

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Date: February 18, 2004

Christine M. Spivey

Patent

36856.1146

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Hiroshi KAWAI	Art Unit: 2832
Serial No.: 10/705,994	Examiner: Unknown
Filing Date: November 13, 2003	
For: RF-MEMS SWITCH	

TRANSMITTAL OF PRIORITY DOCUMENTS

Commissioner for Patent
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

Enclosed herewith is a certified copy of Japanese Patent Application Nos. **2002-361113** filed **December 12, 2002** and **2003-347181** filed **October 6, 2003** from which priority is claimed under 35 U.S.C. 119 and Rule 55b.

Acknowledgement of the priority documents is respectfully requested to ensure that the subject information appears on the printed patent.

Respectfully submitted,

Date: February 18, 2004

Attorneys for Applicant(s)

Joseph R. Keating
Registration No. 37,368

Christopher A. Bennett
Registration No. 46,710

KEATING & BENNETT LLP
10400 Eaton Place, Suite 312
(703) 385-5200

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年10月 6日

出願番号 Application Number: 特願2003-347181

[ST. 10/C]: [JP 2003-347181]

出願人 Applicant(s): 株式会社村田製作所

2003年10月21日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 MP1124
【提出日】 平成15年10月 6日
【あて先】 特許庁長官殿
【国際特許分類】 H01H 59/00
【発明者】
 【住所又は居所】 京都府長岡京市天神二丁目 26番10号 株式会社村田製作所内
 【氏名】 川合 浩史
【特許出願人】
 【識別番号】 000006231
 【氏名又は名称】 株式会社村田製作所
【代理人】
 【識別番号】 100093894
 【弁理士】
 【氏名又は名称】 五十嵐 清
【先の出願に基づく優先権主張】
 【出願番号】 特願2002-361113
 【出願日】 平成14年12月12日
【手数料の表示】
 【予納台帳番号】 000480
 【納付金額】 21,000円
【提出物件の目録】
 【物件名】 特許請求の範囲 1
 【物件名】 明細書 1
 【物件名】 図面 1
 【物件名】 要約書 1
 【包括委任状番号】 9004888

【書類名】特許請求の範囲**【請求項 1】**

基板と、この基板上に形成される高周波信号導通部と、この高周波信号導通部の上方側に高周波信号導通部の信号導通方向に間隔を介して配列されている複数の可動電極と、これら複数の可動電極を同時に高周波信号導通部に対して遠近方向の同じ向きに変位させる可動電極変位手段とを有し、その可動電極変位手段によって、全ての可動電極が高周波信号導通部から離れる方向に変位して設定の信号オン位置に配置されたときに高周波信号導通部の高周波信号の導通をオンさせ、全ての可動電極が高周波信号導通部に近付く方向に変位して設定の信号オフ位置に配置されたときに高周波信号導通部の高周波信号の導通をオフさせる構成と成しており、可動電極が設定の信号オン位置に配置されているときに、各可動電極にそれぞれ対向する高周波信号導通部の位置でそれぞれ反射される高周波信号の合成信号の振幅が、複数の可動電極のうちのそれぞれ単一の可動電極に対向する高周波信号導通部の位置で反射された信号の振幅よりも小さく抑えられるように、各可動電極間の高周波信号導通部を介した電気的な長さが設定されていることを特徴とする RF MEMS スイッチ。

【請求項 2】

高周波信号導通部の信号導通方向に間隔を介して配列される可動電極は対を成す 2 個と成し、これら可動電極が可動電極変位手段によって設定の信号オン位置に配置されているときに対を成す可動電極間の高周波信号導通部を介した電気的な長さが高周波信号導通部に導通する高周波信号波長の $1/4$ と成していることを特徴とする請求項 1 記載の RF MEMS スイッチ。

【請求項 3】

基板と、この基板上に形成される高周波信号導通部と、基板の上方側に基板と間隔を介して配置され高周波信号導通部の少なくとも一部分に対向する单一の可動体と、この可動体に形成され高周波信号導通部に対向する可動電極と、静電引力を利用して可動体を基板に対して遠近方向に変位させる可動体変位手段とを有し、可動電極は可動体に複数形成されて互いに高周波信号導通部の信号導通方向に間隔を介して配列され、これら複数の可動電極間の高周波信号導通部が系のインピーダンスより高い特性インピーダンスを有する構成をもって、高周波信号導通部に導通される高周波信号波長の $1/4$ 以下の長さの伝送線路として機能することを特徴とする RF MEMS スイッチ。

【請求項 4】

基板と、この基板上に形成される高周波信号導通部と、基板の上方側に基板と間隔を介して配置され高周波信号導通部の少なくとも一部分に対向し、かつ、高周波信号導通部の信号導通方向に互いに間隔を介して配置された複数の可動体と、それぞれの可動体に形成され高周波信号導通部に対向する可動電極と、静電引力を利用して可動体を基板に対して遠近方向に変位させる可動体変位手段とを有し、複数の可動電極間の高周波信号導通部が系のインピーダンスより高い特性インピーダンスを有する構成をもって、高周波信号導通部に導通される高周波信号波長の $1/4$ 以下の長さの伝送線路として機能することを特徴とする RF MEMS スイッチ。

【請求項 5】

1 つの可動体に複数の可動電極が形成されて、これらの可動電極が互いに高周波信号導通部の信号導通方向に互いに間隔を介して配置されていることを特徴とする請求項 4 記載の RF MEMS スイッチ。

【請求項 6】

可動体は、高周波信号に対しては絶縁体として振る舞い、かつ、低周波信号および直流信号に対しては電極として振る舞う高抵抗半導体により構成されており、基板上には可動体の一部分に対向する可動用固定電極が形成され、この可動用固定電極と、前記電極として機能する可動体とは、当該可動用固定電極と可動体間の直流電圧印加による静電引力によって可動体を可動用固定電極側に変位させる可動体変位手段を構成していることを特徴とする請求項 3 又は請求項 4 又は請求項 5 記載の RF MEMS スイッチ。

【請求項 7】

可動体の上方側に間隔を介して対向する上部部材が配設されており、可動用固定電極を基板上に設けるのに代えて、可動用固定電極はその上部部材に可動体の少なくとも一部分に対向させて形成されていることを特徴とする請求項6記載のRFMEMSスイッチ。

【請求項 8】

対向し合う高周波信号導通部の表面と可動電極の表面とのうちの少なくとも一方には保護用の絶縁膜が形成されていることを特徴とする請求項1乃至請求項7のいずれか一つに記載のRFMEMSスイッチ。

