Automatic Logic-based Benders Decomposition with MiniZinc

Toby O. Davies and Graeme Gange and Peter J. Stuckey

Data61 CSIRO

Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia

Outline

- Logic Based Benders Decomposition
- MiniZinc
- Automating Logic Based Benders
- 4 Experiments
- Conclusion

Outline

- Logic Based Benders Decomposition
- 2 MiniZinc
- 3 Automating Logic Based Benders
- 4 Experiments
- Conclusion

Multi-resource Scheduling

- **minimize** $\sum_{r \in R}$ cost of schedule for r
 - **s.t.** $\forall_{t \in T}$. task t is scheduled on some r $\forall_{r \in R}$. schedule for r is feasible

Frequently:

- Objective is a linear combination of 0–1 variables
- Feasibility constraint is something nastily combinatorial
 - Cumulative resource capacities, bin packing, . . .

How do we solve it?

How do we solve it?

Integer Programming?

- Extremely good at optimizing linear terms
- Tends to choke on the feasibility constraints
 - Capacity constraints produce large, weak linearizations

How do we solve it?

Integer Programming?

- Extremely good at optimizing linear terms
- Tends to choke on the feasibility constraints
 - Capacity constraints produce large, weak linearizations

Constraint Programming?

- Specialized reasoning for many combinatorial constraints
- Much weaker bounding than MIP.
 - Only tightens objective bounds when defining variables change.

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Subproblem: Schedule tasks on a single machine

- Find an optimal solution μ to the master
- ullet Search for a feasible extension of μ to each subproblem
 - If all subproblems are feasible, we have found an optimum.
 - Otherwise, add a cut to the master and restart.

In theory, cuts are derived by solving the inference dual. In practice, some form of generate-and-test.

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Subproblem: Schedule tasks on a single machine

М

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Decompose the problem into a (MIP) master problem over shared variables, and several independent (CP) subproblems.

Master: Assign tasks to machines

Automating Logic-based Benders Decomposition

An effective strategy, but sees surprisingly little use.

- Specialized implementation per-problem.
- One implementation per PhD

Automating Logic-based Benders Decomposition

An effective strategy, but sees surprisingly little use.

- Specialized implementation per-problem.
- One implementation per PhD

Limitations to be aware of:

- Frequently all-or-nothing (optimal solution or none)
- Subproblems must be fully independent (no coupling)

Automating Logic-based Benders Decomposition

An effective strategy, but sees surprisingly little use.

- Specialized implementation per-problem.
- One implementation per PhD

Limitations to be aware of:

- Frequently all-or-nothing (optimal solution or none)
- Subproblems must be fully independent (no coupling)

What elements do we need for automating LBBD?

- Automatic partitioning into master/subproblems
- Systematic extraction of cuts from arbitrary subproblems

Outline

- Logic Based Benders Decomposition
- MiniZinc
- Automating Logic Based Benders
- 4 Experiments
- Conclusion

MiniZinc: A solver-independent modelling language

- solver-independent
 - supported by CP, MIP, SAT, SMT, and local search solvers
- high-level
 - encode combinatorial substructures directly as global constraints
- defacto standard for CP modelling

Hands On Session

Learn MiniZinc: Wednesday 28th: 11:00 - 12:30

MiniZinc High-level model specification translates to ...

```
constraint forall (m in machines) (
  cumulative(
    [starts[j] | j in jobs],
    [duration[j,m] | j in jobs],
    [resource[j,m]*bool2int(assign[j] = m) | j in jobs],
    capacities[m]
)
);
```

FlatZinc Variable declarations and primitive constraints

Outline

- Logic Based Benders Decomposition
- 2 MiniZinc
- 3 Automating Logic Based Benders
- Experiments
- Conclusion

Automating 'decomposition'

A simple strategy: MIP master, single CP subproblem.

- Master contains all linear inequalities (and corresponding variables).
- Subproblem contains everything (as if solving directly with CP).

