Building a "Recommender System" to show personalized movie recommendations based on ratings given by a user and other users similar to them in order to improve user experience.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

from sklearn.model_selection import train_test_split

from sklearn.metrics.pairwise import cosine_similarity
from sklearn.neighbors import NearestNeighbors

from surprise import Reader, Dataset, SVD, SVDpp, NMF, KNNBaseline, KNNBasic, KNNWithM
from surprise.model_selection import cross_validate
```

In [5]: # !pip install scikit-surprise

USERS FILE DESCRIPTION

User information is in the file "users.dat" and is in the following format:

UserID::Gender::Age::Occupation::Zip-code

MOVIES FILE DESCRIPTION

Movie information is in the file "movies.dat" and is in the following format:

MovieID::Title::Genres

RATINGS FILE DESCRIPTION

Rating information is in the file "ratings.dat" and is in the following format:

UserID::MovieID::Rating::Timestamp

```
df_users = pd.read_csv('zee-users.dat', delimiter='::', encoding='latin-1')
In [7]:
         df_movies = pd.read_csv('zee-movies.dat', delimiter='::', encoding='latin-1')
         df ratings = pd.read csv('zee-ratings.dat', delimiter='::', encoding='latin-1')
         df movies.rename(columns={'Movie ID':'MovieID'},inplace=True) # replacing MovieID to
In [8]:
         df_users.head()
In [9]:
Out[9]:
            UserID Gender Age Occupation Zip-code
         0
                       F
                            1
                                      10
                                            48067
         1
                                            70072
                       Μ
                           56
                                      16
         2
                3
                           25
                                      15
                                            55117
                       Μ
         3
                       Μ
                           45
                                            02460
         4
                5
                           25
                       M
                                      20
                                            55455
         df users.shape
In [10]:
         (6040, 5)
Out[10]:
         df users.info()
In [11]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 6040 entries, 0 to 6039
         Data columns (total 5 columns):
          # Column
                          Non-Null Count Dtype
         ---
                          -----
          0 UserID
                          6040 non-null
                                         int64
          1
             Gender
                          6040 non-null
                                          object
          2
             Age
                          6040 non-null
                                          int64
          3
             Occupation 6040 non-null
                                          int64
             Zip-code
                          6040 non-null
                                          object
         dtypes: int64(3), object(2)
         memory usage: 236.1+ KB
In [ ]:
```

Replacing the encoded values of age and occupation with original values for better understanding

```
In [12]: age_categories = {1: "Under 18",18: "18-24",25: "25-34",35: "35-44",45: "45-49",50: "5
    occupation_categories = {0: "other",1: "academic/educator",2: "artist",3: "clerical/ac

In [13]: df_users['Age Categories'] = df_users['Age'].replace(age_categories)
    df_users['Occupation Category'] = df_users['Occupation'].replace(occupation_categories)
In [14]: df_users.head()
```

[14]:	U	IserID	Gender	Age	Occupation	Zip-code	Age Categories	Occupat	ion Category
	0	1	F	1	10	48067	Under 18		K-12 student
	1	2	М	56	16	70072	56+	S	self-employed
	2	3	М	25	15	55117	25-34		scientist
	3	4	М	45	7	02460	45-49	executiv	ve/managerial
	4	5	М	25	20	55455	25-34		writer
14]:									
5]:	df_n	novies	.head()						
L5]:	N	/loviell	D		٦	Title Title	G	enres	
	0		1		Toy Story (1	995) Anin	nation Children's Co	medy	
	1		2		Jumanji (1	995) Adv	enture Children's Fa	antasy	
	2		3 (Grumpi	er Old Men (1	995)	Comedy Ror	mance	
	3		4	Waitir	ng to Exhale (19	995)	Comedy [Orama	
	4		5 Father	of the	Bride Part II (19	995)	Co	medy	
6]:	df_n	novies	s.shape						
6]:	(388	33, 3))						
.7]:	df_n	novies	.info()						
_	Rang	geInde	ex: 3883 umns (to umn No	entr tal 3 n-Nul	rame.DataFr ies, 0 to 3 columns): l Count Dt				
		Movi Titl Genr Des: i	.eID 38	83 no 83 no 83 no , obj	n-null ir n-null ob n-null ob ect(2)	t64 ject ject			
8]:	genr	res_li	ist = li	st(se	t([12 for]	l1 in df_	_movies.Genres.	str.spl:	it(' ').to_

In [19]: genres_list

```
['Thriller',
Out[19]:
           'Mystery',
           'Romance',
           'Film-Noir',
           'Horror',
           'Documentary',
           'Drama',
           'Western',
           'Adventure',
           "Children's",
           'Action',
           'War',
           'Sci-Fi',
           'Crime',
           'Musical',
           'Fantasy',
           'Animation',
           'Comedy']
 In [1]: # creating seperate columns for genres
         def genre_flag(x):
              x = x['Genres']
              x_list = x.split('|')
              return [1 if genre in x_list else 0 for genre in genres_list]
         temp_df = df_movies.apply(genre_flag,axis=1,result_type='expand')
In [21]:
In [22]:
         for i,genre in enumerate(genres_list):
              df_movies[genre+'_G']=temp_df[i]
In [22]:
         df_movies['Release year'] = df_movies['Title'].str[-5:-1].apply(int) # extracting rel
In [23]:
In [24]:
         df_movies.head()
```

Out[24]:		MovieID	Title	Genres	Thriller_G	Mystery_G	Romance_G	Film- Noir_G	Horror
	0	1	Toy Story (1995)	Animation Children's Comedy	0	0	0	0	
	1	2	Jumanji (1995)	Adventure Children's Fantasy	0	0	0	0	
	2	3	Grumpier Old Men (1995)	Comedy Romance	0	0	1	0	
	3	4	Waiting to Exhale (1995)	Comedy Drama	0	0	0	0	
	4	5	Father of the Bride Part II (1995)	Comedy	0	0	0	0	

5 rows × 22 columns

4					
In [24]:					
In [25]:	df_r	ating	gs.head()		
Out[25]:	U	serID	MovielD	Rating	Timestamp
	0	1	1193	5.0	978300760.0

٠		OSCITO	MOVIELD	Rating	imestamp
	0	1	1193	5.0	978300760.0
	1	1	661	3.0	978302109.0
	2	1	914	3.0	978301968.0
	3	1	3408	4.0	978300275.0
	4	1	2355	5.0	978824291.0

In [26]: df_ratings.shape

Out[26]: (44714, 4)

In [27]: df_ratings.info()

```
<class 'pandas.core.frame.DataFrame'>
          RangeIndex: 44714 entries, 0 to 44713
          Data columns (total 4 columns):
               Column
                          Non-Null Count Dtype
                          -----
          0
              UserID
                          44714 non-null int64
          1
               MovieID
                          44714 non-null int64
               Rating
                          44713 non-null float64
               Timestamp 44713 non-null float64
          dtypes: float64(2), int64(2)
          memory usage: 1.4 MB
          df_ratings['datetime'] = pd.to_datetime(df_ratings.Timestamp,unit='s')
In [28]:
In [29]:
          df_ratings['year'] = df_ratings['datetime'].dt.year
          df_ratings['hour'] = df_ratings['datetime'].dt.hour
          df_ratings['Day of Week'] = df_ratings['datetime'].dt.day_name()
          df_ratings.head()
In [30]:
                                                                   year hour Day of Week
Out[30]:
            UserID MovieID Rating
                                    Timestamp
                                                        datetime
                                5.0 978300760.0 2000-12-31 22:12:40
          0
                       1193
                                                                 2000.0
                                                                         22.0
                                                                                   Sunday
                                                                         22.0
                        661
                                3.0 978302109.0 2000-12-31 22:35:09
                                                                 2000.0
                                                                                   Sunday
          2
                 1
                        914
                                3.0 978301968.0 2000-12-31 22:32:48
                                                                 2000.0
                                                                         22.0
                                                                                   Sunday
          3
                       3408
                                4.0 978300275.0 2000-12-31 22:04:35
                                                                 2000.0
                                                                         22.0
                                                                                   Sunday
          4
                 1
                       2355
                                5.0 978824291.0 2001-01-06 23:38:11 2001.0
                                                                         23.0
                                                                                  Saturday
In [30]:
```

Data Analysis and Visualization

