PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:			(11) International Publication Number: WO 99/09					
C12N 15/00		A2		(43) International Publication Date: 25 February 1999 (25.02				
(21) International Application Number:	PCT/US	98/148	41	(81) Designated States: AL, AM, AT BY, CA, CH, CN, CU, CZ, I				
(22) International Filing Date:	17 July 1998 (17.07.9	8)	GH, GM, HR, HU, ID, IL, IS LC. LK. LR. LS. LT. LU. L	S, JP, KE, KG, KP, KR, KZ,			

US

(71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; Office of Technology Transfer, 5th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US).

13 August 1997 (13.08.97)

(72) Inventors: RONALD, Pamela, C.; 26951 Road 96, Davis, CA 95616 (US). WANG, Guo-Liang; 927 J Street #50, Davis, CA 95616 (US). SONG, Wen-Yuang; 22A Salano Park, Davis, CA 95616 (US). SZABO, Veronique; 1880 Cowell Boulevard, Davis, CA 95616 (US). HULBERT, Scot, H.; 319 Denison Street, Manhattan, KS 66516 (US). RICHTER, Todd; 1211 Devon Court, Kokomo, IN 94609 (US).

(74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, 8th floor, Two Embarcadero Center, San Francisco, CA 94111-3834 (US). 81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PROCEDURES AND MATERIALS FOR CONFERRING DISEASE RESISTANCE IN PLANTS

(57) Abstract

(30) Priority Data:

08/910,386

The present invention provides nucleic acids encoding polypeptides which confer resistance to Xanthomonas spp and other pathogens. The nucleic acids can be used to produce transgenic plants resistant to the pathogen.

99/09151

Rage 2-0

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

L M	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
T	Austria	FR	France	LU	Luxembourg	SN	Senegal
U	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
Z	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
A	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
3G	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
3R	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
3Y	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ГT	Italy	MX	Mexico	UZ	Uzbekistan
CIF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	211	Zillioaowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
Z	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
E	Germany	LI	Liechtenstein	SD	Sudan		
K	Denmark	LK	Sri Lanka	SE	Sweden		
Œ	Estonia	LR	Liberia	SG	Singapore		

10

25

30

PCT/US98/14841

1

PROCEDURES AND MATERIALS FOR CONFERRING DISEASE RESISTANCE IN PLANTS

This application is related to U.S. Patent Application No. 08/587,680, filed January 17, 1996, which is a continuation in part of copending U.S. patent application No. 08/567,375, filed December 4, 1995, which is a continuation in part of U.S. provisional patent application No., 60/004,645. The '680 application is also a continuation in part of copending U.S. patent application No. 08/475,891, filed June 7, 1995, which is a continuation in part of copending U.S. patent application No. 08/373,374, filed January 17, 1995. These applications are incorporated herein by reference.

15 Field Of The Invention

The present invention relates generally to plant molecular biology. In particular, it relates to nucleic acids and methods for conferring disease resistance in plants.

20 Statement as to Rights to Inventions Made Under

Federally Sponsored Research and Development

This invention was made with Government support under Grant No. GM47907, awarded by the National Institutes of Health and Grant No. 9300834, awarded by the United States Department of Agriculture. The Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

Loci conferring disease resistance have been identified in many plant species. Genetic analysis of many plant-pathogen interactions has demonstrated that plants contain loci that confer resistance against specific races of a pathogen containing a complementary avirulence gene. Molecular characterization of these genes should provide means for conferring disease resistance to a wide variety of crop plants.

10

15

20

25

30

Those plant resistance genes that have been characterized at the molecular level fall into four classes. One gene, Hm1 in corn, encodes a reductase and is effective against the fungal pathogen Cochliobolus carbonum (Johal et al. Science 258:985-987 (1992)). In tomato, the Pto gene confers resistance against Pseudomonas syringae that express the avrPto avirulence gene (Martin et al. Science 262:1432 (1993)). The predicted Pto gene encodes a serine threonine protein kinase. The tomato Cf-9 gene confers resistance to races of the fungus Cladosporium fulvum that carry the avirulence gene Avr9 (Jones et al. Science 266:789-793 (1994). The tomato Cf-9 gene encodes a putatitive extracellular LRR protein. Finally, the RPS2 gene of Arabidopsis thaliana confers resistance to P. syringae that express the avrRpt2 avirulence gene (Bent et al. Science 265:1856-1860 (1994)). RPs2 encodes a protein with an LRR motif and a P-loop motif.

Bacterial blight disease caused by Xanthomonas spp. infects virtually all crop plants and leads to extensive crop losses worldwide. Bacterial blight disease of rice (Oryza sativa), caused by Xanthomonas oryzae pv. oryzae (Xoo), is an important disease of this crop. Races of Xoo that induce resistant or susceptible reactions on rice cultivars with distinct resistance (Xa) genes have been identified. One source of resistance (Xa21) had been identified in the wild species Oryza longistaminata (Khush et al. in Proceedings of the International Workshop on Bacterial Blight of Rice. (International Rice Research Institute, 1989) and Ikeda et al. Jpn J. Breed 40 (Suppl.1):280-281 (1990)). Xa21 is a dominant resistance locus that confers resistance to all known isolates of Xoo and is the only characterized Xa gene that carries resistance to Xoo race 6. Genetic and physical analysis of the Xa21 locus has identified a number of tightly linked markers on chromosome 11 (Ronald et al. Mol. Gen. Genet. 236:113-120 (1992)). The molecular mechanisms by which the Xa21 locus confers resistance to this pathogen were not identified, however.

Considerable effort has been directed toward cloning plant genes conferring resistance to a variety of bacterial, fungal and viral diseases. Only one pest resistance gene has been cloned in monocots. Since monocot crops feed most humans and animals in the world, the identification of disease resistance genes in these plants is particularly important. The present invention addresses these and other needs.

10

15

20

25

30

3

SUMMARY OF THE INVENTION

The present invention provides isolated nucleic acid constructs comprising an RRK polynucleotide sequence. The sequences can be rice sequences which hybridize to SEQ ID NOs: 1, 4, 6, 8, 10, or 11 under stringent conditions. Also claimed are sequences from cassava which hybridize to SEQ ID NO: 13), maize sequences which hybridize to SEQ ID NOs: 15, 16), and tomato (e.g., SEQ ID NOs:17, 19, or 21). Exemplary RRK polynucleotide sequences are Xa21 sequences which encode an Xa21 polypeptide as shown below. The RRK polynucleotides encode a protein having a leucine rich repeat motif and/or a cytoplasmic protein kinase domain. The nucleic acid constructs of the invention may further comprise a promoter operably linked to the RRK polynucleotide sequence. The promoter may be a tissue-specific promoter or a constitutive promoter.

The invention also provides nucleic acid constructs comprising a promoter sequence from an *RRK* gene linked to a heterologous polynucleotide sequence. Exemplary heterologous polynucleotide sequences include structural genes which confer pathogen resistance on plants.

The invention further provides transgenic plants comprising a recombinant expression cassette comprising a promoter from an RRK gene operably linked to a polynucleotide sequence as well as transgenic plants comprising a recombinant expression cassette comprising a plant promoter operably linked to an RRK polynucleotide sequence. Although any plant can be used in the invention, rice and tomato plants may be conveniently used.

The invention further provides methods of enhancing resistance to Xanthomonas and other pathogens in a plant. The methods comprise introducing into the plant a recombinant expression cassette comprising a plant promoter operably linked to an RRK polynucleotide sequence. The methods may be conveniently carried out with rice or tomato plants.

Definitions

The term "plant" includes whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds and plant cells and progeny of same. The class of plants which can be used in the methods of the invention is generally as broad as the class of higher plants

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

4

amenable to transformation techniques, including both monocotyledonous and dicotyledonous plants.

A "heterologous sequence" is one that originates from a foreign species, or, if from the same species, is substantially modified from its original form. For example, a promoter operably linked to a heterologous structural gene is from a species different from that from which the structural gene was derived, or, if from the same species, one or both are substantially modified from their original form.

An "RRK gene" is member of a new class of disease resistance genes which encode RRK polypeptides which typically comprise an extracellular LRR domain, a transmembrane domain, and a cytoplasmic protein kinase domain (as shown in e.g., Pto and Fen (Martin et al. Plant Cell 6:1543-1552 (1994)). As used herein, an LRR domain is a region of a repeated unit of about 24 residues as described in USSN 08/587,680, and found in Cf-9). Using the sequences disclosed here and standard nucleic acid hybridization and/or amplification techniques, one of skill can identify members of this class of genes. For instance, a nucleic acid probe from an Xa21 gene detected polymorphisms that segregated with the blast (Pyricularia oryzae) resistance gene (Pi7) in 58 recombinant inbred lines of rice. The same probe also detected polymorphism in nearly isogenic lines carrying xa5 and Xa10 resistance genes.

In some preferred embodiments, members of this class of disease resistance genes can be identified by their ability to be amplified by degenerate PCR primers which correspond to the LRR and kinase domains. For instance, primers have been used to isolate homologous genes in tomato, maize and cassava. The maize gene disclosed here has been genetically mapped to a region associated with resistance to *Helminthosporium turcicum*. Exemplary primers for this purpose are tcaagcaacaatttgtcaggnca (a/g) at (a/c/t) cc (for the LRR domain sequence GQIP) and taacagcacattgcttgatttnan (g/a) tcncg (g/a) tg (the kinase domain sequence HCDIK). These or equivalent primers are then used to amplify the appropriate nucleic acid using the PCR conditions described below.

An "Xa21 polynucleotide sequence" is a subsequence or full length polynucleotide sequence of an Xa21 gene, such as the rice Xa21 gene, which, when present in a transgenic plant confers resistance to Xanthomonas spp. (e.g., X. oryzae) on the plant. Exemplary polynucleotides of the invention include the coding region of the sequences provided below. An Xa21 polynucleotide is typically at least about 3100

10

15

20

25

30

5

nucleotides to about 6500 nucleotides in length, usually from about 4000 to about 4500 nucleotides.

An "Xa21 polypeptide" is a gene product of an Xa21 polynucleotide sequence, which has the activity of Xa21, i.e., the ability to confer resistance to Xanthomonas spp. Xa21 polypeptides, like other RRK polypeptides, are characterized by the presence of an extracellular domain comprising a region of leucine rich repeats (LRR) and/or a cytoplasmic protein kinase domain. Exemplary Xa21 polypeptides of the invention include those described below.

In the expression of transgenes one of skill will recognize that the inserted polynucleotide sequence need not be identical and may be "substantially identical" to a sequence of the gene from which it was derived. As explained below, these variants are specifically covered by this term.

In the case where the inserted polynucleotide sequence is transcribed and translated to produce a functional RRK polypeptide, one of skill will recognize that because of codon degeneracy, a number of polynucleotide sequences will encode the same polypeptide. These variants are specifically covered by the term "RRK polynucleotide sequence". In addition, the term specifically includes those full length sequences substantially identical (determined as described below) with an RRK gene sequence and that encode proteins that retain the function of the RRK protein. Thus, in the case of rice RRK genes disclosed here, the above term includes variant polynucleotide sequences which have substantial identity with the sequences disclosed here and which encode proteins capable of conferring resistance to Xanthomonas or other plant diseases and pests on a transgenic plant comprising the sequence.

Two polynucleotides or polypeptides are said to be "identical" if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The term "complementary to" is used herein to mean that the complementary sequence is identical to all or a portion of a reference polynucleotide sequence.

Sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a segment or "comparison window" to identify and compare local regions of sequence similarity. The segment used for purposes of comparison may be at least about 20

WO 99/09151

PCT/US98/14841

6

contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Adv. Appl. Math. 2: 482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by inspection.

"Percentage of sequence identity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

20

25

30

5

10

15

The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 60% sequence identity, preferably at least 80%, more preferably at least 90% and most preferably at least 95%, compared to a reference sequence using the programs described above (preferably BESTFIT) using standard parameters. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 40%, preferably at least 60%, more preferably at least 90%, and most preferably at least 95%. Polypeptides which are "substantially similar" share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For

example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, and asparagine-glutamine.

10

15

20

5

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under appropriate conditions. Appropriate conditions can be high or low stringency and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C to about 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent wash conditions are those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 60°C. However, nucleic acids which do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. For Southern hybridizations, high stringency wash conditions will include at least one wash in 0.1X SSC at 65°C.

25

Nucleic acids of the invention can be identified from a cDNA or genomic library prepared according to standard procedures and the nucleic acids disclosed here (typically at least 100 nucleotides to about full length) used as a probe. Low stringency hybridization conditions will typically include at least one wash using 2X SSC at 65°C. The washes are preferrably followed by a subsequent wash using 1X SSC at 65°C.

30

As used herein, a homolog of a particular RRK gene (e.g., the rice Xa21 genes disclosed here) is a second gene (either in the same species or in a different species) which encodes a protein having an amino acid sequence having at least 25% identity or 45% similarity to (determined as described above) to a polypeptide sequence in the first

10

15

20

25

30

WO 99/09151

•

PCT/US98/14841

8

gene product. It is believed that, in general, homologs share a common evolutionary past.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the genome organization of the seven Xa21 family members and location of 14 transposon-like elements. Cosmid and BAC clones carrying the family members are designated. Wide bars represent predicted coding regions, fine bars represent noncoding regions, introns are indicated by angled lines, and the non-sequenced regions are shown by straight lines. A gap in the sequence of BAC9 is indicated by "//", Letters refer to names of Xa21 gene family members and arrows indicate direction of ORFs. The 14 transposon-like elements are numbered and represented by closed triangles.

Figure 2A shows the HC region of the sequenced Xa21 gene family members. Wide bars represent predicted coding regions, and fine bars represent non-coding regions. Start and stop codons are indicated. The 5' flanking regions and downstream regions are grouped into four and two groups, respectively, and are shown in different colors based on sequence identity. The percentage of DNA sequence identity between promoter regions and between classes is shown to the left and right, respectively. The HC region is indicated by a black bar.

Figure 2B is a schematic diagram showing a comparison of the predicted amino acid sequences of XA21 and A1. Domains are numbered as follows: I, Presumed signal peptide; II, presumed N terminus; III, LRR; VI, charged; V, presumed transmembrane; VI charged; VII juxtamembrane; VIII, serine/threonine kinase; IX, carboxy tail. The numbers below each domain indicate amino acid identity between XA21 and A1.

Figure 3A shows family member D and insertion position of *Retrofit*.

Retrofit carries long terminal repeats (LTRs) (small arrows) and a single, large ORF, encoding a protein with the following domains: gag, protease (PR), integrase (IN), reverse transcriptase (RT), and RNase H (RH). The large arrow indicates direction of the ORF.

Figure 3B shows family member E and insertion position of *Truncator*. Arrows mark the orientation of the inverted repeats. The deduced amino acid sequences of the tomato resistance genes Cf9 and Pto are shown below. In both Figures 3A and 3B, the insertion elements are designated by a hatched bar. The presumed deduced amino acid sequences of members D and E are shown by shaded rectangles. Domains representations

25

30

WO 99/09151

PCT/US98/14841

9

are as described in the legend to Figure 2.

Figure 4 shows intergenic recombination break point in the Xa21 family members. Boxes represent the ORFs of the designated family members, while narrow boxes represent flanking regions. Same colors indicate a high level of sequence homology. The nucleotides of the presumed recombination break points are indicated in large and bold type. Sequences surrounding the recombination break point are also shown.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

This invention relates to plant RRK genes, such as the Xa21 genes of rice.

Nucleic acid sequences from RRK genes, in particular Xa21 genes, can be used to confer resistance to Xanthomonas and other pathogens in plants. The invention has use in conferring resistance in all higher plants susceptible to pathogen infection. The invention thus has use over a broad range of types of plants, including species from the genera

Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio,
Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Lolium, Zea, Avena, Hordeum, Secale, Triticum, and, Sorghum.

The Example section below, which describes the isolation and characterization of RRK genes in rice, casava, maize and tomato. The methods used to isolate these genes are exemplary of a general approach for isolating Xa21 genes and other RRK genes. The isolated genes can then be used to construct recombinant vectors for transferring RRK gene expression to transgenic plants.

Generally, the nomenclature and the laboratory procedures in recombinant DNA technology described below are those well known and commonly employed in the art. Standard techniques are used for cloning, DNA and RNA isolation, amplification and purification. Generally enzymatic reactions involving DNA ligase, DNA polymerase, restriction endonucleases and the like are performed according to the manufacturer's specifications. These techniques and various other techniques are generally performed

10

15

20

10

according to Sambrook et al., Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, (1989).

The isolation of Xa21 and related RRK genes may be accomplished by a number of techniques. For instance, oligonucleotide probes based on the sequences disclosed here can be used to identify the desired gene in a cDNA or genomic DNA library. To construct genomic libraries, large segments of genomic DNA are generated by random fragmentation, e.g. using restriction endonucleases, and are ligated with vector DNA to form concatemers that can be packaged into the appropriate vector. To prepare a cDNA library, mRNA is isolated from the desired organ, such as leaf and a cDNA library which contains the RRK gene transcript is prepared from the mRNA. Alternatively, cDNA may be prepared from mRNA extracted from other tissues in which RRK genes or homologs are expressed.

The cDNA or genomic library can then be screened using a probe (typically a degenerate probe) based upon the sequence of a cloned RRK gene such as rice Xa21 genes disclosed here. Probes may be used to hybridize with genomic DNA or cDNA sequences to isolate homologous genes in the same or different plant species.

Alternatively, the nucleic acids of interest can be amplified from nucleic acid samples using amplification techniques. For instance, polymerase chain reaction (PCR) technology to amplify the sequences of the RRK and related genes directly from genomic DNA, from cDNA, from genomic libraries or cDNA libraries. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of the desired mRNA in samples, for nucleic acid sequencing, or for other purposes.

Appropriate primers and probes for identifying RRK sequences from plant tissues are generated from comparisons of the sequences provided herein. For a general overview of PCR see PCR Protocols: A Guide to Methods and Applications. (Innis, M, Gelfand, D., Sninsky, J. and White, T., eds.), Academic Press, San Diego (1990), incorporated herein by reference.

Polynucleotides may also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers et al., Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982), and Adams et al., J. Am. Chem. Soc. 105:661

30

25

10

15

20

25

30

11

(1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Isolated sequences prepared as described herein can then be used to provide RRK gene expression and therefore Xanthomonas resistance in desired plants. One of skill will recognize that the nucleic acid encoding a functional RRK protein need not have a sequence identical to the exemplified gene disclosed here. In addition, the polypeptides encoded by the RRK genes, like other proteins, have different domains which perform different functions. Thus, the RRK gene sequences need not be full length, so long as the desired functional domain of the protein is expressed. As explained in detail below, the proteins of the invention comprise an extracellular leucine rich repeat domain, as well as an intracellular kinase domain. Modified protein chains can also be readily designed utilizing various recombinant DNA techniques well known to those skilled in the art. For example, the chains can vary from the naturally occurring sequence at the primary structure level by amino acid substitutions, additions, deletions, and the like. Modification can also include swapping domains from the proteins of the invention with related domains from other pest resistance genes. For example, the extra cellular domain (including the leucine rich repeat region) of the proteins of the invention can be replaced by that of the tomato Cf-9 gene and thus provide resistance to fungal pathogens of rice. These modifications can be used in a number of combinations to produce the final modified protein chain.

To use isolated *RRK* sequences in the above techniques, recombinant DNA vectors suitable for transformation of plant cells are prepared. Techniques for transforming a wide variety of higher plant species are well known and described in the technical and scientific literature. See, for example, Weising *et al. Ann. Rev. Genet.* 22:421-477 (1988).

A DNA sequence coding for the desired RRK polypeptide, for example a cDNA or a genomic sequence encoding a full length protein, will be used to construct a recombinant expression cassette which can be introduced into the desired plant. An expression cassette will typically comprise the RRK polynucleotide operably linked to transcriptional and translational initiation regulatory sequences which will direct the

PCT/US98/14841

12

transcription of the sequence from the RRK gene in the intended tissues of the transformed plant.

For example, a plant promoter fragment may be employed which will direct expression of the *RRK* in all tissues of a regenerated plant. Such promoters are referred to herein as "constitutive" promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1'- or 2'-promoter derived from T-DNA of *Agrobacterium tumafaciens*, and other transcription initiation regions from various plant genes known to those of skill.

10

5

Alternatively, the plant promoter may direct expression of the *RRK* gene in a specific tissue or may be otherwise under more precise environmental or developmental control. Such promoters are referred to here as "inducible" promoters. Examples of environmental conditions that may effect transcription by inducible promoters include pathogen attack, anaerobic conditions, or the presence of light.

15

Examples of promoters under developmental control include promoters that initiate transcription only in certain tissues, such as leaves, roots, fruit, seeds, or flowers. The operation of a promoter may also vary depending on its location in the genome. Thus, an inducible promoter may become fully or partially constitutive in certain locations.

20

The endogenous promoters from the *RRK* genes of the invention can be used to direct expression of the genes. These promoters can also be used to direct expression of heterologous structural genes. Thus, the promoters can be used in recombinant expression cassettes to drive expression of genes conferring resistance to any number of pathogens, including fungi, bacteria, and the like.

25

30

To identify the promoters, the 5' portions of the clones described here are analyzed for sequences characteristic of promoter sequences. For instance, promoter sequence elements include the TATA box consensus sequence (TATAAT), which is usually 20 to 30 base pairs upstream of the transcription start site. In plants, further upstream from the TATA box, at positions -80 to -100, there is typically a promoter element with a series of adenines surrounding the trinucleotide G (or T) N G. J. Messing et al., in *Genetic Engineering in Plants*, pp. 221-227 (Kosage, Meredith and Hollaender, eds. 1983).

10

15

20

25

30

13

If proper polypeptide expression is desired, a polyadenylation region at the 3'-end of the *RRK* coding region should be included. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA.

The vector comprising the sequences from an RRK gene will typically comprise a marker gene which confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosluforon or Basta.

Such DNA constructs may be introduced into the genome of the desired plant host by a variety of conventional techniques. For example, the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation, PEG poration, particle bombardment and microinjection of plant cell protoplasts or embryogenic callus, or the DNA constructs can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. Alternatively, the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector. The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria.

Transformation techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. Embo J. 3:2717-2722 (1984). Electroporation techniques are described in Fromm et al. Proc. Natl. Acad. Sci. USA 82:5824 (1985). Ballistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987). Using a number of approaches, cereal species such as rye (de la Pena et al., Nature 325:274-276 (1987)), corn (Rhodes et al., Science 240:204-207 (1988)), and rice (Shimamoto et al., Nature 338:274-276 (1989) by electroporation; Li et al. Plant Cell Rep. 12:250-255 (1993) by ballistic techniques) can be transformed.

Agrobacterium tumefaciens-meditated transformation techniques are well described in the scientific literature. See, for example Horsch et al. Science 233:496-498 (1984), and Fraley et al. Proc. Natl. Acad. Sci. USA 80:4803 (1983). Although Agrobacterium is useful primarily in dicots, certain monocots can be transformed by Agrobacterium. For instance, Agrobacterium transformation of rice is described by Hiei et

10

15

20

25

14

al, Plant J. 6:271-282 (1994).

Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired RRK-controlled phenotype. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the RRK nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. Ann. Rev. of Plant Phys. 38:467-486 (1987).

The methods of the present invention are particularly useful for incorporating the *RRK* polynucleotides into transformed plants in ways and under circumstances which are not found naturally. In particular, the *RRK* polypeptides may be expressed at times or in quantities which are not characteristic of natural plants.

One of skill will recognize that after the expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.

The effect of the modification of *RRK* gene expression can be measured by detection of increases or decreases in mRNA levels using, for instance, Northern blots. In addition, the phenotypic effects of gene expression can be detected by measuring lesion length as in plants. Suitable assays for determining resistance are described in USSN 08/587,680.

The following Examples are offered by way of illustration, not limitation.

Example 1

30

As noted above, Xa21 genes make up a multigene family. Pulsed field gel electrophoresis and genetic analysis have demonstrated that most of the members of the Xa21 gene family are located in a 230 kb genomic region on chromosome 11 linked to at

10

15

20

25

30

least 8 major resistance genes and 1 QTL for resistance (Song, et al., Science 270:1804 (1995); Ronald, et al., Mol. Gen. Genet. 236:113 (1992).

This example describes six Xa21 gene family members from the resistant rice line IRBB21, which members are designated A1, A2, C, D, E, and F. Cloning was as described in USSN 08/587,680; Song, et al., supra and Wang, et al., Plant J. 7, 525 (1995). DNA sequences were determined by using the Sequitherm Long Read Cycle Sequencing Kit (Epicentre Technologies) in combination with the LI-COR Model 4000L Automated Sequencer (LI-COR Inc). To fill in gaps, a primer walking strategy was performed using synthesized primers (Operon) and the Applied Biosystems 373 DNA sequencer. Genebank accession numbers are as follows: A1: U72725 (SEQ ID NO: 4); A2: U72727 (SEQ ID NO: 10); C: U72723 (SEQ ID NO: 6); D: U72726 (SEQ ID NO: 1); E: U72724 (SEQ ID NO: 8); F: U72728 (SEQ ID NO: 12); 3' flanking region of F: U72729 (SEQ ID NO: 12). The Wisconsin sequence analysis programs GAP and Pileup were used to calculate the percent identity and to carry out multiple alignments of DNA and protein sequences, respectively.

Sequence data and restriction enzyme analysis of cosmid and bacterial artificial chromosome clones indicated that the seven members are contained on 4 clones (Fig. 1). The first clone, carrying Xa21 (described in USSN 08/587,680 and Song et al., supra. The Genbank accession number for Xa21 genmomic and cDNA sequences is U37133) and member C, spans a 40 kb region; the second clone includes member D, A1, and A2 and occupies a 150 kb region; clones of 40 kb and 130 kb contain members E and F, respectively. Genetic and molecular data suggests member E is inherited from the susceptible parent IR24 (P.C. Ronald, et al., Mol. Gen. Genet. 236, 113 (1992)).

The entire coding region, the intron, and 3' flanking region of the seven family members can be grouped into two classes. One class (designated the Xa21 class) contains Xa21, as well as members D and F (SEQ ID NOs: 1 and 12). The second class (designated the A2 class) contains members A1 (SEQ ID NO:4), A2 (SEQ ID NO:10), C (SEQ ID NO:6), and E (SEQ ID NO:8). Within each class, family members share striking nucleotide sequence identity (98.0% average identity for the members of the Xa21 class; 95.2% average identity for the members of the A2 class); compared to low levels of DNA sequence identity between members of the two classes (eg. 63.5% identity between Xa21 and A2) (Fig. 2A). Only the Xa21 and A1 open reading frames (ORFs) encode

10

15

20

25

30

receptor kinase-like proteins. The sequence of other family members contain alterations causing a premature truncation of the predicted receptor kinase-like ORF (small deletions in F and C; base pair mutations in A2; or transposon insertions in D and E). At the amino acid level, Al and XA21 share 68.6% identity overall. As shown in Figure 2B, Domains I and II, carrying the presumed signal peptide and amino terminus of the protein, are 100% identical whereas the LRR domain (domain III) of XA21 and A1 share a low level of identity (59.5%) and differ in the number of LRRs (23 vs 22 respectively). In the presumed intracellular portion, the catalytic domains (domain VIII) of XA21 and A1 are highly conserved (82% identity), whereas the non-catalytic regions are divergent (64% identity for domain VII (juxtamembrane) and 38.5% identity for domain IX (carboxyl terminus)). The differences observed between members of the two classes suggest that they may differ in function. Indeed, we have found transgenic plants containing the A1 sequence are susceptible to all *Xoo* isolates tested.

