

Truncate-Split-Contrast

A Framework for Learning from Mislabeled Videos

Zixiao WANG January 5, 2023

Department of Computer Science and Engineering The Chinese University of Hong Kong

Learning with Noisy Label(LNL)Samples in a dataset can be mislabeled due to various reasons.

- Over-fitting mislabeled samples harms model generalization ability on unseen data[Zha+17]1
- ▶ The existing LNL methods focus on image tasks.

¹C. Zhang et al., "Understanding deep learning requires rethinking generalization." ICLR, 2017.

Learning with Noisy Label on Images

Depending on whether noisy instances are detected in training, the existing LNL methods can be roughly divided into two types.

- ► Noise robust models
 - robust loss functions, e.g., MAE, SCE[Wan+19]²
- Noise detection methods
 - loss-based methods, e.g., M-Correction[Ara+19]³
 - feature-based methods, e.g., CleanNet[LHZY18]⁴

²Y. Wang *et al.*, "Symmetric cross entropy for robust learning with noisy labels," in *ICCV*, Oct. 2019.

³E. Arazo *et al.*, "Unsupervised label noise modeling and loss correction," in *ICML*, 2019. ⁴K.-H. Lee *et al.*, "Cleannet: Transfer learning for scalable image classifier training with label noise," in *CVPR*, 2018.

Noise Utilization Methods

After detecting the potential noisy instances, models can utilize these noisy samples by,

- simply excluding them
- re-using them by estimating the pseudo labels of them in a semi-supervised fashion.

3

Learning with Noisy Label on VideosA straightforward migration from images to videos is not a sound choice.

computational cost

The pseudo label could be ambiguous and unreliable without sophisticated post-processing and data enrichment, which is time-consuming.

temporal semantics

This characteristic would be intuitively beneficial to noise detection.

high feature dimension

Feature-based methods may fail due to the curse of dimensionality.

Truncate-Split-Contrast

Pipeline

Figure 1: The pipeline of Truncate-Split-Contrast.

Formulation

Dataset \mathcal{D} , clean set $\mathcal{D}_c = \epsilon(\mathcal{D})$, and noisy set $\mathcal{D}_u = \mathcal{D} - \mathcal{D}_c$.

Classification head $g(\cdot)$

The loss is defined by,

$$\mathcal{L} = \mathcal{L}_{s} + \lambda \mathcal{L}_{r} = -\sum_{\mathbf{x}_{i} \in \epsilon(\mathcal{D})} \sum_{k=1}^{K} \mathbf{y}_{i}(k) \cdot \log g(\mathbf{x}_{i}, k) + \lambda \mathcal{L}_{r}, \tag{1}$$

In feature space, given the query ${\pmb x}$ with label ${\pmb a}$, and the clean-prototype ${\pmb x}_{\pmb a}$ of category ${\pmb a}$,

$$Similarity(\mathbf{x}, \mathbf{x}_a) = \mathbf{x} \cdot \mathbf{x}_a \tag{2}$$

We argue that to detect clean/noisy instances, utilizing all channels of a feature learned from classification supervision is not a must.

7

A top **b** channel selection operation $\zeta_b(\cdot)$

A category-level score function $\psi(\cdot)$

The reference set of category a, Ω^a

The truncation function is defined as,

$$\mathbf{w} = \zeta_b(\mathbf{x}, \ \psi(\Omega^a)). \tag{3}$$

Given the query ${m w}$ with label ${m a}$, and the clean-prototype ${m w}_{m a}$,

$$\eta(\mathbf{w}) \equiv \text{Similarity}(\mathbf{w}, \mathbf{w}_a) = \mathbf{w} \cdot \mathbf{w}_a$$
(4)

Oracle Selection

Ideally, when the wrongly annotated instances are known beforehand. The channel discriminative ability can be measured by the within-/ between-class variance.

$$\psi_{o}(\Omega) = \frac{(\boldsymbol{\mu}_{c} - \boldsymbol{\mu}_{u})^{2}}{\boldsymbol{\sigma}_{c}^{2} + \boldsymbol{\sigma}_{u}^{2}}, \quad \boldsymbol{\mu}_{c} = \frac{1}{|\Omega_{c}|} \sum_{\mathbf{x}_{i} \in \Omega_{c}} \mathbf{x}_{i}, \quad \boldsymbol{\sigma}_{c}^{2} = \frac{1}{|\Omega_{c}|} \sum_{\mathbf{x}_{i} \in \Omega_{c}} (\mathbf{x}_{i} - \boldsymbol{\mu}_{c})^{2}, \quad (5)$$

9

Approximate Selection

A video, in essence, consists of both the scene and motion semantics [WH18]⁵. We simply utilize the temporal *average* and *variance* to roughly search the semantics-intense channels.

$$\phi_{ave}(\mathbf{v}_1, \dots, \mathbf{v}_T) = \sum_{t} \mathbf{v}_t / T, \quad \phi_{var}(\mathbf{v}_1, \dots, \mathbf{v}_T) = \sum_{t} (\mathbf{v}_t - \phi_{ave})^2 / T.$$
 (6)

⁵Y. Wang and M. Hoai, "Pulling actions out of context: Explicit separation for effective combination," in *CVPR*, 2018, pp. 7044–7053.

Figure 2: The statistical relation between oracle score and amplitudes/variance on K200 and SthV1 under symmetric-40% noise setting at fifth epoch. Each recorded point bears the coordinates (r, p). r is the ranking of the corresponding statistics. The higher the r, the larger the amplitudes/variance. p is the probability of the relevant channels picked by the top b oracle selection. The top b amplitudes/variance area is filled with green. (b = 200)

Split

A two-component Gaussian Mixture Model $\pi(\cdot)$ is utilized to fit the distribution of $\eta(\mathbf{w})$. The probability of \mathbf{w} being noise of the a-th category is then defined as $p(\text{noise}|\mathbf{w};a)=\pi_a(\mathbf{w})$. Hence, the estimated clean set is obtained by thresholding $\pi_a(\mathbf{w})$,

$$\mathcal{D}_{\hat{\mathbf{c}}} = \epsilon(\mathcal{D}) = \{ \mathbf{x} \mid \mathbf{x} \in \mathcal{D}, \ \pi_a(\mathbf{w}) < 0.5 \}.$$
 (7)

Figure 3: Similarity distribution of CT-var.

Contrast

Noise Contrastive Learning

The estimated clean and unlabelled splits, namely $\mathcal{D}_{\hat{\mathfrak{c}}}$ and $\mathcal{D}_{\hat{\mathfrak{u}}}$

The motivation of Noise Contrastive Learning (NCL) is to utilize the estimated noisy samples in model updating fully and further enlarge the margins among samples from different categories.

$$\mathcal{L}_{r} = -\alpha \sum_{\mathbf{x}_{q} \in \mathcal{D}} \beta_{q} \sum_{\mathbf{x}_{p} \in \mathcal{P}_{q}} \log \frac{\exp\left(\frac{\mathbf{z}_{q} \cdot \mathbf{z}_{p}}{\tau}\right)}{\sum_{\mathbf{x}_{j} \in \mathcal{P}_{q} \cup \mathcal{N}_{q}} \exp\left(\frac{\mathbf{z}_{q} \cdot \mathbf{z}_{j}}{\tau}\right)},$$
(8)

Contrast

Given a clip pair (G, \widetilde{G}) from a video V, the representations of the two clips are defined as $\Gamma = \{x^G, x^{\widetilde{G}}\}$. For a sampled clip G from clean cluster of category a, the sets of positive and negative keys $\mathcal{P}_{\hat{c}}$, $\mathcal{N}_{\hat{c}}$ can be defined as,

$$\mathcal{P}_{\hat{c}} = \{ \Gamma_j \mid \Gamma_j \subset \mathcal{D}_{\hat{c}}, i \neq j, a_i = a_j \} \cup \{ \mathbf{x}_i^{\widetilde{G}} \},$$

$$\mathcal{N}_{\hat{c}} = \{ \Gamma_j, \Gamma_l \mid \Gamma_j \subset \mathcal{D}_{\hat{u}}, \Gamma_l \subset \mathcal{D}_{\hat{c}}, a_i = a_j, a_i \neq a_l \},$$
(9)

When the sampled clip G_i is from unlabelled cluster, the sets of keys $\mathcal{P}_{\hat{u}}$ and $\mathcal{N}_{\hat{u}}$ is defined as,

$$\mathcal{P}_{\hat{u}} = \{ \mathbf{x}_j \mid \mathbf{x}_j \in \text{NN}(\mathbf{x}_i^G) \} \cup \{ \mathbf{x}_i^{\widetilde{G}} \}, \quad \mathcal{N}_{\hat{u}} = \mathcal{D} - \mathcal{P}_{\hat{u}} \cup \{ \mathbf{x}_i^G \}. \tag{10}$$

Noise Type Noise Ratio	20%	Symmetric 40% 60%		80%	Average			
		-070			10%	20%	40%	
GCE[40]	53.1	49.6	42.1	23.4	54.0	52.0	41.4	45.5
SCE[32]	64.5	57.8	48.1	27.9	67.2	62.0	46.9	53.5
TopoFilter[34]	61.4	55.5	37.7	14.9	65.7	63.6	55.5	50.6
Co-teaching[9]	61.0	60.9	56.9	32.5	60.6	60.2	46.9	54.1
M-correction[1]	66.7	62.3	54.8	40.1	65.5	62.1	52.9	57.8
$ ext{CT-} all$	68.4	64.2	58.3	43.3	69.1	67.4	51.9	60.4
$ ext{CT-}var$	69.2	67.1	61.1	48.4	70.0	68.0	55.9	62.8
$ ext{CT-} ave$	69.4	66.9	61.0	48.1	69.8	68.6	58.4	$\boldsymbol{63.2}$
$\operatorname{CT-}oracle$	70.4	67.7	61.5	49.6	70.6	70.0	58.9	64.1
Clean Only	70.5	68.3	64.9	58.8	70.9	70.3	68.6	67.5

