

# Nondeterministic finite automata

#### **Featured Student Cub/Event**







# Theorem (stated in last lecture)

The class of regular languages is closed under the concatenation operation

IOW: if  $A_1$  and  $A_2$  are regular languages, so is  $A \circ B$ .



- Start with FA M<sub>1</sub> and M<sub>2</sub> recognizing the regular languages A<sub>1</sub> and A<sub>2</sub>.
- Construct a FA M that must accept an input if it can be broken into two pieces, where M<sub>1</sub> accepts the first piece and M<sub>2</sub> accepts the second piece.
- Problem: M doesn't know know where to break the input



We need a different strategy – nondeterminism



#### Nondeterminism

- In a **nondeterministic** machine, several choices may exist for the next state at any time.
- Nondeterminism is a generalization of determinism, so every DFA is automatically an NFA.





### Additional features in NFA compared to DFA

- Difference 1
  - DFA: every state has exactly <u>one</u> exiting arrow for each symbol
  - NFA: not the case here.
    - q<sub>1</sub> has one exiting arrow for 0, but it has two for 1
    - q<sub>2</sub> has one arrow for 0, but it has none for 1
  - In general, in an NFA a state may have <u>zero</u>, one or many exiting arrows for each alphabet symbol.





### Additional features in NFA compared to DFA

#### Difference 2

- DFA: labels on transition arrows are symbols from the alphabet
- NFA: the example N<sub>1</sub> violates this
  - It has an arrow labeled ε
- In general, an NFA may have arrows labelled with members of the alphabet or ε.
- Zero, one, or many arrows may exit from each state with label ε.





# How does an NFA compute?

- Suppose we are running an NFA on an input string and we have come to a state with multiple ways to proceed.
- For example, say we are in state  $q_1$  in the NFA  $N_1$  and the next input symbol is a 1.
- After reading that symbol, the machine splits into multiple copies of itself and follows all possibilities in parallel.
- Each copy of the machine takes one of the possible ways to proceed and continues as before.
- If there are subsequent choices, the machine splits again.
- If the next input symbol doesn't appear on any of the arrows exiting the state occupied by a copy of the machine, that copy of the machine dies.
- Finally, if <u>any one</u> of the copies of the machine is an accept state at the end of the input, the NFA accepts the input string.



# How does an NFA compute?

- If a state with an ε symbol on an exiting arrow is encountered, something similar happens
- Without reading any input, the machine splits into multiple copies, one following each of the exiting ε-labeled arrows and one staying at the current state.
- Then the machine proceeds nondeterministically as before.



#### Views of nondeterminism

#### Kind of parallel computation

- When the NFA splits to follow several choices, that corresponds to a process "forking" into several children, each processing separately
- If at least one of these processes accepts, then the entire computation accepts.

#### Tree of possibilities

- Root corresponds to start of the computation
- Each branching point in the tree corresponds to a point in the computation at which the machine has multiple choices
- Machine accepts if at least one of the branches ends in an accept state



### Visual illustration of tree of possibilities view





### Sample run: computation of N<sub>1</sub> on input 010110



What does  $N_1$  do on input 010?

Convince yourself that N<sub>1</sub> accepts all strings that contain either 101 or 11 as a substring



#### Nondeterministic FA are useful in several respects

- As we will see, every NFA can be converted into an equivalent DFA, and constructing NFAs is sometimes easier than directly constructing DFAs
- An NFA maybe much smaller than its deterministic counterpart, or its functioning may be easier to understand
- Nondeterminism in FA is also a good introduction to nondeterminism in more powerful computational models



# Examples of NFA: Example 1

- Let A be the language consisting of all strings over {0,1} containing a 1 in the third position from the end (e.g. 000100 is in A but 0011 is not).
- The following four-sate NFA N<sub>2</sub> recognizes A.



One good way to view the computation of this NFA is to say that it stays in the start state q<sub>1</sub> until it "guesses" that it is three places from the end.

At that point, if the input is a 1, it branches to state  $q_2$  and uses  $q_3$  and  $q_4$  to "check" on whether its guess was correct.



# DFA equivalent of N<sub>2</sub>

- Every NFA can be converted into an equivalent DFA, but sometimes the DFA may have many more states.
- The smallest DFA for the language A in Example 1 contains 8 states, and it is a lot more complex to understand





## Example 2

The NFA  $N_3$  at the right has input alphabet  $\{0\}$  consisting of a single symbol (unary alphabet).

This machine determines convenience of having ε arrows.

What language does the machine recognize?

0<sup>k</sup> where k is a multiple of 2 or 3.



# Example 3

Exercise: convince yourself that  $N_4$ 

accepts the strings ε, a, baba, baa

but doesn't accept the strings b, bb, babba.





#### Formal definition of NFA

Similar to DFA, but differs in one essential way: the type of the transition function

```
DFA
(state, input symbol) -----> (next state) ONE
NFA
(state, input symbol)
or -----> (set of possible next states)
(state, the empty string)
```



#### Formal definition of NFA

- To write a formal definition, we set up some additional notations.
  - For any set Q we write P(Q) to be the collection of all possible subsets of Q
  - For any alphabet  $\Sigma$  we write  $\Sigma_{\epsilon}$  to be  $\Sigma \cup \{\epsilon\}$
  - Now we can write the formal description of the type of the transition function in an NFA as  $\delta$ : Q ×  $\Sigma_{\epsilon} \rightarrow P(Q)$

### Formal definition of NFA

#### DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set of states,
- **2.**  $\Sigma$  is a finite alphabet,
- 3.  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,
- **4.**  $q_0 \in Q$  is the start state, and
- **5.**  $F \subseteq Q$  is the set of accept states.

# Recall the NFA N<sub>1</sub>



The formal description of  $N_1$  is  $(Q, \Sigma, \delta, q_1, F)$ , where

1. 
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2. 
$$\Sigma = \{0,1\},$$

3.  $\delta$  is given as

|                  | 0         | 1             | $\varepsilon$ |
|------------------|-----------|---------------|---------------|
| $\overline{q_1}$ | $\{q_1\}$ | $\{q_1,q_2\}$ | Ø             |
| $q_2$            | $\{q_3\}$ | Ø             | $\{q_3\}$     |
| $q_3$            | Ø         | $\{q_4\}$     | Ø             |
| $q_4$            | $\{q_4\}$ | $\{q_4\}$     | Ø,            |

**4.**  $q_1$  is the start state, and

5. 
$$F = \{q_4\}.$$

### Formal definition of computation of an NFA

Let  $N=(Q,\Sigma,\delta,q_0,F)$  be an NFA and w a string over the alphabet  $\Sigma$ . Then we say that N accepts w if we can write w as  $w=y_1y_2\cdots y_m$ , where each  $y_i$  is a member of  $\Sigma_{\varepsilon}$  and a sequence of states  $r_0,r_1,\ldots,r_m$  exists in Q with three conditions:

- 1.  $r_0 = q_0$ ,
- **2.**  $r_{i+1} \in \delta(r_i, y_{i+1})$ , for i = 0, ..., m-1, and
- 3.  $r_m \in F$ .