Модуль №5. Инновации в технологии возведения каменных, металлических и деревянных строительных конструкций. Показатели и критерии качества возведения каменных, металлических и деревянных строительных конструкций

5.1 Монтаж металлических конструкций

Исполнительными рабочими чертежами должны быть чертежи КМД. Деформированные конструкции следует выправить. Правка может быть выполнена без нагрева поврежденного элемента (холодная правка) либо с предварительным нагревом (правка в горячем состоянии) термическим или термомеханическим методом. Холодная правка допускается только для плавно деформированных элементов.

Решение об усилении поврежденных конструкций или замене их новыми должна выдать организация - разработчик проекта.

При производстве монтажных работ запрещаются ударные воздействия на сварные конструкции из сталей: с пределом текучести 390 МПа (40 кгс/кв.мм) и менее - при температуре ниже минус 25° C; с пределом текучести свыше 390 МПа (40 кгс/кв.мм) - при температуре ниже 0 °C.

Проектное закрепление конструкций (отдельных элементов и блоков), установленных в проектное положение, с монтажными соединениями на болтах следует выполнять сразу после инструментальной проверки точности положения и выверки конструкций, кроме случаев, оговоренных в дополнительных правилах настоящего раздела или в ППР.

Конструкции с монтажными сварными соединениями надлежит закреплять в два этапа - сначала временно, затем по проекту. Способ временного закрепления должен быть указан в проекте.

Балки путей подвесного транспорта и другие элементы, опирающиеся на конструкции покрытия (мостики для обслуживания светильников, балки и монорельсы для эксплуатационных ремонтов кранов с площадками обслуживания), целесообразно устанавливать при сборке блоков.

В собранном пакете болты заданного в проекте диаметра должны пройти в 100 % отверстий. Допускается прочистка 20 % отверстий сверлом, диаметр которого равен диаметру отверстия, указанному в чертежах. При этом в соединениях с работой болтов на срез и соединенных элементов на смятие допускается чернота (несовпадение отверстий в смежных деталях собранного пакета) до 1 мм - в 50 % отверстий, до 1,5 мм - в 10 % отверстий.

В случав несоблюдения этого требования с разрешения организации - разработчика проекта отверстия следует рассверлить на ближайший больший диаметр с установкой болта соответствующего диаметра.

В соединениях с работой болтов на растяжение, а также в соединениях, где болты установлены конструктивно, чернота не должна превышать разности диаметров отверстия и болта.

Запрещается применение болтов и гаек, не имеющих клейма предприятия-изготовителя и маркировки, обозначающей класс прочности.

К выполнению соединений на болтах с контролируемым натяжением могут быть допущены рабочие, прошедшие специальное обучение, подтвержденное соответствующим удостоверением.

Перепад поверхностей (депланация) стыкуемых деталей свыше 0,5 и до 3 мм должен быть ликвидирован механической обработкой путем образования плавного скоса с уклоном не круче 1:10.

Стальные канаты, применяемые в качестве напрягающих элементов, должны быть перед изготовлением элементов вытянуты усилием, равным 0,6 разрывного усилия каната в целом, указанного в соответствующем стандарте, и выдержаны под этой нагрузкой в течение 20 мин.

Контроль напряжения конструкций, выполненного методом предварительного выгиба (поддомкрачивание, изменение положения опор и др.), необходимо осуществлять нивелированием положения опор и геометрической формы конструкций.

Предельные отклонения должны быть указаны в проекте.

Номенклатура конструкций зданий и сооружений, подлежащих испытанию, приведена в дополнительных правилах и может быть уточнена в проекте.

Дополнительные правила монтажа конструкций одноэтажных зданий

Подкрановые балки пролетом 12 м по крайним и средним рядам колонн здания надлежит укрупнить в блоки вместе с тормозными конструкциями и крановыми рельсами, если они не поставлены блоками предприятием-изготовителем.

При возведении каркаса зданий необходимо соблюдать следующую очередность и правила установки конструкций:

- -установить первыми в каждом ряду на участке между температурными швами колонны, между которыми расположены вертикальные связи, закрепить их фундаментными болтами, а также расчалками, если они предусмотрены в проекте производства работ;
- -раскрепить первую пару колонн связями и подкрановыми балками (в зданиях без подкрановых балок связями и распорками);
- -в случаях, когда такой порядок невыполним, первую пару монтируемых колонн следует раскрепить согласно проекту производства работ;
- -установить после каждой очередной колонны подкрановую балку или распорку, а в связевой панели предварительно связи;
- –разрезные подкрановые балки пролетом 12 м надлежит устанавливать блоками, неразрезные элементами, укрупненными согласно проекту производства работ;
- -начинать установку конструкций покрытия с панели, в которой расположены горизонтальные связи между стропильными фермами, а при их отсутствии очередность установки должна быть указана в проекте производства работ;
 - -устанавливать конструкции покрытия, как правило, блоками;
- -при поэлементном способе временно раскрепить первую пару стропильных ферм расчалками, а в последующем каждую очередную ферму расчалками или монтажными распорками по проекту производства работ;
- -снимать расчалки и монтажные распорки разрешается только после закрепления и выверки положения стропильных ферм, установки и закрепления в связевых панелях вертикальных и горизонтальных связей, в рядовых панелях распорок по верхним и нижним поясам стропильных ферм, а при отсутствии связей после крепления стального настила.

Листы профилированного настила следует укладывать и осаживать (в местах нахлестки) без повреждения цинкового покрытия и искажения формы. Металлический инструмент надлежит укладывать только на деревянные подкладки во избежание нарушения защитного покрытия.

При поэлементном способе монтажа балки путей подвесного транспорта, а также монтажные балки для подъема мостовых кранов следует устанавливать вслед за конструкциями, к которым они должны быть закреплены, до укладки настила или плит покрытия.

Крановые пути (мостовых и подвесных кранов) каждого пролета необходимо выверять и закреплять по проекту после проектного закрепления несущих конструкций каркаса каждого пролета на всей длине или на участке между температурными швами.

Требования к основаниям и фундаментам

До начала монтажа конструкций резервуаров и газгольдеров должны быть проверены и приняты:

- -разбивка осей с обозначением центра основания;
- -отметки поверхности основания и фундамента, соответствие толщин и технологического состава гидроизоляционного слоя проектным, а также степень его уплотнения;
 - -обеспечение отвода поверхностных вод от основания;
 - -фундамент под шахтную лестницу.

При монтаже днища, состоящего из центральной рулонированной части и окрайков, следует сначала собрать и заварить кольцо окрайков, затем центральную часть днища.

При монтаже резервуаров объемом более 20 тыс. куб.м окрайки следует укладывать по радиусу, превышающему проектный на 15 мм (величину усадки кольца окрайков после сварки).

По окончании сборки кольца окрайков необходимо проверить:

- -отсутствие изломов в стыках окрайков, прогибов и выпуклостей;
- -горизонтальность кольца окрайков.

По окончании сборки и сварки днища необходимо зафиксировать центр резервуара приваркой шайбы и нанести на днище разбивочные оси резервуара.

При монтаже рулонированных стенок следует обеспечить их устойчивость, а также не допускать деформирования днища и нижней кромки полотнища стенок.

Развертывание рулонов высотой 18 м следует производить участками длиной не более 2 м; высотой менее 18 м - участками длиной не более 3 м.

На всех этапах развертывания рулона необходимо исключить возможность самопроизвольного перемещения витков рулона под действием сил упругости.

Вертикальность стенки резервуара, не имеющего верхнего кольца жесткости, в процессе развертывания следует контролировать не реже чем через 6 м, а резервуара, имеющего кольцо жесткости, - при установке каждого очередного монтажного элемента кольца.

При монтаже резервуара, имеющего промежуточные кольца жесткости по высоте стенки, установка элементов промежуточных колец должна опережать установку элементов верхнего кольца на 5-7 м.

Днища резервуаров и газгольдеров из отдельных листов с окрайками надлежит собирать в два этапа: сначала окрайки, затем центральную часть с укладкой листов полосами от центра к периферии.

Временное взаимное крепление листов (днища, стенок) до сварки должно быть обеспечено специальными сборочными приспособлениями, фиксирующими проектные зазоры между кромками листов.

Стенку резервуара водонапорного бака из отдельных листов следует собирать поярусно с обеспечением ее устойчивости от действия ветровых нагрузок.

При монтаже покрытия колокола газгольдера нельзя допускать размещения на нем какихлибо грузов, а также скопления снега.

Приварку внешних направляющих (с площадками и связями, роликами объемоуказателей и молниеприемниками) к резервуару газгольдера надлежит производить только после полной сборки, проверки прямолинейности и сварки каждой направляющей в отдельности, а также выверки геометрического положения всех направляющих.

Сварные соединения днищ резервуаров, центральных частей плавающих крыш и понтонов следует проверять на непроницаемость вакуумированием, а сварные соединения закрытых коробов плавающих крыш (понтонов) - избыточным давлением.

Непроницаемость сварных соединений стенок резервуаров с днищем должна быть проверена керосином или вакуумом, а вертикальных сварных соединений стенок резервуаров и сварных соединений гидрозатворов телескопа и колокола - керосином.

Сварные соединения покрытий резервуаров для нефти и нефтепродуктов следует контролировать на герметичность вакуумом до гидравлического испытания или избыточным давлением в момент гидравлического испытания резервуаров.

Сварные соединения стенки телескопа, стенки и настила покрытия колокола газгольдеров следует контролировать на герметичность избыточным внутренним давлением воздуха - в период их подъема.

Контролю неразрушающими методами подлежат сварные соединения резервуаров для нефти и нефтепродуктов объемом от 2000 до 50000 куб.м и мокрых газгольдеров объемом от 3000 до 30000 куб.м :

- -в стенках резервуаров, сооружаемых из рулонных заготовок, все вертикальные монтажные стыковые соединения;
- —в стенках резервуаров, сооружаемых полистовым методом, все вертикальные стыковые соединения I и II поясов и 50 % соединений III и IV поясов в местах примыкания этих соединений к днищу и пересечений с вышележащими горизонтальными соединениями;
 - -все стыковые соединения окрайков днищ в местах примыкания к ним стенок.

Сварные соединения бака водонапорной башни следует контролировать аналогично сварным

соединениям резервуаров

До гидравлического испытания резервуара, газгольдера, бака водонапорной башни должны быть выполнены врезки и приварка всех патрубков оборудования и лазов, устанавливаемых на днище, понтоне, плавающей и стационарной крышах, стенке резервуара, телескопа, колокола, крыше колокола и водонапорного бака.

На все время испытаний должны быть установлены границы опасной зоны с радиусом не менее двух диаметров резервуара, а для водонапорных башен - не менее двух высот башни.

