Geometrie und Topologie

Siehe GitHub

30. Oktober 2013

Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 geschrieben. Es beinhaltet Vorlesungsnotizen von Studenten zur Vorlesung von Prof. Dr. Herrlich.

Es darf jeder gerne Verbesserungen einbringen!

Die Kurz-URL des Projekts lautet tinyurl.com/GeoTopo.

Inhaltsverzeichnis

1	Topologische Grundbegriffe			
	1.1	Vorgeplänkel	2	
	1.2	Topologische Räume	2	
	1.3	Metrische Räume	6	
	1.4	Stetigkeit	8	
Sy	mbol	erzeichnis	12	
St	ichwo	tverzeichnis	13	

1 Topologische Grundbegriffe

1.1 Vorgeplänkel

Die Kugeloberfläche S^2 lässt sich durch strecken, stauchen und umformen zur Würfeloberfläche oder der Oberfläche einer Pyramide verformen, aber nicht zum \mathbb{R}^2 oder zu einem Torus. Für den \mathbb{R}^2 müsste man die Oberfläche unendlich ausdehnen und für einen Torus müsste man ein Loch machen.

Abbildung 1.1: Beispiele für verschiedene Formen

1.2 Topologische Räume

Definition 1

Ein **topologischer Raum** ist ein Paar (X, \mathfrak{T}) bestehend aus einer Menge X und $\mathfrak{T} \subseteq \mathcal{P}(X)$ mit folgenden Eigenschaften

- (i) $\emptyset, X \in \mathfrak{T}$
- (ii) Sind $U_1, U_2 \in \mathfrak{T}$, so ist $U_1 \cap U_2 \in \mathfrak{T}$
- (iii) Ist I eine Menge und $U_i \in \mathfrak{T}$ für jedes $i \in I,$ so ist $\bigcup_{i \in I} U_i \in \mathfrak{T}$

Die Elemente von \mathfrak{T} heißen **offene Teilmengen** von X.

 $A \subseteq X$ heißt **abgeschlossen**, wenn $X \setminus A$ offen ist.

Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z. B. [0,1). Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.

Korollar 1.1 (Mengen, die offen und abgeschlossen sind, existieren)

Betrachte \emptyset und X mit der "trivialen Topologie" $\mathfrak{T}_{triv} = \{\emptyset, X\}$.

Es gilt: $X \in \mathfrak{T}$ und $\emptyset \in \mathfrak{T}$, d. h. X und \emptyset sind offen. Außerdem $X^C = X \setminus X = \emptyset \in \mathfrak{T}$ und $X \setminus \emptyset = X \in \mathfrak{T}$, d. h. X und \emptyset sind als Komplement offener Mengen abgeschlossen.

Beispiel 1

1) $X = \mathbb{R}^n$ mit der euklidischen Metrik.

 $U \subseteq \mathbb{R}^n$ offen \Leftrightarrow für jedes $x \in U$ gibt es r > 0, sodass $B_r(x) = \{ y \in \mathbb{R}^n \mid d(x,y) < r \} \subseteq U$

Also: $\mathfrak{T} = \{ M \subseteq X \mid M \text{ ist offene Kugel } \}$

- 2) Allgemeiner: (X, d) metrischer Raum
- 3) X Menge, $\mathfrak{T} = \mathcal{P}(X)$ heißt "diskrete Topologie"
- 4) $X:=\mathbb{R}, \mathfrak{T}_Z:=\{\ U\subseteq\mathbb{R}\ |\ \mathbb{R}\setminus U\ \text{endlich}\ \}\cup\{\ \emptyset\ \}$ heißt "Zariski-Topologie" Beobachtungen:
 - $U \in \mathfrak{T}_Z \Leftrightarrow \exists f \in \mathbb{R}[X]$, sodass $\mathbb{R} \setminus U = V(f) = \{ x \in \mathbb{R} \mid f(x) = 0 \}$
 - ullet Es gibt keine disjunkten offenen Mengen in \mathfrak{T}_Z
- 5) $X := \mathbb{R}^n, \mathfrak{T}_Z = \{U \subseteq \mathbb{R}^n | \text{Es gibt Polynome } f_1, \dots, f_r \in \mathbb{R}[X_1, \dots, X_n] \text{ sodass } \mathbb{R}^n \setminus U = V(f_1, \dots, f_r)\}$
- 6) $X := \{0,1\}, \mathfrak{T} = \{\emptyset, \{0,1\}, \{0\}\}\$ heißt "Sierpińskiraum". abgeschlossene Mengen: $\emptyset, \{0,1\}, \{1\}$

