Feuille d'exercices n°1 : Irréductibilité, apériodicité, réversibilité.

On suppose dans toute cette feuille que Ω ou V, selon les notations retenues dans chaque exercice, est un ensemble fini.

Exercice 1. [Matrice de transition symétrique]

1. Caractériser l'ensemble des matrices stochastiques P dont la mesure uniforme est une mesure stationnaire.

Une matrice stochastique P sur Ω est dite symétrique si pour tout $x, y \in \Omega$,

$$P(x,y) = P(y,x).$$

2. Donner une mesure stationnaire pour P.

Exercice 2. [Mesure stationnaire de la marche aléatoire simple sur un graphe] On appelle graphe une paire (V, E), où V est un ensemble dont les éléments sont appelés sommmets, et E est un sous-ensemble de paires non ordonnées d'éléments de E, appelées arêtes. Noter que les paires de type $\{x, x\}$, appelées boucles, sont autorisées. On suppose G sans sommet isolé 1 . On définit une matrice stochastique sur V par

$$P(x,y) = \frac{\mathbf{1}_{x \sim y}}{\deg x},$$

appelée matrice de transition de la marche aléatoire sur G, où $\mathbf{1}_{x\sim y} = \mathbf{1}_{\{x,y\}\in E}$ est l'indicatrice des voisins de x, et deg $x = \sum_{y\in V} \mathbf{1}_{x\sim y}$ est le nombre de voisins de x.

- 1. Vérifier que P est stochastique, sous quelle condition sur le graphe la matrice stochastique P est elle irréductible?
- 2. Exprimer sous cette condition l'unique mesure (de probabilité) stationnaire π .
- 3. On dit que le graphe est régulier lorsque tous ses sommets ont même degré. Que dire dans ce cas? Faire le lien avec l'exercice 1.

Exercice 3. [Matrice de transition réversible et opérateur auto-adjoint] Montrer que P est réversible par rapport à π ssi P est autoadjoint dans $(\mathbb{R}^{\Omega}, \langle ., . \rangle_{\pi})$ avec le produit scalaire défini par défini par $\langle f, g \rangle_{\pi} = \sum_{x \in V} f(x)g(x)\pi(x)$ c'est-à-dire ssi pour tout $f, g \in \mathbb{R}^{\Omega}, \langle Pf, g \rangle_{\pi} = \langle f, Pg \rangle_{\pi}$.

Exercice 4. [Matrice de transition réversible] Soit P une matrice stochastique sur Ω réversible par rapport à une mesure de probabilité π . Montrer que P^2 est encore réversible par rapport à π .

Exercice 5. On appelle *n*-cycle le graphe (V, E) avec $V = \{0, ..., n-1\}$ et $\{x, y\} \in E$ ssi $x = y \pm 1 \mod n$, où on rappelle que deux entiers sont égaux modulo n si leur différence est un multiple de n. Ainsi, $E = \{\{x, y\}, |x - y| = 1\} \cup \{\{0, n-1\}\}$.

^{1.} c'est-à-dire que deg(x) > 0 pour tout sommet x

1. Justifier par un dessin du graphe l'appellation n-cycle.

Soit maintenant deux réels $p, q \in]0, 1[$ de somme 1. On considère la matrice stochastique sur V

$$P(x,y) = \mathbf{1}_{\{y=x+1 \mod n\}} p + \mathbf{1}_{\{y=x-1 \mod n\}} q$$

2. Pour quelles valeurs de p la matrice stochastique P est-elle réversible?

Exercice 6. [Lazy chain, ou chaîne paresseuse] Soit P une matrice stochastique, on pose Q = (P + I)/2.

- 1. Montrer que Q définit une matrice stochastique, et une matrice apériodique.
- 2. Observer qu'une mesure de probabilité π sur Ω est une mesure stationnaire pour P ssi elle est une mesure stationnaire pour Q.

