Notes

January 28, 2015

last quiz answers: ?

on board

f bounded on [a, b] $D_f = \{x : f \text{ is not continuous at } x\}$

theorem

f is Riemann integrable iff $m * (D_f) = 0$

definition

if $T \subseteq [a, b]$ oscillation of f on T

$$\Omega_f(T) = \sup\{f(x) - f(y) : x, y \in T\}$$

for example

 $f(x)=x^2, T=[0,5]$ then oscillation is $\Omega_f=25$ $f(x)=x^2, T=\mathbb{Q}^C\cap [0,5]$ then oscillation is 25 but this time $5\not\in T$ and $0\not\in T$ and so we need the supremum

we are interested in how much the oscillation happens as we approach x

def

$$\omega_f(x) = \lim_{h \to 0^+} \Omega_f(B(x, h) \cap [a, b])$$

facts

1. $\omega_f(x) = 0$ iff f is continuous at x

theorem

let $\varepsilon > 0$ be given. if $\omega_f(x) < \varepsilon$ for all $x \in [a, b]$ then $\exists \delta > 0$ so that when $\Omega_f(T) < \varepsilon$ for any closed interval $T \subseteq [a, b]$ with $m * (T) < \delta$

for every $x \in [a,b]$ there is $B(x,\delta_x)$ such that $\Omega_f(B(x,\delta_x) \cap [a,b]) < \varepsilon$. $\{B(x,\delta_x)\}_{x \in [a,b]}$ is an open cover for [a,b] there is $x_1,\ldots,x_n\in[a,b]$ with $[a,b]\subseteq\bigcup_{i=1}^nB(x_i,\frac{\delta_{x_i}}{2})$. $\delta=\min\{\frac{\delta_{x_i}}{2}\}$ if $m*(T)<\delta$ then any two points are are within δ of x_i . $T\cap B(x_i,\frac{\delta_{x_i}}{2})\neq\emptyset$ so $T\subseteq B(x_i,\delta_{x_i})$ and so

 $\Omega_f(T) < \varepsilon$

lemma

let $J_{\varepsilon} = \{x \in [a,b] : \omega_f(x) \geq \varepsilon\}$ then J_{ε} is closed and $D_f = \bigcap_{n=1}^{\infty} J_{\frac{1}{n}}$ second part is just lemma? continuous=measure 0 first part $y \in J_{\varepsilon}^C$ then $\omega_f(y) < \varepsilon$ there is δ such that $\Omega_f(B(y,\delta) \cap [a,b] < \varepsilon$, $B(y,\delta) \subseteq J_{\varepsilon}^C$ if $z \in B(y,\delta)$ consider $bB(z,\delta)$ where δ' is chosen so that $B(z,\delta') \subseteq B(y,\delta)$. notice that $\omega_f(z) \geq \Omega_f(B(z,\delta') \cap [a,b]) \leq \Omega_f(B(y,\delta) \cap [a,b] < \varepsilon$ so $z \notin J_{\varepsilon}$.

now for proof of thrm

we want to show that f is reimann integrable iff $m*(D_f)=0$. assume $m*(D_f)>0$. $D=\bigcup_{r=1}^{\infty}J_{\frac{1}{r}}$ with $J_{\frac{1}{r}}=\{x:\omega_f(x)\geq\frac{1}{r}\}$

these are closed sets, closed sets are measurable, and this is countable union so the whole thing (D) is measurable. and since $m*(D_f)>0$ there is N>0 such that $m*(J_{\frac{1}{2}})>0$

if $J_N \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i)$ then $\sum b_i - a_i > \varepsilon$ for some $\varepsilon > 0$. now let P be a partition.

$$U(P,f) - L(P,f)$$
 (upper-lower) = $\sum_{k=1}^{n} M_k - m_k \delta_k$ check page 114ish

$$= \left[\sum_{s_1} (M_k - m_k) delt a_k\right] + \left[\sum_{s_2} M_k - m_k delt a_k\right]$$

$$s_1 = J_{1/N} \cap (x_{k-1}, x_k) \neq \emptyset$$

$$s_2 = J_{1/N} \cap (x_{k-1})$$

1.
$$D \subseteq \bigcup_{k \in S_1} (x_{k-1}, x_k)$$

$$M_k(f) - m_k(f) \ge \frac{1}{N}$$
 for all $k \in S$

$$\sum_{k \in S_1} \delta_k > \varepsilon$$

$$U(f_iP) - L(f,P) \ge \sum_{s_1} M_k - m_k \delta_k \ge \frac{1}{N} \sum_{s_1} \delta_k = \frac{1}{N} \varepsilon$$
 so f not integrable