

Mixer Architecture

token-mixing

channel-mixing MLP

$$U_{*,i} = X_{*,i} + W_2 \sigma(W_1 LayerNorm(X)_{*,i}), \text{ for } i = 1, \dots, C$$

 $Y_{j,*} = U_{j,*} + W_4 \sigma(W_3 LayerNorm(U)_{j,*}), \text{ for } j = 1, \dots, S$

逐元非线性激活函数(GELU)

THERS/TAL 1946 WILL 1946 W

MLP-Mixer: An all-MLP Architecture for Vision

E[mx] = xE[m]

Since m is a Bernoulli Random Variable, its expected value is $\Phi(x)$

$$\implies E[mx] = x\Phi(x)$$

由于Φ(x)是高斯分布的累积分布,并且通常使用误差函数进行计算,因此我们将高斯误差线性单位(GELU)定义为:

GELU(x) =
$$xP(X \le x) = x\Phi(x)$$

 $\approx 0.5x \left(1 + \tanh\left[\sqrt{2/\pi}\left(x + 0.044715x^3\right)\right]\right)$

GELU (μ = 0, σ = 1) , ReLU和ELU (α = 1)...

https://arxiv.org/abs/1606.08415


```
def MLPMixer(*, image_size, patch_size, dim, depth, num_classes, expansion_factor = 4, dropout = 0.):
   assert (image_size % patch_size) == 0, 'image must be divisible by patch size'
   num patches = (image size // patch size) ** 2
   chan first, chan last = partial(nn. Convld, kernel size = 1), nn. Linear
   return nn. Sequential (
       # 1. 将图片拆成多个patches
       Rearrange ('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
       # 2. 用一个全连接网络对所有patch进行处理, 提取出tokens
       nn. Linear ((patch size ** 2) * 3, dim),
       # 3. 经过N个Mixer层,混合提炼特征信息
       *[nn. Sequential(
           PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)),
           PreNormResidual(dim, FeedForward(dim, expansion factor, dropout, chan last))
       ) for _ in range (depth)].
       nn. LaverNorm (dim),
       Reduce ('b n c -> b c', 'mean'),
       # 4. 最后一个全连接层进行类别预测
       nn. Linear (dim, num_classes)
```



```
class PreNormResidual(nn. Module):
    def __init__(self, dim, fn):
        super().__init__()
        self. fn = fn
        self. norm = nn. LayerNorm(dim)
    def forward(self, x):
        return self. fn(self. norm(x)) + x
def FeedForward(dim, expansion_factor = 4, dropout = 0., dense = nn.Linear):
    return nn. Sequential (
        dense(dim, dim * expansion_factor),
        nn. GELU(),
        nn. Dropout (dropout),
        dense (dim * expansion_factor, dim),
        nn. Dropout (dropout)
```


	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days
	Pre-tr	ained on	ImageN	et-21k (public	c)	
HaloNet [49]	85.8	3 4 8	1-		120	0.10k
Mixer-L/16	84.15	87.86	93.91	74.95	105	0.41k
• ViT-L/16 [14]	85.30	88.62	94.39	72.72	32	0.18k
BiT-R152x4 [22]	85.39		94.04	70.64	26	0.94k
	Pre-tra	ained on	JFT-3001	M (proprietar	y)	
• NFNet-F4+ [7]	89.2	82-0		-	46	1.86k
Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k
BiT-R152x4 [22]	87.54	90.54	95.33	76.29	26	9.90k
• ViT-H/14 [14]	88.55	90.72	95.97	77.63	15	2.30k
Pre-train	ed on unl	abelled o	or weakly	labelled data	a (proprietary)	
MPL [33]	90.0	91.12	S	===	() ()	20.48k
 ALIGN [21] 	88.64	_	_	79.99	15	14.82k

谢谢大家