실력 완성 | 수학 I

1-1-2.지수의 확장과 지수법칙

수학 계산력 강화

(2)지수법칙의 활용

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 거듭제곱근의 대소비교

- (1) 근호가 다른 두 거듭제곱근의 대소비교 : 두 수 $\sqrt[n]{a}$, $\sqrt[n]{b}$ (단, m, n은 서로소)의 대소는 m과 n의 최소공배수를 이용하여 $\sqrt[mn]{a^n}$, $\sqrt[mn]{b^m}$ 꼴로 고쳐서 지수를 같게하여 비교한다.
- 참고 밑과 지수가 다른 두 수는 지수를 같게 만들어 대소관계를 비교한다.

☑ 다음 두 수의 대소를 비교하여라.

- 1. $\sqrt{2}$, $\sqrt[3]{3}$
- 2. $\sqrt[4]{3}$, $\sqrt[5]{4}$
- 3. $\sqrt{2\sqrt{2}}$, $\sqrt[3]{3\sqrt{3}}$
- **4.** $\sqrt[3]{5}$, $\sqrt[4]{8}$
- 5. $\sqrt[3]{2}$, $\sqrt[4]{\sqrt{6}}$
- **6.** $\sqrt[6]{\sqrt{3}}$, $\sqrt[5]{\sqrt[3]{4}}$
- 7. $2\sqrt[3]{3} + \sqrt{2}$, $\sqrt[3]{3} + 2\sqrt{2}$

☑ 다음 세 수의 대소를 비교하여라.

- **8.** $\sqrt{2}$, $\sqrt[3]{3}$, $\sqrt[4]{5}$
- **9.** $\sqrt{3}$, $\sqrt[3]{4}$, $\sqrt[4]{7}$
- **10.** $\sqrt{2}$, $\sqrt[3]{3}$, $\sqrt[6]{10}$
- **11.** $\sqrt[3]{6}$, $\sqrt{5}$, $\sqrt[6]{26}$
- **12.** $\sqrt[3]{3}$, $\sqrt[6]{5}$, $\sqrt[12]{7}$
- **13.** $\sqrt[9]{10}$, $\sqrt[6]{7}$, $\sqrt{2}$
- **14.** $\sqrt[3]{2}$, $\sqrt[6]{5}$, $\sqrt[9]{10}$
- **15.** $\sqrt[4]{3}$, $\sqrt{\sqrt[3]{12}}$, $\sqrt[6]{4}$
- **16.** $\sqrt[3]{\sqrt{6}}$, $\sqrt[3]{2}$, $\sqrt{\sqrt[3]{10}}$

02 / 지수법칙을 이용하여 식의 값 구하기

- (1) 곱셈공식을 이용하여 식의 값 구하기
 - ① $(a\pm b)^2 = a^2 \pm 2ab + b^2$ (복호동순)
 - ② $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$ (복호동순)
 - $(3) a^2 b^2 = (a+b)(a-b)$
 - ④ $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$ (복호동순)
- (2) $\frac{a^x a^{-x}}{a^x + a^{-x}}$ 의 식의 값 구하기
 - ① a^{2x} 의 값이 주어질 때, $\frac{a^x-a^{-x}}{a^x+a^{-x}}$ 의 식의 값 구하기
 - : 구하는 식의 분모와 분자에 a^x 또는 a^{3x} 를 곱한다.
 - ② $\frac{a^{x}-a^{-x}}{a^{x}+a^{-x}}$ 의 값이 주어질 때, a^{2x} 의 값 구하기
- : 분모와 분자에 a^x 를 곱한다.
- **17.** $(a^{\frac{1}{2}} + a^{-\frac{1}{2}})(a^{\frac{1}{2}} a^{-\frac{1}{2}})$
- **18.** $(a^{\frac{1}{2}} + b^{\frac{1}{2}})(a^{\frac{1}{2}} b^{\frac{1}{2}})$
- **19.** $(a^{\frac{1}{2}} + a^{-\frac{1}{2}})^2 (a^{\frac{1}{2}} a^{-\frac{1}{2}})^2$
- **20.** $(a^{\frac{1}{3}} + b^{\frac{1}{3}})(a^{\frac{2}{3}} a^{\frac{1}{3}}b^{\frac{1}{3}} + b^{\frac{2}{3}})$
- **21.** $(a^{\frac{1}{3}} + a^{-\frac{1}{3}})^3 + (a^{\frac{1}{3}} a^{-\frac{1}{3}})^3$
- **22.** $(a^{\frac{1}{3}} + a^{-\frac{1}{3}})(a^{\frac{2}{3}} a^{\frac{1}{3}}a^{-\frac{1}{3}} + a^{-\frac{2}{3}})$

23.
$$(a^{\frac{1}{4}} - b^{\frac{1}{4}})(a^{\frac{1}{4}} + b^{\frac{1}{4}})(a^{\frac{1}{2}} + b^{\frac{1}{2}})$$

24.
$$(a^{\frac{1}{4}} - a^{-\frac{1}{4}})(a^{\frac{1}{4}} + a^{-\frac{1}{4}})(a^{\frac{1}{2}} + a^{-\frac{1}{2}})$$

- **25.** $a^2 + a^{-2}$
- **26.** $a^{\frac{1}{2}} + a^{-\frac{1}{2}}$
- **27.** $a^{\frac{3}{2}} + a^{-\frac{3}{2}}$
- $a^{\frac{1}{2}} a^{-\frac{1}{2}} = 3$ 일 때, 다음 식의 값을 구하여라. (단,
- **28.** $a+a^{-1}$
- **29.** $a-a^{-1}$
- **30.** $a^2 + a^{-2}$
- **31.** $a^{\frac{3}{2}} a^{-\frac{3}{2}}$

32.
$$a-a^{-1}$$

33.
$$a+a^{-1}$$

34.
$$a^2 + a^{-2}$$

35.
$$a^{\frac{3}{2}} + a^{-\frac{3}{2}}$$

36.
$$a+a^{-1}$$

37.
$$a^{\frac{1}{2}} + a^{-\frac{1}{2}}$$

38.
$$a^{\frac{2}{3}} + a^{-\frac{2}{3}}$$

 \square $a^{2x}=2$ 일 때, 다음 식의 값을 구하여라. (단, a>0)

$$39. \quad \frac{a^{6x} - a^{-6x}}{a^{2x} - a^{-2x}}$$

40.
$$\frac{a^{5x} + a^{-7x}}{a^x + a^{-3x}}$$

41.
$$\frac{a^{3x} + a^{-3x}}{a^x + a^{-x}}$$

42.
$$\frac{a^x + a^{-x}}{a^x - a^{-x}}$$

 $a^{2x} = 3$ 일 때, 다음 식의 값을 구하여라. (단, a > 0)