A remarkable feature of the Xa21 family members is the presence of fourteen transposable element-like sequences (M.A. Grandbastien, et al., Nature 337: 376 (1989); S.E.; White, et al., Proc. Natl. Acad. Sci. U.S.A. 91: 11792 (1994)). The position of these elements is shown in Fig 1. Twelve elements insert into noncoding regions; whereas two elements, named Retrofit and Truncator, integrate into the coding regions of members D and E, respectively, resulting in disruption of the ORFs of these two members (Fig. 1, number 9 and 13). Retrofit (SEQ ID NO:3) belongs to the Drosophila copia class of retrotransposons and carries a large ORF showing greatest similarity to the ORF of maize Hopscotch (68.6% similarity; 54.6% identity) and tobacco Intl (51.4% similarity; 31.9% identity) (M.A. Grandbastien, et al., Nature 337: 376 (1989); S.E.; White, et al., Proc. Natl. Acad. Sci. U.S.A. 91: 11792 (1994)). The insertion site of this element is located between the 23rd (V) and 24th (P) amino acids of the 22nd LRR creating a truncated molecule, lacking the transmembrane and kinase domains (Fig. 3A). Insertion of Retrofit into a presumed coding region contrasts with the observation in yeast and maize that integration of retrotransposons is biased towards noncoding regions (D.F. Voytas, Science 274: 737 (1996); P. SanMiguel, et al., Science 274: 765 (1996)). The fact that the truncated D confers partial resistance to Xoo suggests that transposition events at the Xa21 locus can alter expression of resistance.

Truncator, 2913 bp, represents a novel transposon-like sequence carrying 9

10

15

20

25

30

bp terminal inverted repeats (TIRs). The sequence shows no significant homology to any sequence in the database and contains no obvious ORFs. Interestingly, insertion of this element into the amino terminus of the kinase domain of member E would presumably result in premature truncation of the receptor kinase resulting in a receptor-like molecule structurally similar to the tomato fungal resistance gene products Cf9 and Cf2 (Fig. 3B) (D.A. Jones, et al., Science, 266: 789 (1994); M.S. Dixon, et al., Cell 84:451 (1996)).

In addition to the transposition events presented above, recombination between different family members was also found to play an important role in the evolution of the *Xa21* locus. A 269 bp highly conserved (HC) region, located immediately downstream of the start codon of all seven family members marks the site of intragenic recombination events (Fig. 2A). The HC region, has a high G/C content (61.8% for *Xa21*) hallmarked by the typical G/C rich restriction enzyme recognition site Not I. At the amino acid level, the HC region spans domain I and domain H of XA21 and shares nearly 100% identity among seven family members.

The HC region delimits four classes of DNA sequences (~1.3 kb) upstream of the HC region. The 5' flanking region of family member F is divergent from that of other family members (less than 40% identity). The precise breakpoint (from sequence similarity to divergence) between Xa21 and F is located within the HC region, 120 bp downstream from the start codon. This sudden change of sequence identity is unlikely due to random events such as transposon insertion or deletion because such events would presumably lead to an altered coding region. This is not the case; the deduced amino acid sequence of F maintains the receptor kinase like ORF. These results suggest that a recombination event occurred in the HC region resulting in the formation of a chimeric sequence containing the 5' flanking region of F and a downstream region (including coding region, intron, and 3' flanking region) of the Xa21 class.

In further support of the idea that the HC region mediates intragenic recombination, we also observed apparent recombination breakpoints near or within the HC region for gene family members E, A1, and C. For E, the 5' flanking region is divergent from all other members whereas the 3' downstream regions belong to the A2 class. The sudden change of DNA identity can be explained by a recombination event between a progenitor A2-type gene and an unknown family member. The likely recombination breakpoint in E is located 105 bp upstream of the HC region since

10

15

20

25

30

sequences upstream of this site are quite different, compared with a high level of DNA sequence identity downstream of this site.

The nearly identical DNA sequences of C and A1 provide the most striking example of an HC mediated recombination event. For example, the 5' flanking region of C shows nearly perfect identity (99.2%) to that of Xa21, whereas the downstream region of C belongs to the A2 class. The high level of identity between the 5' flanking sequences of Xa21 and C extends 3.8 kb upstream. This upstream region includes the functional promoter for the Xa21 gene (W.-Y. Song, et al., Science 270:1804 (1995)). These results strongly suggest that C was created by a recombination event in the HC region between progenitors of the Xa21 and A2 classes. The likely recombination breakpoint in member C is delimited by two characteristic deletions: one is located at position -37 and is only present in Xa21 class members (Xa21, D, C, and A1); another deletion is located at position 255 and occurs in all A2 class members.

From these results it is clear that we have identified a highly conserved, G/C rich region in the gene family and that this region appears to be involved in high frequency recombination between family members. Not only is the HC region present in O. longistaminata, but is also present in Xa21 family members of the cultivated rice species O. sativa (The clone RG103, spanning the HC region of an Xa21 gene family member was isolated from 0. sativa cultivar IR36 (3, S. Mcouch, et al., Theoret. Appl. Genet. 76:815 (1988)). Genebank accession number of RG103 is U82168. The mechanism for HC region-mediated recombination is unknown; however, two models can be envisioned. First, this region may mediate programmed recombination similar to that observed in African trypanosomes (R.H.A. Plasterk, Trends Genet 8, 403 (1992)). In trypanosomes, antigenic variation is controlled by a variant surface glycoprotein (VSG), which is encoded by a member of a multigene family containing more than 1000 members. Recombination at stretches of highly conserved nucleotides between silent and expressed members of the VSG gene family leads to expression of new antigens. Alternatively, HC mediated recombination may be an example of an ectopic recombination event where the HC region serves as a recombination initiation site (T.D. Petes, et al., Annu. Rev. Genet. 22:147 (1988); A. Nicolas, et al., Nature 338: 35 (1989)). Frequent recombination in this region would maintain the conservation of the HC region but allow flanking sequences to diverge. Over time, mismatch repair would lead to homogenization of the HC region and

result in an overall increased G/C content as has been observed in yeast (Brown T., et al., Cell 54, 705 (1988)).

Evidence for recombination in intergenic regions of the Xa21 family members was also observed. First, sequences in the 5' flanking region of members C and Xa21 are identical for 3.8 kb and then abruptly diverge. Interestingly, the same site of divergence is observed in the 3' flanking regions of Xa21 and member F (Fig. 4). The presence of a conserved site of divergence suggests not only that this is a recombination breakpoint but that the Xa21/C cluster and member F are generated from the same progenitor. Second, the sequence of a 14742 bp region spanning the Xa21/C cluster shows 97.7% identity to the corresponding sequence (14871 bp) of the D/A1/A2 cluster (Fig. 1), suggesting these regions evolved through sequence duplication. This duplication process can be explained by a presumed unequal cross-over event in the intergenic region of these two clusters.

15

20

25

of Xa21 in tomato.

10

5

Example 2

Using PCR amplification techniques as described in USSN 08/587,680, Xa21 genes were isolated from cassava (SEQ ID NOS: 13-14), maize (SEQ ID NO: 15-16) and tomato (SEQ ID. NOs: 17-29). The following is a description of the methods used to isolate TRK1-7 from tomato. The same general procedure was used for maize and cassava.

We designed primers in conserved regions of both the Leucine Rich Repeat (LRR) region and the serine-threonine kinase domain of Xa21. The PCR products should amplify between these two domains and therefore span the transmembrane domain. So far, two sets of primers have proven successful to amplify three homologues

The first clone TRK1 is a cDNA and the encoded polypeptide (SEQ ID NOs:17 and 18). This clone is present as one or two copies in the tomato genome and one copy maps to the short arm of chromosome 1 in the proximity of a resistance gene to Xanthomonas campestris pv. vesicatoria (Rx1)(Zu et al. (1995) Genetics 41:675-682).

30

The second clone TRK2 (SEQ ID NO:19) is a 496bp PCR product with an ORF encoding a polypeptide (SEQ ID NO:20). TRK2 maps within a few cM of mcn (figure 4) a mutation on chromosome 3 that mimics disease lesions. A third clone TRK3

(SEQ ID Nos: 21 and 22) is a 473bp fragment and maps to chromosome 8 near an erecta like mutant. TRK4-7 (SEQ ID Nos: 23-29) are further PCR products and encoded polypeptides

Primers that have been proven useful are as follows.

5 1. LRR region

10

L3a. TCA AGC AAC AAT TTG TCA GGN CA(A/G) AT(A/C/T) CC

2. Kinase region

K1a CGC CTT AGG ATT TTC AAG CTT TCC (T/C)TT (G/A)TA NAC
K2a. TAA CAG CAC ATT GCT TGA TTT NAN (G/A)TC NCG (G/A)TG
K2b. TAA CAG CAC ATT GCT TGA TTT NAN (G/A)TC (G/A)CA (G/A)TG

K2c. TAA CAG CAC ATT GCT TGA TTT NAN (G/A)TC (T/C)CT (G/A)TG

The following combinations of primers are preferred:

L3a+K1a then L3u+K1u

15 L3a+K2a then L3u+K2u

L3a+K2b then L3u+K2u or

L3a+K2c then L3u+K2u.

PCR conditions

first cycle

20 94 for 30 s

25

55 for 30 s

72 for 1 min

For the next 19 cycles, the annealing temperature drops 1degree C every cycle. After 20 cyles, 10 min at 72. After inital amplification as second round of amplification is performed with the following specific primers with 1 microliter of the previous PCR.

L3u. TCA AGC AAC AAT TTG TCA

Klu. CGC CTT AGG ATT TTC AAG CTT

K2u. TAA CAG CAC ATT GCT TGA

The conditions for this amplification are:

35 cycles

94 15 sec

55 15 s 72 1 mn

after 35 cyles, 72 for 10 min

The above examples are provided to illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference.

15

30

WHAT IS CLAIMED IS:

- 1. An isolated nucleic acid construct comprising an RRK polynucleotide sequence, which polynucleotide hybridizes to SEQ ID NOs: 1, 4, 6, 8, 10, or 11 under 'stringent conditions.
- 2. The nucleic acid construct of claim 1, wherein the RRK polynucleotide sequence encodes an RRK polypeptide having an leucine rich repeat motif.
- 3. The nucleic acid construct of claim 1, wherein the RRK polynucleotide sequence encodes an RRK polypeptide having a cytoplasmic protein kinase domain.
 - 4. The nucleic acid construct of claim 1, wherein the polynucleotide sequence is a full length gene.
 - 5. The nucleic acid construct of claim 1, wherein the Xa21 polynucleotide is as shown in SEQ ID NOs: 1, 4, 6, 8, 10, or 11.
- 6. The nucleic acid construct of claim 1, further comprising a promoter operably linked to the RRK polynucleotide sequence.
 - 7. The nucleic acid construct of claim 1, wherein the promoter is a tissue-specific promoter.
- 25 8. The nucleic acid construct of claim 1, wherein the promoter is a constitutive promoter.
 - 9. An isolated nucleic acid construct comprising a cassava *RRK* polynucleotide sequence, which polynucleotide hybridizes to SEQ ID NO: 13 under stringent conditions.
 - 10. The isolated nucleic acid construct of claim 9, which is SEQ ID NO:

SUBSTITUTE SHEET (RULE 26)

13.

5

25

- 11. An isolated nucleic acid construct comprising a maize RRK polynucleotide sequence, which polynucleotide hybridizes to SEQ ID NOs: 15 or 16 under stringent conditions.
- 12. The isolated nucleic acid construct of claim 11, which is SEQ ID NO: 15 or SEQ ID NO: 16.
- 13. An isolated nucleic acid construct comprising a tomato RRK polynucleotide sequence, which polynucleotide hybridizes to SEQ ID NOs: 17, 19, or 21 under stringent conditions.
- 14. The isolated nucleic acid construct of claim 13, which is SEQ ID NO:
 15 17, SEQ ID NO:19, or SEQ ID NO:21.
 - 15. A transgenic plant comprising a recombinant expression cassette comprising a plant promoter operably linked to a Xa21 polynucleotide sequence of claim 1.
- 16. A method of enhancing resistance to Xanthomonas in a plant, the method comprising introducing into the plant a recombinant expression cassette comprising a plant promoter operably linked to an RRK polynucleotide sequence of claim 1.
 - 17. The method of claim 16, wherein the plant tissue is from rice.
 - 18. The method of claim 16, wherein the plant tissue is from tomato.

Figure 2B

BEST AVAILABLE COPY

Sequence Listing

SEQ ID NO:1

	DEFINITION Oryza	ongistaminata receptor-like protein, family member D, and						
5	ACCESSION U72726	t (gag/pol) genes, complete cds.						
•	*****	ong-staminate rice.						
		ongistaminata						
		tae; mitochondrial eukaryotes; Viridiplantae;						
10	Charoph	yta/Embryophyta group; Embryophyta; Magnoliophyta:						
10	Liliops	ida; Poales; Poaceae; Oryza.						
	COMMENT U72725 microsatellite regi	and U72726 are separated by a large AT rich						
	FEATURES	Location/Qualifiers						
	source	113341						
15		/organism="Oryza longistaminata"						
		/strain="IRBB21"						
		/chromosome="11"						
	CDS	/map="11q, RG103"						
20	CDS	23674205						
	•	<pre>/note="Xa21 gene family member D /codon_start=1</pre>						
		<pre>/product="receptor kinase-like protein"</pre>						
25	misc_feature	42019071						
23	gene	/note="retrofit, a copia-like, transposon-like element"						
	gene	44848821 /gene="qaq/pol"						
	CDS	44848821						
20		/gene="gag/pol"						
30		/codon_start=1						
		/product="retrofit"						
	intron	991511712						
	misc_feature	1002010975						
35		<pre>/note="Krispie, transposon-like element"</pre>						
	3' flanking	1211413341						
	misc_feature	1262612750 /note=#Box 012						
		<pre>/note="Pop-012, transposon-like element" 1304013248</pre>						
40		/note="Ds-rice2, transposon-like element"						
	• • • • • • • • • • • • • • • • • • • •							
	fl aagetteatt	ggtttcttca gttatactta cgtaggtttt tcctgtatac ataaatacgt						
45	121 atcaggtcca	gggaattaga ttgtttaaaa taaaatacat ataatctaat agcctaaaat ctgacagtgg cggatctagg atttagaata tgggtggtcc gacctaattt						
	181 tttcctaaac	atactaaatc taacgatggt aatatatact atgcaagtat agataataga						
	241 atagaccaaa	l agtgtatcat gctatattaa taaagcatct taaaacatat ataattaata						
	301 attacctaaa	l attitgacti aaagaagcic acatggctat aaaaqtitaa agaaaattac						
50	Joi Catactaatt	. Titcitcita togggictae geettetaat ggeeatgaaa giggiegita						
	481 ccaaaaact	cttcactctt aagaaaacat cccgcttaat ggatgtgtct atactatcat atcaccatc tttttctca accatcatta gtaaatgcat cagttctact						
	541 ataatttaat	atcacatte tittitetea accateatta graaatgeat cagitetaet atcacaaac tgaaaattga						
•	our aaaaaaagta	aaaaaaaat agaaaacctt tttqttttqq cttqqtqcaq qtctqcacca						
55	oor grgcgctagt	90990actgc ggcggcagcg gccaaqqtqt cqacqcqcqt gcgtggccg						
	721 gtggcgctcg	CCCCCacgat ctgatcagat cqctqatcqc qtcqcqtcq cqactcqcqa						
	/ol gggcgaggag	gagagegaea gagagteetg egaeggegeg acgetteggt ttettaatte						
	Ugwacyatta	gatacaccgt acacgcgcgt gtggtgtggg gcctgtggta atctaatggt						

	003						
	901	ttaaaatatt	gggtccacca	atttaagtga	aaatcgacgg	ttagatatga	tagagctacg
	961	tggcagccta	agagcgtttg	taggagtccc	acgtggcggt	ttgagagcgt	ttgtaggaag
	1021	tttaatggac	ttttagtata	taatagatat	ttataatttt	attaagtacc	ctaattttcc
_	1081	ctaaacaatt	tttctctctc	atcgtatttc	catatatctt	tttgagataa	taatggatat
5	1141	aaacatagct	agaaatgtaa	atgttcacct	tgcatcaata	ggggatgaag	ttgctaacct
	1201	tttagatctc	ctcgatttgt	ataatataac	caaaatattt	tcaccaaaaa	tttcgttaaa
	1261	catccgagat	atttgttgtt	tttgccgatc	gagcaaagat	tagtagtcca	gcagtgtctg
	1321	caccaccacc	accgtgataa	tgcatcttgt	gtgttattct	tgatgagaaa	atacgtagtg
	1381	aaaaccacat	atgtggtgga	aacttagaaa	ctaccgttag	atcgagaaat	ggatgtccaa
10	1441	gattcgtcca	cgtcaccaag	agataaaatt	taactcgcag	attcacttat	gagttaaaat
	1501	tttaatgaga	gttaaatttt	aactcatgtt	gatgtggacg	aatatcggac	atccatttct
	1561	cgatccaacg	atagcttcca	agtttccact	acatatgtgg	tttgcactat	atattttccc
	1621	attcttgatt	atgtgtttga	gagcagctag	cacaaagaga	aaaaaaagca	tcqtttttca
	1681	cgcgtatgtt	ttcagaactg	ttaaatggtg	tgttttttga	aaaaactttc	tatagaaaag
15	1741	tttctttaaa	aaatatatta	atctattttt	taagtttaaa	ataattacta	cttaattaat
	1801	tatacactaa	cagettattt	cattctacat	atcttgtcaa	ttttcgctat	teetteette
	1861	tcaaacacgg	cattggatgc	tctcatagca	cttgctcgtt	cogatagaag	acttgacgaa
	1921	gacgaccgct	acaacttoor	gtgttatatc	gtgctttgtt	tagcataatc	attacatata
	1981	ttccatqccq	aagtgccgac	gatgagaccg	tgttcgatgc	atctttgtat	ggcatctagg
20	2041	gacaaagagc	atagagtece	taccatagta	cctgctcgcg	tagaagactt	ageneeragg
	2101	ccgactgcta	caccttggtg	totaataata	tcgtgttgtg	totaccatoc	atactccttt
	2161	aaaacaaata	atggtggraa	cagtaaatct	gtcatcccac	ccactctcat	totasatttt
	2221	gcaagttatc	acttgaactt	cttaatactc	catccgtttg	catatattet	ttcacaattt
	2281	gcgtgagcac	ttttttt	atataatcto	tctagtccat	gagetaaace	accatetete
25	2341	actatettae	cttgcacttc	tgcacgatga	tatcactccc	attattactc	ttcatcatat
	2401	tattetetae	actactacta	tgcccttcaa	gcagtgacga	cgatggtgat	actaccaaca
	2461	acgaactcqc	gctgctctct	ttcaagtcat	ccctgctata	ccagagagac	cagtcgctgg
	2521	catcttqqaa	cacqtccqqc	cacggccagc	actgcacatg	agtagatatt	atatacaacc
	2581	accaccacca	ccggcaccca	cacagggtgg	tgaagctgct	actacactcc	tccaacctgt
30	2641	ccgggatcat	ctcaccatca	ctcggcaacc	tgtccttcct	cagggagetg	gacctcggc
	2701	acaactactt	Ctccggcgag	ataccaccog	agctctgccg	teteagragg	cttcacctcc
	2761	tggagctgag	cgataactcc	atccaagga	gcatccccgc	ggccattgga	gcatgcacca
	2821	agttgacatc	gctagacctc	accacaacc	aactgcgagg	tatgatgga	catasastta
	2881	gtgccagctt	gaaacatctc	tcgaatttgt	accttcacaa	aaatoottto	traccacaca
35	2941	ttccatccqc	tttgggcaat	ctcactage	tccaggagtt	tgatttgagg	ttcaacacat
	3001	tatcaggagc	tatacettea	tcactgggg	agctcagcag	tctattcaat	atgaatttgg
	3061	qacaqaacaa	tctaagtggg	atgatecea	attctatctg	gaacetteg	tetetaaga
	3121	cattttatat	cagcgaaaac	aagctaggtg	gtatgatccc	tacaaatcca	ttcaaaagag
	3181	ttcacctcct	caagataata	tatatogges	ctaaccgttt	catagaga	ateceteect
40	3241	cagttgctaa	tocttctcat	ctcacaggca	ttcagattga	toocaactto	tteactgeet
	3301	ttatcacctc	ggggtttgga	aggttaagaa	atctcacaga	actotatete	tocageggaa
	3361	totttcaaac	tagagaacaa	gaagattggg	ggttcatttc	tascetasce	aattaataa
	3421	aattacaaac	attgaacttg	gaagaccggg	acctgggggg	agttetteet	aattgettt
	3481	ccaatctttc	cacttcactt	agttttctta	cacttcattt	gettettet	aaccegeeee
45	3541	ttccgaagga	tattogcaat	cttattccct	tacaacatct	gaataagatt	acayyaayca
	3601	tcagagggtc	tetteetea	teatteaca	ggcttaaaaa	ctatetetge	adcadcadtt
	3661	acqaaaacaa	cttgaggggt	tegateggea	tggccatagg	cctaggeatt	ctactegeet
	3721	tettacteet	cccgagcggc	anattanata	gttggatacc	adatettaet	gaacttaata
	3781	Caaacttott	atcattagg	adattcagtg	ataaccttag	tacacacte	tcaaacctca
50	3841	tattcaatat	tcaaacacta	terretare	tcaatgtatc	rggiccaata	cccagtgaat
	3901	caataccaca	agaaataggg	Catataatga	atctagtaga	addadatadC	ciggagggat
	3961	gattatcagg	taaaatccct	aacacccetta	gtgattgcca	acticated a	gaategaata
	4021	tocassetse	tttottetot	adtaggette	catcagcctt	gottettaegg	nancet et ee
	4081	aaactcttg=	teteteage	agrageatec	cateageett	aggreagetg	adaygteteg
55	4141	ttactatect	tcattcatta	aacaatttyt	tcaacagctt	tataaaaaa	ctagcagata
-	4201	tataaaacaa	tctattctat	tateeteese	atgagatata	categatest	gryccaacca
	4261	cgatgeteta	gtactgggat	atosttsett	aggataagga	catycatyct	anathtett
	4321	Caccttotta	tccattotas	ctgaatactc	taagccacgg	tagagggtat	ttetacaset
			- Julia Seca		ge-cacyg	cagaggeege	CCCaccacc

	4381	atttaacaga	gatgcggccc	aaggcaaagg	gtttaacgct	tcacatttta	tcacatggta
	4441	tcagagcctt	tttccacctc	aatagatcgc	atctttcatc	cacatggcgt	cgtcgtcgtc
	4501	ttcctcaggc	gcggcagccg	ccaatctcct	ccaaggccac	tcggtttcag	agaaactcgg
5	4561	gaaagccaac	catgcattgt	ggaaagcgca	agttagcgct	gcagtgcgtg	gagcccgatt
5	4621	gctgggctac	ctcaacggcg	atatcaaagc	tccagacgcc	gaactctcgg	tcaccataga
	4681	tgggaagacc	acaacaaagc	cgaatccggc	atttgaagat	tgggaggcca	atgaccaget
	4741	tgttcttggc	tatctcctgt	catctcttc	aagggatgtg	ctgatccaag	tcqccacatq
	4801	caagacggcg	gctgaggcat	ggcggagcat	tgaagcactc	tactccaccg	gcactcgagc
10	4861	aagggcggtg	aacaccagac	tcgccctcac	caacacgaag	aaaggaacaa	tgaagatcgc
10	4921	cgagtatgtc	gccaagatgc	gagcgcttgg	tgatgagatg	gctgccggcg	gtcatccact
	4981	tgatgaagaa	gaccttgtcc	agtacatcat	cgctgggcta	aatgaagact	tcaqcccqat
	5041	cgtctccaac	ctctgcaaca	agtccgatcc	catcacggtt	ggggagctgt	attctcaqct
	2101	cgtcaacttt	gaaaccctcc	ttgatctcta	ccgcagcact	ggtcagggag	gagctgcttt
1.0	2161	tgtcgctaat	cgcggcaggg	gcggcggcgg	cggcgggcgc	ggcaacaaca	acaactcccc
15	2221	caacaacaac	ggcagaagcg	cgccgggtgg	acgcggcagc	ggcagccagg	gtcqcqqtqq
	5281	ccgtggacgc	ggcacaggag	gccaagacag	gcgccctact	tgccaagttt	gtttcaagcg
	5341	tgggcataca	gcagctgatt	gttggtatcg	cttcgacgag	gactacgttq	cagatgagaa
	5401	gctcgttgct	gctgctacta	actcgtatgg	tatagataca	aattqqtata	ttgatacagg
	5461	tgctacagat	cacattaccg	gtgaactaga	gaagettace	accaaqqaqa	aatacaacgg
20	5521	cggcgagcaa	attcacactg	ctagcggagc	aggtatggat	attaqtcaca	ttggtcatac
	5581	tattgtgcat	acccctagcc	gtaatattca	tctaaataat	gtcctttatq	ttcctcaagc
	5641	caagaaaaat	cttatatctg	ctagtcaatt	agccgctgat	aattctgctt	ttcttgaact
	2/01	tcactcgaaa	ttcttttcta	taaaggatca	ggtaacgagg	gacgttctgc	ttgaagggaa
26	2/61	atgtagacac	ggtctctacc	cgatccccaa	gttctttggt	cgctcaacca	acaaacaaqc
25	2871	ccttggtgcc	gccaagttat	ccctgtctag	gtggcatagc	cgtctaggac	atccqtctct
	2881	tectattgtt	aagcaagtca	ttagcagaaa	taatctccca	tgttcagttg	agtcagtcaa
	5941	tcagtctgtg	tgtaatgctt	gccaagaagc	aaagagtcat	cagttacctt	atattagatc
	600T	tactagtgtg	tctcaatttc	ctcttgaact	tgttttttct	gatgtttggg	gccctgctcc
20	6061	agagtctgtt	gggagaaata	aatattatgt	gagtttcatt	gatgatttta	gtaagtttac
30	6121	ttggatatac	ttgctgaaat	acaagtctga	ggtttttgag	aaatttaaag	aatttcaggc
	6181	tttagttgaa	cgaatgtttg	atagaaagat	tattgccatg	cagactgatt	ggcggggggg
	6241	gagatatcag	aaacttaatt	ccttttttgc	tcaaatagga	ttgatcatca	tgtgtcatgt
	6301	cctcacactc	atcaggcaga	atgggtcagc	tgagagaaaa	caccggcata	tcgtggaagt
35	6361	aggcctttct	cttttatctt	atgcatcaat	gcctcttaag	ttttgggatg	aagcctttgt
<i>JJ</i>	6421	tgcagccact	tatctcatca	atcgtatacc	tagtaaaacc	atccaaaatt	ctacacccct
	6401	agagaaactg	tttaaccaaa	aacctgacta	ctcatccttg	agagtgtttg	gttgtgcatg
	6601	ttggcctcat	cttcgccctt	acaatacaca	caaactccag	tttcgctcca	aacagtgcgt
	6601	gtttttgggt	tttagtactc	accacaaagg	atttaagtgt	cttgatgtgt	catcaggccg
40	6001	tgtctacatc	tcaagagatg	ttgtctttga	tgaaaatgtt	tttcccttct	ctacactcca
	. 6701	ctcaaatgca	ggagccagac	tcaggtctga	aattcttttg	ttgccgtccc	ccttgacaaa
	60/1	ctataatacg	getagegeag	ggggaacaca	tgtagttgca	ccagtggcta	atactccatt
	6901	acctagtgat	aatttaattt	ctaatgctgc	tgatgtgact	tctggagaaa	atagtgcagc
	6961	acatgaacag	gaaatggaga	atgagcagga	aatagagaac	gtcatgcatg	ggaacgacgt
45	7021	gcatggggac	geggeategg	gacctgtgct	ggatcaacca	actgctgaca	gcagcactgc
	7021	gccggaccag	ggagetgaea	ccagtgacgc	ggtctctggc	gcagcttctg	acgcgggtgg
	7081	agacactgcc	accetgggag	ctggagcagc	aaatagcgca	gcagcaggtg	gtgaagaatc
	7201	ccagccggtg	cagcetgatg	tgacgggtac	agtactggct	acagtagccc	ctgcatcgag
	7201	accacacact	cgtctgcgga	gtggtattcg	aaaagagaag	gtatacactg	atggcaccgt
50	7201	taaatatggt	racetect	ctactggtga	accacaaaat	gataaagagg	ctttaggaga
5 0	7321	taaaaactgg	agagatgcaa	tggaaactga	gtataatgct	ttgataaaaa	atgacacatg
	7301	gcacctagtt	ccatatgaga	aaggacaaaa	tatcattggg	tgtaaatggg	tatataagat
	7441 7501	taaaaggaag	yeayatggga	cacttgatag	atacaaagct	agacttgtag	caaaggggtt
	7501 75 <i>6</i> 1	taaacaaaga	arggrateg	attatgaaga	tacttttagt	cctgttgtta	aagctgctac
55	7501	tattagaatt	tttcttcca	regetgtete	tagaggttgg	agtcttagac	agttagatgt
	7621	tcagaatgcc	toststana-	gattettaga	agaagaagtc	tacatgcaac	aacctcctgg
	7741	gtttgagtca	CCaadcaac	cigattatgt	atgtaaattg	gataaggcat	tatatgggct
	7801	gaaacaagca	aagggege	ggtattccag	gctgagtaag	aaacttgttg	aacttggttt
	7001	tgaagcttca	aayyetyata	cctcattatt	CCCCCCTAAC	aaaggaggga	tacttatgtt

