Colle MP 18: théorèmes d'intégration

March 18, 2019

Colle 1

Stepan (15): petite confusion sur les variables (x et t)Valentin (16): petite confusion sur les variables (x et t)

Exercice 1. TCD

Exercice 2. Mq
$$\lim_{n \to \infty} \int_0^n (1 - \frac{x^2}{n^2})^{n^2} = \int_0^\infty e^{-x^2} dx$$
.

Exercice 3. (131)

- 1. Mq $\int_0^\infty \frac{\sin(t)}{t} dt$ est bien définie.
- 2. Soit $F(x) = \int_0^\infty \frac{e^{-xt} \sin t}{t}$. Quelle est $\lim_\infty F(x)$?
- 3. Calculer F' sur $]0, \infty[$.
- 4. En supposant F continue en 0, calculer I.

Colle 2

Tom (16): bien

Achille (14): ne pense pas à utiliser les questions précédentes de l'exercice

Exercice 1. intégration terme à terme dune série de fonctions

$$\begin{array}{l} \textbf{Exercice 2.} \quad \text{Soit } f(x) = \int_0^x e^{-t^2} \text{ et } g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2}. \\ \text{Mq } g \text{ est dérivable et } g'(x) = -2f'(x)f(x). \\ \text{Mq } g(x) + f(x)^2 = \frac{\pi}{4} \text{ En déduire } \lim_{\infty} f(x). \end{array}$$

Exercice 3. Calcul de
$$\int_0^\infty \frac{\sin(t)}{t} e^{-tx} dt$$
, $\forall x > 0$.

Colle 3

Lily (16): bien

Julien Rauch (13): majore par une fonction constante sur \mathbb{R} (en disant qu'elle est intégrable). Manque parfois de rigueur (écrit par exemple $\lim f(x) \longrightarrow ...$). Arnaud (13): bien mais lent

Exercice 1. dérivabilité sous le signe intégrale

Exercice 2. (29) Mq
$$\int_0^\infty \frac{t}{e^t - 1} dt = \sum_1^\infty \frac{1}{n^2}.$$

Exercice 3. Limite puis équivalent de
$$\int_1^\infty e^{-x^n} dx$$
? (poser $t = x^n$)

Exercice 4. Calcul de
$$\int_0^\infty e^{-t^2} \cos(xt) dt$$
?