1 Introduction

2 Preliminaries

The Walsh transform of f at point $\alpha \in \mathbb{F}_{2^n}$ is defined as

$$\widehat{f}(\alpha) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + \text{Tr}(\alpha x)}.$$

3 The Walsh spectra of the derivatives of the inverse function

For any integer n > 0, let us define $I_{\nu}(x) = \operatorname{Tr}_{1}^{n}(\nu x^{-1})$ over \mathcal{B}_{n} . The Kloosterman sums over $\mathbb{F}_{2^{n}}$ are defined as $\mathcal{K}(a) = \widehat{I}_{1}(\alpha) = \sum_{x \in \mathbb{F}_{2^{n}}} (-1)^{\operatorname{Tr}_{1}^{n}(x^{-1} + \alpha x)}$, where $\alpha \in \mathbb{F}_{2^{n}}$. In fact, the Kloosterman sums are generally defined on the multiplicative group $\mathbb{F}_{2^{n}}^{*}$. We extend them to 0 by assuming $(-1)^{0} = 1$.

Proof. For any $\mu, \nu, \tau \in \mathbb{F}_{2^n}^*$, we have (still using the convention $\frac{1}{0} = 0$)

$$\begin{split} & C_{\mu,\nu}(\tau) \\ & = \sum_{x \in \mathbb{F}_{2^{n}}} (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{x} + \frac{\nu}{x + \tau})} \\ & = \sum_{x \in \mathbb{F}_{2^{n}} \setminus \{0,\tau\}} (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{x} + \frac{\nu}{x + \tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\nu}{\tau})} \\ & = \sum_{x \in \mathbb{F}_{2^{n}} \setminus \{0,\tau^{-1}\}} (-1)^{\operatorname{Tr}_{1}^{n}(\mu x + \frac{\nu x}{1 + \tau x})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\nu}{\tau})} \\ & = \sum_{x \in \mathbb{F}_{2^{n}} \setminus \{0,\tau^{-1}\}} (-1)^{\operatorname{Tr}_{1}^{n}(\mu x + \frac{1}{1 + \tau x} \cdot \frac{\nu}{\tau} + \frac{\nu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\nu}{\tau})} \\ & = \sum_{x \in \mathbb{F}_{2^{n}} \setminus \{0,1\}} (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu x}{\tau} + \frac{\nu}{\tau x} + \frac{\mu}{\tau} + \frac{\nu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\nu}{\tau})} \\ & = \sum_{x \in \mathbb{F}_{2^{n}} \setminus \{0,\frac{\pi}{\nu}\}} (-1)^{\operatorname{Tr}_{1}^{n}(\frac{1}{x} + \frac{\mu\nu}{\tau^{2}}x) + \operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau} + \frac{\nu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\nu}{\tau})} \\ & = \sum_{x \in \mathbb{F}_{2^{n}}} (-1)^{\operatorname{Tr}_{1}^{n}(\frac{1}{x} + \frac{\mu\nu}{\tau^{2}}x) + \operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau} + \frac{\nu}{\tau})} - (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau} + \frac{\nu}{\tau})} - (-1)^{\operatorname{Tr}_{1}^{n}(0)} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\mu}{\tau})} + (-1)^{\operatorname{Tr}_{1}^{n}(\frac{\nu}{\tau})} \end{aligned}$$

where the third, fifth, and sixth identities hold by changing x to $\frac{1}{x}$, $\frac{x+1}{\tau}$, and $\frac{\nu x}{\tau}$ respectively. Note that $-(-1)^{\operatorname{Tr}_1^n(\frac{\mu}{\tau}+\frac{\nu}{\tau})}-(-1)^{\operatorname{Tr}_1^n(0)}+(-1)^{\operatorname{Tr}_1^n(\frac{\mu}{\tau})}+(-1)^{\operatorname{Tr}_1^n(\frac{\nu}{\tau})}$ equals 0 or -4. According to Lemma ??, we can see that $C_{\mu,\nu}(\tau)$ belongs to $[-2^{n/2+1}-3,2^{n/2+1}+1]$ and is divisible by 4. This finishes the proof.

3.1 The multiplicative inverse function

For any finite field \mathbb{F}_{2^n} , the multiplicative inverse function of \mathbb{F}_{2^n} , denoted by I, is defined as $I(x)=x^{2^n-2}$. In the sequel, we will use x^{-1} or $\frac{1}{x}$ to denote x^{2^n-2} with the convention that $x^{-1}=\frac{1}{x}=0$ when x=0. We recall that, for any $v\neq 0$, $I_v(x)=\mathrm{Tr}_1^n(vx^{-1})$ is a component function of I. The Walsh–Hadamard transform of I_1 at any point α is commonly known as Kloosterman sum over \mathbb{F}_{2^n} at α , which is usually denoted by $\mathcal{K}(\alpha)$, i.e., $\mathcal{K}(\alpha)=\widehat{I}_1(\alpha)=\sum_{x\in\mathbb{F}_{2^n}}(-1)^{\mathrm{Tr}_1^n(x^{-1}+\alpha x)}$. The original Kloosterman sums are generally defined on the multiplicative group $\mathbb{F}_{2^n}^*$. We extend them to 0 by assuming $(-1)^0=1$. Regarding the Kloosterman sums, the following results are well known and we will use them in the sequel.