	7861	tgttttggta	tatgttgatg	atataattgt	agctagctct	acagagaagg	caactacagc
	7921	acttctgaag	gatctaaaca	aggagttcgc	acttaaggat	ttgggagacc	tgcactactt
	7981	ccttggaatt	gaggtaacta	aagtttccaa	tggcgttatc	ttgactcaag	agaagtatgc
_	8041	aaatgatctg	ctaaagagag	ttaatatgtc	aaattgcaag	ccagttagta	ctcctcttc
5	8101	tgttagtgaa	aaattaactc	tatatgaggg	atcacccttg	ggtcctaatg	atgcaataca
	8161	atatagaagt	atagttggtg	ctttacaata	cttgaccttg	acaagacctg	acatagctta
	8221	ttcagtaaac	aaagtctgtc	agtttcttca	tgctcctact	accagtcatt	ggattgcagt
	8281	aaaaagaatc	ctcagatact	tgaaccaatg	cacaagtcta	ggacttcata	tacacaagag
	8341	tgcttctact	cttgttcatg	ggtattctga	tgcagactgg	gcaggtagta	tagatgacag
10	8401	aaaatcaaca	ggaggatttg	cagtatttt	gggttctaat	cttgtgtcct	ggagtgctag
						tataaggctg	
	8521	tacagccgaa	ctgatatggg	tacaaacctt	gttaaaagaa	ttgggaattg	agtctcctaa
	8581	agctgccaag	atttggtgtg	ataacttagg	agctaaatat	ttatcagcta	atcctgtgtt
	8641	tcatgcaagg	acaaagcata	tagaggttga	ttatcatttt	gtaagagaac	gagtqtcaca
15	8701	gaagctgtta	gagattgatt	ttgttccatc	aggagaccaa	gttgctgacg	ggtttacaaa
	8761	ggcactgtca	gcttgtcttc	ttgaaaattt	taaacacaat	cttaacctag	ctaggttatg
	8821	attgagaggg	ctgtgaaaca	qtctqttcta	ttatcctgga	catgagatat	acqtqcatqc
	8881	tccagtacat	gcgatgctcc	agtactggga	tatggttcgt	taggataagg	agattatete
	8941	caaatttgtt	tcaccttctt	atccattqta	actgaatact	gtaagccacg	gtagaggetg
20	9001	tttctaccac	tatttaacag	agatgcggcc	cgaggcaaag	ggtttaacgc	ttcacatttt
	9061	atcacaaacc	attogtoctt	tegeagetge	atccgggatc	tcaatccaag	gcaatgccaa
	9121	actctgtggt	ggaatacctg	atctacatct	acctcgatgt	tgtccattac	tagagaagag
	9181	aaaacatttc	ccagttctac	ctatttctgt	ttctctaatc	gcagcactgg	ccatcctctc
	9241	atcactctac	ttocttataa	cctcccccs	gagaactaaa	aagggagccc	cttcaacaac
25	9301	ttccatgaaa	ggccacccat	tootetetta	ttcacaatta	gtaaaagcaa	Cagatggttt
	9361	cacaccasca	aatttottoo	attetagate	atttggctca	gtatacaaag	gaaagettaa
	9421	tatccaagat	catottocao	tgaaggtact	aaagettgaa	aatcctaagg	cactcaaaa
	9481	tttcactgcc	gaatgtgaag	cactaccasa	tatgcgacat	cgaaatcttg	tcaacatact
	9541	tacaatttqc	tcgagcattg	ataacagaaa	caegogaete	aaagcaattg	totatoactt
30	9601	catocccaac	agcagtetag	accacagagg	acaccctgaa	acaaatgatc	aaggaggg
-	9661	gaggcacttg	aatctgcatc	raarartrac	catactactt	gatgttgcct	acacactaca
	9721	ctatcttcac	caccataacc	ctasacctat	tatacactat	gatattaaat	caaccaatet
	9781	gctgttagat	tctgatatgg	tagggggtgt	rggagatttt	gggcttgcaa	caatacttot
	9841	tgatgggacc	tcattgatac	aacactcaac	aagctcgatg	ggatttagag	gaacactege
35	9901	ctatgcagca	ccadataaa	aacagccaac	agetegacg	attttctgat	ctctactcct
	9961	atatgaaara	otttttacct	ctactcaaac	tratroarea	tataagtaat	taattgaagt
	10021	caggggggaa	gccccaccc	teategeaac	catcactact	aactaatgaa	cttocactac
	10081	tatgaagagaa	tttataata	atagggg	ggccaccacc	aaccaacgaa	atestates
	10141	ttatgactas	agatotttto	acygecaaaa	catactecca	caggtggcca	ategegeege
40	10201	tetterere	tataggettt	gettgtgaee	ggtgetacga	taatcacatg	grgaaargaa
	10261	totcacaga	acageeeee	aagtttaagt	tagecatting	cagaaaatga	aaggggtggc
	10201	cyccagaaaa	adadadccat	tetttgtag	tytyactaaa	actatgcgta	agatggaaca
						actgaagttt	
	10361	acaaaccaaa	tgtteatatt	tcagaacttc	tgaattatag	aaccctaact	tcctaataaa
45	10541	citicggaet	cgagaaacca	ccctagggct	aaactgcgac	ggtaataatc	aagaaattgt
73	10501	gataatgtta	graggrace	gccctcaaca	gctcgagcgc	tcgagcgctc	aaccataacc
						cggcgatgca	
						tgtgcggcga	
	10681	agtgctcggt	caaactacca	gaagaatatg	atgcaacagg	ggaatggact	ttctgggctg
50	10741	ccggccatgt	gggctcaagt	ctcaggcgtt	taagagctga	ttaattttct	attttctact
50	10801	tactagtctc	gttcctaatt	gctattgggc	tttaacaaaa	cggtgtcacc	ggggtccagt
	10861	agtttgcttg	actggggtat	agctagtaaa	aaagcgaggg	gtactagatg	tatgcacgaa
	10921	atcgtcgggg	tctactgacc	ccgatggtag	gctgtagcgt	cgcccctgat	tgaactaatt
	10981	aaattgcaca	aaaataagat	tatttgccat	atctattcag	atgctaaata	tagctagttc
	11041	atagaggtac	agatttttt	atataggact	ctagagctac	cacacactca	aatcaaatta
55	11101	tgggtgtgtt	ctgctctaca	ctgcaatatg	aaatgattat	tacttctaca	tgaactgatg
	11161	gaggagtttc	agaaggatca	aatttgagta	aaattttcaa	ttctacattt	aagaaacact
	11221	ttttttcat	atgctagtta	caattttta	tttcacgagc	ttacattgac	catgaaaaat
						aataatatag	
						•	

```
11341 gaaatateet atgttgtgtg atataetata ateaeaatga acaeaaacag gattegtaca
           11401 aaagtaatta gccatcatag caactgattg cttggggtaa ctgtatagca caatcatacc
           11461 aaatttettt agatatgtat etgtaaatta gattettaaa gttaaatatg aaattteatt
           11521 ggtatttatg tttctttata taataaaaat taatccagcc tttgcatcta tcatttgtcc
 5
           11581 agacatcctt gttatttgtg atatttaaca cgtaaattta cataattata catccaagtt
           11641 ctttttattt aacactgtaa atttcaaatc gtacatgtta taaagaatgt actatatttc
           11701 ctgctcaaac agagtatggc gttgggctca ttgcatcaac gcatggagat atttacagct
           11761 atggaattct agtgctggaa atagtaaccg ggaagcggcc aactgacagt acattcagac
           11821 ccgatttggg cctccgtcaa tacgttgaac tgggcctaca tggcagagtg acggatgttg
10
           11881 ttgacacgaa gctcattttg gattctgaga actggctgaa cagtacaaat aattctccat
           11941 gtagaagaat cactgaatgc attgtttggc tgcttagact tgggttgtct tgctctcagg
           12001 aattgccatc gagtagaacg ccaaccggag atatcatcga cgaactgaat gccatcaaac
           12061 agaatetete eggattgttt ceagtgtgtg aaggtgggag eettgaatte tgatgttatg
           12121 tetegtaatg ttttattgee actetteaga tegaettetg eagtggtate taccacacga
15
           12181 tcactaaagt caccgtggtt atttcctgat ccagcatatc tgatcatgca tgttctgtgt
           12241 tgtatacctg tattttactc tgaattgcca caccgcaacc ctgcatctgt ttgtttggta
           12301 tacaaaagat agtgatgagt ttattgtttt aggggcttcc tagttggcgc gtgtggtgcc
           12361 ggcacgcacg cagcccgagg gtgggtttct tttttttcca ttgttattcc gttgcttttt
           12421 ttcaccacgg tagatetttt ttttccggat ttccattttt tccgttgttt ttctctatcg
20
           12481 cttatgttgg cggatttttt tccgtggttt tctttccgaa gacgagtata tctaacgtaa
           12541 ctaacatgtt acttttagat aacgatggtt attaagataa gatttttctc tggaagattt
           12601 ttgtaagtaa cagattgaaa acaaatctat acgtgaggtc aaattttgaa aactttcaat
          12661 ctagatttaa aaacttttca actcaaaatt tgaatttttg aagtgaaaat ttgaaaactt
          12721 tcaaaaatta ctagtaatcg acaaaaaaa aatggaaatg gaaacggaaa tagttttgct
25
          12781 gttataccga tcgtttccat atttaccgta ttcttataga aattaccgtt tcttataata
          12841 tggtaattac cgtatttcta aatatgttga tatttatagg gcatgtctct acttgactca
          12901 cagtttagag attgattgac tatttaatca aatccctaac ttgattgcat ggctaaaatg
          12961 gagttgattt ctaatttata tagtatagct tgaatttatt tgtaaatata acatacttat
          13021 gtaaagttaa atatatgttt totatagttt aatgtttctg tatttgttac cggttttcga
30
          13081 tctgtaccga catgtttcca tcagtattat tccatgtccg gttttccgat atttccgata
          13141 togttttogt ttoogacttt accettttog atttoattto ogagaaaaat atgattateg
          13201 aaatggtcga ggctgttttc cgatcgtttc cgaccgtttt catctctacc cgtagtaata
          13261 atatataaca ttttatctct aatctttctc tctctcatat caatgaaata atcgctaaga
          13321 gactgctatt aacaagggct t
35
      SEQ ID NO:2
      translation="MISLPLLLFVLLFSALLLCPSSSDDDGDAAGDELALLSFKSSLL/
40
      YQGGQSLASWNTSGHGQHCTWVGVVCGRRRRRHPHRVVKLLLRSSNLSGIISPSLGNL
      SFLRELDLGDNYFSGEIPPELCRLSRLQLLELSDNSIQGSIPAAIGACTKLTSLDLSH
      NQLRGMIPREIGASLKHLSNLYLHKNGLSGEIPSALGNLTSLQEFDLSFNRLSGAIPS
45
      SLGQLSSLLNMNLGQNNLSGMIPNSIWNLSSLRAFCVSENKLGGMIPTNAFKTLHLLE
      VIYMGTNRFHGKIPASVANASHLTRLQIDGNLFSGIITSGFGRLRNLTELYLWRNLFQ
50
      TREQEDWGFISDLTNCSKLQTLNLGENNLGGVLPNSFSNLSTSLSFLALHLNKITGSI
      PKDIGNLIGLQHLYLCNNNFRGSLPSSLGRLKNLGILLAYENNLSGSIPLAIGNLTEL
      NILLLGTNKFSGWIPYTLSNLTNLLSLGLSTNNLSGPIPSELFNIQTLSIMINVSKNN
55
      LEGSIPQEIGHLKNLVEFHAESNRLSGKIPNTLGDCQLLRHLYLQNNLLSGSIPSALG
```

QLKGLETLDLSSNNLSGQIPTSLADITMLHSLNLSFNSFVGEVPTM"

SEQ ID NO:3

5 /translation="MASSSSSSGAAAANLLQGHSVSEKLGKANHALWKAQVSAAVRGA RLLGYLNGDIKAPDAELSVTIDGKTTTKPNPAFEDWEANDQLVLGYLLSSLSRDVLIQ VATCKTAAEAWRS I EALYSTGTRARAVNTRLALTNTKKGTMK I AEYVAKMRALGDEMA 10 AGGHPLDEEDLVQYIIAGLNEDFSPIVSNLCNKSDPITVGELYSQLVNFETLLDLYRS TGQGGAAFVANRGRGGGGGRGNNNNSGGGGGRSAPGGRGSGSQGRGGRGTGGQDR 15 RPTCQVCFKRGHTAADCWYRFDEDYVADEKLVAAATNSYGIDTNWYIDTGATDHITGE LEKLTTKEKYNGGEQIHTASGAGMDISHIGHTIVHTPSRNIHLNNVLYVPQAKKNLIS ASQLAADNSAFLELHSKFFSIKDQVTRDVLLEGKCRHGLYPIPKFFGRSTNKQALGAA 20 KLSLSRWHSRLGHPSLPIVKQVISRNNLPCSVESVNQSVCNACQEAKSHQLPYIRSTS VSQFPLELVFSDVWGPAPESVGRNKYYVSFIDDFSKFTWIYLLKYKSEVFEKFKEFQA 25 LVERMFDRKIIAMQTDWRGGRYQKLNSFFAQIGLIIMCHVLTLIRQNGSAERKHRHIV **EVGLSLLSYASMPLKFWDEAFVAATYLINRIPSKTIQNSTPLEKLFNQKPDYSSLRVF** GCACWPHLRPYNTHKLQFRSKQCVFLGFSTHHKGFKCLDVSSGRVYISRDVVFDENVF 30 PFSTLHSNAGARLRSEILLLPSPLTNYNTASAGGTHVVAPVANTPLPSDNLISNAADV TSGENSAAHEQEMENEQEIENVMHGNDVHGDAASGPVLDQPTADSSTAPDQGADTSDA 35 VSGAASDAGGDTATLGAGAANSAAAGGEESQPVQPDVTGTVLATVAPASRPHTRLRSG IRKEKVYTDGTVKYGCFSSTGEPQNDKEALGDKNWRDAMETEYNALIKNDTWHLVPYE KGQNIIGCKWVYKIKRKADGTLDRYKARLVAKGFKQRYGIDYEDTFSPVVKAATIRII 40 LSIAVSRGWSLRQLDVQNAFLHGFLEEEVYMQQPPGFESSSKPDYVCKLDKALYGLKQ APRAWYSRLSKKLVELGFEASKADTSLFFLNKGGILMFVLVYVDDIIVASSTEKATTA 45 LLKDLNKEFALKDLGDLHYFLGIEVTKVSNGVILTQEKYANDLLKRVNMSNCKPVSTP LSVSEKLTLYEGS PLGPNDAIQYRSIVGALQYLTLTRPDIAYSVNKVCQFLHAPTTSH WIAVKRILRYLNQCTSLGLHIHKSASTLVHGYSDADWAGSIDDRKSTGGFAVFLGSNL 50 VSWSARKQPTVSRSSTEAEYKAVANTTAELIWVQTLLKELGIESPKAAKIWCDNLGAK YLSANPVFHARTKHIEVDYHFVRERVSQKLLEIDFVPSGDQVADGFTKALSACLLENF KHNLNLARL" 55

SEQ ID NO:4

```
Oryza longistaminata receptor kinase-like protein gene, family
       DEFINITION
                   member A1, complete cds.
       ACCESSION
                   U72725
                   long-staminate rice.
       SOURCE
 5
         ORGANISM
                  Oryza longistaminata
                   Eukaryotae; mitochondrial eukaryotes; Viridiplantae;
                   Charophyta/Embryophyta group; Embryophyta; Magnoliophyta;
                   Liliopsida; Poales; Poaceae; Oryza.
       COMMENT
                   U72725 and U72726 are separated by a large AT rich
10
       microsatellite region.
       FEATURES
                            Location/Qualifiers
            source
                            1..8416
                            /organism="Oryza longistaminata"
                            /strain="IRBB21"
15
                            /chromosome="11"
                            /map="11q, RG103"
            CDS
                            join(4771..7384,7676..8052)
                            /note="Xa21 gene family member A1; downstream of
                            microsatellite region; disease resistance gene family
20
                            member"
                            /codon_start=1
                            /product="receptor kinase-like protein"
           misc_feature
                            7432..7614
25
                            /note="Snap-Ol1, transposon-like element"
                            BASE COUNT
                                           2220 a
                                                    1984 c
                                                             1707 g
                                                                      2505 t
      ORIGIN
              1 gccgtcgatc tgtcattttg aaacggccca ttcttttcca tctatatgca ttcatgaaat
30
             61 acatggtata teccategat eggacateae etgttagege gtacgceate gtegteatea
            121 acctagetag ggcaaacgca cettactgag etcegteete egategeeac catcaccaat
            181 gaacaagetg etgeggeete teggtggeet gaggttgete aacegagaag aacateegtt
            241 ccgatgette tectecteca tegatetegt etteccaggt egeegeegee geeacatgge
            301 aaccaccgtg acccacccgc cgccaacgga atccgctggt tcgacggcgg cggccgcgac
35
            361 tgctgacccg ggctcggtga tgctggaacg ttggggctgc ctcagggggct ccacggcggc
            421 gaacgtagtc gccgacgaca acaccgcggg agttccgcac cttccgcggc caacccctcc
            481 ggtcgcctcg tccgggttgc gccgggatct ccttcatctg cttcgatcgc ggggttgatg
            541 gctacgtcat cgcggctcac ggcgactctg tcctcttccg gatgagttgg aacgactact
            601 tcgtctacat ggccgccgcc ggcaagccgc cgtcgctgac gctgctcccc gtctgcgaca
40
            661 tecceatgaa egagegetge tgggteagea aggaeegttt caaggaeget teegeaceae
            721 gggccgggtg ttcgaccagc aggacaccgg catcctacgc ctccgcggcg acgacggcgg
            781 tgaggaggcg ccgctctagt ggcgcagtcc agatcgcgca cgagccgccg ttcgacacgg
            841 ccgagctctg cgtgctccgc cccggccacg gcgagtggga gctcaagatg gcggtgccca
            901 tcgtccacca tgacagcttg aatcttataa caaaccttgc tgaagctgac aaattctagc
45
            961 ccccagccat gaagttggaa aaatcaattt ccgattacac aaattggtta atacgcaacc
           1021 atttagtgct cttaacatga ccaggtttta catgttcgtt cggctcttag aatctgacaa
           1081 gaccttatct gctctgggcg tccccagccg aaattccatt agttttctcg gaggcttgtc
           1141 agaacagcgt aaagggacaa taggactgcc ttcaagatga ggcgatataa gaggggatca
           1201 acagacaaat attgcacata taaaacttac agaagttgat gtagatgatg agacgaccac
50
           1261 cacactaggc aaagaccagg tgtatagttg tactcaacaa atcacagagg tagtgagaga
           1321 tcgctacgat ctactggtcg aagatcaggt gtaggcgtat tctcgatcac ctgaagaaga
           1381 atctttaggt gttgagagat cgctactatc tactggtcaa tactagtaaa aaaacctcat
           1441 agagategge actataggtg eeggaacage taaaacegge acetataata etttteeete
           1501 ctccgtggac tcaaagcacg taaaaccgac acctttaagc aactataggt gccggttcta
55
           1561 aagaagaacc gacacctata gtataggtgc tggtttttta aaaaaacccg acacctttaa
           1621 tataatatag gtgtcggttc ttctttaaaa ccgacaccaa taataaatta tacgtgtcgg
           1681 ttttttaata aaaccggcac ctatccaaac cgagcctagc tgtcgagtcg agccaatcca
           1741 ggctgacgca tatattagtc tcgtccttat cgcctcgtct ctctctctc ctctctct
```

	1801	ctcttctctc	tcgcctctct	gtgtagcgcg	cggcggtggt	cgggcggcgt	cccggcgtag
	1861	gcaacagtgg	tggcgagatg	ggaggcggtg	gcgcatcaca	gctattcact	ttagcgcatt
	1921	gaataataat	cggcatcatg	atctacttat	ggttcgtgca	agggggaaga	ttgtagatac
_	1981	acatggtcac	agctaagtgc	tatgatcgcg	gctcatctct	ccaaatagat	tcatgccatc
5	2041	cgtacttaaa	cagaacctta	tgttccgtqc	atcctttctg	aaqtcttqaa	atgttttatc
	2101	gatgttttac	cactacgacc	catctgtagg	gtgtctcgca	tcccatctta	tttatottt
	2161	tatgtgtgcc	agcgcaccat	tctagcacgc	gctttgttcc	tgaacaaaca	ccttagccgt
	2221	ggtattaaat	ggaaatactg	Catgatcata	gcaggaactc	tettettega	aggatgtege
	2281	tcaacatcac	ctaggtcatc	tcgtctaatc	ttatatcgta	gtgccttaca	aggatgtttg
10	2341	gcttctaggt	tetegtacte	Ctcaacgcga	tagaggatac	aatcattcac	acctaggege
	2401	atcttctgta	cttccagtcc	gagaggggg	attacctttt	tagettegta	catacycyc
	2461	agcaattcgt	ttccctcaa	agagggcag	tttacgagtt	tagettegta	cgttgttteg
	2521	ttatcaatca	caccatattt	tagattagat	tgtcagaatt	ccaataactc	gccaaatgce
	2581	ttatactact	attoggaage	tacatacaa	gacgttttgt	ccagtgtggt	acccaacttt
15	2641	aatttotaga	consettet	coggracaag	gaeguttigt	ggtatgetaa	catccggtcc
	2701	aacccccaga	atagggggg	cacctttgea	gtcattttt	acatcgcaca	acatttgacc
	2761	tagantacce	gracegeege	tttcttcaac	agctctgtcc	gcctcgccta	ttgtattttc
	2701	tottage	catattgag	cccagtctga	aatgttgtcg	tcttcttatt	aattttcttc
	2021	tattgcaacc	cctaactete	cgtgcaaggt	ctaacaatta	tagccaggta	tgaatcccga
20	2881	ttccaacaag	tggatatgaa	gacttcttag	atgtagaata	ctccttctgg	tttttgcact
20	2941	tttgcatgga	caacatataa	aacccttagg	cttgtgggca	ttggccacac	tcaaaaaata
	3001	atgcacgtca	tcaataaact	ccttcgaccg	tcattctgca	gtgtacatcc	attaccgatt
	3061	catctacatt	aggagataat	aattgtaaag	gaagtccaca	aaagtgaaac	tacttaaata
	3121	atcatataat	aa tttaa aat	atcataatta	aattgaaaac	tgacggtttt	aatgtattct
25	3181	tcttatttct	aacgatttta	acgagtttta	aatggactta	atcggagtca	tgattaacta
25	3241	tttataaatt	ttatctgtct	caataaattg	taaatatatt	tttccatgta	ttatccttgt
	3301	ttaattattt	ttaaaagttc	taaacatatt	tttaatgcat	tctacttatt	tctaactatt
	3361	ttaaagattt	tcaaatggac	ttagttttct	atttttattc	ttcattttct	atatttgccc
	3421	tttgttgtct	ctttttaaca	attttataca	aatatttata	attttattaa	gtaccctaat
20	3481	tttccctaaa	caatttttct	ctctcatcgt	atttccatat	atctttttga	gataataatg
30	3541	gatataaaca	tagctagaaa	tgtaaatgtt	caccttgcat	caatagggga	tgaagttgct
	3601	aaccttttag	atctcctcga	tttgtataat	ataaccaaaa	tattttcacc	aaaaatttcg
	3661	ttaaacatcc	gagatatttg	ttgtttttgc	cgatcgagca	aagattagta	gtccagcagt
	3721	gtctgcacca	ccaccatcgt	gataatgcat	cttgtgtgtt	attcttgatg	agaaaatacg
	3781	tagtgaaaac	cacatatatg	gtggaaactt	ggaaactacc	gttagatcga	gaaatggatg
35	3841	tccaagatcg	tccacgtcac	caagagataa	aatttaactc	gcagattcac	ttatgagtta
	3901	aaattttaat	gagagttaaa	ttttaactca	tgttgatgtg	gacqaatatc	ggacatccat
	3961	ttctcgatcc	aacgatagct	tctaagtttc	cactacatat	gtggtttgca	ctatatattt
	4021	tcccattctt	gattatgtgt	ttgagagcag	ctagcacaaa	qaqaaaaaa	agcatcgttt
	4081	ttcacgcgta	tgttttcaga	actgttaaat	ggtgtgtttt	tttaaaaaac	tttatataga
40	4141	aaagtttctt	taaaaaatat	attaatctat	tttttaagtt	taaaataatt	actacttaat
	4201	taattataca	ctaacagctt	atttcgttct	acgtatcttg	tcaattttcq	ctattccttt
	4261	cttctcaaac	acggcattgg	atgctctcat	agcacttgct	cattcagata	gaagacttga
	4321	cgaagacgac	cgctacaact	tagtatatta	tatcgtgctt	tgtttagcat	aatcattaca
	4381	tatattccat	gccgaagtgc	cgacgatgag	accgtgttcg	atgcatcttt	gtatogcatc
45	4441	tagggacaaa	gagcatagag	tccctaccat	agtacctgct	tacacagaag	acttgacgag
	4501	aagaccgact	gctacacctt	ggtgtgtaat	aatatcgtgt	tatatatacc	atgratacte
	4561	ctttaaaaca	aataatggtg	gtaacagtaa	atctgtcatc	ccacccactc	tcattotaaa
	4621	ttttqcaaqt	tatcacttga	acttettaat	actccatccg	tttacatata	ttctttcaca
	4681	atttqcqtqa	gcacttttc	ttctatataa	tctgtctagt	ccatcaccta	aaccaacatc
50	4741	tctcgctgtc	ttaccttaca	cttctgcacg	atgatatcac	tecestest	accate
	4801	ctattattat	ctacactact	actetaceet	tcaagcagtg	agagagatag	testestess
	4861	ggcgacgaac	tegegetget	ctctttcaac	tcatccctgc	tataccacca	agacgetgee
	4921	ctagcatett	desacecete	coccean	cagcactgca	cataccaggg	gggccagtcg
	4991	accacacac	agaacacgcc	actactactactactactactactactactactactacta	caycactgca	catgggtggg	tgttgtgtgc
55	5041	atcatctcc	categories	ggrggrgaag	ctgcggctgc	getegtecaa	cctgaccggg
~~	5101	cacctotos	acceptings	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ttcctcagga	cgctgcaact	cagcaacaac
	5101	ctcastttes	graagatacc	ccaggagete	agccgtctca	gcaggctcca	gcagctggta
	2707	togattette	acayectate	gggtgagatt	ccagctgctt	rgggcaatct	aaccagtctc
	5441	ceagecettg	agetgaetaa	caatacactg	tctggttcta	tcccttcatc	cctgggcaag

```
5281 ctcaccggcc tctataatct tgcactggct gaaaatatgc tgtctggttc catccctacg
            5401 gcgatcccag atcctatttg gaacatctcc tctctcacca tatttgaagt cgtgtccaac
            5461 aacctaactg gtacactgcc tgcaaatgca ttcagtaatc ttcctaatct gcagcaggtt
 5
            5521 ttcatgtact acaaccattt tcatggtcct atccctgcat cgattggtaa tgcttccagc
            5581 atctcaatat ttaccattgg tttaaactct tttagcggtg ttgttccacc ggagattgga
            5641 aggatgagaa atcttcagag actagagctt ccagaaactc ttttggaagc tgaagaaaca
            5701 aatgattgga aattcatgac ggcattgaca aattgctcca atcttcaaga agtggaactg
            5761 gcaggttgca aatttggtgg agtcctccct gattctgttt ccaatctttc ctcttcgctt
10
            5821 gtatetetet ceattagaga taacaaaatt teagggaget taeetagaga tateggtaat
            5881 ctcgttaatt tacaatatct ttctctcgct aacaactcct tgacaggatc ccttccctct
            5941 tccttcagca agcttaaaaa tttacgtcgt ctcactgtag ataacaacag gttaattggt
            6001 tototoccat tgactatogg taatottaca caactaacta atatggaggt ccaatttaat
            6061 gcctttggtg gtacaatacc aagcacactt ggaaacctga ccaagctgtt tcaaataaat
15
            6121 cttggccaca ataactttat agggcaaatt cccattgaaa tatttagcat tcccgcactc
            6181 totgaaattt tggatgtgto ocataataac ttggagggat caataccaaa agaaataggg
            6241 aaacttaaaa atattgtcga attccatgct gattcgaaca aattatcggg tgagatccct
           6301 agcaccattg grgaatgcca acttctgcag catcttttcc tgcaaaacaa tttcttaaat
           6361 ggtagcatcc caatagctct gactcagttg aaaggtctgg acacacttga tctctcaggc
20
           6421 aacaatttgt caggreagat acctatgtcc ttaggggaca tgactctgct ccactcgctg
           6481 aacctttcgt tcaacagctt ccacggtgaa gtgccaacca atggtgtttt tgcaaatgct
           6541 tetgaaattt acatecaagg caatgeecat atttgeggtg geatacetga actacatett
           6601 ccgacgtgtt ccttaaaatc aagaaagaaa aggaaacatc aaattctgct gttagtggtt
           6661 gttatctgtc tcgtttcgac acttgccgtc ttttcgttac tctacatgct tctaacctgt
25
           6721 cataagagaa gaaagaaaga agtccctgca acgacatcca tgcaaggcca cccaatgatc
           6781 acttacaagc agctggtaaa agcaacggat ggtttttcgt ccagccattt gttgggttct
           6841 ggatcttttg gctctgttta caaaggagaa tttgatagtc aagatggtga aatcacaagt
           6901 cttgttgccg tgaaggtact aaagctagaa actcctaagg cactcaagag tttcacggcc
           6961 gaatgcgaaa cactacgaaa tacgcgacac cggaatcttg tcaagatagt tacgatttgc
30
           7021 togagoatog ataacagagg gaatgattto aaagcaattg tgtatgactt catgoccaat
           7081 ggcagtctgg aagattggct acaccctgaa acaaatgatc aagcagagca aaggcacttg
           7141 actetgeate agagagtgae catactaett gatgttgeat gtgcattgga geatetteae
           7201 ttccatggcc ctgaacctat tgtacactgt gatattaaat caagcaatgt gttgttagat
           7261 getgatatgg tageteatgt tggagaettt ggaettgeaa gaataettgt tgagggaage
35
           7321 tcattgatgc aacagtcaac aagttcgatg ggaatcaggg ggacaattgg ttacgcagca
           7381 ccaggttaat cctaaactgt ttatgtctac ctcctttcat tgttttttt ttagatttgc
           7441 tetggtecaa caaaaaatae etaaagatae agataettgt aceteacagt actaaatagt
           7501 ttttgatcat tgcattgtta gatccaacga tcagaaaacg atttggtacc gtgaccgtga
           7561 ggtatcggaa tctcgagata tttttttgtt cgaccgtagc aaatctattt ttttgtttgt
40
           7621 tttcttctct ttaatgtttt atgactatga aataattttt atttctggaa aacagagtat
           7681 ggtgtcggga acactgcctc gacacatgga gatatttaca gttatggaat tctagtgttg
           7741 gaaacagtaa ccgggatgcg gccggcagac agtacattca gaactggatt gagcctccgt
           7801 cagtacgttg aaccgggtct acatggtaga ctaatggatg ttgttgacag gaagcttggt
           7861 ttggattccg agaaatggct tcaggctcga gatgtttcgc cacgcagcag tattactgaa
45
           7921 tgccttgttt cactgcttag acttgggctg tcttgctctc aggaattgcc atcgagtaga
           7981 acgcaagccg gagatgtcat caatgaactg cgtgccatca aagagtctct ctcgatgtca
           8041 tccgacatgt gaagatgtga gacatgctga tgttatgttg gagtatttcg ttgtaatgta
           8101 atgtgaaggg tgagtgtgtg actgcttggt tgtaagctat ttcctgatct gcccatcaga
           8161 tcatgtatct gttctattgt tgtatttctc agaacaacca cacacctaag taggagtaca
50
           8221 caatagtgta tttgtgtgat ttcaatattg gtgcataccc atgctatgtg aacagtcaat
           8281 cggggagcga ttcacaccat accgtgaaat cgacctaatc agctaatcta attctacagg
           8341 ctgcctttgc atgacagtgt gatattaaat tagcccagcc ctttttagca aacgatggga
           8401 gggtcaatgc tctaga
```

