CONTROL 30 JAN 2005

PCT/JP2004/011442

日本国特許 JAPAN PATENT OFFICE

10 SEP 2004

004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 8月 8日

出 願 番 号 Application Number:

特願2003-289910

[ST. 10/C]:

[JP2003-289910]

出 願 人Applicant(s):

本田技研工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1 (a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 9月16日

1) 11)

特願2003-289910

ページ: 1/E

【書類名】

特許願

【整理番号】

H103257901

【提出日】

平成15年 8月 8日

【あて先】

特許庁長官殿

【国際特許分類】

F01L 1/34 F02D 13/02

HO3M 3/02 FO2D 41/02

【発明者】

【住所又は居所】

埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内

安井 裕司

【発明者】

【住所又は居所】

埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内

佐藤 正浩

【氏名】 【特許出願人】

【氏名】

【識別番号】

000005326

【氏名又は名称】

本田技研工業株式会社

【代理人】

【識別番号】

100095566

【弁理士】

【氏名又は名称】

高橋 友雄

【手数料の表示】

【予納台帳番号】

059455

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【請求項1】

制御対象への制御入力により、当該制御対象の出力を目標値になるように制御する制御 装置であって、

前記制御対象の出力を検出する出力検出手段と、

前記目標値を設定する目標値設定手段と、

前記検出された制御対象の出力を前記設定された目標値になるように制御するための制御値を、所定の制御アルゴリズムに基づいて算出する制御値算出手段と、

当該算出された制御値と第1所定値との偏差を算出する偏差算出手段と、

当該算出された偏差を、 Δ 変調アルゴリズム、 Δ Σ 変調アルゴリズムおよび Σ Δ 変調アルゴリズムのうちの1つに基づくアルゴリズムで変調することにより、変調値を算出するとともに、当該算出された変調値に基づいて、前記制御対象への前記制御入力を算出する制御入力算出手段と、

を備えることを特徴とする制御装置。

【請求項2】

前記制御入力算出手段は、前記制御対象への前記制御入力を、前記変調値と第2所定値 との総和として算出することを特徴とする請求項1に記載の制御装置。

【請求項3】

内燃機関の吸気弁および排気弁をそれぞれ開閉するための吸気カムおよび排気カムの少なくとも一方の、クランクシャフトに対するカム位相を、目標カム位相になるように制御する制御装置であって、

電磁石を有し、前記カム位相を、当該電磁石の電磁力により所定の範囲内で変更するとともに、当該電磁力が作用していないときには、当該所定の範囲を規定する一方の限界値に保持する電磁式カム位相可変機構と、

前記カム位相を検出するカム位相検出手段と、

前記目標カム位相を設定する目標カム位相設定手段と、

前記検出されたカム位相を前記設定された目標カム位相になるように制御するための制御値を、所定の制御アルゴリズムに基づいて算出する制御値算出手段と、

当該算出された制御値と第1所定値との偏差を算出する偏差算出手段と、

当該算出された偏差を、 Δ 変調アルゴリズム、 Δ Σ 変調アルゴリズムおよび Σ Δ 変調アルゴリズムのうちの1つに基づくアルゴリズムで変調することにより、変調値を算出するとともに、当該算出された変調値に基づいて、前記電磁式カム位相可変機構への制御入力を算出する制御入力算出手段と、

を備えることを特徴とする制御装置。

【請求項4】

前記制御入力算出手段は、前記電磁式カム位相可変機構への前記制御入力を、前記変調値と第2所定値との総和として算出することを特徴とする請求項3に記載の制御装置。

【曹類名】明細書

【発明の名称】制御装置

【技術分野】

[0001]

本発明は、制御対象への制御入力を、 Δ 変調アルゴリズム、 Δ Σ 変調アルゴリズムおよび Σ Δ 変調アルゴリズムの1つに基づく制御アルゴリズムで算出することによって、制御対象の出力を制御する制御装置に関する。

【背景技術】

[0002]

この種の制御装置として、特願2002-231614号(公開公報は未発行)に記載されたものを、本出願人は既に提案している。この制御装置は、内燃機関の空燃比を制御するものであり、酸素濃度センサ、状態予測器およびDSMコントローラなどを備えている。この制御装置では、状態予測器で、酸素濃度センサの出力と所定値との偏差の予測値PREVO2が算出され、この予測値PREVO2がDSMコントローラに入力されることで、目標空燃比KCMDが算出され、この目標空燃比KCMDに応じて燃料噴射量が算出され、それにより、内燃機関の空燃比が制御される。

[0003]

このDSMコントローラは、 Δ Σ 変調アルゴリズムを適用した制御アルゴリズムにより、予測値PREVO2に応じて目標空燃比KCMDを算出するものであり、その制御アルゴリズムは、具体的には、以下の式(a) \sim (g) で表される。

$r(k) = -1 \cdot G \cdot PREVO2(k)$	····· (a)
r l(k) = s a t (r(k))	····· (b)
$\delta(k) = r l(k) - u(k-1)$	····· (c)
$\sigma(k) = \sigma(k-1) + \delta(k)$	····· (d)
$u''(k) = s g n (\sigma(k))$	····· (e)
$u(k) = F \cdot u''(k)$	····· (f)
MD(k) = FLAFBASE+FLAFADP+u(k)	····· (g)
THE (I) I SHITTED TO DETECTION OF THE (K)	····· (g)

ここで、r(k)は参照入力を、u''(k)は変調出力を、G, Fはゲインをそれぞれ表している。また、s a t (r(k)) は飽和関数であり、その値は、r(k)<-1 のときには s a t (r(k)) =-1 となり、 $-1 \le r(k) \le 1$ のときには s a t (r(k)) =r (k) となり、r(k)>1 のときには s a t (r(k)) =1 となる。さらに、s g n ($\sigma(k)$) は符号関数であり、その値は、 $\sigma(k) \ge 0$ のときには s g n ($\sigma(k)$) =1 となり、 $\sigma(k)$ </br>

[0004]

KC

【発明の開示】

【発明が解決しようとする課題】

[0005]

上記従来の制御装置のように、ΔΣ変調アルゴリズムの特性により符号が頻繁に反転する変調出力 u''(k)を用いて、制御対象への制御入力を算出する場合、変調出力 u''(k)

が値1に反転する頻度と値-1に反転する頻度とが、半々の割合に近いほど、制御精度が 向上する。言い換えれば、反転頻度が少なくかつ値1および値-1の一方の値に保持され る時間が長くなるほど、制御精度が低下してしまう。これに対して、上記従来の制御装置 によれば、制御対象の特性によっては、 $\Delta \Sigma$ 変調アルゴリズムに入力される入力値が、正 値または負値の一方のみを示す場合があり、その場合には、変調出力 u''(k)が値 1 また は値-1の一方に保持される時間が長くなってしまうことにより、 $\Delta \Sigma$ 変調アルゴリズム の特徴である変調出力 u ''(k)のスイッチング挙動(反転挙動)が失われ、変調出力 u '' (k)の反転頻度が少なくなるとともに、値1および値-1の一方の値に保持される時間が 長くなってしまう。その結果、制御精度の低下を招く可能性がある。この問題は、ΔΣ変 調アルゴリズムに代えて、△変調アルゴリズムまたは∑△変調アルゴリズムを用いた場合 でも、同様に発生する。

[0006]

本発明は、上記課題を解決するためになされたもので、Δ変調アルゴリズム、ΔΣ変調 アルゴリズムおよびΣΔ変調アルゴリズムの1つに基づく制御アルゴリズムにより、制御 対象を制御する場合において、制御アルゴリズムへの入力値が正値または負値の一方のみ を示すときでも、制御精度を向上させることができる制御装置を提供することを目的とす

【課題を解決するための手段】

[0007]

