- 1) Desenvolva um projeto no GitHub que Implemente os testes o TAD Lista Arranjo. -----OK------
- Desenvolva um projeto no GitHub que estenda a classe de testes do TAD Pilha implementado usando array que teste uma pilha de String.
 -----OK------
- 3) Desenvolva um projeto no GitHub que implemente os testes do TAD Pilha usando LSE. -----OK------
- 4) Exercícios: -----OK-----
 - a. Crie testes e programas Java que:
 - b. Inverta os dados de um arranjo usando o TAD Pilha usando LSE.
 - c. Verifique se parênteses, colchetes e chaves estão corretos numa expressão matemática, por exemplo: [(5 + x)/4 2*(y + z)]
 - i. Correto: ()(()){([()])}ii. Correto: ((()(()){([()])}))
 - iii. Incorreto:)(()){([()])}iv. Incorreto: ({[])}
 - v. Incorreto: (
- 5) Suponha que uma lista inicialmente vazia S tenha executado um total de 25 operações push, 12 operações top e 10 operações pop, 3 das quais geraram StackEmptyExceptions, que foram capturadas e ignoradas. Qual é o tamanho corrente de S? O tamanho é de 15.
- 6) Se implementarmos a pilha S do problema anterior usando um arranjo, então qual será o valor corrente da variável de instância top? O tamanho é de 15.
- 7) Descreva a saída resultante da seguinte série de operações de pilha: push(5), push(3), pop(), push(2), push(8), pop(), push(9), push(1), pop(), push(7), push(6), pop(), pop(), push(4), pop(), pop().

Operação	Saída	Conteúdo da pilha
push(5)	-	"(5)"
push(3)	-	"(5,3)"
pop()	3	"(5)"
push(2)	-	"(5,2)"
push(8)	-	"(5,2,8)"
pop()	8	"(5,2)"
push(9)	-	"(5,2,9)"
push(1)	-	"(5,2,9,1)"
pop()	1	"(5,2,9)"
push(7)	-	"(5,2,9,7)"
push(6)	-	"(5,2,9,7,6)"
pop()	6	"(5,2,9,7)"
pop()	7	"(5,2,9)"
push(4)	-	"(5,2,9,4)"
pop()	4	"(5,2,9)"
pop()	9	"(5,2)"

- 8) Crie os testes e implemente o TAD Fila. Use implementação do TAD Pilha como exemplo.-----OK------
- 9) Implemente o TAD Fila com base nos testes e no fragmento de implementação de duas operações apresentados a seguir (Tarefa 13 TAD-Fila.pptx, slidese 19, 20 e 21). ------OK------
- 10) Desenhe figuras demonstrando cada um dos passos principais dos métodos addBefore(p, e), addFirst(e) e addLast(e) do TAD lista de nodos.

- 11) Implemente um método não recursivo para inverter uma lista de nodos.
- 12) Implemente um novo método, makeFirst(p), que move o elemento na posição p para a primeira posição, mantendo a ordem relativa dos demais elementos inalterada.
 ------OK------
- 13) A implementação de NodePositionList não faz verificações de erro para testar se uma dada posição p é realmente membro dessa lista em particular.
 - a. Por exemplo, se p é uma posição da lista S, a execução T.addAfter(p,e) deveria lançar a exceção InvalidPositionException pois p não é uma posição de T.
 - b. Descreva como alterar a implementação de NodePositionList de uma forma eficiente que impeça esses maus usos: Para isso será criado o método "checkposition(Position<E> p)" que checa se a posição é válida para a lista, e cria um DNode se a posição for válida.