55 SEQ ID NO:5

///translation="MISLPLLLFVLLFSALLLCPSSSDDDGDAAGDELALLSFKSSLL

YQGGQSLASWNTSGHGQHCTWVGVVCGRRHPHRVVKLRLRSSNLTGIISPSLGNLSFL

	RTLQLSNNHLS	KI PQELSRLSRLQQLVLNE	NSLSGEI PAALGNLTSLSVLELTNNTL					
5	SGSIPSSLGKI	GLYNLALAENMLSGSIPTS	FGQLRRLSFLSLAFNHLSGAIPDPIWN					
	ISSLTIFEVVS	nltgtlpanafsnlpnlqq	VFMYYNHFHGPIPASIGNASSISIFTI					
	GLNSFSGVVPF	GRMRNLQRLELPETLLEA	EETNDWKFMTALTNCSNLQEVELAGCK					
10	FGGVLPDSVSN	SSSLVSLSIRDNKISGSLE	rdignlvnlqylslannsltgslpssf					
	SKLKNLRRLTV	NNRLIGSLPLTIGNLTQLI	NMEVQFNAFGGTIPSTLGNLTKLFQIN					
15	LGHNNFIGQIF	EIFSIPALSEILDVSHNNI	EGSIPKEIGKLKNIVEFHADSNKLSGE					
	IPSTIGECQLL	HLFLQNNFLNGSIPIALTQ	LKGLDTLDLSGNNLSGQIPMSLGDMTL					
	LHSLNLSFNSF	GEVPTNGVFANASEIYIQG	NAHICGGIPELHLPTCSLKSRKKRKHQ					
20	ILLLVVVICLV	ILLLVVVICLVSTLAVFSLLYMLLTCHKRRKKEVPATTSMQGHPMITYKQLVKATDGF						
	SSSHLLGSGSF	SV YKGEFDSQDGEITSLVA	VKVLKLETPKALKSFTAECETLRNTRH					
25	RNLVKIVTICSSIDNRGNDFKAIVYDFMPNGSLEDWLHPETNDQAEQRHLTLHQRVTI 25							
	LLDVACALEHL	FHGPEPIVHCDIKSSNVLL	DADMVAHVGDFGLARILVEGSSLMQQS					
	TSSMGIRGTIG	AAPEYGVGNTASTHGDIYS	YGILVLETVTGMRPADSTFRTGLSLRQ					
30	YVEPGLHGRLMDVVDRKLGLDSEKWLQARDVSPRSSITECLVSLLRLGLSCSQELPSS RTQAGDVINELRAIKESLSMSSDM"							
	SEQ ID NO	6						
35	DEFINITION	Oryza longistaminat	a receptor kinase-like protein (Xa21) gene					
	ACCESSION	U 7272 3	mily member C, pseudogene.					
40	SOURCE ORGANISM	l <mark>ong-</mark> staminate rice Oryza longistaminat	1					
		Eukaryotae; mitocho Charophyta/Embryoph	ndrial eukaryotes; Viridiplantae; /ta group; Embryophyta; Magnoliophyta;					
	FEATURES	Liliopsida; Poales; Location/Q	Poaceae; Oryza.					
45	source	119639	'Oryza longistaminata"					
		/strain="I	RBB21"					
50		/chromosom /map="11q,	RG103 "					
50	gene	52131820 /gene="Xa2						
	CDS	join (5213. /gene="Xa2	.7889,87329132) L [#]					
55			ease resistance gene"					
	21 - 51 -	/product="	eceptor kinase-like protein"					
	3' flamisc_fo							

SUBSTITUTE SHEET (RULE 26)

```
/note="Pop-Ol1, transposon-like element"
                            13040..13248
                            /note="Ds-ricel, transposon-like element"
            CDS
                            join(15118..17720,17827..18201)
 5
                            /gene="Xa21"
                            /note="family member C; 2 bp deletion causing a
                            frame-shift of the ORF compared to family member Al"
                            /codon_start=1
10
           misc feature
                            16183..16184
                            /gene="Xa21"
                            /note="location of a 2 bp delection compared to family
                           member A1"
15
                           BASE COUNT
                                          5380 a
                                                   4394 c
                                                            3800 q
                                                                     6065 t
       ORIGIN
               1 aagetttget catttettet ecaattacaa ttaategtgt gtgeatcaag taattaatta
             61 agaaactctg gcttgttgaa aggtcgcagt gacaattaat cgtgagtgca taggatggg
20
            121 aaaacacgag ggatcggtcg accatcgggg ggagcaaaaa tcaagcgctc ccccgccca
            181 cgacgcgcac atgccacgcc accccaccac gcaccacgtg tgccgttgta aacacctgcc
            241 acgtgtcccc atcacatact ccgttgtaac aaatcaccca tatattttgg aaaccctata
            301 ttaggagaat tcgtttcatt ttttttctac caaaaatatt tcacctagtg tactcacaat
            361 gtttcactat gtatagatct aattttgtag taaattgaaa cattcttttg caataaatta
25
            421 cccatatatt atggaaaccc tctattaagg gaattcgttt cattttttat tccactaaaa
            481 atgtttcgcc tagtgtactt gtaatgtttc actatgtatg gattaaatgt tgcagtgact
            541 tgaaacattc tttcgctatt tgctgaaaca ttgtttttat ataaggtgaa acagcgcccg
            601 atttaaacga ttgaaatatt ttcgatctac ttagtgaaac aattccaata tacttggtgc
            661 aacaacgtgc aacatttaat tataattcca taataagctt gtcgacattt gatagtcacg
30
            721 actagggtat ttggatggta tggggatcat cggtaccagg gtatatgcga gattgaggta
            781 aaagagatgg agatagggat ttttatatag gttcgggccc cttatctgat aggtaatagc
            841 cctacatcct gtttatatgt gattgatata gaaaaaccac agaatacaac aattgggata
            901 acctatctag ccgttgttga cttggcggca cgaacaccaa ctcgtagtcg acgacgggga
            961 agcetttete etegattgtg aactegacaa gattagagat ategetagat ecetettgee
35
           1021 ggcctctgta ggtaccggat ggggtgtgtc taggctaatc tcagatgtcg atgtttggcg
           1081 gcgtattggc ttgtgtcttg tggcttctat gttgtgtgtc ccctctcctc caatggaggc
           1141 ttggatttag actcatagat ttccccttgt ccaagtagaa ctagggagac caatatagat
           1201 acaatccgag tagtacttgt cgtttctata tagaactcta ttttgtcctt ccttatccgg
           1261 aactccttct atatatgagg tatgtttccg tataagactt ggtatgtggt gggcctcgcc
40
           1321 gagettagte gattactatt gggtatgtgg tatectagge eccagetgee attttecaca
           1381 aagacagett gaatettata acaaacettg etgaagetga caaateetag eecceageca
           1441 tgaagttgga aaaatcaatt tccgattaca caaattggtt aatacgcaac catttagtgc
           1501 tettaacatg accaggitti acatgiteat teggetetta gaatetgaca agacettate
           1561 tgctctgggc gtccccagcc gaaattccat tagttttctc ggaggcttgt cagaacagcg
45
           1621 taaagggaca ataggactgc cttcaagatg aggcgatata agaggggatc aacagacaaa
           1681 tattgcacat ataaaactta cagaagttga tgtagatgat gagacgacca ccacactagg
           1741 caaagaccag gtgtatagtt gtactcaaca aatcgcagag gtagtgagag atcgctacga
           1801 tctactggtc gaagatcagg tgtaggcgta ttctcgatca cctgaagaag aatctttagg
           1861 tgttgagaga tcgctactat ctactggtca acactagtaa aaaaacctca tagagatcgg
50
           1921 cactataggt geegaacage taaaaceege acetatatae ttteeteteg tggaeteaaa
           1981 gcacgtaaac cgacacttta gcaactatag gtgcggtcta aagagaccga cactatagta
           2101 gacacaatat aaatatacgt gtcggttttt aataaacggc acctatcaaa ccgagcctag
           2161 ctgtcgagtc gagccaatcc aggtgacgca tatattagtc tcgtccttat cgcctccggt
55
           2221 ctctctctc ctctctctct ctcttctct ctcgcctctc tgtgtagcgc gcggcggtgg
           2281 tcgggcagcg tcccggcgta ggcaacagtg gtggcgagat gggaggcggt ggcgcatcac
           2341 agctattcac tttagcgcct tgaataataa tcggcatcat gatctactta tgcttcgtgc
           2401 aagagggaag aatgtagata cacatggtca cagctaagtg ctatgatcgc ggctcatctc
```

	2461	tccaaataga	ttcatgccat	ccgtacttaa	acagaacctt	atgttccgtg	catcctttct
	2521	gaagtettga	aatgttttat	cgatgtttta	ccactacgac	ccatctgtag	ggtgtctcgc'
	2581	atcccgtctt	gtttatgttt	ttatgtgtgc	cagcgcacca	ttctagcacg	cgctttqttc
	2641	ctgaacaaac	accttagccg	tggtattaaa	tggaaatact	gcatgatcat	agcaggaact
5	2701	ctcttcttcg	aaggatgtcc	gtcaacatca	cctaggtcat	ctcgtctaat	cttatatcot
	2761	agtgccttac	aaaccaggcg	tgcttctagg	ttctcgtact	cctccacqcq	atagaggata
	2821	caatcattca	gacatacgtg	tatcttctgt	acttccagtc	cgagaggga	gattaccttt
	2881	ttagcttcgt	acgttgtttc	gagcaattcg	tttccctcgg	qaaqaatatt	Ctttacgagt
	2941	ttcaataact	cgccaaatgc	cttqtcaqtc	acaccatatt	ttqccttcca	ttgtcagaat
10	3001	tccagtgtgg	tacccaactt	tttqtqctcc	tattcgcaac	ctgggtacaa	ggacgttttg
	3061	tggtatgcta	acatecqqte	caatttctag	accaactttt	tcacttttgc	agtcattttt
	3121	tacatcgcac	aacatttgac	caagattatc	cgtaccgccg	ttttcttcaa	Cagetetete
	3181	cgcctcgcct	attqtatttt	ctgcaaatcc	atcatattga	gcccagtctg	asatottoto
	3241	gtcttcttat	taattttctt	ctattgcaac	ccctaactct	ccatacaaaa	tCtaacaatt
15	3301	ataqccaqqt	atgaatcccg	attccaacaa	gtggatatga	agacttetta	gatgtagaat
	3361	actecttete	gtttttgcac	ttttgcatgg	acaacatáta	agacccttac	acttataaa
	3421	attogccaca	ctcaaaaaat	aatgcacgtc	atcaataaac	teetteesee	geergegge
	3481	agtgtacatc	cattaccgat	tcatctacat	taggagataa	taattotaaa	gacgataga
	3541	aaaagtgaaa	ctacttaaat	aatcatataa	taatttaaaa	tatcataatt	ggaagteeac
20	3601	ctgacggttt	taatgtattc	ttcttatttc	taacgatttt	accacact	aaattgaaaa
	3661	aatcggagtc	argattaact	atttataaar	tttatctgtc	tcastasatt	adatyyattt
	3721	ttttccatgt	attateette	tttaattatt	tttaaaagtt	Ctaaacatat	ttttaataa
	3781	ttctacttat	ttctaactat	tttaaagatt	ttcaaatgga	Cttactttc	tatttttatt
	3841	cttcattttc	tatatttqcc	ctttattatc	tctttttaac	aattttatac	aaatatttat
25	3901	aattttatta	agtaccctaa	ttttcctaa	acaattttc	teteteatee	tatttccata
	3961	tatctttttq	agataataat	ggatataaac	atagctagaa	atgraaatgr	tcaccttcca
	4021	tcaataqqqq	atgaagttgc	taacctttta	gatctcctcg	atttotataa	tataaccaaa
	4081	atattttcac	caaaaatttc	gttaaacatc	cgagatattt	attatttta	cccatccaac
Y	4141	aaagattagt	agtccaqcaq	tatctacacc	accaccatcg	tgataatgca	tettatatat
30	4201	tattcttgat	gagaaaatac	gtagtgaaaa	ccacatatgt	ggtggaaact	tagaaactac
	4261	cgttagatcg	agaaatggat	gtccaaqatt	cgtccacgtc	accaagagat	aaaatttagc
	4321	tcgcagattc	acttatgagt	taaaatttta	atgagagtta	aattttaact	catottoato
	4381	tggacgaata	teggacatee	atttctcgat	ccaacgatag	cttccaaqtt	tccactacat
	4441	atgtggtttg	cactatatat	tttcccattc	ttgattatgt	qtttqaqaqc	agctagcaca
35	4501	aagagaaaaa	aaagcatcgt	ttttcacgcg	tatgttttca	gaactgttaa	atqqtqtqtt
	4561	ttttgaaaaa	actttctata	gaaaagtttc	tttaaaaaat	atattaatct	attttttaaq
	4621	tttaaaataa	ttactactta	attaattata	cactaacagc	ttatttcqtt	ctacqtatct
	4681	tgtcaatttt	cgctattcct	ttcttctcaa	acacggcatt	ggatgctctc	atagcacttq
4.0	4741	ctcgttcgga	tagaagactt	gacgaagacg	accgctacaa	cttggtgtgt	tatatcgtgc
40	4801	tttgtttagc	ataatcatta	catatattcc	atgccgaagt	gccgacgatg	agaccgtgtt
	4861	cgatgcatct	ttgtatggca	tctagggaca	aagagcatag	agtccctacc	atagtaccag
	4921	ctcgcgcaga	agacttgacg	agaagaccga	ctgctacacc	ttggtgtgta	ataatatcgt
	4981	gttgtgta	ccatgcatac	tcctttaaaa	caaataatgg	tggtaacagt	aaatctgtca
	5041	tcccacccac	tctcattgta	aattttgcaa	gttctcactt	gaacttctta	atactccatc
45	5101	cgtttgcgtg	tgttctttca	gaatttgcgt	gagcactttt	tcttctatat	aatctgtcta
	5161	gtccatgagc	taaaccaaca	tctctcgctg	tcttgccttg	cacttctgca	cgatgatatc
	5221	actcccatta	ttgctcttcg	tcctgttgtt	ctctgcgctg	ctgctctgcc	cttcaagcag
	5281	tgacgacgat	ggtgatgctg	ccggcgacga	actcgcgctg	ctctcttca	agtcatccct
50	5341	gctataccag	gggggccagt	cgctggcatc	ttggaacacg	tccggccacg	gccagcactg
50	5401	cacatgggtg	ggtgttgtgt	gcggccgccg	ccgccgccgg	cacccacaca	gggtggtgaa
	5461	gctgctgctg	cgctcctcca	acctgtccgg	gatcatctcg	ccgtcgctcg	gcaacctgtc
	5521	cttcctcagg	gagctggacc	tcggcgacaa	ctacctctcc	ggcgagatac	caccggagct
	5581	cagccgtctc	agcaggcttc	agctgctgga	gctgagcgat	aactccatcc	aagggagcat
55	5641	ccccgcggcc	attggagcat	gcaccaagtt	gacatcgcta	gacctcagcc	acaaccaact
55	5701	gcgaggtatg	atcccacgtg	agattggtgc	cagcttgaaa	catctctcga	atttgtacct
	5761	ttacaaaaat	ggtttgtcag	gagagattcc	atccgctttg	ggcaatctca	ctagcctcca
	5821	ggagtttgat	ttgagcttca	acagattatc	aggagctata	ccttcatcac	tggggcagct
	5881	cagcagtcta	ttgactatga	atttgggaca	gaacaatcta	agt ggg atga	tccccaattc

		5941	tatctggaac	ctttcgtctc	taagagcgtt	tagtgtcaga	gaaaacaagc	taggtggtat
		6001	gatccctaca	aatgcattca	aaacccttca	cctcctcgag	gtgatagata	tgggcactaa
		6061	ccgtttccat	ggcaaaatcc	ctgcctcaqt	tqctaatqct	tctcatttga	cagtgattca
_		6121	gatttatggc	aacttgttca	gtggaattat	cacctcqqqq	tttqqaaqqt	taagaaatct
5		6181	cacagaactg	tatctctgga	gaaatttqtt	tcaaactaga	gaacaagatg	attgggggtt
•		6241	catttctgac	ctaacaaatt	gctccaaatt	acaaacatto	aacttgggag	aaaataacct
	1	6301	ggggggggtt	cttcctaatt	cattttccaa	tetttecact	tcacttaatt	ttcttggact
		6361	tgaattgaat	aagatcacag	gaagcattcc	gaaggatatt	ggcaatctta	ttggcttaca
		6421	acatctctat	ctctgcaaca	acaatttcac	agggtetet	ccatcatcat	taggerraca
10	1	6481	taaaaactta	ggcattctac	tcgcctacga	aaacaactto	agggettege	tecestess
	(6541	cataggaaat	Cttactgaac	ttaatatott	actoctcocc	ageggeeega	tcagtggttg
		6601	qataccatac	acacteteaa	acctcacaaa	cttattatca	traggeette	caactaataa
		6661	ccttagtagt	ccaataccca	graattatt	castattcas	acactatora	taattaataa
		6721	totatcaaaa	aataacttgg	agggatcaat	200200000	ataccaccaa	taatgattaa
15		6781	agtagaattt	catgcagaat	Coastacatt	accacaagaa	atagggcacc	ccaaaaatct
		5841	ttgccagete	ttacggtatc	tttatetee	accayycaaa	ttotatata	cgcttggtga
		5901	ageettgggt	cagctgaaag	atctcassa	tettestete	tracetggta	gcatcccatc
		6961	ccagataccc	acateettae	Goodatatta	tottgatete	LCaagcaaca	atttgtcagg
		7021	cagetteete	acatccttag	cagacactac	tatgetteat	ccctgaacc	tttctttcaa
20	•	7081	ccaaggcaat	ggggaagtgc	caactattgg	cyclicegea	getgeateeg	ggatctcaat
		7141	attactagag	gccaaactct	grygrygaar	accegateta	catetgeete	gatgttgtcc
	-	7201	actooccato	aacagaaaac	totoottaat	tetaectatt	tetgtttete	tggccgcagc
	-	7261	ageceettea	ctctcatcac	tananagan	cacaacccgg	cacaagagaa	ctaaaaaggg
	-	7321	agcaacagat	agaacttcca	cgaaaggcca	cecattggte	tettattege	agttggtaaa
25		7381	Caaaccagac	ggtttcgcgc	cgaccaattt	gttgggttet	ggatcatttg	gctcagtata
e		7441	taaggcgctc	cttaatatcc	ctccccc	tgcagtgaag	gractaaage	ttgaaaatcc
		7501	tetteteaa	aagagtttca	tttcctcca	tgaagcacta	cgaaatatgc	gacatcgaaa
	-	7561	aattgtgtar	atagttacaa gacttcatgc	ccegcccgag	tetegacaac	agagggaacg	atttcaaage
	7	7621	tgatcaagca	gaccagaggc	acttoaatct	ccatcana	ctggatacacc	cigaaacaaa
30		7681	tacctacaca	ctggactatc	ttcaccacca	torcotora	graceatae	caccigatgt
	1447	7741	taaatcaacc	aatgtgctgt	tagattetga	tateetaee	Cotyttycac	actgtgatat
	7	7801	tgcaagaata	cttgttgatg	ggacctcatt	categgtaget	tanagagag	accingget
	7	7861	tatagggaca	attggctatg	Cadcaccadd	tcaccaacag	Cttccactat	tttggstttt
	7	7921	ctgatctcta	gtgctatatg	aaatagtttt	tacctctact	gaaactgatg	Cacacacac
35	7	7981	gtaattaatt	gaactaatta	aattgcacaa	aaataagatt	atttaccata	totattoaca
	ε	3041	tgctaaatat	agctagttca	tagaggtaca	gatttttta	tataggacte	tagagetage
	8	3101	acacactcaa	atcaaattat	gagegette	toctctacac	tacastatas	aatgattatt
	8	3161	acttctacat	gaactgatgg	aggagtttca	gaaggatcaa	atttgagtaa	atttttcaat
	8	221	tctacattta	agaaacactt	ttttttcata	tactaattac	atttttt	ttcaccacct
40	8	281	tacattgacc	atgaaaaata	cttggcacta	cttactaatt	cccacataca	antantassa
	8	341	ataatataga	tacaaaaacg	aaatateeta	tattatata	tatactataa	tracaatraa
	8	401	cacaaacaqq	attcgtacaa	aagtaattag	ccatcatage	aactcattcc	ttaaaatgaa
	8	461	tgtatagcac	aatcatacca	aatttetta	gatatgtatc	totasattao	attettaaag
	8	521	ttaaatatga	aatttcattg	gtatttatgt	ttettetet	astassastt	accccaaag
45	8	581	ttgcatctat	catttgtcca	gacateette	ttatttataa	tatttaagag	attactttag
	8	641	ataattatac	atccaagttc	tttttatta	acactetasa	tttessetee	togatettat
	8	701	aaagaatgta	ctatatttcc	toctcaacca	gactatogo	tteratest	tacatgutat
	8	761	Catggagata	tttacagcta	togaatteta	gagtatggtg	togtogeteat	cycatcaacg
	8	821	actgacagta	cattcagacc	Coatttoocc	ctccctcact	agtaactgg	gaageggeea
50	8	881	ggcagagtga	cggatgttgt	taacacaaa	ctccgtcagt	acguigaacu	gggcctacat
	· 8	941	agtacaaata	attctccatg	tagacacyaay	actoratecas	ttatttaat	ceggergaac
	9	001	gggttatetr	gctctcagga	attornator	actyaatyta	caacacaca	tatostana
	9	061	gaactgaata	ccatcaaaca	datetetee	agrayaacgc	caaccggaga	accategac
	9	121	Cttgaattcr	gatgttatgt	Ctcctaatct	tttattaaaa	caguguguga	aggryggage
<i>5</i> 5	9	181	agtggtatct	accacacgat	Cactasacto	acceteceta	tttcctcagat	cyaccicityc
	و	241	gatcatgcat	gttctgtgtt	gtataceter	attttactct	daattacaa	accocaacco
	9	301	tgcctctatt	tgtttggtat	acaaaacata	atastasatt	tattottt	accycaaccc
	9	361 a	agttqqcqca	tgtgcatgcc	gacatacaca	2-2acyayee	ataaatta	ttttttcc
			_ 35-5-5	3-3-40900	Jacacaca	cagocogagg	gegggeeeet	Coccecca

