Prof. Dr.-Ing. M. Wuschek

Messtechnik

Aufgabe 9: Stromgespeiste Brücke

Die aus der Vorlesung bekannte Brückenschaltung wird nun nicht durch eine Konstantspannungsquelle, sondern durch eine Konstantstromquelle (I_0) gespeist.

a) Bestimmen Sie allgemein die Diagonalspannung U_D als Funktion des Speisestroms I_0 und der Widerstände $R_1,\,R_2,\,R_3$ und R_4 .

$$U_D = I_0 \frac{R_2 R_3 - R_1 R_4}{R_1 + R_2 + R_3 + R_4}$$

b) Die Widerstände R₂ und R₃ seien temperaturabhängig. Es gilt:

$$\begin{aligned} R_2 &= R_3 = R_0 \cdot [1 + \alpha \cdot (\vartheta - \vartheta_0)] \\ R_1 &= R_4 = R_0 \end{aligned}$$

Geben Sie für diesen Fall die Diagonalspannung U_D als Funktion der Temperatur ϑ an.

$$U_{D} = I_{0} \frac{\left[R_{0} \left(1 + \alpha(\mathcal{G} - \mathcal{G}_{0})\right)\right]^{2} - R_{0}^{2}}{2R_{0} + 2R_{0} \left(1 + \alpha(\mathcal{G} - \mathcal{G}_{0})\right)} = I_{0} \cdot R_{0} \frac{2\alpha(\mathcal{G} - \mathcal{G}_{0}) + \alpha^{2}(\mathcal{G} - \mathcal{G}_{0})^{2}}{4 + 2\alpha(\mathcal{G} - \mathcal{G}_{0})}$$

c) Welcher Wert ergibt sich für die Diagonalspannung U_D als Funktion der Temperatur ϑ , wenn folgende Änderung in der Beschaltung vorgenommen wird:

$$R_1 = R_3 = R_0 \cdot [1 + \alpha \cdot (\vartheta - \vartheta_0)]$$

$$R_2 = R_4 = R_0$$

$$U_D = 0$$
 für alle ϑ

Aufgabe 10: Temperaturmessung mit einem Platin-Messwiderstand

In der unten abgebildeten Messschaltung wird ein Platinmesswiderstand Pt 100 als Fühler eingesetzt, um Celsiustemperaturen ϑ im Bereich $-\vartheta_g \le \vartheta \le +\vartheta_g$ (mit $\vartheta_g = 10^{\circ}$ C) zu erfassen. Gegeben ist der Widerstand R_M des Pt 100, abhängig von den Absoluttemperaturen T und T_0 :

$$R_M(T) = R_0 \cdot [1 + \alpha \cdot (T - T_0)]$$
; mit $R_0 = 100 \Omega$; $\alpha = 4 \cdot 10^{-3} \text{ K}^{-1}$ und $T_0 = 273,15 \text{ K}$

b) Wie lautet allgemein die Gleichung für R_M in Abhängigkeit von der in ${}^{\circ}C$ gegebenen Fühlertemperatur?

$$\vartheta f \circ C = (T - T_0) [K] \rightarrow R_M = R_0 \cdot (1 + \alpha \cdot \vartheta)$$

- c) Welche Widerstandswerte R_M entsprechen also dem Messbereich -10°C $\leq \vartheta \leq$ +10°C? 96 $\Omega \leq R_M \leq 104 \Omega$
- d) Die Diagonalspannung U_D ist allgemein als Funktion von R_M, R₂ und U₀ anzugeben.

$$U_D = U_0 \cdot \left(\frac{R_M}{R_M + R_2} - \frac{1}{2} \right)$$

e) R_2 ist so zu dimensionieren, dass die Diagonalspannung U_D bei $\vartheta = -\vartheta_g = -10^{\circ}C$ zu Null wird. Geben Sie R_2 zunächst allgemein als Funktion von R_0 , α und ϑ_g an und berechnen Sie anschließend den sich hier ergebenden Wert für R_2 .

 R_2 muss dem Wert von R_M bei $\vartheta = -\vartheta_g$ entsprechen. $\to R_2 = R_0 \cdot (1 - \alpha \cdot \vartheta_g) = 96 \ \Omega$

f) Welcher allgemeine Ausdruck $U_D = f(U_0, \alpha, \vartheta, \vartheta_g)$ ergibt sich mit dieser Dimensionierung? (Umformung des Ausdrucks nicht erforderlich)

$$U_{D} = U_{0} \cdot \left(\frac{1 + \alpha \vartheta}{2 + \alpha (\vartheta - \vartheta_{g})} - \frac{1}{2} \right)$$

g) Die Brücke wird mit $U_0 = 10 \text{ V}$ gespeist. Welche Diagonalspannungen U_{D1} , U_{D2} und U_{D3} ergeben sich für $\vartheta_1 = -10^{\circ}\text{C}$, $\vartheta_2 = 0^{\circ}\text{C}$, $\vartheta_3 = +10^{\circ}\text{C}$?

$$U_{D1} = 0 \text{ V}; \ U_{D2} = 0.102 \text{ V}; \ U_{D3} = 0.2 \text{ V}$$

- h) Die Ausgangsspannung werde mit einem idealen, linearen Spannungsmessgerät angezeigt. An den Endpunkten der Skala sei die Anzeige für ϑ_1 und ϑ_3 ohne Fehler. Um wie viel °C wird in der Mitte der Skala wegen der Linearisierung die Temperatur falsch angezeigt?
 - Einer Temperaturänderung von 20 °C entspricht eine Spannungsänderung von 0,2 V; Die Mitte der Skala liegt beim Spannungsmesser also bei 0,1 V. In Wirklichkeit liegt die Mitte des Temperaturbereichs aber bei 0,102 V, also um 0,02 V höher (siehe Teilaufgabe f). Diese Spannungsabweichung entspricht einer Temperaturabweichung von 0,2 °C.
- i) Aus welchem Grund darf bei Widerstandsfühlern die im Fühler umgesetzte elektrische Leistung nicht zu groß werden?

Je größer die im Fühler umgesetzte elektrische Leistung, desto größer ist dessen Eigenerwärmung, die dann zu einem systematischen Messfehler bei der Messung der Umgebungstemperatur führt.