Amendments to the Claims

We Claim:

1. (Currently amended) A compound of Formula I:

$$R^1$$
 N
 R^2
 R^3

where:

 R^1 is $(C_3-C_7$ -cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ -cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ -cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_4-C_7 -alkoxy, C_3-C_7 -cycloalkoxy, oxo, and NR^4R^5 , biphenyl optionally

$$\mathbb{R}^{7}$$
 \mathbb{R}^{8} \mathbb{R}^{9} \mathbb{R}^{9}

substituted with halo, hydrogen,

 R^2 is C_4 - C_3 -alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_4 - C_6 -alkoxy optionally substituted in the alkyl chain with C_3 - C_7 -cycloalkyl, and C_4 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 -cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_4 - C_6 -alkoxy optionally substituted in the alkyl chain with C_3 - C_7 -cycloalkyl, and C_4 - C_6 -alkylthio optionally substituted in the alkyl chain with C_3 - C_7 -cycloalkyl;

 R^3 is:

i) a piperidin-2-yl moiety of formula:

ii) a tetrahydropyridin-2-yl moiety of formula:

iii) a piperazin 2 yl moiety of formula:

iv) homopiperidin-2-yl;

v) 1,2,3,4-tetrahydroisoquinolin-3-yl optionally substituted with one or two substituents selected from halo, C₁-C₆ alkyl, and C₁-C₆ alkoxy;

vi) 2-azabieyelo[2.2.2]oct-(5Z)ene-3-yl;

vii) 2 azabicyclo[2.2.1]hept 3 yl optionally substituted with C₁-C₁₀ alkyl optionally substituted with C₁-C₄ alkoxy; or

viii) 2 azabicyclo[2.2.2]oct 3 yl optionally substituted with oxo, or optionally substituted with one or two substituents independently selected from hydroxy, fluoro, and C₁-C₆ alkyl;

 $X \text{ is CH, N, or N}^+-O^-$;

Y is CR¹¹. N. or N⁺-O⁻:

O is CR¹²- N. or N⁺-O-:

 R^4 is hydrogen, C_1 - C_6 alkyl optionally substituted up to three times with fluoro, or phenyl; R^5 is hydrogen, C_1 - C_6 alkyl optionally substituted up to three times with fluoro, phenyl, $C(O)(C_1$ - C_6 alkyl optionally substituted up to three times with fluoro), or

-SO₂(C₁-C₆ alkyl optionally substituted up to three times with fluoro);

R⁶ and R⁷ are independently selected from the group consisting of methyl, ethyl, and propyl;

R⁸ is hydrogen or C₁-C₆ alkyl;

R⁹ is C₃ C₅ cycloalkyl, see butyl, or CH₂R¹³;

 R^{10} is $-CF_2R^{14}$, $-OR^{15}$, $-CH_2C(O)CH_3$, $-S(O)_{1.2}R^{16}$, $-NR^{17}SO_2R^{18}$, $(C_1-C_3$ -alkoxy)-carbonyl, phenyl optionally substituted with halo, 1,3 dioxolan 2 yl, 1,3 dioxan 2 yl, 1,1 dioxo-2,3,4,5 tetrahydroisothiazol-2 yl, or tetrazol-5 yl optionally substituted with C_1 - C_3 -alkyl;

