MAKING SEQUENCE OF GOOD DECISIONS GIVEN A MODEL OF THE WORLD

INTRODUCTION TO REINFORCEMENT LEARNING

Bogdan Ivanyuk-Skulskyi, Dmytro Kuzmenko

Department of Mathematics, National University of Kyiv-Mohyla Academy

February 13, 2023

Models, Policies, Values

- ▶ Models: Mathematical models of dynamics and reward
- ▶ **Policies**: Function mapping states to actions
- ▶ **Value function**: future rewards from being in a state and/or action when following a particular policy

Model of the world

- ► Markov Process
- ► Markov Reward Process (MRPs)
- ► Markov Decision Process (MDPs)
- ► Evaluation and Control in MDPs

MARKOV PROPERTY

- ► Information state: sufficient statistic of history
- ightharpoonup State s_t is Markov if and only if:

$$p(s_{t+1}|s_t, a_t) = p(s_{t+1}|h_t, a_t)$$

► Future is independent of past given present

MARKOV PROCESS OR MARKOV CHAIN

- ► Memoryless random process
 - Sequence of random states with Markov property
- ► Definition of Markov Process
 - *S* is a (finite) set of states ($s \in S$)
 - *P* is a dynamics/transition model that specifies $p(s_{t+1} = s' | s_t = s)$
- ▶ If finite number (N) of states, can express P as a matrix

$$P = \begin{pmatrix} P(s_1|s_1) & P(s_2|s_1) & \dots & P(s_N|s_1) \\ P(s_1|s_2) & P(s_2|s_2) & \dots & P(s_N|s_2) \\ \dots & \dots & \dots & \dots \\ P(s_1|s_N) & P(s_2|s_N) & \dots & P(s_N|s_N) \end{pmatrix}$$

EXAMPLE: MARS ROVER MARKOV CHAIN TRANSITION MATRIX

$$P = \begin{pmatrix} 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.2 & 0.4 & 0 & 0 & 0 & 0 \\ 0 & 0.4 & 0.2 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.4 & 0.2 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0.4 & 0.2 & 0.4 & 0 \\ 0 & 0 & 0 & 0 & 0.4 & 0.2 & 0.4 \\ 0 & 0 & 0 & 0 & 0 & 0.4 & 0.6 \end{pmatrix}$$

EXAMPLE: MARS ROVER MARKOV CHAIN EPISODE

Example: Sample episodes starting from S4

- \triangleright $s_4, s_5, s_6, s_7, s_7, s_7, ...$
- $ightharpoonup s_4, s_4, s_5, s_4, s_6, s_7, \dots$
- $ightharpoonup s_4, s_3, s_2, s_1, ...$

MARKOV REWARD PROCESS

- ► Markov Reward Process is a Markov Chain + rewards
- ► Definition of Markov Reward Process
 - *S* is a (finite) set of states ($s \in S$)
 - *P* is a dynamics/transition model that specifies $P(s_{t+1} = s' | s_t = s)$
 - *R* is a reward function $R(s_t = s) = \mathbb{E}[r_t | s_t = s]$
 - Discount factor $\gamma \in [0, 1]$
- ▶ If finite number (*N*) of states, can express R as a vector

EXAMPLE: MARS ROVER MRP

Reward: +1 in s_1 , +10 in s_7 , 0 in all other states

RETURN AND VALUE FUNCTION

- ▶ Definition of Horizon (H)
 - Number of time steps in each episode
 - Can be finite called **finite** Markov reward process
- \triangleright Definition of Return, G_t (for MRP)
 - Discounted sum of rewards from time step t to horizon H

$$G_t = r_t + r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^{H-1} r_{t+H-1}$$

- ightharpoonup Definition of State Value Function, V(s) (for a MRP)
 - Expected return from starting in state s

$$V(s) = \mathbb{E}[G_t|s_t = s] = \mathbb{E}[r_t + r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^{H-1} r_{t+H-1}|s_t = s]$$

COMPUTING THE VALUE OF A MARKOV REWARD PROCESS

MRP value function satisfies

$$V(s) = R(s) + \gamma \sum_{s' \in S} P(s'|s)V(s')$$

where

- ightharpoonup R(s) is an immidiate reward
- $ightharpoonup \gamma \sum_{s' \in S} P(s'|s)V(s')$ is a discounted sum of future rewards

MATRIX FORM OF BELLMAN EQUATION FOR MRP

For finite state MRP, we can express V(s) using a matrix equation

$$\begin{pmatrix} V(s_1) \\ \dots \\ V(s_N) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \dots \\ R(s_N) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \dots & P(s_N|s_1) \\ \dots & \dots & \dots \\ P(s_1|s_N) & \dots & P(s_N|s_N) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \dots \\ V(s_N) \end{pmatrix}$$
(1)

$$V = R + \gamma PV$$

MATRIX FORM OF BELLMAN EQUATION FOR MRP

For finite state MRP, we can express V(s) using a matrix equation

$$\begin{pmatrix} V(s_1) \\ \dots \\ V(s_N) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \dots \\ R(s_N) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \dots & P(s_N|s_1) \\ \dots & \dots & \dots \\ P(s_1|s_N) & \dots & P(s_N|s_N) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \dots \\ V(s_N) \end{pmatrix}$$
(2)

$$V = R + \gamma PV$$

$$V - \gamma PV = R$$

$$(I - \gamma P)V = R$$

$$V = (I - \gamma P)^{-1}R$$

- ▶ Solving directly requires taking a matrix inverse $O(N^3)$
- ▶ Note that $(I \gamma P)$ is invertible

ITERATIVE ALGORITHM FOR COMPUTING VALUE OF A MRP

- ► Dynamic programming
- ► Init $V_0(s) = 0$ for all s V = [0, 0, 0, ...]
- For k = 1 until convergence
 - For all *s* in *S*

$$V_k(s) = R(s) + \gamma \sum_{s' \in S} P(s'|s) V_{k-1}(s')$$

▶ Computational complexity: $O(|S|^2)$ for each iteration (|S| = N)

MARKOV DECISION PROCESS (MDP)

- ► Markov Decision Process is Markov Reward Process + actions
- ▶ Definition of MDP
 - *S* is a (finite) set of states ($s \in S$)
 - *A* is a (finite) set of actions ($a \in A$)
 - *P* is a dynamics/transition model that specifies $P(s_{t+1} = s' | s_t = s)$
 - *R* is a reward function $R(s_t = s, a_t = a) = \mathbb{E}[r_t | s_t = s, a_t = a]$
 - Discount factor $\gamma \in [0, 1]$

EXAMPLE: MARS ROVER MDP

S1	S2	S3	S4	S5	S6	S7
			· Control			

$$P(s'|s,a_1) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} P(s'|s,a_2) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
(3)

2 deterministic actions

MDP POLICIES

- ▶ Policy specifies what action to take in each state
 - Can be deterministic or stochastic
- ► For generality, consider as a conditional distribution
 - Given a state, specifies a distribution over actions
- Policy: $\pi(a|s) = P(a_t = a|s_t = s)$

MDP + POLICY

- ▶ MDP + $\pi(a|s)$ = Markov Reward Process
- ▶ Precisely, it is the MRP($S, R^{\pi}, P^{\pi}, \gamma$), where

$$R^{\pi}(s) = \sum_{a \in A} \pi(a|s)R(s,a)$$

$$P^{\pi}(s'|s) = \sum_{a \in A} \pi(a|s)P(s'|s,a)$$

▶ Implies we can ise same techniques to evaluate the value of a policy for a MDP as we could to compute the value of a MRP, by defining a MRP with R^{π} and P^{π}

MDP POLICY EVALUATION, ITERATIVE ALGORITHM

- ▶ Init $V_0(s) = 0$ for all s
- For k = 1 until convergence
 - For all *s* in *S*

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

► This is a **Bellman backup** for a particular policy

CLASSWORK

- **Dynamics:** $p(s_6|s_6, a_1) = 0.5$, $p(s_7|s_6, a_1) = 0.5$, ...
- ▶ Rewards: for all actions, +1 in state s_1 , +10 in state s_7 , 0 otherwise
- Let $\pi(s) = a_1, \forall s$, assume $V_k = [1\ 0\ 0\ 0\ 0\ 10]$ and $k = 1, \gamma = 0.5$
- ightharpoonup Compute $V_{k+1}(s_6)$

CLASSWORK: ANSWER

- **Dynamics:** $p(s_6|s_6, a_1) = 0.5$, $p(s_7|s_6, a_1) = 0.5$, ...
- ▶ Rewards: for all actions, +1 in state s_1 , +10 in state s_7 , 0 otherwise
- Let $\pi(s) = a_1, \forall s$, assume $V_k = [1\ 0\ 0\ 0\ 0\ 10]$ and $k = 1, \gamma = 0.5$

