

COMM+4.PCI[™] USER MANUAL

Part # 7404

Sealevel Systems, Inc 155 Technology Place P.O. Box 830 Liberty, SC 29657 USA

Phone: (864) 843-4343 FAX: (864) 843-3067 www.sealevel.com

Contents

INTRODUCTION 1	
Overview	
What's Included1	
FACTORY DEFAULT SETTINGS	
CARD SETUP	
RS-485 ENABLE MODES2	
Interface Mode Examples SW1 – SW4 (continued)4	
ADDRESS AND IRQ SELECTION4	
ELECTRICAL INTERFACE SELECTION	
CLOCK MODES6	
BAUD RATES AND DIVISORS FOR THE 'DIV1' MODE6	
INSTALLATION	
OPERATING SYSTEM INSTALLATION	
For Windows Users7	
Other Operating Systems7	
System Installation	
TECHNICAL DESCRIPTION8	
CONNECTOR PIN ASSIGNMENTS8	
RS-422/485 (DB 9 Male)8	
RS-232 (DB-9 Male)8	
SPECIFICATIONS9	
Environmental Specifications9	
Manufacturing9	
POWER CONSUMPTION9	
MEAN TIME BETWEEN FAILURES (MTBF)9	
PHYSICAL DIMENSIONS9	
APPENDIX A - TROUBLESHOOTING	
APPENDIX B - HOW TO GET ASSISTANCEERROR! BOOKMARK N	ЮТ
DEFINED.	
APPENDIX C - ELECTRICAL INTERFACE	
RS-23212	
RS-422	
RS-48513	
APPENDIX D - ASYNCHRONOUS COMMUNICATIONS	

APPEN	DIX F - COMPLIANCE NOTICES 16	
	FEDERAL COMMUNICATIONS COMMISSION STATEMENT	
WARR	ANTYERROR! BOOKMARK NOT DEFINED.	
	Figures	
_	1- Switches SW1- SW4, RS-4223	
Figure 2	2 - Switches SW1- SW4, RS-485 'Auto' Enabled, with 'No Echo' and	
Figure 2 ter Figure 3		l th
Figure 2 ter Figure 3 ter Figure 4	2 - Switches SW1- SW4, RS-485 'Auto' Enabled, with 'No Echo' and mination resistor in circuit	l th l no
Figure 2 ter Figure 3 ter Figure 4 ter Figure 3	2 - Switches SW1- SW4, RS-485 'Auto' Enabled, with 'No Echo' and mination resistor in circuit	l th l no d n

 $\ @$ 2001e Sealevel Systems, Incorporated. All rights reserved.

Introduction

Overview

The Sealevel **COMM+4.PCI** is a four channel RS-232/485/422 PCI Bus serial I/O adapter supporting data rates up to 460.8K bps.

The RS-232 compatibility allows for connection to devices utilizing the RS-232 electrical interface, such as modems, data-entry terminals, and plotters.

RS-422 provides excellent communications for long distance device connections up to 4000ft., where noise immunity and high data integrity are essential.

RS-485 is optimized for 'Multi-Drop' or 'Party-line' operations selecting data from multiple peripherals (as many as 31 devices can be connected on an RS-485 bus).

In both RS-485 and RS-422 modes, the card works seamlessly with the standard operating system serial driver. In RS-485 mode, our special autoenable feature allows the RS-485 ports to be viewed by the operating system as a COM: port. This allows the standard COM: driver to be utilized for RS-485 communications. Our on-board hardware automatically handles the RS-485 driver enable.

What's Included

The **COMM+4.PCI** is shipped with the following items. If any of these items is missing or damaged, contact the supplier.

- **COMM+4.PCI** Serial I/O Adapter
- Sealevel Software
- "Spider" Cable providing 4 DB-9 connectors

Factory Default Settings

The **COMM+4.PCI** factory default settings are as follows:

Port#	Clock DIV Mode	Enable Mode
Port 1	4	RS-422
Port 2	4	RS-422
Port 3	4	RS-422
Port 4	4	RS-422

To install the **COMM+4.PCI** using factory default settings, refer to Installation on page 7.

Card Setup

RS-485 Enable Modes

RS-485 is ideal for multi-drop or network environments. RS-485 requires a tri-state driver that will allow the electrical presence of the driver to be removed from the line. The driver is in a tri-state or high impedance condition when this occurs. Only one driver may be active at a time and the other driver(s) must be tri-stated. The output modem control signal **R**equest **To S**end (RTS) is typically used to control the state of the driver. Some communication software packages refer to RS-485 as RTS enable or RTS block mode transfer.

