Informe Técnico — Pipeline de Datos COVID-19

Santiago Pardo

1. Arquitectura del Pipeline

Descripción general:

El pipeline de datos COVID-19 está diseñado para procesar información diaria de casos y vacunación de OWID, centrado en Ecuador y un país comparativo (Argentina). Se implementa en Dagster, aprovechando la filosofía de Software-Defined Assets (SDA), donde cada asset representa un paso claro del pipeline y puede ser monitorizado de forma independiente.

Diagrama de Assets

2. Justificación de Decisiones de Diseño

- **Elección de Dagster:** Permite estructurar cada paso como un asset independiente y facilita testing, monitoreo y escalabilidad. Los Asset Checks permiten validar la calidad de los datos directamente en la UI.
- Uso de Pandas: Brinda herramientas rápidas de manipulación y agregación de datos, suficiente para los datasets diarios de OWID.
- Validaciones de Entrada y Salida: Previenen errores e inconsistencias. Los chequeos de entrada aseguran columnas esenciales y valores válidos; los de salida verifican que las métricas estén dentro de rangos razonables.
- **Filtrado a países específicos:** Focaliza el análisis en Ecuador y Argentina, asegurando relevancia para la interpretación de resultados.

• **Limpieza de datos:** Se eliminan duplicados y valores críticos nulos, garantizando métricas confiables y consistentes.

3. Procesamiento de Datos

El asset datos_procesados realiza los siguientes pasos:

- 1. **Copia del DataFrame original** para evitar modificaciones no deseadas en la fuente de datos.
- 2. **Renombrado de columnas inconsistentes**: si existe la columna country, se renombra a location para mantener consistencia con las validaciones y métricas.
- 3. Eliminación de filas con datos críticos nulos:
 - o new_cases: necesario para cálculo de incidencia y factor de crecimiento.
 - o people vaccinated: permite análisis de cobertura de vacunación.
- 4. **Eliminación de duplicados**: se conserva la fila más reciente por (location, date) para reflejar revisiones oficiales.
- 5. Filtrado a países de interés (Ecuador y Argentina) para análisis comparativo.
- 6. Selección de columnas esenciales:
 - o location, date, new_cases, people_vaccinated, population
 - Esto asegura que el DataFrame resultante sea compacto y eficiente para cálculo de métricas.

4. Validaciones y Control de Calidad

Estas reglas permiten asegurar integridad estructural y lógica del dataset antes de generar métricas, evitando cálculos inválidos o inconsistentes.

4.1 Chequeos de Entrada

Reglas aplicadas:

Regla	Resultado	Severidad
$\max(\text{date}) \leq \text{hoy}$	OK	WARN si falla
Columnas clave location, date, population no	OK	ERROR si falla
nulas		
Unicidad (location, date)	OK	WARN si hay
		duplicados
population > 0	OK	ERROR si hay valores
		≤0
new_cases >= 0 (permitidos negativos	OK	WARN si hay
documentados)		negativos

4.2 Chequeos de Salida

- Incidencia 7d:
 - Valores deben estar en [0, 2000].
 - o Detecta picos anómalos o errores de cálculo.
- Factor de crecimiento 7d:
 - Valores deben ser ≥ 0 y finitos.
 - o Evita divisiones por cero o valores no definidos.

5. Cálculo de Métricas

A. Incidencia acumulada a 7 días por 100k habitantes

Fórmula:

- incidencia_diaria = (new_cases / population) * 100000
- incidencia_7d = promedio móvil de 7 días de incidencia_diaria

Interpretación:

Esta métrica normaliza los casos según la población y refleja la tendencia reciente de la epidemia.

Ecuador y Argentina, 2021-07-01:

fecha	país	incidencia_7d	
2021-07-01	Ecuador	7.53	
2021-07-01	Argentina	42.04	

B. Factor de crecimiento semanal (7 días)

Fórmula:

- casos_semana_actual = suma(new_cases de los últimos 7 días)
- casos_semana_prev = suma(new_cases de los 7 días previos)
- factor_crec_7d = casos_semana_actual/casos_semana_prev

Interpretación:

- factor_crec_7d>1 → la epidemia está creciendo.
- factor_crec_7d < 1 \rightarrow la epidemia está decreciendo.

Ecuador y Argentina, semana 2021-07-07:

semana_fin	país	casos_semana	factor_crec_7d
2021-07-07	Ecuador	6462	0.63
2021-07-07	Argentina	119726	0.88

6. Exportación de Resultados

- Generación de reporte_covid.xlsx con hojas:
 - o datos_procesados
 - o incidencia_7d

- o factor_crec_7d
- Exportación adicional de CSVs ligeros por métrica.

Ubicación: data/outputs/

7. Análisis y Visualización de Datos COVID-19

Se observa que los primeros días de cada serie contienen valores nulos o infinitos debido a que el cálculo de la media móvil de 7 días (incidencia) y del factor de crecimiento requiere datos de semanas previas. Para el análisis y visualización, estas filas fueron ignoradas.

Incidencia 7d por 100k habitantes:

- Argentina tuvo mayor incidencia promedio (10.86) y picos más altos (hasta 245) que Ecuador (promedio 2.99, máximo 51.6).
- La mayoría de los días muestran valores bajos, pero existen días con picos importantes.
- La gráfica muestra tendencia estable en Ecuador y más fluctuaciones en Argentina.

Factor de crecimiento semanal (7d):

• Valores cercanos a 1 predominan, indicando estabilidad.

- Argentina y Ecuador presentan semanas de crecimiento (>1) y decrecimiento (<1).
- No se encontraron valores extremos en ninguna métrica.

Conclusión:

Argentina presenta mayor variabilidad e incidencia que Ecuador, mientras que el factor de crecimiento semanal muestra estabilidad en la mayoría de los periodos.