Бесконечные пределы

Обозначение

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$$

Определение

 $a\in\mathbb{R}$ U_a окрестность a - это интервал $(a-\varepsilon,a+\varepsilon),\varepsilon>0$ Окрестность $+\infty$ $U_{+\infty}$ - это луч вида $(E,+\infty)$, где $E\in\mathbb{R}$ Окрестность $-\infty$ $U_{-\infty}$ - это луч вида $(-\infty,E)$, где $E\in\mathbb{R}$

Определение

 $a \in \overline{\mathbb{R}}, a = \lim x_n$, если

$$\forall U_a \; \exists N \; \forall n \geq N \Rightarrow x_n \in U_a$$

Определение

 $a\in\overline{\mathbb{R}}, a=\lim x_n$, если вне любой окрестности точки a, содержится лишь конечное число точек

Определенеие

Последовательность сходится, если она имеет конечный предел

Свойства пределов в $\overline{\mathbb{R}}$

- 1. Единственность предела
- 2-5. Сохраняются со всеми доказательствами
- 8. Стабилизация знака сохраняется. Если $a\in\overline{\mathbb{R}}, a=\lim x_n, a\neq 0$ то найдется такое N, что при $n\geq N$ элемент x_n имеет такой же знак, что и a

Доказательство: если $a\in\mathbb{R}$, то доказательство не изменится. Если $a=+\infty$. Для луча $(0,+\infty)$ найдется N, такое что $\forall n\geq N$ $x_n\in(0,+\infty)$, т.е x_n положительный.

Про неравенства

Считаем, что
$$-\infty < a \ \forall a \in \mathbb{R} \cup \{+\infty\}$$
, $+\infty > a \ \forall a \in \mathbb{R} \cup \{-\infty\}$

Теорема

Пусть $x_n \leq y_n \; \forall n \in \mathbb{N}$, тогда:

- 1. Если $\lim x_n = +\infty$, то $\lim y_n = +\infty$
- 2. Если $\lim y_n=-\infty$, то $\lim x_n=-\infty$

Доказательство

Возьмем луч $(E,+\infty)$, такой что $\lim x_n=+\infty$, найдется N, такое что $\forall n\geq N\ y_n\geq x_n>E\Rightarrow \lim y_n=+\infty$

Замечание

Свойство про ограниченность нарушается. Более того, если $\lim x_n = \pm \infty$,то x_n не является ограниченно последовательностью

От противного. Если x_n ограниченно сверху, то $x_n \leq M$ - верхняя граница $\forall n$. Но тогда они все лежат вне луча $(M, +\infty)$, противоречие с $\lim x_n = +\infty$

Арифметика с бесконечностью см. Stepik

Определение

Последовательность бесконечно большая, если $\lim \lvert x_n \rvert = +\infty$ (иногда обозначают $\lim x_n = \infty$)

Теорема. Связь между бесконечно большими и бесконечно малыми

Пусть $x_n \neq 0 \ \forall n \in \mathbb{N}$. Тогда x_n будет бесконечно малой $\Leftrightarrow \frac{1}{x_n}$ - бесконечно большая Доказательство x_n - бесконечно балая $\Leftrightarrow \lim x_n = 0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N \ \forall n \geq N \Rightarrow |x_n| < \varepsilon$ $\frac{1}{x_n}$ - бесконечно большая $\Leftrightarrow \lim |\frac{1}{x_n}| = +\infty \Leftrightarrow \forall E > 0 \ \exists N \ \forall n \geq N \Rightarrow |\frac{1}{x_n}| > E \Leftrightarrow |x_n| < \frac{1}{E}$, берем $E = \frac{1}{\varepsilon}$

Замечание

 $\lim x_n=\pm\infty\Rightarrow x_n\text{ - бесконечно большая, наоборот неверно }\lim x_n=-\infty\Rightarrow\forall E<0\ \exists N\ \forall n\geq N\Rightarrow x_n< E\Rightarrow |x_n|=-x_n>-E=|E|$ Следовательно, $\lim |x_n|=+\infty$, т.е. x_n - бесконечно большая

