CENG461/ELEC514

Analysis and Design of Computer Communication Networks

Networking Concepts

1

What is needed to send data on communication links?

- Error control
 - Error detection:
 - Parity checks, Checksum, Cyclic Redundancy Code (CRC)
 - Error correction:
 - · ARQ (Automatic Repeat reQuest)
 - FEC (Forward Error Correction)
- Flow control: handles rate mismatch between sender and receiver
 - Window based flow control
 - Rate based flow control

3

Why use a switch?

- If there are N endpoints (end-user equipment), then how many links are needed for full mesh connectivity?
- How many physical links are needed if these endpoints are connected through a switch?

Communication network?

- Simplest "network"
 - Single link between two pieces of end-user equipment (e.g., PC, telephone)
 - Types of communication links
 - · Twisted pair
 - · Coaxial cable
 - Optical fiber
 - · Wireless links
 - Radio frequencies
 - Infra-red frequencies
 - Free-space optical communication

2

End-user

equipment

End-user

equipment

Switches

 Connect multiple links and route traffic from one link to another

1

Answers

- Number of direct links needed to connect N nodes is $\frac{N(N-1)}{2}$
- N links since we only need one link from an endpoint to a switch

Cost of using a switch?

- Switch cost
- Can all endpoints have full connectivity at all times to all other endpoints?
 - Yes, with multiplexing on the links

7

Answers

- 24 DS0s in a T1
- Term WDM is the same as FDM at optical frequencies – see EM spectrum chart
- Speed of light $c = \lambda f$

λ: wavelength; f: frequency

9

Network of switches

- Expand 1-switch network to a multiswitch network
- Why not build one gigantic switch?

Concept of multiplexing

- Time division multiplexing
 - Allows data from different sessions to be combined at different times on to the same line
 - How many DS0s (64Kbps data/voice channel) in a T1 (1.544Mbps)?
- Frequency Division Multiplexing (FDM) and Wavelength Division Multiplexing (WDM)
 - Difference between FDM and WDM?
 - Relation between frequency and wavelength

8

Types of switches

- · Circuit switches: Position-based switching
 - Switch consults a table to determine output port on which to send data bits based on their arriving position
 - "Position": Interface (space), time slot and/or wavelength
 - Space division switch: switch based on input interface
 - Time division switching: interface + time slot
 - Wavelength division switching: interface + wavelength
 - No buffers
- Packet switches: Label-based switching
 - Switch consults a table to determine output port on which to send the packet based on value of label (in packet header)
 - Label could be changed on outgoing port or could stay the same
 - Have buffers to hold packets

Different types of networks

- A network is defined by its "switching mode" and its "networking mode"
- · Circuit switching vs. packet switching
 - Circuit-switching: switching based on position (space, time, λ) of arriving bits
 - Packet-switching: switching based on information in packet headers
- Connectionless vs. connection-oriented networking:
 - CL: Packets routed based on address information in headers
 - CO: Connection set up (resources reserved) prior to data transfer

12

Congestion control

- · What is it?
 - The purpose of a network is to allow sharing of resources
 - This means if demand is high, there could be competition for resources from multiple users
 - What are network resources:
 - Link capacity (bandwidth)
 - Switch buffer space (only in packet switches)

13

Congestion control

- In CO networks
 - Congestion control: mostly preventive
 - Connection Admission Control (CAC)
 - Check availability of bandwidth and buffer resources before admitting a connection
 - CS CO networks: congestion will not occur once circuits are admitted
 - PS CO networks: congestion can occur after connection is admitted if connection admission is based on statistical multiplexing
 - Have some supplemental reactive congestion control scheme

14

Congestion control

- In CL networks
 - Have packet switches detect congestion and send reactive messages asking sender to slow down
 - e.g., IP routers implement Explicit Congestion Notification (ECN) procedures
 - Transport layer protocol in the end-system responds to the congestion indication and reduce traffic load

15

Applications

Most Internet applications are client-server based

TCP/IP Protocol Stacks

- OSI model: two more layers between AL and TL
 - Session layer and presentation layer
- PHY: Physical; DLL: Data Link Layer; NL: Network Layer; TL: Transport Layer; AL: Application Layer

Example protocols

AL protocols: http, smtp, ftp, PCM voice,...

• TL protocols: TCP, UDP, RTP, ...

• NL protocols: IP, ATM

DLL protocols: PPP, HDLC

• PHY protocols: DS0, DS1

Functions of protocol layers

- PHY: sends bits across a link
- DLL: error control and flow control on a link
- NL: switching (routing), multiplexing, congestion control
- TL: error control, flow and congestion control on an end-to-end basis
- AL: functions specific to the application

Performance Metrics

- Service-Level Agreement Common Metrics (backbone ISP)
 - Network availability
 - Network latency
 - Average and maximum jitter
 - Data delivery (packet losses)
 - Throughput

SLA examples:

- http://www.us.ntt.net/support/sla/network.cfm
- http://www.att.com/gen/general?pid=6622

19