Model Selection and Prediction Accuracy Eltecon Data Science Course by Emarsys

Holler 7suzsa

September 29, 2021

Goal of the lesson

- Intro to the theory of model selection, model complexity and overfitting
- Understand the concept through real life examples
- Cover most commonly used practical solutions to the model selection problem
- Get some hands-on experience

Section 1

Model Selection in Theory

How to Select the Best Model

Goal: Good generalisation i.e.: best predictive performance on new data What if I choose the one with the lowest error (RMSE)/ best fit (R^2) ? How to select the best type of model for our application?

How to Select the Best Model

The Loss Function

Common choice for regression problem is the **squared loss**:

$$L(f(x), y) = (f(x) - y)^2$$

Goal is to choose f(x) that **minimises the expected loss**:

$$E[L(f)] = E[(f(x) - y)^2]$$

The Empirical Loss Minimiser

Assume you choose to approximate the relationship with a linear function with k variables (f_k) .

The **empirical loss** of the fitted model:

$$\hat{L}(f_k) = \frac{1}{n} \sum (f_k(x) - y)^2$$

Is this a good estimate of the expected loss of $f_k(x)$? Beware of overfitting!

The Empirical Loss Minimiser

The Empirical Loss Minimiser

What is overfitting

Among a set of possible models we choose one that is too complex and has poor generalisation properties.

Why? Because we have an incorrect estimate of its expected loss.

Overfitting error:

Model Complexity in Practice

include?

"Classic" variable selection: Which explanatory variables should I

- Functional form selection: In what form should I include my variables?
- Tree models: How complex tree structure should I allow?
- Deep learning: How complex neural network should I train?

Model Complexity in Practice

Take the bike rental example from last time.

How should we incorporate the information on the time of the day?

- 1 include "hour" variable as it is
- create a dummy variable for each value of hour
- 3 include "hour" as a third degree polynomial
- include a dummy variable for morning/afternoon

Task: Order the listed options by model complexity. Share your results in Socrative!

Section 2

Model Selection in Practice

Model Selection in Practice

Find the ideal level of **model complexity** within a given model type (e.g.: choose k for linear regression) for a **given set of data**.

Note that we have two conflicting goals:

- have a larger set of models to choose from in order to find the best among all possible models → increase complexity
- have a realistic estimate of the models' preformance so we find the best model out of the set of models we consider → decrease complexity

Idea: have an independent sample to estimate the performance of the fitted model

Training set: *N* observations of labeled data used to tune the parameters of the model (e.g.: estimate coefficients of linear regression)

Validation set/Test set: M observations of labeled data used to estimate the performance of the fitted model and possibly optimize model complexity and/or choose between different types of models

Watch out for use-cases where random assignment does not work!

$$RMSE = \sqrt{\frac{1}{n} \sum (\hat{f}(x) - y)^2}$$

	train RMSE	test RMSE
pred0	0.71	0.54
pred1	0.45	0.51
pred5	0.11	0.08
pred30	0.09	1.49

SMS Spam Prediction Dataset

- Source: Kaggle
- Goal: Predict if SMS was a spam using text of the SMS

Pre-cleaned the data (removed stopwords, special characters etc.) and created word count variables: **spam_clean.csv**

is_spam	message	nchar	nwords
0	Go until jurong point, crazy Available only in bugis n great world la e buffet Cine there got amore wat	111	12
0	Ok lar Joking wif u oni	29	4
1	Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 08452810075over18's	155	20
0	U dun say so early hor U c already then say	49	6
0	Nah I don't think he goes to usf, he lives around here though	61	8
1	FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it still? Tb ok! XxX std chgs to send, å£1.50 to rcv	148	16

plus top 400 most frequent words.

SMS Spam Prediction

Let's see some prediction models! spam_pred_train_test.R

Practice Time

- Task: estimate at least two more models with different complexity, compute their train and test accuracy and conclude which one to use to spot spam messages!
- Share your results in Socrative!
- You have 20 minutes feel free to take a break if needed.

Advantages:

Simple approach

Disadvantages:

- Loss of valuable training data
- Small validation set gives noisy estimate of predictive performance

Overfitting to the validation set??? Possible!

One may want to set aside a third set of data to assess the performance of the final model.

Idea: Instead of having a single validation set split the data multiple times to estimate the performance of the fitted model

Leave-one-out: split tha data N times, always leave one observation out for testing

K-fold: split the data into k sub-samples of equal size and leave one out for testing

How to choose k? Larger k results in larger variance in the error estimation but provides nearly unbiased estimate of the performance of the fitted model. (k = 5 is a common choice)

$$CV_k = \sqrt{\frac{1}{k} \sum MSE_i}$$

	train RMSE	test RMSE	CV RMSE		
pred0	0.71	0.54	0.68		
pred1	0.45	0.51	0.47		
pred5	0.11	0.08	0.12		
pred30	0.09	1.49	0.96		

SMS Spam Prediction

Let's do cross-validation for our spam prediction models! spam_pred_cv.R

Practice Time

- Task: Compute leave-one-out CV accuracy for all models you fitted in the previous exercise and compare their performance!
- Share your results in Socrative!
- You have 20 minutes feel free to take a break if needed.

Advantages:

- utilizes all the data
- suitable for parameter tuning
- can decrease variance of the error estimation

Disadvantages:

computationally expensive

Homework

- Take a deeper look at the spam dataset and extract at least two more variables from the message text that you think could help the prediction. Describe your new variables.
- Include the new variables in your model and evaluate the model performance using CV.
- Summarise your results in a few sentence.

Resources

- Bishop, Christopher: Pattern Recognition and Machine Learning
- Gareth J., Witten D., Hastie T. and Tibshirani R.: An Introduction to Statistical Learning