Rapport d'essai / Test report

N° 200803-4369CR-R1-E **JDE:** 83738

: AMESYS **DELIVRE A / ISSUED TO**

M CONTE Cédric

1030 Avenue Guillibert De La Lauzière

Le Milles B.P 20140

13794 AIX EN PROVENCE Cedex 3

Objet / Subject : Essais de compatibilité électromagnétique conformément aux normes

FCC CFR 47 Part 15, Subpart B et C.

Electromagnetic compatibility tests according to the standards FCC CFR

47 Part 15, Subpart B and Subpart C

Matériel testé / Apparatus under test :

Produit / Product Coupleur RFID/ RFID coupler

Marque / Trade mark **AMESYS** Constructeur / Manufacturer **AMESYS**

Type / Model **Stella Compact Flash SCF303**

N° de série / serial number * A115400003-000001 WRUSCF303BTREADER

: information donnée par le client / information given by the customer

: Du 17 au 18 Juillet 2008 / From July 17th to 18th, 2008 Date des essais / Test date

Lieu d'essai / Test location : LCIE

170 rue de Chatagnon

Z.I Centr'alp

38430 MOIRANS - France

Test réalisé par / Test performed by : Anthony MERLIN / Laurent CHAPUS

Ce document comporte / Composition of document : 24 pages.

MOIRANS, LE 17 NOVEMBRE 2008 / NOVEMBER 17TH, 2008

Ecrit par / Written by Anthony MERLIN

Laurent CHAPUS

Approuvé par Approved by LES ELECTRIQUES

ZI Centr' Alp 170, Rue de Chatagnon 18430 IVIOIRANS

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Toute reproduction partielle ou toute insertion de résultats dans un texte d'accompagnement en vue de leur diffusion doit recevoir un accord préalable et formel du LCIE. Ce document résulte d'essais effectués sur un spécimen, un échantillon ou une éprouvette. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à l'objet essayé. Sauf indication contraire, la décision de conformité prend en compte l'incertitude de mesures. Il ne préjuge en aucun cas d'une décision de certification.

This document shall not be reproduced, except in full, without t he written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision. It does not imply the conformity of the whole production to the item tested. This document does not anticipate any certification decision.

Tél: +33 1 40 95 60 60 Société par Actions Simplifiée

Fax: #33 1 40 95 86 56

RCS Nanterre B 408 363 174

Page: 2 / 24

SUMMARY

1.	TEST PROGRAM	3
2.	SYSTEM TEST CONFIGURATION	4
3.	RADIATED EMISSION DATA	5
4.	CONDUCTED EMISSION DATA	9
5.	FUNDAMENTAL FREQUENCY TOLERANCE (15.225E)	12
6.	BAND-EDGE COMPLIANCE §15.209	13
7.	ANNEX 1 (GRAPHS)	15
8.	TEST EQUIPMENT LIST	22
9.	UNCERTAINTIES CHART	24

Page: 3 / 24

1. TEST PROGRAM

Standard: FCC CFR 47, PART 15, Subpart C

ANSI C63-4 (2003).

Requirements for intentional radiator. Chapter 15.225 (Operation within the band 13.110-14.010MHz)

Standard: FCC CFR 47, PART 15, Subpart B

ANSI C63-4 (2003).

Requirements for unintentional radiator. Class B computer peripheral.

- Radiated emissions from 9kHz to 1GHz
- Conducted emissions from 150kHz to 30MHz

General conclusion:

Measures performed on the sample of the product Stella Compact Flash SCF303, SN: A115400003-000001, in configuration and description presented in this test report, show compliance levels with FCC CFR 47, Part 15 B and Part 15 C.

2. System test configuration

2.1. JUSTIFICATION

The system was configured for testing in a typical fashion (as a customer would normally use it).

2.2. HARDWARE IDENTIFICATION

Equipment under test (EUT):

Stella Compact Flash SCF303

Serial number: A115400003-000001 FCC ID: WRUSCF303BTREADER

Page: 4 / 24

The Stella Compact Flash SCF303 is powered with the battery PSION TEKLOGIX model: WA3006 (3.7V).

- Input/output:
- 1xCompact Flash interface
- Auxiliaries used for testing:
- 1xInterface Card (between the EUT and the PDA used during the test).
- 1xPDA, PSION TEKLOGIX model Work About Pro WA9007-G1 (s/n: 1050773)
- 2xBatteries, PSION TEKLOGIX model WA3006 (s/n: WA7AC7036179 and WA7AC34535)
- I/O cables used for testing:
- None

2.3. EQUIPMENT MODIFICATIONS

None

2.4. EUT EXERCISE SOFTWARE

The EUT exercise program used during radiated testing was WinCE_CscScr.

2.5. EUT CONFIGURATION

The system was configured for testing in a permanent emitted mode.

2.6. SPECIAL ACCESSORIES

-1xBattery Charger PSION TEKLOGIX model WA4102-G1, s/n: 8272P000998.

3. RADIATED EMISSION DATA

CLIMATIC CONDITIONS 3.1.

Date of test

: July 17th, 2008 : A.MERLIN / L.CHAPUS Test performed by

Atmospheric pressure : 990mb Relative humidity : 43% Ambient temperature : 23℃

3.2. **TEST SETUP**

The installation of EUT is identical for pre-characterization measurement in a 3 meters full anechoic chamber and for measures on a 10 meters Open site.

Power supply: Battery (Fully charged) - Worst case

The EUT is placed on a non-conducting table of 80cm height.

Page: 5 / 24

Radiated emission test setup

3.3. TEST SEQUENCE AND RESULTS

3.3.1. Pre-characterization at 3 meters [9kHz-30MHz]

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber.

The distance between EUT and antenna is 3 meters. For Pre-characterization, the loop antenna position was rotated during the test for maximized the emission measurement.

Frequency band investigated is 9kHz to 30MHz.

For Pre-characterization, two test configurations are performed to search the worst case:

Battery mode, the EUT is used with the PDA in battery mode

Charger mode, the EUT is used with the PDA during the battery-charging

The worst case is the Battery mode; the results correspond to this mode.

The pre-characterization graphs are obtained in PEAK detection.

See graphs for 9kHz-30MHz band: Stella Compact Flash SCF303

graph#1

(See annex 1)

Page: 6 / 24

3.3.2. Pre-characterization at 3 meters [30MHz-1GHz]

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber.

The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization with a log-periodic antenna TESEQ CBL6144. The EUT is being rotated on 360° during the measurement. The precharacterization graphs are obtained in PEAK detection.

For Pre-characterization, two test configurations are performed to search the worst case:

Battery mode, the EUT is used with the PDA in battery mode

Charger mode, the EUT is used with the PDA during the battery-charging

The worst case is the Battery mode; the results correspond to this mode.

See graphs for 30MHz-1GHz: Stella Compact Flash SCF303

H polarization graph#2 (See annex 1)
V polarization graph#3 (See annex 1)

3.3.3. Characterization on 10 meters open site below 30 MHz

The product has been tested according to ANSI C63.4 (2003), FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C §15.225 limits in the frequency range 13.553MHz 13.567MHz. Measurement bandwidth was 9kHz.

Antenna height was 1m for both horizontal and vertical polarization.

Antenna was rotated around its vertical axis.

Continuous linear turntable azimuth search was performed with 360 degrees range.

3 axis measurements were performed for the equipment. (Vertical axis is the worst case)

A summary of the worst case emissions found in all test configurations and modes is shown on clauses 3.2.

Frequency (MHz)	QPeak Limit (dBµV/m) @ 30m		QPeak-Limit (Margin dB)	Turntable Angle (deg)	Angle (deg)	Axis EUT	Tot Corr (dB)
13.56 * ¹	84.0	32.6	-51.4	120°	0°	V	37.9
27.12	29.5		N	NT			39.7

NT: Not Traceable

^{*1:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@30m = M@10m-19.1dB)

Page: 7 / 24

Limits Sub clause §15.225

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
13.553-13.567	15 848 84 dBµV/m	30
13.410-13.553	334	30
13.567-13.710	50.5 dBµV/m	30
13.110-13.410 13.710-14.010	106 40.5 dΒμV/m	30

See chapter 5 of this test report for band edge measurements.

3.3.4. Characterization on 10 meters open site from 30MHz to 1GHz

The product has been tested according to ANSI C63.4 (2003), FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C §15.209 limits. Measurement bandwidth was 120kHz from 30 MHz to 1GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

3 axis measurements were performed for the equipment. (Vertical axis is the worst case)

A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.2.

