MATH 465 - INTRODUCTION TO COMBINATORICS LECTURE 5

1. Weight generating functions

Let $\alpha: A \to \mathbb{Z}_{\geq 0}$ be a weight function on a set A. For $k \in \mathbb{Z}_{\geq 0}$, let $h_k := \#\{a \in A \mid \alpha(a) = k\}$. We assume that h_k is finite for all k. Observe that

$$h(x) := \sum_{k=0}^{\infty} h_k x^k = \sum_{a \in A} x^{\alpha(a)}.$$

The generating function h(x) can be viewed as a refinement of #A. Indeed h(1) = #A.

Example 1.1. Let $A = 2^{[n]}$ and let $\alpha : 2^{[n]} \to \mathbb{Z}_{\geq 0}$ be the weight function that assigns to a subset S of A to its cardinality #S. For instance, when n = 3, the weights and weight generating function are given by

$$\varnothing$$
 {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
0 1 1 1 2 2 2 3
1 $+x$ $+x$ $+x$ $+x^2$ $+x^2$ $+x^2$ $+x^3$ $= 1 + 3x + 3x^2 + x^3$.

In general, $h_k = \#\{S \in 2^{[n]} \mid \#S = k\} = {n \choose k}$ and the weight generating function $h(x) = \sum_{S \subseteq [n]} x^{\#S} = \sum_{k \ge 0} {n \choose k} x^k$.

2. The multiplication principle for generating functions

Proposition 2.1 (Multiplication principle for generating functions). Suppose we have a bijection of the form

$$A \longleftrightarrow B \times C \times D \times \cdots$$

 $a \longleftrightarrow (b, c, d, \dots),$

and that

$$\alpha: A \to \mathbb{Z}_{\geq 0}$$

$$\beta: B \to \mathbb{Z}_{\geq 0}$$

$$\gamma: C \to \mathbb{Z}_{\geq 0}$$

$$\delta: D \to \mathbb{Z}_{\geq 0}$$
.....

are weight functions as above satisfying the additivity condition

$$\alpha(a) = \beta(b) + \gamma(c) + \delta(d) + \cdots$$

Then,

$$\sum_{a \in A} x^{\alpha(a)} = \left(\sum_{b \in B} x^{\beta(b)}\right) \left(\sum_{c \in C} x^{\gamma(c)}\right) \left(\sum_{d \in D} x^{\delta(d)}\right) \cdots$$

Note that setting x = 1 recovers the usual multiplication principle.

Proof. Expanding the right hand side, we have

$$\sum_{(b,c,d,\dots)\in B\times C\times D\times \cdots} x^{\beta(b)+\gamma(c)+\delta(d)+\cdots} = \sum_{a\in A} x^{\alpha(a)}.$$

Example 2.2. Let h_k = number of ways to select a k-card hand from a double deck of cards. Let

$$A = \{\text{hands (with any number of cards})} \leftrightarrow \{0, 1, 2\}^{52}$$

 $B_i = \{0, 1, 2\} \text{ for } i = 1, 2, \dots, 52.$

Define the weight functions:

$$\alpha: A \to \mathbb{Z}_{\geq 0}$$

hand \mapsto number of cards in the hand $\beta_i: B_i \to \mathbb{Z}_{\geq 0}$
 $k \mapsto k$.

We have a bijection

$$A \longleftrightarrow \prod_{i=1}^{52} B_i$$
hand $\mapsto (b_1, b_2, \dots, b_{52})$

where b_i = number of times card i appears in the hand. By construction, we have $\alpha(\text{hand}) = \sum_{i=1}^{52} \beta_i(b_i)$, so by the multiplication principle for generating functions, we get

$$\sum_{k} h_k x^k = (1 + x + x^2)^{52}.$$

Example 2.3. Let h_k = number of ways to change k cents into coins. We set

 $A = \{ \text{distinct collections of several coins} \},$

 $B = \{ \text{collections of several pennies} \},$

 $C = \{\text{collections of several nickels}\}, \text{etc.}$

Each weight function $\alpha, \beta, \gamma, \ldots$ assigns to a collection of coins its value in cents. The additivity condition clearly holds. Therefore,

$$\sum_{k} h_{k} x^{k} = (1 + x + x^{2} + \cdots)(1 + x^{5} + x^{10} + \cdots)(1 + x^{10} + x^{20} + \cdots) \cdots$$
$$= (1 - x)^{-1} (1 - x^{5})^{-1} (1 - x^{10})^{-1} \cdots (1 - x^{100})^{-1}.$$

Example 2.4. Let $A = \mathbb{Z}_{\geq 0}^n$ with weight function $\alpha : \mathbb{Z}_{\geq 0}^n \to \mathbb{Z}$ sending (x_1, \ldots, x_n) to $x_1 + \cdots + x_n$. Then, $a_n = \#\{(x_1, \ldots, x_n) \mid \alpha(x_1, \ldots, x_n) = k\}$ is the number of weak compositions of k with n parts.

Let B_1, \ldots, B_n be $\mathbb{Z}_{\geq 0}$ with weight function $\beta_i : B_i \to \mathbb{Z}$ sending x to x. Then, the identity map is a bijection between A and $B_1 \times \cdots \times B_n$ and the additivity property of weights is satisfied. By the multiplication principle for generating functions,

$$\sum_{n} a_n x^n = (1 + x + x^2 + \dots) \cdots (1 + x + x^2 + \dots) = (1 - x)^{-n}.$$

3. Permutation statistics

Let S_n denote the set of permutations of [n]. A weight function on S_n is called a *permutation statistic*.

3.1. **Inversions.** A pair (w_i, w_j) is called an *inversion* of the permutation $w_1 w_2 \cdots w_n$ if i < j and $w_i > w_j$. In other words, an inversion is a pair of numbers that are out of order. Let inv: $S_n \to \mathbb{Z}_{\geq 0}$ denote the permutation statistic assigning to a permutation the number of inversions in it.

Example 3.1. If $w \in S_5$ is the permutation 35142, then inv(w) = 6. The inversions are (3,1), (3,2), (5,1), (5,4), (5,2), (4,2).

Example 3.2.

The corresponding generating function is

$$\sum_{w \in S_3} x^{\text{inv}(w)} = 1 + 2x + 2x^2 + x^3 = (1+x)(1+x+x^2).$$

Theorem 3.3. The generating function for counting permutations in S_n with respect to the number of inversions is given by

$$\sum_{w \in S_n} x^{\text{inv}(w)} = 1 \cdot (1+x) \cdot (1+x+x^2) \cdots (1+\cdots+x^{n-1})$$
$$= \prod_{k=1}^n \frac{1-x^k}{1-x}.$$

The *code* of a permutation $w \in S_n$ is the sequence (c_1, c_2, \ldots, c_n) where $c_k = \#\{\text{inversions of the form } (k, *)\}.$

Example 3.4.

w	inversions	inv(w)	code(w)
123		0	(0,0,0)
132	(3, 2)	1	(0, 0, 1)
213	(2,1)	1	(0, 1, 0)
231	(2,1),(3,1)	2	(0, 1, 1)
312	(3,1),(3,2)	2	(0, 0, 2)
321	(3,1),(3,2),(2,1)	3	(0, 1, 2)

Lemma 3.5. We have:

- (1) $inv(w) = c_1 + \cdots + c_n$;
- (2) Each c_k takes values $0, 1, \ldots, k-1$.

Proof. (1) c_k is the number of inversions of the form (k, w_i) .

(2) For an inversion of the form (k, w_i) , we must have $w_i \in \{1, \ldots, k-1\}$.

Proof of Theorem 3.3. We make the following observations:

- (1) c_n is just the number of numbers to the right of n in w, so the position of n in w is $n-c_n$, i.e., $w_{n-c_n}=n$. For example, $c_5=3$ in 35142 and there are 3 numbers 1, 2, 4 to the right of 5.
- (2) If (k, *) is an inversion, then * < k. Therefore, the inversions contributing to c_1, \ldots, c_{n-1} only involve numbers * that are less than n, and so (c_1, \ldots, c_{n-1}) does not change if we omit n from w. For example, the code of 35142 is (0, 0, 2, 1, 3) and the code of the permutation 3142 obtained from 35142 by omitting 5 is (0, 0, 2, 1).

We claim that the function

$$f: S_n \to \{0\} \times \{0, 1\} \times \{0, 1, 2\} \times \dots \times \{0, 1, \dots, n-1\}$$

 $w \mapsto (c_1, c_2, \dots, c_n)$

is a bijection. The proof is based on the following procedure to construct a permutation w from a code (c_1, \ldots, c_n) :

- (1) Write a 1,
- (2) Suppose we have created a permutation of [k-1] so far, where k > 1. We insert k into the permutation so that there are c_k numbers to its right to get a permutation of [k]. Do this until k = n.

