VII Semester

DEEP LEARNING				
Course Code	21CS743	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	100	
Credits	3	Exam Hours	3	

Course Learning Objectives

- CLO 1. Understand the fundamentals of deep learning.
- CLO 2. Know the theory behind Convolutional Neural Networks, Autoencoders, RNN.
- CLO 3. Illustrate the strength and weaknesses of many popular deep learning approaches.
- CLO 4. Introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems.
- CLO 5. Learn the open issues in deep learning, and have a grasp of the current research directions.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

Introduction to Deep Learning: Introduction, Deep learning Model, Historical Trends in Deep Learning,

Machine Learning Basics: Learning Algorithms, Supervised Learning Algorithms, Unsupervised Learning Algorithms.

Textbook 1: Chapter1 - 1.1, 1.2, 5.1,5.7-5.8.

Teaching-Learning Process	Chalk and board, Active Learning, Problem based learning	
Module-2		

Feedforward Networks: Introduction to feedforward neural networks, Gradient-Based Learning, Back-Propagation and Other Differentiation Algorithms. **Regularization for Deep Learning**,

Textbook 1: Chapter 6, 7

Teaching-Learning Process	Chalk and board, Active Learning, Demonstration
	Module-3

Optimization for Training Deep Models: Empirical Risk Minimization, Challenges in Neural Network Optimization, Basic Algorithms: Stochastic Gradient Descent, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates: The AdaGrad algorithm, The RMSProp algorithm, Choosing the Right Optimization Algorithm.

Textbook 1: Chapter: 8.1-8.5

Teaching-Learning Process Chalk and board, Problem based learning, Demonstration

Module-4

Convolutional Networks: The Convolution Operation, Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the Basic Convolution Function, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features- LeNet, AlexNet.

Textbook 1: Chapter: 9.1-9.9.

Teaching-Learning Process Chalk& board, Problem based learning

Module-5

Recurrent and Recursive Neural Networks: Unfolding Computational Graphs, Recurrent Neural Network, Bidirectional RNNs, Deep Recurrent Networks, Recursive Neural Networks, The Long Short-Term Memory and Other Gated RNNs.

Applications: Large-Scale Deep Learning, Computer, Speech Recognition, Natural Language Processing and Other Applications.

Textbook 1: Chapter: 10.1-10.3, 10.5, 10.6, 10.10, 12.

Teaching-Learning Process Chalk and board, MOOC

Course Outcomes

CO1: Understand the fundamental issues and challenges of deep learning data, model selection, model complexity etc.,

CO2: Describe various knowledge on deep learning and algorithms

CO3: Apply CNN and RNN model for real time applications

CO4: Identify various challenges involved in designing and implementing deep learning algorithms.

CO5: Relate the deep learning algorithms for the given types of learning tasks in varied domain

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration **01** hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy

as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks. Marks scored shall be proportionally reduced to 50 marks
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks

1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.

Reference:

- 1. Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends in Machine Learning, 2009.
- 2. N.D.Lewis, "Deep Learning Made Easy with R: A Gentle Introduction for Data Science", January 2016.
- 3. Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms", O'Reilly publications.

Weblinks and Video Lectures (e-Resources):

- https://faculty.iitmandi.ac.in/~aditya/cs671/index.html
- https://nptel.ac.in/courses/106/106/106106184/
- https://www.youtube.com/watch?v=7x2YZhEj9Dw

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning