

IN THE SPECIFICATION

Please amend the abstract as follows:

ABSTRACT OF THE DISCLOSURE

EMBEDDING DATA IN MATERIAL

A spatial domain using image [[1]] produced by a source [[1]] is combined with watermark data R_i to produce a spatial domain watermarked image [[I']]. The watermarked image is produced by an embedder [[3]] according to the equation: $C'_i = C_i + \alpha \cdot R_i$, where C_i and C'_i are wavelet transform coefficients of the image, and α is a scaling factor. α is chosen so that the watermark is imperceptible in the image and to resist removal of the watermark by unauthorized processing. It is desirable that α has the smallest value, which achieves that. If α is too big the watermark is perceptible in the image[[;]]. ~~If α is too small the mark may not survive processing of the image.~~

~~α is determined from a trial decoding of the image I in a decoder 4. the decoding is that which would be used to decode the watermarked image I'. A value α' is produced by a calculator S3-S8, to which an offset value is added by an adder S9 to produce α . This produces values of α over the image, which are used to scale the data R_i so as to conceal the data. An image is one example of material to which the invention is applicable.~~

~~The step of producing modified coefficient values C'_i may not use coefficients of magnitude greater than a threshold T and does not use corresponding information symbols R_i .~~

Alternatively, a threshold T_{clip} may be set. The scaling factor α is calculated using clipped coefficient values and coefficients C_i of magnitude less than T_{clip} .

{Figure 1}