CAPSTONE PROJECT

PREDICTING ELIGIBILITY FOR NATIONAL SOCIAL ASSISTANCE PROGRAM (NSAP)

Presented By:

1. Anlet Sheenu M-DMI Engineering College-AI&DS

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

The National Social Assistance Program (NSAP) is a flagship social security and welfare program by the Government of India. It aims to provide financial assistance to the elderly, widows, and persons with disabilities belonging to below-poverty-line (BPL) households. The program consists of several sub-schemes, each with specific eligibility criteria. Manually verifying applications and assigning the correct scheme can be a time-consuming and error-prone process. Delays or incorrect allocation can prevent deserving individuals from receiving timely financial aid. Your task is to design, build, and evaluate a multi-class classification model that can accurately predict the most appropriate NSAP scheme for an applicant based on their demographic and socio-economic data. The goal is to create a reliable tool that could assist government agencies in quickly and accurately categorizing applicants, ensuring that benefits are delivered to the right people efficiently.

PROPOSED SOLUTION

To solve this, we propose a multi-class classification system using machine learning deployed on IBM Cloud. The model will
classify applicants into the appropriate NSAP scheme based on socio-economic and demographic inputs.

Key components:

- Data Collection: Use AI Kosh dataset for NSAP schemes.
- Data Preprocessing: Clean, encode, and normalize demographic and socio-economic data.
- Model Training: Using algorithms like Random Forest, XGBoost, or Logistic Regression
- Deployment: Deploy on IBM Watson Machine Learning service via IBM Cloud.
- Evaluation: Validate model with accuracy, recall, precision and F1-score.
- Prediction: Real-time classification for incoming applications.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the NSAP eligibility prediction system. Here's a suggested structure for this section:

System Requirements:

- IBM Cloud (Free Account mandatory)
- IBM Watsonx.ai Studio Model development & deployment
- IBM Cloud Object Storage Dataset storage & retrieval handling

ALGORITHM & DEPLOYMENT

- Algorithm Selection:
 - Random Forest Classifier (or XGBoost based on performance).
- Data Input:
 - State/District codes, caste-wise counts, gender-wise counts, Aadhaar status, mobile number availability, etc.
- Training Process:
 - Supervised learning using labeled schemecode values in the dataset.
- Prediction Process:
 - Model deployed in IBM Watson Studio with a REST API endpoint for real-time scheme eligibility prediction.

RESULT

RESULT

NASP_FINAL O Deployed Online

API reference

Enter input data

Enter data manually or use a CSV file to populate the spreadsheet. Max file size is 50 MB.

Download CSV template ⊎ Browse local files ⊅ Search in space ⊅

Clear all X

	finyear (other)	lgdstatecode (double)	statename (other)	lgddistrictcode (double)	districtname (other)	totalbeneficiaries (double)	totalmale (double)	totalfemale (double)	totaltransgender (double)	totalsc (double)	totalst (double)	totalgen (double)	totalobc (double)	totalaadhaar (double)	totalmobilenumber (double)
1	2025-2026	1	JAMMU AND KASH	1	ANANTNAG	108	72	36	0	0	3	104	1	108	69
2	2024-2025	10	BIHAR	188	ARARIA	1263	700	563	0	140	9	1030	2	979	872
3	2025-2026	10	BIHAR	193	BHOJPUR	223	97	120	6	150	73	85	6	167	140
4	2022-2023	10	BIHAR	193	BHOJPUR	2813	1868	943	2	943	2	458	612	2218	2234
5	2024-2025	12	SIKKIM	226	NORTH DISTRICT	172	100	72	0	25	1	150	28	58	82
6	2022-2023	15	GUJARAT	234	GUJARAT	857	399	450	7	75	120	840	57	45	820
7	2025-2026	23	MADHYA PRADESH	413	KATNI	3318	2283	1035	0	536	762	366	1654	2932	960
8	2025-2026	27	MAHARASHTRA	500	YAVATMAL	34138	12951	21184	3	2487	2261	23906	5544	33031	20867
9	2025-2026	32	KERALA	544	ALAPPUZHA	1981	1151	830	0	49	9	1923	5	90	5
10	2025-2026	33	TAMILNADU	22	SALEM	4787	0	4784	0	834	0	915	3038	4544	4744
11															

RESULT

Prediction results

CONCLUSION

- The developed model successfully predicts the correct NSAP scheme for applicants using socioeconomic data.
- This automation reduces delays in benefit distribution and minimizes allocation errors.

FUTURE SCOPE

- Expand dataset with more granular beneficiary-level details.
- Integrate with government application portals for real-time predictions.
- Explore deep learning models for improved accuracy.
- Support predictions for new social assistance schemes.

REFERENCES

- AI Kosh NSAP Dataset: https://aikosh.indiaai.gov.in.
- IBM Watson Machine Learning Documentation.
- Research papers on multi-class classification for social benefit allocation.

IBM CERTIFICATIONS

IBM CERTIFICATIONS

IBM CERTIFICATIONS

THANK YOU

