

SMOKE TEST

HDF 3.3.0

Date Prepared: July 2019

Document Information

Project Name	HDF Smoke Test Document		
Project Owner		Document Version No	1.0
Quality Review Method	By email/HPE SharePoint		
Prepared By		Preparation Date	July 2019
Reviewed By	Refer to version history	Review Date	

Table of Contents

1	IES	STING NIFT	4
	1.1	SELECT A GENERATEFLOWFILE PROCESSOR IN NIFI UI	4
1.2		CONFIGURE GENERATE FLOW FILE PROCESSOR TO GENERATE THE DATA	4
	1.3	SELECT A PUTFILE PROCESSOR IN NIFI UI	5
	1.4 PROC	CONFIGURE PUTFILE PROCESSOR TO STORE GENERATED DATA FROM GENERATEFLOWF	
	1.5	CONNECT AND RUN THE PROCESSORS	6
	1.6	VERIFY THE DATA	6
2	TES	STING NIFI REGISTRY	7
	2.1	CREATE HELLOWORLD BUCKET IN NIFI REGISTRY UI	7
	2.2	CREATE A PROCESS GROUP	7
	2.3	CONFIGURE A PROCESS GROUP	8
	2.4	VERIFY VERSION CONTROL	8
3	TES	STING GRAFANA	10
	3.1	SELECTION OF COMPONENT	10
4	TES	STING KAFKA	11
	4.1	CREATE A NEW KAFKA TOPIC	11
	4.2	CREATE A NEW TOPIC	11
5	TES	STING STREAMING ANALYTICS MANAGER	12
	5.1	GO TO THE STREAMLINE UI	12
	5.2	CREATE A SERVICE POOL	12
	5.3	CREATE A NEW ENVIRONMENT FOR HDF CLUSTER FROM SERVICE POOL	13
	5.4	CREATE A NEW APPLICATION FOR YOUR ENVIRONMENT	13
6	TES	STING STORM	15
	6.1	DOWNLOAD STORM WORDCOUNT EXAMPLE	15
	6.2	CHANGE DIRECTORY TO THE STORM-EXAMPLE	15
	6.3	BUILDING JAR	15
	6.4	CREATE TOPOLOGY FOR STORM WORDCOUNT EXAMPLE	16
	6.5	VEDIEV WORD COUNT TOROLOGY FROM STORM LII	17

1 TESTING NIFI

We will use NIFI UI to create a HelloWorld dataflow.

1.1 Select a GenerateFlowFile processor in NIFI UI

1.2 Configure GenerateFlowFile processor to generate the data

Following are the configuration you need to perform for GenerateFlowFile processor:

- Set the file size
- Enter custom text in Custom Text section

1.3 Select a PutFile processor in NIFI UI

1.4 Configure PutFile processor to store generated data from GenerateFlowFile processor

You need to perform following configuration for PutFile processor:

Enter a location where you want to store generated data from GenerateFlowFile processor.
 (Ex. /tmp/)

1.5 Connect and run the processors

1.6 Verify the data

Go to NIFI container and check into /tmp directory, if the data is stored or not.

ls /tmp/

```
0f415ed5-b405-422c-89a6-69bd68f17bcf
                                          6ae13641-8aef-4eab-9e0a-bc53e70a3f1d bds-20190616225559.log
                                                                                                                               ee11a6ce-974d-4276-bd1f-5b4b54495e66
                                                                                    bd_vagent_bundle.517.log
cfa81c94-579d-48fb-917b-abb48bfd6e04
1c96755c-209b-4690-b8b5-71e9186d50fc
2019466d-1b12-44f9-83f2-033252867b9f
                                           6f5eef59-f810-4a31-a838-ced3e4f86650
                                                                                                                               efc2534f-e25f-412d-a0f5-309bc920b95a
                                          7852fa6c-d820-41f1-bb38-34158882a2d0
                                                                                                                               fe448eb1-b30b-493a-af79-4cb05730d89c
23994186-4bef-4f26-9638-074eb4b9e20b
                                          787f475d-c6a4-4f2a-ab98-e786f0cd5212
                                                                                    d6c6e001-57c2-41f5-aabc-ebdc894122f0
                                                                                                                               hsperfdata\_mynifiuser
3540a303-9e91-42ad-a66c-ada17c3f1673 87111caa-0238-4323-867b-9602378bbc5c 358ef550-c2cc-42fb-837e-e71b75422b2e 8c0c012e-ed1c-4eab-9027-903d5b49f2b7
                                                                                    dbbab28a-5666-4f93-b992-904a7265fe63
                                                                                                                               hsperfdata_registry
                                                                                    de538e75-172d-4631-9684-cda97eb5d315 hsperfdata root
4f44eda8-5801-43ae-965d-fded68baa078 8d970764-d334-4f9d-b964-3c2f6c1e428d
                                                                                                                              jna-551163445
                                                                                    e3a9c207-d4dc-44df-88a5-90f30e6ad659
647c88ff-ea0f-4536-9612-2ce45f79992c
                                          a2c32c88-76bb-4210-a9ad-f1f43d3c44b6
                                                                                    e9e1a5f6-915e-4438-aa4d-c25ea7985a37
                                                                                                                               snappy-1.0.5-libsnappyjava.so
65b8d7ee-9635-4de4-9d2e-8622f8504fb1 a477f930-f8b8-4873-8cbd-a2e73a10e849
                                                                                    ec394c58-beda-469a-a17f-fd83a262ef70
[bluedata@bluedata-6670 ~]$
```

Use cat command to check the stored data.

