Fichas de Exercícios sobre Gramáticas sem Contexto

Resoluções/soluções para os exercícios selecionados: 1,2,3,4,6

1 A gramática seguinte gera a linguagem das expressões regulares 0*1(0+1)*

S
$$\rightarrow$$
 A1B
A \rightarrow OA | ϵ
B \rightarrow OB | 1B | ϵ

Obtenha derivações mais à esquerda e mais à direita e árvores de análise das seguintes cadeias:

- a) 1001
- b) 00011.

1a)

$$\begin{split} &\text{lm (leftmost): S} \Rightarrow \text{A1B} \Rightarrow \text{1B} \Rightarrow \text{10B} \Rightarrow \text{100B} \Rightarrow \text{1001B} \Rightarrow \text{1001} \\ &\text{rm (rightmost) S} \Rightarrow \text{A1B} \Rightarrow \text{A10B} \Rightarrow \text{A100B} \Rightarrow \text{A1001B} \Rightarrow \text{A1001} \Rightarrow \text{1001} \end{split}$$

1b)

lm (leftmost): S \Rightarrow A1B \Rightarrow 0A1B \Rightarrow ...(passos omitidos mas que devem ser incluidos) \Rightarrow 00011B \Rightarrow 00011

rm (rightmost) S \Rightarrow A1B \Rightarrow A11B \Rightarrow ...(passos omitidos mas que devem ser incluidos) \Rightarrow 000A11 \Rightarrow 00011

2 Seja a gramática G = (V, T, P, S) em que $T = \{0,1,2\}$, $V = \{S, B, C\}$ e as produções são:

$$S \rightarrow 0 S 0 0 | B$$

 $B \rightarrow 1 1 B 2 2 | C$
 $C \rightarrow 1 2$

- a) Desenhe uma árvore de análise da sequência 011122200.
- b) Explique em Português qual é a linguagem aceite pela gramática.
- c) Prove por indução que a afirmação da alínea anterior está correcta.

2a)

2b) Linguagem das sequências iniciadas com 0 ou mais 0's e terminadas com o dobro do número de 0's com que iniciaram, e que no meio têm um número ímpar de 1's seguido do mesmo número de 2's.

Mais formalmente: L(G) é o conjunto das cadeias da forma $0^n 1^r 2^r 0^{2n}$, com $n \ge 0$ e r ímpar, i.e.,

$$L = \{0^n 1^r 2^r 0^{2n} \mid \text{com } n \ge 0 \text{ e r impar}\}\$$

2c)

Provar por indução que a linguagem especificada pela gramática G é $L = \{0^n1^r2^r0^{2n} \mid com \ n \geq 0 \ e \ r \ impar\}$

(1) Primeiro devemos provar que as palavras aceites pela gramática $G \in L$:

A gramática, G, inclui três variáveis, com produções:

- C → 1 2
 12 é a única palavra produzida por C e ∈ L
- B \rightarrow 1 1 B 2 2 | C (cadeias da forma 1^r2^r, com r ímpar)

caso base para B: B
$$\rightarrow$$
 C e a cadeia para o caso base de B é 12 e \in L

passo indutivo para B:

As cadeias produzidas indutivamente com B usam a regra:

$$B \rightarrow 11B22$$

Seja W uma cadeia da linguagem (i.e., \in L) produzida por B, então a próxima cadeia produzida por B é dada por:

11W22

como W é da forma 1^r2^r , com r ímpar, \in L, então $1\ 1\ W\ 2\ 2$ corresponde a $1^{r+2}2^{r+2}$ que \in L

• S \rightarrow 0 S 0 0 | B (cadeias da forma $0^{n1r}2^{r}0^{2n}$, com n \geq 0 e r ímpar)

caso base para S: S \rightarrow B

cadeias em B são da forma 1^r2^r , com r ímpar $e \in L$

passo indutivo para S:

$$S \rightarrow 0 S 0 0$$

Seja W uma cadeia da linguagem (i.e., \in L) produzida por S, então a próxima cadeia produzida por S é dada por:

0 W 0 0

como W é da forma $0^n1^r2^r0^{2n}$, com $n\geq 0$ e r ímpar, \in L, então 0 W 0 0 corresponde a $0^{n+1}1^r2^r0^{2n+2}=0^{n+1}1^r2^r0^{2(n+2)}$ que \in L

(2) Depois devemos provar que todas as palavras de $L = \{0^n1^r2^r0^{2n} \mid com \ n \ge 0 \ e \ r \ impar \}$ são aceites pela gramática:

Indução em n:

base: n=0, w=1^r2^r, r impar, que para r=1 é derivado com S \Rightarrow B \Rightarrow C \Rightarrow 1 2

e para r > 1 S \Rightarrow B \Rightarrow 1 1 B 2 2 (podendo derivar B recursivamente e no final usar B \Rightarrow C \Rightarrow 1 2) **passo indutivo:** $0^{n+1}1^r2^r0^{2(n+1)} = 00^n1^r2^r0^{2n}00$,

como por hipótese $w=0^n1^r2^r0^{2n}$ é aceite pela gramática e temos uma forma de produzir 0w00 usando $S \rightarrow 0$ S 0 0, então as palavras aceites por L por indução em n são também aceites por G.

Indução em r:

base: $r=1, 0^{n}120^{2n}$

w=0ⁿ120²ⁿ, n ≥ 0, que para n=0 é derivada por S ⇒ B ⇒ C ⇒ 1 2, e para n ≥ 1 é derivada com derivações recursivas em S ⇒ 0 S 0 0 terminadas com a derivação S ⇒ B ⇒ C ⇒ 1 2 para produzir $0^{n+1}120^{2n+2}$

e para r > 1 S \Rightarrow B \Rightarrow 1 1 B 2 2 (podendo derivar B recursivamente e no final usar B \Rightarrow C \Rightarrow 1 2) **passo indutivo:** $0^n1^{r+2}2^{r+2}0^{2n} = 0^n111^r2^r220^{2n}$ ($w_{n+4}=w_111w_222w_3$, em que $w_1=0^n$, $w_2=1^r2^r$, e $w_3=0^{2n}$)

como por hipótese $w_n=0^n1^r2^r0^{2n}$ ($w_n=w_1w_2w_3$) é aceite pela gramática e temos uma forma de produzir $w_111w_222w_3$ usando $S\Rightarrow 0$ S 0 0 (podendo derivar S recursivamente e no final usar $S\Rightarrow B$) e depois usar $B\Rightarrow 1$ 1 B 2 2 (podendo derivar B recursivamente e no final usar $B\Rightarrow C\Rightarrow 1$ 2), então as palavras aceites por L por indução em r são também aceites por G.

qed

3 Considere a CFG G definida pelas produções

$$S \rightarrow aS \mid Sb \mid a \mid b$$
.

- a) Prove por indução no comprimento da cadeia que nenhuma cadeia de L(G) tem **ba** como subcadeia.
- b) Descreva L(G) informalmente. Justifique a resposta com base em a).

3a)

Caso base: a ou b que não têm ba como subcadeia

Paso indutivo:

por hipótese a cadeia x verifica a propriedade (não tem **ba** como subcadeia)

as produções: $S \rightarrow aS \mid Sb$ podem formar as cadeias

ax ou xb

se x não tem ba, então ax e xb também não têm **ba** como subcadeia

qed

3b)

Sequências de 0 ou mais a's seguidas de sequências de 0 ou mais b's, mas que tem de haver pelo menos um a ou um b.

Formalmente: L= $\{a^nb^m \mid n \ge 0, m \ge 0, e n e m não são simultaneamente 0\}$

4 Mostre que qualquer linguagem regular é uma linguagem sem contexto. Sugestão: construa uma CFG por indução no número de operadores da expressão regular.

Pode basear-se em:

Caso base: símbolo ...

Passo indutivo: Definir produções para cada operador das expressões regulares:

Concatenação: ...

União: ...

Fecho: ...

Parêntesis: ...

6 Considere o seguinte fragmento de uma gramática para HTML:

Adicione os seguintes elementos à definição:

- a) Um item de uma lista deve ser fechado por uma marca .
- b) Os elementos devem incluir as listas não ordenadas, com marcas e .
- c) Incluir como elementos as tabelas, marcadas por <TABLE>, </TABLE>, com linhas <TR>, </TR>. A primeira linha tem componentes de cabeçalho <TH>, </TH>. As outras linhas têm componentes de dados <TD>, </TD>.
- **6a**) Substituir ItemLista por:

ItemLista → Doc

6b) Substituir Elemento por:

Elemento → Texto | <P> Doc | Doc | Lista | Lista

6c) Elemento → ... | <TABLE> Tabela </TABLE>

Tabela → PrimeiraLinha RestLinhas

PrimeiraLinha → <TR> Cabecalho </TR>

Cabecalho \rightarrow <TH> Doc </TH> Cabecalho | ϵ

Linha \rightarrow <TD> Doc </TD> Linha | ϵ

RestLinhas \rightarrow <TR> Linha </TR> RestLinhas | ϵ