Exercice 7. [Périodicité du n-cycle] On appelle n-cycle le graphe (V, E) avec $V = \{0, \ldots, n-1\}$ et $E = \{\{x, y\}, |x - y| = 1\} \cup \{\{0, n - 1\}\}$, et on note P la matrice de transition de la marche aléatoire sur ce graphe. On pose $\mathcal{T}(x, y) = \{t \geq 0, P^t(x, y) > 0\}$. On définit un chemin de longueur t de x à y comme une collection de sommets $(x_s)_{0 \leq s \leq t} \in V^{t+1}$ tel que pour tout $s \in \{0, \ldots, t-1\}, \{x_s, x_{s+1}\} \in E$.

- 2. Observer que $t \in \mathcal{T}(x,y)$ ssi il existe un chemin de longueur t de x à y
- 3. Dans le cas n = 4, expliciter $\mathcal{T}(0,0), \mathcal{T}(0,1), \mathcal{T}(0,2), \mathcal{T}(0,3)$ et dans le cas n = 5, expliciter $\mathcal{T}(0,0), \mathcal{T}(0,1), \mathcal{T}(0,2), \mathcal{T}(0,3), \mathcal{T}(0,4)$.
- 4. Décrire $\mathcal{T}(x,y)$ dans le cas général en fonction des quantités k et n-k, où k=|x-y|.
- 5. En déduire la période de P si n est pair et si n est impair.
- 6. On suppose n impair. Trouver le plus petit entier t tel que pour tout $x, y \in V$, $P^t(x, y) > 0$.

Exercice 8. [Unicité de la mesure stationnaire] Soit P une matrice stochastique irréductible sur Ω . On cherche à montrer qu'il existe une unique mesure de probabilité stationnaire pour P par une méthode distincte de celle vue en cours. On note π_1 et π_2 deux mesures de probabilité stationnaires de P.

1. Soit $y \in \Omega$ qui minimise $x \mapsto \pi_1(x)/\pi_2(x)$. Partant de l'égalité

$$\sum_{x \in \Omega} \frac{\pi_1(x)}{\pi_2(x)} \frac{\pi_2(x)}{\pi_2(y)} P(x, y) = \frac{\pi_1(y)}{\pi_2(y)}$$

montrer que tout x tel que P(x,y) > 0 vérifie $\pi_1(y)/\pi_2(y) = \pi_1(x)/\pi_2(x)$.

2. Obtenir la même conclusion pour tout $x \in \Omega$, puis conclure.

Exercice 9. [Somme de Césaro et existence d'une mesure stationnaire] Soit μ une mesure de probabilité sur Ω . On pose, pour $n \in \mathbb{N}^*$,

$$Q_n = \frac{1}{n} \sum_{k=0}^{n-1} P^k \quad \text{ et } \quad \mu_n = \mu Q_n$$

la moyenne de Césaro des itérées de P, et son application à μ .

1. Vérifier que la mesure de probabilité μ_n satisfait pour tout $n \in \mathbb{N}^*$

$$|\mu_n P(x) - \mu_n(x)| \le 1/n.$$

2. Justifier l'existence d'une suite extraite $(n_k)_k$ telle que pour tout x, la suite $(\mu_{n_k})_k$ converge vers une limite notée ν . Montrer que la mesure limite ν est une mesure de probabilité stationnaire pour P.

Exercice 10. [Somme de Césaro : convergence sans extraction] Soit μ une mesure de probabilité sur Ω . On pose, pour $n \in \mathbb{N}^*$,

$$Q_n = \frac{1}{n} \sum_{k=0}^{n-1} P^k \quad \text{ et } \quad \mu_n = \mu Q_n$$

la moyenne de Césaro des itérées de P, et son application à μ . On note I la matrice identité, et on considère l'opérateur I-P qui agit par multiplication par la droite selon $\mathbb{R}^{\Omega} \to \mathbb{R}^{\Omega}$, $\nu \mapsto \nu(I-P)$ (noter que l'on considère l'espace vectoriel \mathbb{R}^{Ω} plutôt que le sous-ensemble des mesures de probabilité.)

