Algebra II: Tutorial 5

March 16, 2022

Problem 1. Suppose that p and q are distinct primes. Show that $\mathbb{Q}(\sqrt{p}, \sqrt{q}) = \mathbb{Q}(\sqrt{p} + \sqrt{q})$.

Problem 2. Let L be a finite field extension of K, and consider $\alpha, \beta \in L$. If α and β have the same minimal polynomial in K[x], then $K(\alpha)$ and $K(\beta)$ are isomorphic. Is the converse true?

Problem 3. Let L be a field generated over $K \subset L$ by two elements α, β . Let $p = [K(\alpha): K]$ and $q = [K(\beta): K]$ and assume that p and q are relatively prime.

- 1. Prove that [L:K] = pq.
- 2. If α is a fifth root of 2 and β a seventh root of 3, deduce that $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}]=35$.

Problem 4. Let L/K be a field extension and let $f(x), g(x) \in K[x]$. Show that the greatest common divisor (with leading coefficient 1) of f(x) and g(x) in L[x] is the same as the greatest common divisor of f(x) and g(x) in K[x].