

FlyingGOAT

Дмитрий Оконешников

Лидер команды / инженер-программист

Направление подготовки: Информатика и вычислительная техника

Задачи: автономный полёт, работа с сервером

Глеб Бугаев

Инженер-техник

Направление подготовки: Информатика и вычислительная техника

Задачи: задание инженера-техника

Мария Шмакова

Инженер-программист

Направление подготовки: Анализ данных и искусственный интеллект

Задачи: компьютерное зрение, frontend

Постановка задачи программной части

Разработать алгоритм и программный код навигации и идентификации очагов возгорания при помощи группы беспилотных авиационных систем.

Требования:

- 1. Управление дронами через веб серверное приложение с графическим интерфейсом с помощью функциональных клавиш.
- 2. Отображение статусов дронов и показателей аккумуляторов на сервере.
- 3. Дрон 0: распознавание очагов возгорания. Дрон 1: следование за дроном 0 и тушение распознанных очагов по пути.

FLYINGGOAT

Запуск полетного задания

Экстренное выключение

Посадка

Пауза

Получить результаты

Ожидаю данных

Дрон 0: Соединение - ж, Готовность - ж, Батарея - 0%, Напряжение - 0 В

Дрон 1: Соединение - ж, Готовность - ж, Батарея - 0%, Напряжение - 0 В

FLYINGGOAT

Основные алгоритмы

Распознавание пожара

Облёт поля

Кластеризация координат распознанных очагов возгорания

1. Изначальное изображение.

Распознавани е пожара

- Наложение маски на красный, желтый, оранжевый и совмещение с изображением.
- Упрощение изображения: все пиксели либо белые (области интереса), либо черные (фон).
- 4. Улучшение качества маски, где остаются только крупные и значимые области.
- ы Визуализация найденных объектов на исходном изображении.

Облёт поля

- 1. Дрон 0 облетает поле по aruco-меткам по маршруту $0 \to 25 \to 29 \to 19 \to 15 \to 5 \to 9 \to 4 \to 0 \to 30 \to 0$.
- Дрон 1 облетает поле по aruco-меткам по маршруту $4 \to 0 \to 30 \to 34 \to 24 \to 20 \to 10 \to 14 \to 4 \to 0 \to 4$.
- Как только Дрон 1 подлетает к метке 14, он отправляет сигнал о том, что Дрону 0 нужно сместиться с 0 метки (на 30 метку), чтобы Дрон 1 смог потушить пожары в радиусе 1,5 метров от 0 метки.
- 4. Как только Дрон 1 пролетел нижнюю линию меток, он отправляет сигнал о том, что Дрону 0 можно вернуться на стартовую позицию.

0)	9-72	0		9-> 15		>9 >4 >0 > 1 -> 10 -> 14 ->k
	0.0	0.5	1.5	2.7	36	, ,
	30	31	32	33	34	5.4
	.25	2 🛭	27	28	29	4.5
	20	21	2 2	23	24	3.6
	15	6	17	18	19	2.7
	10		12	13	14	1.8
	5	6	7	8	q.	agny
1						
B	3 [0	[2	3	4)	0.0 ×
	N. C.	2 <u>208</u>	pono	_	<	CID '
W2	1 0	-31.	->7-	×33-	→ 14_	70-0
M] c) → 3C)→32-	2-4	-34·	730→0

Кластеризация координат распознанных очагов возгорания

1. Инициализация

- Каждая точка начинается как отдельный кластер
- Создаются массивы для отслеживания принадлежности к кластерам

2. Группировка Точек

- Сравнивает каждую точку со всеми остальными
- Вычисляет евклидово расстояние между точками
- Объединяет точки в кластеры, если расстояние ≤ порога (0,3 метра)

3. Формирование Кластеров

- Группирует точки по их корневому кластеру
- Каждая группа представляет близкие друг к другу точки

4. Финальный Расчет

- Для каждого кластера:
 - Усредняет х-координаты
 - Усредняет у-координаты
 - Усредняет площади
- Возвращает список центров кластеров с объединенными свойствами

Постановка задачи инженерной части

Разработка автономной беспилотной авиационной системы мультироторного типа для доставкой и сброса воды на место пожара.

Требования:

- Груз >= 10 литров воды
- Время полёта >= 30 минут
- Функционал: набор и сброс воды

Квадрокоптер FlyingGOAT v1.0

Квадрокоптер FlyingGOAT v1.0 (разобранный

вид)

Расчёт

P_m = 2200 W

 $I_m = 50 A$

N = 4

U = 53,2 V

m = 27 kg

 $F_{total} = 265 N$

 $F_m = 66,25 \text{ N}$

 $\eta = 0.65$

C = 30 A*h

v = 60 km/h

 $P = (N*F_m*v)/\eta \approx 2446 W$

 $I = P/U \approx 46 A$

 $t = C/I \approx 0,652 \text{ h} \approx 39 \text{ min}$

 $x = t^*v \approx 39,1 \text{ km}$

Thanks

Ссылка на GitHub