No	Frequency (MHz)	QPeak Limit (dBµV/m)	•	Qpeak-Limit (Margin, dB)		Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	40.68	40.0	36.8	-3.2	140	V	140	12.3	
2	54.219	40.0	36.3	-3.7	310	V	280	12.2	
3	67.788	40.0	30.0	-10.0	320	V	230	10.4	
4	81.277	40.0	24.3	-15.7	300	V	360	8.6	
5	108.572	43.5	22.0	-21.5	320	V	100	15.2	
6	298.316	46.0	38.0	-8.0	155	V	130	17.7	
7	325.422	46.0	39.5	-6.5	210	V	130	18.1	
8	935.645	46.0	32.1	-13.9	180	V	100	29.6	

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

RESULTS: PASS

Page: 8 / 24

3.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m = Common Antilogarithm [(32dB<math>\mu V/m$)/20] = 39.8 $\mu V/m$.

Page: 9 / 24

4. CONDUCTED EMISSION DATA

4.1. CLIMATIC CONDITIONS

Date of test : April 18th, 2008

Test performed by : Laurent CHAPUS / Anthony MERLIN

Atmospheric pressure : 970mb Relative humidity : 35% Ambient temperature : 20℃

4.2. SETUP FOR CONDUCTED EMISSIONS MEASUREMENT

The product has been tested according to ANSI C63.4-(2003) and FCC Part 15 subpart C.

The product has been tested with 110V/60Hz power line voltage and compared to the FCC Part 15 subpart C §15.207 limits. Measurement bandwidth was 9kHz from 150 kHz to 30 MHz.

Measurement is made with a Rohde & Schwarz ESU8 receiver in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H.

The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

4.3. TEST SETUP

The EUT is placed on a table at 0.8m height. The cable has been shorted to 1meter length. The EUT is powered trough the LISN (measure).

Page: 10 / 24

4.4. TEST SEQUENCE AND RESULTS

Measurements are performed on the phase (L1) and neutral (N) of power lines of the battery charger. A measurement is also performed with a 50Ω dummy load replacing the transmitter antenna in order to demonstrate that some 13.56MHz may be cross-coupled to AC line connection.

Graphs are obtained in PEAK detection.

Measures are also performed in Quasi-Peak and Average for any strong signal.

SCF303:

Measure on L1: graph Emc#1 (see annex 1)
Measure on N: graph Emc#2 (see annex 1)

Dummy load (50 Ω) replacing the antenna:

Measure on L1: graph Emc#3 (see annex 1)
Measure on N: graph Emc#4 (see annex 1)

RESULT: PASS

5. FUNDAMENTAL FREQUENCY TOLERANCE (15.225E)

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency when the temperature is varied from -20% to +50% at the no minal power voltage and the primary power voltage is varied from 85% to 115% of the rated supply voltage at 20%.

5.1. Temperature and voltage fluctuation

The Frequency Stability test is not performing while device was powered via AC line because the product is powered by the PDA which is supplied by the charger; the worst case is if the PDA voltage is varied. Moreover, the normal using of the product is not during the battery charging.

Temperature has been set at +20°C, -20°C and +50°C.

Voltage: Battery (Fully charged) Frequency of carrier: 13.56 MHz Upper limit: 13.561356 MHz Lower limit: 13.558644 MHz

Temperature	-20℃	20℃	+50℃
Voltage			
Mains voltage: Battery			
Frequency drift (MHz)	-0.000053	REF	-0.000012
Carrier level (dB)	-0.8	REF	-0.5

Frequency drift measured is 53Hz when the temperature is varied from -20℃ to +50℃.

RESULTS: PASS

6. BAND-EDGE COMPLIANCE §15.209

6.1. CLIMATIC CONDITIONS

Date of test : July 17th, 2008

Test performed by : A.MERLIN / L.CHAPUS

Atmospheric pressure : 990mb Relative humidity : 43% Ambient temperature : 23℃

6.2. EQUIPMENT CONFIGURATION

The system was configured for testing in a permanent emitted mode with normal modulation.

6.3. Frequency band 13.110-14.010MHz

Following plots show radiated emission level in the frequency band 13.110-14.010MHz with a RBW of 9kHz and a quasi-peak detector.

The graphs are obtained with a measuring receiver ESU8.

See Graph EMR#1

RESULTS: PASS

RAPPORT D'ESSAI / TEST REPORT N° 200803-4369CR-R1-E Page : 14 / 24

	RADIATED EMISSIONS	Test configuration:
aph name:	Emr#1	
oltage	Battery	
BW / Detector	9kHz / Quasi-Peak	
O.	9KHZ / Quasi-Peak	
-20		14.56MH.
12.56MHZ		Fréquence 14.56MH;

Page: 15 / 24

7. ANNEX 1 (GRAPHS)

	SSIONS (Pre-characteriza	illon at Sineters)	Test configuration:	
raph name:	graph#1		\dashv	
ntenna polarization	Parallel		4	
equency band	9kHz-30MHz		4	
zimuth:	90°		4	
BW / VBW :	9kHz / 30kHz			
200				
dBμV/m				
			<u> </u>	
		Mushell war	phoneury much make manus man de mantena	
	" "WW Phalland Male		the second to the harmon and a second a	valturansum and other manufactures
0	" "IIVANIA A TINANA TANDA			
-10				
9kHz		Fréquence		30MHz
		. ,		
	Frequency	(MHz) Peak (dB	μV/m)	
	13.56	51.1		
arker is carrier frequency		<u> </u>		

RAPPORT D'ESSAI / TEST REPORT N° 200803-4369CR-R1-E Page : 16 / 24

	F	RADIAT	ED E	MISS	ION	S (3	me	ters pre-scan)			Tes	t config	uration	<u></u>		-		
raph	name:			grap	h#2													
ntenn	a polaris	ation		Hori	zont	tal												
reque	ncy band	ł		30M	Hz –	- 1G	Hz											
zimut	:h:			Fron	n 0°1	to 3	60°	(Max-hold mea	suren	nent)								
BW /	VBW:			120k	Hz /	300	0kH	lz										
100 μV/m																		
																		-
																		_
						-												
																		داد.
								Wyddylyn W Warfen fer fel fell fel							h in	Marak	My	Myndi
		Ŷ												سسا ال	Maylla	Manufa 101		
			Ŷ										m my	MMM				
				Ŷ				•		L. I. M	a u Mala a	White Millian	ri gi in					
						l	l a		wallywlly	MMMM, MW,	Man 1. M	γv						
		المدارية		Humanylly	MM.			A TOTAL AND A TOTAL AND A STATE OF THE STATE	<u> </u>									
	MATERIAL PORTOR	M1/m/MV/1/1	Y .		[INWM	WW	YVM	I wakilih Mark I I zaman . I										
	MAN da men.																	
0.	20.01.01																	
	29.9MHz							Fr	équence							1	.00001	IGHZ
						E-	00'	IODOV (MUz)	Do	ak (dBµV	//m\	7						
					\vdash	-r	c qt	ency (MHz) 40.7	rea	ак (авµv 25.22	7111)	-						
					\vdash			54.26		22.42		\dashv						
					-			67.82		18.16		-						
					\vdash			143.78		17.39		-						
					<u> </u>			. 10.70		. 7 .00		_						

RAPPORT D'ESSAI / TEST REPORT N° 200803-4369CR-R1-E Page : 18 / 24

	CONDUCTED EMIS	SSIONS	<u>Test c</u> on	figuration:
Graph name:	Emc#1			
Voltage / Frequency	110Vac/60Hz			
Line/Port	Phase L1			
RBW / VBW :	9kHz / 30kHz			
100 dBµV				The the transfer of the transf
0				30MHz
•		Fréquence		
Frequency (MHz) 0.195 1.435 2.935 8.085	QPeak (dBμV) (dBμV) 45.15 63.82 32.35 56 31.49 56 33.4 60	(dBµV) (dB -18.67 37 -23.65 28 -24.51 28 -26.6 30	vg Lim Avg βμV) (dBμV) .95 53.82 .55 46 .79 46 0.9 50	Avg-LimAvg (dBµV) -15.87 -17.45 -17.21 -19.1
8.085 13.56*	33.4 60 72.21 60	-26.6 30	0.9 50 .81 50	-19.1 21.81

RAPPORT D'ESSAI / TEST REPORT N° 200803-4369CR-R1-E Page : 20 / 24

	CONDUCTED EMIS	SSIONS	Test configu						
Graph name:	Emc#3			measurement with dummy load					
Voltage / Frequency	110Vac/60Hz		replacing th	e RF antenna					
Line/Port	Phase L1								
RBW / VBW :	9kHz / 30kHz								
		Fréquence							
Frequency (MHz) 0.195 1.435 2.935 8.085 13.56	QPeak (dBμV) (dBμV) 45.15 63.82 32.35 56 31.49 56 32.5 60	QPeak-LimQPeak (dBμV) -18.67 37.95 -23.65 28.55 -24.51 28.79 -26.6 30.9 -27.5 30.7	53.82 46	Avg-LimAvg (dBµV) -15.87 -17.45 -17.21 -19.1					