Lemma 1. [1] Let $n \ge 3$ be an arbitrary integer. We define

$$L = \# \left\{ c \in \mathbb{F}_{2^n} : \operatorname{Tr}_1^n \left(\frac{1}{c^2 + c + 1} \right) = \operatorname{Tr}_1^n \left(\frac{c^2}{c^2 + c + 1} \right) = 0 \right\}.$$

Then we have $L = 2^{n-2} + \frac{3}{4}(-1)^n \widehat{I_1}(1) + \frac{1}{2}(1 - (-1)^n)$, where $\widehat{I_1}(1) = 1 - \sum_{t=0}^{\lfloor n/2 \rfloor} (-1)^{n-t} \frac{n}{n-t} \binom{n-t}{t} 2^t$.

Let F be an (n, m)-function. For any $\gamma, \eta \in \mathbb{F}_{2^n}$ and $\omega \in \mathbb{F}_{2^m}$, let us define

$$\mathcal{N}_F(\gamma, \eta, \omega) = \# \left\{ x \in \mathbb{F}_{2^n} : F(x) + F(x+\gamma) + F(x+\eta) + F(x+\eta+\gamma) = \omega \right\}. \tag{1}$$

It is clear that for $\gamma = 0$ or $\eta = 0$ or $\gamma = \eta$, we have $\mathcal{N}_F(\gamma, \eta, 0) = 2^n$, and when $\omega \neq 0$, $\mathcal{N}_F(\gamma, \eta, \omega) = 0$. If F is the multiplicative inverse function over \mathbb{F}_{2^n} , we denote $\mathcal{N}_I(\gamma, \eta, \omega)$ by $\mathcal{N}(\gamma, \eta, \omega)$.

Lemma 2. [1] Let $n \geq 3$ be a positive integer and $\mathcal{N}(\gamma, \eta, \omega)$ be defined as in (1). Let γ, η be two elements of $\mathbb{F}_{2^n}^*$ such that $\gamma \neq \eta$. Then for any $\omega \in \mathbb{F}_{2^n}$, we have $\mathcal{N}(\gamma, \eta, \omega) \in \{0, 4, 8\}$. Moreover, the number of $(\gamma, \eta, \omega) \in \mathbb{F}_{2^n}^3$ such that $\mathcal{N}(\gamma, \eta, \omega) = 8$ is

$$\left(2^{n-2} + \frac{3}{4}(-1)^n \widehat{I}_1(1) - \frac{5}{2}(-1)^n - \frac{3}{2}\right) (2^n - 1).$$

A theorem is introduced for efficiently bounding from below the nonlinearity profile of a given function when lower bounds exist for the (r-1)-th order nonlinearities of the derivatives of f:

Theorem 1. [?] Let f be a n-variable Boolean function, and let 0 < r < n be an integer. We have

$$nl_r(f) \ge 2^{n-1} - \frac{1}{2}\sqrt{2^{2n} - 2\sum_{a \in \mathbb{F}_2^n} nl_{r-1}(D_a f)}.$$

4 The third-order nonlinearity of the simplest PS bent function

Dillon presented a \mathcal{PS} bent function class f(x,y) from $\mathbb{F}_{2^n} = \mathbb{F}_{2^k}^2$ to \mathbb{F}_2 as

$$\mathcal{D}(x,y) = g\left(\frac{x}{y}\right)$$

where g is a balanced Boolean function on \mathbb{F}_{2^k} with g(0) = 0, and $\frac{x}{y}$ is defined to be 0 if y = 0 (we shall always assume this kind of convention in the sequel).

In this paper, our goal is to give a lower bound on the third-order nonlinearity of the simplest \mathcal{PS} bent function, *i.e.*

$$f(x,y) = \operatorname{Tr}_1^k \left(\frac{\lambda x}{y}\right) \tag{2}$$

where $(x,y) \in \mathbb{F}_{2^k}^2$, $\lambda \in \mathbb{F}_{2^k}^*$ and $\mathrm{Tr}_1^k(x) = \sum\limits_{i=0}^{n-1} x^{2^i}$ is the trace function from \mathbb{F}_{2^k} to \mathbb{F}_2 .

4.1 A lower bound on the third-order nonlinearity of the simplest \mathcal{PS} bent function

Before giving the lower bound of third-order nonlinearity of the simplest \mathcal{PS} bent function, We first introduce two useful lemmas that are needed in the sequel.

Lemma 3. Assume $k \geq 3$, let

$$N_{i,j} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k \left(\theta_1 x + \gamma_1 \right) = i, \operatorname{Tr}_1^k \left(\theta_2 x + \gamma_2 \right) = j \right\} \right|,$$

where $\gamma_1, \gamma_2 \in \mathbb{F}_{2^k}$ and $\theta_1, \theta_2 \in \mathbb{F}_{2^k}^*$ are distinct. Then $N_{0,0} = 2^{k-2}$.

Proof. We have

$$\begin{cases} N_{0,0} + N_{0,1} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k (\theta_1 x + \gamma_1) = 0 \right\} \right| = 2^{k-1} \\ N_{1,1} + N_{0,1} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k (\theta_2 x + \gamma_2) = 1 \right\} \right| = 2^{k-1}, \end{cases}$$

then we get $N_{0,0}=N_{1,1}$. Besides, $N_{0,0}+N_{1,1}=\left|\left\{x\in\mathbb{F}_{2^k}\left|\operatorname{Tr}_1^k\left((\theta_1+\theta_2)x+(\gamma_1+\gamma_2)\right)=0\right\}\right|=2^{k-1}$ since the trace function is balanced if $\theta_1\neq\theta_2$. Therefore $N_{0,0}=2^{k-2}$. This completes the proof.

