

2. La forme du ruage de point n'est pas allongée, il n'est sas possible de traver un Droite en reliant les points.

3. Le coefficient de correlation x = -0,86 olest proche de - 1, l'ajustement non affine du ruage est justifie

4.	pour sei	200	250	300	350	400	500
	yi	633	475	305	275	266	234
	zi	6,449	6,163	5,720	5,817	5,883	5,455

D'après la calculatrice, of 2 -0, 90 Le changement de mouvable est pertinent cox il est plus proche de -1.

6. $a \approx -0.0030$ $b \approx 6.86$ $z = -0.030 \approx +6.86$ _ weich une equation de la dueite de regiension de z en x.

A ~ 0,0030

Lestimation du nombres d'acheteur petentiel y en fonction de 2 est 0,00302

y = 9512

8. Si le puir de vente est fixé a 400€, le nombre d'acheteur potentiel est:

y= 951e -0,0030x400 = 286.

1.
$$\lim_{x \to +\infty} f(x) = \mu(x) + \nu(x)$$
 avec $\mu(x) = e^{2x} + e^{x}$
 $\nu(x) = -xe - 2$

2.
$$\lim_{x \to -\infty} f(x) = \mu(x) + \nu(x)$$

• lim
$$(e2^{e}+e^{3e})=+20$$
 · lim $(e2^{e}+e^{3e})=0$
 $2e\rightarrow+20$

(l'x)-(x+2) > 0 l'est au dessus de D2
le admet pour asymptote la ducite d'equation

$$4 = x-2$$
.

4.
$$\forall x \in \mathbb{R} (e^{2x} + e^{x}) > 0$$

$$\forall x \in \mathbb{R} (e^{2x} + e^{x}) > 0$$

$$\forall x \in \mathbb{R} (e^{2x} + e^{2x}) > 0$$

$$\forall x \in \mathbb{R} (e^{2x} + e^{2x}) > 0$$

5.
$$f(x) = e^{2x} + e^{x} - x - \lambda$$

 $f'(x) = 2x^{2x} + e^{2x} - 1$
 $f'(x) = 2e^{2x} + e^{2x} - 1$

6.
$$f'(x) = 2(e^{x}+1)(e^{x}-\frac{1}{2})$$

 $f'(x) = (2e^{x}+2)(e^{x}-\frac{1}{2})$
 $f'(x) = 2(e^{x})^{2} + 2e^{x} - e^{x} - 1$
 $f'(x) = 2e^{2x} + e^{x} - 1$

V se ER, e 2+1,0 donc le suigne de j'(re) depend de

$$e^{x} - \frac{1}{2}$$
 >0
 e^{x} > $\frac{1}{2}$
 e > $\ln\left(\frac{1}{2}\right)$ >e > $-\ln 2$

f(x) est comant sur J-so; - ln2] et crainant sur [-ln2;+so[.

$$f(-\ln 2) = l + l + \ln 2 - 2$$

$$= \left(-\frac{1}{2}\ln 2\right) + \frac{1}{2} + \ln 2 - 2$$

$$= \frac{1}{4} + \frac{1}{2} + \ln 2 - 2$$

$$= -\frac{5}{4} + \ln 2$$

$$f'(x) = 2 \times 2^{2\times 0} + e^{\circ} - 1$$

= 2 + 1-1
= 2

To =
$$y = f'(0)(x-0) + f(0)$$

 $y = 2x$.