IMAGE PROCESSING SYSTEM

Patent number:

JP7321976

Publication date:

1995-12-08

Inventor:

YOSHIDA HIROYOSHI; KITAMURA TOSHIYUKI;

KURITA MITSURU

Applicant:

CANON KK

Classification:

- international: G03

G03G21/00; G06T1/60; H04N1/00; G03G21/00;

G06T1/60; H04N1/00; (IPC1-7): H04N1/00; G06T1/60

- european:

Application number: JP19940114906 19940527 Priority number(s): JP19940114906 19940527

Report a data error here

Abstract of JP7321976

PURPOSE:To provide an image processing system which has flexible extendability, and besides, is excellent in its operability. CONSTITUTION: This system is constituted by connecting plural digital copying machines (stations) having common configuration, and a master station 1001 and slave stations 1002 to 1004 are defined by setting a system address value. The master station 1001 grasps the state of each station by issuing a state request command to the slave stations 1002 to 1004 at definite time intervals, and recognizes the usable station in the whole system, and an operator selects the station to be used. Then, an original image is read out of one station, and the picture is print-outputted from the selected station, but even if the selected station is in the course of the execution of a job, the picture is outputted after waiting the finish of the job.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-321976

- (43) 公開日 - 平成7年(1995) 12月8日

(51) Int.Cl.6

識別記号 庁内整理番号 FΙ

技術表示箇所

H04N 1/00 G06T 1/60

E

G06F 15/64

450 F

審査請求 未請求 請求項の数20 OL (全 30 頁)

(21)出願番号

特願平6-114906

(22)出願日

平成6年(1994)5月27日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 吉田 廣義

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 北村 敏之

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 栗田 充

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 大塚 康徳 (外1名)

(54) 【発明の名称】 画像処理システム

(57)【要約】

【目的】 柔軟な拡張性をもち、かつ操作性に優れた画 像処理システムを提供する。

【構成】 共通の構成を持つデジタル複写機(ステーシ ョン)を複数台接続してシステムを構成し、システムア ドレス値の設定によってマスタステーション1001と スレープステーション1002~1004とを定義す る。マスタステーション1001はステータス要求コマ ンドを一定時間間隔でスレーブステーション1002~ 1004に発行して各ステーションの状態を把握し、シ ステム全体における使用可能ステーションを認識し、操 作者は使用するステーションを選択する。そして1つの ステーションから原稿画像を読み取らせ、選択したステ ーションから画像をプリント出力するが、選択したステ ーションがジョブ実行中であっても、その終了を待って 出力する。

2

【特許請求の範囲】

【請求項1】 画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、

前記各画像処理装置は画像データの転送先装置を選択する転送先選択手段と、

前記転送先選択手段により選択された前記転送先装置の 状態を検知する転送先状態検知手段と、

前記転送先選択手段により選択された前記転送先装置を 画像データ転送先装置として設定する転送先設定手段と を有し、

前記転送先設定手段は前記転送先状態検知手段によりジョブ実行中であることが検知された装置を実行中のジョブ終了後に転送先装置として予約することを特徴とする 画像処理システム。

【請求項2】 前記転送先選択手段は少なくとも1つの 転送先装置を選択することを特徴とする請求項1記載の 画像処理システム。

【請求項3】 前記各画像処理装置は操作者に各種報知を行う報知手段を有し、

前記報知手段はジョブ実行中に他装置より転送先装置として予約された場合にはジョブ終了後に画像データ出力 先装置として予約されたことを操作者に報知することを 特徴とする請求項2記載の画像処理システム。

【請求項4】 前記報知手段はメッセージを表示する表示手段を含み、

前記表示手段に予約された旨のメッセージを表示させる ことにより報知することを特徴とする請求項3記載の画 像処理システム。

【請求項5】 前記各画像処理装置は操作者が各種指示入力を行う指示入力手段を有し、

前記報知手段によりジョブ終了後に転送先先装置として 予約されることが操作者に報知された場合に前記指示入 力手段により操作者から出力先として予約されることを 禁止する指示が入力された場合には前記予約を無効とし て扱うことを特徴とする請求項3又は4のいずれかに記 載の画像処理システム。

【請求項6】 前記報知手段によりジョブ終了後に転送 先先装置として予約されることが操作者に報知された場 合に前記指示入力手段により所定時間内に指示がなかっ た場合には前記予約を有効として扱うことを特徴とする 請求項5記載の画像処理システム。

【請求項7】 画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、

前記各画像処理装置は他の画像処理装置を画像データ転送先装置として設定する転送先設定手段とを有し、

前記少なくとも2台の画像処理装置のうち最初に前記転送先設定手段により転送先装置を設定した画像処理装置が転送元装置となることを特徴とする画像処理システ

L.

【請求項8】 画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像 データを転送可能な画像処理システムにおいて、

前記各画像処理装置は他の画像処理装置を画像データ転送先装置として設定する転送先設定手段とを有し、

前記転送先設定手段により設定された転送先装置は他の 画像処理装置からの指示による画像出力中は操作者によ る操作指示を受け付けないことを特徴とする画像処理シ ステム。

【請求項9】 前記各画像処理装置は操作者に各種報知を行う報知手段を有し、

前記報知手段は他の画像処理装置からの指示による画像 出力中にはその旨報知することを特徴とする請求項8記 載の画像処理システム。

【請求項10】 前記報知手段はメッセージを表示する 表示手段を含み、

前記表示手段に他の画像処理装置からの指示により画像 出力を行う旨のメッセージを表示させることにより報知 することを特徴とする請求項9記載の画像処理システ ム。

【請求項11】 画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、

前記各画像処理装置は画像データの転送先装置を選択する転送先選択手段と、

前記転送先選択手段により選択された前記転送先装置を 画像データ転送先装置として設定する転送先設定手段 と、

30 前記転送先設定手段により設定された転送先装置に画像 データの転送を指示する転送指示手段と、

前記転送指示手段による転送指示がなくても画像データ を前記転送先装置に転送する自動転送手段とを有するこ とを特徴とする画像処理システム。

【請求項12】 前記各画像処理装置は操作者に各種報知を行う報知手段を有し、

前記報知手段は前記自動転送手段により画像データの転送が行われる場合にはその旨報知することを特徴とする 請求項11記載の画像処理システム。

【請求項13】 前記報知手段はメッセージを表示する 表示手段を含み、

前記表示手段に前記自動転送手段により画像データの転送が行われる旨のメッセージと前記転送先装置情報とを表示させることにより報知することを特徴とする請求項12記載の画像処理システム。

【請求項14】 前記自動転送手段は出力枚数が所定枚数以上となった場合に前記転送先装置へ画像データを転送することを特徴とする請求項11記載の画像処理システム。

【請求項15】 前記自動転送手段はソート出力の際の

ソータ数が画像処理装置に具備されたソータビン数以上 となった場合に前記転送先装置へ画像データを転送する ことを特徴とする請求項11記載の画像処理システム。

【請求項16】 画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、

前記各画像処理装置は画像データの転送先装置を選択する転送先選択手段を有し、

前記転送先選択手段は複数の段階的な条件に応じて転送 先装置の数を決定して選択することを特徴とする画像処 理システム。

【請求項17】 画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、

前記各画像処理装置は画像データの転送先装置を選択する転送先選択手段を有し、

前記転送先選択手段は少なくとも1つの条件に応じて転送先装置の種類を選択することを特徴とする画像処理システム。

【請求項18】 前記転送先選択手段はソータ出力機能の有無により転送先装置を選択することを特徴とする請求項17記載の画像処理システム。

【請求項19】 前記転送先選択手段は両面記録機能の 有無により転送先装置を選択することを特徴とする請求 項17記載の画像処理システム。

【請求項20】 前記転送先選択手段は記録媒体の種類により転送先装置を選択することを特徴とする請求項17記載の画像処理システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は画像データを記録媒体に 出力可能な少なくとも2台の画像処理装置を互いに接続 し、相互に画像データを転送可能な画像処理システムに 関するものである。

[0002]

【従来の技術】従来よりデジタル複写機を構成するリーダ部とプリンタ部とはそれぞれ画像読み取り装置、画像出力装置として単独で利用することが可能であるために、例えば、外部インタフェースを用いて一般のコンピュータシステムと接続して、その複写機を画像の出力装置として利用したり、複数台のデジタル複写機(複数組のリーダ部とプリンタ部)を接続したり、複数のデジタル複写機をリーダ部とプリンタ部とに分割してこれら互いに接続して、これらをコントロールする中央制御装置を設けて1つのシステムを構成し、複数のプリンタ部を同時に駆動して高性能のプリント能力を確保するようなシステムなどが提唱されている。

【0003】このようにデジタル複写機を用いたシステム構成を考えた場合、複数プリンタ装置の同時駆動による高プリンティング速度の達成は大きなテーマといえ

る。

[0004]

【発明が解決しようとする課題】しかしながら、上述のような中央制御装置によるシステム制御は、用いられる中央制御装置によって接続可能なリーダ部/プリンタ部、或は、デジタル複写機のセット数を予め決定しなければならなかったり、そのセット数が制限されたりしてシステムの柔軟な拡張性という点からは問題があった。 【0005】本発明は上記従来例に鑑みてなされたもので、システムの拡張性に富む画像処理装置を提供することを目的としている。

[0006]

【課題を解決するための手段】本発明は上述した目的を 達成するために成されたものであり、上述した目的を達 成するために以下のような構成を備える。

【0007】即ち、画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、前記各画像処理装置は画像データの転送先装置を選択する転送先選択手段と、前記転送先選択手段により選択された前記転送先装置の状態を検知する転送先状態検知手段と、前記転送先選択手段により選択された前記転送先装置を画像データ転送先装置として設定する転送先設定手段とを有し、前記転送先設定手段は前記転送先状態検知手段によりジョブ実行中であることが検知された装置を実行中のジョブ終了後に転送先装置として予約することを特徴とする。

【0008】また、前記転送先選択手段は少なくとも1つの転送先装置を選択することを特徴とする。

【0009】更に、前記各画像処理装置は操作者に各種報知を行う報知手段を有し、前記報知手段はジョブ実行中に他装置より転送先装置として予約された場合にはジョブ終了後に画像データ出力先装置として予約されたことを操作者に報知することを特徴とし、前記報知手段はメッセージを表示する表示手段を含み、前記表示手段に予約された旨のメッセージを表示させることにより報知することを特徴とする。

【0010】更に、前記各画像処理装置は操作者が各種指示入力を行う指示入力手段を有し、前記報知手段によりジョブ終了後に転送先先装置として予約されることが操作者に報知された場合に前記指示入力手段により操作者から出力先として予約されることを禁止する指示が入力された場合には前記予約を無効として扱うことを特徴とする。

【0011】また、前記報知手段によりジョブ終了後に 転送先先装置として予約されることが操作者に報知され た場合に前記指示入力手段により所定時間内に指示がな かった場合には前記予約を有効として扱うことを特徴と する。

【0012】更に、画像データを記録媒体に出力可能な

少なくとも2台の画像処理装置を互いに接続し、相互に 画像データを転送可能な画像処理システムにおいて、前 記各画像処理装置は他の画像処理装置を画像データ転送 先装置として設定する転送先設定手段とを有し、前記少 なくとも2台の画像処理装置のうち最初に前記転送先設 定手段により転送先装置を設定した画像処理装置が転送 元装置となることを特徴とする。

【0013】また、画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、前記各画像処理装置は他の画像処理装置を画像データ転送先装置として設定する転送先設定手段とを有し、前記転送先設定手段により設定された転送先装置は他の画像処理装置からの指示による画像出力中は操作者による操作指示を受け付けないことを特徴とする。

