

Zählen perfekter Matchings in planaren Graphen

Kathlén Kohn

Institut für Mathematik Universität Paderborn

25. Mai 2012

Inhaltsverzeichnis

Motivation

Einführung in Graphentheorie

Zählen perfekter Matchings

Fazit

Quellen

Dimer-Überdeckungen aus der statistischen Physik Wie viele mögliche Überdeckungen?

"Perfektes Matching"

Kann die Anzahl perfekter Matchings effizient berechnet werden?

- Wenn ein perfektes Matching existiert, kann es effizient berechnet werden.
- ▶ Die Berechnung der Anzahl perfekter Matchings in allgemeinen Graphen ist #P-vollständig.
- Aber: In planaren Graphen lässt sich die Anzahl perfekter Matchings effizient berechnen.

Definition

Ein ungerichteter Graph G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Menge von 2-elementigen Teilmengen von V ist.

- ▶ V ist Knotenmenge, n := |V|, im Folgenden: $V = \{0, ..., n-1\}$
- ▶ E ist Kantenmenge, m := |E|

$$V = \{0, 1, 2, 3, 4, 5\}$$

$$E = \{\{0, 1\}, \{0, 3\}, \{1, 3\}, \{1, 4\}, \{2, 5\}\}$$

Definition

Ein gerichteter Graph \vec{G} ist ein Paar (V, E), wobei V eine endliche Menge ist und $E \subseteq V \times V$.

- ▶ V ist Knotenmenge, n := |V|, im Folgenden: $V = \{0, ..., n-1\}$
- ▶ E ist Kantenmenge, m := |E|

$$V = \{0, 1, 2, 3, 4, 5\}$$

$$E = \{(0, 1), (0, 3), (1, 0), (1, 4), (3, 1), (5, 2)\}$$

Definition

Eine Orientierung ordnet jeder Kante eines ungerichteten Graphen eine Richtung zu. Man erhält einen gerichteten Graphen.

Definition

Ein ungerichteter Graph heißt zusammenhängend, wenn es für alle $v, w \in V$ einen ungerichteten Weg von v nach w gibt, also eine Folge von Knoten $(v_1 = v, v_2, \dots, v_k = w)$, so dass $\{v_i, v_{i+1}\} \in E \ \forall i \in \{1, \dots, k-1\}$.

Ein gerichteter Graph heißt zusammenhängend, wenn der dazugehörige ungerichtete Graph zusammenhängend ist.

Definition

Ein ungerichteter Kreis C in einem Graphen G = (V, E) ist eine Folge paarweise verschiedener Knoten (v_1, \ldots, v_k) , so dass für alle $i \in \{1, \ldots, k-1\}$ gilt, dass $\{v_i, v_{i+1}\}$ eine Kante aus dem zugehörigen ungerichteten Graphen ist, genauso wie $\{v_k, v_1\}$. Ein gerichteter Kreis C in einem gerichteten Graphen G = (V, E) ist eine Folge paarweise verschiedener Knoten (v_1, \ldots, v_k) , so dass für alle $i \in \{1, \ldots, k-1\}$ gilt, dass $(v_i, v_{i+1}) \in E$, genauso wie $(v_k, v_1) \in E$.

Definition

Die Länge eines Kreises $C = (v_1, \dots, v_k)$ ist die Anzahl der Kanten auf C, also k.

Länge: 4

Perfekte Matchings

Definition

Ein Matching in einem ungerichteten Graph G = (V, E) ist eine Teilmenge $M \subseteq E$ paarweise knoten-disjunkter Kanten. Ein Matching M ist perfekt, wenn M jeden Knoten aus V abdeckt.

Perfekte Matchings

- Die Existenz eines perfekten Matchings setzt voraus, dass |V| gerade ist.
- Wenn M und M' zwei perfekte Matchings in G sind, dann ist M ∪ M' eine Sammlung von einzelnen Kanten und Kreisen gerader Länge.

Perfekte Matchings

Pfaffsche Orientierung

Definition

Ein Kreis C gerader Länge ist durch eine Orientierung \vec{G} ungerade orientiert, wenn beim Durchlaufen von C in beliebiger Richtung die Anzahl der Kanten, deren Orientierung in \vec{G} gleich der des Durchlaufes ist, ungerade ist.

Pfaffsche Orientierung

Definition

Eine Orientierung \vec{G} heißt Pfaffsche Orienterung, falls Folgendes gilt: Für alle Paare (M, M') von perfekten Matchings in G ist jeder Kreis in $M \cup M'$ durch \vec{G} ungerade orientiert.

