Modern macroeconomic model

Kazu Matsuda

Motivation

- What's the effect of government policy?
- We want to experiment government policy but can't...
- Let's build a model imitating Japan on which we can simulate.

Model ingredients

- What should we have in the model?
 - Many households (including you)
 - Many firms
 - A government (we don't have it this time for simplicity)
- And we have time in the model to dynamic effects of policy.

Households

- Continuum (measure 1) of households indexed by i.
- They work (supply 1 unit of labor), consume c_{it} , and save as assets a_{it+1} .
- Each household lives infinitely and maximizes the following utility

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}), u' > 0, u'' < 0, \beta \in (0,1)$$

Income shocks

- Ex-ante identical but faced with idiosyncratic income shocks.
- Stochastic idiosyncratic endowments of efficiency units $h_{it} \in \mathcal{H} = \{h^1, \dots, h^{N_H}\}$
- The Markov process: $\pi(h'|h)$
 - π^* is the invariant distribution associated with π .
- Aggregate endowment of skills

$$H_t = \sum_{i=1}^{N_H} h_i \pi^*(h_i).$$

Household constraints

- Interest rates on assets r_t and wages w_t .
- Budget constraint

$$c_{it} + a_{it+1} = (1 + r_t)a_{it} + w_t h_{it}$$

Borrowing constraint

$$a_{it+1} \geq -\underline{B}$$

• For simplicity, we assume that households must choose asset levels from $\mathcal{A} = \{a^1, \cdots, a^{N_A}\}.$

Max problem

$$\max_{\{c_{it}\},\{a_{it+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}) \text{ s.t.}$$

$$c_{it} + a_{it+1} = (1 + r_t)a_{it} + w_t h_{it}$$

$$a_{it+1} \ge -\underline{B}, c_{it} \ge 0, a_{i0}$$
 given

How to solve this dynamic optimization problem?

Max problem

$$\max_{\{a_{it+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t u((1+r_t)a_{it} + w_t h_{it} - a_{it+1}) \text{ s.t.}$$

$$a_{it+1} \ge -\underline{B}$$
, $(1 + r_t)a_{it} + w_t h_{it} - a_{it+1} \ge 0$, a_{i0} given

How to solve this dynamic optimization problem?

General form

$$\max_{\{s_t\}} \sum_{t=0}^{T} \beta^t F(s_t, s_{t+1}) \text{ s.t. } s_{t+1} \in \Gamma(s_t), s_0 \text{ given.}$$

- For the earlier problem, set $s_t = a_{it}$ and
 - $T \to \infty$,
 - $F(s_t, s_{t+1}) = u(w_t h_{it} + (1 + r_t)a_{it} a_{it+1})$
 - $s_{t+1} \in \Gamma(s_t) = [-\underline{B}, w_t h_{it} + (1 + r_t)a_{it}]$

Two methods for solving this

• Method 1: take FOC's for S_1, \dots, S_{T+1} .

$$\beta^t F_1(s_t, s_{t+1}) + \beta^{t-1} F_2(s_{t-1}, s_t) = 0.$$

Method 2:

- In period 0, s_0 given, choose s_1 (but s_1 also influences future payoffs and choices), get $F(s_0, s_1)$ today.
- In period 1, s_1 given, choose $s_2 \in \Gamma(s_1)$ and get $F(s_1, s_2)$ today.
- Balance current F and future consequences.

Basic idea

- Time itself is not important. If the economy starts again from s_1^* , the optimal path doesn't change.
- Optimal solution has the property that the optimal choice for *s* tomorrow only depends upon *s* today, and not the actual period.
- Two ways to think about solving this problem
 - 1. Find $s_0^*, s_1^*, s_2^* \dots$
 - 2. g(s) "optimal policy function" s_0 , $g(s_0)$, $g(g(s_0))$, $g(g(g(s_0)))$, . . . (optimal way to respond)

• Jump ahead to period T. s_T will be given from earlier choices.

$$V_T(s_T) = \max_{s_{T+1}} F(s_T, s_{T+1}) \text{ s.t. } s_{T+1} \in \Gamma(s_T).$$

- $g_T(s_T)$ is the set of maximizers.
- Go to period T-1.

$$V_{T-1}(s_{T-1}) = \max_{s_T \in \Gamma(s_{T-1})} F(s_{T-1}, s_T) + \beta V_T(s_T)$$
 and $g_{T-1}(s_{T-1})$ is maximizers.

$$V_0(s_0) = \max_{s_1 \in \Gamma(s_0)} F(s_0, s_1) + \beta V_1(s_1)$$
 and $g_0(s_0)$ is maximizers.

- What if we let $T \to \infty$?
- Intuitively, there is always an infinite number of periods after the current period so we would think that all of Vs are the same.

$$V(s_t) = \max_{s_{t+1} \in \Gamma(s_t)} \{ F(s_t, s_{t+1}) + \beta V(s_{t+1}) \}.$$

This equation of functions is called Bellman equation.

How to find V?

$$V(s_t) = \max_{s_{t+1} \in \Gamma(s_t)} \{ F(s_t, s_{t+1}) + \beta V(s_{t+1}) \}.$$

- Heuristically, suppose I give you some function $\hat{V}(s)$. Solve the following problem,
- $\forall s$, solve $\max_{s' \in \Gamma(s)} \{F(s,s') + \beta \hat{V}(s')\}$ and call the max $\tilde{V}(s)$.
- RHS can be used to map the function $\hat{V}(s)$ into another function $\tilde{V}(s)$.
- Repeat this process until $\hat{V}(s)$ converges and the point will be V(s).

Household problem

$$V(a,h) = \max_{c,a'} u((1+r)a + wh - a') + \beta \sum_{h'} V(a',h')\pi(h'|h) \text{ s.t.}$$

$$-\underline{B} \le a' \le (1+r)a + wh.$$

• Solutions are policy functions $g_a(a, h)$.

Firms

All the firms have production function

$$Y_t = F(K_t, H_t).$$

- Profit: $F(K_t, H_t) (r_t + \delta)K_t w_tH_t$
- Capital depreciates at δ and FOC:

$$w_t = F_H(K_t, H_t),$$

$$r_t + \delta = F_K(K_t, H_t).$$

Markets

- How wage w_t and rent r_t are determined?
- Prices clear the 3 markets
 - Labor: W_t
 - Assets: r_t
 - Goods: normalize 1 in steady state

Aggregate state

- For $t \ge 0$ the state of the economy is a distribution of households $\mu_t(a,h)$ over (a,h)
- The state space is $\mathcal{H} \times \mathcal{A}$

$$\mathcal{H} = \{h^1, \dots, h^{N_H}\}, \mathcal{A} = \{a^1, \dots, a^{N_A}\}.$$

• How does μ_t evolve over time?

$$\mu_{t+1}(a',h') = \sum_{a} \sum_{h} \mathbf{1}\{a : g_a(a,h) \in a'\} \pi(h'|h) \mu_t(a,h)$$

Stationary equilibrium

- We focus on stationary eq where the income distribution μ_t is constant.
 - Though stationary, agents move within the income distribution.
 - In stationary eq, prices (r_t) and w_t) should be constant.

Stationary competitive equilibrium

- 1. (Household optimization) Taking r and w as given, V(a, h) solves

$$V(a,h) = \max_{a'} u((1+r)a + wh - a') + \beta \sum_{h'} V(a',h')\pi(h'|h) \text{ s.t.}$$

 $-\underline{B} \le a' \le (1+r)a + wh$ and $g_a(a,h)$ is an optimal decision rule.

