Kodutöö nr. 8

Joosep Näks ja Uku Hannes Arismaa

1. Lahendada kongruents

$$3x^4 + 5x^3 - x^2 - x + 1 \equiv 0 \pmod{7}$$
.

Kasutame Horneri skeemi ja proovimis meetodit.

	3	$\overline{-2}$	$\overline{-1}$	$\overline{-1}$	$\overline{1}$
$\overline{0}$	3	$\overline{-2}$	$\overline{-1}$	-1	$\overline{1}$
$\overline{1}$	$\overline{3}$	$\overline{1}$	$\overline{0}$	$\overline{-1}$	$\overline{0}$
$\overline{2}$	$\overline{3}$	$\overline{-3}$	$\overline{0}$	$\overline{-1}$	$\overline{-1}$
$\overline{3}$	$\overline{3}$	$\overline{0}$	$\overline{-1}$	$\overline{3}$	$\overline{3}$
$\overline{-3}$	$\overline{3}$	$\overline{3}$	$\overline{-3}$	$\overline{1}$	$\overline{-2}$
$ \begin{array}{c} 0\\ \overline{1}\\ \overline{2}\\ \overline{3}\\ \overline{-3}\\ \overline{-2}\\ \overline{-1} \end{array} $		$ \begin{array}{c} \overline{-2} \\ \overline{1} \\ \overline{-3} \\ \overline{0} \\ \overline{3} \\ \overline{-1} \\ \overline{2} \end{array} $	$ \begin{array}{c} \overline{-1} \\ \overline{0} \\ \overline{0} \\ \overline{-1} \\ \overline{-3} \\ \overline{1} \\ \overline{-3} \end{array} $	$ \begin{array}{c} \overline{-1} \\ \overline{-1} \\ \overline{3} \\ \overline{1} \\ \overline{-3} \\ \overline{2} \end{array} $	$ \begin{array}{r} \overline{1} \\ \overline{0} \\ -1 \\ \overline{3} \\ \overline{-2} \\ \overline{2} \\ \overline{-1} \end{array} $
$\overline{-1}$	$\overline{3}$	$\overline{2}$	$\overline{-3}$	$\overline{2}$	$\overline{-1}$

Seega leidsime, et ainuke lahend on $\overline{1}$.

2. Tegurdada polünoom

$$f(x) = 2x^5 + 6x^4 + 5x^3 - 3x^2 - 3x + 3$$

mooduli 5 järgi, s.t. üle korpuse \mathbb{Z}_5 .

Kasutame Horneri skeemi ja proovimis meetodit.

Leidsime esimese teguri $(x - \overline{1})$

Seega on $(x - \overline{1})$ kahekordne tegur.

1

Seega saime, et $f(x) \equiv (x-1)^2(x-2)(2x^2-x+1) \pmod{5}$

3. Milliste x täisarvuliste väärtuste korral on arvu $2x^4 + x^3 - 2x^2 + x - 2$ mõlemad viimased kümnendnumbrid 2?

Ülesanne taandub kongruentsi $2x^4+x^3-2x^2+x-2\equiv 22\pmod {100}$ lahendamisele. Selleks peame lahendama kongruentsid $2x^4+x^3-2x^2+x-2\equiv 22\pmod {4},\ 2x^4+x^3-2x^2+x-2\equiv 22\pmod {25}$ $2x^4 + x^3 - 2x^2 + x - 24 \equiv 0 \pmod{25}$. Esimese lahendiks on ainult $x \equiv 0 \pmod{4}$. Mooduli 5 järgi on

teise lahenditeks 2 ja 3.

$$(2x^4 + x^3 - 2x^2 + x - 24)' = 8x^3 + 3x^2 - 4x + 1$$

$$(8x^3 + 3x^2 - 4x + 1)(2) = 69 \equiv -1 \pmod{5}$$

$$(2x^4 + x^3 - 2x^2 + x - 24)(2) = 10$$

Seega peame näite põhjal nüüd leidma lahenduse kongruentsile $-y+2\equiv 0\pmod 5$, saame $y\equiv 2$ ehk üks lahend on $2 + 2 \cdot 5 = 12$.

$$(8x^3 + 3x^2 - 4x + 1)(3) = 232 \equiv 2 \pmod{5}$$

 $(2x^4 + x^3 - 2x^2 + x - 24)(3) = 150$

Seega peame näite põhjal nüüd leidma lahenduse kongruentsile $2y + 0 \equiv 0 \pmod{5}$, saame $y \equiv 0$ ehk teine lahend on 3 + 0 + .5 = 3.

HJT järgi peaks leiduma 2 lahendit. Terava silmaga näeb ära, et need on 12 ja 28.

4. Lahendada kongruents

$$x^4 + 4x^3 + 2x^2 + 2x - 38 \equiv 0 \pmod{125}$$
.

