ФИЗИОЛОГИЯ И БИОФИЗИКА ВОЗБУДИМЫХ ТКАНЕЙ

Са²⁺-каналы в возбудимых мембранах. Структура и классификация каналов

Кафедра нейротехнологий проф. Мухина И.В.
Лекция №11
2024

Содержание

- 1. Структура кальциевых каналов
- 2. Классификация кальциевых каналов
- 3. Каналы внутриклеточных органелл

1. Структура кальциевых каналов

Канал представляет собой асимметричный белок, по форме напоминающий сердце. Большая часть локализована вне клетки и включает структуру наподобие ручки: α2-субъединицу, N-терминальный участок субъединицы δ и внеклеточные петли субъединиц α1 и γ

Селективность кальциевого канала для ионов Са²⁺ и Na⁺

- В составе а1-субъединицы четыре порообразующих структур, каждая из которых состоит из трансмембранных сегментов 5 и 6 и из поровой петли, входящей в состав селективного фильтра, а также четырех сенсорных сегментов, каждый из которых состоит из трансмембранных сегментов 1-4. Такой тип трансмембранной организации напоминает потенциал-зависимые Na+-каналы.
- Субъединица b участвует в инактивации и закрытии канала. Вместе с а-субъединицей она контролирует воротный механизм за счет взаимодействия с порообразующим трансмембранным сегментом S6 домена I (Р-петлей)
- Са2+-каналы обладают высокой селективностью по отношению к ионам Са2+ и осуществляют транспорт ионов с высокой скоростью. Ионы Na+ относятся к числу самых распространенных внеклеточных катионов, и их концентрация почти в 100 раз превышает концентрацию ионов Са2+. Диаметр ионов Na+ близок к диаметру ионов Са2+ (2,0 A).
- Каждая Р-петля которой содержит глутаминовый остаток, причем транспортный путь ионов облицован атомами кислорода не от карбонильных, а от карбоксильных групп. Четыре глутаминовых остатка образуют локус EEEE, консервативную структуру, характерную для Ca2+
- Локус EEEE способен связывать несколько ионов Ca2+, и входящий в пору ион, благодаря возникающим силам электростатического отталкивания, вызывает высвобождение с внутренней стороны связанного иона Ca2+. Таким образом, электростатическое отталкивание помогает преодолеть силу сродства связывания Ca2+, которая бы замедлила его транспорт.

2. Классификация кальциевых каналов

Классификация по способу активации

- 1. Потенциалзависимые
- 2. Лигандзависимые

Потенциалзависимые кальциевые каналы

Тип	Активация	Белок	Ген	Расположение	Функция
<u>L-тип</u>	Высокопороговые кальциевые каналы (активируется при высоких значениях мембранного потенциала)	Ca _v 1.1 Ca _v 1.2 Ca _v 1.3 Ca _v 1.4	CACNA1S CACNA1C CACNA1D CACNA1F	Скелетные мышцы, кости (остеобласты), вентрикуляр ные миоциты , дендриты и шипики дендритов нейронов коры мозга	Сокращение сердечной мышцы и гладких мышц. Ответственны за удлинённый потенциал действия в сердечной мышце. Постсинаптическая деполяризация
<u>Р-тип/Q-тип</u>	Высокопороговые кальциевые каналы	<u>Ca_v2.1</u>	<u>CACNA1A</u>	Нейроны Пуркинье в мозжечке / гранулярные клетки мозжечка	высвобождение нейромедиатора
<u>N-тип</u>	Высокопороговые кальциевые каналы	Ca _v 2.2	CACNA1B	По всему мозгу	высвобождение нейромедиатора
<u>R-тип</u>	Среднепороговые кальциевые каналы	Ca _v 2.3	<u>CACNA1E</u>	<u>Гранулярные</u> <u>клетки</u> мозжечка, другие нейроны	?
<u>Т-тип</u>	Низкопороговые кальциевые каналы	Ca _v 3.1 <u>Ca_v3.2</u> Ca _v 3.3	CACNA1G CACNA1H CACNA1I	Нейроны, клетки с пейсмейкерной активностью, кости (остеоциты)	регулярный <u>синусовый</u> <u>ритм</u>

Классификация потенциалзависимых кальциевых каналов по порогу активации

- 1. Высокопороговые, активирующиеся при значительных сдвигах МП (L, P/Q, N-типы). Каналы клеток Пуркинье мозжечка (P-тип Purkinje) блокируется ядом воронковых пауков, пептидным токсином FTX, ω-агатоксином IVA и ионами Cd, Co, La. Различия между P- и Q-типами Ca-каналов незначительны, поэтому их часто объединяют и обозначают как P/Q-тип Ca-каналов
- **2.** Среднепороговые R-тип каналы. Потенциал активации R-типа Ca-каналов находится между потенциалами активации высоко- и низкопороговых каналов;
- **3. Низкопороговые Т-тип** (T-transient) Са-каналы, открывающиеся при потенциалах близких к МП покоя.

Классификация потенциалзависимых кальциевых каналов по чувствительности к дигидропиридинам (ДГП)

- 1.ДГП-чувствительные (L-тип, long lasting);
- 2.ДГП-нечувствительные (N-тип, neither T nor L или neuronal).

Блокаторы потенциалзависимых зависимых кальциевых каналов

- Блокаторы L-типа Са-каналов относятся: нимодипин, нифедипин, верапамил, тетрандипин, дилтиазем, D-600, этанол, ионы Cd, токсин морской змеи Conus Geographus, называемый ω-конотоксином GVIA.
- Блокаторами N-типа Ca-каналов являются: ω-конотоксин GVIA, а также ионы Cd, Ni, Co, La.
- Блокатор Т-типа Са-каналов антигипертензивное вещество мибефрадил.
- Блокатор **R-типа** каналов блокируется ионами Ni в низкой концентрации.

Новая номенклатура потенциалзависимых Са-каналов

Три структурно и функционально связанных семейства: CaV1, CaV2, CaV3.

- **1. CaV1**, проводящие, L-тип Ca-тока
- 2. CaV2:
- CaV2.1, проводящие, Р или Q- тип Са-тока;
- CaV2.2, проводящие, N-тип Ca-тока;
- CaV2.3, проводящие, R-тип Ca-тока.
- 3. CaV3, проводящие, Т-тип Са-тока.

Значительные структурные особенности среди трех классов а1-субъединиц приводят к существенным различиям в их регуляции.

Семейство CaV1 Ca-каналов регулируется фосфорилированием через систему протеинкиназ.

Семейство CaV2 каналов регулируется **прямым связыванием с G- белками.**

Семейство CaV3 каналов - модуляция G-белками и фосфорилированием менее существенна и плохо изучена

Характеристика	Тип канала	Тип канала	Тип канала	Тип канала	
	L	T	N	Р	
Проводимость при 110мМ Са2+	~25nC	~8пС	~12-20пС	~10-12пС	
Кинетика	Почти не инактивируются (тау>500мс)	Быстрая инактивация (тау~20-50мс)	Умеренная скорость инактив. (тау~50-80мс)	Очень медленно инактивир.	
Чувствительность к неорганическим блокаторам	к Cd2+>Ni2+ Ni2+>Cd2+		Cd2+>Ni2+	-	
Чувствительность к дигидропиридинам	Ингибируются	Нечувствительны	Нечувствительны	-	
Потенциал активации (при 10мМ Са2+)	Выше -10мВ	Выше -70мВ	Выше -20мВ	Выше -50мВ	
Потенциал инактивации (при 10мМ Ca2+)	От -60 до -10мВ	От -100 до -60мВ	От -120 до -30мВ	-	
Относительная проводимость	I Ba2+>Ca2+ I Ba2+=Ca2+		Ba2+>Ca2+	-	
Блокаторы	Дигидропиридины верапамил дилтиазем	Омега- конотоксин*	Флунаризин	Омега-агато- токсин- IVA**	

Лигандзависимые кальциевые каналы

Тип	Активация	Ген	Расположение	Функция
Рецептор <u>инозитолтрифосфата</u> (IP ₃)	IP ₃		эндоплазматический ретикулум и саркоплазматический ретикулум	После связывания с IP ₃ освобождает ионы кальция. Появление IP ₃ в цитоплазме клетки может быть вызвано активацией рецепторов, связанных с G-белками.
Рианодиновый рецептор	дигидропиридиновые рецепторы Т-трубочек и повышенная концентрация внутриклеточного кальция (Кальцийиндуцирован ное высвобождение кальция — CICR)		эндоплазматический ретикулум и саркоплазматический ретикулум	Кальцийиндуцированное высвобождение кальция в миоцитах
Каналы, управляемые кальциевыми депо	опосредованно благодаря истощению запасов кальция в эндоплазматическом ретикулуме и саркоплазматическом ретикулуме		плазматическая мембрана	

Классификация по месту расположения Са-каналов

- 1. Каналы плазматической мембраны.
- Обеспечивают поступление в цитоплазму внеклеточного кальция;
- 2. Каналы внутриклеточных органелл.

Обеспечивают поступление в цитоплазму кальция, запасенного во внутриклеточных структурах (митохондрии и гладкий ЭПР, в мышце - саркоплазматический ретикулум (СПР)).

Са-каналы плазматической мембраны

нимодипин, нифедипин, верапамил, тетрандипин, дилтиазем, D-600, этанол, Cd, токсин морской змеи Conus Geographus (w-конотоксин GVIA)

Высокопороговые,

активирующиеся при значительных сдвигах МП ДГП-чувствительные (L-тип, long lasting)

w-конотоксин GVIA, Cd, Ni, Co, La.

ДГП-нечувствительные

(N-тип, neither T nor L или neuronal).

FTX, w-агатоксин IVA, Cd, Co, La

Р-тип (Purkinje) и Q-тип

Ni в низкой концентрации

Промежуточные

Низкопороговые Са- каналы, открывающиеся при потенциалах близких к МП покоя.

R-каналы

длительная деполяризация, дигидропиридин, w-конотоксин GVIA и w-агатоксин IVA

Т-тип каналов (T-transient)

Внутриклеточные Са-каналы

- 1. Рианодиновые (Ри);
- 2. Инозитолтрифосфатные (ИФЗ);
- 3. Другие, избирательно активируемые внутриклеточными метаболитами (НАД+, НАДФ+, циклическая АДФ-рибоза и др.).

На мембранах ЭПР и СПР описаны два основных типа **лиганд-активируемых Са-каналов**: инозитолтрифосфатные и рианодиновые

3. Каналы внутриклеточных органелл

Са-каналы Ри-рецепторов

- активируются ионами Са и вызывают кальцийвызванное освобождение кальция из гладкого ЭПР и СПР в нервных клетках, скелетной, гладкой и сердечной мышцах.
- обеспечивают сокращение мышц и возникновение Са-волн.
- В составе внутриклеточных мембран молекулы Ри-рецепторов группируются в **тетрамерные комплексы**, 200-400 пСм.
- Повышение уровня Са выше 10-50 мкМ приводит к **инактивации** канала

Активаторы Ри-рецепторов

- Растительный алкалоид рианодин может оказывать разнонаправленное действие на молекулу Рирецептора. Связываясь с ней в участке с высоким сродством (5-10 нМ), рианодин приводит к удержанию Са-канала в открытом, но низкопроводящем состоянии. При взаимодействии с молекулой Ри-рецептора в высоких концентрациях (5-30 мкМ), рианодин вызывает блокаду канала.
- Кофеин при связывании с Ри-рецептором, вопервых, сенсибилизирует молекулу Ри-рецептора к ионам Са, а, во-вторых, способен сам открывать Саканал.

Блокаторы Са-каналов Ри-рецепторов

- ионы магния,
- рианодин (в концентрациях 10-50 мкМ),
- прокаин
- рутений красный

Разновидности молекул Ри-рецепторов

Все они имеются в нервной ткани, но наиболее распространенным в ЦНС является второй тип.

- Первый и второй типы Ри-рецепторов активируются (помимо Са и АТФ) рианодином и кофеином, однако, различаются чувствительностью к дантролену, который инактивирует лишь первый тип.
- Третий тип Ри-рецепторов активируется ионами Са, рианодином (в наномолярных концентрациях), не чувствителен к действию кофеина и блокируется дантроленом.

Тетрамерная структура рианодинового рецептора, встроенного в мембрану саркоплазматического ретикулума скелетной мышцы

Каналы рецептора инозитолтрифосфата (ИФ₃-рецепторы)

- ИФ₃ относится к вторичным посредникам, образующимся при активации фосфолипазы С гормонами и нейромедиаторами, расщепляющей фосфатидилинозитол**ди**фосфат мембраны.
- ИФ₃-рецептор представляет собой тетрамер, образованный мономерами с молекулярными массами порядка 300-350 кДа, проводимость порядка 45 пСм.

Рецептор инозитол-3-фосфата

Петля, соединяющая 5 и 6 трансмембранный сегменты каждой субъединицы, образуют канал для ионов Са при связывании цитоплазматических участков N-конца рецептора с инозитол-3-фосфатом

CRAC-каналы (Ca-Release-Activated Cachannels)

На срезах гиппокампа показано, что в центральных глутаматергических синапсах опустошение внутриклеточных Са-депо терминалей циклопиазоновой кислотой приводит к быстрому развитию специального Са-тока через каналы наружной мембраны, называемые "CRAC-каналы" (Ca-Release-Activated Ca-channels).

Этот ток значительно увеличивает частоту миниатюрных постсинаптических сигналов и может быть прекращен с помощью ионов лантана, блокирующих CRAC-каналы, либо заменой наружного раствора на бескальциевый.

В последние годы появляются данные о том, что CRAC-каналы принимают участие в регуляции спонтанного и/или вызванного выброса медиатора, в частности, из синаптических бутонов гиппокампа и PC12-клеток.