矩阵论讲稿

作者: 张凯院

使用教材:《矩阵论》

科学出版社 / 西北工业大学出版社

张凯院 徐仲 等编

辅助教材:《矩阵论导教导学导考》

《矩阵论辅导讲案》

西北工业大学出版社

张凯院 徐 仲 编

课时分配: 第一章 18 学时 第四章 8 学时

第二章 6学时 第五章 8学时

第三章 8学时 第六章 8学时

西北工业大学主页(http://www.nwpu.edu.cn)

翱翔学堂—流媒体课程—矩阵论 (课堂教学录像)

精品课程—研究生高水平课程 2011—矩阵论 (网络教学课件)

矩阵论

张凯院 徐仲 等编 科学出版社(2013) 西北工业大学出版社(2017)

矩阵论简明教程(第3版) 徐仲 张凯院 陆全 等编 科学出版社(2014)

矩阵论导教导学导考(第3版) 张凯院 徐仲 编 西北工业大学出版社(2014)

矩阵论辅导讲案 张凯院 徐仲 编 西北工业大学出版社(2007)

矩阵论典型题解析及自测试题(第 2 版) 张凯院 徐仲 陆全 编 西北工业大学出版社(2003)

矩阵论同步学习辅导 张凯院 徐仲 编 西北工业大学出版社(2002)

矩阵论网络教学课件(音像版) 张凯院 主编 科学出版社(2008)

矩阵论流媒体课程(校园网)

西北工业大学主页(http://www.nwpu.edu.cn)

翱翔学堂—流媒体课程—矩阵论

精品课程—研究生高水平课程 2011—矩阵论

其它表示方法?

第一章 线性空间与线性变换

§ 1.1 线性空间

一、集合与映射

1. 集合: 能够作为整体看待的一堆东西.

列举法:
$$S = \{a_1, a_2, a_3, \cdots\}$$

性质法: $S = \{a \mid a \text{ 所具有的性质 } \}$

相等 $(S_1 = S_2)$: 指下面二式同时成立

$$\begin{aligned} &\forall a \in S_1 \Rightarrow a \in S_2, \ \not \models S_1 \subset S_2 \\ &\forall b \in S_2 \Rightarrow b \in S_1, \ \not \models S_2 \subset S_1 \end{aligned}$$

交:
$$S_1 \cap S_2 = \{a \mid a \in S_1 \perp a \in S_2\}$$

并:
$$S_1 \cup S_2 = \{a \mid a \in S_1 \ \text{ if } a \in S_2\}$$

例 1
$$S_1 = \{A = \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} \mid a_{ij} \in \mathbb{R} \}$$

$$S_2 = \{A = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} \mid a_{ij} \in \mathbb{R} \}, \quad S_1 \neq S_2$$

$$S_1 \cap S_2 = \{A = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix} \mid a_{11}, a_{22} \in \mathbb{R} \}$$

$$S_1 \cup S_2 = \{A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \mid a_{12}a_{21} = 0, a_{ij} \in \mathbb{R} \}$$

$$S_1 + S_2 = \{A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \mid a_{ij} \in \mathbb{R} \}$$

2. 数域: 关于四则运算封闭的数的集合.

例如:实数域 \mathbf{R} ,复数域 \mathbf{C} ,有理数域 \mathbf{Q} ,等等.

3. 映射: 设集合 S_1 与 S_2 , 若对任意的 $a \in S_1$, 按照法则 σ , 对应唯一的 $b \in S$, 记作 $\sigma(a) = b$. 称 σ 为由 S, 到 S, 的映射; 称 b 为 a 的象, a 为 b 的象源. (b 未必取遍集合 S,)

变换: 当 $S_1 = S_2$, 时,称映射 σ 为 S_1 上的变换.

请勿上传公共网站

 $S = \{A = (a_{ij})_{n \times n} \mid a_{ij} \in \mathbb{R}\} \quad (n \ge 2).$ 映射 σ_1 : $\sigma_1(A) = \det A$ $(S \to R)$ 变换 σ_2 : $\sigma_2(A) = (\det A)I_n$ $(S \to S)$

二、线性空间及其性质

向量→向量组→向量集合(引入线性运算、满足八条算律)→向量空间

矩阵→矩阵组→矩阵集合(引入线性运算、满足八条算律)→矩阵空间

元素→元素组→元素集合(引入线性运算、满足八条算律)→线性空间

- 1. 线性空间: 集合V 非空,给定数域K,若在V 中
 - (I) 定义的<mark>加法运算</mark>封闭, 即 $\forall x, y \in V$, 对应唯一元素 $z \in V$, 记作 z = x + y , 且满足
 - (1) 交換律: x + y = y + x
 - (2) 结合律: x + (y + z) = (x + y) + z ($\forall z \in V$)
- 零元唯一吗?
- (3) 有零元: $\exists \theta \in V$, 使得 $x + \theta = x$ ($\forall x \in V$)
- (4) 有负元: $\forall x \in V, \exists (-x) \in V$, 使得 $x + (-x) = \theta$.
- (II) 定义的<mark>数乘运算</mark>封闭, 即 $\forall x \in V, \forall k \in K$,对应唯一元素 $z \in V$,记作z = kx,且满足
- (5) 数对元素分配律: $k(x+y) = kx + ky \quad (\forall y \in V)$
- (6) 元素对数分配律: (k+l)x = kx + lx $(\forall l \in K)$
- (7) 数因子结合律: k(lx) = (kl)x ($\forall l \in K$)
- (8) 有单位数: 单位数 $1 \in K$, 使得1x = x. 则称V为K上的线性空间.
- R^{m×n}—矩阵空间 例 3 K = R 时, R'' — 向量空间: $P_{a}[t]$ —多项式空间; C[a,b]—函数空间

 $K = \mathbb{C}$ 时, \mathbb{C}'' —复向量空间; $\mathbb{C}'''^{\times n}$ —复矩阵空间

例 4 集合 $R^+ = \{m \mid m$ 是正实数 $\}$,数域 $R = \{k \mid k$ 是实数 $\}$.

加法: $m,n \in \mathbb{R}^+$, $m \oplus n = mn$ 数乘: $m \in \mathbb{R}^+, k \in \mathbb{R}, k \circ m = m^k$ 验证 R^{\dagger} 是R上的线性空间.

- 证 加法封闭,且(1)~(2)成立.
 - (3) $m \oplus \theta = m \Rightarrow m\theta = m \Rightarrow \theta = 1$
 - (4) $m \oplus (-m) = \theta \Rightarrow m(-m) = 1 \Rightarrow (-m) = 1/m$

数乘封闭, $(5)\sim(8)$ 成立. 故 \mathbf{R}^+ 是 \mathbf{R} 上的线性空间.

例 5 集合 $\mathbb{R}^2 = \{\alpha = (\xi_1, \xi_2) \mid \xi_i \in \mathbb{R}\}$,数域 \mathbb{R} . 设 $\beta = (\eta_1, \eta_2), k \in \mathbb{R}$.

运算方式 1 加法: $\alpha + \beta = (\xi_1 + \eta_1, \xi_2 + \eta_2)$

数乘: $k\alpha = (k\xi_1, k\xi_2)$

运算方式 2 加法: $\alpha \oplus \beta = (\xi_1 + \eta_1, \xi_2 + \eta_2 + \xi_1 \eta_1)$

数乘: $k \circ \alpha = (k\xi_1, k\xi_2 + \frac{1}{2}k(k-1)\xi_1^2)$

可以验证 $R^2(+\cdot)$ 与 $R^2(\oplus \circ)$ 都是 R 上的线性空间.

两个不同的 线性空间!

可以作为 算律应用

[注] 在R²($\oplus \circ$)中, $\theta = (0,0)$, $-\alpha = (-\xi_1, -\xi_2 + \xi_1^2)$.

Th1 线性空间V中的零元素唯一,负元素也唯一.

证 设 θ_1 与 θ_2 都是V的零元素,则 $\theta_1 = \theta_1 + \theta_2 = \theta_2 + \theta_1 = \theta_2$

设 x_1 与x,都是x的负元素,则由 $x+x_1=\theta$ 及 $x+x_2=\theta$ 可得

$$x_1 = x_1 + \theta = x_1 + (x + x_2) = (x_1 + x) + x_2$$

= $(x + x_1) + x_2 = \theta + x_2 = x_2 + \theta = x_2$

例 6 在线性空间V中,下列结论成立.

 $0x = \theta$: $1x + 0x = (1 + 0)x = 1x \Rightarrow 0x = \theta$

 $k\theta = \theta$: $kx + k\theta = k(x + \theta) = kx \Rightarrow k\theta = \theta$

$$(-1)x = (-x)$$
: $(-1)x = (-1)x + [x + (-x)] = [(-1)x + 1x] + (-x) = (-x)$

- 2. 减法运算:线性空间V中,x-y=x+(-y).
- 3. 线性组合: $x, x_i \in V$, 若存在 $c_i \in K$, 使 $x = c_1 x_1 + \cdots + c_m x_m$, 则称 $x \in X_1, \cdots, X_m$ 的线性组合,或者 x 可由 x_1, \cdots, x_m 线性表示.
- 4. 线性相关: 若有 c_1, \dots, c_m 不全为零,使得 $c_1x_1 + \dots + c_mx_m = \theta$,则称 元素组 x_1, \dots, x_m 线性相关.
- 5. 线性无关: 仅当 c_1, \dots, c_m 全为零时,才有 $c_1x_1 + \dots + c_mx_m = \theta$,则称 元素组 x_1, \dots, x_m 线性无关.
- [注] 在 $R^2(\oplus \circ)$ 中, $\alpha_1 = (1,1)$, $\alpha_2 = (2,2)$ 线性无关; $\alpha_1 = (1,1)$, $\alpha_2 = (2,3)$ 线性相关.

特殊运算 特殊结论

基不是唯一的!

在例 4 的 R⁺中,任意两个正数线性相关.

三、基与坐标

1. 基与维数: 线性空间V中,若元素组 x_1, \dots, x_n 满足 (1) x_1, \dots, x_n 线性无关; (2) $\forall x \in V$ 都可由 x_1, \dots, x_n 线性表示.

称 x_1,\dots,x_n 为V的一个基,n为V的维数,记作 $\dim V = n$,或者 V^n .

请勿上传公共网站

[注]
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & a_{12} \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ a_{21} & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & a_{22} \end{bmatrix}$$
$$= a_{11} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + a_{21} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= a_{11} E_{11} + a_{12} E_{12} + a_{21} E_{21} + a_{22} E_{22} = \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} E_{ij}$$

- 例 7 矩阵空间 R ""*" 中, 易见
 - (1) E_{ij} ($i = 1, 2, \dots, m$; $j = 1, 2, \dots, n$) 线性无关;

(2)
$$A = (a_{ij})_{m \times n} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij}$$
.

故 E_{ij} $(i=1,2,\cdots,m;j=1,2,\cdots,n)$ 是 $\mathbf{R}^{m\times n}$ 的一个基, $\dim \mathbf{R}^{m\times n}=mn$.

- 2. 坐标: 给定线性空间V"的基 x_1, \dots, x_n ,当 $x \in V$ "时,有 $x = \xi_1 x_1 + \dots + \xi_n x_n, \quad \text{称} \, \xi_1, \dots, \xi_n \text{为} \, x \, \text{在给定基} \, x_1, \dots, x_n \, \text{下的}$ 坐标,记作列向量 $\alpha = (\xi_1, \dots, \xi_n)^{\mathrm{T}}$.
- Th2 线性空间V"中,元素在给定基下的坐标唯一.
- 证 设V'' 的基为 x_1,\dots,x_n ,对于 $x \in V''$,若

$$x = \xi_1 x_1 + \dots + \xi_n x_n = \eta_1 x_1 + \dots + \eta_n x_n$$

则有
$$(\xi_1 - \eta_1)x_1 + \cdots + (\xi_n - \eta_n)x_n = \theta$$

因为 x_1,\dots,x_n 线性无关,所以 $\xi_i-\eta_i=0$,即 $\xi_i=\eta_i$ ($i=1,2,\dots,n$). 故x 的坐标唯一.

- [注] 设 $x,y \in V$ "在给定基 x_1,\dots,x_n 下的坐标为 α,β (列向量),则
 - (1) x + y在该基下的坐标为 $\alpha + \beta$.

抽象运算转化为向量的通常运算

- (2) kx在该基下的坐标为 $k\alpha$ ($k \in K$).
- (3) $x = \xi_1 x_1 + \dots + \xi_n x_n = (x_1, \dots, x_n) \alpha$ (矩阵乘法形式).
- 例 8 矩阵空间 $\mathbf{R}^{2\times 2}$ 中,设 $A = (a_{ij})_{2\times 2}$.
 - (1) 取基 E_{11} , E_{12} , E_{21} , E_{22} , $A = a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21} + a_{22}E_{22}$ 坐标为 $\alpha = (a_{11}, a_{12}, a_{21}, a_{22})^{\mathrm{T}}$

(2) 取基
$$B_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B_2 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B_3 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, $B_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

$$A = a_{11}(B_1 - B_2) + a_{12}(B_2 - B_3) + a_{21}(B_3 - B_4) + a_{22}B_4$$

$$= a_{11}B_1 + (a_{12} - a_{11})B_2 + (a_{21} - a_{12})B_3 + (a_{22} - a_{21})B_4$$
坐标为 $\beta = (a_{11}, a_{12} - a_{11}, a_{21} - a_{12}, a_{22} - a_{21})^T$

[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同.

例如: $A = E_{12}$ 在上述两个基下的坐标都是 $(0,0,0,1)^{T}$. $A = E_{11}$ 在上述两个基下的坐标不同.

- 例 9 设线性空间V"的基为 x_1,\dots,x_n ,元素 y,y_1,\dots,y_m 在该基下的坐标为 $\alpha,\alpha_1,\dots,\alpha_m$,则有
 - (1) 元素 y 可由 y_1, \dots, y_m 线性表示 \Leftrightarrow 向量 α 可由 $\alpha_1, \dots, \alpha_m$ 线性表示;
 - (2) 元素组 y_1, \dots, y_m 线性相关 \Leftrightarrow 向量组 $\alpha_1, \dots, \alpha_m$ 线性相关;
 - (3) y_{i_1}, \dots, y_{i_r} 是元素组 y_1, \dots, y_m 的最大无关组 \Leftrightarrow $\alpha_{i_1}, \dots, \alpha_{i_r}$ 是向量组 $\alpha_{i_1}, \dots, \alpha_{i_m}$ 的最大无关组.
- 证(2) 对于数组 k_1,\dots,k_m ,因为

$$k_1y_1+\cdots+k_my_m=(x_1,\cdots,x_n)(k_1\alpha_1+\cdots+k_m\alpha_m)=\theta$$
 等价于 $k_1\alpha_1+\cdots+k_m\alpha_m=0$,所以结论成立.

四、基变换与坐标变换

1. 基变换: 设线性空间V''的基(I)为 x_1,\dots,x_n , 基(II)为 y_1,\dots,y_n , 则

$$\begin{cases} y_{1} = c_{11}x_{1} + c_{21}x_{2} + \dots + c_{n1}x_{n} \\ y_{2} = c_{12}x_{1} + c_{22}x_{2} + \dots + c_{n2}x_{n} \\ & \dots & \vdots \\ y_{n} = c_{1n}x_{1} + c_{2n}x_{2} + \dots + c_{nn}x_{n} \end{cases} \qquad C = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}$$

写成矩阵乘法形式为 $(y_1,\dots,y_n)=(x_1,\dots,x_n)C$

称上式为基变换公式,C为由基(I)改变为基(II)的过渡矩阵.

- [注] 过渡矩阵 C 一定可逆. 否则 C 的 n 个列向量线性相关,从而 y_1, \dots, y_n 线性相关(例 9). 矛盾! 由此可得 $(x_1, \dots, x_n) = (y_1, \dots, y_n)C^{-1}$ 称 C^{-1} 为由基(II) 改变为基(I)的过渡矩阵.
- 2. 坐标变换: 设 $x \in V$ "在两个基下的坐标分别为 α 和 β ,则有

$$x = \xi_1 x_1 + \dots + \xi_n x_n = (x_1, \dots, x_n) \alpha$$

$$x = \eta_1 y_1 + \dots + \eta_n y_n = (y_1, \dots, y_n) \beta = (x_1, \dots, x_n) C \beta$$

由定理 2 可得 $\alpha = C\beta$, 或者 $\beta = C^{-1}\alpha$, 称为坐标变换公式.

例 10 矩阵空间 R^{2×2} 中, 取基

(I)
$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $A_4 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
(II) $B_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $B_3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $B_4 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

- (1) 求由基(I)改变为基(II)的过渡矩阵;
- (2) 求由基(Ⅱ)改变为基(Ⅰ)的坐标变换公式.

解 采用中介法求过渡矩阵.

基(0):
$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

$$(0) \rightarrow (1)$$
: $(A_1, A_2, A_3, A_4) = (E_{11}, E_{12}, E_{21}, E_{22}, E_{22})C_1$

$$(0) \rightarrow (II): (B_1, B_2, B_3, B_4) = (E_{11}, E_{12}, E_{21}, E_{22})C_2$$

$$C_{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 \end{bmatrix}, \quad C_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

 $(I) \rightarrow (II): (B_1, B_2, B_3, B_4) = (A_1, A_2, A_3, A_4)C_1^{-1}C_2$

$$C = C_1^{-1}C_2 = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} C_2 = \frac{1}{2} \begin{bmatrix} 2 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 2 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{bmatrix} = C \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2\eta_1 + \eta_2 + \eta_3 + \eta_4 \\ \eta_2 + \eta_3 + \eta_4 \\ 2\eta_1 + 2\eta_2 + \eta_3 \\ \eta_3 \end{bmatrix}$$

五、线性子空间

- 1. 定义:线性空间V中,若子集V,非空,且对V中的<mark>线性运算封闭</mark>,即
 - (1) $\forall x, y \in V_1 \Rightarrow x + y \in V_1$
 - (2) $\forall x \in V_1, \forall k \in K \Rightarrow kx \in V_1$

称V,为V的线性子空间,简称为子空间.

- [注] (1) 子空间 V_1 也是线性空间,而且 $\dim V_1 \leq \dim V$.
 - (2) $\{\theta\}$ 是V 的线性子空间,规定 $\dim\{\theta\}=0$.
 - (3) 子空间V, 的零元素就是V 的零元素.

例 11 线性空间V中,子集 V_1 是V的子空间 \Leftrightarrow 对 $\forall x, y \in V_1, \forall k, l \in K, 有 <math>kx + ly \in V_1$.

证 充分性.
$$k = l = 1$$
: $\forall x, y \in V_1 \Rightarrow x + y \in V_1$

$$l = 0$$
: $\forall x \in V_1, \forall k \in K \Rightarrow kx = kx + 0y \in V_1$ 故 V_1 是 V 的子空间.

必要性.
$$\forall x \in V_1, \forall k \in K \Rightarrow kx \in V_1$$
 (数乘封闭)
$$\forall y \in V_1, \forall l \in K \Rightarrow ly \in V_1$$
 (数乘封闭)
$$故 kx + ly \in V_1$$
 (加法封闭)

例 12 在线性空间V中,设 $x_i \in V$ ($i = 1, 2, \dots, m$),则 $V_1 = \{x = k_1 x_1 + \dots + k_m x_m \mid k_i \in K\}$

构造方法

是V的子空间,称 V_1 为由 x_1, \dots, x_m 生成的子空间.

- 证 $\forall x \in V_1 \Rightarrow x = k_1 x_1 + \dots + k_m x_m$, $\forall y \in V_1 \Rightarrow y = l_1 x_1 + \dots + l_m x_m$ $\forall k, l \in K$: $kx + ly = (kk_1 + ll_1)x_1 + \dots + (kk_m + ll_m)x_m \in V_1$ 根据例 11 知, $V_1 \neq V$ 的子空间.
- [注] (1) 将 V_1 记作span $\{x_1,\dots,x_m\}$ 或者 $L(x_1,\dots,x_m)$.

- (2) 元素组 x_1,\dots,x_m 的最大无关组是 $L(x_1,\dots,x_m)$ 的基.
- (3) 若线性空间 V^n 的基为 x_1,\dots,x_n ,则 $V^n = L(x_1,\dots,x_n)$.
- 2. 矩阵的值域:

划分
$$A = (a_{ij})_{m \times n} = (\beta_1, \dots, \beta_n) \quad (\beta_j \in \mathbb{C}^m)$$

称 $R(A) = L(\beta_1, \dots, \beta_n)$ 为矩阵 A 的值域(列空间)

易见 $\dim R(A) = \operatorname{rank} A$.

例 13 矩阵 A 的值域 $R(A) = \{\beta = Ax \mid x \in \mathbb{C}^n\}$.

证
$$\forall \beta \in \Xi$$
, 有 $\beta = k_1\beta_1 + \dots + k_n\beta_n = (\beta_1, \dots, \beta_n) \begin{bmatrix} k_1 \\ \vdots \\ k_n \end{bmatrix} = Ax \in \Xi$

$$\forall \beta \in \hat{\pi}, \hat{\pi} \quad \beta = Ax = (\beta_1, \dots, \beta_n) \begin{bmatrix} k_1 \\ \vdots \\ k_n \end{bmatrix} = k_1 \beta_1 + \dots + k_n \beta_n \in \hat{\Xi}$$

3. 矩阵的零空间:

设 $A \in \mathbb{C}^{m \times n}$,称 $N(A) = \{x \mid Ax = 0, x \in \mathbb{C}^n\}$ 为矩阵A的零空间.

易见 $\dim N(A) = n - \operatorname{rank} A$.

Th3 线性空间V''中,设子空间 V_1 的基为 x_1, \dots, x_m (m < n),则存在 $x_{m+1}, \dots, x_n \in V''$,使得 $x_1, \dots, x_m, x_{m+1}, \dots, x_n$ 为V''的基.

证 $m < n \Rightarrow \exists x_{m+1} \in V^n$ 不能由 x_1, \dots, x_m 线性表示

 $\Rightarrow x_1, \dots, x_m, x_{m+1}$ 线性无关

若m+1=n,则 x_1,\dots,x_m,x_{m+1} 是 V^n 的基;

子空间的基能够扩充为线性空间的基

否则,
$$m+1 < n \Rightarrow \exists x_{m+2} \in V$$
"不能由 x_1, \dots, x_m, x_{m+1} 线性表示 $\Rightarrow x_1, \dots, x_m, x_{m+1}, x_{m+2}$ 线性无关

若m+2=n,则 $x_1,\dots,x_m,x_{m+1},x_{m+1}$,是 V^n 的基;

否则, $m+2 < n \Rightarrow \cdots$. 依此类推, 即得所证.

六、子空间的交与和

1. 子空间的交: $V_1 \cap V_2 = \{x \mid x \in V_1 \perp x \in V_2 \}$

Th4 设 V_1 , V_2 是线性空间V的子空间,则 $V_1 \cap V_2$ 是V的子空间.

证
$$\theta \in V_1, \theta \in V_2 \Rightarrow \theta \in V_1 \cap V_2 \Rightarrow V_1 \cap V_2$$
 非空

$$\forall x, y \in V_1 \cap V_2 \Rightarrow \begin{cases} x, y \in V_1 \Rightarrow x + y \in V_1 \\ x, y \in V_2 \Rightarrow x + y \in V_2 \end{cases} \Rightarrow x + y \in V_1 \cap V_2$$

$$\forall k \in K, \forall x \in V_1 \cap V_2 \Rightarrow \begin{cases} x \in V_1 \Rightarrow kx \in V_1 \\ x \in V_2 \Rightarrow kx \in V_2 \end{cases} \Rightarrow kx \in V_1 \cap V_2$$

所以 $V_1 \cap V_2$ 是V 的子空间.

2. 子空间的和: $V_1 + V_2 = \{x = x_1 + x_2 \mid x_1 \in V_1, x_2 \in V_2\}$

Th5 设 V_1 , V_2 ,是线性空间V的子空间,则 V_1 + V_2 ,是V的子空间.

$$\coprod \theta \in V_1, \theta \in V_2 \Rightarrow \theta = \theta + \theta \in V_1 + V_2 \Rightarrow V_1 + V_2$$
 非空

$$\forall x, y \in V_1 + V_2 \Rightarrow \begin{cases} x = x_1 + x_2, x_1 \in V_1, x_2 \in V_2 \\ y = y_1 + y_2, y_1 \in V_1, y_2 \in V_2 \end{cases}$$
$$\Rightarrow x + y = (x_1 + y_1) + (x_2 + y_2), \quad x_1 + y_1 \in V_1, x_2 + y_2 \in V_2$$
$$\Rightarrow x + y \in V_1 + V_2,$$

$$\forall k \in K, \forall x \in V_1 + V_2 \Rightarrow x = x_1 + x_2, x_1 \in V_1, x_2 \in V_2$$
$$\Rightarrow kx = kx_1 + kx_2, kx_1 \in V_1, kx_2 \in V_2$$
$$\Rightarrow kx \in V_1 + V_2$$

所以1/1+1/1,是1/的子空间.

[注] $V_1 \cup V_2$ 不一定 是V 的子空间.

例如: 在 \mathbb{R}^2 中, $V_1 = L(e_1) = V_2 = L(e_2)$ 的并集为

$$V_1 \cup V_2 = \{ \alpha = (\xi_1, \xi_2) \mid \xi_1 \cdot \xi_2 = 0, \xi_i \in \mathbb{R} \}$$

易见 $e_1, e_2 \in V_1 \cup V_2$, 但 $e_1 + e_2 = (1,1) \notin V_1 \cup V_2$, 故加法运算不封闭.

Th6 设 V_1,V_2 是线性空间V的有限维子空间,则

$$V_2$$
是线性空间 V 的有限维子空间,则 $dim(V_1+V_2)=dimV_1+dimV_2-dim(V_1\cap V_2)$

记 dim $V_1 = n_1$, dim $V_2 = n_2$, dim $V_1 \cap V_2 = m$

欲证 $\dim(V_1 + V_2) = n_1 + n_2 - m$

(1)
$$m = n_1$$
: $(V_1 \cap V_2) \subset V_1 \Rightarrow V_1 \cap V_2 = V_1$
 $(V_1 \cap V_2) \subset V_2 \Rightarrow V_1 \subset V_2 \Rightarrow V_1 + V_2 = V_2$
 $\dim(V_1 + V_2) = \dim V_2 = n_2 = n_1 + n_2 - m_2$

(2)
$$m = n_2$$
: $(V_1 \cap V_2) \subset V_2 \Rightarrow V_1 \cap V_2 = V_2$
 $(V_1 \cap V_2) \subset V_1 \Rightarrow V_2 \subset V_1 \Rightarrow V_1 + V_2 = V_1$
 $\dim(V_1 + V_2) = \dim V_1 = n_1 = n_1 + n_2 - m_1$

(3) $m < n_1, m < n_2$: 设 $V_1 \cap V_2$ 的基为 x_1, \dots, x_m , 那么

扩充为
$$V_1$$
的基: $x_1, \dots, x_m, y_1, \dots, y_{n_1-m}$ (I)

扩充为
$$V_2$$
的基: $x_1, \dots, x_m, z_1, \dots, z_{n,-m}$ (II)

考虑元素组:
$$x_1, \dots, x_m, y_1, \dots, y_{n-m}, z_1, \dots, z_{n-m}$$
 (III)

因为
$$V_1 = L(I)$$
, $V_2 = L(II)$, 所以 $V_1 + V_2 = L(III)$ (自证).

下面证明元素组(III)线性无关:

设数组 $k_1, \dots, k_m, p_1, \dots, p_{n_1-m}, q_1, \dots, q_{n_2-m}$ 使得

$$k_1 x_1 + \dots + k_m x_m + p_1 y_1 + \dots + p_{n_1 - m} y_{n_1 - m} + q_1 z_1 + \dots + q_{n_2 - m} z_{n_2 - m} = \theta$$

$$\pm x = \begin{cases}
k_1 x_1 + \dots + k_m x_m + p_1 y_1 + \dots + p_{n_1 - m} y_{n_1 - m} \in V_1 \\
- (q_1 z_1 + \dots + q_{n_2 - m} z_{n_2 - m}) \in V_2
\end{cases}$$
(*)

得
$$x \in V_1 \cap V_2 \Rightarrow x = l_1 x_1 + \dots + l_m x_m$$

结合(*)中第二式得

$$l_1 x_1 + \dots + l_m x_m + q_1 z_1 + \dots + q_{n_2 - m} z_{n_2 - m} = \theta$$

(II) 线性无关
$$\Rightarrow l_1 = \cdots = l_m = 0, q_1 = \cdots = q_{n,-m} = 0$$

结合(*)中第一式得

$$k_1 x_1 + \dots + k_m x_m + p_1 y_1 + \dots + p_{n,-m} y_{n,-m} = \theta$$

(I)线性无关
$$\Rightarrow k_1 = \cdots = k_m = 0, p_1 = \cdots = p_{n,-m} = 0$$

故元素组(III)线性无关,从而是 V_1+V_2 的一个基.

因此
$$\dim(V_1+V_2)=n_1+n_2-m$$
.

3. 子空间的直和:

$$V_1 + V_2 = \{x = x_1 + x_2 \ \big| \ 唯一x_1 \in V_1, 唯一x_2 \in V_2\}$$
记作: $V_1 + V_2 = V_1 \oplus V_2$

例如:

(1) 在R³中,取 $V_1 = L(e_1, e_2), V_2 = L(e_2, e_3)$ 时,有 $V_1 + V_2 = R^3$,此时

$$x = (1, 2, 3) = (1, 2, 0) + (0, 0, 3), (1, 2, 0) \in V_1, (0, 0, 3) \in V_2$$

 $x = (1, 2, 3) = (1, 1, 0) + (0, 1, 3), (1, 1, 0) \in V_1, (0, 1, 3) \in V_2$

(2) 在R³中,取 $V_1 = L(e_1, e_2), V_2 = L(e_3)$ 时,有 $V_1 + V_2 = R^3$,此时 x = (1, 2, 3) = (1, 2, 0) + (0, 0, 3),而 $(1, 2, 0) \in V_1, (0, 0, 3) \in V_2$,唯一

Th7 设 V_1, V_2 是线性空间V的子空间,则 $V_1 + V_2$ 是直和 $\Leftrightarrow V_1 \cap V_2 = \{\theta\}$.

证 充分性. 已知 $V_1 \cap V_2 = \{\theta\}$: 对于 $\forall z \in V_1 + V_2$, 若

$$\begin{cases} z = x_1 + x_2, x_1 \in V_1, x_2 \in V_2 \\ z = y_1 + y_2, y_1 \in V_1, y_2 \in V_2 \end{cases}$$
则有 $(x_1 - y_1) + (x_2 - y_2) = \theta, x_1 - y_1 \in V_1, x_2 - y_2 \in V_2$

$$\Rightarrow x_1 - y_1 = -(x_2 - y_2) \in V_1 \cap V_2$$

$$\Rightarrow x_1 - y_1 = \theta, x_2 - y_2 = \theta$$

$$\Rightarrow x_1 = y_1, x_2 = y_2$$

故 $z \in V_1 + V_2$ 的分解式唯一,从而 $V_1 + V_2 = V_1 \oplus V_2$.

必要性. 若 $V_1 \cap V_2 \neq \{\theta\}$,则有 $\theta \neq x \in V_1 \cap V_2$. 对于 $\theta \in V_1 + V_2$,有

$$\theta = \theta + \theta, \quad \theta \in V_1, \theta \in V_2$$

 $\theta = x + (-x), \quad x \in V_1, (-x) \in V_2$

即 $\theta \in V_1 + V_2$ 有两种不同的分解式. 这与 $V_1 + V_2$ 是直和矛盾. 故 $V_1 \cap V_2 = \{\theta\}$.

推论 1 $V_1 + V_2$ 是直和 \Leftrightarrow dim $(V_1 + V_2) = \text{dim } V_1 + \text{dim } V_2$

推论 2 设 $V_1 + V_2$ 是直和, V_1 的基为 x_1, \dots, x_k , V_2 的基为 y_1, \dots, y_l ,则 $V_1 + V_2$ 的基为 $x_1, \dots, x_k, y_1, \dots, y_l$.

证 因为 $V_1 + V_2 = L(x_1, \dots, x_k, y_1, \dots, y_l)$,且 $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 = k + l$

所以 $x_1, \dots, x_k, y_1, \dots, y_l$ 线性无关,故 $x_1, \dots, x_k, y_1, \dots, y_l$ 是 $V_1 + V_2$ 的基.

典型题解析

例 1 设多项式空间 $P_{x}[t]$ 的两个基为

(I)
$$f_1(t) = 1$$
, $f_2(t) = 1 + t$, $f_3(t) = 1 + t + t^2$, $f_4(t) = 1 + t + t^2 + t^3$

(II)
$$g_1(t) = 1 + t^2 + t^3$$
, $g_2(t) = t + t^2 + t^3$, $g_3(t) = 1 + t + t^2$, $g_4(t) = 1 + t + t^3$

- (1) 求由基(I)改变为基(II)的过渡矩阵;
- (2) 求 $P_3[t]$ 中在基(I)和基(II)下有相同坐标的全体多项式.
- 解 (1) 采用中介基法求过渡矩阵: 取 $P_3[t]$ 的简单基为 $1, t, t^2, t^3$,写出由简单基改变为基(I)和基(II) 过渡矩阵

由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵为

$$C = C_1^{-1}C_2 = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

(2) 设 $f(t) \in P_3[t]$ 在基(I)和基(II)下的坐标分别为

$$\alpha = (\xi_1, \xi_2, \xi_3, \xi_4)^{\mathrm{T}}, \quad \beta = (\eta_1, \eta_2, \eta_3, \eta_4)^{\mathrm{T}}$$

由坐标变换公式 $\alpha = C\beta$ 及题设 $\alpha = \beta$ 可得 $(I - C)\alpha = 0$

该齐次线性方程组的通解为 $\alpha = k(0, 0, 1, 0)^{\mathrm{T}} (\forall k \in \mathbf{R})$

在基(I)和基(II)下有相同坐标的全体多项式

$$f(t) = (f_1(t), f_2(t), f_3(t), f_4(t))\alpha$$
$$= k f_3(t) = k + kt + kt^2 \quad (\forall k \in \mathbb{R})$$

等价命题

§ 1.2 线性变换及其矩阵

一、线性变换

1. 定义 线性空间 V, 数域 K, T 是 V 中的变换. 若对 $\forall x, y \in V$, $\forall k, l \in K$, 都有 T(kx+ly)=k(Tx)+l(Ty), 称 T 是 V 中的线性变换.

性质 (1) $T(\theta) = T(0x + 0y) = 0(Tx) + 0(Ty) = \theta$

(2)
$$T(-x) = T((-1)x + 0y) = (-1)(Tx) + 0(Ty) = -(Tx)$$

- (3) $x_1, \dots, x_m \in V$ 线性相关 $\Rightarrow Tx_1, \dots, Tx_m$ 线性相关
- (4) $x_1, \dots, x_m \in V$ 线性无关时,不能推出 Tx_1, \dots, Tx_m 线性无关.
- (5) T 是线性变换 $\Leftrightarrow T(x+y) = Tx + Ty$, T(kx) = k(Tx) $(\forall x, y \in V, \forall k \in K)$
- 例 1 矩阵空间 $R^{n\times n}$,给定矩阵 $B_{n\times n}$,则变换 T(X) = BX + XB ($\forall X \in R^{n\times n}$) 是 $R^{n\times n}$ 的线性变换.
- 2. 线性变换的值域: $R(T) = \{y \mid y = Tx, x \in V\}$
- 3. 线性变换的核: $N(T) = \{x \mid Tx = \theta, x \in V\}$

Th8 设 T 是线性空间 V 的线性变换,则 R(T)和 N(T)都是 V 的子空间.

证 (1) V 非空 \Rightarrow R(T) 非空.

- (2) $\theta \in V$, $T\theta = \theta \Rightarrow \theta \in N(T)$, 即 N(T) 非空. $\forall x, y \in N(T) \Rightarrow T(x+y) = Tx + Ty = \theta$, 即 $x+y \in N(T)$. $\forall x \in N(T)$, $\forall k \in K \Rightarrow T(kx) = k(Tx) = \theta$, 即 $kx \in N(T)$. 故 N(T)是 V 的子空间.
- [注] 定义: T 的秩 = dim R(T), T 的亏 = dim N(T)
- 例 2 设线性空间V'' 的基为 x_1, \dots, x_n , $T \in V''$ 的线性变换,则 $R(T) = L(Tx_1, \dots, Tx_n)$, $\dim R(T) + \dim N(T) = n$
- 近 (1) 先证 $R(T) \subset L(Tx_1, \dots, Tx_n)$: $\forall y \in R(T) \Rightarrow \exists x \in V^n$, st y = Tx $x = c_1x_1 + \dots + c_nx_n \Rightarrow y = c_1(Tx_1) + \dots + c_n(Tx_n) \in L(Tx_1, \dots, Tx_n)$ 再证 $R(T) \supset L(Tx_1, \dots, Tx_n)$: $\forall y \in L(Tx_1, \dots, Tx_n) \Rightarrow \exists c_1, \dots, c_n, \text{ st } y = c_1(Tx_1) + \dots + c_n(Tx_n)$ $x_i \in V^n \Rightarrow Tx_i \in R(T) \Rightarrow y = c_1(Tx_1) + \dots + c_n(Tx_n) \in R(T)$

(2) 设 dimN(T) = m, 且 N(T) 的基为 y_1, \dots, y_m , 扩充为 V'' 的基:

$$y_1, \dots, y_m, y_{m+1}, \dots, y_n$$
 特殊方法

则 $R(T) = L(Ty_1, \dots, Ty_m, Ty_{m+1}, \dots, Ty_n) = L(Ty_{m+1}, \dots, Ty_n)$

设数组 k_{m+1}, \dots, k_n 使得 $k_{m+1}(Ty_{m+1}) + \dots + k_n(Ty_n) = \theta$,则

$$T(k_{m+1}y_{m+1}+\cdots+k_ny_n)=\theta$$

因为T是线性变换, 所以 $k_{m+1}y_{m+1}+\cdots+k_ny_n\in N(T)$, 故

$$k_{m+1}y_{m+1} + \cdots + k_ny_n = l_1y_1 + \cdots + l_my_m$$

因为 $y_1, \dots, y_m, y_{m+1}, \dots, y_n$ 线性无关,所以 $k_{m+1} = 0, \dots, k_n = 0$. 因此

 Ty_{m+1}, \dots, Ty_n 线性无关,从而 $\dim R(T) = n - m$,即 $\dim R(T) + m = n$.

例 3 矩阵空间 $R^{2\times 2}$ 中,给定矩阵 $B = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$,线性变换 T 为

$$T(X) = BX - XB \quad (\forall X \in \mathbb{R}^{2\times 2})$$

求R(T)和N(T)的基与维数.

解(1) 取 $R^{2\times 2}$ 的简单基 $E_{11}, E_{12}, E_{21}, E_{22}$, 计算

$$T(E_{11}) = BE_{11} - E_{11}B = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix}$$

$$T(E_{12}) = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix}, \quad T(E_{21}) = \begin{bmatrix} 2 & 0 \\ 2 & -2 \end{bmatrix}, \quad T(E_{22}) = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$$

基象组的坐标为

$$\gamma_{1} = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}, \quad \gamma_{2} = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}, \quad \gamma_{3} = \begin{bmatrix} 2 \\ 0 \\ 2 \\ -2 \end{bmatrix}, \quad \gamma_{4} = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

该向量组的一个最大线性无关组为 γ_1,γ_3 .

故 dim R(T) = 2,且 R(T) 的一个基为 $T(E_{11}), T(E_{21})$.

(2) 设
$$X = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \in N(T)$$
,由 $T(X) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 可得
$$\begin{bmatrix} 2x_3 & -2x_1 - 2x_2 + 2x_4 \\ 2x_3 & -2x_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 2x_3 = 0 \\ -2x_1 - 2x_2 + 2x_4 = 0 \\ 2x_3 = 0 \\ -2x_3 = 0 \end{cases}$$
基础解系为 $\begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

$$\Rightarrow A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 线性无关

故 dim N(T) = 2,且 N(T) 的一个基为 A_1, A_2 .

隐含: 满足 *T(X)* = *O* 的 线性无关矩阵最多两个!

- 4. 单位变换: 线性空间 V中,定义变换 T为 Tx = x $(\forall x \in V)$ 则 T 是线性变换,记作 T_e .
- 5. 零变换: 线性空间 V 中,定义变换 T 为 $Tx = \theta$ ($\forall x \in V$) 则 T 是线性变换,记作 T_0 .
- 6. 线性变换的运算:线性空间 V,数域 K,线性变换 T_1 与 T_2 .

 - (2) 加法: 定义变换 T 为 $Tx = T_1 x + T_2 x$ $(\forall x \in V)$ 则 T 是线性变换,记作 $T = T_1 + T_2$.

负变换: 定义变换 T 为 $Tx = -(T_1x)$ $(\forall x \in V)$ 则 T 是线性变换,记作 $T = -T_1$.

- (3) 数乘: 给定 $k \in K$,定义变换T为 $Tx = k(T_1x)$ ($\forall x \in V$) 则 T 是线性变换,记作 $T = kT_1$.
- [注] 集合 $\operatorname{Hom}(V,V) \stackrel{\text{def}}{=} \{T \mid T$ 是数域 K上的线性空间 V 的线性变换 $\}$

按照线性运算(2)和(3)构成数域 K上的线性空间,称为 V的同态.

- (4) 乘法: 定义变换 T 为 $Tx = T_1(T_2x)$ ($\forall x \in V$) 对比复合 则 T 是线性变换,记作 $T = T_1T_2$.
- 7. 逆变换:设 T 是线性空间 V 的线性变换,若 V 的线性变换 S 满足 $ST = TS = T_e \quad \mathbf{3A} \quad (ST)x = (TS)x = x \quad (\forall x \in V \)$ 则称 T 为可逆变换,且 S 为 T 的逆变换,记作 $T^{-1} = S$.
- 8. 幂变换: 设 T 是线性空间 V 的线性变换,则 $T^{m} = T^{m-1}T \ (m = 2,3,\cdots)$ 也是 V 的线性变换.
- 9. 多项式变换: 设 T 是线性空间 V 的线性变换,多项式 $f(t)=a_0+a_1t+\cdots+a_mt^m\quad (a_i\in K)$ 则 $f(T)=a_0T_e+a_1T+\cdots+a_mT^m$ 也是 V 的线性变换.
- 二、线性变换的矩阵表示
- 1. 线性变换在给定基下的矩阵

设线性空间V'' 的基为 x_1,\dots,x_n , $T \in V''$ 的线性变换,则 $Tx_i \in V''$,且有

$$\begin{cases}
Tx_1 = a_{11}x_1 + a_{21}x_2 + \dots + a_{n1}x_n \\
Tx_2 = a_{12}x_1 + a_{22}x_2 + \dots + a_{n2}x_n \\
& \dots \\
Tx_n = a_{1n}x_1 + a_{2n}x_2 + \dots + a_{nn}x_n
\end{cases}
A =
\begin{bmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{bmatrix}$$

写成矩阵乘法形式 $T(x_1,\dots,x_n) \stackrel{\text{def}}{=} (Tx_1,\dots,Tx_n) = (x_1,\dots,x_n)A$

称 A 为线性变换 T 在基 x_1, \dots, x_n 下的矩阵.

- [注] (1) 给定V"的基 x_1,\dots,x_n 和线性变换T时,矩阵A唯一.
 - (2) 给定V'' 的基 x_1,\dots,x_n 和矩阵 A 时,基象组 Tx_1,\dots,Tx_n 确定.

$$\forall x \in V^n \Rightarrow x = c_1 x_1 + \dots + c_n x_n$$
, 定义变换
$$Tx = c_1 (Tx_1) + \dots + c_n (Tx_n)$$

则 T 是线性变换. 因此线性变换 T 与方阵 A 是一一对应关系.

- (3) 单位变换在任何基下的矩阵为单位矩阵.
- (4) 零变换在任何基下的矩阵为零矩阵.

例 4 在
$$\mathbb{R}^{2\times 2}$$
 中,给定矩阵 $B = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$,线性变换 $T(X) = XB \ (\forall X \in \mathbb{R}^{2\times 2})$.

基(I):
$$E_{11}, E_{12}, E_{21}, E_{22}$$

基像组
$$T(E_{11}) = E_{11}B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $T(E_{12}) = E_{12}B = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$

$$T(E_{21}) = E_{21}B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
, $T(E_{22}) = E_{22}B = \begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix}$

$$T 在基(I) 下的矩阵为 A_1 = \begin{bmatrix} 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

基(II):
$$B_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $B_3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $B_4 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

基像组
$$T(B_1) = B_1 B = \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix} = 1B_1 + 3B_2 - 3B_3 + 3B_4$$

$$T(B_2) = B_2 B = \begin{bmatrix} 4 & 1 \\ 0 & 1 \end{bmatrix} = 1B_1 - 1B_2 + 1B_3 + 3B_4$$

$$T(B_3) = B_3 B = \begin{bmatrix} 4 & 1 \\ 0 & 0 \end{bmatrix} = 0B_1 + 0B_2 + 1B_3 + 3B_4$$

$$T(B_4) = B_4 B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0 B_1 + 0 B_2 + 1 B_3 - 1 B_4$$

$$T 在基(II) 下的矩阵为 \quad A_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ -3 & 1 & 1 & 1 \\ 3 & 3 & 3 & -1 \end{bmatrix}, \quad \mathcal{B} \mathcal{L} A_1 \neq A_2.$$

[注] 混合法求 A:

$$(B_{1}, B_{2}, B_{3}, B_{4}) = (E_{11}, E_{12}, E_{21}, E_{22})C$$

$$(T(B_{1}), \dots, T(B_{4})) = (E_{11}, E_{12}, E_{21}, E_{22})A_{0} = (B_{1}, \dots, B_{4})C^{-1}A_{0}$$

$$C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad A_{0} = \begin{bmatrix} 4 & 4 & 4 & 0 \\ 1 & 1 & 1 & 1 \\ 4 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \quad A_{2} = C^{-1}A_{0}$$

例 5 线性空间V"中,设线性变换T在基 x_1, \dots, x_n 下的矩阵为A,则 $\dim R(T) = \operatorname{rank} A$, $\dim N(T) = n - \operatorname{rank} A$.

 $rankA = m \Leftrightarrow A$ 的列向量组 β_1, \dots, β_n 中最大无关组含 m 个向量 证 ⇔ 元素组 Tx_1, \dots, Tx_n 中最大无关组含 m 个向量 \Leftrightarrow dim $R(T) = \dim L(Tx_1, \dots, Tx_n) = m$

由例 2 知另一结论成立.

- 求 N(T) 基的一般方法. 设线性变换 T 在基 x_1, \dots, x_n 下的矩阵为 A ,则 $T(x) = \theta \Leftrightarrow T(x_1, \dots, x_n)\alpha = \theta \Leftrightarrow (x_1, \dots, x_n)\alpha = \theta \Leftrightarrow \alpha = 0$ 构造 N(T) 的基: $y_1 = (x_1, \dots, x_n)\alpha_1, \dots, y_{n-r} = (x_1, \dots, x_n)\alpha_{n-r}$
- 2. 线性变换运算的矩阵表示(将线性变换运算转化为矩阵运算)
 - Th9 线性空间V'' 的基为 x_1, \dots, x_n , 线性变换 $T_1 = T_2$ 的矩阵为A = B,则
 - (1) T_1+T_2 在该基下的矩阵为 A+B; (2) kT_1 在该基下的矩阵为 kA;
 - (3) T_1T_2 在该基下的矩阵为 AB; (4) T_1^{-1} 在该基下的矩阵为 A^{-1} .

$$T_1(x_1,\dots,x_n) = (x_1,\dots,x_n)A, T_2(x_1,\dots,x_n) = (x_1,\dots,x_n)B$$

- (1) $(T_1 + T_2)(x_1, \dots, x_n) = ((T_1 + T_2)x_1, \dots, (T_1 + T_2)x_n)$ $=(T_1x_1+T_2x_1,\cdots,T_1x_n+T_2x_n)=(T_1x_1,\cdots,T_1x_n)+(T_2x_1,\cdots,T_2x_n)$ $= (x_1, \dots, x_n)A + (x_1, \dots, x_n)B = (x_1, \dots, x_n)(A+B)$
- (2) 略.
- (3) 先证: $\forall C = (c_{ij})_{n \times m}, T[(x_1, \dots, x_n)C] = [T(x_1, \dots, x_n)]C$ 常用结论

$$= (Tx_1, \dots, Tx_n)C = 右$$

由此可得 $(T_1T_2)(x_1, \dots, x_n) = T_1[T_2(x_1, \dots, x_n)] = T_1[(x_1, \dots, x_n)B]$
$$= [T_1(x_1, \dots, x_n)]B = (x_1, \dots, x_n)AB$$

(4)
$$\exists T_1^{-1} = T_2$$
, $\bigcup T_1 T_2 = T_2 T_1 = T_e \overset{(3)}{\Rightarrow} AB = BA = I \Rightarrow B = A^{-1}$.

- 3. 象与原象坐标间的关系
 - Th10 线性空间V'' 的基为 x_1, \dots, x_n ,线性变换T 在该基下的矩阵为A, $x \in V''$ 的坐标为 α , T(x) 的坐标为 β , 则 $\beta = A\alpha$.

证
$$x = \xi_1 x_1 + \dots + \xi_n x_n = (x_1, \dots, x_n) \alpha$$

$$T(x) = T[(x_1, \dots, x_n) \alpha] = (x_1, \dots, x_n) A \alpha, \text{ 由定理 2 知 } \beta = A \alpha.$$

- 4. 线性变换在不同基下矩阵之间的关系
 - Th11 线性空间 V^n 的基(I): x_1, \dots, x_n , 基(II): y_1, \dots, y_n , 线性变换T: $T(x_1, \dots, x_n) = (x_1, \dots, x_n)A, T(y_1, \dots, y_n) = (y_1, \dots, y_n)B$ 由基(II)的过渡矩阵为C, 则 $B = C^{-1}AC$.

证 因为
$$T(y_1, \dots, y_n) = T(x_1, \dots, x_n)C$$

= $(x_1, \dots, x_n)AC = (y_1, \dots, y_n)C^{-1}AC$

所以 $B = C^{-1}AC$.

- 三、线性变换的特征值与特征向量
 - 1. 定义 线性空间 V,线性变换 T,若 $\lambda_0 \in K$ 及 $\theta \neq x \in V$ 满足 $T(x) = \lambda_0 x$,则称 λ_0 为 T 的特征值,x 为 T 的对应于 λ_0 的特征向量(元素).
- 2. 算法 设线性空间V"的基为 x_1, \dots, x_n ,线性变换T 的矩阵为 $A_{n\times n}$. T 的特征值为 λ_0 ,对应的特征向量为x. x 的坐标为 α ,T(x) 的坐标为 $A\alpha$, $\lambda_0 x$ 的坐标为 $\lambda_0 \alpha$. 因为 $T(x) = \lambda_0 x \Leftrightarrow A\alpha = \lambda_0 \alpha$,所以T 的特征值与A 的特征值相同;T 的对应于 λ_0 的特征向量的坐标就是A 的对应于 λ_0 的特征向量.

例 6 设
$$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
,线性空间 $V = \{X = (x_{ij})_{2\times 2} | x_{11} + x_{22} = 0, x_{ij} \in \mathbb{R} \}$,

线性变换为 $TX = B^T X - X^T B (X \in V)$, 求T的特征值与特征向量.

解
$$X \in V \Rightarrow X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & -x_{11} \end{bmatrix} = \begin{bmatrix} x_{11} & 0 \\ 0 & -x_{11} \end{bmatrix} + \begin{bmatrix} 0 & x_{12} \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ x_{21} & 0 \end{bmatrix}$$

$$= x_{11} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + x_{12} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + x_{21} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \qquad \text{坐标:} \begin{bmatrix} x_{11} \\ x_{12} \\ x_{21} \end{bmatrix}$$

可得
$$V$$
的简单基为 $X_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $X_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $X_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ 由公式求得 $TX_1 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, $TX_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $TX_3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ 故 T 在简单基下的矩阵为 $A = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$

A 的特征值与线性无关的特征向量为

$$\lambda_1 = \lambda_2 = 0, \ \alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; \ \lambda_3 = 2, \ \alpha_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

T的特征值与线性无关的特征向量为

$$\lambda_1 = \lambda_2 = 0, Y_1 = (X_1, X_2, X_3)\alpha_1 = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$

$$Y_2 = (X_1, X_2, X_3)\alpha_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\lambda_3 = 2, Y_3 = (X_1, X_2, X_3)\alpha_3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

例 7 线性空间 V, 线性变换 T, $V_{\lambda_0} = \{x | Tx = \lambda_0 x, x \in V\}$ 是 V 的子空间.

