大学物理 B 静电场中的导体和电介质作业

的匀速[倍 , 则制	圆周运动.如果带 拉子做圆周运动的	=	静电力作用下,在水 ³ 电量都增大一倍,并位 (C) 2 <i>R</i>		
另一点 E 当 q'从 A (A)	电荷 q' .设通过 ${f S}$ 配 点移到 ${f B}$ 点时: ${m \Phi}$ 改变, ${m E}_{P}$ 不	面的电场强度通量为			\overline{q}
电球面的	勺静电能为 W_1 ,	带电球体的静电能	质球体 , 它们的半径 ⁵ 为 W ₂ ,则:[C] (C) W ₁ <		设带
			平板,其中一块的电荷 >为 <i>E</i> = 2ε ₀	ī面密度为+σ,另一均	块 的电
的同时			板电势差为 <i>U_{AK},</i> 从负 子, 则 它 们 抵 达 对		
6 . 两完 由场能			1源保持连接,如果在 1增大武减小或不变)	A中加入电介质,则B	3中的

7. 真空中,一半径为R的绝缘实心均匀带电球体,电荷体密度为ho,介电常数为 $arepsilon_0$,设无

限远处为电势零点、求:球体内距球心为r = R/3处的P点电势、(设无穷远处电势为零)解:由高斯定理已求得均匀带电球体的电场强度大小为

$$E = \begin{cases} \frac{qr}{4\pi\varepsilon_0 R^3} (r \le R) \\ \frac{q}{4\pi\varepsilon_0 r^2} (r > R) \end{cases}$$

所以球体内距离球心为 r=R/3 处的 P 的电势

$$\mathbf{U} = \int_{\mathbf{R}}^{\infty} \frac{q}{4\pi\varepsilon_0 r^2} dr + \int_{\frac{\mathbf{R}}{3}}^{\mathbf{R}} \frac{qr}{4\pi\varepsilon_0 R^3} dr = \frac{q}{4\pi\varepsilon_0 R} + \frac{q}{9\pi\varepsilon_0 R} = \frac{13q}{36\pi\varepsilon_0 R^3}$$

8. 试证明柱形电容器的电容公式为: $C = \frac{2\pi\varepsilon_0 L}{\ln(h/a)}$, 式中, L 为柱形电容长度, a 、b 分别

为柱形电容的内、外半径.

证明:在电容器两极之间作一个底面半径为 $r(a \le r \le b)$,高度为 L 的同轴柱面为高斯面

$$\Phi_{c} = \oint_{S} E dS = 2 \pi r LE \Gamma$$

由高斯定理可得

$$\Phi_{\mathbf{e}} = \frac{\mathbf{q}}{\varepsilon_{\mathbf{0}}}$$
 ②

联立①②式得

$$E = \frac{q}{2 \pi r L \epsilon_0}$$

若 λ 为内侧面上单位长度的电量,即 q= λ L,则有

$$E = \frac{\lambda}{2 \pi \Gamma \epsilon_0}$$

则两极之间的电势差

$$U_{ab} = \int_{a}^{b} \frac{\lambda}{2 \pi \epsilon_{0} \Gamma} dr = \frac{\lambda}{2 \pi \epsilon_{0}} \ln \frac{b}{a}$$

该电容器的电容

$$C = \frac{q}{U_{ab}} = \frac{\lambda L}{U_{ab}} = \frac{2 \pi \epsilon_0 L}{\ln b/a}$$

- 9. 半径为r的导体球外面,同心地罩一内外半径分别为 R_1 和 R_2 的导体球壳.若球和球壳 所带的电荷分别为 q 和 Q,试求:
 - (1) 球和球壳的电势以及它们的电势差;
 - (2) 若将球壳接地, 求它们的电势差;

解:(1)静电平衡后,球面、球壳内表面、球壳外表面所带电荷分别为 q,-q,Q+q. 此时球是个等势体,球壳也是个等势体,根据电势叠加原理得

球的电势

$$U_A = \frac{q}{4\pi\varepsilon_0 r} - \frac{q}{4\pi\varepsilon_0 R_1} + \frac{Q+q}{4\pi\varepsilon_0 R_2}$$

球壳的电势

$$U_B = \frac{Q + q}{4\pi\varepsilon_0 R2}$$

它们的电势差

$$U_{AB} = U_A - U_B = \frac{q}{4\pi\varepsilon_0 r} - \frac{q}{4\pi\varepsilon_0 R_1}$$

(2) 若将球壳接地,球壳电荷被导走,静电平衡后,球面、球壳内表面、球壳外表面所带电荷分别为 q,-q,0.

$$U_{AB} = \frac{q}{4\pi\varepsilon_0 r} - \frac{q}{4\pi\varepsilon_0 R_1}$$