NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA Department of Information Technology

Advanced Database Systems Assignment 1

Distributed Geographic Database System for forest related activities.

Name: Pritish Uday Naik

Roll No: 192422IT010

Class : M.Tech 1st year

Contents

1.	Problem Description	03
2.	Data Sources	05
3.	Sample queries	08
4.	Conceptual Model (EER)	09
5.	Global Conceptual Schema	10
6.	Instances of each relation	11
7.	Normalization	14
8.	Global schema	17
9.	Fragmentation	19
10.	Physical Design	53
11.	Allocation and Replication	57

1. Problem Description:

Information plays a vital role in the development and growth of mankind. Currently, the various departments manage information related to forest independently in their own ways . There are no common, standardized process and program for capturing, processing and storing forest information. This has kept forest information disintegrated in different departments. The various departments have systems in place to store and process data related to forest but the systems are not able to talk to each other. This makes it difficult for the Wildlife NGOs, Businessmen and Forest conservation officer to collate information related to forest across departments. For instance consider the state is divided into many state divisions. Forest is divided into forest type which contains many state divisions and each state division has unique division id. If the Forest conservation officer wants information to know the reason for the sudden reduction in the number of a particular tree species urgently, he may go to the water resource department to collect information about water quality and quantity that is used in his state division. He may also go to Police department to collect the data related to smuggling and poaching cases in his state division. On occasions where the department is not able to produce the needed information immediately, the business or activity at that particular time would come to a standstill. On the other hand, time is being wasted going round the various departments to solicit data. This situation is very frustrating and impedes smooth operations and decision making process. Similar is the case with NGO activists and Businessmen.

Requirement of Wildlife NGO representative:

Wildlife NGO representative said "My organisation's objective is to educate the society and foster scientific research in the field of forest. As a representative of NGO, I want you to build a system on the following guidelines. On the first page I want list of all forest types (i.e. Evergreen forest, Deciduous forest, Montane grassland) in the state. Then I would choose the name of the forest that I am interested in from a drop-down list. After pressing the button 'Search', I should get a list of the available options for state_divisions and forest officer id and Forest officer name. After I choose one option from the list of state_divisions, I should get a list of tree species along with the count(number of tree species) in the last survey made by forest patrollers. I should be able to check more details related to wildlife surveys done by the forest department. For that I want to click the button 'check wildlife surveys'. There I would get a details of the total number of camps, total number of patrollers. I arrange tree plantation activities in the forest state_division.So, I need details about the water resources in the forest state_division. I should have 'Check water resources here' button to get the details like water resource types (underground water, ponds, lakes, canals, river, stream), available water capacity at each resource and contamination level like carcinogenicity and toxicity."

Requirement of businessmen:

There are many industries like saw-mill industry, broom industry and furniture industry, perfume industry, etc which depend upon forest. Every businessman who wants raw material from forest should choose forest type (i.e. Evergreen forest, Deciduous forest, Montane grassland)in the state. After pressing the button 'Search' he will get a list of the available options for Forest state_divisions. After that he has to choose one option from each of these categories, he gets a list of tree species along with count of tree species. The raw material will be collected by the government and kept for auction at depots. Below the screen there is additional information. Here he will find the contact person for the auction, auction_location. If any businessman wants to procure the raw material from government depots through public auction he should be able to

know the depot location. The businessman may be interested about illegal activities in the state_division. There will be a button at the top left corner called 'Check illegal activities'. Here, he will find the cases related to illegal activities related to forest in the state division. The businessman who has the furniture industry will be interested in bamboo and may want to know whether there are dry bamboo trees in the region. If there are dry bamboos, there is a high possibility of forest fire. In case there is a fire, are there any fire stations in the state_divisions and do they have water stock. The perfume industry businessman who wants to buy sandalwood should be able to check whether there are any sandalwood smuggling cases in the region. The broom industry businessman who is interested in raw materials related to grasslands wants to check the number of illegal grazing activities and fire cases in the region of his interest.

Requirement of Forest conservation officers:

Forest officers conserve and sustainably manage forest resources with involvement of village communities living in the vicinity of forests. Protection of forest land from permanent loss is the most important duty of any forest officer.

Forest officers are responsible for the collection and credit of Forest Revenue, investigate Forest Offences in their division. Every state_division will have one forest officer. Forest officer accesses the wildlife survey data like total number of camps, total number of patrollers, count of tree species, and species status. If the number of patrollers in the state_division is not sufficient, the forest officer can increase wildlife patrollers for wildlife surveys. There could be many illegal activities happening in his state_division like encroachment, illegal grazing in grasslands , wild animals poaching and smuggling. Forest officer is responsible for keeping account of the Forest encroachments and illegal grazing activities and deal with all such cases. The smugglers and poaching offenders will be arrested by the armed state police which operates in division. Forest officers periodically checks the State police data to get the details of the crime like smuggling and poaching related to the forest.

From the wildlife surveys, the forest officer can deduce the possibility of fire. So Forest officer checks all fire station names, fire station location, and fire station administrator and water stock at each fire station. The forest officer checks the available quantity of water at water resource and whether that is sufficient in the given scenario. If not sufficient, he can request the water department to increase quantity in the water resource.

2. Data sources:

Water resource department:

The objectives of this department is to analyze the different water resources and recharge zones of water resources and monitor the contamination of water resources. The state has 100 divisions. Each division in the state has at least one water resource. Each water resource in the division will have one dedicated station. Each station will have a unique station_id, station_name, station_location(longitude, latitude), water resource name, quantity of stored water at station, division_id. Each station periodically takes sample of water resource. Each sample in a station will have unique sample id. The analysed sample will have station id,sample_id, Date_of_analysis, time_of_analysis, method_of_analysis, concentration, analysis method, toxicity, carcinogenicity.

Forest department:

The forest department has an objective to conserve and expand unique and complex natural forests in the state without affecting their ecological processes, increase the tree cover both inside and outside the forest and meet the forest product demands of the society. The state has 100 divisions. The state has 2 types of forest i.e Evergreen forest, Deciduous forest. The state has 2 different forest names viz Kudremukh National Park, Bandipur National Park. Each division will have only one type of forest. Each division in the state will have state division identification division_id, forest_name, forest_officer_id, forest_station_id, Forest_type, Forest_area, revenue generated in his state division, Auction location of the state division, contact number for auction. Each Forest state division will have one auction depot, one forest officer and one forest station. Every division in the forest periodically performs wildlife survey. The wildlife survey is performed by forest patrollers. Wildlife survey has division_id, number_of_patrollers, number_of_survey_camps, count of each important tree species (bamboo, sandalwood,teakwood,timber,grass). There will be only one forest station in a division. Each Forest station has forest dispute registry which has case id, case type (encroachment, illegal grazing etc), accused name, area of land affected, forest station id.

Police department:

The Police have statutory powers to investigate crimes, apprehend offenders, interrogate and prosecute suspects. They are also empowered to search and seize properties suspected to be stolen or associated with smuggling of forest products like sandalwood, teakwood, rosewood, other valuable timber species and poaching of animals like elephants for tusks. Every division in state will have at least one police station. Each police station in a division will have unique police_station_id, police_station_name, location(latitude, longitude), division_id, police_officer_id. Each Police station maintains a crime registry containing Crime_id, crime type, Date_of_offence, Date_of_arrest, FIR_no, under_section, Accused_name, police_station_id. Crime_id in a crime registry is unique for a given police station.

Fire department:

The objective of Fire services is to protect the society and nature from fire by providing progressive high quality emergency services and preventive measures. The fire department database will have many fire stations. Each state division will have at least one fire station. Each fire station will station_id, station_name, state division_id in which fire station belongs, name of the administrative head of fire station, location (longitude, latitude), number of forest fire cases in the division, Water stock available at the station, name of water resource from which water is fetched. Each fire station gets water from only one water resource

3. Queries

Wildlife NGOs Queries:

- 1. List the Division id for a given Forest type and forest name
- 2. List the divisions for a given forest type and forest name that has the highest number of a given species
- 3. The total quantity of Water at water resource in a forest for a given forest type and forest name

Businessmen Queries:

- 4. For a given forest type and forest name get the contact number and location of auction depot in a division which has the highest number of a given species.
- 5. For a given Forest type and Forest name, Find the number of cases registered at a police station in the division for a particular crime type in ascending order.

Forest officer Queries:

- 6. For a given Forest type and Forest name and a division(s) which has the count of a bamboo species above threshold value, find total water stock available at all fire stations in that division
- 7. For a given Forest type and Forest name and a division which has count of a bamboo species greater than a threshold value, List the toxicity of water at a water resource used by the Fire station.
- 8. For a given Forest type and Forest name and divisions which have count of a bamboo species greater than threshold value, list the total quantity of water at a given water resources used by fire stations in that forest.

4. EER Model (Conceptual Model)

5. Global Conceptual Schema:

The transformation from the entity-relationship model to the relational model is very straightforward. A feasible set of relational schemas is as follows.

Water I	Departme	nt:
---------	----------	-----

Water_station_id	Water_s	tation_name	Water_station_location	water_rsc_name
stored water	div_id			

Water Quality:

Water_Station_	id Water	_sample_id	Date_of_analysis	time_of_analysis	method_of_analysis
Concentration	Toxicity	carcinogen	nicity		

Police department:

nolice station id	nolice station name	location(latitude, longitude)	div id	nolice officer id
police_station_id	police_station_name	location (latitude, longitude)	uiv_iu	police_officer_id.

Police crime registry:

Crime_id	Crime_type		e_type Date_of_offence		Date_of_arrest	FIR_no	under_section
Accused_name Crime_id							

Forest Department:

div_id	forest_name,		forest_offr_id,		forest_stn_id	Forest_type	Forest_area	revenue
Auction_	Auction_location Auctio		_contact					

Wildlife survey:

div_id	no_of_pa	trollers	no_o	f_survey_car	nps	bamboo cou	ınt	sandalwood count
teakwood count timber		timber	count	grass count	Sp	ecies status		

Forest dispute registry:

Dispute_case id C	Dispute_case_type	accused_name	Area_of_land_affected	Forest_station id
-------------------	-------------------	--------------	-----------------------	-------------------

Fire department

Fire_Station_id F	ire_station_name	div_id	Fire_station_head	Fire_station_Location
Forest_fire_cases	Water stock Fet	ched_from		

6. Instance of each relation:

Water Department:

W_stn_id	div_id	W_stn_name	W_stn_loc_long	W_stn_loc_lat	W_rsc_name	Stored_water (lit.)
<u>01</u>	<u>01</u>	yamuna	100	101	stream	25000
<u>02</u>	<u>01</u>	bramha	100	102	stream	10000
03	<u>01</u>	chatur	100	102	river	100030
<u>01</u>	<u>02</u>	ramalinga	100	111	pond	234290
<u>02</u>	<u>02</u>	Anakala	101	112	stream	87695
03	<u>02</u>	kantha	103	114	river	2341254
<u>01</u>	<u>03</u>	vaidehi	106	122	pond	235426
<u>02</u>	<u>03</u>	Quetta	104	121	river	26542
<u>03</u>	<u>03</u>	jamula	101	129	lake	238423

Water Quality check:

W stn id	<u>div</u> <u>id</u>	W_sampl e_id	date_of_an alysis	time_of_an alysis	method_of _analysis	concentr ation(%)	toxici ty(%)	carcinogenici ty(%*)
<u>01</u>	01	01	25-09-2019	12:30	Chemical	20	10	9
<u>01</u>	01	02	26-09-2019	1:45	Electrical	21	14	5
<u>02</u>	01	01	21-09-2019	12:30	Electrical	30	11	7
<u>02</u>	01	02	25-09-2019	2:30	Electrical	20	10	9
<u>03</u>	01	01	21-09-2019	12:10	Electrical	30	11	7
<u>03</u>	01	02	25-09-2019	9:30	Chemical	20	10	9
<u>01</u>	02	01	11-09-2019	2:10	Electrical	10	11	7
<u>01</u>	02	02	15-09-2019	10:30	Chemical	22	11	9
<u>02</u>	02	01	21-09-2019	12:30	Chemical	30	11	7
<u>02</u>	02	02	25-09-2019	2:30	Electrical	20	10	9
<u>03</u>	02	01	21-09-2019	12:10	Chemical	30	11	7
<u>03</u>	02	02	25-09-2019	9:30	Chemical	20	10	9
<u>01</u>	03	01	11-09-2019	2:10	Electrical	10	11	7
<u>01</u>	03	02	15-09-2019	10:30	Chemical	22	11	9
<u>02</u>	03	01	21-09-2019	12:30	Chemical	30	11	7
<u>02</u>	03	02	25-09-2019	2:30	Electrical	20	10	9
03	03	01	21-09-2019	12:10	Chemical	30	11	7
<u>03</u>	03	02	25-09-2019	9:30	Electrical	20	10	9

Police department:

P_stn_id	div_id	P_stn_name	P_stn_loc_long	P_stn_loc_lat	P_officer_id.
<u>01</u>	<u>01</u>	lalbag	101	102	01
<u>02</u>	<u>01</u>	parel	102	105	02
<u>01</u>	<u>02</u>	santacruz	104	110	01
<u>02</u>	<u>02</u>	washi	106	113	02
<u>03</u>	<u>02</u>	talegaon	106	117	03
<u>01</u>	<u>03</u>	kashi	107	121	01
<u>02</u>	<u>03</u>	kase	105	124	02

Police criminal registry:

<u>crime</u> <u>id</u>	P_st ation id	<u>div_i</u> <u>d</u>	crime_type	Date_of_off ence	Date_of_ar rest	FIR_ no	under_s ection	Accused_na me
<u>01</u>	<u>01</u>	<u>01</u>	Smuggling	15-09-2019	17-10-2019	100	IPC213	Suresh
<u>02</u>	<u>01</u>	<u>01</u>	Theft	16-09-2019	21-11-2019	100	IPC213	Ramesh
<u>03</u>	<u>01</u>	<u>01</u>	Smuggling	21-09-2019	27-09-2019	100	IPC213	Rajesh
<u>01</u>	<u>02</u>	<u>01</u>	Smuggling	25-09-2019	27-09-2019	100	IPC213	Prathamesh
<u>01</u>	<u>03</u>	<u>01</u>	Smuggling	21-09-2019	17-10-2019	100	IPC213	Mahesh
<u>02</u>	<u>03</u>	<u>01</u>	Smuggling	19-09-2019	27-09-2019	100	IPC213	Yogesh
<u>01</u>	<u>01</u>	<u>02</u>	Smuggling	05-09-2019	27-09-2019	100	IPC213	Sagar
<u>02</u>	<u>01</u>	<u>02</u>	Theft	29-09-2019	30-09-2019	100	IPC213	Samir
<u>03</u>	<u>01</u>	<u>02</u>	Theft	25-10-2019	27-09-2019	100	IPC213	Amir
<u>01</u>	<u>02</u>	<u>02</u>	Smuggling	25-09-2019	27-09-2019	100	IPC213	Sundar
<u>01</u>	<u>03</u>	<u>02</u>	Theft	25-09-2019	27-09-2019	100	IPC213	Bandar
<u>02</u>	<u>03</u>	<u>02</u>	Smuggling	25-09-2019	27-09-2019	100	IPC213	Gangadhar

Forest Department:

div id	F_name	F_offr_id	F_stn_id	F_type	F_revenu e(rs)	F_auc _loc_l at	F_auc _loc_l ong	F_auc_conta ct
<u>01</u>	Bandipur	01	01	Evergreen	2103421	109	105	8732183452
<u>02</u>	Bandipur	02	02	Deciduous	2022143	103	115	7826183442
<u>03</u>	Kudremukh	03	03	Evergreen	7392621	108	121	5628123983
<u>04</u>	Kudremukh	04	04	Deciduous	2918361	106	132	8492018235

Wildlife survey:

	 -						
div_id	no_of_pat rollers	no_of_surv ey_camps	bamboo_count	sandalwood count	teakwood count	timber count	grass count
<u>01</u>	105	10	104	2984	198432	124235	198729
<u>02</u>	43	29	6765	8463	1292	12863	192045
<u>03</u>	65	21	192820	1629	1207	123	871

Forest dispute registry:

	- p a. to . to g. c			
case_id	F_stn_id	case_type	accused_name	area of land affected(km Sq.)
<u>01</u>	<u>01</u>	encroachment	Ajay	10
<u>02</u>	<u>01</u>	illegal grazing	Sanjay	2
<u>03</u>	<u>01</u>	encroachment	Jay	13
<u>01</u>	<u>02</u>	illegal grazing	Samar	12
<u>01</u>	<u>03</u>	encroachment	Wahir	4
<u>02</u>	<u>03</u>	illegal grazing	Tahir	20
<u>03</u>	<u>03</u>	encroachment	Jay	3

Fire department

Fire_st n_id	div id	Fire_stn_hea d_name	Fire_stn_l oc_lat	Fire_stn_lo c_long	Forest_fire _cases	Water_sto ck(lit.)	Fetched_from(W_stn_id)
<u>01</u>	<u>01</u>	Samir	105	100	121	2983	02
<u>02</u>	<u>01</u>	Qayamat	109	101	19	2341	01
<u>01</u>	<u>02</u>	Amir	104	110	21	1321	01
<u>01</u>	<u>02</u>	Shahrukh	105	116	421	1521	02
<u>01</u>	<u>03</u>	Akshay	102	120	231	1351	01

7. Normalisation:

Goals of normalization

- 1. Integrity
- 2. Maintainability

Benefits (Side effects) of normalization

- * Reduced storage space required (usually, but it could increase)
- * Simpler queries (sometimes, but some could be more complex)
- * Simpler updates (sometimes, but some could be more complex)

First normal form (1NF) -- a table R is in 1NF iff all underlying domains contain only atomic values, i.e. there are no repeating groups in a row. Following are the 1NF of all the relations

Water Department:

<u>v</u>	Vater station id	Water_station_r	<u>name</u>	Water_station_loc		
١	Water_station_loc	ation_longitude	water	_resource_name	stored_water	division_id

Water Quality:

Water_Station_id d	ivision_id Water	sample_id	Date_of_analysis	time_of_analysis
method_of_analysis	Concentration	Toxicity	carcinogenicity	

Police department:

police_station_id div	vision_id Police_st	tation_loc_lat P	Police_station_location_long
police_station_name	police_officer_id.		

Police crime registry:

Crime_id	Police station id	Division_id	Crime_type	Da	te_of_offence	Date_of_arrest	
FIR_no	under_section	Accused_nar	me Crime	_id			

Forest Department:

division_id	fores	t_name	forest_offi	_id	forest_stn_id	Forest_type	Forest_area	revenue	
Auction_loc	Auction_location Auction		_contact						

Wildlife survey:

division id no_of_	livision_id no_of_patrollers no_of_survey		f_survey_camp	s	bamboo count	sandalwood count
teakwood count	timber cour	nt	grass count			

Forest dispute registry:

Dispute case id	Dispute case type	accused name	Area_of_land_affected	Forest station id
Biopato case ia	Dispare_sass_type	accacca_name	/ " ou_or_iana_amootoa	TOTOGE CHARLOTTIC

Fire department

Fire Station id	<u>div_id</u> F	Fire_station_name		e_station_head	Fire_station_Loc_latitude	
Fire_station_Loc_	Fire_station_Loc_longitude			Water stock	Fetched_from	

<u>Functional dependency</u> given a table R, a set of attributes B is functionally dependent on another set of attributes A if at each instant of time each A value is associated with only one B value.

This is denoted by A -> B. A trivial FD is of the form XY --> X (subset).

super-key -- a set of one or more attributes, which, when taken collectively, allows us to identify uniquely an entity or table.

candidate key—any subset of the attributes of a super-key that is also a super-key, but not reducible.

primary key -- arbitrarily selected from the set of candidate keys, as needed for indexing.

Functional dependencies on relations:

The underlined attributes are primary keys:

Water Relation:

<u>Water_station_id,division_id</u> ----> Water_station_name, Water_station_location_latitude, Water_station_location_longitude water resource_name,stored_water

Water station relation:

<u>Water_Station_id, division_id, Water_sample_id, -----></u> Date_of_analysis, time_of_analysis, method_of_analysis, Concentration, Toxicity, Carcinogenicity

Police relation:

<u>police_station_id, division_id -----></u> Police_station_loc_lat, Police_station_location_long police station name, police officer id.

Police Crime relation:

<u>Crime_id, Police_station_id, Division_id_-----></u> Crime_type, Date_of_offence, Date_of_arrest, FIR_no, Under section, Accused name, Crime_id

Forest Relation:

<u>division_id,</u> -----> forest_name, forest_offr_id, forest_stn_id, Forest_type, Forest_area, revenue, Auction_location_Auction_contact

Wildlife survey relation:

<u>division_id</u> -----> no_of_patrollers, no_of_survey_camps, bamboo count, sandalwood count, teakwood count, timber count, grass count

Forest dispute relation:

<u>Dispute_case id, Forest_station id</u> -----> Dispute_case_type, accused_name, Area of land affected

Fire Station relation:

<u>Fire_Station_id, division_id, -------></u> Fire_station_name, Fire_station_head, Fire_station_Loc_latitude, Fire_station_Loc_longitude, Forest_fire_cases, Water stock Fetched from

Now we can apply 3rd Normal form formula

Third normal form (3NF)

A table is in 3NF if, for every nontrivial FD X --> A, either:

- (1) attribute X is a super-key, or
- (2) attribute A is a member of a candidate key (prime attribute)

From the functional dependencies it can be observed that all the attributes of all the relations are functionally dependent only on Primary key and nothing else, all the relations are already in 3rd Normal Form.

8. Global Schema:

Water Department					
Attribute name	Attribute size (type in bytes)				
Water_station_id	int(2)				
Water_station_name	char(10)				
Water_station_location_latitude	int(2)				
Water_station_location_longitude	int(2)				
water_resource_name	char(10)				
stored_water	char(10)				
division_id	int(2)				

Water Quality					
Attribute name	Attribute size (type in bytes)				
Water_station_id	int(2)				
Water_sample_id	int(2)				
Date_of_analysis	int(2)				
Time_of_analysis	int(2)				
Method_of _analysis	char(10)				
Toxicity	int(2)				
division_id	int(2)				
Carcinogenicity	int(2)				

Police department					
Attribute name	Attribute size (type in bytes)				
Police_station_id	int(2)				
Police_station_name	char(10)				
Police_station_location_latitude	int(2)				
Police_station_location_longitude	int(2)				
division_id	int(2)				
police_officer_id.	char(10)				

Police crime registry					
Attribute name	Attribute size (type in bytes)				
Crime_id	int(2)				
Crime_type	char(10)				
Date_of_offence	int(2)				
Date_of_arrest	int(2)				
FIR_no	int(2)				
under_section	char(10)				
Accused_name	char(10)				
police_station_id	int(2)				

Forest department					
Attribute name	Attribute size (type in bytes)				
div_id	int(2)				
Forest_name	char(10)				
Forest_offr_id	int(2)				
Forest_stn_id	int(2)				
Forest_type	int(2)				
Forest_area	char(10)				
Revenue	char(10)				
Auction_location_latitude	int(2)				
Auction_location_longitude	int(2)				
Auction_contact	int(2)				

Wildlife surveys					
Attribute name	Attribute size (type in bytes)				
div_id	int(2)				
no_of_patrollers	int(2)				
no_of_survey_camps	int(2)				
bamboo count	int(2)				
sandalwood count	int(2)				
teakwood count	int(2)				
timber count	int(2)				
grass count	int(2)				

Forest Dispute registry					
Attribute name	Attribute size (type in bytes)				
Dispute_case_id	int(2)				
Dispute_case_type	int(2)				
accused_name	char(10)				
area_of_land_affected	int(2)				
forest_station_id	int(2)				

Fire Department					
Attribute name	Attribute size (type in bytes)				
Station_id	int(2)				
station_name	char(10)				
div_id	int(2)				
station_head_name	char(10)				
Fire_station_Location_latitude	int(2)				
Fire_station_Location_longitude	int(2)				
Forest_fire_cases	int(2)				
Water_stock	int(2)				
Fetched_from	int(2)				

9. Fragmentation:

Data fragmentation is division of relation R into fragments R1,R2,R3,....Rn which contains sufficient information to reconstruct R

There are 3 methods for fragmentation:

1. Horizontal fragmentation:

Tuples of R is assigned to a fragment

2. Vertical fragmentation

Schemas of R is split into sub-schemas such that all sub-schema should contain a candidate key to ensure lossless join property. A special attribute, tuple id may be added to each subschema to serve as a candidate key

Correctness of fragmentation: Fragmentation cannot be carried out haphazardly. There are three rules that must be followed during fragmentation:

1. Completeness:

If a relation instance R is decomposed into fragments R1, R2, . . . , Rn,each data Item that can be found in R must appear in at least one fragment. This rule is necessary to ensure that there is no loss of data during fragmentation.

2. Reconstruction:

It must be possible to define a relational operation that will reconstruct the relation R from the fragments. This rule ensures that functional dependencies are preserved.

3. Disjointness:

If a data item di appears in fragment Ri, then it should not appear in any other fragment. Vertical fragmentation is the exception to this rule, where primary key attributes must be repeated to allow reconstruction. This rule ensures minimal data redundancy.

