AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1 (Currently Amended) A method <u>implemented by computer means</u> of searching content, in which at least one extract common to a first file and to a second file, in the form of binary data, is <u>being</u> searched for, <u>characterized in that it</u> <u>wherein the method</u> comprises:

 * a prior preparation of the first file at least, comprising the following steps:
- a) segmenting the first file into a succession of data packets, of chosen size, and identifying addresses of packets in said file,
- associating with the address of each packet a digital signature defining a fuzzy logic state from among at least three states: "true", "false" and "undetermined", said signature resulting from a combinatorial calculation on data emanating from said file,
 and in that the method continues with a the search for common extract, itself, comprising the following steps:
- comparing the fuzzy logic states associated with each packet address of the first file, with fuzzy logic states determined on the basis of data emanating from the second file,
- d) eliminating from said search for common extract, pairs of respective addresses of the first and second files whose respective logic states are "true" and "false" or "false" and "true", and preserving the other pairs of addresses identifying data packets liable to comprise said common extract.
- 2. (Currently Amended) The method as claimed in claim 1, characterized in that wherein, in step b), a data packet is assigned the state:
- "true" if all the data of the packet satisfy a first condition,
- "false" if all the data of the packet satisfy a second condition, contrary to the first condition,
- and "undetermined" if certain data of the packet satisfy the first condition, while other data of the packet satisfy the second condition

3 (Currently Amended) The method as claimed in one of claims claim 1-and 2, characterized in that wherein a processing prior to step b) is applied to the data of a file, said processing comprising the following steps:

- al) the data of the file are considered as a string of samples obtained at a predetermined sampling frequency (Fe), and of values coded according to a binary representation code, and
- a2) a digital filter is applied to said samples (f_n), said filter being adapted to minimize a probability of obtaining the "undetermined" state for the digital signatures associated with the packets of samples
- 4. (Currently Amended) The method as claimed in claim 3, characterized in that wherein the application of said digital filter amounts to:
- applying a spectral transform to the sampled data,
- applying a low-pass filter to said spectral transform,
- and applying an inverse spectral transform after said low-pass filter.
- 5. (Currently Amended) The method as claimed in claim 4, characterized in that wherein the low-pass filter operates on a frequency band comprising substantially the interval:

and k is the number of samples that a packet comprises.

6 (Currently Amended) The method as claimed in one of claims claim 4 and 5, characterized in that wherein said digital filter comprises a predetermined number of coefficients of like value, and in that wherein the frequency response of the associated low-pass filter is expressed, as a function of frequency f, by an expression of the type:

$$\sin(PI f T)/(PI f T)$$
,

where sin() is the sine function, and with:

- PI = 3.1416, and
- T=(K-1)/Fe where K is said predetermined number of coefficients and Fe said sampling frequency.

7 (Currently Amended) The method as claimed in one of claims claim 3-to 6, characterized in that wherein:

- said digital filter is a mean value filter of a predetermined number (2K+1) of coefficients, and in that
- the difference between two successive filtered samples $(r_{n+1}-r_n)$ is proportional to the difference between two unfiltered samples $(f_{n+K+1}-f_{n-K})$, respectively of a first rank and of a second rank, which are said ranks being spaced apart by said predetermined number of coefficients, and in that
- the calculation of said filtered samples is performed by utilizing this relation to reduce the number of calculation operations to be performed
- 8. (Currently Amended) The method as claimed in one of claims claim 6 and 7, characterized in that wherein said predetermined number of coefficients of the filter (2K+1) is greater than or equal to 2k-1, where k is the number of samples that a packet comprises.
- 9. (Currently Amended) The method as claimed in one of claims claim 3-to 8, taken in combination with claim 2, characterized in that wherein:
- the "true" state is assigned to the address of a packet if, for this packet, all the filtered samples have a value greater than a chosen reference value (Vref),
- the "false" state is assigned to the address of a packet if, for this packet, all the filtered samples have a value less than a chosen reference value (Vref), and
- the "undetermined" state is assigned to the address of a packet if, for this packet, the filtered samples have, for certain of them, a value less than said reference value (Vref), and, for other filtered samples, a value greater than said reference value (Vref).
- (Currently Amended) The method as claimed in claim 9, eharacterized in that wherein, for any filtered sample r_n of given order n, said reference value (Vref) is calculated by averaging the values of the unfiltered samples f_k over a chosen number of unfiltered consecutive samples (Kref) about an unfiltered sample f_n of the same given order n.

