1830

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	СТ «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

«Исследование методов распознавания дорожных знаков на снимке для обработки автопилотом»

Студент	ИУ7-51Б	Косарев А.А.
Руководит	ель	Шаповалова М.С.

РЕФЕРАТ

Расчетно-пояснительная записка 28 с., 5 рис., 1 табл., 17 источников, 1 прил.

Объектом исследования являются методы решения задачи коммивояжёра.

Цель работы— сравнительный анализ существующих методов решения задачи коммивояжёра.

В процессе работы проведён обзор и анализ основных подходов к решению задачи коммивояжёра, рассмотрены точные и эвристические методы, определены их преимущества и недостатки, сформулированы критерии сравнения и выполнен сравнительный анализ.

СОДЕРЖАНИЕ

Pl	ЕΦЕ	PAT	3
O]	БОЗ	ІАЧЕНИЯ И СОКРАЩЕНИЯ	6
Bl	вед	ение	7
1	Ана	пиз предметной области	8
	1.1	Основные определения	8
	1.2	Развитие методов решения	6
		1.2.1 Точные методы	6
		1.2.2 Эвристические методы	6
		1.2.3 Гибридные методы	9
2	Ана	пиз существующих методов	
	реп	ения ЗК	10
	2.1	Формализация задачи \ldots	10
	2.2	Точные методы	10
		2.2.1 Метод полного перебора	10
		2.2.2 Метод динамического программирования	11
		2.2.3 Метод ветвей и границ	12
		2.2.4 Метод множителей Лагранжа	14
	2.3	Эвристические методы	17
		2.3.1 Метод ближайшего соседа	17
		2.3.2 Генетический метод	18
		2.3.3 Муравьиный алгоритм	20
		2.3.4 Алгоритм имитации отжига	21
		2.3.5 Метод роя частиц	23
	2.4	Критерии сравнения	24
	2.5	Сравнение методов	24
3	4 КЛ	ОЧЕНИЕ	26
Cl	ПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	27

ПРИЛОЖЕНИЕ А	Презентация	научно-исследоват	гельской
работы			

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В текущей расчетно-пояснительной записке применяются следующие сокращения и обозначения.

ЗК — задача коммивояжера.

ЦЛП — целочисленная задача линейного программирования.

 $\mathbf{M}\Pi\Pi$ — метод полного перебора.

МДП — метод динамического программирования.

 $\mathrm{B}\Gamma$ — метод ветвей и границ.

 ${
m MM}\Pi$ — метод множителей Лагранжа.

МБС — метод ближайшего соседа.

ГА — генетический алгоритм.

МА — муравьиный алгоритм.

МИО — метод имитации отжига.

МРЧ — метод роя частиц.

ВВЕДЕНИЕ

Коммивояжер (фр. commisvoyageur) — бродячий торговец. Задача коммивояжера — важная задача транспортной логистики, отрасли, занимающейся планированием транспортных перевозок. Коммивояжеру, чтобы распродать нужные и не очень нужные в хозяйстве товары, следует объехать плунктов и в конце концов вернуться в исходный пункт. Требуется определить наиболее выгодный маршрут объезда. В качестве меры выгодности маршрута может служить суммарное время в пути, суммарная стоимость дороги, или, в простейшем случае, длина маршрута.

Задача коммивояжера является важной и вместе с тем трудноразрешимой [1]. Необходимость разработки эффективных методов ее решения обусловлена растущими объемами данных и сложностью их обработки. Логистические компании, службы доставки и транспортные системы ежедневно сталкиваются с необходимостью прокладки оптимальных маршрутов. Использование эффективных методов решения данной задачи позволяет экономить топливо, сокращать временные затраты и повышать качество сервиса, что важно при повышающейся конкуренции и стремлении к снижению расходов. То есть, задача коммивояжера актуальна как с научной, так и с практической точки зрения.

Цель научно-исследовательской работы — сравнительный анализ существующих методов решения задачи коммивояжера.

