

Universidade Federal de Minas Gerais - UFMG

Curso de Graduação em Engenharia Elétrica/Aeroespacial

Projeto de piloto automático Etapa 6

Aluno: Davi Ferreira Santiago

Matrícula: 2021020422

Aluno: Leonardo Hemerly Menezes Collaço dos Santos

Matrícula: 2020027849

Aluno: João Pedro Tavares da Fonseca Lima

Matrícula: 2020421962

Resumo

Sexta etapa do trabalho de simulação referente à disciplina de "Introdução ao Controle Automático de Aeronaves". Esta etapa consiste no projeto de um piloto automático de manutenção de altitude usando o Simulink. É utilizado o modelo linearizado da etapa anterior para projeto e teste do controlador. O presente documento contém a topologia do controlador, bem como os ganhos sintonizados e a resposta do sistema a duas diferentes referências sugeridas pelo docente responsável pela disciplina.

Conteúdo

1	Estratégia de controle		
	1.1 Requisitos de desempenho	4	
2	Resultados	5	
	2.1 Variação positiva de 5%	5	
	2.2 Variação negativa de 20%	6	
3	Conclusões	7	

1 Estratégia de controle

Conforme apresentado em sala de aula, é projetado um controlador de manutenção de altitude, Fig. 1.

Figura 1: Topologia do controlador utilizado.

Desse modo, o controlador é implementado em simulação, de maneira tal que

$$G_{CH}(s) = k_p \left(1 + \frac{1}{T_I s} \right). \tag{1}$$

Inicialmente, para uma entrada qualquer, sintonizou-se o ganho K_q do laço interno SAS de maneira a aumentar a estabilidade do sistema, verificando a resposta do sistema. Em sequência sintonizou-se o ganho K_P do controlador proporcional, buscando atingir uma resposta desejada de ângulo de arfagem. Finalmente, sintonizaram-se os ganhos do controlador proporcional-integral, buscando atingir os critérios estabelecidos e um overshoot aceitável. Explicitam-se os ganhos encontrados:

Controlador	Parâmetro	Valor
Controlador PI	k_p	0.005
	T_I	17.5
Controlador P	K_P	6
Laço interno SAS	K_q	3

Tabela 1: Tabela de ganhos dos controladores.

Ademais, buscando suavizar bordas de transição em alta frequência provenientes do degrau, é inserido também um filtro passa-baixas na altitude de referência a ser passada ao controlador, onde a equação deste é dada por

$$F(s) = \frac{1}{\tau s + 1},\tag{2}$$

onde τ é a constante de tempo do filtro, sendo utilizado o valor de $30\,s$.

1.1 Requisitos de desempenho

Para o projeto, são utilizados os seguintes critérios:

- Tempo de acomodação inferior a 50% do tempo de acomodação do polo referente ao modo fugoide, i.e. aproximadamente $380\,s;$
- Erro zero em regime permanente para a resposta ao degrau.

2 Resultados

Desse modo, são gerados resultados para referências de +5% e -20% da altitude na condição de equilíbrio encontrada.

2.1 Variação positiva de 5%

Inicialmente, é mostrado o rastreamento da referência de altitude, onde são mostrados também limites do critério de 2% para explicitar o tempo de acomodação do sistema.

Figura 2: Rastreamento da referência de altitude.

Desse modo, o tempo de acomodação foi de $83.8\,s$, inferior aos $380\,s$ requisitados, e o erro nulo em estado estacionário para a resposta ao degrau. Plotam-se também algumas variáveis de estado e a ação de controle dada pela deflexão do profundor.

Figura 3: Variáveis de estado manipuladas.

Figura 4: Ação de controle.

2.2 Variação negativa de 20%

Inicialmente, é mostrado o rastreamento da referência de altitude, onde são mostrados também limites do critério de 2% para explicitar o tempo de acomodação do sistema.

Figura 5: Rastreamento da referência de altitude.

Desse modo, o tempo de acomodação foi de $105.1\,s$, inferior aos $380\,s$ requisitados, e o erro nulo em estado estacionário para a resposta ao degrau. Plotam-se também algumas variáveis de estado e a ação de controle dada pela deflexão do profundor.

Figura 6: Variáveis de estado manipuladas.

Figura 7: Ação de controle.

3 Conclusões

Por fim, o controlador projetado foi capaz de seguir todos os requisitos de desempenho, bem como rastrear a referência de altitude fornecida.