Authorship Attribution for Neural Text Generation

Arjun Ramesh Kaushik

University at Buffalo kaushik3@buffalo.edu

Sahithi Pendry

University at Buffalo sahithip@buffalo.edu

Abstract

Authorship attribution is the process of identifying the author of a given text. It has essential applications in various fields, such as cyberforensics, plagiarism detection, and political socialization. This report explores various Machine Learning models and has compared their performances for each task of authorship attribution.

1 Introduction

017

019

021

024

027

With the advent of powerful Natural Language Generators, synthetic text generation is close to the realistic text. This also sprouts challenges like detecting plagiarism, detecting bots on social media, and also detecting the legitimate sources of a given text. The problem is triple-faceted:

- 1. **Problem 1** To determine if two given texts T_1 and T_2 are produced by the same generator (NLG/human)
- 2. **Problem 2** To determine if a given text T_1 is synthetic, i.e., is it written by a human or generated by an NLG
- 3. **Problem 3** To determine the generator of a given text T_1 among multiple NLGs and human

Our dataset consists of text, generated by 10 natural language generators (NLGs) in response to 1066 prompts. These NLGs include CTRL, GPT, GPT2, GROVER, XLM, XLNET, PPLM, FAIR, as well as GPT3 and INSTRUCT GPT whose responses are generated using OpenAI API and also HUMANgenerated responses. We are utilizing this NLG-generated data to perform tasks 1, 2, and 3. For the Reddit task, we are specifically using HUMAN, GPT3, and INSTRUCT GPT NLGs to accomplish all the above tasks.

Dhiraj Gunasheela

University at Buffalo dgunashe@buffalo.edu

Smarana S. Pankanti

University at Buffalo smaranas@buffalo.edu

In our work, we have shown how each model performs. Based on the task, we can use the appropriate model with requisite embeddings to complete the task

037

038

039

041

043

044

045

046

056

057

059

060

061

062

063

064

065

066

067

068

069

070

071

2 Related Work

The report explores various classification algorithms that are used to perform authorship attribution. It discusses the use of features such as n-grams, POS-tags, topic modelling, POS-Noise and LIWC features and also writing style. Apart from these features, we also look into style, content and hybrid features [reference].

- Style: function words, digits and punctuations
- Content : bags of n-grams
- Hybrid : character n-grams

The classification algorithms used for authorship attribution task range from simple machine learning models such as Naive Bayes, SVM, Conditional Trees, Random Forest, and KNN to deep learning methods such as CNNs and RNNs. The report also uses large language models like RoBERTa and GROVER-DETECT. Skip-gram word embeddings by fastText tend to perform better than Word2Vec or GLoVe embeddings in Authorship Attribution[1]

Deep learning frameworks have outperformed most state-of-the art approaches in a multitude of language processing tasks such as machine translation, sentiment analysis, and speech recognition. Recent works like those by Fereshteh Jafariakinabad [6] include a combination of different deep learning models. They propose using CNNs and BiLSTM sequentially where CNNs behave as Parts-of-Speech tags encoder for sentence classification. Further, Shriya TP Gupta [5] examines the working of BiLSTMs with a Max Pooling layer and concludes that there is a 4% increment in the model

performance. RNNs have been explored with pretrained embeddings by Chen Qian[7] to achieve considerable accuracies. However pre-trained embeddings limit the performance of the model, owing to their high dimensionality. Further, they do not consider the possibilities where the word usage matters as well. Because these word vectors are meant to capture similarities between words, certain words such as 'therefore' and 'furthermore' will have very similar word vectors. We, believe this could be one of the reasons for the decreased performance of our models while using POS tags.

3 Model Architecture

The models implemented in solving these tasks range from simple machine learning algorithms in conjunction with different architectures that encode the given text into representation vectors, to simple neural models such as RNN and BiLSTMs to large language models such as RoBERTa.

3.1 Machine Learning Algorithms:

- Vector Representations: We used multiple methods to extract vector representations from the data:
 - (a) TF-IDF vectors
 - (b) Open AI Embeddings: text-embedding-ada-002[8]
 - (c) Sentence Transformers: all.mpnet-base-v2[9]
- 2. *Classification Algorithms:* We used the vector embeddings to train the following models
 - (a) Logistic Regression
 - (b) SVM Classifier
 - (c) Naive Bayes Classifier
 - (d) Random Forest Classifier
 - (e) XGBoost Classifier

3.2 RNN and BiLSTM

In our baseline model, we had two RNN/BiLSTM layers with dropout regularization and Dense layers. Dropout is being used to combat overfitting. We improve our model as shown in figure 1, by adding CNN layers, Max Pooling layer(size = 5 for task P1,P2 and size = 3 for P3) and a Global Max Pooling layer. Sparse Categorical cross-entropy is used as the loss function. Specifically, the final dense layer uses 'tanh' activation function instead of 'relu'.

3.3 Large Language Models

Large Language models like RoBERTa, GPT-2 and BERT were optimized to obtain the highest accuracies for the tasks.

4 Results

The performance of different machine learning models for two different projects (P1, P2 and P3) are compared. These models are evaluated based on various metrics like Accuracy, Precision, Recall, and F1 Score, which are key metrics in evaluating the performance of a classification model.

In P1, the XGBoost Classifier performed best among the baseline models for both the balanced data with TF-IDF vectors and binary random with TF-IDF vectors. Among the improvements, the POS (Part-of-Speech) with CNN+BiLSTM+MP (Convolutional Neural Network + Bidirectional Long Short-Term Memory + Max Pooling) achieved the highest results.

In P2, the baseline results show that the model "roberta-base" with the RoBERTa architecture performed the best. For the improved models, BERT-based models with additional features such as Stylistic Features and Character ngram showed exceptional performance. Logistic Regression and Naive Bayes Classifier with BERT+Style+Character n-gram achieved the highest scores.

In P3, the highest baseline accuracy is achieved by the RoBERTa model with roberta-base embedding (84.4%). Maximum accuracy among the improved models is achieved by the XGBoost Classifier with Stemming + TF-IDF vectors (90.01%).

5 Discussion and Error Analysis

The tables provided detail the performance of various models on three tasks, labeled as P1, P2, and P3. The evaluation metrics used are accuracy, precision, recall, and F1 score. The models and configurations vary across tasks, but the baseline models are generally the same for P1 and P2, including Logistic Regression, Random Forest Classifier, XGBoost Classifier, Naive Bayes Classifier, and SVM Classifier.

The most striking results are as follows:

1. In P1, XGBoost Classifier achieved the highest accuracy (63.4%) among the baseline models when using balanced data with TF-IDF vectors. However, the best model in terms

Figure 1: BiLSTM model architecture

Figure 2: Deep Learning Pipeline

Figure 3: Machine Learning Pipeline

of F1 score in the improvements section was a combination of Convolutional Neural Network (CNN), BiLSTM, and Max Pooling (MP) model with part-of-speech (POS) features, which reached an F1 score of 75.01%.

- 2. In P2, RoBERTa with roberta-base embedding performed exceptionally well, with accuracy reaching 92.3%. In the improvements section, Logistic Regression with BERT Embeddings + Stylistic Features or BERT+Style +Character n-gram feature configuration also achieved a high accuracy of 99.16%.
- 3. For P3, RoBERTa with roberta-base encoding achieved the highest accuracy (84.4%) among all the models. In the improvements section, XGBoost Classifier with Stemming + TF-IDF vectors achieved the highest accuracy of 90.01%.

It's worth noting that some models perform significantly better with certain data configurations or embeddings, highlighting the importance of feature selection and model choice depending on the specific task.

