https://Guilhermefroes.github.io/sistemasFab

Sistemas de Transporte de Materiais

SISTEMAS INTEGRADOS DE FABRICAÇÃO PROF. GUILHERME FRÓES SILVA

Manuseio de Materiais

Movimentação, armazenamento, proteção e controle de materiais por meio dos processos de manufatura e distribuição, incluindo consumo e descarte dos materiais.

Objetivos:

- Segurança
- Eficiência
- Baixo Custo

Manuseio de Materiais

O custo de manuseio de materiais corresponde a uma porção significante dos custos totais de produção.

Estima-se que, nos EUA, o custo de manuseio de materiais corresponde a 20-25% dos custos de mão-de-obra direta (Groover, 2001).

Equipamentos

Podem ser classificados em quatro categorias:

- 1. Equipamentos de Transporte de Materiais
- 2. Equipamentos de Unitização
- 3. Sistemas de Armazenamento
- 4. Sistemas de Identificação e Rastreamento

Equipamentos

Deslocam o material dentro da fábrica.

Principais tipos:

- A. Veículos industriais
- B. Veículos guiados automaticamente (AGVs)
- C. Veículos guiados por trilhos
- D. Transportadores (esteiras)
- E. Guindastes e guinchos

Equipamentos

São normalmente referidos como "carrinhos-demão" porque são empurrados ou puxados por trabalhadores.

Quantidades de materiais movidas e distâncias deslocadas são relativamente baixas.

São classificados como de duas ou quatro rodas.

Carrinhos de duas rodas (a)

 Mais fáceis de manipular pelo trabalhador mas são limitados a cargas mais leves

Carrinhos de múltiplas rodas

- Carretas (b)
- Carrinhos de pallet (c)

São autopropelidos para assumir a função do trabalhador de deslocar o carro manualmente.

Três tipos comuns são utilizados em fábricas e armazéns:

- 1. Carrinhos motorizados (walkie trucks)
- 2. Empilhadeiras
- 3. Tratores de reboque

Carrinhos motorizados (a)

- Propulsão à bateria e equipados com garfos com rodas para inserção em pallets
- Dirigido por um operador com controle manual na frente do veículo. Velocidade $\sim 5km/h$ (caminhada)

Empilhadeiras (b)

- Possui cabine para o operador
- Capacidade: 450 a 4500 kg
- Gasolina, GLP, GNV ou elétricos ($\sim 20km/h$)

Tratores e reboques industriais (c)

- São projetados para puxar um ou mais reboques sobre superfícies planas
- São utilizados geralmente para deslocar grandes quantidades de materiais
- O deslocamento entre pontos de origem e destino são relativamente longos

Tratores e reboques industriais (c)

- A propulsão é feita por motores elétricos ou à combustão interna
- São geralmente utilizados em aeroportos para movimentação de bagagem

Automated Guided Vehicles (AGVs)

- Operação independentes de operadores
 - Percursos definidos
- Movidos por baterias
 - 8 16 horas de autonomia
- Caminhos demarcados no chão-de-fábrica
- Movimentação de estoque intermediário

Automated Guided Vehicles (AGVs)

- Variações de rotas são possíveis
- Indicado para processos em batelada (lotes) e alta variedade de produtos
- Alto custo

Classificação:

- 1. Trens sem condutor
- Veículo puxando um ou mais reboques
- Primeiro tipo de AGV utilizado e ainda é um dos mais utilizados
- Cargas pesadas por longas distâncias
- 2. Carrinhos de pallets
- Utilizados para deslocar cargas paletizadas ao longo de rotas determinadas
- Evoluíram para as empilhadeiras AGVs

Classificação:

- 3. Carregadores de unidades de carga
- Usados para deslocar unidades de carga de uma estação para outra
- $^{\circ}$ Veículo relativamente pequeno com capacidade de carga leve ($\sim\!250~kg$)

Figure 10.3 Three types of automated guided vehicles: (a) driverless automated guided train, (b) AGV pallet truck, and (c) unit load carrier.

