Metodi di Apprendimento Automatico per l'analisi automatica della deambulazione umana sviluppo e verifica di un applicazione per *Smartphone*

Ahadu Tsegaye

Relatore Prof. Angelo Maria Sabatini Co-relatore Prof. Maria Cecilia Verri

Università degli Studi di Firenze Dipartimento di Informatica

in collaborazione con

L'Istituto di BioRobotica Scuola Superiore Sant'Anna di Pisa

22 Febbraio 2012

Indice

Introduzione

Problema: segmentazione

Soluzione: Hidden Markov Models (HMM)

Valutazione

Stato dell'arte

Parametri della deambulazione Stima dei parametri della deambulazione in letteratura

Lavoro

Parte I. Modellazione della deambulazione

Parte II. Applicazione AndroidTM

Parte III. Valutazione

Risultati

Conclusioni

Problema

Analisi automatica ed in linea della deambulazione umana

- analisi: estrazione di parametri temporali della deambulazione (Segmentazione)
- automatica: che funziona senza interventi umani
- in linea (online): vincolo temporale sulla latenza tra verificarsi di un evento ed il tempo di rilevamento del sistema

Soluzione: prototipo

Logica

- Modello stocastico per sequenze temporali della deambulazione: HMM addestrata su n soggetti
- Algoritmo di decodifica in linea: versione in linea dell'algoritmo di Viterbi

Hardware

- Acquisizione dati deambulazione: giroscopio monoassiale contenuto in una IMU (Inertial Measurement Unit)
- Posizionamento: collo del piede ed orientato con l'asse sensibile sul piano mediale-laterale
- Trasmissione: comunica dati e riceve comandi via Bluetooth

Software

Controllo, elaborazione e visualizzazione: Smartphone AndroidTM

Valutazione del prototipo

Metodo di verifica del funzionamento

Stima velocità sistema ideato : IMUspeed

Stima velocità GPS: GPSspeed

Confronto: IMUspeed ≈ GPSspeed ?

Parametri della deambulazione

Modellazione

- 1. Heel Strike
- 2. Foot Flat
- Heel Off
- Toe Off

Valutazione

Velocità: v [m/s]

2. Cadenza: $C = num \, passi/s$

Stima dei parametri della deambulazione in letteratura

Miyazaki (1997) [1]

Strumento: Giroscopio uniassiale

Posizione: coscia

Metodo: integrazione velocità angolare

Sabatini et al (2005) [3]

Strumento: 1 Giroscopio monoassiale,

2 accelerometri biassiali **Posizione**: collo del piede **Metodo**: basato su soglie

(threshold-based)

Aminian et al.(2002) [2]

Strumento: 2 Giroscopi
Posizione: coscia e stinco
Modello: modello biomeccanico a
pendolo invertito della gamba
Metodo: basato sulle trasformate

Wavelet

Pfau et al (2008) [4]

Strumento: 1 accelerometro triassiale, 1 giroscopio triassiale, un magnetometro

Posizione: dorso e torace

Modello: HMM per la segmentazione

del galoppo

Raccolta e morfologia dei dati

Attività	cammino
Soggetti	6
Velocità	{3, 4, 5, 6, 7} km/h
Durata	2 minuti per attività
Strumenti	IMU, Vicon, tappeto rullante
Luogo	Laboratorio
Dati raccolti	valori giroscopio monoassiale
Freq. camp	100 Hz
Velocità Durata Strumenti Luogo Dati raccolti	{3, 4, 5, 6, 7} km/h 2 minuti per attività IMU, Vicon, tappeto rullante Laboratorio valori giroscopio monoassiale

HMM per l'analisi della deambulazione

HMM minimale

- S = {HS, FF, HO, TO}
- Sinistra-Destra ciclico

$$a_{ij} > 0 \Leftrightarrow \begin{cases} j = i \\ j = i + 1 \\ i = N e j = 1 \end{cases}$$

Emissioni gaussiane monovariate

$$b_j(x) = \mathcal{N}(x, \mu_j, \sigma_j) = \frac{1}{\sigma_j \sqrt{2\pi}} \mathbf{e}^{-1}$$

Addestramento e validazione modello (1/2): etichettamento

$$ightharpoonup \pi_i = N_i/N_{tot}$$

▶
$$a_{ij} = \begin{cases} C/N_i & \text{se } j = (i+1)\%Q & C \text{ cicli deambulazione nel } Training Set \\ 1 - C/N_i & \text{se } j = i \\ 0 & \text{altrimenti} \end{cases}$$

$$b_i(\Omega(t)) = \left\langle \mu_i = \frac{1}{N_i} \sum_{t=1}^T \Omega(t), \quad \sigma_i = \sqrt{\frac{1}{N_i - 1} \sum_{t=1}^T (\Omega(t) - \mu_i)^2} \right\rangle$$

Addestramento e validazione modello (2/2): leave one subject out cross validation

Validazione della capacità di generalizzazione del modello

P ₁						run ₁
	P ₂					run ₂
		P ₃				run ₃
			P ₄			run₄
				P ₅		run ₅
					P ₆	run ₆

La segmentazione

Algoritmo di Viterbi

Data $\langle HMM, O \rangle$, la decodifica restituisce sequenza più probabile di stati S^* .

- 1. Fase Forward: costruzione di sequenze parziali a probabilità massima
- 2. Fase Backtracking: calcolo a ritroso della sequenza più probabile

Problema

Backtracking non in linea

Soluzione

Short-Time Viterbi Bloit-Rodet 2008 [5]

Funzionamento Viterbi in linea

- 1. creazione di una finestra temporale [a, b]
- 2. applicazione Viterbi solo fase Forward
- 3. Backtracking da ciascuno stato finale
- 4. le sequenze da a fino a τ ($\tau \le b$) combaciano \Rightarrow segmentazione
 - ▶ spostamento finestra $a = a + \tau$ e b = a + 1 e fase (2)
- altrimenti
 - ▶ allargamento finestra b = b + 1 e fase (2)

Architettura dell'applicazione

Interfaccia utente

Criteri di programmazione

- semplicità
- classe Activity
- programmazione a eventi

Gestione processi, Comunicazione

Thread e Android: massima reattività (5s di blocco tollerato)

- UI-thread (main) delega operazioni lunghe o potenzialmente bloccanti.
- Asincrono: un task viene eseguito da worker thread ed il risultato viene pubblicato sullo UI-thread mediante Handler

Comunicazione

- ▶ Intent: sistema di messaggistica per Activity ed altri componenti
- Application: stato globale dell'applicazione

Implementazione HMM e Viterbi in Java - AndroidTM

Package objects

HMM
DiscreteHMM
NormalHMM

+setcontB(continuousEmissionMTX)

Package services

HMMOperations
HMMParamsInitializer

Package::services HMMOperations +viterbi(HMM) +viterbiOnline(HMM)

+setB(emissionMtx)

Package::services HMMParamsInitializer +HMMParamsInitializer(String, HMM) +getHMM()

Valutazione delle prestazioni del sistema

Attività	cammino			
Soggetti	1			
Velocità	{2, 3, 4, 5, 6, 7, 8} km/h			
Durata	1 : 30 minuti per attività			
Strumenti	IMU, Smartphone, tappeto rullante			
Luogo	Laboratorio			
Dati raccolti	valori giroscopio segmentati			
Freq. camp.	100 Hz			

Risultati: stima della velocità

Risultati: stima della distanza

Conclusioni

Successi

- è in grado di segmentare in linea la deambulazione
- in grado di generalizzare
- hardware minimale: Smartphone e singolo giroscopio

Possibile applicazione

Spia di deambulazione anormale

Sviluppi futuri

- Sperimentazione su larga scala: addestramento e verifica
- ► Riconoscimento di attività mediante gerarchia di HMM

Grazie!

Definizione di un'Hidden Markov Model (HMM)

HMM = $< N, M, \mathbf{A}, \mathbf{B}, \pi >$ dove:

- 1. N = |S|: stati nascosti
- 2. M = |V|: alfabeto osservazione
- 3. $\mathbf{A}\{a_{ij}\}$: probabilità di transizione $a_{ij} = \wp[q_t = S_i | q_{t-1} = S_i]$
- 4. **B** :probabilità di emissione $b_j(k) = \wp[v_k \text{ all'istante } t | q_t = s_j]$
- 5. π : probabilità a priori $\pi_i = \wp(q_1 = S_i)$

La segmentazione: algoritmo di Viterbi

```
Viterbi
```

```
1: {Inizializzazione}
 2: for i = 0 to N do
 3: \delta_{i,1} = \pi_i b_i(o_1)
     \psi_{i,1} = 0
 4:
 5: end for
6: {Iterazione}
 7: for t = 2 to T do
         for i = 1 to N do
 8:
 9:
             \delta_{i,t} = \max_{1 \le i \le N} [\delta_{j,t-1} a_{j,i}] * b_i(o_i)
             \psi_{i,t} = \arg\max_{1 < i < N} [\delta_{j,t-1} a_{j,i}]
10:
11:
          end for
12: end for
13: {Terminazione}
14: P* = \max_{1 \le i \le N} [\delta_{i,T}]
15: q_{T}* = \arg \max_{1 \le i \le N} [\delta_{i,T}]
16: {Backtracking}
17: for t = T - 1 to 1 do
     q*_t = \psi_{q*_{t+1},t+1}
19: end for
```


K. Aminian, B. Najafi, C. Bula, P. F. Leyvraz, and P. Robert, "Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes," *Journal of Biomechanics*, vol. 35(5), pp. 689–99, 2002.

A. M. Sabatini, C. Martelloni, S. Scapellato, and F. Cavallo, "Assessment of walking features from foot inertial sensing," *IEEE Transactions on Biomedical Engineering*, vol. 52, pp. 486–494, 2005.

T. Pfau, M. Ferrari, K. Parsons, and A. Wilson, "A hidden markov model-based stride segmentation technique applied to equine inertial sensor trunk movement data," *Journal of Biomechanics*, vol. 41, pp. 216–220, 2008.

X. R. Julien Blot, "Short-time viterbi for online hmm decoding: Evaluation on a real-time phone recognition task," *Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference*, pp. 1–8, 4/4/2008.

