(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 February 2001 (22.02.2001)

PCT

(10) International Publication Number WO 01/12660 A2

(51) International Patent Classification7: C07K 14/00

(21) International Application Number: PCT/JP00/05356

(22) International Filing Date: 10 August 2000 (10.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/230344	17 August 1999 (17.08.1999)	JР
11/252551	7 September 1999 (07.09.1999)	JР
11/281132	1 October 1999 (01.10.1999)	JР
11/301624	22 October 1999 (22.10.1999)	JP
11/313877	4 November 1999 (04.11.1999)	JР

- (71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

- (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

BEST AVAILABLE COPY

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAs ENCODING THESE PROTEINS

(57) Abstract: The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells expressing these DNAs and antibodies directed to these proteins.

1

DESCRIPTION

Human Proteins Having Hydrophobic

Domains and DNAs Encoding These Proteins

5

10

15

20

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, eukaryotic expressing these DNAs and antibodies directed to these proteins. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies directed to these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, the cDNAs can be utilized as gene sources for producing the proteins encoded by these cDNAs in large quantities. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantities can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibodies of the present invention can be utilized for the detection, quantification, purification and the like of the proteins of the present invention.

2

BACKGROUND ART

5

10

15

20

25

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation control, the differentiation induction, the material transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as the injection or the drip, so that they possess hidden potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like are pharmaceuticals. currently employed as In addition, secretory proteins other than those described above are undergoing clinical trials for developing their use as pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them is expected to lead to development of novel pharmaceuticals utilizing them.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters and the like in the material transport and the signal transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion

3

channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides and amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities in these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many diseases, so that isolation of new genes encoding the membrane proteins has been desired.

5

10

15

Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

In general, a secretory protein or a membrane protein possesses at least one hydrophobic domain within the protein. After synthesis on ribosomes, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, if the existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the

4

whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

5 OBJECTS OF INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells that are capable of expressing these DNAs and antibodies directed to these proteins. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

15

20

25

10

SUMMARY OF INVENTION

As the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the present invention provides a human protein having hydrophobic domain(s), namely a protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. Moreover, the present invention provides a DNA

25

encoding said protein, exemplified by a cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150, an expression vector that is capable of expressing said DNA by in vitro translation or in eukaryotic cells, a transformed eukaryotic cell that is capable of expressing said DNA and of producing said protein and an antibody directed to said protein.

10 BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03171.

Fig. 2 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03424.

Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03444.

20 Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03478.

Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03499.

		Fig.	6	il	llus	trat	.es	the
	hydrophob	oicity/hyd	lrophilicity	profile	of	the	protein	encoded
	by clone	HP03500.						
		Fig.	7	i	llus	trat	es	the
5	hydrophob	oicity/hyd	lrophilicity	profile	of	the	protein	encoded
	by clone	HP10691.						
		Fig.	8	i	llus	strat	es	the
	hydrophol	oicity/hyd	drophilicity	profile	of	the	protein	encoded
	by clone	HP10703.						
10		Fig.	9	i	llus	strat	es	the
	hydrophol	bicity/hyd	drophilicity	profile	of	the	protein	encoded
	by clone	HP10711.						
		Fig.	. 10	·	llu	stra	tes	the
	hydrophol	bicity/hy	drophilicity	profile	of	the	protein	encoded
15	by clone	HP10712.						
		Fig.	11	i	lllu	stra	tes	the
	hydropho	bicity/hy	drophilicity	profile	of	the	protein	encoded
	by clone	нрозо10.						
		Fig.	12	:	illu	stra	tes	the
20	hydropho	bicity/hy	drophilicity	profile	of	the	protein	encoded
	by clone	нр03576.	•					
		Fig.	13	:	illu	stra	tes	the
	hydropho	bicity/hy	drophilicity	profile	of	the	protein	encoded
	by clone	нР03611.						
25		Fig.	14	•	illı	ıstra	ites	the

20

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03612.

Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10407.

Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10713.

Fig. 17 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10714.

Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10716.

15 Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10717.

Fig. 20 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10718.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03745.

Fig. 22 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded

by clone HP03747.

Fig. 23 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded

by clone HP10719.

5 Fig. 24 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10720.

Fig. 25 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10721.

Fig. 26 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10725.

Fig. 27 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10727.

Fig. 28 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10728.

20 Fig. 29 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10730.

Fig. 30 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded

25 by clone HP10742.

		Fig.	31	i	llu	strat	tes .	the
	hydrophol	oicity/hydrophil	licity	profile	of	the	protein	encoded
	by clone	HP03800.				•	•	
		Fig.	32	i	llu	stra	tes	the
5	hydrophol	oicity/hydrophil	licity	profile	of	the	protein	encoded
	by clone	HP03831.						
		Fig.	33	i	llu	strat	tes	the
	hydrophol	oicity/hydrophil	licity	profile	of	the	protein	encoded
•	by clone	HP03879.						
10		Fig.	34	i	llu	strat	tes	the
	hydrophol	oicity/hydrophil	licity	profile	of	the	protein	encoded
	by clone	нр03880.						
		Fig.	35	i	llu	stra	tes	the
	hydrophol	bicity/hydrophi	licity	profile	of	the	protein	encoded
15	by clone	HP10704.						
		Fig.	36	i	llu	stra	tes	the
	hydrophol	bicity/hydrophi	licity	profile	of	the	protein	encoded
	by clone	нр10715.						
•		Fig.	37	i	llu	stra [.]	tes	the
20	hydrophol	bicity/hydrophi	licity	profile	of	the	protein	encoded
	by clone	HP10724.		•				
		Fig.	38	i	llu	stra	tes	the
	hydropho	bicity/hydrophi	licity	profile	of	the	protein	encoded
	by clone	HP10733.						
25		Fig.	39	i	llu	stra	tes	the

	hydropho	bicity/hydr	cophilicity	profile	of	the	protein	encoded
	by clone	HP10734.						,
		Fig.	40	·	llu	stra	tes	the
	hydropho	bicity/hydr	cophilicity	profile	of	the	protein	encoded
5	by clone	HP10756.						
		Fig.	41	i	llu	stra	tes	the
	hydropho	bicity/hydr	cophilicity	profile	of	the	protein	encoded
	by clone	HP03670.						
		Fig.	42	i	llu	stra	tes	the
10	hydropho	bicity/hyd	cophilicity	profile	of	the	protein	encoded
	by clone	HP03688.						
	· ·	Fig.	. 43	i	llu	stra [.]	tes	the
	hydropho	bicity/hyd	cophilicity	profile	of	the	protein	encoded
	by clone	HP03825						
15		Fig.	44	i	llu	stra	tes	the
	hydropho	bicity/hyd	rophilicity	profile	of	the	protein	encoded
	by clone	HP03877.						
		Fig.	45	i	llu	stra	tes	the
	hydropho	bicity/hyd	rophilicity	profile	of	the	protein	encoded
20	by clone	HP10765.						
		Fig.	. 46	i	.llu	stra	tes	the
	hydropho	bicity/hyd	rophilicity	profile	of	the	protein	encoded
	by clone	HP10766.						
		Ei~	47	4	11	c+×-	tes	the

hydrophobicity/hydrophilicity profile of the protein encoded

11

by clone HP10770.

5

Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10772.

Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10773.

Fig. 50 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10776.

DETAILED DESCRIPTION OF THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolating proteins from human organs, cell lines or the like, a method for 15 preparing peptides by the chemical synthesis based on the amino acid sequences of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the present invention. Among these, the method for producing 20 proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the cDNA of the present invention, and then carrying out in vitro translation using this RNA as a 25

12

template. Alternatively, incorporation of the translated region into a suitable expression vector by the method known in the art may lead to expression of a large amount of the encoded protein in prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eukaryotic cells such as veasts, insect cells, mammalian cells, etc.

5

10

15

20

25

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by incorporating the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to the promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing promoters for these RNA polymerases are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as Escherichia coli etc., a recombinant

5

10

15

20

25

expression vector in which the translated region of the cDNA of the present invention is incorporated into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation of the host cells with this expression vector, the resulting transformant is cultivated, whereby the protein encoded by the cDNA can be produced in large quantities in the microorganism. In this case, a protein fragment containing any translated region can be obtained by adding an initiation codon and a termination codon in front of and behind the selected translated region to express the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the surface of cell membrane, by incorporating the translated region of the cDNA into an expression vector for eukaryotic

14

cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells, Chinese hamster ovary CHO cells and the like, budding yeasts, fission yeasts, silkworm cells, Xenopus oocytes and the like. Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method and the like.

5

10

15

20

25

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated and purified from the culture by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or precipitation, solvent dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic

5

10

15

20

25

15

chromatography, affinity chromatography, reverse phase chromatography and the like.

The proteins of the present invention also include peptide fragments (of 5 amino acid residues or more) containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP-A 8-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are added. Accordingly, such proteins or peptides to which sugar chains are added shall also come

within the scope of the protein of the present invention.

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

5

10

15

20

25

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. The cDNAs are synthesized by using poly(A)* RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be cloned from the libraries CDNA by synthesizing an oligonucleotide on the basis of base sequences of portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known

17

in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which oligonucleotides are then used as the primers.

5

10

15

The cDNAs of the present invention are characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Tables 1 and 2 summarizes the clone number (HP number), the cell from which the cDNA clone was obtained, the total number of bases of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

						Number
		НР	Number	of amino		
SEQ	SEQ ID NO.		number	Cell	of	acid
					bases	residues
1,	11,	21	HP03171	Thymus	2042	267
2,	12,		HP03424	Liver	1433	419
3,	13,		HP03444	Kidney	1917	415
4,	14,		HP03478	Umbilical cord blood	2258	380
5,	15,	25	HP03499	Kidney	1973	585
6,	16,	26	HP03500	kidney	1606	331
7,	17,	27	HP10691	Umbilical cord blood	2380	345
8,	18,	28	HP10703	Kidney	2017	89
9,	19,	29	HP10711	Kidney	1606	406
10,	20,	30	HP10712	Kidney	1695	192
31,	41,	51	HP03010	Kidney	1551	377
32,	42,	52	HP03576	Kidney	1713	81
33,	43,	53	HP03611	Kidney	1758	487
34,	44,	54	HP03612	Kidney	1550	375
35,	45,	55	HP10407	Stomach cancer	1485	350
36,	46,	56	HP10713	Kidney	2694	667
37,	47,	57	HP10714	Umbilical cord blood	3297	464
38,	48,	58	HP10716	Umbilical cord blood	2126	470
39,	49,	59	HP10717	Kidney	1781	243
40,	50,	60	HP10718	Umbilical cord blood	1788	270
61,	71,	81	HP03745	Kidney	1376	389
62,	72,	82	HP03747	Umbilical cord blood	2392	348
63,	73,	83	HP10719	Kidney	1416	261
64,	74,	84	HP10720	Kidney	1347	222
65,	75,	85	HP10721	Kidney	2284	183

Table 2

Table						
SEQ	ID 1	NO	HP number	Cell	Number of bases	Number of amino acid residues
66,	76,	86	HP10725	Kidney	1737	262
	•	87	HP10727	-		168
68,	78,	88	HP10728	Umbilical cord blood	1855	243
69,	79,	89	HP10730	Umbilical cord blood	2530 ·	428
70,	80,	90	HP10742	Umbilical cord blood	1911	283
91,	101,	111	нр03800	Umbilical cord blood	1633	476
92,	102,	112	HP03831	Kidney	1095	226
93,	103,	113	HP03879	Kidney	1602	305
94,	104,	114	HP03880	Kidney	897	227
95,	105,	115	HP10704	Kidney	1866	441
96,	106,	116	. HP10715	Umbilical cord blood	2198	265
97,	107,	117	HP10724	Umbilical cord blood	2180	208
98,	108,	118	HP10733	Umbilical cord blood	1527	400
99,	109,	119	HP10734	Umbilical cord blood	1905	192
100,	110,	120	HP10756	Kidney	998	260
121,	131,	141	HP03670	Umbilical cord blood	1622	337
122,	132,	142	HP03688	Umbilical cord blood	2475	236
123,	133,	143	HP03825	Kidney	1739	560
124,	134,	144	HP03877	Kidney	2005	406
125,	135,	145	HP10765	Umbilical cord blood	1558	453
126,	136,	146	HP10766	Kidney	1005	59
127,	137,	147	HP10770	Kidney	969	210
128,	138,	148	HP10772	Kidney	1241	165
129,	139,	149	HP10773	Kidney	1174	162
130,	140,	150	HP10776	Kidney	1012	221

The same clones as the cDNAs of the present invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human

tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150.

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 shall come within the scope of the present invention.

5

10

15

20

25

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can

be utilized as the probes for the genetic diagnosis.

5

10

15

20

25

The antibody of the present invention can be obtained from a serum after immunizing an animal using the protein of the present invention as an antigen. A peptide that is chemically synthesized based on the amino acid sequence of the present invention and a protein expressed in eukaryotic or prokaryotic cells can be used as an antigen. Alternatively, an antibody can be prepared by introducing the above-mentioned expression vector for eukaryotic cells into the muscle or the skin of an animal by injection or by using a gene gun and then collecting a serum therefrom (JP-A 7-313187). Animals that can be used include a mouse, a rat, a rabbit, a goat, a chicken and the like. A monoclonal antibody directed to the protein of the present invention can be produced by fusing B cells collected from the spleen of the immunized animal with myelomas to generate hybridomas.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for

22

introduction of DNA).

5

10

15

20

25

Research Uses and Utilities

polynucleotides provided by the invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either at a particular constitutively or stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA in patients to identify potential sequences disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein

(such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell '75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

5

10

15

20

25

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for highthroughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

10

15

20

25

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

<u>Activity</u>

5

10

15

20

25

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol.

145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

- Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
- 15 Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology.

 20 J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a.

Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

20

5

10

15

5

10

15

20

25

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune

pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia graft-versus-host disease and autoimmune gravis, inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. conditions, in which immune suppression is (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

5

10

15

20

25

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an response already in progress or may immune induction of an immune response. preventing the functions of activated T cells may be inhibited by inducing specific suppressing T cell responses or by tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by

5

10

15

20

25

30

the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will situations of tissue, skin and organ be useful in transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. in tissue transplants, rejection of Typically, transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the cells without transmitting the corresponding immune costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant.

Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5

25

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be 10 assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have 15 been used to examine the immunosuppressive effects of CTLA4Iq fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven 20 Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases.

Many autoimmune disorders are the result of inappropriate

5

10

15

20

25

activation of T cells that are reactive against self tissue which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking antigen-specific tolerance induce of reagents may autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine encephalitis, systemic experimental autoimmune erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.

Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

5

10

15

20

25

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte

antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

5

10

15

20

25

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a

WO 01/12660

5

10

15

cytoplasmic-domain truncated portion) of an MHC class I lphachain protein and β , microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated invariant chain, protein, such as the can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

20 Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19;

36

Chapter 7, Immunologic studies in Humans); Herrmann et al.,
Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et
al., J. Immunol. 128:1968-1974, 1982; Handa et al., J.
Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol.
137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512,
1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:24882492, 1981; Herrmann et al., J. Immunol. 128:1968-1974,
1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai
et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J.
Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512,
1988; Bertagnolli et al., Cellular Immunology 133:327-341,
1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

15

20

25

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.

Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

5

25

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without 10 limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., 15 Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 20 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those

described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

5

10

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or

5

10

15

20

erythroid cells; in supporting the growth and proliferation of myeloid cells such granulocytes as monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting growth and proliferation of megakaryocytes consequently of platelets thereby allowing prevention or of various platelet disorders treatment such thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or (i.e., conjunction with ex-vivo in bone with peripheral progenitor transplantation or cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

25 Suitable assays for proliferation and

40

differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

5

10 Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New 15 York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. 20 Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New 25 York, NY. 1994; Long term bone marrow cultures in the

presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

10

15

20

25

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth

repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

5

10

15

20

25

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or

5

10

15

20

25

PCT/JP00/05356

ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel The ligament defects. and other tendon or syndrome compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be for neural cells proliferation of for useful regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral injuries, peripheral nerve such as nervous system, and localized neuropathies, neuropathy peripheral central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic

and Shy-Drager syndrome. Further lateral sclerosis, conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, disorders, head trauma and such as spinal cord cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

5

15

20

25

Proteins of the invention may also be useful to

10 promote better or faster closure of non-healing wounds,

including without limitation pressure ulcers, ulcers

associated with vascular insufficiency, surgical and

traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be

WO 01/12660

10

15

20

25

useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of

follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

5

10

15

20

25

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et

al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

5

10

15

20

25

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, and/or endothelial eosinophils, epithelial Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized example, attraction of lymphocytes, infections. For monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell

48

chemotaxis.

15

20

25

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist 5 of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those 10 described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such enhance coagulation and other hemophilias) or to as

hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

5

10

15

20

25

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen

presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

5

10

15

20

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity

51

may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, rejection, nephritis, hyperacute complement-mediated cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

5

10

15

20

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly

(such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

5

10

15

20

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body example, breast (such as, for part size or shape augmentation or diminution, change in bone form or shape); effecting biorhythms or cardiac cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other

53

nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulinlike activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

10

15

The present invention is specifically illustrated
in more detail by the following Examples, but Examples are
not intended to restrict the present invention. The basic
procedures with regard to the recombinant DNA and the
enzymatic reactions were carried out according to the
literature ["Molecular Cloning. A Laboratory Manual", Cold

54

Spring Harbor Laboratory, 1989]. Unless otherwise stated, restriction enzymes and various modifying enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the attached instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

5

15

20

25

(1) Selection of cDNAs Encoding Proteins HavingHydrophobic Domains

Human liver cDNA library (WO 98/21328) and human stomach cancer cDNA library (WO 98/21328), as well as the cDNA libraries constructed from human kidney mRNA (Clontech), human thymus mRNA (Clontech) and human umbilical cord blood mRNA were used as cDNA libraries.

Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank consisting of the full-length CDNA clones. The hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic domain. A clone that has a hydrophobic region

being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

5

10

15

20

25

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case, [35S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of T_NT rabbit reticulocyte lysate, 0.5 µl of a buffer solution (attached to the kit), 2 µl of an amino acid mixture (without methionine), 2 µl of [35S]methionine (Amersham) (0.37 MBq/µl), 0.5 µl of T7 RNA polymerase, and 20 U of RNasin. The experiment in the presence of a membrane system was carried out by adding 2.5 µl of a canine pancreas microsome fraction (Promega) to the reaction system. To 3 µl of the reaction solution was added 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis.

56

The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression in COS7

5

10

15

20

25

Escherichia coli cells harboring the expression vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2 x YT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added thereto, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10⁵ COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Trishydrochloride (pH 7.5) (TDMEM). A suspension containing 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 µl of TRANSFECTAMTM (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

57

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [35S]cysteine or [35S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Preparation of Antibodies

5

10

15

20

25

A plasmid vector containing the cDNA of the present invention was dissolved in a phosphate buffer solution (PBS: 145 mM NaCl, 2.68 mM KCl, 8.09 mM Na2HPO4, 2 mM KH_2PO_4 , pH 7.2) to a concentration of 2 $\mu g/\mu l$. 25 μl each (a total of 50 μ l) of the thus-prepared plasmid solution in PBS was injected into the right and left musculi quadriceps femoris of three mice (ICR line) using a 26 guage needle. After similar injections were repeated for one month at intervals of one week, blood was collected. The collected blood was stored at 4°C overnight to coagulate the blood, and then centrifuged at 8,000 x g for five minutes to obtain a supernatant. NaN, was added to the supernatant to a concentration of 0.01% and the mixture was then stored at The generation of an antibody was confirmed by 4°C. immunostaining of COS7 cells into which the corresponding vector had been introduced or by Western blotting using a

58

cell lysate or a secreted product.

(5) Clone Examples

<HP03171> (SEQ ID NOS: 1, 11 and 21)

Determination of the whole base sequence of the 5 cDNA insert of clone HP03171 obtained from cDNA library of human thymus revealed the structure consisting of a 90-bp 5'-untranslated region, a 804-bp ORF, and a 1148-bp 3'untranslated region. The ORF encodes a protein consisting of 267 amino acid residues and there existed one putative 10 transmembrane domain. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight 15 of 30,234 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 38 kDa. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Thr-Thr at position 169).

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to chicken putative transmembrane protein E3-16 (Accession No. AAB70816). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and chicken putative

20

25

transmembrane protein E3-16 (GG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.0% in the entire region.

Table 3

5

60

HP RATRRINKRGAKNCNAIRHFENTFVVETLICGVV

.... * ** * ** ***** * * *****

GG KEAMKGIQKREAVNCRKIRHFENRFAMETLICEQ

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL036384) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03424> (SEQ ID NOS: 2, 12 and 22)

Determination of the whole base sequence of the

cDNA insert of clone HP03424 obtained from cDNA library of
human liver revealed the structure consisting of a 4-bp 5'untranslated region, a 1260-bp ORF, and a 169-bp 3'untranslated region. The ORF encodes a protein consisting of
419 amino acid residues and there existed a putative
secretory signal at the N-terminus and one putative
transmembrane domain in the inner portion. Figure 2 depicts
the hydrophobicity/hydrophilicity profile, obtained by the
Kyte-Doolittle method, of the present protein. In vitro
translation resulted in formation of a translation product
of 50 kDa that was somewhat larger than the molecular weight

61

of 46,375 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein six sites at which N-glycosylation may occur (Asn-Ala-Ser at position 29, Asn-Val-Thr at position 40, Asn-Cys-Thr at position 112, Asn-Lys-Ser at position 135, Asn-Ile-Ser at position 172 and Asn-Phe-Ser at position 189). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from aspartic acid at position 28.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH Table 4 shows protein (Accession No. 006003). comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 40.8% in the intermediate region of 218 amino acid residues.

20

5

10

15

Table 4

НР	MSCAGRAGPARLAALALLTCSLWPARADNASQEYYTALINVTVQEPGRGAPLTFRIDRGR
HP	YGLDSPKAEVRGQVLAPLPLHGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTFKEKIS
НР	RAAFHNAVAVVIYNNKSKEEPVTMTHPGTGDIIAVMITELRGKDILSYLEKNISVQMTIA
	.* ** *.*. *.*. *.*
DM	MQLEKMQIKGKTRNIAAVITYQNIGQDLSLTLDKGYNVTISI
НР	VGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAA
	* **.*.****** *. *****.****
DM	EGRRGVRTISSLNRTSVLFVSISFIVDDILCWLIFYYIQRFRYMQAKDQQSRNLCSV
НР	KKAISKLTTRTVKKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEI
	**** **. * .* *. * * * * * **. **. **
DM	KKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKHEFHKNCIDPWLIE
НР	CTCPMCKLNILKALGIVPNLPCTDNVAFDMERLTRTQAVNRRSALGDLAGDNSLGLEPL
	********* * *
DM	RTCPMCKLDVLKFYGYVVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQPLQPL
·	
НР	TSGISPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLNANEVE
	.**
DM	ASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMPHAITA

PCT/JP00/05356

HP F

DM HQVTDV

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA082118) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03444> (SEQ ID NOS: 3, 13 and 23)

Determination of the whole base sequence of the cDNA insert of clone HP03444 obtained from cDNA library of human kidney revealed the structure consisting of a 209-bp 5'-untranslated region, a 1248-bp ORF, and a 460-bp 3'-untranslated region. The ORF encodes a protein consisting of 415 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was somewhat smaller than the molecular

64

weight of 45,691 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 42 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 24.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human type I procollagen C-proteinase enhancer protein (Accession No. BAA23281). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human type I procollagen C-proteinase enhancer protein (CP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.6% in the entire region.

20 Table 5

5

10

15

HP MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYP

* **. * * **** *** . . *****. . **

CP MLPAATASLLGPLLTACALLPFA-Q-GQTPNYTRPVFLCGGDVKGESGYVASEGFPNLYP

PCT/JP00/05356

	HP	PNSKCTWKITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGH-ANGQRIGRFCGTFRPG
		.*.***** *.**** *.*****.
	CP	${\tt PNKECIWTITVPEGQTVSLSFRVFDLELHPACRYDALEVFAGSGTSGQRLGRFCGTFRPA}$
5	HP	${\tt ALVSSGNKMMVQMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDR}$
		.****,**.*.*.***.**** * *******
	CP	PLVAPGNQVTLRMTTDEGTGGRGFLLWYSGRATSGTEHQFCGGRLEKAQGTLTTPNWPES
	HP	DYPAGVTCVWHIVAPKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGD
10		***, *, . * ***, ** , *, *, *, *****, *, *, ***** *, *****, *, **, *
	СР	${\tt DYPPGISCSWHIIAPPDQVIALTFEKFDLEPDTYCRYDSVSVFNGAVSDDSRRLGKFCGD}$
	HP	SPPAPIVSERNELLIQFLSDLSLTADGFIGHYIFRPKKLPTTTE
		. *. * ** **** ** **** . * *
15	СР	${\tt AVPGSISSEGNELLVQFVSDLSVTADGFSASYKTLPRGTAKEGQGPGPKRGTEPKVKLPP}$
	НР	QPVTTTFPVTTGLKTTVALCQQKCRRTGTLEGNYCSSDFVLAGTVITTITRDG-SLHATV
		* * ** * ** * . *
	ĊP	KSQPPEKTEESPSAPDAPTCPKQCRRTGTLQSNFCASSLVVTATVKSMVREPGEGLAVTV
20 .		
	HP	SIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRRGLNYIIMGQVGEDGRGKIM-PNSF
		.. **.*. * * * * **** * * * *. *
	СР	SLIGAYKTGGLDLPSPPTGASLKFYVPCKQCPPMKKGVSYLLMGQV-EENRGPVLPPESF

66

5

10

15

20

25

CP VVLHRPNQDQILTNLSKRKCPSQPVRAAASQD

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D78874) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03478> (SEQ ID NOS: 4, 14 and 24)

Determination of the whole base sequence of the cDNA insert of clone HP03478 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 224-bp 5'-untranslated region, a 1143-bp ORF, and a 891-bp 3'-untranslated region. The ORF encodes a protein consisting of 380 amino acid residues and there existed five putative transmembrane domains. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the

5

10

protein was similar to Halocynthia roretzi HrPET-1 protein (Accession No. BAA81907). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Halocynthia roretzi HrPET-1 protein (HR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.8% in the entire region.

Table 6

HR RKKNLVGRPTTLTKFQETFWRFAFYLTSFFYGLYVMYDQECVWQTEKCFSNYPEDHVLSQ

	HP Q-YWYYMIELSFYWSLLFSIASDVKRKDFKEQIIHHVATIILISFSWFANYIRAGTLIMA
,	. *. **. *** ****** * . ***. *. *.
	HR KIYYYYLIELAFYSATTLTQFFDVKRKDFWEMFIHHIVTIILLCGSYTLNYTKMGAFILV
5	HP LHDSSDYLLESAKMFNYAGWKNTCNNIFIVFAIVFIITRLVILPFWILHCTLVYPLELYP
	.***.** *** .** * ** *. * ******.**.
	HR VHDSADFYIEFAKMGKYANNSLVTNVGFISFTISFFLSRLVILPLWIVPSIWFYGIYTYN
	HP AFFGYYFFNSMMGVLQLLHIFWAYLILRMAHKFITGKLVEDERSDREETESSEGEEAAAG
10	********************************
	HR CAMA-WLFCALL-ILQLLHFYWFSHIVKAAYASILVGVIERDTRSESEDSSAEDETAKYS
	HP GGAKSRPLANGHPILNNNHRKND
	*.
15	HR VGSGDYTESNGIHKRVVTAR

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T27334) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

Determination of the whole base sequence of the cDNA insert of clone HP03499 obtained from cDNA library of human kidney revealed the structure consisting of a 129-bp 5'-untranslated region, a 1758-bp ORF, and a 86-bp 3'untranslated region. The ORF encodes a protein consisting of 585 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 63 kDa that was almost identical with the molecular weight of 63,987 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 82 kDa. In addition, there exist in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-Ile-Thr at position 89, Asn-Glu-Thr at position 106, Asn-Ala-Thr at position 189, Asn-Arg-Thr at position 220 and Asn-Ala-Thr at position 315).

5

10

15

The search of the protein database using the amino 20 acid sequence of the present protein revealed that the protein was similar to Chinese hamster hypothetical protein 2BE2121 (Accession No. A30227). Table 7 shows comparison between amino acid sequences of the human protein present invention (HP) Chinese the and 25 hypothetical protein 2BE2121 (CH). Therein, the marks of -,

*, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.8% in the entire region.

Table 7

5

25

HP MVCREQLSKNQVKWVFAGITCVSVVVIAAIVLAITLRRPGCELEACSPDADMLDYLLSLG 10 ..***.*. . CH **SWSENILDYFLRNS** HP QISRRDALEVTWYHAANSKKAMTAALNSNITVLEADVNVEGLGTANETGYPIMAHPPTIY CH QITTEDGAEIIWYHAANHKSQMQEALRSAAHMIEADVLLPS--DGSEHGQPIMAHPPEMN 15 HP SDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRQLTEEGKVRRPIWINADILKGP CH SDNTLQEWLAEVM-KSNKGIKLDFKSLAAARASMLFLDNVKQH--LQCPVWMNADVLPGP 20 HP NMLISTEVNATQFLALVQEKYPKATLSPGWTTFYMSTSPNRTYTQAMVEKMHELVGGVPQ CH NG-SSKVVDAKAFLDTVTSFFPDVTFSLGWTTGWHPEKVNEGYSWTMVKEMDYICSGLTQ

71

HP IFEPLLSQFKQLALNATRKPMYYTGGSLIPLLQLPGDDGLNVEWLVPDVQGSGKTATMTL

5 *.** .***

20

25

CH ILEPQSHEFKQAIGI

Furthermore, the search of the GenBank using the

base sequences of the present cDNA has revealed the

registration of sequences that shared a homology of 90% or

more (for example, Accession No. R92398) among ESTs. However,

since they are partial sequences, it can not be judged

whether or not they encode the same protein as the protein

of the present invention.

<HP03500> (SEQ ID NOS: 6, 16 and 26)

Determination of the whole base sequence of the cDNA insert of clone HP03500 obtained from cDNA library of human kidney revealed the structure consisting of a 134-bp 5'-untranslated region, a 996-bp ORF, and a 476-bp 3'-untranslated region. The ORF encodes a protein consisting of 331 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 6 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro

WO 01/12660

5

20

25

PCT/JP00/05356

translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 37,694 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the amino acid sequence of the protein matched with that of human hypothetical protein (Accession No. AAC05803) in which a region of 62 amino acid residues from glycine at position 88 to lysine at position 149 was deleted.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA340631) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10691> (SEQ ID NOS: 7, 17 and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10691 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 246-bp 5'-untranslated region, a 1038-bp ORF, and a 1096-bp 3'-untranslated region. The ORF encodes a protein consisting of 345 amino acid residues and there existed at least two putative transmembrane domains. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the

10

15

Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human BB1 protein (Accession No. AAB37433). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human BB1 protein (BB). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The C-terminal region of 215 amino acid residues of the present protein shared a homology of 81.9% with the N-terminal region of human BB1 protein.

Table 8

BB

HP MSPEEWTYLVVLLISIPIGFLFKKAGPGLKRWGAAAVGLGLTLFTCGPHTLHSLVTILGT.

20

25

HP WALIQAQPCSCHALALAWTFSYLLFFRALSLLGLPTPTPFTNAVQLLLTLKLVSLASEVQ

MASGFSKGPTLGLLRRALPDGDT-QLQLLLRGNHDRPVLPLPHLPGLAGAA

5

10 HP NIDCYSTDFCVRVRDGMRYWNMTVQWWLAQYIYKSAPARSYVLRL

BB NIDCYSTDFCVRVRDGMRYWNMTVQWWLAQYIYKSAPARSYVLRTAWTMLLSAYWHGLHP

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W48653) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10703> (SEQ ID NOS: 8, 18 and 28)

Determination of the whole base sequence of the CDNA insert of clone HP10703 obtained from cDNA library of human kidney revealed the structure consisting of a 359-bp

WO 01/12660

5

10

15

20

25

5'-untranslated region, a 270-bp ORF, and a 1388-bp 3'-untranslated region. The ORF encodes a protein consisting of 89 amino acid residues and there existed one putative transmembrane domain. Figure 8 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 18 kDa that was larger than the molecular weight of 10,469 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T08343) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10711> (SEQ ID NOS: 9, 19 and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10711 obtained from cDNA library of human kidney revealed the structure consisting of a 29-bp 5'-untranslated region, a 1221-bp ORF, and a 356-bp 3'-untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the N-terminus. Figure 9 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 44 kDa that was almost identical with the molecular weight of 43,836 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein seven sites at which N-glycosylation may occur (Asn-Ser-Thr at position 65, Asn-Trp-Ser at position 95, Asn-Val-Ser at position 134, Asn-Ile-Thr at position 159, Asn-Gly-Ser at position 187, Asn-Arg-Ser at position 230 and Asn-Leu-Thr at position 333). Application of the (-3,-1)rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 36.

5

10

15

20

25

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse kidney predominant protein (Accession No. BAA92527). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse kidney predominant protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The

both proteins shared a homology of 79.9% in the entire region.

Table 9

5

78

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA362394) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10712> (SEQ ID NOS: 10, 20 and 30)

Determination of the whole base sequence of the cDNA insert of clone HP10712 obtained from cDNA library of human kidney revealed the structure consisting of a 52-bp 5'-untranslated region, a 579-bp ORF, and a 1064-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed four putative transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse calcium channel gamma 5 subunit (Accession No. CAB86387). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse calcium channel gamma 5 subunit (MM). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 75.0% in the entire region.

Table 10

20

. 80

HS HSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGFTLMFWCEFTASFLLFLNAIS

MM RSRRKWAIGSYLLLVAFILSSGGLLTFIILLKNQINLLGFTLMFWCEFTASFLFFLNAAS

5

HS GLHINSITHPWE

*****. *. **.

MM GLHINSLTQPWDPPAGTLAYRKRGYDGTSLI

10

15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA910339) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03010> (SEQ ID NOS: 31, 41 and 51)

Determination of the whole base sequence of the

CDNA insert of clone HP03010 obtained from cDNA library of
human kidney revealed the structure consisting of a 97-bp

5'-untranslated region, a 1134-bp ORF, and a 320-bp 3'untranslated region. The ORF encodes a protein consisting of
377 amino acid residues and there existed at least eight

putative transmembrane domains. Figure 11 depicts the

81

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 42 kDa that was almost identical with the molecular weight of 41,462 predicted from the ORF as well as a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana hypothetical protein (Accession No. AAC34490). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana hypothetical protein (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 42.0% in the entire region other than the N-terminal region.

20

5

10

15

Table 11

 $HP\ MDSALSDPHNGSAEAGGPTNSTTRPPSTPEGIALAYGSLLLMALLPIFFGALRSVRCARG$

* * *.

	HP	${\tt KNASDMPETITSRDAARFPIIASCTLLGLYLFFKIFSQEYINLLLSMYFFVLGILALSHT}$
		** * *** * **.*. *
	AT	VKDTPPTETMSKEHAMRFPLVGSAMLLSLFLLFKFLSKDLVNAVLTAYFFVLGIVALSAT
5		·
	ΗР	ISPFMNKFFPASFPNRQYQLLFTQGSGENKEEIINYEFDTKDLVCLGLSSIVGVWYLLRK
		. * *
	AT	LLPAIRRFLPNPWNDNLIVWRFPYFKSLEVEFTKSQVVAGIPGTFFCAWYAWKK
10	НР	HWIANNLFGLAFSLNGVELLHLNNVSTGCILLGGLFIYDVFWVFGTNVMVTVAKSFEAPI
		. *. **. *. *. *. *. * * ** **
	ΑT	HWLANNILGLSFCIQGIEMLSLGSFKTGAILLAGLFFYDIFWVFFTPVMVSVAKSFDAPI
	НР	KLVFPQDLLEKGLEANNFAMLGLGDVVIPGIFIALLLRFDISLKKNTHTYFYTSFAAYIF
15		**. **
	AT	KLLFPTGDALRPYSMLGLGDIVIPGIFVALALRFDVSRRRQPQ-YFTSAFIGYAV
	НР	${\tt GLGLTIFIMHIFKHAQPALLYLVPACIGFPVLVALAKGEVTEMFSYEESNPKDPAAVTES}$
		*. *** .*. *. ******* ***
20	AT	GVILTIVVMNWFQAAQPALLYIVPAVIGFLASHCIWNGDIKPLLAFDESKTEE-ATTDES
	HP	KEGTEASASKGLEKKEK
		**
	ΑT	KTSEEVNKAHDE

83

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA380429) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

25

<HP03576> (SEQ ID NOS: 32, 42 and 52)

10 Determination of the whole base sequence of the cDNA insert of clone HP03576 obtained from cDNA library of human kidney revealed the structure consisting of a 88-bp 5'-untranslated region, a 246-bp ORF, and a 1379-bp 3'untranslated region. The ORF encodes a protein consisting of 15 81 amino acid residues and there existed two putative transmembrane domains. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product 20 of 20 kDa that was larger than the molecular weight of 9,178 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human vacuolar proton ATPase 9 kDa (Accession No. NP 003936). Table 12 shows the comparison

84

between amino acid sequences of the human protein of the present invention (HP) and human vacuolar proton ATPase 9 kDa (VP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 71.2% in the entire region.

10 Table 12

HP MTAHSFALPVIIFTTFWGLVGIAGPWFVPKGPNRGVIITMLVATAVCCYLFWLIAILAQL

VP MAYHGLTVPLIVMSVFWGFVGFLVPWFIPKGPNRGVIITMLVTCSVCCYLFWLIAILAQL

15

5

HP NPLFGPQLKNETIWYVRFLWE

VP NPLFGPQLKNETIWYLKYHWP

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W22566) among ESTs. However, since they are partial sequences, it can not be judged

10

15

20

25

whether or not they encode the same protein as the protein of the present invention.

<HP03611> (SEQ ID NOS: 33, 43 and 53)

Determination of the whole base sequence of the cDNA insert of clone HP03611 obtained from cDNA library of human kidney revealed the structure consisting of a 189-bp 5'-untranslated region, a 1464-bp ORF, and a 105-bp 3'untranslated region. The ORF encodes a protein consisting of 487 amino acid residues and there existed eleven putative depicts the Figure 13 transmembrane domains. hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human cystine/glutamate transporter (Accession No. BAA82628). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human cystine/glutamate transporter (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

of 43.8% in the entire region other than the N-terminal region.

Table 13 5 HP MGDTGLRKRREDEKSIQSQEPKTTSLQKELGLISGISIIVGTIIGS *.... *.... *... CG MVRKPVVSTISKGGYLQGNVNGRLPSLGNKEPPGQEKVQLKRKVTLLRGVSIIIGTIIGA HP GIFVSPKSVLSNTEAVGPCLIIWAACGVLATLGALCFAELGTMITKSGGEYPYLMEAYGP 10 CG GIFISPKGYLQNTGSVGMSLTIWTVCGYLSLFGALSYAELGTTIKKSGGHYTYILEVFGP HP IPAYLFSWASLIVIKPTSFAIICLSFSEYVCAPFYVGCKPPQIVVKCLAAAAILFISTVN 15 CG LPAFVRVWVELLIIRPAATAVISLAFGRYILEPFFIQCEIPELAIKLITAVGITVVMVLN HP SLSVRLGSYVQNIFTAAKLVIVAIIIISGLVLLAQCNTKNFDNSFEGAQLSVGAISLAFY 20 CG SMSVSWSARIQIFLTFCKLTAILIIIVPGVMQLIKGQTQNFKDAFSGRDSSITRLPLAFY HP NGLWAYDGWNQLNYITEELRNPYRNLPLAIIIGIPLVTACYILMNVSYFTVMTATELLQS CG YGMYAYAGWFYLNFVTEEVENPEKTIPLAICISMAIVTIGYVLTNVAYFTTINAEELLLS HP QAVAVTFGDRVLYPASWIVPLFVAFSTIGAANGTCFTAGRLIYVAGREGHMLKVLSYISV

- - HP ISKPITMHLQMLMEVVPPEEDPE
 - .*. **. **...***
- 15 CG MSEKITRTLQIILEVVPEEDKL

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R07056) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

88

Determination of the whole base sequence of the cDNA insert of clone HP03612 obtained from cDNA library of human kidney revealed the structure consisting of a 153-bp 5'-untranslated region, a 1128-bp ORF, and a 269-bp 3'untranslated region. The ORF encodes a protein consisting of 375 amino acid residues and there existed seven putative domains. transmembrane Figure 14 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 39 kDa that was somewhat larger than the molecular weight of 37,930 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human monocarboxylate transporter (Accession No. AAC70919). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human monocarboxylate transporter (MC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the N-terminal region of 192 amino acid residues.

5

10

15

WO 01/12660

Table 14

НР	MTPQPAGPPDGGWGWVVAAAAFAINGLSYGLLRSLGLAFPDLAEHFDRSAQDTAW
	.*. ********.*. *. *. * * * **
MC	MPPMPSAPPVHPPPDGGWGWIVVGATFISIGFSYAFPKAVTVFFKEIQQIFHTTYSEIAW
НР	ISALALAVQQAASPVGSALSTRWGARPVVMVGGVLASLGFVFSAFASGLLHLYLGLGLLA
	. * *. **. * * . * *
MC	ISSIMLAVMYAGGPVSSVLVNKYGSRPVVIAGGLLCCLGMVLASFSSSVVQLYLTMGFIT
HP	GFGWALVFAPALGTLSRYFSRRRVLAVGLALTGNGASSLLLAPALQLLLDTFGWRGALLL
	*. * * ** * ** * * * ** * * * ** * *
MC	GLGLAFNLQPALTIIGKYFYRKRPMANGLAMAGNPVFLSSLAPFNQYLFNTFGWKGSFLI
	·
НР	LGAITLHLTPCGALLLPLVLPGDPPAPPRSPLAALGLSLFTRRAFSIFALGTALVGGGYF
	**. *. *. **
MC	LGSLLLNACVAGSLMRPLGPNQTTSKSKNKTGKTEDDSSPKKIKTKKSTWEKVNKYLDFS
	·
НР	VPYVHLAPRFRPGPGGIRSSAGGGRGCDGGCGRPAGLRVAGRPRLGAPPAAAGRIRGSDW
МС	LFKHRGFLIYLSGNVIMFLGFFAPIIFPAPYAKDQGIDEYSAAFLLSVMAFVDMFARPSV
0	
ЦЪ	AGAVGGGAGARGGRRRELGGSPAGRGCGLWAERGELRPAGFRCTPRAGGRRRCGAGHRAG
ın	
MC	CLIANGENT DDDIOVEECEATMENOVOHI I CDI AODVEGI VI VAVEEGI GEGCUCCVI EE
MU	GLIANSKYIRPRIQYFFSFAIMFNGVCHLLCPLAQDYTSLVLYAVFFGLGFGSVSSVLFE

90

HP DDADEPRGAPGPSPVRLPKG

MC TLMDLVGAPRFSSAVGLVTIVECGPVLLGPPLAGKLVDLTGEYKYMYMSCGAIVVAASVW

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI742291) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10407> (SEQ ID NOS: 35, 45 and 55)

Determination of the whole base sequence of the cDNA insert of clone HP10407 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 100-bp 5'-untranslated region, a 1053-bp ORF, and a 332-bp 3'-untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed at least four putative transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the

protein was longer by 35 amino acid residues at the N-terminus than human hypothetical protein (Accession No. CAB43375).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of a clone beginning from the 117th base of the present cDNA (Accession No. AL050274).

<HP10713> (SEQ ID NOS: 36, 46 and 56)

Determination of the whole base sequence of the 10 cDNA insert of clone HP10713 obtained from cDNA library of human kidney revealed the structure consisting of a 79-bp 5'-untranslated region, a 2004-bp ORF, and a 611-bp 3'untranslated region. The ORF encodes a protein consisting of 667 amino acid residues and there existed nine putative 15 transmembrane domains. 16 Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse retinoic acid-responsive protein (Accession No. AAC16016). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse retinoic acid-

responsive protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.1% in the entire region.

Table 15

5

	HР	SKGLQSSYSEEYLKNLLCKKKLGSSYH-ISKHGFLSWAKVCLKHCI I IPQPGFHLPLKLV
		*. ***. ***. ***. ***. * . * . **
	MM	SQGLQTSYSEKYLRTLLCPKKLDSCSHPASKRSLLSRAWAFSHHSIYTPQPGFRLPLKLV
5	HP	LSATLTGTAIYQVALLLLVGVVPTIQKVRAGVTTDVSYLLAGFGIVLSEDKQEVVELVKH
		·*************************************
	ММ	${\tt ISATLTGTATYQVALLLLVSVVPTVQKVRAGINTDVSYLLAGFGIVLSEDRQEVVELVKH}$
	HP	${\tt HLWALEVCYISALVLSCLLTFLVLMRSLVTHRTNLRALHRGAALDLSPLHRSPHPSRQAI}$
10		***. *. ******** ***. *. ***. ***. ******
	MM	${\tt HLWTVEACYISALVLSCASTFLLLIRSLRTHRANLQALHRGAALDLDPPLQSIHPSRQAI}$
	HP	${\tt FCWMSFSAYQTAFICLGLLVQQIIFFLGTTALAFLVLMPVLHGRNLLLFRSLESSWPFWL}$
		· ****. ***** ******. ******. *****. *. *
15	MM	VSWMSFCAYQTAFSCLGLLVQQVIFFLGTTSLAFLVFVPLLHGRNLLLLRSLESTWPFWL
	HP	TLALAVILQNMAAHWVFLETHDGHPQLTNRRVLYAATFLLFPLNVLVGAMVATWRVLLSA
		*. *******. **. **. **. *. *. *****. *.
	MM	TVALAVILQNIAANWIFLRTHHGYPELTNRRMLCVATFLLFPINMLVGAIMAVWRVLISS
20		
	HP	LYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSLLLQAQSLLPR
		, ******* ***, ***, ***, **, ******
	MM	LYNTVHLGQMDLSLLPQRAASLDPGYHTYQNFLRIEASQSHPGVIAFCALLLHAPSPQPR
25	HP	TMAAPQDSLRPGEEDEGMQLLQTKDSMAKGARPGASRGRARWGLAYTLLHNPTLQVFRKT

94

HP ALLGANGAQP

5 ** , *. .

20

25

MM ALTSAKANGTQP

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI760170) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10714> (SEQ ID NOS: 37, 47 and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10714 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 82-bp 5'-untranslated region, a 1395-bp ORF, and a 1820-bp 3'-untranslated region. The ORF encodes a protein consisting of 464 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

vitro translation resulted in formation of a translation product of 49 kDa that was somewhat smaller than the molecular weight of 52,340 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 52 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ala-Thr at position 164 and Asn-Asp-Ser at position 320). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from threonine at position 22.

5

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA861134) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10716> (SEQ ID NOS: 38, 48 and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10716 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 60-bp 5'-untranslated region, a 1413-bp ORF, and a 653-bp 3'-untranslated region. The ORF encodes a protein consisting of 470 amino acid residues and there existed one

96

putative transmembrane domain at the N-terminus. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 61 kDa that was larger than the molecular weight of 52,086 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein CGI-90 (Accession No. AAD34085). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein CGI-90 (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the entire region.

20 Table 16

HP MSRLGALGGARAGLGLLLGTAAGLGFLCLLYSQRWKRTQRHGRSQSLPNSLDYTQTSDPG

HP RHVMLLRAVPGGAGDASVLPSLPREGQEKVLDRLDFVLTSLVALRREVEELRSSLRGLAG

5

10

10

15

HP EIVGEVRCHMEENQRVARRRRFPFVRERSDSTGSSSVYFTASSGATFTDAESEGGYTTAN

CG	MALAARLWRLLPFRRGAAPGSRLPA
НР .	AESDNERDSDKESEDGEDEVSCETVKMGRKDSLDLEEEAASGASSALEAGGSSGLEDVLP
	.**
CG	GPSGSRGIAAPARFRGFEVMGNPGTFNRGLLLSALSYLGFETYQVISQAAVVHATAKVEE
HP	LLQQADELHRGDEQGKREGFQLLLNNKLVYGSRQDFLWRLARAYSDMCELT-EEVSEKKS
	.*.*** ** .* .*** . ******* .**
CG	ILEQADYLYESGETEKLYQLLTQYKESEDAELLWRLARASRDVAQLSRTSEEEKKL
HP	YALDGKEEAEAALEKGDESADCHLWYAVLCGQLAEHESIQRRIQSGFSFKEHVDKAIALQ
	* *. **** * * ***

CG LVYEALEYAKRALEKNESSFASHKWYAICLSDVGDYEGIKAKIANAYIIKEHFEKAIELN

HP PENPMAHFLLGRWCYQVSHLSWLEKKTATALLESPLSATVEDALQSFLKAEELQPGFSKA

CG PKDATSIHLMGIWCYTFAEMPWYQRRIAKMLFATPPSSTYEKALGYFHRAEQVDPNFYSK

98

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA852295) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10717> (SEQ ID NOS: 39, 49 and 59)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10717 obtained from cDNA library of human kidney revealed the structure consisting of a 73-bp 5'-untranslated region, a 732-bp ORF, and a 976-bp 3'untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed two putative domains. Figure 19 depicts the transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was larger than the molecular weight of 26,270 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI478174) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

99

encode the same protein as the protein of the present invention.

<HP10718> (SEQ ID NOS: 40, 50 and 60)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10718 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 86-bp 5'-untranslated region, a 813-bp ORF, and a 889-bp 3'-untranslated region. The ORF encodes a protein consisting of 270 amino acid residues and there existed three putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was smaller than the molecular weight of 31,116 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y53C10A (Accession No. CAA22139). Table 17 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y53C10A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the

present invention, respectively. The both proteins shared a homology of 54.8% in the entire region other than the N-terminal region.

5 Table 17

10

25

HP MAGAEDWPGQ

CE MTSSSAASSSTTTSSTMMPDENECLKKEEERFKSPDPAPTLDEEVDIDTLPSMLEDDPNG

HP QLELDEDEASCCRWGAQHAGARELAALYSPGKRLQEWCSVILCFSLIAHNLVHLLLLARW

CE NVVECDLGFKGPRWGPQHAGAKKLASMYSKEKRLQEKVSLFAAIFLFSIVFIN-LLLS-W

HP EDT--PLVILGVVAGALIADFLSGLVHWGADTWGSVELPIVGKAFIRPFREHHIDPTAIT

CE ESSIWVSVLVSAVLGIMTADFASGLVHWAADTFGSVE-TWFGRSFIRPFREHHVDPTAIT

HP RHDFIETNGDNCLVTLLPLLNMAYKFRTHSPEALEQ--LYPWECFVFCLIIFGTFTNQIH

CE RHDIVEVNGDNCMLCVGPLLWILYQQMTYQRDAITQWATFHW--YILLLGIYVALTNQIH

HP KWSHTYFGLPRWVTLLQDWHVILPRKHHRIHHVSPHETYFCITTGWLNYPLEKIGFWRRL

CE KWSHTYFGLPTWVVFLQKAHIILPRSHHKIHHISPHACYYCITTGWLNWPLEYIGFWRKM

101

HP EDLIQGLTGEKPRADDMKWAQKIK

* ** . **. **. *** *..

CE EWVVTTVTGMQPREDDLKWATKLQ

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA176107) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, the region from position 466 to position 778 of the cDNA of the present invention matched with the region from position 2 to position 314 of human ubiquitin-conjugating enzyme E2 variant 1 (Accession NO. NM_003349) although no match was observed in another region.

<HP03745> (SEQ ID NOS: 61, 71 and 81)

20

25

15

Determination of the whole base sequence of the cDNA insert of clone HP03745 obtained from cDNA library of human kidney revealed the structure consisting of a 99-bp 5'-untranslated region, a 1170-bp ORF, and a 107-bp 3'-untranslated region. The ORF encodes a protein consisting of 389 amino acid residues and there existed at least nine

102

putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 7 (Accession No. NP_003974). Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 7 (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.0% in the N-terminal region of 397 amino acid residues.

Table 18

HP

20

25

5

10

15

MDRGEKIQLKRVFGYWWGTSFLLINIIG

*..***. .. *.*.. *.**

SC MEAREPGRPTPTYHLVPNTSQSQVEEDVSSPPQRSSETMQLKKEISLLNGVSLVVGNMIG

		. ********	. *.** ***	** **	*** * *
	SC	SGIFVSPKGVLŸH	Γ-ASYGMSLIVWAIGG	LFSVVGALCYAELGT	TITKSGASYAYILEAF
	НР	GSTVAFLNLWTSL	FLGSGVVAG-QALLLA	EYSIQPFFPSCSVPK	LPKKCLALAMLWIVGI
5		*****.**	**	. * *** ****. *	* ** *
	SC	GGFIAFIRLWVSL	LVVEPTGQAIIAITFA	NYIIQPSFPSCDPPY	LACRLLAAACICLLTF
	НР	LTSRGVKEVTWLQ	IASSVLKVSILSFISL	TGVVFL I RGKKENVE	RFQNAFDAELPDISHL
		** **	** * * .	*.* * . *	. **. ** * *
10	SC	VNCAYVKWGTRVQ	DTFTYAKVVALIAIIV	MGLVKLCQGHSE	HFQDAFEGSSWDMGNL
	HP	IQAIFQGYFAYSG	ELKKPRT	TIPKCIFTALPLVTV	VYLLVNISYLTVLTPR
		* *.**	*, *, *	* **.**.	.*.*.* ***
	SC	SLALYSALFSYSG	WDTLNFVTEEIKNPER	NLPLAIGISMPIVTL	.IYILTNVAYYTVLNIS
15					
	HP	EILSSDAVAITWA	DRAFPSLAWIMPFAIS	TSLFSNLLISIFKSS	RPIYLASQEGQLPLLF
		******* * . *	****.*.	* ** *** *	**, **, ** *,
	SC	DVLSSDAVAVTFA	DQTFGMFSWTIPIAVA	LSCFGGLNASIFASS	RLFFVGSREGHLPDLL
20	HP	NTLNSHS-SPFTA	VLLLVTLGSLAIILTS	LIDLINYIFFTGSLV	VSILLMIGILRRRYQEF
		**	. *. *	****. *	* * * * **
	SC	SMIHIERFTPIPA	LLFNCTMALIYLIVED	VFQLINYFSFSYWF	FVGLSVVGQLYLRWKEF
	иD	NLSIPYKVKLDF			
٥٢	ın	The state of the s			
25		* * *			

104

SC KRPRPLKLSVFFPIVFCICSVFLVIVPLFTDTINSLIGIGIALSGVPFYFMGVYLPESRR

<HP03747> (SEQ ID NOS: 62, 72 and 82)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03747 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 21-bp 5'-untranslated region, a 1047-bp ORF, and a 1324-bp 3'-untranslated region. The ORF encodes a protein consisting of 348 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 22 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,685 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from proline at position 39.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human endoplasmic reticulum glycoprotein (Accession No. NP_006807). Table 19 shows the comparison between amino acid sequences of the human protein

of the present invention (HP) and human endoplasmic reticulum glycoprotein (ER). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.1% in the entire region.

Table 19

10

- ER MAAEGWIWRWGWGRRCLGRPGLLGPGPGPTTPLFLLLL-LGSVTADITDGNS-EHLK
- HP VHFKIHGQGKKNLHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVF

 ****. ** *********. *. ******. *. * **. * **. * ****

 ER VHFKVHGTGKKNLHGDGIALWYTRDRLVPGPVFGSKDNFHGLAIFLDTYPNDET-TERVF

106

15 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262924) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10719> (SEQ ID NOS: 63, 73 and 83)

Determination of the whole base sequence of the cDNA insert of clone HP10719 obtained from cDNA library of human kidney revealed the structure consisting of a 54-bp

5'-untranslated region, a 786-bp ORF, and a 576-bp 3'untranslated region. The ORF encodes a protein consisting of
261 amino acid residues and there existed a putative
secretory signal at the N-terminus and one putative
transmembrane domain in the inner portion. Figure 23 depicts
the hydrophobicity/hydrophilicity profile, obtained by the
Kyte-Doolittle method, of the present protein. In vitro
translation resulted in formation of a translation product
of 33 kDa that was larger than the molecular weight of
27,435 predicted from the ORF. Application of the (-3,-1)
rule, a method for predicting the cleavage site of the
secretory signal sequence, allows to expect that the mature
protein starts from asparagine at position 19.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse endomucin (Accession No. AAD05208). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse endomucin (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 47.9% in the entire region.

108

Ta	۱.	٦.	_	2	n
Ιd	.D	1	е	Z.	u

	HP	MELLQVTIL-FLLP-SIC-SSNSTGVL-EAANNSLVVTTTKPSITTPNTESLQKNVVTPT
		* ***. *. * ***. *. * *
5	ММ	MRLLQATVLFFLLSNSLCHSEDGKDVQNDSIPTPAETSTTKASVTIPGIVSV-TNPNKPA
	HP	TGTTPKGTITNELLKMSLMSTATFLTSKDEGLKATTTDVRKNDSIISNVTVTSVTLPNAV
		.**.*.** ** ** ** ** **
	MM	DGTPPEGTTKSDVSQTSLVTTINSLTTPKHEVGTTTEGPLRNESSTMKITVPNTPTSNAN
10		
	HP	STLQSSKPKTETQSSIKTTEIPGSVLQPDASPSKTGTLTSIPVTIPENTSQSQVIGTEGG
		***. *, *, **
	ММ	STLPGSQNKITTQLLDALPKITATPSASLTTAHTMSLLQDTEDR
15	НР	KNASTSATSRSYSSIILPVVIALIVITLSVFVLVGLYRMCWKADPGTPENGNDQPQSDKE
		* *, *, , *. , ************************
	MM	KIATTPSTTPSYSSIILPVVIALVVITLLVFTLVGLYRICWKRDPGTPENGNDQPQSDKE
	HP	SVKLLTVKTISHESGEHSAQGKTKN
20		*********
	MM	SVKLLTVKTISHESGEHSAQGKTKN

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

sequences that shared a homology of 90% or more (for example, Accession No. AA486620) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10720> (SEQ ID NOS: 64, 74 and 84)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10720 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 5'-untranslated region, a 669-bp ORF, and a 653-bp 3'untranslated region. The ORF encodes a protein consisting of 222 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,219 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 35 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Val-Thr at position 76 and Asn-His-Thr at position 93). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to

110

expect that the mature protein starts from glutamic acid at position 15.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792241) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP10721> (SEQ ID NOS: 65, 75 and 85)

5

Determination of the whole base sequence of the cDNA insert of clone HP10721 obtained from cDNA library of human kidney revealed the structure consisting of a 74-bp 5'-untranslated region, a 552-bp ORF, and a 1658-bp 3'-15 untranslated region. The ORF encodes a protein consisting of 183 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the 20 Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 19,989 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 22 kDa. 25 Application of the (-3,-1) rule, a method for predicting the

111

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R27187) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10725> (SEQ ID NOS: 66, 76 and 86)

Determination of the whole base sequence of the cDNA insert of clone HP10725 obtained from cDNA library of human kidney revealed the structure consisting of a 235-bp 5'-untranslated region, a 789-bp ORF, and a 713-bp 3'untranslated region. The ORF encodes a protein consisting of 262 amino acid residues and there existed one putative domain. Figure 26 depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example,

112

Accession No. AI127782) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10727> (SEQ ID NOS: 67, 77 and 87)

5

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP10727 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 102-bp 5'-untranslated region, a 507-bp ORF, and a 947bp 3'-untranslated region. The ORF encodes a protein consisting of 168 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was larger than the molecular weight of 17,822 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 29.

The search of the GenBank using the base sequences

of the present cDNA has revealed the registration of

sequences that shared a homology of 90% or more (for example, Accession No. R80316) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10728> (SEQ ID NOS: 68, 78 and 88)

5

10

15

Determination of the whole base sequence of the cDNA insert of clone HP10728 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 221-bp 5'-untranslated region, a 732-bp ORF, and a 902-bp 3'-untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 26,534 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H23535) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

114

<HP10730> (SEQ ID NOS: 69, 79 and 89)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10730 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 27-bp 5'-untranslated region, a 1287-bp ORF, and a 1216-bp 3'-untranslated region. The ORF encodes a protein consisting of 428 amino acid residues and there existed one putative transmembrane domain. Figure 29 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight of 48,992 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C19105) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10742> (SEQ ID NOS: 70, 80 and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10742 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 231-bp 5'-untranslated region, a 852-bp ORF, and a 828-

115

bp 3'-untranslated region. The ORF encodes a protein consisting of 283 amino acid residues and there existed two putative transmembrane domains. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was smaller than the molecular weight of 31,629 predicted from the ORF.

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T35949) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03800> (SEQ ID NOS: 91, 101 and 111)

Determination of the whole base sequence of the cDNA insert of clone HP03800 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 67-bp 5'-untranslated region, a 1431-bp ORF, and a 135-bp 3'-untranslated region. The ORF encodes a protein consisting of 476 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

116

vitro translation resulted in formation of a translation product of 55 kDa that was almost identical with the molecular weight of 54,110 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which Nglycosylation may occur (Asn-Lys-Thr at position 81, Asn-Met-Thr at position 132, Asn-Val-Thr at position 307 and Asn-Gln-Thr at position 346). Application of the (-3,-1)rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 23.

5

10

15

25

The search of the protein database using the amino acid sequence of the present protein revealed that the protein similar to mosquito vitellogenic was carboxypeptidase (Accession No. P42660). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mosquito vitellogenic carboxypeptidase (VC). Therein, the marks of -, *, and . 20 represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region. In addition, the C-terminal portion beginning from alanine at position 182 matched with human probable carboxypeptidase (Accession No. AAC23787) except one amino acid residue.

Table 21

5 MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPK-GDSGQPLFLTPYIEAGKIQKG HP VC MVKFHLLVLIAFTCYTCSDATLWNPYKKLMRGSASPPRPGESGEPLFLTPLLQDGKIEEA HP RELSLYGPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSM 10 VC RNKARVNHPMLSSVESYSGFMTVDAKHNSNLFFWYVPAKNNREQAPILVWLQGGPGASSL HP FGLFVEHGPYVVTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVAR 15 VC FGMFEENGPFHIHRNKSVKQREYSWHQNHHMIYIDNPVGTGFSFTDSDEGYSTNEEHVGE HP DLYSALIOFFQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGD VC NLMKFIQOFFVLFPNLLKHPFYISGESYGGKFVPAFGYAIH--NSQSQPKINLQGLAIGD 20 HP GYSDPESIIGGYAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGD

VC GYTDPLNQL-NYGEYLYELGLIDLNGRKKFDEDTAAAIACAERKDMNSANRLIQGLFDG-

HP AEKKVWKIFKSDSEVAGYIRQAGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDP

*... *.. *.** ... *... ***... ***

VC ANRE---IYRVDGEIAGYKKRAGRLQEVLIRNAGHMVPRDQPKWAFDMITSFTHKNYL

HP YVG

15

20

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA095665) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03831> (SEQ ID NOS: 92, 102 and 112)

Determination of the whole base sequence of the con con insert of clone HP03831 obtained from con library of

human kidney revealed the structure consisting of a 191-bp 5'-untranslated region, a 681-bp ORF, and a 223-bp 3'-untranslated region. The ORF encodes a protein consisting of 226 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human claudin-10 (Accession No. NP_008915). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human claudin-10 (CD). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 76.2% in the entire region. The C-terminal region downstream from glycine at position 72 completely matched with that sequence.

20

5

10

	HP	MSRAQIWALVSGVGGFGALVAATTSNEWKVTTRASSVITATWVYQGLWMNCAGNALGS
		* ** ***.* *** ** *
	CD	MASTASEIIAFMVSISGWVLVSSTLPTDYWKVSTIDGTVITTATYWANLWKACVTDSTGV
5	НР	FHCRPHFTIFKVAGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA
		. * **************************
	CD	${\tt SNCKDFPSMLALDGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA}$
	HP	GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC
10		***************
	CD	GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC
	HP	FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV

15	.CD	FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N41613) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

20

Determination of the whole base sequence of the cDNA insert of clone HP03879 obtained from cDNA library of human kidney revealed the structure consisting of a 33-bp 5'-untranslated region, a 918-bp ORF, and a 651-bp 3'-untranslated region. The ORF encodes a protein consisting of 305 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was almost identical with the molecular weight of 34,073 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human NADH-cytochrome b5 reductase (Accession No. Y09501). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human NADH-cytochrome b5 reductase (CT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 63.5% in the entire region other than the N-terminal region.

Table 23

	НР	MGIQTSPVLLASLGVGLVTLLGLAVGSYLVRRSRRPQVTLLDPNEKYLLRLLDKTTVSHN
		* ** * * * * ** ** ** **. *
5	СТ	MGAQLSTLGHMVLFPVWFLYSLLMKLFQRS-TPAITLESPDIKYPLRLIDREIISHD
	HP	TKRFRFALPTAHHTLGLPVGKHIYLSTRIDGSLVIRPYTPVTSDEDQGYVDLVIKVYLKG
		*. ******* *. ******. ****. **. **
	СТ	TRRFRFALPSPQHILGLPVGQHIYLSARIDGNLVVRPYTPISSDDDKGFVDLVIKVYFKD
10		
	HP	VHPKFPEGGKMSQYLDSLKVGDVVEFRGPSGLLTYTGKGHFNIQPNKKSPPEPRVAKKLG
		· ***** ****** * * · · · ** · ******* * * * * · * · * · * · * · * · * · · * · · * · · * · · * · · * · · · · · * · · * ·
	CT	THPKFPAGGKMSQYLESMQIGDTIEFRGPSGLLVYQGKGKFAIRPDKKSNPIIRTVKSVG
15	HР	MIAGGTGITPMLQLIRAILKVPEDPTQCFLLFANQTEKDIILREDLEELQARYPNRFKLW

	СТ	MIAGGTGITPMLQVIRAIMKDPDDHTVCHLLFANQTEKDILLRPELEELRNKHSARFKLW
	HP	FTLDHPPKDWAYSKGFVTADMIREHLPAPGDDVLVLLCGPPPMVQLACHPNLDKLGYSQK
20		. ***. *. *. *. *** ***. ** ***. ****. * ** *
	CT	YTLDRAPEAWDYGQGFVNEEMIRDHLPPPEEEPLVLMCGPPPMIQYACLPNLDHVGHPTE
	HР	MRFTY
		. *
25	СТ	RCFVF

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F06459) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03880> (SEQ ID NOS: 94, 104 and 114)

Determination of the whole base sequence of the CDNA insert of clone HP03880 obtained from cDNA library of human kidney revealed the structure consisting of a 98-bp 5'-untranslated region, a 684-bp ORF, and a 115-bp 3'-untranslated region. The ORF encodes a protein consisting of 227 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,717 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 27 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to

PCT/JP00/05356

expect that the mature protein starts from aspartic acid at position 23.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat phosphatidylethanolamine-binding protein (Accession No. P31044). Table 24 shows the comparison between amino acid sequences of the human protein of invention the present (HP) and phosphatidylethanolamine-binding protein (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the region of 133 amino acid residues other than the N-terminal region.

Table 24

HP MGWTMRLVTAALLLGLMMVVTGDEDENSPCAHEALLDEDTLFCQGLEVFYPELGNIGCKV

20

25

5

10

15

RN

MAADISQWAGPLSLQEVDEPPQHALRVDYGGVTV

HP VPDCNNYRQKITSWMEPIVKFPGAVDGATYILVMVDPDAPSRAEPRQRFWRHWLVTDIKG

RN DELGKYLTPTQYMNRPSSISWDGLDPGKLYTLVLTDPDAPSRKDPKFREWHHFLVYNMKG

HP ADLKKGKIQGQELSAYQAPSPPAHSGFHRYQFFVYLQEGKV——ISLLP-KENKTRGSWK

.*..*. **.**..** ..** **..**

RN NDISSGTV——LSEYVGSGPPKDTGLHRYVWLVYEQEQPLNCDEPILSNKSGDNRGKFK

5

HP MDRFLNRFHLGEPEASTQFMTQNYQDSPTLQAPRERASEPKHKNQAEIAAC

...* ... ***. * * . * . . . *. *.

RN VESFRKKYHLGAPVAGTCFQAEWDDSVPKLHDQLAGK

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H83784) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10704> (SEQ ID NOS: 95, 105 and 115)

Determination of the whole base sequence of the

CDNA insert of clone HP10704 obtained from cDNA library of
human kidney revealed the structure consisting of a 141-bp
5'-untranslated region, a 1326-bp ORF, and a 399-bp 3'untranslated region. The ORF encodes a protein consisting of
441 amino acid residues and there existed eight putative
transmembrane domains. Figure 35 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human unknown gene product (Accession No. AAC27544). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention

(HP) and human unknown gene product (UP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.1% in the entire region.

Table 25

20

25

HP MAIHKALVMCLGLPLFLFPG-AWAQGHVPPGCSQGLNPLYYNLCDRSGAWGIVLE

* **... * ... **. .* * .***. ***.**

UN MFVASERKMRAHQVLTFLLLFVITSVASENASTSRGCGLDLLPQYVSLCDLDAIWGIVVE

	HP	TCASRRFLFGVLFAICFSCLAAHVFALNFLARKNHGPRGWVIFTVALLLTLVEVIINTEW
		.*. ****. ***** *. *. ** ** ** * **. **
	UN	ICSVRRFLWGVLFALCFSCLLSQAWRVRRLVRHGTGPAGWQLVGLALCLMLVQVIIAVEW
5		
	HP	LIITLVRGSGEGGPQGNSSAGWAVASPCAIANMDFVMALIYVMLLLLGAFLGAWPALCGR
		*** * .**.
	UN	LVLTVLRDTRPACAYEPMDFVMALIYDMVLLVVTLGLALFTLCGK
10	HP	YKRWRKHGVFVLLTTATSVAIWVVWIVMYTYGN-KQHNSPTWDDPTLAIALAANAWAFVL
		. *** *. *. *. ** ***. *
	UN	FKRWKLNGAFLLITAFLSVLIWVAWMTMYLFGNVKLQQGDAWNDPTLAITLAASGWVFVI
	HP	FYVIPEVSQVTKSSPEQSYQGDMYPTRGVGY-ETILKEQ-KGQSMFVENKAFSMDEPVAA
15		*, ***, . * *
	UN	FHAIPEI-HCTLLPALQENTPNYFDTSQPRMRETAFEEDVQLPRAYMENKAFSMDEHNAA
	HР	KRPVS-PYSGYNGQLLTSVYQPTEMALMHKVPSEGAYDIILPRATANSQVMGSANSTLRA
		* *
20	UN	LRTAGFPNGSLGKRPSGSLGKRPSAPFRSNVYQPTEMAVVLNGGTIPTAPPSHTGRHLW
	НР	EDMYSAQSHQAATPPKDGKNSQVFRNPYVWD

128

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA346702) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10715> (SEQ ID NOS: 96, 106 and 116)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10715 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 49-bp 5'-untranslated region, a 798-bp ORF, and a 1351-bp 3'-untranslated region. The ORF encodes a protein consisting of 265 amino acid residues and there existed two putative transmembrane domains. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was larger than the molecular weight of 29,217 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI381750) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

129

invention.

5

10

25

<HP10724> (SEQ ID NOS: 97, 107 and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10724 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 68-bp 5'-untranslated region, a 627-bp ORF, and a 1485-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was almost identical with the molecular weight of 23,850 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T78035) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10733> (SEQ ID NOS: 98, 108 and 118)

Determination of the whole base sequence of the cDNA insert of clone HP10733 obtained from cDNA library of human umbilical cord blood revealed the structure consisting

5

10

15

of a 102-bp 5'-untranslated region, a 1203-bp ORF, and a 222-bp 3'-untranslated region. The ORF encodes a protein consisting of 400 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was larger than the molecular weight of 43,151 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Leu-Thr at position 52, Asn-Ala-Ser at position 131, Asn-Ile-Thr at position 145 and Asn-Leu-Ser at position 343). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from arginine at position 33.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH protein (Accession No. Q06003). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster

131

GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the entire region.

Table 26

5

> DM NVTISIIEGRRGVRTISSLNRTSVLFVSISFI--VDDILCWLIFYYIQRFRYMQAKDQQS

132

	HP	DPWLLDHRTCPMCKLDV1KALGYWGEPGDVQEMPAPESPPGRDPAANLSLALPDDDG5DE
		****. ********* ** *.*
	DM	DPWLIEHRTCPMCKLDVLKFYGY-VVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQ
5	ΗР	SSPPSASPAESEPQCDPSFKGDAGENTALLEAGRSDSRHGGPIS
		* * *
	DM	PLQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMP

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI286184) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10734> (SEQ ID NOS: 99, 109 and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10734 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 124-bp 5'-untranslated region, a 579-bp ORF, and a 1202-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

20

133

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human sodium channel \$2 subunit (Accession No. AAD47196). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human sodium channel \$2 subunit (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 26.3% in the N-terminal region of 152 amino acid residues.

Table 27

5

10

15

HP MFCPLKLILLPVLLDYSLGLNDLNVS-PPELTVHVGDSALMGCVFQS--TEDK

20 ...*. *....* *...*. *...* *...* *...* *...

SC MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNH

HP CIFKIDWTLSPGEHAKDE-YVLYYYSNLSVPIGRFQNRVHLMGDNLCNDGSLLLQDVQEA

*...** ...* * *...**...**...**

25 SC KQFSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPE

134

HP DQGTYICEIRLKGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVE

SC DEGIYNCYIMNPPDRHRGHGKIHLQVLMEEPPERDFTVAVIVGASVGGFLAVVILVLMVV

5

HP WIFSGRRAKVTRRKHHCVREGSG

SC KCVRRKKEQKLSTDDLKTEEEGKTDGEGNPDDGAK

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C03216) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10756> (SEQ ID NOS: 100, 110 and 120)

Determination of the whole base sequence of the cDNA insert of clone HP10756 obtained from cDNA library of human kidney revealed the structure consisting of a 49-bp 5'-untranslated region, a 783-bp ORF, and a 166-bp 3'-untranslated region. The ORF encodes a protein consisting of 260 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 40 depicts the

135

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 27,356 predicted from the ORF.

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW027769) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03670> (SEQ ID NOS: 121, 131 and 141)

Determination of the whole base sequence of the cDNA insert of clone HP03670 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 77-bp 5'-untranslated region, a 1014-bp ORF, and a 531-bp 3'-untranslated region. The ORF encodes a protein consisting of 337 amino acid residues and there existed at least seven putative transmembrane domains. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein KIAA0260

(Accession No. BAA13390). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein KIAA0260 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 57.6% in the entire region other than the N-terminal region. In addition, the C-terminal region beginning from leucine at position 77 matched with human putative Sqv-7-like protein (Accession No. AJ005866) except one amino acid residue.

Table 28

15

25

10

5

HP

MTAGGQAEAEGAGGEPG

- KI NSWSPLGAAAAGPRAARPRRQATAAAAAMAEVHRRQHARVKGEAPAKSSTLRDEEELGMA
- - HP NKIIHFPDFDKKIPVKLFPLPLLYVGNHISGLSSTSKLSLPMFTVLRKFTIPLTLLLETI

137

ΚT	LRVVKFPDLDRNVPRKTFPLPL	VECNOTEGI ESTKKI M	PMETVI PRESTI ETMEAFO
\mathbf{n}		. I I UNWI I ULT O I KKI M	.cortyl.corall.r.micara

- HP ILGKQYSLNIILSVFAIILGAFIAAGSDLAFNLEGYIFVFLNDIFTAANGVYTKQKMDPK
 .* * .* . * . * . * * . * . * * . * . * * . * . * * . * . * . * . * * .
- 5 KI LLKKTFSWGIKMTVFAMIIGAFVAASSDLAFDLEGYAFILINDVLTAANGAYVKQKLDSK
 - HP ELGKYGVLFYNACFMIIPTLIISVSTGDLQQATEFNQWKNVVFILQFLLSCFLGFLLMYS

 ******.*.*** ***.****. ***.**.**. * ...*.*** ***. ***.

 KI ELGKYGLLYYNALFMILPTLAIAYFTGDAQKAVEFEGWADTLFLLQFTLSCVMGFILMYA
- 15 HP SSQLKPKPVGEENICLDLKS
 *.*.****.*.
 KI TEEQLSKQ-SEANNKLDIKGKGAV

10

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R24922) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

138

invention.

5

10

15

20

25

<HP03688> (SEQ ID NOS: 122, 132 and 142)

Determination of the whole base sequence of the cDNA insert of clone HP03688 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 35-bp 5'-untranslated region, a 711-bp ORF, and a 1729-bp 3'-untranslated region. The ORF encodes a protein consisting of 236 amino acid residues and there existed five putative transmembrane domains. Figure 42 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein W02D9 (Accession No. CAB03470). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein W02D9 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.8% in the entire region other than the N-terminal

re	gion.
Ta	able 29
HP	MAEAEE
CE	MEILNLSSKFSLSDKPCQKFIFSLFSAVQNSRFKIISFPEIHQKPLPQEEMNSFGNASVD
НР	SPGDPGTASPRPLFAGLSDISISQDIPVEGEITIPMRSRIREFDSSTLNESVRNTIMRDL
CE	** **. **. **. IDMLEQEMAAEQTANLSGNIAGMSAPKSSSNRRGPMQEVDLDAEFDTLEEPVWDTVKRDV
HF	KAVGKKFMHVLYPR-KSNTLLRDWDLWGPLILCVTLALMLQRDSADSEKDGGPQFAEVFV
CE	.** ** **. * **********. **. **
Н	VIVWFGAVTITLNSKLLGGNISFFQSLCVLGYCILPLTVAMLICRLVLLADPGPVNFMVRL
CI	E ITFFGSVIVTANIKLLGGNISFFQSLCVIGYCLLPPFVAAVLCSL-FLHGIAFPLRL
ні	P FVVIVMFAWSIVASTAFLADSQPPNRRALAVYPVFLFYFVISWMILTFTPQ *.**. ** .**** ************
CI	E LITSIGFVWSTYASMGFLAGCQPDKKRLLVIYPVFLFYFVVSWMIISHS

140

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T51465) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

25

<HP03825> (SEQ ID NOS: 123, 133 and 143)

Determination of the whole base sequence of the 10 cDNA insert of clone HP03825 obtained from cDNA library of human kidney revealed the structure consisting of a 20-bp 5'-untranslated region, a 1683-bp ORF, and a 36-bp 3'untranslated region. The ORF encodes a protein consisting of 560 amino acid residues and there existed seven putative 15 transmembrane domains. Figure 43. depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 56 kDa that was smaller than the molecular weight of 20 64,047 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Mycobacterium tuberculosis hypothetical protein Rv0235c (Accession No. CAB07001).

Table 30 shows the comparison between amino acid sequences

5

10

25

of the human protein of the present invention (HP) and Mycobacterium tuberculosis hypothetical protein Rv0235c (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the entire region other than the N-terminal region. In addition, the region from alanine at position 293 to proline at position 502 matched with human putative novel protein c360B4.1 (Accession No. CAB56180).

Table 30

MT --AAVVAGAASFVPLW--ATMLIWLTLWVLYLSIVNVGQAWYSFGWESLLLETGFLMIFL

	HP	${\tt CPLWTLSRLPQHTPTSRIVLWGFRWLIFRIMLGAGLIKIRGDRCWRDLTCMDFHYETQPM}$
		.* .**. ***. ***. ***. ***. ***. ****. *.
	MT	GNERTAPPILTLLLA-RWLLFRVEFGAGLIKMRGDSCWRSLTCLYYHHETQPM
5		•
	HP	PNPVAYYLHHSPWWFHRFETLSNHFIELLVPFFLFLGRRACIIHGVLQILFQAVLIVSGN
		*.*** * .**.*** * * *
	МТ	PGPLSWFFHHLPKPLHRIEVAGNHFAQLVVPFGLFTPQPAASIAAAIIVVTQLWLVASGN
10	НР	LSFLNWLTMVPSLACFDDATLGFLFPSGPGSLKDRVLQMQRDIRGARPEPRFGSVVRRAA
		.*.**** ***** *.* ** .
	МТ	FSWLNWLTILLACSAIDTSS-AAALLPMPAQPALSAPPQWFAGLVV
	НР	NVSLGVLLAWLSVPVVLNLLSSRQVMNTHFNSLHIVNTYGAFGSITKERAEVILQGTASS
15		*** ** . *****. * ** ** * ****** * ** *
	MT	VFTAAVLLLSYWPARNLLSSHQRMNMSFNPFHLVNTYGAFGSICRTRREVVIEGTDES
	ΗР	NASAPDAMWEDYEFKCKPGDPSRRPCLISPYHYRLDWLMWFAAFQTYEHNDWIIHLAGKL
20	МТ	-PITEQTVWKAYEFKGKPGDPRRLPRQWAPYHLRLDWLMWFAAISPGYALPWMTPFLNRL
	HP	LASDAEALSLLAHNPFAGRPPPRWVRGEHYRYKFSRPGGRHAAEGKWWVRKRIGAYFPPL
		* . * * . * * * * * * * * * * * *
	мт	LRNDPATLKLLRHNPFP-QSPPRYVRAQLYQYRFTTVAELRRDRA-WWHRTLIGRYVPPM

143

HP SLEELRPYFRDRGWPLPGPL

** ..

MT SLRKVASPPAD

5

10

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA019047) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03877> (SEQ ID NOS: 124, 134 and 144)

Determination of the whole base sequence of the cDNA insert of clone HP03877 obtained from cDNA library of 15 human kidney revealed the structure consisting of a 106-bp 5'-untranslated region, a 1221-bp ORF, and a 678-bp 3'untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed four putative Figure 44 depicts the 20 transmembrane domains. hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 49 kDa that was somewhat larger than the molecular weight 25 of 46,208 predicted from the ORF.

144

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y37D8A (Accession No. CAA21543). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y37D8A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.2% in the intermediate region of 329 amino acid residues.

15 Table 31

5

10

20

25

HP MAENG

CE MAKKQKKSTEKSERTVEFKEPPKPANSEERLVSTRQFLAKIGQKKLIKKKVKNFRFSKKT

HP KNCDQRRVAMNKEHHNGNFTDPSSVNEKKRREREERQNIVLWRQPLITLQYFSLEILVIL

CE FIDFFSENQKKNCRLKPAGRGMKPSPSQNTLNRMERETIVFWRRPHIVIPYALMEIAHLA

HP KEWTSKLWHRQSIVVSFLLLLAVLIATYYVEGVHQQYVQRIEKQFLLYAYWIGLGILSSV

		* *
	CE	VELFFKILAHKTVLLLTAISIGLAVYGYHAPGAHQEHVQTIEKHILWWSWWVLLGVLSSI
	НР	GLGTGLHTFLLYLGPHIASVTLAAYECNSVNFPEPPYPDQIICPDEEGTEGTISLWSIIS
5		***. ******. ******. **. *****. * ** * *
	CE	GLGSGLHTFLIYLGPHIAAVTMAAYECQSLDFPQPPYPESIQCPSTKSSI-AVTFWQIVA
	HP	KVRIEACMWGIGTAIGELPPYFMARAARLSGAEPDDEEYQEFEEMLEHAESAQDFA-
		. * ** ***. ******** **. ** *
LO	CE	KVRVESLLWGAGTALGELPPYFMARAARISGQEPDDEEYREFLELMNADKESDADQKLSI
	НР	-SRAKLAVQKLVQKVGFFGILACASIPNPLFDLAGITCGHFLVPFWTFFGATLIGKAIIK
		·*** *····** *** *********************
	CE	VERAKSWVEHNIHRLGFPGILLFASIPNPLFDLAGITCGHFLVPFWSFFGATLIGKALVK
L 5		
	HP	MHIQKIFVIITFSKHIVEQMVAFIGAVPGIGPSLQKPFQEYLEAQRQKLHHKSEMGTPQG
		.*. *. **. *
	CE	MHVQMGFVILAFSDHHAENFVKILEKIPAVGPYIRQPISDLLEKQRKALHKTPGEHSEQD
20	ΗР	ENWLSWMFEKLVVVMVCYFILSIINSMAQSYAKRIQQRLNSEEKTK
	CE	LIDEENQSFEEEEEAVTPPSSCPLLLSDGFEGVVVKK

146

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T18977) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10765> (SEQ ID NOS: 125, 135 and 145)

Determination of the whole base sequence of the cDNA insert of clone HP10765 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 30-bp 5'-untranslated region, a 1362-bp ORF, and a 166-bp 3'-untranslated region. The ORF encodes a protein consisting of 453 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 48 kDa that was almost identical with the molecular weight of 47,724 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792834) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

147

encode the same protein as the protein of the present invention.

<HP10766> (SEQ ID NOS: 126, 136 and 146)

Determination of the whole base sequence of the 5 cDNA insert of clone HP10766 obtained from cDNA library of human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 180-bp ORF, and a 675-bp 3'untranslated region. The ORF encodes a protein consisting of 59 amino acid residues and there existed two putative 10 transmembrane domains. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa or less that was almost identical with the 15 molecular weight of 6,098 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T85491) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

20

<HP10770> (SEQ ID NOS: 127, 137 and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10770 obtained from cDNA library of

148

human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 633-bp ORF, and a 186-bp 3'-untranslated region. The ORF encodes a protein consisting of 210 amino acid residues and there existed two putative transmembrane domains. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was larger than the molecular weight of 22,156 predicted from the ORF.

