

BFP740

Low Noise Silicon Germanium Bipolar RF Transistor

Data Sheet

Revision 1.1, 2015-01-20

RF & Protection Devices

Edition 2015-01-20

Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BFP740, Low Noise Silicon Germanium Bipolar RF Transistor

Revision History: 2015-01-20, Revision 1.1

Subjects (major changes since last revision)
This data sheet replaces the revision from 2009-12-04. The reason for the new revision is to increase the information content for the circuit designer. The performance parameters are now enlisted in a table containing many relevant application frequencies. The measurements of typical devices have been repeated and the device description has been expanded by adding several new characteristic curves. For customers who bought the product prior to the issue of the new revision the old specifications remain valid.
_

Trademarks of Infineon Technologies AG

AURIXTM, C166TM, Canpaktm, CIPOSTM, CIPURSETM, EconoPacktm, CoolMostm, CoolSettm, Corecontroltm, Crossavetm, Davetm, DI-Poltm, EasyPIMTM, EconoBridgetm, EconoDualtm, EconoPiMTM, EconoPacktm, Eicedrivertm, eupectm, Fcostm, Hitfettm, HybridPacktm, I²rftm, Isofacetm, Isopacktm, Mipaqtm, ModStacktm, my-dtm, NovalithICtm, OptiMostm, Origatm, Powercodetm; Primariontm, PrimePacktm, PrimeStacktm, Pro-Siltm, Profettm, Rasictm, Reversavetm, Satrictm, Siegettm, Sindriontm, Sipmostm, Smartlewistm, Solid Flashtm, Tempfettm, thinQ!tm, Trenchstoptm, Tricoretm.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Table of Contents

Table of Contents

	Table of Contents 4
	List of Figures 5
	List of Tables 6
I	Product Brief 7
2	Features
3	Maximum Ratings 9
1	Thermal Characteristics
5	Electrical Characteristics
5.1	DC Characteristics
5.2	General AC Characteristics
5.3	Frequency Dependent AC Characteristics
5.4	Characteristic DC Diagrams
5.5	Characteristic AC Diagrams
3	Simulation Data
7	Package Information SOT343

List of Figures

List of Figures

Figure 4-1	Total Power Dissipation $P_{\text{tot}} = f(T_{S})$	10
Figure 5-1	BFP740 Testing Circuit	
Figure 5-2	Collector Current vs. Collector Emitter Voltage $I_C = f(V_{CE})$, $I_B = Parameter$ in $\mu A \dots$	16
Figure 5-3	DC Current Gain h_{FE} = $f(I_{\text{C}})$, V_{CE} = 3 V	16
Figure 5-4	Collector Current vs. Base Emitter Forward Voltage $I_{\rm C}$ = $f(V_{\rm BE})$, $V_{\rm CE}$ = 2 V	17
Figure 5-5	Base Current vs. Base Emitter Forward Voltage $I_{\rm B}$ = $f(V_{\rm BE})$, $V_{\rm CE}$ = 2 V	17
Figure 5-6	Base Current vs. Base Emitter Reverse Voltage $I_{\rm B}$ = $f(V_{\rm EB})$, $V_{\rm CE}$ = 2 V	18
Figure 5-7	Transition Frequency $f_T = f(I_C)$, $V_{CE} = Parameter in V$	19
Figure 5-8	3rd Order Intercept Point at output $OIP3 = f(I_C)$, $Z_S = Z_L = 50 \Omega$, V_{CE} , $f = Parameters$	19
Figure 5-9	3rd Order Intercept Point at output $OIP3$ [dBm] = $f(I_{C_1}, V_{CE})$, $Z_S = Z_L = 50 \Omega$, $f = 5.5 \text{ GHz} \dots$	20
Figure 5-10	Compression Point at output OP_{1dB} [dBm] = $f(I_{C_1}, V_{CE})$, $Z_S = Z_L = 50 \Omega$, $f = 5.5 \text{ GHz} \dots$	20
Figure 5-11	Collector Base Capacitance $C_{CB} = f(V_{CB}), f = 1 \text{ MHz } \dots$	21
Figure 5-12	Gain G_{ma} , G_{ms} , $ S_{21} ^2 = f(f)$, $V_{\text{CE}} = 3 \text{ V}$, $I_{\text{C}} = 15 \text{ mA}$	21
Figure 5-13	Maximum Power Gain $G_{\text{max}} = f(I_{\text{C}})$, $V_{\text{CE}} = 3 \text{ V}$, $f = \text{Parameter in GHz}$	22
Figure 5-14	Maximum Power Gain G_{max} = $f(V_{\text{CE}})$, I_{C} = 15 mA, f = Parameter in GHz	22
Figure 5-15	Input Matching S_{11} = $f(f)$, V_{CE} = 3 V, I_{C} = 6 / 15 mA	23
Figure 5-16	Source Impedance for Minimum Noise Figure Z_{opt} = $f(f)$, V_{CE} = 3 V, I_{C} = 6 / 15 mA	23
	Output Matching S_{22} = $f(f)$, V_{CE} = 3 V, I_{C} = 6 / 15 mA	
Figure 5-18	Noise Figure NF_{\min} = $f(f)$, V_{CE} = 3 V, I_{C} = 6 / 15 mA, Z_{S} = Z_{opt}	24
Figure 5-19	Noise Figure $NF_{min} = f(I_C)$, $V_{CE} = 3 \text{ V}$, $Z_S = Z_{opt}$, $f = Parameter in GHz$	25
Figure 5-20	Noise Figure NF_{50} = $f(I_C)$, V_{CE} = 3 V, Z_S = 50 Ω , f = Parameter in GHz	25
Figure 7-1	Package Outline	27
Figure 7-2	Package Footprint	27
Figure 7-3	Marking Description (Marking BFP740: R7s)	27
Figure 7-4	Tape Dimensions	27

