Statistical Methods in AI (CSE/ECE 471)

Lecture-11: Unsupervised Learning (GMM, Hierarchical Clustering)

Ravi Kiran (ravi.kiran@iiit.ac.in)

Vineet Gandhi (v.gandhi@iiit.ac.in)

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Unsupervised Learning → Clustering

Group similar things e.g. images [Goldberger et al.]

$$\{x^{(1)}, \dots, x^{(m)}\} \qquad x^{(i)} \in \mathbb{R}^n$$

The k-means clustering algorithm is as follows:

- 1. Initialize cluster centroids $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^n$ randomly.
- 2. Repeat until convergence: {

For every
$$i$$
, set

$$c^{(i)} := \arg\min_{i} ||x^{(i)} - \mu_{j}||^{2}.$$

For each j, set

$$\mu_j := \frac{\sum_{i=1}^m 1\{c^{(i)} = j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)} = j\}}.$$

}

- Can we have a distance-from-center based on 'shape' of the cluster?
- Can we go beyond 'hard' assignments of points to clusters?

Probabilistic Generative Model

Observed data is the 'realization' of a probabilistic model

Estimating Parameters of a Probabilistic Model [Maximum Likelihood Approach]

- Consider the estimation of heads probability of a coin tossed n times
- Heads probability p
- Data = HHTTHTHTTT
- $L(p) = \Pr(D|p) = pp(1-p)(1-p)p(1-p)pp(1-p)(1-p)(1-p) = p^5(1-p)^6$

Maximum Likelihood

lnL = 5 lnp + 6 ln(1-p)with derivative

 $\frac{d(\ln L)}{dp} = \frac{5}{p} - \frac{6}{(1-p)} = 0$

Take the derivative of L with respect to p:

$$\frac{dL}{dp} = 5 p^4 (1-p)^6 - 6 p^5 (1-p)^5$$

Equate it to zero and solve:

$$\hat{p} = 5/11$$

 $\hat{p} = 5/11$

$$Data = \{X_1, X_2, \dots X_n\}$$

 The likelihood function is the simultaneous density of the observation, as a function of the model parameters.

$$L(\Theta) = Pr(Data|\Theta)$$

 If the observations are independent, we can decompose the term into

$$\Pr(Data \mid \Theta) = \prod_{i=1}^{n} \Pr(X_i \mid \Theta)$$

$$\Theta^* = \arg\max_{\Theta} Pr(Data|\Theta)$$

- Note: Knowing the parameters allows us to compute probability (density) of data
- Previously (k-means): Obtain cluster centers from cluster memberships
- Alternative: Obtain from probabilistic modelling of 'cluster data density'

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Data Probability Density is often Multi-modal

Multivariate Gaussian

$$\mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2} (\underline{x} - \underline{\mu}) \Sigma^{-1} (\underline{x} - \underline{\mu})^T\right\}$$

 μ = length-d row vector Σ = d x d matrix

 $|\Sigma| = \text{matrix determinant}$

Mixture of Gaussians

Convex Combination of Distributions

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Normalization and positivity require

$$\sum_{k=1}^{K} \pi_k = 1 \qquad 0 \leqslant \pi_k \leqslant 1$$

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

MLE of Mixture Parameters

- However, MLE of mixture parameters is HARD!
- Joint distribution:

$$p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

MLE of Mixture Parameters

- However, MLE of mixture parameters is HARD!
- Joint distribution:

$$p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Log likelihood

$$\ln p(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{n=1}^N \ln \left\{ \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \right\}$$

EM Algorithm

Suppose some oracle told us which point comes from which Gaussian.

Robert Collins CS E586

EM Algorithm

0.5

We can easily estimate each Gaussian, along with the mixture weights!

0

0.5

0

Robert Collins CS E586

EM Algorithm

Remember that this was a problem...

$$\ln p(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \right)$$

Suppose some oracle told us which point comes from which Gaussian.

How? By providing a "latent" variable $z_{n,k}$

- $z_{n,k}$ = 1 if point n comes from the kth Gaussian
- = 0 otherwise

Robert Collins CSE586

EM Algorithm

Remember that this was a problem...

$$\ln p(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \right\}$$

If some oracle told us which point comes from which Gaussian, we could work with the complete log likelihood

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

how can I make that inner sum be a product instead???

Robert Collins CSE586

EM Algorithm

Remember that this was a problem...

$$\ln p(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \Biggl(\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}) \Biggr)$$

If some oracle told us which point comes from which Gaussian, we could work with the complete log likelihood

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

and the log of that looks much better!

$$\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}.$$

how can I make that inner sum be a product -instead???

$$\ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \underbrace{z_{nk}} \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \} \,.$$

note: for a given n, there are k of these latent variables, and only ONE of them is 1 (all the rest are 0)

$$\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \}.$$

note: for a given n, there are k of these latent variables, and only ONE of them is 1 (all the rest are 0)

This is thus equivalent to

 $z_{n,2} = 1$

$$\sum_{\substack{\text{all n for which} \\ z_{n,1}=1}} \ln \pi_1 + \ln \mathcal{N}(x_n | \mu_1, \Sigma_1)$$

+
$$\sum_{\text{all n for which}} \ln \pi_2 + \ln \mathcal{N}(x_n | \mu_2, \Sigma_2)$$
 + ••• +

+
$$\sum_{\substack{\text{all n for which} \\ z_{n,K}=1}} \ln \pi_K + \ln \mathcal{N}(x_n | \mu_K, \Sigma_K)$$

$$\sum_{\substack{\text{all n for which} \\ z_{n,1}=1}} \ln \pi_1 + \sum_{\substack{\text{all n for which} \\ z_{n,1}=1}} \ln \mathcal{N}(x_n | \mu_1, \Sigma_1) \\
+ \sum_{\substack{\text{all n for which} \\ z_{n,2}=1}} \ln \pi_2 + \sum_{\substack{\text{all n for which} \\ z_{n,2}=1}} \ln \mathcal{N}(x_n | \mu_2, \Sigma_2) \\
+ \underbrace{\sum_{\substack{\text{all n for which} \\ z_{n,K}=1}}} \ln \pi_K + \sum_{\substack{\text{all n for which} \\ z_{n,K}=1}}} \ln \mathcal{N}(x_n | \mu_K, \Sigma_K)$$

Robert Collins **CSE586**

Latent Variable View

estimated separately

+
$$\sum_{\substack{\text{all n for which} \\ z_{n,K}=1}} \ln \pi_K + \sum_{\substack{\text{all n for which} \\ z_{n,K}=1}} \ln \mathcal{N}(x_n | \mu_K, \Sigma_K)$$

separately

these are coupled because the mixing weights all sum to 1, but it is no big deal to solve

Insight

- Since we don't know the latent variables, we instead take the expected value of the log likelihood with respect to their posterior distribution P(z|x,theta).
- In the GMM case, this is equivalent to "softening" the binary latent variables to continuous ones (the expected values of the latent variables)

$$\ln p(\mathbf{x}, \mathbf{z} | \boldsymbol{\theta}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \}$$

unknown discrete value 0 or 1

$$\mathsf{E}_{\mathbf{z}}[\ln p(\mathbf{x},\mathbf{z}|\boldsymbol{\theta})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{k}(\mathbf{x}_{n}) \left\{ \ln \pi_{k} + \ln \mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}) \right\}$$

known continuous value between 0 and 1

Where
$$\gamma_i(\mathbf{x}_n)$$
 is $P(z_{nk}=1)$

EM Algorithm for GMM

$$m{\mathsf{E}} \qquad \gamma_j(\mathbf{x}_n) \,=\, rac{\pi_j \mathcal{N}(\mathbf{x}_n | m{\mu}_j, \Sigma_j)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}_n | m{\mu}_k, \Sigma_k)} \qquad ext{ownership weights}$$

$$\mu_j = \frac{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)\mathbf{x}_n}{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)} \qquad \Sigma_j = \frac{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)(\mathbf{x}_n - \boldsymbol{\mu}_j)(\mathbf{x}_n - \boldsymbol{\mu}_j)^\top}{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)}$$
means
$$\mathbf{\Sigma}_j = \frac{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)(\mathbf{x}_n - \boldsymbol{\mu}_j)(\mathbf{x}_n - \boldsymbol{\mu}_j)^\top}{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)}$$
covariances

$$\pi_j = rac{1}{N} \sum_{n=1}^N \gamma_j(\mathbf{x}_n)$$
 mixing probabilities

Robert Collins CS E586

Robert Collins CSE586

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

cs Recall: Labeled vs Unlabeled Data

EM

produces a "Soft" labeling

each point makes a weighted contribution to the estimation of ALL components

$$\mathsf{E} \qquad \gamma_j(\mathbf{x}_n) = rac{\pi_j \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_j, oldsymbol{\Sigma}_j)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)} \qquad ext{ownership weights}$$

$$\boldsymbol{\mu}_j = \frac{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)\mathbf{x}_n}{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)} \qquad \boldsymbol{\Sigma}_j = \frac{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)(\mathbf{x}_n - \boldsymbol{\mu}_j)(\mathbf{x}_n - \boldsymbol{\mu}_j)^{\mathsf{T}}}{\sum\limits_{n=1}^N \gamma_j(\mathbf{x}_n)}$$

$$\pi_j = rac{1}{N} \sum_{n=1}^N \gamma_j(\mathbf{x}_n)$$
 mixing probabilities

Replacing the binary latent variables with their continuous expected values:

