

AD-A045 052

LEHIGH UNIV BETHLEHEM PA CENTER FOR THE APPLICATION--ETC F/G 20/11
MATERIAL STABILITY AND BIFURCATION IN FINITE ELASTICITY. (U)
AUG 77 K N SAWYERS
CAM-100-29

N00014-76-C-0235

NL

UNCLASSIFIED

1 OF
AD
A045052

END
DATE
FILED
11 - 77
DDC

AD A 045052

Lehigh University

(3)

MATERIAL STABILITY AND BIFURCATION IN FINITE ELASTICITY

by

K.N. SAWYERS

TECHNICAL REPORT NO. CAM-100-29 August, 1977

OFFICE OF NAVAL RESEARCH CONTRACT NO. N00014-76-C-0273

0235

AD No. _____
DDC FILE COPY

Center for the
Application of
Mathematics
(CAM)

(See L473)

Material Stability and Bifurcation in Finite Elasticity

by

K.N. Sawyers

Center for the Application of Mathematics
Lehigh University, Bethlehem, Pa.

ABSTRACT

The theory of small superposed deformations for isotropic incompressible elastic materials is used (i) to obtain necessary restrictions on the form of the strain-energy function by requiring that the speed of propagation be real for waves that pass through a finitely deformed body of material (i.e., Hadamard stability criterion), and (ii) to determine critical loading conditions for a thick rectangular plate under which bifurcation solutions (i.e., adjacent equilibrium positions) can exist. The possibility of bifurcation under tensile loading, when one pair of faces of a plate are force free, is precluded by further material stability considerations.

1. Introduction

The main purpose of this paper is to bring together results obtained during the past few years on two basic problems in finite elasticity theory. One of these is the question of what restrictions must be imposed on a constitutive assumption in order to ensure *physically realistic* behavior of the material which it claims to describe. The other problem deals with the description of the conditions under which adjacent equilibrium states can appear as small perturbations on an equilibrium state of finite deformation of a thick plate. Most of the results appear in references [1]-[5].

The setting for both problems is the theory of small deformations superposed on states of pure homogeneous deformation of bodies made of an isotropic, incompressible elastic material [6]. The relevant equations are briefly derived in §2.

The approach taken for the first problem is to investigate the implications that stem from the Hadamard stability criterion, which requires that the speed of propagation be real for plane waves that pass through a deformed body of material. It was shown by Hayes and Rivlin [7] that this criterion must be imposed in order to ensure that the body can actually exist in the finitely deformed state considered. Accordingly, we adopt the resulting implications as *minimal material stability conditions*.

The equations that describe wave propagation are derived in §3, and further discussed in §4, for a general material. The main result is that certain inequalities [1] {see eqn.(4.1) below} involving derivatives of the strain-energy function are necessary and sufficient for the Hadamard criterion to be satisfied for waves whose directions of propagation lie in a principal plane of strain.

An open question remains as to whether these are also necessary and sufficient when a completely general propagation direction is considered. It is seen, however, that the answer to this is affirmative when two principal extension ratios are equal, or in §5, when the constitutive assumption is specialized [3].

The determination of *critical states* of finite deformation, at which non-trivial adjacent equilibrium states first become possible, has been the subject of numerous investigations over the past twenty years. A partial list of these is contained in [4].

The geometry considered is a rectangular plate, one pair of whose faces are force free and whose other two pairs are loaded by uniformly distributed normal forces when the body is held in its finitely deformed state. The forces acting on one opposite pair of faces are regarded as passive, merely holding the length of the plate fixed in that direction. The forces acting on the other pair are regarded as being the "cause" of the bifurcation, which is assumed to appear as a small plane static deformation parallel to the faces bearing the "passive" forces.

The equations governing such bifurcations are derived in §6, and it is found that further discussion of the problem can be conveniently carried out if two cases that arise naturally are separated. This separation is governed by the particular values assumed by the one relevant material parameter that appears {see (6.15) and (6.18)}. One case [4] is considered in §7 and the other in §8.

When the causal force is a thrust, a single asymptotic formula [5] {see (8.17)}, relating the cross-sectional geometry of a plate to the critical condition for flexural bifurcation, is found to be valid for all materials. This result, for a "thin" cross section, covers the case of classical Euler-type buckling.

When the causal force is tensile, it is found that a bifurcation can occur only if the load decreases after attaining a maximum. However, this behavior rules out the possibility that a plate of material can be held in stable equilibrium in states of pure homogeneous deformation just prior to that required for the bifurcation, and leads to the imposition of further restrictions on the strain-energy function beyond those discussed in §4.

A major question that remains open for the bifurcation problem considered here, particularly for "thick" cross sections, is whether the body *actually* goes over into a mode shape that is assumed at the point where the thrust load reaches a critical value. Some experimental evidence [8] throws doubt on the matter. Attempts to answer this analytically by employing energetic considerations have, so far, been unsuccessful.

Recently [9], [10], the bifurcation problem has been exhaustively studied for a plate of incompressible material by employing an incrementally-linear, time-independent constitutive relationship. This theory includes small superposed elastic deformations as a special case. Accordingly, an alternative description of the results in §§7 and 8 could be gleaned from those in [9] and [10] by expressing the relevant incremental moduli in terms of the strain-energy function.

2. Basic Equations

We let ξ , \underline{x} and \bar{x} denote the vector positions, relative to a fixed rectangular Cartesian frame x , of a typical particle of the body in an undeformed state, in a finitely deformed state, and in a state at time t , respectively, and write

$$\bar{x} = \underline{x} + \underline{u} \quad (2.1)$$

where \underline{u} is the displacement associated with an additional small superposed deformation. We consider states of pure homogeneous deformation whose principal directions are parallel to the coordinate axes of x and which are completely characterized by the (positive, constant) extension ratios $\lambda_1, \lambda_2, \lambda_3$. Then

$$\underline{x} = \underline{F}\xi, \quad \underline{F} = \text{diag}(\lambda_1, \lambda_2, \lambda_3). \quad (2.2)$$

The components of ξ , \underline{x} , \bar{x} and \underline{u} , referred to x , are denoted by ξ_α , \underline{x}_i , \bar{x}_i and \underline{u}_i , respectively. In the sequel, all expressions involving \underline{u} (and its derivatives) shall be systematically linearized in \underline{u} .

The Finger strain matrix $\bar{\underline{B}}$ is given by

$$\bar{\underline{B}} = \bar{\underline{F}}\bar{\underline{F}}^T = \underline{F}^2 + \underline{f}\underline{F} + \underline{F}\underline{f}^T, \quad (2.3)$$

where, with (2.1) and (2.2),

$$\bar{\underline{F}} = \underline{F} + \underline{f}, \quad \underline{f} = \|\underline{u}_{i,\alpha}\|. \quad (2.4)$$

(We employ the notation $,_\alpha$ to denote $\partial/\partial\xi_\alpha$, as well as the usual summation convention for repeated lower-case subscripts.)

The invariants \bar{I}_1 and \bar{I}_2 of $\bar{\underline{B}}$ are given by

$$\bar{I}_1 = \operatorname{tr} \tilde{B} = I_1 + i_1 , \quad (2.5)$$

$$\bar{I}_2 = \frac{1}{2}\{(\operatorname{tr} \tilde{B})^2 - \operatorname{tr} \tilde{B}^2\} = I_2 + i_2 ,$$

where

$$I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2 , \quad I_2 = \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2 + \lambda_1^2 \lambda_2^2 , \quad (2.6)$$

$$i_1 = 2 \sum_{A=1}^3 \lambda_A u_{A,A} , \quad i_2 = 2 \sum_{A=1}^3 \lambda_A (I_1 - \lambda_A^2) u_{A,A} . \quad (2.7)$$

The incompressibility condition, $\det \tilde{F} = 1$, together with (2.2) and (2.4), yields

$$\lambda_1 \lambda_2 \lambda_3 = 1 \quad (2.8)$$

and

$$\sum_{A=1}^3 \lambda_A^{-1} u_{A,A} = 0 . \quad (2.9)$$

The strain-energy density, W , depends on \tilde{B} through \bar{I}_1 and \bar{I}_2 . Letting $\bar{\Pi}_{\alpha i}$ denote the components of the Piola-Kirchhoff stress and \bar{P} a hydrostatic pressure, we have

$$\begin{aligned} \bar{\Pi}_{\alpha i} + \frac{1}{2} \bar{P} \epsilon_{ijk} \epsilon_{\alpha\beta\gamma} \bar{F}_{j\beta} \bar{F}_{k\gamma} &= \partial W / \partial \bar{F}_{i\alpha} \\ &= 2 \{ (\bar{W}_1 + \bar{I}_1 \bar{W}_2) \bar{F}_{i\alpha} - \bar{W}_2 \bar{F}_{i\beta} \bar{F}_{j\beta} \bar{F}_{j\alpha} \} , \end{aligned} \quad (2.10)$$

where ϵ_{ijk} is the alternating symbol and

$$\bar{W}_A = \partial W / \partial \bar{I}_A , \quad A=1,2 . \quad (2.11)$$

Following the previous notational conventional, we write

$$\bar{\Pi}_{\alpha i} = \Pi_{\alpha i} + \pi_{\alpha i}, \quad \bar{P} = P + p, \quad (2.12)$$

where $\pi_{\alpha i}$ and p are the stress and hydrostatic pressure, respectively, associated with a superposed deformation. Also, we expand \bar{W}_A in a series about I_1 and I_2 ; thus,

$$\bar{W}_A = W_A + W_{A1}i_1 + W_{A2}i_2, \quad A=1,2 \quad (2.13)$$

where W_A and W_{AB} denote the first and second derivatives of W with respect to \bar{I}_A , evaluated at $\bar{I}_A = I_A$. The substitution from (2.12) and (2.13) into (2.10), with (2.2), (2.4), (2.6) and (2.8), yields

$$\begin{aligned} \Pi_{AA} &= 2\lambda_A \{W_1 + (I_1 - \lambda_A^2)W_2\} - P/\lambda_A, \\ \Pi_{AB} &= 0, \quad A \neq B, \quad A, B = 1, 2, 3 \end{aligned} \quad (2.14)$$

and

$$\begin{aligned} \pi_{AA} &= \sum_{B=1}^3 \{C_{AB}\delta_{AB} + (\delta_{AB}-1)D_{AB} + E_{AB}\}u_{B,B} - P/\lambda_A, \\ \pi_{AB} &= C_{AB}u_{B,A} + D_{AB}u_{A,B}, \quad A \neq B, \end{aligned} \quad (2.15)$$

where δ_{ij} is the Kronecker delta and

$$\begin{aligned} C_{AB} &= 2\{W_1 + (I_1 - \lambda_A^2 - \lambda_B^2)W_2\}, \\ D_{AB} &= (P - 2\lambda_A^2\lambda_B^2W_2)/\lambda_A\lambda_B, \\ E_{AB} &= 2\lambda_A\lambda_B\{W_2 + 2[W_{11} + (2I_1 - \lambda_A^2 - \lambda_B^2)W_{12} \\ &\quad + (I_1 - \lambda_A^2)(I_1 - \lambda_B^2)W_{22}]\}. \end{aligned} \quad (2.16)$$

(No summation is implied for repeated upper-case subscripts.)

We neglect all body forces. Then, bearing in mind that the λ 's are constants, from (2.1), (2.2), (2.12) and (2.14), the equations of motion are

$$\pi_{\alpha i, \alpha} = \rho \ddot{u}_i , \quad (2.17)$$

together with the requirement that P be constant, where ρ is the mass density and a superposed dot denotes differentiation with respect to t . The substitution from (2.15) into (2.17) yields

$$\sum_{B=1}^3 (C_{AB} u_{A,BB} + E_{AB} u_{B,BA}) - p, A / \lambda_A = \rho \ddot{u}_A , \quad A = 1, 2, 3 . \quad (2.18)$$

Let \underline{v} denote the (outward drawn) unit vector normal to a surface of the body in the deformed state. Then the traction \bar{T} acting on this surface at time t , and measured per unit undeformed area, has components given by

$$\bar{T}_i = \bar{\Pi}_{\alpha i} v_\alpha = T_i + t_i , \quad (2.19)$$

where

$$T_i = \Pi_{\alpha i} v_\alpha , \quad t_i = \pi_{\alpha i} v_\alpha . \quad (2.20)$$

3. The Propagation of Plane Waves : The Secular Equation

In this section we derive the secular equation that governs the propagation of small amplitude sinusoidal plane waves through a block of material that is otherwise held in equilibrium in the finitely deformed state characterized by $\lambda_1, \lambda_2, \lambda_3$. Letting ω denote the angular frequency, κ the wave number and \hat{n} the (real) unit vector in the direction of propagation of such a wave, we employ the usual complex notation and write

$$\hat{u} = \hat{U} \exp\{\imath(\kappa\hat{n}\cdot\hat{x} - \omega t)\}, \quad (3.1)$$

where \hat{U} is a constant vector and $\imath^2 = -1$.

The substitution from (3.1) into (2.9), with (2.2), yields

$$\hat{n}\cdot\hat{U} = n_i U_i = 0, \quad (3.2)$$

where we disregard the trivial case $\kappa = 0$.

We express the hydrostatic pressure p associated with the superposed deformation in a form that is consistent with (3.1); thus,

$$p = \imath\kappa q \exp\{\imath(\kappa\hat{n}\cdot\hat{x} - \omega t)\}, \quad (3.3)$$

where q is a constant. With the notation

$$\sigma = \kappa^2/(\rho\omega^2), \quad (3.4)$$

the substitution from (3.1) and (3.3) into (2.18) yields

$$\sigma(Q_{ij}n_j - qn_i) = U_i, \quad (3.5)$$

where

$$Q_{ij} = Q_{ijk}U_k, \quad (3.6)$$

with

$$Q_{ABC} = C_{AB} \lambda_B^2 n_B \delta_{AC} + \lambda_A \lambda_C n_C E_{AC} \delta_{AB} . \quad (3.7)$$

To eliminate q from (3.5) we multiply each term of the equation by $\epsilon_{sri} n_r$ and obtain, with (3.6),

$$\bar{Q}_{st} U_t = 0 , \quad (3.8)$$

where

$$\bar{Q}_{st} = \epsilon_{sri} n_r (\sigma Q_{ijt} n_j - \delta_{it}) . \quad (3.9)$$

Now since $n_s \bar{Q}_{st}$ vanishes identically, we note that the three equations in (3.9) are not linearly independent. Taking $s = 1$ and 2, for example, we obtain

$$\bar{Q}_{1t} U_t = 0 , \quad \bar{Q}_{2t} U_t = 0 , \quad (3.10)$$

which, with (3.2), constitutes a set of three homogeneous equations for \underline{U} . A non-trivial solution for \underline{U} can exist only if

$$\epsilon_{ijk} \bar{Q}_{1i} \bar{Q}_{2j} n_k = 0 . \quad (3.11)$$

The substitution from (3.9) into (3.11), together with some algebraic manipulation, yields the desired secular equation in the form [3]

$$\alpha \sigma^2 - \beta \sigma + 1 = 0 , \quad (3.12)$$

where

$$\alpha = \epsilon_{ijk} n_k n_s n_t (n_1 Q_{2si} Q_{3tj} + n_2 Q_{3si} Q_{1tj} + n_3 Q_{1si} Q_{2tj}) , \quad (3.13)$$

$$\beta = n_s (Q_{jsj} - n_j n_k Q_{jsk}) ,$$

and where we have used the fact that $\tilde{n} \cdot \tilde{n} = 1$. According to (3.4), the quantity $\rho\sigma$ is the square of the slowness associated with a wave described by (3.1). We see that (3.12) yields two positive roots for σ if and only if

$$\alpha > 0, \quad \beta > 0, \quad \text{and} \quad \beta^2 - 4\alpha \geq 0. \quad (3.14)$$

Before turning to a discussion of the implications of (3.14), we must obtain explicit expressions for α and β in terms of W . To this end we introduce the notation

$$K_A = W_1 + \lambda_A^2 W_2, \quad M_A = 2(W_{11} + 2\lambda_A^2 W_{12} + \lambda_A^4 W_{22}), \quad A=1,2,3 \quad (3.15)$$

and also

$$J_A = M_A n_B^2 n_C^2 (\lambda_B^2 - \lambda_C^2)^2, \quad A \neq B \neq C \neq A. \quad (3.16)$$

Then employing (2.16) and (3.7) in (3.13), with (2.8), we obtain [3]

$$\begin{aligned} \alpha = & 4(\lambda_1^2 n_1^2 + \#) \{ (\lambda_1^2 n_1^2 K_2 K_3 + \#) + W_1 (J_1 + \#) \} \\ & + 4W_2 (\lambda_2^2 \lambda_3^2 J_1 + \#) \\ & + 16n_1^2 n_2^2 n_3^2 (\lambda_2^2 - \lambda_3^2)^2 (\lambda_3^2 - \lambda_1^2)^2 (\lambda_1^2 - \lambda_2^2)^2 (W_{11} W_{22} - W_{12}^2), \end{aligned} \quad (3.17)$$

$$\beta = 2 \{ K_1 (\lambda_2^2 n_2^2 + \lambda_3^2 n_3^2) + J_1 + \# \},$$

where the symbol $\#$ denotes two additional terms which are obtained from the ones shown by a cyclic permutation of the subscripts 1,2,3 on the λ 's, n 's, K 's, M 's and J 's. From (3.17), with (2.8), (3.15) and (3.16), we calculate $\beta^2 - 4\alpha$:

$$\begin{aligned} &= 4W_2^2 \{ [\lambda_1^4 n_1^4 (\lambda_2^2 - \lambda_3^2)^2 + \# \#] \\ &\quad + 2[\lambda_2^2 \lambda_3^2 n_2^2 n_3^2 (\lambda_1^2 - \lambda_2^2) (\lambda_1^2 - \lambda_3^2) + \# \#] \} \\ &\quad + 8W_2 \{ J_1 [\lambda_2^2 (\lambda_1^2 - \lambda_3^2) (n_1^2 + n_2^2) \\ &\quad + \lambda_3^2 (\lambda_1^2 - \lambda_3^2) (n_1^2 + n_3^2)] + \# \# \} \\ &\quad + 4 \{ [J_1 + \# \#]^2 \\ &\quad - 16 n_1^2 n_2^2 n_3^2 (\lambda_2^2 - \lambda_3^2)^2 (\lambda_3^2 - \lambda_1^2)^2 (\lambda_1^2 - \lambda_2^2)^2 (W_{11} W_{22} - W_{12}^2) \} . \quad (3.18) \end{aligned}$$

interest to note, in general, that the quantity $\beta^2 - 4\alpha$ is completely independent of the value assumed by W_1 .

4. Stability Restrictions for a General Material

The set of inequalities (3.14), which must hold for all \tilde{n} , is the Hadamard stability criterion. In turn, with (3.17) and (3.18), these inequalities lead to restrictions on the functional form of W , which we shall adopt as *minimal material stability conditions*.

It has been shown [1], [3] that, when the propagation direction \tilde{n} lies in a principal plane of the underlying pure homogeneous deformation, the necessary and sufficient conditions for (3.14) to be satisfied are

$$K_A > 0 \text{ and } (I_1 - \lambda_A^2 - 2\lambda_A^{-1})M_A + K_A > 0, \quad A = 1, 2, 3, \quad (4.1)$$

where the K 's and M 's are defined by (3.15). A sketch of the proof of this will be given below.

