University of Texas at Austin, Cockrell School of Engineering Software Architecture – EE 382C.7

Assignment # 2
Derivation and Evaluation of Business Blueprints
April 01, 2016

Gabrielson Eapen
EID: EAPENGP

Table of Contents

. Derivation and Evaluation of Business Blueprints	3
2.1 Prioritization of Stakeholder Qualities/Constraints along with Quality Categories	3
2.2 Business Blueprint Derivation	5
2.2.1 Graphical Representation of Components and their Relations	5
2.2.2 Textual Representation of Components and their Relations	6
2.2.2.1 Allocation of functions and data to components	6
2.2.2 Function I/O Dependencies between Components	7
2.2.2.3 Function I/O Dependencies between Components and External Producers/	Consumers 8
2.2.2.4 Function I/O Satisfied within the Same Component	9
2.3 Derivation Plan and Rationale	11
2.3.1 Derivation Plan	11
2.3.2 Potential Conflicts and Impact on Derivation Plan	14
2.4 Evaluate Business Blueprint Structure	14
2.4.1 Coupling and Cohesion Metrics	14
2.4.1.1 Number of Inputs/Outputs between components	14
2.4.1.2 Number of dependencies between components	15
2.4.1.3 Degree of Cohesion	15
2.4.2 Size and Complexity Metrics	15
2.4.2.1 Number of functions allocated to a component	15
2.4.2.2 Number of data elements allocated to a component	16
2.4.2.3 Number of components in the blueprint	16
2.4.2.4 Component Complexity	16
2.4.3 Support for Applied Heuristic	16

2. Derivation and Evaluation of Business Blueprints

2.1 Prioritization of Stakeholder Qualities/Constraints along with Quality Categories

The following is a prioritized table of Stakeholder Qualities and Constraints presented in the problem domain.

Priority	Need/Quality	Classification	Priority Justification
1	The site (application) should be	Availability	If travelers are unable to access
*	available to end-users for the entire	Availability	the site (application) when they
	duration of their access (visit).		need it, they are unable to
	Specifically, the system needs to be		schedule and plan trips. Besides
	available 24x7 with a four 9's (99.99%)		inconveniencing the traveler, it
			_
	uptime goal.		adversely affects the reputation of the site.
2	The confication was interfered (LIII)	Lloobility.	If travelers find it difficult to use
2	The application user interface (UI)	Usability	
	should be simplistic and intuitive to		or navigate the site, they are less
	use so that end-user needs minimal to		likely to use it. Ease of use leads
	no training in order to navigate the		to higher end-user acceptance
	site.	D. C.	and satisfaction.
3	The user should not have to wait for	Performance	Since the application is available
	extended periods of time at any point		globally 24x7, end-user usage
	when using the system.		patterns can vary. But
			regardless of application load, all
			application functions must
			perform consistently and
			complete in the specified
			amount of time.
4	Authenticated access to the	Security	The application must comply
	application should be secure and user		with industry standards in
	credentials should not be		storage and transmission of
	compromised. SSL can be used to		sensitive personal information to
	secure the sensitive information.		avoid any legal liability.
	Sensitive personal or payment		Specifically collection,
	information should be encrypted		transmission, and storage of
	when stored in the database.		payment (CREDIT CARD)
			information or cardholder data
			must comply with the Payment
			Card Industry Data
			Security Standard (PCI DSS).
5	The application should be able to	Scalability	To ensure consistent
	handle large numbers of users and		performance, when user load or
	have ability to increase capacity on		activity increased, the
	demand in response to growth or		application infrastructure needs
	during peak travel seasons.		to be elastic and scale to meet
			the higher load. This helps
			satisfy priorities 1 and 3 as well.

6	The application should be easily extensible	Extensibility	As our company desires to agile and aggressive in the market place, it needs to be able to add new features or capabilities with minimal design effort. So tight coupling between modules should be avoided.
7	There should be regularly scheduled backups of critical user and system data to allow for recovery whenever needed.	Data backup and recovery	Hardware failures happen and it would be embarrassing to inform customers that we have lost their data. If possible, continuous or almost real-time backups should also exist to allow restores to a specific point-in-time.
8	The application should be created with proper coding principles and design patterns with controlled releases from development to test to production.	Maintainability	Similar to priority 6, incremental updates and/or bug fixes need to have controlled rollouts (or rollbacks) without availability disruption.
9	Delivery of the application must occur within the agreed upon time frames.	Project Schedule	Our company desires to be agile and aggressive in the market place. However, this is a saturated market and meeting the above goals is more important than schedule.
10	The application should be created within the specified budget without cost overrun.	Project Cost	Adhering to the stipulated budget goes a long way in inspiring confidence in our company's long term viability. But this is the least important as we are a start-up and will take projected costs whatever they may be to the investors.

2.2 Business Blueprint Derivation

2.2.1 Graphical Representation of Components and their Relations

2.2.2 Textual Representation of Components and their Relations

From the given domain, a set of components has been extracted. The section is dedicated to present a textual representation of the mapping between such components with data and functions, as well as the relations and dependencies between components.

2.2.2.1 Allocation of functions and data to components

Component	Data	Functions
Authenticator	User Credentials	authenticateAndAuthorize()
	User Email	updateUserCredentials()
		updateUserEmail()
Payment Handler	Credit Amount	payForAReservation()
		processTravelCredits()
		payForAReservationModification()
Reservation Handler	User Reservation List	reserveAFlight()
	Trip Reservation Details ¹	reviewAllReservations()
		reviewExistingReservationDetail()
		modifyExistingReservation()
		confirmReservationModification()
		cancelExistingReservation()
		selectMealForFlight()
		selectSeatForFlight()
		enterLuggageDetails()
User Handler	User ID	addPaymentDetails()
	User Profile Information ²	registerANewUser()
	Planner Information ³	viewUserProfile()
	Payment Information	editUserprofile()
		addATravelPlaner()
		listTravelPlanners()
		removeATravelPlanner()
Search Handler	Watched Routes	searchFlights()
		sortAndFilterFlightResults()
		selectAFlight()
		watchAGivenRoute()
		listWatchedRoutes()
		removeAWatchedRoute()

¹ Trip Reservation details has all the information in the reservation record including trip cost and shared recipients

² Profile Information is specified as a single data entity but excludes Email Address

³ Planner information is specified as a single data entity and includes name and email

Social Handler	Shared Reservation List	shareItinerary()
	Reservation Shared Recipients	addRecipientToSharedItinerary()

2.2.2.2 Function I/O Dependencies between Components

Components	Dependency
FROM: Authenticator TO: User Handler	 "addPaymentDetails" requires "authenticated user id" from "authenticateAndAuthorize" "viewUserProfile" requires "authenticated user id" from "authenticateAndAuthorize" "editUserProfile" requires "authenticated user id" from "authenticateAndAuthorize" "addATravelPlanner" requires "authenticated user id" from "authenticateAndAuthorize" "listTravelPlanners" requires "authenticated user id" from "authenticateAndAuthorize" "removeATravelPlanner" requires "authenticated user id" from "authenticateAndAuthorize"
FROM: User Handler TO: Authenticator	 "updateUserCredentials" requires user submitted "username" from "registerANewUser" "updateUserCredentials" requires user submitted "password" from "registerANewUser" "updateUserEmail" requires user submitted "email address" from "registerANewUser"
FROM: User Handler TO: Reservation Handler	 "reserveAFlight" requires data "User ID" which was allocated to component "User Handler" "reviewAllReservations" requires data "User ID" which was allocated to component "User Handler"
FROM: Reservation Handler TO: Social Handler	 "shareltinerary" requires data "Trip Reservation Details" which was allocated to component "Reservation Handler" "addRecipientToSharedItinerary" requires data "Trip Reservation Details" which was allocated to component "Reservation Handler"
FROM: User Handler TO: Search Handler	 "watchAGivenRoute" requires data "User ID" which was allocated to component "User Handler" "listAGivenRoute" requires data "User ID" which was allocated to component "User Handler" "removeAGivenRoute" requires data "User ID" which was allocated to component "User Handler"

