# Opioids: Drivers and Anomalous Prescribing Patterns

Presented by: Steve Barry, Neeraj Tadur, Derek Wong

12/4/2018

### Opioids: What are they?

- Pain reliever drugs
- Physician prescribed and also illegal street drugs
- Varying kinds, varying strengths
- Some opioids have high potential for dependence and overdose
- "Man-made opioid epidemic"







# Why is this important?



#### **America's Overdose Epidemic In Perspective**

Drug-induced deaths per million of the population\*



### Data Used

- Original Source: Centers for Medicare and Medicaid Services (CMS)
- Sampled from Kaggle
  - https://www.kaggle.com/apryor6/us-opiate-prescriptions/home
- Prescriber Level (25,000 x 256)
  - 25,000 licensed medical professionals
  - By Gender, Specialty, and Credentials
  - o 250 common non-opioid and opioid drugs what they are prescribing, and how often
- State Level (50 x 4)
  - Aggregate population and overdose death rate statistics
- Drug Level (113 x 2)
  - Drug names, Generic

### **Data Used**

|   | State      | Population | Deaths | Abbrev |
|---|------------|------------|--------|--------|
| 0 | Alabama    | 4,833,722  | 723    | AL     |
| 1 | Alaska     | 735,132    | 124    | AK     |
| 2 | Arizona    | 6,626,624  | 1,211  | AZ     |
| 3 | Arkansas   | 2,959,373  | 356    | AR     |
| 4 | California | 38,332,521 | 4,521  | CA     |

|   | Drug Name                      | Generic Name                   |
|---|--------------------------------|--------------------------------|
| 0 | ABSTRAL                        | FENTANYL CITRATE               |
| 1 | ACETAMINOPHEN-CODEINE          | ACETAMINOPHEN WITH CODEINE     |
| 2 | ACTIQ                          | FENTANYL CITRATE               |
| 3 | ASCOMP WITH CODEINE            | CODEINE/BUTALBITAL/ASA/CAFFEIN |
| 4 | ASPIRIN-CAFFEINE-DIHYDROCODEIN | DIHYDROCODEINE/ASPIRIN/CAFFEIN |

|   | NPI        | Gender | State | Credentials | Specialty           | ABILIFY | ACETAMINOPHEN.CODEINE | ACYCLOVIR | ADVAIR.DISKUS | AGGRENOX |     | VERAPA |
|---|------------|--------|-------|-------------|---------------------|---------|-----------------------|-----------|---------------|----------|-----|--------|
| 0 | 1710982582 | М      | TX    | DDS         | Dentist             | 0       | 0                     | 0         | 0             | 0        |     |        |
| 1 | 1245278100 | F      | AL    | MD          | General Surgery     | 0       | 0                     | 0         | 0             | 0        | 2.2 |        |
| 2 | 1427182161 | F      | NY    | M.D.        | General Practice    | 0       | 0                     | 0         | 0             | 0        | *** |        |
| 3 | 1669567541 | M      | AZ    | MD          | Internal Medicine   | 0       | 43                    | 0         | 0             | 0        |     |        |
| 4 | 1679650949 | М      | NV    | M.D.        | Hematology/Oncology | 0       | 0                     | 0         | 0             | 0        |     |        |

# Sections Today

- 1. Exploration of the Data
- 2. Making Predictions
- 3. Identifying Prescriber Outliers through Cluster Analysis
- 4. Wrap-Up

### Making Predictions

- Exploring the data
  - Geographic
    - Deaths from Opioids by State
    - Prescribers of Opioids by State
  - Demographic
    - Rates of Prescribers by Gender

#### Predicting Opioid Prescribers

- Using Categorical Supervised Learning
- Preparing the data
- Feature Selection
- Which models worked the best
- Using different features and filters

### Overdoses vs Prescribers By State



Prescibers by State (relative to population) -120-110

Overdose Rate by State per Capita

Opioid Prescriber Rate by State per Capita

- Prescriber rates by state show little variance, while overdose rates have higher variance
- There appears to be some weak regional correlation between prescribers rates and ODs
  - Our data is limited in that we have only 25,000 prescribers and 256 drugs we are looking at

### Prescribers by Gender



#### **Opioid Prescriber Rate**

|   | Gender | Total.Prescriber | Opioid.Prescriber | Percent.Prescibers |
|---|--------|------------------|-------------------|--------------------|
| 0 | F      | 9426             | 5135              | 54.477             |
| 1 | M      | 15574            | 9553              | 61.339             |

- Male prescribers using this dataset do prescribe opioids at a higher rate than Female prescribers
  The type of practitioner might greatly influence this data
- Our data is limited in that we have only 25,000 prescribers and 256 drugs we are looking at

### Making Predictions with Supervised Learning

#### Preparing and Choosing the data:

- Converting categorical fields to numeric
- Dropping uninformative data (NPI, Credentials)
- Tried predictions without all drugs (speciality/state)
- Predictions with all drugs
- Predictions without opioid drugs
- Predictions by specialty w/out opioid drugs

#### Categorical methods attempted:

- Logistic Regression
- K Nearest Neighbours
- Classification Tree
- Random Forest
- Bagging and Boosting

| NPI<br>Gender<br>State<br>Credentials<br>Specialty<br>ABII IFY | int64<br>object<br>object<br>object<br>object<br>int64 |         |
|----------------------------------------------------------------|--------------------------------------------------------|---------|
| ACETAMINOPHEN.                                                 |                                                        | int64   |
| ACYCLOVIR                                                      | int64                                                  | 1110-1  |
| ADVAIR.DISKUS                                                  | int64                                                  | 1       |
| AGGRENOX                                                       | int64                                                  |         |
| ALENDRONATE.SO                                                 | DIUM                                                   | int64   |
| ALLOPURINOL                                                    | int64                                                  |         |
| ALPRAZOLAM                                                     | int64                                                  |         |
| AMIODARONE.HCL                                                 |                                                        | t64     |
| AMITRIPTYLINE.HC                                               |                                                        | t64     |
| AMLODIPINE.BESY                                                | _,                                                     | int64   |
| AMLODIPINE.BESY                                                | LATE.BENAZE                                            | PRIL    |
| int64                                                          |                                                        |         |
| AMOXICILLIN                                                    | int64                                                  |         |
| AMOX.TR.POTASSI                                                | UM.CLAVULA                                             | NATE    |
| int64                                                          |                                                        |         |
| AMPHETAMINE.SAL                                                | _T.COMBO                                               |         |
| int64                                                          |                                                        |         |
| ATENOLOL                                                       | int64                                                  |         |
| ATORVASTATIN.CA                                                |                                                        | int64   |
| AVODART                                                        | int64                                                  |         |
| AZITHROMYCIN<br>BACLOFEN                                       | int64                                                  | 4       |
| BD.ULTRA.FINE.PE                                               |                                                        | int64   |
| BENAZEPRIL.HCL                                                 | int6                                                   |         |
| BENAZEPRIL. TICL<br>BENICAR                                    | int64                                                  | 04      |
| BENICAR<br>BENICAR.HCT                                         | int64                                                  |         |
| BENZTROPINE.MES                                                |                                                        | int64   |
| DENZINOI IINE.IVIE                                             | ) LAIL                                                 | 11110-1 |

