Introduction to Machine Learning

Mahammad Valiyev 08.01.2022

Contents and timeline

- 1. Introduction to Machine Learning and use cases in O&G (Jan 2)
- 2. Overview of Machine Learning algorithms (Jan 8)
- 3. Machine Learning Life Cycle (Jan 15)
- 4. Overview of resources, skill sets, job types, general advice (Jan 22)

Part 2:

Overview of Machine Learning algorithms

Supervised learning

Supervised learning: learning a functional mapping from input to outputs

- Regression: output is continuous variable
- Classification: output is categorical variable (2 categories: binary, or more: multiclass)

Regression problem

• Example: predict price of a house using historical data

Size of a house (feet ²)	Price of a house (1000's \$)
2104	460
1416	232
1534	315
•••	•••

Housing prices data

Visualization of data

- Different type of models can be used for housing price prediction
- Models vary by underlying assumptions, number of parameters etc
- Example of models relevant to this problem: constant function, linear/quadratic functions

Linear regression

• **Model:** y(k, b) = kx + b

· Parameters: k, b

• Input: x

• Output: y

Input (x): size of a house (feet ²)	Output (y): price of a House (1000's \$)
2104	460
1416	232
1534	315
	•••

- We chose to model the problem using univariate linear regression model
- Now, given the data, parameters (k, b) of the model need to be estimated..

Estimating parameters of a linear regression model

Model: y(k, b) = kx + b

Goal:
$$\min_{k,b} J \qquad J(k,b) = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) - y_i)^2$$

J: objective/cost function

k, b: parameters of a model

 x_i , y_i : input and output for each training data

N: number of data points

Intuition: Choose k and b such that, data points are as close as possible (minimum vertical distance) to the fitted line

Cost function intuition

Model: y(k, b) = kx + b

Cost function:
$$J(k, b) = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) - y_i)^2$$

Data	Fit
$x_1(1,1)$	$x_1(1,2)$
$x_2(2,2)$	$x_2(2,2)$

$$J_1 = \frac{1}{2*2}(((0*1+2)-1)^2 + ((0*2+2)-2)^2) = 0.25$$

$$J_2 = \frac{1}{2*2} (((0.5*1+0)-1)^2 + ((0.5*2+0)-2)^2) = 0.31$$

Data	Fit
$x_1(1,1)$	$x_1(1, 0.5)$
$x_2(2,2)$	$x_2(2,1)$

Estimating parameters of a linear regression model

Goal: minimize
$$J(k,b) = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) - y_i)^2$$
 by varying k and b

Gradient descent algorithm:

- Start with initial guess for k, b
- Update k and b until specified criteria is satisfied:
 - No significant change in J
 - No significant change in k, b
 - Specified number of iterations has been reached

•
$$\frac{\partial J}{\partial k} = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) - y_i)^1 * 2 * x_i$$

•
$$\frac{\partial J}{\partial b} = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) - y_i)^1 * 2$$

- Gradient is the direction of the steepest ascent, so opposite of gradient is the direction of steepest descent
- Proof: $\operatorname{grad}(f(a)) \cdot \vec{v} = |\operatorname{grad}(f(a))| |\vec{v}| \cos(\theta)$ directional derivative is maximized when $\cos(\theta) = 1$, meaning at gradient direction

Pseudocode for gradient descent

Initialize k, b, ε , α while $(J_{n-1}-J_n)>\varepsilon$ $k_n=k_{n-1}-\alpha*\frac{\partial J(k_{n-1},b_{n-1})}{\partial k}$ $b_n=b_{n-1}-\alpha*\frac{\partial J(k_{n-1},b_{n-1})}{\partial b}$ end Return k, b

Linear regression summary

- · Linear regression assumes a linear relationship between input and output
- Linear regression can be extended to:
 - multiple inputs: multilinear regression $y = b_0 + b_1x_1 + b_2x_2 + ... + b_nx_n$
 - categorical (binary or multiclass) inputs: +1 for 1st category, -1 for the 2nd
 - nonlinear features (still linear!): polynomial regression $y = b_0 + b_1x_1 + b_2x_1^2 + ... + b_nx_1^n$
 - nonlinear regression: $\hat{y} = \theta_0 + \theta_2^2 x$ $\hat{y} = \theta_0 + \theta_1 \theta_2^x$ $\hat{y} = \log(\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3)$
- Advantages of linear regression:
 - easy to understand, implement and interpret
 - performs well for linearly separable data
- Disadvantages of linear regression:
 - Most of real-world problems are non-linear, so linearity assumption does not hold
 - Sensitive to outliers
 - Assumption of independence of inputs (affects interpretability)

Supervised learning

Supervised learning: learning a functional mapping from input to outputs

- Regression: output is continuous variable
- Classification: output is categorical variable (2 categories: binary, or more: multiclass)

Classification problem

• Example: predict whether student will pass or fail an exam based on hours studied

Number of hours student studied	Passed/Failed
60	Р
40	\mathbf{F}
57	P
•••	•••

Housing prices data

Visualization of data

- Model should predict either 0 or 1
- Classification problem can be binary or multiclass problem

Logistic regression model

- Linear regression model: y(k, b) = kx + b
 - Outputs a continuous variable, so can't be used for classification
- Logistic regression model: y(k, b) = f(kx + b),
 - where $f(z) = \frac{1}{1+e^{-z}}$ sigmoid function
- So, model becomes: $y(k, b) = \frac{1}{1 + e^{-(kx+b)}}$
- Output of sigmoid is in range (0,1)
 - Outputs represents probability of output being = 1
 - Threshold of 0.5 can be used to assign labels
 - Threshold can be modified for imbalanced datasets

Estimating parameters of a logistic regression model

- Linear regression model: y(k, b) = kx + b
- Logistic regression model: $y(k, b) = \frac{1}{1 + e^{-(kx+b)}}$
- Linear regression cost function: $J(k,b) = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) y_i)^2 = \frac{1}{2N} \sum_{i=1}^{N} Cost(y_{i:k,b_{fit}}(x_i), y_{i_{data}})$
- General cost function for any model: $J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} Cost(y_{i:\theta_{fit}}(x_i))$, $y_{i_{data}}$)
- · Cost function is measure of difference between fitted and actual data
- In Machine Learning, always, the goal is minimization of cost function
- If linear regression cost function is used for logistic regression -> non-convex cost function

Estimating parameters of a logistic regression model

• Defining a convex cost function for logistic regression..

$$\cdot \ \textit{Cost}(\ y_{\theta_{fit}}(x),\ y_{data}) = \begin{cases} -\log\Big(y_{\theta_{fit}}(x)\Big) \textit{if}\ y = 1 \\ -\log\Big(1 - y_{\theta_{fit}}(x)\Big) \textit{if}\ y = 0 \end{cases} = -y\log\Big(y_{\theta_{fit}}(x)\Big) \cdot (1-y)\log\Big(1 - y_{\theta_{fit}}(x)\Big)$$

Logistic regression cost function:

•
$$J(k,b) = -\frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{1}{1 + e^{-(kx_i + b)}} \right) * y_i + \log \left(1 - \frac{1}{1 + e^{-(kx_i + b)}} \right) * (1 - y_i)$$

Linear regression cost function:

•
$$J(k,b) = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) - y_i)^2$$

- Linear regression model: y(k, b) = kx + b
- Logistic regression model: $y(k, b) = \frac{1}{1 + e^{-(kx+b)}}$
- So, linear and logistic regression have **different model representations** and **different cost functions**
- · Logistic regression parameters are also estimated using gradient descent

Logistic regression summary

- Logistic regression is a simple linear classification model
- Logistic regression can be extended to:
 - multiple inputs: multilinear logistic regression
 - categorical inputs
 - nonlinear features (still linear!): polynomial logistic regression
 - nonlinear model parameters: usually other models are used for complex problems
 - multiclass classification problems
- Advantages of linear regression:
 - easy to understand, implement and interpret
 - performs well for linearly separable data
- Disadvantages of linear regression:
 - Most of real-world problems are non-liner, so linearity assumption does not hold
 - Sensitive to outliers
 - Assumption of independence of inputs (affects interpretability)

Unsupervised learning

Unsupervised learning: learning patterns from unlabeled data

- Clustering: dividing data into a number of groups
- Dimensionality reduction: reducing number of input variables

Clustering

Dimensionality reduction

Clustering problem

• Example: classify students into groups based on GPA and social activity scores

GPA	Social activity score
85	84
78	97
96	72
•••	•••

Visualization of data

• Students in the same group (cluster) should be more similar to each other than to those in other groups (clusters)

K-means algorithm

- K-means is the most widely used clustering algorithm
- Basic steps in k-means algorithm:
 - 1. Randomly assign class centroids (numbers of centroids = number of classes)
 - 2. Assign each data point to some class based on distance to class centroids
 - 3. Update centroids
 - 4. Repeat steps 2, 3 until convergence
- Pseudocode

```
f: for k = 1 to K do
     \mu_k \leftarrow some random location
                                                 // randomly initialize mean for kth cluster
  end for
4: repeat
     for n = 1 to N do
        z_n \leftarrow \operatorname{argmin}_k || \mu_k - x_n ||
                                                      // assign example n to closest center
     end for
     for k = 1 to K do
        \mu_k \leftarrow \text{MEAN}(\{ x_n : z_n = k \})
                                                            // re-estimate mean of cluster /
     end for
until converged
2: return z
                                                               // return cluster assignments
```


Choosing number of clusters

- Domain-expertise: e.g. you now for certain how many groups are in data
- Data visualization: plot and see
- Elbow method: sometimes no clear elbow on a plot

K-means summary

- K-means is the most widely used clustering algorithm
- Advantages
 - Simple to understand, interpret and implement
 - Computationally efficient (scales to large datasets)
- Disadvantages
 - Number of clusters need to be chosen
 - Sensitive to initialization
 - Sensitive to outliers
 - Spherical clustering only (can't be used for overlapping clusters)

subset of machine learning that involve use of neural networks

Multilayer perceptron: tabular data

RNN: sequential (timeseries, text) data

CNN: image data

GAN: (mostly) image and audio data

- Linear regression: y(k, b) = kx + b
 - k, b: parameters
- Single unit of a neural net: y(k,b) = f(kx+b)
 - f: activation function

Size
$$\xrightarrow{k, b}$$
 $\xrightarrow{f(kx+b)}$ Price \xrightarrow{x} single neuron

X: Size of a house (feet²)	Y: Price of a house (1000's \$)
2104	460
1416	232
1534	315

Housing prices data

house price prediction

activation functions

neural network with 1 hidden layer

2 type of computations:

- linear combinations: $\sum_{i=1}^{n} (k_i * x_i + b)$
- activations: f(x)

Forward propagation

Equations

•
$$x_{2,1} = f(k_{1,1,1} * x_{1,1} + k_{1,2,1} * x_{1,2} + k_{1,3,1} * x_{1,3} + b_{2,1}) =$$

f
$$(\sum_{1}^{3} (k_{1,j,1} * x_{1,j} + b_{2,1})$$

•
$$x_{2,2} = f(k_{1,1,2} * x_{1,1} + k_{1,2,2} * x_{1,2} + k_{1,3,2} * x_{1,3} + b_{2,2}) =$$

$$f\left(\sum_{1}^{3} (k_{1,j,2} * x_{1,j} + b_{2,2})\right)$$

•
$$\hat{y}=f(k_{2,1,1}*x_{2,1}+k_{2,2,1}*x_{2,2}+b_{3,1})=$$

$$f\left(\sum_{1}^{2} (k_{2,j,1} * x_{2,j} + b_{3,1})\right)$$

Notation

- $k_{i,j,k}$: weight parameters connecting nodes
- $x_{i,j}$: input and hidden features
- $b_{i,j}$: bias parameters for each node
 - i: layer index
 - j: index of source node
 - k: index of receiver node
- f: activation function

neural network with 1 hidden layer

Neural network implementation pseudocode

- 1. Define layer sizes
- Initialize parameters (k,b) randomly
- Forward propagation
- Calculate cost
- Update parameters using
 - backpropagation
 - gradient descent
- Repeat step 5 until convergence

Forward propagation:

Hidden layer: 1) $z_2 = k_1 * x_1 + b_1$

2) $x_2 = f(z_2)$

Output layer: 1) $z_3 = k_2 * x_2 + b_2$

3) $\hat{y} = f(z_3)$

Cost: $C = (\hat{y} - y)^2$

- Cost C is function of parameters k_1 , k_2 , b_1 , b_2
- k_1, k_2 weights, b_1, b_2 biases

Backpropagation:

•
$$\frac{\partial C}{\partial k_1} = \frac{\partial C}{\partial y} \times \frac{\partial y}{\partial z_3} \times \frac{\partial z_3}{\partial x_2} \times \frac{\partial x_2}{\partial z_2} \times \frac{\partial z_2}{\partial k_1}$$

