Problem Set 2 Homological Algebra

Bennett Rennier bennett@brennier.com

February 25, 2019

Ex 1 Let I be a directed set and $(D_i, (f_{ij}))$ be a compatible system of (left) R-modules. Let D' be the disjoint union of the D_i and define a (symmetric) equivalence relation on D' as follows: For $d_i \in D_i$ and $d_j \in D_j$, $d_i \sim d_j$ if and only if there exists a $k \in I$ with $i \leq k$, $j \leq k$ such that $f_{ik}(d_i) = f_{jk}(d_j)$. We denote by $[d_i]$ the equivalence class of d_i and we set $D'_i := \{[d_i] : d_i \in D_i\}$ and $D := D'/\sim = \bigcup_i D'_i$. We also denote $f_i : D_i \to D$ the map which sends d_i to $[d_i]$.

- a) Show that for any $x, y \in D$, there exists a $k \in I$ such that $x, y \in D'_k$.
- b) For $x, y \in D$ and $r \in R$, define x + y = [a + b] and rx = [ra] whenever $x, y \in D'_k$ and x = [a], y = [b], and $a, b \in D_k$. Show that these operations are well-defined and turn D into an R-module. Note that f_i then becomes an R-module homomorphism.
- c) Prove that the system $(D, (f_i))$ is the direct limit of the D_i .
- d) If $d_i \in D_i$ and $f_i(d_i) = 0$, show that there exists a $j \in I$ with $i \leq j$ and $f_{ij}(d_i) = 0$.

Proof.

- a) Let x = [a] and y = [b] be elements of D where $a \in D_i$ and $b \in D_j$. Since I is a directed set, there is some $k \in I$ such that $k \ge i, j$. This means that $f_{ik}(a)$ and $f_{jk}(b)$ are elements of D_k . Since $f_{ik}(a) \sim a$ and $f_{jk}(b) \sim b$, we have that $x = [a] = [f_{ik}(x)]$ and $y = [b] = [f_{jk}(b)]$ are elements of D'_k .
- b) Let x = [a] = [a'] and y = [b] = [b'] be elements of D, where $a, b \in D_i$ and $a', b' \in D_j$. Since [a] = [a'] there is some $k \geq i, j$ such that $f_{ik}(a) = f_{jk}(a')$. Similarly, as [b] = [b'], there is some $\ell \geq i, j$ such that $f_{i\ell}(b) = f_{j\ell}(b')$. Without loss of generality, assume that $k \geq \ell$. This means that $f_{\ell k}(f_{i\ell}(b)) = f_{\ell k}(f_{i\ell}(b'))$, which means that $f_{ik}(b) = f_{jk}(b')$. This proves that

$$[a+b] = [f_{ik}(a+b)] = [f_{ik}(a) + f_{ik}(b)] = [f_{jk}(a') + f_{jk}(b')] = [f_{jk}(a'+b')] = [a'+b'].$$

Additionally, if x = [a] = [a'] where $a \in D_i$ and $a' \in D_j$, then there is some $k \ge i, j$ such that $f_{ik}(a) = f_{jk}(a')$. This means that

$$[ra] = [f_{ik}(ra)] = [rf_{ik}(a)] = [rf_{jk}(a')] = [f_{jk}(ra')] = [ra'].$$

This proves that the operations are well-defined, turning D into an R-module.

c) Let $(E, (e_i))$ be an object E with compatible morphisms $e_i : D_i \to E$. Now, if we ignore the compatibility relations, then by the universal property of coproducts, there is some map

 $\phi: \sqcup_i D_i \to E$ such that $\phi \circ f_i = e_i$. Let d_i and d_j be elements such that there exists a $k \geq i, j$ where $f_{ik}(d_i) = f_{jk}(d_j)$. If we apply f_k to both sides, we get that $f_i(d_i) = f_j(d_j)$. If we then compose with ϕ to both sides, we obtain that $e_i(d_i) = e_j(d_j)$. This means that d_i and d_j are identified in E. By the universal property of quotients, the map $\phi: \sqcup_i D_i \to E$ must factor through D. This means that $(D, (f_i)) \to (E, (e_i))$, proving that $(D, (f_i))$ is universal.

d) If
$$f_i(d_i) = [d_i] = 0$$
 in D , then this means that there exists a $k \geq i, j$ such that $f_{ik}(d_i) = f_{ik}(0) = 0$. This relation $f_{ik}(d_i) = 0$ is exactly what we want.

Ex 2 [Continue from Ex 1] Assume that $(E_i, (g_{ij}))$ is a second compatible system with corresponding direct limit $(E, (g_i),)$. Also assume there are homomorphisms $h_i : D_i \to E_i$ satisfying $g_{ij}h_i = h_j f_{ij}$ for all i < j. Reprove, in the current setup, the unique existence of a homomorphism $h: D \to E$ satisfying $g_ih_i = hf_i$ and describe h explicitly.

Proof. Since we need h to satisfy $g_i h_i = h f_i$, we see for $x = [d_i] \in D$ where $d_i \in D_i$, we must have that

$$g_i(h_i(d_i)) = h(f_i(d_i)) = h([d_i]).$$

Thus, we have no choice for how to define h. All that we must show is that such an h is well-defined. To do so, suppose that $[d_i] = [d_j]$ in D, where $d_i \in D_i$ and $d_j \in D_j$. This means that there exists a $k \geq i, j$ such that $f_{ik}(d_i) = f_{jk}(d_j)$. If we apply h_k to both sides we get $h_k(f_{ik}(d_i) = h_k(f_{jk}(d_j))$. By our assumptions on h_i , this means that $g_{jk}(h_i(d_i)) = g_{jk}(h_j(d_j))$. If we then apply g_k to both sides, we obtain that $g_i(h_i(d_i)) = g_i(h_j(d_i))$. Thus, $h([d_i]) = h([d_j])$, proving that h is well-defined. \square

Ex 3 A sequence of direct systems and homomorphisms

$$M \to N \to P$$

is exact if the corresponding sequence of modules and module homomorphisms is exact for each $i \in I$. Show that the sequence $M \to N \to P$ of direct limits is then exact.

Proof. Let (M_{ii}, μ_{ij}) , (N_i, ν_{ij}) , and (P_i, p_{ij}) be direct systems with direct limits (M, μ_i) , (N, ν_i) , and (P, p_i) respectively. Additionally, let $\phi_i : M_i \to N_i$ and $\psi_i : N_i \to P_i$ be maps which induce the homomorphisms of direct systems $\phi : M \to N$ and $\psi : N \to P$. We note that this means the following diagram commutes for all $i \in I$:

$$M_{i} \xrightarrow{\phi_{i}} N_{i} \xrightarrow{\psi_{i}} P_{i}$$

$$\downarrow^{\mu_{i}} \qquad \downarrow^{\nu_{i}} \qquad \downarrow^{p_{i}}$$

$$M \xrightarrow{\phi} N \xrightarrow{\psi} P$$

Now to prove that $\operatorname{Im}(\phi) \subseteq \ker(\psi)$, we need only to prove that $\psi \circ \phi = 0$. To do this, let $x \in M$. By problem 2.15 (done on the previous homework), we know that for some $i \in I$ and some $x_i \in M_i$, $x = \mu_i(x_i)$. Using the diagram above and the fact that $\psi_i \circ \psi_i = 0$ (since the sequence is exact), we see that

$$(\phi \circ \psi)(x) = (\phi \circ \psi \circ \mu_i)(x_i) = (p_i \circ \psi_i \circ \phi_i)(x_i) = (p_i \circ 0)(x_i) = p_i(0) = 0.$$

This proves that $\psi \circ \psi = 0$ and so that $\operatorname{Im}(\phi) \subseteq \ker(\psi)$.

Proving that $\ker(\psi) \subseteq \operatorname{Im}(\phi)$ can be a little complicated, so here is a commutative diagram and a diagram tracking a specific element to help understand the proof:

Now assume that $y \in \ker(\psi)$. Using problem 2.15 again, there is some $i \in I$ and $y_i \in N_i$ such that $\nu_i(y_i) = y$. Now since $(\psi \circ \nu_i)(y_i) = \psi(y) = 0$, we have that $(p_i \circ \psi_i)(y_i) = p_i(\psi_i(y_i)) = 0$. By Ex 1 (d), there exists a $j \in I$ with $i \leq j$ where $p_{ij}(\psi_i(y_i)) = \psi_j(\nu_{ij}(y_i)) = 0$. This proves that $\nu_{ij}(y_i) \in \ker(\psi_j)$. Since the sequence $M_j \to N_j \to P_j$ is exact, there is some $x_j \in M_j$ such that $\phi_j(x_j) = \nu_{ij}(y_i)$. Let $x = \mu_j(x_j)$. We see then that

$$\phi(x) = \phi(\mu_j(x_j)) = \nu_j(\phi_j(x_j)) = \nu_j(\nu_{ij}(y_i)) = \nu_i(y_i) = y.$$

This proves that $y \in \text{Im}(\phi)$, meaning $\ker(\psi) \subseteq \text{Im}(\phi)$. Thus, the sequence $M \to N \to P$ is exact.

$\mathbf{Ex} \ \mathbf{4}$

- a) If $(S, s: S \to D)$ is the equalizer of two morphisms $f, g: D \to E$, then s is a monomorphism.
- b) If $(S, s : E \to S)$ is the coequalizer of two morphisms $f, g : D \to E$, then s is a epimorphism.

Proof.

a) Let $\phi, \psi: A \to S$ such that $s \circ \phi = s \circ \psi$. This gives use the commutative diagram

$$A \xrightarrow{\psi} S \xrightarrow{s} D \xrightarrow{f} E.$$

Since $s \circ \phi : A \to D$ is a homomorphism such that $f \circ (s \circ \phi) = g \circ (s \circ \phi)$, by the universal property of the equalizer, there exists a unique homomorphism h from A to S that makes the above diagram commute. Since this homomorphism is unique, it must be that $\phi = \psi$. This proves that s is a monomorphism.

b) Let $\phi, \psi : S \to A$ be morphisms such that $\phi \circ s = \psi \circ s$. This gives use the following commutative diagram:

$$D \xrightarrow{f \atop g} E \xrightarrow{s} S \xrightarrow{\psi \atop \phi} A.$$

Since $\phi \circ s : E \to A$ satisfies the equation $(\phi \circ s) \circ f = (\phi \circ s) \circ g$, we have by the universal property of the co-equalizer that there exists a unique homomorphism from S to A that makes the above diagram commute. Since this homomorphism is unique, it follows that $\phi = \psi$. This proves that s is an epimorphism.

Ex 5 Dually to the push out in 1.3.15(a), construct the pull back in 1.3.15(b), provided that the category \mathcal{D} has products and equalizers.

Proof. Let $X, Y, Z \in \mathcal{D}$ such that $f: X \to Z$ and $g: Y \to Z$ are morphisms in \mathcal{D} . Since \mathcal{D} has products, we let P with the morphisms $p_1: P \to X$ and $p_2 \to P \to Y$ be the product of X and Y. Now, this gives us maps gp_2 and fp_1 from P to Z. Since we know \mathcal{D} also has equalizers, there exists some E with a morphism $e: E \to P$ such that the following diagram commutes

$$E \xrightarrow{e} P \xrightarrow{gp_2} Z$$

However, we see that this means that the following diagram commutes

$$E \xrightarrow{p_2 e} Y$$

$$\downarrow^{p_1 e} \qquad \downarrow^g$$

$$X \xrightarrow{f} Z$$

I claim that this E with the morphisms p_1e and p_2e is the desired pushout. All we need to do is prove that it satisfies the universal property. As such, suppose Q is in \mathcal{D} with morphisms $q_1:Q\to X$ and $q_2:Q\to Y$ such that the following diagram commutes

$$Q \xrightarrow{q_2} Y$$

$$\downarrow^{q_1} \qquad \downarrow^g$$

$$X \xrightarrow{f} Z$$

If we just ignore Z, f, and g for now, we see that by the universal property of products, there exists some unique $q: Q \to P$ such that $q_1 = p_1 q$ and $q_2 = p_2 q$. If we apply f to the first equation and g to the second we get $fq_1 = fp_1q$ and $gq_2 = gp_2q$. Since the above diagram shows that $fq_1 = gq_2$, we have that $fp_1q = gp_2q$. But this means that Q with the morphism q equalize the maps fp_1 and gp_2 . By the universal property of equalizers, we finally obtain a unique morphism $q': Q \to E$ such that $gp_2eq' = fp_1eq'$. But this exactly means that the following diagram commutes

Since q' is unique, this exactly proves that E satisfies the universal property of a pullback. Thus, the category \mathcal{D} has pullbacks.

Ex 6 Show that the transformation $t = (t_{MA})$ introduced in Example 1.4.2(b) is natural.

Proof. Recall that $t_{MA}: \operatorname{Hom}_{\mathbb{Z}}(M_{\operatorname{grp}}, A) \to \operatorname{Hom}_{R}(M, A^{\#})$ such that $t_{MA}(\phi) = \phi'$, where $\phi'(m)(r) = \phi(r.m)$. We want to prove that this is a natural transformation between the functors $F: {}_{R}\mathbf{Mod} \to \mathbf{Ab}$ and $G: \mathbf{Ab} \to {}_{R}\mathbf{Mod}$, where $F(M) = M_{\operatorname{grp}}$ (that is, we forget the R-module structure) and $G(A) = A^{\#} = \operatorname{Hom}_{R}(R, A)$. To prove this, we need to show that for any R-module homomorphism $f: N \to M$ and any abelian group homomorphism $g: A \to B$, the following diagram commutes:

$$\operatorname{Hom}_{\mathbb{Z}}(M_{\operatorname{grp}},A) \xrightarrow{t_{MA}} \operatorname{Hom}_{R}(M,A^{\#})$$

$$\downarrow (F(f),g) \qquad \qquad \downarrow (f,G(g))$$

$$\operatorname{Hom}_{\mathbb{Z}}(N_{\operatorname{grp}},B) \xrightarrow{t_{NB}} \operatorname{Hom}_{R}(N,B^{\#})$$

where $(F(f),g)(\phi)=g\circ\phi\circ F(f)$ and $(f,G(g))(\phi)=G(g)\circ\phi\circ f$. We note that F(f) is f considered as a group homomorphism and $G(g):A^{\#}\to B^{\#}$ is defined by $G(g)(\phi)(r)=g(\phi(r))$. This means we need only to show that $(f,G(g))\circ t_{MA}=t_{NB}\circ (F(f),g)$. To do this, let $\phi:M_{\rm grp}\to A$ be some group homomorphism. We see that

$$((f,G(g)) \circ t_{MA})(\phi)(n)(r) = (f,G(g))(t_{MA}(\phi))(n)(r) = (f,G(g))(\phi')(n)(r) = (G(g)(\phi'(f(n))))(r)$$
$$= g(\phi'(f(n))(r)) = g(\phi(r.f(n))) = g(\phi(f(r.n)))$$

and that

$$(t_{NB} \circ (F(f), g))(\phi)(n)(r) = t_{NB}((F(t), g)(\phi))(n)(r) = t_{NB}(g \circ \phi \circ F(t))(n)(r) = (g \circ \phi \circ F(t))(r.n)$$

= $g(\phi(F(f)(r.n))) = g(\phi(f(r.n))),$

which proves the statement.

Ex 7 Show that the maps t_{NA} and u_{NA} introduced in the proof of Proposition 1.4.3 are inverse to each other.

Proof. Recall that

$$t_{NA}: \operatorname{Hom}_{\mathbb{Z}}(N \otimes M, A) \to \operatorname{Hom}_{R}(N, \operatorname{Hom}_{R}(M, A));$$

 $u_{NA}: \operatorname{Hom}_{R}(N, \operatorname{Hom}_{R}(M, A)) \to \operatorname{Hom}_{\mathbb{Z}}(N \otimes M, A)$

where $t_{NA}(\phi)(n)(m) = \phi(n \otimes m)$ and $u_{NA}(\psi)(n \otimes m) = \psi(n)(m)$. We see then that for any $\phi \in \operatorname{Hom}_{\mathbb{Z}}(N \otimes M, A)$,

$$u_{NA}(t_{NA}(\phi))(n\otimes m)=t_{NA}(\phi)(n)(m)=\phi(n\otimes m)$$

and that for any $\psi \in \operatorname{Hom}_R(N, \operatorname{Hom}_R(M, A))$ we have that

$$t_{NA}(u_{NA}(\psi))(n)(m) = u_{NA}(\psi)(n \otimes m) = \psi(n)(m).$$

This shows that $u_{NA}(t_{NA}(\phi)) = \phi$ and that $t_{NA}(u_{NA}(\psi)) = \psi$, proving that t_{NA} and u_{NA} are inverses to each other.