

. (1)							_	
//wanthong	2. (2)	3. (1)	4. (1)	5. (64)	6. (1)	7. (1)	8. (7)	
(4) mathons			12. (4)	13. (4)	14. (1) 100 go	15. (3) Ongo	16. (4) 16. (4) 16. (4) 16. (4) 16. (4) 16. (4)	
7. (3)	18. (3)	19. (1)	20. (1)	21. (2)	22. (1)	23. (1)	24. (3)	
(2) athong	26. (28)	27. (3) thongo	28. (6)	29. (3) mongo	30. (2)			
(1)								
	$\left(\frac{2}{x}\right)^x + \left(\frac{2}{x}\right)^x \log_2 x \ dx$							
` ` `	' ' '							
$\Rightarrow x \log_2($	$\left(\frac{x}{2}\right) = \log_2 t$							
mathona	$\left(\frac{x}{2}\right) \cdot \log_2 e = \log_e t \cdot 1$							
	tiating both sides we get $x \cdot \frac{2}{x} \cdot \frac{1}{2} = \frac{1}{t} \frac{dt}{dx}$	get :						
Then solution	on is not possible as th	here is no proper subs	stitution.					
Note: This	question was bonus in	Jee Mains 2023 Apr	l session.					
(2)	dr ov v	6) 1						
$ \begin{array}{c} \text{mathons} \\ \text{Now. } I = I \end{array} $	$x^3 \left(1+x^6\right)^{\frac{2}{3}}$ athongo	/// mathongo						
	$x^7 \left(\frac{1}{x^6} + 1\right)^{\frac{2}{3}}$							
Put, $t = \frac{1}{x^6}$	$+1 \Rightarrow dt = -\frac{6}{x^7} dx$			/// mathongo	/// mathongo $\frac{1}{3}$			
	$\int rac{dt}{t^{rac{2}{3}}} = -rac{1}{2}t^{rac{1}{3}} + C$, w							
	$\frac{1}{2x^3}$ /// mathongo							
$\begin{array}{c} \text{(1)} \\ \text{Let } I = \int x \end{array}$	$e^5e^{-x^2}dx$							
	2							
$\therefore I = -\frac{1}{2}$	-							
By using in	tegrating by parts, i.e.	$\int (u \cdot v) dx = u \int v dx$	$x = \int \left[\frac{d}{dx} u \int v dx \right] dx$	x+c, we get				
	tegrating by parts, i.e. $\int e^t dt - \int (2t \int e^t dt) dt$		$x-\int \Bigl[rac{d}{dx}u\int vdx\Bigr]d$	x+c, we get				
$I=-rac{1}{2}ig[t^2 \ \Rightarrow I=-rac{1}{2}$	$\int e^t dt - \int igl(2t \int e^t dtigr) igl(t^2 e^t - 2 \int t e^t dtigr] + c$	$dtig]\!+\!c$						
$I=-rac{1}{2}igl[t^2] \ \Rightarrow I=-rac{1}{2} \ ext{Again, appl}$	$\int e^t dt - \int (2t \int e^t dt) dt$ $\left[t^2 e^t - 2 \int t e^t dt\right] + c$ ying integrating by pa	$dtig] + c$ arts, we get m_{0000}						
$I = -rac{1}{2}igl[t^2]$ $\Rightarrow I = -rac{1}{2}$ Again, appl $\Rightarrow I = -rac{1}{2}$ $\Rightarrow I = -rac{1}{2}$	$\int e^t dt - \int (2t \int e^t dt) dt = \int [t^2 e^t - 2 \int t e^t dt] + c$ ying integrating by pa $[t^2 e^t - 2(t \int e^t dt - \int [t^2 e^t - 2(t e^t - e^t)] + c$	dtig]+c arts, we get 0 arts, 0 1 1 1 1 1 1 1 1 1 1						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$	$\int e^t dt - \int (2t \int e^t dt)$ $\left[t^2 e^t - 2 \int t e^t dt\right] + c$ ying integrating by pa $\left[t^2 e^t - 2 \left(t \int e^t dt - \int t^2 e^t - 2 \left(t