Weierstrass Theorem

ROB 501 Necmiye Ozay

- Bolzano-Weierstrass Theorem (alternative characterization of compactness in finite dimensional spaces)
- Weierstrass Theorem (when does a function guaranteed to have a maximum or minimum in its domain?)
- Intro to convexity (if time)

f(x) xxxxxxx

Last time

- Continuity of a function f at a point x₀
 - Epsilon-delta definition

Alternatively written, continuity of $f:D\to\mathbb{R}$ at $x_0\in D$ means that for every $\varepsilon>0$, there exists a $\delta>0$ such that for all $x\in D$ $|x-x_0|<\delta$ implies $|f(x)-f(x_0)|<\varepsilon$.

- An equivalent characterization in terms of preserving the convergence of sequences, i.e., f is continuous at x_o iff " $(x_n \rightarrow x_o)$ implies $(f(x_n) \rightarrow f(x_o))$ "

f(x) = 1

- Question: how about the converse? That is, if
 - 1. f: X->Y continuous everywhere
 - 2. $(x_n) \in X$, and $y_n = f(x_n)$
 - 3. $(y_n \rightarrow y_0)$ in (Y, ||.||)

Does there exist a x_0 s.t. $(x_n \rightarrow x_0)$ in (X, ||.||)?

$$\begin{cases} (x) \\ (x) \\ (x_n) \\ (x_n) \end{cases}$$

$$y_n = f(x_n) = 1$$

 $(y_n) = 1, 1, \dots -$
converges to 1.

Last time

- Continuity of a function f at a point x_0
 - Epsilon-delta definition

Alternatively written, continuity of f:D o R at $x_0\in D$ means that for every $\varepsilon>0$, there exists a $\delta>0$ such that for all $x\in D$: $|x-x_0|<\delta$ implies $|f(x)-f(x_0)|<\varepsilon$.

– An equivalent characterization in terms of preserving the convergence of sequences, i.e., f is continuous at x_o iff " $(x_n \rightarrow x_o)$ implies $(f(x_n) \rightarrow f(x_o))$ "

Compactness

Def: Let (X, II.II) be a normed space. Then, CCX is compact if every sequence in C has a convergent subsequence with limit in C.

Remark: Often called sequential compactness.

Bolzano - Weierstrass Theorem: (simple characteriza.

tion of compactness in finite dimensional spaces).

In a finite-dim normed space X, TFAE for

a set CCX:

(a) C is closed and bounded.

(b) C is sequentially compact.

We could alternatively write (a) and (b) as

(a) C is closed and bounded (b) For every seq. (xn) in C (xeC 4 n>1), 7 x EC and a subsequence (xni) of (xn) s.t. $x_n \xrightarrow{i \to \infty} x_s$. (C is sequentially compact).

<u>Proof:</u> (a) => (b)

Case 1: Suppose (xn) has only a finite # of distinct elements. Hence, at least one value is repeated an infinite number of times. WLOG, say that is x_5 . Then $\exists n_1 < n_2 < < n_k <$ s.t. $x_{n_i} = x_5$ i=1,2,... ((x_{n_i}) is a constant sequence). :. Kni -> Xs.

Case 2: (xn) has an 00 # of distinct elements.

See next page for a Wikipedia proof.

Attendive proof [edit]

There is also an alternative proof of the Bolzano–Weierstrass theorem using nested intervals. We start with a bounded sequence (x_n) :

Because $(x_n)_{n\in\mathbb{N}}$ is bounded, this sequence has a lower bound s and an upper bound S.

We take $I_1 = [s,S]$ as the first interval for the sequence of nested intervals.

Then we split I_1 at the mid into two equally sized subintervals.

We take this subinterval as the second interval I_2 of the sequence of nested intervals which contains infinitely many members of $(x_n)_{n\in\mathbb{N}}$. Because each sequence has infinitely many members, there must be at least one subinterval which contains infinitely many members.

Then we split I_2 again at the mid into two equally sized subintervals.

Again we take this subinterval as the third subinterval I_3 of the sequence of nested intervals, which contains infinitely many members of $(x_n)_{n\in\mathbb{N}}$.

xn3: x; in the purple interval with the smallest index greater than "2"

We continue this process infinitely many times. Thus we get a sequence of nested intervals.

The Mosequence, we contistruct as above is a Cauchy sequence (the distance between consequence points shrinks bc. the size of intervals shrinks) ->
it is convergent (since R is complete)

The Mose showed is if (is hounded in a complete)

what we showed is if C is bounded in a complete and (x_n) is a seq. in C, then (x_n) has a convergent subsequence.

 $(b) \Rightarrow (a)$. We can show $n(a) \Rightarrow n(b)$

n(a): C is either not closed or not bounded n(b): I (xn) with no convergent subsequence having limit in C.

Case 1: C is unbounded => ~ (b)

Shown in exercise (fact) 2 in the last lecture.

