## Poisson Process with Change Point

Example: British coalmining disaster data, 1851-1962

| Year | Count | Year | Count | Year | Count | Year | Count |
|------|-------|------|-------|------|-------|------|-------|
| 1851 | 4     | 1879 | 3     | 1907 | 0     | 1935 | 2     |
| 1852 | 5     | 1880 | 4     | 1908 | 3     | 1936 | 1     |
| 1853 | 4     | 1881 | 2     | 1909 | 2     | 1937 | 1     |
| 1854 | 1     | 1882 | 5     | 1910 | 2     | 1938 | 1     |
| 1855 | 0     | 1883 | 2     | 1911 | 0     | 1939 | 1     |
| 1856 | 4     | 1884 | 2     | 1912 | 1     | 1940 | 2     |
| 1857 | 3     | 1885 | 3     | 1913 | 1     | 1941 | 4     |
| 1858 | 4     | 1886 | 4     | 1914 | 1     | 1942 | 2     |
| 1859 | 0     | 1887 | 2     | 1915 | 0     | 1943 | 0     |
| 1860 | 6     | 1888 | 1     | 1916 | 1     | 1944 | 0     |
| 1861 | 3     | 1889 | 3     | 1917 | 0     | 1945 | 0     |
| 1862 | 3     | 1890 | 2     | 1918 | 1     | 1946 | 1     |
| 1863 | 4     | 1891 | 2     | 1919 | 0     | 1947 | 4     |
| 1864 | 0     | 1892 | 1     | 1920 | 0     | 1948 | 0     |
| 1865 | 2     | 1893 | 1     | 1921 | 0     | 1949 | 0     |
| 1866 | 6     | 1894 | 1     | 1922 | 2     | 1950 | 0     |
| 1867 | 3     | 1895 | 1     | 1923 | 1     | 1951 | 1     |
| 1868 | 3     | 1896 | 3     | 1924 | 0     | 1952 | 0     |
| 1869 | 5     | 1897 | 0     | 1925 | 0     | 1953 | 0     |
| 1870 | 4     | 1898 | 0     | 1926 | 0     | 1954 | 0     |
| 1871 | 5     | 1899 | 1     | 1927 | 1     | 1955 | 0     |
| 1872 | 3     | 1900 | 0     | 1928 | 1     | 1956 | 0     |
| 1873 | 1     | 1901 | 1     | 1929 | 0     | 1957 | 1     |
| 1874 | 4     | 1902 | 1     | 1930 | 2     | 1958 | 0     |
| 1875 | 4     | 1903 | 0     | 1931 | 3     | 1959 | 0     |
| 1876 | 1     | 1904 | 0     | 1932 | 3     | 1960 | 1     |
| 1877 | 5     | 1905 | 3     | 1933 | 1     | 1961 | 0     |
| 1878 | 5     | 1906 | 1     | 1934 | 1     | 1962 | 1     |



Applications of MCMC, May 8, 2003

# Poisson Process with Change Point

## Application of MCMC sampling

o Step 1: Draw

$$\theta_1^{(k)} \sim \pi(\theta_1 | Y, m^{(k-1)})$$
 $\theta_2^{(k)} \sim \pi(\theta_2 | Y, m^{(k-1)})$ 

o Step 2: Draw

$$m^{(k)} \sim \pi \big(m \big| Y, \theta_1^{(k)}, \theta_2^{(k)} \big)$$

 $\circ\,$  Repeat previous two steps until stationary distributions is reached.

## Implementation in ${\cal R}$

MC<-1000 # number of draws (chains) N<-200 Y<-scan("coal.txt") # length of chains # read in data n<-length(Y) # number of observations m<-n # no change point p<-rep(0,3\*MC\*N)
dim(p)<-c(3,MC,N) # array to store chains for (j in (1:MC)) {
 a1<-3 # parameter of priors a2<-1 b1<-0.5 b2<-0.5 m<-as.integer(n\*runif(1))+1 for (i in (1:N)) {
 11<-rgamma(1,a1+sum(Y[1:m]),m+b1)</pre> 12<-rgamma(1,a2+sum(Y)-sum(Y[1:m]),n-m+b2) pm<-exp((12-11)\*(1:n))\*(11/12)^cumsum(Y) pm<-pm/sum(pm)
m<-min((1:n)[runif(1)<cumsum(pm)])</pre> p[1,j,i]<-m p[2,j,i]<-11 # save result p[3,j,i]<-12

## Poisson Process with Change Point

Model: Poisson process with a change point

 $\circ$  The distribution changes after first m observations:

$$Y_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\theta_1)$$
 for  $i = 1, ..., m$   
 $Y_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\theta_2)$  for  $i = m + 1, ..., n$ 

• Parameter  $(m, \theta_1, \theta_2)$ 

 $\circ$  m is called a change point

#### Bayesian approach:

o Prior distributions

$$\pi(\theta_1) \sim \Gamma(a_1, b_1)$$
  
$$\pi(\theta_2) \sim \Gamma(a_2, b_2)$$
  
$$\pi(m) \sim \frac{1}{n}$$

o Conditional posterior distributions

$$\pi(\theta_1|Y,m) \sim \Gamma\left(a_1 + \sum_{i=1}^m Y_i, m + b_1\right)$$
  
$$\pi(\theta_2|Y,m) \sim \Gamma\left(a_2 + \sum_{i=m+1}^n Y_i, n - m + b_2\right)$$
  
$$\pi(m|Y,\theta_1,\theta_2) \sim c \cdot \exp\left((\theta_2 - \theta_1) m\right) \left(\frac{\theta_1}{\theta_2}\right)^{\sum_{i=1}^m Y_i}$$

Applications of MCMC, May 8, 2003 - 2 -

## Poisson Process with Change Point

## Results:



- 1 -

#### Hierarchical Bayesian Modelling

#### Bayesian approach to inference

Inference is based on the posterior distribution of  $\theta$  given data Y

$$\pi(\theta|Y) = \frac{f(Y|\theta)\,\pi(\theta)}{f(Y)}$$

where  $\circ f(Y|\theta)$  is the *likelihood function* (statistical model for data);

o  $\pi(\theta)$  is the prior distribution of  $\theta$  (quantifies uncertainty about  $\theta$ );

$$\circ f(Y) = \int f(Y|\theta) \, \pi(\theta) \, d\theta.$$

#### Example: Binomial distribution

Suppose that X is binomially distributed with parameter  $\theta$ ,

$$X \sim \text{Bin}(n, \theta).$$

An appropriate prior distribution for  $\theta$  is the Beta distribution

$$\theta \sim \text{Beta}(\alpha, \beta), \quad \alpha, \beta > 0.$$

Then the posterior distribution of  $\theta$  given X is again a Beta distribution with parameters  $X + \alpha$  and  $n - X + \beta$ ,

$$\theta | X \sim \text{Beta}(X + \alpha, n - X + \beta).$$

**Problem:** Need to specify hyperparameters  $\alpha$  and  $\beta$ .

**Idea:** Specify uncertainty about hyperparameters by another level of prior distributions. For example:

$$\alpha, \beta \sim \text{Exp}(1), \quad \alpha \text{ and } \beta \text{ independent}$$

We call this kind of model a hierarchical model.

Applications of MCMC, May 8, 2003 - 5 -

## Hierarchical Bayesian Modelling

#### Data:

- $\circ$   $Y_{ij}$  weight of ith rat at measurement j
- o  $x_{ij}$  age (in weeks) of ith rat at measurement j
- $\circ i = 1, \dots, I = 30, j = 1, \dots, J = 5$

#### Hierarchical model:

Assume individual growth curves, that is,

$$Y_{ij} \sim \mathcal{N}(\beta_{i0} + \beta_{i1}x_{ij}, \sigma^2)$$

with individual parameters  $\beta_i = (\beta_{i0}, \beta_{i1})^\mathsf{T}$  distributed according to

$$\beta_i \sim \mathcal{N}(\beta_0, \Sigma)$$
.

Prior specifications for  $\beta_0$ ,  $\sigma^2$  and  $\Sigma$ :

$$\beta_0 \sim \mathcal{N}(\beta_*, \Sigma_*)$$

$$\frac{1}{\sigma^2} \sim \Gamma\left(\frac{\nu_*}{2}, \frac{\nu_* \tau_*^2}{2}\right)$$

$$\Sigma^{-1} \sim W\left((\rho_* R_*)^{-1}, \rho_*\right)$$

Here we take

$$\Sigma_*^{-1} = 0, \ \nu_* = 0, \ \rho_* = 2, \ R_* = \text{diag}(100, 1/10).$$

This leads to an improper prior (refecting vague prior information)

$$\pi(\beta_0, \sigma^2, \Sigma) \sim \frac{1}{\sigma^2} |\Sigma|^{-\frac{3+\rho_*}{2}} \exp\left(-\frac{1}{2} \operatorname{tr}(\rho_* R_* \Sigma^{-1})\right)$$

More about the Wishart distribution: Schafer, p 150ff

#### Hierarchical Bayesian Modelling

Example: Rat growth data

Data: Weight measurements of 30 young rats (weekly for five weeks)

| Week |     |     |     |     | Week |     |     |     |     |     |     |
|------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| Rat  | 1   | 2   | 3   | 4   | 5    | Rat | 1   | 2   | 3   | 4   | 5   |
| 1    | 151 | 199 | 246 | 283 | 320  | 16  | 160 | 207 | 248 | 288 | 324 |
| 2    | 145 | 199 | 249 | 293 | 354  | 17  | 142 | 187 | 234 | 280 | 316 |
| 3    | 147 | 214 | 263 | 312 | 328  | 18  | 156 | 203 | 243 | 283 | 317 |
| 4    | 155 | 200 | 237 | 272 | 297  | 19  | 157 | 212 | 259 | 307 | 336 |
| 5    | 135 | 188 | 230 | 280 | 323  | 20  | 152 | 203 | 246 | 286 | 321 |
| 6    | 159 | 210 | 252 | 298 | 331  | 21  | 154 | 205 | 253 | 298 | 334 |
| 7    | 141 | 189 | 231 | 275 | 305  | 22  | 139 | 190 | 225 | 267 | 302 |
| 8    | 159 | 210 | 248 | 297 | 338  | 23  | 146 | 191 | 229 | 272 | 302 |
| 9    | 177 | 236 | 285 | 340 | 376  | 24  | 157 | 211 | 250 | 285 | 323 |
| 10   | 134 | 182 | 220 | 260 | 296  | 25  | 132 | 185 | 237 | 286 | 331 |
| 11   | 160 | 208 | 261 | 313 | 352  | 26  | 160 | 207 | 257 | 303 | 345 |
| 12   | 143 | 188 | 220 | 273 | 314  | 27  | 169 | 216 | 261 | 295 | 333 |
| 13   | 154 | 200 | 244 | 289 | 325  | 28  | 157 | 205 | 248 | 289 | 316 |
| 14   | 171 | 221 | 270 | 326 | 358  | 29  | 137 | 180 | 219 | 258 | 291 |
| 15   | 163 | 216 | 242 | 282 | 312  | 30  | 153 | 200 | 244 | 286 | 324 |

#### Remarks:

- o Increase in weight follows individual growth curves for each rat.
- o Individual growth curves are similar in slope and variation.
- $\circ\,$  Summarize by average growth curve for population.



Applications of MCMC, May 8, 2003

#### Hierarchical Bayesian Modelling

- 6 -

#### Posterior distributions

The full conditional posterior distributions are:

$$\begin{split} \beta_i | Y, \beta_0, \Sigma, \sigma^2 &\sim \mathcal{N} \Big( \frac{1}{\sigma^2} D_i^{-1} X_i^\mathsf{T} Y_i, D_i^{-1} \Big) \\ \beta_0 | Y, \beta_1, \dots, \beta_I, \Sigma, \sigma^2 &\sim \mathcal{N} \Big( \bar{\beta}, \frac{1}{I} \Sigma \Big) \\ \frac{1}{\sigma^2} \Big| Y, \beta_1, \dots, \beta_I, \beta_0, \Sigma &\sim \Gamma \Big( \frac{n}{2}, \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{J} \left( Y_{ij} - \beta_{i0} - \beta_{i1} x_{ij} \right)^2 \Big) \\ \Sigma^{-1} | Y, \beta_1, \dots, \beta_I, \beta_0, \sigma^2 &\sim W \Big( \Big[ \sum_{i=1}^{I} (\beta_i - \beta_0) (\beta_i - \beta_0)^\mathsf{T} + \rho_* R_* \Big]^{-1}, I + \rho \Big) \end{split}$$

where  $D_i$  is given by

$$D_i = \frac{1}{\sigma^2} X_i^{\mathsf{T}} X_i + \Sigma^{-1}$$
.

These distributions can be used to sample from the joint posterior distribution using the  $Gibbs\ sampler$ .

#### Hierarchical Bayesian Modelling

#### Implementation in ${\cal R}$

```
# Sampling from the Wishart distribution
rwishart <- function(df, p = nrow(SqrtSigma), SqrtSigma = diag(p)) {
if((Ident <- missing (SqrtSigma)) & missing(p))
stop("either p or SqrtSigma must be specified")
Z <- matrix(0, p, p)
diag(Z) <- sqrt(rchisq(p, df:(df-p+i)))
if(p > 1) {
pseq <- 1:(p-1)
Z[ren(prissen, pseq) + unlist(lamply(pseq, seq))] {
z renv[ren]
         pseq <-1:(p-1) \\ Z[rep(p*pseq, pseq) + unlist(lapply(pseq, seq))] <- rnorm(p*(p-1)/2) 
     if(Ident)
    crossprod(Z)
        crossprod(Z %*% SqrtSigma)
 }
# Sampling from the multivariate normal distribution
rmultinorm<-function(n,m,S) {
    d<-ifelse(is.null(nrow(m)),length(m),nrow(m))
    m<chol(S)%*/matrix(rnorm(d*n),d,n)</pre>
 # Rat growth data
J<-30
 I<-5
Y<-matrix(scan("rats.txt"),I,J)
T<=matrix(scan('fats.tx
X<-c(rep(1,I),(1:I))
dim(X)<-c(I,2)
# Regression statistics
XTX<-t(X)%*%X
XTY<-t(X)%*%Y</pre>
 # Setting of parameters
rh<-2; R<-diag(c(100,0.1))</pre>
 #
MC<-2;N<-1000
                                                  #Run MC=2 chains of length N=1000
 p<-rep(0,6*MC*N)
dim(p)<-c(6,MC,N)
                                                 #Allocate memory for results
```

Applications of MCMC, May 8, 2003 - 9 -Applications of MCMC, May 8, 2003

#### Hierarchical Bayesian Modelling

## Results: Posterior distributions



#### Hierarchical Bayesian Modelling

Results: Convergence and mixing of Gibbs sampler



- 10 -

#### Bayesian Inference with Missing Data

Let

- o $\,Y = (Y_{\rm obs}, Y_{\rm mis})$  denote the complete data that would occur in absence of missing data where
- $\circ$   $Y_{\mathrm{obs}}$  denotes the observed values and
- Y<sub>mis</sub> denotes the missing values;
- $\circ~R$  denote the missing-data indicator.

Bayesian inference is based on the observed-data posterior distribution

$$\pi(\theta, \xi | Y_{\text{obs}}, R) \sim f(Y_{\text{obs}}, R | \theta, \xi) \pi(\theta, \xi)$$

where

$$\begin{split} f(Y_{\text{obs}}, R | \theta, \xi) &= \int f(Y_{\text{obs}}, y_{\text{mis}}, R | \theta, \xi) \, dy_{\text{mis}} \\ &= \int f(Y_{\text{obs}}, y_{\text{mis}} | \theta) \, f(R | Y_{\text{obs}}, y_{\text{mis}}, \xi) \, dy_{\text{mis}} \end{split}$$

is the likelihood of the observed-data (i.e.  $Y_{\rm obs}$  and R).

Assumption: Suppose that

- the missing data are missing at random, i.e.  $f(R|Y) = f(R|Y_{obs})$ , and
- the parameters  $\theta$  and  $\xi$  are a priori independent, i.e.  $\pi(\theta, \xi) = \pi(\theta) \pi(\xi)$ .

