Regression Assignment

A client's requirement is, he wants to predict the insurance charges based on the several parameters .The client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

Solution:

I would use a ML to predict the insurance charges

ML-Supervised-Regression

Insurance Prediction List

1.Multiple Linear Regression :

r score=0.7894

2. Support Vector Machine:

S.No	Hyper	Linear	Poly	Rbf	Sigmoid
	Parameter C	r score	r score	r score	r score
1	C=10	-0016	-0.0931	-0.0819	-0.0907
2	C=100	0.5432	-0.0997	-0.1248	-0.1181
3	C=300	0.6123	-0.0919	-0.1258	-0.2304
4	C=500	0.6270	-0.0820	-0.1246	-0.4562
5	C=999	0.6340	-0.0555	-0.1175	-1.1663

3.Decision Tree:

Squared	Squared	Friedman	Friedman	Absolute	Absolute	Poisson	Poisson
error	error	mse	mse	error	error	Best	Random
Best	Random	Best	Random	Best	Random		
0.7039	0.6718	0.6890	0.7063	0.6618	0.7473	0.6665	0.6758

4.Random Forest:

S.No	N Estimators	Max features	Max features	Max_features
		sqrt	log2	auto
		r score	r score	r score
1	10	0.8612	0.8544	0.8227
2	100	0.8709	0.8713	0.8540
3	300	0.8717	0.8708	0.8551
4	500	0.8713	0.8728	0.8565
5	999	0.8725	0.8733	0.8549

The final best model for regression using machine learning is:

Random Forest n_estimators=999, max_features ="log2" R² Score = 0.8733