UNIVERSIDADE PAULISTA

FLÁVIO ROCHA VALENÇA RAFAEL DE SOUZA BATISTA SARAH CRISTINE PUPO SILVA WESLLEY DO ESPIRITO SANTO

ANALISE DE GRANDE VOLUME DE DADOS COM D3JS

SANTOS 2015

FLÁVIO ROCHA VALENÇA RAFAEL DE SOUZA BATISTA SARAH CRISTINE PUPO SILVA WESLLEY DO ESPIRITO SANTO

ANALISE DE GRANDE VOLUME DE DADOS COM D3JS

Trabalho de conclusão de curso para obtenção do título de graduação em Ciências da Computação apresentado à Universidade Paulista – UNIP.

Orientador: Luiz Guilherme

SANTOS 2015

FLÁVIO ROCHA VALENÇA RAFAEL DE SOUZA BATISTA SARAH CRISTINE PUPO SILVA WESLLEY DO ESPIRITO SANTO

ANALISE DE GRANDE VOLUME DE DADOS COM D3JS

Trabalho de conclusão de curso para obtenção do título de graduação em Ciências da Computação apresentado à Universidade Paulista – UNIP.

Aprovado em:	
	BANCA EXAMINADORA
	Nome do professor
	Universidade Paulista – UNIP
	Nome do professor
	Universidade Paulista – UNIP
	Nome do professor
	Universidade Paulista – UNIP

DEDICATÓRIA

AGRADECIMENTOS

RESUMO

ABSTRACT

LISTA DE ABREVIATURAS E SIGLAS

ASP - Active Server Pages

CSS - Cascading Style Sheets (linguagem de folhas de estilo)

D3 - Data-Driven Documents

DOM - Document Object Model

HTML - HyperText Markup Language (Linguagem de marcação de hipertexto)

PHP - Personal Home Page

SUMÁRIO

1. INTRODUÇÃO	g
2. OBJETIVOS	
3. JAVASCRIPT	
3.1. CONCEITOS BÁSICOS	13
4. DEFINIÇÃO DE UM FRAMEWORK	
4.1. UTIĹIZAÇÃO	15
4.2. CLASSIFICAÇÕES	
4.2.1. Framework orientado a objeto	15
4.2.2. Framework de componentes	
5. FERRAMENTES SEMELHANTES AO D3JS	17
5.1. PROCESSING	17
5.2. MATPLOTLIB	
5.3. TABLEAU DESKTOP	17
6. DOCUMENT OBJECT MODEL (DOM)	18
7. CSS	19
8. D3JS	
9. VANTAGENS E DESVANTAGENS DE UTLILIZAR O D3JS	21
9.1. VANTAGEM	
9.2. DESVANTAGEM	
10. CONCEITO DE BIG DATA	
10.1. APLICAÇÕES	
11. TENDENCIAS PARA 2015 BIG DATA	
12. ARQUIVOS EM NUVEM	
13. CONCLUSÃO	
14. REFERENCIAS	27

1. INTRODUÇÃO

O hábito de guardar informações sejam eles, documento, fotos, livros, estudos científicos e assim por diante, vem crescendo com a interação entre homem-máquina. E com isso, gerou reflexos na área de tecnologia, logo, armazenar as informações e dados se tornou algo do cotidiano, tendo em vista a facilidade do usuário em operar o sistema, que de forma mecânica deixa de perceber a quantidade de dados e informações armazenadas.

"No artigo publicado pelo "CCC (computing community consortium)" (Big-Data Computing: Criando revolucionário avanços no comércio, ciência e sociedade), " a rede Wal-Mart recentemente contratou Hewlett Packard para construir um armazém capaz de armazenar 4 petabytes (4 trilhão de bytes) de dados, registrando cada compra registrada por seus terminais de ponto-de-venda (em torno de 267 milhões de transações por dia) em suas 6.000 lojas em todo o mundo. "Através da aplicação de aprendizagem de máquina a esses dados, eles podem detectar padrões que indicam a eficácia de suas estratégias de preços, publicidades, campanhas e gerenciar melhor suas cadeias de inventário e de abastecimento".(RANDAL E. BRYANT, RANDY H. KATZ, 2008)

Hoje, com o avanço e dependência da tecnologia, o homem manipula o que há de mais importante que permite que haja toda essa evolução, a informação.

