STROKE PREDICTION

IMPORT CRUCIAL LIBRARIES

```
In [1]: import numpy as np
    import pandas as pd
    import warnings
    warnings.filterwarnings("ignore")
    import matplotlib.pyplot as plt
    import seaborn as sns
    import sklearn
```

IMPORTING CSV AS DATAFRAME.

```
In [2]: df=pd.read_csv(r"C:\Users\icon\OneDrive\Desktop\DATASETS ML\healthcare-dataset
```

Attribute Information

- 1) id: unique identifier
- 2) gender: "Male", "Female" or "Other"
- 3) age: age of the patient
- 4) hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
- 5) heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- 6) ever married: "No" or "Yes"
- 7) work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
- 8) Residence type: "Rural" or "Urban"
- 9) avg_glucose_level: average glucose level in blood
- 10) bmi: body mass index
- 11) smoking status: "formerly smoked", "never smoked", "smokes" or "Unknown"
- 12) stroke: 1 if the patient had a stroke or 0 if not

This dataset is used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status. Each row in the data provides relavant information about the patient.

DATA EXPLORATION

In [3]: # Display first 20 records

df.head(20)

Out[3]:		id	aondor		hypertension	boort discoss		work two	Posidence type
ous[s].			gender	age		neart_disease			Residence_type
	0	9046	Male	67.0	0	1	Yes	Private	Urban
	1	51676	Female	61.0	0	0	Yes	Self- employed	Rural
	2	31112	Male	80.0	0	1	Yes	Private	Rural
	3	60182	Female	49.0	0	0	Yes	Private	Urban
	4	1665	Female	79.0	1	0	Yes	Self- employed	Rural
	5	56669	Male	81.0	0	0	Yes	Private	Urban
	6	53882	Male	74.0	1	1	Yes	Private	Rural
	7	10434	Female	69.0	0	0	No	Private	Urban
	8	27419	Female	59.0	0	0	Yes	Private	Rural
	9	60491	Female	78.0	0	0	Yes	Private	Urban
	10	12109	Female	81.0	1	0	Yes	Private	Rural
	11	12095	Female	61.0	0	1	Yes	Govt_job	Rural
	12	12175	Female	54.0	0	0	Yes	Private	Urban
	13	8213	Male	78.0	0	1	Yes	Private	Urban
	14	5317	Female	79.0	0	1	Yes	Private	Urban
	15	58202	Female	50.0	1	0	Yes	Self- employed	Rural
	16	56112	Male	64.0	0	1	Yes	Private	Urban
	17	34120	Male	75.0	1	0	Yes	Private	Urban
	18	27458	Female	60.0	0	0	No	Private	Urban
	19	25226	Male	57.0	0	1	No	Govt_job	Urban

In [4]: # Display Last 20 records

df.tail(20)

Out[4]:		id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_ty
	5090	4211	Male	26.00	0	0	No	Govt_job	Ru
	5091	6369	Male	59.00	1	0	Yes	Private	Ru
	5092	56799	Male	76.00	0	0	Yes	Govt_job	Urb
	5093	32235	Female	45.00	1	0	Yes	Govt_job	Ru
	5094	28048	Male	13.00	0	0	No	children	Urb
	5095	68598	Male	1.08	0	0	No	children	Ru
	5096	41512	Male	57.00	0	0	Yes	Govt_job	Ru
	5097	64520	Male	68.00	0	0	Yes	Self- employed	Urb
	5098	579	Male	9.00	0	0	No	children	Urb
	5099	7293	Male	40.00	0	0	Yes	Private	Ru
	5100	68398	Male	82.00	1	0	Yes	Self- employed	Ru
	5101	36901	Female	45.00	0	0	Yes	Private	Urb
	5102	45010	Female	57.00	0	0	Yes	Private	Ru
	5103	22127	Female	18.00	0	0	No	Private	Urb
	5104	14180	Female	13.00	0	0	No	children	Ru
	5105	18234	Female	80.00	1	0	Yes	Private	Urb
	5106	44873	Female	81.00	0	0	Yes	Self- employed	Urb
	5107	19723	Female	35.00	0	0	Yes	Self- employed	Ru
	5108	37544	Male	51.00	0	0	Yes	Private	Ru
	5109	44679	Female	44.00	0	0	Yes	Govt_job	Urb

In [5]: # Display statistical summary
(age,hypertension,avg_glucose_level, mean>median so r.s. skewed)

df.describe()

Out[5]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000
4)

