

Class-D Amplifier Output Power Measurement With RC Filter Box

The output waveform on the oscilloscope reflects the audio signal and the output power can be determined through the

Peak/RMS Output Voltage and the load impendence using

$$P = V^2/R$$

Class-D Amplifier THD+N Measurement With RC Filter Box - Results @ 1 kHz

TOTAL HARMONIC DISTORTION + NOISE

How to handle Pop noise

the following figure is the scope capture of what the pop-noise looks like

This sharp transient signal is amplified then can be heard.

About this situation, sometimes we can try to handle the pop-noise Using the follow ways.

a: improve the input source signal level as could as possible, then properly reduces the gain of the TPA's amp. we can obtain two benefits of better SNR and minimized pop-noise occurred by input DC bias voltage.

b: add external components to offer a proper DC bias circuitry.

Full difference AMP update to other application

Digital Audio Interface

Audio Digital Interface

- ◆ PCM(脉冲编码调制)接口: 所有数字信号进行传输都要经过PCM,并且需要仔细参照用于数字电话的单声道机制。PCM接口由时钟脉冲(BCLK)、帧同步信号(FS)及数据队列组成,每个PCM对应一个将要接收或将要发送的数据。在FS信号的上升沿,数据传输从MSB(Most Significant Bit)字开始,FS频率等于采样率。FS信号之后开始数据字的传输,单个的数据位按顺序进行传输,1个时钟周期传输1个数据字。发送MSB时,信号的等级首先降到最低,以避免在不同终端的接口使用不同的数据方案时造成MSB的丢失。
- ◆ I2S接口(Inter-IC Sound)被飞利浦用于消费音频,并在一个称为LRCLK(Left/Right CLOCK)的信号机制中经过多路转换,将两路音频信号成单一的数据队列。当LRCLK为高时,左声道数据被传输;LRCLK为低时,右声道数据被传输。与PCM相比,I2S更适合于立体声系统。对于多通道系统,在同样的BCLK和LRCLK条件下,并行执行几个数据队列也是可能的。

◆ AC '97/AC-Link接口: AC '97(音频编码1997)是Intel公司为计算机音频而指定的。他不只是一种数据格式,用于音频编码的内部架构规格,它还具有控制功能。众所周知的AC-Link接口包括位时钟(BITCLK)、同步信号校正(SYNC)和从编码到处理器及从处理器中解码(SDATDIN与SDATAOUT)的数据队列

Audio Digital Interface

Comparison

Audio Interface	Audio Interface I ² S (Consumer/Pro Audio)		PCM (Telecom)	
Sample Rate	192kHz to 2kHz ple Rate 96k,48k,44.1k,16k, 8k, 2k Fixed 48kHz		Any rate	
I/O	SCK, WS, SDOUT SDIN, SDOUT, /RESET		Same as I ² S	
Command write Via other interfaces 8 Status read like I ² C, SPI		AC Link	Same as I ² S	
Power Consumption		Higher	Low	

Audio Digital Interface

Advantages/Disadvantages

- ◆ I²S (Originated from High-end Audio market)
 - Advantages
 - Low Power
 - Internal PLL allowing flexible clocking scheme
 - High Quality Audio performance in terms of THD and SNR
 - Disadvantages
 - Requires two buses i.e. I²S for Audio signals and I²C for control signals
- ◆ AC'97 (Originated from PC market)
 - Advantages
 - Only uses one bus for audio signals and control signals
 - Very familiar among design community
 - Disadvantages
 - · Requires S/W drivers
 - High power consumption (limited power-down mode-bus must be running)
 - Need 12.288MHz Reference Clock that is not standard in many consumer audio applications
- PCM (Originated from Telephone market)
 - Advantages
 - Offer H/W Audio compression i.e. A-Law and u-Law
 - · Multi-channel Data capability
 - Disadvantages
 - Lower audio quality (e.g. used for voiceband)