In the case of horizontal fragmentation, a data item is a tuple; for vertical fragmentation, a data item is an attribute.

Advantages of fragmentation

Horizontal:

- 1. Allows parallel processing on fragments of a relation
- 2. Allows relation to be split so that tuples are located where they are most frequently used

Vertical:

- 1. Allows tuples to be split and stored where it is most frequently used
- 2. Tid is allows efficient joining of vertical fragments

Disadvantages

- 1. The performance of global applications that require data from several fragments located at different sites may be slower.
- 2. Integrity control may be more difficult if data and functional dependencies are fragmented and located at different sites.

Following are the detailed SQL queries in the geographic forest management system

1. List the Division id for a given Forest type and forest name

SELECT div_id FROM Forest Department WHERE Forest.forest_type = "Evergreen", Forest.forest_name = "Bandipur National Park"

2. List the divisions for a given forest type and forest name that has highest number of a given species

SELECT Forest.div id, max(Wildlife.sandlewood count)

FROM Forest

JOIN Wildlife

ON Forest.div id=Wildlife.div id

WHERE Forest_forest_type = "Evergreen", Forest.forest_name = "Bandipur National Park"

3. The total quantity of Water at water resource in a forest for a given forest type and forest name

SELECT sum(Water.Stored water)

FROM Forest

JOIN Water

ON Forest.div id=Water.div id

WHERE Forest_forest_type = "Evergreen" and Forest_forest_name = "Bandipur National park" and Water.Water resource name = 'lake'

4. For a given forest type and forest name get the contact number and location of auction depot in a division which has highest number of a given species.

SELECT Forest.F_auc_depo_loc_lat, Forest.F_auc_depo_loc_long,F_auc_contact , MAX(Wildlife.sandalwood count)

FROM Forest

JOIN Wildlife

ON Forest.div id=Wildlife.div id

WHERE F type = "Deciduous" and forest name = "Bandipur National Park"

For a given Forest type and Forest name, Find the police station which has minimum number of smuggling cases registered

SELECT Police station id, div id, MAX(crime type)

FROM Forest

JOIN PoliceCrimeRegistry

ON Forest.div id=PoliceCrimeRegistry.div id

WHERE Forest.forest_type = "Evergreen" AND Forest.forest name = "Bandipur National park" AND PoliceCrimeRegistry.crime_type = "smuggling" GROUPBY PoliceCrimeRegistry.Police_station_id,div_id

6. For a given Forest type and Forest name and a division which has count of a bamboo species > 500, find water stock available at a fire stations in that division

SELECT Fire.div_id, sum(Fire.Water_stock)
FROM Fire
JOIN Forest
ON Forest.div_id=Fire.div_id
JOIN Wildlife
ON Fire.div_id=Wildlife.div_id
WHERE Forest.forest_type = "Evergreen" and Forest.forest_name = "Bandipur National park" AND WILDLIFE.Bamboo_count > 500
GROUPBY Fire.div_id

7. For a given Forest type and Forest name and a division which has count of a bamboo species > 500, List the Fire station which uses water from a water resource that has least toxicity

SELECT WaterQuality.MIN(toxicity)
FROM WaterQuality
JOIN Fire
ON WaterQuality.stn_id = Fire.Fetched_from AND WaterQuality.div_id=Fire.div_id
JOIN Forest
ON WaterQuality.div_id=Forest.div_id
JOIN Wildlife
ON WaterQuality.div_id=Wildlife.div_id
WHERE Forest.forest_type = "Evergreen" and Forest.forest_name = "Bandipur National forest" AND Wildlife.Bamboo_count > 500
GROUPBY Fire.stn_id

8. For a given Forest type and Forest name and a division which has count of a bamboo species > 500, list the water resources used by fire stations in that forest

SELECT Fire.stn_name, Water.water_rsr_name
FROM Water
JOIN Fire
ON Water.stn_id = Fire.Fetched_from AND Water.div_id=Fire.div_id
JOIN Forest
ON Water.div_id=Forest.div_id
JOIN Wildlife
ON Water.div_id=Wildlife.div_id
WHERE Forest.forest_type = "Evergreen" and Forest.forest_name = "Bandipur National park" AND Wildlife.Bamboo count > 500 AND Fire.fire station id = "01"

9.1 Horizontal Fragmentation:

Horizontal fragmentation partitions the relation along its tuples of the relations. Every fragment will have the same number of attributes. There are two ways doing it. Primary and derived horizontal fragmentation.

Primary Horizontal fragmentation on Forest Relation:

From the Queries shown above we can deduce following minterm Predicates for Forest relation:

P1 : (Forest_name = "Bandipur National Park") AND (Forest_type = "Deciduous)

P2 : (Forest_name = "Bandipur National Park") AND (Forest_type = "Evergreen)

P3: (Forest_name = "Kudremukh National Park") AND (Forest_type = "Deciduous")

P4: (Forest_name = "Kudremukh National Park") AND (Forest_type = "Evergreen")

Instance of Forest relation:

<u>div</u> <u>id</u>	F_name	F_offr_id	F_stn_id	F_type	F_reven ue(rs)	F_auc_l oc_lat	F_auc_l oc_long	F_auc_cont act
<u>01</u>	Bandipur	01	01	Evergreen	2103421	109	105	8732183452
<u>02</u>	Bandipur	02	02	Deciduous	2022143	103	115	7826183442
<u>03</u>	Kudremukh	03	03	Evergreen	7392621	108	121	5628123983
<u>04</u>	Kudremukh	04	04	Deciduous	2918361	106	132	8492018235

Based on these predicates 4 fragments of Forest relation will be created:

Fragment 1: All the tuples of Forest relation that satisfy predicate P1

div id	F_name	F_offr_id	F_stn_id	F_type	F_revenu e(rs)	F_auc_ loc_lat	F_auc_lo c_long	F_auc_conta ct
<u>01</u>	Bandipur	01	01	Evergreen	2103421	109	105	8732183452

Fragment 2: All the tuples of Forest relation that satisfy predicate P2

div id	F_name	F_offr_id	F_stn_id	F_type	F_revenu e(rs)	F_auc_ loc_lat	F_auc_l oc_long	F_auc_conta ct
<u>02</u>	Bandipur	02	02	Deciduous	2022143	103	115	7826183442

Fragment 3: All the tuples of Forest relation that satisfy predicate P3

div id	F_name	F_offr_id	F_stn_id	F_type	F_reven ue(rs)	F_auc_l oc_lat	F_auc_l oc_long	F_auc_cont act
<u>04</u>	Kudremukh	04	04	Deciduous	2918361	106	132	8492018235

Fragment 4: All the tuples of Forest relation that satisfy predicate P4

div id	F_name	F_offr_id	F_stn_id	F_type	F_reven ue(rs)	F_auc_l oc_lat		F_auc_cont act
<u>04</u>	Kudremukh	04	04	Deciduous	2918361	106	132	8492018235

Derived horizontal fragmentation:

Fragmentation definition of relation S derived from existing horizontal fragmentation of relation R using foreign key relationships.

Derived horizontal fragmentation is defined on a member relation of a link according to a selection operation specified on its owner. The important point to note is that each link (L1,L2,L3,L4,L5,L6,L7) is an equi-join. The equi-join can be implemented using semi-joins. Semi-join reduces the amount of data that needs to be transmitted between sites.

Owner: Forest relation

Member: Water relation, Water Quality relation, Police relation, Police Crime relation, Wildlife survey relation, Forest dispute registry relation, Fire relation.

Derived horizontal Fragments of Water department is:

Fragment 5 (Water relation) = Water relation ∞ Fragment 1 (Forest relation)

Fragment 6 (Water relation) = Water relation ∞ Fragment 2 (Forest relation)

Fragment 7 (Water relation) = Water relation ∞ Fragment 3 (Forest relation)

Fragment 8 (Water relation) = Water relation ∞ Fragment 4 (Forest relation)

Derived horizontal fragmentation of Water Quality relation:

Fragment 9 (Water Quality relation) = Water Quality ∞ Fragment 1 (Forest relation)

Fragment 10 (Water Quality relation) = Water Quality ∞ Fragment 2 (Forest relation)

Fragment 11 (Water Quality relation) = Water Quality ∞ Fragment 3 (Forest relation)

Fragment 12 (Water Quality relation) = Water Quality ∞ Fragment 4 (Forest relation)

Derived horizontal fragmentation of Police Department relation:

Fragment 13 (Police relation) = Police ∞ Fragment 1 (Forest relation)

Fragment 14 (Police relation) = Police ∞ Fragment 2 (Forest relation)

Fragment 15 (Police relation) = Police ∞ Fragment 3 (Forest relation)

Fragment 16 (Police relation) = Police ∞ Fragment 4 (Forest relation)

Derived horizontal fragmentation of Police Crime registry relation:

Fragment 17 (Police Crime relation) = Police Crime © Fragment 1 (Forest relation)

Fragment 18 (Police Crime relation) = Police Crime ∞ Fragment 2 (Forest relation)

Fragment 19 (Police Crime relation) = Police Crime ∞ Fragment 3 (Forest relation)

Fragment 20 (Police Crime relation) = Police Crime ∞ Fragment 4 (Forest relation)

Derived horizontal fragmentation of Wildlife survey relation:

Fragment 21 (Wildlife survey relation) = Wildlife survey ∞ Fragment 1 (Forest relation)

Fragment 22 (Wildlife survey relation) = Wildlife survey ∞ Fragment 2 (Forest relation)

Fragment 23 (Wildlife survey relation) = Wildlife survey ∞ Fragment 3 (Forest relation)

Fragment 24 (Wildlife survey relation) = Wildlife survey ∞ Fragment 4 (Forest relation)

Derived horizontal fragmentation of Forest dispute registry relation:

Fragment 25 (Forest dispute registry) = Forest dispute registry ∞ Fragment 1 (Forest relation)

Fragment 26 (Forest dispute registry) = Forest dispute registry ∞ Fragment 2 (Forest relation)

Fragment 27 (Forest dispute registry) = Forest dispute registry ∞ Fragment 3 (Forest relation)

Fragment 28 (Forest dispute registry) = Forest dispute registry ∞ Fragment 4 (Forest relation)

Derived horizontal fragmentation of Forest dispute registry relation:

Fragment 29 (Fire relation) = Fire ∞ Fragment 1 (Forest relation)

Fragment 30 (Fire relation) = Fire ∞ Fragment 2 (Forest relation)

Fragment 31 (Fire relation) = Fire ∞ Fragment 3 (Forest relation)

Fragment 32 (Fire relation) = Fire ∞ Fragment 4 (Forest relation)

9.2 Vertical Fragmentation:

Divide a relation R into fragments R1, R2, ..., Rr, each of which contains a subset of R's attributes as well as the primary key of R. Here the goal is to minimize the execution time of user applications that run on these fragments.

There are two types of design methodologies:

- 1. Top down
- 2. Bottom up

If there are too many alternatives for VF then use heuristic solutions based on:

- 1. Grouping: merge attributes to fragments
- 2. Splitting: divide a relation into fragments which will better for disjointness and easier dependency enforcement

Provided we have given a attribute usage matrix of a relation the vertical fragmentation can be done in 2 steps:

- 1. <u>Cluster step:</u> Permute rows and columns of the attribute affinity matrix to generate a clustered affinity matrix where attributes in each cluster are in high affinity to each other. BEA algorithm one of the algorithms used for this purpose.
- **2.** <u>Partition step:</u> Divide the clustered attributes into non-overlapping partitions such that the number of application queries that access to more than one partition is as small as possible.

Water relation:

Clustering step:

Attribute affinity matrix of water relation:

Attribute animity matrix of water relation.									
<u>A1</u>	<u>A2</u>	А3	A4	A5	A6	A7			
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
0	1	0	0	0	1	1			
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
1	1	0	0	0	1	1			
	A1 0 0 0 0 0 0	A1 A2 0 0 0 0 0 1 0 0 0 0 0 0 0 0	A1 A2 A3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1 A2 A3 A4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1 A2 A3 A4 A5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1 A2 A3 A4 A5 A6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

Query	Query matrix												
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8					
Site 1	40	20	50	30	40	50	50	30					
Site 2	20	0	0	10	20	0	0	0					
Site 3	30	30	0	0	0	40	30	40					
Site 4	10	20	20	0	0	0	20	30					
Total	100	70	70	40	60	90	100	100					

Attribute affinity matrix:

	A1	A2	А3	A 4	A5	A6	A7
A1	100	100	0	0	0	100	100
A2	0	170	0	0	0	170	170
А3	0	0	0	0	0	0	0
A4	0	0	0	0	0	0	0
A5	0	0	0	0	0	0	0
A6	100	170	0	0	0	170	170
A7	100	170	0	0	0	170	170

Ordering the position of 3rd column A3 of Attribute Affinity MatrixM:

Cont(0,3,1)=2*(Bond(0,3)+Bond(3,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,3,2)=2*(Bond(1,3)+Bond(3,2)-Bond(1,2))=2(0+0-44000)=-88000

Cont(2,3,4)=2*(Bond(2,3)+Bond(3,4)-Bond(2,4))=2(0+0-0)=0

Ordering the position of 4th column A4 of Attribute Affinity MatrixM:

Cont(0,4,1)=2*(Bond(0,4)+Bond(4,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,4,2)=2*(Bond(1,4)+Bond(4,2)-Bond(1,2))=2(0+0-44000)=-88000

Cont(2,4,3)=2*(Bond(2,4)+Bond(4,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,4,5)=2*(Bond(3,4)+Bond(4,5)-Bond(3,5))=2(0+0-0)=0

Ordering the position of 5th column A5 of Attribute Affinity Matrix:

Cont(0,5,1)=2*(Bond(0,5)+Bond(5,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,5,2)=2*(Bond(1,5)+Bond(5,2)-Bond(1,2))=2(0+0-44000)=-88000

Cont(2,5,3)=2*(Bond(2,5)+Bond(5,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,5,4)=2*(Bond(3,5)+Bond(5,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,5,6)=2*(Bond(4,5)+Bond(5,6)-Bond(4,6))=2(0+0-0)=0

Ordering the position of 6th column A6 of Attribute Affinity Matrix:

Cont(0,6,1)=2*(Bond(0,6)+Bond(6,1)-Bond(0,1))=2(0+44000-0)=88000

Cont(1,6,2)=2*(Bond(1,6)+Bond(6,2)-Bond(1,2))=2(44000+96700 -44000) = 2x96700 = 193400

 $Cont(2,6,3)=2*(Bond(2,6)+Bond(6,3)-Bond(2,3))=2(96700+0-0)= 2 \times 96700 = 193400$

Cont(3,6,4)=2*(Bond(3,6)+Bond(6,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,6,5)=2*(Bond(4,6)+Bond(6,5)-Bond(4,5))=2(0+0-0)=0

 $Cont(5,6,7)=2*(Bond(5,6)+Bond(6,7)-Bond(5,7))=2(0+96700-0)= 2 \times 96700 = 193400$

Ordering the position of 7th column A7 of Attribute Affinity Matrix:

Cont(0.7.1)=2*(Bond(0.7)+Bond(7.1)-Bond(0.1))=2(0+44000-0)=88000

Cont(1,7,2)=2*(Bond(1,7)+Bond(7,2)-Bond(1,2))=2(44000+96700-44000)= 2 x 96700 = 193400

 $Cont(2,7,3)=2*(Bond(2,7)+Bond(7,3)-Bond(2,3))=2(96700+0-0)=2 \times 96700 = 193400$

Cont(3,7,4)=2*(Bond(3,7)+Bond(7,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,7,5)=2*(Bond(4,7)+Bond(7,5)-Bond(4,5))=2(0+0-0)=0

 $Cont(5,7,6)=2*(Bond(5,7)+Bond(7,6)-Bond(5,6))=2(0+96700-0)= 2 \times 96700 = 193400$

Cont(6,7,8)=2*(Bond(6,7)+Bond(7,8)-Bond(6,8))=2(96700+0-0)=193400

Clustered Affinity Matrix													
	A3	A4	A5	A1	A6	A7	A2						
A3	0	0	0	0	0	0	0						
A4	0	0	0	0	0	0	0						
A5	0	0	0	0	0	0	0						
A1	0	0	0	100	100	100	100						
A6	0	0	0	100	170	170	170						
A7	0	0	0	100	170	170	170						
A2	0	0	0	0	170	170	170						
Split point													

TA - set of attributes in fragment f1 = A3,A4,A5

TB - set of attributes in fragment f2 = A6,A7,A2,A1

TQ - Number of applications accesses only TA = 0

BQ - Number of applications accesses only TB = Q3,Q8

OQ - Number of applications accesses both TA and TB = 0

CTQ - Total number of access to attributes by applications that access only TA = 0

CBQ - Total number of access to attributes by applications that access only TB = 170

COQ - Total number of access to attributes by applications that access both TA and TB = 0

Z=(CTQ*CBQ)-(COQ*COQ)

$$= (0 \times 170) - (0 \times 0) = 0$$

This one of the best partition based on BEA algorithm. The rest of the partitions either results to Z = 0 or Z < 0 so no point to include those calculations.

As Z = 0 there is no benefit in vertical partitioning as per BEA algorithm. Considering there is a set of attributes (A3,A4,A5) which will not be accessed by any query,perhaps I can separate that set out and create two fragments.

(A1, A2) is a key so it has to be present in both the fragments

Fragment A: <u>A1,A2,</u>A3,A4,A5 Fragment B: A6,A7,<u>A2,A1</u>

Water Quality Relation

Attribute usage matrix													
	A1	A2	А3	A4	A5	A6	A7	A8	A9				
Q1	0	0	0	0	0	0	0	0	0				
Q2	0	0	0	0	0	0	0	0	0				
Q3	0	0	0	0	0	0	0	0	0				
Q4	0	0	0	0	0	0	0	0	0				
Q5	0	0	0	0	0	0	0	0	0				
Q6	0	0	0	0	0	0	0	0	0				
Q7	1	1	0	0	0	0	0	1	0				
Q8	0	0	0	0	0	0	0	0	0				

Query Matrix																	
		Q ⁻	1	Q 2		Q 3		Q	4	C)5	C	Q 6	(Q 7	(28
Site 1		40)	20)	50)	30)	4	0	5	50	ţ	50	3	30
Site 2		20)	0		0		10)	2	0	C)	()	()
Site 3		30)	30)	0		0		0		4	10	(30	2	10
Site 4		10)	20	,	20)	0		0		C)	2	20	1	30
Tot	Total 10 70		70)	70)	40)	6	0	ē	90		10)		100	
Attri	bu	te /	٩ff	init	y	ma	tr	ix									
	Α	1	Α	2	3		A	۸4	Α	5	A 6		A 7		A8		A 9
<u>A1</u>	10	00	10	00	C)	0)	0		0		0		100)	0
<u>A2</u>	10	00	10	00	C)	0)	0		0		0		100)	0
А3	0		0		C)	0)	0		0		0		0		0
A4	0		0		C)	0)	0		0		0		0		0
A5	0		0		C)	0)	0		0		0		0		0
A6	0		0	0)	0)	0		0		0		0		0
A7	0		0		C)	0)	0		0		0		0		0
A8	10	00	10	00	C)	0)	0		0		0		0		0
A9	0		0		C)	0)	0		0		0		0		0

Ordering the position of 3rd column A3 of Attribute Affinity Matrix:

Cont(0,3,1)=2*(Bond(0,3)+Bond(3,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,3,2)=2*(Bond(1,3)+Bond(3,2)-Bond(1,2))=2(0+0-30000)=-60000

Cont(2,3,4)=2*(Bond(2,3)+Bond(3,4)-Bond(2,4))=2(0+0-0)=0

Ordering the position of 4th column A4 of Attribute Affinity Matrix:

Cont(0,4,1)=2*(Bond(0,4)+Bond(4,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,4,2)=2*(Bond(1,4)+Bond(4,2)-Bond(1,2))=2(0+0-30000)=-60000

Cont(2,4,3)=2*(Bond(2,4)+Bond(4,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,4,5)=2*(Bond(3,4)+Bond(4,5)-Bond(3,5))=2(0+0-0)=0

Ordering the position of 5th column A5 of Attribute Affinity Matrix:

Cont(0,5,1)=2*(Bond(0,5)+Bond(5,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,5,2)=2*(Bond(1,5)+Bond(5,2)-Bond(1,2))=2(0+0-30000)=-60000

Cont(2,5,3)=2*(Bond(2,5)+Bond(5,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,5,4)=2*(Bond(3,5)+Bond(5,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,5,6)=2*(Bond(4,5)+Bond(5,6)-Bond(4,6))=2(0+0-0)=0

Ordering the position of 6th column A6 of Attribute Affinity Matrix:

Cont(0,6,1)=2*(Bond(0,6)+Bond(6,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,6,2)=2*(Bond(1,6)+Bond(6,2)-Bond(1,2))=2(0+0-30000)=-60000

Cont(2,6,3)=2*(Bond(2,6)+Bond(6,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,6,4)=2*(Bond(3,6)+Bond(6,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,6,5)=2*(Bond(4,6)+Bond(6,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,6,7)=2*(Bond(5,6)+Bond(6,7)-Bond(5,7))=2(0+0-0)=0

Ordering the position of 7th column A7 of Attribute Affinity Matrix:

Cont(0,7,1)=2*(Bond(0,7)+Bond(7,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,7,2)=2*(Bond(1,7)+Bond(7,2)-Bond(1,2))=2(0+0-30000)=-60000

Cont(2,7,3)=2*(Bond(2,7)+Bond(7,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,7,4)=2*(Bond(3,7)+Bond(7,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,7,5)=2*(Bond(4,7)+Bond(7,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,7,6)=2*(Bond(5,7)+Bond(7,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,7,8)=2*(Bond(6,7)+Bond(7,8)-Bond(6,8))=2(0+0-0)=0

Ordering the position of 8th column A8 of Attribute Affinity Matrix:

Cont(0,8,1)=2*(Bond(0,8)+Bond(8,1)-Bond(0,1))=2(0+20000-0)=40000

Cont(1,8,2)=2*(Bond(1,8)+Bond(8,2)-Bond(1,2))=2(20000+20000-30000)=20000

Cont(2,8,3)=2*(Bond(2,8)+Bond(8,3)-Bond(2,3))=2(20000+0-0)=40000

Cont(3,8,4)=2*(Bond(3,8)+Bond(8,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,8,5)=2*(Bond(4,8)+Bond(8,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,8,6)=2*(Bond(5,8)+Bond(8,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,8,7)=2*(Bond(6,8)+Bond(8,7)-Bond(6,7))=2(0+0-0)=0

Cont(7,8,9)=2*(Bond(7,8)+Bond(8,9)-Bond(7,9))=2(0+0-0)=0

Cont(9,8,10)=2*(Bond(9,8)+Bond(8,10)-Bond(9,10))=2(0+0-0)=0

Ordering the position of 9th column A8 of Attribute Affinity Matrix:

Cont(0,9,1)=2*(Bond(0,9)+Bond(9,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,9,2)=2*(Bond(1,9)+Bond(9,2)-Bond(1,2))=2(0+0-30000)=-60000

Cont(2,9,3)=2*(Bond(2,9)+Bond(9,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,9,4)=2*(Bond(3,9)+Bond(9,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,9,5)=2*(Bond(4,9)+Bond(9,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,9,6)=2*(Bond(5,9)+Bond(9,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,9,7)=2*(Bond(6,9)+Bond(9,7)-Bond(6,7))=2(0+0-0)=0

Cont(7,9,8)=2*(Bond(7,9)+Bond(9,8)-Bond(7,8))=2(0+0-0)=0

Cont(8,9,10)=2*(Bond(8,9)+Bond(9,10)-Bond(8,10))=2(0+0-0)=0

Water Quality

Clus	Clustered Affinity matrix												
	А3	A4	A5	A6	A7	A9	A8	A1	A2				
А3	0	0	0	0	0	0	0	0	0				
A4	0	0	0	0	0	0	0	0	0				
A5	0	0	0	0	0	0	0	0	0				
A6	0	0	0	0	0	0	0	0	0				
A7	0	0	0	0	0	0	0	0	0				
A9	0	0	0	0	0	0	0	0	0				
A8	0	0	0	0	0	0 /	0	100	100				
A1	0	0	0	0	0	9	100	100	100				
A2	0	0	0	0	0	þ	100	100	100				

Split point

Partition Step:

TA - set of attributes in fragment f1 = A3,A4,A5,A6,A7,A9

TB - set of attributes in fragment f2 = A8,A1,A2

TQ - Number of applications accesses only TA = 0

BQ - Number of applications accesses only TB = Q7

OQ - Number of applications accesses both TA and TB = 0

CTQ - Total number of access to attributes by applications that access only TA = 0

CBQ - Total number of access to attributes by applications that access only TB = 100

COQ - Total number of access to attributes by applications that access both TA and TB = 0

 $Z=(CTQ*CBQ)-(COQ*COQ) = (0 \times 100) - (0x0) = 0$

This one of the best partition based on BEA algorithm. The rest of the partitions either results to Z = 0 or Z < 0 so no point to include those calculations.

As Z = 0 there is no benefit in vertical partitioning as per BEA algorithm. Considering there is a set of attributes (A4,A5,A6,A7,A9) which will not be accessed by any query, perhaps I can separate that set out and create two fragments.

(A1, A2, A3) is a key so it has to be present in both the fragments

ADBMS ASSIGNMENT 1

Fragment A: <u>A1,A2,A3,</u>A4,A5,A6,A7,A9

Fragment B: A1,A2,A3,A8

Forest Relation:

Attri	Attribute usage matrix													
	A1	A2	А3	A4	A5	A6	A7	A8	A9					
Q1	1	1	0	0	1	0	0	0	0					
Q2	1	1	0	0	1	0	0	0	0					
Q3	1	1	0	0	1	0	0	0	0					
Q4	1	1	0	0	1	0	1	1	1					
Q5	1	1	0	0	1	0	0	0	0					
Q6	1	1	0	0	1	0	0	0	0					
Q7	1	1	0	0	1	0	0	0	0					
Q8	1	1	0	0	1	0	0	0	0					

Query Matrix												
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8				
Site 1	40	20	50	30	40	50	50	30				
Site 2	20	0	0	10	20	0	0	0				
Site 3	30	30	0	0	0	40	30	40				
Site 4	10	20	20	0	0	0	20	30				
Total	100	70	70	40	60	90	100	100				

Attribute Affinity matrix									
	A1	A2	А3	A4	A5	A6	A7	A8	A9
A1	630	630	0	0	630	0	40	40	40
A2	630	630	0	0	630	0	40	40	40
А3	0	0	0	0	0	0	0	0	0
A4	0	0	0	0	0	0	0	0	0
A5	630	630	0	0	630	0	40	40	40
A6	0	0	0	0	0	0	0	0	0
A7	40	40	0	0	40	0	40	40	40
A8	40	40	0	0	40	0	40	40	40
A9	40	40	0	0	40	0	40	40	40

Ordering the position of 3rd column A3 of Attribute Affinity Matrix:

$$Cont(0,3,1)=2*(Bond(0,3)+Bond(3,1)-Bond(0,1))=2(0+0-0)=0$$

Cont(1,3,2)=2*(Bond(1,3)+Bond(3,2)-Bond(1,2))=2(0+0-11,95,500)=-23,91,000Cont(2,3,4)=2*(Bond(2,3)+Bond(3,4)-Bond(2,4))=2(0+0-0)=0

Ordering the position of 4th column A4 of Attribute Affinity Matrix:

$$Cont(0,4,1)=2*(Bond(0,4)+Bond(4,1)-Bond(0,1))=2(0+0-0)=0$$

Cont(1,4,2)=2*(Bond(1,4)+Bond(4,2)-Bond(1,2))=2(0+0-11,95,500)=-23,91,000

Cont(2,4,3)=2*(Bond(2,4)+Bond(4,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,4,5)=2*(Bond(3,4)+Bond(4,5)-Bond(3,5))=2(0+0-0)=0

Ordering the position of 5th column A5 of Attribute Affinity Matrix:

Cont(0,5,1)=2*(Bond(0,5)+Bond(5,1)-Bond(0,1))=2(0+11,95,500-0)=23,91,000

Cont(1,5,2)=2*(Bond(1,5)+Bond(5,2)-Bond(1,2))=2(11,95,500+11,95,500-11,95,500)=23,91,000

Cont(2,5,3)=2*(Bond(2,5)+Bond(5,3)-Bond(2,3))=2(11,95,500+0-0)=23,91,000

Cont(3,5,4)=2*(Bond(3,5)+Bond(5,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,5,6)=2*(Bond(4,5)+Bond(5,6)-Bond(4,6))=2(0+0-0)=0

Ordering the position of 6th column A6 of Attribute Affinity Matrix:

Cont(0,6,1)=2*(Bond(0,6)+Bond(6,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,6,2)=2*(Bond(1,6)+Bond(6,2)-Bond(1,2))=2(0+0-11,95,500)=-23,91,000

Cont(2,6,3)=2*(Bond(2,6)+Bond(6,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,6,4)=2*(Bond(3,6)+Bond(6,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,6,5)=2*(Bond(4,6)+Bond(6,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,6,7)=2*(Bond(5,6)+Bond(6,7)-Bond(5,7))=2(0+0-80,400)=-1,60,800

Ordering the position of 7th column A7 of Attribute Affinity Matrix:

Cont(0,7,1)=2*(Bond(0,7)+Bond(7,1)-Bond(0,1))=2(0+80,400-0)=1,60,800

Cont(1,7,2)=2*(Bond(1,7)+Bond(7,2)-Bond(1,2))=2(80,400+80,400-11,95,500)=-20,69,400

Cont(2,7,3)=2*(Bond(2,7)+Bond(7,3)-Bond(2,3))=2(80,400+0-0)=1,60,800

Cont(3,7,4)=2*(Bond(3,7)+Bond(7,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,7,5)=2*(Bond(4,7)+Bond(7,5)-Bond(4,5))=2(0+80,400-0)=1,60,800

Cont(5,7,6)=2*(Bond(5,7)+Bond(7,6)-Bond(5,6))=2(80,400+0-0)=1,60,800

Cont(6,7,8)=2*(Bond(6,7)+Bond(7,8)-Bond(6,8))=2(0+9,600-0)=19,200

Ordering the position of 8th column A8 of Attribute Affinity Matrix:

Cont(0,8,1)=2*(Bond(0,8)+Bond(8,1)-Bond(0,1))=2(0+80,400-0)=1,60,800

Cont(1,8,2)=2*(Bond(1,8)+Bond(8,2)-Bond(1,2))=2(80,400+80,400-11,95,500)=-20,69,400

Cont(2,8,3)=2*(Bond(2,8)+Bond(8,3)-Bond(2,3))=2(80,400+0-0)=1,60,800

Cont(3,8,4)=2*(Bond(3,8)+Bond(8,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,8,5)=2*(Bond(4,8)+Bond(8,5)-Bond(4,5))=2(0+80,400-0)=1,60,800

Cont(5,8,6)=2*(Bond(5,8)+Bond(8,6)-Bond(5,6))=2(0+80,400-0)=1,60,800

Cont(6,8,7)=2*(Bond(6,8)+Bond(8,7)-Bond(6,7))=2(0+9,600-0)=19,200

Cont(7,8,9)=2*(Bond(7,8)+Bond(8,9)-Bond(7,9))=2(9,600+9,600-9,600)=19,200

Cont(9,8,10)=2*(Bond(9,8)+Bond(8,10)-Bond(9,10))=2(9,600+0-0)=19,200

Ordering the position of 9th column A9 of Attribute Affinity Matrix:

Cont(0,9,1)=2*(Bond(0,9)+Bond(9,1)-Bond(0,1))=2(0+80,400-0)=1,60,800

Cont(1,9,2)=2*(Bond(1,9)+Bond(9,2)-Bond(1,2))=2(80,400+80,400-11,95,500)=-20,69,400

Cont(2,9,3)=2*(Bond(2,9)+Bond(9,3)-Bond(2,3))=2(80,400+0-0)=1,60,800

Cont(3,9,4)=2*(Bond(3,9)+Bond(9,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,9,5)=2*(Bond(4,9)+Bond(9,5)-Bond(4,5))=2(0+80,400-0)=1,60,800

Cont(5,9,6)=2*(Bond(5,9)+Bond(9,6)-Bond(5,6))=2(0+80,400-0)=1,60,800

Cont(6,9,7)=2*(Bond(6,9)+Bond(9,7)-Bond(6,7))=2(0+9,600-0)=19,200

Cont(7,9,8)=2*(Bond(7,9)+Bond(9,8)-Bond(7,8))=2(9,600+9,600-9,600)=19,200

Cont(8,9,10)=2*(Bond(8,9)+Bond(9,10)-Bond(8,10))=2(9,600+0-0)=19,200

Clus	tered	affin	ity ma	atrix					
	А3	A4	A6	A7	A8	A9	A1	A5	A2
А3	0	0	0	0	0	0	0	0	0
A4	0	0	0	0	0	0	0	0	0
A6	0	0	0 (0	0	0	0	0	0
A7	0	0	0	40	40	40	40	40	40
A8	0	0	0	40	40	40	40	40	40
A9	0	0	0	40	40	40	40	40	40
A1	0	0	0	40	40	40	630	630	630
A5	0	0	0	40	40	40	630	630	630
A2	0	0	0	40	40	40	630	630	630

Split point

Partition Step:

TA - set of attributes in fragment f1 = A3, A4, A6

TB - set of attributes in fragment f2 = A7, A8, A9, A1, A5, A2

TQ - Number of applications accesses only TA = 0

BQ - Number of applications accesses only TB = Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8

OQ - Number of applications accesses both TA and TB

CTQ - Total number of access to attributes by applications that access only TA = 0

CBQ - Total number of access to attributes by applications that access only TB = 630

COQ - Total number of access to attributes by applications that access both TA and TB = 0

z = (0x630) - (0x0) = 0

This one of the best partition based on BEA algorithm. The rest of the partitions either results to Z = 0 or Z < 0 so no point to include those calculations.

As Z = 0 there is no benefit in vertical partitioning as per BEA algorithm. Considering there is a set of attributes (A3, A4, A6) which will not be accessed by any query, perhaps I can separate that set out and create two fragments.

(A1, A2, A3) is a key so it has to be present in both the fragments

Fragment A: <u>A1,A2,A3,</u>A5,A6,A7,A8,A9

Fragment B: A1,A2,A3,A4

Wildlife Relation:

	A1	A2	А3	A5	A6	A7	A8	A9
Q1	0	0	0	0	0	0	0	0
Q2	1	0	0	1	0	0	0	0
Q3	0	0	0	0	0	0	0	0
Q4	1	0	0	1	0	0	0	0
Q5	0	0	0	0	0	0	0	0
Q6	1	0	0	0	0	0	0	0
Q7	1	0	0	0	0	0	0	0
Q8	1	0	0	0	0	0	0	0

Query Matrix											
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8			
Site 1	40	20	50	30	40	50	50	30			
Site 2	20	0	0	10	20	0	0	0			
Site 3	30	30	0	0	0	40	30	40			
Site 4	10	20	20	0	0	0	20	30			
Total	100	70	70	40	60	90	100	100			

Attri	bute /	Affinit	y ma	trix				
	A1	A2	А3	A4	A5	A6	A7	A8
A1	400	0	0	290	110	0	0	0
A2	0	0	0	0	0	0	0	0
А3	0	0	0	0	0	0	0	0
A4	290	0	0	0	0	0	0	0
A5	110	0	0	0	0	0	0	0
A6	0	0	0	0	0	0	0	0
A7	0	0	0	0	0	0	0	0
A8	0	0	0	0	0	0	0	0

Ordering the position of 3rd column A3 of Attribute Affinity Matrix:

Cont(0,3,1)=2*(Bond(0,3)+Bond(3,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,3,2)=2*(Bond(1,3)+Bond(3,2)-Bond(1,2))=2(0+0-0)=0

Cont(2,3,4)=2*(Bond(2,3)+Bond(3,4)-Bond(2,4))=2(0+0-0)=0

Ordering the position of 4th column A4 of Attribute Affinity Matrix:

Cont(0,4,1)=2*(Bond(0,4)+Bond(4,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,4,2)=2*(Bond(1,4)+Bond(4,2)-Bond(1,2))=2(1,16,000+0-0)=2,32,000

Cont(2,4,3)=2*(Bond(2,4)+Bond(4,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,4,5)=2*(Bond(3,4)+Bond(4,5)-Bond(3,5))=2(0+31,900-0)=63,800

Ordering the position of 5th column A5 of Attribute Affinity Matrix:

Cont(0,5,1)=2*(Bond(0,5)+Bond(5,1)-Bond(0,1))=2(0+44,000-0)=88,000

Cont(1,5,2)=2*(Bond(1,5)+Bond(5,2)-Bond(1,2))=2(44,000+0-0)=88,000

Cont(2,5,3)=2*(Bond(2,5)+Bond(5,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,5,4)=2*(Bond(3,5)+Bond(5,4)-Bond(3,4))=2(0+31,900-0)=63,800

Cont(4,5,6)=2*(Bond(4,5)+Bond(5,6)-Bond(4,6))=2(31,900+0-0)=63,800

Ordering the position of 6th column A6 of Attribute Affinity Matrix:

Cont(0,6,1)=2*(Bond(0,6)+Bond(6,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,6,2)=2*(Bond(1,6)+Bond(6,2)-Bond(1,2))=2(0+0-0)=0

Cont(2,6,3)=2*(Bond(2,6)+Bond(6,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,6,4)=2*(Bond(3,6)+Bond(6,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,6,5)=2*(Bond(4,6)+Bond(6,5)-Bond(4,5))=2(0+0-31,900)=-63,800