Mas as histórias de como os dados se tornaram grandes começa muitos anos antes da história recente em torno do Big Data. A primeira tentativa de contabilizar essa grande massa de dados ocorreu em 1941, popularmente conhecida como a "Explosão da Informação" (termo usado pela primeira vez em 1941, de acordo com o Dicionário Oxford de Inglês). (PRESS, [s.d.])

De acordo com o artigo de Marcos Vieira, "O conceito de Big Data começou a ser discutido a cerca de 70 anos" devido ás enormes elevações de volume de dados tornando-se desafiante ter acesso e manipulação com o mesmo.(VIEIRA, [s.d.])

Ainda no artido de Marcos Vieira, embora já existisse o problema, " o termo Big Data, no entanto, foi criado há 17 anos referindo-se à impossibilidade de armazenamento de grandes volumes de informações em data warehouses (armazém) únicos, já que o armazenamento digital ainda não era tão eficiente como hoje em dia." (VIEIRA, [s.d.])

O "Big Data" forma um conjunto de dados definidos Velocidade, Volume e Variedade.

Velocidade: podemos defini-la como que seu principal objetivo seja conseguir com que toda a demanda gerada seja tratada em um espaço de tempo ideal pra cada uma delas.

Volume: trata-se do imenso volume de dados gerados todos os dias, seu desafio é o processo de armazenamento, transmissão ao mesmo tempo.

Variedade: são as variadas formas de informação processadas, e-mail, pagamentos, documentos, páginas web, vídeos e etc. O desafio aqui é colher todos esses dados, e para que haja uma bom desempenho de intepretação e analítica sobre eles.(VIEIRA, [s.d.])

O artigo produzido pela revista "Ciência Hoje", em um de seus trechos lembra também que junto com Big Data traz consigo também problemas éticos "Questões como a dificuldade de garantir a segurança e privacidade dos dados chegam a inviabilizar projetos, como uma base central de prontuários médicos, devido ao risco de essa informação ser utilizada de forma indevida". ("Desafios do Big Data", 2013)

Hoje em dia o grande problema não é a obtenção de dados e sim o seu tratamento, conseguir obter essa informação de maneira rápida e automatizada, já se parou pra pensar em como manipular e interagir com tantas informações geradas todos os dias?

Desenvolvido em 2011, tendo lançamento no em agosto de 2011, deu-se a origem ao D3js (Documents Data-Driven), uma biblioteca em JavaScript, uma linguagem de script para navegadores web, sendo a linguagem padrão para criação de páginas web com ótima interação com usuário, com o principal objetivo de se criar técnicas de visualização de dados interativos e dinâmicos, sendo aplicado em navegador web.

No site "Data Drive Journalism", relata que o D3js vem "explodindo em popularidade, em parte porque além de ele ser extremamente flexível pelo fato de ele funcionar em navegadores modernos, incluindo Android e IOS dispositivos mobile, mas também porque é poderoso".

Sua principal função é interligar os valores de uma massa de dados para documentar elementos, podendo assim manipular o documento a partir dessa obtenção de dados.

A flexibilidade é mesmo o maior trunfo dessa nova ferramenta, é ótimo até mesmo para jornalistas, pois não os limitam á uma forma de visual específica, sendo o próprio livre para fazer explorar o uso de gráficos através das informações, e a partir daí inventar novas formas visualização específica.

Ainda no site, de acordo com o "Data Drive Journalism", "O The New York Times tem vindo gradualmente a eliminação gradual do Flash em favor de D3 e outras peças interativas baseadas em JavaScript, mesmo a contratação de Mike Bostock, o principal autor do D3, que agora está na equipe de gráficos do Times. O resultado foi uma série de gráficos interativos inovadores, incluindo os últimos 512 Caminhos para a Casa Branca, por Mike Bostock e Shan Carter". (MURRAY, [s.d.])

2. OBJETIVOS

Nosso objetivo nesse trabalho, é apresentar essa ferramenta, apresentando as suas utilidades, pois, pode-se tirar grandes vantagens através de sua flexibilidade na manipulação de dados, podendo facilitar tanto para quem usa, para quem for analisar os gráficos gerados por ela, e a partir de então, podendo chegar a resultados satisfatórios rapidamente seja para uma empresa que queira evoluir-se, para o esporte gerando análises importantes, ou até mesmo para a ciência desenvolvendo e chegando a grandes descobertas.

