New York City Airbnb (2019) Price Prediction Analysis

- Siqi Wei (sw3711), Mingzhou Jin(mj3096), Yisheng Chen (yc4180), Qingci Luo (ql2466)

Get the Data

Describes the listing activity and metrics in NYC, NY for 2019.

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nights
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237	Private room	149	1
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	1
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	1
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	10

What should the price be if we want to open a private room type airbnb in Brooklyn Heights?

Get the Data

Pretty clean dataset

```
In [3]: data.shape
Out[3]: (48895, 16)
In [4]: data.columns
Out[4]: Index(['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',
               'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',
               'minimum nights', 'number of reviews', 'last review',
               'reviews per month', 'calculated host listings count',
               'availability 365'1,
              dtype='object')
In [5]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 48895 entries, 0 to 48894
        Data columns (total 16 columns):
             Column
                                             Non-Null Count Dtype
             id
                                             48895 non-null int64
             name
                                             48879 non-null object
             host id
                                             48895 non-null int64
             host name
                                             48874 non-null object
             neighbourhood group
                                             48895 non-null object
             neighbourhood
                                             48895 non-null object
             latitude
                                             48895 non-null float64
             longitude
                                             48895 non-null float64
             room type
                                             48895 non-null object
             price
                                             48895 non-null int64
             minimum nights
                                             48895 non-null int64
            number_of_reviews
                                             48895 non-null int64
         12 last review
                                             38843 non-null object
         13 reviews per month
                                             38843 non-null float64
            calculated host listings count 48895 non-null int64
         15 availability 365
                                             48895 non-null int64
        dtypes: float64(3), int64(7), object(6)
        memory usage: 6.0+ MB
```

Get the Data

In [6]: data.describe()

Out[6]:

	id	host_id	latitude	longitude	price	minimum_nights	number_of_reviews	reviews_per_month	calculated_host_listings_
count	4.889500e+04	4.889500e+04	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000	38843.000000	48895.0
mean	1.901714e+07	6.762001e+07	40.728949	-73.952170	152.720687	7.029962	23.274466	1.373221	7.1
std	1.098311e+07	7.861097e+07	0.054530	0.046157	240.154170	20.510550	44.550582	1.680442	32.9
min	2.539000e+03	2.438000e+03	40.499790	-74.244420	0.000000	1.000000	0.000000	0.010000	1.0
25%	9.471945e+06	7.822033e+06	40.690100	-73.983070	69.000000	1.000000	1.000000	0.190000	1.0
50%	1.967728e+07	3.079382e+07	40.723070	-73.955680	106.000000	3.000000	5.000000	0.720000	1.0
75%	2.915218e+07	1.074344e+08	40.763115	-73.936275	175.000000	5.000000	24.000000	2.020000	2.0
max	3.648724e+07	2.743213e+08	40.913060	-73.712990	10000.000000	1250.000000	629.000000	58.500000	327.0

Data Cleaning

```
In [7]: # Removing the duplicates if any
        if data.duplicated().sum() != 0:
            data.drop_duplicates(inplace=True)
        else:
            print(None)
        None
In [8]: # Check for the null values in each column
        data.isnull().sum()
Out[8]: id
                                               0
                                              16
        host id
                                               0
        host name
                                              21
        neighbourhood group
        neighbourhood
        latitude
        longitude
        room type
        price
        minimum nights
                                               0
        number of reviews
        last review
                                           10052
        reviews per month
                                           10052
        calculated_host_listings_count
        availability 365
        dtype: int64
```


- Latitude and longitude have a normal distribution
- Most the host has a price under \$1000
- calculated_host_listings_count has lots of outliers
- availability_365: the most of the hosts are available for short term.

Draw scatter plots for price vs. number_of_reviews and availability_365 vs. number_of_reviews

Correlation analysis helps us to see features relations

Linear Regression

To predict the response variable, we construct a linear regression model including all predictors...

Before constructing the model:

- Remove all the irrelevant features(id,name,host name...)
- Convert 'neighbourhood_group' and 'room_type' to dummy variables.

Result:

```
Training RMSE: 214.08653454183846
```

Testing RMSE: 252.03564007924012

train_score 0.10793175416491141 test_score 0.08395212651231476 Overfitting?

Regularization (Lasso Regression)

shrinks the coefficients of less important variables

Simpler model

Reduce overfitting

Method: K-fold cross validation with optimal alpha

Before regularization:

• Standardize features by using StandardScaler()s Center values around 0 with scaling to unit variance

After regularization:

Potential Problems

Model	RMSE for train	RMSE for test		
Linear regression	214.08653454183846	252.03564007924012		
Lasso regression	214.0871254248083	252.03843462132136		

Why worse?

Remove small coefficients which could be important to the model

The original dataset contains too much irrelevant information

Something is Missing

- Plot the frequency distribution of the Price
- Right-skewed!

```
# Plot the distribution of the response variable

df['price'].hist(bins=50)

plt.title('Histogram of Price')

plt.xlabel('Price')

plt.ylabel('Frequency')

plt.show()
```


Transformation Needed

Take the logarithm of the Price, making it

- More symmetric
- Reduce the impact of outliers

```
[50] df["price"] = np.log1p(df["price"])
    df = df[df['price'] != 0]
    print(df['price'].describe())
```

```
48884.000000
count
             4.737951
mean
std
             0.691782
min
             2.397895
25%
             4.248495
50%
             4.672829
75%
             5.170484
max
             9.210440
Name: price, dtype: float64
```

CHAPA SHOTZ PROVING

```
# Plot the histogram of the response variable
df['price'].hist(bins=50)
plt.title('Histogram of Price')
plt.xlabel('Price')
plt.ylabel('Frequency')
plt.show()
```


Decision Tree Model

- Build the model with default hyperparameter
- Fit the model and evaluate the performance
- Test RMSE >> Train RMSE
- OVERFITTING!

```
# Fit a decision tree model with default hyperparameters
dt = DecisionTreeRegressor(random state=42)
dt.fit(X train1, y train1)
# Predict on the test set
y pred test = dt.predict(X test1)
# Make predictions on the training set
y pred train = dt.predict(X train1)
# Evaluate the model
from sklearn.metrics import mean squared error
mse test = mean squared error(y test1, y pred test)
rmse test = np.sqrt(mse test)
mse_train = mean_squared_error(y_train1, y_pred_train)
rmse train = np.sqrt(mse train)
print('Training RMSE:', rmse train)
print('Test RMSE:', rmse test)
```

Training RMSE: 0.0012367286622135619
Test RMSE: 0.6163014783981189

Hyperparameter Tuning

- Use this approach to address overfitting
- Find the optimal hyperparameters to fit

Best score: -0.20890856936720342 Test RMSE: 0.46239772061940654

```
# Print best hyperparameters and corresponding score
best_params = grid_search.best_params_
best_score = grid_search.best_score_
print(f'Best_parameters: {best_params}')
print(f'Best_score: {best_score}')

# Train final model on entire training set using best hyperparameters
dt_best = DecisionTreeRegressor(random_state=42, **best_params)
dt_best.fit(X_train, y_train)

# Evaluate final model on test set
y_pred = dt_best.predict(X_val)
mse = mean_squared_error(y_val, y_pred)
rmse = np.sqrt(mse)
print(f'Test_RMSE: {rmse}')

Best_parameters: {'max_depth': 10, 'min_samples_leaf': 60, 'min_samples_split': 2}
```

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.model selection import GridSearchCV
from sklearn.metrics import mean squared error
# Split data into train and validation sets
X train, X val, y train, y val = train test split(df.drop(')
# Define a Decision Tree model
dt = DecisionTreeRegressor(random state=42)
# Define hyperparameters to search over
params = {'max depth': [2,5,10],
          'min samples split': [2,5,10],
          'min samples leaf': [10,20,30,40,50,60]}
# Define performance metric
scorer = 'neg mean squared error'
# Define Grid Search with cross-validation
grid search = GridSearchCV(dt, params, scoring=scorer, cv=5
# Fit Grid Search on training data
grid search.fit(X train, y train)
```

Random Forest

Further improve RMSE?

Yes!

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean squared error
# Initialize a random forest regressor
rf = RandomForestRegressor(random state = 42,
                                n estimators = 100,
                                min samples split = 10,
                                min samples leaf = 1,
                                bootstrap = True,
                                max depth = 100,
                                max features = 'sqrt')
# Fit the model on the training data
rf.fit(X train1, y train1)
# Predict on the test set
y pred = rf.predict(X test1)
# Evaluate the model
rmse = np.sqrt(mean squared error(y test1, y pred))
print('Test RMSE:', rmse)
```

Test RMSE: 0.43718390199288315

Actual vs. Predicted Plot

Fall clost the 45 degree line is the ideal scenario

Not very ideal but definitely not bad

```
import matplotlib.pyplot as plt
plt.scatter(y_val, y_pred)
plt.xlabel("Actual values")
plt.ylabel("Predicted values")
plt.title(f"Decision Tree Regression (RMSE={rmsel:.4f})")
plt.show()
```



```
plt.scatter(y_val, y_pred)
plt.xlabel("Actual values")
plt.ylabel("Predicted values")
plt.title(f"Random Forest (RMSE={rmse:.4f})")
plt.show()
```


Pricing for our Airbnb

Based on our prediction, we should charge \$153.2/night for our newly listed housing locating in Brooklyn Heights with private room

```
input features = { 'latitude': 40.693841,
                  'longitude': -73.995136,
                  'neighbourhood group Bronx': 0,
                  'neighbourhood group Brooklyn': 1,
                  'neighbourhood group Manhattan': 0,
                  'neighbourhood group Queens': 0,
                  'neighbourhood group Staten Island': 0,
                  'room type Entire home/apt': 0,
                  'room type Private room': 1,
                  'room type Shared room': 0,
                  'minimum nights': 1,
                  'number of reviews': 0,
                  'calculated host listings count': 1,
                  'availability 365': 365}
input df = pQataFrame(input features, index=[0])
# make predictions using the trained random forest model
predicted price = rf.predict(input df)
print('The predicted price is: $', np.round(np.expm1(predicted price[0]), 2))
```

The predicted price is: \$ 153.2