Cont(5,6,7)=2*(Bond(5,6)+Bond(6,7)-Bond(5,7))=2(0+0-0)=0

Ordering the position of 7th column A7 of Attribute Affinity Matrix:

Cont(0,7,1)=2*(Bond(0,7)+Bond(7,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,7,2)=2*(Bond(1,7)+Bond(7,2)-Bond(1,2))=2(0+0-0)=0

Cont(2,7,3)=2*(Bond(2,7)+Bond(7,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,7,4)=2*(Bond(3,7)+Bond(7,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,7,5)=2*(Bond(4,7)+Bond(7,5)-Bond(4,5))=2(0+0-31,900)=-63,800

Cont(5,7,6)=2*(Bond(5,7)+Bond(7,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,7,8)=2*(Bond(6,7)+Bond(7,8)-Bond(6,8))=2(0+0-0)=0

Ordering the position of 8th column A8 of Attribute Affinity Matrix:

Cont(0,8,1)=2*(Bond(0,8)+Bond(8,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,8,2)=2*(Bond(1,8)+Bond(8,2)-Bond(1,2))=2(0+0-0)=0

Cont(2,8,3)=2*(Bond(2,8)+Bond(8,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,8,4)=2*(Bond(3,8)+Bond(8,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,8,5)=2*(Bond(4,8)+Bond(8,5)-Bond(4,5))=2(0+0-31,900)=-63,800

Cont(5,8,6)=2*(Bond(5,8)+Bond(8,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,8,7)=2*(Bond(6,8)+Bond(8,7)-Bond(6,7))=2(0+0-0)=0

Cont(7,8,9)=2*(Bond(7,8)+Bond(8,9)-Bond(7,9))=2(0+0-0)=0

Cont(9,8,10)=2*(Bond(9,8)+Bond(8,10)-Bond(9,10))=2(0+0-0)=0

Clus	tered a	ffinity	matrix					
	А3	A6	A7	A8	A1	A4	A5	A2
A3	0	0	0	0	0	0	0	0
A6	0	0	0	0	0	0	0	0
A7	0	0	0	0	0	0	0	0
A8	0	0	0	0	0	0	0	0
A1	0	0	0	0 /	400	290	110	0
A4	0	0	0	9/	290	0	0	0
A5	0	0	0	/ 0	110	0	0	0
A2	0	0	0 /	0	0	0	0	0

Split point

Partition step:

TA - set of attributes in fragment f1 = A3,A6,A7,A8

TB - set of attributes in fragment f2 = A1,A4,A5,A2

TQ - Number of applications accesses only TA = Q2,Q4,Q6,Q7,Q8

BQ - Number of applications accesses only TB = 0

OQ - Number of applications accesses both TA and TB = 0

CTQ - Total number of access to attributes by applications that access only TA = 400

CBQ - Total number of access to attributes by applications that access only TB = 0

COQ - Total number of access to attributes by applications that access both TA and TB = 0

$$Z = (0x400) - (0x0) = 0$$

As Z = 0 there is no benefit in vertical partitioning as per BEA algorithm. Considering there is a set of attributes (A3,A6,A7,A8) which will not be accessed by any query,perhaps I can separate that set out and create two fragments. (A1) is a key so it has to be present in both the fragments

Fragment A: <u>A1,</u>A3,A6,A7,A8 Fragment B: A1,A4,A5,A2

Police Crime registry:

Attril	oute ı	usag	e ma	trix					
	A1	A2	A3	A4	A5	A6	A 7	A8	A9
Q1	0	0	0	0	0	0	0	0	0
Q2	0	0	0	0	0	0	0	0	0
Q3	0	0	0	0	0	0	0	0	0
Q4	0	0	0	0	0	0	0	0	0
Q5	0	1	1	1	0	0	0	0	0
Q6	0	0	0	0	0	0	0	0	0
Q7	0	0	0	0	0	0	0	0	0
Q8	0	0	0	0	0	0	0	0	0

Query Matrix											
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8			
Site 1	40	20	50	30	40	50	50	30			
Site 2	20	0	0	10	20	0	0	0			
Site 3	30	30	0	0	0	40	30	40			
Site 4	10	20	20	0	0	0	20	30			
Total	100	70	70	40	60	90	100	100			

Attr	Attribute Affinity matrix												
	A1	A2	А3	A4	A5	A6	A7	A8	A9				
A1	0	0	0	0	0	0	0	0	0				
A2	0	60	60	60	0	0	0	0	0				
А3	0	60	60	60	0	0	0	0	0				
A4	0	60	60	60	0	0	0	0	0				
A5	0	0	0	0	0	0	0	0	0				
A6	0	0	0	0	0	0	0	0	0				
A7	0	0	0	0	0	0	0	0	0				
A8	0	0	0	0	0	0	0	0	0				
A9	0	0	0	0	0	0	0	0	0				

Ordering the position of 3rd column A3 of Attribute Affinity Matrix:

Cont(0,3,1)=2*(Bond(0,3)+Bond(3,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,3,2)=2*(Bond(1,3)+Bond(3,2)-Bond(1,2))=2(0+10,800-0)=21,600

Cont(2,3,4)=2*(Bond(2,3)+Bond(3,4)-Bond(2,4))=2(10,800+10,800-10,800)=21,600

Ordering the position of 4th column A4 of Attribute Affinity Matrix:

Cont(0,4,1)=2*(Bond(0,4)+Bond(4,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,4,2)=2*(Bond(1,4)+Bond(4,2)-Bond(1,2))=2(0+10,800-0)=21,600

Cont(2,4,3)=2*(Bond(2,4)+Bond(4,3)-Bond(2,3))=2(10,800+10,800-10,800)=21,600

Cont(3,4,5)=2*(Bond(3,4)+Bond(4,5)-Bond(3,5))=2(10,800+0-0)=21,600

Ordering the position of 5th column A5 of Attribute Affinity Matrix:

Cont(0,5,1)=2*(Bond(0,5)+Bond(5,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,5,2)=2*(Bond(1,5)+Bond(5,2)-Bond(1,2))=2(0+0-0)=0

Cont(2,5,3)=2*(Bond(2,5)+Bond(5,3)-Bond(2,3))=2(0+0-10,800)=-21,600

Cont(3,5,4)=2*(Bond(3,5)+Bond(5,4)-Bond(3,4))=2(0+0-10,800)=-21,600

Cont(4,5,6)=2*(Bond(4,5)+Bond(5,6)-Bond(4,6))=2(0+0-0)=0

Maximum value of Cont is 22400. All functions producing the same value. Hence, we need not to change the position. Now order is CA(1,2,3,4,5)

Ordering the position of 6th column A6 of Attribute Affinity Matrix:

Cont(0,6,1)=2*(Bond(0,6)+Bond(6,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,6,2)=2*(Bond(1,6)+Bond(6,2)-Bond(1,2))=2(0+0-0)=0

Cont(2,6,3)=2*(Bond(2,6)+Bond(6,3)-Bond(2,3))=2(0+0-10,800)=-21,600

Cont(3,6,4)=2*(Bond(3,6)+Bond(6,4)-Bond(3,4))=2(0+0-10,800)=-21,600

Cont(4.6.5)=2*(Bond(4.6)+Bond(6.5)-Bond(4.5))=2(0+0-0)=0

Cont(5,6,7)=2*(Bond(5,6)+Bond(6,7)-Bond(5,7))=2(0+0-0)=0

Ordering the position of 7th column A7 of Attribute Affinity Matrix:

Cont(0,7,1)=2*(Bond(0,7)+Bond(7,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,7,2)=2*(Bond(1,7)+Bond(7,2)-Bond(1,2))=2(0+0-0)=0

Cont(2.7.3)=2*(Bond(2.7)+Bond(7.3)-Bond(2.3))=2(0+0-10.800) = -21.600

Cont(3,7,4)=2*(Bond(3,7)+Bond(7,4)-Bond(3,4))=2(0+0-10,800)=-21,600

Cont(4,7,5)=2*(Bond(4,7)+Bond(7,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,7,6)=2*(Bond(5,7)+Bond(7,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,7,8)=2*(Bond(6,7)+Bond(7,8)-Bond(6,8))=2(0+0-0)=0

Maximum value of Cont is 22400. Multiple functions are producing the same value. We can choose any one. Now order is CA(1,2,3,4,5,6,7)

Ordering the position of 8th column A8 of Attribute Affinity Matrix:

Cont(0,8,1)=2*(Bond(0,8)+Bond(8,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,8,2)=2*(Bond(1,8)+Bond(8,2)-Bond(1,2))=2(0+0-0)=0

Cont(2,8,3)=2*(Bond(2,8)+Bond(8,3)-Bond(2,3))=2(0+0-10,800)=-21,600

Cont(3,8,4)=2*(Bond(3,8)+Bond(8,4)-Bond(3,4))=2(0+0-10,800)=-21,600

Cont(4,8,5)=2*(Bond(4,8)+Bond(8,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,8,6)=2*(Bond(5,8)+Bond(8,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,8,7)=2*(Bond(6,8)+Bond(8,7)-Bond(6,7))=2(0+0-0)=0

Cont(7,8,9)=2*(Bond(7,8)+Bond(8,9)-Bond(7,9))=2(0+0-0)=0

Cont(9,8,10)=2*(Bond(9,8)+Bond(8,10)-Bond(9,10))=2(0+0-0)=0

Police Crime registry

Clustered affinity matrix											
	A5	A6	A7	A8	A9	A1	А3	A4	A2		
A5	0	0	0	0	0	0	0	0	0		
A6	0	0	0	0	0	0	0	0	0		
A7	0	0	0	0	0	0	0	0	0		
A8	0	0	0	0	0	0	0	0	0		
A9	0	0	0	0	0	0	0	0	0		
A1	0	0	0	0	0	0 _	0	0	0		
A3	0	0	0	0	0	0	60	60	60		
A4	0	0	0	0	0	0	60	60	60		
A2	0	0	0	0	0	0	60	60	60		

split point

TA - set of attributes in fragment f1 = A1,A5,A6,A7,A8,A9

TB - set of attributes in fragment f2 = A2,A3,A4

TQ - Number of applications accesses only TA = 0

BQ - Number of applications accesses only TB = Q5

OQ - Number of applications accesses both TA and TB = 0

CTQ - Total number of access to attributes by applications that access only TA = 60

CBQ - Total number of access to attributes by applications that access only TB = 0

COQ - Total number of access to attributes by applications that access both TA and TB = 0

$$Z=(0x60)-(0x0)=0$$

This one of the best partition based on BEA algorithm. The rest of the partitions either results to Z = 0 or Z < 0 so no point to include those calculations.

As Z = 0 there is no benefit in vertical partitioning as per BEA algorithm. Considering there is a set of attributes (A1,A5,A6,A7,A8,A9) which will not be accessed by any query,perhaps I can separate that set out and create two fragments. (A1, A2, A3) is a key so it has to be present in both the fragments

Fragment A: A1,A2,A3,A5,A6,A7,A8,A9

Fragment B: A1,A2,A3,A4

Fire Department:

Attribute usage matrix

	A1	A2	АЗ	A4	A6	A7	A8	A9
Q1	0	0	0	0	0	0	0	0
Q2	0	0	0	0	0	0	0	0
Q3	0	0	0	0	0	0	0	0
Q4	0	0	0	0	0	0	0	0
Q5	0	0	0	0	0	0	0	0
Q6	0	1	0	0	0	0	1	0
Q7	1	1	0	0	0	0	1	0
Q8	1	1	0	0	0	0	0	1

Query	Query Matrix											
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8				
Site 1	40	20	50	30	40	50	50	30				
Site 2	20	0	0	10	20	0	0	0				
Site 3	30	30	0	0	0	40	30	40				
Site 4	10	20	20	0	0	0	20	30				
Total	100	70	70	40	60	90	100	100				

Attribute affinity matrix

	A1	A2	A3	A4	A5	A6	A7	A8
A1	200	200	0	0	0	0	100	100
A2	200	290	0	0	0	0	190	100
A3	0	0	0	0	0	0	0	0
A4	0	0	0	0	0	0	0	0
A5	0	0	0	0	0	0	0	0
A6	0	0	0	0	0	0	0	0
A7	100	190	0	0	0	0	0	0
A8	100	100	0	0	0	0	0	0

Ordering the position of 3rd column A3 of Attribute Affinity Matrix:

Cont(0,3,1)=2*(Bond(0,3)+Bond(3,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,3,2)=2*(Bond(1,3)+Bond(3,2)-Bond(1,2))=2(0+0-1,27,000)=-2,54,000

Cont(2,3,4)=2*(Bond(2,3)+Bond(3,4)-Bond(2,4))=2(0+0-0)=0

Ordering the position of 4th column A4 of Attribute Affinity Matrix:

Cont(0,4,1)=2*(Bond(0,4)+Bond(4,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,4,2)=2*(Bond(1,4)+Bond(4,2)-Bond(1,2))=2(0+0-1,27,000)=-2,54,000

Cont(2,4,3)=2*(Bond(2,4)+Bond(4,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,4,5)=2*(Bond(3,4)+Bond(4,5)-Bond(3,5))=2(0+0-0)=0

Ordering the position of 5th column A5 of Attribute Affinity Matrix:

Cont(0,5,1)=2*(Bond(0,5)+Bond(5,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,5,2)=2*(Bond(1,5)+Bond(5,2)-Bond(1,2))=2(0+0-1,27,000)=-2,54,000

Cont(2,5,3)=2*(Bond(2,5)+Bond(5,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,5,4)=2*(Bond(3,5)+Bond(5,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,5,6)=2*(Bond(4,5)+Bond(5,6)-Bond(4,6))=2(0+0-0)=0

Ordering the position of 6th column A6 of Attribute Affinity Matrix:

Cont(0,6,1)=2*(Bond(0,6)+Bond(6,1)-Bond(0,1))=2(0+0-0)=0

Cont(1,6,2)=2*(Bond(1,6)+Bond(6,2)-Bond(1,2))=2(0+0-1,27,000)=-2,54,000

Cont(2,6,3)=2*(Bond(2,6)+Bond(6,3)-Bond(2,3))=2(0+0-0)=0

Cont(3,6,4)=2*(Bond(3,6)+Bond(6,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,6,5)=2*(Bond(4,6)+Bond(6,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,6,7)=2*(Bond(5,6)+Bond(6,7)-Bond(5,7))=2(0+0-0)=0

Ordering the position of 7th column A7 of Attribute Affinity Matrix:

Cont(0,7,1)=2*(Bond(0,7)+Bond(7,1)-Bond(0,1))=2(0+58,000-0)=1,16,000

Cont(1,7,2)=2*(Bond(1,7)+Bond(7,2)-Bond(1,2))=2(58,000+58,000-1,27,000)=-22,000

Cont(2,7,3)=2*(Bond(2,7)+Bond(7,3)-Bond(2,3))=2(58,000+0-0)=1,16,000

Cont(3,7,4)=2*(Bond(3,7)+Bond(7,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,7,5)=2*(Bond(4,7)+Bond(7,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,7,6)=2*(Bond(5,7)+Bond(7,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,7,8)=2*(Bond(6,7)+Bond(7,8)-Bond(6,8))=2(0+29,000-0)=58,000

Ordering the position of 8th column A8 of Attribute Affinity Matrix:

Cont(0,8,1)=2*(Bond(0,8)+Bond(8,1)-Bond(0,1))=2(0+40000-0)=80000

Cont(1,8,2)=2*(Bond(1,8)+Bond(8,2)-Bond(1,2))=2(40000+49000-1,27,000)=-38000

Cont(2,8,3)=2*(Bond(2,8)+Bond(8,3)-Bond(2,3))=2(49000+0-0)=98000

Cont(3,8,4)=2*(Bond(3,8)+Bond(8,4)-Bond(3,4))=2(0+0-0)=0

Cont(4,8,5)=2*(Bond(4,8)+Bond(8,5)-Bond(4,5))=2(0+0-0)=0

Cont(5,8,6)=2*(Bond(5,8)+Bond(8,6)-Bond(5,6))=2(0+0-0)=0

Cont(6,8,7)=2*(Bond(6,8)+Bond(8,7)-Bond(6,7))=2(0+29,000-0)=58,000

Cont(7,8,9)=2*(Bond(7,8)+Bond(8,9)-Bond(7,9))=2(29,000+0-0)=58,000

Clus	Clustered affinity matrix							
	A3	A4	A5	A6	A8	A7	A1	A2
A3	0	0	0	0	0	0	0	0
A4	0	0	0	0	0	0	0	0
A6	0	0	0	0	0	0	0	0
A6	0	0	0	0	0	0	0	0
A1	0	0	0	0 /	100	100	200	200
A2	0	0	0	9	100	190	200	290
A7	0	0	0	/0	0	0	100	190
A8	0	0	0 /	0	0	0	100	100

Split point

Partitioning Step:

TA - set of attributes in fragment f1 = A3,A4,A5,A6

TB - set of attributes in fragment f2 = A1,A2,A7,A8

TQ - Number of applications accesses only TA = 0

BQ - Number of applications accesses only TB = Q5

OQ - Number of applications accesses both TA and TB = 0

CTQ - Total number of access to attributes by applications that access only TA = 0

CBQ - Total number of access to attributes by applications that access only TB = 290

COQ - Total number of access to attributes by applications that access both TA and TB = 0

$$Z = (0x290) - (0x0) = 0$$

This one of the best partition based on BEA algorithm. The rest of the partitions either results to Z = 0 or Z < 0 so no point to include those calculations.

As Z = 0 there is no benefit in vertical partitioning as per BEA algorithm. Considering there is a set of attributes (A3,A4,A5,A6) which will not be accessed by any query,perhaps I can separate that set out and create two fragments. (A1, A2) is a key so it has to be present in both the fragments

Fragment A: <u>A1,A2,</u>A3,A4,A5,A6

Fragment B: A1,A2,A7,A8

10. PHYSICAL DESIGN:

This physical design talks about how these fragments are stores in secondary memory. Based on global schema defined in Section 6, the size of all the attributes of all relations remains same. Following are the assumptions which are considered for the physical design:

- Fixed length records are considered for all relations.
- The delimiter for each field is length of the field
- Total number of records in respective relations (provided in below table).
- Block size is 1024 bytes.
- Record doesn't span over multiple blocks (this can be achieved by taking floor function during calculating number of records per block to restrict single record doesn't span over blocks).
- Block pointer(Bp) size is 4 bytes
- Average Seek Time(S) is 10 ms irrespective of any site.
- Average Disk rotation time (Latency) Time (L) is 9 ms irrespective of any site.
- Block transfer rate (Tr) is 1 ms irrespective of any site.

Fragment	Relation	# of record	Record size in bytes	Blocking factor	# no of blocks
Fragment 1	Forest Department	25	44	1024/44 = 23	2
Fragment 2	Forest Department	20	44	23	1
Fragment 3	Forest Department	30	44	23	2
Fragment 4	Forest Department	25	44	23	2
Fragment 5	Water Department	25	38	1024/38 = 26	1
Fragment 6	Water Department	20	38	26	1
Fragment 7	Water Department	30	38	26	2
Fragment 8	Water Department	25	38	26	1
Fragment 9	Water Quality	100	24	1024/24 = 42	3
Fragment 10	Water Quality	80	24	42	2
Fragment 11	Water Quality	120	24	42	3
Fragment 12	Water Quality	100	24	42	3
Fragment 13	Police Department	125	28	1024/28 = 36	4
Fragment 14	Police Department	100	28	36	3
Fragment 15	Police Department	150	28	36	5
Fragment 16	Police Department	125	28	36	4
Fragment 17	Police Crime registry	1000	40	1024/40 = 25	40
Fragment 18	Police Crime registry	800	40	25	20

Fragment 19	Police Crime registry	1200	40	25	60
Fragment 20	Police Crime registry	1000	40	25	40
Fragment 21	Wildlife Survey	25	16	1024/16 = 64	1
Fragment 22	Wildlife Survey	20	16	64	1
Fragment 23	Wildlife Survey	30	16	64	1
Fragment 24	Wildlife Survey	25	16	64	1
Fragment 25	Forest dispute registry	100	18	1024/18 = 56	2
Fragment 26	Forest dispute registry	80	18	56	2
Fragment 27	Forest dispute registry	120	18	56	3
Fragment 28	Forest dispute registry	100	18	56	2
Fragment 29	Fire department	125	34	1024/34 = 30	5
Fragment 30	Fire department	100	34	30	4
Fragment 31	Fire department	150	34	30	5
Fragment 32	Fire department	125	34	30	5

Types of Queries and preferred access methods:

Query type 1: access all records of a given type

"Increase everyone's salary by 10%"

Preferred access method: sequential processing

Query type 2: access at most one record

"Find the address of John Smith, whose id number is 333-44-5555"

Preferred access methods: hashing, B+ tree index

Query type 3: access a subset of records of a given type

"Find all employees who have C programming experience and over three years with the company"

Preferred access method: secondary indexing

Access Time to local query:

Next we will calculate the time taken to query each relation considering the relation is locally present. Even though in our sample SQL's are just read still provided the Local (keyword local because it's not yet distributed) Query Time and Local Update Time formulae

- (i) Local Query Time = (Seek Time + Latency + Block Transfer Time) * N
- (ii) Local Update Time = (Seek Time + Latency + Block Transfer Time) * N * 2

Where,

- N is number of disk block access, which depends on the relation (we already calculated this above and will consider indexed logic # of block access).
- *2 is included in the Update time, since the data block has to be fetched into memory from the disk, updated and then written back to the disk

Access Time to Remote query:

Let us consider the distance between sites. Assume that each site is located at some distance say 100kms from the other site and the speed of the transmission media connecting the sites is 10^7 meters/second. Propagation delay between the sites is computed as below.

(i) **Propagation Delay** = (Distance between sites)/(Speed of Transmission media) = 100 * 10^3 / 2 * 10^6 which will be = 0.05s = 50 ms

Let us assume bandwidth of the network as 1MBps and data is exchanged between sites in form of packets. Package size is assumed to be 1500bytes. Transmission Time for a packet is given by,

- (ii) Packet Transmission Time = (Size of packet) / Bandwidth = (1500 B) / (10^6 B/s) = 0.0015s, approximately equal to 2ms
- (iii)Remote Query Time = Local Query Time + 2 * Propagation Delay + Packet Transmission Time
- (iv) Remote Update Time = Local Update Time + 2 * Propagation Delay

Packet Transmission Time is included in Remote Query Time because; the result of the query will contain some data which is not negligible. But this data depends on the query, so it is assumed to be one packet, on an average. Using the formulations made above, the below table can be constructed.

Lets consider

A = # of block access With Indexing

B = Local Query Time (ms) = (S+L+Tr)

C = Remote Query time

Fragment	Relation	# no of block s	Access method	A	В	С
Fragment 1	Forest Department	2	Sequential	-	40	142
Fragment 2	Forest Department	1	Sequential	-	20	122
Fragment 3	Forest Department	2	Sequential	-	40	142
Fragment 4	Forest Department	2	Sequential	-	40	142
Fragment 5	Water Department	1	Sequential	-	20	122
Fragment 6	Water Department	1	Sequential	-	20	122
Fragment 7	Water Department	2	Sequential	-	40	142
Fragment 8	Water Department	1	Sequential	-	20	122
Fragment 9	Water Quality	3	Clustered Index	2	40	142
Fragment 10	Water Quality	2	Sequential	-	40	142
Fragment 11	Water Quality	3	Clustered Index	2	40	142
Fragment 12	Water Quality	3	Clustered Index	2	40	142
Fragment 13	Police Department	4	Clustered Index	2	40	142
Fragment 14	Police Department	3	Clustered Index	2	40	142
Fragment 15	Police Department	5	Clustered Index	2	40	142
Fragment 16	Police Department	4	Clustered Index	2	40	142
Fragment 17	Police Crime registry	40	Clustered Index	2	40	142
Fragment 18	Police Crime registry	20	Clustered Index	2	40	142
Fragment 19	Police Crime registry	60	Clustered Index	2	40	142
Fragment 20	Police Crime registry	40	Clustered Index	2	40	142
Fragment 21	Wildlife Survey	1	Sequential	-	20	122
Fragment 22	Wildlife Survey	1	Sequential	-	20	122
Fragment 23	Wildlife Survey	1	Sequential	-	20	122
Fragment 24	Wildlife Survey	1	Sequential	-	20	122
Fragment 25	Forest dispute registry	2	Sequential	-	40	142
Fragment 26	Forest dispute registry	2	Sequential	-	40	142
Fragment 27	Forest dispute registry	3	Clustered Index	2	40	142
Fragment 28	Forest dispute registry	2	Sequential	-	40	142
Fragment 29	Fire department	5	Clustered Index	2	40	142
Fragment 30	Fire department	4	Clustered Index	2	40	142
Fragment 31	Fire department	5	Clustered Index	2	40	142
Fragment 32	Fire department	5	Clustered Index	2	40	142

11. ALLOCATION AND REPLICATION:

For allocating the fragments to sites we considered the **Redundant All Beneficial Sites method**. Transaction table is given below: consider there are four sites: S1, S2, S3, S4