In [6]: # Display Datatyes, No. of columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):

Column	Non-Null Count	Dtype
id	5110 non-null	int64
gender	5110 non-null	object
age	5110 non-null	float64
hypertension	5110 non-null	int64
heart_disease	5110 non-null	int64
ever_married	5110 non-null	object
work_type	5110 non-null	object
Residence_type	5110 non-null	object
<pre>avg_glucose_level</pre>	5110 non-null	float64
bmi	4909 non-null	float64
smoking_status	5110 non-null	object
stroke	5110 non-null	int64
	id gender age hypertension heart_disease ever_married work_type Residence_type avg_glucose_level bmi smoking_status	id 5110 non-null gender 5110 non-null age 5110 non-null hypertension 5110 non-null heart_disease 5110 non-null ever_married 5110 non-null work_type 5110 non-null Residence_type 5110 non-null avg_glucose_level 5110 non-null 5moking_status 5110 non-null

dtypes: float64(3), int64(4), object(5)

memory usage: 479.2+ KB

```
In [7]: # Display the null values
         # bmi has 201 null values
         df.isnull().sum()
 Out[7]: id
                                 0
         gender
                                 0
                                 0
         age
         hypertension
                                 0
         heart_disease
                                 0
         ever_married
                                 0
         work_type
                                 0
         Residence type
                                 0
         avg_glucose_level
                                 0
         bmi
                               201
         smoking_status
                                 0
         stroke
                                 0
         dtype: int64
 In [8]: # Display duplicate values
         # There are no duplicate values
         df.duplicated().sum()
 Out[8]: 0
 In [9]: # Display unique values
         df.nunique()
 Out[9]: id
                               5110
                                  3
         gender
                                104
         age
         hypertension
                                  2
                                  2
         heart disease
                                  2
         ever_married
         work_type
                                  5
         Residence type
                                  2
         avg_glucose_level
                               3979
         bmi
                                418
         smoking_status
                                  4
                                  2
         stroke
         dtype: int64
         EXPLORATORY DATA ANALYSIS
In [10]: # Drop "id" column as it does not contribute the data
         df.drop(["id"],axis=1,inplace=True)
```

```
In [11]: # Display the number of value counts in gender
         # Gender is classified into three groups ie (Female, Male and Other)
         # As Other has only one value replace it with Female
         df["gender"].value_counts()
Out[11]: Female
                    2994
         Male
                    2115
         0ther
         Name: gender, dtype: int64
In [12]: # Segregating the three groups using get dummies
         pd.get_dummies(df["gender"])
Out[12]:
                Female Male Other
                                0
             0
                    0
                          1
             1
                                0
             2
                    0
                         1
                                0
             3
                    1
                         0
                                0
                    1
                         0
             4
                               0
          5105
          5106
                         0
                               0
          5107
                         0
                               0
          5108
                    0
                         1
                               0
                         0
          5109
                    1
                               0
         5110 rows × 3 columns
In [13]: # Replacing "other" with female as female has more counts
         df["gender"].replace("Other", "Male", inplace=True)
In [14]: # Display the number of value counts in gender
         df["gender"].value_counts()
Out[14]: Female
                    2994
         Male
                    2116
         Name: gender, dtype: int64
```

```
In [15]: # Deal with the 201 null values in bmi using SimpleImputer
         # Null-values are more than
         from sklearn.impute import SimpleImputer
         si=SimpleImputer(missing_values=np.nan,strategy="mean")
         df[["bmi"]]=si.fit transform(df[["bmi"]])
In [16]: # Null values in bmi are eliminated
         df["bmi"].isnull().sum()
Out[16]: 0
In [17]: # Segregating Numerical and Categorical data
         Numcol=df.select_dtypes(["int64","float64"]).columns
         Catcol=df.select_dtypes(["object"]).columns
In [18]: Numcol
Out[18]: Index(['age', 'hypertension', 'heart_disease', 'avg_glucose_level', 'bmi',
                 'stroke'],
               dtype='object')
In [19]: Catcol
Out[19]: Index(['gender', 'ever_married', 'work_type', 'Residence_type',
                 'smoking status'],
               dtype='object')
```

VISUALIZATION (UNIVARIATE, BIVARIATE AND MULTIVARIATE)

```
In [20]: sns.distplot(x = df['age'], color="red")
```

Out[20]: <AxesSubplot:ylabel='Density'>

Accordingly, the displot illustrate that the people suffering from stroke problems fall under a age catagory of 40 to 60 and old age people above 80

```
In [21]: sns.countplot(df['stroke'])
```