The observations (1) and (2) above imply that the permutation w has code (c_1, \ldots, c_n) , so f is surjective. Let's show injectivity by induction. If n = 1, this is clear. If $v, w \in S_n$ such that $f(v) = f(w) = (c_1, \ldots, c_n)$, then the permutations v' and w' in S_{n-1} obtained from v and w respectively by omitting n have the same code. By induction, v' and w' are equal, and since c_n is the same for v and v, v is in the same position as well.

If we define that

- the weight of w is inv(w),
- the weight of each entry c_i is c_i ,

then the additivity condition is satisfied. Now we apply the multiplication principle for generating functions. \Box

Example 3.6. From the code (0,0,2,1,3), the steps to reconstruct the permutation are as follows:

i	c_i	permutation
1	0	1
2	0	12
3	2	312
4	1	3142
5	3	35142

3.2. Cycles. If we regard a permutation w as a bijection $w : [n] \to [n]$, then for each $x \in [n]$, the sequence $x, w(x), w^2(x), \ldots$ must eventually return to x. Consider the smallest $l \ge 1$ such that $w^l(x) = x$. The sequence $(x, w(x), \ldots, w^{l-1}(x))$ is called a cycle of length l of w. We regard w as a product of its distinct cycles C_1, C_2, \ldots, C_k and write $w = C_1 C_2 \cdots C_k$. For example if w = 5276134, we have w = (15)(2)(3746). Let c(w) denote the number of cycles in w.

Example 3.7. When n = 3, we have:

$$\begin{array}{c|c|c} w & \text{cycle notation} & c(w) \\ \hline 123 & (1)(2)(3) & 3 \\ 132 & (1)(23) & 2 \\ 213 & (12)(3) & 2 \\ 231 & (123) & 1 \\ 312 & (132) & 1 \\ 321 & (13)(2) & 2 \\ \hline \end{array}$$

$$\sum_{w \in S_3} x^{c(w)} = x^3 + 3x^2 + 2x = x(x+1)(x+2)$$

Suppose we have a tuple $(b_1, b_2, \ldots, b_n) \in \{0\} \times \{0, 1\} \times \cdots \times \{0, 1, 2, \ldots, n-1\}$. We describe a procedure to build a permutation by inserting entries into cycles. Start by inserting the entry 1 to form the cycle (1). Now suppose the first j-1 numbers have been inserted, so that we have a permutation $C_1C_2\cdots C_k$.

- (1) If $b_j = 0$, we create a new cycle (j) to get the permutation $C_1 C_2 \cdots C_k (j)$.
- (2) If $b_j = i$, we take the cycle containing i and add j to the left of i.

The tuple (b_1, b_2, \ldots, b_n) is called the *encoding* of the permutation. This process is reversible: successively remove the highest number j from the permutation let $b_j = 0$ if (j) is a cycle and let $b_j = i$ if i is the element to the right of j in the cycle containing j. Therefore, the encoding gives us a bijection between S_n and tuples $\{0\} \times \{0,1\} \times \cdots \times \{0,1,2,\ldots,n-1\}$. Note that c(w) is the number of zeroes in the encoding of w. Let

$$\beta(b) := \begin{cases} 1 \text{ if } b = 0; \\ 0 \text{ otherwise.} \end{cases}$$

Then $c(w) = \beta(b_1) + \beta(b_2) + \cdots + \beta(b_n)$.

Example 3.8. Consider the permutation (15)(2)(3746). To compute its encoding, we have the following steps:

j	permutation	b_j	
7	(15)(2)(3746)	3	
6	(15)(2)(346)	4	
5	(15)(2)(34)	1	
4	(1)(2)(34)	3	,
3	(1)(2)(3)	0	
2	(1)(2)	0	
1	(1)	0	

so its encoding is (0, 0, 0, 3, 1, 4, 3).

Theorem 3.9. The generating function for counting permutations in S_n with respect to the number of cycles is given by

$$\sum_{w \in S_n} x^{c(w)} = x(x+1)(x+2)\cdots(x+n-1).$$

Proof. The generating function for b_k is x + k - 1. Now use the multiplication principle for generating functions.