Definition 2

Sei (X, \mathfrak{T}) ein topologischer Raum, $x \in X$.

Eine Teilmenge $U \subseteq X$ heißt **Umgebung** von x, wenn es ein $U_0 \in \mathfrak{T}$ gibt mit $x \in U_0$ und $U_0 \subseteq U$.

Definition 3

Sei (X,\mathfrak{T}) ein topologischer Raum, $M\subseteq X$ eine Teilmenge.

a)
$$M^{\circ} := \{ x \in M \mid M \text{ ist Umgebung von } x \} = \bigcup_{\substack{U \subseteq M \\ V \in \mathcal{T}}} U \text{ heißt Inneres oder offener}$$

Kern von M.

- b) $\overline{M} := \bigcap_{\substack{M \subseteq A \\ A \text{ abgeschlossen}}} A$ heißt **abgeschlossene Hülle** oder **Abschluss** von M.
- c) $\partial M := \overline{M} \setminus M^{\circ}$ heißt **Rand** von M.
- d) M heißt **dicht** in X, wenn $\overline{M} = X$ ist.

Beispiel 2

- 1) $X = \mathbb{R}$ mit euklidischer Topologie $M = \mathbb{Q} \Rightarrow \overline{M} = \mathbb{R}, \quad M^{\circ} = \emptyset$
- 2) $X = \mathbb{R}, M = (a, b) \Rightarrow \overline{M} = [a, b]$
- 3) $X = \mathbb{R}, \mathfrak{T} = \mathfrak{T}_Z$ $M = (a, b) \Rightarrow \overline{M} = \mathbb{R}$

Definition 4

Sei (X, \mathfrak{T}) ein topologischer Raum.

- a) $\mathfrak{B} \subseteq \mathfrak{T}$ heißt **Basis** der Topologie \mathfrak{T} , wenn jedes $U \in \mathfrak{T}$ Vereinigung von Elementen aus \mathfrak{B} ist.
- b) $\mathfrak{B} \subseteq \mathfrak{T}$ heißt **Subbasis**, wenn jedes $U \in \mathfrak{T}$ Vereinigung von endlich vielen Durchschnitten von Elementen aus \mathfrak{B} ist.

Beispiel 3

Gegeben sei $X=\mathbb{R}^n$ mit euklidischer Topologie \mathfrak{T} . Dann ist

$$\mathfrak{B} = \{ B_r(x) \mid r \in \mathbb{Q}_{>0}, x \in \mathbb{Q}^n \}$$

ist eine abzählbare Basis von \mathfrak{T} .

Bemerkung 1

Sei X eine Menge und $\mathfrak{B} \subseteq \mathcal{P}(X)$. Dann gibt es genau eine Topologie \mathfrak{T} auf X, für die \mathfrak{B} Subbasis ist.

Definition 5

Sei (X, \mathfrak{T}) ein topologischer Raum, $Y \subseteq X$.

 $\mathfrak{T}_Y := \{ U \cap Y \mid U \in \mathfrak{T} \} \text{ ist eine Topologie auf } Y.$

 \mathfrak{T}_Y heißt **Spurtopologie** und (Y,\mathfrak{T}_Y) heißt ein **Teilraum** von (X,\mathfrak{T})

Definition 6

Seien X_1, X_2 topologische Räume.