6 Conclusion

Our investigation into authorship attribution for neural-based language models has yielded significant insights. The implemented models, particularly when incorporating stylometric features alongside BERT, exhibited impressive performance. Notably, models such as GPT2, GPT3, and Instruct-GPT generated higher-quality texts that could frequently deceive machine classifiers.

The disparity in text generated by AI and humans is quite high, which makes authorship attribution a relatively easier task. We can see that there is a lot of scope to improve text generated by text generators and make them more human-like. Until then, future direction would be to improve upon the produced models using other linguistic features and generalizing it by adding more data.

7 Contribution

I have worked on the BiLSTM and RNN models. Built the baseline models and improved them for all tasks P1, P2, P3.

8 References

 https://www.researchgate.net/ publication/325564535_Long_

	<pre>short-term_memory_for_machine_ remaining_life_prediction</pre>	214 215
2.	https://ieeexplore.ieee.org/stamp/ stamp.jsp?tp=&arnumber=8663814	216 217
3.	https://ieeexplore.ieee.org/stamp/ stamp.jsp?tp=&arnumber=8631977	218 219
4.	https://digital.csic.es/bitstream/ 10261/268091/1/EICC_2022_paper_7792% 283%29.pdf	220 221 222
5.	https://shriya999.github.io/pdfs/ ICISDM_19.pdf	223 224
6.	https://arxiv.org/pdf/1902.09723.pdf	225
7.	https://web.stanford.edu/class/ archive/cs/cs224n/cs224n.1174/ reports/2760185.pdf	226 227 228
8.	https://aclanthology.org/2020. icon-main.16.pdf	229 230
9.	https://aclanthology.org/C18-1029. pdf	231 232
10.	https://platform.openai. com/docs/guides/embeddings/ what-are-embeddings	233 234 235
11.	https://www.sbert.net/docs/ pretrained models.html	236 237

P1							
Baseline Results							
data config	Model	Accuracy	Precision	Recall	F1 Score		
balanced	Logistic Regression	44.4	44.3	44.4	44.4		
data with	Random Forest Classifier	52.5	52.5	52.5	52.4		
TF-IDF	XGBoost Classifier	63.4	63.4	63.4	63.3		
vectors	Naive Bayes Classifier	34.5	34.0	34.5	33.9		
vectors	SVM Classifier	49.3	48.9	49.3	44.8		
binary	Logistic Regression	90.8	53.7	50.0	47.7		
random	Random Forest Classifier	91.3	95.6	52.1	51.9		
with	XGBoost Classifier	92.5	84.1	62.9	67.8		
TF-IDF	Naive Bayes Classifier	58.7	51.2	53.7	44.9		
vectors	SVM Classifier	75.3	49.8	49.6	49.3		
tokens	RNN	48.83	48.67	48.01	48.33		
tokens	BiLSTM	51.23	50.98	50.91	50.94		
	Improvements						
data config	Model	Accuracy	Precision	Recall	F1 Score		
tokens	CNN+RNN+MP	50.41	-	-	66.72		
fastText tokens	CNN+RNN+MP	49.79	-	_	65.61		
POS	CNN+RNN+MP	51.82	48.73	76.7	59.6		
tokens	CNN+BiLSTM+MP	64.95	-	-	70.12		
fastText tokens	CNN+BiLSTM+MP	61.2	-	-	67.76		
POS	CNN+BiLSTM+MP	70.34	64.58	89.65	75.01		

Table 1: P1 Results

P2					
Baseline Results					
Embedding	Model	Accuracy	Precision	Recall	F1 Score
	Logistic Regression	85.4	85.6	85.2	85.3
text-	Random Forest Classifier	81.0	81.3	80.8	80.8
embedding-	XGBoost Classifier	81.7	85.6	85.2	85.3
ada-002	Naive Bayes Classifier	78.5	78.5	78.6	78.5
	SVM Classifier	74.9	76.1	74.5	74.3
	Logistic Regression	84.1	84.2	84.3	84.1
.11	Random Forest Classifier	89	89.3	88.8	88.9
all-mpnet- base-v2	XGBoost Classifier	91.2	91.4	91.1	91.2
base-v2	SVM Classifier	76.3	76.4	76.4	76.3
	Naive Bayes Classifier	72.9	77.5	72.2	71.3
	Logistic Regression	84.1	84.2	84.3	84.1
TE IDE	Random Forest Classifier	89	89.3	88.8	88.9
TF-IDF	XGBoost Classifier	91.2	91.4	91.1	91.2
vectors	SVM Classifier	76.3	76.4	76.4	76.3
	Naive Bayes Classifier	72.9	77.5	72.2	71.3
tokens	RNN	45.45	44.98	45.23	45.10
tokens	BiLSTM	48.03	48.01	47.93	47.96
roberta-base	RoBERTa	92.3	92.4	92.0	92.2
	Improve	ements			
	Logistic Regression	90.00	90.15	90.04	90.00
Stemmming	Random Forest Classifier	95.50	95.50	95.50	95.50
+ TF-IDF	XGBoost Classifier	95.83	95.94	95.80	95.83
vectors	SVM Classifier	91.50	91.56	91.53	91.50
	Naive Bayes Classifier	74.5	78.94	74.24	73.34
bert-uncased	BERT	99.00	98.35	99.66	98.99
	Logistic Regression	62.16	62.24	62.21	62.15
	Random Forest Classifier	88.50	88.51	88.49	88.50
Stylistic	XGBoost Classifier	89.16	89.22	89.19	89.17
Features	Naive Bayes Classifier	59.50	59.49	59.49	59.49
BERT	Logistic Regression	99.16	99.17	99.18	99.17
Embed-	Random Forest Classifier	88.50	88.56	88.47	88.49
dings	XGBoost Classifier	89.16	89.22	89.19	89.17
+Stylistic	Naive Bayes Classifier	99.00	99.00	99.01	99.00
Features	Logistic Regression	66.33	67.39	66.16	65.66
	Random Forest Classifier	91.50	91.53	91.48	91.49
Character	XGBoost Classifier	91.33	91.39	91.31	91.33
n-gram	Naive Bayes Classifier	61.16	61.27	61.22	61.14
	Logistic Regression	99.16	99.17	99.18	99.17
BERT+Style	Random Forest Classifier	92.66	92.66	92.67	92.67
+Charac-	XGBoost Classifier	89.16	89.22	89.19	89.17
ter	Naive Bayes Classifier	99.00	99.00	99.01	99.0
n-gram tokens	GPT2	83.00	83.00	84.00	83.00
tokens	CNN+RNN+MP	51.32	-	-	67.45
fastText tokens	CNN+RNN+MP	47.58	_	_	48.23
POS	CNN+RNN+MP	53.08	52.17	96.55	67.75
tokens	CNN+BiLSTM+MP	83.28	-	-	84.29
fastText tokens	CNN+BiLSTM+MP	68.33	_	_	69.65
POS	CNN+BiLSTM+MP	81.82	83.33	80.46	81.87
100	CI II I DILO I IVI I IVII	01.02	05.55	5510	01.07

