Interro30 - Entropie

Nom: Note:

Prénom:

Exercice 1 – Entropie (10 points)

1. Énoncer la loi de Laplace (hypothèses et relation).

Pour un gaz parfait de coefficient isentropique γ qui subit une transformation adiabatique et réversible, on a

$$PV^{\gamma} = \text{cste.}$$

2. Un gâteau de masse $m = 500 \,\mathrm{g}$ et de capacité thermique $c = 2 \, \mathrm{kJ} \cdot \mathrm{K}^{-1} \cdot \mathrm{kg}^{-1}$ est sorti du four à la température $T_i = 180$ °C et laissé à refroidir à température ambiante $T_0 = 300 \,\mathrm{K}$.

Exprimer et calculer l'entropie créée S_c . Commenter.

Données: $\ln 1.5 \approx 0.4$; entropie massique d'une PCII

$$s(T) = c \ln \left(\frac{T}{T_{\text{ref}}}\right) + s_{\text{ref}}.$$

Le gâteau, assimilé à une PCII, subit un refroidissement entre les température T_i et T_0 . La transformation est isobare, le premier principe donne

$$Q = \Delta H = mc(T_0 - T_i).$$

Le second principe donne

$$\begin{split} S_c &= \Delta S - S_{\text{\'ech}} \\ &= mc \ln \frac{T_0}{T_i} - \frac{Q}{T_0} \\ &= mc \left(\ln \frac{T_0}{T_i} - 1 + \frac{T_i}{T_0} \right) \\ &= \frac{1}{2} \times 2 \times 10^3 \times \left(\ln \frac{300}{453} - 1 + \frac{453}{300} \right) \\ &\approx 10^3 \times \left(-\ln 1, 5 - 1 + 1, 5 \right) \\ &\approx 0, 1 \, \text{kJ} \cdot \text{K}^{-1}. \end{split}$$