## Question 1(a) [3 marks]

### Explain thermal runaway in detail.

#### **Answer**:

Thermal runaway is a destructive process where a transistor gets increasingly hotter until it fails.

### Diagram:



- Cause: Increased temperature decreases base-emitter voltage
- **Effect**: Collector current increases with temperature
- **Result**: Self-reinforcing cycle of heating leads to destruction

Mnemonic: "Heat Rises, Current Climbs, Transistor Dies"

## Question 1(b) [4 marks]

## Draw and explain fixed bias method.

#### Answer:

Fixed bias uses a single resistor from base to voltage supply for biasing.

### **Circuit Diagram:**



- Working: Base current (IB) = (VCC VBE)/RB
- Characteristics: Simple circuit but poor stability
- **Disadvantage**: Highly sensitive to temperature variations
- **Application**: Used in small signal circuits where stability isn't critical

Mnemonic: "Fixed Bias: One Resistor, Poor Stability"

# Question 1(c) [7 marks]

### List the biasing methods. Draw the circuit of voltage divider type bias method and explain it.

### Answer:

The biasing methods for transistors include several techniques for establishing proper operating points.

## **Table: Transistor Biasing Methods**

| Method                 | Stability | Complexity | Temperature Sensitivity |
|------------------------|-----------|------------|-------------------------|
| Fixed Bias             | Poor      | Simple     | High                    |
| Collector-to-Base Bias | Medium    | Medium     | Medium                  |
| Voltage Divider Bias   | Excellent | Complex    | Low                     |
| Emitter Bias           | Good      | Medium     | Low                     |

## **Circuit Diagram:**



- Working: R1-R2 divider creates stable base voltage
- **Advantage**: Less affected by β variations and temperature
- **Key feature**: RE provides negative feedback stabilization
- **Application**: Most widely used in amplifier circuits

Mnemonic: "Divide and Rule for Stable Bias"

## Question 1(c OR) [7 marks]

## Draw and explain DC load line for common emitter amplifier.

### Answer:

DC load line represents all possible operating points of a transistor.

### **Graph:**



## **Equation Table:**

| Parameter          | Equation            | Description                   |
|--------------------|---------------------|-------------------------------|
| Maximum VCE        | VCC                 | When IC = 0                   |
| Maximum IC         | VCC/RC              | When VCE = 0                  |
| Load Line Equation | IC = (VCC - VCE)/RC | All possible operating points |
| Q-point            | Set by biasing      | Stable operation point        |

• Purpose: Graphically shows relationship between IC and VCE

• **Significance**: Helps determine operating point (Q-point)

• Application: Essential for amplifier design and analysis

Mnemonic: "Maximum Current or Maximum Voltage, Never Both"

# Question 2(a) [3 marks]

## Explain term (i) Gain (ii) Bandwidth.

### **Answer**:

These are key parameters that describe amplifier performance.

### **Table: Amplifier Parameters**

| Parameter | Definition                                                    | Unit | Significance           |
|-----------|---------------------------------------------------------------|------|------------------------|
| Gain      | Ratio of output to input signal                               | dB   | Amplification power    |
| Bandwidth | Range of frequencies with gain not less than 70.7% of maximum | Hz   | Useful frequency range |

- Gain Types: Voltage gain (Av), Current gain (Ai), Power gain (Ap)
- **Bandwidth Formula**: BW = fH fL (Higher cutoff Lower cutoff)
- **Related Parameter**: Gain-Bandwidth Product (constant for a specific amplifier)

Mnemonic: "Gain Makes Bigger, Bandwidth Makes Broader"

# Question 2(b) [4 marks]

List advantages and disadvantages of negative feedback in amplifier.

#### Answer:

Negative feedback significantly improves amplifier performance but with tradeoffs.

### **Table: Negative Feedback Characteristics**

| Advantages                         | Disadvantages                                |
|------------------------------------|----------------------------------------------|
| Increased bandwidth                | Reduced gain                                 |
| Reduced distortion                 | More input signal required                   |
| Improved stability                 | More complex circuit                         |
| Better noise immunity              | Potential oscillation if improperly designed |
| Controlled input/output impedances | Higher power consumption                     |

Mnemonic: "Stabilize Wide And Clean, Just Give Up Gain"

## Question 2(c) [7 marks]

Draw and explain Hartley oscillator.

#### Answer:

Hartley oscillator generates sine waves using inductive feedback.

## **Circuit Diagram:**



- Frequency Determination: By L1, L2 and C1 values (f =  $1/2\pi\sqrt{(L \times C)}$ )
- Feedback Mechanism: Inductive voltage divider (L1 and L2)
- Identifying Feature: Tapped inductor or two inductors in series
- Applications: RF signal generation, radio transmitters, communication systems

Mnemonic: "Hartley Has Helpful Inductors"

# Question 2(a OR) [3 marks]

State and explain Barkhausen criterion of oscillation.

