

planetmath.org

Math for the people, by the people.

topological transformation group

Canonical name TopologicalTransformationGroup

Date of creation 2013-03-22 16:43:58 Last modified on 2013-03-22 16:43:58

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771)
Entry type Definition
Classification msc 54H15
Classification msc 22F05

Defines effective topological transformation group

Let G be a topological group and X any topological space. We say that G is a topological transformation group of X if G acts on X continuously, in the following sense:

- 1. there is a continuous function $\alpha: G \times X \to X$, where $G \times X$ is given the product topology
- 2. $\alpha(1, x) = x$, and
- 3. $\alpha(g_1g_2, x) = \alpha(g_1, \alpha(g_2, x)).$

The function α is called the *(left) action* of G on X. When there is no confusion, $\alpha(g, x)$ is simply written gx, so that the two conditions above read 1x = x and $(g_1g_2)x = g_1(g_2x)$.

If a topological transformation group G on X is effective, then G can be viewed as a group of homeomorphisms on X: simply define $h_g: X \to X$ by $h_g(x) = gx$ for each $g \in G$ so that h_g is the identity function precisely when g = 1.

Some Examples.

- 1. Let $X = \mathbb{R}^n$, and G be the group of $n \times n$ matrices over \mathbb{R} . Clearly X and G are both topological spaces with the usual topology. Furthermore, G is a topological group. G acts on X continuous if we view elements of X as column vectors and take the action to be the matrix multiplication on the left.
- 2. If G is a topological group, G can be considered a topological transformation group on itself. There are many continuous actions that can be defined on G. For example, $\alpha: G \times G \to G$ given by $\alpha(g,x) = gx$ is one such action. It is continuous, and satisfies the two action axioms. G is also effective with respect to α .