

Model Development Phase Template

Date	14 July 2024
Team ID	740045
Project Title	Exploratory Analysis of Rain Fall Data in India for Agriculture
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
# checking the accuracy score
print("Xgboost:",metrics.accuracy_score(y_train,p1))
print("Rand_forest:",metrics.accuracy_score(y_train,p2))
#print("5VM:",metrics.accuracy_score(y_train,p3))
print("Dtree:",metrics.accuracy_score(y_train,p4))
print("GBM:",metrics.accuracy_score(y_train,p5))
print("log:",metrics.accuracy_score(y_train,p6))
```


Model	Classification Report	F1 Scor e	Confusion Matrix
Random Forest	<pre># checking the accuracy score print("Xgboost:",metrics.accuracy_score(y_train,p1)) print("Rand_forest:",metrics.accuracy_score(y_train,p2)) #print("SVM:",metrics.accuracy_score(y_train,p3)) print("Dtree:",metrics.accuracy_score(y_train,p4)) print("GBM:",metrics.accuracy_score(y_train,p5)) print("log:",metrics.accuracy_score(y_train,p6)) Xgboost: 0.8421731060085247 Rand_forest: 0.9999914065722535 Dtree: 1.0 GBM: 0.8469510518355562 log: 0.8369483019386773</pre>	99%	

Model Validation and evaluation report:

```
y_pred = Dtree.predict(x_te
Decision
                                                                            100%
Tree
           print("Xgboost:",metrics.accuracy_score(y_train,p1))
                                                                                    conf_matrix = metrics.confu
           print("Rand_forest:",metrics.accuracy_score(y_train,p2))
                                                                                    print(conf_matrix)
           print("Dtree:",metrics.accuracy_score(y_train,p4))
                                                                                     [[19224 3333]
           print("GBM:",metrics.accuracy_score(y_train,p5))
                                                                                      [ 3088 3447]]
           print("log:",metrics.accuracy_score(y_train,p6))
           Xgboost: 0.8421731060085247
           Rand_forest: 0.9999914065722535
           Dtree: 1.0
           GBM: 0.8469510518355562
           log: 0.8369483019386773
```


LOG	<pre># checking the accuracy score print("Xgboost:",metrics.accuracy_score(y_train,p1)) print("Rand_forest:",metrics.accuracy_score(y_train,p2)) #print("SVM:",metrics.accuracy_score(y_train,p3)) print("Dtree:",metrics.accuracy_score(y_train,p4)) print("GBM:",metrics.accuracy_score(y_train,p5)) print("log:",metrics.accuracy_score(y_train,p6)) Xgboost: 0.8421731060085247 Rand_forest: 0.9999914065722535 Dtree: 1.0 GBM: 0.8469510518355562 log: 0.8369483019386773</pre>	83%	
Gradient Boosting	<pre># checking the accuracy score print("Xgboost:",metrics.accuracy_score(y_train,p1)) print("Rand_forest:",metrics.accuracy_score(y_train,p2)) #print("SVM:",metrics.accuracy_score(y_train,p3)) print("Dtree:",metrics.accuracy_score(y_train,p4)) print("GBM:",metrics.accuracy_score(y_train,p5)) print("log:",metrics.accuracy_score(y_train,p6)) Xgboost: 0.8421731060085247 Rand_forest: 0.9999914065722535 Dtree: 1.0 GBM: 0.8469510518355562 log: 0.8369483019386773</pre>	84%	