outhousing) * (1 - Val(share_liquid, Housing::Type)) * Out(share tan out);
		Out (on a region of the control of t
n_outhousing_solid	kg N /a	Annual N flux out of housing, solid manure fraction of
		N flux.
		Out(n_outhousing) * (1 - Val(share_liquid, Housing::Type));
share_tan_out	=	Share of TAN for interface to storage, the same share is assumed for solid and liquid parts of output. Mineral-
		ization and immobilization are considerd in the storage
		module.
		if(Out(n outhousing) != 0){ Out(tan outhousing) /
		Out(n_outhousing) }else{0};

52.5 Detailed process description

This process calculates the NH3 emission in cattle housing depending on the N excretion and the housing systems. The NH3 emission is assumed to be proportional to the total N excretion of the animals because the contaminated surfaces will primarily drive emission, which will remain active even when animals are on the pasture or exercise yard.

A proportional correction is applied according to the area per animal.

A correction is applied if the part of the day grazing is above a defined grazing hours per days.

52.5.1 Definition of System boundaries for the housing Process:

For housing systems with integrated exercise yards, it is difficult to distinguish between emissions from housing, exercise yard and storage. For these housingtypes the emission may be only validated for the sum of housing, exercise yard and storage emission.

53 Livestock::OtherCattle::Housing::Floor

Agrammon Group -2008-03-30

53.1 Short description

Computes the annual NH3 reduction due to a grooved floor in cattle housing systems.

53.2 Input parameters

Parameter	Unit	Description
UNECE_category_1-	-	UNECE category 1 mitigation options for housing systems
_mitigation_options_for-		for other cattle (none, toothed scrapper running over a
_housing_systems_for_other-		grooved floor).
_cattle		Possible values: toothed_scrapper_running_over_a_grooved_floor, none

53.3 Technical parameters

Parameter	Value	Unit	Description
red_UNECE	0.25	-	Reduction efficiency as comppared to cubicle house
			(UNECE 2007, paragraph 57, table 4).

53.4 Output

Parameter	Unit	Formula	
c_UNECE	-	Reduction factor for the emission due to the use of a grooved floor in housing systems.	
		<pre>if (In('UNECE_category_1_mitigation_options_for_housing_syster eq 'toothed_scrapper_running_over_a_grooved_floor'){ return (1 - Tech('red_UNECE')); } else { return 1; };</pre>	ns_for_other_ca

53.5 Detailed process description

This submodul calculates the annual NH3 reduction due to a grooved floor in cattle housing systems according to the UNECE guideline 2007.

53.5.1 References

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

54 Livestock::OtherCattle::Housing::KGrazing

Agrammon Group -2008-04-1

54.1 Short description

Computes the correction factor for the reduction of the housing emission if the number of grazing hours per day does increase a specific limit.

54.2 Input parameters

54.3 Technical parameters

Parameter	Value	Unit	Description
k_grazing_reduction_lw5h	0	-	Reduction of housing emissions to 0% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw12h	0.2	-	Reduction of housing emissions to 20% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw22h	0.5	-	Reduction of housing emissions to 50% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_gt22h	1.0	-	Reduction of housing emissions to 100% due to ex-
			tensive grazing/alping. Empirical estimation.

54.4 Output

Parameter	Unit	Formula
Parameter k_grazing	Unit 1	The correction factor for the reduction of the housing emission depending on the number of grazing hours per day and the grazing days per year. if (Val('grazing_hours', ':Grazing') < 5){ return ((365.0-Val('grazing_days', ':Grazing')) + ((1-Tech(k_grazing_reduction_lw5h))*Val('grazing_days', ':Grazing')) / 365.0; } elsif (Val('grazing_hours', ':Grazing') < 12.0){ return ((365.0-Val('grazing_days', ':Grazing')) + ((1-Tech(k_grazing_reduction_lw12h))*Val('grazing_days', ':Grazing')) / 365.0; } elsif (Val('grazing_hours', ':Grazing') < 22.0) { return ((365.0-Val('grazing_days', ':Grazing') > 22.0) { return ((365.0-Val('grazing_days', ':Grazing')) + ((1-Val('grazing_days', ':Grazing')) + ((1-Val('grazin
		$\label{eq:continuity} \begin{array}{lll} Tech(k_grazing_reduction_lw22h))*Val('grazing_days', ':Grazing'))) / 365.0 ; \\ & & elsif (Val('grazing_hours', ':Grazing')) >= 22.0) \{ return ((365.0-Val('grazing_days', '::Grazing')) + ((1-Tech(k_grazing_reduction_gt22h))*Val('grazing_days', '::Grazing'))) / 365.0 ; \\ & & else \{ return 1; \\ & \# \ no \ correction \}; \end{array}$

54.5 Detailed process description

This process calculates the correction factor for the non proportional change of the housing emissions according to the grazing hours per day (Webb et al. 2005). It is based on an empirical estimation of Menzi and Katz (1997). The concept has been lately supported by measurements in the UK (Defra 2005), where reductions comparable to those assumed by Menzi and Katz (1997) were reported.

54.5.1 References:

Department for Environment, Food & Rural Affairs, Defra 2002. Ammonia in the UK. DEFRA Publications, London. Menzi H, Katz PE 1997. A differentiated approach to calculate ammonia emissions from animal husbandry. In: Voermans JAM and Monteny GJ (Eds): "Ammonia and odour emissions from animal production facilities", Proc. International Symposium, Vinkeloord, NL, 6-10 October 1997, 35-42. Webb J, Misselbrook TH 2005. A mass-flow model of ammonia emissions from UK livestock production. Atmospheric environment 38: 2163-2176.

55 Livestock::OtherCattle::Housing::Type

Agrammon Group -2008-02-19

55.1 Short description

Selects the emission rate and other correction factors for the specific housing types for cattle.

55.2 Input parameters

Parameter	Unit	Description			
housing_type	-	Type of housing. Possible values: Loose_Housing_Deep_Litter, Loose_Housing_Slurry, Loose_Housing_Slurry_Plus_Solid_Manure, Tied_Housing_Slurry_Plus_Solid_Manure, Tied_Housing_Slurry			
dimensioning_barn	-	Number of available animal places.			

55.3 Technical parameters

55.4 Output

Parameter	Unit	Formula
housing_type	-	Housing type (needed in other modules).
		In('housing_type');
area_increase	-	Factor on what barn size does increase the regularized minimal, limited to 0.5
		<pre>if((Val('animals', ':Excretion') < In('dimensioning_barn')) and (Val('animals', ':Excretion') != 0)) { if(In('dimensioning_barn') } >= (Val(animals, ':Excretion') * 1.5)) { return 0.5; } else { return((In('dimensioning_barn') / Val(animals, ':Excretion')) - 1); } else { return 0.0; };</pre>
share_liquid	-	Liquid share for the housing type.
		Val(share_liquid, 'Type::' . In('housing_type'));
er_housing	-	Emission rate for the housing type.
		Val('er_housing', 'Type::' . In('housing_type'));
k_area_type	-	Correction factor for the housing type area.
		Val('k_area', 'Type::' . In('housing_type'));
share_solid	_	Solid share for the housing type.
		Val(share_solid, 'Type::' . In('housing_type'));
k_area	-	Correction factor for area per animal.
		1 + (Out(area_increase) * Out(k_area_type));

55.5 Detailed process description

This process selects the correction factor for the specific housing types for cattle. Among these correction factors are the emission rate for the housing type, the correction factor for the housing type area, the

correction factor for the area per animal, the liquid and solid share for the housing type as well as the factor on what barn size increases the regularized minimal (limited to 0.5).

${\bf 56 \quad Livestock:: Other Cattle:: Housing:: Type:: Loose_Housing_Deep-Litter}$

Agrammon Group -2008-04-18

56.1 Short description

Describes correction factors for the loose housing deep litter system.

56.2 Input parameters

56.3 Technical parameters

Parameter	Value	Unit	Description
er	0.183	-	Emission rate for the loose housing deep lit-
			ter system for cattle. According to the consen-
			sus obtained in the workshop at ART T¤nikon
			02/11/07: 11% Ntot; converted using Nsol of $60%$:
			EF 18.3% TAN. Reference value UNECE(2007):
			11 kg NH3 = 8% TAN.
share_liquid	0	-	For the loose housing deep litter system 100%
			of the manure does into the solid manure stor-
			m age/application.
k_area	0.5	-	According to the consensus obtained in the work-
			shop at ART TÃ α nikon 02/11/07: it is assumed
			that additional surfaces are entirely used since bar-
			riers are hardly fea-sible. The emission is increased
			by 5% per 10% of additional surfaces up to a max-
			imum of 50% additional surface.

56.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing type.
		Tech(share_liquid);
er_housing	_	Emission rate for specific housing type.
		Tech(er);
share_solid	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share_liquid);
k_area	-	Correction factor for area per animal.
		Tech(k_area);

56.5 Detailed process description

This process describes the correction factors for the loose housing deep litter system such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

56.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. UNECE executive body for the convention on long-range transboundary air pollution, Working Group on Strategies and Review, EB.AIR/WH.5/2007/13/16 July 2007, Genf. 35p.

57 Livestock::OtherCattle::Housing::Type::Loose Housing Slurry

 $Agrammon\ Group - 2008-04-18$

57.1 Short description

Describes correction factors for the loose housing slurry system.

57.2 Input parameters

57.3 Technical parameters

Parameter	Value	Unit	Description
er	0.183	-	Emission rate for the loose housing slurry system
			for cattle. According to the consensus obtained in
			the workshop at ART TÃ α nikon 02/11/07: 11%
			Ntot; converted using Nsol of 60%: EF 18.3%
			TAN. Reference value UNECE(2007): 11 kg NH3
			= 8% TAN.
share_liquid	1	-	For the loose housing slurry system 100% of the
			manure goes into the liquid fraction of the stor-
			age/application.
k_area	0.5	-	According to the consensus obtained in the work-
			shop at ART TÃ α nikon 02/11/07: it is assumed
			that additional surfaces are entirely used since bar-
			riers are hardly fea-sible. The emission is increased
			by 5% per 10% of additional surfaces up to a max-
			imum of 50% additional surface.

57.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing type.
		Tech(share_liquid);
${ m er_housing}$	-	Emission rate for specific housing type.
		Tech(er);
${ m share_solid}$	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share_liquid);
k_area	-	Correction factor for area per animal.
		Tech(k_area);

57.5 Detailed process description

This process describes the correction factors for the loose housing slurry system such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

57.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. UNECE executive body for the convention on long-range transboundary air pollution, Working Group on Strategies and Review, EB.AIR/WH.5/2007/13/16 July 2007, Genf. 35p.

58 Livestock::OtherCattle::Housing::Type::Loose_Housing_Slurry-Plus Solid Manure

Agrammon Group -2008-04-18

58.1 Short description

Describes correction factors for the loose housing liquid solid system.

58.2 Input parameters

58.3 Technical parameters

Parameter	Value	Unit	Description
er	0.183	-	Emission rate for the loose housing liquid solid
			system for cattle. According to the consen-
			sus obtained in the workshop at ART TĤnikon
			02/11/07: 11% Ntot; convered using Nsol of 60%:
			EF 18.3% TAN. Reference value UNECE(2007):
			11 kg NH3 = 8% TAN.
share_liquid	0.57	-	For the loose housing liquid solid system 57% of
			the manure goes into the liquid manure storage.
k_area	0.5	-	According to the consensus obtained in the work-
			shop at ART TÃ α nikon 02/11/07: it is assumed
			that additional surfaces are entirely used since bar-
			riers are hardly fea-sible. The emission is increased
			by 5% per 10% of additional surfaces up to a max-
			imum of 50% additional surface.

58.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing type.
		Tech(share_liquid),
er_housing	-	Emission rate for specific housing type.
		Tech(er),
share_solid	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share_liquid);
k_area	-	Correction factor for area per animal.
		Tech(k_area);

58.5 Detailed process description

This process describes the correction factors for the loose housing liquid solid system such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

58.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. UNECE executive body for the convention on long-range transboundary air pollution, Working Group on Strategies and Review, EB.AIR/WH.5/2007/13/16 July 2007, Genf. 35p.

59 Livestock::OtherCattle::Housing::Type::Tied Housing Slurry

 $Agrammon\ Group - 2008-04-18$

59.1 Short description

Describes correction factors for the tide housing slurry system.

59.2 Input parameters

59.3 Technical parameters

Parameter	Value	Unit	Description
er	0.067	Missing unit	Emission rate for the tide housing slurry
			system for cattle. According to the con-
			sensus obtained in the workshop at ART
			TÃ α nikon 02/11/07: 4% Ntot, converted
			using Nsol of 60%: EF 6.7% TAN.
share_liquid	1	-	For the tide housing slurry system 100% of
			the manure goes into the liquid fraction of
			${ m the\ storage/application}.$
k_area	0	-	Additional surfaces are not used.

59.4 Output

Unit	Formula
-	Part of Ntot flowing into liquid storage for selected housing
	type.
	Tech(share_liquid);
-	Emission rate for specific housing type.
	Tech(er);
-	Share of solid manure of Ntot for selected housing type.
	1-Tech(share_liquid);
-	Correction factor for area per animal.
	- -
	Tech(k_area);

59.5 Detailed process description

This process describes the correction factors for the tied housing slurry system such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

60 Livestock::OtherCattle::Housing::Type::Tied_Housing_Slurry-Plus Solid Manure

 $Agrammon\ Group - 2008-04-18$

60.1 Short description

Describes correction factors for the tide housing liquid solid system.

60.2 Input parameters

60.3 Technical parameters

Parameter	Value	Unit	Description
er	0.067	-	Emission rate for the tide housing liquid solid
			system for cattle. According to the consen-
			sus obtained in the workshop at ART Tänikon
			02/11/07: 4% Ntot; converted using Nsol of 60%:
			EF 6.7% TAN.
share_liquid	0.57	-	For the tide housing liquid solid system 57% of the
			manure goes into the liquid fraction of the stor-
			m age/application.
k_area	0	-	Additional surfaces are not used.

60.4 Output

Parameter	Unit	Formula
share_liquid	-	Part of Ntot flowing into liquid storage for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		Tech(er);
share_solid	-	Share of solid manure of Ntot for selected housing type.
		1-Tech(share_liquid);
k_area	-	Correction factor for area per animal.
		Tech(k_area);

60.5 Detailed process description

This process describes the correction factors for the tied housing liquid solid system such as the housing specific emission rate, the area per animal correction, the liquid share and solid share.

61 Livestock::OtherCattle::Yard

 $Agrammon\ Group - 2008-04-08$

61.1 Short description

Computes the annual NH3 emission from cattle (apart from dairy cows) on exercise yards. Based on the access time and if the the basic feeding is on the yard.

61.2 Input parameters

Parameter	Unit	Description	
yard_days	d/a	Access to exercise yards days per year.	
exercise_yard	-	Exercise yard: not available, available: roughage is not supplied in the exercise yard, available: roughage is partly supplied in the exercise yard, available: roughage is exclusively supplied in the exercise yard.	
		Possible values: available_roughage_is_exclusively_supplied_in_the_	ovorcieo ward
		available_roughage_is_exclusivery_supplied_in_the_exercise available_roughage_is_partly_supplied_in_the_exercise not_available	_yard,
floor_properties_exercise_yard	-	Floor properties (solid floor, unpaved floor, perforated floor, paddock or pasture used as exercise yard).	
		Possible values: paddock_or_pasture_used_as_exercise_yard, perforated_floor, unpaved_floor, solid_floor	

61.3 Technical parameters

Parameter	Value	Unit	Description
er_yard	0.7	-	Emission rate for TAN on yard.
share_available_roughage_is-	0.6	-	Share of excretion per day for animals with
_exclusively_supplied_in_the-			roughage exclusively on the yard.
_exercise_yard			
share_available_roughage_is-	0.2	-	Share of excretion per day for animals with
_partly_supplied_in_the-			roughage partly on the yard.
_exercise_yard			
share_available_roughage-	0.1	-	Share of excretion per day for animals with
$_{\rm is_not_supplied_in_the-}$			roughage not supplied in the yard.
_exercise_yard			
red_floor_properties_solid-	0.0	-	Reduction efficiency according to Reidy and
_floor			Menzi.
red_floor_properties_unpaved-	0.5	-	Reduction efficiency according to Reidy and
_floor			Menzi.
red_floor_properties-	0.8	-	Reduction efficiency according to Reidy and
_perforated_floor			Menzi.
red_floor_properties_paddock-	0.9	-	Reduction efficiency according to Reidy and
_or_pasture_used_as-			Menzi.
_exercise_yard			

61.4 Output

Parameter	Unit	Formula	
n_{into_yard}	kg N /a	Annual N excretion on yard for a defined animal category.	
		Val('n_excretion', Excretion) * In('yard_days') / 365 * Out(share_excretion_yard);	
$ an_outyard_solid$	kg N /a	Annual N flux as TAN from solid part out of yard into storage.	-
		0;	
nh3_nyard_animal	kg N /a	Annual NH3 emission per annimal from yard.	_
		<pre>if(Val('animals', Excretion) != 0){ return Out('nh3_nyard') / Val('animals', Excretion); } else { return 0; };</pre>	
share_excretion_yard	-	Share of excretion on the yard according the stay on yard. If the basic feeding is on the yard the share_basicfeeding is assumed. Otherwise the share is selected according to the access.	
		if(In('exercise_yard') eq 'available_roughage_is_not_supplied_in_the_exercise_yard') { return Tech('share_available_roughage_is_not_supplied_in_the_} elsif(In('exercise_yard') eq 'available_roughage_is_partly_supplied_in_the_exercise_yard') { return Tech('share_available_roughage_is_partly_supplied_in_} elsif(In('exercise_yard') eq 'available_roughage_is_exclusively_supplied_in_the_exercise_yard') { return Tech('share_available_roughage_is_exclusively_supplied_in_the_exercise_yard') } elsif(In('exercise_yard') eq 'not_available') { return 0; } elsif(In('exercise_yard') elain(in the exercise_yard') elsif(In('exercise_yard') elsif(In('exercise_yard'	the_exercise_yard'
nh3_nyard	kg N /a	Annual NH3 emission from yard.	-
		Out('n_sol_into_yard') * Tech(er_yard) *(1 - (Out('c_floor_properties_exercise_yard')));	
n_outyard	kg N /a	Annual N flux out of yard.	_
		Out('n_into_yard') - Out('nh3_nyard');	
n_sol_into_yard	kg N /a	Annual soluble N excretion on yard for a defined animal category.	-
		Val('n_sol_excretion', Excretion) * In('yard_days') / 365 * Out(share_excretion_yard);	
n_outyard_liquid	kg N /a	Annual N flux form liquid part out of yard.	
		Out('n_into_yard') - Out('nh3_nyard');	
$n_outyard_solid$	kg N /a	Annual N flux from solid part out of yard.	_
		0;	
tan_outyard_liquid	kg N /a	Annual N flux as TAN from liquid part out of yard into storage.	_
		Out('n_sol_into_yard') - Out('nh3_nyard');	
tan_outyard	kg N /a	Annual N flux as TAN out of yard into storage.	_
		Out('n_sol_into_yard') - Out('nh3_nyard');	
c_floor_properties_exercise- _yard	-	Reduction factor for the emission due to the use of the floor properties in housing systems.	
Coito 105/200	1 1	if (In('floor_properties_exercise_yard') eq 'solid_floor'){	
Seite 105/200	model.t	exret 10037e2009e05-06oor_properties_solid_floor'); May 6, 2009 } elsif (In('floor_properties_exercise_yard') eq 'unpaved_floor'){ return	9
		Tech('red_floor_properties_unpaved_floor'); } elsif (In('floor_properties_exercise_yard')	

61.5 Detailed process description

62 Livestock::Pig

Agrammon Group -2008-02-19

62.1 Short description

Collects the annual emission of NH3 and the N flux for pigs.

62.2 Input parameters

62.3 Technical parameters

62.4 Output

Parameter	Unit	Formula		
n_solid_from_pig	kg N /a	Annual N flux from pigs housing, solid fraction.		
		Val(n_outhousing_solid, Pig::Housing);		
n_from_pig	kg N /a	Annual N flux from pigs housing.		
		Val(n_outhousing, Pig::Housing);		
n_liquid_from_pig	kg N /a	Annual N flux from pigs housing, liquid fraction.		
		Val(n_outhousing_liquid, Pig::Housing);		
nh3_npig	kg N /a	Annual NH3 emission from pigs housing and grazing (production).		
		Val(nh3_nhousing, Pig::Housing) + Val(nh3_ngrazing, Pig::Grazing);		
tan_from_pig	kg N /a	Annual N flux as TAN from pigs housing.		
		Val(tan_outhousing, Pig::Housing);		
tan_liquid_from_pig	kg N /a	Annual N flux as TAN from pigs housing, liquid fraction.		
		Val(tan_outhousing_liquid, Pig::Housing);		
tan_solid_from_pig	kg N /a	Annual N flux as TAN from pigs housing, liquid fraction.		
		Val(tan_outhousing_solid, Pig::Housing);		
n_excretion	kg N /a	Annual N excreted by pigs.		
		Val(n_excretion, Pig::Excretion);		

62.5 Detailed process description

This process summarizes the annual emission of NH3 for pigs from housing and grazing. And it summarizes the annual N flux from housing to the storage for pigs.

63 Livestock::Pig::Excretion

 $Agrammon\ Group - 2008\text{-}04\text{-}22$

63.1 Short description

Computes the annual N excretion of diffrent pig categories as a function of the crude protein and the energy content of the feed ration.

63.2 Input parameters

Parameter	Unit	Description
animalcategory	-	Pig category (nursing sows, dry sows, gilts, weaned piglets (up to 25kg), and boars). Possible values: boars, dry_sows, gilts, nursing_sows, weaned_piglets_up_to_25kg
pigs	-	Number of pigs for the selected type in barn.
crude_protein	g /kg	Crude protein content of feed ration.
energy_content	MJ VES /kg	Energy content of feed ration.

