Digital Logic Design (EL-1005) LABORATORY MANUAL Spring-2022

LAB 08 Binary Comparator

	MARKS AW	ARDED:	/10
	INSTRUCT	OR SIGNATURE&	DATE
STUDENT NAME	ROLL NO	SEC	

Lab Session 08: Binary Comparator

OBJECTIVES:

- > To learn and understand how to design a multiple output combinational circuit
- ➤ To learn and understand the working of 2-bit binary comparator
- > To learn and understand the working and usage of Exclusive-OR and Exclusive-NOR gates

APPARATUS: Logic trainer, Logic probe

COMPONENTS: ICs 74LS08, 74LS32, 74LS04, 74LS86, 74LS02

THEORY:

Binary comparator is a combinational circuit that compares magnitude of two binary data signals A & B and generates the results of comparison in the form of three output signals A>B, A=B, A<B. Binary comparator is a multiple input and multiple output combinational circuit. When a combinational circuit has two or more than two outputs then each output is expressed separately as a function of all inputs. Separate K-map is made for each output.

One-bit comparator:

One-bit comparator compares magnitude of two numbers A and B, 1 bit each, and generates the comparison result. The result consists of three outputs let us say L, E, G, so that

$$L = 1 if A < B$$

$$E = 1 if A = B$$

$$G = 1 if A > B$$

Truth Table:

Inputs		Outputs		
A	В	L	E	G
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

K-Maps for Outputs:

K-Map for Output L

K-Map for Output E

K-Map for Output G

Boolean Expressions of Outputs:

L: $\bar{A}B$

E: $AB + \bar{A}\bar{B}_{-}$

G: $A\bar{B}_{-}$

Exclusive-OR & Exclusive-NOR gates:

The figure given below shows the symbol of Exclusive-OR (XOR) and Exclusive-NOR (XNOR) gates.

XNOR gate

XOR gate

Boolean expression of XNOR gate is

 $AB + \bar{A}\bar{B}$ and Boolean expression of XOR is $\bar{A}B + A\bar{B}$

.Boolean expression of XNOR gate can be implemented using XOR gate as shown in figure below:

Circuit Diagram for one-bit comparator:

In this experiment 74LS86 IC will be used for implementation of XOR gate function. 74LS86 IC contains four 2-input XOR gates. The function table and connection diagram for this IC are shown below:

Function Table:

Inputs		Output
A	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

H= Logic High, L= Logic Low

Connection Diagram:

Lab Task #1

Design a combinational circuit that compares two 2-bit numbers and generates the comparison result. The result consists of three outputs let us say L, E, G, so that

$$L = 1 if A < B$$

$$E = 1 if A = B$$

$$G = 1 if A > B$$

1. Write truth table

2.	Find minimal SOP expressions for the outputs L, E, and G using K-map. Draw separate K			
	map for each output in the space given below			
	<u> </u>			
	ment the combinational circuit of 2-Bit Binary comparator on Logisim/Logic Works.			
	n Full Adder IC in Logic Works			
-				
	RUCTION FOR SUBMISSION ad circuits of Task # 3 on Google Classroom			
- Prot	a chests of function of coope chapmoni			