An overview into the fascinating world of Bayesian optimization

Ricardo López Dawn

LiP6 - Sorbonne Université

1/41

Table of Contents

- Introduction
- What is Bayesian optimization?
- Mow to use the Gaussian processes?

How to use the Gaussian processes?

Motivation

Radio Resource Management

Radio Resource Management (RRM) involves the problem of controlling parameters: transmit power, user allocation, data rates, etc.

The objective is to utilize the radio network infrastructure as efficiently as possible.

Figure - Illustrative examples

Challenges in RRM

The challenges related to solve RRM problems are :

- The time or number of trials it takes to find a good set of parameters.
- The objective function lacks special structure that would make it easy to optimize.
- 3 We observe the performance, and no first- or second-order derivatives.

Problem formulation

- A controller wants to optimize $x \in \mathcal{X} \subset \mathbb{R}^k$,
- The performance of the system is described by $f(x) \in \mathbb{R}$.
- f is unknown to the controller, possibly noisy, continuous and expensive to evaluate.
- We call \tilde{f} its realizations, and $\mathbb{E}(\tilde{f}) = f$.
- \bullet The controller test different values x(1), x(2), ..., and observe $\tilde{f}(x(1)), \tilde{f}(x(2)),$

The goal is that performance is good at any point in time, while possibly converging to the global optimal configuration $x^* = arg \ max_x f(x)$.

6/41

BO in a nutshell

- We want to find the optimum of our objective function.
- We fit a Gaussian Process to our observed points and pick our next best point where we believe the maximum will be.
- The next point is determined by a surrogate function called acquisition function that trades of exploration and exploitation.
- The surrogate function is updated in each step by some hyperparameters.

BO in a nutshell

- We want to find the optimum of our objective function.
- We fit a Gaussian Process to our observed points and pick our next best point where we believe the maximum will be.
- The next point is determined by a surrogate function called acquisition function that trades of exploration and exploitation.
- The surrogate function is updated in each step by some hyperparameters.

8/41

BO in a nutshell

- We want to find the optimum of our objective function.
- We fit a Gaussian Process to our observed points and pick our next best point where we believe the maximum will be
- The next point is determined by a surrogate function called acquisition function that trades of exploration and exploitation.
- The surrogate function is updated in each step by some hyperparameters.

BO in a nutshell

- We want to find the optimum of our objective function.
- we fit a Gaussian Process to our observed points and pick our next best point where we believe the maximum will be
- The next point is determined by a surrogate function called acquisition function that trades of exploration and exploitation.
- The surrogate function is updated in each step by some hyperparameters.

10 / 41

BO in a nutshell

BO in a nutshell

12/41

BO in a nutshell

Algorithm of BO in a nutshell

Algorithm Algorithm of BO

```
Initialization. Initialize hyperparameters
```

Define a maximum number of exploration steps \bar{n} ;

while $n \leq \bar{n}$ do

```
Find the next x(n+1) via the acquisition function; Deploy x(n+1) in the system and observe \tilde{f}(x(n+1)); Update hyperparameters; Set n \leftarrow n+1;
```

```
Result: Deploy x^* = \underset{i=1,...,n}{\arg\max} \tilde{f}(x(i))
```

The benefits of BO

The benefits of BO

- Quick convergence: BO converges to a near optimal configuration in few iterations.
- Safe exploration: BO avoids sudden drops.
- Deals with the exploration-exploitation trade-off: BO is able to quantify the
 exploration-exploitation trade-off.

Gaussian process

Conditioning Gaussian process

Let us begin by splitting the components of Y into two disjoint sets A and B and decompose the representation as :

$$p([y_A, y_B]) = \mathcal{N}(\begin{bmatrix} \mu_A \\ \mu_B \end{bmatrix}, \begin{bmatrix} \Sigma_A & \Sigma_{AB} \\ \Sigma_{AB}^T & \Sigma_B \end{bmatrix})$$

Then the posterior probability $p([y_A|y_B])$ is a Gaussian variable as :

$$p([y_A|y_B]) = \mathcal{N}(\tilde{\mu}, \tilde{\Sigma}), \tag{1}$$

With $\tilde{\mu} = \mu_A + \Sigma_{AB}\Sigma_B^{-1}(y_B - \mu_B)$ and $\tilde{\Sigma} = \Sigma_A - \Sigma_{AB}\Sigma_B^{-1}\Sigma_{AB}^T$.

GP for the problem formulation

Assume that the unknown performance f to maximize is modeled GP.

In the past, the controller deployed x(1),...,x(n) and has observed the performance metrics :

$$\rho(n) = [\tilde{f}(x(1)), ..., \tilde{f}(x(n))]^T,$$
(2)

The value of the performance at any value x via the GP posterior probability is :

$$p(f(x)|o(n)) = \mathcal{N}(\mu_f + \Sigma_{f,o}\Sigma_o^{-1}(o(n) - \mu_o), \Sigma_f - \Sigma_{f,o}\Sigma_o^{-1}\Sigma_{f,o}^T), \tag{3}$$

GPs can infer the value of the performance function for configurations that have never been deployed in the system.

GP for the problem formulation

Assume that the unknown performance f to maximize is modeled GP.

In the past, the controller deployed x(1),...,x(n) and has observed the performance metrics :

$$o(n) = [\tilde{f}(x(1)), ..., \tilde{f}(x(n))]^T,$$
 (3)

The value of the performance at any value x via the GP posterior probability is

$$p(f(x)|o(n)) = \mathcal{N}(\mu_f + \Sigma_{f,o}\Sigma_o^{-1}(o(n) - \mu_o), \Sigma_f - \Sigma_{f,o}\Sigma_o^{-1}\Sigma_{f,o}^T), \tag{4}$$

GPs can infer the value of the performance function for configurations that have never been deployed in the system.

18 / 41

GP for the problem formulation

Assume that the unknown performance f to maximize is modeled GP.

In the past, the controller deployed x(1),...,x(n) and has observed the performance metrics :

$$o(n) = [\tilde{f}(x(1)), ..., \tilde{f}(x(n))]^T,$$
 (3)

The value of the performance at any value x via the GP posterior probability is :

$$p(f(x)|o(n)) = \mathcal{N}(\mu_f + \Sigma_{f,o} \Sigma_o^{-1}(o(n) - \mu_o), \Sigma_f - \Sigma_{f,o} \Sigma_o^{-1} \Sigma_{f,o}^T), \tag{4}$$

GPs can infer the value of the performance function for configurations that have never been deployed in the system.

GP for the problem formulation

Assume that the unknown performance f to maximize is modeled GP.

In the past, the controller deployed x(1),...,x(n) and has observed the performance metrics :

$$o(n) = [\tilde{f}(x(1)), ..., \tilde{f}(x(n))]^T,$$
 (3)

The value of the performance at any value x via the GP posterior probability is :

$$p(f(x)|o(n)) = \mathcal{N}(\mu_f + \Sigma_{f,o} \Sigma_o^{-1}(o(n) - \mu_o), \Sigma_f - \Sigma_{f,o} \Sigma_o^{-1} \Sigma_{f,o}^T), \tag{4}$$

GPs can infer the value of the performance function for configurations that have never been deployed in the system.

20 / 41

Selection of prior mean function & Covariance function

The mean vectors are defined via an prior mean $m: \mathcal{X} \to \mathbb{R}$, that defines the prior belief of the performance. Ideally, one would like $m \approx f$.

The covariance matrices $\Sigma_f, \Sigma_o, \Sigma_{f,o}$ are construct via a function $C: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that describes how close two parameters are. Ideally, $C(x, x') \approx Cov(f(x), f(x'))$.

C is usually defined via kernel functions at depend on the hyperparameters. A basic example of kernel function is the Radial Basis Function (RBF):

$$K_{\theta}^{RBF}(x, x') = a \exp(-\frac{||x - x'||^2}{2b^2})$$
 (5)

With $\theta = [a, b] > 0$ is the set of kernel hyperparameters

21 / 41

Selection of prior mean function & Covariance function

The mean vectors are defined via an prior mean $m: \mathcal{X} \to \mathbb{R}$, that defines the prior belief of the performance. Ideally, one would like $m \approx f$.

The covariance matrices $\Sigma_f, \Sigma_o, \Sigma_{f,o}$ are construct via a function $C: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that describes how close two parameters are. Ideally, $C(x, x') \approx Cov(f(x), f(x'))$.

C is usually defined via kernel functions at depend on the hyperparameters. A basic example of kernel function is the Radial Basis Function (RBF):

$$K_{\theta}^{RBF}(x, x') = a \exp(-\frac{||x - x'||^2}{2h^2})$$
 (5)

With $\theta = [a, b] > 0$ is the set of kernel hyperparameters

Selection of prior mean function & Covariance function

The mean vectors are defined via an prior mean $m: \mathcal{X} \to \mathbb{R}$, that defines the prior belief of the performance. Ideally, one would like $m \approx f$.

The covariance matrices $\Sigma_f, \Sigma_o, \Sigma_{f,o}$ are construct via a function $C: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that describes how close two parameters are. Ideally, $C(x, x') \approx Cov(f(x), f(x'))$.

C is usually defined via kernel functions at depend on the hyperparameters. An example of kernel function is the Radial Basis Function (RBF):

$$K_{\theta}^{RBF}(x, x') = a \exp(-\frac{||x - x'||^2}{2b^2})$$
 (5)

With $\theta = [a, b] > 0$ is the set of kernel hyperparameters.

Once the prior mean and covariance m, C are defined, one can plug them in the expression of the GP posterior (4) as follows:

We first define $\mu_f = [m(x)]$ the prior mean for the point x at which performance is inferred

The prior mean vector at observed points o(n) is $\mu_0 = [m(x(1)), ..., m(x(n))]^T$.

The covariance matrix Σ_o of the tested point is such that $[\Sigma_o]_{i,j} = C_{\theta,\sigma}(x(i),x(j))$.

The (mono-dimensional) variance of the performance f(x) to be inferred at the yet-to-be-tested x is $\Sigma_f = C_{\theta,\sigma}(x,x)$.

Once the prior mean and covariance m, C are defined, one can plug them in the expression of the GP posterior (4) as follows:

We first define $\mu_f = [m(x)]$ the prior mean for the point x at which performance is inferred.

The prior mean vector at observed points o(n) is $\mu_0 = [m(x(1)), ..., m(x(n))]^T$.

The covariance matrix Σ_o of the tested point is such that $[\Sigma_o]_{i,j} = C_{\theta}(x(i), x(j))$.

The (mono-dimensional) variance of the performance f(x) to be inferred at the yet-to-be-tested x is $\Sigma_f = C_\theta(x,x)$.

Once the prior mean and covariance m, C are defined, one can plug them in the expression of the GP posterior (4) as follows:

We first define $\mu_f = [m(x)]$ the prior mean for the point x at which performance is inferred.

The prior mean vector at observed points o(n) is $\mu_0 = [m(x(1)), ..., m(x(n))]^T$.

The covariance matrix Σ_o of the tested point is such that $[\Sigma_o]_{i,j} = C_{\theta}(x(i), x(j))$.

The (mono-dimensional) variance of the performance f(x) to be inferred at the yet-to-be-tested x is $\Sigma_f = C_{\theta}(x, x)$.

Once the prior mean and covariance m, C are defined, one can plug them in the expression of the GP posterior (4) as follows:

We first define $\mu_f = [m(x)]$ the prior mean for the point x at which performance is inferred.

The prior mean vector at observed points o(n) is $\mu_0 = [m(x(1)), ..., m(x(n))]^T$.

The covariance matrix Σ_o of the tested point is such that $[\Sigma_o]_{i,j} = C_{\theta}(x(i), x(j))$.