【0014】更に、前記各画像処理装置は操作者に各種報知を行う報知手段を有し、前記報知手段は他の画像処理装置からの指示による画像出力中にはその旨報知することを特徴とし、前記報知手段はメッセージを表示する表示手段を含み、前記表示手段に他の画像処理装置からの指示により画像出力を行う旨のメッセージを表示させることにより報知することを特徴とする。

【0015】また、画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、前記各画像処理装置は画像データの転送先装置を選択する転送先選択手段と、前記転送先選択手段により選択された前記転送先装置を画像データ転送先装置として設定する転送先設定手段と、前記転送先設定手段により設定された転送先装置に画像データの転送を指示する転送指示手段と、前記転送指示手段による転送指示がなくても画像データを前記転送先装置に転送する自動転送手段とを有することを特徴とする。

【0016】更に、前記各画像処理装置は操作者に各種報知を行う報知手段を有し、前記報知手段は前記自動転送手段により画像データの転送が行われる場合にはその旨報知することを特徴とし、前記報知手段はメッセージを表示する表示手段を含み、前記表示手段に前記自動転送手段により画像データの転送が行われる旨のメッセージと前記転送先装置情報とを表示させることにより報知することを特徴とする。

【0017】また、画像データを記録媒体に出力可能な少なくとも2台の画像処理装置を互いに接続し、相互に画像データを転送可能な画像処理システムにおいて、前記各画像処理装置は画像データの転送先装置を選択する転送先選択手段を有し、前記転送先選択手段は複数の段階的な条件に応じて転送先装置の数を決定して選択することを特徴とする。

【0018】更に、画像データを記録媒体に出力可能な 少なくとも2台の画像処理装置を互いに接続し、相互に 6

画像データを転送可能な画像処理システムにおいて、前記各画像処理装置は画像データの転送先装置を選択する転送先選択手段を有し、前記転送先選択手段は少なくとも1つの条件に応じて転送先装置の種類を選択することを特徴とするし、例えば前記転送先選択手段はソータ出力機能の有無や、両面記録機能の有無、また、記録媒体の種類により転送先装置を選択することを特徴とする。

[0019]

【作用】以上の構成により本発明においては、外部装置とのデジタル画像信号の入出力の制御、及び/或は、中継制御のための通信が装置内で行われるので、このような装置を複数台用いてシステムを構成する場合、システム全体制御のため特殊な装置が不要となり、特殊な装置の性能に依存しないシステム構築が可能になるので柔軟な拡張性をもったシステムを構成できるという効果が得られる。

【0020】また、転送先ステーションの状況を把握することができるため、重連設定するにあたりより操作性を向上させることができるという特有の作用効果がある。

[0021]

【実施例】以下図面を参照して本発明に係る一実施例を 詳細に説明する。

【0022】<第1実施例>

【0023】[システムの概要説明(図1~図6)]図1は本発明の代表的な実施例であるデジタル複写機によって構成された複写システム(以下、「重連システム」と呼ぶ)の接続形態を示すブロックである。図1において、1001~1004は各々、1セットのデジタル複写機を「ステーション」と呼ぶ)で、それぞれにシステムアドレス(以下、単に「アドレス」という)が割り当てられている。アドレス値は、ステーション1001~1004についてそれぞれ、"0"、"1"、"2"、"3"であり、この値は重連システム内において、ユニークな値である。また、必ず、"0"のアドレス値をもつステーションが存在することが必要である。

【0024】ステーション1001~1004は接続ケーブル1005~1007で接続され、さらに、ステーション1001~1004はインタフェイス機器(以下、「IPU」という)1008によってコンピュータ(以下、「ホスト」という)1009と接続されている。接続ケーブル1005~1007の詳細構成は図1の1010に示されているように、RGBの各色毎に8本の計24本のビデオ信号線、ビデオ制御線3本、通信線4本を含んでいる。

【0025】また、本実施例では、重連システムにおいて用いるビデオ信号の切り替えを行なうために接続ケーブル1005~1007によるステーション1001~1004の接続には、アドレス値に従った接続順序が決

められている。即ち、アドレス O のステーションをシステムの一番端に置き、そこからアドレス値が昇順になるようにステーションを順々に接続するものとする。

【0.0.2.6】尚、本実施例においては上述した各ステーションから他のステーションへプリント要求が行えることを特徴とするが、この他のステーションにおけるプリント処理を、以下、重連コピーという。

【0027】図2は重連システムにおけるビデオ信号の 接続形態を示す図である。図2において、1101~1 104は各々、ステーション1001~1004のイン タフェイス部(I/F部)のみを抜き出したものであ る。1108はIPU1008のI/F部である。11 05~1107は各々、接続ケーブル1005~100 7の内のRGBのビデオ信号24本とビデオ制御線3本 を示す。また、I/F部1101~1104それぞれに あるA、Bは、それぞれのステーションと他のステーシ ョンとの接続点を示し、接続点Aは自分がもつアドレス 値より小さいアドレス値をもつステーションとの接続 に、一方、接続点Bは自分がもつアドレス値より大きい アドレス値をもつステーションとの接続に用いられる。 【0028】図3は重連システムにおけるシステム構成 要素相互の通信のためのシリアル通信線の接続形態を示 す図である。図3において、1201~1203は各々 ステーション1001~1003のI/F部1101~ 1103の内、シリアル通信のためのインタフェイス部 のみを抜き出したものである。また、1204~120 7は各々、4本の通信線、OFFER*、DACK* 、SiD*、ATN* を表している。

【0029】ATN*は、重連システムでのマスタステーション(アドレス0のステーション)からのデータ転送中 30 を表わす同期信号であり、ATN*の信号値が"L"の時にデータ転送が行なわれる。マスタステーション以外のステーション(以後、スレーブステーションと呼ぶ)ではATN*のラインは常に入力モードになっている。

【 O O 3 O 】 OFFER*は、スレーブステーションがマスタステーションに対してデータの送信をする際にOFFER*の信号値が"L"となる。マスタステーションではOFFER*のラインは常に入力モードになっている。複数のスレーブステーション間ではワイヤード O R で接続されている。

【0031】DACK* は、データの受信側がデータ受信を完了したことを示す信号であり、各ステーション間はワイヤードORで接続されている。従って、受信側が複数ステーションある場合は最も遅いデータ受信完了のステーションがDACK* をインアクティブにした時にライン上のDACK* はインアクティブになる。これによって、ステーション間でのデータ授受の同期をとる。

【0032】 $SiD*は、双方向のシリアルデータであり、 ATN*(マスタ<math>\rightarrow$ スレーブ)、OFFER*(スレーブ \rightarrow マスタ)に同期してデータがやり取りされる。データ転送方

8

法は半二重調歩同期方式であり、伝送速度やデータ形式 はシステム起動時にあらかじめ設定される。

【0033】 1/F部1201~1203からそれぞれのステーションのコントローラ(不図示)に対して8本の信号線がでていて、TxD/RxD はシリアル通信を行う1/Oポート(不図示)の送信部/受信部それぞれに、ATNo, DACKo, OFFERo は1/Oポート(不図示)の入力部に、ATNi, DACKi, OFFERi は1/Oポート(不図示)の出力部にそれぞれ接続されている。

【0034】図4はデータ送信時の各信号のタイミングチャートを表わしている。図4に示されるように、信号ATN*或は信号OFFER*が"L"である時に同期して(即ち、データがマスタステーションから送信されるとき、或は、データがスレーブステーションとスレーブステーションとの間で送受される。そして、信号ATN*が"L"であり、例えば、マスタステーションから複数のスレーブステーションにデータが送信される時、最も早くデータ受信を開始するスレーブステーションのDACK*信号が"L"となる。また、最も遅くデータが受信完了したスレーブステーションのDACK*信号が"L"となる。また、最も遅くデータが受信完了したスレーブステーションのDACK*信号が"L"となったとき、(図4ではDACKn)、DACK*信号ラインが"H"となる。

【0035】図5は上記構成のインタフェイスを用いて 重連システムを構築した際に通信線1204~1207 を介して行われる通信に用いられる主なコマンドを示す 図である。

【0036】インタフェイスクリアコマンド(コード"10")は、重連システムにかかわるパラメータをリセットするためのもので、システムアドレスが0に定義されているマスタステーションが自分自身の初期化終了後に、マスタステーションと各スレーブステーションに発行し、マスタステーションでは0FFER*を入力モードに固定する。一方、各スレーブステーションではこのコマンドを受けてATN*を入力モードに固定し、内部パラメータを初期化する。

【0037】ステータス要求コマンド(コード"03")は、重連システムに接続されているスレープステーションの状態等の情報収集のためのポーリングコマンドで、マスタステーションがインタフェイスクリアコマンド発行後、一定時間をおいて各スレープステーションに向けて発行される。このコマンドはパラメータとしてスレープステーションを指定するための要求先アドレスを含んでいる。

【0038】ステータス転送コマンド(コード"05")は、ステータス要求コマンドにより指定されたスレープステーションが自分自身の状態を重連システム中の各ステーションに報告するためのコマンドである。マスタステーションからの指定があった場合は一定時間内

にこのコマンドを発行しなければならない。このコマンドには、自分のシステムアドレスや、エラー有り無し、ウエイト中やコピー中を表わす各種フラグ、用紙の種類や用紙の有無等のパラメータが含まれる。マスタステーションからのステータス要求コマンドで指定されたスレーブステーションが一定時間を経過してもステータス転送コマンドを発行しない場合は、マスタステーションは指定したスレーブステーションが重連システム中に接続されていないものと判断する。

【0039】パラメータ転送コマンド(コード"07")は、画像を転送するステーションが、使用されるステーションにプリント枚数、変倍率、色変換等のパラメータを転送するためのコマンドである。このコマンドには、図5に示すようにパラメータの属性を表わすサブコード(例えば、カラーモードを転送するのであれば、01)と、パラメータの内容とが含まれる。

【0040】プリントスタートコマンド(コード"01")は、画像を転送するステーションが、使用されるステーションに画像受信準備をさせるためのコマンドである。このコマンドには、画像転送元アドレスがパラメータとして含まれる。

【0041】画像転送終了コマンド(コード"06") は、画像転送元ステーションが他のステーションに対し て画像転送の終了を報告するためのものである。

【0042】図6はステーション1001~1004に設けられた操作パネルの外観図である。テンキー50000は数字入力を行うテンキーであり、後述するプリント枚数の設定や変倍率等の設定を行い、設定の結果はLCD表示部50005に表示される。50001はコピースタートキーであり、コピースタートキー50001を押下することにより、コピー動作を開始する。また、50002はストップキーであり、ストップキー50002を押下することにより、コピー動作が停止する。50003はリセットキーであり、リセットキー50003を押下することにより、操作部上で設定された全ての設定値が電源投入時の設定値(リセット状態)に戻される。また、一定時間、何らかの設定操作入力やコピー動作を行わなかった場合にも、全ての設定置はリセットされる。

【0043】 [デジタル複写機の詳細な構成(図7~図 12)] 図7は本実施例においてステーション1001~1004として用いているデジタル複写機の構成を示す側断面図である。このデジタル複写機は、カラー原稿を読み取り、さらに、デジタル編集処理等を行うカラーリーダ部351と、異なった感光ドラムを持ち、カラーリーダ部351から送られる各色のデジタル画像信号に応じてカラー画像を再現するプリンタ部352で構成される。

