Agrégation Interne

Espaces \mathcal{L}^p . Produit de convolution. Transformation de Fourier.

On pourra revoir les points de cours suivant :

- intégrales définies et généralisées;
- théorème de convergence dominée, théorèmes de continuité et de dérivation des fonctions définies par une intégrale;
- fonctions d'une variable réelle continues, uniformément continues, convexes, inégalités de convexité;
- semi-normes et normes sur un espace vectoriel réel ou complexe.

On rappelle le théorème de convergence dominée.

Théorème 1 (Convergence dominée) Soient I = [a, b[un intervalle réel avec $-\infty < a < b \le +\infty$ et $(f_n)_{n \in \mathbb{N}}$ de fonctions continues par morceaux sur I à valeurs réelles ou complexes telle que :

- 1. la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers une fonction f continue par morceaux;
- 2. il existe une fonction φ continue par morceaux sur I à valeurs réelles positives telle l'intégrale $\int_a^b \varphi(x) dx \text{ est convergente et } 0 \leq |f_n| \leq \varphi \text{ pour tout } n \in \mathbb{N}.$

Dans ces conditions les fonctions f_n et f sont absolument intégrables et on a:

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx$$

À toute partie I de \mathbb{R} , on associe la fonction indicatrice (ou caractéristique) de I définie par :

$$\mathbf{1}_{I}: \ \mathbb{R} \ \rightarrow \ \left\{ \begin{array}{l} 0,1 \\ 1 \text{ si } x \in I \\ 0 \text{ si } x \notin I \end{array} \right.$$

On étend l'addition et la multiplication des réels positifs à $\overline{\mathbb{R}^+}$ en convenant que pour tout $a \in \mathbb{R}^+$, $a + (+\infty) = (+\infty) + (+\infty) = +\infty$, pour tout $a \in \mathbb{R}^{+,*}$, $a \cdot (+\infty) = (+\infty) \cdot (+\infty) = +\infty$ et $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$.

Le support d'une fonction $f: \mathbb{R} \to \mathbb{C}$ est l'adhérence de l'ensemble $f^{-1}(\mathbb{C}^*)$. On le note supp (f). On dit que $f: \mathbb{R} \to \mathbb{C}$ est à support compact si supp (f) est compact, ce qui revient à dire qu'il est borné ou encore qu'il existe un réel $\alpha > 0$ tel que supp $(f) \subset [-\alpha, \alpha]$.

On dit qu'une fonction $f: \mathbb{R} \to \mathbb{C}$ est continue par morceaux s'il existe une subdivision :

$$a_0 = -\infty < a_1 < \dots < a_p < a_{p+1} = +\infty$$

telle que la fonction f soit continue chacun des intervalle $]a_k, a_{k+1}[$ $(0 \le k \le p)$ et admette des limites à droite et à gauche en chacun des points a_k $(1 \le k \le p)$.

Une telle fonction est Riemann-intgrable sur tout segment $[\alpha, \beta]$ et on dit qu'elle est intégrable sur \mathbb{R} si $\int_{\mathbb{R}} |f(t)| dt < +\infty$, ce qui revient à dire que l'intégrale impropre $\int_{\mathbb{R}} f(t) dt$ est absolument convergente.

 $\mathcal{L}^{\infty}\left(\mathbb{R},\mathbb{C}\right)$ est l'espace vectoriel des fonctions continues par morceaux de \mathbb{R} dans \mathbb{C} qui sont bornées. Pour toute fonction $f\in\mathcal{L}^{\infty}\left(\mathbb{R},\mathbb{C}\right)$, on note $\left\|f\right\|_{\infty}=\sup_{x\in X}\left|f\left(x\right)\right|$.

 $\mathcal{C}^0(\mathbb{R},\mathbb{C})$ est l'espace des fonctions continues de \mathbb{R} dans \mathbb{C} .

Pour $1 \leq p < \infty$, $\mathcal{L}^p = \mathcal{L}^p(\mathbb{R}, \mathbb{C})$ est l'ensemble des fonctions continues par morceaux de \mathbb{R} dans \mathbb{C} telles que :

$$\int_{\mathbb{R}} |f(t)|^p dt < +\infty$$

Pour toute fonction $f \in \mathcal{L}^p$, on note $\|f\|_p = \left(\int_{\mathbb{R}} |f(t)|^p dt\right)^{\frac{1}{p}}$.

On définit de manière analogue les ensembles $\mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{C})$ pour $1 \leq p \leq +\infty$ ($-\infty$ est remplacé par 0).

- I - Inégalités de Hölder

1. Soit p un réel tel que $1 \le p < +\infty$. Montrer que :

$$\forall (x,y) \in (\mathbb{R}^+)^2, (x+y)^p \le 2^p (x^p + y^p)$$

- 2. Déduire de la question précédente que pour $1 \leq p \leq +\infty$, $\mathcal{L}^p(\mathbb{R}, \mathbb{C})$ est un \mathbb{C} -espace vectoriel.
- 3. Soit $(p_k)_{1 \le k \le r}$ une famille de $r \ge 2$ réels strictement positifs tels que $\sum_{k=1}^r \frac{1}{p_k} = 1$.

Montrer que:

$$\forall (x_1, \dots, x_r) \in (\mathbb{R}^+)^r, \prod_{k=1}^r x_k \leq \sum_{k=1}^r \frac{1}{p_k} x_k^{p_k}$$

(inégalité de Young).

- 4. Soient r un entier naturel non nul, p_1, \dots, p_r une suite d'éléments de $[1, +\infty]$ telle que $\sum_{k=1}^r \frac{1}{p_k} = 1$ et, pour tout k compris entre 1 et r, f_k une fonction dans $\mathcal{L}^{p_k}(\mathbb{R}, \mathbb{C})$.

 Montrer que la fonction $f = \prod_{k=1}^r f_k$ est dans $\mathcal{L}^1(\mathbb{R}, \mathbb{C})$ et que $||f||_1 \leq \prod_{k=1}^r ||f_k||_{p_k}$ (inégalité de Hölder).
- 5. Montrer que l'application $f \mapsto \|f\|_p$ est une semi-norme sur $\mathcal{L}^p(\mathbb{R},\mathbb{C})$ et une norme sur $\mathcal{L}^p(\mathbb{R},\mathbb{C}) \cap \mathcal{C}^0(\mathbb{R},\mathbb{C})$.
- 6. Soient r un entier naturel non nul, p_1, \dots, p_r, p une suite d'éléments de $[1, +\infty]$ telle que $\sum_{k=1}^r \frac{1}{p_k} = \frac{1}{p} \le 1 \text{ et, pour tout } k \text{ compris entre } 1 \text{ et } r, f_k \text{ une fonction dans } \mathcal{L}^{p_k}(\mathbb{R}, \mathbb{C}).$

Montrer que
$$f = \prod_{k=1}^{r} f_k$$
 est dans $\mathcal{L}^p(\mathbb{R}, \mathbb{C})$ et $||f||_p \leq \prod_{k=1}^{r} ||f_k||_{p_k}$ (inégalité de Hölder généralisée).

- II - Un résultat de densité

On rappelle qu'une fonction en escalier (ou fonction constante par morceaux) sur un segment [a, b] est une fonction $f:[a,b] \to \mathbb{C}$ pour laquelle il existe une subdivision $a_0 = a < a_1 < \cdots < a_p < a_{p+1} = b$ de [a,b] telle que f soit constante sur chacun des intervalle $]a_k, a_{k+1}[$ $(0 \le k \le n-1)$.

Une fonction en escalier sur \mathbb{R} est une fonction qui est en escalier sur un segment [a,b] et nulle en dehors de ce segment.

- 1. Montrer qu'une fonction continue sur un segment [a, b] est limite uniforme d'une suite de fonctions en escalier.
- 2. Montrer qu'une fonction continue par morceaux sur un segment [a, b] est limite uniforme d'une suite de fonctions en escalier.
- 3. Soit $f = \mathbf{1}_I$, où I est un intervalle borné d'extrémités $a \leq b$. Montrer qu'il existe une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions continues à support compact de \mathbb{R} dans \mathbb{R}^+ telle que $\lim_{n \to +\infty} \|f - f_n\|_p = 0$, le support de chaque fonction f_n étant contenu dans [a, b].
- 4. Soit f une fonction en escalier sur \mathbb{R} . Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues à support compact de \mathbb{R} dans \mathbb{C} telle que $\lim_{n\to+\infty} \|f-f_n\|_p = 0$, le support de chaque fonction f_n étant contenu dans celui de f.
- 5. Montrer que, pour tout réel $p \geq 1$ et toute fonction $f \in \mathcal{L}^p(\mathbb{R}, \mathbb{C})$, il existe une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions continues à support compact de \mathbb{R} dans \mathbb{C} telle que $\lim_{n \to +\infty} \|f f_n\|_p = 0$. Pour p = 1, vérifier qu'on a alors :

$$\int_{\mathbb{R}} f(t) dt = \lim_{n \to +\infty} \int_{\mathbb{R}} f_n(t) dt$$

- 6. Pour toute fonction $f: \mathbb{R} \to \mathbb{C}$ et tout réel h, on désigne par $\tau_h f$ la fonction définie sur \mathbb{R} par $\tau_h f(x) = f(h+x)$.
 - (a) Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue et à support compact.
 - i. Justifier l'existence d'un réel $\alpha > 0$ tel que, pour tout réel $h \in [-1, 1]$, on a $|\tau_h f f| \le 2 ||f||_{\infty} \mathbf{1}_{[-\alpha,\alpha]}$.
 - ii. Montrer que, pour tout réel $p \ge 1$, on a $\lim_{h\to 0} \|\tau_h f f\|_p = 0$.

(b) Montrer que, pour tout réel $p \geq 1$ et toute fonction $f \in \mathcal{L}^p(\mathbb{R}, \mathbb{C})$, on a $\lim_{h \to 0} \|\tau_h f - f\|_p = 0$ (théorème de continuité en moyenne dans \mathcal{L}^p).

- III - Inégalité de Hardy

On se donne un réel $p \in]1, \infty[$ et $q = \frac{p}{p-1}$ est l'exposant conjugué de p $(q \in]1, \infty[$ et $\frac{1}{p} + \frac{1}{q} = 1)$.

1. Montrer que, pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}^+,\mathbb{C})$, la fonction F définie sur \mathbb{R}^+ par :

$$\forall x \in \mathbb{R}^+, \ F(x) = \int_0^x f(t) dt$$

est uniformément continue sur \mathbb{R}^+ .

À toute fonction $f \in \mathcal{L}^p(\mathbb{R}^+, \mathbb{C})$, on associe la fonction $\Phi(f)$ définie sur \mathbb{R}^+ par :

$$\begin{cases} \Phi(f)(0) = f(0) \\ \forall x \in \mathbb{R}^{+,*}, \ \Phi(f)(x) = \frac{F(x)}{x} \end{cases}$$

On se propose de montrer que, pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}^+, \mathbb{C})$, on a $\|\Phi(f)\|_p \leq \frac{p}{p-1} \|f\|_p$, ce qui revient à dire que :

$$\int_{\mathbb{R}^{+,*}} \frac{1}{x^{p}} \left| \int_{0}^{x} f(t) dt \right|^{p} dx \le \left(\frac{p}{p-1} \right)^{p} \int_{\mathbb{R}^{+,*}} \left| f(x) \right|^{p} dx$$

(inégalité de Hardy).

- 2. Montrer que, pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}^+, \mathbb{C}) \cap \mathcal{C}^0(\mathbb{R}^+, \mathbb{C})$, la fonction $\Phi(f)$ est de classe \mathcal{C}^1 sur $\mathbb{R}^{+,*}$ et continue sur \mathbb{R}^+ .
- 3. Montrer que, pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}^+, \mathbb{R}^+) \cap \mathcal{C}^0(\mathbb{R}^+, \mathbb{R}^+)$, la fonction $\Phi(f)$ est dans $\mathcal{L}^p(\mathbb{R}^+, \mathbb{R}^+) \cap \mathcal{C}^0(\mathbb{R}^+, \mathbb{R}^+)$ avec $\|\Phi(f)\|_p \leq q \|f\|_p$.
- 4. Montrer que, pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}^+,\mathbb{C}) \cap \mathcal{C}^0(\mathbb{R}^+,\mathbb{C})$, $\Phi(f)$ est dans $\mathcal{L}^p(\mathbb{R}^+,\mathbb{C}) \cap \mathcal{C}^0(\mathbb{R}^+,\mathbb{C})$ avec $\|\Phi(f)\|_p \leq q \|f\|_p$.
- 5. Soient $f \in \mathcal{L}^p(\mathbb{R}^+, \mathbb{C})$ et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions continues à support compact de \mathbb{R}^+ dans \mathbb{C} telle que $\lim_{n \to +\infty} \|f f_n\|_p = 0$.
 - (a) Montrer que la suite de fonctions $(\Phi(f_n))_{n\in\mathbb{N}}$ converge simplement vers $\Phi(f)$ sur $\mathbb{R}^{+,*}$, la convergence étant uniforme sur tout intervalle $[a, +\infty[$.
 - (b) Montrer que pour tous réels $0 < \varepsilon < R$, la suite $(|\Phi(f_n)|^p)_{n \in \mathbb{N}}$ converge uniformément vers $|\Phi(f)|^p$ sur $[\varepsilon, R]$.
 - (c) Montrer que $\Phi\left(f\right)\in\mathcal{L}^{p}\left(\mathbb{R}^{+,*},\mathbb{C}\right)$ avec $\left\Vert \Phi\left(f\right)\right\Vert _{p}\leq q\left\Vert f\right\Vert _{p}$.
- 6. Soit $(f_n)_{n\geq 2}$ la suite de fonctions définie par :

$$\forall n \geq 2, \ \forall t \in \mathbb{R}^+, \ f_n(t) = t^{-\frac{1}{p}} \mathbf{1}_{]1,n[}(t)$$

(a) Montrer que $f_n \in \mathcal{L}^p(\mathbb{R}^+, \mathbb{R}^+)$ et calculer $||f_n||_p$ pour tout entier $n \geq 2$.

(b) Vérifier que, pour tout entier $n \geq 2$, la fonction $\Phi(f_n)$ est bien définie sur $\mathbb{R}^{+,*}$ et qu'on peut écrire $\|\Phi(f_n)\|_p^p$ sous la forme :

$$\|\Phi(f_n)\|_p^p = q^p (u_n + \ln(n) + v_n)$$

où:

$$u_n = \int_1^n \left(\left(\frac{1}{x^{\frac{1}{p}}} - \frac{1}{x} \right)^p - \frac{1}{x} \right) dx$$

et:

$$v_n = \frac{1}{p-1} \left(1 - \frac{1}{n^{\frac{1}{q}}} \right)^p$$

(c) Montrer que:

$$\lim_{n \to +\infty} \frac{\left\|\Phi\left(f_{n}\right)\right\|_{p}}{\left\|f_{n}\right\|_{p}} = \frac{p}{p-1}$$

7. Montrer que:

$$\sup_{\substack{f \in \mathcal{L}^p\left(\mathbb{R}^+,\mathbb{C}\right) \\ \|f\|_p > 0}} \frac{\left\|\Phi\left(f\right)\right\|_p}{\left\|f\right\|_p} = \frac{p}{p-1}$$

- IV - Produit de convolution

- 1. Soient $f \in \mathcal{L}^p(\mathbb{R}, \mathbb{C})$ et $g \in \mathcal{L}^q(\mathbb{R}, \mathbb{C})$ où $1 \le p, q \le +\infty$ sont tels que $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Montrer que pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(t) g(x-t)$ est intégrable sur \mathbb{R} .
 - (b) Montrer que la fonction $f * g : x \in \mathbb{R} \mapsto \int_{\mathbb{R}} f(t) g(x-t) dt$ est bornée avec $||f * g||_{\infty} \le ||f||_{p} ||g||_{q}$.
 - (c) Montrer que, pour tout réel x, on a :

$$f * g(x) = \int_{\mathbb{R}} f(x - t) g(t) dt$$

(d) Montrer que, pour tout réel h, on a $\tau_h(f*g) = (\tau_h f) *g$, puis que :

$$\|\tau_h(f * g) - f * g\|_{\infty} \le \|\tau_h f - f\|_p \|g\|_q$$

et en déduire que la fonction f * g est uniformément continue sur \mathbb{R} .

La fonction f * g est le produit de convolution de f et g.

- 2. Soient $f: \mathbb{R} \to \mathbb{C}$ une fonction continue par morceaux et $g: \mathbb{R} \to \mathbb{C}$ une fonction continue et à support compact.
 - (a) Justifier la définition du produit de convolution f * g et montrer que cette fonction est continue sur \mathbb{R} .
 - (b) Montrer que si g est de plus de classe \mathcal{C}^n sur \mathbb{R} avec $n \geq 1$, la fonction f * g est alors aussi de classe \mathcal{C}^n sur \mathbb{R} avec $(f * g)^{(k)} = f * g^{(k)}$ pour tout k comprise entre 1 et n.
 - (c) Montrer que si la fonction f est aussi continue à support compact, la fonction f * g est alors continue et à support compact et pour $1 \le p \le +\infty$, on a $||f * g||_p \le ||f||_1 ||g||_p$.

- (d) Montrer que si $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$, alors la fonction f * g est dans $\mathcal{L}^p(\mathbb{R}, \mathbb{C})$ et on a $||f * g||_p \le ||f||_1 ||g||_p$.
- 3. On appelle suite régularisante toute suite de fonctions $(\alpha_n)_{n\in\mathbb{N}}$ telle que :
 - pour tout $n \in \mathbb{N}$, la fonction α_n est continue de \mathbb{R} dans \mathbb{R}^+ et il existe un réel $\delta_n > 0$ tel que supp $(\alpha_n) \subset [-\delta_n, \delta_n]$;
 - $-\lim_{n\to+\infty}\delta_n=0\,;$

$$-\int_{\mathbb{R}}\alpha_{n}\left(t\right) dt=1.$$

(a) On se donne une fonction continue $\alpha : \mathbb{R} \to \mathbb{R}^+$ telle que supp $(\alpha) \subset [-\delta, \delta]$, où $\delta > 0$ et $\int_{\mathbb{R}} \alpha(t) dt = 1$.

