

<u>Grundläggning- Konstruktionsteknik 2</u>

TIBYH, AF 1747 Klass B.

Grupp 27

Tolga Kilic

Varman Ratha

Frida Yousef Lahdo

Erik Xu

Datum: 2023-12-17

Förutsättningar: Del 1

Längden	3 meter
Bredden	3 meter
Vertikala lasten	2 MN
Horisontella lasten	0.4 MN
Grundläggningsdjup, d	2 meter
Avstånd mellan Horisontell last och mark	0.75 meter
Grundvattennivå, underkant av bottenplan	1.5 meter
Jordmaterial	$\Phi_{\rm d}$ 0 35 grader
Dim. Kohesion	$C_{ud} = 10 \text{ KPa}$
Tunghet under grundvattenyta	$V_d = 18 \text{ KN/m}^3$
Effektiva tungheten under grundvatten	$V' = 11 \text{ KN/m}^3$
Säkerhetsfaktor	F = 3

Förutsättningar: Del 2

Pålplatta	Oändlig styv
Vertikallast	Dimensionerande värden i brottgränstillstånd
Moment last	Dimensionerande värden i brottgränstillstånd
Pålen	Ledad i båda ändar
Effektiva kryptalet	1.8
M-N Kurva för	0.75 meter

Innehållsförteckning

Inlämningsuppgift del 1	5
Effektiva bredden	5
Stjälpning	5
Excentricitet	5
Stapellast	6
Medelvärde för tunghet	6
Korrektioner	6
plattans form (S)	6
Lutande-/Horisontellast (i)	6
Grundläggningsdjup (d)	7
Lutande mark (g)	7
Inlämningsuppgift del 2	8
4.3 beräkningsförutsättningar	10
Del A)	11
Del B)	13
Beräkning av gränstryck	16
Första iteration	17
Andra iteration	17
Tredje iteration	18
Fjärde iteration	18
Femte Iteration	19
Del C)	20

Inlämningsuppgift del 1

 $q_b \\ 10 \text{ kPa} \cdot \text{Nc} \cdot \text{dc} \cdot \text{ic} \cdot \text{g} + \text{q} \cdot \text{nq} \cdot \text{sq} \cdot \text{dg} \cdot \text{ig} \cdot \text{gg} + \text{0,5} \cdot \text{\gamma'} \cdot \text{bef} \cdot \text{Ny} \cdot \text{sy} \cdot \text{dy} \cdot \text{iy} \cdot \text{gy}$

Effektiva bredden

$$e = y \cdot \frac{H}{V} = (2 + 0.75) \cdot \frac{0.4}{2} = 0.55$$

 $e, kant = \frac{B}{2} - e = \frac{3}{2} - 0.55 = 0.95$

$$B_{eff} = 2 \cdot e_{kant} = 2 \cdot 0.95 = 1.9 \, meter$$

$$L_{eff} = L = 3 meter$$

Stjälpning

$$\begin{split} B_{eff} &\geq \frac{B}{4} \Rightarrow 1, 9 \geq \frac{3}{4} \text{ OK!} \\ L_{eff} &\geq \frac{L}{4} \Rightarrow 3 \geq \frac{3}{4} \text{ OK!} \end{split}$$

Excentricitet

$$\overline{\sim}M = 400 * 2,75 = 1100 \, kN$$

Stapellast

$$q = 2 \cdot 19 = 38 \, kN/m^2$$

Vilket ger:

$$C = 10 \text{ kPa}$$

$$D = 2 \text{ meter}$$

Medelvärde för tunghet

$$\gamma_{medel} = \frac{1.5*18+0.4*11}{1.9} = 16,526 \text{ kN/m}^3$$

Korrektioner

(Dimensionerande) Friktionsvinkel: $\emptyset_d = 35^{\circ}$

Bärighet (N)

$$N_c = 46,1$$

$$N_q = 33,3$$

$$N_{v} = 34,4$$

plattans form (S)

$$S_c = S_q = 1 + 0, 2 * \frac{B_{eff}}{L_{eff}} = 1 + 0, 2 * \frac{1,9}{3} = 1,1267$$

$$S_{\gamma} = 1 - 0,4 * \frac{B_{eff}}{L_{eff}} = 1 - 0,2 * \frac{1,9}{3} = 0,7467$$

Lutande-/Horisontellast (i)

$$i_q = (1 - 0, 7 * \frac{H}{V + B_{eff} * L_{eff} * C * cot(\emptyset)})^3 = (1 - 0, 7 * \frac{400}{2000 + 1, 9 * 3 * 10 * \frac{1}{T_{cot}(35^\circ)}})^3$$

$$i_0 = 0.648$$

$$i_{\gamma} = \left(1 - \frac{H}{V + B_{eff}^* L_{eff}^* C^* cot(\emptyset)}\right)^3 = \left(1 - \frac{400}{2000 + 1.9^* 3^* 10^* \frac{1}{Tan(35^\circ)}}\right)^3 = 0.527$$

$$i_c = i_q - \frac{1 - i_q}{N_q - 1} = 0,648 - \frac{1 - 0,648}{33 - 1} = 0,637$$

Grundläggningsdjup (d)

$$d_q = d_c = 1 + 0,35 * \frac{D}{B_{eff}} = 1 + 0,35 * \frac{2}{1,9} = 1,36 < 1,7 \text{ OK!}$$

$$d_{y} = 1$$

Lutande mark (g)

Marken är platt/ej lutande $\Rightarrow \beta = 0 \Rightarrow g_c = g_q = g_\gamma = 1$

$$\begin{array}{l} q_B = \\ \textit{C} \cdot \textit{Nc} \cdot \textit{Sc} \cdot \textit{dc} \cdot \textit{ic} \cdot \textit{gc} + \sigma \cdot \textit{nq} \cdot \textit{sq} \cdot \textit{dq} \cdot \textit{iq} \cdot \textit{gq} + 0, \\ \textit{5} \cdot \gamma_{\textit{medel}} \cdot \textit{B}_{\textit{eff}} \cdot \textit{Ny} \cdot \textit{sy} \cdot \textit{dy} \cdot \textit{iy} \cdot \textit{gy} \end{array}$$

 \Rightarrow

$$10*46,1*1,1267*1,368*0,637*1+38*33,3*1,368*0,648*1,1267*1+0,5*16,526*34,4*1,9*0,7467*1*0,527*1$$

$$q_B = 1929 \text{ kN}$$

$$Q_B = q_B * B_{eff} * L_{eff} = 1929 * 3* 1,9 = 10995 \text{ kN}$$

$$F = \frac{Q_B}{V} = \frac{10995}{2000} = 5,5 > 3$$
 Håller!

$$Q_{\text{till}} = \frac{q_B * L_{eff} * B_{eff}}{3} = \frac{1929 * 3 * 1.9}{3} = 3665 \text{ kN}$$

Inlämningsuppgift del 2

Figur 2: 1 Plan över pålade platta (9,0 x 9,0 m)

Figur 2: 2 Elevation A-A med moment Mx runt om x-axel för pålade platta (9,0 x 9,0 m)

Figur 2: 3 Elevation B-B med moment My runt om y-axel för pålade platta (9,0x 9,0 m)

4.3 beräkningsförutsättningar

Pålen är tillverkad i betong C45/55, tvärmått och armering enligt figur:

Figur 2: 4 enstaka Pålelement SP2 i sektion

Figur 2: 5 M-N kurva för SP2 påle

$$P_{i} = \frac{P_{d}}{n} \pm \frac{M_{x}}{\Sigma r_{yi}^{2}} * r_{yi} \pm \frac{M_{y}}{\Sigma r_{xi}^{2}} * r_{xi}$$

