

Computer Science Fundamentals

Channel Coding – CRC Codes

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Cyclic Redundancy Check (CRC)

- Linear, cyclic block codes
 - cyclic: circular shifts of a code word result in a valid code word
- Goals:
 - Detection of
 - Single- and double-bit errors
 - Burst errors (several erroneous bits in a row)
 - easy implementation (especially in hardware)
- Used, e.g.
 - Ethernet, USB, Bluetooth, SCSI, Serial ATA, ISDN, DECT (cordless phones), CAN, FlexRay (Automotive)
 - ...

CRC – Idea

- Attach a k bit CRC code to an n bit long message
- Interpret message as coefficients of a dyadic polynomial
 - Dyadic = calculate modulo 2 (thus, coefficients can only assume values 0 and 1)
 - CRC is based on polynomial division
- Example
 - Message: 10011010
 - Polynomial N(x) =

$$1 \cdot x^7 + 0 \cdot x^6 + 0 \cdot x^5 + 1 \cdot x^4 + 1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + 0$$
 = $x^7 + x^4 + x^3 + x$

CRC – Idea

- Choose a generator polynomial C(x) of degree k (k = length of attached CRC code)
- Transmit a polynomial S(x)
 - derived from N(x)
 - such that S(x) is divisible by C(x) without remainder
- Example k = 3
 - $C(x) = x^3 + x^2 + 1$
 - transmit: S(x) = N(x) + k Bit

CRC - Sender

Steps

• $T(x) = N(x) \cdot x^k$

- → append k zeros to message
- Calculate remainder R(x) from division T(x) / C(x) \rightarrow T(x) mod C(x)
- Send S(x) = T(x) R(x)
 - as we have mod 2
 - i.e.: append R(x) to N(x)

\rightarrow T(x) - R(x) = T(x) + R(x)

Example

•
$$N(x) = 10011010$$

$$= x^7 + x^4 + x^3 + x$$

•
$$C(x) = 1101$$

$$= x^3 + x^2 + 1 \longrightarrow k = 3$$

•
$$T(x) = 10011010000$$

$$= x^{10} + x^7 + x^6 + x^4$$

•
$$R(x) = 101$$

$$= x^2 + 1$$

•
$$S(x) = 10011010101$$

$$x^{10} + x^7 + x^6 + x^4 + x^2 + 1$$

CRC – Polynomial Division

- All calculations are mod 2
- Therefore, we have 1 + 1 = 1 1 = 0
- Subtraction can be done by bitwise XOR of coefficients
- Always start with the leftmost coefficient of the message N(x) (or rather its extension T(x))

CRC – Polynomial Division – Example (Sender)

$$C(x) = x^{3} + x^{2} + 1 = 1101 Generator \\ N(x) = x^{7} + x^{4} + x^{3} + x = 10011010 Message$$

$$10011010000 T(x) = Message with k zeros appended$$

$$1101 1000 Transmit message and attached remainder (k bits): S(x) = 10011010101$$

$$1101 1000 1101 S(x) = 10011010101$$
Remainder T(x) mod C(x)

CRC – Receiver

Steps

- Received polynomial S'(x)
- Calculate remainder R'(x) of division $S'(x) / C(x) \rightarrow S'(x) \mod C(x)$
 - remainder = 0
 - error-free transmission
 - or undetectable error
 - remainder ≠ 0
 - at least 1 bit in message is incorrect
 - message must be re-sent Note: error-correction is in principle possible (depending on generator), but rarely used with CRC

CRC – Example (Receiver, error-free)

$$C(x) = x^3 + x^2 + 1$$
 = 1101 Generator
 $S'(x) = x^{10} + x^7 + x^6 + x^4 + x^2 + 1$ = 1001101010 Received message

CRC – Example (Receiver, with errors)

$$C(x) = x^3 + x^2 + 1$$
 = 1101 Generator
 $S'(x) = x^{10} + x^7 + x^5 + x^4 + x^2 + 1$ = 10010110101 Received message

CRC check not ok

CRC – Detectable Errors

- received polynomial S'(x) = S(x) + F(x)
 - F(x) is a polynomial that represents the erroneous bits
 - $F(x) = 0 \rightarrow \text{no errors}$
- all errors can be detected where F(x) is not a multiple of C(x)
 - \rightarrow Requirements for generators C(x)
- Which errors can be detected?
 - all single-bit errors, if x^k and the constant term 1 exist
 - all double errors, if C(x) has at least three terms, and the size of the data is smaller than the cycle length of C(x)
 - all r-bit errors for odd r, if C(x) has an even number of terms; especially if it contains the factor (x + 1)
 - all burst errors of length smaller k, if C(x) contains the constant term
 - most burst errors of length ≥ k

CRC – Some Common Generator Polynomials

Name	Usage	Polynomial
CRC-1	Parity bit	x + 1
CRC-4-CCITT	Telecommunication = (15,11) Hamming	$x^4 + x + 1$
CRC-5-USB	USB	$x^5 + x^2 + 1$
CRC-5-Bluetooth	Bluetooth	$x^5 + x^4 + x^2 + 1 =$ ($x^4 + x + 1$)(x + 1)
CRC-8-ITU-T	ISDN	$x^8 + x^2 + x + 1 =$ $(x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + 1)(x + 1)$
CRC-15-CAN	CAN bus	$x^{15} + x^{14} + x^{10} + x^8 + x^7 + x^4 + x^3 + 1 =$ $(x^7 + x^3 + x^2 + x + 1) (x^7 + x^3 + 1)(x + 1)$
CRC-32	Ethernet, Serial ATA,	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$

Exercise

For protection during transmission, we want to use a CRC code.

The (binary) **message** to be sent is:

1100 0110

As **generator polynomial** we use:

$$x^6 + x + 1$$

What is the message to be sent, including the attached CRC code?