COMP90038 Assignment Project Exam Help Algorithms, and Complexity

Lecture 21: Huffman Encoding for Data Compression Add WeChat powcoder (with thanks to Harald Søndergaard & Michael Kirley)

Andres Munoz-Acosta

munoz.m@unimelb.edu.au

Peter Hall Building G.83

 The SES is open now. Please take a time to review this subject. All feedback is greatly appreciated.

Assignment Project Exam Help

- The final exam has beentsone of the detactor on Thursday 8th of November at Wilson Hall
 - It is a closed book exam. No conclude the specific ted.
 - Reading time will be 15 minutes. Exam duration will be 3 hours.
 - Answers must be provided in the exam paper in the space allocated.
 - The reverse side of the pages can be used for rough work.
 - All questions should be attempted. Some are easier than others.
 - Any unreadable parts will be considered wrong. Be neat in your answers.

- A sample exam paper will be provided this week.
 - We have instructed the tutors NOT to provide hints on the sample exam Assignment Project Exam Help
- Assignment 2 is due next sunday at 11:59PM.
 - We will provide sample and through the LMS.
- Next week we will use both lectures for a quick review of the content.
 - Only examinable topics will be discussed in the review.

Recap

- We discussed **greedy algorithms**:
 - A problem solving strategy that takes the **locally best** choice among all feasible ones. Such choice is the locally best choice among all
 - Usually, locally best choices do not yield global best results.
 - In some exceptions a greedy algorithm is correct and fast.
 - Also, a greedy algorithmackin wowide ago wapp doximations.

- We applied this idea to two graph problems :
 - Prim's algorithm for finding minimum spanning trees
 - Dijkstra's algorithm for single-source shortest path

What is a Minimum Spanning Tree?

• A minimum spanning tree of a weighted graph $\langle V,E \rangle$ is a tree $\langle V,E' \rangle$ where E' is a subset of E, such that the connections have the lowest cost Assignment Project Exam Help

- We use Prim's algorithm to find the minimum spanning tree.
 - It constructs a sequence of subtrees T, by adding to the latest tree the closest node not currently on it.
 Add WeChat powcoder

Prim's Algorithm

• We examined the complete algorithm, that uses priority queues:

```
function Prim (V, F) ment Project Exam Help
       \begin{array}{l} cost[v] \leftarrow \infty \\ prev[v] \leftarrow nil \end{array} https://powcoder.com
   pick initial node v_0

cost[v_0] \leftarrow 0 Add WeChat powcoder
    Q \leftarrow \text{InitPriorityQueue}(V)
                                                             > priorities are cost values
    while Q is non-empty do
        u \leftarrow \text{EJECTMIN}(Q)
        for each (u, w) \in E do
            if weight(u, w) < cost[w] then
                cost[w] \leftarrow weight(u, w)
                prev|w| \leftarrow u
                UPDATE(Q, w, cost[w])
                                                            > rearranges priority queue
```

Another example

• Let's work with the following graph:

Tree T

- What would happen if we start on b?
 - The sequence will be different, but the edges may be the same
- How many different trees can we have?
 - If there are ties, the tie breaking has influence

1166 1		а	D	C	u	C	ı
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
ect Exam Help	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
oder.com	cost		3	∞	∞	6	5
	prev		a	nil	nil	a	a
a h 1	cost			1	∞	6	4
t ^b powcoder	prev			b	nil	a	b
- h o	cost				6	6	4
a,b,c	prev				С	a	b
a h a f	cost				5	2	
a,b,c,f	prev				f	f	
a,b,c,f,e	cost				5		
	prev				f		
a,b,c,f,e,d	cost						
	prev						

Dijkstra's Algorithm

• Dijkstra's algorithm finds all shortest paths from a fixed start node. Its complexity is the same as that of Prim's algorithm.

Assignment Project Exam Help

```
function Dijkstra(\langle V, E \rangle, v_0)
   for each v \in V dohttps://powcoder.com
       dist[v] \leftarrow \infty
       prev[v] \leftarrow nil Add WeChat powcoder
    dist[v_0] \leftarrow 0
   Q \leftarrow \text{InitPriorityQueue}(V)
                                                           > priorities are distances
   while Q is non-empty do
       u \leftarrow \text{EJECTMIN}(Q)
       for each (u, w) \in E do
           if dist[u] + weight(u, w) < dist[w] then
               dist[w] \leftarrow dist[u] + weight(u, w)
               prev|w| \leftarrow u
               UPDATE(Q, w, dist[w])
                                                        > rearranges priority queue
```

Another example

Let's work with this graph again:

•	What would	happen	if we	start on	b?
---	------------	--------	-------	----------	----

- It is possible to end up with a different tree
- How many different trees can we have?
 - Ties can also influence the final tree.

