

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

2. Übung zur Vorlesung Theoretische Informatik I Musterlösungen

Aufgabe 1: Es seien A und B zwei Mengen. Die beiden DeMorgan'schen Regeln der Mengenlehre sind $\overline{A \cup B} = \overline{A} \cap \overline{B}$ und $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Wir zeigen exemplarisch das erste Gesetz:

$$\overline{A \cup B} = \{x \mid x \notin (A \cup B)\} = \{x \mid \neg(x \in (A \cup B))\}$$

$$= \{x \mid \neg((x \in A) \lor (x \in B))\} = \{x \mid \neg(x \in A) \land \neg(x \in B)\}$$

$$= \{x \mid \neg(x \in A)\} \cap \{x \mid \neg(x \in B)\} = \{x \mid x \notin A\} \cap \{x \mid x \notin B\} = \overline{A} \cap \overline{B} .$$

In der mittleren Zeile haben wir dabei eine der beiden De
Morgan'schen Regeln der Aussagenlogik verwendet. $\hfill\Box$

Aufgabe 2: Mögliche Mengenbeschreibungen sind:

- a) {1, 10, 100, 1000}
- b) $\{1, 10, 100, 1000, \ldots\}$
- c) $\{\ldots, -5, -3, -1, 1, 3, 5, \ldots\}$
- d) $\{\ldots, -6, -4, -2, 0, 8, 10, 12, 14, \ldots\}$
- e) $\{n \in \mathbb{Z} \mid n \text{ ist durch } 117 \text{ teilbar}\}$
- f) $\{n^3 \mid n \in \mathbb{N}\}$
- g) $\{n \in \mathbb{N} \mid 100 \le n \le 10000\}$
- h) $\{a, b, c, \dots, x, y, z, A, B, C, \dots, X, Y, Z\}$

Aufgabe 3: Hier die Lösungen:

- a) Die Menge A enthält alle natürlichen Zahlen, die sowohl durch 2 als auch durch 3 teilbar sind, d.h. alle Vielfachen von 6. Es gilt also $A = \{6, 12, 18, \ldots\}$.
- b) Die Menge B enthält formal alle ganzen Zahlen, die jeweils identisch mit der nachfolgenden ganzen Zahl sind. Dies ist unmöglich, d.h. diese Menge ist leer. Formal würde man also $B = \emptyset$ schreiben.
- c) Die Menge C enthält alle natürlichen Zahlen, die kleiner als 100 sind und sowohl Quadratzahlen als auch kubische Zahlen darstellen. Es gilt nur zwei Zahlen, die diese Bedingung erfüllen, nämlich 1 und 64. Also gilt $C = \{1, 64\}$.
- d) Die Menge D enthält alle natürlichen Zahlen $n \in \mathbb{N}$, für die es eine größere Quadratzahl k gibt. Aber es gibt unendlich viele und damit beliebig große Quadratzahlen, deshalb ist diese Bedingung für alle $n \in \mathbb{N}$ erfüllt. Somit gilt $D = \mathbb{N}$.

Aufgabe 4: Für $A = \{2,7,8\}$ und $B = \{1,7,9\}$ gilt $A \cap B = \{7\}$ und $A \cup B = \{1,2,7,8,9\}$. Die Differenzen lauten $A \setminus B = \{2,8\}$ und $B \setminus A = \{1,9\}$. Die Komplemente gegenüber den

Sprechstunde montags 08-09 Uhr Raum E 204 * Tel.: (0721) 925-1507 * Email: heiko.koerner[at]h-ka[dot]de

ersten neun natürlichen Zahlen sind $\overline{A} = \{1, 3, 4, 5, 6, 9\}$ und $\overline{B} = \{2, 3, 4, 5, 6, 8\}$. Für die Potenzmengen gilt ferner $\mathcal{P}(A) = \{\emptyset, \{2\}, \{7\}, \{8\}, \{2, 7\}, \{2, 8\}, \{7, 8\}, \{2, 7, 8\}\}$ und analog $\mathcal{P}(B) = \{\emptyset, \{1\}, \{7\}, \{9\}, \{1, 7\}, \{1, 9\}, \{7, 9\}, \{1, 7, 9\}\}$.

Aufgabe 5: Wir lösen den Audruck $A \cap (B \cup (A \cup (\overline{A \cup B} \cap A)))$ von innen nach außen auf. Zunächst gilt nach den Regeln von DeMorgan, dem Assoziativ- sowie dem Kommutativgesetz:

$$\overline{A \cup B} \cap A = (\overline{A} \cap \overline{B}) \cap A = \overline{A} \cap (\overline{B} \cap A) = \overline{A} \cap (A \cap \overline{B}) = (\overline{A} \cap A) \cap \overline{B}.$$

Kein Objekt kann aber gleichzeitig in A und seinem Komplement \overline{A} enthalten sein, d.h. der Schnitt $\overline{A} \cap A$ ist leer. Der Schnitt der leeren Menge \emptyset mit einer beliebigen anderen Menge (hier \overline{B}) ergibt wieder die leere Menge selbst, d.h. für die innerste Klammer gilt insgesamt

$$\overline{A \cup B} \cap A = \emptyset$$
.

Die Vereinigung von der leeren Menge \emptyset mit A ergibt natürlich wieder A selbst, da ja keine Elemente zu A hinzukommen. Also gilt für den von den beiden inneren Klammerpaaren gebildeten Ausdruck:

$$A \cup (\overline{A \cup B} \cap A) = A$$
.

Der ursprüngliche Ausdruck vereinfacht sich somit zu

$$A \cap (B \cup (A \cup (\overline{A \cup B} \cap A))) = A \cap (B \cup A)$$
.

Nach dem Kommutativ- und Absorptionsgestz gilt weiterhin

$$A \cap (B \cup A) = A \cap (A \cup B) = A ,$$

d.h. der gesamte ursprüngliche Ausdruck beschreibt lediglich die Menge A, ganz gleich, was B enthält.

Aufgabe 6: Alle Aussagen sind richtig — wir geben jeweils Beispiele an:

- a) Sei z.B. $A = \{2\}$. Dann gilt $\mathcal{P}(A) = \{\emptyset, \{2\}\}$ und der Schnitt beider Mengen ist leer.
- b) Für z.B. $A = \{2, \{2\}\}$ ist $\mathcal{P}(A) = \{\emptyset, \{2\}, \{\{2\}\}, \{2, \{2\}\}\}\}$, so dass $A \cap \mathcal{P}(A) = \{\{2\}\}\}$ gilt.
- c) Auch dies ist möglich. Ist z.B. $A = \mathbb{N} \cup \{\{1\}, \{2\}, \{3\}, \ldots\}$, so enthält $\mathcal{P}(A)$ unter anderem auch alle einelementigen Teilmengen $\{1\}, \{2\}, \{3\},$ usw., die sich folglich auch im Schnitt von A und $\mathcal{P}(A)$ wiederfinden.

Aufgabe 7: Die Potenzmenge $\mathcal{P}(A)$ von A enthält genau 2^n viele Teilmengen von A. Denn wenn man eine Teilmenge von A bilden möchte, so kann man sich für jedes der n Elemente von A überlegen, ob es zu der Teilmenge dazugehören soll oder nicht. Wenn man nur bei einem Element eine andere Entscheidung trifft, kommt eine weitere Teilmenge von A dabei heraus. Also gibt es insgesamt

$$\underbrace{2 \cdot 2 \cdot \ldots \cdot 2}_{n-\text{mal}} = 2^n$$

viele Möglichkeiten zur Bildung einer Teilmenge von A.