HW # 9

Timothy Petliar

April 2016

1 Solutions

1. First, I show that the spectral norm is equivalent to finding $\sup_{\|x\|=1} \|Ax\|$. This is fairly obvious since

$$\sup_{x \in \mathbb{R}^n} \frac{\|Ax\|}{\|x\|} = \sup_{x \in \mathbb{R}^n} \frac{\left\| \frac{|Ax|}{\|x\|} \|x\| \right\|}{\|x\|} = \sup_{x \in \mathbb{R}^n} \frac{\|x\| \|\frac{Ax}{\|x\|} \|}{\|x\|} = \sup_{\|x\|=1} \|Ax\|.$$

From now on, any vector x will be assumed to have norm one. Next, I maximize $\|Ax\|^2$ by the Lagrangian method. $\mathcal{L} = x'A'Ax + \lambda(1-x'x)$. Using basic matrix calculus, I differentiate with respect to x. Because A'A is symmetric, the the derivative of x'A'Ax with respect to x will be 2A'Ax. Then we obtain $2A'Ax = 2\lambda x$. It is clear the x is an eigenvector of A'A and λ is the corresponding eigenvalue. But then $\|Ax\|^2 = \langle Ax, Ax \rangle = \langle x, A'Ax \rangle = \langle x, \lambda x \rangle = |\lambda|$. The global maximum is achieved with the eigenvector corresponding to the eigenvalue whose absolute value is the spectral radius. Thus $\|Ax\| = \sqrt{\rho(A'A)}$

- 2. Consider the power series $\sum_{k=0}^{\infty}\|A\|\,x^k$. By Gelfand's formula, $\lim_{k\to\infty}\|A^k\|^{\frac{1}{k}}=\lim\sup_{k\to\infty}\|A^k\|^{\frac{1}{k}}=\rho(A)<1$. From the convergence theorems for power series, the power series is absolutely convergence if $|x|<\frac{1}{\rho(A)}$. Since $\frac{1}{\rho(A)>1}$, the power series converges when x=1, which is $\sum_{k=0}^{\infty}\|A\|$. Since the series is summable, it is also Abel summable, so $\lim_{x\to 1^-}\sum_{k=0}^{\infty}\|A\|\,x^k=\sum_{k=0}^{\infty}\|A\|$. We could use the relationship to find C and $r\in(0,1)$ such that $\|A^K\|\leq Cr^k\,\,\forall k$, but the details are fuzzy \square .
- 3. Since A is a d diagonalizable square matrix, $A = PDP^{-1}$. Where D is a diagonal matrix of the eigenvalues of A. Then $|\lambda_i| < |\rho(A)| < 1$. We use the famous result that $A^k = PD^kP^{-1}$. But then D^k is a diagonal matrix of all the eigenvalues raised to the power k. Then since $\lim_{k \to \infty} |\lambda_i^k| = \lim_{k \to \infty} |\rho(A)^k| = 0$, we conclude that $\lim_{k \to \infty} A^k = \lim_{k \to \infty} PDP^{-1}^k = \lim_{k \to \infty} PD^kP^{-1} = 0_{\square}$.

- 4. Suppose $\{M_n\}_{n\in\mathbb{N}}$ is a sequence of square non-negative definite matrices that converges to some matrix M which is not. Then there exists some non-zero vector x such that x'Mx < 0. Consider the sequence $\{x'M_nx\}_{n\in\mathbb{N}}$. Then it is clear that this sequence convergence to x'Mx, which means that $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ such that $n \geq N$ implies $|x'M_nx x'Mx| < \epsilon$. Suppose xMx = -c, where $c \in \mathbb{R}^+$. I claim there must be some N such that for $n \geq N$, $x'M_nx < 0$. Suppose this were not true. Then $\forall n$ we would have $|x'M_nx x'Mx| = |x'M_nx + c| \geq |0 + c| = c$. This not possible because then the limit definition would not hold if we pick $\epsilon = c/2$. On the other hand, since M_n is positive definite for each n, $x'M_nx \geq 0 \ \forall n$. Thus we have obtained a contradiction and so M must be non-negative definite also, allowing us to conclude that the set of non-negative definite matrices in $\mathcal{M}(n \times n)$ is closed \square .
- 5. a)We know that $X^* = AX^*A' + M$ and * is unique. Suppose M is symmetric. Then $X^{*'} = (AX^*A' + M)' = A(X^*)'A' + M' = A(X^*)'A' + M$. Then $(X^*)'$ is a solution to the Lyapunov equation, but since the solution is unique $X^* = (X^*)'$ and so X^* is symmetric \square
- b) Suppose M is non-negative definite. Take non-zero vector z. Then $z'X^*z=z'(AX^*A'+M)z=z'AX^*A'z+z'Mz=$. Suppose we repeatedly substitute the expression for X^* . We then obtain $z'X^*z=\lim_{k\to\infty}z'A^kX^*A^{k\prime}+\sum_{k=1}^\infty z'A^kMA^{k\prime}z+z'Mz$. Since the absolute value of the maximum eigenvalue of A is strictly less the 1, A goes to zero in the power. Let $y_k=A^{k\prime}z$. Each y_k is an nonzero vector and M is non-negative definite so, $\sum_{k=1}^\infty Y_k'My+z'Mz\geq 0$ Thus X^* is non-negative definite. \square
- c) The argument is the same as part (b) except the last step gives strict inequality since M is positive definite.