JAPANESE UTILITY MODEL ABSTRACT (JP)

PUBLICATION

(51) IPC Code: H03F 1/02

(11) Publication No.: sho 61-19532 (43) Publication Date: 12 June 1986

(21) Application No.: sho 54-122869 (22) Application Date: 5 September 1979

(71) Applicant:

Nihon Gakki Seiio Co., Ltd. 10-1, Nakazawacho, Hamamatsu-si, Japan

(72) Inventor:

IDA MASARU

(54) Title of the Invention:

Power Amplification Transistor

Abstract:

Provided is a power amplifier capable of switching a power supply voltage of a power amplification transistor according to a signal corresponding to an input signal. amplifier includes the power amplification transistor, first through (I-1)th connection transistors, a power supply, and first through (n-1)th switches. The power amplification transistor receives a necessary power supply voltage in advance and power-amplifies an input signal and simultaneously provides a current of the power-amplified signal to a load. first through (I-1)th connection transistors are sequentially cascaded to the power amplification transistor and receive signals obtained by voltage-shifting the input signal. The power supply outputs voltages of $V_1, V_2, ..., and V_n (V_n > ... V_2 > V_1; n > 1)$. The first through (n-1)th switches are sequentially installed between the voltages of V_1, V_2, \ldots , and V_n of the power supply and a group of the power amplification transistor and the first through (1-1)th connection transistors. Every time voltage values of the input signals of the power amplification transistor exceed about V1, V1₊₂, ..., and V_{n-1} , the first through (n-1)th switches are sequentially switched on and apply voltages $V1_{+1}$, $V1_{+2}$, ..., and V_n from the power supply to the (I-1)th connection transistor. Every time the voltage values of the input signals of the power amplification transistor exceed about V_1, V_2, \ldots , and V_{1-1} , the first through (I-1)th connection transistors are sequentially activated. The cascaded transistors provide the power supply voltage which changes according to received signals and can maintain a non-saturated state to the power amplification transistor, according to the outputs of the power supply received from the switches.

⑲ 日 本 閨 特 許 庁 (J P)

①実用新案出願公告

⑫実用新案公報(Y 2)

昭61 = 19532

⑤Int Cl.⁴ H 03 F

識別記号

庁内整理番号

6932 - 5 J

昭和61年(1986)6月12日 ❷@公告

(全 7頁)

❷考案の名称

電力増幅器

1/02

(1)実 願 昭54-122869

愛出 顧 昭54(1979)9月5日 ❸公 開 昭56-42007

❷昭56(1981)4月17日

四分考 案 者

井 田 簽

浜松市中沢町10番1号 日本楽器製造株式会社内

切出 関 人 日本楽器製造株式会社

浜松市<u>中</u>沢町10番1号 弁理士 志賀 正武

審査官 道 下

晶 久

99多考文献

一份代理人

実開 昭52-124644(JP,U)

ᡚ実用新案登録請求の範囲

予め必要な電源電圧を供給されたうえで入力信 号を電力増幅すると共に、その出力電流を負荷に 供給する電力増幅用トランジスタと、

れると共に前記入力信号を順次電圧シフトした信 号を各々の入力とする第1、第2……第(1-1) の縦続トランジスタと、

電圧値V₁, V₂、……V_n(V_n>……V₂>V₁;_n >1)なる電圧出力を送出する電源と、

この電源の電圧値V₁, V₂、……Ⅵの各出力と 前記電力増幅用トランジスタおよび第1、第2・・・ …第(1-1)の縦続トランジスタとの間に順次 設けられた第1、第2……第1の一方向性素子 ٤٠

前記電源の電圧値(リュ、リュ、・・・・・ソ。の各出 力と前記第(ゴー1)の縦続トランジスタとの間 に各々設けられた第1、第2、……第(n-1) のスイツチ手段とを具備してなり、

値が略VI、VI+1、……Vn-1を超える毎に、前記 第1、第2、……第(n-1)のスイツチ手段が 順次オンとなつて前記第(1-1)の縦続トラン ジスタに対し前記電源から電圧値VI+1、VI+2、… …V。の各出力電圧を与えると共に、

前記電力用トランジスタの入力信号の電圧値が 略 V1、 V2、 …… VI-1を超える毎に、前記第 1、 第2、……第(1-1)の縦続トランジスタが順

次能動状態となり、この凝繞トランジスタが前記 各スイツチ手段から与えられる前記電源の各出力 に基づいて、前記電力増幅用トランジスタに、そ の入力信号に応じて変化し、かつ、その非飽和状 この電力増幅用トランジスタに順次縦続接続さ 5 態を維持し得る電源電圧を与えるように構成した ことを特徴とする電力増幅器。

考案の詳細な説明

この考案は、電力増幅用トランジスタの電源電 圧を入力信号に対応する信号に応じて切換えるよ 10 うにした電力増幅器に関する。

従来、オーディオ用等に用いられる電力増幅器 として、電源回路から電力増幅用トランジスタに 供給する電源電圧を入力信号(または出力信号) の大きさに応じて変化させ、これによって電力増 15 幅用トランジスタのコレクタ損失を減少させて電 力効率の向上を計つたものが提供されている。

第1図は、上記のような電力増幅器の一例を示 す図であつて、いわゆるE級電力増幅器の構成を 示す図である。この図に示す電力増幅器は、入力 前記電力増幅用トランジスタの入力信号の電圧 20 端子1に印加した入力信号をコンプリメンタリ SEPP接続された電力増幅用トランジスタQal、 Qb1で増幅すると共にその増幅出力によって負 荷2を駆動するようにした構成において、前記入 力信号の大きさが一定の値を超えたときに同入力 25 信号の大きさに応じて電力増幅用トランジスタ Qa1, Qb1に印加する電源電圧を変化させるよ うにしたものである。すなわち、この電力増幅器 において例えば入力信号の正領域成分を増幅する

電力増幅用トランジスタQa 1 は入力信号の値が 第1の基準電圧以下であるときに電源端子Pa 1 からダイオードDalを通して供給される電圧+ Vc1によつて動作する。そして入力信号の値が スタQa2がオンして電源端子Pa2の電圧+Vc2 がダイオードDa 2、トランジスタQa 2 を通して 電力増幅用トランジスタQa1に供給される。し たがつてこの際電力増幅用トランジスタQa1 つて動作する。また同様に電力増幅用トランジス タQalは、入力信号の値が第2の基準電圧を超 えたときに、軍源端子Pa 3 (電圧+Vc 3が得ら れる)からダイオードDa 3 、トランジスタQa によつて動作する。このように電力増幅用トラン ジスタQa1は、入力信号の値が第1、第2 …… の基準電圧を超えたときに、電源端子Pa 1、Pa 2……から供給される電圧によって動作するもの 電力増幅用トランジスタQb1も、上記の場合と 同様にして電源電圧を与えられる。(なお、図に おいて負電源側の各案子、部分には、上記の正電 源と対応するものについて付号Qb1~Qb3、Pb 場合負電源側の電源端子Pb1, Pb2、……に得 られる電圧は各々ーVc1,ーVc2、……とな る。)

しかして上記の電力増幅器は、入力信号(出力 信号)の値に応じて電力増幅用トランジスタQa 30 トランジスタQb11の電源電圧も、上記と同様 1, Qb1の電源電圧+Vc, - Vcを第2図に示す ように変化させ、これによつて前記各トランジス タのコレクタ損失を小に抑えて電力効率の向上を 計るようにしたものである。(なお、このような 電力増幅器は特開昭50-45549号等で提供されて 35 12,Eb1を付してある。またこの場合負電源 いる。)

ところで、上記の電力増幅器においては、特に 電力増幅用トランジスタQal,Qblの電源電圧 を多段階に切換え得るように構成した場合に、同 電源電圧を切換えるスイツチング用のトランジス 40 Vc,ーVcを出力信号に応じて第4図に示すように タQa 2 . Qa 3 ······、Qb 2 , Qb 3 ······の飽和抵 抗が大となり、これによつて電力効率が低下する 欠点があつた。

また第3図は、上述したような電力増幅器の他

の例を示すものである。この図に示す電力増幅器 は、入力端子11に印加された入力信号をコンプ リメンタリSEPP接続された電力増幅用トランジ スタQa11,Qb11によつて電力増幅すると共 前記第1の基準電圧を超えた場合には、トランジ 5 にその増幅出力により負荷12を駆動するように した構成において、前記負荷12に供給する出力 信号の値に応じて電力増幅用トランジスタQa1 1,Qb11に印加する電源電圧を多段階に切換 えるようにしたものである。すなわち、この図に は、トランジスタQa2から供給される電圧によ 10 おいて例えば入力信号の正領域成分を増幅する電 力増幅用トランジスタQa11は、その出力信号 の値が第1の基準値、すなわち電源Ea1の電圧 +Vc1以下である場合に電源端子Pa11からダ イオードDa 1 1 を通して供給される電圧+Vc 1 3、トランジスタQa2を通して供給される電圧 15 によつて動作する。そして出力信号の値が前記第 1の基準値を超えた場合には、トランジスタQa 12がオンすることによつてトランジスタQa1 3がオンし、これによつて電力増幅用トランジス タQallの電源電圧が電源端子Pallからトラ である。また、入力信号の負領域成分を増幅する *20* ンジスタQa13、ダイオードDa12を通して供 給される電圧+Vc2に切換えられる。また同様 にして出力信号の値が第2の基準値を超えた場合 には、電源端子Pal3の電圧+Vc3が電力増幅 用トランジスタQallに供給される。このよう 1~Pb3、Db1~Db3を付してある。またこの 25 に電力増幅用トランジスタQa11に印加される 電源電圧は、出力信号の値が第1、第2……の基 準値を超えたときに、各出力信号の値に応じた電 源電圧+Vc1,+Vc2……に切換えられる。ま た、入力信号の負領域成分を増幅する電力増幅用 に出力信号の値に応じて切換えられる。(なお、 この図においても負電源側の各素子、部分には、 上記の正電源側と対応するものについて符号Qb 12, Qb13, Pb11~Pb13, Db11, Db 側の電源端子Pb 1 1, Pb 1 2 ……に得られる電 圧は各々ーVc1,ーVc2、……となる。)

> しかしてこの電力増幅器は、電力増幅用トラン ジスタQa 1 1, Qb 1 1 に印加する電源電圧+ 切換え、もつて電力効率の向上を計るようにした ものである。

しかしながら、上記の電力増幅器においては、 電力増幅用トランジスタQa 1 1, Qb 1 1の電源

電圧が各々+Vc1,-Vc1から+Vc2,+Vc3… ···、-Vc 2 , - Vc 3 ······に切換えられる際、前記 トランジスタQa 1 1, Qb 1 1 が飽和領域に近い 状態で動作するため、トランジスタQa 1 1, Qb ーダンスが低くなり、これによつて出力信号に電 源電圧の切換えに伴うスイツチングノイズが現わ れるという欠点があつた。

この考案は上記の事情に鑑み、電力増幅用トラ 応じて切換えるようにした電力増幅器において、 特に電源の切換え段数を3段階以上の多段階に切 換えるように構成した場合にも、高い電力効率が 得られると共にスイツチングノイズの発生を抑え め必要な電源電圧を供給されたうえで入力信号を 電力増幅するとともに、その出力電流を負荷に供 給する電力増幅用トランジスタと、この電力増幅 用トランジスタに順次縦続接続されると共に前記 とする第1、第2、……第(1-1)の縦続トラ ンジスタと、電圧値V₁、V₂、……Vn(Vn>…… >V₂>V₁;n> 1)なる電圧出力を送出する電源 と、この電源の電圧値V₁、V₂、······VIの各出力 ……第(1-1)の縦続トランジスタとの間に順 次設けられた第1、第2……第1の一方向性素子 と、前記電源の電圧値VI+1、VI+2、 ······ Vnの各 出力と前記第(1-1)の縦続トランジスタとの 1)のスイツチ手段とを具備してなり、前記電力 増幅用トランジスタの入力信号の電圧値が略 VI、VI+1、…… V n-1を超える毎に、前記第1、 第2、……第(n-1)のスイツチ手段が順次オ に対して前記電源から電圧値VI+1、VI+2、 …… V nの各出力電圧を与えると共に、前記電力用トラ ンジスタの入力信号の電圧値が略V₁、V₂、…… VI-1を超える毎に、前記第1、第2、……第(1 り、この縦続トランジスタが前記各スイツチ手段 から与えられる前記電源の各出力に基づいて、前 記電力増幅用トランジスタに、その入力信号に応 じて変化し、かつ、その非飽和状態を維持し得る

電源電圧を与えるようにしたものである。

以下、この考案の一実施例を第5図を参照して 説明する。

第5図はこの考案による電力増幅器の構成を示 11の各コレクタ側からエミツタ側をみたインピ 5 す回路図であり、この図において入力端子31に 印加された入力信号は、コンプリメンタリSEPP 接続されたトランジスタQa21、Qb21によっ て電力増幅され、その増幅出力がトランジスタ Qa 2 1, Qb 2 1 の各エミツタ抵抗 3 2 a. 3 2 ンジスタの電源電圧を入力信号に対応する信号に 10 bの接続点(出力端子33)から負荷34に供給 されるようになつている。そして前記電力増幅用 トランジスタQa21, Qb21は、これらトラン ジスタの各コレクタ側に各々スイツチング用トラ ンジスタQa**22,Qb22**が縦続接続されてい 得るようにした電力増幅器を提供するもので、予 15 る。トランジスタQa22, Qb22にはこれらト ランジスタの各ベースとトランジスタQa21. Qb21の各ペースとの間に介挿された電源Ea2 1, Eb21によつて各々一定のバイアス電圧+ Vo 2 1, - Vo 2 1 (第1の基準値)が印加されて 入力信号を順次電圧シフトした信号を各々の入力 20 いる。この場合電源Ea21, Eb21は、トラン ジスタQa22, Qb22に各々パイアス質圧+Vo 21,-Vo21を与えると共に、トランジスタQa 22,Qb22がオンしたときにトランジスタQa 21, Qb21の各コレクターエミツタ間にこれ と前記電力増幅用トランジスタおよび第1、第2~25 らトランジスタを定電流領域におくシフト電圧+ Vo 2 1, 一Vo 2 1を印加するものである。しかし てこれらトランジスタQa22, Qb22は、前記 入力信号を電源Ea21, Eb21を介して受ける と共に同入力信号の値が正負各領域で電圧+Vo 間に各々設けられた第1、第2、……第(n - 30 21,-Vo21を超えたときにオンし、これによ つて前記トランジスタQa21,Qb21の各電源 電圧を前記入力信号の値に応じて変化させるもの である。

一方この電力増幅器は、前記各トランジスタ ンとなつて前記第(I-1)の縦続トランジスタ 35 Qa 2 1, Qb 2 1, Qa 2 2, Qb 2 2 に正負電源 を供給する電源Ea22~Ea25からなる正電源 と電源Eb22~Eb25からなる負電源とを備え ており、電源端子Pa 2 1 ~Pa 2 4 に順次レベル が高くなる電圧+Vc21~+Vc24が得られ、 ー1)の縦続トランジスタが順次能動状態とな 40 電源端子Pb2 1 ~Pb2 4 に順次レベル(絶対値 レベル)が高くなる電圧-Vc21~-Vc24が 得られるようになつている。そして正電源側の前 記電源端子Pa21~Pa24に得られる各電圧 は、電源端子Pa21に得られる電圧がダイオー

ドDa 2 1を通して前記トランジスタQa 2 1 のコ レクタに供給され、電源端子Pa22に得られる 電圧がダイオードDa22を通して前記トランジ スタQa 2 2 のコレクタに供給され、電源端子Pa 23, Pa24に得られる電圧が各々電源電圧切 5 換回路35a,36aを通して前記トランジスタ Qa22のコレクタに供給されるようになつてい る。電源電圧切換回路 3 5 a は、出力端子 3 3 に 得られる出力信号の値が基準電圧+Vo 2 2 (第 電圧をトランジスタQa22を介してトランジス タQa21のコレクタに供給するもので、ベース に前記出力信号が印加され、エミツタに電源Ea 26の電圧+Vo22が与えられるように接続さ Qa 2 3 の出力電圧がベースに印加され、エミツ タが電源端子Pa23に接続されたトランジスタ Qa 2 4 と、この 1 ランジスタQa 2 4 のコレクタ とトランジスタQa22のコレクタとの間に介挿 る。また電源電圧切換回路36aは、前記出力信 号の値が基準電圧+Vo23を超えたときに電源 端子Pa24の電圧をトランジスタQa22を介し てトランジスタQa21のコレクタに供給するも ランジスタQa25,Qa26電源Ea27、ダイオ ードDa 2 4 を有して構成されている。 また負電 源側においても電源端子Pb2 1~Pb2 4の電圧 をトランジスタQb21, Qb22に供給する回路 正電源側の回路と同様であるので、正電源側の要 素に対応する要素に添字aに代えて添字bをつけ た符号を付してその説明を省略する。

次に、上記の構成からなる電力増幅器の動作に ついて説明する。

まず、入力信号の正領域成分を電力増幅する電 力増幅用トランジスタQa21は、入力信号の値 が基準電圧+Vo21以下である場合に、電源端 子Pa21からダイオードDa21を通して供給さ を負荷34に供給する。そして入力信号の値が基 準電圧+Vo21を超えると、トランジスタQa2 2がオンし、電源端子Pa 2 2 の電圧 + Vc 2 2 が ダイオードDa22、トランジスタQa22を通し

てトランジスタQa21のコレクタに供給され る。したがつてこの際トランジスタQa21は、 トランジスタQa22から供給される電圧、すな わち入力信号の値に応じて変化する電圧によって 動作する。(以上第6図のAのカーブ参照) そし て更に、入力信号の値がトランジスタQa22を オンさせる値で、かつこのとき出力端子33に得 られる出力信号の値が基準電圧+Vo22を超え た場合には、トランジスタQa23がオンしてト 2の基準値)を超えたときに電源端子Pa23の 10 ランジスタQa24がオンし、これによつて電源 端子Pa23の電圧+Vc23がトランジスタQa2. 4、ダイオードDa23、トランジスタQa22を 通してトランジスタQa21のコレクタに供給さ れる。したがつてこの際トランジスタQa21 れたトランジスタQa23と、このトランジスタ 15 は、電圧+Vc23の下で動作する(以上第6図 のBのカーブ参照)。また更に、前記出力信号の 値が基準電圧+Vo23を超えた場合には、上記 と同様にしてトランジスタQa25, Qa26がオ ンし、電源端子Pa24の電圧がトランジスタQa されたダイオードDa23とからなるものであ 20 21のコレクタに供給され、このトランジスタ Qa21が電圧+Vc24の下で動作する。

上記の動作において、電源端子Pa 2 3, Pa 2 4の電圧+Vc23,+Vc24がトランジスタQa 21に供給されるときには、電源切換回路35 ので、前記電源電圧切換回路35aと同様に、ト 25 a, 35bのトランジスタQa24, Qa26がい ずれも飽和状態におかれる。したがつてこのとき のトランジスタQa24, Qa26における電力損 失は極僅かである。またこのとき、トランジスタ Qa21のコレクターエミツタ間には、電源Ea2 が設けられているが、この回路はその構成が上記 30 1によつてこのトランジスタQa 2 1 が非飽和領 域におかれるようにシフト電圧Vo21が印加さ れており、この結果、トランジスタQa21はそ のコレクタ側からエミツタ側を見たインピーダン スが高くなつている。そして、トランジスタQa 35 2 1 に供給される電圧+Vc 2 3,+Vc 2 4 は、全 てトランジスタQa22を介すため、入力信号の 値に応じて変化(比例)する追従電圧となり、し たがつて、トランジスタQa21の電源電圧が+ Vc 2 2から+Vc 2 3,+Vc 2 4 (またはこの れる電圧+Vc21の下で動作し、その出力電流 40 逆)に切換えられた場合にも、この際同トランジ スタQa21から出力される出力信号中に現われ るスイツチングノイズは極僅かである。

