Comentario:

Ementário:

Histórico da Classificação dos computadores. Conceito de HardWare. Conceito de Software. Sistemas Numéricos. Modalidades de Processamento. Noções de teleprocessamento. Noções de Sistemas.

Conteúdo Programático:

UNIDADE I : INTRODUÇÃO

- 1.1 Histórico
- 1.2 Classificação dos compuatdores 1.2.1 Quanto ao tipo ou forma de operação
 - 1.2.2 Quando a geração

80250 ICC - Introdução a Ciência da Computação

- 1.2.3 Quanto ao porte
- 1.3 Utilização do computador
- 1.4 Novos campos de pesquisa (projetos assistidos por computadores, robótica, iteligência artificial)

UNIDADE II : HARDWARE

- 2.1 Conceito
- 2.2 Bit, byte e palavra
- 2.3 Componentes básicos do computador
 - 2.3.1 -Unidades de E/S

Leitura e perfuradores de cartão perfurado

Impressora, unidade de fita magnética

Unidade de disco

Monitor e terminal de dídeo e teclado

Leitura ótica e leitura de caractres magnéticos

Digitalizadores

2.3.2 - Memória

Tamanho

Endereço

Tipos (ROM, PROM, EPROM, RAM, Secundária)

2.3.3 - Unidade central de processamento

Conceito

Divisões

Funções

2.3.4 - Canais de entrada e de saída

UNIDADE III : SISTEMAS NÚMERICOS

- 3.1 Sistemas numéricos
 - 3.1.1 Sistemas decimal
 - 3.1.2 Sistema binário
 - 3.1.3 Sistema hexadecimal
 - 3.1.4 Mudança de base

UNIDADE IV : SOFTWARE

- 4.1 Conceito
- 4.2 Divisões do software
- 4.3 Linguagem de programação
 - 4.3.1 Conceito de comando, instrução, algoritmo, rotina, programa e sistema
 - 4.3.2 Conceito de linguagem de programação
- 4.4 Compiladores e Interpretadores
 - 4.4.1 Compiladores
 - 4.4.2 Programa Fonte, compilado, objeto, executável
 - 4.4.3 Interpretadores
 - 4.4.4 Classificação das linguagens
 - a) Compiladas X Interpretadas
 - b) Alto nível X Baixo nível

```
UNIT - Universidade Tiradentes / Departamento de Ciência da Computação
4.5 - Sistemas Operacionais
        4.5.1 - Conceito
        4.5.2 - Funções e características
4.6 - Software de apoio
4.7 - Software aplicativo
```

UNIDADE V : CONCEITOS E MODALIDADES DE PROCESSAMENTO DE DADOS

- 6.1 Sistema : BATCH x ON-LINE
- 6.2 Monoprogramação X Multiprogramação
- 6.3 Monoprocessamento X Multiprocessamento
- 6.4 Sistema Time-Sharing
- 6.5 Sistemas em Real-Time

UNIDADE VII : NOÇÕES DE TELEPROCESSAMENTO

- 7.1 Conceitos básicos
- 7.2 Objetivos
- 7.3 Conceito de ambiente local e ambiente remoto
- 7.4 Elementos básicos na comunicação de dados

Transmissor Codificador

Repetidor

Amplificador

Receptor

7.5 - Modem

- 7.5.1 Conceito de sinal analógico e sinal digital
- 7.5.2 Conceitos e funções do modem
- 7.6 Linha ou canal de comuicação
- 7.7 Controladores
- 7.8 Terminais
 - 7.8.1 Inteligentes
 - 7.8.2 Não inteligentes
- 7.9 Rede de Teleprocessamento
 - - 7.9.1 Conceito 7.9.2 Topologias
- 7.10 Velocidades de transmissão e modos de transmissão

UNIDADE VIII : ESTRUTURA E ORGANIZAÇÃO DA INFORMAÇÃO

- 8.1 Campo
- 8.2 Registro
- 8.3 Arquivo
- 8.4 Tipos de Organização de Arquivos
- 8.5 Modalidade de Acesso a Arquivos

UNIDADE IX: NOÇÕES DE SISTEMA

- 9.1 Conceito
- 9.2 Sub-sistema
- 9.3 Componentes básicos de um sistema
- 9.4 Conceito de análise de sistemas
- 9.5 Ciclo de vida dos sistemas

UNIDADE X: ORGANIZAÇÃO DE FUNÇÃO PD

- 10.1 Modelo de organização
- 10.2 Cargos e funções
- 10.3 Área de atuação

VELOSO, Fernado de Castro. "Informática: Uma introdução. Campus GUIMARÃES, Angelo de Moura. "Introdução a ciência da computação".LTC. RIOS, Emerson. "Processamento de dados e informática" SHIMZU, Tamio. "Peocessamento de dados : conceitos básicos". Ática. HABERKORN, Enesto. "Introdução ao processamento de dados. Atlas.

