Moderné regulárne výrazy

Tatiana Tóthová Školiteľ: RNDr. Michal Forišek PhD.

Katedra informatiky, FMFI UK, Mlynská Dolina, 842 48 Bratislava

Úvod

Regulárne výrazy vznikli v 60tych rokoch v teórii jazykov ako ďalší model na vyjadrenie regulárnych jazykov. Z ich popisu ľudský mozog rýchlejšie pochopil o aký jazyk sa jedná, než zo zápisu konečného automatu, či regulárnej gramatiky. Ďalšou výhodou bol kratší a kompaktný zápis.

Vďaka týmto vlastnostiam boli implementované ako vyhľadávací nástroj. Postupom času sa iniciatívou používateľov s vyššími nárokmi pridávali nové konštrukcie na uľahčenie práce. Nástroj takto rozvíjali až do dnešnej podoby. My sa budeme opierať o špecifikáciu regulárnych výrazov v jazyku Python [Python documentation, 2012].

Nové regulárne výrazy vedia reprezentovať zložitejšie jazyky ako regulárne, preto je dobré ich odlíšiť. V literatúre sa zaužíval výraz "regex" z anglického *regular expression*, ktorý budeme používať aj my.

Definícia moderných regulárnych jazykov

Základné regulárne výrazy sa skladajú zo znakov a metaznakov. Znak je regulárny výraz predstavujúci sám seba. Metaznak (alebo skupina metaznakov) určuje, čo sa s regulárnym výrazom udeje. Základný model obsahuje operácie

- zreťazenie $(\alpha\beta)$
- alternácia $(\alpha|\beta)$
- Kleeneho uzáver ($\alpha * = \text{opakuj } \alpha \ (0 \infty) \text{-krát}$)

Okrem toho používame **zátvorky** () na špecifikovanie poľa pôsobnosti operácií. Každý regex je zložený z konečného počtu operácií.

Moderné regulárne výrazy, nazývané aj <u>regexy</u>, majú navyše metaznak pre ľubovoľný znak . , začiatok slova ^ a koniec slova \$. Bolo zavedené číslovanie zátvoriek – zľava doprava podľa otváracej zátvorky a konštrukcie tvaru (? . . .) sa nečíslujú. Pribudli aj nasledujúce zložitejšie konštrukcie:

• Spätné referencie $(\kapprox kapprox kapprox kapprox kapprox kapprox kapprox referencie (\kapprox kapprox k$

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{\underbrace{x_i \dots x_{j-1}}_{k}}_{k} \underbrace{x_j \dots x_{l-1}}_{\gamma} \underbrace{\underbrace{x_l \dots x_{m-1}}_{k}}_{k} \underbrace{x_m \dots x_m}_{k}$$

a musí platiť: $w_k = x_i \dots x_{j-1} = x_l \dots x_{m-1}$. Ak existuje viac podslov ku k-tym zátvorkám, berie sa vždy to posledné.

• Lookahead (nazeranie dopredu (?=...)) musí matchovať nejaký prefix od aktuálneho pracovného miesta. Napr. pre regex $\alpha(?=\beta)\gamma$ máme:

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{\underbrace{x_i \dots x_j}_{\gamma} x_{j+1} \dots x_n}_{\gamma}$$

• **Lookbehind** (nazeranie dozadu (?<= ...)) musí matchovať nejaký sufix od aktuálneho pracovného miesta. Napr. pre regex α (? <= β) γ :

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{x_i \dots x_j}_{\gamma} \underbrace{x_{j+1} \dots x_n}_{\gamma}$$

• Operácie lookahead a lookbehind majú aj **negatívne** verzie, kde regex vnútri konštrukcie nesmie matchovať žiaden prefix/sufix.

Pre lookahead a lookbehind sa zaužíval spoločný názov lookaround.

Zaviedli sme nasledujúce množiny operácií:

 $\begin{array}{lll} \hline Regex & {\rm z\'akladn\'e\ oper\'acie} & & \mathcal{L}_{RE} = \mathcal{R} \\ Eregex & + {\rm sp\"atn\'e\ referencie} & & \mathcal{L}_{ERE} \\ LEregex & + {\rm lookahead,\ lookbehind} & & \mathcal{L}_{LERE} \\ nLEregex & + {\rm negat\'ivny\ lookahead,\ negat\'ivny\ lookbehind} & & \mathcal{L}_{nLERE} \\ \end{array}$

Formálny model

Moderné regulárne výrazy obsahujú množstvo operácií, ktoré spolu rôzne interagujú. Preto sme vytvorili formálny model, ktorý postupuje po krokoch podobne ako Turingov stroj. **Konfigurácia** pre regex $\alpha = r_1 \dots r_n$ a slovo $w = w_1 \dots w_m$ je definovaná ([ukazuje pracovnú pozíciu):

$$(r_1 \ldots \lceil r_i \ldots r_n, w_1 \ldots \lceil w_j \ldots w_m)$$

V symboly v slove majú niekoľko poschodí, do ktorých si zapamätáme pomocnú informáciu počas výpočtu. Ochutnávka **kroku výpočtu**:

$$(r_1 \dots \lceil (\dots r_n, w_1 \dots \lceil w_j \dots w_m) \vdash (r_1 \dots (\lceil \dots r_n, w_1 \dots \lceil w_j^k \dots w_m))$$

Celú definíciu nájdete v [Tóthová, 2015].

Vlastnosti lookaheadu a lookbehindu

Trieda \mathcal{R} je uzavretá na negatívny aj pozitívny lookaround. Aj trieda Regex s lookaroundom stále pokrýva iba regulárne jazyky – takúto kombináciu operácií totiž vieme simulovať konečnými automatmi. Z výsledkov hierarchie tried však vyplýva nasledovné:

$$\mathcal{L} \begin{pmatrix} Regex \\ + lookahead \\ + lookbehind \end{pmatrix} \subsetneq \mathcal{L} \begin{pmatrix} Regex \\ + sp\"{a}tn\'{e} \ referencie \end{pmatrix} \subsetneq \mathcal{L} \begin{pmatrix} Regex \\ + sp\"{a}tn\'{e} \ referencie \\ + lookahead,lookbehind \end{pmatrix}$$

To znamená, že lookaround je síce sám slabá operácia, ale v kombinácii so spätnými referenciami máme silnejší model ako bez lookaroundu. A teda má zmysel vsímať si túto operáciu.

Čo sa týka <u>uzáverových vlastností</u>, pozitívny lookaround pridáva uzavretosť na **prienik** $L(\alpha) \cap L(\beta) = L(\ (?=\alpha\$)\beta)$ a negatívny lookaround pridáva uzavretosť na **komplement** $L(\alpha)^c = L(\ (?!\ \alpha\$).*)$. Avšak ohrozená je základná operácia regulárnych výrazov – **zreťazenie**. Trieda \mathscr{L}_{LERE} však na zreťazenie uzavretá je, $L(\alpha)L(\beta)$ vyjadríme regexom:

(?=
$$(\alpha)(\beta)(k+2)$$
 \$) $\alpha' k+2$ (?<= $^{1}\beta'$)

Prvý lookahead rozdelí vstupné slovo w na $w_1, w_2, \ w = w_1 w_2$. α' je regex α upravený tak, že jeho lookaheady na konci matchujú w_2 a β' má upravené lookbehindy tak, že na začiatku matchujú w_1 . [Tóthová, 2013]

Chomského hierarchia

Triviálne platí, že v definovaných triedach je predchádzajúca množina podmnožinou nasledujúcej.

$$\mathcal{R} \subseteq \mathcal{L}_{ERE} \subseteq \mathcal{L}_{LERE} \subseteq \mathcal{L}_{nLERE} \subseteq \mathcal{L}_{CS}$$

Teraz uvedieme jazyky, ktoré dokazujú nerovnosť množín. Zároveň to považujeme za malú ukážku toho, čo moderné regulárne výrazy dokážu. (1) jazyk $L(\alpha) = \{ww|w \in \{a,b\}^*\} \in \mathcal{L}_{CS}$: $\alpha = (a|b) * 1$

(2) jazyk
$$L(\beta)=\{a^iba^{i+1}ba^ik\mid k=i(i+1)k'$$
, kde $k'>0,i>0\}\in \mathscr{L}_{LERE}$, $\notin \mathscr{L}_{ERE}$ podľa pumpovacej lemy [Câmpeanu et al., 2003]

$$\beta = (a *) b (1a) b (?=(1) * \$)(2) *$$

(3) nerovnosť je otvoreným problémom. Dobrým kandidátom na jej ukázanie sú jazyky:

$$L(\gamma) = \{a^z | z \text{ je zložené číslo}\} \in \mathcal{L}_{LERE}$$
, $\gamma = (aaa*) \setminus 1(\setminus 1)*$ $L(\delta) = L(\gamma)^c = \{a^p | p \text{ je prvočíslo}\} \in \mathcal{L}_{nLERE}$, $\delta = (?! \ \gamma\$).*$

(4) \mathscr{L}_{LERE} a \mathscr{L}_{nLERE} sú neporovnateľné s \mathscr{L}_{CF}

Priestorová zložitosť

Toto je oblasť, kvôli ktorej sme vymysleli formálny model. Všetky informácie v slove (ukazovateľ a vyššie poschodia symbolov) sa dajú zapísať vo forme adries. Adresy vieme zapísať v logaritmickom priestore od dĺžky vstupného slova. Pre regex ich potrebujeme konštantne veľa:

$$\mathcal{L}_{LERE} \subseteq NSPACE(\log n)$$

Zo Savitchovej vety vyplýva: $\mathscr{L}_{LERE} \subseteq DSPACE(\log^2 n)$

Myšlienka dôkazu Savitchovej vety spočíva v tom, že testujeme, či sa vieme dostať z jednej konfigurácie do druhej na istý počet krokov. Formálny model má definované konfigurácie,ktoré sme využili a dokázali tak výsledok aj pre negatívny lookaround:

$$\mathscr{L}_{nLERE} \subseteq DSPACE(\log^2 n)$$

V praxi je bežné, že užívateľ zadáva na vstup regex aj text na vyhľadávanie, preto sme si zadefinovali jazyk L_U , ktorý akceptuje slová tvaru regex#word, kde $regex\in U$, regex matchuje slovo word a U je množina operácií.

$$L_{LEregex} \in NSPACE(n \log n)$$

Nech U je Eregex alebo LEregex s konečným počtom vnorení lookaroundov, potom:

$$L_U \in DSPACE(n \log^2 n)$$

Pojmy a skratky

 $\mathscr{L}(\dots)$ – trieda jazykov nad \dots

 \mathcal{R} – trieda regulárnych jazykov \mathscr{L}_{CF} – trieda bezkontextových jazykov \mathscr{L}_{CS} – trieda kontextovných jazykov

Literatúra

[Câmpeanu et al., 2003] Câmpeanu, C., Salomaa, K., and Yu, S. (2003). A formal study of practical regular expressions. *International Journal of Foundations of Computer Science*, 14(06):1007–1018.

[Python documentation, 2012] Python documentation (2012). $Re-gular\ expression\ operations$. Python Software Foundation. http://docs.python.org/2/library/re.html.

[Tóthová, 2013] Tóthová, T. (2013). Moderné regulárne výrazy. Bachelor's thesis, FMFI UK Bratislava. https://github.com/Tatianka/bak.

[Tóthová, 2015] Tóthová, T. (2015). Moderné regulárne výrazy. Master's thesis, FMFI UK Bratislava. https://github.com/Tatianka/dip.