2. (Firm optimization) Taking r and w as given, K and H solve firms problem

$$\max_{k,h} F(k,h) - (r+\delta)k - wh \text{ such that } k \ge 0, h \ge 0.$$

3. (Market clearing)

(1) Labor
$$H = \sum_{h} h \pi^*(h)$$
, (2) Assets $K = \sum_{a} \sum_{h} g_a(a, h) \mu(a, h)$,

(3) Goods
$$F(K, H) = \sum_{a} \sum_{h} ((1+r)a + wh - g_a(a, h))\mu(a, h) + \delta K$$

4. (Aggregate law of motion) Distribution of agents over states μ is stationary

$$\mu(a',h') = \sum_{a} \sum_{h} \mathbf{1}\{a : g_a(a,h) \in a'\} \pi(h'|h) \mu(a,h)$$

Setting $\pi(h'|h)$

Assume that efficiency units follow an AR1

$$\ln h' = \rho \ln h + \epsilon, \ \epsilon \sim N(0, \sigma_{\epsilon}^2)$$

- Discretize using Tauchen's method.
- 1. Make \mathcal{H} evenly spaced from $-1*stdd(\ln h)$ to $+1*stdd(\ln h)$. d will be the distance between grids.
- 2. Assume h_j goes to $h_{j'}$ if $\rho \ln h_j + \epsilon$ is in $[\ln h_{j'} d/2, \ln h_{j'} + d/2]$.

$$\pi(h_{j'}|h_j) = N(\ln h_{j'} + d/2 - \rho \ln h_j) - N(\ln h_{j'} - d/2 - \rho \ln h_j)$$

Computing aggregate labor H

- Start with initial $\pi^{*0}(h_i) = 1/N_H$. Solve forward.
- First, set initially $\pi^{*1}(h_j)=0$ for each h_j . Then for each h_j on grid \mathcal{H} ,

$$\pi^{*1}(h_{j'}) \leftarrow \pi^{*1}(h_{j'}) + \pi(h_{j'}|h_j)\pi^{*0}(h_j)$$
 for each $h_{j'}$ on grid \mathcal{H} .

(Note that they are not equal signs. "Accumulate" in the code).

Repeat this until $d(\pi^{*1},\pi^{*0}) < tol$. After finishing this, get $H = \sum_{i=1}^{N_H} h_i \pi^*(h_i)$

Setting functions

. Utility
$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}$$
.

• Production function $F(K, H) = K^{\alpha}H^{1-\alpha}$. Then firm's FOC

$$r + \delta = F_K(K, H) = \alpha \left(\frac{K}{H}\right)^{1-\alpha}, w = F_H(K, H) = (1 - \alpha) \left(\frac{K}{H}\right)^{\alpha - 1}$$

• Define $R \equiv 1 + r$.

Computation

- 1. Guess K^0 Calculate r^0 and w^0 using firm's FOC.
- 2. Given (r^0, w^0) , solve household's problem to get $g_a^0(a, h)$.
- 3. Use policy function g_a^0 and transition $\pi(h'|h)$ to compute $\mu^0(a,h)$.
- 4. Use invariant distribution $\mu^0(a,h)$ to compute $\tilde{K}^0 = \sum_a \sum_b g_a(a,h) \mu^0(a,h)$.
- 5. Stop if $|\tilde{K}^0 K^0| < tol$. Otherwise, update $K^{j+1} = \phi K^j + (1 \phi)\tilde{K}^j$ and go to step 2.

Discretized value function iteration

- 1. Choose grids on state variables: $\mathcal{A} \times \mathcal{H}$
- 2. Initial guess of value function (a matrix): $V_0(a_i, h_i)$
- 3. Given V_0 , for each $(a_i, h_i) \in \mathcal{A} \times \mathcal{H}$,
 - 1. Find $a' \in \mathcal{A}$ on the grid such that

$$g_a(a_i, h_j) = a' \in \arg\max_{a' \in \mathcal{A}} u(wh_j + Ra_i - a') + \beta \sum_{y' \in \mathcal{Y}} V_0(a', h') \pi(h' \mid h_j)$$

2. Update
$$V_1(a_i, h_j) = u(wh_j + Ra_i - g_a(a_i, h_j)) + \beta \sum_{h' \in \mathcal{H}} V_0(g_a(a_i, h_j), h') \pi(h' \mid h_j)$$

4. If $d(V_0, V_1) < tol$, done. Otherwise return to 3 with new guess V_1 .

Discretization of density function μ

• Approximate the density by a probability distribution function defined over discretized version of the state space $\mathscr{A} \times \mathscr{H}$.