Påle	P_{Ed}	M_x	$M_{\rm y}$
\mathbf{P}_1	+	-	+
P_2	+	-	+
P_3	+	+	+
P_4	+	+	+
P ₅	+	-	-
P_6	+	-	-
P ₇	+	+	-
P_8	+	+	-

$$\begin{split} P_1 &= + \ \frac{8000}{8} \ - \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ + \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ + \ 1000 \ - \ 60,34 \ + \ 35,71 \ = \ 975,4 \ kN \\ P_2 &= + \ \frac{8000}{8} \ - \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 1, 5 \ + \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ - \ 25,86 \ + \ 35,71 \ = \ 1009,85 kN \\ P_3 &= + \ \frac{8000}{8} \ + \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 1, 5 \ + \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ + \ 25,86 \ + \ 35,71 \ = \ 1061,6N \\ P_4 &= + \ \frac{8000}{8} \ + \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ + \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ - \ 60,34 \ + \ 35,71 \ = \ 1096,05 \ kN \\ P_5 &= + \ \frac{8000}{8} \ - \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ - \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ - \ 25,86 \ - \ 35,71 \ = \ 903,95 \ kN \\ P_7 &= + \ \frac{8000}{8} \ - \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 1, 5 \ - \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ + \ 25,86 \ - \ 35,71 \ = \ 990,15 \ kN \\ P_8 &= + \ \frac{8000}{8} \ + \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ - \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ + \ 60,34 \ - \ 35,71 \ = \ 990,15 \ kN \\ P_8 &= + \ \frac{8000}{8} \ + \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ - \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ + \ 60,34 \ - \ 35,71 \ = \ 1024,63 \ kN \\ P_8 &= + \ \frac{8000}{8000} \ + \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ - \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ + \ 60,34 \ - \ 35,71 \ = \ 1024,63 \ kN \\ P_8 &= + \ \frac{8000}{8000} \ + \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ - \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ = \ +1000 \ + \ 60,34 \ - \ 35,71 \ = \ 1024,63 \ kN \\ P_8 &= + \ \frac{8000}{8000} \ + \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ - \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ + \ 1000 \ + \ 60,34 \ - \ 35,71 \ = \ 1024,63 \ kN \\ P_8 &= + \ \frac{8000}{8000} \ + \ \frac{1000}{4^*1,5^2 + 4^*3,5^2} \ ^* \ 3, 5 \ - \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ + \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ + \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ + \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ + \ \frac{1000}{8^*3,5^2} \ ^* \ 3, 5 \ + \ \frac{1000}$$

Påle	Lasteffekt (kN)	
P_1	975,4	
P_2	1009,9	
P_3	1061,6	
P_4	1096,1	
P_5	904	
P_6	938	
P_7	990,2	
P_8	1024,6	

Den största lasteffekten sker i påle P_4 , därav används den som maximala pålkraften

 $N_d = 1096 \text{ kN}$

Del B)

Material egenskaper

Betong C45/55

•
$$f_{ck} = 45 \text{ MPa} \Rightarrow f_{cd} = \frac{f_{ck}}{\gamma_c} = \frac{45}{1.5} = 30 \text{ MPa}$$

•
$$f_{ctk} = 2.7 \text{ MPa} \Rightarrow f_{ctd} = \frac{f_{ctk}}{\gamma_c} = \frac{2.7}{1.5} = 1.8 \text{ MPa}$$

•
$$E_{cm} = 36 \text{ GPa} \Rightarrow E_{cd} = \frac{E_{dm}}{\gamma_{cE}} = \frac{36}{1.2} = 30 \text{ GPa}$$

Armering K500-CT

•
$$f_{yk} = 500 \text{ MPa} \Rightarrow f_{yd} = \frac{F_{yk}}{\gamma_s} = \frac{500}{1,15} = 435 \text{ MPa}$$

•
$$Es = 200 GPa$$

All data och formel som används ovan är tagen utifrån Betongkonstruktion formelsamling av Asaad Almssad

Vid beräkning av lastkapacitet (strukturella bärförmågan) måste påverkan av slagning vara med i beräkningen

$$f_{cd}^{red} = f_{cd} * M_c = 30 * 0.8 = 24 MP$$

dimensionerande värdet

$$f_{cck}^{red} = f_{cck} * M_c = 45 * 0.8 = 36 MP$$

karakteristiska värdet

Pålens kapacitet (lastkapacitet = strukturell bärförmåga, beräknas genom styvhetsmetoden)

$$EI = K_c * E_{cd} * I_c + K_s * E_s * I_s$$

$$K_c = \frac{K_1 * K_2}{1 + P_{ef}}$$
, där $P_{ef} = 1.8$

$$K_1 = \sqrt{\frac{M_c^* f_{ck}}{20}} = \sqrt{\frac{0.8^* 45}{20}} = 1.342$$

$$K_2 = n * \frac{\lambda}{170} \le 0.20$$

$$\lambda = \frac{l_c}{l_c}$$

 $l_c = \pi * \sqrt{\frac{EI}{P_k}}$, l_c beror på EI, därav blir det en iteration.

