

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Кафедра информатики, математического и компьютерного моделирования

Курсовая работа «Численная реализация вариационного метода штрафа в задаче интерполяции на произвольной сетке данных»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студе	PHT
гр. Б9120-01.03.	02миопд
Агличеев А.О.	
(ΦMO)	(nodnucb)
Проверил	
(ФИО)	$(no\partial nucb)$
« <u>9</u> » июня 2023	Г.

Содержание

1	Введение	3
2	Постановка задачи	3
3	Алгоритм	3
4	Вариационная постановка задачи	3
5	Расчетная часть	3
6	Вывод	12
7	Литература	13
8	Приложение	13

- 1 Введение
- 2 Постановка задачи
- 3 Алгоритм

4 Вариационная постановка задачи

Для решения дифференциального уравнения с частными производными будем использовать метод конечных элементов, поэтому необходима вариационная постановка задачи.

Умножим уравнение на тестовую функция $v(x,y), v|_{\Gamma} = g, u \in C^1(\Omega)$ с последующим интегрирование по области Ω :

$$\int_{\Omega} -\Delta u v dx dy + \frac{1}{\varepsilon^2} \sum_{i=1}^{n} \int_{\Omega} \delta_x \delta_y u v dx dy - \frac{1}{\varepsilon^2} \sum_{i=1}^{n} \int_{\Omega} \delta_x \delta_y f v dx dy = 0$$

Применим первую формулу Грина:

$$\int_{\Omega} \nabla u \nabla v dx dy - \int_{\Gamma} v \frac{du}{dn} d\Gamma + \frac{1}{\varepsilon^2} \sum_{i=1}^n \int_{\Omega} \delta_x \delta_y u v dx dy - \frac{1}{\varepsilon^2} \sum_{i=1}^n \int_{\Omega} \delta_x \delta_y f v dx dy = 0$$

Так как на границе задано условие Дирихле, то $\int_{\Gamma} v \frac{du}{dn} d\Gamma = 0$, получим:

$$\int_{\Omega} \nabla u \nabla v dx dy + \frac{1}{\varepsilon^2} \sum_{i=1}^{n} \int_{\Omega} \delta_x \delta_y u v dx dy - \frac{1}{\varepsilon^2} \sum_{i=1}^{n} \int_{\Omega} \delta_x \delta_y f v dx dy = 0$$

5 Расчетная часть

1.
$$f(x,y) = 3\sin x + (y - 0.2)^2$$

 $N = 5774$

M	10	25	50
Относительная	0.008963	0.008207	0.007454
погрешность			

M = 25

N	3718	5774	17101
Относительная	0.032763	0.008207	0.0067239
погрешность			

Рис. 1: Интерполируемая функция

Рис. 2: Интерполяци при 10 точках

Рис. 3: Интерполяция при 25 точках с редкой сеткой

Рис. 4: Интерполяция при 25 точках

Рис. 5: Интерполяция при 25 точках с частой сеткой

Рис. 6: Интерполяция при 50 точках

M	10	25	50
Относительная	0.0223348	0.0170492	0.013383
погрешность			

M = 25

N	3718	5774	17101
Относительная	0.0168654	0.0170492	0.0163659
погрешность			

Рис. 7: Интерполируемая функция

Рис. 8: Интерполяци при 10 точках

Рис. 9: Интерполяция при 25 точках с редкой сеткой

Рис. 10: Интерполяция при 25 точках

Рис. 11: Интерполяция при 25 точках с частой сеткой

Рис. 12: Интерполяция при 50 точках

M	10	25	50
Относительная	0.0901691	0.0666124	0.0529867
погрешность			

M = 25

N	3718	5774	17101
Относительная	0.123237	0.0666124	0.0632562
погрешность			

Рис. 13: Интерполируемая функция

Рис. 14: Интерполяци при 10 точках

Рис. 15: Интерполяция при 25 точках с редкой сеткой

Рис. 16: Интерполяция при 25 точках

Рис. 17: Интерполяция при 25 точках с частой сеткой

Рис. 18: Интерполяция при 50 точках

4.
$$f(x,y) = e^{10x}$$

 $N = 5774$

M	10	25	50	100
Относительная	0.640972	0.475457	0.273087	0.154733
погрешность				

M = 100

N	3718	5774	17101
Относительная	0.458518	0.154733	0.150765
погрешность			

Рис. 19: Интерполируемая функция

Рис. 20: Интерполяци при 10 точках

Рис. 21: Интерполяция при 25 точках

Рис. 22: Интерполяция при 50 точках

Рис. 23: Интерполяция при 100 точках с редкой сеткой

Рис. 24: Интерполяция при 100 точках

Рис. 25: Интерполяция при 100 точках с частой сеткой

6 Вывод

Качество интерполяции зависит от количества заданных точек и частоты сетки. На редкой сетке и при недостаточном количестве точек появляются «всплески». Метод плохо интерполирует функции с большими складками, для удовлетворительного результата необходимо большое количество точек в этой области.

7 Литература

8 Приложение

```
real a = 1., b = 1.;
 2
    int \mathbf{m} = 10;
 3
    border g1(t = 0, 1) \{x = 0; y = b*t; label = 1; \};
 4
    border g2(t = 0, 1) \{x = a*t; y = b; label = 1; \};
    border g3(t = 0, 1) \{x = a; y = b*(1 - t); label = 1; \};
 6
    border g4(t = 0, 1) \{ \mathbf{x} = \mathbf{a} * (1 - t); \mathbf{y} = 0; \mathbf{label} = 1; \};
 8
    mesh Th = buildmesh (g1(-m) + g2(-m) + g3(-m) + g4(-m));
 9
    Th = adaptmesh(Th, hmin = 0.02, hmax = 0.025, nbvx = 1e6);
10
11
    //\text{func } f = \text{atan}(10 * (x + y));
12
13
    //\text{func } f = \text{atan2}(3*y, x);
    func f = \exp(10 * \mathbf{x});
14
15
    fespace Vh(Th, P2);
16
17
    Vh fe = f;
18
    plot(fe, fill=1, wait=1);
19
20
    int N = 100;
    real[int] xs(N);
21
22
      ifstream file("xs.txt", binary);
23
24
      string line;
      for (int i = 0; i < N; ++i) {
25
         getline(file, line);
26
         xs[i] = atof(line);
27
28
    }
29
30
```

```
real[int] ys(N);
31
32
       ifstream file("ys.txt", binary);
33
34
       string line;
       for (int i = 0; i < N; ++i) {
35
         getline(file, line);
36
         ys[i] = atof(line);
37
38
    }
39
40
    real[int] zs(N);
41
    for (int i = 0; i < N; ++i) {
42
       zs[i] = f(xs[i], ys[i]);
43
44
45
    func real delta(real n, int i) {
46
       return n^2/pi * \exp(-((x - xs[i])*n)^2) * \exp(-((y - ys[i])*n)^2);
47
48
49
    real n = 120.;
    macro deltaMacro(i) (\mathbf{n}^2/\mathbf{p}\mathbf{i} * \exp(-((\mathbf{x} - \mathbf{x}\mathbf{s}[\mathbf{i}])*\mathbf{n})^2) * \exp(-((\mathbf{y} - \mathbf{y}\mathbf{s}[\mathbf{i}])*\mathbf{n})
50
         ^2)) //
51
    fespace Vm(Th, P2);
52
53
    Vm wf;
    wf = deltaMacro(0);
54
    real maxist = wf[].max;
55
    wf = zs[0]*wf/maxist;
56
    for (int i = 0; i < N; ++i) {
57
       wf = wf + zs[i]*deltaMacro(i)/maxist;
58
59
60
    plot(wf, wait=1, value=1, fill=1);
61
62
    Vm wh, whz;
63
    wh = deltaMacro(0);
    whz = zs[0] * wh;
```

```
for (int i = 0; i < N; ++i) {
65
       wh = wh + deltaMacro(i);
66
67
68
     for (int i = 0; i < N; ++i) {
       whz = whz + zs[i]*deltaMacro(i);
69
70
71
72
     Vh u, v;
73
     real e = 0.1;
74
     problem bottom(u, v) = int2d(Th) ( dx(u)*dx(v) + dy(u)*dy(v) )
             + int2d (Th) (pow(e, -2) * wh * u * v)
75
             -\operatorname{int2d}(\operatorname{Th})(\operatorname{pow}(e, -2) * \operatorname{whz} * \operatorname{v})
76
77
             + on(1, u = f);
78
     bottom;
79
     plot(u, wait=1, fill=1, value=1);
80
     real error = \operatorname{sqrt}(\operatorname{int2d}(\operatorname{Th})((\operatorname{fe} - \operatorname{u})^2)) / \operatorname{sqrt}(\operatorname{int2d}(\operatorname{Th})(\operatorname{fe}^2));
81
     cout << "error_=_" << error;</pre>
82
83
     { ofstream gnu("4func/plot6.dat");
84
          for (int i = 0; i < Th.nt; i++) {
85
          for (int j = 0; j < 3; j++) {
86
             gnu << Th[i][j].x << "\_" << Th[i][j].y << "\_" << u[][Vh(i,j)] << {\bf endl};
87
88
          gnu << Th[i][0].x << "\_" << Th[i][0].y << "\_" << u[][Vh(i,0)] << " \setminus n \setminus n
89
              n'' \ll endl;
          }
90
91
     }
```

Листинг 1: Код программы во FreeFem++