Solution of limits by epsilon – delta definition.

```
h(x) = \frac{2 - |x|}{2 + x} No ponto p = 1
```

```
sage: p=1
sage: f(x)=2-abs(x)
sage: q(x)=2+x
sage: epsilon(x)=1/(10^x)
sage: delta(x)=epsilon(x)
sage: p_minus_delta(x)=p-delta(x)
sage: p_plus_delta(x)=p+delta(x)
sage: h_minus(x)=(f(p_minus_delta)/g(p_minus_delta))
sage: h_plus(x)=(f(p_plus_delta)/g(p_plus_delta))
          table(rows=[[x for
[n(epsilon(x), digits=4) for x]
                   digits=4) for x
n(p_minus_delta(x), digits=5) for x
[n(p_plus_delta(x), digits=5) for
[n(h_minus(x), digits=5) for x
[n(h_plus(x), digits=5) for x
 n(p_plus_delta(x),
header_column=['iter','epsilon','delta','p_minus_del
ta','p_plus_delta','epsilon-delta','epsilon+delta'l.
frame=True)
```

AULA 8 Solution of limits by epsilon – delta definition.

$$h(x) = \frac{2 - |x|}{2 + x}$$
 No ponto p = 1

+ iter	+ 1	+ 2 :	+ 3 :	 4
epsilon	0.1000		0.001000	0.0001000
delta	0.1000	0.01000		0.0001000
p_minus_delta		0.99000	0.99900	0.99990
p_plus_delta	:	1.0100	1.0010	1.0001
epsilon-delta		0.33779	0.33378	0.33338
epsilon+delta	0.29032	0.32890	0.33289	0.33329

Solution of limits by epsilon – delta definition.

$$h(x) = \frac{2 - |x|}{2 + x}$$
 No ponto p = -1

```
sage: p=-1
sage: f(x)=2-abs(x)
sage: q(x)=2+x
sage: epsilon(x)=1/(10^x)
sage: delta(x)=epsilon(x)
sage: p_minus_delta(x)=p-delta(x)
sage: p_plus_delta(x)=p+delta(x)
sage: h_minus(x)=(f(p_minus_delta)/g(p_minus_delta))
sage: h_plus(x)=(f(p_plus_delta)/g(p_plus_delta))
          table(rows=[[x for
[n(epsilon(x), digits=4) for x]
                   digits=4) for x
n(p_minus_delta(x), digits=5) for x
[n(p_plus_delta(x), digits=5) for
[n(h_minus(x), digits=5) for x
[n(h_plus(x), digits=5) for x
 n(p_plus_delta(x),
header_column=['iter','epsilon','delta','p_minus_del
ta','p_plus_delta','epsilon-delta','epsilon+delta'l.
frame=True)
```

AULA 8 Solution of limits by epsilon – delta definition.

Aproximações sucessivas para uma função num ponto p dado (tabelas de epsilon e delta) => continuidade no ponto.

$$h(x) = \frac{2 - |x|}{2 + x}$$

No ponto p = -1

+ 1	+ 2	+ 3	+
0.1000	0.01000	0.001000	0.0001000
0.1000	0.01000	0.001000	0.0001000
-1.1000	-1.0100	-1.0010	-1.0001
-0.90000	-0.99000	-0.99900	-0.99990
1.0000	1.0000	1.0000	1.0000
1.0000	1.0000	1.0000	1.0000
	0.1000 -1.1000 -0.90000 1.0000	0.1000 0.01000 -1.1000 -1.0100 -0.90000 -0.99000 1.0000 1.0000	0.1000

Solution of limits by epsilon – delta definition.

