

Τμήμα Πληροφορικής Πανεπιστήμιο Πειραιώς

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Μιχάλης Ψαράκης

Συστήματα αρίθμησης γενικά

- Σε ένα σύστημα αρίθμησης με βάση r οι αριθμοί παριστάνονται με τα ψηφία 0, ..., r-1
- Παραδείγματα συστημάτων αρίθμησης:
 - Δεκαδικό
 - Βάση 10, Ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Πενταδικό
 - Βάση 5, Ψηφία 0, 1, 2, 3, 4
 - Οκταδικό
 - Βάση 8, Ψηφία 0, 1, 2, 3, 4, 5, 6, 7

Ένας αριθμός α_n α_{n-1} ... α_1 α_0 . α_{-1} ... α_{-m} με n+1 ψηφία αριστερά της υποδιαστολής και m ψηφία δεξιά ισούται με:

$$\alpha_{n} \times r^{n} + \alpha_{n-1} \times r^{n-1} + ... + \alpha_{1} \times r^{1} + \alpha_{0} \times r^{0} + \alpha_{-1} \times r^{-1} + ... + \alpha_{-m} \times r^{-m}$$

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Δεκαδικό - Δυαδικό

- 🔰 🛮 Δεκαδικό σύστημα αρίθμησης Βάση 10
 - Ψηφία 0, 1, 2, ..., 9

 - $7392 = 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$
 - Δυαδικό σύστημα αρίθμησης Βάση 2
 - Ψηφία 0, 1
 - $11010.11 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = 26.75$
 - Το δυαδικό σύστημα αρίθμησης χρησιμοποιείται κατά κανόνα για την αναπαράσταση των αριθμών σε ένα ψηφιακό σύστημα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Δυαδικοί αριθμοί (1)

Δυαδικοί αριθμοί (2)

- Ποιοι αριθμοί μπορούν να παρασταθούν με n δυαδικά ψηφία ;
 - Όταν οι αριθμοί είναι μόνο θετικοί και 0 τότε μπορούν να παρασταθούν οι αριθμοί από
 - 0 (0....000) μέχρι 2ⁿ-1 (1....111).
 - Για n=2 οι αριθμοί είναι 0, 1, 2, 3
 - **00**, 01, 10, 11
 - Για n=3 οι αριθμοί είναι 0, 1, 2, 3, 4, 5, 6, 7
 - **000**, 001, 010, 011, 100, 101, 110, 111
 - Για n=4 οι αριθμοί είναι 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15
 - **2** 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1111, 1111
 -

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

5

Δεκαεξαδικό - Οκταδικό

- Δεκαεξαδικό σύστημα Βάση 16
 - Ψηφία 0, 1, 2, ..., 9, A, B, C, D, E, F
 - Τα A, B, C, D, E, F αντιστοιχούν στο 10, 11, 12, 13, 14, 15
 - \blacksquare 1AF = 1 × 16² + 10 × 16¹ + 15 × 16⁰ = 431
- 🚺 Οκταδικό σύστημα Βάση 8
 - Ψηφία 0, 1, 2, ..., 7
 - \blacksquare 173 = 1 × 8² + 7 × 8¹ + 3 × 8⁰ = 123
- Το δεκαεξαδικό σύστημα είναι πιο δημοφιλές στον κόσμο των υπολογιστών. Γιατί;
- Πολλές φορές χρησιμοποιείται το πρόθεμα "0x" για να υποδηλώσει ένα δεκαεξαδικό αριθμό
 - Π.χ. 0x1AF

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Δυαδικό και οκταδικό

- Ισχύει το ίδιο όπως και με το δεξαεξαδικό,αλλά όχι με 4άδες δυαδικών ψηφίων αλλά με 3άδες
 - Από δεξιά προς τα αριστερά ομαδοποίηση σε 3άδες bit
 - 10 011 101₂ = 235₈
 - Αντίστροφα: κάθε οκταδικό ψηφίο αντιστοιχεί σε μία 3άδα bit
 - 173₈ = 001 111 011₂