[bluedata@bluedata-6670 ~]\$ cat /tmp/0f415ed5-b405-422c-89a6-69bd68f17bcf
Hello World, Here we are running the NIFI processor[bluedata@bluedata-6670 ~]\$
[bluedata@bluedata-6670 ~]\$

2 TESTING NIFI REGISTRY

Here we will test the NIFI Registry service. Go to the NIFI Registry UI and create a bucket called **HelloWorld**.

2.1 Create HelloWorld bucket in NIFI Registry UI

2.2 Create a process group

Create a HelloWorld process group in NIFI UI and start version control.

2.3 Configure a process group

Configure HelloWorld process group for storing it into bucket HelloWorld in NIFI Registry.

2.4 Verify version control

Go to the NIFI Registry UI. Select HelloWorld bucket and check if version control started for process group HelloWorld.

3 TESTING GRAFANA

Go to the Grafana UI and click on the search icon. Here you can see the components which is deployed into the HDF cluster.

3.1 Selection of component

NIFI – Home component is selected in Grafana UI, and you can see the resources usages by the NIFI service.

4 TESTING KAFKA

Go inside the Kafka container and follow the below steps.

4.1 Create a new Kafka topic

Create new Kafka topic inside the Kafka container.

4.2 Create a new topic

Execute the below command to create a new topic "SDS"

```
bin/Kafka-topics --create --zookeeper <ip address of zookeeper>:2181 --
replication-factor 1 --partitions 1 --topic SDS
```

```
[bluedata@bluedata-6711 kafka]$ ls bin/
                              kafka-configs.sh
connect-distributed.sh
                                                            kafka-delegation-tokens.sh kafka-preferred-replica-elegation-tokens.sh
connect-standalone.sh
                              kafka-console-consumer.sh
                                                            kafka-delete-records.sh
                                                                                         kafka-producer-perf-test.sh
                                                            kafka-dump-log.sh
kafka
                              kafka-console-producer.sh
                                                                                         kafka-reassign-partitions.sh
kafka-acls.sh
                              kafka-consumer-groups.sh
                                                            kafka-log-dirs.sh
                                                                                         kafka-replica-verification.s
kafka-broker-api-versions.sh kafka-consumer-perf-test.sh kafka-mirror-maker.sh
                                                                                         kafka-run-class.sh
[bluedata@bluedata-6711 kafka]$
[bluedata@bluedata-6711 kafka]$ ./bin/kafka-topics.sh --create --zookeeper 10.39.250.17,10.39.250.30,10.39.250.28:2
181 --replication-factor 1 --partitions 1 --topic SDS
Created topic "SDS".
[bluedata@bluedata-6711 kafka]$
```


5 TESTING STREAMING ANALYTICS MANAGER

5.1 Go to the Streamline UI

5.2 Create a service pool

Perform below steps to create a service pool for HDF Cluster:

Enter url for HDF cluster into url bar and click on AUTO ADD button.

(Ex.: http://<ip address of ambari server>:8080/api/v1/clusters/HDF)

5.3 Create a new environment for HDF cluster from service pool

5.4 Create a new application for your environment

Here you can create and design your application. After running your application you can verify your application under application section.

6 TESTING STORM

Here we will create a WordCount topology for Storm. We will download a WordCount example and create a WordCount topology.

Note: Install git and maven (if not installed), by executing the following.

```
yum install git -y
yum install maven -y
```

6.1 Download Storm WordCount example

Execute the below command to download Storm WordCount example

git clone https://github.com/ADMIcloud/examples.git

```
[bluedata@bluedata-6896 ~]$
[bluedata@bluedata-6896 ~]$ git clone https://github.com/ADMIcloud/examples.git
Cloning into 'examples'...
remote: Enumerating objects: 152, done.
remote: Total 152 (delta 0), reused 0 (delta 0), pack-reused 152
Receiving objects: 100% (152/152), 34.88 KiB | 0 bytes/s, done.
Resolving deltas: 100% (34/34), done.
[bluedata@bluedata-6896 ~]$
[bluedata@bluedata-6896 ~]$
```

6.2 Change directory to the storm-example

cd examples/storm-example/

```
[bluedata@bluedata-6896 ~]$ ls
examples vagent.bin
[bluedata@bluedata-6896 ~]$ cd examples/storm-example/
[bluedata@bluedata-6896 storm-example]$
[bluedata@bluedata-6896 storm-example]$
[bluedata@bluedata-6896 storm-example]$
```

6.3 Building jar

Execute the below command to build jar for Storm WordCount example.

mvn clean install

Note: After executing this command a new directory target will be created where you can find Strom WordCount example jar file. Use Is command to verify.

6.4 Create topology for Storm WordCount example

Execute the below command to create topology for Storm WordCount example. Navigate to /usr/hdf/3.3.0.0-165/storm directory to execute the command.

```
./bin/storm jar /home/bluedata/examples/storm-example/target/storm-example-1.0-jar-with-dependencies.jar admicloud.storm.wordcount.WordCountTopology WordCount
```

```
[Dluedata@bluedata-6996 storm]$ ./bin/storm jar /nome/bluedata/examples/storm-example/target/storm-example-1.0-jar-with-dependencies.jar admicloud.storm.wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wordcount.Wor
```


6.5 Verify WordCount topology from Storm UI

Note: Under Topology Summary WordCount topology is created.