```
df_users.head()
In [31]:
             UserID Gender Age Occupation Zip-code Age Categories Occupation Category
Out[31]:
          0
                           F
                                1
                                                  48067
                                           10
                                                               Under 18
                                                                                 K-12 student
                   2
                                                  70072
          1
                          Μ
                               56
                                           16
                                                                   56+
                                                                                self-employed
          2
                   3
                               25
                          Μ
                                           15
                                                  55117
                                                                  25-34
                                                                                     scientist
          3
                          Μ
                               45
                                                  02460
                                                                  45-49
                                                                          executive/managerial
                   5
                               25
                                           20
          4
                          M
                                                  55455
                                                                  25-34
                                                                                       writer
          sns.countplot(data=df users,x='Gender')
In [32]:
          <Axes: xlabel='Gender', ylabel='count'>
Out[32]:
```


In [33]: sns.countplot(data=df_users,x='Age Categories')

Out[33]: <Axes: xlabel='Age Categories', ylabel='count'>

In [34]: sns.countplot(data=df_users,y='Occupation Category')

Out[34]: <Axes: xlabel='count', ylabel='Occupation Category'>

In [34]:

In [35]: df_movies.head()

Out[35]:

	MovieID	Title	Genres	Thriller_G	Mystery_G	Romance_G	Film- Noir_G	Horror
0	1	Toy Story (1995)	Animation Children's Comedy	0	0	0	0	
1	2	Jumanji (1995)	Adventure Children's Fantasy	0	0	0	0	
2	3	Grumpier Old Men (1995)	Comedy Romance	0	0	1	0	
3	4	Waiting to Exhale (1995)	Comedy Drama	0	0	0	0	
4	5	Father of the Bride Part II (1995)	Comedy	0	0	0	0	

5 rows × 22 columns

```
In [ ]:
```

The release of movies are growing exponentially in Zee OTT

```
In [36]: sns.displot(data=df_movies,x='Release year')
Out[36]: <seaborn.axisgrid.FacetGrid at 0x7c6fb3f53d00>
```


Drama, Codedy are the most common Genres of the movies created in Zee

```
In [40]: sns.barplot(data=df_movies_genre,y='Genre',x='Genre flag')
```

Out[40]: <Axes: xlabel='Genre flag', ylabel='Genre'>

In [40]:

In [41]: df_ratings.head()

In [40]:

Out[41]: UserID MovieID Rating **Timestamp** datetime year hour Day of Week 0 1193 1 978300760.0 2000-12-31 22:12:40 2000.0 22.0 Sunday 1 1 661 978302109.0 2000-12-31 22:35:09 2000.0 22.0 Sunday 2 1 914 978301968.0 2000-12-31 22:32:48 2000.0 22.0 Sunday 3 1 3408 978300275.0 2000-12-31 22:04:35 2000.0 22.0 Sunday 4 1 2355 5.0 978824291.0 2001-01-06 23:38:11 2001.0 23.0 Saturday

In [42]: sns.boxplot(df_ratings['Rating'])

Out[42]: <Axes: ylabel='Rating'>


```
In [43]: sns.boxplot(df_ratings['hour'])
```

Out[43]: <Axes: ylabel='hour'>


```
In [44]: sns.countplot(data = df_ratings, x='hour')
Out[44]: <Axes: xlabel='hour', ylabel='count'>
```


If you observe carefully user watch movies that forms a bi-normal distribution starting afternoon 1pm and dropping at 12am midnight and aagin peaking early in the moring

[]:							
45]: d	df_users	.head()					
]:	UserID	Gender	Age	Occupation	Zip-code	Age Categories	Occupation Category
0	1	F	1	10	48067	Under 18	K-12 student
1	1 2	М	56	16	70072	56+	self-employed
2	2 3	М	25	15	55117	25-34	scientist
3	4	М	45	7	02460	45-49	executive/managerial
4	i 5	М	25	20	55455	25-34	writer
[]: d	df_ratin	gs = df_	ratin	gs.merge(df	_users[['UserID','Age	Categories']],on='
]: d	df_ratin	gs.head()				

Out[47]:	UserID	MovielD	Rating	Timestamp	datetime	year	hour	Day of Week	Age Categories
	0 1	1193	5.0	978300760.0	2000-12-31 22:12:40	2000.0	22.0	Sunday	Under 18
	1 1	661	3.0	978302109.0	2000-12-31 22:35:09	2000.0	22.0	Sunday	Under 18
	2 1	914	3.0	978301968.0	2000-12-31 22:32:48	2000.0	22.0	Sunday	Under 18
	3 1	3408	4.0	978300275.0	2000-12-31 22:04:35	2000.0	22.0	Sunday	Under 18
	4 1	2355	5.0	978824291.0	2001-01-06 23:38:11	2001.0	23.0	Saturday	Under 18
In [48]:	df_ratin	gs.groupb	y('Age	Categories')['Rating'].n	mean().	apply(round,args=	={2})
Out[48]:	Age Cate 18-24 25-34 35-44 45-49 50-55 56+ Under 18 Name: Ra	3.40 3.68 3.61 3.70 3.77 3.57	pe: flo	at64					
In [49]:	df_ratin	gs.groupb	y('Age	Categories')['Rating'].d	count()			
Out[49]:	Age Cate 18-24 25-34 35-44 45-49 50-55 56+ Under 18 Name: Ra	11398 15915 7501 5417 2293 1211		64					
	We can	still cacl	ulate						

Distrubution between no of users who rated vs not rated \ Distrubution of different age and occupation categories who rated high or low \ Gender distribution across age categories and their rating behaviour \ Which age category people tend to watch older movies and newer movies Age categories people who are willing to rate the movies vs who arent willing to rate movies etc,. \

