Calculus (MS0262)

Seminar Sheet 18

- (1) Find partial derivatives of the following functions:
 - (a) $z = \frac{x}{\sqrt{x^2 + y^2}}$ (b) $z = x^y$ (c) $z = e^{\sin \frac{y}{x}}$ (d) $u = (xy)^z$
- (2) Find $\frac{\partial z}{\partial x}$ and $\frac{\mathrm{d}z}{\mathrm{d}x}$ if $z = \arctan \frac{y}{x}$ and $y = x^2$.
- (3) Show that the function $\omega = f(u, v)$, where u = x + at and v = y + bt, satisfies the equation $\frac{\partial \omega}{\partial t} = a \frac{\partial \omega}{\partial x} + b \frac{\partial \omega}{\partial y}.$
- (4) Show that the function $z = y\phi(x^2 y^2)$ satisfies the equation

$$\frac{1}{x}\frac{\partial z}{\partial x} + \frac{1}{y}\frac{\partial z}{\partial y} = \frac{z}{y^2}.$$

(5) Show that the function $z = e^y \phi \left(y e^{\frac{x^2}{2y^2}} \right)$ satisfies the equation

$$(x^2 - y^2)\frac{\partial z}{\partial x} + xy\frac{\partial z}{\partial y} = xyz.$$

Answers

(a)
$$z'_x = \frac{y^2}{(x^2 + y^2)^{3/2}}, \quad z'_y = -\frac{xy}{(x^2 + y^2)^{3/2}}$$

(b)
$$z'_x = yx^{y-1}, \quad z'_y = x^y \ln x$$

(c)
$$z'_x = -\frac{y}{x^2} e^{\sin \frac{y}{x}} \cos \frac{y}{x}, \quad z'_y = \frac{1}{x} e^{\sin \frac{y}{x}} \cos \frac{y}{x}$$

(d)
$$u'_x = yz(xy)^{z-1}$$
, $u'_y = xz(xy)^{z-1}$, $u'_z = (xy)^z \ln(xy)$

$$\frac{\partial z}{\partial x} = -\frac{y}{x^2 + y^2}, \quad \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{1 + x^2}$$