One of the unique features of the **COMM+4.PCI** is the ability to be RS-485 compatible without the need for special software or drivers. This ability is especially useful in Windows and other protected mode environments where the lower level I/O control is abstracted from the application program. This ability means that the user can effectively use the **COMM+4.PCI** in an RS-485 application with existing (i.e. standard RS-232) software drivers.

Switches SW1 - SW4 are used to control the RS-485 mode functions for the driver circuit. The selections are 'RTS' enable (silk-screen 'RT') or 'Auto' enable (silk-screen 'AT'). The 'Auto' enable feature automatically enables/disables the RS-485 interface. The 'RTS' mode uses the 'RTS' modem control signal to enable the RS-485 interface and provides backward compatibility with existing software products.

Position 3 (silk-screen 'NE') of these switches is used to control the RS-485 enable/disable functions for the receiver circuit and determine the state of the RS-422/485 driver. The RS-485 'Echo' is the result of connecting the receiver inputs to the transmitter outputs. Every time a character is transmitted; it is also received. This can be beneficial if the software can handle echoing (i.e. using received characters to throttle the transmitter) or it can confuse the system if the software does not. To select the 'No Echo' mode select silk-screen position 'NE'.

Typically, each end of the RS-485 bus must have a line-terminating resistor (RS-422 terminates the receive end only). A 120-ohm resistor is across each RS-422/485 input in addition to a 1K-ohm pull-up/pull-down combination that biases the receiver inputs. Only the ends of an RS-485 network should have the 120-Ohm terminating resistor. Position 4 (silk-screen 'T') selects the presence of the 120-Ohm termination resistor across the input data pins (RX+/RX-). To add the termination select the 'On' position, to remove it select the 'Off' position.

For RS-422/530/449 compatibility set all switches 'Off'. Examples on the following pages describe some of the valid settings for SW1-SW4.

Interface Mode Examples SW1 – SW4

Figure 1- Switches SW1- SW4, RS-422

AT RT NE T

Figure 2 - Switches SW1 - SW4, RS-485 'Auto' Enabled, with 'No Echo' and the termination resistor in circuit.

Figure 3 - Switches SW1 - SW4, RS-485 'Auto' Enabled, with 'Echo' and no termination resistor in circuit.

Interface Mode Examples SW1 – SW4 (continued)

AT RT NE T

Figure 4 - Switches SW1- SW4, RS-485 'RTS' Enabled, with 'No Echo' and no termination resistor in circuit.

AT RT NE T

Figure 5 - Switches SW1 - SW4, RS-485 'RTS' Enabled, with 'Echo' and no termination resistor in circuit.

Address and IRQ selection

The **COMM+4.PCI** is automatically assigned resources by your motherboard BIOS. Only the I/O addresses may be modified by the user. Adding or removing other hardware may change the assignment of I/O addresses and IRQs.

Electrical Interface Selection

Each port on the **COMM+4.PCI** has the ability to be used in either RS-232 or RS-422/485. This is selectable via eight 24 pin DIP-shunts at E1-E8. Please use the following illustration to aid in the configuration of your electrical interface.

Figure 6 - Headers E1 - E4, Electrical Interface Selection

Clock Modes

The **COMM+4.PCI** employs a unique clocking option that allows the end user to select from divide by 4, and divide by 1 clocking modes. These modes are selected at Header J1.

To select the Baud rates commonly associated with COM: ports (i.e. 2400, 4800, 9600, 19.2, ... 115.2K bps) place the jumper in the divide by 4 mode (silk-screen D4).

To select the Baud rates above 115.2K select the divide by 1 mode (silk-screen D1).

Baud Rates and Divisors for the 'DIV1' mode

The following table shows some common data rates and the rates you should choose to match them if using the adapter in the 'DIV1' mode.

For this Data Rate	Choose this Data Rate
1200 bps	300 bps
2400 bps	600 bps
4800 bps	1200 bps
9600 bps	2400 bps
19.2K bps	4800 bps
57.6 K bps	14.4K bps
115.2 K bps	28.8K bps
230.4K bps	57.6 K bps
460.8K bps	115.2 K bps

If your communications package allows the use of Baud rate divisors, choose the appropriate divisor from the following table:

For this Data Rate	Choose this Divisor
1200 bps	384
2400 bps	192
4800 bps	96
9600 bps	48
19.2K bps	24
38.4K bps	12
57.6K bps	8
115.2K bps	4
230.4K bps	2
460.8K bps	1

Installation

Operating System Installation

For Windows Users

Start by choosing Install Software at the beginning of the CD. Choose Asynchronous COM: Port Software, SeaCOM.

