Exercícios¹ Estruturas de Controle

Segunda-feira, 20 de março de 2023.

- 1. Escreva um programa que leia um caractere e escreva se o caractere é um(a):
 - vogal;
 - · consoante;
 - dígito decimal;
 - operador aritmético: + , , *, /, %;
 - símbolo especial: @, #, \$, &, <, >, }, {, \, |, =, £, §, a, o, o, ¬, _, , ¢;
 - sinal de pontuação: !, ?, : , ; , . , , " , ' ,) , (,] , [;
 - sinal de acentuação: ", ^, ~, ~, ´, `.

O programa deve exibir o tipo e o nome do caractere Unicode. O tipo do caractere corresponde as opções supracitadas: vogal, consoante, dígito decimal, etc. Use os métodos da classe java.lang.Character.

2. Resolva os exercícios abaixo do Capítulo 4 - Instruções de controle: parte 1 - do livro Java Como Programar. 6ª ed. DEITEL, H. M., DEITEL, P. J. São Paulo: Pearson Prentice Hall, 2006.

Exercícios 4.14 a 4.22, 4.25 a 4.27, 4.30, 4.31, 4.34, 4.37 e 4.38.

3. Resolva os exercícios abaixo do Capítulo 5 - Instruções de controle: parte 2 - do livro Java Como Programar. 6ª ed. DEITEL, H. M., DEITEL, P. J. São Paulo: Pearson Prentice Hall, 2006.

Exercícios 5.7 a 5.10, 5.13 e 5.21.

Nota: Os exercícios dos Capítulos 4 e 5 da 6ª edição do livro Java Como Programar também estão disponíveis nas edições 8 e 10, publicados, respectivamente, em 2010 e 2017.

4. Escreva um programa para ler uma *string*, calcular e exibir o seu número de caracteres, a quantidade de caracteres que são letras, vogais, consoantes, dígitos, sinais de pontuação, sinais de acentuação, operador aritmético e símbolo especial. Use a relação de caracteres do Exercício 1 e os métodos das classes java.lang.String e java.lang.Character.

Atualizado em 31/03/2023.

5. Faça um programa para calcular o valor de S dado por:

$$S = \frac{1}{N} + \frac{2}{N-1} + \frac{3}{N-2} + \frac{4}{N-3} + \dots + \frac{N-1}{2} + \frac{N}{1}$$
, onde N é um número inteiro e positivo.

6. O valor aproximado de π pode ser calculado usando-se a série:

$$s = \frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} - \frac{1}{N^3}$$
, sendo que $\pi = (s \times 32)^{\frac{1}{3}}$

Para um número N, inteiro e positivo, desenvolva um programa que calcule o valor de π . O número π definido pela classe Math é 3.141592653589793, qual o valor de N necessário para o programa calcular o mesmo valor com 15 casas decimais?

- **7.** A série de Fibonacci é formada pela sequência: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,....., etc. Escreva um programa que gere a série de Fibonacci até o n-ésimo termo (quantidade de números) fornecido pelo usuário.
- **8.** Desenvolva um programa Java GUI que exiba as 24 letras maiúsculas e minúsculas do alfabeto grego, como se pode ver na imagem ao lado.

Use a codificação UTF-16 para representar os caracteres Unicode ao exibir cada letra do alfabeto grego.

O grupo de letras maiúsculas e minúsculas devem ser exibidas em caixas de diálogo separadas, com um texto de identificação adequado na barra de título.

A codificação UNICODE UTF-8, UTF-16 e UTF-32 de cada caractere do alfabeto grego pode ser consultado em https://www.compart.com/en/unicode/block/U+0370.

Ao acessar o endereço acima, observe que a primeira letra do alfabeto, Alpha, na codificação UTF-16, possui, em sua forma maiúscula o código U+0391 e em minúscula o código U+03B1.

Α	В	Γ	Δ	Ε	Z
Alpha	Beta	Gamma	Delta	Epsilon	Zeta
Н	Θ	1	Κ	Λ	M
Eta	Theta	lota	Карра	Lambda	Mu
N	Ξ	0	П	Р	Σ
Nu	Xi	Omicron	Pi	Rho	Sigma
Т	Υ	Φ	Χ	Ψ	Ω
Tau	Upsilon	Phi	Chi	Psi	Omega

α Alpha	β Beta	γ Gamma	δ Delta	E	ζ Zeta
ŋ	Ð Theta	L	Карра	λ Lambda	μ
V	ξ	O	π	P	O Sigma
T	U Upsilon	ф	χ Chi	ψ _{Psi}	₩ Omega

Figura 1 - Alfabeto Grego, disponível em https://www.worldhistory.org/image/3426/greek-alphabet/

9. Escreva um programa para calcular o tempo de execução de um *loop* for que faça a concatenação de 100.000 *strings* com um valor inteiro usando a classe String e outro *loop* for que faça a mesma quantidade de união de *strings* usando a classe StringBuilder. O programa deve exibir o tempo inicial e final no formato HH:MM:SS:MS, mostrar a duração em segundos se o tempo de execução for maior do que 1 segundo ou em milissegundos se for menor. Use o leiaute abaixo para exibir a saída do programa com os tempos de execução de cada *loop* for e as classes do pacote java.time para obtê-los.

Concatenação com StringBuilder....

Tempo inicial = 08:38:00.394 Tempo final = 08:38:00.643 Duração = 249 ms

Concatenação com String....

Tempo inicial = 08:38:00.646 Tempo final = 08:38:28.290 Duração = 27 s

A concatenação com StringBuilder foi 108 vezes mais rápida.

Prof. Márlon Oliveira da Silva marlon.silva@ifsudestemg.edu.br