43.
$$\frac{a^{3x} - a^{-3x}}{a^{3x} + a^{-3x}}$$

44.
$$\frac{a^{3x} + a^{-x}}{a^x + a^{-3x}}$$

45.
$$\frac{a^{3x} + a^{-3x}}{a^x - a^{-x}}$$

46.
$$\frac{a^x + a^{-x}}{a^x - a^{-x}}$$

$$\frac{a^x + a^{-x}}{a^x - a^{-x}} = 3$$
일 때, 다음 식의 값을 구하여라. (단, $a > 0$)

47.
$$a^{3x} + a^{-3x}$$

48.
$$a^x - a^{-x}$$

49.
$$a^{2x}$$

☑ 다음 각 조건을 만족하는 양수 a에 대하여 다음 식의 값 을 구하여라.

50.
$$\frac{a^x + a^{-x}}{a^x - a^{-x}} = 5$$
일 때, $a^{2x} + a^{-2x}$ 의 값

51.
$$a^{\frac{1}{2}} - a^{-\frac{1}{2}} = 5$$
일 때, $a^{\frac{3}{2}} - a^{-\frac{3}{2}}$ 의 값

52.
$$a^2 + a^{-2} = 27$$
일 때, $a - a^{-1}$ 의 값

53.
$$a^{\frac{1}{2}} - a^{-\frac{1}{2}} = 4$$
일 때, $a + a^{-1}$ 의 값

54.
$$a^{\frac{1}{2}} - a^{-\frac{1}{2}} = 3$$
일 때, $a^2 + a^{-2}$ 의 값

55.
$$a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 5$$
일 때, $\frac{a^{\frac{3}{2}} + a^{-\frac{3}{2}} - 10}{a + a^{-1} - 3}$ 의 값

56.
$$a^{\frac{2}{3}} + a^{-\frac{2}{3}} = 5$$
일 때, $(a+a^{-1}) \div (a^{\frac{1}{3}} + a^{-\frac{1}{3}})$ 의 값

57.
$$a^{2x} = \frac{1}{2}$$
일 때, $\frac{a^{3x} - a^{-x}}{a^x - a^{-3x}}$ 의 값

58.
$$a^{2x} = 5$$
일 때, $\frac{a^{3x} + a^{-3x} + a^x - a^{-x}}{a^x + a^{-x}}$ 의 값

☑ 다음에 알맞은 값을 구하여라.

59.
$$\frac{3^a+3^{-a}}{3^a-3^{-a}} = \frac{3}{2}$$
일 때, 81^a 의 값

60.
$$\frac{a^x - a^{-x}}{a^x + a^{-x}} = \frac{1}{2} \, \mathbf{Q} \, \mathbf{M}, \, \frac{a^{\frac{3}{2}x} - a^{-\frac{1}{2}x}}{a^{\frac{1}{2}x} + a^{-\frac{3}{2}x}} \mathbf{Q} \, \mathbf{Z}$$

61.
$$\frac{2^x-2^{-x}}{2^x+2^{-x}} = \frac{1}{3}$$
일 때, 4^x+4^{-x} 의 값

62.
$$\frac{3^a-3^{-a}}{3^a+3^{-a}} = \frac{3}{5}$$
일 때, 9^a-9^{-a} 의 값

63.
$$\frac{2^a-2^{-a}}{2^a+2^{-a}} = \frac{1}{2}$$
일 때, 4^{-a} 의 값

64.
$$\frac{2^a+2^{-a}}{2^a-2^{-a}}=-2$$
일 때, 4^a 의 값

/ 거듭제곱을 주어진 문자로 나타내기

 $a > 0, b > 0, mn \neq 0$ 일 때, $a^m=b^n=k$ 일 때, $a=k^{\frac{1}{m}}$, $b=k^{\frac{1}{n}}$ 이므로 지수법칙에 의해 $ab = k^{rac{1}{m} + rac{1}{n}}$, $rac{a}{b} = k^{rac{1}{m} - rac{1}{n}}$ 으로 나타낼 수 있다.

- \blacksquare 다음 각 조건을 만족하는 0이 아닌 실수, x, y에 대하여 다음 식의 값을 구하여라.
- **65.** $8^x = 10$, $125^y = 10$ 일 때, $\frac{1}{x} + \frac{1}{y}$ 의 값
- **66.** $8^x = 27^y = 6$ **일 때**, $\frac{1}{x} + \frac{1}{y}$ **의** 값
- **67.** $3^x = 12^y = 6$ 일 때, $\frac{1}{x} + \frac{1}{y}$ 의 값

68.
$$5^x = 6^y = 30$$
일 때, $\frac{1}{x} + \frac{1}{y}$ 의 값

69.
$$25^x = 4^y = 10$$
일 때, $\frac{1}{x} + \frac{1}{y}$ 의 값

70.
$$2^x = \left(\frac{1}{5}\right)^y = \sqrt{10}$$
일 때, $\frac{1}{x} - \frac{1}{y}$ 의 값