CARUSO, ADOLFO. José André. Gustavo de Almeida. "Processamento de Dados -Plataforma para os anos 90". ÉRICA

PRIMEIRA AULA

- APRESENTAÇÃO DO PROFESSOR
- UNIT
- COMENTAR O MERCADO DE INFORMÁTICA
- METODOLOGIA
 - HORÁRIO e CHAMADA
 - INCENTIVO À LEITURA E PESUISA BIBLIOGRÁFICA
 - PROPOSTA DA DIVISÃO DA RESPOSABILIDADE NO APRENDIZADO
 - PROVAS
- APRESENTAÇÃO DA TURMA
- ENTREGA DO PROGRAMA DO CURSO

UNIDADE I : INTRODUÇÃO

1.1 - Histórico

"É indigno de homens eminentes perder horas como escravos na tarefa desgastante de calcular. Esse trabalho bem poderia ser confiado a pessoas sem qualquer qualificação especial, se máquinas pudesem ser utilizadas"

Gottfried Wilhelm Leibniz

• LEITURA DE TEXTO - HISTÓRICO DOS COMPUTADORES

SEGUNDA AULA

1.2 - Classificação dos compuatdores

Até a década de 70, o termo "computador" bastava para definir qualquer equipamento dedicado ao processamento eletrônico de dados.

- Tipo
- Geração
- Porte

1.2.1 - Quanto ao tipo ou forma de operação

- Analógico processam sinais elétricos
- Digital utilizam dígitos binários para representar sua programação e efetuar o armazenamento de dados.
- Híbrido Reúne características dos dois anteriores.

1.2.2 - Quando a geração

A geração é o resultado da tecnologia aplicada na área de eletrônica. A cada geração há uma procura por :

- maior velocidade de processamento
- menor dimensão física
- maior capacidade de memória
- menor custo

1° GERAÇÃO

- Surgiu em 1945 com o UNIVAC I
- Componente eletrônico válvulas
- Tempo de Operação: milisegundos (seg)
- Tamanho: grande
- Pouco confiáveis
- Poucas horas de funcionamento
- Monoprogramáveis
- Programados em linguagem de máquina

2° GERAÇÃO

- Surgiu em 1958
- Computador mais popular foi o IBM 1401
- Componente eletrônico transistor (SSI e MSI)
- 100 vezes menor
- Não precisava aquecer para funcionar
- Consumo menor de energia
- Mais rápido e confiável
- Tempo de operação; microsegundos (10-6 seg)
- Auxílio no controle de E/S (surgimento dos discos magnéticos)
- Monoprogramável
- Linguagem assembler
- Surgimento do primeiro minicomputador : PDP-5 (\$ 120.000)

3° GERAÇÃO

- Surgiu em 1965 : IBM 360
- Comoponente eletrónico : Circuito Integrado (LSI)
- Mais confiáveis
- Miniaturização dos componentes
- Baixíssimo consumo de energia
- Custo muito mais baixo
- Menor tamanho
- Multiprogramação
- IBM 360 vendeu 30.000 unidades

4° GERAÇÃO

- Surgiu em 1975
- Compenentes eletrônicos Circuitos Integrados (LSI e VLSI)
- Tempo de operação 0,5 nanosegundos (10-9 seg)
- Popularização no uso
- Tecnologia de FIRMAWARE (Funções do S.O)

5° GERAÇÃO

- Em fase de estudo
- Dúvidas quanto a existência
- Componetes eletrônicos : Circuito integrado (ULSI)
- Inteligência artificial
- O hardware e construído visando o software
- CISC X RISC
- Muliprocessamento
- Tempo de operação: pico-segundo (10-12)
- Memória principal Gigabytes
- Memória auxíliar Terabytes

1.2.3 - Quanto ao porte

Segundo a capacidade e potênciad desta categoria de máquinas, pode-se distinguir quatro classes bem diferiadas de computadores:

- Maiframes, ou computadores de grande porte
- Minicomputadores
- Supermicros
- Microcomputadores

Cada um deles adequa-se a um tipo de usuário e por isso nenhum deles exclui os anteriores

OBS : Definir : aplicação, empresas, custo, pessoal e comparação.