- all points contribute to the estimation of all components
- each point has unit mass to contribute, but splits it across the K components
- the amount of weight a point contributes to a component is proportional to the relative likelihood that the point was generated by that component

Insight

Review of EM for GMMs

$$\mathbf{E} \qquad \mathbf{\gamma}(\mathbf{z}_{nj}) \ = \ \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \qquad \text{ownership weights}$$
 (soft labels)

$$\mathbf{M} \quad \mu_{j} = \frac{\sum\limits_{n=1}^{N} \mathbf{\gamma}(z_{nj}) \mathbf{x}_{n}}{\sum\limits_{n=1}^{N} \mathbf{\gamma}(z_{nj})} \quad \Sigma_{j} = \frac{\sum\limits_{n=1}^{N} \mathbf{\gamma}(z_{nj}) (\mathbf{x}_{n} - \mu_{j}) (\mathbf{x}_{n} - \mu_{j})^{\mathsf{T}}}{\sum\limits_{n=1}^{N} \mathbf{\gamma}(z_{nj})}$$

$$\pi_j = rac{1}{N} \sum_{n=1}^{N} \gamma(z_{nj})$$
 mixing weights

Alternate E and M steps to convergence.

- Optimization uses the Expectation Maximization algorithm, which alternates between two steps:
 - 1. E-step: Compute the posterior probability over z given our current model i.e. how much do we think each Gaussian generates each datapoint.

$$\ell(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln p(\mathbf{x}^{(n)}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{n=1}^{N} \ln \sum_{\boldsymbol{z}^{(n)}=1}^{K} p(\mathbf{x}^{(n)}|\boldsymbol{z}^{(n)}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{z}^{(n)}|\boldsymbol{\pi})$$

- Optimization uses the Expectation Maximization algorithm, which alternates between two steps:
 - 1. E-step: Compute the posterior probability over z given our current model i.e. how much do we think each Gaussian generates each datapoint.
 - 2. M-step: Assuming that the data really was generated this way, change the parameters of each Gaussian to maximize the probability that it would generate the data it is currently responsible for. $\mu_k = \frac{\sum_{n=1}^{N} \mathbb{I}_{\mathbf{z}^{(n)} = k}}{\sum_{n=1}^{N} \mathbb{I}_{\mathbf{z}^{(n)} = k}}$

GMM - Algorithm

- Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- Iterate until convergence:
 - ► E-step: Evaluate the responsibilities given current parameters

$$\gamma_k^{(n)} = p(z^{(n)}|\mathbf{x}) = rac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(n)}|\mu_j, \Sigma_j)}$$

▶ M-step: Re-estimate the parameters given current responsibilities

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} \mathbf{x}^{(n)}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} (\mathbf{x}^{(n)} - \mu_k) (\mathbf{x}^{(n)} - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N} \quad \text{with} \quad N_k = \sum_{n=1}^N \gamma_k^{(n)}$$

Evaluate log likelihood and check for convergence

$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k,\Sigma_k) \right)$$

• The K-Means Algorithm:

data assigned to it

- 1. Assignment step: Assign each data point to the closest cluster
- 2. Refitting step: Move each cluster center to the center of gravity of the
- The EM Algorithm:
- E-step: Compute the posterior probability over z given our current model
- M-step: Maximize the probability that it would generate the data it is currently responsible for.

From EM to K–Means

Alternative explanation of K-means!

- Fix all mixing weights to 1/K [drop out of the estimation]
- Fix all covariances to σ^2 I [drop out of the estimation so we only have to estimate the means; each Gaussian likelihood becomes inversely proportional to distance from a mean]
- Take limit as σ^2 goes to 0 [this forces weights to become binary]

From EM to K–Means

$$\mathsf{E} \qquad \mathsf{\gamma}(\mathsf{z}_{nj}) \; = \; \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \qquad \text{ownership weights} \\ \text{(soft labels)}$$

(soft labels)

$$= \frac{\exp(-\frac{1}{2\sigma^2}||x_n - \mu_j||^2)}{\sum_{k=1}^K \exp(-\frac{1}{2\sigma^2}||x_n - \mu_k||^2)}$$

after fixing mixing weights and covariances as described on last slide

now divide top and bottom by $\exp(-\frac{1}{2\sigma^2}d_{min}^2)$ where $d_{min}^2 = \min_k ||x_n - \mu_k||^2$ and take limit as σ^2 goes to 0

$$\gamma(z_{nj}) = z_{nj} = \begin{cases} 1 & \text{if } \mu_j \text{ is closest mean to } x_n \\ 0 & \text{otherwise} \end{cases}$$
 hard labels, as in the K-means algorithm

K–Means Algorithm

- Given N data points x₁, x₂,..., x_N
- Find K cluster centers $\mu_1, \mu_2, ..., \mu_K$ to minimize $\sum_{n=1}^N \sum_{k=1}^K z_{nk} \|x_n \mu_j\|^2$ (z_{nk} is 1 if point n belongs to cluster k; 0 otherwise)
- Algorithm:
 - initialize K cluster centers $\mu_1, \mu_2, ..., \mu_K$
 - repeat
 - set z_{nk} labels to assign each point to closest cluster center

Е

- revise each cluster center μ_j to be center of mass of points in that cluster $\mu_j = \frac{\sum_{n=1}^N z_{nj} \, x_n}{\sum_{n=1}^N z_{nj}}$
- until convergence (e.g. z_{nk} labels don't change)

How to choose k?

- Simple: Pick a 'k' which generates maximum likelihood for a 'hold out' set
- Log-likelihood:

$$\ell(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln p(\mathbf{x}^{(n)}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{n=1}^{N} \ln \sum_{z^{(n)}=1}^{K} p(\mathbf{x}^{(n)}|z^{(n)}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z^{(n)}|\boldsymbol{\pi})$$

Better criteria exist → Cross-validation, Information-Theoretic (AIC, BIC)

Issues with k-means

- Euclidean distance encourages spherical clusters

- Hard assignments → hard to characterize 'border cases'

- Can we have a distancefrom-center based on 'shape' of the cluster?
- Can we go beyond 'hard' assignments of points to clusters?

$$\gamma(z_{nj}) = \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

Models the uncertainty of cluster assignment

GMM vs KMeans

Additional features of GMM

- GMM lets us cluster with 'missing feature' data
- GMM lets us generate new data with statistical properties of given data x

GMM on non-convex clusters

Hierarchical Clustering

Adapted from slides by Prabhakar Raghavan, Christopher Manning, Ray Mooney, Soumen Chakrabarti and A. Mueller

Hierarchical Clustering

- Data often has multiple, hierarchical layers of structure
- GMM, k-means clustering : Optimize for one/few layers
- How to get the entire structure?
- Idea: Build a tree-based hierarchical taxonomy (dendrogram) from data.

Agglomerative Clustering

- Start with all points in their own cluster.
- Greedily merge the two most similar clusters.

Dendograms

Hierarchical Agglomerative Clustering (HAC) Algorithm

Start with all instances in their own cluster.

Until there is only one cluster:

Among the current clusters, determine the two clusters, c_i and c_j , that are most similar.

Replace c_i and c_j with a single cluster $c_i \cup c_j$

How to determine similarity/distance between "clusters"?

- Have a "cluster representative"
- Representative should be some sort of "typical" or central point in the cluster, e.g., Centroid or center of gravity

Example: n=6, k=3, closest pair of centroids

Closest pair of clusters

Single-link

Smallest 'minimum distance'

Complete-link

Smallest 'maximum distance'

Average-link

Smallest 'average distance'

Ward

- Smallest increase in within-cluster variance
- Default in sk-learn
- Tends to create equal-sized clusters

Complete Link Example

Single Link Example

Complete Link Example

Hierarchical Clustering algorithms

Agglomerative (bottom-up):

- Start with each document being a single cluster.
- Eventually all documents belong to the same cluster.

Divisive (top-down):

- Start with all documents belong to the same cluster.
- Eventually each node forms a cluster on its own.
- Does not require the number of clusters k in advance

What is a Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the <u>intra-class</u> (that is, intra-cluster) similarity is high
 - the <u>inter-class</u> similarity is low
 - The measured quality of a clustering depends on both the data representation and the similarity measure used

"The Curse of Dimensionality"

- Why clustering is difficult
 - While clustering looks intuitive in 2 dimensions, many applications involve 10,000 or more dimensions...
 - High-dimensional spaces look different
 - The probability of random points being close drops quickly as the dimensionality grows.
 - Furthermore, random pair of vectors are all almost perpendicular.

Summary

- K-means: Simple. Only convex cluster shapes, determined by cluster centers.
- Gaussian Mixture Models: Probabilistic. Soft clustering. Can be hard to fit.
- Hierarchical: Take input topology into account, produces hierarchy of clusters.

http://scikit-learn.org/dev/auto_examples/cluster/plot_cluster_comparison.html

References

- PRML (Bishop) Chapter 9: 9.1,9.2,9.3.2
- Pattern Classification (Duda, Hart, Stork)
 - -10.4.3,10.6.1,10.7.1,10.7.2, 10.8, 10.10
 - 10.9 (Hierarchical Clustering)