上記目的を達成するために、請求項1に係る発明は、制御対象への制御入力(制御入力 Vcain、燃料補正値KAF)により、制御対象の出力(カム位相Cain、検出空燃 比Kact)を目標値(目標カム位相Cain_cmd、目標空燃比Kcmd)になるよ うに制御する制御装置1,1A~1Cであって、制御対象の出力を検出する出力検出手段 (ECU2、カム角センサ20、クランク角センサ22、LAFセンサ23)と、目標値 を設定する目標値設定手段(ECU2、目標空燃比算出部94、ステップ3,4)と、検 出された制御対象の出力を設定された目標値になるように制御するための制御値(制限値 r 1) を、所定の制御アルゴリズム [式 (1) ~ (9)] に基づいて算出する制御値算出 手段(EСU2、2自由度スライディングモードコントローラ40,90、リミッタ50 a, 70a, 80a, 91a、ステップ5, 6)と、算出された制御値(制限値 r 1) と 第1所定値(オフセット値Vcain_oft, Kcmd_oft) との偏差(制限値偏 差 r 2) を算出する偏差算出手段(ECU2、差分器50b, 70b, 80b, 91b、 ステップ 6)と、算出された偏差(制限値偏差 r 2)を、 Δ 変調アルゴリズム、 Δ Σ 変調 アルゴリズムおよびΣΔ変調アルゴリズムのうちの1つに基づくアルゴリズム[式 (11)~(13)]で変調することにより、変調値(変調出力 u''、ゲイン調整値 u)を算出 するとともに、算出された変調値(変調出力 u''、ゲイン調整値 u) に基づいて、制御対 象への制御入力(Vcain、燃料補正値KAF)を算出する制御入力算出手段(ECU 2、DSMコントローラ50, 91、SDMコントローラ70、DMコントローラ80、 ステップ6)と、を備えることを特徴とする。

[0008]

この制御装置によれば、検出された制御対象の出力を設定された目標値になるように制 御するための制御値が、所定の制御アルゴリズムに基づいて算出され、さらに、算出され た制御値と第1所定値との偏差を、 Δ 変調アルゴリズム、 Δ Σ 変調アルゴリズムおよび Σ Δ 変調アルゴリズムのうちの1つに基づくアルゴリズムで変調することにより、変調値が 算出されるとともに、そのように算出された変調値に基づいて、制御対象への制御入力が 算出される。このように、変調値が、制御値と第1所定値との偏差を、Δ変調アルゴリズ Δ 、 Δ Σ 変調アルゴリズムおよび Σ Δ 変調アルゴリズムのうちの1つに基づくアルゴリズ ムで、変調することにより算出されるので、例えば、制御対象の特性により、制御値が正 値または負値としてのみ算出される場合でも、第1所定値を適切に設定することにより、 偏差を正値と負値との間で変化する値として算出することができる。それにより、変調値 を、その最大値と最小値との間での反転が頻繁に発生するとともに、最大値側への反転頻

度と最小値側への反転頻度とが半々の割合に近づくような値として算出することができ、 その結果、制御精度を向上させることができる(なお、本明細書における、「変調値の算 出」および「制御入力の算出」などの「算出」は、プログラムにより演算することに限ら ず、ハードウエアによりそれらを表す電気信号を生成することを含む)。

[0009]

[0010]

上記請求項1に係る制御装置のように、変調値がその最大値と最小値との間で頻繁に反転する特性を有していると、そのような変調値に基づいて算出した制御入力が正値と負値との間で頻繁に反転する特性を示す場合がある。このように制御入力が正値と負値との間で反転すると、制御対象の特性によっては、制御性および制御効率(エネルギ効率)の低下を招くことがあり、そのような場合には、制御性および制御効率の観点から、制御入力を正値側の所定範囲内のみまたは負値側の所定範囲内のみで変化するように制御することが望ましい。これに対して、この制御装置によれば、制御対象への制御入力が、変調値と第2所定値との総和として算出されるので、この第2所定値を適切に設定することにより、制御入力を、正値側の所定範囲内のみ、または負値側の所定範囲内のみで変化する値として算出することができ、それにより、制御性および制御効率をいずれも向上させることができる。

[0011]

請求項3に係る発明は、内燃機関3の吸気弁6および排気弁9をそれぞれ開閉するため の吸気カム5および排気カム8の少なくとも一方の、クランクシャフト10に対するカム 位相Cainを、目標カム位相Cain_cmdになるように制御する制御装置1,1A ,1Bであって、電磁石35を有し、カム位相Cainを、電磁石35の電磁力Fsol により所定の範囲 (Cainrt~Cainad) 内で変更するとともに、電磁力Fso Ⅰが作用していないときには、所定の範囲を規定する一方の限界値(最遅角値 c a i n r d)に保持する電磁式カム位相可変機構30と、カム位相Cainを検出するカム位相検 出手段(ECU2、カム角センサ20、クランク角センサ22)と、目標カム位相Cai n_cmdを設定する目標カム位相設定手段(ECU2、ステップ3,4、)と、検出さ れたカム位相Cainを設定された目標カム位相Cain_cmdになるように制御する ための制御値(制限値 r 1) を、所定の制御アルゴリズム [式 (1) ~ (9), (22) ,(30)〕に基づいて算出する制御値算出手段(ECU2、2自由度スライディングモ ードコントローラ40、リミッタ50a,70a,80a、ステップ5,6)と、算出さ れた制御値(制限値r1)と第1所定値(オフセット値Vcain_oft)との偏差(制限値偏差 r 2) を算出する偏差算出手段(ECU2、差分器50b, 70b, 80b、 ステップ 6)と、算出された偏差(制限値偏差 r 2)を、 Δ 変調アルゴリズム、 Δ Σ 変調 アルゴリズムおよび∑△変調アルゴリズムのうちの1つに基づくアルゴリズム [式(11)~(13)]で変調することにより、変調値(変調出力u''、ゲイン調整値u)を算出 するとともに、算出された変調値(変調出力 u ''、ゲイン調整値 u)に基づいて、電磁式 カム位相可変機構30への制御入力Vcain)を算出する制御入力算出手段(ECU2 、DSMコントローラ50、SDMコントローラ70、DMコントローラ80、ステップ 6)と、を備えることを特徴とする。

[0012]

この制御装置によれば、検出されたカム位相を設定された目標カム位相になるように制御するための制御値が、所定の制御アルゴリズムに基づいて算出され、さらに、算出された制御値と第1所定値との偏差を、 Δ 変調アルゴリズム、 Δ Σ 変調アルゴリズムおよび Σ Δ 変調アルゴリズムのうちの1つに基づくアルゴリズムで変調することにより、変調値が算出されるとともに、そのように算出された変調値に基づいて、電磁式カム位相可変機構

への制御入力が算出される。この場合、電磁式カム位相可変機構は、カム位相を、電磁石の電磁力により所定の範囲内で変更するとともに、電磁力が作用していないときには、所定の範囲を規定する一方の限界値に保持するように構成されているので、カム位相を目標カム位相になるように制御するための制御値は、電磁力を発生させる値であればよく、正値側および負値側の双方の値として算出可能である。しかし、電磁石への印加電圧の符号が反転すると、磁束の方向が反転する状態が発生し、その結果、方向の異なる磁束同士が互いに干渉し合うことで、電磁力が打ち消される状態が発生するので、これを回避するために、制御値を正値側または負値側の値としてのみ算出する必要がある。

[0013]

[0014]

請求項4に係る発明は、請求項3に記載の制御装置1,1A,1Bにおいて、制御入力算出手段は、電磁式カム位相可変機構30への制御入力Vcainを、変調値(ゲイン調整値u)と第2所定値(オフセット値Vcain_oft)との総和として算出することを特徴とする。

[0015]

