Optimization Algorithms

Mini-Batch Gradient Descent

$$X = \left[x^{(1)} x^{(2)} x^{(3)} \dots x^{(m)} \right]$$

$$(N_{s,m})$$

$$Y = \left[y^{(1)} y^{(2)} y^{(3)} y^{(3)} \dots y^{(m)} \right]$$

$$(I_{s,m})$$

Where X is the vectorized input and Y is their corresponding outputs. But what will happen if we have a large training set, say m = 5,000,000? If we process through all of these training examples in every training iteration, the gradient descent update will take a lot of time. Instead, we can use a mini batch of the training examples and update the weights based on them.

Mini-Batch Gradient

 Suppose we make a mini-batch containing 1000 examples each. This means we have 5000 batches and the training set will look like this:

Understanding Mini-Batch Gradient Descent

 In batch gradient descent, our cost function should decrease on every single iteration:

Batch gradient descent

 In the case of mini-batch gradient descent, we only use a specified set of training examples.
 As a result, the cost function can decrease for some iterations:

Mini-batch gradient descent

How can we choose a mini-batch size?

• If the mini-batch size = m:

It is a batch gradient descent where all the training examples are used in each iteration. It takes too much time per iteration.

• If the mini-batch size = 1:

It is called stochastic gradient descent, where each training example is its own mini-batch. Since in every iteration we are taking just a single example, it can become extremely noisy and takes much more time to reach the global minima.

If the mini-batch size is between 1 to m:

It is mini-batch gradient descent. The size of the mini-batch should not be too large or too small.

Guidelines:

- If the training set is small, we can choose a mini-batch size of m<2000
- For a larger training set, typical minibatch sizes are: 64, 128, 256, 512
- Make sure that the mini-batch size fits your CPU/GPU memory

Gradient Descent with Momentum

 The underlying idea of gradient descent with momentum is to calculate the exponential weighted average of gradients and use them to update weights. Suppose we have a cost function whose contours look like this:

- One more way could be to use a larger learning rate. But that could result in large upgrade steps, and we might not reach global minima. Additionally, too small a learning rate makes the gradient descent slower.
- We want a slower learning in the vertical direction and a faster learning in the horizontal direction which will help us to reach the global minima much faster.

RMSprop

 Consider the example of a simple gradient descent:

Look at the contour shown above and the parameters graph. We want to slow down the learning in b direction, i.e., the vertical direction, and speed up the learning in w direction, i.e., the horizontal direction

Adam

- Adam optimization algorithm
- Adam is essentially a combination of momentum and RMSprop.
- There are a range of hyperparameters used in Adam and some of the common ones are:
- Learning rate α : needs to be tuned
- Momentum term β_1 : common choice is 0.9
- RMSprop term β_2 : common choice is 0.999
- ε:10⁻⁸
- Adam helps to train a neural network model much more quickly than the techniques we have seen earlier.

