|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 | if necessary)  U.S. PA                                                                                                                                    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PATENT AND TRADE  (C) Examination Disclosure Statement (Use several sheets if necessary)  U.S.  *EXAMINATION DISCLOSURE STATEMENT (Use several sheets if necessary)  U.S.  *EXAMINATION DOCUMENT NUMBER DATE (INITIAL DOCUMENT NUMBER DATE (INITIAL DATE (INIT |           |                 |                                                                                                                                                           |    |
| ### PATENT AND TRA  #### PATENT AND TRA  **EXAMINATION DISCLOSURE STATEM  **Use several sheets if necessary)  **EXAMINATION DOCUMENT NUMBER   DATE    NITIAL   DOCUMENT NUMBER   DATE    AA   5,296,716   03/22/94    AB   5,687,112   11/11/97    AC   5,761,115   06/02/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                 |                                                                                                                                                           |    |
| EXAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.73     | DOCUMENT NUMBER | DATE                                                                                                                                                      |    |
| MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AA        | 5,296,716       | 03/22/94                                                                                                                                                  | Ov |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AB        | 5,687,112       | U.S. PATE  OCUMENT NUMBER  03/22/94  04/87,112  06/02/98  CON DISCLOSURE STATEMENT  U.S. PATE  07/87,112  08/98  09/98  09/98  09/98  09/98  09/98  09/98 |    |
| *EXAMINE VITA DOCUMENTIAL AA 5,296  AB 5,686  AC 5,766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,761,115 | 06/02/98        | Ko                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AD        | 5,869,843       | 02/09/99                                                                                                                                                  | Ha |

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTY. DOCKET NO. 500993.01

APPLICATION NO. 10/081,594

APPLICANT(S)

Terry L. Gilton

| - 1UH 1   | 7 200 | (Use several sheets if no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | <del>i-</del> | February 20, 200             | 2               | GROUP ART UNIT C | Meliur             |       |
|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------------------------|-----------------|------------------|--------------------|-------|
|           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U.S.       | PATENT        | DOCUMENTS                    |                 |                  |                    |       |
| XAMINE VI | 18 13 | DOCUMENT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE       |               | NAME                         | CLA             | SS SUBCLASS      | FILING<br>IF APPRO |       |
| 4         | AA    | 5,296,716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/22/94   | Ovshinsk      | y et al.                     | 257             | 3                |                    |       |
|           | AB    | 5,687,112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/11/97   | Ovshinsk      | y                            | 365             | 163              |                    |       |
| ŀ         | AC    | 5,761,115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06/02/98   | Kozicki e     | t al.                        | 365             | 182              |                    |       |
|           | AD    | 5,869,843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/09/99   | Harshfield    | i                            | 257             | 5                |                    |       |
|           | AE    | 5,896,312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04/20/99   | Kozicki e     | t al.                        | 365             | 153              |                    |       |
|           | AF    | 5,912,839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06/15/99   | Ovshinsk      | y et al.                     | 365             | 185.03           |                    |       |
|           | AG    | 5,914,893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06/22/99   | Kozicki e     | t al.                        | 365             | 107              |                    |       |
|           | AH    | 6,084,796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/04/00   | Kozicki e     | t al.                        | 365             | 153              |                    |       |
| 1         | AI    | 6,150,253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/21/00   | Doan et a     | l.                           | 438             | 597              |                    |       |
|           | AJ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           |       | The second secon | FORE       | GN PATEN      | NT DOCUMENTS                 |                 |                  |                    |       |
|           |       | DOCUMENT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE       |               | COUNTRY                      | CLA             | SS SUBCLASS      | TRANSI             | LATIO |
|           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  | YES                | NC    |
|           | AK    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           | AL    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           | AM    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           | AN    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           | АО    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
| , , ,     |       | ОТН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ER PRIOR A | RT (Including | Author, Title, Date, Perting | ini Pages, Eic. | )                |                    |       |
|           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           | AP    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           | AQ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |
|           | AR    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                              |                 |                  |                    |       |

\* EXAMINER:

Initial if reference considered, whether or not criteria is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant(s).



# 10 8/1/03

PTO/SB/08A (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE cond to a collection of information unless it contains a valid OMB control number.

| Sub   | stitute for form 1449A/PTO |                    | Complete if Known      |                   |  |
|-------|----------------------------|--------------------|------------------------|-------------------|--|
|       |                            |                    | Application Number     | 10/081,594        |  |
|       |                            | DISCLOSURE         | Filing Date            | February 20, 2002 |  |
| S     | STATEMENT                  | BY APPLICANT       | First Named Inventor   | Terry L. Gilton   |  |
|       | (use as many sh            | eets as necessary) | Art Unit               | 2818              |  |
|       | (acc ac many on            | 00.0 00            | Examiner Name          | Not Yet Assigned  |  |
| Sheet | 1                          | 8                  | Attorney Docket Number | M4065.0627/P627   |  |

|           |      |                                          | U.S. PA          | TENT DOCUMENTS                |                                          |
|-----------|------|------------------------------------------|------------------|-------------------------------|------------------------------------------|
| Examiner  | Cite | Document Number                          | Publication Date | Name of Patentee or Applicant | Pages, Columns, Lines,<br>Where Relevant |
| Initials* | No.1 | Number-Kind Code <sup>2</sup> (if known) | MM-DD-YYYY       | of Cited Document             | Passages or Relevant<br>Figures Appear   |
| MX        | AA   | US 2002/0168820                          | 11/14/2002       | Kozicki et al.                | /                                        |
| 7         | ΑB   | 6,469,364                                | 10/22/2002       | Kozicki                       |                                          |
|           | AC   | 6,388,324                                | 05/14/2002       | Kozicki et al.                |                                          |
|           | AD   | US 2002/0000666                          | 01/03/2002       | Kozicki et al.                |                                          |
|           | AE   | 5,500,532                                | 03/19/1996       | Kozicki et al.                |                                          |
| 1         | AF   | 6,418,049                                | 07/09/2002       | Kozicki et al.                |                                          |
| 1         | AG   | 5,751,012                                | 05/12/1998       | Wolstenholme et al.           |                                          |
|           | AH   | 5,789,277                                | 08/04/1998       | Zahorik et al.                |                                          |
|           | ΑI   | 6,348,365                                | 02/19/2202       | Moore et al.                  |                                          |
| 7         | AJ   | 6,388,324                                | 05/14/2002       | Kozicki et al.                |                                          |
| 7         | AK   | US 2002/0000666                          | 01/03/2002       | Kozicki et al.                |                                          |
|           | AL   |                                          |                  |                               |                                          |
|           | AM   |                                          |                  |                               |                                          |
|           | ΑN   |                                          |                  |                               |                                          |
|           | AO   |                                          |                  |                               | 1                                        |

| Г |         |              | FOREI                                                                                                      | GN PATENT                      | DOCUMENTS                                          |                                                                                    |                |
|---|---------|--------------|------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|----------------|
| _ | xaminer | Cite<br>No.1 | Foreign Patent Document  Country Code <sup>3</sup> -Number <sup>4</sup> -Kind Code <sup>5</sup> (if known) | Publication Date<br>MM-DD-YYYY | Name of Patentee or<br>Applicant of Cited Document | Pages, Columns, Lines,<br>Where Relevant<br>Passages or Relevant<br>Figures Appear | T <sup>®</sup> |
|   | MIK     | BA           | WO 02/21542                                                                                                | 03/14/2002                     | Kozicki et al.                                     |                                                                                    |                |
| ľ | 1 at    | BB           | WO 00/48196                                                                                                | 08/17/2000                     | Kozicki et al.                                     |                                                                                    |                |
| Г |         | BC           | WO 97/48032                                                                                                | 12/18/1997                     | Kozicki et al.                                     | $\overline{}$                                                                      |                |
| Г |         | BD .         | WO 99/28914                                                                                                | 06/10/1999                     | Kozicki et al.                                     |                                                                                    |                |

| Examiner<br>Signature | 1 milliano | Date<br>Considered | 08/03 |  |
|-----------------------|------------|--------------------|-------|--|
|                       |            |                    |       |  |

<sup>\*</sup>EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

75 FEB 28 700 MED 760 MED 760

<sup>&</sup>lt;sup>1</sup> Applicant's unique citation designation number (optional). <sup>2</sup> See attached Kinds Codes of USPTO Patent Documents at <a href="www.uspto.gov">www.uspto.gov</a> or MPEP 901.04. <sup>3</sup> Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). <sup>4</sup> For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. <sup>5</sup> Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. <sup>6</sup> Applicant is to place a check mark here if English language Translation is attached.



| Sut  | bstitute for form 1449B/PTC |         |            | Complete if Known      |                   |  |
|------|-----------------------------|---------|------------|------------------------|-------------------|--|
| ou.  |                             |         |            | Application Number     | 10/081,594        |  |
| ١N   | <b>NFORMATION</b>           | N DI    | SCLOSURE   | Filing Date            | February 20, 2002 |  |
| S    | TATEMENT                    | BY A    | APPLICANT  | First Named Inventor   | Terry L. Gilton   |  |
|      |                             |         |            | Group Art Unit         | 2818              |  |
|      | (use as many sh             | eets as | necessary) | Examiner Name          | Not Yet Assigned  |  |
| heet | 2                           | of      | 8          | Attorney Docket Number | M4065.0627/P627   |  |

|                     | T            | OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the                                                                                                       | 1  |
|---------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Examiner<br>nitials | Cite<br>No.1 | include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² |
| MX                  | CA           | Abdel-All, A.; Elshafie,A.; Elhawary, M.M., DC electric-field effect in bulk and thin-film Ge5As38Te57 chalcogenide glass, Vacuum 59 (2000) 845-853.                                                                                                           |    |
| 1                   | СВ           | Adler, D.; Moss, S.C., Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189.                                                                                                                                                     |    |
|                     | СС           | Adler, D.; Henisch, H.K.; Mott, S.N., The mechanism of threshold switching in amorphous alloys, Rev. Mod. Phys. 50 (1978) 209-220.                                                                                                                             |    |
|                     | CD           | Afifi, M.A.; Labib, H.H.; El-Fazary, M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system Se75Ge25-xSbx, Appl. Phys. A 55 (1992) 167-169.                                                                                           |    |
|                     | CE           | Afifi,M.A.; Labib, H.H.; Fouad, S.S.; El-Shazly, A.A., Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x, Egypt, J. Phys. 17 (1986) 335-342.                                                                                           |    |
|                     | CF           | Alekperova, Sh.M.; Gadzhieva, G.S., Current-Voltage characteristics of Ag2Se single crystal near the phase transition, Inorganic Materials 23 (1987) 137-139.                                                                                                  |    |
|                     | CG           | Aleksiejunas, A.; Cesnys, A., Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.                                                                        |    |
| 1                   | СН           | Angell, C.A., Mobile ions in amorphous solids, Annu. Rev. Phys. Chem. 43 (1992) 693-717.                                                                                                                                                                       | T  |
|                     | CI           | Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state lonics 136-137 (2000) 1085-1089.                                                                                                           |    |
|                     | Cl           | Asahara, Y.; Izumitani, T., Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst. Solids 11 (1972) 97-104.                                                                                                                                      |    |
|                     | СК           | Asokan, S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810                                                                                             |    |
|                     | CL           | Baranovskii, S.D.; Cordes, H., On the conduction mechanism in ionic glasses, J. Chem. Phys. 111 (1999) 7546-7557.                                                                                                                                              |    |
|                     | СМ           | Belin, R.; Taillades, G.; Pradel, A.; Ribes, M., Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra, Solid state Ionics 136-137 (2000) 1025-1029.                                                                                  |    |
|                     | CN           | Belin, R.; Zerouale, A.; Pradel, A.; Ribes, M., Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.                                                            |    |
|                     | со           | Benmore, C.J.; Salmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267.                                                                                                               |    |
|                     | СР           | Bernede, J.C., Influence du metal des electrodes sur les caracteristiques courant-tension des structures M-Ag2Se-M, Thin solid films 70 (1980) L1-L4.                                                                                                          |    |
| \\.                 | CQ           | Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160.                                                                                                                                                               |    |
|                     | CR           | Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104.                                                                                                                                                   |    |
|                     | cs           | Bernede, J.C.; Abachi, T., Differential negative resistance in metal/insulator/metal structures with an upper bilayer electrode, Thin solid films 131 (1985) L61-L64.                                                                                          |    |
|                     | СТ           | Bernede, J.C.; Conan, A.; Fousenan't, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.                                                                           |    |
|                     | CU           | Bernede, J.C.; Khelil, A.; Kettaf, M.; Conan, A., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys. Stat. Sol. (a) 74 (1982) 217-224.                                                           |    |
|                     | CV           | Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg4l5, Solid State lonics 70/71 (1994) 72-76.                                                                                                                                     |    |
|                     | CW           | Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in GexSe1-x                                                                                                                                                                         | Π  |

| Sı    | ubstitute for form 1449B/PTC | )       |            |                        | Complete if Known |
|-------|------------------------------|---------|------------|------------------------|-------------------|
|       |                              |         |            | Application Number     | 10/081,594        |
|       | NFORMATION                   | N DI    | SCLOSURE   | Filing Date            | February 20, 2002 |
|       | STATEMENT                    | BY A    | APPLICANT  | First Named Inventor   | Terry L. Gilton   |
|       |                              |         |            | Group Art Unit         | 2818              |
|       | (use as many sh              | eets as | necessary) | Examiner Name          | Not Yet Assigned  |
| Sheet | 3                            | of      | 8          | Attorney Docket Number | M4065.0627/P627   |