> また、入力信号の負領域成分を増幅する電力増 幅用トランジスタQb21も、上記と同様にして

10

負電源電圧を供給され、入力信号(または出力信 号)の値に応じた電源電圧の下で動作する。

なお、上記の実施例においては、電力増幅用ト ランジスタQa 2 1, Qb 2 1 の電源電圧を各々+ Vc 2 1~+Vc 2 4、-Vc 2 1~-Vc 2 4 の 4 段 5 …VI-1を超える毎に、前記第 1、第 2、 ……第 階に切換えるように構成したが、この切換え段数 は電源電圧切換回路(35a,36a,35b, 36b)の数を正負電原側において各々1つまた は2つ以上の複数とすることにより3段以上の複 数段としてよい。またこの考案の適用対象は、上 10 応じて変化し、かつ、その非飽和状態を維持し得 記の実施例のようなプッシュプル電力増幅器に限 られるものではなく、シングル電力増幅器であつ てもよい。

以上の説明から明らかなように、この考案によ れば、予め必要な電源電圧を供給されたうえで入 15 効率が得られ、しかも電源電圧切換時におけるス 力信号を電力増幅するとともに、その出力電流を 負荷に供給する電力増幅用トランジスタと、この 電力増幅用トランジスタに順次縦続接続されると 共に前記入力信号を順次電圧シフトした信号を 各々の入力とする第1、第2、……第(1-1)20 図、第2図は同電力増幅器の出力信号と電源電圧 の縦続トランジスタと、電圧値V₁、V₂、……V_a (∨₀>……> ∨₁;₀> 1) なる電圧出力を送出す る電源と、この電源の電圧値V1、V2、……VIの 各出力と前記電力増幅用トランジスタおよび第 の間に順次設けられた第1、第2……第1の一方 向性素子と、前記電源の電圧値VI+1、VI+2、 ······ Vaの各出力と前記第(1-1)の縦続トランジ スタとの間に各々設けられた第1、第2、……第 (n-l) のスイツチ手段とを具備してなり、前 30 a. 3 6 b……スイツチ手段(電源電圧切換回 記電力増幅用トランジスタの入力信号の電圧値が 略VI、VI+1、…… V n-1を超える毎に、前記第 1、第2、……第(π-1)のスイツチ手段が順

次オンとなつて前記第(1-1)の縦続トランジ スタに対し前記電源から電圧値VI+1、VI+2、...... V。の各出力電圧を与えると共に、前記電力用ト ランジスタの入力信号の電圧値が略V1、V2、… (1-1)の縦続トランジスタが順次能動状態と なり、この縦続トランジスタが前記各スイツチ毛 段から与えられる前記電源の各出力に基づいて、 前記電力増幅用トランジスタに、その入力信号に る電源電圧を与えるようにしたから、特に電力増 幅用トランジスタの電源電圧を3段階以上の複数 段に切換える電力増幅器として、電源電圧切換え 用のトランジスタの損失を小に抑え得て高い電力 イツチングノイズの発生を僅かなものに抑えるこ とができる等の利点が得られる。

図面の簡単な説明

第1図は従来の電力増幅器の一例を示す回路 との関係を示す図、第3図は従来の電力増幅器の 別の例を示す回路図、第4図は同電力増幅器の出 力信号と電源電圧との関係を示す図、第5図はこ の考案による電力増幅器の一実施例を示す回路 1、第2……第(1-1)の縦続トランジスタと 25 図、第6図は第5図に示す電力増幅器の出力信号 と電源電圧の関係を示す図である。

> Qa 2 1, Qb 2 1 ……電力増幅用トランジス タ、Qa 2 2, Qb 2 2 ······スイツチング用トラン ジスタ、34……負荷、35a,35b,36 路)、Ea22~Ea25、Eb22~Eb25……電 源。

第3図

第6図

