Architecture des ordinateurs

Automates

Automates

- circuits logiques combinatoires : coder une fonction
- circuits logiques séquentiels : mémoriser des valeurs
- les deux : fabriquer des automates

automates finis déterministes : un nombre fini d'état, à partir d'un état donné, une transition ne mène qu'à un seul autre état possible.

- Un automate simple qui produit 0 0 1 1 0 0 1 1 0 0 1 1
- ▶ Un cercle : un état
- Une flèche : transition d'un état à un autre

Du graphe à la réalisation (1/2)

- Un registre pour stocker l'état (nombre binaire)
 - \rightarrow 4 états donc 2 bits : e_1 e_0
- Un circuit logique combinatoire pour créer les transitions
- La sortie dépendant de l'état courant : out

état courant	<i>e</i> ₁	e_0	out
0	0	0	0
1	0	1	0
2	1	0	1
3	1	1	1

$$out = e_1$$

Du graphe à la réalisation (2/2)

Il faut calculer l'état suivant s₁ s₂ à partir de chaque état

état courant	état suivant	<i>e</i> ₁	e_0	out	s_1	s_0
0	1	0	0	0	0	1
1	2	0	1	0	1	0
2	3	1	0	1	1	1
3	0	1	1	1	0	0

▶ De ces tables de vérité, nous déduisons que $s_1 = e_0.\overline{e_1} + \overline{e_0}.e_1$ et que $s_0 = \overline{e_0}$

Du graphe à la réalisation (2/2)

- out = e_1
- $ightharpoonup s_1 = e_0.\overline{e_1} + \overline{e_0}.e_1$
- ho $s_0 = \overline{e_0}$

Réalisation d'un automate avec une entrée

- Créons une machine qui reçoit un nombre représenté en binaire, bit par bit de droite à gauche et multiplie ce nombre par 3.
- procédure : on multiplie un seul bit par 3, on donne le bit de résultat en sortie, et on garde la retenue pour l'ajouter à la multiplication du bit suivant
- Analyse des cas possibles :

$3 \times \text{bit} + \text{retenue}$	résultat	bit produit	retenue

Réalisation d'un automate avec une entrée

- Créons une machine qui reçoit un nombre représenté en binaire, bit par bit de droite à gauche et multiplie ce nombre par 3.
- procédure : on multiplie un seul bit par 3, on donne le bit de résultat en sortie, et on garde la retenue pour l'ajouter à la multiplication du bit suivant
- Analyse des cas possibles :

$3 \times \text{bit} + \text{retenue}$	résultat	bit produit	retenue
$3 \times 0 + 0$	0	0	0
$3 \times 1 + 0$	$3_{10} = 11_2$	1	1
$3 \times 0 + 1$	1	1	0
$3 \times 1 + 1$	$4_{10} = 100_2$	0	10
$3 \times 0 + 2$	$2_{10} = 10_2$	0	1
$3 \times 1 + 2$	$5_{10} = 101_2$	1	10

Création du graphe

$3 \times \text{bit} + \text{retenue}$	résultat	bit produit	retenue
$3 \times 0 + 0$	0	0	0
$3 \times 1 + 0$	$3_{10} = 11_2$	1	1
$3 \times 0 + 1$	1	1	0
$3 \times 1 + 1$	$4_{10} = 100_2$	0	10
$3 \times 0 + 2$	$2_{10} = 10_2$	0	1
$3 \times 1 + 2$	$5_{10} = 101_2$	1	10

- L'état de l'automate représente l'état de la retenue
- Une transition représente le bit lu en entrée et celui écrit en sortie
- Pour construire l'automate on se place dans l'état de départ (l'état a), puis on effectue son travail :
 - 1 lire le bit suivant du nombre à multiplier,
 - 2 choisir la transition qui y correspond depuis l'état courant.
 - 3 écrire la valeur indiquée sur la transition,
 - 4 l'état d'arrivée de la transition est le nouvel état courant.
 - recommencer à l'étape 1.

Vérification du graphe

- si l'automate reçoit en entrée les bits 110010
- ▶ qui correspondent au nombre 010011₂ = 19₁₀
- ▶ il va passer par les états a, b, c, b, a, b, a
- et produire les bits 100111
- qui correspondent au nombre 111001₂ = 71₈ = 57₁₀

état	a		b		С		b		а		b		а
bit lu		1		1		0		0		1		0	
bit écrit		1		0		0		1		1		1	

Construction de la table de vérité

état courant	e_1	e_0	i	etat suivant	n_1	n_0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	1
1	0	1	0	0	0	0	1
1	0	1	1	2	1	0	0
2	1	0	0	1	0	1	0
2	1	0	1	2	1	0	1
	1	1	0	?	?	?	?
	1	1	1	?	?	?	?

$$\qquad \qquad n_1 = \overline{e_1}.e_0.i + e_1.\overline{e_0}.i$$

$$\qquad \qquad \bullet \quad n_0 = \overline{e_1}.\overline{e_0}.i + e_1.\overline{e_0}.\overline{i}$$

$$n_1 = \overline{e_1}.e_0.i + e_1.\overline{e_0}.i$$

$$n_0 = \overline{e_1}.\overline{e_0}.i + e_1.\overline{e_0}.\overline{i}$$

$$ightharpoonup o = \overline{e_1}.\overline{e_0}.i + \overline{e_1}.e_0.\overline{i} + e_1.\overline{e_0}.i$$

donc $n_1 = e_1.i + e_0.i$.

- $n_1 = e_1.i + e_0.i$
- $\qquad \qquad \bullet \quad n_0 = \overline{e_1}.\overline{e_0}.i + e_1.\overline{e_0}.\overline{i}$
- $ightharpoonup o = \overline{e_1}.\overline{e_0}.i + \overline{e_1}.e_0.\overline{i} + e_1.\overline{e_0}.i$

donc
$$n_0 = e_1.\overline{i} + \overline{e_1}.\overline{e_0}.i$$
.

- $n_1 = e_1.i + e_0.i$
- $n_0 = e_1.\overline{i} + \overline{e_1}.\overline{e_0}.i$
- $ightharpoonup o = \overline{e_1}.\overline{e_0}.i + \overline{e_1}.e_0.\overline{i} + e_1.\overline{e_0}.i$

donc
$$o = \overline{e_0}.i + e_0.\overline{i}.$$

- $n_1 = e_1.i + e_0.i$
- $\qquad \qquad \bullet \quad n_0 = e_1.\overline{i} + \overline{e_1}.\overline{e_0}.i$
- $o = \overline{e_0}.i + e_0.\overline{i}$

Réalisation de l'automate

Un automate général

- un registre contient l'état courant
- un bloc de logique calcule les signaux de sortie et l'état suivant à partir de l'état courant et des signaux en entrée
- une horloge assure la transition d'un état au suivant