

«Анализ транскриптомных данных»

Лекция #5. **Функциональный анализ**

Серёжа Исаев

аспирант ФБМФ МФТИ аспирант MedUni Vienna

Содержание курса

1. Bulk RNA-Seq:

- а. экспериментальные подходы,
- b. выравнивания и псевдовыравнивания,
- с. анализ дифференциальной экспрессии,
- d. функциональный анализ;

2. Single-cell RNA-Seq:

- а. экспериментальные подходы,
- b. отличия от процессинга bulk RNA-Seq,
- с. методы снижения размерности,
- d. кластера и траектории,
- е. мультимодальные омики одиночных клеток.

Дорожная карта анализа RNA-Seq

Gene Ontology (GO)

Три онтологии: Biological Process, Molecular Function, Cellular Component

Представляет собой направленный ациклический граф

Архитектура GO

Результаты анализа GO

Мы можем определить, какие из дифференциально экспрессированных генов попадают в ту или иную онтологию

Можем ли мы исходя из этого делать какие-либо выводы?

Результаты анализа GO

Для корректной интерпретации результатов необходимо учитывать контекст, то есть сколько в принципе в этой онтологии содержится генов, а сколько у нас считаются дифференциально экспрессированными

Обогащение путей

У нас есть результаты дифференциальной экспрессии

"Изменяется регуляция пути" = "Гены из этого пути изменяются неслучайно"

Мы хотим найти подобное неслучайное изменение в наших результатах

Точный тест Фишера

Он же гипергеометрический тест

- 1. Выбираем только значимо дифференциально экспрессированные гены
- 2. Проверяем пересечения этих генов с путями
- 3. Случайны ли пересечения?

2x2 contingency table for Fisher's Exact Test

Точный тест Фишера

$$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$$

N = 12000: общее число генов (TOTAL)

K = 41: число генов в пути (SUCCESSES)

n = 113: число дифференциально экспрессированных генов (DRAWS)

k = 1: пересечение (SUCCESSFUL DRAWS)

Нулевая гипотеза — гены вытаскиваются из 12000 случайно относительно пути

Kyoto Encyclopedia of Genes and Genomes (KEGG)

Курируемая база данных с биохимическими путями, имеет смысл использовать, когда есть гипотеза о какой-либо биохимической разнице между разными образцами

BIOSYNTHESIS OF AMINO ACIDS

GSEA

Классический алгоритм состоит из нескольких шагов:

- 1. У нас есть две группы (два фенотипа) А и В
- 2. Считаем коэффициент корреляции Пирсона каждого из генов с таргетным фенотипом (с фенотипом А)
- 3. Ранжируем все гены по значению коэффициента корреляции
- 4. Где-то в этом ранге будут гены из нашей сигнатуры

GSEA

- 5. Затем мы проходим по этому списку, высчитывая значение ES: прибавляем отнормированное значение коэффициента корреляции гена, если он из этой сигнатуры, или же вычитаем аналогичный показатель, если ген вне сигнатуры
- 6. Максимальное (или минимальное) значение ES и будет нашим скором
- 7. Перемешиваем лэйблы фенотипов, пермутируем 1000 раз находим 0 распределение ES-статистики для сигнатуры => p-value

Preranked GSEA

Со временем пайплайн GSEA модифицировался, и теперь для ранжирования генов используют часто не коэффициент корреляции с фенотипом, а другие показатели —

- 1. logFC гена между группами,
- 2. p-value значимости различия генов между группами и т. п.

В таком случае p-value Enrichment score оценивается не пермутациями фенотипов, а пермутации генов в сигнатуре

Почему пермутации фенотипов более предпочтительны для оценки значимости представленности?

Single sample GSEA (ssGSEA)

Подобную процедуру можно выполнить и на обычных рангах экспрессии одного образца — только тогда мы получим некоторую оценку представленности данной сигнатуры в образце, без значимости

Однако потом мы можем использовать эту оценку для того, чтобы кластеризовать образцы или работать с ними на уровне сигнатур, а не отдельных генов

Normalized ES (NES)

Как легко понять, ES сильно зависит от того, насколько большая используется генная сигнатура

Для этого ES нормализуют на количество генов в сигнатуре

MSigDB

Отдельная база данных, аналогичная GO, но также включающая в себя множество сигнатур, полученных в ходе экспериментов по нокаутам / нокдаунам и проч.

В принципе включает в себя все сигнатуры из GO

Классически используется с GSEA, но подходит также и для обычного анализа обогащения

Формат gmt

GMT = Gene Matrix Transposed

GMT format is convenient to store large databases of gene sets. For a handful of sets (<256) the gmx format offers greater exceleditability

xCell

Инструмент xCell включает в себя базу данных с большим количеством тип клетки-специфичных сигнатур

В результате можно для каждого образца оценить сигнатуры типов клеток, после чего работать с bulk RNA-Seq образцами в пространстве сигнатур каждого из типов клеток, то есть в первом приближении сравнивать их состав

Портреты раковых опухолей xCell

Enrichment of tumor specific cell types

Pathway RespOnsive GENes (PROGENy)

База данных, которая содержит биологические пути (ген и его вес), необходимые для реконструкции активности пути

Активность пути — это линейная комбинация экспрессий генов с весами

Веса-вклады каждого гена в каждый из путей оценивались при помощи массового скрининга пертурбационных экспериментов

DoRothEA

База данных с большим количеством регулонов (пар транскрипционный фактор + список таргетов транскрипционного фактора)

Каждому гену в регулоне соответствует уровень уверенности в том, что он регулируется именно этим транскрипционным фактором (в некоторых случаях этот уровень уверенности интерпретируется как коэффициент линейной модели)

WCGNA

Метод для анализа групп коэкспрессированных генов

Модули коэкспрессии рассчитываются на основе корреляций экспрессии генов между образцами

Модули можно анализировать GSEA или другими методами обогащения

Визуализация сетей взаимодействия генов

Деконволюция bulk RNA-Seq

Деконволюция bulk RNA-Seq — это процесс определения того, в каких долях какие клеточные типы содержатся в пробе

Основанная на маркерных генах (RisqueRNA)

(BisqueRNA)

gene	cluster	avg_logFC
Gene 1	Neurons	0.82
Gene 2	Neurons	0.59
Gene 3	Astrocytes	0.68
Gene 4	Oligodendrocytes	0.66
Gene 5	Microglia	0.71
Gene 6	Endothelial Cells	0.62

Основанная на референсе

(SCDC, BisqueRNA)

