

Persister Cells Background

- Cancer cell subpopulation responsible for recurrent cases of cancer within initially-deemed cancer-free patients
- Operates primarily in a dormant phase = escape from treatments targeting common cell metabolism and cell growth processes
- Coexist with other non-stem cancer cells in a competitive environment
 - Non-stem cancer cells **inhibit** cell division of these dormant cells during **low-stress situations**
 - BUT amplify the cell division and activation of these dormant cells during high-stress situations
- To counter this persister cell population, treatments have been developed specifically to kill this population like inhibition of GPX4

PROGENy

- Pathway Analysis tool superior to other tools currently in use
 - Constructed from the largest dataset: 568 perturbed pathway experiments yielding 2652 microarrays
 - Grants scores to 14 major pathways: cell growth, cell survival, etc.
- Developed within multiple phases:
 - 1. Calculated z-scores for each gene from each of the perturbed pathway experiments
 - 2. Trained regression model with the modified pathway as input and gene expression as output
 - 3. Genes that were consistent outliers in these regression models are Core Responsive Genes (100 Core Genes for **EACH** of the 14 pathways)
 - 4. Z-scores for these pathways' genes were placed in a matrix
 - 5. Transformation of the user's normalized gene expression data by this matrix = the pathway's respective score

Data Analysis Workflow

Data Quality Control Checks

Read Alignment Conducted via STAR Aligner

Sample Name	% Uniquely Aligned Reads	Aligned Reads (in Millions)			
par_rep_1	85.8%	135.7			
par_rep_2	85.9%	135.4			
per_rep_1	85.5%	130.0			
per_rep_2	85.7%	142.6			
per_rep_3	85.7%	130.5			

Gene Counts obtained via FeatureCounts

Sample Name	% Assigned Alignments	Assigned Alignments (in Millions)
par_rep_1	59.6%	114.8
par_rep_2	59.7%	114.7
per_rep_1	56.7%	105.7
per_rep_2	56.7%	115.4
per_rep_3	57.1%	106.4

PCA Structure within Data

Important Notes:

- VST-Normalized Data allows for truly high variant genes to reveal the underlying structure
- Parental Replicates cluster around each other
- Persister Replicates (#1 and #2) cluster **BUT** replicate #3 is clearly distant from the others
- Component #1 accounts for 96.52% of the variance so clearly separation is based off the parental/persister type

PROGENy Set-Up and Results

The 14 PROGENy Pathways and the # of Genes Used Per Pathway

Androgen: 98 (98%)	EGFR: 94 (94%)	Estrogen: 98 (98%)
Hypoxia: 98 (98%)	JAK-STAT: 99 (99%)	MAPK: 98 (98%)
NFkB: 98 (98%)	p53: 93 (93%)	PI3K: 88 (88%)
TGFb: 96 (96%)	TNFa: 95 (95%)	Trail: 73 (73%)
VEGF: 87 (87%)	WNT: 97 (97%)	

Visual Representation of Pathway Scores with the 2 Parental Replicates On The 2 Top Rows and below 3 Persister Replicates:

PROGENy Scores

Abc	#	#	#	#	#	#	#	#	#	#	#	#	#	#
pathways.c	pathways.csv	pathways	pathways.csv	pathways.csv	pathways.csv	pathways.c	pathways							
reps	Androgen	Egfr	Estrogen	Hypoxia	Jak-Stat	MAPK	NFkb	p53	PI3K	TGFb	TNFa	Trail	Vegf	WNT
par_rep1	1.06024	1.16292	-1.37783	1.48279	0.99695	1.12675	-0.34676	1.49900	1.01400	-0.90223	-0.93372	-1.16565	1.16937	-0.68560
par_rep2	1.12771	1.02474	-0.66559	0.46913	1.14808	1.06105	-1.04591	-0.62878	1.16261	-1.23981	-1.19262	-0.92209	0.63242	-0.66247
per_rep1	-0.71450	-0.70825	0.71199	-0.89198	-0.42188	-0.75995	-0.72681	-0.52530	-0.58749	0.45601	0.36148	0.28750	-0.63377	-0.83693
per_rep2	-0.80047	-0.76782	1.02991	-0.86454	-0.97430	-0.77606	0.98405	0.54246	-0.71597	0.74410	0.78806	0.69045	-1.34191	1.05050
per_rep3	-0.67298	-0.71160	0.30152	-0.19540	-0.74885	-0.65179	1.13543	-0.88737	-0.87314	0.94192	0.97680	1.10979	0.17389	1.13450

Scaled along each Pathway such that each Pathway's Mean: 0 and Standard Deviation: 1

Pros:

 Scores can give perspective on the usages of different pathways relative to different replicates

Cons:

- Limited to these 14 pathways
- Can only determine whether pathways are relatively active or inhibited

Split Clustered Heatmaps

2 Parental Replicates

3 Persister Replicates

Differences within the similar replicates' pathways' scores potentially reflects distinct utility of the components of these pathways than the norm

PROGENy Results on Pathway Level

PROGENy Results (Continued)

PROGENy Results (Continued)

Pathways' (TNFa, TGFb, WNT, Trail) Scores for Individual Replicates

Identifying DE Genes Within PROGENy Model

- Observing differences in pathway activity not only between the parental and persister replicates, but also within both the persister and parental replicates
- Wanted to identify the differential genes that are responsible for these observed differences in pathway activity especially among the persister replicates' cellular survival and stress response pathways
- Process of Identifying these Genes within the PROGENy Model:
 - 1. Conducted Hypothesis Testing on the log2 normalized dataset
 - 2. Used a 2-fold criteria to sort the differential genes: Log-Fold Change (LFC) min: 0.5 and Padj cutoff: 0.1
 - 1. Goal was to reduce the genes to a set of truly differential genes, but leave a loose enough constraint to allow for more genes to be kept in case they played prominent roles verified thru literature
 - 3. Selection process resulted in 4,045 genes being kept
 - 4. Determined which of these genes were present within the PROGENy's model of Pathway CORE Responsive Genes for each pathway
 - 5. Placed the identified genes' log2 normalized values in a clustered heatmap and made one for each of the 14 pathways

Cellular Stress Pathways: NFkB and TNFa

