Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

лабораторная работа №1 Синтез помехоустойчивого кода Вариант №15

Выполнил: Пивоваров Р. Н.

Группа: Р3131

Проверил: Авксентьева Е. Ю.

К.п.н. Доцент

 Γ . Санкт-Петербург, 2024 г.

Оглавление

Задание	3
основные этапы вычисления	
задание 1	
Задание 2	
Задание 2.1 – № 58	
Задание 2.2 – № 50	
Задание 2.3 – № 72	
Задание 2.4 – № 94	
Задание 3	
Задание 4	
Задание 4 – № 16	
Задание 5	
Дополнительное задание	
Заключение	
Список литературы	ð

лабораторная работа №1 Перевод чисел между различными системами счисления Задание

- 1. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 2. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

Вариант]			2
15	58	50	72	94	16

- 3. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Дополнительное задание №1. (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии

основные этапы вычисления

задание 1

Схема декодирования классического кода Хэмминга представлена на Рисунок 1

Рисунок 1

Задание 2

Задание 2.1 – № 58

\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i 4
0	0	0	1	1	0	0

Расчет синдрома:

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 0$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 0$$

 $S(s_1, s_2, s_3) = 100$, таким образом ошибка в символе r_1 .

	1	2	3	4	5	6	7
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i 3	i 4
1	X	-	X	-	X	-	X
2	-	X	X	-	-	X	X
4	_	-	-	X	X	X	X

Верное Сообщение: **1**001100

Задание 2.2 – № 50

\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i_2	i ₃	i 4
1	0	0	1	0	1	1

Расчет синдрома:

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 0$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1$$

 $S\left(s_{1},\,s_{2},\,s_{3}\right)=001,$ таким образом ошибка в символе $r_{3}.$

	1	2	3	4	5	6	7
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i ₂	i ₃	i 4
1	X	-	X	-	X	-	X
2	-	X	X	-	-	X	X
4	-	-	-	X	X	X	X

Верное Сообщение: 100<mark>0</mark>011

Задание 2.3 – № 72

\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i 4
0	0	0	1	1	0	1

Расчет синдрома:

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

 $S(s_1, s_2, s_3) = 011$, таким образом ошибка в символе i_3 .

	1	2	3	4	5	6	7
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	\mathbf{r}_3	i_2	i ₃	i 4
1	X	-	X	-	X	-	X
2	-	X	X	-	-	X	X
4	-	-	-	X	X	X	X

Верное Сообщение: 0001111

Задание 2.4 – № 94

\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i ₄
1	0	1	0	1	1	0

Расчет синдрома:

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 1 \bigoplus 0 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 0 = 0$$

$$s_3=r_3\, \bigoplus\, i_2\, \bigoplus\, i_3\, \bigoplus\, i_4=0\, \bigoplus\, 1\, \bigoplus\, 1\, \bigoplus\, 0=0$$

 $S(s_1, s_2, s_3) = 100$, таким образом ошибка в символе r_1 .

	1	2	3	4	5	6	7
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i_2	i ₃	i 4

1	X	-	X	-	X	-	X
2	-	X	X	-	-	X	X
4	-	-	-	X	X	X	X

Верное Сообщение: **0**010110

Задание 3

Схема декодирования классического кода Хэмминга 15 4 представлена на Рисунок 2

Задание 4

Задание 4 – № 16

\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i 2	i 3	i 4	r ₄	i 5	i 6	i ₇	i 8	i 9	i 10	i 11
0	1	1	0	0	0	1	0	0	0	0	0	0	0	1

Расчет синдрома:

 $s_1=r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11}=0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 1$ $s_2=r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11}=1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$ $s_3=r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11}=0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$ $s_4=r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11}=0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 1$ $S(s_1, s_2, s_3, s_4) = 1001$, таким образом ошибка в символе i_5 .

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	\mathbf{i}_2	i ₃	i ₄	r ₄	i ₅	i_6	i ₇	i ₈	i ₉	i ₁₀	i ₁₁	S
1	X	-	X	-	X	-	X	_	X	-	X	-	X	-	X	s_1

4	-	-	-	X	X	X	X	-	-	-	-	X	X	X	X	S 3
8	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	S4

Верное сообщение: 01100010 1000001

Задание 5

Число информационных разрядов i = (58 + 50 + 72 + 94 + 16) * 4 = 1160.

Определение минимального числа контрольных разрядов: $2^r \ge r + i + 1$.

Подставим значения: $2^r \ge r + 1161$

Найдем г перебором:

Очевидно что r < 11 не подходит так как $2^{10} = 1024$, 1024 < 1171

Возьмём r = 11: $2048 \ge 11 + 1161 -$ подходит. Значит r = 11.

Таким образом коэффициент избыточности: $k=r/(i+r)=11/1171\approx 0.00939368061$

Дополнительное задание

Ссылка на листинг программы на Github

Заключение

В результате выполнения лабораторной работы я научился находить ошибки в переданном сообщении с помощью классического кода хэмминга и искать сколько проверочных бит нужно для заданного кол-ва символов.

Список литературы

- 1. Балакшин П.В., Соснин В.В., Калинин И.В., Малышева Т.А., Раков С.В., Рущенко Н.Г., Дергачев А.М. Информатика: лабораторные работы и тесты: Учебно-методическое пособие / Рецензент: Поляков В.И. Санкт-Петербург: Университет ИТМО, 2019. 56 с. экз. —
- 2. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. Указания / сост. Д. В. Пьянзин. — Саранск: Изд-во Мордов. ун-та, 2009 — 16с.