1. Zadanie 16

1.1. Treść

Zaprojektować filtr dolnoprzepustowy (FDP) o charakterystyce równomiernie falistej, rys. 1.1, dla następujących danych: $Z_0=50~\Omega,~f_1=10^9~Hz,~L_r=0.2~dB,~f_a=1.43\times10^9~Hz$ i $L_a=30~dB.$ Filtr zrealizować z odcinków linii współosiowej o średnicy przewodu zewnętrznego D=7~mm, rys.16.2. Obliczenia wykonać przy założeniu, że impedancje charakterystyczne niskoomowych i wysokoomowych sekcji filtru są równe odpowiednio $Z_l=10~\Omega$ i $Z_h=120~\Omega.$ Ponadto założyć, że niskoomowe sekcje filtru są odcinkami linii współosiowej wypełnionej dielektrykiem o $\epsilon_r=2.05$ i $\mu_r=1.$

Rysunek 1.1: Charakterystyka projektowanego filtru

Rysunek 1.2: Realizacja filtru przy użyciu linii współosiowej

Tabela 1.1: Parametry zaprojektowanego filtru

i	g	L [nH]	C [pF]	1 [mm]	d_l [mm]	d_h [mm]
0	1.0		[1]	. 1	3.04015838775	$\frac{1}{3.04015838775}$
1	1.37229535453	10.9203794528	_	28.6038828188	_	0.945831227808
2	1.37819320784	_	4.38692523125	6.05098425027	5.51288864551	
3	2.27568854642	18.109354055	_	57.3968306129	_	0.945831227808
4	1.50014664009	_	4.77511506265	6.02588104449	5.51288864551	
5	2.27568854642	18.109354055	_	57.3968306129	_	0.945831227808
6	1.37819320784	_	4.38692523125	6.05098425027	5.51288864551	
7	1.37229535453	10.9203794528	_	28.6038828188	_	0.945831227808
8	1.07602182984					

1.2. Rozwiązanie

W pierwszym kroku należy obliczyć minimalną ilość sekcji filtru:

$$n \ge \frac{\operatorname{arch}\sqrt{\frac{L'_a - 1}{L'_r - 1}}}{\operatorname{arch}\left(\frac{f_a}{f_1}\right)}$$

$$= 7$$
(1.1)

Następnie należy obliczyć parametry filtru dolnoprzepustowego a na ich podstawie wartości elementów filtru o parametrach skupionych. Wyniki tych obliczeń przedstawia tabela 1.1. Długość l_o stanowiąca poprawkę uwzględniającą pojemność C_{f0} wynosi $l_o=2.60235408442\ mm.$