# 2IL76 Algorithms for Geographic Data

Spring 2015

Lecture 3: Simplification



Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**



Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**

Many trajectories can be simplified without losing much information.

### Example:





Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**

Many trajectories can be simplified without losing much information.

### Example:





Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**

Many trajectories can be simplified without losing much information.

### Example:





Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**





Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**





Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**





Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**





Many algorithms handling movement data are slow, e.g.

- similarity O(nm log nm)
- approximate clustering O(n<sup>2</sup>+nml)

- ...

### **Observation:**





# A sequence of steps to solve a problem

- Understand the input
- Understand what you really want from the output
- Write an input and output specification and double-check it!
- Find geometric properties of the desired output
- Construct an algorithm
- Verify that it actually solves the problem you specified
- Analyze the efficiency



# **Assumptions**

- Due to lack of further information: constant speed (and velocity) on each segment
  - location changes continuously, but speed/velocity is piecewise constant and changes "in jumps"





# **Assumptions**

- We do not want to assume that ...
  - sampling occurred at regular intervals
  - no data is missing
  - the object is only present at the measured locations but not in between



How much did A deviate from the route of B?



# A sequence of steps to solve a problem

- Understand the input
- Understand what you really want from the output
- Write an input and output specification and double-check it!
- Find geometric properties of the desired output
- Construct an algorithm
- Verify that it actually solves the problem you specified
- Analyze the efficiency



# Specifying the output

- We want a trajectory with the smallest number of vertices and with error at most ε
- Without thinking about the output, one could say:"Just use a line simplification method"





# Specifying the output

We want a trajectory with the smallest number of vertices and with error at most ε

... but what do we mean with "error"?

Option 1: the maximum error in location for any moment of time:





# Specifying the output

We want a trajectory with the smallest number of vertices and with error at most ε

... but what do we mean with "error"?

Option 2: the error in speed as a multiplicative factor, for any moment

Option 3: the error in velocity (speed and heading combined)

... or any combination of the above



### But ...

- it is important to start simple
- therefore in this lecture mostly: curve simplification
- you will see in Exercise 3 an example of how to incorporate time



## Outline

### Simplifying polygonal curves

- Ramer–Douglas–Peucker, 1973
- Driemel, Har-Peled and Wenk, 2010
- □ Imai-Iri, 1988
- Agarwal, Har-Peled, Mustafa and Wang, 2005



- 1972 by Urs Ramer and 1973 by David Douglas and Thomas Peucker
- The most successful simplification algorithm. Used in GIS, geography, computer vision, pattern recognition...



■ Very easy to implement and works well in practice.



```
Input polygonal path P = \langle p_1, ..., p_n \rangle and threshold \epsilon
Initially i=1 and j=n
Algorithm DP(P,i,j)
Find the vertex v_f between p_i and p_j farthest from p_i p_j.
dist := the distance between v_f and p_i p_j.
```

```
if dist > \epsilon then DP(P, v_i, v_f) DP(P, v_f, v_j) else Output(v_iv_i)
```





```
Input polygonal path P = \langle p_1, ..., p_n \rangle and threshold \epsilon
Initially i=1 and j=n
Algorithm DP(P,i,j)

Find the vertex v_f between p_i and p_j farthest from p_ip_j.

dist := the distance between v_f and p_ip_j.
```

```
if dist > \epsilon then DP(P, v_i, v_f) DP(P, v_f, v_j) else Output(v_iv_i)
```













### Time complexity?

Testing a shortcut between  $p_i$  and  $p_i$  takes O(j-i) time.

else

Output(v<sub>i</sub>v<sub>i</sub>)

### **Worst-case recursion?**

$$DP(P, v_i, v_{i+1})$$
  
 $DP(P, v_{i+1}, v_i)$ 

Time complexity
$$T(n) = O(n) + T(n-1)$$

$$= O(n^2)$$

# Algorithm DP(P,i,j)Find the vertex $v_f$ farthest from $p_i p_j$ . dist := the distance between $v_f$ and $p_i p_j$ . if dist > $\epsilon$ then $DP(P, v_i, v_f)$ $DP(P, v_f, v_i)$