证
$$\theta \in V, T\theta = \lambda_0 \theta \Rightarrow \theta \in V_{\lambda_0}, \ \mathbb{P}V_{\lambda_0}$$
非空.

$$\forall x, y \in V_{\lambda_0} \Rightarrow T(x+y) = Tx + Ty = \lambda_0 x + \lambda_0 y = \lambda_0 (x+y)$$
$$\Rightarrow x + y \in V_{\lambda_0}$$

$$\forall k \in K, \forall x \in V_{\lambda_0} \Rightarrow T(kx) = k(Tx) = k(\lambda_0 x) = \lambda_0(kx) \Rightarrow kx \in V_{\lambda_0}$$
 故 V_{λ_0} 是 V 的子空间.

[注] 若 λ_0 是线性变换的特征值,则称 V_{λ_0} 为T 的特征子空间.

3. 矩阵的迹:
$$A = (a_{ij})_{n \times n}$$
, $\text{tr} A = \sum_{i=1}^{n} a_{ii}$.

Th12
$$A_{m\times n}, B_{n\times m} \Rightarrow \operatorname{tr}(AB) = \operatorname{tr}(BA)$$
.

$$u_{ii} = (a_{i1}, \dots, a_{in}) \begin{pmatrix} b_{1i} \\ \vdots \\ b_{ni} \end{pmatrix} = \sum_{k=1}^{n} a_{ik} b_{ki}, \quad v_{kk} = (b_{k1}, \dots, b_{km}) \begin{pmatrix} a_{1k} \\ \vdots \\ a_{mk} \end{pmatrix} = \sum_{i=1}^{m} b_{ki} a_{ik}$$

$$\operatorname{tr}(AB) = \sum_{i=1}^{m} u_{ii} = \sum_{i=1}^{m} \left[\sum_{k=1}^{n} a_{ik} b_{ki} \right] = \sum_{k=1}^{n} \left[\sum_{i=1}^{m} b_{ki} a_{ik} \right] = \sum_{k=1}^{n} v_{kk} = \operatorname{tr}(BA)$$

Th13 若 A 相似于 B , 则 trA = trB .

证 由
$$B = P^{-1}AP$$
 可得 $\operatorname{tr} B = \operatorname{tr} (P^{-1}AP) = \operatorname{tr} ((AP)P^{-1}) = \operatorname{tr} A$

[注] 因为相似矩阵有相同的特征值(Th14 -- 线性代数课程结论) 所以线性变换的特征值与线性空间中基的选取无关

4. 三角相似

Th17 A_{xx} 相似于上三角矩阵.

证 归纳法. n=1 时, $A=(a_{11})$ 是上三角矩阵 $\Rightarrow A$ 相似于上三角矩阵. 假设 n=k-1 时定理成立,下证 n=k 时定理也成立.

 $A_{k \times k}$ 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_k$,对应 λ_1 的特征向量为 $x_1 \Rightarrow Ax_1 = \lambda_1 x_1$. 扩充 x_1 为 C^k 的基: x_1, x_2, \dots, x_k (列向量)

$$P_1 = (x_1, x_2, \dots, x_k)$$
 可逆, $AP_1 = (Ax_1, Ax_2, \dots, Ax_k)$
 $Ax_j \in \mathbb{C}^k \Rightarrow Ax_j = b_{1j}x_1 + b_{2j}x_2 + \dots + b_{kj}x_k \ (j = 2, \dots, k)$

$$AP_{1} = \begin{pmatrix} x_{1}, x_{2}, \dots, x_{k} \end{pmatrix} \begin{bmatrix} \lambda_{1} & b_{12} & \dots & b_{1k} \\ 0 & b_{22} & \dots & b_{2k} \\ \vdots & \vdots & & \vdots \\ 0 & b_{k2} & \dots & b_{kk} \end{bmatrix}, P_{1}^{-1}AP_{1} = \begin{bmatrix} \lambda_{1} & b_{12} & \dots & b_{1k} \\ 0 & & & \\ \vdots & & & A_{1} \\ 0 & & & \end{bmatrix}$$

 A_i 的特征值为 $\lambda_1, \dots, \lambda_k$,由假设知,存在k-1阶可逆矩阵 Q 使得

$$Q^{-1}A_1Q = \begin{bmatrix} \lambda_2 & \cdots & * \\ & \ddots & \vdots \\ & & \lambda_k \end{bmatrix}, \quad P_2 \stackrel{\Delta}{=} \begin{bmatrix} \frac{1}{0} & \frac{1}{0} & \cdots & 0 \\ 0 & \vdots & \ddots & \vdots \\ 0 & & & \end{bmatrix}$$

$$P = P_{1}P_{2} \Rightarrow P^{-1}AP = P_{2}^{-1}(P_{1}^{-1}AP_{1})P_{2} = \cdots = \begin{bmatrix} \lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{k} \end{bmatrix}$$

由归纳法原理,对任意n,定理成立.

5. Hamilton-Cayley 定理

Th18 设
$$A_{n\times n}$$
, $\varphi(\lambda) = \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n$,则
$$\varphi(A) = A^n + a_1 A^{n-1} + \dots + a_{n-1} A + a_n I = O_{n\times n}$$

证 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n \Rightarrow \varphi(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$.

由 Th17 知,存在可逆矩阵
$$P_{n\times n}$$
,使得 $P^{-1}AP = \begin{bmatrix} \lambda_1 & \cdots & * \\ & \ddots & \vdots \\ & & \lambda_n \end{bmatrix}$.

$$\varphi(P^{-1}AP) = (P^{-1}AP - \lambda_1 I)(P^{-1}AP - \lambda_2 I) \cdots (P^{-1}AP - \lambda_n I)$$

$$\begin{bmatrix}
0 & * & \cdots & * \\
\lambda_{2} - \lambda_{1} & \ddots & \vdots \\
& \ddots & * \\
& \lambda_{n} - \lambda_{1}
\end{bmatrix}
\begin{bmatrix}
\lambda_{1} - \lambda_{2} & * & \cdots & * \\
& 0 & \ddots & \vdots \\
& & \ddots & \ddots & \vdots \\
& & \lambda_{n-1} - \lambda_{n} & * \\
0 & 0 & * & \cdots & * \\
0 & 0 & * & \cdots & * \\
0 & 0 & * & \ddots & \vdots \\
\vdots & \vdots & \ddots & * \\
0 & 0 & & *
\end{bmatrix}
\begin{bmatrix}
\lambda_{1} - \lambda_{3} & * & * & * & \cdots & * \\
& \lambda_{2} - \lambda_{3} & * & \cdots & * \\
& & \lambda_{2} - \lambda_{3} & * & \cdots & * \\
& & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & * \\
& & \lambda_{n-1} - \lambda_{n} & * \\
& & \ddots & \ddots & \vdots \\
& & \lambda_{n-1} - \lambda_{n} & * \\
& & & 0
\end{bmatrix} = O$$

$$\mathbb{P}^{-1}\varphi(A)P=O\Rightarrow\varphi(A)=O.$$

[注] (1)
$$|A| \neq 0 \Rightarrow a_n \neq 0, A^{-1} = -\frac{1}{a_n} (A^{n-1} + a_1 A^{n-2} + \dots + a_{n-2} A + a_{n-1} I)$$

(2) $A^n \in \text{span} \{A^{n-1}, \dots, A, I\}$

EPERSON

EXERGISE:

EX

(2)
$$A^n \in \text{span}\{A^{n-1}, \dots, A, I\}$$

例 8
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$
, 计算 $A^{100} + 2A^{50}$.

解
$$f(\lambda) = \lambda^{100} + 2\lambda^{50}, \ \varphi(\lambda) = \det(\lambda I - A) = (\lambda - 1)^2 (\lambda - 2)$$

$$\varphi 除 f: f(\lambda) = \varphi(\lambda)g(\lambda) + (b_0 + b_1\lambda + b_2\lambda^2)$$

$$f'(\lambda) = [\varphi(\lambda)g(\lambda)]' + (b_1 + 2b_2\lambda)$$

曲
$$f(1) = 3$$
, $f'(1) = 200$, $f(2) = 2^{100} + 2^{51}$ 可得
$$b_0 + b_1 + b_2 = 3$$

$$b_1 + 2b_2 = 200$$

$$b_0 + 2b_1 + 4b_2 = 2^{100} + 2^{51}$$

$$\Rightarrow \begin{cases} b_0 = 2^{100} + 2^{51} - 400 \\ b_1 = -2^{101} - 2^{52} + 606 \\ b_2 = 2^{100} + 2^{51} - 203 \end{cases}$$

$$\varphi(A) = O \Rightarrow f(A) = b_0 I + b_1 A + b_2 A^2$$

6. 最小多项式

以 A_{nxn} 为根,且次数最低的首 1 多项式,记作 $m(\lambda)$.

$$f(\lambda) = 1 \Rightarrow f(A) = I \neq O \Rightarrow \partial m(\lambda) \ge 1$$

$$\varphi(\lambda) = \det(\lambda I - A), \text{ Th } 18 \Rightarrow \varphi(A) = O \Rightarrow \partial m(\lambda) \leq n$$

例 9
$$A = \begin{bmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{bmatrix}$$
, $\varphi(\lambda) = (\lambda - 2)^2 (\lambda - 4)$

$$f_1(\lambda) = \lambda + k \ (\forall k \in \mathbb{R}) : f_1(A) = A + kI \neq O \Rightarrow \partial m(\lambda) > 1$$

$$f_2(\lambda) = (\lambda - 2)(\lambda - 4) : f_2(A) = (A - 2I)(A - 4I) = O \Rightarrow m(\lambda) = f_2(\lambda)$$

Th19 (1) 多项式 $f(\lambda)$ 满足 $f(A) = O \Rightarrow m(\lambda) | f(\lambda);$

(2) $m(\lambda)$ 唯一.

证 (1) 反证法.

$$m(\lambda)$$
 $\uparrow f(\lambda) \Rightarrow f(\lambda) = m(\lambda)g(\lambda) + r(\lambda)$, $r(\lambda) \neq 0$ 且 $\partial r(\lambda) < \partial m(\lambda)$
 $\Rightarrow f(A) = m(A)g(A) + r(A)$
 $f(A) = O$, $m(A) = O \Rightarrow r(A) = O$, $\partial r(\lambda) < \partial m(\lambda)$
 $\Rightarrow m(\lambda)$ 不是 A 的最小多项式,矛盾!

(2) 设 $m(\lambda)$ 与 $\widetilde{m}(\lambda)$ 都是A的最小多项式,则 $\widetilde{m}(A) = O \Rightarrow m(\lambda) | \widetilde{m}(\lambda) | \stackrel{\text{if}}{\Rightarrow} m(\lambda) = \widetilde{m}(\lambda)$ $m(A) = O \Rightarrow \widetilde{m}(\lambda) | m(\lambda) | \stackrel{\text{if}}{\Rightarrow} m(\lambda) = \widetilde{m}(\lambda)$

Th20 $m(\lambda)$ 与 $\varphi(\lambda)$ 的零点相同(不计重数).

证 Th19 \Rightarrow $m(\lambda)$ 的零点是 $\varphi(\lambda)$ 的零点. 再设 λ_0 是 $\varphi(\lambda)$ 的零点,则有 $Ax = \lambda_0 x \ (x \neq 0) \Rightarrow m(A) x = m(\lambda_0) x$ $m(A) = O \Rightarrow m(\lambda_0) x = 0 \Rightarrow m(\lambda_0) = 0$,故 λ_0 也是 $m(\lambda)$ 的零点.

[注] $Th20 \Rightarrow m(\lambda)$ 一定含 $\varphi(\lambda)$ 的全部单因式. $\varrho m(\lambda) \, \pi - \varrho \, \varrho(\lambda) \, \varrho \, \psi(\lambda) \, d \, \varphi \, \psi(\lambda) \, \varphi \, \psi(\lambda) \, d \, \varphi \, \psi(\lambda) \, \varphi(\lambda) \, \varphi(\lambda)$

例如:
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $\varphi(\lambda) = (\lambda - 1)^2$, $m(\lambda) \neq (\lambda - 1)$.

7. 最小多项式求法

Th21 对 $A_{n\times n}$, 设 $\lambda I - A$ 的第 i 行第 j 列元素的余子式为 $M_{ij}(\lambda)$, 记

$$d(\lambda) = \max_{i,j} [M_{ij}(\lambda)], \quad \text{M} \quad m(\lambda) = \frac{\det(\lambda I - A)}{d(\lambda)}.$$

例 10 设
$$A = \begin{bmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{bmatrix}$$
, 求 $m(\lambda)$.

$$\Re \lambda I - A = \begin{bmatrix} \lambda - 3 & 3 & -2 \\ 1 & \lambda - 5 & 2 \\ 1 & -3 & \lambda \end{bmatrix}, \quad \varphi(\lambda) = \det(\lambda I - A) = (\lambda - 2)^2 (\lambda - 4)$$

$$M_{11} = \lambda^2 - 5\lambda + 6$$
, $M_{21} = 3(\lambda - 2)$, $M_{31} = 2(\lambda - 2)$
 $M_{12} = \lambda - 2$, $M_{22} = \lambda^2 - 3\lambda + 2$, $M_{32} = 2(\lambda - 2)$
 $M_{13} = -(\lambda - 2)$, $M_{23} = -3(\lambda - 2)$, $M_{33} = \lambda^2 - 8\lambda + 12$
 $d(\lambda) = \lambda - 2$, $m(\lambda) = \frac{\varphi(\lambda)}{d(\lambda)} = (\lambda - 2)(\lambda - 4) = \lambda^2 - 6\lambda + 8$
例 11 $A_{n \times n}$ 相似于 $B_{n \times n} \Rightarrow m_A(\lambda) = m_B(\lambda)$.

证
$$B = P^{-1}AP \Rightarrow A = PBP^{-1}$$

取 $f(\lambda) = m_A(\lambda)$, 则 $f(A) = m_A(A) = O$, 从而有

 $f(B) = f(P^{-1}AP) = P^{-1}f(A)P = O$

$$\stackrel{\text{Th}19}{\Rightarrow} m_B(\lambda) | f(\lambda), \text{即 } m_B(\lambda) | m_A(\lambda)$$

取 $g(\lambda) = m_B(\lambda)$, 则 $g(B) = m_B(B) = O$, 从而有

 $g(A) = g(PBP^{-1}) = Pg(B)P^{-1} = O$

$$\stackrel{\text{Th}19}{\Rightarrow} m_A(\lambda) | g(\lambda), \text{即 } m_A(\lambda) | m_B(\lambda)$$

②

①+②得:
$$m_{\lambda}(\lambda) = m_{\mu}(\lambda)$$
.

四、对角矩阵

Th24 在线性空间V''中,线性变换 T 在某基下的矩阵为对角矩阵 $\Leftrightarrow T$ 有 n 个线性无关的特征向量(元素).

证 必要性. 设
$$V^n$$
的基为 x_1,\dots,x_n , 且 $T(x_1,\dots,x_n)=(x_1,\dots,x_n)\Lambda$,
$$\Lambda = \operatorname{diag}(\lambda_1,\dots,\lambda_n), \quad \text{则有} \quad (Tx_1,\dots,Tx_n)=(\lambda_1x_1,\dots,\lambda_nx_n)$$
$$\Rightarrow Tx_j = \lambda_j x_j \quad (j=1,2,\dots,n)$$
$$\Rightarrow x_1,\dots,x_n \in T \text{ in } n \text{ 个线性无关的特征向量}$$

充分性. 设 T 有 n 个线性无关的特征向量 y_1, \dots, y_n , 即

$$T y_j = \lambda_j y_j$$
 $(j = 1, 2, \dots, n)$ 线性変換在这个基
取 y_1, \dots, y_n 为 V^n 的基,则有 下的矩阵是对角形 $T(y_1, \dots, y_n) = (Ty_1, \dots, Ty_n) = (\lambda_1 y_1, \dots, \lambda_n y_n)$ $= (y_1, \dots, y_n) \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$

Th25 A_{nxn} 相似于对角矩阵 $\Leftrightarrow A$ 有n个线性无关的特征向量(列向量).

证 A 相似于 $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

$$\Leftrightarrow$$
 存在可逆矩阵 $P = (x_1, \dots, x_n)$, 使得 $P^{-1}AP = \Lambda$

$$\Leftrightarrow A(x_1,\dots,x_n) = (x_1,\dots,x_n)A \Leftrightarrow Ax_j = \lambda_j x_j \quad (j=1,2,\dots,n)$$

 \Leftrightarrow A 有 n 个线性无关的特征向量 x_1, \dots, x_n

Th26 A_{nxn} 有 n 个互异的特征值 $\Rightarrow A$ 相似于对角矩阵.

问题: 线性空间V"的基 x_1, \dots, x_n ,线性变换 T 在该基下的矩阵 A 相似于 $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$,确定V"的新基 y_1, \dots, y_n ,使得 T 在新基下的矩阵为A.

算法: 求 P 使 $P^{-1}AP = \Lambda$,令 $(y_1, \dots, y_n) = (x_1, \dots, x_n)P$,则有 $T(y_1, \dots, y_n) = T(x_1, \dots, x_n)P = (x_1, \dots, x_n)AP$ $= (y_1, \dots, y_n)P^{-1}AP = (y_1, \dots, y_n)A$

例 12 在 $\mathbb{R}^{2\times 2}$ 中,给定 $B = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$,线性变换 $T(X) = XB \ (\forall X \in \mathbb{R}^{2\times 2})$,

求 $R^{2\times 2}$ 的一个基,使线性变换T在该基下的矩阵为对角矩阵.

解 取 $\mathbb{R}^{2\times 2}$ 的简单基 $E_{11}, E_{12}, E_{21}, E_{22}$, 求得 T 在该基下的矩阵为

$$A = \begin{bmatrix} 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 (见例 4)

求 P 使得 $P^{-1}AP = \Lambda$:

$$\Lambda = \begin{bmatrix} 2 & & & & \\ & 2 & & & \\ & & -2 & & \\ & & & -2 \end{bmatrix}, \quad P = \begin{bmatrix} 2 & 0 & 2 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

曲 $(B_1, B_2, B_3, B_4) = (E_{11}, E_{12}, E_{21}, E_{22})$ P可得

$$B_1 = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}, B_2 = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}, B_3 = \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, B_4 = \begin{bmatrix} 0 & 0 \\ 2 & -1 \end{bmatrix}$$

故T在基 B_1, B_2, B_3, B_4 下的矩阵为 Λ .

典型题解析

例 3 设矩阵空间 R^{2×2} 的子空间为

$$V = \left\{ X = \left(x_{ij} \right)_{2 \times 2} \middle| \ x_{11} + x_{12} + x_{21} = 0, \ x_{ij} \in \mathbf{R} \right\}$$

V 中的线性变换为 $T(X) = X + X^{T} (\forall X \in V)$,求V 的一个基,使T 在该基下的矩阵为对角矩阵.

解 (1) 先求 V 的简单基

$$X \in V \Rightarrow X = \begin{bmatrix} -x_{12} - x_{21} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} -x_{12} & x_{12} \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -x_{21} & 0 \\ x_{21} & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & x_{22} \end{bmatrix}$$
$$= x_{12} \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + x_{21} \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} + x_{22} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

容易验证
$$X_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $X_2 = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$, $X_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 线性无关,故

 X_1, X_2, X_3 是V 的简单基.

(2) 由公式计算

$$T(X_{1}) = X_{1} + X_{1}^{T} = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix} = 1X_{1} + 1X_{2} + 0X_{3}$$

$$T(X_{2}) = X_{2} + X_{2}^{T} = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix} = 1X_{1} + 1X_{2} + 0X_{3}$$

$$T(X_{3}) = X_{3} + X_{3}^{T} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} = 0X_{1} + 0X_{2} + 2X_{3}$$

$$T$$
 在基 X_1, X_2, X_3 下的矩阵为 $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

求
$$P$$
 使得 $P^{-1}AP = \Lambda$: $\Lambda = \begin{bmatrix} 0 & & \\ & 2 & \\ & & 2 \end{bmatrix}$, $P = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

由
$$(Y_1,Y_2,Y_3)=(X_1,X_2,X_3)$$
P求得

$$Y_1 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, Y_2 = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}, Y_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

子空间相对于线性空间

故T在基 Y_1,Y_2,Y_3 下的矩阵为 Λ .

五、不变子空间

线性空间 V, 子空间 V_1 , 线性变换 T.

若对 $\forall x \in V_1$,有 $Tx \in V_1$,称 V_1 是T的不变子空间.

[注] V_1 是T的不变子空间时,可将T看作 V_1 中的线性变换.

例 ① 子空间 $V_{\lambda_0} = \{x \mid Tx = \lambda_0 x, x \in V\}$ 是 T 的不变子空间.

② 子空间 R(T)是 T 的不变子空间.

$$\forall x \in R(T) \subset V \Rightarrow Tx \in R(T)$$

③ 子空间 N(T)是 T 的不变子空间.

$$\forall x \in N(T) \Rightarrow Tx = \theta \in N(T)$$

④ $V_1 与 V_2 是 T$ 的不变子空间 $\Rightarrow V_1 \cap V_2, V_1 + V_2$ 亦是 T的不变子空间.

$$1^{\circ} \quad \forall x \in V_1 \cap V_2 \Rightarrow \begin{cases} x \in V_1, Tx \in V_1 \\ x \in V_2, Tx \in V_2 \end{cases} \Rightarrow Tx \in V_1 \cap V_2$$

2°
$$\forall x \in V_1 + V_2 \Rightarrow x = x_1 + x_2, x_1 \in V_1, x_2 \in V_2$$

$$\Rightarrow Tx = Tx_1 + Tx_2, Tx_1 \in V_1, Tx_2 \in V_2$$
$$\Rightarrow Tx \in V_1 + V_2$$

Th27 线性空间 V^n ,线性变换T,设 V_1 与 V_2 是T的不变子空间,且 $V^n = V_1 \oplus V_2, \quad T$ 在 V_1 的基 x_1, \dots, x_{n_1} 下的矩阵为 A_1 ,T在 V_2 的 基 y_1, \dots, y_{n_2} 下的矩阵为 A_2 ,则T在 V^n 的基 $x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2}$ 下的矩阵为 $A = \begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix}$.

证 因为
$$(Tx_1, \dots, Tx_{n_1}) = (x_1, \dots, x_{n_1})A_1$$
, $(Ty_1, \dots, Ty_{n_2}) = (y_1, \dots, y_{n_2})A_2$
所以 $T(x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2}) = [(Tx_1, \dots, Tx_{n_1}), (Ty_1, \dots, Ty_{n_2})]$
 $= [(x_1, \dots, x_{n_1})A_1, (y_1, \dots, y_{n_2})A_2]$
 $= [(x_1, \dots, x_{n_1}), (y_1, \dots, y_{n_2})]\begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix} = (x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2})A$

[注] 若T在 V^n 的基 $x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2}$ 下的矩阵 $A = \begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix}$,则 $V_1 = L(x_1, \dots, x_{n_1}) = V_2 = L(y_1, \dots, y_{n_2})$ 都是T的不变子空间,且 $V^n = V_1 \oplus V_2$.

试题八(M2002B)

设线性空间 V^3 的一个基为 x_1, x_2, x_3 ,线性变换T在该基下的矩阵为

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 3 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
. 令 $y_1 = x_1 + x_2$, $y_2 = x_1 + x_2 + x_3$, 证明:子空间

 $W = L(y_1, y_2)$ 是T的不变子空间.

$$\begin{array}{ll}
\text{WE} & T(y_1) = T(x_1, x_2, x_3) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = (x_1, x_2, x_3) A \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = (x_1, x_2, x_3) \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} = 2y_1 \in W \\
T(y_2) = T(x_1, x_2, x_3) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = (x_1, x_2, x_3) A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = (x_1, x_2, x_3) \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = 2y_1 + y_2 \in W$$

对任意的 $y \in W$, 存在常数 k_1, k_2 使得 $y = k_1 y_1 + k_2 y_2$, 且有

$$T(y) = k_1 \cdot T(y_1) + k_2 \cdot T(y_2) \in W$$

故W 是T 的不变子空间.

试 题 八(M2002A)

设V 是数域K 上的线性空间, T_1 和 T_2 是线性空间V 中的两个线性变换, 且满足 $T_1T_2 = T_2$, 证明:

请勿上传公共网站 不变子空间

- 1. T, 的值域 $R(T_1)$ 是 T_1 的不变子空间;
- 2. T, 的核 $N(T_1)$ 也是 T_1 的不变子空间.
- $\coprod 1. \quad \forall \ y \in R(T_2) \Rightarrow \exists \ x \in V, \text{ st } y = T_2(x)$ $T_1(y) = T_1[T_2(x)] = (T_1T_2)(x) = (T_2T_1)(x) = T_2[T_1(x)] \in R(T_2)$ 故 $R(T_1)$ 是 T_1 的不变子空间.
 - 2. $\forall x \in N(T_1) \Rightarrow T_1(x) = \theta$ 因为 $T_2[T_1(x)] = (T_2T_1)(x) = (T_1T_2)(x) = T_1[T_2(x)] = T_1(\theta) = \theta$ 所以 $T_1(x) \in N(T_1)$. 故 $N(T_1) \neq T_1$ 的不变子空间.

六、Jordan 标准形

1. λ -矩阵: $A(\lambda) = (a_{ii}(\lambda))_{iii}, a_{ii}(\lambda)$ 是 λ 的多项式函数.

 $A(\lambda)$ 的秩: $A(\lambda)$ 中不恒等于零的子式的最高阶数.

λ-矩阵的初等变换:

行变换

(1) 对调:

 $r_i \leftrightarrow r_i$ $c_i \leftrightarrow c_i$

(2) 数乘 $(k \neq 0)$:

(3) 倍加 ($p(\lambda)$ 是多项式): $r_i + p(\lambda)r_i$ $c_i + p(\lambda)c_i$

行列式因子: $D_k(\lambda) =$ 最大公因式 $\{A(\lambda)$ 的所有 k 阶子式 $\}$

不变因子: $d_k(\lambda) = \frac{D_k(\lambda)}{D_{k+1}(\lambda)} \left(D_0(\lambda) = 1, k = 1, 2, \dots, n\right)$

满足 $d_k(\lambda) \mid d_{k+1}(\lambda) \mid (k=1,2,\cdots,n-1)$

初等因子: 次数大于零的 $d_{\iota}(\lambda)$ 的不可约因式

[注] 考虑 λ -矩阵 $\lambda I - A$ 可得A的最小多项式 $\frac{m(\lambda) = d_n(\lambda)}{D_{n,1}(\lambda)}$

例 13
$$A = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, 求 $\lambda I - A$ 的全体初等因子.

因为
$$\begin{vmatrix} 4 & \lambda - 3 \\ -1 & 0 \end{vmatrix} = \lambda - 3$$
 与 $\begin{vmatrix} 4 & 0 \\ -1 & \lambda - 2 \end{vmatrix} = 4(\lambda - 2)$ 互质

所以 $D_3(\lambda) = 1$, $D_3(\lambda) = \det(\lambda I - A) = (\lambda - 2)(\lambda - 1)^2$

不变因子为 $d_1(\lambda)=1$, $d_2(\lambda)=1$, $d_3(\lambda)=(\lambda-1)^2(\lambda-2)$

全体初等因子为 $(\lambda-1)^2$, $\lambda-2$.

3. 初等变换法求初等因子

$$A(\lambda) \rightarrow \begin{bmatrix} f_1(\lambda) & & & & \\ & \ddots & & & \\ & & f_n(\lambda) \end{bmatrix}$$
 $(f_k(\lambda)$ 是首 1 多项式,或者 0)

次数大于零的 $f_{k}(\lambda)$ 的不可约因式为 $A(\lambda)$ 的初等因子

[注] 当 $f_k(\lambda) | f_{k+1}(\lambda)$ 时, $d_k(\lambda) = f_k(\lambda)$.

例如: 在例 13 中

$$\lambda I - A = \begin{bmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{bmatrix}^{c_1 \leftrightarrow c_2} \begin{bmatrix} -1 & \lambda + 1 & 0 \\ \lambda - 3 & 4 & 0 \\ 0 & -1 & \lambda - 2 \end{bmatrix}^{c_1 \leftrightarrow c_2}$$

$$\xrightarrow{r_2 + (\lambda - 3)r_1} \begin{bmatrix} -1 & \lambda + 1 & 0 \\ 0 & (\lambda - 1)^2 & 0 \\ 0 & -1 & \lambda - 2 \end{bmatrix}^{(-1)c_1} \xrightarrow{c_2 - (\lambda + 1)c_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & (\lambda - 1)^2 & 0 \\ 0 & -1 & \lambda - 2 \end{bmatrix}^{c_2 + (\lambda - 1)^2 r_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & \lambda - 2 \end{bmatrix}^{r_2 \leftrightarrow r_3}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & \lambda - 2 \\ 0 & (\lambda - 1)^2 & 0 \end{bmatrix}^{r_3 + (\lambda - 1)^2 r_2} \xrightarrow{r_3 + (\lambda - 1)^2 r_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & \lambda - 2 \\ 0 & 0 & (\lambda - 1)^2 (\lambda - 2) \end{bmatrix}^{c_1 \leftrightarrow c_2}$$

$$\xrightarrow{c_3 - (\lambda - 2)c_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 1)^2 (\lambda - 2) \end{bmatrix}^{r_3 \leftrightarrow c_3 - (\lambda - 2)c_2}$$

于是 $f_1(\lambda) = 1, f_2(\lambda) = 1, f_3(\lambda) = (\lambda - 1)^2(\lambda - 2).$

故 $\lambda I - A$ 的全体初等因子为 $(\lambda - 1)^2, \lambda - 2$.

[注] 设 $A = (a_{ij})_{n \times n}$, 称 $\lambda I - A$ 的行列式因子(不变因子,初等因子) 为A的行列式因子(不变因子,初等因子).

4. Jordan 标准形

设 $A = (a_{ii})_{n \times n}$ 的全体初等因子为

$$(\lambda - \lambda_1)^{m_1}, \cdots, (\lambda - \lambda_i)^{m_i}, \cdots, (\lambda - \lambda_s)^{m_s}$$

则有 $\varphi(\lambda) = \det(\lambda I - A) = D_n(\lambda) = D_{n-1}(\lambda)d_n(\lambda) = \cdots$ = $D_0(\lambda)d_1(\lambda)\cdots d_n(\lambda) = (\lambda - \lambda_1)^{m_1}\cdots(\lambda - \lambda_s)^{m_s}\cdots(\lambda - \lambda_s)^{m_s}$

而且 $m_1 + \cdots + m_i + \cdots + m_s = n$

对于第i个初等因子 $(\lambda - \lambda_i)^{m_i}$ 构造 m_i 阶 Jordan 块矩阵 J_i ,以及准对角矩阵J如下:

$$\boldsymbol{J}_{i} = \begin{bmatrix} \boldsymbol{\lambda}_{i} & \mathbf{1} & & & \\ & \boldsymbol{\lambda}_{i} & \ddots & & \\ & & \ddots & \mathbf{1} \\ & & & \boldsymbol{\lambda}_{i} \end{bmatrix}_{m_{i} \times m_{i}}, \quad \boldsymbol{J} = \begin{bmatrix} \boldsymbol{J}_{1} & & & & \\ & \boldsymbol{J}_{2} & & & \\ & & \ddots & & \\ & & & & \boldsymbol{J}_{s} \end{bmatrix}$$

请勿上传公共网站

称 J 为矩阵 A 的 Jordan 标准形.

这是上 Jordan 块!

设 A 的 Jordan 标准形为 J,则存在可逆矩阵 P,使得 $P^{-1}AP = J$. **Th29**

一般结论(举例):设特征矩阵 $\lambda I - A_{yx}$ 的全体初等因子为

$$(\lambda - 1)^2$$
, $(\lambda - 1)^2$, $(\lambda - 1)$
 $(\lambda - 2)^2$, $(\lambda - 2)$
 $(\lambda - 3)$

那么
$$d_9(\lambda) = (\lambda - 1)^2 (\lambda - 2)^2 (\lambda - 3)$$
 (注意 $\operatorname{rank}(\lambda I - A_{9 \times 9}) = 9$)
$$d_8(\lambda) = (\lambda - 1)^2 (\lambda - 2)$$

$$d_7(\lambda) = (\lambda - 1)$$

$$d_6(\lambda) = \dots = d_1(\lambda) = 1$$

由初等因子组
确定不变因子

5. 特征向量分析法求初等因子

$$\partial \varphi(\lambda) = \det(\lambda I - A)$$
 的一个不可约因式为 $(\lambda - \lambda_0)'$,则 $(\lambda - \lambda_0)'$ 是 A 的 k 个初等因子的乘积

- ⇔ $(\lambda_0 I A)x = 0$ 的基础解系含 k 个解向量(证明略去)
- ⇔ 对应特征值 ¼ 有 k 个线性无关的特征向量
- $\Leftrightarrow k = n \operatorname{rank}(\lambda_0 I A)$

例 14 求
$$A = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 1 & 3 & 2 & \\ 2 & 3 & 1 & 1 \end{bmatrix}$$
的 Jordan 标准形.

由 rank(1I-A)=2知, $(\lambda-1)^3$ 是 A 的 4-2=2 个初等因子的乘积,即 $(\lambda-1)^2$ 和 $(\lambda-1)$ 的乘积, 故 A 的全体初等因子为 $(\lambda-1)^2$, $\lambda-1$, $\lambda-2$.

$$A$$
的 Jordan 标准形为 $J = egin{bmatrix} 1 & 1 & & \ & 1 & & \ & & 1 & \ & & & 2 \end{bmatrix}$.

[注] 在例 14 中,将 $a_{33} = 2$, $a_{43} = 1$ 改作 $a_{33} = 1$, $a_{43} = 0$ 时,此法失效.

6. 相似变换矩阵的求法

仅适用于初等因子组中 $\lambda_i \neq \lambda_i (i \neq j)$ 的情形.

$$P = (P_1, \dots, P_s), P_i = (X_1^{(i)}, \dots, X_{m_i}^{(i)})$$

 $AP = PJ \Leftrightarrow AP_i = P_iJ_i \quad (i = 1, 2, \dots, s)$

考虑:
$$A(X_1^{(i)}, \dots, X_{m_i}^{(i)}) = (X_1^{(i)}, \dots, X_{m_i}^{(i)})$$

$$\begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_i & \end{bmatrix}$$

$$(AX_1^{(i)}, AX_2^{(i)}, \dots, AX_{m_i}^{(i)}) = (\lambda_i X_1^{(i)}, X_1^{(i)} + \lambda_i X_2^{(i)}, \dots, X_{m_i-1}^{(i)} + \lambda_i X_{m_i}^{(i)})$$

$$\begin{cases} (\lambda_{i}I - A)X_{1}^{(i)} = 0 & X_{1}^{(i)} \not\equiv (\lambda_{i}I - A)x = 0 \text{ if } \text{\mathbb{Z}} \text{ if } \\ (\lambda_{i}I - A)X_{2}^{(i)} = -X_{1}^{(i)} & X_{2}^{(i)} \not\equiv (\lambda_{i}I - A)x = -X_{1}^{(i)} \text{ if } \text{$-\text{$\wedge$}$} \text{ if } \\ \dots & \dots & \dots \\ (\lambda_{i}I - A)X_{m_{i}}^{(i)} = -X_{m_{i}-1}^{(i)} & X_{m_{i}}^{(i)} \not\equiv (\lambda_{i}I - A)x = -X_{m_{i}-1}^{(i)} \text{ if } \text{$-\text{$\wedge$}$} \text{ if } \text{$-\text{$\wedge$}$} \end{cases}$$

可以证明: $X_1^{(i)}, X_2^{(i)}, \dots, X_{m_i}^{(i)}$ 线性无关. (以 $m_i = 3$ 为例证明)

在例 13 中, $\lambda_1 = 1, m_1 = 2$, 求 $X_1^{(1)}, X_2^{(1)}$:

$$\lambda_1 I - A = \begin{bmatrix} 2 & -1 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & -1 \end{bmatrix}, \quad X_1^{(1)} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} \lambda_1 I - A, & -X_1^{(1)} \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 & | & -1 \\ 4 & -2 & 0 & | & -2 \\ -1 & 0 & -1 & | & 1 \end{bmatrix}, \quad X_2^{(1)} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

$$\lambda_2 = 2, m_2 = 1, \ \ \ \ \ \ \ \ X_1^{(2)}$$
:

$$\lambda_2 I - A = \begin{bmatrix} 3 & -1 & 0 \\ 4 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad X_1^{(2)} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \quad \text{ix } P = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}.$$

例 15 解线性微分方程组 $\begin{cases} \xi_1'(t) = -\xi_1 + \xi_2 \\ \xi_2'(t) = -4\xi_1 + 3\xi_2 \\ \xi_3'(t) = \xi_1 + 2\xi_3 \end{cases}$

$$\Re x(t) = \begin{bmatrix} \xi_1(t) \\ \xi_2(t) \\ \xi_3(t) \end{bmatrix}, x'(t) = \begin{bmatrix} \xi_1'(t) \\ \xi_2'(t) \\ \xi_3'(t) \end{bmatrix}, A = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}; x'(t) = Ax(t)$$

$$P^{-1}x'(t) = P^{-1}APP^{-1}x(t) \Rightarrow [P^{-1}x(t)]' = J[P^{-1}x(t)]$$

$$y(t) \stackrel{\Delta}{=} P^{-1}x(t) = \begin{bmatrix} \eta_{1}(t) \\ \eta_{2}(t) \\ \eta_{3}(t) \end{bmatrix} \Rightarrow y'(t) = J y(t)$$

$$\begin{cases} \eta'_{1}(t) = \eta_{1} + \eta_{2} \\ \eta'_{2}(t) = \eta_{2} \\ \eta'_{3}(t) = 2\eta_{3} \end{cases} \Rightarrow \begin{cases} \eta_{2}(t) = c_{2}e^{t} \\ \eta'_{1}(t) = \eta_{1} + c_{2}e^{t} \Rightarrow \eta_{1}(t) = c_{1}e^{t} + c_{2}te^{t} \\ \eta_{3}(t) = c_{3}e^{2t} \end{cases}$$

$$x(t) = P y(t) = \begin{bmatrix} \eta_{1} \\ 2\eta_{1} + \eta_{2} \\ -\eta_{1} - \eta_{2} + \eta_{3} \end{bmatrix} \Rightarrow \begin{cases} \xi_{1}(t) = c_{1}e^{t} + c_{2}te^{t} \\ \xi_{2}(t) = 2c_{1}e^{t} + c_{2}(2t+1)e^{t} \\ \xi_{3}(t) = -c_{1}e^{t} - c_{2}(t+1) + c_{3}e^{2t} \end{cases}$$

$$(c_{1}, c_{2}, c_{3}) \text{ Here }$$

[注]
$$\eta_1(t) = e^t \{ c_1 + \int_0^t e^{-\tau} \eta_2(\tau) d\tau \}$$

例 16 准对角矩阵 Jordan 标准形的计算方法.

$$A = \begin{bmatrix} A_1 & & \\ & A_2 \end{bmatrix}, P_1^{-1}A_1P_1 = J_{A_1}, P_2^{-1}A_2P_2 = J_{A_2}$$

$$P = \begin{bmatrix} P_1 & & \\ & P_2 \end{bmatrix}, P^{-1}AP = \dots = \begin{bmatrix} J_{A_1} & & \\ & J_{A_2} \end{bmatrix} = J_A$$

例 17 矩阵的下 Jordan 块相似于上 Jordan 块.

$$\boldsymbol{J}_{\pm} = \begin{bmatrix} \lambda & 1 & & & \\ & \lambda & \ddots & & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix}, \quad \boldsymbol{J}_{\mp} = \begin{bmatrix} \lambda & & & & \\ 1 & \lambda & & & \\ & \ddots & \ddots & & \\ & & 1 & \lambda \end{bmatrix}, \quad \boldsymbol{P} = \begin{bmatrix} & & & 1 \\ & & 1 & \\ & \ddots & & \\ 1 & & & \end{bmatrix}$$
$$\boldsymbol{P}^{-1}\boldsymbol{J}_{\mp}\boldsymbol{P} = \boldsymbol{J}_{\pm}$$

求线性变换在给定基下的矩阵——方法总结:

给定线性空间V"的基 x_1, \dots, x_n , 设线性变换T在该基下的矩阵为A.

一、直接法

- (1) 计算基象组 $T(x_1), \dots, T(x_n)$, 并求出 $T(x_j)$ 在基 x_1, \dots, x_n 下的坐标(列向量) β_i $(j=1,2,\dots,n)$;
- (2) 写出 T 在给定基 x_1, \dots, x_n 下的矩阵 $A = (\beta_1, \dots, \beta_n)$.

二、中介法

- (1) 选取V"的简单基,记作 $\varepsilon_1, \dots, \varepsilon_n$;
 (要求V"中元素在该基下的坐标能够直接写出)
- (2) 写出由简单基改变为给定基的过渡矩阵C(采用直接法);
- (3) 采用直接法求T在简单基下的矩阵: 计算基象组 $T(\varepsilon_1), \dots, T(\varepsilon_n)$,并写出 $T(\varepsilon_j)$ 在简单基 $\varepsilon_1, \dots, \varepsilon_n$ 下的坐标 (列向量) β_i ($j=1,2,\dots,n$)及T在简单基下的矩阵 $A_0=(\beta_1,\dots,\beta_n)$;
- (4) 计算T 在给定基 x_1,\dots,x_n 下的矩阵 $A=C^{-1}A_0C$.

三、混合法

- (1) 选取V"的简单基,记作 $\varepsilon_1, \dots, \varepsilon_n$;
- (2) 写出由简单基改变为给定基的过渡矩阵 C (采用直接法),则有 $(x_1,\dots,x_n)=(\varepsilon_1,\dots,\varepsilon_n)C$
- (3) 计算基象组 $T(x_1), \dots, T(x_n)$, 并写出 $T(x_j)$ 在简单基 $\varepsilon_1, \dots, \varepsilon_n$ 下的 坐标(列向量) β_j $(j=1,2,\dots,n)$, 以及矩阵 $B=(\beta_1,\dots,\beta_n)$, 则有 $T(x_1,\dots,x_n)=(T(x_1),\dots,T(x_n))$ $=(\varepsilon_1,\dots,\varepsilon_n)B=(x_1,\dots,x_n)C^{-1}B$
- (4) 计算T 在给定基 x_1, \dots, x_n 下的矩阵 $A = C^{-1}B$.

§ 1.3 欧氏空间与酉空间

一、欧氏空间

- 1. 内积:线性空间 V,数域 R,对 $\forall x,y \in V$,定义实数(x,y),且满足
 - (1) 交換律 (x,y)=(y,x)
 - (2) 分配律 (x,y+z)=(x,y)+(x,z), $\forall z \in V$
 - (3) 齐次性 (kx, y) = k(x, y), $\forall k \in \mathbb{R}$
 - (4) 非负性 $(x,x) \ge 0, (x,x) = 0 \Leftrightarrow x = \theta$

称实数(x,y)为x与y的内积.

例 ① 线性空间 \mathbf{R}^n 中: $x = (\xi_1, \dots, \xi_n), y = (\eta_1, \dots, \eta_n)$ 内积 1: $(x, y) = \xi_1 \eta_1 + \dots + \xi_n \eta_n$ 内积 2: $(x, y)_h = h_1 \xi_1 \eta_1 + \dots + h_n \xi_n \eta_n$ $(h_i > 0)$

② 线性空间 $\mathbf{R}^{m \times n}$ 中: $A = (a_{ii})_{m \times n}, B = (b_{ii})_{m \times n}$

内积:
$$(A,B) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij} = \text{tr}(A^{T}B)$$
 $(=\text{tr}(AB^{T}) = \cdots)$

- ③ 线性空间 C[a,b]中: f(t),g(t)是区间 [a,b]上的连续函数 内积: $(f(t),g(t)) = \int_a^b f(t)g(t)dt$
- 2. 欧氏空间: 定义了内积运算的实线性空间.

设欧氏空间V''的基为 x_1,\dots,x_n ,对 $\forall x,y \in V''$ 有

$$\begin{cases} x = \xi_1 x_1 + \dots + \xi_n x_n \\ y = \eta_1 x_1 + \dots + \eta_n x_n \end{cases} \Rightarrow (x, y) = \sum_{i,j=1}^n \xi_i \eta_j(x_i, x_j)$$

令 $a_{ij} = (x_i, x_j)$, $A = (a_{ij})_{n \times n}$, 则有

$$(x,y) = \sum_{i,j=1}^{n} a_{ij} \xi_{i} \eta_{j} = (\xi_{1}, \dots, \xi_{n}) A \begin{bmatrix} \eta_{1} \\ \vdots \\ \eta_{n} \end{bmatrix}$$
 矩阵乘法表示

则称 A 为基 x_1, \dots, x_n 的度量矩阵(Gram Matrix).

- ① A 对称: $(x_i, x_j) = (x_j, x_i) \Rightarrow a_{ij} = a_{ji}$
- ② A 正定: $\forall \xi_1, \dots, \xi_n \in \mathbb{R}$ 不全为零 $\Rightarrow x = \xi_1 x_1 + \dots + \xi_n x_n \neq \theta$

$$(x,x)>0$$
 ⇒ 二次型 $(\xi_1,\dots,\xi_n)A$ $\begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}>0$,即 A 正定.

③ V'' 中不同基的度量矩阵是合同的:

基(I):
$$x_1, \dots, x_n$$
; 基(II): y_1, \dots, y_n

基(I)到基(II)的过渡矩阵为 $C: (y_1, \dots, y_n) = (x_1, \dots, x_n)C$

$$y_{i} = c_{1i}x_{1} + \cdots + c_{ni}x_{n}, \quad y_{j} = c_{1j}x_{1} + \cdots + c_{nj}x_{n}$$

$$b_{ij} = (y_{i}, y_{j}) = (c_{1i}, \cdots, c_{ni})A\begin{bmatrix} c_{1j} \\ \vdots \\ c_{nj} \end{bmatrix}$$

$$(b_{i1}, \cdots, b_{in}) = (c_{1i}, \cdots, c_{ni})AC$$

$$B = \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{bmatrix} = \begin{bmatrix} c_{11} & \cdots & c_{n1} \\ \vdots & & \vdots \\ c_{1n} & \cdots & c_{nn} \end{bmatrix} AC = C^{T}AC$$

④ "内积值"的计算与基的选取无关: $\forall x, y \in V$ "

$$x = (x_{1}, \dots, x_{n})\alpha_{1}$$

$$x = (y_{1}, \dots, y_{n})\alpha_{2} = (x_{1}, \dots, x_{n})C\alpha_{2}$$

$$\Rightarrow \alpha_{1} = C\alpha_{2}$$

$$y = (x_{1}, \dots, x_{n})\beta_{1}$$

$$y = (y_{1}, \dots, y_{n})\beta_{2} = (x_{1}, \dots, x_{n})C\beta_{2}$$

$$\Rightarrow \beta_{1} = C\beta_{2}$$
基(I)下: $(x, y) = \alpha_{1}^{T} A \beta_{1}$
基(II)下: $(x, y) = \alpha_{1}^{T} A \beta_{1}$

- 3. 元素的模: 欧氏空间 V, $\forall x \in V$, $m|x| = \sqrt{(x,x)}$ 为 x 的模(长度).
 - ① $\forall k \in \mathbb{R}, |kx| = |k||x|$
 - ② $|(x,y)| \le |x||y|$; 当 $x \ne \theta, y \ne \theta$ 时,等号成立 $\Leftrightarrow x, y$ 线性相关.

$$\forall t \in \mathbb{R}, x - ty \in V \Rightarrow |x - ty|^2 = (x - ty, x - ty) \ge 0$$

$$(y, y)t^2 - 2(x, y)t + (x, x) \ge 0$$

$$\Delta \le 0 : 4(x, y)^2 - 4(y, y)(x, x) \le 0 \Rightarrow |(x, y)| \le |x||y|$$

充分性. 已知 x, y 线性相关,且 $x \neq \theta$,所以 y = kx ,从而

$$|(x, y)| = |(x, kx)| = |k| |(x, x)| = |k| |x| |x| = |x| |y|$$

必要性. 已知 |(x,y)| = |x||y|, 则

$$(x,y) \ge 0$$
 时,取 $t = \frac{|x|}{|y|} \Rightarrow (x-ty,x-ty) = \cdots = 0 \Rightarrow x-ty = \theta$

$$(x,y) < 0$$
 时,取 $t = -\frac{|x|}{|y|} \Rightarrow (x-ty, x-ty) = \cdots = 0 \Rightarrow x-ty = \theta$

故x,y线性相关.

$$|x+y| \le |x| + |y|;$$
 $|x-y| \ge ||x| - |y||$

单位元素: 模为1的元素.

单位化:
$$x \neq \theta$$
, $x_0 = \frac{1}{|x|}x$ (同方向), $x_0 = \frac{-1}{|x|}x$ (反方向).

4. 元素的夹角: 欧氏空间 V中,若 $x \neq \theta$,称 $\phi = \arccos \frac{(x,y)}{|x||y|} \in [0,\pi]$ 为 x 与 y 之间的夹角.

二、正交性

欧氏空间 V中,若(x,y)=0,称 x 与 y 正交,记作 $x \perp y$; 若 x_1,\dots,x_m 满足 $(x_i,x_i)=0$ $(i \neq j)$,称 x_1,\dots,x_m 为正交元素组.

Th 31 欧氏空间 V中, $x \perp y \Rightarrow |x + y|^2 = |x|^2 + |y|^2$. 勾股定理

 $\mathbf{UE} |x+y|^2 = (x+y, x+y) = (x, x) + 2(x, y) + (y, y) = |x|^2 + |y|^2$

Th 32 欧氏空间 V中, x_1,\dots,x_m 两两正交且非零 $\Rightarrow x_1,\dots,x_m$ 线性无关.

[注] 欧氏空间V"中、两两正交的非零元素的个数不超过n.

1. 正交基: 欧氏空间V"中,若 x_1, \dots, x_n 两两正交且非零,称 x_1, \dots, x_n 为V" 的正交基;若还有 $|x_i|$ =1(i=1,2 $,\dots, n$),称 x_1, \dots, x_n 为V"的标准正交基.

Schmidt 正交化方法: 设欧氏空间V"的一个基为 x_1, \dots, x_n ,构造元素组 y_1, \dots, y_n ,使满足 $y_i \perp y_i (i \neq j)$ 且 $y_i \neq \theta (i = 1, 2, \dots, n)$.

$$y_{1} = x_{1} , y_{1} \neq \theta$$

$$y_{2} = x_{2} + k_{21}y_{1} , y_{2} \neq \theta$$

$$(y_{2}, y_{1}) = 0 \Rightarrow 0 = (x_{2}, y_{1}) + k_{21}(y_{1}, y_{1}) \Rightarrow k_{21} = -\frac{(x_{2}, y_{1})}{(y_{1}, y_{1})}$$

$$y_{3} = x_{3} + k_{32}y_{2} + k_{31}y_{1} , y_{3} \neq \theta$$

$$(y_3, y_1) = 0 \Rightarrow k_{31} = -\frac{(x_3, y_1)}{(y_1, y_1)}$$
$$(y_3, y_2) = 0 \Rightarrow k_{32} = -\frac{(x_3, y_2)}{(y_2, y_2)}$$

$$y_n = x_n + k_{n,n-1} y_{n-1} + \dots + k_{n1} y_1 , \quad y_n \neq \theta$$

 $(y_n, y_j) = 0 \Rightarrow k_{nj} = -\frac{(x_n, y_j)}{(y_j, y_j)}, \quad j = 1, 2, \dots, n-1$

因为 y_1, \dots, y_n 两两正交且非零,所以线性无关,从而是 V^n 的正交基. Th 33 欧氏空间 $V^n(n \ge 1)$ 存在标准正交基.

证 对V''的基 x_1, \dots, x_n 进行正交化,可得正交基 y_1, \dots, y_n ;

再进行单位化,可得标准正交基 z_1, \dots, z_n $(z_j = \frac{1}{|y_j|} y_j)$.

