Generalit People Overview Trajectory

Process automation (this course)

Process Automation (CHEM-E7140), 2019-2020

Francesco Corona

Chemical and Metallurgical Engineering School of Chemical Engineering

Process automation

The course

Overview

neralities

People Overview Trajectory

We study the mathematical principles and basic computational tools of state-feedback and optimal control theory to manipulate the dynamic behaviour of process systems

- Understanding of feedback control
- Examples from process systems
- (Catchy image from the internet)

The approach is general with application domains in many (bio)-chemical technologies

People

Generalit
People
Overview
Trajectory

Process control and automation at Aalto University Francesco Corona

- → Professor of process control and automation
- Once and future chemical engineer
- Camouflaged as computer scientist

Jukka Kortela

- Lecturer and doctor in process automation
- Invents and builds unbelievable stuff

Research developed on computational and inferential thinking of process systems

- → Automatic control and machine learning
- → Process optimisation and scheduling
 - Professor Iiro Harjunkoski

Formal methods from statistics, control theory and optimisation, and applications

Overview

Generalities

Overview Trajectory CHEM-E7140 is a set of lectures (24h) and exercises (24h) on process systems

- The prime objective is to provide a modern view on process control
- → The boundary between lectures and exercises will be fuzzy

Examination (4h)

- → OCT 25, 2019
- → DEC 12, 2019
- → FEB 20, 2020

Assignments (3 2

- → SEPT 23, 2019
- → OCT 08, 2019
- → OCT 20, 2020

To pass the course you need to pass the exam

- The examination pays 60% of the final grade
- Classic pen-and-paper exam, Aalto-style

To pass the course you need to return them

- The assignments pay 40% of the final grade
- We will work in randomly generated groups

Overview (cont.)

Generalities
People
Overview

W01 (41)	Course introduction and mathematical tools			
11/09 (08-10)	L (KONE)	01a	Process automation (Intro, course + field)	FC/JK
12/09 (08-10)	E (A046)	02a	Matrix algebra and calculus (+ coding, 1)	FC/JK
13/09 (10-12)	L (U147)	03a	Dynamical systems as ODEs	FC/JK
W02 (42)	Ordinary differential equations and state-space models			
17/09 (08-10)	E (A046)	02b	Matrix algebra and calculus (+ coding, 2)	FC/JK
18/09 (08-10)	L (KONE)	03ь	Dynamical systems as ODEs	FC/JK
19/09 (08-10)	E (A046)	03c	Dynamical systems as ODEs (+ coding, 1)	FC/JK
20/09 (10-12)	L (U147)	03d	Dynamical system as ODEs	FC/JK
W03 (43)	Process dynamics using state-space models			
23/00 (07:59)			Return assignment 01	
24/09 (08-10)	E (Y338)	03a	Dynamical system as ODEs (+ coding, 2)	FC/JK
25/09 (08-10)	L (KONE)	03a	Analysis of state-space models	FC/JK
26/09 (08-10)	E (Y338)	03b	Analysis of state-space models (+ coding)	FC/JK
27/09 (10-12)	L (U147)	03b	State feedback and controllability	FC/JK
W04 (44)	Process control using state feedback			
01/10 (12-14)	E (A046)	04a	Feedback control and controllability (+ coding)	FC/JK
02/10 (08-10)	L (KONE)	04a	Controllability and the linear quadratic regulator	FC/JK
03/10 (08-10)	E (A046)	04b	Linear quadratic regulator (+ coding, 1)	FC/JK
04/10 (10-12)	L (U147)	04b	The Cayley-Hamilton theorem	FC/JK
W05 (45)	State estimation and feedback control			
08/10 (07:59)			Return assignment 92 01	
09/10 (08-10)	L (KONE)	05a	Observability and full state estimation	FC/JK
10/10 (08-10)	E (U046)		Linear quadratic regulator (+ coding, 2)	FC/JK
11/10 (10-12)	L (U147)	05Ь	State estimation and Kalman filtering	FC/JK
11/10 (16-18)	E (A046)	05a	Observability (+ coding)	FC/JK
W06 (46)	State estimation and feedback control			
15/10 (12-14)	E (A046)	06a	State estimation and Kalman filtering (+ coding)	FC/JK
16/10 (08-10)	L (KONE)	06a	Linear quadratic Gaussian regulator	FC/JK
17/10 (08-10)	E (A046)	06a	Linear quadratic Gaussian regulator (+ coding)	FC/JK
18/10 (10-12)	L (U147)	06Ь	Pre-examination review	FC/JK
20/10 (23:59)			Return assignment 03 02	

Overview (cont.)

Generalities

People

Overview Trajector

- → Process modelling and state-space representation
- \leadsto State-feedback and optimal control
- → Optimal state estimation

Outcome 1

- How to write and analyse a mathematical description of process system
- ightharpoonup The model will be expressed as a set of differential equations

Outcome 2

- How to design/synthetise controllers to manipulate the process system
- → The design will be based on optimal state-feedback control

Outcome 3

- How to design estimators to reconstruct the process state from data
- \leadsto The design will be based on optimal state feedback control

Trajectory

neralities

People Overview Trajectory

Input-output process modelling of process systems

- Controlled variables and disturbances
- Measurement variables, the data
- The system evolves in time

Ordinary differential equations and matrix algebra

- Force-free response (no inputs)
- Numerical integration
- Stability

Trajectory (cont.)

eneralities

People

Overview Trajectory

State-space process modelling

- Inputs u, outputs y and states x
- ullet The dynamics of the states f
- \bullet From states to data g

Process dynamics (linear and time-invariant)

System
$$\begin{array}{c}
u(t) \\
\downarrow \\
y = Cx + Du
\end{array}$$

$$y(t)$$

Trajectory (cont.)

From (linear) process dynamics to state-feedback control

Trajectory

- We can measure the states x
- We define control actions u
- The controlled system

State-feedback optimal control (linear, quadratic)

Trajectory (cont.)

Generalities

People
Overview
Trajectory

Optimal state-feedback estimation and control (linear, quadratic, Gaussian)

- We cannot measure the states x anymore
- We estimate them from measurements
- Then, we define control actions u

Trajectory (cont.)

noralities

D I

Overview Trajectory Optimal state-feedback estimation and control (the general framework)

