ΔΙΑΧΕΊΡΗΣΗ ΒΙΟΑΠΟΒΛΉΤΩΝ ΓΙΑ ΠΑΡΑΓΩΓΗ ΑΛΚΟΟΛΗΣ

Αργυρόπουλος Αριστοτέλης Γιαννάτος Διονύσιος Γιαννίτσης Βιδιάνος Πόταρη Θεοφανώ-Αντωνία

ΕΙΣΑΓΩΓΗ

- Η ανθρωπότητα εξαρτάται από ορυκτά καύσιμα με δυσμενείς συνέπειες προς το περιβάλλον
- Εξέταση βιοαιθανόλης ως καύσιμο λόγω αφθονίας πρώτων υλών
- 3 μέθοδοι παραγωγής: 1G, 2G, 3G
- Παραγωγή αιθανόλης από βιοαπόβλητα

ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

Πρώτο στάδιο παραγωγής βιοαιθανόλης από λιγνοκυτταρινικά απόβλητα

Πραγματοποιείται για να "σπάσει" την πολύπλοκη δομή της βιομάζας και να διευκολύνει περεταίρω διεργασίες

Απαιτήσεις:

- Σχηματισμός σακχάρων ή διευκόλυνσή σακχαροποίησης
- Μην αποδομεί σάκχαρα, μην σχηματίζει αναστολείς ζύμωσης
- Μεγιστοποίηση κέρδους, μείωση απαιτούμενης ενέργειας

ΤΕΧΝΙΚΕΣ ΠΡΟΕΠΕΞΕΡΓΑΣΙΑΣ

Μηχανικές

Χημικές

Φυσικοχημικές

Βιολογικές

Συνδιασμός μεθόδων

ΜΗΧΑΝΙΚΕΣ ΜΕΘΟΔΟΙ

Τυπικά πρώτο στάδιο προεπεξεργασίας, αυξάνει αποδοτικότητα περεταίρω διεργασιών

- 1) Μηχανική Μείωση Μεγέθους: Μέσω Φρεζαρίσματος. Εναλλακτικά, μέσω εξώθησης.
- 2) Πυρόλυση: Απανθράκωση βιομάζας και έκπλυση σακχάρων
- 3) Χρήση Υπερήχων: Δημιουργία σπηλαίωσης για ρήξη
- 4) Χρήση Μικροκυμάτων: Ανομοιογενής Θέρμανση και Ρήξη

Μειονεκτήματα: Υψηλή απαίτηση σε ενέργεια για μικρότερα μεγέθη σωματιδίων, δημιουργία συστάδων

ΧΗΜΙΚΗ ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

Επεξεργασία με οξύ (ισχυρό και αραιό) Αλκαλική Επεξεργασί α

Υγρή Οξείδωση

Ιοντικά Υγρά Οξειδωτική Απολίγνωση Επεξεργασί α Organosolv

ΕΠΕΞΕΡΓΑΣΙΑ ΜΕ ΟΞΥ (ΙΣΧΥΡΟ ΚΑΙ ΑΡΑΙΟ)

Πλεονεκτήματα

- Υψηλή διαλυτότητα της ημικυτταρίνης και της λιγνίνης σε οξύ, με υψηλή απόδοση γλυκόζης χωρίς την ανάγκη για επακόλουθη ενζυματική υδρόλυση
- Κατάλληλη για βιομάζα με χαμηλή περιεκτικότητα σε λιγνίνη

- Δαπανηρή ανάκτηση οξέων που χρησιμοποιούνται
- Υψηλό κόστος εξοπλισμού
- Παράγονται αναστολείς της ζύμωσης σε υψηλή συγκέντρωση, μειώνοντας την αποτελεσματικότητα αυτής της μεθόδου
- Μη φιλική προς το περιβάλλον

ΑΛΚΑΛΙΚΗ ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

η βιομάζα εμποτίζεται σε αλκαλικά διαλύματα και αναμιγνύεται σε κατάλληλη θερμοκρασία για ορισμένο χρονικό διάστημα

αλλάζει η δομή της λιγνίνης και πραγματοποιείται μερική αποκρυστάλλωση της κυτταρίνης και μερική διαλυτοποίηση της ημικυτταρίνης

η λιγνίνη διαχωρίζεται από τους αναστολείς μέσω εξουδετέρωσης

Πλεονεκτήματα

- λιγότερο έντονες συνθήκες
- αποτελεσματική στο καλαμπόκι, το χόρτο, το σιτάρι, το άχυρο ρυζιού, το σκληρό ξύλο και το μαλακό ξύλο
- αποτελεσματική αφαίρεση λιγνίνης
- υψηλή απόδοση ζάχαρης

- υψηλό λειτουργικό κόστος
- ακριβοί καταλύτες
- σχηματίζονται μικρότερες ποσότητες αναστολέων.

