- 1 CLAIMS
- What is claimed is:

3

- 4 1. A method for preparing a virtual three-dimensional representation of a first portion of a bone comprising the steps of:
- 6 obtaining, from a first orientation with respect to the first portion of the bone,
- 7 first image data of the first portion of the bone;
- 8 obtaining, from a second, different orientation with respect to the first
- 9 portion of the bone, second image data of the first portion of the bone;
- generating a three-dimensional (3D) virtual representation of the first portion
- 11 of the bone; and
- displaying the 3D virtual representation of the first portion of the bone, the
- 13 displayed 3D virtual representation having an orientation, the orientation of the displayed
- 14 3D virtual representation being determined using at least the difference between the first
- and second orientations from which the first and second image data were obtained.
- 16 2. The method of claim 1, wherein at least one of the first and second images is a two-
- 17 dimensional image.
- 18 3. The method of claim 2, wherein both the first and second images are two-
- 19 dimensional images.
- 20 4. The method of claim 3, wherein at least one of the first and second images is a
- 21 fluoroscope image.
- 22 5. The method of claim 1, comprising:
- displaying an image of the first portion of the bone; and

the state of the s

- overlaying the displayed 3D virtual representation of the first portion of the
- bone and the image of the first portion of the bone.
- 26 6. The method of claim 5, wherein the displayed image of the first portion of the bone
- comprises at least some data from at least one of the first and second image data.
- 7. The method of claim 5, comprising using an input device to adjust a dimension of
- 29 the 3D virtual representation to correspond with a dimension of the first portion of the bone.
- 30 8. The method of claim 7, wherein the dimension of the first portion of the bone is a
- 31 diameter.

1	9.	The method of claim 7, wherein the dimension of the first port	ion of the bone is a

- 2 length.
- 3 10. The method of claim 1, wherein the displayed 3D virtual representation has a lower
- 4 symmetry than the first portion of the bone.
- 5 11. The method of claim 10, wherein the displayed 3D virtual representation comprises
- 6 a cylindrical portion.
- 7 12. The method of claim 5, comprising:
- 8 determining an intraoperative orientation of the bone; and
- 9 wherein the orientation of the displayed 3D virtual representation of the first
- portion of the bone is indicative of the intraoperative orientation of the first portion of the
- 11 bone.
- 12 13. The method of claim 5, wherein the step of determining the intraoperative position
- of the first portion of the bone comprises:
- securing at least one of (a) a set of energy emitters or (b) a set of energy
- detectors to the first portion of the bone; and
- detecting, using the set of energy detectors, energy emitted by the energy
- emitters of the set of energy emitters.
- 18 14. The method of claim 13, wherein, if the intraoperative orientation of the first portion
- of the bone changes, updating the orientation of the displayed 3D virtual representation of
- 20 the first portion of the bone so that the orientation of the displayed 3D virtual representation
- 21 remains indicative of the intraoperative orientation of the first portion of the bone.
- 22 15. The method of claim 1, comprising the steps of:
- obtaining, from a third orientation with respect to a second portion of the
- bone, third image data of the second portion of the bone;
- obtaining, from a fourth, different orientation with respect to the second
- portion of the bone, fourth image data of the first portion of the bone;
- generating a three-dimensional (3D) virtual representation of the second
- 28 portion of the bone; and
- displaying the 3D virtual representation of the second portion of the bone,
- 30 the displayed 3D virtual representation of the second portion of the bone having an
- 31 orientation, the orientation of the displayed 3D virtual representation of the second portion

- 1 of the bone being determined using the difference between the third and fourth orientations
- 2 from which the third and fourth image data were obtained.
- The method of claim 15, wherein the first and second orientations are the same as,
- 4 respectively, the third and fourth orientations.
- 5 17. The method of claim 15, comprising:
- 6 displaying an image of the second portion of the bone, the displayed image
- 7 of the second portion of the bone comprising at least some data from at least one of the third
- 8 and fourth image data; and
- 9 overlaying the displayed 3D virtual representation of the second portion of
- the bone and the image of the second portion of the bone.
- 11 18. The method of claim 17, comprising using an input device to adjust a dimension of
- the 3D virtual representation of the second portion of the bone to correspond with a
- dimension of the second portion of the bone.
- 14 19. The method of claim 18, wherein the dimension of the second portion of the bone is
- 15 a diameter.
- 16 20. The method of claim 18, wherein the dimension of the second portion of the bone is
- 17 a length.
- 18 21. The method of claim 1, wherein the displayed 3D virtual representation of the
- second portion of the bone has a lower symmetry than the second portion of the bone.
- 20 22. The method of claim 21, wherein the displayed 3D virtual representation of the
- 21 second portion of the bone comprises a cylindrical portion.
- 22 23. The method of claim 17, comprising:
- 23 determining an intraoperative orientation of the second portion of the bone;
- 24 and
- wherein the orientation of the displayed 3D virtual representation of the
- second portion of the bone is indicative of the intraoperative orientation of the second
- 27 portion of the bone.
- 28 24. The method of claim 23, wherein the step of determining the intraoperative position
- of the second portion of the bone comprises:
- securing at least one of (a) a set of energy emitters or (b) a set of energy

