Exercices tirés de l'examen partiel A2003

Problème no. 1 (20 points)

a) Un réseau triphasé est représenté par le schéma unifilaire suivant:

À la barre B4, la charge absorbe 150 MW et 80 Mvar à une tension de 14 kV.

En utilisant $S_{base3\phi}$ = 100 MVA et V_{baseLL} = 13.8 kV (côté générateur), tracer un schéma du réseau en p.u. (incluant l'impédance de la charge).

(12 points)

b) Une source de tension triphasée équilibrée 600 V, 60 Hz est connectée à une charge déséquilibrée en Y avec R = 10 Ω dans la phase a, X = 12 Ω dans la phase b, et X = -15 Ω dans la phase c. Le neutre de la charge est connecté au neutre de la source.

Déterminer les composantes de séquence (composantes symétriques) des courants de ligne I_a , I_b , I_c .

(8 points)

Problème no. 2 (20 points)

Une ligne triphasée 500~kV, 60~Hz complètement transposée utilise trois faisceaux de trois conducteurs ACSR du type Martin 54/19~par faisceau. Les conducteurs dans un faisceau sont distancés de 0.5~m. Les faisceaux sont dans un plan horizontal et distancés de 10~m, 10~m, et 20~m.

- a) Calculer l'inductance série de la séquence directe L_1 en H/m. Déduire la réactance série de la séquence directe X_1 en Ω /km.
 - Calculer la résistance série R_1 en Ω/km . La température des conducteurs est de 50°C.
- b) Calculer la capacité shunt de la séquence directe C_1 en F/km. Déduire l'admittance shunt de la séquence directe Y_1 en S/km.
- c) Calculer le champ électrique maximal à la surface des conducteurs en kV/cm.

Problème no. 3 (20 points)

Considérons une ligne de transport triphasée non compensée 230 kV, 60 Hz de longueur 250 km. En séquence directe, l'impédance série est z = $(0.088 + j0.465) \Omega/km$ et l'admittance shunt est y = $j3.524 \times 10^{-6}$ S/km.

Pour simplifier les calculs, on utilisera le modèle de ligne «moyenne» (circuit équivalent en pi nominal).

- a) À pleine charge, la ligne fournit à la charge une puissance de 200 MW à une tension de 200 kV avec un facteur de puissance de 1.0.
 - Calculer la tension V_s et le courant I_s de la ligne au bout de la source.
- b) En gardant la tension V_s égale à la valeur calculée précédemment, on enlève la charge. Calculer la tension (ligne-ligne) de la ligne au bout de la charge (V_r) pour ce cas.
 - Déterminer la réactance shunt que l'on doit connecter en parallèle avec la charge pour ramener la tension de la ligne au bout de la charge à 230 kV.
- c) Avec l'hypothèse que V_s = 1.0 pu, V_r = 0.95 pu, δ_{max} = 35°, et fp = 1.0, calculer la puissance maximale que cette ligne peut transporter (limite pratique).

Problème no. 4 (20 points)

On désire étudier l'écoulement de puissance dans le réseau suivant:

Les paramètres du réseau sont donnés dans le tableau suivant:

Barre	V (pu)	δ (degré)	P _G (pu)	Q _G (pu)	P _L (pu)	Q _L (pu)	Q _{Gmax} (pu)	Q _{Gmin} (pu)
B1	1.0	0						
B2			0	0	0	0		
В3	1.05		4.0				5.0	-5.0
B4			0	0	0	0		
B5			0	0	4.0	1.0		
B6			0	0	3.0	1.0		

Les paramètres des lignes sont donnés dans le tableau suivant:

Ligne	Connexion	R' (pu)	X' (pu)	G' (pu)	B' (pu)	S _{max} (pu)
1	B2 - B5	0.0054	0.0588	0	1.0	9.0
2	B5 - B6	0.0054	0.0588	0	1.0	9.0
3	B4 - B5	0.0054	0.0588	0	1.0	9.0

Les paramètres des transformateurs sont donnés dans le tableau suivant:

Transformateur	Connexion	R (pu)	X (pu)	G _c (pu)	B _m (pu)	S _{max} (pu)	Rapport de prise (pu)
T1	B1 - B2	0.0020	0.0320	0	0	5.0	
T2	B3 - B4	0.0013	0.0214	0	0	7.5	

Note:

 $S_{base} = 100 \text{ MVA}$ $V_{base} = 13.8 \text{ kV}$ aux barres 1, 3 $V_{base} = 345 \text{ kV}$ aux barres 2, 4, 5, 6

- a) Pour chacune des barres, donner la nature de la barre et identifier les variables connues et inconnues.
- b) Tracer le réseau équivalent. Écrire la matrice des admittances Y_{bus} de ce réseau (il est suffisant de donner les éléments de la matrice sous forme brute, par exemple $\frac{1}{0.01 + j0.02} + j0.05$)
- c) Les résultats d'écoulement de puissance obtenus avec PowerWorld sont donnés dans le diagramme et les tableaux suivants.

