Секция "Изток" - СМБ

ВЕЛИКДЕНСКО МАТЕМАТИЧЕСКО СЪСТЕЗАНИЕ - 27.04.2024 г.

10 клас

Темата е по формата на НВО

Време за работа: 90 минути

1. Стойността на израза $\sqrt{\left(2-\sqrt{7}\right)^2} + \left(2-\sqrt{7}\right)^2 + \frac{2}{\sqrt{7}}$ е равна на:

A)
$$9 + \frac{19}{7}\sqrt{7}$$

Б)
$$13 - \frac{33}{7}\sqrt{7}$$

Б)
$$13 - \frac{33}{7}\sqrt{7}$$
 В) $13 + \frac{23}{7}\sqrt{7}$ Г) $9 - \frac{19}{7}\sqrt{7}$

$$\Gamma$$
) 9 - $\frac{19}{7}\sqrt{7}$

2. ABCD е успоредник. Точка M лежи на страната BC и я разделя в отношение 1:3, считано от върха В. Ако $\overrightarrow{AB} = \overrightarrow{a}$ и $\overrightarrow{AD} = \overrightarrow{b}$ насочената отсечка \overrightarrow{DM} изразена чрез \overrightarrow{a} и \overrightarrow{b} е равна на:

A)
$$\vec{a} - \frac{3}{4}\vec{b}$$

E)
$$\vec{a} + \frac{1}{4}\vec{b}$$

B)
$$\vec{a} + \frac{1}{4}\vec{b}$$
 B) $\vec{a} - \frac{1}{4}\vec{b}$ $\vec{a} + \frac{3}{4}\vec{b}$

$$\Gamma$$
) $\vec{a} + \frac{3}{4}\vec{b}$

3. В остроъгълния триъгълник $\triangle ABC$ е построена височината $CD(D \in AB)$ и AD:DB=1:2. Точка М е от височината С и я дели в отношение 3:2, считано от върха С. Правата АМ пресича страната BC в точка N. Отношението от дължините на отсечките AM и MN е равно на

A)
$$\frac{2}{3}$$

Б)
$$\frac{3}{2}$$

B)
$$\frac{9}{4}$$

4. Точките M, N u P са среди съответно на страните AB, BC и CA на $\triangle ABC$. Намерете отношението $S_{MNP}: S_{ABC}$

A)
$$\frac{1}{2}$$

Б)
$$\frac{1}{4}$$

$$\frac{1}{3}$$

$$\Gamma$$
) $\frac{4}{1}$

5. Диагоналите AC = 12 cm и BD = 5 cm на трапеца ABCDса взаимноперпендикулярни. Средната основа на трапеца в сантиметри е равна на:

$$\Gamma) \frac{\sqrt{119}}{2}$$

6. Ако с \overline{X} означим средното аритметично на градусните мерки на осемте ъгъла на

чертежа, кое от следните твърдения е вярно за \bar{X} :

Б)
$$90^{\circ} < \overline{X} < 180^{\circ}$$

B)
$$\overline{X} = 90^{\circ}$$

B)
$$\overline{X} = 90^{\circ}$$
 Γ) $45^{\circ} < \overline{X} < 90^{\circ}$

7. Кое от следните твърдения за корените на уравнението $4x^2 + 4\sqrt{3}x - 5 = 0$ **не** е вярно?

A)
$$x_1 + x_2 = -\sqrt{3}$$

$$\mathbf{E}) \ x_1^2 + x_2^2 = \frac{11}{2}$$

B)
$$\frac{x_1}{x_2} + \frac{x_2}{x_1} = -\frac{22}{5}$$

A)
$$x_1 + x_2 = -\sqrt{3}$$
 B) $x_1^2 + x_2^2 = \frac{11}{2}$ B) $\frac{x_1}{x_2} + \frac{x_2}{x_1} = -\frac{22}{5}$ Γ) $x_1^3 + x_2^3 = \frac{27}{4}\sqrt{3}$

8. Намерете разликата между най- голямата и най- малката стойност на функцията $y = -x^2 - 2x + 5$ в интервала [-4;0].

9. В един шкаф има 6 черни и 6 бели чорапи. Каква е вероятността при случайно изваждане на два от тях да се получи чифт (двата чорапа да са едноцветни)?

