振动

一长为1的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一

 $J = \frac{1}{3} m l^2$ 复摆. 已知细棒绕通过其一端的轴的转动惯量 ,此摆作微小振动的周期为

一质点作简谐振动. 其运动速度与时间的曲线如图所示. 若质点的振动规律用 余弦函数描述,则其初相应为

- (A) $\pi/6$.
- (B) $5\pi/6$.
- (C) $-5\pi/6$.

- (D) $-\pi/6$.
- (E) $-2\pi/3$.

 $x = 4 \times 10^{-2} \cos(2\pi t + \frac{1}{3}\pi)$ 一质点沿x轴作简谐振动,振动方程为 从t=0时刻起,到质点位置在x=-2 cm处,且向x轴正方向运动的最短时间间隔为

(A)
$$\frac{1}{8}$$
 s (B) $\frac{1}{6}$ s (C)

一弹簧振子,重物的质量为m,弹簧的劲度系数为k,该振子作振幅为A的简 谐振动. 当重物通过平衡位置且向规定的正方向运动时, 开始计时. 则其振动方程 为:

(A)
$$x = A\cos(\sqrt{k/m} \ t + \frac{1}{2}\pi)$$
 (B) $x = A\cos(\sqrt{k/m} \ t - \frac{1}{2}\pi)$ (C) $x = A\cos(\sqrt{m/k} \ t + \frac{1}{2}\pi)$ (D) $x = A\cos(\sqrt{m/k} \ t - \frac{1}{2}\pi)$

(E) $x = A\cos\sqrt{k/m} t$

5. 一劲度系数为k的轻弹簧,下端挂一质量为m的物体,系统的振动周期为 T_1 . 若

 $\frac{1}{2}m$ 将此弹簧截去一半的长度,下端挂一质量为 $\frac{1}{2}$ 的物体,则系统振动周期 T_2 等于

- (A) $2T_1$
- (B) T_1
- (C) $T_1/\sqrt{2}$

- (D) $T_1/2$
- (E) $T_1/4$

6. 一质点在x轴上作简谐振动,振辐A = 4 cm,周期T = 2 s,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm处,且向x轴负方向运动,则质点第二次通过x = -2 cm处的时刻为

- (A) 1 s.
- (B) (2/3) s.
- (C) (4/3) s.
- (D) 2 s.

7. 两个同周期简谐振动曲线如图所示. x_1 的相位比 x_2 的相位

- (A) 落后π/2.
- (B) 超前π/2.
- (C) 落后π.
- (D) 超前π.

8.

 $\frac{1}{2}A$ 一个质点作简谐振动,振幅为A,在起始时刻质点的位移为 $\frac{1}{2}$,且向x轴的正方向运动,代表此简谐振动的旋转矢量图为 []

9.

一简谐振动曲线如图所示. 则振动周期是

- (A) 2.62 s.
- (B) 2.40 s.
- (C) 2.20 s.
- (D) 2.00 s.

]

10.

一简谐振动用余弦函数表示, 其振动曲线如图所示, 则此简谐振动的三个特征 量为

11.

己知三个简谐振动曲线如图所示,则振动方程分别为:

12.

一简谐振动曲线如图所示,则由图可确定在t=2s

时刻质点的位移为 ______, 速度为_____.

两个同方向的简谐振动曲线如图所示. 合振动的振幅

14. 一物体作余弦振动,振幅为 15×10^{-2} m,角频率为 6π s⁻¹,初相为0.5 π,则

振动方程为x = (SI).

15.

一简谐振动的振动曲线如图所示, 求振动方程,

16. 一质点同时参与两个同方向的简谐振动,其振动方程分别为 $x_1 = 5 \times 10^{-2} \cos(4t + \pi/3)$ (SI), $x_2 = 3 \times 10^{-2} \sin(4t - \pi/6)$ (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.

17. 两个同方向的简谐振动的振动方程分别为

 $x_1 = 4 \times 10^{-2} \cos 2\pi$ $(t + \frac{1}{8})$ (SI), $x_2 = 3 \times 10^{-2} \cos 2\pi$ $(t + \frac{1}{4})$ (SI) 求合振动方程.

- 18. 质量m = 10 g的小球与轻弹簧组成的振动系统,按 $x = 0.5\cos(8\pi t + \frac{1}{3}\pi)$ 的规律作自由振动,式中t以秒作单位,x以厘米为单位,求
 - (1) 振动的角频率、周期、振幅和初相;
 - (2) 振动的速度、加速度的数值表达式;

- (3) 振动的能量E;
- (4) 平均动能和平均势能.

在一竖直轻弹簧下端悬挂质量m=5g的小球,弹簧伸长 $\Delta l=1$ cm而平衡. 经 推动后,该小球在竖直方向作振幅为A=4cm的振动,求

(1) 小球的振动周期; (2) 振动能量.

分

$$\begin{array}{ccc}
\cos(\pi t - \frac{1}{2}\pi) & \text{(SI)} & \text{1分} \\
0.1^{\cos(\pi t \pm \pi)} & \text{(SI)} & \text{1分} \\
0 & \text{1分}
\end{array}$$

 3π cm/s

12.

2分 $|A_1 - A_2|$

$$x = |A_2 - A_1| \cos(\frac{2\pi}{T}t + \frac{1}{2}\pi)$$

 $15 \times 10^{-2} \cos(6\pi t + \frac{1}{2}\pi)$ 14. 3分

 $x = A\cos(\omega t + \phi)$ 15. 解: (1) 设振动方程为

由曲线可知
$$A = 10 \text{ cm}$$
 , $t = 0$, $x_0 = -5 = 10 \cos \phi$, $v_0 = -10 \omega \sin \phi < 0$ 解上面两式,可得 $\phi = 2\pi/3$

由图可知质点由位移为 $x_0 = -5$ cm和 $v_0 < 0$ 的状态到x = 0和 v > 0的状态所需时间t=2s, 代入振动方程得

$$0 = 10\cos(2\omega + 2\pi/3)$$
 (SI)
则有 $2\omega + 2\pi/3 = 3\pi/2$, $\omega = 5\pi/12$

则有
$$2\omega + 2\pi/3 = 3\pi/2$$
, : $\omega = 5\pi/12$ 2分
故所求振动方程为 $x = 0.1\cos(5\pi t/12 + 2\pi/3)$ (SI) 1分

2分

2分

1

$$\begin{array}{c|c}
\bar{A}_{1} & \omega \\
\bar{A}_{2} & \pi/3 & x \\
\hline
\bar{A}_{2} & -2\pi/3 & \omega
\end{array}$$

解: $x_2 = 3 \times 10^{-2} \sin(4t - \pi/6)$ = $3 \times 10^{-2} \cos(4t - \pi/6 - \pi/2)$ = $3 \times 10^{-2} \cos(4t - 2\pi/3)$.

作两振动的旋转矢量图,如图所示. 图2分

由图得: 合振动的振幅和初相分别为

$$A = (5-3)$$
cm = 2 cm, $\phi = \pi/3$. 2%

合振动方程为 $x = 2 \times 10^{-2} \cos(4t + \pi/3)$ (SI) 1分

17. 解: 由题意
$$x_1 = 4 \times 10^{-2} \cos^{(2\pi t + \frac{\pi}{4})}$$
 (SI)

$$x_2 = 3 \times 10^{-2} \cos^{(2\pi t + \frac{\pi}{2})}$$
 (SI)

按合成振动公式代入已知量,可得合振幅及初相为

$$A = \sqrt{4^2 + 3^2 + 24\cos(\pi/2 - \pi/4)} \times 10^{-2}$$
m
= 6.48×10⁻² m

$$\phi = \arctan \frac{4\sin(\pi/4) + 3\sin(\pi/2)}{4\cos(\pi/4) + 3\cos(\pi/2)} = 1.12 \text{ rad}$$

合振动方程为
$$x = 6.48 \times 10^{-2} \cos(2\pi t + 1.12)$$
 (SI) 2分

18. **M**: (1)
$$A = 0.5 \text{ cm}$$
; $\omega = 8\pi \text{ s}^{-1}$; $T = 2\pi/\omega = (1/4) \text{ s}$; $\phi = \pi/3$ 2\$\text{\text{\$\phi\$}}

(2)
$$v = \dot{x} = -4\pi \times 10^{-2} \sin(8\pi t + \frac{1}{3}\pi)$$

$$a = \ddot{x} = -32\pi^2 \times 10^{-2} \cos(8\pi t + \frac{1}{3}\pi)$$
 (SI)

(3)
$$E = E_K + E_P = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2 A^2 = 7.90 \times 10^{-5} \text{ J}$$

(4) 平均动能
$$\overline{E_K} = (1/T) \int_0^T \frac{1}{2} m v^2 dt$$
$$= (1/T) \int_0^T \frac{1}{2} m (-4\pi \times 10^{-2})^2 \sin^2(8\pi t + \frac{1}{3}\pi) dt$$

$$= 3.95 \times 10^{-5} \text{ J} = \frac{1}{2}E$$

$$\overline{E_P} = \frac{1}{2}E$$

$$= 3.95 \times 10^{-5} \text{ J}$$

$$3 \text{ }$$

同理

19. 解: (1)
$$T = 2\pi/\omega = 2\pi\sqrt{m/k} = 2\pi\sqrt{m/(g/\Delta l)} = 0.201 \text{ s}$$
 3分

$$E = \frac{1}{2}kA^2 = \frac{1}{2}(mg/\Delta l)A^2$$
= 3.92×10⁻³ J

波动

1.

2.

- 一平面简谐波的表达式为 $y = 0.1\cos(3\pi t \pi x + \pi)$ (SI), t = 0时的波形曲线如 图所示,则
 - (A) O点的振幅为-0.1 m.
 - (B) 波长为3 m.
 - (C) a、b两点间相位差为 $\frac{1}{2}\pi$
 - (D) 波速为9 m/s .
- 若一平面简谐波的表达式为 $y = A\cos(Bt Cx)$, 式中 $A \setminus B \setminus C$ 为正值常量, 则
 - (A) 波速为*C*.
- (B) 周期为1/B.
- (C) 波长为 2π/C. (D) 角频率为2π/B.

