

Practical Machine Learning

yter notebook --notebook-dir=D:/

Day 4: Sep22 DBDA

Kiran Waghmare

Imputation

	Age	Gender	Fitness_Score
0	20	М	NaN
1	25	F	7.0
2	30	М	NaN
3	35	М	7.0
4	36	F	6.0
5	42	F	5.0
6	49	M	6.0
7	50	F	4.0
8	55	М	4.0
9	60	F	5.0
10	66	M	4.0
11	70	F	NaN
12	75	М	3.0
13	78	F	NaN

	Age	Gender	Fitness_Score
0	20	М	5.1
1	25	F	7.0
2	30	M	5.1
3	35	M	7.0
4	36	F	6.0
5	42	F	5.0
6	49	М	6.0
7	50	F	4.0
8	55	М	4.0
9	60	F	5.0
10	66	М	4.0
11	70	F	5.1
12	75	M	3.0
13	78	F	5.1

Handling Outliers

8.2 Transformations of Logarithmic Functions

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
 Bin size=3
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29

Method 1

Replace with mean value

- * Smoothing by bin boundaries: Method 2
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Replace with nearest boundry value

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

	Apple	Chicken	Broccoli	Calories
	1	0	0	95
	0	1	0	231
	0	0	1	50

Iris dataset

- Many exploratory data techniques are nicely illustrated with the iris dataset.
 - Dataset created by famous statistician Ronald Fisher
 - 150 samples of three species in genus *Iris* (50 each)
 - Iris setosa
 - Iris versicolor
 - Iris virginica
 - Four attributes
 - sepal width
 - sepal length
 - petal width
 - petal length
 - Species is class label

Iris virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute.

Agenda

- Knowledge Extraction
- Regression Analysis

Stages of knowledge extraction

Stages of knowledge extraction

Who can see what you share here? Recording On

- -All supervised algorithms
- -Classification & Regression algorithms

Regression ==>

DEc 25th ===>1000000

