Лабораторная работа №1-2

Шайхенуров Р.Р.

18 мая 2018 г.

1 Сигналы телекоммуникационных систем. Ряд Фурье. Преобразование Фурье. Корреляция

1.1 Цель работы

Познакомиться со средствами генерации и визуализации простых сигналов. Получить представление о спектрах телекоммуникационных сигналов.

1.2 Постановка задачи

- В командном окне MATLAB и в среде Simulink промоделировать синусиодальный и прямоугольный сигналы с различными параметрами. Получить их спектры. Вывести график.
- Для сигналов, построенных в лабораторной работе №1, выполните расчет преобразования Фурье. Перечислите свойства преобразования Фурье.
- С помощью функции корреляции найдите позицию синхропосылки [101] в сигнале [0001010111000010]. Получите пакет данных, если известно, что его длина составляет 8 бит без учета синхропосылки. Вычислите корреляцию прямым методом, воспользуйтесь алгоритмом быстрой корреляции, сравните время работы обоих алгоритмов.
- Быстрая корреляция

1.3 Теоретический раздел

- Классификация сигналов:
 - Детерминированными являются сигналы, значения которых заранее известны, т. к. они повторяются через определенный интервал времени период (например, гармоническое колебание или любой периодический сигнал).
 - Случайными являются сигналы, значение которых заранее неизвестно и может быть предсказано лишь с некоторой вероятностью.

- Простыми являются сигналы, которые описываются простой математической моделью (например, гармоническое колебание).
- Сложными являются сигналы, которые не могут быть описаны простой математической моделью.
- Аналоговыми (непрерывными) являются сигналы, которые могут принимать любые значения по уровню в некоторых пределах и являются непрерывными функциями времени.
- Дискретными являются сигналы, которые могут принимать некоторые значения из определенных как по уровню так и/или по времени.
- Спектр сигнала это набор синусоидальных волн, которые, будучи надлежащим образом скомбинированы, дают изучаемый нами сигнал во временной области.
- Математической моделью процесса, повторяющегося во времени, является nepuoduчeckuŭ сигнал s(t) со следующим свойством:

$$s(t) = s(t \pm nT), n = 1, 2, \dots$$

Здесь T – период сигнала.

Известно, что любой сложный периодический сигнал может быть представлен в виде суммы элементарных гармонических сигналов с помощью pядов Фурье. Это возможно, если функция, описывающая сигнал, отвечает условиям Дирихле:

- 1. В пределах периода T функция имеет конечное число экстремумов.
- 2. В пределах периода T функция может иметь конечное количество точек разрыва, причем только первого рода.

Ряд Фурье может быть применен для представления сигналов конечной длительности. При этом устанавливается временной интервал, для которого нужно построить ряд. Тем самым подразумевается периодическое продолжение сигнала за границами рассматриваемого интервала.

Разложению в *ряд Фурье* могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций либо комплексных экспонент с частотами, образующими

арифметическую прогрессию. Для того чтобы такое разложение существовало, фрагмент сигнала длительностью в один период должен удовлетворять условиям Дирихле:

- не должно быть разрывов 2-ого рода;
- число разрывов 1-ого рода должно быть конечно;
- число экстремумов должно быть конечным.

Для непериодических сигналов разложение в ряд Фурье неприменимо, но эта проблема решается путем предельного перехода в предположении, что сигнал имеет период, стремящийся к бесконечности.

В синусно-косинусной форме ряд Фурье имеет следующий вид:

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\omega t) + b_k \sin(k\omega t)). \tag{1}$$

Коэффициенты a_k и b_k рассчитываются по формулам:

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} s(t) \cos(k\omega t) dt,$$

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} s(t) \sin(k\omega t) dt,$$

Применив к формуле ?? тригонометрические преобразования, можно заменить сумму синуса и косинуса на косинус той же частоты с иной амплитудой и некоторый начальной фазой. В результате получается вещественная форма ряда Фурье:

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} A_k \cos(k\omega t + \varphi_k),$$

где
$$A_k = \sqrt{a_k^2 + b_k^2}$$
, $\varphi = \arctan(b_k/a_k)$.

Наиболее часто в радиотехнике употребляется комплексная форма ряда Фурье:

$$\cos(x) = \frac{1}{2}(e^{jx} + e^{-jx}).$$

Совокупность амплитуд гармоник ряда Фурье часто называют амплитудным спектром, а совокупность фаз – фазовым спектром.

• Преобразование Фурье является математической основой, которая связывает временной или пространственный сигнал (или же некоторую модель этого сигнала) с его представлением в частотной области.

Формула прямого преобразования Фурье:

$$\dot{S}(\omega) = \int_{-\infty}^{\infty} s(t) e^{-j\omega t} dt.$$
 (2)

Формула обратного преобразования Фурье:

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \dot{S}(\omega) e^{j\omega t} dw.$$
 (3)

Чтобы преобразование Фурье было применимо, сигнал должен удовлетворять следующим требованиям:

- должны выполняться условия Дирихле;
- сигнал должен быть абсолютно интегрируемым:

$$\int_{-\infty}^{\infty} |s(t)| dt < \infty.$$

Модуль спектральной функции называется амплитудным спектром, а ее аргумент — фазовым спектром.

Преобразование Фурье ставит в соответствие сигналу, заданному во времени, его спектральную функцию. При этом говорят, то осуществляется *переход из временной области в частотную*. Преобразование Фурье взаимно-однозначно, поэтому спектральная функция содержит столько же информации, сколько и исходный сигнал.

• Корреляция.

Если два сигнала похоже меняются при переходе от точки к точке, то меру их корреляции можно вычислить, взяв сумму произведений соответствующих пар точек. Другими словами, если рассмотреть две независимые и случайные последовательности данных, сумма произведений стремится к бесконечно малому случайному числу по мере увеличения пар точек. Это объясняется тем, что все числа равновероятны, так что пары произведений компенсируются при сложении, ибо числа могут быть как положительными, так и отрицательными. В то же время, если сумма конечна, это указывает на наличие корреляции.

Отрицательная сумма указывает на отрицательную корреляцию, т.е. увеличение одной переменной связано с уменьшением другой. Таким образом, взаимную корреляцию r12(n) двух последовательностей данных x1(n) и x2(n), содержащих по N элементов, можно записать как

$$r_{12} = \sum_{n=0}^{N-1} x_1(n)x_2(n) \tag{4}$$

Впрочем, такое определение взаимной корреляции дает результат, который зависит от числа взятых точек. Чтобы это исправить, результат нормируется на число точек (делится на N). Данную операцию можно также рассматривать как усреднение суммы произведений. Итак, получаем следующее улучшенное определение:

$$r_{12} = \frac{1}{N} \sum_{n=0}^{N-1} x_1(n) x_2(n)$$
 (5)

• Быстрая корреляция. Расчет корреляции можно ускорить, используя теорему о корреляции:

$$r_{12} = \frac{1}{N} \mathcal{F}_D^{-1} [\overline{X_1}(k) X_2(k)],$$

где $X_1(k) = \mathcal{F}_D[x_1(n)], \ X_2(k) = \mathcal{F}_D[x_2(n)], \ \mathcal{F}_D[...], \mathcal{F}_D^{-1}[...]$ – прямое и обратное дискретные преобразования Фурье (ДПФ) соответственно, которые обычно вычисляются с использованием алгоритма быстрого преобразования Фурье (БПФ). Если число членов в последовательностях $x_1(n)$ и $x_2(n)$ достаточно велико, то данный метод, называемый быстрой корреляцией, дает результат быстрее, чем непосредственный расчет взаимной корреляции.

