第二章 基础知识

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

向量范数的定义

- 定义 2.1 令记号 $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}^+$ 是一种非负函数, 如果满足
 - \blacksquare 正定性 对于 $\forall v \in \mathbb{R}^n$, 有 $\|v\| \geqslant 0$, 且 $\|v\| = 0$ 当且仅当 $v = 0_{n \times 1}$

 - \square 三角不等式 对于 $\forall v, w \in \mathbb{R}^n$, 均成立 $||v+w|| \leq ||v|| + ||w||$

则称 $\|\cdot\|$ 是定义在向量空间 \mathbb{R}^n 上的向量范数

■ 最常用的向量范数

$$||v||_p = (|v_1|^p + |v_2|^p + \dots + |v_n|^p)^{\frac{1}{p}} \ (p \ge 1)$$
$$||v||_{\infty} = \max_{1 \le j \le n} |v_j|$$

向量范数的定义

■ 不同范数所度量的距离分别具有怎样的特征呢?

矩阵范数

- ℓ_1 范数 $||A||_1 = \sum_{i,j} |A_{ij}|$
- Frobenius 范数 $\|A\|_F = \sqrt{\sum_{i,j} A_{ij}^2} = \sqrt{\operatorname{Tr}(AA^\top)}$
- 算子范数是一类特殊的矩阵范数, 由向量范数诱导得到

$$||A||_{(m,n)} = \max_{x \in \mathbb{R}^n, ||x||_{(n)} = 1} ||Ax||_{(m)}$$

- p = 1 时, $||A||_{p=1} = \max_{\|x\|_1=1} ||Ax||_1 = \max_{1 \le i \le n} \sum_{i=1}^m |a_{ij}|$
- p=2 时, $\|A\|_{p=2}=\max_{\|x\|_2=1}\|Ax\|_2=\sqrt{\lambda_{\max}(A^{\top}A)}$, 又称为 A 的谱范数
- $p = \infty$ 时, $||A||_{p=\infty} = \max_{\|x\|_{\infty}=1} ||Ax||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$

矩阵范数

■核范数

$$||A||_* = \sum_{i=1}^r \sigma_i$$

■矩阵内积

$$\langle A, B \rangle = \operatorname{Tr}(AB^{\top}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$$

■ 命题 2.2 设 $A, B \in \mathbb{R}^{m \times n}$, 则

$$|\langle A, B \rangle| \leqslant ||A||_F ||B||_F$$

等号成立当且仅当 A 和 B 线性相关,即柯西不等式

■ 性质 同一矩阵空间内, 矩阵范数彼此之间是相互等价的

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

梯度

■ 定义 2.2 给定函数 $f: \mathbb{R}^n \to \mathbb{R}$, 且 f 在点 x 的一个邻域内有意义,若存在 向量 $g \in \mathbb{R}^n$ 满足

$$\lim_{p \to 0} \frac{f(x+p) - f(x) - \langle g, p \rangle}{\|p\|} = 0$$

其中 $\|\cdot\|$ 是任意的向量范数,称 f 在点 x 处<mark>可微(或 Fréchet 可微)</mark>,g 为 f 在点 x 处的<mark>梯度</mark>,记作

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \cdots, \frac{\partial f(x)}{\partial x_n}\right]^{\top}$$

■ 如果对区域 D 上的每一个点 x 都有 $\nabla f(x)$ 存在,则称 f 在 D 上可微

海瑟矩阵

■ 定义 2.3 如果函数 $f(x): \mathbb{R}^n \to \mathbb{R}$ 在点 x 处的二阶偏导数 $\frac{\partial^2 f(x)}{\partial x_i \partial x_j}$ 都存在,则 f 在点 x 处的海瑟矩阵为

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{3}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{3}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{3}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}} \end{bmatrix}$$

- 当 $\nabla^2 f(x)$ 在区域 D 上的每个点 x 处都存在时,称 f 在 D 上二阶可微
- 若 $\nabla^2 f(x)$ 在 D 上还连续,则称 f 在 D 上二阶连续可微

梯度利普希茨连续

■ 定义 2.4 给定可微函数 f, 若存在 L>0, 对任意的 $x,y\in \text{dom } f$ 有

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

■ 引理 2.1 设可微函数 f(x) 的定义域为 \mathbb{R}^n 且为梯度 L-利普希茨连续的,则函数 f(x) 有二次上界

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||^2, \quad \forall \ x, y \in \text{dom } f$$