Gradient descent:

•
$$k_1 = k_1 - \alpha * \frac{\partial c}{\partial k_1}$$

Deep Learning summary

• Applicable to all 3 ML subcategories (supervised, unsupervised, reinforcement learning)

Advantages

- More powerful models, applied to solve more complex problems
- Can be used to solve a large variety of problems
- · Can be used for nonstructured data (image, video, text, audio)
- No feature engineering is needed

Disadvantages

- Requires a lot of data
- Requires a lot of computing resources (especially for large problems)
- Black box models (not interpretable)
- · A lot of hyperparameters to tune for having a good performance

Code example: Linear regression

```
import numpy as np
import matplotlib.pyplot as plt # To visualize
import pandas as pd # To read data
from sklearn.linear model import LinearRegression
data = pd.read_csv('data.csv') # load data set
X = data.iloc[:, 0].values.reshape(-1, 1) # values converts it into a numpy array
Y = data.iloc[:, 1].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but
have 1 column
linear regressor = LinearRegression() # create object for the class
linear regressor.fit(X, Y) # perform linear regression
Y pred = linear regressor.predict(X) # make predictions
plt.scatter(X, Y)
plt.plot(X, Y pred, color='red')
plt.show()
```

Credits:

https://towardsdatascience.com/linear-regression-in-6-lines-ofpython-5e1d0cd05b8d

```
• Model: y(k, b) = kx + \overline{b}
  · Parameters: k, b
  · Input: x
  • Output: y
```

$$J(k,b) = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) - y_i)^2$$

```
Initialize k, b, \varepsilon, \alpha
      while (J_{n-1} - J_n) > \varepsilon
           k_n = k_{n-1} - \alpha * \frac{\partial J(k_{n-1}, b_{n-1})}{\partial k}
          b_n = b_{n-1} - \alpha * \frac{\partial J(k_{n-1}, b_{n-1})}{\partial b}
      end
Return k, b
```


Code example: Neural network (MLP)

```
#Dependencies
import keras
from keras.models import Sequential
from keras.layers import Dense
# Neural network
model = Sequential()
model.add(Dense(16, input_dim=20, activation='relu'))
model.add(Dense(12, activation='relu'))
model.add(Dense(4, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=100, batch_size=64)
Epoch 1/100
1600/1600 [============== ] - 1s 600us/step - loss:
1.3835 - acc: 0.3019
Epoch 2/100
1.3401 - acc: 0.3369
Epoch 3/100
1600/1600 [============== ] - 0s 72us/step - loss:
1.2986 - acc: 0.3756
Epoch 4/100
1.2525 - acc: 0.4206
Epoch 5/100
1600/1600 [============= - - 0s 62us/step - loss:
1.1982 - acc: 0.4675
```

y_pred = model.predict(X_test)

Credits:

• https://towardsdatascience.com/building-ourfirst-neural-network-in-keras-bdc8abbc17f5

Machine Learning algorithms

Supervised

- Regression
 - Linear regression and extensions (ridge, lasso)
 - K-nearest neighbors
 - Support vector machine and its extensions (kernels)
 - Decision trees and its extensions (ensemble methods)
- Classification
 - Logistic regression
 - K-nearest neighbors
 - Support vector machine and its extensions (kernels)
 - · Naïve Bayes
 - Decision trees and its extensions (ensemble methods)

Unsupervised

- Clustering
 - K-means
- Dimensionality reduction
 - · Principal component analysis

Reinforcement Learning

- **Deep Learning**: can be used for supervised, unsupervised and reinforcement learning
 - Multilayer perceptron (regression and classification)
 - Autoencoders (dimensionality reduction)
 - Convolutional neural networks (regression and classification)
 - Recurrent neural networks (regression and classification)
 - Generative adversarial neural networks (unsupervised: new data generation)
 - Transformers (regression and classification)

References and further resources

Machine Learning Specialization:

https://www.coursera.org/specializations/machine-learning-introduction

Deep Learning Specialization:

• https://www.coursera.org/specializations/deep-learning?

3Blue1Brown, Neural Networks playlist:

• https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Recap

• Regression: Linear regression

• Classification: Logistic regression

• Clustering: K-means

• Deep Learning: Multilayer perceptron

Thank you