GÉNIE LOGICIEL ORIENTÉ OBJET (GLO-2004) ANALYSE ET CONCEPTION DES SYSTÈMES ORIENTÉS OBJETS (IFT-2007)

Automne 2016

Module 03 – Phase de conceptualisation / inception et modèle des cas d'utilisation

Martin.Savoie@ift.ulaval.ca

B. ing, Chargé de cours, département d'informatique et de génie logiciel

Question sur la matière du derniers cours?

Cours d'aujourd'hui

Phase de conceptualisation / inception

Phase de conceptualisation / inception

But:

- Établir une définition du projet, les objectifs
- Établir la faisabilité
- Décider si on doit pousser plus loin (décider si on va réaliser le projet)

Autrement dit:

- Identifier le besoin
- Rédiger un document décrivant la vision du projet / modèle d'affaires
- Déterminer si le projet est-il réalisable
- Peut-on acheter le système plutôt que le construire?
- Estimer grossièrement les coûts
- Échéancier approximatif
- Go/no Go

Artefacts de la phase de conceptualisation/inception

Discipline	Artifact	Incep.	Elab.	Const.	Trans.
	Iteration	11	EL.En	CL.Cn	T1T2
Business Modeling	Domain Model		S		
Requirements	Use-Case Model	.S	r		
9	Vision	S	r		
3	Supplementary Specification	S	r		
	Glossary	S	r		
Design Model SW			SS	rr	
300.00	Architecture Document Data		S		
	Model				
Implementation	Implementation Model (code)		S	r	r
1	· •			3	3

S: start

R: refine

	Activités (appelées disciplines dans le Processus Unifié)	Principaux modèles et artefacts générés
	Modélisation domaine d'affaires / Business modeling / Modélisation métier	Modèle du domaine: (1) diagramme de classe « conceptuel », (2) parfois un diagramme d'activités
Analyse	Analyse des besoins / Exigences / Requirements	(3) Énoncé de vision
		Modèle de cas d'utilisation / Use-case model : (4) diagramme des cas d'utilisation, (5) texte des cas d'utilisation, (6) diagramme de séquence système
		(7) Spécifications supplémentaires
		(8) Glossaire
	Design / Conception	Modèle de conception / Design model : (9) diagrammes de classes, (10) diagrammes d'interaction, (11) tout autre diagramme UML pertinent selon le contexte
	Implémentation	(12) Code

Les artefacts dont nous produisons une première version dans la phase de conceptualisation/inception

- Énoncé de vision
 - Description de haut niveau du projet, des objectifs, etc..
- Modèle des cas d'utilisation
 - Description des besoins en termes de "fonctionnalités"
- Spécifications supplémentaires
 - Autres besoins (non fonctionnels)
- Glossaire
 - Définition de la terminologie de base du domaine
- Plan sommaire du projet

Autres choses à faire dans la phase de conceptualisation / inception

- Budget
- Plan sommaire du projet
 - Évaluer la durée des phases / itérations
 - Ressources nécessaires
 - Besoins en formation
- Plan détaillé de la prochaine itération (première itération de la phase d'élaboration)
- Principaux facteurs de risque et stratégies de gestion du risque
- Prototypes / preuve de concept (si nécessaire)

Besoins / requirements

 Besoins: Conditions auxquelles un système (ou projet) doit satisfaire

Besoins fonctionnels

- Fonctionnalités
- Répertoriées et décrites dans le modèle des cas d'utilisation
- Besoins non fonctionnels (« URPS »)
 - Usability (Help, documentation, ...), Reliability (Frequency of failure, recoverability, ...), Performance (Response times, availability, ...), Supportability (Adaptability, maintainability, ...)
- Rappel: le processus unifié suppose une notion évolutive des besoins

Représenter les besoins fonctionnels à l'aide du diagramme des cas d'utilisation

primary actors on the left

supporting actors on the right

Représenter les besoins fonctionnels à l'aide du diagramme des cas d'utilisation

Identifier les acteurs

 Se poser les questions suivantes pour la détermination des acteurs :

Acteurs primaires

- Qui va utiliser la fonctionnalité principale du système ?
- Qui aura besoin du système pour réaliser les tâches qui lui sont dédiées ?

Acteurs secondaires

- Qui est intéressé par les résultats retournés par le système ?
- Qui aura besoin de maintenir, administrer et laisser le système fonctionner ?

Systèmes externes

- Quels sont les moyens physiques dont le système a besoin pour faire les traitements ? (systèmes externes)
- Avec quels systèmes le système interagit ? (systèmes initiant le contact avec le système et systèmes contactés par celui-ci)

Les cas d'utilisation / use-case

- Un use-case est une fonctionnalité complète telle que perçue par un acteur
- Il représente une séquence d'actions que le système exécute en réponse à une activation venant d'un acteur par exemple
- Sur le schéma, un use-case est connecté à un acteur par une association de communication

Identifier les cas d'utilisation...

- Pour chaque acteur (primaires et secondaires), identifier ses buts (on suppose qu'une fonctionnalité du système est liée à chacun de ces buts)
- Définir un "cas d'utilisation" pour chacun de ces buts
- Réfléchir aux frontières du système
- Identifier les composantes / acteurs externes

Identifier les cas d'utilisation... pertinents

Répondant à un but d'un utilisateur

 Permettant à l'utilisateur d'accomplir une tâche quelque chose ayant de la valeur dans le contexte de l'entreprise ("test du patron")

Exemple Système POS NexGen (livre)

Exemple Système POS NexGen (livre)

Exemple ridicule!

Relation d'inclusion (ou d'utilisation): « include »

- Lorsque plusieurs use-cases possèdent un comportement commun, ce dernier peut être modélisé dans un seul use-case qui sera utilisé par tous les autres use-cases
- La relation « include » permet de définir des comportements partageables entre plusieurs use-cases
- Lorsqu'un use-case utilise un autre use-case, cette utilisation est quasi-obligatoire pour que le use-case source réalise son travail

Exemple – NextGen POS

Relation d'extension: « extend »

- C'est une relation qui indique qu'un use-case peut étendre un autre use-case en y ajoutant de nouvelles actions
- Le use-case source ajoute son comportement au use-case destination
- Le use-case destination peut cependant être utilisé seul

Exemple – NextGen POS

UML notation:

- 1. The extending use case points to the base use case.
- 2. The condition and extension point can be shown on the line.

Relations entre les cas d'utilisation

- <<include>> : un cas comprends explicitement le comportement d'un autre cas à un endroit spécifié dans le texte du cas de base. Le cas qui est inclus peut aussi être exécuté de manière autonome.
- <extend>> : Le cas de base (le cas « étendu ») peut être utilisé de manière autonome, mais dans certaines circonstances son comportement est étendu par un autre cas. Le cas « étendant » ne peut généralement pas être exécuté de manière autonome.
- Héritage: définir une version modifiée d'un cas d'utilisation.

Exemple « extend » et « include »

Exemple – Guichet automatique

Exemple – Guichet automatique

Diagramme des cas d'utilisation

Cas d'utilisation

- Diagramme des cas d'utilisation: identifie les cas d'utilisation et les place dans un contexte
- Chaque bulle dans le diagramme identifie/nomme/réfère à un cas d'utilisation
- Mais le cas d'utilisation est décrit par un texte « à part ».
- Ce texte peut décrire un ou plusieurs « scénarios » associés à ce use case.
 - Un scénario principal/primaire
 - Des scénarios alternatifs

Description du cas d'utilisation

- Possibilité de le décrire avec différents niveaux de détail:
 - Abrégé: simple paragraphe décrivant le scénario principal.
 - Informel: On décrit en plus les scénarios alternatifs.
 - Détaillé: On décrit en détail chaque scénario. On spécifie en plus les détenteurs d'intérêt, on en plus des préconditions et garantie de succès, etc.

Abrégé

Cas d'utilisation:	Effectuer un retrait
Acteur(s):	Client
Type:	Primaire
Description:	Un client se présente au guichet automatique, s'identifie, retire un montant d'argent et quitte avec son argent.

Détaillé

Cas d'utilisation:	Effectuer un retrait	
Système:	Guichet automatique	
Acteurs:	Client	
Parties prenantes et intérêts:	Client: Il désire repartir avec son argent. Gestionnaire de la banque: Il veut que le système enregistre la transaction.	
Préconditions:	Le client a un compte bancaire actif.	
Garanties en cas de succès:	Le client a reçu son argent et son compte a été débité.	
Scénario principal:	 Un client se présente au guichet automatique Il s'identifie. 	
Scénarios alternatifs:	•••	

Détaillé en version deux colonnes

- 1. Un client se présente au guichet
- Le client s'identifie
- 4. Le client choisit de faire un retrait.
- 6. Le client choisit le compte
- 8. Le client entre le montant à retirer.

- 3. Présentation des options
- 5. Sollicitation du compte à débiter
- 7. Sollicitation du montant du retrait.
- 9. Validation de la disponibilité des fonds.
- 10. Débite le compte
- 11. Remet l'argent
- 12. Le client prend l'argent et quitte.

Concepts avancés

• Un use-case peut être décrit par un diagramme d'activités (plutôt qu'un texte) Insérer pièces Exemple : Use-case: Acheter boisson Vérifier pièces Montrer choix boisson Montrer choix invalide Choisir boisson Client B. non valide B. valide Retourner boisson