Other Operating Systems

Refer to the appropriate section of the Serial Utilities Software.

System Installation

The **COMM+4.PCI** can be installed in any of the PCI expansion slots and contains configuration options for each port that must be set for proper operation.

- 1. Turn off PC power. Disconnect the power cord.
- 2. Remove the PC case cover.
- 3. Locate an available PCI slot and remove the blank metal slot cover.
- 4. Gently insert the **COMM+4.PCI** into the slot. Make sure that the adapter is seated properly.
- 5. Replace the screw.
- 6. Replace the cover.
- 7. Install the Cable (CA-143)
- 8. Connect the power cord.

Installation is complete.

Technical Description

The Sealevel Systems **COMM+4.PCI** provides a PCI interface adapter with 4 RS-232/422/485 asynchronous serial ports for industrial automation and control applications.

The **COMM+4.PCI** utilizes the 16C864 UART. This chip features programmable baud rates, data format, interrupt control and industry leading 128-byte transmit and receive FIFOs.

Connector Pin Assignments

RS-422/485 (DB 9 Male)

Signal	Name	Pin#	Mode
GND	Ground	5	
TX +	Transmit Data Positive	4	Output
TX-	Transmit Data Negative	3	Output
RTS+	Request To Send Positive	6	Output
RTS-	Request To Send Negative	7	Output
RX+	Receive Data Positive	1	Input
RX-	Receive Data Negative	2	Input
CTS+	Clear To Send Positive	9	Input
CTS-	Clear To Send Negative	8	Input

RS-232 (DB-9 Male)

Signal	Name	Pin#	Mode
GND	Ground	5	
TD	Transmit Data	3	Output
RTS	Request To Send	7	Output
DTR	Data Terminal Ready	4	Output
RD	Receive Data	2	Input
CTS	Clear To Send	8	Input
DSR	Data Set Ready	6	Input
DCD	Data Carrier Detect	1	Input
RI	Ring Indicator	9	Input

Technical Note: Please terminate any control signals that are not going to be used. The most common way to do this is connect RTS to CTS and RI. Also, connect DCD to DTR and DSR. Terminating these pins, if not used, will help ensure you get the best performance from your adapter.

Specifications

Environmental Specifications

Specification	Operating	Storage
Temperature Range	0° to 50° C	-20° to 70° C
	(32° to 122° F)	(-4° to 158° F)
Humidity Range	10 to 90% R.H.	10 to 90% R.H.
	Non-Condensing	Non-Condensing

Manufacturing

 All Sealevel Systems Printed Circuit boards are built to U. L. 94V0 rating and are 100% electrically tested. These printed circuit boards are solder mask over bare copper or solder mask over tin nickel.

Power Consumption

Supply line	+12 VDC	-12 VDC	+5 VDC
Rating	60 mA	100 mA	620 mA

Mean Time Between Failures (MTBF)

Greater than 150,000 hours. (Calculated)

Physical Dimensions

Board length	6.5 inches	(16.51 cm)
Board Height including Goldfingers	4.2 inches	(10.66 cm)
Board Height excluding Goldfingers	3.875 inches	(9.841 cm)

Appendix A - Troubleshooting

Sealevel Software is supplied with the Sealevel Systems adapter and will be used in the troubleshooting procedures. By using this software and following these simple steps, most common problems can be eliminated without the need to call Technical Support.

- Identify all I/O adapters currently installed in your system. This includes your on-board serial ports, controller cards, sound cards etc. The I/O addresses used by these adapters, as well as the IRQ (if any) should be identified.
- Configure your Sealevel Systems adapter so that there is no conflict with currently installed adapters. No two adapters can occupy the same I/O address.
- 3. Make sure the Sealevel Systems adapter is using a unique IRQ. While the Sealevel Systems adapter does allow the sharing of IRQs, many other adapters (i.e. SCSI adapters & on-board serial ports) do not. The IRQ is typically selected via an on-board header block. Refer to the section on Card Setup for help in choosing an I/O address and IRQ.
- 4. Make sure the Sealevel Systems adapter is securely installed in a motherboard slot.
- 5. When running DOS or Windows 3.x refer to the supplied Sealevel Software and this User Manual to verify that the Sealevel Systems adapter is configured correctly. This software contains a diagnostic program 'SSD' that will verify if an adapter is configured properly. This diagnostic program is written with the user in mind and is easy to use.
- 6. For Windows 95/98/ME/NT/2000, the diagnostic tool 'WinSSD' is installed in the SeaCOM folder on the Start Menu during the setup process. First find the ports using the Device Manager, then use 'WinSSD' to verify that the ports are functional.
- 7. Always use the Sealevel Systems diagnostic software when troubleshooting a problem. This will eliminate any software issues from the equation.

