Priors and Latent Variables DD2421

Bob L. T. Sturm

Consider a dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$ of N independent and identically distributed observations where each \mathbf{x}_n is a p-dimensional real vector. Assume the random variable Y_n is distributed Laplacian with a mean $\boldsymbol{\beta}^T\mathbf{x}_n$ and known scale parameter b>0. In other words, $Y_n|\mathbf{x}_n, \boldsymbol{\beta} \sim \mathcal{L}(\boldsymbol{\beta}^T\mathbf{x}_n, b)$. Define the a priori distribution of the parameters $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)$ multivariate Gaussian with parameters mean $\mathbf{0}$ and variance $\sigma^2\mathbf{I}$.

Consider a dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$ of N independent and identically distributed observations where each \mathbf{x}_n is a p-dimensional real vector. Assume the random variable Y_n is distributed Laplacian with a mean $\boldsymbol{\beta}^T\mathbf{x}_n$ and known scale parameter b>0. In other words, $Y_n|\mathbf{x}_n, \boldsymbol{\beta}\sim\mathcal{L}(\boldsymbol{\beta}^T\mathbf{x}_n,b)$. Define the a priori distribution of the parameters $\boldsymbol{\beta}=(\beta_1,\beta_2,\dots,\beta_p)$ multivariate Gaussian with parameters mean $\mathbf{0}$ and variance $\sigma^2\mathbf{I}$.

•
$$Pr(y_n|\mathbf{x}_n, \boldsymbol{\beta}) = \frac{1}{2b} \exp\left[-\frac{|y_n - \mathbf{x}_n^T \boldsymbol{\beta}|}{b}\right]$$

$$\bullet \ P(\boldsymbol{\beta}) = \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

Derive the maximum likelihood (ML) estimate of β .

•
$$Pr(y_n|\mathbf{x}_n, \boldsymbol{\beta}) = \frac{1}{2b} \exp\left[-\frac{|y_n - \mathbf{x}_n^T \boldsymbol{\beta}|}{b}\right]$$

•
$$P(\boldsymbol{\beta}) = \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

The log-likelihood of the dataset is given by

$$\log Pr(\mathcal{D}|\boldsymbol{\beta}) = \sum_{n=1}^{N} \log Pr(y_n|\mathbf{x}_n, \boldsymbol{\beta})$$

The maximum likelihood estimate of β is defined

$$\beta_{\text{ML}} = \arg \max_{\beta} \log Pr(\mathcal{D}|\beta) = \arg \max_{\beta} \sum_{n=1}^{N} \log Pr(y_n|\mathbf{x}_n, \beta)$$
$$= \arg \max_{\beta} \sum_{n=1}^{N} \log \left(\frac{1}{2b} \exp\left[-\frac{|y_n - \mathbf{x}_n^T \beta|}{b}\right]\right)$$

$$\begin{split} \boldsymbol{\beta}_{\mathrm{ML}} &= \arg\max_{\boldsymbol{\beta}} \sum_{n=1}^{N} \log \left(\frac{1}{2b} \exp \left[-\frac{|y_n - \mathbf{x}_n^T \boldsymbol{\beta}|}{b} \right] \right) \\ &= \arg\max_{\boldsymbol{\beta}} \sum_{n=1}^{N} -\log(2b) - \frac{1}{b} |y_n - \mathbf{x}_n^T \boldsymbol{\beta}| \\ &= \arg\min_{\boldsymbol{\beta}} N \log(2b) + \frac{1}{b} \sum_{n=1}^{N} |y_n - \mathbf{x}_n^T \boldsymbol{\beta}| \\ &= \arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}^T \boldsymbol{\beta}\|_1 \\ \end{split}$$
 where $\mathbf{y} = (y_1, y_2, \dots, y_N)$ and $\mathbf{X} = [\mathbf{x}_1 | \mathbf{x}_2 | \dots | \mathbf{x}_N]$.

Which of the following statements is not true? (There may be more than one.)

