EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Series Voltage Negative Feedback

Output impedance:

Output voltage v_o produces feedback voltage v_f v_f generates voltage $A_v v_f$ in series with Z_c Z_c = output impedance without feedback

$$V_o = i_o Z_c - A_v V_f$$

 $i_o Z_c = V_o + A_v V_f = V_o + A_v B V_o = V_o (1 + A_v B)$
 $Z_o = V_o / i_o = \frac{Z_c}{1 + A_v B}$

Operational Amplifiers (Op-Amps)

Op-amp → very high gain differential amplifier, high input impedance, low output impedance.

Uses → provide voltage amplitude changes, oscillators, filter circuits, instrumentation circuits.

Signal is applied to $+ \rightarrow$ same polarity (or phase) output Signal is applied to $- \rightarrow$ opposite polarity (or phase) output

Operational Amplifiers (Op-Amps)

Common-Mode Rejection \rightarrow

difference signal at inputs are highly amplified, common signals at inputs are slightly amplified = rejected. noise is common to both inputs.

differential connection provides → attenuation of unwanted input amplification of difference input.

Voltage Follower Circuits

Suppose, $V_o > V_i \rightarrow$

 $V_{B2} = V_2 > V_{B1} = V_i$ I_{C2} would be increased

 V_{RC} will be increased

 V_{B_3} will be reduced $\rightarrow V_o = V_i$

Suppose, $V_o < V_i \rightarrow$

 $V_o = V_i$ due to similar -ve feedback effect.

When V_i at 3 is increased or decreased \rightarrow V_o follows V_i perfectly.

Non-Inverting Amplifiers

Portion of V_o is fed back to inverting input. V_o changes as necessary $\rightarrow V_{R_3} = V_i = I_2 R_3$ $I_2 >> \text{op-amp input bias current}$

$$I_2 = \frac{V_o}{R_2 + R_3}$$
 Circuit voltage gain, $A_{CL} = \frac{V_o}{V_i} = \frac{I_2(R_2 + R_3)}{I_2 R_3} = \frac{R_2 + R_3}{R_3}$

 V_{R_1} is produced by input bias current.

$$R_1 = R_2 | | R_3$$

Non-Inverting Amplifiers

Problem-45:

Design a direct-coupled non-inverting amplifier using 741 op-amp. The output voltage is to be 2 V when the input is 50 mV. Also, calculate typical input and output impedances for the amplifier. Assume $I_{B(max)}$ = 500 nA, A_v = 200000, r_i = 2 M Ω , r_o = 75 Ω .

$$\begin{split} I_{2(min)} &= 100 I_{B(max)} = 100 \times (500 \times 10^{-9}) = 50 \; \text{µA} \\ R_3 &= V_i / I_2 = (50 \times 10^{-3}) / (50 \times 10^{-6}) = 1 \; \text{k}\Omega \\ R_2 &+ R_3 = V_o / I_2 = 2 / (50 \times 10^{-6}) = 40 \; \text{k}\Omega \\ R_2 &= (R_2 + R_3) - R_3 = 40 - 1 = 39 \; \text{k}\Omega \\ R_1 &= R_2 |\, |R_3 = 39|\, |1 \approx 1 \; \text{k}\Omega \end{split}$$

$$B = \frac{R_3}{R_2 + R_3} = \frac{1}{39 + 1} = \frac{1}{40}$$

$$Z_i = (1 + A_v B) r_i = \left[1 + 200000 \frac{1}{40} \right] \times 2 \times 10^6 \approx 10000 \text{ M}\Omega$$

$$Z_o = \frac{r_0}{1 + A_v B} = \frac{75}{1 + (200000/40)} \approx 0.015 \Omega$$

Inverting Amplifiers

Non-inverting input terminal is grounded via R_3 Inverting input terminal \rightarrow voltage \approx ground. virtual ground.

Very small input voltage difference is amplified by open-loop gain. Portion of V_o is fed back via R_2 and R_1 to correct changes.

Circuit input current, $I_1 = V_{R1}/R_1 = V_i/R_1$ [$V_{R1} = V_i$] $I_1 >>$ input bias current I_B $V_{R2} = I_1R_2$ $V_o = -I_1R_2$

Circuit voltage gain, $A_{CL} = V_o/V_i = -I_1R_2/I_1R_1 = -R_2/R_1$

Input impedance, $Z_i = R_1$

Inverting Amplifiers

Problem-47:

Design a direct-coupled inverting amplifier using a 741 op-amp. The input voltage amplitude is 20 mV and the voltage gain is to be 144. Assume $I_{B(max)}$ = 500 nA.

$$I_{1(min)} = 100I_{B(max)} = 100 \times (500 \times 10^{-9}) = 50 \,\mu\text{A}$$

$$R_1 = V_i/I_1 = (20 \times 10^{-3})/(50 \times 10^{-6}) = 400 \Omega$$
 (use 390 Ω standard value)

$$R_2 = A_{CL}R_1 = 144 \times 390 = 56.2 \text{ k}\Omega \text{ (use 56 k}\Omega \text{ standard value)}$$

$$R_3 = R_1 | | R_2 = 390 | | (56 \times 10^3) \approx 390 \Omega$$

Summing Amplifiers

- 2 inputs applied to R_1 and R_2
- 2 input voltages, V_{i1} and V_{i2}
- 2 input currents \rightarrow $I_1 = V_{i1}/R_1$ $I_2 = V_{i2}/R_2$

Output voltage,

$$\begin{split} V_o &= -(I_1 + I_2)R_3 \\ &= -\left[\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2}\right]R_3 \\ &= -\frac{R_3}{R_1}[V_{i1} + V_{i2}] \qquad [R_1 = R_2] \\ &= -[V_{i1} + V_{i2}] \qquad [R_1 = R_2 = R_3] \end{split}$$

Summing Amplifiers

Problem-48:

Design a three-input summing amplifier using an op-amp and to have a voltage gain of 3. Calculate the resistor currents and the output voltage when all three inputs are 1 V.

Select
$$R_4$$
 = 1 M Ω
Let, R_1 = R_2 = R_3 = R_4/A_{CL} = 1×10⁶/3 = 333 k Ω (use 330 k Ω standard value)

$$\begin{split} I_1 &= I_2 = I_3 = V_i/R_1 = 1/(330\times10^3) = 3.03~\mu\text{A} \\ I_4 &= I_1 + I_2 + I_3 = 3.03 + 3.03 + 3.03 = 9.09~\mu\text{A} \\ V_o &= -I_4 R_4 = -9.09\times10^{-6}\times1\times10^6 = -9.09~\text{V} \end{split}$$

