













# Improving Robustness of PESTO Pitch Estimation



# Motivation & Background

# **Importance**

Pitch estimation is key in music/audio processing

# **PESTO**

lightweight, frame-by-frame self-supervised pitch estimator

# Challenge

sensitive to both low and high-frequency noise

# Goal

maintain clean performance while not increasing model size and not sacrificing real-time property







 $\mathcal{L}_{inv}$ : Invariance (stable under augmentation)\n $\mathcal{L}_{equiv}$ : Equivariance (consistent with pitch-shift)\n $\mathcal{L}_{SCE}$ : Classification (guided by pseudo-labels)

$$\begin{split} \mathcal{L}(\mathbf{y}, \tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) &= \lambda_{\text{inv}} \ \mathcal{L}_{\text{inv}}(\mathbf{y}, \tilde{\mathbf{y}}) \\ &+ \lambda_{\text{equiv}} \ \mathcal{L}_{\text{equiv}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) \\ &+ \lambda_{\text{SCE}} \ \mathcal{L}_{\text{SCE}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) \end{split}$$





Pitch-shift mechanism





 $\mathcal{L}_{inv}$ : Invariance (stable under augmentation)\n $\mathcal{L}_{equiv}$ : Equivariance (consistent with pitch-shift)\n $\mathcal{L}_{SCE}$ : Classification (guided by pseudo-labels)

$$\begin{split} \mathcal{L}(\mathbf{y}, \tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) &= \lambda_{\text{inv}} \ \mathcal{L}_{\text{inv}}(\mathbf{y}, \tilde{\mathbf{y}}) \\ &+ \lambda_{\text{equiv}} \ \mathcal{L}_{\text{equiv}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) \\ &+ \lambda_{\text{SCE}} \ \mathcal{L}_{\text{SCE}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) \end{split}$$



# **Problem Focus**



Spectrogram comparison under white noise



# **Problem Focus**



Spectrogram comparison under blue noise



# **Problem Focus**



Spectrogram comparison under pink noise



# Design Choices & Constraints

#### **Real-time**

processes each frame independently, without temporal context

#### Constraint

cannot use smoothing or recurrent refinement (would break real-time property)

#### **Feature Choice**

CQT is fixed, since its logarithmic frequency axis naturally matches semitone shifts in PESTO's pitch-shift mechanism

# **Strategy**

design choices focus on noise injection, progressive scheduling, and invariance weighting



# Multiple Noise Injection

# **Intuitive Approach**

Training with noise directly improves test-time robustness

# Why Feature-domain Noise?

Adding noise in time-domain makes SNR an external factor → not suitable for dynamic weighting

One-noise-per-utterance reduces diversity; frame-level noise too complex for alignment

Feature-domain injection allows per-batch random noise type & intensity, easy to control inside model



# Multiple Noise Injection

# **Noise Modeling**

Realistic generation: start from complex Gaussian noise, with spherical sampling for plausibility

Balanced spectrum: apply power normalization, avoid silent bands, enforce spectral correlation

**Beyond amplitude-only**: add phase perturbation and band-wise variations for richer distortion



# **Progressive Noise Scheduling**

# **Start simple**

early epochs use only white noise to stabilize training and avoid collapse

# Increase challenge

gradually introduce low-frequency and stronger noises as training progresses



# Dynamic Invariance Loss Weighting

#### Frequency-based weighting

smoothly emphasize both very low (<250 Hz) and very high (>2000 Hz) frames





# Dynamic Invariance Loss Weighting

# **SNR-based weighting**

noisier samples weighted higher

#### frequency + SNR weights combined and clipped

frequency + SNR weights combined and clipped

$$w = \text{clip}(w_{\text{freq}} \cdot w_{\text{SNR}})$$



# Experimental Setup

# Comparison

original PESTO vs. improved version with noise robustness

#### **Evaluation conditions**

tested under clean speech, white noise, pink noise, and blue noise environments

# Metrics

measured with OA (Overall Accuracy), RCA (Raw Chroma Accuracy), and RPA (Raw Pitch Accuracy)



# Results

# ORIGINAL VS IMPROVED PESTO: RESULTS ACROSS NOISE CONDITIONS (% VALUES)





# **Ablation Study**







# Ablation Study

#### NOISE ONLY VS IMPROVED PESTO: RESULTS ACROSS NOISE CONDITIONS (% VALUES)





# **Ablation Study**

#### White noise (extreme case)

Robustness improvement mainly from Dynamic Weighting

Multiple Noise Injection contributes, but less significantly

#### Low-frequency noise

Improvement primarily from Multiple Noise Injection

Dynamic Weighting alone has little effect

#### **High-frequency noise**

Both Dynamic Weighting and Multiple Noise Injection provide substantial gains



# Conclusion & Future Work

#### **Conclusion**

Introduced Multiple Noise Injection, Progressive Scheduling, and Dynamic Invariance Weighting Achieved robustness gains without sacrificing clean performance or real-time efficiency

#### **Future Work**

Extend to more diverse noise types and real-world datasets

Investigate integration with temporal models without losing real-time property

















# Thank You!

