Assignment Project Exam Help Lecture 20 https://tutorcs.com

Savitch's Theorem

```
NSPACE (S(n)) 

DSPACE (S(n)2)
```

Assignment Project Exam Help

https://tutorcs.com

Configuration Graph N.T.M. No with input & space usage \$(n).

Graph (s,t) Reachability

Space efficiently determine reachability

Assignment Project Exam Help

https://tutorcs.com

Reachability (s,z,i)

reach (s,t,i) * \Rightarrow Welker or not t is veachable from s $M \leq 2^{i}$ steps,

o reach (s,t,0) -> t is a neighbor of s

Assignment Project Exam Help

reach (s,t,i-1) and (reach(s,t,i-1))

ord (reach(s,t,i-1))

previous XEL reduces to We Conditions July (n)

Space(i) $\leq O(s(n)) + Ispace(i-1) + I$ $= I \cdot space(i-1) + O(s(n))$

Space usage calculation

Space
$$(i) \leq Space(i) - i) + O(S(n))$$

$$O(S(n)) \leq Assignment Project Exam Help$$

$$https://tutorcs.com$$

$$\leq Space(i) + O(S(n))$$

$$= Space(i) + O(S(n)^2) \leq O(S(n)^2)$$

Recycling

LE NSPACE (\$(n)) graph Assignment Project Exam Help.) https://tutorcs.com deterministically using O(S(n)2) space WeChat: cstutorcs $O(S(n)^2)$ Workspace Total O(S(n)) to colculate space reach (us, green node)

Open Problem

```
NSPACE (S(n)) C DSPACE(S(n))

Assignment Project Exam Help

1,99

https://tutorcs.com
```

PSPACE

Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help

https://tutorcs.com

PSPACE

PSPACE definition

Corollary of Savitch's Theorem

NPSPACE = PSPACE

```
DSPACE (n<sup>2c</sup>) Assignment Project Exam Help

Sourtch's thttps://tutorcs.com
```

Venn Diagram

PSPACE-completeness

- L is PSPACE-complete if
- 1. L is in PSPACE DE Assignment Project Exam Help
- 2. Every A in PSPACE is polytime reducible to L (PSPACE-hard)

 https://tutorcs.com

 A SPACE A SPACE

TQBF (Generalization of <u>SAT</u>)

•
$$Q_1 x_1 Q_2 x_2 \dots Q_n x_n \varphi(x_1, \dots, x_n)$$

Assignment Project Exam Help

PSPACE-complete.

https://tutorcs.com

$$Q_1 - Q_n = \exists$$
 We Chat: Establishers this is SAT
$$Q_1 - Q_n \Rightarrow \forall \Rightarrow \omega NP - complete, \qquad WSAT.$$

TQBF is PSPACE-complete

