1.3 Bipolární tranzistor

1.3.1 **Úkol**:

- 1. Změřte vstupní charakteristiku bipolárního tranzistoru
- 2. Změřte převodovou charakteristiku bipolárního tranzistoru
- 3. Změřte výstupní charakteristiku bipolárního tranzistoru
- 4. Zapojte bipolární tranzistor ve funkci spínače

1.3.2 Teorie:

Tranzistor je polovodičová součástka, která obsahuje dva polovodičové přechody PN. Každý bipolární tranzistor se skládá ze tří oblastí seřazených v pořadí NPN nebo PNP. Vyvedené elektrody se nazývají emitor, báze, kolektor.

Obr. 1. Struktura tranzistorů

Činnost obou typů tranzistorů se v podstatě neliší, avšak zásadní rozdíl je v polaritě napájecího napětí kolektoru a emitoru. Pro tranzistor typu NPN platí, že napětím několik desetin voltů otevřeme přechod báze – emitor. Protože báze má poměrně malou tloušťku prochází téměř celý kolektorový proud až do emitoru což vyplívá z obrázku. Pro tranzistor PNP platí obdobný princip jen s tím rozdílem, že na bázi musíme přivést zápornější napětí než na emitor. Potom platí ,že proud z kolektoru projde téměř celý do emitoru.

Tranzistory se používají v zapojení se společným emitorem (SE), společnou bází (SB) a se společným kolektorem (SC).

Tabulka 1. Charakteristické chování bipolárních tranzistorů v různých zapojeních

		Zapojení bipolárního tranzistoru		
		Společná báze	Společný emitor	Společný kolektor
Zesílení	Proud	0,95 až 0,99	10 až 500	10 až 500
	Napětí	10 až 100	10 až 100	0,9 až 0,99
	Výkon	10 až 100	100 až 10000	10 až 100
Impedance	Vstupní	10Ω až 100Ω	100 až 1kΩ	$10 \mathrm{k}\Omega$ až $1 \mathrm{M}\Omega$
	Výstupní	0,1M až 1MΩ	10 k Ω až 100 k Ω	100Ω až 1kΩ
Fázový posun	Napěťový	0°	180°	0°
	Proudový	0°	0°	180°

Obr. 2. Základní zapojení bipolárních tranzistorů

V elektrotechnických zařízeních se nejčastěji používá zapojení se společným emitorem. Abychom zabránili zkreslení signálu, který zesilujeme, musíme nastavit vhodný pracovní bod tranzistoru. Má-li tranzistor pracovat bez zkreslení musíme zajistit, aby tranzistorem bez připojeného vstupního signálu procházel kolektorový proud určité velikosti. Jelikož je pracovní bod určen velikostí kolektorového proudu a kolektorovým napětím, volíme

v praxi kolektorové napětí jako poloviční hodnotu napájecího napětí. Poloha pracovního bodu se z různých příčin může měnit proto je nutné polohu stabilizovat. K tomu slouží obvody stabilizace které přímo souvisí s obvody pro jeho nastavení. Klidový pracovní bod tranzistoru se prakticky realizuje pomocí odporového děliče do báze tranzistoru.

Obr. 3. Bipolární NPN tranzistor v zapojení SE s nastaveným pracovním bodem

Tranzistor pracující ve spínacím režimu je uzavřen - vypnut nebo otevřen – sepnut. Jestliže na vstup tranzistoru přivedeme napětí vhodné velikosti a polarity, pak tranzistor sepne. I když je tranzistor plně otevřen vzniká na přechodu kolektor – emitor zbytkové napětí. Toto napětí bývá řádu desetin voltů a ve většině aplikací není na závadu.

1.3.3 Zadání:

Poznamenejte si katalogové hodnoty součástek z přiloženého listu.