Page: 22 / 24

8. TEST EQUIPMENT LIST

	N°LCIE	TYPE	COMPANY	REF	SN
RADIATED	EMISSION MEAS	SUREMENT (SEMI-ANECHOIC CHAMB	BER #1)		
	A5329032VO	Absorption clamp	LUTHI	MDS21	2826
	A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	194.0100.50
	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	222033
	A7102019VO	Amplifier 9 KHz – 1300 MHz	HEWLETT PACKARD	8447F Opt 64	3113A06394
	A7105006VO	Amplifier 9 KHz – 1300 MHz	HEWLETT PACKARD	8447D Opt 64	
Х	C2040145VO	Antenna Bi-Log XWing	TESEQ	CBL6144	25903
	C2042027VO	Antenna horn	EMCO	3115	6382
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	BBHA9170232
Х	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	690234
X	F2000407	Antenna mast	MATURO Gmbh	AM 4.0	/037/1270308
X	A5329189VO	Cable EMI (s-Anechoic chamber)		7.111.110	700171210000
	A5329192VO	Cable Radiat EMI			
X	A5329198VO	Cable Radiat EMI			
X	A2642019VO	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	100131
X			SIEPEL	E306	100131
^	D3044016VO	Semi-Anechoic chamber #1	HEWLETT PACKARD	05005	0.40000507
	A4060033VO	Spectrum Analyzer 9KHz – 12.8GHz		8596E	3409u00537
	A4060018VO	Spectrum Analyzer 9KHz – 26.5GHz	HEWLETT PACKARD	8593E	3409u00537
	A4060016VO	Spectrum analyzer 9kHz –1.8GHz	HEWLETT PACKARD	8591E	3536A00384
	A4049060VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	
	A4060028VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	
	A4060029VO	Spectrum analyzer	HEWLETT PACKARD	HP8568B	
	A4060030VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	
Χ	F2000406	Turntable chamber	MATURO Gmbh	TT 2.0 SI	/053/1270308
Χ	F2000408	Turntable controller chamber	MATURO Gmbh	Multiple Control Unit	MCU/060/1270308
Х	A3169050VO	Radiated emission comb generator	BARDET	•	PR17B
RADIATED		SUREMENT (OPEN AREA TEST SITE)	Luceu	LABOOA	10000
	A5329032VO	Absorption clamp	LUTHI	MDS21	2826
	A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	194.0100.50
Χ	A4049059VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	2811A01134
	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	222033
	A7102026VO	Amplifier 8-26GHz	ALDETEC	ALS01452	1
	A7102019VO	Amplifier 9 KHz – 1300 MHz	HEWLETT PACKARD	8447F Opt 64	3113A06394
Χ	C2040050VO	Antenna biconic	EMCO	3104C	9401-4636
	C2040051VO	Antenna Bi-log	CHASE	CBL6111A	1628
	C2042027VO	Antenna horn	EMCO	3115	6382
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	BBHA9170232
Х	C2040056VO	Antenna log-periodic	EMCO	3146	2178
Х	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	690234
	F2000288VO	Antenna mast	EMCO	1050	
	C2040057VO	Antenna monopole	AH SYSTEM	SAS-551	181
Х	A5329048VO	Cable EMR OATS	SUCOFLEX	106G	553
		Cable OATS	UTIFLEX	1000	- 1000
X	A5329188VO	Cable OATS (Mast at 10m)	UTIFLEX		
	A5329166VO	Cable OATS (Mast at 1011)	UTIFLEX		
	A5329176VO	Cable OATS (Mast at 511) Cable OATS (Turntable)	UTIFLEX		
	A2640011VO	Measurement receiver 9kHz–30MHz	ROHDE ET SCHWARZ	ESH3	972079/117
X	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	100131
X	A4060027VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	2837A00784
X	A3169050VO	Radiated emission comb generator	BARDET	LIDOSCOD	PR17B
Χ	A4060017VO	Spectrum analyzer	HEWLETT PACKARD	HP8568B	2732A04155
	A4060018VO	Spectrum Analyzer 9KHz – 26.5GHz	HEWLETT PACKARD	8593E	3409u00537
	A4060016VO	Spectrum analyzer 9kHz –1.8GHz	HEWLETT PACKARD	8591E	3536A00384
X	A4060019VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	2816A16603
Χ	F2000403VO	Turntable	ETS LINDGREN	Model 2187	
Х	F2000286VO	Turntable / Antenna mast controller	ETS LINDGREN	Model 2066	
CONDUCTE	 ED MEASUREME	 NT EMISSION			
X	A5329061VO	Cable Conduct. EMI			
X	A5329060VO	Cable Conduct. EMI			
X	A3169049VO	Conducted emission comb generator	BARDET		CGPR12
^	, 10 10 00 1 3 V O	Conductor officially deficially	D, 110L1		10011012

RAPPORT D'ESSAI / TEST REPORT N° 200803-4369CR-R1-E Page : 23 / 24

	N°LCIE	TYPE	COMPANY	REF	SN
	A4040050VO	Clickmeter	SCHAFFNER	DIA1512D	22338
	A5329037VO	Current injection probe	SCHAFFNER	CIP8213	52
	A1290017VO	Current probe	SCHAFFNER	CSP9160	1097
	A5329036VO	Direct Injection Module 100 Ohms	LCIE	MID01-100 ohms	
	A5329042VO	Ferrite Tube	LUTHI	FTC 101	4485
	A1092042VO	Ferrite Tube	LUTHI	FTC101	4763
	C2320059VO	LISN	EMCO	3810/2SH	9511/1182
	C2320068VO	LISN	EMCO	3825/2	9309/2122
	C2320061VO	LISN	TELEMETER ELECTRONIC	NNB-2/16Z	98010
	C2320062VO	LISN tri-phase ESH2-Z5	RHODE ET SCHWARZ	33852.19.53	841223/008
	C2320063VO	LISN tri-phase ESH2-Z5	RHODE ET SCHWARZ	33852.19.53	841223/007
Χ	C2320123VO	LISN	RHODE ET SCHWARZ	ENV216	100037
	A2640011VO	Measurement receiver 9kHz-30MHz	ROHDE ET SCHWARZ	ESH3	972079/117
Х	A2642019VO	Measurement Receiver 20Hz - 8GHz	ROHDE & SCHWARZ	ESU8	100131
	C2320067VO	ISN 2 x 2 wires	RHODE ET SCHWARZ	ENY22	836727/015
	C2320066VO	ISN 4 wires	RHODE ET SCHWARZ	ENY41	838119/023
	C2320124VO	ISN 4 wires	TESEQ	T400A	24873
	D3044016VO	Semi-Anechoic chamber #1	SIEPEL		
	D3044017VO	Semi-Anechoic chamber #2	SIEPEL		
	D3044015VO	Semi-Anechoic chamber #3	SIEPEL		
Χ	D3044010VO	Faraday Cage	RAY PROOF		4854
Х	A4049061VO	Transient limiter	HEWLETT PACKARD	11947A	3107A01596
	A4089117VO	Voltage probe	LCIE		
ISCALLE	NOUS (CONTROL	EQUIPMENT)			
	A6440068VO	Data Logger	AGILENT	34970A	US37043935
	A2120003VO	Programable PSU, HAR/FLK	HEWLETT PACKARD	6842A	3531A00109
	A6440068VO	Data Logger Board	AGILENT	34901A	MY41037442
Χ	D1022117VO	Climatic chamber	BIA CLIMATIC	CL 6-25	200 105 6
	A7043037VO	Power supply DC 30V 10A	ELC	AL924	95/00600
	A1240170VO	Multimeter	Fluke	87	75250745
	A1240171VO	Multimeter	FLUKE	189	89770115
	A4024018VO	Oscilloscope 500 MHz	Hewlett Packard	54542C	US36040602
	A4024019VO	Oscilloscope	Hewlett Packard	54720A	7426600
Х	B4204052VO	Thermo-hygrometer	HUGER		
	A7043036VO	Power supply DC 300W / 150V-6A	SODILEC	7SDLIN/GB AUTO 300	493711
	A4083040VO	Oscilloscope 100 MHz 500Ms/s	Tektronix	TDS30-25	H712103

Page: 24 / 24

9. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Voiron Measurement of radiated electric field on the Voiron open area test site	5.07 dB	5.2 dB