5

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792771) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10772> (SEQ ID NOS: 128, 138 and 148)

Determination of the whole base sequence of the

CDNA insert of clone HP10772 obtained from cDNA library of
human kidney revealed the structure consisting of a 19-bp
5'-untranslated region, a 498-bp ORF, and a 724-bp 3'untranslated region. The ORF encodes a protein consisting of
165 amino acid residues and there existed four putative
transmembrane domains. Figure 48 depicts the

WO 01/12660

5

10

15

20

149

PCT/JP00/05356

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F11871) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10773> (SEQ ID NOS: 129, 139 and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10773 obtained from cDNA library of human kidney revealed the structure consisting of a 186-bp 5'-untranslated region, a 489-bp ORF, and a 499-bp 3'untranslated region. The ORF encodes a protein consisting of 162 amino acid residues and there existed four putative transmembrane domains. Figure 49 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences

of the present cDNA has revealed the registration of

150

sequences that shared a homology of 90% or more (for example, Accession No. N33828) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10776> (SEQ ID NOS: 130, 140 and 150) .

5

10

15

Determination of the whole base sequence of the cDNA insert of clone HP10776 obtained from cDNA library of human kidney revealed the structure consisting of a 207-bp 5'-untranslated region, a 666-bp ORF, and a 139-bp 3'untranslated region. The ORF encodes a protein consisting of 221 amino acid residues and there existed three putative Figure 50 transmembrane domains. depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 24,883 predicted from the ORF.

base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI929639) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

151

INDUSTRIAL APPLICABILITY

5

10

15

20

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs and eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane, are considered to be proteins controlling they proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents which act to control the proliferation and/or differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for expressing these proteins in large quantities. Cells into which these genes introduced to express these proteins can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibody of the present invention can be utilized for the detection, quantification, purification and the like of the protein of the present invention.

The present invention also provides genes

5

10

15

corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254;

5

10

15

20

25

Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 Bl, incorporated by reference herein), In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination,

5

10

15

20

25

preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the identified in accordance with known invention can be techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed

protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

5

10

15

20

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is,

156

naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

5

10

15

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions are at least as stringent as, for example, conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 32

Stringency	Poly-	Hybrid	Hybridization Temperature	Wash
Condition	nucleotide	Length	and Buffer'	Temperature
	Hybrid	(bp)'		and Buffer'
A	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C;
			42°C; 1×SSC,50%	0.3×SSC
			formamide	
В	DNA: DNA	<50	T _B *; 1×SSC	T ₈ *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C;
	·		45°C; 1×SSC,50%	0.3×SSC
			formamide	
D	DNA: RNA	<50	T _b *; 1×SSC	T _D *; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C;
			50°C; 1×SSC,50%	0.3×SSC
			formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA: DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50%	
			formamide	
Н	DNA: DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
			45°C; 4×SSC,50%	
	_		formamide	
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
]		•	50°C; 4×SSC,50%	
			formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA: DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50%	
			formamide	
N	DNA: DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
		1	42°C; 6×SSC,50%	
	<u> </u>		formamide	
P	DNA: RNA	<50	T,*; 6×SSC	Tp*; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
			45°C; 6×SSC,50%	
	<u> </u>	<u> </u>	formamide	<u> </u>
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

5

PCT/JP00/05356

- ‡ : The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides.

 When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- † : SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
- *T_B T_R: The hybridization temperature for hybrids
 anticipated to be less than 50 base pairs in length should
 be 5-10°C less than the melting temperature (T_m) of the
 hybrid, where T_m is determined according to the following
 equations. For hybrids less than 18 base pairs in length,

 T_m(°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids
 between 18 and 49 base pairs in length, T_m(°C)=81.5 +
 16.6(log₁₀[Na*]) + 0.41 (%G+C) (600/N), where N is the
 number of bases in the hybrid, and [Na*] is the concentration
 of sodium ions in the hybridization buffer ([Na*] for
 1×SSC=0.165M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

160

CLAIMS

1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

5

10

20

- 2. An isolated DNA encoding the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140.
- 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
 - 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.
 - 7. An antibody directed to the protein according to Claim 1.

Fig.1

Hydrophilicity/Hydrophobicity

Fig.3

Hydrophilicity/Hydrophobicity

-ig.4

Fig.5

6/50

Fig.6

Fig.

8.8

Fig.9

Fig.11

Fig.12

Hydrophilicity/Hydrophobicity

-ig.13

Fig. 14

Fig.15

щ

Hydrophilicity/Hydrophobicity

Fig. 17

Fig. 18

Fig. 19

Hydrophilicity/Hydrophobicity

1g.20

Fig.21

- Hydrophilicity/Hydrophobicity

-ig.22

Fig.23

Hydrophilicity/Hydrophobicity

Fig.24

-ig.25

Fig.26

Hydrophilicity/Hydrophobicity

ΗλακορλίΙισίτη/Ηγακορλορίσίτη

Fig. 29

Fig. 30

Fig.31

Fig.32

Fig.3

Fig.34

Fig. 35

Fig.36

Fig.3

Fig.38

Fig. 39

F18.40

Fig.41

Fig. 42

Fig.43

Fig.44

Fig. 45

Fig.46

Fig. 47

Fig.48

Fig. 49

Fig.50

1 /307

SEQUENCE LISTING

<110> Sagami Chemical Research Center,

Protegene Inc.

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 662029

<150> JP 11-230344

⟨151⟩ 1999-08-17

<150> JP 11-252551

<151> 1999-09-07

<150> JP 11-281132

<151> 1999-10-01

<150> JP 11-301624

<151> 1999-10-22

<150> JP 11-313877

<151> 1999-11-04

2 /307

<160> 150

⟨210⟩ 1

<211> 267

<212> PRT

<213> Homo sapiens

⟨400⟩ 1

Met Val Lys Ile Ser Phe Gln Pro Ala Val Ala Gly Ile Lys Gly Asp

1 5 10 15

Lys Ala Asp Lys Ala Ser Ala Ser Ala Pro Ala Pro Ala Ser Ala Thr

20 25 30

Glu Ile Leu Leu Thr Pro Ala Arg Glu Glu Gln Pro Pro Gln His Arg

35 40 45

Ser Lys Arg Gly Ser Ser Val Gly Gly Val Cys Tyr Leu Ser Met Gly

50 55 60

Met Val Val Leu Leu Met Gly Leu Val Phe Ala Ser Val Tyr Ile Tyr

65 70 75 80

Arg Tyr Phe Phe Leu Ala Gln Leu Ala Arg Asp Asn Phe Phe Arg Cys

85 90 95

Gly Val Leu Tyr Glu Asp Ser Leu Ser Ser Gln Val Arg Thr Gln Met

100 105 110

Glu Leu Glu Glu Asp Val Lys Ile Tyr Leu Asp Glu Asn Tyr Glu Arg

115 120 125

Ile Asn Val Pro Val Pro Gln Phe Gly Gly Gly Asp Pro Ala Asp Ile

130 135 140

3 /307

Ile His Asp Phe Gln Arg Gly Leu Thr Ala Tyr His Asp Ile Ser Leu Asp Lys Cys Tyr Val Ile Glu Leu Asn Thr Thr Ile Val Leu Pro Pro Arg Asn Phe Trp Glu Leu Leu Met Asn Val Lys Arg Gly Thr Tyr Leu Pro Gln Thr Tyr Ile Ile Gln Glu Glu Met Val Val Thr Glu His Val Ser Asp Lys Glu Ala Leu Gly Ser Phe Ile Tyr His Leu Cys Asn Gly Lys Asp Thr Tyr Arg Leu Arg Arg Arg Ala Thr Arg Arg Arg Ile Asn Lys Arg Gly Ala Lys Asn Cys Asn Ala Ile Arg His Phe Glu Asn Thr Phe Val Val Glu Thr Leu Ile Cys Gly Val Val ⟨210⟩ 2 <211> 419 <212> PRT <213> Homo sapiens <400> 2 Met Ser Cys Ala Gly Arg Ala Gly Pro Ala Arg Leu Ala Ala Leu Ala Leu Leu Thr Cys Ser Leu Trp Pro Ala Arg Ala Asp Asn Ala Ser Gln

	20						25					30					
Glu	Tỵr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	Gln	Glu	Prọ	Gly	Arg		
		35					40					45			•		
Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	Leu	Asp		
	50					55					60						
Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	Gln	Val	Leu	Ala	Pro	Leu	Pro	Leu		
65					70					75					80		
His	Gly	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	Gln	Thr	Arg	Phe	Phe		
				85					90					95			
Val	Pro	Pro	Asn	Ile	Lys	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	Gly	Asn		
			100					105					110				
Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	Asn	Ala	Val		
		115					120					125					
Ala	Val	Val	Ile	Tyr	Asn	Asn	Lys	Ser	Lys	Glu	Glu	Pro	Val	Thr	Met		
	130					135					140						
Thr	His	Pro	Gly	Thr	Gly	Asp	Ile	Ile	Ala	Val	Met	Ile	Thr	Glu	Leu		
145					150)				155	;				160		
Arg	G1y	Lys	Asp	Ile	e Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile	Ser	Val	Gln		
				165	5			•	170)				175			
Met	Thr	· Ile	Ala	a Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asr	Phe	Ser	Arg		
			180)				185	5				190)			
Gly	Ser	Leu	ı Val	l Phe	e Val	Ser	· Ile	Ser	Phe	e Ile	e Val	Leu	ı Met	Ile	Ile		
		199	5				200)				205	5				
Sei	r Sea	r Ala	a Tr	p Let	u Ile	e Phe	Э Туг	- Phe	e Ile	e Gli	n Lys	s Ile	e Arg	д Туз	Thr		
	210)				219	5				220)					

Asn	Ala	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	Lys	Lys
225					230					235					240
Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	Lys	Glu
				245					250					255	
Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	Tyr	Lys
			260					265					270		
Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	His	Lys
		275					280					285			
Ser	Cys		Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	Met	Cys
	290		•			295					300				
Lvs			Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	Pro	Cys
305					310					315					320
		Asn	Val	Ala			Met	Glu	Arg	Leu	Thr	Arg	Thr	Gln	Ala
				325		·			330					335	
Va 1	Asn	Aro	Arg			Leu	Glv	Asp		Ala	Gly	Asp	Asn	Ser	Leu
			340				•	345					350		
C1 w	Lau	. Glu			Ara	Thr	Ser		Ile	Ser	Pro	Leu			Asp
Uly	Dec	355		Dog		,	360					365			
C1.	. C1.			. Dro	·Aro	. Thr			Ιlο	Asn	Tle			Thr	Lys
O1)			i .1111		· ALE	375		Ulu		11011	380				-,-
01	370			71.	. 41.			. C1	Lau	Lou			I All	Thr	Len
) Phe	. 11e	116			rne	GIY	Leu			NIG	Lec		Leu 400
389					390				•	395		41-		. C1.	
Cys	з Туі	r Met	t Ile			g Ala	Thr	· Ala			I ASD	A18	ı AST		val
				409	ō				410)				419	•
Gl	u Tr	p Pho	е												

<210)> 3														
<211	> 41	5													•
<212	2> PF	T													
<213	3> Ho	omo s	sapie	ens											
<400)> 3														
Met	Arg	Gly	Ala	Asn	Ala	Trp	Ala	Pro	Leu	Cys	Leu	Leu	Leu	Ala	Ala
1				5					10					15	
Ala	Thr	Gln	Leu	Ser	Arg	Gln	Gln	Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr
			20					25					30		
Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glu	Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly
		.35		-			40					45			
Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr
	50					55					60				
Val	Pro	Glu	Gly	Lys	Val	Val	Val	Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu
65					70					75					80
Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly
				85					90					95	
His	Ala	Asn	Gly	Gln	Arg	Ile	Gly	Arg	Phe	Cys	Gly	Thr	Phe	Arg	Pro
			100					105					110		
Gly	Ala	Leu	Val	Ser	Ser	Gly	Asn	Lys	Met	Met	Val	Gln	Met	Ile	Ser
		115					120					125			
Asp	Ala	Asn	Thr	Ala	Gly	Asn	Gly	Phe	Met	Ala	Met	Phe	Ser	Ala	Ala
	130					135					140				
Glu	Pro	Aen	Glu	Arg	G1 v	Asn	Gln	Tvr	Cvs	Glv	Glv	Len	Leu	Asp	Arg

145					150					199					100
Pro	Ser	G1y	Ser	Phe	Lys	Thr	Pro	Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro
				165					170			•	•	175	
Ala	Gly	Val	Thr	Cys	Val	Trp	His	Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu
			180					185					190		
Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys
		195					200					205	•		
Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala
	210					215					220			•	
Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val
225					230					235					240
Ser	Glu	Arg	Asn	Glu	Leu	Leu	Ile	Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu
				245					250					255	
Thr	Ala	Asp	Gly	Phe	Ile	Gly	His	Tyr	Ile	Phe	Arg	Pro	Lys	Lys	Leu
			260					265					270		
Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr
		275					280					285			
Gly	Leu	Lys	Thr	Thr	Val	Ala	Leu	Cys	Gln	Gln	Lys	Cys	Arg	Arg	Thr
	290					295					300	•			
Gly	Thr	Leu	Glu	Gly	Asn	Tyr	Cys	Ser	Ser	Asp	Phe	Val	Leu	Ala	Gly
305					310					315					320
Thr	Val	Ile	Thr	Thr	Ile	Thr	Arg	Asp	Gly	Ser	Leu	His	Ala	Thr	Val
				325					330					335	
Ser	Ile	Ile	Asn	Ile	Tyr	Lys	Glu	Gly	Asn	Leu	Ala	Ile	Gln	G1n	Ala
			340					345					350		

Gly	Lys	Asn	Met	Ser	Ala	Arg	Leu	Thr	Val	Val	Cys	Lys	Gln	Cys	Pro
		355					360					365			
Leu	Leu	Arg	Arg	Gly	Leu	Asn	Tyr	Ile	Île	Met	Gly	Gln	Val	Gly	Glu
	370					375					380				
Asp	Gly	Arg	Gly	Lys	Ile	Met	Pro	Asn	Ser	Phe	Ile	Met	Met	Phe	Lys
385					390					395					400
Thr	Lys	Asn	Gln	Lys	Leu	Leu	Asp	Ala	Leu	Lys	Asn	Lys	Gln	Cys	
				405					410					415	
<21	0> 4														
<21	1> 3	80													
<21	2> P	RT												•	
<21	3> H	ошо	sapi	ens								•			
<40	0> 4														
Met	Leu	Gln	Thr	Leu	Tyr	Asp	Tyr	Phe	Trp	Trp	Glu	Arg	Leu	Trp	Leu
1				5	;				10	١				15	
Pro	Val	Asr	Leu	ı Thr	Trp	Ala	Asp	Leu	Glu	Asp	Arg	Asp	Gly	Arg	Val
			20)				25					30		
Tyr	- Ala	Lys	s Ala	Ser	. Asp	Leu	Tyr	Ile	Thr	Leu	Pro	Leu	Ala	Leu	Leu
		38	5				40					45	;		
Phe	e Leu	ı Ile	e Val	l Arg	g Tyr	Phe	Phe	Glu	Leu	ı Tyr	Val	Ala	Thr	Pro	Leu
	50)				55	5				60)			
Ala			u Lei	ı Ası	n Ile	. Lys	s Glu	Lys	: Thi	. Ar	z Let	ı Arg	, Ala	Pro	Pro
65					70)				79	5				80

				85					90					95	
Gln	Val	Glu	Val	Glu	Leu	Leu	Ser	Arg	Gln	Ser	Gly	Leu	Ser	Ģly	Arg
			100			•	•	105	٠				110		
Gln	Val	Glu	Arg	Trp	Phe	Arg	Arg	Arg	Arg	Asn	Gln	Asp	Arg	Pro	Ser
		115					120					125			
Leu	Leu	Lys	Lys	Phe	Arg	Glu	Ala	Ser	Trp	Arg	Phe	Thr	Phe	Tyr	Leu
	130					135					140				
Ile	Ala	Phe	Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe
145					150					155					160
Tyr	Asp	Met	Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile
				165					170					175	
Pro	Ser	Gln	Tyr	Trp	Tyr	Tyr	Met	Ile	Glu	Leu	Ser	Phe	Tyr	Trp	Ser
			180					185					190		
Leu	Leu	Phe	Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu
		195					200					205			
Gln	Ile	Ile	His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp
	210					215					220				
Phe	Ala	Asn	Tyr	Ile	Arg	Ala	Gly	Thr	Leu	Ile	Met	Ala	Leu	His	Asp
225	•		•		230					235					240
Ser	Ser	Asp	Tyr	Leu	Leu	Glu	Ser	Ala	Lys	Met	Phe	Asn	Tyr	Ala	Gly
				245					250)				255	
Trp	Lys	Asn	Thr	Cys	Asn	Asn	Ile	Phe	Ile	. Val	Phe	Ala	Ile	Val	Phe
			260	ì				265	i				270		
Ile	· Ile	Thr	Arg	Leu	Val	Ile	Leu	Pro	Phe	Trp	Ile	Leu	His	Cys	Thr
		275					280	1				285	:		

10 /307

Leu Val Tyr Pro Leu Glu Leu Tyr Pro Ala Phe Phe Gly Tyr Tyr Phe Phe Asn Ser Met Met Gly Val Leu Gln Leu Leu His Ile Phe Trp Ala Tyr Leu Ile Leu Arg Met Ala His Lys Phe Ile Thr Gly Lys Leu Val Glu Asp Glu Arg Ser Asp Arg Glu Glu Thr Glu Ser Ser Glu Gly Glu Glu Ala Ala Gly Gly Gly Ala Lys Ser Arg Pro Leu Ala Asn Gly His Pro Ile Leu Asn Asn Asn His Arg Lys Asn Asp ⟨210⟩ 5 ⟨211⟩ 585 <212> PRT <213> Homo sapiens <400> 5 Met Val Cys Arg Glu Gln Leu Ser Lys Asn Gln Val Lys Trp Val Phe Ala Gly Ile Thr Cys Val Ser Val Val Val Ile Ala Ala Ile Val Leu Ala Ile Thr Leu Arg Arg Pro Gly Cys Glu Leu Glu Ala Cys Ser Pro Asp Ala Asp Met Leu Asp Tyr Leu Leu Ser Leu Gly Gln Ile Ser Arg

	50					55					60				
Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn	Ser	Lys	Lys
65		•		•	70					75					80
Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	Glu	Ala	Asp
				85		•			90					95	
Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	Val	Pro	Ile
			100					105					110		
Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	·Thr	Leu	G1u	Gln	Trp
		115					120					125			
Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	Gly	Ile	Lys	Leu	Asp	Phe
	130					135					140				
Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leų	Arg	Gln	Leu
145					150					155					160
Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	Ala	Asp	Ile
				165					170					175	
Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	Ala	Thr	Gln
			180					185					190		
Phe	Leu	Ala	Leu	Val	Gln	Glu	Lys	Tyr	Pro	Lys	Ala	Thr	Leu	Ser	Pro
		195					200					205			
Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	Thr	Tyr	Thr
	210	•				215					220				
Gln	Ala	Met	Val	Glu	Lys	Met	His	Glu	Leu	Val	Gly	Gly	Val	Pro	Gln
225					230					235					240
Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala	Ala	Trp	Pro
				245					250	ŀ				255	

His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	Leu	Thr	Leu
		•	26 0					265					270		
Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu	Leu	Tyr	Val
		275					280					285			
Arg	Asp	Asn	Thr	Ala	Val	His	Gln	Val	Tyr	Tyr	Asp	Ile	Phe	Glu	Pro
	290					295					300				
Leu	Leu	Ser	Gln	Phe	Lys	Gln	Leu	Ala	Leu	Asn	Ala	Thr	Arg	Lys	Pro
305					310					315					320
Met	Tyr	Tyr	Thr	Gly	Gly	Ser	Leu	Ile	Pro	Leu	Leu	Gln	Leu	Pro	Gly
				325					330					335	
Asp	Asp	Gly	Leu	Asn	Val	Glu	Trp	Leu	Val	Pro	Asp	Val	Gln	Gly	Ser
			340					345					350		
Gly	Lys	Thr	Ala	Thr	Met	Thr	Leu	Pro	Asp	Thr	Glu	Gly	Met	Ile	Leu
		355					360					365			
Leu	Asn	Thr	Gly	Leu	Glu	Gly	Thr	Val	Ala	Glu	Asn	Pro	Val	Pro	Ile
	370					375					380				
Val	His	Thr	Pro	Ser	G1 y	Asn	Ile	Leu	Thr	Leu	Glu	Ser	Cys	Leu	Gln
385					390					395					400
Gln	Leu	Ala	Thr	His	Pro	Gly	His	Trp	Gly	Ile	His	Leu	Gln	Ile	Ala
				405					410					415	
Glu	Pro	Ala	Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	Arg	Leu	Ser
			420					425					430		
Ser	Leu	Gly	Leu	Leu	His	Trp	Pro	Val	Trp	Val	Gly	Ala	Lys	Ile	Ser
		435					440					445			
His	Gly	Ser	Phe	Ser	Val	Pro	Gly	His	Val	Ala	Gly	Arg	Glu	Leu	Leu

13 /307

Thr Ala Val Ala Glu Val Phe Pro His Val Thr Val Ala Pro Gly Trp Pro Glu Glu Val Leu Gly Ser Gly Tyr Arg Glu Gln Leu Leu Thr Asp Met Leu Glu Leu Cys Gln Gly Leu Trp Gln Pro Val Ser Phe Gln Met Gln Ala Met Leu Leu Gly His Ser Thr Ala Gly Ala Ile Gly Arg Leu Leu Ala Ser Ser Pro Arg Ala Thr Val Thr Val Glu His Asn Pro Ala Gly Gly Asp Tyr Ala Ser Val Arg Thr Ala Leu Leu Ala Ala Arg Ala Val Asp Arg Thr Arg Val Tyr Tyr Arg Leu Pro Gln Gly Tyr His Lys Asp Leu Leu Ala His Val Gly Arg Asn

<210> 6

<211> 331

<212> PRT

<213> Homo sapiens

⟨400⟩ 6

Met Trp Leu Trp Glu Asp Gln Gly Gly Leu Leu Gly Pro Phe Ser Phe

1 5 10 15

Leu	Leu	Leu	Val	Leu	Leu	Leu	Val	Thr	Arg	Ser	Pro	Val	Asn	Ala	Cys
			20					25					30		
Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val	Phe	Ser	Phe	Glu
		35					40					45			
Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	Gln	Val	Leu	Lys	Pro	Arg	Asp	Arg
	50					55					60				
Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	Ala	Pro	Glu	Asn
65					70					7 5					80
Thr	Leu	Ala	Ala	Ile	Arg	Gln	Ala	Ala	Lys	Asn	Gly	Ala	Thr	Gly	Val
				85					90					95	
Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	Asp	Gly	Ile	Pro	Val	Leu	Met	His
			1,00					105		•			110	٠	
Asp	Asn	Thr	Val	Asp	Arg	Thr	Thr	Asp	Gly	Thr	Gly	Arg	Leu	Cys	Asp
		115					120					125			
Leu	Thr	Phe	Glu	Gln	Ile	Arg	Lys	Leu	Asn	Pro	Ala	Ala	Asn	His	Arg
	130)				135					140				
Leu	Arg	, Asn	Asp	Phe	Pro	Asp	Glu	Lys	Ile	Pro	Thr	Leu	Arg	Glu	Ala
145	5				150)				155					160
Val	Ala	Glu	ı Cys	Leu	Asn	His	Asn	Leu	Ţhr	Ile	Phe	Phe	Asp	Val	Lys
				165	5				170)				175	5
Gly	/ His	s Ala	a His	s Lys	s Ala	Thr	Glu	ı Ala	Let	ı Lys	Lys	Met	Туг	. Met	: Glu
			180)				185	5				190)	
Phe	e Pro	o Gla	n Lei	ty1 נ	r Ası	n Asr	ı Sei	· Val	l Val	l Cys	S Ser	Phe	e Let	ı Pro	Glu
		19	5 .				200)				205	5		
Vو	1 11.	e Tv	r I.v.	s Mei	t Ar	z G11	n Thi	r Ası	o Ari	z Ast	v Val	l Ile	e Thi	r Ala	a Leu

	210					215					220				
Thr	His	Arg	Pro	Trp	Ser	Leu	Ser	His	Thr	Gly	Asp	Gly	Lys	Pro	Arg
225					230			•		235	••				240
Tyr	Asp	Thr	Phe	Trp	Lys	His	Phe	Ile	Phe	Val	Met	Met	Asp	Ile	Leu
				245					250					255	
Leu	Asp	Trp	Ser	Met	His	Asn	Ile	Leu	Trp	Tyr	Leu	Cys	Gly	Ile	Ser
			260					265					270		
Ala	Phe	Leu	Met	G1n	Lys	Asp	Phe	Val	Ser	Pro	Ala	Tyr	Leu	Lys	Lys
		275					280					285			
Trp	Ser	Ala	Lys	Gly	Ile	Gln	Val	Val	Gly	Trp	Thr	Val	Asn	Thr	Phe
	290					295					300				
Asp	Glu	Lys	Ser	Tyr	Tyr	Glu	Ser	His	Leu	Gly	Ser	Ser	Tyr	Ile	Thr
305					310					315					320
Asp	Ser	Met	Val	Glu	Asp	Cys	Glu	Pro	His	Phe					
				325					330						
<210)> 7														
<21	1> 34	1 5													
<212	2> PI	RT													
<213	3> Ho	omo :	sapie	ens											
<400)> 7														
Met	Ser	Pro	Glu	Glu	Trp	Thr	Tyr	Leu	Val	Val	Leu	Leu	Ile	Ser	Ile
1				5					10					15	
Pro	Ile	Gly	Phe	Leu	Phe	Lys	Lys	Ala	Gly	Pro	Gly	Leu	Lys	Arg	Trp
			20			•		25					30		

G1y	Ala	Ala	Ala	Val	Gly	Leu	Gly	Leu	Thr	Leu	Phe	Thr	Cys	Gly	Pro
		35					40					45			
His	Thr	Leu	His	Ser	Leu	Val	Thr	Ile	Leu	Gly	Thr	Trp	Ala	Leu	Ile
	50					55					60				
Gln	Ala	Gln	Pro	Cys	Ser	Cys	His	Ala	Leu	Ala	Leu	Ala	Trp	Thr	Phe
65					70					75					80
Ser	Tyr	Leu	Leu	Phe	Phe	Arg	Ala	Leu	Ser	Leu	Leu	Gly	Leu	Pro	Thr
				85					90					95	
Pro	Thr	Pro	Phe	Thr	Asn	Ala	Val	G1n	Leu	Leu	Leu	Thr	Leu	Lys	Leu
			100					105					110		
Val	Ser	Leu	Ala	Ser	Glu	Val	Gln	Asp	Leu	His	Leu	Ala	Gln	Arg	Lys
		115					120		•			125		٠	
Glu	Met	Ala	Ser	Gly	Phe	Ser	Lys	Gly	Pro	Thr	Leu	Gly	Leu	Leu	Pro
	130					135					140				
Asp	Val	Pro	Ser	Leu	Met	G1u	Thr	Leu	Ser	Tyr	Ser	Tyr	Cys	Tyr	Val
145					150					155					160
Gly	Ile	Met	Thr	Gly.	Pro	Phe	Phe	Arg	Tyr	Arg	Thr	Tyr	Leu	Asp	Trp
				165					170					175	
Leu	Glu	Gln	Pro	Phe	Pro	Gly	Ala	Val	Pro	Ser	Leu	Arg	Pro	Leu	Leu
			180	l				185					190		
Arg	Arg	Ala	Trp	Pro	Ala	Pro	Leu	Phe	Gly	Leu	Leu	Phe	Leu	Leu	Ser
		195	j				200	ı				205	5		
Ser	His	Leu	Phe	Pro	Leu	G1u	Ala	Val	Arg	Glu	Asp	Ala	Phe	Tyr	Ala
	210)				215	;				220)			
Arg	Pro	Leu	ı Pro	Ala	Arg	Leu	Phe	Tyr	Met	Ile	Pro	Val	Phe	Phe	Ala

17 /307

Phe Arg Met Arg Phe Tyr Val Ala Trp Ile Ala Ala Glu Cys Gly Cys Ile Ala Ala Gly Phe Gly Ala Tyr Pro Val Ala Ala Lys Ala Arg Ala Gly Gly Gly Pro Thr Leu Gln Cys Pro Pro Pro Ser Ser Pro Glu Lys Ala Ala Ser Leu Glu Tyr Asp Tyr Glu Thr Ile Arg Asn Ile Asp Cys Tyr Ser Thr Asp Phe Cys Val Arg Val Arg Asp Gly Met Arg Tyr Trp Asn Met Thr Val Gln Trp Trp Leu Ala Gln Tyr Ile Tyr Lys Ser Ala Pro Ala Arg Ser Tyr Val Leu Arg Leu <210> 8 ⟨211⟩ 89 <212> PRT <213> Homo sapiens <400> 8 Met Tyr Met Gln Asp Tyr Trp Arg Thr Trp Leu Lys Gly Leu Arg Gly Phe Phe Phe Val Gly Val Leu Phe Ser Ala Val Ser Ile Ala Ala Phe

Cys	Thr	Phe	Leu	Val	Leu	Ala	Ile	Thr	Arg	His	Gln	Ser	Leu	Thr	Asp
		35					40					45			
Pro	Thr	Ser	Tyr	Tyr	Leu	Ser	Ser	Val	Trp	Ser	Phe	Ile	Ser	Phe	Lys
	50					55					60				
Trp	Ala	Phe	Leu	Leu	Ser	Leu	Tyr	Ala	His	Arg	Tyr	Arg	Ala	Asp	Phe
65					70					75					80
Ala	Asp	Ile	Ser	Ile	Leu	Ser	Asp	Phe							
				85											
<210)> 9														
<21	l> 40)6													
<212	2> P.I	RT													
<213	3> H	omo s	sapi	ens			•								
<400)> 9														
Met	Arg	Gly	Ser	Val	Glu	Cys	Thr	Trp	Gly	Trp	Gly	His	Cys	Ala	Pro
1				5					10					15	
Ser	Pro	Leu	Leu	Leu	Trp	Thr	Leu	Leu	Leu	Phe	Ala	Ala	Pro	Phe	Gly
			20					25					30		
Leu	Leu	Gly	Glu	Lys	Thr	Arg	Gln	Val	Ser	Leu	Glu	Val	Ile	Pro	Asn
		35					40					45			
Trp	Leu	Gly	Pro	Leu	Gln	Asn	Leu	Leu	His	Ile	Arg	Ala	Val	Gly	Thr
	50					55					60				
Asn	Ser	Thr	Leu	His	Tyr	Val	Trp	Ser	Ser	Leu	Gly	Pro	Leu	Ala	Val
65					70					75					80
	М-+	Vo1	410	The	Aon	The	Dwa	u: -	Sa-	Th⊷	Lan	Sar	Va1	Acn	Tra

				85					90					95	
Ser	Leu	Leu	Leu	Ser	Pro	Ģlu	Pro	Asp	Gly	Gly	Leu	Met	Val	Leu	Pro _.
		٠	100					105					110		•
Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu
		115					120					125			
Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly
	130					135					140				
Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile
145					150					155					160
Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	Leu	Ser	Ala	Thr	Phe	Gln	Gly	His
				165					170					175	
Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	Phe	Ala	Asn	Gly	Ser	Leu _.	Ala	Phe
			180					185					190		
Arg	Val	Gln	Ala	Phe	Ser	Arg	Ser	Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg
		195					200					205			
Leu	Leu	His	Thr	Ala	Asp	Thr	Cys	Gln	Leu	G1u	Val	Ala	Leu	Ile	Gly
	210					215				•	220				
Ala	Ser	Pro	Arg	Gly	Asn	Arg	Ser	Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr
225			•		230					235					240
Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	Ser	Met	Gln	Glu	Gln	His	Ser	Ile
				245					250					255	
Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	Phe	Gln	Leu	Asp	G1n	Leu	Leu	Trp
			260					265					270		
Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	Gln	Trp	Arg	Pro	Val	Ala	Tyr	Ser
		275					280					285			

Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro
	290					295					300				•
Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg
305					310					315					320
Ala	Phe	Phe	Gly	Ser	Gln	Asn	Asn	Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe
				325					330					335	
Gly	Ala	Ser	Thr	Gly	Pro	Gly	Tyr	Trp	Asp	Gln	His	Tyr	Leu	Ser	Trp
			340					345					350		
Ser	Met	Leu	Leu	Gly	Val	Gly	Phe	Pro	Pro	Val	Asp	Gly	Leu	Ser	Pro
		355					360					365			
Leu	Val	Leu	Gly	Ile	Met	Ala	Val	Ala	Leu	Gly	Ala	Pro	Gly	Leu	Met
	370	•				375					380				
Leu	Leu	Gly	Gly	Gly	Leu	Val	Leu	Leu	Leu	His	His	Lys	Lys	Tyr	Ser
385					390					395					400
Glu	Tyr	Gln	Ser	Ile	Asn										
				405											
<21	0> 1	0													
<21	1> 1	92													
<21	2> P	RT													
⟨21	3> H	omo	sapi	ens											
<40	0> 1	0													
Met	Thr	Ala	Val	Gly	Val	Gln	Ala	Ğln	Arg	Pro	Leu	Gly	Gln	Arg	Gln
1				5					10)				15	
Pro	Arg	Arg	Ser	Phe	Phe	Glu	Ser	Phe	Ile	Arg	Thr	Leu	Ile	Ile	Thr

21 /307

	20	25		30
Cys Val Ala	Leu Ala Va	l Val Leu Ser	Ser Val Ser	Ile Cys Asp Gly
35		40		45
His Trp Leu	Leu Ala Gl	u Asp Arg Leu	Phe Gly Leu	Trp His Phe Cys
50		55	60	
Thr Thr Thr	Asn Gln Se	r Val Pro Ile	Cys Phe Arg	Asp Leu Gly Gln
65	7	0	75	. 80
Ala His Val	Pro Gly Le	u Ala Val Gly	Met Gly Leu	Val Arg Ser Val
	85		90	95
Gly Ala Leu	Ala Val Va	l Ala Ala Ile	Phe Gly Leu	Glu Phe Leu Met
	100	105		110
Val Ser Gln	Leu Cys Gl	u Asp Lys His	Ser Gln Cys	Lys Trp Val Met
115		120	•	125
Gly Ser Ile	Leu Leu Le	u Val Ser Phe	Val Leu Ser	Ser Gly Gly Leu
130		135	140	
Leu Gly Phe	Val Ile Le	u Leu Arg Asr	Gln Val Thr	Leu Ile Gly Phe
145	15	0	155	160
Thr Leu Met	Phe Trp Cy	s Glu Phe Thr	Ala Ser Phe	Leu Leu Phe Leu
	165	•	170	175
Asn Ala Ile	Ser Gly Le	u His Ile Asr	Ser Ile Thr	His Pro Trp Glu
	180	185		190

<210> 11

<211> 801

<212> DNA

22 /307

⟨213⟩	Homo	sapien	S

⟨400⟩ 11

60 atggtgaaga ttagcttcca gcccgccgtg gctggcatca agggcgacaa ggctgacaag 120 gcgtcggcgt cggcccctgc gccggcctcg gccaccgaga tcctgctgac gccggctagg gaggagcagc ccccacaaca tcgatccaag agggggagct cagtgggcgg cgtgtgctac 180 240 ctgtcgatgg gcatggtcgt gctgctcatg ggcctcgtgt tcgcctctgt ctacatctac 300 agatacttct ttcttgcaca gctggcccga gataacttct tccgctgtgg tgtgctgtat 360 gaggactece tgteeteeca ggteeggact cagatggage tggaagagga tgtgaaaate 420 tacctcgacg agaactacga gcgcatcaac gtgcctgtgc cccagtttgg cggcggtgac cctgcagaca tcatccatga cttccagcgg ggtctgactg cgtaccatga tatctccctg 480 540 gacaagtgct atgtcatcga actcaacacc accattgtgc tgccccctcg caacttctgg 600 gageteetea tgaaegtgaa gagggggaee tacetgeege agaegtaeat cateeaggag 660 gagatggtgg tcacggagca tgtcagtgac aaggaggccc tggggtcctt catctaccac 720 ctgtgcaacg ggaaagacac ctaccggctc cggcgccggg caacgcggag gcggatcaac 780 aagcgtgggg ccaagaactg caatgccatc cgccacttcg agaacacctt cgtggtggag 801 acgctcatct gcggggtggt g

<210> 12

<211> 1257

<212> DNA

<213> Homo sapiens

<400> 12

atgagetgeg eggggegge gggeeetgee eggetegeeg egetegeeet getgaeetge 60
ageetgtgge eggeaegge agacaaegeg ageeaggagt actacaegge geteateaae 120
gtgaeggtge aggageeegg eegeggegee eegeteaegt ttegeatega eegeggegee 180

23 /307

240	gctgccctc	tgctggcgcc	cgcggccagg	ggccgaggtc	actccccaa	tacgggcttg
300	ccctcctaat	ggttctttgt	ccacaaaccc	gggctgtgat	ctgatcatct	cacggagttg
360	gaaaatatca	cgtttaaaga	ggaaactgca	gctgcagagg	ggattgcctt	atcaaacagt
420	caaagaggag	ataataaatc	gtcatctaca	agttgctgta	tccacaatgc	cgggccgctt
480	aacagaattg	ctgtcatgat	gatattattg	aggcactgga	tgactcatcc	ccagttacca
540	gacaatagct	ctgtacaaat	aạaaacatct	ttatctggag	atattttgag	aggggtaagg
600	cgtgtcaata	ctctagtctt	agccgtggct	gaagaacttc	gaatgccacc	gttggaactc
660	cattcagaag	tattctactt	gcatggctca	tatttcttca	ttttgatgat	tcctttattg
720	agccaagaaa	toggagatgo	cagcgtcgtc	cgacaggaac	caaatgcacg	atcaggtaca
780	tgacccagac	acaaggaaac	aagaagggtg	caggacagta	aattgacaac	gccatcagta
840	ccgaattctc	atgatgtcgt	tataagcaga	catagagagc	gtgcagtctg	tttgatcatt
900	acattgtacc	ggcttagtga	gtggatccct	caaatcctgc	atgttttcca	ccctgcaagc
960	tttgccatgt	ttgtgccgaa	gccctgggaa	tatattgaag	gcaaacttaa	tgtcctatgt
1020	taaccgaaga	cccaagctgt	ctcaccagaa	tatggaaagg	tagcattcga	actgataacg
1080	tcgaacttcg	ttgagccact	tcccttggcc	cggcgacaac	gcgacctcgc	tcagccctcg
1140	aatcaacatt	gaacaggaga	ctcactccga	ggatggggag	ctcttcctca	gggatctcac
1200	cctcacactc	tcctcagtgc	agttttggcc	tattattgcc	aagaatggtt	gcagtaacaa
1257	atggttt	atgaggtaga	ttgaatgcta	cacagetage	tcatcagage	tgctacatga

⟨210⟩ 13

<211> 1245

<212> DNA

<213> Homo sapiens

⟨400⟩ 13

24 /307

tegeggeage	agtccccaga	gagacctgtt	ttcacatgtg	gtggcattct	tactggagag	120
tctggattta	ttggcagtga	aggttttcct	ggagtgtacc	ctccaaatag	caaatgtact	180
tggaaaatca	cagttcccga	aggaaaagta	gtcgttctca	atttccgatt	catagacctc	240
gagagtgaca	acctgtgccg	ctatgacttt	gtggatgtgt	acaatggcca	tgccaatggc	300
cagcgcattg	gccgcttctg	tggcactttc	cggcctggag	cccttgtgtc	cagtggcaac	360
aagatgatgg	tgcagatgat	ttctgatgcc	aacacagctg	gcaatggctt	catggccatg	420
ttctccgctg	ctgaaccaaa	cgaaagaggg	gatcagtatt	gtggaggact	ccttgacaga	480
ccttccggct	cttttaaaac	ccccaactgg	ccagaccggg	attaccctgc	aggagtcact	540
tgtgtgtggc	acattgtagc	cccaaagaat	cagcttatag	aattaaagtt	tgagaagttt	600
gatgtggagc	gagataacta	ctgccgatat	gattatgtgg	ctgtgtttaa	tggcggggaa	660
gtcaacgatg	ctagaagaat	tggaaagtat	tgtggtgata	gtccacctgc	gccaattgtg	720
tctgagagaa	atgaacttct	tattcagttt	ttatcagact	taagtttaac	tgcagatggg	780
tttattggtc	actacatatt	caggccaaaa	aaactgccta	caactacaga	acagcctgtc	840
accaccacat	tccctgtaac	cacgggttta	aaaaccaccg	tggccttgtg	tcaacaaaag	900
tgtagacgga	cggggactct	ggagggcaat	tattgttcaa	gtgactttgt	attagccggc	960
actgttatca	caaccatcac	tcgcgatggg	agtttgcacg	ccacagtctc	gatcatcaac	1020
atctacaaag	agggaaattt	ggcgattcag	caggcgggca	agaacatgag	tgccaggctg	1080
actgtcgtct	gcaagcagtg	ccctctcctc	agaagaggtc	taaattacat	tattatgggc	1140
caagtaggtg	aagatgggcg	aggcaaaatc	atgccaaaca	gctttatcat	gatgttcaag	1200
accaagaatc	agaagctcct	ggatgcctta	aaaaataagc	aatgt		1245

⟨210⟩ 14

⟨211⟩ 1140

<212> DNA

<213> Homo sapiens

25 /307

<400> 14

60	tgtgaacttg	tgtggctgcc	tgggaacgtc	ttacttctgg	ccttgtatga	atgctccaga
120	agatctctat	ccaaagcctc	cgtgtctacg	ccgagatgga	atctagaaga	acctgggccg
180	gctgtacgtg	acttctttga	atcgttcgat	gctcttcctc	ccctggcctt	atcacgctgc
240	ggcacctccc	ctcggctgcg	aaggagaaaa	cttgaacata	tggctgccct	gctacaccac
300	ggtggaagta	agcccaagca	agtggcaagc	ctacctgacc	tggaacattt	aacgccacct
360	gttccgtcgc	tagagcgttg	ggccgccagg	cgggctctct	cccggcagag	gagċttttgt
420	ctggagattc	gagaagccag	aagaagttcc	cagtctcctc	aggaccggcc	cgccgcaacc
480	accctggttc	ttgtggataa	atggccgtca	cattgccggc	tgattgcctt	acattttacc
540	ttcccagtat	gcactatccc	cccatacaga	ggagggatat	agaaagtttg	tatgacatga
600	tgcctctgat	tcttcagcat	tggtccctgc	ttccttctac	tgattgaact	tggtactaca
660	cattctcatc	tggccaccat	atccaccatg	ggaacagatc	aggatttcaa	gtcaagcgaa
720	tctgcatgac	taatcatggc	gctgggactc	ttacatccga	ggtttgccaa	agcttttcct
780	gaagaacacc	acgcgggatg	atgtttaact	gtcagccaag	acctgctgga	tcttccgatt
840	ggtcatcctg	tcacccgact	gtttttatca	cttcgccatt	tcttcatcgt	tgcaacaaca
900	tgccttcttt	agctctatcc	tacccactgg	caccctggtg	tcctgcattg	cccttctgga
960	cttctgggcc	tgctgcatat	gttctacagc	catgatggga	tcttcaattc	ggctattact
1020	agatgaacgc	agctggtaga	ataactggaa	ccacaagttc	tgcgcatggc	tacctcattt
1080	gggaggagca	ctgcagctgg	ggggaggagg	gagctcagag	aagaaacaga	agtgaccggg
1140	taagaatgac	acaaccatcg	atcctcaata	tggccacccc	ccctagccaa	aagagccggc

⟨210⟩ 15

⟨211⟩ 1755

<212> DNA

<213> Homo sapiens

26 /307

⟨400⟩ 15

atggtctgca	gggagcagtt	atcaaagaat	caggtcaagt	gggtgtttgc	cggcattacc	. 60
tgtgtgtctg	tggtggtcat	tgccgcaata	gtccttgcca	tcaccctgcg	gcggccaggc	120
tgtgagctgg	aggcctgcag	ccctgatgcc	gacatgctgg	actacctgct	gagcctgggc	180
cagatcagcc	ggcgagatgc	cttggaggtc	acctggtacc	acgcagccaa	cagcaagaaa	240
gccatgacag	ctgccctgaa	cagcaacatc	acagtcctgg	aggctgacgt	caatgtagaa	300
gggctcggca	cagccaatga	gacaggagtt	cccatcatgg	cacacccccc	cactatctac	360
agtgacaaca	cactggagca	gtggctggac	gctgtgctgg	gctcttccca	aaagggcatc	420
asactggact	tcaagaacat	caaggcagtg	ggcccctccc	tggacctcct	gcggcagctg	480
acagaggaag	gcaaagtccg	gcggcccata	tggatcaacg	ctgacatctt	aaagggcccc	540
aacatgctca	tctcaactga	ggtcaatgcc	acacagttcc	tggccctggt	ccaggagaag	600
tatcccaagg	ctaccctatc	tccaggctgg	accaccttct	acatgtccac	gtccccaaac	660
aggacgtaca	cccaagccat	ggtggagaag	atgcacgagc	tggtgggagg	agtgccccag	720
agggtcacct	tccctgtacg	gtcttccatg	gtgcgggctg	cctggcccca	cttcagctgg	780
ctgctgagcc	aatctgagag	gtacagcctg	acgctgtggc	aggctgcctc	ggaccccatg	840
tcggtggaag	atctgctcta	cgtccgggat	aacactgctg	tccaccaagt	ctactatgac	900
atctttgagc	ctctcctgtc	acagttcaag	cagctggcct	tgaatgccac	acggaaacca	960
atgtactaca	caggaggcag	cctgatccct	cttctccagc	tgcctgggga	tgacggtctg	1020
aatgtggagt	ggctggttcc	tgacgtccag	ggcagcggta	aaacagcaac	aatgaccctc	1080
ccagacacag	aaggcatgat	cctgctgaac	actggcctcg	agggaactgt	ggctgaaaac	1140
cccgtgccca	ttgttcatac	tccaagtggc	aacatcctga	cgctggagtc	ctgcctgcag	1200
cagctggcca	cacatcccgg	acactggggc	atccatttgc	aaatagcgga	gcccgcagcc	1260
ctccggccat	ccctggcctt	gctggcacgc	ctctccagcc	ttggcctctt	gcattggcct	1320
gtgtgggttg	gggccaaaat	ctcccacggg	agtttttcgg	tccccggcca	tgtggctggc	1380
agagagctgc	ttacagctgt	ggctgaggtc	ttccccacg	tgactgtggc	accaggctgg	1440

27 /307

cctgaggagg tgctgggcag tggctacagg gaacagctgc tcacagatat gctagagttg 1500
tgccaggggc tctggcaacc tgtgtccttc cagatgcagg ccatgctgct gggccacagc 1560
acagctggag ccataggcag gctgctggca tcctcccccc gggccaccgt cacagtggag 1620
cacaacccag ctgggggcga ctatgcctct gtgaggacag cattgctggc agctagggct 1680
gtggacagga cccgagtcta ctacaggcta ccccagggct accacaagga cttgctggct 1740
catgttggta gaaac 1755

⟨210⟩ 16

<211> 993

<212> DNA

<213> Homo sapiens

<400> 16

60 atgtggctgt gggaggacca gggcggcctc ctgggccctt tctccttcct gctgctagtg 120 ctgctgctgg tgacgcggag cccggtcaat gcctgcctcc tcaccggcag cctcttcgtt 180 ctactgcgcg tcttcagctt tgagccggtg ccctcttgca gggccctgca ggtgctcaag 240 ccccgggacc gcatttctgc catcgcccac cgtggcggca gccacgacgc gcccgagaac 300 acgctggcgg ccattcggca ggcagctaag aatggagcaa caggcgtgga gttggacatt gagtttactt ctgacgggat tcctgtctta atgcacgata acacagtaga taggacgact 360 420 gatgggactg ggcgattgtg tgatttgaca tttgaacaaa ttaggaagct gaatcctgca 480 gcaaaccaca gactcaggaa tgatttccct gatgaaaaga tccctaccct aagggaagct 540 gttgcagagt gcctaaacca taacctcaca atcttctttg atgtcaaagg ccatgcacac 600 aaggctactg aggctctaaa gaaaatgtat atggaatttc ctcaactgta taataatagt 660 gtggtctgtt ctttcttgcc agaagttatc tacaagatga gacaaacaga tcgggatgta 720 ataacagcat taactcacag accttggagc ctaagccata caggagatgg gaaaccacgc 780 tatgatactt tctggaaaca ttttatattt gttatgatgg acattttgct cgattggagc

28 / 307

atgcataata	tcttgtggta	cctgtgtgga	atttcagctt	tcctcatgca	aaaggatttt	840
gtatccccgg	cctacttgaa	gaagtggtca	gctaaaggaa	tccaggttgt	tggttggact	900
gttaatacct	ttgatgaaaa	gagttactac	gaatcccatc	ttggttccag	ctatatcact	960
gacagcatgg	tagaagactg	cgaacctcac	ttc			993

⟨210⟩ 17

⟨211⟩ 1035

<212> DNA

<213> Homo sapiens

⟨400⟩ 17

60 atgtcgcctg aagaatggac gtatctagtg gttcttctta tctccatccc catcggcttc 120 ctctttaaga aagccggtcc tgggctgaag agatggggag cagccgctgt gggcctgggg 180 cteaccetgt teacetgtgg cececacact ttgeattete tggteaccat cetegggace 240 tgggccctca ttcaggccca gccctgctcc tgccacgccc tggctctggc ctggactttc 300 tectatetee tgttetteeg ageceteage etectgggee tgeceaetee caegecette 360 accaatgoog tocagotgot gotgacgotg aagotggtga gootggccag tgaagtocag 420 gacctgcatc tggcccagag gaaggaaatg gcctcaggct tcagcaaggg gcccaccctg 480 gggctgctgc ccgacgtgcc ctccctgatg gagacactca gctacagcta ctgctacgtg 540 ggaatcatga caggcccgtt cttccgctac cgcacctacc tggactggct ggagcagccc 600 ttccccgggg cagtgcccag cctgcggccc ctgctgcgcc gcgcctggcc ggccccgctc 660 ttcggcctgc tgttcctgct ctcctctcac ctcttcccgc tggaggccgt gcgcgaggac 720 gccttctacg cccgcccgct gcccgcccgc ctcttctaca tgatccccgt cttcttcgcc 780 ttccgcatgc gcttctacgt ggcctggatt gccgccgagt gcggctgcat tgccgccggc 840 tttggggcct accccgtggc cgccaaagcc cgggccggag gcggccccac cctccaatgc 900 ccaccccca gcagtccgga gaaggcggct tccttggagt atgactatga gaccatccgc

aacatcgact	gctacagcac	agatttctgc	gtgcgggtgc	gcgatggcat	gcggtactgg	960
aacatgacgg	tgcagtggtg	gctggcgcag	tatatctaca	agagcgcacc	tgcccgttcc	1020
tatgtcctgc	gcctt		·			1035
<210> 18						
<211> 267						
<212> DNA						
<213> Homo	sapiens					
<400> 18						
atgtacatgc	aagattattg	gaggacctgg	ctcaaggggc	tgcgcggctt	cttcttcgtg	60
ggcgtcctct	tctcggccgt	ctccatcgct	gccttctgca	ccttcctcgt	gctggccatc	120
acccggcatc	agagcctcac	agaccccacc	agctactacc	tctccagcgt	ctggagcttc.	180
atttccttca	agtgggcctt	cctgctcagc	ctctatgccc	accgctaccg	ggctgacttt	240
gctgacatca	gcatcctcag	cgatttc				267
<210> 19						
<211> 1218						
<212> DNA						
<213> Homo	sapiens					
<400> 19						
atgcgcggct	ctgtggagtg	cacctggggt	tgggggcact	gtgccccag	cccctgctc	60
ctttggactc	tacttctgtt	tgcagcccca	tttggcctgc	tgggggagaa	gacccgccag	120
gtgtctctgg	aggtcatccc	taactggctg	ggcccctgc	agaacctgct	tcatatacgg	180
gcagtgggca	ccaattccac	actgcactat	gtgtggagca	gcctggggcc	tctggcagtg	240
gtaatggtgg	ccaccaacac	ccccacagc	accctgagcg	tcaactggag	cctcctgcta	300

30 / 307

tccctgagc	ccgatggggg	cctgatggtg	ctccctaagg	acagcattca	gttttcttct	360
gcccttgttt	ttaccaggct	gcttgagttt	gacagcacca	acgtgtccga	tacggcagca	420
aagcctttgg	gaagaccata	tcctccatac	tccttggccg	atttctcttg	gaacaacatc	480
actgattcat	tggatcctgc	caccctgagt	gccacatttc	aaggccaccc	catgaacgac	540
cctaccagga	cttttgccaa	tggcagcctg	gccttcaggg	tccaggcctt	ttccaggtcc	600
agccgaccag	cccaaccccc	tcgcctcctg	cacacagcag	acacctgtca	gctagaggtg	660
gccctgattg	gagcctctcc	ccggggaaac	cgttccctgt	ttgggctgga	ggtagccaca	720
ttgggccagg	gccctgactg	ccctcaatg	caggagcagc	actccatcga	cgatgaatat	780
gcaccggccg	tcttccagtt	ggaccagcta	ctgtggggct	ccctcccatc	aggctttgca	840
cagtggcgac	cagtggctta	ctcccagaag	ccggggggcc	gagaatcagc	cctgccctgc	900
caagcttccc	ctcttcatcc	tgccttagca	tactctcttc	cccagtcacc	cattgtccga	960
gccttctttg	ggtcccagaa	taacttctgt	gccttcaatc	tgacgttcgg	ggcttccaca	1020
ggccctggct	attgggacca	acactacctc	agctggtcga	tgctcctggg	tgtgggcttc	1080
cctccagtgg	acggcttgtc	cccactagtc	ctgggcatca	tggcagtggc	cctgggtgcc	1140
ccagggctca	tgctgctagg	gggcggcttg	gttctgctgc	tgcaccacaa	gaagtactca	1200
gagtaccagt	ccataaat					1218

<210> 20

⟨211⟩ 576

<212> DNA

<213> Homo sapiens

<400> 20

atgactgccg tcggcgtgca ggcccagagg cctttgggcc aaaggcagcc ccgccggtcc 60
ttctttgaat ccttcatccg gaccctcatc atcacgtgtg tggccctggc tgtggtcctg 120
tcctcggtct ccatttgtga tgggcactgg ctcctggctg aggaccgcct cttcgggctc 180

31 /307

tggcacttct gcaccaccac caaccagagt gtgccgatct gcttcagaga cctgggccag	240
gcccatgtgc ccgggctggc cgtgggcatg ggcctggtac gcagcgtggg cgccttggcc	300
gtggtggccg ccatttttgg cctggagttc ctcatggtgt cccagttgtg cgaggacaaa	360
cactcacagt gcaagtgggt catgggttcc atcctcctcc tggtgtcttt cgtcctctcc	420
tccggcgggc tcctgggttt tgtgatcctc ctcaggaacc aagtcacact catcggcttc	480
accetaatgt tttggtgega atteactgee teetteetee tetteetgaa egecateage	540
ggccttcaca tcaacagcat cacccatccc tgggaa	576
<210> 21	
<211> 2042	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (91) (894)	
<400> 21	
tccggtgcct gcagagctcg gagcggcgga ggcagagacc gaggctgcac cggcagaggc	60
tgcggggcgg acgcgcggcc cggcgcagcc atg gtg aag att agc ttc cag	111
Met Val Lys Ile Ser Phe Gln	
1 5	
ccc gcc gtg gct ggc atc aag ggc gac aag gct gac aag gcg tcg gcg	159
Pro Ala Val Ala Gly Ile Lys Gly Asp Lys Ala Asp Lys Ala Ser Ala	
10 15 20	

tcg gcc cct gcg ccg gcc tcg gcc acc gag atc ctg ctg acg ccg gct

Ser Ala Pro Ala Pro Ala Ser Ala Thr Glu Ile Leu Leu Thr Pro Ala

207

	25					30					35					
agg	gag	gag	cag	ccc	cca	caa	cat	cga	tcc	aag	agg	ggg	agc	tca	gtg	255
Arg	Glu	Glu	Gln	Pro	Pro	Gln	His	Arg	Ser	Lys	Arg	Gly	Ser	Ser	Val	•
40					45				•	50					55	
ggc	ggc	gtg	tgc	tac	ctg	tcg	atg	ggc	atg	gtc	gtg	ctg	ctc	atg	ggc	303
Gly	Gly	Val	Cys	Tyr	Leu	Ser	Met	Gly	Met	Val	Val	Leu	Leu	Met	Gly	
				60					65					70		
ctc	gtg	ttc	gcc	tct	gtc	tac	atc	tac	aga	tac	ttc	ttt	ctt	gca	cag	351
Leu	Val	Phe	Ala	Ser	Val	Tyr	Ile	Tyr	Arg	Tyr	Phe	Phe	Leu	Ala	Gln	
			75					80					85			
ctg	gcc	cga	gat	aac	ttc	ttc	cgc	tgt	ggt	gtg	ctg	tat	gag	gac	tcc	399
Leu	Ala	Arg	Asp	Asn	Phe	Phe	Arg	Cys	Gly	Val	Leu	Tyr	Glu	Asp	Ser	•
		90					95					100				
ctg	tcc	tcc	cag	gtc	cgg	act	cag	atg	gag	ctg	gaa	gag	gat	gtg	aaa	447
Leu	Ser	Ser	Gln	Val	Arg	Thr	Gln	Met	Glu	Leu	Glu	Glu	Asp	Val	Lys	
	105					110					115					
atc	tac	ctc	gac	gag	aac	tac	gag	cgc	atc	aac	gtg	cct	gtg	ссс	cag	495
Ile	Tyr	Leu	Asp	Glu	Asn	Tyr	Glu	Arg	Ile	Asn	Val	Pro	Val	Pro	G1n	
120					125					130					135	
ttt	ggc	ggc	ggt	gac	cct	gca	gac	atc	atc	cat	gac	ttc	cag	cgg	ggt	543
Phe	Gly	Gly	Gly	Asp	Pro	Ala	Asp	Ile	Ile	His	Asp	Phe	Gln	Arg	Gly	
				140					145					150		
ctg	act	gcg	tac	cat	gat	atc	tcc	ctg	gac	aag	tgc	tat	gtc	atc	gaa	591
Leu	Thr	Ala	Tyr	His	Asp	Ile	Ser	Leu	Asp	Lys	Cys	Tyr	Val	Ile	Glu	
			155					160					165			

ctc	aac	acc	acc	att	gtg	ctg	ccc	cct	cgc	aac	ttc	tgg	gag	ctc	ctc	639
Leu	Asn	Thr	Thr	Ile	Val	Leu	Pro	Pro	Arg	Asn	Phẹ	Trp	Glu	Leu	Leu	
		170			•		175					180	٠	•	•	
atg	аас	gtg	aag	agg	ggg	acc	tac	ctg	ccg	cag	acg	tac	atc	atc	cag	687
Met	Asn	Val	Lys	Arg	Gly	Thr	Tyr	Leu	Pro	Gln	Thr	Tyr	Ile	Ile	Gln	
	185					190					195					
gag	gag	atg	gtg	gtc	acg	gag	cat	gtc	agt	gac	aag	gag	gcc	ctg	ggg	735
Glu	Glu	Met	Val	Val	Thr	Glu	His	Val	Ser	Asp	Lys	Glu	Ala	Leu	Gly	
200					205					210					215	
tcc	ttc	atc	tac	cac	ctg	tgc	aac	ggg	aaa	gac	acc	tac	cgg	ctc	cgg	783
Ser	Phe	Ile	Tyr	His	Leu	Cys	Asn	Gly	Lys	Asp	Thr	Tyr	Arg	Leu	Arg	
				220					225					230		
cgc	cgg	gca	acg	cgg	agg	cgg	atc	aac	aag	cgt	ggg	gcc	aag	aac	tgc	831
Arg	Arg	Ala	Thr	Arg	Arg	Arg	Ile	Asn	Lys	Arg	Gly	Ala	Lys	Asn	Cys	
			235					240					245			
aat	gcc	atc	cgc	cac	ttc	gag	aac	acc	ttc	gtg	gtg	gag	acg	ctc	atc	879
Asn	Ala	Ile	Arg	His	Phe	Glu	Asn	Thr	Phe	Val	Val	Glu	Thr	Leu	Ile	
		250					255					260				
tgc	888	gtg	gtg	tgag	ggcc	ctc o	ctccc	cca	ga ac	cccc	ctgc	gtg	gttc	ctc		930
Cys	Gly	Val	Val													
	265															
ttti	tctto	ctt 1	tccgg	gctgo	ct ci	tctgg	gccct	t cci	tcct1	tccc	cct	gctta	agc '	ttgta	actttg	990
gac	gcgti	ttc 1	tatag	gaggi	tg ac	catgi	tctct	t cca	attco	ctct	ccas	accci	tgc (ccac	ctccct	1050
gtad	ccaga	agc 1	tgtga	atcto	ct cg	ggtgg	38888	g cc	catc	tctg	ctga	acct	ggg '	tgtg	gcggag	1110
ggag	gaggo	oga 1	tgctg	zcaa	ng ta	gttti	tctgi	t gte	08000	etgt	ctt	gaage	ctg	ggcc	tgccaa	1170

34 /307

agcctgggcc	cacagetgea	ccggcagccc	aaggggaagg	accggttggg	ggagccgggc	1230
atgtgaggcc	ctgggcaagg	ggatggggct	gtgggggcgg	ggcggcatgg	gcttcagaag	1290
tatctgcaca	attagaaaag	tcctcagaag	cttttcttg	gagggtacac	tttcttcact	1350
gtccctattc	ctagacctgg	ggcttgagct	gaggatggga	cgatgtgccc	agggagggac	1410
ccaccagagc	acaagagaag	gtggctacct	gggggtgtcc	cagggactct	gtcagtgcct	1470
tcagcccacc	agcaggagct	tggagtttgg	ggagtgggga	tgagtccgtc	aagcacaact	1530
gttctctgag	tggaaccaaa	gaagcaagga	gctaggaccc	ccagtcctgc	ccccaggag	1590
cacaagcagg	gtccctcag	tcaaggcagt	gggatgggcg	gctgaggaac	ggggcaggca	1650
aggtcactgc	tcagtcacgt	ccacggggga	cgagccgtgg	gttctgctga	gtaggtggag	1710
ctcattgctt	tctccaagct	tggaactgtt	ttgaaagata	acacagaggg	aaagggagag	1770
ccacctggta	cttgtccacc	ctgcctcctc	tgttctgaaa	ttccatcccc	ctcagcttag	1830
gggaatgcac	ctttttccct	ttccttctca	cttttgcatg	tttttactga	tcattcgata	1890
tgctaaccgt	tctcagccct	gagccttgga	gaggagggct	gtaacgcctt	cagtcagtct	1950
ctggggatga	aactcttaaa	tgctttgtat	attttctcaa	ttagatctct	tttcagaagt	2010
gtctatagaa	caataaaaat	cttttacttc	tg			2042
<210> 22						
<211> 1433						
<212> DNA						
<213> Ношо	sapiens		·			
<220>						
<221> CDS						
<222> (5).	(1264)					
<400> 22						
						40

]	i		5					10							
ctc	gcc	ctg	ctg	acc	tgc	agc	ctg	tgg	ccg	gca	cgg	gca	gac	aac	gcg	94
Leu	Ala	Leu	Leu	Thr	Cys	Ser	Leu	Trp	Pro	Ala	Arg	Ala	Asp	Asn	Ala	
15					20					25					30	
agc	cag	gag	tac	tac	acg	gcg	ctc	atc	aac	gtg	acg	gtg	cag	gag	ccc	142
Ser	Gln	Glu	Tyr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	Gln	Glu	Pro	
				35					40	•				45		
ggc	cgc	ggc	gcc	ccg	ctc	acg	ttt	cgc	atc	gac	cgc	ggg	cgc	tac	ggg	190
Gly	Arg	Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	
			50					55					60			
ctt	gac	icc	ccc	aag	gcc	gag	gtc	cgc	ggc	cag	gtg	ctg	gcg	ccg	ctg	238
Leu	Asp	Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	Gln	Val	Leu	Ala	Pro	Leu	
		65					70					75				
ccc	ctc	cac	gga	gtt	gct	gat	cat	ctg	ggc	tgt	gat	cca	caa	acc	cgg	286
Pro	Leu	His	Gly	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	G1n	Thr	Arg	
	80					85					90					
ttc	ttt	gtc	cct	cct	aat	atc	aaa	cag	tgg	att	gcc	ttg	ctg	cag	agg	334
Phe	Phe	Val	Pro	Pro	Asn	Ile	Lys	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	
95					100			• .		105					110	
gga	aac	tgc	acg	ttt	888	gag	aaa	ata	tca	cgg	gcc	gct	ttc	cac	aat	382
Gly	Asn	Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	Asn	
				115					120					125		
gca	gtt	gct	gta	gtc	atc	tac	aat	aat	aaa	tcc	888	gag	gag	cca	gtt	430
Ala	Val	Ala	Val	Val	Ile	Tyr	Asn	Asn	Lys	Ser	Lys	Glu	Glu	Pro	Val	
			130					135					140			

acc	atg	act	cat	cca	ggc	act	gga	gat	att	att	gct	gtc	atg	ata	aca	478
Thr	Met	Thr	His	Pro	Gly	Thr	Gly	Asp _.	Ile	Ile	Ala	Val	Met	Ile	Thr	
		145		•		•	150					155				
gaa	ttg	agg	ggt	aag	gat	att	ttg	agt	tat	ctg	gag	aaa	aac	atc	tct	526
Glu	Leu	Arg	Gly	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile	Ser	
	160					165					170					
gta	caa	atg	aca	ata	gct	gtt	gga	act	cga	atg	сса	ccg	aag	aac	ttc	574
Val	Gln	Met	Thr	Ile	Ala	Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asn	Phe	
175					180					185					190	_
agc	cgt	ggc	tct	cta	gtc	ttc	gtg	tca	ata	tcc	ttt	att	gtt	ttg	atg	622
Ser	Arg	Gly	Ser	Leu	Val	Phe	Val	Ser	Ile	Ser	Phe	Ile	Val	Leu	Met	
				195					200					205	•	
att	att	tct	tca	gca	tgg	ctc	ata	ttc	tac	ttc	att	cag	aag	atc	agg	670
Ile	Ile	Ser	Ser	Ala	Trp	Leu	Ile	Phe	Tyr	Phe	Ile	Gln	Lys	Ile	Arg	
			210					215					220			
tac	aca	aat	gca	cgc	gac	agg	aac	cag	cgt	cgt	ctc	gga	gat	gca	gcc	718
Tyr	Thr	Asn	Ala	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	
		225					230					235				
aag	aaa	gcc	atc	agt	888	ttg	aca	acc	agg	aca	gta	aag	aag	ggt	gac	766
Lys	Lys	Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	
	240					245					250					
aag	gaa	act	gac	сса	gac	ttt	gat	cat	tgt	gca	gtc	tgc	ata	gag	agc	814
Lys	Glu	Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	
255					260					265					270	
tat	aag	cag	aat	gat	gtc	gtc	cga	att	ctc	ccc	tgc	aag	cat	gtt	ttc	862

1	yr	Lys	Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	
					275			•		280					285		
	ac	aaa	tcc	tgc	gtg	gat	ccc	tgg	ctt	agt	gaa	cat	tgt	acc	tgt	cct	910
Ī	lis	Lys	Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	
				290					295					300			
ŧ	atg	tgc	aaa	ctt	aat	ata	ttg	aag	gcc	ctg	gga	att	gtg	ccg	aat	ttg	958
ì	let	Cys	Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	
			305					310					315				
(cca	tgt	act	gat	aac	gta	gca	ttc	gat	atg	gaa	agg	ctc	acc	aga	acc	1006
]	Pro	Cys	Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	
		320					325					330					
(caa	gct	gtt	aac	cga	aga	tca	gcc	ctc	ggc	gac	ctc	gcc	ggc	gac	aac	1054
(Gln	Ala	Val	Asn	Arg	Arg	Ser	Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	
•	335					340					345					350	
	tcc	ctt	ggc	ctt	gag	cca	ctt	cga	act	tcg	ggg	atc	tca	cct	ctt	cct	1102
;	Ser	Leu	Gly	Leu	Glu	Pro	Leu	Arg	Thr	Ser	Gly	Ile	Ser	Pro	Leu	Pro	
					355					360					365		
(cag	gat	ggg	gag	ctc	act	ccg	aga	aca	gga	gaa	atc	aac	att	gca	gta	1150
(Gln	Asp	Gly	Glu	Leu	Thr	Pro	Arg	Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	
				370					375					380			
;	aca	aaa	gaa	tgg	ttt	att	att	gcc	agt	ttt	ggc	ctc	ctc	agt	gcc	ctc	1198
•	Thr	Lys	Glu	Trp	Phe	Ile	Ile	Ala	Ser	Phe	Gly	Leu	Leu	Ser	Ala	Leu	
			385					390					395				
;	aca	ctc	tgc	tac	atg	atc	atc	aga	gcc	aca	gct	agc	ttg	aat	gct	aat	1246
•	Thr	Leu	Cys	Tyr	Met	Ile	Ile	Arg	Ala	Thr	Ala	Ser	Leu	Asn	Ala	Asn	

400	405	410		
gag gta gaa tgg	ttt tgaagaagaa aaaa	acctgct ttctgactga	ttttgcctt 1300	
Glu Val Glu Trp	Phe	•	•	
415				
gaaggaaaaa agaad	cctatt tttgtgcatc a	tttaccaat catgocaca	ac aagcatttat 1360	
ttttagtaca tttta	attttt tcataaaatt g	ctaatgcca aagctttg	ta ttaaaagaaa 1420	
taaataataa aat			1433	
<210> 23				
<211> 1917				
<212> DNA				
<213≻ Homo sapi	ens			
<220>				
<221> CDS				
<222> (210)((1457)			
<400> 23				
gtatccccg gcta	ectggg cogccocgcg (gcggtgcgcg cgtgagag	ggg agegegeggg 60)
cagccgagcg ccgg	gtgtgag ccagcgctgc	tgccagtgtg agccagcg	gct gctgccagtg 120)
tgagcggcgg tgtg	gagegeg gtgggtgegg	aggggcgtgt gtgccgg	ege gegegeegtg 180)
gggtgcaaac cccg	gagegte taegetgee a	tg agg ggc gcg aac	gcc tgg gcg 233	3
	М	et Arg Gly Ala Asn	Ala Trp Ala	
		1 5		
cca ctc tgc ct	g ctg ctg gct gcc g	cc acc cag ctc tcg	cgg cag cag 283	1
Pro Leu Cys Le	u Leu Leu Ala Ala A	la Thr Gln Leu Ser	Arg Gln Gln	
10	15	20		

cc	cca	gag	aga	cct	gtt	ttc	aca	tgt	ggt	ggc	att	ctt	act	gga	gag	329
Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr	Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glų	
25		•			30					35					40	•
tct	gga	ttt	att	ggc	agt	gaa	ggt	ttt	cct	gga	gtg	tac	cct	сса	aat	377
Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly	Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	
				45					50					55		
agc	aaa	tgt	act	tgg	aaa	atc	aca	gtt	ccc	gaa	gga	aaa	gta	gtc	gtt	425
Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr	Val	Pro	Glu	Gly	Lys	Val	Val	Val	
			60					65					70)		
ctc	aat	ttc	cga	ttc	ata	gac	ctc	gag	agt	gac	aac	ctg	tgo	cgc	tat	473
Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu	Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	
		75				٠	80					85	,			
gac	ttt	gtg	gat	gtg	tac	aat	ggc	cat	gcc	aat	ggc	cag	cgc	att	ggc	521
Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly	His	Ala	Asn	Gly	Glr	Arg	g Ile	Gly	
	90)				95					100	1				
cgc	tto	tgt	ggc	act	ttc	cgg	cct	gga	gcc	ctt	gtg	tco	c ag	t gge	c aac	569
Arg	Phe	Cys	Gly	7 Thr	Phe	Arg	Pro	Gly	Ala	Leu	Val	Sea	r Se	r Gl	y Asn	
105	i				110)				115	j				120	•
aag	ate	g at	g gtg	g cag	g atg	g att	tci	t gat	t gcc	aac	aca	gc	t gg	c aa	t ggc	617
Lys	Me	t Me	t Val	l Glr	n Met	t Ile	Sei	r Ası	Ala	. Asr	1 Tha	r Al	a Gl	y As	n Gly	•
				129	5				130)				13	5	
tto	at	g gc	c at	g tte	c tc	c gc1	t gc	t gaa	a cca	a aac	gas	a ag	a gg	g ga	t cag	g 665
Phe	e Me	t Al	a Me	t Ph	e Sei	r Ala	a Al	a Gl	u Pro	Ası	n Glu	u Ar	g Gl	y As	p Glr	n
			14	0				14	5				18	50		
ta	t to	t aa	9 00	a ct	c ct	t ga	c ag	асс	t tc	c gg	c tc	t tt	t as	a ac	c cc	c 713

Tyr	Cys	Gly	Gly	Leu	Leu	Asp	Arg	Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	
		155				•	160					165				
aac	tgg	cca	gac	cgg	gat	tac	cct	gca	gga	gtc	act	tgt	gtg	tgg	cac	761
Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro	Ala	Gly	Val	Thr	Cys	Val	Trp	His	
	170					175					180					
att	gta	gcc	cca	aag	aat	cag	ctt	ata	gaa	tta	aag	ttt	gag	aag	ttt	809
Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu	Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	
185					190					195					200	
gat	gtg	gag	cga	gat	аас	tac	tgc	cga	tat	gat	tat	gtg	gct	gtg	ttt	857
Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys	Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	
				205					210					215		
aat	ggc	ggg	gaa	gtc	aac	gat	gct	aga	aga	att	gga	aag	tat	tgt	ggt	905
Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala	Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	
			220					225					230			
gat	agt	cca	cct	gcg	cca	att	gtg	tct	gag	aga	aat	gaa	ctt	ctt	att	953
Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val	Ser	G1ụ	Arg	Asn	Glu	Leu	Leu	Ile	
		235					240					245				
cag	ttt	tta	tca	gac	tta	agt	tta	act	gca	gat	ggg	ttt	att	ggt	cac	1001
Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu	Thr	Ala	Asp	Gly	Phe	Ile	Gly	His	
	250					255					260					
tac	ata	ttc	agg	cca	aaa	aaa	ctg	cct	aca	act	aca	gaa	cag	cct	gtc	1049
Tyr	Ile	Phe	Arg	Pro	Lys	Lys	Leu	Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	
265					270					275					280	
acc	acc	aca	ttc	cct	gta	acc	acg	ggt	tta	888	acc	acc	gtg	gcc	ttg	1097
Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr	Gly	Leu	Lys	Thr	Thr	Val	Ala	Leu	

					285					290					295		
t	gt	caa	caa	aag	tgt	aga	cgg	acg	ggg	act	ctg	gag	ggc	aat	tat	tgt	1145
C	ys	Gln	Gln	Lys	Cys	Arg	Arg	Thr	Gly	Thr	Leu	Glu	Gly	Asn	Tyr	Cys	
				300					305					310			
t	ca	agt	gac	ttt	gta	tta	gcc	ggc	act	gtt	atc	aca	acc	atc	act	cgc	1193
S	Ser	Ser	Asp	Phe	Val	Leu	Ala	Gly	Thr	Val	Ile	Thr	Thr	Ile	Thr	Arg	
			315					320					325				
8	gat	ggg	agt	ttg	cac	gcc	aca	gtc	tcg	atc	atc	aac	atc	tac	aaa	gag	1241
F	lsp	Gly	Ser	Leu	His	Ala	Thr	Val	Ser	Ile	Ile	Asn	Ile	Tyr	Lys	Glu	
		330					335					340					
8	gga	aat	ttg	gcg	att	cag	cag	gcg	ggc	aag	aac	atg	agt	gcc	agg	ctg	1289
(Gly	Asn	Leu	Ala	Ile	Gln	Gln	Ala	Gly	Lys	Asn	Met	Ser	Ala	Arg	Leu	•
:	345					350	·				355					360	
á	act	gtc	gtc	tgc	aag	cag	tgc	cct	ctc	ctc	aga	aga	ggt	cta	aat	tac	1337
1	ſhr	Val	Val	Cys	Lys	Gln	Cys	Pro	Leu	Leu	Arg	Arg	Gly	Leu	Asn	Tyr	
					365					370					375		
8	att	att	atg	ggc	caa	gta	ggt	gaa	gat	ggg	cga	ggc	aaa	atc	atg	cca	1385
:	[le	Ile	Met	Gly	Gln	Val	Gly	Glu	Asp	Gly	Arg	Gly	Lys	Ile	Met	Pro	
				380					385					390		·	
á	aac	agc	ttt	atc	atg	atg	ttc	aag	acc	aag	aat	cag	aag	ctc	ctg	gat	1433
1	Asn	Ser	Phe	Ile	Met	Met	Phe	Lys	Thr	Lys	Asn	Gln	Lys	Leu	Leu	Asp	
			395					400					405				
1	gcc	tta	888	aat	aag	caa	tgt	taa	cagt	gaa	ctgt	gtcc	at t	taag	С		1480
4	Ala	Leu	Lys	Asn	Lys	Gln	Cys										
		410					415										

42 /307

tgtattctgc	cattgccttt	gaaagatcta	tgttctctca	gtagaaaaaa	aaatacttat	1540
aaaattacat	attctgaaag	aggattccga	aagatgggac	tggttgactc	ttcacatgat	1600
ggaggtatga	ggcctccgag	atagctgagg	gaagttcttt	gcctgctgtc	agaggagcag	1660
ctatctgatt	ggaaacctgc	cgacttagtg	cggtgatagg	aagctaaaag	tgtcaagcgt	1720
tgacagcttg	gaagcgttta	tttatacatc	tctgtaaaag	gatattttag	aattgagttg	1780
tgtgaagatg	tcaaaaaaag	attttagaag	tgcaatattt	atagtgttat	ttgtttcacc	1840
ttcaagcctt	tgccctgagg	tgttacaatc	ttgtcttgcg	ttttctaaat	caatgcttaa	1900
taaaatattt	ttaaagg					1917

<210> 24

⟨211⟩ 2258

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (225)...(1367)

<400> 24

tttttcccgg ctgggctcgg gctcagctcg actgggctcg gcggcggcg gcggcgcgc 60
ccgcggctgg cggaggaggg agggcgaggg cgggcgcgg ccggcgggg gcggaagag 120
ggaggagagg cgcggggagc caggcctcgg ggcctcggag caaccacccg agcagacgga 180
gtacacggag cagcggccc ggccccgca acgctgccgc cggg atg ctc cag 233

Met Leu Gln

1

acc ttg tat gat tac ttc tgg tgg gaa cgt ctg tgg ctg cct gtg aac 281

Thr Leu Tyr Asp Tyr Phe Trp Trp Glu Arg Leu Trp Leu Pro Val Asn

	5					10					15					
ttg	acc	tgg	gcc	gat	cta	gaa	gac	cga	gat	gga	cgt	gtc	tac	gcc	aaa	329
Leu	Thr	Trp	Ala	Asp	Leu	Glu	Asp	Arg	Asp	Gly	Arg	Val	Tyr	Ala	Lys	
20					25					30					35	
gcc	tca	gat	ctc	tat	atc	acg	ctg	ccc	ctg	gcc	ttg	ctc	ttc	ctc	atc	377
Ala	Ser	Asp	Leu	Tyr	Ile	Thr	Leu	Pro	Leu	Ala	Leu	Leu	Phe	Leu	Ile	
				40					45					50		
gtt	cga	tac	ttc	ttt	gag	ctg	tac	gtg	gct	aca	cca	ctg	gct	gcc	ctc	425
Val	Arg	Tyr	Phe	Phe	Glu	Leu	Tyr	Val	Ala	Thr	Pro	Leu	Ala	Ala	Leu	
			55					60					65			
ttg	aac	ata	aag	gag	aaa	act	cgg	ctg	cgg	gca	cct	ccc	aac	gcc	acc	473
Leu	Asn	Ile	Lys	Glu	Lys	Thr	Arg	Leu	Arg	Ala	Pro	Pro	Asn	Ala	Thr	
		70					75					80				
ttg	gaa	cat	ttc	tac	ctg	acc	agt	ggc	aag	cag	ссс	aag	cag	gtg	gaa	521
Leu	Glu	His	Phe	Tyr	Leu	Thr	Ser	Gly	Lys	Gln	Pro	Lys	Gln	Val	Glu	
	85					90					95					
gta	gag	ctt	ttg	tcc	cgg	cag	agc	ggg	ctc	tct	ggc	cgc	cag	gta	gag	569
Val	Glu	Leu	Leu	Ser	Arg	Gln	Ser	Gly	Leu	Ser	Gly	Arg	Gln	Val	Glu	
100					105				•	110					115	
cgt	tgg	ttc	cgt	cgc	cgc	cgc	aac	cag	gac	cgg	ccc	agt	ctc	ctc	aag	617
Arg	Trp	Phe	Arg	Arg	Arg	Arg	Asn	Gln	Asp	Arg	Pro	Ser	Leu	Leu	Lys	
				120					125					130		
aag	ttc	cga	gaa	gcc	agc	tgg	aga	ttc	aca	ttt	tac	ctg	att	gcc	ttc	665
Lys	Phe	Arg	Glu	Ala	Ser	Trp	Arg	Phe	Thr	Phe	Tyr	Leu	Ile	Ala	Phe	
			135					140					145			

att	gcc	ggc	atg	gcc	gtc	att	gtg	gat	888	ccc	tgg	ttc	tat	gac	atg	713
Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe	Tyr	Asp	Met	
		150		•			155					160				•
aag	aaa	gtt	tgg	gag	gga	tat	ссс	ata	cag	agc	act	atc	cct	tcc	cag	761
Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile	Pro	Ser	Gln	
	165					170					175					
tat	tgg	tac	tac	atg	att	gaa	ctt	tcc	ttc	tac	tgg	tcc	ctg	ctc	ttc	809
Tyr	Trp	Tyr	Tyr	Met	Ile	Glu	Leu	Ser	Phe	Tyr	Trp	Ser	Leu	Leu	Phe	
180					185					190					195	
agc	att	gcc	tct	gat	gtc	aag	cga	aag	gat	ttc	aag	gaa	cag	atc	atc	857
Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu	Gln	Ile	Ile	
				200					205					210		
cac	cat	gtg	gcc	acc	atc	att	ctc	atc	agc	ttt	tcc	tgg	ttt	gcc	aat	905
His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp	Phe	Ala	Asn	
			215					220	١				225			
tac	ato	cga	gct	ggg	act	cta	ato	atg	gct	ctg	cat	gac	tct	tcc	gat	953
Tyr	Ile	Arg	Ala	Gly	Thr	Leu	Ile	Met	Ala	Leu	His	Asp	Ser	Ser	Asp	
		230)				235	5				240)			
tac	ctg	cte	g gag	tca	gcc	aag	ate	ttt	aac	tac	gcg	g gga	tgg	888	aac	1001
Tyı	Leu	ı Lev	ı Glu	Ser	Ala	Lys	Met	Phe	e Asr	ı Tyr	Ala	Gly	Trp	Lys	: Asn	
	245	5				250)				255	5				
aco	t tg	288	aac	ato	tto	ato	gto	tto	c gc	c att	gti	t tt1	ato	ato	acc	1049
Th	r Cy:	s Ası	n Asr	ı Ile	e Phe	e Ile	e Va	l Phe	e Ala	a Ile	e Val	l Phe	e Ile	e Ile	e Thr	
260	0				265	5				270)				275	
cg	a ct	g gt	c ato	cti	g cc	c tte	tg:	g at	c ct	g cat	t tg	c ac	c ct	ggt	g tac	1097

rg Leu Val Ile Leu Pro Phe Trp Ile Leu His Cys Thr Leu Val Tyr	
280 285 290	
cca ctg gag ctc tat cct gcc ttc ttt ggc tat tac ttc ttc aat tcc	1145
Pro Leu Glu Leu Tyr Pro Ala Phe Phe Gly Tyr Tyr Phe Phe Asn Ser	
295 300 305	
atg atg gga gtt cta cag ctg ctg cat atc ttc tgg gcc tac ctc att	1193
Met Met Gly Val Leu Gln Leu Leu His Ile Phe Trp Ala Tyr Leu Ile	
310 315 320	•
ttg cgc atg gcc cac aag ttc ata act gga aag ctg gta gaa gat gaa	1241
Leu Arg Met Ala His Lys Phe Ile Thr Gly Lys Leu Val Glu Asp Glu	•
325 330 335	
cgc agt gac cgg gaa gaa aca gag agc tca gag ggg gag gat gca	1289
Arg Ser Asp Arg Glu Glu Thr Glu Ser Ser Glu Gly Glu Glu Ala Ala	
340 345 350 355	
get ggg gga gga gca aag age egg eec eta gee aat gge eac eec ate	1337
Ala Gly Gly Gly Ala Lys Ser Arg Pro Leu Ala Asn Gly His Pro Ile	٠
360 365 370	
ctc aat aac aac cat cgt aag aat gac tgaaccatta ttccagctgc ctccc	a 1390
Leu Asn Asn His Arg Lys Asn Asp	,
375 380	
gattaatgca taaagccaag gaactaccct gctccctgcg ctatagggtc actttaag	
ctggggaaaa aggagaaagt gagaggagag ttctctgcat cctccctcct tgcttgtc	
ccagttgcct ttaaaccaaa ttctaaccag cctatcccca ggtaggggga cgttggt	
attetgttag agggggaegg tegtatttte etecetacce gecaagteat cetttets	
gcttttgagg ccctccctca gctctctgtg ggtaggggtt acaattcaca ttcctta	ttc 1690

