Agrupamento II (Algoritmos Sequenciais)

Tsang Ing Ren
George Darmiton da Cunha Cavalcanti
CIn/UFPE

Roteiro

- Introdução
- Categorias de Algoritmos de Agrupamento
- Algoritmo de Agrupamento Sequencial
 - Algoritmo de Agrupamento Sequencial Básico (BSAS)
 - MBSAS, uma modificação do BSAS
 - O Algoritmo maxmin
 - "Two-threshold sequencial scheme (TTSAS)"

Introdução

Algoritmos de agrupamento

– Número de possíveis agrupamentos Seja $X=\{\underline{x}_1,\underline{x}_2,...,\underline{x}_N\}$.

Questão: De quantas maneiras N pontos podem ser organizados em m grupos?

Resposta:
$$S(N,m) = \frac{1}{m!} \sum_{i=0}^{m} (-1)^{m-1} {m \choose i} i^{N}$$

$$S(20,4) = 45 \ 232 \ 115 \ 901$$

 $S(100,5) = 10^{68}!!$

Introdução

- Solução:
 - Considere apenas uma pequena fração de grupos de X e selecione uma quantidade "razoável" dentre eles.
 - Questão 1: Qual fração dos grupos devemos considerar?
 - Questão 2: O que "razoável" significa?
 - A resposta depende do algoritmo de agrupamento específico e do critério específico que é adotado.

Categorias Principais de Algoritmos de Agrupamento

- Sequencial
- Hierárquico
- Otimização da função de custo
- Outros Modelos

Sequencial

- Um único agrupamento é produzido
- Os dados são apresentados ao algoritmo uma ou poucas vezes
- O resultado final, geralmente, depende da ordem que os dados são apresentados ao algoritmo
- Este esquema tende a gerar agrupamentos compactos e em forma de elipse ou de circunferência, dependendo da distância usada.

Hierárquico

- Uma seqüência de agrupamentos aninhados ("nested") é produzido.
 - Aglomerativo
 - Divisivo

Otimização da função de custo

• Para a maioria dos casos um *único* agrupamento é obtido.

Agrupamento Rígido (Hard Clustering)

 Agrupamento Difuso (Fuzzy Clustering) – Cada ponto pertence a mais de um grupo simultaneamente

Outros Modelos

- Algoritmos baseado na teoria dos grafos
- Algoritmos de aprendizagem competitiva (modelos básicos de aprendizagem competitiva, mapas auto-organizadas Kohonen)
- Algoritmos de agrupamento por sub-espaço
- Algoritmos de agrupamento de morfologia binária

- As características comuns compartilhadas por estes algoritmos são:
 - Necessidade de um ou poucos passos
 - O número de grupos não é conhecido a priori, exceto (possivelmente) um limite superior, q
 - Os grupos são definidos com ajuda de:
 - Uma distância apropriada $d(\underline{x}, C)$ entre um ponto e um agrupamento
 - Um limiar Θ associado à distância

Basic Sequential Clustering Algorithm (BSAS)

```
• m=1 \ \text{number of clusters} \
• C_m = \{\underline{x}_1\}
• For i=2 to N

- Find C_k: d(\underline{x}_i, C_k) = min_{1 \leq j \leq m} d(\underline{x}_i, C_j)
- If (d(\underline{x}_i, C_k) > \Theta) \ AND \ (m < q) \ \text{then}
• o \ m = m+1
• o \ C_m = \{\underline{x}_i\}
- Else
• o \ C_k = C_k \cup \{\underline{x}_i\}
• Where necessary q, update representatives (*)
- End \{\text{if}\}
```

artheta limiar de dissimilaridade, ${m {\cal M}}$ número grupos, ${m {\cal Q}}$ limiar para o número de grupos

Observações:

- A ordem de apresentação dos dados no algoritmo é importante para o resultado do agrupamento. Diferente ordem de apresentação pode gerar um resultado totalmente diferente no agrupamento, em termos do número de grupos como também nos grupos em si
- No BSAS, a decisão para cada vetor <u>x</u> é alcançada antes da formação final do grupo
- BSAS realiza um único passo nos dados. A complexidade é O(N)
- Se grupos s\(\tilde{a}\) representados por pontos representativos, agrupamentos compactos s\(\tilde{a}\) favorecidos.

FIGURE 12.1: Three clusters are formed by the feature vectors. When q is constrained to a value less than 3, the BSAS algorithm will not be able to reveal them.

 Estimando o número de grupos para um conjunto de dados:

Seja $BSAS(\Theta)$, denota o algoritmo BSAS quando o limiar de dissimilaridade é Θ .

- For $\Theta = a$ to b step c
- Rode s vezes $BSAS(\Theta)$, cada vez apresentando os dados em uma ordem diferente.
- Estime o número de grupos m_{Θ} , como o número mais freqüente resultante de rodar $BSAS(\Theta)$ s vezes.
- Next Θ

Construir um gráfico m_{Θ} versus Θ e identificar o número de grupos m como um dos correspondentes à região larga mais plana no gráfico abaixo:

- MBSAS, uma modificação do BSAS
 - No BSAS, a decisão para o vetor de dado x é obtida antes da formação final do grupo, o qual é determinado após a apresentação de todos os vetores ao algoritmo
 - MBSAS lida com este problema, a um custo de apresentar os dados duas vezes ao algoritmo
 - MBSAS consiste em:
 - Uma fase de determinação do grupo (primeira passada nos dados), que é o mesmo que BSAS exceto que nenhum vetor é designado para um grupo já formado
 - Uma fase de classificação de padrões (segunda passada nos dados), cada um dos vetores não designados é associado ao seu grupo mais próximo

- Modified Basic Sequential Clustering Algorithm (BSAS)
- Determinação do Grupo

```
• m=1 \ \text{number of clusters} \
• C_m = \{\underline{x}_1\}
• For i=2 to N

- Find C_k : d(\underline{x}_i, C_k) = min_{1 \leq j \leq m} d(\underline{x}_i, C_j)
- If (d(\underline{x}_i, C_k) > \Theta) \ AND \ (m < q) \ \text{then}
• m=m+1
• C_m = \{\underline{x}_i\}
- End \{\text{if}\}
```

- Modified Basic Sequential Clustering Algorithm (BSAS)
- Classificação do Padrão
 - For i=1 to N
 - If $\underline{x_i}$ has not been assigned to a cluster, then
 - o Find C_k : $d(\underline{x}_i, C_k) = min_{1 \le j \le m} d(\underline{x}_i, C_j)$
 - o $C_k = C_k \cup \{\underline{x}_i\}$
 - o Where necessary q, update representatives (*)
 - End {if}
 - End {for}

Observações:

- No MBSAS, a decisão do vetor x durante a fase de classificação de padrão é obtida tomando em consideração todos os grupos
- MBSAS é sensível a ordem de apresentação dos vetores

 MBSAS requer dois passos nos dados. Sua complexidade é O(N)

O algoritmo maxmin

Seja W um conjunto de pontos escolhidos para formar grupos até a etapa atual da iteração. A formação dos grupos é realizado da seguinte forma:

- Para cada $\underline{x} \in X$ -W determine $d_x = min_{\underline{z} \in W} d(\underline{x}, \underline{z})$
- Determine \underline{y} : $d_y = max_{x \in X-W}d_x$
- ullet If d_{v} é maior do que o limiar prefixado então
 - Este vetor forma um novo grupo
- Else
 - A fase de determinação do grupo do algoritmo termina.
- End {if}

Após a formação dos grupos, cada vetor não designado é associado ao seu grupo mais próximo.

Observações:

 O algoritmo maxmin é computacionalmente mais custoso do que MBSAS

 Entretanto, é de esperar que produza um melhor resultado no agrupamento

- Two-threshold sequencial scheme (TTSAS)
 - A formação de agrupamentos, assim como a designação dos vetores para o grupo, é feito concorrentemente (como BSAS e diferentemente de MBSAS)
 - Dois limitares Θ_1 and Θ_2 ($\Theta_1 < \Theta_2$) são empregados
 - A idéia geral é a seguinte:
 - Se a distância $d(\underline{x},C)$ de \underline{x} ao seu grupo mais próximo, C, é maior que Θ_2 então:
 - Um novo grupo representado por \underline{x} é formado.
 - Senão se $d(\underline{x}, C) \leq \Theta_1$ então
 - \underline{x} é designado para C.
 - Senão
 - A decisão é adiada para um estágio posterior.
 - Fim {Se}

Os vetores não designados são apresentados interativamente para o algoritmo até que todos são classificados.

Observações:

- Na prática, alguns poucos passos (≥2) do conjunto de dados são requeridos
- TTSAS é menos sensível a ordem de apresentação dos dados, em comparação a BSAS

FIGURE 12.3: (a) The clustering produced by the MBSAS. (b) The clustering produced by the TTSAS.

Algoritmo de Agrupamento Sequencial • Estágio de Refinamento:

O problema da proximidade dos grupos (closeness of cluster): "Em todos os algoritmos anteriores pode acontecer que dois grupos se encontram muito perto um do outro".

- Um procedimento simples de unir (merging procedure)
 - (A) Find C_i , C_j ($i \le j$) such that $d(C_i, C_j) = min_{k,r=1,\dots,m,k \ne r} d(C_k, C_r)$
 - If $d(C_i, C_i) \leq M_1$ then $\{M_1 \text{ is a user-defined threshold } \}$
 - Merge C_i , C_i to C_i and eliminate C_i .
 - If necessary, update the cluster representative of C_i .
 - Rename the clusters $C_{i+1},...,C_m$ to $C_i,...,C_{m-1}$, respectively.
 - m = m 1
 - Go to (A)
 - Else
 - Stop
 - End {if}

 O problema da sensibilidade em relação à ordem de apresentação dos dados:

"Um vetor \underline{x} pode ser designado para um grupo C_i no estágio atual mas outro grupo C_j pode ser formado no estágio mais adiante, e este está mais perto de \underline{x} "

- Um procedimento simples de re-designação
 - For i=1 to N
 - Find C_j such that $d(\underline{x}_i, C_j) = min_{k=1,...,m} d(\underline{x}_i, C_k)$
 - Set $b(i)=j \setminus \{b(i) \text{ is the index of the cluster that lies closet to } \underline{x_i} \setminus \}$
 - End {for}
 - For *j*=1 to *m*
 - Set $C_j = \{\underline{x}_i \in X: b(i) = j\}$
 - If necessary, update representatives
 - End {for}