Lemma 4. Assume $k \geq 3$, let

$$N_{i_{1},i_{2},i_{3}} = \left| \left\{ x \in \mathbb{F}_{2^{k}} \middle| \operatorname{Tr}_{1}^{k} \left(\theta_{1}x + \gamma_{1} \right) = i_{1}, \operatorname{Tr}_{1}^{k} \left(\theta_{2}x + \gamma_{2} \right) = i_{2}, \operatorname{Tr}_{1}^{k} \left(\theta_{3}x + \gamma_{3} \right) = i_{3} \right\} \right|,$$

where $\gamma_1, \gamma_2, \gamma_3 \in \mathbb{F}_{2^k}$ and $\theta_1, \theta_2, \theta_3 \in \mathbb{F}_{2^k}^*$ are distinct and satisfy $\theta_3 \neq \theta_1 + \theta_2$. Then $N_{0,0,0} = 2^{k-3}$.

Proof. Using Lemma 3 we have

$$\begin{cases}
N_{0,0,0} + N_{0,0,1} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k \left(\theta_1 x + \gamma_1 \right) = 0, \operatorname{Tr}_1^k \left(\theta_2 x + \gamma_2 \right) = 0 \right\} \right| = 2^{k-2} \\
N_{0,0,0} + N_{0,1,0} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k \left(\theta_1 x + \gamma_1 \right) = 0, \operatorname{Tr}_1^k \left(\theta_3 x + \gamma_3 \right) = 0 \right\} \right| = 2^{k-2} \\
N_{0,0,0} + N_{1,0,0} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k \left(\theta_2 x + \gamma_2 \right) = 0, \operatorname{Tr}_1^k \left(\theta_3 x + \gamma_3 \right) = 0 \right\} \right| = 2^{k-2}.
\end{cases} \tag{3}$$

Thus, $N_{0,0,1} = N_{0,1,0} = N_{1,0,0}$. With the same reason we can also obtain $N_{0,1,1} = N_{1,0,1} = N_{1,1,0}$. Because of $\theta_1 + \theta_2 + \theta_3 \neq 0$, we have

$$\begin{cases}
N_{0,0,1} + N_{0,1,0} + N_{1,0,0} + N_{1,1,1} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k \left((\theta_1 + \theta_2 + \theta_3) x + (\gamma_1 + \gamma_2 + \gamma_3) \right) = 1 \right\} \right| = 2^{k-1} \\
N_{0,1,1} + N_{1,0,1} + N_{1,1,0} + N_{0,0,0} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k \left((\theta_1 + \theta_2 + \theta_3) x + (\gamma_1 + \gamma_2 + \gamma_3) \right) = 0 \right\} \right| = 2^{k-1}.
\end{cases} (4)$$

Combine equations (4) with $N_{0,0,1} = N_{0,1,0} = N_{1,0,0}$, $N_{0,1,1} = N_{1,0,1} = N_{1,1,0}$ and equations

$$\begin{cases}
N_{0,0,0} + N_{0,0,1} + N_{0,1,0} + N_{0,1,1} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k \left(\theta_1 x + \gamma_1 \right) = 0 \right\} \right| = 2^{k-1} \\
N_{1,0,0} + N_{1,0,1} + N_{1,1,0} + N_{1,1,1} = \left| \left\{ x \in \mathbb{F}_{2^k} \middle| \operatorname{Tr}_1^k \left(\theta_1 x + \gamma_1 \right) = 1 \right\} \right| = 2^{k-1},
\end{cases}$$
(5)

we obtain $N_{0,0,1} = N_{0,1,1}$. Therefore from equations (3) and equations (5), the system

$$\begin{cases}
N_{0,0,0} + N_{0,0,1} = 2^{k-2} \\
N_{0,0,0} + 3N_{0,0,1} = 2^{k-1}
\end{cases}$$
(6)

has the solution $N_{0,0,0} = N_{0,0,1} = 2^{k-3}$. This completes the proof.

Theorem 2. Let $k \geq 3$ be an integer and n = 2k. For the nonlinearity of the second-order derivative of the simplest \mathcal{PS} bent function $f(x,y) = \operatorname{Tr}_1^k(\frac{\lambda x}{y})$, we have three cases based on the value of α :

(1) For every $\alpha = (\alpha_1, \alpha_2) \in \mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$ with $\alpha_2 \neq 0$, when β ranges over \mathbb{F}_{2^n} , we have

$$nl(D_{\beta}D_{\alpha}f) = \begin{cases} 2^{2k-1} - 2^{k+2}, & 2^{k}L \ times \\ 2^{2k-1} - 2^{k+1}, & 2^{k}(2^{k} - 2 - L) \ times \\ 0, & 1 \ time, \end{cases}$$
 (7)

with $nl(D_{\beta}D_{\alpha}f) \geq 2^{2k-1} - ** occurring 2^{k+1} - 1 times.$

- (2) For every $\alpha = (\alpha_1, 0) \in \mathbb{F}_{2^k}^* \times \{0\}$, when β ranges over \mathbb{F}_{2^n} , we have $nl(D_{\beta}D_{\alpha}f) = 0$ for $\beta = (\beta_1, 0) \in \mathbb{F}_{2^k} \times \{0\}$, otherwise, $nl(D_{\beta}D_{\alpha}f) \ge ***$.
- (3) For $\alpha = (0,0)$, we have $nl(D_{\beta}D_{\alpha}f) = 0$ for all $\beta \in \mathbb{F}_{2^n}$.

Proof. Let us consider the Walsh transform of the second-order derivative of $f(x,y) = \operatorname{Tr}_1^k\left(\frac{\lambda x}{y}\right)$ at the points $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2) \in \mathbb{F}_{2^k}^2$ with $\lambda \in \mathbb{F}_{2^k}^*$. We have

$$W_{D_{\beta}D_{\alpha}f}(\mu,\nu)$$

$$= \sum_{x \in \mathbb{F}_{2^{k}}} \sum_{y \in \mathbb{F}_{2^{k}}} (-1)^{\operatorname{Tr}_{1}^{k}} \left(\frac{\lambda x}{y} + \frac{\lambda(x+\alpha_{1})}{y+\alpha_{2}} + \frac{\lambda(x+\beta_{1})}{y+\beta_{2}} + \frac{\lambda(x+\alpha_{1}+\beta_{1})}{y+\alpha_{2}+\beta_{2}} + \mu x + \nu y\right)$$

$$= \sum_{y \in \mathbb{F}_{2^{k}}} (-1)^{\operatorname{Tr}_{1}^{k}} \left(\frac{\lambda \alpha_{1}}{y+\alpha_{2}} + \frac{\lambda \beta_{1}}{y+\beta_{2}} + \frac{\lambda(\alpha_{1}+\beta_{1})}{y+\alpha_{2}+\beta_{2}} + \nu y\right)$$

$$\times \sum_{x \in \mathbb{F}_{2^{k}}} (-1)^{\operatorname{Tr}_{1}^{k}} \left(\left(\frac{\lambda}{y} + \frac{\lambda}{y+\alpha_{2}} + \frac{\lambda}{y+\beta_{2}} + \frac{\lambda}{y+\alpha_{2}+\beta_{2}} + \mu\right)x\right)$$

$$= \begin{cases} 2^{k} \sum_{y \in S} (-1)^{\operatorname{Tr}_{1}^{k}} \left(\frac{\lambda \alpha_{1}}{y+\alpha_{2}} + \frac{\lambda \beta_{1}}{y+\beta_{2}} + \frac{\lambda(\alpha_{1}+\beta_{1})}{y+\alpha_{2}+\beta_{2}} + \nu y\right), & \text{if } \frac{\lambda}{y} + \frac{\lambda}{y+\alpha_{2}} + \frac{\lambda}{y+\beta_{2}} + \frac{\lambda}{y+\alpha_{2}+\beta_{2}} = \mu \text{ has solutions} \\ 0, & \text{otherwise,} \end{cases}$$

$$(8)$$

where S is the set of solutions of equation

$$\frac{\lambda}{y} + \frac{\lambda}{y + \alpha_2} + \frac{\lambda}{y + \beta_2} + \frac{\lambda}{y + \alpha_2 + \beta_2} = \mu. \tag{9}$$

Note that $nl(D_{\beta}D_{\alpha}f) = 2^{2k-1} - \frac{1}{2} \max_{\mu,\nu} |W_{D_{\beta}D_{\alpha}f}(\mu,\nu)|$, we only need to consider $\max_{\mu,\nu} |W_{D_{\beta}D_{\alpha}f}(\mu,\nu)|$ for every points α, β . So we only consider $|W_{D_{\beta}D_{\alpha}f}(\mu,\nu)|$ for some μ such that equation (9) has solutions, since we have $2^k \left| \sum_{y \in S} (-1)^{\text{Tr}_1^k} \left(\frac{\lambda \alpha_1}{y + \alpha_2} + \frac{\lambda \beta_1}{y + \beta_2} + \frac{\lambda (\alpha_1 + \beta_1)}{y + \alpha_2 + \beta_2} + \nu y \right) \right| \ge 0$. Therefore, two steps are needed for all points $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2) \in \mathbb{F}^2_{2k}$ with $\lambda \in \mathbb{F}^*_{2k}$:

- i) Find all $(\mu, \nu) \in \mathbb{F}_{2^k}^2$ such that equation (9) has solutions.
- ii) Calculate the value $\max_{\mu,\nu} |W_{D_{\beta}D_{\alpha}f}(\mu,\nu)|$ among those (μ,ν) .

So we first give the conditions such that equation (9) has solutions, whose proof is analogue to the proof of Lemma 13 in [1] and we omit it:

- 1) If $\alpha_2 = \beta_2 \in \mathbb{F}_{2^k}^*$ or $\alpha_2 = 0$ or $\beta_2 = 0$, then (9) has 2^k solution when $\mu = 0$.
- 2) If $\alpha_2, \beta_2 \in \mathbb{F}_{2^k}^*$ such that $\alpha_2 \neq \beta_2$, then we have:
 - (a) If $\lambda(\alpha_2^2 + \beta_2^2 + \alpha_2\beta_2) + \mu(\alpha_2^2\beta_2 + \alpha_2\beta_2^2) = 0$, $\{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$ are four solutions of (9).
 - (b) If $\mu \neq 0$, $\operatorname{Tr}_1^k\left(\frac{\lambda\alpha_2}{\mu\beta_2(\alpha_2+\beta_2)}\right) = 0$ and $\operatorname{Tr}_1^k\left(\frac{\lambda\beta_2}{\mu\alpha_2(\alpha_2+\beta_2)}\right) = 0$, $\{y_0, y_0 + \alpha_2, y_0 + \beta_2, y_0 + \alpha_2 + \beta_2\}$ are four solutions of (9), where y_0 is a solution of (9) and $y_0 \notin \{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$.