The (mono-dimensional) variance of the performance f(x) to be inferred at the yet-to-be-tested x is $\Sigma_f = C_\theta(x,x)$.

Once the prior mean and covariance m, C are defined, one can plug them in the expression of the GP posterior (4) as follows:

We first define $\mu_f = [m(x)]$ the prior mean for the point x at which performance is inferred.

The prior mean vector at observed points o(n) is $\mu_0 = [m(x(1)), ..., m(x(n))]^T$.

The covariance matrix Σ_o of the tested point is such that $[\Sigma_o]_{i,j} = C_{\theta}(x(i), x(j))$.

The (mono-dimensional) variance of the performance f(x) to be inferred at the yet-to-be-tested x is $\Sigma_f = C_\theta(x, x)$.

28 / 41

Computing the GP posterior

Once the prior mean and covariance m, C are defined, one can plug them in the expression of the GP posterior (4) as follows:

We first define $\mu_f = [m(x)]$ the prior mean for the point x at which performance is inferred.

The prior mean vector at observed points o(n) is $\mu_0 = [m(x(1)), ..., m(x(n))]^T$.

The covariance matrix Σ_o of the tested point is such that $[\Sigma_o]_{i,j} = C_{\theta}(x(i), x(j))$.

The (mono-dimensional) variance of the performance f(x) to be inferred at the yet-to-be-tested x is $\Sigma_f = C_\theta(x, x)$.

Hyperparameter tuning

The covariance function C is parametrized by the kernel hyperparameters θ .

This is performed by maximum likelihood of the observed function values o(n).

$$\arg\max_{\rho} p(x(1), ..., x(n)) := N(\mu_o, \Sigma_o), \tag{9}$$

 μ_o, Σ_o are the mean prior and covariance of $o(n) = [\tilde{f}(x(1)), ..., \tilde{f}(x(n))]^T$

It is generally a non-convex problem, and one usually looks for a local maximum.

Hyperparameter tuning

The covariance function C is parametrized by the kernel hyperparameters θ .

This is performed by maximum likelihood of the observed function values o(n),

$$\arg\max_{\theta} p(x(1), ..., x(n)) := N(\mu_o, \Sigma_o), \tag{9}$$

 μ_o, Σ_o are the mean prior and covariance of $o(n) = [\tilde{f}(x(1)), ..., \tilde{f}(x(n))]^T$,

It is generally a non-convex problem, and one usually looks for a local maximum

Hyperparameter tuning

The covariance function C is parametrized by the kernel hyperparameters θ .

This is performed by maximum likelihood of the observed function values o(n),

$$\arg\max_{\theta} p(x(1), ..., x(n)) := N(\mu_o, \Sigma_o), \tag{9}$$

 μ_o, Σ_o are the mean prior and covariance of $o(n) = [\tilde{f}(x(1)), ..., \tilde{f}(x(n))]^T$,

It is generally a non-convex problem, and one usually looks for a local maximum.

Acquisition function

At step n+1, BO optimizes an acquisition function u(.|o(n)) and chooses the next x(n+1) :

$$x(n+1) = \underset{x \in \mathcal{X}}{\arg \max} u(x|o(n))), \tag{10}$$

With u depends on the previous observations via the GP posterior

There are several ways to define the acquisition function under different assumptions on the observation noise.

Acquisition function

At step n+1, BO optimizes an acquisition function u(.|o(n)) and chooses the next x(n+1) :

$$x(n+1) = \underset{x \in \mathcal{X}}{\arg \max} u(x|o(n))), \tag{10}$$

With u depends on the previous observations via the GP posterior.

There are several ways to define the acquisition function under different assumptions on the observation noise.

Acquisition function

At step n+1, BO optimizes an acquisition function u(.|o(n)) and chooses the next x(n+1) :

$$x(n+1) = \underset{x \in \mathcal{X}}{\arg \max} u(x|o(n))), \tag{10}$$

With u depends on the previous observations via the GP posterior.

There are several ways to define the acquisition function under different assumptions on the observation noise.