Portable Audio Products

The Portable Audio Chain

August 2005

The Portable Audio Chain

Audio for Wireless 2006 Roadmap

Audio Converters CODECs

Class-AB Integrated Speaker Drivers

TLV320AIC23 - Stereo CODEC

TLV320AIC26 -> Mono ADC/Stereo DAC

TLV320AIC28 -> Mono ADC/Stereo DAC

TLV320AIC29 -> Mono ADC/Stereo DAC with diff. input

TLV320AIC3x -> Music Phones

+ Integrated Touch Screen Controller (TSC)

TSC21xx -> PDA Phones with music

TSC2111 -> Diff. input version on TSC2101

TSC23xx -> PDA Phones with music (No Speaker Driver)

Class-D Integrated Speaker Drivers

PCM3792/A -> Stereo Class-D

PCM3793 -> Audio Effects / Stereo Class-D

PCM3974 -> Audio Effects (No Speaker Drivers)

Class-AB Integrated Speaker Drivers

TLV320DAC23 -> DAC version of AIC23

TLV320DAC26 -> DAC version of AIC26

TLV320DAC32 -> DAC only version of AIC3x

TLV320DAC33 -> Higher Performance Burst Mode DAC

Class-D Integrated Speaker Drivers

PCM1775 -> Mono Speaker Driver

PCM1776 -> Stereo Speaker Driver

Audio Power Amplifiers

Speakers

Class-AB

TPA6201A1 -> Low-cost (Not public)

TPA6203A1 -> Mid-end

TPA6204A1 -> High-power

Class-D

TPA2005D1 -> Low-cost

TPA2010D1 -> Mid/High-end

TPA203xD1 -> Smallest Solution

TPA2012D2 -> Stereo Class-D

TPA2013D1 -> Boosted Class-D

Audio Power Amplifiers

Headphone

Class-AB

TPA611xA2 -> Low-cost

Cap-Free

TPA4411 -> Music Phones

TPA6130A2 -> Lower Power / Higher Integration

Portable Audio Products

Supply Voltage

Power Ratings @ 5V (1% THD)

TPA6201A1

1W into 8Ω at 5V Mono Class-AB Amplifier

Features

- 500mW into 8Ω at 3.6V (1% THD)
- Supply Voltage: 2.5 to 5.5 V operation ~ PSRR ~ 86dB
- Small package options
- Fully differential amplifier
- No input coupling caps
- <1ms start-up time with pop reduction</p>

Benefits

- High power solution for hands-free mode
- Operates directly from battery
- Saves board space
- Eliminates common-mode noise
- Reduces external component count
- Instant start-up for PDA

TPA2010D1

2.08W into 4Ω at 5V Mono Class-D Amplifier

Features

Integrated

- Class-D architecture
- Filter-Free modulation scheme
- 1.06mW into 4Ω at 3.6V (1% THD)
- Supply Voltage: 2.5 to 5.5 V & ~75dB PSRR
- Smallest available packaging option
- No input coupling caps
- Fully differential amplifier

Benefits

- Longer battery life compared to class-AB
- No LC Filter required
- Powers hands-free mode
- Direct-Connect to battery
 - More power
 - Even higher efficiency
- Saves board space
- Reduces RF rectification

TPA2012D2

1.18W into 4Ω at 5V Stereo Class-D Amplifier (QFN)

- 2.0mm x 2.0mm WCSP (YZH) [Pb-Free]
- 4mm x 4mm QFN RTJ [Pb-Free]

Features

Class-D architecture Filter-Free modulation scheme 600mW into 8W at 3.6V (1% THD) Supply Voltage: 2.5 to 5.5 V & ~75dB

Benefit:

Saves board space
Only 1 external component
Reduces RF rectification

Gain Select

		Gain		
G1	GO	V/V	dB	
0	0	2	6	
0	1	4	12	
1	0	8	18	
1	1	16	24	

Integrated
200KΩ Pull-down Resistor

3 Fixed Gain (2, 3, & 4V/V) Mono Class-D 2.5W into 4Ω at 5V (10% THD) Mono Class-D Amplifie 🗐

external componer 1.8V Low-Voltage Logic VIH and VIL Levels

300KΩ Pull-down Resistor

 $\sim 1.5 \times 1.5 \text{mm}$ WCSP (YZF) [Pb-Freel GND C3

WCSP (Top view of PCB)

