얼음 파괴모드 가시화 기반 기술 개발

최종보고회의 2019.01.29

충남대학교 메카트로닉스 공학과 강한솔

Contents

1. 서론

2. 얼음 파괴모드 가시화

3. 실험 결과

4. 결론

Contents

1. 서론

2. 얼음 파괴모드 가시화

3. 실험 결과

4. 결론

1. 서 론

1. **서론**

- >> 최근 시간과 비용을 절약할 수 있는 북극 항로에 대한 관심이 높아짐.
- >> 동일한 조건으로 얼음을 생성하고, 동일 압력으로 파괴를 가하더라도 그 특성이 매번 상이함.
- >> 이러한 얼음 파괴 특성을 분석하기 위해 다양한 방법들이 제안되었지만, 얼음 균열을 직접적으로 시각화 하기에는 용이하지 않음.

https://news.joins.com/article/21876796

Contents

1. 서론

2. 얼음 파괴모드 가시화

3. 실험 결과

4. 결론

2. 얼음 파괴모드 가시화

얼음의 특성 분석

얼음 크랙 전파 알고리즘

얼음 영역 식별을 위한 세그멘테이션 알고리즘

● 얼음의 특성 분석

- 얼음의 특성 분석
 - 색상 특성 분석

RGB 색공간

$$H = \cos^{-1} \frac{0.5[(R-G)+(R-B)]}{\sqrt{(R-G)^2+(R-B)(G-B)}}$$

$$S = \frac{Max(R,G,B) - Min(R,G,B)}{Max(R,G,B)}$$

$$V = \frac{Max(R, G, B)}{255}$$

- 얼음의 특성 분석
 - 색상 특성 분석

- 얼음의 특성 분석
 - 조명 위치 분석

기존의 조명 위치*

관측 결과

^{*} Qi, Chunfeng, et al. "Dynamic Compressive Strength and Failure of Natural Lake Ice Under Moderate Strain Rates at Near Melting Point Temperature." Latin American Journal of Solids and Structures 14.9 (2017): 1669-1694.

- 얼음의 특성 분석
 - 조명 위치 분석

기존의 조명 위치

: 조명을 직접적으로 배치하여 영상의 열화가 발생함

동일한 얼음 표면에서 다양한 밝기값을 가짐.

: 조명을 간접적으로 배치하여 영상의 열화를 줄임.

동일한 얼음 표면에서 비슷한 수준의 밝기값을 가짐.

- 얼음 크랙 전파 알고리즘
 - 단순한 경계 검출기를 이용한 얼음 크랙 검출(소벨 연산자)

Z_1	Z_2	Z_3
Z_4	<i>Z</i> ₅	z_6
Z_7	Z_8	Z 9

각 픽셀 위치

[그래디언트 정의]

$$g_x = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$

$$g_{y} = (z_{7} + z_{8} + z_{9}) - (z_{1} + z_{2} + z_{3})$$

[소벨 연산자]: 중심에 가중치를 둔 그래디언트

-1	0	+1
-2	0	+2
-1	0	+1

-1	-2	-1
0	0	0
+1	+2	+1

X 방향

Υ 방향

- 얼음 크랙 전파 알고리즘
 - 단순한 경계 검출기를 이용한 얼음 크랙 검출(케니 엣지)

Non-maximum suppression : 주변과 비교하여 최대가 아닌 값은 억제함.

Orientation

20	60	80	60	20
20	70	80	60	20
20	60	80	60	20
20	70	80	60	20
20	60	80	60	20

Hysteresis thresholidng: 강한 경계만 살림. (단, 강한 경계와 연결되어 있는 약한 경계는 살림.

- 얼음 크랙 전파 알고리즘
 - 단순한 경계 검출기를 이용한 얼음 크랙 검출

소벨 결과

케니 엣지 결과

- 얼음 크랙 전파 알고리즘
 - 프레임 누적과 케니 엣지를 이용한 얼음 크랙 검출

제안하는 프레임 누적 기법

f : 영상열

X: 누적한 프레임으로 생성된 영상

l : 누적하는 프레임 수

 n_o : 겹치는 프레임 수

 δ : 차분 영상

S: 처리하는 프레임 간격

$$FPS_{out} = \frac{FPS_{in}}{S}$$

: 사용자 정의 변수

- 얼음 크랙 전파 알고리즘
 - 프레임 누적과 케니 엣지를 이용한 얼음 크랙 검출

$$l = 2, n_o = 1, s = 1$$
 일 때

제안하는 프레임 누적 기법 예시

- 얼음 크랙 전파 알고리즘
 - 프레임 누적과 케니 엣지를 이용한 얼음 크랙 검출

```
Algorithm 1: ICP(Ice Crack Propagation), our proposed algorithm. Experiment in the paper using the default values s=1, l=5, n_o=0, \Delta new=100, \Delta old=20, C=2.5

1 function ICP (f,s,l,n_o);
Input: The input video sequence f, the number of frames in progress
```