ΙΟΝΤΙΚΑ ΥΓΡΑ

Διαλύουν τη βιομάζα με διαφορετική σκληρότητα και χρησιμοποιούνται ως εκλεκτικοί διαλύτες λιγνίνης και κυτταρίνης

Διαλυτοποίηση βιομάζας σε διαλύτη στους 90 °C έως 130 °C σε πίεση περιβάλλοντος,

προσθήκη νερού για την καθίζηση της βιομάζας

πλύσιμο του ιζήματος

Πλεονεκτήματα

- Μη υψηλό κόστος ανάκτησής λόγω της χαμηλής τους τάσης ατμών.
- Η δομή της λιγνίνης και της ημικυτταρίνης είναι αναλλοίωτη μετά την επεξεργασία επιτρέποντας την επιλεκτική εκχύλιση αμετάβλητης λιγνίνης

- Ακριβοί διαλύτες
- το ένζυμο κυτταρινάση απενεργοποιείται μη αναστρέψιμα
 - Μειώνεται η απόδοση μετατροπής της βιομάζας και αυξάνεται το συνολικό κόστος

ΟΞΕΙΔΩΤΙΚΗ ΑΠΟΛΙΓΝΩΣΗ

• Επεξεργασία της βιομάζας με οξειδωτικά μέσα, όπως το όζον, το υπεροξείδιο του υδρογόνου ή το οξυγόνο

• Οζονόλυση:

- η αποικοδόμηση περιορίζεται στη λιγνίνη, ενώ η ημικυτταρίνη και η κυτταρίνη δεν αποικοδομούνται.
- οι οξειδώσεις της οζονόλυσης διεξάγονται πιο αποτελεσματικά σε ενυδατωμένη σταθερή κλίνη από ότι σε υδατικό εναιώρημα.

Πλεονεκτήματα

 Το όζον μπορεί να αποσυντεθεί εύκολα και να ελαχιστοποιήσει τη ρύπανση του περιβάλλοντος.

Μειονεκτήματα

• Το όζον είναι ακριβό

ORGANOSOLV

οργανικοί διαλύτες όπως η αιθανόλη, η μεθανόλη, η ακετόνη και η αιθυλενογλυκόλη ή το μείγμα τους με νερό χρησιμοποιούνται για την απομάκρυνση της λιγνίνης και την υδρόλυση της ημικυτταρίνης, οδηγώντας σε βελτιωμένη ενζυμική αποικοδόμηση της κυτταρίνης

Θερμοκρασία: 200 °C ή μικρότερη, ανάλογα με τον τύπο της βιομάζας και του καταλύτη.

Πλεονεκτήματα

- Παραγωγή λιγνίνης υψηλής ποιότητας
- εφαρμόζεται σε διάφορες βιομάζες με δυνατότητα υψηλής απόδοσης σακχάρων
- ο σχηματισμός αναστολέων της ζύμωσης είναι πολύ χαμηλός

- Εύφλεκτοι διαλύτες
- Υψηλό κόστος

ΦΥΣΙΚΟΧΗΜΙΚΕΣ ΜΕΘΟΔΟΙ (1)

Συνδυάζουν φυσικά και χημικά φαινόμενα, τυπικά μειώνουν το μέγεθος του δοκιμίου

- Έκρηξη Ατμού-Αυτουδρόλυση:
 Θέρμανση με ατμό σε υψηλές
 θερμοκρασίες και πιέσεις, ύστερα αποσυμπίεση, υδρόλυση και απελευθέρωση σακχάρων
- Έκρηξη Αμμωνίας: Όμοια με την μέθοδο έκρηξης ατμού, χρήση αμμωνίας
- Έκρηξη Διοξειδίου του Άνθρακα: Χρήση υπερκρίσιμου Διοξειδίου του Άνθρακα

ΦΥΣΙΚΟΧΗΜΙΚΕΣ ΜΕΘΟΔΟΙ (2)

- Μέθοδος Θερμού Νερού: Χρήση κορεσμένου ή υπόψυκτου υγρού σε υψηλές θερμοκρασίες και πιέσεις
- Υγρή Οξείδωση: Χρήση καθαρού Οξυγόνου σε υψηλές θερμοκρασίες και πιέσεις για την δημιουργία ριζών και οξέων
- Μέθοδος Έκρηξης Ατμού: Θεωρείται πιο οικονομική, πιο χρησιμοποιημένη μέθοδος

Μειονεκτήματα: Δημιουργία αναστολέων ζύμωσης όπως φουρφουράλη, υψηλό κόστος μεθόδων που δεν δημιουργούν αναστολείς

ΒΙΟΛΟΓΙΚΗ ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

Χρησιμοποιεί μικροοργανισμούς και τους ενζυμικούς μηχανισμούς τους για τη διάσπαση της λιγνίνης και την αλλαγή των δομών της βιομάζας ώστε να είναι πιο δεκτική στην ενζυμική πέψη

- απουσία χημικών απαιτήσεων
- χαμηλή κατανάλωση ενέργειας
- ήπιες συνθήκες λειτουργίας
- φιλική προς το περιβάλλον
- χαμηλότερο κόστος για την εναπόθεση απορριμμάτων

Συνήθεις μικροοργανισμοί:

- μηχανισμοί αποδόμησης ξύλου
- μύκητες λευκής, καφέ, μαλακής σήψης
- βακτήρια

- αργή διαδικασία
- απαιτεί προσεκτικό έλεγχο των συνθηκών ανάπτυξης και μεγάλο χώρο για την εκτέλεση της τεχνικής
- τεχνοοικονομικές προκλήσεις
- λιγότερο ελκυστική σε εμπορικό επίπεδο

ΣΑΚΧΑΡΟΠΟΙΗΣΗ-ΕΝΖΥΜΙΚΗ ΥΔΡΟΛΥΣΗ

Δημιουργία σακχάρων για ζύμωση προς αιθανόλη

Χημικά σε όξινες ή αλκαλικές συνθήκες -> Διάβρωση εξοπλισμού, μη φιλική προς το περιβάλλον, δημιουργία αναστολέων

Ενζυμικά μέσω υδρολυτικών ενζύμων -> Χαμηλή απαίτηση σε ενέργεια, ήπιες συνθήκες.

Μεγάλη εξειδίκευση ενζύμων προς υπόστρωμα, υψηλό κόστος ενζύμων

- 3 ένζυμα για κυτταρίνη
- 🍨 8 ένζυμα για ημικυτταρίνη

ΖΥΜΩΣΗ

- Πραγματοποιείται από μικροοργανισμούς (S.cerevisiae ή Z.mobilis)
- Ύπαρξη πεντόζων από την ημικυτταρίνη και εξόζων από την κυτταρίνη περιπλέκουν την διαδικασία: μικροοργανισμοί ζυμώνουν μόνο ένα από τα δύο είδη

4 Τεχνικές:

- Ξεχωριστή Υδρόλυση και Ζύμωση (SHF)
- Ταυτόχρονη Σακχαροποίηση και Ζύμωση (SSF)
- Ταυτόχρονη Σακχαροποίηση και Συν-Ζύμωση (SSCF)
- Ενοποιημένη Βιοεπεξεργασία (CBP)

