Практическая работа №8

Формирование сигнала заданной формы

1. Таймер-счетчики

Базовые модели микроконтроллеров семейства MCS-51 содержат два программируемых многорежимных таймер-счетчика (0 и 1), предназначенных для подсчета внешних событий (выводы Т0 и Т1), организации программно управляемых временных задержек и измерения временных интервалов [2]. Кроме того, таймер 1 применяется для определения скорости передачи последовательного порта.

Таймер-счетчик может работать в режиме таймера или в режиме счетчика. В первом случае ведется подсчет тактов деленной системной частоты (определенный промежуток времени) и при переполнении выдается запрос прерывания. В каждом машинном цикле длительностью 12 тактов регистр таймера инкрементируется только один раз, поэтому скорость счета таймера равна $f_{\rm OSC}/12$.

В режиме счетчика ведется подсчет количества поступивших импульсов на вход микросхемы, причем идентификация импульса производится по заднему фронту. При переполнении таймерного регистра таймер-счетчика выдается запрос прерывания. Распознавание спада внешнего сигнала занимает 24 периода тактовой частоты (2 машинных цикла), поэтому максимальная скорость счета равна $f_{\rm OSC}/24$.

Управление режимами работы таймер-счетчиков и организация их взаимодействия с системой прерываний обеспечивается двумя регистрами специальных функций TMOD и TCON. Текущее значение таймер-счетчика, соответствующее количеству подсчитанных импульсов, хранится и изменяется в таймерных регистрах TH0, TL0 и TH1, TL1 соответственно для таймер-счетчика 0 и 1. В различных режимах разрядность таймер-счетчика составляет 8-16 бит, таким образом, для подсчета используются либо только регистры TL_X , либо TH_X и TL_X , включенные последовательно, где TH_X содержит старшие биты числа, а TL_X — младшие, x — номер таймер-счетчика (0 или 1).

2. Регистр режима работы таймер-счетчика ТМОD

Управление режимом работы таймер-счетчиков 0 и 1 осуществляет регистр TMOD:

Timer 1 (таймер-счетчик 1)				Timer 0 (таймер-счетчик 0)			
D7	D6	D5	D4	D3	D2	D1	D0
GATE	C/T	M1	M0	GATE	C/T	M1	M0

Поля регистра ТМОD:

- С/Т выбор функции 0 таймер, 1 счетчик;
- GATE разрешение внешней блокировки. Если бит равен нулю, то включение и выключение соответствующего таймер-счетчика возможно только битом TR_X регистра TCON. В случае, когда бит равен единице, включение таймер-счетчика зависит не только от бита TR_X , но и от состояния на входе INT_X , на который необходимо подать уровень логической единицы для активации работы соответствующего таймер-счетчика;
- M [1:0] код режима работы таймеров (табл. 5).

 Таблица 5

 Режим работы таймер-счетчика

M1	M0	Режим	Режим работы таймер-счетчика
0	0	0	13-битный таймер-счетчик. TH_X — 8 бит, TL_X — 5 (младших) бит
0	1	1	16-битный таймер-счетчик. TH_X и TL_X включен последовательно
1	0	2	8-битный автоперезагружаемый таймер-счетчик. TH_X хранит значение, которое должно быть перезагружено в TL_X каждый раз по переполнению
1	1	3	Таймер-счетчик 0 и 1 работают по-разному

3. Регистр управления и статуса таймера TCON

Регистр TCON управляет запуском таймер-счетчиков, содержит флаги переполнения таймер-счетчика, также используется для настройки прерываний от внешних источников. Структура регистра TCON:

TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

Поля регистра TCON:

ТГ_х — флаг переполнения таймер-счетчика. Устанавливается аппаратными средствами при переполнении таймер-счетчика, т.е. в случае перехода из максимального состояния таймерного регистра в минимальное. Сбрасывается автоматически при передаче управления подпрограмме обработки прерывания;

- ТR_X бит управления таймер-счетчика. Для активации работы таймер-счетчика 0 или 1 в соответствующий бит необходимо записать единицу. Сброс бита выключает соответствующий таймер-счетчика;
- IE_X флаг фронта прерывания. Устанавливается аппаратно при возникновении активного сигнала на внешнем входе INT_X микроконтроллера (активный сигнал определяется битом IT_X). Сбрасывается автоматически при обслуживании прерывания;
- IT_X бит выбора типа активного сигнала на входе INT_X . При $IT_X = 1$ активным является переход из высокого в низкий, при $IT_X = 0$ активным является низкий уровень сигнала.

4. Режимы работы таймер-счетчиков

Регистр ТМОD позволяет выбрать один из четырех режимов работы для каждого таймер-счетчика, причем режимы работы 0, 1 и 2 одинаковы для обоих таймер-счетчиков, а режим 3 различен.

Схема функционирования таймер-счетчика в режиме 0 показана на рис. 5, где физические выводы микроконтроллера обозначены PIN. Для этого режима разрядность таймерного регистра составляет 13 бит, из которых 8 старших битов текущего значения содержатся в регистре TH_X , а 5 младших битов — в регистре TL_X . Модуль счета (число различных устойчивых состояний счетчика) для данного режима составляет $2^{13} = 8192$. Например, если $TH_X = 29$ h и $TL_X = 15$ h, то в двоичной системе счисления этим числам соответствует запись: $TH_X = 00101001$ b и $TL_X = 00010101$ b, тогда значение в таймерном регистре можно считать равным 0010100110101b, что в шестнадцатеричной системе счисления составляет 535h, а в десятичной — 1333.

