TD 7 Sous-variétés

Exercice 1 Soient $0 \le r \le n$ des entier (avec $n \ge 2$).

- a) Montrer que $SL_n(\mathbb{R})$ est une sous-variété C^{∞} .
- **b)** Montrer que l'ensemble des matrices de $M_n(\mathbb{R})$ de rang n-1 est une sous-variété.
- c) Montrer qu'il existe un voisinage U de 0 dans $M_n(\mathbb{R})$ tel que si

$$\left(\begin{array}{cc} A & C \\ B & D \end{array}\right) \in U$$

alors la matrice

$$\left(\begin{array}{cc}
I_r + A & C \\
B & D
\end{array}\right)$$

est de rang r ssi $D = B(I_r + A)^{-1}C$.

- d) Soit $V_r \subset M_n(\mathbb{R})$ l'ensemble des matrices de rang r. Montrer que c'est une sous-variété et donner sa dimension.
- e) Montrer que l'ensemble des matrices symétriques de rang r forment une sous-variété de l'espace des matrices symétriques. Donner sa dimension.

Exercice 2 Montrer que l'ensemble $N = \{M \in M_2(\mathbb{R}), M \neq 0, M^2 = 0\}$ est une sous-variété. Donner sa dimension. Remarque: On pourra commencer par chercher une caractérisation de N à l'aide de la trace et du déterminant

Exercice 3 Soit $\gamma: I \to \mathbb{R}^2$ de classe C^1 avec I intervalle ouvert de \mathbb{R} et $\gamma'(t) \neq 0$ pour tout $t \in I$. $C = \{\gamma(t)/t \in I\}$ définit une courbe paramétrée du plan. C est-elle nécessairement une sous-variété de \mathbb{R}^2 ? Et si l'on suppose de plus que γ est injective?