一、 单项选择题: (在每小题给出的四个选项中,只有一项 符合题目要求,请将正确选项的字母写在括号内.本大

题共30小题,每小题3分,共90分.)

1. 设
$$z = f(x, y)$$
,则 $\frac{\partial z}{\partial x}\Big|_{(x_0, y_0)} =$ ()

A.
$$\lim_{h\to 0} \frac{f(x_0+h, y_0+h) - f(x_0, y_0)}{h}$$

B.
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} \frac{f(x, y) - f(x_0, y_0)}{x - x_0}$$

C.
$$\lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

C.
$$\lim_{h\to 0} \frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}$$
 D. $\lim_{h\to 0} \frac{f(x_0,y_0+h)-f(x_0,y_0)}{h}$

2. 微分方程
$$(x^2 - y)dx - xdy = 0$$
的通解为

A.
$$xy + \frac{1}{3}x^3 = C$$

B.
$$xy - \frac{1}{3}x^3 = C$$

C.
$$x^2y - \frac{1}{3}x^3 = C$$

A.
$$xy + \frac{1}{3}x^3 = C$$
 B. $xy - \frac{1}{3}x^3 = C$ C. $x^2y - \frac{1}{3}x^3 = C$ D. $x^2y + \frac{1}{3}x^3 = C$

3. 向量场
$$\mathbf{A} = (x^2 + yz)\mathbf{i} + (y^2 + xz)\mathbf{j} + (z^2 + xy)\mathbf{k}$$
 的散度为

A.
$$2(x^2 + y^2 + z^2)$$
 B. $x^2 + y^2 + z^2$ C. $2(x + y + z)$ D. $2(xz + yz + xy)$

B.
$$x^2 + y^2 + z$$

$$\mathbf{C.} \quad 2(x+y+z)$$

D.
$$2(xz + yz + xy)$$

4. 函数
$$f(x,y)$$
 在点 $P_0(x_0,y_0)$ 可微的充分条件是

()

A. 函数
$$f(x,y)$$
 在该点两个偏导数存在

B. 函数 f(x,y) 在该点连续

C. 函数 f(x, y) 在该点两个偏导数存在且连续 D. 函数 f(x, y) 在该点极限存在

5. 函数 $u = x^2 + 2y^2 + 3z^2 + xy - 4x + 2y - 4z$ 在点 (0,0,0) 处的梯度 $\operatorname{grad} u(0,0,0) =$

A.
$$(4, 2, -4)$$

A.
$$(4,2,-4)$$
 B. $(-4,2,4)$ C. $(-4,2,-4)$

6. 数项级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{3^{n-1}}$$
 的敛散性是

7. 函数
$$f(x) = \frac{1}{9+x^2}$$
 展开成麦克劳林级数为 整理并免费分享 ()

第1页共5页

A.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n}}{3^{2n+2}}, \quad x \in (-3,3)$$

B.
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{3^{2n+2}}, \quad x \in (-3,3)$$

C.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{3^{2n+2}}, \quad x \in [-3,3]$$

D.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{3^{2n+2}}, \quad x \in (-3,3)$$

8. 曲面
$$e^z - z + xy = 3$$
在点(2, 1, 0)处的切平面方程为

A.
$$x+2y-4=0$$

B.
$$x + 2y + 4 = 0$$

C.
$$x-2y+z+4=0$$

D.
$$x-2y+z-4=0$$

9. 已知曲线
$$L: y = -\sqrt{1-x^2}$$
 ,则曲线积分 $\int_L (x^2 + y^2) ds =$ ()

A.
$$2\pi$$

C.
$$-2\pi$$

10. 设
$$\omega = f(u,v) + x^2 + y^2 \sin z$$
, 其中 $u = \frac{x}{y}$, $v = \frac{y}{z}$, 则 $\frac{\partial \omega}{\partial z} =$

A.
$$f_u' - \frac{y}{z^2} f_v' + y^2 \cos z$$

B.
$$-\frac{y}{z^2}f'_v + y^2\cos z$$

$$C. \frac{y}{z^2} f_v' - y^2 \cos z$$

D.
$$f'_{u} + \frac{y}{z^{2}} f'_{v} + y^{2} \cos z$$

11.
$$\int_{(1,1)}^{(-1,2)} \frac{1}{y} dx - \frac{x}{y^2} dy =$$

A.
$$-\frac{2}{3}$$

B.
$$\frac{2}{3}$$

C.
$$\frac{3}{2}$$

C.
$$\frac{3}{2}$$
 D. $-\frac{3}{2}$

12.
$$L$$
为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,取逆时针方向,则 $\oint_L \frac{y dx - x dy}{3x^2 + 4y^2} =$ ()

