Chapter 6 Ι

Excess minority carrier lifetime:

$$\frac{\mathrm{d}(\delta n(t))}{\mathrm{d}t} = -\alpha_r(p_0 + n_0)\delta n(t)$$
$$\tau = \frac{1}{\alpha_r(n_0 + p_0)}$$

n-type:

$$R'_n = R'_p = \frac{\delta p(t)}{\tau_{p0}}$$

p-type:

$$R'_n = R'_p = \frac{\delta n(t)}{\tau_{n0}}$$

Quasi-Fermi Energy Level

$$n_0 + \delta n = n_i \exp\left(\frac{E_{Fn} - E_{Fi}}{kT}\right)$$
$$p_0 + \delta p = n_i \exp\left(\frac{E_{Fi} - E_{Fp}}{kT}\right)$$

Excess Carrier Lifetime

$$R_n = R_p = \frac{C_n C_p N_t (np - n_i^2)}{C_n (n + n') + C_p (p + p')}$$
$$= \frac{(np - n_i^2)}{\tau_{p0} (n + n') + \tau_{n0} (p + p')}$$

where
$$n' = N_c \exp\left[-\frac{E_c - E_t}{kT}\right], p' = N_v \exp\left[-\frac{E_t - E_v}{kT}\right], \text{ and } \tau_{n0} = \frac{1}{C_n N_t}$$

Surface Effects

$$-D_p \left[\hat{n} \cdot \frac{\mathrm{d}(\delta p)}{\mathrm{d}x} \right] \bigg|_{\mathrm{sumf}} = s |\delta p|_{\mathrm{surf}}$$

$$\delta p(x) = g' \tau_{p0} \left(1 - \frac{sL_p e^{-x/L_p}}{D_p + sL_p} \right)$$

Time-dependent Continuity Equation

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{F_p^+}{\mathrm{d}x} + g_p - \frac{p}{\tau_{pt}}$$

$$D_n \frac{\mathrm{d}^2 n}{\mathrm{d}x^2} + \mu_n \left(E \frac{\mathrm{d}n}{\mathrm{d}x} + n \frac{\mathrm{d}E}{\mathrm{d}x} \right) + g_n - \frac{n}{\tau_{nt}} = \frac{\mathrm{d}n}{\mathrm{d}t}$$

$$D_p \frac{\mathrm{d}^2 p}{\mathrm{d}x^2} - \mu_p \left(E \frac{\mathrm{d}p}{\mathrm{d}x} + p \frac{\mathrm{d}E}{\mathrm{d}x} \right) + g_p - \frac{p}{\tau_{pt}} = \frac{\mathrm{d}p}{\mathrm{d}t}$$

$$D_n \frac{\mathrm{d}^2(\delta n)}{\mathrm{d}x^2} + \mu_n \left(E \frac{\mathrm{d}(\delta n)}{\mathrm{d}x} + n \frac{\mathrm{d}E}{\mathrm{d}x} \right) + g_n - \frac{n}{\tau_{nt}} = \frac{\mathrm{d}(\delta n)}{\mathrm{d}t}$$

$$D_p \frac{\mathrm{d}^2(\delta p)}{\mathrm{d}x^2} - \mu_p \left(E \frac{\mathrm{d}(\delta p)}{\mathrm{d}x} + p \frac{\mathrm{d}E}{\mathrm{d}x} \right) + g_p - \frac{p}{\tau_{pt}} = \frac{\mathrm{d}(\delta p)}{\mathrm{d}t}$$

$$g_n - \frac{n}{\tau_{nt}} = g' - \frac{\delta n}{\tau_{nt}}$$

Table 6.2 | Common ambipolar transport equation simplifications

Specification	Effect		
Steady state	$\frac{\partial(\delta n)}{\partial t} = 0, \frac{\partial(\delta p)}{\partial t} = 0$		
Uniform distribution of excess carriers (uniform generation rate)	$D_n \frac{\partial^2(\delta n)}{\partial x^2} = 0, \qquad D_p \frac{\partial^2(\delta n)}{\partial x^2} = 0$		
Zero electric field	$E \frac{\partial (\delta n)}{\partial x} = 0, E \frac{\partial (\delta p)}{\partial x} = 0$		
No excess carrier generation	g'=0		
No excess carrier recombination (infinite lifetime)	$\frac{\delta n}{\tau_{n0}} = 0 , \frac{\delta p}{\tau_{p0}} = 0$		

