第四章 语法分析

语法分析程序

* 基本任务

一、分析程序的语法结构

根据源语言的语法规则 (CFG), 分析语法结构, 即分析如何由句子的单词组成各种语法范畴 (如下标变量、各种表达式、各种语句、程序段或分程序, 乃至整个源程序等

- 二、检查语法错误
- 三、输出语法树

语法分析的方法

- □自顶向下分析
 - 递归下降分析
 - ·LL (1) 分析

适用于LL(1)文法

- □自底向上分析
 - ■简单优先分析→ 适用于简单优先文法
 - ■算符优先分析→ 适用于算符优先文法
 - ■LR分析法 → 适用于LR类文法

*效率低、代价高

- -①虚假匹配:如上例第一次a与a匹配是虚假的;
- -②影响语义分析:有些语法制导方式中,语义分析也得重来。

不能处理含左递归规则 (直接或间接) 的文法

约: $U \rightarrow Ua \mid b$

2、回溯问题

当规则中含有多个倏选式时需一次次试探。

捯: $S \rightarrow cAd$

匹配串cad

 $A \rightarrow ab \mid a$

二、问题解决方法

- 1. 消除左递归 (直接和间接)
 - (1)直接左递归的消除:

用扩充的BNF表示{ },[],

引入新的非终结符号 (提取公因子)

(2) 间接左递归的消除

消除左递归的算法 (直接和间接均消除)

(1) 直接左递归的消除

捯: $U \rightarrow U\alpha|\beta$

方法一: 扩充的BNF表示

$$U \rightarrow \beta \{\alpha\}$$

方法二: 引入新的非终结符

$$P$$
 $U \rightarrow \beta U$

$$U' \rightarrow \alpha U' | \epsilon$$

提取公因子—使文法至多含有一个直接左递归的右部

$$U \rightarrow UV_1|UV_2|...|UV_n|x|y|...|z$$

$$U \rightarrow U(V_1|V_2|...|V_n) |x|y|...|z$$

读
$$\alpha = (V_1|V_2|...|V_n)$$

$$\beta = x|y|...|z$$

即简写为U ightarrow U lpha | eta

见:
$$U \rightarrow U$$
 ' $\{V_1|V_2|...|V_n\}$ U ' $\rightarrow x|y|...|z$

$$U' \rightarrow V_1 U' | V_2 U' | ... | V_n U' | \varepsilon$$

* 1911: T→T*F|T/F|F

变成: T→T(*F|/F) |F

消除左递归后得: $T \rightarrow F\{*F|/F\}$

* 或:

$$T' \rightarrow (*F|/F)T'|\epsilon$$
 $T \rightarrow FT'$

* 即:

T
$$\rightarrow$$
FT'
T' \rightarrow *FT'|/FT'| ϵ

(2)间接左递归的消除

——消除左递归的算法(直接和间接均消除)

要求: 文法不含 $A \rightarrow A$ 和 $A \rightarrow E$

原理: $S \rightarrow A\beta | \gamma$

 $A \rightarrow S\alpha$

转换成 $S \rightarrow S\alpha\beta | \gamma$

间接左递归替换成直接左递归再消除

消除左递归的算法

- ①把G的非终结符号排序A₁,A₂,...,A_n; ② for i:=1 to n do Begin
 - for **j**:=1 to **i**-1 do

把每个形如 $A_i o A_i \gamma$ 的规则替换成

 $A_i \rightarrow \delta_1 \gamma |\delta_2 \gamma| \dots |\delta_m \gamma$,

其中 $A_i \rightarrow \delta_1 |\delta_2| ... |\delta_m$ 是当前 A_i 的全部规则;

消除A_i规则中的直接递归;

End.

③化简由②得的文法,即去掉多余规则;

狗:
$$G[S]: S \rightarrow Qc|c$$
 $Q \rightarrow Rb|b$ $R \rightarrow Sa|a$

消除左递归

解:
$$(1)$$
 A_1 =R, A_2 =Q, A_3 =S
$$(2)$$
 ① i =1, A_i = A_1 =R 不含R \rightarrow Rr规则 ② i =2, A_i = A_2 =Q
$$j$$
=1, A_j = A_1 =R 存在Q \rightarrow Rb 次写成Q \rightarrow Sab|ab(因R \rightarrow Sa|a) 天直接左递归

G中:Q→Sab|ab|b — 原规则中的b

(3)
$$i=3$$
, $A_i=A_3=S$
 $j=1,A_j=A_1=R$
 $j=2,A_j=A_2=Q$

珍:
$$G[S]: S \rightarrow Qc|c$$
 $Q \rightarrow Rb|b$ $R \rightarrow Sa|a$

S→Sabc|abc|bc
G[S]中:S→Sabc|abc|bc|c 原规则中的
消除直接递归:S→(abc|bc|c){abc}

思想:逐步迭代,改写 (EBNF)

例:
$$G[S]: S \rightarrow Qc|c$$

$$\mathbf{Q} \rightarrow \mathbf{R} \mathbf{b} | \mathbf{b}$$

$$G[S]:S\rightarrow (abc|bc|c)\{abc\}$$

$$G[S]:S \rightarrow S'\{abc\}$$

S'
$$\rightarrow$$
abcS'| ϵ

* 说明:

非终结符号排序不同。所得文法形式不同。但语言等价

消除左递归的矩阵表示方法

* 设 V_N 中有n个非终结符号 $X_1, X_2, ..., X_n$ 将 $X_i \rightarrow \gamma_1 | \gamma_2 | ... | \gamma_m$ 表示成 $X_i = \gamma_1 + \gamma_2 + ... + \gamma_m$ 将 γ_i 分成两类 $\{$ 首符号 \in V_{N} $X_i = X_1 \alpha_{1i} + X_2 \alpha_{2i} + ... + X_n \alpha_{ni} + \beta_i$ α_{ii} The \emptyset 份是以终结符号开头的候选式的"和"

$$A^* = I_n + A + A^2 + ... = I_n + AA^*$$

*解出A*很复杂。但我们的目的只是消 除左递归。可绕开该问题。

$$I_{n} = \begin{pmatrix} \varepsilon & \Phi & \Phi & \cdots & \Phi \\ \Phi & \varepsilon & \Phi & \cdots & \Phi \\ \Phi & \Phi & \varepsilon & \cdots & \Phi \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Phi & \Phi & \Phi & \cdots & \varepsilon \end{pmatrix}$$

$$I_{n} = \begin{pmatrix} \varepsilon & \Phi & \Phi & \cdots & \Phi \\ \Phi & \varepsilon & \Phi & \cdots & \Phi \\ \Phi & \Phi & \varepsilon & \cdots & \Phi \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Phi & \Phi & \Phi & \cdots & \varepsilon \end{pmatrix} \qquad A^{*} = \begin{pmatrix} Z_{11} & Z_{12} & Z_{13} & \cdots & Z_{1n} \\ Z_{21} & Z_{22} & Z_{23} & \cdots & Z_{2n} \\ Z_{31} & Z_{32} & Z_{33} & \cdots & Z_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ Z_{n1} & Z_{n2} & Z_{n3} & \cdots & Z_{nn} \end{pmatrix} = Z$$

$$Z=I_n+AZ$$

将矩阵展开, 得新文法, 不含左递归!

举 例

$$R=Sa+a$$

矩阵:
$$(S,Q,R) = (S,Q,R)$$
 $\begin{pmatrix} \Phi & \Phi & a \\ c & \Phi & \Phi \\ \Phi & b & \Phi \end{pmatrix} + (c,b,a)$ B

矩阵展开

$$(S,Q,R) = BZ = (c,b,a) \begin{pmatrix} Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} & Z_{23} \\ Z_{31} & Z_{32} & Z_{33} \end{pmatrix}$$

$$Z = I_n + AZ = \begin{pmatrix} \varepsilon & \Phi & \Phi \\ \Phi & \varepsilon & \Phi \\ \Phi & \Phi & \varepsilon \end{pmatrix} + \begin{pmatrix} \Phi & \Phi & a \\ c & \Phi & \Phi \\ \Phi & b & \Phi \end{pmatrix} \begin{pmatrix} Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} & Z_{23} \\ Z_{31} & Z_{32} & Z_{33} \end{pmatrix}$$

等价文法

$$S \rightarrow cZ_{11}|bZ_{21}|aZ_{31}$$

$$Q \rightarrow cZ_{12}|bZ_{22}|aZ_{32}$$

$$R \rightarrow cZ_{13}|bZ_{23}|aZ_{33}$$

$$(S,Q,R) = BZ = (c,b,a) \begin{pmatrix} Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} & Z_{23} \\ Z_{31} & Z_{32} & Z_{33} \end{pmatrix}$$

$$\mathbf{Z} = \mathbf{I}_{\mathbf{n}} + \mathbf{A}\mathbf{Z} = \begin{pmatrix} \boldsymbol{\varepsilon} & \boldsymbol{\Phi} & \boldsymbol{\Phi} \\ \boldsymbol{\Phi} & \boldsymbol{\varepsilon} & \boldsymbol{\Phi} \\ \boldsymbol{\Phi} & \boldsymbol{\Phi} & \boldsymbol{\varepsilon} \end{pmatrix} + \begin{pmatrix} \boldsymbol{\Phi} & \boldsymbol{\Phi} & \boldsymbol{a} \\ \mathbf{c} & \boldsymbol{\Phi} & \boldsymbol{\Phi} \\ \boldsymbol{\Phi} & \boldsymbol{b} & \boldsymbol{\Phi} \end{pmatrix} \begin{pmatrix} \mathbf{Z}_{11} & \mathbf{Z}_{12} & \mathbf{Z}_{13} \\ \mathbf{Z}_{21} & \mathbf{Z}_{22} & \mathbf{Z}_{23} \\ \mathbf{Z}_{31} & \mathbf{Z}_{32} & \mathbf{Z}_{33} \end{pmatrix}$$

$$Z_{11}
ightharpoonup a Z_{31} | \epsilon$$
 $Z_{21}
ightharpoonup c Z_{11}$ $Z_{31}
ightharpoonup b Z_{21}$ $Z_{12}
ightharpoonup a Z_{32}$ $Z_{22}
ightharpoonup c Z_{12} | \epsilon$ $Z_{32}
ightharpoonup b Z_{22}$ $Z_{13}
ightharpoonup a Z_{33}
ightharpoonup c Z_{33}
ightharpoonup b Z_{23} | \epsilon$

2、回溯的消除

问题:不能准确地选定候选式

* 回溯的原因:

若当前符号为a, 需要对A展开,而 $A \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n$, 那么要知道哪个 α_i 是获得以a开头串的候选式,即通过查看当前(第一个)符号来选择合适的候选式 α_i

根源: 候选式所产生的首字符的交集不为空, 即可选定的候选式不唯一

解决:对文法的任何非终结符号,当要匹配输入串时,它能根据所面临的输入符号准确地指派唯一候选式。

2、回溯的消除

消除回溯的目标:

非终结符的所有候选式所产生的首符集两两不相交

方法: 提取公共左因子

注意:事实上并非消除,而是设计文法避免之。

2、回溯的消除

对每一 $A \to \alpha_1 |\alpha_2| ... |\alpha_n$,要求 α_i 可推导到的首字母(终结符号)不同即可。

若有E出现,则需考虑A后面的符号

推导到 $S \stackrel{*}{=} \alpha Ax\beta$, 仍然不知选用哪条候选式

(1) 首先定义两个集合: First集和Follow集

First(
$$\alpha_i$$
)={ $\mathbf{a} | \alpha_i = >^* \mathbf{a} \delta$, 且 $\mathbf{a} \in V_T$, α_i , $\delta \in V^*$ } 当 $\alpha_i = >^* \epsilon$ 时,则 $\epsilon \in \mathrm{First}(\alpha_i)$

Follow(A)={a|S#=>*
$$\alpha Aa\delta$$
, 具a $\in V_T$, $\alpha,\delta \in V^*$ } 若S=>* αA 则 # \in Follow(A)。

若S 为文法的开始符号,则# ∈ Follow(S)? \checkmark

例: 文法G(S): $S \rightarrow aA|d$ $A \rightarrow bAS|\epsilon$

角: First(aA)={a}, First(d)={d} First(bAS)={b}, First(ϵ)={ ϵ }

Follow(S)=? Follow(S) = $\{\#,a,d\}$

Follow(A)=? ={#} \cup First(S)={#,a,d}

Follow(A)= $\{a \mid S\#=>^* \alpha A a \delta, \mathbb{A}a \in V_T, \alpha, \delta \in V^*\}$ 若S=> $* \alpha A$ 则 $\# \in Follow(A)_o$

(2) 无回溯的条件

对于
$$G$$
中的每一个 A \in V_N , A o $lpha_1 |lpha_2| ... |lpha_n|$

(1) $First(\alpha_i) \cap First(\alpha_j) = \Phi$ ($i \neq j \Rightarrow f$)

 $(\alpha_i \rightarrow \alpha_j$ 至多有一个能推出 $\epsilon)$

②若有 α_i 能推导出 ϵ ,则

 $First(\alpha_j) \cap Follow(A) = \Phi \quad (i \neq j \Rightarrow j)$

LL(1) 文法

* LL(1) 文法

LL(1)文法使用的是确定的自顶向下的分析技术

* LL(1)的含义

第一个L表明自顶向下分析是从左向右扫描输入串 第2个L表明分析过程中将使用最左推导

- 1表明只需向右看一个符号便可决定如何推导,即选择哪个产生式(规则)进行推导。
- * LL(1)文法的判别需要依次计算FIRST集、 FOLLOW集,然后判断是否为LL(1)文法,最后再 进行句子分析。

LL(1) 文法

- (1) 提取左公因子, 文法不含左递归
- (2) 对于G中的每一个 $A \in V_N, A \rightarrow \alpha_1 |\alpha_2| ... |\alpha_n|$
 - ① $First(\alpha_i) \cap First(\alpha_j) = \Phi$ $(i \neq j$ 對)
 - ② 若有α,能推导出ε,则

 $First(\alpha_{j}) \cap Follow(A) = \Phi \quad (i \neq j \Rightarrow j)$

例: $G(S): S \rightarrow aA|d A \rightarrow bAS| \epsilon$ 是否是LL(1) 文法?

解: 针对S: First(aA) \cap First(d)= Φ 针对A: First(bAS) \cap First(ϵ)= Φ

Follow(S) = $\{\#,a,d\}$ Follow(A) = $\{a,d,\#\}$ First(bAS) \cap Follow(A) = Φ

该文法属于LL(1)文法

- (1) 文法不含左递归
- (2) 对于G中的每一个 $A \in V_N, A \rightarrow \alpha_1 |\alpha_2| ... |\alpha_n|$
 - ① $First(\alpha_i) \cap First(\alpha_i) = \Phi$ ($i \neq j$)
 - ② 若有a_i能推导出ε,则 First(a_i) ∩Follow(A) = Φ (i≠j时)

LL(1) 文法——自上而下无回溯分析法

假设面临的输入符号为a, 要用非终结符A进行匹配, $(A \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n)$

- (1) 若a属于 $First(\alpha_i)$,则指派 α_i 执行匹配;
- (2) 若a不属于任何一个 $First(\alpha_i)$,则:
 - ①若 ϵ 属于 $First(\alpha_i)$ 且a属于Follow(A),则指派 α_i 执行匹配;
 - ②否则, a的出现是一个语法错误。

作业P176

- 4-1 (1)
- 4-3 (1) (2)
- 4-4
- 4-8
- 4-9
- 4-13
- 4-20

- 4-31
- 4-33
- 4-35 (1)
- 4-36
- 4-38 (1)