List of Tables

List of Tables

Table 3-1	Maximum Ratings at T_A = 25 °C (unless otherwise specified)	. 9
Table 4-1	Thermal Resistance	10
Table 5-1	DC Characteristics at T_A = 25 °C	11
Table 5-2	General AC Characteristics at T_A = 25 °C	11
Table 5-3	AC Characteristics, V_{CE} = 3 V, f = 0.45 GHz	13
Table 5-4	AC Characteristics, V_{CE} = 3 V, f = 0.9 GHz	13
Table 5-5	AC Characteristics, V_{CE} = 3 V, f = 1.5 GHz	13
Table 5-6	AC Characteristics, V_{CE} = 3 V, f = 1.9 GHz	14
Table 5-7	AC Characteristics, V_{CE} = 3 V, f = 2.4 GHz	14
Table 5-8	AC Characteristics, V_{CE} = 3 V, f = 3.5 GHz	14
Table 5-9	AC Characteristics, V_{CF} = 3 V, f = 5.5 GHz	15

Product Brief

1 Product Brief

The BFP740 is a linear very low noise wideband NPN bipolar RF transistor. The device is based on Infineon's reliable high volume silicon germanium carbon (SiGe:C) heterojunction bipolar technology. The collector design supports voltages up to $V_{\rm CEO}$ = 4.0 V and currents up to $I_{\rm C}$ = 45 mA. With its high linearity at currents as low as 10 mA (see Fig. 5-8) the device supports energy efficient designs. The typical transition frequency is approximately 45 GHz, hence the device offers high power gain at frequencies up to 11 GHz in amplifier applications. The device is housed in an easy to use plastic package with visible leads.

Features

2 Features

- Very low noise amplifier based on Infineon's reliable, high volume SiGe:C technology
- OIP3 = 24.5 dBm @ 5.5 GHz, 3 V, 15 mA
- High transition frequency f_T = 44 GHz @ 3 V, 25 mA
- NF_{min} = 0.85 dB @ 5.5 GHz, 3 V, 6 mA
- Maximum power gain Gms = 19.5 dB @ 5.5 GHz, 3 V, 15 mA
- Low power consumption, ideal for mobile applications, very common in WLAN Wi-Fi applications
- Easy to use Pb-free (RoHS compliant) and halogen-free standard package with visible leads
- Qualification report according to AEC-Q101 available

Applications

As Low Noise Amplifier (LNA) in

- Mobile, portable and fixed connectivity applications: WLAN 802.11a/b/g/n/ac, WiMAX 2.5/3.5/5.5 GHz, UWB, Bluetooth
- Satellite communication systems: Navigation systems (GPS, Glonass), satellite radio (SDARs, DAB) and C-band LNB
- Multimedia applications such as mobile/portable TV, CATV, FM Radio
- 3G/4G UMTS/LTE mobile phone applications
- ISM applications like RKE, AMR and Zigbee, as well as for emerging wireless applications