Appendix B - How To Get Assistance

- 1. Begin by reading through the Trouble Shooting Guide in Appendix A. If assistance is still needed please see below.
- 2. When calling for technical assistance, please have your user manual and current adapter settings. If possible, please have the adapter installed in a computer ready to run diagnostics.
- 3. Sealevel Systems provides an FAQ section on its web site. Please refer to this for many commonly asked questions. This section can be found at http://www.sealevel.com/faq.htm.
- 4. Visit Sealevel's website at <u>www.sealevel.com</u> for the latest software updates and newest manuals.
- 5. Technical support is available Monday to Friday from 8:00 a.m. to 5:00 p.m. eastern time. Technical support can be reached at (864) 843-4343.

RETURN AUTHORIZATION MUST BE OBTAINED FROM SEALEVEL SYSTEMS BEFORE RETURNED MERCHANDISE WILL BE ACCEPTED. AUTHORIZATION CAN BE OBTAINED BY CALLING SEALEVEL SYSTEMS AND REQUESTING A RETURN MERCHANDISE AUTHORIZATION (RMA) NUMBER.

Appendix C - Electrical Interface

RS-232

Quite possibly the most widely used communication standard is RS-232. This implementation has been defined and revised several times and is often referred to as RS-232-C/D/E or EIA/TIA-232-C/D/E. It is defined as "Interface between Data Terminal Equipment and Data Circuit- Terminating Equipment Employing Serial Binary Data Interchange". The mechanical implementation of RS-232 is on a 25-pin D sub connector. The IBM PC computer defined the RS-232 port on a 9 pin D sub connector and subsequently the EIA/TIA approved this implementation as the EIA/TIA-574 standard. This standard has defined as the "9-Position Non-Synchronous Interface between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange". Both implementations are in wide spread use and will be referred to as RS-232 in this document. RS-232 is capable of operating at data rates up to 20K bps / 50 ft. The absolute maximum data rate may vary due to line conditions and cable lengths. RS-232 often operates at 38.4K bps over very short distances. The voltage levels defined by RS-232 range from -12 to +12 volts. RS-232 is a single ended or unbalanced interface, meaning that a single electrical signal is compared to a common signal (ground) to determine binary logic states. A voltage of +12 volts (usually +3 to +10 volts) represents a binary 0 (space) and -12 volts (-3 to -10 volts) denote a binary 1 (mark). The RS-232 and the EIA/TIA-574 specification define two types of interface circuits Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE). The Sealevel Systems Adapter is a DTE interface.

RS-422

The RS-422 specification defines the electrical characteristics of balanced voltage digital interface circuits. RS-422 is a differential interface that defines voltage levels and driver/receiver electrical specifications. On a differential interface, logic levels are defined by the difference in voltage between a pair of outputs or inputs. In contrast, a single ended interface, for example RS-232, defines the logic levels as the difference in voltage between a single signal and a common ground connection. Differential interfaces are typically more immune to noise or voltage spikes that may occur on the communication lines. Differential interfaces also have greater drive capabilities that allow for longer cable lengths. RS-422 is rated up to 10 Megabits per second and can have cabling 4000 feet long. RS-422 also defines driver and receiver electrical characteristics that will allow 1 driver and up to 32 receivers on the line at once. RS-422 signal levels range from 0 to +5 volts. RS-422 does not define a physical connector.

RS-485

RS-485 is backwardly compatible with RS-422; however, it is optimized for party line or multi-drop applications. The output of the RS-422/485 driver is capable of being **Active** (enabled) or **Tri-State** (disabled). This capability allows multiple ports to be connected in a multi-drop bus and selectively polled. RS-485 allows cable lengths up to 4000 feet and data rates up to 10 Megabits per second. The signal levels for RS-485 are the same as those defined by RS-422. RS-485 has electrical characteristics that allow for 32 drivers and 32 receivers to be connected to one line. This interface is ideal for multi-drop or network environments. RS-485 tri-state driver (not dual-state) will allow the electrical presence of the driver to be removed from the line. Only one driver may be active at a time and the other driver(s) must be tri-stated. RS-485 can be cabled in two ways, two wire and four wire mode. Two-wire mode does not allow for full duplex communication, and requires that data be transferred in only one direction at a time. For half-duplex operation, the two transmit pins should be connected to the two receive pins (Tx+ to Rx+ and Tx- to Rx-). Four wire mode allows full duplex data transfers. RS-485 does not define a connector pin-out or a set of modem control signals. RS-485 does not define a physical connector.

