Registradores de 8 Bits

Esses registradores são segmentos dos registradores de 16 bits. Em assembly, eles são úteis para operações que requerem manipulação de dados menores.

- **AH, AL**: Partes superior e inferior do registrador AX. São usados para operações de baixo nível, como manipulação de caracteres ou controle de bits.
- **BH, BL**: Partes superior e inferior do registrador BX. Utilizados de forma semelhante ao AH e AL.
- **CH, CL**: Partes superior e inferior do registrador CX. Usados para contagens ou operações de controle de fluxo.
- **DH, DL**: Partes superior e inferior do registrador DX. Geralmente usados para operações de E/S e manipulação de dados menores.

Registradores de 16 Bits

Os registradores de 16 bits foram a norma no início do x86. Embora sejam menos utilizados hoje em dia, ainda têm relevância para operações específicas e programas legados.

- **AX**: O registrador de acumulação. Usado para operações aritméticas (como adição e multiplicação), lógica (como AND, OR), e também para retornos de chamadas de sistema ou funções.
- **BX**: Registrador base. Pode ser usado para endereçamento ou operações envolvendo endereços na memória.
- **CX**: Registrador de contagem. Frequentemente usado para controlar loops e operações de repetição, como em instruções `LOOP` e `REP`.
- **DX**: Registrador de dados. Historicamente usado para operações de E/S, como acesso a portas de E/S.
- **SP**: Stack Pointer. Aponta para o topo da pilha. Crucial para operações envolvendo chamada de funções e manipulação de pilha.
- **BP**: Base Pointer. Aponta para a base do quadro de pilha atual. Usado para acessar variáveis locais e parâmetros de função.
- **SI**: Source Index. Geralmente usado para operações de movimentação de dados, especialmente com instruções de string (`MOVS`, `LODS`).
- **DI**: Destination Index. Utilizado para operações de destino em instruções de string ou para endereçamento indireto.

Registradores de 32 Bits

Os registradores de 32 bits são uma extensão dos registradores de 16 bits, usados no modelo x86-32.

- **EAX**: Versão de 32 bits do AX. Usado para operações aritméticas, lógicas, e como registrador de retorno em chamadas de sistema ou funções.
- **EBX**: Versão de 32 bits do BX. Usado como registrador base para endereçamento.
- **ECX**: Versão de 32 bits do CX. Mantém a função de registrador de contagem.
- **EDX**: Versão de 32 bits do DX. Pode ser usado para operações de E/S, bem como para outras operações aritméticas.
- **ESP**: Versão de 32 bits do SP. Controla o topo da pilha em ambientes de 32 bits.
- **EBP**: Versão de 32 bits do BP. Permite acessar variáveis e parâmetros em chamadas de função.
- **ESI**: Versão de 32 bits do SI. Usado para operações de origem em manipulação de dados.
- **EDI**: Versão de 32 bits do DI. Utilizado para operações de destino.

Registradores de 64 Bits

Os registradores de 64 bits, introduzidos na arquitetura x86-64, permitem manipulação de dados muito maiores e são extensões dos registros de 32 bits.

- **RAX**: Versão de 64 bits do EAX. Mantém a função de registrador de acumulação para operações aritméticas e de retorno de funções.
- **RBX**: Versão de 64 bits do EBX. Pode ser usado como registrador base ou para armazenamento temporário.
- **RCX**: Versão de 64 bits do ECX. Ainda serve como registrador de contagem.
- **RDX**: Versão de 64 bits do EDX. Pode ser usado para operações de E/S ou para armazenar dados temporários.
- **RSP**: Versão de 64 bits do ESP. Aponta para o topo da pilha, controlando chamadas de função e manipulação de pilha.

- **RBP**: Versão de 64 bits do EBP. Permite acesso a variáveis locais e parâmetros de função.
- **RSI**: Versão de 64 bits do ESI. Utilizado como fonte para operações de movimentação de dados.
- **RDI**: Versão de 64 bits do EDI. Serve como destino para operações de movimentação de dados.
- **R8 R15**: Registradores extras introduzidos na arquitetura x86-64. Esses registradores extras são muito úteis para operações mais complexas e para armazenamento temporário durante a execução de programas em ambientes de 64 bits.