2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas) : □0 □1 圖2 □3 □4 □5 □6 □7 □8 □9
de Lasminat	
Noe	
(delarm_n) marko 68	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I j'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +42/1/xx+···+42/5/xx+.	
Q.2 Que ne traite pas la théorie des langages?	
🗌 l'ADN 📓 la voix 🗀] Java 🔲 l'écrit 🗎 HTML
Q.3 Pour $L_1 = \{ab\}^*, L_2 = \{a\}^* \{b\}^*$:	
$\Box L_1 \supseteq L_2 \qquad \Box L_1 = L_2$	$\Box L_1 \subseteq L_2 \qquad \blacksquare L_1 \ \stackrel{\not\subseteq}{\not\supseteq} \ L_2$
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{\varepsilon, a, b\}$?	
	b}
Q.5 Que vaut <i>Pref</i> ({ab, c}):	
	\emptyset $\{ab,a,c,\varepsilon\}$ $[a,b,c\}$
Q.6 Que vaut $(\{a\}\{b\}^*\{a\}^*) \cap (\{a\}^*\{b\}^*\{a\})$	
Q.7 Pour toutes expressions rationnelles e, f, g, h ,	on a $(e+f)(g+h) \equiv eg+fh$.
	□ vrai
Q.8 Pour toutes expressions rationnelles e, f , on a	$(ef)^*e \equiv e(ef)^*.$
□ vrai	
 Q.9 Un langage quelconque □ est toujours récursif □ est toujours récursivement énumérable □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ est toujours inclus (⊆) dans un langage rationnel Q.10 Soit Σ un alphabet. Pour tout a ∈ Σ, L₁, L₂ ⊆ Σ*, on a L₁* = L₂* ⇒ L₁ = L₂. 	
■ faux	□ vrai
Q.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])	*[-+]*[0-9A-F]+' n'engendre pas :

2/2

☐ Il n'existe pas.

 2^n

O.21 Déterminiser cet automate :

2/2

Quelle(s) opération(s) préserve(nt) la rationnalité?

2/2

- Union
- Différence
- Différence symétrique
- Intersection

Complémentaire Aucune de ces réponses n'est correcte.

Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles.

- -1/2
- \square Rec $\stackrel{\not\subset}{\rightarrow}$ Rat \boxtimes Rec = Rat

On peut tester si un automate déterministe reconnaît un langage non vide.

- Rec ⊇ Rat
- Rec ⊆ Rat

Q.24 & Quelle(s) opération(s) préserve(nt) la rationnalité?

2/2

- Transpose
- Suff
- Pref
- Sous mot

☐ Aucune de ces réponses n'est correcte.

2/2

Q.25

- □ Non Oui Oui
- Seulement si le langage n'est pas rationnel
- Cette question n'a pas de sens

En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il. . .

- 2/2
- accepte le mot vide
- a des transitions spontanées est déterministe
- accepte un langage infini

Si L_1, L_2 sont rationnels, alors: Q.27

2/2

- \Box $L_1 \subseteq L_2$ ou $L_2 \subseteq L_1$
- $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \text{ aussi} \qquad \qquad \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2}$ $\square \quad \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n \text{ aussi}$

Q.28 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$?

-1/2

- 26
- **2**
- □ 52
- □ Il en existe plusieurs!

Q.29 Quel mot reconnait le produit de ces automates?

- ☐ (bab)²²
- (bab)³³³
- (bab)4444 (bab)666666

Q.30 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?

2/2

2/2

Q.31

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

2/2

- $(abc)^*$
- \Box $(a+b+c)^*$
- a*b*c*
- \Box $a^* + b^* + c^*$

Q.32 & Quels états peuvent être fusionnés sans changer le langage reconnu.

- ☐ 1 avec 3
- □ 0 avec 1 et avec 2
- 1 avec 2
- ☐ 2 avec 4
- 3 avec 4
- ☐ Aucune de ces réponses n'est correcte.

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2

2/2

- \square Il existe un DFA qui reconnaisse ${\cal P}$ ${f Z}$ ne vérifie pas le lemme de pompage
- \square Il existe un NFA qui reconnaisse \mathcal{P}
- \square Il existe un ε -NFA qui reconnaisse \mathcal{P}

Q.34

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $\Box (ab^* + (a+b)^*)(a+b)^+$

- $(ab^+ + a + b^+)(a(a + b^+))^*$

Sur {a, b}, quel automate reconnaît le complémentaire du langage de Q.35

2/2

2/2

Q.36 Sur $\{a,b\}$, quel est le complémentaire de

Fin de l'épreuve.

_