Во время повышения давления или нагрузки допуск к осмотру конструкций разрешается не ранее чем через 10 мин после достижения установленных испытательных нагрузок.

Для предотвращения превышения испытательной нагрузки при избыточном давлении и вакууме должны быть предусмотрены специальные гидрозатворы, соединенные с резервуаром трубопроводами расчетного сечения.

Испытание резервуара для нефти и нефтепродуктов, резервуара газгольдера и бака водонапорной башни следует производить наливом воды до высоты, предусмотренной проектом.

Гидравлические испытания резервуаров с понтонами и плавающими крышами необходимо производить без уплотняющих затворов с наблюдением за работой катучей лестницы, дренажного устройства, направляющих стоек. Скорость подъема (опускания) понтона или плавающей крыши при гидравлических испытаниях не должна превышать эксплуатационную.

При испытании резервуаров низкого давления на прочность и устойчивость избыточное давление надлежит принимать на 25%, а вакуум на 50 % больше проектной величины, если в проекте нет других указаний, а продолжительность нагрузки - 30 мин.

Испытание резервуаров повышенного давления следует производить в соответствии с требованиями, приведенными в проекте, с учетом их конструктивных особенностей.

Стационарная крыша резервуара и бака водонапорной башни должна быть испытана при полностью заполненном водой резервуаре на давление, превышающее проектное на 10%. Давление надлежит создавать либо непрерывным заполнением резервуара водой при закрытых люках и штуцерах, либо нагнетанием сжатого воздуха.

Испытание мокрого газгольдера надлежит производить в два этапа:

- -гидравлическое испытание резервуара газгольдера и газовых вводов;
- -испытание газгольдеров в целом.

Гидравлическое испытание следует проводить при температуре окружающего воздуха 5 °С и выше. При необходимости испытания резервуаров в зимних условиях должны быть приняты меры по предотвращению замерзания воды в трубах и задвижках, а также - обмерзания стенок резервуаров.

Одновременно с гидравлическим испытанием резервуара газгольдера следует проверять герметичность сварных швов на газовых вводах.

В процессе испытания резервуара должны быть обеспечены условия, исключающие образование вакуума в колоколе,

Резервуар считается выдержавшим гидравлическое испытание, если в процессе испытания на поверхности стенки или по краям днища не появляются течи и если уровень воды не будет снижаться ниже проектной отметки.

Испытание газгольдера в целом следует производить после испытания наливом воды путем нагнетания воздуха. При этом:

- -во время подъема колокола необходимо наблюдать за показанием манометра и горизонтальностью подъема; в случае резкого увеличения давления подача воздуха должна быть прекращена; после выявления и устранения причин, задерживающих движение колокола, разрешается производить его дальнейший подъем;
- -первый подъем колокола и телескопа следует производить медленно до момента, когда воздух начнет выходить через автоматическую свечу сброса газа в атмосферу;
- -одновременно с подъемом колокола и телескопа и выходом их за уровень кольцевого балкона производят проверку герметичности швов листового настила покрытия колокола, стенок колокола и телескопа, на сварные соединения которых наносят снаружи мыльный раствор; места с

дефектами фиксируют краской или мелом;

- –после этого опускают колокол и телескоп, а подварку неплотностей производят после полного опускания телескопа и колокола и слива воды из резервуара;
- -телескоп и колокол не менее двух раз поднимают и опускают с большей, чем в первый раз скоростью, после чего колокол или телескоп опускают с таким расчетом, чтобы объем воздуха составлял 90 % номинального объема газгольдера, и в таком положении производят 7-суточное испытание газгольдера.

При испытании нельзя допускать образования вакуума.

В заключение газгольдер испытывают быстрым (со скоростью 1-1,5 м/мин) двукратным подъемом и опусканием подвижных частей. При подъеме и опускании перекос корпуса колокола и телескопа не должен превышать от уровня воды 1 мм на 1 м диаметра колокола и телескопа.

Отверстия в покрытии колокола и иных местах установки испытательных приборов следует заварить с помощью круглых накладок с проверкой швов на герметичность. Лазы резервуаров после окончания испытания газгольдера пломбируют, а смотровые люки колокола оставляют открытыми.

Антикоррозионную защиту выполняют после испытаний резервуара газгольдера и слива всей воды.

Дополнительные правила монтажа конструкций антенных сооружений связи и башен вытяжных труб

Настоящие дополнительные правила распространяются на монтаж и приемку конструкций мачт высотой до 500 м и башен высотой до 250 м.

Бетонирование фундаментных вставок (опорных башмаков) следует выполнять после установки, выверки и закрепления первого яруса башни.

Опорные фундаментные плиты и опорные секции мачт должны быть забетонированы после их выверки и закрепления до установки первой секции ствола мачты.

Монтаж мачт и продолжение установки секций башен разрешается только после достижения бетоном 50 % проектной прочности.

Работу по бетонированию оформляют актами.

Требования к оттяжкам из стальных канатов

Стальные канаты оттяжек должны иметь заводские сертификаты, а изоляторы, в том числе входящие в состав оттяжек, - акты механических испытаний.

Оттяжки мачт необходимо испытать целиком, а при отсутствии такого требования в чертежах КМ - отдельными участками (с осями и соединительными звеньями) усилием, равным 0,6 разрывного усилия каната в целом.

Перевозить оттяжки к месту монтажа при диаметре каната до 42 мм и длине до 50 м допускается в бухтах с внутренним диаметром 2 м, при длинах более 50 м - намотанными на барабаны диаметром 2,5 м, а при диаметрах канатов более 42 мм - на барабанах диаметром 3,5 м, кроме случаев изготовления и испытания оттяжек по требованию чертежей КМ на монтажной площадке. В этом случае перемещение оттяжек от испытательного стенда надлежит выполнять без их сворачивания.

Мачты, имеющие опорные изоляторы, необходимо монтировать на временной опоре (предусмотренной чертежами КМ) с последующим подведением изоляторов после монтажа всей мачты.

До подъема поясов башен и негабаритных секций мачт следует производить последовательную сборку смежных монтажных элементов с целью проверки прямолинейности или проектного угла перелома осей сопрягаемых участков, а также совпадение плоскостей фланцев и отверстий в них для болтов. В стянутом болтами фланцевом стыке щуп толщиной 0,3 мм не должен доходить до наружного диаметра трубы пояса на 20 мм по всему периметру, а местный зазор у наружной кромки по окружности фланцев не должен превышать 3 мм.

До подъема очередной секции мачты или башни заглушки труб в верхних концах должны

быть залиты битумом № 4 в уровень с плоскостью фланца, а соприкасающиеся плоскости фланцев - смазаны битумом той же марки. Выполнение этих работ должно быть оформлено актом освидетельствования скрытых работ.

Болты во фланцевых соединениях надлежит закреплять двумя гайками.

Натяжные приспособления для оттяжек в мачтовых сооружениях и для преднапряженных раскосов решетки в башнях должны иметь паспорта с документами о тарировке измерительного прибора.

Установка секций ствола мачты, расположенных выше места крепления постоянных оттяжек или временных расчалок, допускается только после полного проектного закрепления и монтажного натяжения оттяжек нижележащего яруса.

Все постоянные оттяжки и временные расчалки каждого яруса необходимо подтягивать к анкерным фундаментам и натягивать до заданной величины одновременно, с одинаковой скоростью и усилием.

Сварные соединения листовых трубчатых элементов, качество которых следует проверять при монтаже физическими методами, надлежит контролировать одним из следующих методов: радиографическим или ультразвуковым в объеме 10% - при ручной или механизированной сварке и 5% - при автоматизированной сварке.

Выполнение соединений на болтах с контролируемым натяжением

Работы по монтажу металлических конструкций с соединениями на болтах с контролируемым натяжением следует производить в соответствии с рабочей документацией, утвержденным проектом производства работ, СНиП 3.03.01-87 и разделом 7 СТО НОСТРОЙ 2.10.76-2012.

Данные о производстве монтажных работ следует ежедневно вносить в журнал работ по выполнению монтажных соединений на болтах с контролируемым натяжением в соответствии с требованиями к составу и порядку ведения исполнительной документации, предусмотренными РД-11-02-2006 и РД-11-05-2007.

Применяемые конструкции должны соответствовать требованиям рабочей документации и раздела 6 СТО НОСТРОЙ 2.10.76-2012, крепежные изделия - стандартам или техническим условиям, указанным в разделе 5 СТО НОСТРОЙ 2.10.76-2012. Каждая партия применяемых болтов, гаек и шайб должна быть снабжена сертификатом качества с указанием результатов механических испытаний.

Допускается проведение входного контроля поставляемых крепежных изделий по внешнему виду или механическим свойствам. При входном контроле устанавливается соответствие расчетной величины коэффициента закручивания, геометрических размеров или механических свойств болтов, гаек и шайб требованиям стандартов на крепежные изделия. Механические свойства устанавливают, как правило, испытанием болтов на твердость и разрыв с определением фактических характеристик временного сопротивления; гаек - на испытательную нагрузку и твердость; шайб - на твердость и неплоскостность. Качество резьбы болтов и гаек контролируют резьбовыми калибрами по ГОСТ 24997.

Крепежные изделия следует хранить в защищенном от атмосферных осадков месте, рассортированными по классам прочности, диаметрам и длинам, а высокопрочные болты, гайки и шайбы - дополнительно по партиям.

При укрупнительной сборке и монтаже металлические конструкции должны быть закреплены с целью обеспечения устойчивости и неизменяемости их положения в пространстве.

Выполнение соединений на болтах с контролируемым натяжением (фрикционные, фрикционно-срезные и фланцевые соединения) и их сдачу-приемку следует производить в соответствии с СНиП 3.03.01-87, под руководством лица, назначенного ответственным за выполнение этого вида соединений приказом по организации, производящей эти работы. К выполнению соединений допускается персонал, прошедший подготовку (в соответствии с требованиями СНиП 3.03.01-87), имеющий удостоверение о допуске к указанным работам и приказмонтажной организации о присвоении клейм.

Технологический процесс выполнения соединений на болтах с контролируемым натяжением предусматривает следующие операции:

- подготовку болтов, гаек и шайб;
- подготовку контактных поверхностей;
- сборку соединений;
- натяжение болтов;
- контроль выполнения соединений;
- герметизацию соединений и огрунтовку стыков;
- установку клейма бригадира и ответственного лица;
- занесение результатов выполнения и контроля соединений в «Журнал выполнения монтажных соединений на болтах с контролируемым натяжением».

