# DESIGN OF COMMON SOURCE AMPLIFIER (REDESIGNED)

AS W/L RATIO WAS VERY HIGH IN PREVIOUS DESIGN APPROACH AND SIMULATIONS RESULT WERE NOT EXACTLY MATCHING THE SPECIFICATION

# COMMON SOURCE AMPLIFIER

USING NMOS AND PASSIVE LOAD

MODEL FILE: 180n

**SPECIFICATIONS** 

GBW=800MHz, VDD=1.8V, L=0.36u

## **CALCULATIONS**

GBW=800MHz , L=0.36u , Vdd=1.8V, Model file = 180n Let GAIN (A) = 
$$10$$

$$f(-3db) = \frac{GBW}{Gain} = 80MHz$$
 LET Gm=2mS (Practical value range 1-3 S given by Javed Sir)

USING 
$$C_L = \frac{Gm}{2\pi GBW}$$
  $C_L = 0.397pF$  (assume 0.3pF)

Now by Back calculation,

$$Gm = 2\pi GBWC_1 = 1.5mS$$

Assume Vov=0.2V Vgs=0.65V Id= 
$$\frac{Gm Vov}{2}$$
 =150uA

Then , 
$$Gm/Id = 10$$

$$R=(1.8-0.9)/150uA=6$$
 Kohm

W is calculated by sweeping for 150uA current

### SCHEMATIC IN LT SPICE

## COMMON SOURCE AMPLIFIER DESIGNED USING GM OVER ID new approach METHOD USING NMOS AND RESISTOR for GBW = 800MHz

(SPECIFICATIONS)
GBW=800MHz
vdd=1.8V

.include tsmc180.txt .op

;.tf V(vout) vgs

;.ac dec 100 1Meg 100G

.tran 5m



```
--- Transfer Function ---

Transfer_function: -10.0208 transfer

vgs#Input_impedance: 1e+020 impedance

output_impedance_at_V(vout): 5453.14 impedance
```

```
--- Operating Point ---
V(vout):
                0.890942
                               voltage
                0.65
                               voltage
V(vgs):
                1.8
V(vdd):
                               voltage
Id(M1):
                0.00015151
                               device current
Iq(M1):
                               device current
Ib (M1):
                -9.00942e-013 device current
Is(M1):
                -0.00015151
                               device current
I(C1):
                2.67283e-025
                               device current
I(R1):
                0.00015151
                               device current
I (Vgs):
                               device current
I (Vdd):
                -0.00015151
                               device current
```

```
Semiconductor Device Operating Points:
                         --- BSIM3 MOSFETS ---
Name:
             m1
Model:
            nmos
Id:
           1.52e-04
Vgs:
           6.50e-01
Vds:
           8.91e-01
Vbs:
           0.00e+00
Vth:
           4.66e-01
Vdsat:
           1.41e-01
Gm:
           1.84e-03
Gds:
           1.67e-05
Gmb
           4.81e-04
Cbd:
           0.00e+00
Cbs:
           0.00e+00
```

## TRANSIENT ANALYSIS IN LT SPICE



## FREQUENCY RESPONSE IN LT SPICE



# COMMON SOURCE AMPLIFIER

USING PMOS AND PASSIVE LOAD

MODEL FILE: 180n

**SPECIFICATIONS** 

GBW=800MHz, VDD=1.8V, L=0.36u

## **CALCULATIONS**

GBW=800MHz , L=0.36u , Vdd=1.8V, Model file = 180n

LET Gm=3mS (Practical value range 1-3 S given by Javed Sir)

USING 
$$C_L = \frac{Gm}{2\pi GBW}$$
  $C_L = 0.49 pF$  (assume 0.5pF)

Now by Back calculation,

$$Gm = 2\pi GBWC_1 = 2.5mS$$

$$Id = \frac{Gm\ Vov}{2} = 312uA$$

Then, Gm/Id = 8.01

$$R=(1.8-0.9)/312uA=2.88$$
 Kohm

W is calculated by sweeping for 312uA current

## SCHEMATIC IN LT SPICE



```
--- Transfer Function ---
```

Transfer\_function: -5.74605 transfer vg#Input\_impedance: 1e+020 impedance output\_impedance at V(vout): 2676.28 impedance

#### --- Operating Point ---

V(vq): 1.06 voltage 1.8 voltage V(vs): V(vout): 0.898637 voltage Id (M1): -0.000312027 device current Ig (M1): device current 9.11363e-013 Ib (M1): device current 0.000312027 Is (M1) : device current I(C1): 4.49319e-025 device current I(R1): 0.000312027 device current I (Vs) : -0.000312027 device current I(Vg): device current Semiconductor Device Operating Points:

--- BSIM3 MOSFETS ---

Name: m1 Model: pmos Id: -3.12e-04 Vgs: -7.40e-01 Vds: -9.01e-01 Vbs: 0.00e+00Vth: -4.73e-01 Vdsat: -2.33e-01 Gm: 2.15e-03 Gds: 2.64e-05 Gmb 6.96e-04 Cbd: 0.00e+00Cbs: 0.00e + 003.09e-14 Cgsov: Cgdov: 3.09e-14

## TRANSIENT ANALYSIS IN LT SPICE



## COMMON SOURCE AMPLIFIER

USING NMOS AND CURRENT SOURCE LOAD

MODEL FILE: 180n

**SPECIFICATIONS** 

GBW=1GHz, Gain = 10 at 100MHz

## **CALCULATIONS**

## GBW=1GHz, Gain = 10 at 100MHz

LET Gm=2mS (Practical value range 1-3 S given by Javed Sir)

USING 
$$C_L = \frac{Gm}{2\pi GBW}$$
  $C_L = 0.318 pF$  (assume 0.3pF)

Now by Back calculation,

$$Gm = 2\pi \ GBWC_1 = 1.884mS$$

(For nmos) Vov=0.2V Vgs=0.65V 
$$Id = \frac{Gm\ Vov}{2} = 188uA$$

Then , 
$$Gm/Id = 10.021$$
  $Id/W = 13.6$ 

W=14u

(For pmos) Vg=1.1V

Width of PMOS is taken twice as that of nmos

W=28u

NOTE: Now some manipulations are done in calculations to meet the specifications

## SCHEMATIC IN LT SPICE

## COMMON SOURCE AMPLIFIER DESIGNED USING GM OVER ID METHOD USING NMOS AND CURRENT SOURCE LOAD





.ac dec 10 1MEG 400G

```
--- Operating Point ---
V(vout):
                0.817861
                               voltage
V(vgs):
                0.65
                               voltage
V (vdd):
                1.8
                               voltage
V(vb):
                1.11
                               voltage
Id (M2):
                              device current
                -0.000197001
Ig (M2):
                               device current
                -0
Ib (M2):
                9.92139e-013
                               device current
Is(M2):
                0.000197001
                               device current
Id(M1):
                0.000197001
                               device current
Ig (M1):
                               device current
Ib (M1):
                -8.27861e-013 device current
Is(M1):
                -0.000197001
                               device current
I(C1):
                2.45358e-025
                               device current
I(Vb):
                               device current
I (Vdd):
                              device current
                -0.000197001
I (Vgs) :
                               device current
```

```
Semiconductor Device Operating Points:
                         --- BSIM3 MOSFETS ---
Name:
                          m1
Model:
            pmos
                         nmos
Id:
          -1.97e-04
                       1.97e-04
Vgs:
          -6.90e-01
                        6.50e-01
          -9.82e-01
                       8.18e-01
Vds:
Vbs:
           0.00e+00
                       0.00e+00
Vth:
          -4.73e-01
                       4.65e-01
Vdsat:
          -1.94e-01
                       1.41e-01
Gm:
           1.68e-03
                       2.39e-03
Gds:
           1.69e-05
                       2.22e-05
Gmb
           5.39e-04
                        6.26e-04
Cbd:
           0.00e+00
                       0.00e+00
Cbs:
           0.00e+00
                       0.00e+00
Cgsov:
           2.84e-14
                       1.54e-14
           2.84e-14
                       1.54e-14
Cqdov:
```

```
--- Transfer Function ---
```

Transfer\_function: -61.0818 transfer vgs#Input\_impedance: 1e+020 impedance output\_impedance\_at\_V(vout): 25549.1 impedance

## TRANSIENT ANALYSIS IN LT SPICE







# THANK YOU