III. THE ABELIAN CASE.

5. THE DUAL GROUP.

IN THIS SECTION, G IS AN ABELIAN LOCALLY COMPACT GROUP WITH HAAR MEASURE m.

Now $L^1(G)$ is a commutative Banach algebra. We are going to investigate its structure space $\mathfrak{M}(L^1(G))$.

Let $\varphi \in \mathfrak{M}(L^{1}(G))$. For all $f,g \in L^{1}(G)$ and $x \in G$, $\varphi(f_{X})\varphi(g) = \varphi(f_{X}*g) = \varphi((f*g)_{X}) = \varphi((g*f)_{X}) = \varphi(g_{X}*f) = \varphi(g_{X})\varphi(f)$.

Hence (as $\varphi \neq 0$) there exists a unique $\{: G \rightarrow \mathbf{C} \text{ such that }$

 $\varphi(f_{x}) = \overline{\chi(x)}\varphi(f) \qquad (f \in L^{1}(G); x \in G).$ (For historical reasons we write $\overline{\chi(x)}$ and not $\chi(x)$.) By Theorem 3.13 χ is continuous. Further, for all $f \in L^{1}(G)$, $x,y \in G$ we find

$$\overline{\chi(xy)}\varphi(f) = \varphi(f_{xy}) = \varphi((f_y)_x) = \overline{\chi(x)}\varphi(f_y) = \overline{\chi(x)}\overline{\chi(y)}\varphi(f)$$
.

Thus,

$$\chi(xy) = \chi(x) \chi(y)$$
 (x, y \in G).

Further, $\sup_{\mathbf{X}} |\mathbf{Y}(\mathbf{X})| |\varphi(\mathbf{f})| = \sup_{\mathbf{X}} |\varphi(\mathbf{f}_{\mathbf{X}})| \leq \|\varphi\| \sup_{\mathbf{X}} \|\mathbf{f}_{\mathbf{X}}\| = \|\varphi\| \|\mathbf{f}\| < \infty$,

so that χ is bounded. Then for every $x \in G$ the set $\{\chi(x)^n : n \in \mathbb{Z}\}$ must be bounded, which is only possible if

$$|\chi(x)| = 1$$
 $(x \in G).$

In particular,

$$\chi(x^{-1}) = \overline{\chi(x)} \qquad (x \in G).$$

By Lemma 4.4, for all $f,g \in L^{1}(G)$ it follows that

$$\varphi(f*g) = \int f(x)\varphi(g_x)dx =$$

=
$$\int f(x) \overline{f(x)} \varphi(g) dx = \varphi(g) \int f(x) \overline{\varphi(x)} dx$$
.

As also $\varphi(f*g)=\varphi(f)\varphi(g)$ and we can choose g so that $\varphi(g)\neq 0$, we get

(*)
$$\varphi(f) = (f(x)\overline{\chi(x)}dx \quad (x \in G).$$

Conversely, let \(\) be a continuous homomorphism of G

into $\{z \in \mathbb{C} : |z| = 1\}$. Now we can use (*) to define a $\varphi \in L^1(G)^*$. For $g \in L^1(G)$ and $\varphi \in G$,

$$\varphi(g_{y}) = \int_{\mathcal{E}_{y}} (x) \overline{\chi(x)} dx = \int_{\mathcal{E}_{y}} (y^{-1}x) \overline{\chi(x)} dx =$$

$$= \int_{\mathcal{E}_{y}} (x) \overline{\chi(yx)} dx = \overline{\chi(y)} \int_{\mathcal{E}_{y}} (x) \overline{\chi(x)} dx = \overline{\chi(y)} \varphi(g).$$

Lemma 4.4 yields $\varphi(f*g) = \varphi(f)\varphi(g)$, so φ is a (non-zero, hence surjective) homomorphism $L^1(G) \longrightarrow \mathbb{C}$.

The continuous homomorphisms $G \longrightarrow \{z \in \mathbb{C} : |z| = 1\}$ are called the <u>characters</u> of G. Under pointwise multiplication they form an abelian group denoted Γ or \widehat{G} . We have

$$\xi^{-1} = \overline{\xi} \qquad (\xi \in \Gamma).$$

If $\chi_1, \chi_2 \in \Gamma$ are distinct, one easily finds an $f \in L^1(G)$ with $\{f\overline{\chi_1} \neq \{f\overline{\chi_2}\}$. Thus, we have proved:

5.1. THEOREM. Formula (*) establishes a bijection $\Gamma \longrightarrow \mathfrak{M}(L^1(G))$.

We endow Γ with the locally compact topology such that this bijection is a homeomorphism. Note that we have not yet proved that Γ is a topological group (although for each $\beta \in \Gamma$ the map $\chi \longmapsto \beta \chi$ is easily seen to be a homeomorphism).

We shall view the Gelfand Transformation as a map $L^1(G)\longrightarrow C_\infty(\Gamma)$. For $f\in L^1(G)$, $\hat{\mathbf{f}}:\Gamma\longrightarrow \mathbf{C}$ is then given by

 $\hat{\mathbf{f}}(\chi) = \int \mathbf{f}(\mathbf{x}) \overline{\chi(\mathbf{x})} d\mathbf{x}$ ($\chi \in \Gamma$).

If G is discrete, then $M_a(G) = M(G)$ (see Theorem 3.11), so $L^1(G)$ has an identity, and $\mathfrak{M}(L^1(G))$ and Γ are compact. Conversely, suppose G is compact. If $\chi \in \Gamma$ and $\chi \in G$, then $\chi_{\chi} = \overline{\chi(\chi)} \chi$, so $\chi \in \Gamma$ and $\chi \in G$. Therefore:

Therefore, if G is compact, then $\hat{\gamma} = m(G)\xi_{\{\chi\}}$ for every

- $\mathfrak{g} \in \Gamma$. But $\hat{\mathfrak{g}}$ has to be a continuous function on $\mathfrak{M}(L^1(G))$. It follows that Γ is discrete. We have proved the following theorem.
- 5.3. THEOREM. If G is discrete, Γ is compact. If G is compact, Γ is discrete.

Let $A(\Gamma) := \{\hat{f} : f \in L^1(G)\}$. $A(\Gamma)$ is a subalgebra of $C_{\infty}(\Gamma)$, separating the points of Γ .

For $f \in L^1(G)$ define $\tilde{f} : G \to C$ by $\tilde{f}(x) = \overline{f(x^{-1})}$ $(x \in G)$. (See page 3.12.) By Theorem 3.18, $\tilde{f} \in L^1(G)$ and $\tilde{f} = \overline{f} = \overline$

5.4. LEMMA. For every $f \in L^{1}(G)$, $\hat{f} = \overline{\hat{f}}$ and $\tilde{f} = \overline{\hat{f}}$.

Hence, if $j \in A(\Gamma)$, then $\overline{j} \in A(\Gamma)$. By the Stone-Weierstrass Theorem it follows:

5.5. THEOREM. A(Γ) is a dense subalgebra of C_{∞} (Γ).

For $h : \Gamma \longrightarrow \mathbb{C}$, $\chi \in \Gamma$, $h_{\chi} : \Gamma \longrightarrow \mathbb{C}$ is $h_{\chi}(\beta) := h(\chi^{-1}\beta)$.

- 5.6. THEOREM. (a) If $j \in A(\Gamma)$, then $j_{\chi} \in A(\Gamma)$ for every $\chi \in \Gamma$. (In fact, if $f \in L^{1}(G)$ and $\chi \in \Gamma$, then $\hat{f}_{\chi} = (f_{\chi}) \in A(\Gamma)$.)

 (b) If $j \in A(\Gamma)$ and $a \in G$, then $\chi \mapsto \chi(a) j(\chi)$ is an element of $A(\Gamma)$. (In fact, if $f \in L^{1}(G)$ and $a \in G$, then
- element of $A(\Gamma)$. (In fact, if $f \in L^1(G)$ and $a \in G$, then $\chi(a)f(\gamma) = \widehat{f_{a^{-1}}}(\zeta)$ for every $\chi \in \Gamma$.)
 - 5.7. LEMMA. $(x, y) \mapsto y(x) \text{ is a continuous map } G \times \Gamma \longrightarrow C$.

Proof. Let $(x_0, y_0) \in G \times \Gamma$; choose $f \in L^1(G)$ so that $\hat{f}(y_0) \neq 0$. For all $(x, y) \in G \times \Gamma$,

$$\begin{split} |\hat{f_{x}}(\gamma) - \hat{f_{x_{0}}}(\gamma_{0})| &\leq |(f_{x} - f_{x_{0}})^{\hat{}}(\gamma)| + |\hat{f_{x_{0}}}(\gamma) - \hat{f_{x_{0}}}(\gamma_{0})| \leq \\ &\leq ||f_{x} - f_{x_{0}}|| + |\hat{f_{x_{0}}}(\gamma) - \hat{f_{x_{0}}}(\gamma_{0})|. \end{split}$$

From the continuity of $x \mapsto f_{X}$ (see Theorem 3.13) and of $\hat{f}_{X_{0}}$ we infer that $(x, y) \mapsto \hat{f}_{X}(y)$ is continuous at (x_{0}, y_{0}) . But by Theorem 5.6 (b), $\hat{f}_{X}(y) = \overline{y(x)}\hat{f}(y)$, while $(x, y) \mapsto \hat{f}(y)$ is continuous and does not take the value 0 at (x_{0}, y_{0}) . The lemma follows.