63.3 Technical parameters

Parameter	Value	Unit	Description
$standard_N_excretion-$	42	kg N /a	Annual standard N excretion for animal cat-
$_\mathrm{nursing}_\mathrm{sows}$			egory (nursing sows) according to Flisch et
			al. (2009).
standard_N_excretion_dry-	20	kg N /a	Annual standard N excretion for animal cat-
_sows			egory (dry sows) according to Flisch et al. (2009).
standard_N_excretion_gilts	13	kg N /a	Annual standard N excretion for animal cat-
			egory (gilts) according to Flisch et al. (2009).
$standard_N_{excretion}$	4.6	kg N /a	Annual standard N excretion for animal cat-
_weaned_piglets_up_to_25kg			egory (piglets) according to Flisch et al. (2009).
standard_N_excretion_boars	18	kg N /a	Annual standard N excretion for animal cate-
			gory (boars) according to Flisch et al. (2009).
standard_crude_protein-	165	g CP /kg	Standard crude protein content of a feed ra-
$_\mathrm{nursing}_\mathrm{sows}$			tion for nursing sows (BLW, SRVA, LBL
			2003).
$standard_crude_protein_dry$ -	145	g CP /kg	Standard crude protein content of a feed ra-
_sows			tion for dry sows(BLW, SRVA, LBL 2003).
${ m standard_crude_protein_gilts}$	170	g CP /kg	Standard crude protein content of a feed ra-
			tion for gilts (BLW, SRVA, LBL 2003).
${ m standard_crude_protein}$	175	g CP /kg	Standard crude protein content of a feed ra-
$_$ weaned $_$ piglets $_$ up $_$ to $_$ 25kg			tion for piglets (BLW, SRVA, LBL 2003).
$standard_crude_protein_boars$	145	g CP /kg	Standard crude protein content of a feed ra-
			tion for boars (BLW, SRVA, LBL 2003).
$\operatorname{standard} \operatorname{_energy} \operatorname{_content}$	12.5	MJ VES	Standard energy content of a feed ration for
$_\mathrm{nursing}_\mathrm{sows}$			nursing sows (BLW, SRVA, LBL 2003).
$standard_energy_content_dry$ -	12.5	MJ VES	Standard energy content of a feed ration for
sows			dry sows (BLW, SRVA, LBL 2003).
${ m standard_energy_content_gilts}$	13.5	MJ VES	Standard energy content of a feed ration for
			gilts (BLW, SRVA, LBL 2003).
$standard_energy_content-$	13.5	MJ VES	Standard energy content of a feed ration for
$_$ weaned $_$ piglets $_$ up $_$ to $_25 kg$			piglets (BLW, SRVA, LBL 2003).

standard_energy_content- boars	12.5	MJ VES	Standard energy content of a feed ration for boars (BLW, SRVA, LBL 2003).
cfeed_nursing_sows	0.007	-	Correction factor for feed with reduced crude protein content for nursing sows (BLW, SRVA, LBL 2003).
cfeed_dry_sows	0.008	-	Correction factor for feed with reduced crude protein content for dry sows (BLW, SRVA, LBL 2003).
$cfeed_gilts$	0.0054	-	Correction factor for feed with reduced crude protein content for gilts (BLW, SRVA, LBL 2003).
cfeed_weaned_piglets_up_to- _25kg	0.0072	-	Correction factor for feed with reduced crude protein content for piglets (BLW, SRVA, LBL 2003).
cfeed_boars	0.0052	-	Correction factor for feed with reduced crude protein content for boars (BLW, SRVA, LBL 2003).
minimal_N_excretion_nursing- _sows	35.3	kg N /a	Annual minimal N excretion for pig category (nursing sows) according to Flisch et al. (2009).
minimal_N_excretion_dry- _sows	17.5	kg N /a	Annual minimal N excretion for pig category (dry sows) according to Flisch et al. (2009).
minimal_N_excretion_gilts	10.9	kg N /a	Annual minimal N excretion for pig category (gilts) according to Flisch et al. (2009).
minimal_N_excretion_weaned- _piglets_up_to_25kg	3.8	kg N /a	Annual minimal N excretion for pig category (piglets) according to Flisch et al. (2009).
minimal_N_excretion_boars	15.5	kg N /a	Annual minimal N excretion for pig category (boars) according to Flisch et al. (2009).
share_Nsol	0.7	-	Nsol content of excreta from pigs. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).

63.4 Output

Parameter	Unit	Formula
n_sol_excretion	kg N /a	Annual soluble N excreted by a specified number fopigs.
		Tech(share_Nsol) * Out(n_excretion);
minimal_N_excretion	kg N /a	Minimal annual N excretion for specified pig category according to Flisch et al. (2009).
		<pre>my \$key = "minimal_N_excretion_" . In('animalcategory'); return Tech(\$key);</pre>
cfeed	-	Correction factor for feed with reduced crude protein content (BLW, SRVA, LBL 2003).
		my \$key = "cfeed_" . In('animalcategory'); return Tech(\$key);
standard_crude_protein	g CP /kg	Annual standard N excretion for specified pig category according to Flisch et al. (2009).
		my \$key = "standard_crude_protein_" . In('animalcategory'); return Tech(\$key);
pigs	-	Number of pigs of a specific category.
		In(pigs);
standard_N_excretion	kg N /a	Annual standard N excretion for specified animal category according to Flisch et al. (2009).
		<pre>my \$key = "standard_N_excretion_" . In('animalcategory'); return Tech(\$key);</pre>
n_excretion	kg N /a	Annual total N excreted by a specified number of animals.
		<pre>if(In('energy_content') != 0){ Out(standard_N_excretion)</pre>
standard_energy_content	MJ VES	Standard energy content of the feed ration for selected pig category.
		my \$key = "standard_energy_content_" . In('animalcategory'); return Tech(\$key);

63.5 Detailed process description

This process calculates the annual N excretion (total N and Nsol) of different pig categories according to the crude protein and energy content of the feed ration.

63.5.1 References:

BLW, SRVA, LBL 2003. Weisungen zur Beruecksichtigung von Ökofuttern in der Suisse-Bilanz. 2003. Burgos SA, Robinson PH, Fadel JG, DePeters EJ 2005. Ammonia volatilization potential: Prediction of urinary urea nitrogen output on lactating dairy cows. Agriculture, Ecosystems and Environment 111:261-269.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

64 Livestock::Pig::Grazing

Agrammon Group -2008-02-29

64.1 Short description

Computes the annual NH3 emission from grazing pigs.

64.2 Input parameters

64.3 Technical parameters

Parameter	Value	Unit	Description
er_pig_grazing	0.2	-	Emission rate for the calculation of the annual NH3
			emission during grazing for pigs. Sommer et al.
			(2001) give a yearly volatilization loss from one
			sow with piglets of 4.8 kg N resulting in a loss of
			20% TAN assuming an N excretion/sow/y of 35 kg
			N (Flisch et al. (2009)).

64.4 Output

Parameter	Unit	Formula
nh3_ngrazing	kg N /a	Annual NH3 emission from all pigs from grazing.
		Out(n_sol_into_grazing) * Tech(er_pig_grazing);
share_grazing	-	Share of N excretion during outdoor activities for a defined animal category. If pig housing type is 'Outdoor' 100% is assumed.
		<pre>if(Val('housing_type', 'Housing::Type') eq 'Outdoor'){ re- turn 1; }else { return 0; # no correction };</pre>
n_into_grazing	kg N /a	Annual N excretion during grazing for pigs.
		Val('n_excretion', 'Excretion') * Out(share_grazing);
n_remain_pasture	kg N /a	Annual N input on pastures.
		Out(n_into_grazing) - Out(nh3_ngrazing);
n_sol_into_grazing	kg N /a	Annual soluble N (TAN) excretion during grazing for pigs.
		Val('n_sol_excretion', 'Excretion') * Out(share_grazing);

64.5 Detailed process description

This process calculates the annual NH3 emission from grazing pigs based on the N excreted on the pastures. The N excreted is calculated according to the time the animals spend on the pasture. It assumes that the excretions on the pasture are proportional to the time the animals are grazed.

64.5.1 References:

Bussink DW 1992. Ammonia volatilization from grassland receiving nitrogen fertilizer and rotationally grazed by dairy cattle. Fertilizer Research 33:257-265.

Bussink DW 1994. Relationship between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertilizer Research 38:111-121.

Jarvis SC, Hatch DJ, Lockyer DR 1989. Ammonia fluxes from grazed grassland: annual losses from cattle production systems and their relation to nitrogen inputs. Journal of Agricultural Science 113:99-108.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Ross CA, Jarvis SC 2001. Measurement of emission and deposition pattern of ammonia from urine in grass swards. Atmospheric environment 35:867-875.

 $Sommer\ SG,\ Sogaard\ HT,\ Moller\ HB,\ Morsing\ S\ 2001.\ Ammonia\ volatilization\ from\ sows\ on\ grassland.$ $Atmospheric\ environment\ 35:2023-2032.$

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

65 Livestock::Pig::Housing

 $Agrammon\ Group - 2009\text{-}02\text{-}22$

65.1 Short description

Computes the annual NH3 emission from pig housing systems.

65.2 Input parameters

65.3 Technical parameters

65.4 Output

Parameter	Unit	Formula
tan outhousing liquid	kg N /a	Annual N flux as TAN out of housing, slurry or liquid
		fraction from pigs.
		if(Val(housing_type, Housing::Type) eq 'Outdoor'){ 0 }else { Out(n_outhousing) * Val('share_liquid', 'Housing::Type') * Out(share_tan_out) };
n_outhousing_liquid	kg N /a	Annual N flux out of housing, slurry or liquid fraction from pigs.
		<pre>if(Val(housing_type, Housing::Type) eq 'Outdoor'){ 0 }else { Out(n_outhousing) * Val('share_liquid', 'Housing::Type') };</pre>
$n_outhousing$	kg N /a	Annual N flux out of the housing.
		if(Val('housing_type', 'Housing::Type') eq 'Outdoor'){ 0 }else { Out(n_into_housing) - Out(nh3_nhousing) };
n_into_housing	kg N /a	Annual N flux into the house.
		Val('n_excretion', 'Excretion') - Val('n_into_grazing', 'Grazing');
tan_outhousing	kg N /a	Annual N flux as TAN out of the housing.
		<pre>if(Val(housing_type, Housing::Type) eq 'Outdoor'){ 0 }else { Out(n_sol_into_housing) - Out(nh3_nhousing) };</pre>
nh3_nhousing	kg N /a	Annual NH3 emission from pig housing systems. per animal place.
		Val('n_sol_excretion', 'Excretion') * Val('er_housing', 'Housing::Type') * Val('c_air_scrubber', 'Housing::AirScrubber') * (1 - Val('c_UNECE_housing_task', 'Housing::UNECEhousingTask'));
n_sol_into_housing	kg N /a	Annual N flux as TAN into the house.
		Val('n_sol_excretion', 'Excretion') - Val('n_sol_into_grazing', 'Grazing');
tan_outhousing_solid	kg N /a	Annual N flux as TAN out of housing, manure fraction of N flux from pigs.
		if(Val(housing_type, Housing::Type) eq 'Outdoor'){ 0 }else { Out(n_outhousing) * (1 - Val('share_liquid', 'Housing::Type')) * Out(share_tan_out) };
${\tt n_outhousing_solid}$	kg N /a	Annual N flux out of housing, manure fraction of N flux from pigs.
		<pre>if(Val('housing_type', 'Housing::Type') eq 'Outdoor'){ 0 }else { Out(n_outhousing) * (1 - Val('share_liquid', 'Housing::Type')) };</pre>
share_tan_out	-	Share of TAN for interface to storage, the same share is assumed for solid and liquid parts of output. Mineralization and immobilization are considerd in the storage module.

65.5 Detailed process description

This process calculates the NH3 emission in pig housing depending on the N excretion and the housing systems. The NH3 emission is assumed to be proportional to the total N excretion of the animals because the contaminated surfaces will primarily drive emissions, which will remain active even when animals are on the pasture or exercise yard.

A proportional correction is applied according to the area per animal.

A correction is applied if the part of the day grazing is above a defined grazing hours per days.

65.5.1 Definition of System boundaries for the housing Process:

For housing systems with integrated exercise yards, it is difficult to distinguish between emissions from housing, exercise yard and storage. For these housingtypes the emission may be only validated for the sum of housing, exercise yard and storage emission.

66 Livestock::Pig::Housing::AirScrubber

Agrammon Group -2008-03-30

66.1 Short description

Computes the annual NH3 reduction due to an air exhaust scrubber in housing systems.

66.2 Input parameters

Parameter	Unit	Description
air_scrubber	-	Air exhaust scrubber (none, acid, biotrickling_filter).
		Possible values: acid, biotrickling, none

66.3 Technical parameters

Parameter	Value	Unit	Description
red_acid_air_scrubber	0.9	-	Reduction efficiency as compared to group-housed
			on fully and partly slatted floors (UNECE 2007,
			paragraph 71, table 5).
red_biotrickling_filter_air-	0.7	-	Reduction efficiency as compared to group-housed
_scrubber			on fully and partly slatted floors (UNECE 2007,
			paragraph 71, table 5).

66.4 Output

Parameter	Unit	Formula
c_air_scrubber	-	Reduction factor for the emission due to the use of an air exhaust scrubber in housing systems.
		<pre>if (In('air_scrubber') eq 'acid'){ return (1 - Tech('red_acid_air_scrubber')); } elsif(In('air_scrubber') eq 'biotrickling'){ return (1 - Tech('red_biotrickling_filter_air_scrubber')); } elsif(In('air_scrubber') eq 'none'){ return 1; } else{ print STDERR "Invalid 'air_scrubber' defined!"; return 1; }</pre>

66.5 Detailed process description

This submodul calculates the annual NH3 reduction due to an air exhaust scrubber in housing systems according to the UNECE guideline 2007.

66.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

67 Livestock::Pig::Housing::Type

Agrammon Group -2008-02-19

67.1 Short description

Selects the emission rate and other correction factors for the specific housing types for pigs.

67.2 Input parameters

Parameter	Unit	Description
housing_type	-	Type of housing.
		Possible values: Deep_Litter, Outdoor, Slurry_Label, Slurry_Conventional

67.3 Technical parameters

67.4 Output

Parameter	Unit	Formula
housing_type	-	Housing type (needed in other modules).
		In(housing_type);
share_liquid	-	Liquid share for the housing type.
		Val(share_liquid, 'Type::' . In(housing_type));
er_housing	-	Emission rate for the housing type.
		Val(er_housing, 'Type::' . In(housing_type));
share_solid	-	Solid share for the housing type.
		Val(share_solid, 'Type::' . In(housing_type));

67.5 Detailed process description

This process selects the correction factor for the specific housing types for pigs. Among these correction factors are the emission rate for the housing type, the correction factor for the housing type area, the correction factor for the area per animal, the liquid and solid share for the housing type as well as the factor on what barn size increases the regularized minimal (limited to 0.5).

${\bf 68 \quad Livestock:: Pig:: Housing:: Type:: Deep_Litter}$

 $Agrammon\ Group - 2008-04-18$

68.1 Short description

Describes correction factors for the label deep litter pig housing system.

68.2 Input parameters

68.3 Technical parameters

Parameter	Value	Unit	Description
er	0.157	-	Emission rate for the label deep litter pig housing
			system. According to the consensus obtained in
			the workshop at ART TÃ α nikon 02/11/07: 12.81
			% Ntot; converted using Nsol of 70%: EF 18.3 %
			TAN
share_liquid	0	-	For the label deep litter pig housing system
			100% of the manure goes into solid manure stor-
			m age/application.

68.4 Output

Parameter	Unit	Formula
share_liquid	-	Liquid part of Ntot for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	Solid part of Ntot for selected housing type.
		1-Tech(share_liquid);

68.5 Detailed process description

This process describes the correction factors for the label deep litter pig housing system such as the housing specific emission rate, the liquid share and solid share.

69 Livestock::Pig::Housing::Type::Outdoor

Agrammon Group -2008-04-18

69.1 Short description

Describes emission rates for outdoor pigs. Outodoor pigs do not have any housing emissions.

69.2 Input parameters

69.3 Technical parameters

Parameter	Value	Unit	Description
er	0	-	Emission rate for outdoor pigs (equal to zero be-
			cause all emissions are listed under grazing).
share_liquid	0	-	For the outdoor pigs 0% of the manure goes into
			the liquid fraction for storage/application.

69.4 Output

Parameter	Unit	Formula
share_liquid	-	Liquid part of Ntot for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	For the outdoor pigs 0% of the manure goes into the solid fraction for storage/application.
		0

69.5 Detailed process description

This process describes the correction factors for outdoor pigs such as the housing specific emission rate, the liquid share and solid share. Outodoor pigs do not have any housing emissions, as everything is excreted on pasture.

$70 \quad Livestock:: Pig:: Housing:: Type:: Slurry_Conventional$

 $Agrammon\ Group - 2008-04-18$

70.1 Short description

Describes correction factors for the conventional slurry pig housing system.

70.2 Input parameters

70.3 Technical parameters

Parameter	Value	Unit	Description
er	0.243	-	Emission rate for the conventional slurry pig hous-
			ing system. According to the consensus obtained
			in the workshop at ART TÃ α nikon 02/11/07: 17
			% Ntot; converted using Nsol of 70%: EF 24.3 %
			TAN.
share_liquid	1	-	For the conventional slurry pig housing system
			100% of the manure goes into the liquid fraction
			for storage/application.

70.4 Output

Parameter	Unit	Formula
share_liquid	-	Liquid part of Ntot for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	Solid part of Ntot for selected housing type.
		1-Tech(share_liquid);

70.5 Detailed process description

This process describes the correction factors for the conventional slurry pig housing system such as the housing specific emission rate, the liquid share and solid share.

71 Livestock::Pig::Housing::Type::Slurry_Label

 $Agrammon\ Group - 2008-04-18$

71.1 Short description

Describes correction factors for the label slurry pig housing system.

71.2 Input parameters

71.3 Technical parameters

Parameter	Value	Unit	Description
er	0.486	-	Emission rate for the label slurry pig housing sys-
			tem. According to the consensus obtained in the
			workshop at ART Tänikon 02/11/07: 34 % Ntot;
			converted using Nsol of 70%: EF 48.6 % TAN.
share_liquid	1	-	For the label slurry pig housing system 100% of
			the manure goes into the liquid fraction for stor-
			age/application.

71.4 Output

Parameter	Unit	Formula
share_liquid	-	Liquid part of Ntot for selected housing type.
		Tech(share_liquid);
er_housing	-	Emission rate for specific housing type.
		$\operatorname{Tech}(\operatorname{er});$
share_solid	-	Solid part of Ntot for selected housing type.
		1-Tech(share_liquid);

71.5 Detailed process description

This process describes the correction factors for the label slurry pig housing system such as the housing specific emission rate, the liquid share and solid share.

72 Livestock::Pig::Housing::UNECEhousingTask

Agrammon Group -2008-03-30

72.1 Short description

Computes the annual NH3 reduction due to an exhaust air scrubber in housing systems.

72.2 Input parameters

Parameter	Unit	Description
UNECE_category_1mitigation_options_forhousing_systems_for_pigs	-	UNECE housing tasks for partly slatted floor: with scraper (concrete_slats), with flush channels(no areation), with flush channels(areation), with flush gutters/tubes (no areation), with flush gutters/tubes (areation), with channels slanted walls(concrete slats), with channel slanted walls (metal slats), with scraper (metal slats). Possible values: with_channel_slanted_walls_metal_slats, with_channels_slanted_walls_concrete_slats, with_flush_channels_areation, with_flush_gutters_tubes_areation, with_flush_gutters_tubes_areation, with_scraper_concrete_slats, with_scraper_metal_slats, none

72.3 Technical parameters

Parameter	Value	Unit	Description
red_PSF_with_scraper-	0.4	-	Reduction efficiency as compared to group-housed
_concrete_slats			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_flush-	0.5	-	Reduction efficiency as compared to group-housed
$_{channels_no_areation}$			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_flush-	0.6	-	Reduction efficiency as compared to group-housed
$_{channels_areation}$			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_flush_gutters-	0.6	-	Reduction efficiency as compared to group-housed
_tubes_no_areation			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_flush_gutters-	0.6	-	Reduction efficiency as compared to group-housed
_tubes_areation			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_channels-	0.6	-	Reduction efficiency as compared to group-housed
_slanted_walls_concrete_slats			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_channel-	0.65	_	Reduction efficiency as compared to group-housed
$_$ slanted $_$ walls $_$ metal $_$ slats			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).
red_PSF_with_with_scraper-	0.5	-	Reduction efficiency as compared to group-housed
$_$ metal $_$ slats			on partly slatted floors (UNECE 2007, paragraph
			71, table 5).

72.4 Output

72.5 Detailed process description

This submodul calculates the annual NH3 reduction due to an exhaust air scrubber in housing systems according to the UNECE guideline 2007.

72.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

73 Livestock::Poultry

 $Agrammon\ Group - 2008-02-22$

73.1 Short description

Collects the emission of NH3, the N excretion, and the N flux for the diffrent poultry categories per year.

73.2 Input parameters

73.3 Technical parameters

73.4 Output

-	TT **	T 1
Parameter	Unit	Formula
n_from_poultry_turkeys- _broilers	kg N /a	Annual N flux from poultry housing. if(Val('animalcategory',Poultry::Excretion) eq 'turkeys' Val('animalcategory',Poultry::Excretion) eq 'broilers') { Val('n_outhousing', Poultry::Housing); }else{ return(0); };
tan_from_poultry_turkeys- _broilers	kg N /a	Annual N flux from poultry housing. if(Val('animalcategory', Poultry::Excretion) eq 'turkeys' Val('animalcategory', Poultry::Excretion) eq 'broilers'){ Val('tan_outhousing', Poultry::Housing); }else{ return(0);
tan_from_poultry_layers- growers other poultry	kg N /a	Annual N flux from poultry housing.
		<pre>if(Val('animalcategory', Poultry::Excretion) eq 'layers' Val('animalcategory', Poultry::Excretion) eq 'growers' Val('animalcategory', Poultry::Excretion) eq 'other_poultry'){ Val('tan_outhousing', Poultry::Housing); }else{ return(0); };</pre>
tan_from_poultry	kg N /a	Annual N flux from poultry housing.
		Val('tan_outhousing', Poultry::Housing);
n_excretion	kg N /a	Annual N excreted by poultry. Val('n excretion', Poultry::Excretion);
n from poultry	kg N /a	Annual N flux from poultry housing.
1		Val('n_outhousing', Poultry::Housing);
n_excretion_turkeys_broilers	kg N /a	Annual N excreted by poultry.
		<pre>if(Val('animalcategory', Poultry::Excretion) eq 'turkeys' Val('animalcategory', Poultry::Excretion) eq 'broilers'){ Val('n_excretion', Poultry::Excretion); }else{ return(0); };</pre>
nh3_npoultry_turkeys_broilers	kg N /a	Annual NH3 emission from poultry production (housing and outdoor).
		<pre>if(Val('animalcategory', Poultry::Excretion) eq 'turkeys' Val('animalcategory', Poultry::Excretion) eq 'broilers'){ Val(nh3_nhousing, Poultry::Housing) + Val(nh3_nfree_range, Poultry::Outdoor); }else{ return(0); };</pre>
n_excretion_layers_growers-	kg N /a	Annual N excreted by poultry.
_other_poultry		if (Val('animalcategory', Poultry::Excretion)eq 'layers' Val('animalcategory', Poultry::Excretion) eq 'growers' Val('animalcategory', Poultry::Excretion) eq 'other_poultry'){ Val('n_excretion', Poultry::Excretion); }else{ return(0); };
n_from_poultry_layers-	kg N /a	Annual N flux from poultry housing.
_growers_other_poultry		if(Val('animalcategory', Poultry::Excretion) eq 'layers'
Seite 126/200	model.t	exVal(ông)rredgestegory', Poultry::Excretion) eq 'and an ef 'an ef '2009 Val('animal category', Poultry::Excretion) eq 'other_poultry') { Val('n_outhousing', Poultry::Housing); } else { return(0);

73.5 Detailed process description

This process summarizes the annual emission of NH3, the annual N excretion, and the annual N flux for different poultry categories from housing and outdoor.

74 Livestock::Poultry::Excretion

 $Agrammon\ Group - 2008-02-22$

74.1 Short description

Computes the annual N excretion of the different poultry categories.

74.2 Input parameters

Parameter	Unit	Description
animalcategory	-	Poultry category (layers, growers, broilers, turkeys, and other poultry). Possible values: broilers, growers, other_poultry, turkeys, layers
animals	-	Number of poultry animals for the selected type in barn.

74.3 Technical parameters

Parameter	Value	Unit	Description
standard_N_excretion_layers	0.80	kg N /a	Annual standard N excretion for poultry cate-
			gory (layers) according to Flisch et al. (2009).
standard_N_excretion_growers	0.34	kg N /a	Annual standard N excretion for poultry cate-
			gory (growers) according to Flisch et al. (2009).
$standard_N_excretion_broilers$	0.45	kg N /a	Annual standard N excretion for poultry cate-
			gory (broilers) according to Flisch et al. (2009).
standard_N_excretion_turkeys	1.4	kg N /a	Annual standard N excretion for poultry cate-
			gory according (turkeys) to Flisch et al. (2009).
$standard_N_excretion_other-$	0.56	kg N /a	Annual standard N excretion for other poultry
_poultry			category according to Flisch et al. (2009).
share_Nsol_layers	0.6	_	Nsol content of excreta for layers. Derived from
			e.g. TODO
share_Nsol_growers	0.6	=	Nsol content of excreta for growers. Derived
			from e.g. TODO
share_Nsol_broilers	0.6	=	Nsol content of excreta for broilers. Derived
			from e.g. TODO
share_Nsol_turkeys	0.6	-	Nsol content of excreta for turkeys. Derived
			from e.g. TODO
share_Nsol_other_poultry	0.6	_	Nsol content of excreta for other poultry. De-
			rived from e.g. TODO

74.4 Output

Parameter	Unit	Formula
n_sol_excretion	kg N /a	Annual soluble N excreted by an animalgroup of selected poultry category.
		$Out(share_Nsol) * Out(n_excretion)$
animalcategory	-	Poultry category (layers, growers, broilers, turkeys, and other poultry).
		In('animalcategory');
standard_N_excretion	kg N /a	Annual standard N excretion for specified poultry category according to Flisch et al. (2009).
		my \$key = "standard_N_excretion_" . In('animalcategory'); return Tech(\$key);
animals	-	Number of poultry animals for the selected type in barn.
		In(animals);
n_excretion	kg N /a	Annual N excreted by a specified number of animals.
		Out(standard_N_excretion) * In(animals);
share_Nsol	-	Nsol content of excreta for a specific poultry category. Derived from e.g. TODO
		<pre>my \$key = "share_Nsol_" . In('animalcategory'); return Tech(\$key);</pre>

74.5 Detailed process description

This process calculates the annual N excretion of the different poultry categories. The standard N excretion was taken from the official Swiss fertilizer guidelines. The Nsol content of the excreta is based on e.g. Peterson et al. (1998) or Burgos et al. (2005). These values were compiled on the basis of official feeding recommendations (Flisch et al. (2009)) by H. Menzi.

74.5.1 References:

Burgos SA, Robinson PH, Fadel JG, DePeters EJ 2005. Ammonia volatilization potential: Prediction of urinary urea nitrogen output on lactating dairy cows. Agriculture, Ecosystems and Environment 111:261-269.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

75 Livestock::Poultry::Housing

Agrammon Group -2008-02-22

75.1 Short description

Computes the NH3 emission, the N flux into the housing and the N flux out of the house from poultry housing per year.

75.2 Input parameters

75.3 Technical parameters

75.4 Output

Parameter	Unit	Formula
n_outhousing	kg N /a	Annual N flux out of the housing.
		Out(n_into_housing) - Out(nh3_nhousing);
tan_into_housing	kg N /a	Annual N flux into the housing.
		Val(n_sol_excretion, Excretion) - Val(tan_excr_free_range, Outdoor);
n_into_housing	kg N /a	Annual N flux into the housing.
		Val(n_excretion, Excretion) - Val(n_excr_free_range, Outdoor);
tan_outhousing	kg N /a	Annual N flux out of the housing.
		Out(tan_into_housing) - Out(nh3_nhousing);
nh3_nhousing	kg N /a	Annual NH3 emission from poultry housing systems per animal place.
		(Val(n_excretion, Excretion) * Val(er_housing, Housing::Type) * Val(c_manure_removal_interval, Housing::Type) * Val(c_drinking_system, Housing::Type) * Val(c_covered_basin, Housing::Type) * Val(c_air_scrubber, Housing::AirScrubber));

75.5 Detailed process description

This process calculates the NH3 emission in poultry housing depending on the N excretion and the housing systems. The NH3 emission is assumed to be proportional to the total N excretion of the animals because the contaminated surfaces will primarily drive emissions, which will remain active even when animals are on the pasture or exercise yard.

A proportional correction is applied according to the area per animal.

A correction is applied if the part of the day grazing is above a defined grazing hours per days.

75.5.1 Definition of System boundaries for the housing Process:

For housing systems with integrated exercise yards, it is difficult to distinguish between emissions from housing, exercise yard and storage. For these housingtypes the emission may be only validated for the sum of housing, exercise yard and storage emission.

76 Livestock::Poultry::Housing::AirScrubber

Agrammon Group -2008-03-30

76.1 Short description

Computes the annual NH3 reduction due to an exhaust air scrubber in housing systems.

76.2 Input parameters

Parameter	Unit	Description
air_scrubber	-	Exhaust air scrubber: none, acid, biotrickling_filter.
		Possible values: acid, biotrickling_filter, none

76.3 Technical parameters

Parameter	Value	Unit	Description
red_acid_air_scrubber	0.9	-	Reduction efficiency as compared to group-housed
			on fully and partly slatted floors (UNECE 2007,
			paragraph 71, table 5).
red_biotrickling_filter_air-	0.7	-	Reduction efficiency as compared to group-housed
_scrubber			on fully and partly slatted floors (UNECE 2007,
			paragraph 71, table 5).

76.4 Output

Parameter	Unit	Formula
c_air_scrubber	-	Reduction factor for the emission due to the use of an air exhaust scrubber in housing systems.
		<pre>if (In('air_scrubber') eq 'acid'){ return (1 - Tech('red_acid_air_scrubber')); } elsif(In('air_scrubber') eq 'biotrickling_filter'){ return (1 - Tech('red_biotrickling_filter_air_scrubber')); } elsif(In('air_scrubber') eq 'none'){ return 1; } else{ # TODOD print STDERR "Error not defined"; return 1; }</pre>

76.5 Detailed process description

This submodul calculates the annual NH3 reduction due to an exhaust air scrubber in housing systems according to the UNECE guideline 2007.

76.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

77 Livestock::Poultry::Housing::Type

Agrammon Group -2008-02-19

77.1 Short description

Selects the emission rate and other correction factors for the specific housing types for poultry.

77.2 Input parameters

Parameter	Unit	Description
housing_type	-	Type of housing.
		Possible values: deep_litter, deep_pit, manure_belt
manure_removal_interval	-	Manure removal interval by manure belt.
		Possible values: 3_to_4_times_a_month, more_than_4_times_a_month, no_manure_belt, twice_a_month, less_than_twice_a_month
drinking_system	-	Type of drinking system.
		Possible values: bell_drinkers, drinking_nipples
droppings_mist_covered_basin	-	Droppings or mist covered basin.
		Possible values: no, yes

77.3 Technical parameters

Parameter	Value	Unit	Description
er_housing_layers_growers-	0.15	-	Emission rate for the poultry housing type, based
$_{ m manure}_{ m belt}$			on EAGER workshop January 2007: 15% of Ntot,
			converted using 60% Nsol and emission factor of
			25%.
er_housing_layers_growers-	0.30	-	Emission rate for the poultry housing type, based
_deep_pit			on EAGER workshop January 2007, UNECE 2007:
			30% of Ntot, converted using 60% Nsol and emis-
			sion factor of 50% .
er_housing_layers_growers-	0.30	-	Emission rate for the poultry housing type, based
_deep_litter			on EAGER workshop January 2007, UNECE 2007:
			30% of Ntot, converted using 60% Nsol and emis-
			sion factor of 50% .
er_housing_other_deep_litter	0.12	-	Emission rate for the poultry housing type, based
			on Reidy et al. (2009): 12% of Ntot, converted
			using 60% Nsol and emission factor of 20%.
$c_{manure_removal_interval-}$	1.2	-	Emission rate for the poultry manure removal
_less_than_twice_a_month			by droppings belt. Empirical assumption by
			Reidy/Menzi.
TODO: Give better description!			
c_manure_removal_interval-	1	-	Emission rate for the poultry manure removal
$_{ m twice}_{ m a}_{ m month}$			by droppings belt. Empirical assumption by
			Reidy/Menzi.
TODO: Give better description!			
c_manure_removal_interval-	0.8	-	Emission rate for the poultry manure removal
$_3_to_4_times_a_month$			by droppings belt. Empirical assumption by
			Reidy/Menzi.

77.3 Technical parameters

TODO: Give better description!			
c_manure_removal_interval-	0.6	-	Emission rate for the poultry manure removal
$_{\rm more_than_4_times_a}$			by droppings belt. Empirical assumption by
_month			Reidy/Menzi.
TODO: Give better description!			
$c_drinking_nipples$	1.0	-	Emission rate for the poultry drinking type stan-
			dard version.
c_bell_drinkers	1.2	-	Emission rate for the poultry drinking type ad-
			ditional emission. Empirical assumption by
			Reidy/Menzi.
TODO: Give better description!		1	· · · · · · · · · · · · · · · · · · ·
c_droppings_mist_covered-	0.6	-	Emission rate for the droppings or mist covered
_basin			basin for poultry.

77.4 Output

Parameter	Unit	Formula
$housing_type$	-	Housing type (needed in other modules).
		In('housing_type');
$c_covered_basin$	-	Correction factor for poultry drinking station.
		if (In('droppings_mist_covered_basin') eq "yes"){ return Tech('c_droppings_mist_covered_basin'); } elsif(In('droppings_mist_covered_basin') eq "no"){ return 1.0; } else { print STDERR "Invalid 'droppings_mist_covered_basin' defined!"; return 1.0; }
er_housing	-	Emission rate for the poultry housing type.
		if (Val('animalcategory', '::Excretion') eq "layers"){ if (In('housing_type') eq "manure_belt'){ return Tech('er_housing_layers_growers_manure_belt'); } elsif(In('housing_type') eq "deep_pit"){ return Tech('er_housing_layers_growers_deep_pit'); } elsif(In('housing_type') eq "deep_litter"){ return Tech('er_housing_layers_growers_deep_litter"); } elsif (Val('animalcategory', '::Excretion') eq "growers"){ if (In('housing_type') eq "manure_belt"){ return Tech('er_housing_layers_growers_manure_belt'); } elsif(In('housing_type') eq "deep_pit"){ return Tech('er_housing_layers_growers_deep_pit'); } elsif(In('housing_type') eq "deep_litter"){ return Tech('er_housing_layers_growers_deep_litter"); } elsif(Val('animalcategory', '::Excretion') eq "broilers"){ if (In('housing_type') eq "deep_litter'); } elsif(In('housing_type') eq "deep_litter as housing type for broilers."; return Tech('er_housing_other_deep_litter'); } elsif(In('housing_type') eq "deep_pit"){ print STDERR "deep_pit not valid, please select deep_litter as housing type for broilers."; return Tech('er_housing_other_deep_litter'); } elsif(In('housing_type') eq "deep_pit"){ print STDERR "deep_pit not valid, please select deep_litter as housing type for broilers."; return Tech('er_housing_other_deep_litter'); } elsif(In('housing_type') eq "deep_pit"){ print STDERR "manure_belt not valid, please select deep_litter as housing type for turkeys."; return Tech('er_housing_other_deep_litter'); } elsif(In('housing_type') eq "deep_pit"){ print STDERR "deep_pit not valid, please select deep_litter as housing type for turkeys."; return Tech('er_housing_other_deep_litter'); } elsif(In('housing_type') eq "deep_pit"){ return Tech('er_housing_other_deep_litter'); } elsif(In('housing_type') eq "manure_belt"){
drinking_system	-	Drinking system.
		In('drinking_system');
c_manure_removal_interval	-	Emission rate for the poultry housing type.
		if (In('manure_removal_interval') eq "less_than_twice_a_month"){ return
Seite 134/200	mo	de[Resh] q0033n2009_033n2009_133n303 al_interval_less_than_twice_a_Magn6h'2000 } elsif(In('manure_removal_interval') eq "twice_a_month") { return Tech('c_manure_removal_interval_twice_a_month'); } elsif(In('manure_removal_interval')
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

77.5 Detailed process description

This process selects the emission rate for the specific housing types for poultry and the correction factors for the drinking system, and for the manure removal interval.

77.5.1 References

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13. Reidy B, Webb J, Misselbrook TH, Menzi H, Luesink HH, Hutchings NJ, Eurich-Menden B, Döhler H, Dämmgen U 2009. Comparison of models used for national agricultural ammonia emission inventories in Europe: litter-based manure systems. Atmospheric Environment 40, 1632-1640.

78 Livestock::Poultry::Outdoor

 $Agrammon\ Group - 2008-02-22$

78.1 Short description

Computes the NH3 emission, the N excretion and the remaining N of free range poultry per year.

78.2 Input parameters

Parameter	Unit	Description
free_range	-	Average free range hours per day.
		Possible values: no, yes

78.3 Technical parameters

Parameter	Value	Unit	Description
er_free_range	0.7	-	Emission rate for free range poultry, based on
			Menzi et al. (1997): 70% of TAN or 28% of Ntot
free_range_days_layers	280	d/a	Average free range days per year.
free_range_hours_layers	2.88	h /d	Average free range hours per day, assumed is 12%
			of Day
free_range_days_growers	280	d/a	Average free range days per year.
free_range_hours_growers	2.88	h /d	Average free range hours per day, assumed is 12%
			of Day
free_range_days_turkeys	280	d/a	Average free range days per year.
free_range_hours_turkeys	2.88	h/d	Average free range hours per day, assumed is 12%
			of Day
free_range_days_other-	280	d/a	Average free range days per year.
_poultry			
free_range_hours_other-	2.88	h/d	Average free range hours per day, assumed is 12%
_poultry			of Day
free_range_days_broilers	280	d /a	Average free range days per year.
free_range_hours_broilers	0.96	h /d	Average free range hours per day, assumed is 4%
			of Day

78.4 Output

Parameter	Unit	Formula
n_remain_free_range	kg N /a	Annual N remaining free_range (on pasture, etc.).
		Out(n_excr_free_range) - Out(nh3_nfree_range);
free_range_hours	h /d	Average free range hours per day.
		<pre>if(In('free_range') eq 'yes'){ my \$key = "free_range_hours_" . Val('animalcategory', 'Excretion'); return Tech(\$key); }else{ return 0; }</pre>
nh3_nfree_range	kg N /a	Annual free_range NH3 emission from poultry (grazing).
		Out(tan_excr_free_range) * Tech(er_free_range);
n_excr_free_range	kg N /a	Annual N excretion free_range (grazing).
		Val(n_excretion, Excretion) * ((Out(free_range_days)/365) * (Out(free_range_hours)/24));
tan_excr_free_range	kg N /a	Annual N excretion free_range (grazing).
		Val(n_sol_excretion, Excretion) * (Out(free_range_days)/365) * (Out(free_range_hours)/24));
free_range_days	d/a	Average free range days per year.
		<pre>if(In('free_range') eq 'yes'){ my \$key = "free_range_days_" . Val('animalcategory', 'Excretion'); return Tech(\$key); }else{ return 0; }</pre>

78.5 Detailed process description

This process calculates the annual NH3 emission of free range poultry depending on the free range N excretion and the emission rate. The annual N excretion calculation is based on the grazing hours per day per year and the free range hours per day per year. The annual remaining N from free range poultry is calculated as the annual N excretion minus the annual NH3 emission.

78.5.1 References:

Menzi H, Shariatmadari H, Meierhans D, Wiedmer H 1997: Nähr- und Schadstoffbelastung von Geflügelausläufen. Agrarforschung 4: 361-364.

79 Livestock::SmallRuminants

Agrammon Group -2008-02-22

79.1 Short description

Collects the annual emission of NH3 and the N flux for goats, fattening sheep and milksheep.

79.2 Input parameters

79.3 Technical parameters

79.4 Output

Parameter	Unit	Formula	
n_from_other	kg N /a	Annual N flux from other animals housing.	
		Val(n_outhousing, SmallRuminants::Housing);	
tan_liquid_from_other	kg N /a	Annual N flux as TAN from other animals housing, liquid fraction.	
		Val(tan_outhousing_liquid, SmallRuminants::Housing);	
nh3_nother	kg N /a	Annual NH3 emission from other animals housing and grazing.	
		Val(nh3_nhousing, SmallRuminants::Housing) + Val(nh3_ngrazing, SmallRuminants::Grazing);	
n_solid_from_other	kg N /a	Annual N flux from other animals housing, solid fraction.	
		Val(n_outhousing_solid, SmallRuminants::Housing);	
tan_solid_from_other	kg N /a	Annual N flux as TAN from other animals housing, solid fraction.	
		Val(tan_outhousing_solid, SmallRuminants::Housing);	
tan_from_other	kg N /a	Annual N flux as TAN from other animals housing.	
		Val(tan_outhousing, SmallRuminants::Housing);	
n_excretion	kg N /a	Annual N excreted by other animals.	
		Val(n_excretion, SmallRuminants::Excretion);	
$n_{iquid_from_other}$	kg N /a	Annual N flux from other animals housing, liquid fraction.	
		Val(n_outhousing_liquid, SmallRuminants::Housing);	

79.5 Detailed process description

Summarizes the annual emission of NH3 for goats, fattening sheep and milksheep from housing, yard and grazing. Summarizes the annual N flux from housing to the storage for goats, fattening sheep and milksheep.

80 Livestock::SmallRuminants::Excretion

Agrammon Group -2008-02-22

80.1 Short description

Computes the annual N excretion of goats, fattening sheep and milksheep.

80.2 Input parameters

Parameter	Unit	Description
animalcategory	-	Animal category (Fattening sheep, milksheep and goats).
		Possible values: goats, milksheep, fattening_sheep
animals	-	Number of other animals for the selected type in barn.

80.3 Technical parameters

Parameter	Value	Unit	Description
standard_N_excretion_goats	16	kg N /a	Annual standard N excretion for goats accord-
			ing to Flisch et al. (2009).
standard_N_excretion-	15	kg N /a	Annual standard N excretion for fattening
$_{ m fattening_sheep}$			sheep according to Flisch et al. (2009).
standard_N_excretion-	21	kg N /a	Annual standard N excretion for milksheep ac-
$_{ m milksheep}$			cording to Flisch et al. (2009).
share_Nsol_goats	0.4	-	Nsol content of excreta from goats. Derived
			from e.g. Peterson et al. (1998) or Burgos et
			al. (2005).
share_Nsol_fattening_sheep	0.4	-	Nsol content of excreta from fattening sheep.
			Derived from e.g. Peterson et al. (1998) or
			Burgos et al. (2005).
share_Nsol_milksheep	0.4	-	Nsol content of excreta from milksheep. De-
			rived from e.g. Peterson et al. (1998) or Burgos
			et al. (2005).

80.4 Output

Parameter	Unit	Formula
n_sol_excretion	kg N /a	Annual soluble N excreted by a specified number of small ruminants.
		Out(share_Nsol) * Out(n_excretion);
$standard_N_excretion$	kg N /a	Annual standard N excretion for specified other animal category according to Flisch et al. (2009).
		my \$key = "standard_N_excretion_" . In('animalcategory'); return Tech(\$key);
animals	-	Number of small ruminants for the selected type in barn.
		In(animals);
n_excretion	kg N /a	Annual N excreted by a specified number of small ruminants.
		Out(standard_N_excretion) * In(animals);
share_Nsol	-	Nsol content of excreta of small ruminants. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
		my \$key = "share_Nsol_" . In('animalcategory'); return Tech(\$key);

80.5 Detailed process description

This process calculated the annual N excretion of small ruminats. The standard N excretion was taken from the official Swiss fertilizer guidelines. The Nsol content of the excreta is based on e.g. Peterson et al. (1998) or Burgos et al. (2005). These values were compiled on the basis of official feeding recommendations (Flisch et al. 2009) by H. Menzi.

80.5.1 References:

Burgos SA, Robinson PH, Fadel JG, DePeters EJ 2005. Ammonia volatilization potential: Prediction of urinary urea nitrogen output on lactating dairy cows. Agriculture, Ecosystems and Environment 111:261-269.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Flisch R, Sinaj S, Charles R, Richner W 2009. Grundlagen für die die Düngung im Acker- und Futterbau. Agrarforschung 16(2).

81 Livestock::SmallRuminants::Grazing

Agrammon Group -2008-02-22

81.1 Short description

Computes the annual NH3 emission from grazing goats, fattening sheep, and milksheep.

81.2 Input parameters

Parameter	Unit	Description
grazing_days	d/a	Average grazing days per year.
grazing_hours	h /d	Average grazing hours per day.

81.3 Technical parameters

Parameter	Value	Unit	Description
er_small_ruminants_grazing	0.05	-	Emission rate for the calculation of the annual NH3
			emission during grazing of small ruminants. The
			emission rate is derived from Bussink et al. (1992,
			1994), Jarvis et al. (1989), Peterson et al. (1998)
			and Ross and Jarvis (2001). (taking into account
			the generally low fertilization rate of Swiss pas-
			tures.)

81.4 Output

Parameter	Unit	Formula	
grazing_days	d /a	Grazing days per year.	
		In(grazing_days);	
nh3_ngrazing	kg N /a	Annual NH3 emission from small ruminants from grazing.	
		Out(n_into_grazing) * Tech(er_small_ruminants_grazing);	
n_into_grazing	kg N /a	Annual N excretion during grazing for small ruminants.	
		Val(n_excretion, Excretion) * In(grazing_days) / 365 * In(grazing_hours) / 24;	
n_remain_pasture	kg N /a	Annual N input on pastures.	
		Out(n_into_grazing) - Out(nh3_ngrazing);	
n_sol_into_grazing	kg N /a	Annual solable N (TAN) excretion during grazing for small ruminants.	
		Val(n_sol_excretion, Excretion) * In(grazing_days) / 365 * In(grazing_hours) / 24;	
grazing_hours	h /d	Grazing hours per day.	
		In(grazing_hours);	

81.5 Detailed process description

This process calculates the annual NH3 emission from grazing goats, fattening sheep and milksheep based on the total N excreted on the pastures. The N excreted is calculated according to the time the animals spend on the pasture. It assumes that the excretions on the pasture are proportional to the time the animals are grazed.