FROM: Search Handler TO: Reservation Handler	"reserveAFlight" requires "flight details" from "selectAFlight"
FROM: Payment Handler TO: Reservation Handler	 "reserveAFlight" requires "paymentSuccess" from "payForAReservation" "confirmReservationModification" requires "paymentSuccess" from "payForAReservationModification" "cancelExistingReservation" requires data "Credit Amount" which was allocated to component "Payment Handler"
FROM: Reservation Handler TO: Payment Handler	 "payForAReservation" requires data "Trip Reservation Details" which was allocated to component "Reservation Handler" "payForAReservationModification" requires data "Trip Reservation Details" which was allocated to component "Reservation Handler" "processTravelCredits" requires data "Trip Reservation Details" which was allocated to component "Reservation Handler"
FROM: User Handler TO: Payment Handler	 "payForAReservation" requires data "Payment Information" which were allocated to component "User Handler" "payForAReservation" requires data "User ID" which were allocated to component "User Handler" "payForAReservationModification" requires data "Payment Information" which were allocated to component "User Handler" "payForAReservationModification" requires data "User ID" which were allocated to component "User Handler"

2.2.2.3 Function I/O Dependencies between Components and External Producers/Consumers

Components	Dependency
TO: Authenticator	"authenticateAndAuthorize" requires "Current or New Session ID" from external
FROM: Authenticator	 "authenticateAndAuthorize" sends "Session ID Update Timestamp" from external
TO: Search Handler	 "searchFlights" requires "Airport List" from external "searchFlights" requires "All Flights Schedules" from external "searchFlights" requires "Calendar database" from external

FROM: Search Handler	 "watchAGivenRoute" sends "Watched Routes Addition" to external "removeAGivenRoute" sends "Watched Routes Removal" to external
TO: Reservation Handler	"reserveAFlight" requires "Passenger Name Record (PNR)" from external
FROM: Reservation Handler	 "reserveAFlight" sends "Passenger Information" and "Itinerary details" for ticketing to external "confirmReservationModification" sends "Reservation Change Details" to external "cancelExistingReservation" sends "Reservation Code" to external "selectMealForFlight" sends "Meal Preferences" to external "selectSeatlForFlight" sends "Seat Choices" to external "enterLuggageDetails" sends "Baggage Details" to external
TO: Payment Handler	 "payForAReservation" requires "Authorization Code" from external "payForAReservationModification" requires "Authorization Code" from external "processTravelCredits" requires "Confirmed Refund Amount" from external
FROM: Payment Handler	 "payForAReservation" sends "Payment Authorization Request" to external "payForAReservationModification" sends "Payment Authorization Request" to external

2.2.2.4 Function I/O Satisfied within the Same Component

Components	Dependency
WITHIN: Authenticator	 "authenticateAndAuthorize" references data "User Credentials" allocated to "Authenticator" "updateUserCredentials" references data "User Credentials" allocated to "Authenticator" "updateUserEmail" references data "User Email" allocated to "Authenticator"
WITHIN: Payment Handler	"processTravelCredits" references data "Credit Amount" allocated to "Authenticator"

WITHIN: Reservation Handler	 "reserveAFlight" references data "User reservation List" allocated to "Reservation Handler" "reserveAFlight" references data "Trip Reservation Details" allocated to "Reservation Handler" "reviewAllReservations" references data "User reservation List" allocated to "Reservation Handler" "reviewExistingReservationDetail" references data "Trip Reservation Details" allocated to "Reservation Handler" "modifyExistingReservation" references data "Trip Reservation Details" allocated to "Reservation Handler" "cancelExistingReservation" references data "Trip Reservation Details" allocated to "Reservation Handler" "selectMealForFlight" references data "Trip Reservation Details" allocated to "Reservation Handler" "selectSeatForFlight" references data "Trip Reservation Details" allocated to "Reservation Handler" "enterLuggageDetails" references data "Trip Reservation Details" allocated to "Reservation Handler"
WITHIN: User Handler	 "addPaymentDetails" references data "User ID" allocated to "User Handler" "viewUserProfile" references data "User ID" allocated to "User Handler" "editUserProfile" references data "User ID" allocated to "User Handler" "addATravelPlanner" references data "User ID" allocated to "User Handler" "listTravelPlanners" references data "User ID" allocated to "User Handler" "removeATravelPlanner" references data "User ID" allocated to "User Handler" "addPaymentDetails" references data "Payment Information" allocated to "User Handler" "registerANewUser" references data "User Profile Information" allocated to "User Handler" "viewUserProfile" references data "User Profile Information" allocated to "User Handler" "editUserProfile" references data "User Profile Information" allocated to "User Handler" "addATravelPlanner" references data "Planner Information" allocated to "User Handler" "addATravelPlanner" references data "Planner Information" allocated to "User Handler" "istTravelPlanners" references data "Planner Information" allocated to "User Handler" "IstTravelPlanners" references data "Planner Information" allocated to "User Handler" "removeATravelPlanner" references data "Planner Information" allocated to "User Handler" "removeATravelPlanner" references data "Planner Information" allocated to "User Handler"

WITHIN: Search Handler	 "watchAGivenRoute" references data "Watched Routes" allocated to "Search Handler" "listWatchedRoutes" references data "Watched Routes" allocated to "Search Handler" "removeAGivenRoute" references data "Watched Routes" allocated to "Search Handler"
WITHIN: Social Handler	 "shareltinerary" references data "Shared Reservation List" allocated to "Social Handler" "shareltinerary" references data "Reservation Shared Recipients" allocated to "Social Handler" "addRecipientToSharedItinerary" references data "Reservation Shared Recipients" allocated to "Social Handler"

2.3 Derivation Plan and Rationale

2.3.1 Derivation Plan

The following table represents all prioritized constraints and the heuristic(s) that can be implemented to achieve needs of the stakeholders. Note that greyed-out (strike-through) heuristics have been eliminated from the derivation as they have been found in direct conflict to a heuristic strategy with a higher priority (for more details, see point 2.3.2).

Prior	ity Heuristic	Reason	Priority Justification
1. Av	ailability		
1.1	BB Heuristic: Group based on Architectural Style – Client/Server based on Functions	Why: The client/server architecture has a proven record for highly available and high performance applications. The intent here is to allow grouping of functions that need to be highly available into one or two components	Isolating highly available functions into one component allows for scaling to increase availability when load increases or to provide more resiliency.
2. Usability			
2.1	BB Heuristic: Group based on Task Similarity (Similar combination of data and events)	Why: The intent is to allow user to access similar function with minimum user input. With the same input/output data, multiple functions can be executed	User does not have to renter data or perform similar actions again and again

2.2	BB Heuristic: Group based	Why: The intent is to allow	User can stay within a
2.2	on Similar Capabilities	user to access similar function	component while performing
	(performer roles)	associated with the roles they	actions (functions) associated
	(periormer roles)	are performing. With the same	with that role. 2.1 takes
		input/output data, multiple	precedence when there is a
			1
		functions associated with the	tie.
		performing role can be	
2 Doi	 rformance	executed	
3.1	BB Heuristic: Group based	Why: The intent is to collocate	Increasing number of users
3.1	on Data Usage Frequency	data with the functions that	should not adversely impact
	on Data Osage Trequency	update it to minimize	performance.
		performance overhead by	performance.
		1 -	
3.2	DD Hauristia Daduca	going outside a component	Most of the data avelages
5.2	BB Heuristic: Reduce	Why: Reducing inputs and	Most of the data exchanged
	Data/Event Dependency	outputs sent across	pertain to the reservation
	(reduce component-to-	component boundaries may	record details. 3.1 should take
	component coupling from	reduce (i) the likelihood of	precedence during a tie.
	inputs/outputs)	communication bottlenecks	
		and (ii) the need for inter-	
		component communication	
		channels (most likely slower	
		than intra-component	
		communication)	
3.3	BB Heuristic: Reduce Class	Why: The intent is to divide the	Created smaller components
	Complexity – Size (reduce	number of the complex	that are easier to refactor or
	number of functions in a	functions into the components.	repurpose. But it conflicts
	component)	So it is easy to extend	with the goal of 3.2 and
		component with less	should have lower
		dependencies.	precedence.
4. Sec	• • • • • • • • • • • • • • • • • • •		
4.1	BB Heuristic: Store	Why: The intent is to store	Data can be protected from
	Encrypted Data	payment details in encrypted	unexpected and unauthorized
		form so it cannot be read	exposure as required for
		without using proper	compliance with Payment
		decryption method.	Card Industry Data Security
			Standard (PCI DSS).
4.2	BB Heuristic: Validate User	Why: Validating user access	System will be secure from
	Access	ensures that only authorized	the unauthorized users.
		users can access the system.	
		Reservations, Personal	
		Information, or Payment	
		details should not be	
		inadvertently exposed.	
5. Sca	alability		

5.1	BB Heuristic: Group based on Data Usage Frequency BB Heuristic: Group based	Why: Grouping based on data usage frequency will ensure minimal performance impact when the system is scaled up Why: Grouping based on task	Increasing number of users should not adversely impact performance. Increasing number of users
5.2	on Task Usage Frequency	usage frequency will ensure	should not adversely impact
	on rask osage rrequency	minimal performance impact	performance. During conflict,
		when the system is scaled up	5.1 takes precedence.
6. Ext	ensibility	,	·
6.1	BB Heuristic: Reduce	Why: Reducing inputs and	Most of the data exchanged
	Data/Event Dependency	outputs sent across	pertain to the reservation
	(reduce component-to-	component boundaries allows	record details and User ID. 6.1
	component coupling from	for individual component	should take precedence
	inputs/outputs)	extensibility.	during a tie.
6.2	BB Heuristic: Reduce Class	Why: The intent is to divide the	Created smaller components
	Complexity – Size (reduce	number of the complex	that are easier to refactor or
	number of functions in a	functions into the components.	repurpose. But it conflicts
	component)	So it is easy to extend	with the goal of 6.1 and
		component with less	should have lower
		dependencies.	precedence.
	ta backup and recovery BB Heuristic: Plan and	T	1.6
7.1	Validate infrastructure	Why: Planning and validating infrastructure also includes definition of backup and recovery procedures	User personal information and payment details need to be protected.
8. Ma	intainability		
8.1	BB Heuristic: Reduce Data/Event Dependency (reduce component-to- component coupling from inputs/outputs)	Why: When there is less dependency between components, any fix or enhancement can be done at individual component. It reduces the risk of breaking other components.	It makes bug fixes and enhancements easy. It drives down system cost and requires less time resources.
8.2	BB Heuristic: Reduce Class Complexity – Size (reduce number of functions in a component)	Why: The intent is to reduce the number of the functions in the class. So it is easy to find and fix the bug in simpler component.	While a worthwhile objective, this should not be emphasized at the expense of 8.1.
	pject Schedule		
9.1	BB Heuristic: Reduce Data/Event Dependency (reduce component-to- component coupling from inputs/outputs)	Why: When there is less dependency between components, individual components are easier to implement.	Helps you stay on track and adhere to a proposed schedule.
10. Pi	roject Cost		

10.1	BB Heuristic: Reduce	Why: Having less dependency	
	Data/Event Dependency	between components, makes	
	(reduce component-to-	implementation easier and	
	component coupling from	keeps cost down. It also	
	inputs/outputs)	reduces the risk of breaking	
		other components.	

2.3.2 Potential Conflicts and Impact on Derivation Plan

Heuristic	Potential Conflict	Possible Relocation
Group based on Similar	Conflicts with Group based on	Emphasize Group based on Task
Capabilities (performer roles)	Task Similarity (2.1) as the	Similarity.
(2.2)	heuristic leads to potentially	
	one or two very complex	
	components that map to	
	performer roles	
Reduce Class Complexity – Size	Conflicts with Reduce	Emphasize Reduce Data/Event
(3.3, 6.2, 8.2)	Data/Event Dependency (3.2,	Dependency given its usage in
	6.1, 8.1, 9.1 and 10.1) as the	Goal #3, 6, 8, 9, and 10.
	heuristic leads to a higher	
	number of less complex but	
	smaller components that	
	promote	
Group based on Task Usage	May conflict with Reduce	Emphasize Reduce Data/Event
Frequency (5.2)	Data/Event Dependency (3.2,	Dependency given its usage in
	6.1, 8.1, 9.1 and 10.1) because	Goal #3, 6, 8, 9, and 10.
	the heuristic may attempt to	Cohesion needs to be achieved
	collect functions into larger	at an optimum level.
	components.	

2.4 Evaluate Business Blueprint Structure

2.4.1 Coupling and Cohesion Metrics

2.4.1.1 Number of Inputs/Outputs between components

Component	# Data/Events In	# Data/Events Out	Total
Authenticator	3	6	9
User Handler	6	7	13
Payment Handler	7	3	10
Reservation Handler	6	5	11
Search Handler	2	1	3

Social Handler 2 0 2

2.4.1.2 Number of dependencies between components

Component	# Components to which this component sends or from which this component receives data/events
Authenticator	1
User Handler	4
Payment Handler	2
Reservation Handler	4
Search Handler	2
Social Handler	1

2.4.1.3 Degree of Cohesion

Component	# Functions	# Functions that receive all inputs and send all outputs within component (not counting external)	% Functions that receive all inputs and send all outputs within component (not counting external)
Authenticator	3	0	0%
User Handler	7	1	14%
Payment Handler	3	0	
Reservation Handler	9	6	66%
Search Handler	6	2	33%
Social Handler	2	0	0%

2.4.2 Size and Complexity Metrics

2.4.2.1 Number of functions allocated to a component

Component	# Functions Allocated
Authenticator	3
User Handler	7
Payment Handler	3
Reservation Handler	9
Search Handler	6
Social Handler	2

2.4.2.2 Number of data elements allocated to a component

Component	# Data Elements Allocated
Authenticator	2
User Handler	1
Payment Handler	2
Reservation Handler	4
Search Handler	1
Social Handler	2

2.4.2.3 Number of components in the blueprint

# Components in Blueprint	
6	

2.4.2.4 Component Complexity

Component	# Functions	# Data Elements	# Inputs and Outputs (across all functions)	Complexity
Authenticator	3	2	14	19
User Handler	7	1	32	40
Payment	3	2	14	19
Handler				
Reservation	9	4	27	40
Handler				
Search Handler	6	1	9	22
Social Handler	2	2	5	9

2.4.3 Support for Applied Heuristic

Heuristic "Reduce Data/Event Dependency (reduce component-to-component coupling from inputs/outputs)" was selected to help achieve the goals of performance, extensibility, maintainability and to a lesser extent schedule and cost. Considering performance in particular, high value of Data/Event Dependency will result in frequent communication between components in terms of input and output. That will make system slower. In terms of maintainability, high Data/Event Dependency can make bug fix or enhancement more difficult. To accommodate one change we may have to change more than one component and that can increase risk of breaking other components. Same applies to extensibility, extending one component is easy if there is not much dependency. Having low degree of cohesion indicates that the functions will definitely require frequent communication with other components, thereby increasing the latency and interface complexity in the design. It is possible this could eventually impact on overall performance of the system.