

Angewandte Stochastik

Prof. Dr. Evgeny Spodarev | Vorlesungskurs |

7. Thema

Heutiges Thema

Punktschätzer

Sei $(x_1, ..., x_n)$ eine *konkrete* Stichprobe, d.h., eine Realisierung einer Zufallsstichprobe $(X_1, ..., X_n)$.

- X₁,..., X_n seien unabhängige identisch verteilte Zufallsvariablen mit der unbekannten Verteilungsfunktion F.
- ► F gehört zu einer bekannten parametrischen Familie $\{F_{\theta}: \theta \in \Theta\}$.

- $\theta = (\theta_1, \dots, \theta_m) \in \Theta$ ist hier der m-dimensionale Parametervektor der Verteilung F_{θ} und $\Theta \subset \mathbb{R}^m$ der sogenannte Parameterraum (eine Borel-Teilmenge von \mathbb{R}^m , die die Menge aller zugelassenen Parameterwerte darstellt).
- Voraussetzung: Die Parametrisierung $\theta \to F_{\theta}$ ist identifizierbar, indem $F_{\theta_1} \neq F_{\theta_2}$ für $\theta_1 \neq \theta_2$ gilt.

Parametrisches Modell

- ► Wichtige Aufgabe der Statistik: Schätzung des Parametervektors θ (oder eines Teils von θ) an Hand von der konkreten Stichprobe $(x_1, ..., x_n)$.
- In diesem Fall spricht man von einem *Punktschätzer* $\hat{\theta}: \mathbb{R}^n \to \mathbb{R}^m$, der eine gültige Stichprobenfunktion ist.
- Meistens wird angenommen, dass

$$P\left(\hat{\theta}(X_1,\ldots,X_n)\in\Theta\right)=1$$
,

wobei es zu dieser Regel auch Ausnahmen gibt.

▶ Um zu betonen, dass P vom Parameter θ abhängt, werden wir Bezeichnungen

$$P_{\theta}$$
, E_{θ} und Var_{θ}

für das Maß P, den Erwartungswert und die Varianz bzgl. P verwenden.

Beispiel

1.

- ► Sei X die Dauer des fehlerfreien Arbeitszyklus eines technischen Systems.
- ▶ Oft wird $X \sim Exp(\lambda)$ angenommen.
- Dann stellt $\{F_{\theta}: \theta \in \Theta\}$ mit $m = 1, \theta = \lambda, \Theta = \mathbb{R}_+$ und

$$F_{\theta}(x) = (1 - e^{-\theta x})I(x \ge 0)$$

ein parametrisches Modell dar.

- Der Parameterraum ist eindimensional.
- Später wird für λ der (Punkt-) Schätzer $\hat{\lambda}(x_1,\ldots,x_n)=\frac{1}{\kappa_n}$ vorgeschlagen.

Beispiel

Seite 7

2.

- ► In den Fragestellungen der statistischen Qualitätskontrolle werden *n* Erzeugnisse auf Mängel untersucht.
- ▶ Falls $p \in (0,1)$ die unbekannte Wahrscheinlichkeit des Mangels ist, so wird mit $X \sim Bin(n,p)$ die Gesamtanzahl der mangelhaften Produkte beschrieben.

Beispiel

Dabei wird folgendes parametrische Modell unterstellt:

$$\Theta = \{(n,p): n \in \mathbb{N}, p \in (0,1)\}, \theta = (n,p), m = 2,$$

$$F_{\theta}(x) = P_{\theta}(X \le x) = \begin{cases} 1, & x > n \\ \sum_{k=0}^{[x]} {n \choose k} p^{k} (1-p)^{n-k}, & x \in [0,n] \\ 0, & x < 0. \end{cases}$$

Falls *n* bekannt ist, kann die Wahrscheinlichkeit *p* des Ausschusses durch den Punktschätzer $\hat{p}(x_1,\ldots,x_n)=\bar{x}_n, x_i\in\{0,1\}$ näherungsweise berechnet werden.

- Sei $(X_1, ..., X_n)$ eine Zufallsstichprobe, definiert auf dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\theta})$.
- Seien X_i , $i=1,\ldots,n$ unabhängige identisch verteilte Zufallsvariablen mit Verteilungsfunktion $F \in \{F_\theta : \theta \in \Theta\}$, $\Theta \subset \mathbb{R}^m$.
- ▶ **Ziel:** Finde einen Schätzer $\hat{\theta}(X_1, ..., X_n)$ für den Parameter θ mit den vorgegebenen Eigenschaften.

Definition (Erwartungstreue)

Seite 10

Ein Schätzer $\hat{\theta}(X_1, \dots, X_n)$ für θ heißt erwartungstreu oder unverzerrt, falls

$$\mathbb{E}_{\theta}\hat{\theta}(X_1,\ldots,X_n)=\theta,\quad \theta\in\Theta.$$

Dabei wird vorausgesetzt, dass

$$\mathsf{E}_{\theta}|\hat{\theta}(X_1,\ldots,X_n)|<\infty,\quad \theta\in\Theta.$$

Der *Bias* (*Verzerrung*) eines Schätzers $\hat{\theta}(X_1, \dots, X_n)$ ist gegeben durch

$$Bias(\hat{\theta}) = \mathsf{E}_{\theta} \, \hat{\theta}(X_1, \dots, X_n) - \theta$$
.

Falls $\hat{\theta}(X_1, \dots, X_n)$ erwartungstreu ist, dann gilt $Bias(\hat{\theta}) = 0$ (kein systematischer Schätzfehler).

Der Schätzer $\hat{\theta}(X_1,\ldots,X_n)$ für θ heißt asymptotisch erwartungstreu (oder asymptotisch unverzerrt), falls (für große Datenmengen)

$$\mathsf{E}_{\theta} \, \hat{\theta}(X_1, \ldots, X_n) \underset{n \to \infty}{\longrightarrow} \theta, \quad \theta \in \Theta.$$

Definition (Konsistenz)

Falls

Seite 12

$$\hat{\theta}(X_1,\ldots,X_n)\underset{n\to\infty}{\longrightarrow}\theta,\quad \theta\in\Theta$$

in L^2 , stochastisch bzw. fast sicher, dann heißt der Schätzer $\hat{\theta}(X_1,\ldots,X_n)$ ein konsistenter Schätzer für θ im mittleren quadratischen, schwachen bzw. starken Sinne .

 $lacksim \hat{ heta}$ L^2 -konsistent: für $\mathbb{E}_{ heta}$ $|\hat{ heta}(X_1,\ldots,X_n)|^2 < \infty$ gilt

$$\hat{\theta} \xrightarrow[n \to \infty]{L^2} \theta \iff \mathsf{E}_{\theta} |\hat{\theta}(X_1, \dots, X_n) - \theta|^2 \xrightarrow[n \to \infty]{} 0, \quad \theta \in \Theta.$$

Definition (Konsistenz)

 \triangleright $\hat{\theta}$ schwach konsistent :

$$\hat{\theta} \xrightarrow[n \to \infty]{P} \theta \Longleftrightarrow P_{\theta}(|\hat{\theta}(X_1, \dots, X_n) - \theta| > \varepsilon) \xrightarrow[n \to \infty]{0} 0, \quad \varepsilon > 0, \theta \in \Theta.$$

 $\triangleright \hat{\theta}$ stark konsistent :

$$\hat{\theta} \xrightarrow[n \to \infty]{\text{f.s.}} \theta \Longleftrightarrow P_{\theta} \left(\lim_{n \to \infty} \hat{\theta}(X_1, \dots, X_n) = \theta \right) = 1, \quad \theta \in \Theta.$$

Daraus ergibt sich folgendes Diagramm:

Der mittlere quadratische Fehler eines Schätzers $\hat{\theta}(X_1, \dots, X_n)$ für θ ist definiert als

$$MSE(\hat{\theta}) = \mathsf{E}_{\theta} |\hat{\theta}(X_1, \dots, X_n) - \theta|^2$$
.

Falls
$$m=1$$
 und $\mathsf{E}_{\theta}\,\hat{\theta}^2(X_1,\ldots,X_n)<\infty\,,\quad \theta\in\Theta,$ dann gilt

$$MSE(\hat{\theta}) = Var_{\theta} \hat{\theta} + (Bias(\hat{\theta}))^{2}$$
.

Falls $\hat{\theta}$ *erwartungstreu* für θ ist, dann gilt $MSE(\hat{\theta}) = Var_{\theta} \hat{\theta}$.

Definition (Vergleich von Schätzern)

Seien für θ zwei Schätzer durch $\hat{\theta}_1(X_1,\ldots,X_n)$ und $\hat{\theta}_2(X_1,\ldots,X_n)$ definiert. Man sagt, dass $\hat{\theta}_1$ besser ist als $\hat{\theta}_2$, falls

$$MSE(\hat{\theta}_1) < MSE(\hat{\theta}_2)$$
 , $\theta \in \Theta$.

Falls m=1 und die Schätzer $\hat{\theta}_1$, $\hat{\theta}_2$ erwartungstreu sind, so ist $\hat{\theta}_1$ besser als $\hat{\theta}_2$, falls $\hat{\theta}_1$ die kleinere Varianz besitzt. Dabei wird stets vorausgesetzt, dass $\mathsf{E}_{\theta}\,\hat{\theta}_i^2 < \infty\,,\quad \theta\in\Theta.$

Definition (Asymptotische Normalverteiltheit)

Sei
$$\hat{\theta}(X_1,\ldots,X_n)$$
 ein Schätzer für θ ($m=1$). Falls $0< {\sf Var}_{\,\theta}\,\hat{\theta}(X_1,\ldots,X_n)<\infty\,,\quad \theta\in\Theta$ und

$$\frac{\hat{\theta}(X_1,\dots,X_n)-\mathsf{E}_{\theta}\,\hat{\theta}(X_1,\dots,X_n)}{\sqrt{\mathsf{Var}_{\;\theta}\,\hat{\theta}(X_1,\dots,X_n)}} \xrightarrow[n\to\infty]{d} Y \sim \textit{N}(0,1)\,,$$

dann ist $\hat{\theta}(X_1, \dots, X_n)$ asymptotisch normalverteilt.

Der Schätzer $\hat{\theta}(X_1, \dots, X_n)$ für θ ist der beste erwartungstreue Schätzer, falls

$$\mathsf{E}_{\theta}\,\hat{\theta}^2(X_1,\ldots,X_n)<\infty\,,\quad \theta\in\Theta\,,\qquad \mathsf{E}_{\theta}\,\hat{\theta}(X_1,\ldots,X_n)=\theta\,,\quad \theta\in\Theta\,,$$

und $\hat{\theta}$ die minimale Varianz in der Klasse aller erwartungstreuen Schätzer für θ besitzt. Das heißt, dass für einen beliebigen erwartungstreuen Schätzer $\tilde{\theta}(X_1,\ldots,X_n)$ mit

$$\mathsf{E}_{\theta}\,\tilde{\theta}^2(X_1,\ldots,X_n)<\infty\quad \text{gilt}\quad \mathsf{Var}_{\,\theta}\,\hat{\theta}\leq \mathsf{Var}_{\,\theta}\,\tilde{\theta}\,,\qquad \theta\in\Theta\,.$$

Empirische Momente

- ▶ Sei $X \stackrel{d}{=} X_i$, i = 1, ..., n ein statistisches Merkmal.
- Sei weiter $E|X_i|^k < \infty$ für ein $k \in \mathbb{N}$, m = 1 und der zu schätzende Parameter $\theta = \mu_k = EX_i^k$.
- Insbesondere gilt im Fall k=1, dass $\theta=\mu_1=\mu$ der Erwartungswert ist.

Das *k-te empirische Moment* von *X* wird als

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

definiert. Unter dieser Definition gilt, dass $\hat{\mu}_1 = \bar{X}_n$, also das erste empirische Moment gleich dem Stichprobenmittel ist.

Satz (Eigenschaften der empirischen Momente)

Unter obigen Voraussetzungen gelten folgende Eigenschaften:

- 1. $\hat{\mu}_k$ ist erwartungstreu für μ_k (insbesondere X_n).
- 2. $\hat{\mu}_k$ ist stark konsistent.
- 3. Falls $E_{\theta}|X|^{2k} < \infty$, $\forall \theta \in \Theta$, dann ist $\hat{\mu}_k$ asymptotisch normalverteilt.
- 4. Es gilt Var $\bar{X}_n = \frac{\sigma^2}{n}$, wobei $\sigma^2 = \text{Var }_{\theta} X$. Falls $X_i \sim N(\mu, \sigma^2)$, i = 1, ..., n (eine normalverteilte Stichprobe), dann gilt:

$$ar{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
.