GaAlAs-IR-Lumineszenzdioden (880 nm) GaAlAs Infrared Emitters (880 nm)

SFH 4580 SFH 4585

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

- Hergestellt im Schmelzepitaxieverfahren
- Für Oberflächenmontage geeignet
- Gegurtet lieferbar
- Gehäusegleich mit Fotodiode SFH 2500/ SFH 2505
- Hohe Zuverlässigkeit
- Gute spektrale Anpassung an Si-Fotoempfänger

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- Gerätefernsteuerungen für Gleich- und Wechsellichtbetrieb

Features

- Fabricated in a liquid phase epitaxy process
- Suitable for surface mounting (SMT)
- Available on tape and reel
- Same package as photodiode SFH 2500/ SFH 2505
- High reliability
- Spectral match with silicon photodetectors

Applications

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- Remote control for steady and varying intensity

Typ Type	Bestellnummer Ordering Code	Gehäuse Package
SFH 4580	on request	5-mm-LED-Gehäuse (T 1 ³ / ₄), klares violettes Epoxy-
SFH 4585	on request	Gießharz, Anschlüsse (SFH 4580 gebogen, SFH 4585 gerade) im 2.54-mm-Raster (1/10"), Kathodenkennzeichnung: siehe Maßzeichnung. 5 mm LED package (T 1 3/4), violet-colored epoxy resin, solder tabs (SFH 4580 bent, SFH 4585 straight) lead spacing 2.54 mm (1/10"), cathode marking: see package outline.

SFH 4580 SFH 4585

SIEMENS

Grenzwerte ($T_{\rm A}$ = 25 °C) **Maximum Ratings**

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 55 + 100	°C
Sperrschichttemperatur Junction temperature	T_{j}	100	°C
Sperrspannung Reverse voltage	V_{R}	5	V
Durchlaßstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	2.5	A
Verlustleistung Power dissipation	P_{tot}	200	mW
Wärmewiderstand, freie Beinchenlänge max. 10 mm Thermal resistance, lead length between package bottom and PC-board max. 10 mm	R _{thJA}	375	K/W

Kennwerte ($T_A = 25$ °C) **Characteristics**

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA	λ_{peak}	880	nm
Spektrale Bandbreite bei 50 % von I_{rel} Spectral bandwidth at 50 % of I_{rel} $I_F = 100 \text{ m A}$	Δλ	80	nm
Abstrahlwinkel Half angle	φ	± 15	Grad deg.
Aktive Chipfläche Active chip area	A	0.16	mm ²
Abmessungen der aktive Chipfläche Dimension of the active chip area	$L \times B$ $L \times W$	0.4 × 0.4	mm
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top	Н	4.2 4.8	mm
Schaltzeiten, I_e von 10 % auf 90 % und von 90 % auf 10 %, bei I_F = 100 mA, R_L = 50 Ω Switching times, I_e from 10 % to 90 % and from 90 % to10 %, I_F = 100 mA, R_L = 50 Ω	t_{r},t_{f}	0.6/0.5	μs
Kapazität Capacitance $V_{\rm R}$ = 0 V, f = 1 MHz	Co	25	pF
Durchlaßspannung Forward voltage $I_F = 100$ mA, $t_p = 20$ ms $I_F = 1$ A, $t_p = 100$ μs	$V_{ extsf{F}}$	1.50 (≤ 1.8) 3.00 (≤ 3.8)	V
Sperrstrom Reverse current $V_{\rm R}$ = 5 V	I_{R}	0.01 (≤ 1)	μΑ
Gesamtstrahlungsfluß Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Φ_{e}	25	mW
Temperaturkoeffizient von I_e bzw. Φ_e , I_F = 100 mA Temperature coefficient of I_e or Φ_e , I_F = 100 mA	TC ₁	- 0.5	%/K
Temperaturkoeffizient von $V_{\rm F}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F}$, $I_{\rm F}$ = 100 mA	TC_{V}	-2	mV/K

Kennwerte ($T_A = 25 \, ^{\circ}\text{C}$) Characteristics

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	0.25	nm/K
Strahlstärke Radiant intensity $I_{\rm F} = 100 {\rm mA}, t_{\rm p} = 20 {\rm ms}$	$ m I_{e \; min}$	≥ 25	mW/sr
Strahlstärke Radiant intensity $I_{\rm F} = 1 \text{ A}, t_{\rm p} = 100 \ \mu \text{s}$	I _{e typ}	225	mW/sr

Radiation characteristics $I_{\text{rel}} = f(\phi)$

Relative spectral emission

 $I_{rel} = f(\lambda)$

Forward current

 $I_F = f(V_F)$, single pulse, $t_p = 20 \mu s$

Radiant intensity $\frac{\rm I_e}{\rm I_e\,100~mA}$ = $f~(I_{\rm F})$ Single pulse, $t_{\rm p}$ = 20 $\mu{\rm s}$

10²

I_e
(100mA)

10¹

10⁰

10⁻¹

Permissible pulse handling capability

10³

mA 10⁴

 $I_F = f(\tau), T_A = 25 \, ^{\circ}\text{C},$ duty cycle D = parameter

10

10⁰

Max. permissible forward current

 $I_{\mathsf{F}} = f(T_{\mathsf{A}})$

Forward current versus lead length between the package bottom and the PC-board $I_{\rm F}=f(I),\,T_{\rm A}=25~{\rm ^{\circ}C}$

