ASSIGNMENT 5 MATH 251 NICHOLAS HAYEK

QUESTION 1

The following picture will be useful:

$$M = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & c_{11} & c_{12} & \cdots & c_{1l} \\ a_{21} & a_{22} & \cdots & a_{2k} & c_{21} & c_{22} & \cdots & c_{2l} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} & c_{k1} & c_{k2} & \cdots & c_{kl} \\ \hline 0 & 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1l} \\ 0 & 0 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2l} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & b_{l1} & b_{l2} & \cdots & b_{ll} \end{bmatrix}$$

We express the determinant of this matrix as follows, where $M = (m_{ij})$:

$$\det(M) = \sum_{\pi \in S_{k+l}} m_{1\pi(1)} \cdot \dots \cdot m_{k\pi(k)} m_{(k+1)\pi(k+1)} \cdot \dots \cdot m_{(k+l)\pi(k+l)} \operatorname{sgn}(\pi)$$

However, if $\pi(i) \in [1, k]$ for some $i \in [k + 1, k + l]$, then $m_{i\pi(i)} = 0$, and so $m_{1\pi(1)} \cdot ... \cdot m_{i\pi(i)} \cdot ... \cdot m_{(k+l)\pi(k+l)} = 0$. Thus, it is sufficient to sum over the set $\{\pi \in S_{k+l} : \pi(i) \in [k+1, k+l] \mid \forall i \in [k+1, k+l] \}$. But, if $\pi([k+1, k+l]) = [k+1, k+l]$, then $\pi(i) \in [1, k] \ \forall i \in [1, k]$, since it is a bijection.

We conclude that $m_{i\pi(i)}$ must only define elements either in the A sub-matrix, since π sends $[1,k] \to [1,k]$, or the B sub-matrix, since $[k+1,k+l] \to [k+1,k+l]$. Furthermore, since we are concerned with all permutations π that act, disjointedly, from [1,k] and [k+1,k+l] onto themselves, we can split π piecewise into two permutations π_1 , $\in S_k$ and $\pi_2 \in S_l$. Our notation adapts as follows:

$$\det(M) = \sum_{\pi_1 \in S_k, \pi_2 \in S_l} a_{1\pi_1(1)} \cdot \dots \cdot a_{k\pi_1(k)} \cdot b_{1\pi_2(1)} \cdot \dots \cdot b_{l\pi_2(l)} \operatorname{sgn}(\pi_1) \operatorname{sgn}(\pi_2)$$

Note, if π has i inversions, then its constituent permutations π_1 , π_2 have, together, i inversions. Thus, $\#\pi_1 + \#\pi_2 = \#\pi$, so $\operatorname{sgn}(\pi) = (-1)^{\#\pi_1}(-1)^{\#\pi_2} = \operatorname{sgn}(\pi_1)\operatorname{sgn}(\pi_2)$.

$$\begin{split} \det(M) &= \sum_{\pi_1 \in S_k, \pi_2 \in S_l} a_{1\pi_1(1)} \cdot \ldots \cdot a_{k\pi_1(k)} \cdot b_{1\pi_2(1)} \cdot \ldots \cdot b_{l\pi_2(l)} \mathrm{sgn}(\pi_1) \mathrm{sgn}(\pi_2) \\ &= \sum_{\pi_1 \in S_k} a_{1\pi_1(1)} \cdot \ldots \cdot a_{k\pi_1(k)} \mathrm{sgn}(\pi_1) \sum_{\pi_2 \in S_l} b_{1\pi_2(1)} \cdot \ldots \cdot b_{l\pi_2(l)} \mathrm{sgn}(\pi_2) \\ &= \det(A) \det(B) \end{split}$$

Assignment 5

QUESTION 2

Let $A \in M_n(\mathbb{F})$, and $t \in \mathbb{F}$. We can express $\det(tI_n - A)$ as

$$\sum_{\pi \in S_n} a_{1\pi(1)} \cdot \dots \cdot a_{n\pi(n)} \operatorname{sgn}(\pi)$$

Since $a_{i\pi(i)}$ is either a constant or a term like $(t-a_{ii})$, we can be certain that $\det(A)$ is a polynomial. Only one π will yield a summand of degree n, and that is precisely the permutation which yields $a_{1\pi(1)} \cdot ... \cdot a_{n\pi(n)} = (t-a_{11}) \cdot ... \cdot (t-a_{nn})$, i.e $\pi(i) = i$. Since this permutation has no inversions, $\operatorname{sgn}(\pi) = 1$, and we can further expand:

$$(t - a_{11}) \cdot \dots \cdot (t - a_{nn}) = t^n + t^{n-1}(-a_{11} - \dots - a_{nn}) + t^{n-2} \sum_{i,j \le n} a_{ii} a_{jj} + \dots + \prod_{i=1}^{n} (-a_{ii})$$
$$= t^n - t^{n-1} \operatorname{tr}(A) + \operatorname{stuff}$$

To extract the constant term of $det(tI_n - A)$, we can simply evaluate at t = 0, since it is a polynomial:

$$\det(0I_n - A) = \det(-A) = (-1)^n \det(A)$$

Where, by multilinearity, we have

$$\det(-A) = \det\begin{pmatrix} -A_{(1)} \\ \vdots \\ -A_{(n)} \end{pmatrix} = -\det\begin{pmatrix} A_{(1)} \\ -A_{(2)} \\ \vdots \\ -A_{(n)} \end{pmatrix} = \det\begin{pmatrix} A_{(1)} \\ A_{(2)} \\ -A_{(3)} \\ \vdots \\ -A_{(n)} \end{pmatrix} = \dots = (-1)^n \det\begin{pmatrix} A_{(1)} \\ A_{(1)} \\ \vdots \\ A_{(n)} \end{pmatrix} = (-1)^n \det(A)$$

Combining with our results above, we have

$$\det(tI_n - A) = t^n - t^{n-1}\operatorname{tr}(A) + \dots + (-1)^n \det(A)$$

Note: while we know immediately that we've caught all constant and t^n terms, if we went hunting for a t^{n-1} term using some other permutation π , then $\pi(i) = i \ \forall i \in J$, where |J| = n - 1. But then, for this last element $k \notin J$, the bijectivity of π dictates that $\pi(k) = k$ as well. Thus, $-\operatorname{tr}(A)t^{n-1}$ are all n-1 degree terms.

QUESTION 3

Part (a): Let $V = V_1 \oplus ... \oplus V_n$ and let $\beta_i \subseteq V_i$ be a basis for V_i . Then $\beta_1 \cup ... \cup \beta_n$ is linearly independent: let $\beta_i = \{v_{ij} : j \in J_i\}$ and $a_{ij} \in \mathbb{F}$. We write

$$\sum_{\substack{1 \le i \le n \\ j \in J_i}} a_{ij} v_{ij} = 0$$

If all $a_{ij}v_{ij} \neq 0$ belong to only one "sub-basis," $\operatorname{Span}(\beta_m)$, then we violate the independence of β_m . Suppose otherwise: that is, there are vectors from at least two "sub-bases." Without loss of generality, suppose $\sum_{j \in J_1} a_{1j}v_{1j}$ is nontrivial. Then:

$$\sum_{\substack{2 \le i \le n \\ i \in I_i}} a_{ij} v_{ij} = -\sum_{j \in J_1} a_{1j} v_{1j}$$

Since β_1 forms a basis, the RHS is a unique vector $v_1 \in V_1$, and likewise the LHS are unique vectors $v_2 + ... + v_n$ (at least one non-zero), where $v_i \in V_i$. Thus, $v_1 \in V_1 \cap (V_2 + ... + V_n)$, which is a contradiction $\implies \beta_1 \cup ... \cup \beta_n$ is independent.

 $\beta_1 \cup ... \cup \beta_n$ is also spanning: any vector $v \in V$ can be written as $v = \sum_{i=1}^n v_i$, where $v_i \in V_i$. Each v_i has a unique representation in β_i , say $\sum_{j \in I_i} a_{ij} v_{ij}$, so we write

$$v = \sum_{\substack{1 \le i \le n \\ i \in I_i}} a_{ij} v_{ij} \quad a_{ij} \in \mathbb{F}$$

 $\implies v \in \operatorname{Span}(\beta_1 \cup ... \cup \beta_n) \implies \beta_1 \cup ... \cup \beta_n \text{ is a basis.}$

Part (b): Since $\beta_i \subseteq V_i$, and $V_i \cap V_j = \{0\}$ for any $i \neq j$, we conclude that β_i contain distinct elements. Thus, $|\beta_1 \cup ... \cup \beta_n| = |\beta_1| + ... + |\beta_n| \implies \dim(V) = \dim(V_1) + ... + \dim(V_n)$, as $\beta_1 \cup ... \cup \beta_n$ is a basis for V by (a).

