

Lab Final (Fall'23) Integral Calculus & Differential Equations (MAT120)

Time: 1 hour 20 minutes Total: 20 marks

Answer any 4 questions.

For all the questions:

p =Second digit of your ID

q =Last digit of your ID

1. (a) Find the First and second derivative of the following functions:

 $f(x) = p^x e^{\cos^{-1}(x^p)}$ and $g(x) = \frac{\ln\{q + \tan^p(x)\}}{\cos(x)p^{\sin(x)}}$

(3)

(2)

(1)

(2)

- (b) See if the function $px^3 2x^2 + (2+q)x + 4$ has any extremum.
- 2. If $y = \sin(px)$, then find
 - (a) the expression: $f = y_2 + 3y_1 qy$; where, y_1 and y_2 are the $1^{st} \& 2^{nd}$ derivative of y respectively. (2)
 - (b) all the extrema of the expression f in the interval $x \in [-3\pi/2, 5\pi/2]$. Also plot f and f' in the same graph for given range of x.
- 3. (a) Find the factorial of the number 13.7.
 - (b) Integrate using sympy: (2)

 $\int_0^{\pi/2} \frac{dx}{p^2 \cos^2 x + (1+q)^2 \sin^2 x}$

(c) Integrate using any numerical method:

 $\int_0^\infty \left[2\cos^2(px^2) - 1\right] dx$

4. Consider a circuit with resistor and inductor (RL) in series. The voltage drop in resistor and inductor is given by $V_R = IR$ and $V_L = L\frac{dI}{dt}$ respectively. If the battery voltage is V(t), we then have from Kirchhoff's voltage rule: $V_L + V_R = V(t)$. Or,

$$L\frac{dI}{dt} + RI = V(t)$$

Solve the equation to find the current I(t) with the initial condition: I(0) = 0

(a) for
$$V(t) = 5p$$
 and

(b) for
$$V(t) = 5p\sin(2t)$$

(1)

- (c) Also plot the current vs. time graph for the first 50 seconds. Use L=p and $R=(4+q)^2$.
- 5. Motion of a small ball bearing of mass m dropped in a viscous oil can be modeled by the equation:

$$m\frac{d^2y}{dt^2} + r\frac{dy}{dx} - mg = 0$$
 where $g = 9.8m/s^2$

- (a) Solve the equation with initial condition: y(0) = 0, and $\dot{y}(0) = 0$. (2)
- (b) Plot depth y and velocity $v = \frac{dy}{dt}$ in the same graph. Use m = p and r = p + q. (1+1)
- (c) Observing the velocity curve, comment on what happens to velocity as t becomes very large. (1)
- 6. A freely falling ball with mass m is under linear drag (drag force, $F_D = \lambda v$) and quadratic drag ($F_D = \lambda v^2$). Equation of motion:

Linear Drag:
$$m\frac{dv}{dt} = mg - \lambda v$$

Quadratic Drag $m\frac{dv}{dt} = mg - \lambda v^2$

- (a) Applying Euler's method, solve both equations and plot v(t) for the first three seconds with the initial condition: v(0) = 0. Take m = 1, $\lambda = 0.5$, and g = 9.8.
- (b) Identify which drag force is more likely to cause air resistance by looking at the two graphs. (1)

NB: Copied code will receive half marks.