- 1.3 Utilização do computador
- 1.4 Novos campos de pesquisa (projetos assistidos por computadores, robótica, iteligência artificial)

OBS: ENTREGA DE TEXTO

TERCEIRA AULA

UNIDADE II: HARDWARE

2.1 - Conceito

2.2 -Bit, Byte e Palavra

Unidade de Medidas Códigos padrões de caracteres ASCII e EBCDIC

2.3 - Componentes básicos do computador CPU, Memória e Unidades de E/S

2.3.1 - Unidades de E/S

Interface Serial e Paralela

Unidades de Entrada

Teclado

Mouse

Pen

Touch Screen

Leitora Óptica (Código de Barras e Scanner - OCR)

Leitora de Cartões (80 colunas e não reutilizável)

Leitora de Tarja Magnética (cartão de crédito, 56 bytes em 3 trilhas)

Mesa Digitalizadora

Joystick

OBS: Entrega de texto

QUARTA AULA

Unidades de Saída

Impressora

• Mecanismo de Impressão

Impacto

Não-Impacto

- Quantidade Impressa (cps, lpm, ppm)
- Tipo de Papel

Formulário Contínuo (80 X 66 e 132 X 66)

Folha Solta (carta, A4)

• Tipos de Impressoras

Linha

Margarida

Matricial (9 e 24 pinos)

Jato de Tinta

Laser

- Aplicações
- Operação

Ploterrs

- Escrita com canetas de diversas esperssuras e/ou cores
- Folhas grandes (A0, A1, A2,...)
- Aplicação

Monitores e Placas de Vídeo

- Tipos : Quanto a formação da Imagem
 - CRT (canhão e tela foto-sensível)
 - LCD Alteração das condições de absorção e reflexão da luz sobre a tela de cristal líquido
- Resolução PIXEL (picture element) e Dot Pich
- Tipo: Quanto a resolução
 - CGA 320 X 200 até 16 cores
 - EGA 640 X 350 até 64 cores
 - VGA 640 X 480 até 256 cores
 - SVGA 1024 X 768 até 256 mil cores
- Tipo : Quanto ao número de cores
 - Monocromáticos (Fósforo Verde e Branco)
 - Policromáticos
- Modos de Apresentação
 - Texto (80 X 25) Caracter Map
 - Gráfico resolução Bit Map
- Placa de Vídeo

QUINTA AULA

Unidades de Entrada e Saída

Unidade de Disco Magnético

- Tecnologia de Leitura/Gravação
- Tipo: Fixo ou Flexível
- Face, Trilha, Setor, Cluster, Slack
- Formatação
- Densidade
- Acesso Direto
- Discos Flexíveis
 - Aplicação
 - 8"
 - 5.1/4"
 - 3./12"
- Discos Rígidos (Removíveis e Fixos)
 - Arquitetura
 - Aplicação

Unidade de Disco Óptico

- Tecnologia de Leitura/Gravação
- Categorias (Somente Leitura e Leitura/Gravação)
- Altíssima Densidade
- Aplicação

Unidadades de Fita Magnética

- Tecnologia de Leitura/Gravação
- Tipos : Carretel e Cartucho
- Velocidade de Acesso Baixa
- Custo Baixo
- Acesso Sequencial
- Aplicação

Modem

- Modulador/Demodulador
- Aplicações
- Velocidades de Transmissão (2.400, 9.600, 14.400, 28.800, ..., bps)
- Placas de FAX/MODEM

Palestra Sobre BBS

SEXTA AULA

2.3.2 - Memória

- Definição
- Tipos (RAM, ROM, PROM, EPROM, CACHE e BUFERRS)
- Memória Principal
 - Tamanho
 - Endereço
 - Acesso
- Memória Secundária
- Memória Virtual

2.3.3 - Unidade central de processamento

- Conceito
- Funções (Ciclo: Busca X Execução Clock)
- Divisões
 - Unidade Controladora
 - Registradores (endereço, dados, instruções e programas)
 - Unidade Lógica e Aritmética

2.3.4 - Canais de entrada e de saída

- Palavra
- Barramento (Dados, Memória e Controle)

UNIDADE III : SISTEMAS NÚMERICOS

Sistemas numéricos

"Sistema de numeração é o conjunto de símbolos, palavras e regras que nos permite escrever e dar nomes a todos os números"

Henrique Morandi

Conceitos básicos

Base de um sistema de numeração - quantidade de símbolos utilizada para representar as quantidades desse sistema. (decimal, binário, octal e hexadecimal). Ou seja, dada uma base N qualquer, são necessários N símbolos diferentes para representar um número. A base é indicada entre parenteses abaixo e no final do número.

Posição - as posições são numeradas da esquerda para a direita iniciando em zero.

Valor da Posição - valor intrínsico do símbolo vezes a base elevado à posição

Valor númerico de um Sistema de numeração - Somatório dos valores de posições dos algarismos que compõem um número : XYZH = H.b(0) + Z.b(1) + Y.b(2) + X.b(3)

Sistemas de Interesse em P.D.

Sistemas decimal (base 10) Sistema binário (base 2) Sistema hexadecimal (base 16) Sistema Octal (base 8)

Mudanças de base

• De qualquer base para a base 10 - igual ao valor númerico na base

Exercício

- a) 101101(2)
- b) AEF76(16)
- c) 5472(8)
- d) 100010(2)
- e) CAFE(16)
- f) 3126(8)
- Da base 10 para qualquer base utiliza-se o método das divisões sucessivas pela base. Nesse método são marcados os restos de cada divisão e o número na base qualquer é formado pelos restos de cada divisão, só que no sentido inverso da ordem em que ocorreram as divisões.

Exercício

Transforme o números decimais abaixo para as base : dois, dezeseis e oito.

- a) 501
- b) 1724
- c) 387
- d) 635
- Da base 2 para a base 16 agrupamos o número binário em grupo de quatro, símbolos da direita para a esquerda, calculamos o valor em decimal para esses grupos e os substituímos pelo seu valor correspondente em hexadecimal.

Exercício

transforme os números binários abaixo em hexadecimais

- a) 10110101011100
- b) 111000111101111
- c) 100111101100110001
- d) 11101100001010101111

Da base 16 para a base 2 - substituímos cada símbolo hexadecimal por quatro (sempre quatro) símbolos binários correspondentes.

Exercício

Transforme os números hexadecimais abaixo em binários

- a) COCA
- b) B1FE
- c) 102
- Da base 2 para a base 8 agrupamos o número binário em grupo de três símbolos, da direita para a esquerda, calculamos o valor em decimal para esses grupos e os substituímos pelo seu valor correspondente em octal.

Exercício

Transforme os números binários abaixo em octais

- a) 10101011
- b) 1001011111111
- c) 1110110110111
- Da base 8 para a base 2 substituímos cada símbolo octal por três (sempre três) símbolos binários correspondentes.

Exercício

transforme os números octais em binários

- a) 3027
- b) 41635
- c) 350284

Da base 8 para a 16 - utiliza-se a transformação para a base 2 para facilitar

Exercício

Transforme os números octais em hexadecimais

- a) 63745
- b) 412376
- c) 7564325
- Da base 16 para a 8 utiliza-se a transformação para a base
 2 para facilitar

Exercício

Transforme os números hexadecimais em octais

- a) CEF36
- b) 342FDE
- c) CDFE45B

OPERAÇÕES ARITMÉTICAS

- ADIÇÃO
- SUBTRAÇÃO

UNIDADE IV: SOFTWARE

Conceito

Divisões do software

- Apoio Editores de Textos, Planilhas de Cálculos e Banco de Dados
- Aplicativos
- Básico Sistema Operacional

Linguagem de programação

- Linguagem conjunto de regras e símbolos, obedecendo regras e contendo um vocabulário com o objetivo de produzir comunicação
- Linguagem de programação linguagem destinada a permitir a comunicação entre o homem e o computador

Conceito de:

- Comando ou instrução
- Algoritmo
- Programa
- Rotina
- Sistema
- Ciclo de Vida do SoftWare

Classificação das Linguamgem de Programação

Quanto ao método de Tradução

- Compiladores X Interpretadores

Quanto ao nível - Alto nível X Baixo nível

Quanto a geração - III x IV Geração

Exemplos de Linguagens de Programação

ASSEMBLER

- Primeira Linguagem de programação
- Tinha como objetivo substituir as sequências de 0 e 1 por mnemônicos.
- Uso de registradores
- Grande potencialidade
- Dependente do Processador
- Utilizada para confecção de SW básicos e de apoio

BASIC

- Foi desenvolvida em 1963/65 com objetivos acadêmicos
- Linguagem bastante difundida no mundo dos microcomputadores e facilitou a popularização dos micros
- É uma linguagem interpretada

COBOL

- Linguagem muito utilizada em SW aplicativos comerciais em ambiente de grande porte
- Tem pouco uso no mercado de microcomputadores
- Poderosa na manipulação de grande volumes de dados
- A sua extinção é um assunto bastante polêmico

LOGO

- É uma linguagem interpretada voltada para aplicações educacionaos
- Muito utilizada na iniciação de crianças nos conceitos de programação matemática
- Seus comandos são formados por instruções primitivas e simulam o andar de uma tartaruga na tela para formação de desenhos geométricos

PASCAL

- Surgiu no início da década de 70
- Foi criada com o objetivo de ensinar os conceitos de programação estruturada
- Hoje é o padrão de linguagem estruturada
- Possui código transportável ee com bom nível de padronização
- Voltado para o ambiente acadêmico, mas as últimas versões possuem a criação de aplicações comerciais.

FORTRAN - Formula Translation

- É a linguagem mais usada para a manipulação de números em aplicações científicas e de engenharia
- Usada desde 1956, foi a primeira linguagem de alto nível
- É inadequada para construção de aplicações comerciais
- Bastante difundida no ambiente acadêmico, porém vem perdendo seu lugar para linguagens mais modernas

 \mathbf{C}

- Criada em 1974
- Era inicialmente um conjunto de ferramentas do sistema operacional para engenheiros ou programadores de software
- Linguagem de nível médio
- Formada por funções que permitem ao programador desenvolver programas eficientes sem entrar em detalhes de HW
- Altamente portáveis entre plataformas de HW
- Tem como principal característica a flexibilidade
- É uma linguagem de grande popularidade e possui um grande número de aplicações
- O sistema operacional UNIX foi desenvolvido em C

DELPHI

- Linguagem recente com grande aceitação pelo mercado
- Linguagem visual
- Orientada a Objetos
- Desenvolvimento de sistemas com grande produtividade
- Acesso a banco de dados
- Código otmizado

LÓGICA DE PROGRAMAÇÃO

É o processo de consrtução de um algoritmo (ou fluxograma) contendo os passos para a solução de um problema proposto.

FLUXOGRAMA

- Ferramenta gráfica utilizada da descrição da lógica dos programas
- Muito utilizado na década de 60 e início de 70
- Deficiente quando modelamos processos complexos, pois, permite desvios que retrocedem a execução da solução do problema (estruturas de repetição mal definidas) e esses desvios dificultam o entendimento e a manutenção
- Atualmente é pouquissímo utilizado na construção de SW
- Os principais símbolos são :

Seleção ou Decisão

Processamento

Comandos de Leitura/Gravação/Impressão

ALGORITMO

- Ferramenta Textual
- Nasceu com a programação estruturada (sequência, seleção e repetição)
- Estruturas de repetições bem definidas
- As principais palavras chaves

leia (VARIÁVEIS) imprima(VARIÁVEIS) VARIÁVEL ← VALOR

se condição então COMANDOS senão COMANDOS

enquando condição faça
COMANDOS
fim-enquanto

EXERCÍCIOS

1 - Faça um algoritmo que leia o nom e as três notas dos alunos de ICC e imprima os alunos aprovados. A média é 5.0 e um aluno com

Sistemas Operacionais

Conceito

"Conjunto de programas que tem por finalidade gerenciar os recursos do computador e facilitar a comunicação entre o homem e a máquina. Ou seja, unir : hardware, software e peopleware"

Funções

- Pemitir o funcionamento básico do computador e dos seus periféricos
- Permitir a interação do homem e máquina , através de comandos previamente definidos
- Executar tarefas básicas e rotineiras dentro de um sistema de computação (classificação, edição, cópia, deleção, impressão de um arquivo, formatação de discos, alocar e liberar memória, gerenciar periféricos)
- Execução de programas
- Tornar o uso do equipamento mais simples, seguro e eficiente

Tipos de Supervisão e Controle

- Tratamento de erros
- Tratamento de I/O
- Escalonamento de processo
- Proteção

Características

- Escrito em linguagem de baixo nível
- Eficiente e eficaz
- Pequeno
- Dependente da arquitetura do hardware

Carga do Sistema Operacional (BOOT)

Classificação dos Sistemas Operacionais

Os sistemas operacionais podem ser classificados de acordo com serviços e o modo pelo qual se apresentam em termos de recursos oferecidos aos usuários.

- Sistemas Monoprogramação ou Monotarefa
 - Um programa por vez
 - Perde-se tempo com periféricos
 - CPU ociosa
 - microcomputadores
- Sistemas Multiprogramação ou Multitarefa (Preemptivo X Não-Preemptivo)
 - Vários programas
 - Divisão de CPU e Memória
 - Eliminação do tempo ocioso da CPU
- Sistemas Multiusuários
 - Vários Usuários
 - Compartilhamento da CPU, Memória e periféricos
 - Grande capacidade de processamento e armazenamento
 - Host computador central
 - Terminais Interface (monitor e teclado) como usuário
 - Ambiente de grande porte
- Sistemas de Tempo Real Sistema operacional, onde, o equipamento recebe comandos e deve executá-los em um intervalo de tempo pré-fixado, após o que haverá perda de informações ou prejuízos na operação
 - Aplicados a medição/controle, que exijam monitoramento contínuo de instrumentos, com tempos de resposta mínimos
 - Hardware especializado
 - Máxima otimização no tratamento de interfaces, drives, etc.
 - Aplicações específicas : usinas, caldeiras, automação industrial, controle de tráfego, industria bélica, etc.

Modalidades de Processamento

- Batch processamento no qual os dados a serem processados ou programas a serem executados são agrupados para que seus processamentos sejam efetuados de uma só vez (processamento em lote)
 - grande volume de dados
 - o tempo de resposta não precisa ser baixo
 - Geralemente existe intervenção humana
 - Filas de espera
- On-Line Designação dado ao funcionamento dos terminais, arquivos e equipamentos auxiliares do computador, que operam sob controle direto deste, eliminando a necessidade de intervenção humana em qualquer das fases compreendidas entre a entrada de dados e o resultado final.
 - Usuário-terminal-computador
 - Pouco ou nenhuma intervenção humana
 - Grande uso de teleprocessamento
 - Precisa de um tempo de resposta baixo

Trabalho de Sistemas Operacionais

• Para Microcomputadores

DOS

WINDOWS

OS/2

• Para computadores de grande porte

DOS/VSE

OS

VM

ESTRUTURA E ORGANIZAÇÃO DA INFORMAÇÃO

Informação x Dado (data de nascimento x idade)

Campo - Estrutura básica de armazenamento, local onde podemos guardar um dado

Componentes: nome, tamanho, tipo

Tipos: Numericos, alfabéticos e alfanuméricos

Registro - É um conjunto de campos relacionados a uma entidade

Arquivo - É um conjunto de registros de um determinado assunto que estão armazenados em um meio físico (disco, fita, etc)

Campo Chave - Campo que dá acesso ao registro

Campo Chave primária - individualiza o registro

Modalidade de Acesso a Arquivos

- Sequencial Quando desejamos acessar um determinado registro, devemos, obrigatoriamente, acessar, todos os anteriores. Um arquivo sequencial possue apenas uma área de dados.
- Indexada O arquivo indexado possui uma área de índice e outra de dados. Na área de dados os registros são gravados sequencialmente por ordem de gravação e na área de índice existe temos as chaves primárias e o endereço do registro dentro arquivo.

REDES LOCAIS DE COMPUTADORES - LAN

"Rede é uma forma de interligar equipamentos (micros e periféricos) para que seja possível a troca de dados e o compartilhamento de recursos."

Aspectos positivos das redes

- Comunicação e intercâmbio de dados entre usuários
- Processamento Distribuído
- Compartilhamento de recurso em geral
- Racionalização do uso de periféricos
- acesso rápido a informações compartilhadas
- Flexibilidade lógica e física de expansão
- Custo/Desempenho baixo para soluções que exijam muitos recursos
- Interação entre diversos usuários e departamentos de uma empresa
- Redução e eliminação de redundância de armazenamento
- Controle da utilização e proteção no acesso de arquivos

Topologias

Estrela

 Existe um elemento central, ao qual são conectados so demais.
 Todos os dados que transitam pela rede passam necessariamente pelo nó central

Anel (token)

- A rede é formada por um circulo de estações ligadas em série. Neste esquema, uma mensagem é retransmitida por elementos intermediários, até atingir o nó destino.
- Cada nó deve somente reconhecer seu próprio endereço meio físico comum a todos os nós de comunicação, sendo constituído por vários segmentos de transmissão ponto a ponto entre pares de nós de comunicação adjacentes.

Barramento

- Uma informação transmitida se difunde pela rede, atingindo os elementos destinatários.
- Sem armazenamento intermediário das mensagens na rede
- Meio físico composto por um único segmento de transmissão multiponto, compartilhado pelas diversas estaçãoes interconectadas.

Fatores para dimensionamento de uma rede

- 1. Arquitetura e equipamentos a serem utilizados
- 2. Quantidade e tipos de micros
- 3. Quantidade e tipos de periféricos a serem compartilhados
- 4. Tráfego de informação
- 5. Nível de proteção e seguraça de dados desejado
- 6. Comunicação com outras redes públicas ou privadas e/ou outros sistemas
- 7. Distâncias entre nós e o comprimento total da rede
- 8. Simultaneidade e frequência de acesso a periféricos ou banco de dados compartilhado

Arquiteturas

Ponto a Ponto

- A implantação das redes ponto a ponto é bastante simples
- Nas redes ponto a ponto não existe ummicricomputador "servidor", todos eles podem ser clientes ou servidores a depender do pedido. (impressão, back-up, Arquivos, Comunicação)

Cliente-Servido

- Tentar simular um mainframe, onde, o nó servidor seria o computador "central" disponibilizando recurso às demais estações clientes.
- Os clientes seriam microcomputadores que solicitam informações ao servidor, porem fazem processamento local.
- Aplicações Back-End são aquelas que devem ser rodadas no servidor. (Criação de tabelas, tratamento de erros, liberação de acesso)
- Aplicações Front-End são executadas no cliente. Geralmente são aplicações de acessoa B. D. (Consultas a tabelas, atualização de dados)

Meio Físico para comunicação

Par Trançado - é largamente utilizado em telefonia. É de fácil manuseio devido a suas pequenas dimensões e grande maleabilidade, pemitindo uma instalação sem grandes transtornos

- Baixo custo
- alcançe reduzido
- menor imunidade a ruídos
- Requer cuidados adicionais de instalações : proximidades a cabos de energia, etc.

Cabo Coaxial - possue um tecnologia mais recente onde usa um blindagem para proteger o meio de transmissão de interferência exeternas.

- Maior velocidade de transmissão
- Alta imunidade a ruídos
- Menor maleabilidade : requer cuidados na sua instalação, como espaços de canalização, dobras, etc.

Fibra Óptica - tecnologia bastante recente

- Totalmente imune a interferências eletromagnéticas
- Alta confiabilidade
- Alto custo
- Instalação complexa

UNIDADE VII: NOÇÕES DE TELEPROCESSAMENTO

Conceitos

"É a modalidade de operação que combina o processamento eletrônico de dados com a transmissão de dados a distância, através de qualquer tipo de linha de comunicação, via telecomunicação"

Objetivos

- Integrar regiões geograficamente distantes
- Compartihar recurso computacionais remotos

Conceito de ambiente local e ambiente remoto

"Ambiente local é aquele situado localmente ao centro de processamento, e o ambiente remoto é aquele situado geograficamento distânte do centro de processamento, ao qual se liga por um meio de telecomunicação"

Teleprocessamento em ambientes : Multiusuários e/ou Redes de Computadores

Elementos básicos na comunicação de dados

Transmissor - equipamento responsável em gerar as informações a serem transmitidas.

Codificador - equipamentos reponsáveis em adaptar o sinal ao meio de comunicação.

Repetidor - equipamento responsável em repetir as informações evitando a degradação do sinal no meio de transmissão.

Amplificador - equipamento responsável em ampliar o sinal para aumentar o alcance da transmissão.

Linhas ou canais de comunicação - meio pelo qual o sinal flui até atingir o equipamento destino.

Receptor - equipamento receptor da informação.

Conceito de sinal analógico e sinal digital

Analógico - os sinais elétricos variam continuamente entre todos os valores permitidos pelo meio de transmissão

Digital - os sinais elétricos correspondentes a informação podem assumir somente valorespré-definidos

Modos de transmissão : Serial e Paralela

Síncrona e Assíncrona

Assíncrona : a sincronização é feita através de um indicativo (bit start), seguido de dados que vão compor o caracter e finalmente um outro indicativo de fim (bit stop).

Síncrona: não se tem os indicativos de início e fim (bit start e bit stop) e os bits de um caracter são seguidos do bits do próximo caracter de dados. Estes caractes, por sua vez, determinam blocos de tamanhos variáveis. E estes blocos podem ter tamanho, desde alguns caracteres até milhares de carcteres, dependendo do tipo de equipamento utilizado.

Síncrona

vantagens

- os caracteres podem ser transmitidos em espaços de tempos aleatórios
- os caracteres são facilemente gerados pelos dispositivos codificadores
- o custo do equipamento envolvido é baixo

Desvantagens

- alta proporção do que é transmitido são indicadores de controle e não informação
- a informação é mais suscetível a erros

Assíncrona

Vantagens

- maior segurança quando há erros, pois no final do bloco é enviada configuração de verificação de validade.
- transmissão mais eficiente, pois à proporção entre informação e controle é maior
- não é tão sensível à distorções, portanto pode-se operar à velocidades mais elevadas

Desvantagens

- na ocorrêencia de erro, todo o bloco é perdido e precisa ser retransmitido integralmente
- requer um equipamento de maior capacidade
- os caracteres são enviados em blocos e não quando estão disponíveis e isto exige áreas de armazenamento, que aumentam o custo dos equipamentos envolvidos

As transmissões podem ser:

- SIMPLEX Quando a linha permite a transmissão em um único sentido
- HALF-DUPLEX ou SEMI-DUPLEX quando a linha permite a transmissão nos dois sentidos, mas somente de modo alternado, ou seja, uma de cada vez
- FULL-DUPLEX permite a ligação nos dois sentidos, simultaneamente

ENGENHARIA DE SOFTWARE e CONCEITO DE SISTEMA

Crise do Software

Expressão utilizado já na década de 60, em alusão a um conjunto de problemas encontrados no processo de Desenvolvimento - construção, implantação e manutenção - de Software.

