

数学分析

Mathematical Analysis

作者: Peknt

组织:清疏大学

时间: March 20, 2024

版本: 1.1

作者联系方式: QQ2499032096

前言

参考书

教材

- 数学分析,梅加强
- 数学分析, 徐森林 薛春华
- 数学分析教程,常庚哲 史济怀
- 数学分析, 楼红卫
- 数学分析中的问题和反例, 汪林
- 基本分析讲义: 第一卷 (单变量理论), 李逸习题集
- 数学分析习题演练,周民强
- 数学分析中的典型问题与方法, 裴礼文
- 数学分析习题课讲义,谢惠民

参考资料

- 第十一届清疏大学生数学竞赛班讲义
- 第十届清疏大学生数学竞赛班讲义
- 第九届清疏大学生数学竞赛班讲义
- 南开大学凯淼淼 notes

目录

第一章 实数理论

第二章 数列极限

2.1 数列极限

2.1.1 数列极限的定义

定义 2.1 (数列)

定义在正整数集 \mathbb{N} 上的函数称为数列。设 $f: \mathbb{N} \to \mathbb{R}$ 为数列,记 $a_n = f(n)$,数列 f 常表示为

$$a_1, a_2, \cdots, a_n, \cdots$$

简记为 a_n , a_n 称为该数列的第n 项,有时也称为一般项或通项。

定义 2.2 (数列极限)

设 $\{a_n\}$ 是已知实数列, $a \in \mathbb{R}$

1. 称 $\lim_{n\to\infty} a_n = a$, 如果对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

 $|a_n - a| \le \varepsilon, \forall n \ge N$

2. 称 $\lim a_n = \infty$, 如果对任何 M > 0, 存在 $N \in \mathbb{N}$, 使得

 $|a_n| \ge M, \forall n \ge N$

3. 称 $\lim_{n\to\infty} a_n = +\infty$, 如果对任何 M > 0, 存在 $N \in \mathbb{N}$, 使得

 $a_n > M \ \forall n > N$

4. 称 $\lim_{n\to\infty} a_n = -\infty$, 如果对任何 M>0, 存在 $N\in\mathbb{N}$, 使得

 $a_n \leq -M, \forall n \geq N$

若 $\lim a_n = a \in \mathbb{R}$,则称 $\{a_n\}$ 收敛,否则称 $\{a_n\}$ 发散。

数列可视为实数轴上的一列点。从直观上看,当n越来越大时,若 a_n 越来越靠近(无限靠近)某个点,这个点代表的数就是极限。为了用准确的数学语言来刻画"越来越靠近"和"当n 越来越大",我们要用到上述定义中的 ε 和N,这里的 N 一般是依赖于给定的 ε 的。这种定义极限的方法也称为 ε – N 语言法。

按照定义,我们也可以这样来描述极限: $\lim_{x\to\infty}a_n=\alpha$ 当且仅当任给 $\varepsilon>0$,数列 a_n 最多只有有限项位于区间 $(\alpha-\varepsilon,\alpha+\varepsilon)$ 之外。因此,如果存在 $\varepsilon_0>0$,使得 a_n 中的无限项位于 $(\alpha-\varepsilon,\alpha+\varepsilon)$ 之外,则数列 a_n 不以 α 为极限(这时该数列的极限可能不存在,如果存在则极限也不等于 α)。

也可以用 $\varepsilon - N$ 语言给出数列 a_n 不以 α 为极限的定义: 如果存在 $\varepsilon_0 > 0$,使得任给正数 N,均存在 $n_0 > N$,使得 $|a_{n0} - \alpha| \ge \varepsilon_0$,则 a_n 不以 α 为极限。

显然, 改变数列 $\{a_n\}$ 的有限多项, 或去掉有限多项, 或添加有限多项, 不会改变数列 $\{a_n\}$ 的收敛和发散性。

命题 2.1

如果数列 a_n 收敛,则其极限是唯一的。

证明 设数列 a_n 既收敛于 α ,又收敛于 α' 。按照定义,任给 $\varepsilon > 0$,存在 N_1, N_2 ,使得当 $n > N_1$ 时 $|a_n - \alpha| < \varepsilon$; 当 $n > N_2$ 时 $|a_n - \alpha'| < \varepsilon$ 。因此,当 $n > max\{N_1, N_2\}$ 时,有

$$|\alpha - \alpha'| \le |a_n - \alpha| + |a_n - \alpha'| < 2\varepsilon$$

由 ε 的任意性可知 $\alpha = \alpha'$ 。

定理 2.1 (夹逼定理)

设 $\{a_n\},\{b_n\},\{c_n\}$ 均为数列,且

$$a_n \le b_n \le c_n, \forall n \ge N_0$$

其中 N_0 为正整数。如果

则

$$\lim_{n\to\infty}b_n=\alpha$$

证明

任给 $\varepsilon > 0$, 存在 N_1, N_2 , 当 $n > N_1$ 时

$$\alpha - \varepsilon < a_n < \alpha + \varepsilon$$

当 $n > N_2$ 时

$$\alpha - \varepsilon < c_n < \alpha + \varepsilon$$

取 $N = max\{N_0, N_1, N_2\}$,则当 n > N 时,由 $a_n \le b_n \le c_n$ 可得

$$\alpha - \varepsilon < a_n \le b_n \le c_n < \alpha + \varepsilon$$

这说明 $\{b_n\}$ 收敛到 α 。

注 在应用夹逼原理时,常常用到的事实有:

- 1. a_n 收敛于 0 当且仅当 {| a_n |} 收敛于 0; 如果 { a_n }, C 为常数,则 { Ca_n } 也收敛于 0.
- 2. 如果 $|a_n| \le b_n$,则 $\lim_{n \to \infty} b_n = 0$ 时 $\lim_{n \to \infty} a_n = 0$ 。这可由定义或 $-b_n \le a_n \le b_n$ 推出。
- 3. 如果条件改为 $\lim_{n\to\infty} (c_n a_n) = 0$,不能推出,结论不对,收敛性也不确定。

定理 2.2

- 1. $\mathfrak{F}(a_n \geq b_n (n \geq N_0), \lim_{n \to \infty} b_n = +\infty, \quad \mathfrak{N} \lim_{n \to \infty} a_n = +\infty$
- 2. $\[\lim_{n \to \infty} a_n = +\infty, \lim_{n \to \infty} b_n = +\infty, \] \[\lim_{n \to \infty} (a_n + b_n) = +\infty \]$
- 3. $\lim_{n\to\infty} a_n = a \in \mathbb{R}$, $\lim_{n\to\infty} b_n = \pm \infty$, \mathbb{R} $\lim_{n\to\infty} (a_n + b_n) = \pm \infty$
- 4. $\lim_{n \to \infty} a_n = a > 0$, $\lim_{n \to \infty} b_n = \pm \infty$, $\lim_{n \to \infty} a_n b_n = \pm \infty$
- 5. $\lim_{n \to \infty} a_n = a < 0$, $\lim_{n \to \infty} b_n = \pm \infty$, $\lim_{n \to \infty} a_n b_n = \mp \infty$ 6. $\lim_{n \to \infty} a_n = +\infty \iff \lim_{n \to \infty} (-a_n) = -\infty$
- 7. $\lim_{n \to \infty} a_n = \infty \iff \lim_{n \to \infty} \frac{1}{a_n} = 0$

例题 2.1 证明

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$$

证明 注意到当 $1 \le k \le n$ 时 $(k-1)(n-k) \ge 0$,从而 $k(n-k+1) \ge n$ 。我们就有

$$(n!)^2 = (1 \cdot n)(2 \cdot (n-1)) \cdots (k(n-k+1)) \cdots (n \cdot 1) \ge n^n, \forall n \ge 1$$

因此

$$0 < \frac{1}{\sqrt[n]{n!}} \le \frac{1}{\sqrt{n}}, \forall n \ge 1$$

由夹逼定理知

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$$

例题 2.2 设 a > 0, 证明

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

证明 当 $a \ge 1$ 时,记 $a_n = \sqrt[q]{a} - 1$,则 $a_n \ge 0$,利用二项式展开得

$$a = (1 + a_n)^n = 1 + na_n + \dots + a_n^n > na_n$$

这说明

$$1 \le \sqrt[n]{a} = 1 + a_n < 1 + \frac{a}{n}$$

由夹逼原理知

$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$

当0 < a < 1时,根据刚才的估计有,

$$1 < \sqrt[n]{\frac{1}{a}} < 1 + \frac{1}{na}$$

即

$$1 - \frac{1}{1 + na} < \sqrt[n]{a} < 1$$

由夹逼原理知

$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$

例题 2.3 证明

$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

证明

证法1

记 $a_n = \sqrt[n]{n} - 1$, 当 n > 1 时,

$$n = (1 + a_n)^n = 1 + na_n + \frac{1}{2}n(n-1)a_n^2 + \dots + a_n^n > \frac{1}{2}n(n-1)a_n^2$$

这说明

$$0 < a_n < \sqrt{\frac{2}{n-1}}$$

即

$$1 < \sqrt[n]{n} = 1 + a_n < 1 + \sqrt{\frac{2}{n-1}}$$

由夹逼原理知

$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

证法 2

应用几何-算术平均不等式得到

$$1 \le \sqrt[n]{n} = n^{\frac{1}{n}} = (1 \cdots 1\sqrt{n}\sqrt{n})^{\frac{1}{n}} \le \frac{(n-2) + 2\sqrt{n}}{n}$$
$$= 1 + \frac{2(\sqrt{n} - 1)}{n} < 1 + \frac{2}{\sqrt{n}}$$

于是, $\forall \varepsilon > 0$, 取 $N \in \mathbb{N}$, 使得 $N > \frac{4}{\varepsilon^2}$, 当 n > N 时, 有

$$\left|\sqrt[n]{n}-1\right|<\frac{2}{\sqrt{n}}<\frac{2}{\sqrt{N}}<\varepsilon$$

所以, $\lim_{n\to+\infty} \sqrt[n]{n} = 1$ 。

例题 2.4 设 a,b>0,证明

$$\lim_{n \to \infty} \sqrt[n]{a^n + b^n} = \max\{a, b\}$$

证明 不妨设 $a \ge b$,则

$$a = \sqrt[n]{a^n} \le \sqrt[n]{a^n + b^n} \le \sqrt[n]{2a^n} = \sqrt[n]{2}a$$

由 $\lim_{n\to\infty} \sqrt[6]{2} = 1$ 及夹逼原理知

$$\lim_{n \to \infty} \sqrt[n]{a^n + b^n} = a$$

例题 2.5 设 $\lim_{n\to\infty} a_n = \alpha$,证明

$$\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \alpha$$

证明 先设 $\alpha=0$, 对任意 $\varepsilon>0$, 存在 N_0 , 使得当 $n>N_0$ 时, $|a_n|<\frac{\varepsilon}{2}$ 。令

$$N > max\{N_0, 2\varepsilon^{-1} | a_1 + a_2 + \dots + a_N | \}$$

当n > N 时,有

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} \right| \le \frac{\left| a_1 + a_2 + \dots + a_{N_0} \right|}{n} + \frac{1}{n} \sum_{k=N_0+1}^n |a_k|$$

$$< \frac{\left| a_1 + a_2 + \dots + a_{N_0} \right|}{N} + \frac{1}{n} (n - N_0) \frac{\varepsilon}{2}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