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Απρόσημοι αριθμοί

- Μέχρι τώρα είδαμε ένα δυαδικό αριθμό των n bit να έχει μόνο θετικές τιμές ή μηδέν
- Μια δυαδική σειρά από n bit που ερμηνεύεται σαν απρόσημος αριθμός (unsigned number) παριστάνει τους αριθμούς από $0_{10} = 0...00_2$ μέχρι $(2^n 1)_{10} = 1...11_2$
- 🚺 Παράδειγμα για n=3
 - **000 = 0**
 - **001 = 1**
 - **010 = 2**
 - **011 = 3**
 - **100 = 4**
 - **101 = 5**
 - **110 = 6**
 - **111 = 7**

. Λογική Σχεδίαση Ψηφιακών Συστημάτων Δυαδικά Συστήματα

Προσημασμένοι αριθμοί

- Πώς παριστάνουμε τους αρνητικούς αριθμούς;
 - Δηλαδή πως μπορεί μια σειρά από δυαδικά ψηφία να ερμηνευτεί σαν προσημασμένος αριθμός (signed number);
 - Υπάρχουν 2 αναπαραστάσεις:
 - Πρόσημο και μέγεθος (sign and magnitude)
 - ή προσημασμένο μέγεθος (signed-magnitude)
 - Αναπαραστάσεις συμπληρώματος (complement)
 - Προσημασμένου συμπληρώματος ως προς 1 (1's complement)
 - Προσημασμένου συμπληρώματος ως προς 2 (2's complement)
 - Στην πράξη χρησιμοποιείται η αναπαράσταση σε 2's complement
 - Και στις τρεις το αριστερότερο bit είναι το πρόσημο
 - 0 σημαίνει + (θετικός)
 - 1 σημαίνει (αρνητικός)

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

11

Προσημασμένο μέγεθος ή συμπλήρωμα;

- Πώς υλοποιείται η πράξη της πρόσθεσης μεταξύ αριθμών προσημασμένου μεγέθους;
- Για να υπολογίσεις τον αντίθετο ενός αριθμού:
 - Πρόσημο και μέγεθος: αλλάζεις το bit προσήμου
 - Αναπαραστάσεις συμπληρώματος: παίρνεις το συμπλήρωμά του
 - Στις αναπαραστάσεις συμπληρώματος:
 - Πιο δύσκολη η διαδικασία υπολογισμού του αντίθετου
 - Πιο εύκολη (όπως θα δούμε στη συνέχεια) η υλοποίηση των πράξεων πρόσθεσης & αφαίρεσης

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Δυαδική πρόσθεση

- Θα τη δούμε αναλυτικά σε λίγο αλλά για να κατανοήσουμε τα συμπληρώματα ας κάνουμε ένα παράδειγμα:
 - Να προστεθούν οι αριθμοί:

$$0 \ 1 \ 1 \ 1_2 = 7_{10}$$

 $0 \ 1 \ 1 \ 0_2 = 6_{10}$

$$0 1 1 1 = 7_{10}$$

$$+ 0 1 1 0 = 6_{10}$$

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

13

Συμπληρώματα

- Σε κάθε σύστημα αρίθμησης με βάση r υπάρχουν δύο συμπληρώματα
 - Το συμπλήρωμα ως προς βάση r και
 - Το συμπλήρωμα ως προς ελαττωμένη βάση, ή r-1
- Σε σύστημα με βάση r και n ψηφία το συμπλήρωμα ενός αριθμού N:
 - Συμπλήρωμα ως προς βάση : rⁿ − N (για N≠0)
 - Για N=0, το συμπλήρωμα είναι το ίδιο το 0
 - Άρα, ο αριθμός Ν και το συμπλήρωμά του έχουν άθροισμα ίσο με rⁿ
- Συμπλήρωμα ως προς ελαττωμένη βάση : (rn − 1) − N
 - Άρα, ο αριθμός Ν και το συμπλήρωμά του έχουν άθροισμα ίσο με rⁿ 1
 - Συνεπώς, το συμπλήρωμα ως προς βάση ενός αριθμού Ν είναι ίσο με το συμπλήρωμα ως προς ελαττωμένη βάση + 1

