基 礎 徹 底 演 習 基本問題プリント

微分法・積分法

119 不定積分

曲線 y=f(x) は点 (1,-2) を通り、曲線上の点 (x,f(x)) における接線の傾きが $3x^2-4x+5$ であるとき

$$f(x) = x^3 -$$
 \overrightarrow{r} $x^2 +$ \overrightarrow{r} $x -$ \overrightarrow{r}

である。

120 定積分の計算(1)

次の定積分の計算をすると

(i)
$$\int_{-2}^{2} (3x^2 + 6x - 1) dx = \boxed{\text{P1}}$$

(ii)
$$\int_{-1}^{3} (3x^2 + 4x - 3) dx - 2 \int_{-1}^{3} (2x - 2) dx =$$
 ウェーである。

121 定積分の計算(2)

$$\int_0^3 |x-2| dx = \frac{\overline{P}}{\boxed{1}} \quad \text{cb.s.}$$

122 定積分で表された関数(1)

関数
$$f(x)$$
 は、等式 $f(x) = 3x^2 + 6x - \int_0^1 f(t) dt$ を満たす。このとき

である。

年 組 番 名前

123 定積分で表された関数(2)

関数 f(x) は、 $\int_a^x f(t) dt = 2x^2 - (2a-1)x - 3$ を満たす。 ただし、 a は定数とする。

このとき、 $a = \overline{P}$ 、 $f(x) = \overline{1}x - \overline{0}$ である。

124 面積

- (1) 放物線 $y=-x^2-2x+4$ と x 軸, 2 直線 x=-2, x=1 とで囲まれた図形の面積は $\red{77}$ である。
- (2) 放物線 $y=x^2-1$ と直線 y=-x+1 とで囲まれた図形の面積は $\frac{\dot{\tau}}{\tau}$ である。
- (3) 2つの放物線 $y=x^2+2x-3$ と $y=-x^2+4x+1$ とで囲まれた図形の面積は **オ** である。
- (4) 放物線 $y = (x-1)^2$ $(-1 \le x \le 1)$ と 3 直線 y = x+1, x = -1, x = 1 とで囲まれた図形の面積は 力 である。