## Utilização de Métodos Númericos para Interpolação de Pontos

Jhonattan C. B. Cabral<sup>1</sup>, Daniel M. P. Carvalho<sup>1</sup>

<sup>1</sup>Instituto de Informática e Matemática Aplicada (DIMAp) Universidade Federal do Rio Grande do Norte (UFRN)

jhonattan.yoru@gmail.com, danielmarx08@gmail.com

**Abstract.** Task applied in the first unit of the discipline of Numerical Calculus (DIM0404), aims to improve and apply the knowledge acquired in order to resolve problems involving interpolation methods.

**Resumo.** Tarefa aplicada na segunda unidade da disciplina de Cálculo Numérico (DIM0404), tem como objetivo aprimorar e aplicar os conhecimentos adquiridos para resolução de problemas envolvendo métodos de interpolação de pontos.

# 1. Interpole os pontos (0,1), (2,3), (4,-1), (7,4) utilizando o polinômio de Newton.



Plote o gráfico do polinômio resultante em conjunto com os pontos.

#### 1.1. RESPOSTA

Iniciaremos a resolução identificando os seguintes pares da relação:

$$\begin{array}{c|cc}
x & f(x) \\
0 & 1 \\
2 & 3 \\
4 & -1 \\
7 & 4
\end{array}$$

Agora podemos utilizar o polinômio interpolador de Newton de grau 3:

$$P_3(x) = f(x_0) + (x - x_0)\Delta_1 + (x - x_0)(x - x_1)\Delta_2 + (x - x_0)(x - x_1)(x - x_2)\Delta_3$$

Cada  $\Delta_n$  mostrado no polinômio acima trata-se de uma diferença dividida calculada a seguir:

$$\frac{\Delta_1}{\frac{3-1}{2-0} = 1} \quad \frac{\Delta_2}{\frac{3-1}{4-0} = -\frac{3}{4}}$$

$$\frac{-1-3}{4-2} = -2$$

$$\frac{\frac{5}{3}+2}{7-2} = \frac{11}{15}$$

Após encontrarmos os valores das diferenças divididas e como sabemos os valores de cada  $x_n$  dado pelo problema, basta substituir no polinômio e desenvolvê-lo:

$$P_3(x) = 1 + (x - 0) - 1 + (x - 0)(x - 2)(-\frac{3}{4}) + (x - 0)(x - 2)(x - 4)(\frac{89}{420})$$

$$P_3(x) = 1 + x - \frac{3}{4}x^2 + \frac{3}{2}x + (x^3 - 4x^2 - 2x^2 + 8x)(\frac{89}{420})$$

$$P_3(x) = 1 + x - \frac{3}{4}x^2 + \frac{3}{2}x + \frac{89}{420}x^3 - \frac{534}{420}x^2 + \frac{712}{420}x$$

Resultado:

$$P_3(x) = \frac{89}{420}x^3 - \frac{283}{140}x^2 + \frac{881}{210}x + 1$$

Abaixo conseguimos observar o gráfico do polinômio resultante, percebemos que os pontos dados pelo problema passam exatamente por ele.

Figura 1. Gráfico do polinômio



2. Implemente no computador o método de interpolação por polinômio de Lagrange ou de Newton para avaliar a função interpoladora em um x qualquer. Teste com um exemplo que contém pelo menos 4 pontos.

#### 2.1. Código

O Código a seguir, corresponde ao que é pedido na questão. Optou-se por desenvolver um algoritmo que interpole pontos pelo método de lagrange.

#### 2.1.1. lagrange.cpp

```
* @file lagrange.cpp
   * @brief Universidade Federal do Rio Grande Do Norte (UFRN)
   * @brief DIM0404 - Calculo Numerico
   * @brief Tarefa: Interpolar pontos pelo metodo de lagrange
   * @date 27/03/2018
   * @author Jhonattan Cabral e Daniel Marx.
   */
  #include<iostream>
10
  #include<cmath>
11
12
  float lagrange(float *, float *, int, float);
13
14
  int main()
15
16
      float xbarra = 0; //Valor que se deseja interpolar.
17
      float ybarra = 0; //f(xbarra).
18
19
      //Testando com dados da questao 1.
```

```
float x[4] = \{0, 2, 4, 7\};
21
       float y[4] = \{1, 3, -1, 4\};
22
23
       std::cout << "Insira um x para obter o f(x): ";</pre>
24
       std::cin >> xbarra;
25
       ybarra = lagrange(x, y, 4, xbarra);
27
       std::cout << ">>f(" << xbarra << ") = " << ybarra << std::
28
          endl:
       return 0;
29
30
31
  float lagrange(float * x, float * y, int size, float ponto)
32
33
       float result = 0; //Declarando variavel do somatorio (
34
          resultado final).
       for (int i = 0; i < size; ++i)
35
              aux = 1.0; //Declarando variavel do produtorio.
         int
37
           for(int j = 0; j < size; ++j)
38
            {
39
                if(i!=j)
40
                {
41
                     //Produtorio da interpolação polinomial de
42
                        Lagrange.
                    aux = aux * (ponto - x[j])/(x[i] - x[j]);
43
                }
44
           }
45
            //Somatorio da interpolação polinomial de Lagrange.
46
           result = result + y[i] * aux;
47
        }
48
        return result;
49
50
```

No método **Lagrange** do código acima, é implementado o algoritmo para interpolação. Esse método tem como entrada 04 parâmetros, que são: dois vetores, **x** e **y**, que correspondem às coordenadas dos pontos nos eixos das abssissas e ordenadas respectivamente; um inteiro, que corresponde ao número de pontos; e um número de precisão simples. O método terá como retorno o resultado da função interpoladora dos pontos passados nos vetores, em função do valor de precisão simples.

3. Um designer precisa obter vários tons de cinza em um programa de computador. O preto representa o valor 0 na escala de cinza, enquanto o branco representa 255 nessa mesma escala. Represente os tons de cinza em função de um parâmetro k que varia de 0 a 1, isto é, expresse a função f(k) tal que f(0) = 0 e f(1) = 255.

A tabela a seguir descreve os dois pontos de f(k) que foi passado na questão:

$$\begin{array}{c|cc}
k & f(k) \\
0 & 0 \\
1 & 255 \\
\end{array}$$

Para encontrar a função f(k) que passe por esses dois pontos, vamos interpolá-los utilizando os polinômios de newton, a expressão do polinômio será:

$$f(x) = f(x_0) + (x - x_0) * \Delta_1$$
; Sendo:  $\Delta_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ 

Fazendo as substituições pelos valores que temos, vamos obter:

$$f(x) = 0 + (x - 0) * 255$$
, que implica em:  $f(x) = 255x$ 

4. Em uma animação dois quadrados possuem mesmo centro, o segundo quadrado porem está rotacionado 45 graus. Ambos possuem mesmo lado no início da animação (quando k=0). O animador estabelece que no final da animação (quando k=1) o primeiro quadrado dobrara o seu lado e o segundo reduzirá o seu lado pela metade. Em que instante de tempo da animação (valor de k) o segundo quadrado estara exatamente encaixado no primeiro quadrado?

A questão nos informa que temos dois quadrados, inicialmetne com lados de mesmo tamanho, e uma variável  $\mathbf{k}$  que assume valores no intervalo [0,1], representando o tempo de uma animação. Os lados do primeiro quadrado variam até dobrar de tamanho no instante em que  $\mathbf{k}$  é 1, enquanto que os lados do segundo, variam até que seu tamanho esteja reduzido pela metade do inicial, no instante  $\mathbf{k} = 1$ .

Para resolvermos o problema de identificar em que instante da animação o segundo quadrado estará exatamente encaixado no primeiro, precisamos primeiramente descobrir a função de variação dos lados de cada um dos dois, e faremos isso por meio da interpolação. As tabelas a seguir apresentam os pontos de cada um desses quadrados ao qual já conhecemos, e serão eles que serão interpolados e gerarão duas as funções que buscamos.

Vale salientar que o valor **l** é o do lado inicial dos quadrados, e Q1(k) e Q2(k) estão em função do instante de animação.

$$\begin{array}{c|c}
k & Q1(k) \\
\hline
0 & L \\
1 & 2L
\end{array}$$

Acharemos Q1(k) e Q2(k) pelo método de interpolação dos polinômios de Newton. Como nesse caso tem-se apenas dois pontos para achar cada função, a expressão do polinômio será:

$$P(x) = P(x_0) + (x - x_0) * \Delta_1$$
; Sendo:  $\Delta_1 = \frac{P(x_1) - P(x_0)}{x_1 - x_0}$ 

$$\begin{array}{c|c}
k & Q2(k) \\
\hline
0 & L \\
1 & L/2
\end{array}$$

### **Encontrando Q1(k):**

 $\Delta_1$  de Q1(k) será:  $\frac{2L-L}{1-0}$ ; que é igual a L

Com isso, temos que:

$$Q1(k) = L + (L - 0)L$$
; E simplificando,  $Q1(k) = L(x + 1)$ 

#### Encontrando Q2(k):

 $\Delta_1$  de Q2(k) será:  $\frac{\frac{L}{2}-L}{1-0}$ ; que é igual a  $-\frac{L}{2}$ 

Com isso, temos que:

$$Q_2(k) = L + (L - 0) \frac{-L}{2}$$
; E simplificando,  $Q_2(k) = L(\frac{-x}{2} + 1)$ 

Agora que temos as duas funções para cada um dos quadrados, vamos achar uma relação entre elas para calcular o exato momento em que o segundo quadrado está exatamente encaixado no primeiro. A figura a seguir representa esse momento e vamos utilizá-la para descrever a relação que iremos encontrar.



O quadrado maior é o primeiro quadrado e o menor o segundo. Nesse instante, o lado do maior é de tamanho X e o do menor, de tamanho Y. Nosso objetivo agora é achar uma relação de Y em função de X, para podermos utilizar no cálculo do instante k em que a situação da imagem ocorre.

Essa relação pode ser achada aplicando-se o teorema de pitágoras, que diz que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos. Nesse caso, o lado Y(em azul na figura) será a hipotenusa, e os catetos(em vermelho na figura) serão, cada um, a metade do lado X. Assim, a expressão fica:  $Y^2 = \frac{X^2}{2} + \frac{X^2}{2}$ 

Resolvendo-a teremos então que: Y =  $\frac{X}{\sqrt[3]{2}}$ . E pondo X em função de Y, a expressão fica:  $X = Y\sqrt[3]{2}$ . Aplicando essa relação às funções Q1(k) e Q2(k), teremos que achar k de modo que  $Q1(k) = Q2(k)\sqrt[3]{2}$ .

Substituindo as funções na expressão:

$$L(k+1) = \sqrt[2]{2} * L(\frac{-k}{2} + 1)$$

Dividindo ambos os lados por L, ficamos com:

$$k+1 = \sqrt[2]{2} * (\frac{-k}{2} + 1)$$

Multiplicando a raiz do segundo lado pelos termos entre parêntesis e deixando a expressão toda sobre 2:

$$k + 1 = \frac{-\sqrt[2]{2}k + \sqrt[2]{2}}{2}$$

Pondo termos com variáveis no primeiro lado e termos só com constantes no segundo:

$$k(2 + \sqrt[2]{2}) = \sqrt[2]{2} - 2$$

Isolando k:

$$k = \frac{\sqrt[2]{2} - 2}{2 + \sqrt[2]{2}}$$

Resolvendo a divisão, temos então que o valor de k é de aproximadamente 0,2426. Assim encontramos o instante em que os dois quadrados estão exatamente encaixados um no outro.