1 Algorithm

1.1 \mathcal{O} notation

与えられた関数 g(n) に対して、 $\mathcal{O}(g(n))$ によって関数の集合

 $\mathcal{O}(g(n))=\{f(n):$ ある正の定数 c,n_0 が存在して、すべての $n\geq n_0$ に対して $0\leq f(n)\leq cg(n)$ を満たす $\}$ を表現する。

入力が一定数以下はオーバーヘッドがあったりで、ノイズなので入力が一定数以上を表現するために n_0 を設けている。

2 整数

2.1 素数

2.1.1 定義

1以外の自然数で 1 と自身以外に正の約数をもたない数を素数 (prime number) という。

1でも素数でもない数を合成数 (composite number) という。

2.1.2 素数の判定

素数 ∨ 合成数 が成り立つので、合成するを判定することで素数の判定もできる。合成数の判定に合成数の 以下の性質を利用する。

N が合成数ならば $1 < a < \sqrt{N}$ を満たす約数 a を 1 つ以上もつ

 $1 < a < \sqrt{N}$ を満たす約数 a が一つも存在しないならば N は合成数でない (対偶)

この性質から、ある整数 N において、 $[2,\sqrt{N}]$ の範囲に約数がなければ、N は合成数でない \equiv 素数 が成り立つ。以下証明

N は合成数なので、定義から1以外の2つの積に分解できる。小さいほうをaとすると

$$N = a \times b \qquad (1 < a \le b, \quad a, b \in \mathbb{Z})$$

$$N = a \times b \ge a \times a = a^2 \qquad (1 < a \le b)$$

$$N \ge a^2$$

$$a \le \sqrt{N}$$

この事実を証明したので、心置きなく、素数判定の for loop に対象判定 N の平方根を終了条件にできる。

2.2 ユークリッド互除法

2.2.1 証明

2 つの整数 a,b が与えられたとき、a,b の最大公約数が知りたい.a,b を以下のように表現したとき、a と b の公約数の集合は a と r の公約数の集合と等しくなる。

$$b = qa + r \ (0 \le r \le a)$$

 $d|a \wedge d|b \equiv d|a \wedge d|r$ を証明する。

戦略として、 $(d|a \wedge d|b \rightarrow d|a \wedge d|r) \wedge (d|a \wedge d|r \rightarrow d|a \wedge d|b)$ を証明する。

(1) $d|a \wedge d|b \rightarrow d|a \wedge d|r$ の証明 仮定より、 $\exists q_a, q_b(a = q_a d, b = q_b d)$

$$b=aq+r$$
 $q_bd=(q_ad)q+r$ (仮定から a と b を置換) $r=q_bd-qq_ad$ $r=d(q_b-qq_a)$

ここで、 q_b,q_a,q は整数であり、整数の掛け算、引き算は整数に閉じるので (q_b-qq_a) は整数。したがって、 $\exists n(r=dn)$ がいえるので、d|r がいえる。よって、 $d|a \wedge d|b \rightarrow d|a \wedge d|r$

(2) $d|a \wedge d|r \rightarrow d|a \wedge d|b$ の証明 仮定より、 $\exists q_a, q_r(a=q_ad, r=q_rd)$

$$b=aq+r$$

$$b=(q_ad)+q_rd \qquad (仮定からaとrを置換)$$
 $b=d(q_a+q_r)$

(1) と同様に、 q_a,q_r は整数であり、整数に閉じるので、 (q_a+q_r) は整数。したがって、 $\exists n(b=dn)$ がいえるので、 d|b が成り立つ。よって、 $d|a \wedge d|r \rightarrow d|a \wedge d|b$ がいえる。

2.2.2 帰結

ある 2 つの数 a,b が与えられた時、a と b の約数は a と r の約数でもある。そして r は b を a で割ったときの余りなので a よりも小さい。そのため、問題をより小さい問題に言い換えることができる。また a と r の約数は、 $a=d_1r+r_2$ とした場合 r と r_2 の約数でもある。この操作を繰り返すと、diviser(最初の a) が target(最初の b) を割り切る (r=0) ときがきて、そのとき、diviser と 0(r) が target と diviser の約数となる。そしてそのときの diviser を最大公約数と呼ぶ (定義)

2.3 倍数の判定

3桁の数 N は 100a + 10b + c とあらわせる。

N=2(50a+5b)+c とあらわせるので、N が 2 の倍数になるかどうかは最後の桁が 2 の倍数かどうかによる。

N=100a+10b+c=99a+a+9b+b+c=3(33a+3b)+a+b+c なので、各桁の数の合計が 3 の倍数 になるかで N が 3 の倍数かどうか判定できる

3 統計

3.1 条件つき確率

2つの事象 A,B に対し、A が起こった状況のもとで B が起こる条件つき確率といい、以下のように表す

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

考え方としては、P(B|A) を given として与えられている事象 A の個数と事象 A かつ B の個数と捉えて以下のように導く

$$P(B|A) = \frac{n(A \cap B)}{n(A)}$$

$$= \frac{\frac{n(A \cap B)}{n(U)}}{\frac{n(A)}{n(U)}} \qquad (分子, 分母を n(U) で割る)$$

$$= \frac{P(A \cap B)}{P(A)}$$

条件付き確率を以下の形にしたものを乗法定理という。

$$P(A \cap B) = P(B|A) \cdot P(A)$$

3.2 ベイズの定理

$$P(X \cap Y) = \frac{n(X \cap Y)}{n(U)}$$

$$= \frac{n(X \cap Y)}{1} \cdot \frac{1}{n(U)}$$

$$= \frac{n(X \cap Y)}{n(X)} \cdot \frac{n(X)}{n(U)}$$

$$= P(Y|X) \cdot P(X)$$
同様に
$$P(X \cap Y) = \frac{n(X \cap Y)}{n(U)}$$

$$= \frac{n(X \cap Y)}{1} \cdot \frac{1}{n(U)}$$

$$= \frac{n(X \cap Y)}{n(Y)} \cdot \frac{n(Y)}{n(U)}$$

$$= P(X|Y) \cdot P(Y)$$

従って P(Y|X)P(X) = P(X|Y)P(Y)

$$P(X|Y) = P(X) \cdot \frac{P(Y|X)}{P(Y)}$$

事後確率 事前確率 修正項