CS 375 Homework 1 Anchu A. Lee

I have done this assignment completely on my own. I have not copied it, nor have I given my solution to anyone else. I understand that if I am involved in plagiarism or cheating I will have to sign an official form that I have cheated and that this form will be stored in my official university record. I also understand that I will receive a grade of 0 for the involved assignment for my first offense and that I will receive a grade of F for the course for any additional offense.

- 1. Given the pseudo code below for bubble sort:
 - (a) Let length[A] = n. What is the count for BubbleSort(A)? Show the steps necessary to derive your final answer.

Line	Cost	Times
1	c_1	n
2	c_2	$\sum_{i+1}^{n} t_i$
3	c_3	$\sum_{i+1}^{n} (t_i - 1)$
4	c_4	$0 \text{ (best)}, \sum_{i+1}^{n} (t_i - 1) \text{ (worst)}$

 $\sum_{line}^{4} (\text{times } line \text{ executed}) = \text{instruction count}$

(b) Show the worst case and best case time complexity in term of instruction counts.

Worst case scenario:

Worst case section.

$$n + \sum_{i=1}^{n} t_i + \sum_{i=1}^{n} (t_i - 1) + \sum_{i=1}^{n} (t_i - 1)$$

Best case scenario:
 $n + \sum_{i=1}^{n} t_i + \sum_{i=1}^{n} (t_i - 1)$

2. Fill in all the missing values.

f(n)	g(n)	f(n) = O(g(n))	$f(n) = \Omega(g(n))$	$f(n) = \Theta(g(n))$
$n^{2.125}$	$n^2 \lg n$	No	Yes	No
\sqrt{n}	n	Yes	No	No
n!	(n+1)!	Yes	No	No
$2^{n/2}$	2^n	Yes	No	No
$\sum_{i=1}^{n} i = \frac{n^2 + n}{2}$	n^2	Yes	Yes	Yes
$\sum_{i=0}^{n-1} 4^i = \frac{1}{3} (4^n - 1)$	$n4^{n-1}$	No	Yes	No

3. Order the functions below by increasing growth rate.

$$n^n$$
, $n \ln n$, $n^{\epsilon} (0 < \epsilon < 1)$, $2^{\ln n}$, $\ln n$, 10 , $n!$, 2^n , 10 , $\ln n$, $2^{\ln n}$, $n^{\epsilon} (0 < \epsilon < 1)$, $n \ln n$, 2^n , n^n , $n!$

- 4. Let f(n) and g(n) be asymptotically positive functions. Prove or show a counter example for each of the following conjectures.
 - (a) $f(n) \in O(g(n))$ implies $2^{f(n)} \in O(2^{g(n)})$ False.

Proof. Consider f(n) = 2n and g(n) = n. $2n \in O(n)$

Let's then assume $2^{2n} \notin O(2^n)$. By definition of big-O, there must exist some constant c, n_0 such that $0 \le 2^{2n} \le c \cdot 2^n$, $\forall n \ge n_0$. Let's try to prove $2^{2n} \le c \cdot 2^n$ for some constant c.

$$2^{2n} \le c \cdot 2^n$$
$$(2^n)^2 \le c \cdot 2^n$$
$$2^n \not\le \sqrt{c} \cdot 2^{n/2}$$

As c is constant, as n approaches ∞ the LHS will become greater than the RHS. Therefore the implication is not true.

(b) $f(n) \in O(g(n))$ implies $g(n) \in \Omega(f(n))$ True.

Proof. The definition of $f(n) \in O(g(n))$ says there must exist a constant c such that $0 \le f(n) \le c \cdot g(n)$.

The definition of $g(n) \in \Omega(f(n))$ says there must exist a constant c such that $0 \le c \cdot f(n) \le g(n)$. Therefore $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$

5. Prove $n^2 - 3n - 20 \in \Theta(n^2)$ using the original definition of Θ

Proof. By definition of Θ ,

 $\Theta(n^2) = \{n^2 - 3n - 20 : \text{ there exist positive constants } c_1, c_2, n_0 \text{ such that:} 0 \le c_1(n^2) \le n^2 - 3n - 20 \le c_2(n^2), \forall n \ge n_0\}$

Let $c_1 = \frac{1}{2}$, $c_2 = 1$ for all $n \ge 10$. First, need to show that $\frac{1}{2}n^2 \le n^2 - 3n - 20$ Base case: n = 10

$$\frac{1}{2}(10)^2 \le (10)^2 - 3(10) - 20$$
$$\frac{100}{2} \le 100 - 30 - 20$$
$$50 = 50$$

IH: Assume $\frac{1}{2}k^2 \le k^2 - 3k - 20$, $k \ge 10$ Prove true for k + 1.

$$\frac{1}{2}(k+1)^2 \le (k+1)^2 - 3(k+1) - 20$$

$$\frac{1}{2}(k+1)^2 \le k^2 + 2k + 1 - 3k - 3 - 20$$

$$\frac{1}{2}(k+1)^2 \le k^2 - k - 22$$

$$\frac{1}{2}(k+1)^2 \le k^2 - k - 22 - 2k + 2k + 2 - 2$$

$$\frac{1}{2}(k+1)^2 \le k^2 - 3k - 20 + 2k - 2$$

$$\frac{1}{2}(k+1)^2 \le \frac{1}{2}k^2 + 2k - 2$$

$$\frac{1}{2}k^2 + k + \frac{1}{2} \le \frac{1}{2}k^2 + 2k - 2$$

$$\frac{1}{2}k^2 - k - 2$$

Induction step

Now, show that $n^2 - 3n - 20 \le n^2$

Base case: n = 10

$$(10)^2 - 3(10) - 20 \le (10)^2$$
$$100 - 30 - 20 \le 100$$
$$50 \le 100$$

IH: Assume $k^2 - 3k - 20 \le k^2$ for $k \ge 10$ Prove true for k + 1.

$$(k+1)^2 - 3(k+1) - 20 \le (k+1)^2$$

$$k^2 + 2k + 1 - 3k - 3 - 20 \le (k+1)^2$$

$$k^2 - k - 22 \le (k+1)^2$$

$$k^2 - k - 22 - 2k + 2k + 2 - 2 \le (k+1)^2$$

$$k^2 - 3k - 20 + 2k - 2 \le (k+1)^2$$

$$k^2 + 2k - 2 \le (k+1)^2$$
Induction step
$$k^2 + 2k - 2 \le k^2 + 2k + 1$$

$$-2 \le 1$$

This shows that $n^2 - 3n - 20 \in \Theta(n^2)$ is true with $c_1 = \frac{1}{2}$, $c_2 = 1$ for all $n \ge 10$

6. Disprove $n^3 \in O(n^2)$ using the original definition of O.

Proof. By definition of O,

 $O(n^2) = \{n^3 : \text{ there exist positive constants } c, n_0 \text{ such that: } \}$

$$0 \le n^3 \le c(n^2), \forall n \ge n_0$$

 $0 \le n^3 \le c(n^2), \forall n \ge n_0$ Need to show that $n^3 \le c(n^2)$ is never true. Let c be any constant number.

$$n^{3} \le c(n^{2})$$
$$1 \le \frac{c}{n}$$
$$n \le c$$

As n approaches infinity it cannot be bounded by a constant. Thus $n^3 \notin O(n^2)$.

7. Prove $n = \omega(\lg n^2)$ using limit.

Proof. If $n = \omega(\lg n^2)$, then the limit $\lim_{n\to\infty} \frac{n}{\lg n^2}$ approaches ∞ .

$$\lim_{n \to \infty} \frac{n}{\lg n^2}$$

$$\lim_{n \to \infty} \frac{1}{\frac{2}{n}}$$

$$\lim_{n \to \infty} \frac{n}{2} \Rightarrow \infty$$

8. Prove $n^a = \omega(\lg^k n)$, where k > 0, a > 0, using limit.

Proof. If $n^a = \omega(\lg^k n)$ then the limit $\lim_{n\to\infty} \frac{n^a}{\lg^k n}$ approaches ∞ .

$$\lim_{n \to \infty} \frac{n^a}{\lg^k n}$$

$$\lim_{n \to \infty} \frac{an^a}{k \lg^{k-1}(n)}$$