Kapitel 1.

Grundlagen

1.1. Aufgabenstellung

Allgemein ist:

- 1. erster Punkt
- 2. noch ein Punkt
- 3. letzter Punkt

Konkret:

Kapitel 2.

SQP-Verfahren

2.1. Einführung

Ein SQP-Verfahren ist ein wichtiges Verfahren, um restringierte nichlineare Probleme zu lösen. SQP ist eine Abkürzung für Sequentielle Quadratische Optimierung.

Erstes: Wilson im Jahr 1963

Die Idee: Iterativ werden durch das Lösen von quadratischen Problemen KKT-Punkte gefunden, also Kandidaten für lokale Minimalstellen.

Und zum Lösen des quadratischen Problems ist ein effizientes Verfahren bekannt.

Abbildung 2.1.: Titel der Abbildung

In der Abbildung 2.1^1 ist zu sehen, dass \dots

 $[\]overline{\ \ }^{1}$ vgl. Zitat A[1]

2.2. Und nächster Abschnitt

Eine neue Seite, um auchmal die Kopfzeile zu sehen, da sie auf Seiten mit Kapitelanfang nicht erscheinen

Kapitel 3.

Semismooth Newton

3.1. Einführung

Hier füge ich mal eine Tabelle ein

SpalteA	SpalteB	SpalteC	SpalteD
InhaltA1	InhaltB1	InhaltC1	InhaltD1
InhaltA2	InhaltB2	InhaltC2	InhaltD2
InhaltA3	InhaltB3	InhaltC3	InhaltD3

Tabelle 3.1.: Beispiel einer Tabelle

Wie man in der Tabelle 3.1 sehen kann ...

Kapitel 4.

Der Vergleich

4.1. Testfunktionen

Hier mal eine Auflistung von Elementen

- ullet erstes Element
- zweites Element
- noch ein Element

Und Schluss mit der Vorlage ...

Literaturverzeichnis

[1] K. Ito und K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, 2008.