71.
$$5^x = 4^y = 20$$
일 때, $\frac{1}{x} + \frac{1}{y}$ 의 값

72.
$$20^x = 8, 5^y = 16$$
일 때, $\frac{3}{x} - \frac{4}{y}$ 의 값

73.
$$2^x = 7$$
, $7^{\frac{y}{2}} = 16$ **일 때**, xy **의** 값

74.
$$2^x = 27$$
, $18^y = 81$ 일 때, $\frac{9}{x} - \frac{12}{y}$ 의 값

75.
$$15^x = 3^y = 5$$
일 때, $\frac{1}{x} - \frac{1}{y}$ 의 값

76.
$$36^x = 81^y = 2$$
일 때, $\frac{2y-x}{2xy}$ 의 값

77.
$$5^x = 81$$
, $15^y = 27$ 일 때, $\frac{4}{x} - \frac{3}{y}$ 의 값

78.
$$18^x = 27$$
, $2^y = 9$ 일 때, $\frac{3}{x} - \frac{2}{y}$

79.
$$67^x = 27$$
, $603^y = 81$ 일 때, $\frac{3}{x} - \frac{4}{y}$

80.
$$9^x = 32$$
, $36^y = 16$ 일 때, $\frac{5}{x} - \frac{4}{y}$ 의 값

81.
$$5^x = 16$$
, $20^y = 64$ 일 때, $\frac{4}{x} - \frac{6}{y}$ 의 값

82.
$$2^x = 9^y = 12$$
일 때, $\frac{4}{x} + \frac{1}{y}$ 의 값

83.
$$20^x = 32$$
, $5^y = 16$ 일 때, $\frac{5}{x} - \frac{4}{y}$ 의 값

84.
$$9^x = 8^y = 36$$
일 때, $\frac{1}{2x} + \frac{1}{3y}$ 의 값

85.
$$2^x = 3^y = 36$$
일 때, $\frac{4(x^2 + y^2) - x^2y^2}{2(x+y)}$ 의 값

9

정답 및 해설

- 1) $\sqrt{2} < \sqrt[3]{3}$
- 2) $\sqrt[4]{3} < \sqrt[5]{4}$
- $\begin{tabular}{ll} $\stackrel{4}{\searrow}$ $\frac{4}{3} = \frac{20}{3} \sqrt{3^5} = \frac{20}{243} \,, & $\sqrt[5]{4} = \frac{20}{4^4} = \frac{20}{256} \,\,\text{oll}, \\ & $\frac{20}{243} < \frac{20}{256} \,\,& \therefore & $\frac{4}{3} < \frac{5}{4} \end{tabular}$
- 3) $\sqrt{2\sqrt{2}} < \sqrt[3]{3\sqrt{3}}$

$$\sqrt{2\sqrt{2}} = \sqrt{\sqrt{2^2 \times 2}} = \sqrt[4]{2^3} = \sqrt{2^3} = \sqrt{2^3} = \sqrt{2^9} = \sqrt{2^9}$$

- 4) $\sqrt[3]{5} > \sqrt[4]{8}$
- $\Rightarrow \sqrt[3]{5} = \sqrt[12]{5^4} = \sqrt[12]{625}, \quad \sqrt[4]{8} = \sqrt[12]{8^3} = \sqrt[12]{512} \text{ ord.}$ $\sqrt[12]{625} > \sqrt[12]{512} \qquad \therefore \sqrt[3]{5} > \sqrt[4]{8}$
- 5) $\sqrt[3]{2} > \sqrt[4]{\sqrt{6}}$
- $\Rightarrow \sqrt[3]{2} = \sqrt[24]{2^8} = \sqrt[24]{256}, \sqrt[4]{\sqrt{6}} = \sqrt[8]{6} = \sqrt[24]{6^3} = \sqrt[24]{216} \circ]$ $\exists J, \sqrt[24]{256} > \sqrt[24]{216} \qquad \therefore \sqrt[3]{2} > \sqrt[4]{\sqrt{6}}$
- 6) $\sqrt[6]{\sqrt{3}} < \sqrt[5]{\sqrt[3]{4}}$
- 7) $2\sqrt[3]{3} + \sqrt{2} > \sqrt[3]{3} + 2\sqrt{2}$
- $\Rightarrow (2\sqrt[3]{3} + \sqrt{2}) (\sqrt[3]{3} + 2\sqrt{2})$ $= \sqrt[3]{3} \sqrt{2}$ $= \sqrt[6]{3^2} \sqrt[6]{2^3}$ $= \sqrt[6]{9} \sqrt[6]{8} > 0$ $\therefore 2\sqrt[3]{3} + \sqrt{2} > \sqrt[3]{3} + 2\sqrt{2}$
- 8) $\sqrt{2} < \sqrt[3]{3} < \sqrt[4]{5}$
- □ √2, ³√3, ⁴√5 에서 2, 3, 4의 최소공배수가 12이 고 √2=¹²√2⁶, ³√3=¹²√3⁴, ⁴√5=¹²√5³
 이때, 2⁶, 3⁴, 5³의 대소를 비교하면 2⁶ < 3⁴ < 5³
 ∴ √2 < ³√3 < ⁴√5
- 9) $\sqrt[3]{4} < \sqrt[4]{7} < \sqrt{3}$
- □ √3, ³√4, ⁴√7 에서 2, 3, 4의 최소공배수가 12이 고, √3=¹²√3⁶, ³√4=¹²√4⁴, ⁴√7=¹²√7³
 이때, 3⁶, 4⁴, 7³의 대소를 비교하면 4⁴ < 7³ < 3⁶
 ∴ ³√4 < ⁴√7 < √3

- 10) $\sqrt{2} < \sqrt[3]{3} < \sqrt[6]{10}$
- \Rightarrow $\sqrt{2} = \sqrt[6]{2^3} = \sqrt[6]{8}$, $\sqrt[3]{3} = \sqrt[6]{3^2} = \sqrt[6]{9}$ 이므로 $\sqrt[6]{8} < \sqrt[6]{9} < \sqrt[6]{10}$ \therefore $\sqrt{2} < \sqrt[3]{3} < \sqrt[6]{10}$
- 11) $\sqrt[6]{26} < \sqrt[3]{6} < \sqrt{5}$
- \Rightarrow $\sqrt[3]{6}$, $\sqrt{5}$, $\sqrt[6]{26}$ 에서 3, 2, 6의 최소공배수가 6이 2, $\sqrt[3]{6} = \sqrt[6]{6^2}$, $\sqrt{5} = \sqrt[6]{5^3}$, $\sqrt[6]{26}$ 이때, 6^2 , 5^3 , 26의 대소를 비교하면 $26 < 6^2 < 5^3$ \therefore $\sqrt[6]{26} < \sqrt[3]{6} < \sqrt{5}$
- 12) $\sqrt[12]{7} < \sqrt[6]{5} < \sqrt[3]{3}$
- 당 $\sqrt[3]{3} = 3^{\frac{1}{3}}$, $\sqrt[6]{5} = 5^{\frac{1}{6}}$, $\sqrt[12]{7} = 7^{\frac{1}{12}}$ 에서 지수 $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{12}$ 의 분모의 최소공배수는 12이므로 로 $\sqrt[3]{3} = 3^{\frac{1}{3}} = 3^{\frac{4}{12}} = (3^4)^{\frac{1}{12}} = 81^{\frac{1}{12}}$ $\sqrt[6]{5} = 5^{\frac{1}{6}} = 5^{\frac{2}{12}} = (5^2)^{\frac{1}{12}} = 25^{\frac{1}{12}}$ $\sqrt[12]{7} = 7^{\frac{1}{12}}$ $\therefore \sqrt[12]{7} < \sqrt[6]{5} < \sqrt[3]{3}$
- 13) $\sqrt[9]{10} < \sqrt[6]{7} < \sqrt{2}$
- ⁹√10, ⁶√7, √2 에서 9, 6, 2의 최소공배수가 18
 □고, ⁹√10 = ¹⁸√10², ⁶√7 = ¹⁸√7³, √2 = ¹⁸√2⁹
 10², 7³, 2⁹의 대소를 비교하면
 10² < 7³ < 2⁹
 ∴ ⁹√10 < ⁶√7 < √2
- 14) $\sqrt[3]{2} < \sqrt[9]{10} < \sqrt[6]{5}$
- □ ³√2, ⁶√5, ⁹√10 에서 3, 6, 9의 최소공배수가 18
 □고, ³√2=¹⁵√2⁶, ⁶√5=¹⁵√5³, ⁹√10=¹⁵√10²
 ○때, 2⁶, 5³, 10²의 대소를 비교하면 2⁶ < 10² < 5³
 ∴ ³√2 < ⁹√10 < ⁶√5
- 15) $\sqrt{\sqrt[3]{12}} < \sqrt[6]{4} < \sqrt[4]{3}$
- ☆ ⁴√3, √√³√12 = ¹²√12, ⁶√4 에서 4, 12, 6의 최소 공배수가 12이고 ⁴√3 = ¹²√3³, ⁶√4 = ¹²√4²
 3³, 12, 4²의 대소를 비교하면
 12 < 4² < 3³
 ∴ √√³√12 < ⁶√4 < ⁴√3
- 16) $\sqrt{\sqrt[3]{10}} < \sqrt[3]{2} < \sqrt[3]{\sqrt{6}}$
- \Rightarrow $\sqrt[3]{\sqrt{6}} = \sqrt[6]{6}$, $\sqrt[3]{2}$, $\sqrt{\sqrt[3]{10}} = \sqrt[12]{10}$ 에서 6, 3, 12의 최소공배수가 12이므로 $\sqrt[12]{6^2}$, $\sqrt[12]{2^4}$, $\sqrt[12]{10}$ 이때, $10 < 2^4 < 6^2$ 이므로 $\sqrt[12]{10} < \sqrt[12]{2^4} < \sqrt[12]{6^2}$

$$\therefore \sqrt[3]{\sqrt[3]{10}} < \sqrt[3]{2} < \sqrt[3]{\sqrt{6}}$$

17) $a-a^{-1}$

당 곱셈 공식
$$(a+b)(a-b)=a^2-b^2$$
을 이용하면
$$(a^{\frac{1}{2}}+a^{-\frac{1}{2}})(a^{\frac{1}{2}}-a^{-\frac{1}{2}})=(a^{\frac{1}{2}})^2-(a^{-\frac{1}{2}})^2=a-a^{-1}$$

18) a - b

$$\Rightarrow (a^{\frac{1}{2}} + b^{\frac{1}{2}})(a^{\frac{1}{2}} - b^{\frac{1}{2}}) = (a^{\frac{1}{2}})^2 - (b^{\frac{1}{2}})^2 = a - b$$

19) 4

$$ightharpoonup$$
 곱셈 공식 $(a\pm b)^2=a^2\pm 2ab+b^2$ 을 이용하면
$$(a^{\frac{1}{2}}+a^{-\frac{1}{2}})^2-(a^{\frac{1}{2}}-a^{-\frac{1}{2}})^2$$

$$=(a+2+a^{-1})-(a-2+a^{-1})=4$$

(20) a+b

$$\Rightarrow (a^{\frac{1}{3}} + b^{\frac{1}{3}})(a^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{1}{3}} + b^{\frac{2}{3}}) = (a^{\frac{1}{3}})^3 + (b^{\frac{1}{3}})^3 = a + b$$

21) $2a+6a^{-\frac{1}{3}}$

당 곱셈 공식
$$(a\pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$
을 이용하면
$$(a^{\frac{1}{3}} + a^{-\frac{1}{3}})^3 + (a^{\frac{1}{3}} - a^{-\frac{1}{3}})^3$$

$$= (a + 3a^{\frac{1}{3}} + 3a^{-\frac{1}{3}} + a^{-1}) + (a - 3a^{\frac{1}{3}} + 3a^{-\frac{1}{3}} - a^{-1})$$

$$= 2a + 6a^{-\frac{1}{3}}$$

22) $a + a^{-1}$

다 급세 공식
$$(a+b)(a^2-ab+b^2)=a^3+b^3$$
을 이용하면
$$(a^{\frac{1}{3}}+a^{-\frac{1}{3}})(a^{\frac{2}{3}}-a^{\frac{1}{3}}a^{-\frac{1}{3}}+a^{-\frac{2}{3}})$$
$$=(a^{\frac{1}{3}})^3+(a^{-\frac{1}{3}})^3=a+a^{-1}$$

23) a-b

다
$$a^{\frac{1}{4}} = A, b^{\frac{1}{4}} = B$$
로 높으면
$$a^{\frac{1}{2}} = A^2, b^{\frac{1}{2}} = B^2$$

$$\therefore (a^{\frac{1}{4}} - b^{\frac{1}{4}})(a^{\frac{1}{4}} + b^{\frac{1}{4}})(a^{\frac{1}{2}} + b^{\frac{1}{2}})$$

$$= (A - B)(A + B)(A^2 + B^2)$$

$$= (A^2 - B^2)(A^2 + B^2)$$

$$= A^4 - B^4$$

$$= (a^{\frac{1}{4}})^4 - (b^{\frac{1}{4}})^4$$

24) $a-a^{-1}$

$$\Rightarrow a^{\frac{1}{4}} = A, \ a^{-\frac{1}{4}} = B$$
로 놓으면
$$(a^{\frac{1}{4}} - a^{-\frac{1}{4}})(a^{\frac{1}{4}} + a^{-\frac{1}{4}})(a^{\frac{1}{2}} + a^{-\frac{1}{2}})$$

$$= (A - B)(A + B)(A^{2} + B^{2})$$

$$= (A^{2} - B^{2})(A^{2} + B^{2})$$

$$= A^{4} - B^{4}$$

$$= (a^{\frac{1}{4}})^{4} - (a^{-\frac{1}{4}})^{4} = a - a^{-1}$$

25) 79

$$\Rightarrow a+a^{-1}=9$$
의 양변을 제곱하면
$$a^2+2+a^{-2}=81 \qquad \therefore \ a^2+a^{-2}=79$$

26) $\sqrt{11}$

$$\Rightarrow (a^{\frac{1}{2}} + a^{-\frac{1}{2}})^2 = a + a^{-1} + 2 = 9 + 2 = 11$$
$$\therefore a^{\frac{1}{2}} + a^{-\frac{1}{2}} = \sqrt{11} \quad (\because a > 0)$$

27) $8\sqrt{11}$

$$\Rightarrow a^{\frac{1}{2}} + a^{-\frac{1}{2}} = \sqrt{11} \, \text{의 양변을 세제곱하면}$$

$$a^{\frac{3}{2}} + 3(a^{\frac{1}{2}} + a^{-\frac{1}{2}}) + a^{-\frac{3}{2}} = 11\sqrt{11}$$

$$\therefore a^{\frac{3}{2}} + a^{-\frac{3}{2}} = 11\sqrt{11} - 3\sqrt{11} = 8\sqrt{11}$$

28) 11

$$\Rightarrow a^{\frac{1}{2}} - a^{-\frac{1}{2}} = 3$$
의 양변을 제곱하면
$$a - 2 + a^{-1} = 9 \qquad \therefore a + a^{-1} = 11$$

29) $3\sqrt{13}$

$$(a-a^{-1})^2 = (a+a^{-1})^2 - 4 = 11^2 - 4 = 117$$

$$\therefore a-a^{-1} = 3\sqrt{13} \quad (\because a > 1)$$

30) 119

$$\Rightarrow a+a^{-1}=11$$
의 양변을 제곱하면 $a^2+2+a^{-2}=121$ $\therefore a^2+a^{-2}=119$

31) 36

$$\Rightarrow a^{\frac{1}{2}} - a^{-\frac{1}{2}} = 3$$
의 양변을 세제곱하면
$$a^{\frac{3}{2}} - 3(a^{\frac{1}{2}} - a^{-\frac{1}{2}}) - a^{-\frac{3}{2}} = 27$$
$$\therefore a^{\frac{3}{2}} - a^{-\frac{3}{2}} = 27 + 3 \cdot 3 = 36$$

32) $\pm 3\sqrt{5}$

$$\Rightarrow (a-a^{-1})^2 = (a+a^{-1})^2 - 4$$
$$= 7^2 - 4 = 45$$
$$\therefore a-a^{-1} = \pm 3\sqrt{5}$$

33) '

$$\Rightarrow a+a^{-1} = (a^{\frac{1}{2}})^2 + (a^{-\frac{1}{2}})^2$$
$$= (a^{\frac{1}{2}} + a^{-\frac{1}{2}})^2 - 2$$
$$= 3^2 - 2 = 7$$

34) 47

$$\Rightarrow a+a^{-1}=7$$
의 양변을 제곱하면 $a^2+2+a^{-2}=49$ $\therefore a^2+a^{-2}=47$

$$\Rightarrow a^{\frac{3}{2}} + a^{-\frac{3}{2}} = (a^{\frac{1}{2}})^3 + (a^{-\frac{1}{2}})^3$$

$$= (a^{\frac{1}{2}} + a^{-\frac{1}{2}})^3 - 3a^{\frac{1}{2}}a^{-\frac{1}{2}}(a^{\frac{1}{2}} + a^{-\frac{1}{2}})$$

$$= 3^3 - 3 \times 1 \times 3$$

$$= 18$$

36) 52

$$\Rightarrow a^{\frac{1}{3}} + a^{-\frac{1}{3}} = 4$$
의 양변을 세제곱하면
$$a + 3(a^{\frac{1}{3}} + a^{-\frac{1}{3}}) + a^{-1} = 64$$
$$\therefore a + a^{-1} = 64 - 3 \cdot 4 = 52$$

37) $3\sqrt{6}$

$$\Rightarrow (a^{\frac{1}{2}} + a^{-\frac{1}{2}})^2 = a + a^{-1} + 2 = 52 + 2 = 54$$
$$\therefore a^{\frac{1}{2}} + a^{-\frac{1}{2}} = \sqrt{54} = 3\sqrt{6} \quad (\because a > 0)$$

38) 14

$$\Rightarrow a^{\frac{1}{3}} + a^{-\frac{1}{3}} = 4$$
의 양변을 제곱하면
$$a^{\frac{2}{3}} + 2 + a^{-\frac{2}{3}} = 16 \qquad \therefore a^{\frac{2}{3}} + a^{-\frac{2}{3}} = 14$$

39) $\frac{21}{4}$

$$ightharpoonup 분모, 분자에 a^{6x} 을 각각 곱하면
$$\frac{a^{6x}-a^{-6x}}{a^{2x}-a^{-2x}} = \frac{a^{12x}-1}{a^{8x}-a^{4x}} = \frac{(a^{2x})^6-1}{(a^{2x})^4-(a^{2x})^2}$$

$$= \frac{64-1}{16-4} = \frac{63}{12} = \frac{21}{4}$$$$

40) $\frac{13}{4}$

$$ightharpoonup 분모, 분자에 a^{7x} 을 각각 곱하면
$$\frac{a^{5x} + a^{-7x}}{a^x + a^{-3x}} = \frac{a^{12x} + 1}{a^{8x} + a^{4x}} = \frac{(a^{2x})^6 + 1}{(a^{2x})^4 + (a^{2x})^2}$$
$$= \frac{64 + 1}{16 + 4} = \frac{65}{20} = \frac{13}{4}$$$$