【0044】また、図7において、101はCCD、353はデジタル画像処理部、354は図6で言及した操

作パネル、355は原稿台ガラス(プラテン)、356は鏡面圧板、357はハロゲンランプ、358~360はミラー、361はCCD101上にハロゲンランプ357の反射光を集光するレンズ、362はハロゲンランプ357とミラー358を収容するキャリッジ、363はミラー359~360を収容するキャリッジ、364は他のステーション或はIPU1008とのインタフェース(I/F)部である。キャリッジ362は速度 v、キャリッジ363は速度 v/2で、CCD101の電気的走査(主走査)方向に対して垂直方向に機械的に動くことによって、画像原稿全面を走査(副走査)する。【0045】

ての045】 <カラーリータ部351の構成>図8はカラーリーダ部351の構成>図8はカラーリーダ部351のデジタル画像処理部353の詳細な構成を示すブロック図である。原稿台ガラス355上のカラー原稿はハロゲンランプ357で露光され、その反射像がCCD101にて撮像され電気信号に変換され、その電気信号がデジタル画像処理部353に入力される。

【0046】CCD101から入力された電気信号は、A/D変換器及びサンプルホールド(S/H)回路102においてサンプルホールドされてA/D変換され、RGB成分のデジタル信号が生成される。そのRGBデータはシェーディング回路103にてシェーディング補正及び黒補正がなされ、入力マスキング回路104にてNTSC信号への補正がなされる。セレクタ124(不図示のCPUからの信号126によって制御される)では画像原稿から生成された画像信号(A1~A3側)、或は、外部装置から画像信号(B1~B3側)のいづれかを選択し、その選択された信号を変倍回路105に入力する。変倍回路105は主走査方向への拡大もしくは縮小を行い、その結果をLOG回路123及びセレクタ125(不図示のCPUからの信号127によって制御される)に入力する。

【0047】さてLOG回路123の出力はメモリ部106に入力され、ビデオデータが記憶される。メモリ部106にはYMC成分データでカラーデータが格納されており、そのカラーデータは後述する4個の感光ドラムへの潜像形成のそれぞれのタイミングに合わせて読み出される。

【0048】マスキングUCR回路107ではセレクタ125の出力信号に対して4色分のマスキング及びUCR処理を施して、YMCBk成分で表されるカラーデータを出力する。そして、y補正回路109ではYMCBk成分に対してy補正、エッジ強調回路110ではエッジ強調を行う。そして、アドオン部129でy補正とエッジ強調がなされたカラーデータに対して偽造防止のための公知の画像処理が施され、プリンタ部352に出力される。

【0049】また、図8において、DTOPは画先センサ(不図示)の出力、HSNC1は内部で内蔵される水

平同期信号、HSNC2は外部で生成される水平同期信号、ITOP1は紙先端センサ329の出力、122は外部からの副走査書き込みイネーブル信号536に基づいて生成されるメモリ106の主走査方向書き込みイネーブル信号と読み出しイネーブル信号を1ビット、121は副走査方向書き込みイネーブル信号(1ビット)と各色成分(YMCBk)に対する4つの副走査読み出しイネーブル信号(4ビット)である。信号121~122、ITOP信号531、副走査ビデオイネーブル信号531は各々、ITOP1信号、HSNC1信号、外部からの副走査書き込みイネーブル信号536、DTOP信号などに基づいて領域生成部105において生成される。

【0050】また、130は外部にビデオ信号を出力したり、外部からビデオ信号を入力したりするビデオバスセレクタである。

【0051】
バスセレクタ130の構成説明>図9は、ビデオバスセレクタ130及びその周辺回路131の構成を示すブロック図である。図9において、504と505、514と515、519と520、526と527、524と525とはそれぞれが1組となって構成される双方向バッファ、530は出力バッファ、506、513、521、528、529はCPU(不図示)から双方向バッファを制御するために供給される信号線、523はFIFOで構成される周波数変換回路である。

【0052】また、501~503は各々、図8において示したビデオバスセレクタ130のB1~B3に対応するB端子、C1~C3に対応するC端子、A1~A3に対応するA端子である。さらに、508はA端子入力かC端子入力を選択するセレクタ、507はセレクタ508の出力を信号VCKのタイミングでB端子501への出力バッファ505に出力するフリップフロップ(DF/F)、510はA端子入力かB端子入力を選択するセレクタ、512はセレクタ511の出力を信号VCKのタイミングでC端子502への出力バッファ514に出力するフリップフロップ(DF/F)、516はB端子入力かC端子入力を選択するセレクタ、518はセレクタ516の出力を信号VCKのタイミングでA端子503への出力バッファ521に出力するフリップフロップ(DF/F)である。

【0053】さらにまた、531は1PU1008の副走査同期信号(ITOP2)、532はIPU1008の主走査同期信号(HSNCX)、533は他のステーションへの副走査ライトイネーブル信号(VVE1)、534は他のステーションへの主走査イネーブル信号(HVE*)、535は自装置内及び他のステーションへのビデオクロック(VCK)、536は他のステーション(マスタステーション)からの副走査ライトイネーブル信号、509、511、517、537はCPU

(不図示)でセットされる信号、538は周波数変換器523のイネーブル信号(IENX)、539は装置内にビットマップメモリがある時にそのビットマップメモリに書き込まれており外部へ送信される2値化信号、540は周波数変換器523のライトクロックとして使われる他のステーションからのビデオクロック、541は周波数変換器523のライトイネーブル信号とインバータで反転されてライトリセット信号として用いられる信号である。542はORゲートである。また、HSNCX532は反転されて周波数変換器523のリードリセット信号として使われる。522は他のステーションにビットマップメモリがある時にそのビットマップメモリから送信されてきた2値化信号である。

【0054】次に、図8~図9を参照して、以下に示す種々のモードにおけるビデオ信号の流れについて説明する。本実施例のデジタル複写機であるステーション1001~1004は相互に接続されており、それぞれのステーションから読み込んだ画像原稿を自ステーションで複写する(これを"通常コピー"モードという)以外に、他のステーションに読み込んだ画像原稿をビデオ信号として送信するモード(これを"外部インタフェース出力"モードという)や、他のステーションで読み込んだ画像原稿をビデオ信号として受信してプリント出力するモード(これを"外部インタフェース入力"モードという)がある。

【0055】(通常コピーモード)

①ビデオ信号の流れ

以下の通りである。

【0056】画像原稿→CCD101→A/D及びS/H回路102→シェーディング回路103→入力マスキング回路104→セレクタ124(A入力を選択)→変倍回路105→LOG回路123→メモリ部106→セレクタ125(A入力を選択)→マスキングUCR回路107→y回路109→エッジ強調回路110→アドオン部129→プリンタ部352

②ビデオバスセレクタ130及びその周辺回路131の 信号設定

以下の通りである。

【0057】信号506、信号513、信号528、信号529、→ハイ"1"

信号537→ハイ"1"

信号509、511、517→X

信号 5 2 1 → X

信号537→ハイ"1"

(外部インタフェース出力モード)

①ビデオの流れ

以下の通りである。

【0058】画像原稿→CCD101→A/D及びS/ H回路102→シェーディング回路103→入力マスキング回路104→セレクタ124(A入力を選択)→変 倍回路 1 0 5 → セレクタ 1 2 5 (B入力を選択) → マスキング U C R回路 1 0 7 → y 補正回路 1 0 9 → エッジ強調回路 1 1 0 → ビデオバスセレクタ 1 3 0 → ビデオバスセレクタインタフェース周辺回路 1 3 1 → ビデオインタフェース 2 0 5 → 外部へ

②ビデオバスセレクタ130及びその周辺回路131の 信号設定

以下の通りである。

【0059】信号506、信号513→ハイ"1"

信号509、信号511→X

信号517、信号521、信号528、信号529→ロー"0"

信号537→ハイ"1"

(外部インタフェース入力モード)

①ビデオの流れ

以下の通りである。

【0060】外部から→ビデオインタフェース205→ビデオバスセレクタ130→セレクタ124(B入力を選択)→変倍回路105→LOG回路123→メモリ部106→セレクタ125(A入力を選択)→マスキングUCR回路107→ γ 補正回路109→エッジ強調回路110→ γ ドオン部129→ γ 7リンタ部352

ここでメモリ106の副走査ライトイネーブルは領域生成部に入力する536が用いられる。

【0061】②ビデオセレクタ及びその周辺回路131の1/O設定

以下の通りである。

【0062】信号506→ロー"0"

信号509→ロー"0"

信号 5 1 1 → X

信号513→ハイ"1"

信号517→ロー"0"

信号521、信号528→ハイ"1"

信号529→ロー"0"

信号537→ロー"0"

<プリンタ部352の構成>図7において、301はレーザ光を感光ドラム上に走査させるポリゴンスキャナであり、302は初段のマゼンタ(M)の画像形成部であり、303~305は各々、同様の構成のシアン

(C), イエロ(Y), ブラック(B)の各色について の画像形成部である。

【0063】図10に示すように、ポリゴンスキャナ301は、レーザ制御部(不図示)によりMCYBk独立に駆動されるレーザ素子401~404からのレーザビームは各色成分のデータに基づいて感光ドラム上を走査する。405~408は、走査されたレーザビームを検知し主走査同期信号を生成するBD検知部である。本実施例のように2枚のポリゴンミラーを同一軸上に配置し、1つのモータで回転させる場合は、例えば、M、CとY、Bk成分に基づくレーザビームでは主走査の走査50

方向が互いに逆方向になる。そのため、通常、M, C画像に対して、Y, Bk画像データは主走査方向に対して 鏡像になるようにする。

14

【0.0.6.4】マゼンタ(M)画像形成部302において、318はレーザ光の露光により潜像形成する感光ドラム、303は感光ドラム318上の潜像にトナー現像を行う現像機、304は現像機313に設置され、現像バイアスを印加してトナー現像を行うスリーブであり、315は感光ドラム318を所望に電位に帯電させる1次帯電器、317は転写後の感光ドラム318の表面を清掃するクリーナ、316はクリーナ317で清掃された感光ドラム318の表面を除電し1次帯電器315において良好な帯電を得られるようにする補助帯電器、330は感光ドラム318上の残留電化を消去する前露光ランプであり、319は転写ベルト306の背面から放電を行い感光ドラム318上のトナー画像を転写部材(記録用紙など)に転写する転写帯電器である。

【0065】309、310は転写部材を収納するカセットであり、308はカセット309、310から転写部材を供給する給紙部であり、311は給紙部308により給紙された転写部材を転写部材に吸着させる吸着帯電器であり、312は転写ベルト306の回転に用いられると同時に吸着帯電器311と対になって転写ベルト306に転写部材を吸着帯電させる転写ベルトローラである。

【0066】324は転写部材を転写ベルト306から分離し易くするための除電帯電器、325は転写部材が転写ベルト306から分離する際の量離放電による画像乱れを防止する量離帯電器、326~327は分離後の転写部材上のトナーの吸着力を補い画像乱れを防止する定着前帯電器である。322~323は転写ベルト306を除電し転写ベルト306を静電的に初期化するための転写ベルト除電帯電器、328は転写ベルト306の汚れを除去するベルトクリーナ、307は転写ベルト306の汚れを除去するベルトクリーナ、307は転写ベルト306から分離され定着前帯電器326~327で再帯電された転写部材上のトナー画像を転写部材上に熱定着させる定着器、340は定着器を通過する搬送路の転写部材を検知する排紙センサである。

