Monoscopic analysis of LST1 data with ctapipe/cta-lstchain

Mabel Bernardos Martín

Overview

Datasets:

- Simtelarray files from K. Bernlohr webpage:
 - Pointlike gammas.
 - Protons

Analysis chain:

- Data reduction with ctapipe.
- Reconstruction with Scikit learn Random Forests.

Results:

- Gamma/Hadron separation
- Energy and direction reconstruction.

Future work:

- Diffuse gammas
- Sensitivity curves

Conclusions

Datasets:

The CTA MC repository at the MPIK Heidelberg

https://www.mpi-hd.mpg.de/personalhomes/bernlohr/cta-raw/

	Gammas	Protons
Alt tel.(°)	0	0
Az tel(°)	70	70
Alt(°)	0	0±10(cone)
Az	70	70±30(cone)
Index	-2	-2.7

Analysis chain: cta-Istchain

GitHub repository: https://github.com/cta-observatory/cta-Istchain
For data storage: https://github.com/cta-observatory/cta-Istchain-extra

- Data reduction: LST1_Hillas.py,
 - Based on ctapipe: Cleaning at two levels, peak extraction, hillas parameters calculation.
 - Storage in HD5F files: MC data, Hillas parameters, time gradient.
 - Posibility of saving pixels information(images) in "fits" format for testing showers plotted in the camera (PlotDisp.py)
- Energy reconstruction: RFEnergy.py
 - Random Forest Regressor from Scikit-learn.
- Source position reconstruction (Disp method): RFDisp.py
 - Random Forest Regressor from Scikit-learn.
- Gamma/Hadron separation: RFGHseparation.py
 - First RF Regressor for Energy and Direction reconstruction.
 - The result is used in a Random Forest Classifier from Scikit-learn for G/H separation.
- Auxiliar tools: Disp.py
 - Convert source direction coordinates from AltAz to camera coordinates.
 - Calculate "Disp" distance from source position.
 - Calculate source position from "Disp" distance.

Data reduction: ctapipe

CTA Experimental Pipeline Framework https://cta-observatory.github.io/ctapipe/ Preselection of events. Two level cleaning \$ python LST1_Hillas.py Level 1: 6 phe. Only LST1 events Level 2: 3 phe. Hillas pars. calculation Signal extraction Using Using Pedestal substraction "hillas_parameters()" "LocalPeakIntegrator" function. class. Store pixel information? res) Store data: .fits Store data: .hdf5 or fits - MC data, Hillas pars. - MC data, Hillas pars. and time gradient. and time gradient. - Image.

Scikit-learn Machine Learning in Python Built on NumPy, SciPy and matplotlib

Cuts in Data:

Intensity > 60 phe.

r < 0.8 Camera radius.

For Energy and Direction reconstruction:

Random Forest Regressor

Features for training:

Width, Length, Intensity, Width/Length, Psi, Phi, Time gradient.

For Gamma/Hadron separation:

Random Forest Classifier

Features for training:

Width, Length, Intensity, Width/Length, Psi, Phi, Time gradient + \mathbf{E}_{rec} , \mathbf{Disp}_{rec}

Features

Results: Gamma/Hadron separation

Cutting low energies for better because of limitations of monoscopic analysis.

Results: Energy reconstruction, $E_{rec} > 0.500 \text{ TeV}$

Results: Direction reconstruction, $E_{rec} > 0.500$ TeV

Future work

- Use CTA Grid to run scripts in a (much) higher number of events.
- Perform the same analysis for diffuse gammas.
- Plot sensitivity curves
- Try other reconstruction methods?
- Merge cta-Istchain in ctapipe.

Conclusions

- We have started the development of a chain for the analysis of monoscopic data for LST1.
- The results for point sources are promising, for enegies over 500 GeV, with only a few thousands of events:
 - We need to retrieve more events for training!
- Still a work in progress: We are starting to use grid resources, to access easily to more data and be able to build sensitivity curves, add spectral weights to the data, try diffuse sources...
- See you in the LST1 analysis bootcamp in Padova!

Conclusions

- We have started the development of a chain for the analysis of monoscopic data for LST1.
- The results for point sources are promising, for enegies over 500 GeV, with only a few thousands of events:
 - We need to retrieve more events for training!
- Still a work in progress: We are starting to use grid resources, to access easily to more data and be able to build sensitivity curves, add spectral weights to the data, try diffuse sources...
- See you in the LST1 analysis bootcamp in Padova!

 Chank

 The Company of the LST1 analysis bootcamp in Padova!