Uebungsblatt 08

Truong (Hoang Tung Truong), Testfran (Minh Kien Nguyen), Hamdash

Aufgabe 1

```
abbaabbbaba \in L((ab^*a)^* + ((abb)^*(ab)^*ba)^*)?
(abbaabbbaba)^{-1}((ab^*a)^* + ((abb)^*(ab)^*ba)^*)
= (abbaabbbaba)^{-1}((ab^*a)^*) + (abbaabbbaba)^{-1}(((abb)^*(ab)^*ba)^*)
= (abbaabbbaba)^{-1}((ab^*a)^*) + (abbaabbbaba)^{-1}(((abb)^*(ab)^*ba)^*)
= (bbaabbbaba)^{-1}a^{-1}(ab^*a)^*(ab^*a)^* + (abbaabbbaba)^{-1}a^{-1}((abb+1)(ab)^*ba)((abb)^*(ab)^*ba)^*
= (baabbbaba)^{-1}b^{-1}((b^*a)(ab^*a)^*) + (bbaabbbaba)^{-1}a^{-1}(((a^{-1}(abb)(ab)^*ba+0) + (a^{-1}((ab)^*ba)))((abb)^*(ab)^*ba)^*)
= (baabbbaba)^{-1}(((b^{-1}bb^*a) + b^{-1}a)(ab^*a)^*) + (bbaabbbaba)^{-1}(((bb)(ab)^*ba + (a^{-1}(ab)(ab)^*ba + a^{-1}(ba)))((abb)^*(ab)^*ba)^*)
= (aabbbaba)^{-1}b^{-1}((b^*a)(ab^*a)^*) + (baabbbaba)^{-1}b^{-1}((bb(ab)^*ba + b(ab)^*ba)((abb)^*(ab)^*ba)^*)
= (abbbaba)^{-1}a^{-1}((b^*a)(ab^*a)^*) + (aabbbaba)^{-1}b^{-1}((b(ab)^*ba + (ab)^*ba)((abb)^*(ab)^*ba)^*)
= (abbbaba)^{-1}((a^{-1}bb^*a + a^{-1}a)(ab^*a)^*) + (abbbaba)^{-1}a^{-1}(((ab)^*ba + a)((abb)?(ab)^*ba)^*)
= (bbbaba)^{-1}a^{-1}(ab^*a)(ab^*a)^* + (bbbaba)^{-1}a^{-1}(((b(ab)^*ba + 0) + 1)((abb)?(ab)^*ba)^*)
= (bbaba)^{-1}b^{-1}((b^*a)(ab^*a)^*) + (bbbaba)^{-1}(0 + a^{-1}((abb)?(ab)^*ba)((abb)?(ab)^*ba)^*)
= (baba)^{-1}b^{-1}((b^*a)(ab^*a)^*) + (bbbaba)^{-1}(((a^{-1}(abb)(ab)^*ba + 0) + (a^{-1}((ab)^*ba)))((abb)?(ab)^*ba)^*)
= (aba)^{-1}b^{-1}((b^*a)(ab^*a)^*) + (bbbaba)^{-1}((bb(ab)^*ba + b(ab)^*ba)((abb)^*(ab)^*ba)^*)
= (ba)^{-1}a^{-1}((b^*a)(ab^*a)^*) + (bbaba)^{-1}b^{-1}((bb(ab)^*ba + b(ab)^*ba)((abb)^*(ab)^*ba)^*)
= (ba)^{-1}((a^{-1}bb^*a + a^{-1}a)(ab^*a) + (baba)^{-1}b^{-1}((b(ab)^*ba + (ab)^*ba)((abb)?(ab)^*ba)^*)
= (a)^{-1}b^{-1}((ab^*a)(ab^*a)) + (baba)^{-1}(((ab)^*ba + (0+a))((abb)?(ab)^*ba)^*)
= 0 + (aba)^{-1}b^{-1}(((ab)^*ba + a)((abb)?(ab)^*ba)^*)
= (aba)^{-1}(((b^{-1}(ab)(ab)^*ba + b^{-1}(ba)) + b^{-1}a)((abb)?(ab)^*ba)^*)
= (ba)^{-1}a^{-1}(a((abb)?(ab)*ba)*)
= (a)^{-1}b^{-1}((abb)?(ab)*ba)((abb)?(ab)*ba)*
= (a)^{-1}((b^{-1}((abb)?)(ab)*ba + b^{-1}((ab)*ba))((abb)?(ab)*ba)*)
=(a)^{-1}(((0+0)+(0+a))((abb)?(ab)*ba)*) CHECK NGOAC DONG NAY
= ((abb)?(ab)*ba)* \lor (((abb)?(ab)*ba)*) = 1 also
abbaabbbaba \in L((ab^*a)^* + ((abb)?(ab)^*ba)^*)
```

Aufgabe 2

$$L(P_1) = \{w \in \{a, b\}^* \mid 2 \mid |w|\}$$

Beispiel: $G \Rightarrow a\mathcal{U}$
 $\Rightarrow aaG$
 $\Rightarrow aab\mathcal{U}$

```
\Rightarrow aabaG
```

 $\Rightarrow aaba\epsilon = aaba$

 $L(P_2) = \{ w \in \{a, b\}^* \mid aa \text{ ist kein Teilwort von } w \}$

Beispiel: Ableitung von $ababba \in L(P_2)$

$$A_0 \Rightarrow aA_1$$

$$\Rightarrow abA_0$$

$$\Rightarrow abaA_1$$

$$\Rightarrow ababA_0$$

$$\Rightarrow ababbA_0$$

$$\Rightarrow ababbaA_1$$

$$\Rightarrow ababba\epsilon = ababba$$

$$L(P_3) = \{ a^m b^n c^p d^q \mid m, n, p, q \in \mathbb{N}_0, m \ge q, n \le p, m + n = p + q \}$$

Beispiel: Ableitung von $a^5b^2c^4d^36L(P_3)$

$$S \Rightarrow aSd \Rightarrow aaSdd \Rightarrow aaaSddd$$

$$\Rightarrow aaaBddd$$

$$\Rightarrow aaaaBcddd$$

$$\Rightarrow aaaaaBccddd$$

$$\Rightarrow aaaaaAccddd$$

$$\Rightarrow aaaaabAcccddd$$

$$\Rightarrow aaaaabbAccccddd$$

$$\Rightarrow aaaaabb\epsilon cccddd = a^5b^2c^4d^3$$

Aufgabe 4

a.

- Automat A hat einen nicht erreichbaren Zustand q_6 , welcher entfernt wird
- $\Sigma_A = \{a, b\}, F = \{q_3, q_7\}, Q F = \{q_0, q_1, q_2, q_4, q_5, q_8\}$
- Wir beginnen damit, in der Tabelle die Paare zu markieren, bei denen einer in F ist und der andere nicht.

	q_0	$ q_1 $	q_2	q_3	q_4	q_5	q_7	q_8
q_0	_			X			X	
q_1	/	_		X			X	
q_2	/	_	/	X			X	
q_3	\	\	/	\	X	X		X
q_4	\	\	/	\	\		X	
q_5	_	\	/	_	_	\	X	
q_7	_	_	/	_	_	_	_	X
$\overline{q_8}$	_		/	_	_		_	_

• Als nächstes wählen wir $e := a \in \Sigma_A$ und markieren alle (q_i, q_j) (i < j) für die $(\delta(q_i, e), \delta(q_j, e))$ schon markiert ist

	q_0	q_1	q_2	q_3	q_4	q_5	q_7	q_8
q_0	/	x	X	X		X	X	
q_1	/	/		X	X		X	X
q_2	/	/	/	X	X		X	X
q_3	_	_	/	_	X	X		X
$\overline{q_4}$	_	_	/	_	_	x	X	
q_5			/	_		_	X	x
$\overline{q_7}$			/	_			_	X
q_8			/	_			_	

• Wir wiederholen das Gleicher mit e := b

	q_0	q_1	q_2	q_3	q_4	q_5	q_7	q_8
q_0	_	X	X	X		X	X	
q_1	/	/	X	X	X		X	X
q_2	/	/	/	X	X	X	X	X
q_3	/	/	/	/	X	X		X
q_4	\	_	\	\	\	x	X	
q_5	\	_	_	_	\	/	X	X
$\overline{q_7}$		_	_	\	_	_	\	X
q_8		_	_	_	_	_	_	

- Erneute Versuche mit e := a und e := b bringt keine neue Markierung.
- Die nicht markierten Position in der oberen tabelle zeigen, welche Zustände äquivalent sind. Hier bestehen die Äquivalenzklassen von \sim aus $\{q_0, q_4, q_8\}, \{q_1, q_5\}, \{q_3, q_7\}, \{q_2\}$. Das Automat A ist schon minimal.

Aufgabe 6

Sei $\Sigma = \{q_1, ...q_n\}$ ein Alphabet.

Es gilt: für jedes Zeichen $a \in \Sigma_A$ ist $\{a\}$ eine reguläre Sprache.

(Fall 1 in der Definition von regulären Sprachen). Daraus folgt: Für jedes Wort $w \in \Sigma^*$ ist $\{w\}$ auch eine reguläre Sprache, denn für $w = q_1 q_2 ... q_n$ gilt $\{w\} = \{a_1\} \circ \{a_2\} \circ ... \circ \{a_n\}$

(nach Fall 2 in der Definition von regulären Sprachen). Sei $L = \{w_1, w_2, ..., w_m\} = \{w_1\} \cup \{w_2\} \cup ... \cup \{w_m\}$ und der oben gezeigten Eigenschaft gilt: L ist eine reguläre Sprache