Input: The input video sequence f, the number of frames in progress s, level of cumulative sum l (i.e the number of frames to accumulate.), and the number of overlapping frames between the previous frame and the current frame n_o

Output: A crack detection image.

```
2 for n <= 2 \times l - n_o do
3 | if n < 2 \times l - n_o then
4 | if n < l then
5 | x_{prev} + = f_n
6 | end
7 | if n >= l - n_o then
8 | x_{current} + f_n
9 | end
```

```
else
10
           x_{diff} = x_{current} - x_{prev}
11
           x_{canny}(i,j) = Canny(x_{diff})
12
           if x_{canny}(i,j) > 0 then
13
               Map(i,j) + = \Delta new
14
           else if x_{canny}(i,j) == 0 and Map(i,j) > 0 then
15
               Map(i, j) - = \Delta old
16
           else
17
               Map(i,j) = 0
18
           end
19
           if Map(i,j) > 0 then
20
               x_{out}^{R}(i,j) = C \times Map(i,j)
21
              x_{out}^G(i,j) = 0
22
               x_{out}^B(i,j) = C \times (\Delta new - Map(i,j))
23
24
           end
25
       end
26 endfor
```


- 얼음 크랙 전파 알고리즘
 - 프레임 누적과 케니 엣지를 이용한 얼음 크랙 검출

 $\Delta new = 100, \Delta old = 20, C = 2.5$ 일 때

Different point 1

Different point 2

▷ Different point 3

- 얼음 크랙 전파 알고리즘
 - 프레임 누적과 LoG를 이용한 얼음 크랙 검출

```
10
Algorithm 2: ICP2(Ice Crack Propagation using LoG), our proposed al-
                                                                                                x_{current}^{LoG} = LoG(x_{current})
                                                                                      11
gorithm. Experiment in the paper using the default values s = 1, l =
                                                                                                x_{prev}^{LoG} = LoG(x_{prev})
                                                                                      12
5, n_0 = 0, \Delta new = 100, \Delta old = 20, C = 2.5
                                                                                                x_{diff}(i,j) = x_{current}^{LoG} - x_{prev}^{LoG}
                                                                                      13
1 function ICP2 (f, s, l, n_o);
                                                                                                if x_{canny}(i,j) > 0 then
                                                                                      14
  Input: The input video sequence f, the number of frames in progress
                                                                                                    Map(i, j) + = \Delta new
                                                                                      15
             s, level of cumulative sum l (i.e the number of frames to
                                                                                                 else if x_{canny}(i,j) == 0 and Map(i,j) > 0 then
                                                                                      16
             accumulate.), and the number of overlapping frames between
                                                                                                    Map(i, j) - = \Delta old
                                                                                      17
             the previous frame and the current frame n_o
                                                                                                 else
                                                                                      18
  Output: A crack detection image.
                                                                                                    Map(i,j) = 0
                                                                                      19
2 for n \le 2 \times l - n_o do
                                                                                                 end
                                                                                      20
     if n < 2 \times l - n_o then
                                                                                                 if Map(i,j) > 0 then
                                                                                      21
         if n < l then
                                                                                      22
             x_{prev} + = f_n
                                                                                                    x_{out}^G(i,j) = 0
                                                                                      23
         end
         if n >= l - n_0 then
                                                                                      ^{24}
             x_{current} + = f_n
                                                                                      25
                                                                                                end
          end
                                                                                             end
                                                                                      26
```

```
x_{out}^{R}(i,j) = C \times Map(i,j)
                 x_{out}^{B}(i,j) = C \times (\Delta new - Map(i,j))
27 endfor
```


- 얼음 영역 식별을 위한 세그멘테이션 알고리즘
 - 통계적 특성 기반의 세그멘테이션

● 얼음 영역 식별을 위한 세그멘테이션 알고리즘

- 얼음 영역 식별을 위한 세그멘테이션 알고리즘
 - 영역 오검출 제거 기법

[파괴 전]

