Exercices de Thermodynamique

Exo 1

Au départ les deux compartiments sont emplis d'un gaz parfait et les conditions sont P_0, V_0, T_0 dans les deux compartiments. On chauffe le $\mathbf{1^{er}}$ compartiment jusqu'à $P_1=3P_0$. Déterminer P,V,T dans les deux compartiments en supposant les transformations réversibles.

Exo 2

Soit trois récipients R_1, R_2, R_3 .

 R_1 contient un gaz parfait à $t_1 = 27^{\circ}C$, $p_1 = 2$ atm, $v_1 = 10\ell$.

 R_2 contient *n* moles d'air, autre gaz parfait à $n = 1,5 \ mol$.

 R_3 est vide, de volume $v_3=20\ell$ dans un thermostat à température $t_3=127^{\circ}C$.

- a) Le gaz de R_1 passe dans R_3 . Quelle est la pression P?
- b) Le gaz de R_1 et R_2 passent dans R_3 . Quelle est la pression P'?

Exo 3

Une mole de gaz parfait de coefficient $\gamma = \frac{5}{3}$ se trouve à la température $T_0 = 1000 \, K$ sous la pression $P_0 = 10^6 \, \mathrm{Pa}$.

- 1) Calculer le travail W_1 reçu par ce gaz et la température finale T_1 si le gaz subit une détente adiabatique réversible jusqu'à la pression $P_1 = 10^5 \, \text{Pa}$.
- 2) Refaites ces calculs (W₂ et T₂) si la détente adiabatique est irréversible, c'est-à-dire si brusquement on fait passer la pression exercée sur le gaz de P₀ à P₁.

Exo 4:

Soit une mole de gaz parfait qui subit n fois la transformation suivante de façon réversible (c_v = indépendant de T pour ce gaz).

On demande:

- a) T_1 , T_2 , ..., T_n températures successives obtenues à la fin de chaque transformation.
- b) La chaleur, le travail échangé au cours de la même transformation ainsi que la variation d'entropie.

Exo 5:

Un gaz parfait monoatomique qui subit la transformation adiabatique au cours de laquelle sa pression varie de $P_1=1$ atm à $P_2=3$ atm. Le gaz contient n=0.5 mol dans un volume initial $V_1=10$ l.

Calculer le volume final V_2 ; la variation de température (ΔT) au cours de la transformation, le travail W échangé et la variation d'énergie interne ΔU .

Exo 6:

Soit un gaz réel d'équation P(V - b) = nRT.

On lui fait subir une compression isotherme réversible de la pression P_1 à la pression P_2 . Quel est le travail reçu par le gaz ?

Exo 7:

Le gaz parfait est dans une enceinte isolée dans les conditions initiales (P_0 , V_0 , T_0). On met une masse M sur le piston, lui-même de masse négligeable. Quel est l'état final du gaz (P_f , V_f , T_f) ?

Exo 8:

- 1) Sous la pression P_1 , à la température T_1 , une certaine quantité d'un gaz parfait occupe le volume V_1 . Quelle est la pression (P_3) de ce gaz si la température devient T_3 tandis que le volume devient V_3 ?
- 2) Au gaz parfait précédent dans les conditions initiales (P_1 V_1 , T_1) on ajoute (n_2) moles d'un autre gaz parfait, le volume du mélange est alors V_3 à la température T_3 . Quelle est la pression totale P' du mélange des deux gaz dans ces conditions ?

Exo 9

Soit le cycle suivant

- 1- Isotherme
- 2- Rectiligne
- 3- Isochore
- 4- Isobare

Les transformations sont supposées réversibles

Le gaz utilisé est de l'oxygène considéré comme gaz parfait. N = 1 mol

$$V_A = 2 l$$
; $V_B = 1 l$; $P_A = 2 l$; $P_B = 1 l$

Calculer les travaux et quantités de chaleur échangés sur chaque partie du cycle.

Soit le cycle suivant constitué de 2 isobares et 2 adiabatiques

On donne $\gamma=1.4$ pour les gaz parfaits qui décrit ce cycle, $\frac{P_2}{P_1}=8$

Calculer le rendement du cycle, ainsi que les travaux échangés au cours de chaque étape du cycle.

Exo 11

Soit le cycle ci-contre effectué par n=1 mole de gaz parfait. $\gamma=1.4$

AB chauffage à volume constant

BC détente adiabatique réversible

CA compression isotherme réversible

$$P_A = 1 \ atm$$
; $P_B = 2 \ atm$; $T_A = 50^{\circ} \ C$

On demande le volume V_C en fin d'adiabatique, le travail "reçu" par le gaz pendant la détente adiabatique puis celui "reçu" pendant tout le cycle.

Exo 12

Un piston (P) se déplace sans frottements à l'intérieur d'un cylindre qu'il partage en deux compartiments A et B. le piston et les parois di cylindre sont constitués de matériaux adiabatiques. Initialement, les compartiments A et B contiennent un gaz parfait sous la pression P_0 la température T_0 , le volume des deux

compartiments A et B est le même V_0 . Dans A, se trouve une résistance électrique.

On fait passer le courant dans cette résistance jusqu'à ce que le volume du compartiment A devienne $V_A = \frac{3V_0}{2}$.

Quel est alors la chaleur fournie par cette résistance?

Le coefficient $\gamma = \frac{c_p}{c_v}$ de ce gaz parfait est connu.

Exo 13

- a) On met en contact thermique un corps de capacité calorifique C_1 à la température d'équilibre T_1 et un corps de capacité calorifique C_2 à la température T_2 . Quelle est la température d'équilibre T_2 ?
- b) On utilise maintenant une machine thermique pour récupérer du travail entre les deux corps. Quel travail maximal peut-être fourni?