2 Ход работы

2.1 Синусоидальные сигналы и их спектры:

```
A2 = 3;
            %Амплитуда первого сигнала
Kd = 8;
            %Коэф дискретизации
Fdiskr = freq * Kd;
                            %Частота дискретизации
Tdiskr = 1/Fdiskr;
                            %Период дискретизации
t = 0:Tdiskr:0.1;
x = A * sin(2 * pi * freq * t);
x2 = A2 * sin(2 * pi * freq2 * t);
figure(1);
plot(t, x);
figure(2);
plot(t, x2);
N = length(t);
fftL = 2^nextpow2(N);
Y = abs(fft(x, fftL));
Y = 2*Y./N;
Y(1) = Y(1)/2;
F = 0:Fdiskr/fftL:Fdiskr/2-1/fftL;
figure(3);
plot(F, Y(1:length(F)));
Y2 = abs(fft(x2, fftL));
Y2 = 2*Y2./N;
Y2(1) = Y2(1)/2;
F2 = 0:Fdiskr/fftL:Fdiskr/2-1/fftL;
figure(4);
plot(F2, Y2(1:length(F2)));
```


Рис. 1: Синусоидальный сигнал(1)

Рис. 2: Спектр синусоидального сигнала(1)

Рис. 3: Синусоидальный сигнал(2)

Рис. 4: Спектр синусоидального сигнала(2)

2.2 Прямоугольный импульс

```
%прямоугольный сигнал
t2 = 0:0.05:5000;
duty = 50;
y = square(t2,duty);
figure(5);
plot(y(1:1000));
axis([0 1000 -2 2]);
Y2 = fft(y,512);
Pxx = Y2.*conj(Y2)/512;
f2 = 1000 * (0:255)/512;
figure(6);
plot(f2, Pxx(1:256));
axis([-5 200 -2 200])
```


Рис. 5: Прямоугольный сигнал

Рис. 6: Спектр прямоугольного сигнала

2.3 Simulink

2.3.1 Исследование синусоидального сигнала

Рис. 7: Схема для синусоидального сигнала

Рис. 8: Синусоидальный сигнал

Рис. 9: Спектр синусоидального сигнала

2.3.2 Исследование прямоугольного сигнала

Рис. 10: Схема для прямоугольного сигнала

Рис. 11: Прямоугольный сигнал

Рис. 12: Спектр прямоугольного сигнала

2.4 Синхропосылка

Есть синхропосылка [101] в сигнале [0001010111000010]. С помощью функций хсогг и ifft в MATLAB вычислим корреляцию и быструю корреляцию.

close all;

```
sign = [0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0];
pack = [1 0 1];

%%Корреляция
tic %измерение времени

[r1, lags1] = xcorr(sign, pack);

toc

figure;
plot(lags1, r1);
```


Рис. 13: Вычисление корреляции хсогг

Рис. 14: Вычисление корреляции ifft

Сравним время алгоритмов. (Тіс и tос считает истекшее время)

Elapsed time is 0.301652 seconds. Elapsed time is 0.000750 seconds.

Рис. 15:

Видно, что алгоритм быстрой корреляции работает на три порядка быстрее.

3 Выводы

Сигнал – физическая величина, в основном изменяющаяся в зависимости от времени.

Классификация сигналов: детерминированные и случайные. Случайные сигналы могут быть предсказаны лишь с некоторой вероятностью и отображают случайное физическое явление или физический процесс. Детерминированные сигналы широко используются при анализе систем.

Если сигнал может быть описан функцией s(t) = s(t+T), где T – период, он называется периодическим. Иначе сигнал называется непериодическим.

По времени сигналы могут делиться на непрерывные и дискретные.

Чтобы иметь возможность обрабатывать сигнал, например, определить степень сходства имеющегося сигнала с другим, требуется преобразование сигнала в его частотный спектр. Это и позволяют преобразования Фурье. После этого преобразования сигнал будет представлен в виде коэффициентов амплитуд и фаз частот, составляющих этот сигнал.

Области применения преобразования Фурье: обработка растровых изображений, телекоммуникации, исследование и измерение сигналов, радиолокация и т.д. Примером применения преобразования может служить передача данных по аналоговым линиям телефонной сети. Для передачи данных в цифровой форме, они сначала преобразуются в некоторый набор частот и передаются по линиям передач, а затем, на приемной стороне выполняется обратное преобразование и восстанавливаются исходные данные.

Корреляционный анализ помогает обнаружить один сигнал в другом. В основу корреляционного анализа положено вычисление числового значения, характеризующего меру взаимосвязи сигналов на рассматриваемом временном интервале.