MODULARITY SEMINAR: TAYLOR-WILES DEFORMATIONS

KENTA SUZUKI

ABSTRACT. We will closely follow [Gee22, §3], and go through some explicit computations of local deformation rings, in the setting $\ell \neq p$ (i.e., p-adic representations of ℓ -adic Galois groups).

Let $p \neq \ell$, let K/\mathbb{Q}_p be a finite extension. Suppose $\overline{\rho} \colon G_K \to \mathrm{GL}_n(k_L)$ is a representation, that $\overline{\rho}(\operatorname{Fr}_K)$ has distinct eigenvalues in k_K , and let χ be an unramified character $G_K \to \mathcal{O}_L^{\times}$, i.e., a character of $G_K^{ab} \simeq \widehat{K^{\times}}$. Our goal is to characterize $R_{\overline{\rho},\chi}^{\square}$, which we recall is the representing object of the functor

$$\mathcal{R}_{\overline{\rho},\chi}^{\square} \colon \mathcal{C}_{\mathcal{O}_{L}} \to \mathbf{Sets}$$

$$(A, \mathfrak{m}_{A}) \mapsto \left\{ \begin{array}{c} \text{continuous representations } \rho \colon G_{K} \to \mathrm{GL}_{2}(A) \\ \text{such that } \overline{\rho} = \rho \text{ and } \det(\rho) = \chi \end{array} \right\}.$$

1. Grothendieck's monodromy theorem

Let $\ell \neq p$ be two primes. Let K/\mathbb{Q}_{ℓ} be a finite extension, with residue field of size q_K . We will consider p-adic representations of G_K , i.e., a representation into a finite-dimensional L-vector space, where L/\mathbb{Q}_p is algebraic.

Definition 1.0.1. Let W_K be the Weil group of K. A Weil-Deligne representation of W_K on a finite-dimensional L-vector space V is a pair (r, N) where $r: W_K \to \operatorname{GL}(V)$ is a continuous semisimple representation, and $N: V \to V$ is an endomorphism, such that for all $\sigma \in W_K$,

$$r(\sigma)Nr(\sigma)^{-1} = q_K^{-v_K(\sigma)}N.$$

A Weil-Deligne representation is bounded if for all $\sigma \in W_K$ the operator $r(\sigma)$ is bounded, i.e., the determinant is in \mathcal{O}_L^{\times} and the characteristic polynomial is in $\mathcal{O}_L[X]$ (equivalently, all of the eigenvalues are in \mathcal{O}_L^{\times}).

Now recall Grothendieck's monodromy theorem ([Gee22, Prop 2.18], [BH06, Thm 32.5], [ST68]):

Proposition 1.0.2. Suppose $\ell \neq p$, let K/\mathbb{Q}_{ℓ} be a finite extension, let L/\mathbb{Q}_p be an algebraic extension, and let V be a finite-dimensional L-vector space. Fix:

- φ , a lift of Fr_K ; and
- a compatible system $(\zeta_m)_{(m,\ell)=1}$ of primitive roots of unity.

Then for any continuous representation $\rho: G_K \to \operatorname{GL}(V)$ there is a finite extension K'/K and a uniquely determined nilpotent endomorphism $N: V \to V$ such that for all $\sigma \in I_{K'}$,

$$\rho(\sigma) = \exp(Nt_{\zeta,p}(\sigma)),$$

where for all $\sigma \in W_K$, we have $\rho(\sigma)N\rho(\sigma)^{-1} = q_K^{-v_K(\sigma)}N$, where t_ζ is an isomorphism $I_K/P_K \simeq \prod_{p\neq \ell} \mathbb{Z}_p$.

Moreover, there is an equivalence of categories:

 $\begin{cases} continuous \ representations \ of \ G_K \ on \\ finite-dimensional \ L\text{-}vector \ spaces } \end{cases} \simeq \begin{cases} bounded \ Weil\text{-}Deligne \ representations \\ on \ finite \ dimensional \ L\text{-}vector \ spaces } \end{cases}$ $\rho \mapsto (V, r, N),$

where
$$r(\tau) := \rho(\tau) \exp(-t_{\zeta,p}(\varphi^{-v_K(\tau)}\tau)N)$$
.

Grothendieck's theorem allows us to define the *inertial WD-type* of a representation $\rho: G_K \to \mathrm{GL}_2(\overline{\mathbb{Q}}_p)$:

Definition 1.0.3. Let $\rho: G_K \to \operatorname{GL}_2(\overline{\mathbb{Q}}_p)$ be a continuous representation, and let (r, N) be the associated Weil-Deligne representation. The *inertial WD-type* of ρ is $(r|_{I_F}, N)$.