81.5.1 References:

Bussink DW 1992. Ammonia volatilization from grassland receiving nitrogen fertilizer and rotationally grazed by dairy cattle. Fertilizer Research 33:257-265.

Bussink DW 1994. Relationship between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertilizer Research 38:111-121.

Jarvis SC, Hatch DJ, Lockyer DR 1989. Ammonia fluxes from grazed grassland: annual losses from cattle production systems and their relation to nitrogen inputs. Journal of Agricultural Science 113:99-108.

Peterson SO, Sommer SG, Aaes O, Soegaard K 1998. Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmospheric environment 32:295-300.

Ross CA, Jarvis SC 2001. Measurement of emission and deposition pattern of ammonia from urine in grass swards. Atmospheric environment 35:867-875.

82 Livestock::SmallRuminants::Housing

 $Agrammon\ Group - 2008-02-22$

82.1 Short description

Computes the annual NH3 emission from small ruminant housing systems.

82.2 Input parameters

82.3 Technical parameters

Parameter	Value	Unit	Description
er_housing	0.11	-	Emission rate for loose housing with liquid, solid
			manure system is assumed (for TAN 0.275 and
			Nsol 40%).

82.4 Output

Parameter	Unit	Formula
tan_outhousing_liquid	kg N /a	Annual N flux as TAN out of housing, slurry or liquid fraction of N flux.
		0
$n_outhousing_liquid$	kg N /a	Annual N flux out of housing, slurry or liquid fraction of N flux.
		0
$n_outhousing$	kg N /a	Annual N flux out of the housing.
		Out(n_into_housing) - Out(nh3_nhousing);
n_into_housing	kg N /a	Annual N flux into the house.
		Val(n_excretion, Excretion) - Val(n_into_grazing, Grazing);
tan_outhousing	kg N /a	Annual N flux as TAN out of the housing.
		Out(n_sol_into_housing) - Out(nh3_nhousing);
nh3_nhousing	kg N /a	Annual NH3 emission from small ruminants housing systems per animal place.
		Val(n_excretion, Excretion) * Tech(er_housing) * Val(k_grazing, Housing::KGrazing)
n_sol_into_housing	kg N /a	Annual N flux as TAN into the house.
		Val(n_sol_excretion, Excretion) - Val(n_sol_into_grazing, Grazing);
tan_outhousing_solid	kg N /a	Annual N flux as TAN out of housing, manure fraction of N flux.
		Out(tan_outhousing);
n_outhousing_solid	kg N /a	Annual N flux out of housing, manure fraction of N flux.
		Out(n_outhousing);

82.5 Detailed process description

This process calculates the NH3 emission in small ruminants housing depending on the N excretion and the housing systems. The NH3 emission is assumed to be proportional to the total N excretion of the

animals because the contaminated surfaces will primarily drive emissions, which will remain active even when animals are on the pasture or exercise yard.

A proportional correction is applied according to the area per animal.

A correction is applied if the part of the day grazing is above a defined grazing hours per days.

82.5.1 Definition of System boundaries for the housing Process:

For housing systems with integrated exercise yards, it is difficult to distinguish between emissions from housing, exercise yard and storage. For these housingtypes the emission may be only validated for the sum of housing, exercise yard and storage emission.

83 Livestock::SmallRuminants::Housing::KGrazing

Agrammon Group -2008-04-1

83.1 Short description

Computes the correction factor for the reduction of small ruminant housing emission if the number of grazing hours per day does increase a specific limit.

83.2 Input parameters

83.3 Technical parameters

Parameter	Value	Unit	Description
k_grazing_reduction_lw5h	0	-	Reduction of housing emissions to 0% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw12h	0.2	-	Reduction of housing emissions to 20% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw22h	0.5	-	Reduction of housing emissions to 50% due to ex-
			tensive grazing/alping. Empirical estimation.
k_grazing_reduction_gt22h	1.0	-	Reduction of housing emissions to 100% due to ex-
			tensive grazing/alping and milking using a mobile
			milking parlor. Empirical estimation.

83.4 Output

Parameter	Unit	Formula
k_grazing	-	The correction factor for the reduction of the housing emission depending on the number of grazing hours per day and the grazing days per year. if (Val('grazing_hours', '::Grazing') < 5){ return (365.0-Val('grazing days', '::Grazing')) + ((1-
		Tech(k_grazing_reduction_lw5h))*Val('grazing_days', '::Grazing'))) / 365.0; } elsif (Val('grazing_hours', '::Grazing') < 12.0){ return ((365.0-Val('grazing_days', '::Grazing')) + ((1-Tech(k_grazing_reduction_lw12h))*Val('grazing_days', '::Grazing'))) / 365.0; } elsif (Val('grazing_hours', '::Grazing') < 22.0) { re-
		turn ((365.0-Val('grazing_days', '::Grazing')) + ((1- Tech(k_grazing_reduction_lw22h))*Val('grazing_days', '::Grazing'))) / 365.0; } elsif (Val('grazing_hours', '::Grazing') >= 22.0) { re-
		turn ((365.0-Val('grazing_days', '::Grazing')) + ((1-Tech(k_grazing_reduction_gt22h))*Val('grazing_days', '::Grazing'))) / 365.0; } else { return 1; # no correction };

83.5 Detailed process description

This process calculates the correction factor for the non proportional change of the housing emission according to the grazing hours per day (Webb et al. 2005). It is based on an empirical estimation of Menzi and Katz (1997). The concept has been lately supported by measurements in the UK (Defra 2002), where reductions comparable to those assumed by Menzi and Katz (1997) were reported.

83.5.1 References:

Department for Environment, Food & Rural Affairs, Defra 2002. Ammonia in the UK. DEFRA Publications, London. Menzi H, Katz PE 1997. A differentiated approach to calculate ammonia emissions from animal husbandry. In: Voermans JAM and Monteny GJ (Eds): "Ammonia and odour emissions from animal production facilities", Proc. International Symposium, Vinkeloord, NL, 6-10 October 1997, 35-42.

Webb J, Misselbrook TH 2005. A mass-flow model of ammonia emissions from UK livestock production. Atmospheric environment $38:\ 2163-2176.$

84 PlantProduction

Agrammon Group -2008-05-07

84.1 Short description

Computes the annual NH3 emission from plant production.

84.2 Input parameters

84.3 Technical parameters

84.4 Output

Parameter	Unit	Formula
$nh3_nplantproduction$	kg N /a	Annual NH3 emission from plant production.
		Val(nh3_nagriculturalarea, PlantProduction::AgriculturalArea) + Val(nh3_nmineralfertiliser, PlantProduc- tion::MineralFertiliser) + Val(nh3_nrecyclingfertiliser, PlantPro- duction::RecyclingFertiliser)

84.5 Detailed process description

This process summarizes the contribution of the plant production to the total NH3 emission.

84.5.1 Differences to DYNAMO

85 PlantProduction::AgriculturalArea

Agrammon Group -2008-03-30

85.1 Short description

Computes the annual NH3 emission from agricultural area application. Attention: simplified model based on total N output from storage!!!

85.2 Input parameters

Parameter	Unit	Description
agricultural_area	ha	Agricultural area.

85.3 Technical parameters

Parameter	Value	Unit	Description
er_agricultural_area	2	kg N /ha /a	Emission rate from the agricultural area.
			The average rate has been derived from
			Schjoerring and Mattson (2001). Emission
			$oxed{based}$ on kg/ ha AA (AA $=$ agricultural $oxed{based}$
			area, Landwirschaftliche NutzflĤche). N
			ist NH3 N.

85.4 Output

Parameter	Unit	Formula
nh3_nagriculturalarea	kg N /a	NH3 emission from agricultural area.
		In(agricultural_area) * Tech(er_agricultural_area);

85.5 Detailed process description

This process computes the annual average NH3 emission from agricultural area application. The standard emission factor is corrected according to the TAN content and the application rate, the application technology, the crops to which the manure is applied, respected soft measures during application and the application season, the time lag between application and incorporation, the incorporation technology used, and the proportion of solid manure that is applied on hot days.

85.5.1 References:

Vanderweerden and Jarvis (1997)

86 PlantProduction::MineralFertiliser

Agrammon Group -2008-03-30

86.1 Short description

Computes the annual NH3 emission from mineral fertiliser application. Attention: simplified model based on total N output from storage!!!

86.2 Input parameters

Parameter	Unit	Description
mineral_nitrogen_fertiliser-	kg N /a	Amount of urea in kg N /a.
_urea		
mineral_nitrogen_fertiliser-	kg N /a	Amount of nitrogen fertiliser (except urea) in kg N $/a$.
_except_urea		

86.3 Technical parameters

Parameter	Value	Unit	Description
er_App_mineral_nitrogen-	0.15	-	Emission rate for the application of urea. The av-
_fertiliser_urea			erage rate has been derived from Vanderweerden
			and Jarvis (1997). Emission based on Ntot.
er_App_mineral_nitrogen-	0.02	-	Emission rate for the application of ammonium ni-
$_{ m fertiliser_except_urea}$			trate. The average rate has been derived from Van-
			derweerden and Jarvis (1997). Emission based on
			Ntot.

86.4 Output

Parameter	Unit	Formula	
$nh3_nmineral fertiliser$	kg N /a	NH3 emission from mineral fertiliser application.	
		In(mineral_nitrogen_fertiliser_urea) Tech(er_App_mineral_nitrogen_fertiliser_urea) + In(mineral_nitrogen_fertiliser_except_urea) Tech(er_App_mineral_nitrogen_fertiliser_except_urea);	*

86.5 Detailed process description

This process computes the annual average NH3 emission from mineral fertiliser application. The standard emission factor is corrected according to the TAN content and the application rate, the application technology, the crops to which the manure is applied, respected soft measures during application and the application season, the time lag between application and incorporation, the incorporation technology used, and the proportion of solid manure that is applied on hot days.

86.5.1 References:

Vanderweerden and Jarvis (1997)

87 PlantProduction::RecyclingFertiliser

Agrammon Group -2008-03-30

87.1 Short description

Computes the annual NH3 emission from recycling fertiliser application. Attention: simplified model based on total N output from storage!!!

87.2 Input parameters

Parameter	Unit	Description
compost	t /a	Amount of compost (in t fresh matter per year). Kompost
		besteht aus $\mathrm{Gr} ilde{\mathrm{A}}_{4}^{1}$ nabf $ ilde{\mathrm{A}}$ $oxtime{\mathbb{Z}}$ llen nicht-landwirtschaflticher
		Herkunft von gewerblich-industriellen Anlagen oder von
		Feldrandkompostierung.
solid_digestate	t /a	Amount of solid digestate form industrial factories.
liquid_digestate	m3/a	Amount of liquid digestate form industrial factories.

87.3 Technical parameters

Parameter	Value	Unit	Description
er_compost	0.24	kg N / t	Emission rate from compost, calculated with
			an emmission rate of 80
0.3 kg TAN per t fresh matter		•	'
(Flisch et al., 2009). of TAN.			
er_solid_digestate	0.24	kg N / t	Emission rate for solid digestat from industrial
			plantse, calculated with an emmission rate of
			80
		•	
er_liquid_digestate	1.2	kg N / t	Emission rate from liquid digestate from indus-
			trial plants, calculated with an emmission rate
			of 60
			·

87.4 Output

Parameter	Unit	Formula
nh3_ncompost	kg N /a	NH3 emission from compost.
		In(compost) * Tech(er_compost);
nh3_nrecyclingfertiliser	kg N /a	NH3 emission from total recycling fertiliser.
		In(liquid_digestate) * Tech(er_liquid_digestate) + In(solid_digestate) * Tech(er_solid_digestate) + In(compost) * Tech(er_compost);
nh3_nliquid_degestate	kg N /a	NH3 emission from liquid digestate.
		In(liquid_digestate) * Tech(er_liquid_digestate);
nh3_nsolid_degestate	kg N /a	NH3 emission from solid digestate.
		In(solid_digestate) * Tech(er_solid_digestate);

87.5 Detailed process description

This process computes the annual average NH3 emission from recycling fertiliser application. The standard emission factor is corrected according to the TAN content and the application rate, the application

technology, the crops to which the manure is applied, respected soft measures during application and the application season, the time lag between application and incorporation, the incorporation technology used, and the proportion of solid manure that is applied on hot days.

87.5.1 References:

Vanderweerden and Jarvis (1997)

88 Storage

 $Agrammon\ Group - 2008-02-29$

88.1 Short description

Computes the annual NH3 emission from manure storage based on a categorised slurry type and the cover type.

88.2 Input parameters

88.3 Technical parameters

Parameter	Value	Unit	Description
mineralizationrate_liquid	0.1	-	A netto mineralization of 10% from Norg to
			\mid NSol/TAN is assuemd, according to the GAS_EM \mid
			Model
immobilizationrate_solid	0.4	-	A netto immobilization of 40% from NSol/TAN
			to Norg is assuemd, according to the GAS_EM
			Model
immobilizationrate_poultry	0.4	-	A netto immobilization of 40% from NSol/TAN
			to Norg is assuemd, according to the GAS_EM
			Model

88.4 Output 88 STORAGE

88.4 Output

Parameter	Unit	Formula		
$n_into_application$ -	kg N /a	Annual N flux out of storage for manure application.		
$_$ poultry \mathbf{Manure}		Val(n_into_storage_poultry, Livestock) - Val(nh3_npoultry) Storage::SolidManure::Poultry);		
n_into_application_manure-	kg N /a	Annual N flux out of storage for manure application.		
$_$ dairycows $_$ cattle $_$ pigs		Val(n_into_storage_solid_dairycows_cattle_pigs, Livestock) - Val(nh3_nsolid_dairycows_cattle_pigs, Storage::SolidManure);		
$mineralization_liquid$	kg N /a	Annual TAN mineralized from not TAN fraction in liquid storage.		
		if(Val(tan_into_storage_liquid, Livestock) < Sum(nh3_nliquid Storage::Slurry)) {0} else { Tech(mineralizationrate_liquid) * (Val(n_into_storage_liquid, Livestock) - Val(tan_into_storage_liquid, Livestock)) }		
$n_{into_application}$	kg N /a	Annual N flux out of storage for application.		
		Out(n_into_application_liquid) + Out(n_into_application_manure) + Out(n_into_application_poultryManure);		
immobilization_poultry- _turkeys_broilers	kg N /a	Annual TAN immobilized from TAN fraction in poultry manure storage.		
		Tech(immobilizationrate_poultry) * (Val(tan_into_storage_poultry_turkeys_broilers, Livestock) - Val(nh3_npoultry_turkeys_broilers, Storage::SolidManure::Poultry))		
tan_into_application- _poultryManure_turkeys-	kg N /a	Annual N flux as TAN out of storage for manure application.		
_broilers		Val(tan_into_storage_poultry_turkeys_broilers, Livestock) - Val(nh3_npoultry_turkeys_broilers Storage::SolidManure::Poultry) - Out(immobilization_poultry_turkeys_broilers);		
n_into_application_manure- horses otherequides-	kg N /a	Annual N flux out of storage for manure application.		
_smallruminants		Val(n_into_storage_solid_horses_otherequides_smallruminant Livestock) - Val(nh3_nsolid_horses_otherequides_smallruminant Storage::SolidManure);		
tan_into_application- _poultryManure_layers-	kg N /a	Annual N flux as TAN out of storage for manure application.		
_growers_other_poultry		Val(tan_into_storage_poultry_layers_growers_other_poultry, Livestock) - Val(nh3_npoultry_layers_growers_other_poultry Storage::SolidManure::Poultry) - Out(immobilization_poultry_layers_growers_other_poultry);		
tan_into_application_manure	kg N /a	Annual N flux as TAN out of storage for manure application.		
		Val(tan_into_storage_solid, Livestock) - Val(nh3_nsolid Storage::SolidManure) - Out(immobilization_solid);		
immobilization_poultry_layers- _growers_other_poultry	kg N /a	Annual TAN immobilized from TAN fraction in poultry manure storage.		
		Tech(immobilizationrate_poultry) * Val(tan_into_storage_poultry_layers_growers_other_poultry, Livestock) - Val(nh3_npoultry_layers_growers_other_poultry) Storage::SolidManure::Poultry))		
$ an_{ ext{into}}$	kg N /a	Annual N flux as TAN out of storage for application.		
		if(Val(tan_into_storage_liquid, Livestock) < Sum(nh3_nliquid Storage::Slurry)) {0} else {Val(tan_into_storage_liquid Livestock) - Sum(nh3_nliquid, Storage::Slurry) + Out(mineralization_liquid)};		
eite 153/200	model t	ex / 1003 / 2009-05-06 May 6. 20		
tan_into_application- _poultryManure	kg N /a	Annual N flux as TAN out of storage for manure application.		
		Val(tan_into_storage_poultry, Livestock) - Val(nh3_npoultry		

88.5 Detailed process description

This process calculates the NH3 emission from slurry storage, considering both slurry from slurry based systems and liquid from liquid/solid systems. The surface to volume ration (measure for the emitting surface), the cover type and artificial slurry aeration are accounted for via correction factors. Calculations are performed independently for slurry and liquid from liquid/solid systems with the same procedure.

88.5.1 References:

De Bode MJC, 1990. Vergleich der Ammoniakemissionen aus verschiedenen Flüssigmistlagersystemen. In: Ammoniak in der Umwelt. Hrsg.: KTBL und VDI, Münster, 34:1-13.

89 Storage::Slurry

 $Agrammon\ Group - 2008-05-20$

89.1 Short description

Describes a single liquid manuare storage.

89.2 Input parameters

Parameter	Unit	Description
volume	m3	Volume of slurry store.
depth	m	Depth of slurry store.
mixing_frequency	-	Frequency of mixing of slurry store.
		Possible values: 13_to_20_times_per_year, 21_to_30_times_per_year, 3_to_6_times_per_year, 7_to_12_times_per_year, more_than_30_times_per_year, 1_to_2_times_per_year

89.3 Technical parameters

Parameter	Value	Unit	Description
c_mixing_1_to_2_times_per-	0.9	-	Correction for mixingfrequency in slurry storage.
_year			Based on DeBode(1990), Sommer et al.(1993),
			Menzi et al. (1997a)
c_mixing_3_to_6_times_per-	0.95	-	Correction for mixingfrequency in slurry storage.
_year			Based on DeBode(1990), Sommer et al.(1993),
			Menzi et al. (1997a)
c_mixing_7_to_12_times-	1	-	Correction for mixingfrequency in slurry storage.
_per_year			Default or Basis value
c_mixing_13_to_20_times-	1.1	-	Correction for mixingfrequency in slurry storage.
_per_year			Empirical Estimation Reidy/Menzi
c_mixing_21_to_30_times-	1.2	-	Correction for mixingfrequency in slurry storage.
_per_year			Empirical Estimation Reidy/Menzi
c_mixing_more_than_30-	1.3	-	Correction for mixingfrequency in slurry storage.
_times_per_year			

89.4 Output

Parameter	Unit	Formula
c_mixing	-	Correction factor for number of mixing frequency in storage, accoording to selected levels. my \$key = "c_mixing_" . In(mixing_frequency); return Tech(\$key);
nh3_nliquid	kg N /a	Annual NH3 emission from slurry storage. Val(ef_liquid, Slurry::EFLiquid) * Out(surface_area) * Out(c_mixing);
surface_area	m2	Surface area of slurry storage. if(In('depth') <= 0){ return 0;} }else{ return In('volume') / In('depth');} }

89.5 Detailed process description

This Process calculates the annual NH3 emission from a single liquid manuare storage, considering a specific emission factor.

89.5.1 References

De Bode MJC, 1990. Vergleich der Ammoniakemissionen aus verschiedenen Flüssigmistlagersystemen. In: Ammoniak in der Umwelt. Hrsg.: KTBL und VDI, Münster, 34:1-13. Menzi H, Frick R, Kaufmann R, 1997a. Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich-Reckenholz. 107pp. Sommer SG, Christensen BT, Nielsen NE, Schjorring JK, 1993. Ammonia volatilization during storage of cattle and pig slurry - effect of surface cover. Journal of Agricultural Science 121:63-71.

90 Storage::Slurry::EFLiquid

 $Agrammon\ Group - 2008-04-22$

90.1 Short description

Calculates the emission factor for a specific slurry storage.