(Пояснение к наоборот неверно) $x_n=(-1)^n\cdot n$, тогда $|x_n|=n$ и $\lim |x_n|=+\infty$, то есть x_n - бесконечно большая. Но $\lim x_n$ не существует

Параграф 3. Экспонента

Неравенство Бернулли

Если x>-1, то $(1+x)^n\geq 1+nx\ \forall n\in\mathbb{N}$, причем если $x\neq 0, n>1$,то неравенство строгое

Общая формулировка

Если x>-1 и $p\ge 1$, то $(1+x)^p\ge 1+px$, причем если $x\ne 0$ б $p\ne 1, p\ne 0$,то неравенство строгое. Если же $0\le p\le 1$, то верно неравенство с обратным знаком Доказательство

Индукция по n. База n=1 $(1+x)^1=1+1\cdot x$ Переход $n\to n+1$. Предполагаем, что неравенство $(1+x)^n\ge 1+nx$ уже доказано, тогда $(1+x)^{n+1}=(1+x)\cdot (1+x)^n\ge (1+x)(1+nx)=1+x+nx+nx^2=1+(n+1)x+nx^2$

Следствия

- 1. Если a > 1, то $\lim a^n = +\infty$
- 2. Если |a| < 1, то $\lim a^n = 0$

Доказательство 1 x := a - 1 > 0

$$a^n=(1+x)^n\geq 1+nx>nx\geq E$$
 при $n\geq rac{E}{x}\Rightarrow \lim a^n=+\infty$

Доказательсвто 2

Если a = 0, то все очевидно.

Пусть $a\neq 0$, тогда $\frac{1}{|a|}>1\Rightarrow \lim\left(\frac{1}{|a|}\right)^n=+\infty$, то есть $\frac{1}{|a|^n}$ - бесконечно большая $\Rightarrow a^n$ бесконечно малая $\Rightarrow \lim a^n=0$

Теорема

Пусть $a\in\mathbb{R}.$ Тогда последовательность $x_n:=\left(1+\frac{a}{n}\right)^n$ возрастающая при n>-a и ограничена сверху. Причем если $a\neq 0$, то возрастание строгое. Доказательство

возрастание
$$\frac{x_n}{x_{n-1}} = \frac{\left(1 + \frac{a}{n}\right)^n}{\left(1 + \frac{a}{n-1}\right)^n} = \frac{\frac{n+a^n}{n^n}}{\frac{(n-1+a)^n}{(n-1)^{n-1}}} = \frac{(n+a)^n \cdot (n-1)^{n-1}}{(n+a-1)^{n-1} \cdot n^n} = \frac{(n+a)^n \cdot (n-1)^n}{(n-1+a)^n \cdot n^n} = \left(1 - \frac{a}{n(n+a-1)}\right)^n \cdot \frac{n-1+a}{n-1} \geq \left(1 - \frac{a}{n(n+a-1)}\right)^n \cdot \frac{n-1+a}{n-1} = \left(1 - \frac{a}{n(n+a-1)}\right)^n \cdot \frac{n-1+a}{n-1} = \left(1 - \frac{a}{n(n+a-1)}\right)^n \cdot \frac{$$

Если $a \neq 0$, то $-\frac{a}{n(n+a-1)} \neq 0$ и знак неравенства Бернулли строгий

Ограниченность

$$\begin{array}{l} y_n \coloneqq \left(1-\frac{a}{n}\right)^n \text{ возрастает при } n>a. \\ x_n \cdot y_n = \left(1+\frac{a}{n}\right)^n \left(1-\frac{a}{n}\right)^n = \left(\left(1+\frac{a}{n}\right)\left(a-\frac{a}{n}\right)\right)^n = \left(1-\frac{a^2}{n^2}\right)^n \le 1 \\ x_n \le \frac{1}{y_n} \le \frac{1}{y_{n-1}} \le \ldots \le \frac{1}{y_1} \text{ при } a \le 0 \\ x_n \le \frac{1}{y_n} \le \frac{1}{y_{n-1}} \le \ldots \le \frac{1}{y_{[a]+1}} \text{ при } a>0 \\ \text{При } n \ge [a]+1 \ x_n \le \frac{1}{y_{[a]+1}} \end{array}$$

Следствие

Последовательность $x_n = \left(1 + \frac{a}{n}\right)^n$ имеет конечноый предел

Определение

$$\exp a \coloneqq \lim \left(1 + \frac{a}{n}\right)^n,$$
 число $e \coloneqq \lim \left(1 + \frac{1}{n}\right)^n$
1. $\exp 0 = 1, \exp 1 = e$

2.
$$\exp a > 0 \ \forall a \in \mathbb{R}$$

Возьмем m>-a, тогда при $n\geq m$ $1+\frac{a}{n}>0 \Rightarrow x_n\geq x_m>0.$ $x_n=\exp a\Rightarrow \exp a\geq x_m>0$ 3. Если $a \leq b$, то $\exp a \leq \exp B$

Доказательство

$$a\leq b\Rightarrow 1+\frac{a}{n}\leq 1+\frac{b}{n}\Rightarrow \left(1+\frac{a}{n}\right)^n(=\exp a)\leq \left(1+\frac{b}{n}\right)^n(=\exp b)$$
 при $n>-a$ 4. $\exp a>1+a$

Доказательство

$$\left(1+\frac{a}{n}\right)^n \geq 1+n\cdot\frac{a}{n}=1+a$$
 (Неравенство Бернулли) при $n>-a$ 5. $\exp a\cdot \exp(-a) \leq -1$

$$\left(1 + \frac{a}{n}\right)^n \cdot \left(1 - \frac{a}{n}\right)^n = \left(1 - \frac{a^2}{n^2}\right)^n \le 1$$
6. При $a < 1 \exp a \le \frac{1}{1-a}$

Доказательство

$$\begin{aligned} \exp a &\leq \frac{1}{\exp(-a)}, \\ \exp(-a) &\geq 1-a > 0 \\ \exp a &\leq \frac{1}{1-a} \end{aligned}$$

7. Последовательность $Z_n \coloneqq \left(1+\frac{1}{n}\right)^{n+1}$ строго убывает и стремиться к e

Доказательство
$$\frac{1}{z_n} = \left(1 + \frac{1}{n}\right)^{-n-1} = \left(\frac{n}{n+1}\right)^{n+1} = \left(1 - \frac{1}{n+1}\right)^{n+1} \text{ строго возрастает при } n+1 > 1$$

$$\lim z_n = \lim \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) = \lim x_n \cdot \lim \left(1 + \frac{1}{n}\right) = e \cdot 1 = e$$

$$8. \ \left(1 + \frac{1}{n}\right) (=: x_n)^n < e < \left(1 + \frac{1}{n}\right)^{n+1} (=: z_n)$$

Доказательство

$$x_n < x_{n+1} \le x_m \to e$$
 при $m \ge n+1 \Rightarrow x_n < x_{n+1} \le e$ $z_n > z_{n+1} \ge z_m$ при $m \ge n+1 \Rightarrow z_n > z_{n+1} \ge e$

Доказательство

$$x_1 = 2 < e < z_5 = \left(1 + \frac{1}{5}\right)^6 = \frac{6^6}{5^6} < 3$$

Пусть $a=\lim a_n\in\mathbb{R}$, тогда $\lim \left(1+\frac{a_n}{n}\right)^n=\exp a$

Доказательство

$$x_n\coloneqq \left(1+rac{a}{n}
ight)^n, \omega_n\coloneqq \left(1+rac{a_n}{n}
ight)^n$$
, знаем, что $\lim x_n=\exp a$

