DATA HANDLING IN PYTHON

```
CODE
import pandas as pd
data=pd.read_csv("auto-mpg.csv")
type(data)
                                                           OUTPUT
\overline{\mathbf{T}}
      pandas.core.frame.DataFrame
      def __init__(data=None, index: Axes | None=None, columns: Axes | None=None,
      dtype: Dtype | None=None, copy: bool | None=None) -> None
      Two-dimensional, size-mutable, potentially heterogeneous tabular data.
      Data structure also contains labeled axes (rows and columns).
      Arithmetic operations align on both row and column labels. Can be
      thought of as a dict-like container for Series objects. The primary
data.shape
→ (398, 9)
nrow_count=data.shape[0]
print(nrow_count)
<del>→</del> 398
ncol_count=data.shape[1]
print(ncol_count)
→ 9
data.columns
\longrightarrow Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
            'acceleration', 'model year', 'origin', 'car name'],
          dtype='object')
data.columns
Index(['miles_per_gallon', 'cylinders', 'displacement', 'horsepower', 'weight',
           'acceleration', 'model year', 'origin', 'car name'],
          dtype='object')
                                                             CODE
data.rename(columns={'displacement':'disp'},inplace=True)
data.head()
                                                           OUTPUT
₹
                                                                          model
        miles_per_gallon cylinders disp horsepower weight acceleration
                                                                                origin
                                                                           vear
     0
                    18.0
                                 8 307.0
                                                130
                                                       3504
                                                                     12.0
                                                                             70
                    15.0
                                 8 350.0
                                                 165
                                                       3693
                                                                     11.5
                                                                             70
    4
data.head(3)
\overline{2}
                                                                          mode1
        miles_per_gallon cylinders disp horsepower weight acceleration
                                                                           vear
     0
                    18.0
                                 8 307.0
                                                130
                                                       3504
                                                                     12.0
                                                                             70
    4
data.tail()
```

```
\overline{\mathbf{T}}
          miles_per_gallon cylinders disp horsepower weight acceleration \frac{\text{model}}{\text{vear}}
                                                                                      orig
      393
                       27.0
                                   4 140.0
                                                      86
                                                            2790
                                                                          15.6
                                                                                   82
      394
                       44.0
                                    4 97.0
                                                      52
                                                            2130
                                                                          24.6
                                                                                   82
    4
data.tail(3)
\overline{2}
          miles_per_gallon cylinders disp horsepower weight acceleration
                                                                                       orig
      395
                       32.0
                                    4 135.0
                                                            2295
                                                      84
                                                                           11.6
                                                                                   82
    4
                                                                  CODE
data.at[200,'cylinders']
→ 6
#data.get_value(200,'cylinders')
data_cyl=data.loc[:,'car name']
data_cyl.head()
                                                                  OUTPUT
→ 0
         chevrolet chevelle malibu
                buick skylark 320
                plymouth satellite
     3
                      amc rebel sst
                       ford torino
     Name: car name, dtype: object
                                                                   CODE
import numpy as np
var1=[np.nan,np.nan,np.nan,10.1,12,123.14,0.121]
var2=[40.2,11.78,7801,0.25,34.2,np.nan,np.nan]
var3=[1234,np.nan,34.5,np.nan,78.25,14.5,np.nan]
df=pd.DataFrame({'Attr_1':var1,'Attr_2':var2,'Attr_3':var3})
print(df)
                                                                 OUTPUT
\overline{\mathbf{x}}
        Attr_1
                 Attr_2 Attr_3
     0
           NaN
                  40.20 1234.00
     1
            NaN
                  11.78
                             NaN
     2
           NaN 7801.00
                            34.50
       10.100
                   0.25
                             NaN
     4
        12.000
                   34.20
                            78.25
     5 123.140
                    NaN
                           14.50
         0.121
                                                                   CODE
miss_val=df[df['Attr_1'].isnull()]
print(miss_val)
                                                                  OUTPUT
                Attr_2 Attr_3
     0
           NaN
                 40.20 1234.0
                11.78
     1
           NaN
           NaN 7801.00
                           34.5
np.mean(data[['miles_per_gallon']])
→ 23.514572864321607
np.median(data[['miles_per_gallon']])
<del>→</del> 23.0
np.var(data[['miles_per_gallon']])
→ miles_per_gallon
                         60.936119
     dtype: float64
```

```
→ miles_per_gallon
     dtype: float64
IRIS DATASET
                                                                CODE
from sklearn import datasets
iris=datasets.load_iris()
import matplotlib.pyplot as plt
X=iris.data[:,:4]
plt.boxplot(X)
                                                               OUTPUT
<matplotlib.lines.Line2D at 0x7f16ee3a1c90>,
       <matplotlib.lines.Line2D at 0x7f16ee3a2da0>,
       <matplotlib.lines.Line2D at 0x7f16ee3a2f50>,
       <matplotlib.lines.Line2D at 0x7f16ee7a49a0>,
       <matplotlib.lines.Line2D at 0x7f16edf91600>,
       <matplotlib.lines.Line2D at 0x7f16edf91450>,
       <matplotlib.lines.Line2D at 0x7f16edf92a70>],
      'caps': [<matplotlib.lines.Line2D at 0x7f16ee3a3730>,
       <matplotlib.lines.Line2D at 0x7f16ee3a26e0>,
       <matplotlib.lines.Line2D at 0x7f16ee3a3130>,
       <matplotlib.lines.Line2D at 0x7f16ee3a3d00>,
       <matplotlib.lines.Line2D at 0x7f16edf902e0>,
       <matplotlib.lines.Line2D at 0x7f16edf92b00>,
       <matplotlib.lines.Line2D at 0x7f16edf91060>,
       <matplotlib.lines.Line2D at 0x7f16edf929b0>],
      'boxes': [<matplotlib.lines.Line2D at 0x7f16ee3a3190>,
       <matplotlib.lines.Line2D at 0x7f16ee3a3b20>,
       <matplotlib.lines.Line2D at 0x7f16ee7a47f0>,
       <matplotlib.lines.Line2D at 0x7f16edf92110>],
      'medians': [<matplotlib.lines.Line2D at 0x7f16ee3a12a0>,
       <matplotlib.lines.Line2D at 0x7f16ee3a23b0>,
       <matplotlib.lines.Line2D at 0x7f16edf923e0>,
       <matplotlib.lines.Line2D at 0x7f16edf93880>],
      'fliers': [<matplotlib.lines.Line2D at 0x7f16ee3a3340>,
       <matplotlib.lines.Line2D at 0x7f16ee7a4dc0>,
       <matplotlib.lines.Line2D at 0x7f16edf900d0>,
       <matplotlib.lines.Line2D at 0x7f16edf93220>],
      'means': []}
      7
      6
      5
      4
      3
      2
      1
      0
                i
                                               3
                                                             CODE
plt.show()
plt.boxplot(X[:,1])
plt.show()
```

