Wing

Airfoil selection

- Aerodynamic characteristics (K_{max}, C_{Lmax}, stall characteristics)
- Structural reasons;

Airfoil geometry

Airfoil geometry

Angle of attack definition

Airfoil aerodynamic characteristics

Airfoil aerodynamic characteristics

Airfoil aerodynamic characteristics

Power factor (C_z^3 / C_x^2) lub $C_z^{1,5} / C_x$

Airfoil aerodynamic characteristics

Pitching moment coefficient $C_{\rm m}$

Derivative dCm/dCz is an indicator of stability.

It is negative for stable aeroplanes and positive for unstable aeroplanes.

Maximum thickness - t/c

Effect of airfoil thickness on lift coefficient

Effect of airfoil thickness on lift coefficient

Effect of airfoil thickness on drag coefficient

Effect of airfoil thickness on gliding ratio

Effect of airfoil thickness on power factor

Camber

Effect of airfoil camber on lift coefficient

Effect of airfoil camber on drag coefficient

Effect of airfoil camber on gliding ratio

Effect of airfoil camber on power factor

Effect of airfoil camber on moment coefficient

Position of maximum thickness

Boundary layer development

Effect of airfoil "laminarity" on drag coefficient

Effect of airfoil "laminarity" on lift coefficient

Effect of camber line shape on moment coefficient

Effect of camber line shape on gliding ratio

Effect of Mach number on moment coefficient

Historical values of an aeroplane airfoil thickness as a function of Mach number

Remaining wing features

- Wing incidence;
- Mean aerodynamic chord mac, \overline{c}
- Wing area (reference area) S;
- Wing span b;
- · Wing aspect ratio A;
- · Wing dihedral;
- Wing sweep angle (leading edge Λ_{LE} , quarter chord $\Lambda_{c/4}$);
- Taper ratio λ;
- Geometrical and aerodynamic twist;
- Winglets
- Leading edges extensions;

Wing incidence angle

An angle between root chord and fuselage longitudinal axis

$$\mathbf{b} = \sqrt{\mathbf{A} \cdot \mathbf{S}}$$

$$c_{R} = \frac{2 \cdot S}{\left[b \cdot (1 + \lambda)\right]}$$

$$\mathbf{c}_{\mathrm{T}} = \lambda \cdot \mathbf{c}_{\mathrm{R}}$$

$$\lambda = \frac{c_{\mathrm{T}}}{c_{\mathrm{R}}}$$

Straight wings:

$$\lambda = 0.4 \div 0.5$$

Swept wings:

$$\lambda = 0.2 \div 0.3$$

Mean aerodynamic chord mac, c

$$\bar{c} = \left(\frac{2}{3}\right) \cdot c_{ROOT} \cdot \frac{\left(1 + \lambda + \lambda^2\right)}{\left(1 + \lambda\right)};$$

$$\overline{Y} = \left(\frac{b}{6}\right) \cdot \left[(1 + 2 \cdot \lambda)(1 + \lambda) \right];$$

Vortices generated by a wing

Vortices generated by a wing and effect of aspect ratio on drag coefficient

Effect of aspect ratio (A, AR) on lift coefficient

Wing dihedral angle ϕ – an angle between chords' plane and horizontal plane

	Wii	Wing position		
	low	mid	high	
Unswept	5 ÷ 7	2 ÷ 4	0 ÷ 2	
Subsonic swept	3 ÷ 7	-2 ÷ 2	-5÷-2	
Supersonic swept	0 ÷ 5	-5 ÷ 0	-5 ÷ 0	

Wing sweep

$$M_{eff} = M_{\infty} cos(\Lambda_{LE})$$

$$M_{kryt}{\sim}1/cos^m(\Lambda_{LE})$$

Wing sweep reduces effective Mach number.

$$q_{eff} = q_{\infty} cos^2(\Lambda_{LE})$$

$$W\sim tan^2(\Lambda_{LE})$$

Wing sweep effect on $dC_L/d\alpha$

$$\frac{dC_{L}}{d\alpha} = \frac{2 \cdot \pi \cdot A}{2 + \sqrt{4 + (A \cdot \beta)^{2} \cdot \left(1 + \frac{tan^{2}(\Lambda_{t/c})}{\beta^{2}}\right)}}$$
$$\beta = \sqrt{1 - M_{eff}^{2}}$$

$$M_{\rm eff} = M_{\infty} \cos \Lambda_{\rm LE}$$

Wing sweep effect on separation

Wing sweep at supersonic speeds

Winglets

Wing twist

Aerodynamic twist

Geometric twist

Wing twist

Aerodynamic twist

Delta wings

Leading Edge eXtensions

