

HOMEWORK 8

INSTRUCTIONS

- Every learner should submit his/her own homework solutions. However, you <u>are</u> allowed to
 discuss the homework with each other (in fact, I encourage you to form groups and/or use the
 forums) but everyone must submit his/her own solution; you may <u>not</u> copy someone else's
 solution.
- The homework will be peer-graded. In analytics modeling, there are often lots of different approaches that work well, and I want you to see not just your own, but also others.
- The homework grading scale reflects the fact that the primary purpose of homework is learning:

Rating	Meaning	Point value (out of 100)
4	All correct (perhaps except a	100
	few details) with a deeper	
	solution than expected	
3	Most or all correct	90
2	Not correct, but a reasonable	75
	attempt	
1	Not correct, insufficient effort	50
0	Not submitted	0

Question 11.1

Using the crime data set uscrime.txt from Questions 8.2, 9.1, and 10.1, build a regression model using:

- 1. Stepwise regression
- 2. Lasso
- 3. Elastic net

For Parts 2 and 3, remember to scale the data first – otherwise, the regression coefficients will be on different scales and the constraint won't have the desired effect.

For Parts 2 and 3, use the glmnet function in R.

Notes on R:

- For the elastic net model, what we called λ in the videos, glmnet calls "alpha"; you can get a range of results by varying alpha from 1 (lasso) to 0 (ridge regression) [and, of course, other values of alpha in between].
- In a function call like <code>glmnet(x,y,family="mgaussian",alpha=1)</code> the predictors <code>x</code> need to be in R's matrix format, rather than data frame format. You can convert a data frame to a matrix using <code>as.matrix-for example, x <- as.matrix(data[,1:n-1])</code>
- Rather than specifying a value of T, glmnet returns models for a variety of values of T.