```
In [49]:
In [49]:
```

No of users in X and No of Ratings in Y, to find what is the minimum ratings to pick for our training model, From the obserbed below 2 graphs, we

approximately take top 1500 rated movies and 1500 rated users

```
In [50]: df_ratings.groupby('MovieID')['Rating'].count().sort_values(ascending=False).reset_inc
Out[50]: <Axes: >
```



```
In [51]: df_ratings.groupby('UserID')['Rating'].count().sort_values(ascending=False).reset_inde
Out[51]:
```



```
df_movies_x = df_movies.merge(df_ratings.groupby('MovieID')['Rating'].count().reset_ir
In [52]:
         df_movies_1500 = df_movies_x.loc[sorted(df_movies_x['Rating'].sort_values(ascending=Fa
In [53]:
In [56]:
         # df_users_x.drop(columns=['Rating_x'],inplace=True)
         # df_users_x.rename(columns={'Rating_y':'Rating'},inplace=True)
         df_users_x = df_users.merge(df_ratings.groupby('UserID')['Rating'].count().reset_index
In [57]:
         df_users_1500 = df_users_x.loc[sorted(df_users_x['Rating'].sort_values(ascending=False
In [58]:
         df_movies_1500.shape,df_users_1500.shape
In [59]:
         ((1500, 23), (302, 8))
Out[59]:
In [59]:
         df_ratings_1500=df_ratings.merge(df_users[['UserID']],on='UserID').merge(df_movies[['N
In [60]:
         df_ratings_1500.head()
In [61]:
```

Out[61]:		UserID	MovielD	Rating	Timestamp	datetime	year	hour		Age Categories	Title
	0	1	1193	5.0	978300760.0	2000-12- 31 22:12:40	2000.0	22.0	Sunday	Under 18	One Flew Over the Cuckoo's Nest (1975)
	1	2	1193	5.0	978298413.0	2000-12- 31 21:33:33	2000.0	21.0	Sunday	56+	One Flew Over the Cuckoo's Nest (1975)
	2	12	1193	4.0	978220179.0	2000-12- 30 23:49:39	2000.0	23.0	Saturday	25-34	One Flew Over the Cuckoo's Nest (1975)
	3	15	1193	4.0	978199279.0	2000-12- 30 18:01:19	2000.0	18.0	Saturday	25-34	One Flew Over the Cuckoo's Nest (1975)
	4	17	1193	5.0	978158471.0	2000-12- 30 06:41:11	2000.0	6.0	Saturday	50-55	One Flew Over the Cuckoo's Nest (1975)

```
In [61]:
In [62]: matrix = df_ratings_1500.pivot(index='UserID', columns='Title', values='Rating')
In [63]: matrix
```

Out[63]:	Title	\$1,000,000 Duck (1971)	'Night Mother (1986)	'Til There Was You (1997)	'burbs, The (1989)	And Justice for All (1979)	10 Things I Hate About You (1999)	101 Dalmatians (1961)	101 Dalmatians (1996)	12 Angry Men (1957)	13t Warrio Th (1999
	UserID										
	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
	4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
	5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
	•••										
	298	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
	299	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	Na
	300	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
	301	NaN	NaN	NaN	NaN	NaN	2.0	NaN	NaN	NaN	Na
	302	NaN	NaN	NaN	4.0	NaN	5.0	NaN	NaN	NaN	2

302 rows × 3020 columns

```
In [66]: round(matrix.isna().sum().sum().sum().sum().sum()) # sparse, for every value
Out[66]: 
In [67]: matrix.shape
Out[67]: (302, 3020)

In []:
```

Helper functions for predicting User-User-matrix and Item-Item-matrix

```
In [68]: def fetch_items_from_user_user_matrix(matrix,similarity_matrix,picked_userid,no_similar user_similarity_corr = similarity_matrix.copy().drop(index=picked_userid)

# Get top n similar users
similar_users = user_similarity_corr[user_similarity_corr[picked_userid]>user_simi

# Movies that the target user has watched
picked_userid_watched = matrix_train[matrix_train.index == picked_userid].dropna(attrian)

# Movies that similar users watched. Remove movies that none of the similar users
similar_user_movies = matrix_train[matrix_train.index.isin(similar_users.index)].c
```

```
# A dictionary to store item scores
             item_score = {}
             # Loop through items
             for i in similar user movies.columns:
               # Get the ratings for movie i
               movie_rating = similar_user_movies[i]
               # Create a variable to store the score
               total = 0
               # Create a variable to store the number of scores
               count = 0
               # Loop through similar users
               for u in similar users.index:
                 # If the movie has rating
                 if pd.isna(movie rating[u]) == False:
                   # Score is the sum of user similarity score multiply by the movie rating
                   score = similar_users[u] * movie_rating[u]
                   # Add the score to the total score for the movie so far
                   total += score
                   # Add 1 to the count
                   count +=1
               # Get the average score for the item
               item score[i] = total / count
             # Convert dictionary to pandas dataframe
             item_score = pd.DataFrame(item_score.items(), columns=['movie', 'movie_score'])
             # Sort the movies by score
             ranked_item_score = item_score.sort_values(by='movie_score', ascending=False)
             return ranked item score.head(top n movies)
In [69]:
         def fetch items from item item matrix(matrix,item similarity, picked userid, picked mc
             picked_userid_watched = pd.DataFrame(matrix.T[picked_userid].dropna(axis=0, how='a
                                    .sort values(ascending=False))\
                                    .reset_index()\
                                    .rename(columns={picked_userid:'rating'})
             # Similarity score of the movie American Pie with all the other movies
             picked_movie_similarity_score = item_similarity[[picked_movie]].reset_index().rena
             picked userid watched similarity = pd.merge(left=picked userid watched,
                                                          right=picked_movie_similarity_score,
                                                          on='Title',
                                                          how='inner')\
                                                   .sort_values('similarity_score', ascending=Fa
             predicted rating = round(np.average(picked userid watched similarity['rating'],
                                              weights=picked_userid_watched_similarity['similari
             print(f"The predicted rating for '{picked_movie}' by user '{picked_userid}' is '{r
In [69]:
In [69]:
In [69]:
```

similar user movies.drop(picked userid watched.columns,axis=1, inplace=True, error

```
In [69]:
In [69]:
In [70]:
          matrix_train,matrix_test = train_test_split(matrix,test_size=.15,random_state=42)
          matrix_train.shape,matrix_test.shape
In [71]:
          ((256, 3020), (46, 3020))
Out[71]:
          matrix_train.head()
In [72]:
Out[72]:
                                        'Til
                                                                                                   13t
                                                    ...And Things
                                                                                            12
                                            'burbs,
                                                                         101
                 $1,000,000
                             'Night
                                     There
                                                                                    101
                                                                                                Warrio
                                                   Justice
                                                           I Hate
                                                                                         Angry
            Title
                      Duck
                            Mother
                                      Was
                                              The
                                                                  Dalmatians
                                                                             Dalmatians
                                                    for All
                                                           About
                                                                                           Men
                                                                                                    Th
                                            (1989)
                     (1971)
                             (1986)
                                       You
                                                                       (1961)
                                                                                  (1996)
                                                    (1979)
                                                              You
                                                                                         (1957)
                                                                                                 (1999
                                     (1997)
                                                           (1999)
          UserID
            281
                       NaN
                               NaN
                                              NaN
                                                                        NaN
                                                                                           NaN
                                      NaN
                                                     NaN
                                                             NaN
                                                                                    NaN
                                                                                                   Na
             79
                       NaN
                               NaN
                                      NaN
                                              NaN
                                                     NaN
                                                             NaN
                                                                        NaN
                                                                                    NaN
                                                                                           NaN
                                                                                                   Na
            292
                       NaN
                               NaN
                                      NaN
                                              NaN
                                                     NaN
                                                             NaN
                                                                        NaN
                                                                                    NaN
                                                                                           NaN
                                                                                                   Na
            233
                       NaN
                               NaN
                                      NaN
                                              NaN
                                                     NaN
                                                             NaN
                                                                        NaN
                                                                                    NaN
                                                                                           NaN
                                                                                                   Na
            220
                       NaN
                               NaN
                                      NaN
                                              NaN
                                                     NaN
                                                             NaN
                                                                        NaN
                                                                                    NaN
                                                                                           NaN
                                                                                                   Na
         5 rows × 3020 columns
In [72]:
          User similarity using User-User Pearson correlation matrix
```

```
In [73]: user_similarity_corr = matrix_train.T.corr()
In [74]: user_similarity_corr.head()
```

Out[74]:	UserID	281	79	292	233	220	256	64	83	237
	UserID									
	281	1.000000	1.000000	0.324617	0.500000	-0.187500	0.612372	-0.166667	-0.514330	-0.259860
	79	1.000000	1.000000	1.000000	NaN	0.528085	0.944911	NaN	-0.322749	NaN
	292	0.324617	1.000000	1.000000	NaN	0.650791	0.481218	0.936586	0.023837	0.089061
	233	0.500000	NaN	NaN	1.000000	0.333333	-0.102062	1.000000	NaN	0.021148
	220	-0.187500	0.528085	0.650791	0.333333	1.000000	0.583632	0.555556	0.032556	0.235213

5 rows × 256 columns

Top 10 movies recommended for user id 220 based on pearson correlation matrix

In [78]: fetch_items_from_user_user_matrix(matrix_train,user_similarity_corr,220)
Out[78]: movie movie_score

	lilovie	illovie_score
1006	Swamp Thing (1982)	5.0
498	Hidden, The (1987)	5.0
1035	Thing From Another World, The (1951)	5.0
352	Eyes Without a Face (1959)	5.0
908	Serial Mom (1994)	5.0
784	Phantasm (1979)	5.0
702	Mummy, The (1932)	5.0
250	Cronos (1992)	5.0
495	Help! (1965)	5.0
836	Raven, The (1963)	5.0

In [75]:

User similarity using User-User Cosine similarity matrix

```
In [76]: user_similarity_cosine = cosine_similarity(matrix_train.fillna(0))
In [77]: user_similarity_cosine = pd.DataFrame(data=user_similarity_cosine,columns=matrix_train.fillna(0))
```

Top 10 movies recommended for user id 5542 based on cosine similarity matrix

in []:	feto	h_items_from_user_user_matrix(matrix_tra	in,user_sim
ut[]:		movie	movie_score
	439	Grand Day Out, A (1992)	1.720979
	700	My Best Fiend (Mein liebster Feind) (1999)	1.720979
	753	Once Upon a Time When We Were Colored (1995)	1.668122
	577	Kundun (1997)	1.668122
	102	Beautiful Thing (1996)	1.668122
	877	Romeo and Juliet (1968)	1.664460
	151	Bound (1996)	1.635513
	383	Frances (1982)	1.635513
	220	City of Angels (1998)	1.635513
	424	Gods and Monsters (1998)	1.635513
]:			

Item similarity using Item-Item Pearson correlation matrix

```
In [ ]: item_similarity_corr = matrix_train.corr()
In [ ]: item_similarity_corr.head()
```

Out[]:	Title Title	\$1,000,000 Duck (1971)	'Night Mother (1986)	'Til There Was You (1997)	'burbs, The (1989)	And Justice for All (1979)	1-900 (1994)	10 Things I Hate About You (1999)	Dal
	\$1,000,000 Duck (1971)	1.000000e+00	5.222330e-01	NaN	9.410021e-17	0.422577	NaN	-0.455383	(
	'Night Mother (1986)	5.222330e-01	1.000000e+00	-6.966594e- 17	2.174729e-01	0.235483	NaN	0.260513	(
	'Til There Was You (1997)	NaN	-6.966594e- 17	1.000000e+00	8.503904e-01	0.719676	NaN	0.202885	(
	'burbs, The (1989)	9.410021e-17	2.174729e-01	8.503904e-01	1.000000e+00	0.179745	NaN	0.157364	(
	And Justice for All (1979)	4.225771e-01	2.354830e-01	7.196763e-01	1.797450e-01	1.000000	NaN	0.254492	(
	5 rows × 37	06 columns							
									•
In []:	picked_movie = 'American Pie (1999)'								
In []:									, pi

Item similarity using Item-Item Cosine similairty matrix

```
In [ ]: item_similarity_cosine = cosine_similarity(matrix_train.T.fillna(0))
In [ ]: item_similarity_cosine = pd.DataFrame(data=item_similarity_cosine,columns=matrix_train
In [ ]: item_similarity_cosine.head()
```

_	
Out	
out	

Title	\$1,000,000 Duck (1971)	'Night Mother (1986)	'Til There Was You (1997)	'burbs, The (1989)	And Justice for All (1979)	1-900 (1994)	Things I Hate About You (1999)	101 Dalmatians (1961)	Dalma (
Title									
\$1,000,000 Duck (1971)	1.000000	0.077175	0.040719	0.089714	0.066385	0.000000	0.058165	0.196912	0.1
'Night Mother (1986)	0.077175	1.000000	0.121769	0.108498	0.160112	0.000000	0.083533	0.151401	0.1
'Til There Was You (1997)	0.040719	0.121769	1.000000	0.099920	0.074803	0.085592	0.118682	0.123273	0.1
'burbs, The (1989)	0.089714	0.108498	0.099920	1.000000	0.146753	0.000000	0.184452	0.234000	0.1
And Justice for All (1979)	0.066385	0.160112	0.074803	0.146753	1.000000	0.000000	0.077838	0.190840	0.1

...And

'Til

10

Things I

5 rows × 3706 columns

```
fetch_items_from_item_matrix(matrix_train,item_similarity_cosine, picked_userid,
        The predicted rating for 'American Pie (1999)' by user '5542' is '4.633477'
In [ ]:
In [ ]:
In [ ]:
        knn = NearestNeighbors(n_neighbors=5, algorithm='ball_tree').fit(matrix_train.T.fillna
        distances, indices = knn.kneighbors([matrix_train.iloc[:,50].fillna(0)])
In [ ]:
        distances
In [ ]:
                          , 8.36660027, 8.71779789, 8.71779789, 8.71779789]])
        array([[0.
Out[]:
        indices
In [ ]:
        array([[ 50, 2150, 398, 256, 540]], dtype=int64)
Out[]:
In [ ]:
        matrix_train.iloc[:,indices[0]].columns
        Index(['Actor's Revenge, An (Yukinojo Henge) (1963)',
Out[ ]:
                'Metisse (Café au Lait) (1993)', 'Billy's Holiday (1995)',
                'Back Stage (2000)', 'Broken Vessels (1998)'],
              dtype='object', name='Title')
```

The nearest movie for "Actor's Revenge, An (Yukinojo Henge) (1963)" are:

'Metisse (Café au Lait) (1993)', \ 'Billy's Holiday (1995)', \ 'Back Stage (2000)', \ 'Broken Vessels (1998)'

```
In [82]:
```

Matrix factorization

```
reader = Reader(rating scale=(0, 5))
In [79]:
         data = Dataset.load from df(df ratings[['UserID', 'MovieID', 'Rating']], reader)
In [85]:
In [98]:
          benchmark = []
          # Iterate over all algorithms
          for algorithm in [SVD(), SVDpp(), NMF(), KNNBaseline(), KNNBasic(), KNNWithMeans(), KN
              # Perform cross validation
              results = cross validate(algorithm, data, measures=['RMSE', 'MAE'], cv=3, verbose=F
              # Get results & append algorithm name
              tmp = pd.DataFrame.from_dict(results).mean(axis=0)
              tmp = pd.concat([tmp,pd.Series([str(algorithm).split(' ')[0].split('.')[-1]], index
              benchmark.append(tmp)
In [99]:
          pd.DataFrame(benchmark).set_index('Algorithm').sort_values('test_rmse')
Out[99]:
                         test_rmse test_mae
                                             fit_time test_time
               Algorithm
               KNNBasic
                          1.063808 0.834582
                                            0.032180 0.852045
          KNNWithMeans
                          1.212207 0.912728
                                            0.054488
                                                     1.168667
          KNNWithZScore
                         1.212491 0.913058
                                            0.063367
                                                     0.790620
                   NMF
                          1.784164 1.388071
                                            0.841373 0.119940
                    SVD
                         1.786608 1.391861
                                            0.670844 0.150759
             KNNBaseline
                          1.788655 1.394545
                                            0.096315  0.867506
                  SVDpp
                          1.792795 1.395840 13.431853 4.167411
```

Here we trained and tested our models on Matrix Factorization concept using Surprise library, above table shows with different techniques of Matrix Factorization we brought different results, here if you observe we got the best results i.e low RMSE and MAE for KNNBasic algorithm.