3^{ΗΣ} ΓΕΝΙΑ ΒΙΟΑΙΘΑΝΟΛΗ

Παράγεται με 1η ύλη βιομάζα άλγης

Καλλιέργεια άλγης είναι φιλική στο περιβάλλον

Πιθανή λύση στο food vs fuel

Βοηθά στην απορρόφηση διοξειδίου του άνθρακα

Σύγχρονη και ακριβή τεχνική

ΑΠΟΒΛΗΤΑ ΒΙΟΜΗΧΑΝΙΩΝ ΓΙΑ 3G ΒΙΟΑΙΘΑΝΟΛΗ

- Βιοαπόβλητα από διάφορες βιομηχανίες που χρησιμοποιούν ως πρώτη ύλη βιομάζα άλγης
- Επεξεργασία και απομόνωση κάποιων συστατικών της βιομάζας
- Ύστερα χρήση της για παραγωγή βιοαιθανόλης
- Συνήθη διαδικασία υδρόλυσης και ζύμωσης.
- Πλεονεκτήματα μεθόδου
 - 1) Περιβαλλοντικοί λόγοι
 - 2) Συμβολή στην κυκλική οικονομία

ΒΙΟΑΠΟΒΛΗΤΑ ΓΙΑ ΠΑΡΑΓΩΓΗ 2G ΒΙΟΑΙΘΑΝΟΛΗ

Άλλο απόβλητο της βιομηχανίας βιοντίζελ είναι η γλυκερίνη, που μπορεί να επεξεργαστεί με ζύμωση σε βιοαιθανόλη.

Επίσης μεγάλο πρόβλημα είναι η διαχείριση αποβλήτων φαγητών είτε είναι από βιομηχανία είτε από νοικοκυριά είτε από αγροτικά.
Παρουσιάζει:

Προβλήματα με τον διαχωρισμό

Παρόμοια επεξεργασία με βιοαιθανόλη 2ης γενιάς

ΕΜΜΕΣΗ ΧΡΗΣΗ ΒΙΟΑΠΟΒΛΗΤΩΝ

Γίνεται έρευνα για χρήση βιοαποβλήτων ως καταλύτες στη παραγωγή της βιοαιθανόλης, επειδή χρήση οξέων είναι είτε ακριβή ή έχει επιπτώσεις στο περιβάλλον.

Συγκεκριμένα οι καταλύτες που μελετήθηκαν ήταν:

- Μη τοξικοί , φιλικοί προς το περιβάλλον
- Φθηνοί και ανανεώσιμοι
- Δεν παράγουν παραπροϊόντα όπως στην υδρόλυση χρήση οξέος
- Παρόμοια αποτελέσματα με την υδρόλυση χρήση οξέος

ΜΕΙΩΣΗ ΚΟΣΤΟΥΣ ΠΑΡΑΓΩΓΗΣ ΤΗΣ ΒΙΟΑΙΘΑΝΟΛΗΣ

- Βιοαιθανόλη δεύτερης γενιάς: υψηλό κόστος παραγωγής, αλλά φιλική προς το περιβάλλον
- Τεχνική μείωση του κόστους:
- 1. Ενσωμάτωση της 2G αιθανόλης σε υπάρχοντα 1G εργοστάσια

ΠΛΕΟΝΕΚΤΗΜΑΤΑ

- Εύκολη μετάβαση
- Υπάρχει ήδη ο εξοπλισμός

MEIONEKTHMATA

- Δεν αποτελεί μόνιμη λύση
- Παραμένει δύσκολο να πληροί τα ενεργειακά κριτήρια του κόσμου

ΒΙΟΔΙΥΛΙΣΤΗΡΙΑ

2. Δημιουργία βιοδιυλιστηρίων με βάση λιγνοκυτταρινική βιομάζα

Βιοδιυλιστήρια: εργοστάσια που εκμεταλλεύονται όλη την τροφοδοσία της βιομάζας, η οποία συνήθως προέρχεται από απόβλητα για να παράξουν πολλά χρήσιμα προιόντα.

ΠΛΕΟΝΕΚΤΗΜΑΤΑ

- Παραγωγή πολλών χρήσιμων προιόντων από την ίδια πρώτη ύλη.
- Έτσι μειώνεται το λειτουργικό κόστος για κάθε προιόν καθώς η κατεργασία γίνεται μία φορά για όλα.
- Βοηθά σημαντικά στην κυκλική οικονομία και την βιώσιμη
- ανάπτυξη καθώς αποτελεί μέθοδο διαχείρισης αποβλήτων.
- Μπορεί να αποτελέσει την βάση για να αντικατασταθούν πάρα πολλά προιόντα από πετρελαικές πηγές, όχι μόνο τα καύσιμα.

