Curso de Verão de Álgebra Linear Parte 2 - Aula 05

Cleber Barreto dos Santos

05 de fevereiro de 2020

Definição 1. Seja $N:V\longrightarrow V$ um operador linear. Dizemos que N é **nilpotente** se existe algum inteiro positivo r para o qual $N^r=0$.

Teorema 2. Seja $T:V\longrightarrow V$ um operador linear em um espaço vetorial V de dimensão finita n. Suponha que q_T seja produto de fatores lineares. Existem operadores $D,N:V\longrightarrow V$ sendo D diagonalizável e N nilpotente para os quais temos que T=D+N e DN=ND. Além disso, D e N são os únicos operadores em tais condições que são polinomiais em T.

Demonstração. Vamos considerar $q_T(x)=(x-\lambda_1)^{r_1}(x-\lambda_2)^{r_2}\cdots(x-\lambda_k)^{r_k}$ com $\lambda_i\neq\lambda_j$ se $i\neq j$ e r_j inteiros positivos, uma vez que q_T é produto de fatores lineares.

Vamos definir $W_j \doteq \operatorname{Ker} ((T - \lambda_j I)^{r_j}).$

Definamos $D = \lambda_1 E_1 + \lambda_2 E_2 + \cdots + \lambda_k E_k$, onde os E_j são as projeções associadas a cada $W_j = \text{Im}(E_j)$.

Vejamos que D é diagonalizável.

De fato, se \mathcal{B}_1 é base ordenada de W_1 , \mathcal{B}_2 é base ordenada de W_2 , etc., então a união ordenada das bases \mathcal{B} é uma base ordenada de V uma vez que o Teorema da Decomposição Primária afirma que $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. Logo, temos que para cada $w_i \in W_i$:

$$D(w_j) = \lambda_1 E_1(w_j) + \lambda_2 E_2(w_j) + \dots + \lambda_k E_k(w_j) = \lambda_j E_j(w_j) = \lambda_j w_j.$$

Portanto temos que a matriz de D na base \mathcal{B} é diagonal, sendo $\lambda_1, \lambda_2, \ldots, \lambda_k$ os elementos presentes na diagonal, com possíveis repetições. Portanto D é diagonalizável Seja N = T - D. Logo

$$N = T - D = TI - D$$

$$= T(E_1 + E_2 + \dots + E_k) - (\lambda_1 E_1 + \lambda_2 E_2 + \dots + \lambda_k E_k)$$

$$= (T - \lambda_1 I) E_1 + (T - \lambda_2 I) E_2 + \dots + (T - \lambda_k I) E_k$$

$$= \sum_{j=1}^k (T - \lambda_j I) E_j.$$

Logo

$$N^{2} = \left(\sum_{j=1}^{k} (T - \lambda_{j}I)E_{j}\right) \left(\sum_{\ell=1}^{k} (T - \lambda_{j}I)E_{\ell}\right)$$

$$= \sum_{j=1}^{k} \left[(T - \lambda_{j}I)E_{j} \sum_{\ell=1}^{k} (T - \lambda_{j}I)E_{\ell} \right]$$

$$= \sum_{j=1}^{k} \left[(T - \lambda_{j}I) \sum_{\ell=1}^{k} (T - \lambda_{j}I)E_{j}E_{\ell} \right]$$

$$= \sum_{j=1}^{k} (T - \lambda_{j}I)(T - \lambda_{j}I)E_{j}^{2}$$

$$= \sum_{j=1}^{k} (T - \lambda_{j}I)^{2}E_{j}.$$

Indutivamente vemos que

$$N^{r} = (T - \lambda_{j}I)^{r}E_{1} + (T - \lambda_{j}I)^{2}E_{2} + \dots + (T - \lambda_{k}I)^{r}E_{k}.$$

Veja que, se $w_j \in W_j$ então $E_i(w_j) = 0$ se $i \neq j$ e $E_j(w_j) = w_j$. Logo, para $r \geqslant r_j$ para cada $j \in \{1, 2, ..., k\}$ temos que

$$N^{r}(w_{j}) = (T - \lambda_{j}I)^{r}E_{1}(w_{j}) + (T - \lambda_{j}I)^{2}E_{2}(w_{j}) + \dots + (T - \lambda_{k}I)^{r}E_{k}(w_{j})$$

$$= (T - \lambda_{j}I)^{r}E_{j}(w_{j})$$

$$= (T - \lambda_{j})^{r}(w_{j}) = 0,$$

pois $(T - \lambda_j I)^{r_j}(w_j) = 0$ pois $w_j \in W_j = Ker((T - \lambda_j I)^{r_j})$ e $r \ge r_j$. Logo $N^r(w_j) = 0$ para cada $w_j \in W_j$ e $j \in \{1, 2, ..., k\}$. Segue que $N^r(v) = 0$ para cada $v \in V = W_1 \oplus W_2 \oplus \cdots W_k$. Logo N é nilpotente.

