Suites numériques

 $\alpha 5 - MP^*$

1 Rappels sur \mathbb{R} et \mathbb{C}

1.1 Prérequis

Notions de majorant, minorant, borne sup, borne inf, max, min

1.2 Complétude de $\mathbb R$ et $\mathbb C$

On appelle extraction toute application $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante.

Théorème de Bolzano-Weierstrass : Si u_n est une suite complexe bornée, il existe une extraction φ telle que $(u_{\varphi(n)})$ converge. Une suite $(u_n) \in \mathbb{C}^{\mathbb{N}}$ est dite de Cauchy lorsque :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}/\forall n > n_0, \forall p > 1, |u_{n+p} - u_n| \leqslant \varepsilon$$

Propriété: toute suite convergente est de Cauchy. La réciproque est vraie dans $\mathbb R$ et $\mathbb C$ du fait de leur complétude.

Lemme : Soit (u_n) une suite de Cauchy dans \mathbb{C} , s'il existe une extraction φ telle que $(u_{\varphi(n)})$ ait une limite $l \in \mathbb{C}$, alors (u_n) a une limite et $\lim u_n = l$.

 $\mathbb Q$ n'est pas complet.

1.3 Densité de \mathbb{Q}

1.3.1 Morphismes (hors programme)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ un morphisme de corps. Alors f = Id.

1.3.2 Nombres dyadiques

Soit $\mathbb{D}_2 = \{\frac{p}{2n}, p \in \mathbb{Z}, n \in \mathbb{N}\}$; \mathbb{D}_2 est dense dans \mathbb{R} .

1.4 Théorème de Cesàro

 (u_n) une suite de limite $l \in \mathbb{C}$. Posons $v_n = \frac{u_1 + \ldots + u_n}{n}$, alors $v_n \longrightarrow l$.

2 Suites récurrentes

2.1 Suites particulières

Soit $(a_n) \in (\mathbb{C}^*)^{\mathbb{N}}$, $(b_n) \in \mathbb{C}^{\mathbb{N}}$. Les suites (u_n) telles que $u_{n+1} = a_n u_n + b_n$ s'expriment facilement en fonction de a_n , b_n et u_0 . On appelle suite homographique toute suite $(u_n) \in \mathbb{C}^{\mathbb{N}}$ vérifiant $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{au_n + b}{cu_n + d}$ avec $(a, b, c, d) \in \mathbb{C}^4$ et $ad - bc \neq 0$. On forme $l = \frac{al + b}{al + d} \iff (cl^2 + (d - a)l - b = 0)$ (E)).

- 1. Si $\Delta_E \neq 0$: (E) a deux racines $l_1 \neq l_2$.
 - si $u_0 = l_1$ ou $u_0 = l_2$, alors (u_n) est constante
 - sinon, la suite $v_n = \frac{u_n l_1}{u_n l_2}$ est géométrique
- 2. Si $\Delta_E = 0$, (E) a un zéro double l.
 - Si $u_0 = l$ alors $u_n \longrightarrow l$
 - sinon, $\forall n \in \mathbb{N}, u_n \neq l$ et $v_n = \frac{1}{u_n l}$ est arithmétique.

2.2 Suites récurrentes générales

2.2.1 Propriétés liées aux points fixes

 $f: I \longrightarrow I$ (I intervalle de \mathbb{R}); si $a \in I$, on peut définir (u_n) par $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$. Si f est C^0 et (u_n) converge vers $l \in I$ alors f(l) = l.

2.2.2 Liens avec la monotonie de f

- 1. Si f est croissante, alors (u_n) est monotone.
- 2. Si f est décroissante, alors (u_{2n}) et (u_{2n+1}) sont monotones et n'ont pas même sens de variation.