After finding all $(\mu, \nu) \in \mathbb{F}_{2^k}^2$ such that equation (9) has solutions for every points $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2)$, we need to calculate maxmial value $2^k \left| \sum_{y \in S} (-1)^{\text{Tr}_1^k \left(\frac{\lambda \alpha_1}{y + \alpha_2} + \frac{\lambda \beta_1}{y + \beta_2} + \frac{\lambda (\alpha_1 + \beta_1)}{y + \alpha_2 + \beta_2} + \nu y \right)} \right|$ between those (μ, ν) .

Case 1 If $\alpha_2 = \beta_2 \in \mathbb{F}_{2^k}^*$ or $\alpha_2 = 0$ or $\beta_2 = 0$ and $\mu = 0$, equation (9) has 2^k solutions, which are all elements of \mathbb{F}_{2^k} , then we have

$$W_{D_{\beta}D_{\alpha}f}(0,\nu) = 2^k \sum_{y \in \mathbb{F}_{2k}} \left(-1\right)^{\operatorname{Tr}_1^k \left(\frac{\lambda \alpha_1}{y + \alpha_2} + \frac{\lambda \beta_1}{y + \beta_2} + \frac{\lambda(\alpha_1 + \beta_1)}{y + \alpha_2 + \beta_2} + \nu y\right)}.$$
 (10)

For the simple cases, if $\alpha = (\alpha_1, 0), \beta = (\beta_1, 0) \in \mathbb{F}_{2^k}^* \times \{0\}$ or $\alpha = (0, 0)$ or $\beta = (0, 0)$, equation (10) can be transformed into a simple form:

$$W_{D_\beta D_\alpha f}(0,\nu) = 2^k \sum_{y \in \mathbb{F}_{2^k}} (-1)^{\operatorname{Tr}_1^k(\nu y)}.$$

And $\max_{\nu} |W_{D_{\beta}D_{\alpha}f}(0,\nu)| = |W_{D_{\beta}D_{\alpha}f}(0,0)| = 2^{2k}$.

For other cases we will give the upper bounds of $\max_{\nu} |W_{D_{\beta}D_{\alpha}f}(0,\nu)|$: assume $\alpha_2 = \beta_2 \in \mathbb{F}_{2^k}^*$ and $\alpha_1 \neq \beta_1$, then we have

$$W_{D_{\beta}D_{\alpha}f}(0,\nu) = 2^k \sum_{y \in \mathbb{F}_{2^k}} (-1)^{\operatorname{Tr}_1^k \left(\frac{\lambda(\alpha_1 + \beta_1)}{y + \alpha_2} + \frac{\lambda(\alpha_1 + \beta_1)}{y} + \nu y\right)}.$$

Therefore, in the cases of $\alpha_2 = \beta_2 \in \mathbb{F}_{2^k}^*$ or $\alpha_2 = 0$ or $\beta_2 = 0$, we have the upper bound of the maximial absolute values

$$\max_{\mu,\nu} |W_{D_{\beta}D_{\alpha}f}(\mu,\nu)| \le * * *.$$

- Case 2 If $\alpha_2, \beta_2 \in \mathbb{F}_{2^k}^*$ such that $\alpha_2 \neq \beta_2$ and $\mu = \frac{\lambda(\alpha_2^2 + \beta_2^2 + \alpha_2 \beta_2)}{\alpha_2^2 \beta_2 + \alpha_2 \beta_2^2}$, we are sure that $\{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$ are solutions of equations (9), then we have two subcases in the following, that is:
 - 1) If α_2, β_2 and μ satisfy the system

$$\begin{cases}
\mu \neq 0 \\
\operatorname{Tr}_{1}^{k} \left(\frac{\lambda \alpha_{2}}{\mu \beta_{2} (\alpha_{2} + \beta_{2})} \right) = 0 \\
\operatorname{Tr}_{1}^{k} \left(\frac{\lambda \beta_{2}}{\mu \alpha_{2} (\alpha_{2} + \beta_{2})} \right) = 0,
\end{cases} \tag{11}$$

then $\{y_0, y_0 + \alpha_2, y_0 + \beta_2, y_0 + \alpha_2 + \beta_2\}$ are also solutions of equation (9), where $y_0 \notin \{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$, therefore the number of solutions is 8.

2) Otherwise, $\{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$ are the only 4 solutions.

So we calculate $W_{D_{\beta}D_{\alpha}f}(\mu,\nu)$ for some (μ,ν) in two cases.

