Residual(残差) BIBD と Derived(派生) BIBD

定理 2.1 では symmetric な BIBD の任意の二つのブロックには λ 個の共通する点を持つことを学習した。これを踏まえて新たな BIBD を構成する。

派生デザイン (Derived design) … 点集合をあるブロック A_0 、 A_0 とその他のブロックの共通集合を新たなブロックとしたデザイン。(X, A) が (v, k, λ) -BIBD とすると以下のように表せる。

$$\mathbf{Der}(X,\mathcal{A},A_0)=(A_0,\{A\cap A_0:A\in\mathcal{A},A\neq A_0\})$$

残差デザイン (Residual design) ・・・・ 点集合を X とあるブロック A_0 の差集合、 A_0 とその他のブロックの差集合を新たなブロックとしたデザイン。 (X, A) が (v, k, λ) -BIBD とすると以下のように表せる。

$$\mathbf{Res}(X, \mathcal{A}, A_0) = (X \setminus A_0, \{A \setminus A_0 : A \in \mathcal{A}, A \neq A_0\})$$

定理 2.8

 (X, \mathcal{A}) が symmetricな (v, k, λ) -BIBD, $A_0 \in \mathcal{A}$ に対して、 $\mathbf{Der}(X, \mathcal{A}, A_0)$ は $(k, \lambda, \lambda - 1)$ -BIBD、 $\mathbf{Res}(X, \mathcal{A}, A_0)$ は $(v - k, k - \lambda, \lambda)$ -BIBD である。

例.1) (X, A) を以下の symmetric(7,4,2)-BIBD¹とする。

 $X = \{1, 2, 3, 4, 5, 6, 7\},\$

 $\mathcal{A} = \{1234, 1257, 1367, 1456, 2356, 2467, 3457\}$

このとき、 $\mathbf{Der}(X,\mathcal{A},A_0=1234)$ を考える。 $\{A\cap A_0:A\in\mathcal{A},A\neq A_0\}=\{12,13,14,23,24,34\}$ より、 $X'=A_0,\mathcal{A}'=\{12,13,14,23,24,34\}$ とすると、 $\mathbf{Der}(X,\mathcal{A},A_0)=(X',\mathcal{A}')$ であり、これは (4,2,1)-BIBD であることがわかる。

次に $\mathbf{Res}(X, \mathcal{A}, A_0 = 1234)$ を考える。 $X \setminus A_0 = \{567\}, \{A \setminus A_0 : A \in \mathcal{A}, A \neq A_0\} = \{57, 67, 56, 56, 67, 57\}$ より、 $X' = \{5, 6, 7\}, \mathcal{A}' = \{57, 67, 56, 56, 67, 57\}$ とすると、 $\mathbf{Res}(X, \mathcal{A}, A_0) = (X', \mathcal{A}')$ であり、これは (4,2,2)-BIBD であることがわかる。

例.2) (X, A) を以下の symmetric (7,3,1)-BIBD とする。

 $X = \{1, 2, 3, 4, 5, 6, 7\},\$

 $\mathcal{A} = \{123, 145, 167, 246, 257, 347, 356\}$

このとき、 $\mathbf{Der}(X, \mathcal{A}, A_0 = 145)$ を考える。 $\{A \cap A_0 : A \in \mathcal{A}, A \neq A_0\} = \{1, 1, 4, 5, 4, 5\}$ より、 $X' = A_0, \mathcal{A}' = \{1, 1, 4, 5, 4, 5\}$ とすると、 $\mathbf{Der}(X, \mathcal{A}, A_0) = (X', \mathcal{A}')$ であり、これは (3, 1, 0)-BIBD であることがわかる。

次に $\mathbf{Res}(X,\mathcal{A},A_0=145)$ を考える。 $X\setminus A_0=\{2,3,6,7\},\{A\setminus A_0:A\in\mathcal{A},A\neq A_0\}=\{23,67,26,27,37,36\}$ より、 $X'=\{2,3,6,7\},\mathcal{A}'=\{23,67,26,27,37,36\}$ とすると、 $\mathbf{Res}(X,\mathcal{A},A_0)=(X',\mathcal{A}')$ であり、これは (4,2,1)-BIBD であることがわかる。

 $[\]lambda(v-1) = k(k-1)$ が成立するため、symmetric であることがわかる

定理 2.8 の説明

 $\mathbf{Der}(X, \mathcal{A}, A_0)$ が $(k, \lambda, \lambda - 1)$ -BIBD であることについて

- ・点集合の濃度 $|A_0|$ は元の BIBD のブロックサイズであり、k
- ・定理 2.1 より、symmetric な BIBDのブロックには λ 個の共通要素を持つため、 $|A\cap A_0|=\lambda$ よりブロックサイズは λ
- igl|・点集合 A_0 内の任意の点 x,y の会合数は、ブロックから A_0 は除くため、 $\lambda-1$

 $\mathbf{Res}(X, \mathcal{A}, A_0)$ が $(v - k, k - \lambda, \lambda)$ -BIBD であることについて

- ・点集合の濃度 $|X\setminus A_0|$ は、(元の点集合の濃度 ${\bf v}$) (ブロックサイズ ${\bf k}$) = ${\bf v}$ ${\bf k}$
- $\left\{oldsymbol{\cdot} |A\cap A_0|= \lambda$ より、ブロック $A\setminus A_0$ はブロックサイズ $k-\lambda$
- $iggl \cdot$ 点集合の要素は減るが、会合数は変化せず λ