

SISTEMA DIGITALAK DISEINATZEKO OINARRIAK (1. kurtso, 1. lauhilabete)

- 1. gaia. Informazioaren irudikapena
- 2. gaia. Boole aljebraren oinarriak eta ate logikoak
- 3. gaia. Bloke konbinatzionalak
- 4. gaia. Bloke sekuentzialak
- 5, gaia. Memoriak
- 6. gaia. Sistema digitalen diseinu metodologiaren hastapenak

BIBLIOGRAFIA:

- "Principios de diseño de sistemas digitales. Guía Práctica"
- G. Bosque, P. Fernandez. Ed. UPV/EHU 2014
- "Principios de diseño de sistemas digitales"
- O. Arbelaitz, O. Arregi y otros coautores, Ed. UPV/EHU 2008
- "Fundamentos de sistemas digitales"
- T. Floyd, Ed. Prentice Hall 2000
- "Diseño digital"
- M. Morris Mano, Ed. Prentice Hall 2003

IRAKASLE: Pablo Fernández

Bulegoa: P5I15

Tfno.: 946014502

E-mail: pablo.fernandezr@ehu.eus

Irakasgai honen eduki guztiak agertuko dira, kurtsoan zehar, web orrialde honetan:

https://egela1819.ehu.eus/ SDDO ikasle gida 2018/19 irakurri

1. gaia:

Informazioaren irudikapena

Teknologia elektronikoaren elementuak

Eremu elektromagnetikoak jarraiak dira: Elektronika analogikoa

Magnitude bakoitzeko (tentsio, intentsitatea) infinitu balio dago v=f(t) i=g(t)

Funtzio jarrai baten zenbait balio hartu dezakegu: diskretu bihurtu

Funtzio analogikoa: infinitu balio

Funtzio diskretua: balio kopuru finitua

Etengailuaren bidez, tentsio/intentsitate balio bi baino ez daude: on/off

$$V_{ARGIA} = R_{ARGIA} \cdot I$$

$$ON: V_{ON/OFF} = 0; V_{ARGIA} = V_{CC}$$

$$OFF: I = 0; V_{ARGIA} = 0$$

$$Etengailua ON/OFF$$

Bi balioko elektronika⇔ Electronika digitala

Elektronika Digitaleko seinaleen tentsio balioak

Tentsioaren irudikapena

- Bi tentsio baliotan oinarritzen da elektronika digitala
- Beraz, tentsio aldagarriak irudikatzeko, bi zenbaki balio erabiliko dugu
- Bi balioak dira 0 (tentsio baxua: L) eta 1 (tentsio altua: H)

Lekunezko zenbaki-sistema

$$N = \sum_{i=-k}^{n-1} d_i \cdot b^i$$

d_i=i. zifra, b=oinarria

	b	d	$N = 2001_{10}$
Bitarra	2	0-1	11111010001
Zortzitarra	8	0-7	3721
Hamartarra	10	0-9	2001
Hamaseitarra	16	0-9,A-F	7D1

Lekunezko zenbaki-sistema

- Elektronika digitalean, bi balioen bitartez seinaleak irudikatzen ditugu
- 2 oinarria daukan zenbaki-sistema (bitarra) bi zifra baino ez du erabiltzen
- Beraz, elektronika digitaleko sistemetan, zenbaki informazioa irudikatzeko zenbakisistema bitarra erabiliko dugu

Lekunezko zenbaki-sistema

- 1 baino txikiago diren zenbakiak, komaren eskuinean idazten direnak, berretzaile negatiboen bidez irudikatzen dira
- Horrela zenbaki errealak adierazi daitezke

$$14,75_{10} = 1 \cdot 10^{1} + 4 \cdot 10^{0} + 7 \cdot 10^{-1} + 5 \cdot 10^{-2}$$

$$1110,11_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 8 + 4 + 2 + 0 + 1/2 + 1/4 = 14,75$$

Zenbaki-sistemaren arteko bihurketak

Bitarra \iff Zortzitarra \iff Hamaseitarra

Hamaseitarra	7		В	F	1	3		В		1	4	
Bitarra	0	111	101	110	100	011	1	01	111	00	0100	
Zortzitarra		7	5	6	4	3		5	7	0	4	

Zenbaki-sistemaren arteko bihurketak

Hamartarra ⇔ **besteak:**

- Bihurtu nahi dugun **zenbaki**ren zatiketa osoa : bilatzen dugun **oinarria**→jarraitu zatiketa, zatidura zatitzaile baino txikiago izan arte→hondarrak dira zenbakiaren zifrak oinarri berrian, eskubidetatik ezkerretara hartuta
- Bihurtu nahi dugun zenbakiren **zati dezimala** x bilatzen dugun **oinarria**→zati dezimala berriro biderkatu, zero bihurtu arte→ biderketa bakoitzean sortu diren zati osoak dira zenbakiaren zifrak oinarri berrian, ezkerretatik eskubidetara hartuta

Zehaztasun finitua

- Sistema digitaletan, zifra kopurua finkoa da, zifra bakoitzari tentsio seinale bat dagokio eta
- Adierazi daitezken zenbaki kopurua finitua da baita ere→zehastasun finitua→koma finkoa
- 2ko oinarrian, komaren ezkerrean *n* zifra, eta komaren eskuinean *k* zifra badaude:

$$N_{max} = 2^{n} - 1 + (1 - 2^{-k})$$
 $N_{min} = 2^{-k}$

Kode bitarrean kodifikatutako sistema hamartarra: BCD

Hamartarra	BCD zenbakia
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
	1010
l l	1011
Ez erabiliak	1100
	1101
	1110
	1111

- Erosoagoa da guretzat kode hamartarra → 0 eta 1en bidez kodea erabiliena hauxe da: BCD (Binary Coded Decimal)
- 396₁₀= 0011 1001 0110 (16 konbinazio, 6 ez erabiliak)
- Eragiketa aritmetikoak ezin dira erabili→Arau bereziak

- *n* biten bidez, 2ⁿ zenbaki osoak irudikatu daitezke
- Zenbaki osoak positibo zein negatibo irudikatzeko, bitan zatituko ditugu 2^n zenbakiak: 2^{n-1} positiboak eta beste hainbeste negatiboak
- Zero positiboa da
- 2ko osagarria da gehien erabiltzen den metodoa

Zenbaki bitar positiboak

Zeinu erantsitako magnitudea

- Zeinu erantsitako magnitudea da metodo errezena, baina hainbat eragozpen dauka:
 - Zero bi irudikapen dauka: +0 y -0
 - Metodo honetako zenbakien arteko eragiketa aritmetikoak baliogabeak dira
- Zenbaki positibo altuena da: $N_{max} = 2^{n-1} 1$
- Zenbaki negatibo altuena da: $N_{min} = -(2^{n-1}-1)$

1eko osagarria $A^{(1)} = 2^4 - 1 - |A|$

2ko osagarria $A^{(2)} = 2^4 - |A| = A^{(1)} + 1$

- Zenbaki baten balio absolutuaren 0 eta 1ak alderantzikatuz, 1eko osagarrian zenbaki negatiboa lortzen da
- 2ko osagarrian zenbaki negatiboa lortzen da 1eko osagarrien bidez, 1 gehiago batuz
- 2ko osagarri sisteman, 0 bakar bat dago, beraz, zenbaki negatiboetan bat gehiago dago: -2^{n-1}
 - Zenbaki positibo altuena da: $N_{max} = 2^{n-1}-1$
 - Zenbaki negatibo altuena da: $N_{min} = -2^{n-1}$

Zenbaki negatibo erabiliz batuketa bitarra

- 2ko osagarria à Bururakoa baztertu
- 1eko osagarria à Buruakoa berriro batu
- Zeinu ezberdineko zenbakiak batutzen ditugunean, emaitza ez da inoiz batugaiak baino handiago\(\text{\red}ez\) dago gainezkatzerik (overflow)
- Zeinu bereko zenbakiak batutzen à batuketaren zeinua ezberdina à gainezkatze dago