Features

- Fixed Gain of: 2V/V, 3V/V, or 4V/V
- Fully differential, Class-D architecture

Integrated

- Only 1 external component required
 - No input coupling caps required
 - Filter-Free modulation scheme
- 1.0 W into 4Ω at 3.6V
- Supply Voltage: 2.5 to 5.5 V
- ~87dB PSRR
- ~75dB Ksvr at 217Hz
- Very low noise floor (26uV)
- Audio POP reduction circuitry

Benefits

- Almost a drop in replacement for TPA2010D1
 - Eliminates external gain setting resistors
- Longer battery life compared to class-Differential AB
- No LC Filter required
- Direct-Connect to battery
 - More power
 - Higher efficiency
- Saves board space
- Reduces SHEITED COMMINISTRATION TO THE REDUCE SHEETE SHEET

Bias Circui

TEXAS INSTRUMENTS

Fixed Gain Class-D Audio Power Amplifier TPA2032D1, TPA2033D1, TPA2034D1

Features

- Multiple Gain Versions: 2, 3, or 4V/V
- Integrated Matched Input Resistors
 - Only 1 external component
 - Lower BOM cost
 - Smaller PCB area
- PSRR = ~-87dB
- CMRR = ~-73dB (est.)
- Lower input impedance results in less noise coupling to inputs
- Lower Noise Floor: 26uVrms unweighted
- Lower EMI circuitry

Features

- Ease of design in, extremely close match to TPA2010D1 pinout with better performance
- Audio Pop reduction circuitry
- Very small WCSP Packaging
 - ~1.5mm x ~1.5mm x 0.6mm
 - Same package as TPA2010D1

TPA2012D2 <u>Portable Audio Reference Solution</u>

Competitor Analysis

Features	TPA2010D1	TS4962M	LM4671	NCP2820	TPA2032D2	NCP2821
PSRR	75dB	63dB	61dB	62dB	75dB	63dB
CMRR	68dB	57dB	68dB	57dB	69dB	59dB
Vos(mV)	1mV	3mV	5mV	6mV	5mV	6mV
SNR(dB)	97dB	85dB	93dB	-	97dB	-
Pout(THD + N= 1%, f = 1 kHz,RL = 8 Ω)	1.19W(5v)			1.3W	1.1W	1.3W
	0.59W@3.6V	0.95(4.2v)	0.6W	0.7W	0.6W	0.7W
I stdby	4.9mA(max)	3~25mA	6.2mA	2mA	3mA	3mA
Wake up time	1mS	5~10mS	17uS	8mS	3mS	9mS
Vn	36uV	62uV	58uV	65	32uV	63uV
THD+N	0.11%	1%	0.12%	0.10%	0.11%	0.09%

Portable Audio Products Headphone Amplifiers

August 2005

Stereo Headphone Amplifiers

Hero Products

TPA611xA2 Family (2.5 - 5.5V)

Variable Gain Pop Reduction MSOP Variable Gain Pop Reduction SOIC and MSOP Variable Gain

Differential Inputs
Pop Reduction
MSOP

TPA610×A2 Family (1.6 - 3.6V)

Variable Gain
Pop Reduction
SOIC and MSOP

Fixed 2dB Gain Pop Reduction SOIC and MSOP Fixed 14dB Gain Pop Reduction SOIC and MSOP

CapFree HP Amplifier

1.8-4.5V Supply Fixed 1.5V/V Gain CapFree HP Driver Pop Reduction QFN and WCSP

TPA61xxA2

50mW - 150mW into 16Ω Headphone Drivers

Features

- Low Supply Voltage Option
- 50-mW Stereo Output Power (V_{CC} 1.6-3.6V)
 - ◆ TPA6100A2 = External gain (P/C LM4881)
 - TPA6101A2 = -1.25 V/V (P/C LM4880, LM4881)
 - ◆ TPA6102A2 = -5 V/V
- 150-mW Stereo Output Power (V_{CC} 2.5-5.5V)
 - ◆ TPA6110A2 = External gain (P/C LM4881)
 - TPA6111A2 = External gain (P/C LM4880, LM4881)
 - ◆ TPA6112A2 = External gain (Differential Inputs)

