1 Двоен интеграл върху правоъгълник

1.1 Схема на Дарбу

1.1.1 Правоъгълник

- ullet правоъгълник $\Delta=[a,\,b] imes[p,\,q]$, отворен правоъгълник $\Delta^0=(a,\,b) imes(p,\,q)$
- лице $S\left(\Delta\right)=S\left(\Delta^0\right)=(b-a)(q-p)$, диаметър $d\left(\Delta\right)=d\left(\Delta^0\right)=\sqrt{(b-a)^2+(q-p)^2}$
- разрязване $a=x_0 < x_1 < x_2 < \ldots < x_n=b$, $p=y_0 < y_1 < y_2 < \ldots < y_k=q$, означение $\tilde{x}, \tilde{y};$ $\Delta_{i,j}=[x_{i-1},\,x_i]\times [y_{j-1},\,y_j]$
- диаметър на разрязването $d\left(\tilde{x},\tilde{y}\right) = \max_{1 \leq i \leq n,\, 1 \leq j \leq k} d\left(\Delta_{i,\,j}\right)$
- $\sum_{i=1}^{n} \sum_{j=1}^{k} S(\Delta_{i,j}) = S(\Delta)$
- по-дребно разрязване
- обединение на правоъгълници представяне като "базисно" обединение, което означава, че правите, на които лежат страните им, не пресичат други от тях във вътрешни точки

1.1.2 Суми на Дарбу

Нека f е ограничена в правоъгълник Δ . За разрязване \tilde{x}, \tilde{y} определяме

• $m_{i,j} = \inf \{ f(x, y) : (x, y) \in \Delta_{i,j} \}$

- $M_{i,j} = \sup \{ f(x, y) : (x, y) \in \Delta_{i,j} \}$
- ullet "малка" сума на Дарбу $\mathbf{s}\left(f,\;\Delta,\; ilde{x}, ilde{y}
 ight)=\sum_{i=1}^{n}\sum_{j=1}^{k}m_{i,\,j}S\left(\Delta_{i,\,j}
 ight)$
- ullet "голяма" сума на Дарбу $\mathbf{S}\left(f,\;\Delta,\; ilde{x}, ilde{y}
 ight)=\sum_{i=1}^{n}\sum_{j=1}^{k}M_{i,j}S\left(\Delta_{i,j}
 ight)$
- тривиално неравенство $\mathbf{s}(f, \Delta, \tilde{x}, \tilde{y}) \leq \mathbf{S}(f, \Delta, \tilde{x}, \tilde{y})$

1.1.3 Дефиниция на двоен интеграл върху правоъгълник

- малките суми нарастват
- голямите суми намаляват
- $\mathbf{s}(f, \Delta, \tilde{x}, \tilde{y}) \leq \mathbf{S}(f, \Delta, \tilde{u}, \tilde{v})$ за всеки две \tilde{x}, \tilde{y} и \tilde{u}, \tilde{v}
- $\underline{I} = \sup_{\tilde{x}, \tilde{y}} \mathbf{s}\left(f, \ \Delta, \ \tilde{x}, \tilde{y}\right) \leq \mathbf{S}\left(f, \ \Delta, \ \tilde{u}, \tilde{v}\right)$ за всяко \tilde{u}, \tilde{v}

•
$$\underline{I} \leq \inf_{\tilde{u}, \tilde{v}} \mathbf{S}(f, \Delta, \tilde{u}, \tilde{v}) = \overline{I}$$

Казваме, че ограничената в Δ функция f е интегруема върху Δ , ако $\underline{I}=\overline{I}$ Двоен интеграл върху правоъгълник – $\iint_{\Delta} f(x,y) \, dx dy$ – единственото число между малките и големите суми на Дарбу

1.1.4 Примери

- 1. $\chi_{\mathbb{Q} imes \mathbb{Q}}$ не е интегруема върху никой правоъгълник
- 2. Константите са интегруеми върху всеки правоъгълник и $\iint\limits_{\Delta} C \, dx dy = CS(\Delta)$
- 3. "Стъпаловидните" функции са интегруеми.
- 4. Необходимо и достатъчно условие за интегруемост

Ограничената в Δ функция f е интегруема върху Δ тогава и само тогава, когато за всяко $\varepsilon>0$ има разрязване \tilde{x},\tilde{y} на Δ , за което

$$\mathbf{S}(f, \Delta, \tilde{x}, \tilde{y}) - \mathbf{s}(f, \Delta, \tilde{x}, \tilde{y}) < \varepsilon$$

1.2 Интегруеми функции

1. Нека за всяко $y \in [p, q]$ функцията $\varphi_y(x) = f(x, y)$ е монотонно растяща в [a, b] и за всяко $x \in [a, b]$ функцията $\psi_x(y) = f(x, y)$ е монотонно растяща в [p, q]. Тогава f е интегруема върху $\Delta = [a, b] \times [p, q]$.

Доказателство: Полагаме $x_i = a + i \cdot \frac{b-a}{n}$, $i = 0, 1, \ldots n$ и $y_j = p + j \cdot \frac{q-p}{n}$, $j = 0, 1, \ldots n$. Тогава $m_{i,j} = f(x_{i-1}, y_{j-1})$, $M_{i,j} = f(x_i, y_j)$, $S(\Delta_{i,j}) = \frac{S(\Delta)}{n^2}$ и

$$\mathbf{S}(f, \Delta, \tilde{x}, \tilde{y}) - \mathbf{s}(f, \Delta, \tilde{x}, \tilde{y}) = \frac{S(\Delta)}{n^2} \left(\sum_{i=1}^n f(x_i, y_n) + \sum_{j=1}^{n-1} f(x_n, y_j) - \sum_{i=0}^{n-1} f(x_i, y_0) - \sum_{j=1}^{n-1} f(x_0, y_j) \right) \leq \frac{(2n-1)S(\Delta)}{n^2} \left(f(x_n, y_n) - f(x_0, y_0) \right).$$

За $\varepsilon > 0$ е достатъчно да изберем n толкова голямо, че $\frac{(2n-1)S(\Delta)}{n^2}\left(f(x_n,\,y_n) - f(x_0\,y_0)\right) < \varepsilon$.

2. Ако f е непрекъсната в $\Delta = [a, b] \times [p, q]$, то f е интегруема върху Δ .

