Hjemmeopgave 2

Løs følgende opgaver uden elektroniske regneredskaber. Alle svar skal være motiverede og mellemregninger skal angives i passende omfang.

- a) Find samtlige komplekse løsninger til ligningen $e^{2z} = 2 + i$.
- b) Givet to komplekse tal z_1 og z_2 . Det oplyses at $\text{Arg}(z_1) = \pi/4$ og $\text{Arg}(z_2) = 3$. Bestem $\text{Arg}(-2z_1^4/z_2^{10})$.
- c) Afgør ved hjælp af divisionsalgoritmen om polynomiet Z^2-3Z+2 går op i polynomiet $Z^5-3Z^4+Z^3+4.$
- d) 1. Vis at tallet -3 er en rod i polynomiet $Z^3 Z^2 + 36$. Hvad er rodens multiplicitet? 2. Bestem samtlige rødder i $Z^3 - Z^2 + 36$.
- e) Funktionen $f: \mathbb{N} \to \mathbb{Z}$ opfylder at

$$f(n) = \begin{cases} 2 & \text{hvis } n = 1\\ f(n-1)^2 - (n-1)^2 & \text{hvis } n \ge 2 \end{cases}$$

Beregn f(n) for $n \in \{1, 2, 3, 4, 5\}$.

f) Lad r og s være to forskellige komplekse tal. Vis ved hjælp af induktion efter n at

$$r^{n} + r^{n-1} \cdot s + r^{n-2} \cdot s^{2} + \dots + r \cdot s^{n-1} + s^{n} = \frac{r^{n+1} - s^{n+1}}{r - s}$$

for alle $n \in \mathbb{N}$.

Opgaverne skal afleveres på kursets **DTU Learn** side under "afleveringer". Deadline er **søndag** den **27.** oktober **23:55**.