Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

# FYZIKÁLNÍ PRAKTIKUM

# Fyzikální praktikum 3

**Zpracoval:** Lukáš Lejdar **Naměřeno:** 26. února 2025

**Obor:** F **Skupina:** Út 14:00 **Testováno:** 

# Úloha č. 9: Studium činnosti fotonásobiče

### 1. Úvod

Úloha je zaměřena na studium činnosti fotonásobiče a jeho základních charakteristik. Cílem je zjistit, jak závisí koeficient sekundární emise na energii elektronů a jestli je ovlivněný intenzitou osvětlení. Z naměřených hodnot vypočítám zesílení a citlivost fotonásobiče a nakonec ověřím vliv temného proudu na přesnost měření.

#### 2. Teorie

Fotonásobič je elektro-optický přístroj, který slouží k zesilování velmi slabých světelných signálů. Využívá při tom dva základní jevy - fotoemisi a sekundární emisi

① Fotoemise: Fotony, dopadající na fotokatodu z ní dokáží vyrážet elektrony. Energie světelného kvanta  $h\nu$  se přemění na práci potřebnou k uvolnění elektronu w a jeho kinetickou energii  $E_k = \frac{mv^2}{2}$ , kde v je rychlost elektronu a  $\nu$  frekvence dopadajícího světla.

$$h\nu = w + \frac{mv^2}{2},\tag{1}$$

② Sekundární emise: Nastává, když elektron s dostatečnou energií dopadne na dynodu a uvolní další elektrony. Zavádí se veličina koeficient sekundární emise, jako poměr proudu uvolněných elektronů  $I_{sek}$  vůči proudu dopadajících  $I_{prim}$ 

$$\sigma = \frac{I_{sek}}{I_{prim}} \tag{2}$$

Jeho velikost závisý jen na energii dopadajících elektronů E a parametrech materiálu A a  $\mu$  podle vztahu

$$\sigma = AE \exp(-\mu E). \tag{3}$$

Energii elektronů, můžeme v případě fotonásobiče nastavit pomocí napětí mezi dvěma sousedními dynodami.

Ve fotonásobiči elektrony postupně procházejí z fotokatody přes několik dynod, kdy jsou po celou cestu urychlovány konstantním napětím a proto jejich počet roste geometricky s počtem dynod n. Proud na poslední anodě označím  $I_a$  a proud na fotokatodě  $I_f$  a platí

$$I_a = \sigma^n I_f, \tag{4}$$

kde  $\sigma$  je koeficient sekundární emise  $\sigma$  mezi dvěma katodami. Zároveň taky platí Stoletův zákon pro bílé světlo, že proud na fotokatodě  $I_f$  je přímo úměrný intenzitě dopadajícího světla  $\Phi$  přes nějakou konstantu k.

$$I_f = k\Phi \tag{5}$$

Zavádíme taky veličinu zesílení fotonásobiče M

$$M = \frac{I_a}{I_f} \tag{6}$$

a citlivost fotonásobiče S

$$I_a = Mk\Phi = S\Phi \quad S = Mk \tag{7}$$

## 3. Postup měření

Fotonásobič je umístěný v temné komoře, kde je možné osvětlení regulovat otočným klínem. Můžeme taky nastavit celkové napětí na fotonásobiči  $U_n$  a měřit proud na dynodách 9 a 11 a taky celkový anodový proud  $I_a$ . Prvním úkolem je stanovit závislost koeficientu sekundární emise, zesílení a integrální citlivosti na napětí mezi jednotlivými dynodami a ve druhé části potom ověřit, jestli tyto veličiny závisí na intenzitě osvětlení  $\Phi$ , nebo ne.

Bude taky potřeba zjistit, jaký je anodový proud, když je zdroj světla úplně vypnutý. Tento proud se nazývá temný proud a je důležité, aby byl řádově stejný jako nejistoty měřených proudů, abychom ho mohli zanedbat.



Obrázek 1: Schéma zapojení fotonásobiče. FK je fotokatoda,  $D_1$  až  $D_{13}$  jsou dynody a  $U_n$  je napětí přivedené na násobič.

# 4. Výsledky měření

### 4.1. Vliv temného proudu

Nejdřív ověřím vliv temného proudu na změřené hodnoty. Pro několik vysokých napětí jsem při vypnutém zdroji světla měřil anodový proud a hodnoty uvedl v Tabulce 1. Všechny tyto proudy jsou mnohem nižší, než ty z předešlích tabulek, takže jej nebylo potřeba brát v úvahu.

$$\begin{array}{c|cccc} U_n \text{ (V)} & 1000 & 800 & 700 \\ \hline I_a \text{ ($\mu$ A )} & 1 & 0.9 & 0.25 \\ \end{array}$$

Tabulka 1: Anodový proud při nulovém osvětlení

### 4.2. Závislost koeficientu sekundární emise na energii elektronů

Fotonásobič jsem zapojil podle Obrázku 1 a pro různé napětí  $U_n$  měřil anodový proud a proud na dynodě 9 a 11. Koeficient sekundární emise a energii dopadajících elektronů potom spočítám podle vztahů

$$\sigma = \sqrt{\frac{I_{11}}{I_9}} \qquad E = \frac{eU_n}{n},\tag{8}$$

protože mezi 9 a 11 dynodou dojede k zesílení o  $\sigma^2$  a napětí  $U_n$  je mezi dynody rozdělené rovnoměrně. Elektrony mají náboj e. Závislost  $\sigma$  na E by měla být podle vztahu (3) exponenciální, který tedy zlogaritmuju a fit bude přímkou podle  $y = \ln(\frac{\sigma}{E}) = f(E)$  pro směrnici  $\mu$ 

$$\ln \frac{\sigma}{E} = -\mu E + \ln A \qquad (9)$$

$$\mu_1 = 0.0023 \pm 0.0004 \text{ mV}^{-1}$$

$$\mu_3 = 0.0022 \pm 0.0005 \text{ mV}^{-1}$$

$$\mu_5 = 0.0025 \pm 0.0004 \text{ mV}^{-1}$$

$$A_1 = -2.56 \pm 0.02 \text{ mV}^{-1}$$

$$A_3 = -2.57 \pm 0.02 \text{ mV}^{-1}$$

$$A_5 = -2.56 \pm 0.02 \text{ mV}^{-1}$$

$$A_5 = -2.56 \pm 0.02 \text{ mV}^{-1}$$

Graf 1: Závislost koeficientu emise na energii dopadajících elektronů.