np.std(data[['miles_per_gallon']])


```
X=iris.data[:,:1]
plt.hist(X)
plt.xlabel('Sepal length')
plt.show()
```

OUTPUT

CODE

```
X=iris.data[:,:4]
y=iris.target
plt.scatter(X[:,2],X[:,0],c=y,cmap=plt.cm.Set1,edgecolor='k')
plt.xlabel('Petal length')
plt.ylabel('Sepal length')
plt.show()
```

OUTPUT

DATA PRE-PROCESSING

CODE

df=pd.read_csv('auto-mpg.csv')

miss_val=df[df['horsepower'].isnull()]
print(miss_val)

OUTPUT

Empty DataFrame
Columns: [mpg, cylinders, displacement, horsepower, weight, acceleration, model year, origin, car name]
Index: []

Finding Outliers(Option 1):

CODE

X=data['miles_per_gallon']
plt.boxplot(X)
plt.show()
OUTPUT

 $\label{eq:continuous} outliers=plt.boxplot(X[:,])['fliers'][0].get_data([1])\\ outliers$

OUTPUT

→ (array([1.]), array([46.6]))

Finding Outliers(Option 2):

CODE

```
def find_outlier(ds, col):
    quart1 = ds[col].quantile(0.25)
    quart3 = ds[col].quantile(0.75)
    IQR = quart3 - quart1 #Inter-quartile range
    low_val = quart1 - 1.5*IQR
    high_val = quart3 + 1.5*IQR
    ds = ds.loc[(ds[col] < low_val) | (ds[col] > high_val)]
    return ds

outliers=find_outlier(data, 'miles_per_gallon')
OUTPUT
```

miles_per_gallon cylinders disp horsepower weight acceleration model year or

Removing records with missing values / outliers:

CODE

data.	dropna	a(axis=0, how='any	′')	OUTPUT						
→		miles_per_gallon	cylinders	disp	horsepower	weight	acceleration	model year	origin	car name
	0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
	1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
	2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
	3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
	4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
	393	27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl
	394	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
	395	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
	396	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
	397	31.0	4	119.0	82	2720	19.4	82	1	chevy s-10
398 rows × 9 columns										

CODE

```
def remove_outlier(ds, col):
    quart1 = ds[col].quantile(0.25)
    quart3 = ds[col].quantile(0.75)
    IQR = quart3 - quart1 #Interquartile range
    low_val = quart1 - 1.5*IQR
    high_val = quart3 + 1.5*IQR
    df out = ds.loc[(ds[col] > low val) & (ds[col] < high val)]</pre>
```

return df_out

data=remove_outlier(data,'miles_per_gallon')

Inputing Standard Values

CODE

hp_mean = np.mean(data['horsepower'])
inputedrows = data[data['horsepower'].isnull()]
inputedrows = inputedrows.replace(np.nan, hp_mean)
missval_removed_rows = data.dropna(subset=['horsepower'])
data_mod = pd.concat([missval_removed_rows,inputedrows],ignore_index=True)
data_mod
OUTPUT

3011 01										
car name	origin	model year	acceleration	weight	horsepower	disp	cylinders	miles_per_gallon	•	₹
chevrolet chevelle malibu	1	70	12.0	3504	130.000000	307.0	8	18.0	0	
buick skylark 320	1	70	11.5	3693	165.000000	350.0	8	15.0	1	
plymouth satellite	1	70	11.0	3436	150.000000	318.0	8	18.0	2	
amc rebel sst	1	70	12.0	3433	150.000000	304.0	8	16.0	3	
ford torino	1	70	10.5	3449	140.000000	302.0	8	17.0	4	
ford maverick	1	74	17.0	2875	104.570332	200.0	6	21.0	392	
renault lecar deluxe	2	80	17.3	1835	104.570332	85.0	4	40.9	393	
ford mustang cobra	1	80	14.3	2905	104.570332	140.0	4	23.6	394	
renault 18i	2	81	15.8	2320	104.570332	100.0	4	34.5	395	
amc concord dl	1	82	20.5	3035	104.570332	151.0	4	23.0	396	

397 rows × 9 columns