Рис. 5. Схема работы таймер-счетчика в режиме 0 и 1

При переполнении, т. е. переходе из максимального состояния, равного 8191, в минимальное — 0, в регистре TCON автоматически устанавливается флаг переполнения таймер-счетчика TF_x .

Подсчет импульсов, поступающих с внешнего входа T_X (см. рис. 5) или с генератора тактовой частоты через предделитель, осуществляется счетным узлом в двух случаях: когда управляющий бит TR_X установлен и бит разрешения внешней блокировки GATE сброшен, либо когда $TR_X = 1$, GATE = 1 и на внешнем входе микроконтроллера INT_X присутствует уровень логической 1.

Функционирование любого таймер-счетчика в режиме 1 полностью совпадает с режимом 0 за исключением того, что таймерный регистр имеет разрядность 16 бит. В этом случае модуль счета будет равен

65536, а регистры TH_X и TL_X используются полностью и также включены последовательно.

Как видно из рис. 6, управление работой таймер-счетчика в режиме 2 осуществляется аналогично режимам 0/1. Первым отличием функционирования является использование для подсчета только регистра TL_x , т. е. модуль счета равен 256. Вторым — при переполнении таймерного регистра, кроме установки флага переполнения, производится запись содержимого регистра TH_x в регистр TL_x , при этом значение TH_x не изменяется. Таким образом можно уменьшить модуль счета с 256 до любого значения, предварительно записав соответствующую разницу в регистр TH_x . Конечно, модуль счета может быть уменьшен и при использовании других режимов работы, но в данном случае перезапись определенного начального значения будет производиться автоматически.

Рис. 6. Схема работы таймер-счетчика в режиме 2

Функционирование таймер-счетчиков 0 и 1 в режиме 3 различно (рис. 7). Таймер-счетчик 1 отключен, его таймерные регистры ТН1 и ТL1 сохраняют свое значение. Регистры ТL0 и ТН0 используются в качестве двух независимых таймерных регистров, причем ТН0 может выполнять функции только таймера, а TL0 — таймера и счетчика. Таймер с регистром ТН0 управляется только битом ТR1, соответственно его можно только включить или выключить, других настроек произвести нельзя. При переполнении ТН0 устанавливается флаг прерывания ТF1. Работа TL0 аналогична функционированию в режимах 0 и 1, отличием является разрядность таймерного регистра, здесь она составляет 8 бит, управление производится битами таймер-счетчика 0 (С/Т0, GATE0, TR0), вход для внешней блокировки — INT0 и флаг переполнения — TF0.

Рис. 7. Схема работы таймер-счетчика в режиме 3

В некоторых версиях микроконтроллеров семейства MCS-51 может присутствовать третий таймер-счетчик и (или) блок программных счетчиков PCA (Programmable Counter Array), которые также могут использоваться для отсчета временных интервалов.

Задания

Номер вари- анта	Форма сигнала	Параметры сигнала	Номер вари- анта	Форма сигнала	Параметры сигнала
1		$T = 1250 \text{ MKC}$ $ au_{\min} = 750 \text{ MKC}$ $ au_{\max} = 0,5 \text{ B}$	19		T = 1250 MKC $ au_{\min} = 750 \text{ MKC}$ $U_{\max} = 0,5 \text{ B}$
2		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 1 \text{ B}$	20		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 1 \text{ B}$
3		$T = 1250$ мкс $ au_{\min} = 750$ мкс $U_{\max} = 1,5$ В	21		T = 1250 MKC $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 1,5 \text{ B}$
4		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 2 \text{ B}$	22		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 2 \text{ B}$
5		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 2,5 \text{ B}$	23		$T = 1250$ мкс $\tau_{\min} = 500$ мкс $U_{\max} = 2,5$ В
6		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 3 \text{ B}$	24		$T = 1250$ мкс $ au_{\min} = 500$ мкс $U_{\max} = 3$ В
7		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 3,5 \text{ B}$	25		T = 1250 MKC $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 3,5 \text{ B}$
8		$T = 1250$ мкс $ au_{\min} = 750$ мкс $U_{\max} = 4$ В	26		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 4 \text{ B}$
9		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 4,5 \text{ B}$	27		T = 1250 MKC $\tau_{\min} = 500 \text{ MKC}$ $U_{\max} = 4,5 \text{ B}$
10		T = 1250 MKC $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 5 \text{ B}$	28		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 5 \text{ B}$
11		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 0,5 \text{ B}$	29		$T = 1250 \text{ MKC}$ $\tau_{\min} = 750 \text{ MKC}$ $U_{\max} = 0,5 \text{ B}$

- 1. Написать программу на ассемблере, формирующую сигнал в соответствии с вариантом.
- 2. Для задания интервалов времени использовать таймеры (Т0 и Т1). Выберите подходящий режим для работы таймеров.
- 3. Для формирования аналогового напряжения на выходе используйте ЦАП.
- 4. Результат генерации сигнала продемонстрировать на осциллографе (в Multisim на панели инструментов Oscilloscope).

Рис. 1. Модель осциллографа в Multisim