- 2ⁿ⁻¹eko gehiegizko sisteman, zenbaki guztiei (positibo zein negatiboei) 2ⁿ⁻¹ batutzen zaie, horrela emaitza beti da positiboa
- Zenbaki baten balioa ezagutzeko, 2ⁿ⁻¹ kendu egin behar diogu
- Sistema honekin batuketa baliogabekoa da, emaitza beti gehi 2ⁿ⁻¹ delako

$$A + 2^{n\text{-}1} + B + 2^{n\text{-}1} = \underbrace{((A + B) + 2^{n\text{-}1})}_{\text{BATUKETA}} + 2^{n\text{-}1}$$

Hamartarra	Mag. zeinu erantsita	1eko osagarria	2ko osagarria	8ko gehiegizkoa
-8			1000	0000
-7	1111	1000	1001	0001
-6	1110	1001	1010	0010
-5	1101	1010	1011	0011
-4	1100	1011	1100	0100
-3	1011	1100	1101	0101
-2	1010	1101	1110	0110
-1	1001	1110	1111	0111
-0	1000	1111		
0	0000	0000	0000	1000
1	0001	0001	0001	1001
2	0010	0010	0010	1010
3	0011	0011	0011	1011
4	0100	0100	0100	1100
5	0101	0101	0101	1101
6	0110	0110	0110	1110
7	0111	0111	0111	1111

Idazkera zientifikoa: koma higikorreko zenbakiak

 $N=f \cdot 10^e$

f: frakzio edo mantisa → zehaztasuna

e: berretzailea → zenbaki-tarte

Koma higikorra: Kode bitarrean

- ANSI/IEEE Std. 754 (1985)
 - Berretzailea:
 - 2ⁿ⁻¹-1eko gehiegizkoa
 - Dena '0' eta dena '1' bereziak
 - Frakzioa normalizatuetan, lehenengo 1a komaren ezkerrean dago

Idazkera zientifikoa: koma higikorreko zenbakiak

- 2ko oinarriko bertsioa konputagailuan erabiltzeko
- Komaren eskuinean dagoen zenbakia '1' ba da, frakzioa *normalizatuta* dago
- Komaren eskuinean '0' badagoà ezkerrera mugitzen dugu '0', berretzaileen balioa dekrementatuz (frakzioa normalizatuta bihurtzen dugu zenbakien balioa aldatu gabe)

Idazkera zientifikoa: koma higikorreko zenbakiak

Adibidea:

Oinarria=2, berretzailea 64ko gehiegizko sisteman

Ez normalizatuta:

$$01010100.000000000011011 = 2^{20} \cdot (2^{-12} + 2^{-13} + 2^{-15} + 2^{-16}) = 432$$

Normalizatuta:

Idazkera zientifikoa: IEEE 754

ANSI/IEEE Std. 754 (1985)

Normalizatuta: Komaren ezkerrean lehenengo 1a, frakzioan 1 hori inplizitu dago

Berretzailea adierazteko 2ⁿ⁻¹-1 gehiegizkoa erabiltzen da

1 z		8 b	23		$(-1)^z \times 2^{(b-127)} \times ($	1+f)
a)	1 +	8 berretzaile		23 frakzio		
	1	11			52	
b)	+	berretzaile	,		frakzio	

a) Zehaztasu sinple

b) Zehaztasun bikoitza

Idazkera zientifikoa: IEEE 754

Frakzio eta berretzaile esanahiaren salbuespenak (dena '0' eta dena '1' balio berezirako erreserbaturik):

Normalizatua	±	0 < Ber. < Max	Edozein bit multzo
Ez normalizatua	±	0	Zero ez den edozein bit multzo
Zero	±	0	0
Infinitu	±	1111	0
Ez da zenbaki	±	1111	Zero ez den edozein bit multzo
	X	Zeinu bita	

Kode alfanumerikoak: ASCII

ASCII: American Standard Code for Infomation Interchange

- − 7bit → 128 karaktere
- 1byte: 0 ASCII kodea
- MSB=1 → beste 128 karaktere, azentu daukaten hizkirako edo beste hizkuntzarako (Latin-1)
- _____ 0 B7 B6 B5 B4 B3 B2 B1 B0 Zutabe Lerro

