CHEM 223 (2024) SI Session #16

Learning Objectives: By the end of this session, students should be able to:

• Predict products and draw mechanisms for addition reactions

Section 1: Halogen Addition

1. Use the following reaction to answer the following questions

a. Draw the product(s) of the reaction, being sure to keep stereochemistry in mind.

b. Provide a mechanism to explain the production of the product you drew. Use the mechanism to explain the stereochemistry of the product.

- 2. The reaction in #1 is repeated, but water is the solvent.
 - a. Draw the product(s) of the reaction with appropriate stereochemistry

b. Draw the mechanism of the production of the product.

c. What solvent(s) could we potentially use instead of water if we want the product in #1a?

Section 2: Catalytic Hydrogenation

- 3. Cyclopentene undergoes catalytic hydrogenation
 - a. Provide both reagents that can be used for this reaction.

4. For the following reaction below, provide the product(s) with appropriate stereochemistry.

Section 3: Carbene Addition

- Drew basic Carbere
- 5. There are 3 main ways to make carbenes:
 - a. Draw the product of reacting diazomethane with heat or light. Describe any potential problems with this reaction.

diagramethere:

$$: N = N - CH_2 \xrightarrow{heat} N_2 + M_C$$
: Condene

issues: explosive, topic, and can add to C-H bank as well as C=c dark bonds.

b. Provide the reaction for the preparation of the simmon's smith reagent.

c. Draw the mechanism of the alpha elimination of Chloroform using potassium hydroxide.

$$C_{1} - C_{1} - C_{1} \xrightarrow{:\emptyset H} C_{1} - C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1}$$

$$C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1}$$

$$C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1}$$

$$C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1} \xrightarrow{C_{1}} C_{1}$$

6. The alpha elimination product in #5c reacts with (Z) 3-methylpent-2-ene. Draw the product of the reaction and draw amechanism to explain its production.

Section 4: Synthesis practice

7. Provide a synthesis to produce each of the following products.

Lets Recoup

Fill out the table with the appropriate reaction name, reaction stereochemistry (Syn, Anti, or N/A), reaction description, or example reaction based on the information given

Reaction Name	Reaction Description	Reaction Example	Reaction Stereochemistry
Markovnikov HX Addition	Adds an X (holyan) to the more-substituted end of a To band.	CHAN LEN	N/A
Ant:-markovnikar H-X addetun	Adds an X (holyn) to the less - substitute and of a To band.	HBr ROOR Br	N/A
Acid Catalyzul Hydrution	Adds an OH in a Markovnikov fashion; can rearrange	H ₂ 0 K ^H	N/A
Oxymercuration / Demercuration	Adds OH in a markovnikur fishon; Cannot rearrange	2) rebly	Anti (ring apara)
Hydroburotion	Adds OH in an out-markounker fisher; Cannot receiving	1. BH ₃ THF 2. H ₂ O ₂ , NaOH	Syn

Helagen addrtun	Adds 2 halogens across a double bond	Sr ₂ Sr	Anti (Piny openny)	
Halandrin formation	Adds a helogen and OH across a double bond. Old goes to more side, gode.	Br ₂ H ₃ O	Anti (ring opening)	
Catalytic Hydrogenation	Silver Brok. Adds Hz across deable bond.	L H₁ A	Syn	
Simmon's Smith	Adds a cyclopropane group across a double bond	CHIFT A	Syn	
	ignore	the now		
Alpha Elimination	Add CX2 acres a doubt bord.	CHBr ₃ , KOH	Syn	