1) $\Omega(t,t) = \mathrm{id}$, $\Omega(t,t_0) = \Omega(t,s)\Omega(s,t_0)$ for all $t,s,t_0 \in [\tau,\infty)$; 2) and for almost all $t,s \in [\tau,\infty)$ it holds that

$$\begin{split} \frac{\partial}{\partial t} \Omega(t,s) &= A(t) \Omega(t,s), \\ \frac{\partial}{\partial s} \Omega(t,s) &= -A(s) \Omega(t,s). \end{split} \tag{3}$$

A non-empty, closed, convex subset $K \subset \mathcal{H}$ is called a cone, if $\mathbb{R}_+K \subset K$ and $K \cap (-K) = \{0\}$ hold. A cone K is called generating if any $x \in \mathcal{H}$ can be written as $x = x^+ - x^-$ for some $x^\pm \in K$. In a Hilbert space any generating cone is nonflat, that is there exists a constant $a_K > 0$, independent on x, such that in the representation $x = x^+ - x^-$ the vectors x^\pm can be chosen so that

$$||x^{\pm}|| \le a_K ||x||. \tag{4}$$

The set $K^* = \{f \in L(\mathcal{H}; \mathbb{R}) : f(K) \subset \mathbb{R}_+\} \subset \mathcal{H}^* = \mathcal{H}$ is called adjoint cone. If K is generating, then K^* is normal, i.e., there is a constant $b_K > 0$ such that $x \in K$, $y - x \in K$ imply $\|x\| \le b_K \|y\|$. A cone K is called selfadjoint if $K^* = K$. In a Hilbert space any selfadjoint cone is normal [13].

Definition 1: Let K be a generating and selfadjoint cone in \mathcal{H} . System (1) is called Wazewski [14] with respect to K (also called monotone [15]) if its evolution operator Ω satisfies $\Omega(t,s)K \subset K$ for all $t > s > \tau$.

Definition 2: We say that (1) is stable in K if for any $\varepsilon > 0$ and any $t_0 \ge \tau$ there is a $\delta = \delta(\varepsilon, t_0) > 0$ such that $x_0 \in B_\delta \cap K \Longrightarrow ||x(t;t_0,x_0)|| < \varepsilon, t \ge t_0$; if, in addition, the δ can be chosen independent on t_0 , then (1) is called uniformly stable in K;

asymptotically stable in K if it is stable in K and there is $\eta = \eta(t_0) > 0$ such that $x_0 \in B_\eta \cap K \Longrightarrow \lim_{t \to \infty} \|x(t;t_0,x_0)\| = 0$; if, in addition, η can be chosen independent on t_0 , then (1) is called uniformly asymptotically stable in K.

If any of the above properties holds with \mathcal{H} on the place of K, then we drop "in K" in their definitions.

Let system (1) be decomposed in two subsystems as follows

$$\dot{x}_i = A_{ii}(t)x_i + A_{ij}(t)x_j, \quad i \neq j, \quad i, j = 1, 2,$$
 (5)

with $x_i \in \mathcal{H}_i$, $A_{ij} \in L(H_j, H_i)$ for i, j = 1, 2. Let K_i be a solid selfadjoint cone in \mathcal{H}_i , then $K = K_1 \bigoplus K_2$ is a solid and selfadjoint cone in \mathcal{H} .

Let $\Omega_i \in C([\tau,\infty) \times [\tau,\infty); L(\mathscr{H}_i))$ denote the evolution operator of the decoupled subsystem

$$\dot{\mathbf{y}}_i = A_{ii}(t)\mathbf{y}_i, \quad \mathbf{y}_i \in \mathcal{H}_i, \quad i = 1, 2 \tag{6}$$

It can be verified by definition that (1), written as (5), is a Wazewski system for the cone K, if and only if

$$\Omega_i(t,s)K_i \subset K_i$$
 and $A_{ij}(t)K_j \subset K_i$, $t \ge s \ge \tau$. (7)