Benefits

- Operates from processor power supply
 Powerful output drive with mining
 - Powerful output drive with minimum external component count for any headphone application

Higher power output drive for any headphone application

TPA4411

40mW into 16Ω at 3V Cap-Free Stereo Headphone Drive

MIXIM

MAX44xx MAX97xx

- High PSRR ~ 80dB
- Channel Shutdown option <1uA

No DC output block capacitors

Smallest available packaging option

- Can run directly off the battery
- Reduce current consumption in stand-by
- Reduce board space requirements

Portable Audio Products Low-Power Audio / Voice / USB CODECs

August 2005

TLV320AIC31

16/20/24/32-bit Low-Power Stereo Audio Codec

Key Features

- Stereo 8-96ksps audio DAC with 100dB SNR Stereo 8-96ksps audio ADC with 92dB SNR Single End
- 2 SE & 2 Differential audio inputs with mixing and level control
- Microphone input with bias, preamp and AGC
- Integrated PLL provides flexible audio clock generation (512KHz to 50MHz input clock)
- Programmable digital audio Bass/Treble/EQ/De-emphasis/3-D
- I²C Control and I²S/TDM Audio Interfaces
- **400mW into 8-ohms** stereo speaker driver 40mW into 16-ohm stereo headphones with cap-less output option

Key Differentiators

- * Low-Power: 14mW stereo 48ksps playback
- * Small package: 5 x 5mm 32-QFN (RHB)

Power Supply Voltages

Analog: 2.7 - 3.6V Digital Core: 1.525 - 1.95V Digital I/O: 1.1 - 3.6V

For additional features see TLV320AIC33

Applications

- Cell phones
- Audio for digital cameras
- Low-Power, portable voice/audio products
- Voice applications with MP3 playback

TLV320AIC31

Block Diagram

Output Signals 4 x High Power HP / Speaker Driver Stereo Differential line outs **Level Control** 0 -12 dB Audio Serial Voltage Supplies Bus 0/+59.5dB Volume Ctl 0.5dB & Effects PGA HPR-HPRCOM SPKEC 0/+59.5dB Volume Cti 0.5dB **Input Signals** Audio Clock I2C Control Bias/ 2 x Single-ended Reference Generation 2 x Differential

Touch Screen

TSC2046 Functional Block Diagram

Simple TSC – Features & Selection Guide

Features & Advantages

- Low power consumption increases battery life
- ◆ Differential mode is able to handle touch panel with long settling time without extending acquisition time of ADC
- ◆ Touch screen operation is software-compatible
- We provide software drivers for touchscreen for selected processors and operating systems

Simple TSC	Res. (bit)	Sample Rate (KSPS)	Touch Panel (wire)	I/F	Aux IN (CH)	TEMP Sensor (CH)	Battery Monitor (CH)	EVM
ADS7843	8/12	Up to 125	4	SPI	2			
ADS7845	8/12	Up to 125	5	SPI	1			
ADS7846	8/12	Up to 125	4	SPI	1	1	1	V
TSC2003	8/12	Up to 125	4	I2C	2	2	2	
TSC2046	8/12	Up to 125	4	SPI	1	1	1	V

Success Story

Fujitsu

TPA2005D1 \$200k LNR Fujitsu W-CDMA Phone

Won due to better performance compared to LM4666

Motorola

TPA2010D1 \$1M LNR E1000/A1000 UMTS Phone

Won due to Class-D efficiency and better spec than National LM4667

PalmOne ACE/650

TPA6203A1 \$300k LNR PalmOne GSM/CDMA Phone

Haier

TPA2005D1

About \$100k LNR

V7000/V20 GSM Camera Phone

Won due to Class-D efficiency

Excellent support through TI US (PalmOne) / TI Taiwan (HTC) resulting in TI kicking out LM4894!

Thank You For Your Time