BUSINESS CASE STUDY

Target is one of the world's most recognized brands and one of America's leading retailers. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allows viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

- 1) Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
- a) Data type of columns in a table:

(i)orders

```
select column_name, data_type, table_name
from Ecommerce.INFORMATION_SCHEMA.COLUMNS
where table_name
in('orders')
```

Quer	Query results						
JOB IN	FORMATION RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAPH		
Row	column_name ▼	data_type ▼	4	table_name	~		
1	order_id	STRING		orders			
2	customer_id	STRING		orders			
3	order_status	STRING		orders			
4	order_purchase_timestamp	TIMESTAMP		orders			
5	order_approved_at	TIMESTAMP		orders			
6	order_delivered_carrier_date	TIMESTAMP		orders			
7	order_delivered_customer_date	TIMESTAMP		orders			
8	order_estimated_delivery_date	TIMESTAMP		orders			

(ii) products

```
select column_name, data_type, table_name
from Ecommerce.INFORMATION_SCHEMA.COLUMNS
where table_name
in('products')
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS	EXECUTION GRAPH
Row	column_name •	,	data_type	•	table_name	. •
1	product_id		STRING		products	
2	product_category	/	STRING		products	
3	product_name_le	ngth	INT64		products	
4	product_descript	ion_length	INT64		products	
5	product_photos_	qty	INT64		products	
6	product_weight_g	9	INT64		products	
7	product_length_c	m	INT64		products	
8	product_height_c	m	INT64		products	
9	product_width_cr	n	INT64		products	

(iii)sellers

```
select column_name, data_type, table_name
from Ecommerce.INFORMATION_SCHEMA.COLUMNS
where table_name
in('sellers')
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAPH	
Row	column_name	· le	data_type ▼	/1	table_name	~	
1	seller_id		STRING		sellers		
2	seller_zip_code_p	orefix	INT64		sellers		
3	seller_city		STRING		sellers		
4	seller_state		STRING		sellers		

(iv)customers

```
select column_name, data_type, table_name
from Ecommerce.INFORMATION_SCHEMA.COLUMNS
where table_name
in('customers')
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS	EXECUTION GRAPH
Row	column_name ▼	h	data_type ▼	li.	table_name	▼
1	customer_id		STRING		customers	
2	customer_unique_id	I	STRING		customers	
3	customer_zip_code_	_prefix	INT64		customers	
4	customer_city		STRING		customers	
5	customer_state		STRING		customers	

(v)geolocation

```
select column_name, data_type, table_name
from Ecommerce.INFORMATION_SCHEMA.COLUMNS
where table_name
in('geolocation')
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAPH
Row	column_name 🔻	· le	data_type ▼	le	table_name	▼
1	geolocation_zip_o	code_prefix	INT64		geolocation	
2	geolocation_lat		FLOAT64		geolocation	
3	geolocation_lng		FLOAT64		geolocation	
4	geolocation_city		STRING		geolocation	
5	geolocation_state	е	STRING		geolocation	

(vi) order_items

```
select column_name, data_type, table_name
from Ecommerce.INFORMATION_SCHEMA.COLUMNS
where table_name
in('order_items')
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAPH
Row	column_name 🔻	le	data_type ▼	1	table_name	·
1	order_id		STRING		order_items	
2	order_item_id		INT64		order_items	
3	product_id		STRING		order_items	
4	seller_id		STRING		order_items	
5	shipping_limit_date	;	TIMESTAMP		order_items	
6	price		FLOAT64		order_items	
7	freight_value		FLOAT64		order_items	

(vii)order_reviews

```
select column_name, data_type, table_name
from Ecommerce.INFORMATION_SCHEMA.COLUMNS
where table_name
in('order_reviews')
```

Query results

JOB IN	FORMATION RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row	column_name ▼	data_type ▼	table_n	ame ▼
1	review_id	STRING	order_re	eviews
2	order_id	STRING	order_re	eviews
3	review_score	INT64	order_re	eviews
4	review_comment_title	STRING	order_re	eviews
5	review_creation_date	TIMESTAMP	order_re	eviews
6	review_answer_timestamp	TIMESTAMP	order_r	eviews

(viii)payments

```
select column_name, data_type, table_name
from Ecommerce.INFORMATION_SCHEMA.COLUMNS
where table_name
in('payments')
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS	EXECUTION GRAPH
Row	column_name •	· le	data_type	· //	table_name	→
1	order_id		STRING		payments	
2	payment_sequen	tial	INT64		payments	
3	payment_type		STRING		payments	
4	payment_installn	nents	INT64		payments	
5	payment_value		FLOAT64		payments	

b)Time period for which the data is given:

```
select min(order_approved_at) as start_date,
max(order_approved_at) as end_date
from Ecommerce.orders;
```


c)Cities and States of customers ordered during the given period:

(i)States:

```
select distinct geolocation_state
from Ecommerce.geolocation
limit 10;
```

Row	geolocation_state ▼
1	SE
2	AL
3	PI
4	AP
5	AM
6	RR
7	AC
8	RO
9	ТО
10	BA

(ii)city:

```
select distinct geolocation_city
from Ecommerce.geolocation
limit 10;
```

Row	geolocation_city ▼
1	aracaju
2	riachuelo
3	nossa senhora do socorro
4	barra dos coqueiros
5	itaporanga d'ajuda
6	sao cristovao
7	são cristóvão
8	santo amaro das brotas
9	pirambu
10	laranjeiras

INSIGHTS:

• These are the unique states (27) & cities (8011) present in Brazil from Geo-location data.

2) In-depth Exploration:

a) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
select concat(EXTRACT(Year FROM 0.order_delivered_carrier_date), '-',
EXTRACT(Month FROM 0.order_delivered_carrier_date)) AS year_and_month,
round(sum(oI.freight_value), 1) as sales_sum, count(distinct oI.order_id)
as no_of_orders
from `Ecommerce.order_items` as oI
join `Ecommerce.orders` as O on 0.order_id=oI.order_id
where 0.order_delivered_carrier_date is not null
group by year_and_month order by year_and_month
limit 10;
```

Row	year_and_month ▼	sales_sum ▼	no_of_orders ▼
1	2016-10	5585.3	247
2	2016-11	988.2	31
3	2016-12	20.4	2
4	2017-1	12541.9	612
5	2017-10	103519.9	4482
6	2017-11	150726.6	6637
7	2017-12	129844.3	6081
8	2017-2	34115.9	1517
9	2017-3	59005.2	2717
10	2017-4	45422.2	2141

INSIGHTS:

- There was a growing trend along the time.
- We can see some seasonality with peaks at specific months, but in general we can see clear that customers are more prone to buy things online than before.

B) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
select distinct extract(hour from order_purchase_timestamp) as hour,
count(distinct order_id) as no_of_orders
from `Ecommerce.orders`
group by hour order by no_of_orders desc
limit 10;
```

Row	hour 🔻	1.	no_of_orders ▼
1		16	6675
2		11	6578
3		14	6569
4		13	6518
5		15	6454
6		21	6217
7		20	6193
8		10	6177
9		17	6150
10		12	5995

INSIGHTS:

- As we can see here most customers tend to buy in evening, we can consider this is as peak time.
- 3) Evolution of E-commerce orders in the Brazil region:
- a) Get month on month orders by states:
- (i) state wise:

```
select distinct G.geolocation_state, count(distinct O.order_id) as
no_of_orders
from `Ecommerce.orders` O
left join `Ecommerce.order_items` as OI on OI.order_id=O.order_id
join `Ecommerce.customers` as C on C.customer_id=O.customer_id
left join `Ecommerce.geolocation` G on
G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
group by G.geolocation_state order by no_of_orders desc
limit 10;
```

Row	geolocation_state ▼	no_of_orders ▼
1	SP	41731
2	RJ	12839
3	MG	11624
4	RS	5473
5	PR	5034
6	SC	3651
7	BA	3371
8	ES	2027
9	GO	2011
10	DF	1974

(ii) city wise:

```
select distinct G.geolocation_city, count(distinct O.order_id) as
no_of_orders
from `Ecommerce.orders` O
left join `Ecommerce.order_items` as OI on OI.order_id=O.order_id
join `Ecommerce.customers` as C on C.customer_id=O.customer_id
left join `Ecommerce.geolocation` G on
G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
group by G.geolocation_city order by no_of_orders desc
limit 10;
```

Row	geolocation_city ▼	no_of_orders ▼
1	sao paulo	15586
2	são paulo	15406
3	rio de janeiro	6923
4	belo horizonte	2789
5	brasilia	1951
6	brasília	1767
7	curitiba	1524
8	campinas	1444
9	porto alegre	1379
10	salvador	1241

b)How are customers distributed in Brazil:

```
select customer_state,
count(customer_id)as count_of_customers
from Ecommerce.customers
group by customer_state order by count_of_customers desc
limit 10;
```

Row	customer_state ▼	count_of_customers
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

- 4) Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- a) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
select distinct concat(Extract(Year from 0.order_purchase_timestamp),'-',
Extract (Month from 0.order_purchase_timestamp)) as year_month,
count(distinct 0.order_id) as no_of_orders, round(sum(oI.price), 1) as
sales,
round(sum(oI.freight_value), 1) as freight_value from `Ecommerce.orders` 0
join `Ecommerce.order_items` oI on oI.order_id=0.order_id
group by year_month having year_month >= '2017-1' and year_month <= '2018-8'
order by year_month
limit 10;</pre>
```

year_month ▼	no_of_orders ▼	sales ▼	freight_value ▼
2017-1	789	120312.9	16875.6
2017-10	4568	664219.4	105092.9
2017-11	7451	1010271.4	168872.4
2017-12	5624	743914.2	119633.1
2017-2	1733	247303.0	38977.6
2017-3	2641	374344.3	57704.3
2017-4	2391	359927.2	52495.0
2017-5	3660	506071.1	80119.8
2017-6	3217	433038.6	69924.4
2017-7	3969	498031.5	86940.1

b) Mean & Sum of price and freight value by customer state:

```
select distinct G.geolocation_state, avg(OI.price) as price_mean,
sum(OI.price) as price_sum, avg(OI.freight_value) as freight_mean,
sum(OI.freight_value) as freight_value_sum from `Ecommerce.orders` O
left join `Ecommerce.order_items` as OI on OI.order_id=O.order_id
join `Ecommerce.customers` as C on C.customer_id=O.customer_id
left join `Ecommerce.geolocation` G on
G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
group by G.geolocation_state order by price_mean desc
limit 10;
```

geolocation_state ▼	price_mean ▼	price_sum ▼	freight_mean ▼	freight_value_sum /
РВ	198.8613768092	6278650.250002	42.77269312387	1350462.239999
AL	196.6446859705	7191886.100002	33.83250540015	1237356.220000
AC	179.3132177148	1494037.729999	39.09837253960	325767.6400000
AP	177.1011519168	988578.6300000	35.65532246506	199028.00999999
PI	172.9405454888	4581195.050000	39.47732502831	1045754.339999
ТО	168.4598411102	3350329.319999	37.36059583668	743027.5300000
PA	166.9792823166	15586180.17001	36.52666634526	3409472.089999
RN	160.3183254351	3721308.970000	34.06829010856	790793.1500000
MT	156.6328064806	22777072.81998	28.72475728422	4177068.029999
CE	151.3238570849	10819201.81000	32.26149432843	2306600.059999

5) Analysis on sales, freight and delivery time:

a) Calculate days between purchasing, delivering and estimated delivery :

```
select order_id,
DATETIME_DIFF(order_delivered_customer_date,order_purchase_timestamp,day)
as days_delivered_purchase,
DATETIME_DIFF(order_estimated_delivery_date,order_delivered_customer_date,
day) as days_estimated_delivered,
DATETIME_DIFF(order_estimated_delivery_date,order_purchase_timestamp,day)
as days_estimated_purchase,
order_status from `Ecommerce.orders`
order by order_id
limit 10;
```

order_id ▼	days_delivered_purchase	days_estimated_delivered 🗸	days_estimated_purchase	order_status ▼
00010242fe8c5a6d1ba2dd792	7	8	15	delivered
00018f77f2f0320c557190d7a1	16	2	18	delivered
000229ec398224ef6ca0657da	7	13	21	delivered
00024acbcdf0a6daa1e931b03	6	5	11	delivered
00042b26cf59d7ce69dfabb4e	25	15	40	delivered
00048cc3ae777c65dbb7d2a06	6	14	21	delivered
00054e8431b9d7675808bcb8	8	16	24	delivered
000576fe39319847cbb9d288c	5	15	20	delivered
0005a1a1728c9d785b8e2b08	9	0	9	delivered
0005f50442cb953dcd1d21e1f	2	18	20	delivered

b)Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- time_to_delivery = order_delivered_customer_dateorder_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

```
select 0.order_id,
extract(day from (date(0.order_delivered_customer_date)-
date(0.order_purchase_timestamp))) as time_to_delivery,
extract(day from (date(0.order_estimated_delivery_date)-
date(0.order_delivered_customer_date))) as diff_estimated_delivery
from `Ecommerce.orders` 0
left join `Ecommerce.order_items` as OI on OI.order_id=0.order_id
```

order_id ▼	time_to_delivery 🔻	1	diff_estimated_delivery ▼
1950d77	3		-12
2c45c33	3	1	29
65d1e22	3	6	17
635c894	3	1	2
3b97562	3	3	1
3b97562	3	3	1
68f47f50	3	0	2
276e9ec	4	4	-4
54e1a3c	4	1	-4
fd04fa41	3	7	-1

c)Group data by state, take mean of freight_value, time to delivery, diff estimated delivery:

```
select distinct G.geolocation_state,
avg(extract(day from (date(0.order_delivered_customer_date)-
date(0.order_purchase_timestamp)))) as time_to_delivery_mean,
avg(extract(day from (date(0.order_estimated_delivery_date)-
date(0.order_delivered_customer_date)))) as diff_estimated_delivery_mean,
avg(OI.freight_value) as freight_mean
from `Ecommerce.orders` O
left join `Ecommerce.order_items` as OI on OI.order_id=0.order_id
join `Ecommerce.customers` as C on C.customer_id=0.customer_id
left join `Ecommerce.geolocation` G
on G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
group by G.geolocation_state having G.geolocation_state is not null
limit 10;
```

geolocation_state ▼	time_to_delivery_mean 🔻	diff_estimated_delivery_mean 🔻	freight_mean ▼
RJ	14.775000096881513	12.380649001951571	20.89842360439
RS	14.873991283857949	14.304045400320584	21.52222484648
SP	8.8467690826912317	11.309815629122493	15.40996507007
PR	11.410204754300288	13.65765171878833	20.14798071500
MT	17.718174712836117	15.279599157001499	28.72475728422
MA	21.28445576241441	9.7985477820983977	38.07533863275
AL	23.234551346519435	9.24349089283716	33.83250540015
MG	11.761224546105366	13.419513409497268	20.45899544954
PE	17.457049629390763	13.411899774411658	32.86555067321
DF	12.83648894493162	12.431267987948836	21.01097098246

d) Sort the data to get the following:

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

(i)Top 5 States with Highest freight value:

```
select distinct G.geolocation_state, avg(OI.freight_value) as freight_mean
from `Ecommerce.orders` O
left join `Ecommerce.order_items` as OI on OI.order_id=O.order_id
join `Ecommerce.customers` as C on C.customer_id=O.customer_id
left join `Ecommerce.geolocation` G on
G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
group by G.geolocation_state having G.geolocation_state is not null
order by freight_mean desc
limit 5;
```

geolocation_state ▼	freight_mean ▼
PB	42.77269312387
RR	42.46960182496
PI	39.47732502831
AC	39.09837253960
MA	38.07533863275

(ii)Top 5 States with Lowest freight value:

```
select distinct G.geolocation_state, avg(OI.freight_value) as freight_mean
from `Ecommerce.orders` O
left join `Ecommerce.order_items` as OI on OI.order_id=O.order_id
join `Ecommerce.customers` as C on C.customer_id=O.customer_id
left join `Ecommerce.geolocation` G on
G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
group by G.geolocation_state having G.geolocation_state is not null
order by freight_mean asc
limit 5;
```

geolocation_state ▼	freight_mean ▼
SP	15.40996507007
PR	20.14798071500
MG	20.45899544954
RJ	20.89842360439
DF	21.01097098246

e) Top 5 states with highest/lowest average time to delivery:

Highest state:

```
select distinct G.geolocation_state, avg(extract(day from
  (date(0.order_delivered_customer_date)-
  date(0.order_purchase_timestamp)))) as
  time_to_delivery_mean from `Ecommerce.orders` 0
  left join `Ecommerce.order_items` as OI on OI.order_id=0.order_id
  join `Ecommerce.customers` as C on C.customer_id=0.customer_id
  left join `Ecommerce.geolocation` G on
  G.geolocation_zip_code_prefix=C.customer_zip_code_prefix group by
  G.geolocation_state
  having G.geolocation_state is not null
  order by time_to_delivery_mean desc
  limit 5;
```

geolocation_state ▼	time_to_delivery_mean 🔻
AP	30.799706798607325
AM	24.757381258023109
RR	24.363990267639938
AL	23.234551346519435
PA	23.129578824923716

Lowest state:

```
select distinct G.geolocation_state, avg(extract(day from
  (date(0.order_delivered_customer_date)-
  date(0.order_purchase_timestamp)))) as time_to_delivery_mean
  from `Ecommerce.orders` O
  left join `Ecommerce.order_items` as OI on OI.order_id=0.order_id
  join `Ecommerce.customers` as C on C.customer_id=0.customer_id
  left join `Ecommerce.geolocation` G on
  G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
  group by G.geolocation_state having G.geolocation_state is not null
  order by time_to_delivery_mean asc
  limit 5;
```

geolocation_state ▼	time_to_delivery_mean 🔻
SP	8.8467690826912317
PR	11.410204754300288
MG	11.761224546105366
DF	12.83648894493162
RJ	14.775000096881513

f) Top 5 states where delivery is really fast/ not so fast compared to estimated date:

(i)Top 5 with Fast Delivery:

```
select distinct G.geolocation_state, avg(extract(day from
  (date(0.order_estimated_delivery_date)-
date(0.order_delivered_customer_date)))) as diff_estimated_delivery_mean
  from `Ecommerce.orders` 0
left join `Ecommerce.order_items` as OI on OI.order_id=0.order_id
  join `Ecommerce.customers` as C on C.customer_id=0.customer_id
  left join `Ecommerce.geolocation` G on
  G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
  group by G.geolocation_state having G.geolocation_state is not null
  order by diff_estimated_delivery_mean desc
limit 5;
```

geolocation_state ▼	diff_estimated_delivery_mean 🔀
RR	21.809245742092433
AM	21.534820282413392
RO	20.071530325922897
AC	19.520078354554457
AP	16.602528862012136

(ii)Top 5 with Slow Delivery:

```
select distinct G.geolocation_state, avg(extract(day from
  (date(0.order_estimated_delivery_date)-
  date(0.order_delivered_customer_date)))) as diff_estimated_delivery_mean
  from `Ecommerce.orders` 0
left join `Ecommerce.order_items` as OI on OI.order_id=0.order_id
  join `Ecommerce.customers` as C on C.customer_id=0.customer_id
  left join `Ecommerce.geolocation` G on
  G.geolocation_zip_code_prefix=C.customer_zip_code_prefix
  group by G.geolocation_state having G.geolocation_state is not null
  order by diff_estimated_delivery_mean asc
  limit 5;
```

geolocation_state 🔻	diff_estimated_delivery_mean /
AL	9.24349089283716
SE	9.5850907860606434
MA	9.7985477820983977
CE	10.849197181471617
ES	10.978435970051891

6) Payment type analysis:

a) Month over Month count of orders for different payment types:

```
select distinct concat(extract(Year from 0.order_purchase_timestamp),'-',
extract(Month from 0.order_purchase_timestamp))as year_month,
P.payment_type,
count(distinct 0.order_id) as no_of_orders
```

```
from `Ecommerce.orders` 0
left join `Ecommerce.order_items` as OI on OI.order_id=0.order_id
join `Ecommerce.payments` P on P.order_id=0.order_id
group by year_month, P.payment_type order by year_month
limit 10;
```

year_month ▼	payment_type ▼	no_of_orders ▼
2016-10	credit_card	253
2016-10	UPI	63
2016-10	voucher	11
2016-10	debit_card	2
2016-12	credit_card	1
2016-9	credit_card	3
2017-1	credit_card	582
2017-1	voucher	33
2017-1	UPI	197
2017-1	debit_card	9

b) Count of orders based on the no. of payment instalments:

```
select distinct P.payment_type, count(distinct O.order_id) as no_of_orders
from `Ecommerce.orders` O
left join `Ecommerce.order_items` as OI on OI.order_id=O.order_id
join `Ecommerce.payments` P on P.order_id=O.order_id
group by P.payment_type order by no_of_orders desc;
```

payment_type ▼	1	no_of_orders ▼
credit_card		76505
UPI		19784
voucher		3866
debit_card		1528
not_defined		3

ACTIONABLE INSIGHTS:

- From the findings of payments table we get to know that credit card payments are more often in brazil.
- Payments made by debit card is showing a growing trend since 2018-05, which is a good opportunity for investor to improve services for payments like this.

RECOMMENDATIONS:

- If we look at the average time to carrier to start the delivery is around 2-3 days, this should be optimized as low as possible, and that can result into faster delivery.
- From the analysis we observe the average time to complete the delivery is 12days, as there is high competition in e-commerce market, is should be reduced to half.
- •The delivery is really slow when compared to estimate date at Top States, delivering faster may create and increase new customers and revenue.
- •It was observed an increasing trend in revenue and orders over time, but there was decrease in order during September and October month, Introducing discount or offer during low going month.
- •We need to explore options for same-day or next-day delivery services to stay competitive in the market.
- •In Month on Month orders by states, no of orders are certainly lower in states like GO,DF,SC,BA where it must be given attention to increase the orders by taking required actions.