Esses problemas não se referem apenas a programas que não funcionam. Na verdade, a chamada crise do software abrange todos os problemas relacionados a:

- Construção dos sistemas computacionais
- Implantação dos sistemas computacionais. (substituição, desativação ou instalação inicial)
- Atendimento da crescente demanda de sistemas, gerada pelos variados anseios de nosso sociedade moderna
- inexiste uma métrica, universalmente aceita, que permita avaliações quantitativas e qualitativas dos diferentes produtos. Fazendo com que, cada desenvolvimento de software seja uma experiência única, que pouco contribui para assegurar o sucesso de desenvolvimentos subsequentes
- Frequente insatisfação do cliente em relação ao software "acabado"
- Traumatização gerado pela implantação do software desenvolvido.
- Grande dificuldade (alto custo, 60 a 80%) na manutenção do software construído

Engenharia de software

"Engenharia de software é a área interdiciplinar que engloba vertentes tecnológicas e gerencial visando a abordar, de modo sistemático, os processos de construção, implantação e manutenção de produtos de software com qualidade assegurada por construção, segundo cronogramas e custos previamente definidos."

Considera-se que a engenharia de software é uma área interdisciplinar baseadas nos fundamentos :

- Ciência da Computação prover os fundamentos científicos da engenharia de software.
- Administração de Projetos prover os fundamentos para gerenciamento de projetos de desenvolvimento de software, incluíndo as atividades de planejamento que envolvam estimativas de recursos e cronogramas, bem como da definição de estrutura organizacional, formas de controle e de liderança
- Comunicação na construção de software é necessário um alto grau de interação pessoal, isso impõe ao engenheiro de software o domínio de habilidades de comunicação interpessoal, tanto oral quanto escrita.
- Técnicas de Solução de problemas

Sistemas e Modelos

Conceito de Sistema

"Um conjunto, identificável e coerente, de elementos que interagem coesivamente, onde cada elemento pode ser um sistema" Chamar alguma coisa de sistema significa traçar uma fronteira virtual (conceitual) separando essa coisa do resto do mundo"

Conceito de Modelo

"Uma representação que permite descrever e/ou prever comportamentos específicos de um sistema, através do estudo de características relevantes do sistema"

A arquitetura básica de um modelo requer especificação de :

- Linguagen de representação rigorosa, com sintaxe e semântica suficientemente ricas para comunicar toda a complexidade requerida pelo idealizador do modelo, formal o bastante para evitar ambiguidades nesse processo de comunicação
- Hipótese simplificadoras que reqem sua construção (critérios utilizados para realizar a segmentação de um sistema de grande porte e a abstração de detalhes execessivos de um sistema complexo)
- todas as entidades (objetos) relevantes para o modelo
- todos os relacionamentos (interações) existentes entre as entidades do modelo, relevantes para a construção deste
- Todas as informações relativas as entidades e aos seus relacionamento
- "leis básica" que regem os "fenômenos" relevantes (comportamento do sistema), adequadas ao nível de abstração no qual o modelo está contruído

Ciclo de vida do software

"Ciclo de vida do software constitui o modelo de implementação de mais alto nível de abstração do processo de desenvolvimento de software: ele deve especificar as (macro) atividades a serem executadas durante o processo, bem como o sequenciamento de execução, identificando, para cada uma, seus pré-requisitos, produtos, pontos de controle, formas de controle."

Suas etapas:

Análise, Projeto, Implementação, Teste, Implantação e Manutenção

Metodologia de desenvolvimento de software

"Uma metodologia de desenvolvimento de software detalhará o ciclo de vida, especificando um conjunto completo, único e internamente coerente, de princípios, técnicas, linguagens de representação (ferramentas conceituais), normas, procedimentos e dodumentos, que permitam ao engenheiro de software implementar sem ambiguidades a especificação contida no ciclo de vida do software"

Exemplos de metodologias: Estruturada Essencial Orienta a Objetos

UNIDADE X: ORGANIZAÇÃO DE FUNÇÃO PD

- 10.1 Modelo de organização
- 10.2 Cargos e funções
- 10.3 Área de atuação