Math 425 Assignment 1

Max Horowitz-Gelb

1

2

Lemma A:

Statement: A connected subgraph of n nodes requires at least n-1 edges.

Proof: Consider a graph G = (V, E).

Let G_n be the set of all connected subgraphs of G with n nodes. And let G'_n be a subgraph of G_n such that the number of edges in G'_n is minimized. Then let $E'_n = E(G'_n)$ and $V'_n = V(G'_n)$.

First we shall consider the base case of n=1 nodes. Here it is trivial to see by definition of a graph that $E'_1=0$.

Now assume that $E_b' = \alpha$. Then it must be true that $E_{b+1}' \ge \alpha + 1$ since for any subgraph in G_b , by definition of a graph, requires at least one new edge to connect a new node.

Therefore $E'_n \ge n+1$, hence proving our statement.

Lemma B:

Statement: For a spanning tree H, there exists a node v such that $v \in H$ and v has a degree of 1

Proof: Clearly no node can have a degree of 0 or else H would not be connected and therefore not be a tree. So then it is suffice to show that if all nodes in H have a degree greater than 1, then that implies that H has a cycle and therefore is not a tree.

To show this, consider a simple traversal algorithm. In this algorithm one starts at an arbitrary node in H and then traverses an unused edge until it can no longer move because it is stuck at a node with all used edges. If at any point in this algorithm it hits a node already visited then there must be a cycle in the graph since it would imply that there is a path using unique edges from a node back to itself. If this algorithm were run on H it would have to hit a node a second time. This is because for the algorithm to not find a cycle it would have to never hit a node twice and then stop at a final unvisited node because it was stuck. But it can't get stuck at such a node since the degree of all nodes is greater than 1. Therefore there must exist a node in H such that its degree is 1.

Lemma C:

Statement: If H is a tree with at least 2 nodes then there exists a node v such that $v \in H$, $H \setminus v$ is a tree and $|E(H)| = |E(H \setminus v)| + 1$

Proof: By Lemma B there must be a node $v \in H$ with a degree of 1. H is a tree and therefore has no cycles so $H \setminus v$ has no cycles either. And since v has a degree of 1, by definition there can be no path in H between any two nodes in $H \setminus v$ that can include the node v. Then since H is connected, by definition $H \setminus v$ is connected. Therefore since $H \setminus v$ is connected and has no cycles it is also a tree. And since v has a degree of 1, then clearly $|E(H)| = |E(H \setminus v)| + 1$.

Lemma 2.2

Statement: Let G be a connected graph with n nodes. Then G is a spanning tree if and only if it has exactly n-1 nodes.

Proof: First we shall prove that if G is a spanning tree then it has 1 less edges than nodes.

Let S_n be the set of all spanning trees of all subgraphs of G containing n nodes where a spanning tree is possible. Then let $|E_n|$ be the number of edges of used for each subgraph in S_n assuming they are all the same.

Clearly $|E_1| = 0$ by definition of a graph.

Then if $S_n = n - 1$ then $S_{n+1} = n$. This is because Lemma C implies for all $H \in S_{n+1}$ there exists a node $v \in H$ such that $H \setminus v \in S_n$ and as well $|E_{n+1}| = |E_n| + 1$.

Therefore by induction G is a spanning tree of n nodes then it contains n-1 edges.

Now we shall show that if G is a connected graph with n nodes and n-1 edges

then it is a tree.

If G were connected and not a tree then it must have a cycle. If it had a cycle then there must be an edge e = (u, v) such that there is a path without e from u to v and clearly e can be removed from G without breaking the connectivity of G. But this would imply that there is a connected graph with n-2 edges and n nodes with breaks Lemma A. Therefore G cannot have any cycles and must be a tree.

3

Lemma D

Statement If a graph G contains a non simple cycle then it contains a simple cycle.

Proof If G contains a non simple cycle then there exists a edge simple path $v_0, v_1...v_k$ such that $v_0 = v_k$ and $v_0 = v_b : b < k$. Then clearly there is a shorter path which is either a non simple or simple cycle, $v_0, v_1...v_b$. And since the size of our graph, and therefore edge simple path, is finite, then we may recursively use this logic until we have a simple cycle.

Lemma E

Statement: If a graph has two different edge simple paths A and B from u to v then it has a simple cycle.

Proof: If the only two nodes shared between A and B are u and v then clearly by definition the graph has a cycle since you could concatenate A + reverse(B) and get a closed simple path from u to u.

Statement: Let H = (V, T) be a spanning tree of G = (V, E). Let e = vw be an edge in $E \setminus T$, and let f be en edge of a simple path in H from v to w. Then (a) the subgraph H' obtained from adding e has a unique cycle containing e, and (b) the subgraph $H'' = (V, T \cup \{e\} \setminus \{f\})$ is a spanning tree of G.

Proof of (a): First we can clearly see that since H is a spanning tree then there is a path from v to w and then adding e creates a cycle by definition. If adding e created more than one unique cycle, that would imply that there exists two unique edge simple paths connecting v to w in H which cannot be true since this would mean by lemma D that there was a cycle in H which is a tree.

Proof of (b)