gradedHittree soft Docment Version 2.0

Hiroki Yoneda

2018年3月5日

これまでの hittree では、一挙に行われていた merge や reconstruct などを分解して解析することや、それらのアルゴリズムをより柔軟に実装できるのを目標として、"new hittree soft"を作成中である。この Document では、database や生成ファイルについて、説明する。

1 Databese

検出器に与えるデータベースは、detector_map、detector_profile, cal 関数の3種類必要である。

1.1 detector_map

ASICID, ASICCH と DETID, DETCH との対応付をするデータである。"detector_map"という TTree 形式で与えられる。以下のような Branch を持っている。また、asic は、64ch 持っていることを前提している。

Branch 名	型	説明
asicid	Int_t	
asicch	Int_t	使用していない ch であっても記述する必要あり
remapch	Int_t	検出器全体での ch に対する通し番号。使用していない ch は、"-1"を記入。
detid	Int_t	検出器の ID。Si を 0-9 に、CdTe を 10 以上にすることを推奨。
detch	Int_t	検出器内での Ch。 隣接 Ch は、detch も隣接する。使用していない ch は、"-1"を
		記入。

1.2 detector_profile

検出器は、xy 面に平行であり、各ストリップは、x 軸、または、y 軸に平行であることを前提としている。 検出器が 3 次元的に複雑に配置される場合は、 $hittree_lv3$ から変換する必要あり。

1.3 cal 関数

"calfunc_DETID_DETCH"という名前の TSpline3 を持っている root file で与えられる。

Branch 名	型	説明
detid	$\operatorname{Int}_{\mathtt{-}}\!\mathrm{t}$	検出器の ID。Si を 0-9 に、CdTe を 10 以上にすることを推奨。
detch	${ m Int}_{ extsf{-}}{ m t}$	使用していない ch は、ここでは記入する必要なし。
detector_material	${ m Int_t}$	0: Si, 1:CdTe
detector_HV	${ m Int}_{ extsf{-}}{ m t}$	0: Ground 1: HVside
pos_x	$Double_t$	位置情報を持たない場合は、適当な値 (0 など) を入れる。
pos_y	Double_t	位置情報を持たない場合は、適当な値 (0 など) を入れる。
pos_z	$Double_t$	
delta_x	$Double_t$	位置情報を持たない場合は、"-1"を入れる。負値から、ストリップ方
		向を認識する。
delta_y	$Double_t$	位置情報を持たない場合は、"-1"を入れる。負値から、ストリップ方
		向を認識する。
delta_z	$Double_t$	
badch	${ m Int}_{ extsf{-}}{ m t}$	0: Good Channel 1: Bad Channel
ethre	Double_t (keV)	チャンネルごとに設定したエネルギースレッショルド。lv2 ファイル
		生成時に使うことを想定。

2 生成ファイル

データの生成は、eventtree \rightarrow hitttree_lv1 \rightarrow hitttree_lv2 \rightarrow hitttree_lv3 の 3 段階に分かれて行う。 hitttree_lv1 は、データベースの適用を行うのみとする。hitttree_lv2 は、ストリップのマージを基本的に は行う。hitttree_lv3 は、マージされたストリップシグナルを元に、ヒットを再構成する。各段階で、新しい Branch が元の tree に追加されていく形を採用する。したがって、hittree_lv3 は、eventtree, hitttree_lv1, hitttree_lv2 の情報も保持している。

2.1 hitttree_lv1

エネルギースレッショルドは適用せず、データベースを当てるのみ。各ブランチは、データベースの値をコピーした値になっている。1番目以外は、全て可変長配列。

2.2 hitttree_lv2

マージアルゴリズムを適用した後のシグナル情報。 pos や delta は、マージアルゴリズム内で計算する必要あり。

2.3 hitttree_lv3

両面情報からヒット情報に変換した後のデータ。pos や delta は、再構成アルゴリズム内で計算する必要あり。

型	Branch 名	説明
Int_t	ndetector_lv1	
Int_t	${\it detid_lv1} [{\it ndetector_lv1}]$	
Int_t	$material_lv1[ndetector_lv1]$	
Int_t	$nsignal_x_lv1[ndetector_lv1]$	
Int_t	$nsignal_y_lv1[ndetector_lv1]$	
Int_t	$detch_x_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Int_t	$detch_y_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$epi_x_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$epi_y_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$ethre_x_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$ethre_y_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$pos_x_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$delta_x_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$pos_y_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$delta_y_lv1[ndetector_lv1][MAX_N_SIGNAL]$	
Double_t	$pos_z_lv1[ndetector_lv1]$	
Double_t	${\rm delta_z_lv1}[{\rm ndetector_lv1}]$	

表 1 hittree_lv1

3 その他

配列や、ASICS 数の最大値などを src/ConstantPar.hh で設定している。実験システムが大きい場合は、ここを見直して、十分な値になっているか確認したほうがよい。

型	Branch 名	説明
Int_t	$ndetector_lv2$	
Int_t	${\rm detid_lv2}[{\rm ndetector_lv2}]$	
Int_t	$material_lv2[ndetector_lv2]$	
Int_t	${\rm nsignal_x_lv2}[{\rm ndetector_lv2}]$	
Int_t	${\rm nsignal_y_lv2}[{\rm ndetector_lv2}]$	
Int_t	$n_merged_strips_x_lv2[ndetector_lv2][MAX_N_SIGNAL]$	
Int_t	$n_merged_strips_y_lv2[ndetector_lv2][MAX_N_SIGNAL]$	
$Int_{-}t$	${\tt detch_array_x_lv2[ndetector_lv2][MAX_N_SIGNAL][MAX_N_SIGNAL_2]}$	
Int_t	${\tt detch_array_y_lv2[ndetector_lv2][MAX_N_SIGNAL][MAX_N_SIGNAL_2]}$	
Double_t	$epi_array_x_lv2[ndetector_lv2][MAX_N_SIGNAL][MAX_N_SIGNAL_2]$	
Double_t	$epi_array_y_lv2[ndetector_lv2][MAX_N_SIGNAL][MAX_N_SIGNAL_2]$	
Double_t	$epi_x_lv2[ndetector_lv2][MAX_N_SIGNAL]$	
Double_t	$epi_y_lv2[ndetector_lv2][MAX_N_SIGNAL]$	
Double_t	$pos_x_lv2[ndetector_lv2][MAX_N_SIGNAL]$	
Double_t	${\rm delta_x_lv2[ndetector_lv2][MAX_N_SIGNAL]}$	
Double_t	$pos_y_lv2[ndetector_lv2][MAX_N_SIGNAL]$	
Double_t	$delta_y_lv2[ndetector_lv2][MAX_N_SIGNAL]$	
Double_t	$pos_z_lv2[ndetector_lv2]$	
Double_t	${\rm delta_z_lv2[ndetector_lv2]}$	

表 2 hittree_lv2

型	Branch 名	説明
Int_t	ndetector_lv3	
Int_t	$detid_lv3[ndetector_lv3]$	
Int_t	${\rm material \ lv3} [{\rm ndetector \ lv3}]$	
Int_t	$nsignal_x_lv3[ndetector_lv3]$	
Int_t	$nsignal_y_lv3[ndetector_lv3]$	
Int_t	$nhit_lv3[ndetector_lv3]$	
Int_t	$n_merged_strips_x_lv3[ndetector_lv3][MAX_N_HIT]$	
Int_t	$n_merged_strips_y_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	$epi_x_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	$epi_y_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	$epi_reconstructed_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	$pos_x_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	$delta_x_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	$pos_y_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	$delta_y_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	$pos_z_lv3[ndetector_lv3][MAX_N_HIT]$	
Double_t	${\rm delta_z_lv3[ndetector_lv3][MAX_N_HIT]}$	

表 3 hittree_lv3