例 1 标准正交基的特殊性质: 设欧氏空间V"的标准正交基为 x_1, \dots, x_n ,且 $x = \xi_1 x_1 + \dots + \xi_n x_n$, $y = \eta_1 x_1 + \dots + \eta_n x_n$,则有

- (1) $\xi_i = (x, x_i), \eta_i = (y, x_i);$ (2) 基 x_1, \dots, x_n 的度量矩阵 A = I;
- (3) $(x,y)=\xi_1\eta_1+\cdots+\xi_n\eta_n$. (等号右端: 坐标向量的通常内积)
- 2. 子空间的正交性: 欧氏空间V的子空间 V_1 ,给定 $y \in V$,若 $\forall x \in V_1$,都有 $y \perp x$,则称y正交于 V_1 ,记作 $y \perp V_1$.
 - 例 2 欧氏空间V'', 子空间 V_1 的基为 x_1, x_2, \dots, x_m , 则

 $y \perp V_1 \Leftrightarrow y \perp x_j \ (j = 1, 2, \dots, m)$

判别方法

证 必要性. (略)

充分性. $\forall x \in V_1 \Rightarrow x = k_1 x_1 + \dots + k_m x_m$ $y \perp x_i \Rightarrow (y, x_i) = 0 \Rightarrow (y, x) = 0$, 即 $y \perp V_1$

- 注 1. 若 $V_1 = L(x_1, x_2, \dots, x_m)$,则 $y \perp V_1 \Leftrightarrow y \perp x_i$ $(j = 1, 2, \dots, m)$
- 注 2. 若对 $\forall x \in V_1, \forall y \in V_2$, 都有 $x \perp y$, 则称 $V_1 \perp V_2$.
- 注 3. 若 $V_1 = L(x_1, x_2, \dots, x_m)$, $V_2 = L(y_1, y_2, \dots, y_l)$, 则 $V_1 \perp V_2 \Leftrightarrow x_i \perp y_i \ (i = 1, \dots, m; \ j = 1, \dots, l)$.
- 例 3 欧氏空间V, 子空间 V_1 , 则 $V_1^{\perp} = \{y | y \in V \text{ If } y \perp V_1\}$ 是V的子空间.
- 证 $\theta \in V_1^{\perp} \Rightarrow V_1^{\perp}$ 非空. $\forall y, z \in V_1^{\perp}, \forall x \in V_1, \forall k \in \mathbb{R}$,有 $(y+z,x) = (y,x) + (z,x) = 0 \Rightarrow (y+z) \perp V_1: (y+z) \in V_1^{\perp}$ $(ky,x) = k(y,x) = 0 \qquad \Rightarrow (ky) \perp V_1: (ky) \in V_1^{\perp}$ 故 V_1^{\perp} 是V 的子空间(称 V_1^{\perp} 为 V_1 的正交补).

Th 34 设欧氏空间V'', 子空间 V_1 , 则 $V'' = V_1 \oplus V_1^{\perp}$.

- 证 若 $V_1 = \{\theta\}$,则 $V_1^{\perp} = V^n \Rightarrow V^n = \{\theta\} \oplus V^n = V_1 \oplus V_1^{\perp}$ 若 $V_1 \neq \{\theta\}$,记 dim $V_1^{\text{def}} = m \leq n$,设 V_1 的标准正交基为 x_1, \dots, x_m .
- ① 先证 $V'' = V_1 + V_1^{\perp}$: 只需证明 $V'' \subset V_1 + V_1^{\perp}$ 即可. 任意 $x \in V''$,设x = y + z $(y \in V_1)$,则有 $y \in V_1 \Rightarrow y = a_1x_1 + \dots + a_mx_m$

选取 $a_i = (x, x_i)$ (下式成立需要),由z = x - y可得 $(z, x_i) = (x, x_i) - (y, x_i) = a_i - a_i = 0 \quad (i = 1, 2, \dots, m)$

故 $z \perp V_1$,即 $z \in V_1^{\perp}$. 于是 $x = y + z \in V_1 + V_1^{\perp}$,故 $V'' \subset V_1 + V_1^{\perp}$.

- ② 再证 $V_1 \cap V_1^{\perp} = \{\theta\}: \forall x \in V_1 \cap V_1^{\perp} \Rightarrow \begin{cases} x \in V_1 \\ x \in V_1^{\perp} \end{cases} \Rightarrow (x, x) = 0 \Rightarrow x = \theta$
- ①+②:结论成立.

Th 35 设 $A = (a_{ij})_{m \times n} \in \mathbb{R}^{m \times n}$,则

(1)
$$[R(A)]^{\perp} = N(A^{\mathsf{T}})$$
, $\mathbb{H} R^m = R(A) \oplus N(A^{\mathsf{T}})$;

(2)
$$\left[R(A^{\mathsf{T}})\right]^{\perp} = N(A)$$
, $\mathbb{H} R^n = R(A^{\mathsf{T}}) \oplus N(A)$.

证 划分 $A = (\beta_1, \dots, \beta_n)$ (列向量 $\beta_i \in \mathbb{R}^m$)

$$V_{1}^{\Delta} = R(A) = L(\beta_{1}, \dots, \beta_{n}) \subset \mathbb{R}^{m}$$

$$V_{1}^{\perp} = \left\{ y \mid y \in \mathbb{R}^{m} \coprod y \perp (k_{1}\beta_{1} + \dots + k_{n}\beta_{n}) \right\} \subset \mathbb{R}^{m}$$

$$= \left\{ y \mid y \in \mathbb{R}^{m} \coprod y \perp \beta_{j} \ (j = 1, 2, \dots, n) \right\}$$

$$= \left\{ y \mid y \in \mathbb{R}^{m} \coprod \beta_{j}^{\mathsf{T}} y = 0 \ (j = 1, 2, \dots, n) \right\}$$

$$= \left\{ y \mid y \in \mathbb{R}^{m} \coprod A^{\mathsf{T}} y = 0 \right\} = N(A^{\mathsf{T}})$$

由 Th34 可得 $\mathbf{R}^{m} = V_{1} \oplus V_{1}^{\perp} = R(A) \oplus N(A^{\mathrm{T}}).$

对 A^{T} 应用上述结果可得 $\left[R(A^{\mathsf{T}})\right]^{\perp} = N(A)$

再由 Th34 可得 $R'' = R(A^T) \oplus N(A)$.

三、正交变换与正交矩阵

正交变换: 欧氏空间 V 中,线性变换 T 满足 (Tx,Tx)=(x,x) $(\forall x \in V)$.

注:
$$(Tx,Tx)=(x,x)\Leftrightarrow |Tx|=|x|$$

Th36 欧氏空间 V,线性变换 T.

T 是正交变换 $\Leftrightarrow \forall x, y \in V, (Tx, Ty) = (x, y).$

证 充分性. 取 y = x, 则 $\forall x \in V$, (Tx, Tx) = (x, x).

必要性. T是正交变换: $\forall x, y \in V \Rightarrow x - y \in V$

$$(T(x-y),T(x-y)) = (x-y,x-y) \Rightarrow \cdots \Rightarrow (Tx,Ty) = (x,y)$$

注: 若 T 是正交变换,则有 $\frac{(Tx,Ty)}{|Tx|\cdot|Ty|} = \frac{(x,y)}{|x|\cdot|y|}$.

Th 37 欧氏空间V"的标准正交基为 x_1, \dots, x_n

线性变换
$$T: T(x_1,\dots,x_n)=(x_1,\dots,x_n)A$$

则 T 是正交变换 $\Leftrightarrow A$ 是正交矩阵.

证 必要性. T是正交变换: 划分 $A = (a_{ij})_{n \times n} = (\alpha_1, \dots, \alpha_n)$,则

$$Tx_i = (x_1, \dots, x_n)\alpha_i$$
, $Tx_j = (x_1, \dots, x_n)\alpha_j$

$$(Tx_i, Tx_i) = (x_i, x_i) \Rightarrow (\alpha_i, \alpha_i) = \delta_{ii} \Rightarrow A^{\mathsf{T}} A = I$$

充分性. A 是正交矩阵:

$$\forall x \in V \Rightarrow x = (x_1, \dots, x_n)\alpha, Tx = (x_1, \dots, x_n)A\alpha$$

$$(Tx,Tx) = (A\alpha)^{\mathrm{T}}(A\alpha) = \alpha^{\mathrm{T}}A^{\mathrm{T}}A\alpha = \alpha^{\mathrm{T}}\alpha = (x,x)$$

[注] 欧氏空间V"的标准正交基具有如下性质:

(1) x_1, \dots, x_n 是标准正交基,T 是正交变换 $\Rightarrow Tx_1, \dots, Tx_n$ 是标准正交基

(2)
$$\begin{cases} x_1, \dots, x_n & \text{和 } y_1, \dots, y_n & \text{都是标准正交基} \\ (y_1, \dots, y_n) = (x_1, \dots, x_n)C \end{cases}$$
 $\Rightarrow C$ 是正交矩阵

四、对称变换与对称矩阵

对称变换: 欧氏空间 V 中,线性变换 T 满足(Tx, y) = (x, Ty) ($\forall x$, $y \in V$).

欧氏空间V'' 的标准正交基为 x_1, \dots, x_n

欧氏空间
$$V''$$
的标准正交基为 x_1, \dots, x_n
线性变换 $T: T(x_1, \dots, x_n) = (x_1, \dots, x_n) A$
则 T 是对称变换 \Leftrightarrow A 是对称矩阵.

证 设
$$A = (a_{ij})_{n \times n}$$
,则 $Tx_i = a_{1i}x_1 + \dots + a_{ni}x_n \Rightarrow (Tx_i, x_j) = a_{ji}$

$$Tx_i = a_{1i}x_1 + \dots + a_{ni}x_n \Rightarrow (x_i, Tx_i) = a_{ii}$$

必要性. T是对称变换 \Rightarrow $(Tx_i, x_i) = (x_i, Tx_i) \Rightarrow a_{ii} = a_{ii}$, 即 $A^T = A$

充分性. A 是对称矩阵,则有

$$\forall x \in V \Rightarrow x = (x_1, \dots, x_n)\alpha, \ Tx = (x_1, \dots, x_n)A\alpha$$

$$\forall y \in V \Rightarrow y = (x_1, \dots, x_n)\beta, \ Ty = (x_1, \dots, x_n)A\beta$$

$$(Tx, y) = (A\alpha)^{\mathrm{T}} \cdot \beta = \alpha^{\mathrm{T}} \cdot A\beta = (x, Ty)$$

Th 39 $A \in \mathbb{R}^{n \times n} \coprod A^{T} = A \Rightarrow \lambda_{A} \in \mathbb{R}$.

证 设
$$Ax = \lambda x \ (x \neq \theta)$$
 , 则 $x^{H}Ax = \begin{cases} x^{H}(Ax) = \lambda(x^{H}x) \\ (Ax)^{H}x = \overline{\lambda}(x^{H}x) \end{cases}$.
 故 $(\lambda - \overline{\lambda})(x^{H}x) = 0 \Rightarrow \lambda = \overline{\lambda} \ (\because x^{H}x > 0)$, 即 $\lambda \in \mathbb{R}$.

[注] 因为 $(\lambda I - A)x = 0$ 是实系数齐次线性方程组,所以可求得非零解 向量 $x \in \mathbb{R}^n$. 约定: 实对称矩阵的特征向量为实向量.

Th 40 设实对称矩阵 A 的特征值 $\lambda_1 \neq \lambda_2$, 对应的特征向量分别为 x_1 和 x_2 , 则 $(x_1,x_2)=0$.

$$\frac{Ax_1 = \lambda_1 x_1}{Ax_2 = \lambda_2 x_2} \Rightarrow x_1^{\mathrm{T}} A x_2 = \begin{cases} x_1^{\mathrm{T}} (Ax_2) = \lambda_2 (x_1^{\mathrm{T}} x_2) \\ (Ax_1)^{\mathrm{T}} x_2 = \lambda_1 (x_1^{\mathrm{T}} x_2) \end{cases}$$

$$\Rightarrow (\lambda_2 - \lambda_1) (x_1^{\mathrm{T}} x_2) = 0 \Rightarrow x_1^{\mathrm{T}} x_2 = 0 , \quad \mathbb{P}(x_1, x_2) = 0 .$$

五、酉空间简介

1. 复内积 线性空间 V,复数域 K,对 $\forall x, y \in V$,定义复数(x, y),且满足

2. 酉空间 定义了复内积运算的复线性空间.

- ① $(x, ky) = (ky, x) = k(y, x) = \overline{k}(y, x) = \overline{k}(x, y)$
- ② 基的度量矩阵为 Hermite 正定矩阵 (Hermite 矩阵 A^H = A)

$$(3) (x,y) = (\xi_1,\dots,\xi_n) A \begin{bmatrix} \overline{\eta}_1 \\ \vdots \\ \overline{\eta}_n \end{bmatrix}$$

- ④ 酉变换(复正交变换): $(Tx, Tx) = (x, x) (\forall x \in V)$ T 是酉变换 ⇔ T 在标准正交基下的矩阵 A 是<mark>酉矩阵</mark>,即 $A^{H}A = I$.
- ⑤ Hermite-变换(复对称变换): $(Tx, y) = (x, Ty) \ (\forall x, y \in V)$ T 是 Hermite-变换⇔

T 在标准正交基下的矩阵 A 是 Hermite 矩阵,即 $A^{H} = A$.

Th41 (1) 设 A_{nxn} 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则存在酉矩阵 P_{nxn} ,使得

$$P^{\mathrm{H}}AP = \begin{bmatrix} \lambda_1 & \cdots & * \\ & \ddots & \vdots \\ & & \lambda_n \end{bmatrix}$$

- (2) 设 $A \in \mathbb{R}^{n \times n}$ 且 $\lambda_A \in \mathbb{R}$,则存在正交矩阵 $Q_{n \times n}$,使得 $Q^T A Q$ 为 上三角矩阵.
- $\overline{\mathbf{u}}$ 在Th17 的证明过程中,将"扩充 \mathbf{x}_1 为 \mathbf{C}^k 的基"修改为 "扩充 x_1 为 C^k 的标准正交基"即可.
- 3. 正规矩阵: 指 A_{max} 满足 $A^{\text{H}}A = AA^{\text{H}}$.

例如 $C^{n\times n}$ 中: ① $A^H = A \Rightarrow A$ 正规: ② $A^H A = I \Rightarrow A$ 正规.

 $\mathbf{R}^{n \times n}$ 中: ① $A^{\mathsf{T}} = A \Rightarrow A$ 正规; ② $A^{\mathsf{T}} A = I \Rightarrow A$ 正规.

$$B = \begin{bmatrix} 5+4j & 1+6j \\ 1+6j & 5+4j \end{bmatrix}$$
: $B^{H}B = \begin{bmatrix} 78 & 58 \\ 58 & 78 \end{bmatrix} = BB^{H} \Rightarrow B$ 是正规矩阵

但是 $B^{H} \neq B$, $B^{H}B \neq I$.

Th42 (1) $A \in \mathbb{C}^{n \times n}$, A 正规 \Leftrightarrow 3 酉矩阵 $P_{n \times n}$, 使得 $P^{H}AP = \Lambda$;

(2) $A \in \mathbb{R}^{n \times n}$ 且 $\lambda_A \in \mathbb{R}$, A 正规 $\Leftrightarrow \exists$ 正交矩阵 $Q_{n \times n}$ 使得 $Q^T A Q = \Lambda$.

证 (1) 充分性. $A = P\Lambda P^{H}, A^{H} = P\overline{\Lambda}P^{H}$ $A^{H}A = P\overline{\Lambda}\Lambda P^{H} = P\Lambda\overline{\Lambda}P^{H} = AA^{H}$ $A^{H}A = P\overline{\Lambda}\Lambda P^{H} = P\Lambda\overline{\Lambda}P^{H} = AA^{H}$

必要性. $A^{H}A = AA^{H}$:

th41(1)
$$\Rightarrow$$
 3 酉矩阵 P 使得 $P^{H}AP = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ & b_{22} & \cdots & b_{2n} \\ & & \ddots & \vdots \\ & & & b_{nn} \end{bmatrix}^{A} = B$

 $B^{\mathrm{H}}B = P^{\mathrm{H}}A^{\mathrm{H}}AP = P^{\mathrm{H}}AA^{\mathrm{H}}P = BB^{\mathrm{H}}$

$$\begin{bmatrix} \overline{b}_{11} & & & & \\ \overline{b}_{12} & \overline{b}_{22} & & & \\ \vdots & \vdots & \ddots & & \\ \overline{b}_{1n} & \overline{b}_{2n} & \cdots & \overline{b}_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ & b_{22} & \cdots & b_{2n} \\ & & \ddots & \vdots \\ & & & b_{nn} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ & b_{22} & \cdots & b_{2n} \\ & & \ddots & \vdots \\ & & & b_{nn} \end{bmatrix} \begin{bmatrix} \overline{b}_{11} & & & & \\ \overline{b}_{12} & \overline{b}_{22} & & & \\ \vdots & \vdots & \ddots & & \\ \overline{b}_{1n} & \overline{b}_{2n} & \cdots & \overline{b}_{nn} \end{bmatrix}$$

比较第一行第一列元素可得

$$|b_{11}|^2 = |b_{11}|^2 + |b_{12}|^2 + \dots + |b_{1n}|^2 \Rightarrow b_{12} = 0, b_{13} = 0, \dots, b_{1n} = 0$$

一般地, 有

$$\begin{aligned} i &= 1: \ b_{12} &= 0, b_{13} &= 0, \cdots, b_{1n} &= 0 \\ i &= 2: & b_{23} &= 0, \cdots, b_{2n} &= 0 \\ & & & \\ \vdots &= n-1: & b_{n-1,n} &= 0 \end{aligned} \} \Rightarrow B = \begin{bmatrix} b_{11} & & & \\ & b_{22} & & \\ & & \ddots & \\ & & b_{nn} \end{bmatrix}$$

(2) 利用 th41(2)可得.

例如,对于 $B = \begin{bmatrix} 5+4j & 1+6j \\ 1+6j & 5+4j \end{bmatrix}$,可求得酉矩阵 $P = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$,使得

$$P^{\mathrm{H}}BP = \begin{bmatrix} 6+10\mathbf{j} & \\ & 4-2\mathbf{j} \end{bmatrix}$$

推论 1 $A_{n\times n}$ 实对称 \Rightarrow 3正交矩阵 $Q_{n\times n}$,使得 $Q^{T}AQ = \Lambda$.

推论 2 欧氏空间V'',对称变换 $T \Rightarrow$ 存在标准正交基 y_1, \dots, y_n ,使得 $T(y_1, \dots, y_n) = (y_1, \dots, y_n) \Lambda$.

证 设V'' 的标准正交基为 x_1,\dots,x_n , T 在该基下的矩阵为A, 则

A 是实对称矩阵⇒3正交矩阵 Q_{nxn} 使得 $Q^TAQ = A$

构造 V^n 的标准正交基: $(y_1, \dots, y_n) = (x_1, \dots, x_n)Q$ (为什么?)

则
$$T(y_1,\dots,y_n) = T(x_1,\dots,x_n)Q = (x_1,\dots,x_n)AQ$$

= $(y_1,\dots,y_n)Q^{-1}AQ = (y_1,\dots,y_n)A$

推论 3 A 实对称 \Rightarrow A 有 n 个线性无关的特征向量(R"中).

推论 4 T 是欧氏空间V"的对称变换⇒ T 有 n 个线性无关的特征向量(V"中)

谱分解: $A_{n\times n}$ 是 Hermite 矩阵 \Rightarrow 3 酉矩阵 $P_{n\times n}$, 使得 $A = P\Lambda P^{\mathrm{H}}$ 划分 $P = (p_1, \dots, p_n)$,则有

$$A = (p_1, \dots, p_n) \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} P^{H} = (\lambda_1 p_1, \dots, \lambda_n p_n) \begin{bmatrix} p_1^{H} \\ \vdots \\ p_n^{H} \end{bmatrix}$$
$$= \lambda_1 (p_1 p_1^{H}) + \dots + \lambda_n (p_n p_n^{H})$$

注: 矩阵组 $B_1 = p_1 p_1^H, \dots, B_n = p_n p_n^H$ 线性无关,且 rank $B_j = 1$.

- 例 4 给定欧氏空间V"的标准正交基 x_1, x_2, \dots, x_n ,设 $T \in V$ "的正交变 换, $W = L(x_1, x_2, \dots, x_n)$ 是T的不变子空间,证明:V''的子空间 $W^{\perp} = \{ v \mid v \in V'', v \perp W \}$ 也是 T 的不变子空间.
- 因为 $T \in V$ "的正交变换,而 $x_1, x_2, \dots, x_n \in V$ "的标准正交基 所以 $T(x_1),T(x_2),\cdots,T(x_n)$ 也是V'' 的标准正交基 (定理 37 之证明) $W = L(x_1, x_2, \dots, x_r) \implies W^{\perp} = L(x_{r+1}, \dots, x_n)$ 理由: $\dim W = r \Rightarrow \dim W^{\perp} = n - r$, $x_1, \dots, x_n \perp x_{n+1}, \dots, x_n$ (线性无关) W 是T 的不变子空间 ⇒ $T(x_1), \dots, T(x_r)$ 是W 的标准正交基 $T(x_{r+1}), \dots, T(x_n) \perp W \Rightarrow T(x_{r+1}), \dots, T(x_n) \in W^{\perp}$ 理由: $T(x_{r+1}), \dots, T(x_n) \perp T(x_1), \dots, T(x_r)$ (W 的标准正交基) $\forall x \in W^{\perp} \implies x = k_{r+1} x_{r+1} + \dots + k_n x_n$ $\Rightarrow T(x) = k_{r+1}T(x_{r+1}) + \dots + k_nT(x_n) \in W^{\perp}$

故 W^{\perp} 是T的不变子空间。

- 证 2 因为T是正交变换,所以T是可逆变换,可将T看作W中的可逆变换。 $\forall \alpha \in W \Rightarrow 存在\beta \in W$ 使得 $T(\beta) = \alpha$ (可逆变换的性质) $\forall \gamma \in W^{\perp} \Rightarrow (T(\gamma), \alpha) = (T(\gamma), T(\beta)) = (\gamma, \beta) = 0 \Rightarrow T(\gamma) \in W^{\perp}$ 故 W^{\perp} 是T的不变子空间.
- 例 5 设线性空间 V 中的线性变换 T 满足 $T^2 = T$, R(T) 表示 T 的值域, N(T)表示 T 的核, T 表示 V 中的单位变换,证明 $N(T) = R(T_1 - T)$.
- 证 先证 $N(T) \subset R(T_{\alpha} T)$: $\forall \alpha \in N(T)$, 有 $T(\alpha) = \theta \Rightarrow \alpha = T_{\alpha}(\alpha) = T_{\alpha}(\alpha) - T(\alpha) = (T_{\alpha} - T)(\alpha) \in R(T_{\alpha} - T)$ 再证 $R(T_{\alpha}-T) \subset N(T)$: $\forall \alpha \in R(T_{\alpha}-T)$, 存在 $\beta \in V$, 使得 $\alpha = (T_a - T)(\beta) = \beta - T(\beta)$ $T(\alpha) = T(\beta) - T[T(\beta)] = T(\beta) - T^{2}(\beta) = T(\beta) - T(\beta) = \theta$ 故 $\alpha \in N(T)$.

典型题解析

例 6(M2007A 七) 设 3 维欧氏空间V中元素 α_0 在V的标准正交基 ξ_1,ξ_2,ξ_3 下的坐标为 $(1,-1,0)^{\mathrm{T}}$,定义V中的变换如下

$$T(\alpha) = \alpha + (\alpha, \alpha_0)\alpha_0 \quad (\forall \alpha \in V)$$

其中 (α,α_0) 表示 α 与 α_0 的内积.

- 1. 证明 T 是线性变换:
- 2. 证明T是对称变换;
- 3. 求V的一组标准正交基 η_1,η_2,η_3 ,使T在该基下的矩阵为对角矩阵.

解 T是线性变换(略)

计算基像组
$$\begin{cases} T(\xi_1) = \xi_1 + 1\alpha_0 = 2\xi_1 - \xi_2 \\ T(\xi_2) = \xi_2 - 1\alpha_0 = -\xi_1 + 2\xi_2 \\ T(\xi_3) = \xi_3 + 0\alpha_0 = \xi_3 \end{cases}$$

设
$$T(\xi_1, \xi_2, \xi_3) = (\xi_1, \xi_2, \xi_3)A$$
,则 $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

因为 ξ_1,ξ_2,ξ_3 是标准正交基,A是对称矩阵,所以T是对称变换.

求正交矩阵Q,使得 $Q^{-1}AQ = \Lambda$:

$$Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 3 \end{bmatrix}$$

由 $(\eta_1, \eta_2, \eta_3) = (\xi_1, \xi_2, \xi_3)Q$ 求得<mark>标准正交基</mark>

$$\eta_1 = \frac{1}{\sqrt{2}} \xi_1 + \frac{1}{\sqrt{2}} \xi_2, \quad \eta_2 = \xi_3, \quad \eta_3 = -\frac{1}{\sqrt{2}} \xi_1 + \frac{1}{\sqrt{2}} \xi_2$$

且有 $T(\eta_1,\eta_2,\eta_3) = (\eta_1,\eta_2,\eta_3)\Lambda$.

M2009A

八、 $(7\, \mathcal{D})$ 设线性空间 V^4 的一个基为 x_1, x_2, x_3, x_4 ,线性变换T 在该基下的 矩阵为 $\begin{bmatrix} A & B \\ O & C \end{bmatrix}$,其中A,B,C 都是 2 阶方阵,O 是 2 阶零矩阵,证明:

- 1. 子空间 $V_1 = \text{span}\{x_1, x_2\}$ 是T 的不变子空间;
- 2. 若 $B \neq O$,则子空间 $V_2 = \text{span}\{x_1, x_4\}$ 不是T的不变子空间.

$$T(x_1) = a_{11}x_1 + a_{21}x_2 \in V_1$$
, $T(x_2) = a_{12}x_1 + a_{22}x_2 \in V_1$

任意 $x \in V_1$, 存在 k_1, k_2 , 使得 $x = k_1x_1 + k_2x_2$, 于是有

$$T(x) = k_1 \cdot T(x_1) + k_2 \cdot T(x_2) \in V_1$$

故 $V_1 = \text{span}\{x_1, x_2, \}$ 是T 的不变子空间.

所以 $V_1 = \text{span}\{x_1, x_4\}$ 不是T 的不变子空间.

M2008B

八、(8分) 设 $A \in \mathbb{C}^{n \times n}$ 满足 $A^2 = -A$,证明 $\mathbb{C}^n = R(A) \oplus N(A)$,即 \mathbb{C}^n 可分解为子空间R(A)与N(A)的直和.

证 (1) 先证
$$C^n = R(A) + N(A)$$
: 对任意 $x \in C^n$,有 $x = -Ax + (I + A)x$ 因为 $y = -Ax = A(-x) \in R(A)$, $z = (I + A)x \in N(A)$ ($\because Az = 0$) 所以 $x = y + z \in R(A) + N(A)$,故 $C^n \subset R(A) + N(A)$ 由此可得 $C^n = R(A) + N(A)$

(2) 再证 $R(A) \cap N(A) = \{0\}$: 任意 $\beta \in R(A) \cap N(A)$, 有 $\beta \in R(A) \Rightarrow \text{存在 } \alpha \in \mathbb{C}^n, \text{使得 } \beta = A\alpha; \quad \beta \in N(A) \Rightarrow A\beta = 0$ 因为 $\beta = A\alpha = -A^2\alpha = -A(A\alpha) = -A\beta = 0$ 所以 $R(A) \cap N(A) = \{0\}$

综述(1)和(2)可得 $C'' = R(A) \oplus N(A)$.

证法 2 (1) 先证 $R(A) \cap N(A) = \{0\}$: (同证法 1)

(2) 再证 C'' = R(A) + N(A): 利用维数公式可得 $\dim[R(A) + N(A)] = \dim R(A) + \dim N(A) - \dim[R(A) \cap N(A)]$

$$= \operatorname{rank}(A) + [n - \operatorname{rank}(A)] - 0 = n$$

因为 $R(A) + N(A) \subset \mathbb{C}^n$ (定理 5),所以 $\mathbb{C}^n = R(A) + N(A)$.

综述(1)和(2)可得 $C'' = R(A) \oplus N(A)$.

M2005A

八、(9 分) 设线性空间V"的两个基分别为(I) x_1, x_2, \dots, x_n 和(II) y_1, y_2, \dots, y_n , 元素 $x \in V$ " 在基(I)下的坐标为 α ,在基(II)下的坐标为 β ,证明子集 $W = \{x \mid x \in V$ ", $\alpha = 2\beta\}$ 是V"的线性子空间.

证 $\theta \in V$ " 在基(I)下的坐标为0 (零向量), 在基(II)下的坐标为0 $\theta = 20 \Rightarrow \theta \in W \Rightarrow W$ 非空

设 $x \in W$ 在基(I)和基(II)下的坐标分别为 α_1 , β_1 ,则 $\alpha_1 = 2\beta_1$ $y \in W$ 在基(I)和基(II)下的坐标分别为 α_2 , β_2 ,则 $\alpha_2 = 2\beta_2$ 于是 x + y 在基(I)和基(II)下的坐标分别为 $\alpha_1 + \alpha_2$, $\beta_1 + \beta_2$,且有

$$\alpha_1 + \alpha_2 = 2 \beta_1 + 2\beta_2 = 2(\beta_1 + \beta_2) \implies x + y \in W$$

而 kx 在基(I)和基(II)下的坐标分别为 $k\alpha_1, k\beta_1$,且有

$$k\alpha_1 = k(2 \beta_1) = 2(k\beta_1) \implies kx \in W$$

故W 是V'' 的子空间.

M2006A

七、(15分)已知矩阵空间R^{2×2}的一个基为

$$A_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, A_{4} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
线性变换 T 满足: $T(A_{1}) = B_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, T(A_{2}) = B_{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$T(A_{3}) = B_{3} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, T(A_{4}) = B_{4} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

- 1. 求T在基 A_1, A_2, A_3, A_4 下的矩阵;
- 2. 判断T能否在 $R^{2\times2}$ 的某个基下的矩阵为对角矩阵; (要求写出判断依据)
- 3. 求N(T)的一个基.

$$\mathbf{H}$$
 (1) $(A_1, \dots, A_4) = (E_{11}, \dots, E_{22})C_1$, $(B_1, \dots, B_4) = (E_{11}, \dots, E_{22})C_2$

$$(B_1, \dots, B_4) = (A_1, \dots, A_4)C_1^{-1}C_2$$

 $T(A_1, \dots, A_4) = (B_1, \dots, B_4) = (A_1, \dots, A_4)C_1^{-1}C_2, \quad A = C_1^{-1}C_2$

- ② $|\lambda I A| = \lambda^2 (\lambda 1)^2$ $r(0I A) = 2 \Rightarrow \lambda_1 = \lambda_2 = 0$ 有 2 个线性无关的特征向量 (略计算过程) $r(1I A) = 3 \Rightarrow \lambda_3 = \lambda_4 = 1$ 只有 1 个线性无关的特征向量 (略计算过程)
 故 A 不可对角化 \Rightarrow T 不能在某个基下的矩阵为对角矩阵
- ③ $N(T) = \{X \mid T(X) = 0\} = \{X \mid X = (A_1, \dots, A_4)\alpha, A\alpha = 0\}$ $A\alpha = 0 \text{ 的基础解系为} \quad \alpha_1 = (-1, -1, 1, 0)^{\mathrm{T}}, \quad \alpha_2 = (-1, 1, 0, 1)^{\mathrm{T}}$ $N(T) \text{ 的基为} \quad X_1 = (A_1, \dots, A_4)\alpha_1 = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}, \quad X_2 = (A_1, \dots, A_4)\alpha_2 = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$

M2004B

七、(15 分) 在向量空间 \mathbb{R}^4 中,对于向量 $x = (\xi_1, \xi_2, \xi_3, \xi_4)$,定义线性变换为 $T(x) = (\xi_1 + \xi_4, \xi_1 + \xi_3, \xi_1 + \xi_3, \xi_2 + \xi_4)$

- 1. 求T的值域R(T)的一个基;
- 2. 将T 看作 R(T) 中的线性变换,求R(T) 的一个基,使T 在该基下的矩阵为对角矩阵. (注意: R(T) 是T 的不变子空间)
- 解 1. 取 \mathbb{R}^4 的基为 e_1, e_2, e_3, e_4 , 计算基象组

$$T(e_1) = (0, 1, 1, 0)$$
, $T(e_2) = (1, 0, 0, 1)$
 $T(e_3) = (0, 1, 1, 0)$, $T(e_4) = (1, 0, 0, 1)$

因为 $R(T) = L(T(e_1), T(e_2), T(e_3), T(e_4))$

所以 R(T) 的基为基象组的最大无关组: $\alpha_1 = (0,1,1,0), \alpha_2 = (1,0,0,1)$

2. $T(\alpha_1) = (1, 1, 1, 1) = \alpha_1 + \alpha_2$, $T(\alpha_2) = (1, 1, 1, 1) = \alpha_1 + \alpha_2$

$$T(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2)A$$
, $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

求
$$P$$
 使得 $P^{-1}AP = \Lambda$: $\Lambda = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$

令 $(\beta_1,\beta_2)=(\alpha_1,\alpha_2)P$,求得另一基:

$$\beta_1 = -\alpha_1 + \alpha_2 = (1, -1, -1, 1), \quad \beta_2 = \alpha_1 + \alpha_2 = (1, 1, 1, 1)$$

于是可得 $T(\beta_1, \beta_2) = (\beta_1, \beta_2)\Lambda$.

第二章 范数理论及其应用

§ 2.1 向量范数

一、C"中向量序列的收敛性

设
$$x^{(k)} = (\xi_1^{(k)}, \dots, \xi_n^{(k)})$$
, 若 $\lim_{k \to \infty} \xi_i^{(k)} = \xi_i \ (i = 1, 2, \dots, n)$, 称 $\{x^{(k)}\}$ 收敛于 $x = (\xi_1, \dots, \xi_n)$, 记作 $\lim_{k \to \infty} x^{(k)} = x$ 或 $x^{(k)} \to x \ (k \to \infty)$.

[注] 判断一个向量序列收敛等价于判断 n 个数列同时收敛.

用模刻划:
$$\mathbb{C}^n$$
 中向量 x 的模为 $|x| = (|\xi_1|^2 + \dots + |\xi_n|^2)^{\frac{1}{2}}$

$$\lim_{k\to\infty} x^{(k)} = x \Leftrightarrow \lim_{k\to\infty} \xi_i^{(k)} = \xi_i \ (i = 1, 2, \dots, n) \Leftrightarrow \lim_{k\to\infty} \left| \xi_i^{(k)} - \xi_i \right|^2 = 0 \ (i = 1, 2, \dots, n)$$

$$\Leftrightarrow \lim_{k\to\infty} \left(\left| \xi_1^{(k)} - \xi_1 \right|^2 + \dots + \left| \xi_n^{(k)} - \xi_n \right|^2 \right)^{\frac{1}{2}} = 0 \Leftrightarrow \lim_{k\to\infty} \left| x^{(k)} - x \right| = 0$$

实数的对应

二、线性空间V的向量范数

线性空间 V,数域 K, $\forall x \in V$,定义实数 $\|x\|$,且满足

(1)
$$||x|| \ge 0$$
; $||x|| = 0 \Leftrightarrow x = \theta$

(2)
$$||kx|| = |k|||x||, \forall k \in K$$

(3)
$$||x + y|| \le ||x|| + ||y||, \forall y \in V$$

例 1 欧氏空间V中, $||x||=|x|=\sqrt{(x,x)}$ 是一种向量范数.

例 2 线性空间
$$\mathbb{C}^n$$
 中, $\|x\|_p = \left(\sum_{i=1}^n \left|\xi_i\right|^p\right)^{\frac{1}{p}} \left(1 \le p < \infty\right)$ 是向量范数.

证 ① 略. ② 略. ③ 设
$$x = (\xi_1, \dots, \xi_n), y = (\eta_1, \dots, \eta_n)$$
,则

$$p=1: ||x+y||_1 = \sum |\xi_i + \eta_i| \le \sum (|\xi_i| + |\eta_i|) = ||x||_1 + ||y||_1;$$

p>1: $x+y=\theta$ 时, 结论成立; $x+y\neq\theta$ 时, 应用 Hölder 不等式

$$\sum |a_i b_i| \le \left(\sum |a_i|^p\right)^{\frac{1}{p}} \left(\sum |b_i|^q\right)^{\frac{1}{q}} \qquad (p > 1, q > 1, \frac{1}{p} + \frac{1}{q} = 1)$$

可得 (利用(p-1)q = p)

$$\left(\left\| x + y \right\|_{p} \right)^{p} = \sum \left| \xi_{i} + \eta_{i} \right|^{p} = \sum \left(\left| \xi_{i} + \eta_{i} \right| \left| \xi_{i} + \eta_{i} \right|^{p-1} \right)$$

$$\leq \sum \left| \xi_{i} \right| \left| \xi_{i} + \eta_{i} \right|^{p-1} + \sum \left| \eta_{i} \right| \left| \xi_{i} + \eta_{i} \right|^{p-1}$$

$$\leq \left(\sum \left| \xi_{i} \right|^{p} \right)^{\frac{1}{p}} \left(\sum \left(\left| \xi_{i} + \eta_{i} \right|^{p-1} \right)^{q} \right)^{\frac{1}{q}} + \left(\sum \left| \eta_{i} \right|^{p} \right)^{\frac{1}{p}} \left(\sum \left(\left| \xi_{i} + \eta_{i} \right|^{p-1} \right)^{q} \right)^{\frac{1}{q}}$$

$$= \left(\left\| x \right\|_{p} + \left\| y \right\|_{p} \right) \left(\left\| x + y \right\|_{p} \right)^{p-1}$$

$$(\text{All } \mathbf{\Pi} \frac{1}{q} = \frac{1}{p} \cdot (p-1))$$

故
$$||x+y||_p \le ||x||_p + ||y||_p$$

因此,当 $1 \le p < +\infty$ 时, $||x||_p$ 是向量范数.

例 证明极限式 $\lim_{p\to+\infty} ||x||_p = \max_i |\xi_i|$.

证 当 $x = \theta$ 时成立. 当 $x \neq \theta$ 时,设 $\left|\xi_{i_0}\right| = \max_i \left|\xi_i\right|$,则有

$$||x||_{p} = \left|\xi_{i_{0}}\right|\left(\sum\left|\frac{\xi_{i}}{\xi_{i_{0}}}\right|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq \left(\sum\left|\frac{\xi_{i}}{\xi_{i_{0}}}\right|^{p}\right)^{\frac{1}{p}} \leq n^{\frac{1}{p}} \to 1 \quad (p \to +\infty)$$

 $\lim_{n\to+\infty} ||x||_p = |\xi_{i_0}| = \max_i |\xi_i|$

例 证明 $||x||_{\infty} = \max_i |\xi_i|$ 是 \mathbb{C}^n 中的向量范数.

证 ① 略. ② 略. ③ 设 $x = (\xi_1, \dots, \xi_n), y = (\eta_1, \dots, \eta_n),$ 则 $||x + y||_{\infty} = \max_i |\xi_i + \eta_i| \le \max_i [|\xi_i| + |\eta_i|] \le \max_i |\xi_i| + \max_i |\eta_i| = ||x||_{\infty} + ||y||_{\infty}$ 故 $||x||_{\infty} = \max_i |\xi_i|$ 是向量范数.

常用向量范数:
$$1-$$
范数 $||x||_1 = \sum |\xi_i|$; $2-$ 范数 $||x||_2 = (\sum |\xi_i|^2)^{\frac{1}{2}}$ $\infty -$ 范数 $||x||_{\infty} = \max_i |\xi_i|$

例 3 线性空间 V^n 中,给定基 x_1,\dots,x_n ,对任意 $x \in V^n$,有

$$x = \xi_1 x_1 + \dots + \xi_n x_n \overset{1-1}{\longleftrightarrow} \alpha = (\xi_1, \dots, \xi_n)^{\mathrm{T}} \in \mathbb{C}^n$$

定义 $\|x\|_p = \|\alpha\|_p$,则 $\|x\|_p$ 是V"中元素x的范数(自证),称为p-范数.

例 4 设 $A \in \mathbb{R}^{n \times n}$ 对称正定,线性空间 \mathbb{R}^n 中, $\|\alpha\|_A = (\alpha^T A \alpha)^{\frac{1}{2}}$ 是向量范数.

证 ① 略. ② 略.

③
$$A$$
 实对称 \Rightarrow 3 正交矩阵 Q 使得 $Q^{T}AQ = \begin{bmatrix} \lambda_{1} & & & \\ & \ddots & & \\ & & \lambda_{n} \end{bmatrix}$

A 正定 $\Rightarrow \lambda_i > 0$

$$\Rightarrow A = Q \begin{bmatrix} \sqrt{\lambda_1} & & & \\ & \ddots & & \\ & & \sqrt{\lambda_n} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & & & \\ & & \ddots & \\ & & \sqrt{\lambda_n} \end{bmatrix} Q^{\mathsf{T}} \stackrel{\Delta}{=} B^{\mathsf{T}} B$$

因为
$$\|\boldsymbol{\alpha}\|_{A} = (\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{B}^{\mathsf{T}} \boldsymbol{B} \boldsymbol{\alpha})^{\frac{1}{2}} = [(\boldsymbol{B} \boldsymbol{\alpha})^{\mathsf{T}} (\boldsymbol{B} \boldsymbol{\alpha})]^{\frac{1}{2}} = \|\boldsymbol{B} \boldsymbol{\alpha}\|_{2}$$
 (Rⁿ中) 所以
$$\|\boldsymbol{\alpha} + \boldsymbol{\beta}\|_{A} = \|\boldsymbol{B} (\boldsymbol{\alpha} + \boldsymbol{\beta})\|_{2} = \|(\boldsymbol{B} \boldsymbol{\alpha}) + (\boldsymbol{B} \boldsymbol{\beta})\|_{2}$$

$$\leq \|\boldsymbol{B} \boldsymbol{\alpha}\|_{2} + \|\boldsymbol{B} \boldsymbol{\beta}\|_{2} = \|\boldsymbol{\alpha}\|_{A} + \|\boldsymbol{\beta}\|_{A}$$

三、范数等价

对于线性空间V"的向量范数 $\|x\|_{\alpha}$ 与 $\|x\|_{\beta}$,若有正常数 c_1 和 c_2 ,使得

$$\frac{c_1 \|x\|_{\beta} \le \|x\|_{\alpha} \le c_2 \|x\|_{\beta}}{(\forall x \in V^n)}$$

成立, $||x||_a = ||x||_a$ 等价.

- (1) 自反性: $1 \cdot ||x||_{\alpha} \le ||x||_{\alpha} \le 1 \cdot ||x||_{\alpha}, \forall x \in V^n$
- (2) 对称性: $\frac{1}{c_2} ||x||_{\alpha} \le ||x||_{\beta} \le \frac{1}{c_1} ||x||_{\alpha}, \forall x \in V^n$
- 例 5 向量空间 \mathbb{C}^n 中,对任意向量 $x = (\xi_1, \dots, \xi_n)^T$,有
 - $(1) ||x||_{1} = \sum |\xi_{i}| \le n \cdot \max_{i} |\xi_{i}| = n ||x||_{\infty}$ $||x||_{1} \ge \max_{i} |\xi_{i}| = 1 \cdot ||x||_{\infty}, ||t||_{1} ||t||_{\infty} \le ||x||_{1} \le n \cdot ||x||_{\infty}.$
 - $(2) \|x\|_{2} = \left(\sum |\xi_{i}|^{2}\right)^{\frac{1}{2}} \le \left(n \cdot \max_{i} |\xi_{i}|^{2}\right)^{\frac{1}{2}} = \sqrt{n} \cdot \|x\|_{\infty}$ $\|x\|_{2} \ge \left(\max_{i} |\xi_{i}|^{2}\right)^{\frac{1}{2}} = 1 \cdot \|x\|_{\infty}, \ \ \text{it} \ \ \frac{1 \cdot \|x\|_{\infty} \le \|x\|_{2} \le \sqrt{n} \cdot \|x\|_{\infty}}{2}.$
 - (3) $\frac{1}{\sqrt{n}} \cdot \|x\|_{2} \le \|x\|_{1} \le n \cdot \|x\|_{2}$
- Th1 线性空间V"中,任意两种向量范数等价.
- 证 只需证明任一向量范数 $\|x\|_x$ 与向量范数 $\|x\|_x$ 等价即可.

给定V"的基 x_1,\dots,x_n ,对任意 $x \in V$ ",有

$$x = \xi_1 x_1 + \dots + \xi_n x_n$$
, $\|x\|_2 = \left(\sum_{i=1}^n |\xi_i|^2\right)^{\frac{1}{2}}$ (见例 3)

 \mathbb{C}^n 的子集 $S = \{(\xi_1, \dots, \xi_n) | |\xi_1|^2 + \dots + |\xi_n|^2 = 1\}$ 是闭区域,实值函数

$$f(\xi_1,\dots,\xi_n) \stackrel{\Delta}{=} ||x||_{\alpha} = ||\xi_1x_1 + \dots + \xi_nx_n||_{\alpha}$$

在S上连续,故f在S上取得最值 $\min f = c_1$, $\max f = c_2$.

$$\forall (\xi_1, \dots, \xi_n) \in S \implies x = \xi_1 x_1 + \dots + \xi_n x_n \neq \theta$$
$$\Rightarrow f(\xi_1, \dots, \xi_n) = ||x||_{\alpha} > 0 \Rightarrow c_1 > 0$$

 $\forall x \in V^n$, 当 $x \neq \theta$ 时, 由 $x = \xi_1 x_1 + \dots + \xi_n x_n$ 导出

$$y = \frac{x}{\|x\|_{2}} = \sum_{i=1}^{n} \frac{\xi_{i}}{\|x\|_{2}} x_{i} = \sum_{i=1}^{n} \eta_{i} x_{i} \quad (\eta_{i} = \frac{\xi_{i}}{\|x\|_{2}})$$

$$\left|\eta_{1}\right|^{2} + \dots + \left|\eta_{n}\right|^{2} = 1 \Rightarrow (\eta_{1}, \dots, \eta_{n}) \in S$$

故
$$0 < c_1 \le f(\eta_1, \dots, \eta_n) \le c_2 \Rightarrow 0 < c_1 \le \|y\|_{\alpha} \le c_2$$

 $\Rightarrow c_1 \|x\|_2 \le \|x\|_{\alpha} \le c_2 \|x\|_2$

当
$$x = \theta$$
时,上式显然成立。

Th2 向量空间 \mathbb{C}^n 中, $\lim_{k \to \infty} x^{(k)} = x \Leftrightarrow \forall \|x\|, \lim_{k \to \infty} \|x^{(k)} - x\| = 0$.
证 只需对 $\|x\| = \|x\|_1$ 证明即可。
$$\frac{\text{在}V^n \text{中也成立}}{\text{E}V^n \text{Pull}}$$

$$x^{(k)} \to x \Leftrightarrow \xi_i^{(k)} \to \xi_i \ (i = 1, 2, \dots, n) \Leftrightarrow \left| \xi_i^{(k)} - \xi_i \right| \to 0 \ (i = 1, 2, \dots, n)$$
$$\Leftrightarrow \sum_{i=1}^n \left| \xi_i^{(k)} - \xi_i \right| \to 0 \Leftrightarrow \left\| x^{(k)} - x \right\|_1 \to 0$$

§ 2.2 矩阵范数

一、矩阵范数

集合 $C^{m\times n}$ 中, $\forall A \in C^{m\times n}$,定义实数||A||,且满足

- (1) $||A|| \ge 0$; $||A|| = 0 \Leftrightarrow A = O_{m \times n}$
- (2) $||kA|| = |k| \cdot ||A||$, $\forall k \in \mathbb{C}$
- (3) $||A + B|| \le ||A|| + ||B||$, $\forall B \in \mathbb{C}^{m \times n}$

在三个矩阵集合中 实数对应规则相同

实数的对应

规则不唯一

 $\mathfrak{m}\|A\|$ 为矩阵 A 的范数.

二、矩阵范数与向量范数相容

设 $\mathbb{C}^{m \times n}$ 的矩阵范数 $\|A\|_{M}$, \mathbb{C}^{m} 与 \mathbb{C}^{n} 中的同类向量范数 $\|x\|_{V}$,若

$$||Ax||_{V} \le ||A||_{M} \cdot ||x||_{V} \quad (\forall A \in \mathbb{C}^{m \times n}, \forall x \in \mathbb{C}^{n})$$

称矩阵范数 $\|A\|_{\mathcal{A}}$ 与向量范数 $\|x\|_{\mathcal{A}}$ 相容.

预备: 设 $a_i \ge 0$, $b_i \ge 0$, $\alpha = (a_1, \dots, a_n)$, $\beta = (b_1, \dots, b_n)$

则有
$$(\alpha, \beta) \le \sqrt{(\alpha, \alpha)} \cdot \sqrt{(\beta, \beta)}$$

或者
$$\sum_{i=1}^{n} a_i b_i \leq \sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}$$

两组非负实数 对应相乘求和≤

例 6 $A = (a_{ij})_{m \times n}, x = (\xi_1, \xi_2, \dots, \xi_n)^{\mathrm{T}}$.

- (1) $||A||_{m_1} = \sum_{i} |a_{ij}|$ 是矩阵范数,且与 $||x||_1$ 相容.
- (2) $\|A\|_{m_2} = \left(\sum_{i,j} |a_{ij}|^2\right)^{\frac{1}{2}}$ 是矩阵范数,且与 $\|x\|_2$ 相容.
- (3) $\|A\|_{m_{\pi}} = n \cdot \max_{i} |a_{ij}|$ 是矩阵范数,且与 $\|x\|_{\infty}$ 相容.
- 证 (1) $1^{0} \sim 3^{0}$ 成立. 先验证 $||Ax||_{1} \leq ||A||_{m} \cdot ||x||_{1}$:

$$\begin{split} \|Ax\|_{1} &= \sum_{i=1}^{m} |a_{i1}\xi_{1} + \dots + a_{in}\xi_{n}| \leq \sum_{i=1}^{m} \left(|a_{i1}| |\xi_{1}| + \dots + |a_{in}| |\xi_{n}| \right) \\ &\leq \sum_{i=1}^{m} \left[\left(|a_{i1}| + \dots + |a_{in}| \right) \cdot \left(|\xi_{1}| + \dots + |\xi_{n}| \right) \right] \\ &= \left[\sum_{i=1}^{m} \left(|a_{i1}| + \dots + |a_{in}| \right) \right] \cdot \left(|\xi_{1}| + \dots + |\xi_{n}| \right) = \|A\|_{m_{1}} \cdot \|x\|_{1} \\ 4^{0} \quad$$
 划分 $B_{n \times l} = (b_{1}, \dots, b_{l}), \quad$ 则 $AB = (Ab_{1}, \dots, Ab_{l}), \quad$ 且有
$$\|AB\|_{m_{1}} = \|Ab_{1}\|_{1} + \dots + \|Ab_{l}\|_{1} \leq \|A\|_{m_{1}} \|b_{1}\|_{1} + \dots + \|A\|_{m_{1}} \|b_{l}\|_{1} \\ &= \|A\|_{m_{1}} \cdot \left(\|b_{1}\|_{1} + \dots + \|b_{l}\|_{1} \right) = \|A\|_{m_{1}} \cdot \|B\|_{m_{1}} \end{split}$$

(2) 10 成立. 20 成立.

3° 设
$$B_{m \times n}$$
,划分 $A = (a_1, \dots, a_n)$, $B = (b_1, \dots, b_n)$,则有
$$||A + B||_{m_2}^2 = ||a_1 + b_1||_2^2 + \dots + ||a_n + b_n||_2^2$$

$$\leq (||a_1||_2 + ||b_1||_2)^2 + \dots + (||a_n||_2 + ||b_n||_2)^2$$

$$\leq ||A||_{m_2}^2 + 2(||a_1||_2 ||b_1||_2 + \dots + ||a_n||_2 ||b_n||_2) + ||B||_{m_2}^2$$

$$\leq ||A||_{m_2}^2 + 2(\sum ||a_i||_2^2)^{\frac{1}{2}} \cdot (\sum ||b_i||_2^2)^{\frac{1}{2}} + ||B||_{m_2}^2 = (||A||_{m_2} + ||B||_{m_2})^2$$

$$\begin{split} 4^{0} \quad & \ \, \overline{\otimes} \, B_{n \times l}, AB = \left(\sum_{k=1}^{n} a_{ik} b_{kj}\right)_{m \times l}, \quad \text{則有} \\ & \left\|AB\right\|_{m_{2}}^{2} = \sum_{i,j} \left|\sum_{k} a_{ik} b_{kj}\right|^{2} \leq \sum_{i,j} \left(\sum_{k} \left|a_{ik}\right| \cdot \left|b_{kj}\right|^{2}\right) \\ & \leq \sum_{i,j} \left[\left(\sum_{k} \left|a_{ik}\right|^{2}\right) \cdot \left(\sum_{k} \left|b_{kj}\right|^{2}\right)\right] = \sum_{i} \left\{\left(\sum_{k} \left|a_{ik}\right|^{2}\right) \cdot \sum_{j} \left(\sum_{k} \left|b_{kj}\right|^{2}\right)\right\} \\ & = \left(\sum_{i,j} \left|a_{ik}\right|^{2}\right) \cdot \left(\sum_{i,j} \left|b_{kj}\right|^{2}\right) = \left\|A\right\|_{m_{2}}^{2} \cdot \left\|B\right\|_{m_{2}}^{2} \end{split}$$

特别的,取 $B = x \in \mathbb{C}^{n \times 1}$,则有

$$||Ax||_{2} = ||AB||_{m_{2}} \le ||A||_{m_{2}} \cdot ||B||_{m_{2}} = ||A||_{m_{2}} \cdot ||x||_{2}$$

(3)
$$1^{0} \sim 3^{0}$$
 成立. 4^{0} 设 $B = (b_{ij})_{n \times l}$, 则 $AB = \left(\sum_{k=1}^{n} a_{ik} b_{kj}\right)_{m \times l}$, 且有
$$\|AB\|_{m_{\infty}} = l \cdot \max_{i,j} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right| \le l \cdot \max_{i,j} \left(\sum_{k=1}^{n} |a_{ik}| b_{kj} \right)$$

$$\le \left(n \cdot \max_{i,j} |a_{ij}| \right) \cdot \left(l \cdot \max_{i,j} |b_{ij}| \right) = \|A\|_{m_{\infty}} \cdot \|B\|_{m_{\infty}}$$

$$\|Ax\|_{\infty} = \max_{i} |a_{i1}\xi_{1} + \dots + a_{in}\xi_{n}| \le \max_{i} \left(|a_{i1}| |\xi_{1}| + \dots + |a_{in}| |\xi_{n}| \right)$$

$$\leq \max_{i} \left(\left| a_{i1} \right| + \dots + \left| a_{in} \right| \right) \cdot \max_{i} \left| \xi_{i} \right| \leq \left(n \cdot \max_{i} \left| a_{ij} \right| \right) \cdot \max_{i} \left| \xi_{i} \right| = \left\| A \right\|_{m_{\infty}} \cdot \left\| x \right\|_{\infty}$$

[注] ①
$$||A||_{m_a} = [\operatorname{tr}(A^H A)]^{\frac{1}{2}} = [\operatorname{tr}(AA^H)]^{\frac{1}{2}}$$
,记作 $||A||_{F}$.