The first set of conditions (4.1) is known as the Baker-Ericksen inequalities [11]. The second set was apparently first given in [1]. It was shown in [2] that (4.1) can also be derived by considering small static superposed shearing deformations in principal planes and requiring the corresponding incremental shear moduli be positive.

It is not known whether any further restrictions on W , beyond those expressed by (4.1), stem from (3.14) for an arbitrary direction \tilde{n} . However, it is relatively easy to show that (4.1) is sufficient to ensure $\beta > 0$ for arbitrary \tilde{n} . We employ (2.6)₁, (2.8) and (3.16) in (3.17)₂ and write

$$\begin{aligned}\beta &= 2K_1\{(\lambda_2 n_2^2 - \lambda_3 n_3^2)^2 + n_1^2(\lambda_2^2 n_2^2 + \lambda_3^2 n_3^2)\} + \# + 2b, \\ b &= (\lambda_2 + \lambda_3)^2 n_2^2 n_3^2 \{(I_1 - \lambda_1^2 - 2\lambda_1^{-1})M_1 + K_1\} + \#\end{aligned}\quad (4.2)$$

From (4.1) we see that $b \geq 0$ and, whence, $\beta > 0$.

In the general case when all three λ 's are distinct, we note that, at most, only two of the three Baker-Ericksen inequalities are independent. For, with the ordering $\lambda_1 > \lambda_2 > \lambda_3$, say, from (3.15)₁ we have that $K_1 > 0$ and $K_3 > 0$ implies $K_2 > 0$. If two of the λ 's are equal, say $\lambda_1 = \lambda_2 \neq \lambda_3$, then, again, at most two of the Baker-Ericksen inequalities are independent while the second set in (4.1) reduces to $K_3 > 0$ and just one other inequality. Thus, for these special types of deformations, (4.1) yields, at most, three independent restrictions on the form of W . Some additional comments pertaining to this case are made at the conclusion of this section.

For propagation in a principal direction, say $\underline{n} = (1, 0, 0)$, (3.17) yields

$$\alpha = 4\lambda_1^4 K_2 K_3, \quad \beta = 2\lambda_1^2 (K_2 + K_3), \quad (4.3)$$

and it is clear that $\beta^2 - 4\alpha \geq 0$. From expressions for α and β analogous to these for propagation along the other two principal directions, we can conclude that $\alpha > 0$ and $\beta > 0$ if and only if $K_A > 0$. Essentially the same results can be read off directly from results obtained much earlier by Ericksen [12].

We turn now to the case of propagation in an arbitrary direction in a principal plane. For definiteness, suppose that $\underline{n} = (n_1, n_2, 0)$. Then from (3.17) we obtain

$$\alpha = 4\gamma_1 \gamma_2, \quad \beta = 2(\gamma_1 + \gamma_2), \quad (4.4)$$

where

$$\begin{aligned}\gamma_1 &= \lambda_1^2 n_1^2 K_2 + \lambda_2^2 n_2^2 K_1 , \\ \gamma_2 &= K_3 (\lambda_1 n^2 - \lambda_2 n_2^2)^2 \\ &\quad + n_1^2 n_2^2 (\lambda_1 + \lambda_2)^2 \{K_3 + (\lambda_1 - \lambda_2)^2 M_3\} .\end{aligned}\tag{4.5}$$

It is clear from (4.4) that $\beta^2 - 4\alpha \geq 0$. With the validity of (4.1)₁ already established, it easily follows [1], [2] from (4.4) and (4.5) that $\alpha > 0$ if and only if

$$(\lambda_1 - \lambda_2)^2 M_3 + K_3 > 0 ,\tag{4.6}$$

which, then, is also sufficient for $\beta > 0$, as noted previously. The form of the conditions (4.1)₂ follows from (4.6), with (2.6)₁, by considering analogous results for propagation in the other two principal planes.

If the underlying deformation is a uniform two-dimensional extension or compression, we have a situation where two of the λ 's are equal. For example, say

$$\lambda_1 = \lambda_2 = \lambda , \quad \lambda_3 = 1/\lambda^2 .\tag{4.7}$$

Then, with (3.15), the inequalities (4.1) become

$$K > 0 , \quad K_3 > 0 , \quad (\lambda^3 - 1)^2 M + \lambda^4 K > 0 ,\tag{4.8}$$

where

$$\begin{aligned}K &= K_1 = K_2 = W_1 + \lambda^2 W_2 , \quad K_3 = W_1 + \lambda^{-4} W_2 , \\ M &= M_1 = M_2 = 2(W_{11} + 2\lambda^2 W_{12} + \lambda^4 W_{22}) .\end{aligned}\tag{4.9}$$

The derivatives of W that appear in (4.9) are evaluated for

$$I_1 = 2\lambda^2 + 1/\lambda^4, \quad I_2 = \lambda^4 + 2/\lambda^2, \quad (4.10)$$

which is a point on the curve bounding the domain in the $\bar{I}_1 \bar{I}_2$ -plane where W is defined. (See [13], for example).

Now, when two principal extension ratios are equal, we note that *any* direction \underline{n} is parallel to a principal plane, and it follows that the satisfaction of (4.8) is necessary and sufficient that (3.14) be satisfied for *arbitrary* directions of propagation [3].

5. Results for Some Special Materials

A stumbling block in the way of obtaining the full implications of (3.14) for arbitrary \tilde{n} is the presence of the term $(W_{11}W_{22}-W_{12}^2)$ in the expression for α . Three special cases where this term is absent have been studied [3]. These are the Mooney-Rivlin material (see, also, [12]) and materials which depend either on \bar{I}_1 or on \bar{I}_2 . For these it is found that the basic restrictions implied by (4.1) are necessary and sufficient for (3.14) to be met for arbitrary \tilde{n} . Only the case where W depends on \bar{I}_1 shall be discussed here.

We write $W = f(\bar{I}_1)$ so that, from (3.15),

$$K_A = f' , \quad M_A = 2f'' , \quad A = 1,2,3 \quad (5.1)$$

and, with $(2.6)_1$, the conditions (4.1) become

$$f' > 0 , \quad 2(\lambda_A - \lambda_B)^2 f'' + f' > 0 , \quad AB = 12, 23, 31 . \quad (5.2)$$

The derivatives of f are evaluated at $\bar{I}_1 = I_1$. From (3.17), (3.18), with (5.1), we obtain

$$\begin{aligned} \alpha &= 4(\lambda_1^2 n_1^2 + \#) f' \{ (\lambda_1^2 n_1^2 + \#) f' \\ &\quad + 2f'' [(\lambda_2^2 - \lambda_3^2)^2 n_2^2 n_3^2 + \#] \} , \\ \beta &= 4 \{ (\lambda_1^2 n_1^2 + \#) f' + f'' [(\lambda_2^2 - \lambda_3^2)^2 n_2^2 n_3^2 + \#] \} , \\ \beta^2 - 4\alpha &= 16 \{ (\lambda_2^2 - \lambda_3^2)^2 n_2^2 n_3^2 + \# \}^2 (f'')^2 . \end{aligned} \quad (5.3)$$

It is clear that $\beta^2 - 4\alpha \geq 0$, for arbitrary \tilde{n} , regardless of the form of f . Recalling that $K_A > 0$ is necessary and sufficient

that the speed of waves propagating in a principle direction be real {cf.(4.3)} , it follows from $(5.1)_1$ that $(5.2)_1$ must be satisfied.

Now if $f'' \geq 0$, we see that $(5.2)_2$ is satisfied and also $\alpha > 0$. Therefore, we need consider only such f where $f'' < 0$. Recalling the result cited at the conclusion of §4, we may here assume that all the λ 's are distinct, and, without loss of generality, take $\lambda_1 > \lambda_2 > \lambda_3$. Then $(5.2)_2$ yields just one independent condition which can be expressed in the form

$$f'' = -\frac{1}{2}(f' - \epsilon)/(\lambda_1 - \lambda_3)^2 , \text{ with } \epsilon > 0 . \quad (5.4)$$

The substitution from (5.4) into $(5.3)_1$ yields

$$\alpha = 4(\lambda_1^2 n_1^2 + \#) f' \{ F f' + \epsilon [(\lambda_2^2 - \lambda_3^2)^2 n_2^2 n_3^2 + \#] \} / (\lambda_1 - \lambda_3)^2 , \quad (5.5)$$

where

$$F = (\lambda_1 - \lambda_3)^2 (\lambda_1^2 n_1^2 + \#) - [(\lambda_2^2 - \lambda_3^2)^2 n_2^2 n_3^2 + \#] . \quad (5.6)$$

According to (5.5) and (5.6) we have $\alpha > 0$ if and only if $\epsilon > 0$ provided $F \geq 0$ for all \underline{n} and $F = 0$ for some \underline{n} . That these latter conditions are indeed met can be seen by expressing F as a function of n_1^2 and n_3^2 (recall $n_2^2 = 1 - n_1^2 - n_3^2$) and then looking for a minimum of F over the interior of the triangular domain in the $n_1^2 n_3^2$ -plane bounded by the lines $n_1^2 = 0$, $n_3^2 = 0$, $n_1^2 + n_3^2 = 1$. The relevant conditions are $\partial F / \partial n_1^2 = 0$ and $\partial F / \partial n_3^2 = 0$, which lead to the equations [5]

$$(\lambda_1^2 - \lambda_2^2)n_1^2 + (\lambda_3^2 - \lambda_2^2)n_3^2 = \{\lambda_1^2 - \lambda_2^2 - (\lambda_1 - \lambda_3)^2\}/2 , \quad (5.7)$$

$$(\lambda_1^2 - \lambda_2^2)n_1^2 + (\lambda_3^2 - \lambda_2^2)n_3^2 = \{\lambda_2^2 - \lambda_3^2 - (\lambda_1 - \lambda_3)^2\}/2 .$$

Since $\lambda_1 > \lambda_3$, these are found to be inconsistent, and, hence, no minimum of F exists. It is also found that $F > 0$ for $n_1^2 = 0$ and $n_3^2 = 0$, but, for $n_1^2 + n_3^2 = 1$, we have

$$F = (\lambda_1 - \lambda_3)^2 (\lambda_1 n_1 - \lambda_3 n_3)^3 , \quad (5.8)$$

which vanishes when

$$n_1^2 = \lambda_3 / (\lambda_1 + \lambda_3) , \quad n_3^2 = \lambda_1 / (\lambda_1 + \lambda_3) . \quad (5.9)$$

We conclude that $F > 0$ for all \tilde{n} except for the four values arising from (5.9), for which $F = 0$.

