EDOs lineales de orden n

Rafael Ramírez Ros

Clases 10, 11 & 12 (de problemas de EDOs-GM)

Índice

1 Introducción

- 2 EDOs lineales homogéneas (EDOLHs)
- 3 EDOs lineales no homogéneas (EDOLNHs)

Abreviaturas

- EDO = Ecuación diferencial ordinaria
- EDOL = EDO lineal
- EDOLH/EDOLNH = EDO lineal homogénea/no homogénea
- SL = Sistema lineal
- SLH/SLNH = Sistema lineal homogéneo/no homogéneo
- CC = Coeficientes constantes
- CI = Condición inicial
- PVI = Problema de valor inicial (o de Cauchy)
- SEV = Subespacio vectorial
- LI/LD = Linealmente independiente/dependiente

Definiciones

■ Una EDOL de orden *n* es una ecuación de la forma

$$x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_1(t)x' + a_0(t)x = f(t)$$

donde:

- $t \in I \subset \mathbf{R}$ es la variable independiente;
- $x = x(t) \in \mathbf{R}$ es la incógnita (o variable dependiente);
- $a_0(t), a_1(t), \dots, a_{n-1}(t)$ son funciones continuas en I;
- f(t) es el término no homogéneo, también continuo en I;
- / es un intervalo de R.
- La EDOL es homogénea cuando $f(t) \equiv 0$.
- La EDOL es a CC cuando los coeficientes $a_j(t)$ son constantes.
- La EDOL está normalizada: $a_n(t) \equiv 1$.
- CI = $\{x^{(j)}(t_0) = x_j : j = 0, ..., n-1\}$, t_0 = tiempo inicial, x_j = valores iniciales.

EDOL orden $n \rightsquigarrow SL$ 1er orden y dimensión n

Esa EDOL de orden n equivale al SL de 1er orden

$$\mathbf{x}' = A(t)\mathbf{x} + \mathbf{b}(t), \quad \mathbf{x} = \begin{pmatrix} x \\ x' \\ \vdots \\ x^{(n-2)} \\ x^{(n-1)} \end{pmatrix}, \quad \mathbf{b}(t) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f(t) \end{pmatrix},$$

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_0(t) & -a_1(t) & -a_2(t) & \cdots & -a_{n-2}(t) & -a_{n-1}(t) \end{pmatrix}$$

Nota: traza $[A(t)] = -a_{n-1}(t)$.

Relaciones entre las EDOLs y sus SLs

■
$$x(t)$$
 sol. EDOL $\Leftrightarrow x(t) = \begin{pmatrix} x(t) \\ \vdots \\ x^{(n-1)}(t) \end{pmatrix}$ sol. SL, luego

1 La soluciones de una EDOLH forman un SEV de dimensión n:

$$x_h(t) = c_1x_1(t) + \cdots + c_nx_n(t), \qquad c_1, \ldots, c_n \in \mathbf{R}.$$

2 La solución general de una EDOLNH tiene la forma

$$x_{g}(t) = x_{h}(t) + x_{p}(t) = c_{1}x_{1}(t) + \cdots + c_{n}x_{n}(t) + x_{p}(t),$$

donde $x_p(t)$ es cualquier solución particular de la EDOLNH.

■ Teorema $\exists !$ para $\mathsf{SLs} \Rightarrow \mathsf{Teorema} \ \exists !$ para $\mathsf{EDOLs}.$

Índice

- 1 Introducción
- 2 EDOs lineales homogéneas (EDOLHs)
- 3 EDOs lineales no homogéneas (EDOLNHs)

Wronskiano & funciones LI

- Tenemos *n* soluciones $x_1(t), \ldots, x_n(t)$ de la EDOLH.
- Pregunta: ¿Son LI? Es decir,

$$c_1x_1(t)+\cdots+c_nx_n(t)=0, \forall t\in I\Rightarrow c_1=\cdots=c_n=0.$$

■ Su Wronskiano $W(t) = W[x_1(t), ..., x_n(t)]$ es el determinante

$$W(t) = \begin{vmatrix} x_1(t) & x_2(t) & \cdots & x_n(t) \\ x'_1(t) & x'_2(t) & \cdots & x'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(n-1)}(t) & x_2^{(n-1)}(t) & \cdots & x_n^{(n-1)}(t) \end{vmatrix}.$$

- Fórmula de Liouville: $W'(t) = -a_{n-1}(t)W(t)$, luego
 - **1** O bien, $W(t) \neq 0$, $\forall t \in I \ (\leadsto \text{son LI})$;
 - 2 O bien, $W(t) \equiv 0, \forall t \in I \ (\rightsquigarrow \text{son LD}).$
- Problemas 30, 31 y 32.

- EDOLH 20 orden normalizada: $x'' + a_1(t)x' + a_0(t)x = 0$.
- Si $x_1(t)$ es una solución tal que $x_1(t) \neq 0$ para todo $t \in I$, entonces

$$x_2(t) = x_1(t) \int \frac{e^{-\int a_1(t)dt}}{x_1(t)^2} dt$$

es una segunda solución LI con $x_1(t)$.

- Prueba: Al imponer que $x_2(t) = x_1(t)v(t)$ sea solución, obtenemos una EDOLH de 1er orden en la incógnita u = v'.
- Esta reducción también funciona en EDOLHs de orden n.
- Ejemplo: Si $m \in \mathbb{R}$ es un parámetro arbitrario, entonces

EDOLH:
$$x'' - 2mx' + m^2x = 0$$

1a solución: $x_1(t) = e^{mt} \neq 0, \forall t$ \Rightarrow 2a sol.: $x_2(t) = te^{mt}$.

■ Problemas 34 y 49.

EDOLHs a CC: Notaciones & definiciones

- EDOLH a CC: $x^{(n)} + a_{n-1}x^{(n-1)} + \cdots + a_1x' + a_0x = 0$.
- Operador diferencial: $D = \frac{d}{dt}$. En particular, $D^j = \frac{d^j}{dt^j}$.
- EDOLH a CC en forma compacta: P(D)[x] = 0.
- Polinomio característico¹:

$$P(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0.$$

- Idea clave: $D^{j}[e^{\lambda t}] = \lambda^{j}e^{\lambda t}$, luego $P(D)[e^{\lambda t}] = P(\lambda)e^{\lambda t}$.
- Corolarios:
 - **1** $m \in \mathbf{C}$ raíz de $P(\lambda) \Leftrightarrow x(t) = e^{mt}$ solución.
 - **2** Si los coeficientes son reales: $P(\lambda) \in \mathbb{R}_n[\lambda]$, entonces

$$\alpha \pm \beta$$
i raíces de $P(\lambda) \Leftrightarrow \begin{cases} y(t) = e^{\alpha t} \cos(\beta t) \\ z(t) = e^{\alpha t} \sin(\beta t) \end{cases}$ soluciones.

 \blacksquare Reto: Buscar k soluciones LI por cada raíz de multiplicidad k.

$$^1x'=Ax$$
 SLH asociado $\Rightarrow P(\lambda)=(-1)^nQ_A(\lambda)$.

EDOLHs a CC: Conjunto fundamental de soluciones

- Ejercicio: $P(D)[t^r e^{mt}] = e^{mt} P(D + m \text{Id})[t^r], \forall m \in \mathbb{C}, \forall r \geq 0.$
- $x(t) = t^r e^{mt}$ solución $\Leftrightarrow m$ raíz de multiplicidad > r.
- Si los coeficientes son reales: $P(\lambda) \in \mathbb{R}_n[\lambda]$, entonces

$$\left. egin{aligned} y(t) &= t^r \mathrm{e}^{lpha t} \cos(eta t) \\ z(t) &= t^r \mathrm{e}^{lpha t} \sin(eta t) \end{aligned}
ight. \quad \text{soluciones} \quad \Leftrightarrow \quad egin{aligned} \alpha \pm eta & \text{in raices de multiplicidad} > r \end{aligned}$$

■ Asociamos a cada raíz de $P(\lambda)$ unas funciones según la tabla

Raíz	Mul.	Soluciones LI	
$m \in \mathbf{R}$	k	$t^r e^{mt}$ con $r = 0, 1, \ldots, k-1$	
$\alpha \pm \beta i \in \mathbf{C}$	k	$ \left\{ \begin{array}{c} t^r e^{\alpha t} \cos \beta t \\ t^r e^{\alpha t} \sin \beta t \end{array} \right\} \text{ con } r = 0, 1, \dots, k-1 $	

- Esas funciones forman un conjunto fundamental de soluciones.
- Problemas 33, 35, 36 y 37.

EDOs lineales no homogéneas (EDOLNHs)

Índice

- 1 Introducción
- 2 EDOs lineales homogéneas (EDOLHs)
- 3 EDOs lineales no homogéneas (EDOLNHs)

Variación de las constantes: Caso general

- EDOLNH: $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_1(t)x' + a_0(t)x = f(t)$.
- Solución general EDOLH: $x_h(t) = c_1x_1(t) + \cdots + c_nx_n(t)$.
- Buscamos una solución particular $x_p(t)$ de la EDOLNH sustituyendo las constantes c_j por funciones $u_j(t)$.
- Fórmula de variación de las constantes (vía Cramer):

$$u_j(t) = \int \frac{W_j(t)}{W(t)} dt, \qquad j = 1, \ldots, n,$$

donde $W(t) = W[x_1(t), ..., x_n(t)]$ es el Wronskiano y $W_j(t)$ es el determinante de la matriz que se obtiene a sustituir la j-ésima columna de W(t) por el término independiente $\boldsymbol{b}(t)$.

- No se necesita ninguna constante de integración al calcular las primitivas, pues solo queremos una solución particular.
- Ejemplo: Problema 39.

Variación de las constantes: Caso 20 orden

- EDOLNH normalizada: $x'' + a_1(t)x' + a_0(t)x = f(t)$.
- Sol. general EDOLH: $x_h(t) = c_1x_1(t) + c_2x_2(t)$, $c_1, c_2 \in \mathbb{R}$.
- Fórmula de variación de las constantes: Si

$$u_1(t) = -\int \frac{x_2(t)f(t)}{W(t)}dt, \quad u_2(t) = \int \frac{x_1(t)f(t)}{W(t)},$$

entonces

$$x_{p}(t) = u_{1}(t)x_{1}(t) + u_{2}(t)x_{2}(t)$$

es una solución particular de la EDOLNH.

■ Ejemplos: Problemas 44 y 45.

Coeficientes indeterminados: Método

- Condiciones necesarias para poder aplicarlo:
 - **1** EDOLNH a CC: P(D)[x] = f(t), $P(\lambda)$ pol. característico; y
 - **2** Existe otro polinomio $Q(\lambda)$ tal que Q(D)[f(t)] = 0.
- Construimos la siguiente tabla:

Términos dentro de $f(t)$	Términos dentro de $x_p(t)$	
$R(t)e^{mt}$, $gr[R(t)] = I$	$t^k ilde{R}(t)$ e mt , $\operatorname{\sf gr}[\hat{R}(t)] = I$	
$C(t)e^{\alpha t}\cos\beta t, C(t) \in \mathbf{R}_{l}[t]$	$t^k \tilde{C}(t) e^{\alpha t} \cos \beta t, \hat{C}(t) \in \mathbf{R}_l[t]$	
$S(t)e^{\alpha t}\sin\beta t, S(t)\in\mathbf{R}_I[t]$	$t^k \tilde{S}(t) e^{\alpha t} \sin \beta t, \hat{S}(t) \in \mathbf{R}_I[t]$	

con $k = \text{multiplicidad de } m \text{ (resp., } \alpha \pm \beta i \text{) como raíz de } P(\lambda).$

- Teorema: $\exists ! x_p(t)$ "con" esos términos.
- Explicación: Si $x_g(t) = x_h(t) + x_p(t)$ es la solución general de la EDOLNH P(D)[x] = f(t), entonces

$$P(D)[x_h(t)] = 0,$$
 $Q(D)P(D)[x_p(t)] = Q(D)[f(t)] = 0.$

■ Ejemplos: Problemas 40, 41, 43 y 46.

EDOs de Euler

■ Las EDOs de Euler son las ecuaciones de la forma

$$L[x] := a_n s^n x^{(n)} + a_{n-1} s^{n-1} x^{(n-1)} + \dots + a_1 s x' + a_0 x = f(s).$$

- Son singulares en s = 0.
- 1a forma: EDO Euler (variable s) $\stackrel{s=e^t}{\leftrightarrow}$ EDOL a CC (variable t).
- 2a forma: Polinomio característico. Buscamos $P(\lambda) \in \mathbf{R}_n[\lambda]$ tal que $L[s^{\lambda}] = P(\lambda)s^{\lambda}$. Asociamos a cada raíz de $P(\lambda)$ unas funciones según la tabla

Raíz	Mul.	Soluciones LI		
$m \in \mathbf{R}$	k	$(\log s)^r s^m \text{ con } r = 0, \dots, k-1$		
$\alpha \pm \beta i$	k	$ (\log s)^r s^{\alpha} \cos(\beta \log s) $ $ (\log s)^r s^{\alpha} \sin(\beta \log s) $		

■ Ejemplos: Problemas 47, 48 y 49.