Klasteryzacja pacjentów z chorobami serca

Wstęp do uczenia maszynowego

Rok akademicki 2022/2023

Wykonali: Alicja Charuza, Mateusz Gałęziewski

Po co grupować pacjentów?

Zbiór danych i zmienne

kolumna	opis	typ
id	indeks	numeryczny
age	wiek	numeryczny
sex	płeć	kategoryczny
ср	typ bólu klatki piersiowej	kategoryczny
trestbps	ciśnienie krwi w spoczynku (w momencie przyjęcia do szpitala) w mm/Hg	numeryczny
chol	poziom cholesterolu w surowicy w mg/dl	numeryczny
fbs	poziom cukru na czczo w mg/dl > 120 (1 = true, 0 = false)	kategoryczny
restecg	wyniki ekg w spoczynku	kategoryczny
thalach	maksymalne tętno	numeryczny
exang	dławica wysiłkowa (1 = true, 0 = false)	kategoryczny
oldpeak	obniżenie odcinka ST wywołane wysiłkiem w porównaniu do spoczynku	numeryczny
slope	spadek odcinka ST podczas szczytowego wysiłku	kategoryczny

Rozkłady zmiennych obecnych w datasetcie

Preprocessing danych

Macierz korelacji pearsona dla zmiennych ciągłych

Macierz korelacji spearmana dla zmiennych dyskretnych

Dane zostały poddane normalizacji zawierają się w przedziale od 0 do 1

Tak wyglądają nasze dane treningowe po redukcji wymiarowości do 2 przy zastosowaniu technik PCA i t-SNE

Dlaczego zdecydowaliśmy się nie kodować zmiennych dyskretnych?

Budowane modele

- KMeans
- KMedoids
- DBSCAN
- OPTICS
- Agglomerative Clustering

Wybrany model do wdrożenia

OPTICS

Model dokładnie grupuje obserwacje, czyli pacjentów oraz wykrywa wartości odstające w postaci szumu - klastru oznaczonego (-1)

*Wizualizacja t-SNE dla modelu OPTICS

Wizualizacja PCA dla modelu OPTICS

Następnie przypisujemy nowe dane testowe, których

OPTICS "nie widział" do istniejących klastrów.

Wykorzystujemy do tego klasyfikator K-NN

Wizualizacje klasyfikacji danych testowych

Dane testowe również formują zwięzłe klastry mimo małej liczby obserwacji.

Interpretacja klastrów

Wartości istotności zmiennych

Największe znaczenie przy grupowaniu ma zmienna wyników ekg w spoczynku i płeć następnie lekko mniejszy fakt występowania dławicy wysiłkowej. Lekko poniżej wartości 1.0 są kolejno zmienne: poziom cukru na czczo oraz maksymalne tętno

	Feature	Importance
0	restecg	0.200034
1	sex	0.196482
2	exang	0.134793
3	fbs	0.092216
4	thalach	0.080641
5	age	0.061187
6	trestbps	0.058054
7	chol	0.056072
8	oldpeak	0.053260
9	ср	0.042715
10	slope	0.024546

Model **OPTICS** grupuje pacjentów na **6 klastrów** oraz tworzy dodatkowy klaster z pacjentami o wynikach z wartościami odstającymi

Zobaczmy charakterystyki pacjentów w poszczególnych klastrach

Charakterystyka pacjenta:

- -mężczyzna
- -poziom cukru na czczo poniżej 120 mg/dl krwi
- -wyniki ekg w spoczynku w kategorii 2
- -brak dławicy wysiłkowej
- -mediana zmiennej maks. tętno 'thalach' wynosi: ~0,76 w przedziale [0,1]

Liczba pacjentów tej grupy w zbiorze treningowym: 18/148

Charakterystyka pacjenta:

- -kobieta
- -poziom cukru na czczo poniżej 120 mg/dl krwi
- -wyniki ekg w spoczynku głównie w kategorii 2, są obserwacje z kat. 1
- -brak dławicy wysiłkowej
- -mediana zmiennej maks. tętno 'thalach' wynosi: ~0,70 w przedziale [0,1]

Liczba pacjentów tej grupy w zbiorze treningowym: 22/148

Charakterystyka pacjenta:

- -kobieta
- -poziom cukru na czczo poniżej 120 mg/dl krwi
- -wyniki ekg w spoczynku w kat. 0
- -brak dławicy wysiłkowej
- -mediana zmiennej maks. tętno 'thalach' wynosi: ~0,76 w przedziale [0,1]

Liczba pacjentów tej grupy w zbiorze treningowym: 19/148

Charakterystyka pacjenta:

- -mężczyzna
- -poziom cukru na czczo poniżej 120 mg/dl krwi
- -wyniki ekg w spoczynku w kat. 0
- -brak dławicy wysiłkowej
- -mediana zmiennej maks. tętno 'thalach' wynosi: ~0,74 w przedziale [0,1]

Liczba pacjentów tej grupy w zbiorze treningowym: 27/148

Charakterystyka pacjenta:

- -mężczyzna
- -poziom cukru na czczo poniżej 120 mg/dl krwi
- -wyniki ekg w spoczynku w kat. 0
- -obecna dławica wysiłkowa
- -mediana zmiennej maks. tętno 'thalach' wynosi: ~0,48 w przedziale [0,1]

Liczba pacjentów tej grupy w zbiorze treningowym: 17/148

Charakterystyka pacjenta:

- -mężczyzna
- -poziom cukru na czczo poniżej 120 mg/dl krwi
- -wyniki ekg w spoczynku w kat. 2
- -obecna dławica wysiłkowa
- -mediana zmiennej maks. tętno 'thalach' wynosi: ~0,47 w przedziale [0,1]

Liczba pacjentów tej grupy w zbiorze treningowym: 15/148

Klaster -1 pacjenci bez grupy

Charakterystyka pacjenta:

-mężczyzna lub kobieta
-w tej grupie znajdują się wszyscy pacjenci z podwyższonym poziomem cukru na czczo we krwi (hiperglikemia)
-reszta zmiennych nie daje charakterystycznych wyników

Liczba pacjentów tej grupy w zbiorze treningowym: 30/148

Uwzględniliśmy wszystkie uwagi zespołu

walidacji.

Źródło danych: https://www.kaggle.com/datasets/kingabzpro/heart-disease-patients

Źródła ilustracji:

https://www.istockphoto.com/pl/ilustracje/robotic-heart?page=8

https://plus.maths.org/content/will-machine-learning-replace-mathematicians

https://pl.freepik.com/darmowe-wektory

Dziękujemy za uwagę:)