Подготовка болтов, гаек и шайб

Технологический процесс подготовки болтов, гаек и шайб, предназначенных для соединений с контролируемым натяжением болтов, поставляемых раздельно, в контейнерах или ящиках, включает операции по расконсервации, очистке от грязи и ржавчины, прогонке резьбы отбракованных болтов и гаек и нанесению смазки. Расчетная величина коэффициента закручивания болтов и гаек (без покрытия) при этом устанавливается по 7.5.6 СТО НОСТРОЙ 2.10.76-2012.

Для болтов, поставляемых комплектно с гайками и шайбами в герметичной упаковке, гарантирующей сохранность тонкого слоя заводской консервирующей смазки резьбы на весь период транспортирования и хранения, расконсервация и смазка резьбы болтов и гаек не требуется. Расчетную величину коэффициента закручивания K_3 допускается принимать в соответствии с рекомендуемой предприятием-изготовителем после проведения входного контроля.

Расконсервацию болтов, гаек и шайб следует производить кипячением в воде от 10 до 15 мин. Смазку болтов и гаек осуществляют после расконсервации (в горячем состоянии) в смеси неэтилированного бензина и минерального масла по ГОСТ Р 51634. Количественный состав смеси устанавливается в зависимости от вязкости применяемого минерального масла.

Соотношение бензина и масла (ориентировочно от 6:1 до 2:1) должно обеспечивать на поверхностях болтов и гаек наличие тонкого слоя смазки в течение всего периода хранения. Ориентировочный расход бензина на 100 кг метизов составляет 2,2 л, масла - 0,8 л.

Подготовленные крепежные изделия следует хранить в закрытых ящиках без доступа атмосферных осадков не более 10 дней.

При более длительном хранении смазка испаряется, увеличивается трение в резьбе, снижается усилие натяжения болтов.

В случае превышения срока хранения, а также после прогонки резьбы, крепежные изделия должны быть смазаны повторно.

Для смазки резьбы допускается применение твердых сортов парафина по ГОСТ 23683. Очистка болтов, гаек и шайб от заводской консервирующей смазки в данном случае осуществляется кипячением в воде с добавлением моющего средства. Парафин может наноситься на весь комплект (болт, гайка и две шайбы) или только на гайки, предварительно нагретые до температуры не ниже +80 °С. Расход парафина составляет от 3 до 4 г на 1 кг крепежных изделий. Подробная технология приведена в рекомендациях.

Для прогонки резьбы отбракованных болтов и гаек рекомендуется применять соответствующим образом оборудованные пневматические или электрические гайковерты, а также метчики и плашки необходимого диаметра.

Подготовка крепежных изделий с металлическими покрытиями допускается смазкой резьбы гаек посредством их окунания в емкость с минеральным маслом по ГОСТ Р 51634, не позже чем за 8 часов до сборки соединений (примерно за сутки), с последующим определением величины коэффициента закручивания К₃ с помощью динамометрических контрольных приборов.

Установка болтов без применения смазки, с нарушенным покрытием, со следами ржавчины

Подготовка контактных поверхностей

Обработку контактных поверхностей на монтажной площадке для фрикционных, фрикционно-срезных, а также фланцевых соединений на болтах с контролируемым натяжением выполняют способом, указанным в КМ в соответствии с СНиП 3.03.01-87.

Обработанные поверхности следует предохранять от попадания на них грязи, масла и краски, а также от образования льда. Грязь удаляют металлическими щетками, масло - растворителями, краску и лед - нагревом.

Если срок с момента подготовки контактных поверхностей до сборки соединения составляет более 3-х суток, следует повторно обработать контактные поверхности способом, применявшимся при их первичной обработке.

Повторная обработка не распространяется на легкий налет ржавчины, образующийся на контактных поверхностях после их обработки или в случае попадания на них атмосферных осадков в виде влаги или конденсации водяных паров.

Сборка соединений

Технологический процесс сборки соединений предусматривает:

- осмотр конструкций и проверку соответствия геометрических размеров собираемых элементов требованиям КМ и КМД;
- совмещение отверстий и фиксацию в проектном положении элементов и деталей соединения с помощьюмонтажных оправок;
 - постановку болтов в свободные от оправок отверстия;
 - натяжение поставленных болтов на усилие, предусмотренное в рабочей документации;
- извлечение оправок, постановку в освободившиеся отверстия болтов и натяжение их на расчетное усилие.

При сборке соединений не допускается:

- установка болтов в отверстия, образованные ручной газовой резкой или сваркой;
- применение в качестве сборочных болтов не указанных в КМ (КМД) диаметров и классов прочности;
 - повторное натяжение высокопрочных болтов на проектное усилие.

Перепад толщин элементов, перекрываемых накладками, определяемый до постановки накладок с помощью линейки и щупа, не должен превышать 0,5 мм.

При перепаде толщин соединяемых элементов от 0,5 до 3,0 мм, для обеспечения плавного изгиба накладки, кромку выступающего элемента следует удалить абразивным инструментом на расстоянии не менее 30 мм от края. При перепаде более 3,0 мм следует применять прокладки. Применение прокладок должно быть согласовано с разработчиком проекта.

Несовпадение отверстий в отдельных деталях собранного пакета (чернота) в соответствии с СНиП 3.03.01-87 не должно превышать разности номинальных диаметров отверстий и болтов и препятствовать свободной, без перекоса, постановке болтов в отверстия.

В собранном пакете болты заданного в рабочей документации диаметра должны проходить в 100% отверстий. Допускается прочистка 20% отверстий сверлом или коническим райбером, диаметр которого на 1,0 мм превышает номинальный диаметр болта согласно СНиП 3.03.01-87.

В расчетных соединениях не допускается применение болтов, не имеющих клейма предприятия-изготовителя и маркировки, обозначающей класс прочности.

Каждый болт устанавливается в соединение с двумя круглыми шайбами (одна ставится под головку болта, другая - под гайку). Высокопрочные болты с увеличенным размером головки под ключ, при разности номинальных диаметров отверстий и болтов до 4 мм, допускается устанавливать с одной шайбой под вращаемым элементом (гайкой или головкой болта).

В срезных соединениях допускается установка под гайкой двух шайб. Под головкой болта шайбу допускается не устанавливать.

В момент установки болтов гайки должны свободно навинчиваться по резьбе, в противном

случае гайку или болт следует заменить, а отбракованные болты и гайки отправить на прогонку резьбы и повторную подготовку.

При воздействии на соединения монтажных нагрузок работу монтажных оправок и работу болтов допускается учитывать совместно.

Число оправок по условию совмещения отверстий должно составлять 10% (но не менее 2-х штук), а число стяжных болтов от 15% до 20% от числа отверстий в соединении. Оправки следует устанавливать легкими ударами кувалды массой не более 2-3 кг, исключающими образование наклепа вокруг отверстий в плоскостях контактных поверхностей.

Освобождение оправок допускается после установки во все свободные отверстия болтов и натяжения их на усилие не менее 30% от проектного. Освобождение оправок ведут поочередно с постановкой заменяющих их болтов.

Места и стадии установки оправок могут быть указаны в проекте производства работ.

Длины болтов фрикционных и фланцевых соединений принимают в зависимости от суммарной толщины собираемого пакета с учетом требований, что выступающая над гайкой резьба составляет не менее одного, а под гайкой имеется не менее двух витков резьбы с полным профилем. Длины болтов диаметром от 12 до 48 мм, при заданной толщине пакета, приведены в таблице 3 СТО НОСТРОЙ 2.10.76-2012.

Длины болтов фрикционно-срезных и срезных соединений подбирают таким образом, чтобы резьба не попадала в плоскости среза и отстояла от ближайшей из них на расстоянии не менее 5 мм или не менее половины толщины элемента, прилегающего к гайке.

Натяжение болтов на проектное усилие производят после выверки в пространстве и проверки геометрических размеров собираемых конструкций.

Натяжение болтов

Натяжение болтов на проектное усилие обеспечивают регулированием усилий с контролем момента закручивания динамометрическими ключами.

Натяжение болтов следует производить от середины соединения или от наиболее жесткой его части по направлению к свободным краям. Если суммарная толщина соединяемых элементов превышает 2 диаметра болта, число обходов должно быть не менее двух.

Если при натяжении болта поворот гайки происходит без увеличения показаний крутящего момента на индикаторе динамометрического ключа, то болт и гайка подлежат замене.

Натяжение болтов осуществляется, как правило, за гайку. Натяжение за головку болта допускается только в случае наличия одного и того же вида смазки на опорных поверхностях гаек и опорных поверхностях головок болтов. Например, при нанесении парафина только на гайки, натяжение болтов за головку допускается после установления расчетной величины K_3 при натяжении болтов в динамометрическом приборе за головку болта.

Гайки или головки болтов, затянутые на проектное усилие, отмечают краской или мелом.

Регулирование усилий натяжения болтов осуществляют в следующем порядке:

- плотно стягивают пакет посредством натяжения 15%-20% поставленных болтов (стяжных) до 30%-100% от расчетной величины момента закручивания M_3 , определяемой по формуле, равномерно распределяя их по полю соединения, при этом расположение стяжных болтов в непосредственной близости от оправок обязательно;
- все свободные отверстия заполняют болтами и затягивают их до 30%-100% от расчетной величины момента закручивания M_3 ;
 - оправки заменяют болтами и затягивают все болты соединения на проектное усилие;
- допускается применение механизированных способов натяжения болтов электрическими или пневматическими гайковертами отечественного или иностранного производства.

При регулировании усилий расчетную величину момента закручивания M_3 для различных диаметров и классов прочности болтов определяют по формуле

$$\mathbf{M}_{3} = P \cdot d_{b} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{H}$$

где $^{P}\,$ - заданная в проекте величина осевого усилия натяжения болтов, H (кгс);

 d_b - номинальный диаметр болта, м;

 \mathbb{K}_3 - коэффициент закручивания болтов и гаек;

 $\mathbb{K}_{\mathtt{H}} = 1,05$ - коэффициент надежности.

На основании многолетних статистических данных K_3 принимают равным 0,17 для болтов, гаек и шайб, поставляемых по ГОСТ Р 52643, ГОСТ Р 52644, ГОСТ Р 52645 и ГОСТ Р 52646, подготовленных в соответствии с 7.2.3 СТО НОСТРОЙ 2.10.76-2012 и отвечающих требованиям 7.2.4 СТО НОСТРОЙ 2.10.76-2012. Использование результатов K_3 , указанных в сертификатах на отдельные партии болтов и гаек, не допускается ввиду отсутствия данных о применяемой консервирующей смазке и состоянии резьбы болтов и гаек при проведении заводских приемосдаточных испытаний.

