

Practical Data Science Assignment A3 Giagkos Stylianos f3352410

Summary

Section A

"Sidewalk Obstructions Annotation on Athens Images"

Counts of Sidewalk Issues

Counts of Sidewalk Issues

- Parked Vehicles Obstructing Sidewalks
 - Frequency: 88 instances (23.04% of issues).
- Narrow or Limited Sidewalk Space
 - Frequency: 83 instances (21.73% of issues).
- Uneven or Hazardous Pavement
 - Frequency: 22 instances (5.76% of issues).
- Obstacles from Natural Elements
 - Frequency: 68 instances (17.80% of issues).
- Miscellaneous Obstructions
 - Frequency: 20 instances (5.24% of issues).
- Blocked or Limited Crossing Access
 - Frequency: 39 instances (10% of issues).
- Debris and Environmental Hazards
 - Frequency: 62 instances (16.23% of issues).

Counts of Sidewalk Issues

Counts of Sidewalk Issues

All seven categories are well-represented, with Parked Vehicles Obstructing Sidewalks and Narrow Sidewalk Space being the most frequent.

Many issues overlap, compounding pedestrian challenges. The "Other" category was unnecessary as all observations fit predefined categories.

Counts of Sidewalk Issues

Section B

Data Mining

Initial Dataset Preprocessing

Exploring the "GSV Cities" dataset

Focusing on acquisition, exploration, image analysis, and preprocessing.

- Dataset Details:
 - •Source: Kaggle dataset with city images and metadata.
 - Metadata Includes:
 - place_id, year, month, northdeg
 - city_id, lat, lon, panoid
- •Images: Organized in city-specific folders, covering diverse geographical areas.

Key Steps in the Process

Downloading the Dataset:

•The dataset is downloaded from Kaggle and stored in a specific directory.

Exploring the Dataset:

- Listing directories and files.
- •Inspecting metadata for missing values and structure.

• Image Count per City:

- •Visualizing image counts with a horizontal bar chart.
- •Cities like **London**, **Miami**, and **Phoenix** have the most images, while **Medellin** and **Buenos Aires** have fewer.

Key Steps in the Process

Sampling Images:

- •Random sampling of images per city to manage memory size.
- •Storing samples and metadata in Google Drive and pickle files.

Merging DataFrames:

- Merging individual city DataFrames into one consolidated DataFrame for analysis.
- •Saving the merged dataset as a CSV.

Removing Duplicates:

•Identifying and removing duplicate metadata rows and image files.

Preprocessing Images for K-means:

 Resizing images to 512x512, converting to RGB, and normalizing pixel values to the range [0,1] for K-means clustering.

EDA on sampled Data

Final Sampled Dataframe

Columns:

• Place ID: Unique identifier for places.

•Year: Year the data was recorded.

• Month: Month the data was recorded.

•Northdeg: Measurement indicating northern direction (degree).

•Lat: Latitude of the location.

•Lon: Longitude of the location.

	place_id	year	month	northdeg	city_id	lat	lon	panoid	image_name	image_path
360027	4538	2009	10	58	Minneapolis	44.987275	-93.221127	I2CfJnG67tnSAsiA3NMm1g	Minneapolis_0060027_2009_10_058_44.98727479016	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
350694	2916	2011	9	263	Minneapolis	44.969870	-93.295165	ljRpYVa8kN2fCd2PMNFmug	Minneapolis_0050694_2011_09_263_44.96987026561	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
350270	2742	2011	6	283	Minneapolis	44.968334	-93.287806	HkEPC9_d6P640aisJYngbA	Minneapolis_0050270_2011_06_283_44.96833429689	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
359023	3223	2016	9	225	Minneapolis	44.973403	-93.261019	TWBksn5jDCQzK80nhrCD5Q	Minneapolis_0059023_2016_09_225_44.97340315544	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
355953	136	2019	7	244	Minneapolis	44.939543	-93.254126	5Vy75AKPixWUC0ScEC72Fg	Minneapolis_0055953_2019_07_244_44.93954344166	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
113512	514	2014	9	348	PRS	48.809480	2.257262	Q0CCsTy1wpXe1kgNBm3UIQ	PRS_0013512_2014_09_348_48.80947970218288_2.25	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
109063	1521	2016	6	554	PRS	48.831663	2.365907	uVMEQA9EV1e-2q1ZH5dV0w	PRS_0009063_2016_06_554_48.83166304649817_2.36	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
134267	1573	2019	6	499	PRS	48.833256	2.317289	mzxQyVLDLwlBHFH8ZWU3Bw	PRS_0034267_2019_06_499_48.83325630517728_2.31	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
116443	2719	2015	6	78	PRS	48.857426	2.399494	1jUSTVjzVEbt2mi5sC0g	PRS_0016443_2015_06_078_48.85742623906796_2.39	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
136262	1753	2014	7	686	PRS	48.837333	2.345425	Z3iNkSW_jwOIFZOV4ueOA	PRS_0036262_2014_07_686_48.83733317560306_2.34	/content/drive/My Drive/PDS_A3/PDS_A3_Sampled
11309 rows × 10 columns										

Exploration

	year	month	northdeg	lat	lon
count	11309.000000	11309.000000	11309.000000	11309.000000	11309.000000
mean	2014.801574	6.781059	274.080821	31.893728	-23.158901
std	3.576798	2.707434	157.099201	24.131281	73.269631
min	2007.000000	1.000000	-4.000000	-37.854864	-118.269349
25%	2013.000000	5.000000	153.000000	25.782030	-80.217042
50%	2015.000000	7.000000	267.000000	40.417174	-9.167805
75%	2018.000000	9.000000	365.000000	44.957103	10.701730
max	2021.000000	12.000000	726.000000	59.958047	145.024955

1. Year

•Spans 2007–2021, with most data concentrated in 2013–2018 (IQR).

2. Month

- •Higher density in May–September, possibly reflecting seasonal activities or favorable conditions.
- 3. Northdeg (Direction Measurement)
- •Range: -4 to 726, IQR: 153-365.
- •Indicates diverse terrains or varying directional orientations.

4. Latitude

- •Range: -37.85° to 59.96°, IQR: 25.78°–44.96°.
- •Focuses on **mid-latitude regions**, spanning subtropical to temperate zones.

5. Longitude

- •Range: -118.27° to 145.02°
- •Most data points fall within -80.22° to 10.70°, indicating concentrations in Americas, Europe, and parts of Africa or Asia.

Year Distribution

•Key Trends:

- Significant data increase from 2014, peaking that year.
- Decline after 2014, lowest in 2021.
- Minimal data before 2007.

•Implications:

- Potential bias due to concentration around 2014–2018.
- Drop in 2021 may reflect external constraints.

Month Distribution

- Key Trends:
 - Higher data in **May–September**, peaking in **June–July**.
 - •Lower data in **December February**.
- •Implications:
 - •Seasonal data variation likely due to **environmental factors**

1.City Distribution:

- 1. Shows unique record counts per city after duplicate removal.
- Cities like London, Miami, and Medellin have frequencies near 500 but not exactly 500.

2.City Variety:

1. Represents a wide range of cities, including Osaka, Rome, Melbourne, and Mexico City.

3. Duplicate Removal:

1. Duplicates were removed, so no city reaches exactly 500.

4. Color Coding:

1. Each city is assigned a unique color for easy identification.

Geolocation Visualisation

Section C

Unsupervised Learning

Feature Extraction

Feature Extraction

Methods for Clustering Evaluation and Visualization

Silhouette Score

Definition:

Measures how similar an object is to its own cluster compared to other clusters.

- Range of Values:
- •Close to 1: Well-separated clusters.
- •Close to 0: Overlapping clusters.
- Negative values: Incorrect clustering.
- •Usage:

The number of clusters with the **highest** silhouette score indicates the optimal clustering solution.

Cluster 0: "Suburban Area"

- •Cities: PRS, Boston, TRT, Phoenix, Buenos Aires
- •Characteristics: Wide streets, residential buildings, open spaces, low-rise buildings, less commercial activity.

Cluster 1: "Urban Area"

- •Cities: Washington DC, London
- •Characteristics: Narrow streets, commercial buildings, compact areas, high population density, less greenery.

Silhouette Score

City Cluster Distribution Heatmap (Silhouette Score)

WashingtonDC 39 446 Osaka 0 496 London 0 498 PRG 0 493 LosAngeles 0 483 427 70 97 Minneapolis 403 489 Brussels 0 MexicoCity 0 490 - 300 Boston 106 Melbourne 22 471 Bangkok 0 495 Chicago 0 498 402 Rome 93 - 200 Miami 0 499 Medellin 0 468 57 434 Lisbon TRT 148 0 495 - 100 Barcelona 124 BuenosAires 127 Phoenix Madrid 0 488 OSL: 490 Cluster 0 Cluster 1 Cluster

Cluster Distribution for Each City (Silhouette Score)

Cities Grouped by Silhouette Score Method Clustering Cluster 0:

Cities most similar in cluster distribution: Phoenix, Boston, TRT, PRS.

Cluster 1:

Cities most similar in cluster distribution: Osaka, London, PRG, Los Angeles, Minneapolis, Brussels, Mexico City, Melbourne, Bangkok, Chicago, Lisbon, OSL.

Definition:

Compares the total intra-cluster variation for different numbers of clusters with that expected under a **reference distribution**. This reference distribution is typically a random distribution of points, used to assess whether the observed clustering is significantly better than random.

Range of Values:

- •Higher Gap Statistic: Indicates more distinct clustering.
- •Lower Gap Statistic: Suggests less distinct clustering.

Usage:

The optimal number of clusters is where the **gap statistic is maximized**, providing a robust estimate for the number of clusters.

Cluster 0

Tree-lined urban streets, residential and commercial mix, moderate traffic.

Feature: Tree-lined streets, residential-commercial balance.

Cluster 1

Narrow streets, mixed buildings, pedestrian-friendly, few vehicles.

Feature: Narrow streets, defined lanes.

Cluster 2

Suburban streets, residential homes, green spaces, wide roads.

Feature: Single-story homes, greenery.

Cluster 3

Wide lanes, high traffic, commercial and residential mix.

Feature: Wide roads, busy urban setting.

Cluster 4

Residential streets, low-rise homes, green spaces, quiet.

Feature: Single-family homes, greenery.

Cluster 5

Suburban streets, homes under renovation, green spaces.

Feature: Renovating homes, clean streets.

Cluster 6

Commercial and residential mix, narrow roads, parked cars.

Feature: Narrow streets, active urban vibe.

Cluster 7

Wide highways, minimal traffic, residential and industrial mix.

Feature: Wide highways, open spaces.

Cluster 8

Urban streets, home facades, storefronts, billboards.

Feature: Home facades, commercial storefronts.

Cluster 9

Wide streets, active traffic, residential and urban mix.

Feature: Wide roads, active traffic.

City Cluster Distribution Heatmap (Gap Statistic)

Cluster 0: Prague, Melbourne, Lisbon, Oslo

Cluster 1: Osaka, London, Mexico City, Madrid

Cluster 2: Phoenix

Cluster 3: Washington DC, Prague, Barcelona, Buenos Aires

Cluster 4: Boston

Cluster 5: Prague, TRT

Cluster 6: Oslo, Bangkok

Cluster 7: Mexico City, Miami, Medellin

Cluster 8: Melbourne, Lisbon, Oslo, Rome, Medellin, Brussels,

London, Mexico City

Cluster 9: Minneapolis, Medellin, Brussels

Section D

End Application

End Application

Distribution based on Ground Truth

Cohen's Kappa

Moderate Agreement among Annotators

- •Blocked or Limited Crossing Access
- Debris and Environmental Hazards
- •Obstacles from Natural Elements
- •Narrow or Limited Sidewalk Space
- Parked Vehicles Obstructing Sidewalks
- Uneven or Hazardous Pavement
- Miscellaneous Obstructions

Athens Cluster Distribution Insights

Silhouette Score

- •Athens images are similar to Cluster 1: Osaka, London, Prague, Los Angeles, Oslo.
- •Urban, dense cities with higher population, narrower streets, and less greenery.

Gap Statistic Method

- •Athens images belong to Cluster 2: Minneapolis, Brussels and Cluster 4: Barcelona, Buenos Aires.
 - Cluster 2: Wide streets, active traffic, residential and urban blend.
 - Cluster 4: Low-rise homes, green spaces, tree-lined streets.
 - Green spaces and parked cars may explain Cluster 4 similarity.

Q&A

Thank You!