General solutions:

 $\frac{\mathrm{d}(\delta p)}{\mathrm{d}t} = -\frac{\delta p}{\tau_{r0}}$

solution:

$$\delta p(t) = \delta p(0) e^{-t/\tau_{p0}}$$

 $g' - \frac{\delta p}{\tau_{t,0}} = \frac{\mathrm{d}(\delta p)}{\mathrm{d}t}$

solution:

$$\delta p(t) = g' \tau_{p0} \left(1 - e^{-t/\tau_{p0}} \right)$$

 $D_n \frac{\mathrm{d}^2(\delta n)}{\mathrm{d}x^2} - \frac{\delta n}{\tau_n} = 0$

solution:

$$\delta n(x) = Ae^{-x/L_n} + Be^{x/L_n}, \quad L_n = \sqrt{D_n \tau_{n0}}$$

special:

$$\delta n(x) = \begin{cases} \delta n(0) e^{-x/L_n}, & x \ge 0\\ \delta n(0) e^{+x/L_n}, & x \le 0 \end{cases}$$

$$D_p \frac{\mathrm{d}^2 \delta p}{\mathrm{d}x^2} - \frac{\delta p}{\tau} + G_{ex} = 0$$

solution:

$$\delta p(x) = A \exp(\lambda x) + g\tau, \quad \lambda = \pm \frac{1}{\sqrt{D_n \tau}}$$

 $D_p \frac{\mathrm{d}^2(\delta p)}{\mathrm{d}x^2} - \mu_p E_0 \frac{\mathrm{d}(\delta p)}{\mathrm{d}x} - \frac{\delta p}{\tau_{r0}} = \frac{\mathrm{d}(\delta p)}{\mathrm{d}t}$

solution:

$$\delta p(x,t) = \frac{e^{-t/\tau_{p0}}}{(4\pi D_p t)^{1/2}} \exp\left[\frac{-(x - \mu_p E_0 t)^2}{4D_p t}\right]$$

$$D_p \frac{\mathrm{d}^2 \delta p}{\mathrm{d}x^2} - \mu_p E \frac{\mathrm{d}\delta p}{\mathrm{d}x} - \frac{\delta p}{\tau} = 0$$

solution:

$$\delta p(x) = A \exp(\lambda x) + C$$

$$\lambda = \frac{L_p(E) \pm \sqrt{L_p^2(E) + 4L_p^2}}{2L_p^2}, \quad L_p = \sqrt{\tau D_p}, \quad L_p(E) = \tau \mu_p E$$

special

$$\delta p(x) = \delta p(0) \exp \left[\frac{L_p(E) \pm \sqrt{L_p^2(E) + 4L_p^2}}{2L_p^2} x \right] = \begin{cases} \delta p(0) \exp \left(-\frac{x}{L_p} \right), & \text{if } L_p(E) \ll L_p \\ \delta p(0) \exp \left(-\frac{x}{L_p(E)} \right), & \text{if } L_p(E) \gg L_p \end{cases}$$

II Chapter 7

 V_{bi} : built-in potential barrier.

$$V_{bi} = |\phi_{Fn}| + |\phi_{Fp}|$$

$$= \frac{kT}{e} \ln \left(\frac{N_a N_d}{n_i^2} \right) = V_t \ln \left(\frac{N_a N_d}{n_i^2} \right)$$

 $V_t = kT/e$ defined as the thermal voltage.

$$N_a x_p = N_d x_n$$

$$|k| = \frac{eN_{a/c}}{\varepsilon_s}$$

$$N_a x_p = N_d x_n$$

$$x_{n} = \sqrt{\frac{2\varepsilon_{s}\left(V_{bi} + V_{R}\right)}{e} \left[\frac{N_{a}}{N_{d}}\right] \left[\frac{1}{N_{a} + N_{d}}\right]}$$
$$x_{p} = \sqrt{\frac{2\varepsilon_{s}\left(V_{bi} + V_{R}\right)}{e} \left[\frac{N_{d}}{N_{a}}\right] \left[\frac{1}{N_{a} + N_{d}}\right]}$$

 $\varepsilon_s = \varepsilon_r \varepsilon_0$, where $\varepsilon_0 = 8.85 \times 10^{-14} F \cdot cm^{-1}$. $\varepsilon_r = 11.7$ for Si.

$$W = x_n + x_p = \sqrt{\frac{2\varepsilon_s \left(V_{bi} + V_R\right)}{e}} \left[\frac{N_a + N_d}{N_a N_d}\right]$$

$$E = \begin{cases} -\frac{eN_a}{\varepsilon_s} (x + x_p), & -x_p \le x \le 0\\ -\frac{eN_d}{\varepsilon_s} (x_n - x), & 0 \le x \le x_n \end{cases}$$

$$|E_{max}| = -\frac{eN_d x_n}{\varepsilon_s} = -\frac{eN_a x_p}{\varepsilon_s}$$

$$= -\frac{2(V_{bi} + V_R)}{W}$$

$$\phi(x) = -\int E(x) \, \mathrm{d}x$$

Junction Capacitance

$$C' = \frac{\mathrm{d}Q'}{\mathrm{d}V} = \sqrt{\frac{e\varepsilon_s N_a N_d}{2(V_{bi} + V_R)(N_a + N_d)}} = \frac{\varepsilon_s}{W}$$

One-sided Junction - p^+n junction:

$$\begin{aligned} x_p &\ll x_n \\ W &\approx x_n \\ C' &\approx \sqrt{\frac{e\varepsilon_s N_d}{2(V_{bi} + V_R)}} \\ \left(\frac{1}{C'}\right)^2 &= \frac{2(V_{bi} + V_R)}{e\varepsilon_s N_d} \end{aligned}$$

III Chapter 8

$$n_{p0} = n_{n0} \exp\left(-\frac{eV_{bi}}{kT}\right)$$
$$p_{n0} = p_{p0} \exp\left(-\frac{eV_{bi}}{kT}\right)$$

Forward biased

$$n_p = n_{p0} \exp\left(\frac{eV_a}{kT}\right)$$
$$p_n = p_{n0} \exp\left(\frac{eV_a}{kT}\right)$$

$$\delta p_n(x) = p_n(x) - p_{n0}$$

$$= p_{n0} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right] \exp\left(\frac{x_n - x}{L_p}\right), \quad x \ge x_n$$

$$\delta n_p(x) = n_p(x) - n_{p0}$$

$$= n_{p0} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right] \exp\left(\frac{x_p + x}{L_n}\right), \quad x \le -x_p$$

$$p = p_0 + \delta p = n_i \exp\left(\frac{E_{Fi} - E_{Fp}}{kT}\right)$$
$$np = n_i^2 \exp\left(\frac{E_{Fn} - E_{Fp}}{kT}\right)$$

Durrent density

$$\begin{split} J_n(x) &= \frac{eD_n n_{p0}}{L_n} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right] \exp\left(\frac{x_p + x}{L_n}\right) \\ J_p(x) &= \frac{eD_p p_{n0}}{L_p} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right] \exp\left(\frac{x_n - x}{L_p}\right) \end{split}$$

Ideal pn junciton current

$$J = J_s \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$
where $J_s = \left[\frac{eD_p p_{n0}}{L_p} + \frac{eD_n n_{p0}}{L_n}\right]$

$$= en_i^2 \left[\frac{1}{N_a} \sqrt{\frac{D_n}{\tau_{n0}}} + \frac{1}{N_d} \sqrt{\frac{D_p}{\tau_{p0}}}\right]$$