| Sheet |          | 3                                                                                  | of      | 8                         | Attorney Docket Number   | M4065.0627/P627                                                 |   |  |  |  |  |
|-------|----------|------------------------------------------------------------------------------------|---------|---------------------------|--------------------------|-----------------------------------------------------------------|---|--|--|--|--|
| 1     | 1        | Glasses A                                                                          | sian J  | ournal of Physics (2000   | 0) 9, 709-72.            |                                                                 |   |  |  |  |  |
| -+    | сх       | Nature 410 (2001) 1070-1073.                                                       |         |                           |                          |                                                                 |   |  |  |  |  |
| - 1   |          | Nature 410 (2001) 1070-1073.                                                       |         |                           |                          |                                                                 |   |  |  |  |  |
| 7     | CY       | Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in |         |                           |                          |                                                                 |   |  |  |  |  |
| l_    |          | Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703     |         |                           |                          |                                                                 |   |  |  |  |  |
|       | CZ       |                                                                                    |         |                           |                          | resser, W.J., Onset of rigidity in                              |   |  |  |  |  |
|       |          |                                                                                    |         |                           |                          | Amorphous Materials, M.F.                                       |   |  |  |  |  |
|       | <u> </u> |                                                                                    |         |                           |                          | Netherlands, 2001, pp. 97-132.                                  |   |  |  |  |  |
| 1     | CA1      |                                                                                    |         |                           |                          | ring of evaporated amorphous                                    |   |  |  |  |  |
| - 1   |          | 1                                                                                  |         | by films: role of therma  | annealing, Diffusion     | and Defect Data Vol. 53-54                                      |   |  |  |  |  |
| +     | OD4      | (1987) 415                                                                         |         | andhaus I. Dannan M       | La Caranti D. Chrant     | hund a visits of bushon abanciad                                |   |  |  |  |  |
|       | CB1      |                                                                                    |         |                           |                          | tural origin of broken chemical                                 |   |  |  |  |  |
|       | CC1      |                                                                                    |         | glass, Phys. Rev. B 25    |                          | der and phase separation in                                     |   |  |  |  |  |
| ı     | ICCI     |                                                                                    |         | es, Solid state comm. 4   |                          | der and phase separation in                                     |   |  |  |  |  |
| -     | CD1      |                                                                                    |         |                           |                          | ansition temperature (Tg),                                      | _ |  |  |  |  |
| - 1   | 1001     |                                                                                    |         |                           |                          | on in chalcogenides, Dept. of                                   |   |  |  |  |  |
| 1     |          |                                                                                    |         | ncinnati (October 28, 1   |                          |                                                                 |   |  |  |  |  |
|       | CE1      | Boolchand                                                                          | . P.: G | rothaus, J. Molecular S   | tructure of Melt-Quen    | ched GeSe2 and GeS2 glasses                                     |   |  |  |  |  |
| -1    |          | compared,                                                                          | Proc.   | Int. Conf. Phys. Semice   | ond. (Eds. Chadi and     | Harrison) 17 <sup>th</sup> (1985) 833-36.                       |   |  |  |  |  |
|       | CF1      |                                                                                    |         |                           |                          | nd molecular clustering in                                      |   |  |  |  |  |
|       |          |                                                                                    |         | Phys. Rev. Lett. 56 (19   |                          |                                                                 |   |  |  |  |  |
|       | CG1      |                                                                                    |         |                           |                          | trinsically broken chalcogen                                    |   |  |  |  |  |
|       | _        |                                                                                    |         |                           |                          | 42 (1981) C4-193-C4-196.                                        |   |  |  |  |  |
| 1     | CH1      |                                                                                    |         |                           |                          | lolecular phase separation and                                  |   |  |  |  |  |
| -     |          |                                                                                    |         | Se2 glass, Hyperfine li   |                          |                                                                 |   |  |  |  |  |
| l     | CI1      |                                                                                    |         |                           |                          | K.; Jakubowicz, A., Room-                                       |   |  |  |  |  |
| - 1   | 1        | 258 (1992)                                                                         |         |                           | tion of stable devices i | in CulnSe2 Crystals, Science                                    |   |  |  |  |  |
|       | CJ1      |                                                                                    |         |                           | Current-controlled no    | egative-resistance behavior and                                 | — |  |  |  |  |
| - 1   | 1001     |                                                                                    |         |                           |                          | Phys. 27 (1994) 2624-2627.                                      |   |  |  |  |  |
|       | CK1      | Chen. C.H                                                                          | .: Tai. | K.L. Whisker growth in    | nduced by Aa photodo     | pping in glassy GexSe1-x films,                                 |   |  |  |  |  |
| - 1   | 10       |                                                                                    |         | 37 (1980) 1075-1077.      |                          | , pg g.a.co, coco,                                              |   |  |  |  |  |
|       | CL1      |                                                                                    |         | , J., Role of nitrogen in | the crystallization of s | ilicon nitride-doped                                            |   |  |  |  |  |
| _ 1   |          | chalcogeni                                                                         | ide gla | sses, J. Am. Ceram. So    | oc. 82 (1999) 2934-29    | 36.                                                             |   |  |  |  |  |
|       | CM1      |                                                                                    |         |                           |                          | urability of chalcogenide glass,                                |   |  |  |  |  |
|       |          | J. Non-Cry                                                                         | st. So  | ids 220 (1997) 249-253    | 3.                       |                                                                 |   |  |  |  |  |
| }     | CN1      |                                                                                    |         |                           |                          | nous semiconductor memory                                       |   |  |  |  |  |
|       | -        | device, J. I                                                                       | Non-C   | ryst. Solids 8-10 (1972)  | 885-891.                 |                                                                 |   |  |  |  |  |
| {     | CO1      |                                                                                    |         |                           |                          | can, L., Ohmic and non-ohmic                                    |   |  |  |  |  |
| _     | CP1      |                                                                                    |         |                           |                          | . Solids 8-10 (1972) 781-786.<br>eta-Ag2Se from 4.2 to 300K, J. |   |  |  |  |  |
| - 1   | CPT      |                                                                                    |         | 967) 753-756.             | or beta-Agzire and be    | eta-Ag2Se from 4.2 to 300K, J.                                  |   |  |  |  |  |
|       | CQ1      | Davis F A                                                                          | Sem     | iconductors without for   | m Search 1 (1970) 15     | 52-155                                                          |   |  |  |  |  |
| -+    | CR1      | Dearnaley                                                                          | G·S     | toneham A M · Morgar      | D.V Flectrical phen      | nomena in amorphous oxide                                       | _ |  |  |  |  |
| Ì     | 0        |                                                                                    |         | Phys. 33 (1970) 1129-     |                          | ioniona in amorphous oxide                                      |   |  |  |  |  |
| _     | CS1      | Deius R I                                                                          | : Susr  | nan. S.: Volin. K.J.: Mo  | ntague, D.G.: Price D    | .L., Structure of Vitreous Ag-Ge-                               |   |  |  |  |  |
| 1     | 1.0      |                                                                                    |         | Solids 143 (1992) 162     |                          |                                                                 |   |  |  |  |  |
|       | CT1      | den Boer.                                                                          | W., Th  | reshold switching in ทั้ง | drogenated amorphou      | is silicon, Appl. Phys. Lett. 40                                |   |  |  |  |  |
| {     |          | (1982) 812                                                                         | -813.   |                           | 4                        |                                                                 | _ |  |  |  |  |
|       | CU1      | Drusedau.                                                                          | T.P.; I | Panckow, A.N.; Klabun     | de, F., The hydrogena    | ted amorphous                                                   |   |  |  |  |  |



| Su    | bstitute for form 1449B/PT | 0          |           | Complete if Known      |                   |  |
|-------|----------------------------|------------|-----------|------------------------|-------------------|--|
| - Ou  | bouldto for form 1440D/1   | Ü          |           | Application Number     | 10/081,594        |  |
| 11    | <b>NFORMATIO</b>           | N DIS      | CLOSURE   | Filing Date            | February 20, 2002 |  |
| S     | STATEMENT                  | BY A       | PPLICANT  | First Named Inventor   | Terry L. Gilton   |  |
|       |                            |            |           | Group Art Unit         | 2818              |  |
|       | (use as many s             | heets as n | ecessary) | Examiner Name          | Not Yet Assigned  |  |
| Sheet | 4                          | of         | 8         | Attorney Docket Number | M4065.0627/P627   |  |

| Sheet |     | 4                                                                                                                                                                                                       | of                               | 8                              |            | Attorney Docket Number M4                                    | 1065.0627/P627                                             |  |  |  |
|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|------------|--------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| MH    |     | Crvst. Soli                                                                                                                                                                                             | ds 198-2                         | 200 (1996) 82                  | 9-832.     | em-Films of unique electr                                    |                                                            |  |  |  |
|       | CV1 | El Bouchairi, B.; Bernede, J.C.; Burgaud, P., Properties of Ag2-xSe1+x/n-Si diodes, Thin Solid Films 110 (1983) 107-113.                                                                                |                                  |                                |            |                                                              |                                                            |  |  |  |
|       | CW1 |                                                                                                                                                                                                         |                                  |                                |            | Role of photoinduced de 155 (1993) 171-179.                  | fects in amorphous GexSe1-                                 |  |  |  |
|       | CX1 | El Ghrand                                                                                                                                                                                               | i, R.; Ca                        | las, J.; Galibe                | ert, G.; A | verous, M., Silver photodis<br>218 (1992)259-273.            | ssolution in amorphous                                     |  |  |  |
|       | CY1 | El Ghrand                                                                                                                                                                                               | i, R.; Ca                        | las, J.; Galibe                | rt, G., A  | g dissolution kinetics in an<br>vs time, Phys. Stat. Sol. (a | morphous GeSe5.5 thin films<br>a) 123 (1991) 451-460.      |  |  |  |
|       | CZ1 |                                                                                                                                                                                                         | L., The                          | threshold swi                  |            | semiconducting glass Ge                                      |                                                            |  |  |  |
|       | CA2 | Elliott, S.R                                                                                                                                                                                            | ., A unif                        |                                |            | tal photodissolution in am                                   | norphous chalcogenide                                      |  |  |  |
|       | CB2 | Elliott, S.R                                                                                                                                                                                            | ., Photo                         | dissolution of<br>137-138 (199 | metals i   | n chalcogenide glasses: /                                    | A unified mechanism, J.                                    |  |  |  |
|       | CC2 | Elsamano                                                                                                                                                                                                | udy, M.N                         | И.; Hegab, N./                 | A.; Fade   | , M., Conduction mechan<br>i, Vacuum 46 (1995) 701-          |                                                            |  |  |  |
|       | CD2 | El-Zahed,                                                                                                                                                                                               | H.; El-K                         | orashy, A., In                 | fluence d  | of composition on the elects 376 (2000) 236-240.             | ctrical and optical properties                             |  |  |  |
|       | CE2 | Fadel, M.,                                                                                                                                                                                              | Switchi                          | ng phenomen<br>s, Vacuum 44    | on in eva  | aporated Se-Ge-As thin fil                                   | lms of amorphous                                           |  |  |  |
|       | CF2 |                                                                                                                                                                                                         | El-Shai                          | r, H.T., Electri               |            |                                                              | s of Se75Ge7Sb18, Vacuum                                   |  |  |  |
|       | CG2 | Feng, X.; Bresser, W.J.; Boolchand, P., Direct evidence for stiffness threshold in Chalcogenide glasses, Phys. Rev. Lett. 78 (1997) 4422-4425.                                                          |                                  |                                |            |                                                              |                                                            |  |  |  |
|       | CH2 | Feng, X.; Bresser, W.J.; Zhang, M.; Goodman, B.; Boolchand, P., Role of network connectivity on the elastic, plastic and thermal behavior of covalent glasses, J. Non-Cryst. Solids 222 (1997) 137-143. |                                  |                                |            |                                                              |                                                            |  |  |  |
|       | CI2 | Fischer-Co                                                                                                                                                                                              | olbrie, A                        |                                |            | oss, P.H.; Marcus, M.A., S<br>n films, Phys. Rev. B 38 (     |                                                            |  |  |  |
|       | CJ2 | Fleury, G.;                                                                                                                                                                                             | ; Hamou                          |                                | ; Vautie   | , C., Conductivity and cry                                   | stallization of amorphous                                  |  |  |  |
|       | CK2 |                                                                                                                                                                                                         | H, Optic                         | al and electric                |            |                                                              | miconductors, J. Non-Cryst.                                |  |  |  |
|       | CL2 | Fritzsche,                                                                                                                                                                                              | H., Élec                         |                                |            | amorphous semiconductor                                      | rs, Annual Review of                                       |  |  |  |
|       | CM2 | Gates, B.;                                                                                                                                                                                              | Wu, Y.;<br>ed by ter             | Yin, Y.; Yang                  | , P.; Xia  | Y., Single-crystalline nan<br>vires of trigonal Se, J. Am    | nowires of Ag2Se can be<br>n. Chem. Soc. (2001)            |  |  |  |
|       | CN2 | Gosain, D                                                                                                                                                                                               | .P.; Nak<br>ble phas             |                                |            |                                                              | Nonvolatile memory based p. J. Appl. Phys. 28 (1989)       |  |  |  |
|       | CO2 | Guin, JP.<br>of Ge-Se of<br>Cryst. Soli                                                                                                                                                                 | .; Rouxe<br>chalcoge<br>ds 298 ( | enide glasses<br>(2002) 260-26 | below T    | g: elastic recovery and no                                   | Lucas, J., Indentation creep<br>on-Newtonian flow, J. Non- |  |  |  |
|       | CP2 | Guin, JP.                                                                                                                                                                                               | .; Rouxe                         | I, T.; Sangleb                 | oeuf, J    | C; Melscoet, I.; Lucas, J., alcogenide glasses, J. An        | Hardness, toughness, and<br>m. Ceram. Soc. 85 (2002)       |  |  |  |
|       | CQ2 |                                                                                                                                                                                                         |                                  | ectrical switch ) 148-154.     | ning and   | memory effects in amorpl                                     | hous chalcogenides, J. Non-                                |  |  |  |

