Content Delivery Networks

Content in today's Internet

- Most flows are HTTP
 - Web is at least 80% of traffic
 - Median object size is 2.2MB (as of 2022)
- HTTP uses TCP, so it will
 - · Be ACK clocked
 - For Web, likely never leave slow start
- Is the Internet designed for this common case?

Evolution of Serving Web Content

- In the beginning...
 - ...there was a single server
 - How to serve video stream to large number of users
- · Issues with this model
 - Site reliability
 - Unplugging cable, hardware failure, natural disaster
 - Network congestion along long network path
 - Scalability
 - · Flash crowds

Replicated Web service

- Use multiple servers
- Advantages
 - Better scalability
 - · Better reliability
- Disadvantages
 - How do you decide which server to use?
 - How to do synchronize state among servers?

Load Balancers

- Device that multiplexes requests across a collection of servers
- Load Barner
- All servers share one public IP
- Balancer transparently directs requests to different servers
- How should the balancer assign clients to servers?
 - Random / round-robin
 - · Load-based
- Challenges
 - Scalability (must support traffic for n hosts)
 - State (must keep track of previous decisions)

Load balancing: Are we done?

- Advantages
 - Allows scaling of hardware independent of IPs
 - Relatively easy to maintain
- Disadvantages
 - Expensive
 - Still a single point of failure
 - Location!

Popping up: HTTP performance

- For Web pages
 - RTT matters most
 - Where should the server go?
- For video
 - Available bandwidth matters most
 - Where should the server go?
- Is there one location that is best for everyone?

Why speed matters

- Impact on user experience
 - Users navigating away from pages
 - Video startup delay
- Impact on revenue
 - Amazon: increased revenue 1.5% for every 100ms reduction in PLT
 - Google:21% increase in revenue by reducing PLT from 6 seconds to 1.2 seconds
- Why can't Internet help?
 - Peering point congestion
 - · Inefficient routing
 - Unreliable networks
 - Inefficient communication protocols

Strawman solution: Web caches

- ISP uses a middlebox that caches Web content
 - Better performance content is closer to users
 - Lower cost content traverses network boundary once
 - Does this solve the problem?
- No!
 - Size of all Web content is too large
 - · Zipf distribution limits cache hit rate
 - Web content is dynamic and customized
 - · Can't cache banking content
 - · What does it mean to cache search results?

Distance vs Throughput

Distance (Server to User)	Network RTT	Typical Packet Loss	Throughput	4GB DVD Download Time
Local: <100 mi.	1.6 ms	0.6%	44 Mbps (high quality HDTV)	12 min.
Regional: 500-1,000 mi.	16 ms	0.7%	4 Mbps (basic HDTV)	2.2 hrs.
Cross-continent: ~3,000 mi.	48 ms	1.0%	1 Mbps (SD TV)	8.2 hrs.
Multi-continent: ~6,000 mi.	96 ms	1.4%	0.4 Mbps (poor)	20 hrs

Goals of a CDN

- Primary Goals
 - Create replicas of content throughout the Internet
 - Ensure that replicas are always available
 - Direct clients to replicas that will give good performance

Examples of CDNs

- Akamai
 - 360K servers, 1300+ networks, 135 countries
- Limelight
 - Well provisioned delivery centers, interconnected via a private fiber-optic connected to 700+ access networks
- Edgecast
 - 30+ PoPs, 5 continents, 2000+ direct connections
- Others
 - Google, Facebook, AWS, AT&T, Level3, Brokers

Akamai Statistics

- Distributed servers
 - Servers: ~151,000
 - Networks: ~1,200
 - Countries: ~92
- Many customers
 - Apple, BBC, FOX, GM IBM, MTV, NASA, NBC, NFL, NPR, Puma, Red Bull, Rutgers, SAP, ...

- Client requests
 - Hundreds of billions per day
 - Half in the top 45 networks
 - 15-20% of all Web traffic worldwide
- Applications
 - Live streaming
 - · Social networks
 - Protection against DDoS attack
 - · Handle flash crowd

Content Delivery Network

- Proactive content replication
 - Content provider (e.g., CNN) contracts with a CDN
- CDN replicates the content
 - On many servers spread throughout the Internet
- Updating the replicas
 - Updates pushed to replicas when the content changes

Key Components of a CDN

- Distributed servers
 - Usually located inside of other ISPs
 - · Often located in IXPs
- High-speed overlay network connecting them
- Clients
 - · Can be located anywhere in the world
 - They want fast content delivery
- Glue
 - Something that binds clients to "nearby" replica servers

Elements of CDN

- Caching and Replacement of Content (Resilient Overlay)
- Content/Object Location (Consistent Hashing-based)
- Request Redirection (DNS-based, HTTP-based)
- Server Selection (Load, Nearest, Availability)
- Monitoring Performance and Logging

Inside a CDN

- Servers are deployed in clusters for reliability
 - Some may be offline
 - · Could be due to failure
 - Also could be "suspended" (e.g., to save power or for upgrade)
- Could be multiple clusters per location (e.g., in multiple racks)
- Server locations
 - Well-connected points of presence (PoPs)

Server Selection Policy

- Live server

For availability

Requires continuous monitoring of liveness, load, and performance

- Lowest load
 - To balance load across the servers
- Closest
 - · Nearest geographically, or in round-trip time
- Best performance
 - Throughput, latency, ...
- Cheapest bandwidth, electricity, ...

Server Selection Mechanism

- Application
 - HTTP redirection

- Advantages
 - · Fine-grained control
 - Selection based on client IP address
- Disadvantages
 - Extra round-trips for TCP connection to server
 - Overhead on the server
 - Implementation issues in browsers

Server Selection Mechanism

- Routing
 - Anycast routing

- Advantages
 - · No extra round trips
 - · Route to nearby server
- Disadvantages
 - Does not consider network or server load
 - Different packets may go to different servers
 - Used only for simple request-response apps

Server Selection Mechanism

- Naming
 - DNS-based server selection

- Advantages
 - Avoid TCP set-up delay
 - DNS caching reduces overhead
 - Relatively fine control
- Disadvantage
 - Based on IP address of local DNS server
 - · "Hidden load" effect
 - DNS TTL limits adaptation

How Akamai Works

- Clients fetch html document from primary server
 - E.g. fetch index.html from cnn.com
- URLs for replicated content are replaced in html
 - E.g. replaced by
- Client is forced to resolve aXYZ.g.akamaitech.net hostname

How Akamai Works

- · Akamai only replicates static content
- Modified name contains original file name
- Akamai server is asked for content
 - First checks local cache
 - If not in cache, requests file from primary server and caches file

How Akamai Works

- Root server gives NS record for akamai.net
- Akamai.net name server returns NS record for g.akamaitech.net
 - Name server chosen to be in region of client's name server
 - TTL is large
- g.akamaitech.net nameserver chooses server in region
 - Should try to chose server that has file in cache How to choose?
 - Uses aXYZ name and hash
 - TTL is small → why?

Mapping System

- Equivalence classes of IP addresses
 - IP addresses experiencing similar performance
 - Quantify how well they connect to each other
- Collect and combine measurements
 - Ping, traceroute, BGP routes, server logs
 - E.g., over 100 TB of logs per days
 - Network latency, loss, and connectivity

Mapping System

- Map each IP class to a preferred server cluster
 - Based on performance, cluster health, etc.
 - Updated roughly every minute
- Map client request to a server in the cluster
 - Load balancer selects a specific server
 - E.g., to maximize the cache hit rate

Adapting to Failures

- Failing hard drive on a server
 - Suspends after finishing "in progress" requests
- Failed server
 - Another server takes over for the IP address
 - · Low-level map updated quickly
- Failed cluster
 - High-level map updated quickly
- Failed path to customer's origin server
 - Route packets through an intermediate node

Akamai Transport Optimizations

- Bad Internet routes
 - Overlay routing through an intermediate server
- Packet loss
 - Sending redundant data over multiple paths
- TCP connection set-up/teardown
 - Pools of persistent connections
- TCP congestion window and round-trip time
 - Estimates based on network latency measurements

Akamai Application Optimizations

- Slow download of embedded objects
 - Prefetch when HTML page is requested
- Large objects
 - Content compression
- Slow applications
 - Moving applications to edge servers
 - E.g., content aggregation and transformation
 - E.g., static databases (e.g., product catalogs)
 - E.g. batching and validating input on Web forms