Introduction to PDEs, Fall 2024

Homework 10 due Dec 26

Name:_____

1. Let us denote

$$F(x) := \frac{1}{2} \int_{-\infty}^{\infty} |x - y| \sin y dy.$$

Show that $\frac{d^2F(x)}{dx^2} = \sin x$. (Remark: this fact is not intuitively simple)

- 2. Suppose that u is a harmonic function in a plane disk $B_2(0) \subset \mathbb{R}^2$, i.e., centered at the origin with radius 2, and $u = 3\cos 2\theta + 1$ for r = 2. Calculate the value of u at the origin without finding the solution u.
- 3. Let us revisit the following lecture example: recall from the Green's second identity that

$$\int_{\Omega} u\Delta G - \Delta uGdx = \int_{\partial\Omega} u\frac{\partial G}{\partial \mathbf{n}} - \frac{\partial u}{\partial \mathbf{n}}GdS^*.$$

I want to remind you that in multi-variate calculus, one typically requires that both u and G are at least twice differentiable for this identity to hold. However, now that you understand the weak derivative, the Laplacian Δ can be treated in the weak sense without ruining this equality, hence the smoothness of u and G are no longer required in the classical sense.

Note that G is not unique for $\Delta G(\mathbf{x}) = \delta(\mathbf{x})$ to hold since $\Delta(G + \tilde{G}) = \delta(\mathbf{x})$ if $\Delta \tilde{G} \equiv 0$.

Let us consider the following problem

$$\begin{cases} \Delta u(\mathbf{x}) = f(\mathbf{x}), & \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = g(\mathbf{x}), & \mathbf{x} \in \partial \Omega. \end{cases}$$

1) show that for any G^* such that $\Delta G^* = \delta(\mathbf{x})$, we have that for any $x_0 \in \Omega$

$$u(\mathbf{x}_0) = \int_{\Omega} fG^* d\mathbf{x} + \int_{\partial\Omega} g \frac{\partial G^*}{\partial \mathbf{n}} - \frac{\partial u}{\partial \mathbf{n}} G^* dS. \tag{0.1}$$

You should write explicitly in this formula as, e.g., $f(\mathbf{x})G^*(\mathbf{x}_0 - \mathbf{x}),...$

2) In (0.1), we note that $\frac{\partial u}{\partial \mathbf{n}}$ is not known, therefore one might want to choose $G^* = 0$ on $\partial\Omega$ such that this surface integral disappears. However, this is only doable for special geometries.

Let us consider Ω the upper half plane \mathbb{R}^2_+ : $\{\mathbf{x}=(x,y)\in\mathbb{R}^2|x\in(-\infty,\infty),y\in(0,\infty)\}$. Find $G^*(\mathbf{x})$ such that $\Delta G(\mathbf{x})=0$ in \mathbb{R}^2_+ and $G(\mathbf{x})$ on $\partial\mathbb{R}^2_+$ (i.e., the x-axis. Indeed, the term for $|x|\to\infty$ disappear.) Hint: $G^*(\mathbf{x};\mathbf{x}_0)=G(\mathbf{x};\mathbf{x}_0)+\tilde{G}(\mathbf{x};\mathbf{x}_0)$ as suggested earlier. Choose \tilde{G} such that $G^*\equiv 0$ on the boundary.

- 4. Suppose that u is a harmonic function in a plane disk $B_0(2) \subset \mathbb{R}^2$, i.e, centered at the origin with radius 2, and $u = 3\cos 2\theta + 1$ for r = 2. Calculate the value of u at the origin without finding the solution u.
- 5. Find the harmonic function u over \mathbb{R}^2_+ such that

$$\Delta u = 0, x \in (-\infty, \infty), y \in (0, \infty),$$

subject to the boundary condition

$$u(x,0) = \begin{cases} 1, & x > 0 \\ 0, & x \le 0. \end{cases}$$

Then plot u(x,y) over \mathbb{R}^2_+ to illustrate your solution.

6. Let u be a radially symmetric function such u = u(r), $r = |\mathbf{x}| = \sqrt{\sum x_i^2}$, $\mathbf{x} := (x_1, x_2, \dots, x_n)$. Prove that $\frac{\partial u(r)}{\partial \mathbf{n}} = \frac{\partial u(r)}{\partial r}$, where \mathbf{n} is the unit outer normal derivative.

^{*}I switched the order so one collects $u(x_0)$ without the negative sign