Chapter 9 Multimedia Networking

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Multimedia Networking 9-1

Multimedia networking: outline

- 9.1 multimedia networking applications
- 9.2 streaming stored video
- 9.3 voice-over-IP
- **9.4** protocols for *real-time* conversational applications
- 9.5 network support for multimedia

Multimedia: audio

- analog audio signal sampled at constant rate
 - telephone: 8,000 samples/sec
 - CD music: 44,100 samples/sec
- each sample quantized, i.e., rounded
 - e.g., 2⁸=256 possible quantized values
 - each quantized value represented by bits, e.g., 8 bits for 256 values

Multimedia Networking 9-3

Multimedia: audio

- example: 8,000 samples/sec, 256 quantized values: 64,000 bps
- receiver converts bits back to analog signal:
 - · some quality reduction

example rates

- CD: I.411 Mbps
- MP3: 96, 128, 160 kbps
- Internet telephony: 5.3 kbps and up

Multimedia: video

- video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Multimedia Networking 9-5

Multimedia: video

- CBR: (constant bit rate): video encoding rate fixed
- VBR: (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes
- examples:
 - MPEG I (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, < I Mbps)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Multimedia networking: 3 application types

- streaming, stored audio, video
 - streaming: can begin playout before downloading entire file
 - stored (at server): can transmit faster than audio/video will be rendered (implies storing/buffering at client)
 - e.g., YouTube, Netflix, Hulu
- conversational voice/video over IP
 - interactive nature of human-to-human conversation limits delay tolerance
 - e.g., Skype
- streaming live audio, video
 - e.g., live sporting event (futbol)

Multimedia Networking 9-7

Multimedia networking: outline

- 9.1 multimedia networking applications
- 9.2 streaming stored video
- 9.3 voice-over-IP
- **9.4** protocols for *real-time* conversational applications
- 9.5 network support for multimedia

Streaming stored video: challenges

- continuous playout constraint: once client playout begins, playback must match original timing
 - ... but network delays are variable (jitter), so will need client-side buffer to match playout requirements
- other challenges:
 - client interactivity: pause, fast-forward, rewind, jump through video
 - · video packets may be lost, retransmitted

Client-side buffering, playout

- I. Initial fill of buffer until playout begins at t
- 2. playout begins at t_{D.}
- 3. buffer fill level varies over time as fill rate x(t) varies and playout rate r is constant

Multimedia Networking 9-13

Client-side buffering, playout

playout buffering: average fill rate (x), playout rate (r):

- x < r: buffer eventually empties (causing freezing of video playout until buffer again fills)
- $\overline{x} > r$: buffer will not empty, provided initial playout delay is large enough to absorb variability in x(t)
 - initial playout delay tradeoff: buffer starvation less likely with larger delay, but larger delay until user begins watching

Streaming multimedia: UDP

- server sends at rate appropriate for client
 - often: send rate = encoding rate = constant rate
 - transmission rate can be oblivious to congestion levels
- short playout delay (2-5 seconds) to remove network jitter
- error recovery: application-level, time permitting
- RTP [RFC 2326]: multimedia payload types
- UDP may not go through firewalls

Multimedia Networking 9-15

Streaming multimedia: HTTP

- multimedia file retrieved via HTTP GET
- send at maximum possible rate under TCP

- fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery)
- larger playout delay: smooth TCP delivery rate
- HTTP/TCP passes more easily through firewalls

Multimedia networking: outline

- 9.1 multimedia networking applications
- 9.2 streaming stored video
- 9.3 voice-over-IP
- 9.4 protocols for *real-time* conversational applications
- 9.5 network support for multimedia

Multimedia Networking 9-17

Voice-over-IP (VoIP)

- VolP end-end-delay requirement: needed to maintain "conversational" aspect
 - · higher delays noticeable, impair interactivity
 - < 150 msec: good
 - > 400 msec bad
 - includes application-level (packetization, playout), network delays
- session initialization: how does callee advertise IP address, port number, encoding algorithms?
- value-added services: call forwarding, screening, recording
- emergency services: 911

VoIP characteristics

- speaker's audio: alternating talk spurts, silent periods.
 - · 64 kbps during talk spurt
 - pkts generated only during talk spurts
 - 20 msec chunks at 8 Kbytes/sec: 160 bytes of data
- application-layer header added to each chunk
- chunk+header encapsulated into UDP or TCP segment
- application sends segment into socket every 20 msec during talkspurt

Multimedia Networking 9-19

VoIP: packet loss, delay

- network loss: IP datagram lost due to network congestion (router buffer overflow)
- delay loss: IP datagram arrives too late for playout at receiver
 - delays: processing, queueing in network; end-system (sender, receiver) delays
 - · typical maximum tolerable delay: 400 ms
- loss tolerance: depending on voice encoding, loss concealment, packet loss rates between 1% and 10% can be tolerated

 end-to-end delays of two consecutive packets: difference can be more or less than 20 msec (transmission time difference)

Multimedia Networking 9-21

VoIP: fixed playout delay

- receiver attempts to playout each chunk exactly q msecs after chunk was generated.
 - chunk has time stamp t: play out chunk at t+q
 - chunk arrives after t+q: data arrives too late for playout: data "lost"
- tradeoff in choosing q:
 - large q: less packet loss
 - small q: better interactive experience

VoIP: fixed playout delay

- sender generates packets every 20 msec during talk spurt.
- first packet received at time r
- first playout schedule: begins at p
- second playout schedule: begins at p'

VoiP: recovery from packet loss (I)

Challenge: recover from packet loss given small tolerable delay between original transmission and playout

- each ACK/NAK takes ~ one RTT
- alternative: Forward Error Correction (FEC)
 - send enough bits to allow recovery without retransmission (recall two-dimensional parity in Ch. 5)

simple FEC

- for every group of n chunks, create redundant chunk by exclusive OR-ing n original chunks
- send n+1 chunks, increasing bandwidth by factor 1/n
- can reconstruct original n chunks if at most one lost chunk from n+1 chunks, with playout delay

VoiP: recovery from packet loss (2)

another FEC scheme:

- "piggyback lower quality stream"
- send lower resolution
 audio stream as
 redundant information
- e.g., nominal stream PCM at 64 kbps
 and redundant stream
 GSM at 13 kbps
- non-consecutive loss: receiver can conceal loss
- generalization: can also append (n-1)st and (n-2)nd low-bit rate chunk

1 2

Multimedia Networking 9-25

VoiP: recovery from packet loss (3)

interleaving to conceal loss:

- audio chunks divided into smaller units, e.g. four 5 msec units per 20 msec audio chunk
- packet contains small units from different chunks
- if packet lost, still have most of every original chunk
- no redundancy overhead, but increases playout delay

Voice-over-IP: Skype

- proprietary applicationlayer protocol (inferred via reverse engineering)
 - encrypted msgs
- P2P components:
 - clients: Skype peers connect directly to each other for VoIP call
 - super nodes (SN):
 Skype peers with
 special functions
 - overlay network: among SNs to locate SCs
 - login server

Multimedia Networking 9-27

P2P voice-over-IP: Skype

Skype client operation:

- I. joins Skype network by contacting SN (IP address cached) using TCP
- 2. logs-in (username, password) to centralized Skype login server
- 3. obtains IP address for callee from SN, SN overlay
 - or client buddy list
- 4. initiate call directly to callee

Skype: peers as relays

- problem: both Alice, Bob are behind "NATs"
 - NAT prevents outside peer from initiating connection to insider peer
 - inside peer can initiate connection to outside
- relay solution: Alice, Bob maintain open connection to their SNs
 - Alice signals her SN to connect to Bob
 - Alice's SN connects to Bob's SN
 - Bob's SN connects to Bob over open connection Bob initially initiated to his SN

Multimedia Networking 9-29

Multimedia networking: outline

- 9.1 multimedia networking applications
- 9.2 streaming stored video
- 9.3 voice-over-IP
- 9.4 protocols for *real-time* conversational applications: RTP
- 9.5 network support for multimedia

Real-Time Protocol (RTP)

- RTP specifies packet structure for packets carrying audio, video data
- RFC 3550
- RTP packet provides
 - payload type identification
 - packet sequence numbering
 - · time stamping

- RTP runs in end systems
- RTP packets encapsulated in UDP segments
- interoperability: if two VoIP applications run RTP, they may be able to work together

Multimedia Networking 9-31

RTP runs on top of UDP

RTP libraries provide transport-layer interface that extends UDP:

- port numbers, IP addresses
- payload type identification
- packet sequence numbering
- time-stamping

RTP example

example: sending 64 kbps PCM-encoded voice over RTP

- application collects encoded data in chunks, e.g., every 20 msec = 160 bytes in a chunk
- audio chunk + RTP header form RTP packet, which is encapsulated in UDP segment
- RTP header indicates type of audio encoding in each packet
 - sender can change encoding during conference
- RTP header also contains sequence numbers, timestamps

Multimedia Networking 9-33

RTP and QoS

- RTP does not provide any mechanism to ensure timely data delivery or other QoS guarantees
- RTP encapsulation only seen at end systems (not by intermediate routers)
 - routers provide best-effort service, making no special effort to ensure that RTP packets arrive at destination in timely matter

RTP header

payload type sequence number time stamp

Synchronization Source ID

Miscellaneous fields

payload type (7 bits): indicates type of encoding currently being used. If sender changes encoding during call, sender informs receiver via payload type field

Payload type 0: PCM mu-law, 64 kbps

Payload type 3: GSM, 13 kbps Payload type 7: LPC, 2.4 kbps Payload type 26: Motion JPEG Payload type 31: H.261 Payload type 33: MPEG2 video

sequence # (16 bits): increment by one for each RTP packet sent
detect packet loss, restore packet sequence

Multimedia Networking 9-35

RTP header

payload type sequence number

time stamp

Synchronization Source ID

Miscellaneous fields

- timestamp field (32 bits long): sampling instant of first byte in this RTP data packet
 - for audio, timestamp clock increments by one for each sampling period (e.g., each 125 usecs for 8 KHz sampling clock)
 - if application generates chunks of 160 encoded samples, timestamp increases by 160 for each RTP packet when source is active. Timestamp clock continues to increase at constant rate when source is inactive.
- SSRC field (32 bits long): identifies source of RTP stream. Each stream in RTP session has distinct SSRC