| Su    | bstitute for form 1449B/ | PTO       |            | Complete if Known      |                   |  |
|-------|--------------------------|-----------|------------|------------------------|-------------------|--|
| , ,,, |                          |           |            | Application Number     | 10/081,594        |  |
| l IN  | NFORMATIO                | ID NC     | SCLOSURE   | Filing Date            | February 20, 2002 |  |
| l s   | TATEMENT                 | ΓBY A     | APPLICANT  | First Named Inventor   | Terry L. Gilton   |  |
|       |                          |           |            | Group Art Unit         | 2818              |  |
| ·     | (use as many             | sheets as | necessary) | Examiner Name          | Not Yet Assigned  |  |
| Sheet | 5                        | of        | 8          | Attorney Docket Number | M4065.0627/P627   |  |

| Silect |             | <del></del>                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                   |                                     | Atterney Becket Hum                                     | 1014000:002771 027                                                         |  |  |  |  |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| NH     | CR2         |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |                                     | ew experiments on the cha<br>lon-Cryst. Solids 8-10 (19 | arge-controlled switching effect in 72) 408-414.                           |  |  |  |  |
| 1      | CS2         | Haifz, M.M<br>and electric                                                                                                                                                                                                                                                                                                               | .; Ibrah<br>cal pro                                                                                                                                                        | nim, M.M.; Dong<br>perties of As-So | gol, M.; Hammad, F.H., Et<br>e-Cu glasses, J. Apply. Pt | fect of composition on the structure nys. 54 (1983) 1950-1954.             |  |  |  |  |
|        | CT2         | effects in m                                                                                                                                                                                                                                                                                                                             | Hajto, J.; Rose, M.J.; Osborne, I.S.; Snell, A.J.; Le Comber, P.G.; Owen, A.E., Quantization effects in metal/a-Si:H/metal devices, Int. J. Electronics 73 (1992) 911-913. |                                     |                                                         |                                                                            |  |  |  |  |
|        | CU2         | Hajto, J.; Hu, J.; Snell, A.J.; Turvey, K.; Rose, M., DC and AC measurements on metal/a-Si:H/metal room temperature quantised resistance devices, J. Non-Cryst. Solids 266-269 (2000) 1058-1061.                                                                                                                                         |                                                                                                                                                                            |                                     |                                                         |                                                                            |  |  |  |  |
|        | CV2         | resistance<br>(1996) 825                                                                                                                                                                                                                                                                                                                 | effects<br>-828.                                                                                                                                                           | in metal-a-Si:l                     | -metal thin film structures                             | oom temperature quantized<br>s, J. Non-Cryst. Solids 198-200               |  |  |  |  |
|        | CW2         |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |                                     |                                                         | M.J., Analogue memory and tres, Phil. Mag. B 63 (1991) 349-                |  |  |  |  |
|        | CX2         | Japan. J. A                                                                                                                                                                                                                                                                                                                              | ppl. P                                                                                                                                                                     | hys. <u>13 (1974)</u>               | 1163-1164.                                              | ory switching in amorphous Se film,                                        |  |  |  |  |
|        | CY2         | chalcogeni                                                                                                                                                                                                                                                                                                                               | de ser                                                                                                                                                                     | niconductors, V                     | K., Memory switching ph<br>acuum 45 (1994) 459-462      | 2                                                                          |  |  |  |  |
|        |             | <ul> <li>CZ2 Hirose, Y.; Hirose, H., Polarity-dependent memory switching and behavior of Ag dendrite i Ag-photodoped amorphous As2S3 films, J. Appl. Phys. 47 (1976) 2767-2772.</li> <li>CA3 Hong, K.S.; Speyer, R.F., Switching behavior in II-IV-V2 amorphous semiconductor system J. Non-Cryst. Solids 116 (1990) 191-200.</li> </ul> |                                                                                                                                                                            |                                     |                                                         |                                                                            |  |  |  |  |
|        |             |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |                                     |                                                         |                                                                            |  |  |  |  |
|        |             | CB3 Hosokawa, S., Atomic and electronic structures of glassy GexSe1-x around the stiffr threshold composition, J. Optoelectronics and Advanced Materials 3 (2001) 199-214                                                                                                                                                                |                                                                                                                                                                            |                                     |                                                         |                                                                            |  |  |  |  |
|        | devices, J. |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            | ryst. Solids 22                     | 7-230 (1998) 1187-1191.                                 | forming in Cr/p+a-/Si:H/V thin film                                        |  |  |  |  |
|        | CD3         | non-metal<br>(1996) 37-                                                                                                                                                                                                                                                                                                                  | transiti<br>50.                                                                                                                                                            | on in Cr-hydrog                     | genated amorphous Si-V t                                | citance anomaly near the metal-<br>hin-film devices, Phil. Mag. B. 74      |  |  |  |  |
|        | CE3         | devices, Pl                                                                                                                                                                                                                                                                                                                              | hil. Ma                                                                                                                                                                    | g. B 80 (2000)                      | 29-43.                                                  | instability in Cr-p+a-Si:H-V thin film                                     |  |  |  |  |
|        | CF3         |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |                                     | Tanaka, K., Electrical and<br>Ge, Solid State Comm. 8 ( |                                                                            |  |  |  |  |
|        | CG3         | amorphous                                                                                                                                                                                                                                                                                                                                | films                                                                                                                                                                      | of Ge2S3, J. No                     | on-Cryst. Solids 35 & 36 (                              |                                                                            |  |  |  |  |
|        | СНЗ         | lyetomi, H. clustering                                                                                                                                                                                                                                                                                                                   | ; Vash<br>of Ag a                                                                                                                                                          | ishta, P.; Kalia,<br>toms, J. Non-C | R.K., Incipient phase sep<br>ryst. Solids 262 (2000) 13 | aration in Ag/Ge/Se glasses:<br>35-142.                                    |  |  |  |  |
|        | CI3         | Jones, G.;<br>Solid Films                                                                                                                                                                                                                                                                                                                | Collins<br>40 (19                                                                                                                                                          | s, R.A., Switchir<br>977) L15-L18.  | ng properties of thin selen                             | ium films under pulsed bias, Thin                                          |  |  |  |  |
|        | CJ3         | switching,                                                                                                                                                                                                                                                                                                                               | Phys. 3                                                                                                                                                                    | Stat. Sol. (a) 13                   | (1972) K105-K109.                                       | n of amorphous As2Se7 before                                               |  |  |  |  |
|        | СКЗ         | Joullie, A.N<br>Bull. 8 (197                                                                                                                                                                                                                                                                                                             | /l.; Mar                                                                                                                                                                   | ucchi, J., Elect                    | rical properties of the amo                             | orphous alloy As2Se5, Mat. Res.                                            |  |  |  |  |
|        | CL3         | Kaplan, T.;<br>Solids 8-10                                                                                                                                                                                                                                                                                                               | Adler,<br>(1972                                                                                                                                                            | D., Electrother<br>2) 538-543.      | - Miller                                                | us semiconductors, J. Non-Cryst.                                           |  |  |  |  |
|        | СМЗ         | Kawaguchi<br>amorphous                                                                                                                                                                                                                                                                                                                   | i, T.; M<br>s Ag-G                                                                                                                                                         | aruno, S.; Ellio<br>e-S and Ag-Ge   |                                                         | and structural properties of of photoinduced and thermally 996) 9096-9104. |  |  |  |  |
|        | CN3         | Kawaguchi                                                                                                                                                                                                                                                                                                                                | , T.; M                                                                                                                                                                    | asui, K., Analys                    |                                                         | nsmission spectra resulting from Ag                                        |  |  |  |  |
|        |             |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |                                     |                                                         | · · · · · · · · · · · · · · · · · · ·                                      |  |  |  |  |

