The chromatic number of a random lift of a regular graph

Xavier Pérez-Giménez joint work with JD Nir

University of Nebraska-Lincoln

Moscow Institute of Physics and Technology, Dec 2020

Covering map:

Surjective graph homomorphism $\Pi: L \to G$ that is a bijection between edges incident with ν and edges incident with $\Pi(\nu)$.

Covering map:

Surjective graph homomorphism $\Pi: L \to G$ that is a bijection between edges incident with ν and edges incident with $\Pi(\nu)$.

Lift:

L is a **lift** of *G* if there is a covering map $\Pi: L \to G$.

Covering map:

Surjective graph homomorphism $\Pi: L \to G$ that is a bijection between edges incident with ν and edges incident with $\Pi(\nu)$.

Lift:

L is a **lift** of *G* if there is a covering map $\Pi: L \to G$.

Covering map:

Surjective graph homomorphism $\Pi: L \to G$ that is a bijection between edges incident with ν and edges incident with $\Pi(\nu)$.

Lift:

L is a **lift** of *G* if there is a covering map $\Pi: L \to G$.

Note: G may have loops and multiple edges.

Properties of lifts

Fact 1: G connected \Longrightarrow all fibers $\Pi^{-1}(v)$ have same cardinality.

L is an *n***-lift** if all $|\Pi^{-1}(v)| = n$.

Properties of lifts

Fact 1: G connected \Longrightarrow all fibers $\Pi^{-1}(v)$ have same cardinality.

L is an **n-lift** if all $|\Pi^{-1}(v)| = n$.

Fact 2: G d-regular \Longrightarrow any lift L is d-regular. (loops contribute 2 to degree.)

Properties of lifts

Fact 1: G connected \Longrightarrow all fibers $\Pi^{-1}(v)$ have same cardinality.

L is an **n**-lift if all $|\Pi^{-1}(v)| = n$.

Fact 2: G d-regular \Longrightarrow any lift L is d-regular. (loops contribute 2 to degree.)

Fact 3: $\chi(L) \leq \chi(G)$

Random *n*-lift model (Amit, Linial 2002):

- Replace $v \in V(G)$ by bin with n vertices.
- Replace $e \in E(G)$ by random perfect matching. (slightly different for loops.)

Random *n*-lift model (Amit, Linial 2002):

- Replace $v \in V(G)$ by bin with n vertices.
- Replace $e \in E(G)$ by random perfect matching. (slightly different for loops.)

Random *n*-lift model (Amit, Linial 2002):

- Replace $v \in V(G)$ by bin with n vertices.
- Replace $e \in E(G)$ by random perfect matching. (slightly different for loops.)

Random *n*-lift model (Amit, Linial 2002):

- Replace $v \in V(G)$ by bin with n vertices.
- Replace $e \in E(G)$ by random perfect matching. (slightly different for loops.)

E.g. (6-regular G):

Random *n*-lift model (Amit, Linial 2002):

- Replace $v \in V(G)$ by bin with n vertices.
- Replace $e \in E(G)$ by random perfect matching. (slightly different for loops.)

E.g. (6-regular G):

Facts (for d-regular G):

- $G = B_{d/2} \Longrightarrow L$ contiguous to uniform d-regular multigraph.
- Not true for $G = K_{d+1}$

(Amit, Linial, Matoušek 2002)

Problem 1

For any
$$G$$
: is $\chi(L) = \Omega\left(\frac{\chi(G)}{\log \chi(G)}\right)$ a.a.s.?

Known for $G = K_{d+1}$.

(Amit, Linial, Matoušek 2002)

Problem 1

For any
$$G$$
: is $\chi(L) = \Omega\left(\frac{\chi(G)}{\log \chi(G)}\right)$ a.a.s.?

Known for $G = K_{d+1}$.

Problem 2

Determine $\chi(L)$ for $G = K_5$.

(Known that a.a.s. $\chi(L) \in \{3,4\}$.)

(Amit, Linial, Matoušek 2002)

Problem 1

For any
$$G$$
: is $\chi(L) = \Omega\left(\frac{\chi(G)}{\log \chi(G)}\right)$ a.a.s.?

Known for $G = K_{d+1}$.

Problem 2

Determine $\chi(L)$ for $G = K_5$.

(Known that a.a.s. $\chi(L) \in \{3,4\}$.)

Conjecture

For any G, there is k_G with $\chi(L) = k_G$ a.a.s.

...and many more open questions!

Our results

Thm (P-G, Nir 2019++):

Let $d \ge 3$ and $k_d = \min\{k \in \mathbb{N} : d < 2k \log k\}$. $(k_d \approx \frac{d}{2 \log d})$

Let *L* be random *n*-lift of $G = K_{d+1}$.

Then a.a.s. $\chi(L) \in \{k_d, k_d + 1\}.$

For half of the d, a.a.s. $\chi(L) = k_d$.

Our results

Thm (P-G, Nir 2019++):

Let $d \geq 3$ and $k_d = \min\{k \in \mathbb{N} : d < 2k \log k\}$. $(k_d \approx \frac{d}{2 \log d})$

Let *L* be random *n*-lift of $G = K_{d+1}$.

Then a.a.s. $\chi(L) \in \{k_d, k_d + 1\}.$

For half of the d, a.a.s. $\chi(L) = k_d$.

Note: Upper bound on $\chi(L)$ is still valid for any d-regular G.

E.g. (6-regular G): B_3

Our results

Thm (P-G, Nir 2019++):

Let $d \geq 3$ and $k_d = \min\{k \in \mathbb{N} : d < 2k \log k\}$. $(k_d \approx \frac{d}{2 \log d})$

Let *L* be random *n*-lift of $G = K_{d+1}$.

Then a.a.s. $\chi(L) \in \{k_d, k_d + 1\}$.

For half of the d, a.a.s. $\chi(L) = k_d$.

Note: Upper bound on $\chi(L)$ is still valid for any d-regular G.

E.g. (6-regular G): B_3

Thm (Kemkes, P-G, Wormald 2010):

Analogous result holds for uniform d-regular graphs.

(Improved by Coja-Oghlan, Efthymiou, Hetterich 2016.)

Main tools

- Small subgraph conditioning method (Robinson & Wormald 1992)
- Optimization over stochastic matrices (Achlioptas, Naor 2005)
- Laplace summation method (Greenhill, Janson, Ruciński 2010)
- Saddle-point method
- Algebraic graph theory
 - Kirchhoff Matrix-Tree Thm
 - Counting non-backtracking closed walks

Proof structure

Lower bound on $\chi(L)$:

X = # k-colourings of L.

Thm: If $k < k_d$, then $\mathbf{E}X = o(1)$

Then $P(X > 0) \le EX = o(1)$.

Proof structure

Lower bound on $\chi(L)$:

X = # k-colourings of L.

Thm: If $k < k_d$, then $\mathbf{E}X = o(1)$

Then $P(X > 0) \le EX = o(1)$.

Upper bound on $\chi(L)$:

Y = # strongly equitable k-colourings of L.

Thm: If $k > k_d$, then $\mathbf{E}Y^2 = \Theta((\mathbf{E}Y)^2)$

Proof structure

Lower bound on $\chi(L)$:

X = # k-colourings of L.

Thm: If $k < k_d$, then $\mathbf{E}X = o(1)$

Then $P(X > 0) \le EX = o(1)$.

Upper bound on $\chi(L)$:

Y = # strongly equitable k-colourings of L.

Thm: If $k > k_d$, then $\mathbf{E}Y^2 = \Theta((\mathbf{E}Y)^2)$

Then $P(Y > 0) \ge \frac{(EY)^2}{EY^2} \sim C > 0$ (Paley-Zygmund)

Unfortunately, C < 1 due to the influence of short cycles in L.

$$\mathsf{E} X = \sum_{\pmb{a},\pmb{b}} T(\pmb{a},\pmb{b},n)$$

$$\mathsf{E} X = \sum_{\pmb{a},\pmb{b}} T(\pmb{a},\pmb{b},n)$$

$$a_{v,i},b_{e,i,i'}\in \frac{1}{n}\mathbb{Z}$$

$$\mathsf{E} X = \sum_{\pmb{a},\pmb{b}} T(\pmb{a},\pmb{b},n)$$

$$a_{v,i},b_{e,i,i'}\in \frac{1}{n}\mathbb{Z}$$

$$\begin{cases} 0 \le a_{v,i} \le 1 & \forall v, \\ \sum_i a_{v,i} = 1 & \forall v \end{cases}$$

$$\begin{cases} 0 \le a_{v,i} \le 1 & \forall v, i \\ \sum_{i} a_{v,i} = 1 & \forall v \end{cases} \qquad \begin{cases} 0 \le b_{e,i,i'} \le 1 & \forall e, i \ne i' \\ \sum_{i' \ne i} b_{e,i,i'} = a_{v,i} & \forall e, i \\ \sum_{i \ne i'} b_{e,i,i'} = a_{v',i'} & \forall e, i' \end{cases}$$

$$\mathsf{E} X = \sum_{\pmb{a},\pmb{b}} T(\pmb{a},\pmb{b},n)$$

$$a_{v,i},b_{e,i,i'}\in \frac{1}{n}\mathbb{Z}$$

$$e = vv'$$
 v'
 $b_{e,1,2}$
 $a_{v,3}$
 $b_{e,1,3}$
 $b_{e,1,4}$

$$\begin{cases} 0 \leq a_{v,i} \leq 1 & orall v, \ \sum_i a_{v,i} = 1 & orall v \end{cases}$$

$$\begin{cases} 0 \leq a_{v,i} \leq 1 & \forall v, i \\ \sum_{i} a_{v,i} = 1 & \forall v \end{cases} \qquad \begin{cases} 0 \leq b_{e,i,i'} \leq 1 & \forall e, i \neq i' \\ \sum_{i' \neq i} b_{e,i,i'} = a_{v,i} & \forall e, i \\ \sum_{i \neq i'} b_{e,i,i'} = a_{v',i'} & \forall e, i' \end{cases}$$

Note: $(a_{v,i})$ is stochastic $|V| \times k$ matrix.

$$\mathsf{E} X = \sum_{\pmb{a},\pmb{b}} T(\pmb{a},\pmb{b},n)$$

$$a_{v,i},b_{e,i,i'}\in \frac{1}{n}\mathbb{Z}$$

$$e = vv'$$

$$v$$

$$b_{e,1,2}$$

$$a_{v,3}$$

$$g_{e,4}$$

$$b_{e,1,3}$$

$$b_{e,1,4}$$

$$\begin{cases} 0 \le a_{v,i} \le 1 & \forall v, \\ \sum_i a_{v,i} = 1 & \forall v \end{cases}$$

$$\begin{cases} 0 \leq a_{v,i} \leq 1 & \forall v, i \\ \sum_{i} a_{v,i} = 1 & \forall v \end{cases} \qquad \begin{cases} 0 \leq b_{e,i,i'} \leq 1 & \forall e, i \neq i' \\ \sum_{i' \neq i} b_{e,i,i'} = a_{v,i} & \forall e, i \\ \sum_{i \neq i'} b_{e,i,i'} = a_{v',i'} & \forall e, i' \end{cases}$$

Note: $(a_{v,i})$ is stochastic $|V| \times k$ matrix.

Claim:

Max contribution is from $a_{v,i} = 1/k$, $b_{e,i,i'} = 1/k(k-1)$.

(We extend result by Achlioptas, Naor 2005.) 990

Summation domain:

$$\begin{cases} \mathbf{x} \in \mathcal{P} \\ B\mathbf{x} = \mathbf{y} \\ \mathbf{x} \in \left(\frac{1}{n}\mathbb{Z}\right)^D \end{cases}$$

where:

- ullet $\mathcal{P}\subset\mathbb{R}^D$ polytope
- $\dim(\operatorname{Ker} B) = r$

• Moment:
$$M = \sum_{\mathbf{x}} T(\mathbf{x}, n)$$

with $T(x, n) \sim \text{poly}_x(n)e^{nf(x)}$

Summation domain:

$$\begin{cases} \mathbf{x} \in \mathcal{P} \\ B\mathbf{x} = \mathbf{y} \\ \mathbf{x} \in \left(\frac{1}{n}\mathbb{Z}\right)^D \end{cases}$$

where:

- ullet $\mathcal{P}\subset\mathbb{R}^D$ polytope
- $\dim(\operatorname{Ker} B) = r$

• Moment: $M = \sum_{\mathbf{x}} T(\mathbf{x}, n)$

with
$$T(x, n) \sim \text{poly}_x(n)e^{nf(x)}$$

Exponential behaviour:

If
$$f(x) \le f(x_0)$$
 ($\forall x$) then $M \le \text{poly}(n)e^{nf(x_0)}$ (Optimization).

Summation domain:

$$\begin{cases} \mathbf{x} \in \mathcal{P} \\ \mathbf{B}\mathbf{x} = \mathbf{y} \\ \mathbf{x} \in \left(\frac{1}{n}\mathbb{Z}\right)^{D} \end{cases}$$

where:

- ullet $\mathcal{P}\subset\mathbb{R}^D$ polytope
- $\dim(\operatorname{Ker} B) = r$

- Moment: $M = \sum_{\mathbf{x}} T(\mathbf{x}, n)$
 - with $T(x, n) \sim \text{poly}_x(n)e^{nf(x)}$
- Exponential behaviour:

If
$$f(x) \le f(x_0)$$
 $(\forall x)$ then $M \le \text{poly}(n)e^{nf(x_0)}$ (Optimization).

Polynomial factors:

$$M \sim C\left(n^{r/2}\right) T(\mathbf{x}_0, n)$$

(Laplace summ. / Saddlepoint method)

Summation domain:

$$\begin{cases} \mathbf{x} \in \mathcal{P} \\ B\mathbf{x} = \mathbf{y} \\ \mathbf{x} \in \left(\frac{1}{n}\mathbb{Z}\right)^D \end{cases}$$

where:

- ullet $\mathcal{P}\subset\mathbb{R}^D$ polytope
- $\dim(\operatorname{Ker} B) = r$

- Moment: $M = \sum_{\mathbf{x}} T(\mathbf{x}, n)$
 - with $T(x, n) \sim \text{poly}_x(n)e^{nf(x)}$
- Exponential behaviour:

If
$$f(x) \le f(x_0)$$
 ($\forall x$) then $M \le \text{poly}(n)e^{nf(x_0)}$ (Optimization).

Polynomial factors:

$$M \sim C\left(n^{r/2}\right) T(\boldsymbol{x}_0, n)$$

(Laplace summ. / Saddlepoint method)

• About *C*...

Summation domain:

$$\begin{cases} \mathbf{x} \in \mathcal{P} \\ B\mathbf{x} = \mathbf{y} \\ \mathbf{x} \in \left(\frac{1}{n}\mathbb{Z}\right)^D \end{cases}$$

where:

- ullet $\mathcal{P}\subset\mathbb{R}^D$ polytope
- $\dim(\operatorname{Ker} B) = r$

• Moment: $M = \sum_{\mathbf{x}} T(\mathbf{x}, n)$

with $T(x, n) \sim \text{poly}_x(n)e^{nf(x)}$

• About C: It depends on

 $\begin{cases} \text{Hessian of } f \\ \text{Volume of fundamental cell in lattice} \end{cases}$

(Greenhill, Janson, Ruciński 2010)

Instead, we count maximal forests in Γ with incidence matrix B.

Small subgraph conditioning (Robinson, Wormald 1992)

Y = # strongly equitable k-colourings of L.

 $Z_i = \#$ cycles of length i in L.

 $Z_i \sim \mathsf{Poi}(\lambda_i)$ (+ asymptotic independence)

Small subgraph conditioning (Robinson, Wormald 1992)

Y = # strongly equitable k-colourings of L.

 $Z_i = \#$ cycles of length i in L.

 $Z_i \sim \mathsf{Poi}(\lambda_i)$ (+ asymptotic independence)

Rough idea:

Suppose:

•
$$\frac{\mathsf{E}(YZ_i)}{\mathsf{E}Y} = 1 + \delta_i + o(1)$$
 (& joint factorial moments)
(i.e. $Z_i \sim \mathsf{Poi}(1 + \delta_i)$ in space "weighted" by Y).

$$\bullet \ \frac{\mathsf{E} Y^2}{(\mathsf{E} Y)^2} = \exp(\sum_i \lambda_i \delta_i^2) + o(1).$$

Then $P(Y > 0) \rightarrow 1$ (+ contiguity [...]).

◆ロト ◆卸 → ◆恵 → 恵 → りへで

Counting non-backtracking closed walks

Some algebraic tools: (Friedman 2008)

(Amit, Linial, Matoušek 2002)

Problem 1

For any
$$G$$
: is $\chi(L) = \Omega\left(\frac{\chi(G)}{\log \chi(G)}\right)$?

Known for $G = K_{d+1}$.

Problem 2

Determine $\chi(L)$ for $G = K_5$.

(Known that a.a.s. $\chi(L) \in \{3,4\}$.)

Conjecture

For any G, there is k_G with $\chi(L) = k_G$ a.a.s.

...and many more open questions!

Thank you!