Γ

如图所示,一平面简谐波沿x轴正向传播,已知P点的振动方程为 $y = A\cos(\omega t + \phi_0)$, 则波的表达式为

(A)
$$y = A\cos\{\omega[t - (x - l)/u] + \phi_0\}$$

(B)
$$y = A\cos\{\omega[t - (x/u)] + \phi_0\}$$
.

(C)
$$y = A\cos\omega(t - x/u)$$
.

(D)
$$y = A\cos\{\omega[t + (x-l)/u] + \phi_0\}$$
.

5.

图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s,则图中O点的振动加速 度的表达式为

(A)
$$a = 0.4\pi^2 \cos(\pi t - \frac{1}{2}\pi)$$
 (SI).

(B)
$$a = 0.4\pi^2 \cos(\pi t - \frac{3}{2}\pi)$$
 (SI).

(C)
$$a = -0.4\pi^2 \cos(2\pi t - \pi)$$
 (SI).

(C)
$$a = -0.4\pi^2 \cos(2\pi t - \pi)$$
 (SI).
 $a = -0.4\pi^2 \cos(2\pi t + \frac{1}{2}\pi)$ (SI)

在波长为λ 的驻波中,两个相邻波腹之间的距离为

(A) $\lambda/4$.

(B) $\lambda/2$.

(C) $3\lambda/4$.

(D) λ .

一横波沿绳子传播时, 波的表达式为 $y = 0.05\cos(4\pi x - 10\pi t)$ (SI),则

- (A) 其波长为0.5 m.
- (B) 波速为5 m/s.
- (C) 波速为25 m/s.
- (D) 频率为2 Hz.

图示一简谐波在t=0时刻的波形图,波速 u=200 m/s,则P处质点的振动速度表达式为

- (A) $v = -0.2\pi \cos(2\pi t \pi)$ (SI).
- (B) $v = -0.2\pi \cos(\pi t \pi)$ (SI).
- (C) $v = 0.2\pi \cos(2\pi t \pi/2)$ (SI).
- (D) $v = 0.2\pi \cos(\pi t 3\pi/2)$ (SI).

[]

9.

一平面简谐波沿x轴正方向传播,波速 u = 100 m/s, t = 0时刻的波形曲线如图所示.

可知波长λ=_____; 振幅A=_____;

频率*v*=_____.

10. 一平面简谐波的表达式为 $y = 0.025\cos(125t - 0.37x)$ (SI), 其角频率

ω=_______,波速*u*=______,波

长*λ* = _____.

11.

图为t = T/4 时一平面简谐波的波形曲线,则其波的表达式为

____·

12. 在简谐波的一条射线上,相距0.2 m两点的振动相位差为π/6. 又知振动周

期为0.4 s,则波长为______,波速为_____.

14.

- 一列平面简谐波在媒质中以波速u=5 m/s沿x轴正向传播,原点O处质元的振动曲线如图所示.
 - (1) 求解并画出x = 25 m处质元的振动曲线.
 - (2) 求解并画出t=3 s时的波形曲线.

15.

如图,一平面波在介质中以波速u = 20 m/s沿x轴负方向传播,已知A点的振动方程为 $y = 3 \times 10^{-2} \cos 4\pi t$ (SI).

- (1) 以A点为坐标原点写出波的表达式;
- (2) 以距A点5 m处的B点为坐标原点,写出波的表达式.

16. 某质点作简谐振动,周期为2 s,振幅为0.06 m,t=0 时刻,质点恰好处在负向最大位移处,求

- (1) 该质点的振动方程;
- (2) 此振动以波速u = 2 m/s沿x轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);
 - (3) 该波的波长.

- 17. 一振幅为 10 cm,波长为200 cm的一维余弦波. 沿x轴正向传播,波速为 100 cm/s,在t=0时原点处质点在平衡位置向正位移方向运动. 求
 - (1) 原点处质点的振动方程.
 - (2) 在x = 150 cm处质点的振动方程.
 - 18. 已知波长为 λ 的平面简谐波沿x轴负方向传播. $x = \lambda/4$ 处质点的振动方程为

$$y = A\cos\frac{2\pi}{\lambda} \cdot ut$$
 (SI)

- (1) 写出该平面简谐波的表达式...
- (2) 画出t = T时刻的波形图.

波动

1.	(B) 2.	(C) 3.	(C) 4.	(A) 5.	(D) 6.	(B) 7.	(A) 8.	(A)
9.	0.8 m							2分
	0.2 m							1分
	125 Hz							2分
	10. 125 rad/s	S						1分
	338 m/s							2分
	17.0 m							2分
11.	y = 0.10	$\cos[165\pi(t)]$	-x/330)	$-\pi$] (S	SI)			3分
12.	2.4 m							2分
	6.0 m/s							2分
13.	4							3分
14.	解: (1) 原点							
		у	$=2\times10^{-2}$	$\cos(\frac{1}{2}\pi t)$	$-\frac{1}{2}\pi), (S$ $-x/5) - \frac{1}{2}\tau$	J)		2分
	波的表达式为			$\cos(\frac{1}{2}\pi(t))$	$-x/5$) $-\frac{1}{2}\tau$	t), (SI)		2分
x =	= 25 m处质元	的振动方和	呈为					

$$y = 2 \times 10^{-2} \cos(\frac{1}{2}\pi t - 3\pi)$$
, (SI)

振动曲线见图 (a) 2分

(2) t=3 s时的波形曲线方程

$$y = 2 \times 10^{-2} \cos(\pi - \pi x/10)$$
, (SI)

波形曲线见图 2分

15. 解: (1) 坐标为x点的振动相位为

$$\omega t + \phi = 4\pi [t + (x/u)] = 4\pi [t + (x/u)] = 4\pi [t + (x/20)]$$

波的表达式为 $y = 3 \times 10^{-2} \cos 4\pi [t + (x/20)]$ (SI) 2分

(2) 以B点为坐标原点,则坐标为x点的振动相位为

$$\omega t + \phi' = 4\pi \left[t + \frac{x - 5}{20}\right] \tag{SI}$$

$$y = 3 \times 10^{-2} \cos[4\pi(t + \frac{x}{20}) - \pi]$$
 波的表达式为 (SI) 2分

$$y_0 = 0.06\cos(\frac{2\pi t}{2} + \pi)$$
 = $0.06\cos(\pi t + \pi)$ (SI) 3

(2) 波动表达式
$$y = 0.06\cos[\pi(t - x/u) + \pi]$$
 3分 $= 0.06\cos[\pi(t - \frac{1}{2}x) + \pi]$ (SI)

(3) 波长
$$\lambda = uT = 4$$
 m 2分

17. 解: (1) 振动方程:
$$y = A\cos(\omega t + \phi_0)$$
 $A = 10 \text{ cm}$

$$\omega = 2\pi v = \pi \text{ s}^{-1}, \quad v = u / \lambda = 0.5 \text{ Hz}$$

初始条件: y(0,0) = 0

$$\dot{y}(0,0) > 0 \qquad 得 \qquad \qquad \phi_0 = -\frac{1}{2}\pi$$
 故得原点振动方程:
$$y = 0.10\cos(\pi t - \frac{1}{2}\pi)$$
 (SI) 2分

x = 150 cm处相位比原点落后 $\frac{3}{2}\pi$, 所以

$$y = 0.10\cos(\pi t - \frac{1}{2}\pi - \frac{3}{2}\pi) = 0.10\cos(\pi t - 2\pi)$$

$$y = 0.10\cos\pi t$$
(SI) 3\(\frac{1}{2}\)

也可写成

18.

解: (1) 如图A,取波线上任一点P,其坐标设为x,由波的传播特性,P点的振动落后于 $\lambda/4$ 处质点的振动.

该波的表达式为

$$y = A\cos\left[\frac{2\pi ut}{\lambda} - \frac{2\pi}{\lambda}(\frac{\lambda}{4} - x)\right]$$
$$= A\cos\left(\frac{2\pi ut}{\lambda} - \frac{\pi}{2} + \frac{2\pi}{\lambda}x\right)$$
(SI) 3%

(2) t=T 时的波形和 t=0时波形一样. t=0时

$$y = A\cos(-\frac{\pi}{2} + \frac{2\pi}{\lambda}x) = A\cos(\frac{2\pi}{\lambda}x - \frac{\pi}{2})$$

按上述方程画的波形图见图B.

波动光学

1. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为*a*=4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为

2分

3分

2. 波长为λ的单	单色平行光垂直入射	付到一狭缝上,	若第一级	暗纹的位	置对应	的衍
射角为θ=±π/6,	则缝宽的大小为					
(A) $\lambda / 2$.	(B)	λ.				
(C) 2λ .	(D	$)$ 3 λ .]
3. 在夫琅禾费	单缝衍射实验中,	对于给定的入	射单色光,	当缝宽厚	夏变小时	寸,除
中央亮纹的中心位	置不变外,各级衍	射条纹				
(A) 对应的衍	射角变小. (B)	对应的衍射角	角变大.			
(C) 对应的衍射	射角也不变. (D)	光强也不变.]
4. 一束平行单	色光垂直入射在光	栅上,当光栅	常数(a+b))为下列哪	3种情况	L时(a
代表每条缝的宽度), <i>k</i> =3、6、9 等级	次的主极大均	7不出现?			
(A) $a+b=2 a$.	(B)	a+b=3 a.				
(C) $a+b=4 a$.	(A)	a+b=6 a.]
5. 在光栅光谱	中,假如所有偶数	级次的主极大	都恰好在单	单缝衍射的	り暗纹ブ	方向
上,因而实际上不是	出现,那么此光栅每	F个透光缝宽度	Ea和相邻两	 時 4 1 1 1 1 1 1 1 1 1 1	を光部分	力宽度
b的关系为						
<u>1</u>						
(A) $a = 2 b$.	(B) $a=b$.					
(C) $a=2b$.	(D) $a=3 b$]
6. 在双缝干涉实验	中,用单色自然光	, 在屏上形成	干涉条纹.	若在两组	全 后放一	一个偏
振片,则						
(A) 干涉条纹[的间距不变,但明绝	文的亮度加强.	•			
(B) 干涉条纹的	的间距不变,但明约	文的亮度减弱.	•			
(C) 干涉条纹的	的间距变窄,且明约	文的亮度减弱.	,			
(D) 无干涉条约	纹.]
7. 一東光是自	然光和线偏振光的	混合光,让它	垂直通过一	一偏振片.	若以此	比入射
光束为轴旋转偏振	片,测得透射光强原	度最大值是最大	小值的5倍,	那么入射	力光東中	ョ自然
光与线偏振光的光	强比值为					
(A) $1/2$.	(B) 1 / 3.					
(C) 1/4.	(D) 1/5.]
8. 如果两个偏振片	堆叠在一起,且偏	振化方向之间	夹角为60°	,光强为	bI_0 的自	然光
垂直入射在偏振片	上,则出射光强为					
(A) $I_0 / 8$.	(B) $I_0 / 4$.					
(C) $3 I_0 / 8$.	(D) $3 I_0 / 4$.]

与原入射光光矢量振动方向的夹角分别是 $lpha$ 和90°,则通过这两个偏振	片后的光	强 <i>I</i>
是		
<u>1</u>		
(A) $\frac{1}{2}I_0\cos^2\alpha$. (B) 0.		
1 1		
(C) $\frac{4}{4}I_0\sin^2(2\alpha)$. (D) $\frac{4}{4}I_0\sin^2\alpha$.		
(E) $I_0 \cos^4 \alpha$.]
10. 光强为 I_0 的自然光依次通过两个偏振片 P_1 和 P_2 . 若 P_1 和 P_2 的偏振	- 化方向的	- 夹
角 α =30°,则透射偏振光的强度 I 是	1-2010	
(A) $I_0 / 4$. (B) $\sqrt{3} I_0 / 4$.		
(C) $\sqrt{3} I_0 / 2$. (D) $I_0 / 8$.		
(E) $3I_0 / 8$.	Γ	٦
(2) 51 ₀ / 61	_	_
n_1 n_2		
n_3		
用波长为λ的单色光垂直照射折射率为n2的劈形膜(如图)图中各部分	·折射率的	勺
关系是 $n_1 < n_2 < n_3$. 观察反射光的干涉条纹,从劈形膜顶开始向右数第5		
心所对	A. F.A.	• ,
应的厚度 $e=$.		
i 2. 波长 λ =600 nm的单色光垂直照射到牛顿环装置上,第二个明环	与第五个	~日月
环所对应的空气膜厚度之差为nm. $(1 \text{ nm}=10^{-9} \text{ m})$	1/11/11 I	.71
13. 若在迈克耳孙干涉仪的可动反射镜 <i>M</i> 移动0.620 mm过程中,观察	到王浩冬	
13. 有任及允平的中沙区的马纳及劝说加沙纳0.020 IIIII及程中,观察。	四十少赤	
纹移动了2300条,则所用光波的波长为 nm. (1 nm=10 ⁻⁹ r	n)	
(,	
14. 用迈克耳孙干涉仪测微小的位移. 若入射光波波长λ=628.9 nm	,当动臂	反
射镜移动时,干涉条纹移动了 2048 条,反射镜移动的距离 $d=$.		
15. 已知在迈克耳孙干涉仪中使用波长为1的单色光,在干涉仪的可		語移
动距离 d的过程中,干涉条纹将移动条.	-71/~/11 6	עווט
16. 在迈克耳孙干涉仪的一条光路中,插入一块折射率为 <i>n</i> ,厚度为	nd的透明:	蒲
片. 插入这块薄片使这条光路的光程改变了	10 H 1 X 2 1 1 1	1-1
17. 一束平行的自然光,以60°角入射到平玻璃表面上,若反射光束是是	主	
振的,则透射光束的折射角是; 玻璃的	切別半	
为		

使一光强为 I_0 的平面偏振光先后通过两个偏振片 P_1 和 P_2 . P_1 和 P_2 的偏振化方向

9.

如图所示,一束自然光入射到折射率分别为 n_1 和 n_2 的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r的值为

19. 假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是______.

20. 当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振光,则折射光为 偏振光,且反射光线和折射光线之间的夹角为

21. 在双缝干涉实验中,波长 λ =550 nm的单色平行光垂直入射到缝间距a=2×10⁻⁴ m的双缝上,屏到双缝的距离D=2 m. 求:

- (1) 中央明纹两侧的两条第10级明纹中心的间距;
- (2) 用一厚度为 $e=6.6\times10^{-5}$ m、折射率为n=1.58的玻璃片覆盖一缝后,零级明 纹将移到原来的第几级明纹处? (1 nm = 10^{-9} m)

22. 在双缝干涉实验中,双缝与屏间的距离D=1.2 m,双缝间距d=0.45 mm,若测得屏上干涉条纹相邻明条纹间距为1.5 mm,求光源发出的单色光的波长1.

23.

在如图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率 n_1 =1.50)之间的空气(n_2 =1.00)改换成水(n_2' =1.33),求第k个暗环半径的相对改变量 $(r_k-r_k')/r_k$

- -符射光栅,每厘米200条透光缝,每条透光缝宽为 $a=2\times10^{-3}$ cm,在光栅后放一焦距f=1 m的凸透镜,现以 $\lambda=600$ nm (1 nm= 10^{-9} m)的单色平行光垂直照射光栅,求:
 - (1) 透光缝a的单缝衍射中央明条纹宽度为多少?
 - (2) 在该宽度内,有几个光栅衍射主极大?

	6. (B)7. (A)8. (A)9. (C)10. (E)	
$\frac{9\lambda}{4n_2}$		3分
12. 900		3
分		
13. 539.1		3分
14. 0.644mm		3分
15. $2d/1$		3分
16. $2(n-1)d$		3分
17. 30°		3分
1.73		2分
18. $\pi / 2 - \operatorname{arctg}(n_2 / n_2)$	n_1)	3
分		
19. 54.7°		3
分		
20. 部分		2分
$\pi/2$ (或 90°)		1分
21. 解: (1)	$\Delta x = 20 D\lambda / a$	2分
	=0.11 m	2分
(2) 覆盖云玻璃后,氡	厚级明纹应满足	
	$(n-1)e+r_1=r_2$	2分
设不盖玻璃片时,此点为	第k级明纹,则应有	
	$r_2-r_1=k\lambda$	2分
所以	$(n-1)e = k\lambda$	
	$k=(n-1) e / \lambda = 6.96 \approx 7$	
零级明纹移到原第7级明	纹处	2分

22. 解:根据公式 $x = k\lambda D/d$

相邻条纹间距

$$\Delta x = D \lambda / d$$

则

$$\lambda = d\Delta x / D$$
 3 $\%$

23. 解:在空气中时第k个暗环半径为

$$r_k = \sqrt{kR\lambda}$$
 , $(n_2 = 1.00)$ 3 $\%$

充水后第k个暗环半径为

$$r_k' = \sqrt{kR\lambda/n_2'} \quad , \quad (n_2' = 1.33)$$

干涉环半径的相对变化量为

$$\frac{r_k - r_k'}{r_k} = \frac{\sqrt{kR\lambda} \left(1 - 1/\sqrt{n_2'}\right)}{\sqrt{kR\lambda}}$$

$$= 1 - 1/\sqrt{n_2'} = 13.3\%$$
2\(\frac{\psi}{2}\)

24. 解: (1)

$$a \sin \varphi = k\lambda$$
 $\operatorname{tg} \varphi = x / f$

2

分

当x < f时, $\operatorname{tg} \varphi \approx \sin \varphi \approx \varphi$, $a \times f = k\lambda$,取k = 1有

$$x = f l / a = 0.03 \text{ m}$$
 1分

∴中央明纹宽度为

$$\Delta x = 2x = 0.06 \,\text{m}$$

1分

$$(a+b)\sin\varphi = k'\lambda$$

$$k' = (a+b) x / (f \lambda) = 2.5$$

取
$$k'=2$$
,共有 $k'=0$, ± 1 , ± 2 等5个主极大

2分

量子物理

- 用频率为v的单色光照射某种金属时,测得饱和电流为L,以频率为v的单色 光照射该金属时,测得饱和电流为 I_2 ,若 $I_1 > I_2$,则
 - (A) $v_1 > v_2$.
- (B) $v_1 < v_2$.
- (C) $v_1 = v_2$.
- (D) ν与ν的关系还不能确定.
- 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是 U_0 (使电子从金属逸出需作功 eU_0),则此单色光的波长 λ 必须满足:
 - (A) $\lambda \leq \frac{hc/(eU_0)}{}$. (B) $\lambda \geq \frac{hc/(eU_0)}{}$.
 - (C) $\lambda \leq eU_0/(hc)$.
- (D) $\lambda \geqslant eU_0/(hc)$.

٦

一定频率的单色光照射在某种金属上,测出其光电流的曲线如图中实线所示.然 后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图中虚线所 示. 满足题意的图是:

在康普顿效应实验中,若散射光波长是入射光波长的 1.2倍,则散射光光子 能量 ε 与反冲电子动能 E_K 之比 ε/E_K 为

- (A) 2. (B) 3. (C) 4.
- (D) 5.

具有下列哪一能量的光子,能被处在n=2的能级的氡原子吸收?

- (A) 1.51 eV. (B) 1.89 eV.
- (C) 2.16 eV. (D) 2.40 eV.

若 α 粒子(电荷为2e)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运 动,则 α 粒子的德布罗意波长是

- (A) h/(2eRB).
- (B) h/(eRB).
- (C) 1/(2eRBh).
- (D) 1/(eRBh)

- 直接证实了电子自旋存在的最早的实验之一是
 - (A) 康普顿实验.
- (B) 卢瑟福实验.
- (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [

关于不确定关系 $\Delta p_x \Delta x \geq \hbar$ ($\hbar = h/(2\pi)$), 有以下几种理解: 8.

- (1) 粒子的动量不可能确定.
- (2) 粒子的坐标不可能确定.
- (3) 粒子的动量和坐标不可能同时准确地确定.
- (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:

 - (A) (1), (2). (B) (2), (4).
 - (C) (3), (4). (D) (4), (1).

Γ 7

(A) $n=2, l=2, m_l=0,$ $m_s=\frac{1}{2}$.
$m_s = -\frac{1}{2}$
(B) $n = 3$, $l = 1$, $m_l = -1$,
(C) $n = 1$, $l = 2$, $m_l = 1$, $m_s = \frac{1}{2}$.
(D) $n=1, l=0, m_l=1,$ $m_s=-\frac{1}{2}$.
10. 氢原子中处于 $2p$ 状态的电子,描述其量子态的四个量子数 (n, l, m_l, m_s) 可
能取的值为
$-\frac{1}{2}$
(A) (2, 2, 1, 2). (B) (2, 0, 0, 2).
(A) $(2, 2, 1, -\frac{1}{2})$. (B) $(2, 0, 0, \frac{1}{2})$. (C) $(2, 1, -1, -\frac{1}{2})$. (D) $(2, 0, 1, \frac{1}{2})$.
11.
光子波长为2,则其能量=;动量的大小 =;质量
=
12.
波长为λ=1 Å的X光光子的质量为kg.
$(h = 6.63 \times 10^{-34} \mathrm{J \cdot s})$
13. 原子内电子的量子态由 n 、 l 、 m_l 及 m_s 四个量子数表征. 当 n 、 l 、 m_l 一定时,不同的是不太数日
不同的量子态数目为
54. 频率为 100 MHz的一个光子的能量是, 动量的
大小是
15. 某金属产生光电效应的红限为 u ,当用频率为 $v(v>u)$ 的单色光照射该金
10.)Karija, 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.
属时,从金属中逸出的光电子(质量为m)的德布罗意波长为
16. 玻尔的氢原子理论的三个基本假设是:
(1)
(2)
(3)

下列各组量子数中,哪一组可以描述原子中电子的状态?

9.

氢原子中电子从n=3的激发态被电离出去,需要的能量为_____eV.

18.

如图所示,某金属M的红限波长 $\lambda_0 = 260 \text{ nm} (1 \text{ nm} = 10^9 \text{ m})$ 今用单色紫外线照射该金属,发现有光电子放出,其中速度最大的光电子可以匀速直线地穿过互相垂直的均匀电场(场强 $E = 5 \times 10^3 \text{ V/m}$)和均匀磁场(磁感应强度为B = 0.005 T)区域,求:

- (1) 光电子的最大速度v.
- (2) 单色紫外线的波长λ.

(电子静止质量 m_e =9.11×10⁻³¹ kg, 普朗克常量h=6.63×10⁻³⁴ J·s)

19. 若不考虑相对论效应,则波长为 5500 Å的电子的动能是多少eV? (普朗克常量 $h=6.63\times10^{-34}\,\mathrm{J\cdot s}$,电子静止质量 $m_e=9.11\times10^{-31}\,\mathrm{kg}$)

20. 若光子的波长和电子的德布罗意波长λ相等,试求光子的质量与电子的质量 之比.

21. 以波长 λ = 410 nm (1 nm = 10⁻⁹ m)的单色光照射某一金属,产生的光电子的最大动能 E_{K} = 1.0 eV,求能使该金属产生光电效应的单色光的最大波长是多少? (普朗克常量h =6.63×10⁻³⁴ J·s)

1~5.DADDB 6~10.ADCBC

11.
$$hc/\lambda$$
 $h/(c\lambda)$ 2分 $h/(c$

得到

$$m_r/m_e = v/c$$
 (3)
$$m_e = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$
 (4)

电子质量

式中m0为电子的静止质量. 由②、④两式解出

$$v = \frac{c}{\sqrt{1 + (m_0^2 \lambda^2 c^2 / h^2)}}$$

$$\frac{m_r}{m_e} = \frac{1}{\sqrt{1 + (m_0^2 \lambda^2 c^2 / h^2)}}$$

代入③式得

21. 解:设能使该金属产生光电效应的单色光最大波长为20.

由

$$hv_0 - A = 0$$

可得

$$(hc/\lambda_0) - A = 0$$

2 — la

$$\lambda_0 = hc/A$$
 25

又按题意:

$$A = (hc/\lambda) - E_K$$

 $(hc/\lambda) - A = E_{\kappa}$

$$\lambda_0 = \frac{hc}{(hc/\lambda) - E_K} = \frac{hc\lambda}{hc - E_K\lambda} = 612 \text{ nm}$$

得

相对论

1. 宇宙飞船相对于地面以速度*v*作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过*xt*(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (*c*表示真空中光速)

(A)
$$c \cdot \Delta t$$
 (B) $v \cdot \Delta t$ (C)
$$\frac{c \cdot \Delta t}{\sqrt{1 - (v/c)^2}}$$
 (D)
$$c \cdot \Delta t \cdot \sqrt{1 - (v/c)^2}$$

- 2. 有下列几种说法:
 - (1) 所有惯性系对物理基本规律都是等价的.
 - (2) 在真空中,光的速度与光的频率、光源的运动状态无关.
 - (3) 在任何惯性系中, 光在真空中沿任何方向的传播速率都相同.

若问其中哪些说法是正确的, 答案是

- (A) 只有(1)、(2)是正确的.
- (B) 只有(1)、(3)是正确的.
- (C) 只有(2)、(3)是正确的.
- (D) 三种说法都是正确的.

[]

3分

3.	在某地发生两个	牛事,静止位于该地的甲测得时间间隔。	为4 s,若相对于甲位	作匀
速国	直线运动的乙测得时	寸间间隔为5 s,则乙相对于甲的运动速应	度是(c表示真空中为	台速)
	(A) $(4/5)$ c.	(B) $(3/5)$ c.		
	(C) $(2/5)$ c.	(D) $(1/5)$ c.	[]	
4.	某核电站年发明	电量为 100亿度,它等于36×10 ¹⁵ J的能	量,如果这是由核为	材料
的台	全部静止能转化产生	E的,则需要消耗的核材料的质量为		
	(A) 0.4 kg .	(B) 0.8 kg .		
	(C) $(1/12) \times 10^7$	kg. (D) 12×10^7 kg.	[]
5.	一个电子运动员	速度 $v=0.99c$,它的动能是: (电子的静	止能量为0.51 MeV)
	(A) 4.0MeV.	(B) 3.5 MeV.		
	(C) 3.1 MeV.	(D) 2.5 MeV.	[]
6.				
	狭义相对论中,一	一质点的质量 m 与速度 v 的关系式为	; 其	
	龙的表达式为			
7. J	质子在加速器中被加	中速,当其动能为静止能量的3倍时,其	基质量为静止质量	
<i>L.L.</i>	12.			
8.	X+ // Lp - L / A A - T = X	ᄼᅗᆛᅜᅋᆚᅠᄱᄱᅶᅛᅜᅋᄱᄽᄼ		
	狭义相刈论的网系	《基本原理中,相对性原理说的是		_
			; 光速不容	गोर
			; 儿迷作:	又
直±	里说的是			
//\~	Ŧ NI I 1 VC			
 9. τ		 立子,在它自己的参照系中测得平均寿	命是2.6×10⁻8 s,↑	如果
		c (c 为真空中光速)的速率运动,那么实		
		<u> </u>	4777714	
10.		 的船身固有长度为 <i>L</i> ₀ =90 m,相对于地	面以 $\nu = 0.8 c (c)$	直空
		面观测站的上空飞过.		,
, ,	•	船的船身通过观测站的时间间隔是多少	▷ ?	
		身通过观测站的时间间隔是多少?		

11. 假定在实验室中测得静止在实验室中的 μ^+ 子(不稳定的粒子)的寿命为 2.2× 10^{-6} m,而当它相对于实验室运动时实验室中测得它的寿命为 1.63×10^{-6} s. 试问: 这两个测量结果符合相对论的什么结论? μ^+ 子相对于实验室的速度是真空中光速c 的多少倍?

12.

- 一隧道长为L,宽为d,高为h,拱顶为半圆,如图.设想一列车以极高的速度v沿隧道长度方向通过隧道,若从列车上观测,
 - (1) 隧道的尺寸如何?
 - (2) 设列车的长度为10, 它全部通过隧道的时间是多少?

1-5. ADBAC

6.
$$m = \frac{m_0}{\sqrt{1 - (\upsilon/c)^2}}$$

$$E_K = mc^2 - m_0 c^2$$
25

7. 4 3分

8. 一切彼此相对作匀速直线运动的惯性系对于物理学定律都是等价的 2分 一切惯性系中,真空中的光速都是相等的 2分

9.
$$4.33 \times 10^{-8}$$

10. 解: (1) 观测站测得飞船船身的长度为

$$L = L_0 \sqrt{1 - (v/c)^2} = _{54 \text{ m}}$$
则 $\Delta t_1 = L/v = 2.25 \times 10^{-7} \text{ s}$ 3分

(2) 宇航员测得飞船船身的长度为 L_0 ,则

$$\Delta t_2 = L_0/v = 3.75 \times 10^{-7} \text{ s}$$

11. 解: 它符合相对论的时间膨胀(或运动时钟变慢)的结论 2分 设 μ^+ 子相对于实验室的速度为 ν μ^+ 子的固有寿命 τ_0 =2.2 \times 10⁻⁶ s

 μ^+ 子相对实验室作匀速运动时的寿命 $\pi = 1.63 \times 10^{-5}$ s

按时间膨胀公式: $\tau = \tau_0 / \sqrt{1 - (\upsilon/c)^2}$

移项整理得:
$$v = (c/\tau)\sqrt{\tau^2 - \tau_0^2} = c\sqrt{1 - (\tau_0/\tau)^2} = 0.99c$$
 3分

12. 解: (1) 从列车上观察,隧道的长度缩短,其它尺寸均不变。

$$L' = L\sqrt{1 - \frac{v^2}{c^2}}$$
 隧道长度为 1分

(2) 从列车上观察,隧道以速度v经过列车,它经过列车全长所需时间为

$$t' = \frac{L'}{v} + \frac{l_0}{v} = \frac{L\sqrt{1 - (v/c)^2} + l_0}{v}$$
 3²

1分

这也即列车全部通过隧道的时间.