

סילבוס קורס

מבוא ללמידה עמוקה 4077004

פרטי הקורס

שנה אקדמית: תשפא קמפוס: באר שבע

סוג הקורס: בחירה מחלקה: הנדסת תוכנה תחום: כריה ואחזור מידע רמת הקורס: תואר ראשון

צורת העברה: פנים אל פנים, מוכוון פרויקט (PO), שנת לימוד: ג'

למידה מרחוק

דרישות קדם: מבוא לכריית נתונים 4077001. סמסטר: ב

מבוא לאיחזור מידע 4077006

דרישות במקביל: נקודות זכות: 3 4.5 :ECTS נקודות שפת הוראה: עברית

סביבת עבודה: מעבדה

מרצה/ים: ד"ר נטליה וונטיק natalyav@sce.ac.il מתרגל/ים:

מטרה

הקניית ידע בתחום של למידה עמוקה, כולל עקרונות תיאורטיים וידע מעשי בהגדרה ושימוש ברשתות נוירונים עמוקות.

תפוקות למידה

עם סיום מוצלח של הקורס, הסטודנטים יהיו מסוגלים:

- 1. לנסח עקרונות של למידה ממוחשבת
- 2. להסביר את המבנה והפרמטרים של רשת נוירונים עמוקה
- 3. לנסח ולנתח עקרונות של למידה עמוקה ורשתות נוירונים עמוקות.
 - 4. להגדיר את המרכיבים העיקריים של רשת נוירונים עמוקה.
 - .Keras-ו TensorFlow ו-Keras.
 - 6. להגדיר ולהשתמש ברשת מסוג CNN לניתוח תמונות.
 - 7. להגדיר ולהשתמש ברשת מסוג RNN לניתוח טקסט.

תוכן הקורס

מקורות רלוונטים	נושא	שבוע
ה [1] פרק 1, [4]	מבוא. מהי למידה ממוחשבת. מבנים מתמטיים ועקרונות הסטטיסטיקה הנחוצים ללמידה ממוחשבת.	
[1] פרק 1, [2] פרק 1 ם.	אלגוריתמים עיקריים של למידה ממוחשבת. Logistic regression . Gradient descent, stochastic gradient descent. הערכת מודלים. Confusion matrix.	
[2] פרק 2	מבנה של רשת נוירונים פשוטה. ייצוג נתונים. פעולות על טנזורים. אופטימיזציה מבוססת gradient.	
[2] פרקים 3.1-3.3	1 פרויקט חלק	4
Perceptrons. פונקציות הפעלה. Perceptrons. Hyperparameters. פונקציות הפעלה		
[1] פרק 3	ארכיטקטורות בסיסיות של רשתות נוירונים עמוקות.	6
[2] פרקים 3.4-3.6	2 פרויקט חלק	
4 פרק [1]	.Deep Belief. Generative Adversarial Networks רשתות	8
4 פרק [1]	.(Convolutional Neural Networks (CNNs	
5 פרק [2]	פרויקט חלק 3	
4 פרק [1]	.(Recurrent Neural Networks (RNNs	11
6 פרק [2]	hackaton 4 פרויקט חלק	12
-	הגשה פרונטאלית של פרויקטים	13

מקורות ספרות נדרשים ומומלצים

ספר הקורס:

- 1. Patterson, Josh, and Gibson, Adam. Deep Learning: A Practitioner's Approach. O'Reilly .Media, Inc., 2017
 - מקורות נוספים:
- 2. Gron, Aurlien. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. O'Reilly Media, Inc., 2017
- 3. Halevy, Alon, Norvig, Peter, and Pereira, Fernando . The unreasonable effectiveness of data. .IEEE Intelligent Systems, 2009, vol. 24, no. 2, 8-12
- 4. Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep learning. Vol. 1. Cambridge: .MIT press, 2016

פעילויות למידה מתוכננות ושיטות הוראה

שעות הרצאה שבועיות: 3. הקורס יילמד כשילוב של הרצאות פרונטאליות/מקוונות וביצוע פרוייקט במעבדה.

שיטות הערכה וקריטריונים

הערות	אחוז	קריטריון
קיימת חובת מעבר בציון 56. במידה וציון הפרויקט יהיה נמוך מ56-, הציון הסופי בקורס יהיה ציון הפרויקט.	90%	פרויקט:
חובת נוכחות בלפחות 80% מהמפגשים בקורס. בהיעדרות מעל ל- 20% ישוקלל ציון 0 עבור מרכיב זה בציון הקורס.	10%	נוכחות:
מרכיבי ההערכה עשויים להשתנות		:הערות