세그멘테이션

세그멘테이션(오버레이)

[파괴 후]

세그멘테이션

세그멘테이션(오버레이)

- 얼음 영역 식별을 위한 세그멘테이션 알고리즘
 - 영역 오검출 제거 기법

: 영상 역재생을 통한 금속 구조물 위치 추정

$$NCC = \frac{1}{N} \sum_{i,j} \frac{(I_1(i,j) - m_1)(I_2(i,j) - m_2)}{\sigma_1 \sigma_2}$$

- 얼음 영역 식별을 위한 세그멘테이션 알고리즘
 - 영역 오검출 제거 기법

: LMS를 통한 최적의 금속 구조물 위치 변화량 파악

Contents

1. 서론

2. 얼음 파괴모드 가시화

3. 실험 결과

4. 결론

3. 실험 결과

실험 환경 구성도

크랙 가시화 결과

세그멘테이션 결과

● 실험 환경 구성도

Photron FASTCAM Mini WX50

압력: 150kPa

셔터 스피드: 1/1000초

영상 해석 소프트웨어

● 크랙 가시화 결과

● 크랙 가시화 결과

● 크랙 가시화 결과

● 세그멘테이션 결과

Contents

1. 서론

2. 얼음 파괴모드 가시화

3. 실험 결과

4. 결론

4. 결 론

4. **결**론

- >> 얼음 파괴모드 분석을 위한 얼음 내 발생하는 크랙에 대한 가시화 및 세그멘테이션 기법을 개발하고 이를 해석 가능한 소프트웨어 형태로 구현함.
- 원본 영상과 제안하는 방법의 결과들을 비교하여, 크랙에 대한 시인성이 좋아진 것을 확인함.
- >> 원본 영상에 세그멘테이션 영역을 오버레이 시켜 얼음 영역이 적절히 검출되는 것을 확인함.
- 추후 얼음 파괴모드 분석에 직접적으로 적용되어 크랙 가시화 이외에 다양한 얼음 파괴모드 분석을 위해 활용될 수 있을 것으로 예상함.

Future Work

I Know What You Did Tools Other Research **GAN Research Last Faculty** C++ Coding Standard **Vanilla GAN Document Level Processor DCGAN Programming Mathematical theory** V Ice Propagation **InfoGAN PyTorch** LSM applications LS GAN Python executable & UI **BEGAN** Pix2Pix Cycle GAN **Novel GAN(about depth)**

Appendix

- Non-maximum suppression
 - i] $\alpha(x,y)$ 에 가장 가까운 방향에서 d_k 를 찾음.
 - ii) 기준이 되는 M(x,y)의 값과 d_k 방향에 주변 두 이웃들의 값과 비교함.
 - iii) 두 이웃들의 값들 중 적어도 하나보다 작으면, $g_N(x,y) = 0$ 로 함.
 - iv) 아닌 경우에는 $g_N(x, y) = M(x, y)$ 로 함.

Orientation				
20	60	80	60	20
20	70	80	60	20
20	60	80	60	20
20	70	80	60	20
20	60	80	60	20

Orientation				
20	60	80	60	20
20	70	80	60	20
20	60	80	60	20
20	70	80	60	20
20	60	80	60	20

$$\alpha(x, y) = \tan^{-1} \left(\frac{g_y}{g_x} \right)$$

$$M(x, y) = \sqrt{g_x^2 + g_y^2}$$

Appendix

- Hysteresis thresholding
 - i) $g_{NH}(x,y)$ 의 조건을 만족하는 픽셀 p(x,y)를 찾음.
 - ii) p(x,y) 의 8 이웃으로 연결된 $g_{NL}(x,y)$ 의 모든 경계를 유효 경계로 선정함.
 - iii) $g_{NH}(x,y)$ 의 조건을 만족하는 모든 픽셀을 방문하였는지 확인함.
 - iv) lii)의 조건을 만족하지 않은 i)로 돌아감.
 - V) lii)의 조건을 만족하면 유효 경계로 설정되지 않은 $g_{NL}(x,y)$ 의 모든 경계를 0으로 함.
 - Vi) 최종적인 출력은 $g_{NH}(x,y)$ 과 $g_{NL}(x,y)$ 를 합쳐서 출력함.