6. Bifurcation of a Thick Plate

We consider a rectangular plate having sides of length $2\ell_1$, $2\ell_2$, $2\ell_3$ and which occupies the region

$$-\ell_A \leq \xi_A \leq \ell_A, \quad A = 1, 2, 3 \quad (6.1)$$

in its undeformed state. The plate is held in equilibrium in a state characterized by (2.2) by means of normal forces uniformly distributed over the faces perpendicular to the x_1 and x_3 directions. No forces are applied to the faces initially normal to the x_2 -direction. Here we investigate the possibility that a neighboring equilibrium state can exist in the form of a small superposed displacement in the x_1x_2 -plane under the conditions that no further deformation occurs in the x_3 -direction, that no tangential tractions are applied to the load-carrying faces, and that these faces remain parallel to their original directions. If such bifurcation is possible, we say that the underlying pure homogeneous deformation is a *critical state*.

With λ_3 fixed, we note from (2.6) and (2.8) that

$$I_1 = \lambda_3^2 + (\lambda + \lambda^{-1})\lambda_3^{-1}, \quad I_2 = \lambda_3(\lambda + \lambda^{-1}) + \lambda_3^{-2} \quad (6.2)$$

where

$$\lambda = \lambda_2/\lambda_1. \quad (6.3)$$

Also, from (2.14), (2.20) and the fact that the faces $\xi_2 = \pm \ell_2$ are force free, we obtain

$$P = 2\lambda_2^2\{W_1 + (\lambda_1^2 + \lambda_3^2)W_2\}, \quad (6.4)$$

and

$$\pi_{11} = 2(1-\lambda^2)(W_1 + \lambda_3^2 W_2) / (\lambda \lambda_3)^{\frac{1}{2}} . \quad (6.5)$$

From (4.1)₁, with $A = 3$, we see that the force applied to the face $\xi_1 = \ell_1$ is a thrust or tension accordingly as $\lambda > 1$ or $\lambda < 1$, respectively.

To describe neighboring equilibrium states we take \tilde{u} and p in the form

$$u_1 = u_1(\xi_1, \xi_2), \quad u_2 = u_2(\xi_1, \xi_2), \quad u_3 = 0, \quad p = p(\xi_1, \xi_2) . \quad (6.6)$$

Then from (2.18) and (2.9) we obtain

$$\begin{aligned} (C_{11} + E_{11})u_{1,11} + C_{12}u_{1,22} + E_{12}u_{2,21} - p_{,1}/\lambda_1 &= 0 , \\ C_{21}u_{2,11} + (C_{22} + E_{22})u_{2,22} + E_{21}u_{1,12} - p_{,2}/\lambda_2 &= 0 , \\ \lambda u_{1,1} + u_{2,2} &= 0 . \end{aligned} \quad (6.7)$$

The condition that the faces $\xi_2 = \pm \ell_2$ remain force free is, from (2.20)₂, $\pi_{2i} = 0$. Then with (6.6) and (2.15) we obtain

$$\left. \begin{aligned} \pi_{21} &= C_{21}u_{1,2} + D_{21}u_{2,1} = 0 \\ \pi_{22} &= (C_{22} + E_{22})u_{2,2} + E_{21}u_{1,1} - p/\lambda_2 = 0 \end{aligned} \right\} \xi_2 = \pm \ell_2 . \quad (6.8)$$

The faces $\xi_1 = \pm \ell_1$ remain parallel to the x_2x_3 -plane and are free of tangential tractions if $u_{1,2} = u_{1,3} = 0$ and $\pi_{12} = \pi_{13} = 0$. With (6.6) and (2.15), these conditions are seen to be satisfied if

$$u_{1,2} = u_{2,1} = 0 , \quad \xi_1 = \pm \ell_1 \quad (6.9)$$

We employ (2.16), (6.3), (6.4) and find that solutions of (6.7), (6.8), (6.9) can be obtained in the separable form [4],

$$u_1 = \begin{cases} -\sin\Phi\xi_1 \\ \cos\Psi\xi_1 \end{cases} U_1(\xi_2), \quad u_2 = \begin{cases} \cos\Phi\xi_1 \\ \sin\Psi\xi_1 \end{cases} U(\xi_2), \quad p = \begin{cases} \cos\Phi\xi_1 \\ \sin\Psi\xi_1 \end{cases} Q(\xi_2), \quad (6.10)$$

where

$$\Phi = n\pi/\ell_1, \quad \Psi = (n-\frac{1}{2})\pi/\ell_1, \quad n = 1, 2, 3, \dots \quad (6.11)$$

and

$$U_1 = \frac{1}{\lambda\Omega} U', \quad Q = \frac{\lambda_1}{\lambda\Omega^2} \{C_{12}U'' - \Omega^2(C_{11} + E_{11} - \lambda E_{12})U'\}, \quad (6.12)$$

provided that U satisfies the differential equation

$$U^{(iv)} - \{\lambda^2 + 1 + A(\lambda - 1)^2\}\Omega^2 U'' + \lambda^2 \Omega^4 U = 0 \quad (6.13)$$

and the boundary conditions

$$\left. \begin{array}{l} U'' + \lambda^2 \Omega^2 U = 0 \\ U''' + \Omega^2 \{2\lambda^2 + 1 + A(\lambda - 1)^2\} U' = 0 \end{array} \right\} \xi_2 = \pm \ell_2 \quad (6.14)$$

The upper set of expressions in (6.10) represents a symmetric mode of deformation with respect to the x_2x_3 -plane and the lower set an anti-symmetric mode with respect to this plane. Also, the quantity Ω denotes either Φ or Ψ , depending on which set is considered, and A is defined by

$$A = \frac{2}{\lambda\lambda_3} (\lambda+1)^2 (W_{11} + 2\lambda_3^2 W_{12} + \lambda_3^4 W_{22}) / (W_1 + \lambda_3^2 W_2). \quad (6.15)$$

It appears that Wesolowski [14] was the first to exploit the

fact that the governing differential equation and boundary conditions for a bifurcation problem of this type depend on the strain-energy function only through a single material parameter, such as A . We remark here that, for any specified value of λ_3 , A is a function of λ only {cf.(6.2)}.

With (3.15) we see that A can be expressed as

$A = (\lambda+1)^2 M_3 / (\lambda \lambda_3 K_3)$ and, from (4.1) (with the subscript $A=3$) , together with (2.6), (2.8) and (6.3), that the Hadamard criterion can be satisfied only if $(\lambda-1)^2 M_3 / (\lambda \lambda_3 K_3) > -1$. Whence, A must satisfy $(\lambda-1)^2 A > -(\lambda+1)^2$, or simply

$$A > -(\lambda+1)^2 / (\lambda-1)^2 = A_0(\lambda) , \text{ say} , \quad (6.16)$$

in order that the underlying deformation meet the minimal stability requirement. Of course, no restriction arises from (6.16) if $\lambda=1$.

Upon assuming a solution of (6.13) of the form $U = \exp(\Omega \Gamma \xi_2)$, we obtain a biquadratic equation for Γ which has four roots of the form $\pm (R \pm T)$ where

$$R = \frac{1}{2} \{ (\lambda+1)^2 + A(\lambda-1)^2 \}^{\frac{1}{2}} , \quad T = \frac{1}{2} \{ (A+1)(\lambda-1)^2 \}^{\frac{1}{2}} . \quad (6.17)$$

According to (6.16), R is real for all possible values of A and

T is real if $A \geq -1$, (6.18)

T is imaginary if $-1 > A > -(\lambda+1)^2 / (\lambda-1)^2$.

It is convenient to treat these two cases separately. The first is discussed in §7 and the other in §8.

