Projet de Session du cours INF-7370

Apprentissage Automatique

Présentation d'une solution de classification d'images entre chiens et coyotes

Présenté par : Maroun HADDAD Mohamed Fawzi TOUATI

Plan de la Présentation

- 1. Introduction Générale
- 2. Problématique et Motivations
- 3. Solution Proposée
 - a. Chats vs Chiens
 - i. Auto-encodeur
 - ii. Classifieurs
 - 1. Basé Auto-encodeur
 - 2. From Scratch
 - 3. Base VGG16
 - b. Coyotes vs Chiens
 - i. Transfert d'apprentissage
- 4. Conclusions et Perspectives

Introduction Générale

En raison de la disponibilité de la nourriture et le manque de prédateurs, les **coyotes urbains** sont devenus un phénomène courant dans les dernières décennies.

• Problèmes :

- Les coyotes urbains ciblent parfois les animaux domestiques et attaquent les gens.
- Leurs tanières en milieu urbain sont étonnamment difficiles à trouver.
- Distinguer entre quelques races des chiens domestiques et les coyotes sauvages est difficile.

Solutions :

 Équiper les caméras publiques par un logiciel qui permet la détection des coyotes urbains afin d'alerter les municipalités locales.

Problématique et Motivations

Motivations

 Un des plus grands défis du programme de détection des coyotes sera sa capacité à distinguer entre les chiens des coyotes.

Problématique

- Développer un réseau de neurones qui distingue entre les images des chiens et des coyotes.
 - Absence d'une base de données des coyotes de taille suffisante pour entraîner un réseau de neurones !!!

Solution envisagée

- Entraîner un modèle à distinguer entre les chats et les chiens (beaucoup d'images sont disponibles).
- Transférer l'apprentissage à un modèle pour distinguer entre les chiens et les coyotes avec un peu de données.

Démarche de la Solution Proposée

I. Chats vs Chiens

- 1. Autoencoder
- 2. Modèle Principal (Base Autoencoder)
- 3. Modèle Référence (From Scratch)
- 4. Modèle Benchmark (Base VGG16)

II. Coyotes vs Chiens

5. Transfer Learning du Modèle from scratch

1ère Phase

Chats vs Chiens

Chats vs Chiens

1. Préparation des données

2. Auto-encodeur

- a. Introduction.
- b. Expérimentations et résultats préliminaires.
- c. Architecture du Modèle final.
- d. Apprentissage.
- e. Tests et Interprétation des résultats.

3. Classifieurs

- a. Introduction.
- b. Expérimentations.
- c. Modèle principal à base Auto-encodeur.
- d. Conclusion sur l'efficacité de notre Auto-encodeur.
- e. Modèle from scratch.
- Modèle à base VGG16.
- g. Interprétation des résultats de chaque modèle.

Chats vs Chiens - Récolte et Préparation des données

Auto-encodeur

Auto-encodeur - Introduction

Évaluation

- Mean squared error
- Qualité de la compression

*Ces deux valeurs ne sont pas toujours fiables à représenter la puissance réelle de l'auto-encodeur.

Auto-encodeur - Expérimentations

Facteurs contribuant à la performance:

1.	La taille du Bottleneck ····· Petit	>	Grand
2.	Les couleurs des images d'entrée · · · · · Coloré	>	Noir et Blanc
3.	La taille des images d'entrée	>	Petit
4.	La taille de l'échantillon d'apprentissage ····· Grand	>	Petit
5.	La profondeur de l'architecture ····· Profond	>	Shallow
6.	Batch Normalization · · · · · Avec BN	>	Sans BN
7.	Optimiseur····· ► SGD (Lea	rning l	Rate = 0.1)

Auto-encodeur - Résultats préliminaires

Auto-encodeur - Architecture Finale

Auto-encodeur - Apprentissage

Détails des données

	Training	Validation	Total
Chats	10,000	2,500	12,500
Chiens	10,000	2,500	12,500
			25,000

Paramètres

Couleur	Taille	Epochs	Act.
N&B	128x128	400(10)	Relu

Résultats

Validation Loss	Temps	Early Stopping
0.0026	54 heures	NA

Auto-encodeur - Échantillons de compression

Classifieurs

Classifieur - Introduction

Modèles développés

- 1. Un modèle à base d'auto-encodeur
 - Modèle principal
- 2. Un modèle from scratch
 - Référence pour le modèle principale
- 3. Un modèle à base VGG16
 - Benchmark des meilleurs résultats que nous pouvons répliquer

Classifieur - Expérimentations

Facteurs contribuant à la performance:

1.	Lat	aille des images d'entrée ······▶	Grand	>	Petit
2.	Les	couleurs des images d'entrée ······ ▶	Coloré	>	Noir et Blanc
3.	La t	aille de l'échantillon d'entraînement▶	Grand	>	Petit
4.	. La profondeur du réseau de neurones · · · · · Profond > Sh				Shallow
5.	La fonction d'activation utilisée ····· ReL				Sigmoid
6.	. Dropout · · · · · 50% dans la secti			tion FC	
7.	D'autres paramètres importants				
	a.	Optimiseur · · · · · · · · · · · · · · · · · · ·	RMSProp (LI	R = 0.0	001)
	b.	Le nombre d'itérations et la patience du early stopping · · · · ▶	Epochs = 20	/50 et E	Early Stopping =10
	C.	La taille du batch de l'apprentissage · · · · · · · · ▶	Batch = 32		

Classifieur - Architecture principale

1^{er} Modèle

Modèle Basé Auto-encodeur

Modèle Basé Auto-encodeur - Transfert d'Apprentissage

Modèle Basé Auto-encodeur - Apprentissage

Détails des données

	Training	Validation	Total
Chats	10,000	2,500	12,500
Chiens	10,000	2,500	12,500
			25,000

Paramètres

Couleur	Taille	Epochs	Act.
N&B	128x128	50(10)	ReLu

Résultats

Accuracy	Loss	Temps	E.Stopping
87.1%	0.408	2.3 heures	NA

Modèle Basé Auto-encodeur - Test

Données de test

Chats 2,500 Chiens 2,500 **Total** 5,000

Résultats

87.6% Accuracy

4380 Bien classées

619 Mal classées

Échantillons de test

Images bien classées

[100.0%Cat] [84.0%Cat] [97.0%Cat] [100.0%Cat] [100.0%Cat]

Chats mal classés

[85.0%Dog] [100.0%Dog] [68.0%Dog] [90.0%Dog] [89.0%Dog]

Chiens mal classés [68.0%Cat] [83.0%Cat] [50.0%Cat] [54.0%Cat] [100.0%Cat]

Conclusion sur l'Efficacité de l'auto-encodeur

 Plus le nombre de données étiquetées augmente, plus le pouvoir de l'auto-encodeur à améliorer la performance du classificateur diminue.

	Avec AE	sans AE	Avec AE Tuned	Amélioration
Phase 1 (2,000)	0.7 ▼	0.709	0.772	+6.30%
Phase 2 (5,000)	0.746 🔻	0.74	0.769 🔺	+2.90%
Phase 3 (10,000)	0.7632 🔻	0.8192	0.824	+0.48%
Phase 4 (20,000)	0.7762	0.886	0.871	-1.50%

2^{ème} Modèle

Modèle From Scratch

Modèle From Scratch - Apprentissage

Détails des données

	Training	Validation	Total
Chats	10,000	2,500	12,500
Chiens	10,000	2,500	12,500
			25,000

Paramètres

Couleur	Taille	Epochs	Act.
RGB	150x150	50(10)	Relu

Résultats

Accuracy	Loss	Temps	E. Stopping
93.38%	0.198	2.5 heures	49e Itération

Modèle From Scratch - Test

Données de test

 Chats
 2,500

 Chiens
 2,500

 Total
 5,000

Résultats

Accuracy **92.88%**

Bien classées 4643

Mal classées 356

Modèle From Scratch - Conclusion

Critères de succès

Ce modèle a performé avec une amélioration de 7% sur le modèle noir et blanc:

- Images colorées vs Images noires et blanches.
- La taille des images d'entrée est plus grande (150>128).
- La taille de l'échantillon d'apprentissage est très grande.

3^{ème} Modèle

Modèle Basé VGG16

Modèle Basé VGG16 - Transfert d'Apprentissage

Modèle Basé VGG16 - Apprentissage

Détails des données

	Training	Validation	Total
Chats	10,000	2,500	12,500
Chiens	10,000	2,500	12,500
			25,000

Paramètres

Couleur	Taille	Epochs	Act.
RGB	200x200	50(10)	ReLu

Résultats

Accuracy	Loss	Temps	E. Stopping
98.2%	0.1256	NA	29e et 4e

Avant Tuning

Après Tuning

Modèle Basé VGG16 - Test

Données de test

 Chats
 2,500

 Chiens
 2,500

 Total
 5,000

Résultats

Accuracy **97.52%**

Bien classées 4880

Mal classées 119

Modèle Basé VGG16 - Conclusion

Critères de succès

Le modèle à base VGG16 a donné les meilleurs résultats. Il a même détecté les fautes de l'étiquetage manuel (la 8ème image).

- Les images sont d'une grande taille de 200x200.
- VGG16 est très profond.
- VGG16 est entrainé sur ImageNet qui contient des millions d'images.

Échantillons de test

Images Bien Classées

[100.0%Cat] [100.0%Cat] [100.0%Cat] [100.0%Cat] [100.0%Cat]

Chats mal Classés

[72.0%Dog] [70.0%Dog][100.0%Dog][100.0%Dog][100.0%Dog]

Chiens bien Classés

[91.0%Cat] [77.0%Cat] [100.0%Cat][100.0%Cat] [99.0%Cat]

2ème Phase

Coyotes vs Chiens

Coyotes vs Chiens

Plan

- Préparation des données.
- 2. Transfert d'apprentissage.
- 3. Apprentissage.
- 4. Application sur les images tests.
- 5. Interprétation des résultats.

Chien

- 1. Domestique.
- 2. Museau plus étroit.
- 3. Front plus arrondi.
- 4. Poitrine plus profonde.
- 5. Pistes plus arrondies.

Coyote

- 1. Sauvage.
- 2. Museau plus pointu.
- 3. Front plus plat.
- 4. Poitrine plus gonflée.
- 5. Pattes plus longues.

Coyotes vs Chiens - Préparation des données

Coyotes vs Chiens - Transfert d'Apprentissage

Technique de transfert

- 1. Construire un modèle B identique au modèle A.
 - A=(From scratch Coloré 150x150)
 - B=A
- Charger les poids de la section de convolution de A dans B.
- 3. Figer les poids de la section de convolution de B.
- 4. Entraîner la partie Fully connected de B.
- * Pas de fine tuning, mais on devrait le faire!

Coyotes vs Chiens - Apprentissage

Détails des données

	Training	Validation	Total
Chats	4,750	532	5,282
Chiens	4,750	532	5,282
			10,564

Paramètres

Couleur	Taille	Epochs	Act.
RGB	150x150	50(10)	Relu

Résultats

Accuracy	Loss	Temps	E. Stopping
93.23%	0.199	10 minutes	27th Epoch

Coyotes vs Chiens - Test

Données de test

 Coyotes
 250

 Chiens
 250

 Total
 500

Résultats

Accuracy 89%

Bien classées 444

Mal classées 55

Confusion matrix & Courbe ROC

Coyotes vs Chiens - Conclusion

Critères de succès

Le modèle donne de bons résultats mais nous suspectons que ces résultats ne sont pas vraiment fiables:

- Le modèle n'a pas vraiment capturé les traits de ce qui constitue un covote.
- Le modèle distingue entre les chiens et d'autres sujets.
- Les photos mal classées comme coyotes ressemblent à des chats !!!

Échantillons de test

Images bien Classées

[100.0%Coyote] [100.0%Coyote] [100.0%Coyote] [100.0%Coyote] [100.0%Coyote]

[63.0%Doa1

Chiens mal Classés

[82.0%Coyote] [100.0%Coyote] [96.0%Coyote] [96.0%Coyote]

Conclusions et Perspectives

Conclusions et perspectives

Conclusions:

- Lecture et exploitation des travaux connexes en classification d'images.
- Manipulation de données lourdes en termes de mémoire.
- Proposition d'une solution de distinction des chiens et des coyotes.
- Comparaison de différents algorithmes d'apprentissage profond.
- Compréhension et tests pratique des notions apprises durant la session.

Perspectives:

- Proposition des données récoltés lors de ce projet comme dataset principale et étiquetage par des experts.
- Réutilisation de la solution pour la détection éventuel d'autres espèces animales rares.
- Présentation de la solution comme partie d'un projet de détecteurs de coyotes, chiens ou chats.

Merci de votre attention!