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Συμπληρώματα στο δυαδικό

- 🗾 Δυαδικός αριθμός των 4 bit
 - 1001₂ = 9₁₀
 - Συμπλήρωμα ως προς 1 (ελαττωμένη βάση), 1's complement
 - $0110_2 = 6_{10}$
 - έχουν άθροισμα 1111₂ = 15₁₀ δηλαδή 2⁴ 1
 - Συμπλήρωμα ως προς 2 (βάση), 2's complement
 - $0111_2 = 7_{10}$
 - έχουν άθροισμα 10000₂ = 16₁₀ δηλαδή 2⁴

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

15

Κανόνες εύρεσης συμπληρωμάτων

- Το συμπλήρωμα ως προς 1 ενός δυαδικού αριθμού το βρίσκουμε:
 - Αντιστρέφοντας κάθε 0 σε 1 και κάθε 1 σε 0
 - **■** 0101 → 1010
 - **■** 1110 → 0001
 - .
 - Έχουν άθροισμα 1...11 (n bit) δηλαδή 2ⁿ 1.
- Το συμπλήρωμα ως προς 2 ενός δυαδικού αριθμού το βρίσκουμε:
 - Ξεκινώντας από το δεξί άκρο του αριθμού και κινούμενοι προς τα αριστερά αφήνουμε όλα τα 0 και το πρώτο 1 αμετάβλητα
 - Στη συνέχεια αντιστρέφουμε όλα τα bit μέχρι το τέλος
 - 010000 → 110000
 - 110100 → 001100
 - 010111 → 101001
 - Έχουν άθροισμα ίσο με 10...00 (n+1 bit) δηλαδή 2ⁿ
- Συνεπώς, το συμπλήρωμα ως προς 2 μπορεί να παραχθεί από το συμπλήρωμα ως προς 1 προσθέτοντας 1

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

П	ροση	μασ	μένοι	αριθ	μοί	των	4	bit

1	<u>Δεκαδικός</u>	Συμπλ. προς 2	Συμπλ. προς 1	Πρόσημο/Μέγεθος
۰	+ 7	0111	0111	0111
۰	+ 6	0110	0110	0110
۰	+ 5	0101	0101	0101
۰	+ 4	0100	0100	0100
۰	+ 3	0011	0011	0011
۰	+ 2	0010	0010	0010
۰	+ 1	0001	0001	0001
۰	+ 0	0000	0000	0000
۰	– 0	_	1111	1000
۰	– 1	1111	1110	1001
۰	-2	1110	1101	1010
۰	– 3	1101	1100	1011
۰	- 4	1100	1011	1100
۰	– 5	1011	1010	1101
۰	- 6	1010	1001	1110
ı	– 7	1001	1000	1111
ı	- 8	1000	_	-

Παρατηρήσεις:

- Οι θετικοί αριθμοί είναι ίδιοι και στις τρεις αναπαραστάσεις
- Υπάρχει +0 και -0 στο συμπλήρωμα ως προς 1 και στο πρόσημο/μέγεθος Στο συμπλήρωμα ως προς 2 υπάρχει ένας παραπάνω αρνητικός από ότι θετικοί. Δεν έχει αντίστοιχο θετικό

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Παράδειγμα

- Ποιος είναι ο αριθμός 101012;
- Είναι προσημασμένος ή όχι;
 - Αν είναι προσημασμένος, σε ποια αναπαράσταση από τις τρεις;
 - Ας υποθέσουμε ότι είναι προσημασμένος σε συμπλήρωμα ως προς 1
 - Τότε είναι αρνητικός αφού έχει αριστερότερο ψηφίο 1
 - Το συμπλήρωμά του ως προς 1 (δηλαδή ο αντίθετός του) είναι ο 010102 δηλαδή +1Ö₁₀
 - Άρα ο αρχικός αριθμός είναι το −10₁₀
 - Ας υποθέσουμε τώρα ότι είναι σε συμπλήρωμα ως προς 2
 - Τότε και πάλι είναι αρνητικός φυσικά
 - Το συμπλήρωμά του ως προς 2 (αντίθετος) είναι ο 01011₂ δηλαδή ο +11₁₀
 - Άρα ο αρχικός αριθμός είναι το -11₁₀

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Πρόσθεση σε συμπλήρωμα ως προς 2

