

南开大学

计算机学院

编译系统原理实验报告

实现词法分析器构造算法

张刘明 2110049

年级: 2021 级

专业:信息安全-法学

指导教师:王刚

目录

→ , 1	:下文无	5关文法 1
(-)	SysY	语言特性 1
(<u> </u>	CFG	描述 SysY 语言特性
	1.	关键字
	2.	变量
	3.	常量
	4.	运算符和表达式
	5.	语句
	6.	函数
(\equiv)	形式作	上定义
	1.	变量声明
	2.	常量声明
	3.	表达式
	4.	赋值表达式 1
	5.	逻辑表达式
	6.	关系表达式
	7.	算数表达式
	8.	函数
	9.	系统操作
	10.	循环语句
	11.	分支语句 1
	12.	条件语句
二、 1	则表达	式->NFA 2
(-)	正则表	表达式构造 CFG
(二)	构造数	数据结构2
	1.	状态
	2.	转换
	3.	NFA 结构
	4.	构造操作 2
	5.	解析和构建 2
	6.	扩展性
	7.	内存管理 2
(\equiv)	Thom	npson 算法的详细思路
	1.	基本 NFA 片段的构造
	2.	连接操作 2
	3.	选择操作
	4.	闭包操作 2
	5.	算法过程
	6.	算法的优缺点
(四)	编程等	· 实现
	1.	添加转换 2
	2.	构造 NFA

	3.	NFA 的操作	2
	4.	Thompson 算法的构造	2
	5.	主函数	2
Ξ , N	FA ->	DFA	3
(→)	从 NI	FA 到 DFA 的子集构造法的算法思路	3
	1.	计算 e-closure(T) 的算法	3
	2.	NFA 到 DFA 的转换	3
(二)	子集村		3
	1.	使用的数据结构	3
	2.	功能	3
四、D	FA 最	小化	4
(-)		最小化的实现思路	4
(二)		实现	4
(三)		へ%	4
(/	1.	DFA 结构	4
	2.	split 函数	4
	3.	minimize 函数	4
	Э.	IIIIIIIIIIZE 函奴	4
A, I	则表达	玩->DFA	5
(-)	直接達	进行正则表达式到 DFA 的转换	5
(二)	解析组	且合子的构建	5
(三)	代码等	实现	5
(四)	算法的	的效率分析	5
	1.	算法的准确性	5
	2.	Thompson 算法的效率	5
	3.	子集构造法的效率	5
	4.	DFA 最小化的效率	5
	5.	整体性能考量	5
六、总	结		6

一、 上下文无关文法

- (一) SysY 语言特性
- (二) CFG 描述 SysY 语言特性
- 1. 关键字
- 2. 变量
- 3. 常量
- 4. 运算符和表达式
- 5. 语句
- 6. 函数

代码

逐列访问平凡算法

(三) 形式化定义

- 1. 变量声明
- 2. 常量声明
- 3. 表达式
- 4. 赋值表达式
- 5. 逻辑表达式
- 6. 关系表达式
- 7. 算数表达式
- 8. 函数
- 9. 系统操作
- 10. 循环语句
- 11. 分支语句
- 12. 条件语句

二、 正则表达式->NFA

- (一) 正则表达式构造 CFG
- (二) 构造数据结构
- 1. 状态
- 2. 转换
- 3. NFA 结构
- 4. 构造操作
- 5. 解析和构建
- 6. 扩展性
- 7. 内存管理
- (三) Thompson 算法的详细思路
- 1. 基本 NFA 片段的构造
- 2. 连接操作
- 3. 选择操作
- 4. 闭包操作
- 5. 算法过程
- 6. 算法的优缺点
- (四) 编程实现
- 1. 添加转换
- 2. 构造 NFA
- 3. NFA 的操作
- 4. Thompson 算法的构造
- 5. 主函数

Ξ , NFA->DFA

- (一) 从 NFA 到 DFA 的子集构造法的算法思路
- 1. 计算 e-closure(T) 的算法
- 2. NFA 到 DFA 的转换
- (二) 子集构造法的算法实现
- 1. 使用的数据结构
- 2. 功能

四、 DFA 最小化

- (一) DFA 最小化的实现思路
- (二) 代码实现
- (三) 数据结构
- 1. DFA 结构
- 2. split 函数
- 3. minimize 函数

五、 正则表达式->DFA

- (一) 直接进行正则表达式到 DFA 的转换
- (二) 解析组合子的构建
- (三) 代码实现
- (四) 算法的效率分析
- 1. 算法的准确性
- 2. Thompson 算法的效率
- 3. 子集构造法的效率
- 4. DFA 最小化的效率
- 5. 整体性能考量

六、 总结

本次实验初步了解了编译器的工作原理, 了解了 LLVM 的工作原理, 并可以自主使用 LLVM IR 进行自己的编程, 为后续的编译器实验和操作打下了坚实基础。

实验分工:

艾明旭, 阶乘的实现以及相关内容的的研究以及 LLVM 代码的研究及的编写

张刘明: 斐波那契的实现和相关内容研究以及相关原理的探讨

参考文献

- [1] 杨俣哲, 李煦阳, 杨科迪, 费迪, 周辰霏, 谢子涵, and 杨科迪. 编译器开发环境部署. 2023.
- [2] 杨俣哲, 李煦阳, 孙一丁, 李世阳, 杨科迪, 周辰霏, 尧泽斌, 时浩铭, 贺祎昕, 张书睿. 预备工作 1——了解编译器及 llvm ir 编程. 2023.

