Name : Vivi Student ID : 24S153073

Grade : ____

1 Smooth Functions on a Euclidean Space

Problem 1.1 Score: _____. Let $g(x) = \frac{3}{4}x^{4/3}$. Show that the function $h(x) = \int_0^x g(t) dt$ is C^2 but not C^3 at x = 0.

Solution:

$$h(x) = \int_0^x g(t) dt$$
$$= \frac{9}{28} x^{7/3},$$

which is continuous at x = 0, thus h is C^0 at x = 0.

 $h'(x) = g(x) = \frac{3}{4}x^{4/3}$ is continuous at x = 0 and hence h is C^1 at x = 0.

$$h''(x) = g'(x) = \frac{3}{4} \cdot \frac{4}{3}x^{1/3} = x^{1/3},$$

which is also continuous at x = 0, hence h is C^2 at x = 0.

$$h'''(x) = \frac{1}{3}x^{-2/3},$$

which is not continuous at x=0 because as $x\to 0$, $h'''(x)\to \infty$. Therefore, h is not C^3 at x=0. To summarize, we have shown that h is C^0 , C^1 , and C^2 at x=0, but not C^3 . Therefore, h is a function that is C^2 but not C^3 at x=0.

Problem 1.2 Score: _____. Let f(x) be the function on \mathbb{R} defined by

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

- (a) Show by induction that for x > 0 and $k \ge 0$, the kth derivative $f^{(k)}(x)$ is of the form $p_{2k}(1/x)e^{-1/x}$ for some polynomial $p_{2k}(y)$ of degree 2k in y.
- (b) Prove that f is C^{∞} on \mathbb{R} and that $f^{(k)}(0) = 0$ for all $k \geq 0$.

Solution: (a) Let k = 0. Then, we have $f(x) = e^{-1/x}$ for x > 0, and $f^{(0)}(x) = e^{-1/x} = p_0(1/x)e^{-1/x}$, where $p_0(y) = 1$.

Now, assume that for some $k \geq 0$, the kth derivative $f^{(k)}(x)$ is of the form $p_{2k}(\frac{1}{x})e^{-1/x}$ for some polynomial $p_{2k}(y)$ of degree 2k.

$$f^{(k+1)}(x) = \frac{d}{dx} f^{(k)}(x)$$

$$= \frac{d}{dx} \left(p_{2k}(\frac{1}{x}) e^{-1/x} \right)$$

$$= \frac{d}{dx} p_{2k}(\frac{1}{x}) e^{-1/x} + p_{2k}(\frac{1}{x}) \cdot \frac{d}{dx} e^{-1/x}$$

$$= \frac{d}{dx} \left[a_{2k} \left(\frac{1}{x} \right)^{2k} + \cdots \right] e^{-1/x} + \left[a_{2k} \left(\frac{1}{x} \right)^{2k} + \cdots \right] \frac{1}{x^2} e^{-1/x}$$

$$= \left(-2ka_{2k} \left(\frac{1}{x} \right)^{2k+1} + \cdots \right) e^{-1/x} + \left(a_{2k} \left(\frac{1}{x} \right)^{2k+2} + \cdots \right) \frac{1}{x^2} e^{-1/x}$$

$$= \left(a_{2k} \left(\frac{1}{x}\right)^{2k+2} - 2ka_{2k} \left(\frac{1}{x}\right)^{2k+1} + \cdots \right) e^{-1/x}$$
$$= p_{2(k+1)} \left(\frac{1}{x}\right) e^{-1/x},$$

where $p_{2(k+1)}(y)$ is a polynomial of degree 2(k+1). This completes the induction step.

(b) From the result of part (a), we know that for any $k \ge 0$, the kth derivative of f at x > 0 is given by

$$f^{(k)}(x) = p_{2k}(\frac{1}{x})e^{-1/x}.$$

Then, we can evaluate the limit of $f^{(k)}(x)$ as x approaches 0 from the right:

$$\lim_{x \to 0^+} f^{(k)}(x) = \lim_{x \to 0^+} p_{2k}(\frac{1}{x})e^{-1/x}$$
$$= \lim_{x \to 0^+} p_{2k}(+\infty)e^{-\infty}$$
$$= 0.$$

which implies that $f^{(k)}(x)$ is continuous at x=0 for all $k \ge 0$, i.e., f is C^{∞} at x=0, and $f^{(k)}=0$ for all $k \ge 0$ at x=0.

Problem 1.3 Score: _____. Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^n$ be open subsets. A C^{∞} map $F: U \to V$ is called a diffeomorphism if it is bijective and has a C^{∞} inverse $F^{-1}: V \to U$.

- (a) Show that the function $f:]-\pi/2, \pi/2[\to \mathbb{R}, f(x) = \tan x, \text{ is a diffeomorphism.}]$
- (b) Let a, b be real numbers with a < b. Find a linear function $h:]a, b[\rightarrow] -1, 1[$, thus proving that any two finite open intervals are diffeomorphic.
- (c) The composite $f \circ h :]a, b[\to \mathbb{R}$ is then a diffeomorphism of an open interval with \mathbb{R} .
- (d) The exponential function $\exp : \mathbb{R} \to]0, \infty[$ is a diffeomorphism. Use it to show that for any real numbers a and b, the intervals $\mathbb{R}, [a, \infty[$, and $]-\infty, b[$ are diffeomorphic.

Problem 1.4 Score: _____. Show that the map

$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[^n \to \mathbb{R}^n, f(x_1, \dots, x_n) = (\tan x_1, \dots, \tan x_n),$$

is a diffeomorphism.

Problem 1.5 Score: _____. Let B(0,1) be the open unit disk in \mathbb{R}^2 . To find a diffeomorphism between B(0,1) and \mathbb{R}^2 , we identify \mathbb{R}^2 with the xy-plane in \mathbb{R}^3 and introduce the lower open hemisphere

$$S: x^2 + y^2 + (z - 1)^2 = 1, \quad z < 1,$$

in \mathbb{R}^3 as an intermediate space.

(a) The stereographic projection $g: S \to \mathbb{R}^2$ from (0,0,1) is the map that sends a point $(a,b,c) \in S$ to the intersection of the line through (0,0,1) and (a,b,c) with the xy-plane. Show that it is given by

$$(a, b, c) \mapsto (u, v) = \left(\frac{a}{1 - c}, \frac{b}{1 - c}\right), \quad c = 1 - \sqrt{1 - a^2 - b^2},$$

with inverse

$$(u,v) \mapsto \left(\frac{u}{\sqrt{1+u^2+v^2}}, \frac{v}{\sqrt{1+u^2+v^2}}, 1 - \frac{1}{\sqrt{1+u^2+v^2}}\right).$$

(b) Composing the two maps f and g gives the map

$$h = g \circ f : B(0,1) \to \mathbb{R}^2, \quad h(a,b) = \left(\frac{a}{\sqrt{1 - a^2 - b^2}}, \frac{b}{\sqrt{1 - a^2 - b^2}}\right).$$

Find a formula for $h^{-1}(u,v) = (f^{-1} \circ g^{-1})(u,v)$ and conclude that h is a diffeomorphism of the open disk B(0,1) with \mathbb{R}^2 .

(c) Generalize part (b) to \mathbb{R}^n .

Problem 1.6 Score: _____. Prove that if $f: \mathbb{R}^2 \to \mathbb{R}$ is C^{∞} , then there exist C^{∞} functions g_{11}, g_{12}, g_{22} on \mathbb{R}^2 such that

$$f(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + x^2g_{11}(x,y) + xyg_{12}(x,y) + y^2g_{22}(x,y).$$

Solution: Applying Taylor's theorem with remainder, we have

$$f(x,y) = f(0,0) + xf_1(x,y) + yf_2(x,y),$$

where $f_1(x,y) = \frac{\partial f}{\partial x}(x,y)$ and $f_2(x,y) = \frac{\partial f}{\partial y}(x,y)$.

As f is C^{∞} , both $f_1(x, y)$ and $f_2(x, y)$ are also C^{∞} functions. We can expand $f_1(x, y)$ and $f_2(x, y)$ using Taylor's theorem around (0, 0) as follows:

$$f_1(x,y) = f_1(0,0) + xf_{11}(x,y) + yf_{12}(x,y),$$

$$f_2(x,y) = f_2(0,0) + xf_{21}(x,y) + yf_{22}(x,y).$$

Then, we can substitute these expansions back into the expression for f(x,y) to obtain:

$$f(x,y) = f(0,0) + x (f_1(0,0) + x f_{11}(x,y) + y f_{12}(x,y)) + y (f_2(0,0) + x f_{21}(x,y) + y f_{22}(x,y))$$

= $f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + x^2 f_{11}(x,y) + 2xy f_{12}(x,y) + y^2 f_{22}(x,y).$

Then by defining $g_{11}(x,y) = f_{11}(x,y)$, $g_{12}(x,y) = 2f_{12}(x,y)$, and $g_{22}(x,y) = f_{22}(x,y)$, we get the desired result.

Problem 1.7 Score: _____. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^{∞} function with $f(0,0) = \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Define

$$g(t, u) = \begin{cases} \frac{f(t, tu)}{t} & \text{for } t \neq 0, \\ 0 & \text{for } t = 0. \end{cases}$$

Prove that g(t, u) is C^{∞} for $(t, u) \in \mathbb{R}^2$. (Hint: Apply Problem 1.6.)

Problem 1.8 Score: ______. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$. Show that f is a bijective C^{∞} map, but that f^{-1} is not C^{∞} . (This example shows that a bijective C^{∞} map need not have a C^{∞} inverse. In complex analysis, the situation is quite different: a bijective holomorphic map $f: \mathbb{C} \to \mathbb{C}$ necessarily has a holomorphic inverse.)

2 Tangent Vectors in \mathbb{R}^n as Derivations

Problem 2.1 Score: _____. Let X be the vector field $x\partial/\partial x + y\partial/\partial y$ and f(x, y, z) the function $x^2 + y^2 + z^2$ on \mathbb{R}^3 . Compute Xf.

Solution:

$$Xf = \left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)(x^2 + y^2 + z^2)$$
$$= 2x^2 + 2y^2$$

Problem 2.2 Score: ______. Define carefully addition, multiplication, and scalar multiplication in C_p^{∞} . Prove that addition in C_p^{∞} is commutative.

Solution: Let $[f]_p, [g]_p \in C_p^{\infty}$. We define the addition of two equivalence classes as follows:

$$[f]_p + [g]_p = [f+g]_p,$$

where f + g is the pointwise sum of the functions f and g. The multiplication of two equivalence classes is defined as:

$$[f]_p \cdot [g]_p = [fg]_p,$$

where fg is the pointwise product of the functions f and g.

The scalar multiplication of an equivalence class by a scalar $c \in \mathbb{R}$ is defined as:

$$c[f]_p = [cf]_p,$$

where cf is the pointwise product of the function f and the scalar c.

Problem 2.3 Score: _____. Let D and D' be derivations at p in \mathbb{R}^n , and $c \in \mathbb{R}$. Prove that

- (a) the sum D + D' is a derivation at p.
- (b) the scalar multiple cD is a derivation at p.

Solution: (a) Let $f, g \in C^{\infty}(\mathbb{R}^n)$, then we have

$$(D+D')(fg) = D(fg) + D'(fg)$$

$$= D(f)g(p) + f(p)D(g) + D'(f)g(p) + f(p)D'(g)$$

$$= (D(f) + D'(f))g(p) + f(p)(D(g) + D'(g))$$

$$= (D+D')(f)g(p) + f(p)(D+D')(g).$$

(b)

$$(cD)(fg) = cD(fg)$$

$$= c(D(f)g(p) + f(p)D(g))$$

$$= cD(f)g(p) + cf(p)D(g)$$

$$= (cD)(f)g(p) + f(p)(cD)(g).$$

Problem 2.4 Score: _____. Let A be an algebra over a field K. If D_1 and D_2 are derivations of A, show that $D_1 \circ D_2$ is not necessarily a derivation (it is if D_1 or $D_2 = 0$), but $D_1 \circ D_2 - D_2 \circ D_1$ is always a derivation of A.

Solution: Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x) = x, and let $D_1 = D_2 = \frac{d}{dx}$. Then, for the Lebniz rule, we have

$$D_1 \circ D_2(ff) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x} (x^2) \right)$$
$$= \frac{\mathrm{d}}{\mathrm{d}x} (2x)$$
$$= 2,$$

but

$$(D_2 \circ D_1)(f)f(p) + f(p)(D_2 \circ D_1)(f) = \frac{d^2x}{dx^2}p + p\frac{d^2x}{dx^2}$$

= 0.

Therefore, $D_1 \circ D_2$ is not a derivation. Next, for $D_1 \circ D_2 - D_2 \circ D_1$, we examine the Lebniz rule:

$$(D_1 \circ D_2 - D_2 \circ D_1)(fg) = D_1 \circ D_2(fg) - D_2 \circ D_1(fg)$$

$$= D_1[D_2(f)g(p) + f(p)D_2(g)] - D_2[D_1(f)g(p) + f(p)D_1(g)]$$

$$= (D_1 \circ D_2(f)g(p) + f(p)D_1 \circ D_2(g)) - (D_2 \circ D_1(f)g(p) + f(p)D_2 \circ D_1(g))$$

$$= (D_1 \circ D_2 - D_2 \circ D_1)(f)g(p) + f(p)(D_1 \circ D_2 - D_2 \circ D_1)(g).$$