Problem has been graded.

Use source transformations to find the current i_x .

Given Variables:

Va : 12 V Vb : 6 V

la:5A lb:2A

R1: 15 ohm R2: 12 ohm

Calculate the following:

ix (A):

Use source transformations to find the current i_{χ} .

$$R1 = 3 \text{ ohm}$$

$$R2 = 3 \text{ ohm}$$

$$V_1 = I_a \cdot R_1 = 4 \cdot 3 = 12V$$

$$I_L = \frac{V_b}{R_L} = \frac{6}{3} = 2A$$

$$R_2$$

$$\hat{C}_{X} = \frac{12V}{G_{-}2} = 2A$$

$$\hat{C}_{X} = 2A$$

Problem has been graded.

Determine the resistance R_1 such that the power dissipated in R_2 is maximum.

Given Variables:

Vs:12 V

R2:7 ohm

Calculate the following:

R1 (ohm):

Determine the resistance R_1 such that the power dissipated in R_2 is maximum.

Vs = 12 V R2 = 3 ohm

$$V_{s} \stackrel{P}{=} \frac{V_{\varsigma}}{R_{1} + R_{2}}$$

$$C = \frac{V_{\varsigma}}{R_{1} + R_{2}}$$

$$P = R_{2} L^{2}$$

$$= \frac{R_{2} V_{\varsigma}^{2}}{(R_{1} + R_{2})^{2}}$$

$$P = \frac{3.144}{(R_1 + 3)^2}$$

$$\frac{\delta P}{\delta R_1} = -2 \cdot \frac{3 \cdot 144}{\left(R_1 + 3\right)^3} = 0 \iff R_1 = \infty$$

$$\frac{\delta P}{\delta R_1} = -2 \cdot \frac{3 \cdot 144}{\left(R_1 + 3\right)^3} = 0 \iff R_2 = \infty$$
ALWAYS DECREASING

No more attempts left.

Consider the circuit on the left. You are not given the values of V_S , I_S , R_1 , R_2 or R_3 .

You are told the value of current i_1 if V_1 is attached to this circuit, with A connected to A' and B connected to B'.

You are also told the value of current i_2 if V_2 is attached, with A connected to A' and B connected to B'. However, in this case, the independent sources were first turned off (i.e., $V_S = 0$ and $I_S = 0$).

Your task is to find V_x if current source I_3 is connected to the original circuit (i.e., with the independent sources V_S and I_S not turned off), with A connected to A'' and B connected to B'''.

Given Variables:

V1:6 V

i1:12 A

V2:12 V

i2 : 12 A

13 : -7 A

R4:2 ohm

Calculate the following:

Vx (V):

Consider the circuit on the left. You are not given the values of V_S , I_S , R_1 , R_2 or R_3 .

You are told the value of current i_1 if V_1 is attached to this circuit, with A connected to A' and B connected to B'.

You are also told the value of current i_2 if V_2 is attached, with A connected to A" and B connected to B". However, in this case, the independent sources were first turned off (i.e., $V_S = 0$ and $I_S = 0$).

Your task is to find V_x if current source I_1 is connected to the original circuit (i.e., with the independent sources V_S and I_S not turned off), with A connected to A''' and B connected to B'''.

Represent the left circuit as its Thevenin equivalent circuit

When A→A', B→B'

when $A \rightarrow A''$, $B \rightarrow B''$ and $V_s = G$, $I_s = G$

$$R_{1h} = \frac{V_2}{i_2} = \frac{10}{5} = 2D -$$

$$V_{Th} = 15 - 602$$

When $A \rightarrow A^{\parallel}$, $B \rightarrow B^{\parallel}$

Problem has been graded.

The circuit on the right represent the Thevenin model of the circuit on the left. Find the value of V_{Th} and R_{Th} .

Given Variables:

R1:4 ohm

R2:2 ohm

k:-2 A/V

Calculate the following:

Vth (V):

Rth (ohm):

The circuit on the right represent the Thevenin model of the circuit on the left. Find the value of V_{Th} and R_{Th} .

$$R_1 = 4 \mathcal{L}$$

$$R_2 = 2 \mathcal{L}$$

$$k = -2 \mathcal{L}$$

REDRAW:

(a) LEAVE A-B OPEN: KCL:
$$k \vee_{x} + \frac{1}{R_{2}} \vee_{x} = 0 \Rightarrow (k + \frac{1}{R_{2}}) \vee_{x} = 0 \Rightarrow \bigvee_{AB} = 0 \Rightarrow \bigvee_{TH} = 0 \vee_{TH} = 0 \vee_{TH}$$

$$i_{test} = i_1 + i_2 = V_{test} \frac{(1 + kR_2)}{R_1 + R_2}$$

=>
$$R_{1H} = \frac{V_{test}}{i_{test}} = \frac{R_1 + R_2}{i + R_2} = \frac{4 + 2}{1 + (-2)2} = \frac{6}{-3}$$

e, = Vest d'vide

iz = &Vx = & Vest Rz
R+R.

Problem has been graded.

Find the value of R_L such that the power received by R_L is maximized.

Find the corresponding max power received by R_L .

Given Variables:

ls:2A

R1:2 ohm R2:1 ohm R3:1 ohm

Calculate the following:

RL (ohm):

Pmax (W):

Find the value of R_L such that the power received by R_L is maximized.

Find the corresponding max power received by \mathcal{R}_L .

$$I_{s} = 2A$$
 $R_{1} = 12D$
 $R_{2} = 2D$
 $R_{3} = 2D$

$$V_{oC} = I_{S} \cdot (R_{2} \cdot R_{2})$$

= 2 \cdot(212)

$$P_{\text{max}} = \frac{V_{\text{Tn}}^2}{4 R_{\text{Tn}}}$$
$$= \frac{g^2}{4 (16)}$$