With classical CP, this is a terrible idea.

$$P = \begin{cases} p_1 + p_2 + p_3 \le 2 \\ P = \begin{cases} \wedge x_1 + x_2 \le p_1 \\ \wedge y_1 + y_2 \le p_2 \\ \wedge z_1 = z_2 + p_3 \wedge z_1 \ne z_2 \end{cases}$$

With classical CP, this is a terrible idea.

$$P = \begin{cases} p_1 + p_2 + p_3 \le 2 \\ P = \begin{cases} \wedge x_1 + x_2 \le p_1 \\ \wedge y_1 + y_2 \le p_2 \\ \wedge z_1 = z_2 + p_3 \wedge z_1 \ne z_2 \end{cases}$$

With classical CP, this is a terrible idea.

$$P = \begin{cases} p_1 + p_2 + p_3 \le 2 \\ P = \begin{cases} \wedge x_1 + x_2 \le p_1 \\ \wedge y_1 + y_2 \le p_2 \\ \wedge z_1 = z_2 + p_3 \wedge z_1 \ne z_2 \end{cases}$$

	<i>X</i> ₂				
[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]
0	0	0	0	0	

With classical CP, this is a terrible idea.

$$P = \begin{cases} p_1 + p_2 + p_3 \le 2 \\ P = \begin{cases} \wedge x_1 + x_2 \le p_1 \\ \wedge y_1 + y_2 \le p_2 \\ \wedge z_1 = z_2 + p_3 \wedge z_1 \ne z_2 \end{cases}$$

	<i>X</i> ₂				
[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]
0		0		0	

With classical CP, this is a terrible idea.

$$P = \begin{cases} p_1 + p_2 + p_3 \le 2 \\ P = \begin{cases} \wedge x_1 + x_2 \le p_1 \\ \wedge y_1 + y_2 \le p_2 \\ \wedge z_1 = z_2 + p_3 \wedge z_1 \ne z_2 \end{cases}$$

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂	<i>Z</i> ₁	z_2
[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]
0	0	0	0	0	X
0	0	0	0	1	

With classical CP, this is a terrible idea.

$$P = \begin{cases} p_1 + p_2 + p_3 \le 2 \\ P = \begin{cases} \wedge x_1 + x_2 \le p_1 \\ \wedge y_1 + y_2 \le p_2 \\ \wedge z_1 = z_2 + p_3 \wedge z_1 \ne z_2 \end{cases}$$

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂	<i>Z</i> ₁	z_2
[0, 1]	[0, 1] 0	[0, 1]	[0, 1]	[0, 1]	[0, 1]
0	0	0	0	0	X
0	0	0	0	1	X

With classical CP, this is a terrible idea.

$$P = \begin{cases} p_1 + p_2 + p_3 \le 2 \\ P = \begin{cases} \wedge x_1 + x_2 \le p_1 \\ \wedge y_1 + y_2 \le p_2 \\ \wedge z_1 = z_2 + p_3 \wedge z_1 \ne z_2 \end{cases}$$

<i>X</i> ₁	_		<i>y</i> ₂		_
[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]
0	0	0	0	0	X
0	0	0	0	1	Χ
0	0	0	1		

With classical CP, this is a terrible idea.

$$P = \begin{cases} p_1 + p_2 + p_3 \le 2 \\ P = \begin{cases} \wedge x_1 + x_2 \le p_1 \\ \wedge y_1 + y_2 \le p_2 \\ \wedge z_1 = z_2 + p_3 \wedge z_1 \ne z_2 \end{cases}$$

Assuming $\{p_1 = 1, p_2 = 1, p_3 = 0\}$ set by master:

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂	<i>Z</i> ₁	z_2
[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]
0	0	0	0	0	X
0	0	0	0	1	X
0	[0,1] 0 0 0	0	1	0	X

. . .

Lazy Clause Generation (LCG)

Descendant of CP and SAT:

- CP-style propagators
- SAT-style conflict analysis

Operates on 'atomic constraints' $[x \ge k]$, [x = k].

