Outline

- Orthogonal Vectors and Subspaces
- Projection
- Least Squares Solution
- Orthonormal Bases and Orthogonal Matrices
- Gram-Schmidt Orthogonalization
- QR Decomposition
- Review

Length, Inner Product and Orthogonal Vectors

- What is "perpendicular"? Given 2 vectors a and b, how does one decide if they are perpendicular?
- generalization of properties in \mathbb{R}^2 (or \mathbb{R}^3) to \mathbb{R}^n
 - length: $||x||^2 = x_1^2 + \dots + x_n^2 = x^T x$
 - inner product of two vectors: $(x, y) = x^T y$
 - two vectors are perpendicular if $x^Ty = 0$ (Pythagoras)
- (theorem) non-zero vectors are independent if they are orthogonal

Orthogonal Subspaces

- two subspaces U and V of S are orthogonal if $u^Tv=0$ for every $u\in U$ and $v\in V$
 - only need to check spanning sets of U and V
- Given a matrix A, the row space is orthogonal to the nullspace and the column space is orthogonal to the left nullspace. Let $x \in \mathcal{N}(A)$, then

$$v \in \mathcal{R}(A^T) \Rightarrow v = A^T z \Rightarrow v^T x = z^T A x = 0.$$

Orthogonal complements

- The *orthogonal complement* of a subspace V of a vector space S, denoted by V^{\perp} , is the largest subset of S that is orthogonal to V.
- V^{\perp} is a subspace of S.
- Furthermore.

$$dim(V) + dim(V^{\perp}) = dim(S)$$
$$V = W^{\perp} \Rightarrow W = V^{\perp}$$

Fundamental Theorem of Linear Algebra

- Fundamental theorem of linear algebra: Part II Given a $m \times n$ matrix,
 - the row space is the orthogonal complement of the nullspace in \mathbb{R}^n .
 - the column space is the orthogonal complement of the left nullspace

Decomposition of Vectors

- given orthogonal complements V and W of a space S, every vector $x \in S$ can be written as x = v + w, where $v \in V$ and $w \in W$
- v(resp. w) is called the projection of x onto V(resp. W)

What Is Matrix Multiplication?

• A vector $x \in \mathbb{R}^n$ can be decomposed into $x = x_r + x_n$, where x_r is in the row space and x_n is in the nullspace of an $m \times n$ matrix A. Then

$$Ax = A(x_r + x_n) = Ax_r$$

- the mapping from the row space to the column space is invertible. That is, every b in the column space comes from only one x_r in the row space.
- A matrix transforms its row space to its column space

Projection onto a Line

- Given b, the vector to be projected, and a, the direction of the line to be projected onto
- Let $p = \bar{x}a$ be the projection point, then $a^T(b \bar{x}a) = 0$. It follows that

$$p = \bar{x}a = a\frac{a^Tb}{a^Ta} = Pb$$
, where $P = \frac{aa^T}{a^Ta}$

- P is a projection matrix
 - P is symmetric
 - $-P^2 = P$
 - -P is invariant w.r.t. the length of a

Why is a projection matrix symmetric?

• For any vectors x, y and matrix A

$$(Ax)^T y = x^T A^T y = x^T (A^T y)$$

That is, the inner product of Ax and y is the same as the inner product of x and A^Ty .

• It is easy to see that $P^2 = P$ and P is invariant to the length of a. To see that P is symmetric, note that $\forall x, y$

$$x^{T}(Py) = y^{T}(Px) = (Px)^{T}y$$

$$\Rightarrow x^{T}Py = x^{T}P^{T}y$$

$$\Rightarrow P = P^{T}$$

Schwarz Inequality

• Schwarz inequality

$$|a^T b| \le ||a|| ||b||$$

follows from

$$||b - p||^2 = ||b - \frac{a^T b}{a^T a} a||^2 \ge 0$$

ullet the angle between vectors a and b

$$\cos \theta = \frac{a^T b}{||a||||b||}$$

Single-variable Case

- Assume that the relationship between two quantities a and b is governed by ax = b. We have noisy data of $(a_i, b_i), i = 1 \dots m$. Unless $a = [a_1 \dots a_m] = cb$, there is no solution for x. Instead, we want to decide the \bar{x} that minimizes $E^2 = \sum_i (b_i a_i x)^2$? Such \bar{x} is called the least squares sultion to ax = b.
- It can be shown, by taking derivative of E^2 , that

$$\bar{x} = \frac{a^T b}{a^T a}$$

• $a\bar{x}$ is the projection point of b onto a!

Multiple-variable Case

- Let A be a $m \times n$ matrix, where m > n. Ax = b is very likely to be inconsistent.
- We want to find \bar{x} that minimizes E = ||Ax b||, the distance of b to a point Ax in the column space of A.
- The minimum is achieved when $A\bar{x}$ is the projection point of b. I.e., $(b A\bar{x})$ is in the left nullspace of A,

$$A^{T}(b - A\bar{x}) = 0 \Rightarrow A^{T}A\bar{x} = A^{T}b$$

The above eqaution is also known as the normal equation.

An Example

• 2 variables, 3 equations

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

Apparently the projection of b onto the column space of A is $\begin{bmatrix} 4 & 5 & 0 \end{bmatrix}^T$. This is consistent with the formula for p.

