Probabilistic Inequalities and Examples

Lecture 3
January 22, 2019

Outline

Probabilistic Inequalities

Markov's Inequality

Chebyshev's Inequality

Bernstein-Chernoff-Hoeffding bounds

Some examples

Part I

Inequalities

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.

Chandra (UIUC)

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.

Chandra (UIUC)

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.

Chandra (UIUC)

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.

Chandra (UIUC)

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.

Chandra (UIUC)

CS498ABD

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.

Chandra (UIUC)

This is known as **concentration of mass**.

This is a very special case of the **law of large numbers**.

Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Use of well known inequalities in analysis.

Analysis

Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.

Analysis

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- Suppose $\Pr[Q \ge 10n | gn] \le c$. Also we know that $Q \le n^2$.

Analysis

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- Suppose $\Pr[Q \ge 10 n lg n] \le c$. Also we know that $Q \le n^2$.
- $E[Q] \le 10n \log n + (n^2 10n \log n)c$.

Analysis

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- Suppose $\Pr[Q \ge 10 n lg n] \le c$. Also we know that $Q \le n^2$.
- $E[Q] \le 10n \log n + (n^2 10n \log n)c$.

Question:

How to find c, or in other words bound $Pr[Q \ge 10n \log n]$?

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) . For any a > 0, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$. Equivalently, for any t > 0, $\Pr[X > tE[X]] < 1/t$.

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) . For any a > 0, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$. Equivalently, for any t > 0, $\Pr[X \ge tE[X]] \le 1/t$.

Proof:

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr[\omega]$$

$$= \sum_{\omega, 0 \le X(\omega) < a} X(\omega) \Pr[\omega] + \sum_{\omega, X(\omega) \ge a} X(\omega) \Pr[\omega]$$

$$\geq \sum_{\omega \in \Omega, X(\omega) \ge a} X(\omega) \Pr[\omega]$$

$$\geq a \sum_{\omega \in \Omega, X(\omega) \ge a} \Pr[\omega]$$

$$= a \Pr[X \ge a]$$

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) . For any a > 0, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$. Equivalently, for any t > 0, $\Pr[X > tE[X]] < 1/t$.

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) . For any a > 0, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$. Equivalently, for any t > 0, $\Pr[X \ge tE[X]] \le 1/t$.

Proof:

$$E[X] = \int_0^\infty z f_X(z) dz$$

$$\geq \int_a^\infty z f_X(z) dz$$

$$\geq a \int_a^\infty f_X(z) dz$$

$$= a \Pr[X \geq a]$$

Markov's Inequality: Proof by Picture

Chandra (UIUC) CS498ABD 11 Spring 2019 11 / 38

Chebyshev's Inequality: Variance

Variance

Given a random variable X over probability space (Ω, Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally, $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Derivation

Define
$$Y = (X - E[X])^2 = X^2 - 2X E[X] + E[X]^2$$
.

$$Var(X) = E[Y]$$

$$= E[X^2] - 2 E[X] E[X] + E[X]^2$$

$$= E[X^2] - E[X]^2$$

Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if $\forall x, y \in \mathbb{R}$, $Pr[X = x \land Y = y] = Pr[X = x] Pr[Y = y]$

Lemma

If X and Y are independent random variables then Var(X + Y) = Var(X) + Var(Y).

Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if $\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$

Lemma

If X and Y are independent random variables then Var(X + Y) = Var(X) + Var(Y).

Lemma

If X and Y are mutually independent, then E[XY] = E[X]E[Y].

Chebyshev's Inequality

If $VarX < \infty$, for any $a \geq 0$, $\Pr[|X - \mathsf{E}[X]| \geq a] \leq \frac{Var(X)}{a^2}$

Chebyshev's Inequality

If
$$VarX < \infty$$
, for any $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Proof.

 $Y = (X - E[X])^2$ is a non-negative random variable. Apply Markov's Inequality to Y for a^2 .

$$\Pr[Y \ge a^2] \le E[Y]/a^2 \Leftrightarrow \Pr[(X - E[X])^2 \ge a^2] \le \frac{Var(X)}{a^2}$$
$$\Leftrightarrow \Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$$

Chebyshev's Inequality

If
$$VarX < \infty$$
, for any $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Proof.

