Лабораторна робота №3 Розрахунок параметрів мережі 802.11е (мобільний WiMAX)

3.1. МЕТА РОБОТИ

Ознайомитися з принципами розрахунку параметрів мережі 802.11e (техно- гия мобільний WiMAX).

3.2. ТЕОРЕТИЧНІ ВІДОМОСТІ

3.2.1. ЧУТЛИВІСТЬ ПРИЙМАЧА

Під *чутливість* приймача розуміється здатність радіоприймача приймати слабкі сигнали . На чутливість надають влі- яние потужність теплових шумів приймача, відносини сигнал / шум, коеффі- циент шуму, а також втрати реалізації, що враховують неідеальність приймача , помилки квантування, фазовий шум і ін.

$$S_R = P_{h,n} + K_{SNR} + K_n + L_I,$$
 (3.1)

де $P_{h.n.}$ - потужність теплових шумів приймача; K_{SNR} - відношення сигнал / шум приймача; K_n - коефіцієнт шуму; L_I - втрати реалізації.

Потужність теплових шумів (heat noise) залежить від ширини смуги каналу B (bandwidth) і може бути обчислена по формулі

$$P_{h.n.} = -174 + 10 \cdot lg(\Delta f),$$
 (3.2)

де Δf - використовувана смуга частот.

Стандарт IEEE 802.16е орієнтований на використання смуг частот шириною в 1,25; 5,0; 10,0; 20,0 МГц і заснований на технології OFDM. За рахунок наявності захисного інтервалу між поднесущими ефективна ширина спектра сигналу нескільки більше ширини каналу В, тому Δ f розраховується як добуток ширини каналу B, коефіцієнта дискретизації n і відношення числа використовуваних піднесучих N_{use} до повного числа піднесучих OFDM сигналу N_{all} :

$$\Delta f = B \cdot n \cdot \frac{N_{use}}{N_{all}}.$$
(3.3)

Кількість використовуваних піднесучих N_{use} і повне число піднесучих OFDM сигналу N_{all} для кожної ширини каналу наведені в табл. <u>3.1</u> . Кількість використовуваних піднесучих N_{use} складається з суми числа піднесучих даних N_{data} і числа пілотних піднесучих N_{pilot} . Число піднесучих даних

визначається окремо для низхідного напрямки $N_{{\scriptscriptstyle DLdata}}$ і висхідного напрямки $N_{{\scriptscriptstyle ULdata}}$.

Коефіцієнт дискретизації n визначає інтервал між поднесучими (разом з шириною смуги і кількістю піднесучих даних) і корисний час символу. Для каналу, ширина смуги якого кратна 1,25; 1,50; 2,00; 2,75 М Γ ц, він дорівнює 28/25-.

Таблиця 3.1 Кількість піднесуть для різних значень ширини каналу IEEE 802.16e

Ширина смуги В, МГц	N_{all}	N use	N _{DLdata}	N _{ULdata}
1,25	128	85	72	56
5,00	512	421	360	280
10,00	1024	841	720	560
20,00	2048	1681	1440	1120

Відношення сигнал / шум приймача K_{SNR} залежить від схеми модуляції. Перелік схем модуляцій, затверджених стандартом WiMAX, і їх вимоги до відношенню сигнал / шум K_{SNR} для сверточного кодування (СК) і сверточного турбокодування (СТК) наведені в табл. 3.2 . Наведені дані справедливі для каналу з адитивним білим гауссовским шумом і коеффіціент помилок рівним 10^{-6} . У даній роботі використовувати для непарних варіантів сверточне кодування (СК), а для парних - сверточное турбо- кодування (СТК).

Параметри схем модуляції ІЕЕЕ 802.16е

Таблиця 3.2

схема модуляції	K $_{\mathit{SNR}}$ для СК, дБ	K $_{SNR}$ для СТК, дБ	Кількість біт на символ <i>R</i>
			symb
QPSK 1/2	5,0	2,5	1,0
QPSK 3/4	8,0	6,3	1,5
QAM-16 1 / 2	10,5	8,6	2,0
QAM-16 ³ /4	14,0	12,7	3,0
QAM-64 1/2	16,0	13,8	3,0
QAM-64 ² /3	18,0	16,9	4,0
QAM-64 ³ / ₄	20,0	18,0	4,5

Коефіцієнт шуму K_n , відповідно до рекомендацій WiMAX Forum приймається рівним 7 дБ.

Втрати реалізації $L_{\it I}$, викликані, наприклад, підвищеним фазовим шу мом приймача, знижують його чутливість, і для нормальної роботи такою системи потрібно більше потужний радіосигнал. Значення $L_{\it I}$ прийнято рівним 5 дБ.

3.2.2. БЮДЖЕТ ЛІНІЇ

Для розрахунку дальності зв'язку використовується рівняння бюджету лінії, яка зв'язує рівні потужності на вході приймача і вихідний потужності

передавача, що знаходяться один від одного на заданій відстані. При розрахунку дальності зв'язку вибирається найменше з значень бюджету для низхідного (downlink, DL) і висхідного (uplink, UL) напрямків. Бюджет лінії залежить від технічних характеристик базової (БС, bs) і абонентського мобільного (МС, ms) станцій. Завмирання сигналу не враховуються мо делью поширення радіохвиль, тому їх слід врахувати при розрахунку бюджету лінії (запас на завмирання F становить $10\,\mathrm{д}$ Б).

На кордонах секторів в канал зв'язку вносить спотворення міжканального інтерференція, рівень якої прийнято: для низхідного каналу $I_{DL} = 2$ дБ, для висхідного каналу $I_{DL} = 3$ дБ.

Для обліку того факту, що будівлі перешкоджають поширенню електронітних хвиль, вводять додаткову поправку U_c , значення якої залежить від щільності забудови. Значення поправочного коефіцієнта U_c для різних типів забудови наведені в табл. $\underline{3.3}$.

Значення поправочного коефіцієнта $U_{\scriptscriptstyle C}$

Таблиця 3.3

Тип забудови	U_{c} , д ${f B}$
Сільська місцевість	5
передмістя	0
міський район	- 3
Щільна міська забудова	- 4

Бюджет лінії для низхідного напрямку від базової станції до абонентської станції (БС - → MC) розраховується за формулою

$$P_{DL} = P_{Txbs} - S_{Rms} + G_{Txbs} + G_{Rxms} - L_f - F - I_{DL} + U_C,$$
 (3.4)

де P_{Txbs} - випромінювана потужність передавача БС, дБм; S_{Rms} - чутливою ність приймача МС, дБм; G_{Txbs} - коефіцієнт посилення антени передавача БС, дБи; G_{Rxms} - коефіцієнт посилення антени приймача МС, дБи; L_f - втрати в фідері, дБ; F - завмирання радіосигналу, дБ; I_{DL} - рівень міжканального інтерференції спадного каналу, дБ; U_C - поправочний коефіцієнт типу забудови, дБ.

В роботі для розрахунків використовувати величину втрат в фідері L_{f} , яка дорівнює 2 дБ.

Для висхідного напрямку від абонентської станції до базової станції (МС -→БС) бюджет лінії має вигляд

$$P_{UL} = P_{Txms} - S_{Rhs} + G_{Txms} + G_{Rxhs} - F - I_{UL} + U_C.$$
 (3.5)

3.2.3. РОЗРАХУНОК ВТРАТ НА ТРАСІ РАДІОСИГНАЛУ

Для розрахунку оптимальної відстані від базової станції до абонента необхідно оцінити рівень втрат при поширенні радіохвиль. Втрати на трасі при поширенні електромагнітних хвиль в реальному середовищі визначають зменшення рівня потужності сигнала Ці втрати не повинні перевищувати енергетичний бюджет лінії (мінімальний з двох значен ний). Для розрахунку рівня втрат на трасі радіосигналу робоча група ІЕЕЕ 802.16 використовує модель Ерцег-Грінштейна, яка базується на експериментальних вимірах, проведених в США. З урахуванням деякої мінімальної відстані d_0 рівень втрат розраховується за формулою

$$L = 10 \cdot \lg(4\pi d_0 \lambda) + 10 \cdot \gamma \cdot \lg(d/d_0) + s + \Delta L_f + \Delta L_h, \tag{3.6}$$

де d - відстань від БС до МС ($d \ge d_0$, $d_0 = 100$ м); λ - довжина хвилі, м; s - рівень затінення сигналу; Δ_f - поправочний коефіцієнт для часто- ти; ΔL_h - поправочний коефіцієнт для висоти антени МС, що залежить від типу місцевості; $\gamma = a - b \cdot h_{bs} + c/h_{bs}$, де h_{bs} - висота антени БС.

Постійні a, b, c залежать від ландшафту місцевості. Рівень затінення сигналу s, що змінюється по логнормальному закону розподілу з нуле- вим середнім, також залежить від типу ландшафту місцевості: \mathbf{A} - горбиста місцевість, помірний ліс; \mathbf{B} - рівнина з рідкісними горбами; \mathbf{C} - равн ина, рідкісний ліс. Значення постійних a, b, c і рівня затінення сигналу s приведени в табл. 3.4.

Параметри, що залежать від ландшафту місцевості

A В \mathbf{C} параметр 4,6 4,0 3,6 0,0075 0,0065 0,0050 b 12,6 17,1 20,0 9,6 *s* , дБ 10,6 8,2

Без використання поправочних коефіцієнтів ΔL_f і ΔL_h формула (3.6) дійсна тільки для частот менше 2 ГГц і висоти антени приймача до 2 м.

Поправочний коефіцієнт для іншої частоти ΔL_{f} обчислюється за формулою

$$\Delta L_f = 6 \cdot \lg (f/2000),$$
 (3.7)

Таблиця 3.4

де f - частота радіосигналу, МГц.

Формула для обчислення поправочний коефіцієнт для висоти антенни ΔL_h залежить від ландшафту місцевості:

$$\Delta L_h = \begin{cases} 10.8 \cdot \lg \left(h_{ms}/2 \right) & \text{для A и B типов ландшафта,} \\ -20 \cdot \lg \left(h_{ms}/2 \right) & \text{для C типа ландшафта,} \end{cases}$$
 (3.8)

Значення висоти антени БС лежить в межах від 10 до 80 м, а висоти антени МС - від 2 до 10 м.

3.2.4. РОЗРАХУНОК ШВИДКОСТІ ПЕРЕДАЧІ ДАНИХ

Швидкість передачі даних залежить від ширини смуги каналу і викорис зуемое схеми модуляції. На швидкість передачі даних впливають захисний ін- інтервал символу T_s , ставлення розподілу ресурсів вниз / вгору (DL / UL) і час передачі протокольної інформації T_h , під яким розуміється момент часу, протягом якого ніякі дані не передаються, а посилается різна системна інформація, необхідна для ініціалізації і синхронізації.

Швидкість передачі даних у напрямку вниз (БС АС) розраховується за формулою

$$R_{DL} = B \cdot n \cdot \frac{N_{DLd\alpha a}}{N_{all}} \cdot R_{symb} \left[1 - \frac{T_h}{1 + T_g} \right] \cdot K_{DLidd}, \quad (3.9)$$

де N_{DLdata} - число тих, що піднесуть для передачі даних по напрямку БС- \rightarrow AC; R_{symb} - кількість біт на символ в використовуваної схемою модуляції; K_{DLtdd} - коефіцієнт розподілу ресурсів у напрямку БС - \rightarrow AC. Швидкість передачі даних по напрямку вгору (АС БС) розраховується

$$R_{UL} = B \cdot n \cdot \frac{N_{ULdata}}{N_{all}} \cdot R_{symb} \left[1 - \frac{T_h}{1 + T_g} \right] \cdot K_{ULtdd}, \tag{3.10}$$

де N_{ULdata} - число піднесучих для передачі даних по напрямку AC \rightarrow БC; K_{ULdd} - коефіцієнт розподілу ресурсів UL.

При розрахунках звичайно приймається рівним 20% ($^{1/5}$) від основного часу передачі, а значення захисного інтервалу $T_s-1/8$ від тривалості корисного символу. Стандартом IEEE 802.16е передбачаються значення захисного інтервалу $^{1/4}$, $^{1/8}$, $^{1/16}$, $^{1/32}$.

Співвідношення між напрямами вниз / вгору дозволяє регулювати відношення швидкостей. WiMAX визначає ставлення DL / UL (т. Е. K_{DLtdd}) в межах від 3: 1 до 1: 1 для різних типів трафіку. При виконанні даної роботи рекоменжуєтся використовувати значення 3: 1. K_{ULtdd} розраховується як зворотне значення від K_{DLtdd} .

3.3. Порядок виконання завдання

1. Вибрати з табл. 3.5 згідно своєму номеру варіанта вихідні данні для розрахунку.

Таблиця 3.5 Варіанти завдання (вказані згідно з номером студента в журналі)

No॒	f	В	схема	h	P_{Txbs}	G_{Txbs}	G_{Rxbs}	h	P_T	G_{Txms}	G_{Rxms}
вар.	ГГц	МГц	модуляції	bs	дБм	дБи	дБи	ms	xms	дБи	дБи
				M				M	дБм		
1	2,3	1,25	QPSK 1/2	10	30	15	15	2	25	2	2
2	2,4	5,00	QPSK 3/4	20	31	15,5	15,5	3	26	3	3
3	2,5	10,0	QAM-16 ¹ / ₂	30	32	16	16	4	27	1	1
4	2,6	20,0	QAM-16 ³ /4	40	33	16,5	16,5	5	28	2	2
5	2,7	1,25	QAM-64 1 / 2	50	34	17	17	6	27	3	3
6	3,4	5,00	QAM-64 ² / ₃	60	35	15	15	7	26	1	1
7	3,5	10,0	QAM-64 ³ / 4	10	30	15,5	15,5	8	25	2	2
8	3,6	20,0	QPSK 1/2	20	31	16	16	9	26	3	3
9	3,7	1,25	QPSK 3/4	30	32	16,5	16,5	2	27	1	1
10	3,8	5,00	QAM-16 ¹ / ₂	40	33	17	17	3	28	2	2
11	2,3	10,0	QAM-16 ³ / ₄	50	34	15	15	4	27	3	3
12	2,4	20,0	QAM-64 1 / 2	60	35	15,5	15,5	5	26	1	1
13	2,5	1,25	QAM-64 2 / 3	10	30	16	16	6	25	2	2
14	2,6	5,00	QAM-64 ³ / ₄	20	31	16,5	16,5	7	26	3	3
15	2,7	10,0	QPSK 1/2	30	32	17	17	8	27	1	1
16	3,4	20,0	QPSK 3/4	40	33	15	15	9	28	2	2
17	3,5	1,25	QAM-16 1 / 2	50	34	15,5	15,5	2	27	3	3
18	3,6	5,00	QAM-16 ³ / ₄	60	35	16	16	3	26	1	1
19	3,7	10,0	QAM-64 ¹ / ₂	10	30	16,5	16,5	4	25	2	2
20	3,8	20,0	QAM-64 $^{2}/_{3}$	20	31	17	17	5	26	3	3
21	2,3	1,25	QAM-64 ³ / ₄	30	32	15	15	6	27	1	1
22	2,4	5,00	QPSK 1/2	40	33	15,5	15,5	7	28	2	2
23	2,5	10,0	QPSK 3/4	50	34	16	16	8	27	3	3
24	2,6	20,0	QAM-16 ¹ / ₂	60	35	16,5	16,5	9	26	1	1
25	2,7	1,25	QAM-16 ³ /4	10	30	17	17	2	25	2	2
26	3,4	5,00	QAM-64 ¹ / ₂	20	31	15	15	3	26	3	3
27	3,5	10,0	QAM-64 ² / ₃	30	32	15,5	15,5	4	27	1	1
28	3,6	20,0	QAM-64 ³ / ₄	40	33	16	16	5	28	2	2
29	3,7	1,25	QPSK 1/2	50	34	16,5	16,5	6	27	3	3
30	3,8	5,00	QPSK 3/4	60	35	17	17	7	26	1	1

^{2.} Для заданих параметрів розрахувати чутливість приймачів БС і МС.

- 3. Розрахувати бюджет лінії для низхідного і висхідного направ- лений для кожного з чотирьох типів забудови (табл. <u>3.3</u>) і вибрати значення для розрахунку дальності зв'язку.
- 4. Розрахувати і побудувати графіки залежності величини втрат на трасі радіосигналу від відстані *d* між БС і МС (діапазон 100-2000 м, точки через 100 м) для трьох типів Ландша ФТА (табл. 3.4). Графіки будувати на одному малюнку. На цій же системі координат площині побудувати прямі, відповідні розрахованому в попередньому пункті бюджету лінії для кожного з типів забудови. Зробити висновки про дальності передачі для каж дого поєднання типу забудови і типу ландшафту.
 - 5. Розрахувати швидкість передачі даних для кожного з напрямків.
 - 6. Зробити висновки за результатами розрахунків.
- 7. Сформувати в рукописному або друкованому вигляді звіт по роботі, в який включити: процедуру розрахунків при цьому розрахунок втрат для одного з значень d і одного типу ландшафту, а також розрахунки по іншим пунктам повинні бути приведені докладно; таблиці результатів; графіки; висновки по результатами розрахунків.

3.4. КОНТРОЛЬНІ ПИТАННЯ

- 1. Розрахунок чутливості приймача.
- 2. Розрахунок бюджету лінії.
- 3. Розрахунок втрат в радіоканалі.
- 4. Розрахунок швидкості передачі даних