Область допустимых решений задачи представлена ниже на рисунке. Как будут записаны ограничения (1) и (2)?

Билет 2, вопрос 1

Строительной организации необходимо выполнить n видов земляных работ, объем которых составляет Vj куб. м (j=1, n). Для их осуществления можно использовать m механизмов. Производительность i-го механизма при выполнении j-ой работы составляет Pij куб. м в час., а себестоимость одного часа работы Sij руб. Плановый фонд рабочего времени i-го механизма составляет Ti часов. Составить план организации работ, обеспечивающий его выполнение с минимальными затратами. Какая из моделей верна?

$$\sum_{i} \sum_{j} S_{ij} * x_{ij} \to min \qquad \sum_{i} \sum_{j} P_{ij} * x_{ij} \leq V_{j}, \forall j \qquad \sum_{i} P_{ij} * x_{ij} \geq V_{j}, \forall j \qquad \sum_{i} x_{ij} \leq V_{j}, \forall j \qquad \sum_{i} x_{ij} \leq T_{i}, \forall i \qquad \sum_{j} x_{ij} \leq T_{i}, \forall i$$

2.

Билет 2, вопрос 2

3.

Каким из трех алгоритмов следует начать решение исходной задачи?

- а) прямым симплекс-алгоритмом
- б) двойственным симплекс-алгоритмом
- в) двухэтапным симплекс-алгоритмом

$$-x_{2} \to \min$$

$$x_{1} + x_{2} \le 2$$

$$x_{1} + x_{2} \le 1$$

$$x_{1} - x_{2} \le -1$$

$$x_{1} - x_{2} \le 1$$

$$x_{1}, x_{2} \ge 0$$

Билет 2, вопрос 3 Дана начальная симплекс-таблица прямой (исходной) задачи линейного программирования, в которой х-основные переменные, s-дополнительные, Q –целевая функция

БП	X ₁	X ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	Решение
s_1	1	1	1	0	0	4
<i>s</i> ₂	1	-1	0	1	0	0
s_3	-5	-4	0	0	1	-20
Q	2	1	0	0	0	0

Запишите постановку двойственной ЗЛП

Составить уравнения Беллмана

Эффективность состояния системы на втором этапе определяется(продолжить)...

$$Z(X) = x_1 + 2x_2^2 \Rightarrow max$$

$$2\sqrt[2]{x_1} + x_2 \le 8$$

$$x_1, x_2 \ge 0$$

Сетевое планирование

Табличным способом рассчитайте параметры сетевого графика

	1	2	3	4	5
1		4	5	7	
2			2	10	3
3					
4					4
5					

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям:

 $m{k_1}$ – стоимость постройки; $m{k_2}$ – время в пути до центра города; $m{k_3}$ – количество людей, подвергающихся шумовым воздействиям.

Оценки альтернатив по критериям приведены в таблице. Установите Мажоритарное отношение между z и y

Площад- ки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
x	170	40	20
y	170	50	10
Z	190	45	10

Задана матрица У исходов в терминах затрат .По критерию Вальда определите лучшую альтернативу

Альтернативы	Ситуации Е			
X	e_1	e_2	e_3	e_4
x_1	6	4	3	2
x_2	3	3	4	5
x_3	3	4	4	2

Пусть X— множество альтернатив, μ_R — заданное на нем нечеткое отношение предпочтения.

Нечеткое подмножество недоминируемых альтернатив множества (X, μ_R) описывается функцией принадлежности

$$\mu_Q^{HA}(x) = 1 - \sup_{y \in X} [\mu_R(y, x) - \mu_R(x, y)], \qquad x \in X$$

SUP —наибольшее положительное число (на сколько другие по максимуму доминируют x)

Пусть:

$$\mu_R(x_i,x_j) =$$

	x_1	x_2	x_3
x_1	-	0,4	0,7
x_2	0	-	0,5
x_3	0	0	-

Определите функцию принадлежности недоминирования для x_2 : $\mu_{Q}^{^{\mathrm{HZ}}}(x_2)$

Билет 2, вопрос 9

Метод анализа иерархий.

Дополните таблицу и определите коэффициент значимости критерия $\lambda_3 =$

Критерии	Критерий k_1	Критерий $oldsymbol{k}_2$	Критерий $oldsymbol{k}_3$	Коэффициент значимости
Критерий k_1	1/1	1/2	1/4	$\lambda_1 =$
Критерий $oldsymbol{k}_2$		1/1	4/1	$\lambda_2 =$
Критерий $oldsymbol{k}_3$			1/1	$\lambda_{3=}$
	•			