21-120: Differential and Integral Calculus Lecture #12 Outline

Read: Section 3.7 of the textbook

Objectives and Concepts:

- The Inverse Function Theorem gives the relationship between the derivatives of a differentiable function f(x) and its inverse function $f^{-1}(x)$ when it is defined.
- The derivatives of inverse trigonometric functions can be found by applying the Inverse Function Theorem.

Suggested Textbook Exercises:

• 3.7: 261-293 odd.

The Derivatives of Inverse Functions

Recall that when y = f(x) is a one-toone function (i.e., its graph passes the Horizontal Line Test), we can define the inverse function $f^{-1}(x)$, and the graph of $y = f^{-1}(x)$ is obtained by reflecting the graph y = f(x) across the line y = x.

Now, if f is differentiable at a, then the inverse function f^{-1} will also be differentiable at f(a). As the roles of x and y switch when considering the graph of the inverse function, this means the lines tangent to f and f^{-1} (at the points (a, f(a)) and (f(a), a), respectively) will have reciprocal slopes. This establishes the relationship

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}.$$

We can also compute this directly using the Chain Rule. Since $f(f^{-1}(x)) = x$, we have, differentiating both sides,

$$1 = f'(f^{-1}(x)) \cdot (f^{-1})'(x),$$

and the theorem below is obtained when solving for $(f^{-1})'(x)$.

The Inverse Function Theorem: Let f be a function that is both invertible and differentiable. Let $y = f^{-1}(x)$ be the inverse of f(x). For all x satisfying $f'(f^{-1}(x)) \neq 0$, we have that

$$\frac{dy}{dx} = \frac{d}{dx} \left(f^{-1}(x) \right) = \left(f^{-1} \right)'(x) = \frac{1}{f'(f^{-1}(x))}.$$

We can use the Inverse Function Theorem as a way to find tangent lines of inverse functions at given values, even without finding the description of the inverse function itself!

Example 1: Let $f(x) = x^3 + x^{1/3} + 1$ for x > 0. Find the equation of the line tangent to $f^{-1}(x)$ when x = 3.

Example 2: For the function $f(x) = \frac{4}{1+x^2}$ (for $x \ge 0$), find the equation of the line tangent to $f^{-1}(x)$ at the point (2,1).

Recall the inverse trigonometric functions from Precalculus. (It is important to pay close attention to the ranges of the inverse trig functions - these ranges are the restricted domains of the standard trigonometric functions.)

We can also use the Inverse Function Theorem to find the derivatives of these inverse trigonometric functions.

Example 3: Use the Inverse Function Theorem to find f'(x) when $f(x) = \arcsin x$. Recall that $\arcsin x$ is defined on the interval [-1,1] and has a range of $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

The derivatives of the other inverse trigonometric functions can be found in the same way.

Derivatives of the Inverse Trigonometric Functions:

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\cos^{-1}x\right) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$
 $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$

$$\frac{d}{dx}\left(\sec^{-1}x\right) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}\left(\csc^{-1}x\right) = \frac{-1}{x\sqrt{x^2 - 1}}$$

Example 4: Find the derivative of each function:

(a)
$$f(x) = x^3 \sin^{-1}(\sqrt{x})$$

(b)
$$y = \sqrt{\arctan(3x)}$$

(c)
$$g(x) = \arccos\left(\frac{x^2+1}{4}\right)$$

(d)
$$y = \cot^{-1} \sqrt{9 - x^2}$$