MAT 340

Ders 1

Giriş

Neden istatistiğe ihtiyaç vardır?

- Belirsizlik ve değişkenlik
- Yığın ve Örnek
- Olasılık ve İstatistik arasındaki ilişki
- Küme Teorisi
- Sayma Teknikleri

Neden istatistiğe ihtiyaç vardır?

- İstatistik, belirsizlik ve değişkenliğin söz konusu olduğu ortamlarda mantıklı ve doğru kararların verilmesinde yardımcı olan bir araçtır.
- Gerçek dünya →belirsizlik ve değişkenlik
 - □ Bir elektronik devrenin kullanım süresi
 - Merkezi işlem biriminde işlenmek için bekleyen iş sayısı Bir ürüne olan talep

 - Bir elektronik devredeki hata sayısı
- İstatistik:
 - Değişkenliklerin sebeplerini görmemize
 Farklı cihaz, farklı metot, gibi

 - doğru kararlar vermemize yardımcı olur.

Belirsizlik ve Değişkenlik (Uncertainity and Variability)

- Değişkenlik, gözlemlerin alındığı koşullardaki değişikliğin bir sonucudur.
- Bir üretim çevresinde bu değişiklikler;
 - malzeme tipi
 - işçiler
 - proses değişkenleri (sıcaklık, basınç, işlem zamanı)
 - çevresel faktörler (nem)
- Değişkenlik; kantitatif ölçümlerin olduğu her alanda söz konusudur.

Istatistik

- Tüm bilim dallarında çeşitli amaçlar için veri toplamak söz
- İstatistik disiplini,
 - verinin organize edilmesi ve özetlenmesi,
 - verideki bilgiye dayalı olarak sonuç çıkarılması için

gerekli metotları sağlar.

Yığın

- Yığın; ilgilenilen nesnelerin olusturdugu kümedir.
 - somut yığın (concrete population): Bir yığının tüm öğelerini listelemek mümkün

örnek: 2005 yılında Başkent Üniversitesindeki öğrenciler Ankara'da çalışan universite mezunu bayanlar.

soyut yığın (hypothetical population): Bir yığının tüm öğelerini listelemek mümkün değil

örnek: Başkent Üniversitesinden 2006 yılında mezun olacak öğrenciler

Örnek

- Yığındaki tüm nesnelere ulaşılabilirse, yapılan işlem sayım olarak adlandırılır.
- Ancak, zaman, para, ve diğer kısıtlı kaynaklardan dolayı sayım yapmak mümkün değildir.
- Örneğin, Başkent Üni. tüm öğrencileri dikkate alarak bir anket yapılmak istendiğini varsayalım.

Amaç

Öğrencilerin bölümlerini neden ve nasıl seçtiğini belirlemek olsun.

Tüm öğrencilere anketi yapmak zaman alıcı ve pahalı olacağı için pratik bir yol olmayacaktır.

Örnek

- Bu nedenle, yığını temsil eden bir örnek kullanılması tercih edilir.
- Örnek; yığının bir alt kümesidir ve önceden tanımlanan bir yöntem ile secilir.
 - Elektronik devrelerin montajının doğru yapılıp yapılmadığını belirlemek için
 - Montaj hattındaki üretimden bir grup elektronik devre seçimi
 - Bir üniversitenin eğitim kalitesini değerlendirmek için
 - Öğrencilerin bir grubunun seçimi
 - u vb.

İstatistiğin Dalları

- Tanımlayıcı İstatistik
 - Veriyi organize eden ve özetleyen metotları içerir.
 - Şekil ve Tablo (Dal ve yaprak grafiği, Histogram, Kutu grafikleri)
 - Verinin yerleşim, değişkenlik ölçüleri.
- Kanıtlayıcı İstatistik
 - Örneği kullanarak yığın hakkında bir sonuç çıkarmak için kullanılan tüm teknikleri içerir.
 - Nokta tahminleri
 - Güven aralıkları
 - Hipotez testleri

Olasılık ve İstatistik Arasındaki İlişki Olasilik Population N = yığın genişliği İstatistik Sample n = Örnek genişliği

Olasılık ve İstatistik

- Olasılık ve istatistik bilim dalları
 - □ Belirsizliği tanımlamak ve modellemek,
 - Belirsizliğin söz konusu olduğu ortamlarda karar vermek için

araçları sağlar içerir.

- Olasılık teorisi, olayların belirsizliğini tanımlama ve modellemek için gerekli araçları sağlarken
- İstatistik, bu araçları belirsizlik altında karar vermek ve veriyi daha iyi anlamak için kullanır.

Olasılık Nedir?

