REC'D 0 2 DEC 2004

WIPO

H JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年11月14日

出 願 号 Application Number: 特願2003-385253

[ST. 10/C]:

[JP2003-385253]

人 出 願 Applicant(s):

昭和電工株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> 5 日 2004年11月

特許庁長官 Commissioner, Japan Patent Office

BEST AVAILABLE COPY

特許願 【書類名】 1034729 【整理番号】 平成15年11月14日 【提出日】 特許庁長官 今井 康夫 殿 【あて先】 B24B 37/00 【国際特許分類】 H01L 21/304 【発明者】 千葉県千葉市緑区大野台1丁目1番1号 昭和電工株式会社 研 【住所又は居所】 究開発センター内 伊藤 祐司 【氏名】 【発明者】 千葉県千葉市緑区大野台1丁目1番1号 昭和電工株式会社 研 【住所又は居所】 究開発センター内 西岡 綾子 【氏名】 【特許出願人】 000002004 【識別番号】 昭和電工株式会社 【氏名又は名称】 【代理人】 【識別番号】 100099759 【弁理士】 【氏名又は名称】 青木 篤 03-5470-1900 【電話番号】 【選任した代理人】 【識別番号】 100077517 【弁理士】 石田 敬 【氏名又は名称】 【選任した代理人】 100087413 【識別番号】 【弁理士】 古賀 哲次 【氏名又は名称】 【選任した代理人】 100082898 【識別番号】 【弁理士】 西山 雅也 【氏名又は名称】 【手数料の表示】

【予納台帳番号】

【納付金額】 【提出物件の目録】

【物件名】

【物件名】

【物件名】

【物件名】

【包括委任状番号】

209382 21,000円

明細書 1

要約書 1

0200971

図面 1

特許請求の範囲 1

出証特2004-3100491

【書類名】特許請求の範囲

【請求項1】

凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を平坦化するための研磨組 成物であって、前記研磨組成物は水、構造中に炭素数6~22のアルキル基を有するリン酸 エステル及び前記金属のエッチング剤を含有し、pHが5~11であることを特徴とする研磨 組成物。

【請求項2】

エッチング剤が酸及び/または塩基と、酸化剤を含む請求項1に記載の研磨組成物。

さらに砥粒を含む請求項1又は2に記載の研磨組成物。

さらに界面活性剤を含む請求項1~3のいずれか1項に記載の研磨組成物。

【請求項5】

さらにアゾール基を2個以上含む化合物をさらに含む請求項1~4のいずれか1項に記載 の研磨組成物。

【請求項6】

さらにアミノ酸を含む請求項1~5のいずれか1項に記載の研磨組成物。

【請求項7】

アゾール基を1個含む化合物をさらに含む請求項1~6のいずれか1項に記載の研磨組成 物。

【請求項8】

炭素数6~22のアルキル基を有する脂肪酸をさらに含む請求項1~7のいずれか1項に記 載の研磨組成物。

【請求項9】

酸が硫酸、燐酸、ホスホン酸、硝酸などの無機酸、ギ酸、酢酸、プロピオン酸、酪酸、 吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4 ーメチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エ チルヘキサン酸、安息香酸、グリコール酸(ヒドロキシ酢酸)、サリチル酸、グリセリン 酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フ タル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ニコチン酸、キナルジン酸、アントラニル 酸などのカルボン酸いずれか1種以上である請求項2~8のいずれか1項に記載の研磨組 成物。

【請求項10】

塩基がアンモニア、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリ ウム、炭酸水素アンモニウム、メチルアミン、エチルアミン、プロピルアミン、イソプロ ピルアミン、ブチルアミン、イソプチルアミン、 t ーブチルアミン、アミルアミン、アリ ルアミン、2-エチルヘキシルアミン、シクロヘキシルアミン、ベンジルアミン、フルフ リルアミンなどのアルキルモノアミン、Oーアミノフェノール、エタノールアミン、3 ー アミノー1-プロパノール、2-アミノー1-プロパノールなどのヒドロキシル基を有す るモノアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テ トラエチレンペンタミン、ペンタエチレンヘキサミン、〇一フェニレンジアミン、トリメ チレンジアミン、2, 2-ジアミノジn-プロピルアミン、2-メチル-2-(2-ベン ジルチオエチル) エチレンジアミン、1,5-ジアミノ-3-ペンタノール、1,3-ジ アミノー2ープロパノール、キシレンジアミン、ビスアミノプロピルポリアルキレンエー テルなどのジアミン、ポリアリルアミン、ポリエチレンイミンなどのポリアミンのいずれ か1種以上である請求項2~8のいずれか1項に記載の研磨組成物。

【請求項11】

酸化剤が酸素、過酸化水素、オゾン、アルキルパーオキサイド、過酸、過マンガン酸塩 、過硫酸塩、ポリオキソ酸、次亜塩素酸塩、過ヨウ素酸塩のいずれか1種以上である請求 項2~8のいずれか1項に記載の研磨組成物。

【請求項12】

砥粒がシリカ、酸化セリウム、酸化アルミニウム、水酸化アルミニウム、二酸化チタン 、有機砥粒のいずれか1種以上である請求項3~11のいずれか1項に記載の研磨組成物

【請求項13】

界面活性剤がアニオン性、カチオン性、非イオン性、両性界面活性剤のいずれか1種以上である請求項4~12のいずれか1項に記載の研磨組成物。

【請求項14】

界面活性剤がアルキル芳香族スルホン酸またはその塩である請求項4~12のいずれか 1項に記載の研磨組成物。

【請求項15】

アゾール基を2個以上含む化合物が、ヒドロキシル基、カルボキシル基、アミノ基からなる少なくとも1種の反応性置換置を2つ以上含むアゾール重合体、または、ビニル基を含むアゾール重合体である請求項5~14のいずれか1項に記載の研磨組成物。

【請求項16】

アゾール基を2個以上含む化合物が重量平均分子量で300~5,000,000である重合体である請求項5又は15に記載の研磨組成物。

【請求項17】

アミノ酸がグリシン、アラニン、 β ーアラニン、2ーアミノ酪酸、ノルバリン、バリン、ロイシン、ノルロイシン、イソロイシン、アロイソロイシン、フェニルアラニン、プロリン、サルコシン、オルニチン、リシン、タウリン、セリン、トレオニン、アロトレオニン、ホモセリン、チロシン、3,5ージョードーチロシン、 β ー(3,4ージヒドロキシフェニル)ーアラニン、チロキシン、4ーヒドロキシープロリン、システィン、メチオニン、エチオニン、ランチオニン、シスタチオニン、シスチン、システィン酸、アスパラギン酸、グルタミン酸、Sー(カルボキシメチル)ーシスティン、4ーアミノ酪酸、アスパラギン、グルタミン、アザセリン、アルギニン、カナバニン、シトルリン、 δ ーヒドロキシーリシン、クレアチン、キヌレニン、ヒスチジン、1ーメチルーヒスチジン、3ーメチルーヒスチジン、エルゴチオネイン、トリプトファンのいずれか1種以上である請求項6~16のいずれか1項に記載の研磨組成物。

