Synthesizing 100 kV and 120 kV CT images from dual-energy CT using a novel ray-by-ray effective energies

Xin Tie¹, Ke Li^{1,2}, Meghan Lubner², and Guang-Hong Chen^{1,2}

¹Department of Medical Physics, University of Wisconsin-Madison ²Department of Radiology, University of Wisconsin-Madison

Outline

- Background
- Purpose
- Methods
- Phantom studies
- Human subject studies
- Discussion and conclusion

Background: clinical motivation

- GE fast-kV switching-based dual-energy CT (DECT) acquires data at 80 kV, 140 kV and typically provides material basis images and virtual monoenergetic images (VME).
- Majority of the clinical contrast-enhanced chest and abdominal CTs are performed at 100 kV or 120 kV.
- Reference standards for the CT numbers of cystic renal masses, adrenal masses, liver fat fractions and other quantitative measurements are generally established based on 100 kV and 120 kV scans.

Purpose

• The purpose of this study is to leverage ray-specific effective energies extracted from DECT projection data along with material basis images to accurately synthesize 100 kV and 120 kV CT images desired by radiologists.

Effective energy

- Effective energy is a linearized representation of the ray-specific spectral information in the energy-integrating detector (EID).
- Instead of a joint function determined by entrance photon spectrum, attenuation by the image object and detector response function, a single value is extracted for each ray, satisfying the following equation:

$$\log \frac{\overline{N_{0,i}}}{\overline{N_i}} = \overline{y_i} = p_{1,i} f_1(\xi_i) + p_{2,i} f_2(\xi_i)$$

where $\overline{N_{0,i}}$ and $\overline{N_i}$ denotes the average output counts of the EID at the i-th detector element for an air scan and an object scan, $\overline{y_i}$ is post-log projection datum, $p_{1,i}$ and $p_{2,i}$ are the line integrals of the spatial-dependent material concentrations, $f_1(\cdot)$ and $f_2(\cdot)$ are material-specific energy-dependent functions, ξ_i is extracted effective energy.

Methods: image synthesis workflow

Methods: image synthesis workflow

at 100 kV

at 120 kV

Line integrals of water basis image (p_1)

Line integrals of iodine basis image (p_2)

at 100 kV

at 120 kV

energy map at 120 kV

Synthetic effective

energy map at 100 kV

Line integrals of water basis image (p_1)

Line integrals of iodine basis image (p_2)

Methods: implementation details

- System:
 - GE Discovery CT750 HD scanner
- Protocol:
 - Standard GSI scans
 - Standard 100 kV and 120 kV scans
- The weighting factors (i.e. α , β) were learned from CatPhan 600 with true 100 kV and 120 kV data. Once learned, the factors were directly applied to other physical phantoms and human subjects.
 - α is 0.56 for 100 kV and β is 0.25 for 120 kV
- Subjects:
 - Physical phantom (Gammex and Lungman)
 - Human subjects

Phantom studies: Gammex

Phantom studies: Gammex

ROI #	Real 100 kV (HU)	Synthetic 100kV (HU)	Real — Synthetic at 100kV (HU)	Real 120kV (HU)	Synthetic 120kV (HU)	Real — Synthetic at 120kV (HU)
1	188 ± 13	190 ± 11	-2	176 ± 10	174 ± 11	2
2	261 ± 12	261 ± 12	0	201 ± 11	201 ±10	0
3	332 ± 11	333 ± 11	-1	296 ± 13	297 ± 9	-1
4	547 ± 11	540 ± 11	7	423 ± 11	421 ± 11	2
5	197 ± 12	197 ± 12	0	151 ± 12	152 ± 12	-1
6	1462 ±15	1460 ± 13	2	1271 <u>±</u> 14	1277 ± 11	-6
7	-96 ± 13	-93 ± 9	-3	-88 ± 11	-89 ± 9	1
8	918 ± 13	918 ± 12	0	803 ± 14	806 ± 11	-3
9	-68 ± 11	-64 ± 11	-4	-59 ± 12	-63 ± 10	4
10	618 ± 14	617 ± 13	1	550 ± 12	546 ± 9	4
11	1172 ± 15	1174 ± 13	-2	1022 ± 13	1029 ± 12	-7

Phantom studies: Lungman

Synthetic 100 kV

Synthetic 120 kV

True 100 kV

True 120 kV

Phantom studies: Lungman

ROI #	Real 100 kV (HU)	Synthetic 100kV (HU)	Real — Synthetic at 100kV (HU)	Real 120kV (HU)	Synthetic 120kV (HU)	Real — Synthetic at 120kV (HU)
12	208 ± 6	210 ± 5	-2	193 ± 6	193 ± 5	0
13	156 ± 8	156 ± 9	0	122 ± 8	122 ± 7	0
14	446 ± 7	446 ± 5	0	406 ± 5	405 ± 5	1

Human Subject Studies

- CT triple-phase protocol with iodine contrast enhancement
 - Standard arterial phase (100 kV)
 - Late arterial phase (DECT)
 - 3 min Delayed phase (120 kV)
- Studied 5 human subjects

 Adipose tissues and bony structures were used to benchmark the accuracy of CT numbers in our proposed method

Human Subject Studies

	True image	Synthesized image
100 kV		
120 kV		

W/L: 600/0

Human Subject Studies

 Box-whisker plot is used to analyze bias of adipose tissues, bony structures in human subjects.

Discussion and Conclusion

- For the Gammex and chest phantoms, CT numbers of all inserts were accurately depicted in the synthesized images with CT number errors less than 10 HU
- Box-whisker plot shows a near-zero bias at adipose tissues and bones of human subjects.
- Using ray-specific effective energies extracted from DECT data, virtual 100 kV and 120 kV CT images can be accurately synthesized without knowing the polychromatic spectra of each scanner.

Thank You

UW CT Research Group