	0401						
	9421	ttgttattcc	gttgcttttt	ttcaccacgg	tagattttt	tttccggatt	tccattttt
	9481	ccgttgtttt	tctctatcgc	ttatgttggc	ggatttttt	ccgtggtttt	ctttccgaag
	9541	acgagtatat	ctaacgtaac	taacatgtta	cttttagata	acgatggtta	ttaagataag
_	9601	atttttctct	ggaagatttt	tgtaagtaac	agattgaaaa	caaatctata	cgtgaggtca
5	9661	aattttgaaa	actttcaatc	tagatttaaa	agcttttcaa	ctcaaaattt	gaatttttga
	9721	agtgaaaatt	tgaatacttt	caaaaattac	tagtaatcga	caaaaaaaat	atggaaatgg
	9781	aaacggaaat	agttttgctg	ttataccgat	cgtttccata	tttaccgtat	tcttatagaa
	9841	attaccgttt	cttataatat	ggtaattacc	gtatttctaa	atatgttgat	atttataggg
	9901	catgtctcta	cttgactcac	agtttagaga	ttgattgact	atttaatcaa	atccctaact
10	9961	tgattgcatg	gctaaaatgg	agttgatttc	taatttatat	agtatagett	gaatttattt
	10021	gtaaatataa	catacttatq	taaaqttaaa	tatatgtttt	ctatagttta	atotttctot
	10081	atttgttacc	ggttttcgat	ctqtaccqac	atatttccat	cagtattatt	CCatttccgg
	10141	ttttccgata	tttccgatat	cattttcatt	tccgacttta	ccqttttcqa	tttcatttcc
	10201	gagaaaaata	tgattatgga	aatqqtcqaq	gctgttttcc	gatcgtttcc	gaccottttc
15	10261	atccctaccc	qtaqtaataa	tatataacat	tttatctcta	atctttctct	CtCtcatatc
	10321	aatqaataat	coctaagaga	ctoctattaa	caaggcttat	atatatatat	gccgtcgatc
	10381	agtcattttg	aaacggccca	cttcttttcc	atctatatgc	attcatgaaa	tacatogtat
	10441	atcccatcga	tcggacatca	cctattagca	cgtacgccat	catcatcatc	aacctaccta
	10501	qqqcaaacqc	accttgctga	gctccgatcc	tccgatcgcc	accatcacca	atgaacaagc
20	10561	tactacaacc	teteggtage	chaagattac	tcaaccgaga	agaacat.ccg	ttcccatact
	10621	tctcctcctc	catcgatctc	atetteesa	gtcgccgccg	ccaccacata	gcaaccacca
	10681	tgacccaccc	accaccaaca	gaatccctg	gttcgacggc	aacaaccaca	actoctoacc
	10741	caacctcaat	gatgctggaa	catteggggt	gcctcagggg	ctccacacca	accaecatea
	10801	tcgccgacga	Caacacccc	acadaateee	gcacctcccg	caaccaacca	ctccccctcc
25	10861	ccctcaccca	cacatcacca	ccaccatct	ccttcatctg	cttcgatcgc	aggatasta
	10921	qctacqtcat	cacaactcac	ggcgactctg	tcctcttccg	gatgagttgg	aacgactact
	10981	tcgtctacat	adccaccaac	gaccaccatc	gctgacgctg	ctccccatct	gcgacatccc
	11041	catqaacqaq	cactactaga	tcagcaagga	ccgtttcaag	gacagettee	acaccacggg
	11101	ccgggagttc	qaccaqcaqq	acaccggcat	cctgcgcctc	cacaacaaca	acggcggcga
30	11161	ggaggcgccq	ctctaqtqqc	gcagtccaga	tcgcgcacga	accaccatte	gacacggccg
	11221	agctctgcgt	qctccqcccc	daccacaaca	agtgggagct	caagatggcg	gtgcccatcg
	11281	tccaccatga	cagcttgaat	cttataacaa	accttgctga	agctgacaaa	tectageee
	11341	cagccatgaa	gttggaaaaa	tcaatttccq	attacacaaa	ttoottaata	cqcaaccatt
	11401	tagtgctctt	aacatgacca	ggttttacat	gttcgttcgg	ctcttagaat	ctgacaatac
35	11461	cttatctgct	ctgggcgtcc	ccagccgaaa	ttccattagt	tttctcqqaq	gcttgtcaga
	11521	acagcgtaaa	gggacaatag	gactgccttc	aagatgaggc	gatataagac	gggatcaaca
	11581	gacaaatatt	gcacatataa	atacttacag	aagttgatgt	agatgatgag	acgaccacca
	11641	cactaggcaa	agaccaggtg	tatagttgta	ctcaacaaat	cgcagaggta	gtgagagatc
	11701	gctacgatct	actggtcaaa	gatcaggtgt	aggcgtattc	tcgatcacct	gaagaagaat
40	11761	ctctaggtgt	tgagagatcg	ctactatcta	ctggtcaaaa	ctagtaaaaa	aacctcatag
	11821	agatcggcac	tataggtgcc	gaacagctaa	aacccgcacc	tatatacttt	cctctcgtgg
	11881	actcaaagca	cgtaaaccga	cactttagca	actataggtg	cggtctaaag	agaccgacac
	11941	tatagtatag	tgctggtttt	aaaaaacctg	acactttaat	ataatatagt	gtcggtctct
	12001	ttaaaacgac	acaatataaa	tatacgtgtc	ggttttaata	aacggcacct	atcaaacgat
45	12061	cctagctgtc	gagtcgagcc	aatccaggtg	acgcatatat	tagtctcgtc	cttatcgcct
	12121	catctctctc	tctctctc	tctctctt	tctctctcgc	ctctctgtgt	agcgcgcggc
	12181	ggtggtcggg	cggcatcccg	gcgtaggcaa	cagtggtggc	gagatgggag	gcggtggcgc
	12241	atcacagcta	ttcactttag	cgccttgaat	aataatcggc	atcatgatct	acttatgctt
	12301	cgtgcaaggg	ggaagattgt	agatacacat	ggtcacagct	aagtgctatg	atcgcggctc
50	12361	atctctccaa	atagattcat	gccatccgta	cttaaacaga	accttatgtt	ccgtgcatcc
	12421	tttctgaagt	cttgaaatgt	tttatcgatg	ttttaccact	acgacccatc	tgtagggtgt
	12481	ctcgcatccc	gtcttgttta	tgtttttatg	tgtgccagcg	caccattcta	gcacgcgctt
	12541	tgttcctgaa	caaacacctt	agccgtggta	ttaaatggaa	atactgcatg	atcatagcag
	12601	gaactctctt	cttcgaagga	tgtccgtcaa	catcacctag	gtcatctcgt	ctaatcttat
55	12661	atcgtagtgc	cttacaaacc	aggcgtgctt	ctaggttctc	gtactcctca	acgcgataga
	12721	ggatacaatc	attcagacat	acgtgtatct	tctgtacttc	cagtctgaga	gggcagatta
	12781	ccattttagc	ttcgtacgtt	gtttcgagca	attcgtttcc	ctcgggaaga	atattcttta
	12841	cgagtttcaa	taactcgcca	aatgccttgt	cagtcacacc	atattttgcc	ttccattgtc

	12901	agaattccag	, tgtggtaccc	aactttttgt	gctcctattc	gcaacctggg	tacaaggacg
	12961	Ltttgtggta	l tgctaacatc	cggtccaatt	tctaqaccaa	Ctttttcact	Ettacaatca
	13021	ttttttacat	: cgcacaacat	ttgaccaaga	ttatccqtac	caccattttc	ttcaacacct
5	13081	ctgtccgcct	cgcctattgt	attttctgca	aatccatcat	attgagggga	Ototoaaato
J	13141	. ttgtcgtctt	cttattcatt	ttcttctatt	gcaaccccta	actctccqtq	Caaggtetaa
	13201	. caattatago	: caggtatgaa	tcccgattcc	aacaagtgga	tatgaagact	tettagatgt
	13261	. agaatactco	: ttctggtttt	tgcacttttg	catggacaac	atataaaacc	Cttaggcttg
	13321	. tgggcattgg	ccacactcaa	aaaataatgc	acqtcatcaa	taaactcctt	cgaccgtcgt
10	13381	. tctgcagtgt	acatccattg	ccgattcatc	tacattagga	gataataatt	gtaaaggaag
10	13441	. tccacaaaag	tgaaactact	taaataatca	tataataatt	taaaatatca	taattaaatt
	13201	. gaaaactgac	ggttttaatg	tattcttctt	atttctaacq	attttaacga	gttttaaatg
	13561	. gacttaatcg	gagtcatgat	taactattta	taaattttat	ctatctcaat	aaattotaaa
	13621	tatatttctc	catgtattat	ccttgtttag	ttattttaa	aaqttctaaa	catattttta
	13681	atgcattata	cttatttcta	actattttaa	agattttcaa	atggacttag	ttttctattt
15	13/41	ttattcttca	ttttgtatat	ttgccctttq	ttgtctcttt	ttaacaattt	tatacaaata
	13801	tttataattt	tattaagtac	cctcattttc	cctaaacaat	ttttctctct	catcotattt
	13861	ccatatatct	ttttgagata	ataatggata	taaacatagc	tagaaatgta	aatottcacc
	13921	ttgcatcaat	aggggatgaa	gttqctaacc	ttttagatct	cctcgatttg	tataatataa
	13981	ccaaaatatt	ttcaccaaaa	atttcqttaa	acatccgaga	tatttgttgt	ttttaccat
20	14041	cgagcaaaga	ttagtagtcc	agcagtgtct	gcaccaccac	catcotoata	atgratetto
	14101	tgtgttattc	ttgatgagaa	aatacqtaqt	gaaaaccaca	tatataaraa	aaacttogaa
	14161	actaccgtta	gatcgagaaa	tggatgtcca	agattcgtcc	acatcaccaa	gagataaaat
	14221	ttaactcgca	gattcactta	tgagttaaaa	ttttaatgag	agttaaattt	taactcatot
	14281	tgatgtggac	gaatatcgga	catccatttc	tcgatccaac	gatagettee	aagtttccac
25	14341	tacatatgtg	gtttgcacta	tatattttcc	cattcttgat	tatotottto	agaggaggta
	14401	gcacaaagag	aaaaaaagc	atcgtttttc	acqcqtatqt	tttcagaact	gttagatggt
	. T440T	grgrrrrrg	aaaaaacttt	ctatagaaaa	qtttctttaa	aaaatatatt	aatctatttt
	14521	ttaagtttaa	aataattact	acttaattaa	ttatacacta	acagettatt	tegttetacg
20	_ 1438T	tatettgtea	attttcgctc	atcctttctt	ctcaaacacg	gcattggatg	ctctcatage
30	, 14641	acttgctcgt	tcggatagaa	gacttgacqa	agacgaccgc	tacaacttgg	Egtgttatat
	, 14/01	cgtgctttgt	ttagcataat	cattacatat	attccatqcc	gaagtgccga	cgaggagacc
	14/01	grgrregatg	catctttgta	tggcatctag	ggacaaaqaq	catagagtcc	ctaccatagt
	14821	acctgctcgc	gcagaagact	tgacgagaag	accgactgct	acaccttggt	gtgtaataat
35	14981	accgtgttgt	gtgtaccatg	catactcctt	taaaacaaat	aatggtggta	acagtaaatc
22	14941	rgreatecea	cccactctca	ttgtaaattt	tqcaaqttat	cacttgaact	tcttaatact
	15001	ccatccgttt	gcgtgtgttc	tttcagaatt	tqcqtqaqca	ctttttcttc	tatataatct
	12001	gtctagtcca	tgagctaaac	caacatctct	cactatctta	ccttgcactt	Ctgcacgatg
	15121	grarcactee	cattattgct	cttcgtcctg	ttgttctctg	cactactact	ctgcccttca
40	12181	agcagtgacg	acgatggtga	tgctgccqqc	ggcgaactcg	cactactete	tttcaagtca
40	15241	rccctgctat	accagggggg	ccaqtcqctq	gcatcttgga	acacgtccgg	ccacagccaa
	15301	cactgcacat	gggtgggtgt	tgtgtgcggc	cgccggcacc	cgcacagggt	ggtgaagctg
	12301	eggetgeget	cgtccaacct	gaccgggatc	atctcgccgt	cgctgggcaa	cctatccttc
	15421	ccaggacgc	tgcaactcag	Caacaaccac	ctgtccggca	agatacccca	ggagctcagc
45	15401	cgteteagea	ggctccagca	actggtactg	aatttcaaca	gcctatcggg	tgagattcca
	15541	getgetttgg	gcaatctaac	cagtctctcg	gttcttgtgc	tgactaacaa	tacactgtct
	15601	ggttctatcc	cttcatccct	gggcaagctc	accggcctct	ataatcttgc	actggctgaa
	15701	aacacgctgt	ctggttccat	cccttcatct	ttcggccaat	tgcgcagatt	atctttcctt
	15721	agettageet	tcaaccactt	aagtggagca	atcccagatc	ctatttggaa	catctcctct
50	15/61	ccaccatat	ttgaggtcat	atccaacaag	ctaaatggta	cactgcctac	aaatgcattc
	, 15041	agtaatette	ctagtctgaa	ggaggtatac	atgtattaca	accagtttca	tggtcatatc
	15901	ceggeatega	taggtaatgc	ttccaacatc	tcaatattta	ccattggttt	aaactccttt
	15021	ayeggtgttg	tccactgga	gattggaagg	ctgagaaatc	ttcagaggct	agagcttgga
	16021	gaaactette	tagaatctaa	agaaccaaac	gattggaaat	tcatgatggc	attgacgaat
55	16141	tototate	recaagaagt	agaattggga	ctttgtaaat	ttggtggagt	cattcctgat
	16201	gagettage	accetecee	ttccctatta	tatctcttt	ttcgataaca	taatttcagg
	16261	ctacttasa-	aayyatatcg	gcaatctcgt	taatttagaa	actctttctc	tcgctaacaa
	16321	actttttaac	agaicectte	ceteateett	cagcaagctt	aaaaatttac	atcgtctcaa
	10021		aacaadataa	grägetetet	cccattaacc	attggtaatc	ttacacaact

		16381	aactaatatg	gagctccact	ttaatgcctt	cggtggtaca	ataccaggca	cacttggaaa
		16441	cctgaccaag	ttgtttcaaa	taaatcttgg	ccataataac	tttataggtc	aaattcccat
		16501	tgaaatattt	agcattcctg	cactctctga	aattttggat	gtgtctcata	ataacttgga
_		16261	gggatcaata	ccaaaagaaa	tagggaaact	taaaaatatt	gtcgaattcc	atgctgattc
5		16621	gaacaaatta	tcgggtgaga	tccctagcac	cattggtgaa	tgccaacttc	tgcagcatct
		16681	tttcctgcaa	aacaatttct	taaatqqtaq	catcccaata	gctctgactc	agttgaaagg
		16741	tctggacaca	cttgatctct	caggtaagaa	tttgtcaggt	cagataccta	tatactraga
		16801	ggacatgcct	ctgctccact	cactaacca	ttcgttcaac	agettecaco	gtgaagtgc
		16861	aaccaatqqt	qtttttqcaa	atgettetga	aatttacatc	caagggaatg	CCCatattta
10		16921	cggtggcata	cctgaactac	atcttccgac	gtgttcctta	aaatcaagaa	acaaaaacaa
		16981	acatcaaatt	ctactattag	togttottat	ctgtctcgtt	tggacacttg	CCGtcttttc
		17041	gttactctac	atocttctaa	CCGGCCataa	gagaagaaag	aaagaagtcc	Ctacaaccac
		17101	atccatqcqa	ggccacccaa	tgatcactta	caagcagctg	gtaaaagcag	Cadatootto
		17161	ttcqtccagc	catttgctgg	gctctggatc	ctttggctct	gttttcaaag	cagatggttg
15		17221	tagccaagat	totoaaaoca	caagtettgt	tgccgtgaag	gtactaaagc	togaaactga
		17281	taaggcactc	aagagtttca	taaccaata	cgaaacactg	coasatacte	cagaaacccc
		17341	gatagttaga	atttgctcga	cestcestas	cagagggaat	Cattteans	gacacgicaa
		17401	tgacttcarg	CCCaatogca	gtategataa	ttggctacac	cctcaaag	caactgtgta
		17461	agaggaaagg	cacttgactc	taataaaa	actorecate	stasttasta	atgatcaage
20		17521	attogaccat	cttcacttcc	ategeaccagag	agtgaccata	cogcolgatg	tigcatgtgc
		17581	caatgtgttg	tragatocto	atateetaee	acctattgta	cactgtgata	traaarcaag
		17641	acttattcac	ccagacgctg	tastassass	ccatgttgga	tacatacatac	tcgcaagaat
		17701	asttoottac	ggaageteat	changeaca	gtcaacaagt	ccgatggtaa	tcagggggac
		17761	tettttt	gtagtattat	graageeta	aactgtttat	gtctacctca	tttcatttct
25		17821	2222222	atestates	ccctagtgtt	ttatgactat	gaaataattt	ttgctactgg
		17881	attotage	toggiglegg	gaacactgec	tcgacacatg	gagatattta	cagttatgga
		17941	ttgagggtgg	cygaaacagt	aaccgggaag	cggccgacag	atagtacatt	cagaactgga
		18001	accasaceta	greagracgr	tgaaccgggt	ctacatggta	gactaatgga	tgttgttgac
		18061	aggaageteg	greeggatte	cgagaaatgg	cttcaggctc	gagatatttc	gccatgcagc
30		10101	agtattagtg	aatgeettgt	ttcactgctt	agacttgggt	tgtcttgctc	tcaggaattg
50		19191	ctctcgagta	gaatgcaagc	cggagatgtc	atcaatgaac	tgcgtgccat	caaagagtcc
		19241	attactacca	catceggeat	gtgaagatgt	tggagtattt	cgttgtaatg	tgatgtgtct
		18301	cactageaccc	tractactg	atttcattct	gccgtggtat	ttagttattt	acaagagagt
		10301	caccgaaggg	tgagtgtgtg	actgcttggc	tgtagctatt	tcctgatctg	cccatcagat
35		10301	catguatetg	ttetattgtt	gtatttctca	gaataaccac	acacctaagt	acacaacact
33		10421	gracerge	gatttcaata	ttgatgcata	tatacccatg	ctatatgcta	gaattatata
		10541	Cadadatttt	gagatgtctg	aagttaacaa	tcaatcagga	agcgattcac	accaaaccgc
		10541	gaaaccgacc	taatcagcta	atctaattgt	acatgctgcc	tttgcatgac	agtgcgatat
		10661	caaactagee	cagecetttt	tagcaaagga	ttggagggtt	aatgttctag	agaaaag g at
40		10001	gettgttagg	ttctctctc	tctctcggtt	ctcttgttag	attatggaac	caattgattt
40		10701	cccccgaac	caatcgattt	cgccaccgtc	gccaccaggt	tccaaatcga	tattccggcg
		10701	agatgccgtt	acagcgtttt	atagacgcaa	ctcacgccta	gactttcttc	tcggtacaga
		10001	acggccaagc	ccaagacatt	ccacggccca	tttaggcccc	ttgtatttag	tgttgcttt
		18901	actaatgcgc	ttctcgcttg	ccttggcata	atctggaact	ccgccttcga	tctgtagccc
45		18961	gtcttcttcc	ttgtcgtcct	tgaggttctc	agtcgcagca	cccagcaccc	taaacagatg
43		19021	cctttggtta	ggaaacatgg	gtggcagcaa	cctttccatg	ttggaatatc	tcgaaatctc
		19081	ctacacagat	ttattttgct	aggtgaaata	ccttctcacc	ttggtaatta	acatttcaaa
		19141	tttgtgccac	cttaatctca	gtggcacata	tatgtacaca	atagatatct	cttggttagc
		19201	tcatcaacat	ttgcttgaat	atctcgacat	gacttttata	aatctaaggg	tacgttcagt
50		19261	catctccgac	acgcaaaacg	aagcaccatt	cgcgcatgat	taatcaaata	ttagctaaaa
50		19321	aattataaaa	tggattaata	tatttttaa	aagccacgct	cctataatat	tttttaaaaa
		19381	atacatagtt	taacagtttg	aaaagcgtgt	cgtacggaaa	acgggagagg	tgaagttggc
		19441	aaagtagact	ttagaacaca	gcctaagtat	ggcagttcat	tggcctcaag	ttttcaacat
		19501	gattccatct	ttggaggccc	tccttgtttc	ctgcagctca	cttccaggct	cagcccagcc
		19561	gctgaacaca	actaaacttc	acaaaacttg	tagtgcttca	tgtttcaagg	aatgatgact
55		19621	ttgtcaattc	aatggtacc			. 5	
	//							

SEQ ID NO:7

translation="MISLPLLLFVLLFSALLLCPSSSDDDGDAAGDELALLSFKSSLL 5 YQGGQSLASWNTSGHGQHCTWVGVVCGRRRRRHPHRVVKLLLRSSNLSGIISPSLGNL SFLRELDLGDNYLSGEIPPELSRLSRLQLLELSDNSIQGSIPAAIGACTKLTSLDLSH NQLRGMIPREIGASLKHLSNLYLYKNGLSGEIPSALGNLTSLQEFDLSFNRLSGAIPS 10 SLGQLSSLLTMNLGQNNLSGMIPNSIWNLSSLRAFSVRENKLGGMIPTNAFKTLHLLE VIDMGTNRFHGKIPASVANASHLTVIQIYGNLFSGIITSGFGRLRNLTELYLWRNLFQ 15 TREQDDWGFISDLTNCSKLQTLNLGENNLGGVLPNSFSNLSTSLSFLALELNKITGSI PKDIGNLIGLQHLYLCNNNFRGSLPSSLGRLKNLGILLAYENNLSGSIPLAIGNLTEL NILLLGTNKFSGWIPYTLSNLTNLLSLGLSTNNLSGPIPSELFNIQTLSIMINVSKNN 20 LEGSIPQEIGHLKNLVEFHAESNRLSGKIPNTLGDCQLLRYLYLQNNLLSGSIPSALG **QLKGLETLDLSSNNLSGQIPTSLADITMLHSLNLSFNSFVGEVPTIGAFAAASGISIQ** 25 GNAKLCGGIPDLHLPRCCPLLENRKHFPVLPISVSLAAALAILSSLYLLITWHKRTKK GAPSRTSMKGHPLVSYSQLVKATDGFAPTNLLGSGSFGSVYKGKLNIQDHVAVKVLKL ENPKALKSFTAECEALRNMRHRNLVKIVTICSSIDNRGNDFKAIVYDFMPNGSLEDWI 30 HPETNDQADQRHLNLHRRVTILLDVACALDYLHRHGPEPVVHCDIKSSNVLLDSDMVA HVGDFGLARILVDGTSLIQQSTSSMGFIGTIGYAAPEYGVGLIASTHGDIYSYGILVL 35 EIVTGKRPTDSTFRPDLGLRQYVELGLHGRVTDVVDTKLILDSENWLNSTNNSPCRRI TECIVWLLRLGLSCSQELPSSRTPTGDIIDELNAIKQNLSGLFPVCEGGSLEF" SEQ ID NO:8 40 DEFINITION Oryza sativa receptor-like protein gene, family member E, complete cds. ACCESSION **U72724** SOURCE rice. 45 ORGANISM Oryza sativa Eukaryotae; mitochondrial eukaryotes; Viridiplantae; Charophyta/Embryophyta group; Embryophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Oryza. 50 FEATURES Location/Qualifiers source 1..9424 /organism="Oryza sativa" /strain="IRBB21" /chromosome="11" 55 CDS 2819..5260 /note="Xa21 gene family member E" /codon_start=1 /product="receptor kinase-like protein"

SUBSTITUTE SHEET (RULE 26)

misc_feature

5211..8128

```
/note="'truncator', an insertion sequence with the
                           characteristics of a transposon"
 5
           misc feature
                           5484..5665
                           /note="'Snap-012', transposon-like sequence"
           intron
                           8357..8644
      ORIGIN
10
              1 aagetteact ttteecetat tttgttaaga teagttaatg gtgteaatte agecataaaa
             61 agacatgtat cccttttaca tttgcccaca aaaaaatttg ctgggtcaca ttagatatac
            121 ggacacacat ttgaagtatt aaacgtagac taatacaaag caaattatat aatccgcatg
            181 taaactgcga gacgaattta ttaagcctaa ttaatccgtc attagcaaat gtttactgta
            241 gcactacatt gttagatcat ggtgcaatta ggcttaaaag atttgtctcg taatttacac
15
            301 acaaactgtg taattagttt tttcaatatt taatacttcg tacatgtatt taaacgtttg
            361 atgtgacggg acaaaaaaa aattgccggt gggtctaaat ccaccacccc ccctctt
            421 agagttgata tacattttca cacaacttgc acggctgcaa aacttgacta aaaagattca
            481 tgacaaattt ctcgcaaata ttgagatagg aaaagagaga gagaaaatca ggtagcaacg
            541 gcatctcgct ggtctttgtg aacgggaaac tattttaaca gctcgagtgg acgtcaaccc
20
            601 gtttattgca tgtcatctaa atggttataa aaaaaattga aaaaatatga ataaggatag
            661 atcaatatgt aatatatcaa tccacaaaca tgcaagttaa aatttaactt ctacaagttg
            721 taataaaaat aagaaacaaa actcaaatta ctatatgtat atttacaatt aaatttgtta
            781 tttttgttat aacctgtaga agttaaattt gaacttgcat gtttgtggag tgatatatta
            841 catattgatc tatcttgtca attttttga aaatttttcg taaccatcta gttgacatgc
25
            901 aataaacgga tggacgtcca ctcgagtgct gctagggcgg atctatagta cgttgtcagg
            961 cgacaccgat gactcccggt aaaaacctat agcaaaactg cttattcata tgttataaca
           1021 ccatgatcta aacataatta gtatactatg ataccgttag acacgttatg acaccaatga
           1081 atcgattttc tggatccgcc acagtgcacg ggattgggat gggaacggcc gatggacgct
           1141 gtgtgttggg ctagctaggt ggggttggga gttgggacta ggtaggttat ttttgccagg
30
           1201 ggtacaatag ttcttttgca ttttgtaact cttcttttc tttcgagata atccattata
           1261 tgccattaac tttgtcgcac gtctacgatt tgccactgac tttgtcacgt tctacaatat
           1321 gccatcgact ttttcttaac ttctacgatt taccatcgcc gtccggttag ccacttttag
           1381 tactgtacaa atttgttgaa atgaccaaaa tacccctatg acaaaaatat ccaaaatttg
           1441 gataaaatta tcaaaatatt atattataaa cataagattg taaacatcca aaatttgacc
35
           1501 aaaaacttga aatatgatat ttcataattt ttatccaaat tttgaaacct tttctcccag
           1561 gggtattttg gtcattttga caaatttgta cagtactaac ggagactaac cggacggcga
           1621 tggtaaattg tagaagttaa gcaaaagtcg atggcatatc gtagaacatg ataaagtcag
           1681 tggcaaatca tagacgtgtg acaaagtcag tggtatataa tggtttctct cttttcttt
           1741 tctctcagaa atttgggccc agctaatttt tgccaatgtt gttgcaagaa ctcaacaagt
40
           1801 gtatcaacct ctcttctgta ttccatctgc cttctatggg tgattattta cacatttata
           1861 tacagggata tacaagagga aaatgcttcg gtgcccctat ccttacgatg tgcctatgtg
           1921 actggccggt gggccagcct tggtcctaat ggtaacttga tggaggacag gagagctgcc
           1981 cccggcatgg gggcatcgct gttcccgagg gaccttgcta ctacccgggt aaaggcatcc
           2041 ccgggtaata gcatgctccg cctagctgcc atcaatagtg tcagtgttag ttggggcgcg
45
           2101 tagtgcgcat ttattcgcgc ccctagcgcc tggttcttga cttgcttgcg cgagcacatc
           2161 gaggcataat tcactccggt tggcacatcg ggctttaggg gcccctcgga gctccgaagc
           2221 ccttaggtag cctccggagc tccccttccg gactccgggt acctttcagg cttcggagct
           2281 cggtcactag gtgtgtcacc ggagcccatg gcgctcgacc tcccggagct cttccggagc
           2341 cggtcggccg ccatccgaag cctgcttagg tcttgttcct ctcgccctca atgagatccg
50
           2401 attetetegg ateteeggag geeteeggag eaggggggee ageegeggae egacatggee
           2461 ttgattcacg gtcatctccc ggggaggatg gttctccgga gtgctgcagc ccttcggagg
           2521 ctagcgtccc ttgatccgga gatactcccc taacaccttc ttattcaacc aagctaggac
           2581 caatgaccat gaccettttg gatatcaaga tgaccacagg tttagatatc ctcttaatca
           2641 gccaaccgtt ttccagtcag aaaatcaagt gtgccaacaa gttgcggacc aagaatgttg
55
           2701 gtggttggtc aggctacatc actttttctt atatctgtct aagtccatga gctaaaccaa
           2761 aaacatetet egetettget gtettagett geaeegatat tetetgeate teggeaegat
           2821 gatatcactc ccattactgc tcttcgtcct cttcttctct gcgctgctgc tcttcccttc
           2881 gagcagtgac gacgacggtg gtggtgatgc tgccggcgac gaactcgcgc tgctctcttt
```

