Лекции по Математической логике 4 семестр

Ilya Yaroshevskiy

8 апреля 2021 г.

Оглавление

1	TODO			
2	TODO			3
3	3 TODO			
4				5
	4.1	Табли	ичные модели	. 5
	4.2		ли Крипке	
	4.3		зательство нетабличности	
5				9
	5.1	Прогр	раммы	. 9
		5.1.1	Исчесление предикатов	. 11
		5.1.2	Теория моделей	
		5.1.3	Теория доказательств	. 13
6				14
	6.1	Исчис	сление предикатов	. 14
		6.1.1	Расставление скобок	. 14
		6.1.2	Вхождение	. 15
		6.1.3	Свободные подстановки	. 15
		6.1.4	Пример доказательства	
		6.1.5	Теорема о дедукции	
7				17
	7.1	Полно	ота исчесления преликатов	. 17

TODO

TODO

TODO

Определение. Предпорядок — транзитивное, рефлексивнре

Определение. Отношение порядка (частичный) — антисимметричное, транзитивное, рефлексивное

Определение. Линейный порядок — порядок в котором $a \leq b$ или $b \leq a$

Определение. Полный порядок — линейный, каждое подмножество имеет наименьший элемент.

 $\Pi pumep. \ \mathbb{N} -$ вполне упорядоченное множество

 $\Pi puмер. \mathbb{R}$ — не вполне упорядоченной множество

- (0,1) не имееи наименььшего
- \bullet \mathbb{R} не имеет наименьшего

4.1 Табличные модели

Определение. Назовем модель табличной для ИИВ:

- V множество истинностных значений $f_{\to}, f_{\&}, f_{V}: V^{2} \to V, \ f_{\neg}: V \to V$ Выделенные значения $T \in V$ $+i \rrbracket \in V \ f_{p}: p_{i} \to V$
- $\begin{array}{l} \bullet \ \, p_i = f_{\mathcal{P}}(p_i) \\ \llbracket \alpha \star \beta \rrbracket = f_{\star}(\llbracket \alpha \rrbracket, \llbracket \beta \rrbracket) \\ \llbracket \neg \alpha \rrbracket = f_{\neg}(\llbracket \alpha \rrbracket) \end{array}$

Определение. Конечная модель: модель где V- конечно

Теорема 4.1.1. У ИИВ не существует полной табличной модели

ЛЕКЦИЯ 4. 6

4.2 Модели Крипке

все банки лопнут, RSA сломают!!!

- 1. $W = \{W_i\}$ множество миров
- 2. частичный порядок(≿)
- 3. отношение вынужденности: $W_j \Vdash p_i$ (\Vdash) $\subseteq W \times \mathcal{P}$ При этом, если $W_j \Vdash p_i$ и $W_j \preceq W_k$, то $W_j \Vdash p$

Определение.

- 1. $W_i \Vdash \alpha$ и $W_i \Vdash \beta$, тогда (и только тогда) $W_i \Vdash \alpha \& \beta$
- 2. $W_i \Vdash \alpha$ или $W_i \Vdash \beta$, то $W_i \Vdash \alpha \vee \beta$
- 3. Пусть во всех $W_i \preceq W_j$ всегда когда $W_j \Vdash \alpha$ имеет место $W_j \Vdash \beta$ Тогда $W_i \Vdash \alpha \to \beta$
- 4. $W_i \Vdash \neg \alpha \alpha$ не вынуждено нигде, начиная с W_i : $W_i \preceq W_j$, то $W_j \not \Vdash \alpha$

Теорема 4.2.1. Если $W_i \Vdash \alpha$ и $W_i \preceq W_j$, то $W_j \Vdash \alpha$

Определение. Если $W_i \Vdash \alpha$ при всех $W_i \in W$, то $\models \alpha$

Теорема 4.2.2. ИИВ корректна в модели Крипке

Доказательство. 1. $\langle W, \Omega \rangle$ — топология, где $\Omega = \{w \subseteq W | \text{если } W_i \in w, \ W_i \preceq W_j, \ \text{то} \ W_j \in w\}$

