Práctica Circuitos Electrónicos 7 Memoria

Prepráctica:

Ejercicio 1:

Vemos que el valor Vout = 3.2Vin, aspecto que coincide con nuestros cálculos teóricos.

Ejercicio 2:

Se puede observar que es un filtro pasa baja.

Tras realizar la simulación obtenemos los siguientes valores teóricos:

$$|Av| = 20 \log_{10} \left(\frac{3.2}{\sqrt{1 + (4700 * 10^{-7} * 2 * \pi * f)^2}} \right)$$

$$Fase(^{\circ}) = -\arctan(4700 * 10^{-7} * 2 * \pi * f)$$

Frecuencia (Hz)	Av (dB)	Fase (º)
10	10.09	-1.69
100	9.74	-16.45
1K	0.23	-71.29
10K	-19.31	-88.06
100K	-39.30	-89.81

Vemos que los cálculos coinciden con los datos obtenidos en la simulación. En los cálculos teóricos obtenemos una frecuencia de corte de: 338.932Hz que coincide con el valor simulado.

Ejercicio 3:

Se puede observar que es un filtro pasa alta.

Tras realizar la simulación obtenemos los siguientes valores teóricos:

$$|Av| = 20 \log_{10} \left(3.2 * \frac{10^{-8} * 4700 * 2 * \pi * f}{\sqrt{1 + (10^{-8} * 4700 * 2 * \pi * f)^2}} \right)$$

$$Fase(\mathfrak{Q}) = 90\mathfrak{Q} - \arctan(4700 * 10^{-8} * 2 * \pi * f)$$

Frecuencia (Hz)	Av (dB)	Fase (º)
10	-40.49	89.83
100	-20.49	88.31
1K	-0.85	73.55
10K	9.63	18.71
100K	10.09	1.94

Vemos que los cálculos coinciden con los datos obtenidos en la simulación. En los cálculos teóricos obtenemos una frecuencia de corte de: 3386.27Hz que coincide con el valor simulado.

Montaje:

Para el montaje utilizaremos el generador de funciones, el osciloscopio y los componentes necesarios. Será necesario interconectar los terminales del PROMAX como se aprecia en el esquema para proporcionar alimentación al Amplificador Operacional (AO):

Ejercicio 1:Al variar la frecuencia de la señal de entrada obtuvimos la siguiente tabla de resultados:

Frecuencia (Hz)	V_Lpf (V)	V3 (V)	Av	δt (s)	Desfase (º)	Av (dB)
80	3,12	1	3,12	0	0	9,88309188
100	3,04	1	3,04	0,0004	-14,4	9,657471672
200	2,72	1	2,72	0,0004	-28,8	8,691378081
300	2,4	1	2,4	0,00036	-38,88	7,604224834
400	2,08	1	2,08	0,00036	-51,84	6,361266699
500	1,76	1	1,76	0,00034	-61,2	4,910253356
600	1,52	1	1,52	0,00028	-60,48	3,636871759
700	1,36	1	1,36	0,00026	-65,52	2,670778167
800	1,12	1	1,12	0,00022	-63,36	0,984360453
900	1,112	1	1,112	0,00021	-68,04	0,922095745
1000	0,96	1	0,96	0,00021	-75,6	-0,35457534
2000	0,52	1	0,52	0,00011	-79,2	-5,67993313
3000	0,36	1	0,36	0,000076	-82,08	-8,87394998
4000	0,28	1	0,28	0,00006	-86,4	-11,0568394
5000	0,24	1	0,24	0,000048	-86,4	-12,3957752
6000	0,2	1	0,2	0,00004	-86,4	-13,9794001
7000	0,16	1	0,16	0,00003	-75,6	-15,9176003
8000	0,16	1	0,16	0,000028	-80,64	-15,9176003
9000	0,14	1	0,14	0,000026	-84,24	-17,0774393
10000	0,124	1	0,124	0,000023	-82,8	-18,1315663
20000	0,072	1	0,072	0,000012	-86,4	-22,8533501
30000	0,06	1	0,06	0,000008	-86,4	-24,436975
40000	0,04	1	0,04	0,0000061	-87,84	-27,9588002
50000	0,03	1	0,03	0,0000048	-86,4	-30,4575749
60000	0,026	1	0,026	0,0000041	-88,56	-31,700533
70000	0,021	1	0,021	0,0000035	-88,2	-33,5556141
80000	0,018	1	0,018	0,0000031	-89,28	-34,8945499
90000	0,014	1	0,014	0,0000028	-90,72	-37,0774393
100000	0,011	1	0,011	0,0000026	-93,6	-39,1721463

Ahora, para determinar la frecuencia de corte, buscamos los valores de frecuencia en los que la señal de salida VLpf = 0.707 * VMax, con lo que obtuvimos una frecuencia de corte de 339Hz, que coincide con los cálculos teóricos y las simulaciones.

Por último, conectamos la salida de nuestro circuito a unos auriculares y procedemos a incrementar la frecuencia de la señal de entrada. Dejamos de oír el pitido a una frecuencia de 16120Hz. Para hallar el mínimo, disminuimos la frecuencia, de modo que dejamos de oír el pitido a una frecuencia de 0Hz.

Ejercicio 2:

Para este ejercicio realizaremos las mismas medidas pero intercambiando la resistencia de $4.7 \mathrm{K}\Omega$ por el condensador de $10 \mathrm{nF}$, obteniendo las siguientes medidas:

Frecuencia (Hz)	V_Lpf (V)	V3 (V)	Av	δt (s)	Desfase (º)	Av (dB)
80	0,1	1	0,1	0,0031	89,28	-20
100	0,104	1	0,104	0,00244	87,84	-19,6593332
200	0,188	1	0,188	0,00124	89,28	-14,516843
300	0,276	1	0,276	0,0008	86,4	-11,1818184
400	0,36	1	0,36	0,0006	86,4	-8,87394998
500	0,48	1	0,48	0,00046	82,8	-6,37517525
600	0,56	1	0,56	0,00038	82,08	-5,03623946
700	0,64	1	0,64	0,00033	83,16	-3,87640052
800	0,72	1	0,72	0,00028	80,64	-2,85335007
900	0,78	1	0,78	0,000228	73,872	-2,15810795
1000	0,88	1	0,88	0,000204	73,44	-1,11034656
2000	1,54	1	1,54	0,00009	64,8	3,75041442
3000	2,04	1	2,04	0,000052	56,16	6,19260335
4000	2,36	1	2,36	0,000029	41,76	7,45824006
5000	2,56	1	2,56	0,00002	36	8,16479931
6000	2,68	1	2,68	0,000013	28,08	8,56269588
7000	2,8	1	2,8	0,000009	22,68	8,94316063
8000	2,88	1	2,88	0,0000076	21,888	9,18784976
9000	2,96	1	2,96	0,0000052	16,848	9,42583422
10000	3	1	3	0,0000032	11,52	9,54242509
20000	3,16	1	3,16	0,000001	7,2	9,99374165
30000	3,16	1	3,16	0,0000006	6,48	9,99374165
40000	3,04	1	3,04	0,0000002	2,88	9,65747167
50000	2,6	1	2,6	0,0000001	1,8	8,29946696
60000	2,24	1	2,24	0	0	7,00496037
70000	1,96	1	1,96	0	0	5,84512143
80000	1,76	1	1,76	0	0	4,91025336
90000	1,6	1	1,6	0	0	4,08239965
100000	1,44	1	1,44	0	0	3,16724984

Ahora, para determinar la frecuencia de corte, buscamos los valores de frecuencia en los que la señal de salida VLpf = 0.707 * VMax, con lo que obtuvimos una frecuencia de corte de 3390Hz, que coincide con los cálculos teóricos y las simulaciones.

Por último, conectamos la salida de nuestro circuito a unos auriculares y procedemos a incrementar la frecuencia de la señal de entrada. Dejamos de oír el pitido a una frecuencia de 18860Hz. Para hallar el mínimo, disminuimos la frecuencia, de modo que dejamos de oír el pitido a una frecuencia de 60Hz.

CONCLUSIONES

Basándonos sobre todo en los datos obtenidos, llegamos a la conclusión de que el primer circuito es un pasa-baja. Por ello, al realizar el ejercicio del auricular, obtenemos una frecuencia mínima de OHz. El segundo circuito sería un pasa alta, y por eso no encontramos una frecuencia máxima. La frecuencia que hemos anotado en la memoria es simplemente el máximo apreciable por el oído humano. Sin embargo, el que dejemos de oír el pitido no está relacionado con la acción del filtro en este segundo caso.

Además, obtuvimos una frecuencia de corte de 339Hz en el primer caso, y de 3390Hz en el segundo, cálculos que coinciden con los simulados y los teóricos.