7. Bifurcation When $A > -1$

When (6.18)₁ applies, we let

$$\Gamma_1 = R + T, \quad \Gamma_2 = R - T \quad (7.1)$$

and write the general solution of (6.13) in the form [4]

$$U = L_1 \cosh \Omega \Gamma_1 \xi_2 + L_2 \sinh \Omega \Gamma_1 \xi_2 \\ + N_1 \cosh \Omega \Gamma_2 \xi_2 + N_2 \sinh \Omega \Gamma_2 \xi_2, \quad (7.2)$$

where L_1, L_2, N_1, N_2 are constants. The substitution into (6.14) yields four equations for the determination of these constants, which, with the notation

$$\eta = \Omega \ell_2, \quad (7.3)$$

can be written as

$$(\Gamma_1^2 + \lambda^2)L_1 \cosh \Gamma_1 \eta + (\Gamma_2^2 + \lambda^2)N_1 \cosh \Gamma_2 \eta = 0, \\ \Gamma_1(\Gamma_2^2 + \lambda^2)L_1 \sinh \Gamma_1 \eta + \Gamma_2(\Gamma_1^2 + \lambda^2)N_1 \sinh \Gamma_2 \eta = 0, \\ (\Gamma_1^2 + \lambda^2)L_2 \sinh \Gamma_1 \eta + (\Gamma_2^2 + \lambda^2)N_2 \sinh \Gamma_2 \eta = 0, \\ \Gamma_1(\Gamma_2^2 + \lambda^2)L_2 \cosh \Gamma_1 \eta + \Gamma_2(\Gamma_1^2 + \lambda^2)N_2 \cosh \Gamma_2 \eta = 0. \quad (7.4)$$

In order that non-trivial solutions of (7.4) exist, we must have either

$$L_2 = N_2 = 0 \quad \text{and} \quad \frac{\tanh \Gamma_2 \eta}{\tanh \Gamma_1 \eta} = \frac{\Gamma_1}{\Gamma_2} \left(\frac{\Gamma_2^2 + \lambda^2}{\Gamma_1^2 + \lambda^2} \right)^2, \quad (7.5)$$

or

$$L_1 = N_1 = 0 \quad \text{and} \quad \frac{\tanh \Gamma_1 \eta}{\tanh \Gamma_2 \eta} = \frac{\Gamma_1}{\Gamma_2} \left(\frac{\Gamma_2^2 + \lambda^2}{\Gamma_1^2 + \lambda^2} \right)^2. \quad (7.6)$$

If (7.5) holds, we can obtain non-trivial values of L_1 and N_1 from (7.4) and, accordingly, from (6.10), (6.12) and (7.2) we see that the variation of u_1 is odd and u_2 is even with respect to ξ_2 . This gives rise to an anti-symmetric shape with respect to the x_1x_3 -plane, which we call a *flexural mode*. Conversely, the shape associated with the satisfaction of (7.6) is symmetric with respect to the x_1x_3 -plane and we call that a *barreling mode*.

With the convention that

$$v = \begin{cases} +1 & \text{for a flexural mode} \\ -1 & \text{for a barreling mode,} \end{cases} \quad (7.7)$$

and with (7.1), it is possible to write both bifurcation conditions $(7.5)_2$ and $(7.6)_2$ in the form [4]

$$\frac{\sinh(2R\eta)}{\sinh(2T\eta)} = v \frac{R}{T} \frac{\{4T^2 + \lambda(\lambda+1)^2\}}{\{4R^2 - \lambda(\lambda-1)^2\}}. \quad (7.8)$$

From (6.17), and bearing in mind that A is a function of λ , we see that R and T are functions of λ . Then (7.8) can be regarded as an equation for the determination of η as a function of λ . From (6.11) and (7.3),

$$\eta = n\pi\ell_2/2\ell_1, \quad n = 1, 2, 3, \dots \quad (7.9)$$

where n denotes the number of half-wavelengths parallel to the x_1 -direction in a neighboring mode. Thus, we may also regard (7.8) as an equation for the determination of critical values of λ corresponding to a particular aspect ratio (ℓ_2/ℓ_1) and a given mode shape.

ain results based on (7.8) have been proven analytically the assumption that A is constant. These are summarized, where $\theta = 4R^2 - \lambda(\lambda-1)^2$:

If $\lambda > 1$ (tensile case) (7.8) admits no real solutions and, hence, no bifurcation is possible.

For any $\lambda > 1$, one and only one positive value of η exists for flexure if $\theta > 0$ and none exists if $\theta \leq 0$.

For any $\lambda > 1$, one and only one positive value of η exists for barreling if $\theta < 0$ and none exists if $\theta \geq 0$.

the vanishing of $\{4R^2 - \lambda(\lambda-1)^2\}$ is the condition which the ranges of critical values of λ for which flexural and bifurcations can occur. From (6.17)₁, this separation is defined by

$$A = \lambda - (\lambda+1)^2 / (\lambda-1)^2 = \bar{A}(\lambda), \text{ say .} \quad (7.10)$$

be said about this in the next section. The function \bar{A} plotted in the λA -plane in Fig.3 of [4] for $A > -1$.

rical results from (7.8) can be obtained [4] by assigning constant values to A and then solving numerically for η function of λ . This procedure yields curves of the form schematically in Fig.1. Here we have taken three constant , b, c for A with the assumed ordering $-1 < a < b < c$. curves represent solutions of (7.8) for flexure and the rves the solutions for barreling.

ough the condition $A = \text{constant}$ is somewhat artificial of course, for the Mooney-Rivlin material for which $A \equiv 0$,

from curves such as those in Fig.1 it is possible to determine critical values of λ , for any specified value of n , for arbitrary variation of A with λ . The procedure is to read off pairs of values of critical λ and corresponding A for the value of n specified and then plot these points in the λA -plane. This yields two distinct curves, one for flexure and one for barreling. On this same graph we plot the actual variation of A with λ from (6.15) {recall (6.1) and the fact that λ_3 is fixed}. The intersections of this latter curve with the former give the critical values of λ for flexure and barreling corresponding to the value of n for which the original curves were derived. This procedure is illustrated in Fig.4 of [4].

We take this opportunity to correct equation (7.4) of [4] which, for the example chosen, should read

$$A = 2(\lambda+1)^2/(\lambda^2+6\lambda+1) . \quad (7.11)$$

This correction alters slightly the numerical values stated in the final sentence of [4], but does not change in any way the qualitative aspects of the discussion there. Of course, if the actual variation of A with λ is known, as for example in (7.11), it could be employed in (7.8) and a numerical solution effected directly.

8. Bifurcation when $A < -1$

When (6.18)₂ applies, we write

$$T = iS, \quad S = \frac{1}{2}\{-(A+1)(\lambda-1)^2\}^{\frac{1}{2}}, \quad (8.1)$$

and express the general solution of (6.13) in the form

$$\begin{aligned} U = & (L_1 \cos \Omega S \xi_2 + L_2 \sin \Omega S \xi_2) \cosh \Omega R \xi_2 \\ & + (N_1 \sin \Omega S \xi_2 + N_2 \cos \Omega S \xi_2) \sinh \Omega R \xi_2, \end{aligned} \quad (8.2)$$

where L_1, L_2, N_1, N_2 are constants and R is given by (6.17)₁.

We introduce the notation

$$\begin{aligned} q_1 &= R^2 - S^2 + \lambda^2; \quad q_2 = 2RS; \quad q_3 = (1-\lambda)R; \quad q_4 = (1-\lambda)S; \\ Y &= \cosh R\eta \cos S\eta; \quad Z = \sinh R\eta \sin S\eta; \\ y &= \cosh R\eta \sin S\eta; \quad z = \sinh R\eta \cos S\eta; \end{aligned} \quad (8.3)$$

where η is given by (7.3), and then substitute from (8.3) into (6.14). This yields {cf.(7.4)}

$$\left. \begin{aligned} L_1(q_1Y - q_2Z) + N_1(q_1Z + q_2Y) &= 0 \\ L_1(q_3z + q_4y) + N_2(q_3y - q_4z) &= 0 \end{aligned} \right\}, \quad (8.4)$$

$$\left. \begin{aligned} L_2(q_1y + q_2z) + N_2(q_1z - q_2y) &= 0 \\ L_2(q_3Z - q_4Y) + N_2(q_3Y + q_4Z) &= 0 \end{aligned} \right\}. \quad (8.5)$$

Now (8.4) and (8.5) admit non-trivial solutions for the L 's and N 's only if either

$$L_2 = N_2 = 0 \quad \text{and} \quad (q_1Y - q_2Z)(q_3y - q_4z) = (q_1Z + q_2Y)(q_3z + q_4y) \quad (8.6)$$

or

$$L_1 = N_1 = 0 \text{ and } (q_1 y + q_2 z)(q_3 Y + q_4 Z) = (q_1 z - q_2 y)(q_3 Z - q_4 Y) , \quad (8.7)$$

unless it should happen that the determinants associated with (8.4) and (8.5) both vanish simultaneously; that is, unless

$$(Yz + Zy)(q_1 q_4 + q_2 q_3) = 0 . \quad (8.8)$$

The significance of this exceptional case shall become apparent below.

If (8.6) applies then non-trivial values of L_1 and N_1 can be found from (8.4), which, with (6.10), (6.12)₁ and (8.2), gives values for u_1 and u_2 whose variations with ξ_2 are, respectively, odd and even. As before, this situation describes flexural modes. The converse behavior is noted when (8.7) applies which, therefore, governs barreling modes.

We let

$$\begin{aligned} r &= \lambda(3-\lambda)(1+\lambda) + (A+1)(\lambda-1)^2 , \\ s &= \lambda(\lambda+1) + (A+1)(\lambda-1)^2 \end{aligned} \quad (8.9)$$

and substitute from (6.17), (8.1) and (8.3) into (8.6) and (8.7) and cast both bifurcation conditions in the form

$$vRs \sin 2S\eta = Sr \sinh 2R\eta , \quad (8.10)$$

where v is given by (7.7). Bearing in mind that R, S, r, s are functions of λ , we have, as with (7.8), that (8.10) serves to define a relationship between η and critical values of λ .

It can readily be shown that (8.8) is satisfied trivially if $\lambda = 1$ or if $\eta = 0$; but, for $\lambda \neq 1$, there are non-trivial solutions for η of the form

$$\eta = k\bar{\eta} \quad (k=1, 2, 3, \dots), \quad \bar{\eta} = \pi/2S, \quad (8.11)$$

if and only if

$$r = 0. \quad (8.12)$$

The solutions (8.11) also satisfy (8.10) and, with (8.12), are seen to be *independent* of the value assigned to ν . This leads to the possibility of the simultaneous appearance of flexural and barreling modes, a feature which stands in sharp contrast to that when $A > -1$, where these modes are clearly delineated. The condition (8.12), which gives rise to this feature, is seen, with (8.9)₁, to yield an expression for A in terms of λ that is identical in form to \bar{A} in (7.10).

Bearing in mind that λ_3 is fixed, we employ (6.2), (6.5), (6.15) and calculate

$$d\Pi_{11}/d\lambda = -(W_1 + \lambda_3^2 W_2) \{3\lambda^2 + 1 + A(\lambda - 1)^2\} / (\lambda^3 \lambda_3)^{1/2}, \quad (8.13)$$

and note that Π_{11} is stationary for any value of λ which satisfies

$$A = - (3\lambda^2 + 1) / (\lambda - 1)^2 = \tilde{A}(\lambda), \quad \text{say}. \quad (8.14)$$

From (6.16), (7.10), (8.14) it easily follows that

$$\begin{aligned} A_0 &< \bar{A} < \tilde{A} \quad \text{for } 0 < \lambda < 1 \\ \tilde{A} &< A_0 < \bar{A} \quad \text{for } \lambda > 1 \end{aligned} \quad (8.15)$$

Plots of A_0 , \bar{A} , \tilde{A} in the λA -plane are shown in Fig.2. The region below the curve A_0 represents values of A which violate (6.16) and, thus, is irrelevant.

To proceed with the discussion of (8.10) we again resort to the somewhat artificial situation where A is assigned some constant value < -1 . In doing so, from Fig.2, we see that the possible values of λ must be restricted to lie in the interval $e \leq \lambda \leq E$ where e and E are the roots of the equation $A = A_0(\lambda)$. That is, with (6.16),

$$e = -(1-\sqrt{-A})^2/(A+1), \quad E = -(1+\sqrt{-A})^2/(A+1). \quad (8.16)$$

We first consider the case where Π_{11} is a thrust ($\lambda > 1$) and then where it is tensile ($\lambda < 1$).

8.1 The Case of Thrust

Here, for a specified value of $A < -1$, we consider values of λ that lie in the interval $1 \leq \lambda \leq E$. Let $\bar{\lambda}$ denote the abscissa of the intersection of the horizontal line corresponding to this value of A with the curve \bar{A} in Fig.2. Then $1 < \bar{\lambda} < E$, and we note that $\bar{\lambda}$ and E both increase monotonically with increasing A .

The solutions of (8.10) that result by assigning two values to A are shown schematically in Fig.3, where values of η are plotted against critical values of λ . The solid curves pertain to flexural bifurcation and the broken curves to barreling. The numerical values of the relevant parameters $\bar{\lambda}$, E and $\bar{\eta}$ corresponding to three representative values of A are listed in Table I. These can be used to gain some idea of the scale associated with Fig.3. It can be shown that the minimum value of $\bar{\eta}$ is approximately $2\pi/5$.

Table I. Relevant parameters for three values of
A (thrust)

<u>A</u>	<u>$\bar{\lambda}$</u>	<u>E</u>	<u>\bar{n}</u>
-2.4625	2.6	4.5135	1.6236
-7.0	2.0	2.2153	1.2825
-17.7778	1.6	1.6360	1.3018

The features common to the solutions of (8.10), for any constant $A < -1$, are summarized as follows. Each flexural curve emanates from the point $\lambda = 1$, $n = 0$ and increases steadily to a point $\lambda = \bar{\lambda}$, $n = \bar{n}$ where it intersects a downward sloping barreling curve. This barreling curve decreases steadily until it intersects a limiting line $\lambda = E$ at a value of n , n_0 , say, where $\bar{n} > n_0 > 0$. No barreling bifurcation is possible if $n < n_0$. The flexure and barreling curves intersect at the points {cf.(8.11)} $\lambda = \bar{\lambda}$, $n = k\bar{n}$ ($k=1,2,3,\dots$), and each curve crosses the line $\lambda = \bar{\lambda}$ at these points. If n lies in any of the open intervals $(\bar{n}, 2\bar{n})$, $(3\bar{n}, 4\bar{n})$, $(5\bar{n}, 6\bar{n})$, etc., the critical values for barreling are less than $\bar{\lambda}$, while those for flexure, to the extent they exist, are greater than $\bar{\lambda}$. Conversely, for values of n in the intervals $(0, \bar{n})$, $(2\bar{n}, 3\bar{n})$, $(4\bar{n}, 5\bar{n})$, etc., the flexure curve lies to the left of the line $\lambda = \bar{\lambda}$, and the barreling curve to the right. Both the flexure and barreling curves have the line $\lambda = \bar{\lambda}$ as an asymptote as $n \rightarrow \infty$. The barreling and flexure curves may intersect the line $\lambda = E$; the tendency for such intersections to occur increases as A decreases (algebraically).

Recalling that n is given by (7.9), it appears that certain peculiarities arise in connection with the interpretation of the

solutions depicted in Fig.3 for values of λ "close" to $\bar{\lambda}$. If taken at face value, these results for large η can be considered as conditions for the appearance of surface modes in a thick plate [10]. However, pending further investigation into the relevance of the critical conditions for such plates, we here eschew giving any direct physical interpretation.

On the other hand, for values of λ near unity, the flexural curves in Figs.1 and 3 show a strong similarity. This region, which gives the bifurcation condition for a *thin* plate, has been studied [5] for the case $A > -1$, governed by (7.8). The result is expressed by the asymptotic series

$$\lambda = 1 + a_1 \eta^2 + a_2 \eta^4 + a_3 \eta^6 + a_4 \eta^8 + O(\eta^{10}) , \quad (8.17)$$

where the a 's are given by

$$a_1 = 2/3 , \quad a_2 = 16/45 , \quad a_3 = 2(A + 18/7)/27 , \quad (8.18)$$
$$a_4 = 2(A_1 + 113/175)/27 ,$$

with A_1 denoting the value of A when $\lambda = 1$. From (8.10), following the expansion procedure used in [5], we again obtain (8.17), with (8.18). This result shows (i) that the critical value of λ for flexure is independent of both the form of the strain-energy function and the initial extension ratio λ_3 up to the terms of fourth order in η and (ii) that this critical value is extremely insensitive to the detailed behavior of the material up to terms of eighth order in η .

Numerical results for arbitrary variation of A with λ {i.e., for an arbitrary material} could be obtained by plotting curves as in Fig.3 for a large number of constant values of A

and then following the procedure described in [4]. Alternatively, the function A could be employed directly in (8.10).

8.2 The Case of Tensile Load

Here, for a specified value of $A < -1$, we consider values of λ that lie in the interval $e \leq \lambda < 1$ {cf.(8.16)}, and let $\bar{\lambda}, \tilde{\lambda}$ denote the abscissae of the intersections of the horizontal line corresponding to this value of A with the curves \bar{A}, \tilde{A} in Fig.2. Then $e < \bar{\lambda} < \tilde{\lambda} < 1$, and we note that $e, \bar{\lambda}, \tilde{\lambda}$ all decrease monotonically as A increases.

In Fig.4 are shown, schematically, the solutions of (8.10) that result by assigning two values to A . Again, the solid curves pertain to flexure and the broken curves to barreling. Wesolowski [14] restricted attention to barreling bifurcations. To obtain some idea of the scale associated with Fig.4, the numerical values of $e, \bar{\lambda}, \tilde{\lambda}, \bar{n}$, corresponding to three representative values of A are listed in Table II.

The most important feature to note in connection with any solution of the type shown in Fig.4 is that neither the barreling nor the flexural curve has any point lying to the right of the line $\lambda = \tilde{\lambda}$. Thus, there is a range of λ , $\tilde{\lambda} < \lambda < 1$, for which no bifurcation can occur.

Table II. Relevant parameters for three values of A (tensile)

A	e	$\bar{\lambda}$	$\tilde{\lambda}$	\bar{n}
-2.05	0.1776	0.2	0.2425	3.8324
-7.0	0.4514	0.4641	0.5	2.3933
-15.4	0.5938	0.6	0.6246	2.0697

If we assume for the moment a material does exist for which

A is constant and which also meets the minimal material stability requirement $(W_1 + \lambda_3^2 W_2) > 0$, then from (6.5), (8.13) and (8.14) it follows that the tensile force Π_{11} increases from zero to a maximum as λ decreases from unity to $\tilde{\lambda}$, and then decreases as λ continues to decrease. Whence, in concurrence with Wesolowski [14] and Hill and Hutchinson [9], we conclude that if a bifurcation is to occur, it must do so after a load maximum is achieved. However, this behavior can be used to illustrate that a plate of this material having a finite aspect ratio (ℓ_2/ℓ_1) could behave as a perpetual motion machine without suffering a bifurcation.

The extension of this argument to a general material leads to the conclusion that, if the relevant variation of A with λ is plotted in Fig.2, the resulting curve must lie *above* the curve \tilde{A} for $0 < \lambda < 1$. Thus, in general, no bifurcations of the types considered can exist under tensile loading conditions.

We remark that the curve \tilde{A} , itself, is independent of the value of the extension ratio λ_3 . Also, the above conclusion is based solely on the implications arising from (6.5), (8.13) and the necessity of the Baker-Ericksen inequalities, and leads to a further restriction on the form of the strain-energy function beyond that implied by (4.1)₂. This restriction, viz. $A > \tilde{A}$, can be cast in the form

$$(\lambda_1^2 - \lambda_2^2)^2 M_3 + (\lambda_1^2 + 3\lambda_2^2) K_3 > 0, \quad (\lambda_1 > \lambda_2) \quad (8.19)$$

upon employing (2.8), (3.15), (6.3), (6.13) and (8.14). In the event that the passive load applied to the faces $\xi_3 = \pm \ell_3$ of the plate is also tensile (i.e., if $\lambda_3 > \lambda_2$), then a similar

line of reasoning, with the roles of λ_1 and λ_3 interchanged, leads to the conclusion that another of the conditions (4.1)₂ must be replaced by the stronger restriction

$$(\lambda_3^2 - \lambda_2^2)^2 M_1 + (\lambda_3^2 + 3\lambda_2^2) K_1 > 0 , \quad (\lambda_3 > \lambda_2) . \quad (8.20)$$

Acknowledgement

This paper was written with the support of the Office of Naval Research under Contract No. N00014-76-C-0235 with Lehigh University. The program of research on which it is based was also sponsored by the Office of Naval Research.

References

- [1] K.N. Sawyers and R.S. Rivlin, Int. J. Solids Structures, 9, 607 (1973)
- [2] K.N. Sawyers and R.S. Rivlin, Developments in Mechanics, Vol.7, (Proceedings of the 13th Midwestern Mechanics Conference), School of Engng., University of Pittsburgh (1973), 321.
- [3] K.N. Sawyers and R.S. Rivlin, Z A M P (to appear)
- [4] K.N. Sawyers and R.S. Rivlin, Int. J. Solids Structures, 10, 483 (1974).
- [5] K.N. Sawyers and R.S. Rivlin, Mech. Research Comm., 3, 203 (1976).
- [6] A.E. Green, R.S. Rivlin and R.T. Shield, Proc. Roy. Soc. A., 211, 128 (1952).
- [7] M.A. Hayes and R.S. Rivlin, Arch. Rat'l Mech. Anal., 8, 15 (1961).
- [8] M.F. Beatty and P. Dadras, Int. J. Engng. Sci., 14, 233 (1976).
- [9] R. Hill and J.W. Hutchinson, J. Mech. Phys. Solids, 23, 239, (1975).
- [10] N.J.B. Young, J. Mech. Phys. Solids, 24, 77 (1976).
- [11] M. Baker and J.L. Ericksen, J. Wash. Acad. Sci., 44, 33 (1954).
- [12] J.L. Ericksen, J. Rat'l Mech. Anal., 2, 329 (1953).
- [13] K.N. Sawyers, J. Elasticity, 7, 99 (1977).
- [14] Z. Wesolowski, Arch. Mech. Stosowanej, 14, 875 (1962).

Fig. 1. Plots of η vs. critical λ for three typical values of A ($-1 < a < b < c$) .

Fig. 2. The behavior of A_0 , \bar{A} and \tilde{A} as function of λ .

Fig. 3. Plots of η vs. critical λ for two typical values of $A < -1$ under thrust loading.
(i) $A = a$ (ii) $A = b$, with $-1 > a > b$.

Fig. 4. Plots of η vs. critical λ for two typical values of $A < -1$ under tensile loading.
(i) $A = a$, (ii) $A = b$, with $-1 > a > b$.

PART 1 - GOVERNMENT

Administrative and Liaison Activities

Office of Naval Research
Department of the Navy
Arlington, VA 22217
Attn: Code 474 (2)
471
200

Director
Office of Naval Research Branch Office
495 Summer Street
Boston, MA 02210

Director
Office of Naval Research Branch Office
536 South Clark Street
Chicago, IL 60605

Director
Office of Naval Research
New York Area Office
715 Broadway - 5th Floor
New York, NY 10003

Director
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, CA 91106

Director
Office of Naval Research
San Francisco Area Office
One Hallidie Plaza, Suite 601
San Francisco, CA 94102

Naval Research Laboratory (6)
Code 2627
Washington, DC 20375

Defense Documentation Center (12)
Cameron Station
Alexandria, VA 22314

NAVY

Naval Research Laboratory
Washington, DC 20375
Attn: Code 8400
8410
8430
8440
6300
6390
6380

Undersea Explosion Research Division
Naval Ship Research and Development
Center
Norfolk Naval Shipyard
Portsmouth, VA 23709
Attn: Dr. E. Palmer, Code 177

David W. Taylor Naval Ship Research
and Development Center
Annapolis, MD 21402
Attn: Code 2740
28
281

U.S. Naval Weapons Center
China Lake, CA 93555
Attn: Code 4062
4520

Commanding Officer
U.S. Naval Civil Engineering Laboratory
Code L31
Port Hueneme, CA 93041

Naval Surface Weapons Center
White Oak
Silver Spring, MD 20910
Attn: Code WR-10
WA-20

Technical Director
Naval Ocean Systems Center
San Diego, CA 92152

Supervisor of Shipbuilding
U.S. Navy
Newport News, VA 23607

Navy (Continued)

U.S. Navy Underwater Sound Reference Division
Naval Research Laboratory
P.O. Box 8337
Orlando, FL 32806

Chief of Naval Operations
Department of the Navy
Washington, DC 20350
Attn: Code OP-098

Strategic Systems Project Office
Department of the Navy
Washington, DC 20376
Attn: NSP-200

Naval Air Systems Command
Department of the Navy
Washington, DC 20361
Attn: Code 5302 (Aerospace and Structures)
604 (Technical Library)
320B (Structures)

Naval Air Development Center
Director, Aerospace Mechanics
Warminster, PA 18974

U.S. Naval Academy
Engineering Department
Annapolis, MD 21402

Naval Facilities Engineering Command
200 Stovall Street
Alexandria, VA 22332
Attn: Code 03 (Research and Development)
04B
045
14114 (Technical Library)

Naval Sea Systems Command
Department of the Navy
Washington, DC 20362
Attn: Code 03 (Research and Technology)
037 (Ship Silencing Division)
035 (Mechanics and Materials)

Naval Ship Engineering Center
Department of the Navy
Washington, DC 20362
Attn: Code 6105G
6114
6120D
6128
6129

Commanding Officer and Director
David W. Taylor Naval Ship Research
and Development Center
Bethesda, MD 20034
Attn: Code 042

17
172
173
174
1800
1102.1
1900
1901
1945
1960
1962

Naval Underwater Systems Center
Newport, RI 02840
Attn: Dr. R. Trainor

Naval Surface Weapons Center
Dahlgren Laboratory
Dahlgren, VA 22448
Attn: Code DG-20
DG-30

Technical Director
Mare Island Naval Shipyard
Vallejo, CA 94592

Army

Commanding Officer (2)
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709
Attn: Mr. J. J. Murray, CRD-AA-IP

Watervliet Arsenal
MAGGS Research Center
Watervliet, NY 12189
Attn: Director of Research

U.S. Army Materials and Mechanics
Research Center
Watertown, MA 02172
Attn: Dr. R. Shea, DRXMR-T

U.S. Army Missile Research and
Development Center
Redstone Scientific Information
Center
Chief, Document Section
Redstone Arsenal, AL 35809

Army Research and Development
Center
Fort Belvoir, VA 22060

Air Force

Commander WADD
Wright-Patterson Air Force Base
Dayton, OH 45433
Attn: Code WWRMDD
AFFDL (FDDS)
Structures Division
AFLC (MCEEA)

Chief, Applied Mechanics Group
U.S. Air Force Institute of Technology
Wright-Patterson Air Force Base
Dayton, OH 45433

Chief, Civil Engineering Branch
WLRC, Research Division
Air Force Weapons Laboratory
Kirtland Air Force Base
Albuquerque, NM 87117

Air Force Office of Scientific Research
Bolling Air Force Base
Washington, DC 20332
Attn: Mechanics Division

Department of the Air Force
Air University Library
Maxwell Air Force Base
Montgomery, AL 36112

NASA

National Aeronautics and Space Administration
Structures Research Division
Langley Research Center
Langley Station
Hampton, VA 23365

National Aeronautics and Space Administration
Associate Administrator for Advanced
Research and Technology
Washington, DC 02546

Scientific and Technical Information Facility
NASA Representative (S-AK/DL)
P.O. Box 5700
Bethesda, MD 20014

Other Government Activities

Commandant
Chief, Testing and Development Division
U.S. Coast Guard
1300 E Street, NW
Washington, DC 20226

Technical Director
Marine Corps Development and Education Command
Quantico, VA 22134

Director
National Bureau of Standards
Washington, DC 20034
Attn: Mr. B. L. Wilson, EM 219

Dr. M. Gaus
National Science Foundation
Environmental Research Division
Washington, DC 20550

Library of Congress
Science and Technology Division
Washington, DC 20540

Director
Defense Nuclear Agency
Washington, DC 20305
Attn: SPSS

Director Defense Research and Engineering
Technical Library
Room 3C128
The Pentagon
Washington, DC 20301

Mr. Jerome Persh
Staff Specialist for Materials
and Structures
ODDR&E, The Pentagon
Room 3D1089
Washington, DC 20301

Chief, Airframe and Equipment Branch
FS-120
Office of Flight Standards
Federal Aviation Agency
Washington, DC 20553

Chief, Research and Development
Maritime Administration
Washington, DC 20235

Deputy Chief, Office of Ship Construction
Maritime Administration
Washington, DC 20235
Attn: Mr. U. L. Russo

Picatinny Arsenal
Plastics Technical Evaluation Center
Attn: Technical Information Section
Dover, NJ 07801

National Academy of Sciences
National Research Council
Ship Hull Research Committee
2101 Constitution Avenue
Washington, DC 20418
Attn: Mr. A. R. Lytle

National Science Foundation
Engineering Mechanics Section
Division of Engineering
Washington, DC 20550

PART 2 - CONTRACTORS AND OTHER TECHNICAL COLLABORATORS

Universities

Dr. J. Tinsley Oden
University of Texas at Austin
345 Engineering Science Building
Austin, TX 78712

Professor Julius Miklowitz
California Institute of Technology
Division of Engineering
and Applied Sciences
Pasadena, CA 91109

Dr. Harold Liebowitz, Dean
School of Engineering and Applied Science
George Washington University
Washington, DC 20052

Professor Eli Sternberg
California Institute of Technology
Division of Engineering and
Applied Sciences
Pasadena, CA 91109