 $i = \frac{h}{\sqrt{12}} = \frac{0.270}{\sqrt{12}} = 0.0799$ m, denna formel används för rektangulärt tvärsnitt.

$$n = \frac{N_d}{M_c^* f_{cd}^* A_c} = \frac{1096}{0.8^* (30^* 10^3)^* 0.270^2} = 0,626$$

Använd $K_2 = 0.2$ då det är takvärdet samt I_c beror på EI

$$K_c = \frac{K_1 * K_2}{1 + P_{ef}} = \frac{1,342 * 0,2}{1 + 1,8} = 0,09586$$

Styvkraften (EI-värdet) kan nu beräknas

FI =

$$0,09586 * (30 * 10^{6}) * \frac{0,270^{4}}{12} + 1 * (200 * 10^{6}) * 8 * 113 * 10^{-6} * (0,135 - 0,042)^{2}$$

 \Rightarrow

$$EI = 1273,6 + 1563,74 = 2873,34 \text{ kNm}^2$$

2873,34 är det första styvhetsvärdet som beräknas med $K_2 = 0,2$

Bäddmodul

$$K_d * d = 50 * 20 = 1000 \text{ KPa}$$

$$K_d * d = 50 * C_{ud} \Rightarrow C_{ud} = \frac{K_d * d}{50} = \frac{50 * 20}{50} = 20 \text{ KPa}$$

$$1_{c} = \frac{l_{k}}{\sqrt{2}}$$

$$l_k = \pi * \sqrt[4]{\frac{EI}{K_d*d}} = \pi * \sqrt[4]{\frac{2837,34}{1000}} = 4,077 \text{ m}$$

$$l_c = \frac{4,077}{\sqrt{2}} = 2,88 \text{ m} \implies \lambda = \frac{l_c}{i} \implies \lambda = \frac{2,88}{0,0779} = 36,97$$

$$K_2 = n * \frac{\lambda}{170} \le 0.20 \Rightarrow K_2 = 0,626 * \frac{36.97}{170} = 0.136 \le 0.2$$
 OK!

$$K_c = \frac{1,342 * 0,136}{1+1,8} = 0,0652$$

EI =
$$0,0652 * (30 * 10^6) * \frac{0,270^4}{12} + 1 * (200 * 10^6) * 8 * 113 * 10^{-6} * (0,135 - 0,042)^2$$
 \Rightarrow

$$EI = 866,25 + 1563,74 = 2430 \text{ kNm}^2$$

Ny EI har beräknats till 2430 och därmed kan en ny K_2 beräknas som kan användas för att räkna ut en ny EI

$$l_k = \pi * \sqrt[4]{\frac{EI}{K_d^* d}} = \pi * \sqrt[4]{\frac{2430}{1000}} = 3,92 \text{ m}$$

$$l_c = \frac{3.92}{\sqrt{2}} = 2.77 \text{ m} \implies \lambda = \frac{l_c}{i} \implies \lambda = \frac{2.77}{0.0779} = 35.56$$

$$K_2 = n * \frac{\lambda}{170} \le 0.20 \Rightarrow K_2 = 0,626 * \frac{35,56}{170} = 0.131 \le 0.2$$
 OK!

$$K_c = \frac{K_1 * K_2}{1 + P_{ef}} = \frac{1,342 * 0,131}{1 + 1,8} = 0,0628$$

EI =
$$0,0628 * (30 * 10^6) * \frac{0,270^4}{12} + 1 * (200 * 10^6) * 8 * 113 * 10^{-6} * (0,135 - 0,042)^2$$
 \Rightarrow

$$EI = 834,36 + 1563,74 = 2398,1 \text{ kNm}^2$$

$$l_k = \pi * \sqrt[4]{\frac{EI}{K_d*d}} = \pi * \sqrt[4]{\frac{2398,1}{1000}} = 3,91 \text{ m}$$

$$l_c = \frac{3.91}{\sqrt{2}} = 2.76 \text{ m}$$

Den nyaste l_c är ungefär lika mycket som l_c innan (2,76 \approx 2,77), därav erhålls EI = 2398,1 kNm^2

Beräkning av gränstryck

Plasticering i jorden: $q_d = 6 * d * C_{ud}$

Tillskottsutböjning vid plasticering av omgivande jord

$$y_b = \frac{q_b}{(K_d * d)} = \frac{6 * d * C_{ud}}{50 * C_{ud}} = \frac{6 * 0,270}{50} = 0,0324 \text{ m} \Rightarrow y_b = 32,4 \text{ mm}$$

Pålens knäckningslängd i omgivande jord = l_k

$$l_k = 3.91$$

$$\delta_{\rm o} = \frac{I_k}{150} = \frac{3.91}{150} = 0.02607 \,\text{m} \implies \delta_{\rm o} = 26.07 \,\text{mm}$$

Första iteration

Anta att $y_0 = 10 \text{ mm}$

 $EI = 2398,1 \text{ kNm}^2$

$$K_d^* d = 1000 \text{ KPa}$$

$$\delta_{\rm o} = 26,07 \text{ mm}$$

$$y_b = 32,4 \text{ mm}$$

$$N_d = 1096 \text{ kN}$$

$$\frac{y_b}{y_0} = \frac{32.4}{10} = 3.24 \Rightarrow 1$$
 används istället, då $y_0 < y_b$

$$\alpha(\frac{Y_b}{Y_0}) = arcsin(\frac{Y_b}{Y_0}) = arcsin(1) = 1,57$$

$$\phi(\alpha) = \frac{2}{\pi} * (\alpha + 1, 5 * sin(2 * \alpha) - (\pi - 2 * \alpha) * (sin(\alpha)^{2})$$

$$\phi(1,57) = \frac{2}{\pi} * (4,57 + 1,5 * sin(2 * 1,57) - (\pi - 2 * 1,57) * (sin(1,57)^2) = 1$$

$$P = 2 * \sqrt{K_d * d * EI * \phi(\alpha)} * \left[\frac{1}{1 + \frac{\delta_0}{y_0}} \right] = 2 * \sqrt{1000 * 2398, 1 * 1} * \left[\frac{1}{1 + \frac{26,07}{10}} \right] = 858,653$$

$$\frac{N_d}{P} = \frac{1096}{858,653} = 1,276$$
, För stor differens \Rightarrow Ej godtagbar

Andra iteration

Anta att $y_0 = 15 \text{ mm}$

Allt annat värde är samma

$$\frac{y_b}{y_0} = \frac{32.4}{15} = 2.16 \Rightarrow 1$$
 används istället, då $y_0 < y_b$

$$\alpha(\frac{Y_b}{Y_0}) = arcsin(\frac{Y_b}{Y_0}) = arcsin(1) = 1,57$$

$$\phi(\alpha) = \frac{2}{\pi} * (\alpha + 1, 5 * sin(2 * \alpha) - (\pi - 2 * \alpha) * (sin(\alpha)^{2})$$

$$\phi(1,57) = \frac{2}{\pi} * (4,57 + 1,5 * sin(2 * 1,57) - (\pi - 2 * 1,57) * (sin(1,57)^{2}) = 1$$

$$P = 2 * \sqrt{K_d * d * EI * \phi(\alpha)} * \left[\frac{1}{1 + \frac{\delta_0}{y_0}} \right] = 2 * \sqrt{1000 * 2398, 1 * 1} * \left[\frac{1}{1 + \frac{26,07}{15}} \right] = 1131,18$$

$$\frac{N_d}{P} = \frac{1096}{1131,18} = 0,969$$
, Relativ stor differens \Rightarrow Ej godtagbar

Tredje iteration

Anta att $y_0 = 14 \text{ mm}$

Allt annat värde är samma

$$\frac{y_b}{y_0} = \frac{32.4}{14} = 2.31 \Rightarrow 1 \text{ används istället, då } y_0 < y_b$$

$$\alpha(\frac{Y_b}{Y_0}) = \arcsin(\frac{Y_b}{Y_0}) = \arcsin(1) = 1.57$$

$$\phi(\alpha) = \frac{2}{\pi} * (\alpha + 1.5 * \sin(2 * \alpha) - (\pi - 2 * \alpha) * (\sin(\alpha)^2)$$

$$\phi(1.57) = \frac{2}{\pi} * (4.57 + 1.5 * \sin(2 * 1.57) - (\pi - 2 * 1.57) * (\sin(1.57)^2) = 1$$

$$P = 2 * \sqrt{K_d * d * EI * \phi(\alpha)} * \left[\frac{1}{1 + \frac{\delta_0}{Y_0}}\right] = 2 * \sqrt{1000 * 2398.1 * 1} * \left[\frac{1}{1 + \frac{26.07}{14}}\right] = 1082.11$$

$$\frac{N_d}{P} = \frac{1096}{1082,11} = 1,01$$
, godtagbar, men testar en gång till

Fjärde iteration

Anta att $y_0 = 14,5 \text{ mm}$

Allt annat värde är samma

$$\frac{y_b}{y_0} = \frac{32.4}{14.5} = 2.23 \Rightarrow 1 \text{ används istället, då } y_0 < y_b$$
$$\alpha(\frac{Y_b}{Y_0}) = \arcsin(\frac{Y_b}{Y_0}) = \arcsin(1) = 1.57$$

$$\phi(\alpha) = \frac{2}{\pi} * (\alpha + 1, 5 * sin(2 * \alpha) - (\pi - 2 * \alpha) * (sin(\alpha)^{2})$$

$$\phi(1, 57) = \frac{2}{\pi} * (4, 57 + 1, 5 * sin(2 * 1, 57) - (\pi - 2 * 1, 57) * (sin(1, 57)^{2}) = 1$$

$$P = 2 * \sqrt{K_{d} * d * EI * \phi(\alpha)} * \left[\frac{1}{1 + \frac{\delta_{0}}{y_{0}}} \right] = 2 * \sqrt{1000 * 2398, 1 * 1} * \left[\frac{1}{1 + \frac{26,07}{14,5}} \right] = 1106,95$$

$$\frac{N_d}{P} = \frac{1096}{1106.95} = 0.99$$
, godtagbar, men testar en gång till

Femte Iteration

Anta att $y_0 = 14,25 \text{ mm}$

Allt annat värde är samma

$$\frac{y_b}{y_0} = \frac{32.4}{14.25} = 2.27 \Rightarrow 1 \text{ används istället, då } y_0 < y_b$$

$$\alpha(\frac{Y_b}{Y_0}) = \arcsin(\frac{Y_b}{Y_0}) = \arcsin(1) = 1.57$$

$$\phi(\alpha) = \frac{2}{\pi} * (\alpha + 1.5 * \sin(2 * \alpha) - (\pi - 2 * \alpha) * (\sin(\alpha)^2)$$

$$\phi(1,57) = \frac{2}{\pi} * (4.57 + 1.5 * \sin(2 * 1.57) - (\pi - 2 * 1.57) * (\sin(1.57)^2) = 1$$

$$P = 2 * \sqrt{K_d * d * EI * \phi(\alpha)} * \left[\frac{1}{1 + \frac{\delta_0}{y_0}}\right] = 2 * \sqrt{1000 * 2398.1 * 1} * \left[\frac{1}{1 + \frac{26.07}{14.25}}\right] = 1094.6$$

$$\frac{N_d}{P} = \frac{1096}{1094.6} = 1.00128, \text{ Godtagbar differens}$$

Samband mellan moment och axiallast

$$M = P * \frac{\delta_0 + y_0}{2} = 1094, 6 * \frac{0.02607 + 0.01425}{2} = 22,07 \text{ kNm}$$

Figur 2: 5 M-N kurva för SP2 påle

Pålens maxlast och moment för SP2 befinner sig under den strukturella bärförmågan (blå kurva) i M-N-diagrammet