Доказателство: Съгласно теоремата за равномерна непрекъснатост, f е равномерно непрекъсната върху Δ . Следователно, за всяко $\varepsilon > 0$ съществува $\delta > 0$, за което от $\sqrt{(x^{**}-x^*)^2+(y^{**}-y^*)^2} < \delta$ следва $|f(x^*,y^*)-f(x^{**},y^{**})| < \frac{\varepsilon}{S(\Delta)}$. Избираме n толкова голямо, че $\frac{\sqrt{(b-a)^2+(q-p)^2}}{n} < \delta$. Полагаме $x_i = a+i\cdot\frac{b-a}{n}$, $i=0,1,\ldots n$ и $y_j = p+j\cdot\frac{q-p}{n}$, $j=0,1,\ldots n$. Имаме $S(\Delta_{i,j}) = \frac{S(\Delta)}{n^2}$. От теоремата на Вайерщрас, $m_{i,j} = f(x_i^*,y_j^*)$, $(x_i^*,y_j^*) \in \Delta_{i,j}$ и $M_{i,j} = f(x_i^{**},y_j^{**})$, $(x_i^{**},y_j^{**}) \in \Delta_{i,j}$, откъдето $M_{i,j} - m_{i,j} < \frac{\varepsilon}{S(\Delta)}$. Следователно,

$$\mathbf{S}\left(f,\ \Delta,\ \tilde{x},\tilde{y}\right) - \mathbf{s}\left(f,\ \Delta,\ \tilde{x},\tilde{y}\right) = \frac{S(\Delta)}{n^2} \sum_{i=1}^n \sum_{j=1}^n \left(M_{i,j} - m_{i,j}\right) < \frac{S(\Delta)}{n^2} \sum_{i=1}^n \sum_{j=1}^n \frac{\varepsilon}{S(\Delta)} = \varepsilon.$$

3. Ако f е ограничена в Δ и точките на прекъсване на f са множество с мярка 0 в смисъл на Пеано-Жордан, то f е интегруема върху Δ .

Доказателство: Нека \mathcal{A} е множеството от точки на прекъсване f, $M=\sup\{|f(x,y)|:(x,y)\in\Delta\}$. За $\varepsilon>0$ избираме краен брой правоъгълници Δ_1^* , Δ_2^* ... Δ_l^* , за които точките на \mathcal{A} са вътрешни за $\mathcal{B}=\bigcup_{s=1}^{\infty}\Delta_s^*$, $\sum_{s=1}^{l}S(\Delta_s^*)<\frac{\varepsilon}{4M}$ и които образуват "базисно" обединение със страни върху правите $x=x_s^*$, $y=y_s^*$. Множеството $\mathcal{C}=(\Delta\setminus\mathcal{B})\cup\partial\mathcal{B}$ е ограничено и затворено и f е непрекъсната в него. Съгласно теоремата за равномерна непрекъснатост, f е равномерно непрекъсната върху \mathcal{C} . Следователно, съществува $\delta>0$, за което от $\sqrt{(x^{**}-x^*)^2+(y^{**}-y^*)^2}<\delta$ следва $|f(x^*,y^*)-f(x^{**},y^{**})|<\frac{\varepsilon}{2S(\Delta)}$. Избираме n толкова голямо, $\sqrt{(b-a)^2+(q-p)^2}$

че
$$\frac{\sqrt{(b-a)^2+(q-p)^2}}{n} < \delta$$
. Полагаме $x_i^{**}=a+i\cdot\frac{b-a}{n}$, $i=0,\,1,\,\ldots\,n$ и $y_j^{**}=p+j\cdot\frac{q-p}{n}$, $j=0,\,1,\,\ldots\,n$. За всеки правоъгълник $\Delta_{i,\,j}$ от разделянето $\tilde{x}=\tilde{x^*}\cup \tilde{x^{**}}$, $\tilde{y}=\tilde{y^*}\cup \tilde{y^{**}}$ имаме точно две възможности:

1. $\Delta_{i,j} \subset \mathcal{B}$, тогава $M_{i,j} - m_{i,j} \leq 2M$ и

$$\sum_{\Delta_{i,j} \subset \mathcal{B}} (M_{i,j} - m_{i,j}) S(\Delta_{i,j}) \le 2M \sum_{\Delta_{i,j} \subset \mathcal{B}} S(\Delta_{i,j}) = 2M \sum_{s=1}^{l} S(\Delta_s^*) < \frac{\varepsilon}{2}.$$

2. $\Delta_{i,j} \subset \mathcal{C}$, тогава $M_{i,j} - m_{i,j} < \frac{\varepsilon}{2S(\Delta)}$ и

$$\sum_{\Delta_{i,j}\subset\mathcal{C}} \left(M_{i,j} - m_{i,j}\right) S(\Delta_{i,j}) < \frac{\varepsilon}{2S(\Delta)} \sum_{\Delta_{i,j}\subset\mathcal{C}} S(\Delta_{i,j}) \le \frac{\varepsilon n^2}{2S(\Delta)} \cdot \frac{S(\Delta)}{n^2} = \frac{\varepsilon}{2} .$$

Окончателно,

$$\mathbf{S}\left(f,\ \Delta,\ \tilde{x},\tilde{y}\right) - \mathbf{s}\left(f,\ \Delta,\ \tilde{x},\tilde{y}\right) = \sum_{\Delta_{i,j}\subset\mathcal{B}} \left(M_{i,j} - m_{i,j}\right)S(\Delta_{i,j}) + \sum_{\Delta_{i,j}\subset\mathcal{C}} \left(M_{i,j} - m_{i,j}\right)S(\Delta_{i,j}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

1.3 Множества с мярка 0 в смисъл на Пеано-Жордан

Нека $\mathcal{A} \subset \mathbb{R}^2$ е ограничено. Казваме, че \mathcal{A} има мярка 0 в смисъл на Пеано-Жордан, ако за всяко $\varepsilon > 0$ има краен брой правоъгълници $\Delta_1, \, \Delta_2 \dots \, \Delta_l, \,$ за които $\mathcal{A} \subset \bigcup_{s=1}^l \Delta_s \,$ и $\sum_{s=1}^l S(\Delta_s) < \varepsilon$.

Свойства

- 1. Ако \mathcal{A} има мярка 0 в смисъл на Пеано-Жордан, правоъгълниците $\Delta_1, \, \Delta_2 \, \dots \, \Delta_l$ могат да бъдат избрани така, че
 - точките на \mathcal{A} да са вътрешни за $\bigcup_{s=1}^l \Delta_s$
 - образуват "базисно" обединение
- 2. Ако $\mathcal{A} \subset \mathcal{B}$ и \mathcal{B} има мярка 0 в смисъл на Пеано-Жордан, то и \mathcal{A} има мярка 0 в смисъл на Пеано-Жордан.
- 3. Ако $\mathcal{A}_s,\ 1\leq s\leq l$ имат мярка 0 в смисъл на Пеано-Жордан, то и $\bigcup_{s=1}^t \mathcal{A}_s$ има мярка 0 в смисъл на Пеано-Жордан.
- 4. Нека $\varphi(t), \ \psi(t)$ са непрекъснати в интервал [u, v], като едната от тях има ограничена производна в (u, v). Тогава множеството $\Gamma = \{(\varphi(t), \psi(t)) : t \in [u, v]\}$ има мярка 0 в смисъл на Пеано-Жордан.

1.4 Дефиниция на Риман

1.4.1 Необходимо и достатъчно условие за интегруемост II

Ограничената в Δ функция f е интегруема върху Δ тогава и само тогава, когато за всяко $\varepsilon>0$ има $\delta>0$ такова, че за всяко разрязване \tilde{x},\tilde{y} на Δ , за което $d\left(\tilde{x},\tilde{y}\right)<\delta$, изпълнено $\mathbf{S}\left(f,\,\Delta,\,\tilde{x},\tilde{y}\right)-\mathbf{s}\left(f,\,\Delta,\,\tilde{x},\tilde{y}\right)<\varepsilon$

1.4.2 Риманови суми

Нека f е дефиниранана в правоъгълник Δ . За разрязване \tilde{x}, \tilde{y} и $(u_i, v_j) \in \Delta_{i,j}$ полагаме

$$\mathbf{R}(f, \Delta, (\tilde{x}, \tilde{y}), (\tilde{u}, \tilde{v})) = \sum_{i=1}^{n} \sum_{j=1}^{k} f(u_i, v_j) S(\Delta_{i,j})$$

Очевидно неравенство:

$$\mathbf{s}\left(f,\;\Delta,\;\left(\tilde{x},\tilde{y}\right)\right)\leq\mathbf{R}\left(f,\;\Delta,\;\left(\tilde{x},\tilde{y}\right),\left(\tilde{u},\tilde{v}\right)\right)\leq\mathbf{S}\left(f,\;\Delta,\;\left(\tilde{x},\tilde{y}\right)\right)$$

1.4.3 Дефиниция

Казваме, че функцията f е интегруема върху Δ , ако съществува число I такова, че за всяко $\varepsilon>0$ има $\delta>0$, за което

$$|\mathbf{R}(f, \Delta, (\tilde{x}, \tilde{y}), (\tilde{u}, \tilde{v})) - I| < \varepsilon$$

за всяко разрязване \tilde{x}, \tilde{y} с $d(\tilde{x}, \tilde{y}) < \delta$ и всеки набор $(u_i, v_j) \in \Delta_{i,j}$.

Двете дефиниции са еквивалентни.

1.5 Свойства

1.5.1 Линейност

1.
$$\iint\limits_{\Delta} \left(f(x,y) + g(x,y) \right) dx dy = \iint\limits_{\Delta} f(x,y) dx dy + \iint\limits_{\Delta} g(x,y) dx dy$$

2.
$$\iint_{\Delta} Cf(x,y)dxdy = C\iint_{\Delta} f(x,y)dxdy$$

1.5.2 Позитивност

$$f(x,y) \ge 0 \implies \iint_{\Delta} f(x,y) dx dy \ge 0$$

1.5.3 Адитивност

1. Нека правоъгълникът Δ е разрязан (с вертикална или хоризонтална права) на два правоъгълника Δ_1 и Δ_2 . Тогава

$$\iint\limits_{\Delta} f(x,y) dx dy = \iint\limits_{\Delta_1} f(x,y) dx dy + \iint\limits_{\Delta_2} f(x,y) dx dy$$

2. За всяко разрязване \tilde{x}, \tilde{y}

$$\iint\limits_{\Delta} f(x,y) dx dy = \sum_{i=1}^{n} \sum_{j=1}^{k} \iint\limits_{\Delta_{i,j}} f(x,y) dx dy$$

1.5.4 Интегруемост на модула

Ако f(x,y) е интегруема върху Δ , то |f(x,y)| е интегруема върху Δ .

1.5.5 Интегруемост на произведение

Ако f(x,y) и g(x,y) са интегруеми върху Δ , то f(x,y).g(x,y) е интегруема върху Δ .

1.6 Представяне на двоен интеграл като повторни

1.6.1 Теорема

Нека f(x,y) е интегруема върху правоъгълника $\Delta = [a,b] \times [p,q]$ и за всяко $x \in [a,b]$ функцията $\psi_x(y) = f(x,y)$ е интегруема в [p,q]. Тогава функцията $\varphi(x) = \int\limits_p^q \psi_x(y) dy$ е интегруема в [a,b]

и
$$\int_{a}^{b} \varphi(x)dx = \iint_{\Delta} f(x,y)dxdy$$
 .

1.6.2 Доказателство

Нека \tilde{x}, \tilde{y} е разрязване на Δ и $(x,y) \in \Delta_{i,j}$. Тогава $m_{i,j} \leq f(x,y) \leq M_{i,j}$. След интегриране, получаваме

$$m_{i,j}(y_j - y_{j-1}) \le \int_{y_{j-1}}^{y_j} f(x, y) dy \le M_{i,j}(y_j - y_{j-1})$$
.

Следователно,

$$\sum_{j=1}^{l} m_{i,j} (y_j - y_{j-1}) \le \int_{p}^{q} f(x, y) dy \le \sum_{j=1}^{l} M_{i,j} (y_j - y_{j-1}) ,$$

което означава, че $\varphi(x)$ е ограничена във всеки един от интервалите $[x_{i-1}, x_i]$ (а значи и в [a, b]) и

$$\sum_{j=1}^{l} m_{i,j} (y_j - y_{j-1}) \le m_i^{\varphi} = \inf \{ \varphi(x) : x \in [x_{i-1}, x_i] \} \le$$

$$\leq \sup \{ \varphi(x) : x \in [x_{i-1}, x_i] \} = M_i^{\varphi} \leq \sum_{j=1}^{l} M_{i,j} (y_j - y_{j-1}) .$$

След умножаване с $x_i - x_{i-1} > 0$ и сумиране по i получаваме

$$\mathbf{s}\left(f,\;\Delta,\;\left(\tilde{x},\tilde{y}\right)\right)\leq\mathbf{s}\left(\varphi,\;\left[a,\;b\right],\;\tilde{x}\right)\leq\mathbf{S}\left(\varphi,\;\left[a,\;b\right],\;\tilde{x}\right)\leq\mathbf{S}\left(f,\;\Delta,\;\left(\tilde{x},\tilde{y}\right)\right)$$

За $\varepsilon > 0$ избираме разрязване \tilde{x}, \tilde{y} на Δ с $\mathbf{S}(f, \Delta, (\tilde{x}, \tilde{y})) - \mathbf{s}(f, \Delta, (\tilde{x}, \tilde{y})) < \varepsilon$. Тогава $\mathbf{S}(\varphi, [a, b], \tilde{x}) - \mathbf{s}(\varphi, [a, b], \tilde{x}) \leq \mathbf{S}(f, \Delta, (\tilde{x}, \tilde{y})) - \mathbf{s}(f, \Delta, (\tilde{x}, \tilde{y})) < \epsilon$, което означава, $\varphi(x)$ е интегруема в [a, b]. За всяко разрязване \tilde{x}, \tilde{y} на Δ е изпълнено

$$\mathbf{s}\left(f,\ \Delta,\ (\tilde{x},\tilde{y})\right) \leq \mathbf{s}\left(\varphi,\ [a,\ b],\ \tilde{x}\right) \leq \int\limits_{a}^{b} \varphi(x)\,dx \, \leq \mathbf{S}\left(\varphi,\ [a,\ b],\ \tilde{x}\right) \leq \mathbf{S}\left(f,\ \Delta,\ (\tilde{x},\tilde{y})\right)\;.$$

Следователно, $\int\limits_a^b \varphi(x)dx=\iint\limits_\Delta f(x,y)dxdy$, защото $\int\limits_a^b \varphi(x)dx$ е между малките и големите суми на Дарбу за f(x,y) в Δ , а $\iint\limits_\Delta f(x,y)dxdy$ е единственото такова число.

1.6.3 Пример

$$\iint_{[0,1]\times[0,1]} \frac{dxdy}{x+y+1} = \int_0^1 \left(\int_0^1 \frac{dy}{x+y+1}\right) dx = \int_0^1 \left(\ln\left(x+2\right) - \ln\left(x+1\right)\right) dx = \\ = \ln\frac{3}{2} - \int_0^1 \left(\frac{x}{x+2} - \frac{x}{x+1}\right) dx = \ln\frac{3}{2} + \int_0^1 \left(\frac{2}{x+2} - \frac{1}{x+1}\right) dx = \ln\frac{27}{16} .$$

2 Измерими множества

2.1 Дефиниция

Нека $\mathcal{A} \subset \mathbb{R}^2$ е ограничено. Казваме, че \mathcal{A} е измеримо (има лице) в смисъл на Пеано-Жордан, ако съществува правоъгълник Δ , за който $\mathcal{A} \subset \Delta$ и $\chi_{\mathcal{A}}$ е интегруема върху Δ .

Интегруемостта и стойността на интеграла не зависят от Δ .

Съгласно адитивността на двойния интеграл върху правоъгълник, $\chi_{\mathcal{A}}$ е интегруема върху $\Delta^* \Leftrightarrow \chi_{\mathcal{A}}$ е интегруема върху $\Delta^{**} \Leftrightarrow \chi_{\mathcal{A}}$ е интегруема върху Δ^{**} и

$$\iint\limits_{\Delta^*} \chi_{\mathcal{A}}(x,y) dx dy = \iint\limits_{\Delta^* \cap \Delta^{**}} \chi_{\mathcal{A}}(x,y) dx dy = \iint\limits_{\Delta^{**}} \chi_{\mathcal{A}}(x,y) dx dy \ .$$

Полагаме
$$S(\mathcal{A}) = \iint\limits_{\Delta} \chi_{\mathcal{A}}(x,y) dx dy$$
 .

2.2 Примери

1. Правоъгълникът $\Delta = [a, b] \times [p, q]$ има лице (b-a)(q-p) (т.е. същото, което е постулирано по-рано).

Наистина,
$$\Delta \subset \Delta$$
 и $\iint_{\Delta} \chi_{\Delta}(x,y) dx dy = \iint_{\Delta} 1 dx dy = (b-a)(q-p)$.

2. Триъгълникът със страни върху правите $y=0\,,\,y=kx\,\,(k>0)\,$ и $x=1\,$ има лице $\frac{k}{2}\,.$

3. \mathcal{A} има мярка 0 в смисъл на Пеано-Жордан тогава и само тогава, когато $S\left(\mathcal{A}\right)=0$.

 \mathcal{A} оказателство: Нека \mathcal{A} има мярка 0 и $\varepsilon > 0$, $\mathcal{A} \subset \Delta$. Избираме краен брой правоъгълници $\Delta_1, \ \Delta_2 \dots \Delta_l$, за които $\mathcal{A} \subset \bigcup_{s=1}^l \Delta_s$, точките на \mathcal{A} да са вътрешни за $\bigcup_{s=1}^l \Delta_s$, правите, на

които лежат страните им, не пресичат други от тях във вътрешни точки и $\sum_{s=1}^{t} S(\Delta_s) < \varepsilon$.

За разделянето на Δ , определено от страните на тези правоъгълници и функцията $\chi_{\mathcal{A}}$ имаме:

 $M_{ij} \leq 1$ когато $\Delta_{ij} \subset \bigcup_{s=1}^l \Delta_s$ и $M_{ij} = 0$ в противен случай. Следователно,

$$\mathbf{S}\left(\chi_{\mathcal{A}},\ \Delta,\ \tilde{x},\tilde{y}\right) - \mathbf{s}\left(\chi_{\mathcal{A}},\ \Delta,\ \tilde{x},\tilde{y}\right) \leq \mathbf{S}\left(\chi_{\mathcal{A}},\ \Delta,\ \tilde{x},\tilde{y}\right) \leq \sum_{s=1}^{l} S(\Delta_{s}) < \varepsilon \ .$$

Обратно, нека $0 = S(\mathcal{A}) = \iint_{\Delta} \chi_{\mathcal{A}}(x,y) dx dy$. За $\varepsilon > 0$ има разделяне на Δ , за което $\mathbf{S}(\chi_{\mathcal{A}}, \Delta, \tilde{x}, \tilde{y}) < \varepsilon$. Имаме $M_{ij} = 1$ когато $\Delta_{ij} \cap \mathcal{A} \neq \emptyset$ и $M_{ij} = 0$ в противен случай, т.е. правоъгълниците с $\Delta_{ij} \cap \mathcal{A} \neq \emptyset$ покриват \mathcal{A} и сумарното им лице е по-малко от ε .

2.3 Свойства

1. Ако \mathcal{A} и \mathcal{B} са измерими в смисъл на Пеано-Жордан, то $\mathcal{A} \cap \mathcal{B}$ е измеримо. Следва от равенството $\chi_{\mathcal{A} \cap \mathcal{B}} = \chi_{\mathcal{A}}.\chi_{\mathcal{B}}$ и факта, че произведение на интегруеми функции е интегруема функция.

2. Ако \mathcal{A} и \mathcal{B} са измерими в смисъл на Пеано-Жордан, то $\mathcal{A} \cup \mathcal{B}$ е измеримо и $S\left(\mathcal{A} \cup \mathcal{B}\right) = S\left(\mathcal{A}\right) + S\left(\mathcal{B}\right) - S\left(\mathcal{A} \cap \mathcal{B}\right)$.

Ако
$$S(A \cap B) = 0$$
, то $S(A \cup B) = S(A) + S(B)$.

Следва от равенството $\chi_{\mathcal{A}\cup\mathcal{B}}=\chi_{\mathcal{A}}+\chi_{\mathcal{B}}-\chi_{\mathcal{A}\cap\mathcal{B}}$ и линейността.

3. \mathcal{A} е измеримо в смисъл на Пеано-Жордан тогава и само тогава, когато множеството от граничните точки $\partial \mathcal{A}$ има мярка 0 в смисъл на Пеано-Жордан ($S\left(\partial \mathcal{A}\right)=0$).

 \mathcal{A} оказателство: Нека \mathcal{A} е измеримо, $\mathcal{A} \subset \Delta$ и $\varepsilon > 0$. Съществува разрязване $\tilde{x}, \, \tilde{y}$ на Δ , за което $\mathbf{S}\left(\chi_{\mathcal{A}}, \, \Delta, \, \tilde{x}, \tilde{y}\right) - \mathbf{s}\left(\chi_{\mathcal{A}}, \, \Delta, \, \tilde{x}, \tilde{y}\right) < \frac{\varepsilon}{2}$, или $\sum_{m_{i,j}=0, M_{i,j}=1} S(\Delta_{i,j}) < \frac{\varepsilon}{2}$.

Нека
$$h=\dfrac{arepsilon}{4(k(b-a)+n(q-p))}$$
 . Разглеждаме правоъгълниците

- $\Delta_i^* = [x_i h, x_i + h] \times [p, q]$, вместо $x_0 h$ вземаме x_0 , вместо $x_n + h$ вземаме x_n .
- $\Delta_j^{**} = [a, b] \times [y_j h, y_j + h]$, вместо $y_0 h$ вземаме y_0 , вместо $y_k + h$ вземаме y_k .

За правоъгълниците $\Delta_{i,j}, \ m_{i,j}=0, \ M_{i,j}=1, \ \Delta_i^*, \ 0 \leq i \leq n \ , \ \Delta_j^{**}, \ 0 \leq j \leq k \$ имаме

ullet сумарно лице по-малко от arepsilon .

$$\bullet \quad \partial \mathcal{A} \subset \bigcup_{m_{i,j}=0, M_{i,j}=1} \Delta_{i,j} \cup \bigcup_{i=0}^{n} \Delta_i^* \cup \bigcup_{j=0}^{k} \Delta_j^{**}.$$

Следователно, $\partial \mathcal{A}$ има мярка 0 в смисъл на Пеано-Жордан.

Обратното се получава от факта, че точките на прекъсване на $\chi_{\mathcal{A}}$ са $\partial \mathcal{A}$ и достатъчното условие зи интегруемост върху правоъгълник.

2.4 "Класическа" дефиниция

• Лице на правоъгълник $\Delta = [a, b] \times [p, q], \Delta^0 = (a, b) \times (p, q),$ $S(\Delta) = S(\Delta^0) = (b-a)(q-p)$

• "Елементарна" фигура $\Phi = \bigcup_{s=1}^m \Delta_s, \ \Delta_i^0 \cap \Delta_j^0 = \emptyset$ за $i \neq j, \ S(\Phi) = \sum_{s=1}^m S(\Delta_s)$

Можем да предполагаме, че правите, на които лежат страните съставящите правоъгълници, не пресичат други от тях във вътрешни точки.

• Вписани и описани "елементарни" фигури

$$\Phi_{in} \subset \mathcal{A} \subset \Phi_{out} \Rightarrow S(\Phi_{in}) \leq S(\Phi_{out})$$

- $\underline{\mu}(\mathcal{A}) = \sup S(\Phi_{in}) \le \inf S(\Phi_{out}) = \overline{\mu}(\mathcal{A})$
- \mathcal{A} се нарича измеримо, ако $\underline{\mu}\left(\mathcal{A}\right) = \overline{\mu}\left(\mathcal{A}\right)$

3 Двоен интеграл върху измеримо множество

3.1 Дефиниция

Нека $\mathcal{A} \subset \mathbb{R}^2$ е ограничено. За f(x,y), дефинирана в \mathcal{A} , полагаме

$$f_{\mathcal{A}}(x,\,y) = \left\{ egin{array}{ll} f(x,\,y) & \mathrm{sa}\;(x,\,y) \in \mathcal{A} \\ 0 & \mathrm{sa}\;(x,\,y)
otin \mathcal{A} \end{array} \right. \ \ (\mathrm{,,heформално}^{\mathrm{manho}^$$

Казваме, че f(x,y) е интегруема върху \mathcal{A} , ако съществува правоъгълник Δ , за който $\mathcal{A} \subset \Delta$ и $f_{\mathcal{A}}(x,y)$ е интегруема върху Δ .

Интегруемостта и стойността на интеграла не зависят от Δ .

$$\iint\limits_{\mathcal{A}} f(x,y)dxdy = \iint\limits_{\Delta} f_{\mathcal{A}}(x,y)dxdy$$

3.2 Свойства

1. Нека \mathcal{A} е измеримо и затворено, f(x,y) е непрекъсната в \mathcal{A} . Тогава f(x,y) е интегруема върху \mathcal{A} .

 \mathcal{A} е измеримо, значи ограничено. Следователно, f(x,y) е ограничена върху \mathcal{A} , т.е. $f_{\mathcal{A}}(x,y)$ е ограничена. Точките на прекъсване на $f_{\mathcal{A}}$ се съдържат в $\partial \mathcal{A}$, което е достатъчно за интегруемостта.

2. Нека $\mathcal A$ е измеримо и f(x,y) е интегруема върху $\mathcal A$. Тогава

$$\inf_{(x,y)\in\mathcal{A}} f(x,y) \cdot S(\mathcal{A}) \le \iint_{\mathcal{A}} f(x,y) dx dy \le \sup_{(x,y)\in\mathcal{A}} f(x,y) \cdot S(\mathcal{A}) .$$

Ako
$$S(\mathcal{A})=0$$
 , to $\iint\limits_{\mathcal{A}}f(x,y)dxdy=0$.

- 3. Линейност
 - $\bullet \iint_{\mathcal{A}} (f(x,y) + g(x,y)) \, dx dy = \iint_{\mathcal{A}} f(x,y) dx dy + \iint_{\mathcal{A}} g(x,y) dx dy$
 - $\iint\limits_A Cf(x,y)dxdy = C\iint\limits_A f(x,y)dxdy$
- 4. Позитивност

$$f(x,y) \ge 0 \implies \iint_{\mathcal{A}} f(x,y) dx dy \ge 0$$

5. Адитивност

Нека f(x,y) е интегруема върху \mathcal{A} и върху \mathcal{B} . Тогава f(x,y) е интегруема върху $\mathcal{A}\cap\mathcal{B}$ и върху $\mathcal{A}\cup\mathcal{B}$ и

$$\iint\limits_{\mathcal{A}\cup\mathcal{B}} f(x,y) dx dy \, = \, \iint\limits_{\mathcal{A}} f(x,y) dx dy \, + \, \iint\limits_{\mathcal{B}} f(x,y) dx dy \, - \, \iint\limits_{\mathcal{A}\cap\mathcal{B}} f(x,y) dx dy \, \, .$$

Ако $S(A \cap B) = 0$, то

$$\iint\limits_{\mathcal{A}\cup\mathcal{B}} f(x,y)dxdy = \iint\limits_{\mathcal{A}} f(x,y)dxdy + \iint\limits_{\mathcal{B}} f(x,y)dxdy$$

Наистина, $f_{A\cap B}=f_A.\chi_B$ и $f_{A\cup B}=f_A+f_B-f_{A\cap B}$.

6. Интегруемост на модула

Ако f(x,y) е интегруема върху \mathcal{A} , то |f(x,y)| е интегруема върху \mathcal{A} .

7. Интегруемост на произведение

Ако f(x,y) и g(x,y) са интегруеми върху \mathcal{A} , то f(x,y).g(x,y) е интегруема върху \mathcal{A} .

4 Пресмятане на двойни интеграли

4.1 Представяне на двоен интеграл като повторни

4.1.1 Криволинеен трапец

Нека φ и ψ са непрекъснати в $[a, b], \varphi(x) \leq \psi(x)$ за всяко $x \in [a, b]$. Множеството

$$\mathcal{T} = \left\{ \begin{array}{l} a \le x \le b \\ \varphi(x) \le y \le \psi(x) \end{array} \right.$$

се нарича криволинеен трапец (с основи, успоредни на ординатната ос).

4.1.2 Твърдение

Нека f(x,y) е непрекъсната в \mathcal{T} . Тогава

$$\iint_{\mathcal{T}} f(x,y) dx dy = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) dy \right) dx$$

Доказателство: Криволинейният трапец \mathcal{T} е измеримо множество, защото $\partial \mathcal{T}$ е обединение на графиките $\{(x, \varphi(x)) : x \in [a, b]\}$, $\{(x, \psi(x)) : x \in [a, b]\}$ и отсечките $\{x = a, \varphi(a) \leq y \leq \psi(a)\}$, $\{x = b, \varphi(b) \leq y \leq \psi(b)\}$. Понеже \mathcal{T} е затворено, а f(x, y) е непрекъсната в него, то f(x, y) е интегруема върху \mathcal{T} . Нека $m = \min \{\varphi(x) : x \in [a, b]\}$, $M = \max \{\psi(x) : x \in [a, b]\}$ и $\Delta = [a, b] \times [m, M]$.

 $f_{\mathcal{T}}$ е интегруема върху Δ , а за всяко фиксирано $x \in [a, b]$ функцията f(x, y) има най-много две точки на прекъсване и е ограничена.

Имаме

$$\iint_{\mathcal{T}} f(x,y) dx dy = \iint_{\Delta} f_{\mathcal{T}}(x,y) dx dy = \int_{a}^{b} \left(\int_{m}^{M} f_{\mathcal{T}}(x,y) dy \right) dx = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) dy \right) dx,$$

х фиксирано в интервала [a,b]

$$\int_{m}^{M} f_{\mathcal{T}}(x,y)dy = \int_{m}^{\varphi(x)} 0dy + \int_{\varphi(x)}^{\psi(x)} f(x,y)dy + \int_{\psi(x)}^{M} 0dy$$

4.1.3 Примери

1. Пресметнете двойния интеграл: $\iint\limits_{D} \frac{x^2}{(x+y)^2} \; dx dy \; , \; \text{където} \; D \; \text{е множеството, определено от неравенствата} \; y \geq x^2 + 2 \; \text{и} \; y \leq 4 - x \, .$

Peшение: Представяме D като криволинеен трапец.

$$D = \{-2 \le x \le 1, \ x^2 + 2 \le y \le 4 - x \}$$
 . Имаме:

$$\iint\limits_{D} \frac{x^2}{(x+y)^2} \, dx dy = \int\limits_{-2}^{1} \left(\int\limits_{x^2+2}^{4-x} \frac{x^2 \, dy}{(x+y)^2} \right) \, dx = \int\limits_{-2}^{1} \left(-\frac{x^2}{x^2+x+2} + \frac{x^2}{4} \right) \, dx = \dots$$

2. Пресметнете двойния интеграл: $\iint\limits_{D} |3\,x\,-2\,y\,| \;\;dxdy \;,$ където D е множеството, ограничено от параболите $y=x^2-1$ и $y=7-x^2$.

Peшение: За да се освободим от модула, представяме D като обединение на криволинейни трапеци. $D=T_1\cup T_2\cup T_3$, където

$$T_{1} = \begin{cases} -2 \le x \le -\frac{1}{2} \\ x^{2} - 7 \le y \le 1 - x^{2} \end{cases}, \quad T_{2} = \begin{cases} -\frac{1}{2} \le x \le 2 \\ x^{2} - 7 \le y \le \frac{3x}{2} \end{cases}, \quad T_{3} = \begin{cases} \frac{1}{2} \le x \le 2 \\ \frac{3x}{2} \le y \le 1 - x^{2} \end{cases}.$$

Следователно

$$\iint_{D} |3x - 2y| \, dxdy = \iint_{T_{1}} |3x - 2y| \, dxdy + \iint_{T_{2}} |3x - 2y| \, dxdy + \iint_{T_{3}} |3x - 2y| \, dxdy =$$

$$= \int_{-2}^{-\frac{1}{2}} \left(\int_{x^{2} - 7}^{1 - x^{2}} (-3x + 2y) \, dy \right) dx + \int_{-\frac{1}{2}}^{2} \left(\int_{x^{2} - 7}^{\frac{3x}{2}} (3x - 2y) \, dy \right) dx + \int_{-\frac{1}{2}}^{2} \left(\int_{\frac{3x}{2}}^{1 - x^{2}} (-3x + 2y) \, dy \right) dx =$$

$$= \int_{-2}^{-\frac{1}{2}} \left(-3x \left(8 - 2x^{2} \right) + \left(1 - x^{2} \right)^{2} - \left(x^{2} - 7 \right)^{2} \right) dx + \int_{-\frac{1}{2}}^{2} \left(3x \left(\frac{3x}{2} + 7 - x^{2} \right) - \left(\frac{3x}{2} \right)^{2} + \left(x^{2} - 7 \right)^{2} \right) dx +$$

$$+ \int_{-1}^{2} \left(-3x \left(1 - x^{2} - \frac{3x}{2} \right) + \left(1 - x^{2} \right)^{2} - \left(\frac{3x}{2} \right)^{2} \right) dx = \dots$$

