MATH 364: Lecture 5 (09/03/2024)

Today: * cases of LP

**Today: **Tone full example

Hw2, Problem 1

Cardidate choices for d.v.'s:

1. $X_i = \#$ has in paint shop for toy i, i=1,2, i=dirty, 2=ugly2. $X_i = \#$ toy i (per day) i, i=1,2, i=dirty, 2=ugly3. $X_{ij} = \#$ has of toy i in shop j, i, j=1,2; i=1=dirty, i=2=uglyhink proportionality!

Think proportionality!

1500 Dirty ('s per day in assembly shop =)

(1500) day of assembly is required for each Dirty C.

For assembly shop, can use it for assembling Dirfy C's or Ugly C's all day.

(total time for Dirty (s) + (total time for lighy (s) \leq 1 (assembly)

Similar constraint for paint shop.

If xi = # hrs in paind shop for toy i,

figure out the # toys of type i (using proportionality) Objective function: 4(# Dirty C's) + 3(# Ugly C's) (total profit) Recall feasible region of Farmer Jones LP is AEHF.

AEHF is a convex region.

Def The corners of the feasible region of an LP are called as extreme points or vertices.

Because of its convexity and linearity (defined by linear inequalities), it an LP has an optimal solution and its feasible region has extreme point, an optimal solution will occur at an extreme point!

We now consider cases of LP, which correspond to the cases of systems of linear equations. Recall that such a system has a unique solution, infinitely many solutions, or no solutions

Cases of LP

Case 1 Unique optimal solution. If the LI has a unique optimal solution, that optimal solution will be a corner point of its feasible region.

e.g., Jones LP. H(3,2-8) is the unique optimal solution.

Case I is the good, typical case of LPs. But there are three other special cases of LP (Cases 2,3, and 4).

Case 2 Some LPs have infinitely many optimal solutions, i.e., they have alternative optimal solutions.

For example, in the Jones LP, If price of earn is also \$4 | baushel, the revenue function becomes max Z=40x, +100x2 (total revenue)

Note that slope of the x_2, x_1 z-line is now equal to z_7 z_7 z_7 the slope of the (labor hrs) line $4x_1+10x_2 \le 40$.

Af $F(S_12)$, increasing Z = 40(5) + 100(2) = 400

We get z=400 at H(3,2.8) as well: 40(3) + 100(2.8) = 400.

The same Z-value is obtained at every point on HF.

Note: The slope of z-line must be same as that of a binding constraint for the LP to be Case 2.

Case 3 Some UPs have no féasible solutions, and hence no optimal solutions. Such UPs are called as infeasible UPs.

Case 4 Unbounded LPs.

There are feasible solutions with arbitarily large z-values for max UPs or arbitrarily small z-values for min UPs. Hence an unbounded UP has no optimal solutions.

Cases 1,2, and 3 correspond to the three cases of systems of linear equations $(A\bar{x}=\bar{b})$ — unique optimal solution, infinitely many solutions, and infeasible systems. Case + infinitely many solutions, and infeasible systems. Case + (unbounded LPs) is unique to LPs, i.e., there is no corresponding case in $+A\bar{x}=\bar{b}$.

We now consider several example LPs, and identify which case each one belongs to.

LP instances

1. max
$$2 = X_1 + X_2$$

St. $X_1 + X_2 \le 4$
 $X_1 - X_2 > 5$
 $X_1, X_2 > 0$

The feasible region is empty, i.e., ité a Case 3 LP (infeasible LP).

Typically, when we get an infeasible LP in practice, it indicates we do not have enough raw materials to satisfy all demands, for instance.

2.
$$\max_{x \in \mathbb{Z}} z = 4x_1 + x_2$$

s.t. $8x_1 + 2x_2 \le 16$
 $5x_1 + 2x_2 \le 12$
 $x_1, x_2 > 0$

B:
$$8x_1+2x_2=16$$

 $5x_1+2x_2=12$
 $x_1=\frac{4}{3}, x_2=\frac{8}{3}$

Every point on AB is an optimal solution. At each such point, Z = 4(z) + (0) = 8. This is a Case 2 LP, i.e., if has alternative optimal solutions.

3.
$$\max_{x_1 - x_2 \le 4} z = -x_1 + 3x_2$$

 $s.t.$ $x_1 - x_2 \le 4$
 $x_1 + 2x_2 = 4$
 $x_1, x_2 = 0$

Can Slide the z-line up without any limit.

Case 4 LP.

A set (or region) is bounded if it can be enclosed in a finite box (can be large). It is unbounded if no such finite box exists.

One Full example Formulate and solve LP:

Richy Rich trades currencies, and is working with the Crooner, the currency of ImaginationLand, and the US Dollar (USD). He can buy Crooners at the rate of \$0.20 USD per Crooner, and can buy USD at the rate of 3 Crooner per USD. Let x_1 be the number of USD bought by paying Crooners, and x_2 the number of Crooner bought by paying USD. Assume all transactions happen simultaneously, and the only restriction is that Richy should have nonnegative numbers of Crooners and USD at the end of all transactions. Formulate an LP that maximizes the total number of USD Richy has after all transactions. Graphically solve the LP, and comment on the solution.

d. V.'s
$$X_1 = \#$$
 USD, $X_2 = \#$ Crs (Grooners) at end

$$\max \quad Z = X_1 - \frac{1}{5}X_2 \qquad (\# \text{USD remaining})$$

$$X_1 - \frac{1}{5}X_2 \geqslant 0 \qquad (\text{nonneg } \# \text{USD})$$

$$X_2 \leq 5X_1 \qquad \qquad X_2 - 3X_1 \geqslant 0 \qquad (\text{nonneg } \# \text{Crooners})$$

$$X_1 \times 2 \geqslant 0 \qquad (\text{nonneg } \# \text{Crooners})$$

$$X_1 \times 2 \geqslant 0 \qquad (\text{nonneg } \# \text{Crooners})$$

Feasible region extends upward without limit, and we could slide the Z-line to the right without limit. Case 4 — unbounded LP.

The exchange rates given here are unreasonable, and will never be seen in real life.

1 USD \$5 Crs \$\frac{\times_3}{3} \frac{5}{3} USD. \rightarrow So Richy could become infinitely rich!