Exercises: Eigenvalues, Eigenvectors, and Similarity Transformation

Problem 1. Find all the eigenvalues and eigenvectors of $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Problem 2. Let A be an $n \times n$ square matrix. Prove: A and A^T have exactly the same eigenvalues.

Problem 3. Let A be an $n \times n$ square matrix. Prove: A^{-1} exists if and only if 0 is not an eigenvalue of A.

Problem 4. Let A be an $n \times n$ square matrix such that A^{-1} exists. Prove: if λ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue of A^{-1} .

Problem 5. Diagonalize the following matrix:

$$\boldsymbol{A} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$

Problem 6. Consider again the matrix A in Problem 5. Calculate A^t for any integer $t \ge 1$.

Problem 7. Diagonalize the matrix A in Problem 1.