Figure 4: Results on K200 (Part 1)

DivideMix[16]	69.4	65.9	60.7	46.5	68.2	67.5	53.1	61.6
CT- $var + PL$ - H	68.1	65.6	58.3	37.9	66.5	65.8	54.6	59.6
CT- $var + PL$ - S	68.2	66.0	60.8	45.4	67.1	66.8	55.8	61.4
CT- $var + PL$ - K	67.7	65.0	60.1	47.4	66.4	65.7	55.0	61.0
CT-var + CL	69.4	66.6	60.4	12.2	68.3	67.6	54.7	57.0
CT- $var + SCL$	70.3	67.6	61.4	46.9	70.2	68.1	57.0	63.1
CT- $var + NCL$	70.9	68.6	63.4	49.9	70.5	69.5	59.2	64.6

Figure 5: Results on K200 (Part 2)

Table 2. Testing Accuracies (%) on Kinetics and Something V1 Dataset.

Dataset	Kinetics					Something V1						
Noise Type	Sy	Symmetric		Asymmetric			Symmetric			Asymmetric		
Noise Ratio	40%	60%	80%	10%	20%	40%	40%	60%	80%	10%	20%	40%
TopoFilter[34]	49.1	40.4	21.5	56.1	55.1	47.8	21.4	4.3	1.2	35.8	34.5	26.9
Co-teaching[9]	53.9	51.4	31.3	51.4	51.4	41.7	23.6	14.5	4.5	24.0	24.6	18.5
M-correction[1]	57.3	51.2	40.3	54.8	53.9	47.1	24.1	15.1	4.5	36.6	35.2	22.0
$ ext{CT-}ave$	60.3	56.6	46.3	62.9	61.3	48.0	36.3	26.2	4.6	41.5	37.8	28.3
$ ext{CT-}var$	60.1	55.8	45.7	62.8	61.0	48.4	36.2	26.7	4.8	41.6	38.7	28.7
Clean Only	61.6	58.8	54.3	70.3	68.0	61.7	40.7	36.0	24.8	44.0	43.5	40.6
CT^* - var	61.1	56.7	48.6	63.6	62.5	57.8	36.8	27.0	5.8	41.7	40.2	32.8
CT-var+CL	60.0	55.3	7.6	61.7	59.5	45.2	31.8	1.6	1.1	37.8	36.2	27.1
CT-var+SCL	60.5	56.5	46.5	63.0	60.9	48.8	37.6	28.4	2.9	41.5	40.2	29.4
CT-var+NCL	61.2	57.2	46.9	63.3	61.5	49.1	38.3	30.1	5.1	41.8	40.8	30.0

Table 1: Testing accuracies (%) on K200 with 60% Symmetric Noise and Different Hyper-parameter **b**.

b	100	200	400	1600	2048
CT-var	60.6	61.1	60.8	59.0	58.3
CT-var+NCL	62.9	63.4	63.3	62.0	61.6

Noise Type	Symmetric				Asymmetri		
Noise Ratio	20%	40%	60%	80%	20%	40%	
Bootstrap[27]	51.4	41.1	29.7	10.2	53.4	38.7	
D2L[22]	54.0	29.7	-	-	43.6	16.9	
$L_{ m DMI}[35]$	-	-	-	-	-	-	
Data Param[28]	56.3	46.1	32.8	11.9	56.2	39.0	
M-correction[1]	53.0	43.0	36.6	12.8	53.2	37.9	
INCV[3]	58.6	55.4	43.7	23.7	56.8	44.4	
AUM[26]	65.5	61.3	53.0	31.7	59.7	40.2	
DivideMix [†] [16]	65.4	62.2	62.4	35.1	65.7	51.7	
DivideMix[16]	67.6	65.8	63.7	43.4	67.1	54.2	
$ ext{CT-}img$	67.7	61.6	55.1	31.7	61.0	47.8	
CT-img + PL-H	67.4	62.1	53.6	27.2	65.0	51.1	
CT- $img + PL$ - S	68.2	63.0	54.3	31.7	66.1	52.7	
CT-img + PL-K	67.7	62.7	53.6	31.7	66.6	53.5	
CT-img + NCL	68.5	64.9	57.5	35.4	67.4	58.5	

Figure 6: Results on CIFAR100

Reference I

- [1] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, "Understanding deep learning requires rethinking generalization," *ICLR*, 2017.
- [2] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey, "Symmetric cross entropy for robust learning with noisy labels," in *ICCV*, Oct. 2019.
- [3] E. Arazo, D. Ortego, P. Albert, N. O'Connor, and K. Mcguinness, "Unsupervised label noise modeling and loss correction," in *ICML*, 2019.
- [4] K.-H. Lee, X. He, L. Zhang, and L. Yang, "Cleannet: Transfer learning for scalable image classifier training with label noise," in *CVPR*, 2018.
- [5] Y. Wang and M. Hoai, "Pulling actions out of context: Explicit separation for effective combination," in *CVPR*, 2018, pp. 7044–7053.