Por fim, suponha que N' e D' sejam operadores polinomiais em T, tais que D'N' = N'D' e T = D' + N', com D' diagonalizável e N' nilpotente. Logo D + N = D' + N' e segue que D - D' = N' - N. Pode-se mostrar que D - D' é diagonalizável pois DD' = D'D. Além disso, N' - N = D - D' é nilpotente. Desta forma, temos que D - D' é diagonalizável e nilpotente. Portanto D - D' = 0 e segue que D = D' e N = N'.

Corolário 3. Se \mathbb{K} é um corpo algebricamente fechado, todo operador \mathbb{K} -linear no \mathbb{K} -espaço vetorial V pode ser escrito como uma soma de um operador diagonalizável com um operador nilpotente.

Definição 4. Se $v \in V$, o subespaço T-cíclico gerado por v é o subespaço $T(v,T) \doteq \{g(T)(v) \in V | g \in \mathbb{K}[\pi]\}$

$$Z(v;T) \doteq \{g(T)(v) \in V | g \in \mathbb{K}[x]\}.$$

Se Z(v;T) = V diremos que v é um **vetor cíclico** de T.

Exemplo 5. Seja $T:V\longrightarrow V$ um operador linear qualquer.

- (1) $Z(0;T) = \{0\}.$
- (2) $\dim Z(v;T) = 1$ se, e somente se, v é autovetor não-nulo de T.

Exemplo 6. O operador $TT: \mathbb{K}^2 \longrightarrow \mathbb{K}^2$ cuja matriz na base canônica é

$$\left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right]$$

possui $\{v_1\}$ como vetor cíclico.

Observação 7. O polinômio T-anulador p_v de um vetor $v \in V$ é o polinômio mônico de menor grau tal que $p_v(T)(v) = 0$.

Teorema 8. Sejam $T:V\longrightarrow V$ um operador linear e $v\in V$ não-nulo.

- (1) $\operatorname{grau}(p_v) = \dim Z(v;T)$.
- (2) se grau $(p_v) = k$ então $\{v, T(v), T^2(v), \dots, T^{k-1}(v)\}$ é base de Z(v; T).
- (3) se U é operador linear em Z(v;T) induzido por U então é p_v .

Demonstração. As afirmações (1), (2) e (3) seguem diretamente do fato de que para cada $p(x) = \sum_{i=0}^{k} a_i x^i$

$$p(T)(v) = 0 \Leftrightarrow \left(\sum_{i=0}^{k} a_i T^i\right)(v) = 0 \Leftrightarrow \sum_{i=0}^{k} a_i T^i(v) = 0.$$

Definição 9. Seja $W \subseteq V$ um subespaço. Dizemos que o subespaço $W' \subseteq V$ é **complementar** a W se $V = W \oplus W'$.

Definição 10. Seja $T:V\longrightarrow V$ um operador linear em um espaço vetorial V e seja $W\subseteq V$ subespaço. Dizemos que W é T-admissível se:

- (1) $W \notin T$ -invariante;
- (2) se $f(T)(u) \in W$, então existe $w \in W$ tal que f(T)(u) = f(T)(w).

Teorema 11 (Teorema da Decomposição Cíclica). Seja T um operador linear em um espaço vetorial de dimensão finita V e seja W_0 um subespaço próprio T-admissível. Então existem vetores não-nulos $v_1, v_2, \ldots, v_k \in V$ tais que seus polinômios T-anuladores são p_1, p_2, \ldots, p_k e:

- (1) $V = W_0 \oplus Z(v_1; T) \oplus Z(v_2; T) \oplus \cdots \oplus Z(v_k; T);$
- (2) p_j divide p_{j-1} para $j \in \{2, 3, \dots, k\}$. Além disso, $k \in p_1, p_2, \dots, p_k$ são unicamente determinados.

Suponha que N é operador linear nilpotente.

Veja que $W_0 = \{0\}$ é subespaço T-admissível.

Então existem k inteiro positivo, $v_1, v_2, \ldots, v_k \in V$ com polinômios N-anuladores p_1, p_2, \ldots, p_k . Como N é nilpotente, temos que $q_N(x) = x^s$ para algum $s \in \mathbb{N}$, com $s \leq \dim(V) = n$.

Então cada p_j é da forma $p_j(x) = x^{s_j}$, com $s_1 \ge s_2 \ge \cdots \ge s_k$.

Temos que $s_1 = s$ e $s_k \geqslant 1$.

