הטכניון – מכון טכנולוגי לישראל

מרצה: פרופ' עודד שמואלי סמסטר חורף התשע"ט

מתרגלים: ענבר קסלסי

משה סבאג

אסף ישורון

מערכות מסד נתונים

236363

'מועד א

1 בפברואר 2019

פירוט החלקים והניקוד:

ניקוד	מס'	נושא	חלק
	שאלות		
	בחלק		
36	2	תכן מסדי נתונים	1
40	3	שאילתות במודל היחסים	2
24	2	מודלים לא יחסיים	3

הנחיות לנבחנים

- 1. כתבו את התשובות אך ורק בטופס הבחינה ובמקום המיועד להן, מחברת הטיוטה לא תיבדק.
 - 2. כל חומר עזר הכתוב על נייר בלבד מותר בשימוש.
 - 3. אין לקבל או להעביר חומר כלשהו בזמן הבחינה.
- 4. יש להשתמש רק בסימנים או פונקציות שנלמדו בתרגול או בהרצאה והמופיעים בשקפים של הקורס. כל שימוש בסימון שאינו כזה מחייב הסבר מלא של משמעות הסימון.
 - .5 משך הבחינה הינו שלוש שעות, תכננו את הזמן בהתאם.
 - 6. בבחינה 7 שאלות בשלושה חלקים. נא וודאו שיש בידכם את כל הטופס.
 - 7. אין לכתוב בעפרון.

בהצלחה!

<u>חלק 1 - תכן מסדי נתונים 36 נק'</u>

<u>שאלה 1 - ERD, 8 נק'</u>

לפניכם תרשים ERD ורשימת טענות. הניחו כי תרשים ה-ERD תורגם לטבלאות לפי הכללים אשר נלמדו בקורס, באופן כזה שכל סוג ישות ב-ERD תורגם לטבלה בעלת אותו שם (לדוגמא סוג הישות A תורגם לטבלה בשם (לדוגמא סוג הישות A תורגם לטבלה בשם A).

עבור כל טענה מתוך רשימת הטענות קבעו האם היא בטוח נכונה, אולי נכונה בנסיבות מסוימות, או בטוח שגויה. הסבירו בקצרה את תשובותיכם. (2 נק' לכל טענה)

$\pi_a(E) \subseteq \pi_a(A)$.1	
$\pi_d(D) = \pi_d(E) .2$	
$\pi_a(A) \backslash \pi_a(B) = \pi_a(C)$.3	
(S מציין את מספר האלמנטים בקבוצה S (כאשר B (כאשר B) (באשר B) (

שאלה 2 - פירוקים ותלויות פונקציונליות, 28 נק'

: א. נתונה סכמת הרלציה R=(A,B,C,D,E,F) וקבוצת התלויות פונקציונאליות הבאה א. $AB\to C,A\to B,C\to F,BC\to A,A\to E,ABE\to F,F\to A$

1. (4 נק') מצאו כיסוי מינימלי לקבוצת התלויות. פרטו את שלבי ריצת האלגוריתם:
כיסוי מינימלי:
פירוט אלגוריתם:
. תחת קבוצת התלויות הנתונה. R תחת קבוצת התלויות הנתונה.

ב. לסעיף זה אין קשר ישיר לסעיף הקודם. הוכח או הפרך את הטענות הבאות:	
אשר BCNF אינמת סכמת רלציה R וקבוצת תלויות פונקציונאליות F כך שקיים עבורן פירוק BCNF אשר משמר תלויות אך אינו משמר מידע.	
נק') עבור כל סכמת רלציה R וקבוצת תלויות פונקציונאליות מינימלית F (כלומר, F מהווה כיסוי R מנימלית אינימלי של עבור כל X הוא מפתח. X אינימלי של עצמה) שעבורן R היא ב-RCNF, מתקיים כי לכל תלות X \to X \to X הוא מפתח.	

אטריביוטים $R=(A_1,,A_n)$ קיימת קבוצת תלויות $n\geq 4$ אטריביוטים לנק') עבור כל סכמה רלציונית המכילה $n\geq 1$
:פונקציונאליות F כך ש
.i מהווה כיסוי מינימלי של עצמה (כלומר, מינימלית).
$\hat{\ }$.F מופיע בלפחות תלות אחת של .ii
. 3NF היא ב- <i>R,F</i> .iii
ייי. אין איב אינו אינו אינו אינו אינו מפתח על. iv
VI. Let It It $A \leftarrow A$ L-7, $A \xrightarrow{A \cdot L}$ define $A \leftarrow A$

וו מסוג חדש בשם <i>תלות שוללת</i> .	ג. נגדיר EGRITY CONSTRAINT
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

בהינתן סכמת רלציה R עם אטריביוטים $A_1,...,A_n$ תלות שלילה היא מהצורה $X \longrightarrow \vdash A$ כאשר X בהינתן סכמת רלציה X עם אטריביוטים X היא קבוצה X הוא אטריביוט מתוך X אטריביוטים מתוך X הוא אטריביוט מתוך X הוא אטריביוט מתוך X אטריביוט מתוך X אטריביוט מתוך X אטריביוט מתוך X אם לכל שתי X אם לכן בליש ביש מתקיים אום X אם לכן בליש מתוך ביש אום אום ביש מתקיים אום ביש אום אות ביש אום ביש מתוך ביש אום ביש אום ביש אום אטריביוטים מתוך ביש אום בי

אך AB $\longrightarrow -C$ עם אטריביוטים A,B,C הרלציה r הבאה מספקת את תלות השלילה R אך AT איננה מספקת את תלות השלילה $A \longrightarrow -C$.

r:

Α	В	С
5	8	7
5	8	9
5	7	9
1	1	1

 $A_1, ..., A_n$ בשאלה זו , קבוצות של אטריביוטים ואטריביוטים בודדים מתייחסים לאטריביוטים מ- הוכח\הפרך את הטענות המתמטיות הבאות:

ורר לוגית את Y⊆X (; נק') X→⊏X.

:XZ \rightarrow רYZ גוררת לוגית את גוררת לוגית א גוררת לוגית א גוררת לוגית א גוררת לוגית א (3 נק') לכול קבוצה של אטריביוטים

X→¬Z גורר לוגית את Y→¬Z וגם X→¬Y (5 נק') (3 נק') אוב
Y→⊏X גורר לוגית את X→⊏Y (5 נק') 4.

חלק 2- שאילתות מידע רלציוניות – 40 נק'

<u>'שאלה 20 SQL, RA - 3 שאלה</u>

בעקבות כמות הווידויים הגדלה ב- Technion Confessions (דף פייסבוק שאליו משתמשי פייסבוק יכולים להעלות ווידוים אנונימיים) החליט הקורס לפתוח אתר וידויים מתחרה בשם Maman Confessions. לצורך הקמת מסד הנתונים לאתר הוחלט להיעזר בסטודנטים בקורס.

:האתר יעבוד באופן הבא

כל אדם יכול להירשם כמשתמש לאתר ולכתוב וידוי (שלא יהיה אנונימי למי שיש גישה למסד הנתונים). כל משתמש יכול לסמן בלייק (כלומר לסמן שאהב) וידויים שונים (ויכול גם לסמן שאהב וידויים של עצמו). שימו לב, כי כל משתמש יכול לסמן כל וידוי בלייק פעם אחת בלבד (כלומר לא ייתכן שמשתמש ייעשה שני לייקים לאותו וידוי).

במסד הנתונים קיימות הטבלאות הבאות:

Users:		
<u>uid</u>	Name	Faculty
Confessions:		
<u>cid</u>	uid	Content
Likes:		_
<u>uid</u>	<u>cid</u>	

תוכן הטבלאות:

הטבלה Users מחזיקה רשומות עם מספר זיהוי של סטודנט (uid), שם הסטודנט (Name), והפקולטה אליה שייך הסטודנט (Faculty).

הטבלה Confessions מחזיקה רשומות עם מספר הזיהוי של הווידוי (cid), מספר הזיהוי של הסטודנט שכתב את הטבלה Confessions). בנוסף, uid (uid). בנוסף, שפתח זר לטבלה

הטבלה Likes מסמנת שסטודנט בעל מספר זהות uid עשה לייק לווידוי (כלומר סימן שאהב את הווידוי) עם מספר זיהוי cid ו- Confessions הוא מפתח זר לטבלה uid ו- cid ו- cid הוא מפתח זר לטבלה uid .

שימו לב כי מפתחות מסומנים בקו תחתון בטבלאות.

(likesNum) שהווידוי קיבל (כלומר, מספר האנשים שאהבו את הווידוי). <u>תזכורת:</u> COUNT על סט ערכים יספור רק ערכים שאינם NULL ואם כולם NULL יחזיר אפס. עליכם להשתמש בשלד השאילתה הבא:
CREATE VIEW LikesPerConf AS SELECT
ב. (4 נק') כתבו שאילתה שמחזירה את כל המזהים של הווידויים (cid) שקיבלו מעל 10 לייקים <u>ולא</u> קיבלו לייק מכותב הווידוי עצמו (כלומר מעל 10 אנשים אהבו את הווידוי <u>וגם</u> כותב הווידוי לא סימן שאהב אותו בעצמו). מותר (וכדאי) להשתמש ב-View שהוגדר בסעיף 1 כטבלה גם אם לא עניתם על סעיף 1.

א. (4 נק') הגדירו View שמציג לכל וידוי את מספר הווידוי (cid), כותב הווידוי (vid) ומספר הלייקים

ג. (4 נק') כתבו שאילתה שתחזיר את המזהים (cid) של כל הווידויים שקיבלו לייק מלפחות 5 סטודנטים ממדמ"ח (Faculty='CS') <u>או</u> שהם בעלי מספר הלייקים הגדול ביותר בקרב כל הווידויים. גם בסעיף זה מותר (וכדאי) לכם להשתמש ב- View שהוגדר בסעיף 1 כטבלה (גם אם לא עניתם על סעיף 1). השתמשו בשלד השאילתה הבא:
SELECT
HAVING
UNION
SELECT
ד. (4 נק') כתבו שאילתת RA המחזירה את המזהים של כל משתמש המספק את התנאי הבא: המשתמש (uid) עשה לייק לכל הווידויים שמשתמשים <u>אחרים</u> כתבו (כלומר, בין היתר המשתמש סימן שאהב את כל הווידויים שמשתמשים <u>אחרים</u> כתבו).

ה. (4 נק') מה מחזירה שאילתת ה-RA הבאה? הקף בעיגול את התשובה הנכונה.

$$(\pi_{uid}(Users)) \setminus (\pi_{uid}((\rho_{uid \rightarrow uid1}Likes) \bowtie Confessions))$$

- א. את כל מזהי המשתמשים שעשו לייק לווידוי כלשהו.
 - ב. את כל מזהי המשתמשים שכתבו ווידוי כלשהו.
- ג. את כל מזהי המשתמשים שקיבלו לייק על ווידוי כלשהו שלהם.
- ד. את כל מזהי המשתמשים שקיבלו לייק על כל הווידויים שלהם.
- ה. את כל מזהי המשתמשים שלא קיבלו לייק על שום ווידוי שלהם.
 - . את כל מזהי המשתמשים שלא עשו לייק לווידוי כלשהו.
 - ז. אף תשובה מהנ"ל אינה נכונה.

שאלה DRC - 4 , <u>טאלה</u>

<u>תזכורת:</u> מטריצה היא מערך דו-מימדי של אלמנטים.

נתונה הסכמה הבאה:

Matrix:

<u>SerialId</u>	NumElements	NumRows	Rank

המספר הסידורי Serialld של מטריצה הינו מפתח לצורך זיהויה במסד הנתונים, מספר זה ייחודי לכל מטריצה ואינו קשור לערכיה או לדרגתה.

מציין את מספר האלמנטים במטריצה. NumElements

מציין את מספר השורות במטריצה. NumRows

Rank מציין את דרגת המטריצה שהינה תכונה מתמטית שלה.

:בנוסף נתון היחס הדו מקומי, $R_a(a,b) \leftrightarrow a=b$ המקיים, $R_a(a,b) \leftrightarrow a=b$ בנוסף נתון היחס הדו מקומי, בנוסף נתון היחס הדו מקומי

$$R_d(a, b, c) \leftrightarrow \frac{a}{b} = c$$

מותר להשתמש בשני יחסים אלו בתשובותיכם.

