Associativity Test Using Gröbner Bases

Michael Nelson

Introduction

Introduction

Let Δ be a finite simplicial complex and let K be a field of characteristic 2 (we only assume characteristic 2 for simplicity in what follows). Attached to Δ is a graded K-complex F_{Δ} whose homogeneous component of degree $k \in \mathbb{N}$ is the K-span of all (k-1)-faces of Δ . For instance, if Δ is the simplicial complex below,

then the homogeneous components of F_{Δ} are given by:

$$F_{\Delta,0} = Ke_{\emptyset}$$

 $F_{\Delta,1} = Ke_1 + Ke_2 + Ke_3 + Ke_4 + Ke_5$
 $F_{\Delta,2} = Ke_{12} + Ke_{13} + Ke_{23} + Ke_{24} + Ke_{34}$
 $F_{\Delta,3} = Ke_{123}$.

Note that we often write $e_{\emptyset} = 1 = e_0$ and we think of F_{Δ} as a graded K-vector space with $F_{\Delta,0} = K$. Now let us equip F_{Δ} with a **graded-multiplication** \star , where by a graded-multiplication, we mean that \star is a binary operator on F_{Δ} which satisfies the following properties:

- 1. ★ is unital with 1 being the unit;
- 2. ★ is *K*-bilinear;
- 3. \star is commutative;
- 4. \star respects the grading meaning that if α , β are homogeneous elements of F_{Δ} , then $\alpha \star \beta$ is homogeneous and

$$|\alpha \star \beta| = |\alpha| + |\beta|,$$

where $|\cdot|$ denote the homogeneous degree of an element in F_{Δ} .

Given such a graded-multiplication F_{Δ} , it is natural to wonder whether or not \star is associative, meaning

$$(\alpha \star \beta) \star \gamma = \alpha \star (\beta \star \gamma)$$

for all α , β , $\gamma \in F_{\Delta}$. In this note, we will determine whether or not \star is associative using tools from the theory of Gröbner bases.

Setting up our Notation

We begin in a slightly more general context. Let *F* be a positively graded *K*-vector space which is finite dimensional as a *K*-vector space. Being a positively graded *K*-vector space means we have a decomposition

$$F=\bigoplus_{m\in\mathbb{N}}F_m,$$

1

where each F_m is a K-vector space, called the **homogeneous component** of F in **homological degree** m. If $\alpha \in F_m$, then we set $|\alpha| = m$ and say α is **homogeneous** and that it has **homological degree** m. We assume that $F_0 = K$ and $F_+ := \bigoplus_{m>0} F_m \neq 0$. Let $(e_1 \dots, e_n)$ be an ordered homogeneous basis of F_+ which is ordered in such a way if $|e_j| > |e_i|$, then j > i.

Next let \star : $F \times F \to F$ be a graded K-bilinear map on F such that \star is unital with $1 \in K = F_0$ being the identity (meaning $\alpha \star 1 = \alpha = 1 \star \alpha$ for all $\alpha \in F$) and such that \star is graded-commutative (meaning $\alpha \star \beta = (-1)^{|\alpha||\beta|}\beta \star \alpha$ for all $\alpha, \beta \in F$. For each $0 \le i, j \le n$, we have

$$e_i \star e_j = \sum_{k=0}^n c_{i,j}^k e_k,$$

where the $c_{i,j}^k \in K$ are called the **structured** K-coefficients of \star (they are uniquely determined by \star).

Next let *S* be the polynomial ring $K[e_1, \ldots, e_n]$. Monomials in *S* are expressed in the form

$$e^{a}=e_1^{a_1}\cdots e_n^{a_n},$$

where $a = (a_1, ..., a_n) \in \mathbb{N}^n$ and where $e^{(0,...,0)} = 1$. Given a monomial e^a in S, we define its **degree**, denoted $\deg(e^a)$, and its **homological degree**, denoted $|e^a|$, by

$$\deg(e^{a}) = \sum_{i=1}^{n} a_{i}$$
 and $|e^{a}| = \sum_{i=1}^{n} a_{i}|e_{i}|$.

For each $m \in \mathbb{N}$, we set

$$S_m = \operatorname{span}_K \{ e^a \mid \deg(e^a) = m \}.$$

Clearly we have $S = \bigoplus_{m \geq 0} S_m$. We identity F with $S_0 + S_1 = K + \sum_{i=1}^n Ke_i$. In order to keep notation consistent, we write $\alpha \star \beta$ to denote the multiplication of elements $\alpha, \beta \in F$ with respect to \star , and we shall write $\alpha\beta$ to denote their multiplication with respect to the usual multiplication \cdot in S. In particular, note that $\deg(e_i \star e_j) = 1$, $\deg(e_i e_j) = 2$, and $|e_i \star e_j| = |e_i| + |e_j| = |e_i e_j|$.

Finally, for each $1 \le i, j \le n$, let $f_{i,j}$ be the polynomial in S defined by

$$f_{i,j} = e_i e_j - \sum_k c_{i,j}^k e_k = e_i e_j - e_i \star e_j.$$

We let $\mathcal{F} = \{f_{i,j} \mid 1 \leq i, j \leq n\}$ and let I be the ideal of S generated by \mathcal{F} . We equip S with a weighted lexicographical ordering $>_w$ with respect to the weighted vector $w = (|e_1|, \ldots, |e_n|)$ which is defined as follows: given two monomials e^a and e^b in S, we say $e^a >_w e^b$ if either

- 1. $|e^a| > |e^b|$ or;
- 2. $|e^a| = |e^b|$ and there exists $1 \le i \le n$ such that $a_i > b_i$ and $a_1 = b_1, a_2 = b_2, \ldots, a_{i-1} = b_{i-1}$.

Observe that for each $1 \le i, j \le n$, we have $LT(f_{i,j}) = e_i e_j$. Indeed, if $e_i \star e_j = 0$, then this is clear, otherwise a nonzero term in $e_i \star e_j$ has the form $c_{i,j}^k e_k$ for some k where $c_{i,j}^k \ne 0$. Since \star is graded, we have $|e_k| = |e_i| + |e_j| = |e_i e_j|$. It follows that $|e_k| > |e_i|$ and $|e_k| > |e_j|$ since $|e_i|, |e_j| \ge 1$. This implies k > i and k > j by our assumption on the ordering of (e_1, \ldots, e_n) . Therefore since $|e_i e_j| = |e_k|$ and k > i, we see that $e_i e_j >_w e_k$.

Associator

The **associator** of \star is the graded *K*-trilinear map $[\cdot,\cdot,\cdot]:F^3\to F$ defined by

$$[\alpha, \beta, \gamma] = (\alpha\beta)\gamma - \alpha(\beta\gamma)$$

for all $\alpha, \beta, \gamma \in F$. Clearly, \star is associative if and only if $[\alpha, \beta, \gamma] = 0$ for all $\alpha, \beta, \gamma \in F$. Using the fact that \star is graded-commutative, we obtain the identities

• For all $\alpha, \beta, \gamma \in F$ homogeneous we have

$$[\alpha, \beta, \gamma] = -(-1)^{|\alpha||\beta| + |\alpha||\gamma| + |\beta||\gamma|} [\gamma, \beta, \alpha]. \tag{1}$$

• For all $\alpha, \beta, \gamma \in F$ homogeneous we have

$$[\alpha, \beta, \gamma] = -(-1)^{|\alpha||\gamma| + |\beta||\gamma|} [\gamma, \alpha, \beta] - (-1)^{|\alpha||\beta| + |\alpha||\gamma|} [b, x, a]$$
(2)

Proposition 0.1. *For all* α , $\beta \in F$ *homogeneous, we have*

$$[\alpha, \beta, \alpha] = (-1)^{|\alpha||\beta||} (1 - (-1)^{|\alpha|}) [\beta, \alpha, \alpha].$$

Proof. We combine (1) with (2) to get

$$\begin{split} [\alpha, \beta, \alpha] &= -(-1)^{|\alpha||\beta| + |\alpha|} [\alpha, \alpha, \beta] - (-1)^{|\alpha||\beta| + |\alpha|} [x, a, a] \\ &= (-1)^{|\alpha||\beta|} [\beta, \alpha, \alpha] - (-1)^{|\alpha||\beta| + |\alpha|} [\beta, \alpha, \alpha] \\ &= (-1)^{|\alpha||\beta||} (1 - (-1)^{|\alpha|}) [\beta, \alpha, \alpha]. \end{split}$$

Corollary 1. Suppose that $[\alpha, \beta, \gamma] = 0$ whenever $\alpha \neq \gamma$. Then \star is associative.

Proof. It suffices to check that $[\alpha, \beta, \alpha] = 0$ for all $\alpha, \beta \in F$. Graded-commutativity of \star implies $[\alpha, \alpha, \alpha] = 0$, so we may assume that $\beta \neq \alpha$. Then the hypothesis together with Proposition (0.1) implies

$$[\alpha, \beta, \alpha] = (-1)^{|\alpha||\beta||} (1 - (-1)^{|\alpha|}) [\beta, \alpha, \alpha] = 0.$$

The Main Theorem

We are now ready to state and prove the main theorem:

Theorem 0.1. The following statements are equivalent:

- 1. \star is associative.
- 2. F is a Gröbner basis.
- 3. $\{e^a \mid e^a \notin LT(I)\} = \{e_1, \dots, e_n\}.$

Proof. Statements 2 and 3 are easily seen to be equivalent, so we will only show that statements 1 and 2 are equivalent. Let us calculate the S-polynomial of $f_{i,k}$ and $f_{i,j}$ where $i \neq k$. We have

$$S_{i,j,k} := S(f_{j,k}, f_{i,j})$$

$$= e_i f_{j,k} - f_{i,j} e_k$$

$$= e_i (e_j e_k - e_j \star e_k) - (e_i e_j - e_i \star e_j) e_k$$

$$= (e_i \star e_j) e_k - e_i (e_j \star e_k)$$

$$= \left(\sum_l c_{i,j}^l e_l\right) e_k - e_i \left(\sum_l c_{j,k}^l e_l\right)$$

$$= \sum_l c_{i,j}^l e_l e_k - \sum_l c_{j,k}^l e_i e_l.$$

Now we divide $S_{i,j,k}$ by \mathcal{F} . We have

$$\begin{split} S_{i,j,k} - \sum_{l} c_{i,j}^{l} f_{l,k} + \sum_{l} c_{j,k}^{l} f_{i,l} &= \sum_{l} c_{i,j}^{l} e_{l} e_{k} - \sum_{l} c_{j,k}^{l} e_{i} e_{l} - \sum_{l} c_{i,j}^{l} (e_{l} e_{k} - e_{l} \star e_{k}) + \sum_{l} c_{j,k}^{l} (e_{i} e_{l} - e_{i} \star e_{l}) \\ &= \sum_{l} c_{i,j}^{l} e_{l} \star e_{k} - \sum_{l} c_{j,k}^{l} e_{i} \star e_{l} \\ &= \left(\sum_{l} c_{i,j}^{l} e_{l} \right) \star e_{k} - e_{i} \star \left(\sum_{l} c_{j,k}^{l} e_{l} \right) \\ &= (e_{i} \star e_{j}) \star e_{k} - e_{i} \star (e_{j} \star e_{k}) \\ &:= [e_{i}, e_{j}, e_{k}]. \end{split}$$

Note that $\deg([e_i,e_j,e_k])=1$, so we cannot divide this anymore by \mathcal{F} . It follows that $S_{i,j,k}^{\mathcal{F}}=[e_i,e_j,e_k]$. Next, let us calculate the S-polynomial of $f_{k,l}$ and $f_{i,j}$ where $i\neq k, i\neq l, j\neq k$, and $j\neq l$. We have

$$S_{i,j,k,l} := S(f_{k,l}, f_{i,j})$$

$$= e_i e_j f_{j,k} - f_{i,j} e_k e_l$$

$$= (f_{i,j} + e_i \star e_j) f_{j,k} - f_{i,j} (f_{k,l} + e_k \star e_l)$$

$$= (e_i \star e_j) f_{j,k} - f_{i,j} (e_k \star e_l).$$

It follows that $S_{i,j,k,l}^{\mathcal{F}} = 0$. Obviously we have $S(f_{i,i}, f_{i,i})$ for each $1 \le i \le n$. Now the equivalence of statements 1 and 2 follows immediately from Buchberger's Criterion.

Remark 1. Note that the proof gives an algorithm for calculating associators; namely to calculate $[e_i, e_j, e_k]$, we first calculate the S-polynomial $S_{i,j,k} = S(f_{j,k}, f_{i,j})$, and then we reduce $S_{i,j,k}$ with respect to \mathcal{F} in the obvious way. In Singular, this can be calculated using the reduce command.

Example 0.1. Let Δ be the simplicial complex below

and let F be the corresponding graded \mathbb{F}_2 -vector space induced by Δ . Let's write the homogeneous components of F as a graded \mathbb{F}_2 -vector space

$$\begin{split} F_0 &= \mathbb{F}_2 \\ F_1 &= \mathbb{F}_2 e_1 + \mathbb{F}_2 e_2 + \mathbb{F}_2 e_3 + \mathbb{F}_2 e_4 + \mathbb{F}_2 e_5 \\ F_2 &= \mathbb{F}_2 e_{12} + \mathbb{F}_2 e_{13} + \mathbb{F}_2 e_{14} + \mathbb{F}_2 e_{23} + \mathbb{F}_2 e_{24} + \mathbb{F}_2 e_{34} + \mathbb{F}_2 e_{35} + \mathbb{F}_2 e_{45} \\ F_3 &= \mathbb{F}_2 e_{123} + \mathbb{F}_2 e_{124} + \mathbb{F}_2 e_{134} + \mathbb{F}_2 e_{234} + \mathbb{F}_2 e_{345} \\ F_4 &= \mathbb{F}_2 e_{1234} \end{split}$$

Let \star be a graded-multiplication on F such that

$$e_1 \star e_5 = e_{14} - e_{45}$$

 $e_2 \star e_5 = e_{23} - e_{35}$
 $e_2 \star e_{45} = e_{234} - e_{345}$
 $e_1 \star e_{35} = e_{134} - e_{345}$
 $e_1 \star e_{23} = e_{123}$
 $e_2 \star e_{14} = e_{124}$.

Then \star is not associative since $[e_1, e_5, e_2] = -e_{123} + e_{124} - e_{234} + e_{134}$. We used Singular to calculate this associator using the code below:

```
intvec w=(1,1,1,2,2,2,2,3,3,3,3,3);
ring A=o,(e1,e2,e5,e14,e45,e23,e35,e123,e124,e234,e134,e345),Wp(w);

poly f(1)(5) = e1*e5-e14+e45;
poly f(2)(5) = e2*e5-e23+e35;
poly f(2)(45) = e2*e45-e234+e345;
poly f(1)(35) = e1*e35-e134+e345;
poly f(1)(23) = e1*e23-e123;
poly f(2)(14) = e2*e14-e124;
poly S(1)(5)(2) = e1*f(2)(5)-e2*f(1)(5);

ideal I = f(1)(5),f(2)(5),f(2)(45),f(1)(35),f(1)(23),f(2)(14);
reduce(S(1)(5)(2),I); // calculates associator [e1,e5,e2].
```

See [Avr81] for more details

References

- [BE77] D. A. Buchsbaum and D. Eisenbud. "Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3". In: Amer. J. Math. 99.3 (1977), pp. 447–485.
- [Avr81] L. L. Avramov. "Obstructions to the Existence of Multiplicative Structures on Minimal Free Resolutions". In: Amer. J. Math. 103.1 (1981), pp. 1–31.
- [Luk26] Lukas Katthän. "The structure of DGA resolutions of monomial ideals". In: Preprint (2016). arXiv:1610.06526