# Study of cosmic-ray spectrum using $\gamma$ -ray data from *Fermi* Large Area Telescope (*Fermi*-LAT)

#### Patomporn Payoungkhamdee

Mahidol University patomporn.pay@gmail.com

15 July 2018

#### Overview

- Introduction
  - Background
  - Objectives
  - Schematics of limb  $\gamma$ -ray production
- 2 Flux extraction
  - Data set
  - Calculation
- Analysis
  - Power law spectrum
  - ullet Kachelrieeta and Ostapchenko model
  - Optimization
- Results
- Summary
- 6 Reference



## What are cosmic rays



Figure: Cosmic ray feature : retrieved from universe-review.ca

- A high-energey particles that travelling through space
- Criteria: When we call flux it means differential flux
- Feature : CRs spectrum in rigidity follow power law
- Discontinuity in spectrum came from superposition of different acceleration mechanism



#### Trend in cosmic ray research

In 2015, the AMS collaboration claims that there is a broken in cosmic ray proton spectrum around 336 GV.



Figure: Cosmic rays proton flux: retrieved from M. Aguilar et al. (2015)

Objectives

## Objective

- ullet Want to measure cosmic ray proton spectrum in range GV by using  $\gamma$ -ray data from Fermi-LAT through Kachelrieeta and Ostapchenko model
- Some intruments claim that cosmic ray proton spectrum has discontinuity around 200-350 GV, then if our result agree with other intruments. Space might have another acceleration mechanism that people did not know very well.

Schematics of limb  $\gamma$ -ray production

## Schematics of limb $\gamma$ -ray production



#### Data selection

- P8R2\_ULTRACLEANVETO\_V6 data from 07/08/2008 to 28/01/2015 ( $\sim$ 7 years)
- Collect photon energy range from 10 GeV up to 1 TeV
- $\theta_{NADIR} \in 68.4^{\circ}$   $70^{\circ}$  (Earth's limb)
- Use  $\theta_{\rm LAT} < 70^{\circ}$

- Make 2D histogram as much as energy bin that we want
- Select photon data and fill in the 2D histogram
- Calculate exposure maps which incldue effective area and time that LAT view can looking at Earth's limb

$$\mathsf{Flux} = \frac{dF}{dE} = \frac{\int_{\mathsf{Limb \ region}(\mathsf{Count \ map/Exposure \ map})}}{\Delta \Omega \Delta E}$$

- Divide every single grid of couple histogram (count map and exposure map)
- Sum over limb region of this map then divided by solidangle and energy bin width
- **6** Now we got  $\gamma$ -ray flux

## $\gamma$ -ray spectrum from measurement



Notice that error bar came from statistics error and the red band already take into account instrument error

## Power law (in rigidity)

Typically, cosmic ray spectrum follow power law in rigidity as Single power law (SPL)

$$\frac{dN}{dR} = R_0 R^{-\gamma} \tag{1}$$

Broken power law (BPL)

$$\frac{dN}{dR} = \begin{cases} R_0 R^{-\gamma_1} : E < E_{\text{Break}} \\ R_0 [R(E_{\text{Break}})]^{\gamma_2 - \gamma_1} R^{-\gamma_2} : E \ge E_{\text{Break}} \end{cases}$$
(2)

Note for someone who not familiar with rigidity : it just defined by  $R \equiv P/q$  when P,q is a momentum and charge of particle

Is the model which can compute spectrum of  $\gamma\text{-ray}$  from a known incident proton

$$\frac{dN_{\gamma}}{dE} \propto \sum_{E_{\text{inc,i}}} \left[ \frac{E_{\text{inc,i}}}{E_{\gamma,i}} \Delta(E_{\text{inc,i}}) \right] \left[ f_{pp} \frac{dN_{\text{H}}}{dE_{\text{inc,i}}} \left\{ 1 + \frac{\sigma_{\text{HeN}}}{\sigma pN} \left( \frac{dN_{\text{H}}}{dR} \right)^{-1} \frac{dN_{\text{He}}}{dR} \frac{dR_{\text{He}}}{dR} \right\} \right]$$
(3)

- Red color terms is using for incident proton spectrum
- Use helium spectrum from AMS-02 measurement (2015)
- $f_{pp} \equiv E_{\gamma} (d\sigma^{pp \to \gamma}/dE_{\gamma})$  is a table in K&O model which behave like a scattering amplitude that depend on the energy of incident particle
- Crossection  $\sigma_{\rm HeN}/\sigma_{pN}$  at high energy (> 10GeV) is almost remain constant ( $\approx$  1.6)

#### Poisson likelihood function

Optimization

On the previous slide, we want to find the incident proton. Let define some loss function to compare model and measurement

$$\mathcal{L} = \prod_{i=1}^{N} P_{\text{pois}}(n_{\text{i,model}}, n_{\text{i,measurement}})$$
 (4)

For numerically convenient, redefined into logarithmic form

$$\log \mathcal{L} \equiv \sum_{i=1}^{N} -\log P_{\text{pois}}(n_{\text{i,model}}, n_{\text{i,measurement}})$$
 (5)

This part is the hard work of computer to find best incident cosmic ray proton that match the spectrum from measurement.

## Algorithm



Figure: Flow chart of optimization process

#### Results

| Best fits | $\gamma_1$            | $\gamma_2$            | $E_{Break}$ (GeV)  |
|-----------|-----------------------|-----------------------|--------------------|
|           | $2.68 \pm 0.01(0.03)$ | -                     | -                  |
| BPL       | $2.84 \pm 0.04(0.06)$ | $2.64 \pm 0.04(0.17)$ | $328 \pm 151(267)$ |

Table: Optimization results

• Likelihood Ratio Test (LRT)  $\Rightarrow$  BPL better than SPL with a significant level of  $3.3\sigma$ 

Where  $1\sigma$  of systematic error and total error (take into account instrumental error) was shown in the table consequently. Notice that error of parameters came from Monte Carlo Simulation

#### $\gamma$ -ray spectrum



#### Proton spectrum





#### Conclusion

- We found an energy break point around 328 GeV with a significant level of  $3.3\sigma$  which agree with other measurement
- Put weight on the previous study [M. Ackermann et al. (2014)] that we could take a benefit of brightness  $\gamma$ -ray from Earths high atmosphere to indirectly observe cosmic ray spectrum which cause it's luminosity

#### References

- [1] O. Adriani et al., Science 332, 69 (2011) [2] M. Ackermann et al. (Fermi LAT Collaboration), Phys. Rev. Lett. 112, 151103
- [3] Kachelriess & Ostapchenko, Phys. Rev. D 86
- [4] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett. 115, 211101
- [5] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett. 114, 171103
- [6] L. Lyons, Statistics for nuclear and particle physicists

## Acknowledgement

- Dr. Warit Mitthumsiri Mahidol University, Thailand
- Dr. Francesca Spada University of Pisa, Italy
- People in the Space Physics laboratory at Mahidol University and the Fermi lab at the University of Pisa
- Development and Promotion of Science and Technology Talents Project (DPST)
- Partially supported by the Thailand Research Fund Award RTA5980003

## Backup slide

## Power law in energy

In our case, we use power in energy then we need to convert by relativistic energy-mass relation

#### Single power law (SPL)

$$\frac{dN}{dE} = N_0 [E_k (E_k + 2m_p)]^{-\gamma/2} \left( \frac{E_k + m_p}{\sqrt{E_k (E_k + 2m_p)}} \right)$$
 (6)

#### Broken power law (BPL)

Broken power law (BPL) 
$$\frac{dN}{dE} = \begin{cases} N_0 [E_k(E_k + 2m_p)]^{-\gamma_1/2} \left( \frac{E_k + m_p}{\sqrt{E_k(E_k + 2m_p)}} \right) : E < E_{\text{Break}} \\ N_0 [E_b(E_b + 2m_p)]^{(\gamma_2 - \gamma_1)/2} [E_k(E_k + 2m_p)]^{-\gamma_2/2} \left( \frac{E_k + m_p}{\sqrt{E_k(E_k + 2m_p)}} \right) \\ : E \ge E_{\text{Break}} \end{cases}$$

#### Error determination

#### Statictical error (Random error)

- Get back to raw count and random new count in each energy bin by Poisson random function
- Recalculate proton spectrum
- Optimize it and store the parameter that we got
- do it over thoundsand time and fill in histogram to interpret error by saying sigma of gaussian function

#### Total error (take into account instrument)

- Get back to raw count and random new count in each energy bin by Poisson random function
- Random value we got again by systematic error (Apparatus)
- Recalculate proton spectrum
- Optimize it and store the parameter that we got
- o do it over thoundsand time and fill in histogram to interpret error by saying sigma of gaussian function

#### Monte Carlo Simulation



Figure: Statictical error determination

#### Monte Carlo Simulation





## Single power law (SPL)



## Broken power law (BPL)



## Count map



#### Exposure map



## Flux map

