

AW NPU 常见网络性能分析数据

版本号: 1.0

发布日期: 2021.07.21

版本历史

版本号	日期	制/修订人	内容描述
1.0	2021.07.21	PDC	NPU 工具安装说明。

目 录

	前言	1
	1.1 读者对象	1
	1.2 约定	
	1.2.1 符号约定	1
2	正文	2
	2.1 NPU 开发简介	2
	2.2 开发流程	2
	2.3 常见网络 benchmark	3
	2.4 内存分析数据	3
3	结束	5

前言

1.1 读者对象

本文档(本指南)主要适用于以下人员:

- 技术支持工程师
- 软件开发工程师
- AI 应用案客户

1.2 约定

1.2.1 符号约定

本文中可能出现的符号如下:

警告

1. 技巧

2. 小常识

🛄 说明

说明

正文

2.1 NPU 开发简介

- 支持 int8/uint8/int16 量化精度,运算性能可达 1TOPS.
- 相较于 GPU 作为 AI 运算单元的大型芯片方案, 功耗不到 GPU 所需要的 1%.
- 可直接导入 Caffe, TensorFlow, Onnx, TFLite, Keras, Darknet, pyTorch 等模型格式.
- 提供 AI 开发工具: 支持模型快速转换、支持开发板端侧转换 API、支持 TensorFlow, TF Lite, Caffe, ONNX, Darknet, pyTorch 等模型.
- 提供 AI 应用开发接口: 提供 NPU 跨平台 API.

2.2 开发流程

图 2-1: npu 1.png

版权所有 © 珠海全志科技股份有限公司。保留一切权利

2.3 常见网络 benchmark

NPU Performance				
Case	FPS @ 500MHz	BW(MB/s)@ 500MHz	BW(MB/Inf)	
inception_v1(224x224)	48.25	1213.82	25.16	
inception_v3_224(224x224)	31.24	1425.55	45.63	
inception_v3_299(299x299)_tf	18.72	1392.02	74.45	
mobilenet_v1(224x224)	141.00	2134.70	15.14	
mobilenet_v2(224x224)_tflite	124.54	2260.47	18.15	
mobilenet_v2(224x224)_onnx	139.71	2451.92	17.53	
resnet_v1_50(224x224)	27.71	1440.77	51.99	
retinanet_resnet_50(320x320)	6.48	1746.42	269.27	
vgg16(224x224)	8.87	1835.00	206.89	
yolo_v2_voc(416x416)	15.89	1315.91	82.79	
yolov3(416x416)	3.78	1311.20	346.60	
yolov4(416x416)	4.39	1598.47	363.72	
yolov4-tiny(416x416)	50.08	1526.75	30.48	
yolov5(416x416)	10.73	1420.09	132.25	
yolov5s(640x640)	5.51	1379.77	250.60	
lenet(28x28)	2356.66	871.96	0.37	
AW_person_detection_darknet	55.40	896.92	16.19	
AW_Face_detection_onnx	61.11	2028.12	33.19	
inception_v4_299(299x299)	9.26	1684.87	182.03	
resnet18(224x224)	72.57	1008.72	13.90	
googlenet(224x224)	50.63	1095.86	21.58	
alxnet(224x224)	36.29	1764.61	48.63	
inception_v3_299(299x299)_onnx	18.67	1388.02	74.35	

图 2-2: NPU benchmark

以上数据是裸机程序跑网络的数据,并未考虑到方案中的其它应用。

2.4 内存分析数据

方案应用场景中的内存消耗数据分析.

代码和数据部分的占用,包括 KMD 和 UMD 本身占用的空间大小,大约 180k.

	text	data	bss	总计
内核态	55164	920	388	56472
用户态	99739+22656	604+484	388+72	123943
总计	99739+22656+55164= 177559	604+484+920= 2008	388+72+388= 848	180415
20 10 0 60	•			

图 2-3: code 占用大小

版权所有 © 珠海全志科技股份有限公司。保留一切权利

Yolov3 模型的内存数据统计,运行时消耗约 48M 内存。

	total video memory	total system memory	viplite driver code size	total
大小	48460032	81500	180415	48721947
占比	99.46%	0.17%	0.37%	100%

图 2-4: yolov3 内存统计

yolov3-tiny 模型的内存数据统计,运行时消耗月 6.8M 内存。

	total video memory	total system memory	viplite driver code size	total
大小	6710784	20596	180415	6911795
占比	97.092%	0.307%	2.61%	100%

图 2-5: yolov3-tiny 内存统计

3 结束

著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。