

Telecom Churn Case Study

SUBMITTED BY
RAGHAV VIR KAKKAR

Problem Statement

In the telecom industry, customers are able to choose from multiple service providers and actively switch from one operator to another. In this highly competitive market, the telecommunications industry experiences an average of 15-25% annual churn rate. Given the fact that it costs 5-10 times more to acquire a new customer than to retain an existing one, **customer retention** has now become even more important than customer acquisition.

For many incumbent operators, retaining high profitable customers is the number one business goal.

To reduce customer churn, telecom companies need to predict which customers are at high risk of churn.

In this project, we will analyse customer-level data of a leading telecom firm, build predictive models to identify customers at high risk of churn and identify the main indicators of churn.

Project Objective

- ❖ To Predict Customer Churn
- Highlighting the main variables/factors influencing Customer Churn
- Use various ML algorithms to build prediction models, and evaluate the accuracy and performance of these models.
- Finding the best model for our business case and providing executive suggestions.

Model Building Steps

- Data collection
- Data preparation
- ❖ Perform EDA
- Feature selection
- Building models
- Validate and measure models performance
- Improve models performances
- Executive models for prediction
- ❖ Select best fit model for our business problem

EDA

EDA

EDA

Heat Map

roam_og_mou_6	1	-0.027	-0.056	-0.018	-0.0092	-0.055	-0.012	0.0086	-0.0029	-0.002	-0.0063	-0.033	-0.033
loc_og_t2t_mou_6	-0.027	1	0.22	0.058	0.031	0.75	-0.045	-0.036	0.0061	-0.054	-0.0023	0.023	0.37
loc_og_t2m_mou_6	-0.056	0.22	1	0.18	0.017	0.8	-0.081	-0.042	0.055	-0.081	0.0044	0.033	0.37
loc_og_t2f_mou_6	-0.018	0.058	0.18	1	-0.0032	0.21	-0.063	-0.049	0.15	-0.072	0.012	0.024	0.055
loc_og_t2c_mou_6	-0.0092	0.031	0.017	-0.0032	1	0.03	0.046	0.042	0.003	0.059	0.00078	0.49	0.081
loc_og_mou_6	-0.055	0.75	0.8	0.21	0.03	1	-0.084	-0.052	0.049	-0.09	0.0022	0.037	0.47
std_og_t2t_mou_6	-0.012	-0.045	-0.081	-0.063	0.046	-0.084	1	0.12	-0.027	0.74	-0.015	0.1	0.61
std_og_t2m_mou_6	0.0086	-0.036	-0.042	-0.049	0.042	-0.052	0.12	1	4.8e-05	0.75	-0.015	0.096	0.64
std_og_t2f_mou_6	-0.0029	0.0061	0.055	0.15	0.003	0.049	-0.027	4.8e-05	1	0.0019	0.0023	0.0094	0.029
std_og_mou_6	-0.002	-0.054	-0.081	-0.072	0.059	-0.09	0.74	0.75	0.0019	1	-0.02	0.13	0.83
isd_og_mou_6	-0.0063	-0.0023	0.0044	0.012	0.00078	0.0022	-0.015	-0.015	0.0023	-0.02	1	-0.0026	0.05
spl_og_mou_6	-0.033	0.023	0.033	0.024	0.49	0.037	0.1	0.096	0.0094	0.13	-0.0026	1	0.16
total_og_mou_6	-0.033	0.37	0.37	0.055	0.081	0.47	0.61	0.64	0.029	0.83	0.05	0.16	1
	roam_og_mou_6	loc_og_t2t_mou_6	loc_og_t2m_mou_6	loc_og_t2f_mou_6	loc_og_t2c_mou_6	9 now go ool	std_og_t2t_mou_6	std_og_t2m_mou_6	std_og_t2f_mou_6	9_uom_go_bts	9 nom go bsi	9 now bo lds	total_og_mou_6

Customer Vs Tenure

Churn Distribution

Confusion Matrix

Training & Test Accuracy

Training & Test Accuracy

Conclusion

SVM with tuned hyperparameters produce best result on this dataset with 0.92 accuracy.

Random forest also produce good accuracy with 0.91 (default overfit model) and 0.90 with tuned hyperparameters.

XGBoost also produce apt accuracy of 0.86 (default overfit model) and 0.85 with tuned hyperparameters.

As per our analysis SVM and Random forest produce best accuracy and models can be selected to predict churn data for future dataset or production.

Thank You