Convex Optimization

 $\label{eq:AJ-Friend} \mbox{AJ-Friend, Nick Henderson} \\ \mbox{(w/ material from Stephen Boyd and Steven Diamond)}$

June 24, 2015

Mathematical optimization

Outline

Mathematical optimization

In the morning

(mathy math)

optimization problem has form

```
minimize f_0(x)
subject to f_i(x) \le 0, \quad i = 1, \dots, m
```

- ▶ $x \in \mathbf{R}^n$ is **decision variable** (to be found)
- $ightharpoonup f_0$ is objective function; f_i are constraint functions
- **•** problem data are hid inside f_0, \ldots, f_m
- variations: add equality constraints, maximize a utility function, satisfaction (feasibility), optimal trade off

Why convexity?

- trade off between supervision and modeling power
- nice theory
- theoretical guarantees, global optimum, interpretability: (of local minimizers)
- efficient algorithms
- common language
- ▶ (leaky) abstraction: once you've modeled as a convex problem, consider it solved
- with proper training, hearing "your problem is convex" offers deep, cosmic reassurance

In the morning

Outline

Mathematical optimization

In the morning

In the evening

Getting up

one	two	three
apple	beta	omega

- ► Turn off alarm
- ▶ Get out of bed

code example

```
import numpy as np
y = np.random.rand(5)
print('hello', y)
```

Breakfast

we need a way to represent math x^{π^2}

- ► Eat eggs
- ▶ Drink coffee

In the evening

Outline

Mathematical optimization

In the morning

In the evening

Dinner

- ► Eat spaghetti
- ► Drink wine

Going to sleep

- ► Get in bed
- ► Count sheep