א. (4 נק') **תזכורת:** מטריצה הפיכה היא מטריצה ריבועית NxN בעלת דרגה N. כתבו שאילתה ב- (RC) RELATIONAL CALCULUS) המחזירה את המספרים הסידוריים (Serialld) של כל המטריצות ההפיכות.

ב. (6 נק') התבוננו בשאילתה הבאה:

 $\{s|\exists nr, ne, r[Matrix(s, ne, nr, r) \land [[R_d(ne, ne, ne) \lor \neg R_d(ne, nr, nr)] \longrightarrow R_=(r, 5)]]\}$

הקיפו בעיגול את <u>כל</u> הטענות הנכונות:

- 1. השאילתה תחזיר, בין היתר, את המספרים הסידוריים של כל המטריצות הריבועיות אשר בהן יותר מאיבר אחד.
 - 2. השאילתה תחזיר, בין היתר, את המספרים הסידוריים של כל המטריצות בעלות איבר בודד.
- 3. השאילתה תחזיר, בין היתר, את המספרים הסידוריים של כל המטריצות הריבועיות שדרגתן אינה 5.
 - 4. השאילתה תחזיר, בין היתר, את המספרים הסידוריים של כל המטריצות אשר אינן ריבועיות ואשר דרגתן 5.

<u>שאלה 5 - Datalog , 10 נק'</u>

נתון גרף מכוון G=(V,E), כאשר V היא קבוצה של צמתים ו-E היא קבוצה של קשתות מכוונות מהצורה G=(V,E), המציינת קשת מu אל u. הגרף u מיוצג על ידי הרלציה u ב-EDB ב-u

$$edge(v,u) \leftrightarrow (v,u) \in E$$

.edge ולכן לא קיימים צמתים נוספים שאינם מוזכרים ברצליה ולכן לא קיימים צמתים פוספים ולכן הרלציה ולכן לא קיימים צמתים ו

המתקיים עבור כל הצמתים Datalog המגדירה את היחס החד מקומי $node(u)$ המתקיים עבור כל הצמתים בגרף.	
המתקיים עבור כל שני Datalog המגדירה את היחס הדו-מקומי $notSame(u,v)$ המתקיים עבור כל שני צמתים u,v השונים זה מזה. אין להשתמש ב- $ eq$ או ב- $ eq$ בשאלה זו. ניתן להשתמש בפרדיקט u,v מהסעיף הקודם גם אם לא פתרת אותו.	ł

שמשמעותו חכנית Datalog המגדירה את היחס הדו-מקומי $notSimplePath(u,v)$ שמשמעותו היא שבין u ל- v קים מסלול שאינו פשוט.	.λ
	תזכורת:
$n>1, 1\leq i < n$ כך ש E-זוא סדרת צמתים $\mathrm{v}_1, \mathrm{v}_{i+1}$ כאשר י $\mathrm{v}_1, \mathrm{v}_{i+1}$ היא קשת ב	מסלול ו
ישוט הוא מסלול בו אין צומת המופיע יותר מפעם אחת (כלומר, המסלול לא מכיל מעגל).	מסלול כ

חלק 3- מודלים לא רלציוניים – 24 נק'

<u>שאלה 16 , XML 6 נק'</u>

נתון ה –DTD הבא (כאשר a הוא אלמנט השורש) בתוך מסמך (שיכונה מעתה מסמך הדוגמה). הניחו שההפרדה לשורות היא לצרכי תצוגה בלבד.

```
<?xml version="1.0" standalone="yes"?>
<!DOCTYPE a [
      <!ELEMENT a (b+)>
      <!ELEMENT b (c+, d*, e)>
      <!ELEMENT c (#PCDATA)>
      <!ELEMENT d (#PCDATA)>
      <!ELEMENT e (#PCDATA)>
       <!ATTLIST d
             ida ID #IMPLIED
       >
      <!ATTLIST c
             ref IDREF #REQUIRED
      >
      ]>
<a>
      <b>
             <c ref="d1"> 1000 </c>
             < d> a1 < /d>
             < d > a2 < /d >
             <d ida="d2"> a3 </d>
             < d > a4 < /d >
             <e> e1 </e>
      </b>
      <b>
             <c ref="d2"> 3000 </c>
             < d ida = "d3" > b1 < /d>
             <d ida="d1"> b2 </d>
             <e> e2 </e>
      </b>
      <b>
             <c ref="d2"> 4000 </c>
      </b>
</a>
```

. (2 נקודות) האם מסמך הדוגמה מספק את ה-DTD שלו? הקף בעיגול כן לא אם תשובתך "לא" הסבר:	א
פים הבאים יש לציין מה השאילתות יחזירו על מסמך הדוגמה. שים לב שניתן לבצע שאילות Xpath על גם כאשר המסמך אינו מספק את ה-DTD שלו.	
אילו אלמנטים יחזיר הביטוי (נקודות אילו אלמנטים יחזיר הביטוי 2) . /a/b[child::d[@ida]] [position() < 3] [position() = 2]/d[2]	ב
אילו אלמנטים יחזיר הביטוי (נקודות אילו אלמנטים יחזיר הביטוי (מון אילו אלמנטים יחזיר הביטוי (a/b[child::c/id(@ref)	.λ

ד. (10 נקודות) בטבלה הבאה שני טורים ובהם ביטויים ב-XPATH. בטור השלישי עליך לציין האם הביטויים שקולים על מסמך הדוגמה ובטור הרביעי עליך לציין אם הם שקולים על כל מסמך המספק את ה-DTD הנתון (תזכורת - בשורה החמישית בטבלה למטה, | מציין OR).

ביטוי ראשון	ביטוי שני	האם זהים על מסמך	האם זהים על כל
		הדוגמה?	מסמך המספק את ה-
			של מסמר DTD
			הדוגמה?
//b[c]/d	//b[d]/d		
/a[//b[d]/c]	/a[//b[c]/d]		
//b[a]//c	//b[//a]/c		
//b[c]/d[@ida]	//b[c/@ref]/c/id(@ref)		
//b[/a b]/c	//b[a e]/c		

<u>שאלה 7 RDF, 8 נק'</u>

לפניכם גרף RDF בפורמט של TRIPLES (כל שורה בטבלה מייצגת שלשה בגרף):

ent:Technion	prop:department	ent:CS
ent:Technion	prop:department	ent:EE
ent:CS	prop:lecturer	ent:Ido
ent:CS	prop:lecturer	ent:Avi
ent:CS	prop:lecturer	ent:Oded
ent:EE	prop:lecturer	ent:Pnina
ent:EE	prop:lecturer	ent:Ido
ent:Ido	prop:employer	ent:Technion
ent:Ido	prop:employer	ent:Google
ent:Oded	prop:employer	ent:Technion
ent:Pnina	prop:employer	ent:FB
ent:Avi	prop:employer	ent:FB

א. (3 נק') כתבו את ההשמות (mappings) למשתנים שמחזירה השאילתה הבאה (אין צורך לרשום את אותה ההשמה יותר מפעם אחת).

```
PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://dbpedia.org/property/ent/>
PREFIX prop: <a href="http://dbpedia.org/property/">http://dbpedia.org/property/>

SELECT ?lecturer1 {
?d prop:lecturer ?lecturer1 .
?lecturer1 prop:employer ent:Technion .
?lecturer1 prop:employer ent:Google .
OPTIONAL{
?lecturer1 prop:employer ent:FB .
}
}
```

א. (4 נק') כתבו את ההשמות (mappings) שמחזירה השאילתה הבאה (אין צורך לרשום את אותה ההשמה יותר מפעם אחת).

PREFIX rdfs: PREFIX ent: PREFIX prop: PREFIX prop: prop:
--

מקום לתשובות נוספות:

<u>סעיף:</u>	<u>שאלה:</u>	<u>חלק:</u>
<u>סעיף:</u>	<u>שאלה:</u>	<u>חלק:</u>
<u>סעיף:</u>	<u>שאלה:</u>	<u>חלק:</u>
<u>סעיף:</u>	<u>שאלה:</u>	<u>חלק:</u>