Aula 17 Ajuste de Curvas pelo Método dos Quadrados Mínimos – Caso Discreto

MS211 - Cálculo Numérico

Marcos Eduardo Valle

Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Problema de Quadrados Mínimos - Caso Discreto

Suponha que temos uma tabela

com x_1, x_2, \ldots, x_m em um intervalo [a, b]. Escolhidas funções g_1, g_2, \ldots, g_n , contínuas em [a, b], nosso objetivo será encontrar coeficientes $\alpha_1, \alpha_2, \ldots, \alpha_n$ de modo que a função

$$\varphi(\mathbf{x}) = \alpha_1 \mathbf{g}_1(\mathbf{x}) + \alpha_2 \mathbf{g}_2(\mathbf{x}) + \ldots + \alpha_n \mathbf{g}_n(\mathbf{x}),$$

satisfaça

$$\varphi(x_k) \approx y_k, \quad \forall k = 1, \ldots, m.$$

As funções g_1, g_2, \ldots, g_n podem ser escolhidas observando o gráfico dos pontos tabelados ou baseando-se em conceitos teóricos do experimento que forneceu a tabela.

U > 10 > 1 = > 1 = > 2 9 9 0

Podemos pensar que

$$y_k = f(x_k), \quad \forall k = 1, \ldots, m,$$

para alguma função desconhecida f. Nesse caso, a função φ fornece uma aproximação para f com base nos pontos amostrados $(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)$.

O modelo matemático

$$\varphi(\mathbf{X}) = \alpha_1 \mathbf{g}_1(\mathbf{X}) + \alpha_2 \mathbf{g}_2(\mathbf{X}) + \ldots + \alpha_n \mathbf{g}_n(\mathbf{X}),$$

é chamado **linear** porque os coeficientes $\alpha_1, \ldots, \alpha_n$ aparecem linearmente. As funções g_1, \ldots, g_n , porém, não precisam ser funções lineares; elas podem ser polinômios, funções trigonométricas, exponenciais, logaritmos, etc.

Considere a tabela

Podemos colocar os pontos tabelados $(x_1, y_1), \dots, (x_{11}, y_{11})$ em um gráfico cartesiano chamado **diagrama de dispersão**.

Esse gráfico sugere escolher escolhermos

$$g_1(x) = x^2$$
, $g_2(x) = x$ e $g_3(x) = 1$.

Dessa forma,

$$\varphi(\mathbf{x}) = \alpha_1 g_1(\mathbf{x}) + \alpha_2 g_2(\mathbf{x}) + \alpha_3 g_3(\mathbf{x})$$

= $\alpha_1 \mathbf{x}^2 + \alpha_2 \mathbf{x} + \alpha_3$,

que é uma parábola.

Formulação Matemática

Escolhidas as funções g_1, \ldots, g_n , no problema de quadrados mínimos, a notação

$$\varphi(x_k) \approx y_k, \quad \forall k = 1, \ldots, m,$$

significa que a soma dos quadrados dos desvios $\varphi(x_k)-y_k$ é mínima, ou seja,

$$J(\alpha_1,\ldots,\alpha_n)=\sum_{k=1}^m\Big(\varphi(x_k)-y_k\Big)^2,$$

é mínimo.

Observe que J será zero se, e somente se,

$$\varphi(x_k) = y_k, \quad \forall k = 1, \ldots, m.$$

Nesse caso, φ ajusta exatamente os dados tabelados.

No curso de Cálculo II, vimos que o mínimo de $J(\alpha_1, \ldots, \alpha_n)$ deve satisfazer

$$\frac{\partial J}{\partial \alpha_j} = 0, \quad \forall j = 1, \dots, n.$$

Pela regra da cadeia, a derivada parcial é

$$\frac{\partial J}{\partial \alpha_j} = 2 \sum_{k=1}^m \left(\alpha_1 g_1(x_k) + \ldots + \alpha_n g_n(x_k) - y_k \right) g_j(x_k).$$

Dessa forma, devemos ter

$$\sum_{k=1}^{m} \left(\alpha_1 g_1(x_k) + \ldots + \alpha_n g_n(x_k) - y_k\right) g_j(x_k) = 0, \quad \forall j = 1, \ldots, n.$$

Equações Normais

Alternativamente, podemos escrever

$$\begin{cases} \left(\sum_{k=1}^{m} g_{1}(x_{k})g_{1}(x_{k})\right) \alpha_{1} + \ldots + \left(\sum_{k=1}^{m} g_{n}(x_{k})g_{1}(x_{k})\right) \alpha_{n} &= \sum_{k=1}^{m} y_{k}g_{1}(x_{k}), \\ \left(\sum_{k=1}^{m} g_{1}(x_{k})g_{2}(x_{k})\right) \alpha_{1} + \ldots + \left(\sum_{k=1}^{m} g_{n}(x_{k})g_{2}(x_{k})\right) \alpha_{n} &= \sum_{k=1}^{m} y_{k}g_{2}(x_{k}), \\ \vdots &\vdots \\ \left(\sum_{k=1}^{m} g_{1}(x_{k})g_{n}(x_{k})\right) \alpha_{1} + \ldots + \left(\sum_{k=1}^{m} g_{n}(x_{k})g_{n}(x_{k})\right) \alpha_{n} &= \sum_{k=1}^{m} y_{k}g_{n}(x_{k}), \end{cases}$$

que é um sistema linear com n equações e incógnitas $\alpha_1, \ldots, \alpha_n$.

Esse sistema linear acima é chamado equações normais.

Em termos matriciais, as equações normais podem ser escritas como

$$\mathbf{A}\alpha = \mathbf{b}$$
,

em que
$$\mathbf{A}=(a_{ij})\in\mathbb{R}^{n\times n},\, \pmb{\alpha}=(\alpha_j)\in\mathbb{R}^n$$
 e $\mathbf{b}=(b_i)\in\mathbb{R}^n$, com

$$a_{ij} = \sum_{k=1}^{m} g_i(x_k)g_j(x_k)$$
 e $b_i = \sum_{k=1}^{m} y_kg_i(x_k), \quad \forall i,j = 1,\ldots,n.$

Lembre-se que o produto escalar entre dois vetores $\mathbf{u} = [u_1, u_2, \dots, u_m]^T \in \mathbb{R}^m$ e $\mathbf{v} = [v_1, v_2, \dots, v_m]^T \in \mathbb{R}^m$ é

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + \ldots + u_m v_m = \sum_{k=1}^m u_k v_k.$$

Assim, podemos escrever

$$a_{ij} = \langle \mathbf{g}_i, \mathbf{g}_j \rangle$$
 e $b_i = \langle \mathbf{y}, \mathbf{g}_i \rangle$, $\forall i, j = 1, \dots, n$,

em que

$$\mathbf{g}_{\ell} = egin{bmatrix} g_{\ell}(x_1) \ g_{\ell}(x_2) \ dots \ g_{\ell}(x_m) \end{bmatrix} \quad \mathbf{e} \quad \mathbf{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_m \end{bmatrix}, \quad orall \ell = 1, \ldots, n.$$

Pode-se mostrar que o sistema linear

$$\mathbf{A}\alpha = \mathbf{b},$$

possui uma única solução $\alpha^* = [\alpha_1^*, \dots, \alpha_n^*]^T$ se os vetores $\mathbf{g}_1, \dots, \mathbf{g}_n$ forem linearmente independentes.

Sobretudo, os coeficientes $\alpha_1^*, \dots, \alpha_n^*$ obtidos fornecem o valor mínimo

$$J(\alpha_1,\ldots,\alpha_n)=\sum_{k=1}^m\Big(\varphi(x_k)-y_k\Big)^2.$$

Considere a tabela

e as funções

$$g_1(x) = x^2$$
, $g_2(x) = x$ e $g_3(x) = 1$.

Nesse caso, temos os vetores

Ç	31	1.00	0.56	0.36	0.25	0.09	0.00	0.04	0.16	0.25	0.49	1.00
- (3 2	-1.00	-0.75	-0.60	-0.50	-0.30	0.00	0.20	0.40	0.50	0.70	1.00
	3 3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Além disso, temos

$$\begin{array}{lll} a_{11} = \langle \mathbf{g}_1, \mathbf{g}_1 \rangle = 2.85, & a_{12} = \langle \mathbf{g}_1, \mathbf{g}_2 \rangle = -0.25, & a_{13} = \langle \mathbf{g}_1, \mathbf{g}_3 \rangle = 4.20, \\ a_{21} = \langle \mathbf{g}_2, \mathbf{g}_1 \rangle = -0.25, & a_{22} = \langle \mathbf{g}_2, \mathbf{g}_2 \rangle = 4.20, & a_{23} = \langle \mathbf{g}_2, \mathbf{g}_3 \rangle = -0.35, \\ a_{31} = \langle \mathbf{g}_3, \mathbf{g}_1 \rangle = 4.20, & a_{32} = \langle \mathbf{g}_3, \mathbf{g}_2 \rangle = -0.35, & a_{33} = \langle \mathbf{g}_1, \mathbf{g}_3 \rangle = 11, \end{array}$$

е

$$b_1 = \langle y, g_1 \rangle = 5.87, \quad b_2 = \langle y, g_2 \rangle = -0.11, \quad b_3 = \langle y, g_3 \rangle = 9.11.$$

Dessa forma, temos as equações normais

$$\underbrace{\begin{bmatrix} 2.85 & -0.25 & 4.20 \\ -0.25 & 4.20 & -0.35 \\ 4.20 & -0.35 & 11.00 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}}_{\boldsymbol{\alpha}} = \underbrace{\begin{bmatrix} 5.87 \\ -0.11 \\ 9.11 \end{bmatrix}}_{\mathbf{b}},$$

cuja solução é

$$\alpha^* = \begin{bmatrix} 1.94 & 0.10 & 0.09 \end{bmatrix}^T$$
.

Concluindo, a parábola que melhor se ajusta aos dados tabelados é

$$\varphi(x) = 1.94x^2 + 0.10x + 0.09,$$

conforme mostrado no gráfico a seguir:

O mínimo da soma dos quadrados dos desvios é

$$J(\alpha_1^*, \alpha_2^*, \alpha_3^*) = \sum_{k=1}^m \left(\left(1.94 x_k^2 + 0.10 x_k + 0.09 \right) - y_k \right)^2 = 0.24.$$

Caso Não Linear

Em alguns casos, o método dos quadrados mínimos linear pode ser usado para ajustar uma função φ não linear nos coeficientes.

Exemplo 3

Suponha que queremos ajustar uma função exponencial

$$\varphi(\mathbf{X}) = \beta_1 \mathbf{e}^{\beta_2 \mathbf{X}}.$$

Nesse caso, podemos linearizar o problema usando uma transformação conveniente:

$$y \approx \beta_1 e^{\beta_2 x} \implies z = \ln(y) \approx \ln(\beta_1) + \beta_2 x.$$

Dessa forma, temos um problema linear

$$z \approx \alpha_1 + \alpha_2 x$$

em que $\alpha_1 = \ln(\beta_1)$ e $\alpha_2 = \beta_2$.

Considere a tabela

-1.00							
 36.54	17.26	8.15	3.85	1.82	0.86	0.40	0.24

cujo diagrama de dispersão é

O diagrama de dispersão sugere um ajuste

$$y \approx \beta_1 e^{\beta_2 x}$$
.

Fazendo a linearização z = ln(y), obtemos

$$z \approx \alpha_1 + \alpha_2 x$$

em que
$$\beta_1 = e^{\alpha_1}$$
 e $\beta_2 = \alpha_2$.

O diagrama de dispersão do problema linearizado é

As equações normais do problema linearizado fornecem

$$\underbrace{\begin{bmatrix} 8.00 & 0.30 \\ 0.30 & 3.59 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \alpha_{\mathbf{1}} \\ \alpha_{\mathbf{2}} \end{bmatrix}}_{\boldsymbol{\alpha}} = \underbrace{\begin{bmatrix} 8.00 \\ -8.68 \end{bmatrix}}_{\mathbf{b}},$$

cuja solução é

$$\alpha^* = \begin{bmatrix} 1.09 & -2.51 \end{bmatrix}^T$$
.

Concluindo, o problema linearizado fornece

$$z \approx 1.09 - 2.51x$$
.

O mínimo da soma dos quadrados dos desvios do problema linearizado é

$$J_{\text{linearizado}}(\alpha_1^*, \alpha_2^*) = \sum_{k=1}^{m} ((1.09 - 2.51x_k) - z_k)^2 = 3.2 \times 10^{-4}.$$

Retornando ao problema original, temos

$$\beta_1^* = e^{\alpha_1} = 2.99$$
 e $\beta_2^* = \alpha_2 = -2.51$.

Portanto, temos o ajuste

$$y \approx 2.99e^{-2.51x}$$
.

A soma dos quadrados dos desvios do problema original é

$$J(\beta_1^*, \beta_2^*) = \sum_{k=1}^{m} \left(2.99e^{-2.51x_k} - y_k \right)^2 = 0.038.$$

Finalmente, é importante observar que os parâmetros β_1^* e β_2^* não minimizam necessariamente

$$J(\beta_1,\beta_2) = \sum_{k=1}^m \left(\beta_1 e^{\beta_2 x_k} - y_k\right)^2,$$

pois eles foram obtidos através do problema linearizado, não do problema original!

Considerações Finais

O método dos quadrados mínimos linear é usado para encontrar uma função

$$\varphi(\mathbf{x}) = \alpha_1 \mathbf{g}_1(\mathbf{x}) + \alpha_2 \mathbf{g}_2(\mathbf{x}) + \ldots + \alpha_n \mathbf{g}_n(\mathbf{x}),$$

que melhor se ajusta a uma tabela

com x_1, x_2, \ldots, x_m em um intervalo [a, b].

Os coeficientes $\alpha_1^*,\dots,\alpha_n^*$ são obtidos resolvendo um sistema linear

$$\mathbf{A}\alpha = \mathbf{b}$$
,

conhecido como equações normais.

