绪论

数据结构概要 算法概要 时间复杂度分析

概念多, 重在理解

数据结构概要

三个概念:数据项,数据元素,数据结构。

一个数据元素由若干个数据项组成。

 一波顾客
 数据元素

 号数
 数据项1

 取号时间
 数据项2

 就餐人数
 数据项3

数据结构是相互之间存在一种或多种特定关系的数据元素的集合。数据对象是具有相同性质的数据元素的集合。

数据结构三要素:

- 数据的逻辑结构
- 数据的存储(物理)结构
- 数据的运算

A	В	С	D
姓名	年龄	性别	学号
李华	18	女	121Y123

数据的逻辑结构

逻辑结构是指数据元素之间的逻辑关系,与数据的存储无关。

数据的存储结构

存储结构是指数据结构在计算机中的表示。它包括数据元素的表示和关系的表示,依赖于计算机语言。

```
#define MaxSize 50
typedef struct

   {
     Student stu_arr[MaxSize];
     int length;
}StudentList;
```

```
typedef struct LNode{
    Student data;
    struct LNode *next;
}StudentNode, * StudentList
```

```
typedef struct
{
    char *code;
    char *name;
    int age;
}Student;
```


索引存储。在存储元素信息的同时,还建立附加的索引表。索引表中的每项称为索引项,索引项的一般形式是(关键字,地址)

散列存储 (哈希存储)

数据的存储结构

存储结构	优点	缺点	物理地址
顺序存储	随机存储 存储密度大(1)	插入删除不方便	连续
链式存储	插入删除方便	存储密度小 顺序存取	离散
索引存储	检索速度快O(1)	索引表占用存储空间 插入删除不方便	离散
哈希存储	检索,插入, 删除速度快O(1)	可能会出现 存储单元的冲突	离散

数据的存储结构会影响存储空间分配的方便程度(插入)数据的存储结构会影响对数据运算的速度(查找)

练习

逻辑结构

线性表

栈

队列

树

冬

存储结构

顺序存储

链式存储

顺序表

链表

顺序栈

链栈

顺序队

链队

二叉树顺序存储

二叉树链式存储

图邻接矩阵存储

图邻接表存储

数据的运算

施加在数据上的运算包括运算的定义和实现。 运算(函数)的定义是针对逻辑结构,指出运算的功能。 运算的实现是针对存储结构的,指出运算的具体操作步骤。

抽象数据类型 Abstract Data Type

ADT用数学化的语言定义数据的逻辑结构,运算,和具体的实现无关课本P22页

扩展

数据结构其实就是人的头脑中的三种逻辑模式(先后关系[线],层次关系[树],交互关系[图])如何用计算机存储模式(顺序存储[冯诺依曼机的特点]和链接存储[间接寻址])来实现

http://www.cskaoyan.com/thread-77099-1-1.html

算法概要

程序 = 数据结构 + 算法

如何把现实世界的问题信息化 将信息存进计算机。同时还要 实现对数据结构的基本操作 如何处理这些信息,以 解决实际问题

算法是对特定问题求解步骤的一种描述 算法五大特性:有穷性,可行性,确定性,输入,输出。

算法时间复杂度

一般来说,算法需要的时间与输入的规模同步增长,所以通常把一个程序的运行时间描述成其输入规模的函数。

```
int find(int arr[], int n, int target){
    for (int i = 0;i<n;i++){
        if (arr[i] == target)
            return i;
    }
}</pre>
```

常见的新近时间复杂度为 $O(1) < O(\log_2 n) < O(n) < O(n\log_2 n) < O(n^2) < O(n^3) < O(n^9) < O(n^9) < O(n^9)$

2. 空间复杂度

算法时间复杂度

$$T(n) = O(g(n))$$

$$O(g(n)) = \{f(n) |$$
存在正常量 c 和 n' ,使得对所有 $n \geqslant n'$,有 $0 \leqslant f(n) \leqslant cg(n) \}$

因为O(g(n))是一个集合,所以可以记f(n)∈O(g(n)),以指出f(n)是O(g(n))的成员,作为替代,我们通常记f(n)=O(g(n))来表示相同的概念。因为我们按这种方式活用了等式,所以你可能感到困惑,但在本节的后面我们将看到这样做有其好处。

举例:直接插入排序

练习

```
7. 【2014 统考真题】下列程序段的时间复杂度是()。
    count=0;
    for (k=1; k <= n; k*=2)
        for (j=1; j<=n; j++)
            count++;
                                                            D. O(n^2)
                                         C. O(n\log_2 n)
                      B. O(n)
   A. O(\log_2 n)
 8. 【2017 统考真题】下列函数的时间复杂度是().
     int func(int n) (
        int i=0, sum=0;
        while(sum<n) sum += ++i;
        return i;
                                   C. O(n)
                                                  D. O(n\log n)
   A. O(\log n)
```

. .

扩展

考试和算法设计精髓一样:

时间消耗越少,一般空间消耗越大,存储越冗余

空间消耗越少,一般时间消耗越大,计算越冗余

空间和时间的消耗如果都降低的话,人的智力和脑力消耗越大,包括人思考所用的时间和记忆力。

http://www.cskaoyan.com/thread-77099-1-1.html

真题

(2014 概念题6) 什么是算法? 算法有哪些重要特性?