$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

$m{E}$ cole $m{N}$ ationale $m{S}$ upérieure d' $m{A}$ rts et $m{M}$ étiers — $m{M}$ eknès

CONCOURS D'ENTREE en 1ère Année

Filière : Sciences Mathématiques A et B

Epreuve de Mathématiques

Jeudi 26 Juillet 2012 - Durée : 2h 00mn

Questions à réponse précise, Partie A

NB : Chaque question est notée sur (1Pt)		
Questions	Réponses	
Trouver la prériode T de la fonction suivante : $f\left(x\right) = \sin\left(\frac{x}{2}\right) + \cos\left(x\right)$		
Résoudre dans \mathbb{R} l'équation : $\cos^4(4x) - \sin^4(4x) = 1$		
Déterminer $a, b \in \mathbb{R}$ tels que $(1+i)^9 = a+ib$		
Calculer $C = \lim_{n \to +\infty} n \ln \sqrt{\frac{n+1}{n-1}}$		
Soit f une fonction dérivable sur IR , calculer la dérivée de $g(x) = \exp\left(\left(f\left(x^2\right)\right)^2\right)$		
Soit $E = \mathbb{R} \setminus \{-2\}$ et soit $f : E \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{x+1}{x+2}$ avec $x \in E$, trouver $f(E)$		
Trouver les maximums et les minimums de la fonction $f: [-1, 1] \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 - x + x $		
On donne les points $A(1,2)$, $B(-2,1)$ et $C(0,4)$. Déterminer l'angle \widehat{BAC} en radian		
Soit x un réel positif. Combien y-a-t-il d'entiers naturels multiples de 3 entre 0 et x ?		
Déterminer le quotient et le reste de la division eulidienne de $X^5 - 7X^4 - X^2 - 9X + 9$ par $X^2 - 5X + 4$		

NB: Chaque	question	est no	otée sur	(2Pts)
------------	----------	--------	----------	--------

Questions	Réponses
Soit $f:[a,b] \longrightarrow I\!\!R$ une fonction continue telle que	-
$\forall x \in [a,b], \ f(a+b-x) = f(x). \ \text{on pose } I = \int_a^b f(x)dx$	
et $J = \int_a^b x f(x) dx$. Calculer J en fonction I .	
Soit E un ensemble, et A , B deux sous ensembles de E . On appelle différence symétrique de A et B , notée $A\Delta B$, le sous-ensemble de E : $A\Delta B = \{x \in A \cup B \mid x \not\in A \cap B\}$. Calculer $A\Delta E$ et $A\Delta C_E^A$	
Le périmètre d'un triangle isocèle vaut 1. Déterminer les dimensions de ce triangle pour que son aire soit la plus grande possible.	
On note $u_n = 25^n + 2^{3n+4}$. Trouver $a, b \in \mathbb{Z}$ tels que $\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$	
Calculer $D = \int_{-1}^{1} \frac{1}{x^2 - 2} dx$	
Pour $n \in \mathbb{N}^*$, on pose $S_n = 1^2 + 2^2 + 3^2 + \dots + n^2$. Soit k un entier compris entre 1 et n . Utiliser l'égalité $(k+1)^3 - k^3 = 3k^2 + 3k + 1$ pour calculer S_n .	
Soit x un réel et $E(x)$ la partie entière de x . Déterminer	
$F = \lim_{n \to +\infty} \frac{E(x) + E(2x) + E(3x) + \dots + E(nx)}{n^2}$	
De combien de façon peut-on payer 10 DHS avec des pièces de 10 et 20 centimes ? ($1 \text{ DH} = 100 \text{ centimes}$)	
Soient x_1 , x_2 et x_3 les racines de $x^3 + 2x - 1 = 0$, calculer $X = x_1^3 + x_2^3 + x_3^3$	
Le 1^{er} juin 2012, les participants d'un club d'astronomie ont observé le corps céleste \mathcal{A} qui apparait tout les 51 jours. Le 28 juin 2012, ils ont observé le corps céleste \mathcal{B} , qui apparait tout les 72 jours. A quelle date devront-ils fixer une nouvelle réunion pour observer simultanément les deux corps?	
Déterminer un cercle de centre Ω et de rayon R tangent aux trois droites d'équations respectives : $y=2x+1,\ y=2x+7$ et $y=-\frac{1}{2}x$	

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filière : Sciences Mathématiques A et B