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

$$V_{k+1}(s_6) = r(s_6, a_1) + \gamma * 0.5 * V_k(s_6) + \gamma * 0.5 * V_k(s_7)$$

$$V_{k+1}(s_6) = 0 + 0.5 * 0.5 * 0 + 0.5 * 0.5 * 10$$

$$V_{k+1}(s_6) = 2.5$$

MDP CONTROL

► Compute the optimal policy

$$\pi^*(s) = argmax_{\pi}V^{\pi}(s)$$

- ► There exists a unique optimal value function
- ▶ Optimal policy for a MDP in an infinite horizon problem (agent acts forever) is
 - deterministic
 - stationary (does not depend on time step)
 - Not unique, may have two policies with identical values

POLICY SEARCH

- ▶ One option is searching to compute best policy
- Number of deterministic policies is $|A|^{|S|}$
- ▶ Policy iteration is generally more efficient than enumeration

MDP POLICY ITERATION (PI)

- ightharpoonup Set i=0
- ▶ Init $\pi_0(s)$ randomly for all states s
- ▶ While i == 0 or $||\pi_i \pi_{i-1}||_1 > 0$ (L1-norm, measures if the policy changed for any state):
 - $V^{\pi_i} \leftarrow \text{MDP V}$ function policy **evaluation** of π_i
 - $\pi_{i+1} \leftarrow \text{Policy improvement}$
 - i = i + 1

STATE-ACTION VALUE Q

► State-action value of a policy

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi}(s')$$

▶ Take action a, then follow the policy π

POLICY IMPROVEMENT

- \triangleright Compute state-action value of a policy π_i
 - For *s* in *S* and *a* in *A*:

$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_i}(s')$$

• Compute new policy π_{i+1} , for all $s \in S$

$$\pi_{i+1}(s) = \operatorname{argmax}_{a} Q^{\pi_{i}}(s, a)$$

DEEPER INTO POLICY IMPROVEMENT STEP

$$Q^{\pi_{i}}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_{i}}(s')$$

$$max_{a}Q^{\pi_{i}}(s, a) \ge R(s, \pi_{i}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i}(s)) V^{\pi_{i}}(s') = V^{\pi_{i}}(s)$$

$$\pi_{i+1}(s) = argmax_{a}Q^{\pi}(s, a)$$

- ▶ Suppose we take $\pi_{i+1}(s)$ for one action, then follow π_i forever
 - Our expected sum of rewards is at least as good as if we had always followed π_i
- ▶ But new proposed policy is to always follow π_{i+1} ...

MONOTONIC IMPROVEMENT IN POLICY

Definition

$$V^{\pi_1} \ge V^{\pi_2} : V^{\pi_1}(s) \ge V^{\pi_2}(s), \forall s \in S$$

▶ Proposition: $V^{\pi_{i+1}} \ge V^{\pi_i}$ with strict inequality if π_i is suboptimal, where π_{i+1} is the new policy we get from policy improvement on π_i

PROOF: MONOTONIC IMPROVEMENT IN POLICY

$$\begin{split} V^{\pi_{i}}(s) &\geq \max_{a} Q^{\pi_{i}}(s, a) \\ &= \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_{i}}(s') \\ &= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) V^{\pi_{i}}(s') \\ &\leq R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \left(\max_{a'} Q^{\pi_{i}}(s', a') \right) \\ &= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \left(R(s', \pi_{i+1}(s')) + \gamma \sum_{s'' \in S} P(s''|s', \pi_{i+1}(s')) V^{\pi_{i}}(s'') \right) \\ &\cdots \\ &= V^{\pi_{i+1}}(s) \end{split}$$

MDP: COMPUTING OPTIMAL POLICY AND OPTIMAL VALUE

- ▶ Policy iteration computes infinite horizon value of a policy and then improves that policy
- ► Value iteration is another technique
 - Idea: Maintain optimal value of starting in a state *s* if have a finite number of steps *k* left in the episode
 - Iterate to consider longer and longer episodes

BELLMAN EQUATION AND BELLMAN BACKUP OPERATORS

▶ Value function of a policy must satisfy the Bellman equation

$$V^{\pi}(s) = R^{\pi}(s) + \gamma \sum_{s' \in S} P^{\pi}(s'|s) V^{\pi}(s')$$

- ► Bellman backup operator
 - Applied to a value function
 - Returns a new value function
 - Improves the value if possible

$$BV(s) = max_a \left[R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s') \right]$$

• BV yields a value function over all states *s*

VALUE ITERATION (VI)

- ightharpoonup Set k=1
- ▶ Init $V_0(s) = 0$ for all states s
- ▶ Loop until convergence: $(||V_{k+1} V_k||_{\infty} \le \epsilon$
 - For each state *S*

$$V_{k+1}(s) = \max_{a} \left[R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V_k(s') \right]$$

• View as Bellman backup on value function

$$V_{k+1} = BV_k$$

$$\pi_{k+1} = argmax_a \left[R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) V_k(s') \right]$$

POLICY ITERATION AS BELLMAN OPERATOR

b Bellman backup operator B^{π} for a particular policy is defined as

$$B^{\pi}V(s) = R^{\pi}(s) + \gamma \sum_{s' \in S} P^{\pi}(s'|s)V(s')$$

- ▶ Policy evaluation amounts to computing the fixed point of B^{π}
- ► To do policy evaluation, repeatedly apply operator until *V* stops changing

$$V^{\pi} = B^{\pi}B^{\pi}...B^{\pi}V$$

POLICY ITERATION AS BELLMAN OPERATOR

b Bellman backup operator B^{π} for a particular policy is defined as

$$B^{\pi}V(s) = R^{\pi}(s) + \gamma \sum_{s' \in S} P^{\pi}(s'|s)V(s')$$

► To do policy improvement

$$\pi_{k+1}(s) = \operatorname{argmax}_{a} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_{k}}(s') \right]$$

CONTRACTION OPERATOR

$$V = [1, 2]$$

 $V' = [5, 9]$

- Let O be an operator, and |x| denote (any) norm of x
- ▶ If $|OV OV'| \le |V V'|$, then *O* is a contraction operator

$$O = 1/2$$

 $IOV - OV'I = I[1/2, 1] - [2.5, 4.5]I_inf = I-2, -3.5I_inf = 3.5$

WILL VALUE ITERATION CONVERGE?

- ightharpoonup Yes, if discount factor γ < 1, or end up in a terminal state with probability 1
- **b** Bellman backup is a contraction if discount factor, $\gamma < 1$
- ▶ If apply it to two different value functions, distance between value functions shrinks after applying Bellman equation to each

Proof: Bellman Backup is a Contraction on V for $\gamma < 1$

► Let $||V - V'|| = max_s |V(s) - V(s')|$ be the infinity norm

$$\begin{split} \|BV_{k} - BV_{j}\| &= \left\| \max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k}(s') \right) - \max_{a'} \left(R(s, a') + \gamma \sum_{s' \in S} P(s'|s, a') V_{j}(s') \right) \right\| \\ &\leq \max_{a} \left\| \left(R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k}(s') - R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{j}(s') \right) \right\| \\ &= \max_{a} \left\| \gamma \sum_{s' \in S} P(s'|s, a) (V_{k}(s') - V_{j}(s')) \right\| \\ &\leq \max_{a} \left\| \gamma \sum_{s' \in S} P(s'|s, a) \left\| V_{k} - V_{j} \right\| \\ &= \max_{a} \left\| \gamma \left\| V_{k} - V_{j} \right\| \sum_{s' \in S} P(s'|s, a) \right\| \\ &= \gamma \left\| V_{k} - V_{j} \right\| \end{split}$$

Note: Even if all inequalities are equalities, this is still a contraction if $\gamma < 1$

COMPUTING THE VALUE OF A POLICY IN A FINITE HORIZON

- ► Alternatively can estimate by simulation
 - Generate a large number of episodes
 - Average returns
 - Concentration inequalities bound how quickly average concentrates to expected value
 - Requires **no assumption** of Markov structure

EXAMPLE: MARS ROVER

Reward +1 in s_1 , +10 in s_7 , 0 in all other states Sample returns for sample 4-step (H=4) episodes, $\gamma=1/2$

$$ightharpoonup s_4, s_5, s_6, s_7: 0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 10 = 1.25$$

EXAMPLE: MARS ROVER

Reward +1 in s_1 , +10 in s_7 , 0 in all other states Sample returns for sample 4-step (H=4) episodes, $\gamma=1/2$

$$ightharpoonup s_4, s_5, s_6, s_7: 0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 10 = 1.25$$

$$ightharpoonup s_4, s_3, s_2, s_1: 0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 1 = 0.125$$

VALUE VS POLICY ITERATION

- ► Velue iteration
 - Compute optimal value for horizon = k
 - Note this can be used to compute optimal policy if horizon = k
 - Increment k
- ► Policy Iteration
 - Compute infinite horizon value of a policy
 - Use to select another (better) policy
 - Closely related to a very popular method in RL: policy gradient