Solutions Chapter 5

Solutions to Exercises 5.1.

1. (a) Let $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$ Then $a_0 = 1$ because y(0) = 1. Furthermore

$$a_1 + 2a_2x + 3a_3x^2 + \dots = y' = -y = -a_0 - a_1x - a_2x^2 - a_3x^3 - \dots,$$

so comparing coefficients gives

$$a_1 = -a_0 \implies a_1 = -1,$$

 $2a_2 = -a_1 \implies a_2 = \frac{1}{2},$
 $3a_3 = -a_2 \implies a_3 = -\frac{1}{2 \cdot 3},$

etc. Hence

$$y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + - \cdots$$
$$= e^{-x}$$

(b) Let $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$ Then $a_1 + 2a_2x + 3a_3x^2 + \dots = y' = y - x = a_0 + (a_1 - 1)x + a_2x^2 + a_3x^3 + \dots,$ so comparing coefficients gives

$$a_1 = a_0$$

 $2a_2 = a_1 - 1 \implies a_2 = \frac{1}{2}(a_0 - 1)$
 $3a_3 = a_2 \implies a_3 = \frac{1}{2 \cdot 3}(a_0 - 1)$

etc. Hence

$$y = a_0 + a_0 x + \frac{1}{2!} (a_0 - 1) x^2 + \frac{1}{3!} (a_0 - 1) x^3 + \dots$$

= 1 + x + (a_0 - 1) \left(1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \dots \right)
= 1 + x + ce^x,

where $c = a_0 - 1$ is a constant.

(c) Let $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \dots$ Then $y''(x) = 2a_2 + 3 \cdot 2a_3x + 4 \cdot 3a_4x^2 + \dots$ Hence

$$y'' + y = (2a_2 + a_0) + (3 \cdot 2a_3 + a_1)x + (4 \cdot 3a_4 + a_2)x^2 + \dots$$

Using y'' + y = 0 we can therefore deduce

$$2a_{2} + a_{0} = 0 \quad \Rightarrow \quad a_{2} = -\frac{1}{2!}a_{0}$$

$$3 \cdot 2a_{3} + a_{1} = 0 \quad \Rightarrow \quad a_{3} = -\frac{1}{3!}a_{1}$$

$$4 \cdot 3a_{4} + a_{2} = 0 \quad \Rightarrow \quad a_{4} = -\frac{1}{4 \cdot 3}a_{2} = \frac{1}{4!}a_{0}$$

$$5 \cdot 4a_{5} + a_{3} = 0 \quad \Rightarrow \quad a_{5} = -\frac{1}{5 \cdot 4}a_{3} = \frac{1}{5!}a_{1}$$

etc. Hence

$$y = a_0 + a_1 x - a_0 \frac{1}{2!} x^2 - a_1 \frac{1}{3!} x^3 + a_0 \frac{1}{4!} x^4 + a_1 \frac{1}{5!} x^5 - \dots$$

$$= a_0 \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - + \dots \right) + a_1 \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - + \dots \right)$$

$$= a_0 \cos x + a_1 \sin x,$$

where a_0 and a_1 are constants.

2. Suppose that $y(x) = a_0 + a_1 x + a_2 x^2 + \dots$ Then

$$a_1 + 2a_2x + 3a_3x^2 + \dots = y' = 1/x^2$$

hence

$$a_1x^2 + 2a_2x^3 + 3a_3x^4 + \dots = 1.$$

However this is impossible because the constant coefficient on the left hand side is 0 and the constant coefficient on the right hand side is 1.

Solving the differential equation analytically gives y = -1/x + c, which is not defined at x = 0 and therefore can't be written as a series of the form $a_0 + a_1x + a_2x^2 + \dots$

3. (a) From y' = y we deduce y'' = y', y''' = y'', etc. Hence y'(0) = y(0) = 4, y''(0) = y'(0) = 4, y'''(0) = y''(0) = 4, etc. Thus we get the Taylor series

$$y = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \cdots$$
$$= 4\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right)$$
$$= 4e^x.$$

(b) From $x^2y' = 1$ we get $y' = x^{-2}$. Hence

$$y'' = -2x^{-3}$$
, $y''' = 2 \cdot 3x^{-4}$, $y^{(4)} = -2 \cdot 3 \cdot 4x^{-5}$, ...

and in general $y^{(n)} = (-1)^{n+1} n! x^{-(n+1)}$ for $n \ge 1$. Hence $y^{(n)}(1) =$

 $(-1)^{n+1}n!$ for $n \geq 1$, and we obtain the Taylor series

$$y(x) = y(1) + y'(1)(x - 1) + \frac{y''(1)}{2!}(x - 1)^2 + \frac{y'''(1)}{3!}(x - 1)^3 + \cdots$$

$$= 1 + (x - 1) - (x - 1)^2 + (x - 1)^3 - \cdots$$

$$= 1 + (x - 1) \left(1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + \cdots\right)$$

$$= 1 + (x - 1) \left(1 + (1 - x) + (1 - x)^2 + (1 - x)^3 + \cdots\right)$$

$$= 1 + (x - 1) \frac{1}{1 - (1 - x)}$$

$$= 1 + \frac{x - 1}{x}$$

$$= 2 - 1/x.$$

Since the series $1+x+x^2+\cdots=\frac{1}{1-x}$ is valid for all -1< x<1, the series $1+(1-x)+(1-x)^2+\cdots=\frac{1}{1-(1-x)}$ is valid for all x with -1<1-x<1, which implies that it is valid for 0< x<2.

(c) From $y'' + y = \sin x$ we get

$$y'' = \sin x - y, \qquad y''' = \cos x - y',$$

$$y^{(4)} = -\sin x - y'', \quad y^{(5)} = -\cos x - y''',$$

$$y^{(6)} = \sin x - y^{(4)}, \quad y^{(7)} = \cos x - y^{(5)}, \dots$$

Hence

$$y''(0) = 0 - y(0) = 0,$$
 $y'''(0) = 1 - y'(0) = 1,$
 $y^{(4)}(0) = 0 - y''(0) = 0,$ $y^{(5)}(0) = -1 - y'''(0) = -2,$
 $y^{(6)}(0) = 0 - y^{(4)}(0) = 0,$ $y^{(7)}(0) = 1 - y^{(5)}(0) = 3,$ \cdots

Thus we obtain the Taylor series

$$y = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \cdots$$

$$= \frac{1}{3!}x^3 + \frac{-2}{5!}x^5 + \frac{3}{7!}x^7 + \cdots$$

$$= \frac{x^3}{6} - \frac{x^5}{60} + \frac{x^7}{1680} - + \cdots$$

The closed form of this series is hard to guess, but by solving the differential equation analytically we find

$$y = \frac{1}{2}(\sin x - x\cos x).$$

Solutions to Exercises 5.2.

1. (a) For all methods we have $x_0 = 0, x_1 = 0.1, x_2 = 0.2, \ldots$ and $y_0 = 0$. Euler's method: The iteration formula is $y_{i+1} = y_i + 0.1(2x_i + y_i)$.

y_i
0
0
.02
.062
1282
2102

Higher derivative Euler method: We have y'' = 2 + y' = 2 + 2x + y, hence the iteration formula is $y_{i+1} = y_i + 0.1(2x_i + y_i) + \frac{0.1^2}{2}(2 + 2x_i + y_i)$.

i	x_i	y_i	
0	0	0	
1	0.1	0.01	
2	0.2	0.04205	
3	0.3	0.09847	
4	0.4	0.18180	
5	0.5	0.29489	

Corrected Euler method: The iteration is given by $k_1^i = 2x_i + y_i$, $k_2^i = 2(x_i + \frac{0.1}{2}) + (y_i + \frac{0.1}{2}k_1^i)$ and $y_{i+1} = y_i + 0.1k_2^i$.

i	x_i	y_i	k_1^i	k_2^i
0	0	0	0	0.1
1	0.1	0.01	0.21	0.3205
2	0.2	0.04205	0.44205	0.56415
3	0.3	0.09847	0.69847	0.83339
4	0.4	0.18180	0.98180	1.13089
5	0.5	0.29489		

Heun's method: The iteration is given by $k_1^i = 2x_i + y_i$, $k_2^i = 2(x_i + \frac{2 \cdot 0.1}{3}) + (y_i + \frac{2 \cdot 0.1}{3}k_1^i)$ and $y_{i+1} = y_i + \frac{0.1}{4}(k_1^i + 3k_2^i)$.

i	x_i	y_i	k_1^i	k_2^i
0	0	0	0	0.13333
1	0.1	0.01	0.21	0.35733
2	0.2	0.04205	0.44205	0.60485
3	0.3	0.09847	0.69847	0.87836
4	0.4	0.18180	0.98180	1.18059
5	0.5	0.29489		

(Why does Heun's method give the same result as the corrected Euler method in this case?)

Analytic solution: We can solve the differential equation analytically and find $y(x) = -2 - 2x + 2e^x$. Hence y(0.5) = 0.29744.

(b) For all methods we have $x_0 = 1, x_1 = 1.1, x_2 = 1.2, \dots$ and $y_0 = 0$. **Euler's method:** The iteration formula is $y_{i+1} = y_i + 0.1(x_i^2 - y_i)$.

i	x_i	y_i
0	1	0
1	1.1	0.1
2	1.2	0.211
3	1.3	0.3339
4	1.4	0.46951
5	1.5	0.61856
6	1.6	0.78170

Higher derivative Euler method: We have $y'' = 2x - y' = 2x - (x^2 - y) = 2x - x^2 + y$, hence the iteration formula is

$$y_{i+1} = y_i + 0.1(x_i^2 - y_i) + \frac{0.1^2}{2}(2x_i - x_i^2 + y_i).$$

i	x_i	y_i
0	1	0
1	1.1	0.105
2	1.2	0.22098
3	1.3	0.34878
4	1.4	0.48920
5	1.5	0.64292
6	1.6	0.81060

Corrected Euler method: The iteration is given by $k_1^i = x_i^2 - y_i$, $k_2^i = (x_i + \frac{0.1}{2})^2 - (y_i + \frac{0.1}{2}k_1^i)$ and $y_{i+1} = y_i + 0.1k_2^i$.

i	x_i	y_i	k_1^i	k_2^i
0	1	0	1	1.0525
1	1.1	0.10525	1.10475	1.16201
2	1.2	0.22145	1.21855	1.28012
3	1.3	0.34946	1.34054	1.40601
4	1.4	0.49006	1.46994	1.53894
5	1.5	0.64396	1.60604	1.67824
6	1.6	0.81178		

Heun's method: The iteration is given by $k_1^i = x_i^2 - y_i$, $k_2^i = (x_i + \frac{2 \cdot 0.1}{3})^2 - (y_i + \frac{2 \cdot 0.1}{3}k_1^i)$ and $y_{i+1} = y_i + \frac{0.1}{4}(k_1^i + 3k_2^i)$.

i	x_i	y_i	k_1^i	k_2^i
0	1	0	1	1.07111
1	1.1	0.10533	1.10467	1.18213
2	1.2	0.22161	1.21839	1.30161
3	1.3	0.34969	1.34031	1.42873
4	1.4	0.49035	1.46965	1.56278
5	1.5	0.64430	1.60570	1.70310
6	1.6	0.81218		

Analytic solution: We can solve the differential equation analytically and find $y(x) = 2 - 2x + x^2 - e^{-x+1}$. Hence y(1.6) = 0.81119.

2. Assume that $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \dots$ The initial condition y(0) = 0 gives $a_0 = 0$. From y' = 2x + y we obtain

$$a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + \dots = a_0 + (2+a_1)x + a_2x^2 + a_3x^3 + a_4x^4 + \dots$$

Equating coefficients gives

$$a_{1} = a_{0} = 0$$

$$2a_{2} = 2 + a_{1} = 2 \quad \Rightarrow \quad a_{2} = 1$$

$$3a_{3} = a_{2} = 1 \quad \Rightarrow \quad a_{3} = \frac{1}{3}$$

$$4a_{4} = a_{3} = \frac{1}{3} \quad \Rightarrow \quad a_{4} = \frac{1}{3 \cdot 4}$$

$$5a_{5} = a_{4} = \frac{1}{3 \cdot 4} \quad \Rightarrow \quad a_{5} = \frac{1}{3 \cdot 4 \cdot 5}.$$

Hence the series solution is

$$y(x) = 0 + 0x + x^2 + \frac{x^3}{3} + \frac{x^4}{3 \cdot 4} + \frac{x^5}{3 \cdot 4 \cdot 5} + \cdots$$

Using the first 6 terms (i.e. up to the term x^5) we get $y(0.5) \simeq 0.29739583$

3. We determine the Taylor series about the point a = 1, i.e.

$$y(x) = y(1) + y'(1)(x - 1) + \frac{y''(1)}{2!}(x - 1)^2 + \frac{y'''(1)}{3!}(x - 1)^3 + \dots$$

We have y(1) = 0 from the initial condition. Furthermore

$$y' = x^{2} - y \implies y'(1) = 1$$

 $y'' = 2x - y' \implies y''(1) = 1$
 $y''' = 2 - y'' \implies y'''(1) = 1$
 $y^{(4)} = -y''' \implies y^{(4)}(1) = -1$
 $y^{(5)} = -y^{(4)} \implies y^{(5)}(1) = 1$.

Hence the Taylor series is

$$y(x) = 0 + (x - 1) + \frac{(x - 1)^2}{2!} + \frac{(x - 1)^3}{3!} - \frac{(x - 1)^4}{4!} + \frac{(x - 1)^5}{5!} - + \dots$$

Using the first six terms of the Taylor series gives the estimate y(1.6) = 0.811248.