LECTURE 3 – ELEMENTARY BUILDING BLOCKS

The formulation of the equations to describe commonly used engineering components included in electrical, mechanical, fluidic and thermal systems. A discussion of methods of transduction is also given.

1. **MECHANICAL COMPONENTS**

SPRINGS

Translational F = kx ,

ROTATIONAL $\Gamma=k heta$

<u>DAMPERS</u> A resistive force is generated by virtue of relative velocity; e.g. a viscous retarding force.

Translational $F=\mathcal{C}(\dot{x}_1-\dot{x}_2)$, Rotational $\Gamma=\mathcal{C}ig(\dot{ heta}_1-\dot{ heta}_2ig)$

INERTIA A consequence of Newton's 2nd Law

Translational $F=m\ddot{x}$, Rotational $\Gamma=J\ddot{ heta}$

<u>LEVERS</u> For small deflections, we may apply SUPERPOSITION to determine y from x_1 and x_2

Thus

$$y|_{x_2=0} = \frac{b}{a+b}x_1$$
, $y|_{x_1=0} = \frac{a}{a+b}x_2$

$$\therefore y = y|_{x_2=0} + y|_{x_1=0} = \frac{b}{a+b}x_1 + \frac{a}{a+b}x_2$$

We can also relate forces in the same way

$$F_y = F_y \Big|_{FULCRUM} + F_y \Big|_{FULCRUM} = -\frac{a+b}{b} \cdot F_1 - \frac{a+b}{a} \cdot F_2$$

GEARS For two inter-meshing gears, we can relate a number of parameters to one another.

Thus

$$n = \frac{d_1}{d_2} = \frac{\omega_2}{\omega_1} = \frac{\theta_2}{\theta_1} = \frac{\dot{\theta}_2}{\dot{\theta}_1} = \frac{\ddot{\theta}_2}{\ddot{\theta}_1} = \frac{\Gamma_1}{\Gamma_2}$$

Note the gear train reverses at each meshing.

2. ELECTRICAL COMPONENTS

RESISTANCE

$$i = \frac{v_i - v_o}{R}$$
 OHMS LAW

CAPACITANCE

$$i = C \cdot \frac{d}{dt}(v_i - v_o)$$

$$OR \qquad v_i - v_o = \frac{1}{C} \int i dt$$

INDUCTANCE

$$i = \frac{1}{L} \int (v_i - v_o) \, dt$$

$$OR \qquad v_i - v_o = L \cdot \frac{di}{dt}$$

THE CONCEPT OF IMPEDENCE: (this is an interlude)

We may recast all our equations so far into LAPLACE

$$F = kx$$
 becomes
$$F(s) = k \cdot X(s)$$

$$F = c(\dot{x}_1 - \dot{x}_2)$$
 becomes
$$F(s) = cs(X_1(s) - X_2(s))$$

$$F = m\ddot{x}$$
 becomes
$$F(s) = ms^2 \cdot X(s)$$

$$i = \frac{v_1 - v_o}{R}$$
 becomes
$$I(s) = \frac{V_i(s) - V_o(s)}{R}$$

$$i = C\frac{d}{dt}(v_1 - v_o)$$
 becomes
$$I(s) = cs(V_i(s) - V_o(s))$$

$$i = \frac{1}{L}\int (v_i - v_o)dt$$
 becomes
$$I(s) = \frac{1}{Ls}(V_1(s) - V_o(s))$$

If we consider a VOLTAGE or a FORCE as the initiator and the CURRENT or MOVEMENT as the output, the coefficient that links the two has the form of IMPEDENCE i.e. impeding the outcome \rightarrow bigger impedance means less output for same force.

