

Ţ <u>Help</u>

sandipan_dey ~

Next >

<u>Syllabus</u> laff routines **Discussion** <u>Outline</u> <u>Community</u> <u>Course</u> **Progress** <u>Dates</u>

★ Course / Week 6: Gaussian Elimination / 6.3 Solving Ax = b via LU Factorization

(

6.3.2 Solving Lz = b (Forward substitution)

☐ Bookmark this page

Previous

■ Calculator

Week 6 due Nov 13, 2023 12:12 IST

6.3.2 Solving Lz = b (Forward substitution)

Homework 6.3.2.1

1/1 point (graded)

Algorithm:
$$[b] := \text{LTRSV_UNB_VAR1}(L, b)$$

Partition $L \to \begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix}$, $b \to \begin{pmatrix} b_T \\ b_B \end{pmatrix}$

where L_{TL} is 0×0 , b_T has 0 rows

while $m(L_{TL}) < m(L)$ do

Repartition

$$\begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix} \to \begin{pmatrix} L_{00} & 0 & 0 \\ \hline l_{10}^T & \lambda_{11} & 0 \\ \hline l_{20} & l_{21} & L_{22} \end{pmatrix}$$
, $\begin{pmatrix} b_T \\ b_B \end{pmatrix} \to \begin{pmatrix} b_0 \\ \hline \beta_1 \\ \hline b_2 \end{pmatrix}$

Continue with

$$\begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} L_{00} & 0 & 0 \\ \hline l_{10}^T & \lambda_{11} & 0 \\ \hline l_{20} & l_{21} & L_{22} \end{pmatrix}$$
, $\begin{pmatrix} b_T \\ b_B \end{pmatrix} \leftarrow \begin{pmatrix} b_0 \\ \hline \beta_1 \\ \hline b_2 \end{pmatrix}$

endwhile

Write the routine Ltrsv_unb_var1(L, b) that solves $m{Lx}=m{b}$, overwriting $m{b}$. /p>

• [b_out] = Ltrsv_unb_var1(L, b)

You can check that they compute the right answers with the following script:

• test_Ltrsv_unb_var1.m (In LAFF-2.0xM/Programming/Week06/)

Unfortunately, PictureFLAME does not work for this problem.

This script exercises the functions by factoring the matrix

```
A = [
2  0  1  2
-2  -1  1  -1
4  -1  5  4
-4  1  -3  -8
]
```

by calling

```
LU = LU_unb_var5( A )
```

Next, it solves $\boldsymbol{L}\boldsymbol{z}=\boldsymbol{b}$ with the right-hand size vector

```
b = [
2
2
11
-3
]
```

by calling

```
z = Ltrsv_unb_var1( LU, b )
```

Finally, it extract upper triangular matrix $oldsymbol{U}$

```
U = triu( LU )
```

6.3 Solving Ax = b via LU Factorization | Week 6: Gaussian Elimination | Linear Algebra - Foundations to Frontiers | edX and solves Ux=z with the intrinsic operation $x = U \setminus z$ We can the check if this solves $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ by computing b - A * x which should yield a zero vector. Done/Skip Here is our implementations of the function: <u>Ltrsv_unb_var1.m</u> Submit A Answers are displayed within the problem

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Previous

<u>Privacy Policy</u>

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>