

Course Name : Physics – I Course # PHY 107

Examples on Traveling Waves

Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com

Copyright: It is unlawful to distribute or use this lecture material without the written permission from the author

Example # 16.10: The equation of a transverse wave traveling along a very long string is $y = 6.0 \sin(0.020\pi x + 4.0\pi t)$, where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave, and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at $x = 3.5 \, \mathrm{cm}$ when $t = 0.26 \, \mathrm{s}$?

Solution: Comparing to the standard equation: $y(x,t) = A\sin(kx + \omega t)$, we easily get:

- (a) Amplitude, $A = |y_{\text{max}}| = 6.0 \,\text{cm}$.
- (b) Wave number, $k=0.020\pi \, \mathrm{r/cm}$. $\lambda=2\pi/k=100\,\mathrm{cm}$.
- (c) Angular frequency, $\omega = 4.0\pi \, \mathrm{r/s.}$ \therefore $f = \omega/2\pi = 2 \, \mathrm{Hz.}$
- (d) Wave speed, $v = f\lambda = 200 \,\mathrm{cm/s}$.
- (e) The direction of propagation is negative.
- (f) The Max. Transverse Speed $=\left|\frac{\partial y}{\partial t}\right|=(6.0)(4.0\pi)\,\mathrm{cm/s}=24\pi\,\mathrm{cm/s}.$
- (g) $y(3.5\text{cm}, 0.26\text{sec}) = (6.0\text{ cm})\sin(0.020\pi \times 3.5 + 4.0\pi \times 0.06)$ = $(6.0\text{ cm})\sin(1.11\pi) = -2.03\text{ cm}$.

Example # 16.17: The linear mass density of a string is $1.6 \times 10^{-4} \, \rm kg/m$. A transverse wave is setup that obeys

$$y(x,t) = (0.021 \,\mathrm{m}) \sin \left[(2.0 \,\mathrm{m}^{-1}) x + (30 \,\mathrm{s}^{-1}) t \right].$$

Find the wave speed and the tension in the string.

Solution: Given: $\mu = 1.6 \times 10^{-4} \, \mathrm{kg/m}$. Now compare to the standard equation:

 $y = A\sin(kx + \omega t)$, we easily find that amplitude $A = 0.021 \, \mathrm{m}$, wave number

 $k=2.0\,\mathrm{r/m}$ and angular frequency $\omega=30\,\mathrm{r/s}.$

Therefore, the wave speed is: $v=(\omega/k)=(30/2)\mathrm{m/s}=15\,\mathrm{m/s}$. And the tension in the string is: $T=\mu v^2=1.6\times 10^{-4}\times (15)^2\,\mathrm{N}=0.036\,\mathrm{N}$.

Example # 16.53: A string is oscillating according to

$$y(x,t) = (0.50 \,\mathrm{cm}) \sin \left[\left(\frac{\pi}{3} \,\mathrm{cm}^{-1}\right) x\right] \cos \left[\left(40\pi \,\mathrm{s}^{-1}\right) t\right] ,$$

which is a standing wave. What are: amplitude, speed of the waves and the distance between the nearest nodes.

Solution: Comparing to the standard equation: $y=2A\sin(kx)\cos(\omega t)$, we easily find that amplitude $A=(0.50\,\mathrm{cm})/2=0.25\,\mathrm{cm}$, wave number $k=(\pi/3)\,\mathrm{r/cm}$ and angular frequency $\omega=40\pi\,\mathrm{r/s}$. So, the wavelength is $\lambda=2\pi/k=2\pi/(\pi/3)\,\mathrm{cm}=6\,\mathrm{cm}$.

Therefore, the wave speed is: $v = (\omega/k) = (40\pi)/(\pi/3) \text{cm/s} = 120 \text{ cm/s}$.

Now, the nodes are located at $x_n = n(\lambda/2)$, where n is positive integers. Therefore, the distance between any two nearest nodes is

$$\Delta x = x_{n+1} - x_n = (n+1)\frac{\lambda}{2} - n\frac{\lambda}{2} = \frac{\lambda}{2} = \frac{6}{2}$$
cm = 3.0 cm.