Лабораторная работа N1.

Исследование метода подавления случайного шума путем когерентного накопления сигнала

Цель работы - определение возможностей метода когерентного накопления для случаев стационарного и квазистационарного сигнала.

Метод накопления применим в том случае, если полезный сигнал в течении времени приема постоянен или является периодической функцией. Метод состоит в многократном повторении сигнала и суммировании отдельных его реализаций в приемном устройстве.

Пусть передача полезного сигнала осуществляется двумя уровнями.

В интервале T_x сигнал постоянен.

На интервале наблюдения Т_х накапливается выборка значений принятого сигнала

 $y_1 = x + r_1$

 $y_2=x+r_2$

.....

 $y_n = x + r_n$

и эти значения суммируются.

$$Y = \sum_{i=1}^{n} y_i = nx + \sum_{i=1}^{n} r_i$$

Введем два допущения:

- 1) отсчеты помехи r_i не зависят друг от друга;
- 2) помеха стационарна (ее характеристики не зависят от времени)

Таким образом, при перечисленных выше условиях, в результате n - кратного отсчета, отношение мощностей сигнала и помехи увеличивается в n раз. Временной интервал между отдельными отсчетами должен быть больше интервала корреляции помехи . В противном случае выигрыш за счет накопления будет

меньше значения, даваемого выражением (4).

За счет увеличения числа отсчетов n, т.е. времени передачи T_x , можно сколь угодно увеличивать отношения сигнал/помеха.

Если сигнал представляет периодическую функцию времени, то отсчеты нужно призводить через интервалы, равные или кратные периоду этой функции. В таких случаях метод носит название метода синхронного накопления. Эффект накопления такой же, как в случае постоянного сигнала.

Эффект накопления можно осуществить также за счет интегрирования входного сигнала в течении времени T_x . Такой метод получил название интегрального приема.

Интегральный прием целесообразно применять в случае, когда полезный сигнал постоянен (или квазипостоянен).

Пусть на входе системы наблюдается смесь полезного сигнала и случайного белого шума (т.е. шума с равномерным распределением спектральной плотности). Сигнал является стационарным и описывается от выборки к выборке неизменной функцией (например, является синусоидальным сигналом постоянной частоты и с постоянной начальной фазой). При этом на входе шум по своей амплитуде в несколько раз превышает амплитуду сигнала. Путем когерентного накопления входной смеси для ряда выборок удается увеличить соотношение сигнал/шум.

- 1. По результатам моделирования построить зависимости:
- а) соотношения сигнал/шум в выходной смеси от длительности накопления, т.е. числа накапливаемых выборок при неизменном соотношении сигнал/шум на входе; (число выборок накопления варьируется)
- б) соотношения сигнал/шум на выходе от соотношения сигнал/шум на входе для фиксированного числа выборок (M = 10, 25, 50) (SNR на входе варьируется)
 - 2. Повторить п.1 для случая квазистационарного сигнала.

В качестве полезного сигнала задать прямоугольный импульс постоянной длительности, смещение которого от начала отсчета меняется от выборки к выборке по линейному закону.

- 3. Разработать функциональную схему устройства, выполняющего фильтрацию сигналов методом накопления.
- 4. Оформить отчет, в котором привести постановку задачи, полученные результаты и их пояснения, а также схему устройства.

Варианты заданий.

(Номер варианта выбирается в соответствии с номером студента по списку группы.)____

№ варианта	Вид сигнала	Соотношение сигнал/шум	Число циклов накопления	Пределы изменения соотношения сигнал/шум
1	Гармонический	0.1	До 200	0,1-3
2	Стационарный меандр	0.1	До 200	0,1-3
3	Сумма двух гармонических сигналов	0.1	До 200	0,1-3
4	Гармонический	0,2	До 500	0,1-2
5	Стационарный меандр	0,2	До 500	0,1-2
6	Сумма двух гармонических сигналов	0,2	До 500	0,1-2
7	Гармонический	0,3	До 2000	0,2-2
8	Стационарный меандр	0,3	До 2000	0,2-2
9	Сумма двух гармонических сигналов	0,3	До 2000	0,2-2
10	Гармонический	0,4	До 1000	0,2-3
11	Стационарный меандр	0,4	До 1000	0,2-3
12	Сумма двух гармонических сигналов	0,4	До 1000	0,2-3
13	Гармонический	0,2	До 1000	0,2-4
14	Стационарный меандр	0,2	До 1000	0,2-4
15	Сумма двух гармонических сигналов	0,2	До 1000	0,2-4
16	Гармонический	0,3	До 1000	0,1-1,5
17	Стационарный меандр	0,3	До 1000	0,1-1,5
18	Сумма двух гармонических сигналов	0,3	До 1000	0,1-1,5

19	Стационарный меандр	0,4	До 1500	0,1-2
20	Сумма двух гармонических сигналов	0,4	До 1500	0,1-2