Now, fix a $\overline{\rho}$: $G_K \to \operatorname{GL}_2(k_L)$. Then we have the following general result on $R_{\overline{\rho},\chi}^{\square}$ [Gee22, Thm 3.31]:

Theorem 1.0.4. $R_{\overline{\rho},\chi}^{\square}$ is equidimensional of Krull dimension 4, and the generic fiber $R_{\overline{\rho},\chi}^{\square}$ has Krull dimension 3. Furthermore:

- (a) The function which takes a \mathbb{Q}_p -points $x : R^{\square}_{\overline{\rho},\chi}[1/p] \to \overline{\mathbb{Q}}_p$ to $WD(x \circ \rho^{\square})|_{I_K}$ (forgetting N) is constant on the irreducible components of $R^{\square}_{\overline{\rho},\chi}[1/p]$
- (b) The irreducible components of $R^{\square}_{\overline{\rho},\chi}[1/p]$ are all regular, and there are only finitely many of them.

Now, we can define the deformation ring with fixed inertial WD type:

Proposition-Definition 1. Let τ be an inertial WD-type. Then $R_{\overline{\rho},\chi}^{\square}$ has a unique reduced p-torsion free quotient $R_{\overline{\rho},\chi,\tau}^{\square}$ such that for a continuous homomorphism $\psi \colon R_{\overline{\rho},\chi}^{\square} \to \overline{\mathbb{Q}}_p$, i.e., a Galois representation $\psi \circ \rho^{\square} \colon G_K \to \mathrm{GL}_2(\overline{\mathbb{Q}}_{\ell})$, the following are equivalent:

- $\psi \circ \rho^{\square}$ has inertial WD-type τ
- the homomorphism ψ factors through $R^{\square}_{\overline{\rho},\chi,\tau}$.

In other words,

$$\mathcal{R}^\square_{\overline{
ho},\chi, au}\colon \mathcal{C}_{\mathcal{O}_L} o \mathbf{Sets}$$

$$(A,\mathfrak{m}_A) \mapsto \left\{ \begin{array}{l} \text{continuous representations } \rho \colon G_K \to \operatorname{GL}_2(A) \text{ such that } \overline{\rho} = \rho \\ \text{and } \det(\rho) = \chi, \text{ and for all } \psi \colon A \to \overline{\mathbb{Q}}_\ell, \, \psi \circ \rho \text{ has inertial WD-type } \tau \end{array} \right\}.$$

is a closed sub-functor of $\mathcal{R}^{\square}_{\overline{\rho},\chi}$. When $R^{\square}_{\overline{\rho},\chi,\tau}$ is nonzero it has Krull dimension 4.

In the following sections, we will go through some particular examples of these deformation rings.

2. Taylor-Wiles Deformations

Now, suppose $\overline{\rho} \colon G_K \to \operatorname{GL}_n(k_L)$ is unramified, that $\overline{\rho}(\operatorname{Fr}_K)$ has distinct eigenvalues in k_K , that $q_K \equiv 1 \pmod{p}$, and let χ be an unramified character $G_K \to \mathcal{O}_L^{\times}$, i.e., a character of $G_K^{\operatorname{ab}} \simeq \widehat{K^{\times}}$. Our goal is to characterize $R_{\overline{\rho},\chi}^{\square}$, which we recall is the representing object of the functor

$$\mathcal{R}_{\overline{\rho},\chi}^{\square} \colon \mathcal{C}_{\mathcal{O}_{L}} \to \mathbf{Sets}$$

$$(A,\mathfrak{m}_{A}) \mapsto \left\{ \begin{array}{c} \mathrm{continuous\ representations\ } \rho \colon G_{K} \to \mathrm{GL}_{2}(A) \\ \mathrm{such\ that\ } \overline{\rho} = \rho \ \mathrm{and\ } \mathrm{det}(\rho) = \chi \end{array} \right\}.$$

The following is [Gee22, Lemma 3.33]:

Lemma 2.0.1. Let $q_K - 1$ be exactly divisible by p^m , with m > 0. Then

$$R_{\overline{\rho},\chi}^{\square} \simeq \mathcal{O}_L[[x,y,a,s]]/((1+s)^{p^m}-1).$$

Furthermore, if $\varphi \in G_K$ is a lift of Fr_K , then $\rho^{\square}(\varphi)$ is conjugate to a diagonal matrix.