Tree T		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
ject Exam Help	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
coder.com	cost		3	∞	∞	6	5
Carden.Com	prev		a	nil	nil	a	a
a h 1	cost			4	∞	6	5
atbpowcoder	prev			b	nil	a	a
a h a	cost				10	6	5
a,b,c	prev				С	a	a
a h a f	cost				10	6	
a,b,c,f	prev				С	a	
a,b,c,f,e	cost				10		
	prev				С		
a h a f a d	cost						
a,b,c,f,e,d	prev						

Data compression

 From an information-theoretic point of view, most computer files contain much redundancy. Assignment Project Exam Help

- Compression is used to store files in less space.
 - For text files, savings uptatower for text files, savings uptatower f
 - For binary files, savings up to 90 are common.

• Savings in space mean savings in time for file transmission.

Run-Length Encoding

• For a text with long runs of **repeated characters**, we could compress by counting the runs. For example:

Assignment Project Exam Help **AAAABBBAABBBBCCCCCCCDABCBAAABBBBCCCD**https://powcoder.com

• can then be encoded as: Add WeChat powcoder

4A3BAA5B8CDABCB3A4B3CD

 This is not useful for normal text. However, for binary files it can be very effective.

Run-Length Encoding

Variable-Length Encoding

- Fixed-length encoding uses a static number of symbols (bits) to represent a character.
 - For example, the ASAIssognusene Pitopect Faractur. Help

- https://powcoder.com
 Variable-Length encoding assigns shorter codes to common characters.
 - In English, the most company have the following following could assign 0 to it.
 - However, no other character code can start with **0**.
- That is, no character's code should be a prefix of some other character's code (unless we somehow put separators between characters, which would take up space).

Variable-Length Encoding

 Suppose our alphabet is {A,B,C,D,E,F,G}

shorter codes

Assignment Project E	XasyMBQ1r	OCCURRENCE	CODE
	Δ	28	
 We analyzed a text and found the following number of occurrences 	com	4	0000
Add WeChat pov		14	011
	D	5	0001
 The last column shows some sensible codes that we may use for each symbol 	E	27	10
	F	12	010
 Symbols with higher occurrence have 	G	10	001

Tries for Variable-Length Encoding

- A **trie** is a binary tree used on search applications
- To search for a key we look sitgindividual Prittie to the left whenever a bit is zero and to the right whenever it is one

https://powcoder.com

• Using a trie to determine codes means that no code will be the prefix of another

Encoding messages

 To encode a message, we just need to concatenate the codes. For example:

 If we were to assign three bits per character, FACE would use 12 bits instead of 10. For BAGGED there is no space savings

SYMBOL	CODE
Α	11
В	0000
С	011
D	0001
E	10
F	010
G	001

Decoding messages

 Try to decode 00011001111010 and **000011000110** using the Assignment Project Exam Help trie • Starting from the root, print each symbol found as a leaf https://powcoder.com Repeat until the string is Add WeChat powcode completed Remember the rules: Left branch is 0, right branch is 1

Huffman Encoding: Choosing the Codes

 Sometimes (for example for common English text) we may know the frequencies of letters fairly well.

Assignment Project Exam Help

- If we don't know about frequencies then we can still count all characters in the given text as a first steps://powcoder.com
- But how do we assign codes to the characters once we know their frequencies?
 - By repeatedly selecting the two smallest weights and fusing them.
- This is **Huffman's algorithm** another example of a **greedy method**.
 - The resulting tree is a **Huffman tree**.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

```
4 5 10 12 14 27 28
B D G F C F A
```

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help

Assignment Project Exam Help

https://powcoder.com
Add WeChat powcoder

9
26
4 5 10 12 14 27 28
B D G F C E A

An exercise

 Construct the Huffman code for data in the table, placing in the tree from left to right [A,B,C,D,_]

0.1

• Then, encode ABACABAR and decode Project Exam Help

• 0100011101000101 / BAD_ADA https://powcoder.com

0.15

0.15 D

https://powcoder.com	В	0.10	100
1.0 Add WaChat payroad	C	0.20	111
Add WeChat powcode	D	0.15	101
0.4 A 0.6	_	0.15	110

FEQUENCY

CODE

0.40

Compressed Transmission

- If the compressed file is being sent from one party to another, the parties must agree about the codes used.

 • For example, the trie can be sent along with the message.

https://powcoder.com

- For long files this extra gost weesligible wooder
- Modern variants of Huffman encoding, like Lempel-Ziv compression, assign codes not to individual symbols but to sequences of symbols.

Next lecture

Assignment Project Exam Help

• We briefly discuss complexity theory, NP-completeness and approximation algorithms://powcoder.com

Add WeChat powcoder

On the final week we will devote time to review all the content