ΘΕΜΑ 2

2.1.

2.1.Α. Σωστή απάντηση η (β)

Μονάδες 4

2.1.B.

Το εμβαδόν που περικλείεται μεταξύ κάθε μεταβολής και του άξονα V είναι ίσο με το αντίστοιχο έργο του αερίου, επομένως: $W_1 > W_2$ (1).

Η μεταβολή (1) είναι ισοβαρής εκτόνωση – θέρμανση, επομένως: $\Delta U_1>0~~(2)$

Η μεταβολή (2) είναι ισόθερμη εκτόνωση, επομένως: $\Delta U_2 = 0$ (3)

Από τις σχέσεις (2) και (3) προκύπτει ότι: $\Delta U_1 > \Delta U_2$ (4)

Από τις σχέσεις (1) και (4) προκύπτει ότι: $W_1 + \Delta U_1 > W_2 + \Delta U_2$ (5)

Σύμφωνα με τον πρώτο θερμοδυναμικό νόμο, $Q_1=\Delta U_1+W_1$ και $Q_2=\Delta U_2+W_2$, οπότε: $Q_1>Q_2$

Μονάδες 8

2.2.

2.2.Α. Σωστή απάντηση η (γ)

Μονάδες 4

Αρχικά

Τελικά

2.2.B.

Στην αρχική θέση όπου τα δύο σημειακά ηλεκτρικά φορτία απέχουν απόσταση r_1 , το σύστημα έχει δυναμική ενέργεια:

 $U_1 = K_C \frac{q_1 \cdot q_2}{r_1}$

 q_1 q_2 q_1 q_2 q_2 q_1 q_2 q_2

Στην τελική θέση όπου τα

δύο σημειακά ηλεκτρικά φορτία απέχουν απόσταση r_2 , το σύστημα έχει δυναμική ενέργεια:

$$U_2 = K_C \frac{q_1 \cdot q_2'}{r_2}$$

Επομένως,
$$\frac{U_1}{U_2} = \frac{K_C \frac{q_1 \cdot q_2}{r_1}}{K_C \frac{q_1 \cdot q_2'}{r_2}} \Rightarrow \frac{U_1}{U_2} = \frac{q_2 \cdot r_2}{q_2' \cdot r_1} \Rightarrow \frac{U_1}{U_2} = \frac{1 \cdot 10^{-6} \cdot 5}{3 \cdot 10^{-6} \cdot 10} \Rightarrow \frac{U_1}{U_2} = \frac{1}{6}$$

Μονάδες 9