# Wstęp do uczenia maszynowego Praca domowa 1

Franciszek Saliński 24 października 2024

## 1 Opis zadania

Moim zadaniem było sprawdzenie jak hiperparametry modelu drzewa decyzyjnego oraz rozmiar zbioru uczącego wpływają na jakość predykcji modelu, a także wybranie jednego najlepszego moim zdaniem modelu i ocena jego działania.

### 2 Przygotowanie do pracy z danymi

W pierwszej kolejności sprawdziłem typy zmiennych oraz czy dane zawierają braki. Pozbyłem się 3 rekordów, dla których zmienna celu była nieznana. Przyjrzałem się także rozkładom zmiennych. Zmienna celu jest zbalansowana, co było świetną informacją przed modelowaniem. Zauważyłem, że niektóre zmienne bardzo dobrze rozróżniają klasę 0 od 1, a inne nie. Najprawdopodobniej te pierwsze będą kluczowe w predykcji dla naszych modeli.

## 3 Eksperyment

Pierwszym elementem zadania było przeprowadzenie eksperymentu ukazującego miarę AUC drzewa decyzyjnego nauczonego na zbiorze treningowym i testowym. W tym celu dla każdego zestawu hiperparametrów wykorzystałem 5-krotną kroswalidację na danych treningowych i liczyłem średnią miarę AUC, a także trenowałem drzewo na całym zbiorze treningowym i liczyłem AUC dla predykcji na zbiorze testowym.

### 3.1 Siatka parametów

Na podstawie dokumentacji, przykładów i posiadanej wiedzy postanowiłem wybrać takie wartości parametrów do sprawdzania:

- kryterium podziału (criterion  $\in \{"gini", "entropy"\}$ )
- $\bullet$ głebokość drzewa (max\_depth  $\in \{3,4,5,6,7,8\})$
- minimalna liczba próbek w liściu (min\_samples\_leaf  $\in \{4,6,8,10,12,14,16\})$
- maksymalna liczba liści (max\_leaf\_nodes  $\in \{8, 12, 16, 20, 24, 28\}$ )

## 3.2 Wyniki eksperymentu

Trenując model ze wszystkimi możliwymi kombinacjami hiperparametrów, po odpowiednich agregacjach otrzymałem następujące wyniki:









#### 3.3 Wnioski

- Kryterium podziału stosowane w budowie drzew nie miało żadnego znaczącego wpływu na wartość AUC
- Dla wszystkich wartości każdego z parametrów uzyskaliśmy lepszy wynik dla danych testowych niż treningowych, co może być bardzo zaskakujące. Może to wynikać z metodyki przeprowadzania eksperymentu (dla danych treningowych liczyliśmy średnią z 5 foldów kroswalidacji, a dla danych testowych metrykę dla modelu zbudowanego na całym zbiorze treningowym), ale może być także wywołane przypadkiem (stosowane random\_state).
- Lepsze wyniki na zbiorze testowym niż treningowym sugerują, że raczej nie mieliśmy do czynienia z przetrenowywaniem się drzew
- Płytsze drzewa (głębokość od 3 do 5) dawały co do zasady lepsze wyniki
- Maksymalna liczba liści nie miała dużego wpływu na wynik
- Minimalna liczba próbek na poziomie conajmniej 8 dawała lepsze wyniki

### 4 Najlepszy model

Wybierając najlepszy model postanowiłem zasugerować się wynikami przeprowadzonej kroswalidacji. Najlepszy model uzyskał AUC na poziomie 0.933, miał on następujące hiperparametry:

- $\bullet$  criterion = "entropy"
- $max_depth = 5$
- $min\_samples\_leaf = 8$
- $max\_leaf\_nodes = 20$

Sprawdźmy jak model radzi sobie w predykcji. Przyjrzyjmy się macierzy pomyłek, krzywej ROC oraz metrykom na zbiorach treningowym i testowym.





| Metryka   | Dane treningowe | Dane testowe |
|-----------|-----------------|--------------|
| accuracy  | 0.93            | 0.89         |
| recall    | 0.98            | 0.94         |
| precision | 0.89            | 0.85         |
| f1-score  | 0.93            | 0.89         |
| AUC       | 0.93            | 0.95         |

Widzimy, że model działa bardzo dobrze, zarówno na danych uczących, jak i testowych. Metryki są lepsze na zbiorze treningowym, natomiast nieznacznie, nie powinniśmy mieć obaw o przetrenowanie naszego modelu.

## 5 Wielkość próbki uczącej a skuteczność modelu

Ostatnim elementem zadania było sprawdzenie jak rozmiar zbioru treningowego wpływa na performens naszego drzewa. W tym celu wybierałem losowo próbki o zadanych rozmiarach z naszego pierwotnego zbioru treningowego, a następnie liczyłem metryki na całym zbiorze testowym. Uzyskałem takie wyniki:



Możemy zaobserwować, że rozmiar próbki pozytywnie wpływa na jakość predykcji, ale już próbka 25% pozwoliła osiągnąć zadowalające wyniki. Jednocześnie wyniki próbki 50% już praktycznie nie różnią się od tych dla całego zbioru. Oznacza to, że trenując nasz model moglibyśmy zmiejszyć ilość wykonywanych obliczeń poprzez zmiejszenie zbioru treningowego, a wciąż uzyskać bardzo dobry model drzewa.