On associe à cette fonction la suite de fonctions $(\alpha_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ \forall t \in \mathbb{R}, \ \alpha_n(t) = n\alpha(nt)$$

Montrer que $(\alpha_n)_{n\in\mathbb{N}^*}$ est une suite régularisante.

- (b) Soient $(\alpha_n)_{n\in\mathbb{N}}$ une suite régularisante et $f:\mathbb{R}\to\mathbb{C}$ une fonction continue par morceaux.
 - i. Montrer qu'en tout point de continuité x_0 de f, la suite $(f * \alpha_n(x_0))_{n \in \mathbb{N}}$ converge vers $f(x_0)$.
 - ii. Dans le cas, où f est uniformément continue sur \mathbb{R} , montrer que la suite $(f * \alpha_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur \mathbb{R} .
 - iii. En supposant que toutes les fonctions α_n sont paires, montrer que pour tout réel x, on a :

$$\lim_{n \to +\infty} f * \alpha_n (x) = \frac{f(x^-) + f(x^+)}{2}$$

où
$$f(x^{-}) = \lim_{t \to x^{-}} f(t)$$
 et $f(x^{+}) = \lim_{t \to x^{+}} f(t)$.

- (c) Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue et à support compact. Montrer que pour $1 \le p \le +\infty$, on a $\lim_{n \to +\infty} \|f - f * \alpha_n\|_p = 0$.
- (d) Montrer que, pour tout réel $p \geq 1$ et toute fonction $f \in \mathcal{L}^p(\mathbb{R}, \mathbb{C})$, on a $\lim_{n \to +\infty} \|f f * \alpha_n\|_p = 0$.
- (e) Soit $(\alpha_n)_{n\in\mathbb{N}}$ une suite régularisante telle que supp $(\alpha_n)\subset[0,\delta_n]$ pour tout $n\in\mathbb{N}$, où $(\delta_n)_{n\in\mathbb{N}}$ est une suite de réels strictement positifs telle que $\lim_{n\to+\infty}\delta_n=0$.

On lui associe la suite régularisante $(\beta_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ \beta_n(t) = \alpha_n(-t)$$

On se donne une fonction continue par morceaux $f: \mathbb{R} \to \mathbb{C}$.

i. Montrer que, pour tout réel x, on a :

$$\lim_{n \to +\infty} f * \alpha_n(x) = f(x^-) \text{ et } \lim_{n \to +\infty} f * \beta_n(x) = f(x^+)$$

ii. On suppose que f admet un point de discontinuité x_0 . En désignant par $(\gamma_n)_{n\in\mathbb{N}}$ la suite régularisante définie par :

$$\forall n \in \mathbb{N}, \ \gamma_{2n} = \alpha_n \text{ et } \gamma_{2n+1} = \beta_n$$

montrer que la suite $(f * \gamma_n(x_0))_{n \in \mathbb{N}}$ est divergente.

4. Soit $\gamma: \mathbb{R} \to \mathbb{R}^+$ la fonction définie par :

$$\forall t \in \mathbb{R}, \ \gamma(t) = \begin{cases} e^{-\frac{1}{1-t^2}} \text{ si } t \in]-1, 1[\\ 0 \text{ sinon} \end{cases}$$

- (a) Montrer que γ est indéfiniment dérivable sur \mathbb{R} . On note $\alpha = \frac{1}{I}\gamma$, où $I = \int_{\mathbb{R}} \alpha(t) \, dt$ et $(\alpha_n)_{n \in \mathbb{N}}$ est la suite régularisante associée $(\alpha_n(t) = n\alpha(nt))$.
- (b) En utilisant une telle suite régularisante, montrer que toute fonction continue à support compact sur \mathbb{R} est limite uniforme d'une suite de fonctions de classe \mathcal{C}^{∞} à support compact.
- 5. Soit $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$. Montrer que, pour tout réel $\varepsilon > 0$, il existe une fonction $\varphi : \mathbb{R} \to \mathbb{C}$ de classe \mathcal{C}^{∞} à support compact telle que :

$$||f - \varphi||_1 < \varepsilon$$