Out[21]: <AxesSubplot:xlabel='stroke', ylabel='count'>

The countplot shows that the possiblity of strokes occuring is substantially more when compared to not having stroke.

```
In [22]: sns.countplot(df['smoking_status'])
```

Out[22]: <AxesSubplot:xlabel='smoking_status', ylabel='count'>

The barplot shows that around 800-900 people quit smoking while 750 are still smokers. On the other hand significant amount of people never smokes and rest were unknown.

```
In [23]: sns.relplot(data=df, x="age", y="avg_glucose_level", kind="line")
```

Out[23]: <seaborn.axisgrid.FacetGrid at 0x232a33b4910>

As can be seen, age and avg glucose level are directly proportional.

```
In [24]: plt.subplots(1,4,figsize=(16,5))
    plt.subplot(141)
    sns.boxplot(df['age'],color='lightgreen')
    plt.subplot(142)
    sns.boxplot(df['hypertension'])
    plt.subplot(143)
    sns.boxplot(df['heart_disease'])
    plt.subplot(144)
    sns.boxplot(df['avg_glucose_level'],color='hotpink')
    plt.tight_layout()
    plt.show()
```


from the above boxplot outliers are clearly visible

```
In [25]: plt.figure(figsize=(12,12),facecolor="skyblue")
plt.suptitle("Skewness visualization")
pltn=1
for i in Numcol:
    if pltn<=10:
        ax=plt.subplot(4,2,pltn)

        sns.histplot(df[i],kde=True)
        plt.xlabel(i,fontsize=13)
        pltn=pltn+1
plt.tight_layout()</pre>
```


From the above graph it is clear that the data is not normally distributed as its right side skewed and contain outliers

```
In [26]: # Display coorelation with target

plt.figure(figsize=(10,6))
sns.heatmap(df.corr(),annot=True)
```

Out[26]: <AxesSubplot:>

As can be seen there is no strong corelation due to data being not normally distributed

```
In [27]: # Multivariate visualization
sns.pairplot(df,hue="stroke")
```

Out[27]: <seaborn.axisgrid.PairGrid at 0x232a4930ca0>


```
In [28]: # Display skewness
#

df.skew()
```

```
Out[28]: age -0.137059
hypertension 2.715392
heart_disease 3.947244
avg_glucose_level 1.572284
bmi 1.076716
stroke 4.193284
```

dtype: float64

```
In [29]: # Coverting categorical data to numerical using OrdinalEncoder
          from sklearn.preprocessing import OrdinalEncoder
          oe=OrdinalEncoder()
          df[['gender', 'ever_married', 'work_type', 'Residence_type',
                   'smoking_status']]=oe.fit_transform(df[['gender', 'ever_married', 'work
                   'smoking_status']])
In [30]: # Seperating dependent and independent variables features(x)/target(y)
          x=df.drop("stroke",axis=1)
          y=df["stroke"]
In [31]: x
Out[31]:
                 gender
                        age hypertension heart_disease ever_married work_type Residence_type avg_
                    1.0 67.0
              0
                                        0
                                                     1
                                                                 1.0
                                                                           2.0
                                                                                          1.0
                    0.0 61.0
              1
                                        0
                                                     0
                                                                 1.0
                                                                           3.0
                                                                                          0.0
              2
                    1.0 80.0
                                        0
                                                                 1.0
                                                                           2.0
                                                                                          0.0
                                                     1
              3
                    0.0 49.0
                                                     0
                                                                           2.0
                                                                                          1.0
                                                                 1.0
              4
                    0.0 79.0
                                        1
                                                     0
                                                                 1.0
                                                                           3.0
                                                                                          0.0
                                                                 ...
                                                                            ...
                                                                                           ...
           5105
                    0.0 80.0
                                                                 1.0
                                                                           2.0
                                                                                          1.0
           5106
                    0.0 81.0
                                        0
                                                     0
                                                                 1.0
                                                                           3.0
                                                                                          1.0
           5107
                    0.0 35.0
                                                     0
                                                                           3.0
                                                                                          0.0
                                                                 1.0
           5108
                    1.0 51.0
                                                     0
                                                                           2.0
                                                                                          0.0
                                                                 1.0
           5109
                                                                           0.0
                                                                                          1.0
                    0.0 44.0
                                        0
                                                     0
                                                                 1.0
          5110 rows × 10 columns
In [32]: y
Out[32]: 0
                   1
          1
                   1
          2
                   1
          3
                   1
          4
                   1
          5105
                   0
          5106
                   0
          5107
                   0
          5108
                   0
          5109
          Name: stroke, Length: 5110, dtype: int64
```


IMPLEMENTING LOGISTIC REGRESSION

```
In [34]: # As target is classification

from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
lr.fit(xtrain,ytrain)
ypred=lr.predict(xtest)
```

In [35]: # probability estimating

from sklearn.metrics import confusion_matrix, classification_report,accuracy_s
ac=accuracy_score(ytest,ypred)
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
print(f"Accuracy: {ac*100}\n {cm}\n{cr}")

```
Accuracy: 94.45531637312459
 [[1448
           2]
   83
          0]]
 Γ
              precision
                            recall f1-score
                                                support
           0
                   0.95
                                         0.97
                              1.00
                                                   1450
           1
                   0.00
                              0.00
                                         0.00
                                                     83
                                         0.94
                                                   1533
    accuracy
   macro avg
                   0.47
                              0.50
                                         0.49
                                                   1533
                   0.89
                              0.94
                                         0.92
weighted avg
                                                   1533
```

In [36]: sns.heatmap(confusion_matrix(ytest,ypred),annot=True)

Out[36]: <AxesSubplot:>

Training score: 95.35923958624547 Testing score: 94.45531637312459

IMPLEMENTING NAIVE BAYES GAUSSION AS TARGET IS IN BINARY FORM

```
In [38]: # As the target is in binary using gaussian nb

from sklearn.naive_bayes import GaussianNB
gb=GaussianNB()
gb.fit(xtrain,ytrain)
ypred=gb.predict(xtest)
```

In [39]: # # probability estimating
fnom ckloans methics import confusion matrix classification not

from sklearn.metrics import confusion_matrix, classification_report,accuracy_s
ac=accuracy_score(ytest,ypred)
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
print(f"Accuracy: {ac*100}\n {cm}\n{cr}")

Accuracy: 87.01891715590345

[[1298 152] [47 36]]

[47	36]]	precision	recall	f1-score	support
		0	0.97	0.90	0.93	1450
		1	0.19	0.43	0.27	83
	accui	racy			0.87	1533
m	acro	avg	0.58	0.66	0.60	1533
weig	hted	avg	0.92	0.87	0.89	1533

In [63]: # Confusion matrix through heatmap

sns.heatmap(confusion_matrix(ytest,ypred),annot=True)

Out[63]: <AxesSubplot:>

In [40]: # # Display traing and testing accuracy train=gb.score(xtrain,ytrain) test=gb.score(xtest,ytest) print(f"Training score: {train*100}\nTesting score: {test*100}")

Training score: 87.50349454850434 Testing score: 87.01891715590345

IMPLEMENTING KNN CLASSIFIER

In [41]: # Classification Accuracy

from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier(n_neighbors=5) knn.fit(xtrain,ytrain) ypred=knn.predict(xtest)

In [42]: # probability estimating

from sklearn.metrics import confusion_matrix, classification_report,accuracy_s ac=accuracy_score(ytest,ypred) cm=confusion matrix(ytest,ypred) cr=classification report(ytest,ypred) print(f"Accuracy: {ac*100}\n {cm}\n{cr}")

Accuracy: 93.9334637964775 [[1440 10]

support	f1-score	recall	precision	[83 0]]
1450 83	0.97 0.00	0.99 0.00	0.95 0.00	0 1
1533 1533 1533	0.94 0.48 0.92	0.50 0.94	0.47 0.89	accuracy macro avg weighted avg

In [43]: # Display traing and testing accuracy

train=knn.score(xtrain,ytrain) test=knn.score(xtest,ytest) print(f"Training score: {train*100}\nTesting score: {test*100}")