. Start with initial
$$\mu^0(a_i,h_j)=\frac{1}{N_AN_H}$$

• N_A and N_H are the number of grids for \mathscr{A} and \mathscr{H} .

Updating measures μ

- First, set initially $\mu^1(a_i,h_j)=0$ for each (a_i,h_j) .
- Then for each (a_i, h_j) on grid $\mathcal{A} \times \mathcal{H}$, for each j'

$$\mu^{1}(g_{a}(a_{i},h_{j}),h_{j'}) \leftarrow \mu^{1}(g_{a}(a_{i},h_{j}),h_{j'}) + \pi(h_{j'}|h_{j})\mu^{0}(a_{i},h_{j})$$

for each j. (Note that they are not equal signs. Accumulate in the code)

• Repeat this until $d(\mu^1, \mu^0) < tol.$

Tax

• Now we assume that the government introduces labor income tax with rate τ (exogenous) and rebate it as lump-sum transfer T (endogenous).

$$\max_{\{c_{it}\},\{a_{it+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}) \text{ s.t.}$$

$$c_{it} + a_{it+1} = (1 + r_t)a_{it} + (1 - \tau)w_t h_{it} + T$$

$$a_{it+1} \ge -\underline{B}$$
, a_{i0} given

Stationary competitive equilibrium

- A stationary CE with government policy is a list of functions V(a,h), $g_a(a,h)$, K, H, r, w, $\mu(a,h)$, T s.t.
- 1. (Household optimization) Taking r and w as given, V(a, h) solves

$$V(a,h) = \max_{a'} u((1+r)a + (1-\tau)wh + T - a') + \beta \sum_{h'} V(a',h')\pi(h'|h) \text{ s.t.}$$

$$-\underline{B} \le a' \le (1+r)a + (1-\tau)wh + T$$
 and $g_a(a,h)$ is an optimal decision rule.

2. (Firm optimization) Taking r and w as given, K and H solve firms problem

$$\max_{k,h} F(k,h) - (r+\delta)k - wh \text{ such that } k \ge 0, h \ge 0.$$

- 3. (Government) $\tau wH = T$
- 4. (Market clearing)

(1) Labor
$$H = \sum_{h} h \pi^*(h)$$
, (2) Assets $K = \sum_{a} \sum_{h} g_a(a, h) \mu(a, h)$,

(3) Goods
$$F(K, H) = \sum_{a} \sum_{h} ((1+r)a + (1-\tau)wh + T - g_a(a, h))\mu(a, h) + \delta K$$

5. (Aggregate law of motion) Distribution of agents over states μ is stationary

$$\mu(a',h') = \sum_{a} \sum_{h} \mathbf{1}\{a : g_a(a,h) \in a'\} \pi(h'|h) \mu(a,h)$$

Computation

- 1. Guess K^0 Calculate r^0 and w^0 using firm's FOC. Calculate $T^0 = \tau w^0 H$.
- 2. Given (r^0, w^0, T^0) , solve household's problem to get $g_a^0(a, h)$.
- 3. Use policy function g_a^0 and transition $\pi(h'|h)$ to compute $\mu^0(a,h)$.
- 4. Use invariant distribution $\mu^0(a,h)$ to compute $\tilde{K}^0 = \sum_a \sum_h g_a(a,h) \mu^0(a,h)$.
- 5. Stop if $|\tilde{K}^0 K^0| < tol$. Otherwise, update $K^{j+1} = \phi K^j + (1 \phi)\tilde{K}^j$ and go to step 2.