Для достижения поставленной в работе цели предстоит решить следующие задачи:

- провести исследование существующих методов решения задачи коммивояжера;
- определить преимущества и недостатки рассмотренных методов;
- сформулировать критерии сравнения методов;
- провести сравнительный анализ методов.

1 Анализ предметной области

1.1 Основные определения

Задача коммивояжера формулируется следующим образом: дано множество городов (вершин графа) и расстояний между каждым городом (весов ребер). Необходимо найти замкнутый маршрут, проходящий ровно по одному разу через каждый город и возвращающийся в исходную точку, при этом суммарная длина этого маршрута должна быть минимальной [2].

Граф — абстрактная математическая структура, представляющая собой множество вершин (точек) и соединяющих их ребер (линий). Граф называют полным, если каждая пара вершин соединена ребром.

Гамильтонов путь — путь в графе, проходящий через каждую вершину ровно один раз. Гамильтоновым циклом является такой цикл (замкнутый путь), который проходит через каждую вершину графа ровно по одному разу.

Рисунок 1.1 – Пример Гамильтонова цикла

Задача коммивояжера представляет собой задачу отыскания кратчайшего Гамильтонова цикла в полном конечном графе с N вершинами.

1.2 Развитие методов решения

Выделяют два типа решения этой задачи: точные и эвристические [3].

1.2.1 Точные методы

Точный метод — алгоритмический подход, который гарантированно находит оптимальное решение задачи [4].

Для ЗК точные методы часто основаны на переборе всех перестановок городов (вершин) или применении методов динамического программирования, ветвей и границ или целочисленного программирования. Точные методы гарантируют нахождение оптимального решения, но их сложность возрастает экспоненциально с увеличением количества вершин.

1.2.2 Эвристические методы

Эвристический метод — алгоритм, не гарантирующий нахождение строго оптимального решения, но в среднем быстро находящий «достаточно хорошие» решения.

Эвристические методы решения ЗК предназначены для поиска приближенного решения за приемлемое время, особенно для графов большой размерности.

1.2.3 Гибридные методы

Гибридные методы сочетают различные подходы (точные и эвристические) для достижения баланса между точностью, скоростью работы и вычислительными затратами.

2 Анализ существующих методов решения ЗК

2.1 Формализация задачи

Пусть задан взвешенный полный граф

$$G = (V, E), \tag{2.1}$$

где $V = \{1, 2, ..., n\}$ — множество вершин (городов), а E — множество ребер. Каждому ребру $(i, j) \in E$ соответсвует стоимость (расстояние) c_{ij} . Необходимо найти такую перестановку городов $\pi = (\pi_1, \pi_2, ..., \pi_n)$, что функционал

$$f(\pi) = \sum_{k=1}^{n-1} c_{\pi_k \pi_{k+1}} + c_{\pi_n \pi_1}, \tag{2.2}$$

минимален.

2.2 Точные методы

Точные методы решения ЗК в значительной степени условно подразделяются на методы: полного перебора, динамического программирования, ветвей и границ, множителей Лагранжа, отсекающих плоскостей, композитные, прочие. Эффективные алгоритмы точного решения ЗК, разработанные в последние годы, как правило, принадлежат к разряду композитных, т. е. содержат в себе элементы нескольких методов, и выделение «чистых стратегий» имеет в основном методологическую ценность [5].

2.2.1 Метод полного перебора

Полный перебор заключается в поиске решения путем перебора всевозможных вариантов решения, и отыскания среди этих вариантов удовлетворяющего заданным требованиям.

Достоинство данного метода — точность результата. Метод полного перебора всегда определяет оптимальный Гамильтонов цикл в графе.

Главный недостаток — количество времени, необходимое для отыскания всевозможных вариантов решения, которое растет вместе с увеличением количества n вершин графа, что может потребовать для поиска решения количество времени, несравнимое с человеческой жизнью. Поскольку коммивояжер в каждом из городов встает перед выбором следующего города из тех, что он еще не посетил, существует (n-1)! маршрутов для асимметричной и $\frac{(n-1)!}{2}$ маршрутов для симметричной задачи коммивояжера.

