Model Question Paper I

CBCS SCHEME

Six Semester B.E Degree Examination_____

Compiler Design (BCS613C)

TIME: 03 Hours Max.Marks:100

- 1. Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module - 1	M	L	C
Q.1	a	What is a Compiler? Explain the working of a Compiler with your own example?	8	L1	CO1
	b	List and explain applications of Compiler design.	8	L2	CO1
	c	Write a note on productivity tools.	4	L2	CO1
		OR			
Q.2	a	Consider the context-free grammar. $S \rightarrow SS + \mid SS^* \mid a$	8	L2	CO1
		i)Show how the string aa+a* can be generated by this grammar.ii)Construct a parse tree for this string			
	b	With a neat diagram explain Language processing system.	8	L1	CO1
	c	Write a short note on Interpreter.	4	L2	CO1
		Module - 2			
Q.3	a	Explain tokens, patterns, and lexemes. Demonstrate the same with examples.	8	L2	CO2
	b	Discuss different types of common programming errors.	6	L2	CO2
	c	Write and Apply an algorithm to eliminate left recursion from following grammar. $S \rightarrow A \ a \mid b$	6	L3	CO2
		$A \rightarrow A c \mid S d \mid \mathcal{E}$			
		OR			
Q.4	a	Write the transition diagram that recognizes the lexemes matching the token Relation Operator(relop) and identifiers.	8	L2	CO2
	b	Discuss different error recovery strategies.	6	L2	CO2
	c	Eliminate left recursion from the given grammar E→E+A A	6	L3	CO2

Model Question Paper I

		A→A B B			
		B→ B # C			
		C → a b			
		Module – 3			
Q.5	a	Is the grammar $G = \{ S->L=R, S->R, R->L, L->*R \mid id \}$ an $LL(1)$ grammar?	8	L3	CO3
	b	Explain recursive descent parsing with example.	6	L2	CO3
	c	Explain shift reduce parsing technique with example.	6	L2	CO3
		OR			
Q.6	a	Show that the following grammar is LL(1).	8	L3	CO3
		S→A			
		A→ a B Ad			
		B→ bBC f			
		C → g			
	b	Write the procedure to compute first and follow of the given grammar.	6	L2	CO3
	c	Explain handle pruning with example.	6	L2	CO3
		Module - 4			
Q.7	a	Show that the following grammar is SLR(1).	10	L3	CO4
		$E \rightarrow E+T \mid T$			
		$T \rightarrow T * F F$			
		$F \rightarrow (E) \mid id$			
	b	What is dependency graph? Write dependency graph for the expression 3 * 5 with suitable top down grammar.	10	L3	CO4
		OR			
Q.8	a	Construct LR(0) items and parsing table for the following grammar.	10	L3	CO4
•		S→ CC			
		C→ c C			
		C→ d			
	b	Write SDD for simple type declarations. Also write dependency graph for a declaration int id1,id2,id3.	10	L3	CO4
		Module - 5			
Q.9	a	Write a list of the common three address instruction forms with example.	10	L2	CO5
	b	Write a note on the following	10	L2	CO5
		(i) Input to the code generator			

Model Question Paper I

		(ii) The target program			
	OR				
Q.10	a	Write SDD for flow of control statements.	10	L2	CO5
	b	Write a note on a simple target machine model.	10	L2	CO5