1	detectors to the first portion of the bone;		
2	detecting, using the set of energy detectors, energy emitted by the energy		
3	emitters of the set of energy emitters.		
4	25. The method of claim 24, wherein, if the intraoperative orientation of the second		
5	portion of the bone changes, updating the orientation of the displayed 3D virtual		
6	representation of the second portion of the bone so that the orientation of the displayed 3D		
7	virtual representation of the second portion of the bone remains indicative of the		
8	intraoperative orientation of the second portion of the bone.		
9	26. The method of claim 23, wherein the first portion and second portions of the bone		
10	are separated by a break and the method further comprises:		
11	manipulating at least one of the first ands second portions of the bone with		
12	respect to the other; and		
13	observing the respective virtual representations of the first and second bones.		
14	27. A method for preparing a virtual three-dimensional representation of a first portion		
15	of a bone comprising the steps of:		
16	obtaining, from a first orientation with respect to the first portion of the bone,		
17	first two-dimensional image data of the first portion of the bone;		
18	obtaining, from a second, different orientation with respect to the first		
19	portion of the bone, second two-dimensional image data of the first portion of the bone;		
20	generating, based on at least the first and second image data, a virtual		
21	representation of the first portion of the bone, the virtual representation having a lower		
22	symmetry than the first portion of the bone; and		
23	overlaying, on a display device, (i) an image of the virtual representation of		
24	the first portion of the bone and (ii) an image of the first portion of the bone, wherein an		
25	orientation of the displayed virtual representation is indicative of an intraoperative		
26	orientation of the first portion of the bone.		
27	28. The method of claim 27, comprising:		
28	obtaining, from a third orientation with respect to a second portion of the		
29	bone, third two-dimensional image data of the second portion of the bone;		
30	obtaining, from a third, different orientation with respect to the first portion		
31	of the bone, fourth two-dimensional image data of the second portion of the bone;		
32	generating, based on at least the second and fourth image data, a virtual		
33	representation of the second portion of the bone, the virtual representation of the second		

1	portion of the bone having a lower symmetry than the second portion of the bone; and		
2	overlaying, on a display device, (i) an image of the virtual representation of		
3	the second portion of the bone and (ii) an image of the second portion of the bone, wherein		
4	an orientation of the displayed virtual representation of the second portion of the bone is		
5	indicative of an intraoperative orientation of the second portion of the bone.		
6	29. The method of claim 28, wherein the first and second orientations are the same as,		
7	respectively, the third and fourth orientations.		
8	30. The method of claim 27, wherein the step of generating comprises identifying a		
9	longitudinal axis of the displayed image of the first portion of the bone and wherein the		
10	image of the virtual representation of the first portion of the bone extends along the		
11	longitudinal axis of the displayed image of the first portion of the bone.		
12	31. A system configured to prepare a virtual three-dimensional representation of a first		
13	portion of a bone, the system comprising:		
14	a display device; and		
15	a processor in communication with the display device, the processor		
16	configured to:		
17	receive first two-dimensional image data of the first portion of the		
18	bone, the first two-dimensional image data having been obtained from a first orientation		
19	with respect to the first portion of the bone;		
20	receive second two-dimensional image data of the first portion of the		
21	bone, the second two-dimensional image data having been obtained from a second, different		
22	orientation with respect to the first portion of the bone;		
23	generate, based on at least the first and second image data, a virtual		
24	representation of the first portion of the bone, the virtual representation having a lower		
25	symmetry than the first portion of the bone; and		
26	overlay, on the display device, (i) an image of the virtual		
27	representation of the first portion of the bone and (ii) an image of the first portion of the		
28	bone, wherein an orientation of the displayed virtual representation is indicative of an		

intraoperative orientation of the first portion of the bone.

29

and the second of the second of