【請求項18】

アゾール基を1個含む化合物がベンズイミダゾールー2ーチオール、2ー [2ー(ベンゾチアゾリル)] チオプロピオン酸、2ー [2ー(ベンゾチアゾリル)チオブチル酸、2ーメルカプトベンゾチアゾール、1,2,3ートリアゾール、1,2,4ートリアゾール、3ーアミノー1 Hー1,2,4ートリアゾール、ベンゾトリアゾール、1ーヒドロキシベンゾトリアゾール、1ージヒドロキシプロピルベンゾトリアゾール、2,3ージカルボキシプロピルベンゾトリアゾール、4ーヒドロキシベンゾトリアゾール、4ーカルボキシルー1 Hーベンゾトリアゾール、4ーメトキシカルボニルー1 Hーベンゾトリアゾール、4ーオクチルオキシカルボニルー1 Hーベンゾトリアゾール、5ーヘキシルベンゾトリアゾール、Nー(1,2,3ーベンゾトリアゾリルー1ーメチル)ーNー(1,2,4ートリアゾリルー1ーメチル)ー2ーエチルヘキシルアミン、トリルトリアゾール、ナフトトリアゾール、ベンズイミダゾール、テトラゾール、ヒドロキシベンゾトリアゾール、カルボキシベンゾトリアゾールのいずれか1種以上である請求項7~17のいずれか1項に記載の研磨組成物。

【請求項19】

金属膜がアルミニウム、銅、鉄、タングステン、ニッケル、タンタル、ルテニウムや白金などの白金族金属またはこれら金属の合金からなる請求項1~18のいずれか1項に記載の研磨組成物。

【請求項20】

金属膜が少なくともバリヤ層と配線金属層の2層に積層されている請求項1~18のいずれか1項に記載の研磨組成物。

【請求項21】

バリヤ層がタンタル、タンタル合金、窒化タンタル、チタン、チタン合金のいずれか1 種以上からなることを特徴とする請求項20に記載の研磨組成物。

【請求項22】

凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を請求項1~21のいずれか 1項に記載の研磨組成物で平坦化することを特徴とする研磨方法。

【請求項23】

凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を請求項1~22のいずれか 1 項に記載の研磨組成物で平坦化する工程を含むことを特徴とする基板の製造方法。

【書類名】明細書

【発明の名称】研磨組成物および研磨方法

【技術分野】

[0001]

本発明は、基板を研磨する研磨組成物、研磨方法、基板の製造方法に関する。 【背景技術】

[0002]

IC (Integrated circuit;集積回路) やLSI (Large Scale Integration;大規模 集積回路)における技術の進歩により、それらの動作速度や集積規模が向上し、例えばマ イクロプロセッサの高性能化やメモリチップの大容量化が急速に達成されている。これら 高性能化には微細加工技術が大きく寄与をしている。この微細加工技術のひとつとして平 坦化技術である、化学機械研磨法がある。多層配線工程における、層間絶縁膜、金属プラ グ、配線金属の平坦化に使用されている。

[0003]

このうち配線金属は、近年、配線遅延の問題などから銅または銅合金を使用する試みが なされている。銅または銅合金を用いた配線の製造方法としては層間絶縁膜にあらかじめ 溝を形成しておき、必要があれば、タンタル、窒化タンタルなどのバリヤ膜を薄く形成し 、ダマシン法などにより銅または銅合金を堆積する。この時銅または銅合金は層間絶縁膜 上部に余分に堆積しているために平坦化を行いながら余分な銅または銅合金を除去してい く研磨を行うことにより配線を形成する。

[0004]

また、磁気記録媒体として注目を浴びている磁気記憶装置(MRAM)がある。MRA M では、素子アレイのうち、特定のビットに情報を記録するために、アレイを縦横に横 切るビット書き込み線とワード書き込み線とを設け、その交差領域に位置する素子のみを 使用して選択書き込みを行う方法(例えば特許文献1参照)が知られている。この中に金 属配線が形成されるが、金属配線はアルミニウムまたはアルミニウム合金、銅または銅合 金から成る導体層とこれを囲むようにニッケルー鉄(パーマロイ)などの強磁性層からな る。必要があれば、タンタル、窒化タンタルなどのバリヤ膜を強磁性層を挟むように薄く 形成する。この金属配線はダマシン法で形成されるが、余分な導体層、強磁性層およびバ リヤ膜は、研磨を行いながら平坦化し除去される。

[0005]

このような研磨を行いながら平坦化する方法として、砥粒を含有する研磨剤で処理する 方法が考えられるが、研磨剤のみで処理した場合には、銅または銅合金は一般的に柔らか いのでスクラッチと呼ばれる傷がつきやすく歩留まりが非常に低くなる。また、銅はエッ チング剤により溶解することからエッチング剤を添加した研磨剤が考えられ得るが、凸部 ばかりではなく凹部もエッチングし、平坦化が出来ないばかりか金属配線部が削れたディ ッシングという現象が発生してしまう。

[0006]

このような現象を防止する銅または銅合金から成る金属膜を研磨する研磨組成物として 、過酸化水素、ベンゾトリアゾール、アミノ酢酸を含有し、必要があれば砥粒を含有して いる組成物が特許文献2に開示されている。ここでベンゾトリアゾールは酸化された金属 膜と反応保護膜を形成し、凸部を優先的に機械研磨し平坦性が高まると共に低ディッシン グに寄与していると記述されている。

[0007]

さらに、特許文献3には、銅と反応して水に難溶性で、かつ銅よりも機械的に脆弱な銅 錯体を生成する、2ーキノリンカルボン酸、を添加する研磨組成物を開示している。

[0008]

一方、特許文献4には、メモリーハードディスクに使用される磁気ディスク用基盤の研 磨用組成物であって、(a) 水と、(b) ポリオキシエチレンアルキルエーテルリン酸お よびポリオキシエチレンアリールエーテルリン酸からなる群より選択される少なくとも1

種類のリン酸エステル化合物と、(c)前記(b)のリン酸エステル化合物以外の無機酸 、有機酸およびそれらの塩類からなる群より選択される少なくとも1種類の研磨促進剤と 、(d)酸化アルミニウム、二酸化ケイ素、酸化セリウム、酸化ジルコニウム、酸化チタ ン、窒化ケイ素および二酸化マンガンからなる群より選択される少なくとも1種類の研磨 材とを含んでなる研磨用組成物が開示されている。

[0009]

【特許文献1】特開平10-116490号公報

【特許文献2】特開平8-83780号公報

【特許文献3】特開平9-55363号公報

【特許文献4】特開2001-89749号公報

【非特許文献1】最新CMPプロセスと材料技術(技術情報協会)(2002)ペー ジ133

【発明の開示】

【発明が解決しようとする課題】

[0010]

特許文献2に記載のベンゾトリアゾールを含む研磨組成物は平坦性やディッシングには 効果があるものの、ベンゾトリアゾールの防食作用が強いため、研磨速度が著しく低下す る欠点があった。

[0011]

また、特許文献3に記載の2ーキノリンカルボン酸を用いた研磨組成物では、2ーキノ リンカルボン酸が著しく高価で工業的に使用することは難しかった。

$[0\ 0\ 1\ 2\]$

特許文献4はメモリーハードディスクに使用される研磨液であり、本発明に於ける金属 配線形成については記載されていない。

[0013]

近年、銅配線の寄生容量の関係から層間絶縁膜としてLowk材の使用が検討されてい る。Lowκ材としては無機系、有機系さまざまな材料が開発されているが、次世代のL owκ材としては、誘電率2.3未満程度のものが必要とされている。この誘電率を達成 する為にはLοwκ材のポーラス化が必須と言われている。非特許文献1によれば、この ような材料は機械的強度が弱く、従来用いられているようなCMP研磨圧では破壊されて しまう問題点があり、低圧での研磨が求められている。しかしながら、上記記載の従来技 術では高圧研磨を想定しており、低圧での高速研磨は検討されてこなかった。

[0014]

更に、近年配線が細くなる傾向があり、細い配線が高密度で存在する場合、バリヤ膜及 び相関絶縁膜が研磨されくぼみができるエロージョンと言う現象がおこる。これはディッ シングと同様配線抵抗を落とすばかりか配線ショートの原因にもなり、抑制することが望 まれている。

[0015]

本発明は、エッチング、エロージョンを抑制し金属膜の平坦性を維持したまま高速に研 磨できる研磨組成物を提供すると共にこの研磨組成物を用いた金属膜の研磨方法、および この研磨組成物で平坦化する工程を含む基板の製造方法を提供することを目的としたもの である。

【課題を解決するための手段】

[0016]

本発明者らは、上記課題の解決について鋭意検討した結果、凹部を有する基板上に凹部 を覆うように埋め込まれた金属膜を平坦化するために水、炭素数6以上のアルキル基を有 するリン酸エステル及び前記金属のエッチング剤を含有し、pHが5~11である研磨組成物 が前記課題を解決できることを見出し、本発明を完成するに至った。

[0017]

すなわち、本発明は以下の [1] ~ [23] に示される。

- [1] 凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を平坦化するための研磨組成物であって、前記研磨組成物は水、構造中に炭素数6~22のアルキル基を有するリン酸エステル及び前記金属のエッチング剤を含有し、pHが5~11であることを特徴とする研磨組成物。
- [2] エッチング剤が酸及び/または塩基と、酸化剤を含む上記〔1〕に記載の研磨組成物。
 - [3] さらに砥粒を含む上記〔1〕又は〔2〕に記載の研磨組成物。
 - [4] さらに界面活性剤を含む上記〔1〕~〔3〕のいずれか1項に記載の研磨組成物
- [5] さらにアゾール基を2個以上含む化合物をさらに含む上記 $[1] \sim [4]$ のいずれか1項に記載の研磨組成物。
 - [6] さらにアミノ酸を含む上記〔1〕~〔5〕のいずれか1項に記載の研磨組成物。
- [7] アゾール基を1個含む化合物をさらに含む上記 $[1] \sim [6]$ のいずれか1項に記載の研磨組成物。
- [8] 炭素数6~22のアルキル基を有する脂肪酸をさらに含む上記〔1〕~〔7〕のいずれか1項に記載の研磨組成物。
- [9] 酸が硫酸、燐酸、ホスホン酸、硝酸などの無機酸、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3, 3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-メチルヘキサン酸、1-オクタン酸、1- カリカル酸、ケリコール酸(ヒドロキシ酢酸)、サリチル酸、グリセリン酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ニコチン酸、キナルジン酸、アントラニル酸などのカルボン酸いずれか1種以上である上記[1]~[8]のいずれか1項に記載の研磨組成物。
- 〔10〕 塩基がアンモニア、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素アンモニウム、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、1-1 でアミルアミン、アリルアミン、ブチルアミン、イソブチルアミン、1-1 でアミルアミン、ベンジルアミン、フルフリルアミンなどのアルキルモノアミン、1-1 でのヒドロキシルを有するモノアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテミン、トリメチレンジアミン、1-1 でのカープロピルアミン、1-1 でのカープロピルアミン、1-1 でのカープロピルアミン、1-1 でのカープロピルアミン、1-1 でのカーカーのよりアミン、1-1 でのカーカーのよりアミン、ガリアリルアミン、ボリアミン、カリステミノーのカール、カージアミノーのカール、オリアリルアミン、ボリエチレンイミンなどのポリアミンのいずれか 1種以上である上記 [1] ~ [8] のいずれか 1項に記載の研磨組成物。
- [11] 酸化剤が酸素、過酸化水素、オゾン、アルキルパーオキサイド、過酸、過マンガン酸塩、過硫酸塩、ポリオキソ酸、次亜塩素酸塩、過ヨウ素酸塩のいずれか1種以上である上記[2]~[8]のいずれか1項に記載の研磨組成物。
- [12] 砥粒がシリカ、酸化セリウム、酸化アルミニウム、水酸化アルミニウム、二酸化チタン、有機低粒のいずれか1種以上である上記[3]~[11]のいずれか1項に記載の研磨組成物。
- [13] 界面活性剤がアニオン性、カチオン性、ノニオン性、両性界面活性剤のいずれか1種以上である上記[4]~[12]のいずれか1項に記載の研磨組成物。
- [14] 界面活性剤がアルキル芳香族スルホン酸またはその塩である上記〔4〕~〔1 2〕のいずれか1項に記載の研磨組成物。
- [15] アゾール基を2個以上含む化合物がビニル基を含むアゾール重合体である上記[5]~[14]のいずれか1項に記載の研磨組成物。
- [16] アゾール基を2個以上含む化合物が重量平均分子量で2000~500000である重合

体である上記〔5〕又は〔15〕に記載の研磨組成物。

[17] アミノ酸がグリシン、アラニン、 β -アラニン、2-アミノ酪酸、ノルバリン 、バリン、ロイシン、ノルロイシン、イソロイシン、アロイソロイシン、フェニルアラニ ン、プロリン、サルコシン、オルニチン、リシン、タウリン、セリン、トレオニン、アロ ドロキシフェニル) ーアラニン、チロキシン、4ーヒドロキシープロリン、システィン、 メチオニン、エチオニン、ランチオニン、シスタチオニン、シスチン、システィン酸、ア スパラギン酸、グルタミン酸、S-(カルボキシメチル)-システィン、4-アミノ酪酸 、アスパラギン、グルタミン、アザセリン、アルギニン、カナバニン、シトルリン、δー ヒドロキシーリシン、クレアチン、キヌレニン、ヒスチジン、1ーメチルーヒスチジン、 3-メチルーヒスチジン、エルゴチオネイン、トリプトファンのいずれか1種以上である 上記〔6〕~〔16〕のいずれか1項に記載の研磨組成物。

[18] アゾール基を1個含む化合物がベンズイミダゾール-2-チオール、2-[2 (ベンゾチアゾリル)] チオプロピオン酸、2-[2-(ベンゾチアゾリル) チオブチ ル酸、2-メルカプトベンゾチアゾール、1,2,3-トリアゾール、1,2,4-トリ アゾール、3-アミノー1H-1,2,4-トリアゾール、ベンゾトリアゾール、1-ヒ ドロキシベンゾトリアゾール、1-ジヒドロキシプロピルベンゾトリアゾール、2,3-ジカルボキシプロピルベンゾトリアゾール、4ーヒドロキシベンゾトリアゾール、4ーカ ルボキシルー1 Hーベンゾトリアゾール、4 - メトキシカルボニルー1 H - ベンゾトリア ゾール、4-ブトキシカルボニル-1H-ベンゾトリアゾール、4-オクチルオキシカル ボニルー1H-ベンゾトリアゾール、5-ヘキシルベンゾトリアゾール、N-(1, 2, 3-ベンゾトリアゾリルー<math>1-メチル)-N-(1 , 2 , 4-トリアゾリルー1-メチル) -2-エチルヘキシルアミン、トリルトリアゾール、ナフトトリアゾール、ベンズイミ ダゾール、テトラゾール、ヒドロキシベンゾトリアゾール、カルボキシベンゾトリアゾー ルのいずれか1種以上である上記〔7〕~〔17〕のいずれか1項に記載の研磨組成物。 [19] 金属膜が銅または銅を含有する合金からなる上記[1]~[18]のいずれか

1項に記載の研磨組成物。

[20] 金属膜が少なくともバリヤ層と配線金属層の2層に積層されている上記〔1〕 ~〔18〕のいずれか1項に記載の研磨組成物。

[21] バリヤ層がタンタル、タンタル合金、窒化タンタル、チタン、チタン合金のい ずれか1種以上からなることを特徴とする上記〔20〕に記載の研磨組成物。

凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を上記〔1〕~〔 21]のいずれか1項に記載の研磨組成物で平坦化することを特徴とする研磨方法。

[23] 凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を上記〔1〕~〔 22]のいずれか1項に記載の研磨組成物で平坦化する工程を含むことを特徴とする基板 の製造方法。

【発明の効果】

[0018]

金属膜、特に銅膜の研磨においてリン酸エステルはディッシングを低減すことが可能に なる。さらに、界面活性剤、アゾール基を2個以上含む化合物、アミノ酸、アゾール基を 1個含む化合物、炭素数6以上のアルキル基を有する脂肪酸の少なくとも1種と組み合わ せることによって、よりディッシングを低減することができる。

[0019]

さらに、本発明の研磨組成物を用いる研磨方法および基板の製造方法により平坦性の優 れた基板を製造することが容易になる。

【発明を実施するための最良の形態】

[0020]

以下、本発明の実施の形態について詳細に説明する。

[0021]

本発明は凹部を有する基体上に凹部を覆うように埋め込まれた金属膜を平坦化するため

[0022]

本発明の研磨組成物に含まれる構造中に炭素数 6 以上のアルキル基を有するリン酸エステルは、ディッシングを低減する効果を有する。

[0023]

本発明に於けるリン酸エステルは、炭素数 6 以上のアルキル基を有していればその構造は限定されない。したがって構造中にアルキル基以外を有していても構わない、例えばオキシアルキレン鎖、フェニレン鎖、フェニル基等が挙げられる。リン酸エステルは一置換、二置換、三置換の三種があるがそのいずれでも構わない。

[0024]

また、カリウム塩、アンモニウム塩の様にリン酸エステル塩であっても構わない。該リン酸エステルは、市販品を用いる事もできるし水酸基を有する化合物から公知の方法で合成して用いることもできる。

[0025]

上記りン酸エステルとしては、オクチルリン酸、デシルリン酸、ラウリルリン酸、ミリスチルリン酸、セチルリン酸、ステアリルリン酸、2級アルキル(平均炭素数13)リン酸、2-エチルヘキシルリン酸、オレイルリン酸、モノステアリルグリセリルエーテルリン酸、モノセチルグリセリルエーテルリン酸、モノオレイルグリセリルエーテルリン酸、イソステアリルグリセリルエーテルリン酸、ポリオキシエチレンデシルエーテルリン酸、ポリオキシエチレンラウリルエーテルリン酸、ポリオキシエチレンラウリルエーテルリン酸、ポリオキシエチレンミリスチルエーテルリン酸、ポリオキシエチレンセチルエーテルリン酸、ポリオキシエチレンステアリルエーテルリン酸、ポリオキシエチレン2級アルキル(平均炭素数13)エーテルリン酸、ポリオキシエチレン2オレイルエーテルリン酸、ポリオキシエチレンノニルフェニルエーテルリン酸等が挙げられる。好ましくはオクチルリン酸、ラウリルリン酸、ステアリルリン酸等の炭素数8~18のアルキルリン酸エステルやポリオキシエチレンラウリルエーテルリン酸、ポリオキシエチレンラウリルエーテルリン酸、ポリオキシエチレンジ酸アルキル(平均炭素数13)エーテルリン酸のように構造中にオキシエチレン鎖を有するものである。

[0026]

本発明で使用される炭素数 6 以上のアルキル基を有するリン酸エステルは、一種を添加しても良いし、二種以上を混合して添加しても良い。添加量としては、 $0.001\sim2$ 質量%である。好ましくは、 $0.001\sim1$ 質量%である。少量ではエッチング抑制の効果が少なく、多量に添加しても効果は少なく、場合によっては液の安定性を損なうことにもなりかねない。

[0027]

本発明の研磨組成物に含まれるエッチング剤は研磨を促進すると共に安定した研磨を行うために添加する。該エッチング剤は酸及び/または塩基と、酸化剤を含むものである。 これらの組成は被研磨金属種によって適宜選択する。

[0028]

上記酸としては、硫酸、燐酸、ホスホン酸、硝酸などの無機酸、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2ーメチル酪酸、nーヘキサン酸、3,3ージメチル酪酸、2ーエチル酪酸、4ーメチルペンタン酸、nーヘプタン酸、2ーメチルヘキサン酸、nーオクタン酸、2ーエチルヘキサン酸、安息香酸、グリコール酸(ヒドロキシ酢酸)、サリチル酸、グリセリン酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ニコチン酸、キナルジン酸、アントラニル酸などのカルボン酸が挙げられる。

[0029]

上記塩基としては、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、 炭酸水素カリウム、炭酸水素アンモニウム、メチルアミン、エチルアミン、プロピルアミ ン、イソプロピルアミン、ブチルアミン、イソブチルアミン、t-ブチルアミン、アミルアミン、アリルアミン、2-エチルヘキシルアミン、シクロヘキシルアミン、ベンジルアミン、フルフリルアミンなどのアルキルモノアミン、0-アミノフェノール、エタノールアミン、3-アミノー1-プロパノール、2-アミノー1-プロパノールなどのヒドロキシル基を有するモノアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、0-フェニレンジアミン、1, 3-ジアミノン、2-メチルー2-(2-ベンジルチオエチル) エチレンジアミン、1, 5-ジアミノー3-ペンタノール、1, 3-ジアミノー2-プロパノール、キシレンジアミン、ビスアミノプロピルポリアルキレンエーテルなどのジアミン、ポリアリルアミン、ポリエチレンイミンなどのポリアミンが挙げられる。これらのうち、好ましくは、アンモニア、水酸化カリウムである。

[0030]

これら酸、塩基はそれぞれ単独であっても良いし、複数種類を併用しても構わない。添加量としては研磨組成物がpHが5~11であれば特に規定しないが、好ましくは0.01~10質量%である。少ないと適切な研磨速度が出ず、多いと金属または金属合金のエッチング速度が速く、平坦化ができずディッシングも抑制することができない。pHは5未満や11を越えると液の安定性を損なう恐れがある。

[0031]

上記酸化剤としては、酸素、オゾン、過酸化水素、 t ーブチルハイドロパーオキサイド、エチルベンゼンハイドロパーオキサイドなどのアルキルパーオキサイド、過酢酸、過安息香酸などの過酸、過マンガン酸カリウムなどの過マンガン酸塩、過ヨウ素酸カリウムなどの過ヨウ素酸塩、過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩、ポリオキソ酸、次亜塩素酸カリウムなどの次亜塩素酸塩などが挙げられる。これらの酸化剤のうち、取り扱いやすい過酸化水素、過硫酸塩が好ましい。

[0032]

酸化剤の添加量としては、研磨組成物に対して $0.01\sim30$ 質量%である。好ましくは、 $0.05\sim20$ 質量%であり、更に好ましくは、 $0.1\sim10$ 質量%である。少ないと研磨速度が小さく十分な添加効果が得られず、多いと無駄であるばかりか逆に研磨速度を抑制する場合もある。

[0033]

本発明の研磨組成物は、砥粒なしで使用することも出来るが、研磨速度を十分に上げたりする目的で添加することも出来る。砥粒としては、シリカ、酸化セリウム、酸化アルミニウム、水酸化アルミニウム、二酸化チタン、有機砥粒が挙げられる。これら砥粒は一種を添加しても良いし、二種以上を混合して添加しても良い。また、上記砥粒成分を二種以上複合した砥粒であっても良い。添加量は研磨組成物に対して30質量%以下である。好ましくは20質量%以下であり、更に好ましくは、10質量%以下である。添加量が多いと、ディッシングの悪化やスクラッチ増大の原因になる。

[0034]

本発明の研磨組成物に界面活性剤を添加するとディッシング効果がより向上する。

[0035]

界面活性剤としては、カチオン性、アニオン性及び非イオン性のいずれも使用することができる。カチオン性界面活性剤としては、脂肪族アミンまたはその塩、脂肪族アンモニウム塩などが挙げられる。また、アニオン性界面活性剤としては、脂肪酸石鹸、アルキルエーテルカルボン酸またはその塩、アルファオレフィンスルホン酸またはその塩、アルキルベンゼンスルホン酸またはその塩、アルキルナフタレンスルホン酸またはその塩などの塩、アルキルナフタレンスルホン酸またはその塩などのスルホン酸化合物、高級アルコール硫酸エステル、アルキル(フェニル)エーテル硫酸またはその塩などの硫酸エステル化合物。非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテルなどのエーテル型、グリセリンエステルのポリオキシエチレンアルキルエーテルなどのエーテル型、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ソルビタンエステルなどのエステル型が挙げられる。これらの内、スルホン酸化

[0036]

これら界面活性剤はそれぞれ単独であっても良いし、複数種類を併用しても構わない。

[0037]

界面活性剤の添加量は、研磨組成物に対してそれぞれ5質量%以下である。好ましくは 1質量%以下であり、更に好ましくは0.5質量%以下である。

[0038]

本発明の研磨組成物は、アゾール基を2個以上含む化合物をさらに含むことで、ディッシィングを低減する効果を有し、エッチング抑制、研磨速度向上の効果がある。

[0039]

本発明におけるアゾール基を 2 個以上含む化合物は、種々の方法で製造できる。アゾールにはイミダゾール、トリアゾール、テトラゾール、チアゾールがあるが、この中にヒドロキシル基、カルボキシル基、アミノ基などの反応性置換基を含んでいるものがある。例えば、4 ーカルボキシルー 1 Hーベンゾトリアゾール、4 ーヒドロキシベンゾトリアゾール、2 ーアミノイミダゾールなどが挙げられる。この内カルボキシル基は、多価アルコール、多価アミンと反応して、それぞれエステル、アミドを生成する。この時多価アルコール、多価アミンとして 2 価以上の化合物を用いることによって、 2 個以上のアゾールを有する化合物を製造することができる。同様にヒドロキシル基、アミノ基を有するアゾールからそれらと反応する部位を有する化合物と反応することにより、 2 個以上のアゾール基を有する化合物を製造することもできる。

[0040]

また、ビニル基を有するアゾールを重合することによって、2 個以上のアゾール基を有する化合物を製造することもできる。ビニル基を有するアゾールとしては、1-ビニルイミダゾール、2-[3-(2H-ベンゾトリアゾール-1-イル)-4-ヒドロキシフェニル] エチルメタクリレートなどが挙げられる。

[0041]

これら2個以上のアゾール基を有する化合物のうち、ビニル基を有するアゾールを重合して得られた化合物が好ましい。これらは単独で重合しても構わないし、その他のビニル化合物と共重合しても構わない。

[0042]

ビニル基を有するアゾールと共重合できるビニル化合物としては、次の化合物を例示することができる。アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリルアミド、N-4リルアミド、N-4リルアミド、N-4リルアミド、N-4リルアミド、N-4リルアミド、N-4リルアミド、N-4リルアミド、N-4リルアシリルアミド、N-4リカルアクリルアミド、N-4リカルアクリルアミド、N-4リカルテン、N-4リカルトカルテン、N-4リカルテン、N-4リカルテン、N-4リカルテン、N-4リカルテン、N-4リカルトカルアン、N-4リカルアン、

[0043]

このようなビニル化合物の重合方法としては、水溶液、有機溶媒中でのラジカル重合が一般的である。アゾビスイソブチロニトリルなどのラジカル開始剤を用いて重合するが、ドデシルメルカプタン、トリメチロールプロパントリス(3-メルカプトプロピオネート)、メルカプトエタノール、αーメチルスチレンダイマーなどの連鎖移動剤で分子量を調整することもできる。

[0044]

このような重合物の分子量としては、重量平均分子量として $300\sim500000$ 0のものが使用することができる。好ましくは、 $1000\sim100000$ であり、更に好ましくは $2000\sim50000$ 0である。

[0045]

本発明で使用されるアゾール基を 2 個以上含む化合物の研磨組成物への添加量としては、 $0.001\sim1$ 質量%である。好ましくは、 $0.002\sim0.5$ 質量%であり、更に好ましくは、 $0.003\sim0.1$ 質量%である。少量ではエッチング抑制、研磨速度向上の

効果が少なく、多量に添加しても効果は少なく、場合によっては、添加した砥粒の凝集を 促進することにもなりかねない。

[0046]

本発明におけるアミノ酸は、グリシン、アラニン、 β -アラニン、2-アミノ酪酸、ノ ルバリン、バリン、ロイシン、ノルロイシン、イソロイシン、アロイソロイシン、フェニ ルアラニン、プロリン、サルコシン、オルニチン、リシン、タウリン、セリン、トレオニ ン、アロトレオニン、ホモセリン、チロシン、3,5ージョードーチロシン、βー(3, 4ージヒドロキシフェニル)-アラニン、チロキシン、4ーヒドロキシープロリン、シス ティン、メチオニン、エチオニン、ランチオニン、シスタチオニン、シスチン、システィ ン酸、アスパラギン酸、グルタミン酸、S-(カルボキシメチル)-システィン、4-ア ミノ酪酸、アスパラギン、グルタミン、アザセリン、アルギニン、カナバニン、シトルリ ン、δ-ヒドロキシーリシン、クレアチン、キヌレニン、ヒスチジン、1-メチル-ヒス チジン、3ーメチルーヒスチジン、エルゴチオネイン、トリプトファンなどのアミノ酸が 挙げられる。これらのうちで好ましくはグリシン、アラニン、ロイシン、バリン、ヒスチ ジン、セリンである。

[0047]

これらのアミノ酸は、一種を添加しても良いし、二種以上を混合して添加しても良い。 添加量としては、研磨組成物に対して10質量%以下である。好ましくは、5質量%以下 であり、更に好ましくは、2質量%以下である。添加量が多すぎると液の安定性を損なう 場合がある。

[0048]

本発明の研磨組成物にアゾール基を1個含む化合物を含むことで、ディッシングを低減 する効果を有する。

[0049]

本発明におけるアゾール基を1個含む化合物は、ベンズイミダゾールー2ーチオール、 2-[2-(ベンゾチアゾリル)] チオプロピオン酸、<math>2-[2-(ベンゾチアゾリル)チオプチル酸、2ーメルカプトベンゾチアゾール、1,2,3ートリアゾール、1,2, 4-トリアゾール、3-アミノー1H-1,2,4-トリアゾール、ベンゾトリアゾール 、1-ヒドロキシベンゾトリアゾール、1-ジヒドロキシプロピルベンゾトリアゾール、 2, 3-ジカルボキシプロピルベンゾトリアゾール、4-ヒドロキシベンゾトリアゾール 4-カルボキシル-1H-ベンゾトリアゾール、4-メトキシカルボニル-1H-ベン ゾトリアゾール、4-ブトキシカルボニル-1H-ベンゾトリアゾール、4-オクチルオ キシカルボニルー1H-ベンゾトリアゾール、5-ヘキシルベンゾトリアゾール、N-($1,\ 2,\ 3$ -ベンゾトリアゾリル-1 -メチル) - N - $(1,\ 2,\ 4$ -トリアゾリル- 1ーメチル) -2-エチルヘキシルアミン、トリルトリアゾール、ナフトトリアゾール、ベ ンズイミダゾール、テトラゾールなどが挙げられる。これらの内で好ましくは、ベンゾト リアゾール、トリルトリアゾール、ヒドロキシベンゾトリアゾール、カルボキシベンゾト リアゾール、ベンズイミダゾール、テトラゾールである。

[0050]

これらは、一種を添加しても良いし、二種以上を混合して添加しても良い。添加量とし ては、研磨組成物に対して5質量%以下である。好ましくは、2質量%以下であり、更に 好ましくは、0.5質量%以下である。添加量が多すぎると液の安定性を損なう場合があ る。

[0051]

本発明の研磨組成物に炭素数6以上のアルキル基を有する脂肪酸を含むことで、ディッ シィングを低減する効果を有する。

[0052]

本発明における炭素数6以上のアルキル基を有する脂肪酸としては、オクタン酸、デカ ン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、1 2-ヒドロキシステアリン酸、セバシン酸、オレイン酸、リノール酸などが挙げられる。

[0053]

これらは、一種を添加しても良いし、二種以上を混合して添加しても良い。添加量とし ては、研磨組成物に対して5質量%以下である。好ましくは、2質量%以下であり、更に 好ましくは、0.5質量%以下である。添加量が多すぎると液の安定性を損なう場合があ る。

[0054]

本発明で用いられる研磨組成物は、0~100℃の範囲で用いることができる。一般的 には使用する室温近辺が好ましいが、研磨速度を調整するなどの目的などで研磨組成物の 温度を調節することも可能である。温度が低すぎると研磨速度が上がらず、0℃以下であ ると氷ってしまうこともある。また、温度が高いと副反応が起こったりすることも考えら れる。好ましくは、10~50℃であり、更に好ましくは、15℃~40℃である。

[0055]

本発明で用いられる研磨組成物の研磨機への滴下量は、研磨機、ウエハの大きさによっ て決定される。8インチウエハを用いた時には、10~1000ml/分で使用すること ができる。好ましくは、50~500m1/分であり、更に好ましくは、100~400 ml/分である。

[0056]

本発明の研磨組成物を用いた研磨方法は、研磨定盤の研磨布上に本発明の研磨組成物を 供給しながら、被研磨金属膜を有する基板を研磨布に押し当てた状態で研磨定盤と基板を 相対的に動かすことによって被研磨金属膜を研磨する方法である。研磨する装置としては 、半導体基板を保持するホルダーと研磨布を貼り付けた定盤を有する一般的な研磨装置が 使用できる。研磨定盤の回転速度は、研磨機の構造、大きさによって全く異なるのでここ で規定することは難しいが、10~500m/分で研磨が行われる。好ましくは、20~ 300m/分であり、更に好ましくは、30~150m/分である。研磨定盤が回転する ことにより基板研磨の均一性を維持するために、基板を回転する必要がある。基板は、研 磨定盤とほぼ同じ回転数にするが、均一性を得るために若干、回転数を少なくしたり多く したりすることがある。また、基板はホルダーを通して研磨布に圧力をかけて押し付ける が、この時の圧力は、0.1~100KPaで行うことができる。研磨定盤の回転速度が 速いと圧力が低い傾向があったりするので、規定することは難しいが、好ましくは、0. 5~80KPaであり、更に好ましくは、1~50KPaである。

[0057]

研磨布としては、一般的な不織布、発泡ポリウレタンなどが使用できる。研磨布には、 研磨速度を上げたり、スラリーの排出を良くしたりする目的で溝をつけているものが多い 。縦横に溝を付けている物(XYグルーブ)、同心円状に溝を付けている物(Kグルーブ) などがあるが、本発明の研磨組成物はいずれも用いることができる。また、研磨布は目 詰まりを防止し、安定した研磨を行うために、ダイヤモンドなどが付いたドレッサーでド レスするが、一般的に知られている方法を使用することができる。

[0058]

研磨定盤の研磨布上に本発明の研磨組成物を供給する方法としては、ポンプなどで連続 的に供給する。この時研磨組成物は全ての成分を含んだ1液で供給されてもよく、更には 、液の安定性を考慮して複数種の液に分けて供給することもできる。例えば、過酸化水素 の溶液とその他の溶液等。この場合には、研磨布直前に1液にして供給することも出来る し、別ラインでそのまま研磨布上に供給することも可能である。

[0059]

本発明の研磨組成物が研磨する金属膜は、基板表面に設けた凹部を覆うように埋め込ま れた金属膜であり、この基板を平坦化研磨することで凹部内に埋め込まれた配線層として の金属膜を得るものである。この配線金属膜と基板の間にはバリヤ層が存在し得るが、そ の場合には一般的に金属膜とともにバリヤ層も研磨の対象にされる。このような金属膜と しては、アルミニウム、銅、鉄、タングステン、ニッケル、タンタル、ルテニウムや白金 などの白金族金属またはこれら金属の合金が挙げられる。バリヤ層としてはタンタル、チ

タン等の金属又は窒化タンタル、窒化チタン等の金属化合物が挙げられる。好ましくは多 層配線部の配線部分あるいは配線部分を覆うようになる金属膜であり、凹部を有する基板 上に凹部を覆うように埋めこまれる。更に好ましくは、多層配線部の配線部分になる銅ま たは銅合金、鉄または鉄合金に使用することが出来る。この工程を素子上に配線を形成す る方法として更に説明する。まず、基板上の層間絶縁膜に配線を形成する溝および開口部 を開け、絶縁膜上に薄くバリヤ層を形成する。更に、前記溝および開口部を埋め込むよう にメッキなどの方法により銅などの配線金属層を形成させる。この金属膜を研磨し、必要 があればバリヤ層および層間絶縁膜層をさらに研磨平坦化を行うことにより金属膜が平坦 化された基板を製造することが出来る。バリヤ層としてはタンタルまたはタンタルを含有 する合金、チタンまたはチタンを含有する合金、さらには窒化タンタルなどが好ましい。

[0060]

ここでいう層間絶縁膜とは、酸化ケイ素膜、ヒドロキシセルシスキオキサン(HSQ) 、メチルシルセスキオキサン(MSQ)などのケイ素を多量に含む無機系の層間絶縁膜や ベンゾシクロブテンからなる膜のような有機系層間絶縁膜であり、また、これらに空孔を 持たせた低誘電率層間絶縁膜も用いることが出来る。

[0061]

次に、MRAMにおける配線形成方法について説明する。金属配線はアルミニウムまた はアルミニウム合金、銅または銅合金から成る導体層とこれを囲むようにニッケルー鉄(パーマロイ)などの強磁性層からなる。必要があれば、タンタル、窒化タンタルなどのバ リヤ膜を強磁性層を挟むように薄く形成する。この金属配線はダマシン法で形成されるが 、余分な導体層、強磁性層およびバリヤ膜は、研磨を行いながら平坦化し除去される。

【実施例】

[0062]

以下、実施例をあげて本発明をさらに詳細に説明するが、本発明はこれら実施例になん ら限定されるものではない。

[0063]

〈ウエハ〉

ブランケット:銅膜及びタンタル膜が均一に付いたシリコンウエハ

パターン:図 1 に示すように、溝 2 深さが 5 0 0 n mで、 1 0 0 μ m/ 1 0 0 μ m/ 0 0 μ m/いは 9 μ m/1 μ m) のライン 2 '/スペース 3 の銅配線パターン形成用シリコンウエハ 1 に、25 nmの厚さのタンタルをバリヤ膜4として形成し、全面に1000 nmの銅膜5 を付けたシリコンウエハ。

[0064]

〈4×4cmに切断したウエハの研磨〉

基板と研磨定盤との相対速度:70 m/分

研磨パッド:ロデールニッタ社製IC1400

研磨組成物供給速度:13ml/分

研磨圧力:15KPa

〈エッチングテスト〉

2 c m×2 c mの銅板を研磨組成物に浸け、銅板の減少量から、1分間当たりのエッチ ング速度を計算した。

[0065]

〈研磨特性評価〉

段差の測定:触診式の段差測定計を用いた。

[0066]

プランケット銅、タンタル膜厚測定:シート抵抗から測定した。

[0067]

パターン銅膜厚測定:評価する部位近傍のパターンのない銅膜のシート抵抗から測定し

[0068]

研磨速度の測定:研磨前後の電気抵抗値から銅膜、バリヤ膜厚を測定し、研磨時間から 換算した。

[0069]

ディッシング評価:パターンウエハを約300mmの銅が残るように研磨した時の研磨 速度を基準にして、同じ条件で1500mmを研磨できる時間ポリッシュ(初期銅膜厚に 対して50%オーバーポリッシュ) した時に図2に示されるように100 μ mスペース部 3" と 100μ mライン部 2" との段差 dをディッシングとして評価した。

[0070]

エロージョン測定:パターンウエハを約300nmの銅が残るように研磨した時の研磨 速度を基準にし、計算上初期銅膜厚に対して50%オーバーポリッシュされる条件(時間)でポリッシュした時に、図3の如く、9 μ m/1 μ mライン/スペースのスペース部の バリヤ膜および層間絶縁膜の目減り e をエロージョンとして測定した。

[0071]

(実施例1~11、比較例1~3)

研磨組成物の組成を表1にしめす。

[0072]

ここで、ポリオキシエチレン2級アルキルエーテルリン酸は平均炭素数13の2級アルコー ルに平均3molのエチレンオキシドを付加したアルコールを原料にリン酸エステル化したも の、DBSはドデシルベンゼンスルホン酸、APSは過硫酸アンモニウム、BTAはベン ゾトリアゾールをあらわす。

[0073]

コロイダルシリカは一次粒子径30~40nm、二次粒子径70nmのものを用いた。 アゾール基を3個以上含む化合物として用いたVPI55K18P(BASF社製)は、 1-ビニルイミダゾールと1-ビニルビロリドンとの1:1共重合体である、GPC測定 の結果、ポリエチレングリコール換算で重量平均分子量は5000、数平均分子量230 0であった。化合物Aの合成方法は下記に示す。

[0074]

(化合物A)

温度計、攪拌装置、窒素導入管および還流冷却管を取付けた100mlのフラスコに、 1-ビニルイミダゾールを10.0g、水を30g仕込んだ後に、2,2'ーアゾビス{2-メチル -N- (2-ヒドロキシエチル) -プロピオンアミド 0.61gを加え攪拌して溶解する。 窒素雰囲気下にて攪拌しながら昇温し100℃に3時間保った後、2,2'ーアゾビス {2 ーメチルーNー (2ーヒドロキシエチル) ープロピオンアミド 0.61gを溶解した水20 . 0gを加えさらに3時間反応を続けた。室温まで冷却後、約60gの茶色透明溶液を得 た。GPC測定の結果、ポリエチレングリコール換算で重量平均分子量は110000、数平均 分子量27000であった。

[0075]

結果を表 2 に示す。いずれの実施例でもほとんどエッチングが起こっておらず、ディッ シング、エロージョンは著しく良いことが分かる。これに比較してリン酸エステルを添加 しない比較例1~3ではディッシングが全くストップしておらず、エロージョンも満足す るものではない。

[0076]

【表1】

(表1)				18	1944-F		李松庙	生体例	中栋例	東施例	実施例	実施例	比較例	比较通	比較例
₩o.		米諾曼-	米配金	三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三	光	米 で 5	- X	7 L	8	6	5	=	-	2	ဗ
炭素数6以上	2報7時近-	0.05	0.1	0.01	o.03	0.03		0.03	0.007	0.03	0.03	0.03			
の刑却基を有	沙酸						0								
する小酸以形	沙沙坡						3 6	G R		0.5	0.5	0.5	0.5	0.5	0.5
	が酸	0.5	0.5	0.2	0.5	CO	C i	3	-						
	乳酸							8	- 8	26.0	0.25	0.25	0.22	0.22	0.25
Inf·// 和	Ę	0. 22	0. 22	0.25	0.25	0.28	0.28	0.28	07.70	3 2	3 4	2 0	C.	0.5	0.5
	H.O.			0.5	0.5					2 2	5	2	2		
	VQV	-	-			-	-	-	-						
1	A18.5 18.31.4		2 5	2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.0
を記	וווילאו לאוב		3			5	5 5	5	0 05	0.07	0.07	0.02			0.02
	DBS			0.0	0.0	6.0	3	3	3						900
界面活性刺	市市地理														0. 025
	沙阳小				100	4	20.0		0.05	0.05	0.05	0.05			
77. 小猫を3	VP155K18P				3	3	3								
個以上台む化	化合物A							0.025							
00000000000000000000000000000000000000										0.01					
7.7酸	/IM4%												5	2	
77 - 小猫を1	BTA										0.002		O. WZ	9.00	
面加いた旧を		1													
の記述機を加しの記述機を有	おか酸														
する脂肪酸												١	ll e	٩	a
		α	α _	6	6	6	<u>თ</u>	6	6	5	ŝ	ß	٥	,	
Æ		,	,												

[0077]

【表2】

(年2)									100	int-state and	金花面	子校园	ト数回	子数色
(A)	実施例	実施例	実施例	実施例	東海道	米格多	実施室	変 る る	変え	10 OF	1 = 1	-	2	ဗ
9	•	0	ო	4	ល	٥	,	,	,			Ç	521	620
	-				950	607	874	434	286	516	<u>¥</u>	450	3	3
THE STATE STATE (Same /min)	411	809	473	219	8	727					,	601	406	067
WIEDZEJZ UNIV III I				;	f	ě	ď	S	8	ጀ	-	436	32	
=h. (mm)	217	194	55	E	7/	10	3				ľ	•	93	ç
T 47777 VIIIO				ľ	ľ	4	u	٧	_	_	ဂ	D	27	2
(mm) 1/2 1/2 D.T.	c:	ص ص	က	c.	,	,	À			ļ	,	•	c	_
018 0 / F / HT				ļ	٥	-	_	0	0	>	>	>	ì	•
(mim/min)	0	0	0	>	>	,	,							
TOLVI IT CONTINUE	•													

【図面の簡単な説明】

[0078]

【図1】実施例でディッシィングを測定するパターンウェハの横断面図を示す。

【図2】実施例でディッシィングを示すウェハの横断面図を示す。

【図3】実施例でエロージョンを示すウェハの横断面図を示す。

【書類名】図面 【図1】

図 1

【図2】

【図3】

【要約】

【課題】 エッチング、エロージョンを抑制し金属膜の平坦性を維持したまま高速に研磨できる研磨組成物を提供すると共にこの研磨組成物を用いた金属膜の研磨方法、およびこの研磨組成物で平坦化する工程を含む基板の製造方法を提供する。

【解決手段】 凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を平坦化するための研磨組成物であって、前記研磨組成物は水、構造中に炭素数6~22のアルキル基を有するリン酸エステル及び前記金属のエッチング剤を含有し、pHが5~11である研磨組成物。さらに、砥粒、界面活性剤、アゾール基を2個以上含む化合物、アミノ酸、アゾール基を1個含む化合物、炭素数6~22のアルキル基を有する脂肪酸を好適に含むことができる。凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を上記研磨組成物で平坦化する研磨方法及び基板の製造方法。

【選択図】 なし

特許庁長官 今井 康夫 殿

【書類名】 【整理番号】 【提出日】 【あて先】 【事件の表示】 【出願番号】 【補正をする者】 【識別番号】 【氏名又は名称】 【代理人】 【弁理士】

特願2003-385253

平成15年12月25日

000002004

手続補正書

2003385253

昭和電工株式会社

【識別番号】 100099759

【氏名又は名称】 青木 篤 【電話番号】 03-5470-1900

【手続補正1】

【補正対象書類名】 特許願 【補正対象項目名】 発明者 【補正方法】 変更

【補正の内容】 【発明者】

> 千葉県千葉市緑区大野台1丁目1番1号 昭和電工株式会社 研 【住所又は居所】

究開発センター内

伊藤 祐司

西岡 綾子

【氏名】

【発明者】

千葉県千葉市緑区大野台1丁目1番1号 昭和電工株式会社 研 【住所又は居所】

究開発センター内

【氏名】 【発明者】

【住所又は居所】

長野県塩尻市大字宗賀1番地 昭和電工株式会社 塩尻生産・技 術統括部内

【氏名】 【その他】

魚谷 信夫

下記に理由を述べます。本件出願人代理人は、本件特許出願の手 続を受任し、平成15年11月14日に御庁に特許出願の手続を 採りました。しかしながら、本件出願後に出願人より、願書に記 載された発明者「伊藤祐司」、「西岡綾子」の2名だけではなく 、正しくは『伊藤祐司』、『西岡綾子』及び『魚谷信夫』の計3 名である旨の連絡を受けました。これは、本件代理人と出願人と の間で確認が不十分のまま、御庁に手続を採ったために生じたも のであります。何卒、本件発明者の訂正をご容認賜りますようお 願い申し上げる次第であります。

特願2003-385253

出願人履歴情報

識別番号

[000002004]

1. 変更年月日

1990年 8月27日 新規登録

[変更理由] 住 所

東京都港区芝大門1丁目13番9号

氏 名

昭和電工株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.