TIMOLOL.MALEATE int64 TIZANIDINE HCI int64 TOLTERODINE.TARTRATE.ER int64 TOPIRAMATE int64 TOPROL XI int64 TORSEMIDE int64 int64 TRAMADOL.HCL TRAVATAN 7 int64 TRAZODONE.HCL int64 TRIAMCINOLONE.ACETONIDE TRIAMTERENE.HYDROCHLOROTHIAZID int64 VALACYCI OVIR int64 VALSARTAN int64 VALSARTAN.HYDROCHLOROTHIAZIDE VENI AFAXINE HCI int64 VENI AFAXINE HCL FR int64 VENTOLIN.HFA int64 VFRAPAMII FR int64 VESICARE int64 **VOLTAREN** int64 VYTORIN int64 WARFARIN SODIUM int64 XARFI TO int64 7FTIA int64 ZIPRASIDONE HCI int64 ZOLPIDEM.TARTRATE int64 Opioid.Prescriber int64 Gender1 int64 int64 State1 int64 Specialtv1 Length: 259, dtvpe; object

### Model Performance using all drug columns

#### **Model Performance:**

Logistic Regression: 0.912

K Nearest Neighbours: 0.858

Classification Tree: 0.888

Random Forest: 0.911

DT with Bagging: 0.815

DT with Boosting: 0.96



#### **Cross Validation Plots/Scores**





Logistic Regression: 0.912





Random Forest: 0.911

### Model Performance without Opioid Drug Columns

#### **Model Performance:**

Logistic Regression : 0.759

K Nearest Neighbours: 0.778

Classification Tree: 0.779

Random Forest: 0.823

DT with Bagging: 0.636

DT with Boosting: 0.89



#### **Opioids Dropped:**

- 1 MORPHINE.SLFATE.ER
- 2 FENTANYL
- 3 OXYCODONE.HCL
- 4 OXYCONTIN
- **5 MORPHINE. SULFATE**
- 6 OXYCODONE.ACETAMINOPHEN
- 7 HYDROMORPHONE.HCL
- 8 METHADONE.HCL
- 9 HYDROCODONE.ACETAMINOPHEN
- 10 TRAMADOL.HCL
- 11 ACETAMINOPHEN.CODEINE

### Predicting Prescribers by Specialty (Internal Medicine)

#### **Model Performance:**

Logistic Regression : 0.847

K Nearest Neighbours : 0.812

Classification Tree: 0.805

Random Forest: 0.831

DT with Bagging: 0.743

DT with Boosting: 0.89



#### Notes:

- State1 informs this model the most of all features
- Remaining significant features are non-opioid drugs that may have "associative" relation with prescribed opioids

# Why did Boosting using Decision Tree outperform?

#### Bagging vs Boosting

These are ensemble methods which combine several "weaker" models into a "stronger" ensemble.

**Bagged** models that are trained independently on data that is bootstrapped from the input data. Best used with limited data. We have 25K rows of prescribers.

**Boosting** creates a strong learner by iteratively adding "weak" learners and adjusting the weight of each weak learner to focus on misclassified examples. Worked best with our data.

#### When to use Boosting

- · When predictors are categorical
- When the time taken to train a model is less of a concern

Source: https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

# Identifying Prescriber Outliers through Cluster Analysis

 Motivation: Identify prescribers that are prescribing a different drug profile compared to their peers aka "outliers"

- Controlling Factors:
  - Specialty
  - State
  - Opioid Prescriber Flag

### Prescriber Outliers - Approach

- We will use unsupervised clustering to create clusters of prescribers based on their drugs prescribed
- We expect to see a dominant cluster with most of the physicians, but also a smaller subset of physicians which we will consider the outliers



# Prescriber Outliers - Scaling (TF-IDF Principles)

But first...

Term Frequency x Inverse Document Frequency

- Commonly used in document classification, is meant to normalize the length of the documents and give more weight when documents share uncommon key words
- 1) Normalize every prescriber by the total number of drugs prescribed. In other words, state each drug as % of total drugs prescribed
- 2) Give varying weights to each of the drugs, where uncommon drugs receive more weight and common drugs receive less weight

### Prescriber Outliers - Techniques Considered/Used

### Clustering

- K-Means
- Hierarchical Clustering
- Density-based Clustering (DBSCAN)
- Dimensionality Reduction / Visualization
  - T-distributed Stochastic Neighbor Embedding (t-SNE)
  - Principal Component Analysis (PCA)



DBSCAN Parameter Eps: Silhouette Score is a score from -1 to +1, with +1 being the strongest evidence of distinct clusters.

### Prescriber Outliers - PCA

- Plotting data on PCA basis allows visualization of underlying data differences
- Filters
  - Internal Medicine
  - New York
  - Opioid Prescribers



# Prescriber Outliers - PCA with Cluster Results (NY)

- Plotting data on PCA basis allows visualization of underlying data differences
- Filters
  - Internal Medicine
  - New York
  - Opioid Prescribers
- Red represents "Outlier" cluster label



# Prescriber Outliers - PCA with Cluster Results (PA)

- Plotting data on PCA basis allows visualization of underlying data differences
- Filters
  - Family Practice
  - Pennsylvania
  - Opioid Prescribers
- Red represents "Outlier" cluster label



### Prescriber Outliers - Drug Patterns by Cluster

- Results shown for NY
- Prescribers in the Outlier group prescribed 4x as many opioids as those in the Inlier group (NY, PA)

#### **Differences - Opioids Only**

| Index                     | Inliers % | Outliers % | Difference | Is Opioid? |
|---------------------------|-----------|------------|------------|------------|
| OXYCODONE.HCL             | 0.2       | 4.7        | 4.5        | Yes        |
| OXYCODONE.ACETAMINOPHEN   | 0.4       | 3.7        | 3.3        | Yes        |
| MORPHINE.SULFATE.ER       | 0         | 0.8        | 0.8        | Yes        |
| OXYCONTIN                 | 0         | 0.7        | 0.7        | Yes        |
| HYDROMORPHONE.HCL         | 0         | 0.5        | 0.5        | Yes        |
| MORPHINE.SULFATE          | 0         | 0.3        | 0.3        | Yes        |
| ACETAMINOPHEN.CODEINE     | 0.2       | 0.5        | 0.3        | Yes        |
| METHADONE.HCL             | 0         | 0.2        | 0.2        | Yes        |
| FENTANYL                  | 0.2       | 0.3        | 0.1        | Yes        |
| HYDROCODONE.ACETAMINOPHEN | 0.7       | 0.9        | 0.1        | Yes        |
| TRAMADOL.HCL              | 0.5       | 0.3        | -0.3       | Yes        |

#### **Differences - All Drugs**

| Index                         | Inliers % | Outliers % | Difference | Is Opioid? |
|-------------------------------|-----------|------------|------------|------------|
| OXYCODONE.HCL                 | 0.2       | 4.7        | 4.5        | Yes        |
| OXYCODONE.ACETAMINOPHEN       | 0.4       | 3.7        | 3.3        | Yes        |
| PREDNISONE                    | 0.6       | 3          | 2.4        | No         |
| LEVOFLOXACIN                  | 0.2       | 2.5        | 2.2        | No         |
| ZOLPIDEM.TARTRATE             | 1.1       | 2.7        | 1.6        | No         |
| DOXYCYCLINE.HYCLATE           | 0.1       | 1.6        | 1.5        | No         |
| CEFUROXIME                    | 0         | 1.4        | 1.4        | No         |
| SULFAMETHOXAZOLE.TRIMETHOPRIM | 0.2       | 1.5        | 1.3        | No         |
| AZITHROMYCIN                  | 0.6       | 1.7        | 1.1        | No         |
| IBUPROFEN                     | 0.4       | 1.4        | 1.1        | No         |
| PROAIR.HFA                    | 0.8       | 1.8        | 1.1        | No         |
| ACYCLOVIR                     | 0         | 1.1        | 1.1        | No         |
| ALPRAZOLAM                    | 0.6       | 1.6        | 1          | No         |
| NAPROXEN                      | 0.3       | 1.3        | 1          | No         |
| LAMOTRIGINE                   | 0         | 1.1        | 1          | No         |
| VOLTAREN                      | 0.3       | 1          | 0.8        | No         |
| MORPHINE.SULFATE.ER           | 0         | 0.8        | 0.8        | Yes        |
| CIPROFLOXACIN.HCL             | 0.4       | 1.2        | 0.8        | No         |
| OXYCONTIN                     | 0         | 0.7        | 0.7        | Yes        |