| Citaci dic i aportioni i todocaci i ici ai i i i i portioni a i i i i i i i i i i i i i i i i i i |                            |         |            |                        |                   |  |
|---------------------------------------------------------------------------------------------------|----------------------------|---------|------------|------------------------|-------------------|--|
| Sub                                                                                               | stitute for form 1449B/PTC |         |            | Complete if Known      |                   |  |
| Jub                                                                                               | sudic for form 1440B/1 10  |         |            | Application Number     | 10/081,594        |  |
| IN                                                                                                | <b>IFORMATION</b>          | N DI    | SCLOSURE   | Filing Date            | February 20, 2002 |  |
| S                                                                                                 | TATEMENT I                 | BY A    | APPLICANT  | First Named Inventor   | Terry L. Gilton   |  |
|                                                                                                   |                            |         |            | Group Art Unit         | 2818              |  |
|                                                                                                   | (use as many sh            | eets as | necessary) | Examiner Name          | Not Yet Assigned  |  |
| Sheet                                                                                             | 6                          | of      | 8          | Attorney Docket Number | M4065.0627/P627   |  |

| UH | CO3        | Kawasaki, M.; Kawamura, J.; Nakamura, Y.; Aniya, M., Ionic conductivity of Agx(GeSe3)1-x (0<=x<=0.571) glasses, Solid state Ionics 123 (1999) 259-269.                                                               |  |  |  |  |  |  |  |
|----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    | CP3        | Kluge, G.; Thomas, A.; Klabes, R.; Grotzschel, R., Silver photodiffusion in amorphous GexSe100-x, J. Non-Cryst. Solids 124 (1990) 186-193.                                                                           |  |  |  |  |  |  |  |
|    | CQ3        | Kolobov, A.V., On the origin of p-type conductivity in amorphous chalcogenides, J. Non-Cryst. Solids 198-200 (1996) 728-731.                                                                                         |  |  |  |  |  |  |  |
|    | CR3        | Kolobov, A.V., Lateral diffusion of silver in vitreous chalcogenide films, J. Non-Cryst. Solids 137-138 (1991) 1027-1030.                                                                                            |  |  |  |  |  |  |  |
|    | CS3        | Korkinova, Ts.N.; Andreichin,R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259.                                                                                |  |  |  |  |  |  |  |
|    | СТЗ        | Kotkata, M.F.; Afif, M.A.; Labib, H.H.; Hegab, N.A.; Abdel-Aziz, M.M., Memory switching in amorphous GeSeTl chalcogenide semiconductor films, Thin Solid Films 240 (1994) 143-146.                                   |  |  |  |  |  |  |  |
|    | CU3        | Lakshminarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19.                             |  |  |  |  |  |  |  |
|    | CV3        | Lal, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304.                                                 |  |  |  |  |  |  |  |
|    | CW3        | Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132.        |  |  |  |  |  |  |  |
|    | СХЗ        | Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545.                                                                                        |  |  |  |  |  |  |  |
|    | CY3        | Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662.                                                                                |  |  |  |  |  |  |  |
|    | CZ3        | Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606.                                                                       |  |  |  |  |  |  |  |
|    | CA4        | Mazurier, F.; Levy, M.; Souquet, J.L, Reversible and irreversible electrical switching in TeO2-<br>V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188.                                              |  |  |  |  |  |  |  |
|    | CB4        | Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258.                                                  |  |  |  |  |  |  |  |
|    | CC4        | Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21.                                                           |  |  |  |  |  |  |  |
|    | CD4        | Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027.                                                    |  |  |  |  |  |  |  |
|    | CE4        | Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851.                                                                         |  |  |  |  |  |  |  |
|    | CF4        | Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432.                                                                                                              |  |  |  |  |  |  |  |
|    | CG4<br>CH4 | Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317.  Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14                                         |  |  |  |  |  |  |  |
|    | Cl4        | (1959) 996-1002.  Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1                                                                                                         |  |  |  |  |  |  |  |
|    |            | (1968) 1-17.  Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase                                                                                                                  |  |  |  |  |  |  |  |
|    | CJ4        | transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569.                                                                                                                                       |  |  |  |  |  |  |  |
|    | CK4        | Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. |  |  |  |  |  |  |  |
|    | CL4        | Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.                                             |  |  |  |  |  |  |  |
|    | CM4        | Narayanan, R.A.; Asokan, S.; Kumar, A., Evidence concerning the effect of topology on                                                                                                                                |  |  |  |  |  |  |  |

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE cond to a collection of information unless it contains a valid OMB control number.

| Sut   | ostitute for form 1449B/ | РТО       |            | Complete if Known      |                   |  |
|-------|--------------------------|-----------|------------|------------------------|-------------------|--|
| -     |                          |           |            | Application Number     | 10/081,594        |  |
| ١N    | <b>NFORMATIO</b>         | ON DI     | SCLOSURE   | Filing Date            | February 20, 2002 |  |
| S     | TATEMEN                  | T BY A    | APPLICANT  | First Named Inventor   | Terry L. Gilton   |  |
|       | .,                       |           |            | Group Art Unit         | 2818              |  |
|       | (use as many             | sheets as | necessary) | Examiner Name          | Not Yet Assigned  |  |
| Sheet | 7                        | of        | 8          | Attorney Docket Number | M4065.0627/P627   |  |