Logo as matrizes que representam as restrições de N aos subespaços $Z(v_i; N)$ são da forma

$$\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}_{s_j \times s_2}$$

onde $s_1 + s_2 + \cdots + s_k = n \ s_i \ge s_{j+1}$.

Agora seja T um operador em V cujo polinômio característico seja

$$p_T(x) = (x - \lambda_1)^{d_1} (x - \lambda_2)^{d_2} \cdots (x - \lambda_k)^{d_k}$$

com $\lambda_1, \lambda_2, \cdots, \lambda_k$ distintos e $d_j \geqslant 1$. Então $q_T(x) = (x - \lambda_1)^{r_1} (x - \lambda_2)^{r_2} \cdots (x - \lambda_k)^{r_k}$. O Teorema da Decomposição Primária mostra que se $W_j = \operatorname{Ker}((T - \lambda_j I)^{r_j})$ então $V = W_1 \oplus$ $W_2 \oplus \cdots \oplus W_k$.

Colocando $N_j = T - \lambda_j I$, temos que N_j é nilpotente de grau r_j . Logo temos que a matriz de restrição de T a cada $Z(v_i;T)$ é

$$\begin{bmatrix} \lambda_{j} & 0 & 0 & \cdots & 0 & 0 \\ 1 & \lambda_{j} & 0 & \cdots & 0 & 0 \\ 0 & 1 & \lambda_{j} & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & \lambda_{j} \end{bmatrix}_{s_{j} \times s_{j}}$$

Cada matriz dessa forma é chamada de matriz elementar de Jordan associada ao autovalor λ_i .

Logo a matriz de $T|_{W_j}$ é representada da forma $\begin{bmatrix} J_1^{(j)} & & & & \\ & J_2^{(j)} & & & \\ & & \ddots & & \\ & & & J_{n_i}^{(j)} \end{bmatrix}.$ Logo $[T]_{\mathbb{R}}$ é da forma

Logo $[T]_{\mathcal{B}}$ é da forma

$$\begin{bmatrix} \begin{bmatrix} T|_{W_1} \end{bmatrix}_{\mathcal{B}_1} & & & \\ & \begin{bmatrix} T|_{W_2} \end{bmatrix}_{\mathcal{B}_2} & & \\ & & \ddots & \\ & & \begin{bmatrix} T|_{W_k} \end{bmatrix}_{\mathcal{B}_k} \end{bmatrix}$$

Exercícios - 05 de fevereiro de 2020

Exercício 1. Mostre que o único operador diagonalizável e nilpotente em um espaço vetorial de dimensão finita é o operador nulo.

Exercício 2. Se $T:V\longrightarrow V$ é um operador cujo polinômio minimal é produto de fatores lineares distintos então T possui vetor cíclico se, e somente se, $\dim(V)=1$.

Exercício 3. Seja $T:V\longrightarrow V$ um operador linear. Mostre que o subespaço $\{0\}$ é um subespaço T-admissível.

Exercício 4. Sejam N_1 e N_2 matrizes de ordem 3 nilpotentes. Prove que N_1 e N_2 são semelhantes se, e somente se, têm o mesmo polinômio minimal.

Exercício 5. Sejam A e B matrizes com o mesmo polinômio característico

$$p_A(x) = p_B(x) = (x - \lambda_1)^{d_1} (x - \lambda_2)^{d_2} \cdots (x - \lambda_k)^{d_k}$$

e mesmo polinômio minimal. Suponha que $d_j \leq 3$ para todo j. Mostre que A e B são similares.

Exercício 6. Seja A uma matriz complexa com polinômio característico

$$p_A(x) = (x-2)^3(x+7)^2$$

e polinômio minimal $q_A(x) = (x-2)^2(x+7)$. Qual é a forma de Jordan de A?

Exercício 7. Classifique todas as matrizes semelhantes quadradas de ordem 3 tais que $A^3 = I$.

Exercício 8. Quantas matrizes complexas de ordem 6 escritas na forma de Jordan possuem característico $(x+2)^4(x-1)^2$?

Exercício 9. Seja $T:\mathbb{C}^4\longrightarrow\mathbb{C}^4$ a transformação linear cuja matriz na base canônica é dada por

$$\left[\begin{array}{cccc} 8 & -1 & 0 & 0 \\ 4 & 12 & 0 & 0 \\ 0 & 0 & 9 & 2 \\ 0 & 0 & 2 & 6 \end{array}\right].$$

Quais são as possíveis formas de Jordan de T?

Exercício 10. Determine todas as possíveis formas de Jordan de uma matriz em $M_n(\mathbb{C})$ com $n \ge 3$ e posto 2.