#### **Answer:**

Barkhausen criteria define conditions for sustained oscillations.

#### The Two Main Criteria:



- **Loop Gain Condition**:  $|A\beta| = 1$  (exactly 1 for sustained oscillation)
- **Phase Shift Condition**:  $\angle A\beta = 0^{\circ}$  or 360° (signal reinforcement)

• **Practical Design**: Initial  $|A\beta| > 1$ , eventually stabilizes at  $|A\beta| = 1$ 

Mnemonic: "For Oscillation: Unit Gain, Zero Phase"

## Question 2(b OR) [4 marks]

Compare negative and positive feedback amplifier.

#### Answer:

Feedback type dramatically changes amplifier behavior.

### **Comparison Table:**

| Parameter              | Negative Feedback | Positive Feedback       |
|------------------------|-------------------|-------------------------|
| Gain                   | Decreases         | Increases               |
| Bandwidth              | Increases         | Decreases               |
| Distortion             | Reduces           | Increases               |
| Stability              | Improves          | Reduced (may oscillate) |
| Noise                  | Reduces           | Amplifies               |
| Applications           | Stable amplifiers | Oscillators, triggers   |
| Input/Output impedance | Controllable      | Less predictable        |

Mnemonic: "Negative Stabilizes, Positive Oscillates"

# Question 2(c OR) [7 marks]

Draw and explain colpitt's oscillator.

#### Answer:

Colpitt's oscillator uses capacitive voltage divider for feedback.

## **Circuit Diagram:**



- Frequency Determination: By L, C1 and C2 values (f =  $1/2\pi\sqrt{(L \times Ceq)}$ )
- Feedback Mechanism: Capacitive voltage divider (C1 and C2)

- Identifying Feature: Two capacitors in series across inductor
- Advantage: More stable frequency than Hartley

Mnemonic: "Colpitts Catches Capacitive Current"

# Question 3(a) [3 marks]

## **Explain about DIAC.**

#### Answer:

DIAC (Diode for Alternating Current) is a bidirectional trigger diode.

### **Symbol and Structure:**



- Operation: Conducts in both directions after breakdown voltage
- Characteristic: Symmetrical V-I curve in both directions
- **Key Parameter**: Breakover voltage (typically 30-40V)
- Main Application: Triggering TRIACs in AC power control

Mnemonic: "DIAC: Double Direction Breakdown Device"

## Question 3(b) [4 marks]

### **Explain triggering methods of SCR.**

#### **Answer**:

SCR can be triggered to conduct by several methods.

**Table: SCR Triggering Methods** 

| Method             | Description                 | Advantages                   | Limitations                      |
|--------------------|-----------------------------|------------------------------|----------------------------------|
| Gate<br>Triggering | Current pulse at gate       | Most common,<br>controllable | Requires control circuit         |
| Temperature        | High temperature            | No external circuit          | Uncontrolled, unreliable         |
| Voltage            | Exceeding breakover voltage | No external circuit          | Stresses device,<br>uncontrolled |
| dv/dt              | Rapid voltage rise          | Simple                       | Can cause unwanted triggering    |
| Light              | Photons hitting junction    | Electrical isolation         | Requires special packaging       |

Mnemonic: "Gate Voltage Temperature Rate Light"

# Question 3(c) [7 marks]

Draw symbol and construction of SCR. Also draw and explain V-I characteristic of SCR.

### Answer:

SCR (Silicon Controlled Rectifier) is a four-layer PNPN semiconductor device with three terminals.

## Symbol:



## **Construction:**



## V-I Characteristic:



- Forward Blocking: Low current until triggering
- Forward Conduction: High current after triggering (latched)
- Holding Current: Minimum current to maintain conduction
- Latching Current: Minimum current to start latching
- Reverse Blocking: Blocks current in reverse direction

Mnemonic: "Trigger Once, Conducts Forever, Until Current Falls"

## Question 3(a OR) [3 marks]

Explain about natural commutation technique of SCR.

#### Answer:

Natural commutation turns off SCR without external circuit when AC current naturally reaches zero.

## **Process Diagram:**



- **Principle**: Uses natural zero-crossing of AC supply
- Advantage: No additional commutation circuit required
- **Application**: AC power control circuits, light dimmers
- Limitation: Only works with AC supplies, not DC

Mnemonic: "Natural Commutation: Zero Current, Zero Effort"

# Question 3(b OR) [4 marks]

## **Explain about Opto-couplers.**

#### **Answer**:

Opto-couplers provide electrical isolation using light transmission.

#### Structure:



### **Table: Opto-coupler Types**

| Туре       | Photodetector   | Speed  | CTR       | Applications          |
|------------|-----------------|--------|-----------|-----------------------|
| Standard   | Phototransistor | Medium | 20-100%   | General isolation     |
| High-speed | Photodiode      | Fast   | 10-50%    | Digital communication |
| TRIAC      | Photo-TRIAC     | Slow   | N/A       | AC power control      |
| Linear     | Photodarlington | Slow   | 100-1000% | Analog signals        |

- CTR: Current Transfer Ratio (output/input current)
- Key Feature: Complete electrical isolation between circuits
- Benefits: Noise immunity, voltage level shifting, safety

Mnemonic: "Light Leaps gaps Electrons Can't"

## Question 3(c OR) [7 marks]

Draw symbol and construction of TRIAC. Also draw and explain V-I characteristic of TRIAC.

#### **Answer**:

TRIAC (Triode for Alternating Current) is a bidirectional three-terminal semiconductor device.

## Symbol:



## **Construction:**



### **V-I Characteristic:**



- Bidirectional: Conducts in both directions after triggering
- Quadrant Operation: Four triggering modes based on polarities
- **Applications**: AC power control, light dimmers, motor control
- Advantage over SCR: Controls both halves of AC cycle

Mnemonic: "TRIAC: Two-way Road In AC Circuits"

# Question 4(a) [3 marks]

## State characteristics of ideal Op-Amp.

#### Answer:

An ideal Op-Amp has perfect characteristics that real Op-Amps approximate.

## **Table: Ideal Op-Amp Characteristics**

| Parameter        | Ideal Value | Meaning                             |
|------------------|-------------|-------------------------------------|
| Open-loop gain   | Infinite    | Amplifies smallest input difference |
| Input impedance  | Infinite    | Draws no current from source        |
| Output impedance | Zero        | Can drive any load                  |
| Bandwidth        | Infinite    | Works at all frequencies            |
| CMRR             | Infinite    | Rejects common-mode signals         |
| Slew rate        | Infinite    | Instantaneous output change         |
| Offset voltage   | Zero        | No output with zero input           |

Mnemonic: "Infinite Gain, Impedance, Bandwidth; Zero Offset, Output Z"

## Question 4(b) [4 marks]

Draw and explain monostable multivibrator using 555 timer IC.

### Answer:

Monostable multivibrator produces single pulse of fixed duration when triggered.

### **Circuit:**



- Operation: Negative trigger produces output pulse with duration T = 1.1RC
- Stable State: Output LOW until triggered

- Timing Control: R and C values determine pulse width
- **Retriggering**: Can be retriggered after timeout

Mnemonic: "One Shot Wonder: Trigger Once, Pulse Once"

# Question 4(c) [7 marks]

Draw and explain Inverting amplifier using IC 741. Also draw input and output waveforms.

#### Answer:

Inverting amplifier reverses polarity while amplifying input signal.

### **Circuit:**



### Waveforms:

- **Gain Equation**: Av = -Rf/Rin (negative sign indicates inversion)
- Input Impedance: Equal to Rin
- Virtual Ground: Inverting input maintained near 0V
- **Bandwidth**: Depends on gain (higher gain = lower bandwidth)
- Applications: Signal conditioning, audio amplifiers

Mnemonic: "Flips and Multiplies by Rf/Rin"

# Question 4(a OR) [3 marks]

Draw symbol and pin diagram of IC 741.

#### **Answer**:

The 741 is a popular general-purpose operational amplifier.

### Symbol:

## 8-Pin DIP Package:

- Pin Functions: Inverting input, non-inverting input, output, power supplies
- Optional Pins: Offset null, no connection
- **Power Supply**: Typically ±15V or ±12V dual supply

Mnemonic: "Never Invert Plus, Very Output Not Connected"

# Question 4(b OR) [4 marks]

Explain term (i) CMRR (II) Slew Rate.

#### **Answer**:

These parameters define operational amplifier performance limits.

**Table: Key Op-Amp Parameters** 

| Parameter                             | Definition                                     | Typical<br>Value | Significance              |
|---------------------------------------|------------------------------------------------|------------------|---------------------------|
| CMRR (Common Mode<br>Rejection Ratio) | Ratio of differential gain to common-mode gain | 90-120<br>dB     | Higher is better          |
| Slew Rate                             | Maximum rate of output voltage change          | 0.5-50 V/<br>μs  | Higher for faster signals |

• CMRR Formula: CMRR = 20 log<sub>10</sub>(Ad/Acm) dB

• CMRR Importance: Rejects noise common to both inputs

• Slew Rate Formula: SR = dVo/dt (max)

• **Slew Rate Limitation**: Causes distortion at high frequencies

Mnemonic: "CMRR Crushes Common Noise, Slew Rate Shows Speed"

# Question 4(c OR) [7 marks]

## Draw and explain Astable multivibrator using 555 timer IC.

### Answer:

Astable multivibrator generates continuous square waves without external trigger.

