En una revisión del análisis de requerimientos se detectan los siguientes errores:

Componentes	Unidades	Errores mayores	Errores menores
Diagramas de estructura	3	2	5
Modelos de datos	4	5	10
Modelos arquitectónicos	2	5	6
Modelos de componentes	2	1	6
Casos de uso	4	2	8
Total modelado	15	15	35

Se pide calcular:

- 1. Tamaño del producto del trabajo (TPT) para el modelado
- 2. Densidad del error por modelo de componentes
- 3. Calcule las anteriores densidades de errores contabilizando sólo los errores menores
- 4. Calcule las anteriores densidades de errores contabilizando sólo los errores mayores
- 5. Considere la densidad del error por modelo de componentes como la densidad del error promedio, si para un nuevo proyecto se contabilizan 50 componentes, ¿cuál sería el número de posibles errores que esperaríamos?

1. Tamaño del producto del trabajo (TPT) para el modelado.

- $TPT_{diagramas} = 3$
- $TPT_{datos} = 4$
- TPT_{arquitectonicos} = 2
- $TPT_{componentes} = 2$
- $TPT_{uso} = 4$
- $TPT_{total} = 15$

2. Densidad del error por modelo de componentes.

• Densidad del error en diagramas:

$$\circ$$
 Err_{tot} = Err_{menores} + Err_{mayores} = 5 + 2 = 7

• Densidad =
$$Err_{tot} / TPT = 7/3 = \frac{2,33}{2}$$

Densidad del error en datos:

$$\circ$$
 Err_{tot} = Err_{menores} + Err_{mayores} = 10 + 5 = 15

• Densidad =
$$Err_{tot} / TPT = 15/4 = \frac{3,75}{}$$

• Densidad del error en arquitectónicos:

$$\circ$$
 Err_{tot} = Err_{menores} + Err_{mayores} = 6 + 5 = 11

$$\circ$$
 Densidad = Err_{tot} / TPT = 11/2 = 5.5

• Densidad del error en componentes:

$$\circ$$
 Err_{tot} = Err_{menores} + Err_{mayores} = 6 + 1 = 7

• Densidad =
$$Err_{tot} / TPT = 7/2 = 3.5$$

• Densidad del error en casos de uso:

$$\circ$$
 Err_{tot} = Err_{menores} + Err_{mayores} = 8 + 2 = 10

• Densidad =
$$Err_{tot} / TPT = 10/4 = \frac{2.5}{2.5}$$

Densidad del errores totales:

$$\circ$$
 Err_{tot} = Err_{menores} + Err_{mayores} = 35 + 15 = 50

• Densidad =
$$Err_{tot}$$
 / TPT = $50/15 = \frac{3.33}{100}$

3. Calcule las anteriores densidades de errores contabilizando sólo los errores menores.

- Densidad del error en diagramas:
 - \circ Err_{menores} = 5
 - Densidad = $Err_{menores} / TPT = 5/3 = \frac{1.6}{1.6}$
- Densidad del error en datos:
 - \circ Err_{menores} = 10
 - Densidad = $Err_{menores} / TPT = 10/4 = 2.5$
- Densidad del error en arquitectónicos:
 - \circ Err_{menores} = 6
 - Densidad = $Err_{menores} / TPT = 6/2 = 3$
- Densidad del error en componentes:
 - \circ Err_{menores} = 6
 - Densidad = $Err_{menores}$ / TPT = 6/2 = 3
- Densidad del error en casos de uso:
 - \circ Err_{menores} = 8
 - Densidad = $Err_{menores} / TPT = 8/4 = \frac{2}{2}$
- Densidad del errores totales:
 - \circ Err_{menores} = 35
 - Densidad = $Err_{menores} / TPT = 35/15 = \frac{2,33}{2,33}$

- 4. Calcule las anteriores densidades de errores contabilizando sólo los errores mayores.
 - Densidad del error en diagramas:
 - \circ Err_{mayores = 2}
 - Densidad = $Err_{mayores} / TPT = 2/3 = 0.6$
 - Densidad del error en datos:
 - \circ Err_{mayores} = 5
 - Densidad = $Err_{mayores} / TPT = 5/4 = \frac{1,25}{1}$
 - Densidad del error en arquitectónicos:
 - \circ Err_{mayores} = 5
 - Densidad = $Err_{mayores} / TPT = 5/2 = \frac{2.5}{2.5}$
 - Densidad del error en componentes:
 - \circ Err_{mayores} = 1
 - Densidad = $Err_{mayores} / TPT = 1/2 = 0.5$
 - Densidad del error en casos de uso:
 - \circ Err_{mayores} = 2
 - Densidad = $Err_{mayores} / TPT = 2/4 = 0.5$
 - Densidad del errores totales:
 - \circ Err_{mayores} = 15
 - Densidad = $Err_{mayores} / TPT = 15/15 = \frac{1}{2}$