Mooduli 5 järgi saame, et ainus lahend on
$$x\equiv 3$$
.
$$f'(x)\equiv -x^3+2x^2+-x+2\pmod 5,\ f'(3)\equiv 3+3-3+2\equiv 0\pmod 5$$

$$f(3)=175,\ \frac{175}{5}=35\equiv 0\pmod 5$$
 Seega saame, et lahendis kujul $x=3+5y$ oleva y puhul peab kehtima, et $0y+0\equiv 0\pmod 5$,

mis kehtib iga $y \in \{0, 1, 2, 3, 4\}$ korral, seega ülesande lahendamiseks, peame uurima x kujul a + 25b, $a \in \{3, 8, 13, 18, 23\}$. Iga sellise kuju korral peaksime leidma b valemist $f'(a)b + \frac{f(a)}{5^2} \equiv 0 \pmod{5}$. Kuna $f'(a) \equiv f'(3) = 0 \pmod{5}$, siis lahenduvus ei sõltu b-st ning peame kontrollima, kas mõne a puhul $\frac{f(a)}{5^2} \equiv 0 \pmod{5} \text{ ehk teisisõnu, kas } 125 \mid f(a). \ f(3) = 175, \ f(8) = 6250, \ f(13) = 37673, \ f(18) = 128950,$ f(23) = 329575 Neist jagub 125-ga ainult 6250, seega on lahenditeks 8, 8 + 25, 8 + 50, 8 + 75, 8 + 100.

5. Lahendada kongruents

$$x^4 + 4x^3 + 2x^2 + 2x + 12 \equiv 0 \pmod{1925}$$
.

Kuna 1925=25.7.11, saame polünoomi lahendada igaühe nende järgi eraldi. Kuna $-38 \equiv 12 \pmod{25}$, teame eelmisest ülesandest, et lahendid on 3, 8, 13, -7, -2 (tähistame a). Proovides 7 järgi, saame, et lahenditeks on 1 ja 5 (tähistame b). 11 järgi on ainult 9.

HJT-st saame, et kõik vastused saame kujul $77 \cdot 13a + 275 \cdot 4b + 175 \cdot -1 \cdot 9$, seega need on 218, 383, 603, 768, 988, 1153, 1373, 1538, 1758, 1923.

6. Lahendada mõistatus $\ddot{U}KS \times \ddot{U}KS = 2 * * 2$ 1. (Iga täht tähistab ühte konkreetset numbrit ja * tähistab suvalist, võib-olla erinevat numbrit.)

Leian alustuseks lahendid võrrandile $x^2 \equiv 21 \pmod{100}$ ehk $x^2 - 21 \equiv 0 \pmod{100}$ ning leian hiljem nende hulgast arvud, mis sobivad ülejäänud tingimustega kokku.

Mooduli saab lahti tegurdada $100 = 2^2 \cdot 5^2$, seega leian 4 ja 5 järgi lahendid: $x^2 - 21 \equiv x^2 - 1 \equiv 0 \pmod{4}$, mille lahenditeks saab läbiproovimisel x = 1 ja x = 3, ning $x^2 - 21 \equiv x^2 - 1 \equiv 0 \pmod{5}$, mille lahenditeks saab x = 1 ja x = 4.

Leian nüüd mooduli 25 järgi lahendeid kujul x=1+5y. Arvestades et $(x^2-21)'=2x$, saame x=1 korral f(1)=-20 ja f'(1)=2. Nendest saab võrrandi $2y+\frac{-20}{5}\equiv 2y+1\equiv 0\pmod 5$, mille ainsaks lahendiks on y=2. Seega mooduli 25 järgi on lahendid y=2+5z, kus $z\in\mathbb{Z}$ ehk algse kongruentsi lahenditeks saab $1+5(2+5x)=1+10+25x\equiv 11\pmod {25}$ ehk $x\equiv 11\pmod {25}$.

Teiseks leian lahendid kujul x=4+5y. Saan f(4)=-5 ja $f'(4)=8\equiv 3\pmod 5$, millest tuleb võrrand $3y+\frac{-5}{5}$, mille ainsaks lahendiks on y=2. Seega mooduli 25 järgi on lahendid y=2+5z ehk algse kongruentsi lahenditeks saab $4+5(2+5z)=4+10+25z\equiv -11\pmod {25}$ ehk $x\equiv -11\pmod {25}$. Kokkuvõttes on olemas neli süsteemi,

$$\begin{cases} x \equiv a_1 \pmod{4} \\ x \equiv a_2 \pmod{25} \end{cases}$$

Kus $a_1 \in \{1,3\}$ ja $a_2 \in \{11,-11\}$. On lihtne näha, et nendega saab lahendid $x_1 \equiv 61 \pmod{100}$, $x_2 \equiv 89 \pmod{100}$, $x_3 \equiv 11 \pmod{100}$ ja $x_4 \equiv 39 \pmod{100}$. Seega $\ddot{U}KS = 100z + x_i$, kusjuures $\ddot{U} = z$ ehk 0 < z < 10. Esimeste z väärtustega saab $\ddot{U}KS \times \ddot{U}KS$ tulemuseks

Nendest ainult variant $\ddot{U}KS=161$ on numbriga 2 algav viiekohaline arv, kusjuures z=2 puhul on kõik tulemused suuremad kui võimalik tulemus olla saaks ning kui z suurendada, muutuvad korrutised suuremaks ehk rohkem lahendeid ei saa leiduda. Seega on ainus lahend $\ddot{U}KS=161$.

