AI & Robotics

Boosting

Goals

The junior-colleague

- can explain boosting in their own words
- can describe the stopping criteria for boosting algorithms
- can explain AdaBoost in their own words
- can explain what a loss function is and why we use them
- can explain the idea behind gradient descent in their own words
- can explain the importance of the learning rate in the context of gradient descent
- can explain gradient boosting in their own words
- can explain the differences between bagging and boosting
- can explain the advantages of XGBoost over other bagging and boosting algorithms

Boosting

- Ensemble technique
 - => Default learner: decision trees
 - => Other learners possible
- Reasoning behind ensembles: minimizing bias, variance and the effects of noise
- Boosting is sequential

(Adaptive Boosting)

- Start with initial fitting
- Errors:
 - Increase the weights of the incorrectly classified examples
 - Decrease correct classifications
- Fit again
- Continue until stopping criterium
- Average over the different models

(an error less than 50% is required to keep the estimator)

=> Sensitive to noise!

 AdaBoost combines a lot of "weak learners" to make classifications. The weak learners are almost aways stumps.

2) Some **stumps** get more say in the classification than others.

 Each stump is made by taking the previous stump's mistakes into account.


```
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier()
# n_estimators = 50 (default value)
# base_estimator = DecisionTreeClassifier (default value)
clf.fit(x_train,y_train)
clf.predict(x_test)
```

Gradient Boosting

Loss functions

- Optimization objective
 - Minimize Errors
 - == Minimize Loss
- Regression: MSE / MAE

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

• Classification: Log Loss

$$-\frac{1}{N}\sum_{i=1}^{N}(y_i\log(p_i)+(1-y_i)\log(1-p_i))$$

Multi classification: M Log Loss

$$-\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{M}y_{i,j}\log(p_{i,j})$$

Gradient Descent

Gradient Descent

Gradient Descent

Gradient Boosting

- Every round you're learning errors
- Corresponds to running gradient descent on loss function
 - => We will see this in depth for Neural Networks

Stopping criteria

- After a certain number of trees
- When the error goes up
- When there's no more improvement on the validation set

Gradient Boosting

Gradient Boosting

```
from sklearn.ensemble import GradientBoostingClassifier
clf = GradientBoostingClassifier()
# n_estimators = 100 (default)
# loss function = deviance(default) used in Logistic Regression
clf.fit(x_train,y_train)
clf.predict(x_test)
```


Bagging	Boosting
Bootstrapping (resample data points)	Bootstrapping (reweight data points)
Better suited for reducing variance and overfitting	Better suited for reducing bias and underfitting
Models are built independently (parallel)	A model is built, based on the previous model (sequential)

- Very fast Gradient Boosting
- Reduce correlation by sampling
 - Examples
 - Columns for each tree / split
- Tree Constraints
 - Number of trees
 - Tree depth
 - => shorter trees are preferred (4-8 levels)
 - Number of nodes
 - Minimum improvement to loss
 - => constraint on the improvement of any split added to a tree

XGBoost: Data

- Categories to numeric
- One-hot encoding
- Missing values:
 - Separately handled
 - Always added to a branch in which it would minimize the loss
 - => treated as either very large / very small value

- Robust
- Insensitive to noise
- Underfitting vs overfitting
 - Underfitting => Not enough rounds: Start where you finished and continue
 - Overfitting => Limit number of rounds

```
from xgboost import XGBClassifier
clf = XGBClassifier()
# n_estimators = 100 (default)
# max_depth = 3 (default)
clf.fit(x_train,y_train)
clf.predict(x_test)
```