| 1.1                                        | 1.1/    | 1.4      | 00 1    | -                                          |                     | 1 1   | 1.1/    | 0.4                                        | FO. T   |          |                     | 1 1   | 1.1/    | F #      | 00 1    | r        |                     |
|--------------------------------------------|---------|----------|---------|--------------------------------------------|---------------------|-------|---------|--------------------------------------------|---------|----------|---------------------|-------|---------|----------|---------|----------|---------------------|
| poloha klínu 1 $\Phi = 90 \ \mu \text{Lm}$ |         |          |         | poloha klínu 3 $\Phi = 52 \ \mu \text{Lm}$ |                     |       |         | poloha klínu 5 $\Phi = 33 \ \mu \text{Lm}$ |         |          |                     |       |         |          |         |          |                     |
| $U_n$                                      | $I_9$   | $I_{11}$ | $I_a$   | $\sigma$                                   | k ⋅10 <sup>-9</sup> | $U_n$ | $I_9$   | $I_{11}$                                   | $I_a$   | $\sigma$ | k ·10 <sup>-9</sup> | $U_n$ | $I_9$   | $I_{11}$ | $I_a$   | $\sigma$ | k ·10 <sup>-9</sup> |
| V                                          | $\mu A$ | $\mu A$  | $\mu A$ |                                            | $\mathrm{ALm}^{-1}$ | V     | $\mu A$ | $\mu A$                                    | $\mu A$ |          | $ALm^{-1}$          | V     | $\mu A$ | $\mu A$  | $\mu A$ |          | $ALm^{-1}$          |
| 596                                        | 0.16    | 1.38     | 10      | 2.94                                       | 31.0                | 626   | 0.12    | 1.18                                       | 9       | 3.15     | 20.4                | 665   | 0.15    | 1.69     | 12      | 3.32     | 18.1                |
| 609                                        | 0.18    | 1.64     | 12      | 3.02                                       | 25.8                | 638   | 0.13    | 1.33                                       | 11      | 3.13     | 24.5                | 680   | 0.16    | 1.84     | 14      | 3.34     | 19.4                |
| 624                                        | 0.20    | 1.96     | 14      | 3.13                                       | 18.0                | 645   | 0.17    | 1.63                                       | 12      | 3.14     | 25.1                | 693   | 0.18    | 1.99     | 16      | 3.36     | 20.1                |
| 630                                        | 0.21    | 2.04     | 15      | 3.12                                       | 20.4                | 666   | 0.20    | 2.15                                       | 18      | 3.29     | 19.7                | 705   | 0.20    | 2.40     | 18      | 3.44     | 16.3                |
| 642                                        | 0.24    | 2.38     | 18      | 3.15                                       | 21.2                | 677   | 0.25    | 2.69                                       | 19      | 3.30     | 20.0                | 720   | 0.21    | 2.57     | 22      | 3.49     | 16.2                |
| 650                                        | 0.26    | 2.69     | 20      | 3.22                                       | 17.5                | 693   | 0.25    | 2.86                                       | 21      | 3.40     | 15.5                | 730   | 0.26    | 3.23     | 24      | 3.54     | 14.8                |
| 660                                        | 0.29    | 3.06     | 24      | 3.25                                       | 18.3                | 708   | 0.29    | 3.47                                       | 27      | 3.46     | 14.5                | 743   | 0.27    | 3.61     | 28      | 3.63     | 11.7                |
| 671                                        | 0.31    | 3.39     | 26      | 3.31                                       | 15.4                | 719   | 0.31    | 3.84                                       | 31      | 3.50     | 14.5                | 751   | 0.32    | 4.23     | 32      | 3.66     | 12.1                |
| 682                                        | 0.34    | 3.82     | 30      | 3.35                                       | 14.7                | 736   | 0.39    | 4.95                                       | 38      | 3.55     | 14.3                | 765   | 0.32    | 4.51     | 36      | 3.74     | 10.2                |
| 688                                        | 0.37    | 4.16     | 33      | 3.35                                       | 16.1                | 751   | 0.49    | 6.60                                       | 46      | 3.66     | 11.3                | 773   | 0.38    | 5.31     | 40      | 3.72     | 12.1                |
| 701                                        | 0.43    | 5.04     | 40      | 3.42                                       | 14.6                | 758   | 0.47    | 6.43                                       | 49      | 3.68     | 11.3                | 782   | 0.37    | 5.31     | 44      | 3.77     | 11.2                |
| 710                                        | 0.45    | 5.37     | 44      | 3.45                                       | 14.2                | 768   | 0.52    | 7.23                                       | 54      | 3.71     | 11.1                | 790   | 0.39    | 5.62     | 48      | 3.82     | 10.1                |
| 722                                        | 0.52    | 6.45     | 53      | 3.52                                       | 13.0                | 780   | 0.61    | 8.56                                       | 66      | 3.75     | 11.8                | 797   | 0.43    | 6.43     | 52      | 3.86     | 9.41                |
| 740                                        | 0.60    | 7.80     | 66      | 3.61                                       | 11.7                | 793   | 0.66    | 9.60                                       | 79      | 3.81     | 11.1                | 804   | 0.48    | 7.28     | 57      | 3.88     | 9.70                |
| 747                                        | 0.65    | 8.53     | 74      | 3.62                                       | 12.2                | 804   | 0.65    | 9.89                                       | 90      | 3.89     | 9.73                | 808   | 0.50    | 7.49     | 60      | 3.88     | 10.2                |
| 764                                        | 0.75    | 10.2     | 90      | 3.69                                       | 11.6                |       |         |                                            |         |          |                     | 814   | 0.54    | 8.22     | 64      | 3.91     | 9.61                |
|                                            |         |          |         |                                            |                     |       |         |                                            |         |          |                     | 824   | 0.62    | 9.53     | 72      | 3.93     | 10.2                |
|                                            |         |          |         |                                            |                     |       |         |                                            |         |          |                     | 829   | 0.64    | 10.1     | 79      | 3.98     | 9.20                |
|                                            |         |          |         |                                            |                     |       |         |                                            |         |          |                     | 835   | 0.75    | 12.0     | 84      | 4.00     | 9.28                |
|                                            |         |          |         |                                            |                     |       |         |                                            |         |          |                     | 843   | 0.70    | 11.3     | 90      | 4.01     | 9.41                |

Tabulka 2: Změřené anodové a dynodové proudy při různých napětích na fotonásobiči.

Z Tabulky 2 můžeme taky vypočítat podle vztahů (6) a (7) zesílení M a citlivosti S a vynést je v závislost na napětí  $U_n$ . Obě tyto závislosti by měli být znovu podle vztahu (3) přibližně exponenciální



3 poloha 1 2.5 poloha 3 poloha 5  $S (A Lm^{-1})$ 2 1.5 1 0.5 0 550 600 650 750 800 850  $U_n$  (V)

Graf 2: Závislost zesílení fotonásobiče na napětí  $U_n$ 

Graf 3: Závislost citlivosti fotonásobiče na napětí  $U_n$ 

### 4.3. Závislost koeficientu sekundární emise na osvětlení fotokatody

Tentokrát jsem nechal stálé napětí  $U_n$  a pohyboval s klínem pro regulaci osvětlení fotokatody. Naměřená data jsou uvedené v Tabulkách 3 a závislost koeficientu sekundární emise  $\sigma$  na osvětlení  $\Phi$  je vykreslená do Grafu 4. Koeficient emise katody na osvětlení tolik nezávisí, takže jsem hodnoty statisticky vyhodnotil a vypočítal společně s integrální citlivostí fotokatody k ze vztahů (4) a (5).