46 /307

tgagaatttg	gccccagctg	tttgcctttg	actccctgac	ctccagagcc	agggttgtgc	1750
cttattgtcc	catctgtggg	cctcattctg	ccaaagctgg	accaaggcta	acctttctaa	1810
gctccctaac	ttgggccaga	aaccaaagct	gagctttaa	ctttctccct	ctatgacaca	1870
aatgaattga	gggtaggagg	agggtgcaca	taacccttac	cctacctctg	ccaaaaagtg	1930
ggggctgtac	tggggactgc	tcggatgatc	tttcttagtg	ctacttcttt	cagctgtccc	1990
tgtagcgaca	ggtctaagat	ctgactgcct	cctttctctg	gcctcttccc	ccttccctct	2050
tctcttcagc	taggctagct	ggtttggagt	agaatggcaa	ctaattctaa	tttttattta	2110
ttaaatattt	ggggttttgg	ttttaaagcc	agaattacgg	ctagcaccta	gcatttcagc	2170
agagggacca	ttttagacca	aaatgtactg	ttaatgggtt	ttttttaaa	attaaaagat	2230
taaataaaaa	atattaaata	aaacatgg				2258

<210> 25

⟨211⟩ 1973

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (130)...(1887)

<400> 25

gagcagacca ggcccggtgg agaattaggt gctgctggga gctcctgcct cccacaggat 60
tccagctgca gggagcctca gggactctgg gccgcacgga gttgggggca ttccccagag 120
agcgtcgcc atg gtc tgc agg gag cag tta tca aag aat cag gtc aag 168
Met Val Cys Arg Glu Gln Leu Ser Lys Asn Gln Val Lys

1 5 10

tgg gtg ttt gcc ggc att acc tgt gtg tct gtg gtg gtc att gcc gca 216

Trp	Val	Phe	Ala	Gly	Ile	Thr	Cys	Val	Ser	Val	Val	Val	Ile	Ala	Ala	
	15					20					25					
ata	gtc	ctt	gcc	atc	acc	ctg	cgg	cgg	сса	ggc	tgt	gag	ctg	gag	gcc	264
Ile	Val	Leu	Ala	Ile	Thr	Leu	Arg	Arg	Pro	Gly	Cys	Glu	Leu	Glu	Ala	
30					35					40					45	
tgc	agc	cct	gat	gcc	gac	atg	ctg	gac	tac	ctg	ctg	agc	ctg	ggc	cag	312
Cys	Ser	Pro	Asp	Ala	Asp	Met	Leu	Asp	Tyr	Leu	Leu	Ser	Leu	Gly	Gln	
				50					55					60		
atc	agc	cgg	cga	gat	gcc	ttg	gag	gtc	acc	tgg	tac	cac	gca	gcc	aac	360
Ile	Ser	Arg	Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn	
			65					70					75			
agc	aag	aaa	gcc	atg	aca	gct	gcc	ctg	aac	agc	aac	atc	aca	gtc	ctg	408
Ser	Lys	Lys	Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val [°]	Leu	
		80					85					90				
gag	gct	gac	gtc	aat	gta	gaa	ggg	ctc	ggc	aca	gcc	aat	gag	aca	gga	456
Glu	Ala	Asp	Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	
	95					100					105					•
gtt	ccc	atc	atg	gca	cac	ccc	ccc	act	atc	tac	agt	gac	aac	aca	ctg	504
Val	Pro	Ile	Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	
110					115					120					125	
gag	cag	tgg	ctg	gac	gct	gtg	ctg	ggc	tct	tcc	caa	aag	ggc	atc	888	552
Glu	Gln	Trp	Leu	Asp	Ala	Val	Leu	Gly		Ser	Gln	Lys	Gly		Lys	
				130					135					140		
			_	aac												600
Leu	Asp	Phe	Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leu	

			145					150					155			
cgg	cag	ctg	aca	gag	gaja	ggc	888	gtc	cgg	cgg	ccc	ata	tgg	atc	88C.	648
Arg	Gln	Leu	Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	
		160					165					170				
gct	gac	atc	tta	aag	ggc	ССС	aac	atg	ctc	atc	tca	act	gag	gtc	aat	696
Ala	Asp	Ile	Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	
	175					180					185					
gcc	aca	cag	ttc	ctg	gcc	ctg	gtc	cag	gag	aag	tat	ccc	aag	gct	acc	744
Ala	Thr	Gln	Phe	Leu	Ala	Leu	Val	Gln	Glu	Lys	Tyr	Pro	Lys	Ala	Thr	
190					195					200					205	
cta	tct	cca	ggc	tgg	acc	acc	ttc	tac	atg	tcc	acg	tcc	cca	aac	agg	792
Leu	Ser	Pro	Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	
				210					215		•		•	220		
acg	tac	acc	caa	gcc	atg	gtg	gag	aag	atg	cac	gag	ctg	gtg	gga	gga	840
Thr	Tyr	Thr	Gln	Ala	Met	Val	Glu	Lys	Met	His	Glu	Leu	Val	Gly	Gly	
			225					230					235			
gtg	ccc	cag	agg	gtc	acc	ttc	cct	gta	cgg	tct	tcc	atg	gtg	cgg	gct	888
Val	Pro	Gln.	Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala	
		240					245	•				250				
gcc	tgg	ccc	cac	ttc	agc	tgg	ctg	ctg	agc	caa	tct	gag	agg	tac	agc	936
Ala	Trp	Pro	His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	
	255					260					265					
ctg	acg	ctg	tgg	cag	gct	gcc	tcg	gac	ccc	atg	tcg	gtg	gaa	gat	ctg	984
Leu	Thr	Leu	Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu	
270					275					280					285	

ctc	tac	gtc	cgg	gat	aac	act	gct	gtc	cac	caa	gtc	tac	tat	gac	atc	1032
Leu	Tyŗ	Val	Arg	Asp	Asn	Thr	Ala	Val	His	Gln _.	Val	Tyr	Tyr	Asp	Ile	
				290				٠	295					300		
ttt	gag	cct	ctc	ctg	tca	cag	ttc	aag	cag	ctg	gcc	ttg	aat	gcc	aca	1080
Phe	Glu	Pro	Leu	Leu	Ser	Gln	Phe	Lys	Gln	Leu	Ala	Leu	Asn	Ala	Thr	
			305					310					315			
cgg	aaa	сса	atg	tac	tac	aca	gga	ggc	agc	ctg	atc	cct	ctt	ctc	cag	1128
Arg	Lys	Pro	Met	Tyr	Tyr	Thr	Gly	Gly	Ser	Leu	Ile	Pro	Leu	Leu	Gln	
		320					325					330				
ctg	cct	ggg	gat	gac	ggt	ctg	aat	gtg	gag	tgg	ctg	gtt	cct	gac	gtc	1176
Leu	Pro	Gly	Asp	Asp	Gly	Leu	Asn	Val	Glu	Trp	Leu	Val	Pro	Asp	Val	
	335					340	•		•		345			•		· .
cag	ggc	agc	ggt	aaa	aca	gca	aca	atg	acc	ctc	сçа	gac	aca	gaa	ggc	1224
Gln	Gly	Ser	Gly	Lys	Thr	Ala	Thr	Met	Thr	Leu	Pro	Asp	Thr	Glu	Gly	
350					355					360					365	
atg	atc	ctg	ctg	aac	act	ggc	ctc	gag	gga	act	gtg	gct	gaa	aac	ccc	1272
Met	Ile	Leu	Leu	Asn	Thr	Gly	Leu	Glu	Gly	Thr	Val	Ala	Glu	Asn	Pro	
				370					375					380		
gtg	ccc	att	gtt	cat	act	cca	agt	ggc	aac	atc	ctg	acg	ctg	gag	tcc .	1320
Val	Pro	Ile	Val	His	Thr	Pro	Ser	Gly	Asn	Ile	Leu	Thr	Leu	Glu	Ser	
			385					390					395			
tgc	ctg	cag	cag	ctg	gcc	aca	cat	ccc	gga	cac	tgg	ggc	atc	cat	ttg	1368
Cys	Leu	Gln	Gln	Leu	Ala	Thr	His	Pro	Gly	His	Trp	Gly	Ile	His	Leu	
		400		•			405					410				
caa	ata	gcg	gag	ccc	gca	gcc	ctc	cgg	cca	tcc	ctg	gcc	ttg	ctg	gca	1416

Gln	lle	Ala	Glu	Pro	Ala	Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	
	415					420			•		425					
cgc	ctc	tcc	agc	ctt	ggc	ctc	ttg	cat	tgg	cct	gtg	tgg	gtt	ggg	gcc	1464
Arg	Leu	Ser	Ser	Leu	Gly	Leu	Ļeu	His	Trp	Pro	Val	Trp	Val	Gly	Ala	
430					435					440					445	
aaa	atc	tcc	cac	ggg	agt	ttt	tcg	gtc	ссс	ggc	cat	gtg	gct	ggc	aga	1512
Lys	Ile	Ser	His	Gly	Ser	Phe	Ser	Val	Pro	Gly	His	Val	Ala	Gly	Arg	
				450					455					460		
gag	ctg	ctt	aca	gct	gtg	gct	gag	gtc	ttc	ccc	cac	gtg	act	gtg	gca	1560
Glu	Leu	Leu	Thr	Ala	Val	Ala	Glu	Val	Phe	Pro	His	Val	Thr	Val	Ala	
			465					470					475			
cca	ggc	tgg	cct	gag	gag	gtg	ctg	ggc	agt	ggc	tac	agg	gaa	cag	ctg	1608
Pro	Gly	Trp	Pro	Glu	Glu	Val	Leu	Gly	Ser	Gly	Tyr	Arg	Glu	Gln	Leu	
		480					485					490				
ctc	aca	gat	atg	cta	gag	ttg	tgc	cag	ggg	ctc	tgg	caa	cct	gtg	tcc	1656
Leu	Thr	Asp	Met	Leu	Glu	Leu	Cys	G1n	Gly	Leu	Trp	Gln	Pro	Val	Ser	
	495					500					505					
ttc	cag	atg	cag	gcc	atg	ctg	ctg	ggc	cac	agc	aca	gct	gga	gcc	ata	1704
Phe	Gln	Met	Gln	Ala	Met	Leu	Leu	Gly	His	Ser	Thr	Ala	Gly	Ala	Ile	
510					515					520					525	
ggc	agg	ctg	ctg	gca	tcc	tcc	ccc	cgg	gcc	acc	gtc	aca	gtg	gag	cac	1752
Gly	Arg	Leu	Leu	Ala	Ser	Ser	Pro	Arg	Ala	Thr	Val	Thr	Val	Glu	His	
				530					535					540		
aac	сса	gct	ggg	ggc	gac	tat	gcc	tct	gtg	agg	aca	gca	ttg	ctg	gca	1800
Asn	Pro	Ala	Gly	Gly	Asp	Tyr	Ala	Ser	Val	Arg	Thr	Ala	Leu	Leu	Ala	

51 /307

545 550 555 get agg get gtg gac agg acc ega gte tac tac agg eta ecc eag gge 1848 Ala Arg Ala Val Asp Arg Thr Arg Val Tyr Tyr Arg Leu Pro Gln Gly 560 565 570 tac cac aag gac ttg ctg gct cat gtt ggt aga aac tgagcaccca ggggtg 1900 Tyr His Lys Asp Leu Leu Ala His Val Gly Arg Asn 580 575 585 1960 gtgggccagc ggacctcagg gcggaggctt cccacgggga ggcaggaaga aataaaggtc tttggctttc tcc 1973 <210> 26 <211> 1606 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (135)...(1130) <400> 26 attgtgcggc gctggtcccc tcagagggtt cctgctgctg ccggtgcctt ggaccctccc 60 cctcgcttct cgttctactg ccccaggagc ccggcgggtc cgggactccc gtccgtgccg 120 gtgcggcgc cggc atg tgg ctg tgg gag gac cag ggc ggc ctc ctg ggc 170 Met Trp Leu Trp Glu Asp Gln Gly Gly Leu Leu Gly 1 5 10 218 cct ttc tcc ttc ctg ctg cta gtg ctg ctg ctg gtg acg cgg agc ccg Pro Phe Ser Phe Leu Leu Leu Val Leu Leu Val Thr Arg Ser Pro

		15					20					25					
gtc	aat	gcc	tgc	ctc	ctc	acc	ggc	agc	ctc	ttc	gtt	cta	ctg	cgc	gtc		266
Val	Asn	Ala	Cys	Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val		
	30					35					40						
ttc	agc	ttt	gag	ccg	gtg	ссс	tct	tgc	agg	gcc	ctg	cag	gtg	ctc	aag	:	314 ·
Phe	Ser	Phe	Glu	Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	Gln	Val	Leu	Lys		
45					50					55					60		
ccc	cgg	gac	cgc	att	tct	gcc	atc	gcc	cac	cgt	ggc	ggc	agc	cac	gac		362
Pro	Arg	Asp	Arg	Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp		
				65					70					75			
gcg	ccc	gag	aac	acg	ctg	gcg	gcc	att	cgg	cag	gca	gct	aag	aat	gga		410
Ala	Pro	Glu	Asn	Thr	Leu	Ala	Ala	Iļe	Arg	Gln	Ala	Ala	Lys	Asn	Gly		
			80					85					90				
gca	aca	ggc	gtg	gag	ttg	gac	att	gag	ttt	act	tct	gac	ggg	att	cct		458
Ala	Thr	Gly	Val	Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	Asp	Gly	Ile	Pro		
		95					100					105					
gtc	tta	atg	cac	gat	aac	aca	gta	gat	agg	acg	act	gat	ggg	act	ggg		506
Val	Leu	Met	His	Asp	Asn	Thr	Val	Asp	Arg	Thr	Thr	Asp	Gly	Thr	Gly		
	110					115					120			•			
cga	ttg	tgt	gat	ttg	aca	ttt	gaa	caa	att	agg	aag	ctg	aat	cct	gca		554
Arg	Leu	Cys	Asp	Leu	Thr	Phe	Glu	Gln	Ile	Arg	Lys	Leu	Asn	Pro	Ala		
125					130					135					140		
gca	aac	cac	aga	ctc	agg	aat	gat	ttc	cct	gat	gaa	aag	atc	cct	acc		602
Ala	Asn	His	Arg	Leu	Arg	Asn	Asp	Phe	Pro	Asp	Glu	Lys	Ile	Pro	Thr		
				145					150					155			

cta	agg	gaa	gct	gtt	gca	gag	tgc	cta	aac	cat	aac	ctc	aca	atc	ttc	650	
Leu	Arg	Glu	Ala	Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Thṛ	Ile	Phe	. :	
			160					165					170		•		
ttt	gat	gtc	aaa	ggc	cat	gca	cac	aag	gct	act	gag	gct	cta	aag	888	698	
Phe	Asp	Val	Lys	Gly	His	Ala	His	Lys	Ala	Thr	Glu	Ala	Leu	Lys	Lys		
		175					180					185					
atg	tat	atg	gaa	ttt	cct	caa	ctg	tat	aat	aat	agt	gtg	gtc	tgt	tct	746	,
Met	Tyr	Met	Glu	Phe	Pro	Gln	Leu	Tyr	Asn	Asn	Ser	Val	Val	Cys	Ser		
	190					195					200						
ttc	ttg	cca	gaa	gtt	atc	tac	aag	atg	aga	caa	aca	gat	cgg	gat	gta	794	l
Phe	Leu	Pro	Glu	Val	Ile	Tyr	Lys	Met	Arg	Gln	Thr	Asp	Arg	Asp	Val		
205					210					215		٠			220		
ata	aca	gca	tta	act	cac	aga	cct	tgg	agc	cta	agc	cat	aca	gga	gat	842	2
Ile	Thr	Ala	Leu	Thr	His	Arg	Pro	Trp	Ser	Leu	Ser	His	Thr	Gly	Asp		
				225					230					235	ı		
ggg	888	cca	cgc	tat	gat	act	ttc	tgg	888	cat	ttt	ata	ttt	gtt	atg	890	0
Gly	Lys	Pro	Arg	Tyr	Asp	Thr	Phe	Trp	Lys	His	Phe	Ile	Phe	. Val	Met		
			240)				245					250)			
atg	gac	att	ttg	ctc	gat	tgg	ago	atg	cat	aat	ato	ttg	tgg	tac	ctg	93	8
Met	Asp	Ile	Leu	Leu	Asp	Trp	Ser	Met	His	Asn	Ile	Lev	Trp	Туз	Leu		
		255	i				260)				265	5				
tgt	gga	att	tca	gct	ttc	cto	ate	g caa	aag	gat	ttt	gta	tco	ccg	gcc	98	6
Cys	Gly	Ile	e Ser	Ala	Phe	Leu	ı Met	t Gln	Lys	s Asp	Phe	e Val	l Sei	r Pro	Ala		
	270)				278	5				280)					
tac	tte	g aag	g aag	g tgg	tca	gct	aaa	a gga	ato	c cag	ggt	t gt	t gg	t tg	g act	103	4

54 /307

Tyr Leu Lys Lys Trp Ser Ala Lys Gly Ile Gln Val Val Gly Trp Thr	
285 290 295 300	
gtt aat acc ttt gat gaa aag agt tac tac gaa tcc cat ctt ggt tcc	1082
Val Asn Thr Phe Asp Glu Lys Ser Tyr Tyr Glu Ser His Leu Gly Ser	
305 310 315	
age tat ate act gae age atg gta gaa gae tge gaa eet cae tte	1127
Ser Tyr Ile Thr Asp Ser Met Val Glu Asp Cys Glu Pro His Phe	
320 325 330	
tag actttcacgg tgggacgaaa cgggttcaga aactgccagg ggcctcatac	1180
agggatatca aaataccctt tgtgctagcc caggccctgg ggaatcaggt gactcacaca	1240
aatgcaatag ttggtcactg catttttacc tgaaccaaag ctaaacccgg tgttgccacc	1300
atgeaceatg geatgeeaga gtteaacaet gttgetettg aaaatetggg tetgaaaaaa	1360
cgcacaagag cccctgccct gccctagctg aggcacacag ggagacccag tgaggataag	1420
cacagattga attgtacaat ttgcagatgc agatgtaaat gcatgggaca tgcatgataa	1480
ctcagagttg acattttaaa acttgccaca cttatttcaa atatttgtac tcagctatgt	1540
taacatgtac tgtagacatc aaacttgtgg ccatactaat aaaattatta aaaggagcac	1600
taaagg	1606

⟨210⟩ 27

⟨211⟩ 2380

<212> DNA

<213> Homo sapiens

⟨220⟩

<221> CDS

〈222〉 (247)...(1284)

<400> 2	27
----------------------	----

agtg	tgga	cc t	ggac	tcga	a tc	ccgt	tgcc	gac	tcgc	gcţ	ctcg	gctt	ct g	ctcc	ggggc	. 60
ttct	tccc	tg c	ccgc	ccgg	g gc	cctg	accg	tgg	cttc	ttc	cccg	gcct	ga t	ctgc	gcagc	120
ccgg	cggg	cg c	ccag	aagg	a gc	aggc	ggcg	cgg	gggc	gcg	ctgg	gcgg	gg g	aggc	gtggc	180
cgga	gctg	cg g	cggc	aagc	g gg	ctgg	gact	gct	cggc	cgc	ctcc	tgcc	cg g	cgag	cagct	240
caga	cc a	tg t	cg c	ct g	aa g	aa t	gg a	icg t	at c	ta g	tg g	tt c	tt c	tt a	tc	288
	M	let S	er P	ro G	lu G	lu T	rp T	hr I	yr L	eu V	al V	al L	.eu L	eu I	le	
		1				5					10					
tcc	atc	ccc	atc	ggc	ttc	ctc	ttt	aag	aaa	gcc	ggt	cct	ggg	ctg	aag	336
Ser	Ile	Pro	Ile	Gly	Phe	Leu	Phe	Lys	Lys	Ala	Gly	Pro	Gly	Leu	Lys	
15					20					25					30	
aga	tgg	gga	gca	gcc	gct	gtġ	ggc	ctg	ggg	ctc	acc	ctg	ttc	acc	tgt	. 384
Arg	Trp	Gly	Ala	Ala	Ala	Val	Gly	Leu	Gly	Leu	Thr	Leu	Phe	Thr	Cys	
				35					40					45		
ggc	ccc	cac	act	ttg	cat	tct	ctg	gtc	acc	atc	ctc	ggg	acc	tgg	gcc	432
Gly	Pro	His	Thr	Leu	His	Ser	Leu	Val	Thr	Ile	Leu	Gly	Thr	Trp	Ala	
			50					55					60			
ctc	att	cag	gcc	cag	ccc	tgc	tcc	tgc	cac	gcc	ctg	gct	ctg	gcc	tgg	480
Leu	Ile	Gln	Ala	Gln	Pro	Cys	Ser	Cys	His	Ala	Leu	Ala	Leu	Ala	Trp	
		65					70					75				
act	ttc	tcc	tat	ctc	ctg	ttc	ttc	cga	gcc	ctc	agc	ctc	ctg	ggc	ctg	528
Thr	Phe	Ser	Tyr	Leu	Leu	Phe	Phe	Arg	Ala	Leu	Ser	Leu	Leu	Gly	Leu	
	80					85					90					
ccc	act	ccc	acg	ccc	ttc	acc	aat	gcc	gtc	cag	ctg	ctg	ctg	acg	ctg	576
Pro	Thr	Pro	Thr	Pro	Phe	Thr	Asn	Ala	Val	Gln	Leu	Leu	Leu	Thr	Leu	

95					100					105					110	
aag	ctg	gtg	agc	cţg	gcc	agt	gaa	gtc	cag	gac	ctg	cat	ctg	gcc	cag	624
Lys	Leu	Val	Ser	Leu	Ala	Ser	Glu	Val	Gln	Asp	Leu	His	Leu	Ala	Gln	
				115					120					125		
agg	aag	gaa	atg	gcc	tca	ggc	ttc	agc	aag	ggg	ссс	acc	ctg	ggg	ctg	672
Arg	Lys	Glu	Met	Ala	Ser	Gly	Phe	Ser	Lys	Gly	Pro	Thr	Leu	Gly	Leu	
			130					135					140			
ctg	ccc	gac	gtg	ccc	tcc	ctg	atg	gag	aca	ctc	agc	tac	agc	tac	tgc	720
Leu	Pro	Asp	Val	Pro	Ser	Leu	Met	Glu	Thr	Leu	Ser	Tyr	Ser	Tyr	Cys	
		145					150					155				
tac	gtg	gga	atc	atg	aca	ggc	ccg	ttc	ttc	cgc	tac	cgc	acc	tac	ctg	768
Tyr	Val	Gly	Ile	Met	Thr	Gly	Pro	Phe	Phe	Arg	Tyr	Arg	Thr	Tyr	Leu	
	160					165					170					
gac	tgg	ctg	gag	cag	ccc	ttc	ccc	ggg	gca	gtg	ccc	agc	ctg	cgg	ccc	816
Asp	Trp	Leu	Glu	Gln	Pro	Phe	Pro	Gly	Ala	Val	Pro	Ser	Leu	Arg	Pro	
175					180					185					190	
ctg	ctg	cgc	cgc	gcc	tgg	ccg	gcc	ccg	ctc	ttc	ggc	ctg	ctg	ttc	ctg	864
Leu	Leu	Arg	Arg	Ala	Trp	Pro	Ala	Pro	Leu	Phe	G1y	Leu	Leu	Phe	Leu	
				195	;				200)				205	.	
cto	tcc	tct	cac	cto	ttc	ccg	ctg	gag	gcc	gtg	cgc	gag	gad	gcc	ttc	912
Leu	Ser	Ser	His	Leu	ı Phe	Pro	Leu	Glu	Ala	Val	. Arg	Glu	Ası	Ala	Phe	
			210)				215	;				220)		
tac	gco	cgo	ccg	ctg	g ccc	gcc	cgc	ctc	ttc	: tac	ate	g ato	cc	c gt	c ttc	960
Туз	- Ala	a Arg	g Pro	Leu	ı Pro	Ala	a Arg	g Leu	Phe	Ty1	Me1	t Ile	Pr	o Vai	l Phe	
		226	5				230)				235	5			

ttc	gcc	ttc	cgc	atg	cgc	ttc	tac	gtg	gcc	tgg	att	gcc	gcc	gag	tgc	1008
Phe	Ala	Phe	Arg	Met	Arg	Phe	Tyr	Val	Ala	Trp	Ile	Ala	Ala	Glu	Cys	
	240	•	••			245					250					•
ggc	tgc	att	gcc	gcc	ggc	ttt	ggg	gcc	tac	ccc	gtg	gcc	gcc	888	gcc	1056
Gly	Cys	Ile	Ala	Ala	Gly	Phe	Gly	Ala	Tyr	Pro	Val	Ala	Ala	Lys	Ala	
255	•				260					265					270	
cgg	gcc	gga	ggc	ggc	ccc	acc	ctc	caa	tgc	сса	ccc	ccc	agc	agt	ccg	1104
Arg	Ala	Gly	Gly	Gly	Pro	Thr	Leu	Gln	Cys	Pro	Pro	Pro	Ser	Ser	Pro	
				275					280					285		•
gag	aag	gcg	gct	tcc	ttg	gag	tat	gac	tat	gag	acc	atc	cgc	aac	atc	1152
G1u	Lys	Ala	Ala	Ser	Leu	Glu	Tyr	Asp	Tyr	Glu	Thr	Ile	Arg	Asn	Ile	
			290	•				295					300			
gac	tgc	tac	agc	aca	gat	ttc	tgc	gtg	cgg	gtg	cgc	gat	ggc	atg	cgg	1200
Asp	Cys	Tyr	Ser	Thr	Asp	Phe	Cys	Val	Arg	Val	Arg	Asp	Gly	Met	Arg	
		305					310					315				
tac	tgg	aac	atg	acg	gtg	cag	tgg	tgg	ctg	gcg	cag	tat	ato	tac	aag	1248
Tyr	Trp	Asn	Met	Thr	Val	Gln	Trp	Trp	Leu	Ala	Gln	Tyr	Ile	Tyr	Lys	
	320					325					330					
agc	gca	cct	gcc	cgt	tcc	tat	gtc	ctg	cgc	ctt	tag	aago	aga	aact	cagcc	1300
Ser	Ala	Pro	Ala	Arg	Ser	Tyr	Val	Leu	Arg	Leu						
335					340	ŀ				345	I					
ggg	tgcg	gcg	gcto	acgo	ct g	gaat	ссса	g ca	cttt	ggga	ggc	ccas	igca	ggtg	gatcat	1360
gag	gago	gcc	tgga	ccat	gc t	gctg	agcg	c ct	actg	gcac	ggo	ctc	acc	cggg	ctacta	1420
cct	gago	ttc	ctga	ccat	cc c	gctg	tgcc	t gg	ctgo	cgag	ggo	cggo	tgg	agto	agccct	1480
σcσ	0000	roga	ctas	recce	20 0	72220	caga	a ge	ccts	ggac	t g	gtgo	act	ggti	cctgaa	1540

58 / 307

						1600
gatgcgcgcc	tatgactaca	tgtgcatggg	cttcgtgctg	ctctccttgg	ccgacaccct	1600
toggtactgg	gcctccatct	acttctgtat	ccacttcctg	gccctggcag	ccctggggct	1660
ggggctggct	ttaggtgggg	gcagccccag	ccggcggaag	gcagcatccc	agcccaccag	1720
ccttgccccg	gagaagctcc	gggaggagta	agctgtcacg	acgctccctc	tgccagctgg	1780
tcccgggaat	tctgtgaacc	aggctgctgt	ctcctcccca	gaaagagtcc	ttaccttgga	1840
gagggtcctg	gagagaattt	cctcttcccc	agctaaatac	cctgcctgca	actgaagcag	1900
acccgggggt	gtcctccctg	ccctctgccc	agaggccacc	tccactccta	caaaatcaaa	1960
gtattgtcca	gacaagagtc	actggcccct	gctccagctt	ctgggtatcc	agagagcact	2020
gcacttcccc	aaaacggaag	gggccctgg	gcagtgggtt	ttgggcaaat	tccctttctt	2080
tgcatccaca	atgtggggtc	ggagcttggg	ggcaggtcct	gggagtggga	agcctcttcc	2140
ttgtgtcttt	cgctccactt	ttagctcatc	gcaccaatat	tgcagacttg	gaaggaagca	2200
taagcttccc	atttcacaaa	ggggaaactg	aggtgcgggt	gcgcgggcct	ggggacggcc	2260
gtcccatggc	ttccatctga	gccacctcgg	gaccccagca	ctcctggcgc	cctcttctca	2320
tegettggee	: tatgacaggt	caccgtgtgt	aaatctttcc	caataaagtg	ttgcacaaag	2380

<210> 28

<211> 2017

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (360)...(629)

<400> 28

tccacacatt aagaaacgct ggtggagttt taaatgcctc tccggggaag gaggaaagcc 60
tgagaatgaa tctgacctca gacccaaatc cattcaacgg agttctggta atttggaaga 120

gga	agag	ca a	acctg	gaaa	c tg	acag	gaaa	gga	tgac	aag	ttgg	gagt	ca c	aggt	atatg	;	180
tgg	gcct	cc c	cate	tgga	t cc	ttag	tgct	gtg	gcag	gagc	cctt	gtta	att g	ţtgct	gggat	:	240
ttc	cctc	ca 'g	gctco	cggc	c gg	aago	tggg	ctc	acgt	ggg	agct	cagt	tgc c	ctc	tgcta		300
aga	tctg	tc 1	tctto	ctta	ic aa	tggg	gtgc	tgg	cact	gtg	ggto	ctgg	gtg 8	acgca	acgtg	;	359
itg	tac	atg	caa	gat	tat	tgg	agg	acc	tgg	ctc	aag	ggg	ctg	cgc	ggc		407
let	Tyr	Met	Gln	Asp	Tyr	Trp	Arg	Thr	Trp	Leu	Lys	Gly	Leu	Arg	Gly		
1				5					10					15			
ttc	ttc	ttc	gtg	ggc	gtc	ctc	ttc	tcg	gcc	gtc	tcc	atc	gct	gcc	ttc		455
Phe	Phe	Phe	Val	Gly	Val	Leu	Phe	Ser	Ala	Val	Ser	Ile	Ala	Ala	Phe		
			20					25					30				
tgc	acc	ttc	ctc	gtg	ctg	gcc	atc	acc	cgg	cat	cag	agc	ctc	aca	gac		503
Cys	Thr	Phe	Leu	Val	Leu	Ala	Ile	Thr	Arg	His	Gln	Ser	Leu	Thr	Asp		
		35					40					45					
ccc	acc	agc	tac	tac	ctc	tcc	agc	gtc	tgg	agc	ttc	att	tcc	ttc	aag		551
Pro	Thr	Ser	Tyr	Tyr	Leu	Ser	Ser	Val	Trp	Ser	Phe	Ile	Ser	Phe	Lys		
	50					55					60						
tgg	gcc	tto	ctg	ctc	agc	ctc	tat	gcc	cac	cgc	tac	cgg	gct	gac	ttt		599
Trp	Ala	Phe	Leu	Leu	Ser	Leu	Tyr	Ala	His	Arg	Tyr	Arg	Ala	Asp	Phe		
65					70					75			•	•	80		
gct	gac	ato	ago	atc	ctc	ago	gat	ttc	tga	ccca	ggg	ggtg	3				640
Ala	Asp	Ile	e Ser	·Ile	Leu	Ser	Asp	Phe									
				85	i												
agg	tctc	tgc	acco	tggg	8 8 gg	gcct	tagg	a co	tggs	ctca	gcc	tct	gaga	tgti	gggag	а	700
ggc	tact	ccc	acco	cctg	gt g	gacco	caga	a ct	gtgg	gcaga	aaa	itaca	acag	cage	gacgag	t	760
gtg	gtct	ccc	aggs	aagct	gto	ctgo	ccgt	c cc	ctti	tcgag	gaa	acci	tgag	tgtg	ggtaga	g	820

60 /307

aggggatcct	gccatgttgt	tcctcatcag	cctggccaga	gggcagcttt	agaccttttc	880
aaatgaatct	gttttctttt	ctttcttttt	ttttctttt	tttttttt	ttgagatgga	940
gtcttactct	gtcacccagg	ctggagtgca	gtagtgcgat	ctcagctcac	tgcaacctcc	1000
gcctcccagg	ttcaagcaat	tctcctgcct	tggcctctca	agtagctggg	attacaggca	1060
tctgccacca	tgcccggcaa	atttttgtgt	ttttagtaga	gacagggttt	tgccatgttg	1120
gccaggctgg	tctcgaactc	ctgatctcag	gtgattcacc	cgcctcagcc	ttccaaagtg	1180
ctgggattat	aggtgtgagc	caccgcgccc	ggcctggatc	tgttttctta	gcacgcagtg	1240
aggaatcttt	gtacttaagg	ccagggcaac	aaagtcaaga	ggtcaaggtg	tagggccatg	1300
aggcctggac	ctatgctgca	ggcaagggtt	tccatccccg	ctgccctagg	cactctcttc	1360
ccaaggccag	gttgggcacc	tggggaggtc	agttcagaaa	tatctagcag	agacctctta	1420
aacccccatc	ccagcacccc	atcctgttgt	tcccagagct	ggtctcccat	gagtgtgcta	1480
gagccagata	gccgtggccc	cccacccatc	tcactcacac	acacaggcat	ccatacaccc	1540
cagaagactt	cccaaatgag	gccagactca	gggtcacggg	gaatgtgctt	ctgccctgt	1600
aagggctttg	gggaaggggg	caacatagta	gaggctggaa	agagcccca	aacctgtgcc	1660
catgcccctc	cagccctgcg	tttccattct	gccttctcag	agtgcccttg	ctgcacccag	1720
accaccggcc	aggagagacc	ttctctccca	ctccagcccc	tctcactgcc	cttcaactag	1780
agctttcacc	tttttacatt	tcccttctga	aggacacaaa	tctgcttttc	tgcccataca	1840
ctggcccaag	ggctcaccta	acttgggagg	gaaggggctg	ttggtacaag	gatgattttc	1900
tgttagactg	ccattttgca	cggtctcccc	cttcccatct	gatgtgtcct	gcccctcagc	1960
tctttgcctt	atctgtgtca	ctgtcacttt	agcaaaaata	cagcggccat	ttgtatc	2017

<210> 29

<211> 1606

<212> DNA

<213> Homo sapiens

<220	>															
<221	> CD	S														
<222	> (3	0)	. (12	50)	•		: `				٠.					
<400	> 29															
acct	cttc	cg t	cggc	tgaa	t tg	cggc	cgt	atg	cgc	ggc	tct	gtg	gag	tgc	acc	53
								Met	Arg	Gly	Ser	Val	Glu	Cys	Thr	
								1				5				
tgg	ggt	tgg	ggg	cac	tgt	gcc	ccc	agc	ccc	ctg	ctc	ctt	tgg	act	cta	101
Trp	Gly	Trp	Gly	His	Cys	Ala	Pro	Ser	Pro	Leu	Leu	Leu	Trp	Thr	Leu	
	10					15					20					
ctt	ctg	ttt	gca	gcc	cca	ttt	ggc	ctg	ctg	ggg	gag	aag	acc	cgc	cag	149
Leu	Leu	Phe	Ala	Ala	Pro	Phe	Gly	Leu	Leu	Gly	Glu	Lys	Thr	Arg	Gln	
25					30					35					40	
gtg	tct	ctg	gag	gtc	atc	cct	aac	tgg	ctg	ggc	ccc	ctg	cag	aac	ctg	197
Val	Ser	Leu	Glu	Val	Ile	Pro	Asn	Trp	Leu	Gly	Pro	Leu	Gln	. Asn	Leu	
				45					50					55	•	
ctt	cat	ata	cgg	gca	gtg	ggc	acc	aat	tcc	aca	ctg	cac	tat	gtg	tgg	245
Leu	His	Ile	Arg	Ala	Val	Gly	Thr	Asn	Ser	Thr	Leu	His	Туз	· Val	Trp	
		•	60	ı		•		65					70)		
ago	ago	ctg	888	cct	ctg	gca	gtg	gta	atg	gte	g gcc	acc	aac	cac	ccc	293
Ser	Ser	Leu	Gly	Pro	Leu	Ala	Val	Val	Met	Va]	Ala	The	. Ası	n Thi	r Pro)
		75	5				80)				88	5		•	
cad	ago	aco	cte	g ago	gto	aac	tgg	ago	cto	ct	g cta	a to	c cc	t ga	g ccc	34
His	s Ser	Thi	r Lei	ı Sei	. Val	Asr	Trp	Ser	Leu	ı Le	u Lei	ı Se	r Pr	o Gl	u Pro	>
	90)				95	5				100	0				

gat	ggg	ggc	ctg	atg	gtg	ctc	cct	aag	gac	agc	att	cag	ttt	tct	tct	389
Asp	Gly	Gly	Leu	Met	Val	Leu	Pro	Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	
105		•			110	٠		•		115					120	
gcc	ctt	gtt	ttt	acc	agg	ctg	ctt	gag	ttt	gac	agc	acc	aac	gtg	tcc	437
Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu	Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	
				125					130					135		
gat	acg	gca	gca	aag	cct	ttg	gga	aga	cca	tat	cct	cca	tac	tcc	ttg	485
Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly	Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	
			140					145					150			
gcc	gat	ttc	tct	tgg	aac	aac	atc	act	gat	tca	ttg	gat	cct	gcc	acc	533
Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile	Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	
		155		•		•	160					165				
ctg	agt	gcc	aca	ttt	caa	ggc	cac	ccc	atg	aac	gac	cct	acc	agg	act	581
Leu	Ser	Ala	Thr	Phe	Gln	Gly	His	Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	
	170)				175					180	}				
															tcc	629
Phe	Ala	Asn	Gly	Ser	Leu	Ala	Phe	Arg	Val	Gln	Ala	Phe	Ser	Arg	Ser	
185					190					195					200	
															tgt	. 677
Ser	Are	g Pro	Ala	Glr	Pro	Pro	Arg	Leu	Leu	His	Thi	- Ala	a Asj		Cys	
				205					210					215		
															tcc	725
Glr	Leu	ı Glı			a Leu	ı Ile	e Gly			Pro	Arı	g Gly			g Ser	
			220					225					23			886
cto	, tt:	1 00	o cts	g gas	z gta	g gc	c aca	a tt	Z RRC	cap	gg g	C CC	t ga	c tg	c ccc	773

Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr	Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	
		235					240					245				
tca	átg	cag	gag	cag	cac	tcc	atc	gac	gat	gaa	tat	gca	ccg	gcc	gtc	- 821
Ser	Met	Gln	Glu	Gln	His	Ser	Ile	Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	
	250					255					260					
ttc	cag	ttg	gac	cag	cta	ctg	tgg	ggc	tcc	ctc	cca	tca	ggc	ttt	gca	869
Phe	Gln	Leu	Asp	Gln	Leu	Leu	Trp	Gly	Ser	Leu	Pro	Ser	G1 y	Phe	Ala	
265					270					275					280	
cag	tgg	cga	cca	gtg	gct	tac	tcc	cag	aag	ccg	ggg	ggc	cga	gaa	tca	917
G1n	Trp	Arg	Pro	Val	Ala	Tyr	Ser	Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	
				285					290					295		
gcc	ctg	ccċ	tgc	caa	gct	tcc	cct	ctt	cat	cct	gcc	tta	gca	tac	tct	965
Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro	Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	
			300					305					310			
ctt	ccc	cag	tca	ccc	att	gtc	cga	gcc	ttc	ttt	ggg	tcc	cag	aat	aac	1013
Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg	Ala	Phe	Phe	Gly	Ser	Gln	Asn	Asn	
		315					320					325				
ttc	tgt	gcc	ttc	aat	ctg	acg	ttc	ggg	gct	tcc	aca	ggc	cct	ggc	tat	1061
Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe	Gly	Ala	Ser	Thr	Gly	Pro	Gly	Tyr	
	330	•				335					340					
tgg	gac	caa	cac	tac	ctc	agc	tgg	tcg	atg	ctc	ctg	ggt	gtg	ggc	ttc	1109
Trp	Asp	Gln	His	Tyr	Leu	Ser	Trp	Ser	Met	Leu	Leu	Gly	Val	Gly	Phe	
345					350					355					360	
cct	сса	gtg	gac	ggc	ttg	tcc	cca	cta	gtc	ctg	ggo	ato	atg	gca	gtg	1157
Pro	Pro	Val	Asp	Gly	Leu	Ser	Pro	Leu	Val	Leu	Gly	Ile	Met	Ala	Val	

64 / 307

370 365 375 1205 gcc ctg ggt gcc cca ggg ctc atg ctg cta ggg ggc ggc ttg gtt ctg Ala Leu Gly Ala Pro Gly Leu Met Leu Leu Gly Gly Gly Leu Val Leu 380 385 390 1250 ctg ctg cac cac aag aag tac tca gag tac cag tcc ata aat taa Leu Leu His His Lys Lys Tyr Ser Glu Tyr Gln Ser Ile Asn 395 400 405 1310 ggcccgctct ctggagggaa ggacattact gaacctgtct tgctgtgcct cgaaactctg gaggttggag catcaagttc cagccggccc cttcactccc ccatcttgct tttctgtgga 1370 acctcagagg ccagcctcga cttcctggag acccccaggt ggggcttcct tcatactttg 1430 1490 ttgggggact ttggaggcgg gcaggggaca gggctattga taaggtcccc ttggtgttgc 1550 cttcttgcat ctccacacat ttcccttgga tgggacttgc aggcctaaat gagaggcatt 1606 ctgactggtt ggctgccctg gaaggcaaga aaatagattt atttttttc acaggg

<210> 30

<211> 1695

<212> DNA

<213> Homo sapiens

⟨220⟩

<221> CDS

⟨222⟩ (53)...(631)

<400> 30

acageegage agetggageg ategaggetg eagegeggee geegggegea ge atg

55

Met

ct	gcc	gtc	ggc	gtg	cag	gcc	cag	agg	cct	ttg	ggc	caa	agg	cag	C	cc	103	
ſhr	Ala	Val	Gly	Val	Gln	Ala	Gln	Arg	Pro	Leu	Gly	Gln	Arg	Gln	Pı	ro		
			5					10					15					
cgc	cgg	tcc	ttc	ttt	gaa	tcc	ttc	atc	cgg	acc	ctc	atc	atc	acg	t	gt	151	
Arg	Arg	Ser	Phe	Phe	Glu	Ser	Phe	Ile	Arg	Thr	Leu	Ile	Ile	Thr	· C	ys		
		20					25					30						
gtg	gcc	ctg	gct	gtg	gtc	ctg	tcc	tcg	gtc	tcc	att	tgt	gat	ggg	g c	ac	199	•
Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	Gly	y H	is		
	35	j				40					45							
tgg	cto	cte	gct	gag	gac	cgc	ctc	ttc	ggg	ctc	tgg	cac	ttc	tgo	c a	cc	24	7
									Gly									
50)				55					60						65		
acc	aco	c aac	cag	g agt	gtg	ccg	ato	tgo	ttc	aga	gac	cte	ggg	c ca	g g	gcc	29	5 .
Thr	Th	r Ası	n Glr	1 Ser	· Val	Pro	Ile	e Cys	s Phe	Arg	Asp	Leu	ı Gl	y Gl	n A	Ala		
				70					75						0			
cat	gt	g cc	c ggi	g ctg	g gcc	gtg	g 88¢	at	g ggo	ctg	gta	a cg	c ag	c gt	g	ggc	34	3
									t Gly									
			8					9						5				
gc	c tt	g gc	c gt	g gt:	g gco	c gc	c at	t tt	t gg	c ctg	g ga	g tt	c ct	c at	tg	gtg	39	91
									e Gl									
		10					10					11						
tc	c ca	ıg tt	g tg	c ga	g ga	c aa	a ca	c to	аса	g tge	с ва	g tg	g gt	c a	tg	ggt	4:	39
									r Gl									
		15	•			12					12							
+4			to of	te et	g gt	g to	t ti	c gi	tc ct	c tc	c to	c g	go gi	gg c	tc	ctg	4	87

Ser	Ile	Leu	Leu	Leu	Val	Ser	Phe	Val	Leu	Ser	Ser	Gly	Gly	Leu	Leu	
130					135					140					145	
ggt	ttt	gtg	atc	ctc	ctc	agg	aac	caa	gtc	aca	ctc	atc	ggc	ttc	acc	535
Gly	Phe	Val	Ile	Leu	Leu	Arg	Asn	G1n	Val	Thr	Leu	Ile	Gly	Phe	Thr	
				150					155					160		
cta	atg	ttt	tgg	tgc	gaa	ttc	act	gcc	tcc	ttc	ctc	ctc	ttc	ctg	aac	583
Leu	Met	Phe	Trp	Cys	Glu	Phe	Thr	Ala	Ser	Phe	Leu	Leu	Phe	Leu	Asn	
			165					170					175			
gcc	atc	agc	ggc	ctt	cac	atc	aac	agc	atc	acc	cat	ccc	tgg	gaa	tg	630
Ala	Ile	Ser	Gly	Leu	His	Ile	Asn	Ser	Ile	Thr	His	Pro	Trp	Glu		
		180					185					190				
acce	gtgg	aaa	tttt	aggc	cc c	ctcc	aggg	a ca	tcag	attc	cac	aaga	aaa	tatg	gtcaa	a 690
atgg	ggac	ttt	tcca	gcat	gt g	gcct	ctgg	t gg	ggct	gggt	tgg	acaa	ggg	cctt	gaaac	g 750
gcte	gcct	gtt	tgcc	gata	ac t	tgtg	ggtg	g tc	agcc	agaa	atg	gccc	ggg	ggcc	tctgc	a 810
cctg	ggtc	tgc	aggg	ccag	ag g	ccag	gagg	g tg	cctc	agtg	cca	ccaa	ctg	caca	ggctt	a 870
gcca	agat	gtt	gatt	ttag	ag g	aaga	aaaa	a ac	attt	taaa	act	cctt	ctt	gaat	tttct	t 930
ccc1	tgga	ctg	gaat	acag	tt g	gaag	caca	g gg	gtaa	ctgg	tac	ctga	gct	agct	gcaca	g 990
ccaa	agga	tag	ttca	tgcc	tg t	ttca	ttga	c ac	gtgc	tggg	ata	gggg	ctg	caga	atccc	t 1050
ggg	gctc	cca	gggt	tgtt	aa g	gaatg	gato	a tt	cttc	cago	taa	gggt	cca	atca	gtgcc	t 1110
atte	cttc	cac	cago	tcaa	ag g	gcct	tcgt	a te	gtate	tccc	tgg	ctto	agc	tttg	gtcat	g 1170
cca	aaga	ggc	agag	ttca	gg 2	ittco	ctca	ıg as	atgco	ctgo	aca	cagt	agg	ttto	caaac	c 1230
att	tgac	tcg	gttt	gcct	cc c	etgee	cgtt	g t1	ttaaa	acctt	aca	aaco	ctg	gata	acccc	a 1290
tct	tcta	igca	gctg	gctg	tc o	ccto	tggg	ga go	ctcte	gccta	a tca	agaad	cct	acci	taagg	t 1350
ggg	tttc	ctt	ccga	agaag	gag 1	ttct1	tgago	ca as	gctci	tccca	a gga	aggg	cca	cct	gactgo	t 1410
99+	2021	2000	cct	reces	120	7000	at.øte	zt. ø	catei	tøtci	t gta	ettti	tgtg	aggi	ttaga	ic 1470

67 /307

agcctcag	gg cacca	atttti	taatco	caga	a ca	catti	tcaa	agag	cace	gta '	tctag	gacct	, g 1	1530
ctggactc	tg cagg	gggtga	gggg	gaaca	g cga	agago	ttg	ggta	atga	att a	aacad	ccat	3	1590
ctggggat	gc atgg	aggtga	a aggg	gcca	g ga	accag	gtgg	agat	ttc	cat	ccttg	gccago	: 1	1650
acgtctgt	ac ttct	gttcat	t taaa	gtgct	c cc	tttc1	tagt	cctt	:t				1	1695
<210> 31														
<211> 37	7													
<212> PR	T													
<213> Ho	mo sapi	ens												
<400> 31														
Met Asp	Ser Ala	Leu S	Ser Ası	Pro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly	•	
1		5				10					15			
Gly Pro	Thr Asn	Ser 1	Thr Th	Arg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile		
	20				25					30				
Ala Leu	Ala Tyr	Gly S	Ser Le	ı Leu	Leu	Met	Ala	Leu	Leu	Pro	Ile	Phe		
	35			40					45					
Phe Gly	Ala Leu	Arg S	Ser Va	l Arg	Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser		
50			5	5				60						
Asp Met	Pro Glu	Thr :	lle Th	r Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile		
65			70				75					80		
Ile Ala	Ser Cys	Thr I	Leu Lei	ı Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe		
		85				90					95			
Ser Gln	Glu Tyr	Ile	Asn Le	ı Leu	Leu	Ser	Met	Tyr	Phe	Phe	Val	Leu		
	100				105					110				

Gly Ile Leu Ala Leu Ser His Thr Ile Ser Pro Phe Met Asn Lys Phe

		115					120					125			
Phe	Pro	Ala	Ser	Phe	Pro	Asn	Arg	Gl'n	Tyr	Gln	Leu	Leu	Phe	Thr	Gln
	130					135					140				
Gly	Ser	Gly	Glu	Asn	Lys	Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr
145					150					155					160
Lys	Asp	Leu	Val	Cys	Leu	Gly	Leu	Ser	Ser	Ile	Val	Gly	Val	Trp	Tyr
				165					170					175	
Leu	Leu	Arg	Lys	His	Trp	Ile	Ala	Asn	Asn	Leu	Phe	Gly	Leu	Ala	Phe
			180					185					190		
Ser	Leu	Asn	Gly	Val	Glu	Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly
		195					200					205			
Cys	Ile	Leu	Leu	Gly	Gly	Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe
	210					215					220				
Gly	Thr	Asn	Val	Met	Val	Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile
225					230					235					240
Lys	Leu	Val	Phe	Pro	Gln	Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn
				245					250					255	
Asn	Phe	Ala	Met	Leu	Gly	Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe
			260					265	:				270		
Ile	Ala	Leu	Leu	Leu	Arg	Phe	Asp	Ile	Ser	Leu	Lys	Lys	Asn	Thr	His
		275					280					285			
Thr	Tyr	Phe	Tyr	Thr	Ser	Phe	Ala	Ala	Tyr	Ile	Phe	Gly	Leu	Gly	Leu
	290					295					300				
Thr	Ile	Phe	Ile	Met	His	Ile	Phe	Lys	His	Ala	Gln	Pro	Ala	Leu	Leu
305					310					315					320

69 /307

Tyr Leu Val Pro Ala Cys Ile Gly Phe Pro Val Leu Val Ala Leu Ala Lys Gly Glu Val Thr Glu Met Phe Ser Tyr Glu Glu Ser Asn Pro Lys Asp Pro Ala Ala Val Thr Glu Ser Lys Glu Gly Thr Glu Ala Ser Ala Ser Lys Gly Leu Glu Lys Lys Glu Lys ⟨210⟩ 32 ⟨211⟩ 81 <212> PRT <213> Homo sapiens <400> 32 Met Thr Ala His Ser Phe Ala Leu Pro Val Ile Ile Phe Thr Thr Phe Trp Gly Leu Val Gly Ile Ala Gly Pro Trp Phe Val Pro Lys Gly Pro Asn Arg Gly Val Ile Ile Thr Met Leu Val Ala Thr Ala Val Cys Cys Tyr Leu Phe Trp Leu Ile Ala Ile Leu Ala Gln Leu Asn Pro Leu Phe Gly Pro Gln Leu Lys Asn Glu Thr Ile Trp Tyr Val Arg Phe Leu Trp Glu

Lys	Pro	Pro	Gln	lle	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala	Ala	He	Leu
145					150					155					160
Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly	Ser	Tyr	Val
				165					170					175	
Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala	Ile	Ile	Ile
			180					185					190		
Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asn	Thr	Lys	Asn	Phe	Asp
		195					200					205			
Asn	Ser	Phe	Glu	Gly	Ala	Gln	Leu	Ser	Val	Gly	Ala	Ile	Ser	Leu	Ala
	210					215					220				
Phe	Tyr	Asn	Gly	Leu	Trp	Ala	Tyr	Asp	Gly	Trp	Asn	G1n	Leu	Asn	Tyr
225					230					235					240
Ile	Thr	Glu	Glu	Leu	Arg	Asn	Pro	Tyr	Arg	Asn	Leu	Pro	Leu	Ala	Ile
				245					250					255	
Ile	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	Met	Asn	Val
			260					265					270		
Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	Ser	Gln	Ala
		275					280					285			
Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	Ser	Trp	Ile
	290					295					300				
Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	Asn	Gly	Thr
305					310					315					320
Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	Glu	Gly	His
				325					330					335	
Mat	l au	lve	Val	Len	Ser	Tvr	Tle	Ser	Val	Aro	Aro	Leu	Thr	Pro	Ala

72 /307

			340					345					350		
Pro	Ala	Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	Ile	Ile	Pro
		355					360	•		•		365			
Gly	Asp	Ile	Asn	Ser	Leu	Val	Asn	Tyr	Phe	Ser	Phe	Ala	Ala	Trp	Leu
	370					375					380				
Phe	Tyr	Gly	Leu	Thr	Ile	Leu	Gly	Leu	Ile	Val	Met	Arg	Phe	Thr	Arg
385					390					395					400
Lys	Glu	Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	Pro	Val	Leu
				405					410					415	
Met	Thr	Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	Ile	Ser	Lys
			420					425					430		
Pro	Thr	Trp	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	Ser	Gly	Leu
		435					440					445			
Leu	Phe	Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	Ala	Gln	Lys
	450					455					460				
Ile	Ser	Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met	Glu	Val	Val
465					470					475					480
Pro	Pro	Glu	Glu	Asp	Pro	Glu									
				485											
⟨21	0> 3	4													

⟨211⟩ 375

<212> PRT

⟨400⟩ 34

<213> Homo sapiens

Met	Thr	Pro	Gln	Pro	Ala	Gly	Pro	Pro	Asp	Gly	Gly	Trp	Gly	Trp	Val
.1				5					10					15	
Val	Ala	Ala	Ala	Ala	Phe	Ala	Ile	Asn	Gly	Leu	Ser	Tyr	Gly	Leu	Leu
			20					25					30		
Arg	Ser	Leu	Gly	Leu	Ala	Phe	Pro	Asp	Leu	Ala	Glu	His	Phe	Asp	Arg
		35					40					45			
Ser	Ala	Gln	Asp	Thr	Ala	Trp	Ile	Ser	Ala	Leu	Ala	Leu	Ala	Val	Gln
	50					55					60				
Gln	Ala	Ala	Ser	Pro	Val	Gly	Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala
65					70					75					80
Arg	Pro	Val	Val	Met	Val	Gly	Gly	Val	Leu	Ala	Ser	Leu	Gly	Phe	Val
				85					90					95	
Phe	Ser	Ala	Phe	Ala	Ser	Gly	Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly
			100					105					110		
Leu	Leu	Ala	Gly	Phe	Gly	Trp	Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly
		115					120					125			
Thr	Leu	Ser	Arg	Tyr	Phe	Ser	Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu
	130					135					140				
Ala	Leu	Thr	Gly	Asn	Gly	Ala	Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu
145					150					155					160
Gln	Leu	Leu	Leu	Asp	Thr	Phe	Gly	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu
				165					170					175	
Gly	Ala	Ile	Thr	Leu	His	Leu	Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro
			180					185					190		
Leu	Val	Leu	Pro	Gly	Asp	Pro	Pro	Ala	Pro	Pro	Arg	Ser	Pro	Leu	Ala

74 /307

		195					200					205			
Ala	Leu	Gly	Leu	Ser	Leu	Phe	Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala
	210					215				•	220				
Leu	Gly	Thr	Ala	Leu	Val	Gly	Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His
225					230					235					240
Leu	Ala	Pro	Arg	Phe	Arg	Pro	Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala
				245					250					255	
Gly	Gly	Gly	Arg	Gly	Cys	Asp	Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu
			260					265					270		
Arg	Val	Ala	Gly	Arg	Pro	Arg	Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly
		275					280				٠	285			
Arg	Ile	Arg	Gly	Ser	Asp	Trp	Ala	Gly	Ala	Val	Gly	Gly	Gly	Ala	Gly
	290					295					300				
Ala	Arg	Gly	Gly	Arg	Arg	Arg	Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg
305					310					315					320
Gly	Cys	Gly	Leu	Trp	Ala	Glu	Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe
				325					330					335	
Arg	Cys	Thr	Pro	Arg	Ala	Gly	Gly	Arg	Arg	Arg	Cys	Gly	Ala	Gly	His
			340					345					350		
Arg	Ala	Gly	Asp	Asp	Ala	Asp	Glu	Pro	Arg	Gly	Ala	Pro	Gly	Pro	Ser
		355					360					365			
Pro	Val	Arg	Leu	Pro	Lys	Gly									
	370					375									

⟨210⟩ 35

<211	> 35	0													
<212	> PR	RT.													
<213	> Ho	omo s	apie	ens		•			•						
<400	> 35	5													
Met	Ala	Thr	Thr	Ala	Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly
1				5					10					15	
Pro	Glu	Trp	Gly	Gly	Phe	Glu	Glu	Asn	Ile	Gln	G1y	Gly	Gly	Ser	Ala
			20					25					30		
Val	Ile	Asp	Met	Glu	Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu
		35					40					45			
Asp	Met	Gly	Glu	Leu	His	Gln	Arg	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala
	50					55					60				
Asp	Ala	Ala	Asp	Ala	Ala	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu
65					70					75					80
Gly	Met	Lys	Gly	Phe	Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln
				85					90					95	
Met	Trp	Gln	Ala	Gly	Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr
			100					105					110		
Ala	Asn	Ile	Asp	Ile	Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln
		115					120					125			
Val	Arg	Ser	Arg	Leu	Leu	Glu	Ser	Met	Ile	Pro	Ile	Lys	Met	Val	Asn
	130					135					140				
Phe	Pro	Gln	Lys	Ile	Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val
145					150					155					160
Phe	Thr	Leu	Val	Ala	Ile	Leu	Leu	His	Gly	Met	Lys	Thr	Ser	Asp	Thr

76 /307

				165					170					175	
Ile	Ile	Arg	Glu	Gly	Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe
			180					185					190		
Gly '	Tyr	Trp	Leu	Gly	Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Leu
		195					200					205			
Cys	Asn	Ala	Gln	Ile	Thr	Met	Leu	Gln	Met	Leu	Ala	Leu	Leu	Gly	Tyr
:	210					215					220				
Gly	Leu	Phe	Gly	His	Cys	Ile	Val	Leu	Phe	Ile	Thr	Tyr	Asn	Ile	His
225					230					235					240
Leu 1	His	Ala	Leu	Phe	Tyr	Leu	Phe	Trp	Leu	Leu	Val	Gly	Gly	Leu	Ser
				245					250					255	
Thr	Leu	Arg	Met	Val	Ala	Val	Leu	Val	Ser	Arg	Thr	Val	Gly	Pro	Thr
		·	260					265					270		
Gln	Arg	Leu	Leu	Leu	Cys	Gly	Thr	Leu	Ala	Ala	Leu	His	Met	Leu	Phe
		275					280					285			
Leu	Leu	Tyr	Leu	His	Phe	Ala	Tyr	His	Lys	Val	Val	Glu	Gly	Ile	Leu
Ċ	290					295					300				
Asp	Thr	Leu	Glu	Gly	Pro	Asn	Ile	Pro	Pro	Ile	Gln	Arg	Val	Pro	Arg
305					310					315					320
Asp	Ile	Pro	Ala	Met	Leu	Pro	Ala	Ala	Arg	Leu	Pro	Thr	Thr	Val	Leu
				325					330					335	
Asn	Ala	Thr	Ala	Lys	Ala	Val	Ala	Val	Thr	Leu	Gln	Ser	His		
			340					345					350		

<210> 36

77 /307

<211> 667 <212> PRT <213> Homo sapiens <400> 36 Met Ser Ser Gln Pro Ala Gly Asn Gln Thr Ser Pro Gly Ala Thr Glu Asp Tyr Ser Tyr Gly Ser Trp Tyr Ile Asp Glu Pro Gln Gly Glu Glu Leu Gln Pro Glu Gly Glu Val Pro Ser Cys His Thr Ser Ile Pro Pro Gly Leu Tyr His Ala Cys Leu Ala Ser Leu Ser Ile Leu Val Leu Leu Leu Leu Ala Met Leu Val Arg Arg Gln Leu Trp Pro Asp Cys Val Arg Gly Arg Pro Gly Leu Pro Ser Pro Val Asp Phe Leu Ala Gly Asp Arg Pro Arg Ala Val Pro Ala Ala Val Phe Met Val Leu Leu Ser Ser Leu Cys Leu Leu Leu Pro Asp Glu Asp Ala Leu Pro Phe Leu Thr Leu Ala Ser Ala Pro Ser Gln Asp Gly Lys Thr Glu Ala Pro Arg Gly Ala Trp Lys Ile Leu Gly Leu Phe Tyr Tyr Ala Ala Leu Tyr Tyr Pro Leu Ala Ala Cys Ala Thr Ala Gly His Thr Ala Ala His Leu Leu Gly

				165					170					175	
Ser	Thr	Leu	Ser	Trp	Ala	His	Leu	Gly	Val	Gln	Val	Trp	Gln	Arg	Ala
			180					185					190		
Glu	Cys	Pro	Gln	Val	Pro	Lys	Ile	Tyr	Lys	Tyr	Tyr	Ser	Leu	Leu	Ala
		195					200					205			
Ser	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Gly	Phe	Leu	Ser	Leu	Trp	Tyr	Pro
	210					215					220				
Val	Gln	Leu	Val	Arg	Ser	Phe	Ser	Arg	Arg	Thr	Gly	Ala	Gly	Ser	Lys
225					230					235					240
Gly	Leu	Gln	Ser	Ser	Tyr	Ser	Glu	Glu	Tyr	Leu	Arg	Asn	Leu	Leu	Cys
				245					250					255	
Arg	Lys	Lys	Leu	Gly	Ser	Ser	Tyr	His	Thr	Ser	Lys	His	Gly	Phe	Leu
			260				•	265					270		
Ser	Trp	Ala	Arg	Val	Cys	Leu	Arg	His	Cys	Ile	Tyr	Thr	Pro	Gln	Pro
		275					280					285			
Gly	Phe	His	Leu	Pro	Leu	Lys	Leu	Val	Leu	Ser	Ala	Thr	Leu	Thr	Gly
	290					295					300				
Thr	Ala	Ile	Tyr	Gln	Val	Ala	Leu	Leu	Leu	Leu	Val	Gly	Val	Val	Pro
305			. •		310					315					320
Thr	Ile	Gln	Lys	Val	Arg	Ala	Gly	Val	Thr	Thr	Asp	Val	Ser	Tyr	Leu
				325					330	I				335	
Leu	Ala	Gly	Phe	Gly	Ile	Val	Leu	Ser	Glu	Asp	Lys	G1n	Glu	Val	Val
			340	1				345					350	ı	
Glu	Leu	Val	Lys	His	His	Leu	Trp	Ala	Leu	Glu	Val	Cys	Tyr	Ile	Sea
		355	;				360)				365	j		

Ala	Leu	Val	Leu	Ser	Cys	Leu	Leu	Thr	Phe	Leu	Val	Leu	Met	Arg	Ser
	370·					375					380				
Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	His	Arg	Gly	Ala	Ala
385					390					395					400
Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	Pro	Ser	Arg	Gln	Ala
				405					410					415	
Ile	Phe	Cys	Trp	Met	Ser	Phe	Ser	Ala	Tyr	Gln	Thr	Ala	Phe	Ile	Cys
			420					425					430		
Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	Leu	Gly	Thr	Thr	Ala
		435					440					445			
Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	Gly	Arg	Asn	Leu	Leu
	450					455					460				
Leu	Phe	Arg	Ser	Leu	Glu	Ser	Ser	Trp	Pro	Phe	Trp	Leu	Thr	Leu	Ala
465					470					475					480
Leu	Ala	Val	Ile	Leu	Gln	Asn	Met	Ala	Ala	His	Trp	Val	Phe	Leu	Glu
				485					490					495	
Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	Arg	Val	Leu	Tyr	Ala
			500)				505					510		
Ala	Thr	Phe	Leu	Leu	Phe	Pro	Leu	Asn	Val	Leu	Val	Gly	Ala	Met	Val
		515	5				520					525	5		
Ala	Thr	Trp	Arg	y Val	Leu	Leu	Ser	Ala	Leu	Tyr	Asr	Ala	Ile	His	Leu
	530)				53 5	;				540)			
Gly	Gln	Met	. Asp	Leu	Ser	Leu	Leu	Pro	Pro	Are	, Ala	a Ala	a Thr	Leu	Asp
545	5				550)				555	5				560
Pro	Gly	7 Ty	т Туз	Thi	Tyr	Arg	, Asn	Phe	Leu	Lys	s Ile	e Glu	ı Val	Ser	Gln

80 /307

Ser His Pro Ala Met Thr Ala Phe Cys Ser Leu Leu Cln Ala Gln 580 . Ser Leu Leu Pro Arg Thr Met Ala Ala Pro Gln Asp Ser Leu Arg Pro Gly Glu Glu Asp Glu Gly Met Gln Leu Leu Gln Thr Lys Asp Ser Met Ala Lys Gly Ala Arg Pro Gly Ala Ser Arg Gly Arg Ala Arg Trp Gly Leu Ala Tyr Thr Leu Leu His Asn Pro Thr Leu Gln Val Phe Arg Lys Thr Ala Leu Leu Gly Ala Asn Gly Ala Gln Pro <210> 37 <211> 464 <212> PRT <213> Homo sapiens <400> 37 Met Ile Val Cys Leu Leu Phe Met Met Ile Leu Leu Ala Lys Glu Val Gln Leu Val Asp Gln Thr Asp Ser Pro Leu Leu Ser Leu Leu Gly Gln Thr Ser Ser Leu Ser Trp His Leu Val Asp Ile Val Ser Tyr Gln Ser

Val	Le	u	Ser	Tyr	Phe	Ser	Ser	His	Tyr	Pro	Pro	Ser	Ile	Ile	Leu	Ala
	5	0					55					60				
Lys	G1	u	Ser	Tyr	Ala	Glu	Leu	Ile	Met	Lys	Leu	Leu	Lys	Val	Ser	Ala
65						70					75					80
Gly	Le	u	Ser	Ile	Pro	Thr	Asp	Ser	Gln	Lys	His	Leu	Asp	Ala	Val	Pro
					85					90					95	
Lys	Су	s	Gln	Ala	Phe	Thr	His	Gln	Met	Val	Gln	Phe	Leu	Ser	Thr	Leu
				100					105					110		
Glu	G]	n.	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val	Leu	Glu	Gln	Glu	Met	Ser
			115					120					125			
Lys	: Le	eu	Leu	Asp	Asp	Ile	Ile	. Val	Phe	Asn	Pro	Pro	Asp	Met	Asp	Ser
	13	30					135	5				140				
Glr	ı Tl	nr	Arg	His	Met	. Ala	Lei	ı Ser	Ser	Leu	Phe	Met	Glu	Val	Leu	Met
145	5			•		150)				155					160
Me	t M	et	Asr	n Asr	n Ala	a Thr	· 11	e Pro	Thr	Ala	Glu	Phe	Leu	Arg	Gly	Ser
					16	5				170)				175	
11	e A	re	g Thi	r Tr	p Ile	e Gly	/ G1:	n Lys	s Met	His	Gly	Leu	Val	Val	Leu	Pro
				180	0				185	;				190)	
Le	u L	eι	ı Th	r Ala	a Al	a Cy	s Gl	n Se	r Leu	ı Ala	s Ser	· Val	Arg	His	Met	Ala
			19	5				20	0				205	5		
Gl	u T	'hı	r Th	r Gl	u Al	а Су	s Il	e Th	r Ala	а Туз	r Phe	e Lys	s Glu	ı Ser	Pro	Leu
	2	210	0				21	5				220)			
As	n (31	n As	n Se	r Gl	y Tr	p Gl	y Pr	o Ile	e Le	u Va	l Se	r Lei	ı Glı	n Va	l Pro
22	:5					23	0				23	5				240
G1	u I	_e	u Th	r Me	t Gl	u Gl	u Ph	ie Le	u Gl	n Gl	u Cy	s Le	u Th	r Le	u Gl	y Ser

				245					250					255	
Tyr	Leu	Thr	Leu	Tyr	Val	Tyr	Leu	Leu	Gln	Cys	Leu	Asn	Ser	Glu	Gln
			260			•		265					270		
Thr	Leu	Arg	Asn	Glu	Met	Lys	Val	Leu	Leu	Ile	Leu	Ser	Lys	Trp	Leu
		275					280					285			
Glu	G1n	Val	Tyr	Pro	Ser	Ser	Val	Glu	Glu	Glu	Ala	Lys	Leu	Phe	Leu
	290					295					300				
Trp	Trp	His	G1n	Val	Leu	Gln	Leu	Ser	Leu	Ile	Gln	Thr	Glu	Gln	Asn
305	•				310					315					320
Asp	Ser	Val	Leu	Thr	Glu	Ser	Val	Ile	Arg	Ile	Leu	Leu	Leu	Val	Gln
				325					330					335	
Ser	Arg	Gln	Asn	Leu	Val	Ala	Glu	Glu	Arg	Leu	Ser	Ser	Gly	Ile	Leu
			340					345					350		
Gly	Ala	Ile	Gly	Phe	Gly	Arg	Lys	Ser	Pro	Leu	Ser	Asn	Arg	Phe	Arg
		355					360					365			
Val	Val	Ala	Arg	Ser	Met	Ala	Ala	Phe	Leu	Ser	Val	Gln	Val	Pro	Met
	370					375					380				
Glu	Asp	Gln	Ile	Arg	Leu	Arg	Pro	Gly	Ser	Glu	Leu	His	Leu	Thr	Pro
385					390		•			395					400
Lys	Ala	Gln	Gln	Ala	Leu	Asn	Ala	Leu	Glu	Ser	Met	Ala	Ser	Ser	Lys
				405					410					415	
Gln	Tyr	Val	Glu	Tyr	Gln	Asp	Gln	Ile	Leu	Gln	Ala	Thr	Gln	Phe	Ile
			420					425					430		
Arg	His	Pro	Gly	His	Cys	Leu	Gln	Asp	Gly	Lys	Ser	Phe	Leu	Ala	Leu
		435					440					445			

83 /307

Leu	Val	Asn	Cys	Leu	Tyr	Pro	Glu	Val	His	Tyr	Leu	Asp	His	Ile	Arg
	450					455					460				
<210)> 38	3													
<21	1> 47	70													
<212	2> PI	TS													
<213	3> Ho	omo :	sapi	ens											
<400	0> 38	3													
Met	Ser	Arg	Leu	Gly	Ala	Leu	Gly	Gly	Ala	Arg	Ala	Gly	Leu	Gly	Leu
1				5					10					15	
Leu	Leu	Gly	Thr	Ala	Ala	Gly	Leu	Gly	Phe	Leu	Cys	Leu	Leu	Tyr	Ser
			. 20					25					30		
Gln	Arg	Trp	Lys	Arg	Thr	Gln	Ärg	His	Gly	Arg	Ser	Gln	Ser	Leu	Pro
		35					40					45			
Asn	Ser	Leu	Asp	Tyr	Thr	Gln	Thr	Ser	Asp	Pro	Gly	Arg	His	Val	Met
	50					55					60				
Leu	Leu	Arg	Ala	Val	Pro	Gly	Gly	Ala	Gly	Asp	Ala	Ser	Val	Leu	Pro
65					70					75					80
Ser	Leu	Pro	Arg	Glu	Gly	Gln	Glu	Lys	Val	Leu	Asp	Arg	Leu	Asp	Phe
				85					90					95	
Val	Leu	Thr	Ser	Leu	Val	Ala	Leu	Arg	Arg	Glu	Val	Glu	Glu	Leu	Arg
			100					105					110		
Ser	Ser	Leu	Arg	Gly	Leu	Ala	Gly	Glu	Ile	Val	Gly	Glu	Val	Arg	Cys
		115					120					125			

 $\hbox{His Met Glu Glu Asn Gln Arg Val Ala Arg Arg Arg Phe Pro Phe } \\$

	130					135					140				
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser	Ser	Ser	Val	Tyr	Phe	Thr
145					150					155					160
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	Glu	Gly	Gly	Tyr
				165					170					175	
Thr	Thr	Ala	Asn	Ala	Glu	Ser	Asp	Asn	Glu	Arg	Asp	Ser	Asp	Lys	Glu
		٠	180					185					190		
Ser	Glu	Asp	Gly	Glu	Asp	Glu	Val	Ser	Cys	Glu	Thr	Val	Lys	Met	Gly
		195					200					205			
Arg	Lys	Asp	Ser	Leu	Asp	Leu	Glu	Glu	Glu	Ala	Ala	Ser	Gly	Ala	Ser
	210					215					220				
Ser	Ala	Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro
225					230					235					240
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys
				245					250					255	
Arg	Glu	Gly	Phe	Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser
			260					265					270		
Arg	Gln	Asp	Phe	Leu	Trp	Arg	Leu	Ala	Arg	Ala	Tyr	Ser	Asp	Met	Cys
		275	•				280					285	j		
Glu	Leu	Thr	Glu	Glu	Val	Ser	Glu	Lys	Lys	Ser	Tyr	Ala	Leu	Asp	Gly
	290)				295	,				300)			
Lys	Glu	Glu	Ala	Glu	ı Ala	Ala	Leu	Glu	Lys	Gly	Asp	Glu	Ser	Ala	Asp
305	;				310)				315	5				320
Cys	His	Leu	Trp	Туг	Ala	Val	Leu	Cys	Gly	Glr	ı Lev	ı Ala	a Glu	ı His	Glu
				325	5				330)				335	5

85 / 307

Ser Ile Gln Arg Arg Ile Gln Ser Gly Phe Ser Phe Lys Glu His Val Asp Lys Ala Ile Ala Leu Gln Pro Glu Asn Pro Met Ala His Phe Leu Leu Gly Arg Trp Cys Tyr Gln Val Ser His Leu Ser Trp Leu Glu Lys Lys Thr Ala Thr Ala Leu Leu Glu Ser Pro Leu Ser Ala Thr Val Glu Asp Ala Leu Gln Ser Phe Leu Lys Ala Glu Glu Leu Gln Pro Gly Phe Ser Lys Ala Gly Arg Val Tyr Ile Ser Lys Cys Tyr Arg Glu Leu Gly Lys Asn Ser Glu Ala Arg Trp Trp Met Lys Leu Ala Leu Glu Leu Pro Asp Val Thr Lys Glu Asp Leu Ala Ile Gln Lys Asp Leu Glu Glu Leu Glu Val Ile Leu Arg Asp

⟨210⟩ 39

<211> 243

<212> PRT

<213> Homo sapiens

<400> 39

Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro Val Asn Val Phe

1				5					10					15	
Ser	Val	Thr	Pro	Tyr	Thr	Pro	Ser	Thr	Ala	Asp	Ile	Gln	Val	Ser	Asp
			20					25					30	•	
Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	Ile	Phe	Leu	G1 y
		35					40					45			
Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	Lys	Tyr	Gln	G1 y
	50					55					60				
Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	Val	Leu	Leu	Ser
65					70					75					80
Val	Gly	Val	Thr	Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	Phe	Lys	Met	Leu
				85					90					95	
Ser	Cys	Gln	Leu	Cys	Lys	Glu	Ser	Glu	Glu	Arg	Val	Pro	Asp	Ser	Glu
			100					105			•		110		
Gln	Thr	Pro	Gly	Gly	Pro	Ser		Val	Phe	Thr	Gly		Asn	Gln	Pro
		115					120					125			
Ile		Phe	His	Gly	Ala		Val	Val	Gln	Tyr		Pro	Pro	Pro	Tyr
	130					135					140				
Gly	Ser	Pro	Glu	Pro		Gly	Ile	Asn	Thr		Tyr	Leu	Gln	Ser	
145					150					155					160
Val	Ser	Pro	Cys	Gly	Leu	Ile	Thr	Ser	Gly	Gly	Ala	Ala	Ala		Met
				165					170					175	
Ser	Ser	Pro	Pro	Gln	Tyr	Tyr	Thr			Pro	Gln	Asp		Ser	Ala
			180					185					190		
Phe	Val	Val	Asp	Glu	Gly	Cys	Leu	Ser	Phe	Thr	Asp			Asn	His
		195					200					205			

87 /307

Arg Pro Asn Pro Asp Val Asp Gln Leu Glu Glu Thr Gln Leu Glu Glu Glu Ala Cys Ala Cys Phe Ser Pro Pro Pro Tyr Glu Glu Ile Tyr Ser Leu Pro Arg <210> 40 <211> 270 <212> PRT <213> Homo sapiens <400> 40 Met Ala Gly Ala Glu Asp Trp Pro Gly Gln Gln Leu Glu Leu Asp Glu Asp Glu Ala Ser Cys Cys Arg Trp Gly Ala Gln His Ala Gly Ala Arg Glu Leu Ala Ala Leu Tyr Ser Pro Gly Lys Arg Leu Gln Glu Trp Cys Ser Val Ile Leu Cys Phe Ser Leu Ile Ala His Asn Leu Val His Leu Leu Leu Leu Ala Arg Trp Glu Asp Thr Pro Leu Val Ile Leu Gly Val Val Ala Gly Ala Leu Ile Ala Asp Phe Leu Ser Gly Leu Val His Trp Gly Ala Asp Thr Trp Gly Ser Val Glu Leu Pro Ile Val Gly Lys Ala

88 /307

Phe	Ile	Arg	Pro	Phe	Arg	Glu	His	His	Ile	Asp	Pro	Thr	Ala	Ile	Thr
		115					120					125			
Arg	His	Asp	Phe	Ile	Glu	Thr	Asn	Gly	Asp	Asn	Cys	Leu	Val	Thr	Leu
	130					135					140				
Leu	Pro	Leu	Leu	Asn	Met	Ala	Tyr	Lys	Phe	Arg	Thr	His	Ser	Pro	Glu
145					150					155					160
Ala	Leu	Glu	Gln	Leu	Tyr	Pro	Trp	Glu	Cys	Phe	Val	Phe	Cys	Leu	Ile
				165					170					175	
Ile	Phe	Gly	Thr	Phe	Thr	Asn	G1n	Ile	His	Lys	Trp	Ser	His	Thr	Tyr
			180					185					190		
Phe	Gly	Leu	Pro	Arg	Trp	'Val	Thr	Leu	Leu	Gln	Asp	Trp	His	Val	Ile
		195					200					205			
Leu	Pro	Arg	Lys	His	His	Arg	Ile	His	His	Val	Ser	Pro	His	Glu	Thr
	210					215					220				
Tyr	Phe	Cys	Ile	Thr	Thr	Gly	Trp	Leu	Asn	Tyr	Pro	Leu	Glu	Lys	Ile
225					230					235					240
Gly	Phe	Trp	Arg	Arg	Leu	Glu	Asp	Leu	Ile	G1n	Gly	Leu	Thr	Gly	Glu
				245					250					255	
Lys	Pro	Arg	Ala	Asp	Asp	Met	Lys	Trp	Ala	Gln	Lys	Ile	Lys		
			260					265					270		

<210> 41

<211> 1131

<212> DNA

<213≻ Homo sapiens

89 /307

⟨400⟩ 41

60	cccaccaac	aggcaggcgg	ggcagtgccg	tccgcataac	ccctcagcga	atggactcgg
120	cagcctcctg	tggcctacgg	ggcatcgcgc	cacgcccgag	ggccgccttc	agcactacgc
180	cgcccgcggc	ccgtacgctg	gccctgcgct	cttcttcggc	tgctgcccat	ctcatggcgc
240	cttccccatc	atgccgcccg	accagccggg	tgaaacaatc	cagacatgcc	aagaatgctt
300	ccaggagtac	aaatattctc	ctcttttca	ggggctctac	gcacactctt	atcgccagct
360	gtcccacacc	tcctggccct	gtgctgggaa	gtatttcttc	tgctgtccat	atcaacctcc
420	gtaccagctg	caaatcgaca	gccagctttc	gtttttcca	tcatgaataa	atcagcccct
480	atttgacacc	tcaattatga	gaagagatca	ggaaaacaag	agggttctgg	ctcttcacac
540	gctgaggaag	tctggtacct	atcgttggcg	cctgagcagc	tgtgcctggg	aaggacctgg
600	agagctcctg	ttaatggagt	gccttctccc	ttttggcctg	ccaacaacct	cactggattg
660	ctacgatgtc	gactcttcat	ctgctgggcg	tggctgcatc	atgtcagcac	cacctcaaca
720	ggcaccaata	agtccttcga	acagtggcca	tgtgatggtg	ttggcaccaa	ttctgggtat
780	ctttgccatg	aagcaaacaa	aaaggcctcg	tctgctggag	ttccccagga	aaattggtgt
840	gcgctttgac	ccttgctgct	atcttcattg	cattccaggg	gagatgtcgt	ctgggacttg
900	ctacatcttc	gctttgcagc	ttctacacca	ccacacctac	agaagaatac	atcagcttga
960	tgccctccta	atgctcagcc	atcttcaagc	catcatgcac	ttaccatctt	ggcctgggcc
1020	gggagaagtg	cgctggccaa	gtcctggtgg	cggttttcct	ccgcctgcat	tacctggtcc
1080	gacagaatcc	cagcggcagt	cctaaggatc	ggagtcaaat	tcagttatga	acagagatgt
1131	а	agaaagagaa	gggctggaga	agcatcgaag	cagaggcatc	aaagagggaa

<210> 42

⟨211⟩ 243

<212> DNA

<213> Homo sapiens

90 /307

<400> 42

atgacggcgc actcattcgc cctcccggtc atcatcttca ccacgttctg gggcctcgtc 60 ggcatcgccg ggccctggtt cgtgccgaag ggacccaacc gcggagtgat catcaccatg 120 ctggtcgcca ccgccgtctg ctgttacctc ttctggctca tcgccatcct ggcgcagctg 180 aaccccctgt tcgggcccca gctgaagaat gagaccatct ggtacgtgcg cttcctgtgg 240 gag

<210> 43

(211) 1461

<212> DNA

<213> Homo sapiens

<400> 43

atgggggata ctggcctgag aaagcggaga gaggatgaga agtcgatcca gagccaagag 60 120 cctaagacca ccagtctcca aaaggagctg ggcctcatca gtggcatctc catcatcgtg 180 ggcaccatca ttggctctgg gatcttcgtt tcccccaagt ctgtgctcag caacacggaa 240 gctgtggggc cctgcctcat catatgggcg gcttgcgggg tcctcgcgac gctgggtgcc 300 ctgtgctttg cggagcttgg cacaatgatc accaagtcag ggggagagta tccctacctg 360 atggaggeet acgggeecat eccegectae etetteteet gggeeageet gategteatt 420 aageccaegt cettegecat catetgeete agetteteeg agtatgtgtg tgegecette tatgtgggct gcaagcctcc tcaaatcgtt gtgaaatgcc tggccgccgc cgccatcttg 480 540 ttcatctcga cagtgaactc actgagcgtg cggctgggaa gctacgtcca gaacatcttc 600 accgcggcca agctggtgat cgtggccatc atcatcatca gcgggctggt gctcctggcc 660 caaggaaaca caaagaattt tgataattct ttcgagggcg cccagctgtc tgtgggagcc 720 atcagcctgg cgttttacaa tggactctgg gcctatgatg gatggaatca actcaattac 780 atcacagaag aacttagaaa cccttacaga aacctgcctt tggccattat catcgggatc

