In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snr
from sklearn.preprocessing import OneHotEncoder

In [3]: data=pd.read_csv("C:\\Users\\Lenovo\\Desktop\\Intern\\archive\\tested.csv")
 data.head(10)

Out[3]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabir
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN

```
In [5]: data_new=data.drop(['PassengerId','Name','Cabin','Ticket'],axis=1)
    data_new.head(10)
```

Out[5]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	male	22.0	1	0	7.2500	S
	1	1	1	female	38.0	1	0	71.2833	С
	2	1	3	female	26.0	0	0	7.9250	S
	3	1	1	female	35.0	1	0	53.1000	S
	4	0	3	male	35.0	0	0	8.0500	S
	5	0	3	male	NaN	0	0	8.4583	Q
	6	0	1	male	54.0	0	0	51.8625	S
	7	0	3	male	2.0	3	1	21.0750	S
	8	1	3	female	27.0	0	2	11.1333	S
	9	1	2	female	14.0	1	0	30.0708	С

In [6]: data_new.describe().round(3)

t[6]:		Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000	891.000	714.000	891.000	891.000	891.000
	mean	0.384	2.309	29.699	0.523	0.382	32.204
	std	0.487	0.836	14.526	1.103	0.806	49.693
	min	0.000	1.000	0.420	0.000	0.000	0.000
	25%	0.000	2.000	20.125	0.000	0.000	7.910
	50%	0.000	3.000	28.000	0.000	0.000	14.454
	75%	1.000	3.000	38.000	1.000	0.000	31.000
	max	1.000	3.000	80.000	8.000	6.000	512.329

```
In [7]: data_new.isnull().sum()
Out=[7]: Survived 0
```

Out[7]: Pclass 0 Sex 0 177 Age SibSp 0 Parch 0 Fare 0 Embarked 2 dtype: int64

```
In [8]: data_new['Age']=data_new['Age'].fillna(data_new['Age'].mean())
   data_new['Fare']=data_new['Fare'].fillna(data_new['Fare'].mean())
   data_new.isnull().sum()
```

```
Survived
                     0
Out[8]:
        Pclass
                     0
        Sex
        Age
                     0
        SibSp
                     0
        Parch
                     0
        Fare
                     0
                     2
        Embarked
        dtype: int64
         ax=data_new['Sex'].value_counts().plot(kind='bar', x='Survived', figsize=(6,5))
In [9]:
         plt.title("Ratio of Male and Female passengers")
         plt.ylabel("Count")
         plt.xlabel("Sex")
         plt.show()
```



```
In [10]: ax=data_new['Survived'].value_counts().plot(kind='bar', x='Survived', figsize=(6,5)
    plt.title("Survival Distribution (0: No,1: Yes)")
    plt.ylabel("Count")
    plt.xlabel("Survived")
    plt.show()
```

Survival Distribution (0: No,1: Yes)


```
In [12]: ax=data_new['Embarked'].value_counts().plot(kind='pie',figsize=(6,5),autopct='%1.1f
    plt.title("Distribution of Passengers by Embarked")
    plt.legend(["Q", "S", "C"])
    plt.show()
```

Distribution of Passengers by Embarked


```
In [14]:
   _, ax=plt.subplots(figsize=(8,6))
snr.countplot(data = data_new, x = "Embarked", hue = "Survived", ax = ax)
```

```
ax.set_title("Count for Embarked with Survival")
ax.set_xlabel("Embarked")
ax.set_xticklabels(["Q", "S", "C"])
ax.set_ylabel("Number of Passengers")
ax.legend(title = "Legends", labels = ["Not Survived", "Survived"])
plt.plot()
```

Out[14]: []

Count for Embarked with Survival


```
In [15]: data_new['Sex']= data_new['Sex'].apply({'male':1, 'Female':0}.get)
   data_new['Embarked']= data_new['Embarked'].apply({'S':1, 'Q':2, 'C':3}.get)
   data_new.head()
```

Out[15]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	1.0	22.0	1	0	7.2500	1.0
	1	1	1	NaN	38.0	1	0	71.2833	3.0
	2	1	3	NaN	26.0	0	0	7.9250	1.0
	3	1	1	NaN	35.0	1	0	53.1000	1.0
	4	0	3	1.0	35.0	0	0	8.0500	1.0

```
In [19]: x=data_new.drop(['Survived'],axis=1)
    y=data_new['Survived']
```

In [28]: from sklearn.model_selection import train_test_split
 x_train, x_test,y_train,y_test=train_test_split(x, y, train_size=0.8)

In [26]: from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=5)

```
In [33]: from sklearn.impute import SimpleImputer
       imputer = SimpleImputer(strategy='mean')
       x_train = imputer.fit_transform(x_train)
       x_test = imputer.transform(x_test)
In [34]:
      knn.fit(x_train,y_train)
Out[34]: ▼ KNeighborsClassifier
      KNeighborsClassifier()
In [35]:
      predictions=knn.predict(x_test)
       print(predictions)
       100010100010100110011100000100001011110
       In [36]: | from sklearn.metrics import confusion_matrix, accuracy_score
       ac=accuracy_score(y_test,predictions)
       cm=confusion_matrix(y_test,predictions)
In [37]:
      print(cm)
      [[91 24]
       [37 27]]
      print(ac)
In [38]:
      0.659217877094972
      from sklearn.tree import DecisionTreeClassifier
In [39]:
       tree=DecisionTreeClassifier()
In [40]: tree.fit(x_train,y_train)
Out[40]: ▼ DecisionTreeClassifier
      DecisionTreeClassifier()
In [41]:
      predictions=tree.predict(x_test)
       print(predictions)
       0\;1\;1\;0\;1\;0\;0\;0\;0\;0\;1\;0\;1\;0\;0\;0\;0\;1\;0\;0\;0\;0\;0\;1\;1\;0\;0\;1\;0\;1\;0\;1\;0\;1\;0\;1
       0\;1\;0\;0\;0\;0\;0\;0\;0\;0\;1\;1\;0\;1\;0\;1\;0\;0\;0\;1\;0\;0\;1\;1\;0\;0\;0\;0\;0\;1\;0\;1
       In [42]: from sklearn.metrics import confusion_matrix, accuracy_score
       ac=accuracy_score(y_test,predictions)
       cm=confusion_matrix(y_test,predictions)
In [43]: print(cm)
      [[84 31]
       [31 33]]
In [44]:
      print(ac)
```

0.6536312849162011

0.5977653631284916

```
In [45]: from sklearn.svm import SVC
      svm=SVC()
In [46]: svm.fit(x_train,y_train)
Out[46]: ▼ SVC
     SVC()
      predictions=svm.predict(x_test)
In [47]:
      print(predictions)
      [0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 1
      In [48]: from sklearn.metrics import confusion_matrix, accuracy_score
      ac=accuracy_score(y_test,predictions)
      cm=confusion_matrix(y_test,predictions)
In [49]: print(cm)
      [[93 22]
      [50 14]]
In [50]: print(ac)
```