Key attributes (for our purposes):

- Conflict analysis
 - Cuts to explain failure.
- Activity-driven search
 - Focus on hard-to-satisfy subproblems.
- Phase-saving
 - Save successful partial assignments we find.

Implicit subproblems, with LCG

Most of the benefits of explicit partitioning, plus:

- Disjointness isn't required
- We get cuts for free

Strengthening cuts

The nogoods we obtain are usually not minimal.

- Choose a strict subset of the current cut, solve again.
 - If UNSAT(C), we have a new, stronger cut.
 - If SAT(μ), at least one element is needed.
- Repeat until we find a minimal cut (or expend computation budget)

Strengthening cuts

The nogoods we obtain are usually not minimal.

- Choose a strict subset of the current cut, solve again.
 - If UNSAT(C), we have a new, stronger cut.
 - If SAT(μ), at least one element is needed.
- Repeat until we find a minimal cut (or expend computation budget)

However! The 'subproblem' is complete.

Thus μ is a feasible (though not optimal) solution.

We can then tighten bounds on the objective:

- in the master, to get earlier fathoming
- in the subproblem, to derive tighter cuts

A Dual viewpoint of Logic Based Benders

- Master (usual) perspective
 - Master solves relaxed problem
 - Subproblem solver extends master solution or adds cut
- Reversed perspective
 - Master generates a partial solution likely to be "good"
 - CP solver uses this as a basis for Large Neighbourhood Search to find good solutions

Representing cuts

Nogoods from the LCG solver are disjunctions of bounds.

$$[x \ge 10] \lor [y \ge 10]$$

Problem: Can't be directly expressed as a linear inequality.

Reifying bounds

Lazily introduce 0–1 variables for relevant bounds:

$$x \ge 0 + 10b_{[x \ge 10]} + 5b_{[x \ge 15]}$$

 $x < 10 + 5b_{[x \ge 10]} + 35b_{[x \ge 15]}$
 $b_{[x \ge 10]} \ge b_{[x \ge 15]}$

Reifying bounds

Lazily introduce 0–1 variables for relevant bounds:

$$x \ge 0 + 10b_{[\![x \ge 10]\!]} + 5b_{[\![x \ge 15]\!]}$$

 $x < 10 + 5b_{[\![x \ge 10]\!]} + 35b_{[\![x \ge 15]\!]}$
 $b_{[\![x \ge 10]\!]} \ge b_{[\![x \ge 15]\!]}$

Which we then use to express cuts:

$$b_{[x \ge 10]} + b_{[y \ge 10]} \ge 1$$

Outline

- Logic Based Benders Decomposition
- MiniZinc
- Automating Logic Based Benders
- 4 Experiments
- Conclusion

Experiments

Several classes of instances:

- Planning and scheduling Common LBBD benchmark
- Single-source capacitated plant location Pure MIP
- Job shop scheduling w. machine & order-dependent setup times TSP subproblem

Comparing:

```
chuffed an LCG solver
```

```
Gurobi a MIP solver
```

mzn-lbbd automatic LBBD method (using Gurobi and chuffed)

Results

instances solved

Theoretical best portfolio, with and without mzn-lbbd.

Results: Observations

- Doesn't strictly dominate either CP or MIP
 - but robust, and performs better in aggregate
- Not just best-of-both-worlds
 - Solves 79 instances not solved by either CP or MIP.
- Doesn't compete with Benders' methods with specialized (non-CP) subproblem solvers.
 - TSP subproblems, etc.

Outline

- Logic Based Benders Decomposition
- 2 MiniZinc
- Automating Logic Based Benders
- Experiments
- Conclusion

Conclusion

- Automatic Logic Based Benders provides a hybrid of
 - Integer Programming, and
 - Constraint Programming
- Takes advantage of the strengths of both methods
- One PhD worth of implementation is reduced to writing one model!

Further work

Many parameters to tune (globally, or per domain):

- Cut minimization strategy
- Generating multiple cuts
- Resource limits

Master currently includes no relaxation of omitted constraints.