Commenter ces résultats.

Déterminer les pertes dans les équipements (lignes et transformateurs).

Y-a-t-il des anomalies dans les résultats obtenus? Si oui, proposer des moyens de correction.

Caractéristiques des câbles ACSR (câble aluminium avec noyau acier)

		-			-					-
	x ₈ Shunt Capacitive Reactance (megohms per	conductor per mile at 1 ft spacing)	60 Hz	0.0755 0.0767 0.0778 0.0774 0.0802	0.0814 0.0821 0.0830 0.0838 0.0847 0.0857	0.0867 0.0878 0.0890 0.0898 0.0903 0.0917	0.0912 0.0904 0.0932 0.0928 0.0920 0.0943	0.0950 0.0946 0.0937 0.0957 0.0953	0.0957 0.0988 0.0980 0.1015 0.1006	0.1039 0.1032 0.1057 0.1049 0.1074
	x _a inductive Reactance (ohms per conductor per	mile at 1 ft spacing all currents)	2H 09	0.337 0.342 0.348 0.344 0.355	0.359 0.362 0.365 0.369 0.372 0.376	0.380 0.385 0.390 0.393 0.401	0.399 0.393 0.407 0.405 0.399	0.414 0.412 0.406 0.417 0.415	0.415 0.430 0.424 0.441 0.435	0.451 0.445 0.458 0.462 0.465
		pprox	2H 09	0.0450 0.0482 0.0511 0.0505 0.0598	0.0684 0.0720 0.0760 0.0803 0.0851 0.0906	0.0969 0.1035 0.1128 0.1185 0.1228	0.1288 0.1288 0.1482 0.1442 0.1442	0.1688 0.1618 0.1618 0.1775 0.1720	0.1859	
	Aile)	50°C (122°F) Current Approx 75% Capacity‡	2H 09		0.0675 0.0710 0.0749 0.0792 0.0840	0.0957 0.1025 0.1118 0.1175 0.1218	0.1288 0.1288 0.1472 0.1442 0.1442	0.1678 0.1618 0.1755 0.1720 0.1859	0.1859 or Same as do	
	tor per A	(122°F) (75% Ca	2H 52		0.0656 0.0690 0.0729 0.0771 0.0819	0.0935 0.1005 0.1088 0.1155 0.1308	0.1288 0.1288 0.1452 0.1442 0.1442	0.1638 0.1618 0.1618 0.1715 0.1720	0.1859	
2	er Conduc	20°C	ąç		0.0646 0.0680 0.0718 0.0761 0.0808	0.0924 0.0994 0.1078 0.1145 0.1178	0.1288 0.1288 0.1442 0.1442 0.1442	0.1618 0.1618 0.1618 0.1695 0.1700	0.1849 0.216 0.216 0.259 0.259	0.306 0.306 0.342 0.342 0.385
/	Resistance (Ohms per Conductor per Mile)	ents	2H 09		0.0591 0.0622 0.0656 0.0695 0.0738	0.0844 0.0909 0.0982 0.104 0.108	0.117 0.132 0.131 0.131 0.131	0.148 0.147 0.147 0.155 0.154	0.168 0.196 0.196	
	sistance	25°C (77°F) Small Currents	zH 09		0.0590 0.0621 0.0655 0.0694 0.0737	0.0842 0.0907 0.0981 0.104 0.107	0.117 0.131 0.131 0.131 0.131	0.148 0.147 0.147 0.155 0.154	0.168 0.196 0.196 Same as dc	
	ra Re	(7°F)	25 Hz		0.0588 0.0619 0.0653 0.0692 0.0735	0.0840 0.0905 0.0980 0.104 0.107	0.117 0.117 0.131 0.131 0.130	0.147 0.147 0.147 0.155 0.154 0.168	0.168 0.196 0.196 Sa	,
-		25°C	၁၀		0.0587 0.0618 0.0652 0.0691 0.0734	0.0839 0.0903 0.0979 0.104 0.107	0.117 0.117 0.131 0.131 0.131	0.147 0.147 0.147 0.154 0.168	0.168 0.196 0.196 0.235 0.235	0.278 0.278 0.311 0.311 0.350
	, , , , , , , , , , , , , , , , , , ,	Current Carrying	(amps)		1380 1340 1300 1250 1200	1110 1060 1010 970 950 900	900 910 830 840 800	770 780 780 750 760	730 670 670 590 600	530 530 490 500 460
