

Lecture 11

Last week(s)

- Set of universal gates: Decomposition into single- and two-qubit gates
- Implementation of two-qubit gates in SC circuits.
- Q&E session

How to verify performance?

Today

Tomography and Benchmarking of states, gates, and processes.

6) Characterization & Benchmarking of Quantum Processes

Ideally

Realistically

Questions:

- General properties of the map E?
- How to measure the map \mathcal{E} ?
 - State and process tomography
- Measure of distance between quantum states and processes: Fidelity
- How to benchmark quantum gates with fidelities close to one?
 - Randomized Benchmarking

6.1 State tomography: Example Bell state

- Initialize qubits in ground state
- Prepare Bell state
- Apply basis rotation pulses R_i to to effectively measure along x, y, z axes.
- Observations
 - Single-qubit expectations vanish.
 Characteristic feature of entangled Bell state.
 - Measured XX, YY, ZZ correlations exhibit reduced contrast compared to ideal state.
 - Deviations from ideal state due to (i) finite state preparation error and (ii) finite measurement fidelity.

How to account for finite readout efficiency?

6.1 State tomography: Finite readout fidelity

Readout assignment probability matrix M

- Possible measurement outcomes $i \in \{00,01,10,11\}$.
- Assume an unknown state with measured probabilities
 p_i to obtain one of the four possible outcomes.
- Use assignment probability matrix M to estimate

$$\tilde{p}_i = \Sigma_j M_{ij}^{-1} p_j$$

Probabilities compensating for finite readout fidelity.

Multiplication with inverse assignment probability matrix

Measured probability to be in state *i*.

- Comments:
 - Relies on the assumption that ideal reference states can be prepared.
 - In general, need MLE to ensure positivity of \tilde{p} .

6.1 State tomography: Mostly likely density matrix

Pauli set after compensating for readout infidelity.

- Expectation values based on $\widetilde{p_i}$ display larger contrast.
- All expectation values are close to target, indicating small errors in the Bell state preparation.

Density matrix reconstruction

- Minimize negative Log-likelihood function, subject to the constraint that ρ has positive eigenvalues.
- Fidelity $F = \sqrt{\langle \psi | \rho | \psi \rangle} = 0.98$

6.2 Process tomography

Discussion on blackboard

6.2 Process tomography

One possible representation of a quantum process: Pauli transfer matrix \mathcal{R} .

- Concept of Bloch vector \vec{r} can be generalized to multiqubit states.
- Elements of \vec{r} are given by muti-qubit Pauli expectation values $\langle \sigma_{i_1} \sigma_{i_2} \dots \rangle$ with $\sigma_i \in \{I, X, Y, Z\}$, which fully characterize a quantum state.
- Pauli transfer matrix specifies quantum process by relating arbitrary input Bloch vector to the corresponding output Bloch vector according to

$$\vec{r}_{out} = \mathcal{R} \, \vec{r}_{in}$$

- Example shows most likely R measured in an experiment for a CNOT gate.
- Process fidelity, computed as $F=\frac{\mathrm{Tr}[\mathcal{R}_{ideal}^T\mathcal{R}]/d+1}{d+1}$, corresponds to average fidelity of output state.

6.2 State and process tomography: Discussion

- Result of a tomographic measurement is sensitive to "state-preparation and measurement" (SPAM) errors.
- For processes, e.g. gates, which are very close to target, it can be challenging to distinguish errors in the process from SPAM errors.
- How to quantify the (small) errors in a process/gate in the presence of finite initialization and readout fidelity?
- Strategy: Amplify errors by applying sequences of multiple gates before measurement.
 - Additional advantage: Tests how repeatable operations are.
- → Widely used approach: Randomized benchmarking.

6.3 Randomized benchmarking

- For simplicity, consider single-qubit case.
- Apply sequence of n gate operations U_i before measuring.

- Gates U_i are chosen randomly from the Clifford group, mapping an element of the Pauli group to an element of the Pauli group. For a single qubit there are 24 Clifford gates.
- Last gate U_{n+1} is chosen such that in the absence of errors state is brought back to initial state, i.e. $U_{n+1} \dots U_2 U_1 = I$.
- Average over m different such sequences.
- Success probability p_0 to recover the initial state decays exponentially with # of gates $p_0 \propto \alpha^n$, with depolarization parameter α .
- The error per gate is given by $\epsilon_{RB} = (1-\alpha)\frac{(d-1)}{d}$ where d is the dimension of Hilbert space (d=2 for a single qubit).

6.3 Randomized benchmarking: Example single qubit gates

- Pulse duration typically between 15 to 50 ns.
 Leakage into second excited state avoided by using (DRAG*) pulse parametrization.
- Use Clifford decomposition in terms of X rotations and virtual Z gates (see McKay et al., PRA (2017)).
- Population of ground state decays exponentially.
- Fitted depolarization parameter $\alpha \approx 99.6\%$ and gate error $\epsilon \approx 0.2\%$ in this example.
- Orange dashed line indicates the limit expected when only considering qubit decoherence.
- Deviation from coherence limit hints at finite control errors, e.g. resulting in leakage to the flevel.

6.3 Interleaved Randomized benchmarking (IRB)

Question how to characterize the fidelity of one particular Clifford gate V?

Compare decay of standard RB sequence ...

• ...with result of a 2^{nd} experiment, in which gate V gets interleaved with random Clifford gates.

- Difference between the depolarization parameters α_{RB} and α_{IRB} results in an estimate for the error $\epsilon_V = \frac{d}{d+1}(1-\frac{\alpha_{IRB}}{\alpha_{RB}})$ per gate V.
- Randomized Benchmarking can be generalized to multi-qubit gates (see problem set 10).