Après la factorisation : l'équation-produit

Après une factorisation, on doit parfois résoudre une équation-produit.

Une équation-produit est une équation dans laquelle le produit de deux expressions littérales est nul.

Exemple

(2x+4)(3x-9)=0 est une équation-produit.

Remarque sur les produits nuls

Si un produit est nul, alors au moins un de ses facteurs est nul.

En effet, si a et b sont deux nombres et que a×b=0, alors a=0 ou b=0 (ou les deux).

Résolution d'une équation-produit

Pour résoudre (2x+4)(3x-9)=0 on doit donc chercher les solutions des équations 2x+4=0 et 3x-9=0. On obtient deux solutions : x=-2 et x=3.

Exemple de résolution complète d'une équation compliquée

Résolution de l'équation (x+4)(2x-5)-(x+4)(x+1)=0.

• 1. On commence par factoriser (x+4)(2x-5)-(x+4)(x+1).

$$(x+4)(2x-5) - (x+4)(x+1)$$

$$= (x+4)[(2x-5) - (x+1)]$$

$$= (x+4)(2x-5-x-1)$$

$$= (x+4)(x-6)$$

- 2. On doit donc résoudre (x+4)(x-6)=0. C'est une équation-produit.
- 3. x+4=0 ou x-6=0, donc x=-4 ou x=6. Les solutions de cette équation sont -4 et 6.

Quelles sont les solutions de l'équation

(x+7)(2x+1)+(x+7)(x+5)=0?

Exercice 16

Factorise l'expression 2(x+1) - x(x+1) puis résout l'équation 2(x+1) - x(x+1) = 0.

Exercice 17

Factorise l'expression $(x+1)^2 - 9$ puis résout l'équation $(x+1)^2 - 9 = 0$.

Exercice 18

Factorise l'expression $(2x+4)^2 - (x+1)^2$ puis résout l'équation $(2x+4)^2 - (x+1)^2 = 0$.

Équation du deuxième degré

Une équation du **deuxième degré** est une équation qui contient **des** x^2 en plus des x et des nombres.

2x+3=0 5x²+2x+3=0 est une équation du premier degré est une équation du deuxième degré

Méthode

Pour résoudre une équation du deuxième degré :

- 1. On passe tous les termes à gauche du "=".
- **2.** On <u>factorise</u> l'expression obtenue en utilisant un facteur commun ou une <u>identité</u> remarquable.
- 3. On résout l'<u>équation-produit</u> obtenue.

Exemples

- Résolution de l'équation 2x²=-3x
 - 1. $2x^2+3x=0$.
 - **2.** x(2x+3)=0.
 - 3. x=0 ou 2x+3=0, donc x=0 ou x=-1,5. On écrit $S=\{-1,5;0\}$.
- Résolution de l'équation x²=9
 - 1. $x^2-9=0$.
 - **2.** $x^2-3^2=0$ donc (x+3)(x-3)=0 (troisième identité remarquable)
 - **3.** x+3=0 ou x-3=0, donc x=-3 ou x=3. On écrit $S=\{-3;3\}$.

Quelles sont les solutions de l'équation $x^2 = 16$?

Remarque

Parfois, on ne parvient pas à factoriser l'expression.

On utilise alors <u>une autre méthode</u> que nous verrons plus tard.

Malgré tout, certaines équations du deuxième degré ne sont pas factorisables et ne possèdent pas de solutions (par exemple : $x^2+x+1=0$).

Exercice 1

Quelles sont les solutions de l'équation x²=64?

Exercice 2

Quelles sont les solutions de l'équation $9x^2=64$?

Ecris les résultats sous la forme de fractions.

Exercice 3

Quelles sont les solutions de l'équation $x^2=-5x$?

Exercice 4

Quelles sont les solutions de l'équation $x^2+x+1=1$?

Exercice 5

Quelles sont les solutions de l'équation $(x+5)^2=10x+29$?

Exercice 6

Quelles sont les solutions de l'équation $(x+9)^2=(3x+3)(x+9)$?

Exercice 7

Quelles sont les solutions de l'équation $(x+1)^2=4(3x+3)$?

Exercice 8

Quelles sont les solutions de l'équation $(4x+5)^2=(6x+8)^2$?

Ecris les solutions sous la forme de fractions.