 $Y = (X - E[X])^2$ is a non-negative random variable. Apply Markov's Inequality to Y for a^2 .

$$\Pr[Y \ge a^2] \le E[Y]/a^2 \Leftrightarrow \Pr[(X - E[X])^2 \ge a^2] \le \frac{Var(X)}{a^2}$$
$$\Leftrightarrow \Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$$

$$\Pr[X \le E[X] - a] \le \frac{Var(X)}{a^2} \text{ AND } \Pr[X \ge E[X] + a] \le \frac{Var(X)}{a^2}$$

Chandra (UIUC) CS498ABD 14

Chebyshev's Inequality

Given $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$ equivalently for any t > 0, $\Pr[|X - E[X]| \ge t\sigma_X] \le \frac{1}{t^2}$ where $\sigma_X = \sqrt{Var(X)}$ is the standard deviation of X.

Chandra (UIUC) CS498ABD 15 Spring 2019 15 / 38

Example: Random walk on the line

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

Example: Random walk on the line

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

At time i let X_i be -1 if move to left and 1 if move to right.

 Y_n position at time n

$$Y_n = \sum_{i=1}^n X_i$$

Example: Random walk on the line

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

At time i let X_i be -1 if move to left and 1 if move to right.

$$Y_n$$
 position at time n

$$Y_n = \sum_{i=1}^n X_i$$

$$\mathsf{E}[Y_n] = 0$$
 and $Var(Y_n) = \sum_{i=1}^n Var(X_i) = n$

Example: Random walk on the line

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

At time i let X_i be -1 if move to left and 1 if move to right.

 Y_n position at time n

$$Y_n = \sum_{i=1}^n X_i$$

$$\mathsf{E}[Y_n] = 0$$
 and $Var(Y_n) = \sum_{i=1}^n Var(X_i) = n$

By Chebyshev:
$$\Pr[|Y_n| \geq t\sqrt{n}] \leq 1/t^2$$

Chernoff Bound: Motivation

In many applications we are interested in X which is sum of *independent* bounded random variables.

$$X = \sum_{i=1}^k X_i$$
 where $X_i \in [0,1]$ or $[-1,1]$ (normalizing)

Chebyshev not strong enough. For random walk on line one can prove

$$\Pr[|Y_n| \ge t\sqrt{n}] \le 2\exp(-t^2/2)$$

Chernoff Bound: Non-negative case

Lemma

Let X_1, \ldots, X_k be k independent binary random variables such that, for each $i \in [1, k]$, $E[X_i] = Pr[X_i = 1] = p_i$. Let $X = \sum_{i=1}^k X_i$. Then $E[X] = \sum_i p_i$.

• Upper tail bound: For any $\mu \geq \mathbf{E}[X]$ and any $\delta > \mathbf{0}$,

$$\mathsf{Pr}[\mathsf{X} \geq (1+\delta)\mu] \leq (rac{e^{\delta}}{(1+\delta)^{(1+\delta)}})^{\mu}$$

ullet Lower tail bound: For any $0<\mu<{ t E}[X]$ and any $0<\delta<1$,

$$\mathsf{Pr}[\mathsf{X} \leq (1-\delta)\mu] \leq (rac{e^{-\delta}}{(1-\delta)^{(1-\delta)}})^{\mu}$$

Chandra (UIUC) CS498ABD 18 Spring 2019 18 / 38

Chernoff Bound: Non-negative case, simplifying

When $0 < \delta < 1$ an important regime of interest we can simplify.

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, X_i equals 1 with probability p_i , and 0 with probability $(1 - p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = E[X] = \sum_i p_i$. For any $0 < \delta < 1$, it holds that:

$$\Pr[|X - \mu| \ge \delta \mu] \le 2e^{-\delta^2 \mu}$$

$$\Pr[X \geq (1+\delta)\mu] \leq e^{rac{-\delta^2\mu}{3}}$$
 and $\Pr[X \leq (1-\delta)\mu] \leq e^{rac{-\delta^2\mu}{2}}$

Chandra (UIUC) CS498ABD 19 Spring 2019 19 / 38

Chernoff Bound: general

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, $X_i \in [-1, 1]$.