Conforme o trabalho foi pesquisado, percebemos que no Brasil ainda não é muito popular, pode se aproveitar e expandir e apresentar para toda essa nova tecnologia.

O D3js parece ser o caminho para essa maneira rápida e eficaz de se manipular e interagir com tantas informações geradas num mundo que cada vez mais dependente da tecnologia, irá consequentemente irá gerar cada vez mais dados.

3. JAVASCRIPT

Iremos apresentar a linguagem Java Script, relatando-se suas origens, finalidades e distinção. Será feito um breve histórico de sua evolução, esclarecendo alguns conceitos com as boas práticas de programação para web.

3.1. Conceitos básicos

O JavaScript surgiu com o nome de LiveScript, uma linguagem de criação de scripts elaborada especificamente para o Netscape Navigator. A Netscape em conjunto com a Sun Microsystems, mudou o nome para JavaScript, com a finalidade de fornecer um meio de adicionar interatividade a uma página web.

A primeira versão, denominada JavaScript 1.0, foi lançada em 1995 e implementada em março de 1996 no navegador Netscape Navigator 2.0, quando o mercado era dominado pela Netscape.

Logo a seguir, veio à época da chamada guerra dos browsers, cujos efeitos nocivos se fazem sentir até os dias atuais. Para não fugir á regra, a Microsoft, em resposta à Netscape, criou a linguagem JScript 1.0 foi lançada com o navegador Internet Explorer 3.0.

Não há como fazer funcionar um formulário HTML com o uso de elementos HTML. A HTML limita-se a criar os rótulos e campos de um formulário para serem preenchidos pelo usuário e nada mais. Com HTML, não conseguimos processar os dados nem mesmo enviá-los ao servidor ou a outra máquina qualquer. Para cumprir essas tarefas, é necessário utilizar um programa que consiga manipular e processar os dados. Entre várias linguagens de programação destinadas a adicionar e processar dados em páginas web destacam-se PHP, ASP, Java, Ruby, Phyton, Cold Fusion, entre outras.

As linguagens de programação como as citas anteriormente foram desenvolvidas para rodar no lado do servidor, isto é, dependem de uma máquina remota onde estão hospedadas as funcionalidades capazes de interpretar e fazer funcionar os programas.

JavaScript é uma linguagem desenvolvida para rodar no lado do cliente, isto é, a interpretação e o funcionamento da linguagem dependem de funcionalidades

hospedadas no navegador do usuário. Isso é possível que exista um interpretador JavaScript hospedado no navegador.

Tanto a Netscape como a Microsoft desenvolveram interpretadores JavaScript para serem hospedados no servidor, tornando possível rodar JavaScript no lado do servidor. Esses interpretadores foram disponibilizados para uso público e podem ser usados pelos desenvolvedores para serem embutidos em aplicações gerais.

Em tese, precisamos apenas de um navegador para fazer funcionar scripts desenvolvidos com a linguagem JavaScript. A linguagem JavaScript é orientada a objetos. Para os leitores novatos em programação, uma linguagem orientada a objetos utiliza objetos para agrupar propriedades e métodos inter-relacionados.

Segundo Sanders Kaufman(KAUFMAN, 1997), o Java Script e as linguagens orientadas a objetos em geral têm sua força nas áreas de organização e manutenção do código. As desvantagens das linguagens orientadas a objetos é o fato de terem uma curva de aprendizado mais trabalhoso do que as linguagens procedurais. O projeto e a manutenção são os detalhes que recomendam o JavaScript para os programadores Web.

4. DEFINIÇÃO DE UM FRAMEWORK

Segundo o artigo de Nicolas Muller(MULLER, 2008), framework é uma abstração que une códigos comuns entre vários projetos de software provendo uma funcionalidade genérica. Um framework pode atingir uma funcionalidade específica, por configuração, durante a programação de uma aplicação.

4.1. Utilização

Ainda no artigo de Nicolas Muller(MULLER, 2008), na área da tecnologia, busca-se muito o ganho de tempo e praticidade para alcançarem seus objetivos, seja para desenvolver um software, elaborar um estudo e etc.

E a principal razão para existência do Framework é essa, a reutilização de código, com isso, se ganha tempo, e pode aperfeiçoar o trabalho já feito por alguém, e assim, outras pessoas no futuro utilizarão também e evoluindo mais e mais.

4.2. Classificações

Podemos classificar em dois tipos Framework orientado a objeto e de componentes.

4.2.1. Framework orientado a objeto

Que segundo Mohamed Fayad e Douglas C. Schmidt(FAYAD; SCHMIDT, 1997) são uma tecnologia promissora, para usar projetos e execuções de softwares testados a fim de reduzir o custo e melhorar a qualidade do software.

Suas vantagens são a modularidade, reusabilidade, extensão e inversão de fluxo de controle.

Modularidade: frameworks realçam a modularidade encapsulando detalhes da execução atrás de relações estáveis.

Reusabilidade: é definida através de componentes genéricos que podem ser reaplicados para criar aplicações novas.

Extensão: realça a extensibilidade fornecendo métodos que devem ser implementados para cada aplicação específica.

Inversão do fluxo de controle: com a inversão do fluxo de controle, quem decide em chamar o método é framework e não a aplicação.

4.2.2. Framework de componentes

Segundo o artigo publicado por Maxwell(MAXWELL, [s.d.]), um Framework de componentes é uma entidade de software que provê o suporte a componentes que seguem um determinado modelo e possibilita que instâncias destes componentes sejam plugadas no Framework de componentes. Ele estabelece as condições necessárias para um componente ser executado e regula a interação entre as instâncias destes componentes. Um framework componente pode ser único na aplicação, criando uma ilha de componentes ao seu redor, ou pode cooperar com outros componentes ou frameworks de componentes.

A principal diferença entre frameworks de aplicação orientados a objetos e framework de componentes é que, enquanto frameworks de aplicações definem uma solução inacabada que gera uma família de aplicações, um framework de componentes estabelece um contato para plugar componentes.

5. FERRAMENTES SEMELHANTES AO D3JS

Os dados por si só, tornam-se invisíveis e irrelevantes, mas quando utilizamos ferramentas para analisarmos e visualizarmos perceberam o quão poderosos são e chegamos a conclusões interessantes dependendo daquilo que se analisa.

Além do D3Js, existem outras ferramentas mais simples, e que servem para esse fim, são elas:

5.1. Processing

Segundo o site dos desenvolvedores ("Processing", [s.d.]), o define sendo uma linguagem de programação, que foi desenvolvido em 2001, é um software para contextos visuais no mundo virtual da tecnologia sendo possível implantar desenhos em diferentes plataformas e programas de maneira diferentes podendo ser em 2D ou 3D.

5.2. Matplotlib

Segundo o site do desenvolvedor("Matplotlib", [s.d.]), o define como sendo uma biblioteca que gera gráficos, histogramas, gráficos de barras bastando apenas algumas linhas de códigos. É o único que trabalha o pacote python (linguagem de programação) para geração de gráficos em 2D.

5.3. Tableau Desktop

Segundo o site do desenvolvedor("Tableau", [s.d.]), define como: uma tecnologia revolucionária que converte imagens de dados para consultas de dados otimizados, não usam assistentes e nem scripts. Realiza consultas sem linhas de códigos, sendo um analítico de autoatendimento.

6. DOCUMENT OBJECT MODEL (DOM)

Segundo o consórcio internacional ("Document Object Model (DOM)", 2005) que trabalham para desenvolver padrões para a Web, o Document Object Model é uma interface de plataforma e linguagem neutra que permitirá que programas e scripts para acessar e atualizar dinamicamente o conteúdo, estrutura e estilo de documentos. O original pode continuar a ser processados e os resultados de processamento que podem ser incorporados para trás para dentro da página apresentada.

7. CSS

De acordo com o artigo escrito por Altieri Pereira(PEREIRA, [s.d.]), a linguagem de marcação surgiu para solucionar o problema de um cientista que queria uma forma de divulgar seus artigos na rede, para isso, ele criou algo simples, restrito a comunidade científica e usado apenas para estrutura o conteúdo e exibir um texto de forma coerente. Mas a linguagem usada pelos cientistas acabou que se tornou padrão para Internet, e com o tempo, passou a ser mais testada. Todos queriam imagens, cores e designer avançado. E o HTML antigo não suportava isso, então foram adicionadas novas tags. Isso solucionou o problema por um tempo, mas começou a surgir outro grande problema. Com os novos recursos, designers e desenvolvedores de websites, abusavam da criatividade e enchiam suas paginas de fontes e estilos visuais, mas para alterar uma linha até que era mais simples, porem quando se queria mudar a cor de um link, por exemplo, e esse link estava em 300 paginas diferente, era trabalho manual mesmo, um por um, tag por tag. Misturar estilo e estrutura não era mais interessante, e foi assim que em 1995, Håkon Wium Lie e Bert Bos apresentaram a proposta do CSS(Cascading Style Sheets) que logo foi apoiada pela W3C. A ideia geral era, utilizar HTML somente para estruturar o website e a tarefa de apresentação fica com o CSS disposto em um arquivo separando o css no próprio HTML demarcado pelas tags. Os conceitos de estilização com css em sua maioria ainda não são seguidos totalmente, devido a problemas de compatibilidade entre browsers e muitas vezes até falta de um conhecimento maior dos desenvolvedores, mas a W3C trabalha nos standards, que visam tornar o desenvolvimento padrão e tambem exigir dos navegadores uma interpretação adequada e compatível.