91 /307

ccctggtga	cggcgtgcta	catcctcatg	aacgtgtcct	acttcaccgt	gatgactgcc	840
accgaactcc	tgcagtccca	ggcggtggct	gtgacatttg	gtgaccgtgt	tctctatcct	900
gcttcttgga	tcgttccact	ttttgtggca	ttttcaacca	tcggtgctgc	taacgggacc	960
tgcttcacag	cgggcagact	catttacgtg	gcgggccggg	agggtcacat	gctcaaagtg	1020
ctttcttaca	tcagcgtcag	gcgcctcact	ccagcccccg	ccatcatctt	ttatggtatc	1080
atagcaacga	tttatatcat	ccctggtgac	ataaactcgt	tagtcaatta	tttcagcttt	1140
gccgcatggc	tgttttatgg	cctgacgatt	ctaggactca	tcgtgatgag	atttacaagg	1200
aaagagctgg	aaaggcctat	caaggtgccc	gtagtcattc	ccgtcttgat	gacactcatc	1260
tctgtgtttt	tggttctggc	tccaatcatc	agcaagccca	cctgggagta	cctctactgt	1320
gtgctgttta	tattaagcgg	ccttttattt	tacttcctgt	ttgtccacta	caagtttgga	1380
tgggctcaga	aaatctcaaa	gccgattacc	atgcaccttc	agatgctaat	ggaagtggtc	1440
ccaccggagg	aagaccctga	g				1461

<210> 44

(211) 1125

<212> DNA

<213> Homo sapiens

<400> 44

atgaccccc ageccgcg accccgat gggggctgg getggtgt ggcggccgca 60° gccttcgcga taaacgggct gtcctacggg etgetgcgct cgctgggcct tgccttccct 120 gaccttgccg ageactttga ccgaagcgcc caggacactg cgtggatcag cgccctggcc 180 ctggccgtgc ageaggacg cagcccgtg ggcagcgcc tgagcacgc ctggggggcc 240 cgcccgtgg tgatggttgg ggggtcctc gcctcgtgg gcttcgtct ctcgggtttc 300 gccagcggtc tgctgcatct ctacctcggc ctgggcctcc tcgctggtt tggttgggcc 360 ctggtgttcg ccccgccct aggcaccctc tcgcgttact tctcccgccg tcgagtcttg 420

92 /307

480	gcccgccttg	tgctcctggc	gcctcctcgc	cggcaacggg	tggcgctcac	gcggtggggc
540	cgcgatcacc	tcctcctcgg	ggcgctctgc	cggctggcgg	tcgatacttt	cagcttctcc
600	agaccccca	tccttcctgg	ctacccctgg	cgccctgctg	cccctgtgg	ctccacctca
660	ccgggccttc	tgttcacacg	ggcctgagtc	agctgccctc	gtagtcccct	gccccaccgc
720	ttacgtgcac	acttcgttcc	gggggcgggt	agccctggtt	ctctaggcac	tcaatctttg
780	tggtggccgt	gcagcgctgg	gggatacgga	ggggcctggg	gctttagacc	ttggctcccc
840	accaaggctg	tggctggcag	ggtctgcggg	gcgcccggct	ggggatgcgg	ggctgcgatg
900	ggctgtgggt	actgggctgg	cggggctctg	tggccgtatt	ccgcggctgc	ggtgcccctc
960	tgctggccgc	gggggtcccc	agagagctgg	tgggcggcga	gtgcccgtgg	ggtggggctg
1020	gtgtactccc	ctggttttcg	ttacgccccg	gcgcggggag	tatgggctga	ggctgtggcc
1080	tgctgatgag	ctggtgatga	ggccacaggg	gtgtggtgca	ggcgtcggag	cgggctggtg
1125		aggga .	aggcttccta	ctcccctgtc	ctcctgggcc	cctcgggggg

⟨210⟩ 45

<211> 1050

<212> DNA

<213> Homo sapiens

<400> 45

93 /307

480	catgctggtc	atggacctct	ggtgaactct	gaaaattgca	acttcccca	aagatggtca
540	tatccgggag	ctgacactat	atgaagacgt	actccatggg	ttgctatcct	ttcactctgg
600	agtctcatcc	actggctggg	tgcttcggct	cattggcacc	tgggcacagc	ggcaccctga
660	gatgttggca	ccatgctgca	gcccagatca	cctgtgcaac	tccttgccta	ttcatttact
720	taatatccac	tcatcaccta	attgtcctgt	tgggcattgc	atggcctctt	ctgctgggct
780	actgcgcatg	gactgtccac	ttggtgggtg	cttctggctg	tcttctacct	ctccacgccc
840	ctgtggcacc	ggctgctcct	cccacacagc	gaccgtgggc	tggtgtctcg	gtagcagtgt
900	caaagtggta	ttgcctacca	tatctgcatt	cttcctgctc	tacacatgct	ctggctgccc
960	ggtccccaga	ccatccagag	aacatcccgc	ggagggcccc	tggacacact	gaggggatcc
1020	cgccacagcc	ccgtcctcaa	cttcccacca	tgctgctcgg	ccatgctccc	gacatccctg
1050				gcagtcacac	cggtgaccct	aaagctgttg

<210> 46

<211> 2001

<212> DNA

<213≻ Homo sapiens

<400> 46

60 atgtcgtccc agccagcagg gaaccagacc tcccccgggg ccacagagga ctactcctat 120 ggcagctggt acatcgatga gccccagggg ggcgaggagc tccagccaga gggggaagtg 180 ccctcctgcc acaccagcat accacccggc ctgtaccacg cctgcctggc ctcgctgtca atcettgtge tgetgeteet ggeeatgetg gtgaggegee geeagetetg geetgaetgt 240 300 gtgcgtggca ggcccggcct gcccagccct gtggatttct tggctgggga caggcccgg 360 gcagtgcctg ctgctgtttt catggtcctc ttgagctccc tgtgtttgct gctccccgac 420 gaggacgcat tgcccttcct gactctcgcc tcagcaccca gccaagatgg gaaaactgag 480 gctccaagag gggcctggaa gatactggga ctgttctatt atgctgccct ctactaccct

etggetgeet gtgeeaegge tggeeaeaea getgeaeaee tgeteggeag caegetgte	c 540
tgggcccacc ttggggtcca ggtctggcag agggcagagt gtccccaggt gcccaagat	.c 600
tacaagtact actocotget ggootcootg cototootgo tgggootogg attootgag	sc 660
ctttggtacc ctgtgcagct ggtgagaagc ttcagccgta ggacaggagc aggctccaa	ng 720
gggctgcaga gcagctactc tgaggaatat ctgaggaacc tcctttgcag gaagaagc	g 780
ggaagcagct accacacctc caagcatggc tteetgteet gggeeegegt etgettgag	ga 840
cactgcatct acactccaca gccaggattc catctcccgc tgaagctggt gctttcag	et 900
acactgacag ggacggccat ttaccaggtg gccctgctgc tgctggtggg cgtggtac	ec 960
actatccaga aggtgagggc aggggtcacc acggatgtct cctacctgct ggccggct	tt 1020
ggaatcgtgc tctccgagga caagcaggag gtggtggagc tggtgaagca ccatctgt	gg 1080
gctctggaag tgtgctacat ctcagccttg gtcttgtcct gcttactcac cttcctgg	tc 1140
ctgatgcgct cactggtgac acacaggacc aaccttcgag ctctgcaccg aggagctg	cc 1200
ctggacttga gtcccttgca tcggagtccc catccctccc gccaagccat attctgtt	gg 1260
atgagettea gtgeetacea gaeageettt atetgeettg ggeteetggt geageaga	tc 1320
atcttcttcc tgggaaccac ggccctggcc ttcctggtgc tcatgcctgt gctccatg	gc 1380
aggaacctcc tgctcttccg ttccctggag tcctcgtggc ccttctggct gactttgg	cc 1440
ctggctgtga tcctgcagaa catggcagcc cattgggtct tcctggagac tcatgatg	ga 1500
cacccacage tgaccaaccg gcgagtgete tatgcageca cetttettet etteccee	tc 1560
aatgtgctgg tgggtgccat ggtggccacc tggcgagtgc tcctctctgc cctctaca	ac 1620
gccatccacc ttggccagat ggacctcagc ctgctgccac cgagagccgc cactctcg	gac 1680
cccggctact acacgtaccg aaacttcttg aagattgaag tcagccagtc gcatccag	gcc 1740
atgacageet tetgeteect geteetgeaa gegeagagee teetaceeag gaceatgg	gca 1800
gcccccagg acagcctcag accaggggag gaagacgaag ggatgcagct gctacag	ica 1860
aaggactcca tggccaaggg agctaggccc ggggccagcc gcggcagggc tcgctgg	ggt 1920
ctggcctaca cgctgctgca caacccaacc ctgcaggtct tccgcaagac ggccctg	ttg 1980

95 / 307

ggtgccaatg gtgcccagcc c 2001

<210> 47

⟨211⟩ 1392

<212> DNA

<213> Homo sapiens

<400> 47

60 atgattgtct gcctcctttt catgatgatt ttattggcaa aggaagttca actggtagac 120 caaacagatt cacctttact tagtctcctt ggacagacaa gctcactttc atggcatctt gtggatattg tgtcgtacca gagtgtgcta agttatttca gcagccatta cccgccgtcc 180 240 atcatcctgg caaaagaatc ttatgctgaa ttaatcatga agctcctaaa agtgtctgcg 300 ggcctttcta ttcctactga cagccagaag catcttgatg cagttccaaa atgccaagct 360 tttactcatc agatggttca attcctcagc accctggaac aaaatggaaa aatcacctta 420 gcagtcctag aacaggaaat gtctaagctc ttagacgata tcattgtctt taacccgccc 480 gacatggaca gccagacccg ccacatggcc ctcagcagcc tctttatgga agtcctgatg 540 atgatgaaca acgcgactat tccaacagca gagttccttc ggggcagtat ccggacctgg 600 attggccaaa aaatgcatgg gctggtggtg ctgccccttt taacagcagc ctgccagagc 660 ctggcgtccg tccgccacat ggctgagact acagaagcct gcatcactgc ctacttcaaa 720 gaaagccctc tcaatcagaa ttcaggatgg ggacccattc tggtatccct tcaggttccc 780 gageteacea tggaagagtt cetgeaggag tgeeteacet tgggeagtta ettgaetett 840 tacgtctact tgcttcagtg tttaaacagc gaacagactt taaggaatga aatgaaagtg 900 ctgctcatct taagcaagtg gctggaacag gtgtacccaa gctccgtgga ggaagaggca 960 aagctgtttt tgtggtggca ccaagtcctt cagctctccc tcattcagac agagcagaat 1020 gactccgtcc tgacagaatc tgtcattcga attctgctct tggttcagag caggcagaac 1080 ctcgtggctg aggagagact cagctctggg atcctggggg caattgggtt tggccggaag

96 / 307

tcgcctttgt	ctaacaggtt	ccgagtggtt	gcccgaagca	tggctgcctt	cctttcagtt	1140
caggttccta	tggaagatca	gatccgtttg	aggcctggct	ctgaattaca	tctgaccccc	1200
aaagctcagc	aggctctgaa	tgctcttgaa	tccatggcat	caagtaagca	gtatgttgaa	1260
taccaggatc	aaatattgca	agccacccaa	tttataaggc	atcctggcca	ttgccttcaa	1320
gatgggaaaa	gcttcttggc	tcttctcgtt	aactgtctgt	atccagaagt	gcattatttg	1380
gaccacatac	ga					1392

⟨210⟩ 48

<211> 1410

<212> DNA

<213> Homo sapiens

<400> 48

60 atgtctagac tgggagccct gggtggtgcc cgtgccgggc tgggactgtt gctgggtacc 120 gccgccggcc ttggattcct gtgcctcctt tacagccagc gatggaaacg gacccagcgt 180 catggccgca gccagagcct gcccaactcc ctggactata cgcagacttc agatcccgga 240 cgccacgtga tgctcctgcg ggctgtccca ggtggggctg gagatgcctc agtgctgccc 300 agcettecae gggaaggaca ggagaaggtg etggacegee tggaetttgt getgaceage 360 cttgtggcgc tgcggcggga ggtggaggag ctgagaagca gcctgcgagg gcttgcgggg 420 gagattgttg gggaggtccg atgccacatg gaagagaacc agagagtggc tcggcggcga 480 aggtttccgt ttgtccggga gaggagtgac tccactggct ccagctctgt ctacttcacg 540 gcctcctcgg gagccacgtt cacagatgct gagagtgaag ggggttacac aacagccaat 600 gcggagtctg acaatgagcg ggactctgac aaagaaagtg aggacgggga agatgaagtg 660 agctgtgaga ctgtgaagat ggggagaaag gattctcttg acttggagga agaggcagct 720 tcaggtgcct ccagtgccct ggaggctgga ggttcctcag gcttggagga tgtgctgccc 780 ctcctgcagc aggccgacga gctgcacagg ggtgatgagc aaggcaagcg ggagggcttc

PCT/JP00/05356

97 /307

cagctgctgc	tcaacaacaa	gctggtgtat	ggaagccggc	aggactttct	ctggcgcctg	840
gcccgagcct	acagtgacat	gtgtgagctc	actgaggagg	tgagcgagaa	gaagtcatat	900
gccctagatg	gaaaagaaga	agcagaggct	gctctggaga	agggggatga	gagtgctgac	960
tgtcacctgt	ggtatgcggt	gctttgtggt	cagctggctg	agcatgagag	catccagagg	1020
cgcatccaga	gtggctttag	cttcaaggag	catgtggaca	aagccattgc	tctccagcca	1080
gaaaacccca	tggctcactt	tcttcttggc	aggtggtgct	atcaggtctc	tcacctgagc	1140
tggctagaaa	aaaaaactgc	tacagccttg	cttgaaagcc	ctctcagtgc	cactgtggaa	1200
gatgccctcc	agagetteet	aaaggctgaa	gaactacagc	caggattttc	caaagcagga	1260
agggtatata	tttccaagtg	ctacagagaa	ctagggaaaa	actctgaagc	tagatggtgg	1320
atgaagttgg	ccctggagct	gccagatgtc	acgaaggagg	atttggctat	ccagaaggac	1380
ctggaagaac	tggaagtcat	tttacgagac				1410

<210> 49

<211> 729

<212> DNA

<213> Homo sapiens

<400> 49

atggagcagg gcagcggccg cttggaggac ttccctgtca atgtgttctc cgtcactcct 60 tacacacca geaccgetga catecaggtg tecgatgatg acaaggeggg ggeeaccttg 120 180 ctcttctcag gcatctttct gggactggtg gggatcacat tcactgtcat gggctggatc 240 aaataccaag gtgtctccca ctttgaatgg acccagctcc ttgggcccgt cctgctgtca 300 gttggggtga cattcatcct gattgctgtg tgcaagttca aaatgctctc ctgccagttg 360 tgcaaagaaa gtgaggaaag ggtcccggac tcggaacaga caccaggagg accatcattt gttttcactg gcatcaacca acccatcacc ttccatgggg ccactgtggt gcagtacatc 420 480 cctcctctt atggttctcc agagcctatg gggataaata ccagctacct gcagtctgtg

98 / 307

gtgagcccct	gcggcctcat	aacctctgga	ggggcagcag	ccgccatgtc	aagtcctcct	540
caatactaca	ccatctaccc	tcaagataac	tctgcatttg	tggttgatga	gggctgcctt	600
tctttcacgg	acggtggaaa	tcacaggccc	aatcctgatg	ttgaccagct	agaagagaca	660
cagctggaag	aggaggcctg	tgcctgcttc	tctcctccc	cttatgaaga	aatatactct	720
ctccctcgc						729

<210> 50

⟨211⟩ 810

<212> DNA

<213> Homo sapiens

<400> 50

60 atggcgggcg ccgaggactg gccgggccag cagctggagc tggacgagga cgaggcgtct 120 tgttgccgct ggggcgcgca gcacgccggg gcccgcgagc tggctgcgct ctactcgcca ggcaagcgcc tccaggagtg gtgctctgtg atcctgtgct tcagcctcat cgcccacaac 180 240 ctggtccatc tcctgctgct ggcccgctgg gaggacacac ccctcgtcat actcggtgtt 300 gttgcagggg ctctcattgc tgacttcttg tctggcctgg tacactgggg tgctgacaca 360 tggggctctg tggagctgcc cattgtgggg aaggctttca tccgaccett ccgggagcac 420 cacattgacc caacagctat cacacggcac gacttcatcg agaccaacgg ggacaactgc 480 ctggtgacac tgctgccgct gctaaacatg gcctacaagt tccgcaccca cagccctgaa 540 gccctggagc agctataccc ctgggagtgc ttcgtcttct gcctgatcat cttcggcacc 600 ttcaccaacc agatccacaa gtggtcgcac acgtactttg ggctgccacg ctgggtcacc 660 ctcctgcagg actggcatgt catcctgcca cgtaaacacc atcgcatcca ccacgtctca 720 ccccacgaga cctacttctg catcaccaca ggctggctca actaccctct ggagaagata 780 ggcttctggc gacgcctgga ggacctcatc cagggcctga cgggcgagaa gcctcgggca 810 gatgacatga aatgggccca gaagatcaaa

<210	> 51															
<211	> 15	51													٠	
<212	> DN	A														
<213	> Ho	mo s	apie	ns												
<220	>															
<221	> CD	S														
<222	> (9	8)	. (12	31)												
<400	> 51															
caag	ggga	ac g	tggc	tttc	c ct	gcag	agco	ggt	gtct	ccg	cctg	cgtc	cc t	gctg	cagca	a 60
accg	gago	tg g	agto	ggat	c cc	gaac	gcac	cct	cgcc	atg	gac	tcg	gco	cto	agc	115
										Met	Asp	Ser	Ala	ı Lev	ı Ser	
										1				,	5	
gat	ccg	cat	aac	ggc	agt	gcc	gag	gca	ggc	ggc	ccc	acc	aac	agc	act	163
Asp	Pro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly	Gly	Pro	Thr	Asn	Ser	Thr	
			10					15					20			
acg	cgg	ccg	cct	tcc	acg	ccc	gag	ggc	atc	gcg	ctg	gcc	tac	ggc	agc	211
Thr	Arg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile	Ala	Leu	Ala	Tyr	Gly	Ser	
		25					30			•		35				
ctc	ctg	ctc	atg	gcg	ctg	ctg	ccc	atc	ttc	ttc	ggc	gcc	ctg	cgc	tcc	259
Leu	Leu	Leu	Met	Ala	Leu	Leu	Pro	Ile	Phe	Phe	Gly	Ala	Leu	Arg	Ser	
	40					45					50					
gta	cgc	tgc	gcc	cgc	ggc	aag	aat	gct	tca	gac	atg	cct	gaa	aca	atc	307
Val	Arg	Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser	Asp	Met	Pro	Glu	Thr	Ile	
55					60					65					70	

acc	agc	cgg	gat	gcc	gcc	cgc	ttc	ccc	atc	atc	gcc	agc	tgc	aca	ctc	355
Thr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile	Ile	Ala	Ser	Cys	Thr	Leu	
				75					80				•	85		
ttg	ggg	ctc	tac	ctc	ttt	ttc	aaa	ata	ttc	tcc	cag	gag	tac	atc	aac	403
Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe	Ser	Gln	Glu	Tyr	Ile	Asn	
			90					95					100		•	
ctc	ctg	ctg	tcc	atg	tat	ttc	ttc	gtg	ctg	gga	atc	ctg	gcc	ctg	tcc	451
Leu	Leu	Leu	Ser	Met	Tyr	Phe	Phe	Val	Leu	Gly	Ile	Leu	Ala	Leu	Ser	
		105					110					115				
cac	acc	atc	agc	ссс	ttc	atg	aat	aag	ttt	ttt	cca	gcc	agc	ttt	cca	499
His	Thr	Ile	Ser	Pro	Phe	Met	Asn	Lys	Phe	Phe	Pro	Ala	Ser	Phe	Pro	
	120					125					130	•				
aat	cga	cag	tac	cag	ctg	ctc	ttc	aca	cag	ggt	tct	ggg	gaa	aac	aag	547
Asn	Arg	Gln	Tyr	G1n	Leu	Leu	Phe	Thr	Gln	Gly	Ser	Gly	Glu	ı Asn	Lys	
135					140					145					150	
gaa	gag	atc	atc	aat	tat	gaa	ttt	gac	acc	aag	gac	ctg	gtg	g tgo	ctg	595
Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr	Lys	Asp	Leu	Va]	Cys	Leu	
				155	;				160)				165	5	
ggc	ctg	agc	agc	ato	gtt	ggc	gto	tgg	tac	ctg	ctg	agg	g aag	g cad	tgg	643
Gly	Leu	ı Ser	Ser	Ile	. Val	Gly	Va]	Trp	Tyr	Leu	ı Leu	Arg	g Ly:	s His	s Trp	
			170	١				175	5				180	0		
att	gco	aac	aac	ctt	tt1	t ggo	ct	g gco	tto	tco	cti	t aa	t gg	a gt	a gag	691
Ile	Ala	a Asr	Asn	Leu	ı Phe	e Gly	/ Lei	u Ala	a Phe	e Sei	r Lei	ı Ası	n Gl	y Va	l Glu	
		185	5				19	0				19	5			
cto	ct	g cac	cto	88	c aa	t gte	c ag	c act	t gg	c tg	c at	c ct	g ct	g gg	c gga	739

Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly	Cys	Ile	Leu	Leu	Gly	Gly	
	200					205					210					
ctc	ttc	atc	tac	gat	gtc	ttc	tgg	gta	ttt	ggc	acc	aat	gtg	atg	gtg	787
Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe	Gly	Thr	Asn	Val	Met	Val	
215					220					225					230	
aca	gtg	gcc	aag	tcc	ttc	gag	gca	cca	ata	aaa	ttg	gtg	ttt	ccc	cag	835
Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile	Lys	Leu	Val	Phe	Pro	Gln	
				235					240					245		
gat	ctg	ctg	gag	aaa	ggc	ctc	gaa	gca	aac	aac	ttt	gcc	atg	ctg	gga	883
Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn	Asn	Phe	Ala	Met	Leu	Gly	
			250					255					260			
ctt	gga	gat	gtc	gtc	att	cca	ggg	atc	ttc	att	gcc	ttg	ctg	ctg	cgc	931
Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe	Ile	Ala	Leu	Leu	Leu	Arg	
		265					270					275				
ttt	gac	atc	agc	ttg	aag	aag	aat	acc	cac	acc	tac	ttc	tac	acc	agc	979
Phe	Asp	Ile	Ser	Leu	Lys	Lys	Asn	Thr	His	Thr	Tyr	Phe	Туг	Thr	Ser	
	280)				285					290)				
ttt	gca	g gcc	tac	ato	ttc	ggc	ctg	ggc	ctt	acc	ato	ttc	ato	atg	cac	1027
Phe	Ala	a Ala	Tyr	Ile	Phe	Gly	Leu	Gly	Leu	Thr	· Ile	Phe	· Ile	e Met	His	
295	5				300	+				305	5				310	
ato	tto	c aag	g cat	gct	; cag	cct	gcc	cto	cta	tac	cts	gto	cce	gcc	tgc	1075
116	e Pho	e Lys	s His	. Ala	Gln	Pro	Ala	Leu	ı Leu	Туз	Leu	ı Val	Pre	o Ala	a Cys	
				315	5				320)				329	5	
ate	c gg	t tt	t cct	gto	ctg	gtg	g gcg	g ctg	g gcc	aag	g gg:	a gaa	a gt	g ac	a gag	1123
H	e Gl	y Pho	e Pro	o Vai	l Lei	ı Val	l Ala	ı Let	ı Ala	Ly	s Gl	y Gl	u Va	l Th	r Glu	

102/307

			330					335					340			
atg	ttc	agt	tat	gag	gag	tca	aat	cct	aag	gat	cca	gcg	gca	gtg	aca	1171
Met	Phe	Ser	Tyr	Glu	Glu	Ser	Asn	Pro	Lys	Asp	Pro	Ala	Ala	Val	Thr	
		345					350					355				
gaa	tcc	aaa	gag	gga	aca	gag	gca	tca	gca	tcg	aag	ggg	ctg	gag	aag	1219
Glu	Ser	Lys	Glu	Gly	Thr	Glu	Ala	Ser	Ala	Ser	Lys	Gly	Leu	Glu	Lys	
	360					365					370					
aaa	gag	888	tg	atgc	agct	gg t	gccc	gago	c tc	tcag	ggcc	aga	ccag	aca		1270
Lys	Glu	Lys											٠			
375																
gat	gggg	gct	gggc	ccac	ac a	ggcg	tgca	c cg	gtag	aggg	cac	agga	ggc	caag	ggcago	c 1330
tcc	agga	cag	ggca	gggg	gc a	gcag	gatạ	c ct	ccag	ccag	gcc	tctg	tgg	cctc	tgttt	c 1390
ctt	ctcc	ctt	tctt	ggcc	ct c	ctct	gctc	c to	ccca	cacc	ctg	cage	caa	aaga	aaccc	c 1450
cag	ctto	ccc	cctc	cccg	gg a	gcca	ggtg	g ga	aaag	tggg	tgt	gatt	ttt	agat	tttgt	a 1510
ttg	tgga	ctg	attt	tgcc	tc a	catt	aaaa	a ct	cato	ccat	g					1551

<210> 52

<211> 1713

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (89)...(334)

<400> 52

teteagegeg etgecegget ggggaccege geacetgeag egecegetge teggecetge

atco	tgcc	tg g	ggcat	cctg	c gc	ccgg	gcc a	tg 8	ecg g	cg c	ac t	ca t	tc g	gcc c	tc		112
							N	let 1	Thr A	la H	lis S	Ser F	he A	la I	.eu		
			•			••		1				5					
ccg	gtc	atc	atc	ttc	acc	acg	ttc	tgg	ggc	ctc	gtc	ggc	atc	gcc	ggg		160
Pro	Val	Ile	·Ile	Phe	Thr	Thr	Phe	Trp	Gly	Leu	Val	Gly	Ile	Ala	Gly		
	10					15					20						
ссс	tgg	ttc	gtg	ccg	aag	gga	ccc	aac	cgc	gga	gtg	atc	atc	acc	atg		208
Pro	Trp	Phe	Val	Pro	Lys	Gly	Pro	Asn	Arg	Gly	Val	Ile	Ile	Thr	Met		
25					30					35					40		
ctg	gtc	gcc	acc	gcc	gtc	tgc	tgt	tac	ctc	ttc	tgg	ctc	atc	gcc	atc		256
Leu	Val	Ala	Thr	Ala	Val	Cys	Cys	Tyr	Leu	Phe	Trp	Leu	Ile	Ala	Ile		
				45				•	50					55			
ctg	gcg	cag	ctg	aac	ccc	ctg	ttc	ggg	ccc	cag	ctg	aag	aat	gag	acc		304
Leu	Ala	Gln	Leu	Asn	Pro	Leu	Phe	Gly	Pro	Gln	Leu	Lys	Asn	Glu	Thr		
			60					65					70				
atc	tgg	tac	gtg	cgc	ttc	ctg	tgg	gag	tga	cccg	cc g	cccc	cgac	С			350
Ile	Trp	Tyr	Val	Arg	Phe	Leu	Trp	Glu									
		75	i				80										
cag	gtgc	cca	gctc	tcgg	aa t	gact	gtgg	c tọ	cact	gtcc	ctg	acaa	ccc	cttc	gtccg	gg	410
acc	ctcc	ccc	acac	aact	at g	tctg	gtca	с са	gctc	cctc	ctg	ctgg	cac	ccag	agaco	с	470
gga	cccg	cag	ggcc	tgcc	tg g	ttcc	tgga	a gt	cttc	ccag	tct	tccc	agc	cago	ccggg	gC	530
cct	gggg	agc	cctg	ggca	ca g	cago	ggcc	g ag	ggga	tgtc	ctg	ctcc	aat	acco	gcact	tg	590
ctc	tgga	gtt	tgcc	ctct	tt c	ccaa	ggag	a tg	ctgo	tggg	gag	ctgg	tat	gggt	gggg¹	tc	650
ttt	ccct	tta	caga	cggg	gc a	gatg	ccag	g ac	tcag	ccca	tco	tgag	gag	gaca	cgtg	tc	710
cto	atge	aga	gggt	gcto	cg g	ccca	ggcg	g gg	gagt	cagt	gco	cagt	cag	cago	tctg	cc	770

104/307

accatcctgc	tgggaactgg	gggggcctct	attgggttat	aggcaaggcc	ttttctctgg	830
catggaattg	ttaattttct	gacacgtcta	gatgtgaaat	ttctgaaaat	gttgaagcag	890
agaaacattc	acacacaaaa	agcaacatag	tcatgtgggt	ccagatggcc	tcagtcctag	950
atgttggcac	cctttgctgt	gtctcctcag	agtatcctgt	tccgcctcct	gccacctgga	1010
cctccctcag	tggatgtctt	ccctccccg	accccagcct	gtcagtccga	gcacagtgca	1070
ggtttggctc	tgacttgggc	ttttggctgc	agtgggggtg	gatttcagag	cctctcatgg	1130
cagcatctaa	gtgaccagag	ctgggatgag	agagggaag	gggcaatgtg	agtggcgcta	1190
tgggacgggc	cagccctgct	cctgagccag	cccgccctc	tgcccctgg	ccctgggctc	1250
tgtgctaggg	atggtgaaga	atgggggcgt	gccagcctgg	caggagtggg	aagcaacacg	1310
caggggtccc	ggacctctcc	agccttgccc	tcacgcttac	ccgagctccc	agtgtggtta	1370
gcacagagct	cacccacctt	gcctggctcc	cagctggggc	ctgtcctcac	tggtgctcca	1430
ggggaagaaa	cgacagcctc	acttctgtat	ggactgctga	tgtggcctgc	catcctgttc	1490
agcgggcatt	gtctttggag	cagcaggaga	ataggatgcc	tctcactcac	atgccagttc	1550
ctggctggcc	agctgctcag	ggctcaggct	ggggcctccc	attgacatcc	tcccctaca	1610
ctccctctct	gagcctccgt	cgccctcct	gttgggtaag	ggtgttgagt	gtgacttgtg	1670
ctgaaaacct	gottcatata	taataaataa	tggtgatgaa	aag		1713

<210> 53

<211> 1758

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (190)...(1653)

⟨400⟩ 53

tttct	agg	gt t	ggac	cgtg	c ag	gcac	gggc	ggt	cago	tgg	gccg	cago	tc c	tccg	gctct		60
gcage	ggtc	ac g	gagg	aagc	c ag	ctcc	ccta	gtc	cagg	ccg	agct'	tgca	ct t	gcgt	cttgt	-	120
ctgct	tgct	gc t	gaac	caag	a tt	tagc	tgtg	cgc	cctc	ctt	gcag	tctc	ct g	gaac	cagca		180
ggagį	gaaa	c at	g gg	g ga	t ac	t gg	c ct	g ag	a aa	g cg	g ag	a ga	g ga	it ga	g		228
		Me	t Gl	y As	p Th	r Gl	y Le	u Ar	g Ly	s Ar	g Ar	g Gl	u As	sp Gl	u		
			1			;	5				1	0					
aag	tcg	atc	cag	agc	caa	gag	cct	aag	acc	acc	agt	ctc	caa	aag	gag		276
Lys :	Ser	Ile	Gln	Ser	Gln	Glu	Pro	Lys	Thr	Thr	Ser	Leu	Gln	Lys	Glu		
	15					20					25						
ctg	ggç	ctc	atc	agt	ggc	atc	tcc	atc	atc	gtg	ggc	acc	atc	att	ggc		324
Leu	Gly	Leu	Ile	Ser	Gly	Ile	Ser	Ile	Ile	Val	Gly	Thr	Ile	Ile	Gly		
30					35				•	40			•		45		
tct	ggg	atc	ttc	gtt	tcc	ccc	aag	tct	gtg	ctc	agc	aac	acg	gaa	gct		372
Ser	G1y	Ile	Phe	Val	Ser	Pro	Lys	Ser	Val	Leu	Ser	Asn	Thr	Glu	Ala		
				50					55					60			
gtg	ggg	ccc	tgc	ctc	atc	ata	tgg	gcg	gct	tgc	ggg	gtc	ctc	gcg	acg		420
Val	Gly	Pro	Cys	Leu	Ile	Ile	Trp	Ala	Ala	Cys	Gly	Val	Leu	Ala	Thr		
			65					70					75	•			
ctg	ggt	gcc	ctg	tgc	ttt	gcg	gag	ctt	ggc	aca	atg	atc	acc	aag	tca		468
Leu	Gly	Ala	Leu	Cys	Phe	Ala	Glu	Leu	Gly	Thr	Met	Ile	Thr	Lys	Ser		
		80					85	i				90)				
ggg	gga	gag	tat	ccc	tac	ctg	atg	gag	gcc	tac	ggg	ccc	ato	ccc	gcc		516
Gly	Gly	Glu	. Tyr	Pro	Tyr	Leu	Met	Glu	Ala	Tyr	Gly	Pro	Ile	e Pro	Ala		
	95	;				100	•				105						
tac	cto	tto	tcc	tgg	g gcc	agc	ctg	ato	gto	att	aag	ccc	c ac	g tco	ttc		564

Tyr	Leu	Phe	Ser	Trp	Ala	Ser	Leu	He	Val	He	Lys	Pro	Inr	5er	Pne		
110					115					120					125		
gcc	atc	atc	tgc	ctc	agc	ttc	tcc	gag	tat	gtg	tgt	gcg	ccc	ttc	tat	612	
Ala	Ile	Ile	Cys	Leu	Ser	Phe	Ser	Glu	Tyr	Val	Cys	Ala	Pro	Phe	Tyr		
				130					135					140			
gtg	ggc	tgc	aag	cct	cct	caa	atc	gtt	gtg	aaa	tgc	ctg	gcc	gcc	gcc	660)
Val	Gly	Cys	Lys	Pro	Pro	Gln	Ile	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala		
			145					150					155				
gcc	atc	ttg	ttc	atc	tcg	aca	gtg	aac	tca	ctg	agc	gtg	cgg	ctg	gga	708	}
Ala	Ile	Leu	Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly		
		160					165					170					
agc	tac	gtc	cag	aac	atc	ttc	acc	gcg	gcc	aag	ctg	gtg	atc	gtg	gcc	756	5
Ser	Tyr	Val	Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala		
	175					180					185						
atc	atc	atc	atc	agc	ggg	ctg	gtg	ctc	ctg	gcc	caa	gga	aac	aca	aag	804	1
Ile	Ile	Ile	Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asn	Thr	Lys		
190					195					200					205		
aat	ttt	gat	aat	tct	ttc	gag	ggc	gcc	cag	ctg	tct	gtg	gga	gcc	atc	852	2
Asn	Phe	Asp	Asn	Ser	Phe	Ģlu	Gly	Ala	Gln	Leu	Ser	Val	Gly	Ala	Ile		
				210	١				215					220			
agc	ctg	gcg	ttt	tac	aat	gga	ctc	tgg	gcc	tat	gat	gga	tgg	aat	caa	900	0
Ser	Leu	Ala	Phe	Tyr	Asn	Gly	Leu	Trp	Ala	Tyr	Asp	Gly	Trp	Asn	Gln		
			225					230					235				
ctc	aat	tac	atc	aca	gaa	gaa	ctt	aga	aac	cct	tac	aga	aac	ctg	cct	94	8
Leu	Asn	Tvr	Ile	Thr	Glu	Glu	Leu	Arg	Asn	Pro	Tyr	Arg	Asn	Leu	Pro		

		240					245					250				
ttg	gcc	att	atc	atc	ggg	atc	ccc	ctg	gtg	acg	gcg	tgc	tac	atc	ctc	996
Leu	Ala	Ile	lle	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	
	255					260					265					
atg	aac	gtg	tcc	tac	ttc	acc	gtg	atg	act	gcc	acc	gaa	ctc	ctg	cag	1044
Met	Asn	Val	Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	
270					275					280					285	
tcc	cag	gcg	gtg	gct	gtg	aca	ttt	ggt	gac	cgt	gtt	ctc	tat	cct	gct	1092
Ser	Gln	Ala	Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	
				290					295					300		
tct	tgg	atc	gtt	cca	ctt	ttt	gtg	gca	ttt	tca	acc	atc	ggt	gct	gct	1140
Ser	Trp	Ile	Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	
			305					310					315			
aac	ggg	acc	tgc	ttc	aca	gcg	ggc	aga	ctc	att	tac	gtg	gcg	ggc	cgg	1188
Asn	Gly	Thr	Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	
		320					325					330				
gag	ggt	cac	atg	ctc	aaa	gtg	ctt	tct	tac	atc	agc	gtc	agg	cgc	ctc	1236
Glu	Gly	His	Met	Leu	Lys	Val	Leu	Ser	Tyr	Ile	Ser	Val	Arg	Arg	Leu	
	335					340					345					
act	cca	gcc	ccc	gcc	atc	atc	ttt	tat	ggt	atc	ata	gca	acg	att	tat	1284
Thr	Pro	Ala	Pro	Ala	Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	
350					355					360					365	
atc	atc	cct	ggt	gac	ata	aac	tcg	tta	gtc	aat	tat	ttc	agc	ttt	gcc	1332
Ile	Ile	Pro	Gly	Asp	Ile	Asn	Ser	Leu	Val	Asn	Tyr	Phe	Ser	Phe	Ala	
				370	ı				375					380		

gca	tgg	ctg	ttt	tat	ggc	ctg	acg	att	cta	gga	ctc	atc	gtg	atg	aga	1380
Ala	Trp	Leu	Phe	Tyr	Gly	Leu	Thr	Ile	Leu	Gly	Leu	Ile	Val	Met	Arg	
			385					390	•				395			
ttt	aca	agg	888	gag	ctg	gaa	agg	cct	atc	aag	gtg	ccc	gta	gtc	att	1428
Phe	Thr	Arg	Lys	Glu	Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	
		400					405					410				
ccc	gtc	ttg	atg	aca	ctc	atc	tct	gtg	ttt	ttg	ġtt	ctg	gct	cca	atc	1476
Pro	Val	Leu	Met	Thr	Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	
	415					420					425					
atc	agc	aag	ссс	acc	tgg	gag	tac	ctc	tac	tgt	gtg	ctg	ttt	ata	tta	. 1524
Ile	Ser	Lys	Pro	Thr	Trp	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	
430					435					440				•	445	
agc	ggc	ctt	tta	ttt	tac	ttc	ctg	ttt	gtc	cac	tac	aag	ttt	gga	tgg	1572
Ser	Gly	Leu	Leu	Phe	Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	
				450					455					460		
gct	cag	aaa	atc	tca	aag	ccg	att	acc	atg	cac	ctt	cag	atg	cta	atg	1620
Ala	Gln	Lys	Ile	Ser	Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met	
			465					470					475			
gaa	gtg	gtc	cca	ccg	gag	gaa	gac	cct	gag	taad	caago	ctc (cgtc	tctt	gt	1670
Glu	Val	Val	Pro	Pro	Glu	Glu	Asp	Pro	Glu							
		480					485									
agc	caagi	tca į	gctga	aatt	ta t	tttc	ttaa	g ca	atati	ttgt	ggt	tatt	tct	tcct	ttttt	1730
ctt	acgaa	ata a	aaata	atac'	tc a	gatg	ttt									1758

<211> 1550	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (154)(1281)	
<400> 54	
ctctgtttac cgagagagcc cgtccaagtt gggctccatc gctgccctcg ctccccttcg	60
gggcctccgc ccgcctggga agcagagaga aagccgggcc cagcccttcc tcacccttcc	120
cctccccgca ccgcccggag aggtcggacg gcg atg acc ccc cag ccc gcc gga	174
Met Thr Pro Gln Pro Ala Gly	
1 5	
ccc ccg gat ggg ggc tgg ggc tgg gtg gtg gcg gcc gca gcc ttc gcg	222
Pro Pro Asp Gly Gly Trp Gly Trp Val Val Ala Ala Ala Ala Phe Ala	
10 15 20	
ata aac ggg ctg tcc tac ggg ctg ctg cgc tcg ctg ggc ctt gcc ttc	270
Ile Asn Gly Leu Ser Tyr Gly Leu Leu Arg Ser Leu Gly Leu Ala Phe	
25 30 35	
cct gac ctt gcc gag cac ttt gac cga agc gcc cag gac act gcg tgg	318
Pro Asp Leu Ala Glu His Phe Asp Arg Ser Ala Gln Asp Thr Ala Trp	
40 45 50 55	
atc agc gcc ctg gcc ctg gcc gtg cag cag gca gcc agc ccc gtg ggc	366
Ile Ser Ala Leu Ala Leu Ala Val Gln Gln Ala Ala Ser Pro Val Gly	
60 65 70	
age gee etg age acg ege tgg ggg gee ege eee gtg gtg atg gtt ggg	414

Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala	Arg	Pro	Val	Val	Met	Val	Gly	
			75					80					85			
ggc	gtc	ctc	gcc	tcg	ctg	ggc	ttc	gtc	ttc	tcg	gct	ttc	gcc	agc	ggt	462
G1y	Val	Leų	Ala	Ser	Leu	Gly	Phe	Val	Phe	Ser	Ala	Phe	Ala	Ser	Gly	
		90					95					100				
ctg	ctg	cat	ctc	tac	ctc	ggc	ctg	ggc	ctc	ctc	gct	ggc	ttt	ggt	tgg	510
Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Phe	Gly	Trp	
	105					110					115					
gcc	ctg	gtg	ttc	gcc	ccc	gcc	cta	ggc	acc	ctc	tcg	cgt	tac	ttc	tcc	558
Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly	Thr	Leu	Ser	Arg	Tyr	Phe	Ser	
120					125					130					135	
cgc	cgt	cga	gtc	ttg	gcg	gtg	ggg	ctg	gcg	ctc	acc	ggc	aac	ggg	gcc .	606
Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu	Ala	Leu	Thr	Gly	Asn	Gly	Ala	
				140					145					150		
tcc	tcg	ctg	ctc	ctg	gcg	ccc	gcc	ttg	cag	ctt	ctc	ctc	gat	act	ttc	654
Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu	Gln	Leu	Leu	Leu	Asp	Thr	Phe	
			155					160					165			
ggc	tgg	cgg	ggc	gct	ctg	ctc	ctc	ctc	ggc	gcg	atc	acc	ctc	cac	ctc	702
G1y	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu	Gly	Ala	Ile	Thr	Leu	His	Leu	
		170					175					180				
acc	ccc	tgt	ggc	gcc	ctg	ctg	cta	ccc	ctg	gtc	ctt	cct	gga	gac	ccc	750
Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro	Leu	Val	Leu	Pro	Gly	Asp	Pro	•
	185					190					195			٠		
cca	gcc	cca	ccg	cgt	agt	ccc	cta	gct	gcc	ctc	ggc	ctg	agt	ctg	ttc	798
Pro	Ala	Pro	Pro	Arg	Ser	Pro	Leu	Ala	Ala	Leu	Gly	Leu	Ser	Leu	Phe	

200					205					210					215	
aca	cgc	cgg	gcc	ttc	tca	atc	ttt	gct	cta	ggc	aca	gcc	ctg	gtt	ggg	846
Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala	Leu	Gly	Thr	Ala	Leu	Val	Gly	
				220					225					230		
ggc	ggg	tac	ttc	gtt	cct	tac	gtg	cac	ttg	gct	ccc	cgc	ttt	aga	ccg	894
Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His	Leu	Ala	Pro	Arg	Phe	Arg	Pro	
			235					240					245			
ggg	cct	ggg	ggg	ata	cgg	agc	agc	gct	ggt	ggt	ggc	cgt	ggc	tgc	gat	942
Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Cys	Asp	
		250					255					260				
ggg	gga	tgc	ggg	cgc	ccg	gct	ggt	ctg	cgg	gtg	gct	ggc	aga	cca	agg	990
Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu	Arg	Val	Ala	Gly	Arg	Pro	Arg	· .
	265					270					275					
ctg	ggt	gcc	cct	ccc	gcg	gct	gct	ggc	cgt	att	cgg	ggc	tct	gac	tgg	1038
Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly	Arg	Ile	Arg	Gly	Ser	Asp	Trp	
280					285					290					295	
gct	ggg	gct	gtg	ggt	ggt	ggg	gct	ggt	gcc	cgt	ggt	ggg	cgg	cga	aga	1086
Ala	Gly	Ala	Val	Gly	Gly	Gly	Ala	Gly	Ala	Arg	Gly	Gly	Arg	Arg	Arg	
				300					305					310		
gag	ctg	ggg	ggg	tcc	cct	gct	ggc	cgc	ggc	tgt	ggc	cta	tgg	gct	gag	1134
Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg	Gly	Cys	Gly	Leu	Trp	Ala	Glu	
			315					320					325			
cgc	ggg	gag	tta	cgc	ccc	gct	ggt	ttt	cgg	tgt	act	ccc	cgg	gct	ggt	1182
Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe	Arg	Cys	Thr	Pro	Arg	Ala	Gly	
		330					335					340				

112/307

ggg cgt cgg agg tgt	ggt gca ggc cac	agg gct ggt gat g	at gct gat 1230
Gly Arg Arg Arg Cys	Gly Ala Gly His	Arg Ala Gly Asp A	sp Ala Asp
345	350	355	
gag cct cgg ggg gct	cct ggg ccc tcc	cct gtc agg ctt c	ct aag gga 1278
Glu Pro Arg Gly Ala	Pro Gly Pro Ser	Pro Val Arg Leu P	ro Lys Gly
360	365	370	375
tg agacaggaga cttca	ccgcc tctttcctcc	tgtctggttc tttgat	cetc 1330
tccggcagct tcatctac	at agggttgccc agg	ggcgctgc cctcctgtg	g tecageetee 1390
cctccagcca cgcctccc	cc agagacgggg gag	gctgcttc ccgctcccc	a ggcagtcttg 1450
ctgtccccag gaggccct	gg ctccactctg gad	caccactt gttgattat	t ttcttgtttg 1510
agcccctccc ccaataaa;	ga atttttatcg ggf	ttttcctg	1550

<210> 55

⟨211⟩ 1485

<212> DNA

<213> Homo sapiens

⟨220⟩

<221> CDS

<222> (101)...(1153)

<400> 55

cteteetega eeetggaegt etacetteeg gaggeecaca tettgeecac teegegegegegeggggetagege gggttteage gaegggagee eteaagggae atg gea act aca geg 115

Met Ala Thr Thr Ala

5

1

gcg ccg gcg ggc gcc cga aat gga gct ggc ccg gaa tgg gga ggg 163

Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly	Pro	Glu	Trp	Gly	Gly		
				10					15					20			
ttc	gaa	gaa	aac	atc	cag	ggc	gga	ggc	tca	gct	gtg	att	gac	atg	gag	211	
Phe	Glu	Glu	Asn	Ile	Gln	Gly	Gly	Gly	Ser	Ala	Val	Ile	Asp	Met	Glu		
			25					30					35		•		
aac	atg	gat	gat	acc	tca	ggc	tct	agc	ttc	gag	gat	atg	ggt	gag	ctg	259	
Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu	Asp	Met	Gly	Glu	Leu		
		40					45					50					
cat	cag	cgc	ctg	cgc	gag	gaa	gaa	gta	gac	gct	gat	gca	gct	gat	gca	307	
His	Gln	Arg	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala	Asp	Ala	Ala	Asp	Ala		
	55					60					65						
gct	gct	gct	gaa	gag	gag	gat	gga	gag	ttc	ctg	ggc	atg	aag	ggc	ttt	355	
Ala	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu	Gly	Met	Lys	Gly	Phe [*]		
70					75					80					85		
aag	gga	cag	ctg	agc	cgg	cag	gtg	gca	gat	cag	atg	tgg	cag	gct	ggg	403	
Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln	Met	Trp	Gln	Ala	Gly		
				90					95					100	l		
aaa	aga	caa	gcc	tcc	agg	gcc	ttc	agc	ttg	tac	gcc	aac	atc	gac	atc	451	
Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr	Ala	Asn	Ile	Asp	Ile		
			105					110					115	i			
ctc	aga	ccc	tac	ttt	gat	gtg	gag	cct	gct	cag	gtg	cga	ago	agg	ctc	499	
Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln	Val	Arg	Ser	Arg	Leu		
		120	•				125	•				130)				
ctg	gag	tcc	atg	ato	cct	atc	aag	atg	gtc	aac	tto	ccc	cag	g aaa	att	547	
Leu	Glu	ı Ser	Met	Ile	Pro	Ile	Lys	Met	Val	Asn	Phe	Pro	Glr	ı Lys	: Ile		

	135					140					145					
gca	ggt	gaa	ctc	tat	gga	cct	ctc	atg	ctg	gtc	ttc	act	ctg	gtt	gct	595
Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val	Phe	Thr	Leu	Val	Ala	
150					155					160					165	
atc	cta	ctc	cat	ggg	atg	aag	acg	tct	gac	act	att	atc	cgg	gag	ggc	643
Ile	Leu	Leu	His	Gly	Met	Lys	Thr	Ser	Asp	Thr	Ile	Ile	Arg	Glu	Gly	
				170					175					180		
acc	ctg	atg	ggc	aca	gcc	att	ggc	acc	tgc	ttc	ggc	tac	tgg	ctg	gga	691
Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe	Gly	Tyr	Trp	Leu	Gly	
			185					190					195			
gtc	tca	tcc	ttc	att	tac	ttc	ctt	gcc	tac	ctg	tgc	aac	gcc	cag	atc	739
Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Ĺeu	Cys	Asn	Ala	Gln	Ile	
		200					205					210				
acc	atg	ctg	cag	atg	ttg	gca	ctg	ctg	ggc	tat	ggc	ctc	ttt	ggg	cat	787
Thr	Met	Leu	Gln	Met	Leu	Ala	Leu	Leu	Gly	Tyr	Gly	Leu	Phe	Gly	His	
	215					220					225					
tgc	att	gto	ctg	ttc	atc	acc	tat	aat	atc	cac	ctc	cac	gcc	ctc	ttc	835
Cys	Ile	Val	Leu	Phe	Ile	Thr	Tyr	Asn	Ile	His	Leu	His	Ala	Leu	Phe	
230					235					240	•				245	
tac	cto	tto	tgg	ctg	ttg	gtg	ggt	gga	ctg	tcc	aca	ctg	cgo	atg	gta	883
Tyr	Leu	Phe	Trp	Leu	Leu	Val	Gly	Gly	Leu	Ser	Thr	Leu	Arg	g Met	Val	
				250)				255	,				260)	
gca	gte	tte	g gtg	tct	cgg	acc	gtg	ggg	ccc	aca	cag	cgg	ct	g ctc	ctc	93
Ala	Va]	Leu	ı Val	Ser	Arg	Thr	· Val	l Gly	Pro	Thr	Glr	Arg	Le	u Leu	ı Leu	
			265	5				270)				27	5		

115/307

tgt	ggc	acc	ctg	gct	gcc	cta	cac	atg	ctc	ttc	ctg	ctc	tat	ctg	cat	979
Cys	Gly	Thr	Leu	Ala	Ala	Leu	His	Meţ	Leu	Phe	Leu	Leu	Tyr	Leu	His	
		280					285					290				
ttt	gcc	tac	cac	aaa	gtg	gta	gag	ggg	atc	ctg	gac	aca	ctg	gag	ggc	1027
Phe	Ala	Tyr	His	Lys	Val	Val	Glu	Gly	Ile	Leu	Asp	Thr	Leu	Glu	Gly	
	295					300					305					
ccc	aac	atc	ccg	ссс	atc	cag	agg	gtc	ccc	aga	gac	atc	cct	gcc	atg	1075
Pro	Asn	Ile	Pro	Pro	Ile	Gln	Arg	Val	Pro	Arg	Asp	Ile	Pro	Ala	Met	
310					315					320					325	
ctc	cct	gct	gct	cgg	ctt	ссс	acc	acc	gtc	ctc	aac	gcc	aca	gcc	aaa	1123
Leu	Pro	Ala	Ala	Arg	Leu	Pro	Thr	Thr	Val	Leu	Asn	Ala	Thr	Ala	Lys	
				330					335					340		•
gct	gtt	gcg	gtg	acc	ctg	cag	tca	cac	tga	cccc	acc	tgaa	attc	tt		1170
Ala	Val	Ala	Val	Thr	Leu	Gln	Ser	His								
			345					350								
ggc	cagt	cct	cttt	cccg	ca g	ctgc	agag	a gg	agga	agac	tat	taaa	gga	cagt	cctgat	1230
gac	atgt	ttc .	gtag	atgg	gg t	ttgc	agct	g cc	actg	agct	gta	gctg	cgt	aagt	acctcc	1290
ttg	atgc	ctg	tcgg	cact	tc t	gaaa	ggca	с аа	ggcc	aaga	act	cctg	gcc	agga	ctgcaa	1350
ggc	tctg	cag	ccaa	tgca	ga a	aatg	ggtc	a gc	tcct	ttga	gaa	cccc	tcc	ccac	ctaccc	1410
ctt	cctt	cct	cttt	atct	ct c	ccac	attg	t.ct	tgct	aaat	ata	gact	tgg	taat	taaaat	1470
gtt	gatt	gaa	gtct	g											·	1485

⟨210⟩ 56

<211> 2694

<212> DNA

<213	> Ho	mo s	apie	ns												
<220	>															
<221	> CD	S														
<222	> (8	0)	. (20	83)							•					
<400	> 56															
gtag	actc	tg c	ggat	cccg	a ga	.ccag	cgcc	act	cato	ctg	cago	actg	gg 8	acag	acaga	60
gcag	gaga	ag g	gcca	gaga	atg	tcg	tcc	cag	cca	gca	ggg	aac	cag	acc	tcc	112
					Met	Ser	Ser	Gln	Pro	Ala	Gly	Asn	G1r	Thr	Ser	
					1	•			5	5				10)	
ссс	ggg	gcc	aca	gag	gac	tac	tcc	tat	ggc	agc	tgg	tac	atc	gat	gag	160
Pro	G1y	Ala	Thr	Glu	Asp	Tyr	Ser	Tyr	Gly	Ser	Trp	Tyr	Ile	Asp	Glu	
		•	15					20					25	•		
ccc	cag	ggg	ggc	gag	gag	ctc	cag	cca	gag	ggg	gaa	gtg	ccc	tcc	tgc	208
Pro	Gln	Gly	Gly	Glu	Glu	Leu	Gln	Pro	Glu	Gly	Glu	Val	Pro	Ser	Cys	
		30					35					40				
cac	acc	agc	ata	cca	ccc	ggc	ctg	tac	cac	gcc	tgc	ctg	gcc	tcg	ctg	256
His	Thr	Ser	Ile	Pro	Pro	Gly	Leu	Tyr	His	Ala	Cys	Leu	Ala	Ser	Leu	
	45					50					55					
tca	atc	ctt	gtg	ctg	ctg	ctc	ctg	gcc	atg	ctg	gtg	agg	cgc	cgc	cag	304
Ser	Ile	Leu	Val	Leu	Leu	Leu	Leu	Ala	Met	Leu	Val	Arg	Arg	Arg	Gln	
60					65					70					75	
ctc	tgg	cct	gac	tgt	gtg	cgt	ggc	agg	ccc	ggc	ctg	ccc	agc	cct	gtg	352
Leu	Trp	Pro	Asp	Cys	Val	Arg	Gly	Arg	Pro	Gly	Leu	Pro	Ser	Pro	Val	
				80					85					90		
gat	ttc	ttg	gct	ggg	gac	agg	ccc	cgg	gca	gtg	cct	gct	gct	gtt	ttc	400

Asp	Phe	Leu	Ala	Gly	Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	AIA	vai	rne	
			95					100					105			
atg	gtc	ċtc	ttg	agc	tcc	ctg	tgt	ttg	ctg	ctc	ccc	gac	gag	gac	gca	448
Met	Val	Leu	Leu	Ser	Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	Glu	Asp	Ala	
		110					115					120				
ttg	ccc	ttc	ctg	act	ctc	gcc	tca	gca	ccc	agc	caa	gat	ggg	aaa	act	496
Leu	Pro	Phe	Leu	Thr	Leu	Ala	Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	
	125					130					135					
gag	gct	cca	aga	ggg	gcc	tgg	aag	ata	ctg	gga	ctg	ttc	tat	tat	gct	544
Glu	Ala	Pro	Arg	Gly	Ala	Trp	Lys	Ile	Leu	Gly	Leu	Phe	Tyr	Tyr	Ala	
140					145					150					155	
gcc	ctc	tac	tac	cct	ctg	gct	gcc	tgt	gcc	acg	gct	ggc	cac	aca	gct	592
Ala	Leu	Tyr	Tyr	Pro	Leu	Ala	Ala	Cys	Ala	Thr	Ala	Gly	His	Thr	Ala	
				160					165					170		
gca	cac	ctg	ctc	ggc	agc	acg	ctg	tcc	tgg	gcc	cac	ctt	ggg	gtc	cag	640
															Gln	
			175					180					185			
gto	tg:	z cas			gag	tgt	ccc	cag	gtg	ccc	888	ato	tac	aag	tac	688
															Tyr	
		190				·	195					200				
+ 97	· to			7 900	e tee	: ctg			cte	z cts	ggg	cto	c gga	ı tto	ctg	736
															e Leu	
1 9 1			u Lei	ı Ale	. 061	210		, 500	. 200		21					
	20				+ ~+			, a+	7 000	2 200			പോട്ട	t ag	g aca	784
															g Thr	
2e:	r re	u II	h ra		. Ta			. 14	- AT	5 50.				. ـــــ	_	

220	225		230	235
gga gca ggc	tcc aag ggg	ctg cag agc	agc tac tct gag	gaa tat ctg 832
Gly Ala Gly	Ser Lys Gly	Leu Gln Ser	Ser Tyr Ser Glu	Glu Tyr Leu
	240		245	250
agg aac cto	ctt tgc agg	aag aag ctg	gga agc agc tac	cac acc tcc 880
Arg Asn Leu	Leu Cys Arg	Lys Lys Leu	Gly Ser Ser Tyr	His Thr Ser
	255	260		265
aag cat ggo	ttc ctg tcc	tgg gcc cgc	gtc tgc ttg aga	cac tgc atc 928
Lys His Gly	Phe Leu Ser	Trp Ala Arg	Val Cys Leu Arg	His Cys Ile
270)	275	280	
tac act cca	cag cca gga	ttc cat ctc	ccg ctg aag ctg	gtg ctt tca 976
Tyr Thr Pro	Gln Pro Gly	Phe His Leu	Pro Leu Lys Leu	Val Leu Ser
285		290	295	
gct aca ctg	aca ggg acg	gcc att tac	cag gtg gcc ctg	ctg ctg ctg 1024
Ala Thr Leu	Thr Gly Thr	Ala Ile Tyr	Gln Val Ala Leu	Leu Leu Leu
300	305		310	315
gtg ggc gtg	gta ccc act	atc cag aag	gtg agg gca ggg	gtc acc acg 1072
Val Gly Val	Val Pro Thr	Ile Gln Lys	Val Arg Ala Gly	Val Thr Thr
	320		325	330
gat gtc tco	tac ctg ctg	gcc ggc ttt	gga atc gtg ctc	tcc gag gac 1120
Asp Val Ser	Tyr Leu Leu	Ala Gly Phe	Gly Ile Val Leu	Ser Glu Asp
	335	340		345
aag cag ga	g gtg gtg gag	ctg gtg aag	cac cat ctg tgg	gct ctg gaa 1168
Lys Gln Gl	ı Val Val Glu	Leu Val Lys	His His Leu Trp	Ala Leu Glu
35)	355	360	

gtg	tgc	tac	atc	tca	gcc	ttg	gtc	ttg	tcc	tgc	tta	ctc	acc	ttc	ctg	1216
Val	Cys	Tyr	Ile	Ser	Ala	Leu	Val	Leu	Ser	Cys	Leu	Leu	Thr.	Phe	Leu	•
	365		•			370					375		•		•	
gtc	ctg	atg	cgc	tca	ctg	gtg	aca	cac	agg	acc	aac	ctt	cga	gct	ctg	1264
Val	Leu	Met	Arg	Ser	Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	
380					385					390					395	
cac	cga	gga	gct	gcc	ctg	gac	ttg	agt	ccc	ttg	cat	cgg	agt	ccc	cat	1312
His	Arg	Gly	Ala	Ala	Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	
				400					405					410		
ccc	tcc	cgc	caa	gcc	ata	ttc	tgt	tgg	atg	agc	ttc	agt	gcc	tac	cag	1360
Pro	Ser	Arg	Gln	Ala	Ile	Phe	Cys	Trp	Met	Ser	Phe	Ser	Ala	Tyr	Gln	
			415					420					425			
aca	gcc	ttt	atc	tgc	ctt	ggg	ctc	ctg	gtg	cag	cag	atc	atc	ttc	ttc	1408
Thr	Ala	Phe	Ile	Cys	Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	
		430	ı				435					440				
ctg	gga	acc	acg	gcc	ctg	gcc	ttc	ctg	gtg	ctc	atg	cct	gtg	ctc	cat	1456
Leu	Gly	Thr	Thr	Ala	Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	
	445					450	١				455	i				
ggc	agg	aac	ctc	ctg	ctc	tto	cgt	tcc	ctg	gag	tcc	tcg	tgg	ccc	ttc	1504
Gly	Arg	Asr	Leu	Leu	Leu	Phe	Arg	Ser	Leu	Glu	Ser	Ser	Trp	Pro	Phe	
460	+				465	i				470)				475	
tgg	ctg	act	ttg	gcc	ctg	gct	gtg	ato	ctg	cag	aac	atg	gca	gco	cat	1552
Trp	Leu	ı Thi	r Leu	Ala	Leu	ı Ala	val	Ile	e Leu	Glr	Asr	n Met	. Ala	Ala	His	
				480)				485	5				490		
tgg	gto	tte	c ctg	g gag	g act	ca ¹	t gat	gga	a cad	cca	ca	g ctg	g acc	aac	cgg	1600

Trp Val Phe Leu	Glu Thr His A	Asp Gly His	Pro Gln Leu T	nr Asn Arg
495		500	. 50	05
cga gtg ctc tat	gca gcc acc	ttt ctt ctc	ttc ccc ctc a	at gtg ctg 1648
Arg Val Leu Tyr	Ala Ala Thr I	Phe Leu Leu	Phe Pro Leu A	sn Val Leu
510	;	515	520	
gtg ggt gcc atg	gtg gcc acc	tgg cga gtg	ctc ctc tct g	cc ctc tac 1696
Val Gly Ala Met	Val Ala Thr	Trp Arg Val	Leu Leu Ser A	la Leu Tyr
525	530		535	
aac gcc atc cac	ctt ggc cag	atg gac ctc	agc ctg ctg c	ca ccg aga 1744
Asn Ala Ile His	Leu Gly Gln	Met Asp Leu	Ser Leu Leu P	ro Pro Arg
540	545		550	555
gcc gcc act ctc	gac ccc ggc	tac tac acg	tac cga aac t	tc ttg aag 1792
Ala Ala Thr Leu	Asp Pro Gly	Tyr Tyr Thr	Tyr Arg Asn P	he Leu Lys
	560	565		570
att gaa gtc agc	cag tcg cat	cca gcc atg	aca gcc ttc t	gc tcc ctg 1840
Ile Glu Val Ser	Gln Ser His	Pro Ala Met	Thr Ala Phe C	ys Ser Leu
575		580	5	85
ctc ctg caa gcg	cag agc ctc	cta ccc agg	acc atg gca g	cc ccc cag 1888
Leu Leu Gln Ala	Gln Ser Leu	Leu Pro Arg	Thr Met Ala A	la Pro Gln
590		595	600	
gac agc ctc aga	cca ggg gag	gaa gac gaa	ggg atg cag o	tg cta cag 1936
Asp Ser Leu Arg	Pro Gly Glu	Glu Asp Glu	Gly Met Gln I	eu Leu Gln
605	610		615	
aca aag gac tcc	atg gcc aag	gga gct agg	ccc ggg gcc a	age ege gge 1984
Thr Lys Asp Ser	Met Ala Lys	Gly Ala Arg	Pro Gly Ala S	Ser Arg Gly

121/307

620 6	25	630	635
agg gct cgc tgg ggt c	tg gcc tac acg	ctg ctg cac aac	cca acc ctg 2032
Arg Ala Arg Trp Gly L	eu Ala Tyr Thr	Leu Leu His Asn	Pro Thr Leu
640		645	650
cag gtc ttc cgc aag a	cg gcc ctg ttg	ggt gcc aat ggt	gcc cag ccc 2080
Gln Val Phe Arg Lys T	hr Ala Leu Leu	Gly Ala Asn Gly	Ala Gln Pro
655	660		665
tgagggcagg gaaggtcaa	c ccacctgccc at	ctgtgctg aggcat	gttc 2130
ctgcctacca tcctcctccc	teceeggete tee	ctcccagc atcacac	cag ccatgcagcc 2190
agcaggtcct ccggatcacc	gtggttgggt gg	aggtetgt etgeact	ggg agcctcagga 2250
gggctctgct ccacccactt	ggctatggga gag	gccagcag gggttct	gga gaaagaaact 2310
ggtgggttag ggccttggtc	caggagccag ttg	gagccagg gcagcca	cat ccaggcgtct 2370
ccctaccetg gctctgccat	cagcettgaa ggg	gcctcgat gaagcct	tet etggaaceae 2430
tccagcccag ctccacctca	gccttggcct to	acgctgtg gaagcag	cca aggcacttcc 2490
tcacccctc agcgccacgg	acctctctgg gg	agtggccg gaaagct	ccc gggcctctgg 2550
cctgcagggc agcccaagtc	atgactcaga cca	aggtocca cactgag	ctg cccacactcg 2610
agagccagat attttgtag	tttttatgcc tt	tggctatt atgaaag	agg ttagtgtgtt 2670
ccctgcaata aacttgttco	toao		2694

⟨210⟩ 57

⟨211⟩ 3297

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

122/307

<222> (83) (1477)												
<400> 57												
ggggtctgta ctctgtgaag tcaactgggt tagtgtgctc tctgatgcct ggaattccag												
tecceacea gaaaceegea ge atg att gte tge etc ett tte atg atg att	12											
Met Ile Val Cys Leu Leu Phe Met Met Ile												
1 5 10												
tta ttg gca aag gaa gtt caa ctg gta gac caa aca gat tca cct tta 16	60											
Leu Leu Ala Lys Glu Val Gln Leu Val Asp Gln Thr Asp Ser Pro Leu												
15 20 25												
ctt agt ctc ctt gga cag aca agc tca ctt tca tgg cat ctt gtg gat	80											
Leu Ser Leu Leu Gly Gln Thr Ser Ser Leu Ser Trp His Leu Val Asp												
30 35 40												
att gtg tcg tac cag agt gtg cta agt tat ttc agc agc cat tac ccg 2	56											
Ile Val Ser Tyr Gln Ser Val Leu Ser Tyr Phe Ser Ser His Tyr Pro												
45 50 55												
ccg tcc atc atc ctg gca aaa gaa tct tat gct gaa tta atc atg aag 3	804											
Pro Ser Ile Ile Leu Ala Lys Glu Ser Tyr Ala Glu Leu Ile Met Lys												
60 65 70												
ctc cta aaa gtg tct gcg ggc ctt tct att cct act gac agc cag aag 3	352											
Leu Leu Lys Val Ser Ala Gly Leu Ser Ile Pro Thr Asp Ser Gln Lys												
75 80 85 90												
cat ctt gat gca gtt cca aaa tgc caa gct ttt act cat cag atg gtt	400											
His Leu Asp Ala Val Pro Lys Cys Gln Ala Phe Thr His Gln Met Val												

100

caa ttc ctc agc acc ctg gaa caa aat gga aaa atc acc tta gca gtc

95

105

448

Gln	Phe	Leu	Ser	Thr	Leu	Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val	
			110					115					120			
cta	gaa	cag	gaa	atg	tct	aag	ctc	tta	gac	gat	atc	att	gtc	ttt	aac	496
Leu	Glu	Gln	Glu	Met	Ser	Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn	
		125					130					135				
ccg	ccc	gac	atg	gac	agc	cag	acc	cgc	cac	atg	gcc	ctc	agc	agc	ctc	544
Pro	Pro	Asp	Met	Asp	Ser	Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu	
	140					145					150					
ttt	atg	gaa	gtc	ctg	atg	atg	atg	aac	aac	gcg	act	att	cca	aca	gca	592
Phe	Met	Glu	Val	Leu	Met	Met	Met	Asn	Asn	Ala	Thr	Ile	Pro	Thr	Ala	
155					160		•			165					170	
gag	ttc	ctt	cgg	ggc	agt	atc	cgg	acc	tgg	att	ggc	caa	aaa	atg	cat	. 640
Glu	Phe	Leu	Arg	Gly	Ser	Ile	Arg	Thr	Trp	Ile	Gly	Gln	Lys	Met	His	
				175					180					185		
ggg	ctg	gtg	gtg	ctg	ccc	ctt	tta	aca	gca	gcc	tgc	cag	agc	ctg	gcg	688
Gly	Leu	Val	Val	Leu	Pro	Leu	Leu	Thr	Ala	Ala	Cys	Gln	Ser	Leu	Ala	
		•	190					195	i				200			
tcc	gto	cgc	cac	atg	gct	gag	act	aca	gaa	gcc	tgc	ato	act	gcc	tac	736
Ser	· Val	Arg	His	Met	Ala	Glu	Thr	Thr	Glu	Ala	Cys	Ile	e Thir	Ala	Tyr	
		205	5				210)				215	5			
tto	aaa	gaa	ago	cct	cto	aat	cag	g aat	tca	gga	tgg	g gga	a ccc	att	ctg	784
Phe	e Lys	Glu	Ser	Pro	Leu	ı Asn	Glr	n Asr	Ser	Gly	Trp	G1;	y Pro	Ile	e Leu	
	220)				225	;				230)				
gta	a tc	c ct	t cag	g gti	t cc	gag	cto	c acc	atg	g gaa	gag	g tt	c cts	g ca	g gag	832
Va	1 Sa	r [Δ1	. 61,	. Va	Pro	s G1c	Lei	ı Thi	r Met	t Gli	ı Glı	ı Ph	e Lei	ı Glı	n Glu	

235					240					245					250	
tgc	ctc	acc	ttg	ggc	agt	taç	ttg	act	ctt	tac	gtc	tac	ttg	ctt	cag	880
Cys	Leu	Thr	Leu	Gly	Ser	Tyr	Leu	Thr	Leu	Tyr	Val	Tyr	Leu	Leu	Gln	
				255					260					265		
tgt	tta	aac	agc	gaa	cag	act	tta	agg	aat	gaa	atg	aaa	gtg	ctg	ctc	928
Cys	Leu	Asn	Ser	Glu	Gln	Thr	Leu	Arg	Asn	Glu	Met	Lys	Val	Leu	Leu	
	•		270					275					280			
atc	tta	agc	aag	tgg	ctg	gaa	cag	gtg	tac	cca	agc	tcc	gtg	gag	gaa	976
Ile	Leu	Ser	Lys	Trp	Leu	Glu	Gln	Val	Tyr	Pro	Ser	Ser	Val	Glu	Glu	•
		285					290					295				
gag	gca	aag	ctg	ttt	ttg	tgg	tgg	cac	caa	gtc	ctt	cag	ctc	tcc	ctc	1024
Glu	Ala	Lys	Leu	Phe	Leu	Trp	Trp	His	Gln	Val	Leu	Gln	Leu	Ser	Leu	
	300					305					310					
att	cag	aca	gag	cag	aat	gac	tcc	gtc	ctg	aca	gaa	tct	gtc	att	cga	1072
Ile	Gln	Thr	Glu	Gln	Asn	Asp	Ser	Val	Leu	Thr	Glu	Ser	Val	Ile	Arg	
315					320					325					330	
att	ctg	ctc	ttg	gtt	cag	agc	agg	cag	aac	ctc	gtg	gct	gag	gag	aga	1120
Ile	Leu	Leu	Leu	Val	Gln	Ser	Arg	Gln	Asn	Leu	Val	Ala	Glu	Glu	Arg	
				335	•				340	ı				345	5	
cto	ago	tct	ggg	ato	ctg	ggg	gca	att	ggg	ttt	ggo	cgg	aag	tc _i	g cct	1168
Leu	Ser	Ser	Gly	Ile	Leu	Gly	Ala	Ile	Gly	Phe	Gly	Arg	Lys	s Se	r Pro	
			350	١				355	5				360)		
ttg	tct	aac	agg	tto	cga	gtg	gtt	gcc	cga	ago	ate	g gct	gce	c tt	c ctt	1216
Leu	ı Sei	- Asr	n Arg	Phe	Arg	y Val	Val	Ala	Arg	Ser	. Met	t Ala	a Ala	a Ph	e Leu	
		369	5				370)				379	5			

tca	gtt	cag	gtt	cct	atg	gaa	gat	cag	atc	cgt	ttg	agg	cct	ggc	tct	1264
Ser	Val	Gln	Val	Pro	Met	Glu	Asp	Gln	Ile	Arg	Leu	Arg	Pro	Gly	Ser	
•	380					385				•	390	•			•	•
gaa	tta	cat	ctg	acc	ссс	aaa	gct	cag	cag	gct	ctg	aat	gct	ctt	gaa	1312
Glu	Leu	His	Leu	Thr	Pro	Lys	Ala	Gln	Gln	Ala	Leu	Asn	Ala	Leu	Glu	
395					400					405					410	
tcc	atg	gca	tca	agt	aag	cag	tat	gtt	gaa	tac	cag	gat	caa	ata	ttg	1360
Ser	Met	Ala	Ser	Ser	Lys	Gln	Tyr	Val	Glu	Tyr	Gln	Asp	Gln	Ile	Leu	
				415					420					425		
caa	gcc	acc	caa	ttt	ata	agg	cat	cct	ggc	cat	tgc	ctt	caa	gat	ggg	1408
Gln	Ala	Thr	Gln	Phe	Ile	Arg	His	Pro	Gly	His	Cys	Leu	Gln	Asp	Gly	
			430					435					440			
aaa	agc	ttc	ttg	gct	ctt	ctc	gtt	aac	tgt	ctg	tat	cca	gaa	gtg	cat	1456
Lys	Ser	Phe	Leu	Ala	Leu	Leu	Val	Asn	Cys	Leu	Tyr	Pro	Glu	Val	His	
		445					450					455				
tat	ttg	gac	cac	ata	cga	tagt	ta a	acact	tgagg	gc to	ettga	aaaa	a cc	catt	gctg	1510
Tyr	Leu	Asp	His	Ile	Arg											
	460															
ttta	atgti	tta d	catti	taact	tt tg	gctgt	tgca	a caa	agtaa	actt	tgci	tcaat	ttg	cact	gtagag	1570
ctca	gtti	tgg (ccaat	tgtgi	ta gi	ttgad	tgag	gate	gcaag	gttg	ggag	ggcgt	tta į	gata	ttagat	1630
aati	tttgg	ggg 1	tgtgt	tgtg	tg tg	gtgtg	gtgtg	g tg1	tttt	etta	gcto	ettaa	aga (cctt	ctgggg	1690
acto	ettta	aag 1	tttt	tata	tt ta	atcca	caa	g aga	aaact	ttac	taaş	gttco	cac	ttggg	gtgcag	1750
agco	cacto	cac a	agtt	gccga	aa ta	gtcc	agto	ato	ctca	caag	acci	tccag	gat 1	ggag	ttcttt	1810
gtai	tgtti	tcc a	actto	ctgt	ct ci	tgtti	ttatį	g taa	aatgi	ttcc	agat	tctga	aca a	acct1	tggaag	1870
tcac	etcar	eta o	accti	tacti	tt ts	aaaco	ccat	t tte	at at 1	toot	ccas	agts	aaa i	gaagi	tcaatt	1930

ttgaaaaatt	tctgcatttc	tcaaatgtgg	acaaatacaa	tagttttaaa	gtattgtttt	1990
tctcagaagg	gagataaaaa	tgccgagtta	gttaaagtgg	gtcatgtgta	aaatacgacc	2050
acttgatcgt	gattatagtg	ggcagtagag	atgatgacaa	gtcaatttcc	atccagccgt	2110
gtatcctcat	ggagaagctg	cctgtctgaa	tcaggatggc	aagctggcag	tctgggagga	2170
gcatgttttg	cacagatgtt	ttgtttggtc	cacttggtga	ggagtgcaga	cagggctgcc	2230
tctctctagt	cgggagagtc	tgtgcattcc	ctcgggccct	gaccctagcc	tcattcacat	2290
cacttgcccc	tgtcgacacc	taagtttgca	ccctttgata	gacaccatgt	tcgatatctg	2350
aaaggctcag	tgtcaggaga	cagagactga	gggagactga	agacctgatt	ctctgttccc	2410
tgcttgtttt	ttaacttcaa	actcagatga	agccaatgga	cctgctgaaa	cacttgtctg	2470
tggaaactgg	gtcaggtcgg	gagatctact	gaaatttggc	ttttttcca	tagccacgtg	2530
ccttctgttg	ttgacagttc	attcattacc	aaagcctgtg	tgtaactttg	ccttgttctg	2590
tggccatctt	cttgctcatg	ttatttctcc	tgggaatgag	cagtttgact	tctgttccca	2650
cgttcctcat	tctatcagct	ctagatggat	tttgcctgca	tagctggctt	aatatgtctt	2710
tgtgtatggg	tagtctgtag	cctgagaata	tttacctaaa	aatgtctaaa	cagccaccaa	2770
gaatgtttat	aggggtatag	gaatatagtt	aacagagtgc	taatctctcc	tcaaatgtcc	2830
ttttggaatg	cttccccaa	aattgggaag	ttggtaggag	cttttcttta	ctttgaattt	2890
ctttacttgg	acagaacgat	tctgccttaa	agacacgctt	tgcagctctg	ataaagaaca	2950
tccctgttta	gtctcttgag	ttttacaggc	cacaaaatgt	ccgtctcaga	gggatctgtc	3010
tcagcttttc	ttatttttgc	ttctctccgt	tttcaaaatt	aatcatcttg	ttctctgtat	3070
aagaaaattt	gagaagctgt	ggacaattta	atagtctgat	ctggcaacag	cgatttttgt	3130
ttggaaatat	tttgtgtttt	ctttgaggag	gatataatta	ctgatatcct	aggatgtgaa	3190
atttttgagt	gacagtatgo	acattttaaa	gaaaattatg	attaatctgt	ataatgtttt	3250
ttggtctgta	aaaattataa	aaaataaaat	catttatctt	tggttgt		329

<211	> 21	.26														
<212	> DN	IA														
<213	> Hc	omo s	apie	ns							•		•			
<220	>															
<221	> CE	S											•			
<222	:> (6	81)	. (14	73)												
<400	> 58	3														
aaca	ctga	aca g	gcgtg	agco	c go	eggeg	gcte	g ctg	ccat	ggt	ggc1	tggcg	ggc (egggt	tgcago	c 60
atg	tct	aga	ctg	gga	gcc	ctg	ggt	ggt	gcc	cgt	gcc	ggg	ctg	gga	ctg	108
Met	Ser	Arg	Leu	Gly	Ala	Leu	Gly	Gly	Ala	Arg	Ala	Gly	Leu	G1y	Leu	
1				5					10					15		
ttg	ctg	ggt	acc	gcc	gcc	ggc	ctt	gga	ttc	ctg	tgc	ctc	ctt	tac	agc	156
Leu	Leu	Gly	Thr	Ala	Ala	Gly	Leu	Gly	Phe	Leu	Cys	Leu	Leu	Tyr	Ser	
			20					25					30			
cag	cga	tgg	aaa	cgg	acc	cag	cgt	cat	ggc	cgc	agc	cag	agc	ctg	ccc	204
Gln	Arg	Trp	Lys	Arg	Thr	Gln	Arg	His	Gly	Arg	Ser	G1n	Ser	Leu	Pro	
		35					40					45				
aac	tcc	ctg	gac	tat	acg	cag	act	tca	gat	ссс	gga	cgc	cac	gtg	atg	252
Asn	Ser	Leu	Asp	Tyr	Thr	Gln	Thr	Ser	Asp	Pro	Gly	Arg	His	Val	Met	
	50					55					60					
ctc	ctg	cgg	gct	gtc	cca	ggt	ggg	gct	gga	gat	gcc	tca	gtg	ctg	ссс	300
Leu	Leu	Arg	Ala	Val	Pro	Gly	Gly	Ala	Gly	Asp	Ala	Ser	Val	Leu	Pro	
65					70					75					80	
agc	ctt	cca	cgg	gaa	gga	cag	gag	aag	gtg	ctg	gac	cgc	ctg	gac	ttt	348
Ser	Leu	Pro	Arg	Glu	Gly	Gln	Glu	Lys	Val	Leu	Asp	Arg	Leu	Asp	Phe	

				85					90					95		
gtg	ctg	açc	agc	ctt	gtg	gcg	ctg	cgg	cgg	gag	gtg	gag	gag	ctg	aga	396
Val	Leu	Thr	Ser	Leu	Val	Ala	Leu	Arg	Arg	Glu	Val	Glu	Glu	Leu	Arg	
			100					105					110			
agc	agc	ctg	cga	ggg	ctt	gcg	ggg	gag	att	gtt	ggg	gag	gtc	cga	tgc	444
Ser	Ser	Leu	Arg	Gly	Leu	Ala	Gly	Glu	Ile	Val	Gly	Glu	Val	Arg	Cys	
		115					120					125				
cac	atg	gaa	gag	aac	cag	aga	gtg	gct	cgg	cgg	cga	agg	ttt	ccg	ttt	492
His	Met	Glu	Glu	Asn	Gln	Arg	Val	Ala	Arg	Arg	Arg	Arg	Phe	Pro	Phe	
	130					135					140					
gtc	cgg	gag	agg	agt	gac	tcc	act	ggc	tcc	agc	tct	gtc	tac	ttc	acg	540
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser	Ser	Ser	Val	Tyr	Phe	Thr	•
145					150					155					160	
gcc	tcc	tcg	gga	gcc	acg	ttc	aca	gat	gct	gag	agt	gaa	ggg	ggt	tac	588
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	G1u	Gly	Gly	Tyr	
				165					170					175		
aca	aca	ġcc	aat	gcg	gag	tct	gac	aat	gag	cgg	gac	tct	gac	aaa	gaa	636
Thr	Thr	Ala	Asn	Ala	Glu	Ser	Asp	Asn	Glu	Arg	Asp	Ser	Asp	Lys	Glu	
			180					185					190			
agt	gag	gac	ggg	gaa	gat	gaa	gtg	agc	tgt	gag	act	gtg	aag	atg	ggg	684
Ser	Glu	Asp	G1y	Glu	Asp	Glu	Val	Ser	Cys	Glu	Thr	Val	Lys	Met	Gly	
		195					200					205				
aga	aag	gat	tct	ctt	gac	ttg	gag	gaa	gag	gca	gct	tca	ggt	gcc	tcc	732
Arg	Lys	Asp	Ser	Leu	Asp	Leu	Glu	Glu	Glu	Ala	Ala	Ser	Gly	Ala	Ser	
	210					215					220					

agt	gcc	ctg	gag	gct	gga	ggt	tcc	tca	ggc	ttg	gag	gat	gtg	ctg	ccc	780
Ser	Ala	Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro	
225				•	230		٠			235					240	
ctc	ctg	cag	cag	gcc	gac	gag	ctg	cac	agg	ggt	gat	gag	caa	ggc	aag	828
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys	
				245					250					255		
cgg	gag	ggc	ttc	cag	ctg	ctg	ctc	aac	aac	aag	ctg	gtg	tat	gga	agc	876
Arg	Glu	Gly	Phe	Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser	
			260					265					270			
cgg	cag	gac	ttt	ctc	tgg	cgc	ctg	gcc	cga	gcc	tac	agt	gac	atg	tgt	924
Arg	Gln	Asp	Phe	Leu	Trp	Arg	Leu	Ala	Arg	Ala	Tyr	Ser	Asp	Met	Cys	
		275					280					285				
gag	ctc	act	gag	gag	gtg	agc	gag	aag	aag	tca	tat	gcc	cta	gat	gga	972
Glu	Leu	Thr	Glu	Glu	Val	Ser	Glu	Lys	Lys	Ser	Tyr	Ala	Leu	Asp	Gly	
	290					295					300					
aaa	gaa	gaa	gca	gag	gct	gct	ctg	gag	aag	ggg	gat	gag	agt	gct	gac	1020
Lys	Glu	Glu	Ala	Glu	Ala	Ala	Leu	Glu	Lys	Gly	Asp	Glu	Ser	Ala	Asp	
305			•		310					315					320	
tgt	cac	ctg	tgg	tat	gcg	gtg	ctt	tgt	ggt	cag	ctg	gct	gag	cat	gag	1068
Cys	His	Leu	Trp	Tyr	Ala	Val	Leu	Cys	Gly	Gln	Leu	Ala	Glu	His	Glu	
				325					330					335		
agc	atc	cag	agg	cgc	atc	cag	agt	ggc	ttt	agc	ttc	aag	gag	cat	gtg	1116
Ser	Ile	Gln	Arg	Arg	Ile	Gln	Ser	Gly	Phe	Ser	Phe	Lys	Glu	His	Val	
			340					345					350			
gac	aaa	gcc	att	gct	ctc	cag	сса	gaa	aac	ccc	atg	gct	cac	ttt	ctt	1164

