COMP 335: Introduction to Theoretical Computer Science

Assignment 1

Nathan Grenier

September 11, 2024 Fall 2024

- 1. [15 Points] For each of the following statements write if the statement is TRUE or FALSE. If the statement is TRUE then provide a proof. If the statement is FALSE then provide a counter-example.
 - (a) For every language L we have $L^2 \subseteq L^3$

Answer:

Proof:

(b) For every two languages L_1 and L_2 we have $(L_1 \cup L_2)^* \subseteq (L_1 L_2)^*$

Answer:

Proof:

(c) Let L_1 and L_2 be two languages such that $\lambda \in L_1 \cap L_2$. Then it holds that $(L_1L_2)^* = (L_2L_1)^*$

Answer:

Proof:

2. [10 Points] The following is a transition diagram for a DFA over the alphabet $\Sigma = \{0, 1\}$. Answer the following questions about this automaton:

(a) What is the start state? What is the set of accept states?

Answer:

(b) What is the sequence of states the DFA goes through on input 101100?

Answer:

(c) Does the machine accept every string w that contains exactly two 1s? Why or why not?

Answer:

(d) Does the machine reject every string w that has odd number of 0s? Why or why not?

Answer:

(e) Describe the language accepted by the machine using the set builder notation.

Answer:

- 3. [30 Points] For each of the following languages, give a DFA that accepts it.
 - (a) $\{ba^n b^m : n \ge 3, m \ge 2\}$

Answer:

(b) $\{w \in \{a,b\}^* : \text{every maximal substring } w \text{ consisting entirely of symbols } a$ is of length exactly $3\}$

Answer:

(c) $\{w \in \{a,b\}^* : w \text{ does not contain } bab \text{ as a substring}\}$

Answer:

(d) $\{w \in \{a, b\}^* : w \text{ begins with bb and } n_b(w) \text{ mod } 3 = 0\}$

Answer:

(e) $\{a^m b^n : mn > 4\}$

Answer:

(f) $\{vwv^R: v, m \in \{a, b\}^* \text{ and } |v| = 2\}$

Answer: