PRINCIPLES OF COMMUNICATION SYSTEMS

Second Edition

Herbert Taub

Donald L. Schilling

Professors of Electrical Engineering
The City College of New York

Jürgen-Knorr-Bibliothek Spende der Siemens AG an den FB Elektrotechnik

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Hamburg Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

CONTENTS

	•	
	Preface	xvi
Chapter 1	Spectral Analysis	1
	Introduction	1
1.1	Fourier Series	2
1.2	Exponential Form of the Fourier Series	4
1.3	Examples of Fourier Series	4
1.4	The Sampling Function	6
1.5	Response of a Linear System	8
1.6	Normalized Power	9
1.7	Normalized Power in a Fourier Expansion	11
1.8	Power Spectral Density	14
1.9	Effect of Transfer Function on Power Spectral Density	15
1,10	The Fourier Transform	16
1.11	Examples of Fourier Transforms	17
1.12	Convolution	21
1.13	Parseval's Theorem	23
1.14	Power and Energy Transfer through a Network	24
1.15	Bandlimiting of Waveforms	25
1.16	Correlation between Waveforms	28
1.17	Power and Cross Correlation	29
1.18	Autocorrelation	30
1.19	Autocorrelation of a Periodic Waveform	31
1.20	Autocorrelation of Nonperiodic Waveform of Finite Energy	32
1.21	Autocorrelation of Other Waveforms	33
1.22	Expansions in Orthogonal Functions	34
1.23	Completeness of an Orthogonal Set: The Fourier Series	35
1.24	The Gram-Schmitt Procedure	. 37
1.25	Correspondence between Signals and Vectors	41
1.26	Distinguishability of Signals	46

Chapter 2	Random Variables and Processes	56
2.1	Probability	57
2.2	Mutually Exclusive Events	57
2.3	Joint Probability of Related and Independent Events	58
2.4	Statistical Independence	59
2.5	Random Variables	60
2.6	Cumulative Distribution Function	60
2.7	Probability Density Function	62
2.8	Relation between Probability and Probability Density	64
. 2.9	Joint Cumulative Distribution and Probability Density	65
2.10	A Communications Example	68
2.11	Average Value of a Random Variable	72
2.12	Variance of a Random Variable	74
2.13	Tchebycheff's Inequality	75
2.14	The Gaussian Probability Density	76
2.15		77
2.16	The Rayleigh Probability Density	80
2.17	Mean and Variance of the Sum of Random Variables	82
2.18	Probability Density of $Z = X + Y$	83
2.19	Correlation between Random Variables	85
2.20	The Central-Limit Theorem	87
2.21	Error Probability as Measured by Finite Samples	89
2.22	Signal Determination with Noise Described by a	
	Distribution Function	91
2.23	Random Processes	95
2.24	Autocorrelation	97
2.25	Power Spectral Density of a Sequence of Random Pulses	. 99
/ 2.26	Power Spectral Density of Digital Data	100
2.27	Effect of Rudimentary Filters on Digital Data	105
2.28	The Complementary Error Function	107
Chapter 3	Amplitude-Modulation Systems	113
3.1	Frequency Translation	113
3.2	A Method of Frequency Translation	115
3.3	Recovery of the Baseband Signal	118
3.4	Amplitude Modulation	120
3.5	Maximum Allowable Modulation	122
3.6	The Square-law Demodulator	125
3.7	Spectrum of an Amplitude-modulated Signal	126
3.8	Modulators and Balanced Modulators	127
3.9	Single-sideband Modulation	128
3.10	Methods of Generating an SSB Signal	130
3.11	Vestigial-sideband Modulation	134
3.12	Compatible Single Sideband	137
3.13	Multiplexing	137
Chapter 4	Frequency-Modulation Systems	142
4.1	Angle Modulation	142
4.2	Phase and Frequency Modulation	143

4.	Relationship between Phase and Frequency Modulation	145
4.	4 Phase and Frequency Deviation	146
4.		147
4.	6 Some Features of the Bessel Coefficients	148
4.	7 Bandwidth of a Sinusoidally Modulated FM Signal	150
4.	Effect of the Modulation Index β on Bandwidth	153
4.	Spectrum of "Constant Bandwidth" FM	154
4.	10 Phasor Diagram for FM Signals	155
4.	11 Spectrum of Narrowband Angle Modulation: Arbitrary	
	Modulation	158
	12 Spectrum of Wideband FM (WBFM): Arbitrary Modulation	159
4.	13 Bandwidth Required for a Gaussian Modulated WBFM	
	Signal	161
	14 Additional Comments Concerning Bandwith in WBFM	162
	15 FM Generation: Parameter-variation Method	163
4.	16 An Indirect Method of Frequency Modulation	
	(Armstrong System)	165
	17 Frequency Multiplication	166
	18 Frequency Multiplication Applied to FM Signals	167
	19 An Example of an Armstrong FM System	167
	20 FM Demodulators	169
	21 Approximately Compatible SSB Systems 22 Stereophonic FM Broadcasting	172 173
4.	22 Stereophonic F M Broadcasting	1/3
Chapter	5 Analog-to-Digital Conversion	183
Chapter	5 Analog-to-Digital Conversion Pulse-Modulation Systems	183 183
Chapter 5.	Pulse-Modulation Systems	
~	Pulse-Modulation Systems	183
~	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals	183 185
5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation	183 185 -188
5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal	183 185 -188 193
5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling	183 185 -188 193 195
5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling	183 185 188 193 195 197
5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals	183 185 -188 193 195 197
5. 5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error	183 185 -188 193 195 197 199 202
5. 5. 5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM)	183 185 188 193 195 197 199 202 204 207 209
5. 5. 5. 5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits	183 185 188 193 195 197 199 202 204 207 209 211
5. 5. 5. 5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits The PCM System	183 185 188 193 195 197 199 202 204 207 209 211 212
5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits The PCM System Companding	183 185 188 193 195 197 199 202 204 207 209 211 212 213
5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits The PCM System Companding Multiplexing PCM Signals	183 185 188 193 195 197 199 202 204 207 209 211 212 213 219
5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits The PCM System Companding Multiplexing PCM Signals Differential PCM	183 185 188 193 195 197 199 202 204 207 209 211 212 213 219 226
5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits The PCM System Companding Multiplexing PCM Signals Differential PCM DeltaModulation	183 185 188 193 195 197 199 202 204 207 209 211 212 213 219 226 229
5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits The PCM System Companding Multiplexing PCM Signals Differential PCM DeltaModulation Adaptive Delta Modulation	183 185 188 193 195 197 199 202 204 207 209 211 212 213 219 226 229
5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits The PCM System Companding Multiplexing PCM Signals Differential PCM Delta Modulation Adaptive Delta Modulation Vocoders (Voice Coders)	183 185 188 193 195 197 199 202 204 207 209 211 212 213 219 226 229 232
5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	Pulse-Modulation Systems The Sampling Theorem: Low-pass Signals Band-pass Signals Pulse-Amplitude Modulation Channel Bandwidth for a PAM Signal Natural Sampling Flat-top Sampling Signal Recovery through Holding Quantization of Signals Quantization Error Pulse-code Modulation (PCM) Electrical Representation of Binary Digits The PCM System Companding Multiplexing PCM Signals Differential PCM DeltaModulation Adaptive Delta Modulation	183 185 188 193 195 197 199 202 204 207 209 211 212 213 219 226 229

xii CONTENTS

Chapter 6	Digital Modulation Techniques	249
6.1	Introduction	249
6.2	Binary Phase-Shift Keying	250
6.3	Differential Phase-Shift Keying	255
6.4	Differentially-Encoded PSK (DEPSK)	258
6.5	Quadrature Phase-Shift Keying (QPSK)	259
6.6	M-ary PSK	267
6.7	Quadrature Amplitude Shift Keying (QASK)	271
6.8	Binary Frequency Shift-Keying	27€
6.9	Similarity of BFSK and BPSK	282
6.10	M-ary FSK	282
6.11	Minimum Shift Keying (MSK)	286
6.12	Duobinary Encoding	298
6.13	A Comparison of Narrowband FM Systems	303
6.14	Partial Response Signaling	304
6.15	Amplitude Modulation of the Partial Response Signal	310
Chapter 7	Mathematical Representation of Noise	315
7.1	Some Sources of Noise	.315
7.2	A Frequency-Domain Representation of Noise	317
7.3	The Effect of Filtering on the Probability Density	
	of Gaussian Noise	320
7.4	Spectral Components of Noise	321
7.5	Response of a Narrowband Filter to Noise	323
7.6	Effect of a Filter on the Power Spectral Density	
	of Noise	324
7.7	Superposition of Noises	325
7.8	Mixing Involving Noise	326
7.9	Linear Filtering	328
7.10	Noise Bandwidth	333
7.11	Quadrature Components of Noise	334
7.12	Power Spectral Density of $n_c(t)$ and $n_s(t)$	336
7.13	Probability Density of $n_c(t)$, $n_s(t)$, and Their	•
	Time Derivatives	339
7.14	Representation of Noise Using Orthonormal Coordinates	340
7.15	Irrelevant Noise Components	341
Chapter 8	Noise in Amplitude-Modulation Systems	346
8.1	Amplitude-Modulation Receiver	346
i 8.2	Advantage of the Superheterodyne Principle: Single Channel	348
8.3	Single-Sideband Suppressed Carrier (SSB-SC)	349
8.4	Double-Sideband Suppressed Carrier (DSB-SC)	353
8.5	Double Sideband with Carrier	357
8.6	Square-Law Demodulator	359
8.7	The Envelope Demodulator	365
,	F	

Chapter 9	Noise in Frequency-Modulation Systems	371
9.1	An FM Demodulator	371
9.2	Calculation of Output Signal and Noise Powers	374
9.3	Comparison of FM and AM	378
9.4	Preemphasis and Deemphasis, Single Channel	380
9.5	Preemphasis and Deemphasis in Commercial FM	
	Broadcasting	383
9.6	Phase Modulation in Multiplexing	386
9.7	Comparison between FM and PM in Multiplexing	388
9.8	Effect of Transmitter Noise	390
Chapter 10	Threshold in Frequency Modulation	394
10.1	Threshold in Frequency Modulation	394
10.2	Occurrence of Spikes	397
10.3	Spike Characteristics	400
10.4	Calculation of Threshold in an FM Discriminator	402
10.5	Calculation of Mean Time between Spikes	404
10.6	Effect of Modulation	407
10.7	The Phase-Locked Loop	411
10.8	Analysis of the Phase-Locked Loop	415
10.9	Stable and Unstable Operating Points	418
10.10	Spike Suppression	419
10.11	Second-Order Phase-Locked Loop	422
10.12	Output SNR of a Phase-Locked Loop	424
10.13	The FM Demodulator Using Feedback	427
10.14	Threshold Extension Using the FMFB	429
10.15	Bit Synchronizer	431
10.16	Carrier Recovery	434
Chapter 11	Data Transmission	441
11.1	A Baseband Signal Receiver	441
11.2	Probability of Error	444
11.3	The Optimum Filter	446
11.4	White Noise: The Matched Filter	450
11.5	Probability of Error of the Matched Filter	452
11.6	Coherent Reception: Correlation	454
11.7	Phase-Shift Keying	455
11.8	Frequency-Shift Keying	457
11.9	Noncoherent Detection of FSK	459
11.10	Differential PSK	459
11.11	Four Phase PSK (QPSK)	460
11.12	Use of Signal Space to Calculate Pe	463
11.13	Calculation of Error Probability for BPSK and BFSK	464
11.14	Error Probability for QPSK	468
11.15	The Union Bound Approximation	469
11.16	Bit-by-Bit Encoding versus Symbol-by-Symbol Encoding	474
11 17	Relationship between Rit Error Pate and Symbol Error Pate	475

xiv CONTENTS

	11.18	Probability of Error in a Quadrature Partial	
		Response (QPR) System	47
	11.19	Probability of Error of Minimum Shift Keying (MSK)	48
	11.20	Comparison of Modulation Systems	48
Cha	pter 12	Noise in Pulse-Code and Delta-Modulation	
		Systems	487
	12.1	PCM Transmission	48
,	12.2	Calculation of Quantization Noise	489
	12.3	The Output-Signal Power	490
	12.4	The Effect of Thermal Noise	49
	12.5	The Output Signal-to-Noise Ratio in PCM	49:
	12.6	Delta Modulation (DM)	49:
	12.7	Quantization Noise in Delta Modulation	490
	12.8	The Output-Signal Power	498
	12.9	Delta-Modulation Output-Signal-to-Quantization-Noise	
		Ratio	499
	12.10	Delta Pulse-Code Modulation (DPCM)	50:
	12.11	The Effect of Thermal Noise in Delta Modulation	50
	12.12	Output Signal-to-Noise Ratio in Delta Modulation	503
	12.13	Comparison of PCM and DM	504
	12.14	The Space Shuttle ADM	50:
Cha	pter 13	Information Theory and Coding	511
	13.1	Discrete Messages	51
	13.2	The Concept of Amount of Information	512
	13.3	Average Information, Entropy	514
	13.4	Information Rate	510
	13.5	Coding to Increase Average Information per Bit	517
	13.6	Shannon's Theorem, Channel Capacity	518
	13.7	Capacity of a Gaussian Channel	519
	13.8	Bandwidth-S/N Tradeoff	522
	13.9	Use of Orthogonal Signals to Attain Shannon's Limit	523
	13.10	Efficiency of Orthogonal Signal Transmission	52'
	13.11	Coding: Introduction	529
	13.12	Parity Check Bit Coding for Error Detection	532
	13.13	Coding for Error Detection and Correction	533
	13.14	Block Codes	533
	13.15	Upper Bounds of the Probability of Error with Coding	533
	13.16	Block Codes—Coding and Decoding	54:
	13.17	Examples of Algebraic Codes	549
	13.18	Burst Error Correction	550
	13.19	Convolutional Coding	562
	13.20 13.21	Decoding a Convolutional Code Probability of Error of Convolutional Codes	564 574
	13.21	•	57:
	13.22	Comparison of Error Rates in Coded and Uncoded Transmission	575
	13.23	Automatic-Repeat-Request (ARQ)	578
	13.23	Automano-vohear-vednest (WVA)	310

13.2	24 Performance of ARQ Systems	580
13.2	25 An Application of Information Theory: An Optimum	
	Modulation System	583
13.2	26 A Comparison of Amplitude-Modulation Systems with the	
	Optimum System	585
13.2		587
13.2	28 Comparison of PCM and FM Communication Systems	588
13.2		589
13.3	Trellis-Decoded Modulation	594
Chapter 1		
	Calculations	610
14.1	Resistor Noise	610
14.2	Multiple-Resistor Noise Sources	612
14.3	•	612
14.4	·	614
14.5	Available Power	615
14.6	Noise Temperature	` 617
14.7	Two-Ports	618
14.8	Noise Bandwidth	620
14.9	Effective Input-Noise Temperature	621
14.1	0 Noise Figure	622
14.1	1 Noise Figure and Equivalent Noise Temperature	
	of a Cascade	624
14.1	2 An Example of a Receiving System	625
14.1		626
14.1	4 System Calculation	629
Chapter 1	5 Telephone Switching	635
15.1	Elemental Phone System	635
15.2	Central Switching	637
15.3	A Simple (Human) Exchange	639
15.4		641
15.5	Traffic Load and Service Grade	645
15.6	Hierarchy of Switching Offices	647
15.7	The Crossbar Switch	650
15.8	Common Control	651
15.9		653
15.1	0 Multiple Stage Switching	657
15.1		661
15.1	1 5	664
	3 · Analog Time-Division Switching	665
15,1	5 5 \ ,	668
15.1		671
15.1		671
15.1		672
15.1		
	Concept	677

xvi CONTENTS

Chapter 16	Computer Communication Systems	682
	Introduction	682
16.1	Types of Networks	683
16.2	Design Features of a Computer Communication Network	687
16.3	Examples of Computer Communications Networks	691
	16.3-1 TYMNET	691
	16.3-2 ARPANET	692
	16.3-3 Integrated Services Digital Network (ISDN)	694
	16.3-4 Local Area Networks (LAN)	695
16.4	Packet Radio and Satellites	696
	16.4-1 Time Division Multiple Access (TDMA)	696
	16.4-2 Frequency Division Multiple Access (FDMA)	697
	16.4-3 ALOHA	698
	16.4-4 Slotted ALOHA	703
	16.4-5 Carrier Sense Multiple Access (CSMA)	704
16.5	The Poisson Distribution	710
	16.5-1 The Interarrival Process	711
16.6	Protocols	712
	16.6-1 The First Layer: The Physical Layer	712
	16.2-2 The Second Layer: The Data-Link Layer	713
	16.6-3 The Third Layer: Network Layer	715
	16.6-4 The X.25 Protocol	715
	16.6-5 The Forth or Transport Layer	716
	16.6-6 The Fifth or Session Layer	716
	16.6-7 The Sixth Layer: The Presentation Layer	716
	16.6-8 The Final, Seventh Layer: The Application Layer	717
Chapter 17	Spread Spectrum Modulation	720
17.1	Introduction	720
17.2	Direct Sequence (DS) Spread Spectrum	721
17.3	Use of Spread Spectrum with Code Division	
	Multiple Access (CDMA)	726
17.4	Ranging using DS Spread Spectrum	727
17.5	Frequency Hopping (FH) Spread Spectrum	729
17.6	Generation and Characteristics of PN Sequences	732
17.7	Acquisition (Coarse Synchronization) of a FH Signal	738
17.8	Tracking (Fine Synchronization) of a FH Signal	741
17.9	Acquisition (Coarse Synchronization) of a DS Signal	744
17.10	Tracking (Fine Synchronization) of a DS Signal	745
	Turker	751
	Index	751