- 1. As b increases and N remains constant, the ML estimate of $\boldsymbol{\beta}$ becomes poorer.
- 2. As N increases and b remains constant, the ML estimate of $\boldsymbol{\beta}$ becomes poorer.
- 3. As b decreases and N remains constant, the ML estimate of $\boldsymbol{\beta}$ becomes poorer.
- 4. As N decreases and b remains constant, the ML estimate of ${\boldsymbol \beta}$ becomes poorer.

$$Pr(y_n|\mathbf{x}_n, \boldsymbol{\beta}) = \frac{1}{2b} \exp\left[-\frac{|y_n - \mathbf{x}_n^T \boldsymbol{\beta}|}{b}\right]$$

Which of the following statements is not true? (There may be more than one.)

- 1. As b increases and N remains constant, the ML estimate of β becomes poorer.
- 2. As N increases and b remains constant, the ML estimate of ${\boldsymbol{\beta}}$ becomes poorer. \leftarrow
- 3. As b decreases and N remains constant, the ML estimate of ${\pmb \beta}$ becomes poorer. \leftarrow
- 4. As N decreases and b remains constant, the ML estimate of ${\cal B}$ becomes poorer.

$$Pr(y_n|\mathbf{x}_n, \boldsymbol{\beta}) = \frac{1}{2b} \exp\left[-\frac{|y_n - \mathbf{x}_n^T \boldsymbol{\beta}|}{b}\right]$$

Outline

- Incorporating Priors
 - Maximum a Posteriori Estimation
 - Bayesian Non-Parametric Methods
 - Model Selection and Occam's Razor
- Unsupervised Learning
 - Classification vs Clustering
 - Heuristic Example: K-means
 - Expectation Maximization

Outline

- Incorporating Priors
 - Maximum a Posteriori Estimation
 - Bayesian Non-Parametric Methods
 - Model Selection and Occam's Razor
- 2 Unsupervised Learning
 - Classification vs Clustering
 - Heuristic Example: K-means
 - Expectation Maximization

- ullet Recall: ML estimation chooses heta to maximize probability of \mathcal{D} .
- MAP estimation chooses the most likely θ given \mathcal{D} .

$$\theta_{\mathsf{MAP}} = \arg \max_{\theta} \frac{Pr(\theta|\mathcal{D})}{}$$

- Recall: ML estimation chooses θ to maximize probability of \mathcal{D} .
- MAP estimation chooses the most likely θ given \mathcal{D} .

$$\begin{array}{ll} \theta_{\mathsf{MAP}} & = & \arg\max_{\theta} \frac{Pr(\theta|\mathcal{D})}{} \\ & = & \arg\max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{}Pr(\mathcal{D})} \end{array}$$

- Recall: ML estimation chooses θ to maximize probability of \mathcal{D} .
- MAP estimation chooses the most likely θ given \mathcal{D} .

$$\begin{array}{ll} \theta_{\mathsf{MAP}} & = & \arg\max_{\theta} \frac{Pr(\theta|\mathcal{D})}{\theta} \\ & = & \arg\max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{Pr(\mathcal{D})} \\ & = & \arg\max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{\theta} \end{array}$$

- Recall: ML estimation chooses θ to maximize probability of \mathcal{D} .
- MAP estimation chooses the most likely θ given \mathcal{D} .

$$\theta_{\mathsf{MAP}} = \arg \max_{\theta} \frac{Pr(\theta|\mathcal{D})}{Pr(\mathcal{D}|\theta)}$$

$$= \arg \max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{Pr(\mathcal{D})}$$

$$= \arg \max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{Pr(\mathcal{D}|\theta)}$$

$$= \arg \max_{\theta} \left[\frac{Pr(\theta)}{Pr(\theta)} \prod_{n=1}^{N} Pr(x_n|\theta) \right]$$

- Recall: ML estimation chooses θ to maximize probability of \mathcal{D} .
- MAP estimation chooses the most likely θ given \mathcal{D} .

$$\theta_{\mathsf{MAP}} = \arg \max_{\theta} \frac{Pr(\theta|\mathcal{D})}{Pr(\mathcal{D}|\theta)}$$

$$= \arg \max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{Pr(\mathcal{D})}$$

$$= \arg \max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{Pr(\mathcal{D}|\theta)}$$

$$= \arg \max_{\theta} \left[\frac{Pr(\theta)}{Pr(\theta)} \prod_{n=1}^{N} Pr(x_n|\theta) \right]$$

$$= \arg \max_{\theta} \left[\frac{\log Pr(\theta)}{Pr(\theta)} + \sum_{n=1}^{N} \log Pr(x_n|\theta) \right]$$

- Recall: ML estimation chooses θ to maximize probability of \mathcal{D} .
- MAP estimation chooses the most likely θ given \mathcal{D} .

$$\theta_{\mathsf{MAP}} = \arg \max_{\theta} \frac{Pr(\theta|\mathcal{D})}{Pr(\mathcal{D}|\theta)}$$

$$= \arg \max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{Pr(\mathcal{D})}$$

$$= \arg \max_{\theta} \frac{Pr(\theta)Pr(\mathcal{D}|\theta)}{Pr(\mathcal{D}|\theta)}$$

$$= \arg \max_{\theta} \left[\frac{Pr(\theta)}{n} \prod_{n=1}^{N} Pr(x_n|\theta) \right]$$

$$= \arg \max_{\theta} \left[\frac{\log Pr(\theta)}{n} + \sum_{n=1}^{N} \log Pr(x_n|\theta) \right]$$

• $\log Pr(\theta)$ works as a regularizer.

MAP for Linear Regression

Model (deterministic):

$$y = \mathbf{w}^T \mathbf{x} + \epsilon$$

With:

$$\epsilon \sim \mathcal{N}(0, \sigma_Y^2)$$

Therefore:

$$Y|X \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma_Y^2)$$

MAP for Linear Regression

Model (deterministic):

$$y = \mathbf{w}^T \mathbf{x} + \epsilon$$

With:

$$\epsilon \sim \mathcal{N}(0, \sigma_Y^2)$$

Therefore:

$$Y|X \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma_Y^2)$$

But now we define the a priori probability of \mathbf{w} : $Pr(\mathbf{w})$

We assume in this case $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma_W^2 \mathbf{I}_D)$

$$Pr(\mathbf{w}|\mathbf{0}, \sigma_W^2) = \frac{1}{(2\pi\sigma_W^2)^{\frac{D}{2}}} \exp\left(-\frac{\mathbf{w}^T\mathbf{w}}{2\sigma_W^2}\right)$$

We assume in this case $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma_W^2 \mathbf{I}_D)$

$$Pr(\mathbf{w}|\mathbf{0}, \sigma_W^2) = \frac{1}{(2\pi\sigma_W^2)^{\frac{D}{2}}} \exp\left(-\frac{\mathbf{w}^T \mathbf{w}}{2\sigma_W^2}\right) =$$
$$= \prod_{d=1}^D \frac{1}{\sqrt{2\pi\sigma_W^2}} \exp\left(-\frac{w_d^2}{2\sigma_W^2}\right)$$

$$\mathbf{w}_{\mathsf{MAP}} = \underset{\mathbf{w}}{\operatorname{arg}} \max_{\mathbf{w}} \log Pr(\mathbf{w}|y, x) = \underset{\mathbf{w}}{\operatorname{arg}} \max_{\mathbf{w}} \log \left[Pr(y|x, \mathbf{w}) Pr(\mathbf{w}) \right]$$

$$\mathbf{w}_{\mathsf{MAP}} = \arg \max_{\mathbf{w}} \log Pr(\mathbf{w}|y, x) = \arg \max_{\mathbf{w}} \log \left[Pr(y|x, \mathbf{w}) Pr(\mathbf{w}) \right]$$
$$= \arg \max_{\mathbf{w}} \left[\sum_{n=1}^{N} \log Pr(y_{i}|\mathbf{x}_{i}, \mathbf{w}) + \log Pr(\mathbf{w}) \right]$$

$$\mathbf{w}_{\mathsf{MAP}} = \arg \max_{\mathbf{w}} \log Pr(\mathbf{w}|y, x) = \arg \max_{\mathbf{w}} \log \left[Pr(y|x, \mathbf{w}) Pr(\mathbf{w}) \right]$$

$$= \arg \max_{\mathbf{w}} \left[\sum_{n=1}^{N} \log Pr(y_i|\mathbf{x}_i, \mathbf{w}) + \log Pr(\mathbf{w}) \right]$$

$$= \arg \min_{\mathbf{w}} \left[\frac{1}{2\sigma_Y^2} \sum_{n=1}^{N} \left(y_n - \mathbf{w}^T \mathbf{x}_n \right)^2 + \frac{1}{2\sigma_W^2} \mathbf{w}^T \mathbf{w} \right]$$

$$\mathbf{w}_{\mathsf{MAP}} = \arg \max_{\mathbf{w}} \log Pr(\mathbf{w}|y, x) = \arg \max_{\mathbf{w}} \log \left[Pr(y|x, \mathbf{w}) Pr(\mathbf{w}) \right]$$

$$= \arg \max_{\mathbf{w}} \left[\sum_{n=1}^{N} \log Pr(y_{i}|\mathbf{x}_{i}, \mathbf{w}) + \log Pr(\mathbf{w}) \right]$$

$$= \arg \min_{\mathbf{w}} \left[\frac{1}{2\sigma_{Y}^{2}} \sum_{n=1}^{N} \left(y_{n} - \mathbf{w}^{T} \mathbf{x}_{n} \right)^{2} + \frac{1}{2\sigma_{W}^{2}} \mathbf{w}^{T} \mathbf{w} \right]$$

$$= \arg \min_{\mathbf{w}} \left[\underbrace{\frac{1}{2\sigma_{Y}^{2}} \sum_{n=1}^{N} \left(y_{n} - \mathbf{w}^{T} \mathbf{x}_{n} \right)^{2} + \frac{1}{2\sigma_{W}^{2}} \mathbf{w}^{T} \mathbf{w}}_{\text{keep w short}} \right]$$
fit the data (ML)

In this case
$$Pr(\mathbf{w}|\mathbf{b_W}) = \prod_d \frac{1}{2b_W} \exp\left(-\frac{|w_d|}{b_W}\right)$$

 \boldsymbol{x}

In this case
$$Pr(\mathbf{w}|\mathbf{b_W}) = \prod_d \frac{1}{2b_W} \exp\left(-\frac{|w_d|}{b_W}\right)$$

$$\mathbf{w}_{\mathsf{MAP}} = \arg \max_{\mathbf{w}} \log Pr(\mathbf{w}|y, x) = \arg \max_{\mathbf{w}} \log \left[Pr(y|x, \mathbf{w}) Pr(\mathbf{w}) \right]$$

In this case
$$Pr(\mathbf{w}|\mathbf{b_W}) = \prod_d \frac{1}{2b_W} \exp\left(-\frac{|w_d|}{b_W}\right)$$

$$\mathbf{w}_{\mathsf{MAP}} = \arg \max_{\mathbf{w}} \log Pr(\mathbf{w}|y, x) = \arg \max_{\mathbf{w}} \log \left[Pr(y|x, \mathbf{w}) Pr(\mathbf{w}) \right]$$
$$= \arg \min_{\mathbf{w}} \left[\frac{1}{2\sigma_{V}^{2}} \sum_{l=1}^{N} \left(y_{l} - \mathbf{w}^{T} \mathbf{x}_{l} \right)^{2} + \frac{1}{b_{W}} \sum_{l=1}^{D} |w_{d}| \right]$$

In this case
$$Pr(\mathbf{w}|\mathbf{b_W}) = \prod_d \frac{1}{2b_W} \exp\left(-\frac{|w_d|}{b_W}\right)$$

$$Pr(w_d|b_W)$$

$$\mathbf{w}_{\mathsf{MAP}} = \arg \max_{\mathbf{w}} \log Pr(\mathbf{w}|y, x) = \arg \max_{\mathbf{w}} \log \left[Pr(y|x, \mathbf{w}) Pr(\mathbf{w}) \right]$$

$$= \arg \min_{\mathbf{w}} \left[\underbrace{\frac{1}{2\sigma_Y^2} \sum_{n=1}^{N} \left(y_n - \mathbf{w}^T \mathbf{x}_n \right)^2 + \underbrace{\frac{1}{b_W} \sum_{d=1}^{D} |w_d|}_{\text{keep } \mathbf{w} \text{ "simple"}} \right]$$

Impact of different priors

For linear regression $y = \mathbf{w}^T \mathbf{x} + \epsilon$, MAP estimation of \mathbf{w} performs differently considering the prior we assume!

$$\mathbf{w}^*(p) = \arg\min_{\mathbf{w}} \left[\sum_{n=1}^{N} \left(y_n - \mathbf{w}^T \mathbf{x}_n \right)^2 + \lambda \sum_{d=1}^{D} |w_d|^p \right]$$
fit the data (ML)

• $\lambda = 0$ or $W_d \sim \text{Uniform}$: just fit the data

Impact of different priors

For linear regression $y = \mathbf{w}^T \mathbf{x} + \epsilon$, MAP estimation of \mathbf{w} performs differently considering the prior we assume!

$$\mathbf{w}^*(p) = \arg\min_{\mathbf{w}} \left[\underbrace{\sum_{n=1}^{N} (y_n - \mathbf{w}^T \mathbf{x}_n)^2}_{\text{fit the data (ML)}} + \lambda \underbrace{\sum_{d=1}^{D} |w_d|^p}_{\text{regularize}} \right]$$

- $\lambda = 0$ or $W_d \sim \text{Uniform}$: just fit the data
- $\lambda > 0$ and assuming iid Normal (p = 2): fit the data and make w short (also known as *ridge regression*)

Impact of different priors

For linear regression $y = \mathbf{w}^T \mathbf{x} + \epsilon$, MAP estimation of \mathbf{w} performs differently considering the prior we assume!

$$\mathbf{w}^*(p) = \arg\min_{\mathbf{w}} \left[\underbrace{\sum_{n=1}^{N} \left(y_n - \mathbf{w}^T \mathbf{x}_n \right)^2}_{\text{fit the data (ML)}} + \lambda \underbrace{\sum_{d=1}^{D} |w_d|^p}_{\text{regularize}} \right]$$

- $\lambda=0$ or $W_d\sim$ Uniform: just fit the data
- $\lambda > 0$ and assuming iid Normal (p = 2): fit the data and make w short (also known as *ridge regression*)
- $\lambda > 0$ and assuming iid Laplace (p=1): fit the data and make w sparse (also know as the *Least Absolute Shrinkage* and Selection Operator (LASSO))

ML, MAP and Point Estimates

- ullet Both ML and MAP produce point estimates of heta
- Assumption: there is a true value for θ
- ullet advantage: once $\hat{ heta}$ is found, assume everything is known

Limitations (Linear Regression)

- With MAP estimation, the problem shifts to defining the parameters of the prior $Pr(\mathbf{w})$ (equivalently choosing λ in ridge or LASSO regression)
- We still have uncertainty in the posterior $Pr(y|\mathbf{x},\mathbf{w}^*)$ but this is not explicit.
- We don't want $Pr(y|\mathbf{x}, \mathbf{w})$, but instead $Pr(y|\mathbf{x}, \mathcal{D})$.

Bayesian estimation (non-parametric models)

- **①** consider θ as a random variable (same as MAP)
- ② characterize θ with the posterior distribution $Pr(\theta|\mathcal{D})$ given the data
- **3** compute new predicting posterior $Pr(y|\mathbf{x}, \mathcal{D})$ marginalizing over θ (predictive posterior)

$$Pr(y|\mathbf{x}, \mathcal{D}) = \int_{\theta \in \Theta} Pr(y|\mathbf{x}, \theta) Pr(\theta|\mathcal{D}) d\theta$$

Bayesian Linear Regression

Setup:

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}\$$

Model (same as MAP):

- Y_1, \ldots, Y_n conditionally independent given \mathbf{w}
- $Y|X \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma_Y^2)$
- ullet $\mathbf{w} \sim \mathcal{N}(oldsymbol{\mu}_W, oldsymbol{\Sigma}_{oldsymbol{W}}), \quad \mathbf{w} \in \mathbb{R}^D$
- ullet we assume values for σ_Y^2 , $oldsymbol{\mu}_W$, and $oldsymbol{\Sigma_W}$, so $heta \equiv \mathbf{w}$

Goal: Estimate $Pr(y|\mathbf{x}, \mathcal{D})$

Bayesian Linear Regression

$$\begin{split} Pr(y|\mathbf{x},\mathcal{D}) &= \int_{\mathbb{R}^D} Pr(y|\mathbf{x},\mathcal{D},\mathbf{w}) Pr(\mathbf{w}|\mathbf{x},\mathcal{D}) d\mathbf{w} \\ &= \int_{\mathbb{R}^D} Pr(y|\mathbf{x},\mathbf{w}) Pr(\mathbf{w}|\mathcal{D}) d\mathbf{w} \end{split}$$

(assuming $Y|\mathbf{W}=\mathbf{w}$ is independent of \mathcal{D} , and \mathbf{W} is independent of \mathbf{x}). Results obtained with a lot of passages:

- if $Pr(\mathbf{w})$ is Gaussian, then $Pr(\mathbf{w}|\mathcal{D})$ is Gaussian
- since $Pr(y|\mathbf{x}, \mathbf{w})$ is Gaussian, $Pr(y|\mathbf{x}, \mathcal{D})$ is also Gaussian
- Closed-form results in this case.

Find a walk-through of the derivations here

From mathematicalmonk's YouTube channel:

- problem and model definition https://youtu.be/1WvnpjljKXA
- posterior p(w|D), part 1-2
 https://youtu.be/nrd4AnDLR3U
 https://youtu.be/qz2U8coNwV4
- predictive posterior $p(y|\mathbf{x}, \mathcal{D})$, part 1-3 https://youtu.be/xyuSiKXttxw https://youtu.be/vTcsacTqlfQ https://youtu.be/LCISTY9S6SQ

Closed Form Solutions

Define $\Phi^T = [\mathbf{x}_1 | \mathbf{x}_2 | \dots | \mathbf{x}_N]$ and $\mathbf{y} = (y_1, y_2, \dots, y_N)$ from \mathcal{D} . With the assumed set-up, the posterior $\mathbf{w} | \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{w}|\mathcal{D}}, \boldsymbol{\Sigma}_{\mathbf{w}|\mathcal{D}})$, with:

$$egin{array}{lcl} oldsymbol{\Sigma}_{\mathbf{w}|\mathcal{D}} &=& \left[oldsymbol{\Sigma}_W^{-1} + rac{1}{\sigma_Y^2}oldsymbol{\Phi}^Toldsymbol{\Phi}
ight]^{-1} \ oldsymbol{\mu}_{\mathbf{w}|\mathcal{D}} &=& oldsymbol{\Sigma}_{\mathbf{w}|\mathcal{D}} \left[oldsymbol{\Sigma}_W^{-1}oldsymbol{\mu}_W + rac{1}{\sigma_Y^2}oldsymbol{\Phi}^T\mathbf{y}
ight] \end{array}$$

Predictive posterior:

$$Pr(y|\mathbf{x}, \mathcal{D}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{w}|\mathcal{D}}^T \mathbf{x}, \sigma_Y^2 + \mathbf{x}^T \boldsymbol{\Sigma}_{\mathbf{w}|\mathcal{D}} \mathbf{x})$$

Largely adapted from

Largely adapted from

Consequences

- We are considering the uncertainty over the choice of ${\bf w}$ as well as the original uncertainty σ_Y^2 .
- This provides a means to prevent overfitting

Occam's Razor

Choose the simplest explanation for the observed data

Important factors:

- number of model parameters
- number of data points
- model fit to the data

Overfitting and Maximum Likelihood

$$\theta_{\mathsf{ML}} = \arg\max_{\theta} P(\mathcal{D}|\theta)$$

We can make the likelihood arbitrary large by increasing the number of parameters

Occam's Razor and Bayesian Learning

Remember that:

$$Pr(y|\mathbf{x}, \mathcal{D}) = \int_{\theta \in \Theta} Pr(y|\mathbf{x}, \theta) Pr(\theta|\mathcal{D}) d\theta$$

Occam's Razor and Bayesian Learning

Remember that:

$$Pr(y|\mathbf{x}, \mathcal{D}) = \int_{\theta \in \Theta} Pr(y|\mathbf{x}, \theta) Pr(\theta|\mathcal{D}) d\theta$$

Intuition:

More complex models fit the data very well (large $Pr(\mathcal{D}|\theta)$ and $Pr(\theta|\mathcal{D})$) but only for small regions of the parameter space Θ .

Limitations of Bayesian Non-parametric Methods

$$Pr(y|\mathbf{x}, \mathcal{D}) = \int_{\mathbb{R}^D} Pr(y|\mathbf{x}, \mathbf{w}) Pr(\mathbf{w}|\mathcal{D}) d\mathbf{w}$$

- closed form solution for $Pr(\mathbf{w}|\mathcal{D})$ is not always possible (conjugate priors)
- can use approximations with high computational cost (sampling methods) or complex solutions (variational methods)
- sometimes we will have a non-informative prior of **W**, but Bayesian methods carry uncertainty estimates.

Outline

- Incorporating Priors
 - Maximum a Posteriori Estimation
 - Bayesian Non-Parametric Methods
 - Model Selection and Occam's Razor
- Unsupervised Learning
 - Classification vs Clustering
 - Heuristic Example: K-means
 - Expectation Maximization

Clustering vs Classification

Clustering

x1

Heuristic Example: K-means

- describes each class with a centroid
- a point belongs to a class if the corresponding centroid is closest (Euclidean distance)
- iterative procedure
- guaranteed to converge
- not guaranteed to find the optimal solution
- used in vector quantization (since the 1950's)

K-means: algorithm

Data: No. of desired clusters K, data set $\mathcal{D} = \{\mathbf{x}_i \in \mathbb{R}^D\}$, distance function $f: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}_+$, threshold ϵ initialization: sample K centroids $\boldsymbol{\mu}_k^{(0)} \in \mathbb{R}^D$ at random; $t \leftarrow 0$; repeat

assign each point x_i to closest centroid:

$$C_k := \left\{ \mathbf{x} \in \mathcal{D} : k = \arg\min_{k'} f(\mathbf{x}, \boldsymbol{\mu}_{k'}^{(t)}) \right\}$$

update centroids as mean of each cluster of points:

$$\boldsymbol{\mu}_k^{(t+1)} = rac{1}{|\mathcal{C}_k|} \sum \mathcal{C}_k$$

iterate $t \leftarrow t+1$ until $\max_k f(\boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\mu}_k^{(t)}) < \epsilon$; return K clusters of data points.

initialization

iteration 1, update clusters

iteration 2, update centroids

iteration 2, update clusters

iteration 3, update centroids

iteration 3, update clusters

iteration 20, update centroids

iteration 20, update clusters

initialization

iteration 1, update clusters

iteration 2, update centroids

iteration 2, update clusters

iteration 3, update centroids

iteration 3, update clusters

iteration 20, update centroids

iteration 20, update clusters

K-means: limits of Euclidean distance

- ullet the Euclidean distance is isotropic (same in all directions in \mathbb{R}^p)
- this favors spherical clusters
- the size of the clusters is controlled by the distances between them

K-means: non-spherical classes

two non-spherical classes

Example: doughnut data

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

Example: doughnut data

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
$$Pr(\mathbf{x}|\theta_k), \forall k \in [1, K]$$

Example: doughnut data

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
$$Pr(\mathbf{x}|\theta) = \sum_{k=1}^K \pi_k Pr(x|\theta_k)$$

Clustering Example

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

Clustering Example

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
$$Pr(\mathbf{x}|\theta) = \sum_{k=1}^K \pi_k Pr(x|\theta_k)$$

Clustering Example

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
$$Pr(\mathbf{x}|\theta_k), \forall k \in [1, K]$$

Fitting complex distributions

We can try to fit a mixture of K distributions:

$$Pr(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k Pr(\mathbf{x}|\theta_k)$$

with
$$\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\}$$

Problem:

We do not know which point has been generated by which component of the mixture

We cannot optimize $Pr(\mathbf{x}|\theta)$ directly

No Class Independence Assumption

Solution: Expectation Maximization

Expectation Maximization

Fitting model parameters with missing (latent) variables

$$Pr(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k Pr(\mathbf{x}|\theta_k),$$

with
$$\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\}$$

- very general idea (applies to many different probabilistic models)
- augment data with latent variables: $h_i \in \{1, \dots, K\}$ is the assignment of data point \mathbf{x}_i to a component of the mixture
- \bullet optimize likelihood of the complete data over N data points

$$Pr(\mathbf{x}_1,\ldots,\mathbf{x}_N,h_1,\ldots,h_N|\theta)$$

Example: Mixture of Gaussians

This distribution is a weighted sum of K Gaussian distributions

$$Pr(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \sigma_k^2)$$

where
$$\pi_1 + \cdots + \pi_K = 1$$
, $\pi_k > 0$ $(k = 1, \dots, K)$.

This model can describe **complex multi-modal** probability distributions by combining simpler distributions.

Mixture of Gaussians as a marginalization

We can interpret the Mixture of Gaussians model with the introduction of a discrete hidden/latent variable h and Pr(x,h):

$$Pr(x) = \sum_{k=1}^{K} Pr(x, h = k) = \sum_{k=1}^{K} Pr(x \mid h = k) Pr(h = k)$$

$$= \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \sigma_k^2)$$

$$\leftarrow \text{mixture density}$$

Figures taken from Computer Vision: models, learning and inference by Simon Prince,

EM for two Gaussians

For each sample x_i introduce a hidden variable h_i

$$h_i = \begin{cases} 1 & \text{if sample } x_i \text{ was drawn from } \mathcal{N}(x|\mu_1, \sigma_1^2) \\ 2 & \text{if sample } x_i \text{ was drawn from } \mathcal{N}(x|\mu_2, \sigma_2^2) \end{cases}$$

and come up with initial values

$$\Theta^{(0)} = (\pi_1^{(0)}, \mu_1^{(0)}, \sigma_1^{(0)}, \mu_2^{(0)}, \sigma_2^{(0)})$$

for each of the parameters.

EM is an *iterative algorithm* which updates $\Theta^{(t)}$ using the following two steps...

EM for two Gaussians: E-step

The responsibility of k-th Gaussian for each sample x (indicated by the size of the projected data point)

Look at each sample \boldsymbol{x} along hidden variable \boldsymbol{h} in the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.

EM for two Gaussians: E-step (cont.)

E-step: Compute the posterior probability (responsibility) that x_i was generated by component k given the current estimate of the parameters $\Theta^{(t)}$.

for each data point $i = 1, \dots, N$

for each mixture component k = 1, 2

$$\gamma_{ik}^{(t)} := Pr(h_i = k \mid x_i, \Theta^{(t)}) = \frac{Pr(h_i = k, \Theta^{(t)}) Pr(x_i \mid h_i = k, \Theta^{(t)})}{Pr(x_i \mid \Theta^{(t)})}$$

$$= \frac{\pi_k^{(t)} \mathcal{N}(x_i \mid \mu_k^{(t)}, \sigma_k^{(t)})}{\pi_1^{(t)} \mathcal{N}(x_i \mid \mu_1^{(t)}, \sigma_1^{(t)}) + \pi_2^{(t)} \mathcal{N}(x_i \mid \mu_2^{(t)}, \sigma_2^{(t)})}$$

Note: Responsibilities $\gamma_{i1}^{(t)} + \gamma_{i2}^{(t)} = 1$ and mixture weights $\pi_1 + \pi_2 = 1$

EM for two Gaussians: M-step

Fitting the Gaussian model for each of k-th constinuent. Sample x_i contributes according to the *responsibility* γ_{ik} .

(dashed and solid lines for fit before and after update)

Look along samples x for each h in the M-step

EM for two Gaussians: M-step (cont.)

M-step: Compute the maximum likelihood estimates of $\Theta^{(t)}$ given the data membership distributions (the $\gamma_{i1}^{(t)}$, $\gamma_{i2}^{(t)}$):

for
$$k = 1, 2$$

$$\mu_k^{(t+1)} = \frac{\sum_{i=1}^N \gamma_{ik}^{(t)} x_i}{\sum_{i=1}^N \gamma_{ik}^{(t)}}$$

$$\sigma_k^{(t+1)} = \sqrt{\frac{\sum_{i=1}^N \gamma_{ik}^{(t)} (x_i - \mu_k^{(t+1)})^2}{\sum_{i=1}^N \gamma_{ik}^{(t)}}}$$

$$\pi_k^{(t+1)} = \frac{\sum_{i=1}^{N} \gamma_{ik}^{(t)}}{N}$$

EM in practice

EM properties

Similar to K-means

- guaranteed to find a local maximum of the complete data likelihood
- somewhat sensitive to initial conditions

Better than K-means

- Gaussian distributions can model clusters with different shapes
- all data points are smoothly used to update all parameters
- ullet Can include a prior $Pr(\Theta)$ to introduce regularization

Summary

- Incorporating Priors
 - Maximum a Posteriori Estimation
 - Bayesian Non-Parametric Methods
 - Model Selection and Occam's Razor
- Unsupervised Learning
 - Classification vs Clustering
 - Heuristic Example: K-means
 - Expectation Maximization