Then inference about  $\theta$  can be based on the observed-data posterior distri $but ion\ ignoring\ the\ missing-data\ mechanism,$ 

$$\pi(\theta|Y_{\text{obs}}) = \frac{f(Y_{\text{obs}}|\theta) \pi(\theta)}{f(Y_{\text{obs}})}$$

where

$$f(Y_{\text{obs}}) = \int f(Y_{\text{obs}}|\theta) \pi(\theta) d\theta.$$

- 11 -- 12 -Applications of MCMC, May 8, 2003 Applications of MCMC, May 8, 2003

#### **Data Augmentation**

#### Aim:

- $\circ$  Compute  $\mathbb{E}(g(\theta)|Y_{\text{obs}})$ .
- Use MC or MCMC method for approximation

$$\mathbb{E}(g(\theta)|Y_{\text{obs}}) \approx \frac{1}{n} \sum_{t=1}^{n} g(\theta^{(t)}) \quad \text{with } \theta^{(1)}, \dots, \theta^{(n)} \sim \pi(\theta|Y_{\text{obs}}).$$

#### Problem:

- Difficult to sample from  $p(\theta|Y_{obs})$ .
- Often simpler to sample from complete-data posterior  $\pi(\theta|Y_{\text{obs}},Y_{\text{mis}})$

#### Idea:

- o Fill-in (impute) missing values to obtain complete data.
- Sample  $\theta$  from the complete-data posterior distribution  $\pi(\theta|Y_{\text{obs}},Y_{\text{mis}})$ .

This leads to the following iterative simulation algorithm:

#### Data augmentation (simplified version)

- o Imputation (I) Step: Draw  $Y_{\text{mis}}^{(t+1)}$  from  $f(y_{\text{mis}}|Y_{\text{obs}}, \theta^{(t)})$ .

Repeating the two steps from a starting value  $\theta^{(0)}$  yields a Markov chain with stationary distribution  $\pi(\theta, y_{\rm mis}|Y_{\rm obs})$ .

Note: Data augmentation resembles the EM algorithm

- o E-step: Estimate sufficient statistics (impute missing portions)
- M-step: Maximize complete-data likelihood (solve complete-data problem)

#### **Data Augmentation**

Example: Incomplete univariate data

Suppose that

$$\circ Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \text{Bin}(1, \theta),$$

 $\theta \sim \text{Beta}(a, b)$  for some fixed a, b > 0.

Then the posterior distribution of  $\theta$  is

$$\theta|Y \sim \text{Beta}\left(a + \sum_{i=1}^{n} Y_i, b + n - \sum_{i=1}^{n} Y_i\right)$$

Now suppose that  $Y_{m+1}, \ldots, Y_n$  are missing, that is,  $Y_{\text{obs}} = (Y_1, \ldots, Y_m)$ . It follows that

$$\theta|Y_{\text{obs}} \sim \text{Beta}\left(a + \sum_{i=1}^{m} Y_i, b + m - \sum_{i=1}^{m} Y_i\right).$$

Thus we can directly sample from the observed-data posterior.

Suppose we want to use data augmentation to sample from  $\pi(\theta|Y_{\text{obs}})$ :

o I-step:

$$Y_i^{(t+1)} \sim \text{Bin}(1, \theta^{(t)}), i = m + 1, \dots, n$$

P-step:

$$\theta^{(t+1)} \sim \text{Beta}\bigg(a + \sum_{i=1}^{m} Y_i + \sum_{i=m+1}^{n} Y_i^{(t+1)}, b + n - \sum_{i=1}^{m} Y_i - \sum_{i=m+1}^{n} Y_i^{(t+1)}\bigg)$$

- 14 -

Applications of MCMC, May 8, 2003

- 13 -

Applications of MCMC, May 8, 2003

## Data Augmentation

## Implementation in R

```
n<-20
Y<-c(rbinom(m,1,0.75),rep(NA,n-m))
MC<-2:N<-1000
p<-matrix(0,MC,N)
for (j in (1:MC)) {
   th<-rbeta(1,1,1)
  for (i in (1:N)) {
    Y\lceil (m+1):n \rceil < -rbinom(n-m,1,th)
     th < -rbeta(1, 1+sum(Y), 1+n-sum(Y))
    p[j,i] \leftarrow th
# Plotting the results
par(mfrow=c(1,3),mar=c(3,3,1,1),mgp=c(1.5,0.5,0),cex=0.8)
# (a) Time series plot of chains
\verb|plot(p[1,],type="l",xlab="Iteration",ylab=expression(theta)||
lines(p[2,],lty=3)
# (b) Plot of autocorrelation function
library(ts)
acf(p[1,100:N],lag.max=50)
# (c) Histogram of posterior distribution
hist(p[1,100:N],xlab=expression(theta),main="Posterior distribution")
```

## Results:



## Data Augmentation

Original version of data augmentation (Tanner and Wong, 1987)

Rewrite observed-data posterior distribution as

$$\begin{split} \pi(\theta|Y_{\text{obs}}) &= \int \pi(\theta|Y_{\text{obs}}, y_{\text{mis}}) \, f(y_{\text{mis}}|Y_{\text{obs}}) \, dy_{\text{mis}} \\ &= \iint \pi(\theta|Y_{\text{obs}}, y_{\text{mis}}) \, f(y_{\text{mis}}|Y_{\text{obs}}, \theta') \, \pi(\theta'|Y_{\text{obs}}) \, d\theta \, dy_{\text{mis}} \end{split}$$

This suggests the following iterative scheme for approximating  $\pi(\theta|Y_{\text{obs}})$ .

Let  $\pi^{(t)}(\theta|Y_{\text{obs}})$  be the current approximation of  $\pi(\theta|Y_{\text{obs}})$ .