### Prescriber Outliers - Drug Patterns by Cluster

- Results shown for PA
- Prescribers in the Outlier group prescribed 4x as many opioids as those in the Inlier group (NY, PA)

#### **Differences - Opioids Only**

| Index                     | Inliers % | Outliers % | Difference | Is Opioid? |
|---------------------------|-----------|------------|------------|------------|
| OXYCODONE.HCL             | 0.5       | 11.7       | 11.2       | Yes        |
| OXYCODONE.ACETAMINOPHEN   | 0.6       | 4.3        | 3.7        | Yes        |
| HYDROCODONE.ACETAMINOPHEN | 1.8       | 4.8        | 3          | Yes        |
| METHADONE.HCL             | 0         | 0.8        | 0.7        | Yes        |
| OXYCONTIN                 | 0.2       | 0.6        | 0.4        | Yes        |
| MORPHINE.SULFATE.ER       | 0.2       | 0.5        | 0.3        | Yes        |
| HYDROMORPHONE.HCL         | 0         | 0          | -0         | Yes        |
| MORPHINE.SULFATE          | 0.1       | 0          | -0.1       | Yes        |
| FENTANYL                  | 0.3       | 0.2        | -0.1       | Yes        |
| ACETAMINOPHEN.CODEINE     | 0.1       | 0          | -0.1       | Yes        |
| TRAMADOL.HCL              | 1.2       | 0.8        | -0.5       | Yes        |

#### **Differences - All Drugs**

| Index                          | Inliers % | Outliers % | Difference | Is Opioid? |
|--------------------------------|-----------|------------|------------|------------|
| OXYCODONE.HCL                  | 0.5       | 11.7       | 11.2       | Yes        |
| OXYCODONE.ACETAMINOPHEN        | 0.6       | 4.3        | 3.7        | Yes        |
| HYDROCODONE.ACETAMINOPHEN      | 1.8       | 4.8        | 3          | Yes        |
| ALPRAZOLAM                     | 1.2       | 3.5        | 2.3        | No         |
| AZITHROMYCIN                   | 0.6       | 2.3        | 1.8        | No         |
| PREDNISONE                     | 0.7       | 2.5        | 1.8        | No         |
| CEPHALEXIN                     | 0.2       | 1.9        | 1.7        | No         |
| DIAZEPAM                       | 0.2       | 1.3        | 1.1        | No         |
| DOXYCYCLINE.HYCLATE            | 0.1       | 1.1        | 1          | No         |
| CIPROFLOXACIN.HCL              | 0.4       | 1.3        | 0.9        | No         |
| LISINOPRIL.HYDROCHLOROTHIAZIDE | 0.8       | 1.7        | 0.9        | No         |
| IBUPROFEN                      | 0.4       | 1.2        | 0.9        | No         |
| SULFAMETHOXAZOLE.TRIMETHOPRIM  | 0.2       | 1          | 0.8        | No         |
| AMOX.TR.POTASSIUM.CLAVULANATE  | 0.2       | 1          | 0.8        | No         |
| LEVOFLOXACIN                   | 0.2       | 0.9        | 0.7        | No         |
| METHADONE.HCL                  | 0         | 0.8        | 0.7        | Yes        |

### Methods Considered But Not Used for Prediction

- Dimensionality Reduction(PCA)
  - Interpretability would be lost since dimensions get compressed
  - Wanted to see the importance of Individual features and their combinations



### Methods Considered But Not Used for Prediction Cont.

- SVM scores less than other models such as Boosting
  - Accuracy score: 0.73
- Why didn't we use regression
  - Our data was categorical and not continuous
- Association Rule Mining or Graph / Social Network Analysis
  - Our data was not at the transaction level

### Future Work

- Continue exploration on geographic drivers outside of data, including state regulatory and medical fee schedule differences
- Augment analysis with patient level data
  - Transaction data
  - Drug or medical history associations
  - Illicit drug data and consumption
- Determine if Outlier drug prescription patterns are indeed anomalous by engaging domain experts from medical field
- Analyze prescriber behavior relative to their peers on a transactional level

# Opioid epidemic tracking Metrics(NC)

North Carolina Opioid action plan has been developed to combat the opioid crisis

#### Metrics:

- Treatment and Recovery
- Reduce Oversupply of Prescription Opioids
- 3. Increase access to Naloxone
- 4. Reduce flow of Illicit Drugs

| Metrics                                                                                                                                                                                               | Current Data                         | 2021 Trend/Goal                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|
| OVERALL                                                                                                                                                                                               |                                      |                                       |
| Number of unintentional opioid-related deaths (ICD10)                                                                                                                                                 | 1,194 (2016, provisional)            | 20% reduction in expected 2021 number |
| Rate of opioid ED visits (all intents)                                                                                                                                                                | 38.2 per 100,000<br>residents (2015) | 20% reduction in expected 2021 rate   |
| Reduce oversupply of prescription opioids                                                                                                                                                             |                                      |                                       |
| Rate of multiple provider episodes for prescription opioids (times patients received opioids from $\geq 5$ prescribers dispensed at $\geq 5$ pharmacies in a six-month period), per 100,000 residents | 27.3 per 100,000 residents (2016)    | Decreasing trend                      |
| Total number of opioid pills dispensed                                                                                                                                                                | 555,916,512 (2016)                   | Decreasing trend                      |
| Percent of patients receiving more than an average daily dose of >90 MME of opioid analgesics, per quarter                                                                                            | 12.3% (Q1 2017)                      | Decreasing trend                      |
| Percent of prescription days any patient had at least one opioid AND at least one benzodiazepine prescription on the same day, per quarter                                                            | 21.1% (Q1 2017)                      | Decreasing trend                      |
| Reduce Diversion/Flow of Illicit Drugs                                                                                                                                                                |                                      |                                       |
| Percent of opioid deaths involving heroin or fentanyl/fentanyl analogues                                                                                                                              | 58.4% (2016, provisional)            |                                       |
| Number of acute Hepatitis C cases                                                                                                                                                                     | 182 (2016, provisional)              | Decreasing trend                      |
| Increase Access to Naloxone                                                                                                                                                                           |                                      |                                       |
| Number of EMS naloxone administrations                                                                                                                                                                | 13,069 (2016, provisional)           |                                       |
| Number of community naloxone reversals                                                                                                                                                                | 3,616 (2016)                         | Increasing trend                      |
| Treatment and Recovery                                                                                                                                                                                |                                      |                                       |
| Number of buprenorphine prescriptions dispensed                                                                                                                                                       | 467,243 (2016)                       | Increasing trend                      |
| Number of uninsured individuals with an opioid use disorder served by treatment programs                                                                                                              | 12,248 (SFY16)                       | Increasing trend                      |
| Number of certified peer support specialists (CPSS) across NC                                                                                                                                         | 2,383 (2016)                         | Increasing trend                      |

### Metric Plots(NC)





### **Metrics Evaluation**

- Analyze number of unintentional deaths and ED Visits by observing diagnosis codes and patient level transactional data
- Compute average rate of multiple provider episodes for prescription Opioids
- Analyze the diversion and flow of illicit drugs-Percent of opioid deaths involving heroin and fentanyl analogues by observing ICD - 10 codes
- Number of uninsured individuals and Medicaid beneficiaries with an opioid use disorder served by treatment programs