【請求項 9】

高周波信号導通部はコプレーナー線路とマイクロストリップ線路のうちの一方側と成し、RFMEMSスイッチは、可動電極と高周波信号導通部間の静電容量変化を利用して高周波信号導通部であるコプレーナー線路又はマイクロストリップ線路の信号の導通オン・オフを制御するシャントスイッチ素子であることを特徴とする請求項1乃至請求項8のいずれか一つに記載のRFMEMSスイッチ。

【請求項 10】

RFMEMSスイッチは、互いに対向する高周波信号導通部と可動電極の少なくとも一部が互いに直接接触と離間とを行うことにより高周波信号導通部の信号の導通オン・オフを制御するスイッチ素子であることを特徴とする請求項1乃至請求項8のいずれか一つに記載のRFMEMSスイッチ。

【請求項 11】

可動体は高抵抗半導体により構成される代わりに高周波信号に対して絶縁性を有する半導体又は絶縁体により構成され、この可動体には可動用固定電極に対応した位置に可動体変位用可動電極が形成されており、この可動体変位用可動電極と前記可動用固定電極とは、当該可動用固定電極と可動体変位用可動電極間の直流電圧印加による静電引力によって可動体を可動用固定電極側に変位させる可動体変位手段を構成していることを特徴とする請求項6乃至請求項10のいずれか一つに記載のRFMEMSスイッチ。

【書類名】明細書

【発明の名称】RF MEMSスイッチ

【技術分野】

【0001】

本発明は、例えば周辺監視レーダー用アンテナスキャン等の高周波回路モジュールに組み込まれるRF MEMS (RF micro electro mechanical systems) スイッチに関するものである。

【背景技術】

【0002】

ミリ波、マイクロ波の高周波信号で用いるスイッチ素子の例として、シャント型のRF MEMSスイッチ（シャントスイッチ素子）が提案されている（例えば、非特許文献1参照。）。

【0003】

この種のRF MEMSスイッチには、例えば基板上に高周波信号導通部が設けられ、また、この高周波信号導通部の少なくとも一部に対向する電極が前記基板の上方側に配置される。このRF MEMSスイッチでは、その電極を、静電引力を利用して基板に対して遠近方向に変位させることにより、電極と高周波信号導通部との間の静電容量を変化させる。

【0004】

例えば、高周波信号導通部に形成した信号線路と前記可動する電極（可動電極）間の間隔を狭くすると、信号線路と可動電極間の静電容量が大きくなり、信号線路の高周波信号の導通がオフする。また、その逆に、信号線路と可動電極間の間隔を広くすると、信号線路と可動電極間の静電容量が小さくなり、信号線路の高周波信号の導通がオンする。つまり、この種のRF MEMSスイッチでは、可動電極を変位させて当該可動電極と信号線路間の静電容量を可変することにより、高周波信号導通部の高周波信号の導通オン・オフを制御することができる。

【0005】

【非特許文献1】J. B. Muldavin, Student Member, IEEEら著、「High-Isolation CP W MEMS Shunt Switches-Part1: Modeling」、IEEE TRANSACTIONS ON MICROWAVE THEORY TECHNIQUES, Vol. 48, No. 6 June 2000, p1045-1052.

【発明の開示】

【発明が解決しようとする課題】

【0006】

しかしながら、従来のRF MEMSスイッチは、可動電極が1つのスイッチ素子に1つだけ設けられる構成であり、スイッチとしての挿入損失や反射損失の低減、アイソレーション特性の向上を十分に行えない可能性があった。

【0007】

本発明の目的は、スイッチとしての挿入損失や反射損失の低減、アイソレーション特性の向上を十分に行うことができるRF MEMSスイッチを提供することにある。

【課題を解決するための手段】

【0008】

上記目的を達成するために、本発明は次のような構成をもって前記課題を解決するための手段としている。すなわち、この発明は、基板と、この基板上に形成される高周波信号導通部と、この高周波信号導通部の上方側に高周波信号導通部の信号導通方向に間隔を介して配列されている複数の可動電極と、これら複数の可動電極を同時に高周波信号導通部に対して遠近方向の同じ向きに変位させる可動電極変位手段とを有し、その可動電極変位手段によって、全ての可動電極が高周波信号導通部から離れる方向に変位して設定の信号オン位置に配置されたときに高周波信号導通部の高周波信号の導通をオンさせ、全ての可動電極が高周波信号導通部に近付く方向に変位して設定の信号オフ位置に配置されたときに高周波信号導通部の高周波信号の導通をオフさせる構成と成しており、可動電極が設定

の信号オン位置に配置されているときに、各可動電極にそれぞれ対向する高周波信号導通部の位置でそれぞれ反射される高周波信号の合成信号の振幅が、複数の可動電極のうちのそれぞれ単一の可動電極に対向する高周波信号導通部の位置で反射された信号の振幅よりも小さく抑えられるように、各可動電極間の高周波信号導通部を介した電気的な長さが設定されていることを特徴としている。

【0009】

また、この発明は、基板と、この基板上に形成される高周波信号導通部と、基板の上方側に基板と間隔を介して配置され高周波信号導通部の少なくとも一部分に対向する単一の可動体と、この可動体に形成され高周波信号導通部に対向する可動電極と、静電引力を利用して可動体を基板に対して遠近方向に変位させる可動体変位手段とを有し、可動電極は可動体に複数形成されて互いに高周波信号導通部の信号導通方向に間隔を介して配列され、これら複数の可動電極間の高周波信号導通部が系のインピーダンスより高い特性インピーダンスを有する構成をもって、高周波信号導通部に導通される高周波信号波長の $1/4$ 以下の長さの伝送線路として機能することも特徴としている。

【0010】

さらに、この発明は、基板と、この基板上に形成される高周波信号導通部と、基板の上方側に基板と間隔を介して配置され高周波信号導通部の少なくとも一部分に対向し、かつ、高周波信号導通部の信号導通方向に互いに間隔を介して配置された複数の可動体と、それぞれの可動体に形成され高周波信号導通部に対向する可動電極と、静電引力を利用して可動体を基板に対して遠近方向に変位させる可動体変位手段とを有し、複数の可動電極間の高周波信号導通部が系のインピーダンスより高い特性インピーダンスを有する構成をもって、高周波信号導通部に導通される高周波信号波長の $1/4$ 以下の長さの伝送線路として機能することも特徴としている。

