2010-2011 学年第二学期《线性代数》课内考试卷(A卷)

年级专业_2010级信息 学号___ 姓名 授课班号

题号) manufacture of the state of t		四	五	六	总分	审核
题分	32	24	12	12	12	8		
得分	Standiscopinish of a decade with the Y to a later of the decade of the later of the	,						

得分	评阅人

一、填空(共32分,每空格4分) 1. 已知四阶行列式D中第3列元素依次为1,2,3,4,它们对应的余子

式依次为1,1,1,1,则该行列式 $D=_{-}$

2. 元和
$$A = [\bar{\alpha}_1, \ \bar{\alpha}_2, \ \bar{\alpha}_3], \ |A| = 2$$
,则 $|\bar{\alpha}_3 - 2\bar{\alpha}_1, \ 3\bar{\alpha}_2, \ \bar{\alpha}_1 + \bar{\alpha}_3| =$

3. 设
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
, B 满足 $BA = B + 2E$ 则 $|B| =$

4. $A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$, 则 $A^T = \begin{bmatrix} A_1^T & A_2^T \\ A_2^T & A_2^T \end{bmatrix}$.

4.
$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}, \quad \text{If } A^T = \underbrace{\begin{bmatrix} A_1^T & A_2^T \\ A_2^T & A_2^T \end{bmatrix}}_{A_1^T}.$$

5. 已知矩阵
$$A = \begin{bmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{bmatrix}$$
 的秩为 3,则 t 应满足的条件是 $t + 2 + 2 + 2 + 3 + 3 = 1$.

$$6$$
. \int 设 $\bar{\alpha}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\bar{\alpha}_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ 是 R^2 的一组基, $\bar{\alpha} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$ 在这基下的坐标为 $(1, 1)^{\mathsf{T}}$.

7. 已知 $\bar{\eta}_1, \bar{\eta}_2, \bar{\eta}_3$ 是四元线性方程组 $A\bar{x} = \vec{b}$ 的三个解向量,其中 $\bar{\eta}_1 = \begin{bmatrix} 2 & 0 & 1 & 1 \end{bmatrix}^T$,

$$\bar{\eta}_2 + \bar{\eta}_3 = \begin{bmatrix} 2 & 0 & 1 & 0 \end{bmatrix}^T$$
, 且 $R(A) = 3$, 则线性方程组 $A\vec{x} = \vec{b}$ 的通解 $\vec{x} = \frac{(2, 9, 1, 1)^T + k(2, 9, 1, 2)^T}{k(2, 9, 1, 2)^T}$, $k \in \mathbb{R}$.

8. 已知
$$A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 4 & -2 \\ -4 & -2 & 1 \end{bmatrix}$$
与 $B = \begin{bmatrix} 5 & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & -4 \end{bmatrix}$ 相似,则 $m = \underline{J}$

得分 评阅人 二、计算 (共24分,每小题6分)

4. 设三阶矩阵 A 的特征值分别为 1,2,3,求 (1) A^3-5A^2+7A 的特征值; (2) A^3-5A^2+7A 。

J, 巷A有特征位入,则H-5A+7A有特征值入了大约人 人因(12,)代入,得.3,2,3

(21 |A'-5A'+7A|= 3x2x3=18

列向量组的秩和它的一个极大线性无关组, 并用该极大线性无 $\vec{\alpha}_1 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \quad \vec{\alpha}_2 = \begin{bmatrix} 1 \\ -6 \\ 6 \end{bmatrix} \quad \vec{\alpha}_3 = \begin{bmatrix} -2 \\ 2 \\ 2 \end{bmatrix} \quad \vec{\alpha}_4 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 7 \end{bmatrix} \quad \vec{\alpha}_5 = \begin{bmatrix} 2 \\ 4 \\ 4 \\ 9 \end{bmatrix}$ $\begin{bmatrix}
1 & 1 & -2 & 1 & 4 \\
1 & 1 & -2 & 1 & 4 \\
4 & -6 & 2 & -2 & 4
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & -2 & 1 & 4 \\
4 & -6 & 2 & -2 & 4
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & -2 & 1 & 4 \\
4 & -6 & 2 & -2 & 4
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & -2 & 1 & 4 \\
4 & -6 & 2 & -2 & 4
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & -2 & 1 & 4 \\
4 & -6 & 2 & -2 & 4
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & -2 & 1 & 4 \\
4 & -6 & 2 & -2 & 4
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -2 & 1 & 4 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\
6 & -9 & 7 & 9
\end{bmatrix}$ $\begin{bmatrix}
1 & -1 & -1 & 1 & 2 \\$ ds=4d,+3d,-3dy (2-) 得分 评阅人 四、(本题 12 分) 讨论线性方程组 $\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1 \\ \lambda x_1 - x_2 + x_3 = 2 \end{cases}$ 当 λ 取何值时,线性方程组有惟一解、无解、 有无穷多解,在线性方程组有无穷多解时,求出其通解。 1) $\begin{vmatrix} 2 \lambda - 1 \\ \lambda - 1 \end{vmatrix} = \begin{vmatrix} \lambda + 2 \lambda - 1 \\ \lambda - 1 \end{vmatrix} = \begin{vmatrix} 15\lambda + 4 \end{vmatrix} (\lambda - 1)$ 2. $\lambda \neq -\frac{1}{5} \perp \frac{1}{5} \perp \frac{1$

大=[0:1] 7克, 到的好子呀. 从面积极子。)