8. D3JS

A palavra D3 significa, Data-Driven Documents, juntando as três primeiras letras formam a sigla D3. Mas o que é D3? Segundo o site oficial da ferramenta(BOSTOCK, [s.d.]), o D3.js é uma biblioteca JavaScript para manipulação de documentos com base em dados. Ajuda a trazer dados para a vida usando HTML, SVG e CSS. A ênfase em padrões web dá-lhe todas as capacidades de navegadores modernos sem amarrar-se com uma estrutura proprietária, combinando componentes de visualização poderosas e uma abordagem orientada a dados para manipulação DOM.

Podemos associar dados a um Document Object Model (DOM), e, em seguida, aplicar transformações orientadas a dados para o documento. Por exemplo podemos usar para gerar uma tabela HTML a partir de uma matriz de números ou se preferirmos, podemos usar os mesmos dados para criar um gráfico de barras SVG interativa com transições suaves e interação.

Ele é uma estrutura monolítica que busca oferecer todos os recursos possíveis. Em vez disso, D3 resolve o alguns dos problemas: eficiente manipulação de documentos com base em dados. Isso evita representação proprietária e oferece uma flexibilidade extraordinária, expondo todas as capacidades dos padrões web, como HTML, SVG e CSS. Com o mínimo de sobrecarga, D3 é extremamente rápido, suportando grandes conjuntos de dados e comportamentos dinâmicos de interação e animação. Estilo funcional do D3 permite a reutilização de código através de um conjunto diversificado de componentes e plugins.

Não podemos dizer que ele é uma nova representação gráfica. Ao contrário de Processing, Raphaël, ou Protovis, o vocabulário das marcas vem diretamente de padrões web: HTML, SVG e CSS. Por exemplo, podemos criar elementos SVG usando D3 e estilos com folhas de estilo externas. Podemos usar efeitos de filtro compósitos, derrames tracejados e recorte. Se os fabricantes de navegadores introduzirem novas funcionalidades amanhã, seremos capazes de usá-los imediatamente, sem atualização de nenhuma ferramentas necessária. E, se no futuro decidirmos, para usar um conjunto de ferramentas que não D3, você podemos levar nossos conhecimentos aplicados.

O melhor de tudo, D3 é fácil de depurar usando inspecionador de elemento do navegador.

9. VANTAGENS E DESVANTAGENS DE UTLILIZAR O D3JS

9.1. Vantagem

Segundo a publicação de Salatiel Ribeiro e Yussif Tadeu de Barcelos(RIBEIRO; BARCELOS, [s.d.]), a biblioteca D3 possui uma grande vantagem em padrões web, conseguindo extrair todo o potencial dos navegadores, sem a necessidade de utilização de um software proprietário. Dessa maneira, D3 combina poderosos componentes de visualização e uma abordagem orientada a dados. Seu potencial é quase tão grande quanto a geometria propriamente dita, permitindo a criação de bolhas, diagramas Chord, Treemaps, links de nós e várias outras visualizações complexas. Outra vantagem do D3 é que a maioria das suas criações está aberta e pode ser reutilizada por outros desenvolvedores.

A biblioteca D3 dá suporte aos navegadores modernos (o que geralmente significa qualquer coisa exceto Internet Explores 8 e abaixo dele). Já foram feitos testes com Firefox, Chrome (Chromiun), Safari (Webkit), Opera e Internet Explorer 9. Para compatibilidade com o IE8, é recomendada a biblioteca Aight.