2.2.2 Метод динамического программирования

Метод динамического программирования был практически одновременно предложен вместе с методом полного перебора [6]. Пусть |V|=n, |E|=m. Элементы $c_{ii}=\infty, i=\overline{1,n}$. Начальной вершиной маршрута коммивояжера будем считать вершину 1. Пусть $S\subseteq V$ — некоторое подмножество вершин. Обозначим через f(S,j) длину минимальной элементарной цепи, начинающейся в вершине 1, проходящей через все вершины из S и заканчивающейся в вершине $j\in S$. Тогда из принципа оптимальности Беллмана [7] имеем следующее функциональное уравнение:

$$f(S,j) = \min_{i \in S_j} \{c_{ij} + f(S_j,i)\}$$
 (2.3)

с начальными условиями

$$f(,) = 0. (2.4)$$

На последнем шаге refeq:func1 переходит в

$$f^* = \min_{i \in V_1} \{ c_{i1} + f(V, i) \}, \tag{2.5}$$

где f^* — длина оптимального тура.

Главное достоиство — метод не чувствителен к введению дополнительных ограничений. В [8] метод был использован для решения ЗК с выбором (задача 1.5.6). В [9] метод был использован для решения ЗК с выделенными вершинами (задача 1.5.6), а в [10] — для решения ЗК с взаимодействующими

парами пунктов (задача 1.15.13).

Главным недостатком метода является чрезмерное количество вычислений и требований к памяти (требуется около $\sqrt{n} \cdot 2^n$ ячеек). Трудоемкость данного алгоритма оценивается как $O(n^2 \cdot 2^n)$. При этом в иной схеме метода динамического программирования [11] удается сократить количество ячеек до n, однако при этом объем вычислений возрастает до $O(4^n)$ операций.

2.2.3 Метод ветвей и границ

Метод ветвей и границ — это общий подход к решению сложных комбинаторных задач оптимизации, в том числе задачи коммивояжера. Он основан на построении дерева решений, в узлах которого рассматриваются подзадачи с постепенно уточняющимися ограничениями. Метод позволяет отсекать (не рассматривать) ветви дерева, заведомо не приводящие к оптимальному решению, на основе вычисляемых оценок снизу (нижних границ целевой функции).

Основными элементами метода ветвей и границ являются:

- 1. Оценивание снизу. Способ вычисления нижней оценки для множества решений.
- 2. Оценивание сверху. Способ вычисления приближенного решения ЗК.
- 3. Разбиение. Способ разбиения множества решений на подмножества, то есть способ формирования списка подзадач.
- 4. Ветвление. Порядок выбора очередной подзадачи из списка подзадач.
- 5. Отсечение. Правило отбрасывания бесперспективных элементов множества решений.

Схема метода ВГ представлена на рисунке 2.1

Рисунок 2.1 – Схема метода ветвей и границ

- 1. Построение матрицы с исходными данными: в таблицу заносятся расстояния (c_{ij}) между городами (в ячейки типа A-A, B-B и т. д. ставится ∞ условно бесконечно большое число); при этом строкам соответствуют города отбытия, а столбцам города прибытия;
- 2. Нахождение минимумов по строкам: в каждой строке определяется минимальное число (d_i) и выписывается в отдельный столбец;
- 3. Редукция строк: из значений ячеек каждой строки вычитаем соответствующий минимум $(c_{ij} = c_{ij}^{-}d_i)$, не затрагивая при этом клетки с ∞ ;
- 4. Приведение столбцов: аналогично строкам, из каждого столбца вычитается его минимум. Сумма всех вычтенных элементов дает нижнюю границу маршрута в корне дерева.
- 5. Выбор нулевой клетки: для каждой нулевой клетки оцениваем, насколько выгодно включение соответствующего ребра. Выбираем клетку с максимальной оценкой.
- 6. Ветвление: рассматриваем два варианта с включением и без включения данного ребра. Для ветви включения вычеркиваем строку и столбец выбранной клетки, запрещаем обратный путь. Для ветви исключения ставим в нее ∞ .

- 7. Пересчет нижних границ: пересчитываем нижние границы для обоих вариантов и выбираем для продолжения ту ветвь, где нижняя граница меньше.
- 8. Повторение шага: продолжаем ветвление и приведение до тех пор, пока не будет определен полный маршрут. Итоговая длина маршрута вычисляется по исходной матрице.

Рисунок 2.2 – Пример работы алгоритма ветвей и границ

Главное достоинство метода ветвей и границ — он гарантированно находит оптимальное решение, если рассмотреть все ветви без отсечения перспективных вариантов.

Главный недостаток метода ветвей и границ — в худшем случае он требует экспоненциального времени, порядка 2^n вычислений, поскольку даже с отсечениями при увеличении размера задачи число вариантов все еще может быть велико.

2.2.4 Метод множителей Лагранжа

Метод множителей Лагранжа (или лагранжева релаксация) для задачи коммивояжера заключается в том, что часть ограничений задачи переносится

в целевую функцию с помощью соответствующих множителей (лагранжевых коэффициентов).

Задача коммивояжера может быть сформулирована как целочисленная задача линейного программирования (ЦЛП). Введем бинарные переменные:

$$x_{ij} = \begin{cases} 1, & \text{если дуга } (i,j) \text{ входит в маршрут;} \\ 0, & \text{иначе.} \end{cases}$$
 (2.6)

Стандартная ЦЛП-формулировка задачи коммивояжера:

$$\min \sum_{i \in V} \sum_{j \in V, j \neq i} c_{ij} x_{ij} \tag{2.7}$$

при условиях

$$\sum_{j \in V, j \neq i} x_{ij} = 1 \quad \forall i \in V, \tag{2.8}$$

$$\sum_{i \in V, i \neq j} x_{ij} = 1 \quad \forall j \in V, \tag{2.9}$$

$$x_{ij} \in \{0, 1\}. \tag{2.10}$$

Кроме этого, чтобы исключить подтуры (циклы, не охватывающие все вершины), вводятся подтуровые ограничения (например, неравенства типа МТZ или SEC) [12]:

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1 \quad \forall S \subset V, 2 \le |S| \le n - 1.$$
 (2.11)

Эти подтуровые ограничения делают решение задачи значительно сложнее. В методе множителей Лагранжа (лагранжевой релаксации) некоторые из сложных ограничений переносятся в целевую функцию с помощью множителей Лагранжа $\lambda_S \geq 0$ для каждого подмножества S:

$$L(\lambda) = \min_{x} \left\{ \sum_{i} \sum_{j \neq i} c_{ij} x_{ij} + \sum_{2 \le |S| \le n-1} \lambda_{S} \left(\sum_{i \in S} \sum_{j \in S} x_{ij} - (|S| - 1) \right) \right\}. \quad (2.12)$$

Таким образом, релаксируем подтуровые ограничения:

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1 \implies \sum_{i \in S} \sum_{j \in S} x_{ij} - (|S| - 1) \le 0.$$
 (2.13)

Подставляя их в целевую функцию с лагранжевыми множителями, получаем:

$$L(\lambda) = \min_{x} \left\{ \sum_{i} \sum_{j \neq i} \tilde{c}_{ij}(\lambda) x_{ij} \right\}, \tag{2.14}$$

где

$$\tilde{c}_{ij}(\lambda) = c_{ij} + \sum_{S:i,j \in S} \lambda_S. \tag{2.15}$$

Здесь $\tilde{c}_{ij}(\lambda)$ — модифицированные (скорректированные) стоимости дуг, учитывающие штрафы за нарушение подтуровых ограничений.

Суть метода: найти такой вектор множителей Лагранжа $\lambda = (\lambda_S)$, чтобы значение $L(\lambda)$ давало как можно более сильную нижнюю оценку на исходную задачу. Для этого часто применяют субградиентные методы:

$$\lambda_S^{(k+1)} = \max\{0, \lambda_S^{(k)} + \alpha_k \left(\sum_{i \in S} \sum_{j \in S} x_{ij}^{(k)} - (|S| - 1)\right)\},$$
 (2.16)

где $x^{(k)}$ — решение релаксированной задачи на k-й итерации, а α_k — параметр шага субградиентного метода.

Преимущества метода:

- универсален в использовании, так как является модификацией методов типа ветвей и границ;
- исключение сложных ограничений из непосредственного решения ЦЛП позволяет быстрее решать 3K (решение оценивается примерно в n^4 операций).

Недостатки метода:

- найденные решения в ходе Лагранжевой релаксации не обязательно оптимальны для изначальной ЗК;
- для больших задач поиск хороших множителей Лагранжа может занимать значительное время [13].

2.3 Эвристические методы

Эвристические методы — это алгоритмические подходы, которые стремятся быстро находить приемлемые, но не обязательно оптимальные решения сложных задач оптимизации, таких как ЗК. В отличие от точных методов, эвристики не гарантируют нахождения оптимального решения, однако позволяют существенно сократить вычислительные затраты и применимы к большим задачам, где точный перебор или сложные оптимизационные процедуры становятся слишком ресурсозатратными или практически невозможными [14].

2.3.1 Метод ближайшего соседа

Идея алгоритма ближайшего соседа основана на простом эвристическом правиле: если мы будем посещать ближайший пункт на каждом шаге, то маршрут получится довольно хорош в целом. Перед коммивояжером ставится задача посещать ближайший из еще не посещенных пунктов. В алгоритме существуют два важных ограничения:

- 1. Недопущение повторного заезда в пункт. Оно связано с необходимостью (по условию задачи) нахождения гамильтонова цикла, то есть цикла, в котором все пункты посещаются единожды.
- 2. Недопущение возврата преждевременного возврата в исходный пункт. Этот запрет вводится для предотвращения преждевременного зацикливания маршрута, которое повлечет за собой неправильную работу алгоритма.

Схема метода изображена на 2.3.

Рисунок 2.3 – Схема метода ближайшего соседа

Главным преимуществом метода является высокая скорость выполнения. Методу достаточно одного прохода по всем вершинам, в результате чего он работает за время порядка $O(n^2)$ для n городов, что достаточно быстро при относительно небольших n, по сравнению с точными методами, рассмотренными выше.

Однако, как было упомянуто раньше, слепое жадное решение может приводить к получению не самого оптимального пути. При этом результат сильно зависит от выбора начального города, так как метод не пересматривает сделанные ранее выборы.

2.3.2 Генетический метод

Генетический алгоритм является алгоритмом поиска, который возможно применить для решения задачи оптимизации. Генетический алгоритм использует методы аналогичные естественному отбору в природе, такие как наследование, мутация, кроссинговер и сам отбор [16].

Для применения генетического алгоритма к ЗК необходимо формализовать основные этапы алгоритма в контексте оптимизации маршрута.

1. Целевая функция: Цель — минимизировать длину тура, которая зада-

ется как:

$$f(T) = \sum_{i=1}^{n} d(x_i, x_{i+1}), \tag{2.17}$$

где $T = \{x_1, x_2, \dots, x_n, x_1\}$ — маршрут, а $d(x_i, x_{i+1})$ — расстояние между городами x_i и x_{i+1} .

2. Создается начальная популяция:

$$P = \{T_1, T_2, \dots, T_m\},\tag{2.18}$$

где каждая особь T_i представляет собой случайный маршрут.

3. Селекция. Для выбора родителей используется метод рулетки или турнирный отбор. Вероятность выбора маршрута T_i пропорциональна его приспособленности $f(T_i)$:

$$P(T_i) = \frac{\frac{1}{f(T_i)}}{\sum_{j=1}^{m} \frac{1}{f(T_j)}}.$$
 (2.19)

- 4. Кроссинговер. Родители T_1 и T_2 комбинируются для получения потомков. Один из подходов частично сопоставленный кроссинговер (PMX), при котором потомок T' наследует сегмент маршрута от одного родителя, а оставшиеся элементы берутся из другого.
- 5. Мутация. Для увеличения вариативности производится случайное изменение маршрута, например, инверсией случайного сегмента:

$$T' = \{x_1, x_2, \dots, x_i, x_j, \dots, x_i, x_{j+1}, \dots, x_n\}.$$
 (2.20)

- 6. Новая популяция формируется из наиболее приспособленных особей на основе функции f(T).
- 7. Алгоритм завершается, если достигается заданное количество итераций или если улучшение целевой функции становится незначительным.

