ME 710

Computational Methods in Structural Dynamics

Winter 1996

1) Find the natural frequencies and mode shapes for a string with the equation of motion

$$c^2 w_{xx}(x,t) = w_{tt}(x,t)$$

with the boundary conditions

$$w(0,t) = 0$$
 and $\tau w_x(x,t)|_{x=t} = -kw(x,t)|_{x=t}$

Show the equation for σ_m , but do not solve.

Write ω_n as a function of σ_n .

2) Derive the equation of motion for the double pendulum shown below.

Find the forced response of a beam to a force of 100 sin 3t at its center. The unforced equation of motion is $c^2 w_{xxx}(x,t) + w_{tt}(xt) = 0$.

The mode shapes are $\sqrt{\frac{2}{\ell}} \sin \frac{n\pi x}{\ell}$.

Lagrange's equation is given by

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$$