9.2. Desvantagem

Ver as devantagens

10. CONCEITO DE BIG DATA

Segundo o infográfico publicado pela IBM("Saiba o que é o Big Data e os desafios que as empresas enfrentam", [s.d.]), Big data é um termo utilizado para descrever grandes volumes de dados e que ganha cada vez mais relevância à medida que a sociedade se depara com um aumento sem precedentes no número de informações geradas a cada dia. As dificuldades em armazenar, analisar e utilizar grandes conjuntos de dados tem sido um considerável gargalo para as companhias. Os volumes de informação digital vêm aumentando consideravelmente, em 2011 (1,7 zettabytes), 2012 (2,7 zettabytes) e em 2015(8 zettabytes).

10.1. Aplicações

Segundo o artigo publicado por Karen Ferraz(FERRAZ, [s.d.]), Estudos realizados pelo Gartner mostram que as principais aplicações do Big Data, estão voltadas para área do marketing e vendas, performance operacional e financeira, e inovação. O objetivo do estudo foi mostrar para os CIOs (Diretor de Tecnologia da Informação, fica responsável por toda a informática de uma empresa), como empresas internacionais estão fazendo o uso do Big Data e fazendo consequentemente crescer os valores de seus respectivos negócios. Alguns exemplos foram citados, como o caso da empresa Danone dos Estados Unidos, realizou a pesquisa para conhecer sua demanda para vender o máximo de iogurte produzido assim evitando o desperdício.

11. TENDENCIAS PARA 2015 BIG DATA

De acordo no artigo publicado no portal terra com a opinião de Hu Yoshida(YOSHIDA, 2014), as principais tendências da TI para 2015 incluem Big Data e Internet das Coisas que são as tendências que ajudam a sustentar a Business Defined IT(Négócio Definido TI).

O Internet Data Center(IDC) previu que o big data irá crescer a uma taxa de 27% CAGR até a cifra de 32,4 bilhões de dólares até 2017, mais ou menos em vezes a taxa de crescimento geral do mercado de tecnologia da informação e a comunicação. Outros analistas, como Wikibon, estão ainda mais otimistas, prevendo receitas de 53,4 bilhões de dólares até 2017, á medida que novos negócios comecem a amealhar os benefícios reais da analítica do Big Data.

Em 2015, continuaremos a ver um crescimento sólido de ferramentas de analítica do Big Data tais como a SAP HANA e Hadoop, que são capazes de compilar resultados em questão de minutos ou horas em vez de dias. Plataformas preconfiguradas convergentes e hiperconvergentes irão acelerar a implementação das aplicações de Big Data.

Enquanto o Big Data de hoje em dia tem a ver mais com dados de negócios unidos ás opiniões nas redes sociais, o Big Data de amanhã terá mais a ver com a Internet das Coisas (IoT), potencializando a comunicação entre máquinas, o que terá um impacto maior em nossas vidas.

A Internet das Coisas irá auxiliar na solução de problemas como pegada de carbon, transporte, energia, cidades inteligentes, segurança pública, ciências da vida, baseada na tecnologia da informação. O novo mundo da Internet das Coisas (IoT) irá criar uma explosão de novas informações que poderá ser usada para criar um mundo melhor.

Análises de lotes serão substituídas por análises de streaming de dados para proporcionar análise em tempo real de dados de sensores, e mais inteligência será incorporada em ingestores de borda. Aplicações construídas em torno da Internet das Coisas serão apresentadas por empresas especializadas em análise de sensores e verticais, como segurança e saúde. Em 2015, as empresas de TI entrarão em parcerias com empresas de infraestrutura social para concretizar o potencial de um mundo de Internet das Coisas(IoT).

A Hitachi Data Systems já começou a caminhar nessa direção, fazendo parcerias com outras divisões da Hitachi. Por exemplo, a HDS é parceira da Clarion, uma empresa membro do Grupo Hitachi em um Provedor de Soluções de Informações In-vehicle. Esta colaboração trará aos motoristas, companhias de seguros e manufatura insights úteis que levarão a um desempenho e segurança automotivas aprimoradas, aumentando o valor em todo o mercado crescente que atende a carros conectados.

12. ARQUIVOS EM NUVEM

Segundo o artigo publicado no portal Oficial da Net por Nícolas Müller(MÜLLER, 2008) a tendência do momento é o termo "computação nas nuvens" ou "cloud computing" (em inglês). Este termo surgiu pelo fato de a computação estar mudando de rumo, hoje você não vê mais como antigamente aquela vontade imensa de comprar.