- ② $C^{m\times n}$ 中的矩阵范数等价:对任意的两种矩阵范数 $\|A\|_{\alpha}$ 与 $\|A\|_{\beta}$,存在 $0 < c_1 \le c_2$,使得 $c_1 \|A\|_{\beta} \le \|A\|_{\alpha} \le c_2 \|A\|_{\beta}$ $(\forall A_{m\times n})$.
- ③ $C^{m \times n} + \lim_{k \to \infty} A^{(k)} = A \iff \forall ||A||, \lim_{k \to \infty} ||A^{(k)} A|| = 0.$

Th3 对于 A_{mvm} 及酉矩阵 P_{mvm} 和 Q_{nvm} , 有

$$||PA||_{F} = ||A||_{F}, \quad ||AQ||_{F} = ||A||_{F}$$

$$||PA||_{F}^{2} = \operatorname{tr}((PA)^{H}(PA)) = \operatorname{tr}(A^{H}P^{H}PA) = \operatorname{tr}(A^{H}A) = ||A||_{F}^{2}$$
$$||AQ||_{F}^{2} = \operatorname{tr}((AQ)(AQ)^{H}) = \operatorname{tr}(AQQ^{H}A^{H}) = \operatorname{tr}(AA^{H}) = ||A||_{F}^{2}$$

<mark>引理</mark> 对 $C^{m \times n}$ 的矩阵范数 $\|A\|$,存在向量范数 $\|x\|_{V}$,使得 $\|Ax\|_{V} \leq \|A\| \cdot \|x\|_{V}$.

例 7 对 $\mathbb{C}^{n\times n}$ 的矩阵范数 $\|A\|_{M}$, 任取 $0 \neq y \in \mathbb{C}^{n}$ (列向量),则

(1)
$$||x||_V = ||xy^T||_M \mathcal{E}C^n$$
 的向量范数; (2) $||A||_M = ||x||_V$ 相容.

证 (1) 非负性.
$$x = 0$$
 时, $||x||_V = ||0y^T||_M = ||O||_M = 0$; $x \neq 0$ 时, $xy^T \neq O$, $||x||_V = ||xy^T||_M > 0$.

齐次性. $||kx||_V = ||(kx)y^T||_M = ||k(xy^T)||_M = |k|||xy^T||_M = |k|||x||_V$ ($\forall k \in \mathbb{C}$)

三角不等式. 任意 $x_1, x_2 \in \mathbb{C}^n$, 有

$$||x_1 + x_2||_V = ||(x_1 + x_2)y^{\mathsf{T}}||_M = ||x_1y^{\mathsf{T}} + x_2y^{\mathsf{T}}||_M$$

$$\leq ||x_1y^{\mathsf{T}}||_M + ||x_2y^{\mathsf{T}}||_M = ||x_1||_V + ||x_2||_V$$

$$(2) \|Ax\|_{V} = \|(Ax)y^{\mathsf{T}}\|_{M} = \|A(xy^{\mathsf{T}})\|_{M} \le \|A\|_{M} \cdot \|xy^{\mathsf{T}}\|_{M} = \|A\|_{M} \cdot \|x\|_{V}.$$

练习 给定非零列向量 $y \in \mathbb{C}^m$,对 $\mathbb{C}^{m \times n}$ 的矩阵范数 $\|A\|_F$,定义 $\|x\|_V = \|yx^T\|_F$ (列向量 $x \in \mathbb{C}^n$),则 $\|x\|_V$ 是 \mathbb{C}^n 的向量范数,且有 $\|Ax\|_V \le \|A\|_F \cdot \|x\|_V$.

三、从属范数

定理 4 对 \mathbb{C}^n 与 \mathbb{C}^n 中的"同类向量范数" $\|x\|_V$,定义实数 $\|A\| = \max_{\|x\|_v = 1} \|Ax\|_V \quad (\forall A_{m \times n}, x \in \mathbb{C}^n)$

则||A||是 $C^{m\times n}$ 中矩阵A的范数,且||A||与 $||x||_{V}$ 相容.

[注] 等价定义
$$\max_{\|x\|_{V}=1} \|Ax\|_{V} = \max_{x \neq \theta} \frac{\|Ax\|_{V}}{\|x\|_{V}} = \max_{x \neq \theta} \left\|A \cdot \frac{x}{\|x\|_{V}}\right\|_{V} = \max_{\|y\|_{V}=1} \|Ay\|_{V}$$

2⁰ 略

3° 对
$$A + B : \exists x_1 满足 \|x_1\|_V = 1$$
, st $\max_{\|x\|_V = 1} \|(A + B)x\|_V = \|(A + B)x_1\|_V$.
$$\|A + B\| = \|Ax_1 + Bx_1\|_V \le \|Ax_1\|_V + \|Bx_1\|_V \le \|A\| + \|B\|$$

 4^{0} 先证 $||Ay||_{V} \le ||A|| \cdot ||y||_{V}$ $(y \in \mathbb{C}^{n})$ $y = \theta$: 显然成立.

[注] ① 一般的矩阵范数: $I = I \cdot I \Rightarrow \|I\| \le \|I\| \cdot \|I\| \Rightarrow \|I\| \ge 1$. 例如 $\|I\|_{m_1} = n$, $\|I\|_{F} = \sqrt{n}$.

- ② 矩阵的从属范数: $||I|| = \max_{\|x\|_{v}=1} ||Ix||_{v} = 1$.
- ③ 常用从属范数: $\|x\|_{V} = \|x\|_{1} = \|x\|_{2} = \|x\|_{\infty}$ $\|A\|_{M} = \|A\|_{1} = \|A\|_{2} = \|A\|_{\infty}$

Th5 设 $A = (a_{ij})_{m \times n}$,则

(1) 列和范数 $\|A\|_1 = \max_j \left\{ \sum_{i=1}^m |a_{ij}| \right\}$

- (2) 谱范数 $||A||_1 = \sqrt{\lambda_1}, \ \lambda_1 = \max\{\lambda(A^H A)\}$
- (3) 行和范数 $\|A\|_{\infty} = \max_{i} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}$

左 > 右: 选取
$$k$$
 使得 $t = \max_{j} \left(\sum_{i=1}^{m} \left| a_{ij} \right| \right) = \sum_{i=1}^{m} \left| a_{ik} \right|$, 令
$$e_{k} = (0, \dots, 0, 1, 0, \dots, 0)^{T}, \quad \mathbb{M} \left\| e_{k} \right\|_{1} = 1, \quad \text{且有}$$

$$\left\| A \right\|_{1} \ge \left\| A e_{k} \right\|_{1} = \left\| \begin{bmatrix} a_{1k} \\ \vdots \\ a_{mk} \end{bmatrix} \right\|_{1} = \sum_{i=1}^{m} \left| a_{ik} \right| = \hat{T}$$

(2) $A^{H}A$ 是 Hermite 矩阵 $\Rightarrow \lambda(A^{H}A) \in \mathbb{R}$ 且 $\lambda(A^{H}A) \geq 0$ $A^{H}A$ 的特征值: $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$

 $A^{H}A$ 的特征向量: x_1, x_2, \dots, x_n 两两正交且满足 $\|x_i\|_2 = 1$ 标准正交基

左 \leq 右: 若 $x \in \mathbb{C}^n$ 满足 $\|x\|_2 = 1$,则 $x = \xi_1 x_1 + \dots + \xi_n x_n$,且有

$$(x,x) = x^{H}x = ||x||_{2}^{2} = 1 \Rightarrow |\xi_{1}|^{2} + \dots + |\xi_{n}|^{2} = 1$$

$$(A^{H}A)x = \lambda_{1}\xi_{1}x_{1} + \dots + \lambda_{n}\xi_{n}x_{n}$$

$$||Ax||_{2}^{2} = (Ax)^{H}(Ax) = x^{H}(A^{H}A)x = (x,A^{H}Ax)$$

$$= \lambda_{1}|\xi_{1}|^{2} + \dots + \lambda_{n}|\xi_{n}|^{2} \leq \lambda_{1}$$

$$||X||_{2} = \max_{\|x\| = 1} ||Ax||_{2} \leq \sqrt{\lambda_{1}}$$

左 \geq 右: $\|Ax_1\|_2^2 = (Ax_1)^H (Ax_1) = x_1^H (A^H A) x_1 = \lambda_1 x_1^H x_1 = \lambda_1$ 故 $\|A\|_1 \geq \|Ax_1\|_1 = \sqrt{\lambda_1}$

(3) 记 $t = \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right)$. 左 $\leq \pi$: 若 $x \in \mathbb{C}^{n}$ 满足 $\|x\|_{\infty} = 1$,则 $\|Ax\|_{\infty} = \max_{i} \left| \sum_{j=1}^{n} a_{ij} \xi_{j} \right| \leq \max_{i} \left(\sum_{j} |a_{ij}| \cdot |\xi_{j}| \right)$ $\leq \left(\max_{i} \sum_{j} |a_{ij}| \right) \cdot \max_{j} |\xi_{j}| = t \|x\|_{\infty} = t$ $\|A\|_{\infty} = \max_{\|x\|=1} \|Ax\|_{\infty} \leq \pi$

则
$$\|y_0\|_{\infty} = 1$$
, $Ay_0 = \begin{bmatrix} \sum_{j=1}^n a_{1j} \eta_j \\ \dots \\ \sum_{j=1}^n \left| a_{kj} \right| \\ \dots \\ \sum_{j=1}^n a_{mj} \eta_j \end{bmatrix}$ $\Rightarrow \|Ay_0\|_{\infty} = t$

由此可得
$$||A||_{\infty} = \max_{\|x\|=1} ||Ax||_{\infty} \ge ||Ay_0||_{\infty} = t = 右$$

[注] (1) 若P,Q 是酉矩阵,则 $\|PAQ\|_{2} = \|A\|_{2}$;

(2) 若
$$A^{H} = A$$
,则 $||A||_{2} = \max |\lambda_{A}|$;

(3) 若
$$A^{H}A = AA^{H}$$
, 则 $||A||_{A} = \max |\lambda_{A}|$.

$$\overset{\mathbf{\mathsf{U}}}{\mathbf{\mathsf{U}}}(3) \quad A = P \Lambda P^{\mathsf{H}} \Rightarrow \lambda_1(A^{\mathsf{H}} A) = \lambda_1(P \overline{\Lambda} P^{\mathsf{H}} P \Lambda P^{\mathsf{H}}) = \lambda_1(\overline{\Lambda} \Lambda) = \left|\lambda_1(A)\right|^2$$

§ 2.3 范数的应用

Th6
$$||A_{n\times n}|| < 1 \Rightarrow (I - A)$$
可逆,且 $||(I - A)^{-1}|| \le \frac{||I||}{1 - ||A||}$.

证 选取向量范数 $\|x\|_v$,使得 $\|A\|$ 与 $\|x\|_v$ 相容(例 7).

若
$$\det(I-A) = 0$$
 ,则 $(I-A)x = 0$ 有非零解 x_0 ,由 $(I-A)x_0 = 0$ 可得
$$x_0 = Ax_0 \Rightarrow \|x_0\|_V = \|Ax_0\|_V \le \|A\| \cdot \|x_0\|_V < \|x_0\|_V$$

产生矛盾,故(I-A)可逆.

$$I = (I - A) + A \implies (I - A)^{-1} = I + (I - A)^{-1} A$$

$$\Rightarrow \|(I - A)^{-1}\| \le \|I\| + \|(I - A)^{-1}\| \cdot \|A\| \implies \|(I - A)^{-1}\| \le \frac{\|I\|}{1 - \|A\|}$$

Th7
$$||A_{n\times n}|| < 1 \Rightarrow ||I - (I - A)^{-1}|| \le \frac{||A||}{1 - ||A||}$$
.

证 恒等式:
$$(I-A)-I = -A$$
右乘 $(I-A)^{-1}$: $I-(I-A)^{-1} = -A(I-A)^{-1}$
左乘 A : $A-A(I-A)^{-1} = -A^2(I-A)^{-1}$

$$\Rightarrow A(I-A)^{-1} = A+A\cdot A(I-A)^{-1}$$

$$\Rightarrow \|A(I-A)^{-1}\| \le \|A\| + \|A\| \cdot \|A(I-A)^{-1}\|$$

$$\Rightarrow \|A(I-A)^{-1}\| \le \frac{\|A\|}{1-\|A\|}$$

$$\Rightarrow \|I-(I-A)^{-1}\| = \|-A(I-A)^{-1}\| \le \frac{\|A\|}{1-\|A\|}$$

设 $A_{n\times n}$ 可逆, $B_{n\times n}$,且满足 $\|A^{-1}B\|$ < 1,则

(1) A + B 可逆;

$$A + B = A(I + A^{-1}B)$$

(2)
$$F = I - (I + A^{-1}B)^{-1} : ||F|| \le \frac{||A^{-1}B||}{1 - ||A^{-1}B||};$$

(3)
$$\frac{\left\|A^{-1} - (A+B)^{-1}\right\|}{\left\|A^{-1}\right\|} \le \frac{\left\|A^{-1}B\right\|}{1 - \left\|A^{-1}B\right\|}.$$

$$\frac{A^{-1} - (A+B)^{-1}}{\left[I - (I+A^{-1}B)^{-1}\right]A^{-1}}$$

$$A^{-1} - (A + B)^{-1} =$$
 $[I - (I + A^{-1}B)^{-1}]A^{-1}$

利用定理6和定理7可得 证

谱半径: $\rho(A_{n\times n}) = \max_{\lambda_i} |\lambda_i(A)|$

Th9 对 $\forall A_{n\times n}, \forall \| \bullet \|_{M},$ 有 $\rho(A) \leq \|A\|_{M}$.

对矩阵范数 $\| \bullet \|_{M}$,存在向量范数 $\| \bullet \|_{V}$,使得 $\| Ax \|_{V} \leq \| A \|_{M} \cdot \| x \|_{V}$. 设 $Ax_i = \lambda_i x_i (x_i \neq \theta)$,则有 $\|\lambda_i\| \cdot \|x_i\|_{V} = \|\lambda_i x_i\|_{V} = \|Ax_i\|_{V} \le \|A\|_{M} \cdot \|x_i\|_{V}$

$$\begin{aligned} |\lambda_i| & \|\lambda_i\|_V - \|\lambda_i \lambda_i\|_V - \|A \lambda_i\|_V - \|A \lambda_i\|_V - \|A \lambda_i\|_V - \|A \lambda_i\|_W - \|A \lambda_i$$

Th10 给定 $A_{n\times n}$, 对 $\forall \varepsilon > 0$, ∃矩阵范数 $\|\cdot\|_{M}$, st $\|A\|_{M} \leq \rho(A) + \varepsilon$.

根据矩阵的 Jordan 标准形理论:对于矩阵 A,存在可逆矩阵 P_{nxn} , 证 使得 $P^{-1}AP = J$. 记

$$\Lambda = \begin{bmatrix}
\lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n
\end{bmatrix}, \quad \widetilde{I} = \begin{bmatrix}
0 & \delta_1 & & & \\ & 0 & \delta_2 & & \\ & & \ddots & \ddots & \\ & & & 0 & \delta_{n-1} \\ & & & & 0
\end{bmatrix}$$

$$D = \begin{bmatrix} 1 & & & & \\ & \varepsilon & & & \\ & & \ddots & & \\ & & & \varepsilon^{n-1} \end{bmatrix}, (PD)^{-1}A(PD) = D^{-1}JD = \Lambda + \varepsilon \widetilde{I}$$

 $S \stackrel{\Delta}{=} PD$ 可逆: $\|S^{-1}AS\|_{L} = \|A + \varepsilon \widetilde{I}\|_{L} \le \rho(A) + \varepsilon$

可证 $\|B\|_{M} = \|S^{-1}BS\|_{1}$ ($\forall B \in \mathbb{C}^{n \times n}$) 是 $\mathbb{C}^{n \times n}$ 中的矩阵范数,于是有 $||A||_{M} = ||S^{-1}AS||_{1} \le \rho(A) + \varepsilon.$

因为 $\| \bullet \|_{M}$ 与给定的矩阵 A 有关,所以当 $B_{n\times n} \neq A$ 时,针对 A 构造 [注] 的矩阵范数 $\| \bullet \|_{\mathcal{U}}$,不等式 $\| B \|_{\mathcal{U}} \leq \rho(B) + \varepsilon$ 不一定成立!

讨论: ① $||A||_{M_1}, ||A||_{M_2}$ 可与同一种 $||x||_{V}$ 相容?

- ② $||A||_{M}$ 可与不同的 $||x||_{V_{1}}, ||x||_{V_{1}}$ 相容?
- ③ ∀||A||_M与∀||x||_V不一定相容?

分析: ① $||A||_{m}$, $||A||_{1}$ 与 $||x||_{1}$ 相容.

②
$$\|A\|_{m_1} = \|x\|_p (p \ge 1)$$
相容. (例如 $p = 1, p = 2$ 及 $\|x\|_{\infty}$)
$$x = (\xi_1, \dots, \xi_n)^{\mathrm{T}}, \quad E_{ij}x = (0, \dots, 0, \xi_j, 0, \dots, 0)^{\mathrm{T}} \Rightarrow \|E_{ij}x\|_p \le \|x\|_p$$

$$Ax = \sum_{i,j} a_{ij} E_{ij}x, \quad \|Ax\|_p \le \sum_{i,j} |a_{ij}| \cdot \|E_{ij}x\|_p \le \left(\sum_{i,j} |a_{ij}|\right) \cdot \|x\|_p = \|A\|_{m_1} \cdot \|x\|_p$$

③
$$||A||_1 = \max_j \left(\sum_{i=1}^m |a_{ij}| \right) = ||x||_{\infty} = \max_i |\xi_i|$$
 不相容.

$$n > 1: A_{0} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{m \times n}, \quad x_{0} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{n \times 1}, \quad A_{0} x_{0} = \begin{bmatrix} n \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$\|A_{0}\|_{1} = 1, \quad \|x_{0}\|_{\infty} = 1, \quad \|A_{0} x_{0}\|_{\infty} = n$$
$$\|A_{0} x_{0}\|_{\infty} = n > 1 = \|A_{0}\|_{1} \cdot \|x_{0}\|_{\infty}$$

构造方法

- (1) 由向量范数构造新的向量范数(已知 \mathbb{C}^m 中的向量范数,构造 \mathbb{C}^n 中的向量范数)。 $S_{m\times n}$ 列满秩, $\frac{\|x\| = \|Sx\|_v}{\|x\|} \in \mathbb{C}^n$ 中的向量范数.
- (2) 由矩阵范数构造向量范数(已知 $\mathbb{C}^{m \times n}$ 中的矩阵范数,构造 \mathbb{C}^m 中的向量范数):非零列向量 $y_0 \in \mathbb{C}^n$, $\|x\| = \|xy_0^T\|_M$ 是 \mathbb{C}^m 中的向量范数.

例如:
$$y_0 = e_i$$
时, $x y_0^{\mathrm{T}} = \begin{bmatrix} 0 & \cdots & 0 & \xi_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \xi_m & 0 & \cdots & 0 \end{bmatrix}$

$$\|A\|_M = \|A\|_{m_1} \Rightarrow \|x\| = \|x\|_1; \qquad \|A\|_M = \|A\|_2 \Rightarrow \|x\| = \|x\|_2$$

$$\|A\|_M = \|A\|_{m_2} \Rightarrow \|x\| = \|x\|_2; \qquad \|A\|_M = \|A\|_{\infty} \Rightarrow \|x\| = \|x\|_{\infty}$$

(4) 由矩阵范数构造新的矩阵范数:

$$S_{n\times n}$$
可逆, $\|A\| = \|S^{-1}AS\|_{M}$ 是 $\mathbb{C}^{n\times n}$ 中的矩阵范数.

证(4) (1)
$$A = O$$
: $||A|| = ||S^{-1}OS||_M = ||O||_M = 0$
$$A \neq O$$
: 若 $S^{-1}AS = O$, 则 $A = O$, 矛盾! 故 $S^{-1}AS \neq O$. 从而 $||A|| = ||S^{-1}AS||_M > 0$

(2)
$$||kA|| = ||S^{-1}(kA)S||_M = ||k(S^{-1}AS)||_M = |k| ||S^{-1}AS||_M = |k| ||A||$$

(3)
$$||A + B|| = ||S^{-1}(A + B)S||_{M} = ||S^{-1}AS + S^{-1}BS||_{M}$$

$$\leq ||S^{-1}AS||_{M} + ||S^{-1}BS||_{M} = ||A|| + ||B||$$

(4)
$$||AB|| = ||S^{-1}(AB)S||_{M} = ||(S^{-1}AS)(S^{-1}BS)||_{M}$$

$$\leq ||S^{-1}AS||_{M} ||S^{-1}BS||_{M} = ||A|||B||$$

例 8(M2004A) 在向量空间 \mathbb{C}^3 中,对于向量 $x = (\xi_1, \xi_2, \xi_3)$,定义实数 $\|x\| = \sqrt{|\xi_1|^2 + 2|\xi_2|^2 + 3|\xi_3|^2}$,证明: $\|x\| \to \mathbb{C}^3$ 中的向量范数.

证 (1)-(2) 略! (3)

方法 1.
$$||x+y||^2 = |\xi_1 + \eta_1|^2 + 2|\xi_2 + \eta_2|^2 + 3|\xi_3 + \eta_3|^2$$

$$\leq (|\xi_1| + |\eta_1|)^2 + 2(|\xi_2| + |\eta_2|)^2 + 3(|\xi_3| + |\eta_3|)^2$$

$$= ||\xi_1|^2 + 2|\xi_2|^2 + 3|\xi_3|^2| + ||\eta_1|^2 + 2|\eta_2|^2 + 3|\eta_3|^2| + ||\xi_1|| + \sqrt{2}|\xi_2| \cdot \sqrt{2}|\eta_2| + \sqrt{3}|\xi_3| \cdot \sqrt{3}|\eta_3| ||$$

$$\leq ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2$$

方法 2.
$$B = \begin{bmatrix} 1 & \\ \sqrt{2} & \\ \end{bmatrix} : \|x\| = \sqrt{|\xi_1|^2 + 2|\xi_2|^2 + 3|\xi_3|^2} = \|Bx^{\mathrm{T}}\|_2$$
$$\|x + y\| = \|B(x + y)^{\mathrm{T}}\|_2 = \|Bx^{\mathrm{T}} + By^{\mathrm{T}}\|_2 \le \|Bx^{\mathrm{T}}\|_2 + \|By^{\mathrm{T}}\|_2 = \|x\| + \|y\|$$

例 9(M2009A) 已知 \mathbb{C}^n 上的向量范数 $\|\bullet\|_a$,向量 $z=(z_1,\cdots,z_n)^{\mathrm{T}}\in\mathbb{C}^n$,对于向量 $x=(x_1,\cdots,x_n)^{\mathrm{T}}\in\mathbb{C}^n$,定义实数

$$\|x\|_b = \max\{\frac{|x^Hz|}{\|z\|_a} \mid 0 \neq z \in \mathbb{C}^n\}$$

其中 $|x^Hz|$ 表示复数 x^Hz 的模,证明:

- 1. $\|x\|_{b}$ 是 \mathbb{C}^{n} 上的向量范数;
- 2. 若取 $\|x\|_{a} = \|x\|_{1}$ (向量的 1-范数),则 $\|x\|_{b} = \|x\|_{\infty}$ (向量的 ∞ -范数).

证 1. 任意非零向量
$$z = (z_1, \dots, z_n)^T \in \mathbb{C}^n$$
.

①
$$x = 0$$
: $||x||_b = \max \frac{|0^H z|}{||z||_a} = \max \frac{0}{||z||_a} = 0$

$$x \neq 0$$
: $||x||_b = \max \frac{|x^H z|}{||z||_a} \ge \frac{|x^H x|}{||x||_a} > 0$

② 略. ③ 设 $y \in \mathbb{C}^n$,则有

$$\|x + y\|_{b} = \max \frac{\left|(x + y)^{H}z\right|}{\|z\|_{a}} \le \max \frac{\left|x^{H}z\right|}{\|z\|_{a}} + \max \frac{\left|y^{H}z\right|}{\|z\|_{a}} = \|x\|_{b} + \|y\|_{b}$$

故 $\|x\|_{L}$ 是 \mathbb{C}^{n} 上的向量范数.

2. 因为
$$|x^H z| = \left| \sum_{i=1}^n \overline{x}_i z_i \right| \le \sum_{i=1}^n |x_i| |z_i| \le (\max_i |x_i|) \sum_{i=1}^n |z_i| = \|x\|_{\infty} \|z\|_1$$
,所以
$$\|x\|_b = \max\{\frac{|x^H z|}{\|z\|_1} \mid 0 \ne z \in \mathbb{C}^n\} \le \|x\|_{\infty}$$

设 $|x_k| = \max_i |x_i| = ||x||_{\infty}$,则有 $|x^H e_k| = |x_k| = ||x||_{\infty} ||e_k||_{1}$,由此可得

$$\|x\|_{b} = \max\{\frac{|x^{H}z|}{\|z\|_{1}} \mid 0 \neq z \in \mathbb{C}^{n}\} \ge \frac{|x^{H}e_{k}|}{\|e_{k}\|_{1}} = \|x\|_{\infty}$$

故 $\|x\|_{b} = \|x\|_{\infty}$.

例 10 设 $A \ge n$ 阶实对称正定矩阵, $f(t) \ge m$ 次实系数多项式,则对任意 $x \in \mathbb{R}^n$,有

$$\left\| f(A)x \right\|_{A} \le \left[\max_{1 \le i \le n} \left| f(\lambda_i) \right| \right] \left\| x \right\|_{A}$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的特征值, $\|x\|_A = \sqrt{x^T A x}$ 是 R"中的向量范数.

证 设A 的对应于特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 的特征向量为 y_1, y_2, \cdots, y_n ,且标准正交,则有

$$x = \sum_{i=1}^{n} c_{i} y_{i}, \quad f(A)x = \sum_{i=1}^{n} c_{i} f(\lambda_{i}) y_{i}$$

$$\|x\|_{A}^{2} = x^{T} A x = \left[\sum_{i=1}^{n} c_{i} y_{i}\right]^{T} \left[\sum_{i=1}^{n} c_{i} \lambda_{i} y_{i}\right] = \sum_{i=1}^{n} c_{i}^{2} \lambda_{i}$$

$$\|f(A)x\|_{A}^{2} = [f(A)x]^{T} A [f(A)x] = \left[\sum_{i=1}^{n} c_{i} f(\lambda_{i}) y_{i}\right]^{T} \left[\sum_{i=1}^{n} c_{i} f(\lambda_{i}) \lambda_{i} y_{i}\right]$$

$$= \sum_{i=1}^{n} c_{i}^{2} \lambda_{i} f^{2}(\lambda_{i}) \leq \left[\max_{1 \leq i \leq n} f^{2}(\lambda_{i})\right] \sum_{i=1}^{n} c_{i}^{2} \lambda_{i} = \left[\max_{1 \leq i \leq n} |f(\lambda_{i})|^{2} \|x\|_{A}^{2}\right]$$

上式两端开平方即得所证.

第三章 矩阵分析及其应用

引言: 一元多项式 $f(t) = c_0 + c_1 t + \cdots + c_m t^m$

矩阵多项式 $f(A) = c_0 I + c_1 A + \dots + c_m A^m \ (\forall A_{n \times n})$

易见,f(A)是以矩阵为自变量且取值为矩阵的一类函数.

本章研究一般的以矩阵为自变量且取值为矩阵的函数——矩阵函数

§3.1 矩阵序列(无穷多个有序的同阶矩阵)

一、敛散性: 将矩阵序列 $A^{(k)} = (a_{ij}^{(k)})_{m \times n}$ $(k = 1, 2, 3, \cdots)$ 记作 $\{A^{(k)}\}$.

若
$$\lim_{k\to\infty} a_{ij}^{(k)} = a_{ij} \ (\forall i,j)$$
,称 $\{A^{(k)}\}$ 收敛于 $A = (a_{ij})_{m\times n}$,记作

$$\lim_{k \to \infty} A^{(k)} = A \quad 或者 \quad A^{(k)} \to A \quad (k \to \infty)$$

若数列 $\{a_{ii}^{(k)}\}$ 之一发散,称 $\{A^{(k)}\}$ 发散.

性质 1 若 $A^{(k)} o A_{m \times n}, B^{(k)} o B_{m \times n}$,则 $A^{(k)} + B^{(k)} o A + B , \lambda A^{(k)} o \lambda A (\forall \lambda \in \mathbb{C})$

性质 2 若 $A^{(k)} o A_{m \times n}, B^{(k)} o B_{n \times l}$,则 $A^{(k)} B^{(k)} o AB$.

性质 3 若 $A^{(k)}$ 与 A 是可逆矩阵,且 $A^{(k)} \to A$,则 $\left(A^{(k)}\right)^{-1} \to A^{-1}$.

Th1 (1)
$$A^{(k)} \rightarrow O_{m \times n} \Leftrightarrow \forall \|\cdot\|, \|A^{(k)}\| \rightarrow 0$$
;

(2)
$$A^{(k)} \rightarrow A \Leftrightarrow \forall \|\cdot\|, \|A^{(k)} - A\| \rightarrow 0.$$

证 (1) 考虑矩阵范数∥⋅∥":

$$A^{(k)} \to O_{m \times n} \Leftrightarrow a_{ij}^{(k)} \to 0 \quad \text{(all } i,j) \Leftrightarrow \left| a_{ij}^{(k)} \right| \to 0 \quad \text{(all } i,j)$$
$$\Leftrightarrow \sum_{i} \sum_{j} \left| a_{ij}^{(k)} \right| \to 0 \Leftrightarrow \left\| A^{(k)} \right\|_{m_{1}} \to 0 \quad \left(k \to \infty \right)$$

$$(2) \quad A^{(k)} \to A \Leftrightarrow a_{ij}^{(k)} \to a_{ij} \quad (\text{all } i,j) \Leftrightarrow \left(a_{ij}^{(k)} - a_{ij}\right) \to 0$$
$$\Leftrightarrow \left(A^{(k)} - A\right) \to O_{m \times n} \Leftrightarrow \forall \|\cdot\|, \quad \|A^{(k)} - A\| \to 0$$

二、收敛矩阵: 若 A_{nxn} 满足 $A^k \rightarrow O_{nxn}$, 称 A 为收敛矩阵.

Th2 A 为收敛矩阵 $\Leftrightarrow \rho(A) < 1$.

证 充分性. 已知 $\rho(A) < 1$,对 $\varepsilon = \frac{1}{2} [1 - \rho(A)] > 0$,存在矩阵范数 $\| \bullet \|_{M}$,

使得
$$\|A\|_{M} \le \rho(A) + \varepsilon = \frac{1}{2} [1 + \rho(A)] < 1$$

于是有 $||A^k||_{M} \le ||A||_{M}^k \to 0$, 故由定理 1 可得 $|A^k| \to 0$.

必要性. 已知 $A^k \to O$, 设 $Ax = \lambda x (x \neq 0)$, 则有

$$\lambda^k x = A^k x \to 0 \Rightarrow \lambda^k \to 0 \Rightarrow |\lambda| < 1$$

故 $\rho(A)$ <1.

Th3 若矩阵范数 $\| \bullet \|_{M}$ 使 $\| A \|_{M} < 1$,则 $A^{k} \rightarrow O$.

$$|A| = \rho(A) \le |A| = A^k \to 0.$$

例如:
$$A = \begin{bmatrix} 0.1 & 0.3 \\ 0.7 & 0.6 \end{bmatrix}$$
, $||A||_1 = 0.9 < 1 \Rightarrow A^k \to O$

§ 3.2 矩阵级数 (无穷多个有序的同阶矩阵之和)

$$A^{(k)} = (a_{ij}^{(k)})_{m \times n}: A^{(0)} + A^{(1)} + \dots + A^{(k)} + \dots \stackrel{\Delta}{=} \sum_{k=0}^{\infty} A^{(k)}$$

部分和 $S^{(N)} = \sum_{k=0}^{\Delta} A^{(k)}$ 构成矩阵序列 $\{S^{(N)}\}$.

一、敛散性 若 $\lim_{N\to\infty} S^{(N)} = S$,称 $\sum A^{(k)}$ 收敛于S,记作 $\sum A^{(k)} = S$;若 $\{S^{(N)}\}$ 发散,称 $\sum A^{(k)}$ 发散.

性质 1
$$\sum A^{(k)} = S \Leftrightarrow \sum a_{ij}^{(k)} = s_{ij}$$
 (all i,j)

证 左端 $\Leftrightarrow \lim_{N \to \infty} S^{(N)} = S \Leftrightarrow \lim_{N \to \infty} s_{ij}^{(N)} = s_{ij} \text{ (all } i,j)$

$$\Leftrightarrow \lim_{N \to \infty} \sum_{k=0}^{N} a_{ij}^{(k)} = s_{ij} \text{ (all } i,j) \Leftrightarrow 右端$$

性质 2 若 $\sum |a_{ij}^{(k)}|$ 收敛(all i,j),称 $\sum A^{(k)}$ 绝对收敛.

- (1) $\sum A^{(k)}$ 绝对收敛 $\Rightarrow \sum A^{(k)}$ 收敛;
- (2) 若 $\sum A^{(k)}$ 绝对收敛于S,对 $\sum A^{(k)}$ 任意重组重排得 $\sum B^{(k)}$,则 $\sum B^{(k)}$ 绝对收敛于S.

性质 3 $\sum A^{(k)}$ 绝对收敛 $\Leftrightarrow \forall \|\cdot\|, \sum \|A^{(k)}\|$ 收敛.

证 只对矩阵范数∥•∥",证明即可.

必要性. $\sum A^{(k)}$ 绝对收敛时,正项级数 $\sum \left|a_{ij}^{(k)}\right|$ 收敛,那么正项数列 $p_{ij}^{(N)} = \sum_{k=0}^{A} \left|a_{ij}^{(k)}\right|$ 收敛,于是 $\exists M_{ij} > 0$,使得 $p_{ij}^{(N)} \leq M_{ij}$ ($\forall N$),

从而有
$$p_{ij}^{(N)} \leq M = \max_{i,j} M_{ij} \quad (\forall i, j, N)$$

$$\sum_{k=0}^{N} \left\| A^{(k)} \right\|_{m_1} = \sum_{k=0}^{N} \left(\sum_{i,j} \left| a_{ij}^{(k)} \right| \right) = \sum_{i,j} \left(\sum_{k=0}^{N} \left| a_{ij}^{(k)} \right| \right) \le (mn) M$$

故 $\sum \|A^{(k)}\|_{m}$ 收敛. (正项级数收敛 \Leftrightarrow 部分和有上界)

充分性. $\sum \|A^{(k)}\|_{m_1}$ 收敛时,因为 $|a_{ij}^{(k)}| \le \sum_{i,j} |a_{ij}^{(k)}| = \|A^{(k)}\|_{m_1}$,所以 $\sum |a_{ij}^{(k)}|$ 收敛 (all i,j) $\Rightarrow \sum A^{(k)}$ 绝对收敛

性质 4
$$\sum A^{(k)} \stackrel{\text{k}}{=} S \Rightarrow \sum (PA^{(k)}Q) \stackrel{\text{k}}{=} PSQ$$
 $\sum A^{(k)}$ 绝对收敛 $\Rightarrow \sum (PA^{(k)}Q)$ 绝对收敛

$$\stackrel{\text{iff}}{=} (1) \quad S^{(N)} = \sum_{k=0}^{N} A^{(k)} \to S \Rightarrow \sum_{k=0}^{N} PA^{(k)}Q = PS^{(N)}Q \to PSQ$$

$$\Rightarrow \sum_{k=0}^{N} PA^{(k)}Q = PSQ$$

(2) 指定矩阵范数 $\| • \|$,由性质 3 知 $\sum \|A^{(k)}\|$ 收敛.

因为
$$\|PA^{(k)}Q\| \le \|P\| \|A^{(k)}\| \|Q\| = M \|A^{(k)}\|$$
 $\left(M = \|P\| \|Q\|\right)$ 所以 $\sum_{k=0}^{N} \|PA^{(k)}Q\| \le \sum_{k=0}^{N} \left(M \|A^{(k)}\|\right) = M \cdot \sum_{k=0}^{N} \|A^{(k)}\|$ 有界 故 $\sum \|PA^{(k)}Q\|$ 收敛 $\Rightarrow \sum \left(PA^{(k)}Q\right)$ 绝对收敛

性质 5 $\sum_{k=0}^{\infty} A^{(k)}$ 绝对收敛于 $S_{m \times n}$, $\sum_{k=0}^{\infty} B^{(k)}$ 绝对收敛于 $T_{n \times l}$, 则 Cauchy 乘积 $A^{(0)}B^{(0)} + \left[A^{(0)}B^{(1)} + A^{(1)}B^{(0)}\right] + \left[A^{(0)}B^{(2)} + A^{(1)}B^{(1)} + A^{(2)}B^{(0)}\right] + \cdots + \left[A^{(0)}B^{(k)} + A^{(1)}B^{(k-1)} + \cdots + A^{(k)}B^{(0)}\right] + \cdots$ 绝对收敛于 ST ,记作 $\sum A^{(k)} \cdot \sum B^{(k)} = ST$.

二、Neumann-级数: $I + A + A^2 + \dots = \sum_{k=0}^{\infty} A^k \quad (A_{n \times n}, A^0 = I)$

Th4 对 $A_{n \times n}$, $\sum A^k$ 收敛 $\Leftrightarrow A^k \to O$; $\sum A^k$ 收敛时,其和为 $\overline{(I-A)^{-1}}$.

证 必要性. 当 $\sum A^k$ 收敛时,根据性质 1 可得 $\sum \left(A^k\right)_{ij}$ 收敛(all i,j) $\Rightarrow \left(A^k\right)_{ij} \to 0$,即 $A^k \to O$.

充分性. 当 $A^k \to O$ 时,由定理 2 知 $\rho(A) < 1$,故 I - A 可逆,且有 $(I + A + A^2 + \dots + A^N) (I - A) = I - A^{N+1}$ $(I + A + A^2 + \dots + A^N) = (I - A)^{-1} - A^{N+1} (I - A)^{-1}$ $\to (I - A)^{-1} \qquad (N \to \infty)$ 即 $\sum A^k = (I - A)^{-1}$

$$\mathbb{R} P \sum_{i} A^{i} = (I - A)$$

Th5
$$A_{n \times n}$$
, $||A|| < 1 \Rightarrow ||(I - A)^{-1} - \sum_{k=0}^{N} A^{k}|| \le \frac{||A||^{N+1}}{1 - ||A||}$ $(N = 0, 1, 2, \dots)$

证 $\|A\| < 1 \Rightarrow \rho(A) < 1 \Rightarrow I - A$ 可逆 $(I + A + A^2 + \dots + A^N)(I - A) = I - A^{N+1}$ 右乘 $(I - A)^{-1}$,移项可得: $(I - A)^{-1} - \sum_{k=0}^{N} A^k = A^{N+1}(I - A)^{-1}$ 恒等式 $A^{N+1} = A^{N+1}(I - A)^{-1}(I - A)$

三、矩阵幂级数

对于函数 $f(z) = \sum_{k=0}^{\infty} c_k z^k (|z| < r)$ 与方阵 $A_{n \times n}$,构造矩阵幂级数 $\sum_{k=0}^{\infty} c_k A^k$.

Th6 (1) $\rho(A) < r \Rightarrow \sum c_k A^k$ 绝对收敛;

(2)
$$\rho(A) > r \Rightarrow \sum c_k A^k$$
 发散.

证(1) 对 $A_{n\times n}$,取 $\varepsilon = \frac{1}{2}[r - \rho(A)] > 0$,存在矩阵范数 $\| \bullet \|_{M}$,使得

$$||A||_{M} \le \rho(A) + \varepsilon = \frac{1}{2}[r + \rho(A)] < r$$

当|z| < r 时, $\sum c_k z^k$ 绝对收敛,即 $\sum |c_k||z|^k$ 收敛.因为 $\|A\|_M$ < r ,所以 $\sum |c_k||A|_M^k$ 收敛.于是有

$$\|c_k A^k\|_M \le |c_k| \|A\|_M^k \Rightarrow \sum \|c_k A^k\|_M$$
收敛 $\Rightarrow \sum c_k A^k$ 绝对收敛

(2) 设 A 的特征值为 $\lambda_1, \cdots, \lambda_n$,则存在可逆矩阵 P ,使得

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & * & \cdots & * \\ & \lambda_2 & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{bmatrix}^{\Delta} = S, \quad S^k = \begin{bmatrix} \lambda_1^k & \widetilde{*} & \cdots & \widetilde{*} \\ & \lambda_2^k & \ddots & \vdots \\ & & \ddots & \widetilde{*} \\ & & & \lambda_n^k \end{bmatrix}$$

 $\sum c_k S^k$ 的对角元素为 $\sum c_k \lambda_i^k$ $(i = 1, 2, \dots, n)$

$$\rho(A) > r \Rightarrow \exists |\lambda_i| > r \Rightarrow \sum c_k \lambda_i^k \otimes \mathbb{D} \Rightarrow \sum c_k S^k \otimes \mathbb{D} \Rightarrow \sum c_k A^k \otimes \mathbb{D} \Leftrightarrow \sum$$

例 讨论矩阵幂级数 $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^k$ 的收敛性.

分析 矩阵 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ 的谱半径 $\rho(A) = 1$,级数 $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} z^k$ 的收敛半径 r = 1.

$$A^{k} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}, \quad \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{k} = \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

因为 $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$ 收敛, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ 收敛,所以 $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} A^k$ 收敛.

§ 3.3 矩阵函数

一、矩阵函数 设一元函数 f(z) 在 z=0 点的幂级数为

$$f(z) = c_0 + c_1 z + \dots + c_k z^k + \dots \quad (|z| < r, r > 0)$$

构造矩阵函数 $f(A) = c_0 I + c_1 A + \dots + c_k A^k + \dots \left(\rho(A) < r \right)$

例 1
$$e^z = 1 + \frac{1}{1!}z + \dots + \frac{1}{k!}z^k + \dots$$
 $(r = +\infty)$
 $e^A = I + \frac{1}{1!}A + \dots + \frac{1}{k!}A^k + \dots$ $(\forall A_{n \times n})$
 $\sin z = z - \frac{1}{3!}z^3 + \dots + (-1)^k \frac{1}{(2k+1)!}z^{2k+1} + \dots$ $(r = +\infty)$
 $\sin A = A - \frac{1}{3!}A^3 + \dots + (-1)^k \frac{1}{(2k+1)!}A^{2k+1} + \dots$ $(\forall A_{n \times n})$

例 2
$$f(z) = \frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$$
 $(|z| < 1)$, $f(A) = \sum_{k=0}^{\infty} A^k$ $(\rho(A) < 1)$.

例 3
$$\forall A_{n \times n}$$
, $e^{jA} = \cos A + j \sin A$ $(j = \sqrt{-1})$
 $\cos A = \frac{1}{2} (e^{jA} + e^{-jA})$, $\sin A = \frac{1}{2j} (e^{jA} - e^{-jA})$

证 在第一式中,视"jA"为整体,并按"奇偶次幂"组项可得

$$e^{jA} = \left[I + \frac{1}{2!}(jA)^2 + \frac{1}{4!}(jA)^4 + \cdots\right] + \left[\frac{1}{1!}(jA) + \frac{1}{3!}(jA)^3 + \cdots\right]$$
$$= \cos A + j \sin A$$

例 4
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$, 求 e^A , e^B 及 e^{A+B} .

$$\begin{array}{ll}
\mathbf{A}^{2} = A: & e^{A} = I + \left(\frac{1}{1!} + \frac{1}{2!} + \cdots\right) A = I + (e - 1)A = \begin{bmatrix} e & e - 1 \\ 0 & 1 \end{bmatrix} \\
B^{2} = B: & e^{B} = I + \left(\frac{1}{1!} + \frac{1}{2!} + \cdots\right) B = I + (e - 1)B = \begin{bmatrix} e & 1 - e \\ 0 & 1 \end{bmatrix} \\
A + B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = 2^{1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, & (A + B)^{k} = 2^{k} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \\
e^{A + B} = I + \left(\frac{2^{1}}{1!} + \frac{2^{2}}{2!} + \cdots\right) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = I + (e^{2} - 1) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} e^{2} & 0 \\ 0 & 1 \end{bmatrix}
\end{array}$$

[注]
$$e^A e^B = \begin{bmatrix} e^2 & -(e-1)^2 \\ 0 & 1 \end{bmatrix}$$
, $e^B e^A = \begin{bmatrix} e^2 & (e-1)^2 \\ 0 & 1 \end{bmatrix}$

Th7
$$A_{n \times n}, B_{n \times n}, AB = BA \Rightarrow e^{A} e^{B} = e^{B} e^{A} = e^{A+B}$$

$$\frac{1}{2!} \qquad e^A e^B = \left[I + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \cdots \right] \left[I + B + \frac{1}{2!} B^2 + \frac{1}{3!} B^3 + \cdots \right]$$

$$= I + (A+B) + \frac{1}{2!} (A^2 + 2AB + B^2) + \frac{1}{3!} (A^3 + 3A^2B + 3AB^2 + B^3) + \cdots$$

$$= I + (A+B) + \frac{1}{2!} (A+B)^2 + \frac{1}{3!} (A+B)^3 + \cdots = e^{A+B}$$

[注] ①
$$e^A e^{-A} = e^O = I \Rightarrow (e^A)^{-1} = e^{-A} \quad (\forall A_{n \times n})$$

②
$$(e^A)^m = e^{mA}$$
 $(m = 2,3,\cdots)$

例 5 $A_{n\times n}$, $B_{n\times n}$, AB = BA:

$$\cos(A+B) = \cos A \cdot \cos B - \sin A \cdot \sin B \qquad (1)$$

$$\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B \qquad (2)$$

证式(1)中,根据欧拉公式(例3)可得

右端 =
$$\frac{1}{2} \left[e^{jA} + e^{-jA} \right] \cdot \frac{1}{2} \left[e^{jB} + e^{-jB} \right] - \frac{1}{2j} \left[e^{jA} - e^{-jA} \right] \cdot \frac{1}{2j} \left[e^{jB} - e^{-jB} \right]$$

$$= \frac{1}{4} \left[e^{j(A+B)} + \dots + \dots + e^{-j(A+B)} \right] + \frac{1}{4} \left[e^{j(A+B)} - \dots + e^{-j(A+B)} \right]$$

$$= \frac{1}{2} \left[e^{j(A+B)} + e^{-j(A+B)} \right] =$$

$$= \frac{1}{2} \left[e^{j(A+B)} + e^{-j(A+B)} \right] =$$

二、矩阵函数值的计算方法

$$f(A) = \sum_{k=0}^{\infty} c_k A^k \quad (\rho(A) < r)$$

1. 待定系数法 设以 A_{mm} 为根的首 1 多项式为 $(-般取 \varphi(\lambda)$ 或者 $m(\lambda)$)

$$\psi(\lambda) = \lambda^m + c_1 \lambda^{m-1} + \dots + c_{m-1} \lambda + c_m \quad (1 \le m \le n)$$

且满足 $\psi(\lambda) | \varphi(\lambda)$,分解因式

$$\psi(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_s)^{m_s} \quad (\lambda_i \neq \lambda_j, \sum m_i = m)$$

因为 λ_i 是 A 的特征值,而 $|\lambda_i| \le \rho(A) < r$,故 $f(\lambda_i) = \sum c_k \lambda_i^k$ 绝对收敛.

由 $\psi(\lambda_i) = 0, \psi'(\lambda_i) = 0, \dots, \psi^{(m_i-1)}(\lambda_i) = 0$ 可得

$$r(\lambda_i) = f(\lambda_i), r'(\lambda_i) = f'(\lambda_i), \cdots, r^{(m_i-1)}(\lambda_i) = f^{(m_i-1)}(\lambda_i) \quad (i = 1, 2, \cdots, s)$$

解此方程组得出 b_0, b_1, \dots, b_{m-1} . 因为 $\psi(A) = 0$, 所以

$$f(A) = \sum c_k A^k = \psi(A) \cdot g(A) + r(A) = r(A)$$

即
$$f(A) = b_0 I + b_1 A + \dots + b_{m-1} A^{m-1}$$

例 6
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$
, 求 $e^A, e^{tA} (t \in \mathbb{R})$.

$$\Re \varphi(\lambda) = |\lambda I - A| = (\lambda - 2)^3, \quad A - 2I = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}, \quad (A - 2I)^2 = O$$

$$\mathfrak{R}\,\psi(\lambda)=m(\lambda)=(\lambda-2)^2$$

(1)
$$f(\lambda) = e^{\lambda} = \psi(\lambda) \cdot g(\lambda) + (a + b\lambda), \quad f'(\lambda) = e^{\lambda} = [\psi(\lambda) \cdot g(\lambda)]' + b$$

 $f(2) = e^{2} : a + 2b = e^{2}$
 $f'(2) = e^{2} : b = e^{2}$
 $\Rightarrow \begin{cases} a = -e^{2} \\ b = e^{2} \end{cases}, \quad e^{A} = e^{2}(A - I) = e^{2} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$

2. 数项级数求和法 设以 A_{nxn} 为根的首 1 多项式 $\psi(\lambda)$ 如前所述,则有

解
$$\varphi(\lambda) = |\lambda I - A| = \lambda^4 - \pi^2 \lambda^2$$
,取 $\psi(\lambda) = \varphi(\lambda)$:
 $\psi(A) = O \Rightarrow A^4 = \pi^2 A^2$, $A^5 = \pi^2 A^3$, $A^7 = \pi^4 A^3$,…
 $\sin A = A - \frac{1}{3!} A^3 + \frac{1}{5!} A^5 - \frac{1}{7!} A^7 + \cdots$

3. 对角形法 考虑函数 $f(z) = \sum_{k=0}^{\infty} c_k z^k \ (|z| < r)$, 设

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}^{A} = \Lambda, \quad \text{则 } A^k = P\Lambda^k P^{-1}, \quad \text{且有}$$

$$\sum_{k=0}^{N} c_k A^k = P \cdot \sum_{k=0}^{N} c_k A^k \cdot P^{-1} = P \cdot \begin{bmatrix} \sum_{k=0}^{N} c_k \lambda_1^k & & & \\ & \ddots & & \\ & & \sum_{k=0}^{N} c_k \lambda_n^k \end{bmatrix} \cdot P^{-1}$$

$$f(A) = \sum_{k=0}^{\infty} c_k A^k = P \cdot \begin{bmatrix} f(\lambda_1) & & & \\ & \ddots & & \\ & & f(\lambda_n) \end{bmatrix} \cdot P^{-1}$$

例 8
$$P^{-1}AP = \Lambda$$
: $e^{A} = P \cdot \operatorname{diag}(e^{\lambda_{1}}, \dots, e^{\lambda_{n}}) \cdot P^{-1}$
 $e^{tA} = P \cdot \operatorname{diag}(e^{\lambda_{1}t}, \dots, e^{\lambda_{n}t}) \cdot P^{-1}$
 $\sin A = P \cdot \operatorname{diag}(\sin \lambda_{1}, \dots, \sin \lambda_{n}) \cdot P^{-1}$

4. Jordan 标准形法 设

$$P^{-1}AP = J = \begin{bmatrix} J_1 & & & \\ & \ddots & & \\ & & J_s \end{bmatrix}, J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_i \end{bmatrix}_{m_i \times m_i} = \lambda_i I + I^{(1)}$$

易证:
$$I^{(k)}I^{(1)} = I^{(1)}I^{(k)} = I^{(k+1)}, I^{(m_i)} = 0$$

$$k \le m_i - 1$$
: $J_i^k = \lambda_i^k I + C_k^1 \lambda_i^{k-1} I^{(1)} + \dots + C_k^{k-1} \lambda_i^1 I^{(k-1)} + I^{(k)}$

$$k \ge m_i$$
: $J_i^k = \lambda_i^k I + C_i^1 \lambda_i^{k-1} I^{(1)} + \dots + C_k^{m_i-1} \lambda_i^{k-(m_i-1)} I^{(m_i-1)}$

$$f(J_i) = \sum_{i} c_k J_i^k = f(\lambda_i) I + \frac{f'(\lambda_i)}{1!} I^{(1)} + \dots + \frac{f^{(m_i-1)}(\lambda_i)}{(m_i-1)!} I^{(m_i-1)}$$

$$f(A) = \sum c_k A^k = P \cdot \sum c_k J^k \cdot P^{-1}$$

$$= P \cdot \begin{bmatrix} \sum c_k J_1^k & & & \\ & \ddots & & \\ & & \sum c_k J_s^k \end{bmatrix} \cdot P^{-1} = P \cdot \begin{bmatrix} f(J_1) & & & \\ & \ddots & & \\ & & f(J_s) \end{bmatrix} \cdot P^{-1}$$

三、矩阵函数的拓宽定义

展开式 $f(z) = \sum c_k z^k \ (|z| < r, r > 0)$ 要求:

①
$$f^{(k)}(0)$$
 存在 $(k = 0,1,2,\cdots);$ ② $\lim_{k \to \infty} \frac{f^{(k+1)}(\xi)}{(k+1)!} z^{k+1} = 0 \ (|z| < r)$

对于一元函数 $f(z) = \frac{1}{z}$ 等,还不能定义矩阵函数. 基于矩阵函数值的

Jordan 标准形算法,拓宽定义如下: 设 $f(z) \in \mathbb{C}^{m_i-1}[\delta(\lambda_i)]$,令

$$f(J_i) = f(\lambda_i)I + \frac{f'(\lambda_i)}{1!}I^{(1)} + \dots + \frac{f^{(m_i-1)}(\lambda_i)}{(m_i-1)!}I^{(m_i-1)}$$

$$f(A) = P \cdot \operatorname{diag}(f(J_1), \dots, f(J_s)) \cdot P^{-1}$$

称 f(A) 为对应于 f(z) 的矩阵函数.