5. Considere la densidad del error por modelo de componentes como densidad del error promedio, si para un nuevo proyecto se contabilizan 50 componentes, ¿Cuál sería el número de posibles errores que esperaríamos?

Densidad_{componentes} = 3 -----> Densidad promedio errores

 $DensErrPro_{componentes} = Posibles Errores / TPT_{Componentes}$

3 = Posibles Errores / 50 = 150

Posibles Errores = $\frac{150}{1}$

Para determinar la eficacia del costo de las revisiones se rellena la siguiente tabla:

Componentes	Esfuerzo preparación y evaluación	Esfuerzo repetición erroresMenores	Esfuerzo repetición erroresMayores
Diagramas de estructura	3	2	15
Modelos de datos	4	5	20
Modelos arquitectónicos	2	5	16
Modelos de componentes	2	1	16
Casos de uso	4	2	18
Total modelado	15	15	85

- 1. Calcule el esfuerzo total de la revisión del modelado indicando la unidad de medida:
- Calcular el esfuerzo de repetición por error menor de los casos de uso
- Calcule el esfuerzo de repetición promedio para la parte del modelado
- 4. Utilice el esfuerzo de repetición promedio calculado anteriormente para calcular el esfuerzo ahorrado por error en la fase de diseño. Para ello, si el esfuerzo de repetición promedio es de 25 horas-hombre si el error no se solucionara en la fase de requerimientos y se solucionara en la fase de diseño.
- 5. ¿Cuánto sería el ahorro si no se propagaran 10 errores de la fase de análisis a la de diseño?

1. Calcule el esfuerzo total de la revisión del modelado indicando la unidad de medida:

 $E_{revision} = E_p + E_a + E_r$

- Ediagramas = 3 + 2 + 15 = 20 horas-hombre
- $E_{datos} = 4 + 5 + 20 = 29 \text{ horas-hombre}$
- $E_{arquitect\'{o}nicos} = 2 + 5 + 16 = \frac{23 \text{ horas-hombre}}{2}$
- Ecomponentes = $2 + 1 + 16 = \frac{19 \text{ horas-hombre}}{1}$
- $E_{uso} = 4 + 2 + 18 = 24 \text{ horas-hombre}$
- $E_{total} = 15 + 15 + 85 = 115 \text{ horas-hombre}$

2. Calcular el esfuerzo de repetición por error menor de los casos de uso.

3. Calcule el esfuerzo de repetición promedio para la parte del modelado

 $E_{r_promedio} = \ Err_{menores} + \ Err_{mayores}$

- Esfuerzo de repetición promedio en diagramas:
 - $\circ \quad E_{r_promedio_diagramas} = 2 + 15 = \underline{ 18 \; horas\text{-}hombre}$
- Esfuerzo de repetición promedio en datos:
 - \circ Er_promedio_datos = 5 + 20 = $\frac{25 \text{ horas-hombre}}{25 \text{ horas-hombre}}$
- Esfuerzo de repetición promedio en arquitectónicos:
 - \circ $E_{r_promedio_arquitect\'onicos} = 5 + 16 = 21 horas-hombre$
- Esfuerzo de repetición promedio en componentes:
- Esfuerzo de repetición promedio en casos de uso:
- Esfuerzo de repetición promedio totales:
 - \circ E_{r_promedio_total} = 15 + 85 = $\frac{100 \text{ horas-hombre}}{100 \text{ horas-hombre}}$

4. Utilice el esfuerzo de repetición promedio calculado anteriormente para calcular el esfuerzo ahorrado por error en la fase de diseño. Para ello, si el esfuerzo de repetición promedio es de 25 horas-hombre si el error no se solucionara en la fase de requerimientos y se solucionara en la fase de diseño.

 $E_{ahorrado\ por\ error} = E_{r\ promedio\ faseDiseño} - E_{r\ promedio\ faseRequerimiento}$

- Esfuerzo de repetición promedio en diagramas:
 - \circ $E_{r_promedio_diagramas} = 2 + 15 = 18 \text{ horas-hombre}$
 - $^{\circ} \quad E_{r_promedio_fase} \\ Requerimiento = \ 18 \ horas-hombre \ / \ error \\$
 - Er_promedio_faseDiseño = 25 horas-hombre / error
 - \circ Eahorrado_por_error = 25 18 = $\frac{7 \text{ horas-hombre/error}}{}$
- Esfuerzo de repetición promedio en datos:
 - \circ E_r promedio datos = 5 + 20 = 25 horas-hombre
 - Er_promedio_faseRequerimiento = 25 horas-hombre / error
 - Er_promedio_faseDiseño = 25 horas-hombre / error
 - Eahorrado_por_error = 25 25 = 0 horas-hombre/error
- Esfuerzo de repetición promedio en arquitectónicos:
 - $^{\circ}$ $E_{r_promedio_arquitect\'{o}nicos} = 5 + 16 = 21 horas-hombre$
 - \circ Er_promedio_faseRequerimiento = 21 horas-hombre / error
 - \circ Er_promedio faseDiseño = 25 horas-hombre / error
 - Eahorrado_por_error = 25– 21 = 4 horas-hombre/error
- Esfuerzo de repetición promedio en componentes:
 - \circ E_r promedio componentes = 1 + 16 = 17 horas-hombre
 - \circ Er_promedio_faseRequerimiento = 17 horas-hombre / error
 - Er promedio faseDiseño = 25 horas-hombre / error
 - Eahorrado por error = 25 17 = 8 horas-hombre/error
- Esfuerzo de repetición promedio en casos de uso:
 - \circ E_r promedio uso = 2 + 18 = 20 horas-hombre
 - $^{\circ}$ Er_promedio_faseRequerimiento = 20 horas-hombre / error
 - \circ E_r promedio faseDiseño = 25 horas-hombre / error
 - \circ E_{ahorrado_por_error} = 25 20 = $\frac{5 \text{ horas-hombre/error}}{1 \text{ horas-hombre/error}}$

- Esfuerzo de repetición promedio totales:
 - \circ E_r promedio total = 15 + 85 = 100 horas-hombre
 - $^{\circ}$ $E_{r_promedio_faseRequerimiento} = 100 horas-hombre / error$
 - \circ $E_{r_promedio_faseDise\~no} = 25 horas-hombre / error$
 - Eahorrado_por_error = 25 100 = -75 horas-hombre/error

5. ¿Cuánto sería el ahorro si no se propagaran 10 errores de la fase de análisis a la de diseño?

 $E_{ahorrado_total} = E_{rr_faseRequerimientos} * E_{ahorrado_por_error}$

- Esfuerzo de repetición promedio en diagramas:
 - \circ E_{rr_fase}Requerimientos = 10 errores
 - $^{\circ}$ Eahorrado_por_error = 25 18 = 7 horas-hombre/error
 - Eahorrado_total = $10 * 7 = \frac{70 \text{ horas-hombre}}{70 \text{ horas-hombre}}$
- Esfuerzo de repetición promedio en datos:
 - \circ Err_faseRequerimientos = 10 errores
 - \circ Eahorrado por error = 25 25 = 0 horas-hombre/error
 - Eahorrado_total = 10 * 0 = 0 horas-hombre
- Esfuerzo de repetición promedio en arquitectónicos:
 - \circ Err_faseRequerimientos = 10 errores
 - \circ Eahorrado_por_error = 25– 21 = 4 horas-hombre/error
 - \circ Eahorrado total = 10 * 4 = 40 horas-hombre
- Esfuerzo de repetición promedio en componentes:
 - \circ Err_faseRequerimientos = 10 errores
 - $^{\circ}$ Eahorrado_por_error = 25 17 = 8 horas-hombre/error
 - \circ Eahorrado total = 10 * 8= 80 horas-hombre
- Esfuerzo de repetición promedio en casos de uso:
 - \circ Err_faseRequerimientos = 10 errores
 - \circ Eahorrado por error = 25 20 = 5 horas-hombre/error
 - \circ Eahorrado total = 10 * 5 = 50 horas-hombre

- Esfuerzo de repetición promedio totales:
 - $\circ \quad E_{rr_fase} \\ Requerimientos = 10 \ errores$
 - $^{\circ}$ Eahorrado_por_error = 25 100 = -75 horas-hombre/error