As discrete active mixer, amplifier in VCOs and buffer amplifier

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Product Name	Package	Pin Configuration Marking					
BFP740	SOT343	1 = B	2 = E	3 = C	4 = E	R7s	

Maximum Ratings

3 Maximum Ratings

Table 3-1 Maximum Ratings at T_A = 25 °C (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note / Test Condition
		Min.	Max.		
Collector emitter voltage	V_{CEO}			V	Open base
		_	4.0		T_{A} = 25 °C
		_	3.5		$T_{\rm A}$ = -55 °C
Collector emitter voltage	V_{CES}	_	13	V	E-B short circuited
Collector base voltage	V_{CBO}	_	13	V	Open emitter
Emitter base voltage	V_{EBO}	_	1.2	V	Open collector
Collector current	I_{C}	_	45	mA	_
Base current	I_{B}	_	4	mA	_
Total power dissipation ¹⁾	P_{tot}	_	160	mW	<i>T</i> _S ≤ 100 °C
Junction temperature	T_{J}	_	150	°C	_
Storage temperature	T_{Stg}	-55	150	°C	_

¹⁾ $T_{\rm S}$ is the soldering point temperature. $T_{\rm S}$ is measured on the emitter lead at the soldering point of the pcb.

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Thermal Characteristics

4 Thermal Characteristics

Table 4-1 Thermal Resistance

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Junction - soldering point ¹⁾	R_{thJS}	_	_	310	K/W	_

¹⁾For the definition of R_{thJS} please refer to Application Note AN077 (Thermal Resistance Calculation)

Figure 4-1 Total Power Dissipation $P_{\text{tot}} = f(T_{\text{S}})$

5 Electrical Characteristics

5.1 DC Characteristics

Table 5-1 DC Characteristics at T_A = 25 °C

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Collector emitter breakdown voltage	$V_{(BR)CEO}$	4	4.7	_	V	$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0 Open base
Collector emitter leakage current	I_{CES}	_	1	400 ¹⁾ 40 ¹⁾	nA	$V_{\rm CE}$ = 13 V, $V_{\rm BE}$ = 0 $V_{\rm CE}$ = 5 V, $V_{\rm BE}$ = 0 E-B short circuited
Collector base leakage current	I_{CBO}	_	1	401)	nA	V_{CB} = 5V, I_{E} = 0 Open emitter
Emitter base leakage current	I_{EBO}	_	1	40 ¹⁾	nA	$V_{\rm EB}$ = 0.5V, $I_{\rm C}$ = 0 Open collector
DC current gain	h_{FE}	160	250	400		$V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 25 mA Pulse measured

¹⁾ Maximum values not limited by the device but by the short cycle time of the 100% test

5.2 General AC Characteristics

Table 5-2 General AC Characteristics at T_A = 25 °C

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Transition frequency	f_{T}	_	44	_	GHz	$V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 25 mA f = 2 GHz
Collector base capacitance	C_{CB}	_	0.08	_	pF	$V_{\rm CB}$ = 3 V, $V_{\rm BE}$ = 0 f = 1 MHz Emitter grounded
Collector emitter capacitance	C_{CE}	-	0.35	_	pF	$V_{\rm CE}$ = 3 V, $V_{\rm BE}$ = 0 f = 1 MHz Base grounded
Emitter base capacitance	C_{EB}	_	0.45	-	pF	$V_{\rm EB}$ = 0.5 V, $V_{\rm CB}$ = 0 f = 1 MHz Collector grounded

5.3 Frequency Dependent AC Characteristics

Measurement setup is a test fixture with Bias T's in a 50 Ω system, $T_{\rm A}$ = 25 °C

Figure 5-1 BFP740 Testing Circuit

Table 5-3 AC Characteristics, $V_{\rm CE}$ = 3 V, f = 0.45 GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	G_{ms}	_	31.5	_		$I_{\rm C}$ = 15 mA
Transducer gain	$G_{ m ms} \ S_{21} ^2$	_	28.5	_		$I_{\rm C}$ = 15 mA $I_{\rm C}$ = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.45	_		$I_{\rm C}$ = 6 mA
Associated gain	G_{ass}	_	26	_		$I_{\rm C}$ = 6 mA $I_{\rm C}$ = 6 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm I} = 50 \ \Omega$
1 dB compression point at output	OP_{1dB}	_	6.5	_		$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω $I_{\rm C}$ = 15 mA
3rd order intercept point at output	OIP3	_	22	_		$I_{\rm C}$ = 15 mA

Table 5-4 AC Characteristics, $V_{\rm CE}$ = 3 V, f = 0.9 GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	28	_		$I_{\rm C}$ = 15 mA
Transducer gain	$ S_{21} ^2$	_	27	_		$I_{\rm C}$ = 15 mA $I_{\rm C}$ = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.45	_		$I_{\rm C}$ = 6 mA
Associated gain	G_{ass}	_	24.5	_		$I_{\rm C}$ = 6 mA $I_{\rm C}$ = 6 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB compression point at output	OP_{1dB}	_	8	_		$I_{\rm C}$ = 15 mA
3rd order intercept point at output	OIP3	_	22.5	_		$I_{\rm C}$ = 15 mA

Table 5-5 AC Characteristics, $V_{\rm CE}$ = 3 V, f = 1.5 GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	G_{ms}	_	26	_		$I_{\rm C}$ = 15 mA
Transducer gain	$ G_{ m ms} S_{21} ^2$	_	25	_		$I_{\rm C}$ = 15 mA $I_{\rm C}$ = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.5	_		$I_{\rm C}$ = 6 mA
Associated gain	G_{ass}	_	22.5	_		$I_{\rm C}$ = 6 mA $I_{\rm C}$ = 6 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB compression point at output	OP_{1dB}	_	7	_		$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω $I_{\rm C}$ = 15 mA
3rd order intercept point at output	OIP3	_	23	_		$I_{\rm C}$ = 15 mA

Table 5-6 AC Characteristics, $V_{\rm CE}$ = 3 V, f = 1.9 GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	25	_		$I_{\rm C}$ = 15 mA $I_{\rm C}$ = 15 mA
Transducer gain	$ S_{21} ^2$	_	23.5	_		$I_{\rm C}$ = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.5	_		$I_{\rm C}$ = 6 mA
Associated gain	G_{ass}	_	21.5	_		$I_{\rm C}$ = 6 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB compression point at output	OP_{1dB}	_	9	_		$I_{\rm C}$ = 15 mA
3rd order intercept point at output	OIP3	_	24.5	_		$I_{\rm C}$ = 15 mA

Table 5-7 AC Characteristics, $V_{\rm CE}$ = 3 V, f = 2.4 GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	24	_		$I_{\rm C}$ = 15 mA
Transducer gain	$ S_{21} ^2$	_	22	_		$I_{\rm C}$ = 15 mA $I_{\rm C}$ = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.55	_		$I_{\rm C}$ = 6 mA
Associated gain	G_{ass}	_	20	_		$I_{\rm C}$ = 6 mA $I_{\rm C}$ = 6 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB compression point at output	OP_{1dB}	_	8	_		$I_{\rm C}$ = 15 mA
3rd order intercept point at output	OIP3	_	24.5	_		$I_{\rm C}$ = 15 mA

Table 5-8 AC Characteristics, $V_{\rm CE}$ = 3 V, f = 3.5 GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	22	_		$I_{\rm C}$ = 15 mA
Transducer gain	$ G_{ m ms} S_{21} ^2$	_	19	_		$I_{\rm C}$ = 15 mA $I_{\rm C}$ = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.65	_		$I_{\rm C}$ = 6 mA
Associated gain	G_{ass}	_	17	_		$I_{\rm C}$ = 6 mA $I_{\rm C}$ = 6 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB compression point at output	OP_{1dB}	_	9	_		$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω $I_{\rm C}$ = 15 mA
3rd order intercept point at output	OIP3	_	25.5	_		$I_{\rm C}$ = 15 mA

Table 5-9 AC Characteristics, $V_{\rm CE}$ = 3 V, f = 5.5 GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	19.5	_		$I_{\rm C}$ = 15 mA
Transducer gain	$ S_{21} ^2$	_	15	_		$I_{\rm C}$ = 15 mA $I_{\rm C}$ = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.85	_		$I_{\rm C}$ = 6 mA
Associated gain	G_{ass}	_	14	_		$I_{\rm C}$ = 6 mA $I_{\rm C}$ = 6 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB compression point at output	OP_{1dB}	_	9	_		$I_{\rm C}$ = 15 mA
3rd order intercept point at output	OIP3	_	24.5	_		$I_{\rm C}$ = 15 mA

Note: OIP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.2 MHz to 12 GHz.

5.4 Characteristic DC Diagrams

Figure 5-2 Collector Current vs. Collector Emitter Voltage $I_{\rm C}$ = $f(V_{\rm CE})$, $I_{\rm B}$ = Parameter in $\mu \rm A$

Figure 5-3 DC Current Gain h_{FE} = $f(I_{\text{C}})$, V_{CE} = 3 V

Figure 5-4 Collector Current vs. Base Emitter Forward Voltage $I_{\rm C}$ = $f(V_{\rm BE})$, $V_{\rm CE}$ = 2 V

Figure 5-5 Base Current vs. Base Emitter Forward Voltage $I_{\rm B}$ = $f(V_{\rm BE})$, $V_{\rm CE}$ = 2 V

Figure 5-6 Base Current vs. Base Emitter Reverse Voltage $I_{\rm B}$ = f ($V_{\rm EB}$), $V_{\rm CE}$ = 2 V

5.5 Characteristic AC Diagrams

Measurement setup is a test fixture with Bias T's in a 50 Ω system, $T_{\rm A}$ = 25 °C.

Figure 5-7 Transition Frequency $f_{\rm T}$ = f ($I_{\rm C}$), $V_{\rm CE}$ = Parameter in V

Figure 5-8 3rd Order Intercept Point at output $OIP3 = f(I_C)$, $Z_S = Z_L = 50 \Omega$, $V_{CE,f} = Parameters$

Figure 5-9 3rd Order Intercept Point at output OIP3 [dBm] = $f(I_{C}, V_{CE})$, $Z_{S} = Z_{L} = 50 \ \Omega$, $f = 5.5 \ GHz$

Figure 5-10 Compression Point at output OP_{1dB} [dBm] = f (I_{C} , V_{CE}), Z_{S} = Z_{L} = 50 Ω , f = 5.5 GHz

Figure 5-11 Collector Base Capacitance $C_{\rm CB}$ = f ($V_{\rm CB}$), f = 1 MHz

Figure 5-12 Gain $G_{\rm ma,}G_{\rm ms,}$ $|S_{21}|^2=f$ (f), $V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 15 mA

Figure 5-13 Maximum Power Gain $G_{\text{max}} = f(I_{\text{C}})$, $V_{\text{CE}} = 3 \text{ V}$, f = Parameter in GHz

Figure 5-14 Maximum Power Gain $G_{\text{max}} = f(V_{\text{CE}}), I_{\text{C}} = 15 \text{ mA}, f = \text{Parameter in GHz}$

Figure 5-15 Input Matching S_{11} = f (f), $V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 6 / 15 mA

Figure 5-16 Source Impedance for Minimum Noise Figure $Z_{\rm opt}$ = f (f), $V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 6 / 15 mA

Figure 5-17 Output Matching S_{22} = f (f), $V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 6 / 15 mA

Figure 5-18 Noise Figure $NF_{\rm min}$ = f (f), $V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 6 / 15 mA, $Z_{\rm S}$ = $Z_{\rm opt}$

Figure 5-19 Noise Figure $NF_{\min} = f(I_{\rm C}), V_{\rm CE} = 3 \text{ V}, Z_{\rm S} = Z_{\rm opt}, f = \text{Parameter in GHz}$

Figure 5-20 Noise Figure NF_{50} = f ($I_{\rm C}$), $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = 50 Ω , f = Parameter in GHz

Note: The curves shown in this chapter have been generated using typical devices but shall not be considered as a guarantee that all devices have identical characteristic curves.

Simulation Data

6 Simulation Data

For the SPICE Gummel Poon (GP) model as well as for the S-parameters (including noise parameters) please refer to our internet website. Please consult our website and download the latest versions before actually starting your design.

You find the BFP740 SPICE GP model in the internet in MWO- and ADS-format, which you can import into these circuit simulation tools very quickly and conveniently. The model already contains the package parasitics and is ready to use for DC and high frequency simulations. The terminals of the model circuit correspond to the pin configuration of the device.

The model parameters have been extracted and verified up to 10 GHz using typical devices. The BFP740 SPICE GP model reflects the typical DC- and RF-performance within the limitations which are given by the SPICE GP model itself. Besides the DC characteristics all S-parameters in magnitude and phase, as well as noise figure (including optimum source impedance, equivalent noise resistance and flicker noise) and intermodulation have been extracted.

Package Information SOT343

7 Package Information SOT343

Figure 7-1 Package Outline

Figure 7-2 Package Footprint

Figure 7-3 Marking Description (Marking BFP740: R7s)

Figure 7-4 Tape Dimensions

www.infineon.com