Sistemas Operativos I

Introducción

- Qué es un SO?
- Historia de los SO
- Revisión del hardware
- Conceptos de SO
- Llamadas al sistema
- Estructura de los SO

¿Qué es un Sistema Operativo?

Sistema Operativo

- Es una máquina extendida
 - Oculta los detalles tediosos y complejos que se deben realizar
 - o Presenta al usuario una "máquina virtual" que es mucho más simple de usar
- Es un administrador de recursos
 - Cada programa obtiene tiempo de uso de recursos
 - Cada programa obtiene espacio de utilización de un recurso-

Componentes de un Sistema

Banking system	Airline reservation	Web browser		
Compilers	Editors	Command interpreter		
Operating system				
Machine language				
Microarchitecture				
Physical devices				

Application programs

System programs

Hardware

Historia

Generaciones

- Primera generación 1945 1955: válvulas, tableros
- Segunda generación 1955 1965: transistores, sistemas batch
- Tercera generación 1965 1980: circuitos integrados, multiprogramación
- Cuarta generación 1980 presente: microprocesadores, computadoras personales
- Quinta generación 1990 presente: computadoras de bolsillo o móviles

Sistemas Batch

Sistemas Batch

Multiprogramación

- INCREMENTA USO de CPU
- JOB POOL en disco
- CPU NO IDLE
- NO INTERACCION con el USUARIO

Time Sharing - Multitasking

- INTERACCION con el USUARIO input device
- ACCIONES CORTAS
- POCO TIEMPO de CPU.
- sensación SISTEMA DEDICADO
- asegura tiempo de respuesta
- require PROGRAMAS cargados EN MEMORIA
- ORDEN directa al SO
- process: programa en memoria en ejecución

Diversidad de SO

- Mainframes
- Servidores
- Multiprocesador
- Computadora Personal
- Tiempo Real
- Embebidos

Revisión del Hardware

Componentes de una Computadora

CPU

- Tomar instrucción de memoria, decodificarla y ejecutar
- Conjunto de instrucciones específico
- Registros de propósito general, contador de programa, puntero a la pila, PSW

Tipos de CPU

- (a) Pipeline 3 etapas
- (b) Superescalar

Almacenamiento

Almacenamiento

Nivel	1	2	3	4
Tipo	reg	cache	mem ppal	disco
Tamaño	< 1Kb	> 16Mb	16Gb	128Gb
Tecnología	CMOS	CMOS/SRAM	CMOS/DRAM S	SSD
T Acceso (ns)	0.25	0.5	100	35000
Bandwith (Mb/s)	100000	10000	5000	250
Manejado	compilador	hardware	SO	SO

Discos Magnéticos

Memoria Principal

Entrada/Salida

Solicitudes de E/S

- Busy waiting
- Interrupciones
- DMA

Interrupciones

(-1

22

DMA

Complejidad del Hardware

Conceptos

Procesos

Arbol de procesos

Comunicación Entre Procesos

Deadlocks

Sistemas de Archivos

Volumenes y Puntos de Montado

Modo Protegido

El modo dual de ejecución permite al SO protejerse así mismo y otros componentes del sistema

- 2 modos: usuario y supervisor (kernel)
- El bit de modo permite:
 - Distinguir cuando el sistema está ejecutando código del sistema o usuario
 - Algunas instrucciones designadas como privilegiadas, solo ejecutar en modo kernel
 - Las llamadas al sistema cambia a modo kernel, cuando retornan vuelven al modo usuario

Ejecución en Modo Protegido

Llamadas al Sistema

Aministración de Procesos

Llamada	Descripción
<pre>pid = fork()</pre>	crea un nuevo proceso idéntico al hijo
<pre>pid = waitpid(pid,)</pre>	espera que un proceso termine
s = execv(name, argv, env)	reemplaza la imagen del proceso
exit(status)	termina la ejecución de un proceso

Manejo de Archivos

Llamada	Descripción
fd = open(file,)	abre un archivo
s = close(fd,)	cierra un archivo abierto
<pre>n = read(fd, buffer, nbytes)</pre>	lee de un archivo a un buffer
<pre>n = write(fd, buffer, nbytes)</pre>	escribe de un buffer a un archivo
<pre>pos = lseek(fd, offset, whence</pre>) mueve el puntero
s = stat(fd, &buf)	retorna información de estado de un archivo

Manejo de Archivos

Llamada	Descripción
s = mkdir(name, mode)	crea un nuevo directorio
s = rmdir(name)	borra un directorio vacío
s = link(name1, name2)	crea una nueva entrada name2 apuntando a name1
s = unlink(name)	remueve una entrada
s = mount(special, name, flag) monta un sistema de archivos
<pre>s = umount(special)</pre>	desmomta un sistema de archivos

Un Shell Simplificado

Llamadas al Sistema WIN32

UNIX	WIN32	Descripción
fork()	CreateProcess	crea un nuevo proceso idéntico al hijo
waitpid	WaitForsingleObject	espera que un proceso termine
execv	_	reemplaza la imagen del proceso
exit	ExitProcess	termina la ejecución de un proceso
open	CreateFile	abre un archivo
close	CloseHandle	cierra un archivo abierto
read	ReadFile	lee datos de un archivo
i	i il	ib d t hi

Estructura de los Sistemas Operativos

Sistema Monolítico

- Los programas de aplicación invocan los servicios del sistema
- Tienen un conjunto de servicios del sistema implementan las llamadas al sistema
- Un conjunto de procedimientos de utilidad que ayudan a los servicios del sistema

Estructura en Capas

Layer	Función
5	El operador
4	Programas del usuario
3	Manejo de entrada/salida
2	Comunicación entre procesos
1	Manejo de memoria
0	Asignación de procesador y multiprogramación

- El sistema operativo está dividido en un número de capas (niveles), cada una construido sobre las capas inferiores
- La capa inferior (capa 0) es el hardware; la capa más alta (capa N) es la interfaz del usuario
- En un sistema modular, las capas son elegidas de forma tal que cada capa usa solo las funciones y servicios de las capas inferiores

Máquinas Virtuales

- Una máquina virtual tiene una aproximación de un sistema en capas respecto de su siguiente capa lógica. Trata al sistema operativo y al hardware como si fuesen hardware
- Una máquina virtual brinda una interfaz idéntica al hardware subyacente
- El sistema operativo host crea la ilusión que cada proceso tiene su propio procesador y memoria
- A cada huésped se le brinda una copia virtual de la computadora subyacente

Microkernel

- Mueve la mayor cantidad de funcionalidad posible del kernel al espacio de "usuario"
- Solo algunas funciones esenciales quedan en el kernel: manejo primitivo de memoria (espacio de direcciones), E/S y manejo de interrupciones, Comunicación entre procesos (IPC), planificación básica
- Otros servicios del SO son provistos por procesos que ejecutan en espacio del usuario:
 - drivers de dispositivos, sistema de archivos, memoria virtual

La comunicación entre los módulos del usuario se hace mediante pasaje de mensajes

• Beneficios:

- más fácil de extender
- más fácil de portar
- más sólido
- más seguro

• Desventajas:

 Hay un overhead de peformance por la comunicación entre el espacio de usuario y espacio de kernel

Comparación de Estructuras

Arbol Genealógico

