scGW

Patryk Kozlowski

September 18, 2024

Now that we have the G_0 from Hartree-Fock, our goal will be to compute successive G_n 's, where n = 1, 2, 3, ... until we reach the self-consistent solution. We want to solve the Dyson equation:

$$G_n(1,2) = G_{n-1}(1,2) + \int d(3,4)G_{n-1}(1,3)\Sigma_n(3,4)G_n(4,2). \tag{1}$$

1 Polarizability P

$$P_n(1,2) = \int d(1,2)G_{n-1}(1,2)G_{n-1}(2,1). \tag{2}$$

1.1 RPA

This must be done by performing an RPA calculation to determine the polarizability P. The Casida equation that I want to solve is

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \omega \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}, \tag{3}$$

where we have the transition densities \mathbf{X} and \mathbf{Y} with the excitation energies ω . We denote occupied and virtual orbital indices as i, j, ... and a, b, ..., respectively, while general ones are p, q, The matrix \mathbf{A} is defined as

$$A_{ia,jb} = \delta_{ij}\delta_{ab}(\epsilon_a - \epsilon_i) + (ia||jb)$$
(4)

and \mathbf{B} is

$$B_{ia,jb} = (ia||bj). (5)$$

The virtual and occupied orbital energies are denoted as ϵ_a and ϵ_i , respectively. Working in the direct interaction approximation, the two-electron integrals are defined as:

$$(ia|jb) = \int \int \phi_i^*(\mathbf{r}_1)\phi_a(\mathbf{r}_1) \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \phi_j^*(\mathbf{r}_2)\phi_b(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$
 (6)

$$= \frac{4\pi}{\Omega_{vol}} \frac{1}{|\mathbf{G}_b - \mathbf{G}_j|^2} \delta_{\mathbf{G}_a - \mathbf{G}_i, \mathbf{G}_j - \mathbf{G}_b}, \tag{7}$$

where ϕ_p is an atomic orbital. Running a Davidson procedure on the Casida equation 3 will give us the selected low-lying excitation energies ω_{μ} and the corresponding transition densities \mathbf{X}_{μ} and \mathbf{Y}_{μ} , where μ is the index of excitation, which has then been truncated because of Davidson.

2 Screened Coulomb interaction W

$$W_n(1,2) = V_0(1,2) + \int d(3,4)V_0(1,3)P_n(3,4)W_n(4,2). \tag{8}$$

 V_0 is the bare Coulomb interaction, which is obtained from the two-electron integrals. We construct the coupled transition densities \mathbf{Z}_{μ} as

$$Z_{ia}^{\mu} = X_{ia}^{\mu} - Y_{ia}^{\mu} \tag{9}$$

Next, we consider the contraction of the coupled transition densities with the two-electron integrals in order to form the actual excitation vectors \mathbf{V}^{μ} :

$$V_{p,q}^{\mu} = \sum_{i,a} (pq|ia) Z_{ia}^{\mu} \tag{10}$$

Together with the excitation energies Ω_{μ} , this constitutes W.

3 Self-energy Σ

$$\Sigma_n(1,2) = \int d(1,2)G_{n-1}(1,2)W_n(1,2). \tag{11}$$

We can split the self-energy into a Hartree Σ_H , exchange Σ_X , and correlation Σ_C part:

$$\Sigma = \Sigma_H + \Sigma_X + \Sigma_C. \tag{12}$$

We already found Σ_H and Σ_X in the prior mean-field calculation, so now we are left to find Σ_C , which is defined as

$$\Sigma_{pp}^{\text{corr}}(\omega) = \sum_{\mu}^{\text{RPA}} \left(\sum_{i}^{\text{occupied}} \frac{V_{pi}^{\mu} V_{ip}^{\mu}}{\omega - (\epsilon_{i} - \Omega_{\mu})} + \sum_{a}^{\text{virtual}} \frac{V_{pa}^{\mu} V_{ap}^{\mu}}{\omega - (\epsilon_{a} + \Omega_{\mu})} \right). \tag{13}$$

Here, ω is the input frequency. Note that the amount of excitations μ is limited by the Davidson procedure.

4 Green's function G

$$G_n(1,2) = G_{n-1}(1,2) + \int d(3,4)G_{n-1}(1,3)\Sigma_n(3,4)G_n(4,2).$$
 (14)

We solve for this using the equation:

$$\varepsilon_p^{\rm G} = \delta_{pq} F_{pq}^{\rm HF}[\gamma] + \Sigma_{pp}^{\rm C,n}(\varepsilon_p^{\rm G}) \tag{15}$$

where in the first iteration we use $\gamma \equiv \gamma^{\rm HF}$. The $\varepsilon_p^{\rm G}$ are the Green's function eigenvalues being solved for in this iterative equation. In order to achieve self-consistency, I would imagine that we want to update γ from the initial density of G_0 to that of G_{n-1} and also have the self-energy Σ_C^n to be the one from the previous iteration.