CS 747, Autumn 2020: Week 1, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2020

Multi-armed Bandits

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- 3. ϵ -greedy algorithms
- 4. Evaluating algorithms: Regret

Multi-armed Bandits

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- 3. ϵ -greedy algorithms
- 4. Evaluating algorithms: Regret

Coin 1

 $\mathbb{P}\{\text{heads}\} = p_1$

Coin 2

 $\mathbb{P}\{\text{heads}\} = \textcolor{red}{p_2}$

Coin 3

 $\mathbb{P}\{\text{heads}\} = p_3$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Coin 1

 $\mathbb{P}\{\text{heads}\} = p_1$

Coin 2

 $\mathbb{P}\{\text{heads}\} = \textcolor{red}{\textit{p}_{2}}$

Coin 3

 $\mathbb{P}\{\text{heads}\} = \textcolor{red}{p_3}$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Let's play!

Coin 1

 $\mathbb{P}\{\text{heads}\} = p_1$

Coin 2

 $\mathbb{P}\{\text{heads}\} = \textcolor{red}{p_2}$

Coin 3

 $\mathbb{P}\{\text{heads}\} = \textcolor{red}{p_3}$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Let's play!

• Now we know: $p_1 = 0.6, p_2 = 0.3, p_3 = 0.8$.

Coin 1

 $\mathbb{P}\{\text{heads}\} = \mathcal{D}_1$

Coin 2

 $\mathbb{P}\{\text{heads}\} = \mathcal{P}_2$

Coin 3

 $\mathbb{P}\{\text{heads}\} = p_3$

- \bullet p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Let's play!

- Now we know: $p_1 = 0.6$, $p_2 = 0.3$, $p_3 = 0.8$.
- If you knew p_1, p_2, p_3 beforehand, how would you have played?

Coin 1

 $\mathbb{P}\{\text{heads}\} = \mathcal{D}_1$

Coin 2

 $\mathbb{P}\{\text{heads}\} = \mathcal{P}_2$

Coin 3

 $\mathbb{P}\{\text{heads}\} = p_3$

- \bullet p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Let's play!

- Now we know: $p_1 = 0.6$, $p_2 = 0.3$, $p_3 = 0.8$.
- If you knew p_1, p_2, p_3 beforehand, how would you have played? How many heads would you have got in 20 tosses?

On-line advertising: Template optimisation

On-line advertising: Template optimisation

Clinical trials

On-line advertising: Template optimisation

- Clinical trials
- Packet routing in communication networks

On-line advertising: Template optimisation

- Clinical trials
- Packet routing in communication networks
- Game playing and reinforcement learning

Multi-armed Bandits

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- 3. ϵ -greedy algorithms
- 4. Evaluating algorithms: Regret

Stochastic Multi-armed Bandits

• *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).

Stochastic Multi-armed Bandits

- *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).
- Let A be the set of arms. Arm $a \in A$ has mean reward p_a .

Stochastic Multi-armed Bandits

- *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).
- Let A be the set of arms. Arm $a \in A$ has mean reward p_a .
- Highest mean is p*.

One-armed Bandits

[1]

1. https://pxhere.com/en/photo/942387.

For
$$t = 0, 1, 2, ..., T - 1$$
:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
- Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t.

```
For t = 0, 1, 2, ..., T - 1:
```

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
- Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t.
- T is the total sampling budget, or the horizon.

```
For t = 0, 1, 2, ..., T - 1:
```

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
- Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t.
- *T* is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping from the set of all histories to the set of all arms.

```
For t = 0, 1, 2, ..., T - 1:
```

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
- Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t.
- *T* is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping from the set of all histories to the set of all arms.
- Formally: a randomised algorithm is a mapping from the set of all histories to the set of all probability distributions over arms.

```
For t = 0, 1, 2, ..., T - 1:
```

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
- Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t.
- *T* is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping from the set of all histories to the set of all arms.
- Formally: a randomised algorithm is a mapping from the set of all histories to the set of all probability distributions over arms.
- Note: The algorithm picks the arm to pull; the bandit instance returns the reward.

• Consider $h^T = (a^0, r^0, a^1, r^1, \dots, a^{T-1}, r^{T-1}).$

• Consider $h^T = (a^0, r^0, a^1, r^1, \dots, a^{T-1}, r^{T-1})$. Observe that $\mathbb{P}\{h^T\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^t|h^t\}\mathbb{P}\{r^t|a^t\}$, where $\mathbb{P}\{a^t|h^t\}$ is decided by the algorithm, and $\mathbb{P}\{r^t|a^t\}$ comes from the bandit instance.

- Consider $h^T = (a^0, r^0, a^1, r^1, \dots, a^{T-1}, r^{T-1})$. Observe that $\mathbb{P}\{h^T\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^t|h^t\}\mathbb{P}\{r^t|a^t\}$, where $\mathbb{P}\{a^t|h^t\}$ is decided by the algorithm, and $\mathbb{P}\{r^t|a^t\}$ comes from the bandit instance.
- An algorithm, bandit instance pair can generate many possible *T*-length histories.

- Consider $h^T = (a^0, r^0, a^1, r^1, \dots, a^{T-1}, r^{T-1})$. Observe that $\mathbb{P}\{h^T\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^t|h^t\} \mathbb{P}\{r^t|a^t\}$, where $\mathbb{P}\{a^t|h^t\}$ is decided by the algorithm, and $\mathbb{P}\{r^t|a^t\}$ comes from the bandit instance.
- An algorithm, bandit instance pair can generate many possible T-length histories.

How many histories possible if the algorithm is deterministic and rewards 0–1?

Multi-armed Bandits

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- 3. ϵ -greedy algorithms
- 4. Evaluating algorithms: Regret

ϵ -greedy Strategies

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

ϵ-greedy Strategies

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

• *ϵ*G1

- If $t \le \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, sample a^{best} .

ϵ -greedy Strategies

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

• *ϵ*G1

- If $t \le \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, sample a^{best} .

• *ϵ*G2

- If $t \le \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

ϵ-greedy Strategies

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

● *ϵ*G1

- If $t \le \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, sample a^{best} .

• *ϵ*G2

- If $t \le \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

● *ϵ*G3

- With probability ϵ , sample an arm uniformly at random; with probability $1 - \epsilon$, sample an arm with the highest empirical mean.

Multi-armed Bandits

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- 3. ϵ -greedy algorithms
- 4. Evaluating algorithms: Regret

Visualising Performance

• Consider a plot of $\mathbb{E}[r^t]$ against t.

Visualising Performance

- Consider a plot of $\mathbb{E}[r^t]$ against t.
- What is the least expected reward that can be achieved?

Visualising Performance

- Consider a plot of $\mathbb{E}[r^t]$ against t.
- What is the least expected reward that can be achieved? $p_{\min} = \min_{a \in A} p_a$.

- Consider a plot of $\mathbb{E}[r^t]$ against t.
- What is the least expected reward that can be achieved? $p_{\min} = \min_{a \in A} p_a$.
- What is the highest expected reward that can be achieved?

- Consider a plot of $\mathbb{E}[r^t]$ against t.
- What is the least expected reward that can be achieved? $p_{\min} = \min_{a \in A} p_a$.
- What is the highest expected reward that can be achieved?
 p^{*} = max_{a∈A} p_a.

- Consider a plot of $\mathbb{E}[r^t]$ against t.
- What is the least expected reward that can be achieved? $p_{\min} = \min_{a \in A} p_a$.
- What is the highest expected reward that can be achieved?
 p^{*} = max_{a∈A} p_a.
- If an algorithm pulls arms uniformly at random, what reward will it achieve?

- Consider a plot of $\mathbb{E}[r^t]$ against t.
- What is the least expected reward that can be achieved? $p_{\min} = \min_{a \in A} p_a$.
- What is the highest expected reward that can be achieved? $p^* = \max_{a \in A} p_a$.
- If an algorithm pulls arms uniformly at random, what reward will it achieve?

$$p_{\text{avg}} = \frac{1}{n} \sum_{a \in A} p_a$$
.

- Consider a plot of $\mathbb{E}[r^t]$ against t.
- What is the least expected reward that can be achieved? $p_{\min} = \min_{a \in A} p_a$.
- What is the highest expected reward that can be achieved?
 p^{*} = max_{a∈A} p_a.
- If an algorithm pulls arms uniformly at random, what reward will it achieve? $p_{\text{avg}} = \frac{1}{n} \sum_{a \in A} p_a$.
- How will the graph look for a reasonable learning algorithm?

- Consider a plot of $\mathbb{E}[r^t]$ against t.
- What is the least expected reward that can be achieved?
 p_{min} = min_{a∈A} p_a.
- What is the highest expected reward that can be achieved?
 p* = max_{a∈A} p_a.
- If an algorithm pulls arms uniformly at random, what reward will it achieve?

 $p_{\text{avg}} = \frac{1}{n} \sum_{a \in A} p_a$.

 How will the graph look for a reasonable learning algorithm?

 The maximum achievable expected reward in T steps is Tp*.

- The maximum achievable expected reward in T steps is Tp*.
- The actual expected reward for an algorithm is $\sum_{t=0}^{T-1} \mathbb{E}[r^t].$

- The maximum achievable expected reward in T steps is Tp*.
- The actual expected reward for an algorithm is $\sum_{t=0}^{T-1} \mathbb{E}[r^t].$

 The (expected cumulative) regret of the algorithm for horizon T is the difference

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t].$$

- The maximum achievable expected reward in T steps is Tp*.
- The actual expected reward for an algorithm is $\sum_{t=0}^{T-1} \mathbb{E}[r^t].$

 The (expected cumulative) regret of the algorithm for horizon T is the difference

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t].$$

- The maximum achievable expected reward in T steps is Tp*.
- The actual expected reward for an algorithm is $\sum_{t=0}^{T-1} \mathbb{E}[r^t].$

 The (expected cumulative) regret of the algorithm for horizon T is the difference

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t].$$

• We would like R_T to be small, in fact for $\lim_{T\to\infty} \frac{R_T}{T} = 0$.

- The maximum achievable expected reward in T steps is Tp*.
- The actual expected reward for an algorithm is $\sum_{t=0}^{T-1} \mathbb{E}[r^t].$

 The (expected cumulative) regret of the algorithm for horizon T is the difference

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t].$$

• We would like R_T to be small, in fact for $\lim_{T\to\infty} \frac{R_T}{T} = 0$. Does this happen for ϵ G1, ϵ G2, ϵ G3?

Multi-armed Bandits

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- 3. ϵ -greedy algorithms
- 4. Evaluating algorithms: Regret