90.2 Input parameters

Parameter	Unit	Description
cover_type	-	Cover type of liquid storage.
		Possible values: floating_cover, natural_crust, perforated_cover, solid_cover, tent, uncovered
contains_cattle_manure	-	Describes if the specific storage contains cattle manure.
		Possible values: no, yes
contains_pig_manure	-	Describes if the specific storage contains pig manure.
		Possible values: no, yes

90.3 Technical parameters

Parameter	Value	Unit	Description
ef_cattle_uncovered	2.19	${ m kg~N~/m2~/a}$	The emission factor for uncovered storage
			is based on experiments of de Bode (1990)
			and Sommer et al. (1993) measuring emis-
			sions of 2.5 to 6.9 g N m-2 day-1 for cattle
			slurry, for the emission of the none coverd
			a mean of the higher values is assumed. $->$
			Assumption: 6.0 gN m-2 day-1 resp. 2.19
			m kg~N~/m2~/yr~according~to~the~results~of
			the decision of the session of 10 April 208
			(participants: C. Bonjour, C. Leuenberg-
			ern, M. Raaflaub, H. Menzi, T. Kupper).
ef_cattle_solid_cover	0.219	m kg~N~/m2~/a	Emission factor for solid covered storage
			based on ef_cattle_uncovered with a re-
			duction of 90%. UNECE (2007) p 13 does
			suggest a reduction of 80%. Since covers
			of storages are more tight in Switzerland
			a reduction of 90% was choosen.
ef_cattle_tent	0.876	kg N/m2/a	Emission factor for tent covered storage
			(ef_cattle_uncovered with a reduction
			of 60%) differs to the UNECE (2007)
			p.13 reference (ef_cattle_uncovered
			with a reduction of 80% after UNECE
			(2007))based on mutual agreement of
			AGRAMMON participants that newer
			studies showed that tent covered storage
			emit more ammonia then assumed by
			UNECE.

ef_cattle_floating_cover	0.438	kg N /m2 /a	Emission factor for floating covered storage (sheeting may be a type of plastic, canvas or other suitable material) (ef_cattle_uncovered with a reduction of 80%) differs to the UNECE (2007) p.13 reference (ef_cattle_uncovered with a reduction of 60% after UNECE (2007))based on mutual agreement of AGRAMMON participants that newer studies showed that floating covered storage emit less ammonia then assumed by UNECE.
ef_cattle_perforated_cover	1.314	kg N /m2 /a	Emission factor for perforated_cover storage based on ef_cattle_uncovered with a reduction of 40% after UNECE (2007) p 13.
ef_cattle_natural_crust	1.314	kg N /m2 /a	Emission factor for a natural crust covered storage based on ef_cattle_uncovered with a reduction of 40% after UNECE (2007) p 13.
ef_pig_uncovered	2.92	kg N /m2 /a	The Emission factor for uncovered storage is based on experiments of de Bode (1990) and Sommer et al. (1993) measuring emissions of 2.5 to 6.9 g N m-2 day-1 for cattle slurry, for the emission of the none coverd a mean of the higher values is assumed. Assumption: 8.0 gN m-2 day-1 resp. 2.92 kgN m-2 /yr according to the report "Abklā¤rungen zur Klasierung von Stallsystemen und Hofdā¼ngerlagern bezā¼glich der Ammoniak-Emissionen" and the decision of the session of 10 April 208 (participants: C. Bonjour, C. Leuenbergern, M. Raaflaub, H. Menzi, T. Kupper).
ef_pig_solid_cover	0.292	kg N /m2 /a	Emission factor for solid coverd storage based on ef_pig_uncovered with a reduction of 90%. UNECE (2007) p 13 does suggest a reduction of 80%. Since covers of storages are more tight in Switzerland a reduction of 90% was choosen.
ef_pig_tent	1.168	kg N /m2 /a	Emission factor for tent covered storage (ef_pig_uncovered with a reduction of 60%) differs to the UNECE (2007) p.13 reference (ef_pig_uncovered with a reduction of 80% after UNECE (2007)) based on mutual agreement of AGRAMMON participants that newer studies showed that tent covered storage emit more ammonia then assumed by UNECE.

ef_pig_floating_cover	0.584	kg N/m2/a	Emission factor for floating covered stor-
			age (sheeting may be a type of plas-
			tic, canvas or other suitable material)
			(ef pig uncovered with a reduction of
			80%) differs to the UNECE (2007) p.13 re-
			ferrence (ef pig uncovered with a reduc-
			tion of 60% after UNECE (2007)) based on
			mutual agreement of AGRAMMON par-
			ticipants that newer studies showed that
			floating covered storage emit less ammo-
			nia then assumed by UNECE.
ef_pig_perforated_cover	1.752	kg N /m2 /a	Emission factor for perforated _cover stor-
			age based on ef_pig_uncovered with a re-
			duction of 40% after UNECE (2007) p 13.
ef_pig_natural_crust	1.752	kg N /m2 /a	Emission factor for a natural crust cov-
			ered storage (e.g. chopped straw,
			peat, bark, LECA balls, ect.)based on
			ef_pig_uncovered with a reduction of
			40% after UNECE (2007) p 13.

90.4 Output

Parameter	Unit	Formula
ef_pigs_liquid	kg N /m2 /a	Emission factor of a specific liquid storage for pig.
		my \$key = "ef_pig_" . In(cover_type); return Tech(\$key);
ef_liquid	kg N /m2 /a	Emission factor of a specific liquid storage, if storage conatains cattle and pig manure, a maen distribution depending on the n flow into liqud storage is assumed. Which does not consider possible separet storage units. if(In(contains_cattle_manure) eq 'yes' and In(contains_pig_manure) eq 'no'){ return Out(ef cattle liquid);
		State Inquity State Inquity State In(contains_cattle_manure) eq 'no' and In(contains_pig_manure) eq 'yes' for turn Out(ef_pigs_liquid); elsif(In(contains_cattle_manure) eq 'yes' and In(contains_pig_manure) eq 'yes' fif(Val(n_into_storage_liquid, ::Livestock) != 0) for turn (Val(n_into_storage_liquid_pigs, ::Livestock) * Out(ef_pigs_liquid) + (Val(n_into_storage_liquid_pigs, ::Livestock) * Out(ef_cattle_liquid) / Val(n_into_storage_liquid, ::Livestock) * Out(ef_cattle_liquid) / Val(n_into_storage_liquid, ::Livestock) \$ else
ef_cattle_liquid	kg N /m2 /a	Emission factor of a specific liquid storage for cattle. my \$key = "ef_cattle_" . In(cover_type); return Tech(\$key);
		return lecn(%key);

90.5 Detailed process description

90.5.1 References:

UNECE 2007. Guidance document on control techniques for preventing and abating emissions of ammonia. ECE/EB.AIR/WG.5/2007/13.

De Bode MJC, 1990. Vergleich der Ammoniakemissionen aus verschiedenen Flüssigmistlagersystemen. In: Ammoniak in der Umwelt. Hrsg.: KTBL und VDI, Münster, 34:1-13.

Sommer SG, Christensen BT, Nielsen NE, Schjorring JK, 1993. Ammonia volatilization during storage of cattle and pig slurry - effect of surface cover. Journal of Agricultural Science 121:63-71.

91 Storage::SolidManure

Agrammon Group -2008-04-22

91.1 Short description

Computes the annual NH3 emission from solid manure storages.

91.2 Input parameters

91.3 Technical parameters

91.4 Output

Parameter	Unit	Formula
nh3_nsolid_poultry	kg N /a	Annual NH3 emission from storage of poultry solid manure.
		Val(nh3_npoultry, SolidManure::Poultry);
nh3_nsolid_horses- _otherequides_smallruminants	kg N /a	Annual NH3 emission from storage of other equides and small ruminants solid manure.
		Val(nh3_nsolid_horses_otherequides_smallruminants, Solid-Manure::Solid);
nh3_nsolid_dairycows_cattle- _pigs	kg N /a	Annual NH3 emission from storage of dairy cows, cattle and pigs solid manure.
		Val(nh3_nsolid_dairycows_cattle_pigs, SolidManure::Solid);
tan_into_storage_solid-	kg N /a	Annual NH3 emission from solid storage.
_dairycows_cattle		Val(tan_into_storage_solid_dairycows_cattle, SolidManure::Solid);
nh3_nsolid	kg N /a	Annual NH3 emission from storage of solid manure.
		Out(nh3_nsolid_dairycows_cattle_pigs)+ Out(nh3_nsolid_horses_otherequides_smallruminants)+ Out(nh3_nsolid_poultry);
tan_into_storage_solid_pigs	kg N /a	Annual NH3 emission from solid storage.
		Val(tan_into_storage_solid_pigs, SolidManure::Solid);
n_fromsolid	kg N /a	Annual N flux from solid storage to application.
		Val(n_into_storage_solid, ::Livestock) - Out(nh3_nsolid);
tan_into_storage_solid-	kg N /a	Annual NH3 emission from solid storage.
_horses_otherequides- _smallruminants		Val(tan_into_storage_solid_horses_otherequides_smallruminants SolidManure::Solid);

91.5 Detailed process description

This process calculates the annual NH3 emission from solid manure storage, considering a mean emission rate on TAN flux in solid storage.

92 Storage::SolidManure::Poultry

 $Agrammon\ Group - 2008-05-27$

92.1 Short description

Computes the annual NH3 emission from poultry manure storages.

92.2 Input parameters

Parameter	Unit	Description
share_applied_direct_poultry-	%	Share of poultry manure applied to land without storage.
_manure		

92.3 Technical parameters

Parameter	Value	Unit	Description
er_layers_growers_other-	0.15	-	Emission rate for layers, growers and other poultry
_poultry			for manure (deep pit, deep litter) and droppings
			(manure belt)(based on EAGER workshop, Jan-
			uary 2008: 15% Ntot, converted using Nsol 60%
			and emission factor of 25% .
er_turkeys_broilers	0.06	-	Emission rate for manure of broilers and turkeys
			based on EAGER workshop, January 2008: 6%
			Ntot, converted using Nsol 60% and emission fac-
			tor of 10%.

92.4 Output

Parameter	Unit	Formula
n_fromPoultry_turkeys- _broilers	kg N /a	Annual N flux from poultry manure storage to application.
		Val(n_into_storage_poultry_turkeys_broilers, ::Livestock) - Out(nh3_npoultry_turkeys_broilers);
nh3_npoultry_turkeys_broilers	kg N /a	Annual NH3 emission from poultry manure storage.
		<pre>if</pre>
n_fromPoultry_layers- _growers_other_poultry	kg N /a	Annual N flux from poultry manure storage to application.
		Val(n_into_storage_poultry_layers_growers_other_poultry, ::Livestock) - Out(nh3_npoultry_layers_growers_other_poultry);
n_fromPoultry	kg N /a	Annual N flux from poultry manure storage to application.
		Out(n_fromPoultry_layers_growers_other_poultry) + Out(n_fromPoultry_turkeys_broilers);
nh3_npoultry_layers_growers-	kg N /a	Annual NH3 emission from poultry manure storage.
_other_poultry		<pre>if (In(share_applied_direct_poultry_manure) > 1) { return (Tech(er_layers_growers_other_poultry) * Val(n_into_storage_poultry_layers_growers_other_poultry, ::Livestock) * (1-(In(share_applied_direct_poultry_manure)/100))); } else { return (Tech(er_layers_growers_other_poultry) * Val(n_into_storage_poultry_layers_growers_other_poultry, ::Livestock) * (1-In(share_applied_direct_poultry_manure))); };</pre>
nh3_npoultry	kg N /a	Annual NH3 emission from poultry manure storage.
		Out(nh3_npoultry_layers_growers_other_poultry) + Out(nh3_npoultry_turkeys_broilers);

92.5 Detailed process description

This process calculates the annual NH3 emission from poultry manure storage, considering a mean emission rate on TAN flux in storage.

92.5.1 References:

European Agricultural Gaseous Emissions Inventory Researchers Network - EAGER workshop, January 2008.

93 Storage::SolidManure::Solid

 $Agrammon\ Group - 2008-04-22$

93.1 Short description

Computes the annual NH3 emission from solid manure storages.

93.2 Input parameters

Parameter	Unit	Description
share_applied_direct_cattle-	%	Share of cattle manure applied to land without storage.
$_$ other $_$ manure		
share_applied_direct_pig-	%	Share of pig manure applied to land without storage.
manure		

93.3 Technical parameters

Parameter	Value	Unit	Description
er_tan_pigs	0.5	-	The value has been derived from the Eager work-
			shop, January 2008: (additional explanation fol-
			lowing)
er_tan_cattle_other	0.3	-	The value has been derived from the Eager work-
			shop, January 2008: (additional explanation fol-
			lowing)

93.4 Output

Parameter	Unit	Formula	
nh3_nsolid_horses-	kg N /a	Annual NH3 emission from solid storage.	
$_$ otherequides $_$ smallruminants		Tech(er_tan_cattle_other) * Out(tan_into_storage_solid_horses_otherequides_smallruminants);	
nh3_nsolid_dairycows_cattle-	kg N /a	Annual NH3 emission from solid storage.	
_pigs		Tech(er_tan_cattle_other) * Out(tan_into_storage_solid_dairycows_cattle) + Tech(er_tan_pigs) * Out(tan_into_storage_solid_pigs);	
tan_into_storage_solid-	kg N /a	Annual NH3 emission from solid storage.	
_dairycows_cattle		if (In(share_applied_direct_cattle_other_manure) > 1) { return (Val(tan_into_storage_solid_dairycows_cattle, ::Live- stock) * (1-(In(share_applied_direct_cattle_other_manure)/100))) } else { return (Val(tan_into_storage_solid_dairycows_cattle, ::Livestock) * (1-In(share_applied_direct_cattle_other_manure))) };	
nh3_nsolid	kg N /a	Annual NH3 emission from solid storage.	
		Tech(er_tan_cattle_other)	
tan_into_storage_solid_pigs	kg N /a	Annual NH3 emission from solid storage.	
		if (In(share_applied_direct_pig_manure) > 1) { return ((Val(tan_into_storage_solid_pigs, ::Livestock)) * (1-(In(share_applied_direct_pig_manure)/100))) } else { return ((Val(tan_into_storage_solid_pigs, ::Livestock)) * (1-In(share_applied_direct_pig_manure))) };	
n_fromsolid	kg N /a	Annual N flux from solid storage to application.	
		Val(n_into_storage_solid, ::Livestock) - Out(nh3_nsolid);	
tan_into_storage_solid- _horses_otherequides-	kg N /a	Annual NH3 emission from solid storage. if (In(share applied direct cattle other manure) > 1) { re-	
$_{ m small ruminants}$		turn (Val(tan_into_storage_solid_horses_otherequides_smallruminan ::Livestock) * (1- (In(share_applied_direct_cattle_other_manure)/100)) } else { return (Val(tan_into_storage_solid_horses_otherequides_si ::Livestock) * (1-(In(share_applied_direct_cattle_other_manure)))) };	0)

93.5 Detailed process description

This process calculates the annual NH3 emission from solid manure storage, considering a mean emission rate on TAN flux in solid storage.

94 SummaryByAnimalCategory

 $Agrammon\ Group - 2009-04-22$

94.1 Short description

Collects the annual NH3 emission by Animal categories

94.2 Input parameters

94.3 Technical parameters

94.4 Output

Parameter	Unit	Formula
nh3_nfatteningpig_storage	kg N /a	Annual NH3 emission from storage (estimation proportional to input of animalcategory in storage)
		Out(share_storage_fatteningpig) * Val(nh3_nstorage, Storage);
nh3_ndairycow_total	kg N /a	Annual NH3 emission from dairycow (Application and storage, estimation proportional to input of animalcategory in storage)
		Out(nh3_ndairycow_grazing) + Out(nh3_ndairycow_housing_and_yard) + Out(nh3_ndairycow_storage) + Out(nh3_ndairycow_application);
nh3_notherpig_application	kg N /a	Annual NH3 emission from application (estimation proportional to input of animalcategory in storage)
		Out(share_storage_otherpig) * Val(nh3_napplication, Application);
n_excretion_otherpig	kg N /a	Total annual N excreted by all other pigs.
		Sum(n_excretion, Livestock::Pig)
nh3_nsmall_ruminant- _application	kg N /a	Annual NH3 emission from application (estimation proportional to input of animalcategory in storage)
		Out(share_storage_small_ruminant) * Val(nh3_napplication, Application);
nh3_npig_total	kg N /a	Annual NH3 emission from pig (Application and storage, estimation proportional to input of animalcategory in storage)
		Out(nh3_npig_grazing) + Out(nh3_npig_housing_and_yard) + Out(nh3_npig_storage) + Out(nh3_npig_application);
nh3_nother_total	kg N /a	Annual NH3 emission from other (Application and storage, estimation proportional to input of animalcategory in storage)
		Out(nh3_nother_grazing) + Out(nh3_nother_housing_and_yard) + Out(nh3_nother_storage) + Out(nh3_nother_application);
nh3_nfatteningpig_application	kg N /a	Annual NH3 emission from application (estimation proportional to input of animalcategory in storage)
		Out(share_storage_fatteningpig) * Val(nh3_napplication, Application);
nh3_nother_housing_and- _yard	kg N /a	Annual NH3 emission from equides and small ruminants from all housings and yards.
		Sum(nh3_nhousing, Livestock::SmallRuminants::Housing) + Sum(nh3_nhousing, Livestock::Equides::Housing) + Sum(nh3_nyard, Livestock::Equides::Yard);
nh3_npig_housing_and_yard	kg N /a	Annual NH3 emission from all pigs from all housings and yards.
	la NV /	Sum(nh3_nhousing, Livestock::Pig::Housing) + Sum(nh3_nhousing, Livestock::FatteningPigs::Housing)
nh3_nfatteningpig_housing- _and_yard	kg N /a	Annual NH3 emission from fattening pigs from all housings and yards.
Saite3164pig0 application	kg Mada+	Sum(nh3 nhousing, Livestock::FatteningPigs::Housing) exAnnowal 200185-conission from application (comannot 2009
Defect Toth 580 abbutterning	HIOGENI	proportional to input of animalcategory in storage)
		Out(share_storage_pig) * Val(nh3_napplication, Application);

94.5 Detailed process description

95 Total

 $Agrammon\ Group - 2008-05-07$

95.1 Short description

Summarize the Annual emissions from an Farm.

95.2 Input parameters

95.3 Technical parameters

95.4 Output

Parameter	Unit	Formula
nh3_ntotal	kg N /a	Annual NH3 emission from farm.
		Val('nh3_napplication', Application) + Val('nh3_nstorage', Storage) + Val('nh3_nlivestock', Livestock) + Val('nh3_nplantproduction', PlantProduction)
${ m nh3_nanimal production}$	kg N /a	Annual NH3 emission from farm.
		Val('nh3_napplication', Application) + Val('nh3_nstorage', Storage) + Val('nh3_nlivestock', Livestock)

95.5 Detailed process description

This process summarizes the contribution of the individual Modules to the total NH3 emission from a farm.

96 Input Parameters

Parameter	Unit	Description

Livestock::DairyCow::Excretion

dairy_cows	-	Number of dairy cows in barn.

${\bf Livestock::} {\bf Dairy Cow::} {\bf Excretion::} {\bf CMilk}$

milk_yield	kg /a	Annual milk yield per dairy cow.

${\bf Livestock::} {\bf Dairy Cow::} {\bf Excretion::} {\bf CFeed Summer Ratio}$

share_hay_summer	%	Proportion of animals receiving hay in summer.
share_maize_silage_summer	%	Proportion of animals receiving maize silage in sum-
		mer.
share_maize_pellets_summer	%	Proportion of animals receiving maize pellets in sum-
		mer.

${\bf Livestock::} {\bf Dairy Cow::} {\bf Excretion::} {\bf CFeed Winter Ratio}$

share_maize_silage_winter	%	Proportion of animals receiving maize silage in win-
		ter.
share_grass_silage_winter	%	Proportion of animals receiving grass silage in win-
		ter.
share_maize_pellets_winter	%	Proportion of animals receiving maize pellets in win-
		ter.
share_potatoes_winter	%	Proportion of animals receiving potatoes in winter.
share_beets_winter	%	Proportion of animals receiving beets in winter.

${\bf Livestock::} {\bf Dairy Cow::} {\bf Excretion::} {\bf CConcentrates}$

amount_summer	kg /d	Amount of concentrates in summer per animal per
		day.
amount_winter	kg /d	Amount of concentrates in winter per animal per day.

Livestock::DairyCow::Housing::Type

housing_type	-	Type of housing.
		Possible values: Loose_Housing_Deep_Litter, Loose_Housing_Slurry, Loose_Housing_Slurry_Plus_Solid_Manure, Tied_Housing_Slurry_Plus_Solid_Manure, Tied_Housing_Slurry
dimensioning_barn	-	Number of available animal places.

Livestock::DairyCow::Housing::Floor

UNECE_category_1- mitigation options for-	-	UNECE category 1 mitigation options for housing systems for other cattle (none, toothed scrapper run-
_housing_systems_for_dairy-		ning over a grooved floor).
_cows		Possible values: toothed_scrapper_running_over_a_grooved_floor none

Parameter	Unit	Description

${\bf Livestock::} {\bf Dairy Cow::} {\bf Yard}$

yard_days	d /a	Access to exercise yard in days per year.	
exercise_yard	-	Exercise yard: not available, available: roughage is not supplied in the exercise yard, available: roughage is partly supplied in the exercise yard, available: roughage is exclusively supplied in the exercise yard. Possible values: available_roughage_is_exclusively_supplied_in_available_roughage_is_not_supplied_in_the_exeavailable_roughage_is_partly_supplied_in_the_not_available	rcise_yard,
floor_properties_exercise_yard	-	Floor properties(solid floor, unpaved floor, perforated floor, paddock or pasture used as exercise yard). Possible values: paddock_or_pasture_used_as_exercise_yard, perforated_floor, unpaved_floor, solid_floor	

${\bf Livestock::} {\bf Dairy Cow::} {\bf Grazing}$

grazing_days	d/a	Average grazing days per year.
grazing_hours	h /d	Average grazing hours per day.

Livestock::OtherCattle::Excretion

DivestockOther CattleDxcretion		
animalcategory	-	Animal category (suckling cows, 1 year old heifers, 2 years old heifers, 3 years old heifers, fattening calves, calves of suckling cows, beef cattle). Possible values: beef_cattle, calves_suckling_cows, fattening_calves, heifers_1st_yr, heifers_2nd_yr, heifers_3rd_yr, suckling_cows
animals	-	Number of animals for the selected type in barn.

Livestock::OtherCattle::Housing::Type

Livestock::Other Cattle:: Housing:: 1 ype		
housing_type	-	Type of housing.
		Possible values: Loose_Housing_Deep_Litter,
		Loose_Housing_Slurry,
		Loose_Housing_Slurry_Plus_Solid_Manure,
		Tied_Housing_Slurry_Plus_Solid_Manure,
		Tied_Housing_Slurry

Parameter	Unit	Description
dimensioning barn	-	Number of available animal places.

${\bf Live stock:: Other Cattle:: Housing:: Floor}$

UNECE_category_1mitigation_options_forhousing_systems_for_othercattle	-	UNECE category 1 mitigation options for housing systems for other cattle (none, toothed scrapper running over a grooved floor). Possible values: toothed_scrapper_running_over_a_grooved_floor none

Livestock::OtherCattle::Yard

21 vestoem o ther cattle. Far a			
yard_days	d /a	Access to exercise yards days per year.	
$exercise_yard$	-	Exercise yard: not available, available: roughage is	
		not supplied in the exercise yard, available: roughage	
		is partly supplied in the exercise yard, available:	
		roughage is exclusively supplied in the exercise yard.	
		Possible values:	
		available_roughage_is_exclusively_supplied_ir	_the_exercis
		available_roughage_is_not_supplied_in_the_exe	ercise_yard,
		available_roughage_is_partly_supplied_in_the_	_exercise_yaı
		not_available	
floor_properties_exercise_yard	-	Floor properties (solid floor, unpaved floor, perfo-	
		rated floor, paddock or pasture used as exercise	
		yard).	
		Possible values:	
		<pre>paddock_or_pasture_used_as_exercise_yard,</pre>	
		perforated_floor, unpaved_floor, solid_floor	

${\bf Live stock :: Other Cattle :: Grazing}$

grazing_days	d /a	Average grazing days per year.
grazing_hours	h /d	Average grazing hours per day.

Livestock::Pig::Excretion

21.050000001112191010101		
animalcategory	-	Pig category (nursing sows, dry sows, gilts, weaned piglets (up to 25kg), and boars). Possible values: boars, dry_sows, gilts, nursing_sows, weaned_piglets_up_to_25kg
pigs	-	Number of pigs for the selected type in barn.
crude_protein	g /kg	Crude protein content of feed ration.
energy_content	MJ VES /kg	Energy content of feed ration.

