

Principles of Biosignals and Biomedical Imaging

3rd year, P₃ (ECTS: 3.0), LEBiom

2022/2023

João Sanches imrs@tecnico.ulisboa.pt

Department of Bioengineering
Instituto Superior Técnico
University of Lisbon

LTI systems and filtering

Discrete systems

Digital filters are algorithms implemented in digital computers with elementary arithmetic operations

Linear Time Invariant (LTI) Filters

Linearity:
$$y(n) = T[\alpha x_1(n) + \beta x_2(n)] = \alpha y_1(n) + \beta y_2(n)$$

Time Invariance: $z(n) = T[x(n - n_0)] = y(n - n_0)$

The output of any LTI system can be obtained using the following recursive expression:

$$y(n) = \sum_{r=0}^{q} b_r x(n-r) + \sum_{k=1}^{p} a_k y(n-k)$$
Non-recursive Recursive

The coefficients a_k and b_r completely define the characteristics of the filter.

Linear Time Invariant (LTI) Filters

LTI representation $x(n) \longrightarrow T[.] \longrightarrow y(n)$

- Difference equation
- Impulse response
- Transfer function
- Frequency response

$$y(n) = \sum_{r=0}^{q} b_r x(n-r) + \sum_{k=1}^{p} a_k y(n-k)$$

$$h(n) = \alpha^n u(n)$$

$$H(z) = \frac{1}{1 - \alpha z^{-1}}$$

$$H(\omega) = \frac{1}{1 - \alpha e^{-j\omega}}$$

Linear Time Invariant (LTI) Filters

Impulse response

Causality

$$h(n) = 0$$
 for $n < 0$

The impulse response fully describes a LTI system

Basic blocks

$$x(n) \longrightarrow D \longrightarrow y(n)=x(n-1)$$

FIR (Finite Impulse Response)

$$y(n) = \sum_{r=0}^{q} b_r x(n-r) + \sum_{k=1}^{p} a_k y(n-k)$$

Compute impulse response

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$$

IIR (Infinite Impulse Response) Direct form I

$$y(n) = \sum_{r=0}^{q} b_r x(n-r) + \sum_{k=0}^{p} a_k y(n-r)$$

Compute impulse response

$$y(n) = x(n-r) + \alpha y(n-1)$$

FIR SLIT

w(n)

Interval

Basic input/output code

```
int OutPin = 9;
                        // PWM output pin
int analogPin = 3;
                        // analog pin 3
float x=0.0, x1=0.0, x2=0.0;
int y=0;
int Ts= 100:
                        //Sampling period ms
void setup() {
                        Serial.begin(9600);
                                                                          // setup serial
                         pinMode(OutPin, OUTPUT);
                                                             // sets the pin as output
                        pinMode(analogPin, INPUT);
                                                             // sets the pin as input
void loop() {
            x2=x1:
            x1=x;
            x = float(analogRead(analogPin)); // read values (0 to 1023) from the input pin
            // Digital signal processing (Filtering)
            y=filter(x,x1,x2);
            analogWrite(OutPin, y/4); // PWM, write values (0 to 255) to the output pin
            Serial.println(x);
                                     // debug value
            delay(Ts); %Sampling period
```

Low-pass filter (Moving average)

```
int filter(float x, float x1, float x2)
{
         int out;
         out=int((x+x1+x2)/3);
         return(out);
}
```


Filtering using vectors

Non-causal

FIR
$$y(n) = \sum_{r=0}^{q} w_r x(n-r)$$

Causal
$$y(n) = \begin{bmatrix} w_0 & w_1 & \dots & w_q \end{bmatrix} \begin{bmatrix} x(n) \\ x(n-1) \\ x(n-2) \\ \dots \\ x(n-q) \end{bmatrix} \qquad X_n = \begin{bmatrix} x(n) \\ x(n) \\ x(n-1) \\ \dots \\ x(n-q+1) \\ x(n-q-1) \\ \dots \\ x(n-q-1) \end{bmatrix}$$

$$W = \begin{bmatrix} w_0 & w_1 & \dots & w_q \end{bmatrix}^T$$

$$y(n) = W^T X_n$$

$$y(n) = \sum_{r=-q}^{q} w_r x(n-r)$$

$$y(n) = W^T \begin{bmatrix} x(n+q) \\ x(n+q-1) \\ ... \\ x(n-r) \\ ... \\ x(n-q+1) \\ x(n-q) \end{bmatrix}$$

$$W = \begin{bmatrix} w_{-q} & w_{-q+1} & \dots & w_r & \dots & w_{q-1} & w_q \end{bmatrix}^T$$

Moving average - FIR

Non-causal

$$y(n) = \frac{1}{2W + 1} \sum_{r=-W}^{W} x(n - r)$$

Average of the 2W+1 samples

 $y(n) = \sum_{r = -W} w_r x(n - r)$

Weighted Average of the 2W+1 samples

Gaussian filter

Non-causal

$$w(n) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{n^2}{2\sigma^2}}$$

Derivatives

Moving Average:

$$W^0 = [1/2 \quad 1/2]^T$$

First Difference/Derivative: $W^0 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$

Second difference/derivative: $W^2 = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T$ n = 0

Non-causal

Infinite Impulse Response (IIR)

$$y(n) = \sum_{r=0}^{q} b_r x(n-r) + \sum_{k=0}^{p} ay(n-r)$$
Non-recursive Recursive

Example

First order IIR

$$y(n) = x(n) + ay(n-1)$$

OR

$$y(n) = \alpha x(n) + (1 - \alpha)y(n - 1)$$

Impulse response

$$h(n) = \delta(n) + ah(n-1)$$

$$h(0) = \delta(0) + ah(-1) = 1 + a0 = 1$$

$$h(1) = \delta(1) + ah(0) = 0 + a * 1 = a$$

$$h(2) = \delta(2) + ah(1) = 0 + a * a = a^{2}$$

$$h(2) = \delta(2) + ah(1) = 0 + a * a = a^{2}$$

 $h(3) = \delta(3) + ah(2) = 0 + a * a^{2} = a^{3}$

$$h(n) = \delta(n) + ah(n-1) = 0 + a * a^{n-1} = a^n$$

$$h(n) = a^n u(n)$$

Infinite Impulse Response (IIR)

%%Recursive Filtering (IIR)

%Initializations

```
N=100:
                            %dimension of the signals
n=(0:N-1)';
                            %Vector of discrete times
x=zeros(N,1):
                            %Clean
                            %Noisv
y=zeros(N,1);
z=zeros(N,1);
                            %Denoised
x=sin(2*pi*n/N);
                            %Original
%Noisy signal generation
sig=0.5;
z=x+sig*randn(size(x));
%Filter
a=0.9:
for I=2:N
  y(I)=(1-a)*z(I)+a*y(I-1);
end
figure(1);
subplot(3,1,1); stem(n,x); title('x', 'Fontsize',20);
subplot(3,1,2); stem(n,z); title('z', 'Fontsize',20);
subplot(3,1,3); stem(n,y); title('y', 'Fontsize',20);
```


Exemplo prático

Example – Noise removal

N	100			
n	x(n)	eta(n)	y(n)=x(n)+eta(n)	z(n)
0	0	0,3973648	0,397364804	0,3973648
1	0,06279052	-0,4944778	-0,431687292	0,17211419
2	0,12533323	0,42533183	0,550665067	0,20106054
3	0,18738131	-0,2259884	-0,038607092	0,22798082
4	0,24868989	0,2788773	0,527567191	0,4193918
5	0,30901699	0,22294923	0,531966228	0,36874272
6	0,36812455	0,15724305	0,525367599	0,50704609
7	0,42577929	-0,1283596	0,297419676	0,44929552
8	0,48175367	0,17115606	0,652909734	0,54994379
9	0,53582679	-0,2970124	0,238814376	0,52501884
10	0,58778525	0,44742234	1,035207588	0,63996065
11	0,63742399	-0,2366812	0,400742813	0,59537483
12	0,68454711	0,18758161	0,872128714	0,63825264
13	0,72896863	-0,298988	0,429980643	0,50178836
14	0,77051324	-0,3173098	0,453203433	0,54144781
15	0,80901699	-0,4561308	0,352886211	0,56167981
16	0,84432793	-0,2452879	0,599040063	0,74489325

