Time series analysis - Inventory

Problem Statement

Workflow of project

Dataset

- -> 5 years data for training
- -> 6 month for validation

- -> Forecast demand for 5 months
- -> each time move the 1 month forward
- -> do it 6 times (R)

- -> DLP(AMPL)
- -> SLP(Python)

- -> Get the order plan for next 4 month
- -> Only implement the first order plan for next month

Validation Stationary Validation
Demand Error
Predicted-Actual

Validation Cost Holding + lost sale

Training time series input data

```
k <- 60
for (i in 1:6)
  k < - k+1
  y <- ts(elecequip, frequency = 12, start = c(1996,1), end = c(2001,j)
  y <- tsclean(y,replace.missing = TRUE, lambda = 'auto')
                                                                            Identify And Replace Outliers & Missing Values In A Time Series
  y_de <- stl(y,"periodic")</pre>
  y1 <-y-y_de$time.series[,2]
  kp <- kpss.test(y1,null = c('Trend'))</pre>
  if (kp p.value > 0.05)
    sprintf("have no evidence that it is not trend stationary for train data from 1996 1 to 2001 %i",j)
  fit<-auto.arima(y1)
  y_pred<-forecast(fit,5,level = 90)
  v_real<-y_pred$mean+y_de$time.series[k,2]</pre>
  write(y_real, file = "out_mean2.csv", append = TRUE, sep = ",")
  write(y-y_de$time.series[,2]-y_pred$fitted, file = "out_error2.csv", append = TRUE, sep = ",")
6: In kpss.test(y1, null = c("Trend"))
p-value greater than printed p-value
kp$p.value
[1] 0.1
> sprintf("have no evidence that it is not trend stationary for train data from 1996 1 to 2001 %i",j)
[1] have no evidence that it is not trend stationary for train data from 1996 1 to 2001 6"
```

Output data – predicted demand

Decision Models

predict demand, start inventory, (error term)

INPUT

• DLP(AMPL)

Min
$$E[\sum_{t=0}^{T-1} h_t x_t + b_t z_t]$$

s.t.
$$y_{t+1} - x_t - \Delta_t = 0$$

$$y_{t+1} \le R_{t+1}$$

$$\Delta_t \le U_t$$

Capacity

$$-y_t + x_t \ge -D_t$$

$$y_t + z_t \ge D_t$$

$$x_t, y_t, z_t \ge 0$$

• SLP(Python)