A)
$$\frac{5}{11}$$

$$\frac{6}{11}$$

B)
$$\frac{2}{11}$$

$$\Gamma$$
) $\frac{3}{11}$

10. Отношението на катетите в правоъгълен триъгълник е a:b=3:4. Хипотенузата има дължина 20 ст. Ъглополовящата l_b има дължина (в сантиметри)

A)
$$\frac{16}{3}\sqrt{10}$$

B)
$$\frac{48}{7}\sqrt{2}$$

$$\Gamma$$
) $4\sqrt{13}$

11. Страните на триъгълник са 8 см, 15 см и 17 см. Радиусът на вписаната в него окръжност е:

- A) 3,5 cm
- Б) 1,5 cm
- B) 2 cm
- Γ) 3 cm

12. Пресметнете стойността на израза $\frac{\sin^2(90^\circ - \alpha) - \sin^2 \alpha}{\tan \alpha - \cot \alpha \alpha}$, ако $\sin \alpha = \frac{\sqrt{5}}{6}$ и $\alpha \in (90^\circ; 180^\circ)$.

A)
$$-\frac{\sqrt{155}}{36}$$

Б) 1

B)
$$-\frac{\sqrt{31}}{6}$$

 Γ) $\frac{\sqrt{155}}{36}$

13. Намерете косинуса на двустенния ъгъл при основата на правилна четириъгълна пирамида, всички ръбове на която са равни.

A)
$$\frac{\sqrt{2}}{2}$$

Б) $\frac{\sqrt{3}}{2}$

B) $\frac{\sqrt{3}}{3}$

 Γ) $\frac{1}{2}$

14. Намерете десетия член на аритметична прогресия, ако сумата на \mathbf{n} нейни члена е $S_n = 3n^2 - n$

Б) 56

B) 76

Γ) 38

15. Разстоянията от точка на вътрешността на равностранен триъгълник до страните му са 3 cm, 4 cm и 5 cm. Лицето на триъгълника е

A)
$$8\sqrt{3}$$

Б) 36√3

B) $48\sqrt{3}$

Γ)72

<u>Пълните решения с необходимите обосновки на на задачи 16 и 17 запишете в листа за отговори на указаните за това места</u>

16. А) Решете уравнението $x^2 - x - \sqrt{3x^2 - 3x + 13} = 5$

Б) Решете неравенството $\frac{3x-2}{x^2-3x+9} - \frac{2}{x+3} \ge \frac{3x-13}{x^3+27}$

В) Обосновете кои от корените на уравнението са решение на неравенството.

17. За триъгълник са дадени $a=16\,\mathrm{cm}$, $r=6\,\mathrm{cm}$, $R=17\,\mathrm{cm}$. Намерете другите две страни.

Ключ с верните отговори 10 клас

№ на задача	Отговор	Брой точки
1	Γ	4
2	A	4
3	Б	4
4	Б	4
5	A	4
6	В	4
7	Γ	4
8	A	4
9	A	4
10	Б	4
11	Γ	4
12	Γ	4
13	В	4
14	Б	4
15	В	4
16		Общо 20 точки
16A)	Полагаме $x^2 - x = y$.	1 точка
	Получаване на $y - \sqrt{3y + 13} = 5$	1 точка
	Those y abane ha y $\sqrt{3y+13}=3$	
	Свеждане до квадратно уравнение $y^2 - 13y + 12 = 0$	4 точки
	и решаване $y_1 = 1$ и $y_2 = 12$	
	Отхвърляне на $y_1 = 1$	1 точка
	Решаване $x^2 - x = 12$. и получаване на	1 104ка
	$x_1 = -3$ и $x_2 = 4$	1 точка
16 Б)	Определяне на допуст. стойности $x \neq -3$	2 точки
10 B)	Преобразуване до вида $\frac{x^2 + 10x - 11}{(x+3)(x^2 - 3x + 9)} \ge 0$	4 точки
	намиране на $x \in [-11; -3) \cup [1; +\infty)$	4 точки
16B)	x = -3 не е решение на неравенството	1 точка
	x = 4 е решение е решение	1точка
17		Общо 20 точки
17	Получаване на уравнението $3(16+b+c) = \frac{4bc}{17}$	1 точка
	Получаване на $\sin \alpha = \frac{8}{17}$	1 точка
	Получаване на $\cos \alpha = \frac{15}{17}$ или $\cos \alpha = -\frac{15}{17}$	1 точка

I случай: $\cos \alpha = \frac{15}{17}$		
Получаване на $256 = b^2 + c^2 - 2bc.\frac{15}{17}$		1 точка
$b+c = \frac{4bc}{51} - 1c$ Съставяне на системата $b^2 + c^2 - \frac{30bc}{17}$	6 = 256	
		1 точка
Свеждане до еквивалентната система $\begin{vmatrix} b+c=64\\bc=1020 \end{vmatrix}$	b + c = 64	
	bc = 1020	5 точки
Решаване на системата и получаване	на	
(b,c) = (34;30) или $(30;34)$.		3 точки
II случай: $\cos \alpha = -\frac{15}{17}$		3 10чки
Получаване на системата $b+c=\frac{4bc}{51}-$ $b^2+c^2+\frac{30b}{17}$	$\frac{c}{c} = 256$	1 точка
Свеждане до еквивалентна система $\begin{vmatrix} b \\ b \end{vmatrix}$	c + c = 19 c = 446, 25	
Установяване, че системата няма реше	ение.	4 точки
		2 точки

Примерно решение на задача 16.

А) Полагаме $x^2 - x = y$. Решаваме ирационално уравнение с неизвестно у

$$y - \sqrt{3y + 13} = 5, (1)$$

което се свежда до квадратното уравнение $y^2 - 13y + 12 = 0$ с корени $y_1 = 1$ и $y_2 = 12$.

Непосредствената проверка или допустимите стойности $(y \ge 5)$ показват, че само $y_2 = 12$ е решение на (1). От

$$x^2 - x = 12$$
.

получаваме $x_1 = -3$ и $x_2 = 4$.

Б) Преобразуваме неравенството до вида $\frac{x^2 + 10x - 11}{(x+3)(x^2 - 3x + 9)} \ge 0$, чиито решения са

$$x \in [-11; -3) \cup [1; +\infty)$$

В) $x_1 = -3$ не решение на неравенството, защото е недопустима стойност. Само $x_2 = 4$ е решение, тъй като $4 \in [1; +\infty)$

С непосредствено заместване с $x_2 = 4$ в неравенството $\frac{3x-2}{x^2-3x+9} - \frac{2}{x+3} \ge \frac{3x-13}{x^3+27}$ се получава вярното числово неравенство $\frac{44}{91} \ge -\frac{1}{91}$, което потвърждава горния извод.

Примерно решение на задача 17:

Прилагайки формулите за лице на триъгълник S=p.r и $S=\frac{a.b.c}{4R}$ получаваме $3(16+b+c)=\frac{4bc}{17}$.

От синусова теорема намираме $\sin\alpha=\frac{8}{17}$. От $\sin^2\alpha+\cos^2\alpha=1$ получаваме $\cos\alpha=\frac{15}{17}$ или $\cos\alpha=-\frac{15}{17}$

I случай: $\cos \alpha = \frac{15}{17}$. От косинусова теорема за страната a намираме

 $256 = b^2 + c^2 - 2bc.\frac{15}{17}$. За страните на триъгълника b и с получаваме системата уравнения

$$b+c = \frac{4bc}{51} - 16$$

$$b^2 + c^2 - \frac{30bc}{17} = 256$$
(1)

От първото уравнение на системата намираме $b^2+c^2=\frac{16b^2c^2}{51^2}-\frac{230bc}{51}+256\,$ и замествайки във второто уравнение достигаме до bc=1020 . Системата (1) е еквивалентна на системата

$$\begin{vmatrix} b+c = 64 \\ bc = 1020 \end{vmatrix}$$

от която получаваме (b,c) = (34;30) или (30;34) .

II случай. $\cos\alpha=-\frac{15}{17}$. Аналогичната система на (1) е $b^2+c^2+\frac{30bc}{17}=256$, която е еквивалентна на

 $b+c=19 \ bc=446,25$. Последната система няма реални решения.