Robotics, Teaching & Learning

Philippe Lucidarme

Catmull-Rom splines

The Catmull-Rom splines is a method that approximate a set of points (named control points) with a smooth polynomial function that is piecewise-defined. One of the properties of the Catmull-Rom spline is that the curve will pass through all of the control points.

Equations

Two points on each side of the desired portion are required. In other words, points P_{i-1} and P_{i+2} are needed to calculate the spline between points P_i and P_{i+1} .

Given points P_{i-1} , P_i , P_{i+1} and P_{i+2} , the coordinates of a point P located between P_i and P_{i+1} are calculated as:

$$P = rac{1}{2}. egin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix}. egin{bmatrix} 0 & 2 & 0 & 0 \ -1 & 0 & 1 & 0 \ 2 & -5 & 4 & -1 \ -1 & 3 & -3 & 1 \end{bmatrix}. egin{bmatrix} P_{i-1} & P_i & P_{i+1} & P_{i+2} \end{bmatrix}^ op$$

General case: tension

The previous equation is a particular case of the general geometry matrix given by the following equation:

The parameter τ modify the tension of the curve. The following figure illustrates the influence of the parameter τ on the curve. Note that $\tau=\frac{1}{2}$ is commonly used (as in the particular case presented previously).

Derivative

As the spline is C^1 continuous it is possible to compute the derivative for any value of t. Moreover, as the definition of the spline is a polynomial, it is quite trivial to compute the derivative at a given point:

Properties

The spline passes through all of the control points.

The spline is ${\cal C}^1$ continuous.

The spline is not C^2 continuous.

The spline does not lie within the convex hull of their control points

Examples