Monovias

Veículos guiados por um sistema fixo de trilhos

- O sistema de trilhos pode ser suspenso
- Alto custo
- Variações de rotas são permitidas
- Movimentação de grandes quantidades em rotas fixas
- Movimentação de componentes em processamento e produtos em rotas variadas

Monovias

Monovias

dling Systems.)

02/0

Utilizados para transporte e manuseio de materiais em instalações

- Guinchos: movimentação vertical
 - Movimentação de itens muito pesados
- Guindastes: movimentação horizontal
 - Inclui um guincho
- Capacidade de içar grandes cargas

Aparato mecânico para mover grandes volumes de materiais dentro da instalação.

- Movimentação em caminhos fixos
- Movimento por energia
- Não movido por energia (força humana ou gravidade)
- Transporte contínuo ou intermitente
- Geralmente utilizados em sistemas de transporte automatizados de materiais em plantas de manufatura

Roletes

- Usado para cargas que tem superfícies de fundo planas
 - Caixas de papelão; paletes; caixas de peças

Transportadores de rodízios

 Usa rodas emborrachadas e são mais leves. Levam cargas menores.

Transportadores de esteiras

Consistem de um esteira contínua de borracha

Os transportadores se dividem em dois tipos em função do movimento

- Contínuo
 - Possuem velocidade Vc constante
- Assíncrono
 - Podem servir para acumular cargas, estocar temporariamente itens, permitir diferentes taxas de produção, etc.

- Podem ser classificados em:
 - Unidirecionais
 - Contínuos
 - De recirculação

Equipamentos de Unitização

Movimentação eficiente de materiais em lotes

- Incluem pallets, caixas, cestas, barris, caçambas, tambores
 Permite
- Manuseio de múltiplos itens simultaneamente.
- A redução de viagens
- A diminuição de tempos de carga e descarga
- Diminuição do risco de danificação dos itens

Equipamentos de Unitização

Equipamentos de Unitização

Depende basicamente de:

- Material manuseado
- Quantidades movimentadas
- Distâncias percorridas
- Layout de fábrica
- Orçamento disponível

Características de materiais:

- Estado físico: sólido, líquido ou gasoso
- Tamanho: volume, comprimento, largura, altura
- Peso
- Forma
- Condição: quente, frio, etc.
- Risco de dano: frágil, quebradiço, etc.

Características de materiais:

Risco de segurança: explosivo, inflamável, tóxico, corrosivo, etc.

Quantidade de material movimentado

- Grandes quantidades = equipamento dedicado
- Taxa de movimentação = quantidade movimentada por unidade de tempo
 - Ton/h; pallets/h; unidades/h

Distância de movimentação

- Grandes distâncias = altos custos
- Diferentes produtos podem requerer diferentes rotas de movimentação
- Flexibilidade do equipamento
- Condições de rota (superfície, congestionamentos, movimentações fora da fábrica, elevação, etc)

Equipamentos de manuseio de materiais	Características	Aplicações típicas
Carros industriais, manuais	Baixo custo Baixa taxa de entregas/hora	Deslocamento de cargas leves em uma fábrica
Carros industriais, motorizados	Custo médio	Deslocamento de cargas de paletes e contêineres paletiza- dos em uma fábrica ou um armazém
Sistemas de veículos guiados automaticamente	Alto custo Veículos com propulsão a bateria Roteamento flexível Esteiras não obstruídas	Deslocamento de cargas de paletes em fábricas e armazéns Deslocamento de trabalhos em andamento ao longo de rotas variáveis em produção média e baixa
Monovia e outros veículos guiados por trilhos	Alto custo Roteamento flexível Tipos: sobre o piso e aéreos (teleféricos)	Deslocamento de montagens simples, produtos ou cargas de paletes ao longo de rotas variáveis em fábricas ou armazéns Deslocamento de grandes quantidades de itens através de rotas fixas em fábricas ou armazéns
Transportadores, motorizados	Grande variedade de equipamentos De piso, sobre o piso e aéreo Potência mecânica para mover cargas colocadas na esteira do transportador	Deslocamento de produtos ao longo de uma linha de montagem manual Seleção de itens em um centro de distribuição
Guindastes e guinchos	Capacidades de elevação de mais de cem toneladas	Deslocar itens grandes e pesados em fábricas, engenhos, armazéns etc.