Interpolated value function iteration

- 1. Choose grids on state variables: $\mathcal{A} \times \mathcal{H}$
- 2. Initial guess of value function (a matrix): $V_0(a_i, h_i)$
- 3. Given V_0 , for each $(a_i, h_i) \in \mathcal{A} \times \mathcal{H}$,
 - 1. Find $a' \geq \bar{a}$ using an optimization routine with interpolated \hat{V}_0 such that

$$g_{a}(a_{i}, h_{j}) = a' \in \arg\max_{a' \geq \bar{a}} u(wh_{j} + Ra_{i} - a') + \beta \sum_{h' \in \mathcal{H}} \hat{V}_{0}(a', h')\pi(h' | h_{j})$$

- 2. Update $V_1(a_i,h_j) = u(wh_j + Ra_i g_a(a_i,h_j)) + \beta \sum_{h' \in \mathcal{H}} V_0(g_a(a_i,h_j),h')\pi(h' \mid h_j)$
- 4. If $d(V_0, V_1) < tol$, done. Otherwise return to 3 with new guess V_1 .

- Not search finite grids anymore. Find a solution from an infinite set such as real numbers.
- Theoretically, we have to find V_0 for any real number a'. But we have only V_0 on finite grids. What if we need the value for a' NOT on the grids?
- Interpolation: functional approximation: they must have same values on the grids.

Linear interpolation

- We know the values only on the grids $V_0(a_i,h_j)$ on $\mathscr{A}\times\mathscr{H}$.
- Suppose that we need a value for $a' \notin \mathcal{A}$.
- Find the left grid $a_k \in \mathcal{A}$ such that $a_k \le a' \le a_{k+1}$.
- Then the value for a' is approximated as

$$\hat{V}_0(a',h) = \frac{a_{k+1} - a'}{a_{k+1} - a_k} V_0(a_k, h) + \frac{a' - a_k}{a_{k+1} - a_k} V_0(a_{k+1}, h)$$

Optimization routine: Bracketing method

- (Assume we want to minimize something. If you want to maximizing, just multiply by -1.)
- Most reliable for one dimensional problems
- Initialization: find a < b < c such that f(a), f(c) > f(b)

- 1. Choose $d \in (a, c)$ and compute f(d)
- 2. Choose new (a,b,c) triplet. If d < b and f(d) > f(b), then there is a minimum in [d,c]. Update the triple (a,b,c) with (d,b,c). If d < b and f(d) < f(b), then the minimum is in [a,b]. Update the triple (a,b,c) with (b,d,c). Otherwise, update the triple (a,b,c) with (a,b,d).
- Stop if $c a < \delta$. If not, go back to step 1
- Golden search: more sophisticated version that features an optimal way to segment intervals

Policy function iteration with linear interpolation

- Construct a grid on the asset space A.
- Guess an initial matrix of decision rules for a'' on the grid points, call it $\hat{a}_0(a_i, h_j)$, where subscript 0 denotes the initial iteration. Choose an interpolant. (e.g., piecewise linear)
- For each point (a_i, h_j) on the grid, check whether the borrowing constraint binds, i.e., check whether:

$$u'(Ra_i + wh_j - a_0) - \beta R \sum_{h' \in H} \pi(h'|h_j)u'(Ra_0 + wh' - \hat{a}_0(a_0, h')) > 0$$

• Two cases: (a) if this inequality holds, the borrowing constraint binds. Then, set $a_0'(a_i, h_j) = -\underline{B}$ and repeat this check for the next grid points (b) if the equation instead holds with the \leq inequality, we have an interior solution (it is optimal to save) and we proceed to the next step.