Kode alfanumerikoak: ASCII

5				B ₇ B ₈ B				
B ₄ B ₃ B ₂ B ₁	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	$\mathbf{P}^{()}$	361	p
0001	SOH	DC1	SP	1	A	Q	a	p q r s
0010	STX	DC2	**	2	В	R	b	r
0011	ETX	DC3	#	1 2 3 4	B	S	C	S
0100	EOT	DC4	\$	4	D	T	d	1
0101	ENQ	NAK	# \$ %	-5	E	U	a b c d e f	u
0110	ACK	SYN	&	6 7	F	V		v
0111	BEL.	ETB		7	E F G	W	g h	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	1	Y	i	
1010	LF	SUB		8	J	Z	1	y z
1011	VT	ESC	+	. <	K L	Į.	k	4
1100	FF	FS	(3)	<	I.	N.	1	Ü
1101	CR	GS	(S#15)	15	M	Ĩ.	m	1
1110	so	RS	358	>	N	^	m n	374
1111	SI	US	910	2	0		O	DEI

Kode alfanumerikoak: ASCII

- Taula honetan B₈=0, B₈=1 denean azento daukaten hizkiak eta beste hizkuntz europarraren karaktere bereziak agertzen dira
- Baina europar ez diren beste hizkuntzarako?
 →Kode taula, hizkuntza bakoitzarako, taula bat
- Karaktere txinatarrak 256 baino askoz gehiago dira, kode taula bat ez da nahikoa

Kode alfanumerikoak: UNICODE

- UNICODE sisteman karaktere bakoitzari zenbaki bitar bat dagokio (kode puntua)
- Zenbakiak 16 bitekoak dira (UTF-16), baina orain 32 bit (UTF-32) erabiltzen dira
- 2³²≈4x10⁹ zenbaki bitarraren esanahia erabakitzeko, 1991an enpresa partzuergo bat sortu zen, barnean Apple, Microsoft eta Sun, besteak beste

Kode alfanumerikoak: UNICODE

Cor	Control		AS	SCII			Cor	ntrol		Latin 1						
000	001	002	003	004	005	006	007	008	009	00A	00B	00C	00D	00E	00F	
CTRL	CTRL	SPACE	0	@	P	`	р	CTRL	CTRL	NB SP	0	À	Đ	à	D	
CTRL	CTRL	!	1	A	Q	a	q	CTRL	CTRL	1	±	Á	$\tilde{\mathbf{N}}$	á	ñ	
CTRL	CTRL	"	2	В	R	b	r	CTRL	CTRL	¢	2	Â	Ò	â	ò	
3 CTRL	CTRL	#	3	C	S	c	S	CTRL	CTRL	£	3	Ã	Ó	ã	ó	
CTRL	CTRL	\$ \$	4	D	T	d	t	CTRL	CTRL	a	,	Ä	Ô	ä	ô	
CTRL	CTRL	%	5	E	U	e	u	CTRL	CTRL	¥¥	μ	Å	Õ	å	õ	
6 CTRL	CTRL	&	6	F	V	f	v	CTRL	CTRL	1	P	Æ	Ö	æ	ö	
7 CTRL	CTRL		7	G	W	g	w	CTRL	CTRL	§		Ç	×	ç	÷	
3 CTRL	CTRL	(8	H	X	h	X	CTRL	CTRL		3	È	Ø	è	ø	
) CTRL	CTRL)	9	I	Y	i	y	CTRL	CTRL	©		É	Ù	é	ù	
A CTRL	CTRL	*	:	J	Z	j	Z	CTRL	CTRL	a	0	Ê	Ú	ê	ú	
B CTRL	CTRL	+	;	K	[k	{	CTRL	CTRL	«	»	Ë	Û	ë	û	
C CTRL	CTRL	,	<	L	\	1	1	CTRL	CTRL	\neg	$\frac{1}{4} 1/4 $	Ì	Ü	ì	ü	
O CTRL	CTRL	-	=	M]	m	}	CTRL	CTRL	-	1/2	Í	Ý	í	ý	
E CTRL	CTRL		>	N	٨	n	~	CTRL	CTRL	®	3 3/4	Î	?b]	î	'b _]	
F CTRL	CTRL	/	?	O		0	CTRL	CTRL	CTRL	_	٥	Ϊ	ß	ï	ÿ	