BASE DE DADOS

NORMALIZAÇÃO

Teórico-Práticas Ano Lectivo 2018/2019 Nuno Escudeiro/Melo e Castro/ Rui Coentro/Silva Pereira

Processo de Normalização

- * Técnica formal para analisar uma relação com base na sua chave primária e nas dependências funcionais entre os atributos dessa relação.
- ★ Identificar um conjunto de dependências funcionais para uma relação tem como objetivo especificar o conjunto de restrições de integridade que devem ser titulares de uma relação.
- ★ Uma restrição de integridade importante a considerar em primeiro lugar é a identificação das chaves candidatas, uma das quais será selecionada para ser a chave primária para a relação.
- * O processo de normalização é executado a partir de uma série de passos. Cada passo corresponde a uma **forma normal**, com propriedades especificas.

Primeira Forma Normal

- ★ Uma relação está na 1FN se:
 - Os atributos chave estão definidos
 - Não existem grupos repetitivos
 - Todos os atributos estão definidos em domínios que contêm apenas valores atómicos, isto é, cada atributo só pode admitir valores elementares e não conjunto de valores
 - Todos os atributos dependem funcionalmente da chave primária
- **★** Visa eliminar a existência de grupos de valores repetidos
 - A uma ocorrência da chave só pode corresponder uma ocorrência dos outros atributos não chave

Primeira Forma Normal

Suponhamos

Aluno (<u>idAluno</u>, nome, morada,(idDisciplina, nomeDisciplina))

Esta estrutura não se encontra na 1FN, uma vez que as colunas *idDisciplina* e *nomeDisciplina* admitem um conjunto de valores

<u>idAluno</u>	nome	morada	idDisciplina	nomeDisciplina	
A1	João	Rua A	D1, D2, D3	Matemática, Economia, Direito	
A2	Ana	Rua B	D1, D4	Matemática, Física	
А3	Pedro	Rua C	D1, D2	Matemática, Economia	
A4	Filipa	Rua D	D1	Matemática	

Primeira Forma Normal

Aluno (<u>idAluno</u>, nome, morada)

<u>Id_aluno</u>	nome	morada
A1	João	Rua A
A2	Ana	Rua B
A3	Pedro	Rua C
A4	Filipa	Rua D

AlunoInscrito (idAluno, idDisciplina, nomeDisciplina)

<u>Id_aluno</u>	<u>idDisciplina</u>	nomeDisciplina	
A1	D1	Matematica	
A1	D2	Economia	
A1	D3	Direito	
A2	D1	Matematica	
A2	D4	Fisica	
A3	D1	Matematica	
A3	D2	Economia	
A4	D1	Matematica	

Segunda Forma Normal

- Uma relação está na 2FN se:
 - Estiver na 1FN
 - Cada atributo não chave depende funcionalmente da totalidade da chave
 - ♦ Não existem dependências parciais
 - ✓ Todos os atributos que não pertencem à chave dependem funcionalmente da chave no seu conjunto e
 - ✓ Não dependem de nenhum dos seus elementos ou subconjuntos tomados isoladamente

Conversão da estrutura para a 2 FN

- Se a relação <u>só tem um atributo como chave primária</u> e se essa relação <u>já</u> <u>estiver na 1FN</u>, então a relação <u>também se encontra na 2FN</u>
- 2. Se a chave primária é composta e se algum atributo não-chave depende apenas de uma parte da chave primária, então a relação deverá ser decomposta, para que cada atributo dependa da totalidade da chave primária

Exemplo 1

A tabela *Aluno* já está na 1ª FN e a chave primária contém apenas
um atributo ⇒ também está na 2ª FN

Id aluno	nome	morada
A1	João	Rua A
A2	Ana	Rua B
A3	Pedro	Rua C
A4	Filipa	Rua D

Conversão da estrutura para a 2 FN

★ A tabela AlunoInscrito encontra-se na 1ª FN mas a sua chave primária é composta

★ Necessário decompor a tabela AlunoInscrito pois existe uma dependência funcional entre o atributo não-chave nomeDisciplina e apenas parte da chave primária, com o atributo idDisciplina

idDisciplina → nomeDisciplina

		<u> </u>			
<u>Id_aluno</u>	<u>idDiscip</u>	<u>olina</u>	nomeDisciplina		
A1	D1		Matemática		
A1	D2		D2		Economia
••••	•••••		••••		

Conversão da estrutura para a 2 FN

Aluno(idAluno, nome, morada)

<u>Id_aluno</u>	nome	morada	
A1	João	Rua A	
A2	Ana	Rua B	
A3	Pedro	Rua C	
A4	Filipa	Rua D	

Disciplina (idDisciplina, nomeDisciplina)

<u>idDisciplina</u>	nomeDisciplina	
D1	Matemática	
D2	Economia	
D3	Direito	
D4	Física	

AlunoInscrito(<u>idAluno</u>(FK), <u>idDisciplina</u>(FK))

