Propriété: indépendance linéaire

Si QEIR^{ner} est symétrique définie positive et d₁,..., d_k EIRⁿ sont Q-conjugués, alors ils sont lineairement indépendants

Preuve: par contraposition, supposons $d_k = d_1d_1 + ... + \alpha_{k-1}d_{k-1}$ awec $(d_1, ..., d_{k-1}) \neq 0$ Alors $0 < d_k^{\top} Q d_k$ (Q definie positive) $(d_k^{\top} Q (d_1d_1 + ... + d_{k-1}d_{k-1}) = \alpha_1 d_k^{\top} Q d_1 + ... + d_{k-1}d_1^{\top} Q d_{k-1}$ $d_k^{\top} Q (d_1d_1 + ... + d_{k-1}d_{k-1}) = \alpha_1 d_k^{\top} Q d_1 + ... + d_{k-1}d_1^{\top} Q d_{k-1}$ $d_k^{\top} Q (d_1d_1 + ... + d_{k-1}d_{k-1}) = \alpha_1 d_k^{\top} Q d_1 + ... + d_{k-1}d_1^{\top} Q d_{k-1}$

On en reviert à la minimisation de $\frac{1}{2}x^TAx - b^Tx$:

$$x^* = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} x^{\mathsf{T}} f x - b^{\mathsf{T}} x \iff \nabla f(x^*) = 0$$

$$x \in \mathbb{R}^n \stackrel{1}{2} x^{\mathsf{T}} + b = 0$$

 \Rightarrow x^* est solution du ys stème l'inéaire Ax = b: $Ax^* - b = 0 \Rightarrow Ax^* = b$

La propriété d'indépendance linéaire nous dit que si do, ...dn., Sont des vecteurs A-conjugués, ils forment une base de 1R^ (car famille libre de n'vecteurs)

On peut donc éaire $x^* = d_0d_0 + ... + d_{n-1}d_{n-1} = \sum_{i=0}^{n-1} d_id_i$ pour des poids d_i $d_i^T A x^* = d_i^T A \left(d_0d_0 + ... + d_{n-1}d_{n-1} \right) = d_0d_i^T A d_0 + ... + d_{n-1}d_i^T A d_{n-1}$ $d_i^T A d_i$ puisque $d_i^T A d_i^T = 0$ ($d_i^T A d_i^T = 0$) ($d_i^T A d_i^T = 0$)

$$\Rightarrow \forall i = \frac{di^T A x^*}{di^T A di} = \frac{di^T b}{di^T A di}$$
 prisque $A x^* = b$

_s si on connaît les directions di, on peut trauver les poids x; = $\frac{d^Tb}{d^T_i Ad^T_i}$ associés Sans avoir besoin de connaître x* ni

Et
$$x^* = \sum_{i=0}^{n-1} d_i d_i = \sum_{i=0}^{n-1} \left(\frac{d_i^T b}{d_i^T A d_i} \right) d_i = \frac{d_0^T b}{d_0^T A d_0} d_0 + \dots + \frac{d_{n-1}^T b}{d_{n-1}^T A d_{n-1}} d_{n-1}$$

- o x * peut se construire itérativement en n étapes, en rajoutant à chaque fois didi à l'itération précédente si on connaît di (auquel cas di = di Tb)

Théorème des directions conjuguées

Soiet do,..., dn., EIR des vecteurs A-conjugués et 20 EIR. Alors les éterations suivantes:

-0
$$g_k = \nabla f(x_k) = Ax_k - b$$

-0 $d_k = -\frac{g_k^T d_k}{d_k^T A d_k}$ (pas optimal de la descrite de gradient)

- xk+1 = xx+ dxdx

Convergent en n étérations: $x_n = x^*$ Solution de $Ax^* = b$ ((=) $\nabla f(x_0^*) = 0$)

⇒ On re soit toujours pas comment trouver de en pratique (pour le moment), mais la convergence est garantire en n'itérations peu importe xo € 18° !

Choix de la direction de descrite: la direction de est construite à partir du gradient 94 = 78(504) et de la direction précédente de 1

-
$$\beta_k$$
 est donné par d_{k-1} $\uparrow Ad_k = 0 = d_{k-1}$ $\uparrow A(-g_k + \beta_k d_{k-1})$
 $\Leftrightarrow -d_{k-1}$ $\uparrow Ag_k + \beta_k d_{k-1}$ $\uparrow Ad_{k-1} = 0$

Une fois la nouvelle direction de obteure, on construit le prochain êteré avec $x_{k+1} = x_k + d_k d_k$ (la première direction do est donnée par do = -go = - $\nabla f(x_0)$)

On obtient ainsi la version finale de l'algorithme du gradient conjugué

Algorithme du gradient conjugué (cas quadratique)

Tritialisation:
$$\infty \in \mathbb{R}^n$$
; $g_0 = \nabla f(\infty) = A\infty - b$; $d_0 = -g_0$; $d_0 = -\frac{g_0^* d_0}{d_0^* A d_0}$
 $x_1 = \infty + d_0 d_0$

Bouch: pour k=1,.., n-1

$$g_k = \nabla f(x_k) = Ax_k - b$$
 gradier au point actuel

 $g_k = \frac{d_{k-1} Ag_k}{d_{k-1} Ad_{k-1}}$ coefficient pour que la nouvelle direction de descente soit A-conjuguée à la préadente

 $g_k = \frac{d_{k-1} Ag_k}{d_{k-1} Ad_{k-1}}$ coefficient pour que la nouvelle direction de descente soit A-conjuguée à la préadente

 $g_k = \nabla f(x_k) = Ax_k - b$ coefficient pour que la nouvelle direction de descente (avec momentum)

$$dk = -\frac{dk^Tgk}{dk^TAdk}$$
 pas de desarte optimal

_ C'algorithme a convergé lorsque och = och, c'est à dire och = och

Si f n'est plus quadratique: on peut toujours utiliser le gradient conjugué, mais:

- il n'y a plus la garatie que ca converge en n iterations. Dans ce cas, on refance n iterations supplémentaires en prenant comme ses le point terminal sen des n iterations précédentes
- _ même si la mise à jour $x_{k+1} = x_k + x_k d_k$ reste la même, il n'est plus possible d'utiliser $x_k = \frac{g_k T g_k}{d_k T A d_k}$ (formule du pas optimal dans le cas quadratique)
 - de est déterminé par la règle d'Armijo
- _ la direction conjuguée reste la même: dk = -9k + Bkdk_, avec deux formules possibles pour Bk