Математическое моделирование задач выбора с расплывчатой неопределенностью на основе методов представления и алгебры нечетких параметров

Я. А. Воронцов

Научный руководитель: М.Г.Матвеев, д.т.н., профессор. Специальность 05.13.18 — математическое моделирование, численные методы и комплексы программ ФГБОУ ВПО «Воронежский государственный университет»

Воронеж, 2015

Представление нечёткой информации

 нечёткие множества (подмножества предопределённого универсального множества X)

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) | x \in X\}; E(\mu_{\tilde{A}}(x)) = [0; 1]$$
 (1)

- ullet нечёткие числа (подмножества множества $\mathbb R$)
 - кусочная непрерывность $\mu_{\tilde{A}}(x)$;
 - выпуклость $\mu_{\tilde{A}}(x)$

$$\forall x_1, x_2 \in \mathbb{R}; \forall \gamma \in [0; 1]$$

$$\mu_{\tilde{A}}(\gamma x_1 + (1 - \gamma) x_2) \geqslant \min \left\{ \mu_{\tilde{A}}(x_1), \mu_{\tilde{A}}(x_2) \right\}$$
(2)

• нормальность $\mu_{\tilde{A}}(x)$

$$\sup_{\mathbf{x}\in\mathbb{R}} \left(\mu_{\tilde{A}}(\mathbf{x})\right) = 1 \tag{3}$$

Классификация нечётких моделей

- Исследуются модели, использующие чёткие отношения и нечёткие параметры (модели второго типа)
- Существующие подходы к нечётким вычислениям далеко не всегда применимы в моделях второго типа

Особенности существующих способов мягких вычислений

 требуются значительные вычислительные ресурсы (Ротштейн)

$$\tilde{y} = f(\tilde{x}_1 \dots \tilde{x}_n) \rightarrow N = O(k^n)$$

 неоправданно расширяется носитель функции принадлежности

$$[2; 4] \cdot [1; 3] = [2; 12];$$
 $d = 12 - 2 = 10;$ $[2; 4] \cdot [99; 101] = [198; 404];$ $d = 404 - 198 = 206.$

 происходит выход за класс используемых в арифметике чисел из-за искажения формы функции принадлежности;

$$\tilde{C} = \tilde{A} * \tilde{B} = \int_{x_{\tilde{c}}^{L}}^{m_{\tilde{c}}} \frac{\mu_{\tilde{C}}\left(x\right)}{x} + \int_{m_{\tilde{c}}}^{x_{\tilde{c}}^{R}} \frac{\mu_{\tilde{c}}\left(x\right)}{x}; \quad \mu_{\tilde{c}}\left(x\right) = k\sqrt{x} + b$$

Особенности существующих способов мягких вычислений

• ограничивается область определения функции принадлежности

$$\begin{split} \tilde{A} &= \left(m_1, a_1, b_1\right); \quad \tilde{B} = \left(m_2, a_2, b_2\right); \\ \tilde{A} \times \tilde{B} &= \left(m_1 m_2, m_2 a_1 + m_1 a_2, m_2 b_1 + m_1 b_2\right); \quad \tilde{A}, \tilde{B} > 0 \\ \tilde{A} \times \tilde{B} &= \left(m_1 m_2, m_2 a_1 - m_1 b_2, m_2 b_1 - m_1 a_2\right); \quad \tilde{A} > 0, \tilde{B} < 0 \\ \tilde{A} \times \tilde{B} &= \left(m_1 m_2, -m_2 b_1 - m_1 b_2, -m_2 a_1 - m_1 a_2\right); \quad \tilde{A}, \tilde{B} < 0 \end{split}$$

 нарушаются классические отношения равенства и частичного порядка.

$$\left(ilde{A}+ ilde{B}
ight)- ilde{B}
eq ilde{A}$$

Цель и задачи исследования

Цель: построение и исследование моделей учёта нечёткой неопределённости, обеспечивающих требуемые свойства решения (ограничение роста неопределённости, сохранение истинности модельных отношений, устойчивость решения) различных прикладных задач, а также разработка методов эффективного численного решения на основе вводимых моделей **Задачи**:

- анализ существующих методик нечётких вычислений с точки зрения сохранения свойств решения задач;
- разработка модели представления нечётких чисел, позволяющей максимально сохранять исходную экспертную информацию и обеспечить требуемые качественные свойства решений (устойчивость, сохранение чётких математических соотношений и т.п.);

Цель и задачи исследования

Задачи:

- разработка методики эффективной численной реализации решения задач с нечёткими параметрами, основанной на подходящих алгебраических структурах и её тестирование на примере задачи сетевого планирования с нечёткими параметрами;
- разработка и верификация программного обеспечения, реализущего предложенную модель представления нечётких параметров и методики численного решения задач с нечёткими параметрами.

Основные понятия

ullet Треугольное нечёткое число $ilde{A} = \langle m, a, b
angle$

$$\mu_{\tilde{A}}(x) = \begin{cases} \dfrac{x-m+a}{a}; & x \in [m-a;m] \\ \dfrac{m+b-x}{b}; & x \in (m;m+b] \\ 0; & \text{в остальных случаях} \end{cases}$$
 (4)

ullet Горизонтальная форма (Пегат) $extit{X}_lpha = \left[extit{x}^{ extit{L}}(lpha) ; extit{x}^{ extit{R}}(lpha)
ight]$

$$\begin{cases} x^{L}(\alpha) = m - a + a\alpha \\ x^{R}(\alpha) = m + b - b\alpha \end{cases}$$
 (5)

 Треугольное число LL (RR)-типа — правый (левый) коэффициент нечёткости числа равен нулю

Преобразование L

• Переход к интервальной неопределенности

$$\tilde{Y} = f\left(\tilde{X}, \tilde{A}\right) \to \bigcup_{\alpha=0}^{\infty} y_{\alpha} = f\left(X_{\alpha}, A_{\alpha}\right)$$
 (6)

• Формализованное представление lpha-интервала с помощью преобразования L

$$\bar{x}(\alpha) = L(X_{\alpha}) = \lambda x^{L}(\alpha) + (1 - \lambda) x^{R}(\alpha); \lambda \in [0; 1]$$
 (7)

• Синтез модифицированного решения

$$\tilde{Y}^* = \bigcup_{\alpha}^{\infty} f(L(X_{\alpha}), L(A_{\alpha})) = \{y_{\alpha} | \mu_{\tilde{Y}^*}(y) = \alpha\}$$
 (8)

• Модифицированное нечёткое число (LL/RR-типа)

$$\mu_{\tilde{A}^*}(x) = (\bar{x}(\alpha))^{-1} \tag{9}$$

Преобразование L

Представление числа

• Вводится модель представления нечёткого числа, инвариантноя к его расположению на числовой оси $\langle m_{\tilde{A}}, d_{\tilde{A}}, AS_{\tilde{A}} \rangle; \ d_{\tilde{A}} = a + b; \ AS_{\tilde{A}} = \frac{b-a}{2}.$

Свойства преобразования L

- 1. Преобразование L сохраняет моду нечёткого числа, т. е. $\forall \lambda \in [0;1]: \ m_{\tilde{\Delta}} = m_{\tilde{\Delta}^*}.$
- 2. При некоторых значениях параметра λ преобразование L сохраняет
 - 2.1 знак степени асимметрии: $\exists \lambda \in [0;1]: sign(AS_{\tilde{A}}) = sign(AS_{\tilde{A}^*});$
 - 2.2 значение степени асимметрии: $\exists \lambda \in [0;1]: \ AS_{\tilde{A}} = AS_{\tilde{A}^*}.$
 - $\lambda^* = rac{a}{a+b} = rac{a}{d_{ ilde{A}}}$ сохраняет значение степени асимметрии.
- 3. $\forall \lambda \in [0;1]: A_{\alpha}^* \subset A_{\alpha}; \ d_{\tilde{A}} \geqslant d_{\tilde{A}^*}$ преобразование L уменьшает длину носителя нечёткого числа и оставляет α -интервалы модифицированного числа внутри α -интервалов исходного числа.

Алгебра модифицированных нечётких чисел

• Алгебра $P=\langle K;\;+,*,0,1
angle$, $K=\{ar{x}(lpha)\}\,,lpha\in[0;1]$

$$\bar{x}(\alpha) = c + k\alpha, \tag{10}$$

• Коэффициенты в (10)

$$\begin{bmatrix}
c = m + b - \lambda (a + b) \\
k = \lambda (a + b) - b
\end{bmatrix}$$

$$\lambda \in [0; 1]; c, k \in \mathbb{R}$$
(11)

• Элементы множества K линейны; достаточно знать два значения — $\bar{x}_{\tilde{A}}(0)$ и $\bar{x}_{\tilde{A}}(1) = m_{\tilde{A}}$, чтобы найти \tilde{A} :

$$\bar{x}_{\tilde{A}}(\alpha) = \bar{x}_{\tilde{A}}(0) + \alpha \left(\bar{x}_{\tilde{A}}(1) - \bar{x}_{\tilde{A}}(0)\right) =$$

$$= \alpha \bar{x}_{\tilde{A}}(1) + (1 - \alpha) \bar{x}_{\tilde{A}}(0)$$
(13)

Сложение и его свойства

• Операция сложения на множестве К

$$\bar{x}_1(\alpha) + \bar{x}_2(\alpha) = r_1(\alpha) = c_1 + c_2 + (k_1 + k_2)\alpha, r_1(\alpha) \in K$$
 (14)

• Нейтральный по сложению элемент

$$\bar{0} = 0 + 0\alpha \in K : \forall \bar{x}(\alpha) \in K :$$

$$\bar{x}(\alpha) + \bar{0} = c + k\alpha + 0 + 0\alpha = \bar{x}(\alpha)$$
 (15)

• Противоположный по сложению элемент (16)

$$-\bar{x}(\alpha) = -c - k\alpha \in K : \bar{x}(\alpha) + (-\bar{x}(\alpha)) = \bar{0}$$
 (16)

• Алгебра (K, +, 0) — абелева группа

Умножение и его свойства

• Операция умножения на множестве K

$$r_2(\alpha) = c_1c_2 + (c_1k_2 + c_2k_1 + k_1k_2)\alpha; \ r_2(\alpha) \in K$$
 (17)

• Нейтральный по умножению элемент

$$\bar{1} = 1 + 0\alpha \in K : \forall \bar{x}(\alpha) \in K \quad \bar{x}(\alpha) \cdot \bar{1} = \bar{x}(\alpha)$$
 (18)

• Обратный по умножению элемент

$$\bar{x}^{-1}(\alpha) = \frac{1}{c} - \frac{k}{c(c+k)} \alpha \in K, \ c \neq 0: \ \bar{x}(\alpha)\bar{x}^{-1}(\alpha) = \bar{1}$$

$$\tag{19}$$

- При c+k=m=0 (11) обратного элемента для $ar{x}\left(lpha
 ight)$ не существует
- ullet Алгебра обратимых элементов $\langle K, *, 1
 angle$ абелева группа
- Умножение дистрибутивно относительно сложения

Двухточечные вычисления

Для произвольной арифметической операции $g:R^2 o R$

$$\bar{x}_{\tilde{A}}(\alpha) g \bar{x}_{\tilde{B}}(\alpha) =$$

$$= \alpha \left(\bar{x}_{\tilde{A}}(1) g \bar{x}_{\tilde{B}}(1) \right) + (1 - \alpha) \left(\bar{x}_{\tilde{A}}(0) g \bar{x}_{\tilde{B}}(0) \right)$$
(20)

Двухточечные вычисления

• Существуют отображения $\Gamma:\ K \to M$ и $\Gamma^{-1}:\ M \to K$:

$$\begin{bmatrix}
P = \langle K, \Omega_{1} \rangle \\
c = \bar{x}_{\tilde{A}}(0); & \Leftrightarrow \\
k = \bar{x}_{\tilde{A}}(1) - \bar{x}_{\tilde{A}}(0); & \bar{x}_{\tilde{A}}(1) = c + k;
\end{bmatrix}$$

$$(21)$$

• Для бинарных операций $\varphi_i \in \Omega_1$, $\psi_i \in \Omega_2$ и элементов $k_1, k_2 \in K$, $m_1, m_2 \in M$:

$$\Gamma(\varphi_i(k_1, k_2)) = \psi_i(\Gamma(k_1, k_2));$$

$$\varphi_i(\Gamma^{-1}(m_1, m_2)) = \Gamma^{-1}(\psi_i(m_1, m_2))$$
(22)

