How to represent numbers

- Computers store/process numbers, and only numbers.
- So, we need to represent numbers conveniently:
 - for machine storage
 - for machine arithmetic
- First let us look at how we represent numbers

How many items are there?

- 21
- 13
- 111
- 11
- 12
- 7

- There are 10 types of people in the world:
 - Those who understand binary and those who don't

CRITICAL: A numeric value is invariant. It's symbolic representation will change depending on the base used

- Humans use the decimal (base-10) number system:
 - 10 digits (0 through 9)
 - Numbers are written as a string of these digits
 - Each string position has a "place value"
 - from the right: 1, 10, 100, 1000, ...
 - Left-most digit has the largest value associated with it
 - i.e. is the most significant digit

- We can generalize base-10 knowledge to any base-B number systems,
 where B >= 2
- Any given numeric value can be expressed, symbolically, in any given base

- How many digits in base-B number system?
- What are the digits in the base-B number system?

Criteria	base-10	base-B			
# of digits	10	В			
range	0-9 (10-1)	0 – B-1			

- General rules for base-B:
 - # of possible digits: B
 - All possible symbols: 0 to B-1
 - Letters are used for symbols 10 to 35 starting with A
 - o A=10, B=11, ..., Z=35

- Example numbers in different bases:
 - Base-5 (in this case B is 5)
 - # of possible digits = 5
 - All possible symbols: 0, 1, 2, 3, 4

- Example numbers in different bases:
 - Base-12 (in this case B is 12)
 - # of possible digits = 12
 - All possible symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B

How are numbers interpreted in base-10?

o
$$d_n*10^n + d_{n-1}*10^{n-1} + ... + d_2*10^2 + d_1*10^1 + d_0$$

How are numbers interpreted in base-B?

$$o d_n B^n + d_{n-1} B^{n-1} + ... + d_2 B^2 + d_1 B^1 + d_0$$

- generic rule for any base, B will be >=2
- Is base-1 a positional number system?

Example numbers in different bases:

- 1. Base-7 (in this case B is 7)
 - Number of symbols is 7
 - **(**0, 1, 2, 3, 4, 5, 6)
 - $\circ \quad 63425_7 = 6*7^4 + 3*7^3 + 4*7^2 + 2*7^1 + 5*7^0$

Example numbers in different bases:

- 1. Base-12 (in this case B is 12)
 - Number of symbols is 12
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
 - \circ 9B2A4₁₂ = 9*12⁴ + B*12³ + 2*12² + A*12¹ + 4*12⁰

Decimal (Base-10)	Binary (Base-2)	Base-5	Hexadecimal (Base-16)
1	1	1	1
2	10	2	2
5	101	10	5
10	1010	20	Α
15	1111	30	F
20	10100	40	14
45	101101	140	2D

Base-10	1	2	4	5	9	10	11	12	14	15	16	19	20	21
Base-2	1	10	100	101	1001	1010	1011	1100	1110	1111	10000	10011	10100	10101
Base-5	1	2	4	10	14	20	21	22	24	30	31	34	40	41
Base-12	1	2	4	5	9	А	В	10	12	13	14	17	18	19
Base 16	1	2	4	5	9	А	В	С	Е	F	10	13	14	15

- ALWAYS subscript a number with its base unless perfectly clear from the context
 - \circ 110₂ = number in Base-2
 - 10 is ambiguous! The meaning depends on the base:
 - 10₂!= 10₁₀
 - 10₁₀ == 1010₂
 - 10₂ == 2₁₀

- How are numbers represented/stored in a computer?
- In electronics, two-state circuits (on/off) are relatively easy to design
 - Modern computers represent numbers in binary
- Binary numbers are also the most amenable to arithmetic circuit design (e.g. adders)

- Binary (base-2)
 - 2 digits (0 and 1)
 - numbers are written as a string of binary digits, or "bits"
 - "place value" from the right:
 - \blacksquare 1 (2⁰), 2 (2¹), 4 (2²), 8 (2³), 16 (2⁴), ...