Chernoff Bound: general

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, $X_i \in [-1, 1]$. Let $X = \sum_{i=1}^k X_i$. For any a > 0,

$$\Pr[|X - \mathsf{E}[X]| \ge a] \le 2\exp(\frac{-a^2}{2n}).$$

When variables are not positive the bound depends on n while in the non-negative case there is no dependence on n (dimension-free)

Chandra (UIUC) CS498ABD 20 Spring 2019 20 / 38

Chernoff Bound: general

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, $X_i \in [-1, 1]$. Let $X = \sum_{i=1}^k X_i$. For any a > 0,

$$\Pr[|X - \mathsf{E}[X]| \ge a] \le 2\exp(\frac{-a^2}{2n}).$$

When variables are not positive the bound depends on n while in the non-negative case there is no dependence on n (dimension-free) Applying to random walk:

$$\Pr[|Y_n| \ge t\sqrt{n}] \le 2exp(-t^2/2).$$

Chernoff Bounds

Many variations and generalization that are useful in specific situations. See pointers on course webpage.

Part II

Ball and Bins

Balls and Bins

- m balls and n bins
- Each ball thrown independently and uniformly in a bin
- Want to understand properties of bin loads
- Fundamental problem with many applications

Balls and Bins

- m balls and n bins
- Each ball thrown independently and uniformly in a bin
- Want to understand properties of bin loads
- Fundamental problem with many applications
- Z_{ij} indicator for ball i falling into bin j
- $X_j = \sum_{i=1}^m Z_{ij}$ is number of balls in bin j
- $\sum_{j=1}^{n} Z_{ij} = 1$ deterministically
- $E[Z_{ij}] = 1/n$ for all i, j, and hence $E[X_j] = m/n$ for each bin j

Question: Suppose we throw n balls into n bins. What is the expectation of the maximum load?

Question: Suppose we throw n balls into n bins. What is the expectation of the maximum load?

Theorem

Let $Y = \max_{i=1}^{n} X_i$ be the maximum load. Then

 $Pr[Y > 10 \ln n / \ln \ln n] < 1/n^2$ (high probability) and hence $E[Y] = O(\ln n / \ln \ln n)$.

One can also show that $\mathbf{E}[Y] = \Theta(\ln n / \ln \ln n)$.

Question: Suppose we throw n balls into n bins. What is the expectation of the maximum load?

Theorem

Let $Y = \max_{i=1}^{n} X_i$ be the maximum load. Then

 $Pr[Y > 10 \ln n / \ln \ln n] < 1/n^2$ (high probability) and hence $E[Y] = O(\ln n / \ln \ln n)$.

One can also show that $\mathbf{E}[Y] = \Theta(\ln n / \ln \ln n)$.

Proof technique: combine Chernoff bound and union bound which is powerful and general template

Focus on bin 1 without loss of generality since bins are symmetric. Simplifying notation $X = \sum_i Z_i$ where X is load of bin 1 and Z_i is indicator of ball i falling in bin.

- Want to know $Pr[X \ge 10 \ln n / \ln \ln n]$
- $\mu = E[X] = 1$
- $(1 + \delta) = 10 \ln n / \ln \ln n$. We are in large δ setting
- Apply the Chernoff upper tail bound:

$$\mathsf{Pr}[\mathsf{X} \geq (1+\delta)\mu] \leq (rac{e^{\delta}}{(1+\delta)^{(1+\delta)}})^{\mu}$$

• Calculate/simplify and see that $Pr[X \ge 10 \ln n / \ln \ln n] \le 1/n^3$

- For each bin j, $\Pr[X_i \ge 10 \ln n / \ln \ln n] \le 1/n^3$
- Let A_j be event that $X_j \geq 10 \ln n / \ln \ln n$
- By union bound

$$\Pr[\cup_j A_j] \leq \sum_j \Pr[A_j] \leq n \cdot 1/n^3 \leq 1/n^2.$$

• Hence, with probability at least $(1-1/n^2)$ no bin has load more than $10 \ln n / \ln \ln n$.

