Neural Ordinary Differential Equations

How to solve ODE

Problem $\dot{y} = y, \ y(0) = 1$

Solution №1

$$\frac{dy}{dt} = y \frac{dy}{y} = dt \int \frac{dy}{y} = \int dt$$

$$\ln|y| = t \quad \Rightarrow \quad y = e^t$$

Solution №2

$$\underbrace{\frac{y_{n+1} - y_n}{t_{n+1} - t_n}}_{h} = f(t_n, y_n)$$

$$y_{n+1} = y_n + hf(t_n, y_n)$$

	,					
$\mid n \mid$	y_n	$ t_n $	$f\left(t_{n},y_{n}\right)$	h	Δy	y_{n+1}
0	1	0	1	1	1	2
1	2	1	2	1	2	4
2	4	2	4	1	4	8
3	8	3	8	1	8	16

ODE and ML

Classical ML

$$f: \mathcal{X}
ightarrow \mathcal{Y} \qquad \quad f(x) = \hat{y} = ax + b$$

ML with ODE

$$y=f(x)$$
 $rac{dy}{dx}=f'(x)$

ResNet and Euler's method

For n-th layer:

$$x_{n+1} = x_n + F(x_n)$$

What to add to get the Euler method?

$$x_{n+1} = x_n + hF(x_n), h = 1 = n+1-n$$

ResNet and Euler's method

$$y_{n+1} = y_n + hf(t_n, y_n)$$

$$y_{n+1} = y_n + F(y_n)$$

NN as ODE

- We have NN with hidden states
- Each state depend on parameters

$$h_{t+1} = h_t + f(h_t, heta_t)$$

NN are discretisation of hidden states in a latent space

Number of layers $\rightarrow \infty$ Step size $\rightarrow 0$

$$rac{dh(t)}{dt} = f(t,h(t), heta_t)$$

f is NN, t is layer

NN as ODE

$$h(t) - ?$$

 $h(t_0)=x$

Bad idea $h(t) = \int f(t,h(t), heta_t) dt$

$$\hat{y} = h(t_1) = ext{ODESolver}(h(t_0), t_0, t_1, heta, f)$$

 $h(t_1)=y$

How to train?

Backprop Through Depth

$$\mathscr{L}(t_0,t_1, heta_t)=\mathscr{L}(\mathrm{ODESolver}(h(t_0),t_0,t_1, heta,f))$$

$$egin{aligned} rac{\partial \mathscr{L}}{\partial h(t)} -? \ a(t) &= -rac{\partial \mathscr{L}}{\partial h(t)} \ rac{da(t)}{dt} &= -a(t)^T rac{\partial f(t,h(t), heta_t)}{\partial h(t)} \ rac{\partial \mathscr{L}}{\partial h(t)} &= \int a(t)^T rac{\partial f(t,h(t), heta_t)}{\partial h(t)} dt \end{aligned}$$

 $ODESolver(\cdot)$

Everything together

• We have a set of NN pairs of data points

$$\mathcal{D} = \{(x_1,y_1),\ldots,(x_N,y_N)\}$$

Model the derivative

$$rac{dy}{dx}=f(x,y)$$

Parameterize approximation by NN with hidden states

$$rac{dh(t)}{dt} = f(t,h(t), heta)$$

ODE Solver

$$\hat{y} = h(t_1) = \mathrm{ODESolver}(h(t_0), t_0, t_1, heta, f)$$

Backprop Through Depth

$$rac{\partial \mathscr{L}}{\partial heta}, \; rac{\partial \mathscr{L}}{\partial h(t)}$$

MNIST and NODE

Replace 6 ResNet blocks with ODE-Net

	Test Error	# Params	Memory	Time
1-Layer MLP [†]	1.60%	0.24 M	-	-
ResNet	0.41%	0.60 M	$\mathcal{O}(L)$	$\mathcal{O}(L)$
RK-Net	0.47%	0.22 M	$\mathcal{O}(ilde{L})$	$\mathcal{O}(ilde{L})$
ODE-Net	0.42%	0.22 M	$\mathcal{O}(1)$	$\mathcal{O}(ilde{L})$

Explicit Error Control

Speed-Accuracy Tradeoff

Reverse vs Forward Cost

How complex are the dynamics?

Normalization Flows

$$\mathbf{z}_1 = f(\mathbf{z}_0) \Longrightarrow \log p(\mathbf{z}_1) = \log p(\mathbf{z}_0) - \log \left| \det rac{\partial f}{\partial \mathbf{z}_0}
ight|$$

Determinant of Jacobian has cost O(D^3)

Matrix determinant lemma gives O(DH³) cost

Example of planar NF:

$$\mathbf{z}(t+1) = \mathbf{z}(t) + uhig(w^ op \mathbf{z}(t) + big), \quad \log p(\mathbf{z}(t+1)) = \log p(\mathbf{z}(t)) - \logig|1 + u^ op rac{\partial h}{\partial \mathbf{z}}ig|$$

Continuous Normalization Flows

• What if we move to continuous transformations?

$$rac{\partial \log p(\mathbf{z}(t))}{\partial t} = -\operatorname{tr}igg(rac{df}{d\mathbf{z}(t)}igg)$$

Time-derivative only depends on trace of Jacobian

$$rac{d\mathbf{z}(t)}{dt} = uhig(w^ op \mathbf{z}(t) + big), \quad rac{\partial \log p(\mathbf{z}(t))}{\partial t} = -u^ op rac{\partial h}{\partial \mathbf{z}(t)}$$

Trace of sum is sum of traces - O(HD) cost!

$$rac{d\mathbf{z}(t)}{dt} = \sum_{n=1}^{M} f_n(\mathbf{z}(t)), \quad rac{d\log p(\mathbf{z}(t))}{dt} = \sum_{n=1}^{M} \mathrm{tr}igg(rac{\partial f_n}{\partial \mathbf{z}}igg)$$

CNF Experiments