Расчетную величину момента закручивания и коэффициент закручивания для болтов, гаек и шайб с металлическими, парафиновыми или другими видами покрытий, а также поставляемых по стандартам, не указанным в разделе 5 СТО НОСТРОЙ 2.10.76-2012, следует устанавливать экспериментально, с помощью динамометрических контрольных приборов на аттестованном оборудовании в соответствии с приложением В СТО НОСТРОЙ 2.10.76-2012 и ГОСТ Р ИСО 16047. Применение крепежных изделий с нарушенным покрытием, а также при К₃>0,2 не допускается.

Значения осевых усилий натяжения болтов P, принятые в соответствии с СНиП 3.03.01-87, а также моменты закручивания болтов диаметром от 16 до 30 мм, рассчитанные по формуле, приведены в таблице 4 СТО НОСТРОЙ 2.10.76-2012.

Предварительное натяжение болтов до 80%-90% от проектного усилия рекомендуется производить гайковертами с последующей дотяжкой динамометрическими тарированными ключами. Допускается натяжение болтов динамометрическими ключами за один прием при числе болтов в соединении не более четырех и в труднодоступных местах.

Передаваемый ключом момент закручивания необходимо регистрировать во время движения ключа в направлении, увеличивающем натяжение болта. Затяжку следует производить плавно, без рывков.

Динамометрические ключи должны быть пронумерованы и протарированы. Тарировку ключей следует производить перед началом смены с применением стенда СТП-2000 или другого типа прибора, либо контрольными грузами с учетом рекомендаций, приведенных в приложении Г. Результаты тарировки заносят в журнал тарировки ключей (приложение Д) в соответствии с требованиями, предусмотренными РД-11-02-2006 и РД-11-05-2007.

Отклонение фактической величины момента закручивания M_3 от рассчитанной по формуле не должно превышать 10%. Недотяжка болтов не допускается.

После сборки и натяжения всех болтов на проектное усилие соединение предъявляют для контроля ответственному лицу, на видном месте устанавливают клеймо бригадира в соответствии с ГОСТ 25726, результаты заносят в журнал выполнения монтажных соединений на болтах с контролируемым натяжением.

Основные технологические операции при выполнении соединений на болтах приведены в приложении Е СТО НОСТРОЙ 2.10.76-2012.

Выполнение соединений на болтах без контролируемого натяжения

При выполнении соединений на болтах без контролируемого натяжения болты, гайки и шайбы устанавливают в соединения без удаления заводской консервирующей смазки, а при ее отсутствии резьбу болтов и гаек смазывают минеральным маслом по ГОСТ Р 51634.

Контактные поверхности элементов и деталей перед сборкой соединений должны быть осмотрены и очищены от заусенцев, грязи, рыхлой ржавчины, отстающей окалины и льда. Очистку производят металлическими щетками, заусенцы удаляют электрическими или пневматическими шлифовальными машинами.

Сборку соединений выполняют в соответствии с требованиями, изложенными в 7.4 СТО НОСТРОЙ 2.10.76-2012. Несовпадение отверстий в отдельных деталях собранного пакета (чернота) не должно превышать требований СНиП 3.03.01-87.

Болты затягивают до отказа монтажными ключами с усилием от 294 Н (30 кгс) до 343 Н (35 кгс) длиной:

- для болтов M12 от 150 до 200 мм;
- для болтов М16 от 300 до 350 мм;
- для болтов M20 от 350 до 400 мм:
- для болтов М22 от 400 до 450 мм;
- для болтов М24 от 500 до 550 мм;
- для болтов М27 от 550 до 600 мм.

Для предотвращения самоотвинчивания гаек их дополнительно закрепляют постановкой специальных шайб или контргаек. Для болтов, работающих на растяжение, закрепление гаек следует осуществлять исключительно постановкой контргаек.

Запрещается приварка гаек к резьбе болтов и к элементам соединений, а также забивка выступающей из гайки резьбы.

В конструкциях, воспринимающих статические нагрузки, гайки болтов, затянутых на усилие 50%-70% от минимального предела прочности болта на растяжение, допускается дополнительно не закреплять. При этом необходимо выполнение требований, указанных в 7.4.15 СТО НОСТРОЙ 2.10.76-2012.

Гайки и головки болтов, в том числе фундаментных, после натяжения должны плотно (без зазоров) соприкасаться с плоскостями шайб или элементов конструкций, а стержни болтов выступать из гаек (контргаек) не менее чем на один виток резьбы с полным профилем. Плотность стяжки собранного пакета подлежит контролю щупом толщиной $0,3\,$ мм, который не должен проникать в зону, ограниченную радиусом $1,3d_0$ от центра болта, где d_0 - номинальный диаметр отверстия.

Фундаментные (анкерные) болты должны быть затянуты в соответствии с требованиями СНиП 2.09.03-85 и чертежей КМ (КМД). Результаты оформляют актом на скрытые работы по форме, установленной в РД 11-02-2006.

В соответствии с СНиП 3.03.01-87 затяжку болтов без контролируемого натяжения проверяют остукиванием их молотком массой 0,4 кг, при этом болты не должны смещаться. Натяжение и контроль затяжки болтов допускается производить предельными динамометрическими ключами.

Контроль выполнения, сдача-приемка и герметизация болтовых соединений

Качество выполнения болтовых соединений проверяют посредством проведения пооперационного контроля. При пооперационном контроле проверяется:

- подготовка контактных поверхностей;
- натяжение болтов;
- плотность стянутого пакета.

Контроль подготовки контактных поверхностей соединяемых элементов и деталей (накладок, прокладок) осуществляют визуальным осмотром непосредственно перед сборкой соединений. Дефектные поверхности или их участки подлежат исправлению в соответствии с требованиями 7.3 СТО НОСТРОЙ 2.10.76-2012.

Контроль натяжения болтов осуществляют в соответствии с требованиями 9.3.1-9.3.4 СТО НОСТРОЙ 2.10.76-2012.

Контроль фактической величины осевого усилия натяжения болтов осуществляют динамометрическими ключами по величине момента закручивания.

Число болтов, подлежащих контролю осевого усилия (момента закручивания), должно составлять:

- при числе болтов в соединении до 5 штук - все болты;

- при числе болтов в соединении 6 штук и более - 15% от числа болтов в соединении, но не менее 5 штук.

При контроле фактическая величина момента закручивания должна составлять не менее рассчитанной по формуле и не превышать ее более чем на 10%.

При несоответствии момента закручивания расчетному значению хотя бы у одного болта, контролируется удвоенное число болтов. Если и в этом случае будет выявлен недотянутый болт, контролируются все болты данного соединения. Натяжение всех болтов должно быть доведено до проектной величины.

Плотность стяжки пакета контролируется щупом напротив затянутого болта в соответствии с требованиями, изложенными в 6.27 и 8.6 СТО НОСТРОЙ 2.10.76-2012.

При контроле болтовых соединений ответственным лицом прежде всего производится наружный осмотр всех установленных болтов. При осмотре необходимо проверить, что:

- все установленные болты имеют одинаковую длину;
- болты и гайки имеют установленную маркировку;
- шайбы установлены в соответствии с требованиями рабочей документации;
- выступающие за пределы гайки части болтов имеют не менее одного витка резьбы с полным профилем над гайкой или не менее двух витков резьбы под гайкой (внутри пакета).

Число витков резьбы под гайкой устанавливается в соответствии с длиной резьбовой части болта за вычетом высоты гайки и длины резьбы над гайкой.

Осевые усилия натяжения болтов на соответствие требованиям, указанным в КМ, контролируют по 7.5.6 СТО НОСТРОЙ 2.10.76-2012 с помощью динамометрических ключей. Результаты контроля заносят в журнал.

В соответствии с 7.1.7 и 7.5.13 СТО НОСТРОЙ 2.10.76-2012 проверяют наличие клейма бригадира и занесение результатов выполнения соединений в журнал.

По результатам контроля, в случае отсутствия замечаний, рядом с клеймом бригадира устанавливают клеймо ответственного лица. Если болты или гайки подготовлены методом парафинирования, дополнительно устанавливают клеймо «П». Типы и размеры клейм должны соответствовать ГОСТ 25726. Высота клейм должна быть не менее 8 мм. Клеймо следует устанавливать, как правило, на пересечении диагоналей накладок и обозначать (после огрунтовки стыка) трафаретом, размером не менее 100х100 мм, нанесенным краской, по цвету отличающейся от применяемого грунта.

После приемки ответственным лицом болтовые соединения предъявляют для контроля техническому заказчику в соответствии с требованиями СНиП 12-01-2004.

Контроль качества выполнения болтовых соединений осуществляет представитель технического заказчика в соответствии с разделом 9 СТО НОСТРОЙ 2.10.76-2012, не ранее чем через 8 часов после их приемки ответственным лицом, при этом контролируются осевые усилия натяжения болтов.

После сдачи-приемки все соединения должны быть загерметизированы в соответствии с требованиями, указанными в чертежах КМ и КМД. При отсутствии в рабочей документации указаний относительно герметизации соединений, все поверхности стыков, включая головки болтов, гайки и шайбы, в том числе контуры накладок, должны быть огрунтованы, а зазоры заполнены герметиком. По согласованию с представителем технического заказчика допускается герметизация стыков после приемки соединений ответственным лицом.

В случае отсутствия замечаний, представитель технического заказчика ставит подпись в журнале по каждому принятому соединению или узлу.

Контроль качества выполнения болтовых соединений представителем авторского надзора (разработчиком чертежей КМ) осуществляется в соответствии с условиями договора.

СНиП 3.03.01-87 «Несущие и ограждающие конструкции, $\pi.4.3$ - $\pi.4.7$, $\pi.4.9$, $\pi.4.12$, $\pi.4.20$, $\pi.4.43$, $\pi.4.48$, $\pi.4.50$, $\pi.4.58$, $\pi.4.61$ -4.63, $\pi.4.79$, $\pi.4.81$ -4.93, $\pi.4.97$ -4.103, $\pi.4.105$ -4.106, $\pi.4.109$, $\pi.4.114$, $\pi.4.115$, $\pi.4.117$, $\pi.4.119$, $\pi.4.120$, $\pi.4.122$ -4.129, $\pi.4.130$, применяется на основании Распоряжения Правительства РФ от 21 июня 2010г. Note 1047-р «Об утверждении перечня

национальных стандартов и сводов правил».

СТО НОСТРОЙ 2.10.76-2012 «Строительные конструкции металлические. Болтовые соединения. Правила и контроль монтажа, требования к результатам работ» п.7.1-п.7.5, п.8.1-п.8.8, п.9.1-п.9.13

5.2 Работы по устройству каменных конструкций

Классификация, основные размеры и условные обозначения кирпича

Изделия подразделяют на рядовые и лицевые. Камень с пазогребневым и пазовым соединениями может быть только рядовым.

Кирпич изготавливают полнотелым и пустотелым, камень - только пустотелым. Камень может изготавливаться с плоскими вертикальными гранями, с выступами для пазогребневого соединения на вертикальных гранях, с нешлифованной или шлифованной опорной поверхностью (постелью).

Пустоты в изделиях могут располагаться перпендикулярно (вертикальные) или параллельно постели (горизонтальные).

По прочности кирпич подразделяют на марки М100, М125, М150, М175, М200, М250, М300; клинкерный кирпич - М300, М400, М500, М600, М800, М1000; камни - М25, М35, М50, М75, М100, М125, М150, М175, М200, М250, М300; кирпич и камень с горизонтальными пустотами - М25, М35, М50, М75, М100.

По морозостойкости изделия подразделяют на марки F25, F35, F50, F75, F100, F200, F300.

По показателю средней плотности изделия подразделяют на классы 0,7; 0,8; 1,0; 1,2; 1,4; 2,0; 2,4.

По теплотехническим характеристикам изделия в зависимости от класса средней плотности подразделяют на группы в соответствии с таблицей 1 ГОСТ 530-2012.

Основные размеры

Изделия изготавливают номинальными размерами, приведенными в таблицах 2 и 3 ГОСТ 530-2012.

Допускается по согласованию изготовителя с потребителем изготовление доборных изделий и изделий других номинальных размеров, при этом предельные отклонения размеров не должны превышать значений, приведенных в 4.2.2 ГОСТ 530-2012. Толщина изделий должна быть кратной толщине кирпича плюс 12 мм - постельный шов.

Обозначение размера (формат) изделий определяется как отношение объема изделия в кубических метрах, рассчитанного как произведение номинальных размеров длинаширинатолщина, к объему кирпича нормального формата 0,00195 м с округлением значения до одного знака после запятой.

В скобках приведены обозначения размеров для шлифованных камней.

Рекомендуемые виды изделий, а также расположение пустот в изделиях приведены в приложении A ГОСТ 530-2012.

Отклонение от перпендикулярности смежных граней изделий не допускается более:

- -3 мм для кирпича и камня длиной до 300 мм;
- -1,4% длины любой грани для камня длиной или шириной свыше 300 мм.
- -4.2.4 Отклонение от плоскостности граней изделий не допускается более:
- -3 мм для кирпича и камня;
- -1 мм для шлифованного камня.

Толщина наружных стенок пустотелого кирпича должна быть не менее 12 мм, камня - не менее 8 мм.

Радиус закругления угла вертикальных смежных граней должен быть не более 15 мм, глубина фаски на горизонтальных ребрах - не более 3 мм.

Размеры и число выступов пазогребневого соединения не регламентируют.

Диаметр вертикальных цилиндрических пустот и размер стороны квадратных пустот должен быть не более 20 мм, ширина щелевидных пустот - не более 16 мм.

Размер пустот изделий с пустотностью не более 13% не регламентируют.

Размеры горизонтальных пустот не регламентируют.

Для камня допускаются пустоты (для захвата при кладке) общей площадью сечения, не превышающей 13% площади постели камня.

Условные обозначения

Условное обозначение керамических изделий должно состоять из обозначения вида изделия в соответствии с таблицами 2 и 3 ГОСТ 530-2012; букв р - для рядовых, л - для лицевых, кл -для клинкерных, пг - для камней с пазогребневой системой, ш - для шлифованных камней; обозначения размера кирпича - в соответствии с таблицей 2 ГОСТ 530-2012, номинальных размеров камня - в соответствии с таблицей 3 ГОСТ 530-2012, рабочего размера камня с пазогребневой системой - в соответствии с таблицей 3, обозначений: по - для полнотелого кирпича, пу - для пустотелого кирпича, марок по прочности, класса средней плотности; марки по морозостойкости и обозначения настоящего стандарта.

Примеры условных обозначений:

–Кирпич рядовой (лицевой), полнотелый, размерами 25012065 мм, формата 1НФ, марки по прочности M200, класса средней плотности 2,0, марки по морозостойкости F50:

КР-р-по (КР-л-по) 25012065/1НФ/200/2,0/50/ГОСТ 530-2012.

–Кирпич клинкерный, полнотелый (пустотелый), размерами 25012065 мм, формата 1НФ, марки по прочности М500, класса средней плотности 2,0, марки по морозостойкости F100:

КР-кл-по (КР-кл-пу) 25012065/1НФ/500/2,0/100/ГОСТ 530-2012.

–Кирпич с горизонтальным расположением пустот рядовой (лицевой), размерами 25012088 мм, формата 1,4НФ, марки по прочности М75, класса средней плотности 1,4, марки по морозостойкости F50:

 $KP\Gamma$ -р ($KP\Gamma$ -л) 25012088/1,4 $H\Phi$ /75/1,4/50/ Γ OCT 530-2012.

-Камень рядовой (лицевой), размерами 250120140 мм, формата 2,1НФ, марки по прочности M200, класса средней плотности 1,4, марки по морозостойкости F50:

КМ-р (КМ-л) 250120140/2,1H $\Phi/200/1$, $4/50/\Gamma$ OCT 530-2012.

-Камень с пазогребневым соединением (шлифованный), рабочего размера 510 мм, формата 14,3НФ, марки по прочности М100, класса средней плотности 0,8, марки по морозостойкости F35: KM-пг (KM-пг-ш) 510/14, $3H\Phi/100/0$, $8/35/\Gamma$ OCT 530-2012.

–Камень доборный с пазогребневым соединением (шлифованный), рабочего размера 250 мм, формата половины 10,7 НФ, марки по прочности М100, класса средней плотности 0,8, марки по морозостойкости F35:

КМД-пг (КМД-пг-ш) 250/П10,7НФ/100/0,8/35/ГОСТ 530-2012.

-Камень доборный (шлифованный), рабочего размера 250 мм, формата 5,2 НФ, марки по прочности М100, класса средней плотности 0,8, марки по морозостойкости F35:

КМД (КМД-ш) 250/5,2 НФ/100/0,8/35/ГОСТ 530-2012.

Допускается для полной идентификации изделий вводить в условное обозначение дополнительную информацию.

При проведении экспортно-импортных операций условное обозначение изделия допускается уточнять в договоре на поставку продукции (в том числе вводить дополнительную буквенно-цифровую или другую информацию).

Внешний вид

Лицевые изделия должны иметь не менее двух лицевых граней - ложковую и тычковую. Цвет и вид лицевой грани устанавливают по согласованию между изготовителем и потребителем и оговаривают в документе на поставку.

Рядовые изделия изготавливают с гладкими или рельефными вертикальными гранями.

Лицевые кирпич и камень по виду лицевой поверхности изготавливают:

- с гладкой и рельефной поверхностями;
- с поверхностью, офактуренной торкретированием, ангобированием, глазурованием, двухслойным формованием или иным способом.

Изделия могут быть естественного цвета или объемно окрашенными.

На лицевых изделиях допускаются единичные вспучивающиеся (например, известковые) включения глубиной не более 3 мм, общей площадью не более 0,2% площади лицевых граней.

На рядовых изделиях допускаются вспучивающиеся включения общей площадью не более

1,0% площади вертикальных граней изделия.

На лицевых и клинкерных изделиях не допускаются высолы.

Дефекты внешнего вида изделия, размеры и число которых превышают значения, указанные в таблице 4 ГОСТ 530-2012, не допускаются.

Отбитости глубиной менее 3 мм не являются браковочными признаками.

Трещины в межпустотных перегородках, отбитости и трещины в элементах пазогребневого соединения не являются дефектом.

Для лицевых изделий указаны дефекты лицевых граней

У изделий допускаются черная сердцевина и контактные пятна на поверхности.

В партии не допускается половняк более 5% объема партии.

Характеристики

Средняя плотность кирпича и камня в зависимости от класса средней плотности должна соответствовать значениям, приведенным в таблице 5 ГОСТ 530-2012.

Отклонение единичного значения средней плотности (для одного образца из пяти) допускается не более:

- -+50 кг/м для классов 0,7; 0,8 и 1,0;
- -+100 кг/м для остальных классов.

Теплотехнические характеристики изделий оценивают по коэффициенту теплопроводности кладки в сухом состоянии. Коэффициент теплопроводности кладки в сухом состоянии в зависимости от группы изделий по теплотехническим характеристикам приведен в таблице 6 ГОСТ 530-2012.

Значения коэффициента теплопроводности приведены для кладок с минимально достаточным количеством кладочного раствора. Значение коэффициента теплопроводности с учетом фактического расхода раствора устанавливают в проектной или технической документации (строительные нормы и правила, и др.) на основании испытаний или расчетов.

Теплотехнические характеристики сплошных (условных) кладок приведены в приложении Γ ГОСТ 530-2012.

Марку кирпича по прочности устанавливают по значениям пределов прочности при сжатии и при изгибе, кирпича с горизонтальным расположением пустот и камня - по значению предела прочности при сжатии. Значения пределов прочности при сжатии и изгибе должны быть не менее значений, указанных в таблице 7 ГОСТ 530-2012.

Водопоглощение изделий должно быть:

- не более 6,0% для клинкерного кирпича;
- не менее 6.0% для остальных изделий.

Скорость начальной абсорбции воды опорной поверхностью (постелью) изделий должна быть не менее $0,10~\rm kr/(m\cdot muh)$ и не более $3,00~\rm kr/(m\cdot muh)$ - у лицевых изделий, без ограничения максимального значения - у рядовых изделий.

Кислотостойкость клинкерного кирпича должна быть не менее 95,0%.

Кирпич и камень должны быть морозостойкими и в зависимости от марки по морозостойкости в насыщенном водой состоянии должны выдерживать без каких-либо видимых признаков повреждений или разрушений - растрескивание, шелушение, выкрашивание, отколы (кроме отколов от известковых включений) - не менее 25; 35; 50; 75; 100; 200 или 300 циклов попеременного замораживания и оттаивания.

Виды повреждений изделий после испытания на морозостойкость приведены в приложении Б ГОСТ 530-2012.

Марка по морозостойкости клинкерного кирпича должна быть не ниже F75, лицевых изделий - не ниже F50. Допускается по согласованию с потребителем поставлять лицевые изделия марки по морозостойкости F35.

Керамические изделия относятся к негорючим строительным материалам в соответствии с ГОСТ 30244.

Удельная эффективная активность естественных радионуклидов в изделиях должна быть не

Возведению каменных конструкций

Кладку кирпичных цоколей зданий необходимо выполнять из полнотелого керамического кирпича. Применение для этих целей силикатного кирпича не допускается.

