FORMULE	
Moto rettilineo uniformemente accelerato	$\begin{cases} x(t) = x_0 + v_0 t + \frac{1}{2} a t^2 \\ v(t) = v_0 + a t \\ v(x)^2 = v_0^2 + 2a(x - x_0) \end{cases}$
Moto del proiettile	Gittata: $R = \frac{v_0^2}{g} \sin 2\alpha$; $a_y = -g$; $a_x = 0$
Moto circolare uniforme: accelerazione centripeta	$a_c = \frac{v^2}{R} = R\omega^2 \qquad v = \omega R$ $v = \frac{2\pi R}{T} \omega = \frac{2\pi}{T}$
Trasformazioni di Galileo	$\begin{cases} \vec{r}_{PA} = \vec{r}_{PB} + \overrightarrow{v}_{BA}t \\ \overrightarrow{v}_{PA} = \overrightarrow{v}_{PB} + v_{BA} \end{cases}$
Forza peso	$\overrightarrow{P} = m \overrightarrow{g}$
Forze di attrito radente: statico e dinamico	$F_S \le \mu_S N F_D = \mu_D N$
Forza elastica	$F = -k(x - x_0) [\cos x_0 = 0$ F = -kx]
Equazione del moto dell'oscillatore armonico, con A ampiezza; ω pulsazione; ϕ fase	$x(t) = A\cos(\omega t + \phi)\cos\omega = \sqrt{\frac{k}{m}};$ soddisfa l'equazione differenziale $a = -\omega^2 x$
Punti notevoli del moto dell'oscillatore armonico	$v_{max} = \omega A$; $a_{max} = \omega^2 A$
Pulsazione ω , periodo T e frequenza ν	$\omega = \frac{2\pi}{T} \nu = \frac{\omega}{2\pi} = \frac{1}{T}$
Piccole oscillazioni del pendolo semplice	$T = 2\pi \sqrt{\frac{l}{g}}$
Lavoro di una forza (costante o variabile)	$\mathscr{L} = \overrightarrow{F} \cdot \overrightarrow{\Delta r} \qquad \mathscr{L} = \int_{\overrightarrow{r}_A}^{\overrightarrow{r}_B} \overrightarrow{F} \cdot d\overrightarrow{r}$

Energia cinetica di un punto materiale	$K = \frac{1}{2}mv^2$
Teorema dell'energia cinetica	$\mathcal{L} = \Delta K = K_f - K_i$
Definizione di energia potenziale (per una forza conservativa)	$\Delta U = U_f - U_i = -\mathcal{L}; F = -\frac{\mathrm{d}U}{\mathrm{d}x}$
Energia meccanica	E = U + K
Conservazione dell'energia meccanica	$\Delta E = E_f - E_i = U_f + K_f - U_i - K_i = 0$
Energia meccanica in presenza di forze non conservative	$\Delta E = \mathcal{L}_{non\ cons}$
Energia potenziale della forza peso	U(y) = mgy (con asse y "verso l'alto)
Energia potenziale elastica	$U(x) = \frac{1}{2}kx^2$
Potenza media e istantanea	$P_m = \frac{\Delta \mathcal{L}}{\Delta t} \qquad P = \frac{\delta \mathcal{L}}{\mathrm{d}t}$
Leggi di Keplero	Orbite, velocità areolare costante, $T^2/a^3 = \cos t$
Legge di gravitazione universale	$\overrightarrow{F} = -G\frac{m_1 m_2}{r^2} \hat{r}$
Terza legge di Keplero per orbite intorno a corpo di massa ${\it M}$	$\frac{T^2}{R^3} = \frac{4\pi^2}{GM}$
Energia potenziale gravitazionale	$U(r) = -G\frac{m_1 m_2}{r}$
Velocità di fuga terrestre	$v_f = \sqrt{2G\frac{M_T}{R_t}}$
Legge di Coulomb, cariche puntiformi	$\overrightarrow{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{r}_{12}; \qquad \overrightarrow{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$
Densità di carica (definizioni)	$\rho = \frac{Q}{V}$ (volumica); $\sigma = \frac{Q}{S}$ (superficiale; $\lambda = \frac{Q}{L}$ (lineare)
Campo elettrico generato da piano carico	$E = \frac{\sigma}{2\epsilon_0}$
Campo elettrico tra due piani con carica opposta	$E = \frac{\sigma}{\varepsilon_0}$