Layout da planta industrial

- Otimizar o fluxo de materiais
- Dados necessários para o projeto
 - Área total da planta
 - Localização de equipamentos
 - Área de carga e descarga de itens
 - Rotas entre áreas de carga e descarga
 - Distâncias percorridas

Layout da planta industrial

- Tipo de Layout x Sistema de manuseio
 - Layout Fixo: Guindastes
 - Produtos grandes, baixa taxa de produção
 - Layout Funcional: Empilhadeiras e Paleteiras
 - Variações em produtos e processos, baixas e médias taxas de produção
 - Layout em Linha: Esteiras e Correias Aéreas
 - Baixa variação de produtos, altas taxas de produção

Fluxo de Materiais

Análise de sistemas baseados em veículos

- Trucks, Monotrilho, AGV, etc
- Considera-se que veículos operam a uma velocidade constante

Fluxo de Materiais

Tempo de ciclo de entrega do sistema consiste de:

- Tempo de carga em uma estação fornecedora
- Tempo de viagem até a estação receptora
- Tempo de descarga na estação receptora
- Tempo de viagem do veículo vazio entre entregas

Tempo de ciclo por entrega por veículo, T_c (min/entrega):

$$T_c = T_L + \frac{L_d}{v_c} + T_U + \frac{L_e}{v_c}$$

- \circ T_L Tempo de carga na estação fornecedora (min)
- L_d Distância entre estações fornecedora e receptora (m)
- v_c Velocidade do veículo (m/min)
- \circ T_U Tempo de descarga na estação receptora (min)
- $^{\circ}$ L_e Distância percorrida pelo veículo vazio até o início do próximo ciclo de entrega (m)

O cálculo de Tc é considerado um valor ideal, pois não considera perdas devido a confiabilidade do veículo, congestionamentos, e outros fatores que podem afetar o tempo de entrega.

Os ciclos de entrega podem ser diferentes

Diferentes pontos de coleta e entrega

Utiliza-se Tc para calcular

- Taxa de entrega por veículo
- Número de veículos necessários para atender a demanda de entrega

Deve-se ajustar o tempo para as perdas de tempo na hora de trabalho

Disponibilidade (A)

- \circ Congestionamentos (T_f)
 - Esperas em entroncamentos e filas de carga e descarga
 - $T_f = 1$ -> sistemas sem congestionamento
 - Valor típico para sistema com AGV T_f = 0,85
- $^{\circ}$ Eficiência dos operadores (quando veículos são operados manualmente) (E)

Tempo disponível por hora por veículo:

$$AT = 60A \times T_f \times E$$

- ∘ *AT* Tempo disponível (min/h por veículo)
- ∘ *A* − disponibilidade
- $\circ T_f$ Fator de tráfego
- ∘ *E* − eficiência do operador

Taxa de entrega por veículo:

$$R_{dv} = \frac{AT}{T_c}$$

- AT Tempo disponível (min/h por veículo)
- $^{\circ}R_{dv}$ Taxa horária de entrega por veículo (entregas/h por veículo)
- $\circ T_c$ Tempo de ciclo (min/entrega)

Taxa de entrega por veículo:

$$WL = R_f T_c$$

$$n_c = \frac{WL}{AT}$$

$$n_c = \frac{R_f}{R_{dv}}$$

- WL Carga de trabalho (min/h)
- R_f Taxa horária de entrega do sistema (entregas/h para sistema)
- R_{dv} Taxa horária de entrega por veículo (entregas/h por veículo)
- n_c Número de veículos requeridos
- T_c Tempo de ciclo (min/entrega)

Exemplo

Dado um Layout de AGV, com tempo de carga de 0,75 min, tempo de descarga de 0,5 min, velocidade de 50m/min, disponibilidade de 95%, fator de tráfego de 0,9 e eficiência de 100%

 Determinar quantos veículos são necessários para atender a uma demanda de 40 entregas por hora

Exemplo

Figure 10.15 AGVS loop layout for Example 10.1. Key: Unld = unload, Man = manual operation, dimensions in meters (m).

