Comp541 Final Project Gürsu Gülcü

"Dynamic Routing Between Capsules" by Sabour, Frosst, Hinton

Problem 1: A CNN may identify both as a "person". Why?

• It merely checks for the existence of some features it has learnt, not for the relationships among the features.

Problem 2: A CNN fails to identify the inverted image.

 Feature detection process is not as robust to transformations as us humans.

 Maybe our algorithms should try to mimic the human brain?

Problem 3: Pooling operation may be discarding useful information.

- Sub-sampling due to pooling obtains crude spatial **invariance** by ignoring details -> Neural activities constant.
- Better to aim for **equivariance**: Invariance under transformations only.
 - Changes in viewpoint should change neural activities
 - Constant weights should code the viewpoint-invariant knowledge

A Possible Solution: Inverse Computer Graphics

- Representation of objects in the brain does not depend on view angle
- Relationships between 3D objects can be represented by pose
 - Translation and rotation

computer graphics: rendering engine

A higher level entity is present if lower level visual entities can agree on their predictions for its pose

Predictions for face location from nose, mouth and eyes match -> there must be a face there

Capsule Networks: A Solution to Our Problems?

- **Input** is the familiar 28x28x1 MNIST images.
- First layer is convolutional with 256 9x9 kernels and stride=1
 - No pooling!
 - \circ Output is 20x20x256 since (28-9+1)/1 = 20

Second Convolutional Layer -> Primary Capsules

- **Second layer** is again convolutional with 256 9x9 kernels, stride=2
 - \circ Output is 6x6x256 since (20-9+1)/2 = 6

Dissecting the Layer of Primary Capsules

Group 256 channels into 32

- Depth is 8
- 6x6=36 localized "capsules", 32 groups, each having a depth of 8

Interpretation:

- Z-axis (channels): Capsule contents
 - 32 features holding 8 numbers
 - Thickness, orientation etc.
- X,Y axis (6x6 grid): Spatial info
 - Looking at a specific part of the image

What are the Primary Capsules looking at?

"Squash" the output vectors before passing to the next layer

The Squashing Function

- Normalizing operation:
 - Unit vector for a long vector
 - Scale with its own small magnitude for further shrinkage for a short one

Next Capsule Layer: Digit Caps

- Digit Caps are 16-D
 - Hold more information than Primary Caps (8-D) since they are looking at whole images
- An algorithm called **routing** is utilized to learn the weights of the transformation matrix Wij
 - Each Wij is 8(in)x16(out)

Role of Primary Capsule: "Which higher capsule am I a part of?"

 The square and the triangle will agree on the boat but disagree on the house due to the routing algorithm. How?

Calculation for Predicting the Output of the Next Layer

 W_{ij} is 16x8, u_i is 8x1 -> $W_{ij}u_i = u_{j|i}$ is 1x16 -> Higher level capsules are 16-D All are put in a big 1152 (Primary Capsules) x 10 (Digit Capsules) matrix

Calculating the Affine Transformation Matrices is a challenge

- Multiplication of 1152x10xBatch_Size pairs of matrices in each iter.
 - Note the dot, not a regular matrix multiplication of two huge matrices.
 - Must be done parallel on GPU, tile() & matmul() would come in handy.

Details of the Routing Algorithm

Procedure 1 Routing algorithm.

- 1: **procedure** ROUTING($\hat{u}_{i|i}, r, l$)

- for r iterations do 3:
 - 4:
 - 5:

 - 6: 7:

return \mathbf{v}_i

- for all capsule i in layer $l: \mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$ for all capsule j in layer (l+1): $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$

The **r** iterations increase the weight of primary ui to estimate digit vj

when the affine transformation of ui is aligned with vj (uhat([j|i].vj)

similarity: cos(0)=1 when aligned, cos(90)=0 when orthogonal

Would you agree that something is weird about **line 7**?

Repeatedly calculate the cluster center and adjust weights by cosine

- for all capsule j in layer (l+1): $\mathbf{v}_i \leftarrow \text{squash}(\mathbf{s}_i)$
- for all capsule i in layer l and capsule j in layer (l+1): $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{j|i}.\mathbf{v}_j$
- for all capsule i in layer l and capsule j in layer (l+1): $b_{ij} \leftarrow 0$. ⊳ softmax computes Eq. 3

□ squash computes Eq. 1

Routing Algorithm In Action (Darker=Bigger Value)

Calculating the Loss

CapsNet Loss Function

Note: correct DigitCap is one that matches training label, for each training example there will be 1 correct and 9 incorrect DigitCaps

- Allows for detecting multiple images!
 - Can you detect a shortcoming?

Decoder Architecture

- Generates images from features to be compared against the input
 - The difference is an error, to be used as a regularizer

Summary

- Squashing the output of each DigitCaps gives the prob. of existence
 - O Do they add up to 1?

Reconstruction Visualization

MNIST Error Results by Methods: Table1

7	2	1	0	4	1	4	9	5	9	0	6	9	0	1	
		_								- (0/)					

			10.40	
<u>METHOD</u>	ROUTING r:	RECONSTRUCT	MNIST (%)	MY RESULT (Epoch)

0.34

0.29

0.35

0.25

0.74 (5)

0.61 (16)

0.86 (9)

0.65 (12)

NO

YES

NO

YES

CapsNet

CapsNet

CapsNet

CapsNet

3

3

Promising Results for Viewpoint Invariance: The AffNIST Dataset

Multi-MNIST Dataset: Not Publicly Available

- Tried to generate by superimposing AffNIST samples
- Remember sum of the output of Digit Caps != 1?
 - Probability of existence for each digit -> Can detect multiple digits!
- Remember the shortcoming of Loss Function?
 - Can not count the number of occurences of the same class
 - E.g. two 5's or one 5 in the picture?
- My initial results (>50%) not comparable to reported figures (5-8%)
 - Dataset, training proc., model parameters may be quite different

Q & A