这说明

$$\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = 0$$

一般地,如果有 $\lim_{n\to\infty} a_n = \alpha$,则有 $\lim_{n\to\infty} (a_n - \alpha) = 0$

则有

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (a_k - \alpha) = 0$$

又有

$$\frac{1}{n}\sum_{k=1}^n(a_k-\alpha)=\frac{1}{n}\sum_{k=1}^na_k-\alpha$$

所以

$$\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \alpha$$

例题 2.6 任何实数都是某个有理数列的极限。

 $\overline{\text{tr}}$ 明 设 α 为实数。当 α 为有理数时,令 $a_n = \alpha (n \ge 1)$ 即可。当 α 为无理数时,令 $a_n = [n\alpha] / n$,其中 [x] 表示 不超过x的最大整数。此时 a_n 是有理数。由 α 为无理数可知

$$n\alpha - 1 < [n\alpha] < n\alpha, \forall n \ge 1$$

这说明

$$\alpha - \frac{1}{n} < a_n = \frac{[n\alpha]}{n} < \alpha, \forall n \ge 1$$

由夹逼原理知 $\lim a_n = \alpha$

例题 2.7

证明

1. 由 $0 \le \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n} \to 0 (n \to \infty)$,及夹逼定理,立即可得 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = 0$

2. 当 $a > 0, a_n > 0 (n \in \mathbb{N})$ 时,有

$$\frac{1}{(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n})/n} = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n}$$
再由 $\lim_{n \to \infty} \frac{1}{(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n})/n} = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \frac{1}{\frac{1}{a}} = a = \lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n}$ 和夹逼定理,可得
$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$$

2.1.2 数列极限的基本性质

设数列 a_n 为数列。如果 $\{a_n \mid n=1,2,\cdots\}$ 为有界集合,则称 a_n 是有界数列,此时存在 M,使得 $|a_n| \leq M$ 对每一个正整数 n 均成立。

命题 2.2 (有界性)

设数列 $\{a_n\}$ 收敛,则 $\{a_n\}$ 是有界数列。

证明 设 $\{a_n\}$ 收敛到 α 。取 $\varepsilon=1$,由数列极限定义,存在 N,当 n>N 时 $|a_n-\alpha|\leq 1$ 。因此

$$|a_n| \le |\alpha| + 1, \forall n > N$$

令

$$M = max\{|\alpha| + 1, |a_1|, \cdots, |a_N|\}$$

则 $|a_n| \leq M$ 总成立。

两个发散到无穷的数列有时可以相互比较。

例题 2.8 设 a > 0, b > 1,则 $\lim_{n \to \infty} \frac{n^a}{b^n} = 0$

证明 记 $\beta = b^{\frac{1}{a}} - 1 > 0$, 当 n > 1 时

$$(1+\beta)^n = 1 + n\beta + \frac{1}{2}n(n-1)\beta^2 + \dots + \beta^n > \frac{1}{2}n(n-1)\beta^2$$

因此

$$0 < \frac{n^a}{b^n} = \left[\frac{n}{(1+\beta)^n}\right]^a < \left[\frac{2}{(n-1)\beta^2}\right]^a$$

由夹逼原理知 $\lim_{n\to\infty} \frac{n^a}{b^n} = 0$

例题 **2.9** 设 a > 0,则 $\lim_{n \to \infty} \frac{a^n}{n!} = 0$

证明 取正整数 $N_0 > |a|$, 则当 $n > N_0$ 时, 有

$$\left| \frac{a^n}{n!} \right| = \frac{|a|^{N_0}}{N_0!} \frac{|a|}{N_0 + 1} \cdots \frac{|a|}{n - 1} \frac{|a|}{n} \le \frac{|a|^{N_0}}{N_0!} \frac{|a|}{n}$$

由夹逼原理知 $\lim_{n\to\infty} \frac{a^n}{n!} = 0$

命题 2.3 (绝对值性质)

设数列 $\{a_n\}$ 收敛到 α ,则 $\{|a_n|\}$ 收敛到 $|\alpha|$

证明 设 $\lim_{n\to\infty} a_n = \alpha$, 则任给 $\varepsilon > 0$, 存在 N, 当 n > N 时 $|a_n - \alpha| < \varepsilon$, 此时

$$||a_n| - |\alpha|| \le |a_n - \alpha| < \varepsilon, \forall n > N$$

这说明 $\lim_{n\to\infty} |a_n| = |\alpha|$

命题 2.4 (保序性质)

设数列 $\{a_n\}$ 收敛到 α , $\{b_n\}$ 收敛到 β , 则有

- 1. 如果存在 N_0 , 当 $n > N_0$ 时 $a_n \ge b_n$, 则 $\alpha \ge \beta$
- 2. 反之,如果 $\alpha > \beta$,则存在N,使得当n > N时 $a_n > b_n$

证明 (1) 任给 $\varepsilon > 0$, 存在 N_1, N_2 , 使得

$$|a_n - \alpha| < \varepsilon, \forall n > N_1; |b_n - \beta| < \varepsilon, \forall n > N_2$$

令 $N = max\{N_0, N_1, N_2\}$, 则 n > N 时, 有

$$\alpha - \beta = (\alpha - a_n) + (a_n - b_n) + (b_n - \beta) \ge (\alpha - a_n) + (b_n - \beta) \ge -2\varepsilon$$

由 ε 的任意性可知 $\alpha - \beta \ge 0$, 即 $\alpha \ge \beta$

(2) 设 $\alpha > \beta$, 取 $\varepsilon = (\alpha - \beta)/2$, 则存在 N_1, N_2 , 使得 $|a_n - \alpha| < \varepsilon, \forall n > N_1; |b_n - \beta| < \varepsilon, \forall n > N_2$ 成立。令 $N = \max\{N_1, N_2\}$, 则 n > N 时,有

$$a_n - b_n = (a_n - \alpha) + (\alpha - \beta) + (\beta - b_n) > -\varepsilon + (\alpha - \beta) - \varepsilon = 0$$

推论 2.1

设 $\lim_{n \to \infty} a_n = \alpha$, 如果 $\alpha \neq 0$, 则存在 N, 使得当 n > N 时, 有

$$\frac{1}{2}\left|\alpha\right|<\left|a_{n}\right|<\frac{3}{2}\left|\alpha\right|$$

证明 由极限的绝对值性质,有

$$\frac{1}{2} |\alpha| < \lim_{n \to \infty} |a_n| = |\alpha| < \frac{3}{2} |\alpha|$$

再由极限的保序性质即得欲证结论。

例题 **2.10** 设 q > 1,则 $\lim_{n \to \infty} \frac{\log_q n}{n} = 0$

证明 任给 $\varepsilon > 0$,因为 $\lim_{n \to \infty} \sqrt[q]{n} = 1 < q^{\varepsilon}$ 。由极限的保序性质,存在 N,当 n > N 时, $\sqrt[q]{n} < q^{\varepsilon}$ 。这说明

$$0 < \frac{\log_q n}{n} < \varepsilon, \forall n > N$$

 $\lim_{n\to\infty} \frac{\log_q n}{n} = 0$

命题 2.5 (极限的四则运算)

设数列 $\{a_n\}$ 收敛到 α , $\{b_n\}$ 收敛到 β , 则有

- 1. $\{\lambda a_n + \mu b_n\}$ 收敛到 $\lambda \alpha + \mu \beta$, 其中 λ, μ 为常数;
- 2. $\{a_nb_n\}$ 收敛到 $\alpha\beta$;
- 3. 当 $\beta \neq 0$ 时, $\{a_n/b_n\}$ 收敛到 α/β

证明 (1) 任给 $\varepsilon > 0$, 存在 N_1, N_2 , 使得

$$|a_n - \alpha| < \frac{\varepsilon}{2 \, |\lambda| + 1}, \forall n > N_1; |b_n - \beta| < \frac{\varepsilon}{2 \, |\mu| + 1}, \forall n > N_2$$

令 $N = max\{N_1, N_2\}$, 则 n > N 时, 有

$$\begin{split} (\lambda a_n + \mu b_n) - (\lambda \alpha + \mu \beta)| &\leq |\lambda| |a_n - \alpha| + |\mu| |b_n - \beta| \\ &\leq |\lambda| \frac{\varepsilon}{2|\lambda| + 1} + |\mu| \frac{\varepsilon}{2|\mu| + 1} \\ &< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon \end{split}$$

这说明 $\lim_{n\to\infty} (\lambda a_n + \mu b_n) = \lambda \alpha + \mu \beta$

(2) 由有界性可知,存在 M,使得 $|b_n| \leq M$ 总成立。因此

$$0 \le |a_n b_n - \alpha \beta| = |(a_n - \alpha)b_n + \alpha(b_n - \beta)| \le M |a_n - \alpha| + |\alpha| |b_n - \beta|$$

利用 (1) 和夹逼原理知 $\lim_{n \to \infty} a_n b_n = \alpha \beta$

(3) 根据 (2), 我们只须证明 $\lim_{n\to\infty} 1/b_n = 1/\beta$ 。由保序性质的推论, 存在 N, 当 n > N 时, $|b_n| > |\beta|/2$ 。此时

$$0 \le \left| \frac{1}{b_n} - \frac{1}{\beta} \right| = \frac{|b_n - \beta|}{|b_n| |\beta|} \le \frac{2}{|\beta|^2} |b_n - \beta|$$

由夹逼原理知 $\lim_{n\to\infty} 1/b_n = 1/\beta$

例题 2.11 求数列极限 $\lim_{n\to\infty} \frac{n^2-n}{4n^2-3n+1}$

解

$$\lim_{n \to \infty} \frac{n^2 - n}{4n^2 - 3n + 1} = \lim_{n \to \infty} \frac{1 - \frac{1}{n}}{4 - \frac{3}{n} + \frac{1}{n^2}} = \frac{1 - 0}{4 - 0 - 0} = \frac{1}{4}$$

命题 2.6

- 1. 设 $\{a_n\}$ 收敛到 α ,则它的任何子列 $\{a_{nk}\}$ 也收敛到 α
- 2. 如果 $\{a_n\}$ 的偶子列与奇子列均收敛到 α ,则 $\{a_n\}$ 也收敛到 α

证明

1. 必要性:

对 a 的任何开邻域 U,因 $\lim_{n\to\infty}a_n=\alpha$,故 $\exists N\in\mathbb{N}$,当 n>N 时, $a_n\in U$ 。当 $a_{nk}\geq k>K=N$ 时,有 $a_{nk}\in U$,所以 $\lim_{k\to\infty}a_{nk}=\alpha$ 。

充分性:

令 $n_k = k$, 则 $\{a_n\} = \{a_k\} = \{a_{nk}\}$ 为 $\{a_n\}$ 的一个子列,所以

$$\lim_{n \to \infty} a_n = \lim_{k \to \infty} a_k = \lim_{k \to \infty} a_{nk} = \alpha$$

2. 必要性:

对 a 的任何开邻域 U,因 $\lim_{n\to\infty}a_n=\alpha$,故 $\exists N\in\mathbb{N}$,当 n>N 时,有 $a_n\in U$ 。取 K=N,当 k>K 时,有 2k>2K=2N>N, $2k-1>2K-1=2N-1\geq N$,故

$$a_{2k} \in U, a_{2k-1} \in U$$

从而 $\lim_{k\to\infty} a_{2k} = \alpha$, $\lim_{k\to\infty} a_{2k-1} = \alpha$ 。

充分性:

对 a 的任何开邻域 U,因 $\lim_{k\to\infty}a_{2k}=\alpha$,故 $\exists K_1\in\mathbb{N}$,当 $k>K_1$ 时,有 $a_{2k}\in U$ 。又因为 $\lim_{k\to\infty}a_{2k-1}=\alpha$,故 $\exists K2\in\mathbb{N}$,当 $k>K_2$ 时,有 $a_{2k-1}\in U$ 。于是,当 $n>N=\max\{2K_1,2K_2-1\}$ 时,必有

$$a_n \in U$$

所以

$$\lim_{n\to\infty} a_n = \alpha$$

例题 2.12 研究数列 $\{a_n = \frac{1}{2}[1 + (-1)^n]\}$ 的敛散性

解 因为 $a_{2k}=1$, $a_{2k-1}=0$, 故 $\{a_n\}$ 的偶子列和奇子列均收敛但极限不同, 这说明 $\{a_n\}$ 发散。

例题 2.13 研究数列 $\{\sin n\}$ 的敛散性

解 这个数列是发散的(反证法)设 $\lim_{n \to \infty} \sin n = \alpha$,则

$$2\sin 1\cos n = \sin(n+1) - \sin(n-1) \to \alpha - \alpha = 0 (n \to \infty)$$

因为 $\sin 1 \neq 0$, 上式表明 $\cos n \rightarrow 0 (n \rightarrow \infty)$, 从而

$$\sin 2n = 2\sin n\cos n \to 2\alpha \cdot 0 = 0 (n \to \infty)$$

这说明 $\alpha = 0$, 此时

$$\sin^2 \alpha + \cos^2 \alpha \to 0 + 0 = 0 (n \to \infty)$$

这和恒等式 $\sin^2 x + \cos^2 x = 1$ 相矛盾。

例题 2.14 数列 $\{a_n\}$ 无上界 \iff $\{a_n\}$ 必有子列 $\{a_{n_k}\} \to +\infty (k \to \infty)$

证明 必要性:

设 $\{a_n\}$ 无上界,则 1 不是数列 $\{a_n\}$ 的上界,故 $\exists a_{n_1} > 1$ 。又因 $\max\{2, a_1, \cdots, a_{n_1}\}$ 不是数列 $\{a_n\}$ 的上界,故 $\exists a_{n_2} > \max\{2, a_1, \cdots, a_{n_k}\}$,显然, $n_1 < n_2$ 。以此类推就得到 $a_{n_k} > \max\{k, a_1, \cdots, a_{n_{k-1}}\}$,显然, $n_{k-1} < n_k$ 。所以 $\{a_{n_k}$ 为 $\{a_n\}$ 的一个子列,且 $a_{n_k} > k$ 。由极限定义知, $\lim_{k \to \infty} a_{n_k} = +\infty$ 。

充分性:

设 $\{a_n\}$ 有子列 $\{a_{nk} \to +\infty (k \to \infty), \, \mathbb{N} \ \forall A > 0, \, \exists K = K(A) \in \mathbb{N}, \, \text{使得,} \, \exists \, k > K \, \text{时,} \, a_{n_k} > A, \, \text{所以 } A \, \text{不为数列 } \{a_n\} \, \text{的上界。从 } A \, \text{任取知,数列 } \{a_n\} \, \text{无上界。}$

例题 2.15 设 $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r > 1$,则 $\lim_{n\to\infty} a_n = \infty$

证明

证法

取 $\varepsilon_0>0$, 使得 $r-\varepsilon_0=1+\alpha>1$ 。因为 $\lim_{n\to\infty}\sqrt[n]{|a_n|}=r>1$,故 $\exists N_1\in\mathbb{N}$,当 $n>N_1$ 时,有

$$1 + \alpha = r - \varepsilon_0 < \sqrt[n]{|a_n|}, |a_n| > (1 + \alpha)^n > n\alpha$$

 $\forall A > 0$, $\mathbb{R} N \in \mathbb{N}$, $\notin \mathbb{R} N > \max\{N_1, \frac{A}{\alpha}\}$, $\exists n > N$ \forall \in $\mathbb{R} N$

$$|a_n| > n\alpha > N\alpha \ge A$$

这就证明了 $\lim_{n\to\infty} a_n = \infty$

证法2

由上述, 当 $n > N_1$ 时, 有

$$1 + \alpha = r - \varepsilon_0 < \sqrt[n]{|a_n|} < r + \varepsilon_0$$
$$= (r - \varepsilon_0) + 2\varepsilon_0 = 1 + \alpha + 2\varepsilon_0, (1 + \alpha)^n < |a_n| < (1 + \alpha + 2\varepsilon_0)^n$$

从 $\lim_{n\to\infty}(1+\alpha)^n=+\infty=\lim_{n\to\infty}(1+\alpha+2\varepsilon_0)^n$ 与夹逼定理可知,

$$\lim_{n \to \infty} |a_n| = +\infty \iff \lim_{n \to \infty} a_n = \infty$$

例题 **2.16** 设 $a_n \ge 0 (n \in \mathbb{N})$, $\lim_{n \to \infty} \frac{a_1 + 2a_2 + \cdots + na_n}{\sqrt{n}} = a$, 则

$$\lim_{n \to \infty} \sqrt{n} \cdot \sqrt[n]{a_1 a_2 \cdots a_n} = 0$$

证明

证法 1

因为

$$0 \le \sqrt{n} \sqrt[n]{a_1 a_2 \cdots a_n} = \sqrt{n} \frac{\sqrt[n]{a \cdot 2a \cdots na}}{\sqrt[n]{n!}}$$

$$\le \frac{\sqrt{n}}{\sqrt[n]{n!}} \frac{a_1 + 2a_2 + \cdots + na_n}{n}$$

$$= \frac{1}{\sqrt[n]{n!}} \frac{a_1 + 2a_2 + \cdots + na_n}{\sqrt{n}} \to 0 \cdot a = 0 (n \to \infty)$$

所以,根据夹逼定理,得到

$$\lim_{n\to\infty} \sqrt{n} \cdot \sqrt[n]{a_1 a_2 \cdots a_n} = 0$$

证法2

由
$$k(n-k+1) = (k-1)(n-k) + n \ge n(1 \le k \le n)$$
 推得

$$(n!)^2 = (n \cdot 1)[(n-1) \cdot 2] \cdot \cdot \cdot (1 \cdot n) \ge n \cdot \cdot \cdot n = n^n$$

于是

$$0 \le \sqrt{n} \cdot \sqrt[n]{a_1 a_2 \cdots a_n} = \sqrt[n]{a_1 a_2 \cdots a_n n^{\frac{n}{2}}} \le \sqrt[n]{a_1 a_2 \cdots a_n n!}$$
$$= \sqrt[n]{a_1 \cdot 2a_2 \cdot na_n} \le \frac{a_1 + 2a_2 + \cdots + na_n}{n}$$
$$= \frac{1}{\sqrt{n}} \frac{a_1 + 2a_2 + \cdots + na_n}{\sqrt{n}} \to 0 \cdot a = 0 (n \to \infty)$$

◆ 2.1 练习 ◆

1. 用数列极限证明:

$$\lim_{n \to \infty} (\sqrt[3]{n+2} - \sqrt[3]{n-2}) = 0$$

2. 利用极限定义,证明:

$$\lim_{n\to\infty} \arctan n = \frac{\pi}{2}$$

3. 设 $\lim a_n = a$ 。用 $\varepsilon - N$ 法,A - N 法证明:

$$\lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n^2}=\frac{a}{2}(a)\pm\emptyset,+\infty,-\infty$$

4. 设 $\lim_{n\to\infty} a_n = a, |q| < 1$ 。用 $\varepsilon - N$ 法证明:

$$\lim_{n \to \infty} (a_n + a_{n-1}q + \dots + a_1q^{n-1}) = \frac{a}{1 - q}$$

5. 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ 。用 $\varepsilon - N$ 法证明:

$$\lim_{n \to \infty} \frac{a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0}{n} = ab$$

- 6. 设 $\lim_{n\to\infty} a_n = a, b_n \ge 0 (n \in \mathbb{N}), \lim_{n\to\infty} (b_1 + b_2 + \cdots + b_n) = S$ 。证明: $\lim_{n\to\infty} (a_n b_1 + a_{n-1} b_2 + \cdots + a_1 b_n) = aS$
- 7. 设数列 $\{a_n\}$ 满足 $\lim_{n\to\infty} \frac{a_n}{n} = 0$,证明:

$$\lim_{n\to\infty}\frac{\max(a_1,a_2,\cdots,a_n)}{n}=0$$

- 8. (**Toeplitz** 定理) 设 $n, k \in \mathbb{N}, t_{nk} \ge 0$ 且 $\sum_{k=1}^{n} t_{nk} = 1$, $\lim_{n \to \infty} t_{nk} = 0$ 。如果 $\lim_{n \to \infty} a_n = a$,证明: $\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} a_k = a$ 。
 9. 设 a, b, c 为三个给定的实数,令 $a_0 = a, b_0 = b, c_0 = c$,并归纳定义

$$\begin{cases} a_n = \frac{b_{n-1} + c_{n-1}}{2} \\ b_n = \frac{c_{n-1} + a_{n-1}}{2}, n = 1, 2, \dots \\ c_n = \frac{a_{n-1} + b_{n-1}}{2} \end{cases}$$

证明: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n = \frac{a+b+c}{3}$ 10. 设 a_1, a_2 为实数,令

$$a_n = pa_{n-1} + qa_{n-2}, n = 3, 4, 5, \cdots$$

其中 p > 0, q > 0, p + q = 1。证明:数列 $\{a_n\}$ 收敛,且 $\lim_{n \to \infty} a_n = \frac{a_2 + a_1 q}{1 + q}$ 。

11. 设数列 $\{a_n\}, \{b_n\}, \{c_n\}$ 满足 $a_1 > 0, 4 \le b_n \le 5, 4 \le c_n \le 5$,

$$a_n = \frac{\sqrt{b_n^2 + c_n^2}}{b_n + c_n} a_{n-1}$$

证明: $\lim a_n = 0$

12. 求极限:

$$\lim_{n\to\infty} (n^2 - n + 2)^{\frac{1}{n}}$$

13. (a). 应用数学归纳法或 $\frac{2k-1}{2k} < \frac{2k}{2k+1}$ 证明不等式:

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}$$

(b). 证明: $\lim_{n \to \infty} (\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}) = 0$ 14. 证明: $\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k!}{n!} = 1(1 + \frac{1}{n} \le \frac{\sum_{k=1}^{n} k!}{n!} \le 1 + \frac{2}{n})$ 15. 设 $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$ 。 记

$$S_n = \max\{a_n, b_n\}, T_n = \min\{a_n, b_n\}, n = 1, 2, \cdots$$

证明:

(1)
$$\lim_{n \to \infty} S_n = \max\{a, b\}$$
, (2) $\lim_{n \to \infty} T_n = \min\{a, b\}$

16. 用 p(n) 表示能整除 n 的素数的个数。证明: $\lim_{n\to\infty} \frac{p(n)}{n} = 0$

17. 设

$$x_n = \sum_{k=1}^{n} (\sqrt{1 + \frac{k}{n^2}} - 1)$$

证明: $\lim_{n\to\infty} x_n = \frac{1}{4}$

18. 若 $\lim_{n\to\infty} a_n = a \neq 0$,求证: $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ 。举例说明,当 a = 0 时不能得出上述结论。 19. 如果 $a_0 + a_1 + \dots + a_p = 0$,求证:

$$\lim_{n\to\infty} (a_0\sqrt{n} + a_1\sqrt{n+1} + \dots + a_p\sqrt{n+p}) = 0$$

20. 设数列 {a_n} 满足

$$\lim_{n\to\infty} a_{2n-1} = a, \lim_{n\to\infty} a_{2n} = b$$

证明:

$$\lim_{n\to\infty}\frac{a_1+a_2+\cdots}{n}=\frac{a+b}{2}$$

21. 设数列 $\{x_n\}$ 满足 $\lim_{n\to\infty} (x_n - x_{n-2}) = 0$ 。求证:

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{n}=0$$

22. 设 $\lim_{n\to\infty} a_n = a$ 。证明¹:

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} a_k = a$$

23. 设 $a_0 = 1, a_{n+1} = a_n + \frac{1}{a_n} (n = 1, 2, \dots)$ 。证明: $\lim_{n \to \infty} a_n = +\infty$

24. 设 $\{a_n\}$ 是一个正数数列。如果

$$\lim_{n\to\infty} \frac{a_{n+1} + a_{n+2}}{a_n} = +\infty$$

那么 $\{a_n\}$ 必为无界数列。

问题与反例

回答下列问题:

- 1. 若 $\{a_n\}$, $\{b_n\}$ 都发散,对 $\{a_n + b_n\}$ 与 $\{a_n b_n\}$ 是否收敛能不能作出肯定的结论?
- 2. 若 $\{a_n\}$ 收敛而 $\{b_n\}$ 发散,这时 $\{a_n + b_n\}$ 的敛散性如何?
- 3. 若 $\lim_{n\to\infty} a_n = a \neq 0$ 而 $\{b_n\}$ 发散,这时 $\{a_nb_n\}$ 的敛散性如何?
- 4. 若 $\lim_{n\to\infty} a_n = 0$ 而 $\{bn\}$ 发散,这时 $\{a_nb_n\}$ 的敛散性如何?
- 5. 设 $a_n \le b_n \le c_n$, 且 $\lim_{n \to \infty} (c_n a_n) = 0$, 问 $\{b_n\}$ 是否必收敛?

¹考虑 Toeplitz 定理

2.2 单调数列的极限

一般情况下难以判断数列是否收敛,对于一种特殊情况我们可给出一种数列极限存在性的判别法,它依赖 于实数的一个基本性质,即**确界原理**: 非空的数集如果有上界则必有上确界,如果有下界则必有下确界。

设 $\{a_n\}$ 为数列,如果

$$a_1 \le a_2 \le \cdots \le a_n \le \cdots$$

则称 $\{a_n\}$ 是单调递增数列,当上式中的" \leq "号换成"<"号时称 $\{a_n\}$ 是严格单调递增的;如果

$$a_1 \ge a_2 \ge \cdots \ge a_n \ge \cdots$$

则称 $\{a_n\}$ 是单调递减数列,当上式中的" \geq "号换成">"号时称 $\{a_n\}$ 是严格单调递减的;单调递增数列和单调递减数列统称为单调数列。

定理 2.3 (单调数列的极限)

设 {a_n} 为单调数列

- 1. 如果 $\{a_n\}$ 为单调递增数列,则 $\lim_{n\to\infty} a_n = \sup\{a_k \mid k \geq 1\}$
- 2. 如果 $\{a_n\}$ 为单调递减数列,则 $\lim_{n\to\infty} a_n = \inf\{a_k \mid k \geq 1\}$

证明

(1) 记 $M = \sup\{a_k \mid k \ge 1\}$,先考虑 M 有限的情形。任给 $\varepsilon > 0$,由上确界的刻画,存在 a_N ,使得 $a_N > M - \varepsilon$ 。根据 $\{a_n\}$ 的单调性,当 n > N 时

$$M - \varepsilon < a_N \le a_n \le M < M + \varepsilon$$

由数列极限的定义即知 $\lim a_n = M$ 。

如果 $M=+\infty$,则任给 $\alpha>0$,存在 a_N ,使得 $a_N>\alpha$ 。根据 $\{a_n\}$ 的单调性,当 n>N 时 $a_n\geq a_N>\alpha$,这 说明 $\lim a_n=+\infty$ 。

(2) 可同 (1) 一样类似地证明, 也可考虑 $\{-a_n\}$ 然后直接利用 (1)。

推论 2.2

有界单调数列必收敛。

例题 2.17 设 $a_1 = \sqrt{2}, n \ge 1$ 时 $a_{n+1} = \sqrt{2 + a_n}$ 。研究数列 $\{a_n\}$ 的极限。

解 用数学归纳法易得 $\sqrt{2} \le a_n < 2$ 。因此

$$a_{n+1} = \sqrt{2 + a_n} > \sqrt{2a_n} > a_n$$

这说明 $\{a_n\}$ 是单调递减的有界数列,从而收敛。记其极限为 α ,则 $\alpha \geq \sqrt{2} > 0$ 。我们有

$$2 + \alpha = \lim_{n \to \infty} (2 + a_n) = \lim_{n \to \infty} a_{n+1}^2 = \alpha^2$$

上式的唯一正解为 $\alpha = 2$, 这说明 $\{a_n\}$ 的极限为 2。

例题 2.18 设 $\{x_n\}$ 是一个非负的数列,满足

$$x_{n+1} \le x_n + \frac{1}{n^2} (n = 1, 2, \cdots)$$

证明: $\{x_n\}$ 收敛。

证明 因为 $x_{n+1} \le x_n + \frac{1}{n^2} < x_n + \frac{1}{n-1} - \frac{1}{n}$,所以 $x_{n+1} + \frac{1}{n} < x_n + \frac{1}{n-1}$,所以 $x_n + \frac{1}{n-1}$ 单调递减,又有下界 0,所以 $x_n + \frac{1}{n-1}$ 收敛,所以 $x_n + \frac{1}{n-1}$ 收敛,所以 $x_n + \frac{1}{n-1}$ 收敛,所以 $x_n + \frac{1}{n-1}$ 收敛。

例题 **2.19** 设 $a_1 > 0, n \ge 1$ 时 $a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n})$ 。研究数列 $\{a_n\}$ 的极限。

解由数学归纳法易见 $a_n > 0$ 。进一步有

$$a_{n+1} - 1 = \frac{1}{2}(a_n + \frac{1}{a_n} - 2) = \frac{1}{2}(\sqrt{a_n} - \frac{1}{\sqrt{a_n}})^2 \ge 0$$

因此当 $n \ge 2$ 时,有

$$a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n}) \le \frac{1}{2}(a_n + a_n) = a_n$$

即 $\{a_n\}$ 从 $n \geq 2$ 开始单调递减且有下界,因此收敛。其极限记为 α ,则 $\alpha \geq 1$ 。另一方面,

$$\alpha = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2} (a_n + \frac{1}{a_n}) = \frac{1}{2} (\alpha + \frac{1}{\alpha})$$

上式的唯一正解为 $\alpha=1$,这说明 $\{a_n\}$ 的极限为1。

例题 **2.20** 设 $a_1=1, n\geq 1$ 时 $a_{n+1}=\frac{1}{1+a_n}$ 。研究数列 $\{a_n\}$ 的极限。

解 利用数学归纳法易见 $\frac{1}{2} \le a_n \le 1$,并且 $\{a_{2k-1}\}$ 单调递减, $\{a_{2k}\}$ 单调递增,因此它们都是收敛的,极限分别记为 α,β ,则

$$\beta = \lim_{k \to \infty} a_{2k} = \lim_{k \to \infty} \frac{1}{1 + a_{2k-1}} = \frac{1}{1 + \alpha},$$

$$\alpha = \lim_{k \to \infty} a_{2k+1} = \lim_{k \to \infty} \frac{1}{1 + a_{2k}} = \frac{1}{1 + \beta},$$

从上式解出唯一的正解 $\alpha = \beta = \frac{\sqrt{5}-1}{2}$, 因此 $\{a_n\}$ 的极限为 $\frac{\sqrt{5}-1}{2}$ 。

讨论**重要极限** $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$

考虑 $a_n = (1 + \frac{1}{n})^n, b_n = (1 + \frac{1}{n})^{n+1}, \forall n \geq 1 \ \{a_n\}$ 是严格单调递增的, $\{b_n\}$ 是严格单调递减的。

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} = \sum_{k=0}^{n} C_{n}^{k} \frac{1}{n^{k}}$$

$$= 1 + \sum_{k=1}^{n} \frac{n(n-1)\cdots(n-k+1)}{k!} \frac{1}{n^{k}}$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right)$$

$$< 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{n-1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{n}{n+1}\right)$$

$$= a_{n+1}$$

这说明 $\{a_n\}$ 严格单调递增。另一方面,当 n > 1 时,有

$$0 < a_n < 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!}$$

$$\leq 2 + \sum_{k=2}^{n} \frac{1}{(k-1)k}$$

$$= 2 + \sum_{k=2}^{n} (\frac{1}{k-1} - \frac{1}{k}) = 3 - \frac{1}{n} < 3$$

因此 $\{a_n\}$ 收敛, 其极限记为 e, 称为自然对数的基底。计算表明

$$e = 2.7182818284590$$

另一方面,由

$$\left[\frac{1+\frac{1}{n-1}}{1+\frac{1}{n}}\right]^n = \left(1+\frac{1}{n^2-1}\right)^n > 1+\frac{n}{n^2-1} > 1+\frac{1}{n}$$

得

$$b_{n-1} = (1 + \frac{1}{n-1})^n > (1 + \frac{1}{n})^{n+1} = b_n$$

即 $\{b_n\}$ 严格单调递减,且

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n (1 + \frac{1}{n}) = \lim_{n \to \infty} a_n = e$$

因此有下面的不等式

$$(1+\frac{1}{n})^n < (1+\frac{1}{n+1})^{n+1} < e < (1+\frac{1}{n+1})^{n+2} < (1+\frac{1}{n})^{n+1}, \forall n \ge 1$$

例题 2.21 证明 $\{e_n\}$ 收敛到 e, 其中

$$e_n = 1 + \sum_{k=1}^n \frac{1}{k!}$$

证明 当n>1 时 $a_n< e_n$ 。固定k>1,当n>k 时,有

$$a_n = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n}) \dots (1 - \frac{n-1}{n})$$

> 1 + 1 + $\frac{1}{2!}(1 - \frac{1}{n}) + \dots + \frac{1}{k!}(1 - \frac{1}{n}) \dots (1 - \frac{k-1}{n})$

在上式中令 $n \to \infty$,得

$$e = \lim_{n \to \infty} a_n \ge 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{k!}$$

由于 k 可以任意固定, 我们就有

$$a_n < e_n < e, \forall n > 1$$

根据夹逼原理知 $\lim e_n = e$

我们已经证明,数列 $\{a_n\}$ 与 $\{e_n\}$ 都递增地收敛于 e。从计算来看,使用极限

$$\lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) = e$$

更为有利。由这种近似产生的误差,可以用下面的方法来作估计:由于

$$0 < e_{n+m} - e_n$$

$$= \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots + \frac{1}{(n+m)!}$$

$$= \frac{1}{(n+1)!} \left[1 + \frac{1}{n+2} + \dots + \frac{1}{(n+2) \cdot \dots \cdot (n+m)} \right]$$

$$< \frac{1}{(n+1)!} \left[1 + \frac{1}{n+1} + \left(\frac{1}{n+1}\right)^2 + \dots + \left(\frac{1}{n+1}\right)^{m-1} \right]$$

$$< \frac{1}{(n+1)!} \cdot \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n!n}$$

例题 2.22 自然对数的底 e 是无理数。

证明 用反证法。假设 $e=\frac{p}{q}$, 其中 $p,q\in\mathbb{N}$ 。由于 2< e<3,可见 e 不是正整数, 因此 $q\geq 2$ 。由 $0< e-e_q\leq \frac{1}{q!q}$ 可得

$$0 < q!(e - e_q) \le \frac{1}{1} \le \frac{1}{2}$$

但是

$$q!(e-e_q) = (q-1)!p - q!(1+1+\frac{1}{2!}+\cdots+\frac{1}{q!})$$

是整数,矛盾。

例题 2.23 证明:

- 1. $e(n/e)^n < n! < en(n/e)^n, \forall n > 1$

2. $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}$ 证明 对 $k = 1, 2, \dots, n-1$, 均有

$$\frac{(k+1)^{k+1}}{k^k} \frac{1}{k+1} < e < \frac{(k+1)^{k+1}}{k^k} \frac{1}{k}$$

将这n-1个不等式相乘,得

$$\frac{n^n}{n!} < e^{n-1} < \frac{n^n}{(n-1)!}$$

整理后就是(1)中要证的不等式。(2)可由(1)及夹逼原理得。

以 e 为基底的对数函数记为 $\ln x$, 有

$$k \ln \left(1 + \frac{1}{k}\right) < 1 < (k+1) \ln \left(1 + \frac{1}{k}\right)$$

即

$$\frac{1}{k+1} < \ln\left(1 + \frac{1}{k}\right) < \frac{1}{k}, \text{ } \exists \hat{k} \frac{1}{k+1} < \ln(k+1) - \ln k < \frac{1}{k}$$

对 $k = 1, 2, \dots, n$, 将上述不等式相加, 得

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1} < \ln(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

如果令

$$c_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$$

则 $c_n > \ln(n+1) - \ln n > 0$,且

$$c_{n+1} - c_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0$$

这说明 $\{c_n\}$ 收敛, 其极限记为 γ , 称为 Euler 常数, 计算表明

$$\gamma = 0.5772156649 \cdots$$

例题 2.24 求极限 $\lim_{n\to\infty} (\frac{1}{n+1} + \cdots + \frac{1}{2n})$ 解 利用 c_n 的收敛性,有

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \dots + \frac{1}{2n} \right)$$

$$= \lim_{n \to \infty} \left[\left(1 + \frac{1}{2} + \dots + \frac{1}{2n} \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right]$$

$$= \lim_{n \to \infty} \left[\left(c_{2n} + \ln(2n) \right) - \left(c_n + \ln n \right) \right]$$

$$= \gamma - \gamma + \ln 2$$

我们利用单调数列研究一般的有界数列。设 $\{a_n\}$ 为有界数列,我们要研究它的收敛性。我们不知道 a_n 是否逐渐趋于某个数,一个好的想法就是去考虑 n 很大时 $\{a_n\}$ 中"最大"的项和"最小"的项,看看它们是否相近。当然,"最大"和"最小"的项不一定存在,但我们可以用"上确界"和"下确界"分别代替它们。为此,令

$$\underline{a}_n = \inf\{a_k \mid k \ge n\}, \overline{a}_n = \sup\{a_k \mid k \ge n\}$$

单调数列 $\{\underline{a}_n\}$ 和 $\{\overline{a}_n\}$ 的极限分别称为 $\{a_n\}$ 的**下极限**和上极限,记为

$$\underline{\lim_{n\to\infty}} a_n = \underline{\lim_{n\to\infty}} \underline{a}_n, \, \overline{\underline{\lim_{n\to\infty}}} a_n = \underline{\lim_{n\to\infty}} \overline{a}_n$$

命题 2.7 (上下极限的等价定义)

假定 $\{a_n\}$ 是个实数列,则有

- 1. 设 A 是某个实数,则 $\lim_{n\to\infty} a_n = A$ 的充分必要条件是对任何 $\varepsilon > 0$,存在无穷多个 n,使得 $a_n > A \varepsilon$ 且存在 $N \in \mathbb{N}$,使得 $a_n \le A + \varepsilon, \forall n \ge N$
- 2. $\overline{\lim} a_n = +\infty$ 的充分必要条件是对任何 A > 0,存在 n,使得 $a_n > A$
- 3. 设 A 是某个实数,则 $\lim_{n\to\infty} a_n = A$ 的充分必要条件是对任何 $\varepsilon > 0$,存在无穷多个 n,使得 $a_n < A + \varepsilon$ 且存在 $N \in \mathbb{N}$,使得 $a_n \geq A \varepsilon$, $\forall n \geq N$
- 4. $\lim_{n\to\infty} a_n = -\infty$ 的充分必要条件是对任何 A < 0,存在 n,使得 $a_n < A$

上极限和下极限一般不容易计算,其用处主要体现在下面的定理中。

定理 2.4

设 $\{a_n\}$ 为有界数列,则下列命题等价:

- 1. {a_n} 收敛;
- 2. $\{a_n\}$ 的上极限和下极限相等;
- 3. $\lim_{n \to \infty} (\overline{a}_n \underline{a}_n) = 0$

证明 $(1) \Longrightarrow (2)$: 设 $\{a_n\}$ 收敛到 α 。任给 $\varepsilon > 0$,存在 N,当 n > N 时,有

$$\alpha - \varepsilon < a_n < \alpha + \varepsilon$$

由确界的定义可知, 当n > N 时

$$\alpha - \varepsilon \le \underline{a}_n \le \overline{a}_n \le \alpha + \varepsilon$$

这说明 $\{\underline{a}_n\}$ 和 $\{\overline{a}_n\}$ 均收敛到 α

 $(2) \Longrightarrow (1):$ 利用 $\underline{a}_n \leq a_n \leq \overline{a}_n$ 和夹逼原理即可。(2) 和(3) 的等价是显然的。

一般来说,上极限和下极限不再满足四则运算的等式,不过保序性任然成立。

命题 2.8

设 $\{a_n\}$, $\{b_n\}$ 为有界数列。

1. 如果存在 N_0 , 当 $n > N_0$ 时 $a_n \ge b_n$, 则

$$\underline{\lim}_{n\to\infty} a_n \geq \underline{\lim}_{n\to\infty} b_n, \overline{\lim}_{n\to\infty} a_n \geq \overline{\lim}_{n\to\infty} b_n$$

2. $\overline{\lim}_{n \to \infty} (a_n + b_n) \le \overline{\lim}_{n \to \infty} a_n + \overline{\lim}_{n \to \infty} b_n$

证明 (1) 当 $n > N_0$ 时

$$\underline{b}_n \le b_k \le a_k, \forall k \ge n$$

关于k取下确界,得

$$\underline{b}_n \leq \underline{a}_n, \forall n > N_0$$

由极限的保序性即得

$$\underline{\lim}_{n\to\infty} b_n \leq \underline{\lim}_{n\to\infty} a_n$$

上极限的情形可类似证明。

(2) 利用不等式 $a_n + b_n \leq \overline{a}_n + \overline{b}_n$ 以及极限的保序性即可。

考虑从另一角度引入上下极限, 并证明等价。

考察任意给定的数列 $\{a_n\}$ 。如果它收敛于一个有穷的数列,那么它的任一子列都收敛于这个极限。如果它不收敛于一个有穷的极限,但是有界,按照 Bolzano-Weierstrass 定理,从中可以找出一个收敛的子列。如果 $\{a_n\}$ 无界,那么总可以找到一个子列趋向于 $+\infty$ 或 $-\infty$ 。

