Homework #1

- 1.3 The program is compiled in assembly then built in a machine language program
- 1.4
 - A. 1280*1024=1310720*3=3932160 bytes/frame
 - B. 3932160*8/100E6=.31sec
- 1.5
- A. P1: 3*10E9/1.5=2E9

P2:2.5*10E9=2.5E9

P3:4*10E9/2.2=1.8E9

- B. P1: 3*10E9=30E9s
 - P2: 10*2.5E9=25E9s
 - P3: 10*4E9=40E9s
- C. P1: 30E9/1.5=20E9
 - P2: 25E9
 - P3: 40E9/2.2=18.18E9
 - f(p1) = 20E9*1.8/7=5.14Ghz
 - f(p2)= 25E9*1.2/7=4.25Ghz
 - f(p3)=18.19E9*2.6/7=6.75Ghz
- 1.6
 - A. P1: (1E5+2E5*2+5E5*3+2E5*3)/2.5E9=10.4E-4s

P2:(1E5*2+2E5*2+5E5*2+2E5*2)/3E9=6.66E-4s

CPI1=10.4E-4*2.5E9/1E6=2.6

CPi2=6.66E-4*3*1E9/1E6=2

- B. p1=1E5+2E5*2+5E5*3+2E5*3=26E3
- p2=2E5+2E5*2+5E5*2+2E5*2=20E5
- 1.7
 - A. CPI-T*f/instr

a=1.1

b=1.25

- B. Fb/fA=(instrB*CPIB)/(instrA*CPIA)=1.37
- C. Ta/Tnew=1.67 Tb/Tnew=2.27

1.11

- 1. CPI=clock*cputime/intr=3E9*750/(2389E9)=.94
- 2. Spec ratio=reftime/exec time=9650/750=12.86
- 3. If cpi and clock rate dont change cputime iis increased by 10% depending on instructions
- 4. CPU=1.1*instr*1.05*cpi/clock=1.155 15.5%
- 5. specratio=ref time/cpu=1/1.15555=.86
- 6. cpi=700*4*1E9/(.85*2389E9)=1.37
- 7. 4/3=1.33 clock rate
 - 4ghz to 3ghz is 1.45 ratio bc of the 15% difference in instruction
- 8. 700.750=.933 6.7 reduction

- 9. instr=cpu*clock/cpi=960*.9*4E9/1.61=2146E9
- 10. Clock rate =instr*cpi/cpi=1/.9clockrate=3.33Ghz
- 11. clockrate=instr*cpi/cpu=.85/.8=3.18GHZ

1.12

- 1) $P1 = 5 * 10^9 * 0.9 / 4* 10^9 = 1.125 \text{ sec}, P2 = 10^9 * 0.75 / (3 * 10^9) = 0.25 \text{ sec}$
- 2) p1 = 2.25 * 3 = 1021 sec. P2 = 5 * 0.75 / 3 * 10^9 = 9 * 10^8
- 3) MIPS = 4 * 10^9 * 10^-6 / 0.9 = 4.44 * 10^3 MIPS2 = 3 * 10^9 * 10^-6 / 0.75 = 4.0 * 10^3
- 4) p1 = 0.4 * 5 * 10^9 * 10^-6 / 1.125 = 175 * 10 ^3 P2 = 0.4 * 10^9 * 10^-6 / 0.25 = 1.60 * 10 ^3