Экспериментально временная сложность ГА была оценена как $t=683-(42,467N)+(1,0696N^2)$.

Преимущества метода:

- имеет степенную, а не экспоненциальную сложность;
- подходит для любых целевых функций;
- хорошо подходит для распараллеливания, так как вычисления для различных особей в популяции независимы.

Недостатки метода:

- метод находит приближенное решение, которое может не быть оптимальным;
- эффективность ГА сильно зависит от выбора параметров, таких как размеры популяции, вероятность кроссинговера и мутации.

2.3.3 Муравьиный алгоритм

Одним из эвристических методов решения задачи коммивояжера является муравьиный алгоритм. Этот алгоритм имитирует передвижение колонии муравьев в природе.

Выбор города основывается на матрице расстояний $\{d_{ij}\}$ и использует значение таблицы феромонов T. Феромоны — это некоторое вещество, которое «откладывают» муравьи, помечая лучший маршрут между городами.

Передвижение муравья направляет случайное число, которое отправляет его в город k с большей вероятностью, если функция P_{ij} принимает наибольшее значение.

Вероятность перехода из города i в j вычисляется по формуле:

$$P_{ij} = \frac{\tau_{ij}^{\alpha} \cdot \left(\frac{1}{d_{ij}}\right)^{\beta}}{\sum_{k \in \text{доступные города}} \tau_{ik}^{\alpha} \cdot \left(\frac{1}{d_{ik}}\right)^{\beta}},$$
(2.21)

где τ_{ij} — феромон между этими городами, $\frac{1}{d_{ij}}$ — видимость города, а α и β — коэффициенты, регулирующие решение.

Если $\alpha=0$, то алгоритм становится «жадным», и выбор основывается только на расстоянии между городами, если $\beta=0$ — выбор города базируется только на значении феромона.

Получив собственный маршрут для каждого муравья и выбрав наименьший, если полученное решение нас не удовлетворяет, то обновляем таблицу феромонов с учетом «пропозиции» (проходили ли маршрут хотя бы один муравей через это ребро), и строим маршруты заново.

Преимущества метода:

- феромоны позволяют учитывать накопленный опыт для улучшения качества решений;
- подходит для параллельного выполнения, так как муравьи работают независимо друг от друга;
- хорошо подходит для распараллеливания, так как вычисления для различных особей в популяции независимы.

Недостатки метода:

- метод предоставляет приближённое решение;
- возможна концентрация феромонов на подоптимальных путях, что препятствует дальнейшему поиску;
- результаты сильно зависят от настройки параметров α, β и скорости испарения феромонов.

Модификация с элитными муравьями улучшает базовый муравьиный алгоритм за счет выделения специальных "элитных" муравьев, которые оказывают большее влияние на обновление таблицы феромонов. Эти муравьи следуют наиболее успешным маршрутам, найденным в предыдущих итерациях, и вносят дополнительный вклад в увеличение феромонов на ребрах, принадлежащих этим маршрутам. Подход ускоряет сходимость алгоритма и позволяет концентрировать фокус на оптимальных маршрутах, однако может привести к преждевременной сходимости, если элитные маршруты закрепляются слишком рано.

2.3.4 Алгоритм имитации отжига

Метод имитации отжига основан на моделировании физического процесса закалки металлов, где система постепенно охлаждается, переходя от хаотичного состояния к упорядоченному. Для 3K это означает нахождение глобального минимума функции, представляющей длину маршрута. На каждой итерации метод генерирует новое решение и оценивает его с помощью энергетической функции U(x), равной длине текущего маршрута. Если новое решение улучшает U(x), оно принимается. Если нет, оно принимается с вероятностью

 $P = \exp\left(-\frac{\Delta U}{T}\right),\tag{2.22}$

где ΔU — разница в длинах маршрутов, а T — текущая температура. Постепенное снижение T позволяет алгоритму сначала исследовать большое пространство решений, а затем сосредоточиться на локальных улучшениях. На рисунке 2.4 показаны зависимости вероятности мутации от величины ΔU при различных значениях температуры T.

Рисунок 2.4 – Вероятность мутации для метода имитации отжига

Высоким температурам соответствуют графики, чей цвет ближе к красному, низким — к синему. Как и положено, значение вероятности заключено в отрезке [0;1]. При отрицательных ΔU вероятность равна 1, что соответствует случаю «хорошей» мутации.

Преимущества метода:

- не требует сложной настройки параметров, кроме кривой охлаждения;
- метод легко адаптируется к различным модификациям задачи коммивояжера;

— при использовании качественного начального маршрута метод может достичь решения, близкого к оптимальному.

Недостатки метода:

- требуется большое количество итераций для достижения качественного решения;
- метод предоставляет приближённое решение.

2.3.5 Метод роя частиц

Метод роя частиц моделирует поведение коллективного разума, наблюдаемого в природе, например, в роевом движении птиц или рыб. В контексте ЗК каждая частица представляет возможный маршрут, а рой — множество таких маршрутов. Алгоритм использует два ключевых компонента: личный опыт частицы (лучший маршрут, который она нашла) и коллективный опыт роя (лучший маршрут, найденный всеми частицами). На каждой итерации частицы обновляют свои позиции (маршруты) на основе следующих формул:

$$v_i^{k+1} = w \cdot v_i^k + c_1 \cdot r_1 \cdot (p_i - x_i^k) + c_2 \cdot r_2 \cdot (g - x_i^k), \tag{2.23}$$

$$x_i^{k+1} = x_i^k + v_i^{k+1}, (2.24)$$

где v_i^k — скорость частицы i на итерации k, x_i^k — её текущая позиция (маршрут), p_i — лучший маршрут частицы, g — глобальный лучший маршрут, а w, c_1 , c_2 , r_1 , r_2 — параметры, управляющие инерцией, обучением от личного и коллективного опыта.

Преимущества метода:

- 1. комбинация личного и коллективного опыта позволяет рою избегать застревания в локальных минимумах;
- 2. поддается распараллеливанию, так как частицы работают независимо друг от друга.

Недостатки метода:

- 1. для задач с высоким числом переменных может потребоваться большое количество итераций;
- 2. эффективность алгоритма зависит от правильной настройки параметров $w, c_1, c_2;$
- 3. алгоритм требует адаптации для задач, таких как ЗК, где маршруты представляют собой дискретные структуры;
- 4. метод предоставляет приближенное решение, которое может не быть оптимальным.

2.4 Критерии сравнения

Для проведения сравнительного анализа методов решения задачи коммивояжера были введены общие критерии:

- 1. Точность решения гарантирует ли метод нахождение глобально оптимального маршрута.
- 2. Временная сложность как быстро метод находит решение в зависимости от размера задачи.
- 3. Масштабируемость как метод адаптируется к увеличению числа вершин (городов).
- 4. Простота реализации сложность настройки метода для нахождения оптимального маршрута.
- 5. Возможность распараллеливания позволяет ли метод эффективно использовать параллельные вычисления.

2.5 Сравнение методов

Сравнительный анализ методов по приведенным выше критериям представлен в таблице 2.1.

Таблица 2.1 – Сравнение методов решения ЗК по критериям

Метод	Точность	Сложность	Масштаб.	Простота	Распарал.
МПП	+	O(n!)	_	+	_
МДП	+	$O(n^2 \cdot 2^n)$	_	土	土
ВГ	+	$O(2^n)$	土	土	土
ММЛ	土	$O(n^4)$	土	_	土
МБС	_	$O(n^2)$	+	+	+
ГА	_	$O(n^4)$	+	土	+
MA	_	$O(n^4)$	土	土	+
МИО	_	$O(n^3)$	+	+	土
МРЧ	_	$O(n^4)$	+	士	+

ЗАКЛЮЧЕНИЕ

Из приведенного анализа и сравнений становится ясно, что невозможно выделить единственный универсальный метод решения задачи коммивояжера, превосходящий все остальные по всем критериям. Точные методы гарантируют оптимальное решение, но становятся неприменимыми при большом числе городов из-за экспоненциальной сложности. В то же время эвристические алгоритмы работают гораздо быстрее, масштабируются на большие размеры задачи, однако не дают стопроцентной гарантии достижения оптимума.

Таким образом, выбор метода определяется спецификой поставленной задачи, ее размерностью, доступными вычислительными ресурсами и предъявляемыми требованиями к качеству решения.

Поставленная цель научно-исследовательской работы— сравнительный анализ существующих методов решения задачи коммивояжера— была успешно достигнута.

В ходе выполнения научно-исследовательской работы были решены следующие задачи:

- проведено исследование существующих методов решения задачи коммивояжера;
- определены преимущества и недостатки рассмотренных методов;
- сформулированы критерии сравнения методов;
- проведен сравнительный анализ методов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. 419 с.
- 2. В.М. Курейчик. Применение генетических алгоритмов для решения комбинаторно-логических задач оптимизации. Интеллектуальные САПР. Междуведомственный тематический научный сборник. Выпуск 5, Таганрог, 1995 г.
- 3. Боронихина Е. А. Точные и эвристические методы для решения задачи коммивояжера. 2015 г.
- 4. К
Меламед И. И., Сергеев С. И., Сигал И. X. Задача коммивояжера. Точные методы //
Автоматика и телемеханика. 1989 г.
- 5. Christofides N. The travelling salesman problem//Combinatorial Optimization. London, 1979. P. 131-149.
- 6. Беллман Р. Применение динамического программирования к задаче о коммивояжере // Кибернетический сб. Вып. 9. М.: Мир, 1964. С. 219-222.
- 7. Сергеев С. И. Вычислительные алгоритмы решения задачи коммивояжера І. Общая схема классификации //Автоматика и телемеханика. 1994. №. 5. С. 66-79.
- 8. Henry-Labordere A. L. The record balancing problem: dynamic programming solution of a generalized travelling salesman problem//RIRO. 1969. 3An. B—2. P. 43-49.
- 9. Saksena J. P., Kumar S. The routin problem with K specified nodes //Oper. Res. 1966. V. 14. P. 909-913.
- 10. Макаров И. П., Яворский В. В. Об одном обобщении задачи построения маршрута коммивояжера//АиТ. 1975. № 4. С. 71-74.
- 11. Коробков В. К., Кричевский Р. И. Некоторые алгоритмы для решения задачи коммивояжера//Математические модели и методы оптимального управления. Новосибирск: Наука, 1966. С. 106-108.

- 12. Калашникова Т. В. Исследование операций в экономике //Изд-во Томского Политехнического университета. – 2011г.
- 13. Шуть В. Н. и др. Два алгоритма приближённого решения задачи коммивояжёра. 2002г.
- 14. Поборчий И. В. Исследование эвристических методов решения задачи коммивояжера. 2016г.
- 15. Курейчик В. В., Курейчик В. М. Генетический алгоритм определения пути коммивояжера //Известия Российской академии наук. Теория и системы управления. 2006г.
- 16. Гладков Л.А., Курейчик В.В., Курейчик В.М. // Генетические алгоритмы. М.: Физматлит, 2006г.
- 17. Товстик Т. М., Жукова Е. В. Алгоритм приближенного решения задачи коммивояжера //Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. – 2013. – №. 1. – С. 101-109.

ПРИЛОЖЕНИЕ А Презентация научно-исследовательской работы

Презентация научно-исследовательской работы содержит 3 слайда, на которых представлено краткое описание научно-исследовательской работы.