

It's 2013 and we are all Google employees

CONTACT US >

Google Maps

Adress input

1785 The Exchange SE #200

Address numbers

98%

Human input

Can we get at least the same accuracy with a machine learning model?

The data set

- 2 datasets (Train and Test)
- Train = 60,000 observations
- Test = 10,000 observations
- Unnamed:0, index, labels, + 784 pixels with values from 0 to 256.

Machine learning models used

Naive Bayes

Gauss Bayes

KNN

The results

Model	Train	Test
Naive Bayes	0.59376666666666667	0.5878
Gauss-Bayes	0.11651666666666667	0.1093
KNN	1.0	0.9678

Naive Bayes

Gauss-Bayes

KNN

											_	
0 -	971	1	1	0	0	2	4	1	0	0		
1 -	0	1132	2	0	0	0	1	0	0	0		- 1000
2 -	13	11	980	2	0	0	2	19	5	0		000
m ⁻	0	3	2	976	1	12	1	6	5	4		- 800
abel 4	1	10	0	0	939	0	5	4	1	22		- 600
True label 5 4	4	0	0	5	2	868	7	1	1	4		
9 -	6	4	0	0	3	2	943	0	0	0		- 400
7	0	26	4	0	2	0	0	983	0	13		
80 -	6	3	3	12	6	8	3	8	917	8		- 200
6 -	5	6	3	5	8	4	1	7	1	969		
	0.0	1.0	2.0	3.0	4.0 Predicte	5.0 ed label	6.0	7.0	8.0	9.0		- 0

Lets normalize

Min - Max

$$v' = \frac{v - \min F}{\max F - \min F} (new_max_F - new_min_F) + new_min_F ,$$

The results

After normalization

Model	Train	Test
Naive Bayes	0.59376666666666667	0.5878
Gauss-Bayes	0.11651666666666667	0.1093
KNN	1.0	0.9678

Naive Bayes

Normalized

Gauss-Bayes

KNN

- 1000

- 800

- 600

- 400

- 200

Not normalized

Did we reached at least the same accuracy as human beings?

NOPE

Further research may be required

Conclusions

- We couldn't meet at least 98%.
- The model with the best accuracy was KNN with .9678
- Naive Bayes and Gauss-Bayes got a great enhancement after normalization