Pfaffsche Orientierung

Schiefe Adjazenzmatrix

Definition

Die schiefe Adjazenzmatrix $A_s(\vec{G}) = (a_{ij})_{0 \le i,j \le n-1}$ eines ungerichteten Graphen G wird definiert durch:

$$a_{ij} = \left\{ egin{array}{ll} +1, & ext{falls } (i,j) \in E(\vec{G}) \ -1, & ext{falls } (j,i) \in E(\vec{G}) \ 0, & ext{sonst} \end{array}
ight.$$

Schiefe Adjazenzmatrix

$$\begin{pmatrix} 0 & +1 & +1 & +1 \\ -1 & 0 & -1 & +1 \\ -1 & +1 & 0 & -1 \\ -1 & -1 & +1 & 0 \end{pmatrix}$$

Theorem von Kasteleyn

Theorem (1)

Für jede Pfaffsche Orientierung \vec{G} von G ist die Anzahl der perfekten Matchings in G gleich $\sqrt{\det A_s(\vec{G})}$.

Theorem von Kasteleyn

$$\sqrt{\det\begin{pmatrix} 0 & +1 & +1 & +1 \\ -1 & 0 & -1 & +1 \\ -1 & +1 & 0 & -1 \\ -1 & -1 & +1 & 0 \end{pmatrix}} = 3$$

Definition

G bezeichnet den gerichteten Graphen, den man aus dem ungerichteten Graphen G erhält, indem jede ungerichtete Kante $\{i,j\}$ durch das antiparallele Paar gerichteter Kanten (i,j),(j,i) ersetzt wird.

Definition

Eine gerade Kreisüberdeckung von \overleftrightarrow{G} ist eine Sammlung \mathcal{C} von gerichteten Kreisen $C \subseteq E(\overleftrightarrow{G})$ gerader Länge, so dass jeder Knoten von G in genau einem Kreis aus \mathcal{C} enthalten ist.

Planare Graphen

Definition

Ein Graph *G* heißt planar, falls er in einer Ebene dargestellt werden kann, so dass sich die Kanten nur in den Knoten schneiden.

Planare Graphen

Theorem (2)

Jeder planare Graph hat eine Pfaffsche Orientierung.

Definition

Durch die Einbettung eines planaren Graphen *G* in die Ebene wird die Ebene in Gebiete aufgeteilt, die durch die Kanten von *G* begrenzt werden.

Sei \ddot{G} ein zusammenhängender, gerichteter, in die Ebene eingebetteter Graph.

► Eigenschaft A: In jedem Kreis *C* hat die Anzahl der Kanten, die im Uhrzeigersinn orientiert sind, gegensätzliche Parität zur Knotenzahl von *G* innerhalb von *C*.

Sei \vec{G} ein zusammenhängender, gerichteter, in die Ebene eingebetteter Graph.

- Eigenschaft A: In jedem Kreis C hat die Anzahl der Kanten, die im Uhrzeigersinn orientiert sind, gegensätzliche Parität zur Knotenzahl von G innerhalb von C.
- Eigenschaft B: Jedes Gebiet, bis auf das äußere unendliche Gebiet, hat eine ungerade Anzahl an Kanten, die im Uhrzeigersinn orientiert sind.

Definition

Sei C ein Kreis.

v := Anzahl Knoten innerhalb von C;

k := Anzahl Knoten bzw. Kanten in C;

c := Anzahl Kanten in C, die im

Uhrzeigersinn orientiert sind;

f := Anzahl Gebiete innerhalb von C;

e := Anzahl Kanten innerhalb von C;

 $c_i := \text{Anzahl Grenzkanten von Gebiet}$

i, die im Uhrzeigersinn orientiert sind

7, die im Offizeigersinn onenliert s

$$(i = 0, \ldots, f - 1);$$

$$v = 1, k = 8, c = 4,$$

$$f = 4, e = 4,$$

$$c_1=3, c_2=3, c_3=1, c_4=1$$

Fazit

Sei *G* ein planarer ungerichteter Graph.

- ► Theorem (2): G hat eine Pfaffsche Orientierung \vec{G} . Aus Beweis ergibt sich: \vec{G} lässt sich effizient finden .
- ▶ Theorem (1): Anzahl perfekter Matchings ist $\sqrt{\det A_s(\vec{G})}$.
- \Rightarrow In planaren Graphen lässt sich die Anzahl perfekter Matchings effizient berechnen.

Quellen

- Jerrum: Counting, sampling and integrating: algorithms and complexity, Kapitel 1
- Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms. Third Edition. The MIT Press, 2009
- Kolmogorov, Vladimir: Blossom V: A new implementation of a minimum cost perfect matching algorithm. Springer, 2009
- Montanaro, Ashley: Lecture "Counting perfect matchings in planar graphs", University of Bristol, 2009