Q1:
$$P=116 \text{ prs} \rightarrow P^{1}=a^{3}$$
 $a=9^{1/3}$

Aphelian distance = $a(1+e) \Rightarrow f_{ap}$ maximized when $e=1$
 $f_{ap}=2a=72 \text{ AU}$
 $\Rightarrow e=1 \text{ orbits are parabolic or radial. The comet would either plunge into the Sun or escape the Solar System Either way, not periodic.

Q1: $a_{ab} = \frac{1}{2} \text{ mu} = \frac{1}{2} \text{$$

Question 3 (15)

Rocean = 30 m Rmary = 3.394 x106 m

- Calculate the volume of the ocean layer

= 4.343 X1015 m3

- The density of water is P=1000 Hg/m3

= 4.343 x1019 kg

- Calculate mass of a D = 2 km comet

- The number of comets required is then;

= 1.037 x106 comets

- Average time between impacts:

Question 4
Vesc = 8m/s Past = 3000 Kg/m3
· calculate the mass: 15
M=PV=P: = 7. = = = = = = = = = = = = = = = = =
· sub this into the escape speed formula:
Vesc = [2GM] = [2GP3 TTR3] = [2GP3 TTR3]
R=Vesc = 8 m/s = 6179 m PG=3 TT P (2G=3 TT 3000 kg/m3)
Question 5
of con the textbook, Neptuno's surface temporature is 59 K \[\lambda_{max} = 0.29 cm = 4.92 \times 10^3 cm \] \[\tag{7.73 h} \]
whis four into the infrared portion of the electromagnetic spectrum
5

, we so the two terms where we have a property constraint which we will be $\phi = \phi$