5.1 数据进制之间的转换_物联网/嵌入式工程师- 慕课网

46 慕课网慕课教程 5.1 数据进制之间的转换涵盖海量编程基础技术教程,以图文图表的形式,把晦涩难懂的编程专业用语,以通俗易懂的方式呈现给用户。

1. 数据进制之间的转换

任何送入计算机的数字,字母,符号等信息必须转换成0、1组合的数据形式才能被计算机识别。

能够进行算术运算得到明确数值概念的信息成为计算机数值数据,其余的信息成为非数值数据。

为了方便数据存储,我们把数据按照使用习惯以进制的方式来进行划分。

我们把进制也叫做进制位,是人们规定的一种进位方式。我们可以使用有限的数字符号来代表所有的数值。可使用数字符号的数目,我们称为为基数。基数为 n,则为 n 进制。数制中某一位上的 1 所表示数值的大小我们称为位权。

例如:

可用的数字符号: 0-9

基数: 10

特点: 逢十进一

例如:

110 - 10 = 100110 - 10 = 100

200 + 100 = 300200 + 100 = 300

计算机中用我们的二进制来表示我们的数据。

可使用的数字符号: 0,1

基数: 2

特点:逢二进一

例如:

 $(1010)_2 - (0101)_2 = (101)_2(1010)2 - (0101)2 = (101)2$

可使用的数字符号: 0,1,2,3,4,5,6,7

基数: 8

特点: 逢八进一

例如:

$$(713)_8 + (114)_8 = (1027)_8 (713)8 + (114)8 = (1027)8$$

$$(713)_{s} - (114)_{s} = (577)_{s}(713)8 - (114)8 = (577)8$$

可使用的数字符号: 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f

基数: 16

特点: 逢十六进一

例如:

$$(27b)16 + (18a)16 = (405)16$$

方法:将相应进制的数按位权展开成多项式,求十进制的和。

$$\big(10110\big)_2 = 0 * 2^0 + 1 * 2^1 + 1 * 2^2 + 0 * 2^3 + 1 * 2^4 = (22)_{10}$$

$$(745)_8 = 5*8^0 + 4*8^1 + 7*8^2 = (485)_{10}$$

$$(a13)_{16} = 3*16^{0} + 1*16^{1} + 10*16^{2} = (2579)_{10}$$

$$(F8C.B)16$$
= $C*16^{0} + 8*16^{1} + F*16^{2} + B*16^{-1}$
= $12 + 128 + 3840 + 0.6875$
= 3980.6875

常规用法

除基取余法:用我们的十进制数去除以我们目标的基数,第一次相除所得余数为目的数的最低位,将 所得商再除以基数,反复执行上述过程,直到商为"0",所得余数为目的数的最高位。

例如:

乘基取整法: 用小数乘以目标数值的基数, 第一次相乘结果的整数部分为目的数的最高位,

将其小数部分再乘基数依次记下整数部分,反复进行下去,直到小数部分

为"0",或满足要求的精度为止。

$$(81.65)_{10} = (1010001.10100)_2$$

高效用法:

8421 码

8421 码是一种编码方式,又为 8421BCD 编码,是一种用 4 位二进制码的组合代表 1 位十进制数的编码 方法。因为是 4 位二进制,转换为十进制,每位的权分别为: $2^323,2^222,2^121,2^020$,也就是 8,4,2,1,因而得名。

二进制转换为十进制

十进制数	8421BCD 码
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

十进制转换为二进制

位	二进制位位权	数值
0	2^0	1
1	2^1	2
2	2^2	4
3	2^3	8
4	2^4	16
5	2^5	32
6	2^6	64
7	2^7	128
8	2^8	256

使用方法

- 把一个十进制数拆分位上述右边的数值相加
- 然后把二进位从高到列排列。若是用到了对应的数值,二进制位设置为 1,否则设置为 0
- 书写完毕后,对应的二进制位排列就是该十进制转换为二进制的值。

题目: 求十进制200对应的二进制数。

位 7 6 5 4 3 2 1 0 数値 128 64 32 16 8 4 2 1 200 = 128 + 64 + 8 位 7 6 5 4 3 2 1 0 二进制位 1 1 0 0 1 0 0 0

- 一个八进制可以转换为三个二进制数。
- 一个十六进制数可以转换为四个二进制数。

八进制	二进制
0	000

八进制	二进制
1	001
2	010
3	011
4	100
5	101
6	110
7	111

十六进制	二进制	十六进制	二进制
0	0000	8	1000
1	0001	9	1001
2	0010	а	1010
3	0011	b	1011
4	0100	С	1100
5	0101	d	1101
6	0110	е	1110
7	0111	f	1111

$$(456)_8 = (100101110)_2$$

$$(89f)_{16} = (100010011111)_2$$

$$(342)_8 = (011100010)_2$$

 $(11100010)_2 = (e2)_{16}$

计算下列的结果

$$(1001)_2 + (0011)_2$$

$$(1001)_2 - (0011)_2$$

计算以下数据转换成十进制之后的值。

$$(10011.01)_2$$

计算下列数据的结果

(35.64)10 = (?)2 要求精度为小数点后五位。

全文完

本文由 简悦 SimpRead 优化,用以提升阅读体验 使用了 全新的简悦词法分析引擎 beta,点击查看详细说明

