Khnum: быстрая open-source программа для расчета метаболических потоков с использованием 13 С-углерода

Стешин Семен Сергеевич

МГУ ВМК, кафедра математической кибернетики, 2020

Научный руководитель: к.ф.м.н., доцент Шуплецов М. С.

Метаболический поток — внутриклеточная химическая реакция

Mетаболический поток — внутриклеточная химическая реакция 13 C-Metabolic Flux Analysis (13 C-MFA) — метод измерения метаболических потоков

Анализ Метаболических Потоков

Анализ Метаболических Потоков

$$f(v) = \bigoplus_{\text{calc}}$$

$$arg_v f(v) \approx \bigoplus_{mea}$$

- lacksquare min $_{\mathbf{v} \in U} (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T \times \mathbf{\Sigma}^{-1} \times (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T$
- Линейное программирование
- Метод оптимизации
- Конструирование графов
- Создание СЛАУ
- Решение СЛАУ
- Статистика
- Кластеризация результатов

- lacksquare min $_{\mathbf{v} \in U} (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T \times \mathbf{\Sigma}^{-1} \times (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T$
- Линейное программирование
- Метод оптимизации
- Конструирование графов
- Создание СЛАУ
- Решение СЛАУ
- Статистика
- Кластеризация результатов

- lacksquare min $_{\mathbf{v} \in U} (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T \times \mathbf{\Sigma}^{-1} \times (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T$
- Линейное программирование
- Метод оптимизации
- Конструирование графов
- Создание СЛАУ
- Решение СЛАУ
- Статистика
- Кластеризация результатов

- lacksquare min $_{\mathbf{v} \in U} (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T \times \mathbf{\Sigma}^{-1} \times (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T$
- Линейное программирование
- Метод оптимизации
- Конструирование графов
- Создание СЛАУ
- Решение СЛАУ
- Статистика
- Кластеризация результатов

- lacksquare min $_{\mathbf{v} \in U} (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T \times \mathbf{\Sigma}^{-1} \times (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T$
- Линейное программирование
- Метод оптимизации
- Конструирование графов
- Создание СЛАУ
- Решение СЛАУ
- Статистика
- Кластеризация результатов

- $extbf{min}_{\mathbf{v} \in U} (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T \times \mathbf{\Sigma}^{-1} \times (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))$
- Линейное программирование
- Метод оптимизации
- Конструирование графов
- Создание СЛАУ
- Решение СЛАУ
- Статистика
- Кластеризация результатов

- $extbf{min}_{\mathbf{v} \in U} (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T \times \mathbf{\Sigma}^{-1} \times (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))$
- Линейное программирование
- Метод оптимизации
- Конструирование графов
- Создание СЛАУ
- Решение СЛАУ
- Статистика
- Кластеризация результатов

- $= \min_{\mathbf{v} \in U} (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))^T \times \mathbf{\Sigma}^{-1} \times (\mathbf{x}_{mea} \mathbf{x}_{calc}(\mathbf{v}))$
- Линейное программирование
- Метод оптимизации
- Конструирование графов
- Создание СЛАУ
- Решение СЛАУ
- Статистика
- Кластеризация результатов

Программы для 13 C-MFA расчетов

- 13CFLUX2 🥹
- Metran ◆
- OpenFlux(2) ◆
- FluxPyt
- mfapy
- Sysmetab sales
- baMFA
- iso2flux
- 130211ux
- Flux-P ◆
- WUFlux ◆
- OpenMebius
- influx s 🔮

Постановка задачи

- Написать программу для расчета ¹³С-МFA на языке C++
- Провести тестирование, сравнить скорость работы с существующими аналогами

Программа Khnum

Используемые библиотеки:

- Eigen
- Alglib
- glpk
- Catch2

https://github.com/SteshinSS/khnum

Метаболическая модель из 169 реакций OpenFlux — 35 минут Khnum, один поток — 22 секунды Khnum, шестнадцать потоков — 4 секунды

Определение М-матриц

Theorem (Ostrowsky, 1937)

Квадратная матрица $\mathbf{A} \in \mathbb{R}^{n \times n}$ называется M-матрицей, если:

- **1** Ее диагональные элементы больше или равны нулю $a_{ii} > 0$, i = i
- Ее внедиагональные элементы меньше или равны нулю $a_{ii} \leq 0$, $i \neq j$
- **3** Матрицу **A** можно представить в виде: A = sI B, где s > 0, B > 0, $s > \rho(\mathbf{B})$, где $\rho(\mathbf{B})$ — спектральный радиус \mathbf{B}

Критерий М-матрицы

Theorem (Fiedler, Ptak, 1962)

Квадратная матрица является М-матрицей тогда и только тогда, когда она невырожденная и все вещественные собственные значения ее главных миноров больше или равны нулю.

Теорема кругов Гершгорина

Анализ Метаболических Потоков

Theorem (Гершгорин, 1931)

Пусть $\mathbf{A} \in \mathbb{C}^{n \times n}$ — комплексная матрица. Пусть $R_i = \sum_{i \neq i} |a_{ij}|$ — сумма модулей внедиагональных элементов і строки. Кругом Гершгорина назовем замкнутый круг $D(a_{ii}, R_i)$ с центром в a_{ii} и радиусом R_i . Тогда каждое собственное значение матрицы А лежит хотя бы в одном круге Гершгорина.

Theorem

Матрица коэффициентов MFA-систем, взятая со знаком минус, является М-матрицей.

ILU-разложение

Анализ Метаболических Потоков

Theorem (Meijerink, van der Vorst, 1977)

Пусть $\mathbf{A} \in \mathbb{R}^{n \times n}$ — разреженная матрица. Определим для нее разреженную структуру $S = \{(i,j)|a_{ii} \neq 0\} \cup \{(i,i)\}$ состоящую из всех координат ненулевых элементов и всех диагональных координат. Назовем ILU-разложением разложение вида $\mathbf{A} = \mathbf{L}\mathbf{U} - \mathbf{R}$. где

- $\mathbf{L} \in \mathbb{R}^{n \times n}$ нижнетреугольная матрица
- $lue{\mathbf{U}} \in \mathbb{R}^{n imes n}$ верхнетреугольная матрица
- **■** L, U равны нулю вне разреженной структуры: $L_{ii} = U_{ii} = 0 \forall (i, j) \notin S$
- $\mathbf{R} \in \mathbb{R}^{n \times n}$ равна нулю в разреженной структуре: $\mathbf{R}_{ii} = 0 \forall (i,j) \in S$

М-матрица 253 × 253

Анализ Метаболических Потоков

- BiCGSTAB + ILU
- BiCGSTAB + Diag
- LU (Partial Pivoting)
- SuperLU + COLAMD

Таблица: Сравнение методов. Время в микросекундах

BiCGSTAB + ILU	BiCGSTAB + Diag	DenseLU	SparseLU
125	986	645	174

Продуктивная матрица

Анализ Метаболических Потоков

Theorem (Леонтьев, 1928)

Квадратная вещественная матрица $\mathbf{A} \in \mathbb{R}^{n \times n}$ называется продуктивной, если

- $a_{ii} \leq 0, \forall i \neq j$
- $\exists x > 0 : Ax > 0$

Сравнение моделей

- Есть несколько отраслей
- Они используют ресурсы друг друга, чтобы производить ресурсы
- Экономика сильна

- Есть несколько химических реакций
- Они используют метаболиты друг друга, чтобы производить метаболиты
- Клетка жива

Полученные результаты

- Написана эффективная открытая программа Кhnum для проведения ¹³C-MFA расчетов.
- Проведено сравнение с аналогами.
- Доказана принадлежность матрицы коэффициентов СЛАУ к классу М-матриц. Это позволило использовать специальный предобуславливатель на основе ILU-разложения.
- Проведено сравнение нескольких численных методов для СЛАУ Показано, что численные методы с ILU-предобуславливателем работают быстрее всего.

Спасибо за внимание

