Math 351 Assignment 5

Mario L. Gutierrez Abed

(1) Decide whether the series converges or diverges in \mathbb{R} .

a)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

Convergent. ✓

b)
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(1+2n^2)^n}$$

Convergent. ✓

c)
$$\sum_{n=1}^{\infty} \frac{\cos(3 n)}{1 + (1.2)^n}$$

Convergent. ✓

d)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2 n-1)}{5^n n!}$$

Convergent. ✓

e)
$$\sum_{n=1}^{\infty} \ln\left(\frac{n}{3n+1}\right)$$

Divergent. ✓

(2) Find the exact sum of the series $\sum_{n=1}^{\infty} \left(\sin \left(\frac{\pi}{2} - \frac{\pi}{n+1} \right) - \sin \left(\frac{\pi}{2} - \frac{\pi}{n} \right) \right).$

Solution:

$$\sum_{n=1}^{\infty} \left(\sin \left(\frac{\pi}{2} - \frac{\pi}{n+1} \right) - \sin \left(\frac{\pi}{2} - \frac{\pi}{n} \right) \right) = 1 + \frac{3}{2} + \left(1 + \frac{1}{\sqrt{2}} \right) + \left(1 + \frac{1}{4} \left(1 + \sqrt{5} \right) \right) + \dots = 2$$

(3) Let
$$\{a_n\}_{n=1}^{\infty}$$
 be a sequence defined by $a_n = \begin{cases} \frac{1}{2} + \frac{1}{2} \left(1 - \frac{1}{k}\right) & \text{if } n = 2k - 1\\ 2 - \frac{1}{2} \left(1 - \frac{1}{k}\right) & \text{if } n = 2k \end{cases}$

where $k \ge 1$. Calculate $\limsup \{a_n\}$ and $\liminf \{a_n\}$.

Solution:

$$a_n = \left\{ \frac{1}{2}, 2, \frac{3}{4}, \frac{7}{4}, \frac{5}{6}, \frac{5}{3}, \frac{7}{8}, \frac{13}{8}, \ldots \right\}.$$

We can see that $\lim_{k\to\infty} \left(\frac{1}{2} + \frac{1}{2}\left(1 - \frac{1}{k}\right)\right) = 1$ while $\lim_{k\to\infty} \left(2 - \frac{1}{2}\left(1 - \frac{1}{k}\right)\right) = \frac{3}{2}$. Therefore, since a_n oscillates indefinitely between 1 and $\frac{3}{2}$, we have that $\limsup(a_n) = \frac{3}{2}$ while $\liminf(a_n) = 1$.

(4) Compute $\limsup \{a_n\}$ and $\liminf \{a_n\}$ for the sequence $a_n = \sin(\frac{\pi}{2} n) \frac{n+2}{2n}$.

$$\overline{a_n = \left\{\frac{3}{2}, 0, -\frac{5}{6}, 0, \frac{7}{10}, 0, -\frac{9}{14}, 0, \frac{11}{18}, 0, -\frac{13}{22}, 0, \ldots\right\}}$$

Since $\lim_{n\to\infty} \left(\frac{n+2}{2n}\right) = \frac{1}{2}$ and $\sin\left(\frac{\pi}{2}n\right)$ will oscillate between 0 (when n is even) and -1, and 1 (when n is odd), we can see that a_n ends up oscillating between $-\frac{1}{2}$ and $\frac{1}{2}$ indefinitely. Therefore, $\lim \inf(a_n) = -\frac{1}{2}$ and $\lim \sup(a_n) = \frac{1}{2}$.