7. Olgu a juhuslik täisarv vahemikust [1,17] ja b samuti juhuslik täisarv vahemikust [1,18]. Milline on tõenäosus, et kongruentsil $ax \equiv b \pmod{18}$ on vähemalt üks lahend? Täpselt üks lahend?

Lause 6.2 põhjal on antud kongruents lahenduv parajasti siis, kui $(a,18) \mid b$. Seega kui a=9, peab b olema 9 kordne, milleks on $\left\lfloor \frac{18}{9} \right\rfloor = 2$ võimalust. Kui a on 6 kordne, milleks on $\left\lfloor \frac{17}{6} \right\rfloor = 2$ võimalust, peab ka b olema 6 kordne, milleks on $\left\lfloor \frac{18}{6} \right\rfloor = 3$ võimalust. Kui a on 3 kordne, kuid mitte 6 ega 9 kordne, on selleks võimalusi $\left\lfloor \frac{17}{3} \right\rfloor - 1 - 2 = 2$ ning b peab olema 3 kordne, selleks on $\left\lfloor \frac{18}{3} \right\rfloor = 6$ võimalust. Kui a on 2 kordne kuid mitte 6, on selleks $\left\lfloor \frac{17}{2} \right\rfloor - 2 = 6$ võimalust, ning b peab siis olema 2 kordne, milleks on $\left\lfloor \frac{18}{2} \right\rfloor = 9$ võimalust. Ülejäänud a väärtuste puhul (a,18) = 1 ehk sobivad kõik b väärtused, neid a väärtuseid on 17 - 1 - 2 - 2 - 6 = 6. Seega on kokku tõenäosus et lahendeid leidub $\frac{1}{17} + \frac{2}{17} + \frac{3}{18} + \frac{2}{17} + \frac{6}{18} + \frac{6}{17} + \frac{9}{18} + \frac{6}{17} = \frac{182}{17 \cdot 18} = \frac{91}{153}$.

Et lahendeid oleks täpselt 1, peab kehtima (a, n) = 1. Selle jaoks on 6 a väärtust ehk tõenäosus on $\frac{6}{17}$

8. Tõestada, et kongruentsil $x^2 \equiv 1 \pmod{2^k}$ on üks lahend, kui k = 1, kaks lahendit, kui k = 2, ning neli lahendit, kui $k \geq 3$.

Lihtsal läbivaatlusel on näha, et k=1 puhul on ainus lahend 1, k=2 puhul lahendid 1 ja 3 ning k=3 puhul 1, 3, 5 ja 7. Pakun nüüd, et iga $k\geq 3$ puhul on 4 lahendit 1, $2^{k-1}-1$, $2^{k-1}+1$, -1 ning tõestan seda induktsiooniga. Baas on üleeelmises lauses antud. Sammuks eeldan, et k puhul leiduvad lahendid

seda induktsiooniga. Baas on diecennises lauses alivud: bahindak eerdah, et k paha 1848-1848. $L = \{1, 2^{k-1} - 1, 2^{k-1} + 1, -1\}$ ning leian lahendid k + 1 jaoks. Arvutades välja tuletise $(x^2 - 1)' = 2x \equiv 0 \pmod{2}$ on näha, et kui leida lahendit võttes aluseks ühe võrra väiksema mooduli astmega lahend $a \in L$, siis uueks lahendiks on $x = a + 2^k y$, kus y on järgneva võrrandi lahend: $f'(a)y + \frac{f(a)}{2^k} \equiv 0 \pmod 2$, kuid kuna $f'(a) \equiv 0 \pmod 2$, jääb sellest võrrandist alles $\frac{f(a)}{2^k} \equiv 0 \pmod 2$ ehk $\frac{a^2-1}{2^k} \equiv 0 \pmod 2$. Kontrollin selle kõigi L liikmete puhul läbi.

Kui a=1, siis $\frac{1-1}{2^k}\equiv 0\pmod 2$ kehtib ehk saame lahendid mõlema võimaliku y väärtuse jaoks:

Kui a = 1, sho 2^k ja $x_2 = 1 + 1 \cdot 2^k$. Kui $a = 2^{k-1} - 1$, siis $\frac{(2^{k-1} - 1)^2 - 1}{2^k} \equiv \frac{2^{2k-2} - 2^k}{2^k} \equiv -1 \not\equiv 0 \pmod{2}$ ehk siit lahendeid ei tule. Kui $a = 2^{k-1} + 1$, siis $\frac{(2^{k-1} + 1)^2 - 1}{2^k} \equiv \frac{2^{2k-2} + 2^k}{2^k} \equiv 1 \not\equiv 0 \pmod{2}$ ehk siit lahendeid ei tule. Kui a = -1, siis $\frac{(-1)^2 - 1}{2^k} \equiv 0 \pmod{2}$ kehtib ehk saame lahendid mõlema võimaliku y väärtuse jaoks: $x_3=-1+0\cdot 2^k$ ja $x_4=-1+1\cdot 2^k$. Seega on saadud lahendite hulk $1,2^k-1,2^k+1,-1$, mida oligi vaja näidata.