EPFL - Automne 2020	Prof. Z. Patakfalvi
Structures Algébriques	Exercices
Série 10	20 Novembre 2020

Veuillez télécharger vos solutions aux exercices à rendre (Exercice 7) sur la page Moodle du cours avant le lundi 7 décembre, 18h.

1 Exercices

Exercice 1.

Soit $f: G \to H$ un morphisme de groupes.

- 1. Si $F \leq H$, montrez que $f^{-1}F \subseteq G$ est un sous-groupe.
- 2. Si $F \leq G$ est un sous-groupe normal, montrez que $f^{-1}F \subseteq G$ est un sous-groupe normal.
- 3. Si $F \leq G$ est un sous-groupe, montrez que $f(F) \subseteq H$ est un sous-groupe.
- 4. Si f est surjective et que $F \subseteq G$ est un sous-groupe normal, alors $f(F) \subseteq H$ est un sous-groupe normal.
- 5. (Théorème de correspondence.) Soit G un groupe, $H \leq G$ un sous-groupe normal et $q \colon G \to G/H$ l'application quotient. Montrez qu'on a une bijection

et que cette bijection est toujours valide si l'on ajoute les conditions que F et K sont normaux.

Exercice 2. 1. Montrez que S_n est engendré par les transpositions

$$(1\ 2), (2\ 3), \ldots, (n-1\ n).$$

Indication : commencez par vous ramenez à montrer que toute transposition peut s'écrire comme un produit des transpositions ci-dessus.

2. Soit $H \leq S_4$ un sous-groupe engendré par 2 transpositions distinctes. Montrez que soit $H \cong S_3$, soit $H \cong (\mathbb{Z}/2\mathbb{Z})^{\oplus 2}$. 3. Montrez que S_4 est engendré par $(1\ 2)$ et $(2\ 3\ 4)$.

Exercice 3.

Montrez que le groupe multiplicatif $\mathbb{Q}_{>0}$ n'est pas finiment engendré.

Exercice 4.

Montrez qu'un sous-groupe de $(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$ engendré par 2 éléments différents de l'élément neutre, est isomorphe à $(\mathbb{Z}/2\mathbb{Z})^{\oplus 2}$.

Exercice 5.

Soit G un groupe. Montrez que G est abélien si et seulement si la diagonale $\Delta \leq G \times G$ est un sous-groupe normal. Dans ce cas, montrez que $(G \times G)/\Delta \cong G$.

Exercice 6 (Quelques contre-exemples). 1. Trouvez un groupe G et deux sous-groupes $H, H' \leq G$ tels que : $H \cong H'$, H est normal dans G, mais H' n'est pas normal dans G.

Indication: on peut trouver un tel exemple avec $G = D_4$.

- 2. Trouvez un groupe G et deux sous-groupes normaux $H, H' \subseteq G$ tels que : $H \cong H'$ mais $G/H \ncong G/H'$.

 Indication : on peut trouver un tel exemple avec $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.
- 3. Trouvez un groupe G et un sous-groupe normal $H \unlhd G$ non-trivial tels que $G/H \cong G$.

Indication : on peut prendre $G = \mathbb{C}^*$ et H le noyau de l'application $z \mapsto z^2$.

2 Exercice à rendre

Exercice 7. 1. Soient G, H deux groupes, et supposons que $G = \langle g_1, \ldots, g_r \rangle$. Montrez que la fonction entre ensembles

$$\operatorname{Hom}(G,H) \longrightarrow H^{\oplus r}$$

$$\varphi \longmapsto (\varphi(g_1,),\ldots,\varphi(g_r))$$

est injective.

2. Montrez qu'il existe un homomorphisme injectif

$$Aut(S_3) \hookrightarrow S_{(1\ 2),(2\ 3),(1\ 3)},$$

- où $S_{(1\ 2),(2\ 3),(1\ 3)}$ désigne le groupe des permutations de l'ensemble $\{(1\ 2),(2\ 3),(1\ 3)\}.$
- 3. Montrez que tous les automorphismes de S_3 sont des conjugaisons. Indication: utilisez la conjugaison pour plonger S_3 dans son groupe d'automorphismes.