Data Warehousing

DIS Exercise Course

Data Warehouses

Example application

- A Manager wants to know various key figures concerning his departments:
 - Average salaries, number of employees per organisational unit and achievement of objectives each grouped by year, age and gender.
- The relevant data are stored in different systems for personnel management, project management and corporate management.

	number of employees by gender and age					salary		achievement of objectives
overview	total	< 40		>= 40		total	avorago	total
		male	female	male	female	total	average	total
2009								
total	68942	22337	15443	21544	9618	126107773,82	1770,97	
manufacturing	18614	8376	3257	5584	1397	32384781,88	1689,42	
food	2329	466	583	682	598	3436462,79	1475,51	
engineering	6523	2962	1231	1957	373	12333492,71	1890,77	
other	9762	4948	1443	2945	426	16614826,38	1701,99	
services	37918	10051	9562	12438	5867	72475706,84	1911,38	
other	12410	3910	2624	3522	2354	21247285,10	1712,11	
2010								
total	69037	21859	15672	22738	8768	1231036676	1699,23	

Data Warehouses (2)

ETL process

- **E**xtract
 - ... relevant data from various data sources
 - periodic, event-driven, query-driven
- **T**ransform
 - ... data into destination schema and format
 - syntactic transformation (date formats, strings, ...)
 - semantic transformation (remove duplicates, convert values, ...)
- <u>L</u>oad
 - ... data into the destination database

ETL is supported by repository:

 Contain rules for extraction and transformation

Multidimensional View

Data cube

Data structures

- Qualifying data (categories)
- Quantifying data

Dimensional Hierarchies

Data cube with several dimensions

Multidimensional View (2)

Operations during data analysis

Relational Mapping of Multidimensional Data

Separation of structure and contents:

- Central fact table
 - Few columns, many tuples
 - partly quantifying attributes
- Peripheral dimension tables
 - Feature and category attributes (structure)
 - Many columns, few tuples
 - Foreign keys connect fact and dimension tables

Relational Mapping of Multidimensional Data(2)

- Star Schema Problem:
 - Redundancy
- **→** Normalised Star Schema
- → (in case of forks: Snowflake Schema)

Star Query

- Grouping queries on Star (or Snowflake) Schema
- Example:
 - total salary of employees by region and gender

SELECT G.region, P.gender,

SUM(salary)

FROM facts

NATURAL JOIN geography G NATURAL JOIN personnel P

WHERE ...

GROUP BY (G.region, P.gender)

Star Query (2) – Problem: Cross Table

Cross table

- Typical result output
- Row and column sums

Grouping sets

- Several queries required (one query per granulation level, e.g. on Roll-Up)
- 2ⁿ possible combinations for n attributes

•	Combinations in the exam	ple (3	3 attributes =	$2^3 = 8$	combinations)):
---	--------------------------	--------	----------------	-----------	---------------	----

- triple: (division, year, gender)
- double: (division, year), (year, gender), (division, gender)
- single / empty: (gender), (year), (division), ()

Idea: extension of GROUP BY to sets of granulation levels

SQL Extensions: Grouping Sets

Extending the GROUP BY clause:

Explicit enumeration of the desired grouping combinations

```
SELECT year, division, gender, SUM(salary) FROM ...
GROUP BY GROUPING SETS ((division, year), (year, gender), (year), ())
```

year	division	gender	SUM(salary)
2008	manufactur.	-	1200000
2008	services	-	2500000
2009	manufactur.	-	1500000
2009	services	-	3000000
2008	_	m	3000000
2008	-	f	7000000
2009	-	m	3000000
2009	_	f	1500000
2008	-	-	3700000
2009	_	_	4500000
_	_	_	8200000

Every GROUPING SET produces a separate set of tuples!

SQL Extensions (2)

Extending the GROUP BY clause:

Abbreviation for the enumeration of all 2ⁿ possible combinations

```
SELECT year, division, SUM(salary) FROM ...

GROUP BY <u>CUBE(year, division)</u>

is equivalent to

SELECT year, division, SUM(salary) FROM ...

GROUP BY GROUPING SETS ((year, division), (year), (division), ())
```

year	division	SUM(salary)
2008	manufactur.	1200000
2008	services	2500000
2009	manufactur.	1500000
2009	services	3000000
2008	-	3700000
2009	-	4500000
_	manufactur	2700000
_	services	5500000
-	_	8200000

