

FACULTAD DE INGENIERÍA - Course 2019/2019

SECRETARÍA/DIVISIÓN: DIVISIÓN DE INGENIERÍA ELÉCTRICA ÁREA/DEPARTAMENTO: INGENIERÍA EN COMPUTACIÓN

LABORATORIO DE COMPUTACIÓN GRÁFICA E INTERACCIÓN HUMANO COMPUTADORA:

Modelado Geómetrico.

Reynaldo Martell Avila

PRÁCTICA 4

Contents

1	Objetivos de aprendizaje	2
	1.1 Objetivos generales:	6
	1.2 Objetivos específicos:	
2	Recursos a emplear	
	2.1 Software	
	2.2 Equipos	
	2.2 Equipos Equipos 2.3 Instrumentos	
3	Fundamento Teórico	
	3.1 Desarrollo de actividades	
	3.2 Ejercicios	
4	Observaciones y Conclusiones	
5	Anexos	

1 Objetivos de aprendizaje

1.1 Objetivos generales:

El alumno repasará como crear buffers de OpenGL, leer archivos, comprenderá los diferentes tipos de proyección y las funciones de la librería glm para crear éstas, así como comprenderá los diferentes sistemas de referencia de OpenGL. Del mismo modo practicará como colocar en la escena diferentes geometrías.

1.2 Objetivos específicos:

El alumno practicará crear geometrías con índices, revisará los sistemas de referencia que se aplican en OpenGL, comprenderá la utilización de la matriz de modelo, vista, proyección y la zona de dibujo.

2 Recursos a emplear

2.1 Software

Sistema Operativo: Windows 7 Ambiente de Desarrollo: Visual Studio 2017.

2.2 Equipos

Los equipos de cómputo con los que cuenta el laboratorio de Computación Gráfica

2.3 Instrumentos

3 Fundamento Teórico

• Presentación de conceptos.

El Modelado Geométrico consiste en la construcción de un modelo a partir de primitivas, es decir, elementos más sencillo. Un Modelo Geométrico es la representación de las características geométrica de una entidad concreta o abstracta.

El Modelado Geométrico y el Modelado Jerárquico hace uso de la composición de operaciones matriciales anidando transformaciones geométricas, por lo cual es importante repasar esto, además de que se explica a grandes rasgos como se forman las primitivas geométricas.

• Datos necesarios. Librería OpenGL 3.3, librería de creación de ventanas, IDE de desarrollo (Visual Studio 2017.

3.1 Desarrollo de actividades

- 1. Ejecutar el código base de la práctica **04-Modelado Geómetrico**, observar la ejecución.
- 2. Explicar el código de la Clase **AbstractModel.h** y sus implementaciones **Cylinder.cpp**, **Sphere.cpp** y **Box.cpp**.

3. Agregar las cabeceras de los modelos geómetricos Esfera, Caja y Cilindro que se muestran a continuación 1.

Ejemplo 1: Inclusión de cabeceras de las formas geómetricas.

4. Declarar dos objetos de tipo Sphere, Cylinder y Box como se muestra en el ejemplo 2

Ejemplo 2: Declarar objetos de tipo esfera, cylindro y caja.

```
Sphere sphere1(20, 20);
Cylinder cylinder1(20, 20, 0.5, 0.5);
Box box1;
```

5. En el método init agregar las inicializaciones de los buffers de los modelos geómetricos 4

Ejemplo 3: Inicialización de esfera, cylindro y caja.

```
sphere1.init();
      sphere1.setShader(&shader);
3
      sphere1.setColor(glm::vec4(0.3, 0.3, 1.0, 1.0));
4
5
      cylinder1.init();
6
      cylinder1.setShader(&shader);
      cylinder1.setColor(glm::vec4(0.3, 0.3, 1.0, 1.0));
8
9
      box1.init();
      box1.setShader(&shader);
10
      box1.setColor(glm::vec4(0.3, 0.3, 1.0, 1.0));
11
```

6. Agregar en el método **destroy** la eliminación explicita de los objetos, con el fin de liberar espacio de memoria (Buffers y atributos de vertices creados) como se muestra en el ejemplo ??

Ejemplo 4: Inicialización de esfera, cylindro y caja.

```
sphere1.destroy();
cylinder1.destroy();
box1.destroy();
```

- 7. Agregar en el método **applicationLoop** despúes de la matriz de modelo el render de una esfera **sphere1.render(model)**; y ejecutar el programa.
- 8. Agregar enseguida la llamada al método **sphere1.enableWireMode()**;. ;Para que sirve ésta?

¿Para que sirve el método enableFillMode?

Abrir esta función y reporte que funciones son llamadas internamente.

- 9. Colocar otros modelos geómetricos en diferentes posiciones y tamaños.
- 10. Definir un modelo a construir a partir de primitivas geométricas. El modelo debe ser en tres dimensiones y consistir de, al menos, seis elementos, de tal forma que se practique el uso de la composición de operaciones matriciales. Cada alumno define el modelo a generar.

3.2 Ejercicios

- 1. Agregue las transformaciones necesarias para que los elementos en pantalla puedan ser trasladados en el eje X y en el eje Y, al presionar teclas.
- 2. Agregue las transformaciones necesarias para que los elementos en pantalla puedan ser manipulados mediante una rotación sobre el eje Y, al presionar alguna tecla.

4 Observaciones y Conclusiones

5 Anexos

- 1. Cuestionario previo.
 - (a) ¿Qué es modelado gemétrico?.
 - (b) Investigue el algoritmo para generar una esfera.
 - (c) Investigue el algoritmo para generar un cilindro.
- 2. Actividad de investigación previa.
 - (a) Realizar un git pull origin master y un git pull myrepo master, antes de comenzar la práctica.