Case A We first consider the case equation (9) has 4 solutions $\{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$. Then S =

 $\{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$ and $y \in S$, we have

$$\begin{split} &W_{D_{\beta}D_{\alpha}f}(\mu,\nu) \\ &= 2^{k} \left[1 + (-1)^{\text{Tr}_{1}^{k}((\alpha_{1}+\beta_{1})\mu + (\alpha_{2}+\beta_{2})\nu)} \right] \\ &\cdot \left[(-1)^{\text{Tr}_{1}^{k}\left(\frac{\lambda\alpha_{1}}{y+\alpha_{2}} + \frac{\lambda\beta_{1}}{y+\beta_{2}} + \frac{\lambda(\alpha_{1}+\beta_{1})}{y+\alpha_{2}+\beta_{2}} + y\nu\right) + (-1)^{\text{Tr}_{1}^{k}\left(\frac{\lambda\alpha_{1}}{y} + \frac{\lambda\beta_{1}}{y+\alpha_{2}+\beta_{2}} + \frac{\lambda(\alpha_{1}+\beta_{1})}{y+\beta_{2}} + (y+\alpha_{2})\nu\right)} \right] \\ &= 2^{k} \left[1 + (-1)^{\text{Tr}_{1}^{k}((\alpha_{1}+\beta_{1})\mu + (\alpha_{2}+\beta_{2})\nu)} \right] \\ &\cdot (-1)^{\text{Tr}_{1}^{k}\left(\frac{\lambda\alpha_{1}}{y+\alpha_{2}} + \frac{\lambda\beta_{1}}{y+\beta_{2}} + \frac{\lambda(\alpha_{1}+\beta_{1})}{y+\alpha_{2}+\beta_{2}} + y\nu\right)} \cdot \left[1 + (-1)^{\text{Tr}_{1}^{k}\left(\frac{\lambda\alpha_{1}}{y} + \frac{\lambda\alpha_{1}}{y+\alpha_{2}} + \frac{\lambda\alpha_{1}}{y+\beta_{2}} + \frac{\lambda\alpha_{1}}{y+\alpha_{2}+\beta_{2}} + \nu\alpha_{2} \right)} \right] \\ &= 2^{k} \left[1 + (-1)^{\text{Tr}_{1}^{k}((\alpha_{1}+\beta_{1})\mu + (\alpha_{2}+\beta_{2})\nu)} \right] \cdot \left[1 + (-1)^{\text{Tr}_{1}^{k}(\alpha_{1}\mu + \alpha_{2}\nu)} \right] \cdot (-1)^{\text{Tr}_{1}^{k}\left(\frac{\lambda\alpha_{1}}{y+\alpha_{2}} + \frac{\lambda\beta_{1}}{y+\beta_{2}} + \frac{\lambda(\alpha_{1}+\beta_{1})}{y+\alpha_{2}+\beta_{2}} + y\nu\right)} \\ &= \begin{cases} 2^{k+2} \cdot (-1)^{\text{Tr}_{1}^{k}\left(\frac{\lambda\alpha_{1}}{y+\alpha_{2}} + \frac{\lambda\beta_{1}}{y+\beta_{2}} + \frac{\lambda(\alpha_{1}+\beta_{1})}{y+\alpha_{2}+\beta_{2}} + y\nu\right)}, & \text{if } \text{Tr}_{1}^{k}\left(\alpha_{2}\nu + \alpha_{1}\mu\right) = 0 \text{ and } \text{Tr}_{1}^{k}\left(\beta_{2}\nu + \beta_{1}\mu\right) = 0 \\ 0, & \text{otherwise.} \end{cases} \end{cases} \tag{12}$$

Observing (12) we can find $|W_{D_{\beta}D_{\alpha}f}(\mu,\nu)|$ only has values $\{0,2^{k+2}\}$. Furthermore, by Lemma 3, for all $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2) \in \mathbb{F}_{2^k} \times \mathbb{F}_{2^k}^*$ such that $\alpha_2 \neq \beta_2$ and $\mu = \frac{\lambda(\alpha_2^2 + \beta_2^2 + \alpha_2\beta_2)}{\alpha_2^2\beta_2 + \alpha_2\beta_2^2}$, there always exists $2^{k-2} \nu \in \mathbb{F}_{2^k}$ satisfying the system

$$\begin{cases}
\operatorname{Tr}_{1}^{k} \left(\alpha_{2}\nu + \alpha_{1}\mu\right) = 0 \\
\operatorname{Tr}_{1}^{k} \left(\beta_{2}\nu + \beta_{1}\mu\right) = 0.
\end{cases}$$
(13)

Thus, for all points $\alpha, \beta \in \mathbb{F}_{2^k}^2$ with $\alpha_2, \beta_2 \in \mathbb{F}_{2^k}^*$, $\alpha_2 \neq \beta_2$ and $\mu = \frac{\lambda(\alpha_2^2 + \beta_2^2 + \alpha_2\beta_2)}{\alpha_2^2\beta_2 + \alpha_2\beta_2^2}$ such that don't satisfy equations (11), we have

$$\max_{\mu,\nu} |W_{D_{\beta}D_{\alpha}f}(\mu,\nu)| = 2^{k+2}.$$

Case B Next case is that if equation (9) has 8 solutions, that is, α_2, β_2 and μ satisfy system (11). Then we have

$$W_{D_{\beta}D_{\alpha}f}(\mu,\nu)$$

$$=2^{k}\left[1+(-1)^{\text{Tr}_{1}^{k}((\alpha_{1}+\beta_{1})\mu+(\alpha_{2}+\beta_{2})\nu)}\right]\cdot\left[1+(-1)^{\text{Tr}_{1}^{k}(\alpha_{1}\mu+\alpha_{2}\nu)}\right]$$

