Mapping ER -> Relation

USER

userID	reviewerName

PRODUCT

<u>asin</u>	category	duplicateRatio	incentivizedRatio	ratingAnamolyRate	reviewAnamolyRate
-------------	----------	----------------	-------------------	-------------------	-------------------

REVIEW

reviewID	userID	asin	reviewText	minHash	overall	unixReviewTime	duplicate
-cv.cv.b	450115	<u> </u>	. C . C . C . C . C . C		O V C I G I I	diminite vice vi i i i i i c	aapiicate

Normalization

USER

PRODUCT

REVIEW

1NF

- 1. Is each relation flat?
 - a. Yes
- 2. Are there only single, atomic, indivisible attributes?
 - a. Yes

Relations are in 1NF

2NF

1. Are there functional dependencies? (B is functionally dependent on A if each value of A in relation R is associated with only one value of B at any time.

Rules:

- For each set of attributes on the left side of the FD, there is only one value to the right
- This rule must hold at all times
- FD must be nontrivial

Assumptions:

- There can be multiple reviews written at the same time
- Two reviews can have the same text and minHash (those would be duplicate reviews)
- A reviewID depends on the product a user writes a review for.
- {reviewText} -> {minHash} is nontrivial because minHash is not a subset of reviewText, but rather a
 hash found through calculation.
- Two reviews may be identical, so they may have identical minHashes (a review text may not be unique). Therefore, the functional dependency {reviewText, minHash} -> {duplicate, incentivized} does not hold.

Reviews

Functional dependencies:

- {reviewID} -> {reviewText, minHash, overall, unixReviewTime, duplicate, incentivized}
 - Key -> non-key
- Can I remove anything from the left side and still have a FD hold?
 - o No because review is a weak entity type, and therefore requires userID and asin
- Primary Key = {reviewID}

Users

Functional dependencies:

- {userID} -> {reviewerName}
 - Key -> non-key
- Can I remove anything from the left side and still have a FD hold?
 - o No because review is a weak entity type, and therefore requires userID and asin
- Primary Key = {reviewID, userID, asin}

Products

Functional dependencies:

- {asin} -> {category, duplicateRatio, incentivizedRatio, ratingAnamolyRate, reviewAnamolyRate}
 - Key -> non-key
- Can I remove anything from the left side and still have a FD hold?
 - No because review is a weak entity type, and therefore requires userID and asin
- Primary Key = {reviewID, userID, asin}
- 2. Decompose

Reviews

N/A

Users

N/A

Products

N/A

3. Are all FD's Full functional dependencies?

Yes, all relations are in 2NF

3NF

There are no non-key -> non-key FD's and no transitive FD's.

All relations are in 3NF