

Questions InVEST can answer

- How much water is available?
- Where does the water used for hydropower production come from?
- How much energy does it produce?
- How much is it worth?

Water Yield

Water Yield

Water Yield

Model Architecture

Water yield – water consumed

= water available for hydropower

Model Inputs

Climate

Precipitation, Potential Evapotranspiration, Zhang

Watersheds

Main and sub-watersheds for point of interest

Soils

Soil depth, Plant Available Water Content

Water demand

Land Use/Land Cover

Root depth, Evapotranspiration coefficient

Economic

Hydropower plant data, price of energy

Obtaining Input Data

- Local: Field work, rain gauges, hydropower plant data
- Regional: National data
- Similar ecotypes: climate, elevation, vegetation
- Global: Climactic Research Unit precipitation,
 FAO soils, GLCF landcover
- Root depth/etk: Literature search

Model Outputs

Actual Evapotranspiration mm/year

- Water yield mm/year
- Water supply m³/year Used in valuation

Energy/value for hydropower Kw/currency over timespan

Limitations

- Neglects extremes and seasonal variation of water yield
- Neglects surface-deep groundwater interactions
- Assumes hydropower production and pricing remain constant

Outlook

- Groundwater recharge index
- Automate calibration
- Monthly time step
- Regionalize the Zhang constant
- Tier 2 water yield model

Application

Predicted water yield change 1990-2060, HADCM climate change model

Application

Predicted per capita water yield change 1990-2060, HADCM climate change model

Adrian L. Vogl Stanford University avogl@stanford.edu

ENVIRONMENT

University of Minnesota

Driven to Discover

Nutrient Retention Model

Based on runoff and export coefficients*

- Nitrogen and phosphorus
- Includes climate and geomorphology
- Potential export from a parcel/pixel

_	Nitrogen Export	Phosphorus Export
Landuse	Values (kg/ha/yr)	values (kg/ha/yr)
Forest	1.8	0.011
Corn	11.1	2
Cotton	10	4.3
Soybeans	12.5	4.6
Small Grain	5.3	1.5
Pasture	3.1	0.1
Feedlot or Dairy	2900	220
Idle	3.4	0.1
Residential	7.5	1.2
Business	13.8	3
Industrial	4.4	3.8

Sediment Retention Model

Based on the Universal Soil Loss Equation (USLE)

Hydraulic Connectivity

Valuation

- Net Present Value of retention
- Based on avoided treatment costs

Inputs - Nutrient

ClimatePrecipitation, Potential evapotranspiration, Zhang

Soils
Soil depth,
Available water content

Topography
Digital elevation model,
Threshold flow acc

Watersheds
Catchments flowing into points of interest

Land use/Land cover Export coefficients, retention capacity, root depth, etk

Critical loading, treatment cost, time, discount rate

Economic

Inputs - Sediment

Land use/Land cover

Vegetation retention, land practice and management

Streams

Used to determine where sediment flows to

Topography

Digital elevation model, slope threshold, threshold flow acc

Watershed Areas

Catchments flowing into reservoirs

Erosivity

Based on intensity and kinetic energy of rainfall

Reservoir Features

Dead volume, lifetime of reservoir, allowed load

Erodibility

Soil detachment and transport potential due to rainfall

Economic

Reservoir dredging costs
Or water quality filtering
costs

Outputs - Nutrient

Nutrient Exported Kg/year

Nutrient RetainedKg/year *Used in valuation*

Value of Nutrient Removal for Water Quality

Currency over time period

Outputs - Sediment

Potential Soil loss
Calculated from USLE
Tons/year

Sediment RetainedTons/year *Used in valuation*

Sediment ExportedTons/year

Value of Sediment Removal for Water Quality/Dredging Currency over time period

+ Total export to reservoir

Limitations - Nutrient

- All bio-physio-chemical processes are lumped in one export coefficient
- Annual basis, no seasonality
- No in-stream processes or point sources
- Assess one pollutant per run
- No saturation in uptake

Limitations - Sediment

- Predicts erosion from sheet wash alone
- Sediment gets to outlet within a year
- No limit to retention
- Neglects the role of topography, soil,
 climate in the retention processes
- Accuracy limited in mountainous areas