 $U \subseteq X_1 \times X_2$ sei offen, wenn es zu jedem $x = (x_1, x_2) \in U$ Umgebungen U_i um x_i mit i = 1, 2 gibt, sodass $U_1 \times U_2 \subseteq U$ gilt.

 $\mathfrak{T} = \{ U \subseteq X_1 \times X_2 \mid U \text{ offen } \}$ ist eine Topologie auf $X_1 \times X_2$. Sie heißt **Produkttopologie**. $\mathfrak{B} = \{ U_1 \times U_2 \mid U_i \text{ offen in } X_i, i = 1, 2 \}$ ist eine Basis von \mathfrak{T} .

Abbildung 1.2: Zu $x = (x_1, x_2)$ gibt es Umgebungen U_1, U_2 mit $U_1 \times U_2 \subseteq U$

Beispiel 4

- 1) $X_1 = X_2 = \mathbb{R}$ mit euklidischer Topologie. \Rightarrow Die Produkttopologie auf $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ stimmt mit der euklidischen Topologie auf \mathbb{R}^2 überein.
- 2) $X_1 = X_2 = \mathbb{R}$ mit Zariski-Topologie. \mathfrak{T} Produkttopologie auf \mathbb{R}^2 : $U_1 \times U_2$ (Siehe Abb. 1.3)

1 Topologische Grundbegriffe

Abbildung 1.3: Zariski-Topologie auf \mathbb{R}^2

Definition 7

Sei X topologischer Raum, \sim eine Äquivalenzrelation auf X, $\overline{X} = X/_{\sim}$ sei die Menge der Äquivalenzklassen, $\pi: x \to \overline{x}, \quad x \mapsto [x]_{\sim}, \ U \subseteq \overline{X}$ heißt offen, wenn $\pi^{-1}(U) \subseteq X$ offen ist. Dadurch wird eine Topologie auf \overline{X} definiert. Diese Topologie heißt **Quotiententopologie**.

Beispiel 5

$$X = \mathbb{R}, a \sim b :\Leftrightarrow a - b \in \mathbb{Z}$$

$$0 \sim 1$$
, d. h. $[0] = [1]$

Beispiel 6

$$X = \mathbb{R}^2, (x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_1 - x_2 \in \mathbb{Z}$$

 $y_1 - y_2 \in \mathbb{Z}$

 $X/_{\sim}$ ist ein Torus.

Beispiel 7

$$X = \mathbb{R}^{n-1} \setminus \{ \ 0 \ \}, x \sim y \Leftrightarrow \exists \lambda \in \mathbb{R}^{\times} \text{ mit } y = \lambda x$$

$$\Leftrightarrow x \text{ und } y \text{ liegen auf der gleichen Ursprungsgerade}$$

$$\overline{X} = \mathbb{P}^n(\mathbb{R})$$

1.3 Metrische Räume

Definition 8

Sei X eine Menge. Eine Abbildung $d: X \times X \to \mathbb{R}$ heißt **Metrik**, wenn gilt:

- (i) $\forall x, y \in X : d(x, y) \ge 0$
- (ii) $d(x,y) = 0 \Leftrightarrow x = y$
- (iii) d(x,y) = d(y,x)
- (iv) $d(x,z) \le d(x,y) + d(x+z)$

Das Paar (X, d) heißt ein **metrischer Raum**.

Bemerkung 2

Sei (X, d) ein metrischer Raum und

$$\mathfrak{B}_r(x) := \{ y \in X \mid d(x,y) < r \} \text{ für } x \in X, r \in \mathbb{R}^+$$

 \mathfrak{B} ist Basis einer Topologie auf X.

Beispiel 8

Sei V ein euklidischer oder hermiteischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann wird V durch $d(x,y) := \sqrt{\langle x-y, x-y \rangle}$ zum metrischen Raum.

Beispiel 9 (diskrete Metrik)

Sei X eine Menge. Dann heißt

$$d(x,y) = \begin{cases} 0 & \text{falls } x = y \\ 1 & \text{falls } x \neq y \end{cases}$$

die diskrete Metrik. Die Metrik d induziert die diskrete Topologie.

Beispiel 10

$$X = \mathbb{R}^2$$
 und $d((x_1, y_1), (x_2, y_2)) := \max(\|x_1 - x_2\|, \|y_1 - y_2\|)$ ist Metrik.

Beobachtung: d erzeugt die eukldische Topologie.

Abbildung 1.4: Veranschaulichungen zur Metrik d

Beispiel 11 (SNCF-Metrik¹)

$$X = \mathbb{R}^2$$

Definition 9

Ein topologischer Raum X heißt **hausdorffsch**, wenn es für je zwei Punkte $x \neq y$ in X Umgebungen U_x um x und U_y um y gibt, sodass $U_x \cap U_y = \emptyset$.

Bemerkung 3 (Trennungseigenschaft)

Metrische Räume sind hausdorffsch, da

$$d(x,y) > 0 \Rightarrow \exists \varepsilon : \mathfrak{B}_{\varepsilon}(x) \cap \mathfrak{B}_{\varepsilon}(y) = \emptyset$$

Ein Beispiel für einen topologischen Raum, der nicht hausdorfsch ist, ist $(\mathbb{R}, \mathfrak{T}_Z)$.

Bemerkung 4

Seien X, X_1, X_2 Hausdorff-Räume.

- a) Jeder Teilraum um X ist Hausdorffsch.
- b) $X_1 \times X_2$ ist Hausdorffsch.

Definition 10

Sei X ein topologischer Raum und $(x)_{n\in\mathbb{N}}$ eine Folge in X. $x\in X$ heißt **Grenzwert** oder **Limes** von (x_n) , wenn es für jede Umgebung U von x ein n_0 gibt, sodass $x_n\in U$ für alle $n\geq n_0$.

Abbildung 1.5: Wenn X_1, X_2 hausdorffsch sind, dann auch $X_1 \times X_2$

Korollar 1.2

Ist X hausdorffsch, so hat jede Folge in X höchstens einen Grenzwert.

Beweis: Annahme: x und y mit $x \neq y$ sind Grenzwerte der Folge (x_n) .

Nach Voraussetzung gibt es Umgebungen U_x von x und U_y von y mit $U_x \cap U_y = \emptyset$. Nach Annahme gibt es n_0 mit $x_n \in U_x \cap U_y$ für alle $n \ge n_0 \Rightarrow$ Widerspruch

1.4 Stetigkeit

Definition 11

Seien X, Y topologische Räume und $f: X \to Y$ eine Abbildung.

- a) f heißt **stetig**, wenn für jedes offene $U \subseteq Y$ auch $f^{-1}(U) \subseteq X$ offen ist.
- b) f heißt **Homöomorphismus**, wenn es eine stetige Abbildung $g: Y \to X$ gibt, sodass $g \circ f = \mathrm{id}_X$ und $f \circ g = \mathrm{id}_Y$.

Korollar 1.3

Seien X, Y metrische Räume und $f: X \to Y$ eine Abbildung.

Dann gilt: f ist stetig \Leftrightarrow zu jedem $x \in X$ und jedem $\varepsilon > 0$ gibt es $\delta(x, \varepsilon) > 0$, sodass für alle $y \in X$ mit $d(x, y) < \delta$ gilt $d_Y(f(x), f(y)) < \varepsilon$.

Beweis: " \Rightarrow ": Sei $x \in X, \varepsilon > 0$ gegeben. Sei $U := \mathfrak{B}_{\varepsilon}(f(x))$. Dann ist U offen in Y. $\stackrel{11.a}{\Rightarrow} f^{-1}(U)$ ist offen in X. Dann ist $x \in f^{-1}(U)$. $\Rightarrow \exists \delta > 0$, sodass $\mathfrak{B}_{\delta}(x) \subseteq f^{-1}(U) \Rightarrow f(\mathfrak{B}_{\delta}(x)) \subseteq U$ $\Rightarrow \{ y \in X \mid d_X(x,y) < \delta \} \Rightarrow \text{Beh.}$

"⇐": Sei
$$U \subseteq Y$$
 offen, $X \in f^{-1}(U)$. Dann gibt es $\varepsilon > 0$, sodass $\mathfrak{B}_{\varepsilon}(f(x)) \subseteq U \stackrel{\text{Vor.}}{\Rightarrow}$ Es gibt $\delta > 0$, sodass $f(\mathfrak{B}_{\delta}(x) \subseteq \mathfrak{B}_{\varepsilon}(f(x))) \Rightarrow \mathfrak{B}_{\delta}(x) \subseteq f^{-1}(\mathfrak{B}_{\varepsilon}(f(x))) \subseteq f^{-1}(U)$

Bemerkung 5

Eine Ableitung $f: X \to Y$ von topologischen Räumen ist genau dann stetig, wenn für jede abgeschlossene Teilmenge $A \subseteq Y$ gilt: $f^{-1}(A) \subseteq X$ ist abgeschlossen.

Beispiel 12

1) Für jeden topologischen Raum X gilt: $\mathrm{Id}_X:X\to X$ ist Homöomorphismus.

Abbildung 1.6: Beispiel einer stetigen Funktion f, deren Umkehrabbildung g nicht steitg ist.

- 2) Ist Y trivialer topologischer Raum, d.h. $\mathfrak{T} = \mathfrak{T}_{triv}$, so ist jede Abbildung $f: X \to Y$ stetig.
- 3) Ist X diskreter topologischer Raum, so ist $f: X \to Y$ stetig für jeden topologischen Raum Y und jede Abbildung f.
- 4) Sei $X = [0,1), Y = S^1 = \{ z \in \mathbb{C} \mid ||z|| = 1 \}$ und $f(t) = e^{2\pi i t}$ Die Umkehrabbildung g ist nicht stetig, da $g^{-1}(U)$ nicht offen ist (vgl. Abb. 1.6)

Korollar 1.4

Seien X, Y, Z topologische Räume, $f: X \to Y$ und $g: Y \to Z$ stetige Abbildungen.

Dann ist $g \circ f : X \to Z$ stetig.

Beweis: Sei $U \subseteq Z$ offen $\Rightarrow (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$. $g^{-1}(U)$ ist offen in Y weil g stetig ist, $f^{-1}(g^{-1}(U))$ ist offen in X, weil f stetig ist.

Bemerkung 6

- a) Für jeden topologischen Raum ist $\operatorname{Hom\"oo}(X) := \{ f : X \to X \mid f \text{ ist Hom\"oomorphismus } \}$ eine Gruppe.
- b) Jede Isometrie $f: X \to Y$ zwischen metrischen Räumen ist ein Homö
omorphismus.
- c) Isom $(X) := \{ f : X \to X \mid f \text{ ist Isometrie} \}$ ist Untergruppe von Homöo(X) für jeden metrischen Raum X.

Korollar 1.5

Seien X, Y topologische Räume. $\pi_X : X \times Y \to X$ und $\pi_Y : X \times Y \to Y$ die Projektionen

$$(x,y) \mapsto x \quad (x,y) \mapsto y$$

Wird $X \times Y$ mit der Produkttopologie versehen, so sind π_X und π_Y stetig.

Beweis: Sei $U \subseteq X$ offen $\Rightarrow \pi_x^{-1}(U) = U \times Y$ ist offen in $X \times Y$.

Korollar 1.6

Sei X ein topologischer Raum, \sim eine Äquivalenzrelation auf X, $\overline{X} = X/_{\sim}$ der Bahnenraum versehen mit der Quotiententopologie, $\pi: X \to \overline{X}, \ x \mapsto [x]_{\sim}$.

Dann ist π stetig.

Beweis: Nach Definition ist $U \subseteq \overline{X}$ offen $\Leftrightarrow \pi^{-1}(U) \subseteq X$ offen.

Beobachtung: Die Quotiententopologie ist die feinste Topologie, sodass π stetig wird.

9

Beispiel 13 (Stereographische Projektion)

 \mathbb{R}^n und $S^n\setminus\{\,N\,\}$ sind homö
omorph für beliebiges $N\in S^n$

$$S^{n} = \left\{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \right\}$$
$$= \left\{ x \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_{i}^{2} \right\}$$

Sei ohne Einschränkung $N = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$.

$$f:S^n\setminus \{N\}\to \mathbb{R}^n$$
 genau ein Punkt
$$P\mapsto \overbrace{L_P\cap H}$$

wobei $\mathbb{R}^n = H = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} \in \mathbb{R}^{n+1} \mid x_{n+1} = 0 \right\}$ und L_P die Gerade in \mathbb{R}^{n+1} durch N und P ist.

Abbildung 1.7: Visualisierung der sphärischen Projektion Bildquelle: texample.net/tikz/examples/map-projections

1 Topologische Grundbegriffe

Sei
$$P = \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix}$$
, so ist $x_{n+1} < 1$, also ist L_P nicht parallel zu H . Also schneiden sich L_P und H in genau einem Punkt \hat{P} .

Es gilt: f ist bijektiv und die Umkehrabbildung ist ebenfalls stetig.

Symbolverzeichnis

- **B** Basis einer Topologie.
- $\mathfrak{B}_{\delta}(x)$ δ -Kugel um x.
- \mathfrak{T} Topologie.
- N Natürliche Zahlen.
- \mathbb{Z} Ganze Zahlen.
- Q Rationale Zahlen.
- \mathbb{R} Reele Zahlen.
- \mathbb{R}^{\times} Multiplikative Einheitengruppe von \mathbb{R} .
- \mathbb{R}^+ Echt positive reele Zahlen.
- $\mathbb C$ Komplexe Zahlen.
- \mathbb{P} Projektiver Raum.
- \overline{M} Abschluss der Menge M.
- M° Inneres der Menge M.
- ∂M Rand der Menge M.
- $A\times B$ Kreuzprodukt zweier Mengen.
- $\mathcal{P}(M)$ Potenzmenge von M.
- $A \setminus B$ A ohne B.
- $A \subseteq B$ Teilmengenbeziehung.
- $A \subsetneq B$ echte Teilmengenbeziehung.
- $[x]_{\sim}$ Äquivalenzklassen von x bzgl. \sim .
- $X/_{\sim} X$ modulo \sim .
- ||x|| Norm von x.
- |x| Betrag von x.
- π_X Projektion auf X.
- $\langle \cdot, \cdot \rangle$ Skalarprodukt.
- S^n Sphäre.

Index

abgeschlossen, 2 Abschluss, 3		
Basis, 4		
dicht, 3		
Grenzwert, 7		
Homöomorphismus, 8		
Inneres, 3		
Kern offener, 3		
Limes, 7		
Metrik, 6 diskrete, 6 SNCF, 7		
offen, 2		
Produkttopologie, 4 Projektion stereographische, 10		
Quotiententopologie, 5		
Rand, 3 Raum hausdorffscher, 7 metrischer, 6 topologischer, 2		
Sierpińskiraum, 3 Spurtopologie, 4 stetig, 8 Subbasis, 4		
Teilraum, 4 Topologie diskrete, 3, 6 euklidische, 3		

triviale, $\frac{3}{2}$ Zariski, $\frac{3}{3}$ Torus, $\frac{2}{}$ Umgebung, 3