Campo elettrico generato da un filo carico	$E = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r}$
Potenziale elettrico per carica puntiforme	$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$
Capacità elettrica C	$C = \frac{Q}{V}$
Capacità di un condensatore piano	$C = \varepsilon_0 \frac{A}{d}$
Condensatori in serie	$\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2}$
Condensatori in parallelo	$C_{tot} = C_1 + C_2$
Energia in un condensatore	$U = \frac{Q^2}{2C} U = \frac{1}{2}CV^2 U = \frac{QV}{2}$
Densità di energia del campo elettrico	$u = \frac{1}{2}\varepsilon_0 E^2$
Corrente elettrica	$I = \frac{\mathrm{d}Q}{\mathrm{d}t} = nSv_d q$
Legge di Ohm	V = RI
Resistenza e resistività	$R = \rho \frac{l}{S}$
Resistività e temperatura	$\rho = \rho_0 \left(1 + \alpha (T - T_0) \right)$
Resistenze in serie	$R_{tot} = R_1 + R_2$
Resistenze in parallelo	$\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2}$
Potenza dissipata in resistenza	$P = VI = \frac{V^2}{R} = RI^2$
Carica di un condensatore	$Q = V_B C \left(1 - e^{-\frac{t}{RC}} \right) \ V = V_B \left(1 - e^{-\frac{r}{RC}} \right)$
Scarica di un condensatore	$Q = CV_0 e^{-\frac{t}{RC}} V = V_0 e^{-\frac{r}{RC}}$
Forza di Lorentz	$\overrightarrow{F} = q\overrightarrow{v} \times \overrightarrow{B}$
Moto (circolare) in campo magnetico	$r = \frac{mv}{qB} \omega = \frac{qB}{m}$

Forza magnetica agente su un tratto di conduttore percorso da corrente	$\overrightarrow{F} = I\overrightarrow{l} \times \overrightarrow{B}$	
Campo magnetico generato da un filo rettilineo sottile	$B = \frac{\mu_0 I}{2\pi r}$	
Campo magnetico generato da un filo rettilineo di diametro finito \boldsymbol{a}	$r > a$: $B = \frac{\mu_0 I}{2\pi r}$ $r < a$: $B = \frac{\mu_0 I r}{2\pi a^2}$	
Campo magnetico in un solenoide con densità di spire $n=N/L$	$B = \mu_0 nI$	
Campo magnetico in un toroide composto da N spire	$B = \frac{\mu_0 IN}{2\pi r}$	
Forza tra due conduttori rettilinei	$F = \frac{\mu_0 I_1 I_2}{2\pi r} l \text{ (attrattiva se correnti parallele,}$ se no repulsiva)	
Campo magnetico al centro di una spira di raggio R	$B = \frac{\mu_0 I}{2R}$	
Legge dell'induzione di Faraday-Lenz	$\mathscr{E}_{ind} = -\frac{\mathrm{d}\Phi(\overrightarrow{B})}{\mathrm{d}t}$	
COSTANTI		
Accelerazione di gravità nei pressi della superficie terrestre	$g = 9.81 \text{ m/s}^2$	
Costante di gravitazione universale	$G = 6.674 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$	
Carica elementare	$e = 1.602 \times 10^{-19} \text{ C}$	
Costante dielettrica del vuoto	$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2/\text{Nm}^2$	
Costante di Coulomb	$k = \frac{1}{4\pi\varepsilon_0} = 8.987 \times 10^9 \text{ Nm}^2/\text{C}^2$	
Velocità della luce nel vuoto	$c = 2.998 \times 10^8 \text{ m/s}$	
Permeabilità magnetica del vuoto	$\mu_0 = \frac{1}{\varepsilon_0 c^2} = 4\pi \times 10^{-7} \text{ Tm/A}$	
Massa dell'elettrone	$m_e = 9.11 \times 10^{-31} \text{ kg}$	
Massa del protone	$m_p = 1.67 \times 10^{-27} \text{ kg}$	