

### 2.2 Linear Support Vector Machines

Machine Learning 1: Foundations

Marius Kloft (TUK)

# Properties of Linear SVMs: 1. Fast

- ► Can be trained in  $O(n \cdot d)$
- ► Can be trained in a distributed manner (map-reduce)



# Properties of Linear SVMs: 2. Simple

### Geometrical interpretation:



# Properties of Linear SVMs: 3. **Accurate** (in ca. 50% of the data out there)

State of the art in many application areas, e.g.:

### **Gene Finding**

Find in the DNA the positions that impact virtually all important inherited properties of you!

(e.g., intelligence, height, visual appearance, etc.)



### SVM State of the Art in...

#### **Ad Click Prediction**

Predict the ad that has the highest probability of being clicked by the user



# SVM has Generated Zillions and Zillions of Money ...

\$75 billion Revenue \$23 billion operating profit

The money comes from: USA:\$34.8bn UK:\$7.1bn Rest: \$33.1bn





Google in 2015. Source: http://www.bbc.co.uk/quides/z9x6bk7

# Types of (Linear) SVMs

There are two different sorts of linear SVMs:

- 1 Hard-margin linear SVMs
- Soft-margin linear SVMs



Later in the course, we will also learn about **non-linear** SVMs.



Teaser

Hard-Margin Linear SVMs

Soft-Margin Linear SVMs

# **Linear Support Vector Machines**

#### Core idea:

▶ Which hyperplane to take?



# **Linear Support Vector Machines**

#### Core idea:

- Which hyperplane to take?
- ► The one that separates the data with the largest margin!



### Mathematical Formalization

Maximize margin such that all data points lie outside of the margin — how can we **mathematically** describe this idea?

- ightharpoonup Denote margin by  $\gamma$
- Find hyperplane parameters  $\mathbf{w} \neq \mathbf{0}$  and b that maximize  $\gamma$
- but make sure that all positive data points lie on one side
  - ▶ a point  $\mathbf{x}_i$  with  $\mathbf{y}_i = +1$  lies on correct side of margin if:  $d(\mathbf{x}_i, H) > +\gamma$
- and all negative points on the other
  - ▶ a point  $\mathbf{x}_i$  with  $\mathbf{y}_i = -1$  lies on correct side of margin if:  $d(\mathbf{x}_i, H) \leq -\gamma$
- ► Hence, we require for all points  $\mathbf{x}_i$ ,  $\mathbf{y}_i \cdot \mathbf{d}(\mathbf{x}_i, H) > \gamma$

Find hyperplane H with maximal margin  $\gamma$  such that (s.t.) for all training points  $\mathbf{x}_i$  it holds:  $\mathbf{y}_i \cdot d(\mathbf{x}_i, H) \geq \gamma$ .

# Mathematical Formalization (2)

#### Recall:

► The hyperplane *H* is parameterized by **w** and *b* through:

$$H = \{\mathbf{x} : \mathbf{w}^{\top}\mathbf{x} + b = 0\}$$

▶ Previous proposition:  $d(\mathbf{x}, H) = \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^{\top}\mathbf{x} + b)$ 

### Preliminary formulation of SVM

$$\begin{array}{ll} \max & \gamma \\ \gamma, b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d \setminus \{0\} \end{array}$$
 s.t. 
$$y_i \left( \mathbf{w}^\top \mathbf{x}_i + b \right) \geq \| \mathbf{w} \| \, \gamma, \quad \forall i = 1, \dots, n$$

# Limitations of Hard-Margin SVMs



Any three points in the plane  $\mathbb{R}^2$  (not lying on a line) can be "shattered" (separated) by a line (= linear classifier).

But there are configurations of four points which no hyperplane can shatter. More generally:

Any n+1 points in  $\mathbb{R}^n$  (not lying in a hyperplane) can be "shattered" by a hyperplane. But there are configurations of n+2 points which no hyperplane can shatter.

### Limitations Hard-Margin Linear SVMs (continued)

Another Problem is that of outliers potentially corrupting the SVM:



Teaser

Hard-Margin Linear SVMs

Soft-Margin Linear SVMs

### Remedy: Soft-Margin Linear SVMs

#### Core idea:

▶ Introduce for each input  $\mathbf{x}_i$  a slack variable  $\xi_i \geq 0$  that allows for some (slight violations of the margin separation):

### Linear Soft-Margin SVM \*

$$\max_{\gamma,b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d \setminus \{0\}, \xi_1, \dots, \xi_n \geq 0} \quad \gamma - C \sum_{i=1}^n \xi_i$$
s.t. 
$$y_i \frac{\left(\mathbf{w}^\top \mathbf{x}_i + b\right)}{\|\mathbf{w}\|} \geq \gamma - \xi_i, \quad \forall i = 1, \dots, n$$

- minimizes  $\sum_{i=1}^{n} \xi_i$ , the total amount of margin violations (measured in distances to the margin) by training points lying inside the margin
- C > 0 is a trade-off parameter (to be set in advance): the higher C, the more we penalize violations

<sup>\*</sup> Preliminary version for didactical purposes; the final soft-margin version will be introduced in Lecture 3.

# Why the Name 'Support Vector Machine'?

Denote by  $\gamma^*$  and  $\mathbf{w}^*$  the optimal arguments from previous slide

Def.: All vectors  $\mathbf{x}_i$  with  $y_i \cdot d(\mathbf{x}_i, H(\mathbf{w}^*, b^*)) \le \gamma^*$  (i.e., lying inside the tube) are called **support vectors**.



The SVM depends only on the support vectors: all other points can be removed from the training data (no impact on classifier)

### **PanOpto Quiz**

Alternatively, one could consider a variation of the SVM, where the penalty term  $C \sum_{i=1}^{n} \xi_i$  is replaced by  $C \sum_{i=1}^{n} \xi_i^2$ . Would this be a reasonable SVM? (i.e., could this work similarly well as the original soft-margin SVM?)

Let us again remove the restriction  $\xi \ge 0 \forall i$  in the SVM's maximization. Let us remove from our training set all data points that lie strictly outside the margin. Will the decision boundary change?

### **SVM** training

How can we train SVMs, that is, how to solve the minimization task?

### Next Week: Convex Optimization Problems

It is known from decades of research in numerical mathematics that so-called **convex optimization problems** (to be introduced in detail next week) can be solved very efficiently.

Will show: we can view the SVM as a convex optimization problem.

### Conclusion

Linear Support Vector Machines (SVMs)

motivated geometrically



Mathematical formalization of this picture:

$$\max_{\gamma,b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d \setminus \{0\}} \gamma$$
s.t. 
$$y_i \left( \mathbf{w}^\top \mathbf{x}_i + b \right) \ge \|\mathbf{w}\| \gamma, \quad \forall i = 1, \dots, n$$

### Suggested Reading

Hastie *et al.*, 2009: The Elements of Statistical Learning, Sections 4.5 and Section 12.2

### Refs I



T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, 2nd edition. Springer series, 2009.