

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA

INGENIERO MECÁNICO. CURSO 2º Examen Ordinario. Febrero de 2015

NOMBRE:		GRUPO:
Tiene hechas y convalidadas las prácticas del CURSO 2013/2014: SI	NO	FIRMA:

Ponga el nombre y el grupo, especifique si hizo las prácticas el curso pasado y quiere que se le convaliden para el curso presente y finalmente firme esta hoja que deberá entregar a la salida del examen.

PROBLEMA 1

El circuito de la figura está en régimen estacionario de corriente continua:

- a) Resuelva el circuito mediante el método de mallas
- b) Determine la potencia puesta en juego por las fuentes de intensidad indicando **claramente** para cada una de ellas, si está realmente cediendo o absorbiendo potencia.
- c) Calcule: la potencia y energía de las bobinas, y la potencia y energía del condensador.

PROBLEMA 2.

En un circuito de corriente alterna, se encuentran conectadas un impedancia inductiva $^{\prime}Z^{\prime}$ en paralelo con una resistencia $^{\prime}R^{\prime}$. Se conectan los siguientes equipos de medida tal y como se muestra en la siguiente figura, dando como resultado: $A_T = 24A$. $A_Z = 12A$. $A_R = 15A$. V = 230V.

Determinar:

- a) Factor de Potencia de la conexión
- b) Lectura del Watímetro.
- c) Factor de potencia de la impedancia `Z`.
- d) Valor de R_z , X_{LZ} , R.
- e) Potencias Activas y Reactivas consumidas por las cargas.

PROBLEMA 3

En la figura se presenta un sistema trifásico equilibrado de frecuencia 50 Hz. La carga está formada por tres impedancias de valor $\mathbf{Z}_C = \mathbf{R}$ conectadas en estrella. La línea que une la fuente y la carga es puramente inductiva y su reactancia es de $\mathbf{Z}_L = 2j$. La lectura del Voltímetro es de 200V y del Vatímetro $\mathbf{W}_1 = 1000$ W Determinar:

- a) Determinar la lectura del Vatímetro W₂ y el valor de la resistencia R de la carga, cuando el interruptor S, esté cerrado
- b) Determinar la lectura del Vatímetro W₁ y W₂, cuando S esté abierto.
- c) Con el interruptor S cerrado, determinar el valor de la batería de condensadores, conectados en triángulo, que es necesario conectar en los bornes "a b c" del generador, para que el conjunto tenga un factor de potencia de 1.