- For each bin j, $\Pr[X_j \ge 10 \ln n / \ln \ln n] \le 1/n^3$
- Let A_j be event that $X_j \geq 10 \ln n / \ln \ln n$
- By union bound

$$\Pr[\cup_j A_j] \leq \sum_j \Pr[A_j] \leq n \cdot 1/n^3 \leq 1/n^2.$$

- Hence, with probability at least $(1 1/n^2)$ no bin has load more than $10 \ln n / \ln \ln n$.
- Let $Y = \max_j X_j$. $Y \le n$. Hence

$$E[Y] \le (1 - 1/n^2)(10 \ln n / \ln \ln n) + (1/n^2)n.$$

Chandra (UIUC) CS498ABD 26 Spring 2019 26 / 38

From a ball's perspective

Consider a ball *i*. How many other balls fall into the same bin as *i*?

From a ball's perspective

Consider a ball *i*. How many other balls fall into the same bin as *i*?

- Ball i is thrown first wlog. And lands in some bin j.
- Then the other n-1 balls are thrown.
- Now bin j is fixed. Hence expected load on bin j is (1 1/n).
- What is variance? What is a high probability bound?

Part III

Approximate Median

- Input: n distinct numbers a_1, a_2, \ldots, a_n and $0 < \epsilon < 1/2$
- Output: A number x from input such that $(1 \epsilon)n/2 \le rank(x) \le (1 + \epsilon)n/2$

- Input: n distinct numbers a_1, a_2, \ldots, a_n and $0 < \epsilon < 1/2$
- Output: A number x from input such that $(1 \epsilon)n/2 \le rank(x) \le (1 + \epsilon)n/2$

Algorithm:

- Sample with replacement k numbers from a_1, a_2, \ldots, a_n
- Output median of the sampled numbers

- Input: n distinct numbers a_1, a_2, \ldots, a_n and $0 < \epsilon < 1/2$
- Output: A number x from input such that $(1 \epsilon)n/2 \le rank(x) \le (1 + \epsilon)n/2$

Algorithm:

- Sample with replacement k numbers from a_1, a_2, \ldots, a_n
- Output median of the sampled numbers

Theorem

For any $0 < \epsilon < 1/2$ and $0 < \delta < 1$, if $k = O(\frac{1}{\epsilon^2} \log(1/\delta)$, the algorithm outputs an ϵ -approximate median with probability at least $(1 - \delta)$.

- Let S be random sample chosen by algorithm
- Imagine sorting the numbers
- Split numbers into L (left), M (middle), and R (right)
- $M = \{y \mid (1 \epsilon)n/2 \le rank(y) \le (1 + \epsilon)n/2\}$
- Algorithm makes a mistake only if $|S \cap L| \ge k/2$ or $|S \cap R| \ge k/2$. Otherwise it will output a number from M.

- Let S be random sample chosen by algorithm
- Imagine sorting the numbers
- Split numbers into L (left), M (middle), and R (right)
- $M = \{y \mid (1 \epsilon)n/2 \le rank(y) \le (1 + \epsilon)n/2\}$
- Algorithm makes a mistake only if $|S \cap L| \ge k/2$ or $|S \cap R| \ge k/2$. Otherwise it will output a number from M.

Analysis:

- Let $Y = |S \cap L|$? What is E[Y]?
- $Y = \sum_{i=1}^{k} X_i$ where X_i is indicator of sample i falling in L. Hence $\mathbf{E}[Y] = k(1 - \epsilon)/2$
- Use Chernoff bound to argue that $\Pr[Y \ge k/2] \le \delta/2$ if $k = \frac{10}{\epsilon^2} \log(1/\delta)$.

Analysis:

- Let $Y = |S \cap L|$? What is E[Y]?
- $Y = \sum_{i=1}^{k} X_i$ where X_i is indicator of sample i falling in L. Hence $\mathbf{E}[Y] = k(1 - \epsilon)/2$
- Use Chernoff bound to argue that $\Pr[Y \ge k/2] \le \delta/2$ if $k = \frac{10}{\epsilon^2} \log(1/\delta)$.
- By union bound at most δ probability that $|S \cap L| \ge k/2$ or $|S \cap R| \ge k/2$.
- Hence with $(1-\delta)$ probability median of S is an ϵ -approximate median

Part IV

Randomized **QuickSort** (Contd.)

Randomized QuickSort: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- Pick a pivot element uniformly at random from A.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Randomized QuickSort: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- 1 Pick a pivot element uniformly at random from A.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Randomized **QuickSort**: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- Pick a pivot element uniformly at random from A.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Question: With what probability it takes $O(n \log n)$ time?

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

If n = 100 then this gives $Pr[Q(A) \le 32n \ln n] \ge 0.99999$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion $\leq 32 \ln n$ with high probability. Which will imply the result.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion $\leq 32 \ln n$ with high probability. Which will imply the result.
 - Gocus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - 2 By union bound, any of the *n* elements participates in > 32 In *n* levels with probability at most

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \le 32n \ln n] \ge 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion \leq 32 ln n with high probability. Which will imply the result.
 - ① Gocus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - ② By union bound, any of the n elements participates in $> 32 \ln n$ levels with probability at most $1/n^3$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion $\leq 32 \ln n$ with high probability. Which will imply the result.
 - Gocus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - 2 By union bound, any of the n elements participates in $> 32 \ln n$ levels with probability at most $1/n^3$.
 - **3** Therefore, all elements participate in $\leq 32 \ln n$ w.p. $(1 1/n^3)$.

• If **k** levels of recursion then **kn** comparisons.

- If **k** levels of recursion then **kn** comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.

- If k levels of recursion then kn comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.

- If k levels of recursion then kn comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first k rounds, then $|S_k| \leq (3/4)^{\rho} n$.

- If **k** levels of recursion then **kn** comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first k rounds, then $|S_k| \leq (3/4)^{\rho} n$.
- For $|S_k| = 1$, $\rho = 4 \ln n \ge \log_{4/3} n$ suffices.

• $X_i = 1$ if s is lucky in i^{th} iteration.

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $\Pr[X_i = 1] = \frac{1}{2}$ Why?

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $\Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $\Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
- Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $\Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
- Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting $4 \ln n$ lucky rounds out of $32 \ln n$ rounds is,

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $\Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
- Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting $4 \ln n$ lucky rounds out of $32 \ln n$ rounds is,

$$Pr[\rho \le 4 \ln n] = Pr[\rho \le \frac{k}{8}]$$
$$= Pr[\rho \le (1 - \delta)\mu]$$

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $\Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
- Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting $4 \ln n$ lucky rounds out of $32 \ln n$ rounds is.

$$\Pr[\rho \le 4 \ln n] = \Pr[\rho \le \frac{k}{8}]$$

$$= \Pr[\rho \le (1 - \delta)\mu]$$

$$(Chernoff) \le e^{\frac{-\delta^2 \mu}{2}}$$

$$= e^{-\frac{9k}{64}}$$

$$= e^{-4.5 \ln n} \le \frac{1}{n^4}$$

Randomized **QuickSort** w.h.p. Analysis

• n input elements. Probability that depth of recursion in **QuickSort** $> 32 \ln n$ is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Randomized **QuickSort** w.h.p. Analysis

• n input elements. Probability that depth of recursion in **QuickSort** $> 32 \ln n$ is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Theorem

With high probability (i.e., $1 - \frac{1}{n^3}$) the depth of the recursion of **QuickSort** is $\leq 32 \ln n$. Due to n comparisons in each level, with high probability, the running time of **QuickSort** is $O(n \ln n)$.

Chandra (UIUC) CS498ABD 38 Spring 2019 38 / 38

Randomized **QuickSort** w.h.p. Analysis

• n input elements. Probability that depth of recursion in **QuickSort** $> 32 \ln n$ is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Theorem

With high probability (i.e., $1 - \frac{1}{n^3}$) the depth of the recursion of **QuickSort** is $\leq 32 \ln n$. Due to n comparisons in each level, with high probability, the running time of **QuickSort** is $O(n \ln n)$.

Chandra (UIUC) CS498ABD 38 Spring 2019 38 / 38