Assignment 5 4

QUESTION 4

Part (a): Fix $\lambda \in \mathbb{F}$, and let $T(v) = \lambda v$ for some $v \in V$. Then $T(v)\lambda^{-1} = v$. Since T is invertible, we write $T^{-1}(T(v)\lambda^{-1}) = T^{-1}(v) \implies \lambda^{-1}v = T^{-1}(v)$ by linearity of T^{-1} and noting that $T^{-1}(T(v)) = I(v) = v$. Thus, λ^{-1} is an eigenvalue for T^{-1} . This also shows that $\mathrm{Eig}_T(\lambda) \subseteq \mathrm{Eig}_{T^{-1}}(\lambda^{-1})$.

Now let $v \in \operatorname{Eig}_{T^{-1}}(\lambda^{-1})$. Then $T^{-1}(v) = \lambda^{-1}v \implies \lambda T^{-1}(v) = v \implies T(\lambda T^{-1}(v)) = \lambda v = T(v)$ by linearity of T. Thus, $v \in \operatorname{Eig}_T(\lambda) \implies \operatorname{Eig}_{T^{-1}}(\lambda^{-1}) \subseteq \operatorname{Eig}_T(\lambda) \implies \operatorname{Eig}_{T^{-1}}(\lambda^{-1}) = \operatorname{Eig}_T(\lambda)$ as desired.

Part (b): $T:V\to V$ is diagonalizable $\iff\exists\,\beta:=\{v_1,...,v_n\}\subseteq V$ which is a basis for V, where v_i are eigenvectors of T. From (a), we know that v_i is an eigenvector of $T\iff v_i$ is an eigenvector of T^{-1} . Namely, $T(v_i)=\lambda_iv_i\iff T^{-1}(v_i)=\lambda_i^{-1}v_i$. Thus, β is a basis of eigenvectors for $T\iff\beta$ is a basis of eigenvectors for T^{-1} , so T is diagonalizable $\iff T^{-1}$ is.

QUESTION 5

For $M_2(\mathbb{F})$, no matter the field, we can use the standard basis

$$St = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \quad 1 := \mathbb{1}_{\mathbb{F}}$$

Let $T: M_2(\mathbb{F}) \to M_2(\mathbb{F})$ be $T(A) = A^t$. Then

$$[T]_{St} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}^t \end{bmatrix}_{St} \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^t \end{bmatrix}_{St} \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}^t \end{bmatrix}_{St} \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^t \end{bmatrix}_{St} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since $[tI]_{St} = [tI_4]$, we have the following form for $p_T(t)$:

$$\det(tI_4 - [T]_{St}) = \det\begin{pmatrix} t - 1 & 0 & 0 & 0 \\ 0 & t & -1 & 0 \\ 0 & -1 & t & 0 \\ 0 & 0 & 0 & t - 1 \end{pmatrix} = \sum_{\pi \in S_4} a_{1\pi(1)} a_{2\pi(2)} a_{3\pi(3)} a_{4\pi(4)} \operatorname{sgn}(\pi)$$

We know that $\pi(1) = 1$ and $\pi(4) = 4$, else the product will evaluate to 0. Thus, we only need to consider the remaining options: $\{\pi(2) = 3, \pi(3) = 2\}$ and $\{\pi(2) = 2, \pi(3) = 3\}$. The former has sgn = -1, since it flips 2 \leftrightarrow 3, and the latter has sgn = 1, since it is the identity. Thus,

$$\det([T]_{St_n}) = (t-1)^2 t^2 - (t-1)^2 = (t-1)^2 (t^2 - 1) = (t-1)^3 (t+1)$$

T thus has eigenvalues $\lambda = 1$ with multiplicity 3 and $\lambda = -1$ with multiplicity 1 in $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . If char(\mathbb{F}) = 2, then -1 = 1, so $p_T(t) = (t-1)^4$, i.e. T has one eigenvalue, 1, with multiplicity 4.

For $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , the eigenvectors of 1 are those which satisfy $A \in \ker(I - T)$, i.e. $T(A) = A^t = I(A) = A$, which are precisely the symmetric matrices in $M_2(\mathbb{F})$, and

$$\left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

is a basis for $\text{Sym}_2(\mathbb{F})$, as in HW1, so $m_g(1) = 3$. If $A \in \text{ker}(-I - T)$, then $T(A) = -I(A) \implies A^t = -A$. Since $a_{11}^t = a_{11}$ and $a_{22}^t = a_{22}$, we require that $a_{11} = a_{22} = 0$.

