ECE 1513: Introduction to Machine Learning Course Logistics

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Welcome to ECE 1508!

Happy to see you in ECE 1513

Introduction to Machine Learning

Instructor: Ali Bereyhi

- Office: BA 7208 at Bahen Centre for Information Technology
- Email: ali.bereyhi@utoronto.ca

Where and When?

- Tuesdays at 6:00 PM till 9:00 PM at MS 3154
- → We have the room till 9:30 PM, so we will have breaks ②

Tutorials: Saba Ale Ebrahim and Mohammadreza Safavi

Mondays at 7:00 PM till 8:00 PM at MS 3154

Teaching Team

- Saba Ale Ebrahim Tutorials and Office Hours
 - PhD Candidate, ECE Department
 - saba.aleebrahim@mail.utoronto.ca
- Fateme Pourghasem Assignments and Project
 - M.A.Sc. Student, Institute of Biomedical Engineering
 - fateme.pourghasem@mail.utoronto.ca
- Mohammadreza Safavi Tutorials and Office Hours
 - M.A.Sc. Student, ECE Department
 - mohammadreza.safavi@mail.utoronto.ca
- TBA Assignments and Project
 - TBA
 - TBA

Quercus and Piazza

We got a Quercus page

- You have been automatically enrolled
- Also you got registered at the Piazza page
- All course materials will be shared on Quercus

Please! Feel free to ask questions on Piazza!

What Do We Learn?

We study Machine Learning! from scratch

You may wonder what do we learn in this course?

- Part I: Unsupervised Learning
 - Clustering: K-Means Clustering
 - Dimensionality reduction: Principle Component Analysis
 - · Learning data distribution: Gaussian Mixture Model

We also recap some notions and develop some intuitions in

- Linear Algebra
- Probability Theory

What Do We Learn?

We study Machine Learning! from scratch

You may wonder what do we learn in this course?

- Part II: Supervised Learning
 - Regression: Linear Regression
 - Classification: Logistic Regression, Perceptron and Multiclass Classification
 - Training via Stochastic Gradient Descent
 - Support Vector Machines
 - Overfitting and Underfitting: Regularization
 - Nonlinear Models and Representation: Kernels and Neural Networks

We also recap some notions and develop some intuitions in

Functional Analysis and Optimization

What Do We Learn?

We study Machine Learning! from scratch

Don't we study Deep Neural Networks?

- Within Part II, we study Neural Networks (NNs), specifically
 - Expressive Power of NNs: Universal Approximation Theorem
 - Multilayer Perceptrons (MLPs): Feedforward NNs
 - Training MLPs: Backpropagation
 - Convolutional NNs

Nonetheless, please note that

- This is not a course on Deep Learning, but general ML
- To study Deep Learning, you may consider taking

ECE1508: Applied Deep Learning

Checkout the course syllabus at Quercus

How Do We Get Trained?

There are three learning components in the course

- Assignments

 - No need to say that they are the best thing to understand the course!

 - → Assignments will be solved in Tutorial after the deadline
 - → You have two weeks time for each assignment
 - Submission by deadline at 11:59 PM
 - → No extension will be made! Really Sorry! ②

Attention!

Assignments make almost half of the course mark; so, they need effort! They are a part of the learning process, not supplementary!

- Midterm Exam
- Final Project

How Do We Get Trained?

There are three learning components in the course

- Assignments
- Midterm Exam
 - - Questions that can be solved by hand, so no programming in the exam
- Final Project

How Do We Get Trained?

There are three learning components in the course

- Assignments
- Midterm Exam
- Final Project
 - - □ Each group chooses a topic and submits the proposal by Week 10

Attention!

The projects of ECE1508 and ECE1513 cannot be the same! Any overlap between the projects should be discussed in advance!

Read the post on Quercus for more details

Course Calendar

Week#	Date	Notes	Posted	Deadline
1	Jan 06 - Jan 10			
2	Jan 13 - Jan 17		Assignment 1	
3	Jan 20 - Jan 24			
4	Jan 27 - Jan 31		Assignment 2	Assignment 1
5	Feb 03 - Feb 07			
6	Feb 10 - Feb 14		Assignment 3	Assignment 2
7	Feb 17 - Feb 21	Reading Week No Lectures		
8	Feb 28 - Feb 28	Midterm Exam Feb 25		
9	Mar 03 - Mar 07		Assignment 4	Assignment 3
10	Mar 10 - Mar 14			Project: Proposal Submission
11	Mar 17 - Mar 21		Assignment 5	Assignment 4
12	Mar 24 - Mar 28			
13	Mar 31 - Apr 04			Assignment 5
14	Apr 07 - Apr 11	Examination Time No Lectures		Project: Final Report and Source Codes

- You could check it out here
- Also, follow the course board on Quercus for updates

In Person Lectures!

The course is in-person and \cdots

··· by Regulations the attendance is mandatory in in-person courses!

Recording might be available

- They are mainly for recap and cannot be guaranteed
- I strongly advise to attend the lectures
 - You don't want to miss my performance ©
 - ECE1513 is taught on the board

Programming in Python

We mainly use Python for programming

- □ Basic knowledge in Python is enough
 - □ Don't run away if you don't have, you only need a bit of more efforts
- - → Matplotlib, NumPy, Scikit-Learn, Pandas, PyTorch
- □ Programming is not the only major thing!

No Major Prerequisites

The course is self-containing meaning that

you will learn all background you need!

I assume that we all have some basic math in mind

But we review whatever we need from these topics whenever needed!

There are some other related courses, the most important one is

- CSC 311/2515 and ECE 421/1504
- ECE 1508: Applied Deep Learning
 - ☐ Totally fine (actually suggested) to have it before or with this course
 - ↓ It focuses on Deep Learning not general Machine Learning

Textbooks

Materials are mostly collected from

- Bishop's textbook, which can be accessed online at this link
- MacKay's book that is available online at this link

Also some parts are taken from

- Mitchell's textbook that is available online here
- Goodfellow et al. that can be accessed online at this link
- Elements of Statistical Learning (ESL) by Hastie, Tibshirani and Friedman

Terms and Conditions!

The instructor keeps the right reserved for himself to modify online materials

- last minute before the lecture 😊
- after the lecture has been given
 - Typically happens due to typos

The instructor keeps the right reserved for himself to deliver the notes

• in form of mini-batches ©

Date and Signature

No such thing as a stupid question!

Did you know that we got a Wikipedia page on this?

- □ Trust me! Your question will never sound stupid!
- If you don't ask; then, I need to ask!
 - → Interaction is the best tool to avoid getting bored!

Any Questions? ©