Proof. First of all, ρ^{\square} is tamely ramified, i.e., $\rho^{\square}(P_K) = \{1\}$, since $\rho^{\square}(P_K)$ is a pro- ℓ -subgroup of the pro-p-group $\ker(\operatorname{GL}_2(R_{\overline{\rho},\chi}^{\square}) \to \operatorname{GL}_2(k_L))$. Now let $\varphi \in G_K/P_K$ be a fixed lift of Fr_K , and let σ be a topological generator of I_K/P_K , which can be chosen so

$$\varphi^{-1}\sigma\varphi=\sigma^{q_K}.$$

Remark 2.0.2. The importance of φ and ρ come from the following: G_K/P_K is topologically generated by φ and ρ , with the only relation $\varphi^{-1}\sigma\varphi = \sigma^{q_K}$.

Write

$$\overline{\rho}(\varphi) = \begin{pmatrix} \overline{\alpha} & \\ & \overline{\beta} \end{pmatrix}$$

for $\alpha, \beta \in k_K$.

Now, let $(A, \mathfrak{m}_A) \in \mathcal{C}_{\mathcal{O}_L}$ and let $\rho \colon G_K \to \operatorname{GL}_2(A)$ be a lift of $\overline{\rho}$. Then by Hensel's lemma, there are $a, b \in \mathfrak{m}_A$ such that $\rho(\varphi)$ has characteristic polynomial $(X - (\alpha + a))(X - (\beta + b))$, i.e., $\rho(\varphi)$ has eigenvalues $\alpha + a$ and $\beta + b$. Since the determinant is $\chi(\varphi)$, we have $\beta + b = \chi(\varphi)/(\alpha + a)$. Moreover, the eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$ of $\overline{\rho}(\varphi)$ lift to eigenvectors:

$$\rho(\varphi) \begin{pmatrix} 1 \\ x \end{pmatrix} = (\alpha + a) \begin{pmatrix} 1 \\ x \end{pmatrix}$$
$$\rho(\varphi) \begin{pmatrix} y \\ 1 \end{pmatrix} = (\beta + b) \begin{pmatrix} y \\ 1 \end{pmatrix},$$

where $x, y \in \mathfrak{m}_A$.

Let ρ' be ρ but with a change of basis, i.e., by the conjugation of ρ by $\begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}$.

Thus $\rho'(\varphi) = \begin{pmatrix} \alpha + a \\ \beta + b \end{pmatrix}$. Now, since $\overline{\rho}(\varphi) = 1$ since $\overline{\rho}$ is unramified, so there

are $s, t, u, v \in \mathfrak{m}_A$ such that

$$\rho'(\sigma) = \begin{pmatrix} 1+s & t \\ u & 1+v \end{pmatrix}.$$

Since

$$\rho'(\varphi)^{-1}\rho'(\sigma)\rho'(\varphi) = \rho'(\sigma)^{q_K}$$

is a diagonal matrix, we see t = u = 0. Moreover, since the determinant of $\rho'(\sigma)$, which is $\chi(\sigma)$, is 1, we have (1+s)(1+v) = 1.

The commutator relation further implies that $(1+s)^{q_K} = 1+s$. Since 1+s is invertible, we see that $(1+s)^{q_K-1} = 1$. Now recall that $q_K - 1 = p^m j$ where j is coprime to p. Since $1+s \in 1+\mathfrak{m}_A$ where $1+\mathfrak{m}_A$ is a pro-p group, the j-th power map is invertible, and hence $(1+s)^{p^m} = 1$.

All the above arguments have produced a bijection:

$$\mathcal{R}_{\overline{\rho},\chi}^{\square}(A,\mathfrak{m}_A) := \begin{cases} \text{continuous representations } \rho \colon G_K \to \operatorname{GL}_2(A) \\ \text{such that } \overline{\rho} = \rho \text{ and } \det(\rho) = \chi \end{cases} \\ \simeq \{(x,y,a,s) \in \mathfrak{m}_A^4 : (1+s)^{p^m} = 1\}$$
$$\rho_{(x,y,a,s)} \leftarrow (x,y,a,s),$$

where

$$\rho(\varphi) = \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}^{-1} \begin{pmatrix} \alpha + a \\ & \chi(\varphi)/(\alpha + a) \end{pmatrix} \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}$$

$$\rho(\sigma) = \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 + s \\ & (1+s)^{-1} \end{pmatrix} \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}.$$

3. Taylor's *Ihara avoidance* deformations

Now, a natural question is:

Question 3.0.1. What happens when $\overline{\rho}(\operatorname{Fr}_K)$ has an eigenvalue with multiplicity?

Of course, it suffices to treat the case when $\overline{\rho}$ is trivial (since one can twist by a central character). Thus, to recap, our assumptions now are:

- K/\mathbb{Q}_{ℓ} is a finite extension
- $\overline{\rho}$: $G_K \to \mathrm{GL}_2(k_L)$ is the trivial representation
- $q_L \equiv 1 \pmod{p}$
- χ is unramified, and $\overline{\chi} = 1$.

