Assignment Project Exam Help Learning via Uniform Convergence

https://powcoder.com

Assignment Project Exam Help Only Uniform Convergence

omi convergence

https://powcoder.com

Finite Classes are Agostically PAC-learnable

Reminder

Assignment Project Exam Help

• For agnostic learning the generalization error is:

https://powcoder.com

• The empirical risk is:

Definition

AeSTS leg Nobbles Plats, Indicate G tist Touxon Attailing to p is e-representative with respect to the above elements, if the absolute value of the difference between the empirical risk and the generalization error is length s://powcoder.com

for all $h \in \mathcal{H}$.

Equivalent Add WeChat powcoder

Assignment Project Exam Help

Definition

Let $\mathcal H$ be a class of hypotheses. A ERM predictor for $\mathcal H$ is a hypothesis g such that is the predictor for $\mathcal H$ is a hypothesis g such that is the predictor for $\mathcal H$ is a hypothesis g such that is g and hypothesis g are the predictor for g and g are the predictor for g are the predictor for g and g are the predictor for g and g are the predictor for g are the predictor for g and g

The next lemma stipulates that when the sample is $\frac{\epsilon}{2}$ -representative, the FRM learning rule applied to example S is guaranteed to return a good ASSE PINNENT PROJECT Exam Help

Lemma

 $h_S \in argmin_{h \in \mathcal{H}} L_S(h)$

satisfies $Add \ \, \underset{L_{\mathcal{D}}(h_S) \, \leqslant \, \underset{h \in \mathcal{H}}{\text{min}} \, L_{\mathcal{D}}(h) \, + \, \epsilon.}{\text{VeChat powcoder}}$

Proof

For every $h \in \mathcal{H}$ we have

Assignment Project Exam Help

(by the $\frac{\epsilon}{2}$ -representativeness of S to h_S)

http(h)+
$$f$$
powcoder.com because h_s is an ERM predictor, hence $L_s(h_s) \leq L_s(h)$)
$$\leq L_D(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
Adecause C-refrentat p.(s) W(6 of the $\frac{\epsilon}{2}$)
$$\leq L_D(h) + \epsilon.$$

Thus, to ensure that the ERM rule is an agnostic PAC learner, it suffices to show that with probability of at least $1-\delta$ over the random choice of a training set, it will be an ϵ -representative training set.

Generalized Loss Functions

Assignment Project Exam Help Given a hypothesis set \mathcal{H} and some domain Z let $\ell:\mathcal{H}\times Z\longrightarrow\mathbb{R}_{\geqslant 0}$ be a

loss function.

The risk function is the expected loss of a classifier $h \in \mathcal{H}$ given by $L_{\mathcal{D}}(h) = E_{z \sim \mathcal{D}}[\ell(h, z)].$

The empirical risk for $S = \{s_1 \in S_m\}$ is powcoder $L_S(h) = \frac{1}{m} \sum_{i=1}^m \ell(h, s_i).$

$$L_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, s_i).$$

Definition The Land The uniform convergence property (relative to a domain Z and a loss function ℓ) if there exists a function $m^{UC}:(0,1)^2\longrightarrow \mathbb{N}$ (the same for all hypotheses in \mathcal{H} and all probability distributions $m^{UC}:(0,1)^2\longrightarrow \mathbb{N}$ (the same for all hypotheses in \mathcal{H} and all probability distributions $m^{UC}:(0,1)^2\longrightarrow \mathbb{N}$ (the same for all hypotheses in \mathcal{H} and all probability distributions $m^{UC}:(0,1)^2\longrightarrow \mathbb{N}$ (the with probability at least $1-\delta$, $1-\delta$ is ϵ -representative.

The term \mathcal{L}_{ij} of \mathcal{L}_{ij} of \mathcal{L}_{ij} of \mathcal{L}_{ij} of \mathcal{L}_{ij} of \mathcal{L}_{ij} and all probability distributions \mathcal{L}_{ij} .

REMINDER: Agnostic PAC Learning

Assignment Project Exam Help The Falizability assumption (the existence of a hypothesis $h^* \in \mathcal{H}$

- The realizability assumption (the existence of a hypothesis $h^* \in \mathcal{H}$ such that $P_{x \sim \mathcal{D}}(h^*(x) = f(x)) = 1$) is not realistic in many cases.
- Agnostic learning replaces the realizability assumption and the targeted a policy function $\mathcal D$, with a distribution $\mathcal D$ defined on pairs (data, labels), that is, with a distribution $\mathcal D$ on $\mathcal X \times \mathcal Y$.
- Since \mathcal{D} is defined over $\mathcal{X} \times \mathcal{Y}$, the the generalization error is Add $\bigvee_{L_{\mathcal{D}}(h)} = \mathcal{D}(\{(x,y), p_{h(x)} \neq y\})$.

