

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

REPLACEMENT SHEET

19/62

ENTITY FSM IS

```
PORT(  
      ....ports for entity fsm....  
);
```

ARCHITECTURE FSM OF FSM IS

BEGIN

... HDL code for FSM and rest of the entity ...

fsm_state(0 to 2) <= ... Signal 801 ...

```
853 { --!! Embedded FSM : examplefsm;  
859 { --!! clock          : (fsm_clock);  
854 { --!! state_vector   : (fsm_state(0 to 2));  
855 { --!! states         : (S0, S1, S2, S3, S4);  
856 { --!! state_encoding : ('000', '001', '010', '011', '100');  
     { --!! arcs           : (S0 => S0, S0 => S1, S0 => S2,  
     { --!!                  (S1 => S2, S1 => S3, S2 => S2,  
     { --!!                  (S2 => S3, S3 => S4, S4 => S0);  
857 { --!!  
858 { --!! End FSM;
```

} 852 } 860

END;

Fig. 8C
Prior Art

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

20/62

entity FSM : FSM

850

Fig. 9
Prior Art

Fig. 10A Prior Art

AUS920000651US1
Gabele, et al.
Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

21/62

AUS920000651US1
 Gabele, et al.
 Non-Redundant Collection Of Harvest Events
 Within A Batch Simulation Farm Network

22/62

<instantiation identifier>.<instrumentation entity name>.<design entity name>.<eventname>

*Fig. 10B**Fig. 10C*

<instantiation identifier>.<design entity name>.<eventname>

Fig. 10D
Prior Art

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events Within A Batch Simulation Farm Network

23/62

Fig. 11A
Prior Art

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

24/62

--!! Inputs
--!! event_1108_in <= C.[B2.count.event_1108]; ~~~~~1161
--!! event_1124_in <= A.B.[B1.count.event_1124]; ~~~~~1162
--!! End Inputs

1163 1165
1164 1166
1161 1162

Fig. 11B

--!! Inputs
--!! event_1108_in <= C.[count.event_1108]; ~~~~~1171
--!! event_1124_in <= B.[count.event_1124]; ~~~~~1172
--!! End Inputs

Fig. 11C
Prior Art

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

25/62

Fig. 12A
Prior Art

26/62

Fig. 12B
Prior Art

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

27/62

Fig. 13A
Prior Art

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

28/62

Fig. 13B
Prior Art

AUS920000651US1
Gabele, et al.
Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

29/62

Fig. 13C
Prior Art

AUS920000651US1
Gabele, et al.
Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

30/62

ENTITY FOO IS

PORT();

ARCHITECTURE example of FOO IS

BEGIN

$R \leq$

```

1380 { --!! R_IN <= {R};
      --!!
      --!! R_OV(0 to 4) <= .....; 1383
      --!! RT <= .....;
      --!! [override, R_OVERRIDE, R(0 .. 4), RT] <= R_OV(0 to 4);
}

```

Fig. 13D
Prior Art

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events
Within A Batch Simulation Farm Network

31/62

Fig. 14A
Prior Art

AUS920000651US1
 Gabele, et al.
 Non-Redundant Collection Of Harvest Events
 Within A Batch Simulation Farm Network

32/62

Fig. 14B
Prior Art

AUS920000651US1
 Gabele, et al.
 Non-Redundant Collection Of Harvest Events
 Within A Batch Simulation Farm Network

33/62

ENTITY DET IS

```

PORT(  A      : IN std_ulogic;
        B      : IN std_ulogic_vector(0 to 5);
        C      : IN std_ulogic;
        D      : IN std_ulogic;
        ...
        event_x   : OUT std_ulogic_vector(0 to 2);
        x_here    : OUT std_ulogic;
);
  
```

```

--!! BEGIN
--!! Design Entity: LM;
--!! Inputs
--!! A    => A;
--!! B    => P.Q.B;
--!! C    => P.C;
--!! D    => D;
--!! End Inputs } 1493
--!! Detections
--!! <event_x>:event_x(0 to 2) [x_here]; } 1494
--!! End Detections
--!! End;

1491 { ARCHITECTURE example of DET IS
          BEGIN
            ... HDL code ...
          END;
1492 } 1480
  
```

Fig. 14C
Prior Art