COMPUTER SCIENCE & IT

DIGITAL LOGIC

Lecture No. 07

BOOLEAN THEOREMS AND GATES

Anthematic gates

Universal gates

NAND GATE

Representation:

Bc

= A + B + C

	Α	В	$y = \overline{A \cdot B}$
0	0	0	1
1	0	1	1
2	1	0	1
3	1	1	0

$$y(A, B) = \sum (0, 1, 2)$$

$$= \pi (3)$$

$$= (\overline{A} + \overline{B})$$

$$= \overline{A \cdot R}$$

Commutative Law:

$$\frac{A}{B} = \frac{B}{A \cdot B} = \frac{A \cdot B}{A}$$

9t holds commutative law -> position of variables is irredevant.

Associative Law :

Pw

IMP Points:

- · 9f any one of the i/p line is at logic 'o' then irrespective of other i/p lines, 0/1 will be at logic 1' for sure
- . O/P will be bogic o' only in one care when all the i/P lines will be at logic 1.

NAND As an Universal Gate

NOT GATE :

$$\overline{x}\cdot y = x\cdot y$$

AND GATE :

A
B
$$A \cdot B = P$$
 $A \cdot B = A \cdot B$
 $A \cdot B = A \cdot B$
 $A \cdot B = A \cdot B$

OR GATE:

$$= \overline{A} + AB = (\overline{A} + A) (\overline{A} + B) - (\overline{A} + B)$$

2-Stage Implementation of SOP using NAND Gate

•
$$y = AB + BC + CA$$

• y = AB + BC + D

Question on minimum no. of NAND Gates

Question

y = AB + BC, to implement y, minimum no. of 2-input NAND gate required is _____.

$$\begin{array}{c}
Y = AB + BC \\
\overline{Y} = \overline{AB + BC} = \overline{AB \cdot BC} \\
Y = \overline{AB \cdot BC} = \overline{P \cdot Q} \\
\overline{AB \cdot BC} = \overline{P \cdot Q} \\
\overline{BB \cdot BC} = \overline{P \cdot$$

$$A \cdot B \rightarrow 2NAND$$

 $A \cdot B \rightarrow 1NAND$
 $A + B \rightarrow 3NAND$

•
$$y = \overline{A}B + A\overline{B}$$

 $\overline{y} = \overline{A}B + A\overline{B}$ = $\overline{A}B$ • $\overline{A}B$
 $y = \overline{A \cdot B} \cdot \overline{A}\overline{B}$ = $\overline{P \cdot Q}$
 $Q = \overline{A \cdot B} \rightarrow 2NAND$
 $Q = \overline{A \cdot B} \rightarrow 2NAND$

$$y = \overline{A}B + A\overline{B} = (\overline{A} + \overline{B})(A + B)$$

$$= A \cdot B (A + B) = R (A + B)$$

$$y = R \cdot A + R \cdot B$$

$$\overline{y} = R \cdot A + R \cdot B = R \cdot A \cdot R \cdot B = x \cdot 3$$

$$y = x \cdot 3$$

$$A \cdot B = R$$

$$A \cdot B = R$$

$$A \cdot B = R$$

Question

$$y = A\bar{B} + BC$$

Minimum no. of 2-input NAND gates required to implement y 4

Question

$$f(A, B, C) = \bar{A} + \bar{A}B + \bar{A}B\bar{C} = \bar{A}(1 + B + B\bar{c}) = \bar{A} \cdot 1 = \bar{A} \longrightarrow 1NAND$$

Minimum no. of 2-input NAND gates required to implement y

#Q.
$$y = \overline{AB} + \overline{B \cdot C} = \overline{A + B + B} + \overline{C} = \overline{A + B + C} = \overline{A \cdot B \cdot C}$$

Minimum no. of 2-i/p NAND gate required $\frac{3}{4}$.

 $\overline{Y} = \overline{AB + B \cdot C} = \overline{A \cdot B \cdot C} = \overline{A \cdot B \cdot C}$

$$\overline{A \cdot B} \rightarrow INAND \rightarrow P$$
 $\overline{B \cdot C} \rightarrow INAND \rightarrow Q$
 $P+Q \rightarrow 3NAND \rightarrow P$
 $A \cdot B \cdot C = R \cdot C$
 $A \cdot B \rightarrow 2NAND \rightarrow R$

$$A \cdot B \longrightarrow 2NAND \longrightarrow R$$
 $R \cdot C \longrightarrow 2NAND$
 $R \cdot C \longrightarrow 1NAND$

$$\frac{A}{B} = R$$

$$\frac{A \cdot B}{C} = R$$

$$\frac{R \cdot C}{C}$$

$$\# Q. \quad y = \overline{AB} + \overline{CD} = \overline{A+B+C+D} = \overline{A\cdot B\cdot C\cdot D}$$

Minimum no of 2-i/p NAND gate required -

$$\overline{AB} \longrightarrow INAND \Rightarrow P$$
 $\overline{CD} \longrightarrow INAND \Rightarrow Q$
 $SNAND$
 $\overline{AB \cdot B \cdot CD}$
 $A \cdot B \longrightarrow R \longrightarrow 2NAND$
 $S \cdot D \longrightarrow INAND$
 $S \cdot D \longrightarrow INAND$

$$\overline{y} = \overline{ABCD} = AB \cdot CD$$

$$\overline{y} = \overline{ABCD}$$

Question

$$y = \bar{A}BC$$

To implement y, minimum no. of 2-input NAND gates required is _5___

$$y = \overline{A} BC$$
 $B \cdot C \longrightarrow 2 NAND \longrightarrow P$
 $\overline{A \cdot P} \longrightarrow \overline{A} \rightarrow 1 NAND \longrightarrow \overline{A \cdot P} \rightarrow 2 NAND$

Question

 $f(A, B, C, D) = (\bar{A} + \bar{B})(C + D) = \bar{A} \cdot \bar{B} (C + D) = P(C + D) = P \cdot C + PD$

Minimum no. of 2-input NAND gates required to implement

$$f(A, B, C, D) _{-}^{4}$$

$$f = PC + PD$$

$$\overline{f} = \overline{PC + PD} = \overline{PC} \cdot \overline{PD} = Q \cdot R$$

$$f = \overline{Q \cdot R}$$

$$A \longrightarrow P \longrightarrow P \cdot D = R$$

$$\overline{Q \cdot R} = f$$

$$\overline{Q \cdot R} = f$$

9 mplement following function with minimum no of 2-i/9 NAND gates:

$$\#Q$$
. $y = \overline{A}B + B\overline{C}$

$$\#Q.y = \overline{AB} + \overline{CD}$$

$$\#Q. y = AB+BC+CA$$

0.
$$y = \sum (1,2,4,7)$$

2 Minute Summary

Pw

-> universal gates

Thank you

GW Seldiers!

