Approximate Conditional Coverage via Neural Model Approximations

reexpress

Allen Schmaltz and Danielle Rasooly

Overview

We construct prediction sets over Transformer networks, via KNN-based approximations and constrained sampling, obtaining reliable assumption- and parameter-light approximate conditional coverage even in the presence of distribution shifts.

Split-conformal prediction sets for classification

- Computationally expensive blackbox: F
- Training dataset: $\mathcal{D}_{tr} = \{(X_i, Y_i)\}_{i=1}^I$ with $Y_i \in \mathcal{Y} = \{1, ..., C\}$
- Held-out labeled calibration dataset: $\mathcal{D}_{ca} = \{(X_j, Y_j)\}_{i=J+1}^{N=I+J}$
- Seek: A prediction set $\hat{\mathscr{C}}(X_{N+1}) \in 2^C$ for a new, unseen test instance X_{N+1} from \mathcal{D}_{te}
 - Contains the true label with coverage level $1 \alpha \in (0,1)$ on average
- Finite-sample *marginal* guarantee:

Quantile threshold

• Via $\hat{\mathscr{C}}(x_{N+1}) = \left\{ c \in \mathscr{Y} : \hat{\pi}^c(x_{N+1}) \ge \hat{\tau}^{\alpha} \right\}$, where $\hat{\tau}^{\alpha} = 1 - \hat{l}^{\alpha}$

• Finite-sample *conditional* coverage:

Not possible without

$$\mathbb{P}\left\{Y_{N+1} \in \hat{\mathcal{C}}(X_{N+1}) \mid X_{N+1} = x\right\} \ge 1 - \alpha$$

• Finite-sample *approximate conditional* coverage:

$$\mathbb{P}\left\{Y_{N+1} \in \hat{\mathcal{C}}(X_{N+1}) \mid X_{N+1} \in \mathcal{B}(x), Y_{N+1} = y\right\} \geq 1 - \alpha, \text{ with } P_X(\mathcal{B}(x)) \geq \xi$$

Weighted KNN approximations of the deep network encode strong signals for prediction reliability:

Predictions become less reliable at distances farther from the training set and with increased label and prediction mismatches among the nearest matches.

