Devoir à la maison n°11

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ► Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 -

Partie I -

On note E l'ensemble des applications 1-périodiques de $\mathbb R$ dans $\mathbb C$. Pour $k\in\mathbb Z$, on note e_k l'application définie par

$$\forall x \in \mathbb{R}, e_k(x) = e^{2ik\pi x}$$

On pose $\tilde{E} = \text{vect}((e_k)_{k \in \mathbb{Z}})$.

- **1.** Vérifier que $e_k \in E$ pour tout $k \in \mathbb{Z}$.
- 2. Montrer que E est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{R}}$.
- 3. **a.** Soit $(k, l) \in \mathbb{Z}^2$. Calculer $\int_0^1 e_k(x)e_{-l}(x) dx$.
 - **b.** Montrer que la famille $(e_k)_{k\in\mathbb{Z}}$ est une base de \tilde{E} .

Partie II -

Pour $f \in \mathbb{C}^{\mathbb{R}}$, on définit l'application $T(f) \in \mathbb{C}^{\mathbb{R}}$ par

$$\forall x \in \mathbb{R}, \ T(f)(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right)$$

- **1.** Montrer que T est un endomorphisme de $\mathbb{C}^{\mathbb{R}}$.
- 2. Montrer que E est stable par T.
- 3. Soit $k \in \mathbb{Z}$. Calculer $T(e_k)$. On discutera suivant la parité de k.
- **4.** Montrer que \tilde{E} est stable par T. On note alors \tilde{T} l'endomorphisme induit par T sur \tilde{E} .
- 5. Déterminer des bases respectives de Ker T et Im T.

Partie III -

1. Justifier qu'il existe un unique endomorphisme S de E tel que

$$\forall k \in \mathbb{Z}, S(e_k) = e_{2k}$$

- 2. On pose $Q = \tilde{T} \circ S$. Reconnaître l'endomorphisme Q.
- 3. On pose $P = S \circ \tilde{T}$. Montrer que P est un projecteur et préciser Im(P) et Ker(P).