(Currently Amended) The method as claimed in claim 10, eharacterized in that wherein the values of the filtered samples are made relative, for comparison, to a zero threshold value, and in that wherein said filtered samples r'n are expressed by a sum of the type:

$$r_n^1 = K_{ref} \sum_{k=-(K/2)}^{(K/2)-1} f_{n+k} - K \sum_{k=-(K_{ref}/2)}^{(K_{ref}/2)-1} f_{n+k}$$
, where:

- f_{n+k} are unfiltered samples obtained in step a1),
- K is the number of coefficients of the digital filter, preferably chosen to be even, and
- K_{ref} is said number of unfiltered samples around an unfiltered sample f_n , preferably chosen to be even and greater than said number of coefficients K.
- 12 (Currently Amended) The method as claimed in claim 11, characterized in that wherein said sum is applied to the unfiltered samples f_n a plurality of times, according to a processing performed in parallel, while respectively varying the number of coefficients K.
- 13. (Currently Amended) The method as claimed in one of the preceding claims claim 1, characterized in that wherein the fuzzy states associated with the first file at least are each coded on at least two bits.
- 14. (Currently Amended) The method as claimed in claim 13, taken in combination with claim 12, characterized in that wherein the fuzzy states determined for a least number of coefficients K are coded on least significant bits and the fuzzy states determined for a larger number of coefficients K are coded on subsequent bits, up to a chosen total number of bits

15. (Currently Amended) The method as claimed in one of claims claim 3 and 10, eharacterized in that wherein each filtered sample r_n is expressed as a sum of the type:

$$r_n = \sum_{i=-I_t}^{I_2} filter_i \times f_{(n+i)}$$
 , where:

- $f_{(n+i)}$ are unfiltered samples,
- filter; are coefficients of a digital filter, integrating, as the case may be, a threshold value referred to zero,

and in that wherein a number k of unfiltered samples that a packet comprises is chosen, at minimum equal to 2 and less than or equal to an expression of the type:

(TEF-I₁-I₂+1)/2, where TEF is a desired minimum size of the common extracts searched for

- 16. (Currently Amended) The method as claimed in claim 15, characterized in that wherein:
- for a given value TEF of the desired minimum size of common extracts searched for, a span of usable values for said number k of unfiltered samples that a packet comprises is determined,
- and, for each usable value of the number k, an optimal size TES is determined of a succession of data of digital signatures, for which succession the detection of a common extract of size TEF is guaranteed,

and in that wherein said optimal size TES is less than or equal to an expression of the type: $E[(TEF-I_1-I_2+1)/k]-1$, where E(X) designates the integer part of X

17 (Currently Amended) The method as claimed in one of the preceding claims claim 1, in which the two files to be compared comprise comprising data representative of alphanumeric characters, and in particular representative of the a text and/or a computer or a genetic code,

eharacterized in that wherein the method comprises:

- a first group of steps comprising the formation of the digital signatures and their comparison, for a coarse search, and
- a second group of steps comprising an identicalness comparison in the spans of addresses satisfying the coarse comparison,

and in that wherein the data of a file are considered as a string of samples, with a chosen number k of samples per packet,

and in that wherein the value of this chosen number k is optimized initially by searching for a minimum of comparison operations to be performed.

- 18. (Currently Amended) The method as claimed in claim 17, characterized in that wherein, for the optimization of the chosen number k of samples per packet, account is taken of a total number:
- of operations of comparison of digital signatures to be performed, and
- of operations of identicalness comparison of data to be performed thereafter, and in that wherein said total number of operations is a minimum for a finite set of numbers k.
- (Currently Amended) The method as claimed in one of claims claim 17-and 18, characterized in that wherein an information relating to a minimum desired size of common extracts searched for (TEF) is obtained, and used to optimize said chosen number k of samples per packet,

and in that wherein the optimal number k of samples per packet varies substantially as said minimum size (TEF) so that the larger desired minimum size of common extracts searched for, the shorter the duration of the search for common extract

20. (Currently Amended) The method as claimed in one of claims claim 1 to 16, characterized in that wherein it comprises the search for common extracts consists of a single group of steps comprising the formation of the digital signatures and their comparison, and in that wherein the number of data items per packet is optimized by initially fixing a confidence index characterizing an acceptable threshold of probability of false detection of common extracts.