【発明の効果】

【0011】

この発明によれば、複数の可動電極が高周波信号導通部の信号導通方向に間隔を介して配列形成されているので、次に示すような効果を得ることができる。つまり、全ての可動電極が設定の信号オン位置に配置されているときに、各可動電極にそれぞれ対向する高周波信号導通部の位置でそれぞれ反射される高周波信号は合成されることとなる。例えば、2つの合成される反射信号の位相が互いに逆相である場合には、それら反射信号は合成により互いに打ち消しあって、反射信号の合成信号の振幅を零にすることができる。このようなことを考慮して、各可動電極にそれぞれ対向する高周波信号導通部の位置でそれぞれ反射される高周波信号の合成信号の振幅が、複数の可動電極のうちのそれぞれ単一の可動電極に対向する高周波信号導通部の位置で反射された信号の振幅よりも小さく抑えられるように、各可動電極間の高周波信号導通部を介した電気的な長さ（可動電極間に位置する高周波信号導通部の電気的な長さ）を設定することによって、高周波信号導通部の高周波信号の導通オン時における高周波信号の反射信号の振幅（エネルギー）を小さく抑制することができる。これにより、反射損失を小さくすることができて、RF MEMSスイッチの特性向上を図ることができる。

【0012】

また、静電引力を利用して基板上の高周波信号導通部に対して遠近方向に変位する可動体が設けられ、当該可動体に形成される可動電極が互いに高周波信号の導通方向に間隔を介して複数設けられ、これら複数の可動電極間の高周波信号導通部が系のインピーダンスより高い特性インピーダンスを有する構成をもって、高周波信号導通部に導通される高周波信号波長の $1/4$ 以下の長さの伝送線路として機能する構成を備えることによって、スイッチとしての挿入損失や反射損失の低減、アイソレーション特性の向上を十分に行うことができる。

【0013】

さらに、単一の可動体を有し、この可動体に複数の可動電極を形成したものにあっては、小さい消費電力でRF MEMSスイッチを動作でき、単一の可動体を有して該可動体に

1つの可動電極を形成して成るRF MEMSスイッチに比べてコスト増もほとんど無く、上記のように、スイッチとしての特性向上を十分に行うことができる。

【0014】

さらに、複数の可動体を有してこれらの可動体にそれぞれ可動電極を形成したものにあっては、可動体の変位制御の精度を向上させることができるので、スイッチとしての特性をより一層向上させることができる。

【0015】

さらに、可動体を高抵抗半導体により構成しているものにあっては、可動体は低周波信号および直流信号に対しては電極として振る舞うことができるので、可動体自体を可動体変位手段の電極として機能させることができる。これにより、可動体に可動体変位手段の電極を形成しなくて済むこととなるので、RF MEMSスイッチの構造および製造工程の簡略化を図ることができる。また、このように可動体を高抵抗半導体により構成しているものにあっては、当該高抵抗半導体は、高周波信号に対しては非常に低い誘電体損失を持つ性質であることから、信号のロスを低減することができる。

【0016】

さらに、対向し合う高周波信号導通部の表面と可動電極の表面とのうちの少なくとも一方には絶縁膜が形成されているものにあっては、高周波信号導通部あるいは可動電極の保護を図ることができる。また、高周波信号導通部と可動電極は接触することができないので、高周波信号導通部と可動電極の接触による接触抵抗に起因した信号のロスを確実に防止することができる。

【0017】

さらに、高周波信号導通部はコプレーナー線路とマイクロストリップ線路のうちの一方側と成し、RF MEMSスイッチはシャントスイッチ素子であるものにあっては、コプレーナー線路やマイクロストリップ線路を流れる高周波信号導通オン・オフを上記のように、低挿入損失、低反射損失、高アイソレーションで行うことができるシャントスイッチ素子を実現できる。

【0018】

さらに、RF MEMSスイッチは、互いに対向する高周波信号導通部と可動電極の少なくとも一部が互いに直接接触と離間とを行うことにより高周波信号導通部の信号の導通オン・オフを制御するものにあっては、LC共振を使用していないため、高周波信号の周波数に影響されずに帯域幅の広いアイソレーション特性を有するスイッチが可能となる。

【0019】

さらに、高周波信号導通部との間に静電容量を発生させる可動電極と、この可動電極が設けられている可動体を静電引力を利用して変位させるための可動体変位用可動側電極とをそれぞれ独立に設計することができ、電極設計の自由度を高めることができる。

【発明を実施するための最良の形態】

【0020】

以下に、この発明に係る実施形態例を図面に基づいて説明する。

【0021】

図1 (a) には本発明に係るRF MEMSスイッチの一例が模式的な平面図により示され、図1 (b) には図1 (a) のA-A'部分の断面図が模式的に示されている。

【0022】

この第1実施形態例のRF MEMSスイッチ1は、高周波回路に組み込まれてコプレーナー線路のスイッチ素子として機能するものである。このRF MEMSスイッチ1において、基板2（例えばシリコン基板やサファイア基板など）を有し、この基板2上には高周波信号導通部であるコプレーナー線路（CPW線路）3が形成されている。このコプレーナー線路3は、信号線3sを2本のグランド線3g1, 3g2が間隔を介し挟み込む形態で配置されて成る高周波信号伝送用の線路であり、それら線路3s, 3g1, 3g2は、例えばAu等の導体膜により構成される。また、その線路3s, 3g1, 3g2の厚みは適宜設定されるものであるが、その一例を挙げるとすると、例えば約2μm程度である。この第1実施

形態例では、コプレーナー線路3には例えば5GHz以上の高周波の信号が流れる。

【0023】

また、基板2の上方側には基板2と間隔を介して上部部材（例えばガラス基板）4が配置されている。この上部部材4は固定部5（5a, 5b）を介して基板2に固定されている。さらに、基板2と上部部材4間の隙間に、单一の可動体6が、コプレーナー線路3の上方側に間隔を介し、かつ、コプレーナー線路3の信号線3sとグランド線3g1, 3g2の一部分に共通に対向させて配置されている。この可動体6は、基板2に対して遠近方向に変位が可能となるように梁7（7a, 7b）と支持部8（8a, 8b）を介して上部部材4に支持されている。

【0024】

可動体6は枠形状と成しており、可動体6における基板2側の面には、例えばAu等の導体膜から成る2つの可動電極10（10a, 10b）が形成されている。これらの可動電極10a, 10bは、互いにコプレーナー線路3の信号導通方向（信号線3sの長手方向）に間隔を介して配列している。図2（a）には、基板2上に配置された可動体6の配置構成が梁7（7a, 7b）および支持部8（8a, 8b）と共に模式的な斜視図により示されており、図2（b）にはそのA-A'部分の断面図が示されている。

【0025】

また、図3（a）には上部部材4の位置から見た可動体6および可動電極10と、コプレーナー線路3との配置関係例が簡略化されて示され、また、図3（b）には可動電極10（10a, 10b）とコプレーナー線路3を横側から見た配置関係例が示されている。これらの図示の如く、可動電極10a, 10bは、それぞれ、コプレーナー線路3のグランド線3g1から信号線3sを介しグランド線3g2にかけて跨ぐように、かつ、それら線路3s, 3g1, 3g2と間隔を介し対向させて配設されている。

【0026】

信号線3sやグランド線3g1, 3g2の幅や間隔は特に限定されるものではないが、一例を挙げると、図3（a）に示すように、可動電極10a, 10b間に挟まれている領域における信号線3sとグランド線3g1, 3g2との間の間隔（ギャップ）W1=W3=41μmであり、信号線3sの幅W2=30μmである。これに対して、可動電極10a, 10b間に挟まれていない領域における信号線3sとグランド線3g1, 3g2との間の間隔W4=W6=31μmであり、信号線3sの幅W5=50μmである。このように、第1実施形態例においては、可動電極10a, 10b間に挟まれている領域の信号線3sの幅を可動電極10a, 10b間に挟まれていない領域の信号線3sの幅よりも狭く形成している。また、RFMEMSスイッチ1における信号線3sの全長は2mmとしている。

【0027】

図1（b）に示すように、この第1実施形態例では、可動電極10（10a; 10b）の表面には保護用の絶縁膜11が形成されている。この絶縁膜11は、例えばSiN等の絶縁体により構成され、膜厚が例えば0.1μm程度という如く、非常に薄い膜である。

【0028】

さらにまた、上部部材4には、可動体6に対向する部位に、凹部4aが形成されており、この凹部4aの内壁面には可動体6に対向する可動用固定電極12（12a, 12b）が形成されている。また、上部部材4には、当該上部部材4の表面から可動用固定電極12a, 12bに至るスルーホール13a, 13bが形成され、また、上部部材4の表面から支持部8（8b）に至るスルーホール13cが形成されている。さらに、上部部材4の表面には、各スルーホール13a, 13b, 13cにそれぞれ接続する電極パッド14a, 14b, 14cが形成されている。

【0029】

この第1実施形態例において、可動体6は高抵抗半導体により構成されている。高抵抗半導体とは、高周波信号（例えば約5GHz以上の信号）に対しては絶縁体として振る舞い、低周波信号（例えば約100kHz以下の信号）および直流信号に対しては電極として振る舞うことができる高い抵抗率を有する半導体である。この第1実施形態例では、可動体6

を構成する高抵抗半導体は、 $1000\Omega\text{ cm}$ 以上、かつ、 $10000\Omega\text{ cm}$ 以下の範囲内の抵抗率を有している。なお、この第1実施形態例では、梁7と支持部8は可動体6と同じ材料により構成されている。

【0030】

また、高抵抗半導体の一例である高抵抗シリコンは、誘電体損失 ($\tan\delta$) に関して次のような性質を有する。つまり、図8の実線Bに示す如く、ガラス等の絶縁体は、高周波領域において、周波数が高くなるに従って誘電体損失が大きくなる。これに対して、高抵抗シリコンは、高周波領域において絶縁体として振る舞うのに、図8の実線Aに示すように、周波数が高くなるに従って誘電体損失が小さくなるというものである。なお、図8のグラフにおいて、実線Aは、抵抗率 $2000\Omega\text{ cm}$ を持つ高抵抗シリコンに関するものであり、実線aにより囲まれている領域内の値は実験値であり、それ以外は文献値である。また、実線Bはパイレックス（登録商標）ガラスに関する文献値である。

【0031】

この第1実施形態例では、コプレーナー線路3を流れる信号は5GHz以上の高周波信号である。この高周波信号に対しては、高抵抗半導体から成る可動体6は、当該可動体6を絶縁体により構成する場合と同等、あるいは、それ以上の良好な誘電体損失の特性を有する。

【0032】

前記の如く、高抵抗半導体から成る可動体6は、直流信号（直流電圧）に対しては当該可動体6自体を電極として機能させることができることから、この第1実施形態例では、電極としての可動体6と、可動用固定電極12a, 12bとによって、可動体6を変位させる可動体変位手段が構成されている。つまり、電極パッド14a, 14b, 14cとスルーホール13a, 13b, 13cを介して外部から直流電圧（例えば5V程度の直流電圧）を可動体6と可動用固定電極12（12a, 12b）との間に印加すると、当該可動体6と可動用固定電極12間に静電引力が発生する。この静電引力によって可動体6は、図1（b）の矢印Bに示すように、可動用固定電極12側に引き寄せられる。このように、可動体6と可動用固定電極12により静電引力を利用して可動体6を変位させることができる。すなわち、この第1実施形態例では、可動体6と、可動用固定電極12とによって、可動電極10a, 10bを同時にコプレーナー線路3に対して遠近方向の同じ方向に変位させるための可動電極変位手段が構成されている。

【0033】

また、この第1実施形態例では、外部からの直流電圧が可動体6と可動用固定電極12（12a, 12b）間に印加されていないときには、例えば可動電極10上の絶縁膜11がコプレーナー線路3に接触している、または、近接している状態となる。この状態では、可動電極10とコプレーナー線路3間の間隔は絶縁膜11の厚み（例えば $0.1\mu\text{m}$ ）程度というように非常に狭く、可動電極10とコプレーナー線路3間の静電容量は大きくなる。

【0034】

ところで、従来のRFMEMSスイッチは、例えば図11（a）、（b）に示すように、可動電極10は1つだけであった。なお、図11（a）は、1つの可動電極10を有するRFMEMSスイッチにおいて、基板2上に配置された可動体6の配置構成例を梁7（7a, 7b）および支持部8（8a, 8b）と共に斜視図により模式的に示したものである。図11（b）は図11（a）のA-A'部分の断面図である。

【0035】

その1つだけ設けられた可動電極10と、コプレーナー線路3との配置関係は、図12（a）の平面図および図12（b）の側面図および図14（a）の斜視図に示すようになる。また、図13（a）には図12（b）に示される可動電極10およびコプレーナー線路3の等価回路が示されている。なお、これらの図において、 C_1 は可動電極10とグランド線3g1間の静電容量を示し、 C_2 は可動電極10とグランド線3g2間の静電容量を示し、 C_3 は可動電極10と信号線3s間の静電容量を示している。また、 L_{s1} , R_{s1}

は、それぞれ、可動電極10のグランド線3g1側のインダクタンス値、抵抗値を示し、 L_{S2} 、 R_{S2} は、それぞれ、可動電極10のグランド線3g2側のインダクタンス値、抵抗値を示す。

【0036】

図13(a)の等価回路を整理すると、図13(b)（図14(b)）に示すように表すことができる。なお、近似的に、静電容量Cは、 $C = 1 / ((1 / (C_1 + C_2)) + (1 / C_3))$ の式に基づくものである。インダクタンス L_S は、 $L_S = 1 / ((1 / L_{S1}) + (1 / L_{S2}))$ の式に基づくものである。抵抗 R_S は、 $R_S = 1 / ((1 / R_{S1}) + (1 / R_{S2}))$ の式に基づくものである。