For compact $K \subseteq G$ and e > 0 we set

$$N(K:\varrho) := \{ \chi \in \Gamma : |\chi-1| < \varrho \text{ on } K \}.$$

From the above lemma and from Lemma 3.2 it follows that $N(K:\varrho)$ is an open set in Γ .

5.8. LEMMA. A set $W \subset \Gamma$ is open if and only if for every $\chi \in W$ there exist a compact $K \subset G$ and a $\varrho > 0$ such that $\chi N(K:\varrho) \subset W$. (Thus, the $N(K:\varrho)$ form a base for the topology of Γ .)

Proof. The "if" is obvious; we are done if every neighborhood of $1 \in \Gamma$ contains some N(K:e).

Let $W \subset \Gamma$ be a neighborhood of 1. By the definition of the topology of Γ there exist $n \in \mathbb{N}$, $f_1, \ldots, f_n \in L^1(G)$ and $\delta > 0$ such that $W \supset \{ \chi : |\hat{f_i}(\chi) - \hat{f_i}(1)| < 3\delta \text{ for each } i \}$.

There exist $g_1, \dots, g_n \in C_{00}(G)$ with $\|f_1 - g_1\| < \delta$ (Lemma 1.8). Then $|\hat{f_1}(\gamma) - \hat{g_1}(\gamma)| \le \delta$ for all i and γ , so that $W \supset \{\gamma : |\hat{g_1}(\gamma) - \hat{g_1}(1)| < \delta$ for every $i\}$. Set $K := \bigcup \sup_{j \in I} g_j$ and choose g > 0 so that $\|g_1\|_{\infty} \cdot m(K) \leqslant \delta$ ($i = 1, \dots, n$). We prove N(K : g) < W. Let $\gamma \in N(K : g)$ and $i \in \{1, \dots, n\}$; we have to show that $|\hat{g_1}(\gamma) - \hat{g_1}(1)| < \delta$. Now in fact $|\hat{g_1}(\gamma) - \hat{g_1}(1)| \le \int |g_1| |\gamma - 1| dm = \sum_{V} |g_1| |\gamma - 1| dm \le \|g_1\|_{\infty} \int |\gamma - 1| dm \le \|g_1\|_{\infty} \int |\gamma - 1| dm \le \|g_1\|_{\infty} |$

5.9. THEOREM. Γ is a (locally compact, abelian) topological group.

Proof. Define $\pi: \Gamma \times \Gamma \longrightarrow \Gamma$ by $\pi(\beta, \chi) := \beta \chi^{-1}$. We have to prove π to be continuous. Let $W \subset \Gamma$ be open, $(\beta, \chi) \in \pi^{-1}(W)$. Then $\beta \chi^{-1} \in W$, so there exist K, γ with $\beta \chi^{-1} \times (K:\gamma) \subset W$. Now $\beta \times (K:\frac{1}{2}\gamma) \times \chi \times (K:\frac{1}{2}\gamma)$ is a neighborhood of (β, χ) in $\Gamma \times \Gamma$ that is easily seen to be contained in $\pi^{-1}(W)$.

The topological group Γ (or \hat{G}) is called the <u>dual group</u> of G. The function $\hat{f}:\Gamma \longrightarrow C$ is the <u>Fourier transform</u> of $f \in L^1(G)$.

For an example, let $G=\mathbb{R}$. Every a $\epsilon \, \mathbb{R}$ determines a character $\chi^{(a)}$ by

$$\chi^{(a)}(x) := e^{iax} \qquad (x \in \mathbb{R}).$$

We shall prove that every character is of this form. Let $\gamma \in \hat{\mathbb{R}}$. Then γ is continuous and $\gamma(0)=1$, so there is an r>0 with $\int_{0}^{r} \gamma(t) dt \neq 0$. For every $x \in \mathbb{R}$,

$$\int_{x}^{x+r} \gamma(t) dt = \int_{0}^{r} \gamma(x+t) dt = \int_{0}^{r} \gamma(x) \gamma(t) dt = \gamma(x) \int_{0}^{r} \gamma(t) dt.$$

The left hand member is a differentiable function of x, so γ must be differentiable, and for all $x \in \mathbb{R}$ we have

$$\chi^{\bullet}(x) = \frac{d}{dt} \chi(x+t) \Big|_{t=0} = \frac{d}{dt} \chi(x) \chi(t) \Big|_{t=0} = \chi^{\bullet}(0) \chi(x).$$

It follows that

$$\chi(x) = \chi(0)e^{x'(0)x} = e^{x'(0)x}$$
 (x \in \mathbb{R}).