我们把数列 $\{a_n\}$ 的收敛子列 $\{a_{k_n}\}$ 的极限称为 $\{a_n\}$ 的一个极限点。对收敛数列而言,极限点只有一个,即它的极限。对发散数列而言,如果它有界,则它可以有若干个甚至无穷多个极限点;如果它无界,则除了有限的极限点外,他还可以以 $+\infty$ 或 $-\infty$ 为其极限点。

定义 2.3

设 $\{a_n\}$ 是一个数列, E是由 $\{a_n\}$ 的全部极限点构成的集合。记

$$a^* = \sup E, a_* = \inf E$$

则 a^* 和 a_* 分别称为数列 $\{a_n\}$ 的上极限和下极限,记为

$$a^* = \lim_{n \to \infty} \sup a_n, a_* = \lim_{n \to \infty} \inf a_n$$

定理 2.5

设 $\{a_n\}$ 为一数列, $E 与 a^*$ 的意义已在定义 2.3 中描述。那么:

- 1. $a^* \in E$
- 2. 若 $x > a^*$,则存在 $N \in \mathbb{N}^*$,使得当 $n \ge N$ 时,有 $a_n < x$
- 3. a* 是满足前两条性质的唯一的数

定理 2.6

$$\lim_{n \to \infty} \underline{a}_n = a_*, \lim_{n \to \infty} \overline{a}_n = a^*$$

证明 我们只证明 $\lim_{n\to\infty} \overline{a}_n = a^*$, $\lim_{n\to\infty} \underline{a}_n = a_*$ 的证明是类似的。

(1)a* 是一个有限数。

任取 $l \in E$,则有 $\{a_n\}$ 的子列 $\{a_{i_k}\}$,使得 $\lim_{k\to\infty}a_{i_k}=l$ 。对任意给定的 n,选取 $k\geq n$,于是 $i_k\geq k\geq n$,因而

$$a_{i_k} \leq \sup\{a_n, a_{n+1}, \cdots\} = \overline{a}_n$$

令 $k\to\infty$,即得 $l\le\overline{a}_n$ 。由于 l 是 E 中的任意数,则有 $a^*\le\overline{a}_n$ 。这样 $\{\overline{a}_n\}$ 是一个递减的有下界的数列,因而有极限,故得

$$a^* \le \lim_{n \to \infty} \overline{a}_n$$

对任意的 $\varepsilon > 0$,存在 $n_0 \in \mathbb{N}^*$,当 $n \ge n_0$ 时, $a_n \le a^* + \varepsilon$,因此 $\overline{a}_n \le a^* + \varepsilon$,从而得 $\lim_{n \to \infty} \overline{a}_n \le a^* + \varepsilon$ 。 再令 $\varepsilon \to 0$,得

$$\lim_{n\to\infty} \overline{a}_n \le a^*$$

综上, $\lim_{n\to\infty} \overline{a}_n = a^*$

(2) 设 $a^* = +\infty$,则有一个子列以 $+\infty$ 为极限,于是

$$\overline{a}_n = \sup\{a_n, a_{n+1}, \cdots\} = +\infty$$

故 $\lim_{n\to\infty} \overline{a}_n = a^*$

(3) 设 $a^* = -\infty$,则对任意的 A > 0,存在 $n_0 \in \mathbb{N}$,当 $n \ge n_0$ 时, $a_n < -A$,因而

$$\overline{a}_n \leq -A$$

,这正是 $\lim_{n\to\infty} \overline{a}_n = -\infty$

例题 2.25 证明下列不等式:

$$\lim_{n \to \infty} \inf a_n + \lim_{n \to \infty} \inf b_n \le \lim_{n \to \infty} \inf (a_n + b_n) \le \lim_{n \to \infty} \inf a_n + \lim_{n \to \infty} \sup b_n$$

$$\lim_{n \to \infty} \inf a_n + \lim_{n \to \infty} \sup b_n \le \lim_{n \to \infty} \sup (a_n + b_n) \le \lim_{n \to \infty} \sup a_n + \lim_{n \to \infty} \sup b_n$$

证明

我们只证明第一个不等式, 第二个类似。

我们只需证明

$$\inf_{k \ge n} a_k + \inf_{k \ge n} b_k \le \inf_{k \ge n} (a_k + b_k) \le \inf_{k \ge n} a_k + \sup_{k \ge n} b_k$$

当 $k \ge n$ 时

$$\inf_{k \ge n} a_k \le a_k, \inf_{k \ge n} b_k \le b_k$$

当n 固定时, $\inf_{k\geq n} a_k + \inf_{k\geq n} b_k$ 是 $\{a_k + b_k\}$ 的一个下界, 因而

$$\inf_{k \ge n} a_k + \inf_{k \ge n} b_k \le \inf_{k \ge n} (a_k + b_k)$$

记 $c_k = a_k + b_k$,则 $a_k = c_k - b_k$,于是

$$\inf_{k \ge n} a_k = \inf_{k \ge n} (c_k - b_k) \ge \inf_{k \ge n} c_k + \inf_{k \ge n} (-b_k) = \inf_{k \ge n} c_k - \sup_{k > n} b_k$$

由此即得

$$\inf_{k \ge n} (a_k + b_k) \le \inf_{k \ge n} a_k + \sup_{k > n} b_k$$

例题 2.26 设 $a_n > 0$, $\lim_{n \to \infty} a_n = \alpha$ 。 记 $b_n = (a_1 a_2 \cdots a_n)^{\frac{1}{n}}$,则 $\lim_{n \to \infty} b_n = \alpha$ 证明 由题设, 任取 $\varepsilon > 0$, 存在 N, 当 n > N 时 $0 < a_n < \alpha + \varepsilon$ 。此时有

$$b_n \le (a_1 a_2 \cdots a_N)^{\frac{1}{n}} (\alpha + \varepsilon)^{\frac{n-N}{n}}$$

 $\diamondsuit n \to \infty$, 得 $\overline{\lim}_{n \to \infty} b_n \le \alpha + \varepsilon$ 。同理可证 $\underline{\lim}_{n \to \infty} b_n \ge \alpha - \varepsilon$ 。由 ε 的任意性可知

$$\overline{\lim}_{n\to\infty}b_n=\alpha=\underline{\lim}_{n\to\infty}b_n$$

这说明 $\{b_n\}$ 收敛到 α 。

例题 2.27 设 $b_n > 0$, $\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = \alpha$, 则 $\lim_{n \to \infty} b_n^{\frac{1}{n}} = \alpha$ 证明 令 $a_1 = b_1, n \ge 1$ 时 $a_{n+1} = \frac{b_{n+1}}{b_n}$ 。由题设, $\{a_n\}$ 收敛到 α 。由上例可得

$$\lim_{n\to\infty}b_n^{\frac{1}{n}}=\lim_{n\to\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}}=\alpha$$

例题 2.28 设数列 $\{a_n\}$ 满足以下条件:

$$a_n \geq 0, a_{m+n} \leq a_m + a_n, \forall m, n \geq 1$$

证明数列 $\{a_n/n\}$ 收敛。

证明 由归纳法易见 $0 \le a_n \le na_1$,因此 $\{a_n/n\}$ 为有界数列。设 k 是固定的正整数,当 $n \ge k$ 时,n 可以表示为

$$n=mk+l, 0 \leq l \leq k-1$$

因此

$$a_n \le a_{mk} + a_l \le ma_k + la_1 \le \frac{n}{k} a_k + (k-1)a_1$$

即

$$\frac{a_n}{n} \le \frac{a_k}{k} + \frac{k-1}{n} a_1, \forall n \ge k$$

$$\overline{\lim_{n \to \infty}} \frac{a_n}{n} \le \overline{\lim_{n \to \infty}} \frac{a_k}{k} + \overline{\lim_{n \to \infty}} \frac{k - 1}{n} a_1 = \frac{a_k}{k}$$

再在上式中令 $k \to \infty$,得

$$\overline{\lim_{n\to\infty}} \frac{a_n}{n} \le \underline{\lim_{k\to\infty}} \frac{a_k}{k}$$

这说明 $\{a_n/n\}$ 的上下极限一定是相等的,从而收敛。

定义 2.4 (一致收敛)

设 A 是任意一个非空集合,我们称函数列 $\{f_n(x)\}_{n=1}^\infty$ 关于 $x\in A$ 一致收敛到函数 f(x),如果对任何 $\varepsilon>0$, 存在 $N ∈ \mathbb{N}$, 使得

$$|f_n(x) - f(x)| < \varepsilon, \forall n \ge N, x \in A$$

函数列 $\lim_{n\to\infty} f_n(x) = f(x)$ 是一致收敛的可记做 $f_n \Rightarrow f$

 $\dot{\mathbf{L}}$ 因为对每个 x 来说, $f_n(x)$ 都是一个序列,给定 ε 之后,需要的 N 也会不同,而所谓的一致收敛就是需要 N相同

定理 2.7 (函数列一致收敛的充要条件)

函数列 $\lim_{x \to \infty} f_n(x) = f(x)$ 一致收敛的充要条件是

$$\lim_{n \to \infty} \sup_{x} |f_n(x) - f(x)| = 0$$

例题 2.29

- 1. 证明 $\lim_{n \to \infty} x^n, x \in [0, \frac{1}{2}]$ 是一致收敛的
 2. 证明 $\lim_{n \to \infty} x^n, x \in [0, 1)$ 不是一致收敛的

证明 由 $\lim_{n\to\infty} \sup_{x\in[0,\frac{1}{2}]} |x^n-0| = \lim_{n\to\infty} (\frac{1}{2})^n = 0$, $\lim_{n\to\infty} \sup_{x\in[0,1)} |x^n-0| \neq 0$

◆ 2.2 练习 ◆

1. 设 $\{x_n\}$ 是一个非负的数列,满足

$$x_{n+1} \le x_n + \frac{1}{n^2} (n = 1, 2, \cdots)$$

证明: $\{x_n\}$ 收敛。

2. 设 c > 0, $a_1 = \frac{c}{2} + \frac{a_n^2}{2} (n = 1, 2, \dots)$, 证明:

$$\lim_{n \to \infty} a_n = \begin{cases} 1 - \sqrt{1 - c}, 0 < c \le 1 \\ +\infty, c > 1 \end{cases}$$

3. 设数列 {*u_n*} 定义如下:

$$u_1 = b$$

 $u_{n+1} = u_n^2 + (1 - 2a)u_n + a^2(n = 1, 2, \cdots)$

问 a, b 为何值时 $\{u_n\}$ 收敛? 极限值是什么?

4. 设 $A > 0, 0 < y_0 < A^{-1}$,且

$$y_{n+1} = y_n(2 - Ay_n)(n = 0, 1, \cdots)$$

证明: $\lim y_n = A^{-1}$

5. 设数列 $\{a_n\}$ 由下式定义:

$$a_n = 2^{n-1} - 3a_{n-1}(n = 1, 2, \cdots)$$

求 a_0 所有可能的值, 使得 $\{a_n\}$ 是严格递增的。

6. 求证:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{\theta_n}{n!n}$$

其中 $\theta_n \in (\frac{n}{n+1}, 1)$ 。

7. 求极限 $\lim_{n\to\infty} (n!e - [n!e])$ 。

8. 求证: 当 $n \ge 3$ 时, 有不等式

$$\sum_{k=1}^{n} \frac{1}{k!} - \frac{3}{2n} < (1 + \frac{1}{n})^n < \sum_{k=1}^{n} \frac{1}{k!}$$

考虑如下引理: 设 $n \ge 2$, 实数 a_1, a_2, \dots, a_n 都大于-1, 并且它们有着相同的符号。

$$(1+a_1)(1+a_2)\cdots(1+a_n) > 1+a_1+a_2+\cdots+a_n$$

9. 求证等式:

$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} = \ln 2\sqrt{n} + \frac{\gamma}{2} + \varepsilon_n$$

其中 γ 是 Euler 常数, $\lim_{n\to\infty} \varepsilon_n = 0$

10. 求极限

$$\lim_{n \to \infty} (1 + \frac{1}{n^2})(1 + \frac{2}{n^2}) \cdots (1 + \frac{n}{n^2})$$

11. 记 $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} (n = 1, 2, \cdots)$,用 k_n 表示使得 $H_k \ge n$ 的最小下标。证明:

$$\lim_{n \to \infty} \frac{k_{n+1}}{k_n} = e$$

12. 设 $s_n = 1 + 2^2 + 3^3 + \cdots + n^n$ 。求证: 当 $n \ge 3$ 时,有

$$n^{n} \left(1 + \frac{1}{4(n-1)} < s_{n} < n^{n} \left(1 + \frac{2}{e(n-1)}\right)$$

13. 设 $a_n \ge 0 (n \in \mathbb{N}^*)$ 。求证: $\lim_{n\to\infty} \sup \sqrt[q]{a_n} \le 1$ 的充分必要条件是,对任意的 l > 1,有

$$\lim_{n\to\infty}\frac{a_n}{l^n}=0$$

14. 设数列 $\{x_n\}$ 有界,且 $\lim_{n\to\infty} (x_{n+1}-x_n)=0$,分别记 $\{x_n\}$ 的上下极限为 L 和 l。证明: $\{x_n\}$ 的极限点充满区间 [l,L]。

15. 设 $a_n > 0$ 。求证:

$$\lim_{n \to \infty} \sup n(\frac{1 + a_{n+1}}{a_n} - 1) \ge 1$$

2.3 Cauchy 准则

一般的有界数列可以用上下极限来处理,其基本想法就是去观察某些项之后的"最大"项和"最小"项,看看二者之间的差异是否趋于零。因为上下极限并不好算,我们不妨换一种思路,即可以比较某些项之后一般项之间的差异,看看这些差异是否趋于零:如果 a_n 逐渐趋于某个数,则当 n 很大时 a_n 之间的差别应该很小。

定义 2.5 (Cauchy 数列)

设 a_n 为数列,如果任给 $\varepsilon > 0$,均存在 $N = N(\varepsilon)$,当 m,n > N 时,有

$$|a_m - a_n| < \varepsilon$$

则称 $\{a_n\}$ 为 Cauchy 数列或基本列。

例题 2.30 对于 $n \ge 1$, 定义

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

则 $\{a_n\}$ 不是 Cauchy 数列。

证明 对于 $n \ge 1$, 我们有

$$a_{2n} - a_n = \frac{1}{n+1} + \dots + \frac{1}{2n}$$

 $\geq \frac{1}{2n} + \dots + \frac{1}{2n} = n\frac{1}{2n} = \frac{1}{2}$

由定义即知 $\{a_n\}$ 不是 Cauchy 数列。

例题 2.31 设 $\{a_n\}$ 为数列,如果存在常数 $C \ge 0, 0 \le q < 1$,以及 N_0 ,使得当 $n > N_0$ 时,有

$$|a_{n+1} - a_n| \le Cq^n$$

则 $\{a_n\}$ 为 Cauchy 数列。

证明 当 $m > n > N_0$ 时,有

$$|a_m - a_n| \le |a_m - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+1} - a_n|$$

$$\le Cq^{m-1} + Cq^{m-2} + \dots + Cq^n$$

$$= Cq^n (q^{m-n-1} + q^{m-n-2} + \dots + q + 1)$$

$$= Cq^n \frac{1 - q^{m-n}}{1 - q} \le \frac{C}{1 - q} q^n$$

上式对 m=n 当然也成立。由于 $\lim_{\substack{n\to\infty\\n\to\infty}}q^n=0$,故任给 $\varepsilon>0$,存在 N_1 ,使得当 $n>N_1$ 时 $\frac{C}{1-q}q^n<\varepsilon$ 。于是,当 $m,n>N=\max\{N_0,N_1\}$ 时(不妨设 $m\geq n$),有

$$|a_m - a_n| \le \frac{C}{1 - q} q^n < \varepsilon$$

这说明 $\{a_n\}$ 为 Cauchy 数列。

命题 2.9

Cauchy 数列必为有界数列。

证明 按定义,取 $\varepsilon=1$,则存在N,当m,n>N时| a_m-a_n |<1。特别地,当n>N时

$$|a_n| \le |a_n - a_{N+1}| + |a_{N+1}| < 1 + |a_{N+1}|$$

令 $M = max\{1 + |a_1|, \dots, 1 + |a_{N+1}|\}$, 则 $|a_n| \le M$ 总成立。

定理 2.8 (Cauchy 准则)

数列 $\{a_n\}$ 收敛当且仅当它是 Cauchy 数列。

证明 必要性: 设 $\{a_n\}$ 收敛到 α 。任给 $\varepsilon>0$,存在 N,当 n>N 时 $|a_n-\alpha|<\varepsilon/2$ 。因此,当 m,n>N 时,有 $|a_m-a_n|\leq |a_m-\alpha|+|\alpha-a_n|<\frac{1}{2}\varepsilon+\frac{1}{2}\varepsilon=\varepsilon$

这说明 $\{a_n\}$ 为 Cauchy 数列。

充分性:设 $\{a_n\}$ 为 Cauchy 数列,则 $\{a_n\}$ 是有界数列。于是可以研究其上下极限。根据 Cauchy 数列的定义,任给 $\varepsilon>0$,存在N,当m,n>N时

$$-\varepsilon < a_m - a_n < \varepsilon$$

在上式子中暂时固定 n>N,对 $\{a_n\}$ 取上极限,利用上极限的保序性可得

$$-\varepsilon \le \overline{\lim}_{m \to \infty} a_m - a_n \le \varepsilon$$

由数列极限的定义即可看出 {an} 收敛。

还可以证明一个引理和一个定理来证明充分性

Lemma 从任一数列中必可取出一个单调子列。

Proof

case1. 在数列中有无穷多项大于它们之后的所有数,那么依次取这些数,则可以得到一个严格递减的数列。

case 2. 在数列中只存在有限项大于它们之后的所有数,那么取这些数最后一项的后一项,记作 a_{i_1} 。那么在 a_{i_1} 后必有一项 $a_{i_2}(i_2>i_1)$ 满足 $a_{i_1}< a_{i_2}$;如此进行,得到子列 $\{a_{i_n}$,它显然是一个递增的子列。

Theorem: 从任何有界数列中必可选出一个收敛的子列。此定理也称作 Bolzano - Weierstrass 定理。

Proof

设 $\{a_n\}$ 是一个有界的数列。根据引理,从中可以取出一个单调子列 $\{a_{i_n}\}$,这个子列有界,所以 $\{a_{i_n}\}$ 是一个收敛数列。

下面我们利用 Bolzano - Weierstrass 定理来证明充分性。

设 $\{a_n\}$ 是一个基本列,则 $\{a_n\}$ 有界,由 Bolzano-Weierstrass 定理,从有界数列 $\{a_n\}$ 中可选出一个收敛 子列 $\{a_{i_n}\}$,设 $a_{i_n}\to a(n\to\infty)$ 。 我们来证明 a 也是数列 $\{a_n\}$ 的极限。由于 $\{a_n\}$ 是基本列,对任给的 $\varepsilon>0$,存在一个 $N_1\in\mathbb{N}$,使得当 $m,n>N_1$ 时,都有 $|a_m-a_n|<\varepsilon/2$ 。又因 $\lim_{n\to\infty}a_{i_n}=a$,所以对任给的 $\varepsilon>0$,存在 $N_2\in\mathbb{N}$,当 $k>N_2$ 时, $|a_{i_n}-a|<\varepsilon/2$ 。现取 $N=\max(N_1,N_2)$,当 n>N 时,有

$$|a_n - a| \le |a_n - a_{i_n}| + |a_{i_n} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

这说明 $\lim_{n\to\infty} a_n = a$ 。

例题 **2.32** 设 $a_0 > 0, n \ge 0$ 时 $a_{n+1} = \frac{1}{1+a_n}$ 。研究 $\{a_n\}$ 的敛散性。

解利用归纳法易见 $a_n > 0$ 总成立。于是,当 $n \geq 0$ 时 $0 < a_{n+1} = \frac{1}{1+a_n} < 1$; 进一步,当 $n \geq 1$ 时 $1 > a_{n+1} = \frac{1}{1+a_n} > \frac{1}{2}$ 。 这说明,当 $n \geq 3$ 时

$$|a_{n+1} - a_n| = \left| \frac{1}{1 + a_n} - \frac{1}{1 + a_{n-1}} \right| = \frac{|a_n - a_{n-1}|}{(1 + a_n)(1 + a_{n-1})}$$

$$\leq \frac{4}{9} |a_n - a_{n-1}|$$

不难看出 $\{a_n\}$ 是 Cauchy 数列。

◆ 2.3 练习 ◆

1. (a). 数列 {a_n} 满足

$$\left| a_{n+p} - a_n \right| \le \frac{p}{n}$$

且对一切 $n, p \in \mathbb{N}^*$ 成立。问 $\{a_n\}$ 是不是基本列?

- (b). 当 $\left|a_{n+p} a_n\right| \le \frac{p}{n^2}$ 时,上述结论又如何?
- 2. 设 $a_n \in [a,b] (n \in \mathbb{N}^*)$ 。证明:如果 $\{a_n\}$ 发散,则 $\{a_n\}$ 必有两个子列收敛于不同的数。

2.4 Stolz 公式

引理 2.1

当 $1 \le k \le n$ 时设 $b_k > 0$ 且 $m \le \frac{a_k}{b_k} \le M$,则

$$m \le \frac{a_1 + a_2 + \dots + a_n}{b_1 + b_2 + \dots + b_n} \le M$$

证明 由已知条件可知,当 $1 \le k \le n$ 时 $mb_k \le a_k \le Mb_k$,关于k 从 1 到 n 求和可得

$$m(b_1 + b_2 + \dots + b_n) \le (a_1 + a_2 + \dots + a_n) \le M(b_1 + b_2 + \dots + b_n)$$

此即欲证不等式。

定理 2.9 (Stolz 公式之一)

设 $\{x_n\}$, $\{y_n\}$ 为数列,且 $\{y_n\}$ 严格单调地趋于 $+\infty$ 。如果

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \alpha$$

其中 α 为实数或 $\pm \infty$,则 $\lim_{n \to \infty} \frac{x_n}{y_n} = \alpha$ 也成立,常记为 $\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_{n-1}x_{n-1}}{y_{n-1}y_{n-1}}$

证明 分情况讨论。

 $(1)\alpha \in \mathbb{R}$ 。先设 $\alpha = 0$ 。此时,任给 ε ,存在N,当n > N时

$$-\varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < \varepsilon$$

利用 $\{y_n\}$ 的单调性和上面的引理, 当 n > N 时, 得到

$$-\varepsilon < \frac{x_n - x_N}{y_n - y_N} = \frac{(x_n - x_{n-1}) + \dots + (x_{N+1} - x_N)}{(x_n - x_{n-1}) + \dots + (y_{N+1} - y_N)} < \varepsilon$$

整理以后可得

$$\frac{x_N + \varepsilon y_N}{y_n} - \varepsilon < \frac{x_n}{y_n} < \varepsilon + \frac{x_N - \varepsilon y_N}{y_n}$$

由 $\lim_{n\to\infty} y_n = +\infty$ 以及上式可知,当 n 充分大时, $-2\varepsilon < \frac{x_n}{y_n} < 2\varepsilon$,因此 $\lim_{n\to\infty} \frac{x_n}{y_n} = 0$ 。 一般地,记 $\tilde{x}_n = x_n - \alpha y_n$,则

$$\lim_{n \to \infty} \frac{\tilde{x}_n - \tilde{x}_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - \alpha = 0$$

这说明 $\lim_{n\to\infty} \tilde{x}_n/y_n = 0$,从而 $\lim_{n\to\infty} x_n/y_n = \alpha$

$$n\to\infty$$
 $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ 时 $n\to\infty$ 时 $n\to\infty$ $n\to\infty$ 时 $n\to\infty$ $n\to\infty$ 时 $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$ $n\to\infty$

$$x_n - x_{n-1} > y_n - y_{n-1} > 0$$

即 n > N 时 $\{x_n\}$ 也是严格单调递增的,且

$$x_n - x_N = (x_n - x_{n-1}) + \dots + (x_{N+1} - x_N)$$

> $(y_n - y_{n-1}) + \dots + (y_{N+1} - y_N) = y_n - y_N$

由 $\lim_{n\to\infty} y_n = +\infty$ 可知 $\lim_{n\to\infty} x_n = +\infty$ 。可得 $\lim_{n\to\infty} \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = 0$ 。应用 (1) 的结论可得 $\lim_{n\to\infty} y_n/x_n = 0$,于是 $\lim_{n\to\infty} x_n/y_n = +\infty$

 $(3)\alpha = -\infty$ 。这时只要将 x_n 换成 $-x_n$,然后应用(2)的结论即可。

注 若 $\alpha = \infty$, 定理不成立, 考虑反例: $a_n = (-1)^{n-1}n$, 显然 $\lim_{n \to \infty} a_n = \infty$, 而

$$\lim_{k \to \infty} \frac{a_1 + a_2 + \dots + a_{2k}}{2k} = \lim_{k \to \infty} \frac{(1-2) + \dots + (2k-1-2k)}{2k} = \lim_{k \to \infty} \frac{-k}{2k} = -\frac{1}{2} \neq \infty$$

例题 2.33 设 $\lim_{n\to\infty} a_n = \alpha$,则

$$\lim_{n \to \infty} \frac{1}{n^2} (a_1 + 2a_2 + \dots + na_n) = \frac{1}{2} \alpha$$

证明 n^2 关于 n 单调递增趋于 $+\infty$, 由 Stolz 公式,得

$$\lim_{n \to \infty} \frac{1}{n^2} (a_1 + 2a_2 + \dots + na_n) = \lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2}$$

$$= \lim_{n \to \infty} \frac{na_n}{n^2 - (n-1)^2}$$

$$= \lim_{n \to \infty} \frac{n}{2n-1} a_n = \frac{1}{2} \alpha$$

例题 2.34 设 k 为正整数,则

$$\lim_{n \to \infty} n(\frac{1^k + 2^k + \dots + n^k}{n^{k+1}} - \frac{1}{k+1}) = \frac{1}{2}$$

证明 用 Stolz 公式有

$$\lim_{n \to \infty} n \left(\frac{1^k + 2^k + \dots + n^k}{n^{k+1}} - \frac{1}{k+1} \right) = \lim_{n \to \infty} \frac{(k+1)(1^k + 2^k + \dots + n^k) - n^{k+1}}{(k+1)n^k}$$

$$= \lim_{n \to \infty} \frac{(k+1)n^k - [n^{k+1} - (n-1)^{k+1}]}{(k+1)[n^k - (n-1)^k]}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{2}k(k+1)n^{k-1} + \dots}{(k+1)kn^{k-1} + \dots} = \frac{1}{2}$$

定理 2.10 (Stolz 公式之二)

设数列 $\{y_n\}$ 严格单调递减趋于 0,数列 $\{x_n\}$ 也收敛到 0. 如果

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \alpha$$

其中 α 为实数或 $\pm \infty$, 则 $\lim_{n\to\infty} \frac{x_n}{y_n} = \alpha$ 也成立。

证明 分情况讨论。

 $(1)\alpha \in \mathbb{R}$ 。不妨设 $\alpha = 0$ 。任给 $\varepsilon > 0$,存在 N,当 n > N 时,

$$-\varepsilon < \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = \frac{x_{n+1} - x_n}{y_{n+1} - y_n} < \varepsilon$$

则当m > n > N时可得

$$-\varepsilon < \frac{(x_n - x_{n+1}) + \dots + (x_{m-1} - x_m)}{(y_n - y_{n+1}) + \dots + (y_{m-1} - y_m)} = \frac{x_n - x_m}{y_n - y_m} < \varepsilon$$

即

$$-\varepsilon(y_n - y_m) < (x_n - x_m) < \varepsilon(y_n - y_m)$$

令 $m \to \infty$ 可得 $-\varepsilon y_n \le x_n \le \varepsilon y_n$,这说明 $\lim_{n \to \infty} x_n/y_n = 0$ 一般地, 记 $\tilde{x}_n = x_n - \alpha y_n$, 则

$$\lim_{n \to \infty} \frac{\tilde{x}_n - \tilde{x}_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - \alpha = 0$$

则 $\lim_{n\to\infty} \tilde{x}_n/y_n=0$,即 $\lim_{n\to\infty} x_n/y_n=\alpha$ (2) $\alpha=+\infty$ 。任给 M>0,存在 N,当 n>N 时 $\frac{x_n-x_{n+1}}{y_n-y_{n+1}}>M$ 。当 m>n>N 时,有

$$x_n - x_m > M(y_n - y_m)$$

 $(3)\alpha = -\infty$ 。将 (2) 中的 x_n 换成 $-x_n$ 即可。

注 Stolz 公式反过来不一定对, $\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a$ 不能推出 $\lim_{n\to\infty}a_n=a$, 考虑 $a_n=(-1)^n$ 我们可以考虑下面这个例子。

例题 2.35 如果 $a_n \le a_{n+1}$, $\lim_{n\to\infty} \frac{1}{n}(a_1+\cdots+a_n)=a$,证明 $\lim_{n\to\infty} a_n=a$

证明

例题 2.36 设 $x_1 \in (0,1)$, $n \ge 1$ 时 $x_{n+1} = x_n(1-x_n)$ 。证明 $\lim_{n \to \infty} nx_n = 1$

证明 由归纳法易见当 $n \ge 1$ 时 $x_n \in (0,1)$, 因此

$$x_{n+1} = x_n(1 - x_n) < x_n$$

即 $\{x_n\}$ 是单调递减有界数列,从而收敛。设 $\lim_{n\to\infty}x_n=\alpha$,在上式中令 $n\to\infty$,得

$$\alpha = \alpha(1 - \alpha)$$

由此解出 $\alpha = 0$ 。进而有

$$\lim_{n \to \infty} \left(\frac{1}{x_{n+1}} - \frac{1}{x_n} \right) = \lim_{n \to \infty} \left(\frac{1}{x_n} + \frac{1}{1 - x_n} - \frac{1}{x_n} \right) = \lim_{n \to \infty} \frac{1}{1 - x_n} = 1$$

由 Stolz 公式,有

$$\lim_{n \to \infty} n x_n = \lim_{n \to \infty} \frac{n}{x_n^{-1}} = \lim_{n \to \infty} \frac{n - (n - 1)}{x_n^{-1} - x_{n-1}^{-1}} = 1$$

◆ 2.4 练习 ◆

- 1. 设 $0 < x_1 < \frac{1}{q} (0 < q \le 1)$,并且 $x_{n+1} = x_n (1 qx_n) (n \in \mathbb{N}^* a)$ 。求证: $\lim_{n \to \infty} nx_n = \frac{1}{q}$
- 2. 设数列 $\{a_n\}$ 满足 $\lim_{n\to\infty} a_n \sum_{i=1}^n a_i^2 = 1$ 。求证: $\lim_{n\to\infty} \sqrt[3]{3n} a_n = 1$

3. ♦

$$x_n = \frac{1}{n^2} \sum_{k=1}^n \ln \binom{n}{k} (n = 1, 2, 3, \dots)$$

求极限 $\lim_{n\to\infty} x_n$ 4. 试利用 Toeplitz 定理证明 Stolz 定理。

第三章 一元函数极限

第四章 一元函数连续

第五章 一元函数微分学