

CSE 4102

Lambda Calculus

λ

Overview

- Motivation
- Syntax
- Semantics
 - Axiomatic
 - Operational
- Reduction
 - Normal
 - Applicative
- Properties
 - Confluence

Motivation

- Lambda calculus
 - Minimalist approach
 - Preserve expressive power
 - Very simple
 - Untyped *or* typed
- What we gain
 - Easier to study
 - Simple semantics
 - Tool to formalize semantics of other languages

Lambda Calculus Syntax

Very small

```
Expr :== <Expr> <Expr>
:== λ<Id>.<Expr>
:== ( <Expr> )
:== <Id>
```

Examples

```
x
y
s
(x)
x y
λ x. x
λ x. y
(λ x. y) z
```


Associativity

• Application associates to the left

```
fabcd
```

```
(((f a) b) c) d
```


Scoping

- Scope of abstractions
 - Extent to the right as far as possible

```
λx.λy.Μ Ν
λx.(λy.(M N))
```


Abstraction

• The abstraction

- Represents a function definition $\lambda x \cdot M$
- λ Is the abstraction symbol
- The formal is the identifier x
- The body is the expression M

Application

- The application
 - The expression

- Is a function *call*
- Intuitive semantics
 - M is an abstraction

- N is the argument
- The application consist of
 - Replace the formal x by the argument N in the body P

Free & Bound Variables

• Consider an example

• Can we define it formally?

Examples

• Compute the free set for:

```
\lambda x \cdot x \cdot y = 0
\lambda x \cdot \lambda y \cdot (x \cdot y \cdot z) = 0
\lambda x \cdot \lambda y \cdot (xz\lambda z \cdot z) = 0
```


Substitution

We write

- To denote the expression resulting from
 - Replacing all free occurrences of x in M by N
- Examples

```
[z/x](x y) =
[\lambda x.x/y](x y z) =
[\lambda x.xy/z](\lambda y.(zy)) =
```


Substitution

- A Catch...
 - We must make sure that
 - Free variables in N do not become bound.
- How to do it?

Axiomatic Semantics

- Axiomatic semantics
 - Three axioms
 - α-equivalence
 - β-equivalence
 - η-equivalence
- Role of semantics
 - Establish logical consequences of equations

α-Equivalence

- Intuitively
 - Two expressions are equivalent up to a renaming
- Formally

$$\lambda x \cdot M = \lambda y \cdot [y/x]M$$
 y not free in M

Examples

```
\lambda x \cdot x = \lambda x \cdot y = \lambda x \cdot x y = 0
```

β-Equivalence

- Intuitively
 - The application of a function to an argument is equivalent to the result of the application obtained from substituting the argument for the formal in the body.
- Formally

$$(\lambda x \cdot M) \quad N = [N/x]M$$

Examples

```
(\lambda x.x) y = (\lambda x.x z) y = (\lambda x.\lambda y.x) a b =
```

η-Equivalence

- Intuitively
 - Proxy functions can be added or removed without affecting the semantics.
- Formally

$$\lambda x \cdot (f x) = f$$

• Example

if x is not free in f then f is a function

$$\lambda x. (\lambda y. y. x) =$$

Operational Semantics

- What is it?
 - A description of the mechanics of an "interpreter"
- Relationship?
 - Operational semantics give
 - Reduction rules
 - Reduction rules are related to equivalence axioms
 - α-reduction
 - β-reduction
 - η -reduction ?

β-Reduction

- The most useful rule!
 - It defines the result of function application
 - Related to β-Equivalence
- Formally

$$(\lambda x \cdot M) \quad N \rightarrow_{\beta} [N/x]M$$

- Subtlety
 - Reduction is defined up to α -Equivalence.

α-Reduction

- Purpose
 - Prevent incorrect binding in β -Reduction.
- Formally

$$(\lambda x.M) \rightarrow_{\alpha} (\lambda y.[y/x]M)$$
 s.t. Y not in FV(M)

η-Reduction

- Purpose
 - Eliminate or introduce proxies
- Do we need that in an interpreter?

Computation With Reduction

A Computation is

- A sequence of reductions
- Starting from an initial lambda term
- Ending...
 - In a *normal* form
 - Or not at all
- What is a normal form?
 - A lambda term with no applications left.
 - β-Reduction can no longer be applied.
- Examples

```
x
x y
(\lambda x . x )
z (\lambda x . x) y
```

Applicative Reduction

Objective

- Reduce a lambda term through application
- Rule of thumb
 - Evaluate the argument first
 - Pass the normal form of the argument to the function.

Examples

```
(\lambda x \cdot x x x) ((\lambda y \cdot y) z)
```

$$(\lambda x.y) ((\lambda x.xx) (\lambda x.xx))$$

Applicative Reduction

- Applicative reduction
 - May not terminate
 - Corresponds to eager evaluation
 - Corresponds to call by value

λ

Normal Order Reduction

- Objective
 - Reduce a lambda term
 - Leftmost, outermost abstraction first.
- Examples

```
(\lambda x . x x) ((\lambda y . y) z)
```

$$(\lambda x.y) ((\lambda x.xx) (\lambda x.xx))$$

Soundness

- So....
 - Depending on terms
 - Applicative order may terminate or not
 - Normal order may produce a different sequence of terms
- Question
 - Is the following diagram true?

Church-Rosser Theorem

• Some good news....

$$\forall M, P, Q \in \Lambda : M \Rightarrow_* P, M \Rightarrow_* Q$$
$$\longrightarrow \exists N \in \Lambda : P \Rightarrow_* N \land Q \Rightarrow_* N$$

- The result of a computation does not depend on the order in which reductions are applied.
- The end result is a normal form (if one exists).
- For all terminating computation there is a unique normal form.

λ

λ-calculus

- As a programming language!
 - We can now write all our favorite programs!
 - The λ -calculus is Turing complete
- A few question though....
 - How to
 - Write constants like
 - True, false, 0, 1, 2,
 - Write branching instructions like
 - If then ... else
 - Write Iterative statements?
 - Write recursive statements?