Asp	Lys	Ala	Ile	Ala	Leu	Gln	Pro	Glu	Asn	Pro	Met	Ala	His	Phe	Leu	
		355					360				٠.	365				
ctt	ggc	agg	tgg	tgc	tat	cag	gtc	tct	cac	ctg	agc	tgg	cta	gaa	aaa	1212
Leu	Gly	Arg	Trp	Cys	Tyr	Gln	Val	Ser	His	Leu	Ser	Trp	Leu	Glu	Lys	
	370					375					380					
aaa	act	gct	aca	gcc	ttg	ctt	gaa	agc	cct	ctc	agt	gcc	act	gtg	gaa	1260
Lys	Thr	Ala	Thr	Ala	Leu	Leu	Glu	Ser	Pro	Leu	Ser	Ala	Thr	Val	Glu	
385					390					395					400	
gat	gcc	ctc	cag	agc	ttc	cta	aag	gct	gaa	gaa	cta	cag	cca	gga	ttt	1308
Asp	Ala	Leu	Gln	Ser	Phe	Leu	Lys	Ala	Glu	Glu	Leu	Gln	Pro	Gly	Phe	
				405					410					415		
tcc	aaa	gca	gga	agg	gta	tat	att	tcc	aag	tgc	tac	aga	gaa	cta	ggg	1356
Ser	Lys	Ala	Gly	Arg	Val	Tyr	Ile	Ser	Lys	Cys	Tyr	Arg	Glu	Leu	Gly	
			420	•				425	5				430)		
aaa	aac	tct	gaa	gct	aga	tgg	tgg	ate	g aag	ttg	gcc	ctg	gag	ctg	cca	1404
Lys	Asr	s Ser	Glu	ı Ala	Arg	Trp	Trp	Met	t Lys	Leu	ı Ala	ı Lei	ı Glu	. Leu	Pro	
		435	5				440)				445	5			
gat	gto	ace	g aag	g gag	g gat	t ttg	gct	ato	cag	g aag	g gad	cts	g gaa	a gaa	ctg	1452
Asp	Va:	l Thi	r Lys	s Glu	ı Ası	. Le	ı Ala	Ile	e Glr	ı Lys	s Ası	Lei	ı Glu	ı Glu	ı Leu	
	450	0				45	5				460	0				
gaa	a gt	c at	t tta	a cg	a ga	c taa	acca	gtt	tca	ctgg	cct	tcat	gact	tg		1500
Gli	ı Va	1 II	e Le	u Ar	g As	p										
46	5				47	0										
at	gcca	ctat	tta	aggt	ggg	gggg	cggg	ga g	gctt	tttt	c ct	taga	cctt	gct	gagatca	1560
gg	aaac	caca	caa	atct	gtc	tcct	gggt	ct g	actg	ctac	с са	ctac	cact	ccc	cattagt	1620

131/307

taatttattc	taacctctaa	cctaatctag	aattggggca	gtactcatgg	cttccgtttc	1680
tgttgttctc	tcccttgagt	aatctcttaa	aaaaatcaag	attcacacct	gccccaggat	1740
tacacatggg	tagagcctgc	aagacctgag	accttccaat	tgctggtgag	gtggatgaac	1800
ttcaaagcta	taggaacaaa	gcacataact	tgtcacttta	atcttttca	ctgactaata	1860
ggactcagta	catatagtct	taagatcata	ccttacctac	caaggtaaaa	agagggatca	1920
gagtggccca	cagacattgc	tttcttatca	cctatcatgt	gaattctacc	tgtattcctg	1980
ggctggacca	cttgataact	tccagtgtcc	tggcagcttt	tggaatgaca	gcagtggtat	2040
ggggtttatg	atgctataaa	acaatgtctg	aaaagttgcc	tagaatatat	tttgttacaa	2100
acttgaaata	aaccaaattt	gatgtt				2126

<210> 59

<211> 1781

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (74)... (805)

⟨400⟩ 59

aatttggacc tgtgatteet tggtteteac aateetetee aetetaagaa geagggtgag 60 cecacaagga gea atg gag eag gge age gge ege ttg gag gae tte eet 109

Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro

1 5 10

gtc aat gtg ttc tcc gtc act cct tac aca ccc agc acc gct gac atc

157

Val Asn Val Phe Ser Val Thr Pro Tyr Thr Pro Ser Thr Ala Asp Ile

15 20 25

cag	gtg	tcc	gat	gat	gac	aag	gcg	ggg	gcc	acc	ttg	ctc	ttc	tca	ggc	205
Gln	Val	Ser	Asp	Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	P.he	Ser	Gly	
	30					35					40				•	•
atc	ttt	ctg	gga	ctg	gtg	ggg	atc	aca	ttc	act	gtc	atg	ggc	tgg	atc	253
Ile	Phe	Leu	Gly	Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	
45					50					55					60	
aaa	tac	caa	ggt	gtc	tcc	cac	ttt	gaa	tgg	acc	cag	ctc	ctt	ggg	ccc	301
Lys	Tyr	Gln	G1y	Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	
				65					70					75		
gtc	ctg	ctg	tca	gtt	ggg	gtg	aca	ttc	atc	ctg	att	gct	gtg	tgc	aag	349
Val	Leu	Leu	Ser	Val	Gly	Val	Thr	Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	
•			80					. 85					90			
ttc	aaa	atg	ctc	tcc	tgc	cag	ttg	tgc	888	gaa	agt	gag	gaa	agg	gtc	397
Phe	Lys	Met	Leu	Ser	Cys	Gln	Leu	Cys	Lys	Glu	Ser	Glu	Glu	Arg	Val	
		95					100					105				
ccg	gac	tcg	gaa	cag	aca	cca	gga	gga	cca	tca	ttt	gtt	ttc	act	ggc	445
Pro	Asp	Ser	Glu	Gln	Thr	Pro	Gly	Gly	Pro	Ser	Phe	Val	Phe	Thr	Gly	
	110					115					120					
atc	aac	caa	ccc	atc	acc	ttc	cat	ggg	gcc	act	gtg	gtg	cag	tac	atc ·	493
Ile	Asn	Gln	Pro	Ile	Thr	Phe	His	Gly	Ala	Thr	Val	Val	Gln	Tyr	Ile	
125					130					135					140	
cct	cct	cct	tat	ggt	tct	cca	gag	cct	atg	ggg	ata	aat	acc	agc	tac	541
Pro	Pro	Pro	Tyr	Gly	Ser	Pro	Glu	Pro	Met	Gly	Ile	Asn	Thr	Ser	Tyr	
				145					150					155		
ctg	cag	tct	gtg	gtg	agc	ccc	tgc	ggc	ctc	ata	acc	tct	gga	ggg	gca	589

Leu C	Gln	Ser	Val	Val	Ser	Pro	Cys	Gly	Leu	Ile	Thr	Ser	Gly	Gly	Ala	
			160					165					170			
gca g	gcc	gcc	atg	tca	agt	cct	cct	caa	tac	tac	acc	atc	tac	cct	caa	637
Ala A	Ala	Ala	Met	Ser	Ser	Pro	Pro	Gln	Tyr	Tyr	Thr	Ile	Tyr	Pro	Gln	
		175					180					185				
gat a	aac	tct	gca	ttt	gtg	gtt	gat	gag	ggc	tgc	ctt	tct	ttc	acg	gac	685
Asp A	Asn	Ser	Ala	Phe	Val	Val	Asp	Glu	Gly	Cys	Leu	Ser	Phe	Thr	Asp	
	190					195					200					
ggt	gga	aat	cac	agg	ccc	aat	cct	gat	gtt	gac	cag	cta	gaa	gag	aca	733
Gly	Gly	Asn	His	Arg	Pro	Asn	Pro	Asp	Val	Asp	Gln	Leu	Glu	Glu	Thr	
205					210					215					220	
cag	ctg	gaa	gag	gag	gcc	tgt	gcc	tgc	ttc	tct	cct	ccc	cct	tat	gaa	781
Gln	Leu	Glu	Glu	Glu	Ala	Cys	Ala	Cys	Phe	Ser	Pro	Pro	Pro	Tyr	Glu	
				225					230					235		
gaa	ata	tac	tct	ctc	cct	cgc	tag	aggo	t at	tctg	atat	aat	aaca	caa		830
Glu	Ile	Tyr	Ser	Leu	Pro	Arg	;									
			240)												
tgct	cag	ctc	aggg	gagca	ag t	gttt	ccgt	c at	tgtt	acct	gac	aaco	gtg	gtgt	tctatg	890
ttgt	taac	ctt	caga	agtt	ac a	gcag	cgcc	c ag	ggcag	ccte	g aca	agaga	atca	ttca	aggggg	950
gaaa	aggg	gaa	gtgg	gagg	gtg	aatt	tete	a ga	attgg	taaa	a aat	ttag	gctg	ggc1	ggggaa	1010
atto	ctcc	tcc	ggaa	acagt	t t (caaat	tcc	ct c	gggta	agaa	a ato	ctcc	tgta	taag	gttcag	1070
gago	cage	gaat	ttca	actti	ttt (catco	cacca	ac co	ctcc	ccti	t ct	ctgt	agga	agge	cattggt	1130
ggct	tcaa	attt	taad	ccce	agc a	agcca	atg	ga a	aaato	cacga	a ct	tctg	agac	ttt	gggagtt	1190
															agctgga	1250
															ctcagct	1310

134/307

gccatctggc	ctctctgagg	actctgggta	ccttaaagac	tataaaacaa	8808888088	1370
aaacatcaaa	ccaatgaaat	aaaataaatc	atgtctcctg	ctagaatagt	attggatacc	1430
tgactaaatt	acacaaaata	gaccataata	ggatagcact	gtgaatacat	ccttcccgat	1490
cactgagtca	cagtgaccct	tggctgctgc	agttctcgtc	tgcaaggttg	aagcttgacg	1550
tgtgatgaac	atgggtgggc	tcttggtcca	ccccaggctg	gggcctgcgc	caagcatgaa	1610
ctagctggga	ccagtggctg	acagaacaca	ggacttccct	aagtacccgt	aggtccgtgg	1670
agcaagacag	agcagagttg	ccatgtcaac	acatggggaa	tgatatgata	gaaacaatct	1730
ttatgactaa	aagaaactca	tcttcttcat	taaaaaaact	ttggtgtcct	t	1781
<210> 60						
<211> 1788	3					
<212> DNA						
<213> Homo	sapiens					
<220>						
<221> CDS						
<222> (87)) (899)					
<400> 60						
attgggcgg	c gtgatctcg	cgcggttcc	g cggccctgc	geegeegeeg	z ccagcagagc	60
gcaccgggc	c gatcgggcg	a gtggcc at	g gcg ggc ge	cc gag gac	tgg ccg ggc	113
		Me	t Ala Gly A	la Glu Aspí	Trp Pro Gly	
			1	5		
cag cag c	tg gag ctg	gac gag gac	gag gcg tc	t tgt tgc c	gc tgg ggc	161
Gln Gln L	eu Glu Leu	Asp Glu Asp	Glu Ala Se	r Cys Cys A	rg Trp Gly	
10		15	2	0	25	

gcg cag cac gcc ggg gcc cgc gag ctg gct gcg ctc tac tcg cca ggc

209

Ala	Gln	His	Ala	Gly	Ala	Arg	Glu	Leu	Ala	Ala	Leu	Tyr	Ser	Pro	Gly	
				. 30,					35					.40		
aag	cgc	ctc	cag	gag	tgg	tgc	tct	gtg	atc	ctg	tgc	ttc	agc	ctc	atc	257
Lys	Arg	Leu	Gln	Glu	Trp	Cys	Ser	Val [.]	Ile	Leu	Cys	Phe	Ser	Leu	Ile	
			45					50					55			
gcc	cac	aac	ctg	gtc	cat	ctc	ctg	ctg	ctg	gcc	cgc	tgg	gag	gac	aca	305
Ala	His	Asn	Leu	Val	His	Leu	Leu	Leu	Leu	Ala	Arg	Trp	Glu	Asp	Thr	
		60					65					70				
ccc	ctc	gtc	ata	ctc	ggt	gtt	gtt	gca	ggg	gct	ctc	att	gct	gac	ttc	353
Pro	Leu	Val	Ile	Leu	Gly	Val	Val	Ala	Gly	Ala	Leu	Ile	Ala	Asp	Phe	
	75					80					85					
ttg	tct	ggc	ctg	gta	cac	tgg	ggt	gct	gac	aca	tgg	ggc	tct	gtg	gag	401
Leu	Ser	Gly	Leu	Val	His	Trp	Gly	Ala	Asp	Thr	Trp	Gly	Ser	Val	Glu	
90					95					100					105	
ctg	ccc	att	gtg	ggg	aag	gct	ttc	atc	cga	ccc	ttc	cgg	gag	cac	cac	449
Leu	Pro	Ile	Val	Gly	Lys	Ala	Phe	Ile	Arg	Pro	Phe	Arg	Glu	His	His	
				110					115					120	ı	
att	gac	cca	aca	gct	atc	aca	cgg	cac	gac	ttc	atc	gag	acc	aac	ggg	497
Ile	Asp	Pro	Thr	Ala	Ile	Thr	Arg	His	Asp	Phe	Ile	Glu			Gly	
			125	;				130)				. 135	5		
															aag	545
Asp	Asr) Cys	Leu	Val	Thr	Leu	Leu	ı Pro	Leu	Leu	ı Asr			з Туз	Lys	
		140)				145	5				150)			
															g gag	593
Phe	Ar	g Thi	His	s Sei	Pro	Glu	ı Ala	a Lei	ı Glu	Gli	n Leu	т Туз	r Pro	o Tr	Glu	

	155					160					165	•				
tgc	ttc	gtc	ttc	tgc	ctg	atc	atc	ttc	ggc	acc	ttc	acc	aac	cag	atc	641
Cys	Phe	Val	Phe	Cys	Leu	Ile	Ile	Phe	Gly	Thr	Phe	Thr	Asn	Gln	Ile	
170					175					180					185	
cac	aag	tgg	tcg	cac	acg	tac	ttt	ggg	ctg	cca	cgc	tgg	gtc	acc	ctc	689
His	Lys	Trp	Ser	His	Thr	Tyr	Phe	Gly	Leu	Pro	Arg	Trp	Val	Thr	Leu	
				190					195					200		
ctg	cag	gac	tgg	cat	gtc	atc	ctg	сса	cgt	aaa	cac	cat	cgc	atc	cac	737
Leu	G1n	Asp	Trp	His	Val	Ile	Leu	Pro	Arg	Lys	His	His	Arg	Ile	His	
			205					210					215			
cac	gtc	tca	ccc	cac	gag	acc	tac	ttc	tgc	atc	acc	aca	ggc	tgg	ctc	785
His	Val	Ser	Pro	His	Glu	Thr	Tyr	Phe	Cys	Ile	Thr	Thr	Gly	Trp	Leu .	
		220					225					230				
aac	tac	cct	ctg	gag	aag	ata	ggc	ttc	tgg	cga	cgc	ctg	gag	gac	ctc	833
Asn	Tyr	Pro	Leu	Glu	Lys	Ile	Gly	Phe	Trp	Arg	Arg	Leu	Glu	Asp	Leu	
	235					240					245	,				
atc	cag	ggc	ctg	acg	ggc	gag	aag	cct	cgg	gca	gat	gac	atg	aaa	tgg	881
Ile	Gln	Gly	Leu	Thr	Gly	Glu	Lys	Pro	Arg	Ala	Asp	Asp	Met	Lys	Trp	
250)			·	255	;				260)				265	
gcc	cag	g aag	g ato	aaa	taa	c tt	ctc	gago	ctg	ctac	ctg	gttg	ccaa	acc		930
Ala	Glr	Lys	s Ile	e Lys	3											
				270)											
tto	cct	agcc	ccca	aaaco	ga a	agcca	atct	gc ca	aaati	ccas	g cc	tctti	tgag	ctg	gcccctc	990
cag	gatg	gaga	gga	catci	tcc 1	tggg	ctgg	gc c	caggi	tacco	c ca	gccc	accc	ctc	atgacac	1050
aga	aata	cttg	agc	cact	gat 1	tttt	catt	tc t	tttt	tttt	t tt	tttc	ctcg	gcc	cctcctc	1110

137/307

gccacctga	gttgctctat	ctgcaagcct	gactctgcca	gcctcccctg	gtagagagga	1170
gtttaccca	ctccctgcac	gcctgccgtc	cctgccccgc	tgggcagccc	ttcagtgtgg	1230
ctggcgttgg	ggccagtgag	ttgcctcttt	ccctccttgt	ctggccccag	tggtctgggg	1290
agcccccagg	cacacctaag	cgtcgtggag	cattgttctg	ccacagccct	gcatactgac	1350
cccgggaggc	tgggcaggtg	gacagcccca	gccaccacct	tcagcctagc	ctgtcccca	1410
aggatggtga	agctcagcag	gggtctgagg	gtagccggcc	agaagaggct	ggaacctcct	1470
gctcaagtct	agacccctac	ttctctgctg	ccccaccct	gccagagctg	atgtttccaa	1530
taccaagatg	tcttcacagg	gcacagcccc	tgcagagcat	cttggtcatt	tggaagagga	1590
cacggtatcc	cctctggcca	gagtatgtca	gagaaggaag	agtagggctt	ttttgttttg	1650
tttttttta	aaggtgcttg	cttgtttaat	gtaaataata	gaaagcctta	atatcttttc	1710
tgtaacacgg	agtaatattt	taatgtcatg	ttttggatgt	acataatata	tttataacaa	1770
agcagcaaga	gtctactt	,				1788

<210> 61

<211> 389

<212> PRT

<213> Homo sapiens

<400> 61

Met Asp Arg Gly Glu Lys Ile Gln Leu Lys Arg Val Phe Gly Tyr Trp

1 5 10 15

Trp Gly Thr Ser Phe Leu Leu Ile Asn Ile Ile Gly Ala Gly Ile Phe
20 25 30

Val Ser Pro Lys Gly Val Leu Ala Tyr Ser Cys Met Asn Val Gly Val
35 40 45

Ser Leu Cys Val Trp Ala Gly Cys Ala Ile Leu Ala Met Thr Ser Thr

	50					5 5					60				
.eu (Cys	Ser	Ala	Glu	Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln
65					70					75					80
[yr]	ſyr	Phe	Leu	Lys	Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn
				85					90					95	
Leu '	Trp	Thr	Ser	Leu	Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala
•			100					105					110		
Leu	Leu	Leu	Ala	Glu	Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser
		115					120					125			
Val	Pro	Lys	Leu	Pro	Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile
	130					135					140				
Val	Gly	Ile	Leu	Thr	Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln
145					150					155					160
Ile	Ala	Ser	Ser	· Val	Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu
				165					170)				175	
Thr	Gly	Val	. Val	Phe	Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg
			180)				185	;				190		
Phe	Glr	n Asr	n Ala	a Phe	. Asp	Ala	Glu	Leu	Pro	Asp	Ile	Ser	His	Leu	Ile
		19	5				200)				205	5		
Gln	Ala	a Ile	e Pho	e Glr	1 Gly	7 Ty1	r Phe	Ala	а Туг	r Sei	r Gly	/ Glu	ı Lev	Lys	s Lys
	210)				219	5				220)			
Pro	Ar	g Th	r Th	r Ile	e Pro	Ly:	s Cy:	s Ile	e Pho	e Thi	r Ala	a Le	u Pro	Le	ı Val
225					230	0				23	5				240
Thr	Va	l Va	l Ty	r Le	u Le	u Va	l As	n Il	e Se	r Ty	r Le	u Th	r Val	l Le	u Thr
				24	5				25	0				25	5

139/307

Pro Arg Glu Ile Leu Ser Ser Asp Ala Val Ala Ile Thr Trp Ala Asp Arg Ala Phe Pro Ser Leu Ala Trp Ile Met Pro Phe Ala Ile Ser Thr Ser Leu Phe Ser Asn Leu Leu Ile Ser Ile Phe Lys Ser Ser Arg Pro Ile Tyr Leu Ala Ser Gln Glu Gly Gln Leu Pro Leu Leu Phe Asn Thr Leu Asn Ser His Ser Ser Pro Phe Thr Ala Val Leu Leu Leu Val Thr Leu Gly Ser Leu Ala Ile Ile Leu Thr Ser Leu Ile Asp Leu Ile Asn Tyr Ile Phe Phe Thr Gly Ser Leu Trp Ser Ile Leu Leu Met Ile Gly Ile Leu Arg Arg Tyr Gln Glu Pro Asn Leu Ser Ile Pro Tyr Lys Val Lys Leu Asp Phe <210> 62 <211> 348 <212> PRT <213> Homo sapiens

Met Ala Ala Thr Leu Gly Pro Leu Gly Ser Trp Gln Gln Trp Arg Arg

<400> 62

1				5					10					15	
Cys	Leu	Ser	Ala	Arg	Asp	Gly	Ser	Arg	Met	Leu	Leu	Leu	Leu	Leu	Leu
			20					25				٠	30	•	
Leu	Gly	Ser	Gly	Gln	Gly	Pro	Gln	Gln	Val	Gly	Ala	Gly	Gln	Thr	Phe
		35					40					45			
Glu	Tyr	Leu	Lys	Arg	Glu	His	Ser	Leu	Ser	Lys	Pro	Tyr	Gln	Gly	Val
	50					55					60				
Gly	Thr	Gly	Ser	Ser	Ser	Leu	Trp	Asn	Leu	Met	Gly	Asn	Ala	Met	Val
65					70					75					80
Met	Thr	G1n	Tyr	Ile	Arg	Leu	Thr	Pro	Asp	Met	Gln	Ser	Lys	Gln	Gly
				85					90					95	
Ala	Leu	Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	Arg	Asp	Trp	Glu	Leu	Gln
			100					105					110		
Val	His	Phe	Lys	Ile	His	Gly	Gln	Gly	Lys	Lys	Asn	Leu	His	Gly	Asp
		115					120					125			
Gly	Leu	Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	Met	Gln	Pro	Gly	Pro	Val
	130					135					140				
Phe	Gly	Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	Gly	Val	Phe	Val	Asp	Thr
145	;				150)	•			155	i				160
Tyr	Pro	Asn	Glu	Glu	Lys	G1n	Gln	Glu	Arg	, Val	Phe	Pro	Tyr	Ile	Ser
				165	;				170)				175	;
Ala	Met	. Val	. Asn	Asn	Gly	Ser	Leu	Ser	Туз	. Asp	His	Glu	. Arg	Asp	Gly
			180)				185	5				190)	
Are	g Pro	Thr	Glu	Leu	ı Gly	Gly	Cys	Thi	r Ala	a Ile	e Val	Arg	g Asr	Leu	ı His
		199	5				200)				205	5		

141/307

Tyr	Asp	Thr	Phe	Leu	Val	Ile	Arg	Tyr	Val	Lys	Arg	His	Leu	Thr	Ile
	210					215					220				
Met	Met	Asp	Ile	Asp	Gly	Lys	His	Glu	Trp	Arg	Asp	Cys	Ile	Glu	Val
225					230					235					240
Pro	Gly	Val	Arg	Leu	Pro	Arg	Gly	Tyr	Tyr	Phe	Gly	Thr	Ser	Ser	Ile
				245					250					255	
Thr	Gly	Asp	Leu	Ser	Asp	Asn	His	Asp	Val	Ile	Ser	Leu	Lys	Leu	Phe
			260)				265					270	1	
Glu	Leu	ı Thr	· Val	Glu	Arg	Thr	Pro	Glu	Glu	Glu	Lys	Leu	His	Arg	Asp
		275	5				280)				285	5		
Va]	Phe	e Lei	ı Pro	Ser	. Val	Asp	Asr	Met	: Lys	: Lei	Pro	Glu	ı Met	: Thr	Ala
	290	o .				295	5				300)			
Pro	Le	u Pro	o Pro	o Lei	ı Ser	· G1;	, Le	ı Ala	a Leu	ı Phe	e Le	ı Ile	e Va	l Phe	e Phe
30	5				310)				31	5				320
Se	r Le	u Va	1 Ph	e Se	r Val	l Ph	e Ala	a Il	e Vai	1 11	e Gl	y Il	e Il	e Lei	u Ty
				32	5				33	0				33	5
As	n Ly	s Tr	p G1	n Gl	u Gl	n Se	r Ar	g Ly	s Ar	g Ph	е Ту	r			
			34	.0				34	.5						
<2	210>	63													
<2	211>	261													
<2	212>	PRT													

Met Glu Leu Leu Gln Val Thr Ile Leu Phe Leu Leu Pro Ser Ile Cys

<213≻ Homo sapiens

<400> 63

1				5					10					15	
Ser	Ser	Asn	Ser	Thr	Gly	Val	Leu	Glu	Ala	Ala	Asn	Asn	Ser	Leu	Val
			20	•			•	25					30		
Val	Thr	Thr	Thr	Lys	Pro	Ser	Ile	Thr	Thr	Pro	Asn	Thr	Glu	Ser	Leu
		35					40					45			
Gln	Lys	Asn	Val	Val	Thr	Pro	Thr	Thr	Gly	Thr	Thr	Pro	Lys	Gly	Thr
	50					55					60				
Ile	Thr	Asn	Glu	Leu	Leu	Lys	Met	Ser	Leu	Met	Ser	Thr	Ala	Thr	Phe
65					70					75					80
Leu	Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg
				85					90					95	
Lys	Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu
			100					105					110)	
Pro	Asn	Ala	Val	Ser	Thr	Leu	Gln	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr
		115			•		120					125			
Gln	Ser	Ser	Ile	Lys	Thr	Thr	Glu	Ile	Pro	Gly	Ser	Val	Leu	Gln	Pro
	130)				135					140)			
Asp	Ala	Ser	Pro	Ser	Lys	Thr	G1y	Thr	Leu	Thr	Ser	Ile	Pro	Va]	Thr
145	;				150					155	i				160
Ile	Pro	Glı	ı Asr	n Thr	Ser	Gln	Ser	Gln	Val	Ile	Gly	Thi	- Glu	ı Gly	Gly
				165	5				170)				179	5
Lys	s Ası	n Ala	a Sei	r Thi	: Ser	Ala	Thr	Ser	Arg	Ser	Туз	r Sei	Se:	r Ile	e Ile
			180	0				185	5				19	0	
Leu	ı Pro	o Va	l Va	1 Ile	e Ala	Leu	ı Ile	e Val	Ile	e Thi	r Le	u Se	r Va	1 Ph	e Val
		19	5				200)				20	5		

143/307

Leu Val Gly Leu Tyr Arg Met Cys Trp Lys Ala Asp Pro Gly Thr Pro Glu Asn Gly Asn Asp Gln Pro Gln Ser Asp Lys Glu Ser Val Lys Leu Leu Thr Val Lys Thr Ile Ser His Glu Ser Gly Glu His Ser Ala Gln Gly Lys Thr Lys Asn <210> 64 <211> 222 <212> PRT <213> Homo sapiens <400> 64 Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala Glu Leu Cys Gln Pro Gly Ala Glu Asn Ala Phe Lys Val Arg Leu Ser Ile Arg Thr Ala Leu Gly Asp Lys Ala Tyr Ala Trp Asp Thr Asn Glu Glu Tyr Leu Phe Lys Ala Met Val Ala Phe Ser Met Arg Lys Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His Val Leu Leu Cys Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val Thr Asp Pro Ser Lys Asn His Thr Leu

144/307

Pro Ala Val Glu Val Gln Ser Ala Ile Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn Asp Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro Met Asp Pro Ser Val Pro Ile Trp Ile Ile Ile Phe Gly Val Ile Phe Cys Ile Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly Ile Trp Gln Arg Arg Arg Lys Asn Lys Glu Pro Ser Glu Val Asp Asp Ala Glu Asp Lys Cys Glu Asn Met Ile Thr Ile Glu Asn Gly Ile Pro Ser Asp Pro Leu Asp Met Lys Gly Gly His Ile Asn Asp Ala Phe Met Thr Glu Asp Glu Arg Leu Thr Pro Leu <210> 65 <211> 183 <212> PRT <213> Homo sapiens <400> 65

Met Gly Val Arg Val His Val Val Ala Ala Ser Ala Leu Leu Tyr Phe

145/307

Ile	Leu	Leu	Ser	Gly	Thr	Arg	Cys	Glu	Glu	Asn	Cys	Gly	Asn	Pro	Glu
			20					25					30		
His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Tyr	Ile	Trp	Leu	Leu
		35					40					45			
Val	Val	Ile	Gly	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Leu	Thr	Ser	Leu	Cys
	50					55					60				
Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	Gln	Asn	Gly	Glu	Asp	Gly	Gly
65					70					75					80
Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	Ala	Phe	Asp	His	Asp	Ser	Thr
				85					90					95	
Leu	Gln	Ser	Thr	Ile	Thr	Ser	Leu	Gln	Ser	Val	Phe	Gly	Pro	Ala	Ala
			100					105					110		
Arg	Arg	Ile	Leu	Ala	Val	Ala	His	Ser	His	Ser	Ser	Leu	Gly	Gln	Leu
		115					120					125			
Pro	Ser	Ser	Leu	Asp	Thr	Leu	Pro	Gly	Tyr	Glu	Glu	Ala	Leu	His	Met
	130					135					140				
Ser	Arg	Phe	Thr	Val	Ala	Met	Cys	Gly	Gln	Lys	Ala	Pro	Asp	Leu	Pro
145	;				150	ı				155	;				160
Pro	Val	Pro	Glu	Glu	Lys	Gln	Leu	Pro	Pro	Thr	Glu	Lys	Glu	Ser	Thr
				165					170)				175	ı
Arg	Ile	Val	Asp	Ser	Trp	Asn	1								
			180)											

⟨210⟩ 66

⟨211⟩ 262

<212	:> PR	T													
<213	3> Ho	omo s	apie	ens											
<400	> 66	i												•	
Met	Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	Glu	Asn
1				5					10					15	
Lys	Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn
			20					25					30		
Tyr	Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys
		35					40					45			
Glu	Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly
	50					55					60				
Ser	Gly	Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile
65					70		•			75	•				80
Pro	Tyr	Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val
				85					90					95	
Phe	Leu	Ala	Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	Val	Phe
			100					105					110		
Phe	Leu	Phe	Pro	Arg	Ser	Val	Ile	Val	Gln	Pro	Ala	Gly	Leu	Asn	Ser
		115					120					125			
Ser	Thr	Val	Ala	Phe	Asp	Glu	Ala	Asp	Ile	Tyr	Leu	Asn	Ile	Thr	Asn
	130					135					140				
Ile	Leu	Asn	Ile	Ser	Asn	Gly	Asn	Tyr	Tyr	Pro	Ile	Met	Val	Thr	Gln
145					150					155					160
	Thr	Leu	Glu	Val	Leu	His	Leu	Ser	Leu	Val	Val	Gly	Gln	Val	Ser
				165					170					175	

147/307

Asn Asn Leu Leu His Ile Gly Pro Leu Ala Ser Glu Gln Met Phe Tyr Ala Val Ala Thr Lys Ile Arg Asp Glu Asn Thr Tyr Lys Ile Cys Thr Trp Leu Glu Ile Lys Val His His Val Leu Leu His Ile Gln Gly Thr Leu Thr Cys Ser Tyr Leu Ser His Ser Glu Gln Leu Val Phe Gln Ser Tyr Glu Tyr Val Asp Cys Arg Gly Asn Ala Ser Val Pro His Gln Leu Thr Pro His Pro Pro <210> 67 <211> 168 <212> PRT <213> Homo sapiens <400> 67 Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp Gly Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Lys Asp Ala Pro Ser Asn Cys Val Val Tyr Pro Ser Ser Ser Gln Glu Ser Glu Asn Ile Thr Ala Ala Ala Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys

	50					55					60				
Leu	Pro	Leu	Ile	Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	G1n	Ala	Ala	Ser
65					70					75					80
Asn	Arg	Arg	Ala	Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly
				85					90					95	
Ile	Glu	Asn	Pro	Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	Ile	Pro
			100					105					110		
Glu	Ala	Lys	Val	Arg	His	Pro	Leu	Ser	Tyr	Val	Ala	Gln	Arg	Gln	Pro
		115					120					125			
Ser	Glu	Ser	Gly	Arg	His	Leu	Leu	Ser	Glu	Pro	Ser	Thr	Pro	Leu	Ser
	130					135					140				
Pro	Pro	Gly	Pro	Gly	Asp	Val	Phe	Phe	Pro	Ser	Leu	Asp	Pro	Val	Pro
145					150					155					160
Asp	Ser	Pro	Asn	Phe	Glu	Val	Ile								
				165											
<21	0> 6	8													
<21	1> 2	43													
<21	2> P	RT													
<21	.3> H	omo	sapi	ens											
<40	0> 6	8											•		
Met	Ser	Ser	Gly	Thr	Glu	Leu	Leu	Trp	Pro	Gly	Ala	Ala	Leu	Leu	Va]
1	L			5	;				10)				15	
Leu	ı Let	ı Gly	v Val	Ala	Ala	Ser	Leu	Cys	: Val	Arg	Cys	Ser	r Arg	Pro	G1
			20					25					30		

		A	C	C1	T	T1 -	T	Gl n	Gln	Aro	Ser	Leu	Arg	Glu	Asp
Ala	Lys		ser	GIU	Lys	TTE		ATII	0111	ın ğ	501		6		
		35				•	40					45			
Gln	Gl n	Ser	Phe	Thr	Gly	Ser	Arg	Thr	Tyr	Ser	Leu	Val	Gly	Gln	Ala
	50					55					60				
Trp	Pro	Gly	Pro	Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu
65					70					75					80
Leu	G1n	Phe	Tyr	Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln
				85					90					95	
Asn	Phe	Ser	Lys	Gly	Ser	Arg	His	Gly	Ser	Glu	Glu	Ala	Tyr	Ile	Asp
			100)				105	;				110)	
Pro	Ile	Ala	a Met	: Glu	ı Tyr	Туз	- Asr	ı Trp	Gly	Arg	, Phe	e Ser	Lys	Pro	Pro
		115					120					128			
Glu	ı Ast			o Ala	a Asr	ı Sei	r Tyi	r Glu	ı Ası	n Val	L Lei	ı Ile	e Cys	Lys	s Gln
	130		•			13					14				
Lvs			r Gl	u Thi	r Gly	y Al:	a Gl	n Gl	n Gl	u Gl	y Il	e Gl	y G1:	y Lei	ı Cys
14					150					15					160
			_ 1_	5.			rio	n A1	a le	n Lv	s Th	r Gl	v Pr	o Th	r Ser
Ar	g GI	y AS	рге			u oe	1 20	u					•	17	
				16					17		01	01	C.		
G1	y Le	u Cy	s Pr	o Se	r Al	a Se	r Pr	o Gl	u Gl	u As	p Gl	u G1			u Asp
			18	30				18	5				19	0	
Ту	r Gl	n As	sn Se	er Al	a Se	r II	e Hi	is G1	n Tr	rp Ar	g G	lu Se	er Ar	g Ly	's Val
		19	95				20	00				20)5		
Ме	et Gl	y G	ln L	eu G	ln Ar	g G	lu A	la Se	er Pi	ro G	ly P	ro Va	al G	ly Se	er Pr
	21	10				2	15				2	20			
A .	C1	ı c	1., A	en G	1 v ቤ	ln P	ro A	sp T	vr V:	al A	sn G	ly G	lu ·Va	al A	la Al

150/307

Thr Glu Ala <210> 69 <211> 428 <212> PRT <213> Homo sapiens <400> 69 Met Ala Arg Ser Leu Cys Pro Gly Ala Trp Leu Arg Lys Pro Tyr Tyr Leu Gln Ala Arg Phe Ser Tyr Val Arg Met Lys Tyr Leu Phe Phe Ser Trp Leu Val Val Phe Val Gly Ser Trp Ile Ile Tyr Val Gln Tyr Ser Thr Tyr Thr Glu Leu Cys Arg Gly Lys Asp Cys Lys Lys Ile Ile Cys Asp Lys Tyr Lys Thr Gly Val Ile Asp Gly Pro Ala Cys Asn Ser Leu Cys Val Thr Glu Thr Leu Tyr Phe Gly Lys Cys Leu Ser Thr Lys Pro Asn Asn Gln Met Tyr Leu Gly Ile Trp Asp Asn Leu Pro Gly Val Val

Lys Cys Gln Met Glu Gln Ala Leu His Leu Asp Phe Gly Thr Glu Leu

Glu	Pro	Arg	Lys	Glu	Ile	Val	Leu	Phe	Asp	Lys	Pro	Thr	Arg	Gly	Thr
	130					135					140				
Thr	Val	Gln	Lys	Phe	Lys	Glu	Met	Val	Tyr	Ser	Leu	Phe	Lys	Ala	Lys
145					150					155					160
Leu	Gly	Asp	Gln	Gly	Asn	Leu	Ser	Glu	Leu	Val	Asn	Leu	Ile	Leu	Thr
				165					170					175	
Val	Ala	Asp	Gly	Asp	Lys	Asp	Gly	Gln	Val	Ser	Leu	Gly	Glu	Ala	Lys
			180					185					190		
Ser	Ala	Trp	Ala	Leu	Leu	Gln	Leu	Asn	Glu	Phe	Leu	Leu	Met	Val	Ile
		195					200					205			
Leu	Gln	Asp	Lys	Glu	His	Thr	Pro	Lys	Leu	Met	Gly	Phe	Cys	Gly	Asp
	210		•			215					220				
Leu	Tyr	Val	Met	Glu	Ser	Val	Glu	Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser
225					230					235					240
Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser
				245					250					255	
Met	Asp	G1n	Leu	Phe	Thr	Pro	Ser	Trp	Pro	Arg	Lys	Ala	Lys	Ile	Ala
			260)				265					270)	
Ile	Gly	Leu	Leu	Glu	Phe	Val	Glu	Asp	Val	Phe	His	Gly	Pro	Tyr	Gly
		275	j				280)				285	5		
Asr	Phe	Leu	ı Met	t Cys	: Asp	Thr	: Ser	Ala	Lys	Asn	Leu	Gly	/ Tyr	Asr	Asp
	290)				295	5				300)			
Lys	з Туг	Asp	Leu	ı Lys	Met	: Va]	l Asp	Met	: Arg	, Lys	: Ile	e Val	l Pro	Glu	ı Thr
305	5				310)				315	5				320
Ası	ı Lei	ı Lys	s Glu	u Lei	ı Ile	E Ly:	s Asp	Ar	g His	s Cys	s Glu	ı Se	r Ası	Lei	ı Asp

152/307

Cys Val Tyr Gly Thr Asp Cys Arg Thr Ser Cys Asp Gln Ser Thr Met Lys Cys Thr Ser Glu Val Ile Gln Pro Asn Leu Ala Lys Ala Cys Gln Leu Leu Lys Asp Tyr Leu Leu Arg Gly Ala Pro Ser Glu Ile Arg Glu Glu Leu Glu Lys Gln Leu Tyr Ser Cys Ile Ala Leu Lys Val Thr Ala Asn Gln Met Glu Met Glu His Ser Leu Ile Leu Asn Asn Leu Lys Thr Leu Leu Trp Lys Lys Ile Ser Tyr Thr Asn Asp Ser <210> 70 <211> 283 <212> PRT <213> Homo sapiens <400> 70 Met Pro His Ser Ser Leu His Pro Ser Ile Pro Cys Pro Arg Gly His Gly Ala Gln Lys Ala Ala Leu Val Leu Leu Ser Ala Cys Leu Val Thr Leu Trp Gly Leu Gly Glu Pro Pro Glu His Thr Leu Arg Tyr Leu Val

Leu	His	Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys
	50					55					60				
Ser	Leu	Ala	Glu	Glu	Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser
65					70					75					80
Tyr	Trp	Arg	Thr	Val	Arg	Ala	Cys	Leu	Gly	Cys	Pro	Leu	Arg	Arg	Gly
				85					90					95	
Ala	Leu	Leu	Leu	Leu	Ser	Ile	Tyr	Phe	Tyr	Tyr	Ser	Leu	Pro	Asn	Ala
			100					105					110		
Val	Gly	Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	Gly	Leu	Ser	Gln
		115					120					125			
Ala	Leu	Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile
	130					135					140				
Ser	Ala	Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala
145					150					155					160
Trp	Ser	Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	G1n
				165					170					175	
Ala	Arg	Ile	Arg	Thr	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly
			180					185					190		
Ala	Val	Ser	Gln	Arg	Leu	Tyr	Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val
		195					200					205			
Pro	Asp	Asn	Leu	Ser	Met	Ala	Asp	Pro	Asn	Ile	Arg	Phe	Leu	Asp	Lys
	210					215					220				
Leu	Pro	Gln	Gln	Thr	Ala	Asp	Arg	Ala	Gly	Ile	Lys	Asp	Arg	Val	Tyr
225					230					235					240
Ser	Asn	Ser	Ile	Tyr	Glu	Leu	Leu	Glu	Asn	Glv	Gln	Arg	Asn	Leu	G1n

154/307

245 250 255

Met Thr Ala Ala Ser Arg Cys Pro Arg Arg Phe Ser Gly Thr Cys Gly

260 265

270

Arg Arg Lys Arg Leu Leu Trp Ala Ala

275 280

<210> 71

<211> 1167

<212> DNA

<213> Homo sapiens

<400> 71

atggatagag gggagaaaat acagctcaag agagtgtttg gatattggtg gggcacaagt tttttgctta ttaatatcat tggtgcagga atttttgtgt cccccaaagg tgtgttggca 120 180 tactcttgca tgaacgtggg agtctccctg tgcgtttggg ctggctgtgc catactggcc 240 atgacatcaa ctctttgctc tgcagagata agtataagct tcccatgcag tggagctcaa 300 tactattttc tcaagagata ctttggctcc acggttgctt ttttgaatct ctggacatcc 360 ttgtttctgg ggtcaggggt agttgctggc caagctctgc tccttgctga gtacagcatc cagcettttt ttcccagetg etetgteeca aagetgeeta agaaatgtet ggeattggee 420 atgttgtgga ttgtaggaat tctgacttct cgtggtgtga aagaagtgac ttggcttcag 480 atagctagct cagtgctgaa agtgtccata cttagcttca tttccctaac tggagtagtg 540 ttcctgataa gagggaaaaa ggagaatgta gaacgatttc agaatgcttt tgatgctgaa 600 cttccagata tctctcacct tatacaagcc atcttccaag gatattttgc atattcaggg 660 720 gagctgaaga agcccagaac aacaattccc aaatgcatat ttactgcgtt acctctggtg 780 actgtagttt atttactggt taacatttcc tatctgactg ttctgacacc cagggaaatt 840 ctctcttcag atgctgtagc tatcacatgg gctgatcgag cttttccctc attagcatgg

155/307

attatgcctt	ttgctatttc	tacctcatta	tttagcaacc	ttctgatttc	tatatttaaa	900
tcttcgagac	caatatatct	tgcaagccaa	gagggccagc	tgcctttgct	atttaataca	. 960
cttaatagtc	actcttctcc	atttacagct	gtgctactac	ttgtcacttt	gggatccctt	1020
gcaattatct	taacaagtct	aattgatttg	ataaactata	ttttttcac	gggttcatta	1080
tggtctatat	tattaatgat	aggaatacta	aggcggagat	accaggaacc	caatctatct	1140
ataccttata	aggtaaaatt	ggatttc				1167

<210> 72

<211> 1044

<212> DNA

<213> Homo sapiens

<400> 72

60 atggcggcga ctctgggacc ccttgggtcg tggcagcagt ggcggcgatg tttgtcggct cgggatgggt ccaggatgtt actccttctt cttttgttgg ggtctgggca ggggccacag 120 180 caagtcgggg cgggtcaaac gttcgagtac ttgaaacggg agcactcgct gtcgaagccc 240 taccagggtg tgggcacagg cagttcctca ctgtggaatc tgatgggcaa tgccatggtg 300 atgacccagt atatccgcct taccccagat atgcaaagta aacagggtgc cttgtggaac 360 cgggtgccat gtttcctgag agactgggag ttgcaggtgc acttcaaaat ccatggacaa 420 ggaaagaaga atctgcatgg ggatggcttg gcaatctggt acacaaagga tcggatgcag 480 ccagggcctg tgtttggaaa catggacaaa tttgtggggc tgggagtatt tgtagacacc 540 taccccaatg aggagaagca gcaagagcgg gtattcccct acatctcagc catggtgaac 600 aacggctccc tcagctatga tcatgagcgg gatgggcggc ctacagagct gggaggctgc 660 acagccattg teegcaatet teattacgae acetteetgg tgattegeta egteaagagg 720 cattigacga taatgatgga tattgatggc aagcatgagt ggagggactg cattgaagtg 780 cccggagtcc gcctgccccg cggctactac ttcggcacct cctccatcac tggggatctc

156/307

tcagataatc	atgatgtcat	ttccttgaag	ttgtttgaac	tgacagtgga	gagaacccca	840
gaagaggaaa	agctccatcg	agatgtgttc	ttgccctcag	tggacaatat	gaagctgcct	900
gagatgacag	ctccactgcc	gccctgagt	ggcctggccc	tcttcctcat	cgtcttttc	960
tccctggtgt	tttctgtatt	tgccatagtc	attggtatca	tactctacaa	caaatggcag	1020
gaacagagcc	gaaagcgctt	ctac .				1044

⟨210⟩ 73

<211> 783

<212> DNA

<213> Homo sapiens

<400> 73

atggaactgc ttcaagtgac cattctttt cttctgccca gtatttgcag cagtaacagc 60 acaggtgttt tagaggcagc taataattca cttgttgtta ctacaacaaa accatctata 120 180 acaacaccaa acacagaatc attacagaaa aatgttgtca caccaacaac tggaacaact 240 cctaaaggaa caatcaccaa tgaattactt aaaatgtctc tgatgtcaac agctactttt 300 ttaacaagta aagatgaagg attgaaagcc acaaccactg atgtcaggaa gaatgactcc 360 atcatttcaa acgtaacagt aacaagtgtt acacttccaa atgctgtttc aacattacaa 420 agttccaaac ccaagactga aactcagagt tcaattaaaa caacagaaat accaggtagt 480 gttctacaac cagatgcatc accttctaaa actggtacat taacctcaat accagttaca attccagaaa acacctcaca gtctcaagta ataggcactg agggtggaaa aaatgcaagc 540 600 acttcagcaa ccagccggtc ttattccagt attattttgc cggtggttat tgctttgatt 660 gtaataacac tttcagtatt tgttctggtg ggtttgtacc gaatgtgctg gaaggcagat 720 ccgggcacac cagaaaatgg aaatgatcaa cctcagtctg ataaagagag cgtgaagctt 780 cttaccgtta agacaatttc tcatgagtct ggtgagcact ctgcacaagg aaaaaccaag 783 aac

157/307

<210> 74						
<211> 666	•					
<212> DNA						
<213> Homo	sapiens					
<400> 74						
atgttgtggc	tgctcttttt	tctggtgact	gccattcatg	ctgaactctg	tcaaccaggt	60
gcagaaaatg	cttttaaagt	gagacttagt	atcagaacag	ctctgggaga	taaagcatat	120
gcctgggata	ccaatgaaga	atacctcttc	aaagcgatgg	tagctttctc	catgagaaaa	180
gttcccaaca	gagaagcaac	agaaatttcc	catgtcctac	tttgcaatgt	aacccagagg	240
gtatcattct	ggtttgtggt	tacagaccct	tcaaaaaatc	acacccttcc	tgctgttgag	300
gtgcaatcag	ccataagaat	gaacaagaac	cggatcaaca	atgccttctt	tctaaatgac	360
caaactctgg	aatttttaaa	aatcccttcc	acacttgcac	cacccatgga	cccatctgtg	420
cccatctgga	ttattatatt	tggtgtgata	ttttgcatca	tcatagttgc	aattgcacta	480
ctgattttat	cagggatctg	gcaacgtaga	agaaagaaca	aagaaccatc	tgaagtggat	540
gacgctgaag	ataagtgtga	aaacatgatc	acaattgaaa	atggcatccc	ctctgatccc	600
ctggacatga	agggagggca	tattaatgat	gccttcatga	cagaggatga	gaggctcacc	660
cctctc						666

⟨210⟩ 75

.

⟨211⟩ 549

<212> DNA

⟨213⟩ Homo sapiens

⟨400⟩ 75

atgggagtcc gagttcatgt cgtggcggcc tcagccctgc tgtatttcat cctgctttct

158/307

120 gggacgagat gtgaggaaaa ctgtggtaat cctgaacatt gcctgaccac agactgggta 180 catctctggt atatatggtt gctagtggta attggcgcgc tgcttctcct gtgtggcctg 240 acgtccctgt gcttccgctg ctgctgtctg agccgccagc aaaatgggga agatgggggc 300 ccaccacct gtgaagtgac cgtcattgct ttcgatcacg acagcactct ccagagcact 360 atcacatctc tgcagtcggt gtttggccct gcagctcgga ggatcctggc tgtggctcac 420 tcccacagct ccctgggcca gctgccctcc tctttggaca ccctcccagg gtatgaagaa 480 gctcttcaca tgagtcgctt cacagtagcc atgtgcgggc agaaagcacc tgatctaccc 540 ccagtacctg aagaaaagca gctgcctcca acagagaagg agtcgactcg aatagttgac 549 tcttggaac

<210> 76

<211> 786

<212> DNA

<213> Homo sapiens

⟨400⟩ 76

60 atgggtaaga cgttttccca gctgggctct tggcgggagg atgagaacaa gtcaatcctg 120 tcctccaaac cagccattgg cagcaaggct gtcaactact ccagcaccgg tagcagcaag tctttttgtt cctgtgtgcc ttgtgaagga actgctgatg ccagcttcgt gacttgtccc 180 240 acctgccagg gcagtggcaa gattccccaa gagctggaga agcagttggt ggctctcatt 300 ccctatgggg accagaggct gaagcccaag cacacgaagc tctttgtgtt cctggccgtg 360 ctcatctgcc tggtgacctc ctccttcatc gtctttttcc tgtttccccg gtccgtcatt 420 gtgcagcctg caggcctcaa ctcctccaca gtggcctttg atgaggctga tatctacctc 480 aacataacga atatcttaaa catctccaat ggcaactact accccattat ggtgacacag 540 ctgaccctcg aggttctgca cctgtccctc gtggtggggc aggtttccaa caaccttctc 600 ctacacattg gccctttggc cagtgaacag atgttttacg cagtagctac caagatacgg

159/307

gatgaaaaca	catacaaaat	ctgtacctgg	ctggaaatca	aagtccacca	tgtgcttttg	660
cacatccagg	gcaccctgac	ctgttcatac	ctgagccatt	cagagcagct	ggtctttcag	720
agctatgaat	atgtggactg	ccgaggaaac	gcatctgtgc	cccaccagct	gacccctcac	780
ccacca						786

<210> 77

<211> 504

<212> DNA

<213> Homo sapiens

<400> 77

atgggcgtcc ccacggccct ggaggccggc agctggcgct ggggatccct gctcttcgct 60 120 ctetteetgg etgegteet aggeaaagat geaceateea aetgtgtggt gtaceeatee 180 tcctcccagg agagtgaaaa catcacggct gcagccctgg ctacgggtgc ctgcatcgta 240 ggaatcetet geeteeect cateetgete etggtetaca ageaaaggea ggeageetee 300 aaccgccgtg cccaggagct ggtgcggatg gacagcaaca ttcaagggat tgaaaacccc 360 ggctttgaag cctcaccacc tgcccagggg atacccgagg ccaaagtcag gcacccctg 420 tectatgtgg cecageggea geettetgag tetgggegge atetgettte ggageceage accecctgt ctcctccagg ccccggagac gtcttcttcc catccctgga ccctgtccct 480 504 gactetecaa actttgaggt cate

⟨210⟩ 78

<211> 729

<212> DNA

<213> Homo sapiens

⟨400⟩ 78

160/307

60	gttgggggtg	tgctggtgct	ggagcagcgc	gctgtggccc	ggactgaact	atgagctcgg
120	gaaaatctac	agaggtcaga	ccaggtgcaa	ctgctcacgc	tgtgtgtgcg	gcagccagtc
180	ctactccttg	ggtcccggac	agctttacgg	ggaccaacag	gtctgcgtga	cagcagagaa
240	ggacaagctg	ccacaaggaa	gacatggcac	acccctggcg	catggccagg	gtcgggcagg
300	cttcagcaaa	ggtaccagaa	gcatcttcca	ggaggatcca	accccagcct	ttgcaattct
360	gtattacaac	ttgccatgga	atagacccca	ggaagcctac	acgggtcgga	ggaagcagac
420	gaatgtgctc	attcctacga	gatgatgcca	cccagaagat	tctcgaagcc	tgggggcggt
480	tggcctctgc	agggcatagg	gcccagcagg	agagacaggt	agaaaaccac	atttgcaagc
540	tctctgtccc	ccacttctgg	aagactggcc	actggccctg	tcagcctgtc	agaggggacc
600	atccatccat	agaactcagc	gaggattatc	tgaggaatct	cggaagaaga	tctgcctccc
660	ccctggcccg	gagaagcatc	caactccaga	ggtcatgggg	agtccaggaa	cagtggcgcg
720	ggtggcagcc	tgaatgggga	ccggattacg	ggacggggaa	cagacgagga	gtgggaagcc
729						acagaagcc

<210> 79

<211> 1284

<212> DNA

<213> Homo sapiens

<400> 79

atggcgagga gtctctgtcc gggggcctgg ctaaggaaac cctattacct ccaggctcgc 60
ttctcatatg tgcggatgaa atatctttc ttttcctggt tagtggtttt tgttggaagc 120
tggattatat atgtgcagta ttctacctat acagaattat gcagaggaaa ggactgtaag 180
aaaataatat gtgacaagta caagactgga gttattgatg ggcctgcatg taacagcctt 240
tgtgttacag aaactctta ctttggaaaa tgttatcca ccaagcccaa caatcagatg 300
tatttaggga tttgggataa tctaccaggt gttgtgaaat gtcaaatgga acaagcgctt 360

161/307

420	tgataagcca	tagtgctatt	agaaaagaaa	attggaacca	ttggaactga	catcttgatt
480	taaggcaaaa	atagtctctt	gaaatggtct	aaaatttaaa	ctactgtaca	actagaggaa
540	ggctgatgga	tcttgacggt	gttaatctca	ctctgaactg	aaggaaacct	ttgggtgacc
600	tcttcaactg	catgggcact	gcaaagtcgg	cttgggagaa	gccaggtttc	gacaaagatg
660	attaatggga	ataccccaa	gataaagaac	gatacttcaa	ttctcatggt	aatgaatttc
720	tggaataagc	cctctcttta	gttgaatata	gatggaaagt	acctctatgt	ttctgtggtg
780	ggatcagctg	gaagaagcat	tctgggttca	ttttattcca	tcattgaact	cttccttggg
840	atttgtggaa	gacttctaga	atagccatag	aaaggccaaa	catggccaag	ttcacaccat
900	caaaaaccta	atactagtgc	ctcatgtgcg	cggaaatttc	atggccccta	gatgttttcc
960	gccagagaca	gaaaaattgt	gtggatatga	tttgaaaatg	ataagtatga	ggatataatg
1020	tgtctatggc	atttggactg	tgtgagtctg	ggatcgtcac	aacttattaa	aacctgaaag
1080	agtgatacaa	gtacttcaga	acaatgaagt	tgatcagagt	gaactagctg	acagattgta
1140	tgctccaagt	tactgcgtgg	aaagactacc	tcagttactc	caaaagcttg	ccaaacttgg
1200	agtcacagca	ttgctctcaa	tattcttgta	aaagcagctt	aagaattaga	gaaattcgtg
1260	attgtggaag	taaaaacatt	ctaaataacc	ttctttgata	aaatggaaca	aatcaaatgg
1284				ctct	acactaatga	aaaattteet

<210> 80

<211> 849

<212> DNA

<213> Homo sapiens

<400> 80

atgccccact ccagcctgca tccatccatc ccgtgtccca ggggtcacgg ggcccagaag 60 gcagccttgg ttctgctgag tgcctgcctg gtgacccttt gggggctagg agagccacca 120 gagcacactc tccggtacct ggtgctccac ctagcctccc tgcagctggg actgctgtta 180

162/307

aacggggtct	gcagcctggc	tgaggagctg	caccacatcc	actccaggta	ccggggcagc	240
tactggagga	ctgtgcgggc	ctgcctgggc	tgcccctcc	gccgtggggc	cctgttgctg	300
ctgtccatct	atttctacta	ctecctcéca	aatgcggtcg	gcccgccctt	cacttggatg	360
cttgccctcc	tgggcctctc	gcaggcactg	aacatcctcc	tgggcctcaa	gggcctggcc	420
ccagctgaga	tctctgcagt	gtgtgaaaaa	gggaatttca	acgtggccca	tgggctggca	480
tggtcatatt	acatcggata	tctgcggctg	atcctgccag	agctccaggc	ccggattcga	540
acttacaatc	agcattacaa	caacctgcta	cggggtgcag	tgagccagcg	gctgtatatt	600
ctcctcccat	tggactgtgg	ggtgcctgat	aacctgagta	tggctgaccc	caacattcgc	660
ttcctggata	aactgcccca	gcagaccgct	gaccgtgctg	gcatcaagga	tcgggtttac	720
agcaacagca	tctatgagct	tctggagaac	gggcagcgga	acctgcagat	gacagcagct	780
tctcgctgtc	ccaggaggtt	ctccggcacc	tgcggcagga	ggaaaaggaa	gaggttactg	840
tgggcagct					•	849

⟨210⟩ 81

⟨211⟩ 1376

<212> DNA

<213≻ Homo sapiens

⟨220⟩

<221> CDS

⟨222⟩ (100)...(1269)

<400> 81

attittatti caggaatcca tcaacatcci ttgcagciac ataggcagga aaatciagaa 60
attgtaatti ataiagaatt ttaaaactci tcaattaca atg gat aga ggg gag 114
Met Asp Arg Gly Glu

1

aaa	ata	cag	ctc	aag	aga	gtg	ttt	gga	tat	tgg	tgg	ggc	aca	agt	ttt	162
Lys	Ile	Gln	Leu	Lys	Arg	Val	Phe	Gly	Tyr	Trp	Trp	Gly	Thr	Ser	Phe	
				10					15					20		
ttg	ctt	att	aat	atc	att	ggt	gca	gga	att	ttt	gtg	tcc	ccc	aaa	ggt	210
Leu	Leu	Ile	Asn	Ile	Ile	Gly	Ala	Gly	Ile	Phe	Val	Ser	Pro	Lys	Gly	
			25					30					35			·
gtg	ttg	gca	tac	tct	tgc	atg	aac	gtg	gga	gtc	tcc	ctg	tgc	gtt	tgg	258
Val	Leu	Ala	Tyr	Ser	Cys	Met	Asn	Val	Gly	Val	Ser	Leu	Cys	Val	Trp	
		40					45					50				
gct	ggc	tgt	gcc	ata	ctg	gcc	atg	aca	tca	act	ctt	tgc	tct	gca	gag	306
Ala	Gly	Cys	Ala	Ile	Leu	Ala	Met	Thr	Ser	Thr	Leu	Cys	Ser	Ala	Glu	
	5,5					60		•			65					
ata	agt	ata	agc	ttc	cca	tgc	agt	gga	gct	caa	tac	tat	ttt	ctc	aag	354
Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln	Tyr	Tyr	Phe	Leu	Lys	
70					75					80					85	
aga	tac	ttt	ggc	tcc	acg	gtt	gct	ttt	ttg	aat	ctc	tgg	aca	tcc	ttg	402
Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn	Leu	Trp	Thr	Ser	Leu	
				90					95					100		
ttt	ctg	ggg	tca	ggg	gta	gtt	gct	ggc	caa	gct	ctg	ctc	ctt	gct	gag	450
Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala	Leu	Leu	Leu	Ala	Glu	
			105					110	•				115			
tac	agc	atc	cag	cct	ttt	ttt	ccc	agc	tgc	tct	gtc	сса	aag	ctg	cct	498
Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser	Val	Pro	Lys	Leu	Pro	
		120					125					130				
aag	aaa	tgt	ctg	gca	ttg	gcc	atg	ttg	tgg	att	gta	gga	att	ctg	act	546

Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile	Val	Gly	Ile	Leu	Thr	
	135					140					145					
tct	cgť	ggt	gtg	aaa	gaa	gtg	act	tgg	ctt	cag	ata	gct	agc	tca	gtg	594
Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln	Ile	Ala	Ser	Ser	Val	
150					155					160					165	
ctg	aaa	gtg	tcc	ata	ctt	agc	ttc	att	tcc	cta	act	gga	gta	gtg	ttc	642
Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu	Thr	Gly	Val	Val	Phe	
				170					175					180		
ctg	ata	aga	ggg	aaa	aag	gag	aat	gta	gaa	cga	ttt	cag	aat	gct	ttt	690
Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg	Phe	Gln	Asn	Ala	Phe	
			185					190					195			
gat	gct	gaa	ctt	cca	gat	atc	tct	cac	ctt	ata	caa	gcc	atc	ttc	caa	738
Asp	Ala	Glu	Leu	Pro	Asp	Ile	Ser	His	Leu	Ile	Gln	Ala	Ile	Phe	Gln	
		200			•		205					210				
gga	tat	ttt	gca	tat	tca	ggg	gag	ctg	aag	aag	ccc	aga	aca	aca	att	786
Gly	Tyr	Phe	Ala	Tyr	Ser	Gly	Glu	Leu	Lys	Lys	Pro	Arg	Thr	Thr	Ile	
	215					220					225					
ccc	aaa	tgc	ata	ttt	act	gcg	tta	cct	ctg	gtg	act	gta	gtt	tat	tta	834
Pro	Lys	Cys	Ile	Phe	Thr	Ala	Leu	Pro	Leu	Val	Thr	Val	Val	Tyr	Leu	
230					235					240					245	
ctg	gtt	aac	att	tcc	tat	ctg	act	gtt	ctg	aca	ccc	agg	gaa	att	ctc	882
Leu	Val	Asn	Ile	Ser	Tyr	Leu	Thr	Val	Leu	Thr	Pro	Arg	Glu	Ile	Leu	
				250					255					260		
tct	tca	gat	gct	gta	gct	atc	aca	tgg	gct	gat	cga	gct	ttt	ccc	tca	930
Ser	Ser	Asp	Ala	Val	Ala	Ile	Thr	Trp	Ala	Asp	Arg	Ala	Phe	Pro	Ser	

			265					270					275			
tta	gca	tgg	att	atg	cct	ttt	gct	att	tct	acc	tca	tta	ttt	agc	aac	978
Leu	Ala	Trp	Ile	Met	Pro	Phe	Ala	Ile	Ser-	Thr	Ser	Leu	Phe	Ser	Asn	
		280					285					290				
ctt	ctg	att	tct	ata	ttt	aaa	tct	tcg	aga	cca	ata	tat	ctt	gca	agc	1026
Leu	Leu	Ile	Ser	Ile	Phe	Lys	Ser	Ser	Arg	Pro	Ile	Tyr	Leu	Ala	Ser	
	295					300					305					
caa	gag	ggc	cag	ctg	cct	ttg	cta	ttt	aat	aca	ctt	aat	agt	cac	tct	1074
Gln	Glu	Gly	Gln	Leu	Pro	Leu	Leu	Phe	Asn	Thr	Leu	Asn	Ser	His	Ser	
310					315					320					325	
tct	cca	ttt	aca	gct	gtg	cta	cta	ctt	gtc	act	ttg	gga	tcc	ctt	gca	1122
Ser	Pro	Phe	Thr	Ala	Val	Leu	Leu	Leu	Val	Thr	Leu	Gly	Ser	Leu	Ala	
				330					335					340		
att	atc	tta	aca	agt	cta	att	gat	ttg	ata	aac	tat	att	ttt	ttc	acg	1170
Ile	Ile	Leu	Thr	Ser	Leu	Ile	Asp	Leu	Ile	Asn	Tyr	Ile	Phe	Phe	Thr	
			345					350					355			
ggt	tca	tta	tgg	tct	ata	tta	tta	atg	ata	gga	ata	cta	agg	cgg	aga	1218
Gly	Ser	Leu	Trp	Ser	Ile	Leu	Leu	Met	Ile	Gly	Ile	Leu	Arg	Arg	Arg	
		360					365					370				
tac	cag	gaa	ccc	aat	cta	tct	ata	cct	tat	aag	gta	aaa	ttg	gat	ttc	1266
Tyr	Ģln	Glu	Pro	Asn	Leu	Ser	Ile	Pro	Tyr	Lys	Val	Lys	Leu	Asp	Phe	
	375					380					385					
taa	t tc	tttt	ctgt	gtg	aaat	aac	agat	attg	ag t	ataa	ctgt	a tt	taag	atta		1320
taa	tcag	agc	atct	ataa	gt a	gatc	ttct	g aa	tact	cagt	tac	tgtg	aaa	caca	tg	1376

<210> 82			
⟨211⟩ 2392			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> CDS			
<222> (22)(1068)			
<400> 82	•		
gaagggtcgt tggtgggaaa g	atg gcg gcg act	ctg gga ccc ctt ggg	tcg 51
	Met Ala Ala Thr	Leu Gly Pro Leu Gly	Ser
	1	5	10
tgg cag cag tgg cgg cga	tgt ttg tcg gct	cgg gat ggg tcc agg	atg 99
Trp Gln Gln Trp Arg Arg	Cys Leu Ser Ala	Arg Asp Gly Ser Arg	Met
15	20	25	
tta ctc ctt ctt ctt ttg	ttg ggg tct ggg	cag ggg cca cag caa	gtc 147
Leu Leu Leu Leu Leu	Leu Gly Ser Gly	Gln Gly Pro Gln Gln	Val
30	35	40	
ggg gcg ggt caa acg ttc	gag tac ttg aaa	cgg gag cac tcg ctg	tcg 195
Gly Ala Gly Gln Thr Phe	Glu Tyr Leu Lys	Arg Glu His Ser Leu	Ser
45	50	55	
aag ccc tac cag ggt gtg	ggc aca ggc agt	tcc tca ctg tgg aat	ctg 243
Lys Pro Tyr Gln Gly Val	Gly Thr Gly Ser	Ser Ser Leu Trp Asn	Leu
60	65	70	
atg ggc aat gcc atg gtg	atg acc cag tat	atc cgc ctt acc cca	gat 291.
Met Gly Asn Ala Met Val	Met Thr Gln Tyr	Ile Arg Leu Thr Pro	Asp

75					80					85					90	
atg	caa	agt	aaa	cag	ggt	gcc	ttg	tgg	aac	cgg	gtg	cca	tgt	ttc	ctg	339
Met	Gln	Ser	Lys	Gln	Gly	Ala	Leu	Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	
				95					100					105		
aga	gac	tgg	gag	ttg	cag	gtg	cac	ttc	aaa	atc	cat	gga	caa	gga	aag	387
Arg	Asp	Trp	Glu	Leu	Gln	Val	His	Phe	Lys	Ile	His	Gly	Gln	Gly	Lys	
			110					115					120	٠		
aag	aat	ctg	cat	ggg	gat	ggc	ttg	gca	atc	tgg	tac	aca	aag	gat	cgg .	435
Lys	Asn	Leu	His	Gly	Asp	Gly	Leu	Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	
		125					130					135				
atg	cag	cca	ggg	cct	gtg	ttt	gga	aac	atg	gac	aaa	ttt	gtg	ggg	ctg	483
Met	Gln	Pro	Gly	Pro	Val	Phe	Gly	Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	
	140					145					150					
gga	gta	ttt	gta	gac	acc	tac	ccc	aat	gag	gag	aag	cag	caa	gag	cgg	531
Gly	Val	Phe	Val	Asp	Thr	Tyr	Pro	Asn	Glu	Glu	Lys	Gln	Gln	Glu	Arg	
155					160					165					170	
gta	ttc	ccc	tac	atc	tca	gcc	atg	gtg	aac	aac	ggc	tcc	ctc	agc	tat	579
Val	Phe	Pro	Tyr	Ile	Ser	Ala	Met	Val	Asn	Asn	Gly	Ser	Leu	Ser	Tyr	
				175					180					185		
gat	cat	gag	cgg	gat	ggg	cgg	cct	aca	gag	ctg	gga	ggc	tgc	aca	gcc	627
Asp	His	Glu	Arg	Asp	Gly	Arg	Pro	Thr	Glu	Leu	Gly	Gly	Cys	Thr	Ala	
			190					195					200			
att	gtc	cgc	aat	ctt	cat	tac	gac	acc	ttc	ctg	gtg	att	cgc	tac	gtc	675
Ile	Val	Arg	Asn	Leu	His	Tyr	Asp	Thr	Phe	Leu	Val	Ile	Arg	Tyr	Val	
		205					210					215				

aag	agg	cat	ttg	acg	ata	atg	atg	gat	att	gat	ggc	aag	cat	gag	tgg	723
Lys	Arg	His	Leu	Thr	Ile	Met	Met	Asp	Ile	Asp	Gly	Lys	His	Glu	Trp	
	220					225					230					
agg	gac	tgc	att	gaa	gtg	ccc	gga	gtc	cgc	ctg	ccc	cgc	ggc	tac	tac	771
Arg	Asp	Cys	Ile	Glu	Val	Pro	Gly	Val	Arg	Leu	Pro	Ar⊄	G1.v	Tyr	Tyr	
235					240					245					250	
ttc	ggc	acc	tcc	tcc	atc	act	ggg	gat	ctc	tca	gat	aat	cat	gat	gtc	819
Phe	Gly	Thr	Ser	Ser	Ile	Thr	Gly	Asp	Leu	Ser	Asp	Asn	His	Asp	Val	
				255					260					265		
att	tcc	ttg	aag	ttg	ttt	gaa	ctg	aca	gtg	gag	aga	acc	сса	gaa	gag	867
Ile	Ser	Leu	Lys	Leu	Phe	Glu	Leu	Thr	Val	Glu	Arg	Thr	Pro	Glu	Glu	
			270					275					280	·		
gaa	aag	ctc	cat	cga	gat	gtg	ttc	ttg	ccc	tca	gtg	gac	aat	atg	aag	915
Glu	Lys	Leu	His	Arg	Asp	Val	Phe	Leu	Pro	Ser	Val	Asp	Asn	Met	Lys	
		285					290					295				
ctg	cct	gag	atg	aca	gct	cca	ctg	ccg	ccc	ctg	agt	ggc	ctg	gcc	ctc	963
Leu	Pro	Glu	Met	Thr	Ala	Pro	Leu	Pro	Pro	Leu	Ser	Gly	Leu	Ala	Leu	
	300					305					310					
ttc	ctc	atc	gtc	ttt	ttc	tcc	ctg	gtg	ttt	tct	gta	ttt	gcc	ata	gtc	1011
Phe	Leu	Ile	Val	Phe	Phe	Ser	Leu	Val	Phe	Ser	Val	Phe	Ala	Ile	Val	
315					320					325					330	
att	ggt	atc	ata	ctc	tac	aac	aaa	tgg	cag	gaa	cag	agc	cga	aag	cgc	1059
Ile	Gly	Ile	Ile	Leu	Tyr	Asn	Lys	Trp	Gln	Glu	Gln	Ser	Arg	Lys	Arg	
				335					340					345		
ttc	tac	tga	gc c	ctcc	tgct	g cc	acca	cttt	tgt	gact	gtc	accc	atga	gg		1110

169/307

Phe Tyr

tatggaagga	gcaggcactg	gcctgagcat	gcagcctgga	gagtgttctt	gtctctagca	1170
gctggttggg	gactatattc	tgtcactgga	gttttgaatg	cagggacccc	gcattcccat	1230
ggttgtgcat	ggggacatct	aactctggtc	tgggaagcca	cccaccccag	ggcaatgctg	1290
ctgtgatgtg	cctttccctg	cagtccttcc	atgtgggagc	agaggtgtga	agagaattta	1350
cgtggttgtg	atgccaaaat	cacagaacag	aatttcatag	cccaggctgc	cgtgttgttt	1410
gactcagaag	gcccttctac	ttcagttttg	aatccacaaa	gaattaaaaa	ctggtaacac	1470
cacaggcttt	ctgaccatcc	attcgttggg	ttttgcattt	gacccaaccc	tctgcctacc	1530
tgaggagctt	tctttggaaa	ccaggatgga	aacttcttcc	ctgccttacc	ttcctttcac	1590
tccattcatt	gtcctctctg	tgtgcaacct	gagctgggaa	aggcatttgg	atgcctctct	1650
gttggggcct	ggggctgcag	aacacacctg	cgtttcactg	gccttcatta	ggtggcccta	1710
gggagatggc	tttctgcttt	ggatcactgt	tccctagcat	gggtcttggg	tctattggca	1770
tgtccatggc	cttcccaatc	aagtctcttc	aggccctcag	tgaagtttgg	ctaaaggttg	1830
gtgtaaaaat	caagagaagc	ctggaagaca	tcatggatgc	catggattag	ctgtgcaact	1890
gaccagctcc	aggtttgatc	aaaccaaaag	caacatttgt	catgtggtct	gaccatgtgg	1950
agatgtttct	ggacttgcta	gagcctgctt	agctgcatgt	tttgtagtta	cgatttttgg	2010
aatcccactt	tgagtgctga	aagtgtaagg	aagctttctt	cttacacctt	gggcttggat	2070
attgcccaga	gaagaaattt	ggctttttt	ttcttaatgg	acaagagaca	gttgctgttc	2130
tcatgttcca	agtctgagag	caacagaccc	tcatcatctg	tgcctggaag	agttcactgt	2190
cattgagcag	cacagootga	gtgctggcct	ctgtcaaccc	ttattccact	gccttatttg	2250
acaaggggtt	acatgctgct	caccttactg	ccctgggatt	aaatcagtta	caggccagag	2310
tctccttgga	gggcctggaa	ctctgagtcc	tcctatgaac	ctctgtagcc	taaatgaaat	2370
tcttaaaatc	accgatggaa	cc				2392

<211	> 14	116														
<212	:> DN	ĮĄ.														
<213	> Hc	omo s	apie	ens												
<220)>															
<221	> CI	S														
<222	!> (5	55)	. (84	10)												
<400	> 83	3														
attg	tccc	ctg o	ctgo	ette	tg ga	agaaa	agaag	g ata	attga	acac	cato	ctace	ggg (cacc	atg	57
															Met	
															1	
gaa	ctg	ctt	caa	gtg	acc	att	ctt	ttt	ctt	ctg	ccc	agt	att	tgc	agc	105
Glu	Leu	Leu	Gln	Val	Thr	Ile	Leu	Phẹ	Leu	Leu	Pro	Ser	Ile	Cys	Ser	
			5					10					15			
agt	aac	agc	aca	ggt	gtt	tta	gag	gca	gct	aat	aat	tca	ctt	gtt	gtt	153
Ser	Asn	Ser	Thr	Gly	Val	Leu	Glu	Ala	Ala	Asn	Asn	Ser	Leu	Val	Val	
		20					25					30				
act	aca	aca	aaa	cca	tct	ata	aca	aca	cca	aac	aca	gaa	tca	tta	cag	201
Thr	Thr	Thr	Lys	Pro	Ser	Ile	Thr	Thr	Pro	Asn	Thr	Glu	Ser	Leu	Gln	
	35					40					45					
aaa	aat	gtt	gtc	aca	cca	aca	act	gga	aca	act	cct	aaa	gga	aca	atc	249
Lys	Asn	Val	Val	Thr	Pro	Thr	Thr	Gly	Thr	Thr	Pro	Lys	Gly	Thr	Ile	
50					55					60					65	
acc	aat	gaa	tta	ctt	aaa	atg	tct	ctg	atg	tca	aca	gct	act	ttt	tta	297
Thr	Asn	Glu	Leu	Leu	Lys	Met	Ser	Leu	Met	Ser	Thr	Ala	Thr	Phe	Leu	
				70					75					80		

aca	agt	888	gat	gaa	gga	ttg	aaa	gcc	aca	acc	act	gat	gtc	agg	aag	345
Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg	Lys	
		•	85					90					95			
aat	gac	tcc	atc	att	tca	aac	gta	aca	gta	aca	agt	gtt	aca	ctt	cca	393
Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu	Pro	
		100					105					110				
aat	gct	gtt	tca	aca	tta	caa	agt	tcc	aaa	ссс	aag	act	gaa	act	cag	441
Asn	Ala	Val	Ser	Thr	Leu	Gln	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr	Gln	
	115					120					125					
agt	tca	att	aaa	aca	aca	gaa	ata	cca	ggt	agt	gtt	cta	caa	cca	gat	489
					Thr	_										
130			-,-		135				,	140					145	
	ton	aat	tot	000	act	aat	202	++0	200		ata	000	att	202		537
																001
AIS	Ser	Pro	Ser	-	Thr	GIÀ	Int	Leu		261	116	FIO	vai		116	
				150					155					160		505
					cag											585
Pro	Glu	Asn	Thr	Ser	G1n	Ser	Gln	Val	Ile	Gly	Thr	Glu	Gly	Gly	Lys	
			165					170					175			
aat	gca	agc	act	tca	gca	acc	agc	cgg	tct	tat	tcc	.agt	att	att	ttg	633
Asn	Ala	Ser	Thr	Ser	Ala	Thr	Ser	Arg	Ser	Tyr	Ser	Ser	Ile	Ile	Leu	
		180					185					190				
ccg	gtg	gtt	att	gct	ttg	att	gta	ata	aca	ctt	tca	gta	ttt	gtt	ctg	681
Pro	Val	Val	Ile	Ala	Leu	Ile	Val	Ile	Thr	Leu	Ser	Val	Phe	Val	Leu	
	195					200					205					
ata	aat	tta	tac	cas	ato	tac	taa	220	aca	aat	cca	aac	aca	cca	gaa	729

172/307

Val Gly Leu Tyr Arg Met Cys Trp Lys Ala Asp Pro Gly Thr Pro Glu 210 220 215 225 aat gga aat gat caa cct cag tct gat aaa gag agc gtg aag ctt ctt 777 ^{*} Asn Gly Asn Asp Gln Pro Gln Ser Asp Lys Glu Ser Val Lys Leu Leu 230 235 240 acc gtt aag aca att tet eat gag tet ggt gag eac tet gea eaa gga 825 Thr Val Lys Thr Ile Ser His Glu Ser Gly Glu His Ser Ala Gln Gly 245 250 255 aaa acc aag aac tga cagcttgagg aattctctcc acacctaggc aataattacg 880 Lys Thr Lys Asn 260 cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc 940 ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa gtgatgtcca 1000 gctgacatgc aataatttga tggaatcaaa aagaaccccg gggctctcct gttctctcac 1060 atttaaaaat tccattactc catttacagg agcgttccta ggaaaaggaa ttttaggagg 1120 agaatttgtg agcagtgaat ctgacagccc aggaggtggg ctcgctgata ggcatgactt 1180 tccttaatgt ttaaagtttt ccgggccaag aatttttatc catgaagact ttcctacttt 1240 tctcggtgtt cttatattac ctactgttag tatttattgt ttaccactat gttaatgcag 1300 ggaaaagttg cacgtgtatt attaaatatt aggtagaaat cataccatgc tactttgtac 1360 atataagtat tttattcctg ctttcgtgtt acttttaata aataactact gtactc 1416

<210> 84

<211> 1347

<212> DNA

<213> Homo sapiens

<220	>															
<221	> CD	S.														
<222	> (2	26)	. (69	4)										•	•	
<400	> 84	Į.														
gcct	tgtg	tt t	tcca	ccct	g aa	aga	atg	ttg	tgg	ctg	ctc	ttt	ttt	ctg	gtg	52
							Met	Leu	Trp	Leu	Leu	Phe	Phe	Leu	Val	
							1				5					
act	gcc	att	cat	gct	gaa	ctc	tgt	caa	cca	ggt	gca	gaa	aat	gct	ttt	100
Thr	Ala	Ile	His	Ala	Glu	Leu	Cys	Gln	Pro	Gly	Ala	Glu	Asn	Ala	Phe	
10					15					20					25	
aaa	gtg	aga	ctt	agt	atc	aga	aca	gct	ctg	gga	gat	aaa	gca	tat	gcc	148
Lys	Val	Arg	Leu	Ser	Ile	Arg	Thr	Ala	Leu	Gly	Asp	Lys	Ala	Tyr	Ala	
				30					35					40		
tgg	gat	acc	aat	gaa	gaa	tac	ctc	ttc	aaa	gcg	atg	gta	gct	ttc	tcc	196
Trp	Asp	Thr	Asn	Glu	Glu	Tyr	Leu	Phe	Lys	Ala	Met	Val	Ala	Phe	Ser	
			45					50					55			
atg	aga	aaa	gtt	ccc	aac	aga	gaa	gca	aca	gaa	att	tcc	cat	gtc	cta	244
Met	Arg	Lys	Val	Pro	Asn	Arg	Glu	Ala	Thr	Glu	Ile	Ser	His	Val	Leu	
		60					65					70	•			
ctt	tgc	aat	gta	acc	cag	agg	gta	tca	ttc	tgg	ttt	gtg	gtt	aca	gac	292
Leu	Cys	Asn	Val	Thr	Gln	Arg	Val	Ser	Phe	Trp	Phe	Val	Val	Thr	Asp	
	75					80					85					
cct	tca	aaa	aat	cac	acc	ctt	cct	gct	gtt	gag	gtg	caa	tca	gcc	ata	340
Pro	Ser	Lys	Asn	His	Thr	Leu	Pro	Ala	Val	Glu	Val	Gln	Ser	Ala	Ile	
90					95					100					105	

ıga	atg	aac	aag	aac	cgg	atc	aac	aat	gcc	ttc	ttt	cta	aat	gac	caa		388
lrg	Met	Asn	Lys	Asn	Arg	Ile	Asn	Asn	Ala	Phe	Phe	Leu	Asn	Asp	Gln		
				110					115					120			
act	ctg	gaa	ttt	tta	aaa	atc	cct	tcc	aca	ctt	gca	cca	ccc	atg	gac		436
Thr	Leu	Glu	Phe	Leu	Lys	Ile	Pro	Ser	Thr	Leu	Ala	Pro	Pro	Met	Asp		
			125					130					135				
cca	tct	gtg	ccc	atc	tgg	att	att	ata	ttt	ggt	gtg	ata	ttt	tgc	atc		484
Pro	Ser	Val	Pro	Ile	Trp	Ile	Ile	Ile	Phe	Gly	Val	Ile	Phe	Cys	Ile		
		140)				145					150)				
				att													532
Ile	Ile	· Val	L Ala	ı Ile	Ala	Leu	Leu	Ile	Leu	Ser	Gly	Ile	Trp	Glr	Arg		
	155	5				160)				165	;					
															t aag		580
Arg	Ar	g Ly:	s Ası	n Lys	Glu	Pro	Sei	Glu	ı Val	Asp	Asp	Ala	a Glu	ı Ası) Lys		
170)				175	5				180)				185		
															c ctg		628
Cy	s Gl	u As	n Me	t Ile	? Thi	r Il	e Gl	u Ast	n Gly	y Ile	e Pro	s Se	r As		o Leu		
			•	190					19					20			
															t gag		676
As	p Me	t Ly	s Gl	y Gl	y Hi	s Il	e As	n As	p Al	a Ph	e Me	t Th			p Glu	l	
			20					21					21				
ag	g ct	c ac	c co	ct ct	c tg	aagg	gct	gttg	ttct	gc t	tcct	caag	ga aa	ittaa	acat		730
Ar	g Le	eu Th	nr Pi	ro Le	u												
			20														5 00
t.1	gtti	tote	t gt	gacte	ctg	agca	atcct	tga a	atac	caag	ga go	aga'	tcata	a ta	ttttg	ttt	790

175/307

caccattctt	cttttgtaat	aaattttgaa	tgtgcttgaa	agtgaaaagc	aatcaattat	850
acccaccaac	accactgaaa	tcataagcta	ttcacgactc	aaaatattct	aaaatatttt	910
tctgacagta	tagtgtataa	atgtggtcat	gtggtatttg	tagttattga	tttaagcatt.	970
tttagaaata	agatcaggca	tatgtatata	ttttcacact	tcaaagacct	aaggaaaaat	1030
aaattttcca	gtggagaata	catataatat	ggtgtagaaa	tcattgaaaa	tggatccttt	1090
ttgacgatca	cttatatcac	tctgtatatg	actaagtaaa	caaaagtgag	aagtaattat	1150
tgtaaatgga	tggataaaaa	tggaattact	catatacagg	gtggaatttt	atcctgttat	1210
cacaccaaca	gttgattata	tattttctga	atatcagccc	ctaataggac	aattctattt	1270
gttgaccatt	tctacaattt	gtaaaagtcc	aatctgtgct	aacttaataa	agtaataatc	1330
atctctttt	gattgtg					1347

<210> 85

<211> 2284

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (75)...(626)

<400> 85

aaaatggcac agagcattga aaggaggcaa cggatgccca gtgcaagatt ctgaagaagc 60
aggaattcag cccg atg gga gtc cga gtt cat gtc gtg gcg gcc tca gcc 110
Met Gly Val Arg Val His Val Val Ala Ala Ser Ala

ctg ctg tat ttc atc ctg ctt tct ggg acg aga tgt gag gaa aac tgt

Leu Leu Tyr Phe Ile Leu Leu Ser Gly Thr Arg Cys Glu Glu Asn Cys

		15					20					25						
ggt	aat	cct	gaa	cat	tgc	çtg :	acc	aca	gac	tgg	gta	cat	ctc	tgg	ta	it	206	
Gly	Asn	Pro	Glu	His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Ту	r		
	30					35					40							
ata	tgg	ttg	cta	gtg	gta	att	ggc	gcg	ctg	ctt	ctc	ctg	tgt	ggc	ct	tg	254	
Ile	Trp	Leu	Leu	Val	Val	Ile	Gly	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Le	eu		
45					50					55					•	60		
acg	tcc	ctg	tgc	ttc	cgc	tgc	tgc	tgt	ctg	agc	cgc	cag	caa	aat	g	gg	302	
Thr	Ser	Leu	Cys	Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	Gln	Asn	ı G	ly		
				65					70					75	5			
gaa	gat	ggg	ggc	cca	cca	ccc	tgt	gaa	gtg	acc	gto	att	gct	tto	g	at	350	
Glu	ı Asp	Gly	Gly	Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	e Ala	a Phe	e A	sp		
			80)				85	;				90)				
				t ctc													. 398	
Hi	s Ası	Se:	r Thi	r Leu	ı Glr	Ser	Thr	· Ile	Thr	Ser	Let	ı Gl	n Se	r Va	1 F	he		
		9					100					10						
gg	c cc	t gc	a gc	t cg	g agi	g ato	cte	g gct	t gts	g gct	ca.	c tc	с са	c ag	(C 1	tcc	446	j
G1	y Pr	o Al	a Al	a Arı	g Ar	g Ile	e Lei	ı Ala	a Val	l Ala	a Hi	s Se	r Hi	s Se	er S	Ser		
	11					115					12							
				g cc													494	ł
Le	u Gl	y Gl	n Le	u Pr	o Se	r Se	r Le	u As	p Th	r Le	u Pr	o G1	y Ty	r G				
12					13					13						140	5 4	_
				g ag													54	4
A.	la Le	eu Hi	is Me	et Se	er Ar	g Ph	e Th	r Va	al Al	a Me	t Cy	ys G	ly G			Ala		
				14	15				15	50				1	55			

cct gat cta ccc cca gta cct gaa gaa aag cag ctg cct cca aca gag	590
Pro Asp Leu Pro Pro Val Pro Glu Glu Lys Gln Leu Pro Pro Thr Glu	
160 165 170	
aag gag tog act cga ata gtt gac tot tgg aac tgatgag agotgtoatt	640
Lys Glu Ser Thr Arg Ile Val Asp Ser Trp Asn	•
175 180	
ttataaatag gagtggagtg atgtccagag tctgtgggaa aatggaacac atacttttct	700
aaccctcaga agttttaaga tggcatctaa caccatcatt ctatgggaaa gatggttctt	760
actcttcgtt cacaggcctt tatatcttcc gatacagaat gctctaattg ggaactctaa	820
ttttgtatcc aatggccaaa atctgcaagt aatctctagc cacactgatt actactaaac	880
caggaaagca tcaaggtatc ttgaattcct ttaactattg agtgcatata gaattcctgt	940
acceacatga tactgcaagt tgtgtetete tetgteaget aatecaetge ggttaactgg	1000
aaaagaaaga caacagtgtc agcacagcca tcgacattaa tgcactgaat gcatgcatct	1060
ttcctcctga gacagcaatc gattttacac cgaatgacaa tgatcatctt agacagcaca	1120
acatacccac toggatatot aaaagctagg gatggcattg ctgatatggg caaagagaac	1180
acagtatagt atttaagtgc caaatatcag tetttettte tetetggtee tacceetcag	1240
cagtatgaaa aactccatac tgtgcagtca cagttggatt aattcttcag ttcctccgca	1300
ctgcaaacac atatatgtgc gcacatgcat gtatacctgc accctgtttt aactctaaag	1360
gaatagtgtt gctttacttc tttcctgttt tgcctggacc acttaaagcc acaacacctc	1420
tatagtgaca cacgctagtc tctagtggtg gccctcactg ccacctagag gagccatggt	1480
ggaaaacaca ctctctctt tgagcctatc tgcacatctc tcgagttctt ggagcaaaaa	1540
ctaaatgctg aactaagcct ggttgagatg cttcccatgg accatgccgc agcacagtgc	1600
taatetatee acaaaacata ecaceteeca aagtattatt attggaaaat egaggaagtg	1660
acgcacattt agggaaaaac tactcacctt agaaaagtca ctgaaatcct ttttttttt	1720
tttgagatgg agttttgctc ttgtagccca ggctgggatg caatggcatg gtctcagctc	1780

178/307

actgtaacct	ccacctcccg	gattcaagca	attcttctgc	ctcagcttcc	cgactagctg	1840
ggattacagc	tgcctgccac	cgtgcccagc	taatttttgt	atttttagtg	gagagggggt	1900
ttcaccatgt	tggccagtct	ggtctagaac	tcctgacgtc	aggtgatccg	cccaccttgg	1960
cctcccaaag	tgctggaatt	agaggcctga	cccctgctc	ctggcctgaa	atctttaaag	2020
ccgtttttc	cctaaaaaaac	gggaaataat	aacacctcag	aaggtttttg	tgaagatcaa	2080
agaagctaaa	tatatgtggc	atgatttgta	aagtgttatg	catatgtatg	ttattcttcc	2140
tactgtcttc	taaccttccc	ttgcctgcta	tgacttatct	gagagccatg	ttcccattta	2200
tctttttgcc	aactatgtta	ctgttgtcac	acctgaaatg	gctttgtttt	tatcaataaa	2260
tacttgttga	ttgtggtaaa	cagc				2284

<210> 86

<211> 1737

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (236)...(1024)

<400> 86

1

ggt aag acg ttt tcc cag ctg ggc tct tgg cgg gag gat gag aac aag 286

Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly S	Ser	Trp	Arg	Glu	Asp	Glu	Asn	Lys	
			5					10					15			
tca	atc	ctg	tcc	tcc	aaa	cca	gcc	att	ggc	agc	aag	gct	gtc	aac	tac	334
Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn	Tyr	
		20					25					30				
tcc	agc	acc	ggt	agc	agc	aag	tct	ttt	tgt	tcc	tgt	gtg	cct	tgt	gaa	382
Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys	Glu	
	35					40					45					
gga	act	gct	gat	gcc	agc	ttc	gtg	act	tgt	ccc	acc	tgc	cag	ggc	agt	430
Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	G1n	Gly	Ser	
50					55					60					65	
ggc	aag	att	ccc	caa	gag	ctg	gag	aag	cag	ttg	gtg	gct	ctc	att	ccc	478
Gly	Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile	Pro	
				70					7 5					80		
tat	ggg	gac	cag	agg	ctg	aag	ссс	aag	cac	acg	aag	ctc	ttt	gtg	ttc	526
Tyr	Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val	Phe	
			85	ı		٠		90					95			
ctg	gcc	gtg	cto	atc	tgc	ctg	gtg	acc	tcc	tcc	ttc	ato	gtc	ttt	ttc	574
Leu	Ala	Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	· Val	Phe	Phe	
		100)				105					110				
															tcc	
Leu	Phe	Pro	Arg	Ser	Val	Ile	Val	Gln	Pro	Ala	Gly	Leu	ı Asr	Ser	Ser	
	115					120					125					
															atc	
Thi	· Val	Als	a Phe	e Ast	Glu	ı Ala	Asp	Ile	Tyr	Leu	ı Asr	ille	e Thi	: Ası	ı Ile	!