	2941	caagtcatco	ctgctatacc	: aggggggcca	gtcgctggca	tcttggaaca	cgtccggcca
	3001	tggccagcac	tgcacatggg	r tgggtgtcgt	gtgcggccgc	cggcacccac	acagggtggt
	3061	gaagetgegg	ctgcgctcct	ccaacctggc	cgggatcatc	tcgccgtcgc	tgggcaacct
_	3121	arcerrecte	aggacgctgc	aactcagcga	caaccacctq	tccqqcaaqa	taccccagga
5	3181	gctcagccgt	ctcagcaggo	tccagcaact	ggtactgaat	ttcaacagcc	tatcgggtga
	3241	gattccagct	gctttgggca	atctaaccag	tetetegatt	cttgagctga	Ctaacaatac
	3301	actgtccgga	gcaatccctt	catctctggg	caaactcaca	gateteacta	atcttgcact
	3361	ggctgaaaat	acqctqtctq	gttccatccc	atcatctttc	ggccaattgg	gcagattatc
	3421	tttccttagc	ttagccttta	acaatttaag	tagaacaatc	ccacatecta	tttggaacat
10	3481	ctcctctctc	accatattco	aagtcatatc	caacaaccta	actection	tgcctacaaa
	3541	tgcattcagt	aatcttccta	atctacaga	antatacata	tattacasac	agtttcatgg
	3601	tcgtatcccg	gcatcgatag	gteegeagga	ggeatacatg	cactacaacc	ttggtttaaa
	3661	CtCttttagc	catattatta	Canadacacacac	taacacccca	acacctacca	ttggtttaaa
	3721	gcttccagaa	actettteee	acceggagat	cygaayyacy	agaaatette	agagactaga
15	3781	gacaaattcc	tecastete	aagctgaaga	aacaaatgat	tggaaattca	tgacggcatt
•	3841	CCCtGattct	cttaacctt	aagaagtgga	actgggaggt	tgtaaatttg	gtggagtcct
	3901	aatttcacc	geetecaate	tttcctcttc	gcttgtatct	ctctccatta	gagataacaa
	3961	cacteeaggg	agettaceta	gagatatcgg	taatctcgtt	aatttacaat	atctttctct
	4021	tootatasa	teettgaeag	gatcccttcc	ctcttccttc	agcaagctta	aaaatttacg
20	4021	togicicace	gtagataaca	acaagttaat	tggttctctc	ccattgacca	tcggtaatct
-0	4001	cacacaacta	actaatatgg	aggtccaatt	taatgccttc	ggtggtacaa	taccaagcac
	4141	acttggaaac	ctgaccaagc	tgtttcaaat	aaatcttggc	cacaataact	ttatagggca
	4201	aatteecatt	gaaatattta	gcattcccgc	actctctgaa	attttqqatq	totoccataa
	4201	Laacttggag	ggatcaatac	caaaagaaat	agggaaactt	aaaaatatto	tcgaattcca
25	4321	rgergatteg	aacaaattat	cgggtgagaa	ccctagcacc	attootoaat	gccaacttct
23	4301	geageatett	ttcctgcaaa	acaatttctt	aaatqqtaqc	atcccaatag	CtCtgactca
	3447	gitgaaaggt	ctggacacac	ttgatctctc	aggtaacaat	ttqtcaggtc	agatacctat
	4301	greerraggg	gacatgcctc	ttctccactc	gctgaacctt	tcqttcaaca	gcttccacgg
	4201	Lydagtycca	accaatggtg	tttttqcaaa	tqcttctqaa	atttacatcc	aaggcaatgc
30	4021	Ccatatttgc	ggtggcatac	ctgaactaca	tcttccgacg	tottccttaa	aatcaagaaa
30	400T	yaaaaaqaaa	catcaaattc	tactattaat	aattattata	tatataatt	GG3 G3 G4 + GG
	4/41	cycetteeg	ttactctaca	tgcttctaac	ctgtcataaq	agaagaaga	aagaagtccc
		cycaacyaca	cccatgcaag	gccacccaat	gatcacttac	aaqcaqctqq	taaaagcaac
	4001	ggatggtttt	tcgtccagcc	atttgttggg	ttctggatct	tttqqctctq	tttacaaagg
25	4921	agaatttgat	agtcaagatg	gtgaaatcac	aagtettett	accataaaaa	tactaaagct
35	4301	ggaaactcca	aaggcactca	agagtttcac	ggccgaatgc	gaaacactgc	gaaatactcg
	2041	acaccggaat	cttgtcaaga	tagttacqat	ttqctcqaqc	atcgataaca	gagggaatga
	3101	rttcaaagca	attgtgtatg	acttcatqcc	caatqqcaqt	ctggaagatt	ggctacaccc
	2161	tyaaacaaat	gatcaagcag	agcaaaggca	cttgactctg	catcagagag	tgtcacgccg
40	3221	gaatttctat	ccaaaattcc	aaacgcttac	atgtgtgtga	accetectee	aggaatcagc
40	5261	cgagacacac	aataacaaat	tgataataga	gtacaattat	tactctaatt	aataagcgta
	2241	Laaaatgtca	ttacagaggt	agatagttcc	tctcaatcaa.	taaaqatcta	agcagcggaa
	5401	aaataagata	aacggcgcag	acggctccac	tccacaggca	gcttgaccaa	ggctacacct
	5461	aatcctccac	accatcagct	tcactqtaqa	actcttcctc	tgatgaatga	ttgcaaggtg
4.00	5521	agtatatgac	atactcagca	agccacgcag	caaatatqca	agtgcacagg	ataacaaagg
45	2281	atggcatagt	agggttttat	ttgcaaaaqc	agcatttagc	aaacatttga	gaatttaata
	5641	aaacagttaa	gtaattaaac	aatattaatc	caacqctata	Caacataccc	tattatataa
	5701	gcccaaccat	tctgaacaac	catcccggct	gcacagttct	atctccaaac	caccaatata
	5761	ccattccaaa	ccaqqaqcta	atcaaattat	taccaattaa	acceccatat	attatoatoa
	5821	gaagggtgag	actaatcaco	aaagatattg	ttagacccgc	ctataacccc	accaegacga
50	5881	attcgaataq	ttttactctg	atcagaggtg	taccactora	ccacaaccgc	acaaccccac
	5941	atcatgtcac	catgtgcctc	aataccacca	cactacetea	gaaagac	ataaccccac
	6001	cccttgcata	acacaaticca	ctgcagtgca	cetteetees	tostsstass	gryacaatac
	6061	acaaggcatg	gactccccag	cgaccctcgt	gggettatet	Cacaaccac	tanatatant
	6121	qccccaat	gaaccatgct	atataaaaga	taaaggaatt	ceyecactte.	ceageetgge
55	6181	ggcacggtta	atotttcaca	accgaaactc	atanaea	geceatgetg	gettatggtt
	6241	accatcasas	ccatgracta	acaacccacc	attatea===	tttaattgt	catgagcacg
	6301	ttaacaaarc	accattcacc	atcgtgaact	accaccaggt		aaataattaa
	6361	tcataagtra	toccastace	accgtgaact	ttatasass	Calcattaaa	taacagtgag
	- -		- Julia Lay L	aayetaatyt	ccctaagcag	ggctaagcaa	ccacacctaa

```
6421 tatctagttg aaccaatata taaagctcac tagtcaaatt ataataaccc aaggtatcaa
           6481 ggaataaagt aatcaataac aaaagggcta taacaaacaa taggttaatt ccacccaatg
           6541 acattcgaaa ataaatgcaa tatttgaata gaaacaatag ctttaaatag gatcaacatg
           6601 ctcaaagggt tgtatgggat ctgtgtgact tgccttgctg gccttggaac tcttcaaact
 5
           6661 cttctccggc gaaaacggac tctccggaaa cgacggaatc taaacaaaaa gaagcaaaac
           6721 caccaaaaca gcacataaac caactaaatc ggagctaaga tgaattagtt atgaattttt
           6781 gaagattaaa toggattaaa acacttaaat tgattttaat tgaattatga cgcaataatg
           6841 aattatttt gaaaaggaaa aggaggatta ttgcgtcagc gggctagggt ttcggtggac
           6901 cgggcacaca ggcgacggct cacgcgaacg gacggccgag atcgacttga tccaaaacgg
10
           6961 acggccgaga tcgaacggtc cacgaccggc tcacagcgaa cggccccgat gacgtcggcg
           7021 atgacgtcac caccggcggc ggcggctcgg cggctcgggc ttgcacgctc gccggcgaac
           7081 gacggcacgg cggcgcaat ggaaggcacc aacgggtaga gcgcgacgcg gcgaactcac
           7141 cggtgaccaa aagagcggcg gaagatcaat ggacggcgac ggcgacgagg aggaagcggc
           7201 ggcaaacttc gggtcgacgg tggcgacggt gctccggcgg tcttcggcgg cggcaaagga
15
           7261 geggacgaga acggeggega ettggegate acgaeggtgg eetteeegag egatgatgae
           7321 gaccgagacg gcggcgacgc acggctggag cgacggctac gacggcggcg ctaggttgca
           7381 cggcgctaga gctcttccgg cgacgagagg cgaaggcgaa ggtggcgacg ggtagaggag
           7441 acaccgggga accttttaaa ggggctcgca ggcgacggcg aaggcccacg gcggctggcg
           7501 acgagaagga aggtttaggg ttcggaggag ggagacgaat ccgattcgaa ctcgattcca
20
           7561 acgatttcca aaacgaatta gccgatgttt ccaaaagaga aaaggtagag gagatcccgg
           7621 agattgtttc ccctctatca attcggccgg aaacggaaag gatcgatcga atttggaagg
           7681 gaacggcggc ggcgcgaaac tagggtttcg ggcggcggcg gccggaggtt gacgacgacc
           7741 ctgacaggtt ggccccacct gtcagcggc ggacgcgcgc gcgcggcggc ggactgggcc
           7801 ggactgggcc gaggagagag agagcggttt tgggccgact ttcggcccaa agccaaaaga
25
           7861 gactttttaa aacctttttc aatttaaatt attcatgaaa tgtaattcca tttattaaaa
           7921 atacttcctt agctcaaata aatcccagaa aaatctagga attatagaat taagcaaagt
           7981 atttaatgaa attttatctg gccccatttt atattgtaat ttattaattt aaaattagat
           8041 cttctcttct aggcttttaa aataaattct aaaaattcca tttaaacaac aatttatata
           8101 ttttgaattt tcagggtgtg acagagagtg cccatactac gtgatgttgc atgtgcattg
30
           8161 gaccatcttc acttccatgg ccctgaccct attgtacact gtgatattaa atcaagcaat
           8221 gtgttgttag atgctgatat ggtagcccat gttggagact ttggacttgc aagaatactt
           8281 attgagggaa gctcattgat gcaacagtca acaagttcga tgggaatcag ggggacaatt
           8341 ggttacgcag caccaggtta atcctaaact gtttatgtct acctcctttc attgttttt
           8401 ttagatttgc tctggtccaa caaaaaatac ctaaagatac agatacttgt acctcacagt
35
           8461 actaaatagt tttcgatcat tgcattgtta gatccaacga tcaggaaacg atttggtacc
           8521 gtgaccgtga ggtatcggaa tctcgagata ttttttgttc gaccgtagca aatctatttt
           8581 tttgtttgtt ttcttctctt taatgtttta tgactatgaa ataattttta tttctggaaa
           8641 acagagtatg gtgtcgggaa cactgcctcg acacatggag atatttacag ttatggaatt
           8701 ctagtgttgg aaacagtaac cgggctgcgg ccggcagata gtacattcag acctggcttg
40
           8761 agcctccgtc agtacgttga accgggtcta catggtagac tgatggatgt tgttgacagg
           8821 cagettggtt tggetteega gacatggett caggetegag atgtttegee atgeageagt
           8881 attactgact gccttgtttc actgcttaga cttgggctgt cttgctctca ggaattgcca
           8941 tcgagtagaa cgcaagccgg agatgtcatc aatgaactgc gtgccatcac agcgtctctc
           9001 tcgatgtcat ccgacatgtg aagatgtgag acatgctgat gttatgtccg agtatttcgt
45
           9061 tgtaatgtaa tgtgaagggt gagtgtgtga ctgcttggtt gtaagctatt tcctgatctg
           9121 cccatcagat catgtatctg ttctattgtt gtatttctca gaacaactac acaccctaag
           9181 taggagtaca caatagtgta tttgtgtgat ttcaatattg atgcataccc atgctatgtg
           9241 ctaaaattat atactgaaat tttgagatgt ctgaagttaa cagtcaatcg gggagcgatt
           50
           9361 gacagtgtga tattaaatta gcccagccct ttttagcaaa cgatgggagg gtcaatgctc
           9421 taga
```

SEQ ID NO:9

55

/translation="MISLPLLLFVLFFSALLLFPSSSDDDGGGDAAGDELALLSFKSS

LLYQGGQSLASWNTSGHGQHCTWVGVVCGRRHPHRVVKLRLRSSNLAGIISPSLGNLS

	FLRTLQLSDN	HLSGKI PQELSRLSRLQQLVLNFNSLSGEI PAALGNLTSLSVLELTNN
	TLSGAIPSSL	GKLTGLTDLALAENTLSGSIPSSFGQLRRLSFLSLAFNNLSGAIPDPI
5	WNISSLTIFE	VISNKLSGTLPTNAFSNLPSLQEVYMYYNQFHGRIPASIGNASNISIF
	TIGLNSFSGV	VPPEIGRMRNLQRLELPETLSEAEETNDWKFMTALTNCSNLQEVELGG
10	CKFGGVLPDS	VSNLSSSLVSLSIRDNKISGSLPRDIGNLVNLQYLSLANNSLTGSLPS
10	SFSKLKNLRRI	LTVDNNKLIGSLPLTIGNLTQLTNMEVQFNAFGGTIPSTLGNLTKLFQ
•	INLGHNNFIG	QIPIEIFSIPALSEILDVSHNNLEGSIPKEIGKLKNIVEFHADSNKLS
15	GENPSTIGEC	QLLQHLFLQNNFLNGSIPIALTQLKGLDTLDLSGNNLSGQIPMSLGDM
	PLLHSLNLSFN	SFHGEVPTNGVFANASEIYIQGNAHICGGIPELHLPTCSLKSRKKKK
20	HQILLLVVVIC	CLVSTLAVFSLLYMLLTCHKRRKKEVPATTSMQGHPMITYKQLVKATD
20	GFSSSHLLGS	SFGSVYKGEFDSQDGEITSLVAVRVLKLETPKALKSFTAECETLRNT
	RHRNLVKIVTI	CSSIDNRGNDFKAIVYDFMPNGSLEDWLHPETNDQAEQRHLTLHQRV
25		SRRNFYPKFQTLTCV"
	SEQ ID NO	:10
30	DEFINITION	A2, pseudogene sequence.
	ACCESSION SOURCE	U72727 long-staminate rice.
	ORGANISM	
35		Eukaryotae; mitochondrial eukaryotes; Viridiplantae;
		Charophyta/Embryophyta group; Embryophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Oryza.
40	FEATURES	Location/Qualifiers
40	source	2113310
		/organism="Oryza longistaminata" /strain="IRBB21"
		/chromosome="11"
45	CDS	/map="11q, RG103"
	CDS	<pre>21515855 /note="family member A2; receptor kinase-like protein</pre>
		truncated by two mutations"
		/codon_start=1
50	mutation	/pseudo
	macacı	/note="mutation found when compared to family member
		Al, GenBank Accession Number U72725"
	•	/citation=[1]
55	mutatio	/replace="acc" on 43554356
_ -	maca C I	/note="mutation found when compared to family member
		Al, GenBank Accession Number U72725" /citation={1}
	•	· · · · · · · · · · · · · · · · · · ·

SUBSTITUTE SHEET (RULE 26)

```
/replace="ac"
            3' flanking
                            5249..5940
            misc_feature
                            5453..5697
                            /note="Tourist-Ol2, transposon-like element"
 5
       BASE COUNT
                      1570 a
                               1200 c
                                       1188 g
                                                1982 t
       ORIGIN
               1 totagaaatt gaattttaaa attgaatata atagagaaat acaactgaac ataaatattt
              61 tgtcattttc attccattta catgttttta aatctaaatt tacagtgcat tttgtatgta
             121 attotaatac aaatttactg taatttgtat ttttagtoat tttttcagtt totaaaagta
10
             181 cagtgcactt cagtgacctc cttagtaagc tatgggggga aaatggatat gcacatctga
             241 totatotatg aaacatagaa gaaatattoa toaccatgta otaottttta tgaatgtttg
             301 ttggccagat aggatctgaa agatttctag tacagggttg tttcatgtat tgtttcagat
             361 aggatetgaa ataaceaetg tacagggttg tttettgtat ggttteegea tatttaaaet
             421 tttggttgca gatgtatggc taatcaatta tgcagtttta tggcaaacaa aaagggtggc
15
             481 aatagagtat atttcatcat gtggtatatg attgttttt gttgattaga ccagaatagt
             541 tgtgtgtatt tgtttttttg ttctgagaac tattgtctgt tctttatttt cattcagaca
             601 atatgaatgc tgttttgtac agattctttt tgttgtgatg ttcagacaat atgaatcagt
             661 ggctgtttgt ctgtttttca ttcaaaattt tcagagtgca caagtgtgtg ttgttaatcc
            721 agaaattttc agaggattgc ttgttctgtt ctgacctgaa ctagtaaaaa aacaaattca
20
            781 gatttggttc aatattcaga ttcttgtttt tgtaatcatt gctgtgcaga atctgtttgt
             841 actcctggtc atttagattt ttagtctgtg tgtttgttgt tcactgagta tttccattgg
             901 gggcgagagt ctcttttctt ctatgctttt atacagaggt tccaaatcaa ttgcagtgtt
             961 gtgcaatatt cagtgttgtt cagatctatg tatatagctt ctgttctatt ataatgcctg
            1021 cagtaatctg ctcatgtaaa taacagaaac cctgtgggta ttttgcatat ttaggtacaa
25
            1081 aattcaaagt ttgcagaaac aaatctgttg agcattatgt cttctaaacc actaaacagt
            1141 ttttttctg tgctgatgtt ttttttctgc cctttatgtg aatgtttact tctctctaat
           1201 ctctgtttgg ttttaattca tcagaggagc tattttgcaa gaataaatgt caaagaacaa
           1261 catgaagaaa aggaagactc aaaaatatgc tgcgggtcac aggtaccttt tgatttgtga
           1321 ttttcttgaa ttttgatccc caatatttct tgttttgagt ctgatctgga agaatcttgc
30
           1381 acttttgatc cttctccaat tctgagtttc ttttccttca tctccatctt tttccccagt
           1441 tttctttctt ctcttcgatc gatctgagtt tacctcttct tctctgtgtt tgtctggaag
           1501 aattattttg cctgttttga ttactcgtca cgtgaatatg tcagcgatct tcttgcattg
           1561 caagttttgt tgtcacgtgg gtttgctccc ttctttttgg gcttcatttg ggcttttttt
           1621 tgagctcata atctgatttt ttttttcttt tcttgtttac taattgagcc taagttgggc
35
           1681 cctgaaagat tcgttttta gttctgttgg tgtcaaaaat ctgggctgtt ggatcaaaat
           1741 ctgttggctg aaaaattcga cagatttgga actctatttt ctgttgactg aaagattagt
           1801 tttttagttc tgctggagtc aaagtctggg ctgttggatc aaaatctgtt ggctgaaaaa
           1861 ttcgacagat ttggaactct attttctgtt gactgaaaga ttagtttttt agttctgctg
           1921 gagtcaaagt ctgggctgtt ggatcaaaat ctgttggctg aaaaattcaa cagattagga
40
           1981 actctatttt ctgtcgactg aacagtagac agagttaagc agaaacgaat atcacaattg
           2041 ctatgttcat tgtcttgcgt gagcgctttt tcttctatct gtctgtctag tgcatgagct
           2101 aaaccaaaca tetetegete ttgeaccaat attetetgea tetetgeaca atgatateae
           2161 tecegttatt getettegte etgttgttet etgegetget getetgeest tegageageg
           2221 atgatggtga tgctgccggc gacgaacttg cgctgctctc tttcaagtca tccctgcgat
45
           2281 accaggggg cttgtcgctg gcatcttgga acacgtccgg ccacggccag cagcactgca
           2341 catgggtggg tgttgtgtgc ggccgccggc acccacacag ggtggtcgag ctgcggctga
           2401 actegteega cetgteeggg atcatetege egtegetggg caacetgtee tteeteagga
           2461 cgctggacct cagcgacaac cacctgtccg gcaagatacc ctaggaactc agcagtctca
           2521 gcaggeteca acaactggta etgaatttea acageetate gggtgagatt ecagetgett
50
           2581 tgggcaatct aaccagtctc tcggttcttg agctgactaa caatacactg tctggagcaa
           2641 tecetteate tetgggeaaa eteaceagee teactgatet tgeactgget gaaaatatge
           2761 cctttaacaa tttaagtgga gcgatcccag atcctatttg gaacatctcc tctctcacca
           2821 tattcgaagt catatccaac aagctaagtg gtacactgcc tacaaatgca ttcagtaatc
55
           2881 ttcctagtct gcaggaggta tacatgtatt acaaccagtt tcatggtcgt atcccggcat
           2941 cgataggtaa tgcttccaac atctcaatat ttaccattgg ttttaactct tttagcggtg
           3001 ttgttccacc ggagattgga agcatgagaa atcttcagag actagagctt ccagaaactc
           3061 ttttggaagc taaagaaaca aatgattgga aattcatgac ggcattgaca aattgctcca
```

```
3121 atctacaaga agtggaactg ggaggttgta aatttggtgg agtcctccct gattctgttt
            3181 ccaatctttc ctcttcgctt gtatctctct ccattagaga taacaaaatt tcagggagct
            3241 tacctagaga tatcggtaat ctcgttaatt tacaatatct ttctctcgct aataactcct
           3301 tgacaggate cettecetet teetteagea agettaaaaa tttacgtegt etcactgtag
 5
            3361 ataacaacaa gttaattggt tctctcccat tgactatcgg taatcttaca caactaacta
           3421 atatggaggt ccaatttaat gccttcggtg gtacaatacc aagcacactt ggaaacctga
           3481 ccaagetgtt tcaaataaat ettggccaca ataactttat agggcaaatt cccattgaaa
            3541 tatttagcat tecegeaete tetgaaattt tggatgtgte eeataataae ttggagggat
           3601 caataccaaa agaaataggg aaacttaaaa atattgtcga attccatgct gattcgaaaa
10
           3661 aattateggg tgagateett ageaceattg gtgaatgeea aettetgeag catetttee
           3721 tgcaaaacaa tttcttaaat ggtagcatcc caatagctct gactcagttg aaaggtctgg
            3781 acacacttga teteteaggt aacaatttgt caggteagat acetatgtee ttaggggaca
            3841 tgcctctgct ccactcgctg aacctttcgt tcaacagctt ccacggtgaa gtgccaacca
           3901 atggtgtttt tgcaaatgct tctgaaattt acatccaagg caatgccctt atttgcggtg
15
           3961 gcatacetga actacatett eegaegtgtt eettaaaate aagaaagaaa aagaaacate
           4021 aaattetget gttagtggtt gttatetgte tegtttegae aettgeegta ttttegetae
           4081 tctacatgct tctaacctgt cataagagaa taaagaaaga agtccctaca acgacatcca
           4141 tgcaaggcca cccaatgatc acttataagc agctggtaaa agcaacagat ggtttttcgt
           4201 caaccaattt ggtgggctct ggatcgtttg gctctgttta cagaggagaa tttgatagcc
20
           4261 aagatggtga aagcccaaga cttgtcgccg tgaaggtact aaagctggaa actccaaagg
           4321 cactcaagag tttcacggcc gaatgcgaaa cactgtgaaa cactcgacac cgcaatcttg
           4381 tcaagatagt tacaatttgc tcgagcatcg ataacagagg gaatgatttc aaagcaattg
           4441 tgtatgactt catgcccaat ggcaatctgg aagattggct acaccctgaa acaaatgatc
           4501 aagcagagca aaggcacttg actctgcatc agagagtgac catactactt gatgttgcct
25
           4561 gtgcattgca ctatcttcac cgccatggcc ctgaacctgt tgtacactgc gatattaaat
           4621 caagcaatgt gctgttagat gctgatatgg tagcccatgt tggagacttt ggacttgcaa
           4681 gagtacttat tgagggaagc tcattgatgc aacagtcaac aagttcgatg gggataaggg
           4741 gaacaattgg ttacgcagca ccaggttaag tctaaactgt ttatgtctac ttcctataat
           4801 cttctcttt ttgaggtttc ttctctctag tgttttatga ctatgaaata ttttttgcta
30
           4861 ctggaaaaca aagtatggtg tcgggaacac tgcctcgaca cctggagata tttacagtta
           4921 tggaattcta gtgttgaaaa cagtaaccgg gaagcggccg acagatagta cattcagaac
           4981 tggattgage etcegtcagt aegttgaace gggtetacat ggtagaetaa tggatgttgt
           5041 tgacaggaag cttggtttgg attccgagaa atggcttcag gctcgagatg tttcgccatg
           5101 cagcagtatt agtgaatgcc ttgtttcact gcttagactt gggttgtctt gctctcagga
35
           5161 attgccatcg agtagaatgc aagccggaga tgtcatcaat gaactgcgtg ccatcaaaga
           5221 gtccctctcg atgtcatccg gcatgtgaag atgttggagt atttcattgt aatgtgatgt
           5281 gtctatcagt accettcaca actgatttca ttctgccgtg gtatttagtt atttacaaga
           5341 gagtcactga agggtgagtg tgtgactgct tggttgtagc tatttcctga tctgcccatc
           5401 agatcatgta tctgttctat tgttgtattt ctcataataa ccacacacct aagggagggt
40
           5461 teggeagagg agattgtgag ttagttigtt ttgttteea egegeaeget teeegaaeta
           5521 ctaaacggtg tgttttttgc aaaaaaattt ctatatgaaa gttgctttaa aaaatcatat
           5581 taatccattt ttgaagttta aaatagttta tactcaatta atcatgtact aatggctcac
           5641 ctcgttttgt gtatcttccc aatcttctct tttcccctcc tctcaaactc accctaagta
           5701 cacaacactg tatttgtgtg atttcaatat tgatgcatat atacccatgc tatatgctag
45
           5761 aattatac aaaaattttg agatgtctga agttaacaat caatcaggga gcgattcaca
           5821 ccaaaccgcg aaatcgacct aatgagctaa tctaattgta caggctgcct ttgcatgaca
           5881 gtgcgatatt aaataagccc agcccttttt agcaaaggat gggagggtca atgttctaga
      //
50
      SEQ ID NO:11
      ORGANISM Oryza longistaminata
                  Eukaryotae; mitochondrial eukaryotes; Viridiplantae;
                  Charophyta/Embryophyta group; Embryophyta; Magnoliophyta;
                  Liliopsida; Poales; Poaceae; Oryza.
55
      FEATURES
                           Location/Qualifiers
           source
                           1..7204
                           /organism="Oryza longistaminata"
                           /strain="IRBB21"
```

```
/chromosome="11"
                             /map="11q, RG103"
            CDS
                             join(1683..1758,1771..2186,2347..4352,5147..5547)
                             /gene="Xa21"
  5
                             /note="disease resistance gene Xa21 family member F"
                             /codon start=1
                            /exception="Author-given protein sequence differs from
       the
                            conceptual translation for reasons explained in
10
       citation. "
                            /pseudo
                            /product="receptor-like kinase protein"
            flanking_region 1..1682, 5548..7204
            misc feature
                            233..384
15
                            /note="Gaigin-Oll, transposon-like element"
                            /note="Gaigin-Ol2, transposon-like element"
                            1080..1239
                            /note="Tourist-Oll, transposon-like element"
20
                            6201..6583
                            /note="Crackle, transposon-like element"
                            6750..6956
                            /note="Ds-rice3, transposon-like element"
            repeat_region
                            7053..>7204
25
                            /note="number of AT repeats has not been determined; 3'
                            flanking sequence found in GenBank Accession Number
                            U72729"
                            /rpt_family="microsatellite"
                            /rpt type=tandem
30
                            /rpt_unit=7053..7054
       BASE COUNT
                      2124 a
                               1455 c
                                        1309 с
                                                 2316 t
       ORIGIN
               1 aagettteta aattatttaa etetaagtet gttattatee eeaagtaeat eateateata
              61 cataatattt catattcacg acatccttaa gctagatgct tttggccatt ctcttatctt
35
             121 tttaaagaaa tteteteeca attaagatga gagtgtette tagcaapttg ccagttttta
             181 caatgtettt gagteetear acatttteat gatgttacca ataaattacg aacgeegtgt
             241 ttagttctaa agtttttctt caaacttaca acttttcaat cgcatcaaaa ctttctccta
            301 cacacacaa ctttcaactt ttccatcaca tcgttccaat ttcaaccaaa cttccaattt
            361 tggtatgaac taaacacage egaaaacaaa atttgtgtgt tatggeeetg tttagattet
40
            421 aacttttcca ttacatcaaa ctttcctaca tacacgaact ttcaactttt ccgtcacatc
            481 gtttcaattt tttaaaactt ccaattttaa cgtggaacta aacacaacct atataacgaa
            541 atttgtcaaa aacttaatgg tgaaagtcac acctcaaagg aagggcgcgc ctctagtcaa
            601 gaacatcaat taaaaaggta cacaggttgt actagcttgt tcatgtttaa tcttgcgtct
            661 gcgagacget aaatccatge caaacaaaag tgettetata gagataatca taagaatatg
45
            721 gtttgggacc atatccaact gctcagaaga atctcgttcg gaggtgaagg ttaagatgtt
            781 caccteteca cacataaaac aaagegatet ttttegeata attaattaag cattagataa
            841 aataaactta aaaaataaat caatatgatt tttttagaaa aaaaatatat acactaagta
            901 taagcattgt caaggaggaa gaaacacaca cttccatata gagagataga aacatagcta
            961 taggtagtgt cactgagtat ttttcatcac gcatatgcat ataaaattag ggggtgttta
50
           1021 catccatagg tgtaaagttt tggcatgtta tatcgagtat tacgtagaat gtcgtattag
           1081 gtgttcgggc actaataaaa aaataattac agaatccgtt agtaaaccgc gagataaatt
           1141 tattaagest aattaateea teattaacaa atgtttaeeg tageaceaca ttgtcaaate
           1201 atggagcaat taggtttaaa agattegtet egeaaattag teataatetg tgeaattagt
           1261 tatttttaga ctatatttaa gacttcgtac aggtgttcaa acgttcgatg tgacatggtg
55
           1321 caaaatttta gggtgtcatc tagacactcc cttaattaga aagttaggaa gaggcggtaa
           1381 agaacgcagc atgactgaaa ctttgaaaat ttgataaggt acaccaactg gagtatettt
           1441 tattttcatt gaagactttg accagaagag cttgacccgt ttttcttgga gtagccagta
           1501 atgtttcatt cttttccttt tgctgggact tcttttatt ttttttgaca ggagccattt
```