MEIONEKTHMATA

• Αποτελεί μία νέα επένδυση με υψηλό πάγιο κόστος.

ΧΡΗΣΗ ΤΗΣ ΚΥΤΤΑΡΙΝΗΣ ΚΑΙ ΤΗΣ ΗΜΙΚΥΤΤΑΡΙΝΗΣ

- Η κυτταρίνη είναι πολυμερές της γλυκόζης στην οποία μπορεί να διασπαστεί η ημικυτταρίνη μπορεί να υδρολυθεί σε ορισμένες πεντόζες με βασικότερο συστατικό την ξυλόζη
- Από αυτά μπορούν να παραχθούν πολλά χρήσιμα προιόντα μέσω ζυμώσεων με συγκεκριμένους μικροοργανισμούς και ένζυμα
 - Παράδειγμα: commodities που παράγονται από πετρέλαιο, πχ αιθυλενογλυκόλη, ακετόνη, πολυμερή όπως το PE και άλλα. Σε αυτή τη κατηγορία εντάσσεται και η βιοαιθανόλη.
- Άλλη σημαντική κατηγορία είναι νέα προιόντα που μπορούν να παροχθούν μόνο με αυτή την τεχνολογία, υλικά όπως τα phas, βιοδιασπώμενα πολυμερή με

BUILDING BLOCK CHEMICALS

Σημαντική κατηγορία προιόντων: building block chemicals

Ορισμός: υλικά τα οποία μπορούν να χρησιμοποιηθούν για την παραγωγή πάρα πολλών άλλων υλικών

Παραδείγματα: Ηλεκτρικό και Λεβουλινικό οξύ

Γλυκερόλη: εφαρμογές σε βιομηχανίες

Ξυλιτόλη: τομέας των τροφίμων, αλλά έχει και αρκετή αξία

για τα προιόντα της

ΕΚΜΕΤΑΛΛΕΥΣΗ ΤΗΣ ΛΙΓΝΙΝΗΣ

Εκτός από τα σάκχαρα αυτά, τα βιοδιυλιστήρια λαμβάνουν αρκετά υπόψην τους και την λιγνίνη. Η λιγνίνη συνήθως χρησιμοποιείται σε καύσεις για παραγωγή ενέργειας. Αυτός όμως δεν είναι ο καλύτερος τρόπος εκμετάλλευσης της καθώς δεν παράγει τόση ενέργεια.

Λιγνίνη: με πυρόλυση, παράγει περιζήτητα προιόντα που παράγονται από πετρελαικές πηγές όπως κυκλικοί υδρογονάνθρακες - δηλαδή βενζόλιο, τολουόλιο, ξυλένιο (BTX) - φαινόλες, syngas, υδρογέλες και διάφορα παράγωγα του άνθρακα, πχ ενεργό άνθρακα.

Στην βιομηχανία πολυμερών χρησιμοποιείται ως η πολυόλη για την παραγωγή πολυουρεθανών με συγκεκριμένες ιδιότητες.

Έτσι, μπορεί να βοηθήσει και αυτή στην αντικατάσταση πετρελαικών υλικών με τα αντίστοιχα παραγμένα από βιομάζα.

ΑΛΛΕΣ ΧΡΗΣΕΙΣ ΤΗΣ ΛΙΓΝΙΝΗΣ ΣΤΗ ΒΙΟΜΗΧΑΝΙΑ ΠΟΛΥΜΕΡΩΝ

Βιολογικό υποκατάστατο φαινολικών πολυμερών όπως οι ρητίνες φαινόλης-φορμαλδεύδης οι οποίες έχουν ευρεία χρήση

Φθηνό πρόσθετο σε σύνθετα υλικά όπου εκτός από το να μειώσει το κόστος

ΣΥΜΠΕΡΑΣΜΑΤΑ

Παραγωγή βιοαιθανόλης από βιοαπόβλητα:

01

Φιλική προς το περιβάλλον μέθοδος 02

Προάγεται η κυκλική οικονομία 03

Δυνατότητα παραγωγής σε βιοδιυλιστήρια με άλλα προϊόντα 04

Βρίσκεται σε πρώιμο στάδιο Ευχαριστούμε για την προσοχή σας!