CPU (Central Processing Unit)

O Processador (CPU) é organizado em três partes:

- 1. **Unidade lógica aritmética (ALU)**: Executa as micro-operações (soma, subtração, operações lógicas *and*, *ou*, etc.) necessárias para executar as instruções;
- 2. Registradores: Armazena dados intermediários durante a execução de instruções;
- 3. **Unidade de controle**: supervisiona a transferência de informações entre os registos e instrui a ULA sobre qual operação a executar através da geração de sinais de controle.

- Execução de um programa
 - Busca a instrução na memória
 - Decodifica a instrução
 - Executa a instrução

Central processing unit (CPU)

Control unit

Arithmetic logical unit (ALU)

Registers

: : : Main memory

Disk Printer

Bus

Figure 2-1. The organization of a simple computer with one CPU and two I/O devices.

Figure 2-2. The data path of a typical von Neumann machine.

- *O* A CPU executa um programa, que é uma sequência de instruções armazenadas.
 - O Cada modelo de processador tem um conjunto de instruções, que ele executa.
- A CPU executa o programa de processamento de cada pedaço de dados conforme a orientação do programa e do conjunto de instruções.

Enquanto a CPU está executando uma etapa do programa, as demais instruções e os dados são armazenados nas proximidades de uma memória especial chamada cache.

CPU comerciais

CPU modelo: **Z80** – Fabricante: Zilog

Linhas de dados: 8 bits - D0 a D7

Linhas de endereço: 16 bits – A0 a A15

Acesso a uma memória física (principal) de até: 65.536 bytes – 64 KB

Figure 1. Z80 CPU Block Diagram

CPU modelo: 8080 - Fabricante: Intel

Linhas de dados: 8 bits - D0 a D7

Linhas de endereço: 16 bits – A0 a A15

Acesso a uma memória física (principal) de até: 65.536 bytes – 64 KB

Intel 8080 CPU block diagram System Data Bus (8-bit) Data Buffer Internal Data Bus (8-bit) Registry Array B C Address Buffer Address Buffer System Address Bus (16-bit)

CPU modelo: 80286 - Fabricante: Intel

Figura 3.1. Pinagem do 80286.

Linhas de dados: 16 bits - D0 a D15 Linhas de endereço: 24 bits - A0 a A23

Acesso a uma memória física (principal) de até: 16.777.216 bytes – 16 MB

CPU modelo: 80386 - Fabricante: Intel

Pinagem do 80386, com encapsulamento 132 - PGA

Linhas de dados: 32 bits - D0 a D31 Linhas de endereço: 32 bits - A0 a A31

Acesso a uma memória física (principal) de até: 4.294.967.296 bytes – 4 GB

- O que uma CPU pode fazer está definido na Instruction Set Architecture (ISA)
- Uma linguagem deve ser desenvolvida para permitir ao programador dizer à CPU o que fazer (linguagem de montagem (assembly))
- Um programa que traduza a linguagem de montagem para bits que o computador entenda então é chamado de assembler
- Imaginemos uma CPU (fig. 2-2) que tem a habilidade de executar 4 operações de 2 números:
 - Adição, subtração, multiplicação e divisão.
 - Estas operações receberão respectivamente os mnemônicos:
 - ADD, SUB, MUL e DIV
 - Esta CPU tem 4 posições de memória que pode armazenar estes números:
 - R1, R2, R3 e R4
 - Imaginemos que R1 = 4, R2 = 7, R3 = 5 e R4 =1
 - Para somar 4 + 7 teríamos então:
 - ADD R1, R2
 - Para subtrair 5 1 teríamos:
 - SUB R3, R4
 - Estas instruções são úteis, mas...
 - O computador não é capaz de entender, é preciso convertê-las em binário.

Figure 2-2: Simple CPU

- Primeiro cada operação ADD, SUB, MUL, DIV será traduzida para um número de 2 bits:
 - $ADD = 00_2$, $SUB = 01_2$, $MUL = 10_2$, $DIV = 11_2$

- A memória será acessada por um local, e este local terá um endereço.
- Temos 4 localizações de memória:
 - R1, R2, R3, e R4
 - O endereço de cada localização na base 2 será:
 - $R1 = 00_2$, $R2 = 01_2$, $R3 = 10_2$, $R4 = 11_2$
- A linguagem utilizada no computador, chamada linguagem de máquina, é uma série de 1s e 0s que representam a operação e os dois locais de memória a ser usada para recuperar os valores.
- Cada instrução será formatada com um código de operação de 2 bits (opcode), a primeira localização de memória a ser usada e a segunda localização de memória a ser usada.

OpCode		Second Register
--------	--	--------------------

 A instrução "ADD R1, R2" é traduzida então em código de máquina para o binário 000001

OpCode	First Register	Second Register
00	00	01

• e "*SUB R3, R4*" é traduzido para 011011

OpCode	First Register	Second Register
01	10	11

Exemplos

Intel 8080 instruction set architecture

Instruction code formats:

- One byte instructions:

\mathbf{i}_7 \mathbf{i}_6 \mathbf{i}_5 \mathbf{i}_4 \mathbf{i}_3 \mathbf{i}_2 \mathbf{i}_1 \mathbf{i}_0	All bits used to encode instruction, no operands.
i ₇ i ₆ i ₅ i ₄ i ₃ r r r	One operand in 8-bit internal register A to L.
i ₇ i ₆ I I I i ₂ i ₁ i ₀	One operand in 8-bit internal register A to L.
i ₇ i ₆ r1 r1 r1 r2 r2 r2	Two operands in two 8-bit internal registers A to L.
i ₇ i ₆ p p i ₃ i ₂ i ₁ i ₀	One operand in 16-bit register pair BC, DE, HL or in SP.
 Two byte instructions: 	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	All bits of the first byte used to encode instruction, the second byte is the <i>immediate</i> operand (argument).
i ₇ i ₆ i ₅ i ₄ i ₃ i ₂ i ₁ i ₀	

Three byte instructions with immediate memory addressing:

İ ₇	İ ₆	p	p	İ ₃	i ₂	l ₁	i _o	First operand in 16-bit register pair BC, DE, HL or in SP,
17	l ₆	l ₅	4	l ₃	2	1	0	the second byte is lower part of 16-bit second operand,
h ₇	h₅	h₅	h₄	h₃	h ₂	h₁	h₀	the third byte is higher part of the 16-bit second operand.

Instruction list:

Data transfer instructions

MOV R1, R2 (Move register)

		0	1	r1	r1	r1	r2	r2	r2	R1 ← R2 data from R2 is copied to I
--	--	---	---	----	----	----	----	----	----	-------------------------------------

MOV R, M (Move from memory, address in HL)

	_			_		_	_	1
1 0	1	r	r	r	1	l 1	0	R ← [HL] data from memory (address in HL) copied to F

MOV M, R (Move to memory, address in HL)

$\overline{}$	_	_	_	_		_		1
0	1	1	1	0	r	r	r	[HL] ← R data from R copied to memory (address in HL)

MVI R, data8 (Move to register immediate)

0	0	r	r	r	1	1	0	1 byte (next to instruction) copied to R
d ₇	d₅	d₅	d ₄	d₃	d ₂	d ₁	d₀	

MVI M, data8 (Move to memory immediate)

0	0	1	1	0	1	1	0	[HL] ← data8 1 byte copied to memory (address in HL)
d-	d۵	d₌	d,	d ₂	d ₂	d.	d _n	

Table 2-1. Processor Performance Over Time and Other Key Features of the Intel Architecture

Intel Processor	Date of Product Intro- duction	Perfor- mance in MIPs ¹	Max. CPU Frequency at Intro- duction	No. of Transis -tors on the Die	Main CPU Register Size ²	Extern. Data Bus Size ²	Max. Extern. Addr. Space	Caches in CPU Pack- age ³
8086	1978	0.8	8 MHz	29 K	16	16	1 MB	None
Intel 286	1982	2.7	12.5 MHz	134 K	16	16	16 MB	Note 3
Intel386™ DX	1985	6.0	20 MHz	275 K	32	32	4 GB	Note 3
Intel486™ DX	1989	20	25 MHz	1.2 M	32	32	4 GB	8KB L1
Pentium®	1993	100	60 MHz	3.1 M	32	64	4 GB	16KB L1
Pentium Pro	1995	440	200 MHz	5.5 M	32	64	64 GB	16KB L1; 256KB or 512KB L2

Structured Computer Organization, Fifth Edition, Andrew S. Tanenbaum

Digital circuit projects - Charles W. Kann III

Z80 Datasheet - Zilog

8080A Datasheet - Intel

80286 Datasheet – Intel

80386 Datasheet - Intel