41) $\frac{3}{2}$

$$ightharpoonup \frac{\mathref{E}}{\mathref{E}}$$
, 분자에 a^{3x} 을 각각 곱하면
$$\frac{a^{3x}+a^{-3x}}{a^x+a^{-x}} = \frac{a^{6x}+1}{a^{4x}+a^{2x}} = \frac{(a^{2x})^3+1}{(a^{2x})^2+a^{2x}} = \frac{8+1}{4+2}$$

$$= \frac{9}{6} = \frac{3}{2}$$

42) 3

- \Rightarrow 분모, 분자에 a^x 을 각각 곱하면 $\frac{a^{x} + a^{-x}}{a^{x} - a^{-x}} = \frac{a^{2x} + 1}{a^{2x} - 1} = \frac{2 + 1}{2 - 1} = 3$
- \Rightarrow 주어진 식의 분모, 분자에 a^{3x} 을 곱하면 $=\frac{a^{3x}(a^{3x}-a^{-3x})}{a^{3x}(a^{3x}+a^{-3x})}=\frac{a^{6x}-1}{a^{6x}+1}=\frac{(a^{2x})^3-1}{(a^{2x})^3+1}$

44) 3

다 주어진 식의 분모, 분자에
$$a^{3x}$$
을 곱하면
$$\frac{a^{3x} + a^{-x}}{a^x + a^{-3x}}$$
$$= \frac{a^{3x}(a^{3x} + a^{-x})}{a^{3x}(a^x + a^{-3x})} = \frac{a^{6x} + a^{2x}}{a^{4x} + 1} = \frac{(a^{2x})^3 + a^{2x}}{(a^{2x})^2 + 1}$$
$$= \frac{27 + 3}{9 + 1} = 3$$

45) $\frac{14}{3}$

다 주어진 식의 분모, 분자에
$$a^{3x}$$
을 곱하면
$$\frac{a^{3x}+a^{-3x}}{a^x-a^{-x}}$$
$$=\frac{a^{3x}(a^{3x}+a^{-3x})}{a^{3x}(a^x-a^{-x})}=\frac{a^{6x}+1}{a^{4x}-a^{2x}}=\frac{(a^{2x})^3+1}{(a^{2x})^2-a^{2x}}$$
$$=\frac{27+1}{9-3}=\frac{14}{3}$$

46) 2

$$\Rightarrow$$
 주어진 식의 분모, 분자에 a^x 을 곱하면
$$\frac{a^x+a^{-x}}{a^x-a^{-x}}=\frac{a^x(a^x+a^{-x})}{a^x(a^x-a^{-x})}=\frac{a^{2x}+1}{a^{2x}-1}=\frac{3+1}{3-1}=2$$

47)
$$\frac{9\sqrt{2}}{4}$$

$$\Rightarrow a^{3x} + a^{-3x} = (a^x)^3 + (a^x)^{-3}$$
$$= 2\sqrt{2} + \frac{1}{2\sqrt{2}} = \frac{9\sqrt{2}}{4}$$

48)
$$\frac{\sqrt{2}}{2}$$

$$\begin{array}{c} \Longrightarrow \ a^{2x} = (a^x)^2 = 2 \, \mathrm{olk} \, a^x = \sqrt{2} \quad (\because \ a > 0) \\ \ \therefore \ a^x - a^{-x} = a^x - (a^x)^{-1} \\ \ = \sqrt{2} - \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \end{array}$$

49) 2

$$\Rightarrow \frac{a^x + a^{-x}}{a^x - a^{-x}} = \frac{a^x (a^x + a^{-x})}{a^x (a^x - a^{-x})} = \frac{a^{2x} + 1}{a^{2x} - 1} = 3$$
$$a^{2x} + 1 = 3a^{2x} - 3, \ 2a^{2x} = 4 \qquad \therefore \ a^{2x} = 2$$

50)
$$\frac{13}{6}$$

$$\Rightarrow \frac{a^{x} + a^{-x}}{a^{x} - a^{-x}} = \frac{a^{x} (a^{x} + a^{-x})}{a^{x} (a^{x} - a^{-x})} = \frac{a^{2x} + 1}{a^{2x} - 1} = 5$$

$$a^{2x} + 1 = 5a^{2x} - 5, \ 4a^{2x} = 6 \qquad \therefore \ a^{2x} = \frac{3}{2}$$

$$\therefore \ a^{2x} + a^{-2x} = a^{2x} + (a^{2x})^{-1} = \frac{3}{2} + \frac{1}{\frac{3}{2}} = \frac{13}{6}$$

$$\Rightarrow a^{\frac{3}{2}} - a^{-\frac{3}{2}} = (a^{\frac{1}{2}})^3 - (a^{-\frac{1}{2}})^3$$

$$= (a^{\frac{1}{2}} - a^{-\frac{1}{2}})^3 + 3a^{\frac{1}{2}}a^{-\frac{1}{2}}(a^{\frac{1}{2}} - a^{-\frac{1}{2}})$$

$$= 5^3 + 3 \times 1 \times 5$$

$$= 140$$

52)
$$\pm 5$$

$$\Rightarrow (a-a^{-1})^2 = a^2 + a^{-2} - 2 = 27 - 2 = 25$$

\therefore $a - a^{-1} = \pm 5$

53) 18

$$\Rightarrow a+a^{-1} = (a^{\frac{1}{2}})^2 + (a^{-\frac{1}{2}})^2$$
$$= (a^{\frac{1}{2}} - a^{-\frac{1}{2}})^2 + 2 = 4^2 + 2 = 18$$

54) 110

$$\Rightarrow a^{\frac{1}{2}}-a^{-\frac{1}{2}}=3$$
의 양변을 제곱하면 $a-2+a^{-1}=9$ $\therefore a+a^{-1}=11$ $a+a^{-1}=11$ 의 양변을 제곱하면 $a^2+2+a^{-2}=121$ $\therefore a^2+a^{-2}=121-2=119$

55) 5

다 (i)
$$a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 5$$
의 양변을 세제곱하면 $a^{\frac{3}{2}} + 3(a^{\frac{1}{2}} + a^{-\frac{1}{2}}) + a^{-\frac{3}{2}} = 125$
 $\therefore a^{\frac{3}{2}} + a^{-\frac{3}{2}} = 125 - 3 \times 5 = 110$
(ii) $a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 5$ 의 양변을 제곱하면 $a + 2 + a^{-1} = 25$ $\therefore a + a^{-1} = 23$
(i), (ii)에 의하여 $\frac{a^{\frac{3}{2}} + a^{-\frac{3}{2}} - 10}{a + a^{-1} - 3} = \frac{100}{20} = 5$

56) 4

$$\Rightarrow a^{\frac{1}{3}} = A, \ a^{-\frac{1}{3}} = B$$
라 하자.

$$A^2+B^2=5$$
, $AB=1$ (준식) = $(A^3+B^3)\div(A+B)=\frac{(A+B)(A^2-AB+B^2)}{A+B}$ = $A^2+B^2-1=5-1=4$

57)
$$\frac{1}{2}$$

다주어진 식의 분모, 분자에
$$a^x$$
을 곱하면
$$\frac{a^{3x}-a^{-x}}{a^x-a^{-3x}}$$
$$=\frac{a^x(a^{3x}-a^{-x})}{a^x(a^x-a^{-3x})} = \frac{a^{4x}-1}{a^{2x}-a^{-2x}} = \frac{(a^{2x})^2-1}{a^{2x}-(a^{2x})^{-1}}$$
$$=\frac{\frac{1}{4}-1}{\frac{1}{2}-2} = \frac{1}{2}$$

58) $\frac{73}{15}$

다 주어진 식의 분모, 분자에
$$a^{3x}$$
을 곱하면
$$\frac{a^{3x}+a^{-3x}+a^x-a^{-x}}{a^x+a^{-x}} = \frac{a^{3x}(a^{3x}+a^{-3x}+a^x-a^{-x})}{a^{3x}(a^x+a^{-x})}$$
$$= \frac{a^{6x}+1+a^{4x}-a^{2x}}{a^{4x}+a^{2x}}$$
$$= \frac{(a^{2x})^3+1+(a^{2x})^2-a^{2x}}{(a^{2x})^2+a^{2x}}$$
$$= \frac{125+1+25-5}{25+5} = \frac{73}{15}$$

59) 25

60)
$$\frac{\sqrt{3}}{2}$$

$$\Rightarrow \frac{a^{x} - a^{-x}}{a^{x} + a^{-x}} = \frac{1}{2}, \ 2a^{x} - 2a^{-x} = a^{x} + a^{-x}, \ a^{x} = 3a^{-x},$$

$$a^{2x} = 3, \ a^{x} = \sqrt{3}$$

$$\therefore \frac{a^{\frac{3}{2}x} - a^{-\frac{1}{2}x}}{\frac{1}{a^{2}x} + a^{-\frac{3}{2}x}} = \frac{a^{2x} - 1}{a^{x} + a^{-x}} = \frac{3 - 1}{\sqrt{3} + \frac{1}{\sqrt{3}}} = \frac{\sqrt{3}}{2}$$

61)
$$\frac{5}{2}$$

$$\Rightarrow \frac{2^{x} - 2^{-x}}{2^{x} + 2^{-x}} = \frac{2^{x} (2^{x} - 2^{-x})}{2^{x} (2^{x} + 2^{-x})} = \frac{2^{2x} - 1}{2^{2x} + 1} = \frac{1}{3}$$

$$3 \cdot 2^{2x} - 3 = 2^{2x} + 1, \ 2 \cdot 2^{2x} = 4 \qquad \therefore \ 2^{2x} = 2$$

$$\therefore \ 4^{x} + 4^{-x} = 2^{2x} + (2^{2x})^{-1} = 2 + \frac{1}{2} = \frac{5}{2}$$

- 62) $\frac{15}{4}$
- $ightharpoonup 분모, 분자에 <math>3^a$ 을 각각 곱하면 $\frac{3^{2a}-1}{3^{2a}+1} = \frac{9^a-1}{9^a+1} = \frac{3}{5}$ 이것을 정리하면 $9^a=4$ $\therefore 9^a-9^{-a}=4-\frac{1}{4}=\frac{15}{4}$
- 63) $\frac{1}{3}$
- ightharpoonup 분모, 분자에 2^a 을 각각 곱하면 $\frac{2^{2a}-1}{2^{2a}+1} = \frac{4^a-1}{4^a+1} = \frac{1}{2}$ 이것을 정리하면 $4^a=3$ \therefore $4^{-a}=\frac{1}{3}$
- 64) $\frac{1}{3}$
- $ightharpoonup rac{2^{2a}+1}{2^{2a}-1} = rac{4^a+1}{4^a-1} = -2$ 이것을 정리하면 $4^a = rac{1}{3}$
- 65) 3
- 다 8x = 10에서 8 = $10^{\frac{1}{x}}$

 125y = 10에서 125 = $10^{\frac{1}{y}}$

 ①×ⓒ을 하면
 $1000 = 10^{\frac{1}{x}} \times 10^{\frac{1}{y}}$, $10^3 = 10^{\frac{1}{x} + \frac{1}{y}}$

 ∴ $\frac{1}{x} + \frac{1}{y} = 3$
- 66) 3
- 67) 2
- 당 $3^x = 12^y = 6$ 이므로 $3 = 6^{\frac{1}{x}}$, $12 = 6^{\frac{1}{y}}$ $6^{\frac{1}{x}} \times 6^{\frac{1}{y}} = 6^{\frac{1}{x} + \frac{1}{y}} = 3 \times 12 = 36 = 6^2$ $\therefore \frac{1}{x} + \frac{1}{y} = 2$
- 68) 1

$$5^{x} = 30 \text{ on } k \text{ } 5 = 30^{\frac{1}{x}} \qquad \cdots \text{ } \odot$$

$$6^{y} = 30 \text{ on } k \text{ } 6 = 30^{\frac{1}{y}} \qquad \cdots \text{ } \odot$$

$$\bigcirc \times \bigcirc \text{ on } k \text{ } 5 \times 6 = 30^{\frac{1}{x}} + 30^{\frac{1}{y}} = 30^{\frac{1}{x} + \frac{1}{y}}$$