${\bf Livestock::Pig::Housing::Type}$

housing_type	-	Type of housing.
		Possible values: Deep_Litter, Outdoor, Slurry_Label, Slurry_Conventional

Parameter	Unit	Description
1 di diffe del	Cint	Description
Livestock::Pig::Housing::AirScrub	ber	
air_scrubber	-	Air exhaust scrubber (none, acid, biotrick-ling_filter).
		Possible values: acid, biotrickling, none
${f Livestock}::{f Pig}::{f Housing}::{f UNECEh}$	ousingTask	
UNECE_category_1mitigation_options_forhousing_systems_for_pigs		UNECE housing tasks for partly slatted floor: with scraper (concrete_slats), with flush channels(no areation), with flush channels(areation), with flush gutters/tubes (no areation), with flush gutters/tubes (areation), with channels slanted walls(concrete slats), with channel slanted walls (metal slats), with scraper (metal slats). Possible values: with_channel_slanted_walls_metal_slats, with_channels_slanted_walls_concrete_slats, with_flush_channels_areation, with_flush_gutters_tubes_areation, with_flush_gutters_tubes_areation, with_scraper_concrete_slats, with_scraper_metal_slats, none
Livestock::FatteningPigs::Excretio	n	
fattening_pigs	-	Number of fattening pigs for the selected type in barn.
feeding_phase_1_crude- _protein	g /kg	Crude protein content of feed ration during phase 1.
feeding_phase_2_crude- protein	g /kg	Crude protein content of feed ration during phase 2.
feeding_phase_3_crude- protein	g /kg	Crude protein content of feed ration during phase 3.
energy_content	MJ VES /kg	Energy content of feed ration.
	TD.	
Livestock::FatteningPigs::Housing housing_type	::Type	Type of housing.
nousing_type	_	
		Possible values: Deep_Litter, Outdoor, Slurry_Label, Slurry_Conventional
Livestock::FatteningPigs::Housing	::AirScrubber	
air_scrubber	-	Air exhaust scrubber (none, acid, biotrick-ling_filter).
		Possible values: acid, biotrickling, none

Parameter	Unit	Description
	·	
Livestock::FatteningPigs::Housing	::UNECEh	
UNECE_category_1mitigation_options_forhousing_systems_forfattening_pigs	-	UNECE housing tasks for partly slatted floor: with scraper (concrete_slats), with flush channels(no areation), with flush channels(areation), with flush gutters/tubes (no areation), with flush gutters/tubes (areation), with channels slanted walls(concrete slats), with channel slanted walls (metal slats), with scraper (metal slats).
		Possible values:
		with_channel_slanted_walls_metal_slats, with_channels_slanted_walls_concrete_slats, with_flush_channels_areation, with_flush_channels_no_areation,
		with_flush_gutters_tubes_areation,
		with_flush_gutters_tubes_no_areation,
		with_scraper_concrete_slats,
		with_scraper_metal_slats, none
animalcategory		Poultry category (layers, growers, broilers, turkeys, and other poultry). Possible values: broilers, growers, other_poultry, turkeys, layers
animals	-	Number of poultry animals for the selected type in barn.
Livestock::Poultry::Outdoor		
free_range	-	Average free range hours per day.
		Possible values: no, yes
Livestock::Poultry::Housing::Type		
housing_type	-	Type of housing.
		Possible values: deep_litter, deep_pit, manure_belt
manure_removal_interval	-	Manure removal interval by manure belt.
		Possible values: 3_to_4_times_a_month,

more_than_4_times_a_month, no_manure_belt,
twice_a_month, less_than_twice_a_month

Parameter	Unit	Description
drinking_system	-	Type of drinking system.
		Possible values: bell_drinkers, drinking_nipples
$-droppings_mist_covered_basin$	-	Droppings or mist covered basin.
		Possible values: no, yes

${\bf Livestock::Poultry::Housing::Air Scrubber}$

air_scrubber	-	Exhaust air scrubber: none, acid, biotrickling_filter.
		Possible values: acid, biotrickling_filter, none

${\bf Livestock:: Equides:: Excretion}$

Divestockii Equita esii Eneretion		
animalcategory	-	Animal category (horses younger than 3 years, horses older than 3 years, mules, ponies and asses). Possible values: horses_younger_than_3yr, mules, ponies_and_asses, horses_older_than_3yr
animals	-	Number of other animals for the selected type in barn.

${\bf Livestock:: Equides:: Grazing}$

grazing_days	d /a	Average grazing days per year.
grazing_hours	h /d	Average grazing hours per day.

${\bf Live stock :: Equides :: Yard}$

yard_days	d /a	Access to exercise yard in days per year.
yard_hours	h /d	Access to exercise yard in hours per day.
floor_properties_exercise_yard	-	Floor properties (solid_floor, unpaved_floor, pad-dock_or_pasture_used_as_exercise_yard). Possible values: paddock_or_pasture_used_as_exercise_yard, unpaved_floor, solid_floor

Livestock::SmallRuminants::Excretion

DIVESTOCKDIRATICALITATIONDACTCON	J11	
animalcategory	-	Animal category (Fattening sheep, milksheep and goats).
		Possible values: goats, milksheep, fattening_sheep

Parameter	Unit	Description
animals	-	Number of other animals for the selected type in
		barn.

${\bf Livestock:: Small Ruminants:: Grazing}$

grazing_days	d /a	Average grazing days per year.
grazing_hours	h/d	Average grazing hours per day.

Storage::Slurry

5 001 4g 0110 1411 y			
volume	m3	Volume of slurry store.	
depth	m	Depth of slurry store.	
mixing_frequency	-	Frequency of mixing of slurry store.	
		Possible values: 13_to_20_times_per_year, 21_to_30_times_per_year, 3_to_6_times_per_year, 7_to_12_times_per_year, more_than_30_times_per_year, 1_to_2_times_per_year	

Storage::Slurry::EFLiquid

storage::sturry::br Liquid			
cover_type	-	Cover type of liquid storage.	
		Possible values: floating_cover, natural_crust, perforated_cover, solid_cover, tent, uncovered	
contains_cattle_manure	-	Describes if the specific storage contains cattle manure.	
		Possible values: no, yes	
contains_pig_manure	-	Describes if the specific storage contains pig manure.	
		Possible values: no, yes	

${\bf Storage:: Solid Manure:: Poultry}$

=		
share_applied_direct_poultry-	%	Share of poultry manure applied to land without
_manure		storage.

${\bf Storage:: Solid Manure:: Solid}$

share_applied_direct_cattle-	%	Share of cattle manure applied to land without stor-
_other_manure		age.
share_applied_direct_pig-	%	Share of pig manure applied to land without storage.
_manure		

${\bf Application:: Slurry:: Ctech}$

share_splash_plate	%	Share of slurry applied with splash plate.
share_trailing_hose	%	Share of slurry applied with trailing hose.
$share_trailing_shoe$	%	Share of slurry applied with trailing shoes.
$share_shallow_injection$	%	Share of slurry applied with shallow injection.

Parameter	Unit	Description
$share_deep_injection$	%	Share of slurry applied with deep injection.

Application::Slurry::Applrate

	dilution_parts_water	1:x	Specific slurry dilution. TAN contents have been cal-
			culated based on a standard dilution of 1:1 with a
			TAN content of 1.15 kg N $/$ m3.
Ī	appl_rate	m3/ha	Application rate, mean volume of slurry applied on
			a ha per deployment.

Application::Slurry::Csoft

appl_evening	%	Share of slurry applied in the evening after 18:00.
appl_hotdays	-	Proportion of slurry applied on hot days. Possible values: never, rarely, sometimes,
		frequently

${\bf Application:: Slurry:: Cseason}$

$appl_summer$	%	Share of slurry applied June to August.
appl_autumn_winter_spring	%	Share of slurry applied September to May.

${\bf Application:: Solid Manure:: Cincorp Time}$

incorp_lw1h	%	Share of incorporated solid manure within 1 hour.
incorp_lw4h	%	Share of incorporated solid manure within 4 hours.
incorp_lw8h	%	Share of incorporated solid manure within 8 hours.
incorp_lw1d	%	Share of incorporated solid manure within 1 day.
incorp_lw3d	%	Share of incorporated solid manure within 3 days.
incorp_gt3d	%	Share of incorporated solid manure after 3 days.
incorp_none	%	Share of solid manure not incorporated.

${\bf Application} :: {\bf Solid Manure} :: {\bf Cseason}$

appl_summer	%	Share of solid manure applied June to August.
appl_autumn_winter_spring	%	Share of solid manure applied September to May.

PlantProduction::AgriculturalArea

9		
agricultural_area	ha	Agricultural area.

PlantProduction::MineralFertiliser

mineral_nitrogen_fertiliser-	kg N /a	Amount of urea in kg N /a.
_urea		
mineral_nitrogen_fertiliser-	kg N /a	Amount of nitrogen fertiliser (except urea) in kg N
_except_urea		$/\mathrm{a}$.

${\bf Plant Production:: Recycling Fertiliser}$

compost	t /a	Amount of compost (in t fresh matter per year).
		Kompost besteht aus $Gr\tilde{A}_{4}^{1}nabf\tilde{A}$ \mathbb{Z} llen nicht-
		landwirtschaftticher Herkunft von gewerblich-
		industriellen Anlagen oder von Feldrandkom-
		postierung.

Parameter	Unit	Description
solid_digestate	t /a	Amount of solid digestate form industrial factories.
liquid digestate	m3/a	Amount of liquid digestate form industrial factories.

97 Technical Parameters

Parameter	Value	Unit	Description
Livestock::DairyCow::Excretion			
standard_N_excretion	115	kg N /a	Annual standard N excretion for a dairy cow accord-
			ing to Flisch et al. (2009).
share_Nsol	0.60	-	Nsol content of excreta. Derived from e.g. Peterson
			et al. (1998) or Burgos et al. (2005).
feed_influence_on_Nsol	1	kg Nsol /kg N	Proportion of N (calculated from feed ration correc-
			tion) excreted as Nsol. Derived from e.g. Peterson
			et al. (1998).
			et al. (1998).

${\bf Livestock:: Dairy Cow:: Excretion:: CMilk}$

standard_milk_yield	6500	kg /a	Annual standard milk yield per dairy cow.
a_high	0.02	-	For milk yield > 6500
a_low	0.1	-	For milk yield < 6500

Livestock::DairyCow::Excretion::CFeed

d_summer	0.55	-	Duration of summer feeding period (200 days). Av-
			erage for different altitude zones.
d_winter	0.45	-	Duration of the winter feeding period (165 days). Av-
			erage for different altitude zones.

Livestock::DairyCow::Excretion::CFeedSummerRatio

c_hay_summer	-0.05	-	Modification of annual N excretion by adding hay
			to the standard ration during the summer feeding
			period.
$c_{maize_silage_summer}$	-0.08	-	Modification of annual N excretion by adding maize
			silage to the standard ration during summer feeding
			period.
c_maize_pellets_summer	-0.04	-	Modification of annual N excretion by adding maize
			pellets to the standard ration during summer feeding
			period.

${\bf Livestock::} {\bf Dairy Cow::} {\bf Excretion::} {\bf CFeedWinter Ratio}$

c_grass_silage_winter	0.027	-	Modification of annual N excretion by adding grass silage to the standard ration during winter feeding period.
c_maize_silage_winter	-0.016	-	Modification of annual N excretion by adding maize silage to the standard ration during winter feeding period.
c_maize_pellets_winter	-0.014	-	Modification of annual N excretion by adding maize pellets to the standard ration during winter feeding period.

Parameter	Value	Unit	Description
c_potatoes_winter	0.01	-	Modification of annual N excretion by adding pota-
			toes to the standard ration during the winter feeding
			period.
c_beets_winter	0.019	-	Modification of annual N excretion by adding beets
			to the standard ration during the winter feeding pe-
			riod.

Livestock::DairyCow::Excretion::CConcentrates

par_a_summer	0.04	d /kg	Parameter a of linear regression $a + b*x$.
par_b_summer	-0.04	-	Parameter a of linear regression $a + b*x$.
par_a_winter	0.01	d /kg	Parameter a of linear regression $a + b*x$.
par_b_winter	-0.005	-	Parameter b of linear regression $a + b*x$.

Livestock::DairyCow::Housing::Type::Tied Housing Slurry

, , ,	_		· ·
er	0.067	-	Emission rate for the tied housing slurry system for
			dairy cows. According to the consensus obtained in
			the workshop at ART Tänikon 02/11/07: 4% Ntot;
			converted using Nsol of 60%: EF 6.7% TAN.
share_liquid	1	-	For the tied housing slurry system 100% of the
			manure goes into the liquid fraction of the stor-
			m age/application.
k_area	0	-	Additional surfaces are not used.

Livestock::DairyCow::Housing::Type::Tied Housing Slurry Plus Solid Manure

211 cst cst. 2 an y c cst. 11 cas mg. 1 y pc. 11 ca _ 11 cas mg _ 5 tai 1 y _ 1 tas _ 5 cma _ 11 an ar c			
er	0.067	-	Emission rate for the tied housing liquid solid system
			for dairy cows. According to the consensus obtained
			in the workshop at ART TÃ α nikon 02/11/07: 4%
			Ntot, converted using Nsol of 60%: EF 6.7% TAN.
share_liquid	0.57	-	For the tied housing liquid solid system 57% of the
			manure goes into the liquid fraction of the stor-
			age/application.
k_area	0	-	Additional surfaces are not used.

${\bf Livestock::DairyCow::Housing::Type::Loose_Housing_Slurry}$

er	0.183	-	Emission rate for the loose housing slurry system
			for dairy cows. According to the consensus obtained
			in the workshop at ART TÃ α nikon 02/11/07: 11%
			Ntot; converted using Nsol of 60%: EF 18.3% TAN.
			Reference value UNECE(2007): 11 kg HN3 = 8%
			TAN.
share_liquid	1	=.	For the loose housing slurry system 100% of the
			manure goes into the liquid fraction of the stor-
			age/application.
k_area	0.5	-	According to the consensus obtained in the workshop
			at ART TÃ α nikon 02/11/07: it is assumed that ad-
			ditional surfaces are entirely used since barriers are
			hardly fea-sible. The emission is increased by 5% per
			10% of additional surfaces up to a maximum of 50%
			additional surface.
			order of the control

Parameter	Value	Unit	Description		
Livestock::DairyCow::Housing::Type::Loose Housing Slurry Plus Solid Manure					
er	0.183	-	Emission rate for the loose housing liquid solid sys-		
			tem for dairy cows. According to the consensus ob-		
			tained in the workshop at ART Tänikon 02/11/07:		
			11% Ntot; converted using Nsol of 60%: EF 18.3% TAN. Reference value UNECE(2007): 11 kg NH3 =		
			8% TAN.		
share liquid	0.57	-	For the loose housing liquid-solid system 57% of the		
			N of the manure goes into the liquid manure storage.		
k_area	0.5	-	According to the consensus obtained in the workshop		
			at ART TĤnikon 02/11/07: it is assumed that ad-		
			ditional surfaces are entirely used since barriers are		
			hardly fea-sible. The emission is increased by 5% per 10% of additional surfaces up to a maximum of 50%		
			additional surface.		
$\underline{ Livestock::DairyCow::Housing::Type::Loose_Housing_Deep_Litter}$					
er	0.183	-	Emission rate for the loose housing deep litter system		
			for dairy cows. According to the consensus obtained in the workshop at ART TÃ α nikon 02/11/07: 11%		
			Ntot; convered using Nsol of 60%: EF 18.3% TAN.		
			Reference value UNECE(2007): 11 kg NH3 = 8%		
			TAN.		
share_liquid	0	-	For the loose housing deep litter system 100%		
			of the manure goes into the solid manure stor-		
			age/application.		
k_area	0.5	-	According to the consensus obtained in the workshop		
			at ART TAxinkon $02/11/07$: it is assumed that additional surfaces are entirely used since barriers are		
			hardly fea-sible. The emission is increased by 5% per		
			10% of additional surfaces up to a maximum of 50%		
			additional surface.		
Livestock::DairyCow::Housing::Floo			Deduction officiency as compand to subjet bours		
red_UNECE	0.25	_	Reduction efficiency as compared to cubicle house (UNECE 2007, paragraph 57, table 4).		
			(CNECE 2001, paragraph 51, table 4).		
Livestock::DairyCow::Yard					
er_yard	0.7	-	Emission rate for TAN on yard.		
share_available_roughage_is-	0.6	-	Share of excretion per day for animals with roughage		
_exclusively_supplied_in_the-			exclusively on the yard.		
_exercise_yard	0.2		Chara of overation now day for animals with now have		
share_available_roughage_is- partly supplied in the-	0.2	-	Share of excretion per day for animals with roughage partly on the yard.		
exercise yard			percif on one years.		
share available roughage-	0.1	-	Share of excretion per day for animals with roughage		
_is_not_supplied_in_the-			not supplied in the yard.		
exercise_yard					

Parameter	Value	\mathbf{Unit}	Description
red_floor_properties_solid-	0.0	-	Reduction efficiency according to Reidy and Menzi.
_floor			
red_floor_properties_unpaved-	0.5	_	Reduction efficiency according to Reidy and Menzi.
_floor			
red_floor_properties-	0.8	•	Reduction efficiency according to Reidy and Menzi.
_perforated_floor			
red_floor_properties_paddock-	0.9	-	Reduction efficiency according to Reidy and Menzi.
_or_pasture_used_as-			
_exercise_yard			

Livestock::DairyCow::Grazing

er_dairycow_grazing	0.05	-	Emission rate for the calculation of the annual NH3
			emission during grazing for dairy cows. 5% Ntot
			(conversion with a portion of Nsol of 60%: EF 8.3%
			TAN; value based on Table 1 (Mean emission rate of
			3.1% N excreted; range: 1.6-5.7% for grazing cows
			on a sward fertilized with 250 kg N/y) of Bussink
			(1992) and Table 3 (Mean emission rate of 3.3% N ex-
			creted; range: 0.0-7.4% for grazing cows on a sward
			fertilized with 250 kg N/y) of Bussink (1994)). The
			corresponding value is rather lower for Switzerland
			since the level of fertilization is lower resulting in
			a lower level for crude protein. The N level in the
			fodder of the sward fertilized with 250 kg N/y (31
			g/kg d.m.; Table 4) is comparable to values common
			for Switzerland (Bussink (1994)). The EF chosen
			includes a safety margin.
		1	I morages a seriety margin.

Livestock::DairyCow::Housing::KGrazing

2110000011112411700011111111111111111111			
k_grazing_reduction_lw5h	0	-	Reduction of housing emissions to 0% due to exten-
			sive grazing/alping. Empirical estimation.
k_grazing_reduction_lw12h	0.2	-	Reduction of housing emissions to 20% due to exten-
			sive grazing/alping. Empirical estimation.
k_grazing_reduction_lw22h	0.5	-	Reduction of housing emissions to 50% due to exten-
			sive grazing/alping. Empirical estimation.
k_grazing_reduction_gt22h	1.0	-	Reduction of housing emissions to 100% due to ex-
			tensive grazing/alping and milking using a mobile
			milking parlor. Empirical estimation.

Livestock::OtherCattle::Excretion

DivestockOther CattleDxcretton			
standard_N_excretion_heifers-	25	kg N /a	Annual standard N excretion for a 1 year old heifer,
_1st_yr			according to Flisch et al. (2009).
standard_N_excretion_heifers-	40	kg N /a	Annual standard N excretion for a 2 year old heifer,
$_2\mathrm{nd}$ _yr			according to Flisch et al. (2009).
standard_N_excretion_heifers-	55	kg N /a	Annual standard N excretion for a 3 year old heifer,
_3rd_yr			according to Flisch et al. (2009).
standard_N_excretion_beef-	33	kg N /a	Annual standard N excretion for a beefcattle, accord-
_cattle			ing to Flisch et al. (2009).
standard_N_excretion-	13	kg N /a	Annual standard N excretion for a fattening calves,
_fattening_calves			according to Flisch et al. (2009).
standard_N_excretion-	80	kg N /a	Annual standard N excretion for a suckling cow, ac-
$_\mathrm{suckling}_\mathrm{cows}$			cording to Flisch et al. (2009).

Parameter	Value	Unit	Description
standard_N_excretion_calves- _suckling_cows	34	kg N /a	Annual standard N excretion for calves of suckling cows, according to Flisch et al. (2009).
share_Nsol_heifers_1st_yr	0.6	-	Nsol content of excreta for 1 year old heifers. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_heifers_2nd_yr	0.6	-	Nsol content of excreta for 2 years old heifers. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_heifers_3rd_yr	0.6	-	Nsol content of excreta for 3 years old heifers. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_beef_cattle	0.6	-	Nsol content of excreta for beefcattle. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_fattening_calves	0.6	-	Nsol content of excreta for fattening calves. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_suckling_cows	0.6	-	Nsol content of excreta for suckling cows. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_calves_suckling- _cows	0.6	-	Nsol content of excreta for suckling cows. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).

Livestock::OtherCattle::Housing::Type::Tied Housing Slurry

	<u> </u>	- <u> </u>	
er	0.067	Missing unit	Emission rate for the tide housing slurry system for
			cattle. According to the consensus obtained in the
			workshop at ART TÃ\mathbb{\tilde{\mathbb{Q}}nikon 02/11/07: 4\% Ntot,
			converted using Nsol of 60%: EF 6.7% TAN.
share_liquid	1	-	For the tide housing slurry system 100% of the
			manure goes into the liquid fraction of the stor-
			m age/application.
k_area	0	-	Additional surfaces are not used.

$\underline{\textbf{Livestock::} \textbf{OtherCattle::} \textbf{Housing::} \textbf{Type::} \textbf{Tied}_\textbf{Housing}_\textbf{Slurry}_\textbf{Plus}_\textbf{Solid}_\textbf{Manure}}$

er	0.067	-	Emisssion rate for the tide housing liquid solid sys-
			tem for cattle. According to the consensus obtained
			in the workshop at ART TÃ α nikon 02/11/07: 4%
			Ntot; converted using Nsol of 60%: EF 6.7% TAN.
share_liquid	0.57	-	For the tide housing liquid solid system 57% of the
			manure goes into the liquid fraction of the stor-
			m age/application.
k_area	0	-	Additional surfaces are not used.

${\bf Livestock::OtherCattle::Housing::Type::Loose_Housing_Slurry}$

er	0.183	-	Emission rate for the loose housing slurry system for
			cattle. According to the consensus obtained in the
			workshop at ART Tänikon 02/11/07: 11% Ntot;
			converted using Nsol of 60%: EF 18.3% TAN. Ref-
			erence value UNECE(2007): 11 kg NH3 = 8% TAN.

Parameter	Value	Unit	Description
share_liquid	1	-	For the loose housing slurry system 100% of the
			manure goes into the liquid fraction of the stor-
			age/application.
k_area	0.5	-	According to the consensus obtained in the workshop
			at ART TÃ α nikon 02/11/07: it is assumed that ad-
			ditional surfaces are entirely used since barriers are
			hardly fea-sible. The emission is increased by 5% per
			10% of additional surfaces up to a maximum of $50%$
			additional surface.

Livestock::OtherCattle::Housing::Type::Loose Housing Slurry Plus Solid Manure

er	0.183	Ī-	Emission rate for the loose housing liquid solid sys-
			tem for cattle. According to the consensus obtained
			in the workshop at ART TÃ\u03c0nikon 02/11/07: 11\u03c8
			Ntot; convered using Nsol of 60%: EF 18.3% TAN.
			Reference value UNECE(2007): 11 kg NH3 = 8%
			TAN.
share_liquid	0.57	-	For the loose housing liquid solid system 57% of the
			manure goes into the liquid manure storage.
k_area	0.5	-	According to the consensus obtained in the workshop
			at ART TÃ α nikon 02/11/07: it is assumed that ad-
			ditional surfaces are entirely used since barriers are
			hardly fea-sible. The emission is increased by 5% per
			10% of additional surfaces up to a maximum of 50%
			additional surface.

Livestock::OtherCattle::Housing::Type::Loose Housing Deep Litter

	<u>-</u>		
er	0.183	-	Emission rate for the loose housing deep litter sys-
			tem for cattle. According to the consensus obtained
			in the workshop at ART TÃ α nikon 02/11/07: 11%
			Ntot; converted using Nsol of 60%: EF 18.3% TAN.
			Reference value UNECE(2007): 11 kg NH3 = 8%
			TAN.
share_liquid	0	-	For the loose housing deep litter system 100%
			of the manure does into the solid manure stor-
			age/application.
k_area	0.5	-	According to the consensus obtained in the workshop
			at ART TÃ α nikon 02/11/07: it is assumed that ad-
			ditional surfaces are entirely used since barriers are
			hardly fea-sible. The emission is increased by 5% per
			10% of additional surfaces up to a maximum of 50%
			additional surface.

${\bf Livestock::} {\bf Other Cattle::} {\bf Housing::} {\bf Floor}$

${ m red_UNECE}$	0.25	-	Reduction efficiency as comppared to cubicle house
			(UNECE 2007, paragraph 57, table 4).

Livestock::OtherCattle::Yard

er_yard	0.7	-	Emission rate for TAN on yard.
share_available_roughage_is-	0.6	_	Share of excretion per day for animals with roughage
_exclusively_supplied_in_the-			exclusively on the yard.
_exercise_yard			

Parameter	Value	Unit	Description
share_available_roughage_is-	0.2	-	Share of excretion per day for animals with roughage
$_{\rm partly_supplied_in_the-}$			partly on the yard.
_exercise_yard			
share_available_roughage-	0.1	-	Share of excretion per day for animals with roughage
_is_not_supplied_in_the-			not supplied in the yard.
_exercise_yard			
red_floor_properties_solid-	0.0	-	Reduction efficiency according to Reidy and Menzi.
_floor			
red_floor_properties_unpaved-	0.5	-	Reduction efficiency according to Reidy and Menzi.
_floor			
red_floor_properties-	0.8	-	Reduction efficiency according to Reidy and Menzi.
_perforated_floor			
red_floor_properties_paddock-	0.9	-	Reduction efficiency according to Reidy and Menzi.
_or_pasture_used_as-			
_exercise_yard			

${\bf Live stock :: Other Cattle :: Grazing}$

		1	
$er_cattle_grazing$	0.05	-	Emission rate for the calculation of the annual NH3
			emission during grazing for cattle. 5% Ntot (conver-
			sion with a portion of Nsol of 60%: EF 8.3% TAN;
			value based on Table 1 (Mean emission rate of 3.1%
			N excreted; range: 1.6-5.7% for grazing cows on a
			sward fertilized with 250 kg N/y) of Bussink (1992)
			and Table 3 (Mean emission rate of 3.3% N excreted;
			range: 0.0-7.4% for grazing cows on a sward fertilized
			with 250 kg N/y) of Bussink (1994). The correspond-
			ing value is rather lower for Switzerland since the
			level of fertilization is lower resulting in a lower level
			for crude protein. The N level in the fodder of the
			sward fertilized with 250 kg N/y (31 g/kg d.m.; Table
			4) is comparable to values common for Switzerland
			(Bussink (1994). The EF chosen includes a safety
			margin.

Livestock::OtherCattle::Housing::KGrazing

Livestock Other Cattle It dishing				
k_grazing_reduction_lw5h	0	-	Reduction of housing emissions to 0% due to exten-	
			sive grazing/alping. Empirical estimation.	
k_grazing_reduction_lw12h	0.2	-	Reduction of housing emissions to 20% due to exten-	
			sive grazing/alping. Empirical estimation.	
k_grazing_reduction_lw22h	0.5	-	Reduction of housing emissions to 50% due to exten-	
			sive grazing/alping. Empirical estimation.	
k_grazing_reduction_gt22h	1.0	-	Reduction of housing emissions to 100% due to ex-	
			tensive grazing/alping. Empirical estimation.	

${\bf Livestock:: Pig:: Grazing}$

er_pig_grazing	0.2	-	Emission rate for the calculation of the annual NH3 emission during grazing for pigs. Sommer et al. (2001) give a yearly volatilization loss from one sow
			with piglets of 4.8 kg N resulting in a loss of 20% TAN assuming an N excretion/sow/y of 35 kg N (Flisch et al. (2009)).

Parameter	Value	Unit	Description
Livestock::Pig::Excretion			
standard N excretion-	42	kg N /a	Annual standard N excretion for animal category
nursing sows		1.6 1. / 5	(nursing sows) according to Flisch et al. (2009).
standard N excretion dry-	20	kg N /a	Annual standard N excretion for animal category
	20	Kg II / a	(dry sows) according to Flisch et al. (2009).
_sows standard_N_excretion_gilts	13	kg N /a	Annual standard N excretion for animal category
			(gilts) according to Flisch et al. (2009).
standard_N_excretion-	4.6	kg N /a	Annual standard N excretion for animal category
$_$ weaned $_$ piglets $_$ up $_$ to $_25$ kg			(piglets) according to Flisch et al. (2009).
standard_N_excretion_boars	18	kg N /a	Annual standard N excretion for animal category (boars) according to Flisch et al. (2009).
standard and protein	165	m CD /lrm	
standard_crude_protein- _nursing_sows		g CP /kg	Standard crude protein content of a feed ration for nursing sows (BLW, SRVA, LBL 2003).
standard_crude_protein_dry-	145	g CP /kg	Standard crude protein content of a feed ration for dry sows(BLW, SRVA, LBL 2003).
_sows standard crude protein gilts	170	g CP /kg	Standard crude protein content of a feed ration for
standard_crude_protein_glits	110	g Cr / kg	
	1 77	CD /I	gilts (BLW, SRVA, LBL 2003).
standard_crude_protein-	175	g CP /kg	Standard crude protein content of a feed ration for
_weaned_piglets_up_to_25kg	1.45	GD /I	piglets (BLW, SRVA, LBL 2003).
standard_crude_protein_boars	145	g CP /kg	Standard crude protein content of a feed ration for boars (BLW, SRVA, LBL 2003).
standard_energy_content-	12.5	MJ VES	Standard energy content of a feed ration for nursing
_ nursing_sows			sows (BLW, SRVA, LBL 2003).
standard_energy_content_dry-	12.5	MJ VES	Standard energy content of a feed ration for dry sows
sows			(BLW, SRVA, LBL 2003).
standard_energy_content_gilts	13.5	MJ VES	Standard energy content of a feed ration for gilts (BLW, SRVA, LBL 2003).
standard analysis contant	13.5	MJ VES	
standard_energy_content- _weaned_piglets_up_to_25kg			Standard energy content of a feed ration for piglets (BLW, SRVA, LBL 2003).
$\operatorname{standard} \operatorname{_energy} \operatorname{_content}$	12.5	MJ VES	Standard energy content of a feed ration for boars
_boars			(BLW, SRVA, LBL 2003).
cfeed nursing sows	0.007	-	Correction factor for feed with reduced crude protein
			content for nursing sows (BLW, SRVA, LBL 2003).
cfeed_dry_sows	0.008	-	Correction factor for feed with reduced crude protein
C 1 11.	0.0054		content for dry sows (BLW, SRVA, LBL 2003).
$cfeed_gilts$	0.0054	-	Correction factor for feed with reduced crude protein
	0.00=0		content for gilts (BLW, SRVA, LBL 2003).
cfeed_weaned_piglets_up_to- 25kg	0.0072	-	Correction factor for feed with reduced crude protein content for piglets (BLW, SRVA, LBL 2003).
cfeed boars	0.0052	_	Correction factor for feed with reduced crude protein
	0.0002		content for boars (BLW, SRVA, LBL 2003).
minimal N excretion nursing-	35.3	kg N /a	Annual minimal N excretion for pig category (nurs-
sows	33.0	1.0 1. / 5	ing sows) according to Flisch et al. (2009).
minimal_N_excretion_dry-	17.5	kg N /a	Annual minimal N excretion for pig category (dry
sows	1	1.5.1 / 6	sows) according to Flisch et al. (2009).
minimal N excretion gilts	10.9	kg N /a	Annual minimal N excretion for pig category (gilts)
mmmiai_11_excretion_gites	10.0	1 1 1 / a	according to Flisch et al. (2009).
minimal_N_excretion_weaned-	3.8	kg N /a	Annual minimal N excretion for pig category
piglets up to 25kg	5.0	1.0 1. / 5	(piglets) according to Flisch et al. (2009).
minimal N excretion boars	15.5	kg N /a	Annual minimal N excretion for pig category (boars)
mmmar_n_excretion_boars	10.0	ng IV /a	
			according to Flisch et al. (2009).

Parameter	Value	Unit	Description
share_Nsol	0.7	-	Nsol content of excreta from pigs. Derived from e.g.
			Peterson et al. (1998) or Burgos et al. (2005).

Livestock::Pig:	:Housing::	Type::Slurry	Conventional

er	0.243	_	Emission rate for the conventional slurry pig housing
			system. According to the consensus obtained in the
			workshop at ART Tänikon 02/11/07: 17 % Ntot;
			converted using Nsol of 70%: EF 24.3 % TAN.
share_liquid	1	-	For the conventional slurry pig housing system 100%
			of the manure goes into the liquid fraction for stor-
			age/application.

${\bf Livestock::Pig::Housing::Type::Slurry_Label}$

er	0.486	-	Emission rate for the label slurry pig housing system. According to the consensus obtained in the workshop at ART TA\(\time\)nikon 02/11/07: 34 % Ntot; converted using Nsol of 70%: EF 48.6 % TAN.
share_liquid	1	-	For the label slurry pig housing system 100% of the manure goes into the liquid fraction for storage/application.

${\bf Livestock::Pig::Housing::Type::Deep_Litter}$

er	0.157	-	Emission rate for the label deep litter pig housing
			system. According to the consensus obtained in
			the workshop at ART TÃ α nikon 02/11/07: 12.81
			% Ntot; converted using Nsol of 70%: EF 18.3 $%$
			TAN
share_liquid	0	-	For the label deep litter pig housing system
			100% of the manure goes into solid manure stor-
			m age/application.

${\bf Livestock:: Pig:: Housing:: Type:: Outdoor}$

er	0	-	Emission rate for outdoor pigs (equal to zero because
			all emissions are listed under grazing).
share_liquid	0	-	For the outdoor pigs 0% of the manure goes into the
			liquid fraction for storage/application.

Livestock::Pig::Housing::AirScrubber

21,0000001112,0111000111001111001110011						
red_acid_air_scrubber	0.9	_	Reduction efficiency as compared to group-housed on			
			fully and partly slatted floors (UNECE 2007, para-			
			graph 71, table 5).			
red_biotrickling_filter_air-	0.7	-	Reduction efficiency as compared to group-housed on			
scrubber			fully and partly slatted floors (UNECE 2007, para-			
			graph 71, table 5).			

${\bf Livestock:: Pig:: Housing:: UNECE housing Task}$

8	0		
red_PSF_with_scraper-	0.4	-	Reduction efficiency as compared to group-housed on
_concrete_slats			partly slatted floors (UNECE 2007, paragraph 71,
			table 5).

Parameter	Value	Unit	Description
red_PSF_with_flush- _channels_no_areation	0.5	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_flush- _channels_areation	0.6	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_flush_gutters- _tubes_no_areation	0.6	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_flush_gutters- _tubes_areation	0.6	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_channels- _slanted_walls_concrete_slats	0.6	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_channel- _slanted_walls_metal_slats	0.65	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_with_scraper- _metal_slats	0.5	_	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).

Livestock::FatteningPigs::Grazing

8 8 8			
er_fattening_pig_grazing	0.2	-	Emission rate for the calculation of the annual NH3
			emission during grazing for fattening pigs. Sommer
			et al. (2001) give a yearly volatilization loss from
			one sow with piglets of 4.8 kg N resulting in a loss of
			20% TAN assuming an N excretion/sow/y of 35 kg
			N (Flisch et al. (2009)).

Livestock::FatteningPigs::Excretion

Divestock Patterning 1 igs Excitetion			
standard_N_excretion-	13	kg N /a	Annual standard N excretion for fattening pigs ac-
_fattening_pigs			cording to Flisch et al. (2009).
$standard_energy_content-$	13.5	MJ VES	Standard energy content of a feed ration for fattening
_fattening_pigs			pigs (BLW, SRVA, LBL 2003).
$standard_crude_protein-$	170	g CP /kg	Standard crude protein content of a feed ration for
_fattening_pigs			fattening pigs (BLW, SRVA, LBL 2003).
cfeed_fattening_pigs	0.008	-	Correction factor for feed with reduced crude protein
			content for fatteing pigs (BLW, SRVA, LBL 2003).
			A diffrence from $10 \mathrm{~g~CP~/kg~leads}$ to $8 \mathrm{~0/0}$.
minimal_N_excretion-	10.9	kg N /a	Annual minimal N excretion for fattening pigs ac-
_fattening_pigs			cording to Flisch et al. (2009).
share_Nsol	0.7	-	Nsol content of excreta from fattening pigs. Derived
			from e.g. Peterson et al. (1998) or Burgos et al.
			(2005).
phase_1_3_duration	0.151	d	Feeding phase 1 of a 3-phase-feeding duration as part
			of the year.
phase 2_3_duration	0.321	d	Feeding phase 2 of a 3-phase-feeding duration as part
			of the year.
phase 3 3 duration	0.528	d	feeding phase 3 of a 3-phase-feeding duration as part
			of the year.
	1		

Parameter	Value	Unit	Description
phase_1_2_duration	0.359	d	Feeding phase 1 of a 2-phase-feeding duration as part
			of the year.
phase_2_2_duration	0.641	d	Feeding phase 2 of a 2-phase-feeding duration as part
			of the year.

${\bf Livestock::} {\bf Fattening Pigs::} {\bf Housing::} {\bf Type::} {\bf Slurry_Conventional}$

er	0.243	-	Emission rate for the conventional slurry fattening
			pig housing system. According to the consensus ob-
			tained in the workshop at ART TÃ α nikon 02/11/07:
			17 % Ntot; converted using Nsol of 70%: EF 24.3 %
			TAN.
share_liquid	1	-	For the conventional slurry fattening pig housing sys-
			tem 100% of the manure goes into the liquid fraction
			for storage/application.

${\bf Livestock::} {\bf Fattening Pigs::} {\bf Housing::} {\bf Type::} {\bf Slurry_Label}$

er	0.486	-	Emission rate for the label slurry fattening pig hous-
			ing system. According to the consensus obtained in
			the workshop at ART TÃ α nikon 02/11/07: 34 %
			Ntot; converted using Nsol of 70%: EF 48.6 % TAN.
share liquid	1	-	For the label slurry fattening pig housing system
			100% of the manure goes into the liquid fraction for
			storage/application.

Livestock::FatteningPigs::Housing::Type::Deep Litter

er	0.157	-	Emission rate for the label deep litter fattening pig	
			housing system. According to the consensus ob-	
			tained in the workshop at ART TÃ α nikon 02/11/07:	
			12.81 % Ntot; converted using Nsol of 70%: EF 18.3	
			% TAN	
share_liquid	0	-	For the label deep litter fattening pig housing sys-	
			tem 100% of the manure goes into solid manure stor-	
			age/application.	

${\bf Livestock::} {\bf Fattening Pigs::} {\bf Housing::} {\bf Type::} {\bf Outdoor}$

er	0	-	Emission rate for outdoor fattening pigs (equal to
			zero because all emissions are listed under grazing).
share_liquid	0	-	For the outdoor fattening pigs 0% of the manure goes
			into the liquid fraction for storage/application.

Livestock::FatteningPigs::Housing::AirScrubber

21 condense and a special section of the section of					
red_acid_air_scrubber	0.9	-	Reduction efficiency as compared to group-housed on		
			fully and partly slatted floors (UNECE 2007, para-		
			graph 71, table 5).		
red_biotrickling_filter_air-	0.7	-	Reduction efficiency as compared to group-housed on		
$_\mathrm{scrubber}$			fully and partly slatted floors (UNECE 2007, para-		
			graph 71, table 5).		

Livestock::FatteningPigs::Housing::UNECEhousingTask

	0 0	0			
red_PSF_w	ith_scraper-		0.4	-	Reduction efficiency as compared to group-housed on
_concrete_s	lats				partly slatted floors (UNECE 2007, paragraph 71,
					table 5).

Parameter	Value	Unit	Description
red_PSF_with_flush- _channels_no_areation	0.5	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_flush- _channels_areation	0.6	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_flush_gutters- _tubes_no_areation	0.6	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_flush_gutters- _tubes_areation	0.6	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_channels- _slanted_walls_concrete_slats	0.6	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_channel- _slanted_walls_metal_slats	0.65	-	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_PSF_with_with_scraper- _metal_slats	0.5	_	Reduction efficiency as compared to group-housed on partly slatted floors (UNECE 2007, paragraph 71, table 5).

Livestock::Poultry::Excretion

Divestocki outti yDxci etion			
standard_N_excretion_layers	0.80	kg N /a	Annual standard N excretion for poultry category
			(layers) according to Flisch et al. (2009).
standard_N_excretion_growers	0.34	kg N /a	Annual standard N excretion for poultry category
			(growers) according to Flisch et al. (2009).
$standard_N_excretion_broilers$	0.45	kg N /a	Annual standard N excretion for poultry category
			(broilers) according to Flisch et al. (2009).
standard_N_excretion_turkeys	1.4	kg N /a	Annual standard N excretion for poultry category
			according (turkeys) to Flisch et al. (2009).
standard_N_excretion_other-	0.56	kg N /a	Annual standard N excretion for other poultry cate-
_poultry			gory according to Flisch et al. (2009).
share_Nsol_layers	0.6	-	Nsol content of excreta for layers. Derived from e.g.
			TODO
share_Nsol_growers	0.6	-	Nsol content of excreta for growers. Derived from
			e.g. TODO
share_Nsol_broilers	0.6	-	Nsol content of excreta for broilers. Derived from
			e.g. TODO
share_Nsol_turkeys	0.6	-	Nsol content of excreta for turkeys. Derived from
			e.g. TODO
share_Nsol_other_poultry	0.6	-	Nsol content of excreta for other poultry. Derived
			from e.g. TODO

Livestock::Poultry::Outdoor

21.0200011112 04101 3110 4140001			
er_free_range	0.7	-	Emission rate for free range poultry, based on Menzi
			et al. (1997): 70% of TAN or 28% of Ntot
free_range_days_layers	280	d /a	Average free range days per year.
free_range_hours_layers	2.88	h /d	Average free range hours per day, assumed is 12% of
			Day
free_range_days_growers	280	d /a	Average free range days per year.
free_range_hours_growers	2.88	h /d	Average free range hours per day, assumed is 12% of
			Day

Parameter	Value	Unit	Description
free_range_days_turkeys	280	d /a	Average free range days per year.
free_range_hours_turkeys	2.88	h /d	Average free range hours per day, assumed is 12% of
			Day
free_range_days_other-	280	d /a	Average free range days per year.
_poultry			
free_range_hours_other-	2.88	h /d	Average free range hours per day, assumed is 12% of
_poultry			Day
free_range_days_broilers	280	d/a	Average free range days per year.
free_range_hours_broilers	0.96	h /d	Average free range hours per day, assumed is 4% of
			Day

Livestock::Poultry::Housing::Type

Livestock::Poultry::Housing::Type			
er_housing_layers_growers-	0.15	-	Emission rate for the poultry housing type, based
_manure_belt			on EAGER workshop January 2007: 15% of Ntot,
			converted using 60% Nsol and emission factor of 25%.
er_housing_layers_growers-	0.30	-	Emission rate for the poultry housing type, based
_deep_pit			on EAGER workshop January 2007, UNECE 2007:
			30% of Ntot, converted using 60% Nsol and emission
			factor of 50%.
er_housing_layers_growers-	0.30	-	Emission rate for the poultry housing type, based
_deep_litter			on EAGER workshop January 2007, UNECE 2007:
			30% of Ntot, converted using 60% Nsol and emission
			factor of 50%.
er_housing_other_deep_litter	0.12	-	Emission rate for the poultry housing type, based on
			Reidy et al. (2009): 12% of Ntot, converted using
			60% Nsol and emission factor of $20%$.
c_manure_removal_interval-	1.2	-	Emission rate for the poultry manure removal
_less_than_twice_a_month			by droppings belt. Empirical assumption by
TODO CL. L. L			Reidy/Menzi.
TODO: Give better description!			
c_manure_removal_interval-	1	-	Emission rate for the poultry manure removal
$_twice_a_month$			by droppings belt. Empirical assumption by Reidy/Menzi.
TODO: Give better description!		'	
$c_{manure_removal_interval-}$	0.8	-	Emission rate for the poultry manure removal
$_3$ _to $_4$ _times $_a$ _month			by droppings belt. Empirical assumption by
			Reidy/Menzi.
TODO: Give better description!			
c_manure_removal_interval-	0.6	-	Emission rate for the poultry manure removal
_more_than_4_times_a-			by droppings belt. Empirical assumption by
_month			Reidy/Menzi.
TODO: Give better description!			
c_drinking_nipples	1.0	-	Emission rate for the poultry drinking type standard version.
c_bell_drinkers	1.2	-	Emission rate for the poultry drinking type ad-
			ditional emission. Empirical assumption by
			Reidy/Menzi.
TODO: Give better description!			
$c_droppings_mist_covered$ -	0.6	-	Emission rate for the droppings or mist covered basin
basin			for poultry.

