Récapitulatif de spécialité Mathématiques

I. Arithmétique

1. Divisibilité et congruences

$$\boxed{a|b \Leftrightarrow b = ka}$$
 Division euclidienne : $\exists ! \ (q,r) \in \mathbb{N}^2, a = bq + r, 0 \le r < b$
$$\boxed{a \equiv b \ [n] \Leftrightarrow n|a-b|}$$

2. Critère de divisibilité

$$2|N \Leftrightarrow a_0 \equiv 0 \ [2] \\ 5|N \Leftrightarrow a_0 \equiv 0 \ [5] \\ 25|N \Leftrightarrow \overline{a_1 a_0} \equiv 0 \ [4] \\ 25|N \Leftrightarrow \overline{a_1 a_0} \equiv 0 \ [25] \\ 3|N \Leftrightarrow \text{somme des chiffres} \equiv 0 \ [3] \\ 9|N \Leftrightarrow \text{somme des chiffres} \equiv 0 \ [9] \\ 11|N \Leftrightarrow \text{somme alternées des chiffres} \equiv 0 \ [11]$$

3. PGCD et PPCM

 $(a \wedge b)(a \vee b) = ab$

$$d = a \wedge b \iff \begin{bmatrix} d \mid a \\ d \mid b \\ \frac{a}{d} \wedge \frac{b}{d} = 1 \\ & \exists (u, v) \in \mathbb{Z}^2, au + bv = d \end{bmatrix}$$

4. Équation diophantiennes

$$ax + by = c$$
 $(d = a \land b)$ Solution si $c = kd$

• On trouve une solution particulière (x₀, y₀) (Bézout)

 $k|d \Leftrightarrow k|a \text{ et } k|b$

- $a(x-x_0) + b(y-y_0) = 0$ (par différence entre l'équation et celle avec la sol part)
- Résolution :

$$a|b(y - y_0)$$

$$a|y - y_0$$

$$y = ak + y_0$$

$$b|a(x - x_0)$$

$$b|x - x_0$$

$$x = bk' + x_0$$

5. Nombres premiers

$$p|ab \Rightarrow p|a \text{ ou } p|b$$

$$Petit théorème de Fermat : p premier, a pas multiple de p$$

$$a^{p-1} \equiv 1 [p]$$

$$Corollaire : Si p premier$$

$$a^p - a \equiv 0 [p]$$

Récapitulatif de spécialité Mathématiques

II. Similitudes planes

Similitude directe : $z' = az + b = ke^{i\theta}z + b$

$$\forall \ (M,N) \in \mathcal{P}^2, \boxed{\mathbf{k} = \frac{M'N'}{MN}}, \boxed{\theta = \left(\overrightarrow{MN}, \overrightarrow{M'N'}\right)}$$

Rapport	Angle	Туре
k = 1	$\theta \equiv 0 \ [2\pi]$	Translation
	θ ≢ 0 [2π]	Rotation
k ≠ 1	θ ≡ 0 [π]	Homothétie
	θ ≢ 0 [π]	Similitude

Similitudes indirectes : $z' = a\bar{z} + b = ke^{i\theta}\bar{z} + b$

III. Sections planes de surfaces

1. Cylindre

a. Équation (axe (Oz))

$$x^2 + y^2 = R^2$$

b. Section

Plan	Condition	Section
z = k		Cercle (Ω(0, 0, k), R)
x = k y = k	k < R	2 droites
	k = R	1 droite
	k > R	Ø

2. Cône

a. Équation (axe (Oz))

$$x^2 + y^2 = \lambda^2 z^2 \quad \lambda = \tan \varphi$$

b. Section

Plan	Condition	Section	
z = k	k = 0	Point O(0, 0, 0)	
	k ≠ 0	Cercle $x^2 + y^2 = (\lambda k)^2$	
x = k y = k	k = 0	Deux droites sécantes en O	
	k ≠ 0	2 hyperboles $z = \pm \sqrt{\frac{x^2 + k^2}{\lambda^2}}$	