| 1114 |     | electrical switching in chalcogenide network glasses, Phys. Rev. B 54 (1996) 4413-4415.                                                                                                                          |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MC   | CN4 | Neale, R.G.; Aseltine, J.A., The application of amorphous materials to computer memories, IEEE transactions on electron dev. Ed-20 (1973) 195-209.                                                               |
|      | CO4 | Ovshinsky S.R.; Fritzsche, H., Reversible structural transformations in amorphous semiconductors for memory and logic, Mettalurgical transactions 2 (1971) 641-645.                                              |
|      | CP4 | Ovshinsky, S.R., Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett. 21 (1968) 1450-1453.                                                                                       |
|      | CQ4 | Owen, A.E.; LeComber, P.G.; Sarrabayrouse, G.; Spear, W.E., New amorphous-silicon electrically programmable nonvolatile switching device, IEE Proc. 129 (1982) 51-54                                             |
|      | CR4 | Owen, A.E.; Firth, A.P.; Ewen, P.J.S., Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors, Phil. Mag. B 52 (1985) 347-362.                                           |
|      | CS4 | Owen, A.E.; Le Comber, P.G.; Hajto, J.; Rose, M.J.; Snell, A.J., Switching in amorphous devices, Int. J. Electronics 73 (1992) 897-906.                                                                          |
|      | CT4 | Pearson, A.D.; Miller, C.E., Filamentary conduction in semiconducting glass diodes, App. Phys. Lett. 14 (1969) 280-282.                                                                                          |
|      | CU4 | Pinto, R.; Ramanathan, K.V., Electric field induced memory switching in thin films of the chalcogenide system Ge-As-Se, Appl. Phys. Lett. 19 (1971) 221-223.                                                     |
|      | CV4 | Popescu, C., The effect of local non-uniformities on thermal switching and high field behavior of structures with chalcogenide glasses, Solid-state electronics 18 (1975) 671-681.                               |
|      | CW4 | Popescu, C.; Croitoru, N., The contribution of the lateral thermal instability to the switching phenomenon, J. Non-Cryst. Solids 8-10 (1972) 531-537.                                                            |
|      | CX4 | Popov, A.I.; Geller, I.KH.; Shemetova, V.K., Memory and threshold switching effects in amorphous selenium, Phys. Stat. Sol. (a) 44 (1977) K71-K73.                                                               |
|      | CY4 | Prakash, S.; Asokan, S.; Ghare, D.B., Easily reversible memory switching in Ge-As-Te glasses, J. Phys. D: Appl. Phys. 29 (1996) 2004-2008.                                                                       |
|      | CZ4 | Rahman, S.; Sivarama Sastry, G., Electronic switching in Ge-Bi-Se-Te glasses, Mat. Sci. and Eng. B12 (1992) 219-222.                                                                                             |
|      | CA5 | Ramesh, K.; Asokan, S.; Sangunni, K.S.; Gopal, E.S.R., Electrical Switching in germanium telluride glasses doped with Cu and Ag, Appl. Phys. A 69 (1999) 421-425.                                                |
|      | CB5 | Rose,M.J.;Hajto,J.;Lecomber,P.G.;Gage,S.M.;Choi,W.K.;Snell,A.J.;Owen,A.E., Amorphous silicon analogue memory devices, J. Non-Cryst. Solids 115 (1989) 168-170.                                                   |
|      | CC5 | Rose,M.J.;Snell,A.J.;Lecomber,P.G.;Hajto,J.;Fitzgerald,A.G.;Owen,A.E., Aspects of non-volatility in a -Si:H memory devices, Mat. Res. Soc. Symp. Proc. V 258, 1992, 1075-1080.                                   |
|      | CD5 | Schuocker, D.; Rieder, G., On the reliability of amorphous chalcogenide switching devices, J. Non-Cryst. Solids 29 (1978) 397-407.                                                                               |
|      | CE5 | Sharma, A.K.; Singh, B., Electrical conductivity measurements of evaporated selenium films in vacuum, Proc. Indian Natn. Sci. Acad. 46, A, (1980) 362-368.                                                       |
|      | CF5 | Sharma, P., Structural, electrical and optical properties of silver selenide films, Ind. J. Of pure and applied phys. 35 (1997) 424-427.                                                                         |
|      | CG5 | Snell, A.J.; Lecomber, P.G.; Hajto, J.; Rose, M.J.; Owen, A.E.; Osborne, I.L., Analogue memory effects in metal/a-Si:H/metal memory devices, J. Non-Cryst. Solids 137-138 (1991) 1257-1262.                      |
|      | CH5 | Snell, A.J.; Hajto, J.;Rose, M.J.; Osborne, L.S.; Holmes, A.; Owen, A.E.; Gibson, R.A.G., Analogue memory effects in metal/a-Si:H/metal thin film structures, Mat. Res. Soc. Symp. Proc. V 297, 1993, 1017-1021. |
|      | CI5 | Steventon, A.G., Microfilaments in amorphous chalcogenide memory devices, J. Phys. D: Appl. Phys. 8 (1975) L120-L122.                                                                                            |
|      | CJ5 | Steventon, A.G., The switching mechanisms in amorphous chalcogenide memory devices, J. Non-Cryst. Solids 21 (1976) 319-329.                                                                                      |
|      | CK5 | Stocker, H.J., Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, App. Phys. Lett. 15 (1969) 55-57                                                                          |

| Sui   | bstitute for form 1449B/PTC  | )       |            | Complete if Known      |                   |  |
|-------|------------------------------|---------|------------|------------------------|-------------------|--|
| 30    | balliate for form 1440B/1110 |         |            | Application Number     | 10/081,594        |  |
| ١١    | NFORMATION                   | N DI    | SCLOSURE   | Filing Date            | February 20, 2002 |  |
| S     | TATEMENT I                   | BY A    | APPLICANT  | First Named Inventor   | Terry L. Gilton   |  |
|       |                              |         |            | Group Art Unit         | 2818              |  |
|       | (use as many sh              | eets as | necessary) | Examiner Name          | Not Yet Assigned  |  |
| Sheet | 8                            | of      | 8          | Attorney Docket Number | M4065.0627/P627   |  |

| UH  | - CL5 | Tanaka, K., Ionic and mixed conductions in Ag photodoping process, Mod. Phys. Lett B 4 (1990) 1373-1377.                                                                                                                                                                                                                     |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | CM5   | Tanaka, K.; Iizima, S.; Sugi, M.; Okada, Y.; Kikuchi, M., Thermal effects on switching phenomenon in chalcogenide amorphous semiconductors, Solid State Comm. 8 (1970) 387-389.                                                                                                                                              |
|     | CN5   | Thornburg, D.D., Memory switching in a Type I amorphous chalcogenide, J. Elect. Mat. 2 (1973) 3-15.                                                                                                                                                                                                                          |
|     | CO5   | Thornburg, D.D., Memory switching in amorphous arsenic triselenide, J. Non-Cryst. Solids 11 (1972) 113-120.                                                                                                                                                                                                                  |
|     | CP5   | Thornburg, D.D.; White, R.M., Electric field enhanced phase separation and memory switching in amorphous arsenic triselenide, Journal(??) (1972) 4609-4612.                                                                                                                                                                  |
|     | CQ5   | Tichy, L.; Ticha, H., Remark on the glass-forming ability in GexSe1-x and AsxSe1-x systems, J. Non-Cryst. Solids 261 (2000) 277-281.                                                                                                                                                                                         |
|     | CR5   | Titus, S.S.K.; Chatterjee, R.; Asokan, S., Electrical switching and short-range order in As-Te glasses, Phys. Rev. B 48 (1993) 14650-14652.                                                                                                                                                                                  |
|     | CS5   | Tranchant,S.;Peytavin,S.;Ribes,M.;Flank,A.M.;Dexpert,H.;Lagarde,J.P., Silver chalcogenide glasses Ag-Ge-Se: Ionic conduction and exafs structural investigation, Transport-structure relations in fast ion and mixed conductors Proceedings of the 6th Riso International symposium. 9-13 September 1985.                    |
|     | CT5   | Tregouet, Y.; Bernede, J.C., Silver movements in Ag2Te thin films: switching and memory effects, Thin Solid Films 57 (1979) 49-54.                                                                                                                                                                                           |
|     | CU5   | Uemura, O.; Kameda, Y.; Kokai, S.; Satow, T., Thermally induced crystallization of amorphous Ge0.4Se0.6, J. Non-Cryst. Solids 117-118 (1990) 219-221.                                                                                                                                                                        |
|     | CV5   | Uttecht, R.; Stevenson, H.; Sie, C.H.; Griener, J.D.; Raghavan, K.S., Electric field induced filament formation in As-Te-Ge glass, J. Non-Cryst. Solids 2 (1970) 358-370.                                                                                                                                                    |
|     | CD5   | Viger, C.; Lefrancois, G.; Fleury, G., Anomalous behaviour of amorphous selenium films, J. Non-Cryst. Solids 33 (1976) 267-272.                                                                                                                                                                                              |
|     | CX5   | Vodenicharov, C.; Parvanov,S.; Petkov,P., Electrode-limited currents in the thin-film M-GeSe-M system, Mat. Chem. And Phys. 21 (1989) 447-454.                                                                                                                                                                               |
|     | CY5   | Wang, SJ.; Misium, G.R.; Camp, J.C.; Chen, KL.; Tigelaar, H.L., High-performance Metal/silicide antifuse, IEEE electron dev. Lett. 13 (1992)471-472.                                                                                                                                                                         |
|     | CZ5   | Weirauch, D.F., Threshold switching and thermal filaments in amorphous semiconductors, App. Phys. Lett. 16 (1970) 72-73.                                                                                                                                                                                                     |
|     | CA6   | West, W.C.; Sieradzki, K.; Kardynal, B.; Kozicki, M.N., Equivalent circuit modeling of the Ag As0.24S0.36Ag0.40 Ag System prepared by photodissolution of Ag, J. Electrochem. Soc. 145 (1998) 2971-2974                                                                                                                      |
|     | CB6   | West, W.C., Electrically erasable non-volatile memory via electrochemical deposition of multifractal aggregates, Ph.D. Dissertation, ASU 1998                                                                                                                                                                                |
|     | CC6   | Zhang, M.; Mancini, S.; Bresser, W.; Boolchand, P., Variation of glass transition temperature, Tg, with average coordination number, <m>, in network glasses: evidence of a threshold behavior in the slope  dTg/d<m>  at the rigidity percolation threshold (<m>=2.4), J. Non-Cryst. Solids 151 (1992) 149-154.</m></m></m> |
| I I |       |                                                                                                                                                                                                                                                                                                                              |

| Examiner<br>Signature | 11018 | mon. | Date<br>Considered | 08 | 107 |
|-----------------------|-------|------|--------------------|----|-----|

<sup>\*</sup>EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

<sup>&</sup>lt;sup>1</sup>Applicant's unique citation designation number (optional). <sup>2</sup>Applicant is to place a check mark here if English language Translation is attached.



