DATA 606: Statistical Methods in Data Science

—— Inference for contingency table

Wenjun Jiang

Department of Mathematics & Statistics
The University of Calgary

Lecture 9

1/26

 $\pi_1 - \pi_2$

► Given the following two-way contingency table

	Y_1	<i>Y</i> ₂	
X_1	n ₁₁	n ₁₂	n_{1+}
<i>x</i> ₂	n ₂₁	n ₂₂	n_{2+}

▶ We would like to know more about $\pi_1 - \pi_2$ where

$$\pi_1 = \mathbf{P}(Y = Y_1 | X = X_1), \quad X_2 = \mathbf{P}(Y = Y_1 | X = X_2).$$

▶ If X and Y are independent, then $\pi_1 - \pi_2 = 0$.

 $\pi_1 - \pi_2$

▶ The estimate of $\pi_1 - \pi_2$:

$$\hat{\pi}_1 - \hat{\pi}_2 = \frac{n_{11}}{n_{1+}} - \frac{n_{21}}{n_{2+}}.$$

 $\pi_1 - \pi_2$

▶ The estimate of $\pi_1 - \pi_2$:

$$\hat{\pi}_1 - \hat{\pi}_2 = \frac{n_{11}}{n_{1+}} - \frac{n_{21}}{n_{2+}}.$$

► The estimate of the variance:

$$\hat{\mathrm{Var}}(\hat{\pi}_1 - \hat{\pi}_2) = \frac{\hat{\pi}_1(1 - \hat{\pi}_2)}{n_{1+}} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_{2+}}.$$

 $\pi_1 - \pi_2$

▶ The estimate of $\pi_1 - \pi_2$:

$$\hat{\pi}_1 - \hat{\pi}_2 = \frac{n_{11}}{n_{1+}} - \frac{n_{21}}{n_{2+}}.$$

► The estimate of the variance:

$$\hat{\mathrm{Var}}(\hat{\pi}_1 - \hat{\pi}_2) = \frac{\hat{\pi}_1(1 - \hat{\pi}_2)}{n_{1+}} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_{2+}}.$$

▶ Large-sample $1-\alpha$ confidence interval for $\pi_1-\pi_2$

$$\left[\hat{\pi}_{1} - \hat{\pi}_{2} - z_{\alpha/2}\sqrt{\hat{\text{Var}}(\hat{\pi}_{1} - \hat{\pi}_{2})}, \ \hat{\pi}_{1} - \hat{\pi}_{2} + z_{\alpha/2}\sqrt{\hat{\text{Var}}(\hat{\pi}_{1} - \hat{\pi}_{2})}\right].$$

 $\pi_1 - \pi_2$

Example 1 (Aspirin and heart attack)

The effectiveness of different drugs are as follows

	Yes	No	
Placebo	189	10845	11034
Aspirin	104	10933	11037

 $\pi_1 - \pi_2$

Example 1 (Aspirin and heart attack)

The effectiveness of different drugs are as follows

	Yes	No	
Placebo	189	10845	11034
Aspirin	104	10933	11037

▶ The difference of curing probabilities is

$$\hat{\pi}_1 - \hat{\pi}_2 = \frac{189}{11034} - \frac{104}{11037} = 0.0077.$$

- ► Standard deviation is $\sqrt{\frac{0.0171(1-0.0171)}{11034} + \frac{0.0094(1-0.0094)}{11037}} = 0.0015$.
- Large-sample 95% CI for the difference is

$$[0.0077 - 1.96 \times 0.0015, 0.0077 + 1.96 \times 0.0015] \Rightarrow [0.0048, 0.0106].$$

 π_1/π_2

Example 2

When both π_1 and π_2 are close to zero, the difference between them may not be that meaningful:

- 1. $\pi_1 = 0.01$, $\pi_2 = 0.001$, then $\pi_1 \pi_2 = 0.009$.
- 2. $\pi_1 = 0.41$, $\pi_2 = 0.401$, then $\pi_1 \pi_2 = 0.009$.

 π_1/π_2

Example 2

When both π_1 and π_2 are close to zero, the difference between them may not be that meaningful:

- 1. $\pi_1 = 0.01$, $\pi_2 = 0.001$, then $\pi_1 \pi_2 = 0.009$.
- 2. $\pi_1 = 0.41$, $\pi_2 = 0.401$, then $\pi_1 \pi_2 = 0.009$.
- An alternative measure is the *relative risk*: $RR = \frac{\pi_1}{\pi_2}$.
- Some properties:
 - $-0 < RR < \infty$.
 - $-\pi_1 > \pi_2 \iff RR > 1.$
 - $-\pi_1=\pi_2\iff RR=1$ (independence).
- An estimate for relative risk: $\frac{\hat{\pi}_1}{\hat{\pi}_2} = \frac{n_{11}/n_{1+}}{n_{21}/n_{2+}}$.

 π_1/π_2

▶ Large-sample $1 - \alpha$ CI for $\log RR$

$$\left[\log RR - z_{\alpha/2}\hat{\sigma}(\log RR), \log RR + z_{\alpha/2}\hat{\sigma}(\log RR)\right],$$

where

$$\hat{\sigma}^2(\log RR) = \frac{1 - \hat{\pi}_1}{n_{11}} + \frac{1 - \hat{\pi}_2}{n_{21}}.$$

 π_1/π_2

Example 3 (Aspirin revisited)

An estimate for the relative risk is $\frac{189/11034}{104/11037}\approx 1.818$. The approximate standard deviation is

$$\hat{\sigma}(\log RR) = \sqrt{\frac{1 - 189/11034}{189} + \frac{1 - 104/11037}{104}} \approx 0.121.$$

The 95% CI for $\log RR$ is

$$[\log 1.818 - 1.96 \times 0.121, \log 1.818 + 1.96 \times 0.121] \Rightarrow [0.361, 0.835]$$

which gives the 95% CI for RR

$$\left[e^{0.361}, e^{0.835}\right] \Rightarrow \left[1.435, 2.305\right].$$

Odds ratio

Definition 4 (Odds ratio)

For a two-way contingency table, the odds ratio is defined as

$$\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_1}{\pi_2} \cdot \frac{1-\pi_2}{1-\pi_1} = RR \cdot \frac{1-\pi_2}{1-\pi_1}.$$

Properties of θ :

- ightharpoonup $0 < \theta < \infty$.
- \blacktriangleright $\pi_1 > \pi_2 \iff \theta > 1$

Odds ratio

 \blacktriangleright An estimate for θ

$$\hat{\theta} = \frac{\hat{\pi}_1/(1-\hat{\pi}_1)}{\hat{\pi}_2/(1-\hat{\pi}_2)} = \frac{n_{11}/n_{12}}{n_{21}/n_{22}}.$$

lacktriangle Large sample approximate variance for $\log \hat{ heta}$

$$\hat{\text{Var}}(\log \hat{\theta}) = \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}.$$

▶ The approximate $1 - \alpha$ CI for $\log \theta$ is

$$\left[\log \hat{\theta} - z_{\alpha/2} \sqrt{\hat{\mathrm{Var}}(\log \hat{\theta})}, \log \hat{\theta} + z_{\alpha/2} \sqrt{\hat{\mathrm{Var}}(\log \hat{\theta})}\right].$$

Odds ratio

Example 5 (Aspirin revisited)

$$\hat{\theta} = \frac{189 \times 10933}{10845 \times 104} \approx 1.832.$$

$$\hat{\text{Var}}(\log \hat{\theta}) = \frac{1}{189} + \frac{1}{10845} + \frac{1}{104} + \frac{1}{10933} \approx 0.015$$

