

## The Lottery Ticket Hypothesis: Training Pruned Neural Networks

Jonathan Frankle, Michael Carbin

## Pruning Neural Networks





#### The Hypothesis

"Training succeeds for a given network if one of its subnetworks (a "winning ticket") has been randomly initialized such that it can be trained in isolation to high accuracy in at most the number of iterations necessary to train the original network."



#### Research Questions

"How effectively do winning tickets train in comparison to the original network and to randomly sampled networks of similar size?"

"How big are winning tickets relative to the size of the original network?"

"How sensitive are our results to particular pruning strategies?"



#### Extracting a "Winning Ticket"

- 1. Randomly Initialize a neural network
- 2. Train the network until convergence
- 3. Prune
- 4. Reset weights of the remaining portion to original initialization



### Learning the XOR function - Results

|      |      |      |      |      |      | 4 Units |      |      |      |
|------|------|------|------|------|------|---------|------|------|------|
| DB   | ZL   | DB   | ZL   | DB   | ZL   | DB      | ZL   | DB   | ZL   |
| 98.5 | 92.9 | 96.8 | 87.5 | 92.5 | 76.8 | 78.3    | 55.3 | 49.1 | 17.6 |

**DB**: Decision Boundary

ZL: Zero loss

| <b>Pruning Strategy</b> | 10 Units |      | 4 Units (Pruned) |      | 2 Units (Pruned) |      |
|-------------------------|----------|------|------------------|------|------------------|------|
|                         | DB       | ZL   | DB               | ZL   | DB               | ZL   |
| One-shot Product        | 99.2     | 93.3 | 98.0             | 90.3 | 82.4             | 65.3 |
| Input Magnitude         | 98.9     | 93.5 | 97.9             | 92.2 | 83.8             | 76.5 |
| Output Magnitude        | 99.0     | 93.3 | 96.9             | 85.9 | 78.6             | 56.1 |
| Product                 | 98.5     | 92.9 | 97.6             | 90.3 | 91.5             | 79.4 |

Iterative Pruning



## MNIST - One Shot Pruning



Each curve represents the average performance of five trials in which networks were pruned to the stated size



## MNIST - One Shot Pruning - Control Experiment 1



Percent of Network Remaining



Converge 

Iterations to

Blue curve: average of 5 winning tickets

Percent of Network Remaining

Multi-colored curves: the controls for each of the 5 trials

### MNIST - One Shot Pruning - Control Experiment 2





Blue Curve: average of 5 winning tickets

**Orange Curve:** results from control experiment 1 **Green Curve:** results from control experiment 2



#### MNIST - Iterative Pruning

- 1. Randomly Initialize the network
- 2. Train the network until convergence
- 3. Prune 20% from each hidden layer
- 4. Reset weights to original initialization
- 5. Repeat steps 2 through 4 until network is pruned to desired size



#### MNIST - Iterative Pruning - Results





**Orange Curve:** One-shot pruning results **Blue Curve:** Iterative pruning results



#### MNIST - Iterative Pruning - Control Experiments





Blue Curve: average of five winning tickets pruned iteratively

Red Curve: one-shot pruning

**Orange Curve:** results of control experiment 1 **Green Curve:** results of control experiment 2



#### Examining Winning Tickets - Initializations



-0.1 0.0 0.1 Weight Initialization

-0.1 0.0 0.1 Weight Initialization

Blue curve: first hidden layer

Orange curve: second hidden layer

Weight Initialization

Green curve: output layer



-0.1 0.0 0.1 Weight Initialization

#### Examining Winning Tickets - Architecture



Blue Curve: iteratively pruned to 80% Orange Curve: iteratively pruned to: 16.8% Green Curve: iteratively pruned to 5.5%%



#### Exploring MNIST Parameters - Initialization







#### Exploring MNIST Parameters - Network Size





# Exploring MNIST Parameters - Iterative Pruning Rates





#### Exploring MNIST Parameters - Weight Resetting





**Blue:** This papers strategy

**Orange:** Previous research strategy



#### Limitations

- Small Examples
- No Theoretical Analysis
- No Useful Strategies Devised



#### Conclusion and What's Next

- XOR
- MNIST
- Future Research Directions
  - Larger Examples
  - Understanding Winning Tickets
  - New Strategies



#### References and Further Reading

- 1. Han, Song, et al. "Learning both weights and connections for efficient neural networks." Advances in neural information processing systems. 2015.
- 2. Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine Learning Research 15.1. 2014.
- 3. Han, Song, et al. "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding." arXiv preprint arXiv:1510.00149. 2015.
- 4. Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580. 2012.
- 5. Lin, Henry W., et al. "Why does deep and cheap learning work so well?" arXiv preprint arXiv:1608.08225. 2017.

