APL Assignment 3

Deepak Charan S ee23b022

September 2024

1 Introduction

I am Deepak Charan S and this is my report for the third assignment of EE2703 course (Applied Programming Lab).

2 Overview:

In this assignment, we had to estimate various physical parameters using raw data (from the datasets) and Planck's formula

$$B_{\lambda}(\lambda,T)d\lambda=rac{2hc^2}{\lambda^5}rac{1}{e^{rac{hc}{\lambda k_{
m B}T}}-1}d\lambda,$$

where: B - Spectral Radiance

 ${\bf c}$ - speed of light

h - Planck's constant

Kb - Boltzmann's constant

 λ - Wavelength

T - Temperature

After getting some estimates, we also had to implement partial application to estimate one parameter while keeping others fixed for all the functions, I used 'curve_fit' function from the *scipy.optimize* module

to get a good estimate of the parameters

Note: since "d3.txt" had the best data, I have used that to compare my general and partial estimates

3 To run the notebook:

- Run the cells which imports the necessary libraries
- Upload the datasets provided ("d1.txt", "d2.txt", "d3.txt", "d4.txt") and first run the cells which read them
- Run the general function cell
- Now run the cells which plots the data and the curve fits of all 4 datasets (using the general function)
- After noting the general estimates, run the partial application cells and compare the estimates

4 Initial Estimation:

Initially, I wrote a function which returns the Planck's formula. This function uses h,c,t,Kb as parameters.

Upon reading and plotting the dataset and fitting a curve (whose function is the Planck's formula) on it, I get the following curves:

4.1 d1.txt

```
Initalising,
```

```
\begin{array}{l} \text{h= } 6.69*10^{-34} \text{ J.s} \\ \text{c= } 2.7*10^{8} \text{ m/s} \\ \text{t= } 1.3*10^{-23} \text{ K} \\ \text{Kb= } 3000 \text{ J.} K^{-1} \end{array}
```


4.2 d2.txt

Initalising,

h= $7.8 * 10^{-34}$ J.s c= $2.65 * 10^8$ m/s t= $1.15 * 10^{-23}$ K Kb= 3000 J. K^{-1}

4.3 d3.txt

```
Initalising,
```

```
\begin{array}{l} \mathrm{h}\!=\!6.5*10^{-34}~\mathrm{J.s} \\ \mathrm{c}\!=\!2.7*10^8~\mathrm{m/s} \\ \mathrm{t}\!=\!1.3*10^{-23}~\mathrm{K} \\ \mathrm{Kb}\!=\!3000~\mathrm{J.}K^{-1} \end{array}
```


4.4 d4.txt

Initalising,

h= $6.4 * 10^{-34}$ J.s c= $2.7 * 10^8$ m/s t= $1.35 * 10^{-23}$ K Kb= 3002 J. K^{-1}

5 Partial Application:

In order to get a better estimate of the parameters, we know apply partial application.

5.1 Speed of Light:

Upon fixing h,Kb,T as some random value, we estimate c

5.2 Temperature:

Now we fix h,c,Kb as some arbitrary value and get Temperature

5.3 Boltzmann Constant:

For estimating Kb, we fix h,c,T and fit a curve

5.4 Planck's Constant:

Finally we fix c,Kb,T to estimate h

6 Observation:

The Initial Estimates were okay-ish but open partial application, we end up getting a better estimate of our parameters

Parameter	General	Partial
h	1.1232993041429142 %	0.12840157 %
С	2.097473592679461 %	0.12310701 %
Kb	9.267309346158283~%	0.00269494 %

7 References:

- https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html To Understand The curve fit function provided by scipy
- My roommate, N Deenabandhan (EE23B022) and my friend Nishant Senthil Kumar (EE23B049) also helped me clear some doubts I had and helped me with an Overflow Error I was getting