Linear Algebra - Cheat Sheet (HS22)

Mattia Taiana

26. December 2022

1 Complex Numbers

General

$$z = \underbrace{x}_{\text{Re}} + i \underbrace{y}_{\text{Im}} = \underbrace{r \cdot (\cos(\varphi) + i \cdot \sin(\varphi))}_{\text{Polarform}} = r \cdot e^{i\varphi}$$

$$\overline{z} = x - iy = r \cdot e^{i(2\pi - \varphi)}$$

$$|z| = r = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$$

$$\varphi = \begin{cases} arctan(\frac{y}{x}), & \text{I } Q. \\ arctan(\frac{y}{x}) + \pi, & \text{II}/\text{III } Q. \\ arctan(\frac{y}{x}) + 2\pi, & \text{IV } Q. \end{cases}$$

Operations

+/-:
$$(x_1 + x_2) + (y_1 + y_2)i$$

 $z_1 \cdot z_2$: $(x_1 + y_1i)(x_2 + y_2i) = r_1 \cdot r_2 \cdot e^{i(\varphi_1 + \varphi_2)}$
 $\frac{z_1}{z_2}$: $\frac{z_1 \cdot \overline{z}_2}{|z_2|^2} = \frac{r_1}{r_2} \cdot e^{i(\varphi_1 - \varphi_2)}$
 z^n : $r^n \cdot e^{i\varphi n}$
 \sqrt{a} : $a = z^n \Leftrightarrow |a| \cdot e^{i\alpha} = r^n \cdot e^{i\varphi n} \begin{cases} r = \sqrt[n]{|a|} \\ \varphi = \frac{\alpha + 2k\pi}{n} \end{cases}$

Polynomials

Grad 2:
$$z = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sonderfall: $az^n + c = 0 \Leftrightarrow z = \sqrt[n]{-\frac{c}{a}}$

With polynomials with complex roots, the roots occur as a complex-conjugate pair. Polynomials over $\mathbb C$ with an odd degree

have at least one root in \mathbb{R} .

2 LSE

Gauss-Algorithm

runtime: $O(n^3)$

elementary row operations:

switch, multiply and add/subtract rows

goal: row echelon form

if RHS always 0: homogeneous LSE consistency conditions (VB): $b_{r+1} = ... = b_m = 0$

Number of solutions

S 1.

 $Ax = b \text{ min. 1 solution} \Leftrightarrow (r = m) \text{ or } (r < m + VB)$ if this is the case:

- r = n: only 1 solution
- r < n: ∞ many solutions
- $\Rightarrow r = m$:
 - r = n = m: only 1 solution, non-singular LSE
 - r < n: ∞ many solutions, (n r) free parameters
- $\Rightarrow r < m$:
 - r = n: only 1 solution
- r < n: ∞ many solutions, (n r) free parameters K 1.5 In a homogeneous LSE non-trivial solutions exist only if r < n.
- S 2.5 Ax = b has a solution \Leftrightarrow b is a linear combination of columnvectors of A

3 Matrices & Vectors

General

mxn Matrices have m rows and n columns. The element (i, j) can be denoted as $a_{i,j}$ or $(A)_{i,j}$ $\begin{cases} 8 & 2.1 \\ (x & 6) & A = x(6 & 4) \end{cases}$

 $(\alpha\beta)A = \alpha(\beta A) \qquad (A+B) + C = A + (B+C)$ $(\alpha A)B = \alpha(AB) \qquad (AB) \cdot C = A \cdot (BC)$ $(\alpha + \beta) \cdot A = \alpha A + \beta A \qquad (A+B) \cdot C = AC + BC$ $\alpha(A+B) = \alpha A + \alpha B \qquad A \cdot (B+C) = AB + AC$ A+B=B+A

 $\underline{\wedge}$ in general $AB \neq BA$ If AB = BA we say «A and B commute»

Def. If AB = O, we call A and B divisors of zero.

Def. A linear combination of vectors $a_1...a_n$ is an expression of the following type: $\alpha_n \cdot a_n + ... + \alpha_1 \cdot a_1$

Def. A matrix is symmetric when $A^T = A$ and Hermitian when $A^H = A$ (real diagonal).

Def. A matrix is skew-symmetric when $A^T = -A$. (zeros on diagonal)

2.6 $(A^T)^T = A \qquad (\alpha A)^T = \alpha (A^T)$ $(AB)^T = B^T A^T \qquad (A+B)^T = A^T + B^T$ 8.2.7 If A. B. symmetric, AB = BA + AB symmetric, AB = BA + AB

If A, B symmetric: $AB = BA \Leftrightarrow AB$ symmetric For any A: $A^TA = AA^T$ (symmetric)