Osvrt na predavanje:

Kapacitet i histogram slike

Kapacitet slike

- Kapacitet slike često se naziva i "težina slike". Na nekoj slici, svaki piksel je kodiran sa 8 bita. Cijela slika je kodirana na taj bit. Svaki piksel je "tezak jedan bajt". Tako da ako imamo sliku od 4 bita, onda imamo sliku od 4 bajta, alika od recimo 16 piksela će biti teška 16 bajtova. To možemo iščitati na nekoliko mjesta u Photoshopu. Na tri pozicije, preko image size, ispod slike ili preko desnog izbornika.
- Kao primjer slike koju smo koristili u prethodnim vježbama. Iako već možemo očitati gotovu težinu slike, da se pokaže kako se radi računamo težinu slike ručno.

Primjer 1:

$$400 * 600 [p] = 240 000 p => 240 000 B => 240 000 B / 1024 = 234,4 kB$$

Ovo nije dobro zapisano pa pretvaramo u kB tako da podjelimo sa 1024, što je 210

$$1 p => 1 B$$

• Potom se od prethodno spomenute slike prave četiri duplikata. Jedna se slika pretvoriti u bitmapu, točnije zapis slike u kojem se troši jedan bit po pikselu za kodiranje, tako da možemo imati dvije sive razine. U biti se dobije slika koja ima samo crnu i bijelu boju. Jednu sliku ćemo pretvoriti u RGB dvokanalnu sliku, kojoj ćemo dati nijansu crvene, a zadnji duplikat ili četverokanalnu CMYK sliku ćemo poplaviti. Sada ručno računamo kapacitet svake duplicirane slike.

Prvi duplikat - bitmap:

$$400 * 600 [p] = 240 000 p$$

Taj rezultat djelimo sa 8 kako bi vidjeli koliko nakupina po 8 bitova imamo, točinje koliko bajtova imamo.

$$240\ 000\ p\ /\ 8 = 30\ 000\ B$$

Pa ponovo djelimo sa 1024 da dobijemo kilobajte.

$$30\ 000\ B / 1024 = 29.3\ kB$$

Drugi duplikat - RGB:

S obzirom da znamo da se RGB sastoji od tri puta po 8 bita, možemo zaključiti da je slika tri put veća od 8bitne slike od koje je duplicirana. Tako da samo možemo pomnožiti kB iz prvo zadatka sa 3.

234,4 kB * 3 = 703,2 kB

Treći duplikat - CMYK:

Isti princip za gornji primjer, samo knožimo sa četiri jer je se CMYK sastoji od četiri puta po 8 bita.

234.4 kB * 4 = 937.6 kB

Očitavanjem ovih piksela u Photoshopu potvrđujemo naše izračune.

Funkcija distribucije sivih razina

Histogram je vrlo jednostavno rečeno graf. Može nam vrlo dobro doći pri naprimjer, analizi slike. Možemo to predtaviti preko grafa čija je apcisa x – ili razina sivoće koju neki piksel može imati (0-255) , a ordinata F(x) – ili koliko ima piksela određenih sivoća u nekoj slici. Primjer jednog takvog grafa vidi se na donjoj slici.

A primjer funkcije se nalazi na idućoj slici:

Histogram slike

- Normalizirana funkcija distribucije sivih razina slike.
- Glavna funkcija:

- Kada crtamo graf, moramo primjeniti normalizaciju, što znači da svaku grupu piksela određene sivoće podjelimo sa ukupnim brojem piksela u slici. Tako dobijemo funkciju gustoće.
- Može doći do problema ako imamo graf gdje imamo previše točaka iste visine. Takožer nekada kada želimo prikazati razinu, odbacujemo y os te maksimiziramo x os. To se radi tako da se x_{max} nađe te se skalira kako bi razlučivost bila dobra na grafu.
- Histogramu se u Phtoshopu može pristupiti sa Ctrl + L:

Histogram u Photoshopu