Case 2: C is not closed =) ~ (b)

Proof of Case 2: C not closed =) C does

not contain all of its limit points. $\exists x_o \notin C$ and (x_n) with $x_n \in C$ s.t. $x_n \to x_o$ (x_o is a limit point of C that is not in C)

Hence, we have a sequence (xn) for which none of its subsequences have a limit in C (since (xn) is convergent, all its subsequences converge to x_a , and $x_a \notin C$). Hence (b) = (a).

Weierstrass Thm: If C is a compact subset of a normed space (X, 11.11) and F: C -> IR is centinuous at each point of C, then fachieves its extreme values $\exists x^* \in C$ s.t. $f(x^*) = \sup f(x) \left[\sup = \max \right]$

 $\exists x_* \in C$ s.t. $f(x_*) = i \wedge f(x)$ [inf = min]

Pract:

Claim: f: C -> IR centinuous and C campact = $f^* := \sup f(x) < \infty$

Proof of the claim: $p \Longrightarrow q \iff (\sim p) \lor q \iff \sim (p \land (\sim q))$ p: f cont. and C compect

q: f* < 00

Suppose $f^* = \infty$. Choose $x_i \in C$ s.t. $f(x_i) \ge 1$.

By induction, choose $x_{n+1} \in C$ s.t. $f(x_{n+1}) \ge f(x_n) + 1$.

 $y_n := f(x_n)$ is a sequence in \mathbb{R} and has no convergent subsequence. (b.c. each consequitive y; is at least 1" apart by construction).

However, (xn) is a sequence in C, which is campact. Hence JXEC and a subsequence $(x_n;)$ s.t. $x_n \longrightarrow \hat{x}$. But f is continuous, and thus $f(x_{n_i}) \xrightarrow{} f(\tilde{x})$.

Then, (yni) is subsequence of (yn) and yni - great. This is a contradiction! Hence (pl Ng) is false!

: p=0

Let's go back to the bigger proof knowing $f^* := \sup_{x \in C} f(x) < \infty$.

 $\forall n \geq 1, \quad \exists x_n \in C \quad \text{s.t.} \quad |f(x_n) - f^*| < \frac{1}{n}$

 $\vdots \quad \forall n := f(x_n) \longrightarrow f^*$

Invoke C is compact to choose a point $\chi \in C$ and a subsequence $(x_n;)$ of (x_n) s.t. $\chi_{n_i} \xrightarrow{i \to \infty} \widetilde{\chi}$.

Question: $f(\tilde{x}) = f^*$?

(yni) is a subsequence of (yn), and $y_n \rightarrow f^* \implies y_n \rightarrow f^*$

 $y_n \rightarrow f$ $\Rightarrow f$ $y_n \rightarrow f(x)$ We know $x_n \rightarrow x \rightarrow y_n \rightarrow f(x)$

Limits are unique, hence f* = f(x) Then x = x is the point in C that achieves the maximum.

The proof for xx is similar.

DONE WITH REAL ANALYSIS!

Some fallow-up courses: Math 451 (most by finite dimensional or 1-dimensional) EECS 600 (infinite dimensional)

and other courses in the north depart

- · Define convex sets
- . Define convex function

min II XII, s.f. Hx < h) /2 $\frac{||x||_1 - |x_1| + |x_2| + \dots + |x_n|}{|x_n|}$ $-\mathcal{E}_{1} \leq \chi_{1} \leq \mathcal{E}_{1}$ $\sim \mathcal{E}_{1} \leq \chi_{1} \leq \mathcal{E}_{1}$ $\sim \mathcal{E}_{1} \leq \chi_{1} \leq \mathcal{E}_{1}$ $\sim \mathcal{E}_{1} \leq \chi_{1} \leq \mathcal{E}_{2}$ $\sim \mathcal{E}_{1} \leq \chi_{1} \leq \mathcal{E}_{2}$ $\sim \mathcal{E}_{2} \leq \chi_{1} \leq \mathcal{E}_{3}$ $\hat{x} = \begin{bmatrix} x & 1 \\ \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} \qquad \begin{array}{c} \text{min } Coo...ol. ...iJ \\ \hat{x} \\ \text{ooo} \\ \text{ooo} \\ \end{array}$

$$x_{i} = \begin{cases} 1 + \frac{1}{i} & \text{if } i \text{ is odd} \\ 4 - \frac{1}{i} & \text{if } i \text{ is even} \end{cases}$$

$$x_{i} = 2$$

$$x_{2} = 3.5$$

$$x_{3} = 1.3$$

$$x_{4} = 3.75$$

$$x_{5} = 1.2$$

$$x_{6} = 3 - \frac{1}{6}$$

$$\text{for all } \mathcal{E}_{j}$$

$$\text{find an index } N(\epsilon) \text{ that is}$$

$$\text{lerge enough s.t.}$$

$$\text{for all indices } i \geq N(\epsilon) \quad x_{i} \in \mathcal{B}_{\epsilon}(x)$$

$$x_{i} = \frac{1}{i} \quad 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, -\frac{1}{4}$$
for $\varepsilon = 0.5$ $N = 2$ works
$$\varepsilon = 0.21 \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i} \quad N = 1000 \text{ works}$$

$$V_{i} = \frac{1}{i$$