Directions: The quiz contains 20 problems. Place your answer in the blank provided. For graphing questions, a set of axes are provided. All graphs must be labeled.

1. Simplify $\left(\frac{8}{9}\right)^{-1/2}$.

$$=\left(\frac{9}{8}\right)^{\frac{1}{2}}=\frac{3}{212}$$

2. Write the slope intercept form (that is, the form: y = mx + b) of the equation of the line containing the point (2,3) parallel to the line 6x + 2y = 7.

$$y = \frac{1}{2}(7 - 6x)$$

$$y = \frac{1}{2}(7-6x)$$
 $y-3=-3(x-2)$

$$y = -3x + 9$$

$$m = -3$$

$$y = -3x + 9$$

3. Simplify the expression $\frac{3x^2y - 4x^3}{xy^2}$. Write your answer without negative exponents. $3xy - 4x^2$

4. Use the graph of f(x) below to estimate f(3).

5. Simplify the rational expression: $\frac{x+y}{1+\frac{1}{y}}$.

6. Solve the equation $3x^2 - 2x - 1 = 0$.

$$(3x + 1)(x - 1) = 0$$

 $x = \frac{1}{3}, x = 1$

7. Given the piecewise defined function below, determine the value(s) of x such that f(x) = 3.

$$f(x) = \begin{cases} x^2 & x \le 1 \\ x+3 & x > 1 \end{cases}.$$

$$x = -13$$

If $x \le 1$, $x^2 = 3$ means x = -13

If x>1, x+3=3 means x=0; foils x>1 requirement.

8. Find the exact value of $\sin(2\pi/3)$.

9. Find the equation for the top half of the circle with center (0,0) and radius 3.

$$y^{2} + x^{2} = 9$$
 $y = +\sqrt{9-x^{2}}$

and radius 3.
$$y = \sqrt{9-x^2}$$

10. For the function $f(x) = x^2$, find the expression f(2) - f(2+h). Simplify your answer if possible. $-4h - h^2$

f(z)-f(2+h)

 $=2^{2}-(2+h)^{2}$

 $=4-4-4h-h^2=-4h-h^2$

11. Using the table of values for the function f(x), determine $f^{-1}(2)$.

х	1	2	3	4	5	6	7	8	9	10
f(x)	0.5	1	1.7	1.9	2	4	4.5	5.1	6.7	10.8

5

12. Let g(x) = 2x + 1, find $(g \circ g)(x)$. You do not need to simplify your answer.

$$g(g(x)) = g(2x+1) = 2(2x+1)+1$$

= 4x+3

13. Solve for *x* in the equation $ln(x^2 - 5) = 4$.

$$x^{2}-5=e^{4}$$

 $x^{2}=5+e^{4}$ $x=\pm\sqrt{5+e^{4}}$

$$X=\pm V5+e^{4}$$

14. Determine the domain of $f(x) = \frac{1}{1 - \sqrt[3]{x}}$. Give your answer in interval notation $(-\infty, 1)$

Avoid
$$1-3x=0$$

or $1=3x$
or $1=x$

15. Solve the equation $0 = \tan x$.

 $X = ... - \pi, 0, \pi, 2\pi, 3\pi, ...$ or $X = \pi K, K integer$

16. Find the exact value of the expression $log_{10}(25) + log_{10}(4)$.

 $\log_{10}(25.4) = \log_{10}(100)$ = $\log_{10}(10^2 = 2)$ 17. On the axes below, sketch the graph of $y = -\sqrt{x}$.

18. On the axes below, sketch the graph of $y = 2\sin(x) + 3$ on the interval $[-2\pi, 2\pi]$.

2 ---

19. On the axes below, sketch the graph of $y = \ln(x - 1)$.

20. Solve the inequality $x^2 - 4 \ge 0$.

(-a,-4) U (4,00)