Transaction	Originating sites	frequency	Fragment Access
Q1	S1, S2	200	F1 – 25 reads
			F2 – 20 reads
			F3 – 30 reads
			F4 – 25 reads
Q2	S1, S4	250	F1 – 25 reads, F21 - 25 reads
			F2 – 20 reads, F22 – 20 reads
			F3 – 30 reads, F23 – 30 reads
			F4 – 25 reads, F24 – 25 reads
Q3	S2, S3	200	F1 – 25 reads, F5 - 100 reads
			F2 – 20 reads, F6 – 80 reads
			F3 – 30 reads, F7 – 120 reads
			F4 – 25 reads, F8 – 100 reads
Q4	S1, S2, S3	400	F1 – 25 reads, F21 - 25 reads
			F2 – 20 reads, F22 – 20 reads
			F3 – 30 reads, F23 – 30 reads
			F4 – 25 reads, F24 – 25 reads
Q5	S1, S2, S4	150	F1 – 25 reads, F21 - 1000 reads
			F2 – 20 reads, F22 – 800 reads
			F3 – 30 reads, F23 – 1200 reads
			F4 – 25 reads, F24 – 1000 reads

Q6	S1,S4	250	F1 – 25 reads, F21 - 25 reads
			F2 – 20 reads, F22 – 800 reads
			F3 – 30 reads, F23 – 1200 reads
			F4 – 25 reads, F24 – 1000 reads
Q7	S3, S4	400	F1 - 25 reads, F9 - 100 reads, F29 - 125 reads,
			F21 - 25 reads
			F2 - 20 reads, F10 - 80 reads, F30 - 100 reads,
			F22 - 20 reads
			F3 - 30 reads, F11 - 120 reads, F31 - 150 reads,
			F23 - 30 reads
			F4 - 25 reads, F12 - 100 reads, F32 - 125 reads,
			F24 - 25 reads
Q8	S1, S2	300	F1 - 25 reads, F5 - 100 reads, F29 - 125 reads,
			F21 - 25 reads
			F2 - 20 reads, F6 - 80 reads, F30 - 100 reads,
			F22 - 20 reads
			F3 - 30 reads, F7 - 120 reads, F31 - 150 reads,
			F23 - 30 reads
			F4 - 25 reads, F8 - 100 reads, F32 - 125 reads,
			F24 - 25 reads

Since our sample queries are related only read (not update) will calculate only Benefit Computation (not Cost computation) of placing a fragment at a particular site. Let us proceed to Benefit Computation. Benefit computation is based on read queries. The benefit of placing each fragment at each site is given in the below table.

Fragment s	Originatin g sites	Read query	# of reads * Freq * (Remote Time - Local Time)	Benefit(ms)
F1	S1	Q1,Q2,Q4,Q5,Q6,Q 8	25 x (200 +250+400+150+250+300) x (142-40)	39,52,500
-	S2	Q1,Q3,Q4,Q5,Q8	25 x (200+200+400+150+300) x (122-20)	31,87,500
-	S3	Q3,Q4	25 x (200+400) x (142-40)	15,30,000
-	S4	Q2,Q5,Q6,Q7	25 x (250+150+250+400) x (142-40)	26,77,500
F2	S1	Q1,Q2,Q4,Q5,Q6,Q 8	20 x (200 +250+400+150+250+300) x (122-20)	31,62,000
_	S2	Q1,Q3,Q4,Q5,Q8	20 x (200+200+400+150+300) x (122-20)	25,50,000
-	S3	Q3,Q4	20 x (200+400) x (122-20)	12,24,000
-	S4	Q2,Q5,Q6,Q7	20 x (250+150+250+400) x (122-20) =	21,42,000
F3	S1	Q1,Q2,Q4,Q5,Q6,Q 8	30 x (200 +250+400+150+250+300) x (142-40)	47,43,000
-	S2	Q1,Q3,Q4,Q5,Q8	30 x (200+200+400+150+300) x (142-40)	38,25,000
-	S3	Q3,Q4	30 x (200+400) x (142-40)	18,36,000
-	S4	Q2,Q5,Q6,Q7	30 x (250+150+250+400) x (142-40)	32,13,000
F4	S1	Q1,Q2,Q4,Q5,Q6,Q 8	25 x (200 +250+400+150+250+300) x (142-40)	39,52,500

-	S2	Q1,Q3,Q4,Q5,Q8	25 x (200+200+400+150+300) x (142-40)	31,87,500
-	S3	Q3,Q4	25 x (200+400) x (142-40)	15,30,000
-	S4	Q2,Q5,Q6,Q7	25 x (250+150+250+400) x (142-40)	26,77,500
F5	S1	Q8	25 x (300) x (122-20)	7,65,000
-	S2	Q8,Q3	25 x (200+300) x (122- 20)	12,75,000
-	S3	Q3	25 x (200) x (122-20)	5,10,000
-	S4	-	0	0
F6	S1	Q8	20 x (300) x (122-20)	6,12,000
-	S2	Q8,Q3	20 x (200+300) x (122- 20)	10,20,000
-	S3	Q3	20 x (200) x (122-20)	4,08,000
-	S4	-	0	
F7	S1	Q8	30 x (300) x (142-40)	9,18,000
-	S2	Q8,Q3	30 x (200+300) x (142- 40)	15,30,000
-	S3	Q3	30 x (200) x (142-40)	6,12,000
-	S4	-	0	0
F8	S1	Q8	25 x (300) x (122-20)	7,65,000
-	S2	Q8,Q3	25 x (200+300) x (122- 20)	12,75,000
-	S3	Q3	25 x (200) x (122-20)	5,10,000

-	S4	-	0	0
F9	S1	-	0	0
-	S2	-	0	0
-	S3	Q7	100 x (400) x (142-40)	40,80,000
-	S4	Q7	100 x (400) x (142-40)	40,80,000
F10	S1	-	0	0
-	S2	-	0	0
-	S3	Q7	80 x (400) x (142-40)	32,64,000
-	S4	Q7	80 x (400) x (142-40)	32,64,000
F11	S1	-	0	0
-	S2	-	0	0
-	S3	Q7	120 x (400) x (142-40)	48,96,000
-	S4	Q7	120 x (400) x (142-40)	48,96,000
F12	S1	-	0	0
-	S2	-	0	0
-	S3	Q7	100 x (400) x (142-40)	40,80,000
-	S4	Q7	100 x (400) x (142-40)	40,80,000
F13	S1	-	0	0

-	S2	-	0	0
-	S3	-	0	0
-	S4	-	0	0
F14	S1	-	0	0
-	S2	-	0	0
-	S3	-	0	0
-	S4	-	0	0
F15	S1	-	0	0
-	S2	-	0	0
-	S3	-	0	0
-	S4	-	0	0
F16	S1	-	0	0
-	S2	-	0	0
-	S3	-	0	0
-	S4	-	0	0
F17	S1	Q5	1000 x (150) x (142-40)	1,53,00,000
-	S2	Q5	1000 x (150) x (142-40)	1,53,00,000
-	S3	-	0	0

-	S4	Q5	1000 x (150) x (142-40)	1,53,00,000
F18	S1	Q5	800 x (150) x (142-40)	1,22,40,000
-	S2	Q5	800 x (150) x (142-40)	1,22,40,000
-	S3	-	0	0
-	S4	Q5	800 x (150) x (142-40)	1,22,40,000
F19	S1	Q5	1200 x (150) x (142-40)	1,83,60,000
-	S2	Q5	1200 x (150) x (142-40)	1,83,60,000
-	S3	-	0	0
-	S4	Q5	1200 x (150) x (142-40)	1,83,60,000
F20	S1	Q5	1000 x (150) x (142-40)	1,53,00,000
-	S2	Q5	1000 x (150) x (142-40)	1,53,00,000
-	S3	-	0	0
-	S4	Q5	1000 x (150) x (142-40)	1,53,00,000
F21	S1	Q2 Q4 Q6 Q8	25 x (250+ 400 +250+300) x (122-20)	30,60,000
-	S2	Q4, Q8	25 x (400+300) x (122- 20)	17,85,000
-	S3	Q4,Q7	25 x (400+ 400) x (122- 20)	20,40,000
-	S4	Q2, Q6,Q7	25 x (250+250+ 400) x (122-20)	22,95,000
F22	S1	Q2 Q4 Q6 Q8	20 x (250+ 400 +250+300) x (122-20)	24,48,000

-	S2	Q4, Q8	20 x (400+300) x (122- 20)	14,28,000
-	S3	Q4,Q7	20 x (400+300) x (122- 20)	14,28,000
-	S4	Q2, Q6,Q7	20 x(250+250+ 400) x (122-20)	18,36,000
F23	S1	Q2 Q4 Q6 Q8	30 x (250+ 400 +250+300) x (122-20)	36,72,000
-	S2	Q4, Q8	30 x (400+300) x (122- 20)	21,42,000
-	S3	Q4,Q7	30 x (400+300) x (122- 20)	21,42,000
-	S4	Q2, Q6,Q7	30 x (250+250+ 400) x (122-20)	27,54,000
F24	S1	Q2 Q4 Q6 Q8	25 x (250+ 400 +250+300) x (122-20)	30,60,000
-	S2	Q4, Q8	25 x (400+300) x (122- 20)	17,85,000
-	S3	Q4,Q7	25 x (400+300) x (122- 20)	20,40,000
-	S4	Q2, Q6,Q7	25 x (250+250+ 400) x (122-20)	22,95,000
F25	S1	-	0	0
-	S2	-	0	0
-	S3	-	0	0
-	S4	-	0	0
F26	S1	-	0	0
-	S2	-	0	0
-	S3	-	0	0

-	S4	-	0	0
F27	S1	-	0	0
-	S2	-	0	0
-	S3	-	0	0
-	S4	-	0	0
F28	S1	-	0	0
-	S2	-	0	0
-	S3	-	0	0
-	S4	-	0	0
F29	S1	Q6, Q8	125 x (250 + 300) x (142- 40)	70,12,500
-	S2	Q8	125 x (300) x (142-40)	38,25,000
-	S3	Q7	125 x (400) x (142-40)	51,00,000
-	S4	Q6,Q7	125 x (250+ 400) x (142- 40)	82,87,500
F30	S1	Q6, Q8	100 x (250 + 300) x (142- 40)	56,10,000
-	S2	Q8	100 x (300) x (142-40)	30,60,000
-	S3	Q7	100 x (400) x (142-40)	40,80,000
-	S4	Q6,Q7	100 x (250+ 400) x (142- 40)	66,30,000
F31	S1	Q6, Q8	150 x (250 + 300) x (142- 40)	84,15,000

-	S2	Q8	150 x (300) x (142-40)	45,90,000
-	S3	Q7	150 x (400) x (142-40)	61,20,000
-	S4	Q6,Q7	150 x (250+ 400) x (142- 40)	99,45,000
F32	S1	Q6, Q8	125 x (250 + 300) x (142- 40)	70,12,500
-	S2	Q8	125 x (300) x (142-40)	38,25,000
-	S3	Q7	125 x (400) x (142-40)	51,00,000
-	S4	Q6,Q7	125 x (250+ 400) x (142- 40)	82,87,500

Since the cost of placing each fragment at each site is 0, the Benefit computation which is done it-self gives the Benefit – Cost value. So based on the Benefit table, we can infer the following:

Fragment1: is assigned at S1 and replicated to S2,S3,S4

Fragment2: is assigned at S1 and replicated to S2,S3,S4

Fragment3: is assigned at S1 and replicated to S2,S3,S4

Fragment4: is assigned at S1 and replicated to S2,S3,S4

Fragment5: is assigned at S2 and replicated to S1,S3

Fragment6: is assigned at S2 and replicated to S1,S3

Fragment7: is assigned at S2 and replicated to S1,S3

Fragment8: is assigned at S2 and replicated to S1,S3

Fragment9: is assigned at S3 and replicated to S4

Fragment10: is assigned at S3 and replicated to S4

Fragment11: is assigned at S3 and replicated to S4

Fragment12: is assigned at S3 and replicated to S4

Fragment17: is assigned at S1 and replicated to S2, S4

Fragment18: is assigned at S1 and replicated to S2, S4

Fragment19: is assigned at S1 and replicated to S2, S4

Fragment20: is assigned at S1 and replicated to S2, S4

Fragment21: is assigned at S1 and replicated to S2,S3,S4

Fragment22: is assigned at S1 and replicated to S2,S3,S4

Fragment23: is assigned at S1 and replicated to S2,S3,S4

ADBMS ASSIGNMENT 1

Fragment24: is assigned at S1 and replicated to S2,S3,S4

Fragment29: is assigned at S4 and replicated to S2,S3,S1 Fragment30: is assigned at S4 and replicated to S2,S3,S1 Fragment31: is assigned at S4 and replicated to S2,S3,S1 Fragment32: is assigned at S4 and replicated to S2,S3,S1