e^t - e^t\right)\right] + t^2 \left[t^2 e^t - 2 t e^t + 2 e^t\right] + c$	dtig]+c arts, we get 0 arts, 0 1 1 1 1 1 1 1 1 1 1						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{e^t}{2}$	$\int e^t dt - \int (2t \int e^t dt)$ $\left[t^2 e^t - 2 \int t e^t dt\right] + c$ ying integrating by pa $\left[t^2 e^t - 2\left(t \int e^t dt - \int t^2 e^t - 2\left(t e^t - e^t\right)\right] + t^2 e^t - 2t e^t + 2e^t\right] + c$ $\left[t^2 e^t - 2t e^t + 2e^t\right] + c$	$dt]+c$ arts, we get though $\int 1 \cdot e^t dt)]+c$ c						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{e^{\epsilon}}{2}$ $\Rightarrow I = -\frac{e^{\epsilon}}{2}$ Given, $I = -\frac{e^{\epsilon}}{2}$	$ \int e^t dt - \int (2t \int e^t dt) dt + c $ ying integrating by pa $ [t^2 e^t - 2 \int t e^t dt] + c $ ying integrating by pa $ [t^2 e^t - 2 (t \int e^t dt - \int [t^2 e^t - 2 (t e^t - e^t)] + [t^2 e^t - 2 t e^t + 2 e^t] + c $ $ [t^2 - 2t + 2] + c $ $ [t^2 - 2t + 2] + c $ $ \int x^5 e^{-x^2} dx = g(x) e^{-x^2} $	$dt]+c$ arts, we get though $\int 1 \cdot e^t dt)]+c$ c						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{e^t}{2}$ Given, $I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$	$\int e^{t}dt - \int (2t \int e^{t}dt) \cdot \left[t^{2}e^{t} - 2 \int te^{t}dt\right] + c$ ying integrating by pa $\left[t^{2}e^{t} - 2(t \int e^{t}dt - \int [t^{2}e^{t} - 2(te^{t} - e^{t})] + \left[t^{2}e^{t} - 2te^{t} + 2e^{t}\right] + c\right] \cdot \left[t^{2} - 2t + 2\right] + c$ $\left[t^{2} - 2t + 2\right] + c$ $\left[t^{2} - 2t + 2\right] + c$ $\int x^{5}e^{-x^{2}}dx = g(x)e^{-t} - \frac{1}{2}(x^{4} + 2x^{2} + 2)$	$dt]+c$ arts, we get mongo $\int 1 \cdot e^t dt)]+c$ c c dt mathongo dt						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{e^t}{2}$ Given, $I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$	$ \int e^t dt - \int (2t \int e^t dt) dt + c $ ying integrating by pa $ [t^2 e^t - 2 (t \int e^t dt) + c] $ ying integrating by pa $ [t^2 e^t - 2 (t \int e^t dt - \int [t^2 e^t - 2 (t e^t - e^t)] + (t^2 e^t - 2 t e^t + 2 e^t) + c] $ $ [t^2 - 2 t + 2] + c $ $ [t$	$dt]+c$ arts, we get mongo $\int 1 \cdot e^t dt)]+c$ c c dt mathongo dt						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{e^t}{2}$ $\Rightarrow I = -\frac{e^t}{2}$ Given, $I = \frac{1}{2}$ $\Rightarrow g(x) = -\frac{1}{2}$ $\Rightarrow g(-1) = \frac{1}{2}$	$ \int e^t dt - \int (2t \int e^t dt) dt + c $ ying integrating by pa $ [t^2 e^t - 2 \int t e^t dt] + c $ ying integrating by pa $ [t^2 e^t - 2 (t \int e^t dt - \int [t^2 e^t - 2 t e^t + 2 e^t] + c $ $ [t^2 e^t - 2 t e^t + 2 e^t] + c $ $ [t^2 - 2t + 2] + c $ $ [t^2 - 2t + 2] + c $ $ \int x^5 e^{-x^2} dx = g(x) e^{-\frac{x^2}{2}} [x^4 + 2x^2 + 2] + c $ $ -\frac{1}{2} (x^4 + 2x^2 + 2) $ $ -\frac{1}{2} ((-1)^4 + 2(-1)^2) $ $ -\frac{5}{2} . $	$dt]+c$ $arts$, we get thought $f(1) \cdot e^t dt = c$ c $arts$, we get thought $f(1) \cdot e^t dt = c$ $arts$						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{e^t}{2}$ $\Rightarrow I = -\frac{e^t}{2}$ Given, $I = \frac{1}{2}$ $\Rightarrow g(x) = -\frac{1}{2}$ $\Rightarrow g(-1) = \frac{1}{2}$ $\Rightarrow g(-1) = \frac{1}{2}$	$ \int e^t dt - \int (2t \int e^t dt) dt + c $ ying integrating by pa $ [t^2 e^t - 2 \int t e^t dt] + c $ ying integrating by pa $ [t^2 e^t - 2 (t \int e^t dt - \int [t^2 e^t - 2 t e^t + 2 e^t] + c $ $ [t^2 e^t - 2 t e^t + 2 e^t] + c $ $ [t^2 - 2t + 2] + c $ $ [t^2 - 2t + 2] + c $ $ \int x^5 e^{-x^2} dx = g(x) e^{-\frac{x^2}{2}} [x^4 + 2x^2 + 2] + c $ $ -\frac{1}{2} (x^4 + 2x^2 + 2) $ $ -\frac{1}{2} ((-1)^4 + 2(-1)^2) $ $ -\frac{5}{2} . $	$dt]+c$ $arts$, we get thought $f(1) \cdot e^t dt = c$ c $arts$, we get thought $f(1) \cdot e^t dt = c$ $arts$						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{e^2}{2}$ Given, $I = \frac{1}{2}$ $\Rightarrow g(x) = -\frac{1}{2}$ $\Rightarrow g(-1) = \frac{1}{2}$ $\Rightarrow g(-1) = \frac{1}{2}$	$\int e^{t}dt - \int (2t \int e^{t}dt) \cdot [t^{2}e^{t} - 2 \int te^{t}dt] + c$ ying integrating by pa $[t^{2}e^{t} - 2(t \int e^{t}dt - \int [t^{2}e^{t} - 2(te^{t} - e^{t})] + [t^{2}e^{t} - 2te^{t} + 2e^{t}] + c$ $[t^{2}e^{t} - 2te^{t} + 2e^{t}] + c$ $[t^{2} - 2t + 2] + c$ $\frac{x^{2}}{2}[x^{4} + 2x^{2} + 2] + c$ $\frac{x^{2}}{2}[x^{4} + 2x^{2} + 2] + c$ $-\frac{1}{2}(x^{4} + 2x^{2} + 2)$ $-\frac{1}{2}((-1)^{4} + 2(-1)^{2})$ $-\frac{5}{2}.$	$dt]+c$ $arts$, we get thought $f(1) \cdot e^t dt$ $f(1) \cdot e^t dt$ $f(1) \cdot e^t dt$ $f(2) \cdot e^t dt$ $f(3) \cdot e^t dt$ $f(4) \cdot e^t d$						
$I = -\frac{1}{2} \left[t^2 \right]$ $\Rightarrow I = -\frac{1}{2}$ Again, appl $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{1}{2}$ $\Rightarrow I = -\frac{e^2}{2}$ $\Rightarrow I = -\frac{e^2}{2}$ Given, $I = \frac{1}{2}$ $\Rightarrow g(x) = -\frac{1}{2}$ $\Rightarrow g(-1) = \frac{1}{2}$ $\Rightarrow g(-1) = \frac{1}{2}$	$\int e^{t}dt - \int (2t \int e^{t}dt) \cdot [t^{2}e^{t} - 2 \int te^{t}dt] + c$ ying integrating by pa $[t^{2}e^{t} - 2(t \int e^{t}dt - \int [t^{2}e^{t} - 2(te^{t} - e^{t})] + [t^{2}e^{t} - 2te^{t} + 2e^{t}] + c$ $[t^{2}e^{t} - 2te^{t} + 2e^{t}] + c$ $[t^{2} - 2t + 2] + c$ $\frac{x^{2}}{2}[x^{4} + 2x^{2} + 2] + c$ $\frac{x^{2}}{2}[x^{4} + 2x^{2} + 2] + c$ $-\frac{1}{2}(x^{4} + 2x^{2} + 2)$ $-\frac{1}{2}((-1)^{4} + 2(-1)^{2})$ $-\frac{5}{2}.$	$dt]+c$ $arts$, we get thought $f(1) \cdot e^t dt$ $f(1) \cdot e^t dt$ $f(1) \cdot e^t dt$ $f(2) \cdot e^t dt$ $f(3) \cdot e^t dt$ $f(4) \cdot e^t d$						

	t Important PYQs ver Keys and Solutions			Indefinite Integration JEE Main Crash Course
4.	(1)athongo /// mathongo /// mathongo			
	$I=\intrac{2x}{\left(x^2+1 ight)\left(x^2+3 ight)}dx$ Put $x^2=t\Rightarrow 2xdx=dt$			
	$I = \int \frac{1}{(t+1)(t+3)} dt$ $\Rightarrow I = \frac{1}{2} \int \frac{2}{(t+1)(t+3)} dt \text{ ongo} $ mathongo			
	$\begin{split} &\Rightarrow I = \frac{1}{2} \int \Bigl(\frac{1}{t+1} - \frac{1}{t+3}\Bigr) dt \\ &\Rightarrow I = \frac{1}{2} [\ln(t+1) - \ln(t+3)] + C \\ &\Rightarrow f(x) = \frac{1}{2} \bigl[\ln\left(x^2 + 1\right) - \ln\left(x^2 + 3\right)\bigr] + C \end{split}$			
	Put $x=3$, then $\frac{1}{2}[\ln 5 - \ln 6] = \frac{1}{2}[\ln 10 - \ln 12] + C$ $\frac{1}{2}[\ln 5 - \ln 6] = \frac{1}{2}[\ln 2 + \ln 5 - \ln 2 - \ln 6] + C$			
	$\Rightarrow C = 0$ So, thongo /// mathongo /// mathongo			
5.	$f(x) = \frac{1}{2} \left[\ln(x^2 + 1) - \ln(x^2 + 3) \right]$ $\Rightarrow f(4) = \frac{1}{2} (\ln 17 - \ln 19) \text{ or } f(4) = \frac{1}{2} (\log_e 17 - \log_e 17)$ (64)	te 19) ///. mathongo		
	$\int \sqrt{\frac{x+7}{x}} dx$ Put $x = t^2$ /// mathongo /// mathongo			
	$\mathrm{dx} = 2\mathrm{tdt} \ \int 2\sqrt{t^2+7}dt = 2\int \sqrt{t^2+\sqrt{7^2}}dt$			
	$I(t) = 2\left[\frac{t}{2}\sqrt{t^2 + 7} + \frac{7}{2}\ln\left t + \sqrt{t^2 + 7}\right \right] + C$			
	$I(x) = \sqrt{x}\sqrt{x+7} + 7 \ln \sqrt{x} + \sqrt{x+7} + C$ $I(9) = 12 + 7 \ln 7 = 12 + 7(\ln(3+4)) + C$ $\Rightarrow C = 0$ $I(x) = \sqrt{x}\sqrt{x+7} + 7 \ln(\sqrt{x} + \sqrt{x+7}) \text{ athongo}$			
	$I(1) = 1\sqrt{8} + 7\ln(1+\sqrt{8})$ $I(1) = \sqrt{8} + 7\ln(1+2\sqrt{2})$ $\alpha = \sqrt{8}$ mathongo mathongo			
	$ \alpha^4 = (8^{1/2})^4 $ $ \alpha^4 = 8^2 = 64 $ mathongo mathongo			
6.	(1) Given, $I(x) = \int \frac{x+1}{x\left(1+xe^{x}\right)^{2}} dx \text{ athongo } \text$			
	Now let $1+xe^x=t$ $\Rightarrow e^x(x+1)dx=dt$ So, $I(x)=\int \frac{1}{(t-1)t^2}dt$			
	So, $I(x) = \int \frac{1}{(t-1)t^2} dt$ $\Rightarrow I(x) = \int \frac{(1-t^2)+t^2}{(t-1)t^2} dt$ $\Rightarrow I(x) = \int \frac{-(t+1)}{(t+1)} + \frac{1}{t-1} dt$ $\Rightarrow I(x) = \int \frac{-(t+1)}{t^2} + \frac{1}{t-1} dt$ mathongo			
	$Arr I(x)=\int -rac{1}{t}-rac{1}{t^2}+rac{1}{t-1}dt \ Arr I(x)=-\ln t+rac{1}{t}+\ln (t-1)+C$			
	Also given, $\lim_{x \to x_{+}} I(x) = 0$			
	$\Rightarrow \lim_{x \to \infty} I(x) = \lim_{x \to \infty} \left[\ln \left(1 - \frac{1}{xe^x + 1} \right) + \frac{1}{xe^x + 1} + C \right]$ $\Rightarrow \lim_{x \to \infty} I(x) = \left[\ln(1 - 0) + 0 + C \right]$ $\Rightarrow C = 0$			
	\Rightarrow $C=0$ mathongo mathongo Now finding, $I(1)=\ln\Bigl(rac{e}{e+1}\Bigr)+rac{1}{e+1}=1+rac{1}{e+1}-\ln\Bigl(e+1\Bigr)$			
	$\Rightarrow I(1) = \frac{e+2}{e+1} - \ln(e+1) $ mathongo			

Answer Keys and Solutions

Answer Keys and Solutions

Answer Keys and Solutions				JEE Main Crash Course
15. (3) mathons $d\theta$				
$\int \frac{\sec^2 \theta}{\frac{1+\tan^2 \theta}{1-\tan^2 \theta} + \frac{2-\tan \theta}{1-\tan^2 \theta}} d\theta$ $= \int \frac{\sec^2 \theta \left(1-\tan^2 \theta\right)}{\left(1+\tan \theta\right)} d\theta$				
$=\int \frac{\sec^2\theta(1-\tan\theta)}{1+\tan\theta}d\theta$ Let $\tan\theta=t\Rightarrow\sec^2\theta d\theta=dt$ $=\int \left(\frac{1-t}{1+t}\right)dt=\int \left(-1+\frac{2}{1+t}\right)dt$				
$= -t + 2\ln(1+t) + C$ = $-\tan\theta + 2\ln(1+\tan\theta) + C$				
$\Rightarrow \lambda = -1 \text{ and } f(\theta) = 1 + \tan \theta$ 16. (4) Let, $\sin x = t$				
$\cos x dx = dt$ $I = \int \frac{dt}{t^3 \left(1 + t^6\right)^{\frac{2}{3}}} = \int \frac{dt}{t^7 \left(1 + \frac{1}{d_5}\right)^{\frac{2}{3}}}$				
Put $1 + \frac{1}{t^6} = r^3$ $\Rightarrow \frac{dt}{t^7} = \frac{-1}{2}r^2 dr / \text{mathongo}$				
$egin{align} I = -rac{1}{2} \int rac{r^2 dr}{r^2} &= -rac{1}{2} r + c \ & \Rightarrow I = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\sin^6 x + 1}{\sin^6 x} ight)^rac{1}{3} + c \ & = -rac{1}{2} \left(rac{\cos^6 x + 1}{\sin^6 x} + rac{\cos^6 x + 1}{3} + rac{\sin^6 x + 1}{3} + rac{\cos^6 x + 1}{3} + rac$				
$\Rightarrow I = -rac{1}{2\sin^2x} (1+\sin^6x)^{rac{1}{3}} + c$ So, $f(x) = -rac{1}{2} \mathrm{cosec}^2x$ and $\lambda = 3$ $\lambda f \left(rac{\pi}{3} ight) = -2$				
7. (3) $I = \int \frac{2x^3 - 1}{x^4 + x} dx \text{ mathongo } I$				
$\Rightarrow I=\intrac{2x-rac{1}{x^2}}{x^2+rac{1}{x}}dx$ Put, $x^2+rac{1}{x}=t$ \Rightarrow $\left(2x-rac{1}{x^2} ight)dx=dx$	t mathongo			
$I = \int \frac{dt}{t} = \log_e(t) + C$ $= \log_e\left(x^2 + \frac{1}{x}\right) + C$ $= \log_e\left(x^3 + 1\right) + C$				
$= \log_e \left \frac{(x^3+1)}{x} \right + C$ 18. (3) uthongo /// mathongo //				
Given integral can be written as $I = \int \frac{\sec^2 x}{(\tan x)^{\frac{4}{3}}} dx$ Let $\tan x = t$				
Let $\tan x = t$ $\Rightarrow \sec^2 x dx = dt$ $\Rightarrow I = \int t^{-\frac{4}{3}} dt$ Using $\int_1^x x^n dx = \frac{x^{n+1}}{n+1} + C$, we get				
Using $\int x^n dx = \frac{x^{n+1}}{n+1} + C$, we get $I = \frac{t^{-\frac{1}{3}}}{\left(-\frac{1}{3}\right)} + C$ mathongo				
$\Rightarrow I = -\frac{3}{t^{\frac{1}{3}}} + C$ $\Rightarrow I = -3\tan^{-\frac{1}{3}}x + C.$				

Answer Keys and Solutions

Allow	or Reys and Goldhons				OLL Main Grasii Gourse
19.	(1)athongo /// mathongo ///				
	We have, $I=\intrac{\sinrac{3x}{2}}{\sinrac{x}{2}}dx$				
	$=\intrac{\sin\left(2\mathrm{x}+rac{\mathrm{x}}{2} ight)}{\sinrac{x}{2}}dx$				
	Using $\sin(A+B) = \sin A \cos B + \cos A \cos B$	$A\sin B$			
	$= \int \frac{\sin 2x \cos \frac{x}{2} + \cos 2x \sin \frac{x}{2}}{\sin \frac{x}{2}} dx$ $= \int \left((2 \sin x \cos x) \cos \frac{x}{2} \right)$				
	$= \int \left(\frac{(2\sin x \cos x)\cos\frac{x}{2}}{\sin\frac{x}{2}} + \cos 2x \right) dx$	math\nao //			
	$= \int \left(\frac{\sin \frac{x}{2}}{\sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) \cos x \cos \left(\frac{x}{2}\right)} + \int \left(\frac{2\left(2\sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)\right) \cos x \cos \left(\frac{x}{2}\right)}{\sin \frac{x}{2}} + \right) \right) dx$				
	$=\int \Bigl(4\cos^2\Bigl(rac{x}{2}\Bigr)\cos x + \cos 2x\Bigr)dx$ Using $\cos 2x = 2\cos^2 x - 1 \Rightarrow 2\cos^2 x$	mathongo //			
	Using $\cos 2x = 2\cos^2 x - 1 \Rightarrow 2\cos^2 x$ $= \int (2(1+\cos x)\cos x + \cos 2x)dx$	$x = 1 + \cos 2x$			
	$= \int (2\cos x + 2\cos^2 x + \cos 2x)dx$ $= \int (2\cos x + (1 + \cos 2x) + \cos 2x)dx$				
	$=\int (2\cos x+2\cos 2x+1)dx$				
	$=2\sin x+\sin 2x+x+c$, where c is t (1) $A(x)\left(\sqrt{1-x^2}\right)^m+C=\intrac{\sqrt{1-x^2}}{x^4}c$		egration.		
	Let $rac{1}{x^2}\overset{x^2}{-}1=u^2$				
	$\Rightarrow at - \frac{2}{x^3} = \frac{2udu}{dx} \text{mathongo} \text{//} \frac{dx}{x^3} = -udu$				
	$A(x)\Big(\sqrt{1-x^2}\Big)_3^m+C=\int \left(-u^2 ight)du$:	$= -\frac{u^3}{3} + C$ mathongo //			
	$=-\frac{1}{3}\left(\frac{1}{x^2}-1\right)^{-1}+C$				
	$= -rac{1}{3} \cdot rac{1}{x^3} \cdot \left(1 - x^2 ight)^{rac{3}{2}} + C \ = rac{-1}{3x^3} \left(\sqrt{1 - x^2} ight)^3 + C$				
	Compare both sides, $\Rightarrow A(x) = -rac{1}{3x^3} ext{ and } m = 3$				
	$\Rightarrow A(x) = \frac{3x^3}{3x^3}$ and $m = 0$ $\Rightarrow (A(x))^3 = \frac{-1}{27x^9}$				
21.	(2) $I(x) = \int \frac{e^{\sin x \cdot \sin 2x}}{II} \cdot \frac{\cos x}{I} dx - \int e^{\sin x \cdot \sin 2x} dx$	$\int_{-\infty}^{n^2x} \cdot \sin x dx$			
	$\Rightarrow I(x) = e^{\sin^2 x} - \int (-\sin x) \cdot e^{\sin^2 x}$ $\Rightarrow I(x) = e^{\sin^2 x} - \cos x + c$	•			
	$\Rightarrow I(x) = e^{\sin^2 x} \cdot \cos x + c$ Put $x = 0, c = 0$				
	$\therefore I\left(\frac{\pi}{3}\right) = e^{\frac{3}{4}} \cdot \cos\frac{\pi}{3} = \frac{1}{2}e^{\frac{3}{4}}$ mathongo /// mathongo ///				

Hence, possible choice is $f(x) = \sec x + \tan x + \frac{1}{2}$.

mathongo ///. mathongo ///.