- [注] ① 拓宽定义不要求 f(z) 能展为 $\frac{z}{z}$ 的幂级数,但要求 f(z) 在 A 的特征值 λ_i (重数为 m_i)处有 m_i –1 阶导数,后者较前者弱!
 - ② 当 f(z) 能够展为"z"的幂级数时,矩阵函数 f(A) 的拓宽定义与级数定义是一致的.

例 9
$$A = \begin{bmatrix} 2 & 1 & & \\ & 2 & 1 & \\ & & 2 & 1 \\ & & & 2 \end{bmatrix}$$
, $f(z) = \frac{1}{z}$, 求 $f(A)$. 矩阵 A 可逆时 不需要 $f^{(k)}(0)$ 只需要 $f^{(k)}(\lambda_i)$

$$\begin{aligned}
\mathbf{f}(z) &= \frac{1}{z}, \ f'(z) = -z^{-2}, \ f''(z) = 2z^{-3}, \ f'''(z) = -6z^{-4} \\
f(A) &= f(J) = f(2) \cdot I + f'(2) \cdot I^{(1)} + \frac{f''(2)}{2!} \cdot I^{(2)} + \frac{f'''(2)}{3!} \cdot I^{(3)} \\
&= \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} & \frac{1}{8} & -\frac{1}{16} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{8} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{2} \end{bmatrix}
\end{aligned}$$

例 10
$$A = \begin{bmatrix} 1 & 1 & 0 \\ & 1 & 0 \\ & & 2 \end{bmatrix}$$
, $f(z) = \sqrt{z}$, 求 $f(A)$.

$$\begin{aligned}
\mathbf{f}(z) &= \sqrt{z}, \quad f'(z) &= \frac{1}{2\sqrt{z}} \\
J_1 &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}; \quad f(J_1) &= f(1) \cdot I + f'(1) \cdot I^{(1)} &= \begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix} \\
J_2 &= (2); \quad f(J_2) &= f(2) \cdot I &= (\sqrt{2}) \\
f(A) &= f(J) &= \begin{bmatrix} f(J_1) \\ f(J_2) \end{bmatrix} &= \begin{bmatrix} 1 & 1/2 & 0 \\ 1 & 0 \\ \sqrt{2} \end{bmatrix}
\end{aligned}$$

四、矩阵函数的性质

由级数定义或者拓宽定义给出的矩阵函数具有下列性质:
$$(1) \ f(z) = f_1(z) + f_2(z) \Rightarrow f(A) = f_1(A) + f_2(A)$$

$$f^{(i)}(\lambda_i) = f_1^{(i)}(\lambda_i) + f_2^{(i)}(\lambda_i) \Rightarrow f(J_i) = f_1(J_i) + f_2(J_i)$$

$$f(A) = P \cdot \begin{bmatrix} f_1(J_1) & & & \\ & \ddots & & \\ & & f_1(J_s) \end{bmatrix} + \begin{pmatrix} f_2(J_1) & & \\ & \ddots & \\ & & f_2(J_s) \end{bmatrix} \cdot P^{-1}$$

$$= f_1(A) + f_2(A)$$

$$(2) \ f(z) = f_1(z) \cdot f_2(z) \Rightarrow f(A) = f_1(A) \cdot f_2(A) = f_2(A) \cdot f_1(A)$$

$$f_1(J_i) \cdot f_2(J_i) = \begin{bmatrix} f_1 \cdot I + \frac{f_1'}{1!} \cdot I^{(i)} + \frac{f_1''}{2!} \cdot I^{(2)} + \cdots + \frac{f_1^{(m_i-1)}}{(m_i-1)!} \cdot I^{(m_i-1)} \end{bmatrix} \cdot I^{(m_i-1)}$$

$$= (f_1 f_2) \cdot I + \frac{1}{1!} (f_1' f_2 + f_1 f_2') \cdot I^{(i)} + \frac{1}{2!} (f_1'' f_2 + f_1 f_2'' + 2 f_1' f_2') \cdot I^{(2)} + \cdots$$

$$= (f_1 f_2) \cdot I + \frac{1}{1!} (f_1 f_2)' \cdot I^{(i)} + \frac{1}{2!} (f_1 f_2)'' \cdot I^{(2)} + \cdots + \frac{(f_1 f_2)^{(m_i-1)}}{(m_i-1)!} \cdot I^{(m_i-1)}$$

$$= f(J_i)$$

$$f(A) = P \begin{bmatrix} f(J_1) & & & \\ & \ddots & \\ & & f_1(J_s) \end{bmatrix} P^{-1}$$

$$= P \begin{bmatrix} f_1(J_1) & & & \\ & \ddots & \\ & & f_1(J_s) \end{bmatrix} P^{-1} \cdot P \begin{bmatrix} f_2(J_1) & & & \\ & \ddots & \\ & & f_2(J_s) \end{bmatrix} P^{-1}$$

$$= f_1(A) \cdot f_2(A)$$

§ 3.4 矩阵的微分与积分

一、函数矩阵的导数

设
$$A(t) = \left(a_{ij}(t)\right)_{m \times n}$$
 , 若 $a_{ij}(t)$ 可导,称 $A(t)$ 可导,记作
$$\frac{d}{dt}A(t) = \left(a'_{ij}(t)\right)_{m \times n} \quad \text{或者} \quad A'(t) = \left(a'_{ij}(t)\right)_{m \times n}$$

Th8 设 A(t), B(t) 可导,则有

(1)
$$A_{m \times n}, B_{m \times n}, \frac{d}{dt} [A(t) + B(t)] = A'(t) + B'(t)$$

(2)
$$A_{m \times n}$$
, $f(t)$ 可导, $\frac{d}{dt} [f(t)A(t)] = f'(t)A(t) + f(t)A'(t)$

(3)
$$A_{m \times n}, B_{n \times l}, \frac{d}{dt} [A(t)B(t)] = A'(t)B(t) + A(t)B'(t)$$

$$\stackrel{\text{iif.}}{=} (3) \quad \stackrel{\text{\notE}}{=} \frac{d}{dt} \left(\sum_{k} a_{ik}(t) b_{kj}(t) \right)_{m \times l} = \left(\sum_{k} \left(a'_{ik}(t) b_{kj}(t) + a_{ik}(t) b'_{kj}(t) \right) \right)_{m \times l} \\
= \left(\sum_{k} a'_{ik}(t) b_{kj}(t) \right)_{m \times l} + \left(\sum_{k} a_{ik}(t) b'_{kj}(t) \right)_{m \times l} = \stackrel{\text{\notE}}{=}$$

Th9 设 A_{nxn} 为常数矩阵,则有

$$(1) \frac{d}{dt}e^{tA} = A \cdot e^{tA} = e^{tA} \cdot A$$

(2)
$$\frac{d}{dt}\cos(tA) = -A \cdot \sin(tA) = -\sin(tA) \cdot A$$

(3)
$$\frac{d}{dt}\sin(tA) = A \cdot \cos(tA) = \cos(tA) \cdot A$$

证(1)
$$e^{tA} = I + \frac{1}{1!}(tA) + \frac{1}{2!}(tA)^2 + \dots + \frac{1}{k!}(tA)^k + \dots$$
 绝对收敛
$$(e^{tA})_{ij} = \delta_{ij} + \frac{t}{1!}(A)_{ij} + \frac{t^2}{2!}(A^2)_{ij} + \dots + \frac{t^k}{k!}(A^k)_{ij} + \dots$$
 绝对收敛
$$\frac{d}{dt}(e^{tA})_{ij} = 0 + (A)_{ij} + \frac{t}{1!}(A^2)_{ij} + \dots + \frac{t^{k-1}}{(k-1)!}(A^k)_{ij} + \dots$$
 绝对收敛
$$\frac{d}{dt}e^{tA} = A + \frac{t}{1!}A^2 + \dots + \frac{t^{k-1}}{(k-1)!}A^k + \dots$$
 绝对收敛
$$= \begin{cases} A \cdot \left[I + \frac{1}{1!}(tA) + \dots + \frac{1}{(k-1)!}(tA)^{k-1} + \dots \right] = A \cdot e^{tA} \\ I + \frac{1}{1!}(tA) + \dots + \frac{1}{(k-1)!}(tA)^{k-1} + \dots \end{cases}$$

二、函数矩阵的积分

设 $A(t) = (a_{ij}(t))_{m \times n}$, 若 $a_{ij}(t)$ 在区间 $[t_0, t]$ 上可积, 定义A(t)的积分为

$$\int_{t_0}^t A(\tau)d\tau = \left(\int_{t_0}^t a_{ij}(\tau)d\tau\right)_{m \times n} ; \quad \int A(t)dt = \left(\int a_{ij}(t)dt\right)_{m \times n}$$

(1)
$$\int_{t_0}^t \left[A(\tau) + B(\tau) \right] d\tau = \int_{t_0}^t A(\tau) d\tau + \int_{t_0}^t B(\tau) d\tau$$

(2)
$$A$$
 为常数矩阵:
$$\int_{t_0}^{t} [A \cdot B(\tau)] d\tau = A \cdot \left[\int_{t_0}^{t} B(\tau) d\tau \right]$$
 B 为常数矩阵:
$$\int_{t_0}^{t} A(\tau) \cdot B d\tau = \left[\int_{t_0}^{t} A(\tau) d\tau \right] \cdot B$$

(3) 设
$$a_{ij}(t) \in C[t_0,t_1]$$
, 且 $a \in [t_0,t_1]$, 则 $\frac{d}{dt} \int_a^t A(\tau) d\tau = A(t)$.

三、函数对矩阵的导数

设
$$X = (\xi_{ij})_{m \times n}$$
,多元函数 $f(X) = f(\xi_{11}, \xi_{12}, \dots, \xi_{1n}, \dots, \xi_{mn})$,定义

$$\frac{df}{dX} \stackrel{\Delta}{=} \left(\frac{\partial f}{\partial \xi_{ij}}\right)_{m \times n} = \begin{bmatrix} \frac{\partial f}{\partial \xi_{11}} & \dots & \frac{\partial f}{\partial \xi_{1n}} \\ \vdots & & \vdots \\ \frac{\partial f}{\partial \xi_{m1}} & \dots & \frac{\partial f}{\partial \xi_{mn}} \end{bmatrix}$$

例 1
$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$
: $f(x) = f(\xi_1, \dots, \xi_n)$, $\frac{df}{dx} = \begin{bmatrix} \frac{\partial f}{\partial \xi_1} \\ \vdots \\ \frac{\partial f}{\partial \xi_n} \end{bmatrix}$

例 2
$$A = (a_{ij})_{n \times n}, x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$
: $f(x) = x^T A x$, 求 $\frac{df}{dx}$.

$$\begin{aligned}
\mathbf{f}(x) &= \xi_1 \cdot \sum_{j=1}^n a_{1j} \xi_j + \dots + \xi_k \cdot \sum_{j=1}^n a_{kj} \xi_j + \dots + \xi_n \cdot \sum_{j=1}^n a_{nj} \xi_j \\
\frac{\partial f}{\partial \xi_k} &= \xi_1 \cdot a_{1k} + \dots + \xi_{k-1} \cdot a_{k-1,k} + \left(\sum_{j=1}^n a_{kj} \xi_j + \xi_k \cdot a_{kk} \right) + \\
\xi_{k+1} \cdot a_{k+1,k} + \dots + \xi_n \cdot a_{nk} &= \sum_{j=1}^n a_{kj} \xi_j + \sum_{i=1}^n a_{ik} \xi_i
\end{aligned}$$

$$\frac{df}{dx} = \begin{bmatrix} \sum_{j=1}^{n} a_{1j} \xi_{j} + \sum_{i=1}^{n} a_{i1} \xi_{i} \\ \vdots \\ \sum_{j=1}^{n} a_{nj} \xi_{j} + \sum_{i=1}^{n} a_{in} \xi_{i} \end{bmatrix} = (A + A^{T})x$$

$$\text{``} A^{T} = A \Rightarrow \frac{df}{dx} = 2Ax \text{''}$$

例 3
$$X = \left(\xi_{ij}\right)_{n \times n}$$
: $f(X) = \left[\operatorname{tr}(X)\right]^2$, 求 $\frac{df}{dX}\Big|_{X=I_n}$.

$$f(X) = (\xi_{11} + \xi_{22} + \dots + \xi_{nn})^{2}$$

$$\frac{df}{dX} = 2(\xi_{11} + \xi_{22} + \dots + \xi_{nn})I_{n}, \quad \frac{df}{dX}\Big|_{X=I_{n}} = 2nI_{n}.$$

例 4 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$,若 $x \in \mathbb{R}^n$ 使得 $||Ax - b||_2 = \min$,则 $A^T Ax = A^T b$.

$$\mathbf{E} \quad f(x) = \|Ax - b\|_{2}^{2} = (Ax - b)^{\mathrm{T}} (Ax - b) = x^{\mathrm{T}} A^{\mathrm{T}} Ax - 2b^{\mathrm{T}} Ax + b^{\mathrm{T}} b$$

$$g(x) = b^{\mathrm{T}} Ax = b_{1} \cdot \sum_{j=1}^{n} a_{1j} \xi_{j} + \dots + b_{m} \cdot \sum_{j=1}^{n} a_{mj} \xi_{j}$$

$$\frac{dg}{dx} = \begin{vmatrix} \frac{\partial g}{\partial \xi_1} \\ \vdots \\ \frac{\partial g}{\partial \xi_n} \end{vmatrix} = \begin{bmatrix} b_1 a_{11} + \dots + b_m a_{m1} \\ \vdots \\ b_1 a_{1n} + \dots + b_m a_{mn} \end{bmatrix} = A^{\mathrm{T}} b$$

$$\frac{df}{dx} = 2A^{\mathrm{T}}Ax - 2A^{\mathrm{T}}b = 0 \Rightarrow A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$$

[注]
$$r(A^{\mathsf{T}}A) = r(A) \Rightarrow r(A^{\mathsf{T}}A \mid A^{\mathsf{T}}b) = r(A^{\mathsf{T}}A) \Rightarrow A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$$
 有解

四、函数矩阵对矩阵的导数

设
$$X = (\xi_{ij})_{m \times n}$$
,多元函数 $f_{kl}(X) = f_{kl}(\xi_{11}, \xi_{12}, \dots, \xi_{1n}, \dots, \xi_{mn})$,定义

$$F = \begin{bmatrix} f_{11} & \cdots & f_{1s} \\ \vdots & & \vdots \\ f_{r1} & \cdots & f_{rs} \end{bmatrix}, \quad \frac{\partial F}{\partial \xi_{ij}} \stackrel{\Delta}{=} \begin{bmatrix} \frac{\partial f_{11}}{\partial \xi_{ij}} & \cdots & \frac{\partial f_{1s}}{\partial \xi_{ij}} \\ \vdots & & \vdots \\ \frac{\partial f_{r1}}{\partial \xi_{ij}} & \cdots & \frac{\partial f_{rs}}{\partial \xi_{ij}} \end{bmatrix}, \quad \frac{dF}{dX} \stackrel{\Delta}{=} \begin{bmatrix} \frac{\partial F}{\partial \xi_{11}} & \cdots & \frac{\partial F}{\partial \xi_{1n}} \\ \vdots & & \vdots \\ \frac{\partial F}{\partial \xi_{m1}} & \cdots & \frac{\partial F}{\partial \xi_{mn}} \end{bmatrix}_{m \times n \not \downarrow}$$

例 6
$$A = (a_{ij})_{n \times n}$$

$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}, \quad Ax = \begin{bmatrix} \sum_{j=1}^n a_{1j} \xi_j \\ \vdots \\ \sum_{j=1}^n a_{nj} \xi_j \end{bmatrix}, \quad \frac{d(Ax)}{dx^{\mathrm{T}}} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = A$$

§ 3.5 应用(一阶线性常系数微分方程组的矩阵函数解法)

$$\begin{cases} \xi_{1}'(t) = a_{11}\xi_{1}(t) + a_{12}\xi_{2}(t) + \dots + a_{1n}\xi_{n}(t) + b_{1}(t) \\ \xi_{2}'(t) = a_{21}\xi_{1}(t) + a_{22}\xi_{2}(t) + \dots + a_{2n}\xi_{n}(t) + b_{2}(t) \\ \dots \\ \xi_{n}'(t) = a_{n1}\xi_{1}(t) + a_{n2}\xi_{2}(t) + \dots + a_{nn}\xi_{n}(t) + b_{n}(t) \end{cases}$$

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n} & \dots & a_{n} \end{bmatrix}, \quad x(t) = \begin{bmatrix} \xi_{1}(t) \\ \vdots \\ \xi_{n}(t) \end{bmatrix}, \quad b(t) = \begin{bmatrix} b_{1}(t) \\ \vdots \\ b_{n}(t) \end{bmatrix}, \quad c = \begin{bmatrix} c_{1} \\ \vdots \\ c_{n}(t) \end{bmatrix}$$

齐次微分方程组(1): $x'(t) = A \cdot x(t)$

非齐次微分方程组(2): $x'(t) = A \cdot x(t) + b(t)$ ($b(t) \neq 0$)

一、齐次方程组 $x'(t) = A \cdot x(t)$ 的解法

Th10 齐次方程组 $x'(t) = A \cdot x(t)$ 满足 $x(t_0) = x_0$ 的解存在且唯一.

证 存在性. 设
$$x(t) = e^{(t-t_0)A} x_0$$
 ,则
$$x'(t) = A e^{(t-t_0)A} x_0 = A \cdot x(t), \quad x(t_0) = e^O x_0 = x_0$$
 唯一性. 设 $x(t)$ 满足 $x'(t) = A \cdot x(t), \quad x(t_0) = x_0$,则有
$$x'(t) - A x(t) = 0 \implies e^{-tA} x'(t) + e^{-tA} (-A) x(t) = 0$$
 [$e^{-tA} x(t)$] $' = 0 \implies e^{-tA} x(t) = c \implies x(t) = e^{tA} c$ (通解) 因为 $x(t_0) = x_0$,所以 $x_0 = e^{t_0 A} c \implies c = e^{-t_0 A} x_0$ 故 $x(t) = e^{tA} e^{-t_0 A} x_0 = e^{(t-t_0)A} x_0$ (特解)

[注] 齐次方程组 $x'(t) = A \cdot x(t)$ 满足 $x(0) = x_0$ 的特解为 $x(t) = e^{tA} x_0$.

例 1 设
$$A = \begin{bmatrix} 1 & 1 & 0 \\ & 1 & 0 \\ & & 2 \end{bmatrix}$$
, 求 $x'(t) = A \cdot x(t)$ 的通解.

$$\Re e^{tA} = \begin{bmatrix} e^t & te^t & \mathbf{0} \\ & e^t & \mathbf{0} \\ & & e^{2t} \end{bmatrix}, \quad x(t) = e^{tA} \cdot c = \begin{bmatrix} c_1 e^t + c_2 te^t \\ & c_2 e^t \\ & & c_3 e^{2t} \end{bmatrix}$$

例 2 矩阵函数 e^{tA} 的列向量 $x_1(t), \dots, x_n(t)$ 构成齐次方程组 $x'(t) = A \cdot x(t)$ 的基础解系.

二、非齐次方程组 $x'(t) = A \cdot x(t) + b(t)$ 的解法 方程(1): $x'(t) = A \cdot x(t)$

方程(2):
$$x'(t) = A \cdot x(t) + b(t)$$

$$\widetilde{x}(t) \underset{\mathcal{L}(2)}{\mathbb{E}}(2) \text{的特解} \\
x(t) \underset{\mathcal{L}(2)}{\mathbb{E}}(2) \text{的通解} \end{cases} \Rightarrow \begin{cases} \widetilde{x}'(t) = A \cdot \widetilde{x}(t) + b(t) \\
x'(t) = A \cdot x(t) + b(t) \end{cases}$$

$$\Rightarrow \left[x(t) - \widetilde{x}(t) \right]' = A \left[x(t) - \widetilde{x}(t) \right] \Rightarrow x(t) - \widetilde{x}(t) \underset{\mathcal{L}(1)}{\mathbb{E}}(1) \text{ 的解}$$

$$\overset{\text{M2}}{\Rightarrow} x(t) - \widetilde{x}(t) = c_1 \cdot x_1(t) + \dots + c_n \cdot x_n(t) \Rightarrow x(t) = e^{tA} \cdot c + \widetilde{x}(t)$$

采用常向量变异法求 $\tilde{x}(t)$. 设 $\tilde{x}(t) = e^{tA}c(t)$ 满足(2),则有

$$Ae^{tA} \cdot c(t) + e^{tA} \cdot c'(t) = A \cdot e^{tA} c(t) + b(t)$$

$$c'(t) = e^{-tA} b(t) \Rightarrow c(t) = \int_{t_0}^{t} e^{-\tau A} b(\tau) d\tau \quad (原函数之一)$$

故(2)的通解为
$$x(t) = e^{tA} \cdot \left[c + \int_{t_0}^t e^{-\tau A} b(\tau) d\tau \right]$$

特解为
$$x(t)|_{x(t_0)=x_0} = e^{tA} \cdot \left[e^{-t_0A} x_0 + \int_{t_0}^t e^{-\tau A} b(\tau) d\tau \right]$$

[注] 当
$$t_0 = 0$$
时,特解为 $x(t)|_{x(0)=x_0} = e^{tA} \cdot \left[x_0 + \int_0^t e^{-\tau A} b(\tau) d\tau \right]$

例 3 设
$$A = \begin{bmatrix} 1 & 1 & 0 \\ & 1 & 0 \\ & & 2 \end{bmatrix}, b(t) = \begin{bmatrix} 1 \\ 0 \\ e^{2t} \end{bmatrix}, x(0) = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.$$

求 $x'(t) = A \cdot x(t) + b(t)$ 满足初始条件x(0)的特解.

$$\mathbf{R}$$
 例 1 求得 $e^{tA} = \begin{bmatrix} e^t & te^t & \mathbf{0} \\ & e^t & \mathbf{0} \\ & & e^{2t} \end{bmatrix}$, 计算

$$e^{-\tau A} \cdot b(\tau) = \begin{bmatrix} e^{-\tau} \\ 0 \\ 1 \end{bmatrix}, \quad \int_0^t e^{-\tau A} b(\tau) d\tau = \begin{bmatrix} 1 - e^{-t} \\ 0 \\ t \end{bmatrix}$$

$$x(t) = e^{tA} \cdot \begin{bmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 - e^{-t} \\ 0 \\ t \end{bmatrix} \end{bmatrix} = \begin{bmatrix} te^{t} - 1 \\ e^{t} \\ te^{2t} \end{bmatrix}$$

例 4 设
$$A = \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & -2 \\ 2 & -2 & 8 \end{bmatrix}, b(t) = \begin{bmatrix} e^{9t} \\ e^{9t} \\ 0 \end{bmatrix}, x(0) = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}.$$

求 $x'(t) = A \cdot x(t) + b(t)$ 满足初始条件 x(0) 的特解.

解 用 3 种方法求 e^{tA} .

(1) 特定法: $|\lambda I - A| = \lambda(\lambda - 9)^2$, 因为 A(A - 9I) = O, 所以 A 的最小多项式为 $m(\lambda) = \lambda(\lambda - 9)$. 设 $f(\lambda) = e^{i\lambda} = m(\lambda)g(\lambda) + (a + b\lambda)$, 则

$$\begin{cases} f(0) = 1 = a \\ f(9) = e^{9t} = a + 9b \end{cases} \begin{cases} a = 1 \\ b = (e^{9t} - 1)/9 \end{cases}$$
于是
$$e^{tA} = aI + bA = \frac{1}{9}(9I - A) + \frac{e^{9t}}{9}A$$

$$= \frac{1}{9} \begin{bmatrix} 4 & -4 & -2 \\ -4 & 4 & 2 \\ -2 & 2 & 1 \end{bmatrix} + \frac{e^{9t}}{9} \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & -2 \\ 2 & -2 & 8 \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 4 + 5y & -4 + 4y & -2 + 2y \\ -4 + 4y & 4 + 5y & 2 - 2y \\ -2 + 2y & 2 - 2y & 1 + 8y \end{bmatrix} \quad (y = e^{9t})$$

(2) 对角形法: A 是实对称矩阵,存在可逆矩阵 P 使得 $P^{-1}AP = \Lambda$,其中

$$A = \begin{bmatrix} 0 \\ 9 \\ 9 \end{bmatrix}, P = \begin{bmatrix} -2 & 1 & 1 \\ 2 & 1 & -1 \\ 1 & 0 & 4 \end{bmatrix}, P^{-1} = \frac{1}{18} \begin{bmatrix} -4 & 4 & 2 \\ 9 & 9 & 0 \\ 1 & -1 & 4 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 \\ e^{9t} \\ e^{9t} \end{bmatrix} P^{-1} = P \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} P^{-1} + e^{9t} P \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} P^{-1}$$

$$= \frac{1}{9} \begin{bmatrix} 4 & -4 & -2 \\ -4 & 4 & 2 \\ -2 & 2 & 1 \end{bmatrix} + \frac{e^{9t}}{9} \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & -2 \\ 2 & -2 & 8 \end{bmatrix}$$

(3) 级数求和法: $|\lambda I - A| = \lambda(\lambda - 9)^2$, 因为 A(A - 9I) = O, 所以 A 的最小 多项式为 $m(\lambda) = \lambda(\lambda - 9)$. 由 m(A) = O 知 $A^2 = 9A$,于是可得

$$e^{tA} = I + \frac{(tA)}{1!} + \frac{(tA)^2}{2!} + \frac{(tA)^3}{3!} + \dots = I + \left(\frac{t}{1!} + \frac{9t^2}{2!} + \frac{9^2t^3}{3!} + \dots\right)A$$

$$= I + \frac{1}{9} \left(\frac{9t}{1!} + \frac{(9t)^2}{2!} + \frac{(9t)^3}{3!} + \dots\right)A$$

$$= I + \frac{1}{9} \left(e^{9t} - 1\right)A = \frac{1}{9}(9I - A) + \frac{e^{9t}}{9}A$$

$$= \frac{1}{9} \begin{bmatrix} 4 & -4 & -2\\ -4 & 4 & 2\\ -2 & 2 & 1 \end{bmatrix} + \frac{e^{9t}}{9} \begin{bmatrix} 5 & 4 & 2\\ 4 & 5 & -2\\ 2 & -2 & 8 \end{bmatrix}$$

$$e^{-\tau A}b(\tau) = \begin{cases} \frac{1}{9} \begin{bmatrix} 4 & -4 & -2\\ -4 & 4 & 2\\ -2 & 2 & 1 \end{bmatrix} + \frac{e^{-9\tau}}{9} \begin{bmatrix} 5 & 4 & 2\\ 4 & 5 & -2\\ 2 & -2 & 8 \end{bmatrix} \begin{cases} e^{9\tau}\\ e^{9\tau}\\ 0 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$$

$$x(t) = e^{tA} \begin{cases} x(0) + \int_0^t e^{-\tau A}b(\tau)d\tau \end{cases}$$

$$= \left\{ \frac{1}{9} \begin{bmatrix} 4 & -4 & -2 \\ -4 & 4 & 2 \\ -2 & 2 & 1 \end{bmatrix} + \frac{e^{9t}}{9} \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & -2 \\ 2 & -2 & 8 \end{bmatrix} \right\} \cdot \left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + \begin{bmatrix} t \\ t \\ 0 \end{bmatrix} \right\} = e^{9t} \begin{bmatrix} 1+t \\ t \\ 2 \end{bmatrix}$$

例 5(2002B) 设
$$A = \begin{bmatrix} -1 & 2 & 0 \\ -2 & 3 & 1 \\ 2 & -2 & -2 \end{bmatrix}, b(t) = \begin{bmatrix} e^{-t} \\ 0 \\ 2e^{-t} \end{bmatrix}, x(0) = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

- 1. 求 e^{tA} ;
- 2. 用矩阵函数方法求 $\frac{d}{dt}x(t) = Ax(t) + b(t)$ 满足初始条件 x(0) 的解.

$$\mathbf{p}(\lambda) = |\lambda I - A| = \lambda(\lambda - 1)(\lambda + 1)$$

(1) 对角化法: 求P使得 $P^{-1}AP = \Lambda$

$$A = \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & -1 \end{bmatrix}, \quad P = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} 2 & -2 & -1 \\ -2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

$$e^{tA} = P \begin{bmatrix} 1 & & & \\ & e^{-t} \end{bmatrix} P^{-1}$$

$$= P \begin{bmatrix} 1 & & & \\ & 0 & \\ & 0 \end{bmatrix} P^{-1} + e^{t} P \begin{bmatrix} 0 & & \\ & 1 & \\ & 0 \end{bmatrix} P^{-1} + e^{-t} P \begin{bmatrix} 0 & & \\ & 0 & \\ & & 1 \end{bmatrix} P^{-1}$$

$$= \begin{bmatrix} 4 & -4 & -2 \\ 2 & -2 & -1 \\ 2 & -2 & -1 \end{bmatrix} + e^{t} \begin{bmatrix} -2 & 3 & 1 \\ -2 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix} + e^{-t} \begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ -2 & 2 & 2 \end{bmatrix}$$

(2) 特定法: 设 $f(\lambda) = e^{t\lambda} = \varphi(\lambda)g(\lambda) + (a + b\lambda + c\lambda^2)$,则

$$\begin{cases} f(0) = 1 = a \\ f(1) = e^{t} = a + b + c \\ f(-1) = e^{-t} = a - b + c \end{cases} \Rightarrow \begin{cases} a = 1 \\ b = (e^{t} - e^{-t})/2 \\ c = (e^{t} + e^{-t} - 2)/2 \end{cases}$$

于是
$$e^{tA} = aI + bA + cA^2 = (I - A^2) + \frac{e^t}{2}(A^2 + A) + \frac{e^{-t}}{2}(A^2 - A)$$

$$= \begin{bmatrix} 4 & -4 & -2 \\ 2 & -2 & -1 \\ 2 & -2 & -1 \end{bmatrix} + e^{t} \begin{bmatrix} -2 & 3 & 1 \\ -2 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix} + e^{-t} \begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ -2 & 2 & 2 \end{bmatrix}$$

$$e^{-\tau A}b(\tau) = \left\{ (I - A^2) + \frac{e^{-\tau}}{2}(A^2 + A) + \frac{e^{\tau}}{2}(A^2 - A) \right\} \cdot e^{-\tau} \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$

$$x(t) = e^{tA} \left\{ x(0) + \int_0^t e^{-\tau A} b(\tau) d\tau \right\}$$

$$= \left\{ (I - A^{2}) + \frac{e^{t}}{2} (A^{2} + A) + \frac{e^{-t}}{2} (A^{2} - A) \right\} \cdot \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \right\}$$

$$= e^{t} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t e^{-t} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} e^{t} + t e^{-t} \\ e^{t} \\ 2t e^{-t} \end{bmatrix}$$

例 6 (2004A)

设
$$\sin At = \begin{bmatrix} \sin 2t + \sin t & 2\sin 2t + \sin t & 3\sin 2t + \sin t \\ \sin 2t + 2\sin t & 2\sin 2t + 2\sin t & 3\sin 2t + 2\sin t \\ \sin 2t + 3\sin t & 2\sin 2t + 3\sin t & 3\sin 2t + 3\sin t \end{bmatrix}$$
, 求 A.

$$\frac{\mathbf{d} \sin At}{\mathbf{d}t} \Big|_{t=0} = (A \cos At) \Big|_{t=0} \implies A = \begin{bmatrix} 3 & 5 & 7 \\ 4 & 6 & 8 \\ 5 & 7 & 9 \end{bmatrix}$$

例 7 (2004B) 设A 为可逆矩阵,求 $\int_0^1 \sin At \, dt$.

解 原式=
$$-A^{-1}\int_0^1 \mathbf{d}(\cos At) = A^{-1}(I - \cos A)$$

第四章 矩阵分解

§ 4.1 三角分解

<mark>目的:</mark>将 A_{uvu} 分解为下三角矩阵与上三角矩阵的乘积.

一、分解原理:以n=4为例

①
$$\Delta_1(A) = a_{11}: a_{11} \neq 0 \Rightarrow c_{i1} = \frac{a_{i1}}{a_{11}} (i = 2,3,4)$$

$$L_{1} = \begin{bmatrix} 1 & & & & \\ c_{21} & 1 & & & \\ c_{31} & 0 & 1 & & \\ c_{41} & 0 & 0 & 1 \end{bmatrix}, \quad L_{1}^{-1} = \begin{bmatrix} 1 & & & \\ -c_{21} & 1 & & \\ -c_{31} & 0 & 1 & \\ -c_{41} & 0 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ \hline a_{21} & a_{22} & a_{23} & a_{24} \\ \hline a_{31} & a_{32} & a_{33} & a_{34} \\ \hline a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$L_{1}^{-1}A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ & a_{21}^{(1)} & a_{23}^{(1)} & a_{24}^{(1)} \\ & a_{32}^{(1)} & a_{33}^{(1)} & a_{34}^{(1)} \\ & a_{42}^{(1)} & a_{43}^{(1)} & a_{44}^{(1)} \end{bmatrix} \stackrel{\Delta}{=} A^{(1)}$$

②
$$\Delta_2(A) = \Delta_2(A^{(1)}) = a_{11}a_{22}^{(1)}: \quad a_{22}^{(1)} \neq 0 \Rightarrow c_{i2} = \frac{a_{i2}^{(1)}}{a_{22}^{(1)}} \quad (i = 3,4)$$

$$L_{2} = \begin{bmatrix} 1 & & & & \\ 0 & 1 & & & \\ 0 & c_{32} & 1 & & \\ 0 & c_{42} & 0 & 1 \end{bmatrix}, \quad L_{2}^{-1} = \begin{bmatrix} 1 & & & & \\ 0 & 1 & & & \\ 0 & -c_{32} & 1 & \\ 0 & -c_{42} & 0 & 1 \end{bmatrix}$$

$$L_{2}^{-1}A^{(1)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ ---\frac{a_{22}^{(1)}}{2} & a_{23}^{(1)} & a_{24}^{(1)} \\ ---\frac{a_{22}^{(1)}}{2} & a_{33}^{(2)} & a_{34}^{(2)} \\ ---\frac{a_{22}^{(1)}}{2} & a_{33}^{(2)} & a_{34}^{(2)} \\ ---\frac{a_{22}^{(1)}}{2} & a_{33}^{(2)} & a_{34}^{(2)} \end{bmatrix}^{\Delta} = A^{(2)}$$

$$L_{3} = \begin{bmatrix} 1 & & & & \\ 0 & 1 & & & \\ 0 & 0 & 1 & & \\ 0 & 0 & c_{43} & 1 \end{bmatrix}, \quad L_{3}^{-1} = \begin{bmatrix} 1 & & & & \\ 0 & 1 & & & \\ 0 & 0 & 1 & & \\ 0 & 0 & -c_{43} & 1 \end{bmatrix}$$

$$L_{3}^{-1}A^{(2)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ & a_{22}^{(1)} & a_{23}^{(1)} & a_{24}^{(1)} \\ & & a_{33}^{(2)} & a_{34}^{(2)} \\ & & & a_{44}^{(3)} \end{bmatrix} \stackrel{A}{=} A^{(3)}$$

$$\mathbb{P} L_3^{-1} L_2^{-1} L_1^{-1} A = A^{(3)} \Rightarrow A = L_1 L_2 L_3 A^{(3)}$$

$$\diamondsuit \quad L \stackrel{\Delta}{=} L_1 L_2 L_3 = \begin{bmatrix} 1 & & & \\ c_{21} & 1 & & \\ c_{31} & c_{32} & 1 & \\ c_{41} & c_{42} & c_{43} & 1 \end{bmatrix}, \quad \emptyset \quad A = LA^{(3)}.$$

分解
$$A^{(3)} = \begin{bmatrix} a_{11} & & & & \\ & a_{22}^{(1)} & & & \\ & & a_{33}^{(2)} & & \\ & & & a_{44}^{(3)} \end{bmatrix} \begin{bmatrix} 1 & * & * & * \\ & 1 & * & * \\ & & 1 & * \\ & & & 1 \end{bmatrix} = DU$$
,则 $A = LDU$.

Th1 $A_{n\times n}$, $\Delta_k(A) \neq 0$ $(k = 1, 2, \dots, n-1) \Rightarrow A = LDU$ 存在且唯一.

二、紧凑格式算法: $A = LDU = \tilde{L}U$ (Crout 分解)

$$\widetilde{L} = \begin{bmatrix} l_{11} & & & & \\ l_{21} & l_{22} & & & \\ \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix}, \quad U = \begin{bmatrix} 1 & u_{12} & \cdots & u_{1n} \\ & 1 & \cdots & u_{2n} \\ & & \ddots & \vdots \\ & & & 1 \end{bmatrix}$$

$$(i,1)$$
 $\vec{\pi}$: $a_{i1} = l_{i1} \cdot 1 \Rightarrow l_{i1} = a_{i1} \quad (i=1,\dots,n)$

$$(1,j)\vec{\pi}$$
: $a_{1j} = l_{11} \cdot u_{1j} \Rightarrow u_{1j} = \frac{a_{1j}}{l_{11}} \quad (j = 2, \dots, n)$

$$(i,k)$$
 $\overrightarrow{\pi}$: $a_{ik} = l_{i1} \cdot u_{1k} + \dots + l_{i,k-1} \cdot u_{k-1,k} + l_{ik} \cdot 1 \quad (i \ge k)$
 $\Rightarrow l_{ik} = a_{ik} - (l_{i1} \cdot u_{1k} + \dots + l_{i,k-1} \cdot u_{k-1,k})$

$$(k,j)\vec{\pi}: \quad a_{kj} = l_{k1} \cdot u_{1j} + \dots + l_{k,k-1} \cdot u_{k-1,j} + l_{kk} \cdot u_{kj} \quad (j > k)$$

$$\Rightarrow u_{kj} = \frac{1}{l_{kk}} \left[a_{kj} - \left(l_{k1} \cdot u_{1j} + \dots + l_{k,k-1} \cdot u_{k-1,j} \right) \right]$$

例 1
$$A = \begin{bmatrix} 5 & 2 & -4 & 0 \\ 2 & 1 & -2 & 1 \\ -4 & -2 & 5 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$
, 计算框图:
$$\begin{bmatrix} 5 & 2/5 & -4/5 & 0 \\ 2 & 1/5 & -2 & 5 \\ -4 & -2/5 & 1 & 2 \\ 0 & 1 & 2 & -7 \end{bmatrix}$$

$$\widetilde{L} = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 2 & 1/5 & 0 & 0 \\ -4 & -2/5 & 1 & 0 \\ 0 & 1 & 2 & -7 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 2/5 & 1 & & \\ -4/5 & -2 & 1 & \\ 0 & 5 & 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & & & \\ 1/5 & & \\ & 1 & \\ & & -7 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 2/5 & -4/5 & 0 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A = \widetilde{L}U = LDU$$

§ 4.2 OR 分解

目的:将 A_{nvn} 分解为正交矩阵与上三角矩阵之积.

约定: 本节涉及的矩阵为实矩阵,向量为实向量,数为实数.

一、Givens 矩阵

$$T_{ij}(c,s) = \begin{bmatrix} I & & & & \\ & c & & s & \\ & & I & \\ & -s & & c & \\ & & & I \end{bmatrix} (i)$$
 (c² + s² = 1)

1.
$$T_{ij}^{\mathrm{T}}T_{ij} = I$$
, $[T_{ij}(c,s)]^{-1} = [T_{ij}(c,s)]^{\mathrm{T}} = T_{ij}(c,-s)$, $\det T_{ij} = 1$.

2.
$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}, \quad T_{ij}x = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix} \Rightarrow \begin{cases} \eta_i = c\xi_i + s\xi_j \\ \eta_j = -s\xi_i + c\xi_j \\ \eta_k = \xi_k \ (k \neq i, j) \end{cases}$$

若
$$\xi_i^2 + \xi_j^2 \neq 0$$
,取 $c = \frac{\xi_i}{\left(\xi_i^2 + \xi_j^2\right)^{\frac{1}{2}}}$, $s = \frac{\xi_j}{\left(\xi_i^2 + \xi_j^2\right)^{\frac{1}{2}}}$

Th3 $x \neq 0 \Rightarrow \exists$ 有限个 G-矩阵之积 T, 使得 $Tx = |x|e_1$.

证 ① $\xi_1 \neq 0$ (以n = 4为例)

构造
$$T_{12}(c,s)$$
, $c = \frac{\xi_1}{\left(\xi_1^2 + \xi_2^2\right)^{\frac{1}{2}}}$, $s = \frac{\xi_2}{\left(\xi_1^2 + \xi_2^2\right)^{\frac{1}{2}}}$: $T_{12}x = \begin{bmatrix} \left(\xi_1^2 + \xi_2^2\right)^{\frac{1}{2}} \\ 0 \\ \xi_3 \\ \xi_4 \end{bmatrix} = x^{(2)}$

构造
$$T_{13}(c,s)$$
, $c = \frac{\left(\xi_1^2 + \xi_2^2\right)^{\frac{1}{2}}}{\left(\xi_1^2 + \xi_2^2 + \xi_3^2\right)^{\frac{1}{2}}}$, $s = \frac{\xi_3}{\left(\xi_1^2 + \xi_2^2 + \xi_3^2\right)^{\frac{1}{2}}}$:

$$T_{13}x^{(2)} = \begin{bmatrix} (\xi_1^2 + \xi_2^2 + \xi_3^2)^{\frac{1}{2}} \\ 0 \\ \xi_4 \end{bmatrix} = x^{(3)}$$

构造
$$T_{14}(c,s)$$
, $c = \frac{\left(\xi_1^2 + \xi_2^2 + \xi_3^2\right)^{\frac{1}{2}}}{\left(\xi_1^2 + \dots + \xi_4^2\right)^{\frac{1}{2}}}$, $s = \frac{\xi_4}{\left(\xi_1^2 + \dots + \xi_4^2\right)^{\frac{1}{2}}}$: $T_{14}x^{(3)} = |x|e_1$

 $T_{14}T_{13}T_{13}x = |x|e_1$ 于是可得

②
$$\xi_1 = \dots = \xi_{k-1} = 0, \, \xi_k \neq 0 \, \left(1 < k \le n\right) : \, |x| = \left(\xi_k^2 + \dots + \xi_n^2\right)^{\frac{1}{2}}$$
 由 T_{1k} 开始即可.

推论 R"中, $\forall x \neq 0$, \forall 单位向量 $z \Rightarrow \exists$ 有限个 G-矩阵之积 T, st. $Tx = |x|_z$.

$$\begin{array}{ll}
\mathbf{T}^{(1)}x = |x|e_1, \quad T^{(2)}z = |z|e_1 \quad \Rightarrow \quad \left[T^{(2)}\right]^{-1}T^{(1)}x = |x|z \\
T = \left[T^{(2)}\right]^{-1}T^{(1)} = \left[T^{(2)}_{1n}\cdots T^{(2)}_{12}\right]^{-1}T^{(1)} = \left[\left(T^{(2)}_{12}\right)^{\mathrm{T}}\cdots \left(T^{(2)}_{1n}\right)^{\mathrm{T}}\right]\left[T^{(1)}_{1n}\cdots T^{(1)}_{12}\right]
\end{array}$$

例 1
$$x = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$
, 求 G-矩阵之积 T 使得 $Tx = |x|e_1$.

$$T_{13}(c,s)$$
 \Leftrightarrow , $c = \frac{1}{\sqrt{2}}$, $s = \frac{1}{\sqrt{2}}$. $T_{13}(T_{12}x) = \begin{bmatrix} 5\sqrt{2} \\ 0 \\ 0 \end{bmatrix} = |x|e_1$

$$T = T_{13}T_{12} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ -1 & 0 & 1 \end{bmatrix} \cdot \frac{1}{5} \begin{bmatrix} 3 & 4 & 0 \\ -4 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \frac{1}{5\sqrt{2}} \begin{bmatrix} 3 & 4 & 5 \\ -4\sqrt{2} & 3\sqrt{2} & 0 \\ -3 & -4 & 5 \end{bmatrix}$$

$$Tx = 5\sqrt{2}e_1$$

二、Householder 矩阵

 $H_u = I_n - 2uu^{\mathrm{T}}$ ($u \in \mathbb{R}^n$ 是单位列向量)

- (1) $H^{T} = H$ 对称矩阵 (2) $H^{T}H = I$ 正交矩阵
- (3) $H^2 = I$ 对合矩阵 (4) $H^{-1} = H$ 自逆矩阵 (5) $\det H = -1$

验证(5):

$$\begin{bmatrix} I & 0 \\ -u^{\mathrm{T}} & 1 \end{bmatrix} \begin{bmatrix} I & 2u \\ 0^{\mathrm{T}} & 1 \end{bmatrix} \begin{bmatrix} I - 2uu^{\mathrm{T}} & 0 \\ u^{\mathrm{T}} & 1 \end{bmatrix} = \begin{bmatrix} I & 0 \\ -u^{\mathrm{T}} & 1 \end{bmatrix} \begin{bmatrix} I & 2u \\ u^{\mathrm{T}} & 1 \end{bmatrix} = \begin{bmatrix} I & 2u \\ 0^{\mathrm{T}} & -1 \end{bmatrix}$$
$$\begin{vmatrix} I - 2uu^{\mathrm{T}} & 0 \\ u^{\mathrm{T}} & 1 \end{vmatrix} = \begin{vmatrix} I & 2u \\ 0^{\mathrm{T}} & -1 \end{vmatrix} \Rightarrow \det(I - 2uu^{\mathrm{T}}) = -1$$

Th4 $\mathbf{R}^n \mapsto (n > 1), \forall x \neq 0, \forall \text{ 单位向量 } z \Rightarrow \exists H_n, \text{ st } H_n x = |x|z$.

证 ① x = |x|z: n > 1时,可取单位向量u使得 $u \perp x$,于是

$$H_u = I - 2uu^{\mathrm{T}}$$
: $H_u x = I x - 2uu^{\mathrm{T}} x = x = |x|z$

②
$$x \neq |x|z$$
: $\mathbb{R} \frac{u = \frac{x - |x|z}{|x - |x|z|}}{|x - |x|z|}$, 有

$$H_{u}x = \left[I - 2\frac{(x - |x|z)(x - |x|z)^{T}}{|x - |x|z|^{2}}\right]x = x - \frac{2(x - |x|z, x)}{|x - |x|z|^{2}}(x - |x|z)$$
$$= x - 1 \cdot (x - |x|z) = |x|z$$

例 2 $x = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, 求 H-矩阵 H 使得 $Hx = |x|e_1$.

$$|\mathbf{x}| = 3, \ x - |\mathbf{x}|e_1 = \begin{bmatrix} -2\\2\\2\\2 \end{bmatrix}, \ u = \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$

$$H = I - \frac{2}{3} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix} (-1 \quad 1 \quad 1) = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2\\2 & 1 & -2\\2 & -2 & 1 \end{bmatrix}; \quad Hx = 3e_1$$

三、G-矩阵与H-矩阵的关系

Th5 G-矩阵 $T_{ij}(c,s) \Rightarrow \exists H$ -矩阵 $H_u = H_v$, st $T_{ij} = H_u H_v$.

 $\mathbb{E} c^2 + s^2 = 1 \Rightarrow \mathbb{R} \theta = \operatorname{arctg} \frac{s}{c}, \quad \mathbb{M} \cos \theta = c, \sin \theta = s.$

$$T_{ij}(c,s) = \begin{bmatrix} I & & & & \\ & \cos\theta & & \sin\theta & \\ & & I & \\ & -\sin\theta & & \cos\theta & \\ & & & I \end{bmatrix}$$
 (i)

$$v = \begin{pmatrix} 0 & \cdots & 0 & \sin\frac{\theta}{4} & 0 & \cdots & 0 & \cos\frac{\theta}{4} & 0 & \cdots & 0 \end{pmatrix}^{T}$$

$$H_{v} = \begin{bmatrix} I & & & & \\ & 1 & & & \\ & & I & & \\ & & & 1 & \\ & & & & 1 \end{bmatrix} - 2 \begin{bmatrix} O & & & & & \\ & \sin^{2}\frac{\theta}{4} & & \sin\frac{\theta}{4}\cos\frac{\theta}{4} & & \\ & & O & & & \\ & \cos\frac{\theta}{4}\sin\frac{\theta}{4} & & \cos^{2}\frac{\theta}{4} & & \\ & & & O \end{bmatrix}$$

矩阵论 12稿(张凯院)

$$=\begin{bmatrix} I & \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ & I & \\ -\sin\frac{\theta}{2} & -\cos\frac{\theta}{2} \end{bmatrix}$$

$$u = \begin{bmatrix} 0 & \cdots & 0 & \sin\frac{3\theta}{4} & 0 & \cdots & 0 & \cos\frac{3\theta}{4} & 0 & \cdots & 0 \end{bmatrix}^{T}$$

$$H_{u} = \begin{bmatrix} I & \cos\frac{3\theta}{2} & -\sin\frac{3\theta}{2} \\ & I & \\ -\sin\frac{3\theta}{2} & -\cos\frac{3\theta}{2} & I \end{bmatrix}, \quad T_{ij}(c,s) = H_{u}H_{v}$$

[注] H-矩阵不能由若干个 G-矩阵的乘积表示. 因为 $\det H = -1$,而 $\det T_{ij} = 1$.

例 3 G-矩阵
$$T_{12}(0,1) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
中, $c = 0, s = 1 \Rightarrow \theta = \frac{\pi}{2}$

$$H_u = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}, H_v = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} \Rightarrow H_u H_v = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

四、QR 分解

1. Schmidt 正交化方法

Th6 $A_{n\times n}$ 可逆⇒∃正交矩阵 Q,可逆上三角矩阵 R,使得 A = QR.

证 $A = (a_1, a_2, \dots, a_n)$ 可逆 $\Rightarrow a_1, a_2, \dots, a_n$ 线性无关,正交化可得:

则
$$A = QR$$
 , 其中 $q_i = \frac{b_i}{|b_i|}$ $(i = 1, 2, \dots, n)$.

例 4 求
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
的 QR 分解.

$$\mathbf{P} \quad b_1 = a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad b_2 = a_2 - 1 \cdot b_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad b_3 = a_3 - \frac{1}{3}b_2 - \frac{7}{6}b_1 = \begin{bmatrix} 1/2 \\ 0 \\ -1/2 \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}, \quad \mathbf{R} = \begin{bmatrix} \sqrt{6} & \sqrt{3} & 1 \\ \sqrt{3} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{6} & \sqrt{6} & \frac{7}{\sqrt{6}} \\ 1 & \frac{1}{3} \\ 1 & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$\lfloor \sqrt{6} \quad \sqrt{3} \quad \sqrt{2} \rfloor$$
 $\sqrt{2}$ $\sqrt{2}$ Th7 $A_{m\times n}$ 列满秩 $\Rightarrow \exists Q_{m\times n}$ 满足 $Q^{\mathsf{T}}Q = I$,可逆上三角矩阵 $R_{n\times n}$,使 $A = QR$.

2. G-变换方法

Th8 $A_{n\times n}$ 可逆 \Rightarrow 3有限个 G-矩阵之积 T,使得 TA 为可逆上三角矩阵. (记 TA=R,则有 $A=T^{-1}R=T^{T}R=QR$)

证 以n=4为例

(证明过程同 Th6)

(1)
$$|A| \neq 0$$
: $\beta^{(0)} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{bmatrix} \neq 0$,存在有限个 G-矩阵之积 T_0 ,使得

$$T_{0}\beta^{(0)} = \begin{bmatrix} \left| \beta^{(0)} \right| \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad a_{11}^{(1)} = \left| \beta^{(0)} \right| > 0 , \quad T_{0}A = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & a_{14}^{(1)} \\ 0 & & & \\ 0 & & & A^{(1)} \\ 0 & & & \end{bmatrix}$$

(2)
$$A^{(1)} = \begin{bmatrix} a_{22}^{(1)} & a_{23}^{(1)} & a_{24}^{(1)} \\ a_{32}^{(1)} & a_{33}^{(1)} & a_{34}^{(1)} \\ a_{42}^{(1)} & a_{43}^{(1)} & a_{44}^{(1)} \end{bmatrix}$$
, $|A^{(1)}| \neq 0$: $\beta^{(1)} = \begin{bmatrix} a_{22}^{(1)} \\ a_{32}^{(1)} \\ a_{42}^{(1)} \end{bmatrix} \neq 0$

存在有限个G-矩阵之积 T_1 ,使得

$$T_{1}\beta^{(1)} = \begin{bmatrix} |\beta^{(1)}| \\ 0 \\ 0 \end{bmatrix}, \quad a_{22}^{(2)} = |\beta^{(1)}| > 0, \quad T_{1}A^{(1)} = \begin{bmatrix} a_{22}^{(2)} & a_{23}^{(2)} & a_{24}^{(2)} \\ 0 & a_{33}^{(2)} & a_{34}^{(2)} \\ 0 & a_{43}^{(2)} & a_{44}^{(2)} \end{bmatrix}$$

(3)
$$A^{(2)} = \begin{bmatrix} a_{33}^{(2)} & a_{34}^{(2)} \\ a_{43}^{(2)} & a_{44}^{(2)} \end{bmatrix}$$
, $|A^{(2)}| \neq 0$: $\beta^{(2)} = \begin{bmatrix} a_{33}^{(2)} \\ a_{43}^{(2)} \end{bmatrix} \neq 0$

存在 G-矩阵 T_2 , 使得

$$T_2 \beta^{(2)} = \begin{bmatrix} |\beta^{(2)}| \\ 0 \end{bmatrix}, \quad a_{33}^{(3)} = |\beta^{(2)}| > 0, \quad T_2 A^{(2)} = \begin{bmatrix} a_{33}^{(3)} & a_{34}^{(3)} \\ 0 & a_{44}^{(3)} \end{bmatrix}$$

令 $T = \begin{bmatrix} I_2 \\ T_1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ T_1 \end{bmatrix} \cdot T_0$,则 T 为有限个 G-矩阵之积,且有

$$TA = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & a_{14}^{(1)} \\ & a_{22}^{(2)} & a_{23}^{(2)} & a_{24}^{(2)} \\ & & a_{33}^{(3)} & a_{34}^{(3)} \end{bmatrix} \stackrel{\Delta}{=} R$$

[注] $\det T = 1 \Rightarrow \det A = a_{11}^{(1)} a_{22}^{(2)} \cdots a_{n-1,n-1}^{(n-1)} a_{nn}^{(n-1)}$,故 $a_{nn}^{(n-1)}$ 与 $\det A$ 同符号. 在 Th8 中,当 $A_{n\times n}$ 不可逆时,仍可得TA = R,但R 是不可逆矩阵.

例 5 用 G-变换求 $A = \begin{bmatrix} 3 & 5 & 5 \\ 0 & 3 & 4 \\ 4 & 0 & 5 \end{bmatrix}$ 的 QR 分解.

$$\mathbf{\cancel{H}} (1) \ \boldsymbol{\beta}^{(0)} = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix} : \ T_{13}(c,s) \neq c = \frac{3}{5}, \ s = \frac{4}{5}. \ T_{13}\boldsymbol{\beta}^{(0)} = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$$

$$T_0 = T_{13} = \begin{bmatrix} 3/5 & 0 & 4/5 \\ 0 & 1 & 0 \\ -4/5 & 0 & 3/5 \end{bmatrix}, \quad T_0 A = \begin{bmatrix} 5 & 3 & 7 \\ 0 & 3 & 4 \\ 0 & -4 & -1 \end{bmatrix}$$

(2)
$$A^{(1)} = \begin{bmatrix} 3 & 4 \\ -4 & -1 \end{bmatrix}, \beta^{(1)} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}, T_{12}(c, s) \neq c = \frac{3}{5}, s = -\frac{4}{5}.$$
 $T_{12}\beta^{(1)} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$

$$T_{1} \stackrel{\triangle}{=} T_{12} = \begin{bmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{bmatrix}, T_{1}A^{(1)} = \begin{bmatrix} 5 & 16/5 \\ 0 & 13/5 \end{bmatrix}$$

则
$$Q = T^{-1} = T^{T}$$
, $R = \begin{bmatrix} 5 & 3 & 7 \\ & 5 & 16/5 \\ & & 13/5 \end{bmatrix}$, $A = QR$

矩阵论 12 稿(张凯院) 第四章 矩阵分解 4

例 6 用 Givens 变换求
$$A = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 4 & 3 & 2 \\ 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
 的 QR 分解.

$$\mathbf{ff}(1) \quad \boldsymbol{\beta}^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{核渣} T_{13}(c,s), c = 0, s = 1, \quad \mathbf{M} \quad \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{\alpha}_{0} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{3} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{4} \\ \alpha_{4} \\ \alpha_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{4} \\ \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \end{bmatrix} = \begin{bmatrix} \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \end{bmatrix} = \begin{bmatrix} \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \end{bmatrix} = \begin{bmatrix} \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \end{bmatrix} = \begin{bmatrix} \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \end{bmatrix} = \begin{bmatrix} \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \end{bmatrix} = \begin{bmatrix} \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \end{bmatrix} = \begin{bmatrix} \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \\ \alpha_{5} \end{bmatrix} = \begin{bmatrix} \alpha$$

3. H-变换方法:

Th10 $A_{n\times n}$ 可逆⇒3有限个 H-矩阵之积 S ,使得 SA 为可逆上三角矩阵.

(记
$$SA = R$$
,则有 $A = S^{-1}R = S^{T}R = QR$)

证 以n=4为例

矩阵论 12 稿(张凯院) 第四章 矩阵分解 4-10

$$a_{11}^{(1)} = \left| \beta^{(0)} \right| > 0$$

$$\boldsymbol{H_0}\boldsymbol{A} = \begin{bmatrix} \boldsymbol{a_{11}^{(1)}} & \boldsymbol{a_{12}^{(1)}} & \boldsymbol{a_{13}^{(1)}} & \boldsymbol{a_{14}^{(1)}} \\ \boldsymbol{0} & & & & \\ \boldsymbol{0} & & & \boldsymbol{A^{(1)}} \\ \boldsymbol{0} & & & & & \\ \boldsymbol{0} & & & & & \\ \end{bmatrix}, \quad \boldsymbol{A^{(1)}} = \begin{bmatrix} \boldsymbol{a_{22}^{(1)}} & \boldsymbol{a_{23}^{(1)}} & \boldsymbol{a_{24}^{(1)}} \\ \boldsymbol{a_{32}^{(1)}} & \boldsymbol{a_{33}^{(1)}} & \boldsymbol{a_{34}^{(1)}} \\ \boldsymbol{a_{42}^{(1)}} & \boldsymbol{a_{43}^{(1)}} & \boldsymbol{a_{44}^{(1)}} \end{bmatrix}$$

(2)
$$|A^{(1)}| \neq 0$$
: $\beta^{(1)} = \begin{bmatrix} a_{22}^{(1)} \\ a_{32}^{(1)} \\ a_{42}^{(1)} \end{bmatrix} \neq 0 \Rightarrow \exists \mathbf{H}$ -矩阵 H_1 , 使得 $H_1\beta^{(1)} = \begin{bmatrix} |\beta^{(1)}| \\ 0 \\ 0 \end{bmatrix}$.

$$a_{22}^{(2)} = |\beta^{(1)}| > 0$$
, $H_1 A^{(1)} = \begin{bmatrix} a_{22}^{(2)} & a_{23}^{(2)} & a_{24}^{(2)} \\ 0 & a_{33}^{(2)} & a_{34}^{(2)} \\ 0 & a_{43}^{(2)} & a_{44}^{(2)} \end{bmatrix}$, $A^{(2)} = \begin{bmatrix} a_{33}^{(2)} & a_{34}^{(2)} \\ a_{43}^{(2)} & a_{44}^{(2)} \end{bmatrix}$

(3)
$$|A^{(2)}| \neq 0$$
: $\beta^{(2)} = \begin{bmatrix} a_{33}^{(2)} \\ a_{43}^{(2)} \end{bmatrix} \neq 0 \Rightarrow \exists H-矩阵 H_2$,使得 $H_2\beta^{(2)} = \begin{bmatrix} |\beta^{(2)}| \\ 0 \end{bmatrix}$.

$$a_{33}^{(3)} = \left| \beta^{(2)} \right| > 0$$
, $H_2 A^{(2)} = \begin{bmatrix} a_{33}^{(3)} & a_{34}^{(3)} \\ 0 & a_{44}^{(3)} \end{bmatrix}$

令 $S = \begin{bmatrix} I_2 \\ H_2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ H_1 \end{bmatrix} \cdot H_0$,则S为有限个H-矩阵之积,且有

$$SA = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & a_{14}^{(1)} \\ & a_{22}^{(2)} & a_{23}^{(2)} & a_{24}^{(2)} \\ & & a_{33}^{(3)} & a_{34}^{(3)} \\ & & & a_{44}^{(3)} \end{bmatrix} \stackrel{\vartriangle}{=} R$$

[注 1] 设 $H_l = I_{n-l} - 2u_{n-l}u_{n-l}^{\mathrm{T}} \quad (u_{n-l}^{\mathrm{T}}u_{n-l} = 1)$,则

$$\begin{bmatrix} I_{l} \\ H_{l} \end{bmatrix} = \begin{bmatrix} I_{l} \\ I_{n-l} \end{bmatrix} - 2 \begin{bmatrix} O & O \\ O & u_{n-l}u_{n-l}^{\mathrm{T}} \end{bmatrix} = I_{n} - 2 \begin{bmatrix} 0 \\ \vdots \\ 0 \\ u_{n-l} \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 & u_{n-l}^{\mathrm{T}} \end{bmatrix}$$

$$=I_{n}-2u_{n}u_{n}^{\mathrm{T}}$$
 $(u_{n}^{\mathrm{T}}u_{n}=u_{n-l}^{\mathrm{T}}u_{n-l}=1)$

故
$$\begin{bmatrix} I_i \\ H_i \end{bmatrix}$$
是 H-矩阵.

[注 2] 在 Th10 中,当 $A_{n\times n}$ 不可逆时,仍可得 SA = R,但 R 是不可逆矩阵.

[注 3]
$$\begin{bmatrix} H \\ I \end{bmatrix}$$
和 $\begin{bmatrix} I \\ H \\ I \end{bmatrix}$ 也是 Householder 矩阵.

例 7 用 H-变换求
$$A = \begin{bmatrix} 3 & 14 & 9 \\ 6 & 43 & 3 \\ 6 & 22 & 15 \end{bmatrix}$$
 的 QR 分解.

$$\mathbf{\beta}^{(0)} = \begin{bmatrix} 3 \\ 6 \\ 6 \end{bmatrix}, \ \boldsymbol{\beta}^{(0)} - \left| \boldsymbol{\beta}^{(0)} \right| e_1 = \begin{bmatrix} -6 \\ 6 \\ 6 \end{bmatrix} = 6 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \ \boldsymbol{u} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$H_0 = I - 2uu^{\mathrm{T}} = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}, \quad H_0 A = \begin{bmatrix} 9 & 48 & 15 \\ 0 & 9 & -3 \\ 0 & -12 & 9 \end{bmatrix}$$

(2)
$$A^{(1)} = \begin{bmatrix} 9 & -3 \\ -12 & 9 \end{bmatrix}, \quad \beta^{(1)} = \begin{bmatrix} 9 \\ -12 \end{bmatrix}$$

$$\beta^{(1)} - |\beta^{(1)}| e_1 = \begin{bmatrix} -6 \\ -12 \end{bmatrix} = (-6) \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad u = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$H_1 = I - 2uu^{\mathrm{T}} = \frac{1}{5} \begin{bmatrix} 3 & -4 \\ -4 & -3 \end{bmatrix}, \ H_1 A^{(1)} = \begin{bmatrix} 15 & -9 \\ 0 & -3 \end{bmatrix}$$

则
$$Q = S^{-1} = S^{T} = H_{0} \begin{bmatrix} 1 \\ H_{1} \end{bmatrix} = \frac{1}{15} \begin{bmatrix} 5 & -2 & -14 \\ 10 & 11 & 2 \\ 10 & -10 & 5 \end{bmatrix}$$

$$R = \begin{bmatrix} 9 & 48 & 15 \\ & 15 & -9 \\ & & -3 \end{bmatrix}, \quad A = QR$$

例 2002(B) 用 Householder 变换求 $A = \begin{bmatrix} 1 & 2 & 5 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & -1 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$ 的 QR 分解.

$$\mathbf{\beta}^{(0)} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{\beta}^{(0)} - |\mathbf{\beta}^{(0)}| e_1 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{u} = \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

[注] 因为 H_0A 的 3 行 2 列和 4 行 2 列元素都是 0,所以不必进行第二步.

例(2002B)设T 是n阶 Givens 矩阵, H_u 是n阶 Householder 矩阵,则 TH_uT^{-1} 也是 Householder 矩阵.(\checkmark)

分析: $TH_uT^{-1} = T(I - 2uu^T)T^{-1} = I - 2(Tu)(Tu)^T$ (注意 | Tu | = 1)

五、化方阵与 Hessenberg 矩阵相似

上 Hessenberg 矩阵:
$$F_{\pm} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ & \ddots & \ddots & \ddots & \vdots \\ & & a_{n-1,n-2} & a_{n-1,n-1} & a_{n-1,n} \\ & & & & a_{n,n-1} & a_{nn} \end{bmatrix}$$

Th11 设 $A \in \mathbb{R}^{n \times n}$,则存在有限个G-矩阵之积Q,使得 $QAQ^{T} = F_{\perp}$. 证 以n = 4 为例

(1) 对
$$A: \ \, \ddot{B}\beta^{(0)} = \begin{bmatrix} a_{21} \\ a_{31} \\ a_{41} \end{bmatrix} \neq 0$$
,则存在有限个 G-矩阵之积 T_0 ,使得
$$T_0\beta^{(0)} = \left|\beta^{(0)}\right| e_1 \stackrel{\Delta}{=} a_{21}^{(1)} e_1 \quad (e_1 \in \mathbf{R}^3)$$

$$\begin{bmatrix} 1 \\ T_0 \end{bmatrix} A \begin{bmatrix} 1 \\ T_0 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} a_{11} & a_{12}^{(1)} & a_{13}^{(1)} & a_{14}^{(1)} \\ 0 & A^{(1)} \\ 0 & 0 \end{bmatrix}$$

若 $\beta^{(0)} = 0$, 转入(2).

矩阵论 12 稿(张凯院) 第四章 矩阵分解 4-13

(2) 对
$$A^{(1)}$$
: 若 $\beta^{(1)} = \begin{bmatrix} a_{32}^{(1)} \\ a_{42}^{(1)} \end{bmatrix} \neq \mathbf{0}$,则存在一个 G-矩阵 T_1 ,使得
$$T_1 \beta^{(1)} = \left| \beta^{(1)} \right| e_1 \stackrel{\Delta}{=} a_{32}^{(2)} e_1 \quad (e_1 \in \mathbb{R}^2)$$

$$\begin{bmatrix} 1 \\ T_1 \end{bmatrix} A^{(1)} \begin{bmatrix} 1 \\ T_1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a_{22}^{(1)} & a_{23}^{(2)} & a_{24}^{(2)} \\ a_{32}^{(2)} & a_{33}^{(2)} & a_{34}^{(2)} \\ 0 & a_{43}^{(2)} & a_{44}^{(2)} \end{bmatrix}$$

若 $\beta^{(1)}=0$,结束.

$$\begin{split} & \diamondsuit \;\; Q = \begin{bmatrix} I_2 & \\ & T_1 \end{bmatrix} \begin{bmatrix} 1 & \\ & T_0 \end{bmatrix}, \;\; \text{則有} \\ & QAQ^{\mathsf{T}} = \begin{bmatrix} I_2 & \\ & T_1 \end{bmatrix} \begin{bmatrix} 1 & \\ & T_0 \end{bmatrix} A \begin{bmatrix} 1 & \\ & T_0^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} I_2 & \\ & T_0^{\mathsf{T}} \end{bmatrix} \\ & = \begin{bmatrix} I_2 & \\ & T_1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12}^{(1)} & a_{13}^{(1)} & a_{14}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & a_{23}^{(1)} & a_{24}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} & a_{34}^{(1)} \end{bmatrix} \begin{bmatrix} I_2 & \\ & T_0^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12}^{(1)} & * & * \\ a_{21}^{(1)} & a_{22}^{(1)} & * & * \\ 0 & a_{32}^{(2)} & * & * \\ 0 & 0 & * & * \end{bmatrix} \end{split}$$

Th12 设 $A \in \mathbb{R}^{n \times n}$,则存在有限个 H-矩阵之积 Q ,使得 $QAQ^{\mathsf{T}} = F_{\bot}$. 证 类似于 Th11 的证明.

推论 $A_{n\times n}$ 实对称 \Rightarrow 3有限个H-矩阵(G-矩阵)之积 Q, 使得

$$OAO^{T} =$$
 "实对称三对角矩阵"

证 由 Th12 知,存在 $Q = H_{u_{n-2}} \cdots H_{u_1}$,使得 $QAQ^T = F_{\perp}$. 于是有

$$A^{\mathrm{T}} = A \implies QAQ^{\mathrm{T}} = (F_{\perp})^{\mathrm{T}}$$

即 $F_{\perp} = (F_{\perp})^{T}$,故 F_{\perp} 是"实对称三对角矩阵".

例 8 用 H-变换化 $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ 正交相似于"三对角矩阵".

$$\begin{aligned}
\mathbf{\beta}^{(0)} &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \quad \boldsymbol{\beta}^{(0)} - |\boldsymbol{\beta}^{(0)}| e_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad \boldsymbol{u} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \\
H_0 &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \boldsymbol{Q} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \\
Q\boldsymbol{A} &= \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \quad \boldsymbol{Q}\boldsymbol{A}\boldsymbol{Q}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}
\end{aligned}$$

§ 4.3 满秩分解

目的: 对 $A \in \mathbb{C}_r^{m \times n}$ $(r \ge 1)$, 求 $F \in \mathbb{C}_r^{m \times r}$ 及 $G \in \mathbb{C}_r^{r \times n}$ 使得A = FG.

一、分解原理

$$\operatorname{rank} A = r \Rightarrow A \xrightarrow{\text{ft}} \text{阶梯形 } B = \begin{bmatrix} G \\ O \end{bmatrix}; \quad G \in \mathbb{C}_r^{r \times n}$$

$$\Rightarrow \text{存在有限个初等矩阵之积 } P_{m \times m} \text{ 使得 } PA = B$$

$$\Rightarrow A = P^{-1}B = \begin{bmatrix} F_{m \times r} \mid S_{m \times (m-r)} \end{bmatrix} \begin{bmatrix} G \\ O \end{bmatrix} = FG; \quad F \in \mathbb{C}_r^{m \times r}$$

例 1
$$A = \begin{bmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \end{bmatrix}$$
, 求 $A = FG$.

$$\mathbf{P}(1)$$
 $A \mid I$
 $A \mid I$

[注] ① 满秩分解不唯一.

② 解(2)中"F的列向量组"是"A的列向量组的部分组".

二、Hermite 标准形方法

<mark>定义:</mark> 若 $B \in \mathbb{C}_r^{m \times n} (r \ge 1)$ 满足

- (1) B 的后m-r 行元素均为零 (隐含:前r 个行向量线性无关);
- (2) B 中有 r 列,设为 c_1, \dots, c_r 列,构成 I_m 的前 r 个列. 则称 B 为<mark>拟 Hermite 标准形</mark>.
- [注] 矩阵的 Hermite 标准形就是矩阵的行最简形(初等变换意义下). 使用初等行变换可将任何非零矩阵化为拟 Hermite 标准形.

Th14 设 $A \in \mathbb{C}_r^{m \times n}$ 的拟 Hermite 标准形为B, F = "A的 c_1, \dots, c_r 列",G = "B的前r行",则A的满秩分解为A = FG.

证 $A \stackrel{\text{fr}}{\to} B$ (拟 Hermite 标准形) $\Rightarrow PA = B = \begin{bmatrix} G \\ O \end{bmatrix}$

分解原理: $A = P^{-1}B = \begin{bmatrix} F \mid S \end{bmatrix} \begin{bmatrix} G \\ O \end{bmatrix} = FG$

划分单位矩阵 $I_n=(e_1,e_2,\cdots,e_n)$,构造矩阵 $P_1=(e_{c_1},\cdots,e_{c_n})$,则有

$$GP_1 = "G 的 c_1, \dots, c_r 列" = I_r$$

$$AP_1 = (FG)P_1 = F(GP_1) = F$$

也就是 $F = "A \cap c_1, \dots, c_r$ 列".

例 2 $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 2 & 1 \\ 2 & 0 & 2 & 2 \\ 4 & 2 & 4 & 2 \end{bmatrix}, \quad 求 A = FG.$

(1) $c_1 = 1, c_2 = 2$:

$$F = "A$$
的第 1, 2 列" = $\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 2 & 0 \\ 4 & 2 \end{bmatrix}$, $G = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix}$

(2)
$$A \xrightarrow{\overline{\tau}} B \xrightarrow{\overline{\tau}} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = C: \quad \overline{\eta} \, \overline{\chi} \quad c_1 = 1, c_2 = 4$$

$$F =$$
 " A 的第 $1, 4$ 列" $=$ $\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 2 & 2 \\ 4 & 2 \end{bmatrix}$, $G =$ $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$

例 3 $A_1 \in \mathbb{C}_{r_1}^{m \times n}, A_2 \in \mathbb{C}_{r_2}^{m \times n} \Rightarrow \operatorname{rank}(A_1 + A_2) \leq r_1 + r_2$.

证 $r_1 \cdot r_2 = 0$: 成立.

$$r_1 \cdot r_2 \neq 0$$
: $A_1 = F_1 G_1, A_2 = F_2 G_2$ $(F_1 \in C_{r_1}^{m \times r_1}, F_2 \in C_{r_2}^{m \times r_2})$

$$A_1 + A_2 = \begin{bmatrix} F_1 \mid F_2 \end{bmatrix} \begin{bmatrix} G_1 \\ G_2 \end{bmatrix} \implies \Re(A_1 + A_2) \le \Re(F_1 \mid F_2) \le r_1 + r_2$$

§ 4.4 奇异值分解

一、预备知识

(1) $\forall A_{m \times n}$, $A^{H} A$ 是 Hermite (半) 正定矩阵. $\forall x \neq 0, x^{H} A^{H} A x = (Ax)^{H} (Ax) = |Ax|^{2} \geq 0$

(2) 齐次方程组 Ax = 0 与 $A^{H}Ax = 0$ 同解.

若
$$Ax = 0$$
,则 $A^{H}Ax = 0$;

反之
$$A^{H}Ax = 0 \Rightarrow |Ax|^{2} = (Ax)^{H}(Ax) = x^{H}(A^{H}Ax) = 0 \Rightarrow Ax = 0$$

(3) $\operatorname{rank} A = \operatorname{rank}(A^{H}A)$ 由 Ax = 0 与 $A^{H}Ax = 0$ 同解可得 $n - r_{A} = n - r_{A^{H}A} \Rightarrow r_{A} = r_{A^{H}A}$

(4)
$$A = O_{m \times n} \Leftrightarrow A^H A = O_{n \times n}$$
 必要性. 左乘 A^H 即得; 充分性. $r_A = r_{A^H A} = 0 \Rightarrow A = O$.

二、正交对角分解

Th15 A_{nxn} 可逆 \Rightarrow 3 酉矩阵 U_{nxn} 及 V_{nxn} ,使得

$$U^{\mathrm{H}}AV = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix} \stackrel{\Delta}{=} D \quad (\sigma_i > 0)$$

证 A^HA 是 Hermite 正定矩阵,∃酉矩阵V_{nxn},使得

$$V^{\mathrm{H}}(A^{\mathrm{H}}A)V = \operatorname{diag}(\lambda_{1},\cdots,\lambda_{n}) \stackrel{\Delta}{=} \Lambda \quad (\lambda_{i} > 0)$$

改写为 $D^{-1}V^{\mathrm{H}}A^{\mathrm{H}} \cdot AVD^{-1} = I \quad (\sigma_{i} = \sqrt{\lambda_{i}})$
令 $U = AVD^{-1}$,则有 $U^{\mathrm{H}}U = I$,从而 U 是酉矩阵.

由此可得 $U^{H}AV = U^{H}UD = D$.

三、奇异值分解

 $A \in \mathbb{C}_r^{m \times n} \ (r \ge 1) \Rightarrow A^{\mathrm{H}} A \in \mathbb{C}_r^{n \times n}$ <u>半正定</u> <u>半正定</u>:特征值大于等于0 $A^{\mathrm{H}} A$ 的特征值: $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$

A的奇异值: $\sigma_i = \sqrt{\lambda_i}$ $(i = 1, 2, \dots, n)$

特点: (1) A 的奇异值个数等于 A 的列数:

(2) A 的非零奇异值个数 = rankA.

Th16
$$A \in C_r^{m \times n} (r \ge 1), \quad \Sigma_r = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}, \quad D = \begin{bmatrix} \Sigma_r & O \\ O & O \end{bmatrix}_{m \times n} \Rightarrow$$

存在酉矩阵 $U_{m\times m}$ 及 $V_{n\times n}$,使得 $U^{H}AV = D$.

对于 Hermite 半正定矩阵 $A^{H}A$,存在酉矩阵 V_{nxn} , 使得 证

$$\underline{V}^{\mathrm{H}}(\underline{A}^{\mathrm{H}}\underline{A})\underline{V} = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} = \begin{bmatrix} \Sigma^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}_{n \times n}$$

划分 $V = [V_1 \mid V_2]$: V_1 是 V的前 r 列, V_2 是 V的后 n-r 列,则有

$$A^{\mathrm{H}}AV = V \begin{bmatrix} \Sigma^{2} & O \\ O & O \end{bmatrix}_{n \times n}, \quad \mathbb{E} \quad A^{\mathrm{H}}A \begin{bmatrix} V_{1} \mid V_{2} \end{bmatrix} = \begin{bmatrix} V_{1} \mid V_{2} \end{bmatrix} \begin{bmatrix} \Sigma^{2} & O \\ O & O \end{bmatrix}_{n \times n}$$

也就是 $A^{\mathrm{H}}AV_1 \mid A^{\mathrm{H}}AV_2 \mid = V_1\Sigma^2 \mid O$:

(1)
$$A^{H}AV_{2} = 0$$
: $V_{2}^{H}A^{H}AV_{2} = 0 \Rightarrow (AV_{2})^{H}(AV_{2}) = 0 \Rightarrow AV_{2} = 0$

(2)
$$A^{H}AV_{1} = V_{1}\Sigma^{2}$$
: $V_{1}^{H}A^{H}AV_{1} = \Sigma^{2} \Rightarrow (AV_{1}\Sigma^{-1})^{H}(AV_{1}\Sigma^{-1}) = I_{r}$

令
$$U_1 \stackrel{\Delta}{=} A V_1 \Sigma^{-1}$$
,则有 $U_1^H U_1 = I_r$

设 U_1 的列为 u_1,\cdots,u_r ,扩充为C'''的标准正交基 $u_1,\cdots,u_r,u_{r+1},\cdots,u_m$,课本定理1.3

则
$$U_2 = (u_{r+1}, \dots, u_m)$$
满足 $U_2^H U_1 = O_{(m-r) \times r}$. 记 $U = [U_1 \mid U_2]$, 则有

$$\begin{aligned} \boldsymbol{U}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{V} &= \boldsymbol{U}^{\mathrm{H}} \begin{bmatrix} \boldsymbol{A} \boldsymbol{V}_{1} & \boldsymbol{A} \boldsymbol{V}_{2} \end{bmatrix} = \begin{bmatrix} \boldsymbol{U}_{1}^{\mathrm{H}} \\ \boldsymbol{U}_{2}^{\mathrm{H}} \end{bmatrix} \begin{bmatrix} \boldsymbol{U}_{1} \boldsymbol{\Sigma} & \boldsymbol{O} \end{bmatrix} \\ &= \begin{bmatrix} \boldsymbol{U}_{1}^{\mathrm{H}} \boldsymbol{U}_{1} \boldsymbol{\Sigma} & \boldsymbol{O} \\ \boldsymbol{U}_{2}^{\mathrm{H}} \boldsymbol{U}_{1} \boldsymbol{\Sigma} & \boldsymbol{O} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{bmatrix}_{m \times n} \end{aligned}$$

(1) *U与V*不唯一:

性质(2)见课本P163页

- U的列向量为 AA^{H} 的特征向量,V的列向量为 $A^{H}A$ 的特征向量: (2)
- (3) R U 的列向量为 A 的左右异向量,V 的列向量为 A 的右右异向量,

例 1
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, 求 $A = UDV^{\mathsf{T}}$.

$$\lambda_1 = 3: \quad 3I - B = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 1 \end{bmatrix}, \quad \xi_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\lambda_2 = 1: \quad 1I - B = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix}, \quad \xi_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$\lambda_3 = 0: \quad 0I - B = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \\ -1 & -1 & -2 \end{bmatrix}, \quad \xi_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$r_{A} = 2 \; , \quad \Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{bmatrix} \; , \quad V = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \end{bmatrix} \; , \quad V_{1} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \end{bmatrix}$$

$$U_{1} = AV_{1}\Sigma^{-1} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & 0 \end{bmatrix}, \quad \text{Ex } U_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \text{M} \quad U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$U^{T}AV = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = D, \quad \underline{A = UDV}^{T}$$

Th17 在 $A \in C_r^{m \times n}$ (r > 0)的奇异值分解 $A = U \begin{bmatrix} \Sigma & O \\ O & O \end{bmatrix} V^H$ 中,划分 $U = (u_1, u_2, \dots, u_m), V = (v_1, v_2, \dots, v_n)$,则有

- (1) $N(A) = \text{span}\{v_{r+1}, v_{r+2}, \dots, v_n\};$
- (2) $R(A) = \text{span}\{u_1, u_2, \dots, u_r\};$
- (3) $A = \sigma_1 u_1 v_1^H + \sigma_2 u_2 v_2^H + \dots + \sigma_r u_r v_r^H$.

容易验证: $U_1 \Sigma V_1^H x = 0 \Leftrightarrow V_1^H x = 0$

(1)
$$N(A) = \{x \mid Ax = 0\} = \{x \mid U_1 \Sigma V_1^H x = 0\}$$

 $= \{x \mid V_1^H x = 0\} = N(V_1^H) = R^{\perp}(V_1)$ (Th1-35)
 $= R(V_2) = \text{span}\{v_{r+1}, \dots, v_n\}$

(因为 $R(V_1) \perp R(V_2)$, $R(V_1) \oplus R(V_2) = \mathbb{C}^n$, 所以 $R^{\perp}(V_1) = R(V_2)$)

(2) 任意
$$y \in R(A) \Rightarrow y = Ax = (U_1 \Sigma V_1^H)x = U_1(\Sigma V_1^H x) \in R(U_1)$$
 故 $R(A) \subset R(U_1)$
 在意 $y \in R(U_1) \Rightarrow y = U_1 z = (AV_1 \Sigma^{-1})z = A(V_1 \Sigma^{-1} z) \in R(A)$
 故 $R(U_1) \subset R(A)$
 由此可得 $R(A) = R(U_1) = \text{span}\{u_1, \dots, u_r\}$

(3)
$$A = (u_1, \dots, u_r) \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^H \\ \vdots \\ v_r^H \end{bmatrix} = \sigma_1 u_1 v_1^H + \dots + \sigma_r u_r v_r^H$$

四、正交相抵

 $A_{m\times n}$, $B_{m\times n}$, 若有酉矩阵 $U_{m\times m}$ 及 $V_{n\times n}$ 使 $U^{H}AV = B$, 称 A 与 B 正交相抵.

性质: (1) A 与 A 正交相抵;

- (2) A = B 正交相抵 $\Rightarrow B = A$ 正交相抵:
- (3) A 与 B 正交相抵,B 与 C 正交相抵 $\Rightarrow A 与 C$ 正交相抵.

Th18 A 与 B 正交相抵 $\Rightarrow \sigma_A = \sigma_B$.

$$\begin{array}{ll} \stackrel{\cdot}{\text{UE}} & B = U^{\text{H}}AV \Rightarrow B^{\text{H}}B = \dots = V^{-1}(A^{\text{H}}A)V \\ & \Rightarrow \lambda_{B^{\text{H}}B} = \lambda_{A^{\text{H}}A} \geq 0 \Rightarrow \sigma_B = \sigma_A \end{array}$$

例 2
$$A^{H} = A \Rightarrow \sigma_{A} = |\lambda_{A}|$$
 $(:\lambda_{A^{H}A} = \lambda_{A^{2}} = (\lambda_{A})^{2})$ $A^{H} = -A \Rightarrow \sigma_{A} = |\lambda_{A}|$ $(:\lambda_{A^{H}A} = \lambda_{(jA)^{2}} = (j\lambda_{A})^{2})$ $(A^{H} = -A \Rightarrow \lambda_{A} \Rightarrow 0$ 或纯虚数, $j\lambda_{A} \Rightarrow 0$ 为实数)

矩阵分解的应用:设方程组 $A_{mxn}x = b$ 有解,则有

(1)
$$m = n$$
: $A = LU \Rightarrow Lv = b$, $Ux = v$

(2)
$$m = n$$
: $A = QR \Rightarrow Rx = Q^{T}b$

(3)
$$A = UDV^{\mathrm{H}} \Rightarrow Dy = U^{\mathrm{H}}b \stackrel{\mathrm{def}}{=} c, V^{\mathrm{H}}x = y$$

其中
$$D = \begin{bmatrix} \Sigma & O \\ O & O \end{bmatrix}_{m \times n}, \quad \Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix}$$

通解为
$$\begin{bmatrix} y_1 \\ \vdots \\ y_r \\ y_{r+1} \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} c_1/\sigma_1 \\ \vdots \\ c_r/\sigma_r \\ k_1 \\ \vdots \\ k_{n-r} \end{bmatrix} \quad (k_1, \dots, k_{n-r}) \in \mathbb{R}$$

$$x = V y = \left(\frac{c_1}{\sigma_1} v_1 + \dots + \frac{c_r}{\sigma_n} v_r\right) + \left(k_1 v_{r+1} + \dots + k_{n-r} v_n\right)$$

[注]
$$k_1 v_{r+1} + \dots + k_{n-r} v_n$$
 是 $A_{m \times n} x = 0$ 的通解(Th17(1))

因为
$$A\left(\frac{c_1}{\sigma_1}v_1 + \dots + \frac{c_r}{\sigma_r}v_r\right) = AV_1\Sigma^{-1}\begin{bmatrix}c_1\\ \vdots\\ c_r\end{bmatrix} = U_1\begin{bmatrix}c_1\\ \vdots\\ c_r\end{bmatrix} = \begin{bmatrix}U_1 & U_2\end{bmatrix}c = b$$

所以
$$\frac{c_1}{\sigma_1}v_1 + \cdots + \frac{c_r}{\sigma_r}v_r$$
 是 $A_{m \times n}x = b$ 的一个特解

矩阵论辅导讲案-例 4.7

设欧氏空间V"的一个基为 x_1, x_2, \cdots, x_n ,它的度量矩阵为A,证明:存在实对称正定矩阵C,使得由

$$(y_1, y_2, \dots, y_n) = (x_1, x_2, \dots, x_n)C$$

确定的基 y_1, y_2, \dots, y_n 为V"的标准正交基.

 $\frac{\mathbf{O}}{\mathbf{O}}$ 只要能够确定实对称正定矩阵 \mathbf{C} ,使得 $\mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{C} = \mathbf{I}$ 即可.

 $\overline{\mathbf{u}}$ 因为A对称正定,所以存在正交矩阵 $oldsymbol{arrho}$,使得

$$Q^{\mathrm{T}}AQ = \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$$

其中 λ_i ($i=1,2,\dots,n$) 是 A 的特征值,它们都是正数.记

$$D = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n})$$

则有

$$A = QD^2Q^{\mathsf{T}} = (QDQ^{\mathsf{T}})(QDQ^{\mathsf{T}})$$

令

$$C = (QDQ^{\mathsf{T}})^{-1} = QD^{-1}Q^{\mathsf{T}}$$

则 C 为对称正定矩阵,且有 $C^{\mathsf{T}}AC = I$. 此时,基 y_1, y_2, \dots, y_n 的度量矩阵为 $C^{\mathsf{T}}AC = I$, 从而是 V^n 的一个标准正交基.

注1 本例给出由已知基及其度量矩阵构造标准正交基的矩阵分解方法.

注 2 如果不要求 C 为对称正定矩阵,而只要求 C 为可逆矩阵,那么由

$$A = QD^2Q^{\mathsf{T}} = (QD)(DQ^{\mathsf{T}}) = (DQ^{\mathsf{T}})^{\mathsf{T}}(DQ^{\mathsf{T}})$$

知,取 $C = (DQ^T)^{-1} = QD^{-1}$ 时,有

$$A = (C^{-1})^{\mathrm{T}} C^{-1}$$
, $C^{\mathrm{T}} A C = C^{\mathrm{T}} \cdot (C^{-1})^{\mathrm{T}} C^{-1} \cdot C = I$

此时,基 y_1, y_2, \dots, y_n 是 V^n 的一个标准正交基.

注 3 因为 A 对称正定,所以可对 A 进行三角分解 (Cholesky 分解),即 $A = LL^{T}$ (L 为可逆下三角矩阵)

取 $C = (L^T)^{-1}$ 时,有

$$A = (C^{-1})^{\mathrm{T}} C^{-1}, C^{\mathrm{T}} A C = L^{-1} \cdot L L^{\mathrm{T}} \cdot (L^{\mathrm{T}})^{-1} = I$$

此时,基 y_1, y_2, \dots, y_n 是 V^n 的一个标准正交基.

加例 设 $A_{m\times n}$ 的奇异值分解为 $A = U\begin{pmatrix} \Sigma_r & O \\ O & O \end{pmatrix} V^H$,求 $\begin{pmatrix} A \\ A \end{pmatrix}$ 的奇异值分解.

 \mathbf{M} 在 A 的奇异值分解中有下列关系:

$$V^{H}(A^{H}A)V = \begin{pmatrix} \Sigma^{2} & O \\ O & O \end{pmatrix}, V_{1}^{H}(A^{H}A)V_{1} = \Sigma^{2}, U_{1} = AV_{1}\Sigma^{-1}$$

考虑
$$B = \begin{pmatrix} A \\ A \end{pmatrix}$$
,由 $B^{H}B = 2A^{H}A$ 可得

$$V^{\mathrm{H}}(B^{\mathrm{H}}B)V = \begin{pmatrix} 2\Sigma^2 & O \\ O & O \end{pmatrix}, V_1^{\mathrm{H}}(B^{\mathrm{H}}B)V_1 = (\sqrt{2}\Sigma)^2$$

构造矩阵
$$\widetilde{U}_1 = BV_1 \left(\sqrt{2}\Sigma\right)^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}}U_1\\ \frac{1}{\sqrt{2}}U_1 \end{pmatrix}$$
, $\widetilde{U}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}}U_1 & U_2 & O\\ \frac{-1}{\sqrt{2}}U_1 & O & U_2 \end{pmatrix}$

则 $\widetilde{U} = (\widetilde{U}_1 \mid \widetilde{U}_2)$ 是2m 阶酉矩阵,且有

$$\widetilde{U}^{H}BV = \begin{pmatrix} \frac{1}{\sqrt{2}}U_{1}^{H} & \frac{1}{\sqrt{2}}U_{1}^{H} \\ \frac{1}{\sqrt{2}}U_{1}^{H} & \frac{-1}{\sqrt{2}}U_{1}^{H} \\ U_{2}^{H} & O \\ O & U_{1}^{H} \end{pmatrix} \begin{pmatrix} A \\ A \end{pmatrix} \begin{pmatrix} V_{1} \mid V_{2} \end{pmatrix} = \begin{pmatrix} \sqrt{2}U_{1}^{H}AV_{1} & \sqrt{2}U_{1}^{H}AV_{2} \\ O & O \\ U_{2}^{H}AV_{1} & U_{2}^{H}AV_{2} \\ U_{2}^{H}AV_{1} & U_{2}^{H}AV_{2} \end{pmatrix}$$

注意到
$$AV_1 = U_1\Sigma$$
, $AV_2 = O$, $U_2^HU_1 = O$ 可得 $\widetilde{U}^HBV = \begin{pmatrix} \sqrt{2}\Sigma & O \\ O & O \end{pmatrix}$.

于是
$$B$$
 的奇异值分解为 $B = \widetilde{U} \begin{pmatrix} \sqrt{2}\Sigma & O \\ O & O \end{pmatrix} V^{H}$.

第五章 特征值的估计

§ 5.1 特征值估计

一、特征值的上界

Th1
$$A \in \mathbb{R}^{n \times n}$$
, $M = \frac{1}{2} \cdot \max_{i,j} \left\{ \left| a_{ij} - a_{ji} \right| \right\} \Rightarrow \left| \operatorname{Im}(\lambda_A) \right| \leq M \left[\frac{1}{2} n(n-1) \right]^{\frac{1}{2}}$ 证明略去.
$$\leq M \frac{n}{\sqrt{2}} \qquad (比较 Th2)$$

例 1 $A_{n\times n}$ 是实对称矩阵 \Rightarrow $\text{Im}(\lambda_A) = 0$, 即 $\lambda_A \in \mathbb{R}$.

引理 1
$$\forall B = (b_{ij})_{n \times n}, \forall y = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix}$$
满足 $\|y\|_2 = 1 \Rightarrow |y^H B y| \le \|B\|_{m_\infty}$.

$$\begin{aligned} \mathbf{\vec{UE}} \quad \left| y^{H} B y \right| &= \left| \sum_{i,j} b_{ij} \overline{\eta}_{i} \eta_{j} \right| \leq \max_{i,j} \left| b_{ij} \right| \cdot \sum_{i,j} \left| \eta_{i} \right| \left| \eta_{j} \right| \\ &\leq \max_{i,j} \left| b_{ij} \right| \cdot \frac{1}{2} \sum_{i,j} \left(\left| \eta_{i} \right|^{2} + \left| \eta_{j} \right|^{2} \right) = \max_{i,j} \left| b_{ij} \right| \cdot \frac{1}{2} (n+n) = \left\| B \right\|_{m_{\infty}} \end{aligned}$$

 $\overline{\mathbf{u}}$ 设A的特征值为 λ ,特征向量x满足 $\|x\|_2 = 1$,则

$$Ax = \lambda x \Rightarrow \lambda = x^{\mathrm{H}} A x$$
, $\overline{\lambda} = x^{\mathrm{H}} A^{\mathrm{H}} x$

$$(1) |\lambda| = |x^{\mathrm{H}} A x| \le ||A||_{m_{\infty}}$$

(2)
$$\lambda + \overline{\lambda} = x^{H} \left(A + A^{H} \right) x \Rightarrow \left| \text{Re} \left(\lambda \right) \right| = \frac{1}{2} \left| \lambda + \overline{\lambda} \right| \le \frac{1}{2} \left\| A + A^{H} \right\|_{m_{\infty}}$$

(3)
$$\lambda - \overline{\lambda} = x^{H} \left(A - A^{H} \right) x \Rightarrow \left| \operatorname{Im} \left(\lambda \right) \right| = \frac{1}{2} \left| \lambda - \overline{\lambda} \right| \le \frac{1}{2} \left\| A - A^{H} \right\|_{m_{\infty}}$$

例 2
$$A^{H} = A \Rightarrow \operatorname{Im}(\lambda_{A}) = 0$$
, 即 $\lambda_{A} \in \mathbb{R}$.

$$A^{\mathrm{H}} = -A \Rightarrow \operatorname{Re}(\lambda_A) = 0$$
, 即 λ_A 是零或纯虚数.

Th4
$$A_{n\times n} = (a_1, a_2, \dots, a_n) \Rightarrow |\lambda_1| |\lambda_2| \cdots |\lambda_n| \leq ||a_1||_2 ||a_2||_2 \cdots ||a_n||_2$$
.

证 $\det A = 0$ 时, 结论成立.

 $\det A \neq 0 \Rightarrow a_1, a_2, \dots, a_n$ 线性无关. 正交化可得

$$\begin{cases} b_1 = a_1 \\ b_2 = a_2 - k_{21}b_1 \\ \dots \\ b_n = a_n - k_{n,n-1}b_{n-1} - \dots - k_{n1}b_1 \end{cases}, \qquad \begin{cases} a_1 = b_1 \\ a_2 = k_{21}b_1 + b_2 \\ \dots \\ a_n = k_{n1}b_1 + \dots + k_{n,n-1}b_{n-1} + b_n \end{cases}$$

$$(a_1,a_2,\dots,a_n)=(b_1,b_2,\dots,b_n)\begin{bmatrix} 1 & k_{21} & \cdots & k_{n1} \\ & 1 & \cdots & k_{n2} \\ & & \ddots & \vdots \\ & & & 1 \end{bmatrix}$$

$$B = (b_1, b_2, \dots, b_n): \det A = \det B, \quad b_i \perp b_j \ (i \neq j)$$

$$\|a_i\|_2^2 = \|(k_{i1}b_1 + \dots + k_{i,i-1}b_{i-1}) + b_i\|_2^2$$

$$= \|k_{i1}b_1 + \dots + k_{i,i-1}b_{i-1}\|_2^2 + \|b_i\|_2^2 \ge \|b_i\|_2^2$$

$$\left|\det B\right|^2 = \overline{\det B} \cdot \det B = \det \overline{B} \cdot \det B = \det B^{\mathrm{H}} \cdot \det B = \det \left(B^{\mathrm{H}} B\right)$$

$$= \det \begin{bmatrix} \|b_1\|_2^2 & & & \\ & \ddots & & \\ & \|b_n\|_2^2 \end{bmatrix} = (\|b_1\|_2 \cdots \|b_n\|_2)^2$$

$$|\lambda_1| \cdots |\lambda_n| = |\det A| = |\det B| = \|b_1\|_2 \cdots \|b_n\|_2 \le \|a_1\|_2 \cdots \|a_n\|_2$$

$$|\lambda_1| \cdots |\lambda_n| = |\det A| = |\det B| = \|b_1\|_2 \cdots \|b_n\|_2 \le \|a_1\|_2 \cdots \|a_n\|_2$$

Th5 设 $A_{n\times n}$ 的特征值为 $\lambda_1, \dots, \lambda_n$,则 $|\lambda_1|^2 + \dots + |\lambda_n|^2 \le ||A||^2$

证 对
$$A$$
,存在酉矩阵 $U_{n \times n}$,使得 $U^{\mathrm{H}}AU = \begin{bmatrix} \lambda_1 & \cdots & * \\ & \ddots & \vdots \\ & & \lambda_n \end{bmatrix} \stackrel{\vartriangle}{=} T$

由此可得
$$|\lambda_1|^2 + \dots + |\lambda_n|^2 \le ||T||_F^2 = ||A||_F^2$$
 (Th2.3)

例 3 设 $A_{n,n}$ 的特征值为 $\lambda_1,\dots,\lambda_n$,则

$$A^{\mathrm{H}}A = AA^{\mathrm{H}} \Leftrightarrow \left|\lambda_{1}\right|^{2} + \dots + \left|\lambda_{n}\right|^{2} = \left\|A\right\|_{\mathrm{F}}^{2}$$

必要性. $A^{H}A = AA^{H}$: 存在酉矩阵 P, 使得 证

$$\boldsymbol{P}^{\mathbf{H}}\boldsymbol{A}\boldsymbol{P} = \begin{bmatrix} \boldsymbol{\lambda}_{1} & & \\ & \ddots & \\ & & \boldsymbol{\lambda}_{n} \end{bmatrix}^{\underline{A}} = \boldsymbol{\Lambda} , \quad \left|\boldsymbol{\lambda}_{1}\right|^{2} + \dots + \left|\boldsymbol{\lambda}_{n}\right|^{2} = \left\|\boldsymbol{\Lambda}\right\|_{\mathbf{F}}^{2} = \left\|\boldsymbol{A}\right\|_{\mathbf{F}}^{2}$$

充分性. 对
$$A$$
 , 存在酉矩阵 U , 使得 $U^{\mathrm{H}}AU = \begin{bmatrix} \lambda_1 & \cdots & * \\ & \ddots & \vdots \\ & & \lambda_n \end{bmatrix}^{A} = T$
$$\|T\|_{\mathrm{F}}^2 = \|A\|_{\mathrm{F}}^2 = |\lambda_1|^2 + \cdots + |\lambda_n|^2 \Rightarrow t_{ij} = 0 \quad (i < j)$$

$$T = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \Rightarrow T^{\mathrm{H}}T = TT^{\mathrm{H}} \Rightarrow A^{\mathrm{H}}A = \cdots = AA^{\mathrm{H}}$$

二、特征值的包含域

1. 盖尔圆: 设
$$A = (a_{ij})_{n \times n}$$
, 记 $R_i = \sum_{j=1, j \neq i}^n \left| a_{ij} \right| \ (i = 1, 2, \dots, n)$, 称
$$G_i = \left\{ z \ \middle| \ |z - a_{ii}| \le R_i \right\} \text{为 A 的第 i 个盖尔圆(Gerschgorin 圆)}.$$

Th6 矩阵 $A_{n\times n}$ 的特征值 $\lambda_A \in \bigcup_{i=1}^n G_i$.

证 设A 的特征值为 λ ,对应的特征向量为 $x = (\xi_1, \xi_2, \dots, \xi_n)^T$, 选取 i_0 使得 $|\xi_{i_0}| = \max_i |\xi_i|$,则 $\xi_{i_0} \neq 0$,且有

$$\begin{split} Ax &= \lambda x \Rightarrow \sum_{j=1}^{n} a_{i_{0}j} \xi_{j} = \lambda \xi_{i_{0}} \left(i_{0} - \widehat{A} \overset{\mathbf{g}}{\underline{\mathbf{g}}} \right) \Rightarrow \left(\lambda - a_{i_{0}i_{0}} \right) \xi_{i_{0}} = \sum_{j \neq i_{0}} a_{i_{0}j} \xi_{j} \\ &\Rightarrow \left| \lambda - a_{i_{0}i_{0}} \right| = \left| \sum_{j \neq i_{0}} a_{i_{0}j} \frac{\xi_{j}}{\xi_{i_{0}}} \right| \leq \sum_{j \neq i_{0}} \left| a_{i_{0}j} \right| \frac{\left| \xi_{j} \right|}{\left| \xi_{i_{0}} \right|} \leq R_{i_{0}} \\ &\Rightarrow \lambda \in G_{i_{0}} \subset \bigcup_{i=1}^{n} G_{i} \end{split}$$

例 4
$$A = \begin{bmatrix} 10 & 1 & 2 & 3 \\ 5 & 30 & 1 & 2 \\ 10 & 3 & -10 & 5 \\ 2 & -3 & -1 & -40 \end{bmatrix}$$
, 估计 λ_A .

$$G_1:|z-10|\leq 6$$

$$G_2: |z-30| \leq 8$$

$$G_3: |z+10| \le 18$$

$$|G_4:|z+40|\leq 6$$

$$\lambda_A \in G_1 \cup G_2 \cup G_3 \cup G_4$$

- 2. 连通部分: (1) 孤立的 G-圆,或
 - (2) 相交的 G-圆构成的最大连通区域.
 - Th7 设 S 为 $A_{n\times n}$ 的 G-圆的一个连通部分,则 S 由 k 个 G-圆构成 \Leftrightarrow S 中恰好有 A 的 k 个特征值. 其中 G-圆重叠时重复计数,特征值相同是亦重复计数.

