Module No.	Unit No.	Details of Topic	Hrs.
1.0	1	Set Theory	(03)
	1.1	Sets, Venn diagrams, Operations on Sets	
	1.2	Laws of set theory, Power set and Products	
	1.3	Partitions of sets, The Principle of Inclusion and Exclusion	
2.0	2	Logic	(04)
	2.1	Propositions and logical operations, Truth tables	
	2.2	Equivalence, Implications	
	2.3	Laws of logic, Normal Forms	
	2.4	Predicates and Quantifiers	
	2.5	Mathematical Induction	
3.0	3	Relations, Digraphs	(07)
	3.1	Relations, Paths and Digraphs	
	3.2	Properties and types of binary relations	
	3.3	Manipulation of relations, Closures, Warshall's algorithm	
	3.4	Equivalence relations	
4.0	4	Posets and Lattice	(05)
	4.1	Partial ordered relations (Posets) ,Hasse diagram	
	4.2	Lattice, sublattice	
	4.3	Types of Lattice ,Boolean Algebra	
5.0	5	Functions and Pigeon Hole Principle	(04)
	5.1	Definition and types of functions: Injective, Surjective and	
		Bijective	
	5.2	Composition, Identity and Inverse	
	5.3	Pigeon-hole principle,Extended Pigeon-hole principle	
6.0	6	Graphs and Subgraphs	(06)
	6.1	Definitions, Paths and circuits, Types of Graphs, Eulerian	
		and Hamiltonian	
	6.2	Planer graphs	
	6.3	Isomorphism of graphs	
	6.4	Subgraph	
7.0	7	Algebraic Structures	(08)
	7.1	Algebraic structures with one binary operation: semigroup,	
		monoids and groups	
	7.2	Cyclic groups, Normal subgroups	
	7.3	Hamming Code ,Minimum Distance	
	7.4	group codes ,encoding-decoding techniques	
	7.5	Parity check Matrix ,Maximum Likelihood	(0.5)
8.0	8	Recurrence Relations	(02)

8.1	Recurrence relations.	
	Total	39

Recommended Books

- 1. Bernard Kolman, Busby," Discrete Mathematical Structures", PHI.
- 2. Kenneth H. Rosen. "Discrete Mathematics and its Applications", Tata McGraw-Hill.
- 3. Seymour Lipschutz, Marc Lipson "Schaum's Outline of Discrete Mathematics", Revised Third Edition Tata McGraw-Hill.
- 4. D. S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thompson.
- 5. C. L. Liu, D. P. Mohapatra, "Elements of Discrete Mathematics" Tata McGrawHill.
- 6. J. P. Trembley, R. Manohar "Discrete Mathematical Structures with Applications to Computer Science", TataMcgraw-Hill.
- 7. Y N Singh, "Discrete Mathematical Structures", Wiley-India.

Term Work:

Note: The faculty should conduct 8 tutorials based on the above syllabus

Suggested List of Tutorials:

- 1. Sets, Mathematical induction.
- 2. Relation and digraphs.
- 3. Relation types.
- 4. Functions.
- 5. Posets
- 6. Graph
- 7. Group
- 8. Coding theory.