Non-ideal I - Generation-recombination currents

$$R_n = \frac{(np - n_i^2)}{\tau_p \left[n + n_i \exp\left(\frac{E_t - E_i}{kT}\right) \right] + \tau_n \left[p + n_i \exp\left(\frac{E_i - E_t}{kT}\right) \right]}$$

$$= -\frac{n_i}{2\tau} = -G_0 \quad \text{assume } E_t = E_i, \tau_n = \tau_p = \tau$$

$$J_r = \int_0^W qG_0 \, \mathrm{d}x$$

$$= \frac{qWn_i}{2\tau}$$

$$J = J_s \left[\exp\left(\frac{qV_a}{kT}\right) - 1 \right] + \frac{qWn_i}{2\tau} \left[\exp\left(\frac{qV_a}{2kT}\right) - 1 \right]$$

Non-ideal II - High Level Injection

Chapter 9

Work function: ϕ Electron affinity: χ

Schottky barrier: $\phi_{B0} = \phi_m - \chi$ Built-in potential barrier: $V_{bi} = \phi_{B0} - \phi_n$

 $\phi_n = kT \ln \left(\frac{N_c}{N_d} \right)$

$$F = \frac{-e^2}{4\pi\varepsilon_s(2x)^2} = -eE$$
$$-\phi(x) = +\int_x^\infty E \, dx' = \frac{-e}{16\pi\varepsilon_s x}$$

With electric field: $-\phi(x) = \frac{-e}{16\pi\varepsilon \cdot x} - Ex$

$$\frac{\mathrm{d}(e\phi(x))}{\mathrm{d}x} = 0 \quad \Rightarrow \quad \Delta\phi = \sqrt{\frac{eE}{4\pi\varepsilon_s}}$$

Current-Voltage Relationship

$$J = J_{sT} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$
$$J_{sT} = A^*T^2 \exp\left(\frac{-e\phi_{Bn}}{kT}\right)$$
$$A^* = \frac{4\pi e m_n^* k^2}{h^3}$$

 A^* : effective Richardson constant for thermionic emission.

Tunneling Barrier

$$J_t \propto \exp\left(\frac{-e\phi_{Bn}}{E_{oo}}\right)$$

$$E_{oo} = \frac{e\hbar}{2} \sqrt{\frac{N_d}{\varepsilon_s M_n^*}}$$

Specific Contact Resistance

$$R_{c} = \left(\frac{\partial J}{\partial V}\right)^{-1} \bigg|_{V=0} \Omega - cm^{2}$$

$$J_{n} = A^{*}T^{2} \exp\left(\frac{-e\phi_{Bn}}{kT}\right) \left[\exp\left(\frac{eV}{kT}\right) - 1\right]$$

$$R_{c} = \frac{\left(\frac{kT}{e}\right) \exp\left(\frac{+e\phi_{Bn}}{kT}\right)}{A^{*}T^{2}}$$

 R_c : the reciprocal of the derivative of current density with respect to voltage evaluated at zero bias.

Resistivity:

Conductors	Semiconductors	Insulators
< 10 ⁻³ Ω•cm	$10^{-3} - 10^9 \Omega$ cm	> 10 ⁹ Ω•cm
Metals (Au, Al, Cu, Hg)	Si, Ge, GaAs, InP	SiO ₂ , HfO ₂
Solids, liquids (Hg)	Solids	Solids, liquids gases

Unit cell: any small volume of crystal to reproduce the entire crystal. Primitive cell: smallest unit cell

Crytalline Plane and Miller Index

$$\frac{\partial^2 y}{\partial x^2} = k^2 y$$
 General solution: $y = Ae^{bx}$

Plug into the equation: $b^2Ae^{bx}=k^2Ae^{bx}$

$$\Rightarrow b = \pm k$$

$$\Rightarrow y = A_1 e^{kx} + A_2 e^{-kx}$$

$$\frac{\partial^2 y}{\partial x^2} = -k^2 y$$
 General solution: $y = Ae^{bx}$

Plug into the equation: $b^2Ae^{bx}=-k^2Ae^{bx}$

$$\Rightarrow b = \pm ki$$

$$\Rightarrow y = A_1 e^{ikx} + A_2 e^{-ikx}$$

$$K = \frac{2\pi}{\lambda}, E = mc^2 = hv = \frac{hc}{\lambda}, p = \frac{h}{\lambda} = mv$$

$$\frac{\partial^2 \psi(x)}{\partial x^2} + \frac{2m}{\hbar^2} (E - V(x))\psi(x) = 0$$

$$E = \frac{k^2 \hbar^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

$$k = \frac{n\pi}{a}$$
 $n = 0, \pm 1, \pm 2, ...$

$$p = \hbar k = mv$$

$$\frac{dE}{dk} = \frac{\hbar^2 k}{m} \xrightarrow{mv = \hbar k} \frac{\hbar mv}{m} = \hbar v$$

$$\mathsf{E} = \frac{v^2}{2m} = \frac{\hbar^2 k^2}{2m} \qquad \qquad v = \frac{1}{\hbar} \frac{dE}{dk}$$

$$J = qNv_d = q\sum_{i}^{N} v_i$$

Conduction Band:

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*} (k - k_1)^2$$

Valence Band:

$$E = E(k) = E_c - \frac{\hbar^2}{2m_p^*} (k - k_2)^2$$

$$E - E_c = C_1(k)^2$$

$$\frac{1}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{2C_1}{\hbar^2}$$

$$\frac{1}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{2C_1}{\hbar^2} = \frac{1}{m^*}$$

n type semiconductor

 $v = \mu E = \mu V/L$

$$I = \frac{\Delta Q}{\Delta t} = \frac{nqA_c\Delta L}{\Delta t} = nqA_c\mu V/L \qquad \Rightarrow \quad \sigma = \frac{I}{V} = \frac{N_D qA_c\mu}{L}$$

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})} \quad f_F(E) \approx \exp(-\frac{E - E_F}{kT})$$

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*} k^2$$

$$k = \mp \frac{\sqrt{2m_n^*(E - E_c)}}{\hbar}$$

Within ΔE , we have the number of k is $\frac{d(k/\pi)}{dE}\Delta E$

$$g(E) = \frac{1}{2} \frac{d(k/\pi)}{dE}$$

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*}k^2$$

$$k = \mp \frac{\sqrt{2m_n^*(E - E_c)}}{\hbar}$$

Within ΔE , we have the number of k is $\frac{d(4\pi \left(\frac{k}{\pi}\right)^2/3)}{dE} \Delta E$

$$g(E) = \frac{1}{8} \frac{d(4\pi \left(\frac{k}{\pi}\right)^2 / 3)}{dE}$$

$$g_{v}(E) = \frac{4\pi(2m_{p}^{*})^{3/2}}{h^{3}}\sqrt{E_{v}-E}$$

$$n_0 = \int_{E_c}^{\infty} g_c(E) f_F(E) dE$$

$$p_0 = \int_{-\infty}^{E_v} g_v(E) [1 - f_F(E)] dE$$

$$if \exp(x - \mathcal{E}) > 10 \Leftrightarrow \frac{E - E_F}{kT} > 3 \Leftrightarrow E - E_F > 3kT$$

$$n_0 = \frac{2(2\pi m_n^* kT)^{\frac{3}{2}}}{h^3} \exp\left(\frac{E_F - E_c}{kT}\right) = N_c \exp\left(\frac{E_F - E_c}{kT}\right)$$

$$p_{0} = \frac{2(2\pi m_{p}^{*}kT)^{\frac{3}{2}}}{h^{3}} \exp\left(\frac{E_{v} - E_{F}}{kT}\right) = N_{v} \exp\left(\frac{E_{v} - E_{F}}{kT}\right)$$

$$n \times p = n_i^2 = N_c N_v \exp\left(\frac{E_v - E_c}{kT}\right) \Rightarrow n_i = \sqrt{N_c N_v} \exp\left(-\frac{E_g}{2kT}\right)$$

$$n = N_c \exp(\frac{E_F - E_c}{kT}) \qquad p = N_v \exp(\frac{E_v - E_F}{kT}) \qquad N_c \approx 10^{19} cm^{-3}$$

$$N_v \approx 10^{19} cm^{-3}$$

$$n_0 = n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right] \qquad p_0 = n_i \exp\left[\frac{-(E_F - E_{Fi})}{kT}\right] \qquad n_i \approx 10^{10} cm^{-3}$$