- 🔳 Παρατηρείστε ότι:
 - Κάθε αριθμός σε συμπλήρωμα ως προς 2 παράγεται με την πρόσθεση του 1 στον προηγούμενο, αγνοώντας τυχόν κρατούμενα πέραν της n-στής θέσης bit (για σύστημα με n δυαδικά ψηφία)
 - Επειδή η πρόσθεση είναι απλά μια επέκταση της απαρίθμησης, για να προσθέσουμε δύο αριθμούς σε συμπλήρωμα ως προς 2:
 - Εκτελούμε δυαδική πρόσθεση
 - Αγνοούμε κάθε κρατούμενο πέραν του MSB
 - Το αποτέλεσμα θα είναι πάντα το σωστό άθροισμα
- 🔳 Παραδείγματα:

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

19

Υπερχείλιση (overflow)

- Αν μια πράξη πρόσθεσης δώσει αποτέλεσμα που υπερβαίνει το πεδίο τιμών, τότε έχουμε υπερχείλιση (overflow)
- Πότε μπορεί να συμβεί;
 - Όταν προσθέτουμε ομόσημους αριθμούς ή αφαιρούμε ετερόσημους
 - Πότε *δεν* μπορεί να συμβεί;
 - Όταν προσθέτουμε ετερόσημους ή αφαιρούμε ομόσημους δεν μπορεί να εμφανιστεί υπερχείλιση

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Αναγνώριση υπερχείλισης

- Στους απρόσημους αριθμούς η υπερχείλιση αναγνωρίζεται με την εμφάνιση κρατουμένου
- Παράδειγμα: 10 + 7 σε απρόσημους των 4 bit

1010

+ 0111

1 0001

- Το κρατούμενο που δημιουργήθηκε δείχνει ότι υπάρχει υπερχείλιση
- Το σωστό αποτέλεσμα της πράξης είναι το 17, που όμως δεν χωράει σε 4 bit
- Με 4 bit μπορούμε να παραστήσουμε απρόσημους αριθμούς από το 0 μέχρι και το 15

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Αναγνώριση υπερχείλισης (συν.)

- Στους προσημασμένους αριθμούς σε συμπλήρωμα η εμφάνιση κρατουμένου δεν σχετίζεται με την υπερχείλιση
- Κανόνας: Μια πρόσθεση εμφανίζει υπερχείλιση όταν τα πρόσημα των προσθετέων είναι ίδια και το πρόσημο του αθροίσματος διαφορετικό
- Παραδείγματα (σε συμπλήρωμα ως προς 2):

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματο

Αφαίρεση σε συμπλήρωμα ως προς 2

- Αντί να κάνουμε αφαίρεση κάνουμε πρόσθεση με το συμπλήρωμα
 - Ιδέα: οι αρνητικοί αριθμοί παριστάνονται με συμπληρώματα
- Να γίνει η αφαίρεση Χ Υ
 - Υπολογίζουμε το συμπλήρωμα ως προς 2 του Υ
 - Προσθέτουμε X + συμπλήρωμα ως προς 2 του Y
 - Παράδειγμα: αφαίρεση X=7 (0111) μείον Y=3 (0011)
 - Συμπλήρωμα ως προς 2 του Y : 1101
 - Χ συν συμπλήρωμα του Y : 0111 + 1101 = 1 0100 (4)
 - Το 5° bit στις πράξεις συμπληρώματος ως προς 2 αγνοείται

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

23

Αφαίρεση σε συμπλήρωμα ως προς 2 (συν.)

Ι Υλοποίηση:

- Υπολογίζουμε το συμπλήρωμα ως προς 1 του Υ
- Προσθέτουμε X + συμπλήρωμα ως προς 1 του Y + 1 (αρχικό κρατούμενο Cin =1)
- Τι πλεονέκτημα έχει αυτή η υλοποίηση;

Δυαδικά Συστήματα

Κώδικας BCD - Binary Coded Decimal

- 🔳 🛮 Δυαδικά κωδικοποιημένοι δεκαδικοί αριθμοί
 - Κάθε ψηφίο του κώδικα BCD παριστάνει ένα δεκαδικό ψηφίο, δηλαδή από το 0 μέχρι το 9
 - **0000**, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001
 - Οι υπόλοιποι 6 συνδυασμοί τεσσάρων δυαδικών ψηφίων είναι άκυροι για τον κώδικα BCD, δηλαδή δεν πρέπει να εμφανίζονται

Πώς παριστάνονται οι δεκαδικοί αριθμοί πολλών ψηφίων στον BCD;

- \bullet 10₁₀ = 0001 0000_{BCD} = 1010₂
- 168₁₀ = 0001 0110 1000_{BCD}
- 794₁₀ = 0111 1001 0100_{BCD}
- Χρειάζονται περισσότερα bit απ' ότι στο δυαδικό σύστημα
- Π.χ. ο δεκαδικός 168₁₀ είναι:
 - 0001 0110 1000_{BCD} (12 bit)
 - 10101000₂ (8 bit)

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

25

Πρόσθεση BCD

🗾 Να γίνει η πρόσθεση 170 + 239 σε BCD

 $170_{10} = 0001 \ 0111 \ 0000_{BCD}$

 $239_{10} = 0010 0011 1001_{BCD}$ 1 κρατούμενο

←

0100 0000 1001_{BCD}

Διαφέρει από τη δυαδική πρόσθεση

- Αργότερα θα δούμε κυκλώματα που εκτελούν
 - Δυαδική πρόσθεση
 - Πρόσθεση BCD

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Κώδικας ASCII

- American Standard Code for Information Interchange
 - Απεικόνιση χαρακτήρων και συμβόλων εσωτερικά σε έναν υπολογιστή
 - Πρέπει να είναι πρότυπος κώδικας ώστε να υπάρχει συμβατότητα μεταξύ διαφορετικών υπολογιστικών συστημάτων
 - Είναι κώδικας των 7 bit αλλά επειδή οι υπολογιστές χειρίζονται byte των 8 bit το 8° bit χρησιμοποιείται για να δείξει άλλους χαρακτήρες πέρα από τα γράμματα τους αριθμούς και τα σημεία στίξης

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Δυαδικά Συστήματα

Κώδικας ASCII (συν.)													
										1			
b ₆				0 0	0 1	1 0	1 1	0 0	0 1	1 0	1 1		
Bits	b₄ ↓	b₃ ↓	b₂ ↓	b₁ ↓	Column → Row ↓	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	•	р
	0	0	0	1	1	SOH	DC1	Ţ	1	Α	Q	a	q
	0	0	1	0	2	STX	DC2	"	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	S
	0	1	0	0	4	EOT	DC4	\$	4	D	T	d	t
	0	1	0	1	5	ENQ	NAK	%	5	E	U	е	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	V
	0	1	1	1	7	BEL	ETB	'	7	G	W	g	W
	1	0	0	0	8	BS	CAN	(8	Н	X	h	X
	1	0	0	1	9	HT	EM)	9	- 1	Υ	į	У
	1	0	1	0	10	LF	SUB	*	1	J	Z	j	Z
	1	0	1	1	11	VT	ESC	+	,	K	[k	{
	1	1	0	0	12	FF	FC	,	<	L	1	I	
	1	1	0	1	13	CR	GS	-	=	M]	m	}
	1	1	1	0	14	SO	RS		>	N	۸	n	~
	1	1	1	1	15	SI	US	/	?	0	_	0	DEL
Λογική	Σχεδ	ίαση '	Ψηφι	ακών	Συστημά	των		Δυαδ	δικά Συστ	ήματα			29

Δυαδική αποθήκευση - Καταχωρητές Δυαδικό κύτταρο ή κελί (binary cell) Τοποια συσκευή έχει 2 καταστάσεις και μπορεί να αποθηκεύσει ένα δυαδικό ψηφίο, δηλαδή 0 ή 1 Καταχωρητής (register) Μια ομάδα κ δυαδικών κυττάρων που αποθηκεύει κ bit Θα δούμε σε επόμενα κεφάλαια πως σχεδιάζονται τα κυκλώματα που αποθηκεύουν δυαδικούς αριθμούς Δηλαδή οι καταχωρητές

Δυαδικά Συστήματα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

