PHILIPS

MANUAL

PLUG-IN TEXT GENERATOR UNIT PM 5543

9449 055 430...

Contents

I. Introduction	3
II. Characters	4
III. Coding	4
IV. Description of blockdiagram	6
V. Installation	7
VI List of spare parts	10

List of figures

Fig. 1	Text in the pattern of the PM 5544	3
Fig. 2	Survey of the different characters	5
Fig. 3	Blockdiagram	6
Fig. 4	Modification of the wiring diagram of the PM 5544	7
Fig. 5	Removing white needle pulse	9
	Printed wiring board PM 5543	11
Fig. 7	Circuit diagram PM 5543	14
0-	· · · · · · · · · · · · · · · · · · ·	

I. Introduction

The PHILIPS PM 5543 is a sub-unit which can be used in combination with the colour/monochrome pattern generator PM 5544 to insert text for transmitter station and/or channel indication.

The text can be displayed in the two rectangles specially provided for this purpose in the pattern (see fig. 1).

The coding and recoding of the unit has to be done by the factory.

The text in the upper bar can consist of up to 7 characters and in the lower bar up to 10 characters. The PM 5543 can easily be mounted in the PM 5544 G as well as M-version, however, for the first series of the PM 5544 some modifications has to be done (see chapter V. Installation).

Fig. 1. Text in the pattern of the PM 5544

II. Characters

The function of the text generator is based on the integrated circuit FDR 116 Z1. This is a so-called R.O.M. circuit (Read Only Memory) which generates 64 different characters in a 5 times 7 dot matrix (see Fig. 2).

In a TV display the dot is formed by a white square having a width of $0.2 \mu s$ and a height of 2 lines/field.

This means that one character, white on a black background, takes the space of a rectangle of 1 μ s times 28 lines/frame.

The horizontal position of the character rows are independently adjustable giving the possibility of a symmetrical display of the text in both bars.

The text amplitude is automatically the same as peak white in the testpattern.

III. Coding

To generate the desired character the R.O.M. circuit must be coded (0 or 1) according to the scheme in figure 2 (terminals A4...A9).

As the text generator is able to supply 7 and 10 characters in respectively upper and lower bar, the A4...A9 combinations should be shifted 7 resp. 10 times.

The shifting of the combinations takes place in the sign selectors controlled by the 16:1 divider and the sign matrix (terminals E0 - E15; see fig. 7).

The matrixing is made by jumpers soldered at the rear of the printed wiring board taking care of a correct code (0 or 1) to the sign selectors.

A9 A8 A7 A6 A5 A	4 A9 A8 A7 A6 A5 A4	4 A9 A8 A7 A6 A5 A4	A9 A8 A7 A6 A5 A	1 A9 A8 A7 A6 A5 A	/ 40 48 47 46 45 47	100 40 47 45 45 4	1.0.10.10.1
0 0 0 0 0 1	0 0 0 0 1 0	0 0 0 0 1 1	0 0 0 1 0 0	0 0 0 1 0 1	0 0 0 1 1 0	0 0 0 1 1 1	0 0 1 0 0 0
Α	В	С	D	E	F	G	Н
0 0 1 0 0 1	001010	0 0 1 0 1 1	001100	0 0 1 1 0 1	0 0 1 1 1 0	0 0 1 1 1 1	0 1 0 0 0 0
I	J	K	L	М	N	0	Р
0 1 0 0 0 1	0 1 0 0 1 0	0 1 0 0 1 1	0 1 0 1 0 0	0 1 0 1 0 1	0 1 0 1 1 0	0 1 0 1 1 1	011000
Q	R	S	T	U	V	W	X
0 1 1 0 0 1	0 1 1 0 1 0	1 1 0 0 0 0	1 1 0 0 0 1	1 1 0 0 1 0	1 1 0 0 1 1	1 1 0 1 0 0	1 1 0 1 0 1
Y	Z	Ø	1	2	3	4	5
1 1 0 1 1 0	1 1 0 1 1 1	1 1 1 0 0 0	1 1 1 0 0 1	0 1 1 1 1 0	101010	101111	1 0 1 0 1 1
6	7	8	9	٨	*	/	+
1 0 1 1 0 1	1 1 1 1 0 1	1 1 1 1 0 0	1 1 1 1 1 0	0 1 1 0 1 1	0 1 1 1 0 1	101000	101001
-	=	(>	[]	()
101100	1 1 1 0 1 1	101110	1 1 1 0 1 0	1 0 0 0 0 1	1 1 1 1 1 1	100010	1 0 0 1 0 1
,	;	•	:	!	?	"	%
1 0 0 0 1 1	100100	100110	0 0 0 0 0	0 1 1 1 0 0	0 1 1 1 1 1	1 0 0 1 1 1	100000
#	\$	&	e	\	_	ı	NO CHARACTER

Fig. 2. Survey of the different characters

IV. Description of the blockdiagram

The unit is supplied with the necessary drive pulses from the PM 5544. The pulses V5-7, V23-25 and H14-34 are applied to the clock key generator, which secures the start/stop of the 8.6 MHz clock oscillator. The clockpulses are applied to a divider system controlled by the time pulse, frame pulse and V17-19 pulse. The obtained pulses (A...H) control the sign selectors, read in/read out gate and the clock gate.

The sign selectors select successively the terminals E0 up to E15 by means of the pulses A, B, C and D. These terminals are connected via the sign matrix to logical 1 or 0.

The output pulses W1 up to W6 of the sign selectors are applied via amplifiers to the inputs of the R.O.M. circuit (A4 up to A9).

The pulse Ø 1 and Ø 2 control the read in and horizontal read out of the R.O.M. circuit while the vertical read out is controlled by the pulses A1, A2, A3 supplied from the time selector.

The output of the R.O.M. circuit (Q1...Q5) is supplied to the shiftregister, which is controlled by the pre-set gate and the clock gate.

The obtained signal is applied, via a flip-flop, to the output circuit.

Fig. 3. Blockdiagram

V. Installation

The PM 5543 can easily be plugged into the PM 5544. However, depending on the versions the following modifications should be carried out:

1. PM 5544/01

- Insert contact blocks and guide parts for PM 5543
- -- Mount the current gate, unit 18
- Modify the wiring according fig. 4
- Remove white needle pulse in lower bar (see PM 5544/03)
- Change C21 (100 kpF) of unit 6 to 220 kpF

2. PM 5544/02

- -- Mount unit 18, Current gate with wiring (see fig. 4)
- Remove white needle pulse in lower bar (see PM 5544/03)
- Connect a capacitor of 220 kpF between base and collector of TS11of unit 6 (between R38-R41)

Fig. 4. Modification of the wiring diagram of the PM 5544

3. PM 5544/03

-- Remove white needle pulse in lower bar by interrupting interconnections between upper and lower side on printed wiring board unit 7 (see fig. 5)

Horizontal positioning of the texts

The text in upper and lower bar should be placed symmetrically with respect to each other. To enable this, the text in the two bars can be shifted in horizontal direction one character by means of the potentiometers R1 and R2 for respectively upper and lower bar (see fig. 7).

Connections for different letter types

As stated in the circuit diagram there is a possibility to obtain different letter types by means of connections on the printed wiring board (see fig. 7).

These connections have to be made between upper trace and lower trace and are marked Ab, DC and DE (see fig. 6).

Fig. 5. Removing white needle pulse

VI. List of spare parts

Description	Type/Item	Value		Ordering number
Integrated circuit Integrated circuit Integrated circuit Integrated circuit	FJH111 FJH121 FJH131 FJH141	 		5322 209 80107 5322 209 80062 5322 209 80023 5322 209 80198
Integrated circuit Integrated circuit Integrated circuit Integrated circuit Integrated circuit	FJH151 FJH221 FJJ121 FJJ131 FJJ211	- - - -		5322 209 80125 5322 209 80128 5322 209 80108 5322 209 80065 5322 209 84027
Integrated circuit Integrated circuit Integrated circuit Integrated circuit Integrated circuit	SN7404N SN74121N SN75150N SN7416N SN7417N SN7496N	- - - - -		5322 209 80148 5322 209 84017 5322 209 84034 5322 209 84035 5322 209 84036 5322 209 84038
Integrated circuit R.O.M. circuit Transistor Transistor Diode Diode	FDR116Z1 2N2894 BCY71 BAX16 BAX78	 		5322 209 84037 5322 130 40018 5322 130 40373 5322 130 30273 5322 130 30331
Coil Capacitor Capacitor Capacitor Capacitor	L1L3 C4 C5 C6-C8 C3-C7	56 pF 100 pF 220 pF 33 pF		5322 158 10052 5322 122 30028 5322 122 30021 5322 122 30101 5322 122 30016
Electrolytic capacitor Electrolytic capacitor Electrolytic capacitor Potentiometer	C9 C10 C11 R1, R2	22 μF 8.2 μF 15 μF 10 kΩ	6.3 V 16 V 10 V	5322 124 10008 5322 124 10067 5322 124 24008 5322 100 10125

Fig. 6. Printed wiring board PM 5543

Fig. 7. Circuit diagram PM 5543