7.4.1 The Race-Around Condition

The difficulty of both inputs 1(S = R = 1) being not allowed in an S-R FLIP-FLOP is eliminated in a J-K FLIP-FLOP by using the feedback connection from outputs to the inputs of the gates G_3 and G_4 (Fig. 7.9). Table 7.3 assumes that the inputs do not change during the clock pulse (CK = 1), which is not true because of the feedback connections. Consider, for example, that the inputs are J = K = 1 and Q = 0, and a pulse as shown in Fig. 7.11 is applied at the clock input. After a time interval Δt equal to the propagation delay through two NAND gates in series, the output will change to Q = 1 (see fourth row of Table 7.3b). Now we have J = K = 1 and Q = 1 and after another time interval of Δt the output will change back to Q = 0. Hence, we conclude that for the duration t_p of the clock pulse, the output will oscillate back and forth between 0 and 1. At the end of the clock pulse, the value of Q is uncertain. This situation is referred to as the race-around condition.

The race-around condition can be avoided if $t_p < \Delta t < T$. However, it may be difficult to satisfy this inequality because of very small propagation delays in ICs. A more practical method for overcoming this difficulty is the use of the master-slave (M-S) configuration discussed below.

Fig. 7.11 A clock pulse.

7.4.2 The Master-Slave J-K FLIP-FLOP

A master-slave J-K FLIP-FLOP is a cascade of two S-R FLIP-FLOPs, with feedback from the outputs of the second to the inputs of the first as illustrated in Fig. 7.12. Positive clock pulses are applied to the first FLIP-FLOP and the clock pulses are inverted before these are applied to the second FLIP-FLOP.

When CK = 1, the first FLIP-FLOP is enabled and the outputs Q_M and \overline{Q}_M respond to the inputs J and K according to Table 7.3. At this time, the second FLIP-FLOP is inhibited because its clock is LOW ($\overline{CK} = 0$). When CK goes LOW ($\overline{CK} = 1$), the first FLIP-FLOP is inhibited and the second FLIP-FLOP is enabled, because now its clock is HIGH ($\overline{CK} = 1$). Therefore, the outputs Q and \overline{Q} follow the outputs Q_M and \overline{Q}_M , respectively (second and third rows of Table 7.3b). Since the second FLIP-FLOP simply follows the first one, it is referred to as the slave and the first one as the master. Hence, this configuration is referred to as M master-slave (M-S) FLIP-FLOP.

In this circuit, the inputs to the gates G_{3M} and G_{4M} do not change during the clock pulse, therefore the race-around condition does not exist. The state of the master-slave FLIP-FLOP changes at the negative transition (trailing edge) of the clock pulse. The logic symbol of a M-S FLIP-FLOP is given in Fig. 7.13. At the

Fig. 7.12 A master-slave J-K FLIP-FLOP.

clock input terminal, the symbol > is used to illustrate that the output changes when the clock makes a transition and the accompanying bubble signifies negative transition (change in CK from 1 to 0).

Fig. 7.13 A master-slave J-K FLIP-FLOP logic symbol.

7.5 D-TYPE FLIP-FLOP

If we use only the middle two rows of the truth table of the S-R (Table 7.1) or J-K (Table 7.3b) FLIP-FLOP, we obtain a D-type FLIP-FLOP as shown in Fig. 7.14. It has only one input referred to as D-input or data input. Its truth table is given in Table 7.4 from which it is clear that the output Q_{n+1} at the end of the clock pulse equals the input D_n before the clock pulse.

				Inpi	its to	Output
Data i	nputs	Oı	tputs	S	R FF	Q_{n+1}
Ligo In .	Kn	Q_n	\overline{Q}_n	S_n	R_n	
0	0	0	1	0	0	01 0
0	0	11	0	O	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = Q_n$
arcani jenegaja	0	0	T and the second		$-\frac{1}{0}$	11_1
oolo siblist	0_	e mondo	0lad	ned 0 such t	olesio	The birout c
. s. (0 roh, 7.4	1	odráta o	- 1 nc	:010:0	(@ 192 0 ° (3	01 = 0
0	_1_	1	0	0	1	0]-0
1	1			i	0	$1 = \overline{Q}_n$
1	1	1	0 .	0	10.2	0] - 2,

Table 7.3b Truth table of J-K FLIP-FLOP

Input	S	Output
J_n	K _n	Q_{n+1}
0	0 .	S.Qn
4,	$R = K \cdot Q$	1.
-0'	1	_0
11g 7.8 1g	potatned is significant	Q_n

(7.1a)

Fig. 7.9 A J-K FLIP-FLOP using NAND gates.

Fig. 7.10 Logic symbols of J-K FLIP-FLOP.