PTO/SB/08A (10-01)

Approved for use through 10/31/2002.OMB 0651-0031

U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known Substitute for form 1449A/PTO **Application Number** 10/081,594 INFORMATION DISCLOSURE Filing Date February 20,2002 STATEMENT BY APPLICANT First Named Inventor Terry L. Gilton 2818 Art Unit (use as many sheets as necessary) Connie C. Yoha Examiner Name 1 of 4 M4065.0726/P726 Sheet Attorney Docket Number

|                                                   |              |                                                           | U.S. PA                        | ATENT DOCUMENTS                                 |                                                                                    |
|---------------------------------------------------|--------------|-----------------------------------------------------------|--------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------|
| Examiner Initials*                                | Cite<br>No.1 | Document Number  Number-Kind Code <sup>2</sup> (if known) | Publication Date<br>MM-DD-YYYY | Name of Patentee or Applicant of Cited Document | Pages, Columns, Lines,<br>Where Relevant<br>Passages or Relevant<br>Figures Appear |
| MI                                                | AA           | 6,469,364                                                 | 10/2002                        | Kozicki                                         | · Igureo / ppea/                                                                   |
| 1                                                 | AB           | 2002/0168820 App.                                         | 11/2002                        | Kozicki                                         |                                                                                    |
|                                                   | AC           | 2002/0072188 App                                          | 6/2002                         | Gilton                                          | 1                                                                                  |
|                                                   | AD           | 2002/0123169 App                                          | 9/2002                         | Moore et al.                                    |                                                                                    |
|                                                   | AE           | 2002/0123248 App.                                         | 9/2002                         | Moore et al.                                    |                                                                                    |
|                                                   | AF           | 3,622,319                                                 | 11/1971                        | Sharp                                           |                                                                                    |
|                                                   | AG           | 3,743,847                                                 | 7/1973                         | Boland                                          |                                                                                    |
|                                                   | AH           | 4,269,935                                                 | 5/1981                         | Masters et al.                                  |                                                                                    |
|                                                   | ΑI           | 4,312,938                                                 | 1/1982                         | Drexler, et al.                                 |                                                                                    |
|                                                   | AJ           | 4,316,946                                                 | 1/1982                         | Masters, et al.                                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                              |
|                                                   | AK           | 4,320,191                                                 | 3/1982                         | Yoshikawa et al.                                |                                                                                    |
|                                                   | AL           | 4,405,710                                                 | 9/1983                         | Balasubramanyam et al.                          | 1 1                                                                                |
|                                                   | AM           | 4,419,421                                                 | 12/1983                        | Wichelhaus, et al.                              | 1 1                                                                                |
|                                                   | AN           | 4,795,657                                                 | 1/1989                         | Formigoni et al.                                | \ \ \                                                                              |
|                                                   | AO           | 4,847,674                                                 | 7/1989                         | Sliwa et al.                                    |                                                                                    |
|                                                   | AP           | 4,499,557                                                 | 2/1985                         | Holmberg et al.                                 | 1                                                                                  |
| <del>                                     </del>  | AQ           | 5,177,567                                                 | 1/1993                         | Klersy et al.                                   | \ /                                                                                |
|                                                   | AR           | 5,219,788                                                 | 6/1993                         | Abernathey et al.                               | <del></del>                                                                        |
|                                                   | AS           | 5,238,862                                                 | 8/1993                         | Blalock et al.                                  | 1                                                                                  |
|                                                   | AT           | 5,315,131                                                 | 5/1994                         | Kishimoto et al.                                |                                                                                    |
|                                                   | AU           | 5,350,484                                                 | 9/1994                         | Gardner et al.                                  |                                                                                    |
|                                                   | AV           | 5,360,981                                                 | 11/1994                        | Owen et al.                                     | 1Λ                                                                                 |
| <del>. ]                                   </del> | AW           | 5,512,328                                                 | 4/1996                         | Yoshimura et al.                                | <del>-                                     </del>                                  |
|                                                   | AX           | 5,512,773                                                 | 4/1996                         | Wolf et al.                                     | <del></del>                                                                        |
|                                                   | AY           | 5,726,083                                                 | 3/1998                         | Takaishi                                        |                                                                                    |
|                                                   | AA1          | 5,841,150                                                 | 11/1998                        | Gonzalez et al.                                 | <del>                                     </del>                                   |
|                                                   |              | 5,846,889                                                 | 12/1998                        | Harbison et al.                                 |                                                                                    |
| <del>                                     </del>  |              | 5.920.788                                                 | 7/1999                         | Reinberg                                        | <del>                                      </del>                                  |
|                                                   |              | 5,998,066                                                 | 12/1999                        | Block et al.                                    |                                                                                    |
|                                                   |              | 6.077.729                                                 | 6/2000                         | Harshfield                                      | <del>                                     </del>                                   |
|                                                   |              | 6,117,720                                                 | 9/2000                         | Harshfield                                      |                                                                                    |
|                                                   |              | 6,143,604                                                 | 11/2000                        | Chiang et al.                                   | <del>                                     </del>                                   |
|                                                   |              | 6,177,338                                                 | 1/2001                         | Liaw et al.                                     |                                                                                    |
|                                                   | Al1          | 6,236,059                                                 | 5/2001                         | Wolstenholme et al.                             | <del></del>                                                                        |
|                                                   | AJ1          | 6,297,170                                                 | 10/2001                        | Gabriel et al.                                  |                                                                                    |
| <del>    </del>                                   |              | 6,300,684                                                 | 10/2001                        | Gonzalez et al.                                 | <del>                                     </del>                                   |
|                                                   | AL1          | 6,316,784                                                 | 11/2001                        | Zahorik et al.                                  | /                                                                                  |
| <del>                                     </del>  |              | 6,329,606                                                 | 12/2001                        | Freyman et al.                                  | <del></del>                                                                        |
|                                                   |              | 6,350,679                                                 | 2/2002                         | McDaniel et al.                                 | <del></del>                                                                        |
| <del></del>                                       |              | 6,376,284                                                 | 4/2002                         | Gonzalez et al.                                 | <del>-                                     </del>                                  |
| <del>                                     </del>  |              | 6,391,688                                                 | 5/2002                         | Gonzalez et al.                                 | <del></del>                                                                        |
| <del></del>                                       |              | 6,414,376                                                 | 7/2002                         | Thakur et al.                                   | /                                                                                  |
| 1                                                 |              | 6,423,628                                                 | 7/2002                         | Li et al.                                       |                                                                                    |
|                                                   | AS1          | 6,487,106                                                 | 11/26/2002                     | Kozicki                                         |                                                                                    |
| 1                                                 | AT1          | 5,314,772                                                 | 5/24/1994                      | Kozicki                                         | 1/                                                                                 |
|                                                   |              | 0,017,772                                                 | JIZ41 1334                     | INUZIONI                                        |                                                                                    |



| Su    | bstitute for form 1449A/PTO |         |            | Complete if Known      |                  |  |
|-------|-----------------------------|---------|------------|------------------------|------------------|--|
| -     |                             |         |            | Application Number     | 10/081,594       |  |
|       | NFORMATION                  | 1 DI    | SCLOSURE   | Filing Date            | February 20,2002 |  |
| 9     | STATEMENT                   | 3Y /    | APPLICANT  | First Named Inventor   | Terry L. Gilton  |  |
|       |                             |         |            | Art Unit               | 2818             |  |
|       | (use as many sh             | eets as | necessary) | Examiner Name          | Connie C. Yoha   |  |
| Sheet | 2                           | of      | 4          | Attorney Docket Number | M4065.0726/P726  |  |

| 1 / | Jk: | AU1 | 2002/0190350 APP  | 12/19/2002 | Kozicki                | $ \nabla$ |
|-----|-----|-----|-------------------|------------|------------------------|-----------|
|     |     | AV1 | 2003/0027416 APP  | 2/6/2003   | Moore                  |           |
|     |     | AW1 | 2003/0001229 APP  | 1/2/2003   | Moore et al.           |           |
|     |     | AX1 | 2002/0106849 APP  | 8/8/2002   | Moore                  |           |
|     |     | AY1 | 2002/0127886 APP  | 9/12/2002  | Moore et al.           |           |
|     |     | AZ1 | 2002/0123170 APP  | 9/5/2002   | Moore et al.           |           |
| ٠.  |     | BA1 | 2002/0163828 APP  | 11/2002    | Krieger et al          |           |
|     |     | BB1 | 6,072,716         | 6/2000     | Jacobson et al.        |           |
|     | 1   | BC1 | 5,272,359         | 12/93      | Nagasubramanian et al. |           |
|     |     | BD1 | 4,671,618         | 6/87       | Wu et al.              |           |
|     |     | BE1 | 4,800,526         | 1/89       | Lewis                  |           |
|     |     | BF1 | 2003/0035314      | 02/20/03   | Kozicki                |           |
|     |     | BG1 | 2003/0035315      | 02/20/03   | Kozicki                |           |
|     |     | BH1 | 6,473,332 10/2005 | 04/04/01   | Ignatiev et al.        |           |





