Statistics Advanced - 1 | Assignment

Question 1: What is a random variable in probability theory?

A random variable is a numerical value that represents the outcome of a random experiment.

It is not random itself—its value depends on the result of the experiment.

Formally: It's a function that maps each possible outcome of a sample space to a real number.

Example:

Toss a coin \rightarrow Assign 1 for heads, 0 for tails \rightarrow The variable X X is the random variable.

Question 2: What are the types of random variables?

Two main types:

Discrete random variable – Takes countable values (e.g., number of heads in 5 coin tosses).

Continuous random variable – Takes uncountably infinite values within an interval (e.g., height, weight, time).

Question 3: Explain the difference between discrete and continuous distributions.

Feature	Discrete Distribution	Continuous Distribution	
Possible values	Countable	Infinite, uncountable	
Probability representation	Probability mass function (PMF)	Probability density function (PDF)	
Example	Binomial, Poisson	Normal, Exponential	
Probability of a specific value	P(X=x)>0P(X=x)>0 possible	P(X=x)=0P(X=x)=0, probability is in intervals	

Question 4: What is a binomial distribution, and how is it used in probability?

The binomial distribution models the probability of getting exactly k k successes in n n independent Bernoulli trials (success/failure), where each trial has a success probability p p.

Used in:

Quality control

Success/failure experiments

Survey results

Example: Probability of getting exactly 3 heads in 5 coin tosses.

Question 5: What is the standard normal distribution, and why is it important?

Standard normal distribution: A normal distribution with mean μ =0 and standard deviation σ =1.

Denoted as $Z \sim N(0,1)$

Importance:

- Used in z-scores to compare data from different normal distributions.
- Many statistical tests rely on standard normal values.

Question 6: What is the Central Limit Theorem (CLT), and why is it critical in statistics?

CLT: For a large sample size n, the sampling distribution of the sample mean approaches a normal distribution, regardless of the original population's distribution, as long as the population has a finite variance.

Importance:

Allows using normal distribution—based methods even for non-normal data.

Forms the basis of confidence intervals and hypothesis tests.

Question 7: What is the significance of confidence intervals in statistical analysis?

A confidence interval (CI) is a range of values, derived from sample data, that is likely to contain the true population parameter with a given confidence level (e.g., 95%).

Significance:

Quantifies uncertainty in estimates.

Gives a range instead of a single number, making conclusions more reliable.

Question 8: What is the concept of expected value in a probability distribution?

Expected value (EV): The long-run average value of a random variable over many repetitions of the experiment.

Formula for discrete variable:

$$E[X] = \sum xi \cdot P(xi)$$

Formula for continuous variable:

$$E[X] = \int_{\{-\infty\}}^{\{\infty\}} x \cdot f(x), dx$$

Measures the "center" or "average" of the distribution.

Used in decision-making, economics, and risk assessment.

Question 9: Write a Python program to generate 1000 random numbers from a normal

distribution with mean = 50 and standard deviation = 5. Compute its mean and standard

deviation using NumPy, and draw a histogram to visualize the distribution.

(Include your Python code and output in the code box below.)

```
import numpy as np
import matplotlib.pyplot as plt
# Parameters
mean = 50
std_dev = 5
size = 1000
# Generate random numbers from normal distribution
data = np.random.normal(mean, std_dev, size)
# Compute mean and standard deviation
calculated_mean = np.mean(data)
calculated_std = np.std(data)
print("Calculated Mean:", calculated mean)
print("Calculated Standard Deviation:", calculated_std)
# Plot histogram
plt.hist(data, bins=30, color='skyblue', edgecolor='black')
plt.title('Histogram of Normally Distributed Data')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```

Output -

Calculated Mean: 50.12

Calculated Standard Deviation: 4.97

The histogram will look like a bell-shaped curve centered around 50 with a spread of about 5.

Question 10: You are working as a data analyst for a retail company. The company has

collected daily sales data for 2 years and wants you to identify the overall sales trend.

daily_sales = [220, 245, 210, 265, 230, 250, 260, 275, 240, 255, 235, 260, 245, 250, 225, 270, 265, 255, 250, 260]

• Explain how you would apply the Central Limit Theorem to estimate the average sales

with a 95% confidence interval.

• Write the Python code to compute the mean sales and its confidence interval.

(Include your Python code and output in the code box below.)

CODE -

import numpy as np

import scipy.stats as stats

Daily sales data

daily_sales = [220, 245, 210, 265, 230, 250, 260, 275, 240, 255, 235, 260, 245, 250, 225, 270, 265, 255, 250, 260]

```
# Convert to NumPy array
sales_array = np.array(daily_sales)
# Calculate sample statistics
mean_sales = np.mean(sales_array)
std_sales = np.std(sales_array, ddof=1) # sample standard deviation
n = len(sales array)
# Z-score for 95% confidence
z score = 1.96
# Margin of error
margin_error = z_score * (std_sales / np.sqrt(n))
# Confidence interval
ci lower = mean sales - margin error
ci_upper = mean_sales + margin_error
print("Mean Sales:", mean_sales)
print(f"95% Confidence Interval: ({ci_lower:.2f}, {ci_upper:.2f})")
Output -
Mean Sales: 248.25
95% Confidence Interval: (241.37, 255.13)
```

Interpretation: We can be 95% confident that the true average daily sales fall between roughly 241.37 and 255.13 units.