$$\cdot\left[(-1)^{\text{Tr}_{1}^{k}\left(\frac{\lambda\alpha_{1}}{\alpha_{2}}+\frac{\lambda\beta_{1}}{\beta_{2}}+\frac{\lambda(\alpha_{1}+\beta_{1})}{\alpha_{2}+\beta_{2}}\right)+(-1)^{\text{Tr}_{1}^{k}\left(\frac{\lambda\alpha_{1}}{y_{0}+\alpha_{2}}+\frac{\lambda\beta_{1}}{y_{0}+\beta_{2}}+\frac{\lambda(\alpha_{1}+\beta_{1})}{y_{0}+\alpha_{2}+\beta_{2}}+y_{0}\nu\right)}\right]$$

$$=(-1)^{c_{0}}2^{k}\cdot\left[1+(-1)^{\text{Tr}_{1}^{k}((\alpha_{1}+\beta_{1})\mu+(\alpha_{2}+\beta_{2})\nu)}\right]\cdot\left[1+(-1)^{\text{Tr}_{1}^{k}(\alpha_{1}\mu+\alpha_{2}\nu)}\right]\cdot\left[1+(-1)^{c_{0}+c_{1}}\right]$$

$$=\begin{cases}2^{k+3}\cdot(-1)^{c_{0}}, & \text{if } \text{Tr}_{1}^{k}(\alpha_{1}\mu+\alpha_{2}\nu)=0, \text{Tr}_{1}^{k}(\beta_{1}\mu+\beta_{2}\nu)=0 \text{ and } c_{0}+c_{1}=0\\0, & \text{otherwise},\end{cases}$$

$$(14)$$

where $y_0 \notin \{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$ and

$$\begin{cases} c_0 = \operatorname{Tr}_1^k \left(\frac{\lambda \alpha_1}{\alpha_2} + \frac{\lambda \beta_1}{\beta_2} + \frac{\lambda(\alpha_1 + \beta_1)}{\alpha_2 + \beta_2} \right) \\ c_1 = \operatorname{Tr}_1^k \left(\frac{\lambda \alpha_1}{y_0 + \alpha_2} + \frac{\lambda \beta_1}{y_0 + \beta_2} + \frac{\lambda(\alpha_1 + \beta_1)}{y_0 + \alpha_2 + \beta_2} + \nu y_0 \right). \end{cases}$$

By Lemma 4, for all $\alpha=(\alpha_1,\alpha_2),\beta=(\beta_1,\beta_2)\in\mathbb{F}_{2^k}\times\mathbb{F}_{2^k}^*$ such that $\alpha_2\neq\beta_2$ and $y_0\notin\mathbb{F}_{2^k}$

 $\{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$, there always exists $2^{k-3} \nu \in \mathbb{F}_{2^k}$ satisfying below equations,

$$\begin{cases} \operatorname{Tr}_{1}^{k} (\alpha_{2}\nu + \alpha_{1}\mu) = 0 \\ \operatorname{Tr}_{1}^{k} (\beta_{2}\nu + \beta_{1}\mu) = 0 \\ \operatorname{Tr}_{1}^{k} \left(y_{0}\nu + \frac{\lambda\alpha_{1}}{\alpha_{2}} + \frac{\lambda\beta_{1}}{\beta_{2}} + \frac{\lambda(\alpha_{1} + \beta_{1})}{\alpha_{2} + \beta_{2}} + \frac{\lambda\alpha_{1}}{y_{0} + \alpha_{2}} + \frac{\lambda\beta_{1}}{y_{0} + \beta_{2}} + \frac{\lambda(\alpha_{1} + \beta_{1})}{y_{0} + \alpha_{2} + \beta_{2}} \right) = 0. \end{cases}$$

So we conclude that for all points α, β with $\alpha_2, \beta_2 \in \mathbb{F}_{2^k}^*$ such that $\alpha_2 \neq \beta_2$ and $\mu = \frac{\lambda(\alpha_2^2 + \beta_2^2 + \alpha_2 \beta_2)}{\alpha_2^2 \beta_2 + \alpha_2 \beta_2^2}$ satisfying equations (11), we have

$$\max_{\mu,\nu} |W_{D_{\beta}D_{\alpha}f}(\mu,\nu)| = 2^{k+3}.$$

Remark 1. There must exist some points α, β such that $\max_{\mu,\nu} |W_{D_{\beta}D_{\alpha}f}(\mu,\nu)| = 2^{k+3}$. Indeed, the conditions $\alpha_2, \beta_2 \in \mathbb{F}_{2^k}^*$, $\alpha_2 \neq \beta_2$ and $\mu \neq 0$ can tell us $\mu(\alpha_2^2\beta_2 + \alpha_2\beta_2^2) \neq 0$, resulting in $\lambda(\alpha_2^2 + \beta_2^2 + \alpha_2\beta_2) \neq 0$, which implies $\frac{\beta_2}{\alpha_2} \notin \mathbb{F}_4$. So take $\mu = \lambda(\alpha_2^2 + \beta_2^2 + \alpha_2\beta_2)/(\alpha_2^2\beta_2 + \alpha_2\beta_2^2)$ into $\operatorname{Tr}_1^k\left(\frac{\lambda\alpha_2}{\mu\beta_2(\alpha_2+\beta_2)}\right) = 0$ and $\operatorname{Tr}_1^k\left(\frac{\lambda\beta_2}{\mu\alpha_2(\alpha_2+\beta_2)}\right) = 0$ respectively, we can transform two equations into $\operatorname{Tr}_1^k\left(\frac{1}{\gamma^2+\gamma+1}\right) = 0$ and $\operatorname{Tr}_1^k\left(\frac{\gamma^2}{\gamma^2+\gamma+1}\right) = 0$, where $\gamma = \frac{\beta_2}{\alpha_2} \in \mathbb{F}_{2^k} \setminus \mathbb{F}_4$. Furthermore, according to Lemma 1, the number of $\gamma = \frac{\beta_2}{\alpha_2} \in \mathbb{F}_{2^k} \setminus \mathbb{F}_4$ satisfying $\operatorname{Tr}_1^k\left(\frac{1}{\gamma^2+\gamma+1}\right) = 0$ and $\operatorname{Tr}_1^k\left(\frac{\gamma^2}{\gamma^2+\gamma+1}\right) = 0$ is L, which means that for points $\alpha = (\alpha_1, \alpha_2) \in \mathbb{F}_{2^k}^2$ with $\alpha_2 \neq 0$, there exist L β_2 such that $\max_{\mu,\nu} |W_{D_{\beta}D_{\alpha}f}(\mu,\nu)| = 2^{k+3}$.

Case 3 For every $\alpha_2, \beta_2 \in \mathbb{F}_{2^k}^*$ such that $\alpha_2 \neq \beta_2$, there exist some μ satisfying that $S = \{y_0, y_0 + \alpha_2, y_0 + \beta_2, y_0 + \alpha_2 + \beta_2\}$ are the only 4 solutions of equation (9), where $y_0 \notin \{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$. Fortunately, we don't need to treat with those μ since in that case, the maximal possible value is not greater than the result of Case 1 where equation (9) has 4 solutions $\{0, \alpha_2, \beta_2, \alpha_2 + \beta_2\}$, that is,

$$|W_{D_{\beta}D_{\alpha}f}(\mu,\nu)| = 2^{k} \left| \sum_{y \in S} (-1)^{\operatorname{Tr}_{1}^{k} \left(\frac{\lambda \alpha_{1}}{y + \alpha_{2}} + \frac{\lambda \beta_{1}}{y + \beta_{2}} + \frac{\lambda (\alpha_{1} + \beta_{1})}{y + \alpha_{2} + \beta_{2}} + y\nu \right)} \right| \leq 2^{k+2} = |W_{D_{\beta}D_{\alpha}f}(\mu_{0},\nu_{0})|,$$

where $\mu_0 = \frac{\lambda(\alpha_2^2 + \beta_2^2 + \alpha_2 \beta_2)}{\alpha_3^2 \beta_2 + \alpha_2 \beta_2^2}$ and ν_0 satisfy the system (13).

Applying two times Theorem 1, we obtain the relation between the third-order nonlinearity of f and the nonlinearity of the second-order derivative of f:

$$nl_3(f) \ge 2^{n-1} - \frac{1}{2} \sqrt{\sum_{\alpha \in \mathbb{F}_{2^n}} \sqrt{2^{2n} - 2 \sum_{\beta \in \mathbb{F}_{2^n}} nl(D_{\beta} D_{\alpha} f)}}.$$
 (15)

Therefore, we can give the lower bound of third-order nonlinearity of the simplest \mathcal{PS} bent function:

Theorem 3. Let $k \geq 3$ be an integer and n = 2k. For the third-order nonlinearity of the simplest \mathcal{PS} bent function $f(x,y) = \operatorname{Tr}_1^k(\frac{\lambda x}{y})$ with $x,y \in \mathbb{F}_{2^k}$ and $\lambda \in \mathbb{F}_{2^k}^*$, we have:

$$nl_3(f) \ge 2^{n-1} - \frac{1}{2}\sqrt{A}$$

where

$$A = 2^{2n} - .$$

Proof. We have

$$nl_{3}(f) \geq 2^{n-1} - \frac{1}{2} \sqrt{\sum_{\alpha \in \mathbb{F}_{2^{n}}} \sqrt{2^{2n} - 2\sum_{\beta \in \mathbb{F}_{2^{n}}} nl(D_{\beta}D_{\alpha}f)}}$$

$$= 2^{n-1} - \frac{1}{2} \sqrt{\sum_{\alpha = (\alpha_{1}, 0) \in \mathbb{F}_{2^{k}} \times \{0\}} \sqrt{2^{2n} - 2\sum_{\beta \in \mathbb{F}_{2^{n}}} nl(D_{\beta}D_{\alpha}f)} + \sum_{\substack{\alpha = (\alpha_{1}, \alpha_{2}) \in \mathbb{F}_{2^{k}}^{2} \\ \alpha_{2} \neq 0}} \sqrt{2^{2n} - 2\sum_{\beta \in \mathbb{F}_{2^{n}}} nl(D_{\beta}D_{\alpha}f)}$$

$$\geq$$

where the second sign of inequality comes from Theorem 2.

4.2 Comparison with the known results

Carlet has deduced that the rth-order nonlinearity of an (n, n) Dillon function is bounded from below by.... Therefore, the lower bound on

References

[1] Deng Tang, Bimal Mandal, and Subhamoy Maitra. Further cryptographic properties of the multiplicative inverse function. *Discrete Applied Mathematics*, 307:191–211, 2022.