Summary | Riemann Integration

Introduction

Interval

Let I = [a, b]. Length of the interval |I| = b - a.

Disjoint interval

When 2 intervals don't share any common numbers.

Almost disjoint interval

When 2 intervals are disjoint or intersect only at a common endpoint.

Riemann Integral

Let $f-[a,b] o \mathbb{R}$ is a bounded (not necessarily continuous) function on a closed, bounded (compact) interval.

Riemann integral of f is: $\int_a^b f$

Definite integral

When a, b are constants.

Indefinite integral

When a is a constant but b is replaced with x.

Partition

Let I be a non-empty, compact interval (closed and bounded). A partition of I is a finite collection $\{I_1,I_2,\ldots,I_n\}$ of almost disjoint, non-empty, compact sub-intervals whose union is I.

A partition is determined by the endpoints of all sub-intervals:

$$a = x_0 < x_1 < \cdots < x_n = b.$$

A partition can be denoted by:

- its intervals $P = \{I_1, I_2, \dots, I_n\}$
- the endpoints of its intervals $P = \{x_0, x_1, \dots, x_n\}$

Riemann Sum

Let

- + $f:[a,b] o \mathbb{R}$ is a bounded function on the compact interval I=[a,b] with $M=\sup_I f$ and $m=\inf_I f$.
- $P = \{I_1, I_2, \dots, I_n\}$
- + $M_k=\sup_{I_k}f=\sup\left\{f(x):x\in[x_{k-1},x_k]
 ight\}$
- $oldsymbol{\cdot} \quad m_k = \inf_{I_k} f = \inf \left\{ f(x) : x \in [x_{k-1}, x_k]
 ight\}$

Upper riemann sum

$$U(f;P) = \sum_{k=1}^n M_k |I_k|$$

Lower riemann sum

$$L(f;P) = \sum_{k=1}^n m_k |I_k|$$

$$m_k < M_k \implies L(f;P) \le U(f;P)$$

When P_1, P_2 are any 2 partitions of I: $L(f; P_1) \leq U(f; P_2)$

Refinements

Q is called a refinement of $P\iff$ if P and Q are partitions of [a,b] and $P\subseteq Q$. When Q is a refinement of P:

$$L(f; P) \le L(f; Q) \le U(f; Q) \le U(f; P)$$

(i) Note

If P_1 and P_2 are partitions of [a,b], then $Q=P_1\cup P_2$ is a refinement of both P_1 and P_2 . In that case:

$$L(f;P_1) \leq L(f;Q) \leq U(f;Q) \leq U(f;P_2)$$

Upper & Lower integral

Let $\mathbb P$ be the collection of all possible partitions of the interval [a,b].

Upper Integral

$$U(f)=\inf\left\{U(f;P);P\in\mathbb{P}
ight\}=\overline{\int_a^bf}$$

Lower Integral

$$L(f)=\sup\left\{L(f;P);P\in\mathbb{P}
ight\}=\int_a^b f$$

For a bounded function f, always $L(f) \leq U(f)$

Riemann Integrable

A bounded function $f:[a,b] o\mathbb{R}$ is Riemann integrable on [a,b] **iff** U(f)=L(f). In that case, the Riemann integral of f on [a,b] is denoted by $\int_a^b f(x)\,\mathrm{d}x$.

Reimann Integrable or not

Function	Yes or No?	Proof hint
Unbounded	No	By definition
Constant	Yes	$orall P ext{ (any partition) } L(f;P) = U(f;P)$
Monotonically increasing/decreasing	Yes	Take a partition such that $\Delta x < \delta = rac{\epsilon}{f(b) - f(a)}$
Continuous	Yes	Take a partition such that $\Delta x < \delta = rac{\epsilon}{2(b-a)}$

(i) Note

If the set of points of discontinuity of a bounded function $f:[a,b] o \mathbb{R}$ is finite, then f is Riemann integrable on [a,b].

(i) Note

If the set of points of discontinuity of a bounded function $f:[a,b] \to \mathbb{R}$ is finite number of limit points, then f is integrable on [a,b].

A function may have infinitely many discontinuous points, but if the set of all discontinuous points have finite number of limit points, then f is integrable on [a,b].

Cauchy Criterion

Theorem

A bounded function $f:[a,b] \to R$ is Riemann integrable **iff** for every $\epsilon>0$ there exists a partition P_ϵ of [a,b], which may depend on ϵ , such that:

$$U(f,P\epsilon)-L(f,P\epsilon)\leq \epsilon$$

- To prove \implies : consider $L(f) rac{\epsilon}{2}$ and $U(f) + rac{\epsilon}{2}$
- To prove \iff : consider $L(f;P) < L(f) \wedge U(f) < U(f;P)$

(i) Note

 $f:[a,b] o\mathbb{R}$ is integrable on [a,b] when:

- The set of points of discontinuity of a bounded function $\, m{f} \,$ is finite.
- The set of points of discontinuity of a bounded function $m{f}$ is finite number of limit points. (may have infinite number of discontinuities) :::

Theorems on Integrability

Theorem 1

Suppose $f:[a,b] \to \mathbb{R}$ is bounded, and integrable on [c,b] for all $c \in (a,b)$. Then f is integrable on [a,b]. Also valid for the other end.