Appendix D - Asynchronous Communications

Serial data communications implies that individual bits of a character are transmitted consecutively to a receiver that assembles the bits back into a character. Data rate, error checking, handshaking, and character framing (start/stop bits) are pre-defined and must correspond at both the transmitting and receiving ends.

Asynchronous communications is the standard means of serial data communication for PC compatibles and PS/2 computers. The original PC was equipped with a communication or COM: port that was designed around an 8250 Universal Asynchronous Receiver Transmitter (UART). This device allows asynchronous serial data to be transferred through a simple and straightforward programming interface. A start bit, followed by a pre-defined number of data bits (5, 6, 7, or 8) defines character boundaries for asynchronous communications. The end of the character is defined by the transmission of a pre-defined number of stop bits (usually 1, 1.5 or 2). An extra bit used for error detection is often appended before the stop bits.

Figure 7 - Asynchronous Communications Bit Diagram

This special bit is called the parity bit. Parity is a simple method of determining if a data bit has been lost or corrupted during transmission. There are several methods for implementing a parity check to guard against data corruption. Common methods are called (E)ven Parity or (O)dd Parity. Sometimes parity is not used to detect errors on the data stream. This is refereed to as (N)o parity. Because each bit in asynchronous communications is sent consecutively, it is easy to generalize asynchronous communications by stating that each character is wrapped (framed) by pre-defined bits to mark the beginning and end of the serial transmission of the character. The data rate and communication parameters for asynchronous communications have to be the same at both the transmitting and receiving ends. The communication parameters are baud rate, parity, number of data bits per character, and stop bits (i.e. 9600,N,8,1).

Appendix E - Silk-Screen

Appendix F - Compliance Notices

Federal Communications Commission Statement

FCC - This equipment has been tested and found to comply with the limits for Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in such case the user will be required to correct the interference at his own expense.

EMC Directive Statement

Products bearing the CE Label fulfill the requirements of the EMC directive (89/336/EEC) and of the low-voltage directive (73/23/EEC) issued by the European Commission.

To obey these directives, the following European standards must be met:

- EN55022 Class A "Limits and methods of measurement of radio interference characteristics of information technology equipment"
- EN55024 -'Information technology equipment Immunity characteristics Limits and methods of measurement'
- **EN60950** (**IEC950**) "Safety of information technology equipment, including electrical business equipment"

Warning

This is a Class A Product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Always use cabling provided with this product if possible. If no cable is provided or if an alternate cable is required, use high quality shielded cabling to maintain compliance with FCC/EMC directives.

Warranty

Sealevel Systems, Inc. provides a limited lifetime warranty. Should this product fail to be in good working order at any time during this period, Sealevel Systems will, at it's option, replace or repair it at no additional charge except as set forth in the following

terms. This warranty does not apply to products damaged by misuse, modifications, accident or disaster.

Sealevel Systems assumes no liability for any damages, lost profits, lost savings or any other incidental or consequential damage resulting from the use, misuse of, or inability to use this product. Sealevel Systems will not be liable for any claim made by any other related party.

RETURN AUTHORIZATION MUST BE OBTAINED FROM SEALEVEL SYSTEMS BEFORE RETURNED MERCHANDISE WILL BE ACCEPTED. AUTHORIZATION CAN BE OBTAINED BY CALLING SEALEVEL SYSTEMS AND REQUESTING A RETURN MERCHANDISE AUTHORIZATION (RMA) NUMBER.

Sealevel Systems, Incorporated 155 Technology Place P.O. Box 830 Liberty, SC 29657 USA (864) 843-4343 FAX:(864) 843-3067 www.sealevel.com

email: support@sealevel.com

Technical Support is available from 8 a.m. to 5 p.m. Eastern time.

Monday - Friday

Trademarks

Sealevel Systems, Incorporated acknowledges that all trademarks referenced in this manual are the service mark, trademark, or registered trademark of the respective company.

COMM+4.PCI is a trademark of Sealevel Systems, Incorporated.