上記請求項3に係る制御装置のように、変調値がその最大値と最小値との間で頻繁に反転する特性を有していると、そのような変調値に基づいて算出した制御入力が正値と負値との間で頻繁に反転する場合がある。このように制御入力が正値と負値との間で頻繁に反転すると、前述したように、電磁石において磁束の方向が頻繁に反転する状態が発生することで、方向の異なる磁束同士が互いに干渉し合い、電磁力が打ち消される状態が発生することで、方向の異なる磁束同士が互いに干渉し合い、電磁力が打ち消される状態が発生し、その結果、電力効率および制御性の低下を招いてしまう。これに対して、この制御装置によれば、電磁式カム位相可変機構への制御入力が、変調値と第2所定値との総和としてよれば、電磁式カム位相可変機構への制御入力が、変調値と第2所定値との総和として算出されるので、この第2所定値を適切に設定することにより、制御入力を、所定の正値側の範囲内のみ、または負値側の範囲内のみで変化する値として算出することができる。それにより、上記のような磁束方向の反転を回避でき、電力効率および制御性をいずれも向上させることができる。

【図面の簡単な説明】

[0016]

- 【図1】本願発明の第1実施形態に係る制御装置およびこれを適用した内燃機関の概略構成を示す図である。
- 【図2】電磁式カム位相可変機構の概略構成を模式的に示す断面図である。
- 【図3】遊星歯車装置を図2のA-A線に沿う方向から見た模式図である。
- 【図4】電磁ブレーキを図2のB-B線に沿う方向から見た模式図である。
- 【図5】電磁式カム位相可変機構の動作特性を示す特性曲線である。
- 【図6】電磁式カム位相可変機構の電磁石の動作特性を示す特性曲線である。
- 【図7】第1実施形態の制御装置の構成を示すブロック図である。
- 【図8】2自由度スライディングモードコントローラの制御アルゴリズムを示す図で

ある。

- 【図9】DSMコントローラの構成を示すブロック図である。
- 【図10】DSMコントローラの制御アルゴリズムを示す図である。
- 【図11】比較例のコントローラの構成を示すブロック図である。
- 【図12】比較例のコントローラの制御アルゴリズムを示す図である。
- 【図13】比較例のコントローラにおいて、参照入力 r の絶対値が値1より小さい場合の動作例を示すタイミングチャートである。
- 【図14】比較例のコントローラにおいて、参照入力 r の絶対値が値1以上の場合の動作例を示すタイミングチャートである。
- 【図15】比較例のコントローラを用いることにより電磁式カム位相可変機構を制御した場合の動作例を示すタイミングチャートである。
- 【図16】DSMコントローラにおいて、比較のために、制限値偏差r2に代えて、制限値r1を Δ Σ変調アルゴリズムに入力した場合の動作例を示すタイミングチャートである。
- 【図17】DSMコントローラの動作例を示すタイミングチャートである。
- 【図18】第1実施形態の制御装置により電磁式カム位相可変機構を制御した場合の動作例を示すタイミングチャートである。
- 【図19】カム位相制御処理のフローチャートである。
- 【図20】目標カム位相のマップ値Cain_cmd_mapの算出に用いるマップの一例を示す図である。
- 【図21】本発明の第2実施形態に係る制御装置の構成を示すブロック図である。
- 【図22】SDMコントローラの制御アルゴリズムを示す図である。
- 【図23】本発明の第3実施形態に係る制御装置の構成を示すブロック図である。
- 【図24】DMコントローラの制御アルゴリズムを示す図である。
- 【図25】本発明の第4実施形態に係る制御装置の構成を示すブロック図である。 【発明を実施するための最良の形態】

[0017]

以下、図面を参照しながら、本発明の第1実施形態に係る制御装置について説明する。本実施形態の制御装置は、内燃機関の吸気カムの、クランクシャフトに対する実際の位相(以下「カム位相」という) Cainを制御するものであり、その制御対象は、後述する制御入力 Vcainが入力されることで、カム位相 Cain (制御対象の出力)を出力する系に相当する。図1に示すように、この制御装置1は、カム位相 Cainを変更する電磁式カム位相可変機構30と、これを制御するためのECU2などを備えており、このECU2は、後述するように、カム位相制御処理を実行する。

[0018]

内燃機関(以下「エンジン」という)3は、4サイクルDOHC型ガソリンエンジンであり、吸気カムシャフト4および排気カムシャフト7を備えている。吸気カムシャフト4は、吸気弁6を開閉駆動する吸気カム5を有し、排気カムシャフト7は、排気弁9を開閉駆動する排気カム8を有している。

[0019]

この吸気カムシャフト4上には、スプロケット4aが同軸に配置され、回転自在に設けられている。このスプロケット4aは、図示しないタイミングベルトを介してクランクシャフト10に連結され、さらに、上記電磁式カム位相可変機構30の後述する遊星歯車装置31を介して、吸気カムシャフト4に連結されている。以上の構成により、吸気カムシャフト4は、クランクシャフト10が2回転するごとに1回転する。また、排気カムシャフト7も、これと一体のスプロケット(図示せず)を備えており、このスプロケットおよび図示しないタイミングベルトを介してクランクシャフト10に連結されており、それにより、クランクシャフト10が2回転するごとに1回転する。

[0020]

電磁式カム位相可変機構30は、吸気カムシャフト4すなわち吸気カム5の、クランク

シャフト10に対するカム位相Cainを、所定範囲(後述する最遅角値Cainrtと最進角値Cainadとの間の範囲)内で無段階に変更するものであり、図2~図4に示すように、遊星歯車装置31および電磁ブレーキ32などを備えている。

[0021]

この遊星歯車装置31は、吸気カムシャフト4およびスプロケット4aの間で回転を伝達するものであり、リングギヤ31a、3つのプラネタリピニオンギヤ31b、サンギヤ31cおよびプラネタリキャリア31dを備えている。このリングギヤ31aは、電磁ブレーキ32の後述するアウタケーシング33に連結されており、これと同軸かつ一体に回転する。また、サンギヤ31cは、吸気カムシャフト4の先端部に同軸かつ一体に回転するように取り付けられている。

[0022]

一方、プラネタリキャリア31 dは、ほぼ三角形に形成され、それらの3つの角部にシャフト31 eがそれぞれ突設されている。プラネタリキャリア31 dは、これらのシャフト31 eを介してスプロケット4 a に連結されており、それにより、スプロケット4 a と同軸かつ一体に回転するように構成されている。

[0023]

また、各プラネタリピニオンギヤ31bは、プラネタリキャリア31dの各シャフト31eに回転自在に支持され、サンギヤ31cとリングギヤ31aの間に配置され、これらと常に噛み合っている。

[0024]

さらに、前述した電磁プレーキ32は、アウタケーシング33、コア34、電磁石35 およびリターンスプリング36を備えている。アウタケーシング33は、中空に形成され、その内部にコア34が相対的に回動自在に設けられている。コア34は、円形の基部34aと、これから放射状に延びる2つのアーム34b,34bを備えている。コア34は、その基部34aがプラネタリキャリア31dに取り付けられており、それにより、プラネタリキャリア31dと同軸かつ一体に回転する。

[0025]

一方、アウタケーシング33の内周面には、最遅角位置および最進角位置の一対のストッパ33a,33bを1組として、計2組のストッパ33a,33bが互いに間隔を存して設けられている。コア34の各アーム34bは、一対のストッパ33a,33b間に配置されており、それにより、コア34は、アーム34bが最遅角位置ストッパ33aに当接し、係止される最遅角位置(図4に実線で示す位置)と、最進角位置ストッパ33bに当接し、係止される最進角位置(図4に2点鎖線で示す位置)との間で、アウタケーシング33に対して相対的に回動可能に構成されている。

[0026]

また、リターンスプリング36は、圧縮された状態で、最進角位置ストッパ33bの一つと、これと対向するアーム34bとの間に掛け渡されており、このリターンスプリング36の付勢力により、アーム34bは最遅角位置ストッパ33a側に付勢されている。

[0027]

一方、電磁石 35 は、リターンスプリング 36 と反対側の最進角位置ストッパ 33 bに取り付けられており、この最進角位置ストッパ 33 bの、アーム 34 b と対向する側の端部に面一の状態で設けられている。この電磁石 35 は、ECU 2 に電気的に接続されており、ECU 2 からの制御入力 V cain (電圧信号)により励磁されると、その電磁力 F solにより、対向するアーム 34 bを、リターンスプリング 36 の付勢力に抗しながら吸引し、最進角位置ストッパ 33 b側に回動させる。

[0028]

以上のように構成された電磁式カム位相可変機構30の動作について説明する。この電磁式カム位相可変機構30では、電磁プレーキ32の電磁石35が励磁されていないときには、コア34は、リターンスプリング36の付勢力により、そのアーム34bが最遅角位置ストッパ33aに当接する最遅角位置に保持され、それにより、カム位相Cainは

[0029]

その状態で、スプロケット4 a が図4の矢印Y1方向に回転すると、プラネタリキャリア31dおよびリングギヤ31 a が一体に回転することにより、プラネタリピニオンギヤ31b が回転せず、サンギヤ31c がプラネタリキャリア31dおよびリングギヤ31 a と一体に回転する。すなわち、スプロケット4 a と吸気カムシャフト4が一体に回転する

[0030]

また、コア34が最遅角位置に保持されている状態で、電磁石35がECU2からの制御入力Vcainにより励磁されると、電磁石35の電磁力Fsolにより、コア34のアーム34bが、リターンスプリング36の付勢力に抗しながら、最進角位置ストッパ33b側すなわち最進角位置側に吸引され、電磁力Fsolとリターンスプリング36の付勢力とが釣り合う位置まで回動する。言い換えれば、アウタケーシング33が、コア34に対して相対的に矢印Y1と逆方向に回動する。

[0031]

これにより、リングギヤ31 aがプラネタリキャリア31 dに対して相対的に図3の矢印Y2方向に回動し、それに伴い、プラネタリピニオンギヤ31 bが図3の矢印Y3方向に回動することで、サンギヤ31 cが図3の矢印Y4方向に回動する。その結果、吸気カムシャフト4が、スプロケット4 aに対して相対的にスプロケットの回転方向(すなわち図3の矢印Y2と逆方向)に回動することになり、カム位相Cainが進角される。

[0032]

この場合、アウタケーシング33の回動がリングギヤ31a、プラネタリピニオンギヤ31bおよびサンギヤ31cを介して、吸気カムシャフト4に伝達されるので、遊星歯車装置30の増速作用により、吸気カムシャフト4は、スプロケット4aに対してアウタケーシング33の回動角度が増幅された角度分、回動することになる。すなわち、吸気カム5のカム位相Cainの進角量は、アウタケーシング33の回動角度を増幅した値になるように設定されている。これは、電磁石35の電磁力Fsolが作用可能な距離には限界があるので、それを補償し、カム位相Cainをより広範囲で変化させるためである。

[0033]

次に、以上のように構成された電磁式カム位相可変機構30の動作特性を説明する。図5に示すように、電磁式カム位相可変機構30では、カム位相Cainは、電磁石35への制御入力Vcainにより、最遅角値Cainrt(所定範囲を規定する一方の限界値;0°)と最進角値Cainad(所定範囲を規定する値;例えば55°)の間で連続的に変化するとともに、制御入力Vcainが増大する方向のときのカム位相Cainの値を示す実線の曲線と、制御入力Vcainが減少する方向のときのカム位相Cainの値を示す破線の曲線とが互いに異なる、いわゆるヒシテリシス特性を有している。

[0034]

これは、図6に示すように、電磁石35が、制御入力V c a i n により励磁され、電磁力F s o l を発生する際、起動時の電磁力F s o l の立ち上がりが遅いという特性を備えていることに起因する。また、同図に示すように、電磁石35の電磁力F s o l は、制御入力V c a i n が値0から正側に増大する場合と、値0から負側に減少する場合とで同じ傾向を示す特性、すなわち、制御入力V c a i n の値0を中心として、線対称な傾向を示す特性を備えている。

[0035]

本実施形態において、以上のような電磁式カム位相可変機構30を、従来の油圧駆動式のカム位相可変機構に代えて用いた理由は、以下による。すなわち、従来の油圧駆動式のカム位相可変機構は、油圧ポンプなどの起動により油圧が立ち上がり、カム位相Cainを制御可能になるまでに時間を要するとともに、油温が極低温のときには、応答性が悪化してしまう特性を有し、むだ時間が大きく、応答性が低いという欠点を備えている。これに対して、本実施形態の電磁式カム位相可変機構30は、油圧の立ち上がりを待つ必要が

[0036]

一方、吸気カムシャフト4の電磁式カム位相可変機構30と反対側の端部には、カム角センサ20が設けられている。このカム角センサ20(出力検出手段、カム位相検出手段)は、例えばマグネットロータおよびMREピックアップで構成されており、吸気カムシャフト4の回転に伴い、パルス信号であるCAM信号を所定のカム角(例えば1°)ごとにECU2に出力する。

[0037]

また、エンジン3の吸気管12のスロットル弁13よりも下流側には、吸気管内絶対圧センサ21およびインジェクタ14が設けられている。この吸気管内絶対圧センサ21は、例えば半導体圧力センサなどで構成され、吸気管12内の吸気管内絶対圧PBAを検出して、その検出信号をECU2に出力する。

[0038]

さらに、インジェクタ14は、ECU2からの制御信号によって制御され、具体的には、制御信号の燃料噴射量Toutおよび噴射タイミングに応じて開弁することにより、燃料を吸気管12内に噴射する。

[0039]

また、エンジン3には、クランク角センサ22が設けられている。クランク角センサ22(出力検出手段、カム位相検出手段)は、クランクシャフト10の回転に伴い、いずれもパルス信号であるCRK信号およびTDC信号をECU2に出力する。

[0040]

CRK信号は、所定のクランク角(例えば30°)ごとに1パルスが出力される。ECU2は、このCRK信号に応じ、エンジン3の回転数(以下「エンジン回転数」という)NEを算出するとともに、CRK信号と前述したカム角センサ20によるCAM信号に基づき、カム位相Cainを算出する。また、TDC信号は、各気筒のピストン11が吸入行程開始時のTDC位置よりも若干、手前の所定クランク角度位置にあることを表す信号であり、所定クランク角ごとに1パルスが出力される。

[0041]

一方、排気管 1 5 の触媒装置 1 6 よりも上流側には、LAFセンサ 2 3 が設けられている。このLAFセンサ 2 3 は、ジルコニアおよび白金電極などで構成された酸素濃度センサとリニアライザなどの検出回路とを組み合わせたものであり、リッチ領域からリーン領域までの広範囲な空燃比の領域において排気ガス中の空燃比をリニアに検出し、その検出空燃比Kactを表す検出信号をECU2に出力する。ECU2は、このLAFセンサ 2 3 からの検出空燃比Kactに基づき、空燃比制御を実行する。

[0042]

さらに、ECU2には、アクセル開度センサ24およびイグニッション・スイッチ(以下「 $IG\cdot SW$ 」という)25が接続されている。このアクセル開度センサ24は、図示しないアクセルペダルの開度(以下「アクセル開度」という)APを検出して、その検出信号をECU2に出力する。また、 $IG\cdot SW25$ は、イグニッションキー(図示せず)操作によりON/OFFされるとともに、そのON/OFF状態を表す信号をECU2に出力する。

[0043]

ECU2は、I/Oインターフェース、CPU、RAMおよびROMなどからなるマイクロコンピュータで構成されており、前述した各種のセンサ $20\sim24$ の検出信号および IG・SW25のON/OFF信号などに応じて、エンジン3の運転状態を判別するとともに、以下に述べるように、カム位相制御処理を実行する。

[0044]

なお、本実施形態では、ECU2により、出力検出手段、目標値設定手段、制御値算出 出証特2004-3083657

手段、偏差算出手段、制御入力算出手段、カム位相検出手段および目標カム位相設定手段 が構成されている。

[0045]

図7に示すように、制御装置1は、2自由度スライディングモードコントローラ(以下「TDFSLDコントローラ」という)40およびDSMコントローラ50を備えており、両コントローラ40,50は、具体的には、ECU2により構成されている。

[0046]

このTDFSLDコントローラ40 (制御値算出手段) は、カム位相 Cain を目標カム位相 Cain _ c m d (目標値) に収束させるためのものであり、具体的には、図8に示す式 $(1) \sim (8)$ の2自由度スライディングモード制御アルゴリズムにより、カム位相 Cain(k) および目標カム位相 Cain _ c m d (k) に応じて、参照入力 r(k) を算出する。なお、この参照入力 r(k) は、後述する理由により正値として算出される。

[0047]

同図の各式において、記号(k)付きの各離散データは、所定周期でサンプリングされたデータであることを示しており、記号kは各離散データのサンプリングサイクルの順番を表している。例えば、記号kは今回のサンプリングタイミングでサンプリングされた値であることを、記号k-1は前回のサンプリングタイミングでサンプリングされた値であることをそれぞれ示している。この点は、以下の離散データ(時系列データ)においても同様である。なお、以下の説明では、各離散データにおける記号(k)を適宜省略する。

[0048]

同図の式(1)に示すように、この制御アルゴリズムでは、参照入力r(k)は、フィードフォワード入力r f f (k)、到達則入力r r c h (k)、適応則入力r a d p (k) およびダンピング入力r d a m p (k) の総和として算出される。

[0049]

このフィードフォワード入力 r f f (k) は、切換関数設定パラメータ P O L E と、目標カム位相のフィルタ値の時系列データ C a i n_c m d_f (k), C a i n_c m d_f (k-1), C a i n_c m d_f (k-2) とを用い、式 (2) により算出される。この切換関数設定パラメータ P O L E は、-1 < P O L E < 0 の関係が成立する値に設定される。

[0050]

この目標カム位相のフィルタ値の今回値 $Cain_cmd_f(k)$ は、その前回値 $Cain_cmd_f(k-1)$ 、目標カム位相 $Cain_cmd(k)$ および目標値フィルタ設定パラメータPOLE $_f$ を用い、式(8)により算出される。この目標値フィルタ設定パラメータPOLE $_f$ は、-1<POLE $_f$ <POLE<0の関係が成立する値に設定される。

[0051]

[0052]

さらに、適応則入力radp(k)は、式(4)に示すように、値-1、適応則フィードバックゲインKadpおよび切換関数の積分値 $\Sigma \sigma s$ の積として算出される。また、ダンピング入力rdamp(k)は、式(5)に示すように、値-1と、ダンピングフィードバックゲインKdampと、カム位相の今回値と前回値との偏差 [Cain(k)-Cain(k-1)] との積として算出される。

[0053]

以上のTDFSLDコントローラ40の制御アルゴリズムによれば、フィードフォワード入力rff(k)により、制御の速応性を高め、カム位相Cainの目標カム位相Ca

[0054]

しかし、2自由度スライディングモード制御アルゴリズムにより算出された参照入力 r (k)をそのまま、電磁式カム位相可変機構30に入力してこれを制御すると以下の問題が生じる。すなわち、目標カム位相Cain_cmdは、その変化速度が比較的速いものとして算出されるので、カム位相Cainの目標カム位相Cain_cmdへの追従制御を実行する場合、高い追従性(追従精度)が要求される。これに対して、前述したように、電磁式カム位相可変機構30は、その動作特性においてヒステリシス特性を有しているため、カム位相Cainをその最遅角値Cainrtよりも若干、進角側の範囲で制御しようとすると、最遅角値Cainrt付近で、カム位相Cainを微少な変化量で制御するのが困難である。これと同様に、カム位相Cainをその最進角値Cainadよりも若干、遅角側の範囲で制御しようとすると、最進角値Cainadまで一気に変化してしまい、適切に制御することができない。すなわち、最進角値Cainad付近でも、カム位相Cainを微少な変化量で制御するのが困難である。

[0055]

以上の理由により、スライディングモード制御アルゴリズムを含むロバスト制御アルゴリズム、またはPID制御アルゴリズムなどを適用した線形コントローラでは、カム位相Cainを、変化速度の速い目標カム位相Cain_cmdに追従させる追従制御を、精度よく実行することが困難である。

[0056]

したがって、本実施形態では、カム位相Caine目標カム位相 $Cain_cmd$ に追従させる追従制御を精度よく実行するために、上記2自由度スライディングモード制御アルゴリズムにより算出された参照入力r(k)を、DSMコントローラ50において、 Δ 2変調アルゴリズムに基づく制御アルゴリズムで変調することにより、電磁式カム位相可変機構30への制御入力Vcain(k)を算出する。

[0057]

以下、DSMコントローラ50 (制御入力算出手段) について説明する。このDSMコントローラ50では、図9に示すように、TDFSLDコントローラ40からの参照入力 r(k) がリミッタ50 aに入力されると、このリミッタ50 a (制御値算出手段) により参照入力 r(k) をリミット処理した制限値 r1(k) が生成され、差分器50 b (偏差算出手段) により、制限値偏差 r2(k) が、制御値としての制限値 r1(k) と、オフセット値発生部50 c からの所定のオフセット値 v c a i v o f t (第1および第2所定値) との偏差として生成される。さらに、差分器50 d により、この制限値偏差 v 2 v 2 v 2 v 3 v 4 v 4 v 6 v 6 v 6 v 6 v 6 v 6 v 7 v 7 v 6 v 7 v 7 v 8 v 9 v

[0058]

次いで、積分器 50 f により、偏差積分値 σ (k) が、偏差信号値 δ (k) と、偏差積分値の遅延値 σ (k -1) との和の信号として生成され、次に、リレー要素 50 g により、変調値としての変調出力 α '(k) が、偏差積分値 α (k) に基づいて所定値 α + R として生成される。そして、増幅器 α 50 h により、変調値としてのゲイン調整値 α (k) が、変調出力 α '(k) を所定の振幅調整ゲインF (α + KDSM) でゲイン調整した値として生成され、次に、加算器 α 50 i により、制御入力 α C α i α (k) が、ゲイン調整値 α (k) と、前述した信号発生器 α 50 c からの所定のオフセット値 α C α i α c α f t との和として生成される。

[0059]

[0060]

また、式(13)において、 $fnl(\sigma(k))$ は、上記リレー要素 50gに相当する非線形関数であり、その値は、 $\sigma(k) \ge 0$ のときには $fnl(\sigma(k)) = R$ となり、 $\sigma(k) < 0$ のときには $fnl(\sigma(k)) = -R$ となる(なお、 $\sigma(k) = 0$ のときには、 $fnl(\sigma(k)) = 0$ と設定してもよい)。また、この値Rは、後述する理由により、R>|r2(k)|の関係が常に成立するような正の所定値に設定されている。また、式(14)のKDSMは、上記振幅調整ゲインFに相当する振幅調整ゲインであり、値1以下でかつ後述するような値に設定されている。

[0061]

本実施形態のDSMコントローラ50の制御アルゴリズムは、以上のように構成されており、以下、その理由を、図11に示す比較例のコントローラ60を参照しながら説明する。このコントローラ60は、特願2002-231614号において本出願人が提案済みの制御アルゴリズムを適用したものである。このコントローラ60と本実施形態のDSMコントローラ50とを比較すると、このコントローラ60では、差分器60bにより、リミッタ60aで生成された参照入力r(k)の制限値r1'(k)と、変調出力の遅延値u'(k-1)との偏差信号値 $\delta(k)$ が生成される点と、リレー要素50gに代えて量子化器60eを用いている点のみが、DSMコントローラ50に対して異なっており、その他の点は同様に構成されているので、その説明は省略する。

[0062]

このコントローラ60の制御アルゴリズムは、図12の式(16)~(21)で表される。この式(16)において、sat(r (k) は飽和関数であり、その値は、r (k) <-1のときにはsat(r (k)) =-1となり、 $-1 \le r$ (k) ≤ 1 のときにはsat(r (k)) =r (k) となり、r (k) >1のときにはsat(r (k)) =1となる。

[0063]

さらに、式(19)において、sgn(σ (k))は上記量子化器 60 e に相当する符号関数であり、その値は、 σ (k) \geq 0のときにはsgn(σ (k))=1となり、 σ (k)<0のときにはsgn(σ (k))=-1となる(なお、 σ (k)=0のときに、sgn(σ (k))=0と設定してもよい)。

[0064]

[0065]

図15に示すように、本実施形態のTDFSLDコントローラ40により算出される、カム位相Cainを目標カム位相Cain_cmdに追従させるための参照入力rでは、電磁式カム位相可変機構30の前述した図5の動作特性(特にゲイン特性)に起因して、

[0066]

これに対して、本実施形態のDSMコントローラ50では、量子化器60e すなわち符号関数 sgn(σ (k))に代えて、前述したリレー要素50g すなわち非線形関数 fnl(σ (k))を用いるとともに、前述した所定値Rが、R>|r2|の関係が常に成立するような値に設定されるので、差分器50dに帰還される変調出力 u''の絶対値が、制限値偏差r2の絶対値よりも常に大きくなり、それにより、変調出力 u''のスイッチング挙動が適切に確保される。

[0067]

また、DSMコントローラ50において、制限値 r1と所定のオフセット値Vcain _oftとの偏差である制限値偏差 r2が、差分器 50dに入力されるとともに、制御入力Vcainがオフセット値Vcain_oftとゲイン調整値 uとの和として算出される理由は、以下による。

[0068]

[0069]

[0070]

[0071]

[0072]

以下、ECU2により実行されるカム位相Cainの制御処理について、図19を参照しながら説明する。同図に示すように、この処理では、まず、ステップ1(図では「S1」と略す。以下同じ)で、電磁式カム位相可変機構30が正常であるか否かを判別する。この判別結果がYESで、電磁式カム位相可変機構30が正常であるときには、ステップ2に進み、エンジン始動中であるか否かを判別する。この判別は、IG・SW25のON/OFF信号およびエンジン回転数NEに基づいて行われる。

[0073]

このステップ2の判別結果がNOで、エンジン3が始動済みであるときには、ステップ3に進み、目標カム位相のマップ値Cain_cmd_mapを、エンジン回転数NEおよび要求トルクTRQに応じて、図20に示すマップを検索することにより、算出する。なお、この要求トルクTRQは、エンジン回転数NEおよびアクセル開度APに基づいて算出される。

[0074]

同図において、要求トルクTRQの所定値TRQ1~3は、TRQ1>TRQ2>TRQ3の関係が成立するような値に設定されている。このマップでは、目標カム位相のマップ値Cain_cmd_mapは、エンジン回転数NEが低いほど、または要求トルクTRQが小さいほど、より進角側の値に設定されている。これは、エンジン回転数NEが低い場合、またはエンジン負荷が小さい場合、吸気弁6と排気弁9のバルブオーバーラップを大きく設定し、内部EGR量を増大させることで、ポンピングロスの低下を図るためである。

[0075]

次に、ステップ 4 に進み、ステップ 3 で算出したマップ値 C a i n_c m d _ m a p を、目標カム位相 C a i n_c m d として設定し、その後、ステップ 5 に進み、前述した式(1)~(8)の制御アルゴリズムにより、参照入力 r を算出する。

[0076]

次いで、ステップ 6 に進み、前述した式 (9) ~ (15) の制御アルゴリズムにより、制御入力 V c a i n を算出した後、本プログラムを終了する。

[0077]

一方、ステップ2の判別結果がNOで、エンジン始動中であるときには、ステップ7に進み、目標カム位相Cain_cmdを、所定の始動時用値Cain_cmd_stに設定する。次いで、上記ステップ5,6を実行した後、本プログラムを終了する。

[0078]

一方、ステップ1の判別結果がNOで、電磁式カム位相可変機構30が故障しているときには、ステップ8に進み、制御入力Vcainを値0に設定した後、本プログラムを終了する。これにより、カム位相Cainは最遅角値Cainrtに制御される。

[0079]

以上のように、本実施形態の制御装置1によれば、TDFSLDコントローラ40により、参照入力rが、電磁式カム位相可変機構30の電磁石30における磁束の方向反転を

[0080]

[0081]

さらに、カム位相Cainを変更する機構として、電磁式カム位相可変機構30を用いているので、油圧駆動式のカム位相可変機構を用いた場合と異なり、油圧の立ち上がりを待つことなく、起動時からカム位相Cainを適切に制御できるとともに、油温の影響を受けることもない。すなわち、油圧駆動式のものと比べて、むだ時間をより小さくできるとともに、より高い応答性を確保できる。その結果、制御精度をさらに向上させることができる。

[0082]

なお、第1実施形態は、電磁式カム位相可変機構30を、吸気カム5のカム位相Cainを変更するのに用いた例であるが、これを、排気カム8のクランクシャフト10に対するカム位相を変更するのに用いてもよい。また、カム位相Cainを目標カム位相Cain_cmdになるように制御するための制御アルゴリズムは、第1実施形態の2自由度スライディングモード制御アルゴリズムに限らず、カム位相Cainを目標カム位相Cain_cmdになるように制御可能なものであればよい。例えば、PID制御アルゴリズム、またはバックステッピング制御アルゴリズムなどの応答指定型制御アルゴリズムを用いてもよい。

[0083]

[0084]

次に、図21を参照しながら、第2実施形態の制御装置について説明する。同図に示すように、この第2実施形態の制御装置1Aは、第1実施形態の制御装置1と比べると、DSMコントローラ50に代えて、SDMコントローラ70を用た点のみが異なっており、その他の点は第1実施形態の制御装置1と同様に構成されているので、説明を省略する。このSDMコントローラ70(制御入力算出手段)は、 $\Sigma\Delta$ 変調アルゴリズムを適用した制御アルゴリズムにより、TDFSLDコントローラ40からの参照入力 r(k)に基づ

いて制御入力Vcain(k)を算出するものである。

[0085]

すなわち、このSDMコントローラ70では、TDFSLDコントローラ40からの参照入力 r (k) がリミッタ70a(制御値算出手段)に入力されると、このリミッタ70aにより制限値 r 1 (k) が生成され、次に、差分器70b(偏差算出手段)により、制限値偏差 r 2 (k) が、制限値 r 1 (k) と、オフセット値発生部70cからの所定のオフセット値Vcain_of t との偏差として生成される。次いで、積分器70dにより、偏差積分値 σ r (k) が、制限値偏差 r 2 (k) と偏差積分値の遅延値 σ r (k) が、制限値偏差 r 2 (k) と偏差積分値の遅延値 σ r (k) が、異延素子70g r 6 で遅延された変調出力 r 1 と、変調出力積分値の遅延値 r 2 により、の和として生成される。そして、差分器70gにより、偏差信号値r 3 (k) が、参照入力積分値 r (k) と変調出力積分値 r 0 により、偏差に分れる。

[0086]

[0087]

以上のSDMコントローラ70の制御アルゴリズムは、図22に示す式(22)~(29)で表される。この式(22)の制限値Lim(r(k))の制限幅は、前述した式(9)のものと同じ値に設定されている。さらに、式(27)の非線形関数 fnl(δ (k))は、 δ (k) \geq 0のときには fnl(δ (k))=Rとなり、 δ (k)<0のときには fnl(δ (k))=Rとなり、 δ (k)=0のときには fnl(δ (k))=0と設定してもよい)。

[0088]

さらに、前述した理由により、所定値 R は、R > | r 2 (k) | の関係が常に成立するような正の値に設定されている。さらに、式 (23) のオフセット値 V c a i n_o f t および式 (28) の振幅調整ゲイン K D S M もそれぞれ、前述したように、制御入力 V c a i n の符号の反転を回避可能な適切な値(K D S M \leq 1)に設定されている。

[0089]

以上のSDMコントローラ70によれば、前述したDSMコントローラ50と同様に、制御入力V cain(k)を、所定の正の最大値V cainmaxと最小値V cainminとの間で頻繁に反転するとともに、最大値V cainmax側への反転頻度と最小値V cainmin側への反転頻度とが半々の割合に近づくような値として算出することができる。その結果、本実施形態の制御装置1 Aでも、前述した第1 実施形態の制御装置1 と同様の作用効果を得ることができる。

[0090]

次に、図23を参照しながら、第3実施形態の制御装置1Bについて説明する。この第3実施形態の制御装置1Bは、第1実施形態の制御装置1と比べると、DSMコントローラ50に代えて、DMコントローラ80を用いた点のみが異なっており、その他の点は第1実施形態の制御装置1と同様に構成されているので、説明を省略する。このDMコントローラ80(制御入力算出手段)は、Δ変調アルゴリズムを適用した制御アルゴリズムにより、TDFSLDコントローラ40からの参照入力r(k)に基づいて制御入力Vcain(k)を算出するものである。

[0091]

すなわち、同図に示すように、このDMコントローラ80では、TDFSLDコントローラ40からの参照入力 r(k) がリミッタ80a(制御値算出手段)に入力されると、このリミッタ80aにより制限値 r1(k) が生成され、次に、差分器80b(偏差算出手段)により、制限値偏差 r2(k) が、制限値 r1(k) と、オフセット値発生部80

[0092]

次いで、リレー要素 8 0 gにより、変調出力 u ''(k)が、偏差信号値 δ (k)に基づいて所定値+R/-Rとして生成される。そして、増幅器 8 0 hにより、ゲイン調整値 u (k)が、変調出力 u ''(k)を所定の振幅調整ゲインF (=KDSM) でゲイン調整した値として生成され、次に、加算器 8 0 i により、制御入力V c a i n (k) が、ゲイン調整値 u (k)と上記オフセット値 V c a i n n o f t との和として、生成される。

[0093]

以上のDMコントローラ80の制御アルゴリズムは、図24の式(30)~(36)で表される。この式(30)の制限値Lim(r(k))は、前述した式(22)のものと同じ制限幅に設定されている。さらに、式(34)の非線形関数f n 1 (δ (k)) も、前述した式(34)のものと同じ値に設定されている。すなわち、 δ (k) \geq 0のときにはf n 1 (δ (k)) = R となり、 δ (k) < 0 のときにはf n 1 (δ (k)) = 0 となるように設定されている(なお、 δ (k) = 0 のときには、f n 1 (δ (k)) = 0 と設定してもよい)。

[0094]

さらに、前述した理由により、所定値 R は、R > \mid r 2 (k) \mid の関係が常に成立するような正の値に設定されている。さらに、式 (3 1) のオフセット値 V c a i n \mid o f t および式 (3 5) の振幅調整ゲインK D S M もそれぞれ、前述したように、制御入力 V c a i n の符号の反転を回避可能な適切な値 (KDSM \leq 1) に設定されている。

[0095]

以上のDMコントローラ80によれば、前述したDSMコントローラ50と同様に、制御入力V cain(k)を、所定の正の最大値V cainmaxと最小値V cainminとの間で頻繁に反転するとともに、最大値V cainmax側への反転頻度と最小値V cainmin側への反転頻度とが半々の割合に近づくような値として算出することができる。その結果、本実施形態の制御装置1 Bでも、前述した第1 実施形態の制御装置1 と同様の作用効果を得ることができる。

[0096]

次に、図25を参照しながら、第4実施形態の制御装置について説明する。同図に示すように、この第4実施形態の制御装置1Cは、エンジン3の空燃比を制御するためのものであり、その制御対象は、後述する目標空燃比Kcmd(目標値)が入力されることで、検出空燃比Kact(制御対象の出力)を出力する系に相当する。制御装置1Cは、2自由度スライディングモードコントローラ90、DSMコントローラ91、基本燃料量算出部92、乗算器93および目標空燃比算出部94を備えている。

[0097]

この目標空燃比算出部94 (目標値設定手段)では、例えば、エンジン回転数NEおよび吸気管内絶対圧PBAに応じたマップ検索などにより、目標空燃比Kcmd (当量比換算値)が算出される。

[0098]

また、2自由度スライディングモードコントローラ90 (制御値算出手段)では、目標空燃比算出部94で算出された目標空燃比Kcmdと、出力検出手段としてのLAFセンサ23からの検出空燃比Kact (当量比換算値)とに基づき、2自由度スライディングモード制御アルゴリズムにより、参照入力r(k)が算出される。この2自由度スライディングモードコントローラ90の制御アルゴリズムは、具体的には、前述したTDFSLDコントローラ40のものと同様に構成されている。

[0099]

[0100]

このDSMコントローラ91の制御アルゴリズムは、具体的には、前述したDSMコントローラ50のものと同様に構成されている。すなわち、図25に示すように、DSMコントローラ91では、2自由度スライディングモードコントローラ90からの参照入力 r(k) がリミッタ91aに入力されると、このリミッタ91a(制御値算出手段)により参照入力 r(k) をリミット処理した制限値 r1(k) が生成され、差分器91b(偏差算出手段)により、制限値偏差 r2(k) が、制限値 r1(k) と、オフセット値発生部91cからの所定のオフセット値 r1(k) と、オフセット値発生部91cからの所定のオフセット値 r1(k) と遅延素子91eで遅延された変調出力 r1(k) との偏差として偏差信号値 r1(k) と遅延素子91eで遅延された変調出力 r1(k) との偏差として偏差信号値 r1(k) が生成される。

[0101]

次いで、積分器 91f により、偏差積分値 σ (k) が、偏差信号値 δ (k) と、偏差積分値の遅延値 σ (k-1) との和の信号として生成され、次に、リレー要素 91g により、変調出力 σ (k) が、偏差積分値 σ (k) に基づいて所定値 σ (k) に基づいて所定値 σ (k) に基づいて所定値 σ (k) に基づいて所定値 σ (k) に表される。この所定値 σ (k) に理由により、 σ (k) σ (k) での所定値 σ (k) が、変調出力 σ (k) を所定の振幅調整 σ (k) が、ゲイン調整値 σ (k) が、変調出力 σ (k) を所定の振幅調整 σ (k) が、ゲイン調整 σ (k) を所定の振幅調整 σ (k) が、ゲイン調整値 σ (k) と、前述した信号発生器 σ 1 c からの所定のオフセット値 σ σ f t との和として生成される。

[0102]

以上の制御アルゴリズムにおいて、オフセット値 $Kcmd_oft$ (第1および第2所 定値)および振幅調整ゲインFはそれぞれ、前述した理由により、制御入力KAFの符号の反転を回避可能な適切な値に設定されている。

[0103]

一方、基本燃料量算出部 92 では、エンジン回転数 NE および吸気管内絶対圧 PBA に応じて、図示しないマップを検索することにより、基本燃料量 Tibase が算出される。そして、乗算器 93 により、燃料噴射量 Tout が基本燃料量 Tibase に燃料補正値 KAF(k) を乗算した値として算出される。そして、この燃料噴射量 Tout を表す制御信号がインジェクタ 14 に供給されることにより、インジェクタ 14 の開弁時間が制御され、空燃比が制御される。

[0104]

以上の第4実施形態の制御装置1Cによれば、目標空燃比Kcmdがリーン領域からリッチ領域にわたる広範囲の値(例えば当量比0. $7 \sim 1$.2)に設定されることで、検出空燃比Kactがリーン領域の値とリッチ領域の値との間で変化する場合でも、所定のオフセット値Kcmd_oft、振幅調整ゲインFおよび所定値R1を適切に設定することにより、燃料補正値KAF(k)を、そのような目標空燃比Kcmdの変動に対応しながら所定範囲で変動するとともに、検出空燃比Kactを目標空燃比Kcmdに精度よく収束させることができる値として、算出することができる。すなわち、エンジン3がリーンバーン運転される場合でも、空燃比制御を精度よく行うことができる。

[0105]

なお、以上の各実施形態は、本発明の制御装置を、カム位相 Cainを制御するもの、または内燃機関3の空燃比を制御するものに適用した例であるが、本発明の制御装置はこれに限らず、他の任意の制御対象を制御する制御装置に広く適用可能であることは言うまでもない。また、各種のコントローラ40,50,70,80,90,91を、実施形態のプログラムに代えて、電気回路により構成してもよい。

【符号の説明】


```
[0106]
1
A~1C
```

- 1 制御装置
- 1 A~1 C 制御装置
 - 2 ECU (出力検出手段、目標値設定手段、制御値算出手段、偏差算出手段 、制御入力算出手段、カム位相検出手段、目標カム位相設定手段)
 - 3 内燃機関
 - 5 吸気カム
 - 6 吸気弁
 - 8 排気カム
 - 9 排気弁
 - 10 クランクシャフト
 - 20 カム角センサ (出力検出手段、カム位相検出手段)
 - 22 クランク角センサ(出力検出手段、カム位相検出手段)
 - 23 LAFセンサ (出力検出手段)
 - 30 電磁式カム位相可変機構
 - 3 5 電磁石
 - 40 2自由度スライディングモードコントローラ (制御値算出手段)
 - 50 DSMコントローラ (制御入力算出手段)
 - 50a リミッタ (制御値算出手段)
 - 50b 差分器(偏差算出手段)
 - 70 SDMコントローラ (制御入力算出手段)
 - 70a リミッタ (制御値算出手段)
 - 70b 差分器(偏差算出手段)
 - 80 DMコントローラ (制御入力算出手段)
 - 80a リミッタ (制御値算出手段)
 - 80b 差分器(偏差算出手段)
 - 90 2自由度スライディングモードコントローラ (制御値算出手段)
 - 91 DSMコントローラ (制御入力算出手段)
 - 91a リミッタ (制御値算出手段)
 - 91b 差分器(偏差算出手段)
 - 9 4 目標空燃比算出部(目標値設定手段)
 - Vcain 制御入力
- Vcain_oft オフセット値(第1および第2所定値)
 - Cain カム位相(制御対象の出力)
 - Cain_cmd 目標カム位相(目標値)
 - Cainrt 最遅角値 (所定の範囲を規定する一方の限界値)
 - Cainad 最進角値(所定の範囲を規定する値)
 - Fsol 電磁力
 - r 1 制限值(制御值)
 - r 2 制限值偏差(偏差)
 - u'' 変調出力(変調値)
 - u ゲイン調整値(変調値)
 - KAF 燃料補正値(制御入力)
 - Kact 検出空燃比(制御対象の出力)
 - Kcmd 目標空燃比 (目標値)
 - K c m d __ o f t オフセット値 (第1および第2所定値)

【書類名】図面 【図1】

【図2】

[図4]

【図5】

【図6】

【図7】

[図8]

$$r(k) = rff(k) + rrch(k) + radp(k) + rdamp(k) \qquad \dots \qquad (1)$$

$$\operatorname{rrch}(k) = -\operatorname{Krch} \cdot \sigma s(k)$$
 (3)

$$radp(k) = -Kadp \cdot \sum_{i=0}^{k} \sigma s(i) \qquad \cdots \qquad (4)$$

$$rdamp(k) = -Kdamp \cdot [Cain(k) - Cain(k-1)] \qquad \cdots \qquad (5)$$

$$\sigma s(k) = e(k) + POLE \cdot e(k-1)$$
 (6)

$$e(k) = Cain(k) - Cain_cmd_f(k-1)$$
 (7)

$$\begin{aligned} \text{Cain_cmd_f(k) = -POLE_f \cdot Cain_cmd_f(k-1) + (1+POLE_f) \cdot Cain_cmd(k)} \\ & \qquad \qquad \cdots \end{aligned} \tag{8}$$

【図9】

【図10】

$$r1(k) = Lim(r(k))$$
 (9)

$$r2(k)=r1(k)-Vcain_oft$$
 (10)

$$\delta(k) = r2(k) - u''(k-1)$$
 (1 1)

$$\sigma(k) = \sigma(k-1) + \delta(k) \qquad \cdots \qquad (1 2)$$

$$u''(k) = fnl(\sigma(k))$$
 (13)

$$u(k) = KDSM \cdot u''(k)$$
 ····· (1 4)

$$Vcain(k) = Vcain_oft + u(k) \qquad \cdots \qquad (15)$$

【図11】

【図12】

$$r1'(k) = sat(r(k))$$
 ····· (1 6)

$$\delta(k) = r1'(k) - u''(k-1)$$
 (17)

$$\sigma(k) = \sigma(k-1) + \delta(k) \qquad \cdots \qquad (1 8)$$

$$u''(k) = sgn(\sigma(k)) \qquad \dots \qquad (19)$$

$$u(k) = KDSM \cdot u''(k) \qquad \cdots \qquad (2 0)$$

$$Vcain(k) = Vcain_oft + u(k) \qquad \cdots \qquad (2 1)$$

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図22】

$$r1(k)=Lim(r(k))$$
 (22)

$$r2(k)=r1(k)-Vcain_oft$$
 (23)

$$\sigma r(k) = \sigma r(k-1) + r2(k) \qquad \cdots \qquad (2 4)$$

$$\sigma u''(k) = \sigma u''(k-1) + u''(k-1)$$
 (25)

$$\delta(k) = \sigma r(k) - \sigma u''(k) \qquad \cdots \qquad (2.6)$$

$$u''(k) = fnl(\delta(k))$$
 (27)

$$u(k) = KDSM \cdot u''(k)$$
 (28)

$$Vcain(k) = Vcain_oft + u(k) \qquad (29)$$

【図24】

$$r1(k) = Lim(r(k))$$
 (30)

$$r2(k)=r1(k)-Vcain_oft$$
 (31)

$$\sigma u''(k) = \sigma u''(k-1) + u''(k-1)$$
 (32)

$$\delta(k) = r2(k) - \sigma u''(k) \qquad \dots \qquad (3 3)$$

$$u''(k) = fn! (\delta(k)) \qquad \cdots \qquad (34)$$

$$u(k) = KDSM \cdot u''(k)$$
 (35)

$$Vcain(k) = Vcain_oft + u(k)$$
 (36)

【書類名】要約書

【要約】

【課題】 Δ 変調、 Δ Σ 変調および Σ Δ 変調アルゴリズムの 1 つに基づく制御アルゴリズムにより、制御対象を制御する場合において、制御アルゴリズムへの入力値が正値または負値の一方のみを示すときでも、制御精度を向上させることができる制御装置を提供する。

【解決手段】 吸気カム5のカム位相Cainを制御する制御装置1は、ECU2を備える。ECU2は、カム位相Cainを目標カム位相Cain_cmdになるように制御するための参照入力の制限値r1を、式(1)~(9)で算出し、制限値r1とオフセット値Vcain_oftとの制限値偏差r2を算出し、この制限値偏差r2を、 Δ Σ変調アルゴリズムに基づく式(11)~(13)のアルゴリズムで変調することにより、変調出力 u "を算出し、これをゲイン調整したゲイン調整値 u にオフセット値Vcain_oftを加算することにより、電磁式カム位相可変機構 3 0~の制御入力Vcainを算出する(ステップ5,6)。

【選択図】 図18

特願2003-289910

出願人履歴情報

識別番号

[000005326]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住 所

東京都港区南青山二丁目1番1号

氏 名

本田技研工業株式会社