1 The Portmanteau Theorem

Theorem 1.1 (The Portmanteau Theorem, Theorem 2.1, [1])

Suppose:

- (S, ρ) is a metric space, $\mathcal{B}(S)$ its the Borel σ -algebra, $(S, \mathcal{B}(S))$ is the corresponding measurable space.
- $P, P_1, P_2, \ldots \in \mathcal{M}_1(S, \mathcal{B}(S))$ are probability measures on $(S, \mathcal{B}(S))$.

Then, the following are equivalent:

(i) P_n converges weakly to P, i.e. for each bounded continuous \mathbb{R} -valued function $f: S \longrightarrow \mathbb{R}$, we have

$$\lim_{n \to \infty} \int_{S} f(s) dP_n(s) = \int_{S} f(s) dP(s).$$

(ii) For each closed set $F \subset S$, we have

$$\limsup_{n \to \infty} P_n(F) \le P(F).$$

(iii) For each open set $G \subset S$, we have

$$\liminf_{n\to\infty} P_n(G) \geq P(G).$$

(iv) For each P-continuity set $A \in \mathcal{B}(S)$, i.e. $P(\partial A) = 0$, we have

$$\lim_{n \to \infty} P_n(A) = P(A).$$

Proof

$$(i) \Longrightarrow (ii)$$

For each $\varepsilon > 0$, by Lemma A.2(ii), choose a bounded continuous functions $f_{\varepsilon} : S \longrightarrow [0,1]$ such that

$$I_F \leq f_{\varepsilon} \leq I_{F^{\varepsilon}}.$$

This implies, for each $\varepsilon > 0$, we have

$$P_n(F) = \int_S I_F(x) dP_n(x) \le \int_S f_{\varepsilon}(x) dP_n(x).$$

By (i), we thus have

$$\limsup_{n \to \infty} P_n(F) \leq \lim_{n \to \infty} \int_S f_{\varepsilon}(x) dP_n(x) = \int_S f_{\varepsilon}(x) dP(x) \leq \int_S I_{F^{\varepsilon}}(x) dP(x) = P(F^{\varepsilon}).$$

By Lemma A.2(i), we have $F^{\varepsilon} \downarrow F$ as $\varepsilon \downarrow 0$. Hence, $P(F^{\varepsilon}) \downarrow P(F)$ as $\varepsilon \downarrow 0$. We may now conclude:

$$\limsup_{n \to \infty} P_n(F) \leq \lim_{\varepsilon \to 0^+} P(F^{\varepsilon}) = P(F).$$

 $(ii) \Longrightarrow (iii)$

Assume (ii) holds. Let $G \subset S$ be a open subset. Then, $F := S \setminus G$ is closed. By (ii), we have:

$$1 - \liminf_{n \to \infty} P_n(G) = \limsup_{n \to \infty} \left\{ 1 - P_n(G) \right\} = \limsup_{n \to \infty} P_n(S \setminus G) = \limsup_{n \to \infty} P_n(F)$$

$$\leq P(F) = P(S \setminus G) = 1 - P(G),$$

which yields

$$\liminf P_n(G) \ge P(G). \tag{1.1}$$

 $(ii) \Longrightarrow (iii)$

Assume (iii) holds. Let $F \subset S$ be an closed subset. Then, $G := S \setminus F$ is open. By (iii), we have:

$$1 - \limsup_{n \to \infty} P_n(F) = \liminf_{n \to \infty} \left\{ 1 - P_n(F) \right\} = \liminf_{n \to \infty} P_n(S \setminus F) = \liminf_{n \to \infty} P_n(G)$$

$$\geq P(G) = P(S \setminus F) = 1 - P(F),$$

which yields

$$\limsup_{n \to \infty} P_n(F) \leq P(F). \tag{1.2}$$

(ii) and (iii) \Longrightarrow (iv)

Let $A \in \mathcal{B}(S)$. Then, by (ii) and (iii), we have:

$$P(A^{\circ}) \leq \liminf_{n \to \infty} P_n(A^{\circ}) \leq \liminf_{n \to \infty} P_n(A) \leq \limsup_{n \to \infty} P_n(A) \leq \limsup_{n \to \infty} P_n\left(\overline{A}\right) \leq P\left(\overline{A}\right).$$

Hence, if $\partial A := \overline{A} \setminus A^{\circ}$ is a P-continuity set, i.e. $P(\partial A) = 0$, hence $P(A^{\circ}) = P(A) = P(\overline{A})$, then (iv) follows.

 $(iv) \Longrightarrow (ii)$

 $(iii) \Longrightarrow (i)$

Let $g: S \longrightarrow [0, \infty)$ be continuous \mathbb{R} -valued function on S. Then, for each $t \in (0, \infty)$, the set $g^{-1}((t, \infty)) = \{s \in S \mid g(s) > t\}$ is an open subset of S. Hence, by (iii), Lemma A.3, and Fatou's Lemma, we have

$$\int_{S} g(s) dP(s) = \int_{0}^{\infty} P(g > t) dt \leq \int_{0}^{\infty} \liminf_{n \to \infty} P_{n}(g > t) dt$$

$$\leq \liminf_{n \to \infty} \int_{0}^{\infty} P_{n}(g > t) dt \leq \liminf_{n \to \infty} \int_{S} g(s) dP_{n}(s).$$

Now, let $f: S \longrightarrow \mathbb{R}$ be continuous and bounded with $|f| \le c < \infty$. Then, $c \pm f: S \longrightarrow [0, \infty)$ are continuous and non-negative \mathbb{R} -valued functions on S. Applying the preceding inequality to each yields:

$$\int_{S} c + f(s) dP(s) \leq \liminf_{n \to \infty} \int_{S} c + f(s) dP_{n}(s)$$
$$\int_{S} c - f(s) dP(s) \leq \liminf_{n \to \infty} \int_{S} c - f(s) dP_{n}(s).$$

These respectively imply:

$$\int_{S} f(s) dP(s) \leq \liminf_{n \to \infty} \int_{S} f(s) dP_{n}(s)$$
$$\limsup_{n \to \infty} \int_{S} f(s) dP_{n}(s) \leq \int_{S} f(s) dP(s),$$

which proves (i). \Box

A Technical Lemmas

Lemma A.1 Suppose (S, ρ) is a metric space, and $A \subset S$ is an arbitrary non-empty subset. Define

$$\rho(\,\cdot\,,A)\;:\;S\;\longrightarrow\;\mathbb{R}\;:\;x\;\longmapsto\;\inf_{y\in A}\left\{\,\rho(x,y)\,\right\}$$

Then,

- (i) $\rho(\cdot, A)$ is a continuous \mathbb{R} -valued function on S.
- (ii) For each $x \in S$, $\rho(x, A) = 0$ if and only if $x \in \overline{A}$.

Proof

(i) Suppose $x_n \longrightarrow x$. We need to prove $\rho(x_n, A) \longrightarrow \rho(x, A)$, which follows immediately from the following two Claims:

Claim 1: $\rho(x,A) \leq \liminf_{n\to\infty} \rho(x_n,A)$.

Claim 2: $\limsup_{n\to\infty} \rho(x_n, A) \leq \rho(x, A)$.

<u>Proof of Claim 1:</u> For each $y \in S$, we have:

$$\rho(x,y) \le \rho(x,x_n) + \rho(x_n,y).$$

Hence,

$$\rho(x,A) = \inf_{y \in A} \rho(x,y) \le \rho(x,x_n) + \inf_{y \in A} \rho(x_n,y) = \rho(x,x_n) + \rho(x_n,A).$$

Since $\rho(x, x_n) \longrightarrow 0$, the preceding inequality implies

$$\rho(x,A) \leq \liminf_{n \to \infty} \rho(x_n,A).$$

This proves Claim 1.

<u>Proof of Claim 2:</u> For each $y \in S$, we have:

$$\rho(x_n, y) < \rho(x_n, x) + \rho(x, y).$$

Hence,

$$\rho(x_n, A) \ = \ \inf_{y \in A} \ \rho(x_n, y) \ \le \ \rho(x_n, x) \ + \ \inf_{y \in A} \ \rho(x, y) \ = \ \rho(x_n, x) \ + \ \rho(x, A).$$

Since $\rho(x, x_n) \longrightarrow 0$, the preceding inequality implies

$$\limsup_{n \to \infty} \rho(x_n, A) \le \rho(x, A).$$

This proves Claim 2.

(ii)

$$\begin{split} \rho(x,A) &= 0 &\iff \inf_{y \in A} \, \rho(x,y) = 0 \\ &\iff \quad \text{For each } \, \varepsilon > 0, \, \text{there exists } y \in A \, \text{such that } \rho(x,y) < \varepsilon \\ &\iff \quad y \in \overline{A} \end{split}$$

Lemma A.2 Suppose (S, ρ) is a metric space, and $A \subset S$ is an arbitrary non-empty subset. For each $\varepsilon > 0$, define

$$A^{\varepsilon} := \{ s \in S \mid \rho(s, A) < \varepsilon \}.$$

Then the following are true:

- (i) A^{ε} is an open subset of S. In particular, A^{ε} is a $\mathcal{B}(S)$ -measurable subset of S.
- (ii) $A^{\varepsilon} \downarrow \overline{A}$, as $\varepsilon \downarrow 0$.
- (iii) There exists a bounded continuous \mathbb{R} -valued function $f: S \longrightarrow \mathbb{R}$ such that

$$I_{\bar{A}}(x) \leq f(x) \leq I_{A^{\varepsilon}}(x)$$
, for each $x \in S$.

Proof

- (i)
- (ii)
- (iii) Define $f: S \longrightarrow \mathbb{R}$ as follows:

$$f(x) \; := \; \max \left\{ \; 0 \, , \, 1 - \frac{\rho(x,A)}{\varepsilon} \; \right\}.$$

Then, by Lemma A.1(i), f is continuous \mathbb{R} -valued function on S. Clear, $0 \le f(x) \le 1$, for each $x \in S$. By Lemma A.1(ii), we have

$$x \in \overline{A} \iff \rho(x,F) = 0 \iff f(x) = 1.$$

This proves $I_{\bar{A}}(x) \leq 1 = f(x)$, for each $x \in \overline{A}$, and hence for each $x \in S$ (since $I_{\bar{A}}(x) = 0$ for $x \in S \setminus \overline{A}$, and the inequality holds trivially). On the other hand,

$$x \in S \setminus A^{\varepsilon} \iff \varepsilon \leq \rho(x,A) \iff 1 - \frac{\rho(x,A)}{\varepsilon} \leq 0 \implies f(x) = 0.$$

This proves $f(x) = 0 \le I_{A^{\varepsilon}}(x)$, for each $x \in S \setminus A^{\varepsilon}$, and hence for each $x \in S$ (since $I_{A^{\varepsilon}}(x) = 1$ for each $x \in A^{\varepsilon}$ and the inequality holds trivially). This completes the proof of (ii).

Lemma A.3

Let (Ω, \mathcal{A}, P) be any probability space. Then, for each p > 0 and for each non-negative random variable (i.e. measurable function) $f: \Omega \longrightarrow [0, \infty)$, we have:

$$E[f^p] = p \int_0^\infty P(f > t) \cdot t^{p-1} dt = p \int_0^\infty P(f \ge t) \cdot t^{p-1} dt.$$

Proof

We first prove the first equality:

$$\begin{split} E[f^p] &:= \int_{\Omega} f(\omega)^p \, \mathrm{d}P(\omega) = \int_{\Omega} \left[\int_0^{f(\omega)^p} 1 \, \mathrm{d}s \right] \, \mathrm{d}P(\omega) = \int_{\Omega} \left[\int_0^{\infty} 1_{\{\, 0 \leq s < f(\omega)^p \,\}} \, \mathrm{d}s \, \right] \, \mathrm{d}P(\omega) \\ &= \int_{\Omega} \left[\int_0^{\infty} 1_{\{\, 0 \leq s^{1/p} < f(\omega) \,\}} \, \mathrm{d}s \, \right] \, \mathrm{d}P(\omega) = \int_{\Omega} \left[\int_0^{\infty} 1_{\{\, 0 \leq t < f(\omega) \,\}} \cdot p \cdot t^{p-1} \, \mathrm{d}t \, \right] \, \mathrm{d}P(\omega) \\ &= \int_0^{\infty} \left[\int_{\Omega} 1_{\{\, 0 \leq t < f(\omega) \,\}} \cdot p \cdot t^{p-1} \, \mathrm{d}P(\omega) \, \right] \, \mathrm{d}t = p \cdot \int_0^{\infty} \left[\int_{\Omega} 1_{\{\, 0 \leq t < f(\omega) \,\}} \, \mathrm{d}P(\omega) \, \right] \cdot t^{p-1} \, \mathrm{d}t \\ &= p \cdot \int_0^{\infty} P(f > t) \cdot t^{p-1} \, \mathrm{d}t. \end{split}$$

The proof of the second inequality is analogous.

The Portmanteau Theorem

Study Notes July 19, 2015 Kenneth Chu

References

[1] BILLINGSLEY, P. Convergence of Probability Measures, second ed. John Wiley & Sons, 1999.