Assignment Project Exam Help

If a class $\mathcal H$ has the uniform convergence property with a function m^{UC} , then the class $\mathcal H$ is agnostically PAC learnable with the sample complexity $m_{\mathcal H}(\epsilon,\delta)$ in $m^{UC}(\epsilon,\delta)$. Furthermore, in this case, the ERIM $_{\mathcal H}$ paradigm is a successful agnostic learner for $\mathcal H$.

Proof

Suppose that $\mathcal H$ has the uniform convergence property with a function $P_{Signment} P_{Forevery} P_{o} \in (0,1)$ if S is a sample of size M, where $M \geqslant M$ ($\epsilon/2$, δ) then with probability at least $1-\delta$, S is $\epsilon/2$ -representative, which means that for all $h \in \mathcal H$ we have:

https://powcoder.com

hence \mathcal{H} is agnostically PAC-learnable with $m_{\mathcal{H}}(\epsilon,\delta)=m^{\text{UC}}(\epsilon/2,\delta)$.

Theorem

Uniform convergence holds for a finite hypothesis class.

Assignment Project Exam Help

- We need a sample $S = \{s_1, \dots, s_m\}$ of size m that guarantees that for any \mathcal{D} with probability at least $1 - \delta$ we have that for all $h \in \mathcal{H}$, $\begin{array}{c} |L_S(\mathbf{p})| & \text{to} \\ |\mathbf{p}| & \text{for the presentative simple} \end{array} \\ \bullet & \text{Equivalently.} \end{array}$

$$\text{Note that} \begin{array}{l} \mathcal{D}^{\textit{m}}(\{\underline{S} \mid \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) < \delta. \\ \text{Note that} \begin{array}{l} \mathcal{D}^{\textit{m}}(\{\underline{S} \mid \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) < \delta. \\ \end{array}$$

 $\{S \mid \exists h \in \mathcal{H}, |L_S(h) - L_D(h)| > \epsilon\} = \bigcup \{S \mid |L_S(h) - L_D(h)| > \epsilon\}$ $h \in \mathcal{H}$

Assignment Project Exam Help

Next phase: each term of the right side of previous inequality

- $\sum_{h\in\mathcal{H}} \mathcal{D}^m(\{S\mid |L_S(h)-L_{\mathcal{D}}(h)|>\epsilon\}) \text{ is small enough (for large } m).}$ $As \text{ being bether and particular problems, it follows that } \theta_1,\ldots,\theta_m \text{ are also }$ iid random variables.
 - $E(\theta_1) = \dots = E(\theta_n) = \mu$.
 Range of $E(\theta_n) = \mu$.
 Range of $E(\theta_n) = \mu$.
 Range of $E(\theta_n) = \mu$.
 - Each term $\mathcal{D}^m(\{S \mid |L_S(h) L_{\mathcal{D}}(h)| > \epsilon\})$ is small enough for large
 - We wanted WeChat powcoder $L_S(h) = \frac{1}{m} \sum_{i=1}^m \theta_i \text{ and } L_D(h) = \mu.$

$$L_S(h) = \frac{1}{m} \sum_{i=1}^m \theta_i$$
 and $L_D(h) = \mu$

By Hoeffding's Inequality,

Assignment
$$P_{P}^{\mathcal{D}^{m}(\{S_{p}\}_{i=1}^{L_{S}(h)}-L_{\mathcal{D}^{n}(h)}|E(h))} = \sum_{k=1}^{C} \sum_{j=1}^{L_{S}(h)} e_{i} - \mu > \epsilon$$

https://pawcoder.com

$$\leqslant 2|\mathcal{H}|e^{-2m\epsilon^2}.$$

To have ACCULSW-COTER, which is equivalent to

$$m \geqslant \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$$
.

A Corollary

Recall that the ERM algorithm returns a hypothesis h such that for which $L_S(h)$ is minimal.

Assignment Project Exam Help

Let \mathcal{H} be a finite hypothesis class, let Z be a domain, and $\ell:\mathcal{H}\times Z\longrightarrow [0,1]$ be a loss function. Then \mathcal{H} enjoys the uniform converge of the \mathcal{H} with some \mathcal{H} converge \mathcal{H} with some \mathcal{H} converge \mathcal{H} with some \mathcal{H} converge \mathcal{H} and \mathcal{H} with \mathcal{H} converge \mathcal{H} with \mathcal{H} with \mathcal{H} converge \mathcal{H} converge \mathcal{H} with \mathcal{H} with \mathcal{H} converge \mathcal{H} converge \mathcal{H} with \mathcal{H} with \mathcal{H} converge \mathcal{H} converge \mathcal{H} with \mathcal{H} converge \mathcal{H} with \mathcal{H} converge \mathcal{H} converge \mathcal{H} converge \mathcal{H} with \mathcal{H} converge \mathcal{H} converge

Furthermore, the class is agnostically PAC Tearnable using the ERM algorithm with sample complexity;

$$m_{\mathcal{H}}(\epsilon, \delta) \leqslant m_{\mathcal{H}}^{UC}(\epsilon/2, \delta) \leqslant \left\lceil \frac{2 \log \frac{2|\mathcal{H}|}{\delta}}{\epsilon^2} \right\rceil.$$