

SimPowerSystems Hands-on Workshop: Modeling and Simulation of Electrical Power Systems with SimPowerSystems™

Carlos Osorio
Principal Application Engineer
MathWorks - Natick, MA

Outline

- Electrical disturbances
 - Emergency generator example
- Control of synchronous generators
 - Generator droop control example
 - Load sharing example
 - Breaker synchronization example
- Electric motor drives

Electrical disturbances

Emergency generator example

>> emergency_generator

Electrical disturbances

Emergency generator example

1 Examine the components in the generator control subsystem and identify the library that contains additional exciter models

Verify the performance of the generator after the fault occurs at 0.1 seconds and identify how long it takes for the motor to fully recover

Run a **Load Flow** initialization to start the simulation of the system from steady-state

Switch the simulation to **phasor mode** to speed up any additional testing of the system

4

>> emergency_generator

Generator droop control example

Generator Droop Control

>> single_generator_droop

Generator droop control example

Generator Droop Control

>> single_generator_droop

Load sharing example

Load Sharing using Droop Control

The increase in load will be shared by the two generators based on their power ratings and their droop settings

>> two_generator_droop

Load sharing example

>> two_generator_droop

Breaker synchronization example

Breaker synchronization example

Breaker synchronization example

There are two stages for synchronizing an incoming generator:

- Establish the frequency of the incoming generator slightly above the bus frequency within some tolerance
- Connect when the voltage of the incoming generator is in-phase and equal in magnitude to the bus voltage within some tolerance

Breaker synchronization example

Examine the controller and see an example of how management strategies for multiple circuit breakers can be easily implemented using state machines logic

Breaker synchronization example

Place the controller in a separate model by converting the subsystem to a **Model Reference**Subsystem & Model Reference → Convert Subsystem to → Referenced Model

Switch the simulation mode for the controller to Accelerator

Block Parameters (Model Reference) → Simulation mode

Breaker synchronization example

Force an unsynchronized connection at 1.5 seconds by using the *override* signal

Generator no-load test – Simscape Components

The synchronous machine blocks in the **Simscape Components** library allow testing of no-load conditions without requiring a generator shunt

>> generator_noload_ssc

Electric motor drives

Application libraries

Electric motor drives

Variable frequency drive

Three-Phase PMSM Drive

>> pmsm_drive_st

Electric motor drives

Variable frequency drive – Simscape Components

Three-Phase PMSM Drive

>> pmsm_drive_ssc