Aproximações sucessivas para uma função num ponto p dado (tabelas de epsilon e delta) => continuidade no ponto.

$$h(x) = \frac{2 - |x|}{2 + x}$$

No ponto p = -1.9999

```
Sage: p=-1.9999
sage: f(x)=2-abs(x)
sage: q(x)=2+x
sage: epsilon(x)=1/(10^x)
sage: delta(x)=epsilon(x)
sage: p_minus_delta(x)=p-delta(x)
sage: p_plus_delta(x)=p+delta(x)
sage: h_minus(x)=(f(p_minus_delta)/g(p_minus_delta))
sage: h_plus(x)=(f(p_plus_delta)/g(p_plus_delta))
          table(rows=[[x for
[n(epsilon(x), digits=4) for x]
                  digits=4) for x
n(p_minus_delta(x), digits=5) for x
 n(p_plus_delta(x),
[n(p_plus_delta(x), digits=5) for [n(h_minus(x), digits=5) for x [n(h_plus(x), digits=5) for x
                   digits=5)
[n(h_p]us(x),
header_column=['iter','epsilon','delta','p_minus_del
ta','p_plus_delta','epsilon-delta','epsilon+delta'l.
frame=True)
```

Solution of limits by epsilon – delta definition.

Aproximações sucessivas para uma função num ponto p dado (tabelas de epsilon e delta) => continuidade no ponto.

$$h(x) = \frac{2 - |x|}{2 + x}$$

No ponto p = -1.9999

ļ.
000
000
0000
3000 3000
0000
000

Solution of limits by epsilon – delta definition.

$$h(x) = \frac{2 - |x|}{2 + x}$$
 No ponto p = -2

```
sage: p=-2
sage: f(x)=2-abs(x)
sage: g(x)=2+x
sage: epsilon(x)=1/(10^x)
sage: delta(x)=epsilon(x)
sage: p_minus_delta(x)=p-delta(x)
sage: p_plus_delta(x)=p+delta(x)
sage: h_minus(x)=(f(p_minus_delta)/g(p_minus_delta))
sage: h_plus(x)=(f(p_plus_delta)/g(p_plus_delta))
sage: table(rows=[[x for x in [1..4]],
[n(epsilon(x), digits=4) for x in [1..4]],
[n(delta(x), digits=4) for x in [1..4]],
[n(p_minus_delta(x), digits=5) for x in [1..4]],
[n(p_plus_delta(x), digits=5) for x in [1..4]],
[n(h_minus(x), digits=5) for x in [1..4]],
[n(h_plus(x), digits=5) for x in [1..4]]],
header_column=['iter','epsilon','delta','p_minus_delta','p_plus_delta','epsilon-delta','epsilon+delta'],
frame=True)
```

AULA 8 Solution of limits by epsilon – delta definition.

Aproximações sucessivas para uma função num ponto p dado (tabelas de epsilon e delta) => continuidade no ponto.

$$h(x) = \frac{2 - |x|}{2 + x}$$

No ponto p = -2

iter	+ 1	2 2	3 3	
epsilon	0.1000	0.01000	0.001000	0.0001000
delta	0.1000	0.01000	0.001000	0.0001000
p_minus_delta	-2.1000000	-2.0100000	-2.0010000	-2.0001000
p_plus_delta	-1.9000000	-1.9900000	-1.9990000	-1.9999000
epsilon-delta	1.0000000	1.0000000	1.0000000	1.0000000
epsilon+delta	1.0000000 	1.0000000	1.0000000	1.0000000

References:

Granville, William; Joyner, David. **Differential Calculus and Sage**. Dispon[ivel em: https://wdjoyner.files.wordpress.com/2015/04/granville_calc1-sage_2009-08-15.pdf. Acesso em: 04 de ago. 2018.

SageMath, the Sage Mathematics Software System (Version 8.1), The Sage Developers, 2017, Dispon[ivel em: http://www.sagemath.org. Acesso em: 04 de ago. 2018.

Guidorizzi, H. L. . Um Curso de Cálculo, Volume 1. Editora LTC, Rio de Janeiro, 2001.

Stewart, James. Cálculo, Volume 1 e 2. São Paulo: Cengage Learning, 2016.

Thomas, G.B.; Finney, R. L.; Weir, M. D.; Giordano, F. R. Cálculo, Volumes 1 e 2. Editora Pearson Education do Brasil, São Paulo, 2002.

Piskunov. N. Cálculo Diferencial e Integral, Volumes 1 e 2. Editora livraria Lopes da Silva, Porto, 1986.