School of Mathematics

Thapar University, Patiala

UMA003: Mathematics-I, (Tutorial Sheet 05)

(1) Test which of the following alternating series converge/diverge? Give reason for your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3/2}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3/2}}$$
(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{10}\right)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \ln n}{n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(\sqrt{n}+1)}{n+1}$$

(2) Which of the following series converge absolutely and conditionally? Give reason for your

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} (0.1)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n^2}$$
(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n - \ln n}$$
(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n)!}{2^n n! n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n - \ln n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n)}{2^n n! n}$$

(f)
$$\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+\sqrt{n}} - \sqrt{n})$$

(3) Estimate the magnitude of the error involved in using the sum of first four terms to approximate the sum of the entire series. (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{10^n}$$

(4) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series of non-negative numbers, can any thing be said about $\sum_{n=0}^{\infty} a_n b_n$? Give reason for your answer.

(5) Show that if $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \left(\frac{a_n}{1 - a_n} \right)$ converges.