Expected Improvement (EI) is arguably the most widely known acquisition function.

At time n+2 we select the best point so far, the performance at time n+2 is $\max\{f(x(n+1)), \max_{i=1,\dots,n} f(x(i))\}.$

x(n+1) maximizes the expected performance at time n+2 iff maximizes the expected improvement u^{EI} with respect to the best configuration so far, with :

$$u^{EI}(x|o(n)) = \mathbb{E}[f(x) - \max_{i=1,\dots,n} f(x(i))|o(n)]^{+}$$
(11)

Expected Improvement (EI) is arguably the most widely known acquisition function.

At time n+2 we select the best point so far, the performance at time n+2 is $\max\{f(x(n+1)), \max_{i=1,...,n} f(x(i))\}.$

x(n+1) maximizes the expected performance at time n+2 iff maximizes the expected improvement u^{EI} with respect to the best configuration so far, with :

$$u^{EI}(x|o(n)) = \mathbb{E}[f(x) - \max_{i=1,\dots,n} f(x(i))|o(n)]^{+}$$
(11)

Expected Improvement (EI) is arguably the most widely known acquisition function.

At time n+2 we select the best point so far, the performance at time n+2 is $\max\{f(x(n+1)), \max_{i=1,\dots,n} f(x(i))\}.$

x(n+1) maximizes the expected performance at time n+2 iff maximizes the expected improvement u^{EI} with respect to the best configuration so far, with :

$$u^{EI}(x|o(n)) = \mathbb{E}[f(x) - \max_{i=1,\dots,n} f(x(i))|o(n)]^{+}$$
(11)

 u^{EI} has a closed form for GP as :

$$u^{EI}(x|o(n)) = (\mathbb{E}(f(x)|o(n)) - \max_{i=1,\dots,n} f(x(i)))\Phi(Z) + Std[f(x)|o(n)]\varphi(Z), \forall x \in \mathcal{X},$$
(12)

Z is defined as

$$Z = \frac{\mathbb{E}(f(x)|o(n)) - \max_{i=1,\dots,n} f(x(i))}{Std[f(x)|o(n)]}$$
(13)

In general u^{EI} is not well defined

 u^{EI} has a closed form for GP as:

$$u^{EI}(x|o(n)) = (\mathbb{E}(f(x)|o(n)) - \max_{i=1,\dots,n} f(x(i)))\Phi(Z) + Std[f(x)|o(n)]\varphi(Z), \forall x \in \mathcal{X},$$
(12)

Z is defined as :

$$Z = \frac{\mathbb{E}(f(x)|o(n)) - \max_{i=1,\dots,n} f(x(i))}{Std[f(x)|o(n)]}$$
(13)

In general u^{EI} is not well defined

 u^{EI} has a closed form for GP as :

$$u^{EI}(x|o(n)) = (\mathbb{E}(f(x)|o(n)) - \max_{i=1,\dots,n} f(x(i)))\Phi(Z) + Std[f(x)|o(n)]\varphi(Z), \forall x \in \mathcal{X},$$
(12)

Z is defined as:

$$Z = \frac{\mathbb{E}(f(x)|o(n)) - \max_{i=1,...,n} f(x(i))}{Std[f(x)|o(n)]}$$
(13)

In general u^{EI} is not well defined.

Bayesian optimization

Algorithm Bayesian optimization

```
Initialization. Set n=0; Define a prior mean function m. By default, m=0; Choose the covariance kernel function K_{\theta}; Initialize the hyperparameters \theta; Define a termination threshold \epsilon and a maximum number of exploration steps \bar{n}; while \max_{x \in \mathcal{X}} u(x|o(n)) \geq \epsilon or n \leq \bar{n} do Find the next x(n+1) via the acquisition function (10); Deploy x(n+1) in the system and observe \tilde{f}(x(n+1)); Update hyperparameters \theta via (9); Set n \leftarrow n+1; Result: Deploy x^* = \arg\max \tilde{f}(x(i))
```

i = 1, ..., n