	156	1 gttgggact:	gggatccctt	: tactgttata	ggaccagtg	ttgaatccaa	acactgcatt
		- 9	· gullallyla	Lucacacteet	- CCCCatacat		
				Ctactactat	. Egateggee	. 200020000	
5			- cyclyclyg	. accadtacao	acadeateac		· ·
,			· yeeateece	l Ctacaccado	gagacttata	• actaaastat	
			, ccaucactor	: acatoootoo			
			, yytyytuaao	CEGCEGCEAC			
			- Caacccucce	EECCECAGGG	2004002004		
. 10			. accygayctc	auccutetea			
10			ayyyaycatc	CCCGCGGGCCA			
			Caaccaacca	agattggtgc	C200++0222		
			ggeecuteau	uadadattcc	21010011		
		,	· · · · · · · · · · · · · · · · · · ·	acadarrare	2002000000		
			actuatta	LUAALLTOOM		C+ 3 2 C+ C C C	A L ·
15	2401	ttctatctgg	aacctttcgt	Ctctaagage	atttaatat	craagtggga	agctaggtgg
	2461	tatgatccct	acaaatocat	tcaaaaccct	Tracators	agegaaaaca	agctaggtgg atatggacac
	2521	taaccgtttc	Catoocaaaa	tecctacete	ccaccccccc	gaggtgatag	atatggacac
	. 2581	tcagattgat	ggcaacttgt	teactgees	agetgetaat	gcttctcatc	tgacacggct ggttaagaaa
	2641	tctcacaaca	Ctoratctct	ccagrygaar	cateaceteg	gggtttggaa agagaacaag	ggttaagaaa
20	2701	gttcatttct	Gacctaacaa	ggagaaattt	gtttcaaact	agagaacaag	aagattgggg
	2761	cctagagaga	Otto::cca	attgetecaa	attacaaaca	ttggacttgg	gagaaaataa
	2821	acttoattta	33+3363+63	accognities	caatctttcc	acttcgctta	gttttcttgc
	2881	acaacatoto	tatototoo	caggaagcat	tccaaaggat	attggcaatc	ttattggctt
	2941	Octtagaaac	ttagggatta	acaacaattt	cagagggtca	cttccatcat	cgttgggcag
25	3001	ggccatagga	aatettaete	tagtcgccta	cgaaaacaac	ttgagcggtt	cgatcccatt
				adcccaarar	C++ 2 C+ C C+ C	~~~~~~~	
			- acacactt	Caaacctcac	222Ctta++	++	A-A-A
			GGCCCGGLAC	CCAOFGAAFF	277722424		
			addadad	EUGAGGGAFC	221266266		_ 4 _ 4 _
30				darcoaarac	277270200		
		J	~~~~acuut	decerate	~~~~~~	**~*	
			ggccaqccaa	aduutetea	220-00	C+C+C	
		JJ		Laucanarar	~ 3 ~ 3 ~ ~ ~ *		
			geggggggg	LUCCAACCAT	~ ~~~~~~~~~	~~~~	
35	_		aacuccaaac	LCEGEGGEAA	22226666		
	_		yeyeacadaa.	adcattttcc	200404266		_ 4 . 4 .
			u c c c c c c c c c	CACECTACTE			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	aadaac.	CCATGAAAAA			
			444446	COCCOACCAA	T		
40			-auctaata	ECCAADATE.	rattanaaa		
			CCCaauaull	LUACTOCCOS	317171		- .
	_		aayatautta	CAREEEGG	Caccattcat	3 2 2 2 2 2 2 2 2 2	
		~ 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Cacuacteca	ECCCCAACCC	Cactotooo		
	_		4Cadaccada	OCCACTECAL	TC+CC2+CC2		4 4
45		33	4Caccudact	ALCELCACCO.	CC3+CCC-+		
			aucaatutuc	TOTTAGATEC	+ ~ ~ + ~ + ~ - + ~		
		3 3-	acacttqttq	atoggacete	attrataces	C2646566	
			acaaccudet	atocaccacc	acct caces		A-444
			CLAGLUCEAE	atgaaataat	t * t t a c c t c t	22422224	
50			accuaaccaa	LEABATTOCA	~~~~ ~		
			Latauctant	T.Catacacc+	202424444		
			CCAGGLCAAA	E E A E O O O E O E	+++~+~~+		
			uccaaa	AUCAAATTTA .	TC33+TC+36		
			auttattata	ACTTTTTATE	+~		
55			CCCCAALLEC	CACATOOSOO	+~~+~~~~~ <u>~</u>		
<i>JJ</i>		3	CCUCCUCALA	Lactaraarc	20121011		
	4981	atttatgttt	ctttatataa	taaaaattaa	tecaacettt	aaatatgaaa acatctacca	tttatecaac
					•		gcccayc

```
5041 catcettgtt atttgtgata tttaacaegt aattttacat aattatacat ecaagttett
             5101 tttatttaac actggaaatt tgaaatcgta tttcctactc aaacagagta tggcgtcggg
             5161 cacattgcat caacatgg agatatttac agctatggaa ttctagtgct ggaaatagta
             5221 accgggaage ggccaactga cagtacatte agaccegatt tgggcctccg teagtacgtt
  5
             5281 gaactgggcc tacatggcag agtgacggat gttgttgaca cgaagctcat tttggattct
             5341 gagaactggc tgaacagtac aaataattct ccatgtagaa gaatcactga atgcattgtt
             5401 tegetgetta gaettgggtt gtettgetet caggatttge cattgagtag aacgecaace
             5461 ggagatatea tegaegaact gaatgeeate aaacagaate teteeggatt gttteeagtg
             5521 tgtgaaggtg cgagcetega attetgatgt tatgtettgt aatgttttat tgccactagt
 10
             5581 cttcagattg gaatgetett cegateagae ttetteagtg gtatetacea cacgateact
             5641 aaagtcatcg tggctatttc ctgatccagc atatctgatc atgcatgttc tgtgttttat
             5701 acctgtattt tactctgaat tgccacacct caaccetgee tetgtttgtt tggcatacaa
             5761 aagatagtga tgagtatatt gtttcagggg cttcctagtt ggcgtgtgtg cttaccggca
            5821 cgcacgcage ccgagggtgg gtttctttt ttttccattg ttattccgtt gctttttcc
 15
            5881 accaeggtag attititt tetggattte cattitite gttgttttte tetategett
            5941 atgctggcgg attttttcc gtggtttttt tttcaagacg agtatatcta atgtaactaa
            6001 catgttactt ttagataacg atggttatta agataagatt tttttctgga agattttgt
            6061 aagtaaatgg taaaaaatat ggaaatggaa acggaaatag ttttgctgtt ataccgatcg
            6121 tttccatatt taccgtattc ttatagaaat taccgtttct tataatatgg taattaccgt
 20
            6181 atttctaaat atgrtgatat cgattttgct atatattgcg acaaattttc tcccaaaaat
            6241 ttgatagatg taattatagt acaatcgtag tgtaattaca ctgtaactat agtgtaactt
            6301 gtatgtaact ttcaaaaats tstctgtaat atgttatttt ggtaaaatag aggttgtggg
            6361 aacaaatcet tacacatate tetegeeetet gattttettt etteeteace aaaacaaaac
            6421 ttataataga tttaacaatt caaaattacg tgaaacttat acaagttaca ccgtagttac
25
            6481 atgcaagtta cagtgtaatt acactacgat tgtactataa ttacatctgt caaattttta
            6541 ggagaaaatt tgtcgacaaa tatataggtg atcccgttga tatttatagg gtatgtctct
            6601 acttgactca cagtttagag attgattgac tatttaatca aatccctaac ttgattgcac
            6661 ggctaaaatg gagttgattt ctaatttata tagtatagat tgaatttatt cgtacatata
            6721 acatacttat gtaaagttaa atatatgttt totatagttt aatgtttotg tatttgttac
30
            6781 cggttttcga tctataccga ccatgtttcc ttcagtatta ttccgtttcc ggttttctga
            6841 tatttctgat atcgttttcg tttccgagtt taccgttttc gatttcattt ccgagaaaaa
            6901 tatgattatg gaaatggttg aggctgtttt ccgatcgttt ccgaccgttt tcttccctac
            6961 ccgtagcaat aatataaa attttatctc taatctttct ctctctcata tcaacgaata
            7021 ttcgctaaga gactgctatt aacaaggctt ttatatatat atatgtacat atatatatat
35
            7081 atatatat atatatagac acacacat acatacatac atacatacat atatatacat
            7141 acatatacat atatatat gtatacatac atatacatat atatatatgt atacatacat
            7201 atac
       SEQ ID NO:12
40
       DEFINITION Oryza longistaminata receptor kinase-like protein, 3' flanking
       sequence of
                   family member F.
      ACCESSION
                   U72729
       SOURCE
                   long-staminate rice.
45
        ORGANISM
                  Oryza longistaminata
                  Eukaryotae; mitochondrial eukaryotes; Viridiplantae;
                   Charophyta/Embryophyta group; Embryophyta; Magnoliophyta;
                  Liliopsida; Poales; Poaceae; Oryza.
      FEATURES
                           Location/Qualifiers
50
           source
                           1..1332
                           /organism="Oryza longistaminata"
                           /strain="IRBB21"
                           /chromosome="11"
                           /map="11q, RG103"
55
           gene
                           join(U72728:1683..7204,1..1332)
                           /gene="Xa21"
           misc_feature
                           1..1332
                           /gene="Xa21"
```

/note="sequence 3' of the microsatellite sequence

224 t

present

BASE COUNT

```
in GenBank Accession Number U72728"
             380 g
```

495 c

J	ORIGIN						
	1	gccgtcgatc	aatcatttgg	aaacggccca	catcttttcc	atctatatgc	attcatgasa
	61	tacatggtat	atcccatcga	toggacatca	cctattagcg	cgtacgccat	cotcotoato
	121	aacctagcta	gggcaaacgt	cctccgatcq	ccaccatcac	caatgaacaa	actactacaa
10	181	cctctcggtg	gcctgaggtt	gctcaaccga	gaagaacatc	cgttccgatg	cttctcctcc
10	241	tccatcgatc	tcgtcttccc	aggtcgccgc	COCCOCCACA	tggcaaccac	Catalogge
	301	ccgccgccga	cggaatcccg	ctggttcgac	aacaacaacc	gcgactgctg	accepacete
	361	ggtgatgctg	gaacgttggg	gctgcctcag	ggggtccaca	ccggcgaacg	teaggeeee
	421	cgacaacacc	gccgcggagt	CCCCCacctc	ccacaaccaa	cccctccgcg	togooglega
	481	ccgcgcgtcg	ccqccqqcqa.	teteetteat	ctacttcast	cgcggggatg	cegeeetege
15	541	categegget	cacqqcqact	ctatectett	ccgcatcage	tggaacgact	atggetaegt
	601	catqqccqcc	gccggcaagc	caccatcact	ascastasts	cccgtctgcg	acttcgtcta
	661	gaacgagcgc	tactagates	acssacca	tttaaaaaa	cocycatgeg	acatececat
	721	ggtgttcgac	cagcaggaca	CCCCatact	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	agcttccgca	ccacgggccg
	781	tctagtagca	carctccara	teggeaces	gegeeteege	ggcggcgagg	aggcgccgcc
20	841	actecacee	adcescade	accessate	gacaccarre	gacacggccg	agctctgcgt
	901	Ceacaacaac	adcaacaase	acggcgagtg	ggageteaag	acggcggtgc	ccatcgtcca
	961	etcccatca	ageageage	gacgecatgg	cctggagatg	tggcaggaga	caacgtggcc
	1021	toccacatoo	Gedacedess	tatgtgctgg	gccaactacg	acctcgccac	cttcctcatc
	1081	aaccagtgc	accessores	cccgacaac	cccaagctcc	tgtacgttcc	gctgccggtg
25	1141	ccatagagag	tasttesses	gagcgacttc	gacgacgacc	accaccacga	cgagctgatt
	1201	CCCattogggag	caccecegea	acatogtogo	caccggcgcc	dacdccddcd	acgacattgt
		gegaceegee	agtatttata	accgctgctg	ctacaacaca	cccotcatac	acaacctoto
		-gaacge cee	agereggege	tcatggtgaa	catctggaag	cttgcctgcg	gaacccccgc
	1321	gcccgcgaca	gc				•

30 SEQ ID NO: 13

35

40

45

50

55

TCAAGCAACAATTTGTCAGGTCAAATCCCTGAATTTTTGGCAGGGTTTAGTTTTATATATCTTAACTTATCTTTCA ATAATTTTGAAGGCAGAGTGCCAACAGATGGGATATTCAAGAATGCAAGCATTGTTTCAGTCACAGGAAACTCTAA ATTGTTGGTATTATTGCAGGAGGTTTAGGAGCAATTTTGGTGGTGTTGTCCTTTATATTTCTTTTGAGATTAAGAA AGAAAAGTCACAAACCCAGTTCATCCTATTCAGAAAATTCACTTTTGGAACTTCCAAAAGTGTCATATAGAGATCT CTATAAGGCCACTGATGGGTTCTCCTCAGAAAATTTAATTGGTACTGGTAGTTTTGGGTCCGTATATAAAGGAATT CTTGATGAAGGTGGACCAGTTGTTGCTGTTAAAGTGCTTAACCTCCAGCATCATGGAGCAGCTAAGTCTTCATGG CTGAATGTGAAGCCTTGAGAAATATCAGACACCGGAATCTTGTAAAGATACTAACTGCTTGTTCAGGTGTTGATTA TCAAGGCAATGATTTCAAGGCACTGGTTTATGAGTACATGGATAATGGAAACCTTGAGGAGTGGTTGCATCTACCA GTTTCAGCAGATAGAAATCATGGGGAGCCTAAGAATCTAAATCTTCTTCAGAGAGTAAATATTGCAATTGATGTTG CTTCTGCAATTGAATATCTCCATCATCATTGCGGAAATCCAATAGTTCATTGTGACCTTAAATCAAGCAATGTGCT GTTA

SEQ ID NO: 14

translation (1st frame): ${ t subset Sinls Qipeflagfs fiylnls finn fegrupt doifknasiv sut gisklogg ipef QQPAC nfkrsekrruku$ IVGIIAGGLGAILVVLSFIFLLRLRKKSHKPSSSYSENSLLELPKVSYRDLYKATDGFSSENLIGTGSFGSVYKGI LDEGGPVVAVKVLNLQHHGAAKSFMAECEALRNIRHRNLVKILTACSGVDYQGNDFKALVYEYMDNGNLEEWLHLP **VSADRNHGEPKNLNLLQRVNIAIDVASAIEYLHHHCGNPIVHCDLKSSNVLL**

SEQ ID NO: 15

GGATCCCCGCGCAGCTTGGCCGGTCGTCTTCGCTCCAGCGCCGTGCGCCTGGGAAGCAACATGCTCTCCGGGCCGAT CCCGCCGTCGCTTGGCGGAATCGCCACGCTGACCCTGCTGGATGTCTCAAGCAACGAGCTCACGGTGGCATCCCAG CGGCGCTCGCTCAATGCAGGCAGCTCAGCCTCATCGTCCTGAGCCACAGCCGCCTGTCAGGGGCGGTTCCGGG CTGGCTGGGCTGCCGCAGCTCGGCGAGCTCGCCACCAACAACGAGTTCACCGGAGCAATCCCGATGCAG CTCAGCAACTGCTCCAAGCTCCTGAAGCTCCCTCGACAACAACCAGATCAATGGAACAGTGCCGCCTGAACTCG GCGGCTTGGTGTCCCTCAACGTACTGAATCTCGCACACCAGCTCTCAGGTCCGATTCCGACGACGGTCGCAAA

10

15

20

25

30

35

40

45

50

55

GCTGAGCGGCCTCTATGAGCTTAACCTGTCGCAGAATTACCTGTCCGGCCCGATCCCTCCGGATATCGGCAAGTTG CAAGACTTGCAGAGCCTGCTGGACTTGAGCAGCAACAATCTCAGTGGCCACATCCCTGCATCGCTGCGGCTCACTC CCCAAGCTGGAAAACCTGAACCTGTCCCACAACGCTCTGGTCGGCGGGGTGCCGTCCCAGCTCGCTGGAATGAGTA GCTTGGTGCAGCTGGACCTGCAGCACCAGCTGGAAGCTGGGCACCGAGTTCGGCCGGTGGCCGCAGGCC GCATTCGCTGACAATACAGGGCTCTGCGGTAGCCCCTTGAGAGGTTGCAGCAGCAGAAACAGCCATTCGGCGCTGC ACGCGGCGACCATCGCGTTGGTGTCTGCGGTGGTCACGCTGTTGATTGTCCTCCTGATCATTGCGATTGCGCTGAT GGTGGTGCGCCGCAGGGCCCGGGGTTCAGGCGAGGTGAACTGCACGGCGTTCTTGTCGTCGAGCTCGGGCAGCGCA TGAGCGACCAGTTCGCCATCGGGTCCGGCGGATCAGGCACGGTGTACAGGGCGGAGCTGTCCACTGGCGAGACGGT TGCCGTGAAGAGGATAGCGCACATGGACAGCGACATGCTGCTCCACGACAAGAGCTTCGCGCGGGAGGTCAAGATC CTGGGCCGCGTCGCTCACCGGCACCTGGTCAAGCTGCTCGGCTTCGTCACGTCCCGCGAGTGCGGCGGCGGCGCG GCATGCTCGTGTACGAGCACATGGAGAACGGCAGCCTCTACGACTGGCTGCACGGCGGCAGCGATGGCCGGAAGAA TGTGTGCCCCGCATCGTGCACCGGGACATCAAGTCCAGCAATGTGCTCCTCGACGGCGACATGGAGGCGCACCTCG GCGACTTCGGCCTCGCCAAGGCCGTCGCCGAGAACCGGCAGGCCGCCTTCGATAAAGACTGCACCGAGTCAGCTTC CTTCTTCGCCGGATCATACGGGTACATCGCTCCAGGTAATTTCGACGGCAATCTGAAATGCTATAGAAACGCAGTA GCTCAGGCGACGCGGCCAGTTACTGACAGTGGACGTGCCACATTATCTCTGCAGATGTGCTTACTCCCTGGAGGCG ACGGAGAGAGCGACGTCTACAGCATGGGCATCGTGGTTATGGAGCTCGTCACCGGGCTCTTGCCGACCAAAC CTTCGGCGGCGAACATGACATGGTGAGGTGGGTGCAGTCGAGGATGGACGCGCCGTTGCCAGCAAGGGAGCAGGTG TTCGATCCTGCTGAAGCCGCTGGCGCGCGTGAGGAGTCGTCGATGACGGAGGTGCTG

SEQ ID NO: 16

DM4 CDNA CLONE

GGCACGAGGGGAACTAGACATGTCTGGGAACAAGATTCTGTCGGGCCGAGTACCGGAGTTCCTGGGGGGGCTTCCGA GCATTGCGGCGACTCGGACTTGCCGGGAACAACTTCACCGAGGAAATCCCGGATGAGCTGAGCCTCCTGTGCGGAA TGAGGTGCTCGATCTGGGTAGCAACCAGCTGTCAGGTGACTTTGTGATCACTGTGATCAGCAAGATCTCTTCTCTG TTGAAGTCATTGATCTCGGGTCTAACATGCTGGAANGAGAGATCATGCCCGAGCTGTGTTCATCTTTGCCATCACT CAGAAAGCTGCTCCTACCCAACAACTACATCAATGGAACCGTGCCGCCTCACTCGGCAACTGCAGTAATCTGGAG TCACTGGACCTCAGCTTCAACCTCATGGTTGGTCCGATCACCCTGAAGTACTGTTGCTTCCTAAACTTGTTGAATT GGTCATGTGGGCAAACANTCTCTCCGGTGAAATACCAAACACGCNATGCTCCACAGCACAÁCACTGAAAANCCGTC NTAAACTACAACATAACCGAATGATCCCGTTCNCNTCNCCAGTNGCTNAATCCATATGGTGTCCTTCCGGCAA NNNNNNNNNNNNNNNNNNNNNNNNNGGATCCTNTTTCNTNACAGNGGGGATTTTTATATGGTGTAATTGCGGC AACGGATGACGGGGTTTCCGGGGCCTTCCAGAGTTTGCCATTTACAGTGCACAGGAATTCATTTTTTG TTCCTGTGCCAGCAGAGNTTGTTCGCTGCAGCACCTTATNTGGTTGATTTTCAACAGCAACAATTTTTCCGGTGCG ATACCGCCGCAGTTAGCAGCAACAGGCAGGGNTCATCACTGGAGGCATGGTTTCTGGGAAGCAGTTCGCGTTCCT CCCAGTTCCCTGCTGTGCACTCGTGCCTCCACGAGGATATACACTGGGATGACAGTGTACACCTTCAACCAAAG TGGGAGCATGATATTCCTTGATCTCTCGTACAACAGCCTCACAGGCACAATTCCGGCGAGCCTGGGGAACATGACG TATCTTGATGTCCTTAACCTGGGGCATAATGACCTTACCGGTGCAATTCCAGATGCGTTCACAGGGTTGAAGGCGA TTGGTGTCCTTGACCTNTCGCACAATCACCTCACCGGTGTCATCCCTGCTGGACTGGGGTGTTTAAATTTCCTAGC TGACTTCGACGTCTCCAACAACAACCTCACTGGTGAGATACCCACGTCAGGGCAGCTCAGTACATTTCCAGCATCC CTCAAAACCCCTCTAACGTGCGGAGGAAGTTTCTCGAAGAGTTCGTGCTCCTTGCAGTGTCGCTCACCGTGCTCAT GGTGGCCACCTTGGTTGTCACTGCATACAAGCTCAGGAGGCCCCGTGGGAGCAAAACTGAAGAGATTCAAACTGCT GGGTATAGCGACAGCCCGCATCGTCCACCAGTACAAGCTGGAAGCTTTCTGGTTCCAAAGAGCCACTGAGCATCA **ATCTG**GCGATATTTGAGAATCCGTTGAGGAAACTAACATATGCCCACCTGCATGAGGCTACCAATGGCTTCAGCTC AAGAANCTGATGCATTTCACAGGCCAAGGCGACCGGGAGTTCACTGCAGAGATGGAGACCATTGGCAAGATCAAAC **ATCG**CAACCTTGTGCCGTTGCTAGGCTACTGCAAAGTTGGCGACGAACGTCTGCTTGTGTACGAGTACATGAATAA T**GGAA**GCCTGGATGTCTTGCTCCATGAAAGGGACAAGACTGATGTGGGTCTTGATTGGGCAACAAGGAAGAAGATT GCAGTTGGCTCGGCAAGAGGACTGGCCTTCCTCCACCATAGTTGCATCCCACACATCATACACCGGGACATGAAGT