180/307

130					135					140					145	
tta	aac	atc	tcç	aat	ggc	aac	tac	tac	ссс	att	atg	gtg	aca	cag	ctg	718
Leu	Asn	Ile	Ser	Asn	Gly	Asn	Tyr	Tyr	Pro	Ile	Met	Val	Thr	Gln	Leu	
				150					155					160		
acc	ctc	gag	gtt	ctg	cac	ctg	tcc	ctc	gtg	gtg	ggg	cag	gtt	tcc	aac	766
Thr	Leu	Glu	Val	Leu	His	Leu	Ser	Leu	Val	Val	Gly	Gln	Val	Ser	Asn	
			165					170					175			•
aac	ctt	ctc	cta	cac	att	ggc	cct	ttg	gcc	agt	gaa	cag	atg	ttt	tac	814
Asn	Leu	Leu	Leu	His	Ile	Gly	Pro	Leu	Ala	Ser	Glu	Gln	Met	Phe	Tyr	
		180					185					190				
gca	gta	gct	acc	aag	ata	cgg	gat	gaa	aac	aca	tac	aaa	ato	tgt	acc	862
Ala	Val	Ala	Thr	Lys	Ile	Arg	Asp	Glu	Asn	Thr	Tyr	Lys	Ile	Cys	Thr	
	195					200					205	i				
tgg	ctg	gaa	atc	aaa	gtc	cac	cat	gtg	ctt	ttg	cac	ato	cag	ggo	acc	910
Trp	Leu	Glu	Ile	Lys	Val	His	His	Val	Leu	Leu	His	Ile	Glr	Gly	Thr	
210					215					220)				225	
ctg	acc	tgt	tca	tac	ctg	ago	cat	. tca	gag	cag	ctg	gto	tt1	t ca	g agc	958
Leu	Thr	Cys	Ser	Tyr	Leu	Ser	His	Ser	Glu	Glr	Leu	ı Val	L Phe	e Gli	n Ser	•
				230)				235	5				24	0	
tat	gaa	'tat	gte	gao	tgo	cga	gga	a aac	gca	a tci	t gt	g cc	c ca	c ca	g ctg	1006
Tyr	Glu	ı Tyr	· Val	Ası	Cys	Arg	G1;	, Ası	n Ala	a Ser	r Va	l Pro	o Hi	s Gl	n Leu	1
			245	5				250)				25	5		
aco	cci	t cad	c cca	a cca	a tga	acct	gtc	tgct	gtcc	ct g	tact	ccag	g ca	cctg	caac	1060
Thi	Pro	o His	s Pro	o Pro	0											

260

181/307

cctggtctat	atctcccaca	actccctggt	gactaaggaa	ggactacaga	ggctttgcca	1120
aaggagaagc	cctgcctcat	cacaccctta	cctcccaccc	cctcagcaca	ggaagcttgc	1180
tttgaagtta	acttcataca	cacacactca	tatcctccag	tttcccccag	attctttcag	1240
gggctgccat	cagattctgc	ccttggttag	tttttgttt	tttttttgg	tagagacaga	1300
gtctcactgt	tggtccaggt	tggttttgaa	ctcctgggct	caagcgatcc	tcccttcttg	1360
gcctcccaaa	gcacttggat	tacagatgtg	agcctgtgcc	tggctggtct	ttcttgagga	1420
aaatctgacc	tggcattttc	ttgaggcacc	ttagattccc	tggagtggca	cctggccttt	1480
ctgtactgag	cacctggtca	gtctgaaggg	ggcatttcac	cccagctcca	tcagggctgg	1540
cagtcccgtc	tgaatgtgga	gagagctgta	gttttatctg	gcttttaaaa	catggacctg	1600
ccggctgggc	gcagtggctt	acacctgtaa	tcccagtact	ttgggaggcc	gaagtgggtg	1660
gatcacttga	gggcaggagt	togtgaccag	cctggtcaac	atggtgaaac	cttgtctcta	1720
ctassastac	aaaaatt		٠			1737

⟨210⟩ 87

<211> 1556

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (103)... (609)

<400> 87

agegeteact egetegeact eagtegegg aggetteece gegeeggeeg egteeegee 60 geteeegge aceagaagtt eetetgegeg teegaeggeg ac atg gge gte eec 114 Met Gly Val Pro

acg	gcc	ctg	gag	gcc	ggc	agc	tgg	cgc	tgg	gga	tcc	ctg	ctc	ttc	gct	162
Thr	Ala	Leu	Glu	Ala	Gly	Ser	Trp	Arg	Trp	Gly	Ser	Leu	Leu	Phe	Ala	
5					10					15					20	
ctc	ttc	ctg	gct	gcg	tcc	cta	ggc	aaa	gat	gca	cca	tcc	aac	tgt	gtg	210
Leu	Phe	Leu	Ala	Ala	Ser	Leu	Gly	Lys	Asp	Ala	Pro	Ser	Asn	Cys	Val	
				25					30					35		
gtg	tac	cca	tcc	tcc	tcc	cag	gag	agt	gaa	aac	atc	acg	gct	gca	gcc	258
Val	Tyr	Pro	Ser	Ser	Ser	Gln	Glu	Ser	Glu	Asn	Ile	Thr	Ala	Ala	Ala	
			40					45					50			
ctg	gct	acg	ggt	gcc	tgc	atc	gta	gga	atc	ctc	tgc	ctc	ccc	ctc	atc	306
Leu	Ala	Thr	Gly	Ala	Cys	Ile	Val	Gly	Ile	Leu	Cys	Leu	Pro	Leu	Ile	
		55					60					65				•
ctg	ctc	ctg	gtc	tac	aag	caa	agg	cag	gca	gcc	tcc	aac	cgc	cgt	gcc	354
Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	Gln	Ala	Ala	Ser	Asn	Arg	Arg	Ala	
	70					75					80					
cag	gag	ctg	gtg	cgg	atg	gac	agc	aac	att	caa	ggg	att	gaa	aac	ccc	402
Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly	Ile	Glu	Asn	Pro	
85					90	1				95					100	
ggc	ttt	gaa	gcc	tca	cca	cct	gcc	cag	ggg	ata	ccc	gag	gcc	aaa	gtc	450
Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	Ile	Pro	Glu	ı Ala	a Lys	Val	
				105	,				110)				115	5	
agg	cac	ccc	ctg	tcc	tat	gtg	gco	cag	cgg	cag	cct	tc	t gag	g tci	ggg	498
Arg	His	Pro	Leu	Ser	Tyr	· Val	Ala	Gln	Arg	Glr	Pro	Se	r Glu	Sei	Gly	
			120)				125	5				130	0		
cas	, ,	cto	z ctt	tos	7 020	7 000	200	. 800		cts	z toi	t cc	t cc	a gg	ccc	546

Arg His Leu Leu Ser Glu Pro Ser Thr Pro Leu Ser Pro Pro Gly Pro	
135 140 145	
gga gac gtc ttc ttc cca tcc ctg gac cct gtc cct gac tct cca aac	594
Gly Asp Val Phe Phe Pro Ser Leu Asp Pro Val Pro Asp Ser Pro Asn	
150 155 160	
ttt gag gtc atc tagc ccagctgggg gacagtgggc tgttgtggct gggtctgggg	650
Phe Glu Val Ile	
165	
caggtgcatt tgagccaggg ctggctctgt gagtggcctc cttggcctcg gccctggttc	710
cctccctcct gctctgggct cagatactgt gacatcccag aagcccagcc cctcaacccc	770
tctggatgct acatggggat gctggacggc tcagcccctg ttccaaggat tttggggtgc	830
tgagattctc ccctagagac ctgaaattca ccagctacag atgccaaatg acttacatct	890
taagaagtct cagaacgtcc agcccttcag cagctctcgt tctgagacat gagccttggg	950
atgtggcagc atcagtggga caagatggac actgggccac cctcccaggc accagacaca	1010
gggcacggtg gagagacttc tcccccgtgg ccgccttggc tcccccgttt tgcccgaggc	1070
tgctcttctg tcagacttcc tctttgtacc acagtggctc tgggggccagg cctgcctgcc	1130
cactggccat cgccaccttc cccagctgcc tcctaccagc agtttctctg aagatctgtc	1190
aacaggttaa gtcaatctgg ggcttccact gcctgcattc cagtccccag agcttggtgg	1250
tcccgaaacg ggaagtacat attggggcat ggtggcctcc gtgagcaaat ggtgtcttgg	1310
gcaatctgag gccaggacag atgttgcccc acccactgga gatggtgctg agggaggtgg	1370
gtggggcctt ctgggaaggt gagtggagag gggcacctgc ccccaccccc	1430
tactcccact gctcagegeg ggccattgca agggtgccac acaatgtctt gtccaccctg	1490
ggacacttct gagtatgaag cgggatgcta ttaaaaacta catggggaaa caggtgcaaa	1550
ccctgg	1556

<210> 88

<211>	1855							•								
<212> 1	DNA															
<213> 1	Homo s	apie	ns													
<220>																
<221>	CDS															
<222>	(222).	(9	53)													
<400>	88															
cagaga	tgga a	tttc	accg	t gt	tgcc	tagg	ctg	gtct	gga	gctc	ttga	tc t	caag	cgatc		60
ctccct	gcct d	ggcc	tccc	a ac	gtgc	tggg	att	atag	gcg	tgag	ccac	cg	tcct	ggcca	. 1	120
gggtct	gttc d	tagt	tgca	a ca	gtto	ttgg	g aaa	ccca	ctc	gaga	gggc	ca c	gcct	ccatt		180
caccag	gcca	gcat	caca	a ga	iggca	acac	cag	gago	caa	c at	g ag	c to	g ge	g	2	233
										Me	t Se	er Se	er Gl	. y		
											1					
act ga	a ctg	ctg	tgg	ccc	gga	gca	gcg	ctg	ctg	gtg	ctg	ttg	ggg	gtg	:	281
Thr Gl	u Leu	Leu	Trp	Pro	Gly	Ala	Ala	Leu	Leu	Val	Leu	Leu	Gly	Va1		
5				10					15					20		
gca go	c agt	ctg	tgt	gtg	cgc	tgc	tca	cgc	cca	ggt	gca	aag	agg	tca	;	329
Ala Al	la Ser	Leu	Cys	Val	Arg	Cys	Ser	Arg	Pro	Gly	Ala	Lys	Arg	Ser		
			25					30					35			
gag aa	a atc	tac	cag	cag	aga	agt	ctg	cgt	gag	gac	caa	cag	agc	ttt		377
Glu Ly	s Ile	Tyr	Gln	Gln	Arg	Ser	Leu	Arg	Glu	Asp	Gln	Gln	Ser	Phe		
		40					45					50				
acg gg	gg tcc	cgg	acc	tac	tcc	ttg	gtc	ggg	cag	gca	tgg	cca	gga	ccc		425
Thr G	ly Ser	Arg	Thr	Tyr	Ser	Leu	Val	Gly	Gln	Ala	Trp	Pro	Gly	Pro		

		55					60					65				
ctg	gcg	gac	atg	gca	ccc	aca -	agg	aag	gac	aag	ctg	ttg	caa	ttc	tac	473
Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu	Leu	Gln	Phe	Tyr	
	70					75					80					
ccc	agc	ctg	gag	gat	cca	gca	tct	tcc	agg	tac	cag	aac	ttc	agc	aaa	521
Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln	Asn	Phe	Ser	Lys	
85					90					95					100	
gga	agc	aga	cac	ggg	tcg	gag	gaa	gcc	tac	ata	gac	ccc	att	gcc	atg	569
Gly	Ser	Arg	His	Gly	Ser	G1u	Glu	Ala	Tyr	Ile	Asp	Pro	Ile	Ala	Met	
				105					110					115		
gag	tat	tac	aac	tgg	ggg	cgg	ttc	tcg	aag	ccc	cca	gaa	gat	gat	gat	617
Glu	Туг	Туз	. Asn	Trp	Gly	Arg	Phe	Ser	Lys	Pro	Pro	Glu	Asp	Asp	Asp	•
			120)				125					130	i		
gcc	aat	tc	c tac	gag	aat	gtg	ctc	att	tgc	aag	cag	aaa	acc	aca	gag	665
Ala	Ası	n Se	r Tyı	r Glu	. Asn	Val	Leu	Ile	Cys	Lys	Gln	Lys	Thr	Thr	Glu	
		13	5				140)				145	i			
aca	gg	t gc	c ca	g cag	g gag	ggc	ata	ggt	ggo	ctc	tgo	aga	ggg	gao	ctc	713
Thi	G1	y Al	a Gl	n Glr	n Glu	Gly	Ile	Gly	Gly	, Leu	Cys	s Arg	Gly	/ Asj	Leu	
	15					155					160			•		
															t ccc	
Se	r Le	u Se	r Le	u Ala	a Leu	ı Lys	Thi	r Gly	y Pro	o Thi	r Se	r Gly	y Lei	и Су	s Pro	
16	5				170)				175	5				180	
															c tca	
Se	r Al	a Se	er Pr	o Gl	u Gl	u Ası	o Gl	u Gl	u Se	r Gl	u As	р Ту	r Gl		n Ser	•
				18	5				19	0				19	5	

gca tcc atc cat cag tgg cgc gag tcc agg aag gtc atg ggg caa ctc	857
Ala Ser Ile His Gln Trp Arg Glu Ser Arg Lys Val Met Gly Gln Leu	
200 205 210	
cag aga gaa gca tcc cct ggc ccg gtg gga agc cca gac gag gag gac	905
Gln Arg Glu Ala Ser Pro Gly Pro Val Gly Ser Pro Asp Glu Glu Asp	
215 220 225	
ggg gaa ccg gat tac gtg aat ggg gag gtg gca gcc aca gaa gcc	950
Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala	
230 235 240	
tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca	1010
tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt	1070
gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctggg	1130 .
aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctctccc gacccaggct	1190
ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag	1250
gatttaggat aagctgtcac ccagtcccca taacaaaacc actgtccaac actggtatct	1310
gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggtttta	1370
aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga	1430
tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc	1490
atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg	1550
gcttcagttc actcaggaag aaatgaggct gtcgccatct ttatgtgctt ccagtggaaa	1610
tgtcacttgc tacagacaat agtgcatgag agtctagaga agtagtgacc agaacagggc	1670
agagtaggtc ccctccatgg ccctgaatcc tcctctgctc cagggctggc ctctgcagag	1730
ctgattaaac agtgttgtga ctgtctcatg ggaagagctg gggcccagag ggaccttgag	1790
tcagaaatgt tgccagaaaa agtatctcct ccaaccaaaa catctcaata aaaccatttt	1850
agttg	1855

<210)> 89	•	٠													
<21	1> 25	530										•	•			
<212	2> D!	۱A														
<213	3> Ho	omo s	apie	ns												
<220)>															
<22	1> CI	OS														
<222	2> (2	28)	. (13	314)												
<40	0> 89	€														
agc	gcgg	egg g	ggcga	ntgte	gt ga	ittac	c at	tg go	eg ag	g ag	gt ct	c tg	gt co	e g	gg	51
							Ме	et Al	la Aı	g Se	er Le	eu Cy	rs Pi	ro Gi	ly	
								1				5				
gcc	tgg	cta	agg	aaa	ссс	tat	tac	ctc	cag	gct	cgc	ttc	tca	tat	gtg	99
Ala	Trp	Leu	Arg	Lys	Pro	Tyr	Tyr	Leu	Gln	Ala	Arg	Phe	Ser	Tyr	Val	
	10					15					20					
cgg	atg	aaa	tat	ctt	ttc	ttt	tcc	tgg	tta	gtg	gtt	ttt	gtt	gga	agc	147
Arg	Met	Lys	Tyr	Leu	Phe	Phe	Ser	Trp	Leu	Val	Val	Phe	Val	Gly	Ser	
25					30					35					40	
tgg	att	ata	tat	gtg	cag	tat	tct	acc	tat	aca	gaa	tta	tgc	aga	gga	195
Trp	Ile	Ile	Tyr	Val	Gln	Tyr	Ser	Thr	Tyr	Thr	Glu	Leu	Cys	Arg	Gly	
				45					50					55		
aag	gac	tgt	aag	aaa	ata	ata	tgt	gac	aag	tac	aag	act	gga	gtt	att	243
Lys	Asp	Cys	Lys	Lys	Ile	Ile	Cys	Asp	Lys	Tyr	Lys	Thr	Gly	Val	Ile	
			60					65					70			
gat	ggg	cct	gca	tgt	aac	agc	ctt	tgt	gtt	aca	gaa	act	ctt	tac	ttt	291

Asp G	ly F	Pro	Ala	Cys	Asn	Ser	Leu	Cys	Val	Thr	Glu	Thr	Leu	ıyr	rne	
		75					80					85		•		
gga a	aa '	tgt	tta	tcc	acc	aag	ccc	aac	aat	cag	atg	tat	tta	ggg	att	339
Gly L	ys (Cys	Leu	Ser	Thr	Lys	Pro	Asn	Asn	Gln	Met	Tyr	Leu	Gly	Ile	
	90					95					100					
tgg g	at	aat	cta	cca	ggt	gtt	gtg	aaa	tgt	caa	atg	gaa	caa	gcg	ctt	387
Trp A																
105					110					115					120	
cat	·++	øat	ttt	gga		gaa	ttg	gaa	cca	aga	aaa	gaa	ata	gtg	cta	435
His I																
n15 1	Leu	vsh	1110	125		-			130					135		
ttt						aas	act	act			aaa	ttt	aaa	gaa	atg	483
Phe			•													
Phe	Asp	Lys			, VI S	, ury	1111	145			,-		150			
			140									் என			tct:	531
															tct Ser	
Val	Tyr	Sea	r Le	u Phe	e Lys	s Ala			1 613	/ ASI) GII			ii Dec	ı Ser	
		15					160					169				570
															t ggc	
Glu	Leu	ı Va	l As	n Le	u Il	e Le	u Th	r Va	l Al	a As	p Gl	y As	p Ly	s As	p Gly	,
	170)				17	5				18	0				
cag	gti	t tc	c tt	g gg	a ga	a gc	a aa	g to	g gc	a tg	g gc	a ct	t ct	t ca	a ctg	627
Gln	Va:	l Se	r Le	u Gl	y Gl	u Al	a Ly	s Se	r Al	a Tr	p Al	a Le	eu Le	eu Gl	n Lei	ı
185					19	0				19	95				200	0
aat	ga	a tt	t c1	tt c1	c at	g gt	g at	a ci	tt ca	a ga	at aa	aa ga	aa ca	at ac	c cc	c 675
Asn	Gl	u Pi	ie L	eu Le	eu Me	et Va	al II	le L	eu G	ln As	sp L	ys G	lu H	is Th	ır Pr	0

				205					210					215			
aaa 1	tta	atg	gga	ttc	tgt	ggt (gac	ctc	tat	gtg.	atg	gaa	agt	gtt	gaa	723	3
Lys 1	Leu	Met	Gly	Phe	Cys	Gly	Asp	Leu	Tyr	Val	Met	Glu	Ser	Val	Glu		
			220					225					230				
tat	acc	tct	ctt	tat	gga	ata	agc	ctt	cct	tgg	gtc	att	gaa	ctt	ttt	77	1
Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser	Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	:	
		235					240					245					
att	cca	tct	ggg	ttc	aga	aga	agc	atg	gat	cag	ctg	ttc	aca	cca	tca	81	9
Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser	Met	Asp	Gln	Leu	Phe	Thr	Pro	Sei	•	
	250					255					260)					
tgg	cca	aga	aag	gcc	aaa	ata	gcc	ata	gga	ctt	cta	gaa	ttt	gtg	g ga	a 86	37
Trp	Pro	Arg	g Lys	Ala	Lys	Ile	Ala	Įle	Gly	Leu	Leu	Glu	ı Phe	e Val	l Gl	u	
265					270	}				275	5				28	0	
gat	gtt	tto	cat	ggo	ccc	tac	gga	aat	tto	cto	ate	g tgo	c ga	t ac	t ag	t 91	15
Asp	Va]	l Phe	e His	s Gly	y Pro) Tyr	Gly	Asr	n Phe	e Lev	ı Met	t Cy:	s As	p Th	r Se	r	
				28	5				290)				29	5		
gcc	aa	a aa	c ct	a gga	a ta	t aat	gat	t aag	g ta	t ga	t tt	g aa	a at	g gt	g ga	it 9	63
Ala	Ly	s As	n Le	u Gl	у Ту	r Asn	Asj	p Ly:	s Ty:	r As	p Le	u Ly	s Me	t Va	l As	sp	
			30	0				30	5				31	0			
						a gag)11
Met	t Ar	g Ly	s Il	e Va	l Pr	o Glu	ı Th	r As	n Le	u Ly	s G1	u Le	eu II	le Ly	/s A	sp	
		31	.5				32	0				32	25				
						t tt											059
Ar	g Hi	is Cy	ys G	lu Se	er As	sp Le	u As	р Су	rs Ve	al Ty	r G	ly T	hr A	sp C	ys A	rg	
	31	ลด				33	5				34	40					

act agc tgt gat cag agt aca atg aag tgt act tca gaa gtg ata caa	1107
Thr Ser Cys Asp Gln Ser Thr Met Lys Cys Thr Ser Glu Val Ile Gln	
345 350 355 360	
cca aac ttg gca aaa gct tgt cag tta ctc aaa gac tac cta ctg cgt	1155
Pro Asn Leu Ala Lys Ala Cys Gln Leu Leu Lys Asp Tyr Leu Leu Arg	
365 370 375	
ggt gct cca agt gaa att cgt gaa gaa tta gaa aag cag ctt tat tct	1203
Gly Ala Pro Ser Glu Ile Arg Glu Glu Leu Glu Lys Gln Leu Tyr Ser	
380 385 390	
tgt att gct ctc aaa gtc aca gca aat caa atg gaa atg gaa cat tct	1251
Cys Ile Ala Leu Lys Val Thr Ala Asn Gln Met Glu Met Glu His Ser	
395 400 405	
ttg ata cta aat aac cta aaa aca tta ttg tgg aag aaa att tcc tac	1299
Leu Ile Leu Asn Asn Leu Lys Thr Leu Leu Trp Lys Lys Ile Ser Tyr	
410 415 420	
act aat gac tct tagttcatt tggacataat taccatttta agaaacctgc	1350
Thr Asn Asp Ser	
425	
cacttttaaa gaacaatttt gagcattaaa aaaaaatggc ttcaaattcc tgccagttac	1410
acaaaactcc ttccccccag gcctgagaag ccatcagtat gtgattactg aagtaatggc	1470
aggtgtagga tcaacaggtc cccaagatgt cattcctgcc cttttagaag ccctgttaca	1530
tctccgaagt acattcattg tgtaactatt ttgactgact ttaaaaaacca atgctgtgaa	1590
aagcttcatt ccataaacat caacagtgag tgatttgtag atttacctta gccaaaatac	1650
caatgctgga agcattgtgt ttgcattgaa gctgctgttc aacaagaaaa tttataaatt	1710
tactaatgtc ttagcatggt aaagtttgca cattaacaga aattaagact gcaaagcagg	1770

191/307

ttaaacttgc	ttctttataa	aacagatgtt	gggttaatag	catggtttac	tgtattaaag	1830
acttatacac	ccatttttaa	cctcattcag	acatcaagtt	atgtgtagct	tcacaatggt	1890
tcaagtggct	tacttcaaga	aatcttatac	ttgacagtac	accaatttta	ttgactaaaa	1950
atggatgaac	tttcctaaag	attcaaaggg	cccatcttag	tatcacgcag	ctgactgagc	2010
ccttcaaaac	tgacatctta	aggcccaatc	aagatccaca	tatcctgatt	ttgaactatg	2070
tgaaagtggg	actgttaagt	gcaagactaa	aataaattat	agcagacttt	ttagtaataa	2130
ctttccattt	tcaaacagta	tatcctgtgg	gccaaagggc	tatttcttaa	agaggcatgt	2190
aaatgtattt	atttatctaa	tgttttttc	cccatgtaaa	cttgatatac	aaggtttagt	2250
atttgctcct	ctttcatatt	attttcacac	gtatactcag	atttggcatg	tacctttcaa	2310
catctccata	aaattaaaca	ccttttggag	aaaagatcca	ctattttctg	ctcaaaggtt	2370
togootacot	aaagtggaac	atgttaaaaa	tctatgtgac	catcactgga	cagctttctc	2430
tcaaaacttt	ccttcaacgc	catggattag	caccagtttt	gtttacttta	aggtactttt	2490
cccattcatc	atctggttat	aataaatgga	tggaagaaat			2530

⟨210⟩ 90

<211> 1911

<212> DNA

<213> Homo sapiens

⟨220⟩

<221> CDS

⟨222⟩ (232)... (1083)

<400> 90

aaaatatgag acggggaatc atcgtgtgat gtgtgtgctg cctttggctg agtgtggga 60
gtcctgctca ggtgttaggt acagtgtgt tgatcgtggt ggcttgaggg gaacccgctg 120
ttcagagctg tgactgcggc tgcactcaga gaagctgccc ttggctgctc gtagcgccgg 180

gcctt	ctc	tc c	tcgt	catc	a tc	cagag	gcag	cca	gtgt	ccg	ggag	gcag	aa g	atg	ccc	237
														Met	Pro	
														1		
cac 1	tcc	agc	ctg	cat	сса	tcc	atc	ccg	tgt	ccc	agg	ggt	cac	ggg	gcc	285
His S	Ser	Ser	Leu	His	Pro	Ser	Ile	Pro	Cys	Pro	Arg	Gly	His	Gly	Ala	٠
		5					10					15				
cag	aag	gca	gcc	ttg	gtt	ctg	ctg	agt	gcc	tgc	ctg	gtg	acc	ctt	tgg	333
Gln	Lys	Ala	Ala	Leu	Val	Leu	Leu	Ser	Ala	Cys	Leu	Val	Thr	Leu	Trp	
	20					25					30					
ggg	cta	gga	gag	cca	cca	gag	cac	act	ctc	cgg	tac	ctg	gtg	ctc	cac	381
Gly	Leu	Gly	Glu	Pro	Pro	Glu	His	Thr	Leu	Arg	Tyr	Leu	Val	Leu	His	
35			•		40					45					50	
cta	gcc	tcc	ctg	cag	ctg	gga	ctg	ctg	tta	aac	ggg	gtc	tgc	agc	ctg	429
Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys	Ser	Leu	
				55					60					65	1	
gct	gag	gag	g ctg	cac	cac	atc	cac	tcc	agg	tac	cgg	ggc	ago	tac	tgg	477
Ala	Glu	G1	ı Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	G1y	Ser	Tyr	Trp	
			70)				75					80)		
agg	act	gt	g cgg	gcc	tgo	ctg	ggo	tgc	ccc	ctc	cgc	cg1	t ggg	gcc	ctg	525
Arg	Thr	· Va	l Arg	g Ala	Cys	s Leu	Gly	Cys	Pro	Leu	Arg	, Ar	g Gly	, Ala	Leu	
		8	5				90)				9!	5			
ttg	cts	g ct	g tco	ato	ta	t tto	tac	tac	tcc	cto	cca	a aa	t gc	g gto	c ggc	573
Leu	Le	ı Le	u Sei	r Ile	е Ту	r Phe	: Ту	r Tyı	. Sei	r Lei	ı Pro	o As	n Ala	a Va	l Gly	
	100	0				105	5				110	0				
CCE	CC	c tt	c ac	t tg	g at	g cti	t gc	c ct	cct	g gg	c ct	c tc	g ca	g gc	a ctg	621

Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	Gly	Leu	Ser	Gln	Ala	Leu	
115					120					125					130	
aac	atc	ctc	ctg	ggc	ctc	aag	ggc	ctg	gcc	сса	gct	gag	atc	tct	gca	669
Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile	Ser	Ala	
				135					140					145		
gtg	tgt	gaa	aaa	ggg	aat	ttc	aac	gtg	gcc	cat	ggg	ctg	gca	tgg	tca	717
Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala	Trp	Ser	
			150					155					160			
tat	tac	atc	gga	tat	ctg	cgg	ctg	atc	ctg	cca	gag	ctc	cag	gcc	cgg	765
Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	Gln	Ala	Arg	
		165					170					175	,			
ati	cga	act	tac	aat	cag	cat	tac	aac	aac	ctg	cta	cgg	ggt	gca	gtg	813
Ile	e Arg	g Thr	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Lev	ı Arg	Gly	Ala	Val	
	180)				185	;				190)				
age	c ca	g cgg	g ctg	g tat	att	cto	cto	cca	ttg	gac	tg'	t ggs	g gtg	g cc1	t gat	861
Se	r Gl	n Arg	z Lei	ty1	: Ile	e Leu	ı Leu	Pro	Leu	Asp	Cy:	s Gly	y Val	l Pro	Asp	
19	5				200)				205	5				210	
aa	c ct	g ag	t at	g gc	t gad	ccc	e aad	ati	t cgc	tto	ct	g ga	t aa	a ct	g ccc	909
As	n Le	u Se:	r Me	t Al	a Ası	p Pro	o Ası	n Ile	e Arg	y Phe	e Le	u As	p Ly	s Le	u Pro	•
				21	5				220)				22	5	
ca	g ca	g ac	c gc	t ga	c cg	t gc	t gg	c at	c aag	g ga	t cg	g gt	t ta	c ag	c aac	957
G1	n Gl	n Th	r Al	a As	p Ar	g Al	a Gl	y Il	e Ly:	s As	p Ar	g Va	l Ty	r Se	r Asr	ı ,
			23	0				23	5				24	0		
ag	gc·at	c ta	t ga	g ct	t ct	g ga	g aa	c gg	g ca	g cg	g as	ic ct	g ca	ig at	g ac	a 1005
S	r II	ד מ	or G1	u Le	u Le	u Gl	u As	n Gl	y Gl	n Ar	g As	sn Le	eu Gl	ln Me	et Thi	r

194/307

245		250	255		
gca gct tct o	gc tgt ccc agg	agg ttc tcc	ggc acc tgc ggc	agg agg	1053
Ala Ala Ser	Arg Cys Pro Arg	Arg Phe Ser	Gly Thr Cys Gly	Arg Arg	
260	265		270		
aaa agg aag	agg tta ctg tgg	gca gct tgaa	gacete ageggtge	cc	1100
Lys Arg Lys	Arg Leu Leu Trp	Ala Ala			
275	280			•	
agtacctcca c	gatgtccca agago	ctgag ctcctca	tca gtggaatgga	aaagcccctc	1160
cctctccgca c	ggatttctc ttgag	accca gggtcac	cag gccagagcct	ccagtggtct	1220
ccaagcctct g	gactggggg ctctc	ttcag tggctga	atg tccagcagag	ctatttcctt	1280
ccacaggggg	cttgcaggg aaggg	tccag gacttg	acat cttaagatgc	gtcttgtccc	1340
cttgggccag 1	catttcccc tctc	gagcc tcggtg	tett caacetgtga	aatgggatca	1400
taatcactgc (cttacctccc tcac	ggttgt tgtgag	gact gagtgtgtgg	aagtttttca	1460
taaactttgg	atgctagtgt actt	aggggg tgtgcc	aggt gtctttcatg	gggccttcca	1520
gacccactcc	ccacccttct cccc	ttcctt tgcccg	ggga cgccgaactc	tctcaatggt	1580
atcaacaggc	teettegeee tetg	gctcct ggtcat	gttc cattattggg	gagccccagc	1640
agaagaatgg	agaggaggag gagg	ctgagt ttgggg	tatt gaatcccccg	gctcccaccc	1700
tgcagcatca	aggttgctat ggac	teteet geegg	caac tcttgcgtas	tcatgactat	1760
ctctaggatt	ctggcaccac ttcc	ttccct ggcccc	ttaa gcctagctgt	gtatcggcac	1820
ccccacccca	ctagagtact ccct	ctcact tgcgg	ttcc ttatactcca	ccctttctc	1880
aacggtcctt	ttttaaagca cato	tcagat t			191

<210> 91

<211> 476

<212> PRT

(213	> Ho	mo s	apie	ns											
<400	> 91														
Met	Val	Gly	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Leu	Leu	Met
1				5					10					15	
Pro	Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	Val	Ser
			20					25					30		
Met	Pro	Pro	Lys	Gly	Asp	Ser	Gly	Gln	Pro	Leu	Phe	Leu	Thr	Pro	Tyr
		35					40					45			
Ile	Glu	Ala	Gly	Lys	Ile	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	Val	Gly
	50					55					60				
Pro	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu	Thr	Val
65					70				•	75					80
Asn	Lys	Thr	Tyr	Asn	Ser	Asn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	Ala	Gln
				85					90					95	
Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly	Gly	Pro
			100)				105					110		
Gly	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	His	Gly	Pro	Tyr	Val
		115	;				120					125	,		
Val	Thr	Ser	Asr	n Met	Thr	Leu	Arg	Asp	Arg	Asp	Phe	Pro	Trp	Thr	Thr
	130)				135					140)			
Thr	Leu	Ser	- Met	t Leu	ı Tyr	· Ile	Asp	Asn	Pro	Val	Gly	Thr	Gly	Phe	Ser
145	5				150)				155	;				160
Phe	? Thi	r Ası	As _l	p Thi	r His	Gly	Tyr	Ala	Val	Asr	ı Glı	ı Asp	a Ası	Va]	Ala
				169	5				170)				179	5
Arg	g Ası	p Lei	ц Ту:	r Se	r Ala	a Lei	ı Ile	e Glr	n Phe	e Phe	e Gla	11e	e Ph	e Pro	o Glu

			180					185					190			
Tyr	Lys	Asn	Asn	Asp	Phe	Tyr	Val	Thr	Gly	Glu	Ser	Tyr	Ala	Gly	Lys	
		195					200	•				205				
Tyr	Val	Pro	Ala	Ile	Ala	His	Leu	Ile	His	Ser	Leu	Asn	Pro	Val	Arg	
	210					215					220					
Glu	Val	Lys	Ile	Asn	Leu	Asn	Gly	Ile	Ala	Ile	Gly	Asp	Gly	Tyr	Ser	
225					230					235					240	
Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr	Gln	Ile	
				245					250					255		
G1y	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	Gln	Cys	His	
			260					265					270			
Glu	Cys	Ile	Glu	His	Ile	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala	Phe	Glu	
		275					280					285				
Ile	Leu	. Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	Thr	Ser	Asp	Pro	Ser	Tyr	
	290)				295					300					
Phe	Glr	ı Asn	Val	Thr	G1y	Cys	Ser	Asn	Tyr	Tyr	Asn	Phe	Leu	Arg	Cys	
305	5				310)				315	.				320	
Thr	Glu	ı Pro	Glu	ı Asp	Glr	ı Lev	Tyr	Tyr	Val	Lys	Phe	Leu	ser Ser	Leu	ı Pro	
				325	5				330)				335	5	
Glu	ı Va	l Arg	g Glr	n Ala	Ile	e His	s Val	l Gly	Asn	Glr	1 Thr	Phe	e Asr	ı Ası	Gly	
			340)				345	5				350)		
Th	r Il	e Va	l Gl	u Lys	з Тул	r Lei	ı Arı	g Glu	ı Ası	Th:	r Val	Gli	n Sei	r Va	l Lys	:
		35	5				36	0				36	5			
Pr	o Tr	p Le	u Th	r Gl	u Il	e Me	t As	n Ası	n Ty	r Ly:	s Vai	l Le	u Il	е Ту	r Asn	
	37	0				37	5				38	0				

197/307

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu His Ser Leu Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly <210> 92 <211> 226 <212> PRT <213> Homo sapiens <400> 92 Met Ser Arg Ala Gln Ile Trp Ala Leu Val Ser Gly Val Gly Gly Phe Gly Ala Leu Val Ala Ala Thr Thr Ser Asn Glu Trp Lys Val Thr Thr Arg Ala Ser Ser Val Ile Thr Ala Thr Trp Val Tyr Gln Gly Leu Trp Met Asn Cys Ala Gly Asn Ala Leu Gly Ser Phe His Cys Arg Pro His

	50					55					60				
Phe	Thr	Ile	Phe	Lys	Val	Ala	Gly	Tyr	Ile	Gln	Ala	Cys	Arg	Gly	Leu
65		•			70		٠			75					80
Met	Ile	Ala	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile	Phe	Ala	Leu
				85					90					95	
Phe	Gly	Met	Lys	Cys	Thr	Lys	Val	Gly	Gly	Ser	Asp	Lys	Ala	Lys	Ala
			100					105					110		
Lys	Ile	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser	Gly	Leu	Cys
		115	,				120					125			
Ser	Met	Thr	Gly	Cys	Ser	Leu	Tyr	Ala	Asn	Lys	Ile	Thr	Thr	Glu	Phe
	130)				135	I				140)			
Phe	Asp	Pro	Lei	Phe	Val	Glu	G1n	Lys	Tyr	Glu	Leu	Gly	Ala	Ala	Leu
145	5				150)				155	5.				160
Phe	e Ile	e Gl	y Tr	o Ala	Gly	Ala	s Ser	Leu	Cys	s Ile	e Ile	e Gly	y Gly	/ Val	Ile
				165	5				170)				178	5
Pho	е Су	s Ph	e Se	r Ile	e Sei	r Ası	o Ası	n Ası	n Lys	s Th	r Pr	o Ar	g Ty	r Thi	r Tyr
			18	0				18	5				19	0	
As	n Gl	y Al	a Th	r Se	r Va	l Me	t Se	r Se	r Ar	g Th	r Ly	s Ty	r Hi	s Gl	y Gly
		19	5				20	0				20	5		
G1	u As	p Ph	ie Ly	s Th	r Th	r As	n Pr	o Se	r Ly	s Gl	n Ph	e As	p Ly	s As	n Ala
	21	0				21	5				22	:0			
Ту	r Va	al													
22	:5														

<211> 305
<212> PRT
<213> Homo sapiens
<400> 93
Met Gly Ile Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val Gly
1 5 10 15
Leu Val Thr Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val Arg Arg
20 25 30
Ser Arg Arg Pro Gln Val Thr Leu Leu Asp Pro Asn Glu Lys Tyr Leu
35 40 45
Leu Arg Leu Leu Asp Lys Thr Thr Val Ser His Asn Thr Lys Arg Phe
50 55 60
Arg Phe Ala Leu Pro Thr Ala His His Thr Leu Gly Leu Pro Val Gly
65 70 75 80
Lys His Ile Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu Val Ile Arg
85 90 95
Pro Tyr Thr Pro Val Thr Ser Asp Glu Asp Gln Gly Tyr Val Asp Leu
100 105 110
Val Ile Lys Val Tyr Leu Lys Gly Val His Pro Lys Phe Pro Glu Gly
115 120 125
Gly Lys Met Ser Gln Tyr Leu Asp Ser Leu Lys Val Gly Asp Val Va
130 135 140
Glu Phe Arg Gly Pro Ser Gly Leu Leu Thr Tyr Thr Gly Lys Gly Hi
145 150 155 16
Pho Acr Ilo Gla Pro Asa Lys Lys Ser Pro Pro Glu Pro Arg Val Al

200/307

Lys Lys Leu Gly Met Ile Ala Gly Gly Thr Gly Ile Thr Pro Met Leu Gln Leu Ile Arg Ala Ile Leu Lys Val Pro Glu Asp Pro Thr Gln Cys Phe Leu Leu Phe Ala Asn Gln Thr Glu Lys Asp Ile Ile Leu Arg Glu Asp Leu Glu Glu Leu Gln Ala Arg Tyr Pro Asn Arg Phe Lys Leu Trp Phe Thr Leu Asp His Pro Pro Lys Asp Trp Ala Tyr Ser Lys Gly Phe Val Thr Ala Asp Met Ile Arg Glu His Leu Pro Ala Pro Gly Asp Asp Val Leu Val Leu Leu Cys Gly Pro Pro Pro Met Val Gln Leu Ala Cys His Pro Asn Leu Asp Lys Leu Gly Tyr Ser Gln Lys Met Arg Phe Thr Tyr ⟨210⟩ 94 <211> 227 <212> PRT <213> Homo sapiens <400> 94

Met	Gly	Trp	Thr	Met	Arg	Leu	Val	Thr	Ala	Ala	Leu	Leu	Leu	Gly	Leu
. 1				5					10					15	
Met	Met	Val	Val	Thr	Gly	Asp	Glu	Asp	Glu	Asn	Ser	Pro	Cys	Ala	His
			20					25					30		
Glu	Ala	Leu	Leu	Asp	Glu	Asp	Thr	Leu	Phe	Cys	Gln	Gly	Leu	Glu	Val
		35					40					45			
Phe	Tyr	Pro	Glu	Leu	Gly	Asn	Ile	Gly	Cys	Lys	Val	Val	Pro	Asp	Cys
	50					55					60				
Asn	Asn	Tyr	Arg	Gln	Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	Ile	Val	Lys
65					70					75					80
Phe	Pro	Gly	Ala	Val	Asp	Gly	Ala	Thr	Tyr	Ile	Leu	Val	Met	Val	Asp
				85					90	,				95	
Pro	Лsр	Ala	Pro	Ser	Arg	Ala	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His
			100					105					110		
Trp	Leu	Val	Thr	Asp	Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile
		115					120					125			
Gln	Gly	Gln	Glu	Leu	Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His
	130)				135					140)			
Ser	Gly	Phe	His	Arg	Tyr	Gln	Phe	Phe	Val	Tyr	Leu	G1n	Glu	Gly	Lys
145	•				150)				155	i				160
Val	Ile	Ser	Leu	Leu	Pro	Lys	Glu	Asn	Lys	Thr	Arg	Gly	Ser	Trp	Lys
				165	•				170)				175	
Met	. Asp	Arg	g Phe	e Leu	ı Asr	Arg	? Phe	His	Leu	Gly	Glu	ı Pro	Glu	Ala	Ser
			180)				185	,				190)	
Thr	Glr	ı Phe	e Met	. Thr	· Glr	ı Asr	Tyr	Gln	. Asp	Ser	Pro	Thr	Leu	Gln	Ala

202/307

Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile 210 . Ala Ala Cys <210> 95 <211> 441 <212> PRT <213> Homo sapiens <400> 95 Met Ala Ile His Lys Ala Leu Val Met Cys Leu Gly Leu Pro Leu Phe Leu Phe Pro Gly Ala Trp Ala Gln Gly His Val Pro Pro Gly Cys Ser Gln Gly Leu Asn Pro Leu Tyr Tyr Asn Leu Cys Asp Arg Ser Gly Ala Trp Gly Ile Val Leu Glu Ala Val Ala Gly Ala Gly Ile Val Thr Thr Phe Val Leu Thr Ile Ile Leu Val Ala Ser Leu Pro Phe Val Gln Asp Thr Lys Lys Arg Ser Leu Leu Gly Thr Gln Val Phe Phe Leu Leu Gly Thr Leu Gly Leu Phe Cys Leu Val Phe Ala Cys Val Val Lys Pro Asp

he	Ser	Thr	Cys	Ala	Ser	Arg	Arg	Phe	Leu	Phe	Gly	Val	Leu	Phe	Ala
		115					120					125			
[]e	Cys	Phe	Ser	Cys	Leu	Λla	Ala	His	Val	Phe	Ala	Leu	Asn	Phe	Leu
	130					135					140				
Ala	Arg	Lys	Asn	His	Gly	Pro	Arg	Gly	Trp	Val	Ile	Phe	Thr	Val	Ala
145					150					155					160
Leu	Leu	Leu	Thr	Leu	Val	Glu	Val	.Ile	Ile	Asn	Thr	Glu	Trp	Leu	Ile
				165					170					175	
Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	Glu	Gly	Gly	Pro	Gln	Gly	Asn	Ser
			180					185					190		
Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	Ala	Ile	Ala	Asn	Met	Asp
		195					200)				205)		
Phe	Val	Met	Ala	Leu	Ile	Tyr	Val	Met	Leu	Leu	Leu	ı Lei	ı Gly	Ala	Phe
	210)				215	5				220)			
Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	Tyr	- Lys	s Arg	g Trp) Arg	
225	,				230)				235	5				240
His	Gly	/ Val	l Phe	e Val	Leu	ı Let	ı Thi	Thr	Ala	Thr	Sei	r Vai	l Ala	ı Ile	Trp
				245					250					255	
Val	. Val	l Tri	o Ile	e Val	L Met	t Ty	r Thi	г Туз	Gly	y Asr	ı Ly:	s Gl	n His		ı Ser
			260					26					270		
Pro	Th	r Trı	p Ası	p Ası	Pro	Th:	r Lei	u Ala	a Ilo	e Ala	a Le		a Ala	a Ası	n Ala
		27					280					28			
Tr	Al:	a Ph	e Va	l Lei	u Pho			1 II	e Pro	o Gl			r Gl	n Val	1 Thi
	29					29					30		_		
1	- 5-	. c.	- Dr	~ G1	G1	n Se	r Tv	r Gli	n Gl	v As	n Me	t Tv	r Pr	o Th	r Arg

204/307

Gly Val Gly Tyr Glu Thr Ile Leu Lys Glu Gln Lys Gly Gln Ser Met Phe Val Glu Asn Lys Ala Phe Ser Met Asp Glu Pro Val Ala Ala Lys Arg Pro Val Ser Pro Tyr Ser Gly Tyr Asn Gly Gln Leu Leu Thr Ser Val Tyr Gln Pro Thr Glu Met Ala Leu Met His Lys Val Pro Ser Glu Gly Ala Tyr Asp Ile Ile Leu Pro Arg Ala Thr Ala Asn Ser Gln Val Met Gly Ser Ala Asn Ser Thr Leu Arg Ala Glu Asp Met Tyr Ser Ala Gln Ser His Gln Ala Ala Thr Pro Pro Lys Asp Gly Lys Asn Ser Gln Val Phe Arg Asn Pro Tyr Val Trp Asp <210> 96 <211> 265 <212> PRT <213> Homo sapiens <400> 96 Met Ala Ala Ala Val Pro Lys Arg Met Arg Gly Pro Ala Gln Ala Lys

l

Leu	Leu	Pro	Gly	Ser	Ala	Ile	Gln	Ala	Leu	Val	Gly	Leu	Ala	Arg	Pro
			20				•	25					30		
Leu	Val	Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val
		35					40					45			
Ser	Arg	Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser
	50					55					60				
Thr	Pro	Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser
65					70					75					80
Ile	Ser	Gln	Ile	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys
				85					90					95	
Ser	Gly	Gly	Ala	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser
			100					105					110		
Gln	Glu	Glu	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	Ile	Glu	Glu	Glu	Asp
		115	;				120					125	i		
Leu	Leu	Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp
	130)				135	i				140)			
Asn	Gly	Asp) Tyr	Gly	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg
145	;				150	ı				155	5				160
Asp	Asp	Asp	o Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	ı Asr	n Arg	g Gly	Tyr	Met
				165	i				170)				175	•
Glu	Ile	Glu	ı Glm	Ser	· Val	Lys	s Ser	Phe	e Lys	s Met	t Pro	Sei	r Ser	Asr	Ile
			180)				189	5				190)	
Glu	ı Glu	Glu	ı Asp	Ser	His	Phe	e Phe	Phe	e His	s Lei	u Ile	e Ile	e Phe	e Ala	. Phe
		19	5				200)				20	5		
Cvs	s Ile	e Ala	a Val	Val	l Tyr	- Ile	e Thr	Tyı	r Hi:	s Ası	n Ly:	s Ar	g Ly:	s Ile	e Phe

PCT/JP00/05356 WO 01/12660

206/307

Leu Leu Val Gln Ser Arg Lys Trp Arg Asp Gly Leu Cys Ser Lys Thr Val Glu Tyr His Arg Leu Asp Gln Asn Val Asn Glu Ala Met Pro Ser Leu Lys Ile Thr Asn Asp Tyr Ile Phe <210> 97 <211> 208 <212> PRT <213> Homo sapiens <400> 97 Met Leu Gly Leu Leu Val Ala Leu Leu Ala Leu Gly Leu Ala Val Phe Ala Leu Leu Asp Val Trp Tyr Leu Val Arg Leu Pro Cys Ala Val Leu Arg Ala Arg Leu Leu Gln Pro Arg Val Arg Asp Leu Leu Ala Glu Gln Arg Phe Pro Gly Arg Val Leu Pro Ser Asp Leu Asp Leu Leu Leu His Met Asn Asn Ala Arg Tyr Leu Arg Glu Ala Asp Phe Ala Arg Val Ala His Leu Thr Arg Cys Gly Val Leu Gly Ala Leu Arg Glu Leu Arg Ala

207/307

His Thr Val Leu Ala Ala Ser Cys Ala Arg His Arg Arg Ser Leu Arg Leu Leu Glu Pro Phe Glu Val Arg Thr Arg Leu Leu Gly Trp Asp Asp Arg Ala Phe Tyr Leu Glu Ala Arg Phe Val Ser Leu Arg Asp Gly Phe Val Cys Ala Leu Leu Arg Phe Arg Gln His Leu Leu Gly Thr Ser Pro Glu Arg Val Val Gln His Leu Cys Gln Arg Arg Val Glu Pro Pro Glu Leu Pro Ala Asp Leu Gln His Trp Ile Ser Tyr Asn Glu Ala Ser Ser Gln Leu Leu Arg Met Glu Ser Gly Leu Ser Asp Val Thr Lys Asp Gln <210> 98 <211> 400 <212> PRT <213> Homo sapiens <400> 98 Met Ala Trp Arg Arg Glu Ala Ser Val Gly Ala Arg Gly Val Leu Ala Leu Ala Leu Leu Ala Leu Ala Leu Cys Val Pro Gly Ala Arg Gly Arg Ala Leu Glu Trp Phe Ser Ala Val Val Asn Ile Glu Tyr Val Asp

		35					40					45			
Pro	Gln	Thr	Asn	Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe
	50		•			55				•	60		,		
Gly	Asp	Ser	Ser	Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro
65					70					7 5					80
Trp	Ala	Pro	Gly	Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe
				85					90					95	
Phe	Val	Pro	Glu	Pro	Gly	G1y	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu
			100					105					110		
Val	Ala	Arg	Gly	Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala
		115					120					125			
Arg	Arg	Asn	Ala	Ser	Ala	Val	Val	Leu	.Tyr	Asn	Glu	Glu	Arg	Tyr	Gly
•	130)				135					140)			
Asn	Ile	Thr	Leu	ı Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val
145	j				150)				155	5				160
Ιle	e Met	: Ile	e Sei	r Tyr	Pro	Lys	Gly	Arg	Glu	ı Ile	e Leu	ı Glu	ı Leu	Val	Gln
				169	5				170)				175	
Lys	s Gl	y Ile	e Pro	o Val	l Thr	Met	Thr	· Ile	Gly	y Val	l Gly	/ Thi	Arg	His	Val
			180	0				189	5		•		190)	
Glo	n Glo	u Pho	e Il	e Sei	r Gly	Glr	n Sei	r Val	l Va	l Pho	e Va	l Ala	a Ile	Ala	Phe
		19	5				200)				20	5		
11	e Th	r Me	t Me	t Il	e Ile	e Sei	r Lei	ı Ala	a Tr	p Le	u Il	e Ph	e Tyr	Tyr	: Ile
	21	0				21	5				22	0			
G1	n Ar	g Ph	e Le	и Ту	r Th	r Gl	y Se	r Gl	n Il	e Gl	y Se	r Gl	n Sei	r His	s Arg
22	5				23	0				23	5				240

209/307

Lys	Glu	Thr	Lys	Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Val	Lys
				245	•				250					255	
His	Gly	Glu	Lys	Gly	Ile	Asp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Cys
			260					265					270		
Ile	Glu	Asn	Phe	Lys	Val	Lys	Asp	Ile	Ile	Arg	Ile	Leu	Pro	Cys	Lys
		275					280					285			
His	Ile	Phe	His	Arg	Ile	Cys	Ile	Asp	Pro	Trp	Leu	Leu	Asp	His	Arg
	290					295					300				
Thr	Cys	Pro	Met	Cys	Lys	Leu	Asp	Val	Ile	Lys	Λla	Leu	Gly	Tyr	Trp
305					310					315					320
Gly	Glu	Pro	Gly	Asp	Val	Gln	Glu	Met	Pro	Ala	Pro	Glu	Ser	Pro	Pro
				325					330	١				335	
Gly	Arg	Asp	Pro	Ala	Ala	Asn	Leu	Ser	Leu	Ala	Leu	Pro	Asp	Asp	Asp
			340)				345	i				350		
Gly	' Ser	. Asp	Glu	Ser	Ser	Pro	Pro	Ser	Ala	Ser	Pro	Λla	Glu	Ser	Glu
		355	5				360)				365	;		
Pro	Glr	ı Cys	s Asp	Pro	Ser	Phe	. Lys	Gly	. Asp	Ala	Gly	Glu	ı Asn	Thr	Ala
	370)				375	5				380)			
Lei	ı Let	ı Glu	ı Ala	Gly	, Arg	Sei	. Asp	Sei	· Arg	g His	s Gly	Gly	, Pro	lle	Ser
389					390					398					400

⟨210⟩ 99

<211> 192

<212> PRT

<213> Homo sapiens

<400> 99	€													
Met Phe	Cys	Pro	Leu	Lys	Leu	Ile	Leu	Leu	Pro	Val	Leu	Leu A	sp T	yr
1			5	•				10					15	
Ser Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu 1	ſhr V	al
		20					25					30		
His Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	Gln	Ser '	Thr G	ilu
	35					40					45			
Asp Lys	Cys	Ile	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	Glu ł	lis
50)				55					60				
Ala Lys	з Азр	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val 1	Pro
65				70					75					80
Ile Gly	y Λrg	Phe	Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Asn	Leu	Cys
			85					90)	•			95	
Asn As	p Gly	Ser	Leu	Leu	Leu	G1n	Asp	Val	Glr	Glu	Ala	Asp	Gln	Gly
		100)			•	105	•				110		
Thr Ty	r Ile	Cys	s Glu	ı Ile	e Are	g Leu	Lys	Gly	y Glu	ı Ser	- Gln	Val	Phe	Lys
	115	i				120)				125			
Lys Al	a Val	Val	l Lei	ı His	s Val	l Leu	Pro	Gl:	u Gli	ı Pro	. Lys	Glu	Leu	Met
13	0		٠		13	5				140)			
Val Hi	s Val	Gl	y Gl	y Lei	u Ile	e Glr	n Met	t Gl	у Су	s Va	l Phe	e Gln	Ser	Thr
145				150	0				15	5				160
Glu Va	ıl Ly:	s Hi	s Va	l Th	r Ly	s Va	l Gl	u Tr	p Il	e Ph	e Sei	r Gly	Arg	Arg
			16	5				17	0				175	
Ala Ly	ıs Va	l Th	r Ar	g Ar	g Ly	s Hi	s Hi	s Cy	s Va	l Ar	g Gl	u Gly	Ser	Gly
		18	0				18	5				190)	

<210	> 10	0													
<211	> 26														
<212	> PR	T													
<213	> Ho	mo s	apie	ens											
<400	> 10	0													
Met	Ala	Gly	Ser	Pro	Leu	Leu	Trp	Gly	Pro	Arg	Ala	Gly	Gly	Val	Gly
1				5					10					15	
Leu	Leu	Val	Leu	Leu	Leu	Leu	Gly	Leu	Phe	Arg	Pro	Pro	Pro	Ala	Leu
			20					25					30		
Cys	Ala	Arg	Pro	Val	Lys	Glu	Pro	Arg	Gly	Leu	Ser	Ala	Ala	Ser	Pro
		35					40					45			
Pro	Leu	Ala	Glu	Thr	Gly	Ala	Pro	Arg	Arg	Phe	Arg	Arg	Ser	Val	Pro
	50					55					60				
Arg	Gly	Glu	Ala	Ala	Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Ala	Leu	Ala
65					70					75					80
His	Leu	Leu	Glu	Ala	Glu	Arg	Gln	Glu	Arg	Ala	Arg	Ala	Glu	Ala	Gln
				85					90					95	
Glu	Ala	Glu	Asp	Gln	Gln	Ala	Arg	Val	Leu	Ala	Gln	Leu	Leu	Arg	Val
			100					105					110		
Trp	Gly	Ala	Pro	Arg	Asn	Ser	Asp	Pro	Ala	Leu	Gly	Leu	Asp	Asp	Asp
		115					120					125			
Pro	Asp	Ala	Pro	Ala	Ala	Gln	Leu	Ala	Arg	Ala	Leu	Leu	Arg	Ala	Arg
	130					135					140				
Leu	Asp	Pro	Ala	Ala	Leu	Ala	Ala	Gln	Leu	Val	Pro	Ala	Pro	Val	Pro

145	150	155	160	
Ala Ala Ala Leu Arg	Pro Arg Pro I	Pro Val Tyr Asp	Asp Gly Pro Ala	
165		170	175	
Gly Pro Asp Ala Glu	Glu Ala Gly A	Asp Glu Thr Pro	Asp Val Asp Pro	
180		185	190	
Glu Leu Leu Arg Tyr	Leu Leu Gly	Arg Ile Leu Ala	Gly Ser Ala Asp	
195	200		205	
Ser Glu Gly Val Ala	Ala Pro Arg	Arg Leu Arg Arg	Ala Ala Asp His	
210	215	220		
Asp Val Gly Ser Glu	Leu Pro Pro	Glu Gly Val Leu	Gly Ala Leu Leu	
225	230	235	240	
Arg Val Lys Arg Leu	Glu Thr Pro	Ala Pro Gln Val	Pro Ala Arg Arg	
245		250	255	
Leu Leu Pro Pro				
260				
<210> 101				
<211> 1428				
<212> DNA				
<213> Homo sapiens				
<400> 101				
atggttggtg ccatgtgg	aa ggtgattgtt	tegetggtee tgtt	gatgcc tggcccctgt	60
gatgggctgt ttcgctcc	ct atacagaagt	gtttccatgc cacc	taaggg agactcagga	120
cagccattat ttctcacc	cc ttacattgaa	gctgggaaga tcca	aaaagg aagagaattg	180
agtttggtcg gccctttc	cc aggactgaac	: atgaagagtt atgo	eggett ceteacegtg	240

213/307

acaacagcaa	cctcttcttc	tggttcttcc	cagctcagat	acagccagaa	300
tagttctctg	gctacagggt	gggccgggag	gttcatccat	gtttggactc	. 360
atgggcctta	tgttgtcaca	agtaacatġa	ccttgcgtga	cagagacttc	420
caacgctctc	catgctttac	attgacaatc	cagtgggcac	aggcttcagt	480
atacccacgg	atatgcagtc	aatgaggacg	atgtagcacg	ggatttatac	540
ttcagttttt	ccagatattt	cctgaatata	aaaataatga	cttttatgtc	600
cttatgcagg	gaaatatgtg	ccagccattg	cacacctcat	ccattccctc	660
gagaggtgaa	gatcaacctg	aacggaattg	ctattggaga	tggatattct	720
caattatagg	gggctatgca	gaattcctgt	accaaattgg	cttgttggat	780
aaaagtactt	ccagaagcag	tgccatgaat	gcatagaaca	catcaggaag	840
ttgaggcctt	tgaaatactg	gataaactac	tagatggcga	cttaacaagt	900
: acttccagaa	tgttacagga	tgtagtaatt	actataactt	tttgcggtgc	960
g aggatcagct	ttactatgtg	aaatttttgt	cacteccaga	ggtgagacaa	1020
g tggggaatca	gacttttaat	gatggaacta	ı tagttgaaaa	gtacttgcga	1080
g tacagtcagt	: taagccatgg	; ttaactgaaa	tcatgaataa	ttataaggtt	1140
a atggccaact	ggacatcato	gtggcagctg	g ccctgacaga	gcactccttg	1200
g actggaaagg	g atcccaggaa	ı tacaagaag	g cagaaaaaaa	a agtttggaag	126
t ctgacagtga	a agtggctggt	tacatccgg	c aagogggtga	a cttccatcag	132
					138
					142
	tagttctctg atgggcctta caacgctctc atacccacgg ttcagtttt cttatgcagg gagaggtgaa caattatagg aaaagtactt ttgaggcctt acttccagaa gagatcagct gtggggaatca tacagtcagt atggcaact actggaaagg tctgacagtga	tagttetetg getacagggt atgggeetta tgttgteaca caacgetete catgetttae atacceacgg atatgeagte tteagtttt ceagatattt cttatgeagg gaaatatgtg gagaggtgaa gateaacetg caattatagg gggetatgea aaaagtaett eeagaageag ttgaggeett tgaaataetg actteeagaa tgttaeagga aggateaget ttaetatgtg tggggaatea gaettttaat g taeagteagt taageeatgg atgggaatea gaettttaat g taeagteagt taageeatgg atggegaagg ateceaggaa t etgaeagtga agtggetggt e gaggtggagg acatattta	tagttctctg gctacaggt gggccgggag atgggcctta tgttgtcaca agtaacatga caacgctctc catgctttac attgacaatc atacccacgg atatgcagtc aatgaggacg ttcagtttt ccagatattt cctgaatata cttatgcagg gaaatatgtg ccagccattg gagaggtgaa gatcaacctg aacggaattg caattatagg gggctatgca gaattcctgt aaaagtactt ccagaagcag tgccatgaat ttgaggcctt tgaaatactg gataaactac acttccagaa tgttacagga tgtagtaatt gaggatcagct ttactatgtg aaatttttgt gtgggaatca gactttaat gatggaacta gatggcaact ggacatcatc gtggcagctg actggaaagg atcccaggaa tacaagaagg tctgacagtga agtggctggt tacatccggc gaggtggagg acatatttta ccctatgacc	tagttetetg getacagggt gggeegggag gtteatecat atgggeetta tgttgteaca agtaacatga cettgegtga caaegetete catgetttae attgacaate cagtgggeac atacecacgg atatgeagte aatgaggaeg atgtageaeg tteagtttt ceagatatt cetgaatata aaaataatga cttatgeagg gaaatatgtg ceageeattg cacaceteat gagaggtgaa gateaacetg aaeggaattg etattggaga caattatagg gggetatgea gaatteetgt aceaaattgg aaaagtaett ceagaageag tgeeatgaat geatagaaea ttgaggeett tgaaataetg gataaactae tagatggega cactteeagaa tgttacagga tgtagtaatt aceataactt gaggateaget ttactatgtg aaatttttgt cacteeeaga gtggggaatea gaettttaat gatggaacta tagttgaaaa gtaegggaatea gaettttaat gatggaacta tagttgaaaa gtaegggaatea gaettttaat gatggaacta teatgaataa gtaeggeaact ggaeateate gtggeagetg eeetgacaga gaetggaaagg ateeeaggaa tacaagaagg cagaaaaaaaa gtetgacagtga agtggetggt tacateegge aagegggtga	tagttetetg getacagggt gggeceggag gtteatecat gtttggaete atgggeetta tgttgteaca agtaacatga cettgegtga cagagaette caacgetete catgetttae attgacaate cagtgggeac aggeteagt atacecaegg atatgeagte aatgaggaeg atgtageace ggatttatae tteagtttt ceagatatt cetgaatata aaaataatga ettttatgte ettatgeagg gaaatatgtg ceagecattg cacaceteat ceatteete gagagggtgaa gateaacetg aacggaattg etattggaga tggatattet caattatagg gggetatgea gaatteetgt accaaceteat ecatteete gagagggtgaa gateaacetg aacggaattg etattggaga tggatattet caattatagg gggetatgea gaatteetgt accaaattgg ettgttggat aaaaagtaett ecagaageag tgecatgaat geatagaaca cateaggaag ttgaggeett tgaaataetg gataaactae tagatggega ettaacaagt actteeagaa tgttacagga tgtagtaatt actataactt tttgeggtge agggateage ttaactagga tgtaggaacta tagttgaaaa gtaettgega tacaggeaga tacaggeaga tacaggeaga tacaggeaga tacaggaaga tacaggaaga tacaggaaga tacaggaaga tacaggaaga tacaggaaga ceetagaaga gacteettg accaggaag cagaaaaaaa agtttggaag ettgacagaag accaggaagaga accaggaaga tacaagaagg cagaaaaaaa agtttggaag ettgacagga gagggggagg acatattta ecctatgace aggetetgaa agtttgaa

<210> 102

<211> 678

<212> DNA

<213> Homo sapiens

214/307

(400) 102

tgtccaggg	cgcagatctg	ggctctggtg	tctggtgtcg	gagggtttgg	agctctcgtt	60
gctgctacca	cgtccaatga	gtggaaagtg	accacgcgag	cctcctcggt	gataacagcc	120
acttgggttt	accagggtct	gtggatgaac	tgcgcaggta	acgcgttggg	ttctttccat	180
tgccgaccgc	attttactat	cttcaaagta	gcaggttata	tacaggcatg	tagaggactt	240
atgatcgctg	ctgtcagcct	gggcttcttt	ggttccatat	ttgcgctctt	tggaatgaag	300
tgtaccaaag	toggaggete	cgataaagcc	aaagctaaaa	ttgcttgttt	ggctgggatt	360
gtattcatac	tgtcagggct	gtgctcaatg	actggatgtt	ccctatatgc	aaacaaaatc	420
acaacggaat	tctttgatcc	tctctttgtt	gagcaaaagt	atgaattagg	agccgctctg	480
tttattggat	gggcaggagc	ctcactgtgc	ataattggtg	gtgtcatatt	ttgcttttca	540
atatctgaca	acaacaaaac	acccagatac	acatacaacg	gggccacatc	tgtcatgtct	600
tctcggacaa	agtatcatgg	tggagaagat	tttaaaacaa	caaacccttc	aaaacagttt	. 660
gataaaaatg	cttatgtc					678

⟨210⟩ 103

<211> 915

<212> DNA

(213) Homo sapiens

<400> 103

atggggatcc agacgagccc cgtcctgctg gcctcctgg gggtggggct ggtcactctg 60 ctcggcctgg ctgtgggct ctacttggtt cggaggtcc gccggcctca ggtcactctc 120 ctggacccca atgaaaagta cctgctacga ctgctagaca agacgactgt gagccacaac 180 accaagaggt tccgctttgc cctgccacc gcccaccaca ctctggggct gcctgtgggc 240 gtcaccagtg atgaggatca aggctatgtg gatcttgtca tcaaggtcta cctgaagggt 360

215/307

gtgcacccca	aatttcctga	gggagggaag	atgtctcagt	acctggatag	cctgaaggtt	420
ggggatgtgg	tggagtttcg	ggggccaagc	gggttgctca	cttacactgg	aaaagggcat	480
tttaacattc	agcccaacaa	gaaatctcca	ccagaacccc	gagtggcgaa	gaaactggga	540
atgattgccg	gcgggacagg	aatcacccca	atgctacagc	tgatccgggc	catcctgaaa	600
gtccctgaag	atccaaccca	gtgctttctg	ctttttgcca	accagacaga	aaaggatatc	660
atcttgcggg	aggacttaga	ggaactgcag	gcccgctatc	ccaatcgctt	taagctctgg	720
ttcactctgg	atcatcccc	aaaagattgg	gcctacagca	agggctttgt	gactgccgac	780
atgatccggg	aacacctgcc	cgctccaggg	gatgatgtgc	tggtactgct	ttgtgggcca	840
ccccaatgg	tgcagctggc	ctgccatccc	aacttggaca	aactgggcta	ctcacaaaaag	900
atgcgattca	cctac					915

⟨210⟩ 104

<211> 681

<212> DNA

(213) Homo sapiens

<400> 104

atgggttgga caatgaggct ggtcacagca gcactgttac tgggtctcat gatggtggtc 60 120 actggagacg aggatgagaa cagcccgtgt gcccatgagg ccctcttgga cgaggacacc ctcttttgcc agggccttga agttttctac ccagagttgg ggaacattgg ctgcaaggtt 180 240 gttcctgatt gtaacaacta cagacagaag atcacctcct ggatggagcc gatagtcaag ttcccggggg ccgtggacgg cgcaacctat atcctggtga tggtggatcc agatgcccct 300 agcagagcag aacccagaca gagattctgg agacattggc tggtaacaga tatcaagggc 360 gccgacctga agaaagggaa gattcagggc caggagttat cagcctacca ggctccctcc 420 480 ccaccggcac acagtggctt ccatcgctac cagttetttg tetatettca ggaaggaaaa gtcatctctc tccttcccaa ggaaaacaaa actcgaggct cttggaaaat ggacagattt 540

216/307

ctgaaccgtt	tccacctggg	cgaacctgaa	gcaagcaccc	agttcatgac	ccagaactac	600
caggactcac	caaccctcca	ggctcccaga	gaaagggcca	gcgagcccaa	gcacaaaaac	660
caggcggaga	tagctgcctg	С	•		•	681

<210> 105

<211> 1323

<212> DNA

<213> Homo sapiens

<400> 105

60 atggccatcc acaaagcctt ggtgatgtgc ctgggactgc ctctcttcct gttcccaggg gcctgggccc agggccatgt cccacccggc tgcagccaag gcctcaaccc cctgtactac 120 180 aacctgtgtg accgctctgg ggcgtggggc atcgtcctgg aggccgtggc tggggcgggc 240 attgtcacca cgtttgtgct caccatcatc ctggtggcca gcctcccctt tgtgcaggac accaagaaac ggagcctgct ggggacccag gtattcttcc ttctggggac cctgggcctc 300 360 ttctgcctcg tgtttgcctg tgtggtgaag cccgacttct ccacctgtgc ctctcggcgc 420 ttcctctttg gggttctgtt cgccatctgc ttctcttgtc tggcggctca cgtctttgcc 480 ctcaacttcc tggcccggaa gaaccacggg ccccggggct gggtgatctt cactgtggct 540 ctgctgctga ccctggtaga ggtcatcatc aatacagagt ggctgatcat caccctggtt 600 cggggcagtg gcgagggcgg ccctcagggc aacagcagcg caggctgggc cgtggcctcc 660 ccctgtgcca tcgccaacat ggactttgtc atggcactca tctacgtcat gctgctgctg 720 ctgggtgcct tectgggggc ctggcccgcc ctgtgtggcc gctacaagcg ctggcgtaag 780 catggggtct tigtgctcct caccacagec acctccgttg ccatatgggt ggtgtggatc 840 gtcatgtata cttacggcaa caagcagcac aacagtccca cctgggatga ccccacgctg 900 gccategece tegeogecaa tgcctgggcc ttegteetet tetaegteat ccccgaggte 960 tcccaggtga ccaagtccag cccagagcaa agctaccagg gggacatgta ccccacccgg

217/307

aggcgtgggct atgagaccat cctgaaagag cagaagggtc agagcatgtt cgtggagaac 1020
aaggcctttt ccatggatga gccggttgca gctaagaggc cggtgtcacc atacagcggg 1080
tacaatgggc agctgctgac cagtgtgtac cagcccactg agatggccct gatgcacaaa 1140
gttccgtccg aaggagctta cgacatcatc ctcccacggg ccaccgccaa cagccaggtg 1200
atgggcagtg ccaactcgac cctgcgggct gaagacatgt actcggccca gagccaccag 1260
gcggccacac cgccgaaaga cggcaagaac tctcaggtct ttagaaaccc ctacgtgtgg 1320
gac 1323

<210> 106

<211> 795

<212> DNA

<213> Homo sapiens

⟨400⟩ 106

60 atggccgctg ccgtcccgaa gaggatgagg gggccagcac aagcgaaact gctgcccggg 120 toggocator aagoortigt ggggttggog oggocgotgg tottggogot cotgottgtg 180 tecgeegete tatecagtgt tgtateaegg aetgatteae egageecaae egtaeteaae 240 tcacatattt ctaccccaaa tgtgaatgct ttaacacatg aaaaccaaac caaaccttct 300 atttcccaaa tcagcaccac cctccctccc acgacgagta ccaagaaaag tggaggagca 360 tctgtggtcc ctcatccctc gcctactcct ctgtctcaag aggaagctga taacaatgaa 420 gatectagta tagaggagga ggatettete atgetgaaca gttetecate cacagecaaa gacactetag acaatggcga ttatggagaa ccagactatg actggaccac gggccccagg 480 540 gacgacgacg agtctgatga caccttggaa gaaaacaggg gttacatgga aattgaacag tcagtgaaat cttttaagat gccatcctca aatatagaag aggaagacag ccatttcttt 600 660 tttcatctta ttatttttgc tttttgcatt gctgttgttt acattacata tcacaacaaa 720 aggaagattt ttcttctggt tcaaagcagg aaatggcgtg atggcctttg ttccaaaaca

218/307

gtggaatacc	atcgcctaga	tcagaatgtt	aatgaggcaa	tgccttcttt	gaagattacc	780
aatgattața	ttttt					795
<210> 107						
<211> 624						
<212> DNA						
<213> Homo	sapiens					
<400> 107						
atgctggggc	tgctggtggc	gttgctggcc	ctggggctcg	ctgtctttgc	gctgctggac	60
gtctggtacc	tggtgcgcct	tccgtgcgcc	gtgctgcgcg	cgcgcctgct	gcagccgcgc	120
gtccgtgacc	tgctagctga	gcagcgcttc	ccgggccgcg	tgctgccctc	ggacttggac	180
ctgctgttgc	acatgaacaa	cgcgcgctac	ctgcgcgagg	ccgactttgc	gcgcgtcgcg	240
cacctgaccc	gctgcggggt	gctcggggcg	ctgagggagt	tgcgggcgca	cacggtgctg	300
gcggcctcgt	gcgcgcgcca	ccgccgctcg	ctgcgcctgc	tggagccctt	cgaggtgcgc	360
acccgcctgc	tgggctggga	cgaccgcgcg	ttctacctgg	aggcgcgctt	tgtcagcctg	420
cgggacggtt	tegtgtgege	gctgctgcgc	ttccggcagc	acctgctggg	cacctcaccc	480
gagcgcgtcg	tgcagcacct	gtgccagcgc	agggtggagc	cccctgagct	gcccgctgat	540
ctgcagcact	. ggatctccta	caacgaggcc	agcagccagc	tgctccgcat	ggagagtggg	600
ctcagtgatg	tcaccaagga	ccag		-		624

⟨210⟩ 108

<211> 1200

<212> DNA

<213> Homo sapiens

<400> 108

219/307

tggcgtggc	ggcggcgcga	agccagcgtc	ggggctcgcg	gcgtgttggc	tctggcgttg	60
tcgccctgg	ccctgtgcgt	gcccggggcc	cggggccggg	ctctcgagtg	gttctcggcc	. 120
gtggtaaaca	tcgagtacgt	ggacccgcag	accaacctga	cggtgtggag	cgtctcggag	180
agtggccgct	tcggcgacag	ctcgcccaag	gagggcgcgc	atggcctggt	gggcgtcccg	240
tgggcgcccg	gcggagacct	cgagggctgc	gcgcccgaca	cgcgcttctt	cgtgcccgag	300
cccggcggcc	gaggggccgc	gccctgggtc	gccctggtgg	ctcgtggggg	ctgcaccttc	360
aaggacaagg	tgctggtggc	ggcgcggagg	aacgcctcgg	ccgtcgtcct	ctacaatgag	420
gagcgctacg	ggaacatcac	cttgcccatg	tctcacgcgg	gaacaggaaa	tatagtggtc	480
attatgatta	gctatccaaa	aggaagagaa	attttggagc	tggtgcaaaa	aggaattcca	540
gtaacgatga	ccataggggt	tggcacccgg	catgtacagg	agttcatcag	cggtcagtct	600
gtggtgtttg	tggccattgc	cttcatcacc	atgatgatta	tctcgttagc	ctggctaata	660
ttttactata	tacagcgttt	cctatatact	ggctctcaga	ttggaagtca	gagccataga	720
aaagaaacta	agaaagttat	tggccagctt	ctacttcata	ctgtaaagca	tggagaaaag	780
ggaattgatg	ttgatgctga	aaattgtgca	gtgtgtattg	aaaatttcaa	agtaaaggat	840
attattagaa	ttctgccatg	caagcatatt	tttcatagaa	tatgcattga	cccatggctt	900
ttggatcaco	gaacatgtco	aatgtgtaaa	cttgatgtca	tcaaagccct	aggatattgg	960
ggagagcctg	gggatgtaca	ggagatgcct	gctccagaat	ctcctcctgg	aagggatcca	1020
gctgcaaatt	tgagtctago	tttaccagat	gatgacggaa	gtgatgagag	cagtccacca	1080
tcagcctccc	ctgctgaato	tgagccacag	g tgtgatccca	gctttaaagg	gatgcagga	1140
naaaatann	r cattectaes	agccggcage	g agtgactcto	ggcatggagg	acccatctcc	1200

<210> 109

<211> 576

<212> DNA

<213> Homo sapiens

220/307

<400> 109

atgttttgcc cactgaaact catcctgctg ccagtgttac tggattattc cttgggcctg 60 aatgacttga atgtttcccc gcctgagcta acagtccatg tgggtgattc agctctgatg 120 180 ggatgtgttt tccagagcac agaagacaaa tgtatattca agatagactg gactctgtca ccaggagage acgccaagga cgaatatgtg ctatactatt actccaatct cagtgtgcct 240 300 attgggcgct tccagaaccg cgtacacttg atgggggaca acttatgcaa tgatggctct ctcctgctcc aagatgtgca agaggctgac cagggaacct atatctgtga aatccgcctc 360 420 aaaggggaga gccaggtgtt caagaaggcg gtggtactgc atgtgcttcc agaggagccc 480 aaagagctca tggtccatgt gggtggattg attcagatgg gatgtgtttt ccagagcaca 540 gaagtgaaac acgtgaccaa ggtagaatgg atattttcag gacggcgcgc aaaggtaaca 576 aggaggaaac atcactgtgt tagagaaggc tctggc

