Project Design Phase-II Data Flow Diagram & user Stories

Date	22-10-2022
Team ID	PNT2022TMID49883
Project Name	Machine Learning Based Vehicle Performance Analyzer
Marks	4 Marks

Technical architecture:

DataFlow Diagram:

DataFlow Definition:

The DataFlow Diagram Represent a publicly available dataset is used and is in structured format. The first and major step for any research is data cleaning and pre-processing without which the results obtained might be inappropriate. Python is used for cleaning and also to develop models. In the computational layer or the business logic tier the data is cleaned, pre-processed, transformed and then the regression models .

User Stories:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
	Data Preparation	USN-1	Collecting car dataset and pre-processing it	Handle missing values, outliers, null values and so on	High	Sprint-1
Developer [°]	Model Building	USN-2	Create a ML model to predict car performance	Fitting data in perfect model	Medium	Sprint-1
	Model Evaluation	USN-3	Calculate the performance, error rate and complexity of ML model	Above 80% performance	Medium	Sprint-1
	Model Deployment	USN-5	Using flask and deploy model finally in IBM cloud using IBM storage and Watson Studio	Working in a proper manner	Medium	Sprint-2
	Enter the car	USN-5	User enter the car cc power	Access to predict the performance	Medium	Sprint-3
Customer	Enter the car torque power	USN-6	User enter the car torque power	Use to predict the performance	Low	Sprint-3
	Enter the car model	USN-7	User enter the car model	Car model to predicting the car life cycle	Medium	Sprint-3
	Predict the car performance	USN-8	As a user can analyzing the car performance	I am accessing my dashboard	High	Sprint-4