EXERCÍCIOS PROPOSTOS

C#

Professor Matheus de Holanda

AGENDA

Exercício 01 String

Exercício 02 Casting

Exercício 03 Geometria

Exercício 04 Abs

Exercício 05 sqrt,pow

Exercício 06 pow, Round

Exercício 07 Mod

Exercício 08 mod

Exercício 09 mod / (desafio – casting)

Exemplos de Entrada	Exemplos de Saída
JOAO	TOTAL = R\$ 684.54
500.00	
1230.30	
PEDRO	TOTAL = R\$ 700.00
700.00	
0.00	
MANGOJATA	TOTAL = R\$ 1884.58

1700.00

1230.50

Exercício 01 Salário com Bônus

Faça um programa que leia o nome de um vendedor, o seu salário fixo e o total de vendas efetuadas por ele no mês (em dinheiro). Sabendo que este vendedor ganha 15% de comissão sobre suas vendas efetuadas, informar o total a receber no final do mês, com duas casas decimais.

Entrada

O arquivo de entrada contém um texto (primeiro nome do vendedor) e 2 valores de dupla precisão (double) com duas casas decimais, representando o salário fixo do vendedor e montante total das vendas efetuadas por este vendedor, respectivamente.

Saída

Imprima o total que o funcionário deverá receber, conforme exemplo fornecido.

Faça um programa que calcule e mostre o volume de uma esfera sendo fornecido o valor de seu raio (R). A fórmula para calcular o volume é: (4/3) * pi * R3. Considere (atribua) para pi o valor 3.14159.

Dica: Ao utilizar a fórmula, procure usar (4/3.0) ou (4.0/3), pois algumas linguagens, assumem que o resultado da divisão entre dois inteiros é outro inteiro.

Entrada

O arquivo de entrada contém um valor de ponto flutuante (dupla precisão), correspondente ao raio da esfera.

Exemplos de Entrada	Exemplos de Saída	
3	VOLUME = 113.097	

15	VOLUME = 14137.155

VOLUME	=	14797486501.627
	VOLUME	VOLUME =

Saída

A saída deverá ser uma mensagem "VOLUME" conforme o exemplo fornecido ao lado, com um espaço antes e um espaço depois da igualdade. O valor deverá ser apresentado com 3 casas após o ponto.

Exemplos de Saída

3.0	TRIANGULO: 7.800
4.0	CIRCULO: 84.949
5.2	TRAPEZIO: 18.200
	QUADRADO: 16.000
	RETANGULO: 12.000
12.7	TRIANGULO: 96.520
10.4	CIRCULO: 725.833
15.2	TRAPEZIO: 175.560
	QUADRADO: 108.160
	RETANGULO: 132.080

Exemplos de Entrada

Exercício 03 Área

Escreva um programa que leia três valores com ponto flutuante de dupla precisão: A, B e C. Em seguida, calcule e mostre:

- a) a área do triângulo retângulo com A por base e C por altura.
- b) a área do círculo de raio C. (pi = 3.14159)
- c) a área do trapézio com A e B por bases e C por altura.
- d) a área do quadrado com lado B.
- e) a área do retângulo com lados A e B.

Entrada

O arquivo de entrada contém três valores com um dígito após o ponto decimal.

Saída

O arquivo de saída deverá conter 5 linhas de dados. Cada linha corresponde a uma das áreas descritas acima, sempre com mensagem correspondente e um espaço entre os dois pontos e o valor. O valor calculado deve ser apresentado com 3 dígitos após o ponto decimal.

Faça	um	programa	que	leia	três	valores	е
aprese	ente d	maior dos	três va	lores	lidos	seguido	da
mens	agem	"eh o maior	r". Utiliz	ze a fo	órmul	la:	

$$MaiorAB = \frac{(a+b+abs(a-b))}{2}$$

Obs.: a fórmula apenas calcula o maior entre os dois primeiros (a e b). Um segundo passo, portanto, é necessário para chegar no resultado esperado.

Entrada

O arquivo de entrada contém três valores inteiros.

Saída

Imprima o maior dos três valores seguido por um espaço e a mensagem "eh o maior".

Exemplos de Entrada	Exemplos de Saída
7 14 106	106 eh o maior
217 14 6	217 eh o maior

	Exemplo de Entrada	Exemplo de Saída
1.0		4.4721
7.0		
5.0		
9.0		
-2.5		16.1484
0.4		
12.1		
7.3		
2.5		16.4575
-0.4		
-12.2		
7.0		

Exercício 05 Distância Entre Dois Pontos

Leia os quatro valores correspondentes aos eixos x e y de dois pontos quaisquer no plano, p1(x1,y1) e p2(x2,y2) e calcule a distância entre eles, mostrando 4 casas decimais após a vírgula, segundo a fórmula:

Distancia
$$\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$$

Entrada

O arquivo de entrada contém quatro linhas de dados. As duas primeiras linhas contém dois valores de ponto flutuante: x1 y1 e as duas segundas linhas contém dois valores de ponto flutuante x2 y2.

Saída

Calcule e imprima o valor da distância segundo a fórmula fornecida, com 4 casas após o ponto decimal.

Exemplo de Entrada	Exemplo de Saída
Nome: Rodrigo Peso: 79 Altura: 1.82	0,24

Exercício 06 Calculadora de IMC

Faça um programa que calcule o IMC recebendo o nome, peso e altura de uma pessoa Ao final imprima o resultado no console.

Entrada

O arquivo de entrada contém:

Nome: Rodrigo

Peso: 79

Altura: 1.82

Saída

Calcule e imprima o valor do IMC arredondando esse valor.

Exemplo de Entrada	Exemplo de Saída
576	576
	5 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	1 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	0 nota(s) de R\$ 2,00
	1 nota(s) de R\$ 1,00
11257	11257
	112 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	0 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	1 nota(s) de R\$ 2,00
	0 nota(s) de R\$ 1,00
503	503
	5 nota(s) de R\$ 100,00
	0 nota(s) de R\$ 50,00
	0 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	0 nota(s) de R\$ 5,00
	1 nota(s) de R\$ 2,00

1 nota(s) de R\$ 1,00

Leia um valor inteiro. A seguir, calcule o menor número de notas possíveis (cédulas) no qual o valor pode ser decomposto. As notas consideradas são de 100, 50, 20, 10, 5, 2 e 1. A seguir mostre o valor lido e a relação de notas necessárias.

Entrada

O arquivo de entrada contém um valor inteiro N (0 < N < 1000000).

Saída

Imprima o valor lido e, em seguida, a quantidade mínima de notas de cada tipo necessárias, conforme o exemplo fornecido. Não esqueça de imprimir o fim de linha após cada linha.

Exemplo de Entrada	Exemplo de Salda
400	1 ano(s) 1 mes(es)
	5 dia(s)
800	2 ano(s) 2 mes(es) 10 dia(s)
30	O ano(s)

1 mes(es) 0 dia(s) Leia um valor inteiro correspondente à idade de uma pessoa em dias e informe-a em anos, meses e dias

Obs.: apenas para facilitar o cálculo, considere todo ano com 365 dias e todo mês com 30 dias. Nos casos de teste nunca haverá uma situação que permite 12 meses e alguns dias, como 360, 363 ou 364. Este é apenas um exercício com objetivo de testar raciocínio matemático simples.

Entrada

O arquivo de entrada contém um valor inteiro.

Saída

Imprima a saída conforme exemplo fornecido.

Exemplo de Entrada		Exemplo de Saída
576.73	NOTAS: 5 nota(s) de R\$ 100.00 1 nota(s) de R\$ 50.00 1 nota(s) de R\$ 20.00 0 nota(s) de R\$ 10.00 1 nota(s) de R\$ 10.00 1 nota(s) de R\$ 5.00 0 nota(s) de R\$ 2.00 MOEDAS: 1 meeda(s) de R\$ 1.00 1 moeda(s) de R\$ 0.50 0 moeda(s) de R\$ 0.25 2 meeda(s) de R\$ 0.10 0 moeda(s) de R\$ 0.05 3 moeda(s) de R\$ 0.05	
4.00	NOTAS: 0 nota(s) de R\$ 100.00 0 nota(s) de R\$ 50.00 0 nota(s) de R\$ 20.00 0 nota(s) de R\$ 10.00 0 nota(s) de R\$ 10.00 2 nota(s) de R\$ 2.00 MOEDAS: 0 moeda(s) de R\$ 1.00 0 moeda(s) de R\$ 0.50 0 moeda(s) de R\$ 0.50 0 moeda(s) de R\$ 0.25 0 moeda(s) de R\$ 0.10 0 moeda(s) de R\$ 0.10 0 moeda(s) de R\$ 0.05	
91.01	NOTAS: 0 nota(s) de R\$ 100.00 1 nota(s) de R\$ 50.00 2 nota(s) de R\$ 20.00 0 nota(s) de R\$ 10.00 0 nota(s) de R\$ 5.00 0 nota(s) de R\$ 2.00 MOEDAS: 1 meeda(s) de R\$ 1.00 0 moeda(s) de R\$ 0.50 0 moeda(s) de R\$ 0.50 0 moeda(s) de R\$ 0.25 0 moeda(s) de R\$ 0.10 0 moeda(s) de R\$ 0.05 1 moeda(s) de R\$ 0.05	

Leia um valor de ponto flutuante com duas casas decimais. Este valor representa um valor monetário. A seguir, calcule o menor número de notas e moedas possíveis no qual o valor pode ser decomposto. As notas consideradas são de 100, 50, 20, 10, 5, 2. As moedas possíveis são de 1, 0.50, 0.25, 0.10, 0.05 e 0.01. A seguir mostre a relação de notas necessárias.

Entrada

O arquivo de entrada contém um valor de ponto flutuante N $(0 \le N \le 1000000.00)$.

Saída

Imprima a quantidade mínima de notas e moedas necessárias para trocar o valor inicial, conforme exemplo fornecido.

Obs: Utilize ponto (.) para separar a parte decimal.