| 3 | (a) | Define velocity. |    |
|---|-----|------------------|----|
|   |     |                  |    |
|   |     |                  | Γ1 |

**(b)** A remote-controlled toy aircraft is flying horizontally in a wind. Fig. 3.1 shows the velocity vectors, to scale, of the wind and of the aircraft in still air.



Fig. 3.1

The velocity of the aircraft in still air is  $42\,\mathrm{m\,s^{-1}}$  to the north. The velocity of the wind is  $23\,\mathrm{m\,s^{-1}}$  in a direction of  $54^\circ$  east of south.

Determine the magnitude of the resultant velocity of the aircraft.

magnitude of velocity = ..... 
$$m s^{-1}$$
 [2]

(c) The engine of the aircraft in (b) stops. The aircraft then glides towards the ground with a constant velocity at an angle  $\theta$  to the horizontal, as illustrated in Fig. 3.2.



Fig. 3.2 (not to scale)

The aircraft has a weight of 46 N and travels a distance of 280 m from point X to point Y. The change in gravitational potential energy of the aircraft for its movement from X to Y is 6100 J.

Assume that there is now no wind.

(i) Calculate angle  $\theta$ .

| $\rho$ –     | 0 | [3] |
|--------------|---|-----|
| $\upsilon$ – |   | ı   |

(ii) Calculate the magnitude of the force acting on the aircraft due to air resistance.

(d) The aircraft in (c) travels from X to Y in a time of 14s. Fig. 3.3 shows that, as the aircraft travels from X to Y, it moves directly towards an observer who is standing on the ground.



Fig. 3.3 (not to scale)

The aircraft emits sound as it travels from X to Y. The observer hears sound of frequency  $450\,Hz$ . The speed of the sound in the air is  $340\,m\,s^{-1}$ .

Calculate the frequency of the sound that is emitted by the aircraft.

frequency = ..... Hz [3]

[Total: 11]