Valoración Financiera 1

Traer a un valor futuro a un valor presente se hace mediante

$$C_0 = f(t,0) \cdot C_t$$

$$C_0 = f(t,0) \cdot C_t$$

$$C_0 = f(t,0) \cdot C_t$$

donde

- t: Horizonte temporal
- C_t : Es la cantidad en el periodo t
- f(t,0): Es el factor de descuento de $t \neq 0$
- C_0 : Es la cantidad equivalente del monto C_t en el periodo 0

En el caso donde $C_t = 1$ se tiene que su monto equivalente en cero es f(t,0), por lo tanto se puede interpretar f(t,0) como el equivalente monentario de una unidad monetaria (un euro) del tiempo t en el presente.

En el régimen de interés compuesto el factor de descuento se expresa como

$$f(t,0) = (1+I_h)^{-h \cdot t}$$

debido a que $I_h = \frac{i_h}{h}$, también

$$f(t,0) = \left(1 + \frac{i_h}{h}\right)^{-h \cdot t}$$

donde:

- h: Frecuencia de capitalización
- I_h : El tanto efectivo de interés de frecuencia de capitalización h
- i_h : El tanto de interés nominal (anual) de frecuencia de capitalación h

1.1 Tanto efectivo anual

Para el caso particular dondeh=1, se define $i:=I_1=i_1$, por lo tanto

$$f(t,0) = (1+i)^{-t}$$

donde:

• $i = I_1 = i_1$: El tanto efectivo de interés de frecuencia anual o el tanto de interés nominal (anual) de capitalación anual. Esta será el tipo de interés técnico.

El caso particular donde t=1, se define $v:=f(1,0)=(1+t)^{-1}$, entonces

$$f(t,0) = v^t$$

1

Propiedades del factor de actualización (v^t)

- 1. v^t es creciente en t
- $2. v^0 = 1$
- 3. $\lim_{t\to\infty} v^t = 0$
- 4. Escindibilidad: $v^{t_1+t_2} = v^{t_1} \cdot v^{t_2}$

1.2 Tanto instantáneo de interés

Para el caso particular donde $h \to \infty$, en este caso

$$f(t,0) = \lim_{h \to \infty} \left(1 + \frac{i_h}{h} \right)^{-h \cdot t}$$
$$= \left[\lim_{h \to \infty} \left(1 + \frac{i_h}{h} \right)^h \right]^{-t}$$
$$= e^{-\rho \cdot t}$$

donde ρ es el tanto instantaneo de interés, es decir, la tasa nominal anual con capitalization instántanea. La relación con el tanto efectivo anual

$$(1+i)^{-t} = e^{-\rho \cdot t}$$
$$1+i = e^{\rho}$$
$$\rho = \ln(1+i)$$

1.3 Tantos efectivos equivalentes

Si se tiene dos periodos de capitalización h_1 y h_2 tal que que tienen el mismo t, C_t y C_0 , es decir

$$C_t \cdot (1 + I_{h_1})^{-h_1 \cdot t} = C_t \cdot (1 + I_{h_2})^{-h_2 \cdot t}$$
$$(1 + I_{h_1})^{-h_1} = (1 + I_{h_2})^{-h_2}$$
$$I_{h_1} = (1 + I_{h_2})^{\frac{h_2}{h_1}} - 1$$

1.4 Resumen

En resumen se tienen estas igualdades

	Forma
General	$C_0 = f(t,0) \cdot C_t$
Tasa efectiva de interés	$C_0 = (1 + I_h)^{-h \cdot t} \cdot C_t$
Tasa nominal de interés	$C_0 = \left(1 + \frac{i_h}{h}\right)^{-h \cdot t} \cdot C_t$
Tasa efectiva anual	$C_0 = (1+i)^{-t} \cdot C_t$
Factor de actualización	$C_0 = v^{-t} \cdot C_t$
Capitalización instantánea	$C_0 = e^{-\rho \cdot t} \cdot C_t$

1.5 Ejemplo

Una persona, que cumple 60 años hoy, decide ir al banco a realizar una única aportación a un plan de ahorro con el objetivo de tener acumulado en el momento de la jubilación a los 67 años un capital de 500.000€. El plan de ahorro le proporciona un nominal capitalizable semestralmente del 1% durante todo el plazo de la operación. Se pide:

- a) Calcular el importe de la aportación única
- b) Calcular el efectivo anual financieramente equivalente al tanto efectivo semestral pactado en el plan de ahorro
- c) Calcular el tanto instantáneo proporcionado por el plan de ahorro.
- d) Interpretar el factor financiero de actualización f(7,0) .

Respuesta:

a. Calcular el importe de la aportación única

$$C_0 = \left(1 + \frac{i_h}{h}\right)^{-h \cdot t} \cdot C_t = \left(1 + \frac{0.01}{2}\right)^{-2 \cdot 7} \cdot 500,000 = 466,278.2$$

b. Calcular el efectivo anual financieramente equivalente al tanto efectivo semestral pactado en el plan de ahorro

$$I_1 = \left(1 + \frac{i_h}{h}\right)^{h/1} - 1 = \left(1 + \frac{0.01}{2}\right)^{2/1} - 1 = 0.010025$$

c. Calcular el tanto instantáneo proporcionado por el plan de ahorro.

$$\rho = \ln(1 + I_1) = \ln(1 + 0.010025) = 0.009975083$$

d. Interpretar el factor financiero de actualización f(7,0) .

$$f(7,0) = (1+I_1)^{-7} = (1+0.010025)^{-7} = 0.9325565$$