1. Consider stochastic gradient descent method to learn the house price model

$$h(x_1, x_2) = \sigma(b + w_1x_1 + w_2x_2),$$

where σ is the sigmoid function

Given one single data point $(x_1, x_2, y) = (1, 2, 3)$, and assuming that the current parameter is $\theta^0 = (b, w_1, w_2) = (4, 5, 6)$, evaluate θ^1 .

Just write the expression and substitute the numbers; no need to simplify or

By Stochastic Gradient Descent, Gradient Descent Rule, and hypothesis, we have $9^{\circ} = (b, w_1, w_2) = (4, 5, 6)$ and $\theta' = \theta^{\circ + 1} = \theta^{\circ} - \propto \nabla_{\theta} \left[(\theta; x_1, x_2, t) \right]$ with $L(\theta; x_1, x_2, t) = (t - h_{\theta}(x_1, x_2))^2$ and d> 0 called learning rate. - (*)

Let
$$Z=b+w_1\chi_1+w_2\chi_2$$
, then $\nabla_0 L=\frac{dL}{d\theta}=\frac{dL}{d\lambda}\frac{d\lambda}{dz}\frac{dz}{d\theta}$
=-2(Y-ho(χ_1,χ_2)). 6'(Z). $\nabla_0 Z=-(\frac{XX}{2})$

We have
$$6(2) = \frac{1}{1+e^{-2}}$$
, $6'(2) = \frac{e^{-2}}{(1+e^{-2})^2}$, and $1-6(2) = 1 - \frac{1}{1+e^{-2}} = \frac{e^{-2}}{1+e^{-2}}$.
Thus $6'(2) = \frac{e^{-2}}{(1+e^{-2})^2} = 6(2) \cdot (1-6(2)) - (**)$

By (*), (*X) and (XXX), we have $\theta' = \theta'' - \alpha \cdot \left[-2 \left(4 - \lambda_{\theta} \left(\chi_{1}, \chi_{2} \right) \right) \cdot 6 \left(2 \right) \cdot \left(1 - 6 \left(2 \right) \right) \cdot \left(\chi_{1} \right) \right]$ Substitute $\theta^{\circ}=(4,5,6)$ and $(\chi,\chi_{\perp})=(1,1)$ into the update formula, we have $\theta' = \begin{pmatrix} \frac{4}{5} \\ \frac{1}{5} \end{pmatrix} + 1 \cdot \alpha \cdot (3 - \lambda_{(4,5,6)}(1,2)) \cdot 6(4+5*1+6*2) \cdot (1-6(4+5*1+6*2)) \cdot (\frac{1}{2})$ $= (\frac{1}{5}) + 2 \cdot \alpha \cdot (3 - 6(21)) \cdot (1 - 6(21)) \cdot (\frac{1}{5})$

Thus
$$\begin{pmatrix} b_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 4 + 2 \cdot d \cdot (3 - 6(21)) \cdot 6(21) \cdot (1 - 6(21)) \cdot 1 \\ 5 + 2 \cdot d \cdot (3 - 6(21)) \cdot 6(21) \cdot (1 - 6(21)) \cdot 1 \\ 6 + 2 \cdot d \cdot (3 - 6(21)) \cdot 6(21) \cdot (1 - 6(21)) \cdot 2 \end{pmatrix}$$

- 2. (a) Find the expression of $\frac{d^k}{dx^k}\sigma$ in terms of $\sigma(x)$ for $k=1,\cdots,3$ where σ is the sigmoid function.
 - (b) Find the relation between sigmoid function and hyperbolic function.

$$F_{0Y} k = \lambda, \frac{d^{2}6(x)}{dx^{2}} = \frac{d}{dx} \left(\frac{d6(x)}{dx} \right) = \frac{d}{dx} \left[6(x) \cdot (1 - 6(x)) \right] = \frac{d}{dx} \left[6(x) - (6(x))^{2} \right]$$

$$= \frac{d}{dx} 6(x) - \frac{d}{dx} (6(x))^{2}$$

$$= 6(x) \cdot (1 - 6(x)) - \lambda 6(x) \cdot \frac{d}{dx} 6(x)$$

$$= 6(x) \cdot (1 - 6(x)) \cdot \lambda 6(x) \cdot (1 - 6(x))$$

$$= 6(x) \cdot (1 - 6(x)) \cdot (1 - \lambda 6(x))$$

$$F_{0V} = \frac{1}{2}, \frac{\frac{1}{3}6(x)}{\frac{1}{3}x^{3}} = \frac{1}{3}x \left[\frac{1}{3}(x) + \frac{1}{3}$$

(b) We know
$$6(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{e^{x+1}}$$
 and $tanh(\frac{x}{2}) = \frac{e^{x/2} - e^{-x/2}}{e^{x/2} + e^{-x/2}} = \frac{e^x - 1}{e^x + 1} - (x)$

By (2), we have
$$G(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{e^{x+1}} = \frac{e^x-1}{e^x+1} + \frac{1}{e^x+1} = \tanh(\frac{x}{2}) + \frac{1}{e^x+1}$$

	down here.
3,	、課堂中有提及3種 Gradient Descent 方法,但海詳細說明這3種方法在應用
	上的傻劣,或者是在不同的需求中,是否有方法判断何趋方法最高適合。
	雖然課程最初教授就有提到,這堂課會專注在理論上,但我還是希望能稱微
	有關於應用的設明,或是像此次 assignment 的第1题,實際自己計算推導一次
	也讓我對於理論有更深刻地理解。