Не допускается ослабление каменных конструкций отверстиями, бороздами, нишами, монтажными проемами, не предусмотренными проектом.

Каменную кладку заполнения каркасов следует выполнять в соответствии с требованиями, предъявляемыми к возведению несущих каменных конструкций.

Толщина горизонтальных швов кладки из кирпича и камней правильной формы должна составлять 12 мм, вертикальных швов - 10 мм.

При вынужденных разрывах кладку необходимо выполнять в виде наклонной или вертикальной штрабы.

При выполнении разрыва кладки вертикальной штрабой в швы кладки штрабы следует заложить сетку (арматуру) из продольных стержней диаметром не более 6 мм, из поперечных стержней - не более 3 мм с расстоянием до 1,5 м по высоте кладки, а также в уровне каждого перекрытия.

Число продольных стержней арматуры принимается из расчета одного стержня на каждые 12 см толщины стены, но не менее двух при толщине стены 12 см.

Разность высот возводимой кладки на смежных захватках и при кладке примыканий наружных и внутренних стен не должна превышать высоты этажа, разность высот между смежными участками кладки фундаментов - не превышать 1,2 м.

Установку креплений в местах примыкания железобетонных конструкций к кладке следует выполнять в соответствии с проектом.

Возведение каменных конструкций последующего этажа допускается только после укладки несущих конструкций перекрытий возведенного этажа, анкеровки стен и замоноличивания швов между плитами перекрытий.

Высота каменных неармированных перегородок, не раскрепленных перекрытиями или временными креплениями, не должна превышать 1,5 м для перегородок толщиной 9 см, выполненных из камней и кирпича на ребро толщиной 88 мм, и 1,8 м - для перегородок толщиной 12 см, выполненных из кирпича.

Вертикальность граней и углов кладки из кирпича и камней, горизонтальность ее рядов необходимо проверять по ходу выполнения кладки (через 0,5-0,6 м) с устранением обнаруженных отклонений в пределах яруса.

После окончания кладки каждого этажа следует производить инструментальную проверку горизонтальности и отметок верха кладки независимо от промежуточных проверок горизонтальности ее рядов.

Кладка из керамического и силикатного кирпича, из керамических, бетонных и силикатных природных камней правильной формы.

Тычковые ряды в кладке необходимо укладывать из целых кирпичей и камней всех видов. Независимо от принятой системы перевязки швов укладка тычковых рядов является обязательной в нижнем (первом) и верхнем (последнем) рядах возводимых конструкций, на уровне обрезов стен и столбов, в выступающих рядах кладки (карнизах, поясах и т. д.).

При многорядной перевязке швов укладка тычковых рядов под опорные части балок, прогонов, плит перекрытий, балконов, под мауэрлаты и другие сборные конструкции является обязательной. При однорядной (цепной) перевязке швов допускается опирание сборных конструкций на ложковые ряды кладки.

Кирпичные столбы, пилястры и простенки шириной в два с половиной кирпича и менее, рядовые кирпичные перемычки и карнизы следует возводить из отборного целого кирпича.

Применение кирпича-половняка допускается только в кладке забутовочных рядов и мало нагруженных каменных конструкций (участки стен под окнами и т.п.) в количестве не более 10 %.

Горизонтальные и поперечные вертикальные швы кирпичной кладки стен, а также швы (горизонтальные, поперечные и продольные вертикальные) в перемычках, простенках и столбах следует заполнять раствором, за исключением кладки впустошовку.

При кладке впустошовку глубина не заполненных раствором швов с лицевой стороны не должна превышать 15 мм в стенах и 10 мм (только вертикальных швов) в столбах.

Участки стен между рядовыми кирпичными перемычками при простенках шириной менее 1 м необходимо выкладывать на том же растворе, что и перемычки.

Стальную арматуру рядовых кирпичных перемычек следует укладывать по опалубке в слое раствора под нижний ряд кирпичей. Число стержней устанавливается проектом, но должно быть не менее трех. Гладкие стержни для армирования перемычек должны иметь диаметр не менее 6 мм, заканчиваться крюками и заделываться в простенки не менее чем на 25 см. Стержни периодического профиля крюками не отгибаются.

Клинчатые перемычки из обыкновенного кирпича следует выкладывать с клинообразными швами толщиной не менее 5 мм внизу и не более 25 мм вверху. Кладку необходимо производить одновременно с двух сторон в направлении от пят к середине.

Кладку карнизов следует выполнять в соответствии с проектом. При этом свес каждого ряда кирпичной кладки в карнизах не должен превышать 1/3 длины кирпича, а общий вынос кирпичного неармированного карниза должен составлять не более половины толщины стены.

Кладку анкеруемых карнизов допускается выполнять после достижения кладкой стены проектной прочности, в которую заделываются анкеры.

При устройстве карнизов после окончания кладки стены их устойчивость необходимо обеспечивать временными креплениями.

Все закладные железобетонные сборные элементы (карнизы, пояски, балконы и др.) должны обеспечиваться временными креплениями до их защемления вышележащей кладкой. Срок снятия временных креплений необходимо указывать в рабочих чертежах.

При возведении стен из керамических камней в свешивающихся рядах карнизов, поясков, парапетов, брандмауэров, где требуется теска кирпича, должен применяться полнотелый или специальный (профильный) лицевой кирпич морозостойкостью не менее Mp325 с защитой от увлажнения.

Вентиляционные каналы в стенах следует выполнять из керамического полнотелого кирпича марки не ниже 75 или силикатного марки 100 до уровня чердачного перекрытия, а выше - из полнотелого керамического кирпича марки 100.

При армированной кладке необходимо соблюдать следующие требования: толщина швов в армированной кладке должна превышать сумму диаметров пересекающейся арматуры не менее чем на 4 мм при толщине шва не более 16 мм; при поперечном армировании столбов и простенков сетки следует изготавливать и укладывать так, чтобы было не менее двух арматурных стержней (из которых сделана сетка), выступающих на 2-3 мм на внутреннюю поверхность простенка или на две стороны столба; при продольном армировании кладки стальные стержни арматуры по длине следует соединять между собой сваркой; при устройстве стыков арматуры без сварки концы гладких стержней должны заканчиваться крюками и связываться проволокой с перехлестом стержней на 20 диаметров.

Возведение стен из облегченной кирпичной кладки необходимо выполнять в соответствии с рабочими чертежами и следующими требованиями: все швы наружного и внутреннего слоя стен облегченной кладки следует тщательно заполнять раствором с расшивкой фасадных швов и затиркой внутренних швов при обязательном выполнении мокрой штукатурки поверхности стен со стороны помещения; плитный утеплитель следует укладывать с обеспечением плотного примыкания к кладке; металлические связи, устанавливаемые в кладку, необходимо защищать от коррозии; засыпной утеплитель или легкий бетон заполнения следует укладывать слоями с уплотнением каждого слоя по мере возведения кладки. В кладках с вертикальными поперечными кирпичными диафрагмами пустоты следует заполнять засыпкой или легким бетоном слоями на высоту не более 1,2 м за смену; подоконные участки наружных стен необходимо защищать от увлажнения путем устройства отливов по проекту; в процессе производства работ в период

выпадения атмосферных осадков и при перерыве в работе следует принимать меры по защите утеплителя от намокания.

Обрез кирпичного цоколя и другие выступающие части кладки после их возведения следует защищать от попадания атмосферной влаги, следуя указаниям в проекте, при отсутствии указаний в проекте - цементно-песчаным раствором марки не ниже М100 и Мрз50.

Облицовка стен в процессе возведения кладки

Для облицовочных работ следует применять цементно-песчаные растворы на портландцементе и пуццолановых цементах. Содержание щелочей в цементе не должно превышать 0,6 %. Подвижность раствора, определяемая погружением стандартного конуса, должна быть не более 7 см, а для заполнения вертикального зазора между стеной и плиткой, в случае крепления плитки на стальных связях, - не более 8 см.

При облицовке кирпичных стен крупными бетонными плитами, выполняемой одновременно с кладкой, необходимо соблюдать следующие требования: облицовку следует начинать с укладки в уровне междуэтажного перекрытия опорного Г-образного ряда облицовочных плит, заделываемого в кладку, затем устанавливать рядовые плоские плиты с креплением их к стене;

при толщине облицовочных плит более 40 мм облицовочный ряд должен ставиться раньше, чем выполняется кладка, на высоту ряда облицовки; при толщине плит менее 40 мм необходимо сначала выполнять кладку на высоту ряда плиты, затем устанавливать облицовочную плиту; установка тонких плит до возведения кладки стены разрешается только в случае установки креплений, удерживающих плиты; не допускается установка облицовочных плит любой толщины выше кладки стены более чем на два ряда плит.

Облицовочные плиты необходимо устанавливать с растворными швами по контуру плит или вплотную друг к другу. В последнем случае стыкуемые грани плит должны быть прошлифованы.

Возведение стен с одновременной их облицовкой, жестко связанной со стеной (лицевым кирпичом и камнем, плитами из силикатного и тяжелого бетона), при отрицательных температурах следует, как правило, выполнять на растворе с противоморозной добавкой нитрита натрия. Кладку с облицовкой лицевым керамическим и силикатным кирпичом и камнем можно производить методом замораживания по указаниям подраздела «Возведение каменных конструкций в зимних условиях». При этом марка раствора для кладки и облицовки должна быть не ниже М50.

Особенности кладки арок и сводов

Кладку арок (в том числе арочных перемычек в стенах) и сводов необходимо выполнять из кирпича или камней правильной формы на цементном или смешанном растворе.

Для кладки арок, сводов и их пят следует применять растворы на портландцементе. Применение шлакопортландцемента и пуццоланового портландцемента, а также других видов цементов, медленно твердеющих при пониженных положительных температурах, не допускается.

Кладку арок и сводов следует выполнять по проекту, содержащему рабочие чертежи опалубки для кладки сводов двоякой кривизны.

Отклонения размеров опалубки сводов двоякой кривизны от проектных не должны превышать: по стреле подъема в любой точке свода 1/200 подъема, по смещению опалубки от вертикальной плоскости в среднем сечении 1/200 стрелы подъема свода, по ширине волны свода - 10мм.

Кладку волн сводов двоякой кривизны необходимо выполнять по устанавливаемым на опалубке передвижным шаблонам.

Кладку арок и сводов следует производить от пят к замку одновременно с обеих сторон. Швы кладки необходимо полностью заполнять раствором. Верхнюю поверхность сводов двоякой кривизны толщиной в 1/4 кирпича в процессе кладки следует затирать раствором. При большей толщине сводов из кирпича или камней швы кладки необходимо дополнительно заливать жидким раствором, при этом затирка раствором верхней поверхности сводов не производится.