- Olasılık belirsizliğin söz konusu olduğu ortamda ilgilenilen olaya olan güven derecesinin bir kantitatif ölçüsüdür
- Örneğin
 - Yağmur yağma olasılığı 0.20
 - X marka bilgisayarın tamir edilmeksizin 100000 saatten daha fazla çalışma olasılığı 0.75
- Olasılık, bir olayın ya da olaylar kumesinin olabilirliğinin ölçüsüdür.

Olasılık

- Küme Teorisi
 - Küme işlemleri
 - Küme özellikleri

- Küme; nesneler topluluğu.
- Kümeler, A, B, C,...gibi büyük harfler ile tanımlanır.

Küme Teorisi

- Kümeleri tanımlamak için 3 farklı yol vardır:
 - Tüm elemanları listelenir

A={1, 2, 3, 4}

Bir cümle ile tanımlanır.

A kümesi, "0" ve "1" arasındaki tüm gerçel sayıları içermektedir.

Matemetiksel bir ifade ile tanımlanır

 $A = \{x \mid 0 \le x \le 1 \}$

Küme Teorisi

 $a \in A$ ("a", A kümesinin elemanı)

a ∉ A ("a", A kümesinin bir elemanı değil)

Evrensel Küme: Ilgilenilen nesnelerin tumunu kapsayan küme (S yada U).

Boş Küme : Hiçbir ogesi olmayan küme (∅)

Alt Küme: Bir A kumesinin her ogesi bir B kümesininde ogesi ise A'ya

B'nin alt kümesi denir (A \subset B)

Eşit Kümeler : $A \subset B$ ve $B \subset A$ ise A ve B eşit kümelerdir (A= B).

Küme Teorisi

- Her A kümesi için ,
 - ${\scriptstyle \square} \ \varnothing \subset A$
 - □ A ⊂ S (A, S'in bir alt kümesi)

Örnek;

S : tüm gerçel sayılar

$$\begin{split} A &= \left\{ x \mid x^2 + 2x - 3 = 0 \right\} & \longrightarrow A = \left\{ -3, 1 \right\} \\ B &= \left\{ x \mid (x - 2)(x^2 + 2x - 3) = 0 \right\} & \longrightarrow B = \left\{ -3, 2, 1 \right\} \\ C &= \left\{ x \mid x = -3, 2, 1 \right\} & \longrightarrow C = \left\{ -3, 2, 1 \right\} \end{split}$$

 $ise \ A \subset B \quad ve \quad B = C$

Küme İşlemleri

- AOB: A ve B kumelerindeki ogelerin biraraya getirilmesi ile olusan kume
- A
 B: A ve B kumelerinin ikisininde ogesi olan nesnelerin olusturdugu kume
- A': A kümesinde olmayan fakat A'nin evrensel kumesinde bulunan nesnelerin olusturdugu kume

Önemli Küme Özellikleri

1. Karşılıklı Ayrık Kümeler

$$A_i \cap A_j = \phi$$
, tüm $i \neq j$
 $A \cap B = \phi \rightarrow \text{Sadece 2 küme için}$

2. Bütüne Tamamlayan Kümeler

$$A_1 \cup A_2 \cup ... \cup A_n = S$$

$$\bigcup_{i=1}^n A_i = S$$

Örnek

- A, B ve C kumeleri aşağıdaki gibi tanımlansın
 - S={1,2,3,4,5,6}
 - A = {6}
 - B = {2,4,6}
 - C = {1,3,5}
 - $\quad \ \ \, \text{$\square$} \ \ \, \text{$A$ ve $C \to $karşılıklı ayrık}$
 - □ A ve B → karşılıklı ayrık değil
 - □ B ve C → karşılıklı ayrık

Önemli Küme Özellikleri

properties

 $a)A \cup B = B \cup A$ "commutative laws"

b) $A \cup (B \cup C) = (A \cup B) \cup C$ "associative laws"

 $c)A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \text{ "distributed property"}$

 $d)A \cup \emptyset = A$

 $e)(A \cup B) = A \cap B$ "de morgon"

 $a)A \cap B = B \cap A$

 $b)A \cap (B \cap C) = (A \cap B) \cap C$

 $c)A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $d)A \cap \emptyset = \emptyset$

 $e(A \cap B) = A \cup B$ "de morgon"

Örnek

 $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

A = {0, 2, 4, 6, 8} B = {1, 3, 5, 7, 9}

 $C = \{2, 3, 4, 5\}$

 $D = \{1, 6, 7\}$

Aşağıdaki işlemlere göre küme elemanlarını belirleyiniz:

- $A \cup C = \{0, 2, 3, 4, 5, 6, 8\}$
- $(C' \cap D) \cup B = \{1, 3, 5, 6, 7, 9\}$
- (S∩C) '=?

Sayma Teknikleri

• Temel sayma prensibi çarpım kuralıdır.

Bir islem *n* farkli sekilde, diger bir islem de *k* farkli sekilde yapiliyorsa, her iki islem birlikte nk farkli sekilde yapilabilir

Ornek: Iki zar birlikte atıldığında ortaya çıkan sonuçların sayısını

Cozum: Birinci zar için n = 6 adet mümkün sonuç İkinci zar için k = 6 adet mümkün sonuç nk = 36

Ağaç Diyagramı

Agac diyagrami, tum durumlari sistematik olarak listeler.

Bir uretim hattindan rassal olarak 3 parca secilir. Her parca hatali (H) veya hatasiz (N) olarak ayrilmakladir

Dizilem (Permütasyon)

• "n" nesnenin bir kismi yada hepsi ile yapılan her farkli siralamaya dizilem (permutasyon) denir.

"n" farkli nesneden yapilabilir "n" lik dizilem sayisi n!

"n" farkli nesneden yapilabilir r birimlik dizilem sayisi

$$P_n^r = \frac{n!}{(n-r)!}$$

Dizilem (Permütasyon)

Ornek: Her yil 25 kisilik bir sinifa 3 farkli odul verilmektedir. Her ogrenci en fazla bir odul alabilirse, 3 odul 25 ogrenciye kac farkli sekilde verilebilir?

Çözüm:
$$P_{25}^3 = \frac{25!}{(25-3)!} = 13800$$

Dizilem (Permütasyon)

Örnek (Walpole, s 35):

50 kişinin bulunduğu bir öğrenci topluluğundan bir başkan ve bir muhasebeci seçilecektir. Yapılabilecek farklı seçimlerin sayısını

- a) Kısıtlama olmadığında
- A başkan seçildiğinde görev alacaksa
- c) B ve C birlikte görev alabilir yada hiç görev almazlar
- D ve E birlikte görev almazlar ise

Dizilem (Permütasyon)

Çözüm:

Dizilem (Permütasyon)

n farklı nesne bir daire etrafına (n-1)! farklı şekilde dizilebilir

Ornek : 6 kisi yuvarlak masa etrafina (6-1)!=120 farklı şekilde oturabilir

 $\frac{n}{n}$ nesnenin n_1 'i bir tür, n_2 'i bir tür, ve benzeri sekilde n_k 'si başka bir tür ise bu $\frac{n}{n}$ nesneden yapılabilir $\frac{n}{n}$ 'lik permutasyon sayısı

$$\frac{n!}{n_1!n_2!...n_k!}$$

Örnek: Aşağıda verilen her kelimedeki harfleri kullanarak kaç farklı kelime (anlamli/anlamsiz) elde edilir?

i) them ii) unusual iii) sociological

Birleşim (Kombinasyon)

- Çogu problemde, n farklı nesneden sıraya bakılmaksızın r farklı nesnenin kac farklı şekilde seçileceği ile ilgilenir.
- Bu tür seçimler birleşim (kombinasyon) olarak adlandırılır.

n farklı nesneden r' lik birleşimlerinin sayısı

$$C_n^r = {n \choose r} = \frac{n!}{r_1!(n-r)!}$$

Birleşim (Kombinasyon)

Ornek: A, B ve C elemanlarindan olusan bir kumeden 3 elemanli elde edilebilecek dizilemlerin sayisini bulunuz.

(A,B,C); (A,C,B); (B,A,C); (B,C,A); (C,A,B); (C,B,A)

n! = 3! = 3.2.1 = 6 farkli sekilde

Bu kumeden elemanli birlesim sayisi $C_3^3 = \frac{3!}{3!(3-3)!} = 1$

Birleşim (Kombinasyon)

Örnek: İçinde 5 hatalı, 15 hatasız ürün bulunan bir gruptan

- a) İki hatasız ürün
- b) Üç hatalı ürün
- c) Üç hatasız, iki hatalı ürün

kaç farklı şekilde seçilebilir

Birleşim (Kombinasyon)

Çözüm:

Bazı Özel Birleşimler

$$i)C_n^0 = \frac{n!}{0!(n-0)!} = 1$$

$$ii)C_n^1 = \frac{n!}{1!(n-1)!} = n$$

$$iii)C_n^n = \frac{n!}{n!(n-n)!} = 1$$

References

- Walpole, Myers, Myers, Ye, (2002),
 - □ Probability & Statistics for Engineers & Scientists
- Dengiz, B., (2004),
 - Lecture Notes on Probability, http://w3.gazi.edu.tr/web/bdengiz
- Hines, Montgomery, (1990),
 - □ Probability & Statistics in Engineering & Management Science