18.Definite Integrals and Applications of Integrals

AI24BTECH11006-Bugada Roopansha

Section-A JEE Advanced/IIT-JEE

C. MCQs with One Correct Answer

- 21) If $lm, n = \int_0^1 t^m 1 + t^n dt$, then the expression for lm, n in terms of lm + 1, n - 1 is

 - a) $\frac{2^n}{m+1} \frac{n}{m+1} lm + 1, n-1$ b) $\frac{n}{m+1} lm + 1, n-1$ c) $\frac{2^n}{m+1} + \frac{n}{m+1} lm + 1, n-1$ d) $\frac{n}{m+1} lm + 1, n-1$
- 22) If $fx = \int_{x^2}^{x^2+1} e^{-t^2} dt$, then fxincreases in (2003S)
 - a) -2, 2
 - b) no value of x
 - c) $0, \infty$
 - d) $-\infty$, 0
- 23) The area bounded by the curves $y = \sqrt{x}, 2y + 3 = x$ and x-axis in the 1st quadrant is (2003S)
 - a) 9
 - b) $\frac{27}{4}$
 - c) 36
 - d) 18
- 24) If fxis differentiable and $\int_0^{t^2} x f x dx = \frac{2}{5}t^5$, then $f \frac{4}{25}$ equals a) $\frac{2}{5}$ b) $\frac{-5}{2}$ c) 1

 - d) $\frac{5}{2}$
- 25) The value of the integral $\int_0^1 \sqrt{\frac{1-x}{1+x}} dx$ is (2004S)

 - b) $\frac{\pi}{2} 1$
 - c) -1
 - d) 1
- 26) The area enclosed between the curves $y=ax^2$ and $x = ay^2$ a>0 is 1 sq.unit, then the value of a is (2004S)
 - a) $\frac{1}{\sqrt{3}}$
 - b) $\frac{1}{2}$
 - c) 1
 - d) $\frac{1}{3}$

- 27) $\int_{-2}^{0} x^3 + 3x^2 + 3x + 3 + x + 1\cos x + 1 dx$ is equal
 - a) -4
 - b) 0
 - c) 4
 - d) 6
- 28) The area bounded by the parabolas y = $x + 1^2$ and $y = x - 1^2$ and the line $y = \frac{1}{4}$ is (2005S)
 - a) 4sq.units
 - b) $\frac{1}{6}$ sq.units
 - c) $\frac{4}{3}$ sq.units
 - d) $\frac{1}{3}$ sq.units
- 29) The area of the region between the curves y = $\sqrt{\frac{1+\sin x}{\cos x}}$ and $y = \sqrt{\frac{1-\sin x}{\cos x}}$ bounded by the lines x = 0 and $x = \frac{\pi}{4}$ is (2008)
 - a) $\int_{0}^{\sqrt{2}-1} \frac{t}{1+t^2\sqrt{1-t^2}} dt$ b) $\int_{0}^{\sqrt{2}-1} \frac{4t}{1+t^2\sqrt{1-t^2}} dt$ c) $\int_{0}^{\sqrt{2}+1} \frac{4t}{1+t^2\sqrt{1-t^2}} dt$ d) $\int_{0}^{\sqrt{2}+1} \frac{t}{1+t^2\sqrt{1-t^2}} dt$
- 30) Let f be a non-negative function defined on the interval $0, 1 \cdot \text{If} \int_0^x \sqrt{1 - f't^2} = \int_0^x ft dt, 0 \le x \le 1, \text{and } f0 = 0, \text{then}$ (2009)
 - a) $f\frac{1}{2} < \frac{1}{2}$ and $f\frac{1}{3} > \frac{1}{3}$ b) $f\frac{1}{2} > \frac{1}{2}$ and $f\frac{1}{3} > \frac{1}{3}$ c) $f\frac{1}{2} < \frac{1}{2}$ and $f\frac{1}{3} < \frac{1}{3}$ d) $f\frac{1}{2} > \frac{1}{2}$ and $f\frac{1}{3} < \frac{1}{3}$
- 31) The value of $\lim_{x\to 0} \frac{1}{x^3} \int_0^x \frac{t \ln 1 + t}{t^4 + 4} dt$ is

 - b) $\frac{1}{12}$ c) $\frac{1}{24}$ d) $\frac{1}{64}$
- 32) Let f be a real valued function defined on the interval -1,1 such that $e^{-x}fx = 2 + \int_0^x \sqrt{t^4 + 1}dt$, for all $x \in -1, 1,$ and let f^{-1} be the inverse function f. Then $f^{-1}(2)$ is equal to
 - a) 1
 - b) $\frac{1}{3}$

- c) $\frac{1}{2}$ d) $\frac{1}{e}$
- 33) The value of $\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin x^2}{\sin x^2 + \sinh 6 x^2} dx$ is (2011)
 - a) $\frac{1}{4} \ln \frac{3}{2}$ b) $\frac{1}{2} \ln \frac{3}{2}$

 - c) $\ln \frac{3}{2}$ d) $\frac{1}{6} \ln \frac{3}{2}$
- 34) Let the straight line x = b divide the area enclosed by $y = 1 - x^2$, y = 0, and x = 0 into two parts $R_10 \le x \le b$ and $R_2b \le x \le 1$ such that $\hat{R}_1 - R_2 = \frac{1}{4}$. Then *b* equals (2011)

 - a) $\frac{3}{4}$ b) $\frac{1}{2}$ c) $\frac{1}{3}$ d) $\frac{1}{4}$
- 35) Let $f: -1, 2 \rightarrow [0, \infty)$ be a continuous function such that fx = f1 - x for all $x \in -1, 2$.Let $R_1 = \int_{-1}^{2} x f x dx$, and R_2 be the area of the region bounded by y = fx, x = -1, x = 2, and the xaxis ·

Then (2011)

- a) $R_1 = 2R_2$
- b) $R_1 = 3R_2$
- c) $2R_1 = R_2$
- d) $3R_1 = R_2$