

CSE 321Software Engineering
Software Design

Md. Shamsul Haque

Product(Software) Engineering(development) Process

Use Case Diagram

Activity Diagram

Supplements the use case by providing a graphical representation of the flow of interaction within a specific scenario

Use Case Diagram

interface homeowner camera enter password and user ID valid passwords/ID in valid asswords/ID select major function prompt for reentry other functions may also be select ed input tries select surveillance rem ain tries remain thumbnail views select a specific camera select specific select camera icon camera - thumbnails generate video output prompt for view camera output another view in labelled window exit this function an oth er cam er a

Swimlane Diagram

Elements of Analysis Modeling

Data Modeling / Class Modeling

- examines data objects independently of processing
- focuses attention on the data domain
- creates a model at the customer's level of abstraction
- indicates how data objects relate to one another

Data Objects and Attributes

A data object contains a set of attributes that act as an aspect, quality, characteristic, or descriptor of the object

```
object: automobile
attributes:
    make
    model
    body type
    price
    options code
```

What is a Relationship?

- Data objects are connected to one another in different ways.
 - A connection is established between person and car because the two objects are related.
 - A person owns a car
 - A person is insured to drive a car
- The relationships *owns* and *insured to drive* define the relevant connections between **person** and **car.**
- Several instances of a relationship can exist
- Objects can be related in many different ways

ERD Notation

One common form:

The ERD: An Example

CRC Modeling

Class		
Class		
┵	Class:FloorPlan	
	Description:	
	Responsibility:	Collaborator:
	defines floor plan name/type	
	manages floor plan positioning	
	scales floor plan for display	
	scales floor plan for display	
	incorporates walls, doors and windows	Wall
	shows position of video cameras	Camera
Щ		
<u> </u>		

Flow-Oriented Modeling

- Represents how data objects are transformed at they move through the system
- data flow diagram (DFD) is the diagrammatic form that is used
- Considered by many to be an "old school" approach, but continues to provide a view of the system that is unique—it should be used to supplement other analysis model elements

The Flow Model

Every computer-based system is an information transform

Flow Modeling Notation

Data Flow Diagramming: Guidelines

- all icons must be labeled with meaningful names
- the DFD evolves through a number of levels of detail
- always begin with a context level diagram (also called level 0)
- always show external entities at level 0
- always label data flow arrows
- do not represent procedural logic

Level 0 DFD Example

DFDs: A Look Ahead

Behavioral Modeling

- The behavioral model indicates how software will respond to external events or stimuli. To create the model, the analyst must perform the following steps:
 - Evaluate all use-cases to fully understand the sequence of interaction within the system.
 - Identify events that drive the interaction sequence and understand how these events relate to specific objects.
 - Create a sequence for each use-case.
 - Build a state diagram for the system.
 - Review the behavioral model to verify accuracy and consistency.

State Representations

- In the context of behavioral modeling, two different characterizations of states must be considered:
 - the state of each class as the system performs its function and
 - the state of the system as observed from the outside as the system performs its function
- The state of a class takes on both passive and active characteristics [CHA93].
 - A passive state is simply the current status of all of an object's attributes.
 - The *active state* of an object indicates the current status of the object as it undergoes a continuing transformation or processing.

State Diagram for the ControlPanel Class

Software Design

 Software design encompasses the set of principles, concepts, and practices that lead to the development of a high-quality system or product.

 Software design sits at the technical kernel of software engineering and is applied regardless of the software process model that is used. Beginning once software re-quirements have been analyzed and modeled, software design is the last software engineering action within the modeling activity and sets the stage for construction (code generation and testing)

Req. Modeling and Software Design

Question & Answer Session