- 1. Calculer νQ_n dans le cas où $\nu \in \operatorname{Im}(I-P)$ puis dans le cas où $\nu \in \operatorname{Ker}(I-P)$. En déduire que $\operatorname{Ker}(I-P) \cap \operatorname{Im}(I-P) = \{0\}$, et conclure à l'aide du théorème du rang que $\operatorname{Ker}(I-P) \oplus \operatorname{Im}(I-P) = \mathbb{R}^{\Omega}$.
- 2. Soit $\mu \in \mathbb{R}^{\Omega}$. En déduire qu'il existe $\nu_0, \nu_1 \in \mathbb{R}^{\Omega}$ telles que $\mu = \nu_0(I P) + \nu_1$ avec $\nu_1(I P) = 0$. Calculer μ_n en fonction de ν_0 et ν_1 et en déduire que $\mu_n \to \nu_1$ quand $n \to \infty$.
- 3. Déduire des questions précédentes que $\nu_1 = \nu$.

Exercice 11. [Propriétés spectrales, I] On étudie les propriétés de P vu comme opérateur agissant par multiplication à gauche $P: \mathbb{C}^{\Omega} \to \mathbb{C}^{\Omega}, f \mapsto Pf$.

1. Montrer que P est un opérateur contractant pour la norme $\|.\|_{\infty}$, $\|f\|_{\infty} = \max_{z} |f(z)|$:

$$||Pf||_{\infty} \le ||f||_{\infty}$$

2. Soit π une mesure de probabilité stationnaire de P. Montrer que P est un opérateur contractant pour la norme $\|.\|_{\pi}$ induite par le produit scalaire $\langle f, g \rangle_{\pi} = \sum_{z} f(z) \bar{g}(z) \pi(z)$:

$$||Pf||_{\pi} \le ||f||_{\pi}$$

- 3. Soit f un vecteur propre associé à une valeur propre $\lambda \neq 1$. Montrer que $\sum_x f(x)\pi(x) = 0$.
- 4. Soit $\lambda \in \mathbb{C}$ valeur propre de P, alors son module satisfait $|\lambda| \leq 1$.

Exercice 12. [Propriétés spectrales, II] Soit P stochastique irréductible réversible par rapport à une mesure de probabilité π . On munit l'ensemble des fonctions de Ω dans \mathbb{R} du produit scalaire $\langle f, g \rangle_{\pi} = \sum_{x} f(x)g(x)\pi(x)$. Posons $n = |\Omega|$.

1. Construire une base de vecteurs propres $(f_k)_{1 \leq k \leq n}$, orthonormée pour le produit scalaire $\langle \cdot, \cdot \rangle_{\pi}$. Indication : on pourra considérer la matrice auxilliaire Q définie par

$$Q(x,y) = \sqrt{\pi(x)/\pi(y)} P(x,y),$$

qui, en tant que matrice symétrique, admet une base de vecteurs propres orthonormée pour le produit scalaire usuel euclidien.

2. On notera les valeurs propres associées $(\lambda_k)_{1 \leq k \leq n}$. En déduire que

$$P^{t}(x,y) = \sum_{k \ge 1} f_k(x) f_k(y) \pi(y) \lambda_k^{t}.$$

3. On suppose désormais les valeurs propres classés par valeur absolue décroissante. Étudier l'espace propre associé au vecteur propre 1, et en déduire

$$\left| \frac{P^t(x,y)}{\pi(y)} - 1 \right| \le |\lambda_2|^t \sum_{k>2} f_k(x) f_k(y)$$

- 4. Observer que : $\langle \delta_x, \delta_x \rangle_{\pi} = \pi(x)$, puis développer f dans la base des f_k pour conclure que $\sum_k f_k^2(x) = \frac{1}{\pi(x)}$.
- 5. En déduire finalement

$$\left| \frac{P^t(x,y)}{\pi(y)} - 1 \right| \le \frac{|\lambda_2|^t}{\min_x \pi(x)}$$

Si P apériodique, $|\lambda_2| < 1$ (voir polycopié), et on obtient donc une nouvelle preuve du théorème de convergence, avec une vitesse de convergence un peu plus explicite.