Надо доказать, что $\lim(\omega_n-x_n)=0$

$$A \coloneqq 1 + \frac{a}{n}, B \coloneqq 1 + \frac{a_n}{n}$$

$$A \coloneqq 1 + \frac{a}{n}, B \coloneqq 1 + \frac{a_n}{n}$$

$$|\omega_n - x_n| = |B^n - A^n| = \underbrace{|B - A|}_{|\underline{a_n - a}|} \cdot \underbrace{|B^{n-1} + B^{n-2} \cdot A + \dots + A^{n-1} \le \exp M + \exp M}_{|\underline{a_n - a}|} \cdot n \cdot \underbrace{|B^{n-1} + B^{n-2} \cdot A + \dots + A^{n-1}|}_{|\underline{a_n - a}|} \le \underbrace{|a_n - a|}_{n} \cdot n \cdot \underbrace{|$$

$$\exp M = 0$$

 a_n имеет конечный предел, значит она ограничена $\Rightarrow a_n \leq M, a \leq M \forall n$

$$A = 1 + \frac{a}{n} \le 1 + \frac{M}{n}$$

$$B = 1 + \frac{a_n}{n} \le 1 + \frac{M}{n}$$

$$B^{n-k} \cdot A^{k-1} \le \left(1 + \frac{M}{n}\right)^{n-k} \cdot \left(1 + \frac{M}{n}\right)^{k-1} < \left(1 + \frac{M}{n}\right)^n \le \exp M$$

Теорема

 $\exp a \cdot \exp b = \exp(a+b)$

Доказательтсво

$$\left(1+\frac{a}{n}\right)^n\cdot\left(1+\frac{b}{n}\right)^n=\left(\left(1+\frac{a}{n}\right)\left(1+\frac{b}{n}\right)\right)^n=\left(1+\frac{a+b+\frac{ab}{n}}{n}\right)^n=a+b+\frac{ab}{n} o a+b$$
, следовательно по лемме $=\exp(a+b)$

Следствие

 $\exp x$ строго возрастающая функция

Доказательство

Возьмем какое-то
$$t>0, \exp(x+t)=\underbrace{\exp x}_{>0}\cdot \underbrace{\exp t}_{\geq 1+t}\geq \exp x(1+t)=\exp x+t\exp x>\exp x$$

Теорема

Пусть $x_n>0$ и $\lim \frac{x_{n+1}}{x_n}<1$, тогда последовательность $\lim x_n=0$

Доказательство

$$a \coloneqq \lim \frac{x_{n+1}}{x_n}$$

Найдется такое m, что $n \geq m$

$$x_n = \frac{x_n}{x_{n-1}} \cdot \frac{x_{n-1}}{x_{n-2}} \cdot \dots \cdot \frac{x_{m+1}}{x(m)} \cdot x_m < \left(\frac{1+a}{2}\right)^{n-m} \cdot x_m = \left(\underbrace{\frac{a+1}{2}}^n, 0\right) \cdot x_m \cdot \underbrace{\left(\frac{1+a}{2}\right)^{-m}}_{\text{HC 3BMCKT OT } n}$$
 тогда по т. о

двух милиционерах $\lim x_n = 0$

Следствие

при
$$a>1$$
 $\lim \frac{n^k}{a^n}=0$ Доказательство $x_n:=\frac{n^k}{a^n},\frac{x_{n+1}}{x_n}=\frac{(n+1)^k}{a^{n+1}}:\frac{n^k}{a^n}=\frac{(n+1)^k}{n^k}\cdot\frac{1}{a}=\left(1+\frac{a}{n}\right)^k\cdot\frac{1}{a}\to\frac{1}{a}<1$

Следствие

$$\lim \frac{a^n}{n!} = 0$$

ли Доказательство
$$x_n=\frac{a^n}{n!}\,\frac{x_{n+1}}{x_n}=\frac{a^{n+1}}{(n+1)!}\cdot\frac{a^n}{n!}=a\cdot\frac{n!}{(n+1)!}=\frac{a}{n+1}\to 0<1$$
 Следствие $\lim\frac{n!}{n^n}=0$

Доказательство
$$x_n \coloneqq \frac{n!}{n^n} \, \frac{x_{n+1}}{x_n} = \frac{(n+1)!}{(n+1)^{n+1}} : \frac{n!}{n^n} = \frac{n!}{(n+1)^n} \cdot \frac{n!}{n^n} = \frac{n^n}{(n+1)^n} = \frac{1}{\left(\frac{n+1}{n}\right)^n} = \frac{1}{\left(1+\frac{1}{n}\right)^n} \to \frac{1}{e} < 1$$