Lecture 10: Number Theory for Public Key Cryptography

COSC362 Data and Network Security

Book 1: Chapter 2

Spring Semester, 2021

Motivation

- Number theory problems used in public key cryptography.
- Need of efficient ways to generate large prime numbers in order to use such problems.
- Definitions of hard computational problems to base cryptosystems on.

Outline

Chinese Remainder Theorem

Euler Function

Primality Tests
Fermat Test
Miller-Rabin Test

Basic Complexity Theory

Factorisation Problem

Outline

Chinese Remainder Theorem

Euler Function

Primality Tests
Fermat Test
Miller-Rabin Test

Basic Complexity Theory

Factorisation Problem

Chinese Remainder Theorem (CRT)

Theorem: (this is a special case!)

- \triangleright Let p, q be relatively prime.
- ▶ Let $n = p \times q$ be the modulus.
- ▶ Given integers c_1 and c_2 , there exists a unique integer x, $0 \le x < n$, s.t.:

$$X \equiv C_1 \pmod{p}$$
$$X \equiv C_2 \pmod{q}$$

- $ightharpoonup x \equiv \frac{n}{p} y_1 c_1 + \frac{n}{q} y_2 c_2 \pmod{n}$ where:
 - $y_1 \equiv \left(\frac{n}{p}\right)^{-1} \pmod{p} = q^{-1} \pmod{p}$ (rewriting as $qy_1 \equiv 1 \pmod{p}$)
 - ▶ $y_2 \equiv \left(\frac{n}{q}\right)^{-1} \pmod{q} = p^{-1} \pmod{q}$ (rewriting as $py_2 \equiv 1 \pmod{q}$)

Example

Solve $x \equiv 5 \pmod{6}$ and $x \equiv 33 \pmod{35}$:

- $ightharpoonup c_1 = 5 \text{ and } c_2 = 33$
- ightharpoonup p = 6 and q = 35 are relatively prime, so CRT can be used
- $n = 6 \times 35 = 210$

$$\begin{array}{c|c} \frac{210}{6}y_1 \equiv 1 \pmod{6} & \frac{210}{35}y_2 \equiv 1 \pmod{35} \\ 35y_1 \equiv 1 \pmod{6} & 6y_2 \equiv 1 \pmod{35} \\ y_1 \equiv 5 \pmod{6} & y_2 \equiv 6 \pmod{35} \end{array}$$

$$x \equiv \frac{n}{p} y_1 c_1 + \frac{n}{q} y_2 c_2 \pmod{n}$$

$$\equiv (35 \times 5 \times 5) + (6 \times 6 \times 33) \pmod{210}$$

$$\equiv 175 \times 5 + 36 \times 33 \pmod{210} \equiv 173 \pmod{210}$$

Outline

Chinese Remainder Theorem

Euler Function

Primality Tests
Fermat Test
Miller-Rabin Test

Basic Complexity Theory

Factorisation Problem

Euler Function

Definition: given a positive integer n, the Euler function $\phi(n)$ denotes the number of *positive* integers *less than n* and *relatively prime* to n.

Example: $\phi(10) = 4$ since 1, 3, 7, 9 are each relatively prime to 10.

The set of positive integers less than n = 10 and relatively prime to n = 10 is thus $\mathbb{Z}_{10}^* = \{1, 3, 7, 9\}$.

Properties

- $\phi(p) = p 1$ where p is prime.
- $\phi(pq) = (p-1)(q-1)$ where p, q are distinct primes.
- $ightharpoonup n = p_1^{e_1} \cdots p_t^{e_t}$ where p_i are distinct primes, then:

$$\phi(n) = \prod_{i=1}^t p_i^{e_i-1}(p_i-1)$$

Examples:

$$\begin{array}{l} \phi(15)=(3-1)(5-1)=2\times 4=8 \text{ since } 15=3\times 5 \\ \phi(24)=2^2(2-1)\times 3^0(3-1)=8 \text{ since } 24=2^3\times 3 \end{array}$$

Important Theorems

Fermat's theorem: Let p be a prime, then for any integer a s.t.

$$1 < a < p - 1$$
:

$$a^{p-1} \mod p = 1$$

Euler's theorem: If gcd(a, n) = 1 then:

$$a^{\phi(n)} \mod n = 1$$

When p is prime then $\phi(p) = p - 1$, so Fermat's theorem is a special case of Euler's theorem.

Outline

Chinese Remainder Theorem

Euler Function

Primality Tests
Fermat Test
Miller-Rabin Test

Basic Complexity Theory

Factorisation Problem

Primality Tests

- ► Testing for primality by trial division is not practical (except for very small numbers).
- Many probabilistic methods:
 - Requiring random inputs
 - Possible failure in exceptional circumstances
- ▶ Indian mathematicians Agrawal, Saxena and Kayal found a polynomial time deterministic primality test (2002):
 - ▶ Huge theoretical breakthrough
- Probabilistic methods are still used in practice.

Fermat Test

Fermat Primality Test

- Fermat's theorem: If p is prime then $a^{p-1} \mod p = 1$ for all a s.t. gcd(a, p) = 1.
- ▶ If a number n s.t. $a^{n-1} \mod n \neq 1$, then n is NOT prime.
- ► Test idea: If a number satisfies Fermat's equation then we ASSUME that it is prime.
- ► Failure is possible but very unlikely in practice.
- ► Reducing the failure probability by repeating the test with different base values *a*.

Fermat Test

Fermat Primality Test

- ► Inputs:
 - a value n to test for primality
 - a parameter k that determines the number of times the test is run
- ► Output: composite if n is composite; probable prime otherwise.
- ► Algorithm:
 - ightharpoonup Pick a at random s.t. 1 < a < n 1.
 - If $a^{n-1} \mod n \neq 1$ then return composite; otherwise return probable prime.

Effectiveness

- ▶ If the test outputs composite then *n* is definitely composite.
- ▶ The test can output probable prime if *n* is composite:
 - ▶ *n* is called *pseudoprime*
- ► The test ALWAYS outputs probable prime for some composite *n*:
 - ▶ n is called Carmichael number
 - ► First few Carmichael numbers: 561, 1105, 1729, 2465, etc.

Miller-Rabin Test

Miller-Rabin Test

- Similar idea to Fermat test
- Guaranteeing to detect composite numbers if test run sufficiently many times
- Most widely used test for generating large prime numbers

Square Roots of 1

- A modular square root of 1 is a number x s.t. x^2 mod n = 1.
- ▶ There are 4 square roots of 1 when n = pq:
 - ▶ 2 are 1 and −1 modulo n
 - ▶ 2 are called non-trivial square roots of 1
- ▶ If x is a non-trivial square root of 1 then gcd(x 1, n) is a non-trivial factor of n:
 - ▶ Hence, if a non-trivial square root of 1 exists then n is composite

Miller-Rabin Algorithm

Let *n* and *u* be odd, and *v* s.t. $n-1=2^{v}u$:

- 1. Pick a at random s.t. 1 < a < n-1
- 2. Set $b = a^u \mod n$
- 3. If b = 1 then return probable prime
- 4. For j = 0 to v 1:
 - ▶ If b = -1 then return probable prime
 - ▶ Else set $b = b^2 \mod n$
- 5. Return composite

Note: when an output is returned, the algorithm halts.

Primality Tests

Miller-Rabin Test

Effectiveness

- ▶ If test returns composite then *n* is composite.
- ▶ If test returns probable prime then *n* MAY be composite.
- ▶ If *n* is composite then test returns probable prime with probability at most 1/4:
 - ▶ Algorithm is run *k* times
 - ▶ Repeat while the output is probable prime
 - ▶ Output probable prime when n is composite with probability no more than $(1/4)^k$
- ▶ In practice, error probability is smaller:
 - **Example:** no composites less than 341,550,071,728,321 which pass the test for 7 base values a = 2,3,5,7,11,13,17.

Why Does Miller-Rabin Test Work?

- ▶ Random *a* s.t. 0 < a < n-1, and $n-1 = 2^{\nu}u$.
- ► Sequence $a^u, a^{2u}, \dots, a^{2^{v-1}u}, a^{2^{v}u} \mod n$.
- ► Each number in the sequence (after the 1st) is the square of the previous number.
- ▶ If *n* is prime then $a^{2^{\nu}u} \mod n = 1$ (Fermat's theorem), and then:
 - ightharpoonup Either $a^u \mod n = 1$
 - ▶ Or there is a square root of 1 somewhere in the sequence, and the value must be −1
- ▶ If a non-trivial square root of 1 is found then *n* is composite.

Primality Tests

Miller-Rabin Test

Example

- ▶ Let n = 1729 be a Charmichael number.
- ▶ $n-1=1728=64\times 27=2^6\times 27$.
- ▶ Hence v = 6 and u = 27.
- 1. Choose a=2
- 2. $b = 2^{27} \mod 1729 = 645$
- 3. Since $b \neq 1$, continue:
 - $b = 645^2 \mod n = 1065$
 - $b = 1065^2 \mod n = 1$
 - ▶ Thus b = -1 will never occur
- 4. Return composite

Note: 1065 is a non-trivial square root of 1 modulo 1729, since gcd(1729, 1064) = 133 is a factor of 1729.

Generation of Large Primes

Miller-Rabin test used to generate large primes:

- 1. Choose a random odd integer *r* of the same number of bits as the required prime.
- 2. Test if *r* is divisible by any of a list of small primes.
- 3. Apply Miller-Rabin test with 5 random (or fixed) base values *a*.
- 4. If r fails any test, then set r = r + 2 and return to Step 2.

Note: this *incremental* method does not produce completely random primes.

Instead, start from Step 1 if r is found to be composite. Both options are seen in practice.

Outline

Chinese Remainder Theorem

Euler Function

Primality Tests
Fermat Test
Miller-Rabin Test

Basic Complexity Theory

Factorisation Problem

Complexity Theory in Cryptology

- Computational complexity provides a foundation for:
 - Analysing computational requirements of cryptanalytic techniques.
 - Studying the difficulty of breaking ciphers.
- 2 aspects:
 - Algorithm complexity: how long does it take to run a particular algorithm?
 - ► Problem complexity: what is the best (known) algorithm to solve a particular problem?

Algorithm Complexity

- ▶ Computational complexity of an algorithm is measured by its time and space requirements, measured as functions of the size of the input m.
- ▶ "big O" notation:
 - ightharpoonup f(m), g(m) are 2 positive functions
 - ▶ f(m) is expressed as an "order of magnitude" of the form O(g(m))
 - ▶ f(m) = O(g(m)) if there are constants c > 0 and m_0 s.t. $f(m) \le c \cdot g(m)$ for $m \ge m_0$

Polynomial and Exponential Functions

- ▶ Polynomial time function: function $f(m) = O(m^t)$ for some positive integer t:
 - Polynomial time function is seen as efficient in cryptography.
- Exponential time function: function $f(m) = O(b^m)$ for some number b > 1:
 - ▶ A problem whose the best solution is an exponential time function is seen as *hard* in cryptography.
- Brute force key search is exponential as a function of the key length:
 - ▶ An m-bit key length allows 2^m keys.

Examples of Algorithm Complexity

- 1. Let f(m) = 17m + 10, then f(m) = O(m):
 - ▶ $17m + 10 \le 18m$ for $m \ge 10$
- 2. Let $f(m) = a_0 + a_1 m + \cdots + a_t m^t$ be a polynomial, then $f(m) = O(m^t)$

Problem Complexity

- A problem is classified according to the minimum time and space needed to solve its hardest instances on a deterministic computer.
- **Examples:** polynomial time problems
 - Multiplication of 2 $m \times m$ matrices, with fixed size entries, using the obvious algorithm is $O(m^3)$.
 - Sorting a set of integers into ascending order is O(m ⋅ log₂ m) with algorithms such as Quicksort.

Hard Problems

- ▶ *Integer factorisation:* given an integer of *m* bits, find its prime factors.
- ▶ Discrete logarithm problem (with base 2): given a prime p of m bits and an integer y s.t. 0 < y < p, find x s.t. $y = 2^x$ mod p.
- ► There are no known polynomial algorithms to solve these problems.
- ▶ The best known algorithms are *sub-exponential*:
 - Slower than any polynomial algorithm but faster than any exponential algorithm.

Outline

Chinese Remainder Theorem

Euler Function

Primality Tests
Fermat Test
Miller-Rabin Test

Basic Complexity Theory

Factorisation Problem

Integer Factorisation:

- Factorisation by trial division is an exponential time algorithm:
 - Hopeless for numbers of few hundred bits.
- Several methods exist:
 - ► They apply if the integer to be factorised has SPECIAL properties.
- ▶ The best current general method is *number field sieve*:
 - Sub-exponential algorithm.

Factorisation Records

Decimal digits	Bits	Date	CPU years
140	467	Feb. 1999	?
155	512	Aug. 1999	?
160	533	Mar. 2003	2.7
174	576	Dec. 2003	13.2
200	667	May. 2005	121
232	768	Dec. 2009	3300

- ▶ All records used number field sieve method.
- Assuming 1 GHz CPU.

http://en.wikipedia.org/wiki/RSA_numbers

Comparing Brute Force Search and Factorisation

Symmetric key length	Length of $n = pq$	
80	1024	
112	2048	
128	3072	
192	7680	
256	15360	

- ► Example: Brute force key search of 128-bit keys for AES takes roughly the same computational effort as factorisation of a 3072-bit number with 2 factors of roughly equal size.
- ► NIST SP 800-57 Part 1: Recommendations for Key Management (2016).

Outline

Chinese Remainder Theorem

Euler Function

Primality Tests
Fermat Test
Miller-Rabin Test

Basic Complexity Theory

Factorisation Problem

- ▶ g is a generator of \mathbb{Z}_p^* for a prime p.
- ▶ Discrete logarithm problem over \mathbb{Z}_p^* is:
 - ▶ Given $y \in \mathbb{Z}_p^*$, find x s.t. $y = g^x \mod p$.
- ▶ If p is large enough, then the problem is believed to be hard.
- The best known algorithm is a variant of the number field sieve.
- ▶ Length of modulus p should be chosen of same length as RSA modulus for the same security level (at least 2048 bits).

Example

$g^x \mod p$	X	$g^x \mod p$	Χ
1	18	10	17
2	1	11	12
3	13	12	15
2 3 4 5	2	13	15 5
5	16	14	7
6	14	15	11
7	14 6 3	16	4
8	3	17	10
9	8	18	9

- ➤ Set of non-zero integers modulo 19 is \mathbb{Z}_{19}^*
- ▶ Generator is g = 2
- When $y = g^x \mod p$ then $\log_q(y) = x$
- Example: $\log_2(3) = 13$

Comparing Brute Force Search, Factorisation and DL

Symmetric	Length	Length of discrete	
key length	of $n = pq$	log modulus p	
80	1024	1024	
112	2048	2048	
128	3072	3072	
192	7680	7680	
256	15360	15360	

- ► Example: brute force key search of 128-bit keys for AES takes roughly the same computational effort as factorisation of a 3072-bit number with 2 factors of roughly equal size, or finding discrete logs with a 3072-bit modulus.
- ► NIST SP 800-57 Part 1 (2016).