Кладку сводов двоякой кривизны следует начинать не ранее чем через 7 сут после окончания

устройства их пят при температуре наружного воздуха выше $10 \, ^{\circ}$ С. При температуре воздуха от $10 \, ^{\circ}$ С этот срок увеличивается в 1,5 раза, от $5 \, ^{\circ}$ С - в 2 раза.

Кладку сводов с затяжками, в пятах которых установлены сборные железобетонные элементы или стальные каркасы, допускается начинать сразу после окончания устройства пят.

Грани примыкания смежных волн сводов двоякой кривизны выдерживаются на опалубке не менее 12 ч при температуре наружного воздуха выше 10° С. При более низких положительных температурах продолжительность выдерживания сводов на опалубке увеличивается в соответствии с указаниями п. 7.40.

Загрузка распалубленных арок и сводов при температуре воздуха выше 10 °C допускается не ранее чем через 7 сут после окончания кладки. При более низких положительных температурах сроки выдерживания увеличиваются согласно п. 7.40.

Утеплитель по сводам следует укладывать симметрично от опор к замку, не допуская односторонней нагрузки сводов.

Натяжение затяжек в арках и сводах следует производить сразу после окончания кладки.

Возведение арок, сводов и их пят в зимних условиях допускается при среднесуточной температуре не ниже минус 15 °C на растворах с противоморозными добавками (подраздел «Возведение каменных конструкций в зимних условиях»). Волны сводов, возведенные при отрицательной температуре, выдерживаются в опалубке не менее 3 сут.

Каменные конструкции из бута и бутобетона допускается возводить с применением бутового камня неправильной формы, за исключением внешних сторон кладки, для которых следует применять постелистый камень.

Бутовую кладку следует выполнять горизонтальными рядами высотой до 25 см с околом камня лицевой стороны кладки, расщебенкой и заполнением раствором пустот, а также перевязкой швов.

Бутовая кладка с заливкой литым раствором швов между камнями допускается только для конструкций в зданиях высотой до 10 м, возводимых на непросадочных грунтах.

При выполнении облицовки бутовой кладки кирпичом или камнем правильной формы одновременно с кладкой облицовку следует перевязывать с кладкой тычковым рядом через каждые 4-6 ложковых рядов, но не более чем через 0,6 м. Горизонтальные швы бутовой кладки должны совпадать с перевязочными тычковыми рядами облицовки.

Перерывы в кладке из бутового камня допускаются после заполнения раствором промежутков между камнями верхнего ряда. Возобновление работ необходимо начинать с расстилки раствора по поверхности камней верхнего ряда.

Конструкции из бутобетона необходимо возводить с соблюдением следующих правил: укладку бетонной смеси следует производить горизонтальными слоями высотой не более 0,25 м; размер камней, втапливаемых в бетон, не должен превышать 1/3 толщины возводимой конструкции; втапливание камней в бетон следует производить непосредственно за укладкой бетона в процессе его уплотнения; возведение бутобетонных фундаментов в траншеях с отвесными стенами допускается выполнять без опалубки враспор; перерывы в работе допускаются лишь после укладки ряда камней в последний (верхний) слой бетонной смеси; возобновление работы после перерыва начинается с укладки бетонной смеси.

За конструкциями из бута и бутобетона, возводимыми в сухую и жаркую погоду, следует организовать уход как за монолитными бетонными конструкциями.

ГОСТ 530-2012 «Кирпич и камень керамические. Общие технические условия» п.4.1-4.3, п.5.1-5.2

СНиП 3.03.01-87 «Несущие и ограждающие конструкции, п.7.3-7.8, п.7.10, п.7.13, п.7.15, п.7.17-7.25, п.7.27, п.7.29-7.34, п.7.36-7.41, п.7.43-7.46, применяется на основании Распоряжения Правительства РФ от 21 июня 2010г. №1047-р «Об утверждении перечня национальных стандартов и сводов правил»

5.3 Монтаж деревянных конструкций

Конструкции, имеющие или получившие при транспортировании и хранении дефекты и повреждения, устранение которых в условиях стройплощадки не допускается (например, расслоение клеевых соединений, сквозные трещины и т. д.), запрещается монтировать до заключения проектной организации-разработчика. В заключении выносится решение о возможности применения, необходимости усиления поврежденных конструкций или замене их новыми.

Сборные несущие элементы деревянных конструкций следует поставлять предприятиемизготовителем на строительную площадку комплектно, вместе с ограждающими конструкциями, кровельными материалами и всеми деталями, необходимыми для выполнения проектных соединений - накладками, крепежными болтами, затяжками, подвесками, стяжными муфтами, элементами связей и т. п., обеспечивающими возможность монтажа объекта захватками с устройством кровли.

Плиты покрытий и стеновые панели должны поставляться укомплектованными типовыми крепежными элементами, деталями подвесок (для плит подвесного потолка), материалами для заделки стыков.

При выполнении работ по складированию, перевозке, хранению и монтажу деревянных конструкций следует учитывать их специфические особенности:

-необходимость защиты от длительных атмосферных воздействий, в связи с чем при производстве работ следует предусматривать, как правило, монтаж здания по захваткам, включающий последовательное возведение несущих конструкций, ограждающих конструкций и кровли в короткий срок;

-минимально возможное число операций по кантовке и перекладыванию деревянных конструкций в процессе погрузки, выгрузки и монтажа.

Конструкции или их элементы, обработанные огнезащитными составами на основе солей, следует хранить в условиях, предотвращающих конструкции от увлажнения и вымывания солей.

Несущие деревянные конструкции зданий надлежит монтировать в максимально укрупненном виде: в виде полурам и полуарок, полностью собранных арок, секций или блоков, включая покрытия и кровлю.

Укрупнительную сборку деревянных конструкций с затяжкой необходимо производить только в вертикальном положении, без затяжки - в горизонтальном положении.

Установку накладок в коньковых узлах конструкций надлежит производить после достижения плотного примыкания стыкуемых поверхностей по заданной площади.

К монтажу конструкций в сборных элементах следует приступать только после подтяжки всех металлических соединений и устранения дефектов, возникающих при транспортировании и хранении.

При контакте деревянных конструкций с кирпичной кладкой, грунтом, монолитным бетоном и т.п. до начала монтажа необходимо выполнить предусмотренные проектом изоляционные работы.

Монтаж деревянных балок, арок, рам и ферм следует производить в соответствии с проектом производства работ, разработанным специализированной организацией.

Монтаж арок и рам с соединениями на рабочих болтах или нагелях следует производить с закрепленными опорными узлами.

Монтаж деревянных конструкций пролетом 24 м и более должен производиться только специализированной монтажной организацией.

Сборку деревянных ферм необходимо производить со строительным подъемом, создаваемым на строительной площадке и определяемым проектом.

Безраскосные трехшарнирные фермы из прямолинейных клееных элементов с деревянной и металлической затяжкой предварительно надлежит собирать из отдельных элементов на специальном стенде или площадке.

При установке деревянных колонн, стоек и т. п., а также при стыковке их элементов необходимо добиваться плотного примыкания торцов сопрягаемой конструкции. Величина зазора

в стыках с одного края не должна превышать 1 мм. Сквозные щели не допускаются.

В деревянных колоннах и стойках до начала монтажа следует выносить метки для постановки ригелей, прогонов, распорок, связей, панелей и других конструкций.

При монтаже стеновых панелей верхняя панель не должна западать относительно нижней.

Плиты покрытия следует укладывать в направлении от карниза к коньку с площадками их опирания на несущие конструкции не менее 5 см. Между плитами необходимо выдерживать зазоры, обеспечивающие плотную герметизацию швов.

На уложенных в покрытие плитах, не имеющих верхней обшивки, запрещается производить общестроительные и специальные работы: оформление примыканий плит к стенам, заделку стыков между плитами, кровельные и мелкие ремонтные работы. Для выполнения этих работ на покрытии, а также для складирования материалов и деталей, установки различных приспособлений и механизмов на определенных участках покрытия, в соответствии с проектом производства работ, необходимо устраивать временный дощатый защитный настил, а также использовать переносные трапы.

После укладки плит покрытия и заделки стыков, по ним сразу следует укладывать кровлю, не допуская увлажнения утеплителя.

Брусчатые и бревенчатые стены следует собирать с запасом на осадку, вызванную усыханием древесины и усадкой материала для заделки швов. Запас должен составлять 3-5 % проектной высоты стен.

Конструктивные требования по обеспечению надежности деревянных конструкций

Конструктивные меры и защитная обработка древесины должны обеспечивать сохранность деревянных конструкций при транспортировании, хранении и монтаже, а также долговечность их в процессе эксплуатации.

Конструктивные меры должны предусматривать:

- а) предохранение древесины конструкций от непосредственного увлажнения атмосферными осадками, грунтовыми и талыми водами (за исключением опор воздушных линий электропередачи), производственными водами и др.;
- б) предохранение древесины конструкций от промерзания, капиллярного и конденсационного увлажнения;
- в) систематическую просушку древесины конструкций путем создания осушающего температурно-влажностного режима (естественная и принудительная вентиляция помещения, устройство в конструкциях и частях зданий осушающих продухов, аэраторов).

Деревянные конструкции должны быть открытыми, хорошо проветриваемыми, по возможности доступными во всех частях для осмотра, профилактического ремонта, возобновления защитной обработки древесины и др.

В отапливаемых зданиях несущие конструкции следует располагать без пересечения их с ограждающими конструкциями.

Не допускается глухая заделка частей деревянных конструкций в каменные стены.

Несущие клееные деревянные конструкции, эксплуатируемые на открытом воздухе, должны иметь сплошное сечение; верхние горизонтальные и наклонные грани этих конструкций следует защищать антисептированными досками, козырьками из оцинкованного кровельного железа, алюминия, стеклопластика или другого атмосферостойкого материала.

Опирание несущих деревянных конструкций на фундаменты, каменные стены, стальные и железобетонные колонны и другие элементы конструкций из более теплопроводных материалов (при непосредственном их контакте) следует осуществлять через гидроизоляционные прокладки.

Деревянные подкладки (подушки), на которые устанавливаются опорные части несущих конструкций, следует изготавливать из антисептированной древесины преимущественно лиственных пород.

Металлические накладки в соединениях конструкций, эксплуатируемых в условиях, где возможно выпадение конденсата, должны отделяться от древесины гидроизоляционным слоем.

Покрытия с деревянными несущими и ограждающими конструкциями следует

проектировать, как правило, с наружным отводом воды.

