1

Doffamin Go An light-weight monitoring system for Apache Hadoop

TITLE Kafka/ Zookeeper Monitoring Module built for Flamingo Ecosystem

DURATION March 13, 2016 ~ June 8, 2016

CLIENT EXEM PRESENTER ALPHADOOP

TIMELINE

OBJECTIVES

EXECUTIVE SUMMARY

LOOK OF PROGRAM

PART_01

SOFTWARE REQUIREMENTS SPECIFICATION

WHAT WE WILL DO

Collect Performance Metrics, Visualize it, and Integrate it with Flamingo.

WHAT WE WILL DO

Is all system working properly?

Of Course!

Doflamingo

% kafka

Check this out!

WHY WE NEED THIS PROJ

1. Hard to understand Hadoop

- Distributed system not intuitive
- Unable to track fluctuant mass traffic
- Eyes on only the upper level
- run and hope everything goes well

WHY WE NEED THIS PROJ

2. The Missing Link of Flamingo

Currently flamingo is able to monitor:

- Resources
- YARN application
- Map Reduce
- Nodes

HOWWEDOIT

Learn from other monitoring tools

Plenty of tools exists in the field – Learn from them and try to build up similar metrics

Build it into flamingo platform

There's flamingo's way of monitoring hadoop system. Add a new task into jobscheduler.

_ HOW WE DO IT

AGILE APPROACH

1 SPRINT = 2 WEEKS

TOTAL 5 SPRINTS along the semester

REQUIREMENTS

- 1. Built as a part of Flamingo system
- 2. Monitor and Report in Real-time
- 3. Utilize JVM ecosystem
- 4. Visualize the metrics, avoid numbers
- 5. Save metrics into Database
- 6. Special caution on log management

OBJECTIVES

O1: Set up an environment for Flamingo

O2: Define Kafka measurement metrics, visualization forms

O3: Implement API server which provides collected metrics

O4: Implement charts with Sencha

O5: Integrate with Flamingo Ecosystem

O6: Define Zookeeper measurement metric, visualization

07: Implement a Zookeeper monitoring module on Flamingo

ZOOKEEPER MODULE

KAFKA MODULE

M2 =>

SPRINT 3

SPRINIT A

SPRINT 5

HOW FAR WE CAME

TIMELINE

OBJECTIVES

_ WHO WILL DO WHAT

TEAM _ ALPHADOOP

SEUNGHYO
KANG the hadoop master

Metric Analysis

RESTful Server

JARYONG
LEE the spring master

YOUNGJAE
CHANG the sencha master

WE ARE RESPONSIBLE FOR:

1. Built as a open source software

Fork and request merge into flamingo License/ Copyrights are same with flamingo

2. Bye-bye after spring semester

A/S are not supported after June 21, 2016

WE ONLY HAVE THESE:

LIMITED TIME: 10 WEEKS

No delay accepted – when semester ends, project should be ended

LIMITED DEVELOPERS: 3 PEOPLE

No one will help us

- no money to hire someone!

PART_02

BACKGROUND RESEARCH

SAY HELLO TO MONITORING

Seeing is believing

Software is intangible; so, where can we find it?

Bigdata: the buzz needs money

Hadoop is a money-eater:

10+ nodes, consulting, (expensive) engineers

SAY HELLO TO MONITORING

SAY HELLO TO MONITORING

FUTURE OF FLAMINGO

Opensource IBM Bluemix

THE EFFECT OF OUR WORK

The ultimate control tower

Flamingo now monitors not only nodes, but also modules that compose pipeline.

Opening up new possibility

The gathered metrics can be used for further optimization or anomaly detection feature.

TECHNICAL DETAILS

[A] WHAT IS KAFKA?

A high-throughput distributed messaging system

BENEFITS

Scalable

High-throughput

Distributable

Low response time

Save on data disk

USED IN

LinkedIn

Twitter

Netflix

Tumblr

Foursquare

_TECHNICAL DETAILS

[A] WHAT IS KAFKA?

Kafka consists of producer, broker, and consumer, managed by **Zookeeper**

Producers send system messages to brokers
Brokers process them distributively
Consumers store the messages to their disks

TECHNICAL DETAILS

[A] WHAT IS KAFKA?

TECHNICAL DETAILS

[A] WHY KAFKA?

Store the messages in the DISK, not in the cache.

Consumers can rewind back to old data and re-consume them since they are in the disk for a certain period of time.

PULL model, not push model

consumer pull messages from broker without exceeding their limit; no drop occurs unlike producer-push model

Summary

Background

Deep cuts

Thoughts
Realization
Silver-lining

TECHNICAL DETAILS

[B] WHAT IS ZOOKEEPER?

Handles various errors in distributed systems.

Four Features

Using name service to separate loads.

Using distributed lock to handle synchronization error

Error detection and recovery

Configuration management

Summary Background

Deep cuts

Thoughts
Realization
Silver-lining

TECHNICAL DETAILS

[B] WHAT IS ZOOKEEPER?

PART_03

USER SCENARIO DESIGN

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

QUESTION

PHASE #1

What is a monitoring?

PHASE #2

Why do we monitor?

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

TWO NEEDS

To ensure the normal operation of the system

To find out
the cause of
abnormal
behavior

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

TWO USERS

USER #1

Administrator

Engineer

Overview

Users

Problems
Solutions
Novelty
Scenario
Schedule

USERS

USER #1

Administrator

- A. Hope everything stays normal
- B. Determine whether to put more resources or not
- C. Usually maintains a volume of system
- D. Focus on real-time data

USER #2

Engineer

- A. Fix the problem
- B. Find out the cause of the problem by traveling the past data
- C. Deeper understanding on whole system
- D. Focus on specific events

Overview Users

Problems

Solutions
Novelty
Scenario
Schedule

DIFFERENT REQUIREMENTS

USER #1

Administrator

- A. Visualize constantly changing statistics of sys.
- B. At a glance view of metrics
- C. Real-time update without user intervention

USER #2

Engineer

- A. Visualize abrupt events
- B. Can travel back to the past to find the cause of event
- C. Detailed analysis on changing variables during specific timeframe

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

EXTERNAL INTERFACE

FUNC #1

Overview

A. Dashboard

B. Configuration

FUNC #2

Timeline

A. Event Timeline

B. Timemachine

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

Overview FUNC #1

Heap memory usage

Rate (1/sec)

Minimum Fetch rate

Message Condition

Message Consumed

Response time

Max Lag

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

Overview
Users
Problems

Solutions

Novelty
Scenario
Schedule

Overview
Users
Problems
Solutions
Novelty

Scenario Schedule

WHAT'S NEW?

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

WHAT'S NEW?

Clear division of monitoring task Further implication to BM

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

USER SCENARIO

PROGRESS_UPDATE

SPRINT#5 PROGRESS

Progress

Architecture Obstacles

SPRINT#4

US#1: As a developer, I can easily plug-in MBean for visualization

- → Build General MBean Client Factory (Youngjae Chang)
- → Find appropriate D3 chart design for charts (Jaryong Lee)
- → Study websocket structure (Seunghyo Kang)
- Design Database schema for saving metric history (Youngjae Chang)
- → Define API interface for data communication & update (Jaryong Lee)
- → Design websocket communication structure (Seunghyo Kang)

US#2 : As a user, I can monitor Kafka Ecosystem

- → Plug-In Kafka MBeans into Interfaces (Youngjae Chang)
- → Place charts to fit designated Kafka monitoring module (Jaryong Lee)

Progress

Architecture Obstacles

SPRINT #5

US#1: As an operator, I can look through metric history

- → Save metrics with multiple timespans
- → Can extract specific metrics for designated timespan

US#2: As an user, I can use the tool with minimum configuration

- → JSON interface with default values set by the industry
- → Maintain functionality under the high load

Progress

Current Focus

Architecture

Obstacles

Refactoring + Documentation +

Progress
Architecture
Obstacles

WEB SOCKET

Pre-formatted zooms

To increase performance and decrease storage usage, RRD necessitates pre-formatted frequencies in data storage.

Ul level interpretation of this restriction?