Como sabemos, a grande tendência do momento é a "computação em nuvem", originada do termo em inglês, "cloud computing". Este termo surgiu em virtude da nova situação do homem moderno, antigamente era necessário um super e grande computador para desenvolver do trabalho mias fácil, ao mais complexo, hoje, o que as pessoas estão realmente em busca é de mobilidade, portabilidade e isso, com a chegada de vários aparelhos, como smartphones, tablets e netbooks, já é possível.

A computação na nuvem veio para ficar, oferece comodidade aso seus usuários, como também praticidade e independência de um aparelho visto como "grande".

Deste modo, os supercomputadores serão usados somente por aqueles que realmente os precisam, o que não é o caso da maioria das pessoas. O mundo está informatizado e conectado, a atenção está voltada ao que há de mais prático e veloz. Com a computação em nuvem, tudo isso é possível: versatilidade, segurança, rapidez, disponibilidade e muito mais.

Os usuários têm a possibilidade de acessar os seus arquivos pessoais de qualquer lugar e também com qualquer instrumento que tenha internet, não é mias necessário arquivar fotos, músicas, documentos e até ferramentas em objetos físicos, como CDs, pendrives, entre outros; agora tudo acontece em tempo real é só acessar e pronto, seus mais variados arquivos estão salvos "na nuvem".

13. CONCLUSÃO

14. REFERENCIAS

BOSTOCK, M. Data-Driven Documents. Disponível em: http://d3js.org/>.

Desafios do Big Data. p. 6, 2013.

Document Object Model (DOM). Disponível em: http://www.w3.org/DOM/>. Acesso em: 3 abr. 2015.

FAYAD, M.; SCHMIDT, D. C. Frameworks de aplicações orientado a objetos. v. 40, 1997.

FERRAZ, K. **Seis cases representativos de Big Data, segundo o Gartner**. Disponível em: http://itforum365.com.br/noticias/detalhe/3857/seis-cases-representativos-de-big-data-segundo-o-gartner. Acesso em: 3 abr. 2015.

KAUFMAN, S. Livro Aprenda em 21 dias programação. Rio de Janeiro: [s.n.].

Matplotlib. Disponível em: http://matplotlib.org/>. Acesso em: 4 abr. 2015.

MAXWELL. PUC -Rio Certificação Digital Nº 0410823/CA. [s.d.].

MULLER, N. Framework, o que é e para que serve? 2008.

MÜLLER, N. **O que é computação nas nuvens (cloud computing)?** Disponível em: http://www.oficinadanet.com.br/artigo/923/computacao_nas_nuvens>. Acesso em: 3 abr. 2015.

MURRAY, S. **Data-Driven Documents, Defined**. Disponível em: http://datadrivenjournalism.net/resources/data_driven_documents_defined>. Acesso em: 20 mar. 2015.

PEREIRA, A. A origem do CSS, um pouco da história. Leia mais em: A origem do CSS, um pouco da história. Disponível em: http://www.devmedia.com.br/a-origem-do-css-um-pouco-da-historia/15195>. Acesso em: 3 abr. 2015.

PRESS, G. A Very Short History Of Big Data. Disponível em: http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/.

Processing. Disponível em: https://www.processing.org/>. Acesso em: 4 abr. 2015.

RANDAL E. BRYANT, RANDY H. KATZ, E. D. L. Big-Data Computing: Criando revolucionário avanços no comércio, ciência e sociedade. **computing community consortium**, v. 8, 2008.

RIBEIRO, S.; BARCELOS, Y. T. DE. Visualização de Dados Geográficos com a biblioteca D3.js. [s.d.].

Saiba o que é o Big Data e os desafios que as empresas enfrentam. Disponível em: http://www.ibm.com/midmarket/br/pt/infografico_bigdata.html. Acesso em: 3 abr. 2015.

Tableau. Disponível em: http://www.tableau.com/>. Acesso em: 4 abr. 2015.

VIEIRA, M. **Entendendo Big DataNo Title**. Disponível em: http://www.ecommercebrasil.com.br/artigos/entendendo-big-data. Acesso em: 20 mar. 2015.

YOSHIDA, H. Tendências para 2015: Big Data, Internet das Coisas, Lagoas de Dados e a Nuvem Híbrida. 2014.