THE SERIES CIRCUIT

$$v = Ri + \frac{1}{c} \int idt + L \frac{di}{dt} \ becomes \ V(s) = \left(R + \frac{1}{cs} + Ls\right) \cdot I(s)$$
SERIES IMPEDENCE

THE PARALLEL CIRCUIT

$$i = \frac{v}{R} + C\frac{dv}{dt} + \frac{1}{L}\int vdt \ becomes \ I(s) = \left(\frac{I}{R} + Cs + \frac{I}{Ls}\right)V(s)$$
PARALLEL IMPEDENCE

KIRCHOFFS LAWS

The net flow of CURRENT to a junction is ZERO

$$i_1 + i_2 - i_3 - i_4 = 0$$
 or $\sum i = 0$

The sum total of VOLTAGE around any loop is ZERO

$$v_i - R_i - \frac{I}{C} \int idt - L \frac{di}{dt} = 0$$

3. THERMAL COMPONENTS

HEAT CONDUCTION

Flow of heat $q = -KA \frac{(T_1 - T_2)}{d}$ [Discrete version]

In terms of a thermal impedance

$$T_1 - T_2 = -\frac{d}{KA} \cdot q$$

 $\frac{d}{KA}$ has the units of impedance ${}^{\circ}K/(Js^{-1})$

HEAT CONVECTION

Flow of heat $q = h_c A(T_1 - T_2)$ as a simple model

 h_c is a surface convective coefficient of heat transfer.

THERMAL CAPACITANCE

The rate of net heat transfer to a body is equivalent to its rate of increase in internal energy.

Thus $q = \rho c V \frac{dT}{dt}$ where ρ is density, c is specific heat, V is volume

Let $C_t=\rho cV$ and is the thermal capacitance $(J^\circ K^{-1})$ of the body. This is analogous to electical capacitance $i=C\frac{dv}{dt}$

THERMAL RADIATION

Stefan's Law states $q = A\sigma T^4$, σ is Stefan's Constant. Let us invoke linearisation to make the law useable in our systems. T_o is the temperature operating point

$$f(x_0) \equiv A\sigma T_0^4$$
, $f'(x_0) \equiv 4A\sigma T_0^3$

$$\therefore q = A\sigma T_o^4 + (T - T_o)4A\sigma T_o^3$$

$$\therefore q = 4A\sigma T_0^3 T - 3A\sigma T_0^4 \equiv [y = mx + c]$$

Be careful, the approximation is only valid very close to T_o because of the T^4 power law.

4. FLUIDIC SYSTEMS

We will show how previous concepts can be derived.

RESISTANCE

 $P_1 - P_2 = R_f q$ where R_f is known as a fluidic impedance.

CAPACITANCE

$$\dot{m} = \frac{d}{dt}(\rho V) = V \frac{d\rho}{dt}$$
 if V is assumed a constant

Apply the equation above to a LIQUID.

By definition $p-p_o=\beta\cdot\frac{\rho-\rho_o}{\rho_o}$ at constant volume

Or
$$\dot{p} = \frac{\beta}{\rho_0} \cdot \dot{\rho}$$
 but $\dot{\rho} = \frac{\dot{m}}{v} : \dot{m} = \frac{v\rho_0}{\beta} \cdot \dot{p}$

 β is known as the bulk modulus. Equation for \dot{m} has similarities to electrical capacitance in that flow is related to rate of charge of driving force.

Apply the equation above to a GAS.

The gas law is: pV = mRT m is in moles, R is universal gas constant.

$$m = \frac{pV}{RT}$$
 $\therefore \dot{m} = \frac{V}{RT} \cdot \frac{dp}{dt}$ or $\frac{V}{RT} \cdot \dot{p}$ similarly to above.

INERTIA

Mass of fluid $m = \rho V = \rho A l$

The force acting on the slug by the pressure drop is $F=(p_1-p_2)A$

Using Newton's 2^{nd} Law (F = ma)

$$(p_1-p_2)A=
ho A\ell\cdot\ddot{\ell}$$
 and $\ddot{\ell}\equiv\dot{v}=rac{\dot{q}}{A}$ where v is velocity, q is flow rate

$$\therefore (p_1 - p_2) = \frac{\rho \ell}{A} \cdot \dot{q}$$

 $\frac{\rho\ell}{A}$ is a term similar to inductance in electrical circuits.

5. THERMAL AND FLUID SYSTEMS IN THE NUTSHELL

$$\dot{Q}_{in} - \dot{Q}_{out} = \frac{d(mcT)}{dt} = \frac{d(\rho V cT)}{dt} \qquad \qquad \dot{m}_{in} - \dot{m}_{out} = \frac{dm}{dt} = \frac{d(\rho V)}{dt}$$

6. TRANSDUCTION

Study the diagrams of the transducers and work out which graphical result is closest to what you would expect to happen.

TRANSDUCER

GRAPH

