A locally nameless solution to the POPLmark challenge

Xavier Leroy

INRIA Rocquencourt

Locally nameless representations (McKinna & Pollack)

Use names for free variables and de Bruijn indices for bound variables.

$$\begin{array}{lll} \tau & ::= & X,Y,Z,\dots & \text{free variables} \\ & 0,1,2,\dots & \text{bound variables} \\ & \top & \\ & & \tau_1 \to \tau_2 \\ & & \forall <: \tau_1. \ \tau_2 & \text{binds variable 0 in } \tau_2 \end{array}$$

Term equality is α -equivalence.

Substitutions

- $\tau[X \leftarrow \tau']$ substitution of a name. Name capture cannot occur.
- $\tau[n \leftarrow \tau']$ substitution of a de Bruijn index. No need to shift de Bruijn indices in τ' if we consider only terms that have no free de Bruijn indices.

Working with closed (de Bruijn) terms

Nominal:

recurse from $\forall X <: \tau_1. \ \tau_2 \ \text{to} \ \tau_2 \ \text{with a suitably fresh} \ X.$

Locally nameless, bad:

recurse from \forall <: τ_1 . τ_2 to τ_2 .

Locally nameless, good:

recurse from $\forall <: \tau_1. \ \tau_2 \ \text{to} \ \tau_2[0 \leftarrow X]$ for a suitably fresh X.

Well-formedness of types

Bad: τ is well-formed in Γ iff $FdBV(\tau) = \emptyset$ and $FV(\tau) \subseteq \mathsf{Dom}(\Gamma)$.

Good: inductive predicate $\Gamma \vdash \tau$ ok.

$$\frac{X \in \mathsf{Dom}(\Gamma)}{\Gamma \vdash X \; \mathsf{ok}} \qquad \qquad \frac{\Gamma \vdash \tau_1 \; \mathsf{ok} \qquad \Gamma \vdash \tau_2 \; \mathsf{ok}}{\Gamma \vdash \tau_1 \to \tau_2 \; \mathsf{ok}} \\ \frac{X \notin \mathsf{Dom}(\Gamma)}{X \notin FV(\tau_2)} \qquad \frac{\Gamma \vdash \tau_1 \; \mathsf{ok}}{\Gamma, X <: \tau_1 \vdash \tau_2 [\mathsf{0} \leftarrow X] \; \mathsf{ok}} \\ \Gamma \vdash \forall <: \tau_1. \; \tau_2 \; \mathsf{ok}}$$

The ∀-∃ game

$$\frac{\forall X, \ X \notin \mathsf{Dom}(\Gamma) \land X \notin FV(\tau_2) \Rightarrow \Gamma, X <: \tau_1 \vdash \tau_2[0 \leftarrow X] \text{ ok}}{\Gamma \vdash \forall <: \tau_1. \ \tau_2 \text{ ok}} \tag{1}$$

$$\frac{\exists X, \ X \notin \mathsf{Dom}(\Gamma) \land X \notin FV(\tau_2) \Rightarrow \Gamma, X <: \tau_1 \vdash \tau_2[0 \leftarrow X] \text{ ok}}{\Gamma \vdash \forall <: \tau_1. \ \tau_2 \text{ ok}} \tag{2}$$

Fact: both rules define equivalent predicates.

Choice: take (1) as the inference rule and show that (2) is admissible.

Justification: the predicate $\Gamma \vdash \tau$ ok is equivariant (stable by swaps).

The challenge, part 1a

Definition of $\Gamma \vdash \tau_1 <: \tau_2$:

$$\frac{\Gamma \vdash \tau_1 <: \sigma_1}{\forall X, \ X \notin \mathsf{Dom}(\Gamma) \Rightarrow \Gamma, X <: \tau_1 \vdash \sigma_2[0 \leftarrow X] <: \tau_2[0 \leftarrow X]}{\Gamma \vdash (\forall <: \sigma_1. \ \sigma_2) <: (\forall <: \tau_1. \ \tau_2)}$$

Same ∀-∃ game.

Reflexivity of subtyping: by induction on a derivation of $\Gamma \vdash \tau$ ok (instead of induction on the structure of τ) + use of the \exists rule.

Transitivity of subtyping: as in the paper proof, but replace outer induction on the structure of the middle type by a Peano induction on the size of that type.

The other parts of the challenge

Ran out of time and fortitude.

A feeling of turning the crank.

Overheads

Substitution functions (\times 2).

Definition of free variables.

Swaps.

Equivariance properties.

Admissibility of the \exists rules.

Environment manipulations (e.g. $\Gamma_1, X <: P, \Gamma_2$).