• Draw 
$$(Y_{\text{mis}}^{(1)}, \theta^{(1)}), \dots, (Y_{\text{mis}}^{(m)}, \theta^{(m)})$$
 from

$$f^{(t)}(y_{\mathrm{mis}},\theta|Y_{\mathrm{obs}}) = f(y_{\mathrm{mis}}|Y_{\mathrm{obs}},\theta)\,p^{(t)}(\theta|Y_{\mathrm{obs}})$$

in two steps:

· Draw  $\theta^{(k)} \stackrel{\text{iid}}{\sim} \pi^{(t)}(\theta|Y_{\text{obs}}), k = 1, \dots, m.$ 

- Draw 
$$Y_{\text{mis}}^{(k)} \sim f(y_{\text{mis}}|Y_{\text{obs}}, \theta^{(k)}), k = 1, \dots, m.$$

Then  $Y_{\mathrm{mis}}^{(1)}, \dots, Y_{\mathrm{mis}}^{(m)}$  is approximately a sample from  $f(y_{\mathrm{mis}}|Y_{\mathrm{obs}})$ 

 $\circ$  Use Monte Carlo integration to approximate  $\pi(\theta|Y_{\rm obs})$  by

$$\pi^{(t+1)}(\theta|Y_{\text{obs}}) = \frac{1}{m} \sum_{k=1}^{m} \pi(\theta|Y_{\text{obs}}, Y_{\text{mis}}^{(k)}).$$

For m=1, this data augmentation algorithm reduces to the Gibbs sampler on the previous slide.

## **Data Augmentation**

Example: Cholesterol levels of heart-attack patients

Data:

- $\circ\,$  Serum-cholesterol levels for n=28 patients treated for heart attacks.
- $\circ\,$  Cholesterol levels were measured for all patients 2 and 4 days after the attack
- $\circ\,$  For 19 of the 28 patients, an additional measurement was taken 14 days after the attack.
- o See also Schafer, sections 5.3.6 and 5.4.3.

| Id | $Y_1$ | $Y_2$ | $Y_3$ | Id | $Y_1$ | $Y_2$ | $Y_3$ |
|----|-------|-------|-------|----|-------|-------|-------|
| 1  | 270   | 218   | 156   | 15 | 294   | 240   | 264   |
| 2  | 236   | 234   | _     | 16 | 282   | 294   | _     |
| 3  | 210   | 214   | 242   | 17 | 234   | 220   | 264   |
| 4  | 142   | 116   | _     | 18 | 224   | 200   | _     |
| 5  | 280   | 200   | _     | 19 | 276   | 220   | 188   |
| 6  | 272   | 276   | 256   | 20 | 282   | 186   | 182   |
| 7  | 160   | 146   | 142   | 21 | 360   | 352   | 294   |
| 8  | 220   | 182   | 216   | 22 | 310   | 202   | 214   |
| 9  | 226   | 238   | 248   | 23 | 280   | 218   | _     |
| 10 | 242   | 288   | _     | 24 | 278   | 248   | 198   |
| 11 | 186   | 190   | 168   | 25 | 288   | 278   | _     |
| 12 | 266   | 236   | 236   | 26 | 288   | 248   | 256   |
| 13 | 206   | 244   | _     | 27 | 244   | 270   | 280   |
| 14 | 318   | 258   | 200   | 28 | 236   | 242   | 204   |

Applications of MCMC, May 8, 2003 - 17 - Applications of MCMC, May 8, 2003 - 18 -

## Data Augmentation

### Implementation in ${\cal R}$

## **Data Augmentation**

#### Bayesian model

Data model:  $Y = (Y_1, \dots, Y_n)^\mathsf{T}$   $(n \times p \text{ matrix})$  with

$$Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \Sigma)$$

 $Prior\ distribution\ (improper\ prior):$ 

$$\pi(\mu, \Sigma) \sim |\Sigma|^{-\frac{p+1}{2}} = |\Sigma|^{-2}$$

Full conditionals of  $posterior\ distribution$ 

$$\begin{aligned} \mu|Y, \Sigma \sim \mathcal{N} \big(\bar{Y}, \Sigma/n\big) \\ \Sigma^{-1}|Y, \mu \sim W \big(\big[(Y-\mu)^\mathsf{T}(Y-\mu)\big]^{-1}, n\big) \end{aligned}$$

#### Data augmentation algorithm

o I-step

$$Y_{i3} \sim \mathcal{N}(\mu_{3|12}^{(t)}, \sigma_{33|12}^{(t)})$$

wher

$$\mu_{3|12}^{(t)} = \mu_{3}^{(t)} + \left(\begin{smallmatrix} \sigma_{31}^{(t)} & \sigma_{31}^{(t)} \end{smallmatrix}\right) \left(\begin{smallmatrix} \sigma_{11}^{(t)} & \sigma_{12}^{(t)} \\ \sigma_{21}^{(t)} & \sigma_{22}^{(t)} \end{smallmatrix}\right)^{-1} \left(\begin{smallmatrix} Y_{i1} - \mu_{1}^{(t)} \\ Y_{i2} - \mu_{2}^{(t)} \end{smallmatrix}\right)$$

$$\sigma_{33|12}^{(t)} = \sigma_{33}^{(t)} - \left( \begin{smallmatrix} \sigma_{31}^{(t)} & \sigma_{32}^{(t)} \end{smallmatrix} \right) \left( \begin{smallmatrix} \sigma_{11}^{(t)} & \sigma_{12}^{(t)} \\ \sigma_{21}^{(t)} & \sigma_{22}^{(t)} \end{smallmatrix} \right)^{-1} \left( \begin{smallmatrix} \sigma_{13}^{(t)} \\ \sigma_{23}^{(t)} \end{smallmatrix} \right)$$

o P-step

$$\begin{split} \boldsymbol{\mu}^{(t+1)} &\sim \mathcal{N} \left( \bar{\boldsymbol{Y}}, \boldsymbol{\Sigma}^{(t)} / \boldsymbol{n} \right) \\ \boldsymbol{\Sigma}^{(t+1)} &\sim \boldsymbol{W}^{-1} \Big( \left[ \left( \boldsymbol{Y} - \boldsymbol{\mu}^{(t+1)} \right)^{\mathsf{T}} (\boldsymbol{Y} - \boldsymbol{\mu}^{(t+1)}) \right]^{-1}, \boldsymbol{n} \Big) \end{split}$$

## Data Augmentation

 ${\bf Results:} \ {\bf Convergence} \ {\bf of} \ {\bf chains}$ 



- $\circ\,$  Fast convergence to stationary distribution
- Autocorrelation decreases rapidly (values 10 steps apart are approximately independent)
- o Chains exhibit good mixing

#### **Data Augmentation**

#### Results: Variables of interest

o Average cholesterol level at 14 days

 $\mu_3$ 

 $\circ\,$  Average decrease in cholesterol level from day 2 to day 14

$$\delta_{13} = \mu_1 - \mu_3$$

o Relative percentage decrease in average cholesterol level from day 2 to

$$\tau_{13} = \frac{100 \cdot (\mu_1 - \mu_3)}{\mu_1}$$



Posterior means and 95% posterior intervals:

| $\mu_3$          | $\delta_{13}$ | $\tau_{13}$   |
|------------------|---------------|---------------|
| 222.07           | 31.84         | 12.46         |
| [200.79, 243.68] | [8.02, 55.55] | [3.26, 21.05] |

Applications of MCMC, May 8, 2003

- 21 -

#### Allele Frequency Estimation

 $\circ~$  The complete data  $N=(N_{AA},N_{AO},N_{BB},N_{BO},N_{AB},N_{O})$  are multinomially distributed,

$$N \sim M(n, p_A^2, 2p_A p_O, p_B^2, 2p_B p_O, 2p_A p_B, p_O^2).$$

o The conjugate prior is the Dirichlet distribution,

$$(p_A, p_B, p_O) \sim D(\alpha_A, \alpha_B, \alpha_O), \qquad \alpha_A, \alpha_B, \alpha_O > 0.$$

The density of the Dirichlet distribution is given by

$$p(p_A,p_B,p_O) = \frac{\Gamma(\alpha_A + \alpha_B + \alpha_C)}{\Gamma(\alpha_A)\Gamma(\alpha_B)\Gamma(\alpha_O)} p_A^{\alpha_A - 1} p_B^{\alpha_B - 1} p_O^{\alpha_O - 1}$$

o The posterior distribution is again a Dirichlet distribution

$$p_A, p_B, p_O|N \sim D(\alpha'_A, \alpha'_B, \alpha'_O)$$

with parameters

Data augmentation P-step

$$\alpha_A' = \alpha_A + 2N_{AA} + N_{AO} + N_{AB}$$

$$\alpha_B' = \alpha_B + 2N_{BB} + N_{BO} + N_{AB}$$

$$\alpha_O' = \alpha_O + 2N_O + N_{AO} + N_{BO}$$

 $\circ\,$  Given the observed data  $N_{\rm obs} = (N_A, N_B, N_{AB}, N_O),$  the missing data  $N_{\text{mis}} = (N_{AA}, N_{AO}, N_{BB}, N_{BO})$  are binomially distributed,

$$N_{AA} \sim \operatorname{Bin}\left(N_A, \frac{p_A^2}{p_A^2 + 2p_A p_O}\right)$$

$$N_{AO} = N_A - N_{AA}$$

$$N_{BB} \sim \text{Bin}\Big(N_B, \frac{p_B^2}{p_B^2 + 2p_B p_O}\Big)$$

$$N_{BO} = N_B - N_{BB}$$

Data augmentation

#### Allele Frequency Estimation

#### Example: ABO blood types

- $\circ$  ABO genetic locus exhibits three alleles: A, B, and O
- $\circ$  Four phenotypes: A, B, AB, and O

| Genotype  | A/A | A/O | A/B | B/B | B/O | O/O |
|-----------|-----|-----|-----|-----|-----|-----|
| Phenotype | A   | A   | AB  | B   | B   | 0   |

o Data: Observed counts of four phenotypes A, B, AB, and O

| $n_A$ | $n_B$ | $n_{AB}$ | $n_O$ | n   |  |
|-------|-------|----------|-------|-----|--|
| 186   | 38    | 13       | 284   | 521 |  |

o Aim: Estimate frequencies  $p_A$ ,  $p_B$ , and  $p_O$  of alleles A, B, and O

#### Modelling:

- $\circ\,$  Observed data:  $N_A,\,N_B,\,N_{AB},\,N_O$
- $\circ\,$  Complete data:  $N_{AA},\,N_{AO},\,N_{BB},\,N_{BO},\,N_{AB},\,N_{O}$
- o According to the Hardy-Weinberg law, the genotype frequencies are

| Genotype  | A/A     | A/O       | A/B       | B/B     | B/O       | O/O     |
|-----------|---------|-----------|-----------|---------|-----------|---------|
| Frequency | $p_A^2$ | $2p_Ap_O$ | $2p_Ap_B$ | $p_B^2$ | $2p_Bp_O$ | $p_O^2$ |

 $\circ$  Genotype counts  $N = (N_{AA}, N_{AO}, N_{AB}, N_{BB}, N_{BO}, N_O)$  are jointly multinomially distributed.

- 22 -

Applications of MCMC, May 8, 2003

#### Allele Frequency Estimation

## Implementation in R

```
N<-c(186,38,13,284)
a<-1;b<-1;c<-1
                                                # Data
# Prior parameters (uniform prior)
# Array for parameters
                                                # Array for imputed values
                                                # Loop over chains
# Starting values from
# prior distributions
     po<-1-pa-pb
p[,j,i]<-c(pa,pb,po)
d[,j,i]<-c(Naa,Nao,Nbb,Nbo)
```

#### Sampling from the Dirichlet distribution

```
Suppose that (p_1, ..., p_n) \sim D(\alpha_1, ..., \alpha_n). Then
```

```
\sim \text{Beta}(\alpha_1, \alpha_2 + \ldots + \alpha_n)
p_1
                            \sim (1-p_1)\mathrm{Beta}(\alpha_2,\alpha_3+\ldots+\alpha_n)
p_{2}|p_{1}
                            \sim (1 - p_2 - p_3)Beta(\alpha_3, \alpha_4 + ... + \alpha_n)
p_3|p_1, p_2
p_{n-1}|p_1, \dots, p_{n-2} \sim (1 - p_1 - \dots - p_{n-2}) \text{Beta}(\alpha_{n-1}, \alpha_n)
                           =(1-p_1-\ldots-p_{n-1})
```

#### Allele Frequency Estimation

Results: Convergence of chains







Posterior means and 95% posterior intervals:

| $p_A$         | $p_B$           | $p_O$        |  |  |
|---------------|-----------------|--------------|--|--|
| 0.21          | 0.05            | 0.74         |  |  |
| [0.19,  0.24] | [0.038,  0.065] | [0.71, 0.77] |  |  |

- 25 -

Applications of MCMC, May 8, 2003

#### Allele Frequency Estimation

Similarly, we can estimate the posterior cumulative distribution function by

$$\hat{\mathbb{P}}\left(p_A \middle| N_{\text{obs}}\right) = \frac{1}{t = T} \sum_{1}^{T} \mathbb{P}\left(p_A \leq p \middle| N_{\text{obs}}, N_{\text{mis}}^{(t)}\right),$$

and the posterior density (which is not that easy to see) by

$$\hat{p}(p_A|N_{\text{obs}}) = \frac{1}{T} \sum_{t=1}^{T} \pi(p_A|N_{\text{obs}}, N_{\text{mis}}^{(t)}),$$

where the sums are computed using

$$p_A|N_{\mathrm{obs}},N_{\mathrm{mis}}^{(t)}\sim \mathrm{Beta}(\alpha_A^{(t)},\alpha_B^{(t)}+\alpha_O^{(t)})$$

where  $\alpha_A^{(t)}, \, \alpha_B^{(t)}, \, \text{and} \, \, \alpha_O^{(t)}$  are of the same form as  $\alpha_A', \, \alpha_B', \, \text{and} \, \, \alpha_O', \, \text{respectively.}$ 

Direct and Rao-Blackwellized density estimates for the posterior distributions:



Posterior intervals: From the estimate for the posterior cumulative distribution function, we can derive a 95% posterior interval for the parameter  $p_A$ .

The following table gives results for T=50 (after a burn-in period):

|           |       | Direct es | stimate        | Rao-Blackwellized estimate |         |                |
|-----------|-------|-----------|----------------|----------------------------|---------|----------------|
| Parameter | Mean  | SD        | 95% interval   | Mean                       | SD      | 95% interval   |
| $p_A$     | 0.214 | 0.00191   | [0.186, 0.238] | 0.213                      | 0.00060 | [0.188, 0.240] |
| $p_B$     | 0.051 | 0.00083   | [0.041, 0.062] | 0.051                      | 0.00015 | [0.038, 0.065] |
| no        | 0.735 | 0.00202   | [0.712_0.768]  | 0.735                      | 0.00060 | [0.707_0.763]  |

#### **Allele Frequency Estimation**

Rao-Blackwell Theorem Suppose  $S(\theta)$  is an unbiased estimator for some scalar quantity  $s(\theta)$  and T is a sufficient statistic. Then  $S^* = \mathbb{E}(S|T)$  is also unbiased and has smaller variance than S,

$$\operatorname{var}(\mathbb{E}(S|T)) \leq \operatorname{var}(S)$$

**Example**: The direct MCMC estimator for the allele frequency  $p_A$ ,

$$\hat{p}_{A} = \frac{1}{T} \sum_{t=1}^{T} p_{A}^{(t)}$$

is unbiased for  $\mathbb{E}(p_A|N_{\mathrm{obs}})$ . Since  $N=(N_{\mathrm{obs}},N_{\mathrm{mis}})$  is a sufficient statistic, the Rao-Blackwell Theorem suggests to use the alternative estimator

$$\hat{p}_A^* = \frac{1}{T} \sum_{t=1}^T \mathbb{E} \left( p_A \middle| N_{\text{obs}}, N_{\text{mis}}^{(t)} \right).$$

From the conditional distribution of  $p_A$  given the complete data N, we obtain

$$\mathbb{E}\left(p_{A}\big|N_{\mathrm{obs}},N_{\mathrm{mis}}\right) = \frac{1+2\,N_{AA}+N_{AO}+N_{AB}}{3+2\,n}$$

This leads to the following Rao-Blackwellized estimates for the allele frequencies:

$$\begin{split} \hat{p}_{A}^{*} &= \frac{1}{T} \sum_{t=1}^{T} \frac{\alpha_{A} + 2 N_{AA}^{(T)} + N_{AB}}{\alpha_{A} + \alpha_{B} + \alpha_{O} + 2 n} \\ \hat{p}_{B}^{*} &= \frac{1}{T} \sum_{t=1}^{T} \frac{\alpha_{B} + 2 N_{BB}^{(T)} + N_{BB}^{(T)} + N_{AB}}{\alpha_{A} + \alpha_{B} + \alpha_{O} + 2 n} \\ \hat{p}_{O}^{*} &= \frac{1}{T} \sum_{t=1}^{T} \frac{\alpha_{O} + 2 N_{O} + N_{AO}^{(T)} + N_{BO}^{(T)}}{\alpha_{O} + \alpha_{O} + N_{O} + N_{O}^{(T)} + N_{BO}^{(T)}} \end{split}$$

Estimates of posterior means (with standard deviations)

| Parameter | Direct estimate |           | Rao-Blackwellized estima |           |  |
|-----------|-----------------|-----------|--------------------------|-----------|--|
| $p_A$     | 0.214           | (0.00043) | 0.214                    | (0.00015) |  |
| $p_B$     | 0.051           | (0.00023) | 0.051                    | (0.00003) |  |
| $p_O$     | 0.735           | (0.00046) | 0.735                    | (0.00015) |  |

Applications of MCMC, May 8, 2003 - 26 -

#### Gaussian Mixtures

Example: Old Faithful

Data: 272 waiting times between eruptions for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA



 ${\it Model:}$  Mixture of two Gaussian populations (short/long waiting times):

$$f_Y(y|\theta) = \pi \frac{1}{\sigma_1} \varphi\left(\frac{x-\mu_1}{\sigma_1}\right) + (1-\pi) \frac{1}{\sigma_2} \varphi\left(\frac{x-\mu_2}{\sigma_2}\right)$$

with parameter  $\theta = (\pi, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2)^\mathsf{T}$ .

- · With probability  $\pi$  an observation  $Y_i$  is drawn from a normal population with mean  $\mu_1$  and standard deviation  $\sigma_1$ .
- · With probability  $1-\pi$  an observation  $Y_i$  is drawn from a normal population with mean  $\mu_2$  and standard deviation  $\sigma_2$ .

Idea: If we knew the group which each observation belongs to, we could simply fit a normal distribution to each group.

Missing data: Group indicator

$$Z_i = \left\{ \begin{array}{ll} 1 & Y_i \text{ belongs to group of long waiting times} \\ 0 & Y_i \text{ belongs to group of short waiting times} \end{array} \right.$$

 $Z_i$  is Bernoulli distributed with parameter  $\pi$ :  $Z_i \stackrel{\text{iid}}{\sim} \text{Bin}(1,\pi)$ 

#### Gaussian Mixtures

 $\circ$  The complete data (Y, Z) are distributed according to

$$f(Y,Z|\theta) = \prod_{i=1}^n \left[ \frac{\pi}{\sigma_1} \varphi\Big(\frac{Y_i - \mu_1}{\sigma_1}\Big) \right]^{Z_i} \left[ \frac{1-\pi}{\sigma_2} \varphi\Big(\frac{Y_i - \mu_2}{\sigma_2}\Big) \right]^{1-Z_i}$$

where  $\theta = (\pi, \mu_1, \mu_2, \sigma_1, \sigma_2)$ .

• We adapt an improper noninformative prior

$$\pi(\theta) \sim \left[\pi(1-\pi)\right]^{-\frac{1}{2}} \sigma^{-2}$$
.

Jeffrey's prior: If  $Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} f(y|\theta)$ , then a noninformative prior is given by  $\pi(\theta) \sim |I(\theta)|^{\frac{1}{2}}$ .

 $\circ\,$  The full conditional posterior distributions are

$$\begin{split} \pi &\sim \text{Beta}\Big(\frac{1}{2} + N_1, \frac{1}{2} + N_2\Big) \qquad N_1 = \sum_{i=1}^n Z_i \text{ and } N_2 = n - N_1 \\ \mu_1 &\sim \mathcal{N}\Big(\frac{1}{N_1} \sum_{i=1}^n Y_i \, Z_i, \frac{\sigma_1^2}{N_1}\Big) \\ \mu_2 &\sim \mathcal{N}\Big(\frac{1}{N_2} \sum_{i=1}^n Y_i \, (1 - Z_i), \frac{\sigma_2^2}{N_2}\Big) \end{split}$$

$$\sigma_1^{-2} &\sim \Gamma\Big(\frac{1}{2} \big(N_1 - 1\big), \frac{1}{2} \sum_{i=1}^n Z_i \, (Y_i - \mu_1)^2\Big) \\ \sigma_2^{-2} &\sim \Gamma\Big(\frac{1}{2} \big(N_2 - 1\big), \frac{1}{2} \sum_{i=1}^n (1 - Z_i) \, (Y_i - \mu_1)^2\Big) \end{split}$$

 $\circ$  Given the observed data Y, the missing data Z are binomially distributed,

$$Z_i|Y_i, \theta \sim \text{Bin}(1, \pi_i)$$

where

 $\pi_i = \frac{\pi \frac{1}{\sigma_1} \varphi\left(\frac{x-\mu_1}{\sigma_1}\right)}{\pi \frac{1}{\sigma_1} \varphi\left(\frac{Y_i-\mu_1}{\sigma_1}\right) + (1-\pi) \frac{1}{\sigma_2} \varphi\left(\frac{Y_i-\mu_2}{\sigma_2}\right)}.$ 

Data augmentation I-step

- 29 -

Applications of MCMC, May 8, 2003

Applications of MCMC, May 8, 2003

## Gaussian Mixtures

Results: Convergence of chains



- Fast convergence
- o Good mixing
- $\circ$  Moderate autocorrelation (independence for lags  $\geq 30$ )

#### 

#### Gaussian Mixtures

- 30 -

#### Implementation in R