Bayesian Inference for Gaussian Graphical Models

Anonymous Author(s)

Affiliation Address email

Abstract

The project aims to apply techniques of Gaussian Graphical Models, a powerful probabilistic tool for modeling and representing conditional dependencies among variables in Multivariate Gaussian Distributions. The current project also aims to introduce a Bayesian Inference perspective via estimation of the Precision matrix via a Gibbs sampling algorithm. The project aims to use these techniques with a protein dataset, in an attempt to model relationships among proteins for patients diagnosed with AML. Our implementation of the Gibbs algorithm found a highly interconnected protein network in the data set, and a viable estimate of the Multivariate Gaussian precision matrix.

10 1 Introduction

11 1.1 Literature Review

- Gaussian Graphical Models are used in a variety of contexts to gain a deeper understanding of features and random variables, in this case variables following a Multivariate Gaussian Distribution. This technique's ability to model conditional dependence among many variables in a high-dimensional
- 15 modeling scenario.
- ¹⁶ In particular with proteins and AML, literature suggests a relationship between protein profiling and
- 17 AML outcomes, particularly response and survival. Given the high-dimensional nature of the data,
- 18 directly sampling and deriving inference from the posterior distribution will prove difficult. To that
- end, we utilize a Gibbs sampling algorithm, a special case of the Markov Chain Monte Carlo class of
- 20 algorithms for posterior distribution estimation via simulation.
- 21 Recent literature suggests a viable method for estimating the precision matrix involves Regression,
- 22 specifically the Pseudo-Likelihood and Joint regression methods. As is the case with regressions
- 23 involving high-dimensional data, multicollinearity, variance inflation, and overfitting are consistent
- 24 problems.
- 25 A way around this in the Bayesian framework involves the Bayesian lasso as well as various prior
- 26 choices to control parameter magnitude, similar to how shrinkage occurs in Lasso or Ridge regression.

27 1.2 Project Guideline

- 28 The current project aims to integrate these high-dimensional probabilistic techniques and apply them
- to the AML data set to gain a more intensive understanding of the relationship between proteins for
- 30 these patients.
- The project will begin with deriving the full conditional distributions to implement the Gibbs sampling
- algorithm as a way of estimating the precision matrix. The algorithm will be implemented in the
- usual way, with a burn-in period and specified number of iterations as hyperparameters.

- The estimated Precision matrix will then be used to build the undirected graph from an adjacency
- matrix, with a 1 or 0 depending on if any two variables (proteins) are conditionally independent or
- 36 not.
- 37 The resulting undirected graph will serve as a way of modeling the interactions between proteins
- 38 for these AML patients. That is, any proteins that are connected on the graph can be thought of as
- conditionally dependent, or related in some sense.

40 2 Methodology

- 41 As mentioned before, the project will start with implementing the Gibbs sampler before MCMC
- diagnostics and finally inference on the proteins and variables themselves.
- The project itself makes use of the AML RPPA data set, with 256 observations and 51 proteins
- 44 specifically for analysis.
- 45 Prior to the algorithm and modeling, the data were cleaned so as to isolate the proteins themselves.
- 46 The distributional nature of the data were also verified, in the Multivariate Gaussian and Gaussian
- 47 sense
- 48 More specifically, we specify distributions for the prior, marginal, and other distributions. We suggest
- 49 the following distributions for this particular model and data.

$$Y_n \sim MVN(\mu, \Omega^{-1}) \tag{1}$$

$$\pi(\Omega) \sim Wishart(\mathbf{V}, n)$$
 (2)

- Where V is our matrix of features and n is our degrees of freedom. In this case, we can say V is a
- 51 *51x51* matrix.
- We use this information to derive the full conditional distributions, as given below.

$$Y^{i}|Y^{-i}, \omega^{-ii}, \omega^{ii} \sim N \tag{3}$$

53 Where here, we have the following.

$$i = 1, 2, \dots, 256$$
 (4)

- The -i in this case represents all observations except for i in this case, as will be used in the Gibbs
- 55 sampler.

56 3 Results and Discussion

- With these distributions defined, we now proceed to implementing the Gibbs sampler and discussing results.
- The Gibbs sampler was designed in the typical way, and we provide a code sample for implementation below.

```
gibbs <- function(data,
61
                        n_{iter} = 10000,
62
                        burn_in = 5000,
63
64
                        p,
65
                        n.
66
                        Sigma)
       for (iter in 1:n_iter){
67
        for (i in 1:p){
68
          not_i <- (1:p)[-1]
69
70
```

```
S_11 <- Sigma[not_i, not_i]</pre>
71
          S_12 <- Sigma[not_i, i]</pre>
72
73
          Omega_11 <- Omega[not_i , not_i]</pre>
74
          beta_mean <- -solve(Omega_11) %*% S_12
75
          beta_cov <- solve(Omega_11) / n</pre>
76
77
          beta <- t(rmvnorm(1, mean = as.numeric(beta_mean),</pre>
78
                              sigma = beta_cov))
79
          omega_ii <- rgamma(1, shape = (n / 2) + 1,
80
                               rate = (Sigma_obs[i,i] + t(beta) %*% Omega_11 %*% beta) / 2)
81
          Omega[i,i] <- omega_ii # filling in</pre>
82
          Omega[not_i, i] <- Omega[i,not_i] <- as.numeric(beta) # flattening</pre>
83
        # lasso style shrinkage
        Omega[-diag(p)] <- Omega[-diag(p)] / (1 + lambda)</pre>
86
87
        # storing
88
        if (iter > burn_in){
89
          Omega_samples[,,iter - burn_in] <- Omega</pre>
90
91
92
        # progress bar
93
        if (iter \% 1000 == 0) cat("Iteration", iter, "\n")
94
95
      # actually returning stuff
96
      #return(Omega_post_mean)
97
      return(Omega_samples)
98
   }
99
```


Figure 1: Caption

3.1 Conditional Dependence Protein Graph

We see the default arguments and hyper-parameters included above. Further analysis of this code and Gibbs sampling algorithm revealed the following undirected graph image. We see that this image, the

Figure 2: Trace Plots for Omega 1 Case Example

- nodes labeled with each relevant protein, suggest a highly dependent data set.
- In this case, a threshold value of 0.1 was used. That is, if a partial correlation was greater than 0.1,
- the nodes were connected on the graph.

3.2 Diagnostics and Variational Inference

- After completing the graph and establishing the Gibbs sampler, traditional MCMC convergence
- methods for a single Markov Chain were performed, in particular tests to measure convergence and
- 109 mixing.
- Diagnostic results from the Gibbs sampler can be found detailed by the above plots.

Figure 3: Trace Plots for Omega 2 Case Example

- As evidenced by the plots, we found the mixing and convergence of the Markov Chain to be adequate
- as evidenced by trace plots from a few selections from the Precision matrix simulation, however
- further research and evaluation would be appropriate, for example with differing starting points or
- varying iterations and a fraction of the time used for the burn-in period. Comparison of various
- iteration lengths as well as burn-in, and even the necessity of a burn in period at all, in a type of
- cross-validation, we imagine would be fruitful for further analysis.
- Given the convergence of the Markov Chain as well as the diagnostic plots and undirected graph, we
- decided that variational inference would not be appropriate in this case.

119 References

- 120 References follow the acknowledgments in the camera-ready paper. Use unnumbered first-level
- heading for the references. Any choice of citation style is acceptable as long as you are consistent. It
- is permissible to reduce the font size to small (9 point) when listing the references. Note that the
- Reference section does not count towards the page limit.
- 124 [1] Griffin, J.E. & Brown P.J. (2010) Inference with normal-gamma prior distributions in regression problems.
- 125 Bayesian Analysis 5(1):171-188.
- 126 [2] Kornblau, S.M. et al (2009) Functional proteomic profiling of aml predicts response and survival. Blood, The
- 127 Journal of the American Society of Hematology, 113(1):154-164.
- 128 [3] Meinshausen N. & Buhlmann P. (2006) High-dimensional graphs and variable selection with the lasso. The
- 129 Annals of Statistics, 34(3):1436-1462.
- 130 [4] Mitchell T.J. & Beauchamp J.J. (1988) Bayesian variable selection in linear regression. Journal of the
- 131 American Statistical Association, 83(404):1023-1032.
- 132 [5] Piironen J. & Vehtari A. (2017) On the hyperprior choice for the global shrinkage parameter in the horseshoe
- prior. Artificial Intelligence and Statistics 905-913.
- 134 [6] Wang Z. et al (2022) Bayesian edge regression in undirected graphical models to characterize interpatient
- heterogeneity in cancer. Journal of the American Statistical Association:533-546.