(i) Proof Hint

- Isolate a partition on the required end.
- Choose x_1 or x_{n-1} such that $\Delta x < rac{\epsilon}{4M}$ where M is an upper or lower bound.

Theorem 2

Suppose $f:[a,b] o \mathbb{R}$ is bounded, and continuous on [c,b] for all $c\in (a,b)$. Then f is integrable on [a,b]. Also valid for the other end.

⚠ TODO: Proof Hint

Properties of Integrals

Notation

If a < b and f is integrable on [a,b], then:

$$\int_a^b f = - \int_b^a f$$

Properties

Suppose f and g are integrable on [a,b].

Addition

f+g will be integrable on [a,b].

$$\int_a^b (f\pm g) = \int_a^b f\pm \int_a^b g$$

(i) Proof Hint

- Prove f+g is integrable using:
 - $\circ \ sup(f+g) \leq \sup(f) + \sup(g)$
 - $_{\circ} \ \ inf(f+g) \geq \inf(f) + \inf(g)$
- Start with U(f+g) and show $U(f+g) \leq U(f) + U(g)$
- Start with L(f+g) and show $L(f+g) \geq L(f) + L(g)$

Constant multiplication

Suppose $k \in \mathbb{R}$. kf will be integrable [a,b].

$$\int_a^b kf = k \int_a^b f$$

- Prove for $k \geq 0$. Use $U L < rac{\epsilon}{k}$
- Prove for k=-1
- Using the above results, proof for $\,k < 0\,$ is apparent

Bounds

If $m \leq f(x) \leq M$ on [a,b]:

$$m \leq \int_a^b f \leq M$$

If $f(x) \leq g(x)$ on [a,b]:

$$\int_a^b f \leq \int_a^b g$$

Modulus

|f| will be integrable on [a,b].

$$\left|\int_a^b f
ight| = \int_a^b |f|$$

(i) Proof Hint

Start with $-|f| \leq f \leq |f|$. And integrate both sides.

Multiple

fg will be integrable on $\left[a,b
ight]$.

- Suppose $m{f}$ is bounded by $m{k}$
- Prove f^2 is integrable (Use $rac{\epsilon}{2k}$)
- fg is integrable because:

$$fg=rac{1}{2}igl[(f+g)^2-f^2-g^2igr]$$

Max, Min

 $\max(f,g)$ and $\min(f,g)$ are integrable.

Where max and min functions are defined as:

$$\max(f,g) = \frac{1}{2}(|f-g| + f + g)$$

$$\min(f,g) = \frac{1}{2}(-|f-g|+f+g)$$

Additivity

 $\iff f$ is Riemann integrable on [a,c] and [c,b] where $c\in(a,b)$.

(i) Proof Hint

- \Longrightarrow : Use Cauchy criterion after defining these:
 - $\circ \ P' = \{c\} \cap P$
 - $Q = P' \cap [a,c]$
 - $R = P' \cap [c, b]$
- \longleftarrow : Use cauchy criterion on [a,c],[c,b] separately and then combine using a union partition

After the integrability is proven,

$$\int_a^b f = \int_a^c f + \int_c^b f$$

- 1. Let Q be a partition on [a,c] and R be a partition on [c,b] . And $P=Q\cap R$
- 2. Prove the below using Cauchy criteria:

$$\int_a^b f < L(f;P) + \epsilon \;\;\implies \;\; \int_a^b f \leq \int_a^c f + \int_c^b f$$

3. Prove the below using Cauchy criteria (by considering RHS):

$$\int_a^c f + \int_c^b f \le \int_a^b f$$

Sequential Characterization of Integrability

A bounded function $f:[a,b] o \mathbb{R}$ is Riemann integrable if and only if $\exists\,\{P_n\}$ a sequence of partitions, such that:

$$\lim_{n o\infty} \left[U(f;P_n) - L(f;P_n)
ight] = 0$$

In that case:

$$\int_a^b f = \lim_{n o \infty} U(f;P_n) = \lim_{n o \infty} L(f;P_n)$$

Cauchy criteria and squeeze theorem is used for both side proof.

For $\Leftarrow=:$

- · Consider the limit definition.
- Prove $oldsymbol{f}$ is Riemann integrable on P_n by Cauchy criteria.
- Use squeeze theorem for $\,U(f;P_n)-U(f)\leq U(f;P_n)-L(f;P_n)\,$ to prove limit of upper sum
- · Prove limit of lower sum using the limit of upper sum

For \Longrightarrow : Consider the below, where $n \in \mathbb{N}$.

$$0 \leq U(f;P_n) - L(f;L_n) \leq \frac{1}{n}$$

⚠ TODO

Add theorem 0.3.6.

This PDF is saved from https://s1.sahithyan.dev