From centralized certification systems to more internet-like ones

Alexandre Kervadec1

¹ Master 2 Informatique RSM

29 janvier 2016

Sommaire

- 1 Les systèmes en place
 - X.509 et CAs
 - PGP
 - SKIP
- 2 Les systèmes en cours de développement
 - DANE
 - Sovereign keys
 - CATA

Les systèmes en place

```
Certificats X.509 et CAs (Certification Authority)
```

PGP (Pretty Good Privacy)

SKIP (Simple Key management for Internet Protocols)

Les systèmes en place

X.509 et CAs

On distingue 3 différentes entités :

Certification Authority ¹: entité qui contrôle l'authentification et la gestion des certificats digitaux

Subscriber : l'entité qui envoie des données au CA pour les ajouter à son certificat. C'est l'entité en qui l'user veut avoir confiance

User : demande des information au CA sur la validité du certificat que lui a

envoyé un subscriber

4/15

X.509 et CAs

Université
*BORDEAUX

PGP

FIGURE - Communities of trust : Jack introduces Oscar to Bob's public-key certificate before Bob receives it.

PGP

PGP inclut un certificat à clefs publiques et une chaîne de confiance(un **introducer**).

Les niveaux de confiance pour un certificat sont :

Undefined : on ne peut pas dire si la cle publique est valide ou pas

Marginal: la clef publique peut être valide, mais on ne peut pas en être sûr

Complete : on est sûr que la clef publique est valide

PGP

Les niveaux de confiance pour une chaîne de confiance (introducer) sont :

Full : on peut faire totalement confiance à la clef publique pour introduire une nouvelle clef publique

Marginal: la clef publique **peut** introduire une nouvelle clef publique, mais on ne peut pas en être sûr

Untrustworthy : on ne doit pas faire confiance à cette clef publique pour en introduire une nouvelle

SKIP

SKIP (Simple Key-Management for Internet Protocol) implémente une chaîne d'authentificateurs de noeuds, où chaque noeud stocke ses informations dans une sorte de **directory service** ².

Etant donné que SKIP ne supporte pas la translation d'adresse (NAT par exemple), ce système est inutile.

université *BORDEAUX

Les systèmes en cours de développement

DANE (DNS-Based Authentication of Named Entities)

Sovereign keys Les clefs souveraines par l'EFF³

CATA (Certificate Authority Transparency and Auditability)

DANE

Ce système est arrivé avec une simple question : Pourquoi utiliser une nouvelle infrastructure de confiance alors que nous utilisons déjà DNS pour résoudre les noms de domaine ?

DANE utilise un nouveau champ dans la requête DNS⁴: le champ TLSA.

```
_443._tcp.www.example.com. IN TLSA (
0 0 1 d2abde240d7cd3ee6b4b28c54df0&34b9
7983a1d16e8a410e4561cb106618e971 )
```


DANE

FIGURE - Fonctionnement de DANE

Sovereign keys

Le système de clefs souveraines s'appuie sur des **timeline servers**, qui seront en nombre restreint ⁵, gérant une liste publique dans laquelle on ne peut que faire des ajouts.

Des clefs souveraines sont un couple de clefs cryptographiques où la clef publique est associée à un nom de domaine. Cette association est enregistrée dans les **timeline** servers cités précédemment.

Cycle de vie des clefs souverraines :

- Génération de la pair de clefs
- Preuve de contrôle du domaine concerné (en utilisant PKI ou DANE)
- Ajout de la clef publique associée au nom de domaine dans les timeline servers

CATA

Ce système se résume en une liste publique de certificats. Ainsi, chaque administrateur peut vérifier qu'il n'y a pas de fraude. Ceci dit, beaucoup de questions restent à résoudre :

- Qui doit gérer ces listes?
- Combien de listes doivent être créées ?
- Comment la révocation doit fonctionner?
- Qu'arrive-t-il si un certificat n'est plus disponible?

Questions

Avez-vous des questions?

