第二章 应用题参考答案

布置作业 第二章 5, 8, 10, 12, 17, 20, 27, 28, 30

- 5 若后备作业队列中等待运行的同时有三个作业 J1、J2、J3,已知它们各自的运行时间为 a、b、c,且满足 a<b<c,试证明采用短作业优先算法调度能获得最小平均作业周转时间。
- 答: 采用短作业优先算法调度时, 三个作业的总周转时间为:

T1=a+(a+b)+(a+b+c)=3a+2b+c (1)

若不按短作业优先算法调度,不失一般性,设调度次序为: J2、J1、J3。则三个作业的总周转时间为:

T2=b+(b+a)+(b+a+c)=3b+2a+c

令②-①式得到:

T2-T1=b-a>0

可见,采用短作业优先算法调度才能获得最小平均作业周转时间。

8 在道数不受限制的多道程序系统中,有作业进入系统后备队列时立即进行作业调度。 现有 4 个作业进入系统,有关信息列于下表,当作业调度和进程调度均采用高优先级算 法时(规定数大则优先级高)。

(第一个答案是按照非抢占式优先级调度计算的,如果有同学按照抢占式优先级调度计算 也算正确)

作业名	进入后备队列时间	执行时间	优先级
JOB1	8:00	60 分	1
JOB2	8:30	50分	2
JOB3	8:40	30 分	4
JOB4	8:50	10分	3

试填充下表。

作业名	进入后备	执行	开始执	结束执	周转	带权周
	队列时间	时间	行时间	行时间	时间	转时间
<i></i>						
平均周	周转时间 T=					
带权平均周	周转时间 ₩=					

解:

【按照非抢占式优先级调度】

作业名	进入后备	执行	开始执	结束执	周转	带权周	
	队列时间	时间	行时间	行时间	时间	转时间	
JOB1	8:00	60分	8:00	9:00	60	60/60	
JOB3	8:40	30 分	9:00	9:30	50	50/30	
JOB4	8:50	10分	9:30	9:40	50	50/10	
JOB2	8:30	50分	9:40	10:30	120	120/50	
平均周转时间 T=		(60+50+50+120)/4=70					
带权平均周	周转时间 ₩=	(1+5/3+5+12/5)/4=2.52					

【按照抢占式优先级调度】

8:00~8:30 执行 JOB1, 余 30 分钟

8:30~8:40 执行 JOB2, 余 40 分钟

8:40~9:10 执行 JOB3, 余 0 分钟

9:10~9:20 执行 JOB4, 余 0 分钟

9:20~10:00 执行 JOB2, 余 0 分钟

10:00~10:30 执行 JOB1, 余 0 分钟

作业名	进入后备	执行	开始执	结束执	周转	带权周	
	队列时间	时间	行时间	行时间	时间	转时间	
JOB1	8:00	60分	8:00	10:30	150	150 /60	
JOB2	8:30	50分	8:30	10:00	90	90 /50	
JOB3	8:40	30分	8:40	9:10	30	30/30	
JOB4	8:50	10分	9:10	9:20	30	30/10	
平均月	周转时间 T=	(150+90+30+30)/4=75					
带权平均周	带权平均周转时间 W= (150 /60+ 90 /50+ 30/30+30/10)/4=2.075						

10 有 5 个待运行的作业,预计其运行时间分别是: 9、6、3、5 和 x,采用哪种运行次序可以使得平均响应时间最短?

答:按照最短作业优先的算法可以使平均响应时间最短。X 取值不定,按照以下情况讨论:

- 1) x≤3 次序为: x, 3, 5, 6, 9
- 2) 3<x≤5 次序为: 3, x, 5, 6, 9
- 3) 5<x≤6 次序为: 3, 5, x, 6, 9
- 4) 6<x≤9 次序为: 3, 5, 6, x, 9
- 5) 9<x 次序为: 3, 5, 6, 9, x

12 有 5 个批处理作业 A 到 E 均已到达计算中心, 其运行时间分别 10、6、2、4 和 8 分钟; 各自的优先级分别被规定为 3、5、2、1 和 4, 这里 5 为最高级。若不考虑系统切换开销, 计算出平均作业周转时间。(1) FCFS(按 A、B、C、D、E); (2)优先级调度算法; (3)时间片轮转法(每个作业获得相同的 2 分钟长的时间片)。

答: (1)FCFS 调度算法

执行次序	执行时间	等待时间	周转时间	带权周转时间
A B C D	10 6 2 4 8	0 10 16 18 22	10 16 18 22 30	1 2.66 9 5.5 3.75
作业平均是	周转时间 带权周转时[间	· `	3+22+30)/5=19.2 9+5.5+3.75)/5=4.38

(2)优先级调度算法

执行次序	执行时间	等待时间	周转时间	带权周转时间
B E A C	6 8 10 2 4	0 6 14 24 26	6 14 24 26 30	1 1.75 2.4 13 7.5
作业平均特	周转时间 带权周转时[间	`	+26+30)/5=20 2.4+13+7.5)/5=5.13

(3)时间片轮转法

按次序 ABCDEABDEABEAEA 轮转执行。

作业	执行时间	等待时间	周转时间	带权周转时间
A B C D	10 6 2 4 8	20 16 4 12 20	30 22 6 16 28	3 3.66 3 4 3.5
作业平均 作业平均引	周转时间 带权周转时[可	`	-16+28)/5=20.4 3+4+3.5)/5=3.43

17 如果在限制为两道的多道程序系统中,有四个作业进入系统的时间、估计运行时间列于表中。系统采用 SJF 作业调度算法,采用 SRTF 进程调度算法,请填充下表。

作业	进入系统	估计运行(分)	开始运	结束运	周转时间	
	时间		行时间	行时间		
JOB1	10: 00	30				
JOB2	10: 05	20				
JOB3	10: 10	5				
JOB4	10: 20	10				
平均周转时间		T=				
平均带权	周转时间	W=				

解:

作业	进入系统	估计运行(分)	开始运	结束运	周转时间
	时间		行时间	行时间	
JOB1	10: 00	30	10: 00	11: 05	65
JOB2	10: 05	20	10: 05	10: 25	20
JOB3	10: 10	5	10: 25	10: 30	20
JOB4	10: 20	10	10: 30	10: 40	20
平均周转时间		T=31.25	17/2		
平均带权周转时间		W=2.29	/ K/		

说明:

- 10: 00 时, J0B1 进入系统,系统中只有一道作业,故 JOB1 被调入主存并启动执行。
- 10: 05 时,JOB2 到达,系统最多允许两个作业同时进入主存,所以 JOB2 也被调入主存。此时,主存中有两个作业,哪一个在处理器上执行?题目规定,当一新作业投入运行后,可按照 SRTF 进程调度算法执行,根据这一原则,由于 J0B2 运行时间(20 分钟)比 JOB1 少(到 10: 05 时,JOB1 还需要运行 25 分钟),所以进程 JOB2 运行,而进程 J0B1 在就绪队列中等待。
- 10: 10 时, JOB3 到达系统,由于主存中已经有两个作业,所以,JOB3 不能马上进入主存;同样原理,10: 20 时 JOB4 也不能进入主存。
- 10: 25 时,JOB2 运行结束,退出系统,此时主存中剩下 JOB1、而输入井中有两个作业 JOB3 和 JOB4,由于作业调度算法遵循 SJF 原则,因此作业调度程序选中 JOB3 进入主存。
- 通过比较主存就绪队列中进程 JOB1 和 JOB3 的运行时间,得知 JOB3 运行时间短一些,故进程调度选中 JOB3 在处理器上运行。同样原理,当 JOB3 退出系统后,下一个运行的是 JOB4 。
 - · JOB4 运行结束后, JOBI 才能继续运行。

20 有一个四道作业的操作系统, 若在一段时间内先后到达 6 个作业, 它们的提交和估计运行时间由下表给出:

作业	提交时间	估计运行时间(分钟)
1	8: 00	60
2	8: 20	35
3	8: 25	20
4	8: 30	25
5	8: 35	5
6	8: 40	10

系统采用剩余 SJF 调度算法,作业被调度进入系统后中途不会退出,但作业运行时可被剩余时间更短作业抢占。(1)分别给出 6 个作业的执行时间序列、即开始执行时间、作业完成时间、作业周转时间。(2)计算平均作业周转时间。

答:

作业	提交	需运行	开始运行	被抢占还	完成	周转	
号	时间	时间	时间	需运行时间	时间	时间	
J1	8:00	60	8:00	40	10:35	155	
J2	8:20	35	8:20	30	9:55	95	
J3	8:25	20	8:25		8:45	20	
J4	8:30	25	9:00	25	9:25	55	
J5	8:35	5	8:45		8:50	15	
J6 说明:	8:40	10	8:50		9:00	20	

- (1) J2 到达时抢占 J1; J3 到达时抢占 J2。
- (2) 但 J4 到达时,因不满足 SJF,故 J4 不能被运行,J3 继续执行 5 分钟。
- (3) 由于是4道的作业系统,故后面作业不能进入主存而在后备队列等待,直到有作业结束。
- (4) 根据进程调度可抢占原则, J3 第一个做完。而这时 J5、J6 均己进入后备队列, 而 J5 可进入主存。
- (5) 因 J5 最短, 故它第二个完成。这时 J6 方可进入主存。因 J6 最短, 故它第三个完成。
- (6) 然后是:J4、J2 和 J1
- (7) T=(155+95+20+55+15+20)/6=60

27 某多道程序系统供用户使用的主存为 100K, 磁带机 2 台, 打印机 1 台。采用可变分区主存管理,采用静态方式分配外围设备,忽略用户作业 I/O 时间。现有作业序列如下:

	作业号	进入输入井时间	运行时间	主存需求量	磁带需求	打印机需求
	1	8:00	25 分钟	15K	1	1
	2	8:20	10 分钟	30K	0	1
	3	8:20	20 分钟	60K	1	0
	4	8:30	20 分钟	20K	1	0
	5	8:35	15 分钟	10K	1	1
∢						

作业调度采用 FCFS 策略, 优先分配主存低地址区且不准移动已在主存的作业, 在主存中的各作业平分 CPU 时间。现求: (1)作业被调度的先后次序?(2)全部作业运行结束的时间?(3)作业平均周转时间为多少?(4)最大作业周转时间为多少?

- 答: (1)作业调度选择的作业次序为: 作业 1、作业 3、作业 4、作业 2 和作业 5。
 - (2)全部作业运行结束的时间 9:30。
 - (3)周转时间:作业 1 为 30 分钟、作业 2 为 55 分钟、作业 3 为 40 分钟、作业 4 为 40 分钟和作业 5 为 55 分钟。
 - (4)平均作业周转时间=44分钟。
 - (5))最大作业周转时间为55分钟。

分析: 本题综合测试了作业调度、进程调度、及对外设的竞争、主存的竞争。

8:00 作业1到达,占有资源并调入主存运行。

8:20 作业 2 和 3 同时到达,但作业 2 因分不到打印机,只能在后备队列等待。作业 3 资源满足,可进主存运行,并与作业 1 平分 CPU 时间。

- 8:30 作业 1 在 8:30 结束,释放磁带与打印机。但作业 2 仍不能执行,因不能移动而没有 30KB 的空闲区,继续等待。作业 4 在 8:30 到达,并进入主存执行,与作业 3 分享 CPU。
- 8:35 作业 5 到达,因分不到磁带机/打印机,只能在后备队列等待。
- 9:00 作业 3 运行结束,释放磁带机。此时作业 2 的主存及打印机均可满足,投入运行。作业 5 到达时间晚,只能等待。
- 9:10 作业 4 运行结束,作业 5 因分不到打印机,只能在后备队列继续等待。
- 9:15 作业2运行结束,作业5投入运行。
- 9:30 作业全部执行结束。

28 某多道程序设计系统采用可变分区主存管理,供用户使用的主存为 200K,磁带机 5 台。采用静态方式分配外围设备,且不能移动在主存中的作业,进程调度采用 FCFS,忽略用户作业 I/O 时间。现有作业序列如下:

	作业号	进入输入井时间	运行时间	主存需求量	磁带需求
	A	8:30	40 分钟	30K	3
	В	8:50	25 分钟	120K	1
A	C	9:00	35 分钟	100K	2
	D	9:05	20 分钟	20K	3
	E	9:10	10 分钟	60K	1

现求: (1)FIFO 算法选中作业执行的次序及作业平均周转时间。(2)SJF 算法选中作业执行的次序及作业平均周转时间。

恷.

- (1) FIFO 算法选中作业执行的次序为: A、B、D、C 和 E。作业平均周转时间为 63 分钟。
- (2) SJF 算法选中作业执行的次序为: A、B、D、E和C。作业平均周转时间为58分钟。

详细说明:

- 1. 先来先服务算法。说明:
 - (1) 8:30 作业 A 到达并投入运行。注意它所占用的资源。
 - (2) 8:50 作业 B 到达,资源满足进主存就绪队列等 CPU。
 - (3) 9:00 作业 C 到达, 主存和磁带机均不够, 进后备作业队列等待。
 - (4) 9:05 作业 D 到达,磁带机不够,进后备作业队列等待。后备作业队列有 C、D。
- (5) 9:10 作业 A 运行结束,归还资源磁带,但注意主存不能移动(即不能紧缩)。作业 B 投入运行。作业 C 仍因主存不够而等在后备队列。这时作业 E 也到达了,也由于主存不够进入后备作业队列。此时作业 D 因资源满足(主存/磁带均满足),进主存就绪队列等待。后备作业队列还有 C、E。
- (6)9:35 作业 B 运行结束,作业 D 投入运行。这时作业 C 因资源满足而调入主存进就绪队列等 CPU。而作业 E 因磁带机不够继续在后备作业队列等待。
- (7)9:55 作业 D 运行结束,作业 C 投入运行。这时作业 E 因资源满足而调入主存进就 绪队列等 CPU。
 - (8)10:30 作业 C 运行结束,作业 E 投入运行。
 - (9)10:40 作业 E 运行结束。

	8:30 8:40	8:50 9:00) 9	9:20 9:30	9:40 9:50	10:00 10:10 10:20 10	:30 10:4
CDLI	作业 A			作业 B 	作业 D 	作业 C	作业 E
CPU	作业 A			作业	D	作业E	
磁带机 1							-
磁带机 2	作业 A			作业	D 		
磁带机 3	作业 A			作业	D		
磁带机 4	 - - -		,	作业 B		作业 C	ļ
磁带机 5	 					作业 C	ļ
作业 A	CPU				K		
作业 B		就绪等待	寺	CPU	1 18		
TF <u>W</u> B				后备队列	就绪等待	CPU	
作业 C		L			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		J
作业 D			后	备 就绪等待	CPU		
	 		L				
作业 E				后备队列		就绪等待	CPU
				V/)			

作业执行次序	进输入井时间	装入主存时间	开始执行时间	执行结束时间	周转时间
作业 A	8:30	8:30	8:30	9:10	40(分)
作业 B	8:50	8:50	9:10	9:35	45
作业 D	9:05	9:10	9:35	9:55	50
作业 C	9:00	9:35	9:55	10:30	90
作业 E	9:10	9:55	10:30	10:40	90
作业平均周转	封间	(40+45+50-	+90+90)/5=63 分	钟	

2. 短作业优先算法。说明:

- (1) 8:30 作业 A 到达并投入运行。注意它所占用的资源。
- (2) 8:50 作业 B 到达,资源满足进主存就绪队列等 CPU。
- (3) 9:00 作业 C 到达, 主存和磁带机均不够, 进后备作业队列等待。
- (4) 9:05 作业 D 到达,磁带机不够,进后备作业队列等待。后备作业队列有 C、D。
- (5) 9:10 作业 A 运行结束,归还资源磁带,但注意主存不能移动(即不能紧缩)。作业 B 投入运行。作业 C 仍因主存不够而等在后备队列。这时作业 E 也到达了,虽然该作业最短,也由于主存不够进入后备作业队列。此时作业 D 因资源满足(主存/磁带均满足),进主存就绪队列等待。后备作业队列还有 C、E。
- (6)9:35 作业 B 运行结束,作业 D 投入运行。这时作业 C 和 E 资源均满足,但按 SJF 应把作业 E 调入主存进就绪队列等 CPU。而作业 C 因**磁带机不够**继续在后备作业队列等待。
 - (7)9:55 作业 D 运行结束,作业 C 调入主存进就绪队列等 CPU。
 - (8)10:05 作业 E 运行结束,作业 C 投入运行。
 - (9)10:40 作业 C 运行结束。

作业执行次序	进输入井时间	装入主存时间	开始执行时间	执行结束时间	周转时间
作业 A	8:30	8:30	8:30	9:10	40(分)
作业 B	8:50	8:50	9:10	9:35	45
作业 D	9:05	9:10	9:35	9:55	50
作业E	9:10	9:35	9:55	10:05	55
作业 C	9:00	9:55	10:05	10:40	100
作业平均周转	时间	(40+45+50-	+55+100)/5=58 /2	分 钟	

30 多道批处理系统中配有一台处理器和两台外设(II和 I2),用户存储空间为 100MB。已知系统的作业调度及进程调度采用可抢占的高优先数调度算法,<u>主存采用不允许移动的可变分区分配策略</u>,设备分配按照动态分配原则。今有 4 个作业同时提交给系统,如下表所示。试求作业平均周转时间。

作业名	优先数	运行时间与顺序(分钟)	主存需求
A	7	CPU-1 分,I1-2 分,I2-2 分	50MB
В	3	CPU-3 分,I1-1 分	10MB
С	9	CPU-2 分,I1-3 分,CPU-2 分	60MB
D		CPU-4 分,I1-1 分	20MB

- 答:本题是综合性题目,考核要点是作业调度、主存分配及作业周转时间等。当4个作业进入系统后:
- (1)按照高优先级调度算法,系统先调度作业 C。主存被 C 占有 60M,还有 40M 可用空间。系统再装入 D 和 B。
- (2)同样按照高优先级算法,让 C 先运行。两分钟后 C 让出 CPU,并占用 II。作业 D 开始在 CPU 上执行。
- (3)又过去 3 分钟,作业 C 使用 II 完毕,被唤醒后立即抢占 CPU,使作业 D 回到就绪队列等待。
- (4)2 分钟后,作业 C 运行完。系统将 C 卸出主存,继而装入作业 A。因 A 的优先数较高,故立即得到运行。
- (5)作业 A 运行 1 分钟后,转而使用 II 进行 I / O。空出的 CPU 运行作业 D。
- (6)1 分钟过后,作业 D 放弃 CPU,请求 I1 因不能满足而等待。作业 B 开始运行。又过去 3 分钟, B 运行完。

CPU 的使用情况如下 (其中一个格代表 1 分钟):

			I/I/I								-
C	D	D	D	C	C	A	D	В	В	В	
勺使月	目情况	如下:									
	C	C	С				A	A	D		В
			•		•	•	•	•	•	•	
I2 的使用情况如下:											
	>								A	A	
	り使用	り使用情况 C	的使用情况如下:	が使用情况如下: C C C	ウ使用情况如下: C C C	方使用情况如下: C C C	り使用情况如下: C C C	が使用情况如下:	が使用情况如下:	が使用情况如下:	が使用情况如下:

主存使用情况:

C (60)	C (60)	空	A (50)							
			空(10)							
	D (20)	D (20)	D(20)							
空(40)	B (10)	B(10)	B(10)							
	空(10)	空(10)	空(10)							
装入 C	装 入	卸出C	装入 A							
	D, B									

作业周转时间: A=12, B=13, C=7, D=11 平均作业周转时间=(12+13+7+11)/4=43/4=10.75(分钟)