2. $\{W_k|W_k \Vdash p_j\}$ — открытое множество Примем $[\![p_j]\!] = \{W_k|W_k \Vdash p_j\}$ Аналогично $[\![\alpha]\!] = \{W_k|W_k \Vdash \alpha\}$

ЛЕКЦИЯ 4. 7

4.3 Доказательство нетабличности

Пусть существует конечная табличная модель |V|=n

$$\varphi_n = \bigvee_{\substack{1 \le i, j \le n+1 \\ i \ne j}} (p_i \to p_j \& p_j \to p_i)$$

1. $\not\vdash \varphi$

$$W_1 \not\Vdash (p_i \to p_k) \& (p_k \to p_1), \ k \neq 1$$

Значит

$$\forall (p_i \to p_j) \& (p_j \to p_i)$$

$$\forall \bigvee (p_i \to p_j) \& (p_j \to p_i)$$

$$\forall \varphi_n$$

2. $\models_V \varphi_n$: по признаку Дирихле найдутся $i \neq j: \llbracket p_i \rrbracket = \llbracket p_j \rrbracket$ $\llbracket p_i \to p_j \rrbracket = \mathrm{H}$ и $\llbracket \varphi_n \rrbracket = \mathrm{H}$ Значит $\vdash \varphi_n$ — противоречие

Определение. Дизъюнктивность ИИВ: $\vdash \alpha \lor \beta$ влечет $\vdash \alpha$ или $\vdash \beta$

Определение. Гёделева алгебра — алгебра Гейтинга, такая что из $\alpha+\beta=1$ следует что $\alpha=1$ или $\beta=1$

Определение. Пусть \mathfrak{A} — алгебра Гейтинга, тогда:

1. $\Gamma(\mathfrak{A})$

ЛЕКЦИЯ 4.

Добавим новый элемент $1_{\Gamma(\mathfrak{A})}$ перенеименуем $1_{\mathfrak{A}}$ в ω

8

Теорема 4.3.1.

- $\Gamma(\mathfrak{A})$ алгебра Гейтинга
- Г(Д) Геделева

Определение. Гомоморфизм алгебр Гейтинга

- $\varphi: \mathfrak{A} \to \mathcal{B}$
- $\varphi(a \star b) = \varphi(a) \star \varphi(b)$
- $\varphi(1_{\mathfrak{A}}) = 1_{\mathcal{B}}$
- $\varphi(0_{\mathfrak{A}}) = 0_{\mathcal{B}}$

Теорема 4.3.2. $a \le b$, то $\varphi(a) \le \varphi(b)$

Определение.

- α формула ИИВ
- f, g: оценки ИИВ
- $f: \text{ИИВ} \to \mathfrak{A}$
- g: ИИВ $\rightarrow \mathcal{B}$

 φ согласованы f,g, если $\varphi(f(\alpha))=g(\alpha)$

Теорема 4.3.3. если $\varphi:\mathfrak{A}\to\mathcal{B}$ согласована с f,g и оценка $[\![\alpha]\!]_g\neq 1_{\mathcal{B}}$, то $[\![\alpha]\!]_f\neq 1_{\mathfrak{A}}$

Теорема 4.3.4. ИИВ дизъюнктивно

Доказательство. Рассмторим алгебру Линденбаума: $\mathcal L$ Рассмотрим $\Gamma(\mathcal L)$

• $\varphi:\Gamma(\mathcal{L})\to\mathcal{L}$

$$\varphi(x) = \begin{cases} 1_{\mathcal{L}} &, x = \omega \\ x &, \text{иначе} \end{cases}$$

 φ — гомоморфизм

Пусть $\vdash \alpha \lor \beta$, тогда $\llbracket \alpha \lor \beta \rrbracket_{\Gamma(\mathcal{L})} = 1_{\Gamma(\mathcal{L})}$ $\llbracket \alpha + \beta \rrbracket = 1$, и т.к. $\Gamma(\mathcal{L})$ — Геделева то $\llbracket \alpha \rrbracket = 1$ или $\llbracket \beta \rrbracket = 1$ Пусть $\not\vdash \alpha$ и $\not\vdash \beta$, тогда $\varphi(\llbracket \alpha \rrbracket) \ne 1_{\mathcal{L}}$ и $\varphi(\llbracket \beta \rrbracket) \ne 1_{\mathcal{L}}$, т.е. $\llbracket \alpha \rrbracket_{\mathcal{L}} \ne 1_{\mathcal{L}}$ и $\llbracket \beta \rrbracket_{\mathcal{L}} \ne 1_{\mathcal{L}}$, тогда $\llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} \ne 1_{\Gamma(\mathcal{L})}$ и $\llbracket \beta \rrbracket_{\Gamma(\mathcal{L})} \ne 1_{\Gamma(\mathcal{L})} \Rightarrow$ Противоречие

5.1 Программы

программа(функция)

- $P: \alpha \to \beta$ берет α , возвращает β
- P доказательство, что из α следует β Π ример.

```
1 f a = a
```

 $f:A \to A-f$ доказывает что, из A следует A

```
        логическок исчесления
        Типизированное λ-исчесление

        логическая формула
        тип

        доказательство
        значение

        доказуемая формула
        обитаемый тип(имеет хотя бы один экземпляр)

        →
        функция

        &
        упорядоченная пара

        V
        алг. тип(тип-сумма)
```

Пример. 5 доказывает Int

Пример. Список:

```
Type list = Record

Nul: boolean;
case Nul of
True :;
False : Next: ^list;
end;
```

Определение. Отмеченное (дизъюнктное) объединение множеств:

- A, B множества
- $\bullet \ \ A \sqcup B = \{\langle ``A``, a \rangle | a \in A\} \cup \{\langle ``B``, a \rangle | b \in B\}$

Пусть $S \in A \sqcup B$. Мы знаем откуда S

| Nil (* α *) -> 0 (* $\alpha \rightarrow int$ *)

```
data List a = Nil | Cons a (List a)
example = Cons 1 (Cons 2 (Cons 3 Nil)) -- [1; 2; 3]

union {
    int a;
    char b;
};

\Pi pumep.
\frac{\Gamma \vdash \stackrel{\text{Nil}}{\alpha} \to \gamma \quad \Gamma \vdash \stackrel{\text{Cons}}{\beta} \to \gamma \quad \vdash \alpha \lor \beta}{\Gamma \vdash \gamma \atop \text{int}}
let rec count 1 (* \alpha + \beta *) =
match 1 with
```

| Cons(hd, tl) (* β *) -> 1 + count tl (* $\beta \rightarrow int$ *)

5.1.1 Исчесление предикатов

Определение. Язык исчисление предикатов

- логические выражения "предикаты"/"формулы"
- предметные выражния "термы"

 Θ — метаперменные для термов Термы:

- Атомы:
 - $-a,b,c,d,\ldots$ предметные переменные
 - -x,y,z метапеременные для предметных перменных
- Функциональные Символы
 - -f, g, h Функциональные символы (метапереминые)
 - $-f(\Theta_1,\dots\Theta_n)$ применение функциональных символов
- Логические выражения:

Если n = 0, будем писать f, g — без скобок

- Р метаперменные для предикатных символов
- -A, B, C предикатный символ
- $P(\Theta_1,\ldots,\Theta_n)$ применение предикатных символов
- $-\ \&, \lor, \neg, \to -\$ Связки
- $\forall x. \varphi$ и $\exists x. \varphi$ кванторы "<квантор> <переменная>.<выражение>"
- 1. Сокращение записи И.В + жадность \forall , \exists Метавыражение:

$$\forall x.(P(x)\&(\forall y.P(y)))$$

Квантор съедает все что дают, т.е. имеет минимальный приоритет. Правильный вариант(настоящее выражние):

$$\forall a.B(A)\&\forall b.B(b)$$

5.1.2 Теория моделей

Оценка формулы в исчислении предикатов:

- 1. Фиксируем D предметное множетво
- 2. Кажодму $f_i(x_1,\ldots,x_n)$ сопоставим функцию $D^n\to D$

3. Каждому $P_j(x_1,\dots,x_m)$ сопоставим функцию(предикат) $D^2 \to V$

4. Каждой x_i сопоставим элемент из D

Пример.

$$\forall x. \forall y. \ E(x,y)$$

Чтобы определить формулу сначала определим $D=\mathbb{N}$

$$E(x,y) = \begin{cases} \mathbf{M} & , x = y \\ \mathbf{\Pi} & , x \neq y \end{cases}$$

- $\bullet \ \llbracket x \rrbracket = f_{x_i}$
- $\llbracket \alpha \star \beta \rrbracket$ смотри ИИВ
- $\llbracket P_i(\Theta_1, \dots, \Theta_n) \rrbracket = f_{P_i}(\llbracket \Theta_1 \rrbracket, \dots, \llbracket \Theta_n \rrbracket)$
- $[f_i(\Theta_1, ..., \Theta_n)] = f_{f_i}([\Theta_1], ..., [\Theta_n])$

•
$$[\![\forall x.\varphi]\!] = \begin{cases} \mathbf{H} &, \text{если } [\![\varphi]\!]^{f_x=k} = \mathbf{H} \text{ при всех } k \in D \\ \mathbf{\Pi} &, \text{иначе} \end{cases}$$

 $\llbracket\exists x.arphi

rbracket=H$, если $\llbracketarphi
rbracket^{f_x=k}=H$ при некотором $k\in D$ Л , иначе

$$\llbracket \forall x. \forall y. E(x,y) \rrbracket = \Pi$$

т.к. $[\![E(x,y)]\!]^{x:=1,\ y:=2}=\Pi$

Пример.

$$orall \left[arepsilon > 0
ight] \; \exists N \; orall \left[\left| \mathrm{a}_n - a
ight| < \left| arepsilon
ight|
ight]$$

Синим отмечены функциональные конструкции(термы), зеленым предикатные

$$\forall \varepsilon. (\varepsilon > 0) \to \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

Обозначим:

- (>)(a,b) = G(a,b) предикат
- $\bullet \mid \bullet \mid (a) = m_{\mid}(a)$
- $(-)(a,b) = m_{-}(a,b)$
- $0() = m_0$
- $a_{\bullet}(n) = m_a(n)$

$$\forall e. \boxed{\mathbf{G}(\underline{\mathbf{e}}, \underline{\mathbf{m}_0})} \rightarrow \exists n_0. \forall n. \underline{\mathbf{G}(\mathbf{n}, \mathbf{n}_0)} \rightarrow \overline{\mathbf{G}(\mathbf{e}, \underline{\mathbf{m}_1(m_-(m_a(n), a))})}$$

5.1.3 Теория доказательств

Все аксимомы И.В + М.Р.

(схема 11)
$$(\forall x.\varphi) \rightarrow \varphi[x := \Theta]$$

(схема 12)
$$\varphi[x := \Theta] \to \exists x. \varphi$$

Если Θ свободен для подстановки вместо x в φ .

Определение. Свободен для подстановки — никакое свободное вхождение x в Θ не станет связанным

Пример.

Заменим у := х. Код сломается, т.к. у нас нет свобод для подстановки

(Правило ∀)

$$\frac{\varphi \to \psi}{\varphi \to \forall x.\psi}$$

(Правило ∃)

$$\frac{\psi \to \varphi}{\exists x. \psi \to \varphi}$$

В обоих правилах x не входит свободно в φ

Пример.

$$\frac{x=5\rightarrow x^2=25}{x=5\rightarrow \forall x.x^2=25}$$

Между x и x^2 была связь, мы ее разрушили. Нарушено ограничение $\Pi pumep$.

$$\exists y.x = y$$

$$\forall x. \exists y.x = y \rightarrow \exists y.y + 1 = y$$

Делаем замену х := y+1. Нарушено требование свобод для подстановки. y входит в область действия квантора \exists и поэтому свободная переменная x стала связанная.