<210> 110

<211> 780

<212> DNA

(213) Homo sapiens

<400> 110

60 atggcggggt cgccgctgct ctgggggccg cgggccgggg gcgtcggcct tttggtgctg 120 ctgctgctcg gcctgtttcg gccgccccc gcgctctgcg cgcggccggt aaaggagccc 180 cgcggcctaa gcgcagcgtc tccgcccttg gctgagactg gcgctcctcg ccgcttccgg 240 cggtcagtgc cccgaggtga ggcggcgggg gcggtgcagg agctggcgcg ggcgctggcg 300 catctgctgg aggccgaacg tcaggagcgg gcgcgggccg aggcgcagga ggctgaggat 360 cagcaggege gegteetgge geagetgetg egegtetggg gegeeeceeg caactetgat ccggctctgg gcctggacga cgaccccgac gcgcctgcag cgcagctcgc tcgcgctctg 420 ctecgegeee geettgaeee tgeegeeete geageeeage ttgteeeege geeegteeee 480

221/307

gccgcggcgc	teegacee	eg gecee	cggtc ta	acgacgacg	gccccgc	ggg cccg	gatget	540
gaggaggcag	gcgacgaga	ac acccg	acgtg ga	accccgagc	tgttgag	gta cttg	ctggga	600
cggaticttg	cgggaagcg	gc ggact	ccgag gg	ggtggcag	ccccgcg	ccg cctc	cgccgt	660
gccgccgacc	acgatgtgg	gg ctctg	agctg co	ccctgagg	gcgtgct	ggg ggcg	ctgctg	720
cgtgtgaaac	gcctagaga	ac cccgg	egece ca	aggtgcctg	cacgccg	cct cttg	ccaccc	780
<210> 111								
<211> 1633								
<212> DNA								
<213> Homo	sapiens							
<220>								
<221> CDS								
<222> (68).	(1498)							
<400> 111								
acaaccggct	ggggtcctt	g cgcgc	egegg et	cagggagg	agcaccg	act gcgc	cgcacc	60
ctgagag atg	g gtt ggt	gcc atg	tgg aag	gtg att	gtt tcg	ctg gtc	ctg	109
Met	Val Gly	Ala Met	Trp Lys	Val Ile	Val Ser	Leu Val	Leu	
1		5			10			
ttg atg cct	ggc ccc	tgt gat	ggg ctg	ttt cgc	tcc cta	tac aga	agt	157
Leu Met Pro	Gly Pro	Cys Asp	Gly Leu	Phe Arg	Ser Leu	Tyr Arg	Ser	
15		20		25			30	
gtt tcc atg	cca cct	aag gga	gac tca	gga cag	cca tta	ttt ctc	acc	205
Val Ser Met	Pro Pro	Lys Gly	Asp Ser	Gly Gln	Pro Leu	Phe Leu	Thr	
	35			40		45		

cct tac att gaa gct ggg aag atc caa aaa gga aga gaa ttg agt ttg

253

Pro Tyr I	le Glu	Ala Gl	y Lys	Ile	Gln	Lys (Gly	Arg	Glu	Leu	Ser	Leu	
	50				55					60			
gtc ggc c	ct ttc	cca gg	a ctg	aac	atg	aag	agt	tat	gcc	ggc	ttc	ctc	301
Val Gly P	ro Phe	Pro Gl	y Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu	
	65			70					7 5				
acc gtg a	at aag	act ta	c aac	agc	aac	ctc	ttc	ttc	tgg	ttc	ttc	cca	349
Thr Val A	Asn Lys	Thr Ty	r Asn	Ser	Asn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	
80			85					90					
gct cag a	ata cag	cca ga	a gat	gcc	cca	gta	gtt	ctc	tgg	cta	cag	ggt	397
Ala Gln	Ile Gln	Pro G	lu Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly	
95		10	00				105					110	
ggg ccg	gga ggt	tca to	cc atg	ttt	gga	ctc	ttt	gtg	gaa	cat	ggg	cct	445
Gly Pro	Gly Gly	Ser S	er Met	Phe	Gly	Leu	Phe	Val	Glu	His	Gly	Pro	
		115				120					125	i	
tat gtt	gtc aca	agt a	ac atg	acc	ttg	cgt	gac	aga	gac	ttc	ccc	tgg	493
Tyr Val	Val Thi	Ser A	sn Met	. Thr	Leu	Arg	Asp	Arg	Asp	Phe	Pro	Trp	
	130)			135	•				140)		
acc aca	acg ct	c tcc a	tg cti	t tac	att	gac	aat	cca	gtg	g ggo	aca	ggc	541
Thr Thr	Thr Le	ı Ser M	et Lei	ı Tyr	· Ile	. Asp	Asn	Pro	Va!	l Gly	Thi	Gly	
	145			150)				15	5			
ttc agt	ttt ac	t gat g	at ac	c cac	gga	a tat	gca	gto	aa	t ga	g ga	gat	589
Phe Ser	Phe Th	r Asp A	sp Th	r His	s Gly	/ Tyr	· Ala	(Va	l Ası	n Gli	ı Ası	p Asp	
160			16	5				170)				
gta gca	cgg ga	t tta t	ac ag	t gca	a cta	a att	. cag	g tt	t tt	c ca	g at	a ttt	637
Val Ala	Ara As	n Leu '	îvr Se	r Ala	a Lei	u Ile	e Glr	n Ph	e Ph	e Gl	n II	e Phe	

175					180					185					190	
cct	gaa	tat	aaa	aat.	aat	gac	ttt	tat	gtc	act	ggg	gag	tct	tat	gca	685
Pro	Glu	Tyr	Lys	Asn	Asn	Asp	Phe	Tyr	Val	Thr	Gly	Glu	Ser	Tyr	Ala	
				195					200					205		
ggg	aaa	tat	gtg	сса	gcc	att	gca	cac	ctc	atc	cat	tcc	ctc	aac	cct	733
Gly	Lys	Tyr	Val	Pro	Ala	Ile	Ala	His	Leu	He	His	Ser	Leu	Asn	Pro	
			210					215					220			
gtg	aga	gag	gtg	aag	atc	aac	ctg	aac	gga	att	gct	att	gga	gat	gga	781
Val	Arg	Glu	Val	Lys	Ile	Asn	Leu	Asn	Gly	Ile	Ala	Ile	Gly	Asp	Gly	
		225					230					235				
tat	tct	gat	ссс	gaa	tca	att	ata	ggg	ggc	tat	gca	gaa	ttc	ctg	tac	829
Tyr	Ser	Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr	
	240					245					250					
caa	att	ggc	ttg	ttg	gat	gag	aag	caa	aaa	aag	tac	ttc	cag	aag	cag	877
Gln	Ile	Gly	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	Gln	
255					260)				265	1				270	
tgc	cat	gaa	tgc	ata	gaa	cac	atc	agg	aag	cag	aac	tgg	ttt	. gag	gcc	925
Cys	His	Glu	Cys	Ile	Glu	His	Ile	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala	
	•			275	•				280)				285	i	
ttt	gaa	ata	ctg	gat	aaa	cta	cta	gat	ggc	gac	tta	aca	agt	gat	cct	973
Phe	Glu	Ile	e Leu	Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	Thr	Sei	Asp	Pro	
			290)				295					300)		
tct	tac	tto	cag	g aat	gtt	aca	gga	a tgt	agt	aat	tac	tat	aac	ttt	ttg	1021
Ser	Tyr	Phe	e Gln	Asr	ı Val	Thr	Gly	/ Cys	Ser	· Asr	Tyr	Tyr	- Ası	n Phe	Leu	
		309	5				310)				318	5			

cgg	tgc	acg	gaa	cct	gag	gat	cag	ctt	tac	tat	gtg	aaa	ttt	ttg	tca	1069	,
Arg	Cys	Thr	Glu	Pro	Glu	Asp	Gln	Leu	Tyr _.	Tyr	Val	Lys	Phe	Leu	Ser		
	320	•				325					330						
ctc	cca	gag	gtg	aga	caa	gcc	atc	cac	gtg	ggg	aat	cag	act	ttt	aat	; 1117	7
Leu	Pro	Glu	Val	Arg	Gln	Ala	Ile	His	Val	Gly	Asn	Gln	Thr	Phe	Asr	1	
335					340					345					350)	
gat	gga	act	ata	gtt	gaa	aag	tac	ttg	cga	gaa	gat	aca	gta	cag	tca	a 1169	5
Asp	Gly	Thr	Ile	Val	Glu	Lys	Tyr	Leu	Arg	Glu	Asp	Thr	Val	Gln	Se	r	
				355					360					365	5		
gtt	aag	cca	tgg	tta	act	gaa	atc	atg	aat	aat	tat	aag	ggtt	ctg	g at	c 121	3
Val	Lys	Pro	Trp	Leu	Thr	Glu	Ile	Met	Asn	Asn	Tyr	Lys	s Val	l Leu	ı Il	е	
			370)				375					380)			
tac	aat	ggo	c caa	cte	gac	ato	ato	gtg	gca	gct	gco	ct	gac	a ga	g ca	c 126	1
Туі	r Asr	Gl	y Glr	ı Lei	ı Asp	Ile	: Ile	e Val	Ala	Ala	Ala	a Le	u Th	r Gl	u Hi	s	
		38	5				390)				39	5				
tc	c tti	g at	g gg	atı	g gao	tg(g aaa	a gga	tco	cag	g gaa	a ta	c aa	g aa	g go	a 130)9
Se	r Lei	ı Me	t Gl	y Me	t Ası) Tr	Ly:	s Gly	y Ser	Glr	Gl	u Ty	r Ly	s Ly	s Al	la	
	40	0				40	5				41	0					
ga	a aa	a aa	a gt	t tg	g aa	g at	c tt	t aa	a tc	t gad	ag	t ga	a gt	g gc	t g	gt 13	57
Gl	u Ly	s Ly	s Va	l Tr	p Ly	s Il	e Ph	e Ly	s Se	r Ası	p Se	r Gl	u Va	ıl Al	a G	ly	
41	5				42	0				42	5				4	30	
ta	ıc at	c cg	g ca	a gc	g gg	t ga	c tt	с са	t ca	g gt	a at	t at	t ce	ga gg	gt g	ga 14	05
Ту	r Il	e Ar	g Gl	n Al	a Gl	y As	p Ph	e Hi	s Gl	n Va	1 11	e I	le Ai	rg G1	ly G	ly	
				43	15				44	0				4	45		
gg	ga ca	it a	tt tt	a co	c ta	t ga	ic ca	g co	t ct	g ag	a go	t t	tt g	ac a	tg a	tt 14	53

Gly His Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile	
450 455 460	
aat cga ttc att tat gga aaa gga tgg gat cct tat gtt gga taaac	1500
Asn Arg Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly	
465 470 475	
tacettecca aaagagaaca teagaggttt teattgetga aaagaaaate gtaaaaacag	1560
aaaatgtcat aggaataaaa aaattatctt ttcatatctg caagattttt ttcatcaata	1620
aaaattatcc ttg	1633
<210> 112	
<211> 1095	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (192) (872)	
<400> 112	
ctttaaaatg tcattggtaa accatacttg atcctaaatt cctgtacttc ctcaggccat	60
ccgagcatga aacgctgtca cctacccaca tccgctggct gtgacgcttg tcaaagtgtt	-120
ctctatcggc tgcatgccta gaccaccaaa gcgttctgac cggacagtgt cactggagaa	180
ggcggcgcga c atg tcc agg gcg cag atc tgg gct ctg gtg tct ggt gtc	230
Met Ser Arg Ala Gln Ile Trp Ala Leu Val Ser Gly Val	
1 5 10	
gga ggg ttt gga gct ctc gtt gct gct acc acg tcc aat gag tgg aaa	278
Gly Gly Phe Gly Ala Leu Val Ala Ala Thr Thr Ser Asn Glu Trp Lys	

	15					20					25					
gtg	acc	acg	cga	gcc	tcc	tcg	gtg	ata	aca	gcc	act	tgg	gtt	tac	cag	326
Val	Thr	Thr	Arg	Ala	Ser	Ser	Val	Ile	Thr	Ala	Thr	Trp	Val	Tyr	Gln	
30					35					40					45	
ggt	ctg	tgg	atg	aac	tgc	gca	ggt	aac	gcg	ttg	ggt	tct	ttc	cat	tgc	374
Gly	Leu	Trp	Met	Asn	Cys	Ala	Gly	Asn	Ala	Leu	Gly	Ser	Phe	His	Cys	
				50					55					60		٠
cga	ccg	cat	ttt	act	atc	ttc	aaa	gta	gca	ggt	tat	ata	cag	gca	tgt	422
Arg	Pro	His	Phe	Thr	Ile	Phe	Lys	Val	Ala	Gly	Tyr	Ile	Gln	Ala	Cys	
			65					70					75			
aga	gga	ctt	atg	atc	gct	gct	gtc	agc	ctg	ggc	ttc	ttt	ggt	tcc	ata	470
Arg	Gly	Leu	Met	Ile	Ala	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile	
		80					85					90				
ttt	gcg	ctc	ttt	gga	atg	aag	tgt	acc	aaa	gtc	gga	ggc	tcc	gat	aaa	518
Phe	Ala	Leu	Phe	Gly	Met	Lys	Cys	Thr	Lys	Val	Gly	Ġly	Ser	Asp	Lys	
	95					100					105					
gcc	aaa	gct	aaa	att	gct	tgt	ttg	gct	ggg	att	gta	ttc	ata	ctg	tca	566
Ala	Lys	Ala	Lys	Ile	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser	
110					115					120		•			125	
ggg	ctg	tgc	tca	atg	act	gga	tgt	tcc	cta	tat	gca	aac	aaa	atc	aca	614
Gly	Leu	Cys	Ser	Met	Thr	Gly	Cys	Ser	Leu	Tyr	Ala	Asn	Lys	Ile	Thr	
				130					135					140)	
acg	gaa	ttc	ttt	gat	cct	ctc	ttt	gtt	gag	caa	aag	tat	gaa	tta	gga	662
Thr	Glu	Phe	Phe	Asp	Pro	Leu	Phe	· Val	Glu	G1n	Lys	Tyr	Glu	. Leu	Gly	
			145	,				150)				155	j		

227/307

gcc	gct	ctg	ttt	att	gga	tgg	gca	gga	gcc	tca	ctg	tgc	ata	att	ggt	710
Ala	Ala	Leu	Phe	Ile	Gly	Trp	Ala	Gly	Ąla	Ser	Leu	Cys	Ile	Ile	Gly	
		160					165					170	•			
ggt	gtc	ata	ttt	tgc	ttt	tca	ata	tct	gac	aac	aac	aaa	aca	ccc	aga	758
Gly	Val	Ile	Phe	Cys	Phe	Ser	Ile	Ser	Asp	Asn	Asn	Lys	Thr	Pro	Arg	
	175					180					185					
tac	aca	tac	aac	ggg	gcc	aca	tct	gtc	atg	tct	tct	cgg	aca	aag	tat	806
Tyr	Thr	Tyr	Asn	Gly	Ala	Thr	Ser	Val	Met	Ser	Ser	Arg	Thr	Lys	Tyr	
190					195					200					205	
cat	ggt	gga	gaa	gat	ttt	aaa	aca	aca	aac	cct	tca	aaa	cag	ttt	gat	854
															Asp	
				210)				215	i				220		
aaa	aat	gct	t tat	t gto	t a	aaag	gagct	c go	gggc	aago	t go	ctct	tga			900
				r Val												
			229	5												
gti	ttgt	tata	aaa	gcgaa	act g	gttca	acaaa	aa t	gatco	ccato	c aag	ggcc	ctcc	cata	attaac	960
															gtaagtg	1020
															aaataaa	1080
		attt														1095

<210> 113

<211> 1602

<212> DNA

<213> Homo sapiens

<220>

PCT/JP00/05356

<221>	CD	S															
<222>	(3	4)	. (95	1)												•	
<400>	11	3						•									
tttgt	cag	gt g	gtgg	agga	a aa	ggcg	ctcc	gto	atg	ggg	ato	cag	ace	gago	ccc	54	ļ
									Met	Gly	Ile	Glr	Th:	: Ser	Pro		
									1	•			9	5			
gtc c	tg	ctg	gcc	tcc	ctg	ggg	gtg	ggg	ctg	gtc	act	ctg	ctc	ggc	ctg	102	?
Val L	.eu	Leu	Ala	Ser	Leu	Gly	Val	Gly	Leu	Val	Thr	Leu	Leu	Gly	Leu		
		10					15					20					
gct g	tg	ggc	tcc	tac	ttg	gtt	cgg	agg	tcc	cgc	cgg	cct	cag	gtc	act	150)
Ala V	'al	Gly	Ser	Tyr	Leu	Val	Arg	Arg	Ser	Arg	Arg	Pro	Gln	Val	Thr		
	25					30	•				35						
ctc o	etg	gac	ccc	aat	gaa	aag	tac	ctg	cta	cga	ctg	cta	gac	aag	acg	198	3
Leu l	.eu	Asp	Pro	Asn	Glu	Lys	Tyr	Leu	Leu	Arg	Leu	Leu	Asp	Lys	Thr		
40					45					50					55		
act g	gtg	agc	cac	aac	acc	aag	agg	ttc	cgc	ttt	gcc	ctg	ccc	acc	gcc	24	6
Thr \	Val	Ser	His	Asn	Thr	Lys	Arg	Phe	Arg	Phe	Ala	Leu	Pro	Thr	Ala		
				60					65					70			
cac	cac	act	ctg	ggg	ctg	cct	gtg	ggc	aaa	cat	atc	tac	ctc	tcc	acc	29	4
His I	His	Thr	Leu	Gly	Leu	Pro	Val	Gly	Lys	His	Ile	Tyr	Leu	Ser	Thr		
			75					80					85	i		•	
cga	att	gat	ggc	agc	ctg	gtc	atc	agg	cca	tac	act	cct	gtc	acc	agt	34	2
Arg	Ile	Asp	Gly	Ser	Leu	Val	Ile	۸rg	Pro	Tyr	Thr	Pro	Val	Thr	Ser		
		90					95					100)				
σat	σασ	o a t	caa	gge	tat	gtg	gat	ctt	gtc	atc	aag	gto	: tac	ctg	aag	39	0

Asp Glu Asp Gln Gly Tyr Val Asp Leu Val Ile Lys Val Tyr Leu Lys	
105 110 115	
ggt gtg cac ccc aaa ttt cct gag gga ggg aag atg tct cag tac ctg	438
Gly Val His Pro Lys Phe Pro Glu Gly Gly Lys Met Ser Gln Tyr Leu	
120 125 130 135	
gat agc ctg aag gtt ggg gat gtg gtg gag ttt cgg ggg cca agc ggg	486
Asp Ser Leu Lys Val Gly Asp Val Val Glu Phe Arg Gly Pro Ser Gly	
140 145 150	
ttg ctc act tac act gga aaa ggg cat ttt aac att cag ccc aac aag	534
Leu Leu Thr Tyr Thr Gly Lys Gly His Phe Asn Ile Gln Pro Asn Lys	
155 160 165	
aaa tot coa coa gaa coo cga gtg gog aag aaa ctg gga atg att goo	582
Lys Ser Pro Pro Glu Pro Arg Val Ala Lys Lys Leu Gly Met Ile Ala	
170 175 180	
ggc ggg aca gga atc acc cca atg cta cag ctg atc cgg gcc atc ctg	630
Gly Gly Thr Gly Ile Thr Pro Met Leu Gln Leu Ile Arg Ala Ile Leu	
185 190 195	
aaa gtc cct gaa gat cca acc cag tgc ttt ctg ctt ttt gcc aac cag	678
Lys Val Pro Glu Asp Pro Thr Gln Cys Phe Leu Leu Phe Ala Asn Gln	
200 205 210 215	
aca gaa aag gat atc atc ttg cgg gag gac tta gag gaa ctg cag gcc	726
Thr Glu Lys Asp Ile Ile Leu Arg Glu Asp Leu Glu Glu Leu Gln Ala	
220 225 230	
cgc tat ccc aat cgc tit aag ctc tgg tic act ctg gat cat ccc cca	774
Arg Tyr Pro Asn Arg Phe Lys Leu Trp Phe Thr Leu Asp His Pro Pro	

			235					240					245			
aaa	gat	tgg	gcc	tac	agc	aag	ġgc	ttt	gtg	act	gcc	gac	atg	atc	cgg	822
Lys	Asp	Trp	Ala	Tyr	Ser	Lys	Gly	Phe	Val	Thr	Ala	Asp	Met	Ile	Arg	
		250					255					260				
gaa	cac	ctg	ccc	gct	cca	ggg	gat	gat	gtg	ctg	gta	ctg	ctt	tgt	ggg	870
	His															
	265					270					275					
cca	ccc	cca	atg	gtg	cag	ctg	gcc	tgc	cat	ccc	aac	ttg	gac	aaa	ctg	918
	Pro															
280					285					290					295	
ggc	tac	tca	caa	aag	atg	cga	ttc	acc	tac	tg	agca	tcct	сс а	gctt	ccctg	970
	Tyr															
·	·			300					305					•		
gtg	ctgt	tcg	ctgc	agtt	gt t	cccc	atca	g ta	ctca	agca	cta	taag	cct	taga	ttcctt	1030
															cctgca	
															tggcc1	
															catgga	
															gcatci	
															tactta	
															atagca	
															agatot	
															ggctag	
															tgtgca	
	gaaa aaat										J.	-		_		1602
au	uaat	5556	CLEC	-00~		-0-0	- 0 - 3		_							

2107 114	
(211> 897	
(212> DNA	
(213) Homo sapiens	
(220)	
<221> CDS	
〈222〉 (99) (782)	
<400> 114	
agtoctocca aagtacttgt gtoogggtgg tggactggat togotgogga goootggaag	60
ctgcctttcc ttctccctgt gcttaaccag aggtgccc atg ggt tgg aca atg	113
Met Gly Trp Thr Met	
1 5	
agg ctg gtc aca gca gca ctg tta ctg ggt ctc atg atg gtg gtc act	161
Arg Leu Val Thr Ala Ala Leu Leu Cly Leu Met Met Val Val Thr	
10 15 20	
gga gac gag gat gag aac agc ccg tgt gcc cat gag gcc ctc ttg gac	209
Gly Asp Glu Asp Glu Asn Ser Pro Cys Ala His Glu Ala Leu Leu Asp	
25 30 35	
gag gac acc ctc ttt tgc cag ggc ctt gaa gtt ttc tac cca gag ttg	257
Glu Asp Thr Leu Phe Cys Gln Gly Leu Glu Val Phe Tyr Pro Glu Leu	•
40 45 50	
ggg aac att ggc tgc aag gtt gtt cct gat tgt aac aac tac aga cag	305
Gly Asn Ile Gly Cys Lys Val Val Pro Asp Cys Asn Asn Tyr Arg Gln	
55 60 65	
and atc acc tee tgg atg gag eeg ata gte aag tte eeg ggg gee gtg	353

Lys	He	Thr	Ser	Trp	Met	Glu	Pro	IIe	vai	Lys	rne	FIO	GIY	nia	141	
70					75					80					85	
gac	ggc	gca	acc	tat	atc	ctg	gtg	atg	gtg	gat	cca	gat	gcc	cct	agc	401
Asp	Gly	Ala	Thr.	Tyr	Ile	Leu	Val	Met	Val	Asp	Pro	Asp	Ala	Pro	Ser	
				90					95					100		
aga	gca	gaa	ccc	aga	cag	aga	tťc	tgg	aga	cat	tgg	ctg	gta	aca	gat	449
Arg	Ala	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His	Trp	Leu	Val	Thr	Asp	
			105					110					115			
atc	aag	ggc	gcc	gac	ctg	aag	aaa	ggg	aag	att	cag	ggc	cag	gag	tta	497
Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile	Gln	Gly	Gln	Glu	Leu	
		120					125					130				
tca	gcc	tac	cag	gct	ccc	tcc	cca	ccg	gca	cac	agt	ggc	ttc	cat	cgc	545
Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His	Ser	Gly	Phe	His	Arg	
	135					140					145					
tac	cag	ttc	ttt	gtc	tat	ctt	cag	gaa	gga	aaa	gtc	atc	tct	ctc	ctt	593
Tyr	Gln	Phe	Phe	Val	Tyr	Leu	Gln	Glu	Gly	Lys	Val	Ile	Ser	Leu	Leu	
150					155					160					165	
ccc	aag	gaa	aac	aaa	act	cga	ggc	tct	tgg	aaa	atg	gac	aga	ttt	ctg	641
Pro	Lys	Glu	Asn	Lys	Thr	Arg	Gly	Ser	Trp	Lys	Meț	Asp	Arg	? Phe	Leu	c
	•			170)				175					180)	
aac	cgt	ttc	cac	ctg	ggc	gaa	cct	gaa	gca	ago	acc	cag	tto	atg	acc	689
Asn	Arg	Phe	His	Leu	Gly	Glu	Pro	Glu	Ala	Ser	Thr	Gln	Phe	e Met	. Thr	
			185					190	•				198	5		
cag	aac	: tac	cag	gac	tca	cca	acc	ctc	cag	gct	ccc	aga	gaa	a agg	g gcc	737
G1n	Asn	. Tvr	Gln	Asr	Ser	Pro	Thr	Leu	Gln	Ala	Pro	Arg	Glu	ı Arg	g Ala	

200	205	210	
agc gag ccc aag cac aaa aa	c cag gcg gag ata gct	gcc tgc t	780
Ser Glu Pro Lys His Lys As	n Gln Ala Glu Ile Ala	Ala Cys	
215 22	0 225		
agatageegg etttgeeate eggg	catgtg gccacactgc cca	ccaccga cgatgtgggt	840
atggaacccc ctctggatac agaa	ccctt cttttccaaa taa	aaaaaaa atcatcc	897
⟨210⟩ 115			
<211> 1866			
<212> DNA			
<213> Homo sapiens			
⟨220⟩			
<221> CDS		·	
<222> (142)(1467)			
<400> 115			
gcccgcatgc gggggcgtgg cag	caacag caacaaccca cad	gccggca gggccagaaa	60
ctcccatctc cctcaccagc cgg	aaagtac gagtcggctc ago	ctggagg gacccaacca	120
gagcctggcc tgggagccag g a	tg gcc atc cac aaa gcc	ttg gtg atg tgc	171
М	et Ala Ile His Lys Ala	a Leu Val Met Cys	
	1 5	10	
ctg gga ctg cct ctc ttc c	tg ttc cca ggg gcc tg	g gcc cag ggc cat	219
Leu Gly Leu Pro Leu Phe L	eu Phe Pro Gly Ala Tr	p Ala Gln Gly His	
15	20	25	
gtc cca ccc ggc tgc agc c	aa ggc ctc aac ccc ct	g tac tac aac ctg	267
Val Pro Pro Gly Cys Ser G	ln Gly Leu Asn Pro Le	u Tyr Tyr Asn Leu	

			.30					35					40				
gt g	ac	cgc	tct	ggg	gcg	tgg	ggc	atc	gtc	ctg	gag	gcic	gtg	gct	ggg	3	315
Cys A	sp.	Arg	Ser	Gly	Ala	Trp	Gly	Ile	Val	Leu	Glu	Ala	Val	Ala	Gly	′	
		45					50					55					
gcg (ggc	att	gtc	acc	acg	ttt	gtg	ctc	acc	atc	atc	ctg	gtg	gcc	age	C	363
Ala (Gly	Ile	Val	Thr	Thr	Phe	Val	Leu	Thr	Ile	Ile	Leu	Val	Ala	Se	r	
	60					65					70						
ctc	ссс	ttt	gtg	cag	gac	acc	aag	aaa	cgg	agc	ctg	ctg	ggg	acc	ca	g	411
Leu	Pro	Phe	Val	Gln	Asp	Thr	Lys	Lys	Arg	Ser	Leu	Leu	Gly	Thr	Gl	n	
75					80					85					9	0	
gta																	459
Val	Phe	Phe	Leu	Leu	Gly	Thr	Leu	Gly	Leu	Phe	Cys	Leu	ı Val	Phe	e Al	.a	
				95					100		•			109			
				ccc													507
Cys	Val	Val	Lys	s Pro	Asp	Phe	Ser	Thr	Cys	Ala	Ser	Ar			e Le	eu	
			110					115					120				
				g tto													555
Phe	Gly	Val	l Lei	u Phe	e Ala	ı Ile	e Cys	Phe	e Sei	Cys	: Le			a Hi	s V	al	
		129					130					13					200
				c tte													603
Phe	Ala	Le	u As	n Pho	e Lei	u Ala	a Arg	g Ly:	s Ası	n His	s Gl	y Pr	o Ar	g Gl	уТ	rp	
	140					14					15						
				t gt													651
Val	110	e Ph	e Th	r Va	1 A1	a Le	u Lei	u Le	u Th	r Le	u Va	1 G1	⊔ Va	1 II			
155					16	0				16	5				1	70	

aat	aca	gag	tgg	ctg	atc	atc	acc	ctg	gtt	cgg	ggc	agt	ggc	gag	ggc	699
Asn	Thr	Glu	Trp	Leu	Ile	Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	Glu	Gly·	
				175			·		180					185		
ggc	cct	cag	ggc	aac	agc	agc	gca	ggc	tgg	gcc	gtg	gcc	tcc	ccc	tgt	747
Gly	Pro	G1n	Gly	Asn	Ser	Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	
			190					195					200			
gcc	atc	gcc	aac	atg	gac	ttt	gtc	atg	gca	ctc	atc	tac	gtc	atg	ctg	795
Ala	Ile	Ala	Asn	Met	Asp	Phe	Val	Met	Ala	Leu	Ile	Tyr	Val	Met	Leu	
		205					210					215				
ctg	ctg	ctg	ggt	gcc	ttc	ctg	ggg	gcc	tgg	ccc	gcc	ctg	tgt	ggc	cgc	843
Leu	Leu	Leu	Gly	Ala	Phe	Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	
	220					225					230	•				
tac	aag	cgc	tgg	cgt	aag	cat	ggg	gtc	ttt	gtg	ctc	ctc	acc	aca	gcc	891
Tyr	Lys	Arg	Trp	Arg	Lys	His	Gly	Val	Phe	Val	Leu	Leu	Thr	Thr	Ala	
235					240	ı				245					250	
acc	tcc	gtt	gcc	ata	tgg	gtg	gtg	tgg	atc	gtc	atg	tat	act	tac	ggc	939
Thr	Ser	Val	Ala	Ile	Trp	Val	Val	Trp	Ile	Val	Met	Tyr	Thi	Tyr	Gly	
				255	;				260					265	5	
aac	aag	cag	cac	aac	agt	ccc	acc	tgg:	gat	gac	ccc	ace	g ctg	g gco	atc	987
Asn	Lys	Gln	His	Asn	Ser	Pro	Thr	Trp	Asp	Asp	Pro	Thr	. Lei	ı Ala	lle	
			270)				275	•				280)		
gcc	cto	gcc	gcc	aat	gcc	tgg	gco	ttc	gto	cto	tto	tac	gto	c ato	ccc	1035
Ala	Leu	ı Ala	Ala	ı Asr	Ala	Trp	Ala	Phe	. Val	Leu	ı Phe	Туі	r Va	l Ile	e Pro	
		285	5				290)				29	5			
gag	gto	e tec	cas	gts	g acc	aag	tco	ago	cca	gag	g caa	age	c ta	c ca	g ggg	1083

Glu	Val	Ser	Gln	Val	Thr	Lys	Ser	Ser	Pro	Glu	Gln	Ser	Tyr	Gln	Gly	
	300					305					310					
gac	atg	tac	ссс	acc	cgg	ggc	gtg	ggc	tat	gag	acc	atc	ctg	aaa	gag	11,31
Asp	Met	Tyr	Pro	Thr	Arg	Gly	Val	Gly	Tyr	Glu	Thr	Ile	Leu	Lys	Glu	
315					320					325	•				330	
cag	aag	ggt	cag	agc	atg	ttc	gtg	gag	aac	aag	gcc	ttt	tcc	atg	gat	1179
Gln	Lys	Gly	Gln	Ser	Met	Phe	Val	Glu	Asn	Lys	Ala	Phe	Ser	Met	Asp	
				335					340					345		
gag	ccg	gtt	gca	gct	aag	agg	ccg	gtg	tca	cca	tac	agc	ggg	tac	aat	1227
Glu	Pro	Val	Ala	Ala	Lys	Arg	Pro	Val	Ser	Pro	Tyr	Ser	Gly	Tyr	Asn	
			350					355					360)		
ggg	cag	ctg	ctg	acc	agt	gtg	tac	cag	ccc	act	gag	atg	gcc	ctg	atg	1275
Gly	Gln	Leu	Leu	Thr	Ser	Val	Tyr	Gln	Pro	Thr	Glu	Met	Ala	Leu	Met	
		365	,				370)				375	5			
cac	aaa	gtt	ccg	tcc	gaa	gga	gct	tac	gac	atc	ato	cto	cca	cgg	g gcc	1323
His	Lys	. Val	Pro	Ser	Glu	Gly	Ala	Tyr	Asp	Ile	Ile	. Lei	ı Pro	Arg	g Ala	
	380)				385	•				390)				
acc	gco	aac	ago	cag	gtg	ate	ggc	agt	gcc	aac	tcg:	gaco	cte	g cgg	g gct	1371
Thr	Ala	a Asr	ser	Gln	Val	Met	Gly	/ Ser	Ala	Asn	Ser	Thi	r Lei	ı Arg	g Ala	
395	i				400)				405	5				410	
gaa	gao	ate	g tac	tcg	gcc	cag	gago	cac	cag	gce	g gco	aca	a cc	g cci	g aaa	1419
Glu	ı Asp	Me1	t Tyr	Ser	Ala	Glr	ı Sei	r His	Glr	n Ala	a Ala	a Th	r Pr	o Pro	o Lys	
				415	5				420)				42	5	
gao	gg	c aaı	g aac	tc1	cag	ggto	e tt	t aga	a aad	ccc	c tac	c gt	g tg	g ga	С	1464
Asp	G1;	y Ly:	s Asr	ı Sei	Glr	ı Va	l Ph	e Ar	g Ası	n Pro	о Ту	r Va	l Tr	p As	р	

237/307

	430	4	435	440		
tgagtc agcg	gtggcg agga	gaggcg gtcg	ggatttg ggga	igggccc tgag	gacctg	1520
gccccgggca	agggactctc	caggctcctc	ctcccctgg	caggeceage	aacatgtgcc	1580
ccagatgtgg	aagggcctcc	ctctctgcca	gtgtttgggt	gggtgtcatg	ggtgtcccca	1640
cccactcctc	agtgtttgtg	gagtcgagga	gccaacccca	gcctcctgcc	aggatcacct	1700
cggcggtcac	actccagcca	aatagtgttc	tcggggtggt	ggctgggcag	cgcctatgtt	1760
tctctggaga	ttcctgcaac	ctcaagagac	ttcccaggcg	ctcaggcctg	gatettgete	1820
ctctgtgagg	aacaagggtg	cctaataaat	acatttctgc	tttatt		1866
<210> 116						
<211> 2198						
<212> DNA						
<213> Homo	sapiens					
<220>						
<221> CDS						
<222> (50).	(847)					
<400> 116						
aaaatggcgt a	agagcctagc	aacagcgcag	gctcccagcc	gagtccgtt a	tg gcc	55
				Me	et Ala	•
					1	
gct gcc gtc	ccg aag ag	g atg agg g	ggg cca gca	caa gcg aaa	ctg ctg	103
Ala Ala Val	Pro Lys Ar	g Met Arg C	Gly Pro Ala	Gln Ala Lys	Leu Leu	
5		10		15		
ccc ggg tcg	gcc atc ca	a gcc ctt g	gtg ggg ttg	gcg cgg ccg	ctg gtc	151

Pro Gly Ser Ala Ile Gln Ala Leu Val Gly Leu Ala Arg Pro Leu Val

	20					25					30					
ttg	gcg	ctc	ctg	ctt	gtg	tcc	gcc	gct	cta	tcc	agt	gtt	gta	tca	cgg	199
Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val	Ser	Arg	
35					40					45					50	
act	gat	tca	ccg	agc	cca	acc	gta	ctc	aac	tca	cat	att	tct	acc	cca	247
Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser	Thr	Pro	
				55					60					65		
aat	gtg	aat	gct	tta	aca	cat	gaa	aac	caa	acc	aaa	cct	tct	att	tcc	295
Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser	Ile	Ser	
			70					75					80			
caa	atc	agc	acc	acc	ctc	cct	ccc	acg	acg	agt	acc	aag	aaa	agt	gga	343
Gln	Ile	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys	Ser	Gly	
		85					90					95				
gga	gca	tct	gtg	gtc	cct	cat	ccc	tcg	cct	act	cct	ctg	tct	caa	gag	391
Gly	Ala	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser	Gln	Glu	
	100					105					110					
gaa	gct	gat	aac	aat	gaa	gat	cct	agt	ata	gag	gag	gag	gat	ctt	ctc	439
Glu	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	Ile	Glu	Glu	Glu	Asp	Leu	Leu	
115					120					125					130	
atg	ctg	aac	agt	tct	cca	tcc	aca	gcc	aaa	gac	act	cta	gac	aat	ggc	487
Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp	Asn	Gly	
				135					140					145		
gat	tat	gga	gaa	cca	gac	tat	gac	tgg	acc	acg	ggc	ccc	agg	gac	gac	535
Asp	Tyr	Gly	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg	Asp	Asp	
			150					155					160			

gac	gag	tct	gat	gac	acc	ttg	gaa	gaa	aac	agg	ggt	tac	atg	gaa	att	583
Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	Asn	Arg	Gly	Tyr	Met	Glu	Ile	
		165					170					175			٠	
gaa	cag	tca	gtg	aaa	tct	ttt	aag	atg	cca	tcc	tca	aat	ata	gaa	gag	631
Glu	Gln	Ser	Val	Lys	Ser	Phe	Lys	Met	Pro	Ser	Ser	Asn	Ile	Glu	Glu	
	180					185					190					
gaa	gac	agc	cat	ttc	ttt	ttt	cat	ctt	att	att	ttt	gct	ttt	tgc	att	679
Glu	Asp	Ser	His	Phe	Phe	Phe	His	Leu	Ile	Ile	Phe	Ala	Phe	Cys	Ile	
195					200					205					210	
gct	gtt	gtt	tac	att	aca	tat	cac	aac	aaa	agg	aag	att	ttt	ctt	ctg	727
															Leu	
				215					220					225		
gtt	caa	agc	agg	aaa	tgg	cgt	gat	. ggc	ctt	tgt	tco	aaa	aca	gtg	g gaa	775
															Glu	
			230					235					240			
tac	cat	. cgc	cta	ı gat	. cag	aat	gtt	aat	t gag	g gca	ate	g cci	t tc	t tte	g aag	823
															ı Lys	
.,.		245		•			250					25				
ati	t acc			t tat	. att	. tti			act	gtgai	ttt į	gaat	ttgc	tt		870
				o Tyr				•		-						
	260			,-		269										
a t			atti	tacti	taa d			at g	atat:	tete	c aa	atgt	ttgc	cat	aggcaat	930
															aatgtca	990
															gtccaaa	1050
ca	aacg	agid													tttatta	1110

240/307

tgcttcttct ggaagtatta gtgatgctac ttttaaaaga tcccaaactt gtaactaaat	1170
tetgacatat etgitaetge tgacteacat teatteteeg ceatteaaat actattttt	1230
atccacattt ttttttgttc ccaaactgta atgtacaagg atatgtgtga taatgctttg	1290
gatttgagta atatttttt ttcttccaag aaaactgctt tggatatttt tagataattt	1350
aaacataatt taggataatg atattgctca atctgaccac aattttaggt aaaacattaa	1410
atgtgtcaag aaatcttggc aacagagact ctgcagcttg cagtggacat agataaaatg	1470
ttacagagat actattttt tggttggaat tactatatta aatttagaag cagaaactgg	1530
taaaatgtta aatacatgta caattgcttt tagttagcaa ttgattgtag catgggttcc	1590
tccaaggttt caagcaatgg gcagagttta aaattatatc agattcgttt acttcgttta	1650
ttattttaca gtaaatttga ataaatctta ggggtcatta tcacttaaat aatactgtac	1710
ctaggtcttt caaattaaaa ttatacctga atgaagttgt ttgtatacat aaaggatatt	1770
tgtgtacaat taccttttt cccccacact tgttttcttt gtttttgttt tttatggcaa	1830
ctggaaagta tttactatgg gattcattta tgtctgtctt tctatcataa agaattgatc	1890
aatatgtaaa tatgtgattt gaaccatggt tgacttacaa gtgtcactac agctttttag	1950
aaaacatagc cctaatatat gttaagcagg acccgggtga gccagtgggc ttgcgcttta	2010
tgtagagctg gaagaaggcc gtccatcctg tctcttgggc ggacagtgta ctttcctaat	2070
agggaaggga agcacaatgg aaatacccct gaaccgtttt attgcagtaa tttttttcat	2130
atctgaaact attatttaat attttgaata agattttaaa aaataaat	2190
aatctatg	2198

<210> 117

<211> 2180

<212> DNA

<213≻ Homo sapiens

<220>

PCT/JP00/05356 WO 01/12660

241/307

(221> CDS	5														
<222> (69	9)	(695	5)			٠									
<400> 117	7				•			•							
aaccagcg	cc g	cggad	cacc	g gca	accgg	gcgc	cac	ggact	tcc g	gcage	gacco	c g	cgcc	cgccg	60
ccgccgct	atg	ctg	ggg	ctg	ctg	gtg	gcg	ttg	ctg	gcc	ctg	ggg	ctc	gct	110
	Met	Leu	Gly	Leu	Leu	Val	Ala	Leu	Leu	Ala	Leu	Gly	Leu	Ala	
	1				5					10	•				
gtc ttt	gcg	ctg	ctg	gac	gtc	tgg	tac	ctg	gtg	cgc	ctt	ccg	tgc	gcc	158
Val Phe	Ala	Leu	Leu	Asp	Val	Trp	Tyr	Leu	Val	Arg	Leu	Pro	Cys	Ala	
15				20					25					30	
gtg ctg	cgc	gcg	cgc	ctg	ctg	cag	ccg	cgc	gtc	cgt	gac	ctg	cta	gct	206
Val Leu	Arg	Ala	Arg	Leu	Leu	Gln	Pro	Arg	Val	Arg	Asp	Leu	Leu	Ala	
			35					40					45		
gag cag	cgc	ttc	ccg	ggc	cgc	gtg	ctg	ccc	tcg	gac	ttg	gac	ctg	ctg	254
Glu Gln	Arg	Phe	Pro	Gly	Arg	Val	Leu	Pro	Ser	Asp	Leu	Asp	Leu	Leu	
		50					55					60			
ttg cac	atg	aac	aac	gcg	cgc	tac	ctg	cgc	gag	gcc	gac	ttt	gcg	cgc	302
Leu His	Met	Asn	Asn	Ala	Arg	Tyr	Leu	Arg	Glu	Ala	Asp	Phe	Ala	Arg	
	65			٠		70		•			75				
gtc gcg	cac	ctg	acc	cgc	tgc	ggg	gtg	ctc	ggg	gcg	ctg	agg	gag	ttg	350
Val Ala	His	Leu	Thr	Arg	Cys	Gly	Val	Leu	Gly	Ala	Leu	Arg	Glu	Leu	
80)				85					90	ı				
cgg gcg	cac	acg	gtg	ctg	gcg	gcc	tcg:	tgc	gcg	cgc	cac	cgc	cgc	tcg	398
Arg Ala	His	; Thr	Val	Leu	Ala	Ala	Ser	Cys	Ala	Arg	His	Arg	Arg	Ser	
95				100)				105	,				110	

100

95

PCT/JP00/05356 WO 01/12660

242/307

ctg cgc ctg ctg gag ccc ttc gag gtg cg	c acc cgc ctg ctg ggc tgg 446
Leu Arg Leu Leu Glu Pro Phe Glu Val Ar	g Thr Arg Leu Leu Gly Trp
115	0 · 125
gac gac cgc gcg ttc tac ctg gag gcg cg	c ttt gtc agc ctg cgg gac 494
Asp Asp Arg Ala Phe Tyr Leu Glu Ala Ar	g Phe Val Ser Leu Arg Asp
130 135	140
ggt ttc gtg tgc gcg ctg ctg cgc ttc cg	g cag cac ctg ctg ggc acc 542
Gly Phe Val Cys Ala Leu Leu Arg Phe Ar	g Gln His Leu Leu Gly Thr
145 150	155
tea ecc gag ege gte gtg cag cac etg tg	c cag cgc agg gtg gag ccc 590
Ser Pro Glu Arg Val Val Gln His Leu Cy	s Gln Arg Arg Val Glu Pro
160 165	170
cct gag ctg ccc gct gat ctg cag cac t	gg atc tcc tac aac gag gcc 638
Pro Glu Leu Pro Ala Asp Leu Gln His T	p Ile Ser Tyr Asn Glu Ala
175 180	185 190
agc agc cag ctg ctc cgc atg gag agt g	gg ctc agt gat gtc acc aag 686
Ser Ser Gln Leu Leu Arg Met Glu Ser G	ly Leu Ser Asp Val Thr Lys
195 2	205
gac cag tgaccgcc accttcacac cgtctgccc	t ggccaccatc ctgggcctgg 740
Asp Gln	
gggctgccca cagatgggca gtctcagcca tact	ctgttc cagctggagt agcctcctga 800
ccagcetgge ccaccetget ccacceactg ggeo	ccccca gttattgata cccctctgtg 860
ctgggctcca cgctaggcag aaggaggagt ggca	ttggca tectgaceca getetgeeet 920
caaggtgggg atggatgggc aaaggagagt cctg	cctggc cctacgatga ggccactcat 980
gtgggcctag gtaggggagg atggtgcctg gago	agaggg acccacaagt gcctcccgag 1040

243/307

cctagatcct	ggctcggacc	actgcaaggg	ccgaggcagg	gccagaccag	agcatcctgg	1100
gtacaggcct	gggctctcca	gggcctgggc	ctgattcagg	tgcagtgggc	actcctgaag	1160
ggtcagagcg	gcatctgcca	ggcagcccct	ctggcttccg	ctgaggtggt	tgcaggcctg	1220
gggcagagcc	tgggtggtca	gaggccgggg	ctagaggcag	atggaaggga	ggcatttgct	1280
gacagaggac	ggggcacccg	ggctcccact	gcagtcggcc	ttgcctcctc	ctcctcctct	1340
acctccagtc	aggctggacg	ggagggtagc	cttgtggctg	agaggggtca	gactaggtgg	1400
cacaggggct	cctggaaaga	cagcaggctt	cctgctgggc	gttcccttgt	tggagggaat	1460
agagtggggg	tgggactctg	caggggtgtc	cttgtccact	cgcacccctc	gccgcccacc	1520
agggccatgc	tctgtgactt	gggctgatcc	ccaccctttc	tgggcctaca	gcaccacagg	1580
ccgctgtacc	cccttagagc	tgcccctctc	tggcctggcc	ggcagacgtc	ttcttaactc	1640
ctctgtcctc	tatattcagc	atgttccttg	tcagctgctg	ggccggccct	gccttgcgct	1700
agcagagcct	ctcctggcag	cttctcaggt	ctccctaatg	gagacaccag	gctactagga	1760
cactggctgg	ggccaccccc	tcctgcctaa	tgcctcacct	tacagctggg	gaaactgagg	1820
cctggaatgg	cccagagtca	ccaaggcaaa	gttggggctg	gtcccagcct	gaggctccag	1880
ctgatgccct	cagctcccag	agagggggtg	ccccatctag	ctgggtgcag	gggtcactgc	1940
ttgtcagctc	agggccctgt	gcccgcttgc	ctgttcccct	acatctgtgc	ctgcacatcc	2000
agaactgcct	ccttgccgct	gcctccagga	agcccacctt	gagccagagt	caagggctgc	2060
agcactgccc	gatagaacac	gcccgccctc	actgctgttc	ttgccttaca	gccaccatgg	2120
gaaagctgca	acctttctgt	tttatttaaa	gaaagcccaa	cattaaaggg	ttttcattgc	2180

<210> 118

<211> 1527

<212> DNA

<213> Homo sapiens

<220>

<221>	CDS	5														
<222>	(10	03).	(1:	305)			•									
<400	118	8														
agtct	tcc	ag g	gcgg	cggt	g gg	tgtc	cgct	tct	ctct	gct	cttc	gact	gc a	ccgc	actcg	60
cgcgt	tgac	cc t	gact	cccc	c ta	gtca	gctc	agc	ggtg	ctg	cc a	tg g	cg t	gg c	gg	114
											M	et A	la T	rp A	rg	
												1				
cgg	cgc	gaa	gcc	agc	gtc	ggg	gct	cgc	ggc	gtg	ttg	gct	ctg	gcg	ttg	162
Arg	Arg	Glu	Ala	Ser	Val	Gly	Ala	Arg	Gly	Val	Leu	Ala	Leu	Ala	Leu	
5					10		٠			15					20	
ctc	gcc	ctg	gcc	ctg	tgc	gtg	ccc	ggg	gcc	cgg	ggc	cgg	gct	ctc	gag	210
Leu	Ala	Leu	Ala	Leu	Cys	Val	Pro	Gly	Ala.	Arg	Gly	Arg	Ala	Leu	Glu	
				25					30					35		
tgg	ttc	tcg	gcc	gtg	gta	aac	atc	gag	tac	gtg	gac	ccg	cag	acc	aac	258
Trp	Phe	Ser	Ala	Val	Val	Asn	Ile	Glu	Tyr	Val	Asp	Pro	Gln	Thr	Asn	
			40					45					50			
ctg	acg	gtg	tgg	agc	gtc	tcg	gag	agt	ggc	cgc	ttc	ggc	gac	agc	tcg	306
Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe	Gly	Asp	Ser	Ser	
		55					60					65				
ccc	aag	gag	ggc	gcg	cat	ggc	ctg	gtg	ggc	gtc	ccg	tgg	gcg	ccc	ggc	354
Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro	Trp	Ala	Pro	Gly	
	70					75					80)				
gga	gac	cto	gag	ggc	tgc	gcg	ccc	gac	acg	cgc	ttc	tto	gtg	ccc	gag	402
Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe	Phe	. Val	Pro	Glu	
85					90)				95	5				100	

ccc	ggc	ggc	cga	ggg	gcc	gcg	ccc	tgg	gtc	gcc	ctg	gtg	gct	cgt	ggg	450
Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu	Val	Ala	Arg	Gly	
				105					110					115		
ggc	tgc	acc	ttc	aag	gac	aag	gtg	ctg	gtg	gcg	gcg	cgg	agg	aac	gcc	498
Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala	Arg	Arg	Asn	Ala	
			120					125					130			
tcg	gcc	gtc	gtc	ctc	tac	aat	gag	gag	cgc	tac	ggg	aac	atc	acc	ttg	546
Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly	Asn	Ile	Thr	Leu	
		135					140					145				
ccc	atg	tct	cac	gcg	gga	aca	gga	aat	ata	gtg	gtc	att	atg	att	agc	594
Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val	Ile	Met	Ile	e Ser	
	150)				155	•				160	,				
tat	cca	aaa	gga	a aga	gaa	att	ttg	gag	ctg	gtg	caa	aaa	gga	at	t cca	642
Tyr	Pro	Lys	G13	/ Arg	Glu	Ile	Leu	Glu	Leu	Val	G1r	Lys	Gly	/ Ile	e Pro)
165	,				170)				175	i				180	
															c ato	
Val	l Thi	r Me	t Th	r Ile	e Gly	/ Vai	l Gly	/ Thr	Arg	g His	s Val	l Gli	n Glu	ı Ph	e Ile	9
				185	5				190)				19	5	
															g at	
Se	r Gl	y Gl	n Se	r Va	l Val	l Ph	e Va	l Ala	a Ile	e Ala	a Pho	e Il			t Me	t
			20					209					21			
															c ct	
11	e Il	e Se	r Le	u Al	a Tr	p Le	u Il	e Pho	е Ту	r Ty	r Il	e Gl	n Ar	g Ph	ie Le	u
		21					22					22				
t a	t ac	t oo	c to	t ca	g at	t gg	a ag	t ca	g ag	с са	t ag	a aa	a ga	a ac	t aa	g 834

Tyr	Thr	Gly	Ser	Gln	Ile	Gly	Ser	Gln	Ser	His	Arg	Lys	Glu	Thr	Lys	
	230					235					240					
aaa	gtt	att	ggc	cag	ctt	cta	ctt	cat	act	gta	aag	cat	gga	gaa	aag	882
Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Vai	Lys	His	Gly	Glu	Lys	
245					250					255					260	
gga	att	gat	gtt	gat	gct	gaa	aat	tgt	gca	gtg	tgt	att	gaa	aat	ttc	930
Gly	Ile	Asp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Cys	Ile	Glu	Asn	Phe	
				265					270					275		
aaa	gta	aag	gat	att	att	aga	att	ctg	cca	tgc	aag	cat	att	ttt	cat	978
Lys	Val	Lys	Asp	Ile	Ile	Arg	Ile	Leu	Pro	Cys	Lys	His	Ile	Phe	His	
			280					285					290	ı		
aga	ata	tgo	att	gac	cca	tgg	ctţ	ttg	gat	cac	cga	aca	tgt	cca	atg	1026
Arg	Πe	Cys	: Ile	Asp	Pro	Trp	Leu	Leu	Asp	His	Arg	Thr	Cys	Pro	Met	
		298	5				300)				305	5			•
tgt	aaa	cti	t gat	gtc	atc	aaa	gcc	cta	gga	tat	tgg	g gga	gag	cct	ggg	1074
Cys	Lys	s Lev	ı Asp	Val	Ile	Lys	Ala	Let	Gly	Tyr	Trp	Gly	Glu	Pro	Gly	
	310)				315	•				320)				
gat	gta	a ca	g gag	g atg	cct	gct	. cca	a gaa	tct	cct	. cc1	t gga	a agg	g ga	t cca	1122
Asp	va.	l Gl	n Glu	ı Met	Pro	Ala	Pro	Glu	ı Ser	Pro	Pro	o Gly	y Arı	g Ası	p Pro	
325	5				330)				335	5				340	
gc	t gc	a aa	t tte	g agi	cta	a gct	t tta	a cc	a gat	t gat	t ga	c gg	a ag	t ga	t gag	1170
Ala	a Al	a As	n Lei	ı Sei	r Lei	ı Ala	a Lei	u Pr	o Ası	Asp	As;	p Gl	y Se	r As	p Glu	
				349	5				350)				35	5	
ag	c ag	t cc	a cca	a tca	a gc	c tc	c cc	t gc	t gaa	a tc	t ga	g cc	а са	g tg	t gat	1218
Sa	r Se	r Pr	o Pr	o Se	r Ala	a Sei	r Pr	o Al	a Gl	u Sei	r Gl	u Pr	o Gl	n Cy	s Asp	

247/307

		360					365					370				
ccc agc	tţt	aaa	gga	gat	gca	gga	gaa	aat	acg	gca	ttg	cta	gaa	gco	3	1266
Pro Ser	Phe	Lys	Gly	Asp	Ala	Gly	Glu	Asn	Thr	Ala	Leu	Leu	Glu	Ala	3	
•	375					380					385					
ggc agg	agt	gac	tct	cgg	cat	gga	gga	ccc	atc	tcc	tago	aca	С			1310
Gly Arg	Ser	Asp	Ser	Arg	His	Gly	Gly	Pro	Ile	Ser						
390					395					400						
gtgccca	ctg a	agte	gcac	c aa	acaga	aagti	tgg	gcttg	gaac	taaa	ggao	at	ttta	tttt	ttt	1370
ttacttt	agc a	cata	attt	g ta	atati	ttgaa	aat	taat	gtat	atta	tttt	ac	ctat	taga	att	1430
ctgattt	gat a	taca	aagg	ga ci	taaga	atatt	tto	ette	tga	agag	actt	tt	cgat	tagt	tcc	1490
tcatata	ttt a	tcta	ectaa	a at	tagag	gtgtt	tac	cate	3							1527
<210> 1	19															
<211> 19	905															
<212> Di	NA															•
<213> H	omo s	sapie	ens													
<220>																
<221> CI	os															
<222> ()	25).	(7	(03)													
<400> 11	9															
gagcctaa	icc t	agag	tgct	c go	agca	gtct	ttc	agtt	gag	cttg	ggga	ct į	gcago	tgt	gg	60
ggagatti	ca g	tgca	ttgc	c to	ccct	gggt	gct	cttc	atc	ttgg	attt	ga a	agtt	gag	ag	120
cago ate	ttt	tgc	cca	ctg	aaa	ctc	atc	ctg	ctg	cca	gtg	tta	cte	ga	t	169
Met	Phe	Cys	Pro	Leu	Lys	Leu	Ile	Leu	Leu	Pro	Val	Leu	ı Let	ı As	р	

10

15

l

5

at	tcc	ttg	ggc	ctg	aat	gac	ttg	aat	gtt	tcc	ccg	cct	gag	cta	aca	217
ſyr	Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu	Thr	
				20					25		•			30		
gtc	cat	gtg	ggt	gat	tca	gct	ctg	atg	gga	tgt	gtt	ttc	cag	agc	aca	265
Val	His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	G1n	Ser	Thr	
			35					40					45			
gaa	gac	aaa	tgt	ata	ttc	aag	ata	gac	tgg	act	ctg	tca	cca	gga	gag	313
Glu	Asp	Lys	Cys	Ile	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	Glu	
		50					55					60				
cac	gcc	aag	gac	gaa	tat	gtg	cta	tac	tat	tac	tcc	aat	ctc	agt	gtg	361
His	Ala	Lys	Asp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val	
	65					70	ı				75					
															tta	409
Pro	Ιlε	Gly	/ Are	g Phe	Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp) Asr	1 Leu	
80					85					90					95	
															cag	457
Cys	. Ası	n Ası	o Gly	y Ser	Leu	Leu	ı Lev	Gln	Asp	Val	Gln	Glu	ı Ala		o Gln	
				100					105					110		505
															g ttc	505
Gly	/ Th	r Ty	r Il	e Cys	s Glu	ı Ile	e Are	g Leu	ı Lys	s Gly	, Glu	ı Se			l Phe	
			11					120					12			550
															g ctc	
Ly	s Ly	s Al	a Va	l Va	l Le	ı Hi			u Pro	o Gli	u Gl			s Gl	u Leu	
		13					13					14				cos
a t	a at		+ 01	a aa	t gg	a tt	g at	t ca	gat	g gg	a tg	t gt	t tt	c ca	g agc	601

Met	Val	His	Val	Gly	Gly	Leu	Ile	Gln	Met	Gly	Cys	Val	Phe	Gln	Ser	
	145					150					155				•	
aca	gaa	gtg	aaa	cac	gtg	acċ	aag	gta	gaa	tgg	ata	ttt	tca	gga	cgg	649
Thr	Glu	Val	Lys	His	Val	Thr	Lys	Val	Glu	Trp	Ile	Phe	Ser	Gly	Arg	
160					165					170					175	
cgc	gca	aag	gta	aca	agg	agg	aaa	cat	cac	tgt	gtt	aga	gaa	ggc	tct	697
Arg	Ala	Lys	Val	Thr	Arg	Arg	Lys	His	His	Cys	Val	Arg	Glu	Gly	Ser	
				180					185					190		
ggc	tga	tggt	atc :	agga	caaa	gg ta	agaa	tcag	g ca	catga	agga	ggt	gttg	caa		750
Gly																
gago	ectg	ggc	tttg	gtgc	tt a	tcag	aact	g ga	cctt	ctcc	tag	caat	ttc	agct	ttctgg	810
tgg	gaaaı	gat	aact	ccaa	tg a	agaa	caag	a ac	aaga	agat	gat	gatg	atg	ctta	acttt	870
tgg	atgc	cga	tatg	agat	tg t	acat	gagg	a ga	ttgt	attt	cgt	tact	acc	acaa	actcag	930
gat	gtct	gcg	gagt	actc	cc a	gagc	tggg	g cc	actt	ccag	aat	cgtg	tga	acct	ggtggg	990
gga	catt	ttc	cgca	atga	cg g	ttcc	atca	t gc	ttca	agga	gtg	aggg	agt	caga	tggagg	g 1050
aaa	ctac	acc	tgca	gtat	cc a	ccta	ggga	а сс	tggt	gttc	aag	aaaa	cca	ttgt	gctgca	1110
tgt	cago	ccg	gaag	agcc	tc g	aaca	ctgg	t ga	cccc	ggca	gcc	ctga	ggc	ctct	ggtcti	1170
ggg	tggt	aat	cagt	tggt	ga t	catt	gtgg	g aa	ttgt	ctgt	gcc	acaa	tcc	tgct	gctccc	1230
tgt	tctg	ata	ttga	tcgt	ga a	gaag	acct	g tg	gaaa	taag	agt	tcag	tga	attc	tacagi	1290
ctt	ggtg	aag	aaca	cgaa	ga a	gact	aatc	c ag	agat	aaaa	gaa	aaac	cct	gcca	ttttga	1350
aag	atgt	gaa	gggg	agaa	ac a	catt	tact	c cc	caat	aatt	gta	cggg	agg	tgat	cgagga	1410
aga	agaa	cca	agtg	aaaa	at c	agag	gcca	c ct	acat	gacc	atg	cacc	cag	tttg	gcctto	1470
tct	gagg	tca	gatc	ggaa	ca a	ctca	cttg	a aa	aaaa	gtca	ggt	gggg	gaa	tgcc	aaaaa	1530
aca	gcaa	gcc	ttt	gaga	ag a	atgg	agag	t cc	cttc	atct	cag	cagc	ggt	ggag	actct	1590
tcc	tgtg	tgt	gtcc	tggg	сс а	ctct	acca	g tg	attt	caga	ctc	ccgc	tct	ccca	gctgt	1650

ctcctgtctc attgtttggt	caatacactg aagatggaga atttggagcc tggcagagag	1710
actggacago totggaggaa	caggcctgct gaggggaggg gagcatggac ttggcctctg	1770
gagtgggaca ctggccctgg	gaaccaggct gagctgagtg gcctcaaacc ccccgttgga	1830
tcagaccctc ctgtgggcag	ggttcttagt ggatgagtta ctgggaagaa tcagagataa	1890
aaaccaaccc aaatc		1905
<210> 120		
<211> 998		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> CDS		
<222> (50)(832)		
<400> 120		
gcacttgcca gccagtccg	c ccgtccggag cccggctcgc tggggcagc atg gcg	55
	Met Ala	
	1	
•	tgg ggg ccg cgg gcc ggg ggc gtc ggc ctt ttg	103
Gly Ser Pro Leu Leu	Trp Gly Pro Arg Ala Gly Gly Val Gly Leu Leu	
5	10 15	151
	ggc ctg ttt cgg ccg ccc ccc gcg ctc tgc gcg	151
Val Leu Leu Leu Leu	Gly Leu Phe Arg Pro Pro Pro Ala Leu Cys Ala	
20	25 30	100
	ccc cgc ggc cta agc gca gcg tct ccg ccc ttg	199
Arg Pro Val Lys Glu	Pro Arg Gly Leu Ser Ala Ala Ser Pro Pro Leu	

35					40					45					50	
gct	gag	act	ggc	gct	cct	cgc	cgc	ttc	cgg	cgg	tca	gtg	ccc	cga	ggt	247
Ala	Glu	Thr	Gly	Ala	Pro	Arg	Arg	Phe	Arg	Arg	Ser	Val	Pro	Arg	Gly	
				55					60					65		
gag	gcg	gcg	ggg	gcg	gtg	cag	gag	ctg	gcg	cgg	gcg	ctg	gcg	cat	ctg	295
Glu	Ala	Ala	Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Ala	Leu	Ala	His	Leu	
			70					75					80			
ctg	gag	gcc	gaa	cgt	cag	gag	cgg	gcg	cgg	gcc	gag	gcg	cag	gag	gct	343
Leu	Glu	Ala	Glu	Arg	Gln	Glu	Arg	Ala	Arg	Ala	Glu	Ala	Gln	Glu	Ala	
		85					90					95				
gag	gat	cag	cag	gcg	cgc	gtc	ctg	gcg	cag	ctg	ctg	cgc	gtc	tgg	ggc	391
Glu	Asp	Gln	Gln	Ala	Arg	Val	Leu	Ala	Gln	Leu	Leu	Arg	·Val	Trp	Gly	
	100					105					110					
					gat											439
Ala	Pro	۸rg	Asn	Ser	Asp	Pro	Ala	Leu	Gly	Leu	Asp	Asp	Asp	Pro	Asp	
115					120					125					130	
															gac	487
Ala	Pro	Ala	Ala	Gln	Leu	Ala	Arg	Ala	Leu	Leu	Arg	, Ala	Are		Asp	
				135			٠		140					145		505
															gcg	535
Pro	Ala	Ala	Leu	Ala	Ala	Gln	Leu			Ala	Pro	Va]			Ala	
			150					155					160			500
															ccg	583
Ala	Leu	ı Arg	Pro	Arg	g Pro	Pro			Asp	Asp	Gly			a Gly	, Pro	
		165	;				170)				17)			

gat	ect	gag	gag	gca	ggc	gac	gag	aca	ccc	gac	gtg	gac	ccc	gag	ctg	631
			Glu													
	180					185					190					
ttg		tac	ttg	ctg	gga	cgg	att	ctt	gcg	gga	agc	gcg	gac	tcc	gag	679
			Leu													
195					200					205					210	
ggg	gtg	gca	gcc	ccg	cgc	cgc	ctc	cgc	cgt	gcc	gcc	gac	cac	gat	gtg	727
			Ala													
				215					220					225		
ggc	tct	gag	ctg	ccc	cct	gag	ggc	gtg	ctg	ggg	gcg	ctg	ctg	cgt	gtg	775
Gly	Ser	Glu	Leu	Pro	Pro	Glu	Gly	Val	Leu	Gly	Ala	Leu	Leu	Arg	, Val	
			230)				235	,				240)		
aaa	cgo	cta	a gag	gaco	cce	g gcg	ccc	cag	gte	cct	gca	g cgc	cgo	cto	ttg	823
Lys	. Are	g Lei	u Glu	ı Thi	Pro	Ala	a Pro	Glr	ı Val	Pro	Ala	a Are	g Arg	g Lei	ı Leu	
		24	5				250)				25	5			
cca	a cc	c t	gagca	actg	c c c ı	ggate	cccg	t gca	accc	tggg	acc	caga	agt	gccc	ccgcca	880
Pro	Pr	D														
	26															
															cagccag	940
cc	ctct	cacc	cga	ggat	ccc	tacc	ccct	gg c	ccca	caat	a aa	catg	atct	gaa	gcagc	998
<2	10>	121														
<2	11>	337														
<2	12>	PRT														
<2	13>	Homo	sap	iens	3											

<400> 121

Met	Thr	Ala	Gly	Gly	Gln	Ala	Glu	Ala	Glu	Gly	Ala	Gly	Gly	Glu	Pro
1				5					10					15	
Gly	Ala	Ala	Arg	Leu	Pro	Ser	Arg	Val	Ala	Arg	Leu	Leu	Ser	Ala	Leu
			20					25					30		
Phe	Tyr	Gly	Thr	Cys	Ser	Phe	Leu	Ile	Val	Leu	Val	Asn	Lys	Ala	Leu
		35					40					45			
Leu	Thr	Thr	Tyr	Gly	Phe	Pro	Ser	Pro	Ile	Phe	Leu	Gly	Ile	Gly	Gln
	50					55					60				
Met	Ala	Ala	Thr	Ile	Met	Ile	Leu	Tyr	Val	Ser	Lys	Leu	Asn	Lys	Ile
65					70					75					80
Ile	His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	Ile	Pro	Val	Lys	Leu	Phe	Pro
		•		85					90					95	
Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser	Gly	Leu	Ser	Ser	Thr
			100)				105					110		
Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu	Arg	Lys	Phe	Thr	Ile
		115	;				120)				125	•		
Pro	Leu	Thr	Leu	ı Leu	Leu	Glu	Thr	· Ile	Ile	Leu	Gly	Lys	Gln	Tyr	Ser
	130					135	;				140)			
Leu	Asn	ı Ile	e Ile	e Leu	Ser	Val	Phe	Ala	Ile	Ile	Leu	ı Gly	Ala	Phe	Ile
145	•				150)				155	5				160
Ala	Ala	Gly	, Sei	r Asp	Leu	ı Ala	Phe	e Asr	Lei	ı Glu	Gl	у Туг	: Ile	Phe	Val
				165	5				170)				175	5
Phe	e Leu	ı Asr	n Ası	p Ile	Phe	. The	r Ala	a Ala	a Asr	ı Gly	y Va	l Tyı	r Thi	Lys	Gln
			180	0				189	5				190)	

254/307

Lys	Met	Asp	Pro	Lys	Glu	Leu	Gly	Lys	Tyr	Gly	Val	Leu	Phe	Tyr	Ası
		195					200					205			
Ala	Cys	Phe	Met	Ile	Ile	Pro	Thr	Leu	Ile	Ile	Ser	Val	Ser	Thr	Gl
	210					215					220				
Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	Gln	Trp	Lys	Asn	Val	Val	Phe
225					230					235					240
Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	Phe	Leu	Leu	Met	Ту
				245					250					255	
Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala	Leu	Thr	Thr	Ala	Va:
			260		•			265					270		
Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr	Ile	Gly	Ile	Leu	116
		275					280					285			
Gly	Gly	Asp	Tyr	Ile	Phe	Ser	Leu	Leu	Asn	Phe	Val	Gly	Leu	Asn	Ile
	290					295					300				
Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu	Thr	Leu	Ser	Ser	Glı
305					310					315					320
Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	Glu	Asn	Ile	Cys	Leu	Asp	Leu	Lys
				325					330					335	
Ser															

⟨210⟩ 122

<211> 236

<212> PRT

<213> Homo sapiens

<400	> 12	22													
Met	Ala	Glu	Ala	Glu	Glụ	Ser	Pro	Gly	Asp	Pro	Gly	Thr	Ala	Ser	Pro
1				5					10					15	
Arg	Pro	Leu	Phe	Ala	Gly	Leu	Ser	Asp	Ile	Ser	Ile	Ser	G1 n	Asp	Ile
			20					25					30		
Pro	Val	Glu	Gly	Glu	Ile	Thr	Ile	Pro	Met	Arg	Ser	Arg	Ile	Arg	Glu
		35					40			•		45			
Phe	Asp	Ser	Ser	Thr	Leu	Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg
	50					55					60				
Asp	Leu	Lys	Ala	Val	Gly	Lys	Lys	Phe	Met	His	Val	Leu	Tyr	Pro	Arg
65					70					75					80
Lys	Ser	Asn	Thr	Leu	Leu	Arg	Asp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile
				85					90					95	
Leu	Cys	Val	Thr	Leu	Ala	Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser
			100					105					110		
Glu	Lys	Asp	Gly	Gly	Pro	Gln	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp
		115					120					125			
Phe	Gly	Ala	Val	Thr	Ile	Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn
	130					135					140				
Ile	Ser	Phe	Phe	Gln	Ser	Leu	Cys	Val	Leu	Gly	Tyr	Cys	Ile	Leu	Pro
145					150					155					160
Leu	Thr	Val	Ala	Met	Leu	Ile	Cys	Arg	Leu	Val	Leu	Leu	Ala	Asp	Pro
				165					170					175	
Gly	Pro	Val	Asn	Phe	Met	Val	Arg	Leu	Phe	Val	Val	Ile	Val	Met	Phe
			180					185					190		

256/307

Ala Trp Ser Ile Val Ala Ser Thr Ala Phe Leu Ala Asp Ser Gln Pro Pro Asn Arg Arg Ala Leu Ala Val Tyr Pro Val Phe Leu Phe Tyr Phe Val Ile Ser Trp Met Ile Leu Thr Phe Thr Pro Gln <210> 123 <211> 560 <212> PRT <213> Homo sapiens <400> 123 Met Ala Ala Pro Ala Glu Ser Leu Arg Arg Arg Lys Thr Gly Tyr Ser Asp Pro Glu Pro Glu Ser Pro Pro Ala Pro Gly Arg Gly Pro Ala Gly Ser Pro Ala His Leu His Thr Gly Thr Phe Trp Leu Thr Arg Ile Val Leu Leu Lys Ala Leu Ala Phe Val Tyr Phe Val Ala Phe Leu Val Ala Phe His Gln Asn Lys Gln Leu Ile Gly Asp Arg Gly Leu Leu Pro Cys Arg Val Phe Leu Lys Asn Phe Gln Gln Tyr Phe Gln Asp Arg Thr Ser Trp Glu Val Phe Ser Tyr Met Pro Thr Ile Leu Trp Leu Met Asp Trp

			100					105					110		
Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu	Ala	Leu	Leu	Gly	Leu	Gly
		115		٠			120					125			
Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	Ala	Asn	Met	Leu	Leu	Met
	130					135					140				
Ala	Ala	Leu	Trp	Gly	Leu	Tyr	Met	Ser	Leu	Val	Asn	Val	Gly	His	Val
145					150					155					160
Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	G1n	Leu	Leu	Glu	Thr	Gly	Phe	Leu
				165					170					175	
Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu	Ser	Arg	Leu	Pro	Gln	His
			180					185					190		
Thr	Pro	Thr	Ser	Λrg	Ile	Val	Leu	Trp	Gly	Phe	Arg	Trp	Leu	Ile	Phe
		195					200					205			
Arg	Ile	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	Ile	Arg	Gly	Λsp	Arg	Cys
	210					215					220				
Trp	Arg	Asp	Leu	Thr	Cys	Met	Asp	Phe	His	Tyr	Glu	Thr	Gln	Pro	Met
225					230)				235	i				240
Pro	Asn	Pro	Val	Ala	Tyr	Tyr	Leu	His	His	Ser	Pro	Trp	Trp	Phe	His
				245	i				250	١				255	
Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	Glu	Leu	Leu	Val	Pro	Phe
			260)				265	•				270	•	
Phe	Leu	Phe	Leu	Gly	Arg	, Arg	Ala	Cys	Ile	Ile	His	Gly	Val	Leu	Gln
		275	,				280)				285	5		
Ile	Leu	. Phe	Gln	ı Ala	Val	Leu	ı Ile	Val	Ser	Gly	/ Asr	Leu	ı Ser	Phe	Leu
	290)				295	<u>, </u>				300)			

Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	Cys	Phe	Asp	Asp	Ala	Thr
305					310					315					320
Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	Ser	Leu	Lys	Asp	Arg	Val
				325			٠		330					335	
Leu	Gln	Met	Gln	Arg	Asp	Ile	Arg	Gly	Ala	Arg	Pro	Glu	Pro	Arg	Phe
			340					345					350		
Gly	Ser	Val	Val	Arg	Arg	Ala	Ala	Asn	Val	Ser	Leu	Gly	Val	Leu	Leu
		355					360					365			
Ala	Trp	Leu	Ser	Val	Pro	Val	Val	Leu	Asn	Leu	Leu	Ser	Ser	Arg	Gln
	370					375					380				
Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His	Ile	Val	Asn	Thr	Tyr	Gly
385					390					395					400
Ala	Phe	Gly	Ser	Ile	Thr	Lys	Glu	Arg	Ala	Glu	Vaļ	Ile	Leu	Gln	Gly
				405					410					415	
Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp	Ala	Met	Trp	Glu	Asp	Tyr
			420					425					430		
Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	Arg	Arg	Pro	Cys	Leu	Ile
		435					440					445			
Ser	Pro	Tyr	His	Tyr	Arg	Leu	Asp	Trp	Leu	Met	Trp	Phe	Ala	Ala	Phe
	450					455					460				
Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	Ile	Ile	His	Leu	Ala	Gly	Lys	Leu
465					470					475					480
Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu	Leu	Ala	His	Asn	Pro	Phe
				485					490					495	
Ala	Gly	Arg	Pro	Pro	Pro	Arg	Trp	Val	Arg	Gly	Glu	His	Tyr	Arg	Tyr

			500					505					510		
Lys	Phe	Ser	Arg	Pro	Gly	Gly	Arg	His	Ala	Ala	Glu	Gly	Lys	Trp	Trp
		515					520					525			
Val	Arg	Lys	Arg	Ile	Gly	Ala	Tyr	Phe	Pro	Pro	Leu	Ser	Leu	Glu	Glu
	530					535					540				
Leu	Arg	Pro	Tyr	Phe	Arg	Asp	Arg	Gly	Trp	Pro	Leu	Pro	Gly	Pro	Leu
545					550					555					560
<210	D> 13	24													
<21	1> 40	06													
<21	2> PI	RT													
<21	3> H	omo	sapi	ens											
<40	0> 1:	24													
Met	Ala	Glu	Asn	Gly	Lys	Asn	Cys	Asp	Gln	Arg	Arg	Val	Ala	Met	Asn
1				5					10					15	
Lys	Glu	His	His	۸sn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	Glu
			20					25					30		
Lys	Lys	Arg	Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg
		35					40	•				45	•		
Gln	Pro	Leu	Ile	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	Leu	Val	Ile
	50	•				55					60)			
Leu	Lys	Glu	Trp	Thr	Ser	Lys	Leu	Trp	His	Arg	Glr	Ser	· Ile	Val	Val
65	j				70)				75	j				80
Ser	Phe	Leu	Leu	Leu	ı Lev	Ala	Val	Leu	ı Ile	Ala	Thr	Туг	Tyr	Val	Glu
				85	5				90)				95	i

Gly	Val	His	Gln	Gln	Tyr	Val	Gln	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu
			100					105					110		
Tyr	Ala	Tyr	Trp	Ile	Gly	Leu	Gly	Ile	Leu	Ser	Ser	Val	Gly	Leu	Gly
		115					120					125			
Thr	Gly	Leu	His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser
	130					135					140				
Val	Thr	Leu	Ala	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro
145					150					155					160
Pro	Tyr	Pro	Asp	G1n	Ile	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly
				165					170					175	
Thr	Ile	Ser	Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys
			180					185					190		
Met	Trp	Gly	Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met
		195					200					205			
Ala	Arg	Ala	Λla	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr
	210					215					220				
Gln	Glu	Phe	Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe
225					230					235					240
Ala	Ser	Arg	Ala	Lys	Ļeu	Ala	Val	Gln	Lys	Leu	Val	Gln	Lys	Val	Gly
				245					250					255	
Phe	Phe	Gly	Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp
			260					265					270		
Leu	Ala	Gly	Ile	Thr	Cys	Gly	His	Phe	Leu	Val	Pro	Phe	Trp	Thr	Phe
		275					280					285	ı		
Phe	Glv	Ala	Thr	Leu	Ile	Glv	Lys	Ala	Ile	He	Lys	Met	His	Ile	Glr

	290					295					300				
Lys	Ile	Phe	Val	Ile	Ile	Thr	Phe	Ser	Lys	His	Ile	Val	Glu	G1n	Met
305					310					315					320
Val	Ala	Phe	Ile	Gly	Ala	Val	Pro	Gly	Ile	Gly	Pro	Ser	Leu	Gln	Lys
				325					330					335	
Pro	Phe	Gln	Glu	Tyr	Leu	Glu	Ala	Gln	Arg	Gln	Lys	Leu	His	His	Lys
			340					345					350		
Ser	Glu	Met	Gly	Thr	Pro	Gln	Gly	Glu	Asn	Trp	Leu	Ser	Trp	Met	Phe
		355					360					365			
Glu	Lys	Leu	Val	Val	Val	Met	Val	Cys	Tyr	Phe	Ile	Leu	Ser	Ile	He
	370					375					380				
Asn	Ser	Met	Ala	Gln	Ser	Tyr	Ala	Lys	Arg	Ile	Gln	Gln	Arg	Leu	Asn
385					390					395					400
Ser	Glu	Glu	Lys	Thr	Lys										
				405											
<21	0> 1	25													
<21	1> 4	53													
<21	2> P	ŖT			. ,										
<21	3> H	omo	sapi	ens											
<40	0> 1	25													
Met	Gly	Val	Leu	Gly	Arg	Val	Leu	Leu	Trp	Leu	Gln	Leu	Cys	Ala	Leu
1				5					10					15	
Thr	Gln	Ala	Val	Ser	Lys	Leu	Trp	Val	Pro	Asn	Thr	Asp	Phe	Asp	Val
			20					25					30		

Ala	Ala	Asn	Trp	Ser	Gln	Asn	Arg	Thr	Pro	Cys	Ala	Gly	Gly	Ala	Val
		35					40					45			
Glu	Phe	Pro	Ala	Asp	Lys	Met	Val	Ser	Val	Leu	Val	Gln	Glu	Gly	His
	50					55					60				
Ala	Val	Ser	Asp	Met	Leu	Leu	Pro	Leu	Asp	Gly	Glu	Leu	Val	Leu	Ala
65					70					75					80
Ser	Gly	Ala	G1 y	Phe	Gly	Val	Ser	Asp	Val	Gly	Ser	His	Leu	Asp	Cys
				85					90					95	
Gly	Ala	Gly	Glu	Pro	Ala	Val	Phe	Arg	Asp	Ser	Asp	Arg	Phe	Ser	Trp
			100					105					110		
His	Asp	Pro	His	Leu	Trp	Arg	Ser	Gly	Asp	Glu	Ala	Pro	Gly	Leu	Phe
		115					120					125			
Phe	Val	Asp	Ala	Glu	Arg	Val	Pro	Cys	Arg	His	Asp	Asp	Val	Phe	Phe
	130					135					140				
Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val	Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro
145					150					155					160
Val	Arg	Val	Arg	Ser	Ile	Ser	Ala	Leu	Gly	Arg	Thr	Phe	Thr	Arg	Asp
				165					170					175	
Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala	Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe
			180					185					190		
His	Gly	Pro	Gly	Ala	Leu	Ser	Val	Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro
		195					200					205			
Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala	Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala
	210					215					220				
Ala	الم ا	l au	Gln	Pro	Leu	Glv	Glv	Arø	Cvs	Pro	Gln	Ala	Ala	Cys	His

225					230					235					240
Ser i	Ala	Ļeu	Arg	Pro	Gl'n	Gly	Gln	Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val
				245			•		250					255	
Val 1	Leu	Leu	Thr	His	Gly	Pro	Ala	Phe	Asp	Leu	Glu	Arg	Tyr	Arg	Ala
			260					265					270		
Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly	Leu	Pro	Gln	Tyr	His	Gly	Leu	Gln
		275					280					285			
Val	Ala	Val	Ser	Lys	Val	Pro	Arg	Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp
	290					295					300				
Thr	Glu	Ile	Gln	Val	Val	Leu	Val	Glu	Asn	Gly	Pro	Glu	Thr	Gly	Gly
305					310					315					320
Ala	Gly	Arg	Leu	Ala	Arg	Ala	Leu	Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly
		•		325					330			•	•	335	
Glu	Ala	Leu	Gly	Val	Leu	Glu	Ala	Thr	Met	Arg	Glu	Ser	Gly	Ala	His
			340)				345					350		
Val	Trp	Gly	Ser	Ser	Ala	Ala	Gly	Leu	Ala	Gly	Gly	Val	Ala	Ala	Ala
		355	;				360)				365	•		
Val	Leu	. Lei	ı Ala	ı Lev	ı Leu	Val	Leu	Leu	l Val	Ala	Pro	Pro	Leu	Leu	Arg
	370)				375	5				380).			
Arg	Ala	Gly	/ Arg	g Leu	ı Arg	Tr	Arg	g Arg	His	s Glu	ı Ala	Ala	Ala	Pro	Ala
385					390)				395	5				400
Gly	Ala	a Pro	o Lei	u Gly	y Phe	Arı	g Asr	n Pro	Va:	l Phe	e Asp	Va!	l Thr	Ala	Ser
				40	5				410	0				415	j
Glu	Glu	ı Le	u Pro	o Lei	u Pro	Arı	g Arg	g Lei	ı Se	r Lei	ı Val	l Pro	b Lys	Ala	Ala
			42	0				42	5				430)	

264/307

Ala Asp Ser Thr Ser His Ser Tyr Phe Val Asn Pro Leu Phe Ala Gly

435

440

445

Ala Glu Ala Glu Ala

450

<210> 126

<211> 59

<212> PRT

<213> Homo sapiens

<400> 126

Met Thr Ser Val Ser Thr Gln Leu Ser Leu Val Leu Met Ser Leu Leu

1 5 10

Leu Val Leu Pro Val Val Glu Ala Val Glu Ala Gly Asp Ala Ile Ala

20 25 30

Leu Leu Cly Val Val Leu Ser Ile Thr Gly Ile Cys Ala Cys Leu

35 40 45

Gly Val Tyr Ala Arg Lys Arg Asn Gly Gln Met

50 55

<210> 127

<211> 210

<212> PRT

<213> Homo sapiens

<400> 127

Met Ala Leu Pro Gln Met Cys Asp Gly Ser His Leu Ala Ser Thr Leu

1				5					10					15	
Arg	Tyr	Cys	Met	Thr	Val	Ser	Gly	Thr	Val	Val	Leu	Val	Ala	Gly	Thr
			20					25					30		
Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	Gly	Asp	Ala	Thr	Ala	Gln	Pro	Gly
		35					40					45			
Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	Pro	Val	Pro	Glu	Gly	Pro	Ser	Pro
	50					55					60				
Leu	Leu	Arg	Ser	Val	Ser	Phe	Val	Cys	Cys	Gly	Ala	Gly	Gly	Leu	Leu
65					70					75					80
Leu	Leu	Ile	Gly	Leu	Leu	Trp	Ser	Val	Lys	Ala	Ser	Ile	Pro	Gly	Pro
				85					90					95	
Pro	Arg	Trp	Asp	Pro	Tyr	His	Leu	Ser	Arg	Asp	Leu	Tyr	Tyr	Leu	Thr
			100				•	105					110		
Val	Glu	Ser	Ser	Glu	Lys	Ģlu	Ser	Cys	Arg	Thr	Pro	Lys	Val	Val	Asp
		115					120					125			
Ile	Pro	Thr	Tyr	Glu	Glu	Ala	Val	Ser	Phe	Pro	Val	Ala	Glu	Gly	Pro
	130					135					140				
Pro	Thr	Pro	Pro	Ala	Tyr	Pro	Thr	Glu	Glu	Ala	Leu	Glu	Pro	Ser	Gly
145					150	•				155					160
Ser	Arg	Asp	Ala	Leu	Leu	Ser	Thr	Gln	Pro	Ala	Trp	Pro	Pro	Pro	Ser
				165					170					175	
Tyr	Glu	Ser	Ile	Ser	Leu	Ala	Leu	Asp	Ala	Val	Ser	Ala	Glu	Thr	Thr
			180					185					190		
Pro	Ser	Ala	Thr	Arg	Ser	Cys	Ser	Gly	Leu	Val	Gln	Thr	Ala	Arg	Gly
		195					200					205			