Assignment 5 6

Since the corner elements swap, $a_{12} = -a_{21}$, and so all eigenvectors must be

$$\alpha
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}$$

This has dimension 1, so $m_g(-1) = 1$. Since $m_g(1) + m_g(-1) = 4$, T is diagonalizable in both \mathbb{R} and \mathbb{C} . We simply take these aforementioned eigenvectors as a basis:

$$\beta = \{M_1, M_2, M_3, M_4\} := \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\} \implies [T]_{\beta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

which is diagonal. To show β is a basis, we show it is spanning:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \frac{a_{12} + a_{21}}{2} M_1 + a_{22} M_2 + a_{11} M_3 + \frac{a_{12} - a_{21}}{2} M_4$$

As $\dim(\beta) = 4 = \dim(St)$, β is a basis for $M_2(\mathbb{F})$, $\mathbb{F} = \mathbb{R} \vee \mathbb{C}$.

Recall, for char(\mathbb{F}) = 2, we found that $p_T(t) = (t-1)^4$. Then dim(ker(I-T)) = 4-rank(I-T), and [I-T] in the standard basis is

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Type III}} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Longrightarrow \text{rank}([I - T]) = 1$$

Thus, (I - T) = 4 - 1 = 3, so $m_g(1) = 3$, as before. But $m_a(1) = 4$, so by our main criterion, T cannot be diagonalizable over $M_2(\mathbb{F})$ since $m_a(1) \neq m_g(1)$.

QUESTION 6

Part (a): Recall that $p_A(s) = \det(sI_n - A) = \det\left((sI_n - A)^t\right)$. But $(sI_n - A)^t = sI_n - A^t$, since $(sI_n)^t = sI_n$. Thus, $\det\left((sI_n - A)^t\right) = \det(sI_n - A^t) = p_{A^t}(s)$, and we conclude that $p_A(s) = p_{A^t}(s)$. The roots of A and A^t 's characteristic polynomials are thus identical, and these are precisely the eigenvalues of A and A^t .

Part (b): Fix an eigenvalue λ of both A and A^t . Then $(\lambda I_n - A)^t = \lambda I_n - A^t$, since $(\lambda I_n)^t = \lambda I_n$, as observed before. Let $m_g^A(\lambda)$ and $m_g^{A^t}(\lambda)$ represent the multiplicities of λ with respect to A and A^t , respectively. Then:

$$m_g^A(\lambda) = \text{null}(\lambda I_n - A) = n - \text{rank}(\lambda I_n - A) = n - \text{rank}((\lambda I_n - A)^t)$$

since $\operatorname{rank}(M) = \operatorname{rank}(M^t) \ \forall M \in M_n(\mathbb{F})$. Then

... =
$$n - \text{rank}(\lambda I_n - A^t) = m_g^{A^t}(\lambda)$$

Thus, $\dim(\operatorname{Eig}_A(\lambda)) = \dim(\operatorname{Eig}_{A^t}(\lambda))$ as desired.

Part (c): Let Λ be the set of all distinct eigenvalues of A, and thus of A^t , by part (a). Then, A is diagonalizable $\iff \sum_{\lambda \in \Lambda} m_g^A(\lambda) = n \iff \sum_{\lambda \in \Lambda} m_g^{A^t}(\lambda) = n \iff A^t$ is diagonalizable, by part (b), as desired.

There is a small amount of nuance: A is diagonalizable, but their eigenvalues/vectors remain the same, so the argument in (c) extends to the language of transformations immediately.

Assignment 5

QUESTION 7

Part (a): Since $\lambda_1, ..., \lambda_k$ are all the eigenvalues of A, and we know their multiplicities to be $m_a(\lambda_i) = m_i$, we can write

$$p_A(t) = \det(tI_n - A) = (t - \lambda_1)^{m_1} \cdot \dots \cdot (t - \lambda_k)^{m_k} q(t) \quad q(t) \in \mathbb{F}[t]_n$$

Note, here, that q(t) does not have roots in \mathbb{F} , or else we would find some eigenvalue not λ_i . Since B is upper triangular, we write

$$p_B(t) = \det(tI_n - B) = (t - b_{11}) \cdot ... \cdot (t - b_{nn})$$

Let $A = Q^{-1}BQ$, where $Q \in GL_n(\mathbb{F})$. Then $Q^{-1}(tI_n - A)Q = (tQ^{-1}I_n - Q^{-1}A)Q = tQ^{-1}I_nQ - Q^{-1}AQ = tQ^{-1}Q - B = tI_n - B$. Since the determinant is conjugation-invariant, $\det(tI_n - A) = \det(tI_n - B)$, i.e.