- 21 (Currently Amended) The method as claimed in one of claims claim 3 to 20, characterised in that wherein the method comprises, for the first file:
- the sampling at a chosen sampling frequency,
- the digital filtering corresponding to a low-pass filtering in the frequency space, and
- the combination of the filtered samples to obtain digital signatures in the "true", "false" or "undetermined" state, associated with the respective addresses of the first file,

while it the method comprises, for the second file:

- the sampling at a chosen sampling frequency,
- the digital filtering corresponding to a low-pass filtering in the frequency space, and
- the logic state associated with each packet of filtered samples is determined on the basis of the logic state associated with a single filtered sample chosen from each packet,

in such a way as to obtain digital signatures comprising only "true" or "false" logic states and thus to improve the selectivity of the comparison of the digital signatures.

- 22 (Currently Amended) The method as claimed in claim 21, characterized in that wherein,
- if the logic state associated with an address of the first file is "true" or "undetermined", while the logic state associated with an address of the second file is "true", the pair of said addresses is retained from the search of common extract,
- if the logic state associated with an address of the first file is "false" or "undetermined", while the logic state associated with an address of the second file is "false", the pair of said addresses is retained for the search for common extract, while the other pairs of addresses are excluded from the search

23. (Currently Amended) The method as claimed in claim 20, in which the first and second files-are being files of samples of digitized signals, characterized in that wherein the method comprises a step of preprocessing of the data and a taking into account of the data associated with portions of signal of level greater than a noise reference

- 24. (Currently Amended) The method as claimed in-one of claims claim 20-and-23, the first and second files are files of samples of digitized signals, characterized in that wherein the method provides for a step of consolidation of the search results, preferably by adjustment of relative sizes of the packets of the first and second files, in such a way as to tolerate a discrepancy in respective speeds of retrieval of the first and second files.
- 25 (Currently Amended) The method as claimed in one of the preceding claims claim 1, characterized in that wherein one at least of the first and second files is a data stream, and in that wherein the method of searching for common extracts is executed in real time.

26. (Currently Amended) A computer program product, intended to be stored in a memory of a central unit of a computer or on a removable medium intended to cooperate with a reader of said central unit, the program-characterized in that it comprises comprising instructions for conducting-all or part of the steps of the method according to one of the preceding claims for searching at least one extract common to a first file and to a second file, in the form of binary data, said steps comprising:

- * a prior preparation of the first file at least, including the following steps:
- a) segmenting the first file into a succession of data packets, of chosen size, and identifying addresses of packets in said file,
- b) associating with the address of each packet a digital signature defining a fuzzy logic state from among at least three states: "true", "false" and "undetermined", said signature resulting from a combinatorial calculation on data emanating from said file, * and the search for common extract, itself, including the following steps:
- c) comparing the fuzzy logic states associated with each packet address of the first file,
 with fuzzy logic states determined on the basis of data emanating from the second file,
- d) eliminating from said search for common extract, pairs of respective addresses of the first and second files whose respective logic states are "true" and "false" or "false" and "true", and preserving the other pairs of addresses identifying data packets liable to comprise said common extract.

27. (Currently Amended) A data structure intended to be used for a search of at least one extract common to a first and a second file, the data structure being representative of the first file, the data structure being obtained by the implementation of the following steps:

- a) segmenting the first file into a succession of data packets, of chosen size, and identifying addresses of packets in said file,
- b) associating with the address of each packet a digital signature defining a fuzzy logic state from among at least three states: "true", "false" and "undetermined", said signature resulting from a combinatorial calculation on data emanating from said file, characterized in that it is obtained by the implementation of steps a) and b) of the method as claims in one of claims 1 to 25 and the data structure thus in that it comprises comprising a succession of addresses identifying addresses of the first file, a fuzzy logic state from among the states: "true", "false" and "undetermined", being assigned and to each of which is said addresses of the data structure assigned a fuzzy logic state from among the states: "true, "false" and "undetermined".
- 28. (Currently Amended) A computer device, comprising a memory for storing at least first and second files, for the search for at least one extract common to the first file and the second file,-characterized in that wherein it comprises a memory suitable for storing the instructions of a computer program product as claimed in claim 26
- 29. (Currently Amended) A computer installation, comprising:
- a first computer entity suitable for storing a first file,
- a second computer entity suitable for storing a second file, and
- means of communications between the first and second computer units, characterized in that wherein at least one of the said entities at least comprises a memory suitable for storing the computer program product as claimed in claim 26, for the search of extract common to the first and second files
- 30. (Currently Amended) The installation as claimed in claim 29, characterized in that wherein the entity storing the computer program product is designed to perform a remote update of one of the first and second files with respect to the other of the first and second files