

Unsupervised Learning of Neural Network Lexicon and Cross-lingual Word Embedding

Jiahui Geng

jiahui.geng@rwth-aachen.de

Master Thesis Proposal June 22, 2018

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

Introduction

Literature

Unsupervised word-by-word translation system

- Model
- **▶** Word translation
 - > Lonolingual word embedding
 - ▶ Linear mapping between embedding space
- Sentence Translation
- Experiments

Outlook

Introduction

Why unsupervised learning?

- Overcome the lack of reference translations
- ► Rich monolingual sentence resource

Why artificial neural network (ANN) for lexicon?

- Easy integration of (possibly unlimited) source side contexts
- Implicit smoothing for rare words
- ► Flexible model capacity: cover large vocabularies with low memory requirement

Why cross-lingual word embedding?

- Enable cross-lingual similarity calculations
- ► Enable knowledge transfer between languages

Thesis Goal

Goal: unsupervised system using word lexicon/embedding models without artificial rearrangement of alignments

- ▶ Directly applicable to practical tasks, easier to convince the community
- ► Can be used in 1:1 or almost 1:1 tasks: tagging, summary translation
- Can be used as the initial model of iterative back-translation for NMT

Tasks

- ► ANN lexicon
 - ▶ Implement and test EM-style training algorithm
 - ▶ Implement different models like word-to-word, context-aware
- ► Cross-lingual word embedding
 - ▶ Reproduce results of some state-of-the-art research
 - Combine of embedding-based translation models and LM
- ► Compare the results of the above models
- ▶ Compare different minimum translation units: word/word-BPE/sentence-BPE

Literature

Unsupervised cross-lingual embedding

- ► [Artetxe & Labaka⁺ 17a] Learning bilingual word embeddings with (almost) no bilingual data
 - A self-learning framework combining embedding mapping and dictionary induction techniques, need small dataset to start
- ► [Conneau & Lample⁺ 17] Word translation without parallel data
 - ▶ Implementation of GANs: the discriminator plays an adversarial role to a generative model and is trained to distinguish between two distributions
- ► [Hoshen & Wolf 18] An Iterative Closest Point Method for Unsupervised Word Translation
 - Iterative Closest Point Method for unsupervised embedding mapping learning, fewer hyper-parameters, more interpretable

Literature

Unsupervised machine translation

- ► [Artetxe & Labaka⁺ 17b] Unsupervised neural machine translation
 - ▶ With fixed cross-lingual embeddings to train a shared encoder, train the system with de-noising and on-the-fly back-translation alternatively
- ► [Lample & Denoyer⁺ 17] Unsupervised Machine Translation Using Monolingual Corpora Only
 - Seq2seq model with encoder and decoder for both language, also with denoise autoencoder and back-translation
- ► [Artetxe & Labaka⁺ 17b] Phrase-Based & Neural Unsupervised Machine Translation
 - Simplifying the architecture and loss function while still following the above mentioned principles and propose a PBSMT with back-translation

From Lexicon to Embedding

Motivation

- ► Embeddings are trained on much larger corpora seperately
 - > ANN lexicon model updated within the unsupervised training process
 - ▶ much more information ⇒ much more semantic/syntactic information
- ► From discrete to continuous vector representation

How do we do with word embedding?

- Translation of source embedding to target embedding
- Decision rule for target word given target embedding
- ► Training of embedding models for translation purpose

Word Translation

- ► Learn monolingual embedding separately
 - > Fasttext
- ► Learn linear mapping between embedding spaces
 - **Definition**
 - Supervised learning
 - Procrustes analysis
 - Unsupervised learning
 - Adversarial learning
 - o Iterative refinement
- **▶** Bidirectional dictionary induction
 - CSLS retrieval

Cross-lingual Word Embedding

Definition

Word embedding of multiple languages in a joint embedding space

Motivation

- ► Enable cross-lingual similarity calculations
- ► Enable knowledge transfer between languages

Methods

- Mapping-based approaches
 - ▶ Train word embeddings then learn mapping with bilingual dictionaries
- Pseudo-multi-lingual corpora-based approaches
 - Use monolingual word embedding methods on mixed corpus of multiple languages
- **▶** Joint methods
 - ▶ Minimize the monolingual losses with the cross-lingual regularization term

Supervised Learning

Assume we have

- Word embeddings trained independently for each language on monolingual corpora
- ▶ Bilingual dictionary a known dictionary with pairs of words $\{f, e\}$

Learn a linear mapping W such that

$$W^* = \operatorname*{argmin}_W \lVert WF - E
Vert$$

- ightharpoonup d: Dimension of embeddings
- ightharpoonup F, E: Aligned d imes s real matrices containing the embeddings of the words in the dictionary
- **▶** *s*: Seed dictionary size

Procrustes Analysis

Constrain W to be an orthogonal matrix

- ► Enforce monolingual invariance
- ▶ Simplify the problem as the the Procrustes problem which has a closed-form solution obtained from the SVD of EF^T :

$$egin{aligned} W^* &= rgmin_{W \in M_d(\mathbb{R})} \|WF - E\| = UV^T \ U \Sigma V^T &= SVD(EF^T) \end{aligned}$$

ightharpoonup Can be efficiently computed in linear time w.r.t number of dictionary entries

Unsupervised Word Embedding Mapping

Problem

► Large dictionary not readily available for many language pairs

Methods

- Design the seed dictionary
 - Using document-aligned corpora to extract the training dictionary
 - ▶ Relying on shared words, digits and cognates
- ► Learn bilingual embeddings without any bilingual evidence
 - Adversarial training

Adversarial Training

Model

- $ullet \mathcal{F} = \left\{f_1, \dots f_{V_f}
 ight\}$ and $\mathcal{E} = \{e_1, \dots e_{V_e}\}$: Sets of word embeddings
- \blacktriangleright Discriminator is trained to discriminate between elements randomly sampled from $W\mathcal{F}$ and \mathcal{E}
- lacktriangle Generator W is trained to prevent the discriminator from making accurate prediction

Discriminator loss

$$\mathcal{L}_D = -\log D(\mathcal{E}) - \log(1 - D(W\mathcal{F}))$$

Generator loss

$$\mathcal{L}_W = -\log D(W\mathcal{F})$$

Trick: Frequency-based Vocabulary Cutoff

Problem

- ► Rare word embeddings are less trained(updated)
- **▶** Contain noise information for alignment

Experiment

Iterative Refinement


```
Algorithm 1: Self-learning framework
```

Input: \mathcal{F} (source embeddings)

Input: \mathcal{E} (target embeddings)

Input: \mathcal{D} (seed dictionary)

Result: \mathcal{W} (embedding mapping)

- 1 initialization;
- 2 while not convergence criterion do
- $3 \mid \mathcal{W} \leftarrow learn_mapping(\mathcal{E}, \mathcal{F}, \mathcal{D});$
- 4 $\mathcal{D} \leftarrow learn_mapping(\mathcal{E}, \mathcal{F}, \mathcal{W})$;
- 5 end

Dictionay Induction

Cross-domain Similarity Local Scaling

- ► KNN suffers from the hubness problem
- Penalize the similarity score of hubs
 - $hd N_T(Wf):$ target neighbours for mapped source embedding
 - $hd r_T(Wf)$: penalty for hubness

$$egin{aligned} r_T(Wf) &= rac{1}{K} \sum_{e \in N_T(Wf)} cos(Wf,e) \ CSLS(Wf,e) &= 2cos(Wf,e) - r_T(Wf) - r_S(e) \end{aligned}$$

Bidirection Dictionary Induction

- ► Repreated word in unidirectional dictionary might lead to local optima
- ► Include the dictionary in both directions

Sentence Translation

Context-aware beam search

▶ Given a history h of target word before e, the score of e to be the translation of f:

$$L(e;f,h) = \lambda_{emb}q(f,e) + \lambda_{LM}p(e|h)$$

lacktriangle Lexicon score $q(f,e) \in [0,1]$ defined as:

$$q(f,e)=rac{d(f,e)+1}{2}$$

- $lackbox{ } q(f,e) \in [-1,1]$ cosine similarity between f and e
- In experiments, such lexicon score works better than others, e.g. sigmoid or softmax

Denoising

- ► Substitions, insertions, deletions, reordering viewed as noise in word-byword translation
- ightharpoonup Model such noise c(t) by injecting artificial noise into clean sentences t
- ► Language modelling via denoising autoencoder can improve the translation by minimizing:

$$L = E_{t \in T}[-log P_{t
ightarrow t}(t|C(t))]$$

ightharpoonup In Seq2Seq training, t as label, c(t) as input

Results

Translation results on German↔English newstest2016 and French↔English newstest2014.

	de-en	en-de	fr-en	en-fr
System	BLEU [%]	BLEU [%]	BLEU [%]	BLEU [%]
Word-by-Word	11.1	6.7	10.6	7.8
+ LM	12.9	8.9	12.7	10.0
	14.5	9.9	13.6	10.9
+ Denoising (RNN)	16.2	10.6	15.8	13.3
+ Denoising (Transformer)	17.2	11.0	16.5	13.9
[Lample & Denoyer+ 17]	13.3	9.6	14.3	15.1
[Artetxe & Labaka ⁺ 17b]	-	-	15.6	15.1

Outlook

Cross-lingual word embedding and word-to-word MT system

- Develop a new training algorithm for cross-lingual embeddings
 - ▷ Context/domain considered, e.g. LM
 - ▶ Better constraints on specific (group of) words
- ▶ Word-to-word MT system with cross-lingual embeddings
 - ▶ Efficient nearest neighbour search
 - Combination with a language model
- ► Compare translation results with word-to-word neural lexicons
 - ▶ All trained/tested on intact corpora without artificial change of alignments

Appendix: Denoising & Vocabulary

d_{per}	p_{del}	p_{ins}	BLEU [%]
2			14.7
3			14.9
5			14.9
3	0.1		15.7
	0.3		15.1
		10	16.8
		50	17.2
3	0.1	500	16.8
		5000	16.5

Translation results with different values of denoising parameters.

Vocabulary		BLEU [%]			
	Merges				
BPE	20k	10.4			
	50k	12.5			
	100k	13.0			
Cross-lingual					
	Training	_			
Word	20k	14.4			
	50k	14.4			
	100k	14.5			
	200k	14.4			

Translation results with different vocabularies.

Thank you for your attention

Jiahui Geng

jgeng@cs.rwth-aachen.de

http://www.hltpr.rwth-aachen.de/

References

- [Artetxe & Labaka⁺ 17a] M. Artetxe, G. Labaka, E. Agirre: Learning bilingual word embeddings with (almost) no bilingual data. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, Vol. 1, pp. 451–462, 2017.
- [Artetxe & Labaka⁺ 17b] M. Artetxe, G. Labaka, E. Agirre, K. Cho: Unsupervised neural machine translation. *arXiv preprint arXiv:1710.11041*, Vol., 2017.
- [Conneau & Lample⁺ 17] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, H. Jégou: Word translation without parallel data. *arXiv preprint arXiv:1710.04087*, Vol., 2017.
- [Hoshen & Wolf 18] Y. Hoshen, L. Wolf: An Iterative Closest Point Method for Unsupervised Word Translation. *arXiv preprint arXiv:1801.06126*, Vol., 2018.
- [Lample & Denoyer⁺ 17] G. Lample, L. Denoyer, M. Ranzato: Unsupervised Machine Translation Using Monolingual Corpora Only. *arXiv preprint arXiv:1711.00043*, Vol., 2017.