В ограждающих конструкциях отапливаемых зданий и сооружений должно быть исключено влагонакапливание в процессе эксплуатации. В панелях стен и плитах покрытий следует предусматривать вентиляционные продухи, сообщающиеся с наружным воздухом, а в случаях, предусмотренных теплотехническим расчетом, - использовать пароизоляционный слой.

Рулонные и пленочные материалы, используемые в качестве пароизоляции в плитах и панелях стен, у которых обшивки соединены гвоздями или шурупами с деревянным или с клееным каркасом из фанеры или древесины, должны укладываться сплошным непрерывным слоем между каркасом и обшивкой.

В ограждающих конструкциях с соединением обшивок с каркасом на клею следует применять окрасочную или обмазочную пароизоляцию. Швы между панелями и плитами должны быть утеплены и уплотнены герметизирующими материалами.

Меры по защите деревянных конструкций

Агрессивное воздействие на деревянные конструкции оказывают биологические агенты - дереворазрушающие грибы и др., вызывая биологическую коррозию древесины, а также химически агрессивные среды (газообразные, твердые, жидкие), вызывая химическую коррозию древесины.

Степень агрессивного воздействия на древесину биологических агентов следует принимать по табл.15 СНиП 2.03.11-85.

Степени воздействия химически агрессивных сред на конструкции из древесины приведены: газообразных - в табл.16 СНиП 2.03.11-85, твердых - в табл.17 СНиП 2.03.11-85, жидких неорганических сред - в табл. 18 СНиП 2.03.11-85, жидких органических - в табл.19 СНиП 2.03.11-85.

При проектировании деревянных конструкций для эксплуатации в химических средах средней и сильной степени агрессивного воздействия действие биологических агентов не учитывается.

Конструктивные решения зданий и сооружений должны обеспечивать возможность периодического осмотра деревянных конструкций и возобновления защитных покрытий.

Для деревянных конструкций, предназначенных к эксплуатации в химических средах средней и сильной степени агрессивного воздействия, необходимо предусматривать следующие дополнительные требования:

- -для изготовления конструкций следует применять древесину хвойных пород (сосна, ель и др.);
- -склеивание элементов конструкций должно осуществляться фенольными, резорциновыми и фенольно-резорциновыми клеями;
- -несущие конструкции следует проектировать из элементов сплошного сечения (клееных, брусчатых).
- В качестве ограждающих конструкций следует применять клееные фанерные панели. Допускается применение дощатых кровельных настилов и обшивок стеновых панелей при условии обеспечения требуемой защиты их от коррозии.

Конструкции следует проектировать с минимальным количеством металлических соединительных деталей и с применением химически стойких материалов (модифицированной полимерами древесины, стеклопластиков и др.). При применении металлических соединительных деталей должна быть предусмотрена их защита от коррозии.

Защита деревянных конструкций от коррозии, вызываемой воздействием биологических агентов, предусматривает антисептирование, консервирование, покрытие лакокрасочными материалами или поверхностную пропитку составами комплексного действия. При воздействии химически агрессивных сред следует предусматривать покрытие конструкций лакокрасочными материалами или поверхностную пропитку составами комплексного действия.

Способы защиты деревянных конструкций от коррозии, вызываемой биологическими агентами, приведены в табл.20 СНиП 2.03.11-85.

Способы защиты деревянных конструкций от коррозии, вызываемой газообразными, твердыми и жидкими средами, приведены в табл.21 СНиП 2.03.11-85.

Перечень лакокрасочных материалов для защиты древесины приведен в справочном приложении 8 СНиП 2.03.11-85.

Перечень составов для антисептирования и консервирования древесины приведен в справочном приложении 9 СНиП 2.03.11-85.

Перечень составов комплексного действия для поверхностной пропитки древесины приведен в справочном приложении 10 СНиП 2.03.11-85.

Устройство каркасов стен из деревянных конструкций

Стены и перегородки состоят из деревянного каркаса, обшивки (наружной и внутренней по отношению к ограждаемому помещению) и отделочных (облицовочных) слоев. При необходимости в стенах располагают слои, обеспечивающие теплозвукоизоляцию, пароизоляцию и защиту от проникновения воздуха и воды. Каркас стен воспринимает нагрузки от перекрытий и крыши дома. На каркас перегородок нагрузки от перекрытий и крыши не должны передаваться.

Каркас стен состоит из вертикальных стоек и горизонтальных элементов (верхняя и нижняя обвязки, перемычки над оконными и дверными проемами). Стойки в пределах каждого этажа опираются на нижние обвязки каркаса стены, которые через элементы каркаса перекрытий передают нагрузку на верхние обвязки каркаса стен нижерасположенного этажа (каркас "платформенного" типа с поэтажными стойками). Обшивки каркаса, если они выполняются из жестких плитных или листовых материалов или из пиломатериалов, обеспечивают жесткость каркаса при восприятии ветровых нагрузок и предотвращают потерю устойчивости стоек. При отсутствии жестких обшивок должны использоваться диагональные связи жесткости или распорки.

Вертикальные и горизонтальные элементы каркаса стен разделяют внутреннее пространство стены на замкнутые ячейки и выполняют функции противопожарных диафрагм.

Сечение и шаг стоек каркаса стен должны рассчитываться в зависимости от положения стоек по высоте дома и от передаваемой на них нагрузки. При этом должны учитываться размеры пиломатериалов по ГОСТ 24454 и их прочностные характеристики по СНиП II-25 (для древесины хвойных пород 2-го сорта).

Стойки стен должны быть непрерывными и цельными по всей высоте этажа (кроме стоек у проемов).

В наружных стенах в качестве связей жесткости рекомендуется использовать доски сечением не менее 18х88 мм, прибиваемые под углом 45° к стойкам в плоскости каркаса на каждом этаже. Эти доски должны врезаться в стойки таким образом, чтобы не препятствовать креплению обшивок к стойкам.

Во внутренних стенах в качестве связей жесткости, предотвращающих потерю устойчивости стоек, могут использоваться деревянные бруски, которые устанавливаются враспор между стойками в середине их высоты и прибиваются к каждой стойке.

Верхние обвязки в несущих стенах должны по высоте состоять, как правило, из двух досок, нижние - из одной доски.

На участке стены, включающем перемычку над дверным проемом, допускается иметь верхнюю обвязку из одной доски при условии, что обвязка прибита к перемычке.

Верхнюю обвязку из одной доски допускается также использовать в случаях, когда балки перекрытия и стойки каркаса вышележащего этажа или стропила крыши, через которые передается нагрузка на обвязку, опираются на нее в пределах не более 50 мм от грани стоек, на которые опирается обвязка.

Обвязки должны быть выполнены из досок толщиной не менее 38 мм. Ширина обвязки должна приниматься не менее высоты сечения стоек. Во внутренних стенах, в которых стойки расположены непосредственно над балками перекрытия, допускается применять нижнюю обвязку толщиной 18 мм. В наружных стенах нижняя обвязка может выступать за пределы опоры (например, над стеной подвала), но не более чем на одну треть своей ширины.

Нижняя доска верхней обвязки прибивается к каждой стойке. Стыки отдельных элементов нижней доски должны располагаться над стойками.

Верхняя доска верхней обвязки прибивается к нижней доске таким образом, чтобы стыки в ней были смещены по отношению к стыкам в нижней обвязке на расстояние, равное одному шагу стоек.

В углах и пересечениях стен и перегородок нижние доски верхних обвязок должны соединяться встык, а верхние доски верхних обвязок должны перекрывать эти стыки. В случаях, когда невозможно или нецелесообразно выполнить это требование, для соединения нижних досок верхних обвязок в углах и пересечениях следует использовать соединительные накладки из полосы оцинкованной стали размером 75х150 мм, толщиной 0,9 мм, прибиваемые к каждому элементу не менее чем тремя гвоздями длиной 60 мм. Допускается применять другие способы соединения, обеспечивающие неменьшую прочность.

Каркас в углах наружных стен рекомендуется устраивать на двух или трех стойках. При соединении на трех стойках дополнительная стойка, устанавливаемая длинной стороной сечения параллельно стене, предназначается для крепления внутренних обшивок стен.

Стойки с обеих сторон оконных и дверных проемов, как правило, должны быть двойными. При этом внутренние элементы (примыкающие к проему) устанавливаются между нижней обвязкой и перемычкой, а наружные - между нижней и верхней обвязками.

Допускается использование одинарных стоек по сторонам проема в перегородках, а также в несущих стенах при ширине проема, соответствующей расстоянию между стойками или меньше этого расстояния; при этом два проема не должны находиться в смежных пространствах между стойками.

Перемычки должны состоять, как правило, из двух досок, поставленных на ребро и соединенных в один элемент гвоздями. Толщина перемычки должна быть равна ширине стоек, обрамляющих проем. При необходимости для обеспечения требуемой толщины перемычки между двумя ее досками могут быть вставлены прокладки (деревянные или из жесткого утеплителя). Крепление перемычек - гвоздями через стойки в торец.

Пролеты и размеры по высоте сечения деревянных перемычек должны определяться расчетом. В случаях, когда пролеты балок перекрытия не превышают 4,9 м, а пролеты стропильных ферм не превышают 9,8 м.

При применении в несущих стенах стоек сечением, меньшим чем 38х89 мм, можно принимать максимальные значения пролетов по упомянутым таблицам при условии, что длина перемычек не превышает 2,25 м, а минимальная высота их сечения не менее чем на 50 мм превышает указанную в этих таблицах.

Устройство гвоздевых соединений элементов каркаса стен должно соответствовать таблице 7-2 СП 31-105-2002.

Стойки и верхние обвязки каркаса стен при необходимости можно пропиливать, прорезать, просверливать, но таким образом, чтобы при этом неповрежденная часть сечения составляла не менее:

- -двух третей толщины сечения для несущей стойки или 40 мм для ненесущей стойки;
- -50 мм по ширине обвязки.

При большем ослаблении сечения элементов каркаса необходимо их дополнительное усиление. В каркасе стен должны быть предусмотрены детали для крепления внутренней обшивки стен и подшивки потолка..

СНиП 3.03.01-87 «Несущие и ограждающие конструкции», п.5.1-5.6, п.5.9-5.15, применяется на обязательной основе (Распоряжение Правительства РФ от 21 июня 2010 г. №1047-р «Об утверждении перечня национальных стандартов и сводов правил»).

СНиП II-25-80 «Деревянные конструкции», п.6.35-6.44.

СНиП 2.03.11-85 «Защита строительных конструкций от коррозии», п.3.1-3.8.

СП 31-105-2002 «Проектирование и строительство энергоэффективных одноквартирных жилых домов с деревянным каркасом» п.7.2