The 95% CI for $\log \theta$

$$\left\lceil \text{log}\, 1.832 - 1.96 \times \sqrt{0.015}, 1.832 + 1.96 \times \sqrt{0.015} \right\rceil \Rightarrow \left[0.365, 0.846 \right],$$

the 95% CI for θ is

$$\left[e^{0.365}, e^{0.846}\right] \Rightarrow [1.44, 2.33].$$

χ^2 test for independence

A joint table of X and Y is like

	Y_1	Y_2		Y_J	
X_1	π_{11}	π_{12}		π_{1J}	π_{1+}
X_2	π_{21}	π_{22}		π_{2J}	π_{2+}
:	:	:	٠	:	:
X_I	π_{I1}	π_{12}		π_{IJ}	π_{I+}
	π_{+1}	π_{+2}		π_{+J}	1

Goal: test the independence between X and Y, e.g.

$$H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$$
 for $i \in \{1, 2, \dots, I\}, j \in \{1, 2, \dots, J\}$

.

11 / 26

χ^2 test for independence

▶ The estimate of π_{i+} and π_{+j} are

$$\hat{\pi}_{i+} = \frac{n_{i+}}{n}, \quad \hat{\pi}_{+j} = \frac{n_{+j}}{n}.$$

ightharpoonup Under H_0 , we have

$$\hat{\mu}_{ij} = n\pi_{ij} = n\pi_{i+}\pi_{+j} = \frac{n_{i+}n_{+j}}{n}.$$

▶ The Pearson χ^2 statistic is

$$\chi^2 = \sum_{i \in \{1, \dots, I\}, j \in \{1, \dots, J\}} \frac{(n_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}} \sim \chi_{df}^2$$

where
$$df = IJ - 1 - (I - 1 + J - 1) = (I - 1)(J - 1)$$
.

▶ **Reject** H_0 if $\chi^2 \ge \chi^2_{df}(\alpha)$.

χ^2 test for independence

Example 6 (Gender in party identification)

Suppose we are given the following table

	Democrat	Independent	Republican	Total
Female	762	327	468	1557
Male	484	239	477	1200
	1246	566	945	2757

- ► Then $\hat{\mu}_{11} = \frac{1577 \times 1246}{2757} = 703.7$, etc.
- ▶ Pearson's statistic $\chi^2 = \frac{(762-703.7)^2}{703.7} + \frac{(327-319.6)^2}{319.6} + \dots = 30.1.$
- ► The degree of freedom (df) is (2-1)(3-1)=2 and $\chi_2^2(0.05)=5.99$.
- ► Reject H_0 as 30.1 > 5.99.

A limitation of significance test: these tests only tell us whether there is evidence for the association, but how strong this association is remains unclear.

A limitation of significance test: these tests only tell us whether there is evidence for the association, but how strong this association is remains unclear.

Solution: a cell-by-cell comparison of the observed and estimated frequencies helps show more about the relation.

- ▶ Under $H_0: X$ and Y are independent, we have $\hat{\mu}_{ij} = \frac{n_{i+}n_{+j}}{n}$.
- ▶ We calculate the standardized Pearson residuals

$$e_{ij} = rac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}(1 - \hat{\pi}_{i+})(1 - \hat{\pi}_{+j})}}.$$

- ▶ Under H_0 , e_{ij} behaves like a N(0,1) random variable.
- ▶ We can observe e_{ij} to check the departure from H_0 .

15 / 26

In the gender and party identification example,

$$\begin{split} \hat{\pi}_{1+} &= \frac{1557}{2757} = 0.565, \quad \hat{\pi}_{+1} = \frac{1246}{2757} = 0.452, \\ e_{11} &= \frac{762 - 703.7}{\sqrt{703.7(1 - 0.565)(1 - 0.452)}} = 4.5. \end{split}$$

► The cell-by-cell residuals are displayed as

	Democrat	Independent	Republican
Female	4.5	0.7	-5.3
Male	-4.5	-0.7	5.3
	1246	566	945

► There are significantly more democrat females (less males) than predicted by the independence model, there are significantly less republican females (more males) than predicted by the model.

