Class 07: Machine Learning 1

Jason (A15796973)

#Clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans()

Let's try it on some made up data where we know what the answer should be.

```
x = rnorm(10000, mean=3)
hist(x)
```

Histogram of x

60 points

```
tmp = c(rnorm(30, mean=3), rnorm(30, -3))
x = cbind(x=tmp, y=rev(tmp))
head(x)
```

```
x y
[1,] 2.728958 -2.892283
[2,] 4.470844 -4.441721
[3,] 2.708672 -1.166188
[4,] 2.030151 -3.955022
[5,] 3.805286 -3.024326
[6,] 2.896056 -2.484989
```

We can pass this to the base R plot() function for a quick plot.

```
plot(x)
```



```
k = kmeans(x, centers=2, nstart = 20)
k
```

K-means clustering with 2 clusters of sizes 30, 30

```
Cluster means:
       X
1 -2.947431 3.197872
2 3.197872 -2.947431
Clustering vector:
 Within cluster sum of squares by cluster:
[1] 51.48822 51.48822
 (between_SS / total_SS = 91.7 %)
Available components:
[1] "cluster"
              "centers"
                          "totss"
                                      "withinss"
                                                 "tot.withinss"
[6] "betweenss"
              "size"
                          "iter"
                                      "ifault"
   Q1. How many points are in each cluster?
  k$size
[1] 30 30
   Q2. Cluster membership?
 k$cluster
```

- - Q3. Cluster centers?

k\$centers

x y 1 -2.947431 3.197872 2 3.197872 -2.947431

Q4. Plot my clustering results

Q5. Cluster the data again to into 4 groups?

```
k4 = kmeans(x, centers=4, nstart=20)
plot(x, col = k4$cluster, pch=16)
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups (k, or centers) you want.

Hierarchical clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function

```
hc = hclust( dist(x) )
hc
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x) hclust (*, "complete")

To find the clusters (cluster membership vector) from a hclust() result we can "cut" the tree at a certain height that we like.

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps = cutree(hc, h=8)

table(grps)

grps
1 2
30 30
```

Q6. Plot our hclust results.

```
plot(x, col=grps, pch=16)
```


Principal Component Analysis

PCA of UK Food Data

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494

14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
## dim() can be used to answer the question
dim(x)
```

[1] 17 5

Checking Data

head(x)

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

Fixing columns

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Rechecking columns and rows

```
dim(x)
```

[1] 17 4

Noted possible alternative to fixing the column problem:

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
dim(x)
```

[1] 17 4

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I prefer using the read.csv(url, row.names=1) approach as when you run the rownames(x) <x[,1] followed by x <-x[,-1] method then it will start removing the columns we want to keep. This also makes the read.csv(url, row.names=1) method more robust.

Spotting major differences and trends

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3: Changing what optional argument in the above barplot() function results in the following plot?

```
##Answer
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

```
pairs(x, col=rainbow(10), pch=16)
```


Answer: When a point lies on the diagonal for the plot, it means that variable is similar in the corresponding countries.

Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

Northern Ireland consumes a lot more fresh potatoes and a lot less fresh fruit than other countries.

Principal Component Analysis

PCA can help use make sense of these types of datasets. Let's see how it works.

The main function in "base" R is called prcomp(). In this case we want to first take the transpose of our input x so the columns are the food types and the countries are the rows.

	Cheese	Carcass_meat	Other_meat	Fish	Fats_and_oils	Sugars
England	105	245	685	147	193	156
Wales	103	227	803	160	235	175
Scotland	103	242	750	122	184	147
N.Ireland	66	267	586	93	209	139

	Fresh_potatoes	${\sf Fresh_Veg}$	Other_Veg	Processed	d_potatoes
England	720	253	488	3	198
Wales	874	265	570)	203
Scotland	566	171	418	3	220
N.Ireland	1033	143	355	5	187
	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks
England	360	1102	2 1472	57	1374
Wales	365	1137	7 1582	73	1256
Scotland	337	957	7 1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drink	s Confectio	onery		
England	3	75	54		
Wales	4	75	64		
Scotland	4	58	62		
N.Ireland	1	35	41		

```
pca = prcomp( t(x) )
summary(pca)
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

```
plot( pca$x[,1], pca$x[,2], col=c("orange", "red", "blue", "darkgreen"),pch=16)
```


 ${\bf Q7}$. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x), col=c("orange", "red", "blue", "darkgreen"))
```



```
##Variance Stuff
  #Finding variance
  v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )</pre>
[1] 67 29 4 0
  #Alternatively, grab the variance from the second row of this
  z <- summary(pca)</pre>
  z$importance
                              PC1
                                        PC2
                                                 PC3
                                                               PC4
Standard deviation
                       324.15019 212.74780 73.87622 3.175833e-14
Proportion of Variance
                         0.67444
                                    0.29052 0.03503 0.000000e+00
                                    0.96497 1.00000 1.000000e+00
Cumulative Proportion
                         0.67444
  #Summarizing by using a plot of variances
  barplot(v, xlab="Principal Component", ylab="Percent Variation")
```


Principal Component

Digging Deeper

The "loadings" tell use how much the original variables contribute to the new variables.

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominently and what does PC2 maniply tell us about?

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```


The two main categories are fresh potatoes and soft drinks. PC2 mainly tells us about the difference between Scotland and Whales.