6.1 Исчисление предикатов

6.1.1 Расставление скобок

Кванторы имеют наименьший приоритет $\Pi pumep$.

$$\forall x. A \& B \& y. C \& D \lor \exists z. E$$
$$(\forall x. (A \& B \& \forall y. (C \& D \lor \exists z. (E))))$$

Еще раз про правила только со скобками

1.

$$\frac{\varphi \to \psi}{(\exists . \varphi) \to \psi}$$

2.

$$\frac{\psi \to \varphi}{\psi \to (\forall x.\varphi)}$$

 Π ример.

$$\frac{\varphi \to \psi}{\exists x. (\varphi \to \psi)}$$

— можно доказать, но это не правило вывода для \exists

Определение. α_1,\ldots,α_n — доказательство

- если α_i аксимома
- либо существует j, k < i, что $\alpha_k = \alpha_j \to \alpha_i$
- либо существует $\alpha_j: \alpha_j = \varphi \to \psi$ и $\alpha_i = (\exists x. \varphi) \to \psi$ причем x не входит свободно в ψ
- либо существует $j:\alpha_j=\psi \to \varphi$ и $\alpha_i=\psi \to \forall x. \varphi$ причем x не входит свободно в ψ

ЛЕКЦИЯ 6.15

6.1.2 Вхождение

Пример.

$$(P(\underset{1}{x}) \lor Q(\underset{2}{x})) \to (R(\underset{3}{x}) \& (\underbrace{\forall x. P_1(\underset{5}{x})}_{\text{область } \forall \text{ по } x}))$$

 $1,\,2,\,3$ — свободные, 5 — связанное, по пермененной 4

Пример.

$$\underbrace{\forall x. \forall y. \forall x. \forall y. \forall x. P(x)}_{\text{область } \forall \text{ no } x}$$

Здесь x в P(x) связано. x не входит свободно в эту формулу, потому что нет свободных вхождений

Определение. Переменная x входит свободно если существует свободное вхождение

Определение. Вхождение свободно, если не связано

Можно относится к свободно входящим перменным как с перменным из библиотеки, т.е. мы не имеем права их переименовывать

Пример. Некорректная формула

$$\alpha_1 \ x = 0 \rightarrow x = 0$$

$$\alpha_2 \ (\exists x.x = 0) \to (x = 0)$$
 — не доказано

$$\alpha_2'$$
 ($\exists t.x=0$) \rightarrow ($x=0$) — (правило \exists)

 Π ример.

$$(n)$$
 $x=0 \rightarrow y=0$ — откуда то

$$(n+1) \ (\exists x.x = 0) \to (y=0) - ($$
правило \exists)

6.1.3 Свободные подстановки

Определение. Θ свободен для подстановки вместо x в φ , если никакая свободная перменная в Θ не станет связанной в $\varphi[x:=\Theta]$

Определение. $\varphi[x:=\Theta]$ — "Заменить все свободные вхождения x в φ на Θ "

Пример.

$$(\forall x. \forall y. \forall x. P(x))[x := y] \equiv \forall x. \forall y. \forall x. P(x)$$

 Π ример.

$$P(x) \lor \forall x. P(x) \ [x := y] \equiv P(y) \lor \forall x. P(y)$$

ЛЕКЦИЯ 6.16

 Π ример.

$$(\forall y.x = y) [x := \underbrace{y}_{\equiv \Theta}] \equiv \forall y.y = y$$

 $FV(\Theta)=\{y\}$ — свободные перменные в $\Theta.$ Вхождение y с номером 1 стало связанным

Пример.

$$P(x)\&\forall y.x = y \ [x := y + z] \equiv P(y + z)\&\forall y.y + z = y$$

Здесь при подстановке вхождение y с номером 1 стало связанным. x — библиотечная функция, переименовали x во что-то другое.

6.1.4 Пример доказательства

Лемма 1. $\Pi y cmb \vdash \alpha$. $Tor \partial a \vdash \forall x.\alpha$

Доказательство.

1. Т.к. $\vdash \alpha$, то существует $\gamma_1, \ldots, \gamma_2 : \gamma_n = \alpha$

6.1.5 Теорема о дедукции

Теорема 6.1.1. Пусть задана Γ , α , β

- 1. Если $\Gamma, \alpha \vdash \beta$, то $\Gamma \vdash \alpha \to \beta$, при условии, если b в доказательстве $\Gamma, \alpha \to \beta$ не применялись правила для \forall, \exists по перменным, входящим свободно в α
- 2. Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$

- $\Gamma \vDash \alpha \alpha$ следует из Γ при всех оценках, что все $\gamma \in \Gamma$ $[\![\gamma]\!] = \mathrm{И},$ выполнено $[\![\alpha]\!] = \mathrm{U}$
- $x = 0 \vdash \forall x.x = 0$
- $x = 0 \not\models \forall x.x = 0$

Определение (Условие для корректности). Правила для кванторов по свободным перменным из Γ запрещены. Тогда $\Gamma \vdash \alpha$ влечет $\Gamma \vDash \alpha$

7.1 Полнота исчесления предикатов

Определение. Γ — непротиворечивое множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ ни при каком α

Пример. Непротиворечивые:

- Ø
- $\bullet \ \ A \vee \neg A$

Противоречивые:

A&¬A

Примечание. Непротиворечивое множество замкнутых(не имеющая сводных перменных) бескванторных формул

Пример.
$$\{A\}, \{0=0\}$$

Определение. Моделью для непротиворечивого множества замкнутых бескванторных формул Γ — такая модель, что каждая формула из Γ оценивается в Π

Определение. Полное непротиворечивое замкнутых бескванторных формул — такое, что для каждой замкнутой бескванторной формулы α : либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$

ЛЕКЦИЯ 7. 18

Обозначение. з.б. — замкнутая бескванторная. **непр.** м**н** — непротиворечивое множество

Теорема 7.1.1. Если Γ — непротиворечивое множество з.б. фомул и α — з.б. формула.

То либо $\Gamma \cup \{\alpha\}$, либо $\Gamma \cup \{\neg \alpha\}$ — непр. мн. з.б. формул

$$\mathcal{A}$$
оказательство. Пусть и $\Gamma \cup \{\alpha\}$ и $\Gamma \cup \{\neg \alpha\}$ Доделать

Теорема 7.1.2. Если Γ — непр. мн. з.б. фомул, то можно построить Δ — полное непр. мн. з.б. формул. $\Gamma \subseteq \Delta$ и в языке — счетное количество формул

 $\varphi_1, \varphi_2, \varphi_3, \ldots$ — формулы з.б.

- $\Gamma_0 = \Gamma$
- $\Gamma_1 = \Gamma_0 \cup \{\varphi_1\}$ либо $\Gamma_0 \cup \{\neg \varphi_1\}$ смотря что непротиворечивое
- $\Gamma_2 = \Gamma_1 \cup \{\varphi_2\}$ либо $\Gamma_1 \cup \{\neg \varphi_2\}$

$$\Gamma^* = \bigcup_i \Gamma_i$$

Свойство 1. $\Gamma^* - nолное$

Свойство 2. Γ^* — непрерывное

Доказательство. Пусть $\Gamma^* \vdash \beta \& \neg \beta$

Конечное доказательство $\gamma_1,\ldots\gamma_n$, часть из которых гипотезы: γ_1,\ldots,γ_k $\gamma_i\in\Gamma_{R_i}$. Возьмем $\Gamma_{\max R_i}$. Правда ли $\Gamma_{\max R_i}\vdash B\&\neg B$

Теорема 7.1.3. Любое полное непротиворечивое множество замкнутых бескванторных формул Γ имеет модель, т.е. существует оценка []: если $\gamma \in \Gamma$, то $[\![\gamma]\!] = M$