【0037】

第1実施形態例のRFMEMSスイッチ1においても、1つの可動電極10だけに注目すると、一つの可動電極10とコプレーナー線路3の等価回路は上記と同様である。この第1実施形態例の場合、2つの可動電極10(10a, 10b)を、互いにコプレーナー線路3の信号導通方向に間隔を介して配列していることから、それら可動電極10a, 10bと、コプレーナー線路3との等価回路は、図4(a)に示すようになる。

【0038】

第1実施形態例のRFMEMSスイッチ1では、可動体6が基板2側に下がっていて可動電極10とコプレーナー線路3間の間隔が狭く、当該可動電極10とコプレーナー線路3間の静電容量Cが大きくなったりときに、図4(a)の等価回路におけるLCの直列共振周波数fが信号線3sを流れる高周波信号の周波数と同じ又は近い値になるように（つまり、可動電極10のダウン時の等価直列容量を C_{DOWN} としたときに、 $f = 1 / \sqrt{2\pi(L_S \cdot C_{DOWN})}$ となるように）設計される。なお、一般に、図11に示した構成の可動電極10を1つだけ有するRFMEMSスイッチも、図13(b)に示した等価回路において同様の設計が行われる。

【0039】

その結果、可動電極10のダウン時は、信号線3s側から可動電極10を介してグランド側を見たときのLC回路部分のインピーダンス（可動電極10の近傍のコプレーナー線路3の信号線3sとグランド間のインピーダンス）が非常に小さくなり、極小値（ $R_S = 0.1 \sim 1 \Omega$ ）となる。つまり、信号線3sから可動電極10を介してグランド側を見たときに短絡と等価な状態となる。これにより、コプレーナー線路3を導通している高周波信号は、可動電極10に対向するコプレーナー線路3の位置で図4(b)の等価回路図の矢印Dのように反射されることとなって、コプレーナー線路3の高周波信号の導通がオフする。

【0040】

また、可動体6が基板2から離れる方向に（つまり、上側に）変位して、可動電極10とコプレーナー線路3間の間隔が例えば $3 \mu m$ 程度に広がると、可動電極10とコプレーナー線路3間の静電容量Cが小さくなり、信号線3s側から可動電極10を介してグランド側を見たときのインピーダンスが非常に大きくなる。つまり、信号線3sから可動電極10を介してグランド側を見たときにオープンと等価な状態となる。これにより、図4(c)の等価回路図の矢印Uに示されるように、コプレーナー線路3の信号の導通はオンする。

【0041】

換言すれば、この第1実施形態例のRFMEMSスイッチ1では、可動電極10がコプレーナー線路3に近付いて設定の信号オフ位置に配置されたときに、コプレーナー線路3の高周波信号は可動電極10に対向する位置で反射することとなり、コプレーナー線路3の高周波信号の導通がオフする。また、可動電極10がコプレーナー線路3から離れる方向に変位して設定の信号オン位置に配置されたときには、コプレーナー線路3の高周波信号の導通がオンする。

【0042】

ところで、第1実施形態例では、2つ可動電極10a, 10b間のコプレーナー線路3

が、系のインピーダンスより高い特性インピーダンスを有する構成をもって、コプレーナー線路3に導通される高周波信号の波長の1/4以下の長さの伝送線路として機能することを特徴としている。これにより、2つ可動電極10a, 10b間のコプレーナー線路3は整合回路として機能する。

【0043】

具体的には、2つの可動電極10a, 10b間に位置するコプレーナー線路3の特性インピーダンスおよび線路長は、可動電極10a, 10bがアップ時に、最も信号が通りやすくなるように、つまり、反射が極小になるように、以下のような式(1)、(2)にしたがって最適設計(整合設計)が行われる。

【0044】

$$Z_1 = Z_0 / \sin \theta \dots \dots \quad (1)$$

【0045】

$$1 / (\omega C_{UP}) - \omega L_s = Z_0 / \cos \theta \dots \dots \quad (2)$$

【0046】

ここで、 Z_0 は系のインピーダンスである。 θ は2つの可動電極10(10a, 10b)間のコプレーナー線路3の電気的な長さ(電気長)であり、 θ が90度で $\lambda/4$ となる(λ はコプレーナー線路3に導通される高周波信号波長)。また、 ω はコプレーナー線路3に導通される高周波信号の角周波数である。 C_{UP} は可動電極10(10a, 10b)アップ時における可動電極一つ当たりの等価直列容量である。 L_s は可動電極一つ当たりの等価直列インダクタンスである。

【0047】

換言すれば、この第1実施形態例では、可動電極10(10a, 10b)のアップ時(可動電極10(10a, 10b)が設定の信号オン位置に配置されているとき)において、2つの可動電極10a, 10b間に位置するコプレーナー線路3の電気的な長さ(電気長)が、コプレーナー線路3を導通する高周波信号波長 λ の1/4又はその $\lambda/4$ から設定の許容範囲を越えない値となるように、可動電極10のアップ時における可動電極10とコプレーナー線路3間の静電容量 C_{UP} を考慮して、可動電極10a, 10b間のコプレーナー線路3の物理的な長さ等が設計される。なお、可動電極10a, 10b間に位置するコプレーナー線路3部分の電気的な長さとは、物理的な長さとは異なり、コプレーナー線路3を導通する高周波信号にとっての電気的な長さであり、コプレーナー線路3を導通する高周波信号の周波数に応じて変化するものである。また、その可動電極10a, 10b間のコプレーナー線路3部分の電気的な長さには、可動電極10a, 10bとコプレーナー線路3間の静電容量 C (C_{UP})が関与しており、その静電容量 C (C_{UP})が関与する分、可動電極10a, 10b間のコプレーナー線路3部分の電気的な長さは、そのコプレーナー線路3部分の物理的な長さよりも長くなっている。

【0048】

この第1実施形態例では、可動電極10a, 10bとコプレーナー線路3間の静電容量 C (C_{UP})を考慮した、可動電極10a, 10b間のコプレーナー線路3部分の電気的な長さ(ここでは、可動電極10a, 10b間のコプレーナー線路3を介した電気的な長さという)が、コプレーナー線路3を導通している高周波信号波長 λ の1/4又はその $\lambda/4$ から設定の許容範囲を越えない値となるように、設計されるので、可動電極10のアップ時において、高周波信号の反射を非常に小さく抑制することができる。それというのは、次に示すような理由による。

【0049】

つまり、可動電極10a, 10bがアップの状態にあるとき(コプレーナー線路3の高周波信号の導通がオン状態であるとき)において、可動電極10とコプレーナー線路3間に僅かながら静電容量 C_{UP} が生じているために、コプレーナー線路3を導通している高周波信号の一部が、図4(c)の矢印dに示されるように、可動電極10a, 10bに対向するコプレーナー線路3の位置でそれぞれ反射してしまう。この第1実施形態例では、2つの可動電極10a, 10bが設けられているので、例えば、可動電極10aから可動

電極10bに向かう方向に高周波信号が通電しているとした場合には、可動電極10bに対向するコプレーナー線路3の位置で反射した高周波信号（反射信号Sb）は可動電極10a側に戻って、可動電極10aに対向するコプレーナー線路3の位置で反射した高周波信号（反射信号Sa）と合成されることとなる。

【0050】

この第1実施形態例では、可動電極10a, 10b間のコプレーナー線路3部分の電気的な長さが、高周波信号波長 λ の $1/4$ 又はその近傍となるように設計されているので、反射信号Sbは、反射信号Saと合成する際に、その反射信号Saよりも $\lambda/2$ 又はその近傍の長さ分だけ進んだ信号となる。つまり、反射信号Saが例えば図4(d)の実線Saに示されるような波形を有している場合に、その反射信号Saと合成する反射信号Sbは、例えば図4(d)の点線Sbに示される波形のように、反射信号Saと逆相又はほぼ逆相となる。このため、反射信号Saと反射信号Sbは合成により互いに打ち消しあって、その合成信号の振幅は零又はほぼ零となる。

【0051】

このように、この第1実施形態例では、可動電極10を2つ設け、それら可動電極10a, 10b間のコプレーナー線路3部分の電気的な長さが、高周波信号波長 λ の $1/4$ 又はその近傍となるように設計したので、コプレーナー線路3の高周波信号の導通がオン状態であるときにおいて、可動電極10が1つだけしか設けられておらず図14(a)、(b)の矢印Dに示されるように反射信号が1つだけである構成のものに比べて、反射信号Sa, Sbの合成によって合成の反射信号の振幅を小さく抑制することができるようとなる。

【0052】

ここで、最適設計（整合設計）の一具体例を、図3(a)を参照しながら説明する。 $Z_0 = 50\Omega$ （例えば、信号線3sの線路幅W5が $50\mu m$ で、信号線3sとグランド線3g1, 3g2の間隔（ギャップ）W4、W6が $31\mu m$ の場合）、 $\theta = 53^\circ$ （例えば可動電極10a, 10b間の信号線3sの長さ l_2 が $232\mu m$ で高周波信号周波数が76.5GHzの場合）、 $Z_1 = 63\Omega$ （例えば、可動電極10a, 10b間の信号線3sの線路幅W2が $30\mu m$ で、信号線3sとグランド線3g1, 3g2の間隔W1、W3が $41\mu m$ の場合）、 $l_1 = 844\mu m$ 、 $l_3 = 924\mu m$ 、 $R_s = 0.25\Omega$ 、 $C_{UP} = 20fF$ 、 $L_s = 43.28pH$ とする。この場合、高周波信号周波数と挿入損失の関係は図5の特性線aに示すようになり、高周波信号周波数と反射損失の関係は図6の特性線aに示すようになる。なお、図3(a)は模式図であり、 l_1 、 l_2 、 l_3 は、上記値に対応した長さに示されていない。

【0053】

図5、図6の特性線bは、図11に示したような、1つの可動電極10を有するRFMEMSスイッチ1における挿入損失の周波数特性と反射損失の周波数特性をそれぞれ示している。この特性線bは、 $Z_0 = 50\Omega$ とし、 R_s 、 C_{UP} 、 L_s が、それぞれ、上記同様の $R_s = 0.25\Omega$ 、 $C_{UP} = 20fF$ 、 $L_s = 43.28pH$ とし、図11(a)に示す l_1 、 l_2 の長さをそれぞれ、 $l_1 = 1000\mu m$ 、 $l_2 = 1000\mu m$ とした条件の下で、求められたものである。

【0054】

図5、図6に示すように、第1実施形態例のRFMEMSスイッチ1では、複数の可動電極10(10a, 10b)を同時に変位させることにより、1つの可動電極10を有する構成のものに比べて、コプレーナー線路3に入力される高周波信号波長が76.5GHzを中心にして反射損失を格段に向上でき、また、挿入損失も低減することができる。

【0055】

さらに、第1実施形態例において、可動電極10a, 10bのダウン時には、信号は遮断される。このときのアイソレーション特性は図7の特性線aに示すようになる。これに対して、可動電極10を1つだけ設けて成るRFMEMSスイッチにおいては、アイソレーション特性は図7の特性線bに示すようになる。それら特性線a, bに示されるように

、この第1実施形態例のRFMEMSスイッチ1は、可動電極10を1つだけ設けて成るRFMEMSスイッチよりも、アイソレーション特性を向上できている。なお、図7の特性線a, bは、それぞれ、 $C_{DOWN} = 100\text{ fF}$ とした以外は、図5、図6の特性線a, bを求めた条件と同じ条件でアイソレーションを求めた結果である。

【0056】

以上のように、この第1実施形態例のRFMEMSスイッチ1は、スイッチとしての挿入損失や反射損失の低減、アイソレーション特性の向上を十分に行うことができる。

【0057】

また、この第1実施形態例では、単一の可動体6に2つの可動電極10を形成しており、この可動体6を支持する梁7や支持部8の構成等は1つの可動電極10を有するRFMEMSスイッチと同様に形成できるし、小さい消費電力で2つの可動電極10a, 10bを同時に動かしてスイッチング動作できる。

【0058】

さらに、この第1実施形態例では、可動体6が高抵抗半導体により構成されているので、前記の如く、可動体6自体が可動体変位手段の電極として機能することができる。これにより、可動体6に、可動体変位手段を構成するための電極を形成しなくてすむので、RFMEMSスイッチ1の構造および製造工程の簡略化をより一層図ることができ、RFMEMSスイッチ1の低コスト化を図ることができる。

【0059】

また、高抵抗半導体から成る可動体6は、高周波信号に対しては絶縁体の如く振る舞い、その誘電体損失($\tan\delta$)は絶縁体と同等、あるいは、それ以上に良好となることから、高周波信号の伝搬ロスを低減することができる。近年、信号は高周波化の傾向にあり、可動体6を絶縁体により構成すると、信号の高周波化により可動体6の誘電体損失は大きくなつて(図8の実線B参照)、可動体6に因る信号の伝搬ロスの増加が懸念される。これに対して、この第1実施形態例では、可動体6を高抵抗半導体により構成することにより、信号が高周波化するにつれて可動体6の誘電体損失が小さくなる(図8の実線A参照)。このことから、信号の高周波化によって、可動体6に因る信号の伝搬ロスを低減することができる。このように、この第1実施形態例の構成は、今後、非常に有効となるものである。

【0060】

さらに、例えば仮にコプレーナー線路3と可動電極10(10a, 10b)が直接接触により結合する構成とすると、LC共振を使用していないため、高周波信号の周波数に影響されずに帯域幅の広いアイソレーション特性を有するスイッチを構成することが可能となる。しかし、その一方で、抵抗値 R_s に接触抵抗成分が含まれて抵抗値 R_s が大きくなつてしまふ。これにより、信号のロスが増加する。これに対して、この第1実施形態例では、コプレーナー線路3と可動電極10(10a, 10b)は静電容量を介して結合する構成であるので、コプレーナー線路3と可動電極10(10a, 10b)間に接触抵抗は発生せず、信号のロスを抑制することができる。

【0061】

以下に、第2実施形態例を説明する。なお、この第2実施形態例の説明において、第1実施形態例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。

【0062】

この第2実施形態例では、図1に示したような、可動体6を外部と導通させるためのスルーホール13cと電極パッド14cが省略されている。この構成により、可動体6は電気的に浮遊した構成となつていて、この構成以外の構成は第1実施形態例と同様であり、第1実施形態例と同様の効果を奏することができる。また、第2実施形態例は、スルーホール13cと電極パッド14cを省略した構成により、第1実施形態例の構成よりも、構造を簡略化することができる。また、製造コストを低減することができる。

【0063】

以下に、第3実施形態例を説明する。なお、この第3実施形態例の説明において、第1

や第2の各実施形態例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。

【0064】

この第3実施形態例では、可動用固定電極12を可動体6の上方側に設けるのではなく、図9に示すように、可動用固定電極12（12a, 12b）は、可動体6の下方側、つまり、基板2上に、可動体6の一部分に対向させて設けられている。第1や第2の各実施形態例では、可動用固定電極12を可動体6の上方側に配置するために上部部材4が形成されていたが、この第3実施形態例では、可動用固定電極12が基板2上に形成される構成であるために、上部部材4を設けなくとも済むので、当該上部部材4は省略されている。また、可動体6は、上部部材4に支持されるのに代えて、梁7を介して、基板2に固定されている固定部16（16a, 16b）に支持されている。

【0065】

この第3実施形態例では、可動用固定電極12は可動体6上に形成されているために、可動体6と可動用固定電極12間に直流電圧を印加すると、可動体6は基板2側に引き寄せられる構成となる。このため、可動体6と可動用固定電極12間に直流電圧を印加していないときには、図9に示すように、可動電極10上の絶縁膜11と、コプレーナー線路3との間には隙間が形成されて可動電極10のアップ状態となり、可動電極10とコプレーナー線路3間の静電容量が小さくなつて、コプレーナー線路3の高周波信号の導通がオフする。また、可動体6と可動用固定電極12間に直流電圧を印加したときには、可動体6が基板2側に引き寄せられて可動電極10はダウン状態となって可動電極10とコプレーナー線路3間の静電容量が大きくなり、これにより、コプレーナー線路3の高周波信号の導通はオフする。

【0066】

この第3実施形態例では、上部部材4を省略することができるので、構造および製造工程の簡略化を図ることができる。

【0067】

なお、この第3実施形態例では、上部部材4が省略されていたが、例えば可動体6の保護や気密封止を図る観点から、この第3実施形態例の如く可動用固定電極12を基板2上に形成する構成とした場合においても、第1や第2の各実施形態例と同様に上部部材4およびその固定部5を設けてよい。

【0068】

なお、この発明は第1～第3の各実施形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、第1や第2の各実施形態例では、上部部材4を基板2に固定する固定部5は基板2の両端側にそれぞれ設けられていたが、固定部5の配設形態は特に限定されるものではなく、例えば可動体6の配設領域を囲うように、基板2の四辺に沿った態様で設けてよい。このような配設形態の固定部5と、上部部材4とを設けると、可動体6の配設領域を気密封止できるので好ましい。

【0069】

また、第1～第3の各実施形態例では、高周波信号導通部として、コプレーナー線路が設けられている例を示したが、高周波信号導通部として、コプレーナー線路以外の例えばマイクロストリップ線路等の線路を形成してもよい。

【0070】

さらに、各実施形態例では、可動体6を構成する高抵抗半導体として、高抵抗のシリコンを例に挙げたが、シリコン以外の例えばGaN等の高抵抗の半導体により、可動体6を構成してもよいものである。

【0071】

さらに、可動体6を高抵抗半導体により構成する代わりに、可動体6は、高周波信号に対して絶縁性を有する半導体又は絶縁体により構成されていてよい。この場合には、例えば図9の鎖線で示すように、可動体6には、可動用固定電極12に対向する位置に可動体変位用可動電極20を形成する。この可動体変位用可動電極20と可動用固定電極12

が、当該可動用固定電極12と可動体変位用可動電極20間の直流電圧印加による静電引力によって、可動体6を可動用固定電極12側に変位させる可動体変位手段と成す。また、その可動体変位手段と可動体6が、全ての可動電極10a, 10bを同時にコプレーナー線路3に対する遠近方向の同じ向きに変位させるための可動電極変位手段と成す。

【0072】

さらに、第1～第3の各実施形態例では、可動電極10上に絶縁膜11が形成されていたが、例えば、絶縁膜11を可動電極10に設けるのに代えて、コプレーナー線路3における少なくとも可動電極10に対向する部分に絶縁膜11を形成してもよいし、また、対向し合う可動電極10とコプレーナー線路3の両方の表面に絶縁膜11を形成してもよい。

【0073】

さらに、第1～第3の各実施形態例では、1つの可動体6に2つの可動電極10を形成したが、1つの可動体6に3つ以上の可動電極10を形成してもよい。また、1つの可動体6に1つの可動電極10を形成し、この可動体6を複数設けることによって、複数の可動電極10を互いに高周波信号導通部の信号導通方向に間隔を介して配列してもよい。さらに、複数の可動電極10を形成した可動体6を複数設けることにより、複数の可動電極10を互いに高周波信号導通部の信号導通方向に間隔を介して配列してもよい。3つ以上の可動電極10が配列形成される場合には、可動電極10が設定の信号オン位置に配置されているときに、各可動電極10にそれぞれ対向する高周波信号導通部の位置でそれぞれ反射される高周波信号の合成信号の振幅が、複数の可動電極10のうちのそれぞれ単一の可動電極10に対向する高周波信号導通部の位置で反射された信号の振幅よりも小さく抑えられるように、各可動電極10間の高周波信号導通部を介した電気的な長さが設定される。

【0074】

さらに、第1～第3の各実施形態例はシャントスイッチとしたが、互いに対向するコプレーナー線路3等の高周波信号導通部と可動電極10の少なくとも一部が互いに直接接触と離間を行うことにより高周波信号導通部の高周波信号の導通オン・オフを制御する構成としてもよい。この場合には、例えば2つの可動電極10a, 10bを設けて形成されるRF MEMSスイッチの等価回路は図10(a)、(b)のようになる。

【0075】

つまり、図10(a)の等価回路は、可動電極10a, 10bがコプレーナー線路3に直接接觸しているとき（可動電極10a, 10bが設定の信号オフ位置に配置されているとき）のものである。この場合には、コプレーナー線路3の信号線3sが可動電極10a, 10bを介して直接的にグランドに短絡することにより、可動電極10a, 10bが接觸しているコプレーナー線路3の位置で高周波信号が図10(a)の矢印Dのように反射して、コプレーナー線路3の高周波信号の導通がオフする。

【0076】

また、図10(b)の等価回路は、可動電極10a, 10bがコプレーナー線路3から離れて可動電極10a, 10bが設定の信号オン位置に配置されているときのものである。この場合には、可動電極10a, 10bとコプレーナー線路3間の静電容量C_{UP}が小さくなって、信号線3sから可動電極10a, 10b（静電容量C_{UP}）を介してグランドを見たときにオープンと等価な状態となる。これにより、コプレーナー線路3の高周波信号の導通はオンとなる。このように可動電極10a, 10bのアップ時には、可動電極10a, 10bがコプレーナー線路3に直接接觸するタイプのものも、第1～第3の各実施形態例に示すようなシャントスイッチも、同様な状態となる。

【0077】

可動電極10a, 10bがコプレーナー線路3に直接接觸する構成を有する場合にも、第1～第3の各実施形態例と同様に、可動電極10a, 10bが設定の信号オン位置に配置されているときにおいて、可動電極10a, 10b間のコプレーナー線路3を介した電気的な長さが、コプレーナー線路3を導通する高周波信号波長λの1/4、又は、そのλ

／4から予め定めた許容範囲を越えない長さとなるように、可動電極10a, 10b間の物理的な間隔や、可動電極10a, 10bが設定の信号オン位置に配置されているときの可動電極10a, 10bとコプレーナー線路3間の間隔や、可動電極10a, 10b間に位置する部分のコプレーナー線路3の物理的な長さ等を設定する。これにより、可動電極10(10a, 10b)がコプレーナー線路3に直接接触するタイプのものであっても、第1～第3の各実施形態例と同様に、挿入損失および反射損失の向上を図ることができる。なお、可動電極10がコプレーナー線路3に直接接触するタイプのものにあっては、アイソレーションの周波数特性は、図7の点線に示される特性線cのように、コプレーナー線路3に導通する高周波信号の周波数によらずにアイソレーションがほぼ一定となる。可動電極10がコプレーナー線路3に直接接触するタイプのものにあっても、可動電極10を複数設けることによって、アイソレーションの向上を図ることができる。

【図面の簡単な説明】

【0078】

【図1】第1実施形態例のRFMEMSスイッチを説明するための図である。

【図2】第1実施形態例のRFMEMSスイッチにおける可動体の配置構成を示す説明図である。

【図3】第1実施形態例のRFMEMSスイッチを構成する可動電極とコプレーナー線路を抜き出して当該可動電極とコプレーナー線路の配置関係の一例を模式的に示すモデル図である。

【図4】第1実施形態例のRFMEMSスイッチを構成する可動電極とコプレーナー線路部分の等価回路図を用いて、第1実施形態例のRFMEMSスイッチの動作例を説明するための図である。

【図5】第1実施形態例の構成から得られる効果の一つを説明するための信号導通時における挿入損失の周波数特性の一例を示すグラフである。

【図6】第1実施形態例の構成から得られる効果の一つを説明するための信号導通時における反射損失の周波数特性の一例を示すグラフである。

【図7】第1実施形態例の構成から得られる効果の一つを説明するための信号遮断時のアイソレーションの周波数特性の一例を示すグラフである。

【図8】高抵抗半導体における周波数と誘電体損失($\tan\delta$)の関係例をガラスの場合と比較して示すグラフである。

【図9】第3実施形態例のRFMEMSスイッチを説明するための説明図である。

【図10】可動電極が高周波信号導通部との直接接触と離間によって高周波信号導通部の高周波信号の導通オン・オフを制御するタイプのスイッチの動作例を説明するための等価回路図である。

【図11】可動電極が1つだけしか設けられていない構成を持つRFMEMSスイッチの可動体の配置構成例を説明するための図である。

【図12】図11に示す可動体に設けられている可動電極とコプレーナー線路の配置関係の一例を示すモデル図である。

【図13】図11の構成を持つRFMEMSスイッチの可動電極とコプレーナー線路部分の等価回路図である。

【図14】図11、図12の構成を持つRFMEMSスイッチにおける信号導通オン・オフ状態を説明するための模式図である。

【符号の説明】

【0079】

- 1 RFMEMSスイッチ
- 2 基板
- 3 コプレーナー線路
- 4 上部部材
- 6 可動体
- 10 可動電極

- 1 1 絶縁膜
- 1 2 可動用固定電極
- 2 0 可動体変位用可動電極

【書類名】 図面

【図 1】

(a)

(b)

【図 2】

(b)

【図 3】

【図 4】

【図 5】

【図 6】

【図 7】

【図 8】

【図 9】

【図 10】

(a)

(b)

【図11】

(a)

(b)

【図 12】

【図 13】

【図14】

(a)

(b)

【書類名】要約書

【要約】

【課題】 RF MEMSスイッチの挿入損失や反射損失の低減、アイソレーション特性の向上を図る。

【解決手段】 高周波信号導通部3の上方側に複数の可動電極10a, 10bを高周波信号導通部3の高周波信号導通方向に間隔を介して配置する。全ての可動電極10a, 10bを同時に高周波信号導通部3に対する遠近方向の同じ抜きに変位させる手段を設ける。可動電極10a, 10bが高周波信号導通部3から離れる方向に変位して高周波信号導通部3の信号導通がオンしている時に、各可動電極10a, 10bにそれぞれ対向する高周波信号導通部3の位置で反射される信号の合成信号の振幅が、各可動電極10a, 10bに対向する位置で反射される単独の反射信号の振幅よりも小さく抑えられるように、各可動電極10a, 10b間の高周波信号導通部3を介した電気的な長さを設定する。

【選択図】 図1

特願 2003-347181

出願人履歴情報

識別番号 [000006231]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住所 京都府長岡京市天神二丁目26番10号
氏名 株式会社村田製作所