A.
$$\frac{\sqrt{3}}{3}\pi$$

B.
$$-\frac{\sqrt{3}}{3}\pi$$

C.
$$\frac{\sqrt{3}}{6}\pi$$

A.
$$\frac{\sqrt{3}}{3}\pi$$
 B. $-\frac{\sqrt{3}}{6}\pi$ D. $-\frac{\sqrt{3}}{6}\pi$

13. 幂级数
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$$
 的收敛域为

A.
$$[-1,1)$$

B.
$$(-1,1)$$

C.
$$[-1,1]$$

14. 已知
$$I = \int_0^1 dx \int_{x^2}^1 f(x, y) dy$$
,交换积分次序后 $I =$ (

A.
$$\int_0^1 \mathrm{d}y \int_{\sqrt{y}}^0 f(x,y) \mathrm{d}x$$
 B. $\int_0^1 \mathrm{d}y \int_{-\sqrt{y}}^0 f(x,y) \mathrm{d}x$ C. $\int_0^1 \mathrm{d}y \int_0^{\sqrt{y}} f(x,y) \mathrm{d}x$ D. $\int_0^1 \mathrm{d}y \int_{-\sqrt{y}}^0 f(x,y) \mathrm{d}x$ 15. 已知积分区域 D 为 $x^2 + y^2 \le 4$, 则 $\int_0^1 (2 - \sqrt{x^2 + y^2}) \mathrm{d}x \mathrm{d}y = ($) A. $\frac{2}{3}\pi$ B. $\frac{4}{3}\pi$ C. $\frac{8}{3}\pi$ D. $\frac{16}{3}\pi$ 16. 积分区域 Ω 为三个坐标面及平面 $x + 2y + z = 1$ 所捆成,下面化三重积分 $I = \iint_0^1 \mathrm{d}x \int_0^{1-x} \mathrm{d}y \int_0^{1-x-2y} f(x,y,z) \mathrm{d}z$ B. $I = \int_0^1 \mathrm{d}x \int_0^{1-x} \mathrm{d}y \int_0^{1-x-2y} f(x,y,z) \mathrm{d}z$ C. $I = \int_0^1 \mathrm{d}x \int_0^{1-x} \mathrm{d}y \int_0^{1-x-2y} f(x,y,z) \mathrm{d}z$ D. $I = \int_0^1 \mathrm{d}x \int_0^{1-x} \mathrm{d}y \int_0^{1-x-2y} f(x,y,z) \mathrm{d}z$ 17. 已知 $y = C_1 \cos 2x + C_2 \sin 2x$ 是微分方程 $y'' + py' + qy = 0$ 的通解,则() A. $p = 4, q = 0$ B. $p = 0, q = 4$ C. $p = 4, q = -4$ D. $p = 4, q = 4$ 18. 已知 $\sum_{n=1}^\infty (-1)^{n-1} x^{2n-2} = \frac{1}{1+x^2}, |x| < 1$,则 $\sum_{n=1}^\infty \frac{(-1)^{n-1}}{2n-1} x^{2n-1}$ 的和函数为 () A. arctan x B. $\tan x$ C. $\ln(1+x^2)$ D. $\frac{2x}{(1+x)^2}$ 19. 在点 $(2,1,4)$ 处,旋转抛物面 $z = x^2 + y^2 - 1$ 指向上侧的法向量为 () A. $(4,2,-1)$ B. $(-4,-2,1)$ C. $(4,-2,1)$ D. $(4,2,1)$ 20. 函数 $z = x^2 + y^2$ 在点 $(1,0)$ 处沿从点 $(1,0)$ 到点 $(2,\sqrt{3})$ 的方向的方向导数等于 () A. -2 B. 2 C. -1 D. 1 21. 函数 $f(x,y) = xy$ 在满足 $x + y = 1$ 的条件下,下列说法正确的是 () A. 在点 $(\frac{1}{2},\frac{1}{2})$ 处取得极大值 B. 在点 $(1,0)$ 处取得极小值 C. 在点 $(\frac{1}{2},\frac{1}{2})$ 处取得极小值 $(2,\sqrt{3})$ 处取得极小值 $(2,\sqrt{3})$ 处取得极小值 $(2,\sqrt{3})$ 处取得极小值 $(2,\sqrt{3})$ 处取得极小值 $(2,\sqrt{3})$ 处取得极小值

C.
$$(\frac{1}{3}x^3 + C_1x + C_2)e^{3x}$$

D.
$$(x^2 + C_1 x + C_2)e^{3x}$$

30. 给定两个正项级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$,已知 $\lim_{n\to\infty} \frac{u_n}{v_n} = \rho$,当 ρ 为何值时,不能判

断这两个正项级数有相同的敛散性

)

A.
$$\rho = 0$$

A.
$$\rho = 0$$
 B. $\rho = \frac{1}{2}$ C. $\rho = 1$ D. $\rho = 2$

C.
$$\rho = 1$$

D.
$$\rho = 2$$

二、证明题: (本大题共2小题,每小题5分,共10分)

7 31. 设
$$z = \frac{y}{f(x^2 - y^2)}$$
, 其中 $f(u)$ 可导, 证明: $\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}$.

 $\frac{\partial}{\partial u_n}$ 32. 设 $u_n \ge 0$, $\sum_{n=1}^{\infty} u_n$ 收敛, 证明当 $\alpha > 1$ 时 $\sum_{n=1}^{\infty} \sqrt{\frac{u_n}{n^{\alpha}}}$ 也收敛.