梯度利普希茨连续

■ <mark>推论 2.1</mark> 设可微函数 f(x) 的定义域为 \mathbb{R}^n 且存在一个全局极小点 x^* , 若 f(x) 为梯度 L -利普希茨连续的, 则对任意的 x 有

$$\frac{1}{2L} \|\nabla f(x)\|^2 \le f(x) - f(x^*)$$

证明 由于 x^* 是全局极小点,有

$$f(x^*) \le f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||^2$$

上式对任意的 y 均成立,因此可对不等号右边取下确界

$$f(x^*) \le \inf_{y \in \mathbb{R}^n} \{ f(x) + \nabla f(x)^\top (y - x) + \frac{L}{2} ||y - x||^2 \}$$
$$= f(x) - \frac{1}{2L} ||\nabla f(x)||^2$$

矩阵变量函数的导数

■ 对于函数 f(X), 若存在矩阵 $G \in \mathbb{R}^{m \times n}$ 满足

$$\lim_{V \to 0} \frac{f(X+V) - f(X) - \langle G, V \rangle}{\|V\|} = 0$$

其中 $\|\cdot\|$ 是任意矩阵范数,称矩阵变量函数 f 在 X 处 Fréchet 可微,G 为 f 在 Fréchet 可微意义下的梯度,记为

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f}{\partial x_{m1}} & \frac{\partial f}{\partial x_{m2}} & \cdots & \frac{\partial f}{\partial x_{mn}} \end{bmatrix}$$

矩阵变量函数的导数

■ 定义 2.5 如果对任意方向 $V \in \mathbb{R}^{m \times n}$, 存在矩阵 $G \in \mathbb{R}^{m \times n}$ 满足

$$\lim_{V \to 0} \frac{f(X+V) - f(X) - \langle G, V \rangle}{\|V\|} = 0$$

$$\lim_{t \to 0} \frac{f(X+tV) - f(X) - t\langle G, V \rangle}{t} = 0$$

则称 f 关于 X Gâteaux 可微, G 为 f 在 X 处 Gâteaux 可微意义下的梯度

■ 当 f 是 Fréchet 可微函数时, f 也是 Gâteaux 可微的, 且梯度相等

例 2.1

■ 线性函数 $f(X) = \text{Tr}(AX^{T}B)$

$$\lim_{t \to 0} \frac{f(X + tV) - f(X)}{t} = \lim_{t \to 0} \frac{\operatorname{Tr}(A(X + tV)^{\top}B) - \operatorname{Tr}(AX^{\top}B)}{t}$$
$$= \operatorname{Tr}(AV^{\top}B) = \langle BA, V \rangle$$

$$\Rightarrow \nabla f(X) = BA$$

■ 二次函数 $f(X,Y) = ||XY - A||_F^2$

$$f(X, Y + tV) - f(X, Y) = ||X(Y + tV) - A||_F^2 - ||XY - A||_F^2$$

= $2\langle tXV, XY - A \rangle + t^2 ||XV||_F^2$
= $2t\langle V, X^{\top}(XY - A) \rangle + \mathcal{O}(t^2)$

$$\Rightarrow \quad \frac{\partial f}{\partial Y} = 2X^{\top}(XY - A)$$

矩阵小册子

The Matrix Cookbook

[http://matrixcookbook.com]

Kaare Brandt Petersen Michael Syskind Pedersen

Version: November 15, 2012

2.5.2Second Order

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^2) = 2\mathbf{X}^T \tag{106}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^2) = 2\mathbf{X}^T$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^2 \mathbf{B}) = (\mathbf{X} \mathbf{B} + \mathbf{B} \mathbf{X})^T$$
(106)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^T \mathbf{B} \mathbf{X}) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (108)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B} \mathbf{X} \mathbf{X}^T) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (109)

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

广义实值函数

- 在最优化领域, 经常涉及量取 inf (sup) 操作, 可能为无穷
- 定义 2.6 令 $\mathbb{R} := \mathbb{R} \cup \{\pm \infty\}$ 为广义实数空间,则映射

$$f: \mathbb{R}^n \to \overline{\mathbb{R}}$$

称为广义实值函数

- ■规定
 - $\square -\infty < \alpha < \infty, \forall \alpha \in \mathbb{R}$
 - $\square (+\infty) + (+\infty) = +\infty, \quad (+\infty) + \alpha = +\infty, \forall \alpha \in \mathbb{R}$

适当函数

- 定义 2.7 给定广义实值函数 f 和非空集合 \mathcal{X} , 如果存在 $x \in \mathcal{X}$ 使得 $f(x) < +\infty$, 并且对任意的 $x \in \mathcal{X}$ 都有 $f(x) > -\infty$, 则称函数 f 是关于集合 \mathcal{X} 的适当函数
- 具体含义
 - □ 至少有一处取值不为正无穷
 - □ 处处取值不为负无穷
- 对于适当函数 f, 规定其定义域

$$dom f = \{x \mid f(x) < +\infty\}$$

■ 若无特殊说明,定理中所讨论的函数均为适当函数

闭函数

■ 定义 2.8 设 f 为广义实值函数, α -下水平集定义为

$$C_{\alpha} = \{x \mid f(x) \leq \alpha \}$$

■ 定义 2.9 设 ƒ 为广义实值函数, 上方图定义为

epi
$$f = \{ (x, t) \in \mathbb{R}^{n+1} \mid f(x) \le t \}$$

下半连续函数

- 定义 2.10 设 f 为广义实值函数, 若 epi f 为闭集,则称 f 为闭函数
- 定义 2.11 设 f 为广义实值函数,若对任意的 $x \in \mathbb{R}^n$,有

$$\liminf_{y \to x} f(y) \ge f(x)$$

则 f(x) 为下半连续函数

闭函数与下半连续函数

- 定理 2.2 设广义实值函数 $f: \mathbb{R}^n \to \mathbb{R}$,则以下命题等价
 - \Box f(x) 的任意 α -下水平集都是闭集
 - □ f(x) 是下半连续的
 - □ f(x) 是闭函数

■ 性质

- □ 若 f 与 g 均为适当的闭(下半连续)函数,并且 $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$,则 f+g 也是闭(下半连续)函数
- f a 若 f 为闭(下半连续)函数,则 f(Ax+b) 也为闭(下半连续)函数

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

凸集的几何定义

■ 定义 2.12 若过集合 C 中的任意两点的直线都在 C 内, 则称 C 为<mark>仿射集</mark>, 即

$$x_1, x_2 \in \mathcal{C} \quad \Rightarrow \quad \theta x_1 + (1 - \theta) x_2 \in \mathcal{C}, \forall \theta \in \mathbb{R}$$

■ 定义 2.13 若连接集合 C 中的任意两点的线段都在 C 内, 则称 C 为凸集, 即

$$x_1, x_2 \in \mathcal{C} \quad \Rightarrow \quad \theta x_1 + (1 - \theta) x_2 \in \mathcal{C}, \forall 0 \leqslant \theta \leqslant 1$$

凸集的性质

- 若 S 是凸集, 则 $kS = \{ks \mid k \in \mathbb{R}, s \in S\}$ 是凸集
- 若S和T均是凸集,则 $S+T=\{s+t\mid s\in S,t\in T\}$ 是凸集
- 若 S 和 T 均是凸集, 则 $S \cap T$ 是凸集

证明 设 $x, y \in S \cap T$ 且 $\theta \in [0, 1]$. 由于 S 和 T 均为凸集, 则

$$\theta x + (1 - \theta)y \in \mathcal{S} \cap \mathcal{T}$$

- 凸集的内部和闭包都是凸集
- 任意多凸集的交都是凸集

凸组合和凸包

■形如

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

$$\theta_1 + \dots + \theta_k = 1, \theta_i \geqslant 0, i = 1, \dots, k$$

的点称为 x_1,\cdots,x_k 的<mark>凸组合</mark>

■ 集合 S 的所有点的凸组合构成的点集为 S 的<mark>凸包</mark>, 记为 conv S

仿射组合和仿射包

■ 定义 2.14 形如

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

$$\theta_1 + \dots + \theta_k = 1, \theta_i \in \mathbb{R}, i = 1, \dots, k$$

的点称为 x_1, \dots, x_k 的<mark>仿射组合</mark>

■ 集合 S 的所有点的仿射组合构成的点集为 S 的<mark>仿射包</mark>, 记为 affine S

■ affine S 是包含 S 的最小仿射集

锥组合和凸锥

■形如

$$x= heta_1x_1+\cdots+ heta_kx_k, heta_i>0, i=1,\cdots,k$$

的点称为 x_1,\cdots,x_k 的锥组合

■ 若集合 S 中任意点的锥组合都在 S 中, 则称 S 为凸锥

■ 锥组合不要求系数的和为 1

超平面和半空间

- 任取非零向量 $a \in \mathbb{R}^n$, 称 $\{x \mid a^\top x = b\}$ 为超平面, $\{x \mid a^\top x \leqslant b\}$ 为半空间
- 满足线性等式和不等式组的点的集合 $\{x \mid Ax \leq b, Cx = d\}$ 称为多面体

