

Variability is the law of life, and as no two faces are the same, so... no two individuals react alike and behave alike under the abnormal conditions which we know as disease. – William Osler

Changing External Environment

Non-competitive health outcomes

Bert Vogelstein, Nickolas Papadopoulos, Victor E. Velculescu, Shibin Zhou, Luis A. Diaz Jr., and Kenneth W. Kinzler*

The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer

Unaffordable health care

How can JHU disrupt, then lead medicine toward affordable health in the next 100 years?

Embrace meaningful variation in patients and in their treatment effects; variation represents a natural experiment; organize to learn from it; teach others to do the same.

Stratify (subset) diverse patients into subgroups and learn to treat each stratum optimally, as we have done better than anyone for 100 years.

Develop and disseminate knowledge/tools to enable increasingly precise definition of subgroups and management of patients; e.g. Oncospace

Build on Current JHU/JHHS/APL Strengths

Play Doctor (even if not on TV)

- 40 year old man, no family history of disease X, tests "positive" in a screening test
- What is his disease state?
- What action do you, his doctor recommend to him?

Data from population of "similar" people

		True cancer status		
	Test result	Yes	No	Total
Г	Positive	15	985	1,000
	Negative	5	8,995	9000
	Total	20	9,980	10,000

September 30, 2014

Common Questions about Patient and Population Health

- 1. What is the person's health state given health measurements?
- 2. What is the person's health "trajectory"?
- 3. Does a particular intervention improve health on average; for a particular person?
- 4. Is the intervention being used optimally? How much does it the population's health at what cost?

Complementary Approaches

- Expand biomedical knowledge
 - Discovery of mechanisms
 - Novel measurements of underlying processes

Use existing science and measurement more intelligently

A data system designed to individualize radiation therapy

Todd McNutt, Kim Evans, Joe Moore, Harry Quon, Joseph Herman, Andrew Sharabi, Wuyang Yang, John Wong, Theodore DeWeese

Disclosure: Funding from Elekta and Philips

Sample Automated Radiation Plan

Clinical and **Public** Health Discovery

> **Scale** and replicate

Improved Health at More Affordable Costs

> Scale and replicate

Biohealth Pilot Projects

Cancer screening

OncoSpace in **Radiation Oncology**

Cardiovascular disease diagnosis and treatment

Management of autoimmune diseases

Genomics of cystic fibrosis

Telomere biology and chronic diseases

Myostatin in sarcopenia

Population Health Demonstration

Cancer screening and early diagnosis

> Cardiovascular disease

Age-related cognitive loss

Obesity and Diabetes

Children's asthma prevention and control

Methodology Cores

Health measurement

Bioethics

Data and software solutions

Statistical design and analysis

Behavior change and dissemination

Finance organization models

Open Source Learning Environment for Research *in*Health OSLER *in*Health

- Concept for R-package
- Primitives
 - Input
 - access data from standard (e.g. EPIC/Cogito; TransMart) data warehouses
 - Data structures
 - Encounter < subject x clinician(s) < practice group < population
 - Functionality
 - Embed (individual, within "otherwise similar(x)" population, distance metric and limit (d)
 - Specifying local sub-models; integrating results
- Your ideas and developers welcome

Statistical Model Components

State Equations

- 1. Health state model
 - 1a. Health state definition
 - 1b. Health state trajectory
 - 1c. Covariate and intervention effects on health state

2. Intervention model

Observation Equations

3. Measurement model

Embedding within Relevant Population

Observations (Y) that Inform about Health State through Coefficients (ϕ_i)

Pilot Funding Process

RFAs to be released within 3 months covering Measurement Analytics

Phase 1

- Award 8 pilot applicants with \$50K for 8 months
- Pilots that meet their defined goal at the end of 8 months receive \$25K for additional 4 months
- Potential funding per pilot = \$75K over 1 year
- Pilots that successfully complete Phase 1 are eligible to apply for continued funding (Phase 2)

Pilot Funding Process (continued)

Phase 2

- Award 3-5 pilot applicants with \$100K \$150K
 for 12 months
- Requirements
 - Implementation of pilot solution at Johns Hopkins by end of Phase 2
 - Submission of external funding application

Total potential funding through Phases 1 and 2 = \$175K - \$225K over 2 years

How To Get Involved

Apply to become a member of the Hopkins in Health community

- Visit http://hopkinsinhealth.jhu.edu/
- Click "Join Us" and follow instructions

Benefits of Hopkins in Health membership

- Eligibility for forthcoming pilot funding
- Updates on research findings, news, etc.
- Development of partnerships/access to data

tootaa ttttgo aaaatt actttt tattag tggcag acaggg

tcaatttaga atgtagt attcagtttg acattttccc ataggcaaaa actagatgga tcccttttgc

Color

tactacaggg aaaatctatt gaagaaatga ttagaacccc cagtatettt atgttaatte aaataataca caccaaataa

tgtaagttet ttagaacccc ttaggaagca atgtagtett

Thank you

http://hopkinsinhealth.jhu.edu/

Click "Join Us" to apply for membership