Inspire Create Transform

On the geometry of deep generative models

Juan Camilo Ramirez¹, Jose Gallego² & Maria Eugenia Puerta³

jurami28@eafit.edu.co, jgalle29@gmail.com, mpuerta@eafit.edu.co

¹Mathematical Engineering, Universidad EAFIT

²Mila - Quebec AI Institute & Université de Montréal

³Mathematical Science Department, School of Sciences, Universidad EAFIT

Content

Problem definition

Deep Generative Models

Latent Space Interpolation

Differential Geometry

Conditioning of the problem

Conclusions

Problem definition

I like images of cats. Are 30k images enough for me?

AutoEncoders

Figure 1: Basic AutoEncoder architecture

Latent Space Interpolations

Figure 2: two cute cats.

- Data generation is not always straightforward, sampling can be arbitrary.
- Generates intermediate states between data points.
- ► Produces supervised data [4].

Differential Geometry

Let $Z \subseteq \mathbb{R}^n$ and $X \subseteq \mathbb{R}^N$ be the latent and ambient spaces.

 $\gamma: Z \to X$ is a generator.

 $J = \frac{\partial \gamma}{\partial z}$ is the jacobian of the generator.

 $J^T J$ is a metric tensor.

- ► Changes on the latent space where the metric tensor is large will represent big changes in the ambient space.
- This discourages interpolations between classes and through regions with few training data.

Figure 3: A geodesic connecting two MNIST sevens in the latent space of a VAE.

Latent Space Interpolations

Difficulties:

- Convergence issues.
- ► The jacobian is ill-conditioned [2].
- ► The jacobian is not well defined away from data [1].

Jacobians

An estimation of g will greatly depend on the jacobian.

- ► Magnitude of the tensor: det(J^T J)
- Condition number of the jacobian:

$$\kappa(A) = rac{|\lambda_{max}|}{|\lambda_{min}|}$$

Where λ_{max} , λ_{min} are the largest and smaller singular values of A.

A smooth jacobian is necessary for optimisers to converge.

Generative Adversarial Networks

Figure 4: Magnitude of the metric tensor and condition number of the jacobian for a GAN with 128 and 32 hidden dimensions and a Tanh activation.

Variational AutoEncoders

Figure 5: Magnitude of the metric tensor and condition number of the jacobian for a VAE with 128 and 32 hidden dimensions and a Sigmoid activation.

Observations

	Tensor's smoothness	Jacobian's conditioning
GANs	Unsmooth	Poor
DAEs	Adequate	Adequate
VAEs	Adequate	Great

Table 1: Behaviour of the jacobians of different deep generative models.

- VAEs also have good theoretical properties [3].
- Results do not vary with the size or activation function.
- ► Throughout, jacobians are poorly defined away from data.

Conclusions

- VAEs present a well conditioned jacobian.
- ► The tensor must improve away from training data. Current solutions are poor [3].
- Ideally, the jacobian should be intervened during the VAE's training.
- Alternatively, it could be modified after training.

Thank you!

jurami28@eafit.edu.co jgalle29@gmail.com mpuerta@eafit.edu.co

- [1] Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature of deep generative models. *arXiv preprint arXiv:1710.11379*, 2017.
- [2] Georgios Arvanitidis, Søren Hauberg, Philipp Hennig, and Michael Schober. Fast and robust shortest paths on manifolds learned from data. arXiv preprint arXiv:1901.07229, 2019.
- [3] Søren Hauberg. Only bayes should learn a manifold (on the estimation of differential geometric structure from data). arXiv preprint arXiv:1806.04994, 2018.
- [4] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In *International Conference on Machine Learning*, pages 6438–6447, 2019.

