**Problem.** Last Halloween, I ate 84 Starburst candies. However, not all grad students have an unquenchable need for Starburst. I don't know how many Starburst grad students ate on average, but I'm interested in finding out the variance in Starburst consumption last Halloween because I want to know just how out of hand my Starburst habit was.

I tracked down the Starburst consumption for n=31 grad students. The average was  $\bar{x}=22$  and the variance was  $s^2=14$ . Someone told me that the true variance in Starburst consumption is actually  $\sigma_0^2=8$ . I think they're full of crap and I want to demonstrate how wrong they are with 95% confidence.

**Solution.** The test being performed is

$$H_0: \sigma^2 = 8,$$

$$H_1: \sigma^2 \neq 8.$$

The test statistic is

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(30)14}{8} = 52.5.$$

The lower critical value can be found on the  $\chi^2$  table, row 30, the columns with 0.975 and 0.025. They are  $\chi^2_{30,0.975} = 16.799$ , the upper critical value is  $\chi^2_{30,0.025} = 46.979$ . Since the test statistic is beyond the interval [19.799, 46.997], which means it is in the rejection region, we reject the null hypothesis. Thus, I can tell that person how full of crap they are at 5% significance<sup>1</sup>: "If your guess was true, then there's a less than 5% chance that I'd have actually calculated  $s^2 = 14$ . So you're probably wrong."



FIGURE 1: If the null is true, then there's a less than 5% chance of seeing a  $\chi^2$  statistic in the red regions. Since we found  $\chi^2 = 52.5$ , we reject the null.

<sup>&</sup>lt;sup>1</sup> "Full of crap at 5% significance" is not standard statistical jargon.