	Finolex Academy of Management and Technology, Ratnagiri							
रिसिरिक्षेत्राति वर्णना	Department of Information Technology							
Subject name: In			Subject Code:ITL703					
Class	BE IT	Semester – (CBCGS)	VII	Academic year: 2018-19				
Name of Student	Kazi Jawwad A Rahim QUIZ		QUIZ S	Score :				
Roll No	27	Assignment/Experiment No.		01				
Title: To implement water jug problem using BFS and DFS.								

1. Course objectives applicable: COB2. Understand the different searching techniques to solve the different AI problems on the basis of knowledge of agent

2. Course outcomes applicable:

CO2 –Solve the problems based on searching techniques.

3. Learning Objectives:

- 1. To understand concept of DFS and BFS.
- 2. To understand water jug problem
- 3. To program water jug problem for solution no 2
- 4. To get the output which will give the correct rule applied for required steps

4. Practical applications of the assignment/experiment: Euler circuits, Bioconnected graphs

5. Prerequisites:

- 1. To learn the use of intelligent agents in uninformed search.
- 2. To understand the programming methodology for water jug problem.

6. Hardware Requirements:

1. PC with minimum 2GB RAM

7. Software Requirements:

- 1. Windows installed
- 2. JDK/Net beans

8. Quiz Questions (if any): (Online Exam will be taken separately batchwise, attach the certificate/ Marks obtained)

- 1. What is AI?
- 2. What is an Agent?
- 3. What is PEAS?
- 4. What is not an Uninformed search technique?

9. Experiment/Assignment Evaluation:								
Sr.	Parameters			Marks	Out of			
No.				obtained				
1	Technical Understandi		6					
	A or any other relevan							
	method used -							
2	Neatness/presentation		2					
3	Punctuality		2					
Date of performance (DOP)		Total man	ks obtained		10			
Date of checking (DOC)		Signature	Signature of teacher					

11. Precautions:

- 1. Find all available solution paths and represent it in tree.
- 2. Define rules and actions applicable for each rule.

12. Installation Steps / Performance Steps -

```
Program.java
public class Program
       public static void main(String args[])
               WaterJug w = new WaterJug();
               w.checkGoal();
        }
WaterJug.java
import java.util.*;
public class WaterJug
       int a_max = 4;
       int b_max = 3;
       int a = 0;
       int b = 0;
       int goal = 2;
       void checkGoal()
       {
               int fin = 0;
               while(fin != 1)
                       if((this.a == this.goal) || (this.b == this.goal)) { fin = 1; }
                       if(this.a==0)
                       {
                               fillA();
                       } else if ((this.a > 0) && (this.b != this.b_max)) {
                               transferAtoB();
                       } else if ((this.a > 0) && (this.b == this.b_max)) {
                               emptyB();
                       }
               }
       void fillA()
               this.a = this.a max;
               System.out.println("{" + this.a + "," + this.b + "}");
        }
       void fillB()
               this.b = this.b_max;
               System.out.println("\{" + this.a + "," + this.b + "\}");
        }
```

```
void transferAtoB()
               int fin = 0;
               while(fin != 1) {
                        this.b += 1;
                        this.a = 1;
                       if((this.b == this.b_max) || (this.a == 0)) { fin = 1;}
               System.out.println("\{" + this.a + "," + this.b + "\}");
       void emptyA() {
               this.a=0;
               System.out.println("\{" + this.a + "," + this.b + "\}");
        }
       void emptyB() {
               this.b=0;
               System.out.println("\{" + this.a + "," + this.b + "\}");
        }
}
```

13. Observations

1. The output will give the sequence of nodes to find the solution path or goal node.

14. Results:

```
A:\Users\satyam\Desktop\New folder>javac Program.java
A:\Users\satyam\Desktop\New folder>javac WaterJug.java
A:\Users\satyam\Desktop\New folder>javac WaterJug.java
A:\Users\satyam\Desktop\New folder>java Program
{4,0}
{1,3}
{1,0}
{0,1}
{4,1}
{2,3}
{2,0}
A:\Users\satyam\Desktop\New folder>
```

15. Learning Outcomes Achieved

- 1. Understanding the concept of uninformed search.
- 2. Understanding the water jug problem solved by uninformed search technique.

16. Conclusion:

1. Applications of the studied technique in industry

a. DFS and BFS algorithms used to develop intelligent systems which solve mathematical problems based on graph.

2. Engineering Relevance

a. Such algorithms are very useful in searching techniques where number of solutions are more than one.

3. Skills Developed

a. Implementation of BFS for water jug problem.

17. References:

- [1] G. Görz, C.-R. Rollinger, J. Schneeberger (Hrsg.) "Handbuch der künstlichen Intelligenz" Oldenbourg Verlag, 2003, Fourth edition
- [2] Turing, A. "Computing Machinery and Intelligence", Mind LIX (236): 433–460, Ocotober, 1950.
- [3] Aristotle "On Interpretation", 350 B.C.E, see: http://classics.mit.edu/Aristotle/interpretation.html
- [4] Newell, A., Simon, H.A. "Human Problem Solving" Englewood Cliffs, N.J.: Prentice Hall, 1972
- [5] Newell, A. "The Knowledge Level", AI Magazine 2 (2), 1981, p. 1-20.