```
In []:
In [99]:
In []:
```

Questionnaire:

25-34 age group all the most rated group

```
rated_users = df_users['UserID'].isin(df_ratings['UserID'])
In [105...
           df_users[rated_users].groupby('Age Categories')['UserID'].count().sort_values(ascendir
           Age Categories
Out[105]:
           25-34
           18-24
                       72
           35-44
                       54
           45-49
                       36
           50-55
                       18
           56+
                       13
           Under 18
                       10
           Name: UserID, dtype: int64
In [101...
```

college/grad student are the most movie rated user category, 42 people rated from this category

```
In [103...
           df users[rated users].groupby('Occupation Category')['UserID'].count().sort values(asc
           Occupation Category
Out[103]:
           college/grad student
                                    42
           other
                                    31
           academic/educator
                                    30
           executive/managerial
                                    30
                                    29
           technician/engineer
                                    24
           programmer
           self-employed
                                    16
                                    14
           writer
           sales/marketing
                                    11
           K-12 student
                                    11
           clerical/admin
                                    11
           artist
                                    10
                                     8
           lawyer
                                     7
           homemaker
           scientist
                                     6
                                     5
           retired
                                     5
           unemployed
                                     4
           customer service
           tradesman/craftsman
                                     4
                                     3
           doctor/health care
           farmer
                                     1
           Name: UserID, dtype: int64
  In [ ]:
```

Males rated most of the users

```
df_users[rated_users].groupby('Gender')['UserID'].count().sort_values(ascending=False)
In [104...
          Gender
Out[104]:
                213
                89
          Name: UserID, dtype: int64
  In [ ]:
          2000's has the most movie releases
          df movies['Release decade'] = (round(df movies['Release year']/10)*10).apply(int)
In [116...
          df_movies.groupby(['Release decade'])['MovieID'].count().sort_values(ascending=False)
In [117...
          Release decade
Out[117]:
          2000
                   1778
          1990
                    965
          1980
                    420
          1960
                    217
          1970
                    197
          1940
                    119
          1950
                    115
          1930
                     55
          1920
                     17
          Name: MovieID, dtype: int64
  In [ ]:
          American Beauty (1999) is the most rated movie
          df ratings = df ratings.merge(df movies[['MovieID', 'Title']],on='MovieID')
In [123...
          df_ratings.groupby(['Title'])['Rating'].count().sort_values(ascending=False)
In [124...
          Title
Out[124]:
          American Beauty (1999)
                                                                     186
          Jurassic Park (1993)
                                                                     157
          Star Wars: Episode V - The Empire Strikes Back (1980)
                                                                     149
          Saving Private Ryan (1998)
                                                                     143
          Star Wars: Episode VI - Return of the Jedi (1983)
                                                                     141
          Funhouse, The (1981)
                                                                       1
          Naked Man, The (1998)
                                                                       1
          G. I. Blues (1960)
                                                                       1
          Gate of Heavenly Peace, The (1995)
                                                                       1
                                                                       1
          $1,000,000 Duck (1971)
          Name: Rating, Length: 3020, dtype: int64
  In [ ]:
```

Top 3 movies similar to 'Liar Liar' on the item-based approach are

'Cable Guy, The (1996)', \ 'Home Alone 2: Lost in New York (1992)', \ 'Brady Bunch Movie, The (1995)'

In []:

On the basis of approach, Collaborative Filtering methods can be classified into user-user-based and item-item-based.

Pearson Correlation ranges between -1 to +1 whereas, Cosine Similarity belongs to the interval between 0 to \pm 1.

1.9 and 1.4 are the RMSE and MAPE that we got while evaluating the Matrix Factorization model

In []:

The sparse 'row' matrix representation would be:

data = [1, 3, 7] indices = [0, 0, 1] indptr = [0, 1, 3]

In []: