OSM Boot Camp: Math ProbSet1

Harrison Beard

25 June 2018

Exercise 1.3.

Question. Let $X = \mathbb{R}$. Define

- $\mathcal{G}_1 = \{A \mid A \subset \mathbb{R}, A \text{ open}\}$
- $\mathcal{G}_2 = \{A \mid A \text{ is a finite union of intervals of the form } (a, b], (-\infty, b], \text{ and } (a, \infty)\}$
- $\mathcal{G}_3 = \{A \mid A \text{ is a countable union of } (a, b], (-\infty, b], \text{ and } (a, \infty)\}$

Which of these are algebras? Which are even σ -algebras?

Answer.

- \mathcal{G}_1 is neither an algebra nor a σ -algebra.
 - The empty set \emptyset is an open subset in \mathbb{R} , so $\emptyset \in \mathcal{G}_1$.
 - o However, \mathcal{G}_1 is not closed under complements. Consider $(0,1) \subset \mathbb{R}$, an element of \mathcal{G}_1 . Note that $(0,1)^{\complement} = \mathbb{R} \setminus (0,1) = (-\infty,0] \cup [1,\infty)$, which is not open since its complement is open. Since $(0,1)^{\complement} \subset \mathbb{R}$ is not open, it is not in \mathcal{G}_1 by its definition. Therefore, \mathcal{G}_1 is not an algebra, nor a σ -algebra.
- \mathcal{G}_2 is an algebra, but not a σ -algebra.
 - \circ (*) We can reason that $\emptyset \in \mathcal{G}_2$, since one can construct a finite union of zero such intervals.
 - \circ (**) Moreover, say we have an (arbitrary) element A of \mathcal{G}_1 ,

$$A = \left(\bigcup_{i \in \Gamma_i} (a_i^1, b_i^1]\right) \cup \left(\bigcup_{j \in \Gamma_j} (-\infty, b_i^2]\right) \cup \left(\bigcup_{k \in \Gamma_k} (a_i^3, \infty)\right).$$

Note that we can rewrite this as

$$A_{1} = \left(\bigcup_{i \in \Gamma_{i}} \left(a_{i}^{1}, b_{i}^{1}\right]\right) \cup \left(-\infty, \max_{j \in \Gamma_{j}} \left\{b_{j}^{2}\right\}\right] \cup \left(\min_{k \in \Gamma_{k}} \left\{a_{k}^{3}\right\}, \infty\right),$$

where

$$\max_{j \in \Gamma_j} \left\{b_j^2\right\} \leq a_i^1 \leq b_i^1 \leq \min_{k \in \Gamma_k} \left\{a_k^3\right\}$$

for all $i \in \Gamma_i$. So, we can think of A as

$$(-\infty, x_1] \cup (x_2, x_3] \cup \cdots \cup (x_{n-2}, x_{n-1}] \cup (x_n, \infty),$$

where $x_{p+1} \ge x_p$ for all p. From here, it is clear that the complement of this set, A^{\complement} , then takes the form

$$(y_1, y_2] \cup \cdots \cup (y_{m-1}, y_m],$$

where $y_{p+1} \ge y_p$ for all p. This is in the form of A as outlined earlier, where $|\Gamma_i| = |\Gamma_k| = 0$. Note that the same reasoning holds for all values of $|\Gamma_i|$, $|\Gamma_j|$, and $|\Gamma_k|$. Thus, \mathcal{G}_2 is closed under complements.

 \circ (* * *) Next, we can also see that \mathcal{G}_2 is also closed under finite unions, since if we consider the union of $A_1, \ldots, A_N \in \mathcal{G}_2$, where

$$\begin{array}{rcl} A_1 & = & \left(-\infty, x_1^1\right] \cup (x_2^1, x_3^1] \cup \dots \cup (x_{n_1-2}^1, x_{n_1-1}^1] \cup (x_{n_1}^1, \infty) \\ & \vdots \\ \\ A_N & = & \left(-\infty, x_1^N\right] \cup (x_2^N, x_3^N] \cup \dots \cup (x_{n_N-2}^N, x_{n_N-1}^N] \cup (x_{n_N}^N, \infty), \end{array}$$

with $x_{p+1}^i \geq x_p^i \ \forall p, \forall i$, we observe that our resultant union takes the form

$$\bigcup_{i=1}^{N} A_i = \underbrace{\left(-\infty, \max_i x_1^i\right] \cup (x_2, x_3] \cup \dots \cup (x_{m-2}, x_{m-1}] \cup (\min_i x_{n_i}^i, \infty)}_{(\dagger)}.$$

 \circ Consider the union of $A_1, A_2, A_3, \ldots \in \mathcal{G}_2$, where

$$A_{1} = (x_{1}^{1}, x_{2}^{1}] \cup \cdots \cup (x_{n_{1}-1}^{1}, x_{n_{1}}^{1}]$$

$$A_{2} = (x_{1}^{2}, x_{2}^{2}] \cup \cdots \cup (x_{n_{2}-1}^{2}, x_{n_{2}}^{2}]$$

$$\vdots$$

$$A_{i} = (x_{1}^{i}, x_{2}^{i}] \cup \cdots \cup (x_{n_{i}-1}^{i}, x_{n_{i}}^{i}]$$

$$\vdots$$

and where each $(x_{j-1}^i, x_j^i] \ \forall i \in \mathbb{N} \ \forall j \in \{2, \dots, n_i\}$ lies in the complement of the union of every other $(x_{j-1}^i, x_j^i]$. When this process is continued countably infinitely many times, we approach a union comprising infinitely (but countably) many sets, so it does not satisfy the criteria for being an element of \mathcal{G}_2 ; therefore, \mathcal{G}_2 is not closed under countable unions, so it is not a σ -algebra.

- \mathcal{G}_3 is both an algebra and a σ -algebra.
 - \circ The empty set is in \mathcal{G}_3 ; see (*) above.
 - $\circ \mathcal{G}_3$ is closed under complements (**) and finite unions (***). See above. The same line of reasoning used in \mathcal{G}_2 applies for \mathcal{G}_3 because finite is a stronger restriction than countable, and everything that is finite is also countable.
 - o Finally, we can continue the process of unioning even more sets like above countably infinitely many times, since if $x_O \ge x_E$ in (†) for any O < E (where O is an odd number in [1, m-1] and E is an even number in [2, m-2]), then the intervals $(\cdot, x_O]$ and $(x_E, \cdot]$ would collapse to the form $(\cdot, \cdot]$, and if $x_O < x_E$ then another interval with form $(\cdot, \cdot]$ would be included in the new union. And, if $x_O \ge \min_i x_{n_i}^i$, then the final interval in the union (when sorted in ascending order) would still remain in the form (\cdot, ∞) . Similarly as stated before, these results still hold for all values of $|\Gamma_i|, |\Gamma_j|$, and $|\Gamma_k|$. Since A is specified as a countable (not restricted to only finite) union in the problem, we don't have to worry about the counterexample mentioned for \mathcal{G}_2 . Thus \mathcal{G}_3 satisfies the criteria for both algebra and σ -algebra.

Exercise 1.7.

Question. Explain why these are the "largest" and "smallest" possible σ -algebras, respectively, in the following sense: if \mathcal{A} is any σ -algebra, then $\{\emptyset, X\} \subset \mathcal{A} \subset \mathcal{P}(X)$.

Answer.

- In set theory, two direct corollaries of set-theoretic axioms are that every set contains the empty set as a subset, and every set contains itself as a subset. In other words, if X is a set, then $\emptyset \subseteq X$ and $X \subseteq X$. By extension, $\{\emptyset, X\} \subseteq X$. Note that X^{\complement} in X is $X \setminus X = \emptyset$, and $\emptyset^{\complement} = X \setminus \emptyset = X \in \{\emptyset, X\}$, so $\{\emptyset, X\}$ is closed under complements. Also note that $\emptyset \cup X = X \in \{\emptyset, X\}$, and that $\{\emptyset, X\}$ only has just two elements, so $\{\emptyset, X\}$ must also be closed under finite and countable unions. So, $\{\emptyset, X\}$ is a σ -algebra. If we omit one of these elements, the set is no longer closed under complements, so $\{\emptyset, X\}$ must be the smallest σ -algebra for any X.
- Next, $\mathcal{P}(X)$ must always be a σ -algebra for X since for any subset $S \subseteq X$, note that $X^{\complement} = X \setminus S \in \mathcal{P}(X)$, and for any countable set of subsets $\{S_i \subseteq X\}_{i=1}^{\infty}$, we know that the union of each element $\bigcup_{i=1}^{\infty} S_i \subseteq X$ lies in X since an arbitrary union of subsets of a given set X is always itself a subset of that set X (and therefore is an element of $\mathcal{P}(X)$ by definition), since if it was not, it would contain an element that is not in X, which means that at least one element in one of the S_i 's would not lie in X; but, that would make S_i no longer a subset of X, so this must not be the case. Now that it's obvious $\mathcal{P}(X)$ is a σ -algebra for X, we can reason that $\mathcal{P}(X)$ is the largest of all σ -algebras of X, since if there were one larger, say Σ , where $|\Sigma| > |\mathcal{P}(X)|$, this would mean that Σ contains as an element a set (say X) that does not lie in $\mathcal{P}(X)$, which means that Σ would contain an element X that is not a subset of X. This contradicts the very definition of an algebra in 1.1—any algebra \mathscr{A} of X is a family of subsets of X.
- We can now reason that any arbitrary σ -algebra of X, say \mathcal{A} , must be a superset of $\{\emptyset, X\}$ and a subset of $\mathcal{P}(X)$, since \mathcal{A} contains only subsets of X by definition, so every element of \mathcal{A} lies in $\mathcal{P}(X)$, so that means $\mathcal{A} \subseteq \mathcal{P}(X)$. Also, since every algebra must contain \emptyset by definition, we know that X must be in \mathcal{A} by extension, since \mathcal{A} must be closed under complements.

Exercise 1.10.

Question. Prove the following Proposition:

Let $\{S_{\alpha}\}$ be a family of σ -algebras on X. Then $\bigcap_{\alpha} S_{\alpha}$ is also a σ -algebra.

- $\emptyset \in \bigcap_{\alpha} S_{\alpha}$ because if S_{α} is a σ -algebra on X, then $\emptyset \in S_{\alpha}$ by definition, for all α .
- $\bigcap_{\alpha} S_{\alpha}$ is closed under complements because if the set S is an element of $\bigcap_{\alpha} S_{\alpha}$, then that means the elements of S are themselves elements of all of the S_{α} 's. Since each S_{α} is a σ -algebra, we know the complement of each element of S is also in each S_{α} . This means that the complement of S must be in $\bigcap_{\alpha} S_{\alpha}$.
- $\bigcap_{\alpha} S_{\alpha}$ is closed under finite unions: Consider $S_1, \ldots, S_N \in \bigcap_{\alpha} S_{\alpha}$. Since each S_i (for $i \in \mathbb{N} \cap [1, N]$) is in $\bigcap_{\alpha} S_{\alpha}$, this means that each S_i is in each S_{α} for all α . And since each S_{α} is a σ -algebra, this means that $\bigcup_i S_i$ is also in each S_{α} . This means that $\bigcup_i S_i$ must be in the intersection $\bigcap_{\alpha} S_{\alpha}$.

• $\bigcap_{\alpha} S_{\alpha}$ is closed under countable unions: Consider $S_1, S_2, \ldots \in \bigcap_{\alpha} S_{\alpha}$. Since each S_i (for $i \in \mathbb{N}_{>0}$) is in $\bigcap_{\alpha} S_{\alpha}$, this means that each S_i is in each S_{α} for all α . And since each S_{α} is a σ -algebra, this means that $\bigcup_i S_i$ is also in each S_{α} . This means that $\bigcup_i S_i$ must be in the intersection $\bigcap_{\alpha} S_{\alpha}$.

Exercise 1.17.

Question. Let (X, \mathcal{S}, μ) be a measure space. Prove the following:

- μ is monotone: If $A, B \in \mathcal{S}$, $A \subset B$, then $\mu(A) \leq \mu(B)$.
- μ is countably sub-additive: If $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$, then $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$.

Answer.

- Monotonicity: Let If $A, B \in \mathcal{S}$, $A \subset B$ (strictly), then $B \setminus A \neq \emptyset$. This means that there are some elements in B that are also in \mathcal{S} that are not in A. Call the set of all such elements $(B \setminus A)$. This means that $(B \setminus A) \cap A = \emptyset$ and so by the second criterion of measure, we know by definition that $\mu(A \cup (B \setminus A)) = \mu(A) + \mu((B \setminus A))$. Since $(B \setminus A)$ contains at least one element, we can say $(B \setminus A) \neq \emptyset$ so $\mu((B \setminus A)) \geq 0$. But, note that $A \cup (B \setminus A)$ is simply B, so $\mu(A \cup (B \setminus A)) = \mu(B) = \mu(A) + \mu((B \setminus A))$. Since $\mu((B \setminus A)) \geq 0$, this means that $\mu(B) \geq \mu(A)$.
- Countable sub-additivity: Since A was never defined in this exercise, I will assume the author means to refer to S, the σ -algebra on X defined under the given measure space. If all the A_i 's are disjoint, then by the definition of measure, $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$. If at least one of the A_i 's overlaps nontrivially with another A_j where $i \neq j$, then there is an element in $A_i \cap A_j$ contained strictly within $\bigcup_{i=1}^{\infty} A_i$. (If the sets were equal, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(A_i)$ for any i, which is obviously less than or equal to $\sum_{i=1}^{\infty} \mu(A_i)$, since the image of μ is nonnegative.) Then, we know that $\bigcup_{i=1}^{\infty} A_i$ must strictly a subset of what we will write as $\bigcup_{i=1}^{\infty} B_i$, where each B_i has the same measure as each A_i , but there are no nonempty intersections between the B_i 's. Since the B_i 's are disjoint, then by the definition of measure, $\mu(\bigcup B_i) = \sum \mu(B_i)$. According to monotonicity, we know that $\mu(\bigcup A_i) \leq \mu(\bigcup B_i) = \sum \mu(B_i)$. But remember that each B_i has the same measure as each A_i , so we arrive at $\mu(\bigcup A_i) \leq \sum \mu(A_i)$.

Exercise 1.18.

Question. Let (X, \mathcal{S}, μ) be a measure space. Let $B \in \mathcal{S}$. Show that $\lambda : \mathcal{S} \to [0, \infty]$ defined by $\lambda(A) = \mu(A \cap B)$ is also a measure on (X, \mathcal{S}) .

- The intersection of the empty set with any other set is the empty set, so $\lambda(\emptyset) = \mu(\emptyset) = 0$.
- The measure of union of disjoint sets A_1, A_2, \ldots is $\lambda (\bigcup A_i) = \mu ((\bigcup A_i) \cap B) = \mu ((A_1 \cap B) \cup (A_2 \cap B) \cup \cdots)$, with each $A_i \cap B$ disjoint, so that equals $\sum_i \mu (A_i \cap B)$ by definition of the measure μ , which is simply $\sum_i \lambda (A_i)$. Therefore, λ is also a measure.

Exercise 1.20.

Question. If μ is a measure on (X, \mathcal{S}) , then prove it is continuous from below in the sense that:

$$(A_1 \supset A_2 \supset \cdots, A_i \in \mathcal{S}, \mu(A_1) < \infty) \implies \left(\lim_{n \to \infty} \mu(A_n) = \mu \left(\bigcap_{i=1}^{\infty} A_i \right) \right).$$

Answer.

• Define $B_m = A_m \setminus A_{m+1}$ for $m \in \mathbb{N}_{>0}$. Then, $A_i = (\bigcap_{i=1}^{\infty} A_i) \cup (\bigcup_{m=n}^{\infty} B_m)$, and the sets in the resultant union are all disjoint, so

$$\mu(A_n) = \mu\left(\bigcap_{i=1}^{\infty} A_i\right) + \sum_{m=n}^{\infty} \mu(B_m).$$

So, if $\mu(A_N) < \infty$ for some $N \in \mathbb{N}_{>0}$, then $\mu(\bigcap_{i=1}^{\infty} A_i) < \infty$ and $\sum_{m=N}^{\infty} \mu(B_m) < \infty$, and so:

$$\lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \left(\mu\left(\bigcap_{i=1}^{\infty} A_i\right) + \sum_{m=n}^{\infty} \mu(B_m) \right)$$

$$= \mu\left(\bigcap_{i=1}^{\infty} A_i\right) + \lim_{n \to \infty} \sum_{m=n}^{\infty} \mu(B_m)$$

$$= \mu\left(\bigcap_{i=1}^{\infty} A_i\right).$$

Exercise 2.10.

Question. Consider the Carathéodory Construction: Let μ^* be an outer measure on X, and consider the collection \mathcal{M} of subsets $E \subset X$ such that for every $B \subset X$,

$$\mu^*(B) \ge \mu^*(B \cap E) + \mu^*\left(B \cap E^{\complement}\right)$$

Then \mathcal{M} is a σ -algebra, and $\bar{\mu}: \mathcal{M} \to [0, \infty]$ defined by $\bar{\mu}: \mu^*|_{\mathcal{M}}(\bar{\mu}(E) = \mu^*(E) \text{ for } E \in \mathcal{M})$ is a measure on \mathcal{M} .

Explain why

$$\mu^*(B) \ge \mu^*(B \cap E) + \mu^*\left(B \cap E^{\complement}\right)$$

could be replaced by

$$\mu^*(B) = \mu^*(B \cap E) + \mu^*\left(B \cap E^{\complement}\right)$$

• The proof of the theorem of the Carathéodory Construction is already given, so I will explain simply why one can replace

$$\mu^*(B) \ge \mu^*(B \cap E) + \mu^*\left(B \cap E^{\complement}\right)$$

with

$$\mu^*(B) = \mu^*(B \cap E) + \mu^*\left(B \cap E^{\complement}\right),$$

based primarily on the proof given. This replacement is possible because:

- If $E = \emptyset$, then $\mu^*(B) = \mu^*(B \cap \emptyset) + \mu^*(B \cap X) = \mu^*(\emptyset) + \mu^*(B)$, which is simply $0 + \mu^*(B)$.
- \mathcal{M} is still closed under complements because the expression $\mu^*(B \cap E) + \mu^*(B \cap E^{\complement})$ is still symmetric by its construction.
- $\circ \mathcal{M}$ is closed under countable unions.
 - · \mathcal{M} is closed under finite unions. Let $E, F \in \mathcal{M}$. Want to show $E \cup F \in \mathcal{M}$. We observe that

$$B\cap (E\cup F)=\left(B\cap E\cap F^{\complement}\right)\cup \left(B\cap E^{\complement}\cap F\right)\cup (B\cap E\cap F)$$

and because $F \in \mathcal{M}$, we have both

$$\mu^* \left(B \cap E \cap F^{\complement} \right) + \mu^* \left(B \cap E \cap F \right) = \mu^* \left(B \cap E \right)$$

and

$$\mu^* \left(B \cap E^{\complement} \cap F^{\complement} \right) + \mu^* \left(B \cap E^{\complement} \cap F \right) = \mu^* \left(B \cap E^{\complement} \right)$$

Now using the definition of measure (because the sets $B \cap E^{\complement} \cap F^{\complement}$, $B \cap E \cap F$, $B \cap E \cap F^{\complement}$, and $B \cap E^{\complement}$, F are all pairwise disjoint, so we can add their measures to get the measure of the disjoint union), the specified above equalities, and the fact that $E \in \mathcal{M}$, we can deduce that

$$\mu^{*} (B \cap (E \cup F)) + \mu^{*} \left(B \cap (E \cup F)^{\complement} \right) = \mu^{*} \left(B \cap E \cap F^{\complement} \right) + \mu^{*} \left(B \cap E \cap F \right)$$
$$+ \mu^{*} \left(B \cap E^{\complement} \cap F^{\complement} \right) + \mu^{*} \left(B \cap E^{\complement} \cap F \right)$$
$$= \mu^{*} (B \cap E) + \mu^{*} \left(B \cap E^{\complement} \right)$$
$$= \mu^{*} (B).$$

This shows closedness under finite union.

o Now take $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{M}$. Without loss of generality, we take the E_n to be pairwise disjoint. Define $E=\bigcup_{n\in\mathbb{N}}E_n$. By closedness under finite union, we have

$$\mu^* \left(B \cap \left(\bigcup_{n=1}^N E_n \right) \right) = \mu^* \left(B \cap \left(\bigcup_{n=1}^N E_n \right) \cap E_N \right) + \mu^* \left(B \cap \left(\bigcup_{n=1}^N E_n \right) \cap E_N^{\complement} \right)$$

$$= \mu^* \left(B \cap E_N \right) + \mu^* \left(B \cap \left(\bigcup_{n=1}^{N-1} E_n \right) \right)$$

$$\vdots$$

$$= \sum_{n=1}^N \mu^* \left(B \cap E_n \right).$$

Next, note that by our specified new criterion $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^{\complement})$ and the fact that the E_n 's are disjoint, we have that for all N,

$$\mu^{*}(B) = \mu^{*}\left(B \cap \left(\bigcup_{n=1}^{N} E_{n}\right)\right) + \mu^{*}\left(B \cap \left(\bigcup_{n=1}^{N} E_{n}\right)^{\mathfrak{c}}\right)$$
$$= \sum_{n=1}^{N} \mu^{*}(B \cap E_{n}) + \mu^{*}\left(B \cap \left(\bigcup_{n=1}^{N} E_{n}\right)^{\mathfrak{c}}\right),$$

where $\mu^*(B)$ does not depend on N, so this holds for the limit. Thus,

$$\mu^{*}(B) = \sum_{n=1}^{\infty} \mu^{*}(B \cap E_{n}) + \mu^{*} \left(B \cap \left(\bigcup_{n=1}^{\infty} E_{n} \right)^{\complement} \right)$$
$$= \mu^{*} \left(B \cap \left(\bigcup_{n=1}^{N} E_{n} \right) \right) + \mu^{*} \left(B \cap \left(\bigcup_{n=1}^{\infty} E_{n} \right)^{\complement} \right),$$

with the equality still holding because as the number of pairwise disjoint sets in E_n approaches ∞ , either the size of each set successive approaches zero, or the union approaches the entire space. Therefore we know that \mathcal{M} is a σ -algebra.

 $\circ \bar{\mu}$ is a measure because if we replace the first line from above and replace B by $\bigcup_{n=1}^{\infty} E_n$, we get $\mu^* (\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu^* (E_n)$.

Exercise 2.14.

Question. Why is it true that the Borel-algebra $\mathcal{B}(\mathbb{R})$ is a subset of \mathcal{M} ? Hint: Carathéodory does most of the work—you only need to show that $\sigma(\mathcal{A}) = \sigma(\mathcal{O})$.

Additional information:

- **Premeasure:** $\nu: \mathcal{A} \to [0, \infty]$ is called a premeasure if it satisfies:
 - $\circ \ \nu(\emptyset) = 0.$
 - $\circ \nu \left(\bigcup_{n \in \mathbb{N}} A_n \right) = \sum_{n \in \mathbb{N}} \nu(A_n)$ for $\{A_n\} \subset \mathcal{A}$, pairwise disjoint.
- Outer Measure: Given X, we call $\mu^* : \mathcal{P}(X) \to [0, \infty]$ an outer measure if:
 - $\circ \ \mu^*(\emptyset) = 0.$
 - \circ monotone: $A \subset B \implies \mu^*(A) \leq \mu^*(B)$.
 - \circ countably sub-additive: $\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \leq \sum_{i=1}^{\infty} \mu^*(A_i) \ \forall A_i \in \{A_i\}_{i=1}^{\infty}$.
- Carathéodory Construction: Let μ^* be an outer measure on X, and consider the collection \mathcal{M} of subsets $E \subset X$ such that for every $B \subset X$,

$$\mu^*(B) \ge \mu^*(B \cap E) + \mu^*(B \cap E^{\complement}).$$

Then \mathcal{M} is a σ -algebra and $\bar{\mu}: \mathcal{M} \to [0, \infty]$ defined by $\bar{\mu} = \mu^*|_{\mathcal{M}}$ is a measure on \mathcal{M} .

• Generation of outer measure: Let \mathcal{A} be a collection of subsets of X, containing \emptyset and X. Let ν satisfy $\nu(\emptyset) = 0$. Then, $\mu^* : \mathcal{P}(X) \to [0, \infty]$ defined as

$$\mu^*(B) := \inf \left\{ \sum_{n \in \mathbb{N}} \nu(A_n) \middle| \{A_n\} \subset \mathcal{A}, B \subset \bigcup_{n \in \mathbb{N}} A_n \right\}$$

constitutes an outer measure on X. We call it the outer measure generated by ν .

- Carathéodory Extension Theorem: Let (\mathcal{A}, ν) be an algebra-premeasure pair on X. Let μ^* denote the outer measure generated by ν , and let \mathcal{M} denote the σ -algebra from the Carathéodory construction. Let $\sigma(\mathcal{A})$ be the σ -algebra generated by \mathcal{A} and $\mu := \mu^*|_{\sigma(\mathcal{A})}$. Then, $\sigma(\mathcal{A}) \subset \mathcal{M}$, and $\mu|_{\mathcal{A}} = \mu^*|_{\mathcal{A}} = \nu$.
- Borel σ -algebra $\mathcal{B}(\mathbb{R})$: Let X be a metric space, and let \mathcal{O} denote the collection of open sets of X. $\sigma(\mathcal{O})$ is thus the smallest σ -algebra containing all open sets of X.

Answer.

• The Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is the σ -algebra generated by all the open sets of \mathbb{R} , collectively called \mathcal{O} . In the Carathéodory Extension Theorem, we see that for an algebra-premeasure pair (\mathcal{A}, ν) with set X and accompanying σ -algebra \mathcal{M} , the σ -algebra generated by \mathcal{A} is a subset of \mathcal{M} . Thus, in order to show that $\mathcal{B}(\mathbb{R})$ is a subset of \mathcal{M} , it suffices to show that $\sigma(\mathcal{O}) = \sigma(\mathcal{A})$. Note that if the underlying set is $X = \mathbb{R}$, then we know that every subset of \mathbb{R} is contained within an open subset of \mathbb{R} , so the σ -algebras of all the open sets of \mathbb{R} (the Borel σ -algebra on \mathbb{R}) is equivalent to the σ -algebra $\sigma(\mathcal{A})$ generated by any collection of subsets of \mathbb{R} .

Exercise 3.1.

Question. Prove that every countable subset of the real line has Lebesgue measure 0.

Answer.

• Consider the case for the Lebesgue outer measure. Let $x \in \mathbb{R}$. Then $\{x\} \subset [x - \varepsilon, x + \varepsilon]$ for all $\varepsilon > 0$ and so $\lambda^*(\{x\}) = 0$ for all $x \in \mathbb{R}$. If $X = \{x_1, x_2, \ldots\} = \bigcup_{n=1}^{\infty} \{x_n\}$ is countable, then $\lambda^*(X) \leq \sum_{n=1}^{\infty} \lambda^*(\{x_n\}) = 0$, so $\lambda^*(X) = 0$. Since every countable subset of the real line has Lebesgue outer measure 0, then the outer measure restricted to \mathcal{M} , namely the Lebesgue measure, must also have measure 0 for such sets.

Exercise 3.4.

Question. Explain why the set $\{x \in X \mid f(x) < a\}$ could be replaced by any of the following:

$$\{x \in X \mid f(x) \le a\}$$
$$\{x \in X \mid f(x) > a\}$$
$$\{x \in X \mid f(x) \ge a\}.$$

• If $\{x \in X \mid f(x) < a\} \in \mathcal{M}$ and \mathcal{M} is a σ -algebra, then the complement $\{x \in X \mid f(x) < a\}^{\complement} = X \setminus \{x \in X \mid f(x) < a\} = \{x \in X \mid f(x) \geq a\}$ is in \mathcal{M} . Since $\{x \in X \mid f(x) = a\} \subseteq \{x \in X \mid f(x) \geq a\} \in \mathcal{M}$ and \mathcal{M} is closed under countable unions, we know $\{x \in X \mid f(x) = a\} \cup \{x \in X \mid f(x) < a\} = \{x \in X \mid f(x) \leq a\} \in \mathcal{M}$, and so $\{x \in X \mid f(x) \leq a\}^{\complement} = \{x \in X \mid f(x) > a\} \in \mathcal{M}$.

Exercise 3.7.

Question.

Theorem: Let $f, g, \{f_n\}_{n \in \mathbb{N}}, \{g_n\}_{n \in \mathbb{N}}$ be measurable functions on (X, \mathcal{M}) , and let $F : (\operatorname{im}(f), \operatorname{im}(g)) \to \mathbb{R}$ be continuous. Then the following are measurable:

- 1. f + g, $f \cdot g$, $\max \{f, g\}$, $\min \{f, g\}$, |f|.
- 2. $\sup_{n\in\mathbb{N}} f_n(x)$, $\inf_{n\in\mathbb{N}} f_n(x)$.
- 3. $\limsup_{n\to\infty} f_n(x)$, $\liminf_{n\to\infty} f_n(x)$.
- 4. F(f(x), g(x)).

Explain why $(2) \wedge (4) \implies (1)$.

Answer.

• note that $\sup_{n\in\mathbb{N}} f_n(x) \ge \max_{n\in\mathbb{N}} f_n(x)$ and $\inf_{n\in\mathbb{N}} f_n(x) \le \min_{n\in\mathbb{N}} f_n(x)$, so if

$$\left\{ x \in X \mid \sup_{n \in \mathbb{N}} f_n(x) < a \right\} \in \mathcal{M}$$

then

$$\left\{ x \in X \mid \max_{n \in \mathbb{N}} f_n(x) < a \right\} \in \mathcal{M};$$

likewise, if

$$\left\{ x \in X \mid \inf_{n \in \mathbb{N}} f_n(x) > a \right\} \in \mathcal{M}$$

then

$$\left\{ x \in X \mid \min_{n \in \mathbb{N}} f_n(x) > a \right\} \in \mathcal{M}.$$

Next, note that if there is a continuous mapping that takes the images of f and g to \mathbb{R} that is also measurable, then f+g and fg, the sum and product of the images, are also continuous and so they are also measurable. Finally, the absolute value |f| can be defined as $\max\{f,0\} - \min\{f,0\}$, which is a sum of measurable functions and so is measurable itself, as shown in the first part of (1).

Exercise 3.14.

Question.

Theorem: For $f: X \to \mathbb{R}$,

- 1. $\exists \{s_n\}$, such that $s_n \to f$ pointwise, i.e., for any $x \in X$, $\lim_{n \to \infty} s_n(x) = f(x)$,
- 2. if f is measurable, $\{s_n\}$ may be taken to be measurable,
- 3. if $f \ge 0$, $\{s_n\}$ may be taken as an increasing sequence (i.e., $s_n \le s_{n+1}$), and
- 4. if f is bounded, the convergence in (1) is uniform.

Prove (4).

Answer.

• This is an applied case of the Simple Function Approximation Lemma. Consider the approximation from below,

$$\phi_n \coloneqq \sum_{i=1}^{n \cdot 2^n} \frac{i}{2^n} \chi_{E_i^n} + n \chi_{E_{\infty}^n},$$

where

$$E_i^n := f^{-1}\left(\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right)\right)$$

is defined for $n \in \mathbb{N}_{>0}$ and $i \in \mathbb{N} \cap [1, 2^n]$ and

$$E_{\infty}^n \coloneqq f^{-1}([n,\infty))$$

for $n \in \mathbb{N}_{>0}$. Note that if f is bounded, then E_{∞}^n is empty for large enough n. Since $f - \phi_n < \frac{1}{2^n}$ on $(E_{\infty}^n)^{\complement}$ —which approaches the whole space for large n—it follows that the convergence is uniform. Note that analogous reasoning holds for the approximation from above.

Exercise 4.13.

Question. Prove: If f is measurable, ||f|| < M on $E \in \mathcal{M}$ and $\mu(E) < \infty$, then $f \in \mathcal{L}^1(\mu, E)$.

Answer.

• We know that f is measurable, and $||f|| = f^+ + f^-$ (by Remark 4.10) is bounded, namely ||f|| < M on $E \in \mathcal{M}$. By Definition 4.9, if both $\int_E f^+ d\mu$ and $\int_E f^- d\mu$ are finite, then f is integrable with respect to μ ; i.e., we can say that $f \in \mathcal{L}^1$.

Exercise 4.14.

Question. Prove: If $f \in \mathcal{L}^1(\mu, E)$, then f is finite almost everywhere on E.

Answer.

• Let $E_n := f^{-1}((n,\infty))$. Then we know that $n\mu(E_n) \leq \int_{E_n} f \, \mathrm{d}\mu$. Then:

$$\mu(E_n) \le \frac{1}{n} \int_{E_n} f \, \mathrm{d}\mu$$

 $\le \frac{1}{n} \int_{E} f \, \mathrm{d}\mu.$

Also, $\lim_{n\to\infty} \mu(E_n) \to 0$ because $\int_E f \, \mathrm{d}\mu < \infty$. Next, since

$$f^{-1}(\{\infty\}) = \bigcap_{n=1}^{\infty} E_n,$$

where $E_{n+1} \subset E_n$ for all n, and that there is an N such that $\mu(E_N) < \infty$, then by continuity from above we have that

$$\mu(f^{-1}(\{\infty\})) = \lim_{n \to \infty} \mu(E_n) = 0.$$

Thus, it follows that f must be finite everywhere, except on a set of measure zero; i.e., f is finite almost everywhere.

Exercise 4.15.

Question. Prove: $f, g \in \mathcal{L}^1(\mu, E), f \leq g \text{ on } E \implies \int_E f \, d\mu \leq \int_E g \, d\mu.$

Answer.

• We know $f(x) \leq g(x)$ for all $x \in E$ and we know $0 \leq g(x) - f(x)$ for all $x \in E$. Note $\int_E f \, d\mu \geq 0$ for $f(x) \geq 0 \ \forall x$, so it follows that

$$\int_{E} (g - f) \, \mathrm{d}\mu \ge 0.$$

Then, by linearity of the Lebesgue integral for (Lebesgue) measurable functions, we have

$$\int_{E} f \, \mathrm{d}\mu \le \int_{E} g \, \mathrm{d}\mu.$$

Exercise 4.16.

Question. Prove: If $f \in \mathcal{L}^1(\mu, E)$, $A \in \mathcal{M}$, $A \subset E \implies f \in \mathcal{L}^1(\mu, A)$.

Answer.

• This follows straightforwardly from the definitions. If $f \in \mathcal{L}^1(\mu, E)$ for $E \in \mathcal{M}$, that is, if f is integrable with respect to μ , then $\int_E f^+ \, \mathrm{d}\mu$ and $\int_E f^- \, \mathrm{d}\mu$ are by definition finite. Since $A \subset E$, we can also say that $\int_E f^+|_A \, \mathrm{d}\mu = \int_A f^+ \, \mathrm{d}\mu$ and $\int_E f^-|_A \, \mathrm{d}\mu = \int_A f^- \, \mathrm{d}\mu$ are finite. Then, by definition of integrability, it follows that $f \in \mathcal{L}^1(\mu, A)$, given $A \in \mathcal{M}$ of course.

Exercise 4.21.

Question. Prove that if $A, B \in \mathcal{M}$, $B \subset A$, and $\mu(A \setminus B) = 0$, then if $f \in \mathcal{L}^1$,

$$\int_{A} f \, \mathrm{d}\mu \le \int_{B} f \, \mathrm{d}\mu.$$

Answer.

• Consider the disjoint sets B and $A \setminus B$. Since $B \subset A$, then $A = B \cup (A \setminus B)$. From Remark 4.18 and Theorem 4.19, we know the Lebesgue integral is countably sub-additive for simple functions, and Lebesgue integrals can be approximated arbitrarily precisely by simple functions. The sub-additivity property gives us that $\int_A f \, d\mu = \int_B f \, d\mu + \int_{A \setminus B} f \, d\mu$, but $\mu(A \setminus B) = 0$ so we have that $\int_B f \, d\mu = \int_A f \, d\mu$ for the lower bound on $\int_B f \, d\mu$.

Exercise 4.28.

Question. If $f \in \mathcal{L}^1(\mu, E)$, then f is finite almost everywhere on E.

Answer.

- See my answer for Exercise 4.14:
- Let $E_n := f^{-1}((n,\infty))$. Then we know that $n\mu(E_n) \leq \int_{E_n} f \, \mathrm{d}\mu$. Then:

$$\mu(E_n) \le \frac{1}{n} \int_{E_n} f \, \mathrm{d}\mu$$

 $\le \frac{1}{n} \int_{E} f \, \mathrm{d}\mu.$

Also, $\lim_{n\to\infty} \mu(E_n) \to 0$ because $\int_E f \, \mathrm{d}\mu < \infty$. Next, since

$$f^{-1}(\{\infty\}) = \bigcap_{n=1}^{\infty} E_n,$$

where $E_{n+1} \subset E_n$ for all n, and that there is an N such that $\mu(E_N) < \infty$, then by continuity from above we have that

$$\mu(f^{-1}(\{\infty\})) = \lim_{n \to \infty} \mu(E_n) = 0.$$

Thus, it follows that f must be finite everywhere, except on a set of measure zero; i.e., f is finite almost everywhere.

Exercise 4.30.

(This is listed in the notes, but no question is given.)