	Goognateri	Mean Radius	(feet)	0.0621 0.0595 0.0570 0.0588 0.0534	0.0520 0.0507 0.0493 0.0479 0.0465	0.0435 0.0420 0.0403 0.0391 0.0368	0.0375 0.0393 0.0349 0.0355 0.0372	0.0329 0.0335 0.0351 0.0327 0.0313	0.0328 0.0290 0.0304 0.0265 0.0278	0.0244 0.0255 0.0230 0.0241 0.0217
		Weight (pounds	mile)		10777 10237 9699 9160 8621 8082	7544 7019 6479 6112 5940 5399	5770 6517 4859 5193 5865 4527	4319 4616 5213 4109 4391	4588 3462 3933 2885 3277	2 442 2 774 2 178 2 473 1 936
		Ultimate	(spunod)	61 700 57 300 49 800 60 300 51 000	56 000 53 200 50 400 47 600 43 100	40 200 37 100 34 200 32 300 31 400 28 500	31 200 38 400 26 300 28 100 34 600 24 500	23 600 25 000 31 500 22 500 24 100 22 400	27 200 19 430 23 300 16 190 19 980	14 050 17 040 12 650 15 430 11 250
	Conner	Equivalent* Circular Mils or	A.W.G.		1 000 000 950 000 900 000 850 000 750 000	700 000 650 000 600 000 566 000 550 000	500 000 500 000 450 000 450 000 419 000	400 000 400 000 400 000 380 500 350 000	350 000 300 000 300 000 250 000 250 000	4/0 4/0 188 700 188 700 3/0
		Outside	(inches)	1.880 1.802 1.735 1.762 1.602	1.545 1.506 1.465 1.424 1.382 1.338	1.293 1.246 1.196 1.162 1.146 1.093	1.108 1.140 1.036 1.051 1.000	0.977 0.990 1.019 0.953 0.966	0.953 0.858 0.883 0.783 0.806	0.721 0.741 0.680 0.700 0.642
	Steel	Strand	(inches)	0.0849 0.0814 0.1157 0.0961 0.0874	0.1030 0.1004 0.0977 0.0949 0.0921	0.0862 0.1384 0.1329 0.1291 0.1273	0.1360 0.0977 0.1151 0.1290 0.0926 0.1111	0.1085 0.1216 0.0874 0.1059 0.1186	0.1362 0.1054 0.1261 0.0961 0.1151	0.0855 0.1059 0.0835 0.1000 0.0788
ļ				19 7 19	<u> </u>	19	7 7 7 19	7 19 7	~~~~	~~~~
	Aluminum	Strand	(inches)	0.1819 0.1744 0.1735 0.1602 0.1456	0.1716 0.1673 0.1628 0.1582 0.1535 0.1486	0.1436 0.1384 0.1329 0.1291 0.1273	0.1749 0.1628 0.1151 0.1659 0.1544 0.1111	0.1085 0.1564 0.1456 0.1059 0.1525 0.1463	0.1362 0.1355 0.1261 0.1236 0.1151	0.1138 0.1059 0.1074 0.1000 0.1013
	Alum			444	ммммм	ттттт	~~~~	888888	2222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
				76 76 72 84	5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 6 6 6 6 6	54 54 54 54 54	28 28 28 28 28 28 28 28 28 28 28 28 28 2	26 26 26 26 26	36838	26 30 30 26 26
		Circular Mils	Aluminum	2515 000 2312 000 2167 000 2156 000 1781 000	1590 000 1510 500 1431 000 1351 000 1272 000 1192 500	1113 000 1033 500 954 000 900 000 874 500 795 000	795 000 795 000 715 500 715 500 715 500 666 600	636 000 636 000 636 000 605 000 605 000 556 500	556 500 477 000 477 000 397 500 397 500	336 400 336 400 300 000 266 800
		Code	Word	Joree Thrasher Kiwr Riuebird Chukar	Falcon Parrot Plover Martin Pheasant Grackle	Finch Curlew Cardinal Canary Crane Condor	Drake Mallard Crow Starling Redwing Flamingo	Rook Grosbeak Egret Peacock Squab	Eagle Hawk Hen Ibıs Lark	Linnet Oriole Ostrich Piper Partridge