- ▶ X has I categories: X_1, \ldots, X_I ; Y has J categories: Y_1, \ldots, Y_J . We know $X_1 < \cdots < X_I$ and $Y_1 < \cdots < Y_J$.
- ▶ We want to test whether X is independent of Y.
- Assign scores $u_1 < \cdots < u_I$ to categories of X and $v_1 < \cdots < v_J$ to those of Y.
- ▶ See the following example, patients with two diseases *X* and *Y*. The categories are the level of symptoms(slight, medium and heavy).

			Y	
		v_1	v_2	v_3
	u_1	2	1	3
X	u_1 u_2	2	1 2	3
X				

Patient	X	Y
1	u_1	v_1
2	u_1	v_1
3	u_1	v_2
4	u_1	v_3
5	u_1	v_3
6	u_1	v_3
7	u_2	v_1
8	u_2	v_2
9	u_2	v_2
10	u_2	v_3
11	u_3	v_1
12	u_3	v_2
13	u_3	v_3
14	u_3	v_3

Pearson correlation coefficient describes the linear relationship between X and Y:

$$r = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \frac{1}{n-1} \sum_{i=1}^{n} (y - I - \bar{y})^2}}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{l} n_{i+} u_i = \bar{u},$$
$$\bar{y} = \bar{v}.$$

In that case, we have

$$r = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} \pi_{ij} (u_i - \bar{u}) (v_j - \bar{v})}{\sqrt{\sum_{i=1}^{I} \pi_{i+} (u_i - \bar{u})^2 \cdot \sum_{j=1}^{J} \pi_{+j} (v_j - \bar{v})^2}}.$$

▶ Under H_0 : X and Y are independent, large sample theory gives

$$\sqrt{n-1} \cdot r \sim \textit{N}(0,1),$$

$$M^2 = (n-1)r^2 \sim \chi_1^2$$
.

This test is named Mantel-Haenszel test.

▶ Under H_0 : X and Y are independent, large sample theory gives

$$\sqrt{n-1}\cdot r \sim \textit{N}(0,1),$$

$$M^2 = (n-1)r^2 \sim \chi_1^2.$$

This test is named Mantel-Haenszel test.

► How to choose scores $\{u_i\}$ and $\{v_i\}$?

▶ Under H_0 : X and Y are independent, large sample theory gives

$$\sqrt{n-1}\cdot r\sim N(0,1),$$

$$M^2 = (n-1)r^2 \sim \chi_1^2.$$

This test is named Mantel-Haenszel test.

► How to choose scores $\{u_i\}$ and $\{v_i\}$? **Answer:** any increasing/decreasing sequence is ok.

▶ Under H_0 : X and Y are independent, large sample theory gives

$$\sqrt{n-1}\cdot r \sim \textit{N}(0,1),$$

$$M^2 = (n-1)r^2 \sim \chi_1^2.$$

This test is named Mantel-Haenszel test.

- ▶ How to choose scores $\{u_i\}$ and $\{v_i\}$? **Answer:** any increasing/decreasing sequence is ok.
- ▶ In the gender and party identification example, $M^2 = 28.98 > \chi_1^2(0.05) = 3.381$, therefore reject H_0 .

Example 7 (Mother's alcohol consumption and infant malformation)

	Present (Y=1)	Absent (Y=0)
0	48	17066
< 1	38	14464
1–2	5	788
3–5	1	126
> 6	1	37

- Pearson's test: $\chi^2 = 12.1 > \chi_4^2(0.95) = 9.49$.
- ► Assign scores 0, 0.5, 1.5, 4, 7 to alcohol consumption and 0, 1 to absent/present. We have

$$M^2 = 6.6 > \chi_1^2(0.95) = 3.84.$$

Conclusion: there exists relationship between mother's alcohol consumption and infant malformation.

Tests for nominal-ordinal data

► X-nominal, Y-ordinal, such that

- ▶ $H_0: X$ and Y are independent \Longrightarrow the conditional distributions ($\mathbf{P}(Y|X=i)$) of Y given X are the same across all levels of X \Longrightarrow the conditional means remain unchanged $\mathbf{E}[Y|X=i]$.
- ► This is an ANOVA problem!