C₁-C₆ alkyl;

```
R<sup>11</sup> is hydrogen, chloro, isobutyl, CH<sub>2</sub>R<sup>19</sup>; CF<sub>2</sub>R<sup>20</sup>, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C<sub>2</sub>-
C<sub>4</sub>-alkenyl optionally substituted with one or two fluorine atoms, OR<sup>21</sup>. C(O)R<sup>22</sup>.
N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin 2 on 1 yl, methylsulfonyl, N,N
dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from
the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3 dioxolan 2 yl,
1,3 dithiolan 2 yl, 1,3 oxathiolan 2 yl, 1,3 dioxan 2 yl, 1,3 dithian 2 yl, pyridinyl, thiazolyl,
oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;
          R<sup>12</sup> is hydrogen or fluoro:
          R<sup>13</sup> is ethynyl or evelopropyl:
          R<sup>14</sup> is hydrogen or methyl:
          R<sup>15</sup> is difluoromethyl or methanesulfonyl:
          R<sup>16</sup> is C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, phenyl, or NR<sup>25</sup>R<sup>26</sup>;
          R<sup>17</sup> is hydrogen, C<sub>1</sub>-C<sub>2</sub> alkyl optionally substituted with up to 3 fluorine atoms, or C<sub>2</sub>-C<sub>6</sub>
eycloalkyl;
          R<sup>18</sup> is C<sub>1</sub>-C<sub>2</sub> alkyl or C<sub>2</sub>-C<sub>6</sub> eveloalkyl:
          R<sup>19</sup> is fluoro, hydroxy, or C<sub>1</sub>-C<sub>2</sub> alkoxy;
          R<sup>20</sup> is hydrogen, phenyl, or furyl;
          R<sup>21</sup> is C<sub>1</sub> C<sub>3</sub> alkyl optionally substituted with one or two fluorine atoms;
          R<sup>22</sup> is C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>3</sub>-C<sub>5</sub> eyeloalkyl, C<sub>2</sub>-C<sub>3</sub> alkenyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, NR<sup>23</sup>R<sup>24</sup>, pyrrolidin-1-
vl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-vl, phenyl,
pyridinyl, or furyl;
          R<sup>23</sup> is hydrogen or methyl:
          R<sup>24</sup> is methyl, ethyl, or propyl;
          R<sup>25</sup> is hydrogen or methyl:
          R<sup>26</sup> is methyl; or
          R<sup>25</sup> and R<sup>26</sup> taken together with the nitrogen atom to which they are attached form a
pyrrolidine or piperidine ring:
          R^{29} is hydrogen or C_1-C_6 alkyl;
          R<sup>30</sup> is hydrogen or C<sub>1</sub>-C<sub>6</sub> alkyl;
          R<sup>29</sup> and R<sup>30</sup> taken together with the carbon to which they are attached form a C<sub>3</sub>-C<sub>6</sub>
cycloalkyl ring;
          R<sup>31</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, or phenyl optionally monosubstituted with
```

Serial No. 10/599,125

 R^{32} is hydrogen, R^{33} , or $-(CH_2)_{0-2}$ -OR³³;

 R^{33} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, or -(CH₂)₀₋₃- R^{34} ;

 R^{34} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, thienyl optionally substituted with halo, benzothienyl optionally substituted with halo, or thiazolyl optionally substituted with C_1 - C_4 alkyl, or adamantyl;

 R^{35} -is- $(CH_2)_{0.6}$ - R^{34} , C(O)- $(CH_2)_{0.6}$ - R^{34} , -C(O)- $(C_4$ - C_{10} -alkyl), -C(O)- $(C_4$ - C_4 -alkoxy optionally substituted with phenyl), C_4 - C_{10} -alkyl optionally substituted with 1–6 fluorine atoms, C_2 - C_{10} -alkenyl, or C_2 - C_{10} -alkynyl;

R²⁶ and R²⁷ are both hydrogen or, taken together with the carbon atom to which they are attached form a carbonyl group; or a pharmaceutically acceptable salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N⁴-O⁷; and b) when X is CH, Y is CR¹¹, and Q is CR¹², then one of R¹¹ and R¹² is other than hydrogen.

2-5. (Canceled)

6. (Currently amended) A pharmaceutical formulation composition comprising a compound of Claim 1, in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

7-8. (Canceled)

- 9. (Previously presented) A method for the inhibition of A-β peptide comprising administering to a mammal in need of such treatment an effective amount of a compound of Claim 1.
- 10. (Canceled)
- 11. (New) A compound of Claim 1 wherein R¹ is methyl.
- 12. (New) A compound of Claim 1 wherein R² is benzyl optionally monosubstituted or disubstituted in the phenyl ring with fluoro.