【0067】329は給紙部308により転写ベルト306上に給紙された転写部材の先端を検知する紙先端センサであり、紙先端センサ329からの検出信号(ITOP1)はプリンタ部352からカラーリーダ部351に送られ、カラーリーダ部351からプリンタ部352にビデオ信号を送る際の副走査同期信号を生成するために用いられる。

【0068】
【0068】
《インタフェース部364の構成》図11
は図2に示した各ステーション1001~1004の1
/ F部1101~1104の詳細な構成を示す回路図である。なお、ここでは1台のステーションのインタフェース部について言及するので、そのインタフェース部に

関する図面参照番号は図7に示されているものに準拠して"364"とする。

【0069】I/F部364は、IPU1008とのイ ンタフェース201-(IPUインタフェース)、他のス テーションとのインタフェース202 (Rインタフェー スA) とインタフェース203 (Rインタフェース B)、IPU1108及び他のステーションとの通信を 制御するCPUインタフェース204、及び、自装置と のインタフェース(ビデオインタフェース)205の5 つより構成される。ここで、インタフェース202は自 装置のアドレス値と比べてアドレス値が小さいステーシ ョンとの接続に、インタフェース203は自装置のアド レス値と比べてアドレス値が大きいステーションとの接 続に用いられる。従って、図2の接続構成からわかるよ うに、このI/F部がマスタステーションのものである 場合には、インタフェース201とインタフェース20 3が用いられ、この I / F部がスレーブステーションの ものである場合には、インタフェース202とインタフ ェース203が用いられる。ここで、インタフェース2 02が図2で示した各ステーションの1/F部1101 ~1104における接続点Aに、インタフェース203 が接続点Bに当たる。

【0070】図11において、206、211、212、214、216はトライステートバッファ、207、209、210は双方向バッファ、208は後述する特別な双方向バッファ、213、215はトライステート機能を有するD型フリップフロップである。

【OO71】 また、BTCNO~BTCN10はCPU (不図示)によって設定される制御信号、218はIP U1008と自装置との通信線(4ビット)、219と 221は主走査同期信号(HSNC)と副走査同期信号 (1TOP) の計2ビットの信号、220と222は8 ビットのビデオ信号3系統(24ビット)+バイナリ信 号(Bi)+画像クロック(CLK)+主走査イネーブ ル信号(HVE)の計27ビットの信号、223は他の ステーションとの4ビットの通信線、224は他のステ ーションとの8ビットの通信線、225はビデオ信号3 系統+Bi+HVE+副走査ビデオイネーブル信号 (VVE)+CLKの計28ビットの信号、226はCLK とVVEの計2ビットの信号、228と233はビデオ 信号3系統+Bi+HVEの計26ビットの信号、23 2と235はCLK、234はCLKとVVEの計2ビ ットの信号、236はVVE、237はビデオ信号3系 統+Bi+HVE+VVE+CLKの計28ビットの信 号、238はビデオ信号3系統+Bi+CLK+HVE +HSNC+VVE+ITOPの計30ビットの信号で ある。

【0072】次に各モードにおける 1/0ポートの制御 及び信号の流れについて述べる。

【0073】ここで、トライステートのバッファ20

6、211、212、214、216はそれぞれに印加 される制御信号(BTCN2、BTCN10、BTCN 9、BTCN7、BTCN8)の状態がロー"0"でイ ネーブル、ハイ" 1" でハイインピーダンス状態にな る。双方向バッファ207、209、210は、例え ば、LS245のような素子で実現され、それぞれのG 及びD端子に印加される制御信号(BTCNOとBTC N1、BTCN3とBTCN4、BTCN5とBTCN 6) に従って、G端子の状態がロー"O"かつD端子の 状態がロー"O"でデータの流れがB→Aとなり、G端 子の状態がロー"0"かつD端子の状態がハイ"1"で データの流れが $A \rightarrow B$ に、G端子の状態がハイ"1"で データはいづれの方向にも流れない(アイソレーショ ン) 状態になる。D型フリップフロップ213、215 はイネーブル信号(BTCN7、BTCN8)の状態が ロー"0"時にイネーブル、ハイ"1"時にハイインピ ーダンスとする。

【0074】本実施例の重連システムでは図1に示すようにIPU1008やステーション1001~1004が互いに接続されているが、ステーション1001~1004各々は同じ構成をもつので、それぞれのステーションはそれがマスタステーションとして割り当てられてもスレーブステーションとして割り当てられてもも互いに対する画像ビデオデータを転送或は送受信できるように以下に示すようなデータ送受信転送モードをもつ。

【0075】以下のモードに関する説明では、1つのステーションを中心に考え、そのステーションについて言及するときは"自装置"と言い、その"自装置"にデータを取り入れずただデータを中継して別のステーション或は/及びIPUに転送する時には"自装置中継"と言う。また、自装置のアドレス値より小さいアドレス値をもつステーションは"下位アドレス装置"と、大きいアドレス値をもつステーションは"上位アドレス装置"という。

【0076】モード1: IPU→自装置中継→下位アドレス装置

モード2: IPU→自装置中継→上位アドレス装置

モード3: IPU→自装置

モード4:下位アドレス装置→自装置中継→上位アドレス装置

モード5:下位アドレス装置→自装置

モード 6 : 上位アドレス装置→自装置中継→下位アドレス装置

モード7:上位アドレス装置→自装置

モード8:自装置→IPU

モード9:自装置→下位アドレス装置

モード10: 自装置→上位アドレス装置

モード11: IPU→自装置中継→上位アドレス装置及び 下位アドレス装置

モード12: I P U→自装置及び自装置中継→下位アドレ

ス装置

モード13: IPU→自装置及び自装置中継→上位アドレ

モード14: _I_P U→自装置及び自装置中継→上位アドレ ____B T_C N 9→ハイ"1"

ス装置及び下位アドレス装置

モード15:下位アドレス装置→自装置及び自装置中継→ 上位アドレス装置

モード16:上位アドレス装置→自装置及び自装置中継→ 下位アドレス装置

モード17: 自装置→ I P U及び下位アドレス装置

モード18: 自装置→ I P U 及び上位アドレス装置

モード19: 自装置→上位アドレス装置及び下位アドレス 装置

モード20: 自装置→ I P U及び上位アドレス装置及び下 位アドレス装置

なお、 IPU1008とのデータ送受信及び中継にはイ ンタフェース201が下位アドレス装置とのデータ送受 信及び中継にはインタフェース202が上位アドレス装 置とのデータ送受信及び中継にはインタフェース203 が用いられる。

【0077】次に、各モードにおけるCPUからの制御 信号BTCNO~BTCN10の状態と画像ビデオ信号 と同期信号の流れは以下の通りである。

【0078】 <モード1>

B T C N O →ハイ "1"

B T C N 1 → □ - "0"

BTCN2→□- "0"

BTCN3→□- "0"

BTCN4→□- "0"

BTCN5 \rightarrow X

BTCN6 \rightarrow X

B T C N 7→ハイ"1"

BTCN8 \rightarrow X

B T C N 9 →ハイ"1"

B T C N10→□- "0"

ただし、Xは該当するモードの処理に当たっては無関係 の信号を示す。

【0079】画像ビデオ信号と同期信号の流れは、図1 1に示す信号線参照番号に基づくなら以下のようにな る。

 $[0080]238\rightarrow219\rightarrow221$

 $222 \rightarrow 220 \rightarrow 228 \rightarrow 225$

 $238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 225$

<モード2>

BTCNO→ハイ"1"

B T C N 1 → □ - "0"

B T C N 2 → □ - "0"

BTCN3 \rightarrow X

B T C N 4 →ハイ"1"

BTCN5→ロー"0"

BTCN6→ロー"O"

BTCN7→ハイ"1"

BTCN8→□- "0"

B T C N 10→□- "O"

画像ビデオ信号と同期信号の流れは、図11に示す信号 線参照番号に基づくなら以下のようになる。

18

 $[0081]238 \rightarrow 219 \rightarrow 221$

 $222 \rightarrow 220 \rightarrow 228 \rightarrow 233 \rightarrow 237$

 $238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 234 \rightarrow 237$

<モード3>

BTCN0→ハイ"1"

B T C N 1 → □ - "0"

BTCN2→□- "0"

BTCN3 \rightarrow X

BTCN4 \rightarrow X

BTCN5 \rightarrow X

BTCN6 \rightarrow X

BTCN7 \rightarrow X

 $B T C N 8 \rightarrow X$ 20

BTCN9→ハイ"1"

B T C N 10→ロー "O"

画像ビデオ信号と同期信号の流れは、図11に示す信号 線参照番号に基づくなら以下のようになる。

 $[0082]238\rightarrow219\rightarrow221$

 $222 \rightarrow 220 \rightarrow 238$

<モード4>

 $B T C N O \rightarrow X$

BTCN1 \rightarrow X

BTCN2 \rightarrow X

BTCN3→ハイ"1"

B T C N 4 → □ - "0"

BTCN5→□- "0"

BTCN6→□- "0"

B T C N 7 →ハイ "1"

BTCN8→□- "0"

BTCN9 \rightarrow X

B T C N10→ハイ"1"

画像ビデオ信号と同期信号の流れは、図11に示す信号 40 線参照番号に基づくなら以下のようになる。

 $[0083]225\rightarrow228\rightarrow233\rightarrow237$

 $225 \rightarrow 226 \rightarrow 234 \rightarrow 237$

<モード5>

 $B T C N O \rightarrow X$

BTCN1→ハイ"1"

BTCN2 \rightarrow X

BTCN3→ハイ"1"

B T C N 4 → □ - "0"

BTCN5 \rightarrow X

BTCN6→ハイ"1"

B T C N 7 →ハイ"1" BTCN8→□- "0" BTCN9→□- "0" - B T C N10→ハイ-"1" 画像ビデオ信号と同期信号の流れは、図11に示す信号 線参照番号に基づくなら以下のようになる。 [0084] $225 \rightarrow 228 \rightarrow 233 + 234 \rightarrow 220 \rightarrow 238$ $2\ 2\ 5\rightarrow 2\ 2\ 6\rightarrow 2\ 3\ 4\rightarrow 2\ 3\ 6\rightarrow 2\ 3\ 8$ <モード6> BTCNO \rightarrow X BTCN1 \rightarrow X BTCN2 \rightarrow X B T C N 3→□- "0" B T C N 4 → □ - "0" BTCN5→ハイ"1" B T C N 6 → □ — "O" B T C N 7 → □ - "O" B T C N 8→ハイ"1" BTCN9 \rightarrow X B T C N10→ハイ"1" 画像ビデオ信号と同期信号の流れは、図11に示す信号 線参照番号に基づくなら以下のようになる。 $[0085]237\rightarrow233\rightarrow228\rightarrow225$ $237 \rightarrow 234 \rightarrow 226 \rightarrow 225$ <モード7> $B L C N O \rightarrow X$ B T C N 1 →ハイ "1" B T C N $2 \rightarrow X$ BTCN3 \rightarrow X BTCN4 \rightarrow X B T C N 5→ハイ"1" B T C N 6 → □ - "0" BTCN7 \rightarrow X B T C N 8 →ハイ"1" BTCN9→□- "0" B T C N10→X 画像ビデオ信号と同期信号の流れは、図11に示す信号 線参照番号に基づくなら以下のようになる。 [0086] $237 \rightarrow 233 + 234 \rightarrow 220 \rightarrow 238$ $237 \rightarrow 234 \rightarrow 236 \rightarrow 238$ <モード8> BTCNO→□- "O" B T C N 1 → □ - "O" B T C N 2 → □ - "0" BTCN3 \rightarrow X BTCN4 \rightarrow X BTCN5 \rightarrow X

BTCN6 \rightarrow X

BTCN7 \rightarrow X BTCN8 \rightarrow X BTCN9→ハイ"1" B T C N 10→X 画像ビデオ信号と同期信号の流れは、図11に示す信号 線参照番号に基づくなら以下のようになる。 $[0087]238\rightarrow220\rightarrow222$ $238 \rightarrow 219 \rightarrow 221$ <モード9> $B L C N O \rightarrow X$ BTCN1→ハイ"1" BTCN2 \rightarrow X BTCN3→□- "0" BTCN4→ロー"0" BTCN5 \rightarrow X BTCN6 \rightarrow X B T C N 7 → □ - "0" BTCN8 \rightarrow X BTCN9→ハイ"1" B T C N 10→ロー "0" 画像ビデオ信号と同期信号の流れは、図11に示す信号 線参照番号に基づくなら以下のようになる。 [0088] 238 \rightarrow 220 \rightarrow 228 \rightarrow 225 $238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 225$ <モード10> $B T C N O \rightarrow X$ BTCN1→ハイ"1" BTCN2 \rightarrow X BTCN3 \rightarrow X B T C N 4 →ハイ"1" B T C N 5 → □ -- "0" B T C N 6 → □ - "0" B T C N 7 →ハイ "1" B T C N 8 → □ - "0" B T C N 9 →ハイ"1" B T C N 10→□ - "0" 画像ビデオ信号と同期信号の流れは、図11に示す信号 線参照番号に基づくなら以下のようになる。 [0089] 238 \rightarrow 220 \rightarrow 228 \rightarrow 233 \rightarrow 237 $238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 234 \rightarrow 237$ <モード11> BTCNO→ハイ"1" B T C N 1 → □ — "0" BTCN2→□- "0" B T C N 3→□- "0" B T C N 4 → □ - "0" B T C N 5 → □ — "0" B T C N 6 → □ - "0" B T C N 7 →ハイ "1"

B T C N 8 → □ - "0"

 $237 \rightarrow 233 + 234 \rightarrow 220 \rightarrow 238$

21

BTCN3→□- "0"

```
B T C N 4 → □ - "0"
BTCN9→ハイ"1"
                                                         BTCN5→□- "0"
BTCN10→ロー "0"
                                                         BTCN6→□- "0"
画像ビデオ信号と同期信号の流れは、図11に示す信号
                                                         BTCN7→ハイ"1"
線参照番号に基づくなら以下のようになる。
                                                         BTCN8→□- "0"
[0090] 238 \rightarrow 219 \rightarrow 221
                                                         BTCN9→ハイ"1"
222 \rightarrow 220 \rightarrow 228 \rightarrow 225
                                                         B T C N 10→□— "0"
222 \rightarrow 220 \rightarrow 228 \rightarrow 233 \rightarrow 237
238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 225
                                                         画像ビデオ信号と同期信号の流れは、図11に示す信号
238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 234 \rightarrow 237
                                                         線参照番号に基づくなら以下のようになる。
                                                          [0093]238\rightarrow219\rightarrow221
<モード12>
                                                    10
BTCNO→ハイ"1"
                                                         222 \rightarrow 220 \rightarrow 238
B T C N 1 → □ - "0"
                                                         222\rightarrow220\rightarrow228\rightarrow225
B T C N 2 → □ - "0"
                                                         222 \rightarrow 220 \rightarrow 228 \rightarrow 233 \rightarrow 237
B T C N 3 → □ - "0"
                                                         238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 225
B T C N 4 → □ - "0"
                                                         238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 234 \rightarrow 237
                                                         <モード15>
BTCN5\rightarrowX
BTCN6→ハイ"1"
                                                         B T C N O \rightarrow X
B T C N 7 →ハイ "1"
                                                         BTCN1\rightarrowX
                                                         BTCN2→ハイ"1"
BTCN8\rightarrowX
B T C N 9→ハイ"1"
                                                         B T C N 3→ハイ"1"
                                                         B T C N 4 → □ — "0"
B T C N 10→ロー "0"
                                                         B T C N 5 → □ — "0"
画像ビデオ信号と同期信号の流れは、図11に示す信号
                                                         BTCN6→□- "0"
線参照番号に基づくなら以下のようになる。
                                                         B T C N 7 →ハイ "1"
[0091]238 \rightarrow 219 \rightarrow 221
                                                         B T C N 8 → □ — "0"
222 \rightarrow 220 \rightarrow 238
                                                         BTCN9→□- "0"
222 \rightarrow 220 \rightarrow 228 \rightarrow 225
                                                         B T C N 10→ハイ "1"
238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 225
<モード13>
                                                         画像ビデオ信号と同期信号の流れは、図11に示す信号
BTCNO→ハイ"1"
                                                         線参照番号に基づくなら以下のようになる。
B T C N 1 → □ - "0"
                                                          [0094]225\rightarrow228\rightarrow233\rightarrow237
B T C N 2 → □ - "0"
                                                         225 \rightarrow 226 \rightarrow 234 \rightarrow 237
                                                         225 \rightarrow 228 \rightarrow 234 + 233 \rightarrow 220 \rightarrow 238
B T C N 3 \rightarrow X
B T C N 4 →ハイ "1"
                                                         225 \rightarrow 226 \rightarrow 234 \rightarrow 236 \rightarrow 238
B T C N 5 → □ - "0"
                                                         <モード16>
BTCN6→□- "0"
                                                         BTCNO\rightarrowX
                                                         BTCN1→ハイ"1"
BTCN7→ハイ"1"
B T C N 8 → □ - "0"
                                                         BTCN2\rightarrowX
B T C N 9 →ハイ "1"
                                                         B T C N 3 → □ - "0"
B T C N 10→□- "O"
                                                         B T C N 4 → □ — "0"
                                                         B T C N 5→ハイ"1"
画像ビデオ信号と同期信号の流れは、図11に示す信号 40
線参照番号に基づくなら以下のようになる。
                                                         B T C N 6 → □ — "0"
                                                         B T C N 7 → □ - "O"
[0092]238\rightarrow219\rightarrow221
                                                         B T C N 8→ハイ"1"
222 \rightarrow 220 \rightarrow 238
222 \rightarrow 220 \rightarrow 228 \rightarrow 233 \rightarrow 237
                                                         BTCN9\rightarrowX
                                                         B T C N 10→ハイ "1"
238 \rightarrow 236 + 220 \rightarrow 226 \rightarrow 234 \rightarrow 237
<モード14>
                                                         画像ビデオ信号と同期信号の流れは、図11に示す信号
BTCNO→ハイ"1"
                                                         線参照番号に基づくなら以下のようになる。
BTCN1\rightarrowD-"0"
                                                          [0095]237\rightarrow233\rightarrow228\rightarrow225
B T C N 2 → □ - "0"
                                                         237 \rightarrow 234 \rightarrow 226 \rightarrow 225
```

```
237 \rightarrow 234 \rightarrow 236 \rightarrow 238
くモード17>
B T C N O → □ - "O"
B T C N 1 → □ - "0"
B T C N 2 → □ — "0"
B T C N 3 → □ - "0"
B T C N 4 → □ — "0"
BTCN5\rightarrowX
BTCN6\rightarrowX
B T C N 7 →ハイ"1"
BTCN8\rightarrowX
BTCN9→ハイ"1"
B T C N 10→□- "O"
画像ビデオ信号と同期信号の流れは、図11に示す信号
線参照番号に基づくなら以下のようになる。
[0096]238\rightarrow219\rightarrow221
238 \rightarrow 220 \rightarrow 222
238 \rightarrow 228 \rightarrow 225
238 \rightarrow 220 + 236 \rightarrow 226 \rightarrow 225
<モード18>
BTCNO→□- "O"
B T C N 1 → □ - "0"
B T C N 2 → □ - "0"
B T C N 3 \rightarrow X
B T C N 4 →ハイ "1"
B T C N 5 → □ — "0"
BTCN6→□- "0"
BTCN7→ハイ"1"
BTCN8→□- "0"
B T C N 9 →ハイ "1"
B T C N10→□- "0"
画像ビデオ信号と同期信号の流れは、図11に示す信号
線参照番号に基づくなら以下のようになる。
[0097]238\rightarrow219\rightarrow221
238 \rightarrow 220 \rightarrow 222
238 \rightarrow 228 \rightarrow 233 \rightarrow 237
238 \rightarrow 220 + 236 \rightarrow 226 \rightarrow 234 \rightarrow 227
くモード19>
B T C N O \rightarrow X
BTCN1→ハイ"1"
BTCN2 \rightarrow X
B T C N 3 → □ — " 0"
BTCN4→□-"0"
B T C N 5 → □ - " 0"
BTCN6→□-"0"
BTCN7→ハイ"1"
BTCN8\rightarrowX
BTCN9→ハイ"1"
B T C N 10→□-" 0"
```

画像ビデオ信号と同期信号の流れは、図11に示す信号 50

```
線参照番号に基づくなら以下のようになる。
 [0098]238 \rightarrow 228 \rightarrow 225
 238 \rightarrow 228 \rightarrow 233 \rightarrow 237
 238 \rightarrow 220 + 236 \rightarrow 226 \rightarrow 225
 238 \rightarrow 220 + 236 \rightarrow 226 \rightarrow 234 \rightarrow 237
 くモード20>
 B T C N O → □ - "O"
 B T C N 1 → □ - "0"
 B T C N 2 → □ - "0"
BTCN3→□- "0"
 B T C N 4 → □ - "0"
BTCN5→□- "0"
 BTCN6→ロー"0"
 B T C N 7→ハイ"1"
 BTCN8→□- "0"
 BTCN9→ハイ"1"
 B T C N 10→ □ - "O"
画像ビデオ信号と同期信号の流れは、図11に示す信号
線参照番号に基づくなら以下のようになる。
 [0099]238 \rightarrow 219 \rightarrow 221
 238 \rightarrow 220 \rightarrow 222
 238\rightarrow228\rightarrow225
 238 \rightarrow 228 \rightarrow 233 \rightarrow 237
 238 \rightarrow 220 + 236 \rightarrow 226 \rightarrow 225
 238 \rightarrow 220 + 236 \rightarrow 226 \rightarrow 234 \rightarrow 237
 [IPUの構成説明] 図12は画像メモリユニット(I
 PU) 1008の内部構成を示すブロック図である。 I
 PU1008は、外部機器のカラー画像信号(各ステー
ションのカラーリーダ部351からの画像データやホス
ト1009からの画像データ)を画像メモリ604に記
憶する機能と、外部機器(ここでは各ステーションのカ
ラーリーダ部351)と同期をとって外部機器に画像メ
モリに記憶されたデータを出力する機能を有する。
 【0100】次にそれぞれの機能について説明する。
 【0101】(1)カラー画像信号の画像メモリへの書
 き込み
入力モードに設定された外部インタフェース609から
入力されるRGB信号616~618(各8ビット)
は、トライステートバッファ610と信号線620~6
22を介して周波数変換部613(FIFOが使用され
ている) に送られる。この時、トライステートバッファ
 610及び612はイネーブル状態に、また、別のトラ
イステートバッファ611はディスイネーブルになるよ
 うにCPU603で制御される。
 【0102】次に周波数変換部613では書き込みクロ
ック信号として外部クロック (3ビットの信号618の
内の1ビット)、 書き込みリセット信号として外部主走
査同期信号(3ビットの信号618の内の1ビット)、
むき込みイネーブル信号として外部主走査同期信号(3)
```

ビットの信号618の内の1ビット)を用い、一方、読

【0109】 <基本操作画面>図13は上述した図6に示した各ステーションの操作パネル上のLCD表示部50005の詳細な外観図であり、電源投入時、またはリセット動作時等のリセット状態における基本画面を示す。

26

み出しクロック信号として内部クロック(VCKIPU)、読み出しリセット信号として内部主走査同期信号(外部主走査同期信号及びVCKIPUによって内部SYNC発生器614で生成されるHSYNCIPU)、読み出しイネーブル信号(内部主走査同期信号及びVCKIPUによりエリアイネーブル生成器(不図示)により発生されるENIPU2)を制御信号として用いることにより、外部の画像クロックとメモリユニット内の画像クロックとの同期がとられ(主走査同期信号はカラーリーダ部351のものが使用される)、ここからの出力 10信号623~625はデータコントローラ607を介して画像メモリ604に書き込まれる。

【0110】図13においてステータスバー50101はステーションまたは重連システムの状態を表すメッセージが表示され、リセット状態では『コピーできます』と言うメッセージが表示されている(以降、『』でくくられた文章はステータスバー50101に表示されるメッセージ内容を表す)。プリント枚数はプリント枚数表示部50102に表示され、リセット状態では"1"が設定されている。尚、プリント枚数は上述したようにテンキー50000により、設定できる。

【0103】なお、画像メモリ604は1画素についてRGB各8ビット計24ビット分の容量を持ち、この時のメモリ制御信号の制御は、外部副走査イネーブル信号(2ビットの信号619の内の1ビット)やHSYNCIPU等に基づいてセレクタ608を介して、アドレスコントローラ606によって行なわれる。

【0111】記録用紙の種類は記録用紙表示部50103に表示され、リセット状態ではオート用紙が選択されている。記録用紙はステーションに用意されている複数の給紙カセットまたは手差しトレイのどこから給紙するかを選択する事によって、選択できる。

【0104】次にホスト1009から画像メモリ604への書き込みについて説明する。

【0112】用紙選択キー50105を押下すると、LCD表示部50005は図14に示す状態になる。図14において、キー501a1は手差しトレイ、キー501a2は上段カセット、キー501a3は中段カセット、キー501a4は下段カセットというふうに各キーは各々定まった給紙元を示しており、それぞれのキートップはその給紙元に用意されている用紙の種類を表している。例えばこの状態で上段の記録紙カセットを抜いてしまうとキー501a2のキートップは空白となり、キー501a2は選択不可能となり、再びカセットを装着するとそのカセットのラベルまたはセットされている用紙サイズを感知して、キー501a2のキートップにはその記録用紙の種類が表示される。

【0105】ホスト1009からCPU603へは、例えば、GPIB等で送られた画像データが外部インタフェース609及び信号線601を介してCPU603のメモリ(不図示)に蓄積される。そして、CPU603がアドレスコントローラ605、データコントローラ607、セレクタ608を制御して、画像メモリ604にホスト1009からの画像データを書き込むことで実現される。ここで、この画像転送はDMAを用いても良い。

【0113】図501aにおいて手差しトレイを示すキー501a1を押下すると、手差しトレイのみ操作者により記録用紙の指定を行う必要があるため、LCD表示部50005は図15に示す表示となる。図15に示すキー501b1等のキートップは固定であり、ステーションに用意されている記録用紙とは関係なく、単に用紙サイズを表している。

【0106】(2)外部機器へのカラー画像データ出力画像メモリ604に記憶されたデータは、データコントローラ607、トライステートバッファ611を経て、外部インタフェース609を介して、カラーリーダ部351の外部インタフェースに対して出力されるように、外部インタフェース609、トライステートバッファ612から入力される主走査同期信号及び副走査同期信号に基づいてアドレスコントローラ606で生成されるアドレスにより画像メモリ604から読み出される。この時、ENIPU2はディスイネーブル状態、トライステートバッファ611~612はイネーブル状態に、トライステートバッファ610はディスイネーブル状態になるようCPU603で制御される。

【0114】一方、図13、図14、又は図15の状態でオート用紙選択キー50106を押下すると、図13に示す記録用紙表示部50103の表示は「オート用紙」になり、出力する画像サイズが判明した時点でその画像を出力するのに最適な用紙を用意している給紙元を選択する。

【0107】次に、以上の構成の重連システムを用いて、ある一つのステーションのリーダの原稿台上に置かれた原稿画像を複数のステーションから出力する際の手順を説明する。

【0115】また、図13の基本操作画面において、出力画像の入力画像に対する変倍率は変倍率表示部50104に表示され、例えばA4サイズからB5サイズへの定型用紙サイズ間の変倍は、定型拡大キー50107または定型縮小キー50108を押下する事により、LC

【0108】図1に示すように4台のステーション1001~1004が重連システムに接続されていて、ステーション1001のカラーリーダ部351のプラテン55上に原稿画像となるものが置かれているとする。

ーション1003は何らかのジョブ実行中である場合には、ステーション1002(以下、自ステーションと呼ぶ)の操作パネルのLCD表示部50005には、図1

9に示す画面が表示される。

28

D表示部50005は図16に示す表示となる。図16 において変倍率表示部50104には、定型拡大キー5 0107または定型縮小キー50108の押下により、 その変倍の設定がサイクリックに表示される。

【0116】また、図13及び図16において定型用紙サイズ間以外の変倍率が必要な場合には、ズームインキー50115またはズームアウトキー50117を押下すると、その度にその時点での変倍率からそれぞれ1%刻みで上下する。オートズームキー50116を押下すると、変倍率表示部50104の表示はオート倍率になり、入力する画像サイズが判明した時点で、選択されている記録用紙に出力するのに最適な変倍率を決定する。

【0117】図13において、重連設定キー50110 は重連システムに接続されている他のステーションが存在しないときには表示されないか、又は押下されても機能しない。

【0118】重連設定キー50110を押下すると、接続された他のステーションにおいて現在重連コピー中であれば重連コピー中フラグが立っているため、図17に示すメッセージウィンドウを一定時間表示して、重連設定には移行しない。一方、重連コピー中フラグが立っていない場合には重連設定がなされ、重連設定キー50110は、図18に示すように反転し、ステータスバーと共に重連設定がなされている事を示す。

【0119】<画像の転送元アービトレーションモード >図13において重連設定キー50110が押下された 時点で、重連システムは重連コピー要求を出した複数の ステーションのうち、画像の転送元となるステーション を決定する転送元アービトレーションモードに入る。重 連システムが転送元アービトレーションモードに入った 時点で、重連コピー要求を出した各ステーションは重連 コピーに関する送信内容を一定時間(本実施例では約1 00msec) 保持する。その間に、重連設定キー50 601が押下された各ステーション(以下これを画像の 転送元ステーションまたは単に画像の転送元と呼ぶ) は、自分より優先順位の高いステーションが重連要求を 出していることを確認した場合には重連コピー要求を取 り下げ、重連設定に移行しない。一方、自分より優先順 位の高いステーションは重連コピー要求を出していない ことを確認すると、重連設定に移行し、重連コピーが終

【0120】<重連ステーションの選択設定>図1に示すように、ステーション1001~1004の4台のステーションが重連システムに接続されていて、ステーション2のリーダ部原稿台上に原稿となるものが置かれているとする。

了するまで重連コピー中フラグを保持する。

【0121】例えば図1におけるステーション1002の操作パネル内の重連設定キー50110が押下されると、例えばステーション1002、ステーション1004は異常がなく使用でき、ステーション1001、ステ

【0122】図19は重連設定に入ったときに表示され る重連ステーション設定画面であり、ベースウィンドウ 50201とその上に配置された各ステーション設定キ -50202、設定終了キー50203、設定クリアキ -50204、重連グループキー50205、オート重 連設定キー50206、ローカル設定キー50207等 からなる。ステーション設定キー50202のキートッ プ中央の数字はそのキーを押下することにより設定され るステーション番号であり、アドレスの若い順に"1" から順に設定されており、図19に示すベースウィンド ウ50201上においてその位置は固定である。例え ば、本実施例ではステーション番号1はアドレス"0" であるステーション1001を、ステーション番号2は アドレス"1"であるステーション1002(自ステー ション)を、ステーション番号3はアドレス"2"であ るステーション1003を、ステーション番号4はアド レス"3"であるステーション1004をそれぞれ示し

【0123】ステーション設定キー50202のキートップの詳細を図20に示す。図20において、50302はキートップの中央の表示部分を示す。

【0124】図20において、状態50303で示すようにキートップ表示が実線の縁取りに白抜きの矩形である場合には、その50302のアドレスで示されるステーションが選択可能であることを表している。即ち、本実施例ではアドレス"0"で示されるステーション1001が選択可能であることを示している。また、状態50304は、そのステーションが既に設定済みであることを示し、状態50305はそのステーションが重建システムに接続されていないことを示し、状態50307はそのステーションが50302で示される記録用紙が無いことを示す。また、状態50308はそのステーションにジャム、トナー切れ等、何らかのエラーが起こっていることを示し、重連設定は不可能であるか又は禁止されている。状態50309は、そのステーションは現在何らかのジョブが実行中であることを示す。

【0125】以上のように、選択可能なステーションの条件とは、まず重連接続されていること、その時点で設定されている出力用紙が給紙可能であること、ジャムまたはトナー切れ等のエラーが起きていないこと、及びまだ選択されていないこと等である。また、図19においてステーション設定キー50202は反転することにより選択済み状態を示すが、選択済み状態で再び押下する事により、選択を解除する事ができる。

【0126】図19において設定終了キー50203が 押下された時点で少なくとも1つのステーションがステ

ーション設定キー50202により選択されている場合に、重連設定がなされる。また、設定クリアキー50204の押下により全てのステーションに対する選択を解除して重連設定を終了することもできる。また、予め複数のステーションをグループとして設定しておいた場合には、グループキー50205を押下することでグループ化された全ステーションが選択できる。オート重連設定キー50206を押下すると、自ステーションに所定の条件のプリント要求が発生した場合に、自動的に重連接続されている他のステーションに対して重連設定を行っ。オート重連処理について図21を参照して説明する。

【0127】図21は、本実施例におけるオート重連処理のフローチャートである。まずステップS5101で自ステーションにプリント要求が発生すると、ステップS5102で自ステーションはオート重連設定がなされているかをチェックする。ステップS5102でオート重連設定がなされていなければオート重連設定は行わないが、オート重連設定がなされているのであれば、ステップS5103に進む。ステップS5103では、ステップS5101で発生したプリント要求が、自ステーションが備えるソータビン数より多い部数でソート設定されたプリント要求であるのかが判定される。ステップS5104に進み、重連接続された他のステーションからソータ機能を備えたステーションを選択し、ステップS5106に進む。

【0128】一方、ステップS5103でソータビン数以上のソートプリント要求でなければ、他の全ステーションを選択した状態でステップS5105に進み、全プリント枚数が30枚以上の設定のプリント要求であるかを判定する。ステップS5105で30枚以上のプリント要求であればステップS5106に進むが、30枚未満であればオート重連設定を行わない。ステップS5106では、既に選択されたステーションのうち、プリント要求で設定された記録用紙が給紙可能であるステーションを選択する。そしてステップS5107において、以上選択されたステーションに対して、自動的に重連設定を行う。

【0129】また、オート重連設定を行う際の、各ステ 40 ーションへのプリント枚数の分配の様子を図22に示す。図22において、自ステーションをAとし、また、B, Cは他の重連接続されたステーションとし、NはAにおけるプリント設定枚数である。この時、設定枚数Nが30枚未満であればオート重連設定は行わず、ステーションAのみで30枚全てを出力し、ステーションB, Cは出力を行わない。また、設定枚数Nが30枚以上60枚未満であれば、ステーションAはステーションBのみに対してオート重連設定を行い、その出力枚数はN/2ずつとする。また、設定枚数Nが60枚以上90枚未 50

満であれば、ステーションAはステーションB及びCに対してオート重連設定を行い、その出力枚数はN/3ずつとする。設定枚数が90枚以上となる場合は、重連接続されたステーションを増やすか、または1台のステーションにおける出力枚数の分担を増やすことにより、対応する。

【0130】図19において、ローカル設定キー50207を押下すると、図23に示すローカル設定画面が現れる。図23は重連設定された他のステーションに対して、自ステーションから設定を行うローカル設定のための画面を表す。図19において50901は選択したステーションの操作パネルと同等の機能を有する設定ウィンドウであり、即ち、上述した図13と同等の機能を有する。50904はステーション選択タグであり、ローカル設定を行うステーションを選択する。尚、50903及び50905は、ステーション選択タグ50904等で示されるステーションアドレス表示の前進及び後退タグである。

【0131】ステーション選択タグ50904により選択されたステーションの設定アドレスは、選択ステーション表示部50902に表示される。そして、設定ウィンドウ50901でローカル設定を行った後、ローカル設定を終了キー50906を押下することにより、ローカル設定を終了する。尚、ステーション選択タグ50904は、上述した図20と同様にステーションの各状態を表現することができる。その詳細を図24に示し、説明を省略する。

【0132】<画像転送先ステーションの確定>図19で示される重連ステーション設定画面より、ステーション選択キー50202の押下により選択されたステーション(以下これを画像転送先ステーションまたは単に画像転送先と呼ぶ)には、画像転送元ステーションより画像転送先要求が出される。画像転送先要求を受け取った画像転送先ステーションは、その状態に依らず操作パネルに図25に示すダイアログウィンドウを表示し、操作者に重連コピー要求があったことを報知する。

【0133】ここで操作者がNGキー50502を押下することにより画像転送先となることを拒否すると、画像転送先ステーションでは画像転送先禁止フラグを立てる。操作者がOKキー50501を押下するか、または一定時間(本実施例においては5sec)入力がない場合には、画像転送先となることを承諾したとみなし、図26に示すように、ステータスバー50602に『重コピーします』と表示し、操作パネル上の全てのキーが聞かなくなる。ただし、現在何らかのジョブ実行中(例えば、ローカルコピー中であったり、コンピュータ等外部装置からのプリント要求に対してプリント処理を実行中)である場合には、画像転送先の操作パネル上には上述した図18に示す画面が表示される。そして、ジョブの終了を待って、画像転送先として確定する。

【0134】また、画像の転送元ステーションにおいては、画像転送先要求を発行して一定時間(本実施例においては5sec)の後に、画像転送先の画像転送先禁止フラグを確認し、フラグが立っていなければステーションの選択を確定し、図19及び図23に示す対応するステーションのキー表示を反転させて操作者に選択されたステーションを報知する。

【0135】図19に示すステーション選択キー50202の押下からそのステーションが画像転送先として確定するまでの間、ステーション選択キー50202は反転表示を繰り返し、選択したステーションがまだ転送先として確定していないことを表す。また、画像転送元ステーションは重連接続されたステーションに画像転送先禁止フラグが立っているのを確認すると、禁止されたステーションの設定を解除し、図19に示すステーション設定画面上の対応するステーション設定キー50202の表示を替え、選択禁止であることを操作者に報知する。

【0136】図19に示す重連ステーション設定画面において、自ステーション1002と、ステーション1001、1003、1004とを重連接続するようにステーション設定キー50202を選択した結果、例えばステーション1003のみが操作者により接続拒否されると、図19に示す重連設定画面は図27に示すようになる。

【0137】図27に示す画面により、ステーション1001,1002,1004は重連設定されているが、ステーション1003は設定禁止ステーションとして重連設定不可となったことが分かる。そして、設定終了キー50203を押下すると、図28に示すように『重連30コピーできます』というメッセージがメッセージバーに表示され、重連コピー準備完了となる。

【0138】以上説明したようにして本実施例における 重連設定が確定されるが、本実施例における重連設定が 行われる様子を、図29を参照して簡潔にまとめて説明 する。

【0139】図29は、本実施例における重連設定の様子を上述した各図に示す画面の遷移によって説明した図である。図29におけて重連システムは、上述した図1に示す構成であり、マスタステーションとしてステーション1001、スレープステーションとしてステーション1002、1003、1004が存在している。

【0140】図29において、50401は上述した図13に示す基本画面である。ただし、ステーション1001及び1003は現在コピージョブ実行中であり、

『コピーしています。』のメッセージが表示されている ものとする。

【0141】ここで、ステーション1002の操作パネルから重連設定キー50110が押下された場合、重連システム全体が画像転送元アービトレーションモードと 50

なり、各ステーションの重連要求を確認する。

【0142】画像転送アービトレーションモードを経てステーション1002が画像転送元ステーションとして確定すると、ステーション1002の操作パネルには、50402の上述した図19に示す重連ステーション設定画面が表示される。そして、画面50402においてステーション1001、1003、1004について重連設定を行うようにステーション設定キー50202を押下すると、重連システムは画像転送先ステーション確定モードとなる。

【0143】画像転送先ステーション確定モードにおいて、ステーション1001,1003,1004は各操作パネルに50403の図25で示すステーション確認画面を表示し、画像転送先として設定してもよいかが確認される。図29においては、ステーション1002は操作者により画像転送先となるのを承諾され、ステーション1003は操作者により画像転送先となるのを拒否され、ステーション1004は操作者による返答が所定時間無かったため、承諾したとみなされる例を示す。

【0144】各ステーションにおける50403のステーション確認画面による確認の結果、ステーション1002の操作パネルには50404の図27で示した重連ステーション設定画面が表示され、ステーション1003のみが重連設定できなかったことを示す。そして、50404の画面において設定終了キーが押下されることにより画像転送先ステーション確定モードが終了し、ステーション1002の操作パネルには50405の図28に示すように、『重連コピーできます。』のメッセージが表示される。

【0145】また、この時ステーション1001はコピージョブ実行中であるため、50406の図18に示す『コピーしています。コピーが終り次第、重連コピーを行います。』のメッセージが表示される。ステーション1004は50407の図26に示す『重連コピーします。』のメッセージが表示される。また、画像転送先とならなかったステーション1003の操作パネルは、50401の基本画面に戻り、重連コピーを行わない。

【0146】以上のように重連設定が行われ、ステーション1002の50405の画面が表示されている状態で、上述した図6に示すコピースタートキー50001が押下されると、ステーション1002と1004で重連コピーが開始され、ステーション1001も現在実行中のプリンとジョブが終了するのを待って、重連コピーを開始する。こうして、各ステーションに割り当てられた出力枚数分のコピー処理が終了すると、本実施例における重連コピー処理は終了する。

【0147】以上説明したように、重連コピー中には逐ーその旨のメッセージが各ステーションの操作部に表示されるため、操作者は例えばホストコンピュータ100 9からのリモートプリント等、他のプリント処理と重連 コピーとの判別が可能である。

【0148】 <画像転送先ステーションの操作>次に、ローカル設定が転送元ステーションによって行われた場合の、転送先ステーションにおけるローカル設定について説明する。

【0149】操作者は、画像転送元ステーションにおいて図13に示す操作部基本画面より重連設定キー50110を押下することによって、アービトレーションモードを経て重連出力の条件を設定する。この出力条件とは、例えば、カラーバランス、濃度調整、色相調整等の機種または機械間差を補正するためのモード(補正モード)と、用紙サイズ及び方向、変倍率、出力枚数等の基本的なモード(基本モード)と、画像の合成、変形等、原稿イメージから新たなイメージを作り出すためのモード(編集モード)に分類される。

【0150】これ等のモードのうち編集モードの設定は、転送元ステーションで画像を処理するのに用い、転送先ステーションには渡さない。また、基本モードのうち変倍率と用紙の設定はそのまま転送先ステーションに渡され、枚数は分配された枚数のみ、各転送先ステーションに送られる。

【0151】一方、補正モードの設定は転送元ステーションに対してのみ有効で、転送先ステーションには送られない。また、転送先ステーションでは補正モード以外のローカル設定は無効となり、補正モードのみ設定を許可される。

【0152】この場合の転送先ステーションの操作パネルの表示例を、図30に示す。図30において、51200の液晶表示部では、当該ステーションが画像転送先として設定されている旨のメッセージを表示する。51201は変倍率設定キー、51202は用紙選択設定キーであり、それぞれ転送元から送られてきた基本モードの設定値を変更可能である。ただし、基本モードの設定値を変更可能であるため、表示されない。また、51203はカラーバランス等の補正モード、及び画像合成等の編集モード等の、その他の各種出力条件設定キーである。出力条件設定キー51203は、上述したように転送先ステーションにおいては補正モードのみ設定すーであるため、設定不可である条件についてはその設定キー上にその旨のマークを表示することにより操作者に報知し、もちろん設定は行えない。

【0153】尚、上述した図30に示す転送先ステーションの操作パネル表示は、特に出力条件設定キー51203の内容は各ステーションのローカル設定可能な条件に従って、適宜設定すればよい。

【0154】<画像転送(重連コピー)の実行>上述した図1に示すステーション1001~1004において、ステーション1002が図19に示すようにステーション1001,1004と重連設定されている場合を考える。ステーション1002のコピースタートキーを 50

34

押下すると、これを契機にしてステーション1002は 設定されたコピー枚数を各ステーションに分配し、全て のステーションに向けてプリントスタートコマンドを発 行する。ステーション1001、1004は、このプリ ントスタートコマンドを受け取ると、このコマンドの発 行元であるステーション1002のシステムアドレスと 自装置のシステムアドレスとに基づいてビデオ信号の入 力元の切り替えを行い、さらに、自装置の画像メモリへ の書き込みのための制御をVIDEO制御線(VCL K、HSYNC、VE)に従うように装置の設定を切り 替え、画像信号待ちの状態に入る。

【0155】一方、ステーション1002は、原稿画像 読み取りのための設定を行ない、自装置の画像メモリへの書き込みのための制御信号がVIDEO制御線へも出力されるように切り替えを行ない、画像読み取り動作を開始する。ステーション1001,1004は、ステーション1002の出力する制御信号を用いて各々の画像メモリへの書き込みを行なう。ステーション1002の画像読み取り動作が完了すると、ステーション1002から画像転送終了コマンドが発行され、ステーション1001,1002,1004はそれぞれプリントアウト動作に入る。

【0156】同様の手順をとることによって、ステーション1001~1004のどのカラーリーダ部のプラテン上に原稿画像がある場合においても、そのステーションの操作パネルでの操作により、複数のステーションを利用した出力を得ることが可能である。

【0157】次に、重連システムに接続されたステーション1001にIPU1008を介して接続されたホスト1009からの出力を複数のステーションを用いて出力する際の手順を説明する。

【0158】重連システムに接続された全てのステーションの状態は、IPU1008を介してホスト1009に集計されている。ホスト1009からの操作で重連システムの状態に応じて使用するステーション、コピー枚数、用紙等を設定した後、出力画像データをIPU1008に転送する。

【0159】IPU1008は、これらの設定を接続されているステーション1001に通達する。この通達を受け取ったステーション1001は、使用される他のステーションに対してプリントスタートコマンドを発行する。プリントスタートコマンドを受け取ったステーションは前述したプラテン上の原稿画像の出力の場合と同様の手順をふんで、画像信号待ち状態に入る。

【0160】さてIPU1008が接続されているステーション1001は、ビデオ信号入力元と出力先を示す画像データ送受信転送モードを「IPUからの入力」かつ「他のステーションへの出力」のモード(例えば、モード13)に切り替えた後、IPU1008に対して画像を送るようコマンドを発行する。IPU1008から

の画像読み出し、及び、残りのステーションの画像書き込みに用いられるVIDEO制御信号は全て、IPU1008が接続されているステーション1001が生成するものを用いる。

【0161】従って、1PU1008から読み出された画像データは、ステーション1001の画像メモリに書き込まれると同時に他のステーションの画像メモリにも同時に書き込まれることになる。画像書き込みの後は、ステーション1001から画像転送終了コマンドが発行され、各ステーションでプリントアウト動作が開始される。

【0162】以上のいずれかの場合においても、使用ステーションの選択操作の際に選択されなかったステーション(本実施例においてはステーション1003)に対してもプリントスタートコマンドが発行される。そのステーションではプリント動作は行わないものの、プリントスタートコマンドに含まれているスタート要求元アドレスと自装置のアドレスとを比較することによって、必要なら1/F部を切り替えて画像信号が目的のステーションに到達するように中継する。

【0163】また更に、転送元ステーションからパラメータ転送コマンドを発行して転送先ステーションにカラーモード等のパラメータを設定する場合、全てのパラメータについて転送元ステーションから設定可能とするのではなく、転送先ステーションにおいて一部のパラメータについては転送元からのパラメータ設定コマンドを無視することにより、例えば、各ステーション毎のカラーバランス等の装置毎の調整データを変更せずに済む。

【0164】以上説明したように本実施例によれば、1 つのステーションのプラテンに置かれた原稿画像を入力 30 してデジタル画像データに変換し、そのデータを他のステーションに転送して、原稿画像を入力したステーションのみならず、他のステーションからも同様の画像をプリント出力することができる。

【0165】なお本実施例で用いた複数のステーションにはマスタとスレーブという主従関係がある例について説明したが本発明はこれに限定されるものではない。例えば、重連システムにおいて、マスタステーションを定義せず、即ち、マスタステーションのみが用いているインタフェースクリアコマンドとステータス要求コマンドをコマンド体系の中に用意せず、各々のステーションが電源立ち上げ時の自分自身の初期化が終了するとその後一定時間間隔で(もちろん他のステーションが何もコマンドを送っていない合間に)ステータス転送コマンドを発行するような構成としても良い。

【0166】この場合、システム全体を制御するマスタステーションを定義しないので、互いに対するステーションのステータス転送タイミング制御やその情報の授受確認が難しくシステム全体のスループットのある程度の低下は免れないが、ステーション相互の通信制御やコマ

ンド体系は簡略化することができる。

【0167】<第2実施例>以下、本発明に係る第2実施例として、ローカル設定の設定方法が上述した第1実施例と異なる場合について説明する。

【0168】第2実施例における構成は上述した第1実施例と同様であるため説明を省略し、ローカル設定の設定方法についてのみ、図31を参照して説明を行う。

【0169】第1実施例においては、図19に示した重連ステーション設定画面におけるローカル設定キー50207の押下により図23に示すローカル設定画面が表示されたが、第2実施例では図31に示すローカル設定画面が表示される。

【0170】図31に示すローカル設定画面は、画像転送元のローカル設定を行う設定ウィンドウ51101、選択された画像転送先のローカル設定を行う簡易設定ウィンドウ51102、ローカル設定先選択タグ51105、選択されている設定先を表す設定先表示部51103、ローカル設定を終了する設定終了キー51104等から構成される。二つの操作ウィンドウ51101、51102は、互いに操作モードを替えることなく、同時にローカル設定操作が可能である。

【0171】以上説明したように第2実施例による方法でも各ステーションのローカル設定を行うことができ、上述した第1実施例と同様の効果が得られる。

【0172】尚、本発明は、複数の機器から構成されるシステムに適用しても良いし、1つの機器から成る装置に適用しても良い。また、本発明は、システム或は装置にプログラムを供給することによって達成される場合にも適用できることはいうまでもない。

【0173】<第3実施例>以下、本発明に係る第3実施例として、重連設定の条件が上述した第1実施例と異なる場合について説明する。

【0174】第3実施例における構成は上述した第1実施例と同様であるため説明を省略する。

【0175】上述した第1実施例において図19のステーション設定キー50202により選択される重連設定の条件とは、まず重連接続されていること、その時点で設定されている出力用紙が給紙可能であること、ジャムまたはトナー切れ等のエラーが起きていないこと、及びまだ選択されていないこと等であった。

【0176】しかしながら本発明はこの例に限定される ものではなく、第3実施例においては重連設定の際の条件をより細かく規定した場合について説明を行う。

【0177】第3実施例においては例えば重連出力の際に給紙可能である用紙サイズ、方向のみでなく、用紙枚数等によっても選択されるステーションに制限を設ける。このとき、上述した図20に示したステーション設定キー50202のキートップ表示に更に種々の表現方法を追加することにより、更に操作性が向上する。

【0178】また、例えば転送先ステーションの両面記

録機能の有無や、ソータ出力機能の有無等も、設定条件 に加えることにより更なる操作性の向上が望める。

[0179]

【発明の効果】以上説明したように本発明によれば、外部装置とのデジタル画像信号の入出力の制御、及び/或は、中継制御のための通信が装置内で行われるので、このような装置を複数台用いてシステムを構成する場合、システム全体制御のため特殊な装置が不要となり、特殊な装置の性能に依存しないシステム構築が可能になるので柔軟な拡張性をもったシステムを構成できるという効果が得られる。

【0180】また、転送先ステーションの状況を把握することができるため、重連設定するにあたりより操作性を向上させることができる。

[0181]

【図面の簡単な説明】

【図1】本発明に係る一実施例であるカラー複写機を複数組み合わせて構成した重連システムの構成を示す図である。

【図2】本実施例の重連システムを構成するカラー複写機のインタフェース部の構成とカラー複写機相互の接続 形態を示す図である。

【図3】本実施例においてカラー複写機相互を接続する接続ケーブルに含まれる通信線の構成とその通信線との接続を行うインタフェース部の詳細な構成を示す図である。

【図4】本実施例における通信線で用いられる制御信号の相互関係を示すタイムチャートである。

【図5】本実施例の重連システムで用いられる主なコマンドを示す図である。

【図6】本実施例の重連システムを構成するカラー複写機の操作パネルの表示例を示す図である。

【図7】本実施例の重連システムを構成するカラー複写 機の構成を示す側断面図である。

【図8】本実施例のカラー複写機のカラーリーダ部のデジタル画像処理部の構成を示すブロック図である。

【図9】本実施例のビデオバスセレクタとビデオバスセレクタ周辺回路の詳細な構成を示すブロック図である。

【図10】本実施例のプリンタ部のポリゴンミラースキャナの構成を示す図である。

【図11】本実施例のインタフェース部のさらに詳細な 構成を示す図である。

【図12】本実施例の画像メモリユニット(IPU)の 内部構成を示すプロック図である。

【図13】本実施例の重連システムを構成するカラー複写機の操作パネルの基本画面表示を示す図である。

【図14】本実施例の図13に示す基本表示画面において用紙選択キーを押下した後の表示例を示す図である。

【図15】本実施例の図14に示す基本表示画面において手差しトレー選択キーを押下した後の表示例を示す図

である。

【図16】本実施例の図15に示す基本表示画面において手差し用紙選択キーを押下した後の表示例を示す図である。

38

【図17】本実施例において重連コピー中に重連設定キーを押下した際の表示例を示す図である。

【図18】本実施例において他ジョブ実行中のステーションが重連設定された場合の画面表示例を示す図である。

【図19】本実施例において重連設定を行う重連ステーション設定画面の表示例を示す図である。

【図20】本実施例における重連ステーション設定キーのキートップ表現を示す図である。

【図21】本実施例におけるオート重連設定処理を示すフローチャートである。

【図22】本実施例におけるオート重連設定時における 各ステーションへの出力枚数の分配例を示す図である。

【図23】本実施例における転送先ステーションのローカル設定を行う際の画面表示例を示す図である。

【図24】本実施例における重連ステーション選択タグ の表現を示す図である。

【図25】本実施例における転送先ステーションで重連 コピー開始を確認するステーション確認画面の表示例を 示す図である。

【図26】本実施例における転送先ステーションでの重連コピー開始を報知する画面の表示例を示す図である。

【図27】本実施例において重連設定を行う重連ステーション設定画面の表示例を示す図である。

【図28】本実施例における転送元ステーションでの重 連コピー準備が整ったことを報知する画面の表示例を示 す図である。

【図29】本実施例における重連設定処理での各ステーション毎の画面遷移を示す図である。

【図30】本実施例における転送先ステーションでのローカル設定を行う画面の表示例を示す図である。

【図31】本発明に係る第2実施例における転送先ステーションのローカル設定を行う際の画面表示例を示す図である。

【符号の説明】

130 ビデオバスセレクタ

131 ビデオバスセレクタ周辺回路

351 カラーリーダ部

352 プリンタ部

353 デジタル画像処理部

354 操作パネル

355 プラテン

1001~1004 ステーション

1005~1007 接続ケーブル

1008 IPU

1009 ホストコンピュータ

39

1101~1104 インタフェース(I/F)部

【図1】

[図2]

【図3】

【図4】

【図5】

コード	コマンド	内 容	
1 0	インタフェースクリア	- スクリア マスターが電脳立ち上げ時の 自分自身の初期化件了後に発行	
0 1	プリントスタート	国使の転送元が発行 スタート要求元アドレスを含む合まれる	
03	ステータス要求	マスターが一定間隔で発行する 要求先アドレスを合む	
0 5	マスターの発行するステータス要求に応えて、 スレーブは一定時間以内にこのコマンドを発行する 自分のアドレスに続いてブリンタスチータスや エラーの有無を合む		
0 6	画像転送終了	画像の転送元が画像転送終了後に発行	
0 7	パラメータ転送	関係転送元が発行 転送するパラメータの属性 (カラーモード、変貌など) を示すサブコードを含む ex.) カラーモード 01 変倍 02	

【図6】

【図9】

[図10]

【図11】

【図12】

【図17】

【図13】

【図14】

【図15】

【図16】

【図19】

【図20】

50301	キートップ表現	状態 No.	ステーション状態
50302		50303	設定可能ステーション
	3 or \$3.5	50304	設定済みステーション
	[[3]]	50305	未接続ステーション
	B5	50307	紙 (B5) なしステーション
	*	50308	エラー、ジャム、トナーなし等の設定不可能または禁止ステーション
	NEW .	50309	ジョブ実行中ステーション

【図22】

N ≤ 30	30 ≤ N < 60	60 ≤ N < 90
A=N,B=C=0	A=B=N/2,C=0	A=B=C=N/S

【図23】

【図24】

51001	タグ表現	状態 No.	ステーション状態
		51003	設定可能ステーション
51002		51004	設定済みステーション
		51005	未接続ステーション
	B5	51006	紙 (B6) なしステーション
		51007	エラー、ジャム、トナーなし等の設定不可能または禁止ステーション
		51008	ジョ ブ 実行中ステーション

【図25】

【図26】

【図27】

[図28]

【図30】

【図31】

【図29】

