Juan A. Ormaza CS375: HW7

October 19 2021

4. What is the rate of convergence that you observe for each method? Explain your reasoning for your observed convergence rate. Remember the numerical data may be a bit noisy.

-Bisection method

let
$$\delta_0 = b - a$$
 ? $|\chi_{\downarrow}|$
 $\delta_1 = \frac{1}{2} \delta_0$
 $\delta_2 = \frac{1}{2} \delta_1 = \frac{1}{2} \delta_0$

$$\frac{S_n}{S_0} = \left(\frac{1}{2}\right)^N$$

$$\frac{7}{2} |x_4 - C_n| \le (b_n - a_n)/2 = \left(\frac{1}{2}\right)^{n+1} \delta_0$$

$$\frac{|e_{n+1}|}{|e_{n}|} = \frac{(\frac{1}{2})^{n+1}}{(\frac{1}{2})^{n}} = (\frac{1}{2})$$

5 Convergence rate agrees with results in mattab code.

- Newton's method

$$\left(\frac{f(x_k)}{f'(x_k)} - x_k\right) + x_{2k} + (x_k - x_k)^2 \left(\frac{1}{2}\right) \frac{f''(s)}{f'(x_k)} = 0$$

$$\frac{|x_{k}-x_{k+1}|}{|x_{k}-x_{k}|^{2}}=\left(\frac{1}{2}\right)\left|\frac{f'(s)}{f'(x_{k})}\right|$$

$$\frac{1}{|x_{k}-x_{k+1}|} = \frac{1}{2} \frac{f'(s)}{f'(x_{k})}$$
when $f'(x_{k}) \neq f'(r)$
convergence rate diverges
$$\frac{1}{|x_{k}-x_{k}|^{2}} = \frac{1}{2} \frac{f'(s)}{f'(x_{k})}$$
because denominator $\Rightarrow 0$

-Bisection Method

G Converges with r=1.62 will also diverge as Xx > Xx because denominator becomes 0.

Prove what the general convergence behavior of Newton's method to when used to find cube roots with

f(x) = x3-a

tor any number $a \in \mathbb{R}$, $a \neq 0$. You may use any existing convergence theorems in the textbook or from the slides, and make assumptions like howing a "suitable starting quess"

 $f'(x) = 3x^{2}$ $\left(\frac{1}{2}\right) = 6x$ $\left(\frac{1}{2}\right) = 6x$

as the interval $x_{k} \leq x_{k} \leq x_{k}$ gets smaller $x \approx x_{k} \approx x_{k}$ where $x = \sqrt[3]{a}$ and $a \neq 0$

We thus find that lim lexul EC

is always bounded. Thus, in this case we find that there is always a constant C such that

 $(\frac{1}{2})\frac{6 \cdot x}{3 x^2}$ Is always bounded as long as $x = \sqrt[3]{a}$ and $a \neq 0$

for example with a=8 x=2

and $\binom{1}{2} \cdot \frac{6(2)}{3(4)} = \frac{1}{2}$ which (without the noise) was close to the magnitude of $\frac{|\mathbf{k}_{k+1}|}{|\mathbf{k}_{m}|^{2}}$ found in Mathab.

6) What is the convergence rate of Newton's method If a=0? Explain.

The convergence rate at a=0 is undefined and will rause the method to dwerge because there will be a 0 at the denominator.

(\frac{1}{2}) \frac{6}{3(0)} \cdot \cdot