- Uma estação de carga e uma estação de descarga
- Transportador operando com velocidade constante Tempo de entrega (T_d) :

$$T_d = \frac{L_d}{v_c}$$

- $^{\circ}$ L_d Distância entre estações (m)
- v_c Velocidade do veículo (m/min)

Taxa de fluxo de materiais (R_f) :

$$R_f = R_L \le \frac{1}{T_L}$$

- $\circ R_L$ Taxa de carga (peças/min)
- $\circ T_L$ Tempo de carga (min/peça)

Tempo de descarga (T_U) :

$$T_U \leq T_L$$

- $^{\circ} T_U$ Tempo de descarga (min/peça)
- $\circ T_L$ Tempo de carga (min/peça)

Taxa do fluxo de materiais (R_f) :

$$R_f = \frac{n_p v_c}{s_c} \le \frac{1}{T_L}$$

- \circ n_p Número de peças unitizadas
- $^{\circ}$ v_c Velocidade do veículo
- s_c Espaço ocupado pelos materiais no transportador (m/peças)

 Transportador cheio no loop de entrada e vazio no loop de retorno

Distância total percorrida (L):

$$L = L_d + L_e$$

- $^{\circ}$ L_d Distância entre as estações fornecedora e receptora (m)
- $^{\circ}$ L_e Distância entre as estações receptora e fornecedora (m)

Tempo de Entrega (T_d):

$$T_d = \frac{L_d}{v_c}$$

- $^{
 m o}\,L_d$ Distância entre as estações fornecedora e receptora (m)
- v_c Velocidade do veículo (m/min)

Número de contêineres (n_c) :

$$n_c = \frac{L}{s_c}$$

- L Distância total percorrida
- $^{\circ}s_{c}$ Distância entre contêineres no transportador (m/contêiner)

Número máximo de partes no sistema (N):

$$N = \frac{n_p n_c L_d}{L}$$

- n_p Número de peças unitizadas
- \circ n_c Número de contêineres
- $^{\circ}$ L_d Distância entre estações fornecedora e receptora (m)
- L Distância Total (m)

Taxa de fluxo entre as estações de carga e descarga (R_f) :

$$R_f = \frac{n_p v_c}{s_c}$$

- \circ n_p Número de peças unitizadas
- $\circ v_c$ Velocidade do transportador (m/min)
- s_c Distância entre contêineres no transportador (m/contêiner)

Caso especial de recirculação

- Possibilidade de não ter contêiner vazio disponibilizado na estação de carga
- Possibilidade de não ter contêiner cheio disponibilizado na estação de descarga

Considerando uma estação de carga e uma estação de descarga

- Princípios Básicos
 - Regra da velocidade
 - Restrição da capacidade
 - Princípio da uniformidade

Regra da Velocidade

 A velocidade mínima do transportador deve ser determinada pelas taxas demandadas de carga e descarga nas respectivas estações

$$\frac{n_p v_c}{s_c} \ge m \acute{a} x \{R_L, R_U\}$$

Regra da Velocidade

 A velocidade máxima do transportador deve ser determinada pela capacidade física dos manuseadores de materiais (carga e descarga)

$$\frac{v_c}{s_c} \le min\left\{\frac{1}{T_L}, \frac{1}{T_U}\right\}$$

· A velocidade não pode exceder limites tecnológicos.

Restrição de Capacidade

 A capacidade de fluxo do transportador deve ser ao menos igual a taxa de fluxo requerida

$$R_f \le \frac{n_p v_c}{s_c}$$

Princípio da Uniformidade

- Os itens devem ser uniformemente distribuídos no transportador
- Para evitar tempos de espera de carga/descarga devido a contêineres vazios/cheios, respectivamente.

Próximas Aulas

- EXERCÍCIOS E REVISÃO
- P1