$$\sigma = 3.68 \pm 0.05$$
  $k = 11 \pm 2 \text{ nALm}^{-1}$  pro  $U_n = 750 \text{ V}$   
 $\sigma = 3.26 \pm 0.08$   $k = 18 \pm 5 \text{ nALm}^{-1}$  pro  $U_n = 650 \text{ V}$ 

|      |                 | $U_n = 750$   | V                |               |          |                                 |
|------|-----------------|---------------|------------------|---------------|----------|---------------------------------|
| klín | $\Phi (\mu Lm)$ | $I_9 (\mu A)$ | $I_{11} (\mu A)$ | $I_a (\mu A)$ | $\sigma$ | $k \cdot 10^{-9} \; (ALm^{-1})$ |
| 1    | 90              | 0.65          | 8.86             | 74            | 3.69     | 9.4                             |
| 2    | 66              | 0.48          | 6.37             | 56            | 3.64     | 11.5                            |
| 3    | 52              | 0.40          | 5.32             | 46            | 3.65     | 12.0                            |
| 4    | 42              | 0.33          | 4.55             | 37            | 3.71     | 9.4                             |
| 5    | 33              | 0.27          | 3.61             | 32            | 3.66     | 12.2                            |
| 6    | 27              | 0.22          | 2.95             | 25            | 3.66     | 11.8                            |
| 7    | 20              | 0.17          | 2.37             | 21            | 3.73     | 9.8                             |
| 8    | 15              | 0.14          | 1.90             | 17            | 3.68     | 12.7                            |

|      |                 | $U_n = 650 \text{ V}$ |                  |               |          |                                 |  |  |  |
|------|-----------------|-----------------------|------------------|---------------|----------|---------------------------------|--|--|--|
| klín | $\Phi (\mu Lm)$ | $I_9 (\mu A)$         | $I_{11} (\mu A)$ | $I_a (\mu A)$ | $\sigma$ | $k \cdot 10^{-9} \; (ALm^{-1})$ |  |  |  |
| 1    | 90              | 0.24                  | 2.57             | 20            | 3.24     | 15.6                            |  |  |  |
| 2    | 66              | 0.21                  | 2.12             | 16            | 3.20     | 20.1                            |  |  |  |
| 3    | 52              | 0.16                  | 1.70             | 13            | 3.26     | 16.6                            |  |  |  |
| 4    | 42              | 0.11                  | 1.18             | 11            | 3.27     | 16.7                            |  |  |  |
| 5    | 33              | 0.12                  | 1.27             | 10            | 3.24     | 21.0                            |  |  |  |
| 6    | 27              | 0.11                  | 1.15             | 9             | 3.26     | 21.8                            |  |  |  |
| 7    | 20              | 0.07                  | 0.85             | 7             | 3.37     | 13.9                            |  |  |  |
| 8    | 15              | 0.07                  | 0.78             | 6             | 3.29     | 22.0                            |  |  |  |

Tabulka 3: Změřené anodové a dynodové proudy při konstantním napětí .



Graf 4: Závislost koeficientu sekundární emise na intenzitě osvětlení fotokatody

### 5. Závěr

V první části úlohy jsem měřil koeficient sekundární emise  $\sigma$  mezi dvěma dynodami fotonásobiče a ověřil, že na energii elektronů závisí exponenciálně podle vztahu  $\sigma = AE \exp(-\mu E)$ . Z naměřených hodnot jsem potom taky dopočítal zesílení M a citlivost fotonásobiče S a hodnoty vynesl do grafů 2, a 3 v závislosti na napětí  $U_n$ .

Pomocí anodového proudu a zjištěného koeficientu sekundární emise jsem potom dopočítal fotokatodový proud  $I_f = I_a \sigma^{-n}$  a pak za vztahu (5) vyjádřil citlivost fotokatody k. Podle Stoletova zákona by mělo k záviset pouze na vlnové délce dopadajícího světla, ale z tabulek 2 a 3 vyplývá, že s rostoucím napětím na násobiči citlivost klesá. Myslím, že hodnoty  $I_f$  v těchto výpočtech nemůžou být příliš spolehlivé, když ani tímto způsobem většinou v tabulkách nedostanu sloupce  $I_{11}$  z  $I_{11} = I_a \sigma^{-2}$ .

### Reference

[1] Návod k úloze https://is.muni.cz/auth/el/sci/jaro2025/F4210/um/fp3-9\_fotonasobic.pdf.