Now, again ρ^{\square} is tamely ramified, so ρ^{\square} is determined by $\rho^{\square}(\sigma)$ and $\rho^{\square}(\varphi)$, by Remark 2.0.2.

Now, let us make the following definition:

- **Definition 3.0.2.** (1) Let \mathcal{P}_{ur} be the minimal ideal of $R^{\square}_{\overline{\rho},\chi}$ such that $\rho^{\square}(\sigma) = I_2$ (mod \mathcal{P}_{ur}). In other words, writing $\rho^{\square}(\sigma) = \begin{pmatrix} 1+x & y \\ z & 1+w \end{pmatrix}$ for $x,y,z,w \in \mathfrak{m}^{\square}_{\overline{\rho},\chi}$, we let $\mathcal{P}_{ur} = (x,y,z,w) \subset \mathfrak{m}^{\square}_{\overline{\rho},\chi}$.
 - (2) For any root of unity $\zeta \in \mathcal{O}_K^{\times}$, let \mathcal{P}_{ζ} be the minimal ideal of $R_{\overline{\rho},\chi}^{\square}$ modulo which $\rho^{\square}(\sigma)$ has characteristic polynomial $(X-\zeta)(X-\zeta^{-1})$. In other words, $\mathcal{P}_{\zeta} = (\operatorname{tr} \rho^{\square}(\sigma) \zeta \zeta^{-1}, \det \rho^{\square}(\sigma) 1)$.

- (3) Let \mathcal{P}_m be the minimal ideal of $R_{\overline{\rho},\chi}^{\square}$ modulo which $\rho^{\square}(\sigma)$ has characteristic polynomial $(X-1)^2$, and $q_K(\operatorname{tr}\rho^{\square}(\sigma))^2=(1+q_K)^2\det\rho^{\square}(\varphi)$. Write $R_{\overline{\rho},\chi}^{\square}$ for $R_{\overline{\rho},\chi}^{\square}/\mathcal{P}_{\bullet}$.
- **Remark 3.0.3.** The relation in (3) holds in particular when $\rho^{\square}(\sigma) = \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix}$.

The ideals defined above have nice ring-theoretic properties:

Proposition 3.0.4. The minimal primes of $R_{\overline{\rho},\chi}^{\square}$ are precisely $\sqrt{\mathcal{P}_{ur}}$, $\sqrt{\mathcal{P}_{m}}$, and $\sqrt{\mathcal{P}_{\zeta}}$ for $\zeta \neq 1$. Moreover, $\sqrt{\mathcal{P}_{1}} = \sqrt{\mathcal{P}_{ur}} \cap \sqrt{\mathcal{P}_{m}}$.

Now, we have [Gee22, Theorem 3.38]:

Theorem 3.0.5. We have $R_{\overline{\rho},\chi,1}^{\square}/\lambda = R_{\overline{\rho},\chi,\zeta}^{\square}/\lambda$. Furthermore,

- (1) If $\zeta \neq 1$ the $R^{\square}_{\overline{\rho},\chi,\zeta}[1/p]$ is geometrically irreducible of dimension 3
- (2) $R_{\overline{\rho},\chi,\mathrm{ur}}^{\square}$ is formally smooth over \mathcal{O}_L (and thus geometrically irreducible) of relative dimension 3
- (3) $R^{\square}_{\overline{\rho},\gamma,m}[1/p]$ is geometrically irreducible of dimension 3.
- (4) $\operatorname{Spec} R^{\square}_{\overline{\rho},\chi,1} = \operatorname{Spec} R^{\square}_{\overline{\rho},\chi,\mathrm{ur}} \cup \operatorname{Spec} R^{\square}_{\overline{\rho},\chi,m}$ and $\operatorname{Spec} R^{\square}_{\overline{\rho},\chi,1}/\lambda = \operatorname{Spec} R^{\square}_{\overline{\rho},\chi,\mathrm{ur}}/\lambda \cup \operatorname{Spec} R^{\square}_{\overline{\rho},\chi,m}/\lambda$ are both a union of two irreducible components, and have relative dimension 3.

References

- [BH06] Colin J. Bushnell and Guy Henniart, *The local Langlands conjecture for* GL(2), Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120
- [Gee22] Toby Gee, Modularity lifting theorems, Essent. Number Theory 1 (2022), no. 1, 73–126. MR 4573253
- [ST68] Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190

M.I.T., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA, USA *Email address*: kjsuzuki@mit.edu