266/307

Gly Ser

210

<210> 128

<211> 165

<212> PRT

<213> Homo sapiens

<400> 128

Met Asp Ser Ser Arg Ala Arg Gln Gln Leu Arg Arg Phe Leu Leu

1 5 10 15

Leu Pro Asp Ala Glu Ala Gln Leu Asp Arg Glu Gly Asp Ala Gly Pro

20 25 30

Glu Thr Ser Thr Ala Val Glu Lys Lys Glu Lys Pro Leu Pro Arg Leu

35 40 45

Asn Ile His Ser Gly Phe Trp Ile Leu Ala Ser Ile Val Val Thr Tyr

50 55 60

Tyr Val Asp Phe Phe Lys Thr Leu Lys Glu Asn Phe His Thr Ser Ser

65 70 75 80

Trp Phe Leu Cys Gly Ser Ala Leu Leu Leu Val Ser Leu Ser Ile Ala

85 90 95

Phe Tyr Cys Ile Val Tyr Leu Glu Trp Tyr Cys Gly Ile Gly Glu Tyr

100 105 110

Asp Val Lys Tyr Pro Ala Leu Ile Pro Ile Thr Thr Ala Ser Phe Ile

115 120 125

Ala Ala Gly Ile Cys Phe Asn Ile Ala Leu Trp His Val Trp Ser Phe

	1:	30							135							140						
Phe	T	hr	Pr	o I	Leu	Le	u I	Leu	Phe	Thi	r (Gln	Ph	e l	Met _.	Gly	٧	al	Val	Met	P	he
145								150							155						l	60
Ile	T	hr	Le	u I	Leu	G1	у															
						16	5															
<21	0>	1	29																			
<21	1>	1	62																			
<21	2>	P	RT																			
<21	.3>	H	omo) S	api	ens	;															
<40	00	ì	29																			
Met	t I	_eu	G]	ln	Thr	· Se	er	Asn	Tyr	· Se	er	Leu	ı Va	al	Leu	Se	r	Leu	Glr	n Ph	e l	Leu
1	ì						5							10						1	5	
Leu	ונ	Leu	S	er	Туз	r A:	sp	Leu	Phe	e Va	a l	Asr	ı S	er	Phe	Se.	r	Glu	Leu	ı Le	u	Gln
					20							25							30			
Ly	s '	Thi	P	ro	Va:	l I	le	Gln	Let	ı V:	al	Le	ı P	he	Πe	: I1	е	Gln	Ası	p Il	е	Ala
				35							40							45				
Va	1 .	Lei	ı P	he	Ası	n I	le	Ile	Ile	e I	le	Pho	e L	eu	Me	t Ph	е	Phe	As	n Th	r	Phe
		50							5								0					
Va	1	Pho	e G	ln	Al	a G	1 y	Leu	ı V _. a	1 A	sn	Le	u L	.eu	Ph	e Hi	s	Lys	s Ph	e Ly	S	
6								70							7							80
Th	r	11	e I	le	Le	u T	hr	Ala	Va	1 T	yr	Ph	e A	lla	Le	u Se	r	H	e Se			His
							85							90							95	
Va	1	Tr	p V	al	Ме	t A	sn	Lei	ı Ar	g T	rp	Ly	s /	\sn	Se	r As	sn	Se	r Ph	e I	le	Trp
					10	0						10	5						11	0		

Thr	Asp	Gly	Leu	Gln	Met	Leu	Phe	Val	Phe	Gln	Arg	Leu	Ala	Ala	Val
		115					120					125			
Leu	Tyr	Cys	Tyr	Phe	Tyr	Lys	Arg	Thr	Ala	Val	Arg	Leu	Gly	Asp	Pro
	130					135					140				
His	Phe	Tyr	Gln	Asp	Ser	Leu	Trp	Leu	Arg	Lys	Glu	Phe	Met	Gln	Val
145					150					155					160
Arg	Arg														
<21	0> 1	30													
<21	1> 2	21													
<21	2> F	RT													
<21	3> F	lomo	sapi	ens											
<40	0> 1	30													
Met	Ala	a Leu	ı Ala	a Leu	ı Ala	Ala	ı Lev	ı Ala	Ala	val	Glu	Pro	Ala	Cys	Gly
1					5				10)				15	i
Ser	Arı	д Туі	Glı	n Gla	ı Lei	ı Glı	n Asr	ı Glu	ı Glu	ı Glu	Sei	Gl	y Glu	Pro	Glu
			20	0				25	5				30)	
Glr	n Ala	a Ala	a Gl	y Ası	p Ala	a Pro	o Pro	o Pro	o Ty	r Ser	Sei	r Il	e Ser	Ala	a Glu
		3	5		•		40	0				4	5		
Se	r Al	a Ala	а Ту	r Ph	e Ası	р Ту	r Ly:	s Ası	p Gl	u Sei	c Gl	y Ph	e Pro	Ly:	s Pro
	5	0				5	5				6	0			
Pr	o Se	r Ty	r As	n Va	1 Al	a Th	r Th	r Le	u Pr	o Sei	r Ty	r As	p Gl	u Ala	a Glu
6	5				7	0				7	5				80
Ar	g Th	r Ly	s Al	a Gl	u Al	a Th	r Il	e Pr	o Le	u Va	l Pr	o Gl	y Ar	g As	p Glu
				8	5				9	0				9	5

Asp	Phe	Val	Gly	Arg	Asp	Asp	Phe	Asp	Asp	Ala	Asp	Gln	Leu	Arg	Ile	
			100					105					110			
Gly	Asn	Asp	Gly	Ile	Phe	Met	Leu	Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe	
		115					120					125				
Asn	Trp	Ile	G1y	Phe	Phe	Leu	Ser	Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala	
	130					135					140					
Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp	
145					150					155					160	
Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly	
				165					170					175		
Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe	
			180					185					190			
Leu	Arg	Gly	Phe	Ile	Asn	Tyr	Ala	Lys	Val	Arg	Lys	Met	Pro	Glu	Thr	
		195					200					205				
Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	Val	Leu	Phe	Ile	Tyr	•			
	210					215	, 1				220	•				
<21	0> 1	31														
<21	1> 1	011														
<21	2> D	NA														
<21	3> H	lomo	sapi	ens												
<40	0> 1	31														
atg	acge	ccg	gcgg	ccag	ggc (gage	gccga	g gg	geget	ggcg	gge	gagco	ccgg	cgcg	gcgcgg	60
ctg	ccct	cgc	gggt	ggco	cg g	gctgo	etgto	g go	gcto	ttct	ace	gga	cctg	ctcc	ttcctc	120
ato	gtgo	ttg	tcaa	caag	ggc g	gctgo	tgac	c ac	ctac	eggtt	tco	cgt	cacc	aatt	ttcctt	180

270/307

aaa	aaaca	aaa	ct	tccaag	g tgt	tatat	atad	aatg	caccat	gcagc	agatg	attggac	gga
tcc	gcctc	gcc	ct	tttcct	c tgt	taaag	cctg	aatt	taagaa	tttga	ctgat	cacttcc	att
tgt	accga	acc	ct	ttaago	a aat	caagt	agca	atca	tggatt	ataag	accac	gttggaa	tac
ttg	catac	cat	at	gaaaco	c tgg	tactt	acct	actt	cattco	ttcac	ggaaa	gtgctca	acc
tca	ggctt	ggc	gg	attcto	a tta	ttgcc	gtct	cagt	catcct	aacat	cactc	cagtatt	aag
atg	cctga	cct	tt	tttgta	a ttt	gctat	gaag	ctta	tttaa	cttgc	ctgac	gctgggt	gca
tag	ggagc	gga	aa	gaccca	a tgg	agaaa	aaad	tacc	agttta	aatgg	cagca	ttcacag	atc
tta	tatta	tat	ct	ccaact	a tcc	tgatt	ttca	ctgc	caatgo	ttcta	tactt	tacggag	aaa
tgt	tgttg	tgt	aa	tggaag	c aat	ţcaac	gaat	tact	acaggo	ctgca	gagac	tccactg	gtc
tto	cacgg	cac	tc	atgtad	c tga	ttctg	ggg¹	tttg	ctgttt	ctttc	ttctt	ctacagt	atc
tat	gaatg	gaa	aa	gccato	g gag	tggtt	gcag	gaca	cctgac	tcagc	acaat	agctatt	tgc
tte	aaact	aaa	tt	tcttt	t tct	acatt	gact	tgga	aatcgg	atatt	ttggg	gcctaca	gtt
gco	gagca	gag	ct	ttaaca	t tțt	attcc	agat	cttg	aggggg	atggc	tttgc	ttaaata	ggg
	С	С	ag	ttgaag	g att	gtttg	atc	aaac	tgaaga	gtggg	aacct	aaaccta	tta

<210> 132

<211> 708

<212> DNA

<213> Homo sapiens

<400> 132

atggcggaag cggaggagtc tccaggagac ccggggacag catcgcccag gccctgttt 60 gcaggccttt cagatatatc catctcacaa gacatccccg tagaaggaga aatcaccatt 120 cctatgagat ctcgcatccg ggagtttgac agctccacat taaatgaatc tgttcgcaat 180 accatcatgc gtgatctaaa agctgttggg aaaaaattca tgcatgttt gtacccaagg 240 aaaagtaata ctcttttgag agattgggat ttgtggggcc ctttgatcct ttgtgtgaca 300

271/307

ctcgcattaa	tgctgcaaag	agactctgca	gatagtgaaa	aagatggagg	gccccaattt	360
gcagaggtgt	ttgtcattgt	ctggtttggt	gcagttacca	tcaccctcaa	ctcaaaactt	420
cttggaggga	acatatcttt	ttttcagagc	ctctgtgtgc	tgggttactg	tatacttccc	480
ttgacagtag	caatgctgat	ttgccggctg	gtacttttgg	ctgatccagg	acctgtaaac	540
ttcatggttc	ggctttttgt	ggtgattgtg	atgtttgcct	ggtctatagt	tgcctccaca	600
gctttccttg	ctgatagcca	gcctccaaac	cgcagagccc	tagctgttta	tcctgttttc	660
ctgttttact	ttgtcatcag	ttggatgatt	ctcaccttta	ctcctcag		708

<210> 133

<211> 1680

<212> DNA

(213) Homo sapiens

⟨400⟩ 133

atggcggcgc ccgcggagtc gctgaggagg cggaagactg ggtactcgga tccggagcct gagtcgccgc ccgcgccggg gcgtggcccc gcaggctctc cggcccatct ccacacgggc 120 accttctggc tgacccggat cgtgctcctg aaggccctag ccttcgtgta cttcgtggca 180 ttcctggtgg ctttccatca gaacaagcag ctcatcggtg acagggggct gcttccctgc 240 300 agagtgttcc tgaagaactt ccagcagtac ttccaggaca ggacgagctg ggaagtcttc 360 agctacatgc ccaccatcct ctggctgatg gactggtcag acatgaactc caacctggac ttgctggctc ttctcggact gggcatctcg tctttcgtac tgatcacggg ctgcgccaac 420 480 atgcttctca tggctgccct gtggggcctc tacatgtccc tggttaatgt gggccatgtc tggtactctt tcggatggga gtcccagctt ctggagacgg ggttcctggg gatcttcctg 540 tgccctctgt ggacgctgtc aaggctgccc cagcataccc ccacatcccg gattgtcctg 600 tggggcttcc ggtggctgat cttcaggatc atgcttggag caggcctgat caagatccgg 660 720 ggggaccggt gctggcgaga cctcacctgc atggacttcc actatgagac ccagccgatg

272/307

780	cttcgagacg	ggttccatcg	tcaccctggt	cctgcaccac	tggcatacta	cccaatcctg
840	ccggcgggcg	tcttcctcgg	cccttcttcc	gctcctggtg	acttcatcga	ctcagcaacc
900	cagcgggaac	tcctcatcgt	ttccaggccg	gcagatcctg	acggggtgct	tgcatcatcc
960	tgacgccacc	cctgctttga	cccagcctgg	gactatggtg	tgaactggct	ctcagcttcc
1020	gcagatgcag	accgagttct	agcctgaagg	tgggccaggc	tgttcccctc	ctgggattct
1080	gcgtgcagcc	ccgtggtgcg	agattcggct	gcccgagccc	gaggggcccg	agggacatcc
1140	caacttgctg	ccgtggtcct	ctcagcgtgc	gctggcctgg	tgggcgtcct	aacgtctcgc
1200	cacttacggg	acatcgtcaa	aactctcttc	cacccacttc	aggtcatgaa	agctccaggc
1260	agccagetee	tgcagggcac	gaggtgatcc	ggagcgggcg	gcatcaccaa	gccttcggaa
1320	gccaggtgac	tcaagtgcaa	gactacgagt	catgtgggag	ccccgatgc	aacgccagcg
1380	gctgatgtgg	gcctggactg	taccactacc	catctccccg	ggccctgcct	cccagcagac
1440	tggcaagctc	tccacctggc	gactggatca	cgagcacaac	tccagaccta	ttcgcggcct
1500	gggcaggccc	accccttcgc	ctggcacaca	cttgtccctg	acgccgaggc	ctggccagcg
1560	tgggggcagg	tcagccgtcc	aggtacaagt	agagcactac	gggtccgagg	ccgcccaggt
1620	ccctccgctc	gagcctactt	aagaggatcg	gtgggtgcgg	agggcaagtg	cacgccgccg
1680	cgggcccctc	ggcctctgcc	gaccgtgggt	ctacttcagg	agctgaggcc	agcctggagg

<210> 134

<211> 1218

<212> DNA

<213> Homo sapiens

<400> 134

atggcagaga atggaaaaaa ttgtgaccag agacgtgtag caatgaacaa ggaacatcat 60
aatggaaatt tcacagaccc ctcttcagtg aatgaaaaga agaggaggga gcgggaagaa 120
aggcagaata ttgtcctgtg gagacagccg ctcattacct tgcagtattt ttctctggaa 180

273/307

atccttgtaa	tcttgaagga	atggacctca	aaattatggc	atcgtcaaag	cattgtggtg	240
tcttttttac	tgctgcttgc	tgtgcttata	gctacgtatt	atgttgaagg	agtgcatcaa	300
cagtatgtgc	aacgtataga	gaaacagttt	cttttgtatg	cctactggat	aggcttagga	360
attttgtctt	ctgttgggct	tggaacaggg	ctgcacacct	ttctgcttta	tctgggtcca	420
catatagcct	cagttacatt	agctgcttat	gaatgcaatt	cagttaattt	tcccgaacca	480
ccctatcctg	atcagattat	ttgtccagat	gaagagggca	ctgaaggaac	catttctttg	540
tggagtatca	tctcaaaagt	taggattgaa	gcctgcatgt	ggggtatcgg	tacagcaatc	600
ggagagctgc	ctccatattt	catggccaga	gcagctcgcc	tctcaggtgc	tgaaccagat	660
gatgaagagt	atcaggaatt	tgaagagatg	ctggaacatg	cagagtctgc	acaagacttt	720
gcctcccggg	ccaaactggc	agttcaaaaa	ctagtacaga	aagttggatt	ttttggaatt	780
ttggcctgtg	cttcaattcc	aaatccttta	tttgatctgg	ctggaataac	gtgtggacac	840
tttctggtac	ctttttggac	cttctttggt	gcaaccctaa	ttggaaaagc	aataataaaa	900
atgcatatco	agaaaattt	. tgttataata	acattcagca	agcacatagt	ggagcaaatg	960
gtggctttca	ttggtgctgt	cccggcata	ggtccatcto	tgcagaagco	atttcaggag	1020
tacctggagg	g ctcaacggca	gaagettead	cacaaaagcg	g aaatgggcad	accacaggga	1080
gaaaactggt	tgtcctggat	gtttgaaaag	g ttggtcgttg	g tcatggtgtg	ttacttcatc	1140
ctatctatca	ttaactccat	ggcacaaagt	t tatgccaaac	gaatccagca	a gcggttgaac	1200
tcagaggaga	a aaactaaa					1218

<210> 135

<211> 1359

<212> DNA

<213> Homo sapiens

<400> 135

atgggcgtcc tgggccgggt cctgctgtgg ctgcagctct gcgcactgac ccaggcggtc

274/307

tccaaactct	gggtccccaa	cacggacttc	gacgtcgcag	ccaactggag	ccagaaccgg	120
accccgtgcg	ccggcggcgc	cgttgagttc	ccggcggaca	agatggtgtc	agtcctggtg	180
caagaaggtc	acgccgtctc	agacatgctc	ctgccgctgg	atggggaact	cgtcctggct	240
tcaggagccg	gattcggcgt	ctcagacgtg	ggctcgcacc	tggactgtgg	cgcgggcgaa	300
cctgccgtct	tccgcgactc	tgaccgcttc	tcctggcatg	acccgcacct	gtggcgctct	360
ggggacgagg	cacctggcct	cttcttcgtg	gacgccgagc	gcgtgccctg	ccgccacgac	420
gacgtcttct	ttccgcctag	tgcctccttc	cgcgtggggc	teggeeetgg	cgctagcccc	480
gtgcgtgtcc	gcagcatctc	ggctctgggc	cggacgttca	cgcgcgacga	ggacctggct	540
gttttcctgg	cgtcccgcgc	gggccgccta	cgcttccacg	ggccgggcgc	gctgagcgtg	600
ggccccgagg	actgcgcgga	cccgtcgggc	tgcgtctgcg	gcaacgcgga	ggcgcagccg	660
tggatctgcg	gegeeetget	ccagcccctg	ggcggccgct	gccccaggc	cgcctgccac	720
agcgccctcc	ggccccaggg	gcagtgctgt	gacctctgtg	gagccgttgt	gttgctgacc	780
cacggccccg	g catttgacct	ggagcggtac	cgggcgcgga	tactggacac	cttcctgggt	840
ctgcctcagi	taccacgggct	gcaggtggcc	gtgtccaagg	tgccacgcto	gtcccggctc	900
cgtgaggccg	g atacggagat	ccaggtggtg	ctggtggaga	atgggcccga	gacaggcgga	960
gcggggcgg	c tggcccggg	cctcctggcg	gacgtcgccg	g agaacggcga	ggccctcggc	1020
gtcctggag	g cgaccatgcg	ggagtcgggc	gcacacgtct	ggggcagcto	cgcggctggg	1080
ctggcgggc	g gcgtggcggc	tgccgtgctg	ctggcgctgc	tggtcctgc	ggtggcgccg	1140
ccgctgctg	c gccgcgcggg	g gaggeteagg	g tggaggagg	c acgaggcgg	ggccccggct	1200
ggagcgccc	c teggettees	g caacccggtg	g ttcgacgtg:	a cggcctccg	a ggagetgece	1260
ctgccgcgg	c ggctcagcc	t ggttccgaag	g gcggccgca	g acagcacca	g ccacagttac	1320
ttcgtcaac	c ctctgttcg	c cggggccga	g gccgaggcc			1359

⟨210⟩ 136

<211> 177

275/307

<212> DNA

<213> Homo sapiens

<400> 136

at	gacctcag	tttcaacaca	gttgtcctta	gtcctcatgt	cactgctttt	ggtgctgcct	60
gt	tgtggaag	cagtagaagc	cggtgatgca	atcgcccttt	tgttaggtgt	ggttctcagc	120
at	tacaggca	tttgtgcctg	cttgggggta	tatgcacgaa	aaagaaatgg	acagatg	177
at	gacctcag	tttcaacaca	gttgtcctta	gtcctcatgt	cactgctttt	ggtgctgcct	60
gt	tgtggaag	cagtagaagc	cggtgatgca	atcgcccttt	tgttaggtgt	ggttctcagc	120
at	tacaggca	tttgtgcctg	cttgggggta	tatgcacgaa	aaagaaatgg	acagatg	177

<210> 137

<211> 630

<212> DNA

<213> Homo sapiens

<400> 137

60 atggccctgc cccagatgtg tgacgggagc cacttggcct ccaccctccg ctattgcatg acagtcageg geacagtggt tetggtggee gggaegetet gettegettg gtggagegaa 120 ggggatgcaa ccgcccagcc tggccagctg gccccaccca cggagtatcc ggtgcctgag 180 240 ggccccagcc ccctgctcag gtccgtcagc ttcgtctgct gcggtgcagg tggcctgctg 300 ctgctcattg gcctgctgtg gtccgtcaag gccagcatcc cagggccacc tcgatgggac 360 ccctatcacc tctccagaga cctgtactac ctcactgtgg agtcctcaga gaaggagagc 420 tgcaggaccc ccaaagtggt tgacatcccc acttacgagg aagccgtgag cttcccagtg 480 gccgaggggc ccccaacacc acctgcatac cctacggagg aagccctgga gccaagtgga tcgagggatg ccctgctcag cacccagccc gcctggcctc cacccagcta tgagagcatc 540 600 agccttgctc ttgatgccgt ttctgcagag acgacaccga gtgccacacg ctcctgctca

ggcctggttc	agactgcacg	gggaggaagt				630
<210> 138		٠				
<211> 495			•			
<212> DNA						
<213> Homo	sapiens					
<400> 138						
atggactcct	cgcgggcccg	acagcagctc	cggcggcgat	tcctcctcct	gccggacgcc	60
gaggcccagc	tggaccgcga	gggtgacgcc	gggccggaaa	cctccacagc	tgttgagaaa	120
aaggagaaac	ctcttccaag	acttaatatc	cattctggat	tctggatttt	ggcatccatt	180
gttgtgacct	attatgttga	cttctttaaa	accettaaag	aaaacttcca	cactagcagc	240
tggtttctct	gtggcagtgc	cttgttgctt	gtcagtttat	caattgcatt	ttactgcata	300
gtctacctgg	aatggtattg	tggaattgga	gaatatgatg	tcaagtatcc	agccttgata	360
cccattacca	ctgcctcctt	tattgcagca	ggaatttgct	tcaacattgc	tttatggcat	420
gtgtggtcgt	ttttcactcc	attgttgttg	tttacccagt	ttatgggggt	tgtcatgttt	480
atcacactcc	ttgga					495
<210> 139						
<211> 486						
<212> DNA						
<213> Homo	sapiens					
<400> 139						
atgctccaga	ccagtaacta	cagcctggtg	ctctctctgc	agttcctgct	gctgtcctat	60
gacctctttg	tcaattcctt	ctcagaactg	ctccaaaaga	ctcctgtcat	ccagcttgtg	120
ctcttcatca	tccaggatat	tgcagtcctc	ttcaacatca	tcatcatttt	cctcatgttc	180

277/307

ttcaacacct	tcgtcttcca	ggctggcctg	gtcaacctcc	tattccataa	gttcaaaggg	240
accatcatcc	tgacagctgt	gtactttgcc	ctcagcatct	cccttcatgt	ctgggtcatg	300
aacttacgct	ggaaaaactc	caacagcttc	atatggacag	atggacttca	aatgctgttt	360
gtattccaga	gactagcagc	agtgttgtac	tgctacttct	ataaacggac	agccgtaaga	420
ctaggcgatc	ctcacttcta	ccaggactct	ttgtggctgc	gcaaggagtt	catgcaagtt	480
cgaagg						486

<210> 140

<211> 663

<212> DNA

<213> Homo sapiens

<400> 140

60 atggcgttgg cgttggcggc gctggcggcg gtcgagccgg cctgcggcag ccggtaccag cagttgcaga atgaagaaga gtctggagaa cctgaacagg ctgcaggtga tgctcctcca 120 180 ccttacagca gcatttctgc agagagcgca gcatattttg actacaagga tgagtctggg 240 tttccaaagc ccccatctta caatgtagct acaacactgc ccagttatga tgaagcggag 300 aggaccaagg ctgaagctac tatccctttg gttcctggga gagatgagga ttttgtgggt 360 cgggatgatt ttgatgatgc tgaccagctg aggataggaa atgatgggat tttcatgtta actititica tggcattcct ctttaactgg attgggtttt tcctgtcttt ttgcctgacc 420 480 acttcagctg caggaaggta tggggccatt tcaggatttg gtctctctct aattaaatgg atcctgattg tcaggttttc cacctatttc cctggatatt ttgatggtca gtactggctc 540 600 tggtgggtgt tccttgtttt aggctttctc ctgtttctca gaggatttat caattatgca aaagttegga agatgeeaga aactttetea aateteeea ggaccagagt tetetttatt 660 663 tat

(210) 141	
(211> 1622	
(212) DNA	
(213) Homo sapiens	
<220>	
<221> CDS	
<222> (78)(1091)	
<400> 141	
ctcttccccg gcccggccgg gcgggaccag tgcgcagccg gggctggcgg gcggcggggt	60
ccgcggggcc gcaggag atg acg gcc ggc ggc cag gcc gag gcc gag ggc	110
Met Thr Ala Gly Gly Gln Ala Glu Ala Glu Gly	
5 10	
gct ggc ggg gag ccc ggc gcg gcg cgg ctg ccc tcg cgg gtg gcc cgg	158
Ala Gly Gly Glu Pro Gly Ala Ala Arg Leu Pro Ser Arg Val Ala Arg	
15 20 25	
ctg ctg tcg gcg ctc ttc tac ggg acc tgc tcc ttc ctc atc gtg ctt	206
Leu Leu Ser Ala Leu Phe Tyr Gly Thr Cys Ser Phe Leu Ile Val Leu	
30 35 40	
gtc aac aag gcg ctg ctg acc acc tac ggt ttc ccg tca cca att ttc	254
Val Asn Lys Ala Leu Leu Thr Thr Tyr Gly Phe Pro Ser Pro Ile Phe	
45 50 55	
ctt gga att gga cag atg gca gcc acc ata atg ata cta tat gtg tcc	302
Leu Gly Ile Gly Gln Met Ala Ala Thr Ile Met Ile Leu Tyr Val Ser	
60 65 70 75	
and the sea and atc att cac the cet gat the gat and and att cet	350

Lys	Leu	Asn	Lys	Ile	Ile	His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	Ile	Pro		
				80					85					90			
gta	aag	ctg	ttt	cct	ctg	cct	ctc	ctc	tac	gtt	gga	aac	cac	ata	agt	398	
Val	Lys	Leu	Phe	Pro	Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser		
			95					100					105				
gga	tta	tca	agc	aca	agt	aaa	tta	agc	cta	ccg	atg	ttc	acc	gtg	ctc	446	
Gly	Leu	Ser	Ser	Thr	Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu		
		110					115					120					
agg	aaa	ttc	acc	att	cca	ctt	acc	tta	ctt	ctg	gaa	acc	atc	ata	ctt	494	
Arg	Lys	Phe	Thr	Ile	Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu		
	125					130					135						
ggg	aag	cag	tat	tca	ctc	aac	atc	atc	ctc	agt	gtc	ttt	gcc	att	att	542	
Gly	Lys	Gln	Tyr	Ser	Leu	Asn	Ile	Ile	Leu	Ser	Val	Phe	Ala	Ile	Ile		
140					145					150				•	155		
ctc	ggg	gct	ttc	ata	gca	gct	ggg	tct	gac	ctt	gct	ttt	aac	tta	gaa	590	
Leu	Gly	Ala	Phe	Ile	Ala	Ala	Gly	Ser	Asp	Leu	Ala	Phe	Asn	Leu	Glu		
				160					165					170			
ggc	tat	att	ttt	gta	ttc	ctg	aat	gat	atc	ttc	aca	gca	gca	aat	gga	638	
Gly	Tyr	Ile	Phe	Val	Phe	Leu	Asn	Asp	Ile	Phe	Thr	Ala	Ala	Asn	Gly		
			175					180					185				
															gga	686	
Val	Tyr	Thr	Lys	Gln	Lys	Met	Asp	Pro	Lys	Glu	Leu			Tyr	Gly		
		190					195					200				•	
gta	ctt	tto	tac	aat	gcc.	tgo	ttc	atg	att	atc	cca	act	ctt	att	att	734	
Va l	Leu	Phe	Tvr	Asn	Ala	Cvs	Phe	Met	He	lle	Pro	Thr	Leu	11ϵ	lle		

280/307

	205					210					215					
agt	gtc	tcc	act	gga	gac	ctg	caa	cag	gct	act	gaa	tţc	aac	caa	tgg	782
Ser	Val	Ser	Thr	Gly	Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	Gln	Trp	•
220					225					230					235	
aag	aat	gtt	gtg	ttt	atc	cta	cag	ttt	ctt	ctt	tcc	tgt	ttt	ttg	ggg	830
Lys	Asn	Val	Val	Phe	Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	
				240					245					250		•
ttt	ctg	ctg	atg	tac	tcc	acg	gtt	ctg	tgc	agc	tat	tac	aat	tca	gcc	878
Phe	Leu	Leu	Met	Tyr	Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala	
			255					260					265			
ctg	acg	aca	gca	gtg	gtt	gga	gcc	atc	aag	aat	gta	tcc	gtt	gcc	tac	926
Leu	Thr	Thr	Ala	Val	Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	۸la	Tyr	
		270					275					280				
att	ggg	ata	tta	atc	ggt	gga	gac	tac	att	ttc	tct	ttg	tta	aac	ttt	974
Ile	Gly	Ile	Leu	Ile	Gly	Gly	Asp	Tyr	Ile	Phe	Ser	Leu	Leu	Asn	Phe	
	285					290					295					
gta	ggg	tta	aat	att	tgc	atg	gca	ggg	ggc	ttg	aga	tat	tcc	ttt	tta	1022
Val	Gly	Leu	Asn	Ile	Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu	
300					305					310					315	
aca	ctg	agc	agc	cag	tta	aaa	cct	aaa	cct	gtg	ggt	gaa	gaa	aac	atc	1070
Thr	Leu	Ser	Ser	Gln	Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	Glu	Asn	Ile	
				320					325					330		
tgt	ttg	gat	ttg	aag	agc	ta	aaga	gtct	gc a	gcag	gatt	g ga	gact	gact		1120
Cys	Leu	Asp	Leu	Lys	Ser											

335

PCT/JP00/05356 WO 01/12660

281/307

tgtgactgcg ggctgggggg gcatto	ccag taggaatgtg a	agccagagg tttcggattc	1180
gtgacateca ecceetggge aagtg	ngago atotgomama 1	tgcaaagaga actacctcat	1240
atgcaggatg agccaatggc agtct		•	1300
aagcaaatct tttcaaaata agcca			1360
tagggaccta tggggccttc gtggc			
aatggtgact cttttctgat cagca			
aagggccagt tgtttcagtt taaac			
ccagtaaagt tatttgttag ctttg			
aagtaaataa aaaatcattt ct			1622
-			
<210> 142			
<211> 2475			
<212> DNA			
<213> Homo sapiens			
⟨220⟩			
<221> CDS			
<222> (36) (746)			
<400> 142			
acctgtggga gcgacccggg agaa	ggaggg ccaag atg	gcg gaa gcg gag gag	53
		Ala Glu Ala Glu Glu	
	1	5	
tot coa gga gac cog ggg ac	a gca tcg ccc agg	ccc ctg ttt gca ggc	101
Ser Pro Gly Asp Pro Gly Th			
10	15	20	

ctt tca gat ata tcc atc tca caa gac atc ccc gta gaa gga gaa atc 149

10

Leu	Ser	Asp	Ile	Ser	Ile	Ser	G1n	Asp	Ile	Pro	Val	Glu	Gly	Glu	Ile	
		25					30					35				
acc	att	cct	atg	aga	tct	cgc	atc	cgg	gag	ttt	gac	agc	tcc	aca	tta	197
Thr	Ile	Pro	Met	Arg	Ser	Arg	Ile	Arg	Glu	Phe	Asp	Ser	Ser	Thr	Leu	
	40					45					50					
aat	gaa	tct	gtt	cgc	aat	acc	atc	atg	cgt	gat	cta	aaa	gct	gtt	ggg	245
Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg	Asp	Leu	Lys	Ala	Val	Gly	
55					60					65					70	
aaa	aaa	ttc	atg	cat	gtt	ttg	tac	cca	agg	aaa	agt	aat	act	ctt	ttg	293
Lys	Lys	Phe	Met	His	Val	Leu	Tyr	Pro	Arg	Lys	Ser	Asn	Thr	Leu	Leu	
				75					80					85		
aga	gat	tgg	gat	ttg	tgg	ggc	cct	ttg	atc	ctt	tgt	gtg	aca	ctc	gca	341
Arg	Asp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile	Leu	Cy.s	Val	Thr	Leu	Ala	
			90					95					100			
tta	atg	ctg	caa	aga	gac	tct	gca	gat	agt	gaa	aaa	gat	gga	ggg	ccc	389
Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser	Glu	Lys	Asp	Gly	Gly	Pro	
		105					110					115				
caa	ttt	gca	gag	gtg	ttt	gtc	att	gtc	tgg	ttt	ggt	gca	gtt	acc	atc	437
Gln	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp	Phe	Gly	Ala	Val	Thr	Ile	
	120					125					130					
acc	ctc	aac	tca	aaa	ctt	ctt	gga	ggg	aac	ata	tct	ttt	ttt	cag	agc	485
Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn	Ile	Ser	Phe	Phe	Gln	Ser	
135					140					145					150	
ctc	tgt	gtg	ctg	ggt	tac	tgt	ata	ctt	ccc	ttg	aca	gta	gca	atg	ctg	533
Leu	Cvs	Val	Leu	G1 v	Tvr	Cvs	Tle	Leu	Pro	Leu	Thr	Val	Ala	Met	Leu	

155 160 165	
att tgc cgg ctg gta ctt ttg gct gat cca gga cct gta aac ttc atg	581
Ile Cys Arg Leu Val Leu Leu Ala Asp Pro Gly Pro Val Asn Phe Met	
170 175 180	
gtt cgg ctt ttt gtg gtg att gtg atg ttt gcc tgg tct ata gtt gcc	629
Val Arg Leu Phe Val Val Ile Val Met Phe Ala Trp Ser Ile Val Ala	
185 190 195	
tcc aca gct ttc ctt gct gat agc cag cct cca aac cgc aga gcc cta	677
Ser Thr Ala Phe Leu Ala Asp Ser Gln Pro Pro Asn Arg Arg Ala Leu	
200 205 210	
gct gtt tat cct gtt ttc ctg ttt tac ttt gtc atc agt tgg atg att	725
Ala Val Tyr Pro Val Phe Leu Phe Tyr Phe Val Ile Ser Trp Met Ile	
215 220 225 230	
ctc acc ttt act cct cag taaatca ggaatgggaa attaaaaacc agtgaattga	780
Leu Thr Phe Thr Pro Gln	
235	
aagcacatct gaaagatgca attcaccatg gagctttgtc tctggccctt atttgtctaa	840
ttttggaggt atttgataac tgagtaggtg aggagattaa aagggagcca tatagcactg	900
tcacccctta tttgaggaac tgatgtttga aaggctgttc ttttctctct taatgtcatt	960
tetttaaaaa tacatgtgca tactacacae agtatataat geeteettaa ggeatgatgg	1020
agtcaccgtg gtccatttgg gtgacaacca gtgacttggg aagcacatag atacatctta	1080
caagttgaat agagttgata actattttca gttttgagaa taccagttca ggtgcagctc	1140
ttaaacacat tgccttatga ctattagaat atgcctctct tttcataaat aaaaatacat	1200
ggtctatatc cattttcttt tatttctctc tcttaagctt aaaaaggcaa tgagagaggt	1260
taggagtggg ttcatacacg gagaatgaga aaacatgcat taaccaatat tcagattttg	1320

284/307

atcaggggaa	attctacact	tgttgcaaaa	aaaaaaaaa	aaaaagcaaa	gggcctctaa	1380
agaatcagcc	tctttggtcc	ctttgtgctg	tcaccttttt	gccatgttta	acagcatctt	1440
ggttggcact	ctagtcttaa	tcttgctcct	taactttgaa	tatgcagtct	aaaatgtcag	1500
tagtcaacat	gtaattttcc	tttgaaattc	tgaatattcc	agtgctggaa	cttatccaaa	1560
aagaagacct	cagaaactta	gattggtaga	tctctagtgc	atattatcat	gtgggcacct	1620
tctcttaggg	tggaatgagg	cagtctggat	gcagcatagt	taaaaggagc	tgtttaatat	1680
tctctgtagt	ctggcctctt	aactagaaag	taaagctaaa	tcagaagcct	gtatttaacc	1740
atgtgaacag	ggagggattt	agtgttctga	tggctgatta	atagaacagc	tagatactta	1800
gagcatgacg	tgggatggga	tgagtttaca	gctgctgcct	tttcatggtg	agcttagcag	1860
ttttctcatt	agatgtgttt	ttttgggttg	gggaatagca	atttatttta	ttgattttag	1920
actttatcaa	gctaattagc	tcccctttag	ataagtacat	gttgcacatg	tgcacctact	1980
tgtaatctca	gatatttatg	cacacaagtg	tgaaggtttt	tcagggagca	gagcatctgg	2040
gacaggctga	ttctgagcta	aacagggctc	ctttaaggca	atatgaactg	ttgccttcta	2100
taaattgcac	attgaggaac	tctaatagac	aaagattagg	tgtcaggcag	aaaacactca	2160
ttgtaaatat	actattagtt	gataaacata	ggactttctt	attccccagt	ttttctttat	2220
catataattt	aaatatttat	tcattttgta	tttaaagact	acctacacat	agatatatga	2280
ttccaaagtc	atactttctc	catccccaca	ttagccaagt	gaatacaggg	ccaaatgggt	2340
tcttggaatg	ataataacaa	agcattacaa	agtgggtccc	cttggttcca	gccttgtcca	2400
gagtttttgg-	ttatatattt	ctatttatta	caatttacct	tttaaattgt	aaaataaacc	2460
tttgtgtgga	cagag					2475

⟨210⟩ 143

<211> 1739

<212> DNA

<213> Homo sapiens

285/307

<220>													
<221> CDS													
<222> (21) (1703)													
<400> 143 ·													
tgcgccctga cagcccaaca atg gcg gcg ccc gcg gag tcg ctg agg agg													
Met Ala Ala Pro Ala Glu Ser Leu Arg Arg													
1 5 10													
cgg aag act ggg tac tcg gat ccg gag cct gag tcg ccg ccc gcg ccg	98												
Arg Lys Thr Gly Tyr Ser Asp Pro Glu Pro Glu Ser Pro Pro Ala Pro													
15 20 25													
ggg cgt ggc ccc gca ggc tct ccg gcc cat ctc cac acg ggc acc ttc	146												
Gly Arg Gly Pro Ala Gly Ser Pro Ala His Leu His Thr Gly Thr Phe													
30 35 40													
tgg ctg acc cgg atc gtg ctc ctg aag gcc cta gcc ttc gtg tac ttc	194												
Trp Leu Thr Arg Ile Val Leu Leu Lys Ala Leu Ala Phe Val Tyr Phe													
45 50 55													
gtg gca ttc ctg gtg gct ttc cat cag aac aag cag ctc atc ggt gac	242												
Val Ala Phe Leu Val Ala Phe His Gln Asn Lys Gln Leu Ile Gly Asp													
60 65 70													
agg ggg ctg ctt ccc tgc aga gtg ttc ctg aag aac ttc cag cag tac	290												
Arg Gly Leu Leu Pro Cys Arg Val Phe Leu Lys Asn Phe Gln Gln Tyr													
75 80 85 90													

95 100 105

338

ttc cag gac agg acg agc tgg gaa gtc ttc agc tac atg ccc acc atc

Phe Gln Asp Arg Thr Ser Trp Glu Val Phe Ser Tyr Met Pro Thr Ile

ctc	tgg	ctg	atg	gac	tgg	tca	gac	atg	aac	tcc	aac	ctg	gac	ttg	ctg	386
Leu	Trp	Leu	Met	Asp	Trp	Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu	
			110					115					120			•
gct	ctt	ctc	gga	ctg	ggc	atc	tcg	tct	ttc	gta	ctg	atc	acg	ggc	tgc	434
Ala	Leu	Leu	Gly	Leu	Gly	Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	
		125					130					135				
gcc	aac	atg	ctt	çtc	atg	gct	gcc	ctg	tgg	ggc	ctc	tac	atg	tcc	ctg	482
Ala	Asn	Met	Leu	Leu	Met	Ala	Ala	Leu	Trp	Gly	Leu	Tyr	Met	Ser	Leu	
	140					145					150					
gtt	aat	gtg	ggc	cat	gtc	tgg	tac	tct	ttc	gga	tgg	gag	tcc	cag	ctt	530
Val	Asn	Val	Gly	His	Val	Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu	
155					160					165					170	
ctg	gag	acg	ggg	ttc	ctg	ggg	atc	ttc	ctg	tgc	cct	ctg	tgg	acg	ctg	578
Leu	Glu	Thr	Gly	Phe	Leu	Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu	
				175					180					185		
tca	agg	ctg	ccc	cag	cat	acc	ccc	aca	tcc	cgg	att	gtc	ctg	tgg	ggc	626
Ser	Arg	Leu	Pro	G1n	His	Thr	Pro	Thr	Ser	Arg	Ile	Val	Leu	Trp	Gly	
			190					195					200			
ttc	cgg	tgg	ctg	atc	ttc	agg	atc	atg	ctt	gga	gca	ggc	ctg	atc	aag	674
Phe	Arg	Trp	Leu	Ile	Phe	Arg	Ile	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	
		205					210					215	•			
atc	cgg	ggg	gac	cgg	tgc	tgg	cga	gac	ctc	acc	tgc	atg	gac	ttc	cac	722
Ile	Arg	Gly	Asp	Arg	Cys	Trp	Arg	Asp	Leu	Thr	Cys	Met	. Asp	Phe	His	
	220					225					230	ı				
tat	gag	acc	cag	ccg	atg	ccc	aat	cct	gtg	gca	tac	tac	ctg	cac	cac	770

Tyr	Glu	Thr	Gln	Pro	Met	Pro	Asn	Pro	Val	Ala	Tyr	Tyr	Leu	His	His	
235					240					245					250	
tca	ccc	tgg	tgg	ttc	cat	cgc	ttc	gag	acg	ctc	agc	aac	cac	ttc	atc	818
Ser	Pro	Trp	Trp	Phe	His	Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	
				255					260					265		
gag	ctc	ctg	gtg	ccc	ttc	ttc	ctc	ttc	ctc	ggc	cgg	cgg	gcg	tgc	atc	866
Glu	Leu	Leu	Val	Pro	Phe	Phe	Leu	Phe	Leu	Gly	Arg	Arg	Ala	Cys	Ile	
			270					275					280			
atc	cac	ggg	gtg	ctg	cag	atc	ctg	ttc	cag	gcc	gtc	ctc	atc	gtc	agc	914
Ile	His	Gly	Val	Leu	Gln	Ile	Leu	Phe	Gln	Ala	Val	Leu	Ile	Val	Ser	
		285					290					295				
gġg	aac	ctc	agc	ttc	ctg	aac	tgg	ctg	act	atg	gtg	ccc ·	agc	ctg	gcc	962
Gly	Asn	Leu	Ser	Phe	Leu	Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	
	300					305					310					
tgc	ttt	gat	gac	gcc	acc	ctg	gga	ttc	ttg	ttc	ccc	tct	ggg	cca	ggc	1010
Cys	Phe	Asp	Asp	Ala	Thr	Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	
315					320					325					330	
agc	ctg	aag	gac	cga	gtt	ctg	cag	atg	cag	agg	gac	atc	cga	ggg	gcc	1058
Ser	Leu	Lys	Asp	Arg	Val	Leu	Gln	Met	Gln	Arg	Asp	Iļe	Arg	Gly	Ala	
				335					340					345		
cgg	ccc	gag	ccc	aga	ttc	ggc	tcc	gtg	gtg	cgg	cgt	gca	gcc	aac	gtc	1106
Arg	Pro	Glu	Pro	Arg	Phe	Gly	Ser	Val	Val	Arg	Arg	Ala	Ala	Asn	Val	
			350					355					360			
tcg	ctg	ggc	gtc	ctg	ctg	gcc	tgg	ctc	agc	gtg	ссс	gtg	gtc	ctc	aac	1154
Ser	Leu	Gly	Val	Leu	Leu	Ala	Trp	Leu	Ser	Val	Pro	Val	Val	Leu	Asn	

		365					370					375				
ttg	ctg	agc	tcc	agg	cag	gtc	atg	aac	acc	cac	ttc _.	aac	tct	ctt	cac	1202
Leu	Leu	Ser	Ser	Arg	Gln	Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His	
	380					385					390					
atc	gtc	aac	act	tac	ggg	gcc	ttc	gga	agc	atc	acc	aag	gag	cgg	gcg	1250
Ile	Val	Asn	Thr	Tyr	Gly	Ala	Phe	Gly	Ser	Ile	Thr	Lys	Glu	Arg	Ala	
395					400					405					410	
gàg	gtg	atc	ctg	cag	ggc	aca	gcc	agc	tcc	aac	gcc	agc	gcc	ccc	gat	1298
Glu	Val	Ile	Leu	Gln	Gly	Thr	Ala	Ser	Ser	Λsn	Ala	Ser	Ala	Pro	Asp	
				415					420					425		
gcc	atg	tgg	gag	gac	tac	gag	ttc	aag	tgc	aag	cca	ggt	gac	ccc	agc	1346
Ala	Met	Trp	G _i lu	Asp	Tyr	Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	
			430					435					440			
aga	cgg	ccc	tgc	ctc	atc	tcc	ccg	tac	cac	tac	cgc	ctg	gac	tgg	ctg	1394
Arg	Arg	Pro	Cys	Leu	Ile	Ser	Pro	Tyr	His	Tyr	Arg	Leu	Asp	Trp	Leu	·
		445					450					455				
atg	tgg	ttc	gcg	gcc	ttc	cag	acc	tac	gag	cac	aac	gac	tgg	atc	atc	1442
Met	Trp	Phe	Ala	Ala	Phe	Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	Ile	Ile	
	460					465					470					
cac	ctg	gct	ggc	aag	ctc	ctg	gcc	agc	gac	gcc	gag	gcc	ttg	tcc	ctg	1490
His	Leu	Ala	Gly	Lys	Leu	Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu	
475					480					485					490	
ctg	gca	cac	aac	ccc	ttc	gcg	ggc	agg	ccc	ccg	ccc	agg	tgg	gtc	cga	1538
Leu	Ala	His	Asn	Pro	Phe	Ala	Gly	Arg	Pro	Pro	Pro	Arg	Trp	Val	Arg	
				495					500	ı				505		

gga gag cac tac agg tac aag ttc agc cgt cct ggg ggc agg cac gcc	1586
Gly Glu His Tyr Arg Tyr Lys Phe Ser Arg Pro Gly Gly Arg His Ala	
510 515 520	
gcc gag ggc aag tgg tgg gtg cgg aag agg atc gga gcc tac ttc cct	1634
Ala Glu Gly Lys Trp Trp Val Arg Lys Arg Ile Gly Ala Tyr Phe Pro	
525 530 535	
ccg ctc agc ctg gag gag ctg agg ccc tac ttc agg gac cgt ggg tgg	1682
Pro Leu Ser Leu Glu Glu Leu Arg Pro Tyr Phe Arg Asp Arg Gly Trp	
540 545 550	
cct ctg ccc ggg ccc ctc tagacgtgca ccagaaataa aggcgaagac	1730
Pro Leu Pro Gly Pro Leu	
555 560	
ccagccccc	1739
<210> 144	
<211> 2005	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
<222> (107) (1327)	
<400> 144	
ggagcccagc ggcgggtgtg agagtccgta aggagcagct tccaggatcc tgagatccgg	60
agcagccggg gtcggagcgg ctcctcaaga gttactgatc tatgaa atg gca gag	115
Met Ala Glu	

		•											1			
aat	gga	aaa	aat	tgt	gac	cag	aga	cgt	gta	gca	atg	aac	aag	gaa	cat	163
Asn	Gly	Lys	Asn	Cys	Asṗ	Gln	Arg	Arg	Val	Ala	Met	Asn	Lys	Glu	His	
	5					10					15					
cat	aat	gga	aat	ttc	aca	gac	ccc	tct	tca	gtg	aat	gaa	aag	aag	agg	211
His	Asn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	Glu	Lys	Lys	Arg	
20					25					30					35	
agg	gag	cgg	gaa	gaa	agg	cag	aat	att	gtc	ctg	tgg	aga	cag	ccg	ctc	259
Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg	Gln	Pro	Leu	
				40					45					50		
att	acc	ttg	cag	tat	ttt	tct	ctg	gaa	atc	ctt	gta	atc	ttg	aag	gaa	307
Ile	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	Leu	Val	Ile	Leu	Lys	Glu	
			55					60					65			
tgg	acc	tca	aaa	tta	tgg	cat	cgt	caa	agc	att	gtg	gtg	tct	ttt	tta	355
Trp	Thr	Ser	Lys	Leu	Trp	His	Arg	Gln	Ser	Ile	Val	Val	Ser	Phe	Leu	
		70					75					80				
ctg	ctg	ctt	gct	gtg	ctt	ata	gct	acg	tat	tat	gtt	gaa	gga	gtg	cat	403
Leu	Leu	Leu	Ala	Val	Leu	Ile	Ala	Thr	Tyr	Tyr	Val	Glu	Gly	Val	His	
	85					90					95					
caa	cag	tat	gtg	caa	cgt	ata	gag	aaa	cag	ttt	ctt	ttg	tat	gcc	tac	451
Gln	Gln	Tyr	Val	Gln	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu	Tyr	Ala	Tyr	
100					105					110					115	
tgg	ata	ggc	tta	gga	att	ttg	tct	tct	gtt	ggg	ctt	gga	aca	ggg	ctg	499
Trp	Ile	Gly	Leu	Gly	Ile	Leu	Ser	Ser	Val	Gly	Leu	Gly	Thr	Gly	Leu	
				120					125					130		

cac	acc	ttt	ctg	ctt	tat	ctg	ggt	cca	cat	ata	gcc	tca	gtt	aca	tta	547
His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser	Val	Thr	Leu	
		•	135					140		•			145			
gct	gct	tat	gaa	tgc	aat	tca	gtt	aat	ttt	ccc	gaa	cca	ccc	tat	cct	595
Ala	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro	Pro	Tyr	Pro	
		150					155					160				
gat	cag	att	att	tgt	cca	gat	gaa	gag	ggc	act	gaa	gga	acc	att	tct	643
Asp	Gln	Ile	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly	Thr	Ile	Ser	
	165					170					175					
ttg	tgg	agt	atc	atc	tca	aaa	gtt	agg	att	gaa	gcc	tgc	atg	tgg	ggt	691
Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys	Met	Trp	Gly	
180	·				185					190					195	
atc	ggt	aca	gca	atc	gga	gag	ctg	cct	cca	tat	ttc	atg	gcc	aga	gca	739
Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met	Ala	Arg	Ala	
				200					205					210		
gct	cgc	ctc	tca	ggt	gct	gaa	cca	gat	gat	gaa	gag	tat	cag	gaa	ttt	787
Ala	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr	Gln	Glu	Phe	
			215					220					225			
gaa	gag	atg	ctg	gaa	cat	gca	gag	tct	gca	caa	gac	ttt	gcc	tcc	cgg	835
Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe	Ala	Ser	Arg	
		230					235					240				
gcc	aaa	ctg	gca	gtt	caa	aaa	cta	gta	cag	aaa	gtt	gga	ttt	ttt	gga	883
Ala	Lys	Leu	Ala	Val	Gln	Lys	Leu	Val	Gln	Lys	Val	Gly	Phe	Phe	Gly	
	245					250					255					
att	ttg	gcc	tgt	gct	tca	att	cca	aat	cct	tta	ttt	gat	ctg	gct	gga	931

Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp	Leu	Ala	Gly	
260					265					270					275 .	
ata	acg	tgt	gga	cac	ttt	ctg	gta	cct	ttt	tgg	acc	ttc	ttt	ggt	gca	979
Ile	Thr	Cys	Gly	His	Phe	Leu	Val	Pro	Phe	Trp	Thr	Phe	Phe	Gly	Ala	
				280					285					290		
acc	cta	att	gga	aaa	gca	ata	ata	aaa	atg	cat	atc	cag	aaa	att	ttt	1027
Thr	Leu	Ile	Gly	Lys	Ala	Ile	Ile	Lys	Met	His	Ile	Gln	Lys	Ile	Phe	
			295					300					305			
gtt	ata	ata	aca	ttc	agc	aag	cac	ata	gtg	gag	caa	atg	gtg	gct	ttc	1075
Val	Ile	Ile	Thr	Phe	Ser	Lys	His	Ile	Val	Glu	Gln	Met	Val	Ala	Phe	
		310					315					320				
att	ggt	gct	gtc	ccc	ggc	ata	ggt	cca	tct	ctg	cag	aag	cca	ttt	cag	1123
Ile	Gly	Ala	Val	Pro	Gly	Ile	Gly	Pro	Ser	Leu	Gln	Lys	Pro	Phe	Gln	
	325					330			•		335					
gag	tac	ctg	gag	gct	caa	cgg	cag	aag	ctt	cac	cac	aaa	agc	gaa	atg	1171
Glu	Tyr	Leu	Glu	Ala	Gln	Arg	Gln	Lys	Leu	His	His	Lys	Ser	Glu	Met	
340					345					350					355	
ggc	aca	cca	cag	gga	gaa	aac	tgg	ttg	tcc	tgg	atg	ttt	gaa	aag	ttg	1219
Gly	Thr	Pro	Gln	Gly	Glu	Asn	Trp	Leu	Ser	Trp	Met	Phe	Glu	Lys	Leu	
				360					365					370		
gtc	gtt	gtc	atg	gtg	tgt	tac	ttc	atc	cta	tct	atc	att	aac	tcc	atg	1267
Val	Val	Val	Met	Val	Cys	Tyr	Phe	Ile	Leu	Ser	Ile	Ile	Asn	Ser	Met	
			375					380					385			
gca	caa	agt	tat	gcc	aaa	cga	atc	cag	cag	cgg	ttg	aac	tca	gag	gag	1315
Ala	Gln	Ser	Tyr	Ala	Lys	Arg	Ile	Gln	Gln	Arg	Leu	Asn	Ser	Glu	Glu	

293/307

390 395 400 aaa act aaa taagta gagaaagttt taaactgcag aaattggagt ggatgggttc 1370 Lys Thr Lys 405 1430 tgccttaaat tgggaggact ccaagccggg aaggaaaatt cccttttcca acctgtatca atttttacaa ctttttcct gaaagcagtt tagtccatac tttgcactga catacttttt 1490 ccttctgtgc taaggtaagg tatccaccct cgatgcaatc caccttgtgt tttcttaggg 1550 tggaatgtga tgttcagcag caaacttgca acagactggc cttctgtttg ttactttcaa 1610 1670 aaggcccaca tgatacaatt agagaattcc caccgcacaa aaaaagttcc taagtatgtt aaatatgtca agctttttag gcttgtcaca aatgattgct ttgttttcct aagtcatcaa 1730 1790 aatgtatata aattatctag attggataac agtcttgcat gtttatcatg ttacaattta atattccatc ctgcccaacc cttcctctcc catcctcaaa aaagggccat tttatgatgc 1850 1910 attgcacacc ctctggggaa attgatcttt aaattttgag acagtataag gaaaatctgg ttggtgtctt acaagtgagc tgacaccatt ttttattctg tgtatttaga atgaagtctt 1970 2005 gaaaaaaact ttataaagac atctttaatc attcc

<210> 145

<211> 1558

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (31)...(1392)

(400) 145

tcccggtcgg gtgcaaggag ccgaggcgag atg ggc gtc ctg ggc cgg gtc ctg

54

294/307

Met Gly Val Leu Gly Arg Val Leu

ctg tgg ctg cag ctc tgc gca ctg acc cag gcg gtc tcc aaa ctc tgg Leu Trp Leu Gln Leu Cys Ala Leu Thr Gln Ala Val Ser Lys Leu Trp gtc ccc aac acg gac ttc gac gtc gca gcc aac tgg agc cag aac cgg Val Pro Asn Thr Asp Phe Asp Val Ala Ala Asn Trp Ser Gln Asn Arg acc ccg tgc gcc ggc gcc gtt gag ttc ccg gcg gac aag atg gtg Thr Pro Cys Ala Gly Gly Ala Val Glu Phe Pro Ala Asp Lys Met Val tca gtc ctg gtg caa gaa ggt cac gcc gtc tca gac atg ctc ctg ccg Ser Val Leu Val Gln Glu Gly His Ala Val Ser Asp Met Leu Leu Pro ctg gat ggg gaa ctc gtc ctg gct tca gga gcc gga ttc ggc gtc tca Leu Asp Gly Glu Leu Val Leu Ala Ser Gly Ala Gly Phe Gly Val Ser gac gtg ggc tcg cac ctg gac tgt ggc gcg ggc gaa cct gcc gtc ttc Asp Val Gly Ser His Leu Asp Cys Gly Ala Gly Glu Pro Ala Val Phe ege gae tet gae ege tte tee tgg eat gae eeg eac etg tgg ege tet Arg Asp Ser Asp Arg Phe Ser Trp His Asp Pro His Leu Trp Arg Ser ggg gac gag gca cct ggc ctc ttc ttc gtg gac gcc gag cgc gtg ccc

Gly Asp Glu Ala Pro Gly Leu Phe Phe Val Asp Ala Glu Arg Val Pro

				125					130					135		
tgc	cgc	cac	gac	gac	gtc	ttc	ttt	ccg	cct	agt	gcc	tcc	ttc	cgc	gtg	486
Cys	Arg	His	Asp	Asp	Val	Phe	Phe	Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val	
			140					145					150			
ggg	ctc	ggc	cct	ggc	gct	agc	ccc	gtg	cgt	gtc	cgc	agc	atc	tcg	gct	534
Gly	Leu	G1 y	Pro	Gly	Ala	Ser	Pro	Val	Arg	Val	Arg	Ser	Ile	Ser	Ala	
		155					160					165				
ctg	ggc	cgg	acg	ttc	acg	cgc	gac	gag	gac	ctg	gct	gtt	ttc	ctg	gcg	582
Leu	Gly	Arg	Thr	Phe	Thr	Arg	Λsp	Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala	
	170					175					180					
tcc	cgc	gcg	ggc	cgc	cta	cgc	ttc	cac	ggg	ccg	ggc	gcg	ctg	agc	gtg	630
Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe	His	Gly	Pro	Gly	Ala	Leu	Ser	Val	
185					190					195					200	
ggc	ccc	gag	gac	tgc	gcg	gac	ccg	tcg	ggc	tgc	gtc	tgc	ggc	aac	gcg	678
Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro	Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala	
				205					210					215		
gag	gcg	cag	ccg	tgg	atc	tgc	gcg	gcc	ctg	ctc	cag	ccc	ctg	ggc	ggc	726
Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala	Ala	Leu	Leu	Gln	Pro	Leu	Gly	Gly	
			220					225					230			
cgc	tgc	ccc	cag	gcc	gcc	tgc	cac	agc	gcc	ctc	cgg	ccc	cag	ggg	cag	774
Arg	Cys	Pro	Gln	Ala	Ala	Cys	His	Ser	Ala	Leu	Arg	Pro	Gln	Gly	Gln	
		235					240					245				
tgc	tgt	gac	ctc	tgt	gga	gcc	gtt	gtg	ttg	ctg	acc	cac	ggc	ccc	gca	822
Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val	Val	Leu	Leu	Thr	His	Gly	Pro	Ala	
	250					255					260					

ttt	gac	ctg	gag	cgg	tac	cgg	gcg	cgg	ata	ctg	gac	acc	ttc	ctg	ggt	870
Phe	Asp	Leu	Glu	Arg	Tyr	Arg	Ala	Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly	
265					270		٠		•	275					280	
ctg	cct	cag	tac	cac	ggg	ctg	cag	gtg	gcc	gtg	tcc	aag	gtg	cca	cgc	918
Leu	Pro	Gln	Tyr	His	Gly	Leu	G1n	Val	Ala	Val	Ser	Lys	Val	Pro	Arg	
				285					290					295		
tcg	tcc	cgg	ctc	cgt	gag	gcc	gat	acg	gag	atc	cag	gtg	gtg	ctg	gtg	966
Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp	Thr	Glu	Ile	Gln	Val	Val	Leu	Val	
			300					305					310			
gag	aat	ggg	ccc	gag	aca	ggc	gga	gcg	ggg	cgg	ctg	gcc	cgg	gcc	ctc	1014
Glu	Asn	Gly	Pro	Glu	Thr	Gly	Gly	Ala	Gly	Arg	Leu	Ala	Arg	Ala	Leu	
•		315					320					325				
ctg	gcg	gac	gtc	gcc	gag	aac	ggc	gag	gcc	ctc	ggc	gtc	ctg	gag	gcg	1062
Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly	Glu	Ala	Leu	Gly	Val	Leu	Glu	Ala	
	330					335					340					
acc	atg	cgg	gag	tcg	ggc	gca	cac	gtc	tgg	ggc	agc	tcc	gcg	gct	ggg	1110
Thr	Met	Arg	Glu	Ser	Gly	Ala	His	Val	Trp	Gly	Ser	Ser	Ala	Ala	Gly	
345					350					355					360	
ctg	gcg	ggc	ggc	gtg	gcg	gct	gcc	gtg	ctg	ctg	gcg	ctg	ctg	gtc	ctg	1158
Leu	Ala	Gly	Gly	Val	Ala	Ala	Ala	Val	Leu	Leu	Ala	Leu	Leu	Val	Leu	
				365					370					375		
ctg	gtg	gcg	ccg	ccg	ctg	ctg	cgc	cgc	gcg	ggg	agg	ctc	agg	tgg	agg	1206
Leu	Val	Ala	Pro	Pro	Leu	Leu	Arg	Arg	Ala	Gly	Arg	Leu	Arg	Trp	Arg	
			380					385					390			
agg	cac	gag	gcg	gcg	gcc	ccg	gct	gga	gcg	ссс	ctc	ggc	ttc	cgc	aac	1254

Arg His Glu Ala Ala Ala Pro Ala Gly Ala Pro Leu Gly Phe Arg Asn	
395 400 405	
ccg gtg ttc gac gtg acg gcc tcc gag gag ctg ccc ctg ccg cgg cgg	1302
Pro Val Phe Asp Val Thr Ala Ser Glu Glu Leu Pro Leu Pro Arg Arg	
410 415 420	
ctc agc ctg gtt ccg aag gcg gcc gca gac agc acc agc cac agt tac	1350
Leu Ser Leu Val Pro Lys Ala Ala Ala Asp Ser Thr Ser His Ser Tyr	
425 430 435 440	
ttc gtc aac cct ctg ttc gcc ggg gcc gag gcc gag gcc t gagcggccgc	1400
Phe Val Asn Pro Leu Phe Ala Gly Ala Glu Ala Glu Ala	
445 450	
ctgaccgtcg accttggggc tctccacccc ctctggcccc agtcgaactg ggggctagcc	1460
acctectegt ceagececea aaccteceet teettteeee eteeteeggg ggecaaggae	1520
agggtggcct tactcagtaa aggtgtttcc tgcacctg	1558
⟨210⟩ 146	
<211> 1005	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (151) (330)	
<400> 146	
attcctgtaa tggctgcttc ctagaaggtc gtgtcacgtg gaacctctta atctcagcat	60
ccggagctcc aggaagggaa aatttcaagt cagatagaat tctatatata ccatttettt	120

ggaacettea geoettaaga tteeaacate atg ace tea git tea aca eag itg	117
Met Thr Ser Val Ser Thr Gln Leu	
1 5	
tcc tta gtc ctc atg tca ctg ctt ttg gtg ctg cct gtt gtg gaa gca	222
Ser Leu Val Leu Met Ser Leu Leu Leu Val Leu Pro Val Val Glu Ala	
10 15 20	
gta gaa gcc ggt gat gca atc gcc ctt ttg tta ggt gtg gtt ctc agc	270
Val Glu Ala Gly Asp Ala Ile Ala Leu Leu Cly Val Val Leu Ser	
25 30 35 40	
att aca ggc att tgt gcc tgc ttg ggg gta tat gca cga aaa aga aat	318
Ile Thr Gly Ile Cys Ala Cys Leu Gly Val Tyr Ala Arg Lys Arg Asn	
45 50 55	
gga cag atg tga ctttgaaagg cctactgagt caaacctcac cctgaaaacc	370
Gly Gln Met	
tttgcgcttt agaggctaaa cctgagattt ggtgtgtgaa aggttccaag aatcagtaaa	430
taagggagtt tcacattttt cattgtttcc atgaaatggc aacaaacata catttataaa	490
ttgaaaaaaa aatgttttct ttacaacaaa taatgcacag aaaaatgcag cctataattt	550
gctagttagg tagtcaaaga agtaagatgg ctgaaattta cataagtaat atttcataat	610
cttagaattc tctcaaagca tgtgaaatag gaagaaggaa gttcttgccc agaatcttag	670
gaaatcacca ctgttcggtt ataatcactg cctcctgaat cgttgaggag tcttttaaat	730
tagatttttg ttttgttgtc tcccaagtta atattatatt	790
aaaaaggaaa actttatct ctagggaaaa aacatttaga aaaatgtatt cagtgtatct	850
aatactgaaa tgcggaaaaa aatttaatgt taaaaaaaaa actatagaca ttgacatgga	910
aaagagattt aatgttttga aaaaaaactt tatattaact gagtaacatc ctcctgatga	970
gaagtactat attaaatata aacccattat gttat	1005

	<210	> 14	17														
	< 211	> 96	59														
	<212	> DN	JA														
	<213	> Hc	omo s	sapie	ens												
	<220	>															
	<221	> CI	os														
	<222	> (1	151).	(7	783)												
	<400	> 14	17														
	gctg	gaca	ıcc t	tggag	gctgo	cc c	gagga	acgc	g gag	ggaga	agac	ccga	agggi	tcg	ccgc	tggtag	g 60
	ggtc	gcto	ag c	ccte	gccg	tc c	ttca	ccac	c aca	accti	tcac	ctg	egcc	cag	ctcc	ctgcgc	120
	gcct	ggac	cag o	egect	tgct	gc co	egec	tccci	g at	g gc	ct	g cc	ca	g at	g tg	t gac	174
									Me	t Ala	a Lei	ı Pro	Gli	n Mei	t Cy	s Asp	
										l				5			
	ggg	agc	cac	ttg	gcc	tcc	acc	ctc	cgc	tat	tgc	atg	aca	gtc	agc	ggc	222
	Gly	Ser	His	Leu	Ala	Ser	Thr	Leu	Arg	Tyr	Cys	Met	Thr	Val	Ser	Gly	
		10					15					20					
•	aca	gtg	gtt	ctg	gtg	gcc	ggg	acg	ctc	tgc	ttc	gct	tgg	tgg	agc	gaa	270
	Thr	Val	Val	Leu	Val	Äla	Gly	Thr	Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	
	25					30					35					40	
	ggg	gat	gca	acc	gcc	cag	cct	ggc	cag	ctg	gcc	cca	ccc	acg	gag	tat	318
	Gly	Asp	Ala	Thr	Ala	Gln	Pro	Gly	Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	
					45					50					55		
	ccg	gtg	cct	gag	ggc	ccc	agc	ccc	ctg	ctc	agg	tcc	gtc	agc	ttc	gtc	366
	Pro	Va 1	Pro	Glu	Glv	Pro	Sor	Pro	Leu	Leu	Aro	Ser	Val	Ser	Phe	Val	

			60					65					70			
tgc	tgc	ggt	gca	ggt	ggc	ctg	ctg	ctg	ctc	att	ggc	ctg	ctg	tgg	tcc	414
Cys	Cys	Gly	Ala	Gly	Gly	Leu	Leu	Leu	Leu	Ile	Gly	Leu	Leu	Trp	Ser	
		75					80					85				
gtc	aag	gcc	agc	atc	cca	ggg	cca	cct	cga	tgg	gac	ccc	tat	cac	ctc	462
Val	Lys	Ala	Ser	Ile	Pro	Gly	Pro	Pro	Arg	Trp	Asp	Pro	Tyr	His	Leu	
	90					95					100					
tcc	aga	gac	ctg	tac	tac	ctc	act	gtg	gag	tcc	tca	gag	aag	gag	agc	510
Ser	Arg	Asp	Leu	Tyr	Tyr	Leu	Thr	Val	Glu	Ser	Ser	Glu	Lys	Glu	Ser	
105					110					115					120	
tgc	agg	acc	ccc	aaa	gtg	gtt	gac	atc	ccc	act	tac	gag	gaa	gcc	gtg	558
Cys	Arg	Thr	Pro	Lys	Val	Val	Asp	Ile	Pro	Thr	Tyr	Glu	Glu	Ala	Val	
				125					130					135		
agc	ttc	cca	gtg	gcc	gag	ggg	ccc	cca	aca	cca	cct	gca	tac	cct	acg	606
Ser	Phe	Pro	Val	Ala	Glu	Gly	Pro	Pro	Thr	Pro	Pro	Λla	Tyr	Pro	Thr	
			140					145					150			
gag	gaa	gcc	ctg	gag	cca	agt	gga	tcg	agg	gat	gcc	ctg	ctc	agc	acc	654
Glu	Glu	Ala	Leu	Glu	Pro	Ser	Gly	Ser	Arg	Asp	Ala	Leu	Leu	Ser	Thr	
		155					160					165				
cag	ccc	gcc	tgg	cct	cca	ccc	agc	tat	gag	agc	atc	agc	ctt	gct	ctt	702
Gln	Pro	Ala	Trp	Pro	Pro	Pro	Ser	Tyr	Glu	Ser	Ile	Ser	Leu	Ala	Leu	
	170					175					180					
gat	gcc	gtt	tct	gca	gag	acg	aca	ccg	agt	gcc	aca	cgc	tcc	tgc	tca	750
Asp	Ala	Val	Ser	Ala	Glu	Thr	Thr	Pro	Ser	Ala	Thr	Arg	Ser	Cys	Ser	
185					190					195					200	

ggc ctg gtt cag act gca cgg gga gga agt taaaggctcc tagcaggtcc	800
Gly Leu Val Gln Thr Ala Arg Gly Gly Ser	
205 210	
tgaatccaga gacaaaaatg ctgtgccttc tccagagtct tatgcagtgc ctgggacaca	860
gtaggcactc agcaaacgtt cgttgttgaa ggctgttcta tttatctatt gctgtataac	920
aaaccaccc agaatttagt ggcttaaaat aaatcccatt ttattatgt	969
<210> 148	
<211> 1241	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
<222> (20) (517)	
<400> 148	
atttegggge ggtaceaag atg gae tee teg egg gee ega eag ete egg	52
Met Asp Ser Ser Arg Ala Arg Gln Gln Leu Arg	
1 5 10	
cgg cga ttc ctc ctg ccg gac gcc gag gcc cag ctg gac cgc gag	100
Arg Arg Phe Leu Leu Pro Asp Ala Glu Ala Gln Leu Asp Arg Glu	
15 20 25	
ggt gac gcc ggg ccg gaa acc tcc aca gct gtt gag aaa aag gag aaa	148
Gly Asp Ala Gly Pro Glu Thr Ser Thr Ala Val Glu Lys Lys Glu Lys	
30 35 40	
cct ctt cca aga ctt aat atc cat tct gga ttc tgg att ttg gca tcc	196

Pro	Leu	Pro	Arg	Leu	Asn	Ile	His	Ser	Gly	Phe	Trp	Ile	Leu	Ala	Ser	
	45					50					55					
att	gtt	gtg	acc	tat	tat	gtt	gac	ttc	ttt	888	acc	ctt	aaa	gaa	aac	244
Ile	Val	Val	Thr	Tyr	Tyr	Val	Asp	Phe	Phe	Lys	Thr	Leu	Lys	Glu	Asn	
60					65					70					75	
ttc	cac	act	agc	agc	tgg	ttt	ctc	tgt	ggc	agt	gcc	ttg	ttg	ctt	gtc	292
Phe	His	Thr	Ser	Ser	Trp	Phe	Leu	Cys	Gly	Ser	Ala	Leu	Leu	Leu	Val	
				80					85					90		
agt	tta	tca	att	gca	ttt	tac	tgc	ata	gtc	tac	ctg	gaa	tgg	tat	tgt	340
Ser	Leu	Ser	Ile	Ala	Phe	Tyr	Cys	Ile	Val	Tyr	Leu	Glu	Trp	Tyr	Cys	
			95					100					105			
gga	att	gga	gaa	tat	gat	gtc	aag	tat	сса	gcc	ttg	ata	ccc	att	acc	388
Gly	Ile	Gly	Glu	Tyr	Asp	Val	Lys	Tyr	Pro	Ala	Leu	Ile	Pro	Ile	Thr	
		110					115					120				
act	gcc	tcc	ttt	att	gca	gca	gga	att	tgc	ttc	aac	att	gct	tta	tgg	436
Thr	Ala	Ser	Phe	Ile	Ala	Ala	Gly	Ile	Cys	Phe	Asn	Ile	Ala	Leu	Trp	
	125					130					135					
cat	gtg	tgg	tcg	ttt	ttc	act	cca	ttg	ttg	ttg	ttt	acc	cag	ttt	atg	484
His	Val	Trp	Ser	Phe	Phe	Thr	Pro	Leu	Leu	Leu	Phe	Thr	Gln	Phe	Met	
140					145					150					155	
ggg	gtt	gtc	atg	ttt	atc	aca	ctc	ctt	gga	tga	ttt	ccga	agag	ac		530
Gly	Val	Val	Met	Phe	Ile	Thr	Leu	Leu	Gly							
				160	١				165	,						
agg	gtct	tct	atgt	tgcc	ca g	gctg	tctt	t ga	acto	ctgg	gat	caag	gtga	tcct	cctgcc	590
tca	gcct	tcg	aagt	agtt	gg g	acta	cagg	c cc	acgo	cacc	gtg	cct	gct	ggad	atgtaa	650

303/307

atttgaa	gtg	aatggttaaa	catccagcta	gctgaaagca	tggcagaccc	taacagaaaa	710
gctacag	tgt	gtttttgcag	ctatgaagtg	aatggtttcc	tggggaaaat	tgtgactttg	770
tataact	gtt	gttgaaacca	gaataaatta	tatttcactt	gcatatgcat	aaattattaa	830
aatttto	aga	agtcagtgat	acagaagtac	tattttgcaa	tgttaatctg	tttgagtctt	890
tggagaa	agt	ggtttcattg	taggtacata	gtgcactgtt	aatatttaa	acaagtagtt	950
cactctt	cca	tttaagggat	agcagttcct	tgtataaaat	gactggatgt	gtataaagga	1010
attatgt	tgt	catgtgcctt	taaccagctt	tagtaattac	tataatctca	tatttatgat	1070
agttttg	gtta	ggtgacagga	ccaaatgaaa	atattttatg	ttttctcatc	actttagatt	1130
ttatcat	tat	gtacattact	gggtttttag	catttcctaa	tgtgaagttt	taatcacttt	1190
taagtat	taca	tttttttctg	tatcatttaa	ataaaatatt	tttataactt	t	1241

⟨210⟩ 149

<211> 1174

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (187)...(675)

1

<400> 149

ggaagccggg acgatgtccg catgacaacc gacgttggag tttggaggtg cttgccttag 60
agcaagggaa acagctctca ttcaaaggaa ctagaagcct ctccctcagt ggtagggaga 120
cagccaggag cggtttctg ggaactgtgg gatgtgccct tgggggcccg agaaaacaga 180
aggaag atg ctc cag acc agt aac tac agc ctg gtg ctc tct ctg cag 228

Met Leu Gln Thr Ser Asn Tyr Ser Leu Val Leu Ser Leu Gln

5 10

ttc	ctg	ctg	ctg	tcc	tat	gac	ctc	ttt	gtc	aat	tcc	ttc	tca	gaa	ctg	276
Phe	Leu	Leu	Leų	Ser	Tyr	Asp	Leu	Phe	Val	Asn	Ser	Phe	Ser	Glu	Leu	
15			•		20				•	25					30	
ctc	caa	aag	act	cct	gtc	atc	cag	ctt	gtg	ctc	ttc	atc	atc	cag	gat	324
Leu	Gln	Lys	Thr	Pro	Val	Ile	Gln	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp	
				35					40					45		•
att	gca	gtc	ctc	ttc	aac	atc	atc	atc	att	ttc	ctc	atg	ttc	ttc	aac	372
Ile	Ala	Val	Leu	Phe	Asn	Ile	Ile	Ile	Ile	Phe	Leu	Met	Phe	Phe	Asn	
			50					55					60			
acc	ttc	gtc	ttc	cag	gct	ggc	ctg	gtc	aac	ctc	cta	ttc	cat	aag	ttc	420
Thr	Phe	Val	Phe	G1n	Ala	Gly	Leu	Val	Asn	Leu	Leu	Phe	His	Lys	Phe	
		65					70					75				
aaa	ggg	acc	atc	atc	ctg	aca	gct	gtg	tac	ttt	gcc	ctc	agc	atc	tcc	468
Lys	Gly	Thr	Ile	Ile	Leu	Thr	Ala	Val	Tyr	Phe	Ala	Leu	Ser	Ile	Ser	
	80					85					90					
ctt	cat	gtc	tgg	gtc	atg	aac	tta	cgc	tgg	aaa	aac	tcc	аас	agc	ttc	516
Leu	His	Val	Trp	Val	Met	Asn	Leu	Arg	Trp	Lys	Asn	Ser	Asn	Ser	Phe	
95					100					105					110	
ata	tgg	aca	gat	gga	ctt	caa	atg	ctg	ttt	gta	ttc	cag	aga	cta	gca	564
Ile	Trp	Thr	Asp	Gly	Leu	Gln	Met	Leu	Phe	Val	Phe	Gln	Arg	Leu	Ala	
				115					120					125	i	
gca	gtg	ttg	tac	tgc	tac	ttc	tat	aaa	cgg	aca	gcc	gta	aga	cta	ggc	612
Ala	Val	Leu	Tyr	Cys	Tyr	Phe	Tyr	Lys	Arg	Thr	Ala	Val	Arg	Leu	Gly	
			130					135					140)		
gat	cct	cac	ttc	tac	cag	gac	tct	ttg	tgg	ctg	cgc	aag	gag	tto	atg	660

305/307

Asp Pro His Phe Tyr Gl	n Asp Ser L	eu Trp Leu	Arg Lys Glu	Phe Met	
145	150		155		
caa gtt cga agg tgacct	ct tgtcacac	tg atggatac	tt ttccttcc	tg	710
Gln Val Arg Arg					
160					
atagaagcca catttgctgc	tttgcaggga	gagttggccc	tatgcatggg	caaacagctg	770
gactttccaa ggaaggttca	gactagctgt	gttcagcatt	caagaaggaa	gatectecct	830
cttgcacaat tagagtgtcc	ccatcggtct	ccagtgcggc	atcccttcct	tgccttctac	890
ctctgttcca ccccctttcc	ttcctttcct	ctctgtacca.	ttcattctcc	ctgaccggcc	950
tttcttgccg agggttctgt	ggctcttacc	cttgtgaagc	ttttccttta	gcctgggaca	1010
gaaggacete ceagececea	aaggatctcc	cagtgaccaa	aggatgcgaa	gagtgatagt	1070
tacgtgctcc tgactgatca	caccgcagac	atttagattt	ttatacccaa	ggcactttaa	1130
aaaaatgttt tataaataga	gaataaattg	aattcttgtt	ccat ·		1174
<210> 150					
<211> 1012					
<212> DNA					
<213> Homo sapiens					
<220>					
<221> CDS					
<222> (208) (873)					
<400> 150					
gcctcttccc caggggccgc	gtcggagcct	ccgcggcggc	ggcggtgctt	acagcctgag	60
aagagcgtct cgcccgggag	cggcggcggc	catcgagacc	cacccaaggc	gcgtcccct	120

. cggcctccca gcgctcccaa gccgcagcgg ccgcgcccct tcagctagct cgctcgctcg

180

ctct	gctt	cc o	tgct	tgcc	gg ci	tgcg	cc a	tg g	cg ti	tg go	g ti	tg g	cg g	cg c	tg	231
							Mo	et A	la Le	eu Al	la Le	eu A	la A	la Ļ	eu .	
								1				5				
gcg	gcg	gtc	gag	ccg	gcc	tgc	ggc	agc	cgg	tac	cag	cag	ttg	cag	aat	279
Ala	Ala	Val	Glu	Pro	Ala	Cys	Gly	Ser	Arg	Tyr	Gln	Gln	Leu	Gln	Asn	
	10					15					20					
gaa	gaa	gag	tct	gga	gaa	cct	gaa	cag	gct	gca	ggt	gat	gct	cct	cca	327
Glu	Glu	Glu	Ser	Gly	Glu	Pro	Glu	Gln	Ala	Ala	Gly	Asp	Ala	Pro	Pro	
25					30					35					40	
cct	tac	agc	agc	att	tct	gca	gag	agc	gca	gca	tat	ttt	gac	tac	aag	375
Pro	Tyr	Ser	Ser	Ile	Ser	Ala	Glu	Ser	Ala	Ala	Tyr	Phe	Asp	Tyr	Lys	
				45					50	•				55		
gat	gag	tct	ggg	ttt	cca	aag	ccc	cca	tct	tac	aat	gta	gct	aca	aca	423
Asp	Glu	Ser	Gly	Phe	Pro	Lys	Pro	Pro	Ser	Tyr	Asn	Val	Ala	Thr	Thr	
			60					65					70			
ctg	ccc	agt	tat	gat	gaa	gcg	gag	agg	acc	aag	gct	gaa	gct	act	atc	471
Leu	Pro	Ser	Tyr	Asp	Glu	Ala	Glu	Arg	Thr	Lys	Ala	Glu	Ala	Thr	Ile	
		75					80					85				
cct	ttg	gtt	cct	ggg	aga	gat	gag	gat	ttt	gtg	ggt	cgg	gat	gat	ttt	519
Pro	Leu	Val	Pro	Gly	Arg	Asp	Glu	Asp	Phe	Val	Gly	Arg	Asp	Asp	Phe	
	90					95					100					
gat	gat	gct	gac	cag	ctg	agg	ata	gga	aat	gat	ggg	att	ttc	atg	tta	567
Asp	Asp	Ala	Asp	Gln	Leu	Arg	Ile	Gly	Asn	Asp	Gly	Ile	Phe	Met	Leu	
105					110					115					120	
act	ttt	ttc	atg	gca	ttc	ctc	ttt	aac	tgg	att	ggg	ttt	ttc	ctg	tct	619

Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe	Asn	Trp	Ile	Gly	Phe	Phe	Leu	Ser	
				125					130				٠	135		
ttt	tgc	ctg	acc	act	tca	gct	gca	gga	agg	tat	ggg	gcc	att	tca	gga	663
Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala	Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	
			140					145					150			
ttt	ggt	ctc	tct	cta	att	aaa	tgg	atc	ctg	att	gtc	agg	ttt	tcc	acc	711
Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp	Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	•
		155					160					165				
tat	ttc	cct	gga	tat	ttt	gat	ggt	cag	tac	tgg	ctc	tgg	tgg	gtg	ttc	759
Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly	Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	
	170					175					180					
ctt	gtt	tta	ggc	ttt	ctc	ctg	ttt	ctc	aga	gga	ttt	atc	aat	tat	gca	807
Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe	Leu	Arg	Gly	Phe	Ile	Asn	Tyr	Ala	
185					190					195					200	
aaa	gtt	cgg	aag	atg	cca	gaa	act	ttc	tca	aat	ctc	ссс	agg	acc	aga	855
Lys	Val	Arg	Lys	Met	Pro	Glu	Thr	Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	
				205					210					215		
gtt	ctc	ttt	att	tat	taaa	agat	gtt	ttctį	ggca	aa g	gcct	tcct	g ca	ttta	tgaa	910
Val	Leu	Phe	Île	Tyr												
			220													
ttc	tctc	tca a	agaaı	gcaa	ga ga	aaca	cctg	cag	gaag	tgaa	tca	agat	gca	gaaca	acagag	970
gaa	taat	cac (ctgc	ttta	aa aa	aaata	aaag	t ac	tgtt	gaaa	ag					1012

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.