Homework #10

MOSFET Amplifiers and Single-Stage MOSFET IC – 100 points **DUE @ Beginning of Class: Tuesday, November 28**

- 1) E-Book, problem 4.31 (10 points)
- 2) E-Book, problem 4.44 (15 points)
- 3) E-Book, problem 4.52 (10 points)
- 4) E-Book, problem 4.53; hint: see Ex. 4.11 (15 points)
- 5) E-Book, problem 4.59 (20 points)
- 6) E-Book, problem 4.61 (15 points)
- 7) E-Book, problem 4.65; hint: $I_{dD} = I_Q = I_{dL}$ (15 points)

- 1) E-Book, problem 4.31 (10 points)
- 4.31 The open-circuit $(R_L = \infty)$ voltage gain of the ac equivalent source-follower circuit shown in Figure P4.31 is $A_v = 0.98$. When R_L is set to 1 k Ω , the voltage gain is reduced to $A_v = 0.49$. What are the values of g_m and r_o ?

Figure P4.31

- 2) E-Book, problem 4.44 (15 points)
- 4.44 The transistor in the circuit in Figure P4.44 has parameters $V_{TN} = 0.4$ V, $K_n = 0.5$ mA/V², and $\lambda = 0$. The circuit parameters are $V_{DD} = 3$ V and $R_i = 300 \,\mathrm{k}\Omega$. (a) Design the circuit such that $I_{DQ} = 0.25$ mA and $V_{DSQ} = 1.5$ V. (b) Determine the small-signal voltage gain and the output resistance R_o .

Figure P4.44

- 3) E-Book, problem 4.52 (10 points)
- 4.52 For the common-gate amplifier in Figure 4.35 in the text, the PMOS transistor parameters are $V_{TP}=-0.8$ V, $K_p=2.5$ mA/V², and $\lambda=0$. The circuit parameters are $V^+=3.3$ V, $V^-=-3.3$, $R_G=100$ k Ω , and $R_L=4$ k Ω . (a) Determine R_S and R_D such that $I_{DQ}=1.2$ mA and $V_{SDQ}=3$ V. (b) Determine the small-signal voltage gain $A_v=v_o/v_i$.

Flgure 4.35 Figure for Exercise Ex 4.10

- 4) E-Book, problem 4.53; hint: see Ex. 4.11 (15 points)
- 4.53 Consider the NMOS amplifier with saturated load in Figure 4.39(a). The transistor parameters are $V_{TND} = V_{TNL} = 0.6 \text{ V}$, $k_n' = 100 \,\mu\text{A/V}^2$, $\lambda = 0$, and $(W/L)_L = 1$. Let $V_{DD} = 3.3 \,\text{V}$. (a) Design the circuit such that the small-signal voltage gain is $|A_v| = 5$ and the Q-point is in the center of the saturation region. (b) Determine I_{DQ} and V_{DSDQ} .

- 5) E-Book, problem 4.59 (20 points)
- 4.59 The transistor parameters for the common-source circuit in Figure P4.59 are $V_{TND} = 0.4 \text{ V}$, $V_{TPL} = -0.4 \text{ V}$, $(W/L)_L = 50$, $\lambda_D = 0.02 \text{ V}^{-1}$, $\lambda_L = 0.04 \text{ V}^{-1}$, $k'_n = 100 \,\mu\text{A/V}^2$, and $k'_p = 40 \,\mu\text{A/V}^2$. At the Q-point, $I_{DQ} = 0.5 \,\text{mA}$. (a) Determine $(W/L)_D$ such that the small-signal voltage gain is $A_v = V_o/V_i = -40$. (b) What is the required value of V_B ? (c) What is the value of V_{GSDO} ?

Figure P4.59

- 6) E-Book, problem 4.61 (15 points)
- 4.61 The ac equivalent circuit of a CMOS common-source amplifier is shown in Figure P4.61. The transistor parameters for M_1 are $V_{TN}=0.5$ V, $k_n'=85~\mu\text{A/V}^2$, $(W/L)_1=50$, and $\lambda=0.05\,\text{V}^{-1}$, and for M_2 and M_3 are

Figure P4.61

- 7) E-Book, problem 4.65; hint: $I_{dD} = I_Q = I_{dL}$ (15 points)
- 4.65 Figure P4.65 shows a common-gate amplifier. The transistor parameters are $V_{TN}=0.6\,\mathrm{V},\ V_{TP}=-0.6\,\mathrm{V},\ K_n=2\,\mathrm{mA/V^2},\ K_p=0.5\,\mathrm{mA/V^2},\ \mathrm{and}$ $\lambda_n=\lambda_p=0.$ (a) Find the values of V_{SGLQ},V_{GSDQ} , and $V_{DSDQ}.$ (b) Derive the expression for the small-signal voltage gain in terms of K_n and K_p . (c) Calculate the value of the small-signal voltage gain $A_v=V_o/V_i$.

Figure P4.65