PTO/SB/08A (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

| Substitute for form 1449A/PTO |                   | 4       | Complete if Known |                        |                  |  |
|-------------------------------|-------------------|---------|-------------------|------------------------|------------------|--|
|                               |                   |         |                   | Application Number     | 10/081,594       |  |
| ١N                            | <b>NFORMATION</b> | 1 DI    | SCLOSURE          | Filing Date            | February 20,2002 |  |
| S                             | TATEMENT B        | 3Y /    | APPLICANT         | First Named Inventor   | Terry L. Gilton  |  |
|                               |                   |         |                   | Art Unit               | 2818             |  |
|                               | (use as many she  | eets as | necessary)        | Examiner Name          | Connie C. Yoha   |  |
| Sheet                         | 3                 | of      | 4                 | Attorney Docket Number | M4065.0726/P726  |  |

|                       |       | FOREI                                                                             | GN PATENT        | DOCUMENTS                   |                                          |
|-----------------------|-------|-----------------------------------------------------------------------------------|------------------|-----------------------------|------------------------------------------|
| Examiner<br>Initials* | Cite  | Foreign Patent Document                                                           | Publication Date | Name of Patentee or         | Pages, Columns, Lines,<br>Where Relevant |
|                       | No.1  | Country Code <sup>3</sup> -Number <sup>4</sup> -Kind Code <sup>5</sup> (if known) | MM-DD-YYYY       | Applicant of Cited Document | Passages or Relevant<br>Figures Appear   |
| Max                   | BA    | JP 56126916                                                                       | 10/1981          | Akira et al.                | -                                        |
| /                     | ВВ    | -                                                                                 |                  |                             |                                          |
|                       |       |                                                                                   |                  |                             | _                                        |
| Examine               | r I / |                                                                                   | :                | Date                        | 1/2                                      |

Considered

<sup>\*</sup>EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

<sup>&</sup>lt;sup>1</sup> Applicant's unique citation designation number (optional). <sup>2</sup> See attached Kinds Codes of USPTO Patent Documents at <a href="www.uspto.gov">www.uspto.gov</a> or MPEP 901.04. <sup>3</sup> Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). <sup>4</sup> For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. <sup>5</sup> Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. <sup>5</sup> Applicant is to place a check mark here if English language Translation is attached.

| Substitute for form 1449A/PTO                 |   | Complete if Known |           |                        |                                   |  |
|-----------------------------------------------|---|-------------------|-----------|------------------------|-----------------------------------|--|
|                                               |   |                   |           | Application Number     | 10/081,594                        |  |
| INFORMATION DISCLOSURE STATEMENT BY APPLICANT |   |                   | SCLOSURE  | Filing Date            | February 20,2002  Terry L. Gilton |  |
|                                               |   |                   | APPLICANT | First Named Inventor   |                                   |  |
|                                               |   |                   |           | Art Unit               | 2818                              |  |
| (use as many sheets as necessary)             |   |                   |           | Examiner Name          | Connie C. Yoha                    |  |
| Sheet                                         | 4 | M4                | 4 .       | Attorney Docket Number | M4065.0726/P726                   |  |

|                     | T.                       | OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS                                                                                                                                                                                                              |   |  |  |  |  |  |
|---------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
| Examiner<br>nitials | Cite<br>No. <sup>1</sup> | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published. |   |  |  |  |  |  |
| MX                  | CA                       | Axon Technologies Corporation, TECHNOLOGY DESCRIPTION: <i>Programmable Metalization Cell(PMC)</i> , pp. 1-6 (Pre-May 2000).                                                                                                                                    |   |  |  |  |  |  |
| Í                   | СВ                       | Helbert et al., Intralevel hybrid resist process with submicron capability, SPIE Vol. 333 SUBMICRON LITHOGRAPHY, pp. 24-29 (1982).                                                                                                                             |   |  |  |  |  |  |
|                     | СС                       | Hilt, DISSERTATION: Materials characterization of Silver Chalcogenide Programmable Metalization Cells, Arizona State University, pp. Title page-114 (UMI Company, May 1999).                                                                                   |   |  |  |  |  |  |
|                     | CD                       | Hirose et al., High Speed Memory Behavior and Reliability of an Amorphous As <sub>2</sub> S <sub>3</sub> Film Doped Ag, PHYS. STAT. Sol. (a) 61, pp. 87-90 (1980).                                                                                             |   |  |  |  |  |  |
|                     | CE                       | Holmquist et al., Reaction and Diffusion in Silver-Arsenic Chalcogenide Glass Systems, 62 J. AMER. CERAM. Soc., No. 3-4, pp. 183-188 (March-April 1979).                                                                                                       |   |  |  |  |  |  |
|                     | CF                       | Huggett et al., Development of silver sensitized germanium selenide photoresist by reactive sputter etching in SF <sub>6</sub> , 42 APPL. PHYS. LETT., No. 7, pp. 592-594 (April 1983).                                                                        |   |  |  |  |  |  |
|                     | CG                       | Kawaguchi et al., Mechanism of photosurface deposition, 164-166 J. Non-CRYST. SOLIDS, pp. 1231-1234 (1993).                                                                                                                                                    |   |  |  |  |  |  |
|                     | СН                       | Kolobov and Elliott, Photodoping of Amorphous Chalcogenides by Metals, Advances in Physics, Vol. 40, No 5, 625-684 (1991).                                                                                                                                     |   |  |  |  |  |  |
|                     | CI                       | Kozicki, et al., "Applications of Programmable Resistance Changes in Metal-doped Chalcogenides", Proceedings of the 1999 Symposium on Solid State Ionic Devices, Editors - E.D. Wachsman et al., The Electrochemical Society, Inc., 1 - 12 (1999).             |   |  |  |  |  |  |
|                     | CJ                       | Kozicki, et al., Nanoscale effects in devices based on chalcogenide solid solutions, Superlattices and Microstructures, 27, 485-488 (2000).                                                                                                                    |   |  |  |  |  |  |
| )                   | CK                       | Kozicki, et al., Nanoscale phase separation in Ag-Ge-Se glasses, Microelectronic Engineering, vol. 63/1-3,155-159 (2002).                                                                                                                                      |   |  |  |  |  |  |
|                     | CL                       | M.N. Kozicki and M. Mitkova, Silver incorporation in thin films of selenium rich Ge-Se glasses, Proceedings of the XIX International Congress on Glass, Society for Glass Technology, 226-227 (2001).                                                          |   |  |  |  |  |  |
|                     | СМ                       | McHardy et al., The dissolution of metals in amorphous chalcogenides and the effects o electron and ultraviolet radiation, 20 J. Phys. C.: SOLID STATE Phys., pp. 4055-4075 (1987)f                                                                            |   |  |  |  |  |  |
|                     | CN                       | Owen et al., Metal-Chalcogenide Photoresists for High Resolution Lithography and Sub-Micron Structures, NANOSTRUCTURE PHYSICS AND FABRICATION, pp. 447-451 (M. Reed ed. 1989).                                                                                 |   |  |  |  |  |  |
|                     | со                       | Shimizu et al., The Photo-Erasable Memory Switching Effect of Ag Photo-Doped Chalcogenide Glasses, 46 B. CHEM SOC. JAPAN, No. 12, pp. 3662-3365 (1973).                                                                                                        |   |  |  |  |  |  |
|                     | CP                       |                                                                                                                                                                                                                                                                |   |  |  |  |  |  |
|                     | CQ                       |                                                                                                                                                                                                                                                                |   |  |  |  |  |  |
|                     |                          |                                                                                                                                                                                                                                                                |   |  |  |  |  |  |
|                     | ,                        |                                                                                                                                                                                                                                                                | - |  |  |  |  |  |
|                     |                          |                                                                                                                                                                                                                                                                | Γ |  |  |  |  |  |

| Examiner<br>Signature | Means | workers | Date<br>Considered | 08/03 |   |
|-----------------------|-------|---------|--------------------|-------|---|
|                       | 10,   |         |                    |       | _ |

<sup>\*</sup>EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

<sup>&</sup>lt;sup>1</sup>Applicant's unique citation designation number (optional). <sup>2</sup>Applicant is to place a check mark here if English language Translation is attached.