Tarea # 3 (Conjunto Cerrados y Funciones Continuas)

David Cardozo

18 de febrero de 2015

1. Suponga que para cada $n \in \mathbb{N}$ tenemos un espacio topológico (X_n, τ_n) , metrizable. Muestre que $\prod_{n \in \mathbb{N}} X_n$ con la topología producto es metrizable.

Antes de comenzar con una demostración, pongamos en concreto unos lemas importantes.

Lema 1. Suponga d es una métrica en un espacio arbitrario X. Si tenemos una función $f:[0,\infty)\to [0,\infty)$ que cumple con las características: f es estrictamente creciente, f es una función cóncava y f(0)=0, entonces d' definido por $d'=f\circ d$ es también una métrica en X

Demostración Es claro que para dos puntos $x,y \in X$, $d'(x,y) \geq 0$, en particular si dos puntos son iguales, la métrica $d(x,y) = 0 \iff x = y$ y con la hipótesis, f(0) = 0 implica que d' tiene la propiedad de los indiscernibles. También es claro que d' es simétrica, entonces ya tenemos d' es una pseudométrica.

Ahora suponga $x,y,z\in X$ son arbitrarios miembros. Como d es una métrica, tenemos por desigualdad triangular:

$$d(x,z) \le d(x,y) + d(y,z)$$

Usando a propiedad de que f es una función monotonica (i.e. estrictamente creciente), se sigue que:

$$d'(x,z) = f(d(x,z)) \le f(d(x,y) + d(y,z)$$
 (1)

Ahora utilizando la hipótesis que f es una función cóncava, i.e. para $c \in [0,1]$ $f(cx + (1-cy)) \le cf(x) + (1-c)f(y)$, y utilizando el hecho que f(0) = 0, tenemos que para a > 0 y t > 0

$$\frac{f(a+t) - f(a)}{(a+t) - a} \le \frac{f(t) - f(0)}{t - 0} \implies f(a+t) - f(a \le f(t))$$

De manera sugestiva,

$$f(a+t) \le f(a) + f(t)$$

Sean a = d(x, y) y t = d(y, z) en la desigualdad (1), obtenemos

$$d'(x,z) \le f(d(x,y) + d(y,z)) \le f(d(x,y)) + f(d(y,z)) = d'(x,y) + d'(y,z).$$

Concluimos entonces que como $x,y,z\in X$ eran arbitrarios. Concluimos d' es una métrica en X.

Ahora ya teniendo este soporte, procedemos a probar un teorema:

Teorema 1. Suponga que (X_k, d_k) , $k \in \mathbb{Z}_+$ es una colección contable de espacios métricos, entonces la topologia en $X = \prod_{k \in \mathbb{Z}_+} X_k$ es generada por la métrica definida por:

$$d(x,y) = \sum_{k=1}^{\infty} \frac{2^{-k} d_k(x_k, y_k)}{1 + d_k(x_k, y_k)}$$
(2)

 $\begin{array}{l} \textit{Demostraci\'on} \; \text{Aplicando el lema anterior, tomando como } f \; \text{la funci\'on} \; f(x) = \frac{x}{1+x}, \; \text{esta nos muestra que para cada} \; k \in \mathbb{Z}_+, \; 2^{-k}(f \circ d_k) \; \text{define una m\'etrica en} \; X_k. \; \text{Por lo tanto, tenemos que } d \; \text{es una m\'etrica en el producto} \; X = \prod_{k \in \mathbb{Z}_+} X_k \; \text{Ahora denote por } \tau \; \text{la topolog\'ia producto en} \; X, \; \text{y denote por } \tau_d \; \text{la topolog\'ia} \; \text{en} \; X \; \text{generada por la m\'etrica} \; d. \; \text{Queremos ver} \; \tau_d \supseteq \tau \; \text{y} \; \tau \supseteq \tau_d \end{array}$

Suponga que $U = \prod_{k \in \mathbb{Z}_+} U_k$ es un básico en la topología τ del producto, considere $z \in U$, obsérvese, que existe un conjunto finito I, tal que $I \subseteq \mathbb{Z}_+$ para el cual $\forall k \in \mathbb{Z}_+ - I$, $U_k = X_k$. Observar, que para cada $k \in I$ existe un $\epsilon_k > 0$ tal que (las bolas abiertas) $B_{\epsilon}(k) = \{y \in X_k | d_k(y, z_k) < \epsilon_k\} \subseteq U_k$. I es finito, podemos definir (y es mayor que cero) $\epsilon = \min \{2^{-k} f(\epsilon_k) | k \in I\}$. Ahora, verifiquemos que la bola abierta $B_{\epsilon}(z) = \{y \in X | d(z, y) < \epsilon\}$ esta contenida en U; para ello, suponga $y \in X$ tal que $d(z, y) < \epsilon$, entonces $\forall k \in \mathbb{Z}_+$ y para cualquier $k \in I$, tenemos que $2^{-k}(f \circ d_k)(y_k, z_k) < \epsilon$, en otras palabras, $d_k(y_k, z_k) < f^{-1}(2^k 2^{-k} f(\epsilon_k)) = \epsilon_k$. Por lo tanto concluimos que para $k \in \mathbb{Z}_+, y_k \in B_k$ esta contenido en U_k y por lo tanto $B \subseteq U$ y como fueron arbitrarias, $\tau_d \supseteq \tau$.

Por el otro lado, suponga que $z \in X$, $\epsilon > 0$ y $B_{\epsilon}(z) = \{y \in X | d(z,y) < \epsilon\}$ es un básico abierto, ahora por propiedad arquimediana escoja un $Z \in \mathbb{Z}_+$ tal que $2^{-Z} < \frac{\epsilon}{3}$ y defina $U_k = \{y \in X_k | d_k(y,z) < \frac{\epsilon}{2Z}\}$. Para k > Z defina $U_k = X_k$, entonces observamos que $U = \prod_{k \in \mathbb{Z}_+} U_k$ es un básico en la topología τ en X (la producto).

Por ultimo, queremos ver $U \subseteq B$, suponga $y \in U$ vemos que:

$$d(z,y) = \sum_{k=1}^{Z} 2^{-k} \frac{d_k(z_k, y_k)}{1 + d_k(z_k, y_k)} + \sum_{k=Z+1}^{\infty} \frac{2^{-k} d_k(z_k, y_k)}{1 + d_k(z_k, y_k)}$$

$$\leq \sum_{k=1}^{Z} d_k(z_k, y_k) + \sum_{k=Z+1}^{\infty} 2^{-k} \leq \sum_{k=1}^{Z} \frac{\epsilon}{2N} + 2^{-N} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

 ${\bf 2.}$ Sea (X,d) un espacio métrico separable. Muestre que X es homeomorfo a un subespacio de R^ω

Solución

Para esto demostraremos el siguiente teorema:

Teorema 2. Sea (X,d) un espacio métrico separable, i.e existe $A\subseteq X$ enumerable tal que $\bar{A}=X$. Entonces muestre que X es homeomorfo a un espacio de $\mathbb{R}^{[\omega]}$

Demostración Usando la ayuda proporcionada, A enumerable, considere $\{a_n \in A | n \in \omega\}$, y la función $f: X \to \mathbb{R}^\omega$ caracterizada por $f(x \in X) = d(x_n)_{n \in \omega}$, queremos ver que f es un homomorfismo.

Proposición 1. f es sobre, sobre su imagen "juego de palabras intencionado"