- 超平面是仿射集和凸集, 半空间是凸集但不是仿射集
- 多面体是有限个半空间和超平面的交

球和椭球

■ 称空间中到点 x_c 的距离小于等于定值 r 的集合为(欧几里得) 球, 即

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \leqslant r\} = \{x_c + ru \mid ||u|| \leqslant 1\}$$

■ 设形如

$$\{x \mid (x - x_c)^{\top} P^{-1}(x - x_c) \leq 1\} = \{x_c + Au \mid ||u||_2 \leq 1\}$$

的集合为椭球, 其中 x_c 为椭球中心, P 为对称正定, 且 A 非奇异

● 令 ||·|| 是任意一个范数, 称

$$\{x \mid ||x - x_c|| \leqslant r\}$$

为中心为 x_c 半径为 r 的<mark>范数球</mark>

范数锥

■形如

$$\{(x,t) \mid ||x|| \le t\}$$

的集合为范数锥

■ 使用 ||·||₂ 度量距离的锥为二次锥,也称冰淇淋锥

■ 范数球和范数锥都是凸集

(半) 正定锥

- 记 S^n 为对称矩阵的集合, 即 $S^n = \{X \in \mathbb{R}^{n \times n} \mid X^\top = X\}$
- 记 S_+^n 为半正定矩阵的集合, 即 $S_+^n = \{X \in S^n \mid X \succeq 0\}$
- 记 S_{++}^n 为正定矩阵的集合, 即 $S_{++}^n = \{X \in S^n \mid X \succ 0\}$

对于矩阵 $\begin{pmatrix} x & y \\ y & z \end{pmatrix}$, 其特征值应全 部大于等于 0

$$\{(x,y,z)\mid x\geqslant 0, z\geqslant 0, xz\geqslant y^2\}$$

仿射变换的保凸性

 $lacksymbol{\bullet}$ 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是仿射变换, 即 $f(x) = Ax + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, 则

$$\mathcal{S} \subseteq \mathbb{R}^n$$
是凸集 \Rightarrow $f(\mathcal{S}) = \{f(x) \mid x \in \mathcal{S}\}$ 是凸集

$$\mathcal{C} \subseteq \mathbb{R}^m$$
是凸集 \Rightarrow $f^{-1}(\mathcal{C}) = \{x \mid f(x) \in \mathcal{C}\}$ 是凸集

■ 双曲锥 $\{x \mid x^\top P x \leqslant (c^\top x)^2, c^\top x \geqslant 0, P \in \mathcal{S}^n_+\}$ 是凸集

证明 双曲锥可以转化为二阶锥

$$\{x \mid ||Ax||_2 \leqslant c^{\top} x, c^{\top} x \geqslant 0, A^{\top} A = P\}$$

而二阶锥可由二次锥 $\{(x,t) \mid ||x||_2 \le t, t \ge 0\}$ 经过仿射变换得到

分离超平面定理

■ 定理 2.3 如果 C 和 D 是不相交的凸集,则存在非零向量 a 和常数 b,使得

$$a^{\top}x \leqslant b, \forall x \in \mathcal{C} \quad \coprod \quad a^{\top}x \geqslant b, \forall x \in \mathcal{D}$$

即超平面 $\{x \mid a^{\top}x = b\}$ 分离了 $\mathcal C$ 和 $\mathcal D$

■ 定理 2.4 如果存在非零向量 a 和常数 b, 使得

$$a^{\top}x < b, \forall x \in \mathcal{C} \quad \exists \quad a^{\top}x > b, \forall x \in \mathcal{D},$$

即超平面 $\{x \mid a^{\top}x = b\}$ 严格分离了 \mathcal{C} 和 \mathcal{D}

分离超平面的示意

■ 在 \mathbb{R}^2 中的 2 个凸集使用超平面即可轻松划分, 但遇到非凸集合就必须使用更加复杂的平面

支撑超平面

■ 定义 2.5 给定集合 \mathcal{C} 及其边界点 x_0 , 如果 $a \neq 0$ 满足 $a^{\top}x \leqslant a^{\top}x_0, \forall x \in \mathcal{C}$, 则称集合

$$\{x \mid a^{\top}x = a^{\top}x_0\}$$

为 C 在边界点 x_0 处的支撑超平面

■ 定理 2.5 若 C 是凸集, 则 C 的任意边界点处都存在支撑超平面

Q&A

Thank you!

感谢您的聆听和反馈