T. Lesmal agepleement	
Futernal assessment (•
Q8. R is const. $G(T)-C_V(T)=R$,
. Q.11 · . 1/2	•
Lesmes. 1. One student has submitted the asserssmen	J.
Navvac.	
2. Ample seupe for sharing the answers- So may be we should restrict it to 15 min only.	•
it to 15 min only.	•
	•
auizi-	•
1. Syllabus: - Everything conversed upto Frido	e
2. TMCQ	
er, Shart answer	
of Short answer.	•
Tutossiel: Will send by tomorrow evenime	7

Isentropic
$$A_2 = 40 \text{ cm}^2$$

At $A_3 = 40 \text{ cm}^2$

At $A_4 = 40 \text{ cm}^2$

Pz = ?

T2=?

 $T_1 = 300K$ $P_1 = 100 \text{ kPa}$ $M_1 = 100 \text{ m/s}$

g= PilRTi

We know
$$\dot{m}_1 = \ddot{m}_2$$

Also,
$$\dot{m} = \frac{Po}{\sqrt{RTo}} A F(r, M)$$

$$\frac{A_1}{A_2} = \frac{F(\Upsilon, M_2)}{F(\Upsilon, M_1)}$$

M $\begin{array}{ll}
0.1 \\
0.2 \\
0.3
\end{array}$ $\begin{array}{ll}
\rho(x, y) \\
\rho(x, y)
\end{array}$ $\begin{array}{ll}
\rho(x, y) \\
\rho(x, y)
\end{array}$

- → Converging duct cannot produce supersonic flow.
- -> Choked flow & maximum mass flow rate
- -> Pb/Pr ratio for which Me=1 is called critical pressure ratio.