BAYES THEOREM

Pre-Requisite - Conditional Probability.

-> Finding and probability of Event A given that Event B

has already occurred. $\Rightarrow P(A|B) = P(A \cap B)$ (frue)

(Probability of A and B by probability of B)

-> Event B is Serving as an Condition here.

pure I apply Condition mes cus, Sample Space.

Sample Space Stare reduces that B apple Our Sample Space Comprises of Events Ocurred i'e

when no Condition applied while

B & ANB.)

Let find out the values 8), occurred Eventy. Let Says there are 100 kids, out of which 40 like applies, 30 like Sanavas & 20 like Both.

 $A \rightarrow 40$, $B \rightarrow 30$, $A \cap B = 20$. $P(B) = \frac{30}{100} = 0.3$, $P(A \cap B) = \frac{20}{100} = 0.2$

P(A|B) = 0.2 0.67 //.

Lets Consider two Sueuts A&B. P(A|B) = P(AnB) P(B) P(B|A) = P(BnA) P(B|A) = P(BnA) P(B|A) - P(B) = P(AnB) P(B|A) - P(B|A) - P(BnA)Observe vin Equation & R.H.S is Same i. We Can Equate their L.H.S as follows: $P(ANB) = P(AIB) - P(B) = P(B|A) \cdot P(A)$ Posterior
Probability

P(A/B) = P(B/A) - P(H)

Probability

Likelihood P(B).

Marginal Which is your Baye's Theorem. There A is your hypothesis, B is your data or Ridence. Hence uve read, protes find probability of The hypothesis, June blot B is Some destar or we have observed Some Pridence. So we Compute the probability of hypothesic Gives the Pridence or data. * Cause find out fortuies which knowning, likelihood and prior probabilities.

Likelihood > Probability of Rvielence, Gines the hypothesis Prior > Probability of hypothesis, before Considering Einder Mariquiol > Pure Probability of data or Riduce. Ex: P (King I Face) find probability that Card is King, I given bhat it was face. P (King /face) = P (face / King) . P (King) $= \frac{1 \cdot 4/52}{12/52} = \frac{1 \cdot 1/13}{3/13} = \frac{1}{3}$ 2) Does patient have Cances or not. Two Oudcomes tre and -re.

-) Test results Correct tre herselt in only 98% of Case in which disease is actually present.

Test results Correct -ve result in only 97-1. of Case in which disease is not present. + furthermore 0.008 of the Rutire Jopulation have P((ancer) = 0.008, P(Icancer) = 0.992 -> (1-0.008) = 0.992 p (-1 cancer) = 0.02 (1-0.98) · Pf / carus) = 0.98 P (-17 can cus) = 0.97 -1 (1-0.03) , p (+ 17 (ancer)=0.03

* Suppose we now observe a new patient for whom the lab test return a faithe result.

* Should we diagnose the fatient as howing Cauces 02 not? P(A|B) = P(B|A) P(A)P(B) Scrobalility of Entire data Sol) P (cancer) P (cancer) P (cancer) maximized hur P.E. $= 0.98 \times 0.008 = 0.0078$. 1.1 $= 0.98 \times 0.008 = 0.0078$. 1.1 $= 0.03 \times 0.992$ = 0.0298* Suppose we now observe a new patient for whom
the lab test between a negative result.

Thould we diagnose the patition as having lancer

or not? p ((anter)-) = p (-1 (anter) + p (cancer) = 0.02 × 0.008 = 0.00016 P (7 canus 1-) = P(-17 canuse) x P (7 canus) = 0.97 * 0.992 = 0.96224 / grades.

Classifier * Maire Bayes Type Otigin | Stolen? Mes Donesta No Sporti Yas Yellow Sport Yellow! Sports Tupratos Julow! SUV SVV Tellow 7 Yellow SVV No No Red Red Sporsk Turbited

Instance = (fed , SVV , Domestic).

P(Yes) = 5 = 0.5, P(No) = 5 = 0.5.

Color	Yes	1 NO	1	<u> </u>	
Red	3/5	2/5		18	ba
Yellow	2/5	3/5		S	U

Type	Yes	No
Sports	415	2/5
SUV	115	3/5]

Ocienis	Yes	No
Donustic	2/5	3/5
Turported	3/5	2/5

P(Yes) = P(Yes) * P(Red)Yes) * P(SUV)Yes) * P(Donuslic Mes) Nuxture = 0.5 * 3/5 * 45 * 215 = 0.5 * 0.6 * 0.2 * 0.4 = 0.024.

P(No) = P(No) * P(Red) No) * P(Suy No) * P(Donedic | No) $\sqrt{\frac{1}{9}} = 0.5 \times 2/5 \times 3/5 \times 3/5 = 0.5 \times 0.4 \times 0.6 \times 0.6$

: P(No) Nuo matance) P(Yo) New unstance),