Risk Premia in the Bitcoin Market

Caio Almeida Maria Grith Ratmir Miftachov Zijin Wang

XXIV Brazilian Meeting of Finance, July 5, 2024

Introduction

- Cryptocurrencies are decentralized currencies that have had increasing interest as alternative investments.
- Bitcoin is one of the most prominent among the Cryptos having the highest market cap followed by Ethereum.
- Moreover, it is the only Crypto for which there is an active option market.
- There is an ongoing discussion regarding the existence or not of a risk-premium for holding these currencies.
- In this paper, we document and analyze the basic risk-premium properties of the Bitcoin market using data on options and the Bitcoin index.

Correlation

Table B21: Correlation matrix

	BTC	S&P 500	Russel 2000	US Bond	Global Commodity
BTC S&P 500 Russel 2000 US Bond		-0.016	-0.013 0.877***	0.003 -0.215*** -0.204***	0.064** 0.317*** 0.326*** -0.174***

Global Commodity

For equity markets, we use S&P 500 and Russel 2000 indices. For bond market, we utilize the S&P US Treasury Bond Index. For Global commodity, we use S&P GSCI index. Correlation is performed using a t-test (H_0 : no correlation). The t-statistic is calculated as $t = \frac{corr\sqrt{n-2}}{\sqrt{1-corr^2}}$, where corr represents the correlation coefficient and n is the sample size. Significance levels are denoted by $1\%(^{***})$, $5\%(^{**})$ and $10\%(^*)$ denoting significance level.

Research Questions

- Bitcoin has low correlation with the majority of the asset classes and, in addition, pays no dividend. Therefore, what should be the bitcoin premium? Zero, positive, time-varying?
- We identify the Implied premia from Bitcoin index and options.
 - Deribit exchange: World's biggest Bitcoin and Ethereum Options Exchange
- 2. Is there risk premia variation over time?
 - New Clustering methodology based on the time-series of risk-neutral measures.
 - State-dependency drivers
- 3. How does it compare to premia of conventional assets?
 - S&P 500 implied premia

Contribution

- □ Risk premia in the Bitcoin Index (BTC) market
 - Bitcoin premium (BP) and variance risk premium (BVRP)
 - Bitcoin premium $BP(\cdot)$ and $PK(\cdot)$ functions of returns
- State-dependent risk premia
 - Clustering of option-implied risk-neutral densities (RNDs)
 - Risk-neutral variance as the most important state variable
 - Conditional estimation of the risk measures during high volatility (HV) and low volatility (LV) market regimes

Main Findings

Bitcoin Premia

- oxdot Monthly Bitcoin premium (BP) pprox 66% p.a.
 - Negative returns [-60%, -20%] account for 33% of the BP
 - Positive returns [20%, 60%] account for 48% of the BP
- \odot Bitcoin variance risk premium (BVRP) $\approx 14\%$

Market regimes

Related Literature

■ Bitcoin premium decomposition

■ Beason et al. (2022), Almeida et al. (2024)

Rosenberg et al. (2002), Chabi-Yo et al. (2007), Branger et al. (2011), Chabi-Yo (2012), Song et al. (2016), Grith et al. (2013), Grith et al. (2017), Almeida et al. (2022), Schreindorfer et al. (2023)

Cryptocurrency derivatives

Hou et al. (2020), Hoang et al. (2020), Chen et al. (2021), Cao et al. (2021), Foley et al. (2022), Alexander et al. (2023a), Winkel et al. (2023a), Winkel et al. (2023b),
 Alexander2024-ai, Alexander et al. (2023b)

Data

■ Source: Deribit data from Blockchain Research Center (BRC)

- Bitcoin settlement prices from 2014 to 2022 (3287 days)
- Options transaction prices from 2017 to 2022 (505 days)
 - Cash-settled European-style options with a lot size of 1 BTC
 - Divisible assets: Possible to trade fractional units of options
 - Focus one month. Contracts with time to maturity τ from 3 to 60 days and moneyness m = K/S between 0.5 and 2.0; K is the strike price, S the settlement BTC price
- □ All instruments are denominated in U.S. Dollars.

Daily transaction

*Each bar represents average transactions in one month.

	Before 2020	After 2020	Overall
Ave. Trans. Obs.	646	6356	3721

Risk Premia Methodology

oxdot Under no-arbitrage, the $oldsymbol{\mathsf{Bitcoin}}$ premium $(oldsymbol{\mathrm{BP}})$ is

$$\mathrm{BP} := \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} = \int_{-1}^{\infty} x \{ p(x) - q(x) \} dx$$

 $\mu_{\mathbb{P}}=\mathbb{E}_{\mathbb{P}}(R)$ and $\mu_{\mathbb{Q}}=\mathbb{E}_{\mathbb{Q}}(R)=R^f$, with R^f risk-free rate $q(\cdot)$ risk-neutral density (RND) and $p(\cdot)$ physical density

BP decomposition on return states, Beason et al. (2022)

$$BP(r) = \frac{\int_{-1}^{r} x\{p(x) - q(x)\}dx}{BP}$$

☑ Bitcoin variance risk premium (BVRP)

$$BVRP := \sigma_{\mathbb{Q}}^2 - \sigma_{\mathbb{P}}^2,$$

$$\sigma_{\mathbb O}^2=\mathrm{Var}_{\mathbb Q}(R)$$
 and $\sigma_{\mathbb P}^2=\mathrm{Var}_{\mathbb P}(R)$

Unconditional Estimators

$$\widehat{\mathrm{BP}} = \widehat{\mu}_{\mathbb{P}} - \widehat{\mu}_{\mathbb{Q}} \quad \text{and} \quad \widehat{\mathrm{BVRP}} = \widehat{\sigma}_{\mathbb{Q}}^2 - \widehat{\sigma}_{\mathbb{P}}^2$$

$$\widehat{\mathrm{BP}}(r) = \int_{-1}^r x \{ \widehat{p}(x) - \widehat{q}(x) \} dx / \widehat{\mathrm{BP}}$$

Physical moments

- $\widehat{\mu}_{\mathbb{P}} = \frac{365}{\tau} \int_{-1}^{\infty} x \widehat{p}(x) dx$, $r_t = S_t / S_{t-\tau} 1$
- $\widehat{\sigma}_{\mathbb{P}}^2 = \frac{1}{T} \sum_{t=1}^{T} \mathsf{RV}_t, \ \mathsf{RV}_t = \frac{365}{\tau} \sum_{l=1}^{\tau} r_{d,t-l}^2, \ r_{d,t} = \mathsf{log} S_t / S_{t-1}$

Risk-neutral moments

- $\widehat{\mu}_{\mathbb{O}} = 0$
- $\hat{\sigma}_{\mathbb{Q}}^2 = \frac{1}{T} \sum_{t=1}^{T} \mathsf{BVIX}_t^2$, Bitcoin Volatility Index (BVIX)

□ Risk-neutral and physical densities

- \hat{p} smoothed histogram of returns with GEV tails
- $\widehat{q}(r) = \frac{1}{T} \sum_{t=1}^{T} \widehat{q}_t(r)$, daily nonparametric estimates $\widehat{q}_t(r)$ (Rookley, 1997) with GEV tails (Figlewski, 2008)

Clustering

Objects: Collection of RNDs for different maturities

- \rightarrow RNDs \sim second derivative of the (rescaled) call prices w.r.t. moneyness (Breeden et al., 1978)
- ightarrow Centered-log-ratio (CLR) transformation: fcts. in Hilbert space
 - \odot **Distance metric**: L_2 distance Peng et al. (2008)

$$D(i,j) = \sqrt{\int_{\tau} \int_{r} \left[\operatorname{clr} \left\{ q_{i}(r,\tau) \right\} - \operatorname{clr} \left\{ q_{j}(r,\tau) \right\} \right]^{2} dr d\tau}.$$

□ Clustering method: Agglomerative hierarchical clustering algorithm (Hastie et al., 2009) with Ward linkage to the distance matrix D

Conditional Estimators

Cluster membership $\gamma = (c_1, \dots, c_T)'$ with $c_t \in \{c_i \mid i = \mathsf{HV}, \mathsf{LV}\}$

- $\ \ \ \ \widehat{q}_i(x) = \frac{1}{T_i} \sum_{\substack{t=1, \ c_t = c_i}}^T \widehat{q}_t(x), \ T_i \ \text{number of days in cluster } i$
- $\widehat{\mu}_{\mathbb{Q},i}=0$
- $\widehat{\sigma}_{\mathbb{Q},i}^2 = \frac{1}{|C_i|} \sum_{\substack{t=1,\c_t=c_i}}^{T} \mathsf{BVIX}_t^2$
- $\begin{array}{c} \boxdot \ \widehat{p}_i \text{, smoothed histogram of} \ r_{t,i} = (r_t+1)^{\widehat{\sigma}_{\mathbb{P},i}/\widehat{\sigma}_{\mathbb{P}}} 1 \text{, with} \\ \widehat{\sigma}^2_{\mathbb{P},i} = \frac{1}{T_i} \sum_{\substack{t=1,\\c_t=c_i}}^T \mathsf{RV}_t, \ \widehat{\sigma}^2_{\mathbb{P}} = \frac{1}{T} \sum_{t=1}^T \mathsf{RV}_t \end{array}$
- $\widehat{\sigma}_{\mathbb{P},i}^2 = \frac{1}{T_i} \sum_{\substack{t=1, \\ c_t = c_i}}^{T} \mathsf{RV}_t$

Clustering Results

Figure: Empirical RNDs for time-to-maturity one month. Clustering relies on L_2 distance between RNDs surfaces.

Risk Premia

		D:	
Panel	A:	Bitcoin	premium

		Based or	n \widehat{q}	Ва	Based on $R^f = 0$			
	Overall	HV	LV	Overall	HV	LV		
\widehat{BP}	0.66	0.73	0.55	0.67	0.69	0.62		
$\widehat{\widehat{\mu}}_{\mathbb{P}}$ $\widehat{\widehat{\mu}}_{\mathbb{Q}}$	0.67	0.69	0.62	0.67	0.69	0.62		
$\widehat{\mu}_{\mathbb{Q}}$	0.01	-0.03	0.07	0	0	0		

Panel B: Bitcoin variance risk premium

		Based o	n \widehat{q}	В	Based on BVIX			
	Overall HV LV			Overall	HV	LV		
$\widehat{\text{BVRP}}$	0.07	0.04	0.10	0.14	0.12	0.17		
$\widehat{\sigma}^2_{\mathbb{Q}} \ \widehat{\sigma}^2_{\mathbb{P}}$	0.63	0.80	0.43	0.71	0.88	0.50		
$\widehat{\sigma}_{\mathbb{P}}^{2}$	0.57	0.76	0.33	0.57	0.76	0.33		
Days	505	278	227	482	271	211		

Estimates of the monthly unconditional and conditional BP/BVRP (annualized). $\widehat{\mu}_{\mathbb{P}} = \frac{365}{\tau} \int_{-1}^{\infty} x \widehat{\rho}(x) dx$; $\widehat{\sigma}_{\mathbb{P}}^2 = \frac{365}{\tau} \sum_{t=1}^{T} \text{RV}_t$. (i) $\widehat{\mu}_{\mathbb{Q}} = \frac{365}{\tau} \int_{-1}^{\infty} x \widehat{q}(x) dx$ or (ii) $\widehat{\sigma}_{\mathbb{Q}}^2 = \frac{365}{\tau} \int_{-1}^{\infty} \left\{ x - \frac{\tau}{365} \widehat{\mu}_{\mathbb{Q}} \right\}^2 \widehat{q}(x) dx$ or (ii) $\widehat{\sigma}_{\mathbb{Q}}^2 = \frac{1}{T} \sum_{t=1}^{T} \text{BVIX}_t^2$

BTC Premium Decomposition

- \odot Negative returns [-60%, -20%] account for 33% of the BP
- \odot Positive returns [20%, 60%] account for 48% of the BP

BTC vs Equity Premium Decomposition

BTC Market

- Investors are more concerned with upside risk.
- A broader range of returns contributes positively to the BP.

SPX, FTSE, DAX Markets

- Investors are more concerned with downside risk.
- □ A narrower range of returns contributes positively to the equity premium.

BTC Market

- - Attribute a too-small fraction to medium pos. ret.
- Rare disaster
 - Attribute a too-large fraction to extreme and medium neg. ret.

SPX Market

Model-implied S&P500 premium Beason et al. (2022)

- □ Disappointment aversion
 - Attribute a too-small fraction to the medium pos. ret.
 - Attribute a too-large fraction to the medium neg. ret.

Market Regimes

- LV: Most contribution to BP attributable to positive returns

BVRP and **ATM** Options Returns

Investor concerns about volatility uncertainty in LV

		Simple		Delta-hedged			
	Call Put Stra		Straddle	Call	Put	Straddle	
Overall	-8.49	-37.98	-17.39	-8.82	-3.83	-17.96	
Obs.	1071	599	28	1071	599	28	
HV	-23.88	-22.92	-6.61	-12.79	-3.11	-4.17	
Obs.	602	309	14	602	309	14	
LV	11.25	-54.02	-28.16	-3.72	-4.60	-31.75	
Obs.	469	290	14	469	290	14	

Monthly returns of long ATM options with $|\Delta_{t,i}^{C/P}| \in [0.35, 0.65]$

Simple strategy:
$$r_{C,i} = \frac{(S_T - K_i)^+ - C_{t,i}}{C_{t,i}}, \ r_{P,i} = \frac{(K_i - S_T)^+ - P_{t,i}}{P_t}$$

DH strategy: $r_{C,i} = \frac{C_{T,i} - \Delta_{t,i}^C S_T - C_{t,i} + \Delta_{t,i}^C S_t}{C_{t,i} - \Delta_{t,i}^C S_t}, \ r_{P,i} = \frac{P_{t,i} - \Delta_{i,i}^P S_T - P_{t,i} + \Delta_{t,i}^P S_t}{P_{t,i} - \Delta_{t,i}^P S_t}$

where $\Delta_{t,i}^{C/P}$ is the option's delta calculated by BS

Options Returns

Panel	A: Overall										
			Call					Put			
	DITM	ITM	ATM	ОТМ	DOTM	DOTM	ОТМ	ATM	ITM	DITM	
EA	28.97	-36.15	-9.20	-40.43	Obs.	158	171	914	921	1716	1426
Panel	B: HV clus	ter									
			Call					Put			
	DITM	ITM	ATM	ОТМ	DOTM	DOTM	ОТМ	ATM	ITM	DITM	
EA Obs.	37.58 82	-6.72 85	-23.17 521	-82.20 584	-97.91 795	-76.48 698	-38.64 485	-23.88 188	-82.34 6	81.64 4	
Panel	C: LV clust	er									
			Call					Put			
	DITM	ITM	ATM	ОТМ	DOTM	DOTM	ОТМ	ATM	ITM	DITM	
EA Obs.	19.69 76	-65.23 86	9.32 393	31.97 337	-72.09 921	-100 728	-87.57 313	-48.29 207	18.00 7	-10.66 101	

$$\text{DH strategy: } r_{C,i} = \frac{c_{T,i} - \Delta_{t,i}^C s_T - c_{t,i} + \Delta_{t,i}^C s_t}{c_{t,i} - \Delta_{t,i}^C s_t}, \ r_{P,i} = \frac{P_{t,i} - \Delta_{i,i}^P s_T - P_{t,i} + \Delta_{t,i}^P s_t}{P_{t,i} - \Delta_{t,i}^P s_t}$$

where $\Delta_{t,i}^{C/P}$ is the option's delta calculated by BS

Conclusion

- Moreover, using a new clustering technique on risk-neutral measures we identify that variance is an important variable to condition on and study the pricing kernel under two different regimes: High Volatility (HV) and Low Volatility (LV) regimes.
- Under the HV regime, the marginal investor is more sensitive to downside risks.
- Under the LV regime, the marginal investor is concerned with upside risk and worried about hedging against variance risk.