3: AUTHORED BEHAVIOURS II: EMERGENCE

COMP702: CLASSICAL ARTIFICIAL INTELLIGENCE

EMERGENCE

WHAT IS EMERGENCE?

- When something has a property that its parts alone do not have
- The whole is **different from** the sum of its parts

A PILE OF SAND

- Composed of many thousands of grains
- The size and weight of the pile comes from the sum of the individual grains → not emergent
- The slope of the pile comes from interaction of the grains with friction and gravity → emergent

ANTS

- The ant queen is not in charge!
- Individual ants react to stimulus (scent)
- Ants "coordinate" through stigmergy
 - Coordination by altering the environment
 - Ants lay pheromones, which other ants react to
- Complex behaviours (building nests, finding food, removing waste) emerge from simple behaviours by individual ants

ANT COLONY OPTIMISATION

- How real ants find food:
 - Wander randomly
 - On finding food, return to the nest (laying pheromones)
 - If there is a pheromone trail, follow it (but not perfectly)
- Algorithms inspired by this can be used for pathfinding, travelling salesman problems, network routing, ...

FLOCKING, SCHOOLING, HERDING

- Many animals exhibit complex group behaviours
 - Flocking in birds
 - Schooling in fish
 - Herding in land mammals
- Arising from simple behaviours
- There is no "leader" or "commander"

STARLINGS

https://www.youtube.com/watch?v=eakKfY5aHmY

BOIDS

- Developed by Craig Reynolds in 1986
- Based on three simple rules: separation, alignment and cohesion
- Can also add obstacle avoidance, danger avoidance, goal seeking

SIMULATED STAMPEDE IN THE LION KING (1994)

- https://youtu.be/FbLA0LS67XE?t=74
- https://youtu.be/HLmAT6t5kL0

SIMULATED CROWDS IN HITMAN: ABSOLUTION (2012)

https://www.gdcvault.com/play/1016443/Crowds-in-Hitman

CELLULAR AUTOMATA

- A lattice of cells
- Each cell has a state
- Update rule applied to each cell every time step: gives new state of the cell as a function of the old state of the cell and its neighbours

CONWAY'S GAME OF LIFE

- Each cell has state 0 or 1
- A cell enters state 1 if:
 - Its state is 0 and exactly 3 of its neighbours are in state 1
 - Its state is I and exactly 2 or 3 of its neighbours are in state I
- Otherwise it enters state 0
- https://www.samcodes.co.uk/project/game-of-life/

GLIDERS

- This pattern of cells appears to move down and to the right every 4 time steps
- The cells themselves don't move
- The update rule just happens to give the **illusion** of movement

CONWAY'S GAME OF LIFE

- Many interesting emergent behaviours come from the simple rules of Conway's Game of Life
- It is possible to construct logic gates from interactions of gliders
- Conway's Game of Life is Turing complete!

OTHER CELLULAR AUTOMATA

- Cave erosion (useful for PCG)
- Traffic simulation
- Fluid simulation
- ...

FRACTALS

- Mathematical forms which exhibit self-similarity
- Typically generated by simple mathematical formulae, rules or transformations
- E.g. the Mandelbrot set: points on the complex plane for which the iteration $z=z^2+c$ does not diverge
 - https://youtu.be/PD2XgQOyCCk

CHAOS

$$rac{\mathrm{d}x}{\mathrm{d}t} = \sigma(y-x),$$

$$rac{\mathrm{d}x}{\mathrm{d}t} = \sigma(y-x), \ rac{\mathrm{d}y}{\mathrm{d}t} = x(
ho-z)-y,$$

$$rac{\mathrm{d}z}{\mathrm{d}t} = xy - eta z$$

- Systems with emergence tend to be chaotic
- Sensitive dependence on initial conditions
- Unpredictable, even if deterministic (i.e. not random)

THE ULTIMATE EMERGENCE?

- The human brain is composed of billions of neurons
- A neuron is a relatively simple electro-chemical cell
- From them emerge intelligence, creativity, consciousness, ...

USING EMERGENCE

- Emergence can mean that simple systems combine to give complex properties
- This can be a double-edged sword in terms of AI design
 - Pro: rich behaviours can emerge from relatively simple designs
 - Con: difficult to predict or design the behaviour that will emerge

WORKSHOP