Un récipient comportant deux comportant deux compartiments de même volume initial V_0 = 10 l, est plongé dans un thermostat à T_0 = 273 K, constitué par de la glace. Le compartiment de gauche est rempli d'un gaz parfait. Celui de droite est vide.

- a) R reste fermé. Un opérateur réalise une détente réversible de P_1 = $2P_0$ à T_0 = constante. Calculer le nombre de moles de glace fondue ou formée. On donne $L_{fusion\ eau}$ = $333J.g^{-1}$.
- b) On ouvre le robinet R, le robinet pouvant glisser. Calculer la nouvelle masse de glace fondue.

Exo 15

Un moteur fonctionne entre une source chaude initialement à la température T_i de capacité calorifique (mCp) et une source froide à la température constante T_0 .

- 1) Évaluer le travail maximum que l'on peut obtenir.
- 2) Calculer le rendement maximum de l'opération.

Exo 16

Un climatiseur est utilisé pour faire passer une pièce de capacité calorifique C de T_0 = 300K à T_1 = 295K en un temps $\Delta t = 1.000 \, s$. On fournit la puissance P = 180 W.

Il est relié à l'air extérieur de température T_0 = 300 K constante. Calculer C en supposant son fonctionnement réversible.

Exo 17

Détente de Joule Gay-Lussac d'un gaz parfait

Un gaz parfait est enfermé de gauche de ce récipient aux parois isolantes. Le robinet R est fermé.

Le compartiment de droite a été totalement vidé de tout gaz.

- 1) Quelle est la valeur d'entropie du gaz quand on ouvre le robinet R et que le gaz retrouve un équilibre après avoir rempli les deux compartiments?
- 2) Que se passe-t-il quand le volume V_0 tend vers l'infini, P_0 et T_0 demeurent constants ?

Exo 18

Un gaz parfait évolue sur le cycle ci-contre. Les 4 transformations étant réversibles, montrer que ce cycle peut-être celui d'un réfrigérateur dont on calculera le coefficient de performance.

Le système contient 1 mole de gaz parfait monoatomique. À l'état initial on a P_0 = 2P On ouvre R_1 .

La transformation est supposée adiabatique tout le système étant isolé.

Calculer la température finale T_f et les variations d'énergie interne, d'enthalpie, d'entropie.

Exo 20

Second principe, Calculs d'entropie

- 1) Quelle est la température effectué dans un calorimètre de m_1 = 400g et m_2 = 100g d'eau liquide à 10°C? Quelle est la variation d'entropie au cours du mélange?
- 2) Un gramme d'eau liquide à 0°C est chauffé jusqu'à 100°C puis vaporisé ; cette vapeur subit une détente adiabatique réversible qui abaisse sa température sans qu'elle ne se liquéfie. Quelle est la variation d'entropie totale de cette eau ?

Données $C_{eau\ liquide}$ = 4,18 $J.g^{-1}.L^{-1}$; Lv_{eau} = 2 250 $J.g^{-1}$

Exo 21

Une mole de gaz parfait (coefficient $\gamma = \frac{c_p}{c_v}$ connu) initialement à 27° C, est placé dans un cylindre diathermane maintenu à 0° C. on laisse refroidir le gaz en maintenant son volume constant V_0 .

Quelles sont les variations d'entropie du gaz, du thermostat, de l'univers ?

Exo 22

Un gaz parfait, de coefficient $\gamma=\frac{c_p}{c_v}$ indépendant de la température, se trouve dans un récipient aux parois adiabatiques de volume initial V_1 . La température et la pression initiales du gaz sont P_1 et T_1 . Brusquement, la pression extérieure exercée sur le gaz est diminuée et prend la valeur $P_2=\frac{P_1}{2}$. Le volume occupé par le gaz varie au cours de cette détente irréversible, il s'établit un nouvel équilibre.

- 1) Calculer le volume et la température du gaz dans ce nouvel équilibre.
- 2) Quelle est la variation d'entropie du gaz au cours de cette transformation ?

$$A.\,N.\colon P_1=10^5P_a\,,\qquad V_1=1l\,,\qquad T_1=27^\circ C\,,\ \gamma=1,4$$

Exo 23

Soit une masse m d'eau liquide en surfusion à (T, P_0) . On fait cesser cet état métastable en ajoutant un très petit morceau de glace. On obtient alors une masse m de glace à (T, P_0) .

Calculer la variation d'entropie de l'eau et celle du thermostat.

On donne:

L chaleur latente de fusion de la glace à 0° C, 1 atm = 335 J/g.

Q chaleur massique de l'eau liquide $Q = 4.18 \text{ J. g}^{-1} \text{ K}^{-1}$

 C_s Chaleur massique de la glace $C_s = 2,1$ J. g^{-1} . K^{-1}

m = 1 kg; T = 270 K; $P_0 = 1 \text{ atm}$

Soit une machine utilisant comme fluide l'air assimilé à un gaz parfait diatomique.

Cette machine fonctionne réversiblement selon le cycle de Stirling représenté sur la figure ci-contre. Il est

composé de deux isothermes 3 ---> 4 et 1 ---> 2 et de deux isochores 2 ---> 3 et 4 ---> 1. A l'état 1, la pression est $p_1 = 10^5 N. m^{-2}$ et la température est T' = 300 K. A l'état 3, la pression est $p_3 = 4.10^5 N. m^{-2}$ et la température est T' = 600 K.

Calculer les quantités de chaleur Q_{12} , Q_{23} , Q_{34} et Q_{41} échangées par une mole de gaz au cours d'un cycle.