• Ввиду (21), *К* и *М* суть одно и то же — изоморфизм доказывается простой подстановкой

Устойчивость ЗЛП

Задача линейного программирования с нечёткими параметрами

$$\begin{cases} f(\mathbf{x}) = \mathbf{C}\mathbf{x} \to \min; \\ \mathbf{A}\mathbf{x} = \mathbf{B}, \end{cases} \to \begin{cases} f(\mathbf{x}) = \mathbf{C}^*\mathbf{x} \to \min; \\ \mathbf{A}^*\mathbf{x} = \mathbf{B}^*, \end{cases}$$
(24)

Решение задачи устойчиво (по Тихонову), если

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall \alpha_1, \alpha_2 \in [0; 1]$$
$$|\alpha_1 - \alpha_2| < \delta \Rightarrow$$
$$\|\mathbf{x} (\alpha_1) - \mathbf{x} (\alpha_2)\| < \varepsilon \quad (25)$$

Устойчивость ЗЛП

- При $\alpha = 0$, все значения λ_S (S индекс \tilde{A}_{ij} , \tilde{B}_i , \tilde{C}_i) принимают граничные значения (0 или 1).
- Ограничения на λ для минимизации потерь экспертной информации

$$\left(\lambda_{\mathcal{S}}^{\star} - \lambda_{\mathcal{S}}\right)^{2} \to \min \tag{26}$$

- Задача векторной оптимизации ввиду противоречивости критерия (26) и целевой функции задачи (24)
- Применяется аддитивная свёртка критериев в целевой функции (27)

$$f^*(\mathbf{x}, \lambda) = \mathbf{C}^* \mathbf{x} + \gamma \sum_{S} (\lambda_S^* - \lambda_S)^2 \to \min$$
 (27)

Задача сетевого планирования

$$G=(V,E),\ |V|=n,\ |E|=m;$$
 дуги e_j — работы w_j , длительностью au_j , $j=\overline{1,m};$ вершины v_i — события z_i с временами наступления t_i , $i=\overline{1,n}$

Модифицированная задача сетевого планирования

• ЗЛП с нечёткими временными оценками

$$\begin{cases}
T(\alpha) = t_n - t_1 \to \min \\
t_{j_s} - t_{i_s} \geqslant \bar{\tau}_s(\alpha, \lambda_s), \ \forall s = \overline{1, m}.
\end{cases}$$
(28)

• При lpha=0 решается возмущённая задача

$$\begin{cases}
T^*(\alpha, \lambda) = t_n - t_1 + \gamma \sum_{s=1}^m (\lambda_s^* - \lambda_s)^2 \to \min; \\
t_{j_{s_1}} - t_{i_{s_1}} = \bar{\tau}_{s_1}(\alpha, \lambda_{s_1}), \ \forall s_1 \in S_1(1); \\
t_{j_s} - t_{i_s} \geqslant \bar{\tau}_s(\alpha, \lambda_s), \ \forall s \notin S_1(1), \ s = \overline{1, m}.
\end{cases} (29)$$

• Результат — совокупность $\left\langle ilde{T}, S_1, \lambda
ight
angle$

Решение примера (с. 19)

	A	В	С	D	E	F	G	H	1	J	K		M	N
1	Операция		Параметры				Памбармара	Тау(Альфа)	D	бда поиск	Тау(Альфа)	Гамма	06	
		XL	M XR		Α	В	Лямбда идеал	1		ода поиск	0 100		Лямбда diff	
3	A	1	2	9	1	. 3	0,2500	2	LA	0,2500	3,99999708		LA*-LA	0,000
4	В	2	4	. 5	2	1	0,6667	4	LB	0,6817	2,9550035		LB*-LB	0,000
5	С	3	7	9			0,6667		LC	0,6667	4,99999766		LC*-LC	0,000
6	D	4				3	0,4000	6	LD	0,4000	7,00000351		LD*-LD	0,000
7	E	9	10	12	1	. 2	0,3333	10	LE	0,3483	10,9550016		LE*-LE	0,000
8	F	4	- 5	(. 1	0,5000	5	LF	0,5000	5,00000421		LF*-LF	0,000
9	G	1	5	(1	0,8000	5	LG	0,8250	1,87500284		LG*-LG	0,000
10	Н	2		7			0,4000		LH	0,4250			LH*-LH	0,000
	Ф1	0	0	C		0	0,0000	0	LФ1	0,0000	0		LΦ1*-LΦ1	0,000
12														
13	События	Время	Усло	вия	Резервы	Оптимум		События		Время		Условия		Оптимум
14	1		t2-t1>tauA	7	9				1		t2-t1>tauA	4,2195	0,2195	
15			t3-t1>tauB	4					2		t3-t1=tauB	2,9550	0,0000	
16			t6-t2>tauC	7					3		t6-t2>tauC	5,7413	0,7413	
17		-	t4-t3>tauD	10					4		t4-t3>tauD	10,9550	3,9550	
18			t5-t3>tauE	10					5		t5-t3=tauE	10,9550	0,0000	
19		-	t7-t6>tauF	5					6		t7-t6>tauF	5,8242	0,8242	
20	1		t7-t5>tauG	5					7		t7-t5=tauG	1,8750	0,0000	
21		3 23	t8-t7>tauH	4	_				8	20,6690	t8-t7=tauH	4,8750	0,0000	
22			t5-t4>tauΦ1) (1					t5-t4>tauΦ1	0,0000	0,0000	

Окончательный результат: $S_1 = \{B, E, G, H\}$,

$$T(\alpha) = 20,67 + 2,33\alpha$$
,

 $\lambda = \{0, 25; 0, 68; 0, 67; 0, 4; 0, 35; 0, 5; 0, 83; 0; 43\}$

Программное обеспечение

Результаты работы (мат. моделирование)

• Разработана и исследована модель представления нечётких числовых параметров математического описания объектов в классе треугольных LR-чисел, обеспечивающая возможность построения алгебраической структуры нечётких чисел, сохраняющей требуемые свойства решения задач выбора: ограничение роста неопределённости, сохранение истинности модельных отношений и возможность интерпретации полученного результата.

Результаты работы (численные методы)

 Разработан метод приближённого численного решения задач выбора с нечёткими параметрами, инвариантный к форме математического описания задачи, позволяющий строить нечёткое решение задач как линейную комбинацию чётких решений, полученных на границах интервального представления параметров, снизить вычислительную сложность процесса получения решения и применять стандартные программные продукты для нечётких вычислений.

Результаты работы (апробация методов)

• Предложенные методы решения задач выбора с нечёткими параметрами апробированы на задаче сетевого планирования с нечёткими временными оценками. В процессе апробации рассмотрена проблема устойчивости критического пути, обосновано введение свёртки критериев для управления устойчивостью и сформулирован алгоритм, обеспечивающий получение устойчивого решения задачи. Достоверность полученного решения подтверждается его сравнением с решениями, найденным с помощью других методов, хорошо зарекомендовавших себя в мировой практике.

Результаты работы (комплексы программ)

 Разработан программный комплекс, позволяющий решать задачу оценки сроков при разработке программного обеспечения как задачу сетевого планирования с нечёткими временными оценками и обеспечивающий учёт возможных рисков, возникающих при разработке программного обеспечения. Практическая ценность коплекса подтверждается актом о внедрении.

Апробация работы и публикации

Основные положения работы докладывались на конференциях:

- Современные проблемы прикладной математики, теории управления и математического моделирования (Воронеж, 2012 г.)
- Информатика: проблемы, методология, технологии (Воронеж, 2013–2014 гг.);
- Современные технологии в задачах управления, автоматики и обработки информации (Алушта, 2013–2014 гг.);
- Радиоэлектроника, электротехника и энергетика (Москва, 2014).

Основное содержание диссертационного исследования изложено в 11 научных работах, из них 4 статьи в изданиях, рекомендованных ВАК РФ.