Id_aluno	<u>idDisciplina</u>
A1	D1
A1	D2
A1	D3
A2	D1
A2	D4
Аз	D1
Аз	D2
A4	D1

nomeCurso

idAluno

Terceira Forma Normal

- ★ Uma relação está na 3FN se:
 - Estiver na 2FN
 - Nenhum dos seus atributos depende funcionalmente de atributos não chave
 - ✓ Nenhum dos atributos que não fazem parte da chave pode ser funcionalmente dependente de qualquer combinação dos restantes
 - ✓ Cada atributo depende <u>apenas</u> da chave e não de qualquer outro atributo ou conjunto de atributos

Aluno(idAluno, nome, codCurso, nomecurso)

codCurso

nome

EXEMPLO

★ Esta tabela não se encontra na 3FN porque o atributo não-chave nomeCurso depende funcionalmente do atributo codCurso

<u>Id_aluno</u>	nome	codCurso	nomeCurso	
A1	João	01	Informática	
A2	Ana	02	Civil	
Аз	Pedro	01	Informática	
A4	Filipa	03	Quimica	

Conversão da estrutura para a 3FN

- 1. Procurar dependências funcionais entre os atributos não-chave da relação
- 2. Se a relação que já está na 2FN e tiver apenas um atributo não-chave, então a relação também já se encontra na 3FN
- 3. Se existir algum conjunto de atributos não-chave na relação que tenha dependência funcional em relação a um outro conjunto de atributos não-chave da mesma relação, então a relação deve ser decomposta de modo a que qualquer atributo não-chave da relação só dependa da chave primária da relação

Conversão da estrutura para a 3FN

- A tabela está na 2FN mas não está na 3FN
- * Necessário decompor a tabela *Aluno* pois existe uma dependência funcional (transitiva) entre o atributo não-chave *codCurso* e o atributo *nomeCurso*

Aluno(idAluno, nome, codCurso(FK))

<u>Id_aluno</u>	nome	codCurso	
A1	João	01	
A2	Ana	02	
A3	Pedro	01	
A4	Filipa	03	

Curso(codCurso, nomecurso)

codCurso	nomeCurso
01	Informática
02	Civil
01	Informática
03	Quimica

Conclusão

- * O nível de normalização deve ser pensado contra outros critérios
 - Por exemplo, um nível de normalização exagerado pode originar problemas de performance
- A redundância entre os dados não pode ser completamente eliminada
 - de facto, as chaves estrangeiras são também uma forma de redundância
 - Problemas que a redundância pode trazer
 - Custo de espaço de armazenamento a redundância implica ocupar espaço adicional com algo que não acrescenta nada ao que já existe armazenado
 - Manutenção -uma simples alteração ou remoção pode implicar o acesso a várias tabelas, tornando-se difícil manter a coerência dos dados armazenados
 - Desempenho Se a redundância for significativa, isso implicará mais acessos a disco para trazer os mesmos dados

Exercício 1

Desenhe o diagrama de dependências funcionais e normalize a estrutura apresentada

Nr Factura	Data	codCliente	NomeCliente	CodProd	Descricao Produto	Valor	Quantidade	Desconto
000257	01-07-2016	1234567	João Gomes	12	Lápis Bic	100	250	5%
000257	01-07-2016	1234567	João Gomes	13	Bloco de notas	1000	200	5%
000257	01-07-2016	1234567	João Gomes	15	Caneta	70	50	0%
000258	01-07-2016	1234568	Ana Marques	12	Lápis Bic	100	400	6%
000258	01-07-2016	1234568	Ana Marques	16	Caderno	500	350	6%
000258	01-07-2016	1234568	Ana Marques	17	Régua	100	20	0%

Exercício 2

Desenhe o diagrama de dependências funcionais e normalize a estrutura apresentada

FICHA DE DESLOCAÇÃO A CLIENTES		Numero Deslocação:
		Data: / /
		Custo total:
Número do local:	Designação:	<u>-</u>
Número do Cliente:	Nome:	
Número de país do Cliente:		
Telefone do Cliente:		
FUNCIONÁRIOS QUE SE DESLOCARAM	Número funcionáro	Nome funcionário

Exercício 3

Desenhe o diagrama de dependências funcionais e normalize a estrutura apresentada

Considere a estrutura de dados seguinte, referente ao planeamento de produção de uma fábrica de artigos de plástico. A fábrica está estruturada em secções e cada secção é composta por diferentes centros de trabalho. Uma ordem de produção pode ser realizada em diversos centros de trabalho e utiliza diversas matérias-primas.

Planeamento de produção = {ordem_prod, produto, nome_produto, qtd_a_produzir, data_prev_inicio, data_prev_fim, data_real_inicio, data_real_fim, {secção, nome_secção, {centro_trabalho, desc_centro_trabalho}, localização}, {mat_prima, descrição_mp, qtd_mp}, percent_execução}