- $\llbracket f_0^n \rrbracket$ константа \Rightarrow " f_0^n "
- $[f_k^m(\Theta_1, \dots, \Theta_k)] \Rightarrow "f_k^m(" + [\Theta_1]] + ", " + \dots + ", " + [\Theta_k]] + ")"$
- $[\![P(\Theta_1,\ldots,\Theta_n)]\!] = egin{cases} \mathbb{I} & P(\Theta_1,\ldots,\Theta_n) \in \Gamma \\ \mathbb{I} & \text{иначе} \end{cases}$
- свободные переменные: Ø

Так построенные модель — модель для Γ . Индукция по количеству связок. База очев.

Переход $\alpha \& \beta$. При этом

ЛЕКЦИЯ 7. 19

- 1. Если $\alpha, \beta \in \Gamma$ $\llbracket \alpha \rrbracket = И$ и $\llbracket \beta \rrbracket = И$ то $\alpha \& \beta \in \Gamma$
- 2. Если $\alpha, \beta \notin \Gamma$ $\llbracket \alpha \rrbracket \neq \mathbf{H}$ или $\llbracket \beta \rrbracket \neq \mathbf{H}$ то $\alpha \& \beta \notin \Gamma$

Аналогично для других операций

Теорема 7.1.4 (Геделя о полноте). Если Γ — полное неротиворечивое множество замкнутых (не бескванторных) фомул, то оно имеет модель

Следствие 7.1.4.1. Пусть $\models \alpha$, тогда $\vdash \alpha$

Доказательство. Пусть $\models \alpha$, но $\not\vdash \alpha$. Значит $\{\neg \alpha\}$ — непротиворечивое множество замкнутых формул. Тогда $\{\alpha\}$ или $\{\neg \alpha\}$ — непр. мн. з. ф. Пусть $\{\alpha\}$ — непр. мн. з.ф., а $\{\neg \alpha\}$ — противоречивое. При этом $\neg \alpha \vdash \beta \& \neg \beta$, $\neg \alpha \vdash \alpha$, $\beta \& \neg \beta \models \alpha$. $\neg \alpha \vdash \alpha$, $\alpha \vdash \alpha$. Значит $\vdash \alpha$

- Г п.м.з.ф.
- перестроим Γ в Γ^{\triangle} п.н.м. **б.** з. ф.
- ullet по теореме о существование модели: M^{\triangle} модель для F^{\triangle}
- ullet покажем, что M^{\triangle} модель для $\Gamma-M$

 $\Gamma_0 = \Gamma$, где все формулы — в предварительной нормальной форме

Определение. ПНФ — формула, где $\forall \exists \forall \dots (\tau), \, \tau$ — формула без кванторов

Теорема 7.1.5. Если φ — формула, то существует ψ — в п.ф., то $\varphi \to \psi$ и $\psi \to \varphi$

Доказательство. $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_1 \subseteq \cdots \subseteq \Gamma^*$. $\Gamma^* = \bigcup_i \Gamma_i$

Переход: $\Gamma_i \to \Gamma_{i+1}$

Рассмторим: $\varphi_j \in \Gamma_i$

Построим семейство ф.с. d_i^j — новые перменные

- 1. φ_j без кванторов не трогаем
- 2. $\varphi_j \equiv \forall x.\psi$ добавим все формулы вида $\psi[x:=\Theta]$, где Θ терм, состоящий из $f\colon d_0^e, d_1^{e'}\dots, d_{i-1}^{e'\dots'}$
- 3. $\varphi_i \equiv \exists x. \psi$ добавим $\psi[x := d_i^j]$

 $\Gamma_{i+1} = \Gamma_i \cup \{$ все добавленные формулы $\}$ — счетное количество \square

Теорема 7.1.6. Если Γ_i — непротиворечиво, то Γ_{i+1} — непротиворечиво

Теорема 7.1.7. $\Gamma *$ — непротиворечиво

Следствие 7.1.7.2. $\Gamma^{\triangle} = \Gamma *$ без формул с \forall , \exists