P3					
Embedding	Model	Accuracy	Precision	Recall	F1 Score
	Logistic Regression	77.4	77.7	77.5	77.5
text-	Random Forest Classifier	55.1	54.5	54.3	53.7
embedding-	XGBoost Classifier	66.8	66.5	66.7	66.5
ada-002	Naive Bayes Classifier	56.8	56.9	56.8	56.7
	SVM Classifier	69.0	69.4	69.1	68.8
	Logistic Regression	65.9	65.4	65.8	65.6
all mnnat	Random Forest Classifier	50.0	47.3	49.5	47.25
all-mpnet- base-v2	XGBoost Classifier	59.1	58.2	58.8	58.4
base-v2	SVM Classifier	59.2	58.9	59.2	58.8
	Naive Bayes Classifier	46.7	45.2	46.4	45.1
	Logistic Regression	72.8	73.8	72.9	73.3
TE IDE	Random Forest Classifier	60.1	71.7	60.1	57.3
TF-IDF	XGBoost Classifier	80.8	81.4	80.8	81.0
vectors	SVM Classifier	40.1	58.1	40.7	37.5
	Naive Bayes Classifier	72.1	76.3	72.1	72.1
tokens	RNN	41.15	41.19	41.01	41.1
tokens	BiLSTM	43.32	43.12	43.01	43.06
roberta-base	RoBERTa	84.4	85.1	84.7	84.6
	Improv				
	Logistic Regression	81.41	82.59	81.54	81.84
Stemmming	Random Forest Classifier	87.44	88.83	87.40	87.75
+ TF-IDF	XGBoost Classifier	90.01	90.34	90.02	90.13
vectors	SVM Classifier	85.38	87.28	85.47	85.93
	Naive Bayes Classifier	56.27	65.22	57.05	52.29
bert-uncased	BERT	88.57	88.67	88.62	88.80
	Logistic Regression	43.63	43.63	43.75	42.50
	Random Forest Classifier	82.73	83.14	82.80	82.86
Stylistic	XGBoost Classifier	83.41	83.70	83.52	83.57
Features	Naive Bayes Classifier	44.28	50.60	43.66	39.52
BERT	Logistic Regression	88.48	88.74	88.53	88.58
Embed-	Random Forest Classifier	89.05	89.39	89.10	89.19
dings	XGBoost Classifier	87.38	88.92	87.38	87.84
+Stylistic	Logistic Regression	60.21	60.10	60.10	59.04
Features Character	Random Forest Classifier	85.26	85.98	85.31	85.37
	XGBoost Classifier	86.25	86.66	86.37	86.44
n-gram	Naive Bayes Classifier	44.28	50.60	43.66	39.52
	Logistic Regression	88.45	88.71	88.50	88.55
BERT+Style	Random Forest Classifier	89.05	89.37	89.12	89.20
+Charac-	XGBoost Classifier	87.38	88.92	87.38	87.84
ter tokens	CNN+RNN+MP	66.54	-	-	66.72
tokens n-gram fastText tokens	CNN+RNN+MP	47.48	_	_	47.50
tokens	CNN+BiLSTM+MP	71.34	72.23	71.46	71.30
fastText tokens	CNN+BiLSTM+MP	65.47	-	-	66.87
POS	CNN+BiLSTM+MP	64.80	66.75	64.89	64.94
100	CHITDILGINITINI	07.00	00.73	UT.07	U7.7 T

Task	Model	Accuracy	Precision	Recall	F1 Score
P1 balanced data	XGBoost	76.8	76.9	76.8	76.8
P1 binary random	XGBoost	66.6	62.2	61.8	62.0
	Logistic Regression	91.9	91.1	92.0	91.9
	XGBoost Classifier	94.9	95.0	95.0	94.9
P2	Random Forest Classifier	95.4	95.9	95.4	95.4
	SVM Classifier	90.9	90.9	90.9	90.9
	Naive Bayes Classifier	91.4	92.7	91.3	91.3
	Logistic Regression	80.2	80.4	80.3	80.4
	XGBoost Classifier	83.2	83.6	83.3	83.3
P3	Random Forest Classifier	81.9	83.9	81.9	82.2
	SVM Classifier	39.1	41.2	38.8	30.7
	Naive Bayes Classifier	79.5	81.3	79.6	80.0
Improvements					
P1 balanced data	BiLSTM	81.58	87.10	72.97	79.41
P1 binary random	BiLSTM	88.07	86.78	80.25	83.39
P2	BiLSTM	94.06	94.06	94.06	94.06
P3	BiLSTM	72.25	75.57	74.90	74.10

Table 3: Reddit Results with TF-IDF Vectorization