Alexander Georges Gretener, M.Sc. Mariia Okuneva, M.Sc. Anna Titova, Dr.

Advanced Statistics (Winter Term 2023/24)

Problem Set 6

1. Let the random variable X have the probability density function (Bernoulli distribution)

$$f(x) = \theta^x (1 - \theta)^{(1-x)} I_{\{0,1\}}(x)$$
 with $\theta \in (0,1)$.

Find the non-central moments μ'_r and the central moments μ_2 and μ_3 of X.

- 2. Let X be a continuous random variable with expected value μ , median m and variance σ^2 .
 - (a) Show that the function $E[(X-b)^2]$ is minimal for $b=\mu$.
 - (b) Show that the median m minimizes the function $\mathrm{E}[|X-b|]$.
 - (c) Assume in addition that X is symmetric around x = b.
 - i. Show that $\mu = b$.
 - ii. Prove that $\mu_3 = 0$.
 - iii. Verify that the function $E[(X-b)^4]$ is minimal for $b=\mu$.
- 3. Let X be a positive random variable. Compare $E[X^{\alpha}]$ with $(E[X])^{\alpha}$ for all values of $\alpha \in \mathbb{R}$.
- 4. Let the random variable X be distributed according to the pdf f(x) with x > 0.
 - (a) Suppose you know that E[X] = 8. Give an estimate for the probability P(X < 16).
 - (b) Suppose you also know that X cannot take negative values and that Var(X) = 32. Include this information and re-estimate the probability P(X < 16)
 - (c) The miles per gallon attained by purchases of a line of pickup trucks manufactured in Detroit are outcomes of a random variable with mean of 17 miles per gallon and a standard deviation of 0.25 miles per gallon. How probable is the event that a purchaser attains between 16 and 18 miles per gallon with this line of truck.
 - (d) The daily price of a certain penny stock is a random variable with an expected value of 2\$. Is the probability that the stock price will be greater than or equal to 10\$ greater than 20%?
- 5. Let the random variable $X = (X_1, X_2)$ have the following probability density function:

$$f(x) = \begin{cases} \frac{12}{(1+x_1+x_2)^5}, & \text{if } x_i \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Check if the elements in X are stochastically independent.
- (b) Find the covariance matrix of X.
- (c) Find both regression curves.
- (d) Calculate $Var(X_1|X_2)$.