Module Electricité 2

TD N°3 SMP3-SMC3

Courant alternatif sinusoïdal (Régime permanent)

I. Impédance complexe

1) On considère les deux circuits (a) et (b) de la figure-1 :

Montrer que l'on peut choisir L', C' et C'_1 en fonction de L, C et C_1 de telle façon que les deux circuits soient équivalents.

2) Montrer sans calcul que les deux circuits (c) et (d) de la figure-1 ne peuvent pas être équivalents.(voir pour cela les impédances des deux dipôles pour le courant continu)

II. Construction de FRESNEL. Méthode des complexes

1) On considère le circuit de la figure 2. On pose $u(t) = U_m \cos \omega t$. La fréquence est de 50Hz.

On donne pour ce circuit: $C=10 \mu F$, $R=184 \Omega$, $U_m=220 V$

Déterminer le courant i(t) en utilisant:

- a) la construction de FRESNEL;
- b) la méthode des complexes.

- 2) On considère maintenant le circuit de la figure 3. On pose $u(t)=U_m\cos\omega t$
- a) Déterminer l'impédance "vue" entre A et B.
- b) Quelles sont les pulsations de ω pour les quelles cette impédance est soit nulle soit infinie. Conclure
- 3) déterminer les intensités des courants $i_1(t)$ $i_2(t)$, i(t) dans chacune des branches et dans le circuit total.

III. Circuit alimenté par deux sources sinusoïdales

Soit le circuit de la figure-4. Les deux générateurs délivrent des tensions sinusoïdales de même fréquence, en phase dans le sens des flèches $u_1(t) = U_1 \cos \omega t$,

 $u_2(t)=U_2\cos\omega t$.

On donne $U_1=U_2=6V$, $\omega=100 \pi$ Pre-Installed Page 2 $12/02/2010 rad. s^{-1}$, L=0.1H, C=0.1 μF et User $R=1 k\Omega$

Calculer l'intensité de courant traversant le condensateur en utilisant le théorème de Thévenin.

IV – Lois des mailles en courant alternatif sinusoïdal

On considère le circuit de la figure-5. On a $u_0(t)=U_0 \sin \omega t$

On place une impédance Z entre les pôles A_1 et B_1 .

- Déterminer les courants i_0 , i_1 , i_2 , i'_0 , i'_1 et la différence de potentiel u_1 entre les points A_1 et B_1 .(On désignera par Z_1 l'impédance équivalente de la self L en série avec la résistance R)
- 2) Calculer numériquement l'amplitude et la phase de i_0 , i_1 et u_1 lorsque Z est une résistance pure de $1k\Omega$.

On donne : C=2 μF , L=2H, R=1k Ω , U_0 =100V, fréquence=50pèriode par seconde.

V. Calcul de tension et de courant en régime sinusoïdal (Sans solution)

Soit le circuit de la figure-2 alimenté par une tension sinusoïdale $u(t)=U_m\cos\omega t$ de pulsation $\omega = \sqrt{\frac{2}{IC}}$. Les éléments du circuit sont liés par la relation: $R = \frac{3}{2}L\omega$

Exprimer en fonction de U_m , L et C l'amplitude complexe, l'amplitude réelle et la phase du courant i ainsi que des tensions v_A - v_B et v_E - v_D .

VI. Théorème de Thévenin (Sans solution)

On veut appliquer le théorème de Thévenin pour calculer l'amplitude et la phase du courant *i* dans la branche AB du circuit de la figure 4.

La tension d'entrée est $u(t)=U_m\cos\omega t$ dont la pulsation vérifie la relation LC $\omega^2>1$.

- 2) Calculer le f.e.m. du générateur de Thévenin.
- 3) En déduire le courant i (amplitude et phase) dans la branche AB.N.B. On pourra exprimer les résultats en fonction de S pour alléger l'écriture.

