Reinforcement Learning for the High Price

```
import numpy as np
In [1]:
        import pandas as pd
        import matplotlib.pyplot as plt
        import math
        from sklearn.preprocessing import MinMaxScaler
In [3]: from keras.models import Sequential
        from keras.layers import Dense, LSTM
        plt.style.use('fivethirtyeight')
        df = pd.read_csv('15_mins_complete 03.csv')
In [4]:
In [5]: #Visualising the Close Price History
        plt.figure(figsize=(15,10))
        plt.title('High Price History')
        plt.plot(df['High'])
        plt.xlabel('Date', fontsize=18)
        plt.ylabel('High Price', fontsize=18)
        plt.xticks(rotation=-60, fontsize=10)
        plt.tight layout()
```



```
In [6]: #New dataframe with only a particular column and convert it to nump
         y array
         data = df.filter(['High'])
 In [7]: dataset = data.values
 In [8]: | #Convert data to a numpy array
         training data len = math.ceil(len(dataset) * 0.8)
         print(training data len)
         2149
 In [9]: #Scailing of the data
         scalar = MinMaxScaler(feature range=(0,1))
In [10]: | scaled data = scalar.fit transform(dataset)
In [11]: #Scaled training dataset
         train data = scaled data[0:training data len, :]
In [12]: #Splitting into Xtrain, Y train
         X train = []
         Y train = []
         for i in range(101, len(train data)):
             X train.append(train data[i-101:i, 0])
             Y train.append(train data[i, 0])
In [13]: #Convert xtrain and ytrain to numpy arrays
         X train, Y train = np.array(X train), np.array(Y train)
In [14]: #Reshape Xtrain as LSTM takes 3d input
         X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1],
         1))
In [15]: X_train.shape
Out[15]: (2048, 101, 1)
```

```
In [16]: #Building the LSTM model
    model = Sequential()
    model.add(LSTM(50, return_sequences=True, input_shape = (X_train.sh
    ape[1], 1)))
    model.add(LSTM(50, return_sequences=False))
    model.add(Dense(10))
    model.add(Dense(10))
```

WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:68: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get default graph instead.

WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:504: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:3828: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

```
In [17]: #Compiling the model
    model.compile(optimizer='adam', loss='mean_squared_error')
```

WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/keras/optimizers.py:744: The n ame tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.

```
In [18]: #Training the model
model.fit(X_train, Y_train, batch_size=1, epochs=1)
```

WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/tensorflow/python/ops/math_gra d.py:1250: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a futur e version.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/keras/backend/tensorflow_backe nd.py:973: The name tf.assign_add is deprecated. Please use tf.com pat.v1.assign add instead.

WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:960: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.

Out[18]: <keras.callbacks.History at 0x7fd3cbe9b908>

```
In [20]: #Creating the test dataset
  test_data = scaled_data[training_data_len - 101: , :]
```

```
In [21]: len(test_data)
```

Out[21]: 638

```
In [22]: #Splitting into X_test, Y_test
X_test = []
Y_test = dataset[training_data_len:, :]

for i in range(101, len(test_data)):
    X_test.append(test_data[i-101 : i, 0])
```

```
In [23]: #Converting data to numpy array and then 3d
X_test = np.array(X_test)
```

```
In [24]: X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
```

```
In [25]: X_test.shape
Out[25]: (537, 101, 1)
```

```
In [26]: #Predictions
    predictions = model.predict(X_test)

In [27]: predictions = scalar.inverse_transform(predictions)

In [28]: #RMSE
    rmse = np.sqrt(np.mean(predictions - Y_test) ** 2)

In [29]: rmse

Out[29]: 0.10373390808673766

In [30]: #Plotting the data
    train = data[ : training_data_len]
    valid = data[ training_data_len : ]
    valid['Predictions'] = predictions
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/si te-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

..

```
In [31]: plt.figure(figsize=(15,10))
    plt.title('Reinforcement Learning for High Price Prediction')
    plt.xlabel('Date', fontsize=18)
    plt.ylabel('High Price', fontsize=18)
    plt.plot(train['High'])
    plt.plot(valid[['High', 'Predictions']])
    plt.legend(['Train', 'Val', 'Predictions'], loc='upper right')
    plt.xticks(rotation=-60, fontsize=10)
    plt.show()
```


In [32]: valid

Out[32]:

	High	Predictions
2149	185.0	183.617279
2150	186.0	183.965225
2151	186.0	184.460876
2152	186.0	184.951996
2153	187.0	185.351822
2681	235.0	238.926605
2682	233.0	237.840820
2683	236.0	236.516678
2684	238.0	235.888779
2685	234.0	236.134048

537 rows × 2 columns

In []: