p-norm cones and second-order cone representations John C. Duchi

In this note, we review how a few power inequalities, and related p-norm constraints for (rational) $p \in (1, \infty)$, may be represented as second order cone programs. These results follow Alizadeh and Goldfarb [1], who enumerate the reductions below and several more such inequalities.

Our starting point is to note that given a vector $w \in \mathbb{R}^n$ and points $x, y \geq 0$, the constraint

$$||w||_2 \le xy$$

is equivalent to the constraint

$$\left\| \begin{bmatrix} 2w \\ x - y \end{bmatrix} \right\|_2 \le x + y, \quad x \ge 0, y \ge 0, \tag{1}$$

which is evident by squaring both sides and rearranging. Thus, we also obtain that the set of t, x, y such that $x, y \ge 0$ and $t^2 \le xy$ is representable as a second-order cone. This insight allows us to represent more complicated powers as second-order cones.

Products as second order cones

Consider the set of $t \in \mathbb{R}, s \in \mathbb{R}^{2^k}_+$ such that

$$t^{2^k} \le s_1 s_2 \cdots s_{2^k}, \quad s_i \ge 0, \text{ all } s_i.$$
 (2)

We claim this set is SOCP representable. Indeed, introduce variables

$$\{u_{i,j}: j \in \{1,\ldots,k-1\}, i \in \{1,\ldots,2^j\}, u_{i,j} \ge 0\}.$$

Then it is clear that the constraint (2) is equivalent to

$$t^{2^k} \le u_{1,k-1}^2 u_{2,k-1}^2 \cdots u_{2^{k-1},k-1}^2, \quad u_{i,k-1}^2 \le s_{2i-1} s_{2i}, \quad \text{all } i,$$

or

$$t^{2^{k-1}} \le u_{1,k-1}u_{2,k-1}\cdots u_{2^{k-1},k-1}, \quad u_{i,k-1}^2 \le s_{2i-1}s_{2i}, \quad \text{all } i \in \{1,\dots,2^{k-1}\}.$$

Recursively applying this construction through levels $j = k - 2, \dots, 1$, we obtain the set of inequalities

$$t^{2} \le u_{1,1}u_{2,1}, \ u_{i,j-1}^{2} \le u_{2i-1,j}u_{2i,j} \text{ for } j \in \{2,\dots,k-2\}, i \in \{1,\dots,2^{j-1}\}\$$

$$u_{i,k-1}^{2} \le s_{2i-1}s_{2i} \text{ for } i \in \{1,\dots,2^{k-1}\},$$
(3)

where all $u_{i,j}$ are non-negative. Each of these inequalities, by the representation (1), corresponds to a second-order cone in \mathbb{R}^3_+ , and we have introduced $2^k - 1$ such inequalities.

Product inequalities as second order cones

We now provide reductions of inequalities of the more restrictive form

$$x^n \le t^{p_1} s^{p_2}, \quad x, t, s \ge 0$$
 (4)

where $p_1 + p_2 = n$ and $p_1, p_2, n \in \mathbb{N}$, into a sequence of second-order cone-represented sets. This is the building block for representations of general p-norm inequalities to come. In particular, we develop a procedure that takes inequalities of one of the three forms

$$x^n < t^{p_1} s^{p_2} \tag{5a}$$

$$x^n \le t^{p_1} s^{p_2} u \tag{5b}$$

$$x^n \le t^{p_1} s^{p_2} u^2 \tag{5c}$$

and recurses with a power $\leq (n+1)/2$ on x and one of the forms (5). Note that if n=2, then we already have an immediate second order cone representation (1).

- (1) The case with u^0 , inequality (5a). We have two possibilities: either n is even or n is odd.
 - a. n is even: we assume that $n \geq 4$, as otherwise we have the inequality $x^2 \leq ts$, which is trivial. In this case, either both p_1 and p_2 are even or both are is odd. If they are even, inequality (5a) is equivalent to $x^{n/2} \leq t^{p_1/2} s^{p_2/2}$, which gives us a recursive step. If p_1 is odd, then p_2 is odd, and inequality (5a) is equivalent to the pair

$$x^n \le t^{p_1 - 1} s^{p_2 - 1} u^2$$
, $u^2 \le ts$, or $x^{n/2} \le t^{\frac{p_1 - 1}{2}} s^{\frac{p_2 - 1}{2}} u$, $u^2 \le ts$,

which allows us to recurse to case (5b) with lower powers on s, t, and x.

b. n is odd: In this case, we have exactly one of p_1 and p_2 is odd; assume w.l.o.g. that p_1 is odd. Then inequality (5a) is equivalent to $x^{n+1} \leq t^{p_1-1}s^{p_2}xt$, and introducing the variable $u \geq 0$, we have the equivalent representation

$$x^{n+1} \le t^{p_1-1} s^{p_2} u^2$$
, $u^2 \le xt$, or $x^{\frac{n+1}{2}} \le t^{\frac{p_1-1}{2}} s^{\frac{p_2}{2}} u$, $u^2 \le xt$.

This allows us to recurse to case (5b).

- (2) The case u, inequality (5b). We again have two possibilities: either n is even or n is odd.
 - a. n is even: In this case, exactly one of p_1 and p_2 is odd; assume w.l.o.g. that p_1 is odd. Then we have the equivalent representation

$$x^n \le t^{p_1 - 1} s^{p_2} w^2$$
, $w^2 \le tu$, or $x^{\frac{n}{2}} \le t^{\frac{p_1 - 1}{2}} s^{\frac{p_2}{2}} w$, $w^2 \le tu$.

This is again an inequality of the form (5b).

b. n is odd: In this case, either both p_1 and p_2 are even or they are both odd. If they are both even, then we have the equivalent inequalities

$$x^{n+1} \le t^{p_1} s^{p_2} w^2$$
, $w^2 \le xu$, or $x^{\frac{n+1}{2}} \le t^{\frac{p_1}{2}} s^{\frac{p_2}{2}} w$, $w^2 \le xu$,

which is again of the form (5b). If both p_1 and p_2 are odd, then we introduce a few more variables, noting that inequality (5b) is equivalent to

$$x^{n+1} \le t^{p_1-1} s^{p_2-1} stux$$
, or $x^{n+1} \le t^{p_1-1} s^{p_2-1} y^4$, $y^2 \le wv$, $w^2 \le st$, $v^2 \le ux$,

and raising the inequality involving x^{n+1} to the power $\frac{1}{2}$ yields the four inequalities

$$x^{\frac{n+1}{2}} \leq t^{\frac{p_1-1}{2}} s^{\frac{p_2-1}{2}} y^2, \quad y^2 \leq wv, \quad w^2 \leq st, \quad v^2 \leq ux,$$

which is of the form (5c).

- (3) The case u^2 , inequality (5c). We show that we can always reduce this to one of the cases (5).
 - a. n is even: In this case, either both p_1 and p_2 are both even or they are both odd. If p_1 and p_2 are even, then inequality (5c) is equivalent to $x^{n/2} \leq t^{p_1/2} s^{p_2/2} u$, which is of type (5b). If p_1 and p_2 are odd, then we have the equivalent representation

$$x^n \le t^{p_1-1} s^{p_2-1} u^2 st$$
, or $x^n \le t^{p_1-1} s^{p_2-1} y^4$, $y^4 \le u^2 w^2$, $w^2 \le st$,

which (by inspection) is equivalent to the inequality of type (5c) (along with an additional two SOCP inequalities)

$$x^{\frac{n}{2}} \le t^{\frac{p_1-1}{2}} s^{\frac{p_2-1}{2}} y^2, \quad y^2 \le uw, \quad w^2 \le st.$$

b. n is odd: In this case, exactly one of p_1 and p_2 is odd; assume w.l.o.g. that p_1 is odd. Then inequality (5c) is equivalent to

$$x^{n+1} \le t^{p_1-1} s^{p_2} u^2 t x$$
, or $x^{\frac{n+1}{2}} \le t^{\frac{p_1-1}{2}} s^{\frac{p_2}{2}} y^2$, $y^2 \le u w$, $w^2 \le t x$.

The preceding enumerated steps suggest a recursive strategy, where at each step, we check which of the cases we are in, then perform a reduction to introduce at most three inequalities of the form $w^2 \leq uv$, and reducing the powers on all other variables by a factor of 2. The recursion halts as soon as we have an inequality of the form $x^1 \leq y^n$, or an inequality of the form $x^2 \leq uv$, which is second-order-cone representable. Note that given an inequality of the form (4), we introduce at most $O(1) \lceil \log_2(p_1 \vee p_2) \rceil$ new inequalities via this recursion.

General (rational) p-norm cones as second-order cones

Now we show how to represent the inequality

$$||x||_p \le t$$
, where $p = \frac{n}{m}$ for some $n, m \in \mathbb{N}, n \ge m$ (6)

for $x \in \mathbb{R}^d$ as a collection of second-order cones and linear inequalities. First, note that the inequality

$$\left(\sum_{i=1}^{d} |x_i|^p \right)^{1/p} \leq t \quad \equiv \quad \left(\sum_{i=1}^{d} |x_i|^{n/m} \right)^{m/n} \leq t \quad \equiv \quad \sum_{i=1}^{d} t^{1-n/m} |x_i|^{n/m} \leq t$$

is equivalent to the collection of inequalities $s^{\top}1 \leq t$, $|x_i|^{n/m} \leq s_i t^{n/m-1}$ for all i, which in turn is equivalent to the set of inequalities

$$v_i \ge |x_i|, \ t \ge 0, \ s_i \ge 0, \ v_i^n \le s_i^m t^{n-m}, \ \sum_{i=1}^d s_i \le t.$$

We know this is SOCP representable by the recursions (5).

References

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. *Mathematical Programming, Series B*, 95:3–51, 2001.