$$\therefore \frac{1}{x} + \frac{1}{y} = 1$$

- 69) 2
- $\begin{array}{c} \Leftrightarrow \ 25^x = 10 \, \text{old} \, \text{Al} \ \ 25 = 10^{\frac{1}{x}} \qquad \qquad \cdots \cdots \ \ \\ 4^y = 10 \, \text{old} \, \text{Al} \ \ 4 = 10^{\frac{1}{y}} \qquad \qquad \cdots \cdots \ \ \\ \circlearrowleft \times \bigcirc \, \text{old} \, \text{Al} \ \ \\ 100 = 10^{\frac{1}{x}} + 10^{\frac{1}{y}}, \ 10^2 = 10^{\frac{1}{x} + \frac{1}{y}} \\ \therefore \ \ \frac{1}{x} + \frac{1}{y} = 2 \end{array}$
- 70) 2
- $2^{x} = \sqrt{10} \text{ only } 2 = (\sqrt{10})^{\frac{1}{x}} \qquad \cdots \cdots \bigcirc$ $\left(\frac{1}{5}\right)^{y} = \sqrt{10} \text{ only } \frac{1}{5} = (\sqrt{10})^{\frac{1}{y}} \qquad \cdots \cdots \bigcirc$ $\bigcirc \div \bigcirc \text{only }$ $10 = (\sqrt{10})^{\frac{1}{x}} \div (\sqrt{10})^{\frac{1}{y}}$ $(\sqrt{10})^{2} = (\sqrt{10})^{\frac{1}{x} \frac{1}{y}}$ $\therefore \frac{1}{x} \frac{1}{y} = 2$
- 71) 1
- $5^{x} = 4^{y} = 20$ 이므로 $5 = 20^{\frac{1}{x}}, 4 = 20^{\frac{1}{y}}$ $20^{\frac{1}{x}} \times 20^{\frac{1}{y}} = 20^{\frac{1}{x} + \frac{1}{y}} = 5 \times 4 = 20$ $\therefore \frac{1}{x} + \frac{1}{y} = 1$
- 72) 2
- $20^x = 8 \text{에서 } 8^{\frac{1}{x}} = (2^3)^{\frac{1}{x}} = 2^{\frac{3}{x}} \quad \cdots \quad \bigcirc$ $5^y = 16 \text{에서 } 5 = 16^{\frac{1}{y}} = (2^4)^{\frac{1}{y}} = 2^{\frac{4}{y}} \quad \cdots \quad \bigcirc$ $\bigcirc \div \bigcirc \stackrel{\triangle}{=} \text{ 하면}$ $4 = 2^{\frac{3}{x}} \div 2^{\frac{4}{y}}, \ 2^2 = 2^{\frac{3}{x} \frac{4}{y}}$ $\therefore \ \frac{3}{x} \frac{4}{y} = 2$
- 73) 8
- $\Rightarrow 7^{\frac{y}{2}} = 16 = 2^4$ 에 $2^x = 7$ 을 대입하면 $7^{\frac{y}{2}} = (2^x)^{\frac{y}{2}} = 2^{\frac{xy}{2}} = 2^4$ 이므로

$$\frac{xy}{2} = 4$$
 $\therefore xy = 8$

$$\therefore xy = 8$$

74)
$$-6$$

$$\begin{array}{c} \Rightarrow 15^x = 5 \text{ only } 15 = 5^{\frac{1}{x}} \\ 3^y = 5 \text{ only } 3 = 5^{\frac{1}{y}} \\ \Rightarrow \Rightarrow \oplus \text{ only } 3 = 5^{\frac{1}{y}} \\ \Rightarrow \Rightarrow \oplus \text{ only } 3 = 5^{\frac{1}{y}} \\ \Rightarrow \Rightarrow \oplus \text{ only } 3 = 5^{\frac{1}{y}} \\ \Rightarrow \Rightarrow \oplus \text{ only } 3 = 5^{\frac{1}{y}} \\ \Rightarrow \Rightarrow \oplus \text{ only } 3 = 5^{\frac{1}{y}} \\ \Rightarrow \oplus \oplus \text{ only } 3 = 5^{\frac$$

77)
$$-1$$

78) 2

$$\begin{array}{c} \Longrightarrow \ 18^x = 27 \, \text{MeV} \ 18 = 27^{\frac{1}{x}} = \left(3^3\right)^{\frac{1}{x}} = 3^{\frac{3}{x}} \, \cdots \cdots \, \, \odot \\ 2^y = 9 \, \text{MeV} \ 2 = 9^{\frac{1}{y}} = \left(3^2\right)^{\frac{1}{y}} = 3^{\frac{2}{y}} \qquad \cdots \cdots \, \, \odot \\ \ \boxdot : \ \boxdot : \ \bigcirc \text{MeV} \ 3^{\frac{2}{y}}, \ 3^2 = 3^{\frac{3}{x} - \frac{2}{y}} \\ \ \therefore \ \frac{3}{x} - \frac{2}{y} = 2 \end{array}$$

79)
$$-2$$

$$80) -2$$

$$\therefore \frac{5}{x} - \frac{4}{y} = -2$$

81) -2

당
$$2^{x} = 9^{y} = 12$$
이므로 $2 = 12^{\frac{1}{x}}$, $9 = 12^{\frac{1}{y}}$

$$12^{\frac{4}{x} + \frac{1}{y}} = (12^{\frac{1}{x}})^{4} \times 12^{\frac{1}{y}} = 2^{4} \times 9 = 144 = 12^{2}$$

$$\therefore \frac{4}{x} + \frac{1}{y} = 2$$

83) 2

84)
$$\frac{1}{2}$$

85) - 8

$$\Rightarrow 2^{x} = 36 \Rightarrow 2 = 36^{\frac{1}{x}}$$

$$3^{y} = 36 \Rightarrow 3 = 36^{\frac{1}{y}}$$

$$2 \times 3 = 36^{\frac{1}{x}} \times 36^{\frac{1}{y}} = 36^{\frac{1}{x} + \frac{1}{y}} = 36^{\frac{x+y}{xy}}$$

$$6 = 36^{\frac{x+y}{xy}}$$

$$\frac{x+y}{xy} = \frac{1}{2}$$

$$x+y = \frac{1}{2}xy$$

$$\therefore \frac{4(x^{2}+y^{2})-x^{2}y^{2}}{2(x+y)} = \frac{4\{(x+y)^{2}-2xy\}-x^{2}y^{2}}{2(x+y)}$$

$$= \frac{4\{(\frac{1}{2}xy)^{2}-2xy\}-x^{2}y^{2}}{2(\frac{1}{2}xy)}$$

$$= \frac{4(\frac{1}{4}x^{2}y^{2}-2xy)-x^{2}y^{2}}{xy}$$

$$= \frac{x^{2}y^{2}-8xy-x^{2}y^{2}}{xy}$$

$$= -8$$