$$n_0 = n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right]$$
 $p_0 = n_i \exp\left[\frac{-(E_F - E_{Fi})}{kT}\right]$ $n_i \approx 10^{10} cm^{-3}$

$$n = N_c \exp\left(\frac{E_{Fi} - E_c}{kT}\right) = p = N_v \exp\left(\frac{E_v - E_{Fi}}{kT}\right)$$

$$E_{Fi} = \frac{1}{2}(E_c + E_v) + \frac{1}{2}kT ln(\frac{N_v}{N_c})$$

$$E_{midgap} = \frac{1}{2} (E_c + E_v)$$

$$E_{Fi} = E_{midgap} + \frac{3}{4}kTln(\frac{m_p^*}{m_n^*})$$

$$\begin{split} n_{d} &= N_{d} - N_{d}^{+} \\ &= \frac{N_{d}}{1 + \frac{1}{2} \exp(\frac{E_{d} - E_{F}}{kT})} \\ p_{a} &= \frac{N_{a}}{1 + \frac{1}{g} \exp\left(\frac{E_{F} - E_{a}}{kT}\right)} = N_{a} - N_{a}^{-} \\ n_{0} &+ (N_{a} - p_{a}) = p_{0} + (N_{d} - n_{d}) \\ n_{0} &= \frac{(N_{d} - N_{a})}{2} + \sqrt{\left(\frac{N_{d} - N_{a}}{2}\right)^{2} + n_{i}^{2}} \\ n_{0} &= \frac{N_{d}^{+} + \sqrt{(N_{d}^{+})^{2} + 4n_{i}^{2}}}{2} \left(but \ N_{d}^{+} \ unknown\right) \\ n_{0} &= N_{c} \times \frac{-1 + \sqrt{1 + \frac{8N_{D}}{N_{c}}} \exp(\frac{E_{A}}{kT})}{2} = \sqrt{\frac{N_{D}N_{c}}{2} \exp(-\frac{E_{A}}{2kT})} \quad partial \ inization, \\ n_{0} &= N_{c} \times \frac{-1 + \sqrt{1 + \frac{8N_{D}}{N_{c}}} \exp(\frac{E_{A}}{kT})}{4 \exp(\frac{E_{A}}{kT})} = \sqrt{\frac{N_{D}N_{c}}{2} \exp(-\frac{E_{A}}{2kT})} \quad partial \ inization, \\ n_{0} &= N_{c} \times \frac{-1 + \sqrt{1 + \frac{8N_{D}}{N_{c}}} \exp(\frac{E_{A}}{kT})}{2} - 1 \\ E_{F} &= E_{c} + kT \ln(\frac{\sqrt{1 + \frac{8N_{D}}{N_{c}}} \exp(\frac{E_{A}}{kT})}{2} - 1} = \sqrt{\frac{E_{c} + E_{D}}{2} + \frac{kT}{2} \ln \frac{N_{D}}{2N_{c}}} \quad T \ small} \\ E_{F} &= E_{c} + kT \ln(\frac{\sqrt{1 + \frac{8N_{D}}{N_{c}}} \exp(\frac{E_{A}}{kT})}{4 \exp(\frac{E_{A}}{kT})} - 1}) = \sqrt{\frac{E_{c} + E_{D}}{2} + \frac{kT}{2} \ln \frac{N_{D}}{2N_{c}}} \quad T \ big}} \quad T \ big \\ v_{d} &\approx \left(\frac{q\tau_{cp}}{m_{cp}^{c}}\right)E \Rightarrow \frac{v_{d}}{E} = \frac{q\tau_{cp}}{m_{cp}^{c}} = \mu_{p} \ (for \ holes) \\ v_{d} &\approx \left(\frac{q\tau_{cp}}{m_{cp}^{c}}\right)E \Rightarrow \frac{v_{d}}{E} = \frac{q\tau_{cp}}{m_{cp}^{c}} = \mu_{p} \ (for \ holes) \\ v_{d} &\approx \left(\frac{q\tau_{cp}}{M_{c}^{c}}\right)E \Rightarrow \frac{v_{d}}{\Delta t} = qp_{0}A_{c}v = qp_{0}A_{c}\mu_{p}E = qp_{0}A_{c}\mu_{p}\frac{V}{L} = \sigma \cdot V \\ J_{drf} &= q\left(p_{0}\mu_{p} + n_{0}\mu_{n}\right)E \qquad \qquad \frac{1}{u} = \frac{1}{u} = \frac{1}{\mu_{L}} + \frac{1}{\mu_{L}} \\ v_{n} &= \frac{v_{s}}{\left[1 + \left(\frac{E_{on}}{E}\right)^{2}\right]^{1/2}} \quad v_{p} = \frac{v_{s}}{\left[1 + \left(\frac{E_{op}}{E}\right)^{2}\right]^{1/2}} \\ J_{nx|dif} &= -qF_{n} = qD_{n}\frac{dp}{dx} \\ J_{px|dif} &= qF_{p} = -qD_{p}\frac{dp}{dx} \end{aligned}$$

