Aplicando SVM

Treine um classificador SVM com o dataset anexo. Este dataset contém as transações feitas por uma operadora de cartão de créditos. Existem 492 fraudes de um total de mais de 280 mil transações.

O atributo 'Amount' é o valor da transação. As colunas V1, V2, V3 ... representam as componentes principais do dataset original. O atributo a ser previsto está na coluna Class. O valor 1 representa uma transação fraudulenta e o valor 0, uma transação legítima.

In [1]:

```
from sklearn.metrics import confusion_matrix, f1_score, recall_score, precision_sco
from sklearn.model_selection import train_test_split
from imblearn.under_sampling import RandomUnderSampler
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn import svm
import pandas as pd
```

In [2]:

```
data = pd.read_csv("creditcard.csv")
data
...
```

```
In [3]:
```

```
# procurando por valores nulos
n_null = data.isnull().sum().sum()
not_fraud, fraud = data.Class.value_counts()
print(f"valores nulos: {n_null}\nFraudes: {fraud}\nNão fraudes: {not_fraud}")
data.dtypes
```

valores nulos: 0 Fraudes: 492

Não fraudes: 284315

Out[3]:

Time float64 ٧1 float64 ٧2 float64 ٧3 float64 ٧4 float64 ۷5 float64 ۷6 float64 ٧7 float64 ٧8 float64 ۷9 float64 V10 float64 float64 V11 V12 float64 float64 V13 float64 V14 float64 V15 V16 float64 float64 V17 V18 float64 V19 float64 V20 float64 V21 float64 float64 V22 V23 float64 float64 V24 float64 V25 float64 V26 V27 float64 V28 float64 float64 Amount int64 Class dtype: object

In [4]:

```
target = data.Class
features = data.drop("Class", axis=1)

# Dividindo os dados em treinamento e teste
features_train, features_test, target_train, target_test = train_test_split(feature)
```

```
In [5]:
```

```
for feature_to_scale in features_train:
    scaler = MinMaxScaler()
    features_train[feature_to_scale] = scaler.fit_transform(features_train[[feature]
# 0 resultado não foi bom
# # Aplicando PCA
# pca = PCA(n_components=0.99)
# features_train_pca = pca.fit_transform(features_train)
# components = features_train_pca.shape[1]
#
# features_train_pca
```

In [6]:

```
# Realizando o under sampling para balancear os dados

ros = RandomUnderSampler()
features_train_res, target_train_res = ros.fit_resample(features_train, target_trai
target_train_res.value_counts()
```

Out[6]:

```
0 391
1 391
Name: Class, dtype: int64
```

In [7]:

```
svm_model = svm.SVC(random_state=0)
svm_model.fit(features_train_res, target_train_res);
```

In [8]:

```
# Normalizando os dados de teste

for feature_to_scale in features_test:
    scaler = MinMaxScaler()
    features_test[feature_to_scale] = scaler.fit_transform(features_test[[feature_t

# # Aplicando PCA
# pca = PCA(n_components=components)
# features_test_pca = pca.fit_transform(features_test)
```

In [9]:

```
# Avaliando o modelo
def evaluate_classifier(model, features, target, pos_label=1):
    predictions = model.predict(features)
    accuracy = model.score(features, target)
    precision = precision_score(target, predictions, pos_label=pos_label)
    recall = recall_score(target, predictions, pos_label=pos_label)
    f1 = f1_score(target, predictions, pos_label=pos_label)
    conf_matrix = confusion_matrix(target, predictions)
    ConfusionMatrixDisplay(conf_matrix, display_labels=model.classes_).plot(cmap='B print(f'Accuracy: {accuracy:.4}\nPrecision: {precision:.4}\nRecall: {recall:.4}
evaluate_classifier(svm_model, features_test, target_test)
```

Accuracy: 0.9918 Precision: 0.1618 Recall: 0.8713 F1: 0.2729

In [10]:

```
svm_params = {
    'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],
    # 'degree': [1, 2, 3, 4, 5],
    'gamma': ['scale', 'auto'],
    'shrinking': [True, False],
    'decision_function_shape': ['ovo', 'ovr']
}
svm_cv = svm.SVC()
svm_grid = GridSearchCV(svm_cv, svm_params, cv=5, n_jobs=-1)
svm_grid.fit(features_train, target_train)
print(f'Best_score: {svm_grid.best_score_:.4}')
svm_grid.best_params_
```

```
Best score: 0.9994
Out[10]:
{'decision_function_shape': 'ovo',
   'gamma': 'scale',
   'kernel': 'poly',
   'shrinking': True}
```

In [11]:

pd.DataFrame(svm_grid.cv_results_)

Out[11]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_decision_	_function_	_sl 🏝
0	663.440135	528.234927	0.723160	0.446920			
1	28.724244	2.521240	1.375512	0.242188			
2	111.481102	13.823147	0.962097	0.150886			
3	173.616485	10.993138	0.876758	0.333898			
4	23.791789	0.977101	2.311834	0.324551			
5	24.134368	1.602386	2.054058	0.142529			
6	24.525169	1.346916	3.464883	0.446183			
7	20.730744	1.569004	3.219418	0.234899			
8	632.550684	508.477236	0.634330	0.351759			
9	20.882020	1.652359	1.016051	0.153411			
10	17.314111	2.453576	1.758368	0.208948			
11	18.181318	1.432489	1.779518	0.255758			
12	16.022005	1.374712	2.195404	0.301322			
13	14.602821	1.230302	1.978407	0.252804			
14	16.547245	2.301346	2.384894	0.474116			
15	16.194019	2.180642	2.209305	0.477498			
16	599.099170	483.912632	0.504565	0.197420			
17	18.049685	3.278243	0.820245	0.129732			
18	77.414239	12.066043	0.819440	0.108210			
19	132.024068	15.929028	0.699058	0.189781			
20	16.075132	3.058810	2.019927	0.724023			
21	13.071434	2.878046	1.515757	0.144891			

	mean fit time	etd fit time	mean score time	etd score time	param_decision_function_sl
	mean_nt_time	stu_iii_tiiiie		Stu_Score_time	param_uecision_runction_si
22	14.449360	0.567769	2.575886	0.109475	
23	13.550642	1.101286	2.627486	0.214791	
24	548.130829	445.286859	0.524509	0.246964	
25	15.017933	1.466612	0.820035	0.117952	
26	13.153456	1.168520	1.381385	0.126509	
27	13.409379	1.144919	1.367684	0.059106	
28	12.121113	0.642191	1.827663	0.124696	
29	11.813144	0.490719	1.863762	0.045761	
30	12.603504	0.332155	1.735116	0.189214	
31	10.793207	1.047409	1.449688	0.294332	
4					

In [13]:

```
best_svm = svm.SVC(decision_function_shape='ovo', gamma='scale', kernel='poly', shr
best_svm.fit(features_train, target_train)
evaluate_classifier(best_svm, features_test, target_test)
```

Accuracy: 0.9992 Precision: 0.7477 Recall: 0.8218