$$(t - \lambda_1)^{m_1} \cdot ... \cdot (t - \lambda_k)^{m_k} q(t) = (t - b_{11}) \cdot ... \cdot (t - b_{nn}) = p_B(t)$$

Since the RHS has n roots, so does the LHS. But recall that q(t) cannot have roots, so we write

$$(t-\lambda_1)^{m_1}\cdot\ldots\cdot(t-\lambda_k)^{m_k}=(t-b_{11})\cdot\ldots\cdot(t-b_{nn})$$

In particular, q(t) = 1. Thus, we can take the first m_1 terms of the RHS to be $(t - \lambda_1)$, the next m_2 terms to be $(t - \lambda_2)$, etc. In other words, $b_{(m_{i-1}+1)(m_{i-1}+1)} = \dots = b_{(m_{i-1}+m_i)(m_{i-1}+m_i)} = \lambda_i$, as desired.

Part (b): Recall that det(B) = det(A) for $A \sim B$. Since B is upper triangular, we can use (a) to conclude $det(B) = \lambda_1^{m_1} \cdot ... \cdot \lambda_k^{m_k} = det(A)$. Furthermore, since there are n b_{ii} terms, $\sum_{i=1}^k m_i = n = \sum_{i=1}^k m_a(\lambda_i)$ again by (a), so $p_A(t)$ splits. Lastly, since trace is conjugation-invariant, $tr(A) = tr(B) = \sum_{i=1}^k m_i \lambda_i$ by (a).

det(B), for an upper triangular matrix $B \in M_n(\mathbb{F})$, is $\prod_{i=1}^n b_{ii}$:

$$det(B) = \sum_{\pi \in S_n} b_{1\pi(1)} \cdot ... \cdot b_{n\pi(n)} sgn(\pi)$$

But since $B_{(n)}=(0,...,0,b_{nn})$, we know that $\pi(n)=n$ (else the summand would = 0). Since $B_{(n-1)}=(0,...,0,b_{(n-1)(n-1)},b_{nn})$, we know $\pi(n-1)=n-1 \vee n$. But $\pi(n)=n$, so $\pi(n-1)=n-1$. Thus, by induction, $\pi=\mathrm{Id}$ is the only $\pi\in S_n$ such that $b_{1\pi(1)}\cdot...\cdot b_{n\pi(n)}\neq 0$, i.e. $\det(B)=b_{11}\cdot...\cdot b_{nn}$, where we note that $\mathrm{sgn}(\mathrm{Id})=1$.

For A, B, $C \in M_n(\mathbb{F})$, we have A(B+C) = AB + AC and (B+C)A = BA + CA:

$$(L_A \circ (L_B + L_C))(v) = L_A((L_B + L_C)(v)) = L_A(L_B(v) + L_C(v)) = L_A \circ L_B(v) + L_A \circ L_C(v)$$

Thus, $L_A \circ (L_B + L_C) = L_A \circ L_B + L_A \circ L_C \implies A(B + C) = AB + AC$. The statement (B + C)A = BA + CA follows similarly.

[&]quot;Lemmas" to consider:

QUESTION 8

Part (a): $w \in W = \text{Span}(\{T^i(v) : i \in \mathbb{N}\})$, and formalize $T^0 := I$. Consider:

$$T(w) = T\left(\sum_{i \in I} a_i T^i(v)\right) = \sum_{i \in I} a_i T^{i+1}(v)$$
 by linearity

Thus, $T(w) \in W$, and we conclude that $T(W) \subseteq W$, i.e. $T_W : W \to W$.

Part (b): Consider the largest linearly independent subspace of the form $W' = \{v, ..., T^l(v)\}$. Such a set exists, or else $\dim(W) = \infty$. If l > k - 1, then we could extend W' to a basis for W, i.e. $\dim(W) > k$, which we know to be false.

