GRASP

Exercise Given the following instance of the *Parallel Machine Scheduling Problem* (*PMSP*) with 3 machines:

- a) apply a basic greedy heuristic in which the selection criterium is split into two steps:
 - 1. select the task with the maximum time length: $i^* := \arg \max_{t \in T} d_t$;
 - 2. select the machine that minimises the objective function: $m^* := \arg\min_{m \in M} f(x \cup \{t, m\})$.

In case of ties, in both steps choose the item of minimum index.

b) Apply a GRASP metaheuristic with a $Restricted\ Candidate\ List\ (RCL)$ of two elements, assuming the following sequence of pseudorandom numbers: r = (0.2, 0.2, 0.3, 0.8, 0.6, 0.1).

Solution Part a) The basic greedy heuristic performs the following operations:

- 1. start with $x := \emptyset$;
- 2. select task a, compute the processing time on the three machines for each possible choice (respectively, (27,0,0) for m_1 , (0,27,0) for m_2 and (0,0,27) for m_3) and select the one implying the minimum completion time, that is m_1 , (based on the minimum index rule for ties);
- 3. select task d, compute the processing time on the three machines for each possible choice (respectively, (52,0,0) for m_1 , (27,25,0) for m_2 and (27,0,25) for m_3) and select the one implying the minimum completion time, that is m_2 :
- 4. select task f, compute the processing time on the three machines for each possible choice (respectively (43, 25, 0), (27, 41, 0), (27, 25, 16)) and choose the minimum one, that is m_3 ;
- 5. select task c, compute the processing time on the three machines for each possible choice (respectively (42, 25, 16), (27, 40, 16), (27, 25, 31)) and choose the minimum one, that is m_3 ;
- 6. select task b, compute the processing time on the three machines for each possible choice (respectively (39, 25, 31), (27, 37, 31), (27, 25, 43)) and choose the minimum one, that is m_2 ;
- 7. select task e, compute the processing time on the three machines for each possible choice (respectively (38, 37, 31), (27, 48, 31), (27, 37, 43)) and choose the minimum one, that is m_1 ;
- 8. terminate, because there is no possible augmentation.

The final solution assigns tasks a and e to m_1 , tasks b and d to m_2 tasks c and f to m_3 , with total processing times equal to (38, 37, 31) and a completion time f(x) = 38.

Part b) The *GRASP* metaheuristic finds at each step the two best alternatives and selects the first when $r \leq 0.5$, the second otherwise:

- 1. start with $x := \emptyset$;
- 2. select task a, compute the processing time on the three machines for each possible choice (respectively, (27,0,0) for m_1 , (0,27,0) for m_2 and (0,0,27) for m_3), put m_1 and m_2 in the RCL (based on the minimum index rule for ties) and choose m_1 because r = 0.2;
- 3. select task d, compute the processing time on the three machines for each possible choice (respectively, (52, 0, 0) for m_1 , (27, 25, 0) for m_2 and (27, 0, 25) for m_3), put m_2 and m_3 in the RCL (both with a completion time of 27) and choose m_2 because r = 0.2;
- 4. select task f, compute the processing time on the three machines for each possible choice (respectively (43, 25, 0), (27, 41, 0), (27, 25, 16)), put m_3 (competion time 27) and m_2 (completion time 41) in the RCL and choose m_3 because r = 0.3;
- 5. select task c, compute the processing time on the three machines for each possible choice (respectively (42, 25, 16), (27, 40, 16), (27, 25, 31)) put m_3 (competion time 31) and m_2 (completion time 40) in the RCL and choose m_2 because r = 0.8;
- 6. select task b, compute the processing time on the three machines for each possible choice (respectively (39, 40, 16), (27, 52, 16), (27, 40, 28)), put m_1 (competion time 40) and m_3 (completion time 40) in the RCL and choose m_3 because r = 0.6;
- 7. select task e, compute the processing time on the three machines for each possible choice (respectively (38, 40, 28), (27, 51, 28), (27, 40, 39)), put m_1 (competion time 40) and m_3 (completion time 40) in the RCL and choose m_1 because r = 0.1;
- 8. terminate, because there is no possible augmentation.

The final solution assigns tasks a and e to m_1 , tasks c and d to m_2 tasks b and f to m_3 , with total processing times equal to (38, 40, 28) and a completion time f(x) = 40.