Pruebas

Escenario de Prueba 1: Benchmark con 512 Partículas

Este escenario prueba el rendimiento y la estabilidad del sistema con un número considerable de partículas en un estado de gas denso. Es ideal para una primera comparación de velocidad, teniendo lo siguientes párametros:

Escenario de Prueba 1: Benchmark con 512 Partículas

Este escenario prueba el rendimiento y la estabilidad del sistema con un número considerable de partículas en un estado de gas denso. Es ideal para una primera comparación de velocidad.

N_PARTICLES 512 N_STEPS 10000 PRINT_FREQ 1000 BOX_SIZE 25.0 **TIMESTEP** 0.002 MASS 39.948 **EPSILON** 0.997 SIGMA 3.40

Salida del Código Secuencial

Iniciando simulación SECUENCIAL con archivo: config/benchmark_N512.txt N=512, Pasos=10000, dt=0.0020					
Paso E_Cinetica	E_Potencia	al E_Total			
1000 1198.34 2000 1205.11 3000 1199.98 4000 1201.05 5000 1203.49	-1685.11 -1692.05 -1687.23 -1688.19 -1690.41	-486.77 -486.94 -487.25 -487.14 -486.92			

```
6000 1202.66
                 -1689.50
                             -486.84
7000 1204.18
                 -1691.20
                            -487.02
8000 1201.75
                 -1688.95
                            -487.20
9000 1203.88
                -1690.62
                            -486.74
10000 1202.91
                 -1689.88
                             -486.97
Simulación completada en 1242.48 segundos.
```

Salida del Código Paralelo

Iniciando simulación PARALELA con archivo: config/benchmark_N512.txt Usando un máximo de 8 hilos (threads).

Paso	T_Total(s)	E_Cinetica	E_Potenci	ial E_Total
1000	25.21	1198.34	-1685.11	-486.77
2000	50.40	1205.11	-1692.05	-486.94
3000	75.61	1199.98	-1687.23	-487.25
4000	100.83	1201.05	-1688.19	-487.14
5000	126.02	1203.49	-1690.41	-486.92
6000	151.25	1202.66	-1689.50	-486.84
7000	176.49	1204.18	-1691.20	-487.02
8000	201.71	1201.75	-1688.95	-487.20
9000	226.93	1203.88	-1690.62	-486.74
10000	252.15	1202.91	-1689.88	-486.97

Tenemos realmente una optimización bastante respetable en cuestión a la velocidad de procesamiento

- Tiempo Secuencial (T1): 1242.48 segundos.
- Tiempo Paralelo (T8): 252.15 segundos.

• **Speed-up:** 252.15/1242.48≈ Lo cuál es más rápido en un 4.93x

Escenario de Prueba 2: Gas de Baja Densidad

Este escenario simula partículas muy separadas. La energía potencial es baja, y hay menos interacciones dentro del radio de corte.

Párametros:

N_PARTICLES 216 N_STEPS 10000 PRINT_FREQ 1000 BOX_SIZE 30.0 TIMESTEP 0.002 MASS 39.948 **EPSILON** 0.997 SIGMA 3.405

Salida del Código Secuencial

Iniciando simulación SECUENCIAL con archivo: config/gas_baja_densidad.txt N=216, Pasos=10000, dt=0.0020

Paso	E_Cinetica	E_Potenc	cial E_Total
1000	499.88	 -150.12	349.76
2000	501.12	-151.40	349.72
3000	500.34	-150.55	349.79
4000	499.95	-150.21	349.74
5000	500.81	-151.00	349.81
6000	500.10	-150.41	349.69
7000	501.03	-151.25	349.78
8000	500.55	-150.75	349.80
9000	499.79	-150.05	349.74
10000	500.62	-150.88	349.74

.....

Simulación completada en 165.71 segundos.

Salida del Código Paralelo

Iniciando simulación PARALELA con archivo: config/gas_baja_densidad.txt Usando un máximo de 8 hilos (threads).

N=216, Pasos=10000, dt=0.0020

Paso T	_Total(s)	E_Cinetica	E_Potenc	ial 	E_Total	
1000 4		499.88	-150.12	349		
2000 8	3.78	501.12	-151.40	349.	.72	
(y así :	sucesivam	ente)				
10000 4	43.89	500.62	-150.88	34	49.74	

Simulación completada en 43.89 segundos.

Análisis de la Comparación (Speed-up):

- Tiempo Secuencial (T1): 165.71 segundos.
- Tiempo Paralelo (T8): 43.89 segundos.
- **Speed-up:** 43.89165.71≈ Lo cual es más rápido en un 3.78x

Escenario de Prueba 3: Sistema Grande (Alto Número de Partículas)

Este escenario demuestra la importancia del paralelismo para problemas grandes. Debido a la complejidad O(n2), el tiempo de ejecución secuencial se dispara.

Parámetros:

N_PARTICLES 1000 N_STEPS 5000 PRINT_FREQ 500

BOX_SIZE 35.0 TIMESTEP 0.002 MASS 39.948 EPSILON 0.997 SIGMA 3.405

Salida del Código Secuencial

Paso E_Cinetica E_Potencial E_Total

Iniciando simulación SECUENCIAL con archivo: config/benchmark_N1000.txt N=1000, Pasos=5000, dt=0.0020

500	2350.11	-3401.55	-1051.44	
1000	2348.90	-3400.12	-1051.22	
1500	2351.05	-3402.60	-1051.55	
2000	2349.55	-3400.90	-1051.35	
2500	2350.88	-3402.10	-1051.22	
3000	2349.99	-3401.50	-1051.51	
3500	2350.12	-3401.88	-1051.76	
4000	2351.60	-3402.95	-1051.35	
4500	2348.88	-3400.41	-1051.53	
5000	2350 43	-340199	-1051 56	

Simulación completada en 2389.15 segundos. (Casi 40 minutos)

Salida del Código Paralelo

Iniciando simulación PARALELA con archivo: config/benchmark_N1000.txt Usando un máximo de 8 hilos (threads).

N=1000, Pasos=5000, dt=0.0020

Paso T_Total(s) E_Cinetica E_Potencial E_Total

500	45.08	2350.11	-3401.55	-1051.44	
(y a	ısí sucesivar	mente)			
5000	450.78	2350.43	-3401.99	-1051.56	
Simulación completada en 450.78 segundos. (Unos 7.5 minutos)					

En este tenemos un claro ejemplo de la importancia de la paralelización de nuestro código, al trabajar con mil partículas nuestro procesador sufre más alargando el proceso a casi 40 minutos, mientras qué paralelizando tenemos 7.5 minutos qué es una diferencia exponencial en 5.30x