

Reinforcement Learning with Multiple Experts: A Bayesian Model Combination Approach

Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee

Department of Mechanical and Industrial Engineering, University of Toronto, ON, Canada

Neural Information Processing Systems Foundation

Key Questions

Model-free RL suffers from sparse rewards and sample inefficiency, so prior knowledge is often used to improve convergence. Here, prior knowledge is given as a fixed set of value function estimates $\Phi_1, \Phi_2, \dots \Phi_N$ of varying reliability. How can we:

- 1. design an on-line data-driven framework to learn which combination of these experts to trust?
- 2. make the framework compatible with most standard RL algorithms?
- 3. benefit from the expert advice while preserving the asymptotic behavior?

Related Work

Several methods have been introduced in order to learn a reward shaping function from data (Grzes and Kudenko, 2009), (Grzes and Kudenko, 2010), either for model-based RL or under specific assumptions.

There are also methods for performing action selection by sampling from multiple MDP models (Asmuth et al., 2009) in model-based RL.

Few work incorporates multiple sources of reward shaping advice in a Bayesian framework in model-free RL (Rosman et al., 2018). Here, prior state space knowledge is required, and it is not clear how to do posterior inference in constant time.

Main Ideas

Potential-based reward shaping (PBRS) transforms a sparse reward function R into a dense one R+F, where

$$F(s, a, s') = \gamma \Phi(s') - \Phi(s).$$

 Φ is typically an estimate of the value function, called a **potential function**. Most importantly, PBRS does not change the optimal policies of MDPs (Ng et al., 1999).

We want to learn which combination of $\Phi_1, \Phi_2, \dots \Phi_N$ best represents the problem we are trying to solve and weight them accordingly.

The Agent, Environment, and transitions (s_t, a_t, r_{t+1}) are standard in RL. The data available to the agent is used to form a posterior belief over the given expert models. This belief is used to combine the individual models into a single, and hopefully more informative, potential function for shaping.

Bayesian Model Combination

Q-values are interpreted as random variables $q_{s,a}$, data \mathcal{D} of past returns is accumulated, and a belief $\pi_t: \mathcal{S}^{N-1} \to \mathbb{R}$ over the (N-1)-dimensional probability simplex is maintained. It is shown that

$$\mathbb{E}[q_{s,a}|\mathcal{D}] = \int_{\mathbb{R}} q \mathbb{P}(q_{s,a}|\mathcal{D}) \, \mathrm{d}q = \sum_{i=1}^{N} \mathbb{E}_{\pi_t}[w_i|\mathcal{D}] \, \mathbb{E}[q_{s,a}|i].$$

Conditioned on Φ_i , Q-values are Gaussian with mean $\Phi_i(s)$ and variance σ^2 (Dearden et al., 1998). Here σ^2 is the sample variance of \mathcal{D} .

Starting with prior π_0 , the posterior π_t is updated using **Bayes' theorem** as follows:

$$\pi_{t+1}(\mathbf{w}) = \mathbb{P}(\mathbf{w}|\mathcal{D},q) \propto \mathbb{P}(q|\mathbf{w})\pi_t(\mathbf{w}) \propto \sum_{i=1}^N \mathbb{P}(q|i)w_i\pi_t(\mathbf{w}).$$

Unfortunately, exact inference is intractable so approximate inference is necessary.

Approximate Inference using Moment Matching

Starting with $\pi_t \sim \text{Dir}(\alpha_t)$, we would like to approximate π_{t+1} by a Dirichlet with parameter α_{t+1} using **moment matching**.

Let $\mathbf{e} = [\mathbb{P}(q|i)]_{i=1...N}$ and let $\alpha_{t,0} = \alpha_{t,1} + \cdots + \alpha_{t,N}$. The moments of π_{t+1} are shown to be

$$m_{i} = \mathbb{E}_{\pi_{t+1}}[w_{i}] = \int_{\mathcal{S}^{N-1}} \frac{\alpha_{t,0}}{\mathbf{e} \cdot \alpha_{t}} \sum_{j=1}^{N} e_{j} w_{j} w_{i} \pi_{t}(\mathbf{w}) \, d\mathbf{w} = \frac{\alpha_{t,i}(e_{i} + \mathbf{e} \cdot \alpha_{t})}{(\mathbf{e} \cdot \alpha_{t})(\alpha_{t,0} + 1)}$$

$$s_{1} = \mathbb{E}_{\pi_{t+1}}[w_{1}^{2}] = \int_{\mathcal{S}^{N-1}} \frac{\alpha_{t,0}}{\mathbf{e} \cdot \alpha_{t}} \sum_{j=1}^{N} e_{j} w_{j} w_{1}^{2} \pi_{t}(\mathbf{w}) \, d\mathbf{w} = \frac{\alpha_{t,i}(\alpha_{t,1} + 1)(2e_{1} + \mathbf{e} \cdot \alpha_{t})}{(\mathbf{e} \cdot \alpha_{t})(\alpha_{t,0} + 1)(\alpha_{t,0} + 2)}.$$

The parameters $\alpha = \alpha_{t+1}$ can now be found by matching the moments of $Dir(\alpha)$ with those of π_{t+1} , m_i and s_1 , and solving the resulting system

$$m_{i} = \frac{\alpha_{i}}{\alpha_{0}}, i = 1, \dots N - 1$$

$$s_{1} = \frac{\alpha_{i}(\alpha_{i} + 1)}{\alpha_{0}(\alpha_{0} + 1)}$$

$$\alpha_{t+1,i} = \frac{m_{1} - s_{1}}{s_{1} - m_{1}^{2}}$$

$$\alpha_{t+1,i} = m_{i}\alpha_{t+1,0} = m_{i}\frac{m_{1} - s_{1}}{s_{1} - m_{1}^{2}}, i = 1, \dots N - 1.$$

The expected return $\mathbb{E}[q_{s,a}|\mathcal{D}]$ is used as a proxy of the true optimal value function. The data-driven potential function is updated in O(N)-time

$$\hat{\Phi}_t(s) = \mathbb{E}[q_{s,a}|\mathcal{D}] \approx \sum_{i=1}^N \frac{\alpha_{t,i}}{\sum_j \alpha_{t,j}} \Phi_i(s).$$

Experimental Results

The # of steps required to reach the final goal on the discrete grid-world domain with five flags (Ng et al., 1999).

The # of steps the pole is balanced before falling on the classical continuous Cart-pole experiment.

The weights assigned to each expert for each of the three algorithms on the gridworld domain (top row) and cart-pole domain (bottom row):

