import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, ca

train_data = pd.read_excel('/content/drive/MyDrive/PCA_fourfold_gene_expression.
train_data.head()

	Gene_ID	Group	C_vs_R_FC	C_vs_T2a_b_c_FC	C_vs_T3a_FC	C_vs_T3b_4FC
0	SFN	0	23.22	5.46	4.90	4.25
1	MIR205HG; MIR205	0	49.93	5.56	10.19	10.77
2	GSTM3	0	5.98	4.31	5.54	7.08
3	DPT	0	9.18	4.66	6.01	10.34
4	LMOD1	0	7.71	4.91	5.95	5.00

train_data.isnull().sum()

Gene_ID	0
Group	0
C_vs_R_FC	0
C_vs_T2a_b_c_FC	0
C_vs_T3a_FC	0
C_vs_T3b_4FC	0
dtype: int64	

Count of Coding & NonCoding
sns.catplot(x = 'Group', kind = 'count', data = train_data, palette = 'magma')

<seaborn.axisgrid.FacetGrid at 0x7fbc6fc47400>

train_data['Group'].value_counts()

062123

Name: Group, dtype: int64

```
plt.figure(figsize = (15,8))
sns.distplot(train_data ['C_vs_R_FC'], color = 'lightgreen')
plt.show()
```

<ipython-input-29-8e3f94dd0aff>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function wit similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

plt.figure(figsize = (10,8))

sns.distplot(train_data ['C_vs_T3b_4FC'], color = 'blue')
plt.show()

「→ <ipython-input-30-d5358a004dc7>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function wit similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751


```
plt.figure(figsize = (15,8))
sns.distplot(train_data ['C_vs_T3a_FC'], color = 'red')
plt.show()
```

<ipython-input-31-d117600d2daf>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function wit similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751


```
plt.figure(figsize = (15,8))
sns.distplot(train_data ['C_vs_T2a_b_c_FC'], color = 'magenta')
plt.show()
```

<ipython-input-32-410975337d32>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function wit similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

Analysis of Distribution b/w T2a_b_c_vs_C FC & T3a_vs_C FC
plt.style.use("ggplot")
plt.figure(figsize = (8,6))
sns.scatterplot(x = "C_vs_T2a_b_c_FC", y = "C_vs_T3a_FC", data = train_data, hu

Analysis of Distribution b/w T2a_b_c_vs_C FC & T3b_4_vs_C FC
plt.style.use("ggplot")
plt.figure(figsize = (8,6))
sns.scatterplot(x = "C_vs_T2a_b_c_FC", y = "C_vs_T3b_4FC", data = train_data, h

Analysis of Distribution b/w T2a_b_c_vs_C FC & HR_vs_C_FC plt.style.use("ggplot") plt.figure(figsize = (8,6)) sns.scatterplot(x = "C_vs_T2a_b_c_FC", y = "C_vs_R_FC", data = train_data, hue

train_data

	Gene_ID	Group	C_vs_R_FC	C_vs_T2a_b_c_FC	C_vs_T3a_FC	C_vs_T3b_4FC
0	SFN	0	23.22	5.46	4.90	4.25
1	MIR205HG; MIR205	0	49.93	5.56	10.19	10.77
2	GSTM3	0	5.98	4.31	5.54	7.08
3	DPT	0	9.18	4.66	6.01	10.34
4	LMOD1	0	7.71	4.91	5.95	5.00
80	MYL9	0	5.77	4.73	5.61	5.43
81	FLRT3	0	14.81	4.25	5.54	5.07
82	MYL9	1	8.07	5.23	6.32	5.96
83	SIM2	0	-5.66	-5.54	-6.53	-7.32
84	NEFH	0	66.98	9.00	14.23	12.72

85 rows x 6 columns

train_data = train_data.drop(['Group'], axis = 1)

```
plt.figure(figsize = (11,9))
```

^{#-1} to +1 > + or -0.85 ,closer to 0 (not to select these features)R # for correlation data should be continuouslike charges not discrete like coding $sns.heatmap(train_data.corr(), annot = True, cmap = 'RdYlGn')$

<ipython-input-39-ba8740157f36>:4: FutureWarning: The default value of nume
 sns.heatmap(train_data.corr(), annot = True, cmap = 'RdYlGn')
<Axes: >

#splitting the data into train and test

train_data

	Gene_ID	C_vs_R_FC	C_vs_T2a_b_c_FC	C_vs_T3a_FC	C_vs_T3b_4FC
0	SFN	23.22	5.46	4.90	4.25
1	MIR205HG; MIR205	49.93	5.56	10.19	10.77
2	GSTM3	5.98	4.31	5.54	7.08
3	DPT	9.18	4.66	6.01	10.34
4	LMOD1	7.71	4.91	5.95	5.00
80	MYL9	5.77	4.73	5.61	5.43
81	FLRT3	14.81	4.25	5.54	5.07
82	MYL9	8.07	5.23	6.32	5.96
83	SIM2	-5.66	-5.54	-6.53	-7.32
84	NEFH	66.98	9.00	14.23	12.72

85 rows × 5 columns

X = train_data.drop('Gene_ID', axis = 1)
X

	C_vs_R_FC	C_vs_T2a_b_c_FC	C_vs_T3a_FC	C_vs_T3b_4FC
0	23.22	5.46	4.90	4.25
1	49.93	5.56	10.19	10.77
2	5.98	4.31	5.54	7.08
3	9.18	4.66	6.01	10.34
4	7.71	4.91	5.95	5.00
80	5.77	4.73	5.61	5.43
81	14.81	4.25	5.54	5.07
82	8.07	5.23	6.32	5.96
83	-5.66	-5.54	-6.53	-7.32
84	66.98	9.00	14.23	12.72

85 rows × 4 columns

Cross Validation splitting samples into train & test samples randomly

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, rando
```

len(x_train)

68 will be one epoch

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range = (0,1))
x_train_scaler = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)
x_train_scaler
from keras.utils.np_utils import to_categorical
y_train = to_categorical(y_train)
y_train
y_train.shape
y_test = to_categorical(y_test)
y_test
y_test.shape
x_train.shape
x_test.shape
len(x_train)
```

ANN Classification

```
# Dense Neural Network
from tensorflow.keras.layers import Dense, Dropout
# Sequential Connection with Neural Network
from tensorflow.keras.models import Sequential
# Optimizers for Regression Model
from tensorflow.keras.optimizers import Adam
def build model():
    # Sequential Neural Network - Feedforward Neural Network
    model = Sequential()
    # Units = Number of Neurons(2 * pow(n)) , Input Shape = Num of Features
    model.add(Dense(units = 64, activation = 'relu', input_shape = [len(X.keys()
    model.add(Dropout(0.2))
    # Hidden Layer - I
    model.add(Dense(units = 128, activation = 'relu'))
    model.add(Dropout(0.2))
    # Hidden Layer - II
    model.add(Dense(units = 128, activation = 'relu'))
    model.add(Dropout(0.3))
    # Output Layer - For Multi Classification
    model.add(Dense(units = 4, activation='softmax'))
    # Optimizers (alpha)
    optimizers = Adam(learning_rate = 0.001)
    # Model Compiler
    # Error Function for binary classification = 'binary_crossentropy'
    # Metrics = Metrics of Model / Check the performance of model
    model.compile(optimizer = 'Adam', loss = 'categorical_crossentropy', metrics
    return model
model = build_model()
model.summary()
history = model.fit(x_train, y_train, epochs = 16, batch_size = 10, validation_d
history = model.fit(x_scaler, y_train, epochs = 16, batch_size = 10, validation_
```

```
train_data.corr()

plt.figure(figsize =(20,20))
sns.heatmap(train_data.corr())

train_data.shape

#to test variance of data whether it is highly variable train_data.var()
```

Colab paid products - Cancel contracts here