Parameter	Value	Unit	Description
Livestock::Poultry::Housing::AirScr	ubber		
red_acid_air_scrubber	0.9	-	Reduction efficiency as compared to group-housed on fully and partly slatted floors (UNECE 2007, paragraph 71, table 5).
red_biotrickling_filter_air- _scrubber	0.7	-	Reduction efficiency as compared to group-housed on fully and partly slatted floors (UNECE 2007, paragraph 71, table 5).
Livestock::Equides::Excretion			
standard_N_excretion_horses- _younger_than_3yr	42	kg N /a	Annual standard N excretion for other animal category (horses younger than 3 years) according to Flisch et al. (2009).
$\begin{array}{c} standard_N_excretion_horses-\\ _older_than_3yr \end{array}$	44	kg N /a	Annual standard N excretion for other animal category (horses older than 3 years) according to Flisch et al. (2009).
standard_N_excretion_mules	25.1	kg N /a	Annual standard N excretion for other animal category (mules) according to Flisch et al. (2009).
standard_N_excretion_ponies_ _and_asses	15.7	kg N /a	Annual standard N excretion for other animal category (asses and ponies) according to Flisch et al. (2009).
share_Nsol_horses_younger- _than_3yr	0.4	-	Nsol content of excreta from horses younger than 3 years. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_horses_older- _than_3yr	0.4	-	Nsol content of excreta from horses older than 3 years. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_mules	0.4	_	Nsol content of excreta from mules. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_ponies_and_asses	0.4	-	Nsol content of excreta from asses and ponies. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
Livestock::Equides::Housing			
er_housing	0.11	-	Emission rate for loose housing with liquid, solid manure system is assumed (for TAN 0.275 and Nsol 40%).
Livestock::Equides::Grazing			
er_equides_grazing	0.05	-	Emission rate for the calculation of the annual NH3 emission during grazing of equides. 5% Ntot (conversion with a protion of Nsol of 40%: EF 12.5% TAN). The emission rate is derived from Bussink et al. (1992, 1994), Jarvis et al. (1989), Peterson et al. (1998) and Ross and Jarvis (2001). (taking into account the generally low fertilization rate of Swiss pastures.)

Parameter	Value	Unit	Description
Livestock::Equides::Housing::KGraz	ing		
k_grazing_reduction_lw5h	0	-	Reduction of housing emissions to 0% due to extensive grazing/alping. Empirical estimation.
k_grazing_reduction_lw12h	0.2	-	Reduction of housing emissions to 20% due to extensive grazing/alping. Empirical estimation.
$k_grazing_reduction_lw22h$	0.5	-	Reduction of housing emissions to 50% due to extensive grazing/alping. Empirical estimation.
$k_grazing_reduction_gt22h$	1.0	-	Reduction of housing emissions to 100% due to extensive grazing/alping. Empirical estimation.
Livestock::Equides::Yard			
er_yard	0.35	-	Emission rate for TAN on yard. Empirical estimation Kupper/Menzi, Keck(1997, Misselbrook et al. (2001)
red_floor_properties_unpaved-floor	0.5	-	Reduction efficiency according to Reidy and Menzi.
red_floor_properties_solid- floor	0.0	-	Reduction efficiency according to Reidy and Menzi.
red_floor_properties_paddock- _or_pasture_used_as- _exercise_yard	0.9	-	Reduction efficiency according to Reidy and Menzi.
Livestock::SmallRuminants::Excret			
standard_N_excretion_goats	16	kg N /a	Annual standard N excretion for goats according to Flisch et al. (2009).
standard_N_excretion- _fattening_sheep	15	kg N /a	Annual standard N excretion for fattening sheep according to Flisch et al. (2009).
standard_N_excretion- milksheep	21	kg N /a	Annual standard N excretion for milksheep according to Flisch et al. (2009).
share_Nsol_goats	0.4	-	Nsol content of excreta from goats. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
$share_Nsol_fattening_sheep$	0.4	-	Nsol content of excreta from fattening sheep. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
share_Nsol_milksheep	0.4	-	Nsol content of excreta from milksheep. Derived from e.g. Peterson et al. (1998) or Burgos et al. (2005).
Livestock::SmallRuminants::Housin	ø		
er_housing	0.11	-	Emission rate for loose housing with liquid, solid manure system is assumed (for TAN 0.275 and Nsol 40%).
Livestock::SmallRuminants::Grazin	g		
er_small_ruminants_grazing	0.05	-	Emission rate for the calculation of the annual NH3 emission during grazing of small ruminants. The emission rate is derived from Bussink et al. (1992, 1994), Jarvis et al. (1989), Peterson et al. (1998) and Ross and Jarvis (2001). (taking into account the generally low fertilization rate of Swiss pastures.)

Parameter	Value	Unit	Description
			2 sseriperon
Livestock::SmallRuminants::Housin	g::KGrazii	ng	
k grazing reduction lw5h	0	-	Reduction of housing emissions to 0% due to exten-
			sive grazing/alping. Empirical estimation.
k_grazing_reduction_lw12h	0.2	-	Reduction of housing emissions to 20% due to exten-
			sive grazing/alping. Empirical estimation.
k_grazing_reduction_lw22h	0.5	-	Reduction of housing emissions to 50% due to exten-
			sive grazing/alping. Empirical estimation.
$k_grazing_reduction_gt22h$	1.0	-	Reduction of housing emissions to 100% due to ex-
			tensive grazing/alping and milking using a mobile
			milking parlor. Empirical estimation.
Storage	T 0 1	T	
$mineralization rate_liquid$	0.1	-	A netto mineralization of 10% from Norg to
			NSol/TAN is assuemd, according to the GAS_EM
. 1.1 1.1	0.4		Model
${\bf immobilization rate_solid}$	0.4	-	A netto immobilization of 40% from NSol/TAN to
im mobilization note noult no	0.4		Norg is assuemd, according to the GAS_EM Mode A netto immobilization of 40% from NSol/TAN to
$immobilization rate _poultry$	0.4	-	Norg is assuemd, according to the GAS EM Mode
			Note is assueing, according to the GAS_EM Model
Storage::Slurry			
c mixing 1 to 2 times per-	0.9	_	Correction for mixingfrequency in slurry storage
_year	0.5		Based on DeBode(1990), Sommer et al. (1993), Menz
_ 5 002			et al. (1997a)
c mixing 3 to 6 times per-	0.95	_	Correction for mixingfrequency in slurry storage
	0.00		Based on DeBode(1990), Sommer et al. (1993), Menz
_ v			et al. (1997a)
c_mixing_7_to_12_times-	1	-	Correction for mixingfrequency in slurry storage
_ c			Default or Basis value
c mixing 13 to 20 times-	1.1	-	Correction for mixingfrequency in slurry storage
_per_year			Empirical Estimation Reidy/Menzi
$c_{mixing_21_{to_30_{times}}}$	1.2	-	Correction for mixingfrequency in slurry storage
_per_year			Empirical Estimation Reidy/Menzi
c_mixing_more_than_30-	1.3	-	Correction for mixingfrequency in slurry storage.
$_{ m times}$ $_{ m per}$ $_{ m year}$			
Storage::Slurry::EFLiquid	_		
$ef_cattle_uncovered$	2.19	kg N /m2 /a	The emission factor for uncovered storage is based
			on experiments of de Bode (1990) and Sommer et
	1		al (1993) measuring emissions of 2.5 to 6.9 g N m-2

DiorageDiarryEr Erquid			
$ef_{cattle}uncovered$	2.19	kg N/m2/a	The emission factor for uncovered storage is based
			on experiments of de Bode (1990) and Sommer et
			al. (1993) measuring emissions of 2.5 to 6.9 g N m- 2
			day-1 for cattle slurry, for the emission of the none
			coverd a mean of the higher values is assumed>
			Assumption: $6.0 \text{ gN} \text{ m-2 day-1 resp. } 2.19 \text{ kg N} /\text{m2}$
			/yr according to the results of the decision of the
			session of 10 April 208 (participants: C. Bonjour, C.
			Leuenbergern, M. Raaflaub, H. Menzi, T. Kupper).

Parameter	Value	Unit	Description
ef_cattle_solid_cover	0.219	kg N /m2 /a	Emission factor for solid covered storage based on ef_cattle_uncovered with a reduction of 90%. UN-ECE (2007) p 13 does suggest a reduction of 80%. Since covers of storages are more tight in Switzerland a reduction of 90% was choosen.
ef_cattle_tent	0.876	kg N /m2 /a	Emission factor for tent covered storage (ef_cattle_uncovered with a reduction of 60%) differs to the UNECE (2007) p.13 reference (ef_cattle_uncovered with a reduction of 80% after UNECE (2007))based on mutual agreement of AGRAMMON participants that newer studies showed that tent covered storage emit more ammonia then assumed by UNECE.
ef_cattle_floating_cover	0.438	kg N /m2 /a	Emission factor for floating covered storage (sheeting may be a type of plastic, canvas or other suitable material) (ef_cattle_uncovered with a reduction of 80%) differs to the UNECE (2007) p.13 referrence (ef_cattle_uncovered with a reduction of 60% after UNECE (2007)) based on mutual agreement of AGRAMMON participants that newer studies showed that floating covered storage emit less ammonia then assumed by UNECE.
ef_cattle_perforated_cover	1.314	kg N /m2 /a	Emission factor for perforated_cover storage based on ef_cattle_uncovered with a reduction of 40% after UNECE (2007) p 13.
ef_cattle_natural_crust	1.314	kg N /m2 /a	Emission factor for a natural crust covered storage based on ef_cattle_uncovered with a reduction of 40% after UNECE (2007) p 13.
ef_pig_uncovered	2.92	kg N /m2 /a	The Emission factor for uncovered storage is based on experiments of de Bode (1990) and Sommer et al. (1993) measuring emissions of 2.5 to 6.9 g N m-2 day-1 for cattle slurry, for the emission of the none coverd a mean of the higher values is assumed. Assumption: 8.0 gN m-2 day-1 resp. 2.92 kgN m-2 /yr according to the report "Abklärungen zur Klasierung von Stallsystemen und HofdÃ $\frac{1}{4}$ ngerlagern bezÃ $\frac{1}{4}$ glich der Ammoniak-Emissionen" and the decision of the session of 10 April 208 (participants: C. Bonjour, C. Leuenbergern, M. Raaflaub, H. Menzi, T. Kupper).
ef_pig_solid_cover	0.292	kg N /m2 /a	Emission factor for solid coverd storage based on ef_pig_uncovered with a reduction of 90%. UNECE (2007) p 13 does suggest a reduction of 80%. Since covers of storages are more tight in Switzerland a reduction of 90% was choosen.
${ m ef_pig_tent}$	1.168	kg N /m2 /a	Emission factor for tent covered storage (ef_pig_uncovered with a reduction of 60%) differs to the UNECE (2007) p.13 reference (ef_pig_uncovered with a reduction of 80% after UNECE (2007)) based on mutual agreement of AGRAMMON participants that newer studies showed that tent covered storage emit more ammonia then assumed by UNECE.

Parameter	Value	Unit	Description
ef_pig_floating_cover	0.584	kg N /m2 /a	Emission factor for floating covered storage (sheeting may be a type of plastic, canvas or other suitable material) (ef_pig_uncovered with a reduction of 80%) differs to the UNECE (2007) p.13 reference (ef_pig_uncovered with a reduction of 60% after UNECE (2007))based on mutual agreement of AGRAMMON participants that newer studies
			showed that floating covered storage emit less ammonia then assumed by UNECE.
ef_pig_perforated_cover	1.752	kg N /m2 /a	Emission factor for perforated_cover storage based on ef_pig_uncovered with a reduction of 40% after UNECE (2007) p 13.
ef_pig_natural_crust	1.752	kg N /m2 /a	Emission factor for a natural crust covered storage (e.g. chopped straw, peat, bark, LECA balls, ect.) based on ef_pig_uncovered with a reduction of 40% after UNECE (2007) p 13.
Storage::SolidManure::Poultry			
er_layers_growers_other- _poultry	0.15	-	Emission rate for layers, growers and other poultry for manure (deep pit, deep litter) and droppings (manure belt) (based on EAGER workshop, January 2008: 15% Ntot, converted using Nsol 60% and emission factor of 25%.
er_turkeys_broilers	0.06	-	Emission rate for manure of broilers and turkeys based on EAGER workshop, January 2008: 6% Ntot, converted using Nsol 60% and emission factor of 10%.
Storage::SolidManure::Solid			
er_tan_pigs	0.5	-	The value has been derived from the Eager workshop, January 2008: (additional explanation following)
$ m er_tan_cattle_other$	0.3	-	The value has been derived from the Eager workshop, January 2008: (additional explanation following)
Application::Slurry			
${ m er_App_cattle_liquid}$	0.5	-	Emission rate for slurry application based on TAN of the slurry. The average rate has been derived from Sommer et al (2001b), Sogaard et al (2002), Menzi et al (1998), Menzi et al (1997a)
${ m er_App_pigs_liquid}$	0.4	-	Emission rate for slurry application based on TAN of the slurry. The average rate has been derived from Sogaard et al (2002)
Application::Slurry::Ctech			
red_splash_plate	0.0	-	There is no reduction for broadcasting with splash plate as to this way of applying slurry all the other methods are compared to.
${ m red_trailing_hose}$	-0.3	-	Reduction efficiency as compared to broadcasting applying trailing hose. Adopted from UNECE (2007), Frick and Menzi (1997) and Menzi et al. (1997).

Parameter	Value	Unit	Description
red_trailing_shoe	-0.5	-	Reduction efficiency as compared to broadcasting ap-
			plying trailing shoe. Adopted from UNECE (2007),
			Frick and Menzi (1997) and Menzi et al. (1997).
${ m red_shallow_injection}$	-0.7	-	Reduction efficiency as compared to broadcasting
			applying shallow injection. Adopted from UNECE
			(2007), Frick and Menzi (1997) and Menzi et al.
			(1997).
red_deep_injection	-0.8	-	Reduction efficiency as compared to broadcasting ap-
			plying deep injection. Adopted from UNECE(2007),
			Frick and Menzi (1997) and Menzi et al. (1997).

Application::Slurry::Applrate

ApplicationStarryApplicate			
norm_er	0.5	-	Standard emission of 50% of the applied TAN calcu-
			lated based on an equation published by Menzi et al
			(1998) using a TAN standard of 1.15 kg $/$ m3 for an
			1:1 dilution, with application rate (AR) standard of
			30 m ³ /ha and average swiss meteorological condi-
			tions: $((19.41 * TAN standard + 4.02 * 1.15 - 9.51)$
			*(0.0214*ARstandard+0.36)/(ARstandard*
			TAN-standard)))

Application::Slurry::Csoft			
c_evening	-0.2	-	Correction factor of the emission rate if slurry is applied in the evening (after 18h)(Menzi et al 1997; Frick and Menzi 1997). Assumption based on a single experiment with an application after 18h in August at a temperature of >20°C: reduction of the emission by 38%, the reduction of the emission averaged over the whole year is only 50%, i.e0.2 The correction is omitted for solid manure since infiltration into soil does not occur.
c_hotdays_frequently	0.1	-	Correction factor of the emission rate if slurry is applied frequently on hot days. Loss calculated according to the model of Katz (Menzi et al. 1997b) at $17 \text{Å}^{\circ}\text{C}$ (i.e. $+5 \text{Å}^{\circ}\text{C}$) compared to the reference temperature of $12 \text{Å}^{\circ}\text{C}$ (other parameters: 70% relative air humidity, 1.15 kg/m3 TAN, 30 m3/ha) resulting in a loss of 19.22 kg N/ha at $17 \text{Å}^{\circ}\text{C}$ and 55.7% TAN, respectively (compared to 17.45 kg N/ha and 50.6% TAN at $12 \text{Å}^{\circ}\text{C}$, respectively) which corresponds to an increase of 10.1% (rounded to 10%).

Parameter	Value	Unit	Description
$c_hotdays_sometimes$	0.0	-	Correction factor of the emission rate if slurry is ap-
			plied sometimes on hot days (estimation based on
			Menzi et al (1997)).
c_hotdays_rarely	-0.1	-	Correction factor of the emission rate if slurry is ap-
			plied rarely on hot days (estimation based on Menzi
			et al (1997)).
c_hotdays_never	-0.2	-	Correction factor of the emission rate if slurry is ap-
			plied never on hot days (estimation based on Menzi
			et al (1997)).

Application::Slurry::Cseason

Applicationbiair y escason			
c_summer	0.15	-	Correction factor for the application of slurry in summer (June to August): Model calculation according to the model of Katz (Menzi et al. 1997b) with meteorological data from Liebefeld 1993-2002: average from March to November $12 \hat{A}$ °C, 70% relative air humidity, 1.15 kg/m3 TAN , 30 m3/ha resulting in a loss of 50.6% TAN; summer $17.8\hat{A}$ °C resulting in a loss of 56.7% TAN (+12%). Value chosen for cal-culation: +15%
c_autumn_winter_spring	-0.05	-	Correction factor for the application of slurry in autumn, winter and spring (Sept to May): Model calculation according to the model of Katz (Menzi et al. 1997b) with meteorological data from Liebefeld 1993-2002: average from March to November 12°C, 70% relative air humidity, 1.15 kg/m3 TAN, 30 m3/ha resulting in a loss of 50.6% TAN; spring/autumn/winter 9°C resulting in a loss of 48.1% TAN (-4.8%). Value chosen for calculation: -5%

Application::SolidManure

11ppineasioniii.bonamana			
er_App_manure_dairycows- _cattle_pigs	0.8	-	Emission rate for manure application. The average rate has been derived from Frick et al. (1996) and Menzi et al. (1996). The value is based on the average emissions from diffrent Swiss experiments. Emission based on TAN of slurry.
er_App_manure_horses- _otherequides_smallruminants	0.7	-	Emission rate for manure application. The average rate has been derived from Frick et al. (1996) and Menzi et al. (1996). The value is based on the average emissions from diffrent Swiss experiments. Emission based on TAN of slurry.
TAN_share_solid	0.5	-	Share of TAN in applied solid manure.

${\bf Application:: Solid Manure:: Cincorp Time}$

eff_inc_lw1h	-0.9	_	Reduction due to incorporation of solid manure within 1 hour. UNECE (2007).
eff_inc_lw4h	-0.7	-	Reduction due to incorporation of solid manure within 4 hours. Empirical estimate deduced from UNECE (2007). Mean value between the category incorporation within 1 hour and incorporation within 8 hours.

Parameter	Value	Unit	Description
eff_inc_lw8h	-0.5	-	Reduction due to incorporation of solid manure
			within 8 hours. Values adapted from UNECE (2007)
			(category Incorporation by plough within 12 h)
eff_inc_lw1d	-0.35	-	Reduction due to incorporation of solid manure
			within 1 day. Values adapted from UNECE (2007)
			Empirical estimate deduced from Menzi et al.
			(1997).
eff_inc_lw3d	-0.3	-	Reduction due to incorporation of solid manure
			within 3 days. Empirical estimate deduced from
			Menzi et al. (1997).
eff_inc_gt3d	-0.1	-	Reduction due to incorporation of solid manure after
			3 days Empirical estimate deduced from Menzi et al.
			(1997).
eff_inc_none	0.0	-	Basis with no incorporation of solid manure.

Application::SolidManure::Cseason

ApplicationSolid Manufe Oseason	1	1	
c_summer	0.15	-	Correction factor for the application of solid manure
			in summer (June to August): Model calculation ac-
			cording to the model of Katz (Menzi et al. 1997b)
			with meteorological data from Liebefeld 1993-2002:
			average from March to November 12°C, 70% rela-
			tive air humidity, 1.15 kg/m3 TAN, 30 m3/ha result-
			ing in a loss of 50.6% TAN; summer 17.8ŰC result-
			ing in a loss of 56.7% TAN $(+12\%)$. Value chosen
			for cal-culation: $+15\%$.
c_autumn_winter_spring	-0.05	-	Correction factor for the application of solid ma-
			nure in autumn, winter and spring (Sept to May):
			Model calculation according to the model of Katz
			(Menzi et al. 1997b) with meteorological data from
			Liebefeld 1993-2002: average from March to Novem-
			ber $12\text{Å}^{\circ}\text{C}$, 70% relative air humidity, 1.15 kg/m3
			TAN, 30 m3/ha resulting in a loss of 50.6% TAN;
			spring/autumn/winter 9A°C resulting in a loss of
			48.1% TAN (-4.8%). Value chosen for calculation:
			-5%.
	1	1	1

${\bf Application:: Poultry Manure}$

er_App_manure_layers- _growers_other_poultry	0.65	-	Emission rate for manure application. The average rate has been derived from Frick et al. (1996) and Menzi et al. (1996). The value is based on the average emissions from diffrent Swiss experiments. Emission based on TAN of slurry.
er_App_manure_turkeys- _broilers	0.3	-	Emission rate for manure application. The average rate has been derived from Frick et al. (1996) and Menzi et al. (1996). The value is based on the average emissions from diffrent Swiss experiments. Emission based on TAN of slurry.

Parameter	Value	Unit	Description
TAN_share_solid	0.5	-	Share of TAN in applied solid manure.

 ${\bf Application:: Poultry Manure:: Cincorp Time}$

eff_inc_lw1h	-0.95	-	Reduction due to incorporation of solid manure
			within 1 hour. UNECE (2007).
$ m eff_inc_lw4h$	-0.8	-	Reduction due to incorporation of solid manure
			within 4 hours. Empirical estimate deduced from
			UNECE (2007). Mean value between the category
			incorporation within 1 hour and incorporation within
			8 hours.
eff_inc_lw8h	-0.7	-	Reduction due to incorporation of solid manure
			within 8 hours. Values adapted from UNECE (2007)
			(category Incorporation by plough within 12 h)
eff_inc_lw1d	-0.55	-	Reduction due to incorporation of solid manure
			within 1 day. Values adapted from UNECE (2007)
			Empirical estimate deduced from Menzi et al.
			(1997).
eff_inc_lw3d	-0.3	-	Reduction due to incorporation of solid manure
			within 3 days. Empirical estimate deduced from
			Menzi et al. (1997).
eff_inc_gt3d	-0.1	-	Reduction due to incorporation of solid manure after
			3 days Empirical estimate deduced from Menzi et al.
			(1997).
eff_inc_none	0.0	-	Basis with no incorporation of solid manure.

 ${\bf Plant Production:: A gricultural Area}$

. 1, 1	1.0	1 NT /1 /	
er_agricultural_area	2	kg N/ha/a	Emission rate from the agricultural area. The aver-
			age rate has been derived from Schjoerring and Matt-
			son (2001). Emission based on kg/ ha AA (AA $=$
			agricultural area, Landwirschaftliche NutzflĤche).
			N ist NH3 N.

${\bf Plant Production::} {\bf Mineral Fertiliser}$

er_App_mineral_nitrogen-	0.15	-	Emission rate for the application of urea. The aver-
_fertiliser_urea			age rate has been derived from Vanderweerden and
			Jarvis (1997). Emission based on Ntot.
er_App_mineral_nitrogen-	0.02	-	Emission rate for the application of ammonium ni-
$_$ fertiliser $_$ except $_$ urea			trate. The average rate has been derived from Van-
			derweerden and Jarvis (1997). Emission based on
			Ntot.

PlantProduction::RecyclingFertiliser

PlantProduction::RecyclingFertilise	•		
er_compost	0.24	kg N / t	Emission rate from compost, calculated with an em-
			mission rate of 80
0.3 kg TAN per t fresh matter		•	•
(Flisch et al., 2009). of TAN.			
er_solid_digestate	0.24	kg N / t	Emission rate for solid digestat from industrial
			plantse, calculated with an emmission rate of 80
		•	
er_liquid_digestate	1.2	kg N / t	Emission rate from liquid digestate from industrial
			plants, calculated with an emmission rate of 60

Parameter	Value	Unit	Description