ESTUDIO PREVIO SESIÓN 3

Divisor de tensión

a. $V_{out} = 0.909 \text{ V}$ I = 0.001934 A

```
** C:\Users\34608\Documents\Ingenier\alpha Inform\alphatica\4o A\nabla\0\1er Cuatr\\CIREL\PR\alphaCTICAS\Pr\alphactica1\Draft... \\

--- Operating Point ---

V(n001): 10 voltage

V(out): 0.909091 voltage

I(R2): 0.00193424 device_current

I(R1): -0.00193424 device_current

I(V1): -0.00193424 device_current
```

b.
$$V = I * R \rightarrow 10 = I * 5170 \rightarrow I = 0.001934 A$$

$$V_{out} = V * R2 / R1 + R2 -> V_{out} = 10 * (470 / 470 + 4700) -> V_{out} = 0.909 V$$

Comprobamos que los valores coinciden con los de la simulación.

Divisor de corriente

c.
$$11 = 12 + 13 -> V_1 - V_{out} / R1 = 12 + 13 -> 10 - 0.47 / 4700 = 0.001 + 13$$

V_{out} en este caso valdría -> 470 * 0.001 = **0.47 V**

-> 0.002027 = 0.001 + I3 -> **I3 = 0.001027** | Tenemos que V3 = V2 y por lo tanto podemos averiguar cuanto valdría R3 -> R3 = 0.47 / 0.001027 -> aproximadamente **457,64** Ω

d.
$$P = R * I^2 -> P = 457,64 * 0.001^2 -> P = 0.00045 W$$

e.

☑ Draft1	×
Cursor 1 V(out	t)
Horz: 2.1226916mA	Vert: 2.1226916mV
Cursor 2	
V(out	t)
Horz: 9.0522317μA	Vert: 905.22313mV
Diff (Cursor2 - Cursor1)	
Horz: -2.1136394mA	Vert: 903.10044mV
	Slope: -427.273

Vth = 2.12 mV

ln = 2.12 mA

Obtenidos mediante simulación, variando los valores de la resistencia R3.

f. LNK:
$$11 = 1 + 12 \rightarrow Vs-V/R1 = 1 + V/R2$$

$$Vs/R1 - V/R1 = I + V/R2 \rightarrow Vs /R1 - I = V/R1 + V/R2 \rightarrow Vs /R1 - I = R1*V + R2*V/R1*R2 \rightarrow V*(R1 + R2)/(R1*R2) = Vs/R1 - I \rightarrow V(R1 + R2) = R1*R2(Vs/R1 - I) \rightarrow V = (R1*R2)/(R1 + R2)*(Vs/R1 - I)$$

$$V(I) = Vth - Req*I \rightarrow Vth = R2/(R1+R2)Vs \rightarrow Vth = 0.9V$$

Req = R1*R2/(R1+R2)
$$\rightarrow$$
 Req = 427.7 Ω

In = Vth/Req
$$\rightarrow$$
 In = 0.0021^a

Como podemos observar, los valores calculados teóricamente, coinciden con los obtenidos en la simulación.