Professor Paul M. Naghdhi
University of California
Department of Mechanical Engineering
Berkeley, CA 94720

Professor P. S. Symonds
Brown University
Division of Engineering
Providence, RI 02912

Professor A. J. Durelli
Oakland University
School of Engineering
Rochester, MI 48063

Professor F. L. DiMaggio
Columbia University
Department of Civil Engineering
New York, NY 10027

Professor Norman Jones
Massachusetts Institute of Technology
Department of Ocean Engineering
Cambridge, MA 02139

Professor E. J. Skudrzyk
Pennsylvania State University
Applied Research Laboratory
Department of Physics
State College, PA 16801

Professor J. Kempner
Polytechnic Institute of New York
Department of Aerospace Engineering and
Applied Mechanics
333 Jay Street
Brooklyn, NY 11201

Professor J. Klosner
Polytechnic Institute of New York
Department of Aerospace Engineering and
Applied Mechanics
333 Jay Street
Brooklyn, NY 11201

Professor R. A. Schapery
Texas A&M University
Department of Civil Engineering
College Station, TX 77843

Professor Walter D. Pilkey
University of Virginia
Research Laboratories for the
Engineering Sciences
School of Engineering and
Applied Sciences
Charlottesville, VA 22901

Professor K. D. Willmert
Clarkson College of Technology
Department of Mechanical Engineering
Potsdam, NY 13676

Dr. H. G. Schaeffer
University of Maryland
Aerospace Engineering Department
College Park, MD 20742

Dr. Walter E. Haisler
Texas A&M University
Aerospace Engineering Department
College Station, TX 77843

Dr. B. S. Berger
University of Maryland
Department of Mechanical Engineering
College Park, MD 20742

Universities (Continued)

Dr. L. A. Schmit
University of California
School of Engineering and
Applied Science
Los Angeles, CA 90024

Dr. Hussein A. Kamel
University of Arizona
Department of Aerospace and
Mechanical Engineering
Tucson, AZ 85721

Dr. S. J. Fenves
Carnegie-Mellon University
Department of Civil Engineering
Schenley Park
Pittsburgh, PA 15213

Dr. Ronald L. Huston
Department of Engineering Analysis
University of Cincinnati
Cincinnati, OH 45221

Professor G. C. M. Sih
Lehigh University
Institute of Fracture and
Solid Mechanics
Bethlehem, PA 18015

Professor Albert S. Kobayashi
University of Washington
Department of Mechanical Engineering
Seattle, WA 98105

Professor Daniel Frederick
Virginia Polytechnic Institute and
State University
Department of Engineering Mechanics
Blacksburg, VA 24061

Professor A. C. Eringen
Department of Aerospace and
Mechanical Sciences
Princeton University
Princeton, NJ 08540

Professor E. H. Lee
Stanford University
Division of Engineering Mechanics
Stanford, CA 94305

Professor Albert I. King
Wayne State University
Biomechanics Research Center
Detroit, MI 48202

Dr. V. R. Hodgson
Wayne State University
School of Medicine
Detroit, MI 48202

Dean B. A. Boley
Northwestern University
Department of Civil Engineering
Evanston, IL 60201

Professor P. G. Hodge, Jr.
University of Minnesota
Department of Aerospace Engineering
and Mechanics
Minneapolis, MN 55455

Dr. D. C. Drucker
University of Illinois
Dean of Engineering
Urbana, IL 61801

Professor N. M. Newmark
University of Illinois
Department of Civil Engineering
Urbana, IL 61803

Professor E. Reissner
University of California, San Diego
Department of Applied Mechanics
La Jolla, CA 92037

Professor William A. Nash
University of Massachusetts
Department of Mechanics and
Aerospace Engineering
Amherst, MA 01002

Professor G. Herrmann
Stanford University
Department of Applied Mechanics
Stanford, CA 94305

Professor J. D. Achenbach
Northwestern University
Department of Civil Engineering
Evanston, IL 60201

Universities (Continued)

Professor G. R. Irwin
University of Maryland
Department of Mechanical Engineering
College Park, MD 20742

Professor S. B. Dong
University of California
Department of Mechanics
Los Angeles, CA 90024

Professor Burt Paul
University of Pennsylvania
Towne School of Civil and
Mechanical Engineering
Philadelphia, PA 19104

Professor H. W. Liu
Syracuse University
Department of Chemical Engineering
and Metallurgy
Syracuse, NY 13210

Professor S. Bodner
Technion R&D Foundation
Haifa, Israel

Professor Werner Goldsmith
University of California
Department of Mechanical Engineering
Berkeley, CA 94720

Professor R. S. Rivlin
Lehigh University
Center for the Application
of Mathematics
Bethlehem, PA 18015

Professor F. A. Cozzarelli
State University of New York at Buffalo
Division of Interdisciplinary Studies
Karr Parker Engineering Building
Chemistry Road
Buffalo, NY 14214

Professor Joseph L. Rose
Drexel University
Department of Mechanical Engineering
and Mechanics
Philadelphia, PA 19104

Professor Kent R. Wilson
University of California, San Diego
Department of Chemistry
La Jolla, CA 92093

Professor B. K. Donaldson
University of Maryland
Aerospace Engineering Department
College Park, MD 20742

Professor Joseph A. Clark
Catholic University of America
Department of Mechanical Engineering
Washington, DC 20064

Professor T. C. Huang
University of Wisconsin-Madison
Department of Engineering Mechanics
Madison, WI 53706

Dr. Samuel B. Batdorf
University of California
School of Engineering and
Applied Science
Los Angeles, CA 90024

Industry and Research Institutes

U.S. Naval Postgraduate School
Library
Code 03t4
Monterey, CA 93940

Webb Institute of Naval Architecture
Attn: Librarian
Crescent Beach Road, Glen Cove
Long Island, NY 11542

Industry and Research Institutes

Argonne National Laboratory
Library Services Department
9700 South Cass Avenue
Argonne, IL 60440

Dr. M. C. Junger
Cambridge Acoustical Associates
1033 Massachusetts Avenue
Cambridge, MA 02138

Dr. L. H. Chen
General Dynamics Corporation
Electric Boat Division
Groton, CT 06340

Dr. J. E. Greenspon
J. G. Engineering Research Associates
3831 Menlo Drive
Baltimore, MD 21215

Dr. K. C. Park
Lockheed Missile and Space Company
3251 Hanover Street
Palo Alto, CA 94304

Newport News Shipbuilding and
Dry Dock Company
Library
Newport News, VA 23607

Dr. W. F. Bozich
McDonnell Douglas Corporation
5301 Bolsa Avenue
Huntington Beach, CA 92647

Dr. H. N. Abramson
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78284

Dr. R. C. DeHart
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78284

Dr. M. L. Baron
Weidlinger Associates
110 East 59th Street
New York, NY 10022

Dr. T. L. Geers
Lockheed Missiles and Space Company
3251 Hanover Street
Palo Alto, CA 94304

Dr. J. L. Tocher
Boeing Computer Services
P.O. Box 24346
Seattle, WA 98124

Mr. William Caywood
Applied Physics Laboratory
Code BBE
8621 Georgia Avenue
Silver Spring, MD 20034

Dr. Robert E. Nickell
Pacifica Technology
P.O. Box 148
Del Mar, CA 92014

Dr. M. F. Kanninen
Battelle Columbus Laboratories
505 King Avenue
Columbus, OH 43201

Dr. G. T. Hahn
Battelle Columbus Laboratories
505 King Avenue
Columbus, OH 43201

Dr. A. A. Hochrein
Daedalean Associates, Inc.
Springlake Research Center
15110 Frederick Road
Woodbine, MD 21797

Dr. E. J. Tolle
IMASS, Inc.
Box 134
Accord, (Hingham) MA 02018

Dr. T. McDonough
Aeronautical Research Associates
of Princeton, Inc.
50 Washington Road
Princeton, NJ 08540

Mr. Richard Y. Dow
National Academy of Sciences
2101 Constitution Avenue
Washington, DC 20418

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) Center for the Application of Mathematics Lehigh University		2a. REPORT SECURITY CLASSIFICATION Unclassified
2b. GROUP		
3. REPORT TITLE 6 Material Stability and Bifurcation in Finite Elasticity.		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Unclassified Technical Report 9 August 1977		
5. AUTHOR(S) (First name, middle initial, last name) 10 K.N. Sawyers		
6. REPORT DATE 11 Aug 1977	7a. TOTAL NO. OF PAGES 24	7b. NO. OF REFS 14
8a. CONTRACT OR GRANT NO. 15 N00014-76-C-0235	9a. ORIGINATOR'S REPORT NUMBER(S) 14 CAM-100-29	
b. PROJECT NO.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
c.		
d.		
10. DISTRIBUTION STATEMENT Distribution of this document is unlimited		
11. SUPPLEMENTARY NOTES		12. SPONSORING MILITARY ACTIVITY Office of Naval Research Arlington, Va.
13. ABSTRACT <p>The theory of small superposed deformation for isotropic incompressible elastic materials is used to obtain necessary restriction on the form of the strain-energy function by requiring that the speed of propagation be real for waves that pass through a finitely deformed body of material (i.e., Hadamard stability criterion), and to determine critical loading conditions for a thick rectangular plate under which bifurcation solutions (i.e., adjacent equilibrium positions) can exist. The possibility of bifurcation under tensile loading, when one pair of faces of a plate are force free, is precluded by further material stability considerations.</p> <p style="text-align: right;"><i>403812 Jmc</i></p>		

Unclassified

Security Classification

14 KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Stability, bifurcation, finite elasticity, incompressible material.						

DD FORM 1 NOV 68 1473 (BACK)

S/N 0101-807-5821

Security Classification

A-31409