Training score: 95.44310875034945 Testing score: 93.9334637964775

REMOVING OUTLIERS

```
PROJECT_ML HEALTHCARE STROKE - Jupyter Notebook
In [44]: # Importing zscore
           from scipy.stats import zscore
           features=df[["hypertension", "heart_disease", "avg_glucose_level", "bmi"]]
           z=np.abs(zscore(features))
           z.head()
Out[44]:
               hypertension heart_disease avg_glucose_level
                                                                     bmi
                  0.328602
                                                   2.706375 1.001234e+00
            0
                                 4.185032
            1
                  0.328602
                                 0.238947
                                                   2.121559
                                                            4.615554e-16
            2
                  0.328602
                                                   0.005028
                                 4.185032
                                                            4.685773e-01
            3
                  0.328602
                                 0.238947
                                                   1.437358
                                                            7.154182e-01
                  3.043196
                                 0.238947
            4
                                                   1.501184
                                                            6.357112e-01
In [45]: # Removing outliers using z-score
           newdf=df[(z<=3).all(axis=1)]
           newdf
Out[45]:
                  gender age hypertension heart_disease ever_married work_type Residence_type avg_
                     0.0 61.0
                                          0
                                                        0
               1
                                                                    1.0
                                                                               3.0
                                                                                               0.0
               3
                     0.0 49.0
                                          0
                                                        0
                                                                    1.0
                                                                               2.0
                                                                                               1.0
               5
                     1.0 81.0
                                          0
                                                        0
                                                                    1.0
                                                                               2.0
                                                                                               1.0
               7
                     0.0 69.0
                                                                    0.0
                                                                               2.0
                                                                                               1.0
               8
                     0.0 59.0
                                          0
                                                        0
                                                                    1.0
                                                                               2.0
                                                                                               0.0
                                                                                ...
            5104
                     0.0 13.0
                                          0
                                                        0
                                                                    0.0
                                                                               4.0
                                                                                               0.0
            5106
                     0.0 81.0
                                          0
                                                        0
                                                                    1.0
                                                                               3.0
                                                                                               1.0
            5107
                     0.0 35.0
                                                                    1.0
                                                                               3.0
                                                                                               0.0
            5108
                     1.0 51.0
                                                        0
                                                                                               0.0
                                          0
                                                                    1.0
                                                                               2.0
            5109
                                                        0
                                                                               0.0
                     0.0 44.0
                                                                    1.0
                                                                                               1.0
           4326 rows × 11 columns
In [46]: df.shape
Out[46]: (5110, 11)
```

localhost:8888/notebooks/PROJECT_ML HEALTHCARE STROKE.ipynb

In [47]: newdf.shape

Out[47]: (4326, 11)

```
In [48]: # Data lost calculation
          dtloss=((5110-4326)/5110)*100
          dtloss
Out[48]: 15.342465753424658
In [49]:
          # Display skewness
          newdf.skew()
Out[49]: gender
                                  0.395042
          age
                                  0.015629
          hypertension
                                  0.000000
          heart_disease
                                  0.000000
          ever_married
                                 -0.468334
          work_type
                                 -0.254953
          Residence type
                                 -0.029602
          avg glucose level
                                  1.749650
          bmi
                                  0.526752
          smoking_status
                                  0.022828
          stroke
                                  5.165614
          dtype: float64
In [50]: | # # Seperating dependent and independent variables features(x)/target(y)
          x=newdf.drop("stroke",axis=1)
          y=newdf["stroke"]
In [51]:
Out[51]:
                 gender
                         age
                             hypertension heart_disease ever_married work_type Residence_type
              1
                    0.0 61.0
                                        0
                                                     0
                                                                 1.0
                                                                           3.0
                                                                                          0.0
              3
                    0.0 49.0
                                        0
                                                     0
                                                                 1.0
                                                                           2.0
                                                                                          1.0
              5
                    1.0 81.0
                                        0
                                                     0
                                                                 1.0
                                                                           2.0
                                                                                          1.0
              7
                    0.0 69.0
                                        0
                                                     0
                                                                0.0
                                                                           2.0
                                                                                          1.0
              8
                    0.0 59.0
                                        0
                                                     0
                                                                           2.0
                                                                                          0.0
                                                                 1.0
           5104
                    0.0 13.0
                                        0
                                                     0
                                                                0.0
                                                                           4.0
                                                                                          0.0
           5106
                    0.0 81.0
                                                                 1.0
                                                                           3.0
                                                                                          1.0
           5107
                    0.0 35.0
                                        0
                                                     0
                                                                 1.0
                                                                           3.0
                                                                                          0.0
           5108
                    1.0 51.0
                                        0
                                                     0
                                                                 1.0
                                                                           2.0
                                                                                          0.0
           5109
                    0.0 44.0
                                                                 1.0
                                                                           0.0
                                                                                          1.0
          4326 rows × 10 columns
```

```
In [52]: y
Out[52]: 1
                  1
                 1
         3
         5
                 1
         7
                  1
         8
                 1
         5104
                 0
         5106
                 0
         5107
                 0
         5108
                 0
         5109
                 0
         Name: stroke, Length: 4326, dtype: int64
         AFTER OUTLIERS REMOVAL APPLYING LOGISTIC REGRESSION
In [53]: # To divide our dataset in training and tersting dataset
         from sklearn.model_selection import train_test_split
         xtrain,xtest,ytrain,ytest=train test split(x,y,test size=0.3,random state=1)
In [54]: # Model implementation and object creation
         from sklearn.linear model import LogisticRegression
         lr=LogisticRegression()
         lr.fit(xtrain,ytrain)
         ypred=lr.predict(xtest)
In [55]: # probability estimating
         from sklearn.metrics import confusion_matrix, classification_report,accuracy_s
         ac=accuracy score(ytest,ypred)
         cm=confusion matrix(ytest,ypred)
         cr=classification_report(ytest,ypred)
         print(f"Accuracy: {ac*100}\n {cm}\n{cr}")
         Accuracy: 96.61016949152543
          [[1254
                    0]
                    0]]
             44
                        precision
                                     recall f1-score
                                                        support
                             0.97
                                       1.00
                                                 0.98
                                                            1254
                     0
                     1
                             0.00
                                       0.00
                                                 0.00
                                                              44
                                                 0.97
             accuracy
                                                            1298
                             0.48
                                       0.50
                                                 0.49
                                                            1298
            macro avg
         weighted avg
                             0.93
                                       0.97
                                                 0.95
                                                            1298
```

```
In [56]: # Calculating traing and testing data

train=lr.score(xtrain,ytrain)
test=lr.score(xtest,ytest)
print(f"Training score: {train*100}\nTesting score: {test*100}")
```

Training score: 96.63143989431968 Testing score: 96.61016949152543

NAIVE BAYES

In [58]: # probability estimating

from sklearn.metrics import confusion_matrix, classification_report,accuracy_s
ac=accuracy_score(ytest,ypred)
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
print(f"Accuracy: {ac*100}\n {cm}\n{cr}")

```
Accuracy: 93.37442218798151
 [[1206
          48]
    38
          6]]
                            recall f1-score
              precision
                                                support
           0
                   0.97
                              0.96
                                        0.97
                                                   1254
           1
                   0.11
                              0.14
                                        0.12
                                                     44
                                        0.93
                                                   1298
    accuracy
   macro avg
                   0.54
                              0.55
                                        0.54
                                                   1298
weighted avg
                   0.94
                              0.93
                                        0.94
                                                   1298
```

```
In [59]: # Display Training and testing Accuracy

train=gb.score(xtrain,ytrain)
    test=gb.score(xtest,ytest)
    print(f"Training score: {train*100}\nTesting score: {test*100}")
```

Training score: 93.75825627476883
Testing score: 93.37442218798151

KNN

```
In [60]: # Claasification Algorithm
         from sklearn.neighbors import KNeighborsClassifier
         knn=KNeighborsClassifier(n neighbors=5)
         knn.fit(xtrain,ytrain)
         ypred=knn.predict(xtest)
In [61]: # probability estimating
         from sklearn.metrics import confusion_matrix, classification_report,accuracy_s
         ac=accuracy_score(ytest,ypred)
         cm=confusion_matrix(ytest,ypred)
         cr=classification_report(ytest,ypred)
         print(f"Accuracy: {ac*100}\n {cm}\n{cr}")
         Accuracy: 96.37904468412944
           [[1251
                     3]
             44
                    0]]
                        precision
                                     recall f1-score
                                                          support
                     0
                             0.97
                                        1.00
                                                  0.98
                                                             1254
                     1
                             0.00
                                        0.00
                                                  0.00
                                                               44
              accuracy
                                                  0.96
                                                             1298
             macro avg
                             0.48
                                        0.50
                                                  0.49
                                                             1298
                                                  0.95
         weighted avg
                             0.93
                                        0.96
                                                             1298
In [62]: # Display traing and testing accuracy
         train=knn.score(xtrain,ytrain)
         test=knn.score(xtest,ytest)
         print(f"Training score: {train*100}\nTesting score: {test*100}")
         Training score: 96.79656538969617
         Testing score: 96.37904468412944
         Logistic Regression is the best algorithm for this dataset with accuracy of Training:- 96.63
         Testing: - 96.61
 In [ ]:
 In [ ]:
 In [ ]:
 In [ ]:
```

2/25	123	2:52	DIA
J/ ZJ	120.	Z.JZ	L IVI

In []: