МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Отчёт о выполнении лабораторной работы 1.2 Исследование эффекта Комптона

Авторы: Тихонов Дмитрий Романович, студент группы Б01-206а Павловский Кирилл Михайлович, студент группы Б01-206а

1 Введение

Цель работы: исследовать энергетический спектр γ -квантов, рассеянных на графите и определить их энергию в зависимости от угла рассеяния, а также энергию покоя частиц, на которых происходит комптоновское рассеяние

В работе используются: источник излучения, графитовая мишень, сцинтилляционный спектрометр, фотоэлектронный умножитель (ФЭУ), ЭВМ

2 Теоретические сведения

Эффект Комптона – увеличение длины волны рассеянного излучения по сравнению с падающим в результате упругого соударения двух частиц: γ -кванта и свободного электрона.

Рис. 1: Векторная диаграмма рассеяния γ -кванта на электроне

Запишем для рассматриваемого процесса (рис. 1) ЗСЭ и ЗСИ:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1},$$

$$\frac{\hbar\omega_{0}}{c} = \gamma mv\cos\phi + \frac{\hbar\omega_{1}}{c}\cos\theta,$$

$$\gamma mv\sin\phi = \frac{\hbar\omega_{0}}{c}\sin\theta.$$

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\lambda_1 - \lambda_0 = \frac{h}{mc} \left(1 - \cos \theta \right) = \Lambda_{\kappa} \left(1 - \cos \theta \right), \tag{1}$$

где

$$\Lambda_{\rm K} = \frac{h}{mc} = 2.42 \cdot 10^{-10} \text{ cm}$$

называется комптоновской длиной волны электрона.

В приведенном выводе электрон в атоме считается свободным. Для γ -квантов с энергией в несколько десятков, а тем более сотен кэВ, связь электронов в атоме, действительно, мало существенна, так как энергия их связи в легких атомах не превосходит нескольких кэВ, а для большинства электронов еще меньше.

Применительно к условиям нашей работы формулу (1) следует преобразовать от длин волн к энергии γ -квантов

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos(\theta),\tag{2}$$

где $\varepsilon_0 = E_0/(mc^2)$ — нормированная энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ — выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m — масса электрона.

ФРКТ МФТИ, 2024

3 Методика измерений и экспериментальная установка

Схема экспериментальной установки отображена на рис. 2.

Рис. 2: Схема экспериментальной установки

Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень. Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком, состоящим из сцинтиллятора и ФЭУ, работающего от высоковольтного источника напряжения. Сигнал, генерируемый ФЭУ, обрабатывается АЦП компьютера, и соответствующий график выводится на экран.

ФРКТ МФТИ, 2024 2

4 Результаты измерений и обработка данных

Заменим в формуле (2) энергию квантов, испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при указанном угле θ . Обозначая буквой A неизвестный коэффициент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$, найдём:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta). \tag{3}$$

Представим экспериментальные результаты (табл. 1) в виде графика на рис. 3, откладывая по оси абсцисс $1 - \cos(\theta)$, а по оси ординат $-1/N(\theta)$.

Рис. 3: График зависимости $\frac{1}{N} = f(1 - \cos \theta)$

По пересечению графика с осью ординат определим N(0):

$$N(0) = (860 \pm 15),$$

где $N(0) = \frac{1}{b}$, а $\varepsilon_{N(0)} = \frac{\sigma_b}{b}$.

По пересечению графика с прямой $\cos\theta=0$ определим N(90):

$$N(90) = (330 \pm 5)$$
,

где
$$N(90) = \frac{1}{b+a}$$
, а $\sigma_{N(90)} = \frac{1}{(a+b)^2} \sqrt{\sigma_b^2 + \sigma_a^2}$

Определим энергию покоя электронов, на которых происходили рассеяния гамма-квантов:

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)} = (410 \pm 15)$$
 кэВ,

где $E_{\gamma} = (662 \pm 1)$ кэВ — энергия гамма-лучей, испускаемых источником.

Оценим погрешность определения mc^2 :

$$\sigma_{mc^2} = \sqrt{\left(\frac{N(90)}{N(0) - N(90)}\sigma_{E_{\gamma}}\right)^2 + \left(\frac{N(90)E_{\gamma}}{(N(0) - N(90))^2}\sigma_{N(0)}\right)^2 + \left(E_{\gamma}\frac{N(0)}{(N(0) - N(90))^2}\sigma_{N(90)}\right)^2}$$

ФРКТ МФТИ, 2024

5 Заключение

По результатам работы, исследовали эффект Комптона на графитовом образце с помощью сцинтилляционного спектрометра. Выяснили зависимость энергии рассеянного γ -кванта от угла рассеяния, а также определили по порядку величины энергию покоя электрона.

ФРКТ МФТИ, 2024

Приложение

$\theta,^{\circ}$	$\Delta\theta$,°	N, кан.	ΔN , кан.
0		852	8,52
10		812	8,12
20		801	8,01
30		702	7,02
40		639	6,39
50		565	5,65
60	1	470	4,70
70		396	3,96
80		366	3,66
90		327	3,27
100		302	3,02
110		260	2,60
120		257	2,57

Таблица 1: Экспериментальные данные

 Φ РКТ М Φ ТИ, 2024 5