

SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Department of Computer Science

F29FA

FOUNDATIONS I

CLASS TEST 2 — 2020/21

Duration: 1 Hour

ANSWER ALL QUESTIONS

Ensure you are familiar with plagiarism rules
Please submit one single PDF file for all your test.

NO ZIP FILES, NO PNG AND NO JPG.

FDK F29FA

1. $S \equiv \lambda xyz.xz(yz)$.

 $K \equiv \lambda xy.x.$

 $I \equiv \lambda x.x.$

 $\Omega \equiv (\lambda z.zz)(\lambda z.zz).$

 $O \equiv \lambda xyu.xuy.$

 $A \equiv \lambda x.xSK$.

 $B = \lambda xy.y(xx)$.

 $C \equiv Oz\Omega I$.

 $D \equiv \lambda x.y.$

(a) Recall the terms C and K given at the top of this page. For each of the terms below, answer whether the term is β -normalising? If yes, β -reduce the term using the leftmost outermost reduction strategy until there are no β -redexes left, showing all the β -reduction steps, underlining at each stage the redex you are contracting, and always keeping the term as compact as possible, and finally give its β -normal form. If the term is not β -normalising, justify why not.

1.
$$C$$
. (1.5)

2.
$$C[z := K]$$
. (1.5)

- **(b)** Recall the term *O* given at the top of this page.
 - 1. Find a term E such that $E =_{\beta} OE$; justify your answer. (1)
 - 2. Show that this term E you found in (b).1. satisfies $ERT =_{\beta} ETR$ for any terms R and T.
- (c) Recall the terms S and I given at the top of this page.
 - 1. Find a term M such that $Mx =_{\beta} MIxx$; justify your answer. (1)
 - 2. Show that this term M you found in (c).1. satisfies $MS =_{\beta} MISS$. (1)
- (d) Recall the term A given at the top of this page. β -reduce the term AAx to a β -normal form using the rightmost reduction strategy showing all the β -reduction steps, underlining at each stage the redex you are contracting, and always keeping the term as compact as possible, and finally give its β -normal form. (3.5)
- **(e)** Recall the terms *D* and *B* given at the top of this page.
 - 1. Is D(BB) β -normalising? Fully justify your answer. (1)
 - 2. Is D(BB) strongly β -normalising? Fully justify your answer. (1.5)
- **(f)** Recall the terms S, K and I given at the top of this page.
 - We say that a term P is *sick* if the term SIKP is not strongly β -normalising.
 - We say that a term P is *sinful*, if for every term N, the term SINP is not strongly β -normalising.
 - 1. Show that if P is sinful then P is sick. (1)
 - 2. Give a term which is sinful and justify your answer. (1)