4.2 Смяна на променливите

4.2.1 Формулировка

- 1. f(x, y) е непрекъсната в измеримо и затворено множество D
- 2. $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$, $\Phi: \begin{cases} x=\varphi(u,v) \\ y=\psi(u,v) \end{cases}$ е изображение, дефинирано в отворено множество W, за което
 - ullet има непрекъснати частни производни в W
 - ullet Ф е обратимо в W
 - $J_{\Phi}(u, v) = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \psi}{\partial u} \\ \frac{\partial \varphi}{\partial v} & \frac{\partial \psi}{\partial v} \end{vmatrix} \neq 0 \text{ B } W$
- 3. $D^* = \{(u, v) \in W : \Phi(u, v) \in D\}$

Тогава

$$\iint\limits_{D} f(x, y) \, dx dy = \iint\limits_{D^*} f(\varphi(u, v), \, \psi(u, v)) \, |J_{\Phi}(u, v)| \, du dv$$

4.2.2 Коментари

1. Необратимо изображение с ненулев якобиян

Изображението $\Phi: \begin{cases} x=e^u\cos v \\ y=e^u\sin v \end{cases}$ има навсякъде непрекъснати производни, $J_\Phi(u,\,v)=e^{2u}>0$, но не е обратимо.

2. За една променлива няма модул

4.2.3 Примери

1. Да се пресметне лицето на частта от равнината D , определена от неравенствата:

 $x \le y \le 3x$; $1 \le xy \le 2$.

Pewenue: Извършваме смяната $\left\{\begin{array}{l} x=\sqrt{\frac{v}{u}}\\ y=\sqrt{uv} \end{array}\right.$. Тя има непрекъснати частни производни при

 $u>0,\,v>0$ и е обратима в същото множество. За якобиана намираме:

$$J(u, v) = \begin{vmatrix} -\frac{1}{2} \cdot \sqrt{\frac{v}{u^3}} & \frac{1}{2} \cdot \sqrt{\frac{1}{uv}} \\ \frac{1}{2} \cdot \sqrt{\frac{v}{u}} & \frac{1}{2} \cdot \sqrt{\frac{u}{v}} \end{vmatrix} = -\frac{1}{2u} < 0.$$

 D^* е правоъгълникът $[1,\,3]\times[1,\,2]$. Тогава

$$S(D) = \iint_{D} 1 \, dx dy = \iint_{D^*} \frac{1}{2u} \, du dv = \int_{1}^{3} \frac{du}{2u} \cdot \int_{1}^{2} 1 dv = \ln \sqrt{3} \,.$$

2. Да се пресметне двойният интеграл $\iint\limits_{D} |\sin{(x+y)}| \; dx dy \quad , \; \text{където} \quad D \quad \text{е частта от равнината, определена от неравенствата} \quad 0 \le x \le \pi \quad \text{и} \quad 0 \le y \le \pi \; .$

 $Peшeнue: D = T_1 \cup T_2$, където

$$T_1 = \begin{cases} 0 \le x \le \pi \\ 0 \le y \le \pi - x \end{cases}, \quad T_2 = \begin{cases} 0 \le x \le \pi \\ \pi - x \le y \le \pi \end{cases}.$$

Смяната $\begin{cases} x = \pi - u \\ y = \pi - v \end{cases}$ показва, че

$$\iint\limits_{T_1} |\sin{(x+y)}| \; dxdy \, = \iint\limits_{T_2} |\sin{(x+y)}| \; dxdy \; . \;$$
 Тогава

$$\iint_{D} |\sin(x+y)| \, dxdy = 2 \iint_{T_1} \sin(x+y) \, dxdy = 2 \int_{0}^{\pi} \left(\int_{0}^{\pi-x} \sin(x+y) \, dy \right) dx =$$

$$= 2 \int_{0}^{\pi} (1 - \sin x) \, dx = 2 (\pi - 2) .$$

3. Полярна смяна

$$\begin{aligned} x &= r \cos \varphi & r \geq 0 & r \geq 0 \\ y &= r \sin \varphi & 0 \leq \varphi \leq 2\pi & -\pi \leq \varphi \leq \pi \end{aligned}$$

$$J &= r \quad x^2 + y^2 = r^2 \quad x^2 - y^2 = r^2 \cos 2\varphi \quad 2xy = r^2 \sin 2\varphi$$

4. Пресмятане на $\int_{0}^{+\infty} e^{-x^2} dx$

• Чрез полярна смяна намираме

$$\iint_{x^2+y^2 \le R^2, \, 0 \le x, \, 0 \le y} e^{-x^2-y^2} \, dx dy = \iint_{0 \le r \le R, \, 0 \le \varphi \le \frac{\pi}{2}} r e^{-r^2} \, dr d\varphi = \int_{0}^{\frac{\pi}{2}} d\varphi. \int_{0}^{R} r e^{-r^2} \, dr = \frac{\pi}{4} \left(1 - e^{-R^2} \right)$$

• След граничен преход

$$\lim_{R \to +\infty} \iint\limits_{x^2 + y^2 \le R^2, \, 0 \le x, \, 0 \le y} e^{-x^2 - y^2} \, dx dy \, = \lim_{R \to +\infty} \iint\limits_{x^2 + y^2 \le 2R^2, \, 0 \le x, \, 0 \le y} e^{-x^2 - y^2} \, dx dy \, = \frac{\pi}{4}$$

• От неравенството

$$\iint\limits_{x^2+y^2\leq R^2,\,0\leq x,\,0\leq y} e^{-x^2-y^2}\,dxdy \leq \iint\limits_{0\leq x\leq R,\,0\leq y\leq R} e^{-x^2-y^2}\,dxdy \leq \iint\limits_{x^2+y^2\leq 2R^2,\,0\leq x,\,0\leq y} e^{-x^2-y^2}\,dxdy$$

• намираме

$$\int_{0}^{+\infty} e^{-x^{2}} dx = \sqrt{\lim_{R \to +\infty} \int_{0}^{R} e^{-x^{2}} dx} \int_{0}^{R} e^{-y^{2}} dy = \sqrt{\lim_{R \to +\infty} \iint_{0 \le x \le R, \ 0 \le y \le R} e^{-x^{2} - y^{2}} dx dy} = \frac{\sqrt{\pi}}{2}$$

5. Да се пресметне двойният интеграл $\iint\limits_{D} \frac{y \ln \left(x^2+y^2\right)}{\sqrt{x^2+y^2}} \, dx dy \quad \text{, където} \quad D \quad \text{е частта от равнината, определена от неравенствата} \quad \frac{1}{2} \leq x^2+y^2 \leq 1 \; , \; 0 \leq y \; \text{и} \; x^2+y^2-2x \leq 0 \; .$

Peшение: Извършваме полярна смяна. За праобраза на $\,D\,$ имаме

$$D^* = \left\{ \frac{1}{2} \le r^2 \le 1 \; ; \; 0 \le \sin \varphi \; ; \; r^2 \le 2r \cos \varphi \; ; \; 0 \le r \; ; \; 0 \le \varphi \le 2\pi \right\} \; \text{ или}$$

$$D^* = \left\{ \frac{1}{\sqrt{2}} \le r \le 1 \; ; \; 0 \le \sin \varphi \; ; \; r \le 2 \cos \varphi \; ; \; 0 \le \varphi \le 2\pi \right\}$$

Понеже $0 \leq \sin \varphi$, то $\varphi \in [0,\,\pi]$. В този интервал косинусът намалява, откъдето

$$D^* = \left\{ \frac{1}{\sqrt{2}} \le r \le 1 \, ; \, 0 \le \varphi \le \arccos \frac{r}{2} \right\}$$
 . Следователно,

$$\iint\limits_{D} \frac{y \ln \left(x^2 + y^2\right)}{\sqrt{x^2 + y^2}} \, dx dy = \iint\limits_{D^*} \frac{r \sin \varphi \ln r^2}{\sqrt{r^2}} \, r \, dr d\varphi = \int\limits_{\frac{1}{\sqrt{2}}}^{1} \left(\int\limits_{0}^{\arccos \frac{r}{2}} 2r \ln r \, \sin \varphi \, d\varphi \right) dr =$$

$$= \int_{\frac{1}{\sqrt{2}}}^{1} 2r \ln r \left(1 - \frac{r}{2}\right) dr = \int_{\frac{1}{\sqrt{2}}}^{1} \ln r d \left(r^2 - \frac{r^3}{3}\right) = \dots$$

6. Намерете лицето на фигурата, зададена с неравенството $x^4 + y^4 \le x^2 - y^2$.

Решение:

$$S(D) = \iint\limits_{D} dxdy = 4 \iint\limits_{D \cap \{x \ge 0\} \cap \{y \ge 0\}} dxdy = 2 \int\limits_{0}^{\frac{\pi}{4}} \frac{\cos 2\varphi d\varphi}{\sin^{4}\varphi + \cos^{4}\varphi} = \dots$$

4.3 Пресмятане на обем

4.3.1 Криволинеен цилиндър

$$T = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in D, \varphi(x, y) \le z \le \psi(x, y) \right\}$$

4.3.2 Обем на криволинеен цилиндър

$$V(T) = \iint\limits_{D} \left(\psi \left(x, \, y \right) - \varphi \left(x, \, y \right) \right) dx dy$$

4.3.3 Примери

1. Да се намери обемът на тялото, зададено с неравенствата 0 < z < xy, x + y + z < 1, 0 < x и 0 < y.

Решение: Представяме тялото като криволинеен цилиндър

$$T = \{(x, y) \in D \,,\; 0 \le z \le \min{(xy\,,\; 1-x-y)}\}$$
, където $D = \{0 \le x,\; 0 \le y,\; x+y \le 1\}$.

При
$$0 \le x \le 1$$
 и $0 \le y \le 1$ имаме $\min(xy\,,\; 1-x-y) = \left\{ \begin{array}{ll} xy & \text{при } y \le \frac{1-x}{1+x} \\ 1-x-y & \text{при } y \ge \frac{1-x}{1+x} \end{array} \right.$

Следователно, $T = T_1 \cup T_2$

$$T_1 = \left\{ 0 \le x \le 1 , \ 0 \le y \le \frac{1-x}{1+x} , \ 0 \le z \le xy \right\}$$

$$T_2 = \left\{ 0 \le x \le 1 , \le \frac{1-x}{1+x} \le y \le 1-x , 0 \le z \le 1-x-y \right\}$$

$$V(T) = V(T_1) + V(T_2) = \int_0^1 \left(\int_0^{\frac{1-x}{1+x}} xy dy \right) dx + \int_0^1 \left(\int_{\frac{1-x}{1+x}}^{1-x} (1-x-y) dy \right) dx = \dots$$

2. Да се намери обемът на тялото, зададено с неравенството $(x^2+y^2+z^2+8)^2 \leq 36(x^2+y^2)$.

Pewenue: Ще намерим обема V_0 на частта от тялото в I-ви октант (т.е. $x \ge 0$, $y \ge 0$ и $z \ge 0$). Търсеният обем V е $8V_0$. Даденото неравенство, предвид $z \ge 0$, е еквивалетно на системата

$$\begin{vmatrix} 0 \le 6\sqrt{x^2 + y^2} - (x^2 + y^2) - 8 \\ 0 \le z \le \sqrt{6\sqrt{x^2 + y^2} - (x^2 + y^2) - 8} \end{vmatrix}.$$

Следователно, $V_0 = \iint\limits_K \sqrt{6\sqrt{x^2+y^2}-(x^2+y^2)-8} \ dxdy$, където частта от равнината

K е зададена с неравенствата $x \ge 0$, $y \ge 0$ и $0 \le 6\sqrt{x^2+y^2}-\left(x^2+y^2\right)-8$.

След полярна смяна $x=r\,\cos\varphi,\;y=r\,\sin\varphi$, намираме

$$V_0=\iint\limits_{U_*}r\sqrt{6\,r-r^2-8}\,drdarphi$$
 , където K^* е правоъгълникът $2\leq r\leq 4\,,\ 0\leq arphi\leq rac{\pi}{2}$,

откъдето
$$V_0 = \frac{\pi}{2} \int\limits_2^4 \, r \sqrt{6 \, r - r^2 - 8} \, dr$$
 .

След смяна r=t+3 , получаваме

$$V_0 = \frac{\pi}{2} \int_{-1}^{1} (t+3) \sqrt{1-t^2} dt = \frac{3\pi^2}{4}.$$