(Chapter - 14) (Symmetry) (Class - VII)

Exercise 14.3

Question 1:

Name any two figures that have both line symmetry and rotational symmetry.

Answer 1:

Circle and Square.

Question 2:

Draw, wherever possible, a rough sketch of:

- (i) a triangle with both line and rotational symmetries of order more than 1.
- (ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.
- (iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry.
- (iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Answer 2:

(i) An equilateral triangle has both line and rotational symmetries of order more than 1.

Line symmetry:

Rotational symmetry:

(ii) An isosceles triangle has only one line of symmetry and no rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

- (iii) It is not possible because order of rotational symmetry is more than 1 of a figure, most acertain the line of symmetry.
- (iv) A trapezium which has equal non-parallel sides, a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Question 3:

In a figure has two or more lines of symmetry, should it have rotational symmetry of order more than 1?

Answer 3:

Yes, because every line through the centre forms a line of symmetry and it has rotational symmetry around the centre for every angle.

Question 4:

Fill in the blanks:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square			
Rectangle			
Rhombus			
Equilateral triangle			
Regular hexagon			
Circle			
Semi-circle			

Answer 4:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	Intersecting point of diagonals.	4	90°
Rectangle	Intersecting point of diagonals.	2	180°
Rhombus	Intersecting point of diagonals.	2	180°
Equilateral triangle	Intersecting point of medians.	3	120°
Regular hexagon	Intersecting point of diagonals.	6	60°
Circle	Centre	infinite	At every point
Semi-circle	Mid-point of diameter	1	360°

Question 5:

Name the quadrilateral which has both line and rotational symmetry of order more than 1.

Answer 5:

Square has both line and rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

Question 6:

After rotating by 60° about a centre, a figure looks exactly the same as its original position. At what other angles will this happen for the figure?

Answer 6:

Other angles will be $120^{\circ},\!180^{\circ},\!240^{\circ},\!300^{\circ},\!360^{\circ}$.

For 60° rotation:

It will rotate six times.

(Chapter - 14) (Symmetry) (Class - VII)

For 120° rotation:

It will rotate three times.

For 180° rotation:

It will rotate two times.

For 360° rotation:

It will rotate one time.

Question 7:

Can we have a rotational symmetry of order more than 1 whose angle of rotation is:

(i) 45°

(ii) 17°?

Answer 7:

- (i) If the angle of rotation is 45°, then symmetry of order is possible and would be 8 rotations.
- (ii) If the angle of rotational is 17°, then symmetry of order is not possible because 360° is not complete divided by 17°.