under Graduate Homework In Mathematics

NumberTheory 1

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2024年2月25日

ROBEM I Prove that 3|n(n+1)(2n+1), where $n \in \mathbb{Z}$.

SOUTHOW. 1. If $n = 3k, k \in \mathbb{Z}$, then 3|n(n+1)(2n+1).

- 2. If n = 3k+1, $k \in \mathbb{Z}$, then 2n+1 = 2(3k+1)+1 = 6k+3 = 3(2k+1), then $3 \mid n(n+1)(2n+1)$.
- 3. If n = 3k + 2, $k \in \mathbb{Z}$, then n + 1 = 3k + 3 = 3(k + 1), then $3 \mid n(n + 1)(2n + 1)$.

ROBLEM II If $a, b \in \mathbb{Z}$, $b \neq 0$, prove: $\exists s, t \in \mathbb{Z}$ s.t.

$$a = bs + t, |t| \le \frac{|b|}{2}$$

and when b is odd, s, t are unique, how about that b is even?

SOUTION. First of all, when $b \geq 0$, by Euclidean division, $\exists u, v \in \mathbb{Z}$, s.t. $a = bu + v, 0 \leq v < b$. If $|v| \leq \frac{|b|}{2}$, then s = u, t = v. If $\frac{|b|}{2} < v < |b|$, then s = u + 1, t = v - b, where $|t| \leq \frac{|b|}{2}$. So when b < 0, only need to consider a, -b > 0, then $\exists p, q \in \mathbb{Z}$, s.t. a = (-b)p + q = b(-p) + q, let s = -p, t = q.

When b is odd, if $a = bs_1 + t_1 = bs_2 + t_2$, where $|t_1|, |t_2| \le \frac{|b|}{2}$. Then $|t_1|, |t_2| \le \frac{|b|-1}{2} < \frac{|b|}{2}$. So $b(s_1 - s_2) = t_2 - t_1$, then $|b| \mid |t_2 - t_1|$. And $|t_1 - t_2| \le |t_1| + |t_2| < |b|$, then $|t_1 - t_2| = 0$. Thus, $s_1 = s_2, t_1 = t_2$.

When b is even, consider $a = bx + \frac{b}{2} \exists x \in \mathbb{Z}$, then $a = b(x+1) - \frac{b}{2}$. For $a \notin \{bx + \frac{b}{2} : x \in \mathbb{Z}\}$, then a = bm + n, where $|n| \leq \frac{|b|}{2}$. Then by the same reason in the situation when b is odd, we can get $\exists |s, t|$ s.t. a = bs + t, where $|t| \leq \frac{|b|}{2}$.

ROBEM III Use Problem II to prove $\forall a, b \in \mathbb{Z}, b \neq 0, \exists \gcd(a, b), \text{ and show its argorithm.}$ Use the argorithm and Euclidean algorithm to compute $\gcd(76501, 9719)$.

SOUTION. 1. If a=0, then $\gcd(a,b)=b$. If $a\neq 0$, since $\gcd(a,b)=\gcd(|a|,|b|)$, we only need to consider $a,b\in\mathbb{N}^+$. Without loss of generality, assume $a\geq b>0$, then by Problem II, then $\exists s,t\in\mathbb{Z}$ s.t. a=bs+t, where $|t|\leq \frac{b}{2}$. If t=0, then $\gcd(a,b)=b$. If |t|>0, then by $\gcd(a,b)=\gcd(b,|t|)$ and Problem II again, we get $\exists s_1,t_1\in\mathbb{Z},|t_1|\leq \frac{|t|}{2}$ such that $b=|t|s_1+t_1$. Repeat the process above, until it appears that the remainder becomes 0. That is because $t_0:=t$ is finite, and the remainder $t_{k+1}=\frac{t_k}{2},k\geq 0$. So we will get these equations:

$$a = bs + t_{0}, 0 < |t_{0}| < \frac{|b|}{2},$$

$$b = |t_{0}|s_{1} + t_{1}, 0 < |t_{1}| < \frac{|t_{0}|}{2},$$

$$|t_{0}| = |t_{1}|s_{2} + t_{2}, 0 < |t_{2}| < \frac{|t_{1}|}{2},$$

$$.....$$

$$|t_{n-1}| = |t_{n}|s_{n+1} + t_{n+1}, 0 < |t_{n+1}| < \frac{|t_{n}|}{2},$$

$$|t_{n}| = |t_{n+1}|s_{n+2}.$$

$$(1)$$