例 5
$$A = \begin{bmatrix} 10 & -8 \\ 5 & 0 \end{bmatrix}$$
,估计 λ_A .
$$G_1: |z-10| \le 8; \quad G_2: |z| \le 5$$

$$S = G_1 \cup G_2$$
是一个连通部分 $\Rightarrow \lambda_{1,2} \in S$. 计算得 $\lambda_{1,2} = 5 \pm j\sqrt{15}$, $|\lambda_{1,2}| = \sqrt{40} > 5 \Rightarrow \lambda_{1,2} \not\in G_2$.

3. 特征值的分离问题

找n个孤立的G-圆,使其中各包含 A_{nxn} 的一个特征值.

$$D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{bmatrix} \quad (d_i > 0)$$

$$B \stackrel{\Delta}{=} DAD^{-1} = \left(a_{ij} \frac{d_i}{d_j}\right)_{n \times n} = \begin{pmatrix} a_{11} & a_{12} \frac{d_1}{d_2} & \cdots & a_{1n} \frac{d_1}{d_n} \\ a_{21} \frac{d_2}{d_1} & a_{22} & \cdots & a_{2n} \frac{d_2}{d_n} \\ \vdots & \vdots & & \vdots \\ a_{n1} \frac{d_n}{d_1} & a_{n2} \frac{d_n}{d_2} & \cdots & a_{nn} \end{pmatrix}$$

$$B$$
的 G-圆: $G'_i = \{z \mid |z - a_{ii}| \le r_i\}, r_i \stackrel{\Delta}{=} \sum_{j \ne i} |a_{ij}| \frac{d_i}{d_j}$

$$A$$
 相似于 $B \Rightarrow \lambda_A \in \bigcup_{i=1}^n G_i'$ (Th6)

[注] 当 G_i' 是 B 的孤立 G-圆时, G_i' 中恰有 A 的一个特征值 (Th7).

例 6
$$A = \begin{bmatrix} 20 & 5 & 0.8 \\ 4 & 10 & 1 \\ 1 & 2 & 10j \end{bmatrix}$$
, 分离 λ_A .

$$||G_1:||z-20|| \le 5.8$$
 $|G_2:||z-10|| \le 5$ $|G_3:||z-10j|| \le 3$

对 A, 取
$$D = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, 则 $B = DAD^{-1} = \begin{bmatrix} 20 & 5 & 0.4 \\ 4 & 10 & 0.5 \\ 2 & 4 & 10j \end{bmatrix}$.

$$G_1': |z-20| \le 5.4$$
 $G_2': |z-10| \le 4.5$ $G_3': |z-10j| \le 6$

结论: $G'_1, G'_2 及 G_3$ 中各有 A 的一个特征值.

[注] 在例 6 中, G_3 孤立, G'_3 孤立,故可取较小者;

 A^{T} 的 G-圆称为A的列 G-圆, A^{T} 与A的特征值相同.

例 7
$$A = \begin{bmatrix} 20 & 3 & 1 \\ 2 & 10 & 2 \\ 8 & 1 & 0 \end{bmatrix}$$
, 分离 λ_A .

$$|\mathbf{F}| (1) |G_1: |z-20| \leq 4$$

$$G_2: |z-10| \le 4$$

 $G_3: |z| \leq 9$

 G_1 孤立, G_2 与 G_3 相交.

(2) 对
$$A$$
, 取 $D = \begin{bmatrix} 1.5 \\ 1 \\ 1 \end{bmatrix}$, 则 $B = DAD^{-1} = \begin{bmatrix} 20 & 4.5 & 1.5 \\ 4/3 & 10 & 2 \\ 16/3 & 1 & 0 \end{bmatrix}$.

$$G_1': |z-20| \le 6$$

$$G_2': |z-10| \leq \frac{10}{3}$$

$$G_3': |z| \leq \frac{19}{3}$$

 G'_1 , G'_2 , G'_3 都是孤立的盖尔圆, 其中各有 A 的一个特征值.

结论:结合(1)可得 G_1 , G_2 及 G_3 中各有A的一个特征值.

(3)
$$\forall A$$
, $\mathbb{R}D = \begin{bmatrix} 1 \\ 1 \\ 0.5 \end{bmatrix}$, $\mathbb{R}B = DAD^{-1} = \begin{bmatrix} 20 & 3 & 2 \\ 2 & 10 & 4 \\ 4 & 0.5 & 0 \end{bmatrix}$.

 $G_1'': |z-20| \le 5$ $G_2'': |z-10| \le 6$ $G_3'': |z| \le 4.5$

 G_1'' 与 G_2'' 相交, G_2'' 与 G_3'' 相交.

考虑 B^{T} . G_1''' : $|z-20| \le 6$ G_2''' : $|z-10| \le 3.5$ G_3''' : $|z| \le 6$

 G_1''' , G_2''' , G_3''' 都是孤立的盖尔圆,其中各有A的一个特征值.

结论: 结合(1)可得 G_1 , G_2 "及 G_3 "中各有A的一个特征值.

例 8 $A_{n\times n}$ 严格对角占优 \Rightarrow det $A \neq 0$.

证 只证"行优"情形:
$$|a_{ii}| > \sum_{i \neq i} |a_{ij}| = R_i$$
 $(i = 1, 2, \dots, n)$

$$\forall \lambda_A, \exists i_0, \text{st.} \lambda_A \in G_{i_0} \Rightarrow \left| \lambda_A - a_{i_0 i_0} \right| \leq R_{i_0}$$

若 $\lambda_A = 0$,则 $|a_{i_0i_0}| \le R_{i_0}$ 与A"行优"矛盾. 故 $\lambda_A \ne 0 \Rightarrow \det A \ne 0$.

加例 应用盖尔圆定理说明 $A = \begin{bmatrix} 9 & 1 & -2 & 1 \\ 0 & 8 & 1 & 1 \\ -1 & 0 & 4 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$ 至少有两个实特征值.

 $|\mathbf{F}| \qquad G_1: |z-9| \leq 4$

$$|G_2| : |z-8| \le 2$$

$$G_3:|z-4|\leq 1$$

$$G_4:|z-1|\leq 1$$

两个连通部分关于实轴对称:

 $S_2 = G_1 \cup G_2 \cup G_3$ 中有 A 的三个特征值,其中至少有一个特征值为实数.

[注] 实矩阵的复特征值一定成对共轭出现.

4. 矩阵 $A = (a_{ij})_{n \times n} (n > 1)$ 的 Cassini 卵形

$$\Omega_{ij} = \left\{ z \mid |z - a_{ii}| \cdot |z - a_{jj}| \le R_i \cdot R_j \right\} \quad (i \ne j)$$

Th12 矩阵 $A_{n\times n}$ (n>1) 的特征值 $\lambda_A \in \bigcup_{i\neq i} \Omega_{ij}$.

证 设 A 的特征值为 λ ,对应的特征向量为 $x = (\xi_1, \xi_2, \dots, \xi_n)^T$.

选取
$$i_0 \neq j_0$$
满足 $\left| \xi_{i_0} \right| \geq \left| \xi_{j_0} \right| \geq \left| \xi_k \right| \left(k \neq i_0, j_0 \right), \ \text{下证} \ \lambda \in \Omega_{i_0 j_0}.$

(1)
$$\xi_{j_0} = 0$$
: 此时 $\xi_k = 0 (k \neq i_0, j_0), \xi_{i_0} \neq 0 (: x \neq 0)$

$$Ax = \lambda x \Rightarrow \lambda \xi_{i_0} = \sum_{k=1}^{n} a_{i_0 k} \xi_k = a_{i_0 i_0} \xi_{i_0} \Rightarrow \lambda = a_{i_0 i_0}$$
$$\Rightarrow \left| \lambda - a_{i_0 i_0} \right| \cdot \left| \lambda - a_{j_0 j_0} \right| = 0 \le R_{i_0} R_{j_0}$$

(2) $\xi_{i_0} \neq 0$: 此时 $|\xi_{i_0}| \geq |\xi_{i_0}| > 0$

$$Ax = \lambda x \implies \sum_{k=1}^{n} a_{lk} \xi_{k} = \lambda \xi_{l} \implies (\lambda - a_{ll}) \xi_{l} = \sum_{k \neq l} a_{lk} \xi_{k} \quad (l = 1, 2, \dots, n)$$

$$l = i_0: |\lambda - a_{i_0 i_0}| \cdot |\xi_{i_0}| \le \sum_{k \ne i} |a_{i_0 k}| \cdot |\xi_k| \le |\xi_{j_0}| \cdot R_{i_0}$$

$$l = j_0: |\lambda - a_{j_0 j_0}| \cdot |\xi_{j_0}| \le \sum_{k \ne j_0} |a_{j_0 k}| \cdot |\xi_k| \le |\xi_{i_0}| \cdot R_{j_0}$$

故
$$\left|\lambda - a_{i_0 i_0}\right| \cdot \left|\lambda - a_{j_0 j_0}\right| \le R_{i_0} R_{j_0}$$

因此 $\lambda \in \Omega_{i_0j_0} \subset \bigcup \Omega_{ij}$.

例 9 $A_{n\times n}(n>1)$ 满足 $|a_{ii}|\cdot |a_{ji}| > R_i R_j (i \neq j) \Rightarrow \det A \neq 0$.

证 因为
$$\forall i \neq j$$
, $|0-a_{ii}| \cdot |0-a_{jj}| = |a_{ii}| \cdot |a_{jj}| > R_i R_j$ 所以 $0 \notin \Omega_{ii} \Rightarrow 0$ 不是 A 的特征值 \Rightarrow $\det A \neq 0$

例 10
$$A = \begin{bmatrix} 20 & 11 & 10 \\ -8 & 30 & 20 \\ 13 & 11 & 30 \end{bmatrix}, \quad R_1 = 21, R_2 = 28, R_3 = 24$$

$$|a_{11}| \cdot |a_{22}| = 600 > 588 = R_1 R_2 \,, \quad |a_{11}| \cdot |a_{33}| = 600 > 504 = R_1 R_3$$

$$|a_{22}| \cdot |a_{33}| = 900 > 672 = R_2 R_3 \,. \quad$$
由例 9 可得 $\det A \neq 0$.

例 11
$$\bigcup_{i\neq j} \Omega_{ij} \subset \bigcup_{k=1}^n G_k$$

§ 5.2 广义特征值问题

 $A_{n\times n}$ 实对称, $B_{n\times n}$ 实对称正定,求常数 λ 及非零向量 x 使得 $Ax = \lambda Bx$.

直接解法:
$$Ax = \lambda Bx \Leftrightarrow (\lambda B - A)x = 0$$

由 $|\lambda B - A| = 0$ 求广义特征值 λ_i
由 $(\lambda_i B - A)x = 0$ 求广义特征向量 x

一、等价形式

- (1) $Ax = \lambda Bx \Leftrightarrow (B^{-1}A)x = \lambda x$: $B^{-1}A$ 不一定对称
- (2) B 对称正定 $\Rightarrow B = GG^{T}$: G 可逆 $Ax = \lambda Bx \Leftrightarrow G^{-1}A(G^{-1})^{T}G^{T}x = \lambda G^{T}x \Leftrightarrow Sy = \lambda y$ 其中 $S = G^{-1}A(G^{-1})^{T}$ 对称, $y = G^{T}x$.

二、正交性

1. 按 B-正交: 设 B 为实对称正定矩阵, 列向量 $x_1, \dots, x_m \in \mathbb{R}^n$.

若
$$x_i^T B x_j = 0$$
 $(i \neq j)$, 称 x_1, \dots, x_m 按 B-正交.

性质 非零向量 x_1,\dots,x_m 按B-正交 $\Rightarrow x_1,\dots,x_m$ 线性无关.

证 设 $k_1x_1 + \cdots + k_ix_i + \cdots + k_mx_m = 0$ (注意 B 是对称正定矩阵)

左乘 x_i^TB : $k_i(x_i^TBx_i) = 0 \Rightarrow k_i = 0$, 故 x_1, \dots, x_m 线性无关.

2. 按 B-标准正交: 设 x_1, \dots, x_m 按 B-正交,若 $\|x_i\|_{_R} = 1$ $(i = 1, \dots, m)$,

称
$$x_1, \dots, x_m$$
 按 B -标准正交.
$$(\|x\|_B = \sqrt{x^T B x})$$

三、广义特征向量的正交性

$$S$$
 实对称⇒ 特征值: $\lambda_1, \dots, \lambda_n \in \mathbb{R}$

特征向量:
$$y_1, \dots, y_n \in \mathbb{R}^n$$
 标准正交

$$x_i = (G^{-1})^T y_i \Rightarrow x_i^T B x_j = y_i^T G^{-1} \cdot G G^T \cdot (G^{-1})^T y_j = y_i^T y_j = \delta_{ij}$$

 $\Rightarrow x_1, \dots, x_n$ 按 *B*-标准正交 $\Rightarrow x_1, \dots, x_n$ 线性无关

§ 5.3 对称矩阵特征值的极性

一、常义 Rayleigh 商:

问题: 若 x 是实对称矩阵 A 的特征向量,则有 $Ax = \lambda x \Rightarrow \lambda = \frac{x^{\mathrm{T}}Ax}{r^{\mathrm{T}}r}$.

下面讨论多元函数 $R(x) = \frac{x^{T}Ax}{x^{T}x}$ $(x \neq 0)$ 的极值问题.

- (1) R(x)连续;
- (2) \forall 实数 $k \neq 0$, R(kx) = R(x);
- (3) $\forall x_0 \neq 0$, $\stackrel{\text{def}}{=} 0 \neq x \in L(x_0)$ 时, $R(x) = R(x_0)$; $\therefore x \in L(x_0) \Rightarrow x = kx_0 \Rightarrow R(x) = R(kx_0) = R(x_0)$
- (4) $\min_{x \neq 0} R(x)$ 与 $\max_{x \neq 0} R(x)$ 存在,且在 $S = \{x \mid x \in \mathbb{R}^n, ||x||_2 = 1\}$ 上达到.

 $\overline{\mathbf{u}}$ 因为子集 S 是闭集,且 $\mathbf{R}(\mathbf{x})$ 在 S 上连续,所以

$$\min_{x \in S} R(x) = m_1, \ \max_{x \in S} R(x) = m_2$$

$$\forall 0 \neq y \in \mathbb{R}^n, x = \frac{1}{\|y\|_2} y \in S \Rightarrow m_1 \leq R(x) \leq m_2$$

$$\pm (2)$$
: $R(x) = R(y) \Rightarrow m_1 \leq R(y) \leq m_2$

<mark>约定:</mark>实对称矩阵 $A_{n\times n}$ 的特征值排序为 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$.

Th16 $A_{n\times n}$ 实对称 $\Rightarrow \min_{x\neq 0} R(x) = \lambda_1, \max_{x\neq 0} R(x) = \lambda_n$.

证 设 A 的特征值为 $\lambda_1, \dots, \lambda_n$,特征向量 p_1, \dots, p_n 标准正交.

$$\forall x \neq 0 \Rightarrow x = c_1 p_1 + \dots + c_n p_n \quad (c_1^2 + \dots + c_n^2 \neq 0)$$

$$Ax = c_1 \lambda_1 p_1 + \dots + c_n \lambda_n p_n , \quad x^T A x = c_1^2 \lambda_1 + \dots + c_n^2 \lambda_n$$

$$x^T x = c_1^2 + \dots + c_n^2 : \quad k_i = \frac{c_i^2}{c_1^2 + \dots + c_n^2} \Rightarrow k_1 + \dots + k_n = 1$$

$$R(x) = k_1 \lambda_1 + \dots + k_n \lambda_n \Rightarrow \lambda_1 \leq R(x) \leq \lambda_n$$

$$R(p_1) = \lambda_1, \quad R(p_n) = \lambda_n$$

$$\Rightarrow \begin{cases} \min_{x \neq 0} R(x) = \lambda_1 \\ \max_{x \neq 0} R(x) = \lambda_n \end{cases}$$

[注] ① 在闭集 S 上, p_1 是 R(x) 的极小点, p_n 是 R(x) 的极大点.

② p_1, \dots, p_n 构成 \mathbb{R}^n 的标准正交基:

$$\mathbf{R}^{n} = L(p_{1}, p_{n}) + L(p_{2}, \dots, p_{n-1}), L(p_{2}, \dots, p_{n-1}) = [L(p_{1}, p_{n})]^{\perp}$$
$$[L(p_{1}, p_{n})]^{\perp} = \{x \mid x \perp p_{1}, x \perp p_{n}\} = \{x \mid \begin{pmatrix} p_{1}^{\mathrm{T}} \\ p_{n}^{\mathrm{T}} \end{pmatrix} x = 0\}$$

Th16 的进一步讨论: 设 $0 \neq x \in L(p_2, \dots, p_{n-1})$, 则有

$$x = c_{2}p_{2} + \dots + c_{n-1}p_{n-1} \quad (c_{2}^{2} + \dots + c_{n-1}^{2} \neq 0)$$

$$x^{T}Ax = c_{2}^{2}\lambda_{2} + \dots + c_{n-1}^{2}\lambda_{n-1}$$

$$x^{T}x = c_{2}^{2} + \dots + c_{n-1}^{2}$$
: $k_{i} = \frac{c_{i}^{2}}{c_{2}^{2} + \dots + c_{n-1}^{2}} \Rightarrow k_{2} + \dots + k_{n-1} = 1$

$$\begin{split} R(x) &= k_2 \lambda_2 + \dots + k_{n-1} \lambda_{n-1} \Rightarrow \lambda_2 \leq R(x) \leq \lambda_{n-1} \\ R(p_2) &= \lambda_2, \quad R(p_{n-1}) = \lambda_{n-1} \end{split} \Rightarrow \begin{cases} \min_{x \neq 0} R(x) = \lambda_2 \\ \max_{x \neq 0} R(x) = \lambda_{n-1} \end{cases}$$

Th18 设 $A_{n\times n}$ 实对称, $\forall V_k \subset \mathbf{R}^n \perp \operatorname{dim} V_k = k$,则 A 的第 k 个特征值为 $\lambda_k = \min_{V_k} \left[\max \left\{ R(x) \middle| 0 \neq x \in V_k \right\} \right]$.

证 A 的特征向量: p_1, \dots, p_n 标准正交

(1) 左≤右:

$$W_k = L(p_k, \dots, p_n) \subset \mathbb{R}^n \Rightarrow \dim W_k = n - k + 1$$

$$V_{\scriptscriptstyle k} \subset \mathbf{R}^{\scriptscriptstyle n} \Rightarrow V_{\scriptscriptstyle k} + W_{\scriptscriptstyle k} \subset \mathbf{R}^{\scriptscriptstyle n}$$

(注意
$$\dim V_{k} = k$$
)

因为
$$n \ge \dim(V_k + W_k) = \dim V_k + \dim W_k - \dim(V_k \cap W_k)$$

= $n + 1 - \dim(V_k \cap W_k)$

所以
$$\dim(V_k \cap W_k) \ge 1 \Rightarrow \exists x_0 \in V_k \cap W_k \perp x_0 \ne 0$$
. $\therefore x_0 \in W_k = 0$. $\therefore x_0 \in W_k = 0$.

故
$$R(x_0) = \frac{x_0^{\mathrm{T}} A x_0}{x_0^{\mathrm{T}} x_0} = \frac{c_k^2 \lambda_k + \dots + c_n^2 \lambda_n}{c_k^2 + \dots + c_n^2} \ge \lambda_k$$
$$\max \{R(x) \mid x \in V_k\} \ge R(x_0) \ge \lambda_k \Rightarrow \Xi \ge \Xi$$

(2) 右 ≤ 左: 令
$$V_k^0 = L(p_1, \dots, p_k)$$
, 对 $\forall x \in V_k^0 (x \neq 0)$,有
$$x = l_1 p_1 + \dots + l_k p_k \quad \left(l_1^2 + \dots + l_k^2 \neq 0 \right)$$

$$R(x) = \frac{x^T A x}{x^T x} = \frac{l_1^2 \lambda_1 + \dots + l_k^2 \lambda_k}{l_1^2 + \dots + l_k^2} \leq \lambda_k$$

$$\max \left\{ R(x) \middle| x \in V_k^0 \right\} \leq \lambda_k \Rightarrow \Delta \leq \Delta$$

二、广义 Rayleigh 商:

问题: 若 $x \in Ax = \lambda Bx$ 的广义特征向量,则有 $\lambda = \frac{x^T Ax}{r^T Bx}$

下面讨论多元函数 $R_B(x) = \frac{x^T A x}{x^T B x}$ $(x \neq 0)$ 的极值问题.

- (1) $R_{R}(x)$ 连续;
- (2) \forall 实数 $k \neq 0$, $R_{\nu}(kx) = R_{\nu}(x)$;
- (3) $\forall x_0 \neq 0$, 当 $0 \neq x \in L(x_0)$ 时, $R_R(x) = R_R(x_0)$;
- (4) $\min_{A} R_B(x)$ 与 $\max_{A} R_B(x)$ 存在,且在 $S_B = \left\{ x \mid x \in \mathbb{R}^n, \|x\|_p = 1 \right\}$ 上达到.

Th22 $x_0 \neq 0$ 是 $R_B(x)$ 的驻点 $\Leftrightarrow Ax_0 = \lambda Bx_0$.

<mark>约定: $Ax = \lambda Bx$ 的特征值排序为 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ </code></mark> 广义特征向量 p_1, p_2, \dots, p_n "按 B-标准正交"

Th23 $\forall V_k \subset \mathbf{R}^n \perp \dim V_k = k \Rightarrow \lambda_k = \min_{V_k} \left[\max \left\{ R_B(x) \middle| 0 \neq x \in V_k \right\} \right]$

证 类似于 Th18.

Th 23'
$$\forall V_k \subset \mathbb{R}^n \coprod \dim V_k = k \Rightarrow \lambda_{n-k+1} = \max_{V_k} \left[\min \left\{ R_B(x) \middle| 0 \neq x \in V_k \right\} \right]$$

证
$$(-A)x = (-\lambda)Bx$$
 的特征值为 $-\lambda_n \le -\lambda_{n-1} \le \cdots \le -\lambda_1$,由 Th23 可得
$$-\lambda_{n-k+1} = \min_{V_k} \left[\max\left\{ -R_B(x) \middle| 0 \ne x \in V_k \right\} \right]$$

$$= \min_{V_k} \left[(-1) \cdot \min\left\{ R_B(x) \middle| 0 \ne x \in V_k \right\} \right]$$
 极小值集合中的最大值 特殊情形。

特殊情形:

Th23
$$\Rightarrow \lambda_n = \max\{R_B(x) \mid 0 \neq x \in \mathbb{R}^n\} = \max\{x^T A x \mid x \in \mathbb{R}^n \boxplus \|x\|_B = 1\}$$

Th 23' $\Rightarrow \lambda_1 = \min\{R_B(x) \mid 0 \neq x \in \mathbb{R}^n\} = \min\{x^T A x \mid x \in \mathbb{R}^n \boxplus \|x\|_B = 1\}$

三、矩阵奇异值的极性

$$A \in \mathbf{R}_r^{m \times n}$$
: $\sigma(A) = \left[\lambda \left(A^{\mathrm{T}} A\right)\right]^{\frac{1}{2}}$
 $A^{\mathrm{T}} A$ 的特征值: $0 = \lambda_1 = \dots = \lambda_{n-r} < \lambda_{n-r+1} \leq \dots \leq \lambda_n$

A 的奇异值: $0 = \sigma_1 = \cdots = \sigma_{n-r} < \sigma_{n-r+1} \le \cdots \le \sigma_n$

Th24 $\forall V_k \subset \mathbf{R}^n \perp \dim V_k = k$,则有

$$\sigma_{k} = \min_{V_{k}} \left\{ \max_{0 \neq x \in V_{k}} \frac{\left\|Ax\right\|_{2}}{\left\|x\right\|_{2}} \right\}, \quad \sigma_{n-k+1} = \max_{V_{k}} \left\{ \min_{0 \neq x \in V_{k}} \frac{\left\|Ax\right\|_{2}}{\left\|x\right\|_{2}} \right\}$$

证 对 $A^{T}A$ 应用 Th23(取B=I)可得

$$\sigma_{k} = \lambda_{k}^{\frac{1}{2}} = \left[\min_{V_{k}} \left\{ \max_{0 \neq x \in V_{k}} \frac{x^{T} (A^{T} A) x}{x^{T} x} \right\} \right]^{\frac{1}{2}} = \left[\min_{V_{k}} \left\{ \max_{0 \neq x \in V_{k}} \left(\frac{\|Ax\|_{2}}{\|x\|_{2}} \right)^{2} \right\} \right]^{\frac{1}{2}} = \pi$$

应用 Th 23′ 可得

$$\sigma_{n-k+1} = \lambda_{n-k+1}^{\frac{1}{2}} = \left[\max_{V_k} \left\{ \min_{0 \neq x \in V_k} \frac{x^{\mathrm{T}} (A^{\mathrm{T}} A) x}{x^{\mathrm{T}} x} \right\} \right]^{\frac{1}{2}} = \left[\max_{V_k} \left\{ \min_{0 \neq x \in V_k} \left(\frac{\|Ax\|_2}{\|x\|_2} \right)^2 \right\} \right]^{\frac{1}{2}} = \pi$$

§ 5.4 矩阵的直积及应用

$$A = (a_{ij})_{m \times n}, \quad B = (b_{ij})_{p \times q}, \quad A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \cdots & \cdots & \cdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

例如
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

$$A \otimes B = \begin{bmatrix} 2 & 1 & | & 4 & 2 & | & 6 & 3 \\ 1 & 2 & | & 2 & 4 & | & 3 & 6 \\ \hline 6 & 3 & | & 4 & 2 & | & 2 & 1 \\ 3 & 6 & | & 2 & 4 & | & 1 & 2 \end{bmatrix}, \quad B \otimes A = \begin{bmatrix} 2 & 4 & 6 & | & 1 & 2 & 3 \\ \hline 6 & 4 & 2 & | & 3 & 2 & 1 \\ \hline 1 & 2 & 3 & | & 2 & 4 & 6 \\ \hline 3 & 2 & 1 & | & 6 & 4 & 2 \end{bmatrix}$$

易见 $A \otimes B \neq B \otimes A$

一、基本性质

(1)
$$k(A \otimes B) = (kA) \otimes B = A \otimes (kB)$$
 (k 为常数)

(2)
$$A_1 = A_2$$
 同阶: $(A_1 + A_2) \otimes B = A_1 \otimes B + A_2 \otimes B$
 $B \otimes (A_1 + A_2) = B \otimes A_1 + B \otimes A_2$

(3)
$$(A \otimes B) \otimes C = A \otimes (B \otimes C)$$

$$\stackrel{\text{iff}}{=} [A \otimes B]_{ij \not=} = a_{ij}B = \begin{bmatrix} a_{ij}b_{11} & \cdots & a_{ij}b_{1q} \\ \vdots & & \vdots \\ a_{ij}b_{p1} & \cdots & a_{ij}b_{pq} \end{bmatrix}$$

矩阵论 12 稿(张凯院) 第五章 特征值的估计 5-12

$$[A \otimes B]_{ij\sharp} \otimes C = \begin{bmatrix} a_{ij}b_{11}C & \cdots & a_{ij}b_{1q}C \\ \vdots & & \vdots \\ a_{ij}b_{p1}C & \cdots & a_{ij}b_{pq}C \end{bmatrix} = a_{ij}(B \otimes C)$$

$$(A \otimes B) \otimes C = \begin{bmatrix} [A \otimes B]_{11\sharp} \otimes C & \cdots & [A \otimes B]_{1n\sharp} \otimes C \\ \vdots & & \vdots \\ [A \otimes B]_{m1\sharp} \otimes C & \cdots & [A \otimes B]_{mn\sharp} \otimes C \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}(B \otimes C) & \cdots & a_{1n}(B \otimes C) \\ \vdots & & \vdots \\ a_{n}(B \otimes C) & \cdots & a_{n}(B \otimes C) \end{bmatrix} = A \otimes (B \otimes C)$$

(4)
$$\begin{aligned} & \begin{aligned} \upartial Problem & \begin{aligned} \upartial A_1 &= & \left(a_{ij}^{(1)}\right)_{m \times n}, & A_2 &= & \left(a_{ij}^{(2)}\right)_{n \times l}, & B_1 &= & \left(b_{ij}^{(1)}\right)_{p \times q}, & B_2 &= & \left(b_{ij}^{(2)}\right)_{q \times r} \\ & & & & \left(A_1 \otimes B_1\right) \left(A_2 \otimes B_2\right) &= & \left(A_1 A_2\right) \otimes \left(B_1 B_2\right) \end{aligned}$$

$$\overset{\text{\tiny iff}}{\text{\tiny iff}} A_1 \otimes B_1 = \begin{bmatrix} \dots & \dots & \dots \\ a_{i1}^{(1)} B_1 & a_{i2}^{(1)} B_1 & \dots & a_{in}^{(1)} B_1 \\ \dots & \dots & \dots \end{bmatrix}, \quad A_2 \otimes B_2 = \begin{bmatrix} \dots & a_{1j}^{(2)} B_2 & \dots \\ \dots & a_{2j}^{(2)} B_2 & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

[左]_{ij块} =
$$\sum_{k=1}^{n} (a_{ik}^{(1)} B_1) (a_{kj}^{(2)} B_2) = \sum_{k=1}^{n} a_{ik}^{(1)} a_{kj}^{(2)} \cdot (B_1 B_2) = (A_1 A_2)_{ij} (B_1 B_2) = [右]_{ij+1}$$

- (6) $A_{m \times m}$ 与 $B_{n \times n}$ 都是上(下)三角矩阵 \Rightarrow $A \otimes B$ 也是上(下)三角矩阵
- (7) $(A \otimes B)^{T} = A^{T} \otimes B^{T}$, $(A \otimes B)^{H} = A^{H} \otimes B^{H}$ 例如: 左端 = $\begin{bmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{bmatrix}^{H} = \begin{bmatrix} \overline{a}_{11}B^{H} & \overline{a}_{21}B^{H} \\ \overline{a}_{12}B^{H} & \overline{a}_{22}B^{H} \end{bmatrix} = 右端$
- (8) $A_{m \times m} \to B_{n \times n}$ 都是(酉)正交矩阵 $\Rightarrow A \otimes B$ 也是(酉)正交矩阵
- (9) $\operatorname{rank}(A \otimes B) = \operatorname{rank}A \cdot \operatorname{rank}B$
- 证 记 $r_1 = \operatorname{rank} A, r_2 = \operatorname{rank} B$

存在满秩矩阵
$$P_1,Q_1$$
,使得 $P_1AQ_1=\begin{bmatrix}I_{r_1}&O\\O&O\end{bmatrix}^{A}=A_1$
存在满秩矩阵 P_2,Q_2 ,使得 $P_2BQ_2=\begin{bmatrix}I_{r_2}&O\\O&O\end{bmatrix}^{A}=B_1$
 $(P_1\otimes P_2)(A\otimes B)(Q_1\otimes Q_2)=\cdots=A_1\otimes B_1$
因为 $P_1\otimes P_2$ 与 $Q_1\otimes Q_2$ 都可逆,所以
 $\operatorname{rank}(A\otimes B)=\operatorname{rank}(A_1\otimes B_1)=\text{``}A_1\otimes B_1$ 中 1 的个数''= r_1r_2

5-13

直积矩阵的特征值: 二元多项式函数 $f(x,y) = \sum_{i=0}^{l_1} \sum_{j=0}^{l_2} c_{ij} x^i y^j$

对于矩阵 $A_{m \times m}$ 和 $B_{n \times n}$, 定义矩阵函数 $f(A,B) = \sum_{i=0}^{l_1} \sum_{j=0}^{l_2} c_{ij} A^i \otimes B^j$

Th27 设 $A_{m \times m}$ 的特征值为 $\lambda_1, \dots, \lambda_m$, $B_{n \times n}$ 的特征值为 μ_1, \dots, μ_n ,则 f(A,B) 的特征值为 $f(\lambda_i, \mu_i)$ $(i=1,\dots,m,j=1,\dots,n)$.

证 对于 $A_{m\times m}$ 和 $B_{n\times n}$,存在可逆矩阵 $P_{m\times m}$ 与 $Q_{n\times n}$,使得

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & \cdots & * \\ & \ddots & \vdots \\ & & \lambda_m \end{bmatrix} \stackrel{\Delta}{=} T_1, \quad Q^{-1}BQ = \begin{bmatrix} \mu_1 & \cdots & * \\ & \ddots & \vdots \\ & & \mu_n \end{bmatrix} \stackrel{\Delta}{=} T_2$$

因为 $P \otimes Q$ 可逆, 所以

$$(P \otimes Q)^{-1} (A^i \otimes B^j) (P \otimes Q) = \cdots = T_1^i \otimes T_2^j$$
 是上三角矩阵 $(P \otimes Q)^{-1} \cdot f(A,B) \cdot (P \otimes Q) = \cdots = f(T_1,T_2)$ 也是上三角矩阵

 $\mathcal{Z} \qquad T_1^i \otimes T_2^j = \begin{bmatrix} \lambda_1^i T_2^j & \cdots & * \\ & \ddots & \vdots \\ & & \lambda_m^i T_2^j \end{bmatrix}, \quad \lambda_k^i T_2^j = \begin{bmatrix} \lambda_k^i \mu_1^j & \cdots & * \\ & \ddots & \vdots \\ & & \lambda_k^i \mu_n^j \end{bmatrix}$

故 $f(T_1,T_2)$ 的主对角线元素为 $f(\lambda_k,\mu_s)$ $(k=1,\dots,m,s=1,\dots,n)$.

由此可得: f(A,B) 的特征值为 $f(\lambda_i,\mu_j)$ $(i=1,\dots,m,j=1,\dots,n)$.

推论 1 $A_{m\times m}$, $B_{n\times n}$, $A\otimes B$ 的特征值为 $\lambda_i\mu_j$ $(i=1,\dots,m,j=1,\dots,n)$.

取 $f(x,y) = x^1 y^1$, 则 $f(A,B) = A \otimes B$.

推论 2 $A_{m \times m}, B_{n \times n}$: $|A \otimes B| = |A|^n |B|^m$.

二、线性矩阵方程的可解性

$$A = (a_{ij})_{m \times p}, B_{q \times n}, X_{p \times q} = \begin{bmatrix} x_1^T \\ \vdots \\ x_p^T \end{bmatrix}, \overline{\text{vec}}(X) = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} = \overline{X}$$

$$AXB = \begin{bmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} x_1^T \\ \vdots \\ x_p^T \end{bmatrix} B = \begin{bmatrix} (a_{11}x_1^T + \cdots + a_{1p}x_p^T)B \\ \vdots \\ (a_{m1}x_1^T + \cdots + a_{mp}x_p^T)B \end{bmatrix}$$

$$\overrightarrow{AXB} = \begin{bmatrix} B^{\mathrm{T}}(a_{11}x_1 + \dots + a_{1p}x_p) \\ \vdots \\ B^{\mathrm{T}}(a_{m1}x_1 + \dots + a_{mp}x_p) \end{bmatrix} = \begin{bmatrix} a_{11}B^{\mathrm{T}} & \cdots & a_{1p}B^{\mathrm{T}} \\ \vdots & & \vdots \\ a_{m1}B^{\mathrm{T}} & \cdots & a_{mp}B^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$$

$$=(A\otimes B^{\mathrm{T}})\overrightarrow{X}$$

性质: $\overline{\text{vec}}(X+Y) = \overline{\text{vec}}(X) + \overline{\text{vec}}(Y)$, $\overline{\text{vec}}(kX) = k \cdot \overline{\text{vec}}(X)$ (k 为常数)

复习: 划分 $A = (a_1, a_2, \dots, a_n)$, 则有

(1) $R(A) = \text{span}\{a_1, a_2, \dots, a_n\}$;

(2)
$$Ax = b$$
 有解 \Leftrightarrow $(a_1, \dots, a_n) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = b$ 有解 \Leftrightarrow $b \in R(A)$.

Th28 $A_i \in \mathbb{C}^{m \times p}, B_i \in \mathbb{C}^{q \times n}, F \in \mathbb{C}^{m \times n}$:

$$\sum_{i=1}^{k} A_{i} X B_{i} = F \not\exists \mathbf{M} X_{p \times q} \Leftrightarrow \overrightarrow{F} \in R \left(\sum_{i=1}^{k} A_{i} \otimes B_{i}^{\mathrm{T}} \right)$$

证 左⇔
$$\sum \overrightarrow{A_i X B_i} = \overrightarrow{F}$$
有解 $X \Leftrightarrow \sum (A_i \otimes B_i^{\mathrm{T}}) \overrightarrow{X} = \overrightarrow{F}$ 有解 \overrightarrow{X}
 $\Leftrightarrow (\sum A_i \otimes B_i^{\mathrm{T}}) \overrightarrow{X} = \overrightarrow{F}$ 有解 $\overrightarrow{X} \Leftrightarrow \overrightarrow{F} \in R(\sum A_i \otimes B_i^{\mathrm{T}})$

Th29 $A_{m\times m}$, $B_{n\times n}$, $F_{m\times n}$, 矩阵方程 AX + XB = F 有唯一解 $X_{m\times n}$ \Leftrightarrow $\lambda_i(A) + \mu_i(B) \neq 0$ $(i = 1, \dots, m, j = 1, \dots, n)$

$$\Leftrightarrow \det(A \otimes I_n + I_m \otimes B^T) \neq 0$$

令
$$f(x,y) = x^1 y^0 + x^0 y^1$$
,并注意 $\mu(B^T) = \mu(B)$,由定理 27 知
$$f(A,B^T) = A \otimes I_x + I_x \otimes B^T$$

的特征值为 $f(\lambda_i, \mu_i) = \lambda_i + \mu_i$, 因此可得

$$\det(A \otimes I_n + I_m \otimes B^T) \neq 0 \Leftrightarrow \lambda_i + \mu_i \neq 0 \quad (i = 1, \dots, m, j = 1, \dots, n)$$

推论 $A_{m\times m}$, $B_{n\times n}$, $AX + XB = O_{m\times n}$ 有非零解 $X \Leftrightarrow \exists i_0, j_0, \text{st.} \lambda_{i_0} + \mu_{j_0} = 0$.

例 1
$$A_{m \times m}, B_{n \times n}, C_{m \times n}$$
: $\lambda(A) \neq \mu(B) \Rightarrow \begin{bmatrix} A & C \\ O & B \end{bmatrix}$ 相似于 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$.

证 设
$$P = \begin{bmatrix} I_m & X \\ O & I_n \end{bmatrix}$$
 $(X_{m \times n}$ 待定), 要求

$$P^{-1} \begin{bmatrix} A & C \\ O & B \end{bmatrix} P = \begin{bmatrix} A & O \\ O & B \end{bmatrix} \Leftrightarrow \begin{bmatrix} A & C \\ O & B \end{bmatrix} \begin{bmatrix} I_m & X \\ O & I_n \end{bmatrix} = \begin{bmatrix} I_m & X \\ O & I_n \end{bmatrix} \begin{bmatrix} A & O \\ O & B \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} A & AX + C \\ O & B \end{bmatrix} = \begin{bmatrix} A & XB \\ O & B \end{bmatrix}$$
$$\Leftrightarrow AX + C = XB \Leftrightarrow (-A)X + XB = C$$

因为
$$\lambda(A) \neq \mu(B) \Rightarrow \lambda_i(-A) + \mu_i(B) \neq 0$$

所以 (-A)X + XB = C 有唯一解 X_{mxn}^*

取
$$P = \begin{bmatrix} I_m & X^* \\ O & I_n \end{bmatrix}$$
时,有 $P^{-1} \begin{bmatrix} A & C \\ O & B \end{bmatrix} P = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$.

[注]
$$\begin{bmatrix} A & C \\ O & B \end{bmatrix}$$
相似于 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 的充要条件是 $\vec{C} \in R((-A) \otimes I_n + I_m \otimes B^T)$.

Th30 $A_{m \times m}$ 的特征值为 $\lambda_1, \dots, \lambda_m, B_{n \times n}$ 的特征值为 μ_1, \dots, μ_n .

(1)
$$\sum_{k=0}^{l} A^{k} X B^{k} = F 有唯一解 \Leftrightarrow 1 + (\lambda_{i} \mu_{j}) + \dots + (\lambda_{i} \mu_{j})^{l} \neq 0 \ (\forall i, j);$$

(2)
$$\sum_{k=0}^{l} A^{k} X B^{k} = O$$
 有非零解 $\Leftrightarrow \exists i_{0}, j_{0}, \text{st.} 1 + (\lambda_{i_{0}} \mu_{j_{0}}) + \cdots + (\lambda_{i_{0}} \mu_{j_{0}})^{l} = 0$.

证 将
$$\sum_{k=0}^{l} A^k X B^k = F$$
 按行拉直可得 $\left(\sum_{k=0}^{l} A^k \otimes (B^T)^k\right) \overrightarrow{X} = \overrightarrow{F}$

$$f(x,y) \stackrel{\Delta}{=} \sum_{k} x^{k} y^{k} \Rightarrow f(A,B^{T}) = \sum_{k=0}^{l} A^{k} \otimes (B^{T})^{k}$$

$$f(A, B^{\mathrm{T}})$$
的特征值为 $f(\lambda_i, \mu_j) = \sum_{k=0}^l \lambda_i^k \mu_j^k = \sum_{k=0}^l (\lambda_i \mu_j)^k$

故
$$\sum_{k=0}^{l} A^k X B^k = F$$
 有唯一解 $\Leftrightarrow f(\lambda_i, \mu_j) \neq 0$

$$\sum_{k=0}^{l} A^{k} X B^{k} = O 有非零解 \Leftrightarrow \exists i_{0}, j_{0}, \text{st. } f(\lambda_{i_{0}}, \mu_{j_{0}}) = 0$$

三、线性矩阵方程的矩阵函数解法

引理 3 设
$$A_{m\times m}$$
, $B_{n\times n}$, $F_{m\times n}$,若 $Re(\lambda_A) < 0$, $Re(\mu_B) < 0$,则广义积分
$$\int_0^{+\infty} e^{At} F e^{Bt} dt$$
存在.

Th31 设
$$A_{m\times m}$$
, $B_{n\times n}$, $F_{m\times n}$, $\lambda_A + \mu_B \neq 0$,且 $\int_0^{+\infty} e^{At} F e^{Bt} dt$ 存在,则

$$AX + XB = F$$
 的唯一解 $X = -\int_0^{+\infty} e^{At} F e^{Bt} dt$.

证
$$Y(t) \stackrel{\Delta}{=} e^{At} F e^{Bt}$$
: $Y(t)|_{t=0} = F$, $\int_0^{+\infty} Y(t) dt$ 存在 $\Rightarrow \lim_{t \to +\infty} Y(t) = O$

$$\frac{dY}{dt} = A \cdot Y(t) + Y(t) \cdot B \qquad (1)$$

积分①:
$$Y(t)\Big|_0^{+\infty} = A \cdot \int_0^{+\infty} Y(t)dt + \int_0^{+\infty} Y(t)dt \cdot B$$

$$-F = A(-X) + (-X)B \Rightarrow AX + XB = F$$

推论 1 设
$$A_{m\times m}$$
, $B_{n\times n}$, $F_{m\times n}$, $Re(\lambda_A) < 0$, $Re(\mu_B) < 0$, 则 $AX + XB = F$ 存在 唯一解 $X = -\int_{a}^{+\infty} e^{At} Fe^{Bt} dt$.

证 ②
$$0 \neq x \in \mathbb{C}^n$$
: e^{At} 可逆 $\Rightarrow e^{At} x \neq 0$

$$(e^{At} x)^H F(e^{At} x) > 0 \Rightarrow x^H \cdot e^{A^H t} F e^{At} \cdot x > 0$$

$$\Rightarrow x^H X x = \int_0^{+\infty} x^H (e^{A^H t} F e^{At}) x dt > 0$$

四、线性矩阵微分方程的矩阵函数解法

性质 1 设 $A \in \mathbb{C}^{n \times n}$, 则 $e^{I \otimes A} = I \otimes e^{A}$, $e^{A \otimes I} = e^{A} \otimes I$.

$$\mathbf{P}^{I \otimes A} = I \otimes I + \frac{1}{1!} (I \otimes A) + \frac{1}{2!} (I \otimes A)^2 + \cdots$$

$$= I \otimes I + \frac{1}{1!} (I \otimes A) + \frac{1}{2!} (I \otimes A^2) + \cdots$$

$$= I \otimes \left(I + \frac{1}{1!} A + \frac{1}{2!} A^2 + \cdots \right) = I \otimes e^A$$

性质 2 设 $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$, 则 $e^{(A \otimes I_n + I_m \otimes B)} = e^A \otimes e^B$.

证 因为 $(A \otimes I_n)(I_m \otimes B) = (AI_m) \otimes (I_n B) = A \otimes B$

$$= (I_m A) \otimes (BI_n) = (I_m \otimes B)(A \otimes I_n)$$

所以
$$e^{(A \otimes I_n + I_m \otimes B)} = e^{A \otimes I_n} e^{I_m \otimes B} = (e^A \otimes I_n)(I_m \otimes e^B) = e^A \otimes e^B$$

Th32 设 $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$, $X(t) \in \mathbb{C}^{m \times n}$, 则矩阵微分方程初值问题

$$\frac{d}{dt}X(t) = A \cdot X(t) + X(t) \cdot B, \quad X(0) = X_0$$

的解为 $X(t) = e^{At} X_0 e^{Bt}$.

证 将矩阵微分方程按行拉直,并利用第三章的结论可得

$$\begin{split} & \frac{d}{dt}\overrightarrow{X(t)} = (A \otimes I_n + I_m \otimes B^T) \overrightarrow{X(t)}, \quad \overrightarrow{X(0)} = \overrightarrow{X_0} \\ & \overrightarrow{X(t)} = e^{(A \otimes I_n + I_m \otimes B^T)t} \overrightarrow{X_0} = \left(e^{At} \otimes e^{B^T t}\right) \overrightarrow{X_0} \\ & X(t) = e^{At} X_0 \left(e^{B^T t}\right)^T = e^{At} X_0 e^{Bt} \end{split}$$

典型题分析:

加例 设 $A \in \mathbb{C}^{n \times n}$ 的n 个线性无关的特征向量为 x_1, x_2, \dots, x_n ,证明: $A \otimes A$ 有 n^2 个线性无关的特征向量,并将它们构造出来.

证 设
$$Ax_i = \lambda_i x_i \ (i = 1, 2, \dots, n)$$
, $P = \begin{bmatrix} x_1 \mid x_2 \mid \dots \mid x_n \end{bmatrix}$,则有
$$P^{-1}AP = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \stackrel{A}{=} \Lambda$$

$$(P \otimes P)^{-1}(A \otimes A)(P \otimes P) = (P^{-1} \otimes P^{-1})(A \otimes A)(P \otimes P)$$

$$= (P^{-1}AP) \otimes (P^{-1}AP) = \Lambda \otimes \Lambda$$

因为 $\Lambda \otimes \Lambda$ 是对角矩阵,所以 $P \otimes P$ 的 n^2 个列向量是 $\Lambda \otimes \Lambda$ 的线性无关的特征向量。根据矩阵直积的定义,有

$$\begin{aligned} x_i \otimes P &= x_i \otimes [x_1 \mid \dots \mid x_n] = [x_i \otimes x_1 \mid \dots \mid x_i \otimes x_n] \\ P \otimes P &= [x_1 \mid \dots \mid x_n] \otimes P = [x_1 \otimes P \mid \dots \mid x_n \otimes P] \\ &= [x_1 \otimes x_1 \mid \dots \mid x_1 \otimes x_n \mid x_2 \otimes x_1 \mid \dots \mid x_n \otimes x_n] \end{aligned}$$

故 $x_i \otimes x_i$ $(i,j=1,2,\cdots,n)$ 是 $A \otimes A$ 的 n^2 个线性无关的特征向量.

解释: $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes P = \begin{bmatrix} 1P \\ 2P \end{bmatrix} = \begin{bmatrix} 1x_1 & \cdots & 1x_n \\ 2x_1 & \cdots & 2x_n \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes x_1 & \cdots & \begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes x_n \end{bmatrix}$

M2011A - (2)

设
$$A = \begin{bmatrix} & & & 1 \\ & & 2 & \\ & & \ddots & & \\ n & & & \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^n, \quad 则 \| A \otimes x \|_2 = (\sqrt{n^3}).$$

分析: $\|A \otimes x\|_2^2 = \rho((A \otimes x)^H (A \otimes x)) = \rho((A^H A) \otimes n) = \rho(n(A^H A)) = n^3$ M2011B —(3)

设 $A \in \mathbb{C}^{m \times m}$ 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_m$, $B \in \mathbb{C}^{n \times n}$ 的特征值为 $\mu_1, \mu_2, \dots, \mu_n$,则矩阵方程 AX - XB = X 有非零解的充要条件是 ($\lambda_{i_0} - \mu_{i_0} = 1$).

分析: 将AX - XB = X 按行拉直可得

$$(A \otimes I - I \otimes B^{\mathsf{T}} - I \otimes I) \overrightarrow{X} = \overrightarrow{O}$$
 (*)

令 f(x,y) = x - y - 1,则 $f(A,B^{T}) = A \otimes I - I \otimes B^{T} - I \otimes I$ 的特征值为 $f(\lambda_{i},\mu_{i}) = \lambda_{i} - \mu_{i} - 1 \quad (i = 1,\dots,m; j = 1,\dots,n)$

于是齐次方程组(*)有非零解的充要条件是

$$\det[f(A,B^{\mathrm{T}})] = 0 \Rightarrow \exists \ i_0, j_0, \text{st} \ f(\lambda_{i_0}, \mu_{j_0}) = 0 \ , \ \mathbb{F}^p \ \lambda_{i_0} - \mu_{j_0} = 1$$

M2010(A)五 用 Gerschgorin 定理隔离矩阵 $A = \begin{bmatrix} -5 & 1 & 0 & 0 \\ 1 & 3 & 1.3 & -2 \\ 1 & 0 & 9 & 1.4 \\ 0 & 1 & 0 & -2 \end{bmatrix}$ 的特征值,

并根据实矩阵特征值的性质改进所得结果.

MA A 的 4 个盖尔圆为

 $G_1:|z+5|\leq 1$; $G_2:|z-3|\leq 4.3$; $G_3:|z-9|\leq 2.4$; $G_4:|z+2|\leq 1$ 易见 G_1 孤立,而 G_2,G_3,G_4 相交.

方案一(放大 G_1):

$$D = \begin{bmatrix} 5/3 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}, \quad B = DAD^{-1} = \begin{bmatrix} -5 & 5/3 & 0 & 0 \\ 0.6 & 3 & 1.3 & -2 \\ 0.6 & 0 & 9 & 1.4 \\ 0 & 1 & 0 & -2 \end{bmatrix}$$

B 的 4 个孤立盖尔圆为

$$G_1': |z+5| \le \frac{5}{3};$$
 $G_2': |z-3| \le 3.9;$ $G_3': |z-9| \le 2;$ $G_4': |z+2| \le 1$ 其中各含 B 的一个特征值. G_1, G_2', G_3', G_4' 中各含 A 的一个特征值.

注: 可取 $d_1 = 1.6 \sim 1.9$

因为实矩阵的复特征值一定成对共轭出现,所以孤立盖尔圆中的特征值是实数(在实轴上)。因此,A的特征值所在的4个闭区间为

$$[-6, -4]$$
, $[-3, -1]$, $[-0.9, 6.9]$, $[7, 11]$

方案二(缩小
$$G_2$$
): $D = \text{diag}(1, d_2, 1, 1)$, 可取 $d_2 = 0.7 \sim \frac{5}{6} = 0.83$

第六章 广义逆矩阵

§ 6.1 广义逆矩阵的概念与性质

1. 定义: 对 A_{mxn} , 若有 X_{nxm} 满足 Penrose 方程

$$(1) \quad AXA = A$$

$$(2) XAX = X$$

(3)
$$(AX)^{H} = AX$$
 (4) $(XA)^{H} = XA$

$$(4) (XA)^{\mathrm{H}} = XA$$

称 *X* 为 *A* 的 M-P 逆,记作 *A*⁺ . (Moore 1920, Penrose1955)

例如 $A_{n\times n}$ 可逆, $X = A^{-1}$ 满足 P-方程: $A^+ = A^{-1}$

$$A = O_{m \times n}, X = O_{n \times m}$$
 满足 P-方程: $O_{m \times n}^+ = O_{n \times m}$

$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, X = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
满足 P-方程: $A^+ = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

例 1
$$F \in \mathbb{C}_r^{m \times r} \ (r \ge 1) \Rightarrow F^+ = (F^H F)^{-1} F^H$$
,且 $F^+ F = I_r$;
$$G \in \mathbb{C}_r^{r \times n} \ (r \ge 1) \Rightarrow G^+ = G^H (GG^H)^{-1}$$
,且 $GG^+ = I_r$.

$$FXF = F \cdot (F^{\mathrm{H}}F)^{-1}F^{\mathrm{H}}F = F$$
, $XFX = (F^{\mathrm{H}}F)^{-1}F^{\mathrm{H}}F \cdot X = X$

$$(FX)^{\rm H} = X^{\rm H}F^{\rm H} = F(F^{\rm H}F)^{-1}F^{\rm H} = FX$$
, $(XF)^{\rm H} = I_r^{\rm H} = I_r = XF$

Th1 任意 A_{mxn} , A^+ 存在且唯一.

存在性. $A = O_{m \times n} \Rightarrow A^{+} = O_{n \times m}$

$$A \neq O \Rightarrow \operatorname{rank} A \geq 1$$
: $A = FG, F \in \mathbb{C}_r^{m \times r}, G \in \mathbb{C}_r^{r \times n}$

 $\diamondsuit X = G^+F^+$,则有

$$AXA = FG \cdot G^+F^+ \cdot FG = FG = A$$

$$XAX = G^{+}F^{+} \cdot FG \cdot G^{+}F^{+} = G^{+}F^{+} = X$$

$$(AX)^{H} = (FG \cdot G^{+}F^{+})^{H} = (FF^{+})^{H} = FF^{+} = F \cdot GG^{+} \cdot F^{+} = AX$$

$$(XA)^{H} = (G^{+}F^{+} \cdot FG)^{H} = (G^{+}G)^{H} = G^{+}G = G^{+} \cdot F^{+}F \cdot G = XA$$

故
$$A^+ = G^+ F^+ = G^H (F^H A G^H)^{-1} F^H$$
.

(注意:后者计算复杂)

<mark>唯一性.</mark> 对 A_{mxn} ,若 X_{nxm} 与 Y_{nxm} 都满足P-方程,则

$$X = XAX = X \cdot AYA \cdot X = X \cdot (AY)^{H} \cdot (AX)^{H}$$

$$= X \cdot (AXAY)^{H} = X \cdot (AY)^{H} = XAY = X \cdot AYA \cdot Y$$

$$= (XA)^{H} \cdot (YA)^{H} \cdot Y = (YAXA)^{H} \cdot Y = (YA)^{H} \cdot Y = YAY = Y$$

Th2 设 $A \in \mathbb{C}_r^{m \times n}$ 的奇异值分解为 $A = U \begin{bmatrix} \Sigma_r & O \\ O & O \end{bmatrix}_{m \times m} V^{H}$,则

$$A^{+} = V \begin{bmatrix} \Sigma_{r}^{-1} & O \\ O & O \end{bmatrix}_{n \times m} U^{H}.$$
 (直接验证)

广义逆矩阵的分类:对 A_{mxn} ,若 X_{nxm} 满足P-方程

(i): 称 X 为 A 的 $\{i\}$ -逆,记作 $A^{(i)}$. 全体记作 $A\{i\}$.

(i),(j): 称 X 为 A 的 $\{i,j\}$ -逆,记作 $A^{(i,j)}$. 全体记作 $A\{i,j\}$.

(i),(j),(k): 称 X 为 A 的 $\{i,j,k\}$ -逆,记作 $A^{(i,j,k)}$.全体记作 $A\{i,j,k\}$.

(1)~(4): 则 X 为 A^+ .

合计: 15 类

常用广义逆矩阵: A{1}, A{1,2}, A{1,3}, A{1,4}及 A+.

2. 求 $A^{(1)}$ 与 $A^{(1,2)}$ 的初等变换方法

置换矩阵: 划分单位矩阵 $I_n = (e_1, e_2, \dots, e_n)$,称 $P = (e_{j_1}, e_{j_2}, \dots, e_{j_n})$ 为 置换矩阵,其中 $j_1 j_2 \dots j_n$ 是 1,2,…,n 的一个排列.

重要性质: 划分 $A_{m\times n}=(a_1,a_2,\cdots,a_n)$, 那么 $AP=(a_{j_1},a_{j_2},\cdots,a_{j_n})$.

 $A \in \mathbb{C}_r^{m \times n}$, $A \stackrel{\text{ft}}{\rightarrow} B \Rightarrow$ 存在可逆矩阵 $Q_{m \times m}$, 使得QA = B

其中B为<mark>拟 Hermite 标准形</mark>,它的后m-r 行元素全为零.

$$B \xrightarrow{\text{MMA}} \begin{bmatrix} I_r & K \\ O & O \end{bmatrix}_{m \times n} = C \Rightarrow$$
存在置换矩阵 $P_{n \times n}$,使得 $BP = C$

于是 $QAP = C \Rightarrow A = Q^{-1}CP^{-1}$.

Th3 已知A, P, Q如上所述,对任意 $L_{(n-r) imes (m-r)}$,有

$$X = P \begin{bmatrix} I_r & O \\ O & L \end{bmatrix}_{n \times m} Q \in A\{1\}, \quad X_0 = P \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}_{n \times m} Q \in A\{1,2\}$$

$$\begin{aligned}
\mathbf{E} \quad AXA &= Q^{-1}CP^{-1} \cdot P \begin{bmatrix} I_r & O \\ O & L \end{bmatrix}_{n \times m} Q \cdot Q^{-1}CP^{-1} \\
&= Q^{-1} \begin{bmatrix} I_r & K \\ O & O \end{bmatrix}_{m \times n} \begin{bmatrix} I_r & O \\ O & L \end{bmatrix}_{n \times m} \begin{bmatrix} I_r & K \\ O & O \end{bmatrix}_{m \times n} P^{-1} \\
&= Q^{-1} \begin{bmatrix} I_r & KL \\ O & O \end{bmatrix}_{m \times m} \begin{bmatrix} I_r & K \\ O & O \end{bmatrix}_{m \times n} P^{-1} = Q^{-1} \begin{bmatrix} I_r & K \\ O & O \end{bmatrix}_{m \times n} P^{-1} = A
\end{aligned}$$

故 $X \in A\{1\}$; 显然 $AX_0A = A$, 且有

$$X_0 A X_0 = P \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} Q \cdot Q^{-1} \begin{bmatrix} I_r & K \\ O & O \end{bmatrix} P^{-1} \cdot P \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} Q = \cdots = X_0$$

故 $X_0 \in A\{1,2\}$.

例 2
$$A = \begin{bmatrix} 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & 1 & 4 \end{bmatrix}$$
, 求 $A^{(1)}, A^{(1,2)}$ 及 A^+ .

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}, \quad P = (e_2, e_3, e_1, e_4) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$A^{(1)} = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a \\ 0 & 0 & b \end{bmatrix} Q = \begin{bmatrix} -a & -a & a \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ -b & -b & b \end{bmatrix}, \quad A^{(1,2)} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$A = FG: F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, F^{T}F = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, F^{+} = \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \end{bmatrix}$$

$$G = \begin{bmatrix} 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \ GG^{\mathrm{T}} = \begin{bmatrix} 9 & 4 \\ 4 & 5 \end{bmatrix}, \ G^{+} = \frac{1}{29} \begin{bmatrix} 10 & -8 \\ 5 & -4 \\ -4 & 9 \\ 2 & 10 \end{bmatrix}$$

$$A^{+} = G^{+}F^{+} = \frac{1}{87} \begin{bmatrix} 28 & -26 & 2 \\ 14 & -13 & 1 \\ -17 & 22 & 5 \\ -6 & 18 & 12 \end{bmatrix}$$

例 3 设 $A_{m \times n} \neq O$,且 A^+ 已知,记 $B = \begin{pmatrix} A \\ A \end{pmatrix}$,求 B^+ .

 $\mathbf{F} \quad \text{rank} A = r \ge 1 \Rightarrow A = FG: \quad F \in \mathbb{C}_r^{m \times r}, \quad G \in \mathbb{C}_r^{r \times n}$

$$B = \begin{pmatrix} FG \\ FG \end{pmatrix} = \begin{pmatrix} F \\ F \end{pmatrix} G : \begin{pmatrix} F \\ F \end{pmatrix} \in \mathbf{C}_r^{2m \times r}, G \in \mathbf{C}_r^{r \times n}$$

$$B^+ = G^+ \begin{pmatrix} F \\ F \end{pmatrix}^+ = G^+ \cdot \left[\left(F^{\mathrm{H}} \middle| F^{\mathrm{H}} \right) \begin{pmatrix} F \\ F \end{pmatrix} \right]^{-1} \left(F^{\mathrm{H}} \middle| F^{\mathrm{H}} \right)$$

$$= G^+ \cdot \frac{1}{2} \left(F^{\mathrm{H}} F \right)^{-1} \cdot \left(F^{\mathrm{H}} \middle| F^{\mathrm{H}} \right) = \frac{1}{2} \left(G^+ F^+ \middle| G^+ F^+ \right) = \frac{1}{2} \left(A^+ \middle| A^+ \right)$$

3. 广义逆矩阵的性质

Th4 $A_{m\times n}$, $A^{(1)}$ 唯一 \Leftrightarrow A 为可逆方阵,且 $A^{(1)}=A^{-1}$. 只有可逆方阵 设 $X_{n\times m}\in A\{1\}$:

(1) 划分
$$X = (x_1, \dots, x_m), \forall x \in N(A), \Leftrightarrow Y = (x_1 + x, x_2, \dots, x_m), 则$$

$$AYA = A \cdot [X + (x, \theta, \dots, \theta)] \cdot A = AXA = A \Rightarrow Y \in A\{1\}$$

(2) 划分
$$X = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$
, $\forall \beta \in N(A^H)$, $\diamondsuit Z = \begin{bmatrix} \alpha_1 + \beta^H \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$, 则

$$AZA = \begin{bmatrix} A^{\mathsf{H}} Z^{\mathsf{H}} A^{\mathsf{H}} \end{bmatrix}^{\mathsf{H}} = \begin{bmatrix} A^{\mathsf{H}} \cdot (X^{\mathsf{H}} + (\beta, \theta, \dots, \theta)) \cdot A^{\mathsf{H}} \end{bmatrix}^{\mathsf{H}}$$
$$= \begin{bmatrix} A^{\mathsf{H}} X^{\mathsf{H}} A^{\mathsf{H}} \end{bmatrix}^{\mathsf{H}} = AXA = A \Rightarrow Z \in A\{1\}$$

必要性. 已知 $A^{(1)}$ 唯一,由(1)和(2)可得 $N(A) = \{\theta\}, N(A^{H}) = \{\theta\}$ 故 $n-r_A=0$, $m-r_{A^H}=0$ \Rightarrow $m=r_{A^H}=r_A=n$ \Rightarrow A 可逆

$$AA^{(1)}A = A \Rightarrow A^{(1)} = A^{-1}$$

 $\forall y \in R(AB) \Rightarrow y = ABx \ (x \in \mathbb{C}^p) \Rightarrow y = A(Bx) \in R(A)$ 故 $R(AB) \subset R(A)$ $\forall x \in N(B) \Rightarrow Bx = 0 \Rightarrow ABx = 0 \Rightarrow x \in N(AB)$ 故 $N(B) \subset N(AB)$

引理 2 $A_{m \times n}$, $B_{n \times p}$, $R(AB) = R(A) \Rightarrow \exists C_{n \times n}$, st. A = ABC.

证 划分
$$A = (a_1, \dots, a_n)$$
,则有
$$a_i \in R(A) = R(AB) \Rightarrow \exists x_i \in \mathbb{C}^p, \text{ st. } a_i = ABx_i$$

$$(a_1, \dots, a_n) = AB(x_1, \dots, x_n) \Rightarrow A = ABC : C_{p \times n} = (x_1, \dots, x_n)$$

Th5 $A_{m \times n}, B_{n \times p}, \lambda \in \mathbb{C}, \lambda^+ = \begin{cases} 1/\lambda & (\lambda \neq 0) \\ 0 & (\lambda = 0) \end{cases}$.

- (1) $[A^{(1)}]^{H} \in A^{H} \{1\}: AA^{(1)}A = A \Rightarrow A^{H} (A^{(1)})^{H} A^{H} = A^{H}$
- (2) $\lambda^+ A^{(1)} \in (\lambda A) \{1\}$: $(\lambda A)(\lambda^+ A^{(1)})(\lambda A) = (\lambda \lambda^+ \lambda)(AA^{(1)}A) = \lambda A$
- (3) $S_{m \times m}$ 和 $T_{n \times n}$ 都可逆 \Rightarrow $T^{-1}A^{(1)}S^{-1} \in (SAT)\{1\}$
- (4) $r_A \le r_{A^{(1)}}$: $r_A = r_{AA^{(1)}A} \le r_{A^{(1)}}$
- (5) $AA^{(1)}$ 与 $A^{(1)}A$ 都是幂等矩阵,且 $r_{AA^{(1)}}=r_{A}=r_{A^{(1)}A}$.

易见
$$r_A = r_{AA^{(1)}A} \le \begin{cases} r_{AA^{(1)}} \\ r_{A^{(1)}A} \end{cases} \le r_A$$

- (6) $R(AA^{(1)}) = R(A)$: $R(A) = R(AA^{(1)}A) \subset R(AA^{(1)}) \subset R(A)$ $N(A^{(1)}A) = N(A)$: $N(A) \subset N(A^{(1)}A) \subset N(AA^{(1)}A) = N(A)$
- (7) ① $r_A = n \Leftrightarrow A^{(1)}A = I_n$ "A列满秩"

②
$$r_A = m \Leftrightarrow AA^{(1)} = I_m$$
 "A行满秩"

证 ① 充分性.
$$(5) \Rightarrow r_A = r_{A^{(1)}A} = n$$
 必要性. $(5) \Rightarrow r_{A^{(1)}A} = r_A = n \Rightarrow A^{(1)}A$ 可逆 $(A^{(1)}A)^2 = A^{(1)}A \Rightarrow A^{(1)}A = I$.

(8) (1)
$$r_{AB} = r_A \Leftrightarrow (AB)(AB)^{(1)}A = A$$

②
$$r_{AB} = r_B \Leftrightarrow B(AB)^{(1)}(AB) = B$$

证 ① 充分性.
$$r_A \leq r_{AB} \leq r_A \Rightarrow r_{AB} = r_A$$

必要性. 已知
$$r_{AB} = r_A$$
,则
引理 $1 \Rightarrow R(AB) \subset R(A)$,故 $R(AB) = R(A)$
引理 $2 \Rightarrow \exists C$, st. $A = ABC$
 $\Rightarrow (AB)(AB)^{(1)}A = (AB)(AB)^{(1)} \cdot ABC = (AB)C = A$

② 必要性.
$$r_{B^{H}A^{H}} = r_{(AB)^{H}} = r_{AB} = r_{B} = r_{B^{H}}$$
引理 $1 \Rightarrow R(B^{H}A^{H}) \subset R(B^{H}) \Rightarrow R(B^{H}A^{H}) = R(B^{H})$
引理 $2 \Rightarrow B^{H} = B^{H}A^{H} \cdot C \Rightarrow B = C^{H}AB$

$$\Rightarrow B(AB)^{(1)}(AB) = C^{H}AB \cdot (AB)^{(1)}(AB) = C^{H}AB = B$$

Th6 $A_{m \times n}, Y \in A\{1\}, Z \in A\{1\} \Rightarrow X = YAZ \in A\{1,2\}.$

i.
$$AXA = A \cdot YAZ \cdot A = AY(AZA) = AYA = A$$

 $XAX = YAZ \cdot A \cdot YAZ = Y(AZA)YAZ = Y \cdot AYA \cdot Z = YAZ = X$

推论
$$A_{m\times n}, Y \in A\{1\} \Rightarrow X = YAY \in A\{1,2\}.$$

Th7 设 $X \in A\{1\}$, 则 $r_X = r_A \Leftrightarrow X \in A\{1,2\}$.

构造方法 判断方法

证 必要性. 已知 $X \in A\{1\}$ 且 $r_X = r_A$,则

Th
$$5(5) \Rightarrow r_{XA} = r_A = r_X$$

引理 $1 \Rightarrow R(XA) \subset R(X)$ $\Rightarrow R(XA) = R(X)$
引理 $2 \Rightarrow \exists Y_{n \times m}$, st. $X = XAY$
 $\Rightarrow XAX = XA \cdot XAY = X \cdot AXA \cdot Y = XAY = X$
故 $X \in A\{1,2\}$.

充分性. 已知
$$X \in A\{1,2\}$$
, 则
$$AXA = A \Rightarrow r_1 < r_2$$

$$\begin{vmatrix}
AXA = A \Rightarrow r_A \leq r_X \\
XAX = X \Rightarrow r_X \leq r_A
\end{vmatrix} \Rightarrow r_X = r_A$$

[注]
$$A{1,2} = \{X \mid X \in A{1}\} \perp r(X) = r(A)\}$$

引理 3 $r_{A^HA} = r_A = r_{A^H} = r_{AA^H}$

Th8 $Y = (A^{H}A)^{(1)}A^{H} \in A\{1,2,3\}, Z = A^{H}(AA^{H})^{(1)} \in A\{1,2,3\}, Z = A^{H}(AA^{H})^{(1)}$

引理 1:
$$R(A^{\mathrm{H}}A) \subset R(A^{\mathrm{H}})$$
 $\Rightarrow R(A^{\mathrm{H}}A) = R(A^{\mathrm{H}})$ 引理 3: $r_{A^{\mathrm{H}}A} = r_{A^{\mathrm{H}}}$

引理 2:
$$\exists B_{n \times m}$$
, st. $A^{H} = A^{H}AB$, 即 $A = B^{H}A^{H}A$.

$$AYA = B^{\mathsf{H}}A^{\mathsf{H}}A \cdot \left(A^{\mathsf{H}}A\right)^{(1)}A^{\mathsf{H}} \cdot A = B^{\mathsf{H}} \cdot A^{\mathsf{H}}A = A$$

$$YAY = (A^{H}A)^{(1)}A^{H} \cdot A \cdot (A^{H}A)^{(1)}A^{H}$$

$$= (A^{H}A)^{(1)} \cdot (A^{H}A)(A^{H}A)^{(1)} \cdot A^{H}AB$$

$$= (A^{H}A)^{(1)} \cdot A^{H}A \cdot B = (A^{H}A)^{(1)}A^{H} = Y$$

$$AY = A \cdot (A^{H}A)^{(1)}A^{H} = B^{H}A^{H}A \cdot (A^{H}A)^{(1)} \cdot A^{H}AB = B^{H}(A^{H}A)B$$

由此可得 $(AY)^{H} = AY$. 因此 $Y \in A\{1,2,3\}$.

Th9 $A^+ = A^{(1,4)} A A^{(1,3)}$.

证
$$X = A^{(1,4)}AA^{(1,3)}$$
: Th6 $\Rightarrow X$ 满足 Penrose 方程(1)和(2).

$$AX = AA^{(1,4)}AA^{(1,3)} = AA^{(1,3)} \Rightarrow (AX)^{H} = (AA^{(1,3)})^{H} = AA^{(1,3)} = AX$$
 $XA = A^{(1,4)}AA^{(1,3)}A = A^{(1,4)}A \Rightarrow (XA)^{H} = (A^{(1,4)}A)^{H} = A^{(1,4)}A = XA$
世 $A^{+} = X = A^{(1,4)}AA^{(1,3)}$.

Th10 (1)
$$r_{A^+} = r_A$$

Th10 (1)
$$r_{A^{+}} = r_{A}$$
 (2) $(A^{+})^{+} = A$ (对 A^{+} 取 $X = A$ 验证)

(3)
$$(A^{\mathrm{T}})^{+} = (A^{+})^{\mathrm{T}}$$
 对 $A^{\mathrm{T}} \otimes X = (A^{+})^{\mathrm{T}} \otimes \mathbb{I}$ 对 $A^{\mathrm{H}} \otimes X = (A^{+})^{\mathrm{H}} \otimes \mathbb{I}$

(4)
$$(A^{\mathrm{H}}A)^{\dagger} = A^{\dagger}(A^{\mathrm{H}})^{\dagger}$$
 对 $(A^{\mathrm{H}}A)$ 取 $X = A^{\dagger}(A^{\mathrm{H}})^{\dagger}$ 验证 $(AA^{\mathrm{H}})^{\dagger} = (A^{\mathrm{H}})^{\dagger}A^{\dagger}$ 对 (AA^{H}) 取 $X = (A^{\mathrm{H}})^{\dagger}A^{\dagger}$ 验证

(5)
$$A^+ = (A^H A)^+ A^H = A^H (AA^H)^+$$

$$A^{+} = A^{+}AA^{+} = \begin{cases} A^{+}(AA^{+})^{H} = A^{+}(A^{+})^{H}A^{H} = (A^{H}A)^{+}A^{H} \\ (A^{+}A)^{H}A^{+} = A^{H}(A^{+})^{H}A^{+} = A^{H}(AA^{H})^{+} \end{cases}$$

(6)
$$R(A^+) = R(A^H), N(A^+) = N(A^H).$$

$$(5) \Rightarrow R(A^{+}) = R(A^{H}(AA^{H})^{+}) \subset R(A^{H})$$

$$(1) \Rightarrow r_{A^{+}} = r_{A} = r_{A^{H}}$$

$$(2) \Rightarrow R(A^{+}) = R(A^{H})$$

$$(3) \Rightarrow R(A^{+}) = R(A^{H})$$

$$(5) \Rightarrow N(A^{+}) = N((A^{H}A)^{+}A^{H}) \supset N(A^{H})$$

$$(1) \Rightarrow r_{A^{+}} = r_{A^{H}} \Rightarrow m - r_{A^{+}} = m - r_{A^{H}}$$

$$\Rightarrow N(A^{+}) = N(A^{H})$$

(7)
$$(\mathbf{A} \otimes \mathbf{B})^+ = \mathbf{A}^+ \otimes \mathbf{B}^+$$
 (习题——直接验证)

§ 6.2 投影矩阵与 Moor 逆

一、投影变换:向量空间C''中,子空间L与M满足 $C'' = L \oplus M$,对 $\forall x \in C''$,分解式 x = y + z, $y \in L, z \in M$ 唯一.称变换 $T_{L,M}(x) = y$ 为沿着M到L的投影变换,称y为x沿着M到L的投影.

性质(1) T_{LM} 是线性变换.

证
$$\forall x_1 \in \mathbb{C}^n, x_1 = y_1 + z_1, y_1 \in L, z_1 \in M$$
 唯一 $\Rightarrow T_{L,M}(x_1) = y_1$ $\forall x_2 \in \mathbb{C}^n, x_2 = y_2 + z_2, y_2 \in L, z_2 \in M$ 唯一 $\Rightarrow T_{L,M}(x_2) = y_2$ 因为 $x_1 + x_2 = (y_1 + y_2) + (z_1 + z_2), y_1 + y_2 \in L, z_1 + z_2 \in M$ 唯一 所以 $T_{L,M}(x_1 + x_2) = y_1 + y_2 = T_{L,M}(x_1) + T_{L,M}(x_2)$ 又 $kx_1 = (ky_1) + (kz_1), ky_1 \in L, kz_1 \in M$ 唯一 所以 $T_{L,M}(kx_1) = ky_1 = k \cdot T_{L,M}(x_1)$ 生质(2) $R(T_{L,M}) = L, N(T_{L,M}) = M$.

证 (1) $\forall x \in L \subset \mathbb{C}^n$: $x = x + \theta$, $x \in L$, $\theta \in M$ 唯一 故 $x = T_{L,M}(x) \in R(T_{L,M})$, 即 $L \subset R(T_{L,M})$;

 $\forall x \in \mathbb{C}^n$,由 $T_{L,M}(x) \in L$ 可得 $R(T_{L,M}) \subset L$.故第一式成立.

(2) $\forall x \in M \subset \mathbb{C}^n$: $x = \theta + x, \theta \in L, x \in M$ 唯一故 $T_{L,M}(x) = \theta \Rightarrow x \in N(T_{L,M})$, 即 $M \subset N(T_{L,M})$; $\forall x \in N(T_{L,M}) \subset \mathbb{C}^n$: x = y + z, $y \in L, z \in M$ 唯一因为 $\theta = T_{L,M}(x) = y$, 所以 $x = \theta + z = z \in M$ 从而 $N(T_{L,M}) \subset M$. 故第二式成立.

性质(3) $\forall x \in L \Rightarrow T_{L,M}(x) = x$, $\forall x \in M \Rightarrow T_{L,M}(x) = \theta$.

证 $\forall x \in L \subset \mathbb{C}^n$: $x = x + \theta$, $x \in L$, $\theta \in M$ 唯一 $\Rightarrow T_{L,M}(x) = x$ $\forall x \in M \subset \mathbb{C}^n : x = \theta + x, \theta \in L, x \in M$ 唯一 $\Rightarrow T_{L,M}(x) = \theta$

[注] $R(T_{L,M})$ 和 $N(T_{L,M})$ 都是 $T_{L,M}$ 的不变子空间(Th1-27 之前) $L = R(T_{L,M})$ 是 $T_{L,M}$ 的不变子空间 \Rightarrow $T_{L,M}$ 是 $T_{L,M}$ 中的单位变换 $M = N(T_{L,M})$ 是 $T_{L,M}$ 的不变子空间 \Rightarrow $T_{L,M}$ 是 $T_{L,M}$ 中的零变换

二、投影矩阵

取线性空间 \mathbb{C}^n 的基为 e_1, \dots, e_n 时,元素 x 与它的坐标"形式一致". 称 T_{LM} 在该基下的矩阵为投影矩阵,记作 P_{LM} .

性质(4)
$$T_{L,M}(x) = y \Leftrightarrow P_{L,M}x = y$$

$$x \in L \Rightarrow T_{L,M}(x) = x \Rightarrow P_{L,M}x = x$$

$$\dim L = r, L 的基为 x_1, \dots, x_r: X = (x_1, \dots, x_r)$$

$$\dim M = n - r, M 的基为 y_1, \dots, y_{n-r}: Y = (y_1, \dots, y_{n-r})$$

$$P_{L,M} x_i = x_i \Rightarrow P_{L,M} X = X$$

$$P_{L,M} y_j = \theta \Rightarrow P_{L,M} Y = 0$$

$$\Rightarrow P_{L,M} (X \mid Y) = (X \mid O)$$

$$\Rightarrow P_{L,M} = (X \mid O) \cdot (X \mid Y)^{-1}$$

例 4 R²中:
$$\alpha_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $L = L(\alpha_1)$, $M = L(\alpha_2)$, 求 $P_{L,M}$.

解
$$P_{L,M} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
 $\left(\alpha_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 时 $P_{L,M} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\right)$

(
$$\alpha_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 by $P_{L,M} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$)

注: P_{LM} 与 L 和 M 的基的选择无关.

证
$$L$$
 的基 x_1,\dots,x_r ; 另一基 $\tilde{x}_1,\dots,\tilde{x}_r$:

$$X = (x_1, \dots, x_r), \ \widetilde{X} = (\widetilde{x}_1, \dots, \widetilde{x}_r) \Rightarrow \widetilde{X} = XC_{rxr}$$

$$M$$
的基 y_1, \dots, y_{n-r} ; 另一基 $\tilde{y}_1, \dots, \tilde{y}_{n-r}$:

$$Y = (y_1, \dots, y_{n-r}), \ \widetilde{Y} = (\widetilde{y}_1, \dots, \widetilde{y}_{n-r}) \Rightarrow \widetilde{Y} = YD_{(n-r)\times(n-r)}$$

$$(\widetilde{X} \mid O) \cdot (\widetilde{X} \mid \widetilde{Y})^{-1} = (XC \mid O) \cdot \left[(X \mid Y) \begin{pmatrix} C & O \\ O & D \end{pmatrix} \right]^{-1}$$

$$= (XC \mid O) \cdot \left[\begin{pmatrix} C^{-1} & O \\ O & D^{-1} \end{pmatrix} \cdot (X \mid Y)^{-1} = (X \mid O) \cdot (X \mid Y)^{-1}$$

四、正交投影变换

酉空间 \mathbb{C}^n 中,子空间L给定,取 $M = L^{\perp}$,则 $\mathbb{C}^n = L \oplus M$.

正交投影变换 $T_L = T_{LM}$; 正交投影矩阵 $P_L = P_{LM}$.

Th12 方阵
$$P = P_I \Leftrightarrow P^2 = P, P^H = P$$
.

证 必要性. 已知
$$P = P_L$$
: Th $11 \Rightarrow P^2 = P$

$$\begin{aligned} \forall x_1 \in \mathbf{C}^n &\Rightarrow x_1 = y_1 + z_1, \ y_1 = Px_1 \in L, z_1 \in L^{\perp} \\ \forall x_2 \in \mathbf{C}^n &\Rightarrow x_2 = y_2 + z_2, \ y_2 = Px_2 \in L, z_2 \in L^{\perp} \\ \end{aligned} \\ x_1^{\mathsf{H}} P x_2 &= (y_1 + z_1)^{\mathsf{H}} \ y_2 = y_1^{\mathsf{H}} \ y_2 + z_1^{\mathsf{H}} \ y_2 = y_1^{\mathsf{H}} \ y_2 = y_1^{\mathsf{H}} \ y_2 \\ &= y_1^{\mathsf{H}} \ y_2 + y_1^{\mathsf{H}} \ z_2 = y_1^{\mathsf{H}} (y_2 + z_2) = (Px_1)^{\mathsf{H}} \ x_2 = x_1^{\mathsf{H}} P^{\mathsf{H}} x_2 \\ x_1^{\mathsf{H}} (P^{\mathsf{H}} - P) x_2 &= \mathbf{0} \Rightarrow (P^{\mathsf{H}} - P)_{ij} = e_i^{\mathsf{H}} (P^{\mathsf{H}} - P) e_j = \mathbf{0} \\ & \stackrel{\text{Hd}}{=} P \ . \end{aligned}$$

充分性. 已知
$$P^2=P$$
: Th11 $\Rightarrow P=P_{R(P),N(P)}$
$$P^{\mathrm{H}}=P:\ N(P)=N(P^{\mathrm{H}})=R^{\perp}(P)$$
 (Th1-35)
$$故 P=P_{R(P)} \ .$$

五、正交投影矩阵的确定方法

$$L$$
 的基 $x_1, \dots, x_r: X = (x_1, \dots, x_r)$ L 的基 $y_1, \dots, y_{n-r}: Y = (y_1, \dots, y_{n-r})$ $\Rightarrow \begin{cases} X^H Y = O \\ Y^H X = O \end{cases}$ 已求得
$$P_L = P_{L,L^\perp} = (X \mid O) \cdot (X \mid Y)^{-1}$$

因为
$$(X \mid Y)^{\mathrm{H}} \cdot (X \mid Y) = \begin{pmatrix} X^{\mathrm{H}} \\ Y^{\mathrm{H}} \end{pmatrix} \cdot (X \mid Y) = \begin{bmatrix} X^{\mathrm{H}} X & O \\ O & Y^{\mathrm{H}} Y \end{bmatrix}$$

所以
$$(X \mid Y)^{-1} = \begin{bmatrix} (X^{H}X)^{-1} & O \\ O & (Y^{H}Y)^{-1} \end{bmatrix} \cdot \begin{bmatrix} X^{H} \\ Y^{H} \end{bmatrix} = \begin{bmatrix} (X^{H}X)^{-1}X^{H} \\ (Y^{H}Y)^{-1}Y^{H} \end{bmatrix}$$
于是 $P_{L} = (X \mid O) \cdot \begin{bmatrix} (X^{H}X)^{-1}X^{H} \\ (Y^{H}Y)^{-1}Y^{H} \end{bmatrix} = X \cdot (X^{H}X)^{-1} \cdot X^{H} = XX^{+}$
例 5 向量空间 \mathbb{R}^{3} 中: $\alpha = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \beta = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, L = L(\alpha, \beta), \quad \mathcal{R}P_{L}.$

解 $X = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}, X^{T}X = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}, (X^{T}X)^{-1} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}$

$$P_{L} = X \cdot (X^{T}X)^{-1}X^{T} = \frac{1}{6} \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & 1 \\ -2 & 1 & 5 \end{bmatrix}$$

[注] 正交投影矩阵 P_t 与子空间 L 的基的选择无关.

> M-P 逆的等价定义

Moore 逆: 对 $A_{m\times n}$,若有 $X_{n\times m}$ 满足 $AX = P_{R(A)}$ 和 $XA = P_{R(X)}$,称X为A的 Moore 逆. (P_I 表示子空间L上的正交投影矩阵)

Th13 M-逆与 P-逆等价.

证 (1) 设 X 是 A 的 M-逆:

$$AXA = P_{R(A)} \cdot (a_1, \dots, a_n) = (a_1, \dots, a_n) = A$$
 $XAX = P_{R(X)} \cdot (x_1, \dots, x_m) = (x_1, \dots, x_m) = X$
 $(AX)^{\mathrm{H}} = P_{R(A)}^{\mathrm{H}} = P_{R(A)} = AX$, $(XA)^{\mathrm{H}} = P_{R(X)}^{\mathrm{H}} = P_{R(X)} = XA$
故 X 是 A 的 P-逆.

(2) 设 X 是 A 的 P-逆:

$$(AX)^{2} = AXAX = AX$$

$$(AX)^{H} = AX$$

$$(将 X 看作 A^{(1)}, R(AA^{(1)}) = R(A)$$

$$(XA)^{2} = XAXA = XA$$

$$(XA)^{H} = XA$$

$$(将 A 看作 X^{(1)}, R(XX^{(1)}) = R(X)$$

$$(将 A 看作 X^{(1)}, R(XX^{(1)}) = R(X)$$

故X是A的M-逆.

- § 6.3 广义逆矩阵的计算方法(略)
- § 6.4 广义逆矩阵与线性方程组的求解

考虑 $A_{m\times n}$, $x \in \mathbb{C}^n$, $b \in \mathbb{C}^m$, 线性方程组Ax = b:

有解(相容)时,求极小范数解 x_0 满足 $\|x_0\|_2 = \min_{x \in D} \|x\|_2$;

无解(不相容)时,求极小范数最小二乘解 x_0 满足 $\|x_0\|_2 = \min_{\|Ax-b\| = \min} \|x\|_2$.

一、矩阵的{1}-逆

Th26 $A_{m\times n}$, $B_{n\times n}$, $C_{m\times n}$.

- (1) AXB = C 有解 $\Leftrightarrow AA^{(1)}CB^{(1)}B = C$;
- (2) AXB = C fightharpoonup AXB = C fight
- 证 (1) 充分性. 取 $X = A^{(1)}CB^{(1)}$ 即可.

必要性. AXB = C: $A = AA^{(1)}A, B = BB^{(1)}B$

$$AA^{(1)}AXBB^{(1)}B = C \Rightarrow AA^{(1)}CB^{(1)}B = C$$

(2) $A \cdot (A^{(1)}CB^{(1)} + Y - A^{(1)}AYBB^{(1)}) \cdot B = \cdots = C$

设AXB = C的一个解为X,则

[注] AXB = C 的特解为 $A^{(1)}CB^{(1)}$

AXB = O 的通解为 $Y - A^{(1)}AYBB^{(1)}$ $(\forall Y_{n \times p})$

例 1 $A_{m\times n}$, AXA = A 的通解为 $X = A^{(1)}AA^{(1)} + Y - A^{(1)}AYAA^{(1)}$ ($\forall Y_{n\times m}$).

$$\Rightarrow Y - A^{(1)} \stackrel{\Delta}{=} Z$$

故
$$A\{1\} = \{A^{(1)} + Z - A^{(1)}AZAA^{(1)} | Z \in \mathbb{C}^{n \times m} \}.$$

Th27 $A_{m\times n}, b \in \mathbb{C}^m$.

 $(B 可逆时 B^{(1)} = B^{-1}$ 唯一)

- (1) Ax = b 有解 $\Leftrightarrow AA^{(1)}b = b$;
- (2) Ax = b $fightharpoonup Ax = A^{(1)}b + (I A^{(1)}A)y \quad (\forall y \in \mathbb{C}^n)$.

[注] Ax = b 的特解为 $A^{(1)}b$, Ax = 0的通解为 $(I - A^{(1)}A)y$ $(\forall y \in \mathbb{C}^n)$.

例 2 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, b = \begin{bmatrix} l \\ k \\ k \end{bmatrix}$. (Hermite 标准形中取 $c_1 = 1, c_2 = 3$)

(1) 求 $A^{(1)}$; (2) l 与 k 取何值时,Ax = b 有解,并求通解.

解 置换矩阵
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $A^{(1)} = P \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

$$AA^{(1)}b = b \Rightarrow \begin{bmatrix} l \\ k \\ 0 \end{bmatrix} = \begin{bmatrix} l \\ k \\ k \end{bmatrix} \Rightarrow k = 0, l 任意$$

通解
$$x = \begin{bmatrix} l \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{bmatrix} = \begin{bmatrix} l \\ 0 \\ 0 \end{bmatrix} + \eta_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \quad (\forall \eta_2 \in \mathbf{C})$$

Th28 给定 $A_{m \times n}$, $X_{n \times m}$. 若对任意 $b \in R(A)$, x = Xb 都是Ax = b 的解,则 $X \in A\{1\}$.

证 划分
$$A = (a_1, \dots, a_n)$$
,则有
$$a_i \in R(A) \Rightarrow A(Xa_i) = a_i \quad (i = 1, 2, \dots, n)$$

$$\Rightarrow AX(a_1, \dots, a_n) = (a_1, \dots, a_n) \Rightarrow AXA = A \Rightarrow X \in A\{1\}$$

二、矩阵的{1,4}-逆

引理8 $A_{m\times n}$,给定 $A^{(1,4)}$,则 $A\{1,4\}=S_4\stackrel{\mathrm{def}}{=}\left\{X\mid XA=A^{(1,4)}A,X\in\mathbf{C}^{n\times m}\right\}$.

证 (1) 先证 $S_4 \subset A\{1,4\}$: $\forall X \in S_4$

$$\frac{AXA = A \cdot A^{(1,4)}A = A}{(XA)^{H} = (A^{(1,4)}A)^{H} = A^{(1,4)}A = XA} \Rightarrow X \in A\{1,4\}$$

(2) 再证 $A\{1,4\}\subset S_A: \forall X\in A\{1,4\}$

Th29 $A_{m\times n}$, 给定 $A^{(1,4)}$,则 $A\{1,4\} = \{A^{(1,4)} + Z(I - AA^{(1,4)}) | Z \in \mathbb{C}^{n\times m} \}$.

证 显然, $XA = A^{(1,4)}A$ 有解 $X = A^{(1,4)}$.

通解
$$X = (A^{(1,4)}A)A^{(1,4)} + Y - YAA^{(1,4)}$$
 ($\forall Y_{n\times m}$)

则
$$X = A^{(1,4)}AA^{(1,4)} + (A^{(1,4)} + Z) - (A^{(1,4)}AA^{(1,4)} + ZAA^{(1,4)})$$

= $A^{(1,4)} + Z(I - AA^{(1,4)})$ ($\forall Z_{n\times m}$)

由引理8即得所证.

引理 9 若方程组 Ax = b 有解,则极小范数解 $x_0 \in R(A^H)$,且 x_0 唯一,在 $R(A^H)$ 中只有 Ax = b 的一个解。

证 (1) 先证
$$x_0 \in R(A^H)$$
: 反证法. 若 $x_0 \notin R(A^H)$, 由 Th1-35 知
$$\mathbf{C}^n = R(A^H) \oplus N(A), \quad R(A^H) \perp N(A)$$
$$x_0 = y_0 + z_0, \quad y_0 \in R(A^H), \quad z_0 \in N(A), \quad \mathbf{E} z_0 \neq \mathbf{0}$$
$$\|x_0\|_2^2 = \|y_0\|_2^2 + \|z_0\|_2^2 > \|y_0\|_2^2$$

第六章 广义逆矩阵

$$Ax_0 = b$$
, $Az_0 = 0 \Rightarrow Ay_0 = Ay_0 + Az_0 = Ax_0 = b$
故 x_0 不是 $Ax = b$ 的极小范数解,矛盾!

(2) 再证唯一性: 设 $y_0 \in R(A^H)$, 且 $Ay_0 = b$, 则 $x_0 - y_0 \in R(A^H) = N^{\perp}(A)$ $A(x_0 - y_0) = b - b = 0 \Rightarrow x_0 - y_0 \in N(A)$

故 $x_0 - y_0 = 0 \Rightarrow x_0 = y_0$, 即 $R(A^H)$ 中只有 Ax = b 的一个解.

- Th30 (1) Ax = b 有解 $\Rightarrow x_0 = A^{(1,4)}b$ 是唯一极小范数解;
 - (2) 给定 $A_{m\times n}$, $X_{n\times m}$, 若对任意的 $b \in R(A)$, x = Xb 都是Ax = b 的极小范数解,则 $X \in A\{1,4\}$.
- 证(1) Th27: Ax = b 有解 $\Rightarrow AA^{(1,4)}b = b$,故 $x_0 = A^{(1,4)}b$ 是Ax = b 的解. 下证 $x_0 \in R(A^H)$:

Ax = b 有解 $\Rightarrow b \in R(A) \Rightarrow \exists u \in \mathbb{C}^{n}$, st. b = Au $x_{0} = A^{(1,4)}b = A^{(1,4)}Au = (A^{(1,4)}A)^{H}u = A^{H}[(A^{(1,4)})^{H}u] \in R(A^{H})$ 由引理 9 的唯一性证明知, x_{0} 是 Ax = b 的唯一极小范数解.

- (2) 划分 $A = (a_1, \dots, a_n)$,则有 $a_i \in R(A) \Rightarrow Xa_i \not\in Ax = a_i \text{ 的极小范数解 (已知)}$ $\Rightarrow Xa_i = A^{(1,4)}a_i \quad (i = 1, \dots, n)$ $\Rightarrow X(a_1, \dots, a_n) = A^{(1,4)}(a_1, \dots, a_n)$ $\Rightarrow XA = A^{(1,4)}A \Rightarrow X \in S_A = A\{1,4\} \quad (引 \mathbb{P} 8)$
- 三、矩阵的{1,3}-逆

引理 10 $A_{m \times n}$,给定 $A^{(1,3)}$,则 $A\{1,3\} = S_3 \stackrel{\text{def}}{=} \{X \mid AX = AA^{(1,3)}, X \in \mathbb{C}^{n \times m}\}.$

证 类似于引理8的证明.

Th31 $A_{m\times n}$, 给定 $A^{(1,3)}$, 则 $A\{1,3\} = \{A^{(1,3)} + (I - A^{(1,3)}A)Z \mid Z \in \mathbb{C}^{n\times m} \}$.

证 利用 Th26, 类似于 Th29 的证明.

Th32 Ax = b 无解 $\Rightarrow \tilde{x}_0 = A^{(1,3)}b$ 是最小二乘解,即 $\|A\tilde{x}_0 - b\|_2 = \min \|Ax - b\|_2$

证
$$P = AA^{(1,3)} \Rightarrow Pb = A \cdot A^{(1,3)}b \in R(A)$$

 $b = Pb + (I - P)b \Rightarrow Ax - b = (Ax - Pb) + [-(I - P)b]$
因为 $(Ax)^{H} \cdot (I - P)b = x^{H}A^{H}(I - AA^{(1,3)})b$
 $= x^{H}(A^{H} - A^{H}(AA^{(1,3)})^{H})b = x^{H}(A^{H} - (AA^{(1,3)}A)^{H})b = 0$
 $(Pb)^{H} \cdot (I - P)b = b^{H} \cdot AA^{(1,3)}(I - AA^{(1,3)})b = 0$

所以
$$(Ax-Pb)\perp (I-P)b\Rightarrow \|Ax-b\|_2^2 = \|Ax-Pb\|_2^2 + \|(I-P)b\|_2^2$$
 故 $\|Ax-b\|_2 = \min \Leftrightarrow \|Ax-Pb\|_2 = \min \Leftrightarrow Ax = Pb$ $(\because Pb \in R(A))$ 又 $A\widetilde{x}_0 = AA^{(1,3)}b = Pb$,即 $\widetilde{x}_0 \not\in Ax = Pb$ 的解.所以 $\widetilde{x}_0 \not\in \|Ax-b\|_2 = \min$ 的解.

- 例 3 (1) Ax = b 有解: $Ax_0 = b \Leftrightarrow A^H Ax_0 = A^H b$;
 - (2) $Ax = b \times \mathbb{E}[||Ax_0 b||]_2 = \min ||Ax b||_2 \Leftrightarrow A^H Ax_0 = A^H b$.
- 证 (1) $Ax_0 = b \Rightarrow A^H Ax_0 = A^H b$; $A^H Ax_0 = A^H b \Rightarrow A^H (Ax_0 - b) = 0$ $\Rightarrow Ax_0 - b \in N(A^H) = R^{\perp}(A)$ (Th1-35) Ax = b有解 $\Rightarrow b \in R(A) \Rightarrow Ax_0 - b \in R(A)$ $\Leftrightarrow Ax_0 - b = 0 \Rightarrow Ax_0 = b$.
- (2) 必要性. Th32: x_0 是最小二乘解 $\Rightarrow Ax_0 = Pb = AA^{(1,3)}b$ 于是 $A^HAx_0 = A^HAA^{(1,3)}b = A^H(AA^{(1,3)})^Hb = (AA^{(1,3)}A)^Hb = A^Hb$ 充分性. 若 $A^HAx_0 = A^Hb$, 则有

$$A^{H}(Ax_{0} - AA^{(1,3)}b) = A^{H}Ax_{0} - A^{H}(AA^{(1,3)})^{H}b$$

$$= A^{H}b - (AA^{(1,3)}A)^{H}b = 0$$
于是 $Ax_{0} - AA^{(1,3)}b \in N(A^{H}) = R^{\perp}(A)$ (Th1-35)
$$X \quad Ax_{0} - AA^{(1,3)}b = A(x_{0} - A^{(1,3)}b) \in R(A)$$
所以 $Ax_{0} - AA^{(1,3)}b = 0 \Rightarrow Ax_{0} = AA^{(1,3)}b = Pb$

$$\Rightarrow ||Ax_{0} - b||_{2} = \min||Ax - b||_{2}$$

Th33 Ax = b 无解 $\Rightarrow x_0 = A^+b$ 是极小范数最小二乘解,且唯一.

证 Th32:
$$||Ax - b||_2 = \min \Leftrightarrow Ax = AA^{(1,3)}b$$
 (有解 $x = A^{(1,3)}b$)
Th30: $Ax = AA^{(1,3)}b$ 有解 \Rightarrow 极小范数解 $x_0 = A^{(1,4)} \cdot AA^{(1,3)}b$ $= A^+b$ 唯一

- 结论: (1) Ax = b 有解 $\Leftrightarrow AA^+b = b$.
 - (2) Ax = b $fightharpoonup fixed <math>Ax = A^+b + (I A^+A)y \quad (\forall y \in \mathbb{C}^n)$.
 - (3) Ax = b 有解 $\stackrel{\text{Th } 30}{\Rightarrow} x_0 = A^+b$ 是极小范数解,且唯一.
 - (4) Ax = b 无解 $\Rightarrow x_0 = A^+b$ 是极小范数最小二乘解,且唯一.

例 10 已知
$$A = \begin{bmatrix} 1 & 1 & 0 & 2 & 2 \\ 2 & 2 & 3 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

- 3. 用广义逆矩阵方法判断线性方程组Ax = b是否有解;
- **4.** 求线性方程组 Ax = b 的极小范数解或极小范数最小二乘解 x_0 . (要求指出所求的是哪种解)

2.
$$F^{+} = (F^{T}F)^{-1}F^{T} = \begin{bmatrix} 6 & 7 \\ 7 & 10 \end{bmatrix}^{-1}F^{T}$$

$$= \frac{1}{11} \begin{bmatrix} 10 & -7 \\ -7 & 6 \end{bmatrix} F^{T} = \frac{1}{11} \begin{bmatrix} 10 & -1 & 3 \\ -7 & 4 & -1 \end{bmatrix}$$

$$G^{+} = G^{T} (GG^{T})^{-1} = G^{T} \begin{bmatrix} 10 & -4 \\ -4 & 3 \end{bmatrix}^{-1} = G^{T} \cdot \frac{1}{14} \begin{bmatrix} 3 & 4 \\ 4 & 10 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 3 & 4 \\ 4 & 10 \\ 2 & -2 \\ 2 & -2 \end{bmatrix}$$

$$A^{+} = G^{+}F^{+} = \frac{1}{154} \begin{bmatrix} 2 & 13 & 5 \\ 2 & 13 & 5 \\ -30 & 36 & 2 \\ 34 & -10 & 8 \\ 34 & -10 & 8 \end{bmatrix}$$

3~4.
$$x_0 = A^+b = \frac{1}{14} \begin{bmatrix} 3 & 3 & 4 & 2 & 2 \end{bmatrix}^T$$

 $AA^+b = Ax_0 = b$ \Rightarrow Ax = b 有解,故 x_0 是 Ax = b 的极小范数解.

例 11 设非零矩阵 $A_{m\times n}$ 的 M-P 逆为 A^+ , $B_{n\times n}$ 为酉矩阵,则 $[A \mid AB]^+ =$ ____.

分析: 设 A 的满秩分解为 A = FG,则 $A^+ = G^+F^+$.

满秩分解 $[A \mid AB] = F[G \mid GB] = F\tilde{G}$ (\tilde{G} 为行满秩矩阵)

$$\widetilde{G}^{+} = \begin{bmatrix} G^{\mathrm{H}} \\ B^{\mathrm{H}}G^{\mathrm{H}} \end{bmatrix} \left[\left[G \mid GB \right] \begin{bmatrix} G^{\mathrm{H}} \\ B^{\mathrm{H}}G^{\mathrm{H}} \end{bmatrix} \right]^{-1} = \begin{bmatrix} G^{\mathrm{H}} \\ B^{\mathrm{H}}G^{\mathrm{H}} \end{bmatrix} \left(GG^{\mathrm{H}} + GBB^{\mathrm{H}}G^{\mathrm{H}} \right)^{-1}$$

$$= \begin{bmatrix} G^{H} \\ B^{H}G^{H} \end{bmatrix} (2GG^{H})^{-1} = \begin{bmatrix} G^{H} \\ B^{H}G^{H} \end{bmatrix} \cdot \frac{1}{2} (GG^{H})^{-1} = \frac{1}{2} \begin{bmatrix} G^{+} \\ B^{H}G^{+} \end{bmatrix}$$
$$[A \mid AB]^{+} = \tilde{G}^{+}F^{+} = \frac{1}{2} \begin{bmatrix} G^{+} \\ B^{H}G^{+} \end{bmatrix} F^{+} = \frac{1}{2} \begin{bmatrix} G^{+}F^{+} \\ B^{-1}G^{+}F^{+} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} A^{+} \\ B^{+}A^{+} \end{bmatrix}$$

例 12 利用 $(A \otimes B)^+ = A^+ \otimes B^+$ 求分块矩阵的 M-P 逆.

$$[A \mid 2A]^{+} = \{(1 \mid 2) \otimes A\}^{+} = (1 \mid 2)^{+} \otimes A^{+} = \frac{1}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes A^{+} = \frac{1}{5} \begin{bmatrix} A^{+} \\ 2A^{+} \end{bmatrix}$$

四、矩阵方程AXB = D的极小范数解与极小范数最小二乘解

<mark>定理 26:</mark> 矩阵方程 AXB = D 有解 ⇔ $AA^+DB^+B = D$;

矩阵 A 的 F-范数 等于 向量 $\overline{\text{vec}}(A)$ 的 2-范数. 将矩阵方程 AXB = D 按行拉直 可得线性代数方程组

$$(A \otimes B^{\mathrm{T}})\overline{\mathrm{vec}}(X) = \overline{\mathrm{vec}}(D)$$

因为 $\overline{\operatorname{vec}}(X_0) = (A \otimes B^{\mathsf{T}})^+ \overline{\operatorname{vec}}(D) = (A^+ \otimes (B^+)^{\mathsf{T}}) \overline{\operatorname{vec}}(D)$

所以 $X_0 = A^+ DB^+$.

定理 30: AXB = D 有解, $X_0 = A^+DB^+$ 是唯一极小 F-范数解;

定理 33: AXB = D 无解, $X_0 = A^+DB^+$ 是唯一极小 F-范数最小二乘解.