Suppose now l < k-1. Then $T^{l+1}(v) \in \text{Span}(\{v,...,T^l(v)\})$. Let this be the base case, and assume $T^{l+m}(v) \in \text{Span}(W')$, i.e. $T^{l+m}(v) = a_0v + ... + a_lT^l(v)$. Then $T^{l+m+1}(v) = T(T^{l+m}(v)) = T(a_0v + ... + a_lT^l(v)) = a_0T(v) + ... + a_lT^{l+1}(v) \in \text{Span}(W')$, since $T^{l+1}(v) \in \text{Span}(W')$. Thus, $T^{l+i}(v) \in \text{Span}(W') \ \forall i \in \mathbb{N}$

 \implies $\{T^i(v): i \in \mathbb{N}\}\subseteq \operatorname{Span}(W')$, so especially $\operatorname{Span}(\{T^i(v): i \in \mathbb{N}\}) = W \subseteq \operatorname{Span}(W')$. But since $W' = \{v, ..., T^l(v)\}$ is linearly independent, this is a basis, so $\dim(W) < k$, which is a contradiction.

 $\implies l = k - 1$. As dim(W) = k, W' independent, and |W'| = k, we know that $W' = \{v, ..., T^{k-1}(v)\}$ is a basis for W.

Part (c): Consider $[T_W]_{\beta}$, where $\beta = \{v, ..., T^{k-1}(v)\}$:

And recall that $p_{T_W}(t) = \det(tI_n - [T_W]_\beta) = \sum_{\pi \in S_k} m_{1\pi(1)} \cdots m_{k\pi(k)} \operatorname{sgn}(\pi)$, where $[T_W]_\beta = (m_{ij})$. For some $\pi \in S_n$, fix $\pi(j) = k$, where $j \neq 1$ or k. Then, in order for $\prod_{i=1}^k m_{i\pi(i)} \neq 0$, we need $\pi(1) = 1$. But then $\pi(2) = 2$, since 1 and k are already mapped, and all other $m_{2i} = 0$. We deduce the same for all i = 1, 2, ..., j - 1.

Now, since $\pi(j) = k$, $\pi(k) \neq k$. Thus, $\pi(k) = k - 1$, since all other $m_{ki} = 0$. Similarly, the nonzero elements of m_{ij} are precisely m_{ii} , $m_{i(i-1)}$, and m_{ik} . But $\pi(i) \neq k$, and $\pi(i) \neq i$, since $\pi(i+1) = i \implies \pi(i) = i - 1$. Thus, we get the following

Assignment 5

characterization of π s.t. $\prod_{i=1}^{k} m_{i\pi(i)} \neq 0$ and $j \neq 1$, k:

$$\begin{cases} \pi(1) &= 1 \\ \pi(2) &= 2 \\ &\vdots \\ \pi(j) &= k \\ \pi(j+1) &= j \\ &\vdots \\ \pi(k-1) &= k-2 \\ \pi(k) &= k-1 \end{cases} \implies m_{1\pi(1)} \cdot \dots \cdot m_{k\pi(k)} = -t^{j-1} a_{j-1} (-1)^{k-j} \underbrace{(-1)^{k-j}}_{\text{inversions } (j,j'),j'>j}$$

Edge cases: $\pi(1) = k \implies \pi(k) = k-1$, and inductively $\pi(i) = i-1$ using the same arguments as above. In this case, $m_{1\pi(1)} \cdot ... \cdot m_{k\pi(k)} = -a_0(-1)^{k-1}(-1)^{k-1}$, where every (1,i): i>1, is an inversion, i.e. $\mathrm{sgn}(\pi) = k-1$. Lastly, if we suppose $\pi(k) = k$, then $\pi(1) = 1$, and we conclude $\pi(i) = i$ as before. This case yields a $t^{k-1}(t-a_{k-1})$ term, with no inversions. The full picture is thus

$$p_{T_{W}}(t) = t^{k} - t^{k-1}a_{k-1} + \left(\sum_{j=2}^{k-1} -t^{j-1}a_{j-1}\right) - a_{0} = t^{k} - a_{n-1}t^{k-1} - \dots - a_{1}t - a_{0}$$

as desired.

Part (d): We write $p_{T_W}(T_W(v)) = T_W^k(v) - a_{k-1}T_W^{k-1}(v) - ... - a_1T_W(v) - a_0I(v)$. But $T_W^k(v) = a_{k-1}T_W^{k-1}(v) + ... + a_1T_W(v) + a_0v$ by assumption, so

$$\begin{split} p_{T_W}(T_W(v)) &= a_{k-1} T_W^{k-1}(v) + \ldots + a_0 v - a_{k-1} T_W^{k-1}(v) - \ldots - a_0 I(v) = 0 \\ \Longrightarrow p_{T_W}(T_W(v)) &= \mathbb{O}_W. \end{split}$$