

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 4 Cobertura basada en grafos

IIC3745 – Testing

Rodrigo Saffie

rasaffie@uc.cl

- 1. Clase pasada
 - Actividad 1
- 2. Criterios de cobertura
 - Cobertura basada en grafos: flujo de información

Flujo de Información (Data Flow)

- Definición (*def*): lugar donde se asigna un valor a una variable en memoria
- Uso (use): lugar donde el valor de una variable es accedido
- def(n), def(e): conjunto de variables que son definidas en el nodo n o arista e
- use(n), use(e): conjunto de variables que son usadas en el nodo n o arista e

Flujo de Información (Data Flow)

Pares DU y Caminos DU

- Par-DU: par de lugares (I_1, I_2) tal que una variable \mathbf{v} es definida en I_1 y usada en I_2
- def-clear: se dice que un camino p de I_1 a I_2 es def-clear respecto a la variable v si no se asigna un valor a v en ningún nodo ni arista entre I_1 y I_2
- Alcance (reach): si existe un camino def-clear entre I_1 y I_2 con respecto a \mathbf{v} se dice que la definición de \mathbf{v} en I_1 alcanza a I_2
- Camino-DU: un subcamino simple def-clear respecto a \mathbf{v} que comienza con una definición de \mathbf{v} y termina con un uso de \mathbf{v}

du(ni, nj, v) = conjunto de caminos du con respecto a <math>v desde n_i hasta n_j du(ni, v) = conjunto de caminos du con respecto a <math>v que parten en n_i

Recorriendo caminos DU

 recorre-du: un camino de prueba p recorre-du el subcamino q con respecto a v si p recorre q y el subcamino q es def-clear respecto a v.

$$q = [n_{0'} n_{1'} n_{3}]$$

$$p = [n_{0'} n_{1'} n_{3'} n_{4'} n_{6}]$$

Criterios de cobertura

- All-defs coverage (ADC): Para cada conjunto de caminos-du
 S = du(n, v), TR contiene al menos un camino d en S.
 - Cada def debe alcanzar al menos un use
- All-uses coverage (AUC): Para cada conjunto de caminos-du
 S = du(n, n, v), TR contiene al menos un camino d en S.
 - Cadá déf debe alcanzar todos sus use
- All-du-paths coverage (ADUPC): Para cada conjunto de caminos-du S = du(n, n, v), TR contiene todos los caminos d en S.
 - Cada def debe alcanzar todos sus use a través de todos los caminos-du.

Criterios de cobertura: ejemplo

ADC:

• $p_1 = [n_0, n_1, n_3, n_4]$

AUC:

- $p_1 = [n_0, n_1, n_3, n_4]$
- $p_2 = [n_0, n_1, n_3, n_5]$

ADUPC:

- $p_1 = [n_{0'}, n_{1'}, n_{3'}, n_{4}]$
- $p_2 = [n_0, n_1, n_3, n_5]$
- $p_3 = [n_0, n_2, n_3, n_4]$
- $p_4 = [n_0, n_2, n_3, n_5]$

Subsumir

"Incluir algo como componente en una clasificación más abarcadora"

Cobertura de grafos aplicada

- Código fuente
- Elementos de diseño
- Especificación
- Casos de uso

Cobertura de código fuente

- Principal aplicación de los criterios de cobertura en grafos, que son representados como diagramas de control de flujo (CFG: control flow graph).
 - Nodos: Instrucciones o secuencias de instrucciones (bloques básicos)
 - Aristas: Opciones de flujo (ramificaciones)

CFG: If

CFG: If-else

```
if (x < y)
{
    y = 0;
    x = x + 1;
}
else
{
    x = y;
}</pre>
```


CFG: While

CFG: For

CFG: Flujo de información

```
read (c);
switch (c)
                                       read (c);
case 'N':
                                   n_0
    y = 25;
    break;
                       c == 'N'
                                           default
case 'Y':
    y = 50;
                                            n<sub>3</sub>
                         n,
    break;
                 y = 25
                                                y=0;
default:
                 break:
                                                break;
                              break
    y = 0;
    break;
                                        print (y);
print (y);
```

Cobertura de grafos aplicada

- Código fuente
- Elementos de diseño
- Especificación
- Casos de uso

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 4 Cobertura basada en grafos

IIC3745 – Testing

Rodrigo Saffie

rasaffie@uc.cl