Epreuve de Mathématiques

Jeudi 26 Juillet 2012 - Durée : 2h 00mn

Questions à réponse précise, Partie A

Questions a reponse pr				
NB : Chaque question est notée sur (1Pt)				
Questions Trouver la prériode T de la fonction suivante : $f\left(x\right) = \sin\left(\frac{x}{2}\right) + \cos\left(x\right)$	Réponses $ \begin{cases} (x + 4\pi) = \sin(2\pi + \frac{x}{2}) + \cos(x + 4\pi) \\ = f(x) \end{cases} $ $ \Rightarrow T = 4\pi $			
Résoudre dans \mathbb{R} l'équation : $\cos^4(4x) - \sin^4(4x) = 1$	S= SKI /KEZ6			
Déterminer $a, b \in \mathbb{R}$ tels que $(1+i)^9 = a+ib$	a = b = 16			
Calculer $C = \lim_{n \to +\infty} n \ln \sqrt{\frac{n+1}{n-1}}$	C = +∞			
Soit f une fonction dérivable sur IR , calculer la dérivée de $g(x) = \exp\left(\left(f\left(x^2\right)\right)^2\right)$	g'(x)=4 x f(x2). f(x2) g(x)			
Soit $E = \mathbb{R} \setminus \{-2\}$ et soit $f : E \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{x+1}{x+2}$ avec $x \in E$, trouver $f(E)$	V			
Trouver les maximums et les minimums de la fonction $f: [-1, 1] \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 - x + x $	1 1011 17 011-0			
On donne les points $A(1,2)$, $B(-2,1)$ et $C(0,4)$ Déterminer l'angle \widehat{BAC} en radian	BAC = 4,55			
Soit x un réel positif. Combien y-a-t-il d'entiers na turels multiples de 3 entre 0 et x ?				
Déterminer le quotient et le reste de la division eul dienne de $X^5 - 7X^4 - X^2 - 9X + 9$ par $X^2 - 5X +$	i- Le quotient: n3_2x2_14x-63 4 Le reste: -268x + 261			

Questions a reponse				
NB : Chaque question est notée sur (2Pts)				
Questions	Réponses			
Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue telle que $\forall x \in [a,b], \ f(a+b-x) = f(x).$ on pose $I = \int_{-b}^{b} f(x) dx$	$\pi = a + b - t$ $J = \int_{a}^{b} \pi f(n) dn = \int_{b}^{a} (a + b - t) f(t) dt$			
et $J = \int_a^b x f(x) dx$. Calculer J en fonction I .	$= (a+b)I - J$ $=) J = a+b I$ $A \triangle A = A \triangle C \triangleq -R$			
Soit E un ensemble, et A , B deux sous ensembles de E . On appelle différence symétrique de A et B , notée $A\Delta B$, le sous-ensemble de E : $A\Delta B = \{x \in A \cup B \mid x \not\in A \cap B\}$. Calculer $A\Delta E$ et $A\Delta C_E^A$	ADE = (AUSI) (Ansi) = SIA = A			
Le périmètre d'un triangle isocèle vaut 1. Déterminer les dimensions de ce triangle pour que son aire soit la plus grande possible.	$S'(n) = \frac{1}{\sqrt{4}n - 4} \sqrt{n} - \frac{1}{4} + \frac{1}{4} \sqrt{\frac{1}{4}}$ $S'(n) = \frac{1 - 3n}{\sqrt{4}n - 4}, S'(n) = 0 \Leftrightarrow n = \frac{1}{3}$ $AB = AC = BC = \frac{1}{3}$			
On note $u_n = 25^n + 2^{3n+4}$. Trouver $a, b \in \mathbb{Z}$ tels que $\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$	0.33 et $b = -200$			
Calculer $D = \int_{-1}^{1} \frac{1}{x^2 - 2} dx$	D = V2 In (V2-1)			
Pour $n \in \mathbb{N}^*$, on pose $S_n = 1^2 + 2^2 + 3^2 + + n^2$. Soit k un entier compris entre 1 et n . Utiliser l'égalité $(k+1)^3 - k^3 = 3k^2 + 3k + 1$ pour calculer S_n .	$5_n = \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$			
Soit x un réel et $E(x)$ la partie entière de x . Déterminer $F = \lim_{n \to +\infty} \frac{E(x) + E(2x) + E(3x) + \cdots + E(nx)}{n^2}$	$F = \lim_{n \to +\infty} u_n = \frac{u}{2}$			
De combien de façon peut-on payer 10 DHS avec des pièces de 10 et 20 centimes ? ($1 \text{ DH} = 100 \text{ centimes}$)	(0,50); (1,49); , (50,0), Par suite le nombre de façon est 151 façons			
Soient x_1 , x_2 et x_3 les racines de $x^3 + 2x - 1 = 0$, calculer $X = x_1^3 + x_2^3 + x_3^3$	$M_1^3 + \lambda_2^3 + \lambda_3^3 = 3$			
Le 1 ^{er} juin 2012, les participants d'un club d'astronomie ont observé le corps céleste \mathcal{A} qui apparait tout les 51 jours. Le 28 juin 2012, ils ont observé le corps céleste \mathcal{B} , qui apparait tout les 72 jours. A quelle date devront-ils fixer une nouvelle réunion pour observer simultanément les deux corps?	En pourra observer simultanément les deux corps le: 31 octobre 2012			
Déterminer un cercle de centre Ω et de rayon R tangent aux trois droites d'équations respectives : $y=2x+1,\ y=2x+7$ et $y=-\frac{1}{2}x$	$S2(-3,2)$ et $R = \frac{3\sqrt{5}}{5}$ $-2(-\frac{4}{5}, -\frac{2}{5})$ $R = \frac{3\sqrt{5}}{5}$			