 $J = qn\mu_n E_x + qp\mu_n E_x + qD_n \nabla n - qD_n \nabla p$

$$E_{x} = -\frac{\mathrm{d}\Phi}{\mathrm{d}x} = \frac{1}{e} \frac{\mathrm{d}E_{Fi}}{\mathrm{d}x}$$

$$= -\frac{1}{e} \frac{kT}{n(x)} \frac{\mathrm{d}n(x)}{\mathrm{d}x}$$

$$D_{n} = \frac{\mu_{n}kT}{q}$$

$$\rho = \frac{1}{\sigma} = \frac{1}{q\mu_n n} = \frac{1}{q\mu_n N_d} \quad \rho = \frac{1}{\sigma} = \frac{1}{q\mu_n p} = \frac{1}{q\mu_n N_a}$$

Infinite quantum well

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi = E\Psi, \quad \begin{cases} V(x) = +\infty, & x \le 0 \text{ or } x \ge \\ V(x) = 0, & 0 < x < a \end{cases}$$

General solution:

$$\Psi(x) = Ae^{-ikx} + Be^{ikx}$$

Boundary condition:

$$\Psi(x)|_{x=a,0} = 0$$

$$\int_0^a \Psi(x) \Psi^*(x) dx = 1$$

conclusion:

$$k = \frac{n\pi}{a}, n = 0, \pm 1, \pm 2, \dots$$

$$E = \frac{k^2 \hbar^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

Finite quantum well

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi}{\partial x^2} + V(x)\Psi = E\Psi, \quad \left\{ \begin{array}{ll} V(x) = V_0, & x \leq 0 \text{ or } x \geq a \\ V(x) = 0, & 0 < x < a \end{array} \right.$$

General solution:

$$\Psi(x) = \left\{ \begin{array}{ll} A \mathrm{e}^{-ik_1 x} + B \mathrm{e}^{ik_1 x}, & k_1 = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}, & x \leq 0 \text{ or } x \geq a \\ C \mathrm{e}^{-ik_2 x} + D \mathrm{e}^{ik_2 x}, & k_2 = \sqrt{\frac{2mE}{\hbar^2}}, & 0 < x < a \end{array} \right.$$

Boundary condition:

$$\Psi(x)|_{x=0}$$
 continuous $\Psi(x)|_{x=a}$ continuous
$$\int_{-\infty}^{\infty} \Psi(x) \Psi^*(x) \, \mathrm{d}x = 1$$

From textbook Semiconductor Physics and Devices: Basic Principles 4th edition. P716-718 (Appendix B)

Table B.2 | Conversion factors

	Prefixes		
$1 \text{ Å (angstrom)} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$	10^{-15}	femto-	= f
$1 \mu\text{m} (\text{micrometer}) = 10^{-4} \text{cm}$	10^{-12}	pico-	= p
$1 \text{ mil} = 10^{-3} \text{ in.} = 25.4 \ \mu\text{m}$	10^{-9}	nano-	= n
2.54 cm = 1 in.	10^{-6}	micro-	$=\mu$
$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	10^{-3}	milli-	= m
$1 \mathrm{J} = 10^7 \mathrm{erg}$	10^{+3}	kilo-	= k
	10^{+6}	mega-	= M
	10^{+9}	giga-	= G
	10^{+12}	tera	= T

Table B.3 | Physical constants

Avogadro's number	$N_A = 6.02 \times 10^{+23}$ atoms per gram molecular weight
Boltzmann's constant	$k = 1.38 \times 10^{-23} \text{ J/K}$ = $8.62 \times 10^{-5} \text{ eV/K}$
Electronic charge (magnitude)	$e = 1.60 \times 10^{-19} \mathrm{C}$
Free electron rest mass	$m_0 = 9.11 \times 10^{-31} \mathrm{kg}$
Permeability of free space	$\mu_0=4\pi imes 10^{-7}$ H/m
Permittivity of free space	$\epsilon_0 = 8.85 \times 10^{-14} \mathrm{F/cm}$
Planck's constant	= 8.85×10^{-12} F/m $h = 6.625 \times 10^{-34}$ J-s = 4.135×10^{-15} eV-s
	$\frac{h}{2\pi} = \hbar = 1.054 \times 10^{-34} \text{J-s}$
Proton rest mass	$M = 1.67 \times 10^{-27} \mathrm{kg}$
Speed of light in vacuum	$c = 2.998 \times 10^{10} \mathrm{cm/s}$
Thermal voltage ($T = 300 \text{ K}$)	$V_t = \frac{kT}{e} = 0.0259 \text{ V}$
	kT = 0.0259 eV

Table B.4 | Silicon, gallium arsenide, and germanium properties (T = 300 K)

Property	Si	GaAs	Ge
Atoms (cm ⁻³)	5.0×10^{22}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ³)	2.33	5.32	5.33
Lattice constant (Å)	5.43	5.65	5.65
Melting point (°C)	1415	1238	937
Dielectric constant	11.7	13.1	16.0
Bandgap energy (eV)	1.12	1.42	0.66
Electron affinity, χ (V)	4.01	4.07	4.13
Effective density of states in conduction band, N_c (cm ⁻³)	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band, N_{ν} (cm ⁻³)	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concentration (cm ⁻³)	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Mobility (cm²/V-s)			
Electron, μ_n	1350	8500	3900
Hole, μ_p	480	400	1900
Effective mass $\left(\frac{m^*}{m_0}\right)$			
Electrons	$m_I^* = 0.98$	0.067	1.64
	$m_i^* = 0.19$		0.082
Holes	$m_{th}^* = 0.16$	0.082	0.044
	$m_{bb}^* = 0.49$	0.45	0.28
Density of states effective mass			
Electrons $\left(rac{m_{dn}^*}{m_o} ight)$	1.08	0.067	0.55
Holes $\left(\frac{m_{dp}^*}{m_o}\right)$	0.56	0.48	0.37
Conductivity effective mass			
Electrons $\frac{m_{cn}^*}{m_o}$	0.26	0.067	0.12
$\operatorname{Holes} \left(\frac{m_{cp}^*}{m_o} \right)$	0.37	0.34	0.21

Table B.5 | Other semiconductor parameters

Material	$E_g(\mathrm{eV})$	a (Å)	ϵ_r	χ	\overline{n}
Aluminum arsenide	2.16	5.66	12.0	3.5	2.97
Gallium phosphide	2.26	5.45	10	4.3	3.37
Aluminum phosphide	2.43	5.46	9.8		3.0
Indium phosphide	1.35	5.87	12.1	4.35	3.37

Table B.6 | Properties of SiO_2 and Si_3N_4 (T = 300 K)

Property	SiO ₂	Si_3N_4		
Crystal structure	[Amorphous for most integrated circuit applications]			
Atomic or molecular	2.2×10^{22}	1.48×10^{22}		
density (cm ⁻³)				
Density (g/cm ³)	2.2	3.4		
Energy gap	$\approx 9 \text{ eV}$	4.7 eV		
Dielectric constant	3.9	7.5		
Melting point (°C)	≈1700	≈1900		