• For each point (a_i, h_j) on the grid, use a nonlinear equation solver to find the solution a^* of the nonlinear equation

$$u'(Ra_i + h_j - a^*) - \beta R \sum_{h' \in H} \pi(h'|h_j) u'(Ra^* + wh' - \hat{a}_0(a^*, h')) = 0$$

- (a) need to evaluate the function $\hat{a}_0(a,h')$ outside grid points.
- When the solver calls an a^* which lines between grid points, your interpolating should do as follows. First, find pair of adjacent grid points $\{a_i, a_{i+1}\}$ such that $a_i < a^* < a_{i+1}$, and then compute

$$\hat{a}_0(a^*, h') = \hat{a}_0(a_i, h') + (a^* - a_i) \left(\frac{\hat{a}_0(a_{i+1}, h') - \hat{a}_0(a_i, h')}{a_{i+1} - a_i} \right)$$

• (c) if the solution of the nonlinear equation is $a^* \le$ then set $a'_0(a_i, h_j) = a^*$ and iterate on the next grid point.

- Check convergence by comparing $a_0'(a_i,h_j) \hat{a}_0(a_i,h_j)$ through some pre-specified norm. For example, declare convergence at iteration n when
- $\max\{|a_n'(a_i,h_j)-\hat{a}_n(a_i,h_j)|\} < \epsilon$ for some small number ϵ which determined the degree of tolerance in the solution algorithm.
- If convergence is achieved, stop. Otherwise, go back to point 3 with the new guess $\hat{a}_1(a_i,h_i)=a_0'(a_i,h_i)$.
- Note that the most time-consuming step in this procedure is 5, the root-finding problem. Next class, we discuss how to avoid it.

If continuous

- Then for each (a_i,h_j) on grid $\mathcal{A}\times\mathcal{H}$, find the left grid $a_k\in\mathcal{A}$ such that $a_k\leq g_a(a_i,h_j)\leq a_{k+1}$.
- Then the value for a' is approximated as, for each j'

$$\mu^{1}(a_{k}, h_{j'}) \leftarrow \mu^{1}(a_{k}, h'_{j}) + \pi(h_{j'}|h_{j}) \frac{a_{k+1} - g_{a}(a_{i}, h_{j})}{a_{k+1} - a_{k}} \mu^{0}(a_{i}, h_{j})$$

$$\mu^{1}(a_{k+1}, h_{j'}) \leftarrow \mu^{1}(a_{k}, h_{j'}) + \pi(h_{j'}|h_{j}) \frac{g_{a}(a_{i}, h_{j}) - a_{k}}{a_{k+1} - a_{k}} \mu^{0}(a_{i}, h_{j})$$

for each j. (Note that they are not equal signs. Accumulate in the code)

• An interpretation is like a lottery. Suppose that a continuum of people with mass $\mu^0(a_i,h_i)$ are at (a_i,h_i) today. Then

a fraction $\pi(h_1 \mid h_i) \frac{a_{k+1} - a}{a_{k+1} - a_k}$ goes to (a_k, h_1) at tomorrow.

a fraction $\pi(h_1 \mid h_i) \frac{a - a_k}{a_{k+1} - a_k}$ goes to (a_{k+1}, h_1) at tomorrow.

a fraction $\pi(h_2 \mid h_i) \frac{a_{k+1} - a}{a_{k+1} - a_k}$ goes to (a_k, h_2) at tomorrow and so on...

Monte-Carlo simulation

- 1. Generate a large sample of households and track them.
- 2. Choose a sample size I. Each sample is indexed by i.
- 3. Give initial value a_i^0 and h_i^0 for sample i.
- 4. Then calculate $a_i^1=g_a(a_i^0,h_i^0)$ and draw h_i^1 from $\pi(\cdot\mid h_i^0)$ using a random number generator.
- 5. Do this for all i. Calculate a moment M^1 using the sample. Continue until convergence $d(M^0, M^1) < tol$. If not, go back to step 4 with initial a_i^1 and h_i^1 .
- 6. $A(r^0)$ is just the mean of a_i^t in the final sample.

Which one is better

- Monte Carlo is time and memory consuming. Not recommended for low dimensional problems.
- Monte Carlo is good for high dimension problems.