Course	211/4/102T	Course	Advanced Calculus and Complex	Course	D	Basic	L	T	P	C
Code	21MAB1021	Name	Analysis	Category	В	Sciences	3	1	0	4

Pre-requisite Courses	21MAB101T	Co-requisite Courses	Nil	Progressive Courses	Nil			
Course Offering Department	Mathematics		Data Book / Codes/Standards	Nil				

Course	Learning		P												
Rationale (CLR) The purpose of learning this course is to:		Learning	Program Outcomes (PO)												
CLR-1:	Determine the Double and triple Integrals and its applications in Science and Engineering.			1	2	3	4	5	6	7	8	9	10	11	12
CLR-2:	Gain Knowledge in interpretation of Vector differentiation														
CLR-3:	Identify the techniques of Laplace Transforms and Inverse						ırch			ability		ik			
CLR-4:	Construct analytic functions discuss Conformal manning and			Engineering Knowledge	Analysis	Development	Analysis, Design, Research	Tool Usage	Culture	& Sustainability		Team Work	ion	Finance	00
CLR-5:	-5: Evaluate Complex integrals and Power series using various theorems			Кпом										& Fi	Learning
CLR-6:	Analyze the trans Science and Engin	Blooms Level (1-6)	ring		જ	s, De	Tool	x	Environment		ıal &	Communication	Project Mgt.		
		At the end of this course, learners will be	oms	inee	Problem	Design	dysi	Modern	Society 4	iror	ics	Individual	пши	ject	Long
Course Outcomes (CO): At the end of this course, learners will be able to:			Blo	Eng	Pro	Des	Ana	Мос	Soc	Env	Ethics	Indi	Соп	Pro	Life
CO-1:	Apply multiple integ	rals in solving problems in Science and Engineering.	4	3	3	-	-	-	-	-	-	-	-	-	-
CO-2:	Analyze vector differ	rentiation and vector integration and related Theorems	4	3	3	-	-	-	-	-	-	-	-	-	-
CO-3:	Apply Laplace T	4	3	3	-	-	-	-	-	-	-	-	-	-	
CO-4:	Extend their knowled	4	3	3	-	-	-	-	-	-	-	-	-	-	
CO-5:	Utilize Complex integrals and Power series in solving Engineering problems			3	3	-	-	-	-	-	-	-	-		-
CO-6:	Apply the transp Science and Engin	4	3	3	-	-	-	-	-	-	-	-	-	-	

Unit-1: Integral calculus

Evaluation of double integration Cartesian and plane polar coordinates-Evaluation of double integration of plane polar coordinates - Evaluation of double integral by changing of order of integration- Area as a double integral (Cartesian)- Area as a double integral (polar)- Triple integration in Cartesian coordinates- Triple integration in Cartesian coordinates- Area of triple Integral

Unit-2: Vector calculus

Review of vectors in 2,3 dimensions- Gradient, divergence- curl – Solenoidal- Irrotational fields- Vector identities- (without proof) – Directional derivatives- Line integrals- Surface integrals- Volume Integrals- Green's theorem (without proof) verification- Gauss divergence theorem (without proof) applications to cubes- Gauss divergence theorem (without proof applications to parallelepiped- Stoke's theorems (without proof) – Verification - Stoke's theorems (without proof) – Applications to cubes- Stoke's theorems (without proof) – Applications to parallelepiped only

Unit-3: Laplace transforms

Laplace Transforms of standard functions- Transforms properties - Transforms of Derivatives and Integrals- Initial value theorems (without proof) and verification for some problems - Final value theorems (without proof) and verification for some problems- Inverse Laplace transforms using Partial fractions- Inverse Laplace transforms section shifting theorem- LT using Convolution theorem (problems only)- LT of periodic functions -problems only - Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficient only- Solution of Integral equation and integral equation involving convolution type

Unit-4: Analytic functions

Definition of Analytic Function – Cauchy Riemann equations - Cauchy Riemann equations- Properties of analytic function functions- Determination of analytic function using – Milne-Thomson's method- Conformal mappings: magnification, rotation, inversion reflection, Bilinear transformation- Cauchy's integral theorem (without proof)- Cauchy's integral theorem applications

Unit-5: Complex integration

Cauchy's integral formulae and Problems-Taylor's expansions with simple problems- Laurent's expansions with simple problems- Singularities- Types of Poles and Residues- Cauchy's residue theorem (without proof)- Contour integration: Unit circle, Semi circular

Learning Resources

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010
- 5. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper as specified in regulation

Learning	Assessment					
Blooms Level of Thinking		C	Final Examination			
		CLA-1 (10%)				50% weightage
Level 1	Remember	20 %	20 %	20 %	20 %	20 %
Level 2	Understand	20%	20%	20%	20%	20%
Level 3	Apply	30%	30 %	30 %	30 %	30 %
Level 4	Analyze	30%	30%	30%	30%	30%
Level 5	Evaluate	-	-	-	-	-
Level 6	Create	-	-	-	-	-
	Total	100%	100%	100%	100%	100%

Course Designers								
a) Experts from Industry	b) Experts from Higher Technical Institutions	c) Internal Experts						
Mr.V.Maheshwaran CTS Technologies maheshwaranv@yahoo.com	Prof. Y.V.S.S. Sanyasiraju, IIT Madras sryedida@iitm.ac.in	Dr.A.Govindarajan hod.maths.ktr@srmist.edu.in						
	Prof. K.C. Sivakumar, IIT Madars kcskumar@iitm.ac.in	Dr.N.Balaji balajin@srmist.edu.in						