Tests for nominal-ordinal data

▶ We have SSTO = SSW + SSB:

$$\sum_{i=1}^{I} \sum_{j=1}^{j} n_{ij} (v_j - \bar{v})^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (v_j - \bar{v}_i)^2 + \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (\bar{v}_i - \bar{v})^2,$$

where

$$ar{v} = rac{\sum_{i=1}^{J} \sum_{j=1}^{J} n_{ij} v_j}{n} \ ar{v}_i = rac{\sum_{j=1}^{J} n_{ij} v_j}{n_{i+}}$$

► The F-test is

$$F = \frac{SSB/(I-1)}{SSW/(n-I)} \sim F_{I-1,n-I}.$$

As you can see, most aforementioned methods require large sample. What if the sample size is small?

Example 8 (Fisher's tea)

Fisher's colleague, Muriel Bristol claims she could tell whether or not tea (or milk) was added to the cup first.

	Muriel's Guess			
		Milk	Tea	
True	Milk	3	1	4
	Tea	1	3	4
		4	4	•

24 / 26

▶ We want to test whether *X* (the true order) and *Y* (the guessed order) are independent, then we test

$$H_0: \theta = 1$$
 v.s. $H_1: \theta \neq 1$.

▶ We want to test whether *X* (the true order) and *Y* (the guessed order) are independent, then we test

$$H_0: \theta = 1$$
 v.s. $H_1: \theta \neq 1$.

Because of the small sample, the Pearson test performs poorly.

▶ We want to test whether X (the true order) and Y (the guessed order) are independent, then we test

$$H_0: \theta = 1$$
 v.s. $H_1: \theta \neq 1$.

- Because of the small sample, the Pearson test performs poorly.
- ▶ In total, there are 4+4=8 trials. We know there are 4 times each for milk first $(n_{1+}=4, n_{2+}=4)$ and tea first and there are 4 trials each for milk guessed and tea guessed $(n_{+1}=4, n_{+2}=4)$.

▶ We want to test whether X (the true order) and Y (the guessed order) are independent, then we test

$$H_0: \theta = 1$$
 v.s. $H_1: \theta \neq 1$.

- ▶ Because of the small sample, the Pearson test performs poorly.
- ▶ In total, there are 4+4=8 trials. We know there are 4 times each for milk first $(n_{1+}=4, n_{2+}=4)$ and tea first and there are 4 trials each for milk guessed and tea guessed $(n_{+1}=4, n_{+2}=4)$.
- ▶ What is the probability that $n_{11} = 3$ under H_0 ?

25 / 26

▶ We want to test whether X (the true order) and Y (the guessed order) are independent, then we test

$$H_0: \theta = 1$$
 v.s. $H_1: \theta \neq 1$.

- ▶ Because of the small sample, the Pearson test performs poorly.
- ▶ In total, there are 4+4=8 trials. We know there are 4 times each for milk first $(n_{1+}=4, n_{2+}=4)$ and tea first and there are 4 trials each for milk guessed and tea guessed $(n_{+1}=4, n_{+2}=4)$.
- ▶ What is the probability that $n_{11} = 3$ under H_0 ? *Answer:* a hyper-geometric distribution

$$\mathbf{P}(n_{11}=3)=\frac{\binom{n_{1+}}{3}\cdot\binom{n_{2+}}{n_{+1}-3}}{\binom{n}{n_{+1}}}=\frac{\binom{4}{3}\cdot\binom{4}{1}}{\binom{8}{4}}.$$

- ▶ $\theta = 1 \iff n_{11} = 2$. In other words, if $n_{11} \neq 2$, then $\theta \neq 1$.
- ► The probability distribution table

	$n_{11} = 0$	$n_{11} = 1$	$n_{11} = 2$	$n_{11} = 3$	$n_{11} = 4$
Prob	0.014	0.229	0.514	0.229	0.014

► The P-value of this exact test is

$$0.014 + 0.229 + 0.229 + 0.014 = 0.486.$$