sign up log in tour help

Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. It's 100% free, no registration required.

Anybody can ask a nybody can answer are voted up and rise to the top

Are functions of independent variables also independent?

It's a really simple question. However I didn't see it in books and I tried to find the answer on the web but failed.

If I have two independent random variables, X_1 and X_2 , then I define two other random variables Y_1 and Y_2 , where $Y_1 = f_1(X_1)$ and $Y_2 = f_2(X_2)$.

Intuitively, Y_1 and Y_2 should be independent, and I can't find a counter example, but I am not sure. Could anyone tell me whether they are independent? Does it depend on some properties of f_1 and f_2 ?

Thank you.

(probability-theory)

Not seen in the books?? - Did Nov 16 '14 at 15:16

3 Answers

For any two (measurable) sets A_i , i=1,2, $Y_i\in A_i$ if and only if $X_i\in B_i$, where B_i are the sets $\{s:f_i(s)\in A_i\}$. Hence, since the X_i are independent, $P(Y_1\in A_1,Y_2\in A_2)=P(Y_1\in A_1)P(Y_2\in A_2)$. Thus, the Y_i are independent (which is intuitively clear anyway). [We have used here that random variables Z_i , i=1,2, are independent if and only if $P(Z_1\in C_1,Z_2\in C_2)=P(Z_1\in C_1)P(Z_2\in C_2)$ for any two measurable sets C_i .]

edited Nov 3 '10 at 14:07

I had no idea about the theorem of measurable sets and independence. Anyway, it seems to be a valid proof. (But I have no idea what the measurable sets are) – LLS Nov 5 '10 at 11:54

On the one hand, my answer also assumes that the functions f_i are measurable. On the other hand, the use of the prefix "measurable" (for sets/functions) may be omitted in an introductory setting. – Shai Covo Nov 5 '10 at 12:30

Yes, they are independent.

If you are studying rigorous probability course with sigma-algebras then you may prove it by noticing that the sigma-algebra generated by $f_1(X_1)$ is smaller than the sigma-algebra generated by X_1 , where f_1 is borel-measurable function.

If you are studying an introductory course - then just remark that this theorem is consistent with our intuition: if X_1 does not contain info about X_2 then $f_1(X_1)$ does not contain info about $f_2(X_2)$.

1 Thank you very much. I am studying an introductory course and it seems to be a little hard for me to get things too serious. – LLS Nov 5 '10 at 11:57

Yes, they are independent.

The previous answers are sufficient and rigorous. On the other hand, it can be restated as followed. Assume they are discrete random variable.

$$Pr[Y_1 = f_1(X_1) \land Y_2 = f_2(X_2)] = Pr[X_1 \in f_1^{-1}(Y_1) \land X_2 \in f_2^{-1}(Y_2)]$$

= $Pr[X_1 \in A_1 \land X_2 \in A_2]$

and we spend it by probability mass function derived

$$=\sum_{x_1\in A_1\wedge x_2\in A_2} Pr(x_1,x_2) = \sum_{x_1\in A_1\wedge x_2\in A_2} Pr(x_1) Pr(x_2)$$

Here we use the independency of X_1 and X_2 , and we shuffle the order of summation

$$=\sum_{x_1\in A_1}Pr(x_1)*\sum_{x_2\in A_2}Pr(x_2)=Pr[X_1\in f_1^{-1}(Y_1)]*Pr[X_2\in f_2^{-1}(Y_2)]\\=Pr[Y_1=f_1(X_1)]Pr[Y_2=f_2(X_2)]$$

Here we show the function of independent random variable is still independent

