Image Analysis Basics

Introduction to Processing

- Filters and Background Reduction -

Pol Biolmage Analysis Symposium

- Training School -

Jan Brocher

Classical Image Processing and Analysis Workflow

Classical Image Processing and Analysis Workflow

Why Do Pre-Processing and Image Filtering?

Pre-Processing of Images using Filters changes Image Data

Filters calculate New Pixel Values based on a Neighborhood

Filter Demo Movie

Impact of Filters on Boundary Detection

Filter Choice impacts Variabilty in Segmentation Result

Jaccard index (IoU) = 0.566

Jaccard index (IoU) = 0.937

Noise Removal with Filters (Median r=1)

Limited Median r = 1

only extreme values will be filtered

Morphological Filters: Minimum (Erosion) or Maximum (Dilation)

Minimum (Erosion)

Maximum (Dilation)

Pixel values are exchanged for their darkest (minimum) or brightest (maximum) neighbor

20	5	3
23	15	9
31	28	12

 20
 5
 3

 23
 15
 9

 31
 28
 12

Combining individual Filters: Morphological Opening

Advantages:

- background and noise reduction
- signal homogenization
- edge preservation

Combining individual Filters: Morphological Closing

Advantages:

- connecting areas
- signal homogenization

TopHat Filter in Steps

"Unspecificity" Reduction: TopHat vs. Rolling Ball Subtraction

"Unspecificity" Reduction: TopHat vs. Median Subtraction

Practical only for highlighting small point-like structures

Filter Combinations: Difference of Gaussian

Edge Detection – The Sobel Operator

Edge Detection using the Variance Filter

Original

Variance

$$\sigma^2 = rac{\sum_{i=1}^n ig(x_i - \overline{x}ig)^2}{N}$$

where:

 $x_i = \text{Each value in the data set}$

 $\overline{x} = \text{Mean of all values in the data set}$

N = Number of values in the data set

Special Use Case for Edge Detection (Sobel or Variance Filter)

