```
Input: \mathcal{X}, k, \mathcal{L}, d Step 1 *Preprocessing, Section 5.1*
```

- 1: Construct G(X, E) by connecting each element in X with its k-nearest neighbors.
- 2: **for all** $x \in \mathcal{X}$ **do**
- 3: $N_x = \{y \in \mathcal{X}: (x, y) \in E\}$ *Compute neighborhoods*
- 4: $[N_x^0] = USV^T$

where $[N_x^0]$ is the data matrix formed by the elements in N_x shifted to the origin of \mathbb{R}^N and U, S, V are the results of its d-rank SVD.

- 5: $M_x = U$ *Compute tangent spaces*
- 6: end for

Step 2 *Greedy computation of partition $C_{\mathcal{L}}^*$ *

- 7: $n = |\mathcal{X}|, \lambda = 0, \mathbf{C}_n^* = \{\{x\}: x \in \mathcal{X}\}$ *Initialization*
- 8: **for** $\lambda < n \mathcal{L}$ **do** *Greedy merging, Section 5.2*

9
$$\left(C_i', C_j'\right) = \underset{\substack{C_i, C_j \in C_{n-\lambda}^* \\ \psi(C_i, C_j) \text{ is true}}}{\operatorname{argmin}} \tilde{d}\left(C_i, C_j\right) \quad *Eq. (23)*$$

- 10: $\mathbf{C}_{n-\lambda+1}^* = (\mathbf{C}_{n-\lambda}^* \setminus \{C_i', C_j'\}) \cup \{C_i' \cup C_j'\}$
- 11: Compute $M_{C'_i \cup C'_i}$ *Eq. (3)*
- 12: $\lambda = \lambda + 1$
- 13: **end for**
- 14: **for** $C_i \in \mathbf{C}_{\mathcal{L}}^*$ **do** * Compute the final flats F_i *
- 15: $[C_{m_i}^0] = USV^T$

where m_i is the sample mean of C_i , $[C_{m_i}^0]$ is the data matrix formed by the samples in C_i shifted by m_i and U, S, V are the results of its d-rank SVD.

- 16: $F_i = U$
- 17: **end for**

Output: $C_{\mathcal{L}}^*$, F