As $|\chi(x)|=1$ for all x, the exponent must be purely imaginary, i.e. $\chi'(0) = ia$ for some $a \in \mathbb{R}$. But then $\chi = \chi^{(a)}$.

Thus, $a \mapsto \chi^{(a)}$ is a surjection $\mathbb{R} \to \hat{\mathbb{R}}$. It clearly is injective and a group homomorphism, and with the aid of Lemma 5.8 one proves it to be a homeomorphism.

The case G=T is now easy. By considering the homomorphism $x \mapsto e^{ix}$ of R onto T one derives from the above that all characters of T are of the form $z \mapsto z^n$ for some $n \in \mathbb{Z}$. Conversely, these functions $z \mapsto z^n$ are characters, and one obtains a bijective group homomorphism $\mathbb{Z} \to \hat{\mathbb{T}}$ which, by Theorem 5.3, turns out to be a homeomorphism.

It is even easier to prove $\hat{m{z}}$ to be isomorphic (as a group) to T. Again one uses Lemma 5.8 to prove that the isomorphism preserves the topology. We content ourselves by merely mentioning the results, leaving the proofs to the reader.

THEOREM. (a) For a $\in \mathbb{R}$ define $\chi^{(a)}: \mathbb{R} \longrightarrow \mathbb{T}$ by $\chi^{(a)}(x) := e^{iax}$ $(x \in \mathbb{R}).$ Then $a \mapsto \chi^{(a)}$ is an isomorphism of topological groups

 $R \rightarrow \hat{R}$. If for the Haar measure on R we take the Lebesgue measure and if we identify a ϵR with $\chi^{(a)} \epsilon \hat{R}$, then we can express the Fourier transform of f &L1(R) by

 $\hat{f}(a) = \int_{-\infty}^{\infty} f(x) e^{-iax} dx \qquad (a \in \mathbb{R}).$ For $n \in \mathbb{Z}$ define $\chi^{(n)} : \mathbb{T} \to \mathbb{T}$ by

 $\chi^{(n)}(z) := z^n \qquad (z \in \mathbf{T}).$

Then $n \mapsto \chi^{(n)}$ is an isomorphism of topological groups

L $\longrightarrow \hat{\mathbf{T}}$. We identify $n \in \mathbb{Z}$ with $\chi^{(n)} \in \hat{\mathbf{T}}$ and choose the Haar measure m on T so that m(T)=1. Then for $f \in L^1(T)$ we have

 $f(n) = \frac{1}{2\pi} \int_{a}^{2\pi} f(e^{ix}) e^{-inx} dx \qquad (n \in \mathbb{Z}).$

(c) For $a \in T$ define $\gamma^{(a)} : I \longrightarrow T$ by

 $\chi^{(a)}(n) := a^n$ $(n \in \mathbf{Z})$.

Then a $\mapsto \chi^{(a)}$ is an isomorphism of topological groups

T $\mapsto \hat{\mathbf{Z}}$. We identify a ϵ T with $\chi^{(a)}$ ϵ $\hat{\mathbf{Z}}$. For the Haar measure on \mathbf{Z} we choose the counting measure. Then for all \mathbf{f} ϵ $\mathbf{L}^1(\mathbf{Z})$,

 $f(a) = \sum_{n=0}^{\infty} f(n)a^{-n} \qquad (a \in \mathbf{T}).$

EXERCISE. Every x & G determines a continuous character $\bowtie(x)$ of Γ :

 $[\alpha(x)](\chi) := \chi(x) \qquad (x \in G; \chi \in \Gamma).$

This a is a continuous homomorphism of G into $\hat{\Gamma}$. (Use Lemma 5.8 to describe the topology of $\hat{\Gamma}$.)

5.B. EXERCISE. For any two locally compact abelian groups G and H the formula

 $\left[\Phi(\alpha,\beta)\right](x,y) = \alpha(x)\beta(y)$

defines an isomorphism Φ of $\hat{G} \times \hat{H}$ onto $(G \times H)^{\hat{G}}$ which is also a homeomorphism.

5.C. EXERCISE. For a family $(H_{\alpha})_{\alpha \in A}$ of abelian groups we define its direct sum $\bigoplus_{\alpha \in A} H_{\alpha}$ to be the group $\{x \in \prod_{\alpha \in A} H_{\alpha} : x_{\alpha} = 1 \}$ for all but finitely many $\{x \in A\}$. If each $\{x \in A\}$ is a discrete group, we view $\{x \in A\}$ as a topological group under the discrete topology.

If $(G_{\alpha})_{\alpha \in A}$ is a family of compact abelian groups, then $(\Pi G_{\alpha})^{\hat{}}$ is isomorphic to $\bigoplus_{\alpha \in A} \hat{G}_{\alpha}$.