

Nano-Drone autonomous navigation challenge: Try to catch me!

Author: Lukas von Briel

Date: 6 June 2023, Zürich

Supervisors: Dr. T. Polonelli, V. Niculescu

Professor: Prof. Dr. L. Benini

2. Theory

3.Obstacle Avoidance Control Policy

4.Results

5.Discussion

6.Video

Fig. 4

2. Theory

3. Obstacle Avoidance Control Policy

4.Results

5.Discussion

6.Video

Thesis goal:

"Design a custom control policy to autonomously fly the Crazyflie 2.1 in 2D in challenging situations with highspeed moving obstacles relying only on onboard sensors and computional resources."

2.Theory

3. Obstacle Avoidance Control Policy

4.Results

5.Discussion

6.Video

Robust and Efficient Depth-based Obstacle Avoidance for Autonomous Miniaturized UAVs

Hanna Müller, Student Member, IEEE, Vlad Niculescu, Student Member, IEEE, Tommaso Polonelli, Member, IEEE, Michele Magno, Senior Member, IEEE and Luca Benini, Fellow, IEEE

Fig. 9

Fig. 10

STM32F4 (168 MHz, 192 kb SRAM)
Flight time: 7 min
Weight: 27 g
Max payload: 15 g
Expansion Decks!

By: Vlad Niculescu

Crazyflie 2.1 ToF Expansion Deck

- 8x8 multi-zone time of flight ranging sensor (VL53L5CX) by STM:
 - 45° FoV (horizontal and vertical)
 - 15 Hz refresh rate
 - 313 mW (continous mode)
 - \approx 3 m ranging distance

-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	0.715	0.688	-1	-1	-1	-1
-1	-1	0.727	0.708	-1	-1	-1	-1
2.67	-1	0.755	0.748	0.788	-1	-1	-1
-1	0.768	0.754	0.761	0.764	0.784	-1	-1
0.751	0.743	0.725	0.734	0.735	0.746	0.778	-1
-1	-1	0.691	0.703	0.709	0.712	0.774	-1
0.728	0.711	0.671	0.683	0.690	0.708	0.781	0.756

2.Theory

3. Obstacle Avoidance Control Policy

4.Results

5.Discussion

6.Video

2D area cover:

- ⇒ Cumulative FoV is only 180°
- ⇒ However, compesate by rotation

2.Theory

3. Obstacle Avoidance Control Policy

4.Results

5.Discussion

6.Video

2D area cover:

- ⇒ Cumulative FoV is only 180°
- ⇒ However, compesate by rotation

3.Obstacle Avoidance Control Policy 1.Motivation 2.Theory 4.Results 6.Video 5.Discussion Drone States: Start Search Focus Setup and start have been successfull Count == LimitReached If drone velocity == 0 count += 1 Object is wall/ceiling/floor Object Avoidance Clustering No moving Drone velocity is != 0 Is object object detected Classification Focus

> Moving object detected; Label sensor for focus

Basic Avoidance:

Focus:

Distance in [m]	$\frac{keeps\ focus}{n\ test} = success\ Rate$
3	$\frac{0}{5} = 0\%$
2	$\frac{5}{5} = 100\%$
1	$\frac{5}{5} = 100\%$
0.5	$\frac{1}{5} = 20\%$

Fast rotation causes instability!

Mapping:

$$\Rightarrow \frac{Moving\ Object\ Detected}{n\ test} = \frac{8}{10} = 80\ \%\ success\ rate$$

2.Theory

3. Obstacle Avoidance Control Policy

4.Results

5.Discussion

6.Video

Full system:

Test Setup:

- Open Space 7x7 m
- 2 min flights
- Walking speeds of 1,5 m/s in average
- Avoidance
- Focus
- Mapping

Nr	Flight Time			
1	2 min			
2	2 min			
3	2 min			
4	2 min			
5	2 min			
6	2 min			
7	1 min 30 sec			
8	2 min			
9	2 min			
10	2 min			

Maze:

Test Setup:

- Maze like below
- 2 min flight
- Walking speeds of 1 m/s in average
- Only avoidance

Nr	Flight Time			
1	51 sec			
2	2 min			
3	1 min 30 sec			
4	1 min 5 sec			
5	50 sec			
6	34 sec			
7	1 min 35 sec			
8	54 sec			
9	1 min 9 sec			
10	28 sec			

Out of 20 min it flew 10 min 56 sec => 54,7 % success rate

High Speed:

Test Setup:

- Small 3x3 m cage
- 1 min flights
- Walking speeds of 2,5 m/s in average
- Only avoidance

Nr	Flight Time			
1	1 min			
2	1 min			
3	10 sec			
4	34 sec			
5	45 sec			
6	1 min			
7	1 min			
8	55 sec			
9	45 sec			
10	1 min			

2.Theory

3. Obstacle Avoidance Control Policy

4.Results

5.Conclusions

6.Video

Thesis goal:

"Design a custom control policy to autonomously fly the Crazyflie 2.1 in 2D in challenging situations with highspeed moving obstacles relying only on onboard sensors and computational resources."

Goals	Result
Challenging situation	Maze 55% success rate; however, low speeds only
High speed moving obstacle	80% success rate during high speed; only "clean" environment
Custom control policy	Full system control policy with blind spot compensation via moving object detection and focus
Relying on onboard sensors and computational resources	Fully implemented in c code with execution time 4-10 ms

QUESTIONS?

Additional Cluster

-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	0.715	0.688	-1	-1	-1	-1
-1	-1	0.727	0.708	-1	-1	-1	-1
2.67	-1	0.755	0.748	0.788	-1	-1	-1
-1	0.768	0.754	0.761	0.764	0.784	-1	-1
0.751	0.743	0.725	0.734	0.735	0.746	0.778	-1
-1	-1	0.691	0.703	0.709	0.712	0.774	-1
0.728	0.711	0.671	0.683	0.690	0.708	0.781	0.756

0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	1	0	0	0
0	1	1	1	1	1	0	0
1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	0
1	1	1	1	1	1	1	1

Additional Focus

Additional Focus

$$k = 5$$

 $k_d = 1$
 $k_i = 0.3$
 $x = yaw$
 $u = yaw$
 $x = 0 B = 1$
 $u = yaw$
 $C = 1 D = 0$

Additional Mapping

Additional Wall detection

$$h = d_1 * \cos(b)$$

$$h = d_2 * \cos(b + a)$$

$$\Rightarrow \cos(b + a) = \frac{d_1}{d_2} * \cos(b)$$

$$with c = \frac{d_1}{d_2}$$

$$\Rightarrow b = \arccos\left(\frac{\sin(a)}{\sqrt{-2c*\cos(a)+c^2+1}}\right)$$

$$\Rightarrow h = d_1 * \cos(b)$$

$$\Rightarrow d_3 = \frac{h}{\cos(b+2a)}$$

Additional Avoidance

References

Figures:

- Fig. 1 Simultaneous Localization and Mapping (SLAM):
 - url: https://d33wubrfki0l68.cloudfront.net/a7664cf19de33b2c71a482629f27a0d70f715b77/6949d/images/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way.jpg
 - Online: 01.06.2023
- Fig. 2 Convolutional Neural Network (CNN):
 - url: Simultaneous Localization Mapping (SLAM): An Introduction (linkedin.com)
 - Online: 01.06.2023
- Fig. 3 Precise agriculture:
 - url: https://mapware.com/wp-content/uploads/Precision-Agriculture-Field-and-remote-sensing-2048x887.jpeg
 - Online: 01.06.2023
- Fig. 4 Package delivery:
 - url
 - https://th.bing.com/th/id/R.99553637c80620af3755ccfb5dabc45a?rik=MYc0d9O1%2b0ExvQ&riu=http%3a%2f%2fww1.prweb.com%2fprfiles%2f2019%2f05%2f17%2f16321309%2fIMG_4110_smaller.jpg&ehk=EVnIDYgMdtSlkZExBGvIdINvQf39I6w2VdcBXgSGYAE%3d&risl=&pid=ImgRaw&r=0
 - Online: 01.06.2023

References

Figures:

- Fig. 5 Bitcraze Logo:
 - url: <u>Datasheet Crazyflie 2.1 Rev 3 (bitcraze.io)</u>
 - Online: 01.06.2023
- Fig. 6 Classification table:
 - url: https://www.91-cdn.com/pricebaba-blogimages/wp-content/uploads/2017/11/rsz_drone_comparison.png
 - Online: 01.06.2023
- Fig. 7 Al expansion deck:
 - url: https://www.exp-tech.de/media/image/f9/00/5d/crazyflie-ai-deck_2_600x600.jpg
 - Online: 01.06.2023
- Fig. 8 Flow deck:
 - url: https://www.bitcraze.io/wp-content/uploads/2017/07/flow_deck_585px-1.jpg
 - Online: 01.06.2023
- Fig. 9 Crazyflie 2.1:
 - url: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9806701
 - Online: 02.06.2023
- Fig. 10 Test setup:
 - url: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9806701
 - Online: 02.06.2023