You must show your work to get full credit.

2175

(1) Let a be a constant. Find the equation of the tangent line to $y = x^2 + ax$ at the point where $x = x_0$.

the point where
$$x = x_0$$
.

 $y = x_0^2 + ax_0$
 $y = 2x + a$
 $y = 2x + a$
 $y = x_0^2 + ax_0 = (2x_0 + o)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$
 $y = x_0^2 + ax_0 + (2x_0 + a)(x - x_0)$

(2) Find the derivatives of the following functions.

(a) $f(x) = -7(3)^x$ $f'(x) = -7 \ln(3)$

(b)
$$w = 4e^z + 3z^4$$

$$\frac{dw}{dz} = 9e^{2} + 1223$$

$$A(t) = 13\ln(t)$$

$$A'(t) = \frac{/3}{\cancel{L}}$$