### **Circuit:**



### **Output Waveform:**



• **Timing**: T1 = 0.693(RA+RB)C, T2 = 0.693(RB)C

• **Frequency**: f = 1.44/((RA+2RB)C)

• Duty Cycle: Can be adjusted by RA and RB

• Applications: Clock generators, LED flashers, tone generators

Mnemonic: "Always Oscillating, Never Stopping"

# Question 5(a) [3 marks]

Draw basic block diagram of regulated power supply and explain it.

#### Answer:

A regulated power supply converts AC to stable DC voltage.

### **Block Diagram:**



- Transformer: Steps down AC voltage to required level
- **Rectifier**: Converts AC to pulsating DC (diode bridge)
- Filter: Smooths pulsating DC (capacitors)
- **Regulator**: Maintains constant output despite variations
- Output: Stable DC voltage for electronic circuits

Mnemonic: "Transformer Rectifies Filters Regulates"

# Question 5(b) [4 marks]

Draw and explain summing amplifier using Op-amp.

### **Answer**:

Summing amplifier adds multiple input signals with weighted proportions.

### Circuit:



- Output Equation: Vout = -Rf(V1/R1 + V2/R2 + V3/R3)
- **Special Case**: When all resistors equal, Vout =  $-Rf/R \times (V1 + V2 + V3)$
- Applications: Audio mixing, analog computers, signal averaging
- Variations: Inverting and non-inverting configurations available

Mnemonic: "Multiple Inputs, One Output, Weighted Addition"

## Question 5(c) [7 marks]

Draw and explain the circuit diagram of 3 terminal voltage regulator using IC LM317 with adjustable output voltage.

### **Answer**:

LM317 is a versatile adjustable voltage regulator with output range of 1.25V to 37V.

### Circuit:



- Output Voltage: VOUT = 1.25V(1 + R2/R1)
- **Fixed Components**: R1 =  $240\Omega$ , reference voltage = 1.25V
- Adjustability: Changing R2 sets desired output voltage
- Protection Features: Current limiting, thermal shutdown
- **Applications**: Variable power supplies, battery chargers
- Advantages: Few external components, robust protection

Mnemonic: "Adjust with R2, Reference Stays at 1.25"

# Question 5(a OR) [3 marks]

State full form of SMPS. Also state applications of SMPS.

#### Answer:

SMPS stands for Switch Mode Power Supply, a modern efficient power conversion technology.

## **Applications Table:**

| Application           | SMPS Type | Advantages                        |
|-----------------------|-----------|-----------------------------------|
| Computer Power Supply | ATX       | High efficiency, multiple outputs |
| Mobile Phone Chargers | Flyback   | Compact size, lightweight         |
| LED Drivers           | Buck      | Efficient dimming capability      |
| TV Power Supply       | Forward   | Good regulation, multiple outputs |
| Industrial Controls   | Push-Pull | High power capability             |
| Battery Chargers      | Boost     | Adjustable charging profiles      |

• Key Benefits: High efficiency (80-95%), small size, lightweight

• **Drawbacks**: EMI generation, more complex circuits

Mnemonic: "Switch Mode Powers Small devices"

# Question 5(b OR) [4 marks]

## Draw and explain differentiator using Op-amp.

### Answer:

Differentiator produces output proportional to rate of change of input.

### **Circuit:**



## **Input/Output Waveforms:**



• **Equation**: Vout = -RC × d(Vin)/dt

• **Function**: Converts square wave to spikes, triangle to square

• Practical Issue: High noise sensitivity

• Modification: Small resistor in series with C to limit high-frequency gain

• **Applications**: Waveshaping, rate-of-change detection

Mnemonic: "Rate of Change Goes In, Amplitude Comes Out"

## Question 5(c OR) [7 marks]

Draw and explain the circuit diagram of -12 V regulated dc power supply.

## Answer:

A -12V regulated supply provides stable negative voltage for analog circuits.

### **Circuit Diagram:**



- Working Principle: Full-wave rectifier creates negative voltage
- Components: Transformer, bridge rectifier, filter capacitors, 7912 regulator
- **Regulator IC**: 7912 provides fixed -12V output with internal protection
- Filter Capacitors: Input capacitor filters ripple, output capacitor improves transient response
- Applications: Op-amp negative rail, analog circuits, audio equipment

Mnemonic: "Full Bridge, Big Capacitor, 7912 Regulates Negative"