RGPV	(DIPL	.OMA V	VING) BHOPAL	Ol	BE CURRICULUM FOR THE COURSE	F	ORMAT-	3	Sheet No. 1/3
Branch			COMPUTER	SCIENC	E AND ENGINEERING	Sem	ester		Third
Course	Code		304	Course Name	DATA STRUCTURE AND ALC	ORIT	ТНМ		
							Teachin Hrs	ng	Marks
Cours	se Outo	come 1			STRUCTURES, POINTERS & DYNAMIC MEMORY EN PROBLEM SITUATION.		30		34
Learni	ing Ou	tcome 1	EXPLAIN DATA T AND DYNAMIC M	YPES & A EMORY.	BSTRACT DATA TYPES (ADT), POINTERS, STRUCTUF	RE	14		14
C	Content	ts			Data Types and Data-Structure. cture: Linear, Non-Linear, Primitive, Non-Primitive, etc				
				-	aring and initializing pointers, Accessing variables using Array of Pointers, Row-major & Col-major implementat	•			
			Structure: Defini Array of Structure,		laration, Initializing Structure, Accessing Structure electronic Structure.	ements	?		
			Dynamic Memory	Allocati	on/Deallocation: malloc(), calloc(), free(), realloc().				

Learning Outcome 2	INTERPRET STRUCTURE & POINTERS, DYNAMIC MEMORY ALLOCATION AND DE- ALLOCATION.	08	10
Contents	Pointers and constant pointer self referential structures, Dynamic structures, Comparative Study of Union & Structure.		
Learning Outcome 3	USE STRUCTURE & POINTERS FOR A GIVEN PROBLEM SITUATION.	08	10
Contents	Invoking functions by passing the pointers, Declaration and use of structure.		
Method of Assessment	LO - 1 Paper pen test (End semester Exam) LO - 2 Paper pen test (Progressive test - I) LO - 3 Lab Assessment (External)		
Course Outcome 2	USE SEARCHING/SORTING & HASHING TECHNIQUES TO SOLVE REAL WORLD PROBLEMS.	34	34
Learning Outcome 1	EXPLAIN COMPLEXITY ANALYSIS AND VARIOUS SEARCHING, SORTING & HASHING TECHNIQUES.	12	14
Contents	Basics of algorithm, Analysis of an Algorithm, Asymptotic Notation: O-Notation, Ω -Notation and θ -Notation.		
	Searching Techniques: Linear search and Binary search.		

	Sorting Techniques: Insertion sort, Selection sort, Bubble sort, Merge sort, Radix sort. Hashing: Hash Table & Hash Function, different hashing techniques and linear probing collision technique. Different operations in hashing- Search, Insert & Delete.		
Learning Outcome 2	WRITE PROGRAM FOR LINEAR SEARCH & BINARY SEARCH TECHNIQUES.	08	10
Contents	Algorithm of linear search and binary search technique.		
Learning Outcome 3	WRITE PROGRAM FOR SORTING TECHNIQUES.	14	10
Contents	Algorithm of insertion sort and bubble sort.		
Method of Assessment	LO - 1 Paper pen test (End semester Exam) LO - 2 Lab Assessment (External) LO - 3 Lab Assessment (External)		
Course Outcome 3	APPLY APPROPRIATE LINEAR DATA STRUCTURE IN PROBLEM SOLVING.	40	48
Learning Outcome 1	EXPLAIN THE BASIC STRUCTURE OF LINKED LIST WITH ITS VARIOUS OPERATIONS.	10	14
Contents	Terminologies: Node, Data field, Link field, Null pointer, External pointer, Empty list. Memory Representation of Linked List and Comparison between Linked List & Array.		

	Operation(s) on Linked List: Create, Insert, Delete, Traverse, Search, and Display.		
	Types of Linked List: Singly Linked List, Doubly Linked List, Circular Linked List, Circular Doubly Linked List.		
	Polynomial Representation, Addition and multiplication of Two Polynomials.		
Learning Outcome 2	ILLUSTRATE STACK AND QUEUE DATA STRUCTURE.	08	10
Contents	Stack: Introduction to Stack, Stack Operation- PUSH, POP, Stack as an Array, Stack as a Linked List(Linked stack).		
	Queue: Introduction to Queue, Queue Operation- Insertion & Deletion, Queue as an Array.		
Learning Outcome 3	APPLY LINEAR DATA STRUCTURE TO SOLVE STACK'S & QUEUE'S PROBLEMS.	10	14
Contents	Application of Stack:		
	Reversal of given line, Polish Notations, Infix to Postfix Conversion, Evaluation of Postfix Notation.		
	Types of Queue & Application: Simple Queue, Circular Queue & Double Ended Queue, Application of Queue.		
Learning Outcome 4	USE ARRAY AND LINKED LIST FOR STACK'S AND QUEUE'S FUNCTIONS.	12	10
Contents	Perform various operations on stack like insertion (PUSH) & deletion (POP). Perform various operations on queue like insertion and deletion.		
			1

Method of Assessment	LO - 1 Paper pen test (End Semester Exam) LO - 2 Paper pen test (Progressive test - II) LO - 3 Paper pen test (End Semester Exam) LO - 4 Lab Assessment (Internal)		
Course Outcome 4	ILLUSTRATE NON-LINEAR DATA STRUCTURE.	31	34
Learning Outcome 1	DIFFERENTIATE VARIOUS TYPES OF BINARY TREE.	13	14
Contents	Terminologies: Root node, Terminal node, Non-Terminal node, Degree of a node, Degree of a tree, Siblings, Depth, Level, Path, Sub tree, Forest.		
	Types of Tree: Binary Tree, Complete Binary Tree, Strictly Binary Tree, Expression Tree, Binary Search Tree, AVL Tree, Threaded Binary Tree.		
	Tree Traversal: In-order, Pre-order and Post-order.		
Learning Outcome 2	EXPLAIN MINIMUM SPANNING TREE AND DIFFERENT TYPES OF GRAPH WITH REPRESENTATION.	10	10
Contents	Graph: Introduction to Graph, Graph Vs Tree, Vertex, Edge, Adjacent Vertex, Connected Graph, Simple Graph, Weighted Graph, Complete Graph And Directed Graph.		
	Graph Traversal: Breadth First Search, Depth First Search.		
	Graph Representation: Adjacent Matrix, Adjacency List Representation.		
	Minimum Spanning Tree: Kruskal's & Prim's Techniques.		
Learning Outcome 3	WRITE AN ALGORITHM FOR TREE & GRAPH TRAVERSAL.	8	10

Contents	Algorithm of in-order, preorder and post order traversal of tree.		
	Algorithm to traverse a graph using Breadth First Search and Depth First Search.		
Method of Assessment	LO - 1 Paper pen test (End Semester Exam) LO - 2 Paper pen test/Assignment: Term Work (Internal) LO - 3 Lab Assessment (Internal)		