# Summary: Ramer-Douglas-Peucker

- Worst-case time complexity:  $O(n^2)$
- □ In most realistic cases:  $T(n) = T(n_1) + T(n_2) + O(n) = O(n \log n)$ , where  $n_1$  and  $n_2$  are smaller than n/c for some constant c.
- ☐ If the curve is in 2D and it does not self-intersect then the algorithm can be implemented in O(n log\* n) time.



[Hershberger & Snoeyink'98]

Does not give any bound on the complexity of the simplification!



Simple simplification (P =  $\langle p_1, ..., p_n \rangle$ ,  $\varepsilon$ )

$$P' := \langle p_1 \rangle$$

i:=1

while i<n do

 $q := p_i$ 

 $p_i := first \ vertex \ p_i \ in \ \langle q, ..., p_n \rangle \ s.t. \ |q-p_i| > \varepsilon$ 

if no such vertex then set i:=n

add p<sub>i</sub> to P'

end



Simple simplification (P =  $\langle p_1, ..., p_n \rangle$ ,  $\varepsilon$ )

$$P' := \langle p_1 \rangle$$

i:=1

while i<n do

 $q := p_i$ 

 $p_i := first \ vertex \ p_i \ in \ \langle q, ..., p_n \rangle \ s.t. \ |q-p_i| > \varepsilon$ 

if no such vertex then set i:=n

add p<sub>i</sub> to P'

end



return P'

```
Simple simplification (P = \langle p_1, ..., p_n \rangle, \varepsilon)
```

```
P':=\langle p_1\rangle i:=1  
while i<n do  
q:=p_i  
p_i:=\text{first vertex }p_i\text{ in }\langle q,...,p_n\rangle\text{ s.t. }|q\text{-}p_i|>\epsilon  
if no such vertex then set i:=n  
add p_i to P'
```

Tule Technische Universiteit Eindhoven University of Technology

end

return P'

Simple simplification (P =  $\langle p_1, ..., p_n \rangle$ ,  $\varepsilon$ )

```
\begin{aligned} P' &:= \langle p_1 \rangle \\ &\text{i} := 1 \\ &\text{while i} < n \text{ do} \\ &\text{q} := p_i \\ &\text{p}_i := \text{first vertex } p_i \text{ in } \langle q, ..., p_n \rangle \text{ s.t. } |q - p_i| > \epsilon \\ &\text{if no such vertex then set i} := n \\ &\text{add } p_i \text{ to } P' \end{aligned}
```



Simple simplification (P =  $\langle p_1, ..., p_n \rangle$ ,  $\varepsilon$ )

$$\mathsf{P}' := \langle \mathsf{p}_1 \rangle$$

i:=1

while i<n do

$$q := p_i$$

 $p_i := first \ vertex \ p_i \ in \ \langle q, ..., p_n \rangle \ s.t. \ |q-p_i| > \varepsilon$ 

if no such vertex then set i:=n

add p<sub>i</sub> to P'

end



end

return P'

Simple simplification (P =  $\langle p_1, ..., p_n \rangle$ ,  $\varepsilon$ )

```
\begin{split} P' &:= \langle p_1 \rangle \\ &\text{i} := 1 \\ &\text{while i<n do} \\ &\text{q} := p_i \\ &\text{p}_i := \text{first vertex } p_i \text{ in } \langle q, ..., p_n \rangle \text{ s.t. } |q - p_i| > \epsilon \\ &\text{if no such vertex then set i} := n \\ &\text{add } p_i \text{ to } P' \end{split}
```



```
Simple simplification (P = \langle p_1, ..., p_n \rangle, \varepsilon)
```

```
\begin{split} P' &:= \langle p_1 \rangle \\ &\text{i} := 1 \\ &\text{while i} < n \text{ do} \\ &q := p_i \\ &p_i := \text{first vertex } p_i \text{ in } \langle q, ..., p_n \rangle \text{ s.t. } |q - p_i| > \epsilon \\ &\text{if no such vertex then set i} := n \\ &\text{add } p_i \text{ to } P' \end{split}
```

end





Simple simplification (P =  $\langle p_1, ..., p_n \rangle$ ,  $\varepsilon$ )

```
\begin{split} P' &:= \langle p_1 \rangle \\ &\text{i} := 1 \\ &\text{while i} < n \text{ do} \\ &\text{q} := p_i \\ &\text{p}_i := \text{first vertex } p_i \text{ in } \langle q, \dots, p_n \rangle \text{ s.t. } |q - p_i| > \epsilon \\ &\text{if no such vertex then set i} := n \\ &\text{add } p_i \text{ to P'} \end{split}
```

end





```
Simple simplification (P = \langle p_1, ..., p_n \rangle, \varepsilon)
```

```
\begin{array}{l} P' \! := \langle p_1 \rangle \\ \\ i \! := \! 1 \\ \\ \text{while i < n do} \\ \\ q := p_i \\ \\ p_i := \text{first vertex } p_i \text{ in } \langle q, \dots, p_n \rangle \text{ s.t. } |q \! - \! p_i| \! > \! \epsilon \\ \\ \text{if no such vertex then set i:=n} \\ \\ \text{add } p_i \text{ to } P' \\ \\ \text{end} \end{array}
```



#### Driemel et al.

Simple simplification (P =  $\langle p_1, ..., p_n \rangle$ ,  $\varepsilon$ )

#### Property 1:

All edges (except the last one) have length at least  $\varepsilon$ .



Property 2:  $\delta_F(P,P') \leq \epsilon$ 

Running time: O(n)

Definition: A curve P is c-packed, if has finite length, and for any ball b(p,r) it holds  $|P \cap b(p,r)| < cr$ .

Simplification maintains packedness, but gives no bound on size.





- Both previous algorithms are simple and fast but do not give a bound on the complexity of the simplification!
- Examples for which they perform poorly?



- Both previous algorithms are simple and fast but do not give a bound on the complexity of the simplification!
- Examples for which they perform poorly?



Douglas-Peucker



**Optimal** 



- Both previous algorithms are simple and fast but do not give a bound on the complexity of the simplification!
- Examples for which they perform poorly?
- Imai-Iri 1988 gave an algorithm that produces an ε-simplification with the minimum number of links.
- Generally, two variants
  - $\blacksquare$  Min-vertices (for given  $\varepsilon$ ): this is the one we mostly consider
  - Min-ε (for given length of simplification): often uses binary search with Min-vertices as subroutine
- Another distinction: Does the simplification only use vertices of the input or not? In lecture only input vertices, but see assignment



**Input** polygonal path  $P = \langle p_1, ..., p_n \rangle$  and threshold  $\varepsilon$ 

- 1. Build a graph G containing all valid shortcuts.
- 2. Find a minimum link path from  $p_1$  to  $p_n$  in G





**Input** polygonal path  $P = \langle p_1, ..., p_n \rangle$  and threshold  $\epsilon$ 

- 1. Build a graph G containing all valid shortcuts.
- 2. Find a minimum link path from  $p_1$  to  $p_n$  in G

































































All possible shortcuts!





- 1. Build a directed graph of valid shortcuts.
- 2. Compute a shortest path from  $p_1$  to  $p_n$  using breadth-first search.





- 1. Build a directed graph of valid shortcuts.
- 2. Compute a shortest path from  $p_1$  to  $p_n$  using breadth-first search.





Brute force running time: ? #possible shortcuts?



#### Analysis: Imai-Iri

```
Brute force running time: ?

#possible shortcuts ?

Running time: O(n^3)

O(n^2) possible shortcuts

O(n) per shortcut \Rightarrow O(n^3) to build graph

O(n^2) BFS in the graph
```

Output: A path with minimum number of edges

#### Improvements:

Chan and Chin'92:  $O(n^2)$ 

for Min- $\varepsilon$ :  $O(n^2 \log n)$ 



# Speeding up Imai-Iri

■ The graph can have  $\sim n^2$  edges; testing one shortcut takes time linear in the number of vertices in between

■ The Imai-Iri algorithm avoids spending ~n³ time by testing all shortcuts from a single vertex in linear time





# Speeding up Imai-Iri

A shortcut  $(p_i p_j)$  is feasible iff it intersects all  $\epsilon$ -disks of vertices inbetween (i+1,...,j-1) iff both rays (from  $p_i$  through  $p_j$  and from  $p_j$  through  $p_i$ ) intersect all  $\epsilon$ -disks of vertices inbetween



#### Imai-Iri with Fréchet distance

The framework of Imai-Iri can also be used for simplification under the Fréchet distance

- Min-vertices (for given ε):
   solve decision problem for each edge: O(n³)
- Min-ε (for given length of simplification): solve computation problem for each edge: O(n³ log n)



#### Results so far

- $\square$  RDP:  $O(n^2)$  time (simple and fast in practice)
- $\square$  SimpleSimp: O(n) time (simple and fast in practice)
- Output: A path with no bound on the size of the path
- Imai-Iri:  $O(n^2)$  time by Chan and Chin
- Output: A path with minimum number of edges
- RDP and II use the Hausdorff error measure, SimpleSimp uses Fréchet, II can use Fréchet but slow

Question: Can we get something that is simple, fast and has a worst-case bound using the Fréchet error measure?



#### Agarwal et al.

Agarwal, Har-Peled, Mustafa and Wang, 2002

- $\Box$  Time: Running time  $O(n \log n)$
- Measure: Fréchet distance
- Output: Path has at most the same complexity as a minimum link (ε/2)-simplification



# Analysis - Agarwal et al.

- Let  $P = \langle p_1, p_2, ..., p_n \rangle$  be a polygonal curve
- Notation: Let  $\delta(p_i p_j)$  denote the Fréchet distance between  $(p_i, p_j)$  and the subpath  $\pi(p_i, p_i)$  of P between  $p_i$  and  $p_i$ .



```
Algorithm(P = \langle p_1, ..., p_n \rangle, \varepsilon)
    i := 1
     P' = \langle p_1 \rangle
     while i < n do
        find any j>i such that
                           (\delta(p_i, p_i) \le \varepsilon \text{ and } (\delta(p_i, p_{i+1}) > \varepsilon) \text{ or }
                           (\delta(p_i,p_i) \le \varepsilon \text{ and } j=n)
        P' = concat(P,\langle p_i \rangle)
        i := j
     end
     return P'
```





```
Algorithm(P = \langle p_1, ..., p_n \rangle, \varepsilon)
    i := 1
     P' = \langle p_1 \rangle
     while i < n do
        find any j>i such that
                           (\delta(p_i, p_i) \le \varepsilon \text{ and } (\delta(p_i, p_{i+1}) > \varepsilon) \text{ or }
                           (\delta(p_i,p_i) \le \varepsilon \text{ and } j=n)
        P' = concat(P,\langle p_i \rangle)
        i := j
     end
     return P'
```





```
Algorithm(P = \langle p_1, ..., p_n \rangle, \varepsilon)
    i := 1
     P' = \langle p_1 \rangle
     while i < n do
        find any j>i such that
                           (\delta(p_i, p_i) \le \varepsilon \text{ and } (\delta(p_i, p_{i+1}) > \varepsilon) \text{ or }
                           (\delta(p_i,p_i) \le \varepsilon \text{ and } j=n)
        P' = concat(P,\langle p_i \rangle)
        i := j
     end
     return P'
```





- Efficient algorithm?
- Recall: Computing the Fréchet distance between  $(p_i,p_i)$  and  $\pi(p_i,p_i)$  can be done in O(j-i) time







- Efficient algorithm?
- Recall: Computing the Fréchet distance between  $(p_i,p_i)$  and  $\pi(p_i,p_i)$  can be done in O(j-i) time



Finding the first j such that  $\delta(p_i, p_i) \le \varepsilon$  and  $\delta(p_i, p_{i+1}) > \varepsilon$ takes  $O(n^2)$  time.





- $\blacksquare$  How can we speed up the search for  $p_i$ ?
- Note that we just want to find any vertex  $p_j$  such that  $\delta(p_i,p_j) \le \epsilon$  and  $\delta(p_i,p_{i+1}) > \epsilon$

Idea: Search for p<sub>j</sub> using exponential search followed by binary search!



■ Exponential search:

Test  $p_{i+1}$ ,  $p_{i+2}$ ,  $p_{i+4}$ ,  $p_{i+8}$ ... until found  $p_{i+2^k}$ , such that  $\delta(p_i, p_{i+2^k}) > \epsilon$ .

■ Binary search:

$$\delta(p_i, p_i) \le \epsilon \text{ and } \delta(p_i, p_{i+1}) > \epsilon.$$



■ Exponential search:

Test  $p_{i+1}$ ,  $p_{i+2}$ ,  $p_{i+4}$ ,  $p_{i+8}$ ... until found  $p_{i+2^k}$ , such that  $\delta(p_i, p_{i+2^k}) > \epsilon$ .

■ Binary search:

$$\delta(p_i, p_j) \le \epsilon \text{ and } \delta(p_i, p_{i+1}) > \epsilon.$$





■ Exponential search:

Test  $p_{i+1}$ ,  $p_{i+2}$ ,  $p_{i+4}$ ,  $p_{i+8}$ ... until found  $p_{i+2^k}$ , such that  $\delta(p_i, p_{i+2^k}) > \epsilon$ .

■ Binary search:

$$\delta(p_i, p_j) \le \epsilon \text{ and } \delta(p_i, p_{j+1}) > \epsilon.$$





■ Exponential search:

Test  $p_{i+1}$ ,  $p_{i+2}$ ,  $p_{i+4}$ ,  $p_{i+8}$ ... until found  $p_{i+2^k}$ , such that  $\delta(p_i, p_{i+2^k}) > \epsilon$ .

■ Binary search:

$$\delta(p_i, p_j) \le \epsilon \text{ and } \delta(p_i, p_{j+1}) > \epsilon.$$



■ Exponential search:

Test  $p_{i+1}$ ,  $p_{i+2}$ ,  $p_{i+4}$ ,  $p_{i+8}$ ... until found  $p_{i+2^k}$ , such that  $\delta(p_i, p_{i+2^k}) > \epsilon$ .

Iterations:  $O(\log n)$ 

■ Binary search:

$$\delta(p_i, p_j) \le \varepsilon$$
 and  $\delta(p_i, p_{j+1}) > \varepsilon$ .  
Iterations:  $O(\log n)$ 

- □ The algorithm computes indices  $i_j = i_{j-1} + r_j$  with  $r_i$  in  $[2^l, 2^{l+1}]$  and  $\sum r_i = n$ .
- To compute  $i_j$  requires I = O(log n) iterations of both searches, costing  $O(l \cdot 2^l)$ : sums to overall O(n log n)



#### Lemma 1:

Let  $P = \langle p_1, p_2, ..., p_n \rangle$  be a polygonal curve.

For  $1 \le i \le j \le m$ ,  $\delta(p_i p_j) \le 2 \cdot \delta(p_l p_m)$ .



#### Lemma 1:

Let  $P = \langle p_1, p_2, ..., p_n \rangle$  be a polygonal curve.

For 
$$1 \le i \le j \le m$$
,  $\delta(p_i p_j) \le 2 \cdot \delta(p_l p_m)$ .

#### Proof:

Fix matching that realises  $\delta(p_lp_m)$ .

Set 
$$\lambda = \delta(p_l p_m)$$
.



#### Lemma 1:

Let  $P = \langle p_1, p_2, ..., p_n \rangle$  be a polygonal curve.

For 
$$1 \le i \le j \le m$$
,  $\delta(p_i p_j) \le 2 \cdot \delta(p_l p_m)$ .

#### **Proof:**

Fix matching that realises  $\delta(p_l p_m)$ .

Set 
$$\lambda = \delta(p_l p_m)$$
.

1.  $\delta(\pi(p_ip_j),(q_iq_j)) \leq \lambda$ 



#### Lemma 1:

Let  $P = \langle p_1, p_2, ..., p_n \rangle$  be a polygonal curve.

For 
$$1 \le i \le j \le m$$
,  $\delta(p_i p_j) \le 2 \cdot \delta(p_l p_m)$ .

#### **Proof:**

Fix matching that realises  $\delta(p_l p_m)$ .

Set 
$$\lambda = \delta(p_l p_m)$$
.

1. 
$$\delta(\pi(p_ip_j),(q_iq_j)) \leq \lambda$$





#### Lemma 1:

Let  $P = \langle p_1, p_2, ..., p_n \rangle$  be a polygonal curve.

For 
$$1 \le i \le j \le m$$
,  $\delta(p_i p_j) \le 2 \cdot \delta(p_l p_m)$ .

#### Proof:

Fix matching that realises  $\delta(p_l p_m)$ .

Set 
$$\lambda = \delta(p_l p_m)$$
.

- 1.  $\delta(\pi(p_ip_j),(q_iq_j)) \leq \lambda$
- 2.  $\delta((q_iq_j),(p_ip_j)) \leq \lambda$



#### Lemma 1:

Let  $P = \langle p_1, p_2, ..., p_n \rangle$  be a polygonal curve.

For 
$$1 \le i \le j \le m$$
,  $\delta(p_i p_j) \le 2 \cdot \delta(p_l p_m)$ .

#### **Proof:**

Fix matching that realises  $\delta(p_l p_m)$ .

Set 
$$\lambda = \delta(p_l p_m)$$
.

- 1.  $\delta(\pi(p_ip_i),(q_iq_i)) \leq \lambda$
- 2.  $\delta((q_iq_i),(p_ip_i)) \leq \lambda$





#### Lemma 1:

Let  $P = \langle p_1, p_2, ..., p_n \rangle$  be a polygonal curve.

For 
$$1 \le i \le j \le m$$
,  $\delta(p_i p_j) \le 2 \cdot \delta(p_l p_m)$ .

#### Proof:

Fix matching that realises  $\delta(p_lp_m)$ .

Set 
$$\lambda = \delta(p_l p_m)$$
.

- 1.  $\delta(\pi(p_ip_i),(q_iq_i)) \leq \lambda$
- 2.  $\delta((q_iq_i),(p_ip_i)) \leq \lambda$

$$\delta(\pi(p_ip_j),p_ip_j) \le \delta(\pi(p_ip_j),(q_iq_j)) + \delta((q_iq_j),(p_ip_j)) \le 2\lambda$$



Theorem:  $\delta(P,P') \le \epsilon$  and  $|P'| \le P_{opt}(\epsilon/2)$ 

Proof:

□ δ(P,P') ≤ ε follows by construction.





Theorem:  $|P'| \le P_{opt}(\epsilon/2)$ 

#### **Proof:**

 $Q = \langle p_1 = p_{j_1}, \dots, p_{j_l} = p_n \rangle \text{ - optimal ($\epsilon$/2)-simplification}$ 

$$P' = \langle p_1 = p_{i_1}, \dots, p_{i_k} = p_n \rangle$$

Prove (by induction) that  $i_m \ge j_m$ ,  $\forall m \ge 1$ .



Theorem:  $|P'| \le P_{opt}(\epsilon/2)$ 

#### **Proof:**

 $Q = \langle p_1 \!\!= p_{j_1}, \ldots, \, p_{j_l} \!\!= \!\! p_n \rangle$  - optimal (ε/2)-simplification

$$P' = \langle p_1 = p_{i_1}, \dots, p_{i_k} = p_n \rangle$$

Prove (by induction) that  $i_m \ge j_m$ ,  $\forall m \ge 1$ .

■ Assume  $i_{m-1} \ge j_{m-1}$  and let  $i' = i_m + 1$ .



Theorem:  $|P'| \le P_{opt}(\epsilon/2)$ 

#### Proof:

 $Q = \langle p_1 = p_{j_1}, ..., p_{j_l} = p_n \rangle$  - optimal ( $\epsilon/2$ )-simplification

$$P' = \langle p_1 = p_{i_1}, \dots, p_{i_k} = p_n \rangle$$

Prove (by induction) that  $i_m \ge j_m$ ,  $\forall m \ge 1$ .

- Assume  $i_{m-1} \ge j_{m-1}$  and let  $i' = i_m + 1$ .
- By construction we have:

$$\delta(p_{i_{m-1}}p_{i'}) > \epsilon \text{ and } \delta(p_{i_{m-1}}p_{i'-1}) \le \epsilon$$

If  $i' > j_m$  then we are done!



Theorem:  $|P'| \le P_{opt}(\epsilon/2)$ 

#### Proof:

 $Q = \langle p_1 \!\!= p_{j_1}, \ldots, \, p_{j_l} \!\!= \!\! p_n \rangle$  - optimal (ε/2)-simplification

$$P' = \langle p_1 = p_{i_1}, \dots, p_{i_k} = p_n \rangle$$

Prove (by induction) that  $i_m \ge j_m$ ,  $\forall m \ge 1$ .

- Assume  $i_{m-1} \ge j_{m-1}$  and let  $i' = i_m + 1$ .
- By construction we have:

$$\delta(p_{i_{m-1}}p_{i'}) > \epsilon \text{ and } \delta(p_{i_{m-1}}p_{i'-1}) \le \epsilon$$

Assume the opposite i.e.  $i' \le j_m$ 



Theorem:  $|P'| \le P_{opt}(\epsilon/2)$ 

#### **Proof:**

 $Q = \langle p_1 \! = p_{j_1}, \ldots, \, p_{j_l} \! = \! p_n \rangle$  - optimal (ε/2)-simplification

$$P' = \langle p_1 = p_{i_1}, \dots, p_{i_k} = p_n \rangle$$

Prove (by induction) that  $i_m \ge j_m$ ,  $\forall m \ge 1$ .

- Assume  $i_{m-1} \ge j_{m-1}$  and let  $i' = i_m + 1$ .
- By construction we have:

$$\delta(p_{i_{m-1}}p_{i'}) > \epsilon \ \text{ and } \ \delta(p_{i_{m-1}}p_{i'-1}) \le \epsilon$$

Assume the opposite i.e.  $i' \le j_m$ 

Q is an  $(\epsilon/2)$ -simplification  $\Rightarrow \delta(p_{j_{m-1}}p_{j_m}) \le \epsilon/2$ 





Theorem:  $|P'| \le P_{opt}(\epsilon/2)$ 

#### **Proof:**

 $Q = \langle p_1 \!\!= p_{j_1}, \ldots, \, p_{j_l} \!\!= \!\! p_n \rangle$  - optimal (ε/2)-simplification

$$P' = \langle p_1 = p_{i_1}, \dots, p_{i_k} = p_n \rangle$$

### Assume the opposite i.e. $i' \le j_m$

Q is an ( $\epsilon$ /2)-simplification  $\Rightarrow \delta(p_{j_{m-1}}p_{j_m}) \le \epsilon$ /2



Theorem:  $|P'| \le P_{opt}(\epsilon/2)$ 

#### **Proof:**

 $Q = \langle p_1 \!\!= p_{j_1}, \ldots, \, p_{j_l} \!\!= \!\! p_n \rangle$  - optimal (ε/2)-simplification

$$P' = \langle p_1 = p_{i_1}, \dots, p_{i_k} = p_n \rangle$$

### Assume the opposite i.e. $i' \le j_m$

Q is an  $(\epsilon/2)$ -simplification  $\Rightarrow \delta(p_{j_{m-1}}p_{j_m}) \le \epsilon/2$ 

### According to Lemma 1:

$$\delta(p_{i_{m-1}}p_{i'}) \leq 2 \ \delta(p_{j_{m-1}}p_{j_m}) \leq \epsilon$$



Theorem:  $|P'| \le P_{opt}(\epsilon/2)$ 

#### **Proof:**

 $Q = \langle p_1 \! = p_{j_1}, \ldots, \, p_{j_l} \! = \! p_n \rangle$  - optimal (ε/2)-simplification

$$P' = \langle p_1 = p_{i_1}, \dots, p_{i_k} = p_n \rangle$$

### Assume the opposite i.e. $i' \le j_m$

Q is an ( $\epsilon$ /2)-simplification  $\Rightarrow \delta(p_{j_{m-1}}p_{j_m}) \le \epsilon$ /2

### According to Lemma 1:

$$\delta(p_{i_{m-1}}p_{i'}) \leq 2 \ \delta(p_{j_{m-1}}p_{j_m}) \leq \epsilon$$

This is a contradiction since  $\delta(p_{j_{m-1}}p_{j_m}) > \epsilon$  by construct on.

 $\Rightarrow$  i' > j<sub>m</sub> and we are done!



### Summary - Agarwal et al.

#### Theorem:

Given a polygonal curve P in R<sup>d</sup> and a parameter  $\varepsilon \ge 0$ , an  $\varepsilon$ -simplification of P of size at most P<sub>opt</sub>( $\varepsilon$ /2) can be constructed in O(n log n) time and O(n) space.



### Summary

#### Ramer–Douglas–Peucker 1973

Used very often in practice. Easy to implement and fast in practice. Hausdorff error

### Simple Simplification

- $\bigcirc$  O(n) time simple and fast
- Several nice properties. Fréchet error

#### Imai-Iri 1988

Gives an optimal solution but slow. Hausdorff/ Fréchet error

#### Agarwal, Har-Peled, Mustafa and Wang 2005

□ Fast and easy to implement. Gives a worst-case performance guarantee. Fréchet error



### More Algorithms

#### Simplifying trajectories

- Time has to be incorporated, possibly as third dimension
- Gudmundsson et al. 2009
- based on Ramer–Douglas–Peucker
- Exercise 3: Imai-Iri

### Streaming setting

Abam, de Berg, Hachenberger, Zarei 2007



#### Non-vertex constrained

Guibas, Hershberger, Mitchell, Snoeyink, 1993

... and more, e.g. topological or geometric constraints



# Where-at (t)





### References

- A. Driemel, S. Har-Peled and C. Wenk. Approximating the Fréchet Distance for Realistic Curves in Near Linear Time. Discrete & Computational Geometry, 2012.
- W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of line segments. In *Proceedings of the 3rd International Symposium on Algorithms and Computation*, 1992.
- D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. *The Canadian Cartographer*, 1973.
- P. K. Agarwal, S. Har-Peled, N. Mustafa, and Y. Wang. Near-linear time approximation algorithms for curve simplication in two and three dimensions. *Algorithmica*, 2005.