Min
$$E[\sum_{t=0}^{T-1} h_t x_t(w) + b_t z_t(w)]$$

s.t.
$$y_{t+1}(w) - x_t(w) - \Delta_t(w) = 0$$

 $y_{t+1}(w) \le R_{t+1}(w)$
 $\Delta_t \le U_t$

$$-y_t(w) + x_t(w) \ge -D_t(w)$$

$$y_t(w) + z_t(w) \ge D_t(w)$$

$$x_t(w), y_t(v), z_t(w) \ge 0$$

$$x_t = Max(0, v_t - D_t)$$

Lost Sales

$$z_t = Max(0, D_t - y_t)$$

OUTPUT

order plan for next 4 month
Implement first order plan for next month

Run it 6 times

```
# parameters
var x1, >= 0;
                                                          Welcome
                                                                        ts1.py
                                                                                     ×
var x2, >= 0;
var x3, >= 0;
var x4, >= 0;
var x5, >= 0;
                                                               # ad: Annotated with location of stochastic rhs entries
var y1, >= 0;
                                                                       for use with pysp2smps conversion tool.
var y2, >= 0;
var y3, >= 0;
var y4, >= 0;
                                                               import itertools
var y5, >= 0;
                                                               import random
var z1, >= 0;
var z2, >= 0;
                                                               from pyomo.core import *
var z3, >= 0;
var z4, >= 0;
                                                               from pyomo.pysp.annotations import (PySP_ConstraintStageAnnotation,
var z5, >= 0;
                                                                                                     PySP_StochasticRHSAnnotation)
var d2, >= 0;
var d3, >= 0;
var d4, >= 0;
var d5, >= 0;
                                                               # Define the probability table for the stochastic parameters
                                                              demand=[0, 110.2848,123.4493,108.7793,111.7802,120.6422]
minimize object: x1+x2+x3+x4+x5+3*(z1+z2+z3+z4+z5);
                                                              y_start=101.38
s.t. c1: y1 = 106.0461;
s.t. c2: -y1 + x1 > = -104.6734;
                                                              d1 rhs table=\
s.t. c3: y1 + z1 >= 104.6734;
                                                               [-0.000857745, -0.004360359, 0.006247019, -0.007466512, -0.005190053,
                                                              0.003739198,-0.000281543,-0.01775575,0.00521002,0.002557547,
s.t. c4: y2 = x1 + d2;
                                                              0.003315072,0.008304421,-2.209539,-0.5987525,0.6191887,
s.t. c5: -y2 + x2 >= -89.2025;
s.t. c6: y2 + z2 >= 89.2025;
                                                              4.866312,-0.01349693,1.377007,-0.6311139,2.350632,
                                                              0.5359557,1.159893,1.646791,-1.402757,-2.018934,
s.t. c7: y3 = x2 + d3;
                                                              3.587489,0.04279932,-0.8683697,4.851779,0.7572866,
s.t. c8: -y3 + x3 > = -116.6163;
s.t. c9: y3 + z3 >= 116.6163;
                                                              -1.262768, -2.717473, 2.686227, -2.43172, -2.64504,
                                                              0.406923, -0.9558075, -2.79891, -3.523102, -5.197554,
s.t. c10: y4 = x3 + d4;
                                                              -1.106004, -0.3417804, 6.252632, 2.106569, 0.1870523,
s.t. c11: -y4 + x4 > = -110.6412;
                                                              1.089157, -2.945359, 3.39181, -2.86756, -0.9906556,
s.t. c12: y4 + z4 >= 110.6412;
                                                              6.519179, 2.175354, -0.5513542, 1.097396, -4.053061,
s.t. c13: y5 = x4 + d5;
                                                              2.083399, 4.809785, 1.185102, 2.337311, 5.029688,
s.t. c14: -y5 + x5 > = -110.7723;
                                                               8.733815]
s.t. c15: y5 + z5 >= 110.7723;
```

DLP Result

Deterministic model	Feb	Mar	Apr	May	Jun	Jul
Begin inventory	101.38	125.858	109.718	120.891	120.5172	106.0461
Actual demand	103.05	119.06	92.46	98.75	111.14	96.13
End Inventory	0	6.798	17.258	22.141	9.3772	9.9161
Holding cost	0	6.798	17.258	22.141	9.3772	9.9161
Lost sales	1.67	0	0	0	0	0
Lost sales cost	5.01	0	0	0	0	0
Total cost	5.01	6.798	17.258	22.141	9.3772	9.9161
Order	125.858	102.92	103.633	98.3762	96.6689	87.8298

SLP Result

	Feb	Mar	Apr	May	Jun	Jul
Begin inventory	101.38	114.7155	101.9015	116.8272	101.35796	103.6961
Actual demand	103.05	119.06	92.46	98.75	111.14	96.13
End Inventory	0	0	9.4415	18.0772	0	7.5661
Holding cost	0	0	9.4415	18.0772	0	7.5661
Lost sales	1.67	4.3445	0	0	9.78204	0
Lost sales cost	5.01	13.0335	0	0	29.34612	0
Total cost	5.01	13.0335	9.4415	18.0772	29.34612	7.5661
Order	114.7155	101.9015	107.3857	83.28076	103.6961	

Compare DLP/SLP cost 35 30 25 20 15 10 5 Feb Mar Apr May Jun Jul

Stochastics - much higher cost in June.
The amount of difference is similar.
But cost of lost sales is 3 times of cost of holding.

Cost of stochastics model is a little higher than the deterministic model Only for March and June DLP win, but win a lot in June Conclusion: Still hard to tell which model is perform better, need to validate the cost in the longer period.