TGACTCACATCTAACCGTGAGCAAGCTCTTAGGAACACCTGGTTATGTGGCTCCCGAGTACTTCCAGTCGGTTATT CGACTGAATTCGGCGACAATAATCTCATCGACTGGGCCAAGCAGATGGTTAAGGAGGACCGGTGCAGCGAGATATT GACGATCAACCTAGTCGCAGACCTACGATGATCCAGGTCATGGCAATGTTCAGTGAGTTTCAGATTGACTCTGGCA CCTGCAGATTATATGATTCACTGGATTTAGGTATTAGCTTAGCCATGTTTAACTCATGTTAACAGGATACAAACAG ATGTAAATTTGTTTCGGTTGCCGTACATAGTACACAACAGCTTCAACACAGATACCATATAGAGTTGTTTCCAAAA

SEQ ID NO: 17

TRK1

5

10

45

50

55

ATCGGGCAGGTCTTCAAAATACTTGTTACATCTTCTTACCTTTGATA 15 TTTTCCAAAGTATTTGTAACTTCAAATCACTAGTTATCTAAATGGCTACT TCTAACACAAGTCTCTTGTTTTTCGCGTATTTCCTCCTTGTGTTCCTTAT TACTCCATCTCAATCGCGTAACCTGTCTCTGAGACGACAGGCTAAAACTC TAGTTTCATTGAAATATGCATTTGTACAATCATCTGTTCCTAGTACTCTG TCCAATTGGAACATGTCGAATTATATGTCTATATGTTCTTGGACAGGTAT 20 **AACGTGTGATGATACCAAATCAGTAACTTCCATTGATATATCCAATCTAA** ACATTTCTGGCTCTTTATCACCTGATATTCATGAGCTCACTAGACTTCGC GTCCTGAATATTTCTAACAATTTGTTTAGTGGAAACTTAAGCTGGGAGTA TCGCGAGTTTAATGTACTTCAAGTGTTGGATGCTTATAACAACAATTTCT CTGGTCCACTCCCTTTGGGAGTTACTCAACTTGTGCAGCTCAAGTACTTG 25 **AATTTCGGGGGTAACTACTTTTCAGGGAAGATTCCTTTGAGTTATGGTAG** TTTTAATCAGCTTGAGTTCCTGTCTCTTGCTGGGAATGACTTGCACGGTC CTATACCGAGGGAGCTGGGGAACGTTACGAGCCTCAGGTGGTTACAGTTG **GGTTATTATAATCAATTTGATGA**GGGGATTCCACCAGAGTTGGGGAAACT TGTTAATTTGGTTCATCTAGATCTTTCAAGCTGTAACTTAACGGGTTCGA 30 TTCCACCAGAATTGGGCAATCTTAATATGTTGGACACTCTTTTCTTGCAA **AAGAATCAACTTACTGGTGTATTTCCTCCTCAGCTAGGGAATTTGACAAG** GTTAAAATCTCTTGATATCTCGGTCAATGAACTCACAGGAGAGATCCCGG TTGACTTGTCAGGACTCAAGGAGCTCATATTGTTGAACCTCTTTATCAAC AATTTGCACGGTGAGATTCCAGGATGTATCGCGGAGCTGCCAAAGTTGGA 35 **AATGTTGAATCTTTGGAGGAATAATTTCACTGGCTCGATTCCTTCTAAGC** TTGGGATGAACGGTAAACTAATTGAAATTGATCTGTCTAGTAATAGACTC **ACTGGCTTGATACCAAAATCTCTATGCTTTGGGAGGAATTTGAAAATCTT** GATTCTTCTTGATAATTTTCTGTTTGGACCTTTACCTGATGATTTTTGGGC AGTGTCGAACGTTGTCCAGAGTCAGAATGGGACAGAATTACTTGAGTGGA 40 TCAATACCAACAGGGTTTCTTTATTTGCCTGAGTTGTCACTGGTGGAACT GCAGAACAACTACATCAGTGGACAACTCTGGAACGAGAAAAGCTCAGCGT CTTCTAAACTTGAAGGGCTGAACCTGTCGAACAATCGCTTGTCTGGTGCA CTTCCTAGTGCTATTGGAAACTATTCAGGGCTGAAGAATCTTGTGTTAAC TGGAAATGGTTTCTCAGGTGATATCCCTTCTGATATTGGCAGACTAAAGA GCATCTTAAAGCTGGACCTGAGTAGAAACAACTTCTCTGGCACAATCCCT CCTCAGATTGGTAACTGTCTTTCCTTAACTTACTTGGATTTGAGCCAAAA TCAACTTTCTGGTCCTATCCCAGTTCAAATTGCTCAAATTCACATCTTAA ATTACATCAATATTTCCTGGAATCACTTCAACGAGAGCCTTCCCGCGGAG ATTGGCTTGATGAAGAGTTTAACTTCAGCAGATTTTTCCCACAATAACTT ATCTGGATCAATACCTGAAACAGGCCAATATTTATATTTCAACTCAACTT CCTTCACCGGCAACCCTTATCTCTCTGGATCCGACTCGACTCCTAGCAAC **ATTACATCCAACTCACCGTCAGAACTTGGAGACGGAAGTGACAGCAGAAC** TAAGGTTCCTACAATATACAAGTTCATATTTGCATTTGGGCTCTTATTCT GCTCCCTCATTTTCGTTGTCTTAGCAATAATCAAGACAAGAAAGGGGAGT **AAGAATTCAAATTTGTGGAAGCTGACAGCATTTCAGAAGCTTGAGTTCGG AAGTGAAGACGTCTTGCAGTGCTTGATAGACAACAACGTCATAGGGAGAG** GTGGAGCAGGGATAGTGTATAAGGGAACTATGCCAAATGGTGATCATGTC GCGGTGAAGAATTGGGAATAAGCAAAGGCTCACATGATAACGGCCTATC

TGCTGAACTTAACACATTAGGGAAGATCAGGCATAGGTACATTGTGAGAC TGCTCGCGTTTTGTTCAAACAAGGAAGTCAACTTGCTAGTTTATGAGTAC ATGCTAAATGGAAGCTTAGGTGAAGTGCTTCATGGGAAGAACGGCGGGCA ACTCCAATGGGAAACTAGGCTAAAAATAGCCATAGAAGCTGCCAAGGGCC 5 TTTCTTATTTGCACCACGATTGCTCCCCTATGATAATCCACCGCGATGTC AAGTCCAACAATATATTGTTGAACTCTGAACTTGAAGCTCATGTTGCAGA TTTTGGATTAGCCAAGTACTTTCGTAACAATGGTACCTCTGAGTGCATGT CTGCAATTGCAGGATCTTATGGCTACATTGCTCCAGAATATGCATACACG CTGAAAATTGATGAGAAAAGCGATGTGTATAGCTTTGGAGTGGTGTTGTT 10 GGAGCTTATAACAGGACGAAGGCCAGTAGGAAATTTTGGAGAAGAAGGAA TGGACATTGTACAATGGGCGAAAACGGAGACAAAATGGAGCAAAGAAGGG GTGGTGAAAATCTTGGATGAGAGGCTAAAAAATGTTGCAATTGTTGAAGC TATGCAAGTATTTTTTGTAGCAATGCTTTGTGTTGAAGAGTACAGCATTG AGAGGCCTACAATGAGGGAAGTAGTCCAAATGCTTTCTCAAGCTAAACAA 15 CCAAATACTTTCCAAATCCAATAATCTAATTGTGGCTCTACTTATTGTAT GCTTGGGAACACCCCTTTTGTTAGCTTTGCAAAAGTGAAATCACAAATTA ATCTAAGTGAAGTAGTTGCAAAATTAATTTGCAATTATGTTAGATCTTAG GGTATGATATCTAACTATATCCTCTCAACTTGGAATAGTGTATTGGATGT GTAGAACTAGTATTAGTATCCGCGTGATGTGTGGCGAATATCAAAAGAAA 20 GTCGACRCAKRMMRCTAATYCCKCYGWTWCWRAMGKMSWCCMGGMSKCGA WYKCCRCCRATACTGACGGACTCCAGGAGTCGTCGCCACCAAT

SEQ ID NO:18

TRK1

30

40

45

25 SGRSSKYLLHLLLTFDIFQSICNFKSLVI.

MATSNTSLLFFAYFLLVFLITPSQSRNLSLRRQAKTLVSLKYAFVQSSVPSTLSNWNMSNYMSICSWTGITCDDT

KSVTSIDISNLNISGSLPPD

IHELTRLRVLNISN NLFS GNLPWE YREFNVLQVLDAYN NNFS GPLPLG

VTQLVQLKYLNFGG NYFS GKIPLS

YGSFNQLEFLSLAG NDLH GPIPRE LGNVTSLRWLQLGYYNQFDEGIPPE

LGKLVNLVHLDLSSCNLT GSIPPE

LGNLNMLDTLFLQK NQLT GVFPPQ

35 LGNLTRLKSLDISV NELT GEIPVD

LSGLKELILLNLFI NNLH GEIPGC

IAELPKLEMLNLWR NNFT GSIPSK

LGMNGKLIEIDLSS NRLT GLIPKS

LCFGRNLKILILLD NFLF GPLPDD

FGQCRTLSRVRMGQ NYLS GSIPTG

FLYLPELSLVELQN NYIS GQLWNEK

SSASSKLEGLNLSN NRLS GALPSA

IGNYSGLKNLVLTG NGFS GDIPSD

IGRLKSILKLDLSR NNFS GTIPPQ

IGNCLSLTYLDLSQ NQLS GPIPVQ IAQIHILNYINISW NHFN GSLPAE

IGLMKSLTSADFSH NNLS GSIPET

GQYLYFNSTSFTGNPYLSGSDSTPSNITSNSPSELGDGSDSRTKVPTIYK

50 FIFAFGLLFCSLIFVVLAIT

KTRKGSKNSNLWKLTAFQKLE

FGSEDVLQCLKDNNVIGRGGAGIVYKGTMPNGDHVAVKKLGISKGSHDNGLS **AELNTLGKIRHRYIVRLLAFCSNKEVNLLVYEYMLNGSLGEVLHGKNGGQLQ**

wetrlkiaieaakglsylhhdcspmiihrdvksnnillnseleahvadfgla 55 KYFRNNGTSECMSAIAGSYGYIAPEYAYTLKIDEKSDVYSFGVVLLELITGR RPVGNFGEEGMDIVQWAKTETKWSKEGVVKILDERLKNVAIVEAMQVFFVAM

LCVEEYSIERPTMREVVQMLSQAKQPNTFQIQ

SNCGSTYCMLGNTPFVSFAKVKSQINLSEVVAKLICNYVRS.GMISNYILS
TWNSVLDV.N.Y.YPRDVWRISKESR???LIP??????R?R?PPILTDSRSRRHQ

SEQ ID NO: 19

5 TRK2 TGACTCTCTCTCTCTCTCTCTCTCCAGCCCCAAAAAGTAGGGTTAGGG CTAGGGTTTTTGAGTTTCAAAACCCCATTTCTGGTTCCTATAATCTTCAC ATACAAGGGGAGTTTGTCTCTGTTGCATTCTTTGAAGACCCTTTTGGGGT TTTACTAATGGGTCGTTGTTGTTTTGTCATCAAATGGTACTATCATGACA 10 TACCCTTGAAAGTTTTCTCATCCTTTGTGTTTCTTCTTAGTTCATGGC TATGCACTTTCCTCGGATTCGGATAAATCAGCGCTCTTGGAGTTAAAGGC CTCATTTTCAGATTCCTCTGGAGTGATTTCTAGCTGGAGCTCCAGAAATA ATGATCACTGTTCATGGTTTTGGTGTCTCCTGTGATTCCGATTCACGTGTT GTGGCTTTGAACATCACTGGAGGTAATTTGGGTTCTTTATCTTGTGCTAA AATTGCTCAATTTCCTTTGTATGGCTTTGGAATTACAAGGGTTTGTGCTA 15 ATAATAGTGTCAAGCTTGTTGGTAAAGTACCTCTCGCAATATCAAAATTA ACTGAACTAAGGGTTTTATCCTTGCCTTTTAATGAATTGCGTGGTGATAT TCCATTGGGAATTTGGGATATGGACAAACTTGAAGTTTTGGATCTGCAAG GGAATTTAATTACTGGGTCTTTGCCATTGGAGTTTAAGGGGTTGAGGAAA TTGAGGGTTTTAAACTTGGGTTTTAATCAGATTGTGGGTGCCATACCGAA 20 TTCCTTGTCAAATTGCCTTGCTCTACAAATCTTTAATCTTGCTGGAAATA GGGTAAATGGGACCATTCCAGCATTCATTGGTGGATTTGAAGATCTGAGG GGAATCTACCTGTCTTTTAATGAGCTTAGCGGGTCTATTCCTGGTGAAAT TGGGCGTTCTTGTGAGAAGCTTCAAAGTCTAGAGATGGCAGGTAATATCT 25 TAGGTGGTGTTATTCCAAAAAGTTTAGGGAACTGCACACGGTTGCAGTCA CTTGTCTTATATTCAAATTTGTTGGAAGAGGCTATTCCAGCTGAATTTGG TCAACTAACTGAGCTCGAGATTCTTGATTTGTCTAGGAACAGCCTAAGTG GTCGACTACCATCTGAGCTGGGAAACTGCTCGAAACTATCCATTCTTGTA CTGTCAAGTTTGTGGGATCCCCTTCCAAATGTGTCTGATTCAGCTCATAC 30 TACTGATGAGTTTAACTTTTTTGAAGGCACAATCCCATCAGAGATCACCA GGCTTCCTAGTTTGAGAATGATATGGGCTCCCAGGTCAACTCTTTCAGGA **AAATTTCCTGGCAGTTGGGGTGCTTGTGACAATTTGGAGATCGTGAACTT** GGCTCAAAATTATTATACTGGAGTGATTCCTGAGGAATTGGGTAGCTGCC AGAAGTTGCATTTTCTTGACTTGAGCTCAAATAGGCTGACTGGACAGCTT 35 GTTGAGAAACTGCCAGTCCCTTGCATGTTTGTGTTCGATGTGAGTGGGAA TTATCTCTCTGGTTCAATTCCCAGGTTTTCCAATTACAGTTGTGCTCATG TTGTTTCCAGCGGTGGAGAGCCATTTGGGCCCTATGATACATCATCTGCA TATCTAGCACATTTCACCAGTAGAAGTGTTCTAGACACTACATTATTTGC AGGTGATGGTAACCATGCAGTATTTCATAATTTCGGTGTTAACAACTTCA 40 CGGGAAATTTACCGCCTTCCATGCTAATTGCACCTGAAATGTTAGGCAAA CAAATTGTATACGCATTTCTTGCTGGTAGTAACAGGTTTACTGGACCTTT TGCTGGTAACTTGTTCGAGAAATGTCATGAATTGAATGGAATGATTGTTA ATGTAAGCAATAATGCGTTGTCAGGTCAAATCCCAGAGGATATTGGTGCA ATTTGTGGGTCTCTTAGGCTGTTGGATGGATCCAAAAATCAGATTGTTGG 45 GACAGTCCCTCCGAGTTTAGGGAGTCTGGTTTCATTAGTTGCTCTCAATT TAAGTTGGAACCACCTGCGAGGTCAGATTCCTAGCAGACTTGGCCAGATA AAGGATCTCAGTTACCTCTTTTGGCTGGCAATAATCTGGTTGGCCCAAT CCCCTCAAGTTTTGGCCAATTGCACTCTTTAGAAACGCTTGAACTTTCTT CGAATTCTTTGTCTGGTGAAATTCCAAATAATCTGGTAAATTTGAGGAAT 50 TTGACTTCCCTTCTTCTGAACAACAACAATTTATCAGGGAAAATACCTTC ATCTGTCTGGGCCACTGCCTCTTAACAAAGATTTGATGAAGTGTAATAGT GTTCAGGGAAACCCCTTTCTGCAATCGTGCCATGTATTTTCTCTATCAAC ACCTTCTACAGATCAGCAGGGAAGAATAGGGGACTCACAAGATTCTGCTG 55 CGTCTCCTTCAGGTTCAACCCAGAAAGGAGGGAGCAGCGGTTTCAACTCC ATAGAGATTGCATCCATAACATCTGCGGCAGCTATTGTGTCAGTTCTTCT TGCTCTGATAGTCCTGTTCTTTTACACCAGAAAATGGAATCCAAGATCTA GAGTTGCTGGATCTACCAGGAAAGAAGTCACAGTGTTTACAGAAGTTCCG

GTTCCTTTAACATTTGAAAATGTAGTGCGGGCCACAGGGAGCTTCAATGC **AAGCAATTGCATAGGCAGTGGAGGTTTTGGAGCAACATACAAAGCGGAGA** TTGCACCAGGGTTCCTAGTGGCAGTAAAGCGACTTGCTGTAGGACGTTTT CAGGGGATTCAACAGTTTGATGCAGAAATCAGAACTCTGGGGAGGCTTCG 5 ACATCCAAACCTCGTAACTCTGATAGGATATCATAATAGTGAAACAGAAA TGTTTCTGATCTATAACTATTTGCCAGGTGGTAATTTGGAAAAGTTTATT CAGGAGAGGTCTACAAGGGCTGTGGACTGGAGGGTTCTTCACAAGATTGC TTTGGATGTAGCCCGTGCACTTGCTTACCTGCATGATCAGTGTGTACCAC GTGTGCTTCATCGTGATGTGAAGCCGAGCAACATTTTATTGGATGAGGAG 10 TATAATGCATATTTATCTGATTTTGGTTTGGCTAGATTACTGGGAACTTC **AGAGACCCATGCAACTACTGGTGTGGCGGGAACTTTTGGATATGTTGCTC** CTGAATATGCCATGACTTGCCGCGTCTCGGACAAGGCTGATGTCTACAGT TATGGGGTTGTGTTGCTTGAGTTAATATCAGATAAGAAAGCACTAGATCC GTCTTTCTCTTATGGAAATGGATTCAATATTGTAGCTTGGGCATGCA 15 TGCTTTTACGCAGGGCCGTGCTAAGGAGTTCTTTACGGCTGGTCTATGGG ATTCAGGTCCACATGATGATTTGGATGAGGTCCTACACTTGGCAGTGGTC TGCACGGTTGACTCTTTCTACTAGACCAACAATGAAGCAAGTAGTAAG ACGGTTGAAGCAACTTCAACCCCCGTCGTGTTAGCTGCGGCATGTGTTTT GGATAGGATATGGTTTAGCCCAATTGTAATNTTAAAACTTGCCCTTGATA 20 GTAAGGTGTATTTGGGTGTCTCGTATTAGGTTCAGATTTGTATTTGTAGC CTGCTTGTGAATTGTAGTATATAGCCAGCCCCC: ATTTTTCC: ATGTCAT GTCCC: TAATTAGGGGGTGTGCAGATTCTTCT: GCAGAAGAGTGCAGATA CTTGTCTTCAACATGTACC: ACATTTTTTTTTTTTTTTTAAATAAGAGCA 25 SEQ ID NO: 20 TRK2 DSLCLSLFAAPKSRVRARVFEFQNPISGSYNLHIQGEFVSVAFFEDPFGVLLMGR 30 CCFVIKWYYHDIPLKVFLILCVFFLVHGYALSSDSDKSALLELKASFSDSSGVIS SWSSRNNDHCSWFGVSCDSDS RVVALNITGGNLGSLSCAKIAQFPLYGFG **ITRVCANNSV** KLVGKVPLA 35 ISKLTELRVLSLPF NELRGDIPLG IWDMDKLEVLDLQG NLITGSLPLE FKGLRKLRVLNLGF NQIVGAIPNS LSNCLALQIFNLAG NRVNGTIPAF IGGFEDLRGIYLSF NELSGSIPGE 40 **IGRSCEKLQSLEMAGNILGGVIPKS** LGNCTRLQSLVLYS NLLEEAIPAE FGQLTELEILDLSR NSLSGRLPSE LGNCSKLSILVLSSLWDP LPNVSDSAHTTDEF NFFEGTIPSE 45 ITRLPSFENDMAPR STLSGKFPGS WGACDNLEIVNLAQ NYYTGVIPEE

SNYSCAHVVSSGGEPFGPYDTSSAYLAHFTSRSVLDTTLF

AGDGNHAVFHNFGV NNFTGNLPPS

MLIAPEMLGKQIVYAFLAGSNRFTGPFAGNL

FEKCHELNGMIVNVSNNALSGQIPED

IGAICGSLRLLDGSKNQIVGTVPPS

LGSLVSLVALNLSW NHLRGQIPSR

LGQIKDLSYLSLAG NNLVGPIPSS

FGQLHSLETLELSS NSLSGEIPNN

LVNLRNLTSLLLNN NNLSGKIPSG

LANVTTLAAFNVSF NNLSGPLPLN

LGSCQKLHFLDLSS NRLTGQLVEK LPVPCMFVFDVSG NYLSGSIPRF

 ${\tt KDLMKCNSVQGNPFLQSCHVFSLSTPSTDQQGRIGDSQDSAASPSGSTQKGGSSGFNSIEIASITSAAAIVSVLLALUVLFFYT}$

RKWNPRSRVAGSTRKEVTVFTEVPVPLTFE

NVVRATGSFNASNCIGSGGFGATYKAEIAPGFLVAVKRLAVGRFQGIQQFDAEIRTLG
RLRHPNLVTLIGYHNSETEMFLIYNYLPGGNLEKFIQERSTRAVDWRVLHKIALDVAR
ALAYLHDQCVPRVLHRDVKPSNILLDEEYNAYLSDFGLARLLGT
SETHATTGVAGTFGYVAPEYAMTCRVSDKADVYSYGVVLLELIS
DKKALDPSFSSYGNGFNIVAWACMLLRRAVLRSSLRLVYGIQVH
MMIWHRSYTWQWSARLTLFLLDOO

10 .SK..DG.SNFNPRRVSCGMCFG.DMV.PNCN?KTCP...GVFGCLVLGSDLYL.PACE L.YIASP?FF?CHV?.LGGVQIL?AEECRYLSSTCT?IFFCLLNKSKK.EPKKKKKKKKK??

SEQ ID NO: 21

TRK3

SEQ ID NO: 22

TRK3

25

35

40

45

50

SSNNLSGQIPKSLRNLEHLMYFNVSFNGLMGEIPDGGPFVNFTAESFMGNPALCGSSRFRVMQCRVTSLERKGKSR VLTSVLASASSGVVVTTIFIIWFLKCRKRSTELPLVDTFGQVHKRISYYDIPQGTNSFDEANLIGRGSLLGLVYKG KLENPKR

30 SEQ ID NO:23

TRK4

AGCTTGGATCAATTTAACAATGATAAACTGCAATTTAGCTGGTCCTTTGCCTGAATTTCTTGGAACTATGTCTTCT TTAGAGGTTTTGTTGTTGTCTACAAATAGGCTTTCAGGGCCTATTCCAGGTACTTTCAAGGATGCAGTGCTGAAGA ACATCTTTGGCTTCATGGGAATCAATTTTCAGGTAAAATCCCAGTAGAGATTGGTAATCTAACAAATCTGAAGGAT CTCAGTGTGAATACCAAATAACCTTGTTGGATTAATCCCTGAAAGTTTAGCTAATATGCCATTAGACAATCTTGATT TGAATAATAATCATTTTATGGGACCAGTTCCTAAGTTCAAGGCTACTAATGTTAGTTTATGTCCAACTCTTTTTG TCAAACCAAACAAGGAGCAGTATGTGCCCCTGAGGTTATGGCACTTTTAGAGTTTCTTGATGGGGTGAATTATCCT **AAAAAGTT**AGTGTTATAAACTTGCCCAAGTCTAATCTTTCCGGGACCTTGAGTCCTTCAATCGCGAACCTTGAAAC CGTTACTCACATTTATCTTGAATCAAATAATCTTTCTGGTTTTGTTCCATCTAGTTGGACTAGTTTGAAATCTCTG TCTATTCTTGATTTGAGTAATAACAATATTTCCCCACCTTTGCCTAAATTTACCACCCCTTTGAAACTTGTTCTAA ATGGAAATCCAAAGCTGACTTCTAATCCTCCTGGAGCAAATCCTTCACCAAACAACAGCACAACTCCTGCAGATTC ACCCACGTCGTCTGTACCATCTTCACGACCCAACAGTTCAAGCTCTGTGATCTTTAAACCCAGTGAACAGTCACCC GAGAAAAAGGACTCAAAGTCAAAGATAGCTATAGTTGTGGTTCCTATTGCTGGTTTTCTACTTTTGGTTTGTCTTG CTATTCCACTGTACATTTATGTCTGTAAGAAGAGTAAAGATAAGCATCAAGCTCCAACTGCTCTTGTGGTTCATCC TAGAGATCCGTCTGATTCGGATAATGTAGTCAAGATTGCGATTGCCAATCAGACTAATGGAAGTCTTTCCACAGTA ARTGCARGTGGTTCTGCTAGCATACACAGTGGTGAATCCCATTTGATCGAAGCTGGGAATTTGCTCATATCGGTTC AAGTACTTCGGAATGTGACTAAGAATTTTTCTCCGGAAAATGAACTTGGACGTGGTGTTTTTGGTGTGGTTTATAA GGGAGAATTAGATGATGGGACACGAATCGCTGTCAAAAGAATGGAGGCTGGTATTGTTAGCAACAAAGCT

SEQ ID NO:24

TRK4 aa

AWINLTMINCNLAGPLPEFLGTMSSLEVLLLSTNRLSGPIPGTFKDAVLKMLWLNDQSGDGMSGSIDVVATMVSLT

55 HLWLHGNQFSGKIPVEIGNLTNLKDLSVNTNNLVGLIPESLANMPLDNLDLNNNHFMGPVPKFKATNVSFMSNSFC
QTKQGAVCAPEVMALLEFLDGVNYPSRLVESWSGNNPCDGRWWGISCDDNQKVSVINLPKSNLSGTLSPSIANLET
VTHIYLESNNLSGFVPSSWTSLKSLSILDLSNNNISPPLPKFTTPLKLVLNGNPKLTSNPPGANPSPNNSTTPADS
PTSSVPSSRPNSSSSVIFKPSEQSPEKKDSKSKIAIVVVPIAGFLLLVCLAIPLYIYVCKKSKDKHQAPTALVVHP

RDPSDSDNVVKIAIANQTNGSLSTVNASGSASIHSGESHLIEAGNLLISVQVLRNVTKNFSPENELGRGGFGVVYK GELDDGTRIAVKRMEAGIVSNKA

SEQ ID NO:25

TRK5 3'

5

10

15

SEQ ID NO:26

TRK5 5'

SEQ ID NO:27

TRK5 5' aa

LSPTPSGWSTSKPFCSWTNVICDKSSSTVTSINLDSQSVSGSLPSDISQLSNLKTLSLQKNKLSGPLPSFANMSKL ADLFLDNNQFTSVPQDFLLGVPSLVTLSISENAGLSPWQIPMYLTESTKFGISIC..CKY

SEQ ID NO:28

TRK6 3'

10

SEQ ID NO:29

TRK7 3'

THIS PAGE BLANK (USPTO)