

### Linear Regression

ROBERTO ALEJANDRO CÁRDENAS OVANDO



### Outline

- Introduction
- Linear models
- Estimation
- Goodness of fit
- Identifiability
- Other regressions



- Every study begins with a problem
- Proceeds with the collection of data
- Continues with the data analysis
- Finishes with conclusions



The formulation of a problem is often more essential than its solution which may be merely a matter of mathematical or experimental skill.

Albert Einstein



The result of an inapt analysis may be meaningless.

❖ Fishing expeditions – if you look hard enough, you will always find something, but that may just be a coincidence



- Be careful of:
  - How the data were collected?
  - Is there no response or dependent variable? (hidden variable)
  - Missing values
  - How are the data coded? (data types)
  - What are the units of measure? (meters, feet)
  - Corruption of the data
- Tip: Always perform an exploratory data analysis



## Example

- Install the "faraway" library (Tools -> Install package -> faraway)
- Load the "pima" database
  - data(pima)
- A diabetes test was performed to Pima indians and some data were collected
- ❖ Is there something wrong with the data?



- When to use a regression analysis?
  - It is used for explaining or modeling the relationships between a single variable Y, called the response, output or dependent variable; and one or more predictor, independent or explanatory variables  $X_{1:p}$



- ❖If p = 1 it is called a simple regression
- ❖If p > 1 it is called multivariate regression
- ❖If there is more than one Y it is called multiple multivariate regression



- The response must be a continuous variable, but the explanatory variables can be real, discrete or even categorical
  - If the predictors are a mixture of quantitative and qualitative, we use analysis of covariance
  - If all of the predictors are qualitative we use analysis of variance
  - If the response is qualitative, we use a logistic regression



- Regression analysis objectives:
  - Prediction of future observations
  - Assessment of the effect of, or relationship between explanatory variables and the response
  - A general description of the data structure



The most simple regression equation is:

$$y = rx + \epsilon$$

A linear model can be written as:

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \epsilon$$

r = correlation factor p = predictor



- The parameters enter linearly but the predictor themselves do not have to be linear.
- The may seem restrictive, but because the predictors can be transformed and combined in any way, they are actually very flexible
- **Example:**

$$y = \beta_0 + \beta_1 X_1 + \beta_2 \log(X_2) + \beta_3 X_1 X_2 + \epsilon$$



- Matrix representation: (p predictors, 1 response, n observations)
- **❖** Data:

$$egin{bmatrix} y_1 & x_{11} & ... & x_{1p} \ y_2 & x_{21} & ... & x_{2p} \ dots & dots & dots \ y_n & x_{n1} & ... & x_{np} \end{bmatrix}$$



Regression equation:  $y = \beta X + \epsilon$ 

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$(n \times 1) \qquad (n \times (p+1)) \quad (1 \times (p+1)) \quad (n \times 1)$$



**❖** Null model

$$y = \mu + \epsilon$$
$$\epsilon \sim N(0, \sigma^2)$$

Application: Random number generation



- $\Leftrightarrow$  Estimating  $\beta$ :
  - $\circ$  Objective: To find  $\beta$  so that  $X\beta$  is as close to Y as possible

Data = Systematic Structure + Random Variable (White Noise) n dimensions = p dimensions + (n-p) dimensions

The structure of the data should be captured in the p dimensions



- Least Squares Estimation
  - $^{\circ}$  We might define the best estimate of  $\beta$  as the one which minimizes the sum of the squared error
  - $\circ$  The least square estimate is called  $\hat{eta}$

$$\sum_{i=1}^{n} \epsilon^{2} = \epsilon^{T} \epsilon = (y - X\beta)^{T} (y - X\beta)$$



To minimize or maximize a value we need to differentiate with respect to  $\beta$  and setting it to zero.

$$(X^TX)\beta = X^Ty$$
 Normal equations

- Now, provided that  $X^TX$  is invertible:
  - We find that  $\hat{\beta}$  satisfies:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$



Predicted or fitted values

$$\hat{y} = X\hat{\beta}$$

Residual

$$\hat{\epsilon} = y - \hat{y}$$

Residual Sum of Squares (RSS)

$$RSS = \sum \hat{\epsilon}^2 = \hat{\epsilon}^T \hat{\epsilon}$$



#### Goodness of fit

- It is useful to have some measure of how well the model fits the data
- •• One common choice is  $R^2$ . Where  $0 \le R^2 \le 1$ 
  - Percentage of variance explained

$$R^{2} = 1 - \frac{\sum (\hat{y} - y_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

**TIP:** Beware of high  $R^2$  reported from models without intercept



#### Goodness of fit

- $\clubsuit$  What is a good value of  $\mathbb{R}^2$ ?
  - Biological data and social data tend to be weakly correlated and there is a lot of noise.

$$R^2 \sim 0.6$$

Physics and engineering tend to have controlled experiments

$$R^2 \sim 0.6$$





## Example

- Using the faraway library load the gala database
  - Install the faraway library if you did not do it before
  - load(gala)
- ❖It reports the number of tortoise species per island in the Galapagos islands
  - Dependent variable = Species
  - All the other variables are independent variables
- \*Use the regression equation and least square estimation to get the  $\beta$  parameters  $\hat{\beta} = (X^T X)^{-1} X^T v$
- Arr Get the  $R^2$ :

$$R^{2} = 1 - \frac{\sum (\hat{y} - y_{i})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$



R

To compute a linear model we can use the lm and glm funcions

```
lm(formula, data, subset, weights, na.action,
    method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
    singular.ok = TRUE, contrasts = NULL, offset, ...)

glm(formula, family = gaussian, data, weights, subset,
    na.action, start = NULL, etastart, mustart, offset,
    control = list(...), model = TRUE, method = "glm.fit",
    x = FALSE, y = TRUE, contrasts = NULL, ...)
```



R

```
call:
lm(formula = Species ~ Endemics + Area + Elevation + Nearest +
   Scruz + Adjacent, data = gala)
Residuals:
   Min
           10 Median
                          3Q
                                Max
-68.219 -10.225 1.830 9.557 71.090
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.337942 9.423550 -1.628
                                        0.117
Endemics 4.393654 0.481203 9.131 4.13e-09 ***
       0.013258 0.011403 1.163
Area
                                        0.257
Elevation -0.047537 0.047596 -0.999
                                        0.328
Nearest -0.101460 0.500871 -0.203
                                        0.841
Scruz 0.008256 0.105884 0.078
                                        0.939
Adjacent 0.001811
                      0.011879 0.152
                                        0.880
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 28.96 on 23 degrees of freedom
Multiple R-squared: 0.9494, Adjusted R-squared: 0.9362
F-statistic: 71.88 on 6 and 23 DF, p-value: 9.674e-14
```



## Identifiability

- If  $X^TX$  is singular and cannot be inverted, then there Will be infinitely many solutions to the normal equations and  $\beta$  is partially identifiable
  - What does this means?

- Unidentifiability occurs when X is not full rank or when it is saturated or supersaturated
  - What does this means?
    - Rank
    - Saturated
    - Supersaturated



### Example with redundant data

- Add a variable diff into the gala data diff = Nearest Scruz
  - gala\$diff = diff
- Use the Im function
  - What happened?
- Now add a white noise each observation in diff and use the Imfunction again
  - What happened?



## Polynomial regression

❖If a variable has a higher-order behavior than 1. We can use a polynomial regression.

$$y = \beta_0 + \beta_1 X_1^1 + \beta_2 X_1^2 + \dots + \beta_p X_1^p$$



# Example

- Database: corrosion
- The specimens were submerged in sea water for 60 days and the weight loss due to corrosion was recorded in units of milligrams per square decimeter per day.





## Analysis of Covariance

Predictors are qualitative (factors) and quantitative

- The strategy is to use dummy variables for the categorical data
  - Example: var = { no medication, medication }

$$dummy = \begin{cases} 0 & no \\ 1 & medication \end{cases}$$



## Analysis of Covariance

- A variety of linear models can be used
  - Same regression line for both groups

$$y = \beta_0 + \beta_1 X + \epsilon$$

Separate regression lines for each group with the same slope

$$y = \beta_0 + \beta_1 X + \beta_2 d + \epsilon$$

Separate regression lines for with group with different slopes

$$y = \beta_0 + \beta_1 X + \beta_2 d + \beta_3 X \cdot d + \epsilon$$



## Example

- ❖ Database: sexab
- The data for this example come from a study of the effects of childhood sexual abuse on adult females
  - Cpa: childhood physical abuse
  - Ptsd: Post traumatic stress disorder
  - Csa: Childhood sexual abuse



### One-way Analysis of Variance

- Predictors are now all qualitative
- The regression parameters are now called effects
- ❖ Simplest model one predictor:
  - $\circ$  Suppose we have a factor  $\alpha$  occurring at i=1,..,I levels with j =
    - 1, ...,  $J_i$  observations per level. We use the model:

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$



## One-way Analysis of Variance

- Problem: Not all the parameters are identifiable
- A restriction is necessary!
- Some possibilities are:
  - $\circ$  Set  $\mu=0$  and then use I different dummy variables to estimate  $\alpha_i \ \forall \ i$
  - $\circ$  Set  $\alpha_1=0$ , then  $\mu$  represents the expected mean response for the first level and  $\alpha_1 \neq 1$  represents the difference between level I and level one
- In the second approach level one is called the reference value or baseline value. (Contrasts)



# Example

- Database: coagulation
- ❖ Dataset comes from a study of blood coagulation times. 24 animals were randomly assigned to four different diets and the samples were taken in a random order.





# Logistic regression

- Purpose : Classification
- $\clubsuit$ Binary classification  $y \in \{0,1\}$
- We can use linear regression with a threshold, but it is not very effective
- Solution: to use a probabilistic function  $f(z) = P(y = 1 \mid X)$
- Most used functions: sigmoid

$$f(z) = \frac{1}{1 + e^{-z}}$$



# Logistic regression

Sigmoid function





# Example

- ❖ Database: sexab
- The data for this example come from a study of the effects of childhood sexual abuse on adult females
  - Cpa: childhood physical abuse
  - Ptsd: Post traumatic stress disorder
  - Csa: Childhood sexual abuse
    - Now I am the dependent variable



# Linear regression model





# Logistic regression model - perceptron





### Conclusion



If she loves you more each and every day, by linear regression she hated you before you met.



#### HW

- Do a regression analysis to the "pima" dataset from the "faraway" library
  - Analyze the database and select only the observations with no missing data
  - Use the R function to fit a model.
    - Dependent variable : Test
  - How many correct predictions did the fitted model get? How many wrong?
    - Confusion matrix
- Which regression did you use?
  - ANCOVA, ANOVA, simple regression, logistic regression
  - Justify your answer



#### HW

- Do a regression analysis to the "teengamb" dataset from the "faraway" library
  - $\circ$  Use the normal equations to fit the  $\beta$  parameters
    - Dependent variable: gamble
  - $\circ$  Get the RSS and  $R^2$
  - Use the R function to compare your answers
- Which regression did you use?
  - ANCOVA, ANOVA, simple regression, logistic regression
  - Justify your answer