Properties of $A^T A$

- $A^T A$ is symmetric
- $A^T A$ has the same nullspace as A.
- If A has full column rank, then
 - $A^T A$ is invertible.
 - $A^T A$ is positive definite
 - From the normal equation, the projection point of b onto the column space of A is

$$p = A\bar{x} = A(A^T A)^{-1} A^T b$$

Projection Matrice P

• We can view the point of projection p, as the result of applying a projection matrix P on the vector b. Since

$$p \triangleq P \ b = A(A^{T}A)^{-1}A^{T} \ b \Rightarrow P = A(A^{T}A)^{-1}A^{T}$$

- $P^2 = P$ and $P^T = P$ (symmetric).
- Conversely, if P is symmetric and $P^2 = P$, then P is a projection matrix onto the column space of P.

$$(b - Pb)^T Pa = b^T Pa - b^T P^T Pa = 0$$

Orthonormal Vectors and Basis

- \bullet orthonormal = orthogonal + normal
- The vectors q_1, \ldots, q_k are orthonormal if

$$q_i^T q_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

- A basis is orthonormal if the basis vectors are orthonormal
 - The standard basis is orthonormal
 - Given a basis, one can create an orthonormal one

Orthogonal Matrices

- A matrix is *orthogonal* if it is square and the column vectors are orthonormal.
 - $Q^TQ = QQ^T = I$. If the columns of a square matrix are orthonormal, so are the rows!
 - -||Qx|| = ||x||. Length is preserved under orthogonal transformations.
 - Any vector can be written as $b = \sum_{i} (q_i^T b) q_i$ $(b = Qx \Leftrightarrow x = Q^T b).$
 - Every vector b is the sum of the projetions onto the lines through the $q^\prime s$

Matrices with Orthonormal Column Vectors

- If $m \neq n, Q^T(m > n)$ is still the left inverse of Q, i.e., $Q^TQ = I$
- The least squares solution \bar{x} to Qx = b, where Q has orthonormal columns, satisfies

$$Q^T Q \bar{x} = Q^T b,$$

 $\Rightarrow \bar{x} = Q^T b, (\bar{x}: \text{ optimal coefficients})$
 $\Rightarrow p \triangleq Q \bar{x}, (p: \text{ projection point})$
 $= Q Q^T b \triangleq P b, (P: \text{ projection matrix})$

 $p = \sum_{i} (q_i^T b) q_i$ still holds

Gram-Schmidt Process

- The projection to a space is the sum of projections to the vectors in an orthonormal basis of the space
- Given a set of independent vectors, convert it to a set of orthonormal vectors spanning the same space
- The basic idea of Gram-Schmidt process is to subtract from a_i the components in the directions already settled

$$a'_{j} = a_{j} - \sum_{i=1}^{j-1} (q_{i}^{T} a_{j}) q_{i},$$

and then normalize a_j' to $q_j = \frac{a_j'}{||a_j'||}$

Example of Gram-Schmidt Process

$$a = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, c = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Applying the process, one by one

$$q_1 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, q_2 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}, q_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

QR Decomposition

• Every $m \times n$ matrix A with linearly independent columns can be written as

$$A = QR$$

where Q contains orthonormal column vectors and R is an invertible upper-triangular matrix

- Gram-Schmidt process: columns of A = initial vectors, columns of Q = orthonormal vectors, and columns of R = the combinations from q_i 's to a_i 's
- $A^T A \bar{x} = A^T b \Rightarrow R \bar{x} = Q^T b$, is easy to solve since R is triangular

Example of QR Decomposition

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 1/\sqrt{2} & \sqrt{2} \\ 0 & 1/\sqrt{2} & \sqrt{2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$= QR$$

Systems of Linear Equations

- Solution for Ax = b when A is invertible
 - Gauss elimination
- Solution for Ax = b when A is rectangular
 - check if b is in the column space of A
- Least squares solution for Ax = b
 - solve $A^T A \bar{x} = A^T b$

Factorizations/Decompositions

- LU factorizations
- QR decompositions
- There are others
 - Cholesky factorizations
 - Reduced factorizations
 - Singular value decompositions

Intersection and Addition of Subspaces

• The intersection of two subspace V and W of S, defined by $V \cap W = \{x | x \in V \text{ and } x \in W\}$ is a subspace of S

$$dim(V \cap W) \le \min(dim\ V, dim\ W)$$

• the sum of two subspace V and W of S, defined by $V+W=\{x|x=v+w,v\in V\text{ and }w\in W\}\text{ is a subspace of }S.$

$$dim(V+W) \le dim \ V + dim \ W$$

Theorem

$$dim(V+W) + dim(V \cap W) = dim V + dim W$$

Proof

Let's prove that

$$dim(V+W) + dim(V\cap W) = dim\ V + dim\ W$$

Consider bases of V and W and put them in a matrix $D = [S_V | S_W]$. A vector $y \in V + W$ can be written as $y = v + w = S_V c + S_W d$, so the dimension of V + W is the same as the dimension of the column space of D. In addition, the dimension of $V \cap W$ is the same as the nullspace of D, since every vector $x \in \mathcal{N}(D)$ corresponds one-to-one to a vector $y \in V \cap W$. The above relation is a result of the fundamental theorem of linear algebra.

Fundamental Subspaces of AB

- $\mathcal{N}(B) \subset \mathcal{N}(AB)$
- $\Re(AB) \subset \Re(A)$
- $\mathcal{N}(A^T) \subset \mathcal{N}(B^T A^T)$
- $\bullet \ \mathcal{R}(B^T A^T) \subset \mathcal{R}(B^T)$
- $r(AB) \le r(A), r(AB) \le r(B),$ $dim \ \mathcal{N}(AB) \ge dim \ \mathcal{N}(B)$