## **Background**

To understand a neural model in a better way and to analyze how the data is flowing in the model's providing the measurements and visualizations needed during the machine learning workflow.

It enables tracking experiment metrics like

- Loss and Accuracy
- · Visualizing the model graph
- Histograms
- · Projecting embeddings to a lower-dimensional space

TensorBoard can be uses to monitor and document neural model-related parameters (Accuracy, lo to neural models.

## **TASK**

Build a classification nueral model to classify handwritten digits using a Convolutional Nueral Net

Visualize the model with Tensorboard

Dataset - MNIST dataset

```
# Load the TensorBoard notebook extension
%load_ext tensorboard
import tensorflow as tf
import datetime
# Clear any logs from previous runs
!rm -rf ./logs/
# Input data - image labels - 28*28
# Model output - Classification result (0-9) - 10 output
# Build Convolutional Neural Net ( CNN ) to classify handwritten digits
# load the dataset
mnist = tf.keras.datasets.mnist
# splititng the data
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# creating the model
def create_model():
  return tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input shape=(28, 28)),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
  1)
```

```
Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mni">https://storage.googleapis.com/tensorflow/tf-keras-datasets/mni</a>
Гэ
   # Model building & train the model with train data.
# When training with Keras's Model.fit(), adding the TensorBoard callback will ensure logs
# Additionally, enable histogram computation every epoch with the command (histogram_freq=
# Place the logs in a timestamped subdirectory to allow easy selection of different traini
model = create_model()
model.compile(optimizer='adam',
          loss='sparse_categorical_crossentropy',
          metrics=['accuracy'])
log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
model.fit(x=x_train,
       y=y_train,
       epochs=5,
       validation_data=(x_test, y_test),
       callbacks=[tensorboard_callback])
F→ Epoch 1/5
   Epoch 2/5
   Epoch 3/5
   Epoch 4/5
   Epoch 5/5
   <tensorflow.python.keras.callbacks.History at 0x7fc4dda90160>
Model accuracy & Loss
# Visualize the stuff what going on inside model with tensorboard
```

# Visualize the stuff what going on inside model with tensorboard %tensorboard --logdir logs/fit

Гэ



Histogram view of bias & kernel in a neural network in subsequent epochs

%tensorboard --logdir logs/fit

С→

Reusing TensorBoard on port 6006 (pid 251), started 0:02:40 ago. (Use '!kill 251' to



Neural model in graph form, It helps to debug the model. It tells us which component of the model analysis of each neural model (Layers ) can be done with the help of graph view

%tensorboard --logdir logs/fit

С→

Reusing TensorBoard on port 6006 (pid 251), started 0:04:18 ago. (Use '!kill 251' to

