f(x)	$\int f(x)dx$	f(x)	$\int f(x)dx$
$x^{\alpha} (\alpha \in IR \setminus \{-1\})$	$\frac{x^{\alpha+1}}{\alpha+1}+c$	$\sin \omega x$	$\frac{-1}{\omega}\cos\omega x + c(\omega \neq 0)$
1 x	$\ln x + c$	cosωx	$\frac{1}{\omega}\sin\omega x + c\ (\omega \neq 0)$
$\frac{1}{1+x^2}$	arctg x+c	$\frac{1}{\sin^2 x}$	-cotg x + c
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \operatorname{arctg} \frac{x}{a} + c$	chx	shx+c
$\frac{1}{x^2 - a^2}$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right +c$	shx	chx+c
$\frac{1}{\sqrt{1-x^2}}$	arcsin x+c	$\frac{1}{\cos^2 x}$	tg x+c
$\frac{1}{\sqrt{\alpha^2 - x^2}}$	$\arcsin \frac{x}{a} + c$	$\frac{1}{ch^2x}$	thx+c
$\frac{1}{\sqrt{1+x^2}}$	$\ln\left x+\sqrt{1+x^2}\right +c$	$\frac{1}{sh^2x}$	$-\frac{1}{thx} + c$
$e^{\lambda x}$	$\frac{1}{\lambda} e^{\lambda x} + c \ (\lambda \neq 0)$	$\frac{1}{\sin x}$	$\ln \left tg \frac{x}{2} \right + c$
$a^{x} (a>0, a \neq 1)$	$\frac{1}{\ln a}a^x + c$	$\frac{1}{\cos x}$	$\ln \left tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right $

f(x)	$\int f(x)dx$	f(x)	$\int f(x)dx$
$u^{\alpha}u^{\prime}$	$\frac{u^{\alpha+1}}{\alpha+1}+c, \alpha \neq -1$	$\frac{u'}{1+u^2}$	arctgu + c
$\frac{u'}{u}$	$\ln u + c$	$\frac{u'}{\sqrt{1-u^2}}$	arcsin u + e
e" u'	$e^{u}+c$	$-\frac{u'}{\sqrt{1-u^2}}$	arccosu+c
u' sin u	$-\cos u + c$	u'cosu	$\sin u + c$
$\frac{u'}{\cos^2 u}$	tgu+c	$\frac{u'}{\sin^2 u}$	$-\cot gu + c$