Definition 3: An operator $O \in L(\mathcal{H}_j; \mathcal{H}_i)$ is called positive, if it satisfies $OK_j \subset K_i$ and it is denoted by $O \geq 0$. For the evolution operator Ω_i of (6) let α_i , β_i , γ_i , $\delta_i \in C([\tau,\infty);\mathbb{R}_{>0})$ be such that

$$\|\Omega_i(t,s)\| \le \alpha_i(t)\beta_i(s), \quad t \ge s \ge \tau, \|\Omega_i(t,s)\| \le (\gamma_i(t))^{-1}(\delta_i(s))^{-1}, \quad s \ge t \ge \tau,$$
(8)

for example we can fix any $p \in (s,t)$ and take $\alpha_i(t) = \|\Omega_i(t,p)\|$, $\beta_i(s) = \|\Omega_i(p,s)\|$ due to $\Omega_i(t,s) = \Omega_i(t,p)\Omega_i(p,s)$.

Let $q_i \in C([\tau,\infty); \mathbb{R}_{>0})$ be suitable weight functions guaranteeing convergence of the next integrals for $t \in [\tau,\infty)$

$$\phi_{i}(t) := \gamma_{i}^{2}(t) \int_{t}^{\infty} q_{i}(s) \delta_{i}^{2}(s) ds,$$

$$g_{i}(t) := \beta_{i}^{2}(t) \int_{t}^{\infty} q_{i}(s) \alpha_{i}^{2}(s) ds.$$
(9)

III. MAIN RESULTS

For simplicity and clearness in this work we consider the case of r=2 interconnected subsystems in (5). An extension for $r\in\mathbb{N}$ will developed elsewhere. We introduce the following notation for $1\leq i\neq j\leq 2$: linear weighted integral gains for the interconnection (5) are defined as

$$\pi_{ii}(t_0) = 2 \sup_{t \ge t_0} \omega_i(t) \beta_i^2(t)$$

$$\times \int_t^\infty \alpha_i(s) \|A_{ji}(s)\| \beta_j(s) \int_s^\infty \frac{\alpha_i(p) \alpha_j(p) \|A_{ij}(p)\|}{\omega_i(p)} dp ds,$$
(10)

$$\pi_{ji}(t_0) = 2 \sup_{t \ge t_0} \omega_i(t) \beta_i^2(t)$$

$$\times \int_{t}^{\infty} \alpha_i(s) \|A_{ji}(s)\| \beta_j(s) \int_{s}^{\infty} \frac{\alpha_i(p) \alpha_j(p) \|A_{ji}(p)\|}{\omega_j(p)} dp ds,$$
(11)

where ω_i are suitable weight functions, which can help to enable convergence of the integrals. Also for $f \in C([t_0,T];L(\mathcal{H}_i))$ we introduce the weighted norm

$$||f||_{\omega_{i},T} := \max_{t \in [t_{0},T]} \omega_{i}(t)||f(t)||.$$
 (12)

Theorem 1: Let (1) be a Wazewski system with respect to a selfadjoint solid cone K and written as (5) with r=2. Let $\alpha_i, \beta_i, \gamma_i, \delta_i$ be as in (8) and $\phi_i, g_i, q_i, \omega_i, \pi_{ij}$ as in (9),(10),(11). If the spectral radius of the matrix $\Pi(t_0) \in \mathbb{R}^{2\times 2}$ defined by the weighted integral gains $\pi_{ij}(t_0)$ satisfies

$$r_{\sigma}(\Pi(t_0)) < 1 \tag{13}$$

then solutions to (1) satisfy the estimate

$$||x(t;t_0,x_0)|| \le 2a_K \sqrt{\frac{h(t_0,t_0)}{\phi(t)}} \exp\left(-\int_{t_0}^t \frac{q(s)}{2h(s,t_0)} ds\right) ||x_0||,$$
(14)

where a_K is from (4), $q(t) := \min\{q_1(t), q_2(t)\},\$ $\phi(t) := \min\{\phi_1(t), \phi_2(t)\}$ and $h(t, t_0) := \max\{h_{11}(t, t_0) + h_{12}(t, t_0)\}$