Např. BC546
$$U_{CEO} = 65V$$
, $I_C = 0.1A$, $P_{tot} = 0.5W$, hfe = 200 - 450 při $I_C = 2mA$

Popis použitých přístrojů a součástek:

Z_1	stejnosměrný zdroj	
\mathbb{Z}_2	napájení ze základní desky RC (cca 5,2V)	
A_1,A_2	ampérmetr	
V_1,V_2	voltmetr	
T	bipolární tranzistor	
R	rezistor 120Ω	
R_P	proměnný rezistor	

Ad1)

Schéma zapojení:

Obr. 4. Zapojení pro měření charakteristik bipolárního tranzistoru

Postup měření:

- a) Zapojíme elektrický obvod podle schématu zapojení.
- b) Vypočítáme minimální hodnotu odporu R a maximální proud procházející obvodem podle vztahů:

$$I_{Max} = \frac{P_{tot}}{U_{Z2}}$$

$$I_{Max} = \frac{P_{tot}}{U_{Z2}}$$

$$P_{tot} - \text{maximální výkon}$$

$$I_{Max} - \text{maximální proud}$$

$$R_{Min} - \text{minimální odpor}$$

$$R_{Min} = \frac{U_{Z2}}{I_{Max}}$$

- c) Proměnný rezistor R nastavíme na hodnotu větší než je R_{MIN}.
- d) Na stejnosměrném zdroji Z_1 nastavíme 1V abychom docílili plného otevření tranzistoru. Poté na voltmetru V_2 nastavíme postupnou změnou odporu proměnného rezistoru napětí $U_{CE} = 1V$.
- e) Na zdroji Z₁ budeme měnit napětí od 0 do 1V. Kroky, po kterých měníme napětí, volíme vhodně kolem hodnoty 0,7V bude docházet k největším změnám proudů protože se začne tranzistor otevírat, tj. kolem této hodnoty provedeme větší počet měření.
- f) Měření provedeme pro napětí $U_{CE} = 1V$, 2V.

g) Naměřené hodnoty napětí U_{BE} a proudu I_B zapisujeme do tabulky, ze které se vytvoří graf (vstupní charakteristika).

Obr. 5. Vstupní charakteristika

Ad2)

Postup měření:

- a) Zapojíme elektrický obvod podle schématu zapojení.
- b) Proměnný rezistor R nastavíme na hodnotu větší než je R_{MIN}.
- c) Na stejnosměrném zdroji Z_1 nastavíme 1V abychom docílili plného otevření tranzistoru. Poté na voltmetru V_2 nastavíme postupnou změnou odporu proměnného rezistoru napětí $U_{CE} = 1V$.
- d) Na zdroji Z₁ budeme měnit napětí od 0 do 1V. Kroky, po kterých měníme napětí, volíme vhodně kolem hodnoty 0,7V bude docházet k největším změnám proudů protože se začne tranzistor otevírat, tj. kolem této hodnoty provedeme větší počet měření.
- e) Měření provedeme pro napětí U_{CE} = 1V, 2V.
- f) Naměřené hodnoty proudů I_C a I_B zapisujeme do tabulky ze které se vytvoří graf (převodová charakteristika).

Obr. 6. Převodová charakteristika

Ad3)

Postup měření:

- a) Zapojíme elektrický obvod podle schématu zapojení.
- b) Na stejnosměrném zdroji Z_1 nastavíme takové napětí, abychom na ampérmetru A_1 naměřili bázový proud I_B = $20\mu A$. Odpor nastavíme na 999Ω .
- c) Na proměnném rezistoru měníme odpor od 999 Ω do 200 Ω . Celé měření kontrolujeme proudu I_B a odchylky od přednastavené hodnoty dolaďujeme.
- d) Měření provedeme pro proud bází $I_B = 20\mu A$, $40\mu A$.
- e) Naměřené hodnoty napětí U_{CE} a proudu I_C zapisujeme do tabulky ze které se vytvoří graf (výstupní charakteristika).

Obr. 7. Výstupní charakteristika

Ad4)

Schéma zapojení:

Obr. 8. Zapojení pro bipolární tranzistor ve funkci spínače

Postup měření:

- a) Zapojíme elektrický obvod podle schématu zapojení.
- b) Hodnotu proměnného rezistoru R_P snižujeme od nejvyšší hodnoty tak dlouho, dokud nezačne dioda jasně svítit. Spínací funkci tranzistoru ověříme propojením svorek "a" a "b" drátovou propojku - dioda zhasne, neboť mezi bází a emitorem zanikne potřebný rozdíl potenciálu a tranzistor se uzavře.