BSM 420 – BİLGİSAYAR SİSTEMLERİNİN PERFORMANS DEĞERLENDİRMESİ

2.Hafta: Performans Metrikleri

İçerik

- Tarihçe
- Ölçme ve Değerlendirme
- Bilgisayar Mimarisi Konuları
- İlgili Alanlar
- Bilgisayar Mühendisliği Metodolojisi
- Ölçüm Araçları
- Performans (Başarım)

Tarihçe

- Bilgisayarları sınıflandırma:
 - Mainframe,
 - Süper bilgisayar,
 - Mini-süper bilgisayar,
 - Mini bilgisayar,
 - İş istasyonu,
 - Kişisel bilgisayar,
 - Taşınabilir bilgisayarlar,
 - Çok işlemcili sistemler.

station

computer

Tarihçe (devam)

Performans

 Bilgisayar performansı yaklaşık olarak 18 ayda 2 kat artıyor.

	Kapasite	Hız (gecikme)
Lojik Devreler	3 yılda 2 kat	3 yılda 2 kat
DRAM	3 yılda 4 kat	10 yılda 2 kat
Disk	3 yılda 4 kat	10 yılda 2 kat

Fiyat

- Yıllık fiyat-performans artışı yaklaşık %70.
- İşlevsellik
 - Network ve yerel iletişim teknolojilerinin artışı

Ölçme ve Değerlendirme

- Mimari üzerinde çalışma iteratif bir süreçtir:
 - Mümkün olan tüm tasarımlar ilgili alanlarda araştırılır
 - Bilgisayar sistemlerinin tüm katmanlarında araştırmalar devam eder.

Bilgisayar Mimarisi Konuları

Bilgisayar Mühendisliği Metodolojisi

Ölçüm Araçları

- Kıyas Kümeleri (Benchmark):
 - çalışma kayıtları ve komut dağılımları (trace and instr. mixes)
- Donanim:
 - Fiyat, gecikme, kullanılan alan miktarı, güç tüketimi
- Simülasyonlar:
 - Komut kümesi seviyesi, saklayıcı seviyesi, kapı seviyesi, devre seviyesi
- Kuyruk teorileri
- Temel kurallar
- Tecrübeler

PERFORMANS-BAŞARIM

Performansı Ölçme

- b İki temel metrik: duvar saati zamanı (bir programın cevap zamanı) ve çıkış (birim zamanda yerine getirilen görevler)
- çıkışı optimize etmek için, asgari kaynak israfı olmalıdır

Performans (Başarım)

- Bir işi yaparken geçen süre:
 - çalışma zamanı, cevap zamanı, gecikme vs.
- Bir günde, saatte, dakikada, saniyede yapılan iş
 - çıkış(throughput), band genişliği vs.

Plane	DC to Paris	Speed	Passengers	Throughput (pmph)
Boeing 747	6.5 hours	610 mph	470	286,700
BAD/Sud Concodre	3 hours	1350 mph	132	178,200

Bilgisayar Performansı: zaman

- Cevap Zamanı (Response Time, elapsed time, latency):
 - Bir görevin çalışması için ne kadar süre gerekli?
 - Başlangıçtan sona kadar tamamlanması için ne kadar süre gerekli?
 - Bir veritabanı sorgusu için ne kadar süre beklenmeli?
- Performans çıkışı(Throughput):
 - Tek seferde makine ne kadar işi çalıştırabilir?
 - Ortalama çalışma oranı ne?
 - Bir işin tamamlanabilmesi için ne kadar çalışma gerekli ?
- Bir makineyi yeni bir işlemci ile yükselttiğimiz zaman ne kadar bir iyileşme sağlanır?
- Bir laba yeni bir makine konduğunda ne kadar iyileşme olur?

Çalışma Zamanı (Execution Time)

- Geçen Süre (Elapsed Time)
 - Baştan sona herşeyi dikkate alır (disk bellek erişimleri, I/O beklemeleri, diğer programların çalışması vs.)

```
geçen süre = CPU zamanı+ bekleme zamanı(I/O, diğer programlar vs.)
```

- CPU zamanı
 - I/O beklemesi ve diğer programların çalışması için geçen zamanı dikkate almaz
 - Kullanıcı CPU zamanı ve sistem CPU zamanı (OS çağrıları) olarak ikiye ayrılır

```
CPU zamanı= kullanıcı CPU zamanı + sistem CPU zamanı

⇒ geçen süre = kullanıcı CPU zamanı + sistem CPU zamanı+ bekleme zamanı
```

- kullanıcı CPU zamanı dikkate alını (CPU çalışma zamanı veya sadece çalışma zamanı)
 - Program içindeki kod satırlarının çalışması için geçen süre

Performans Tanımı

X makinesi üzerinde çalışan bir program için:

$$Performans_X = 1 / Qalışma Zamanı_X$$

X makinesi Y makinesinden n kat hızlıdır:

$$Performance_{X} / Performance_{Y} = n$$

Saat Çevrimleri

- Çalışma zamanını saniyeler cinsinden sunmak yerine, çoğu kez saat çevrimlerini kullanırız.
- Modern bilgisayarlarda, olaylar çevrim çevrim ilerler : yani çarpma, toplama gibi her olay bir dizi çevrimde gerçekleşir.

$$\frac{\text{seconds}}{\text{program}} = \frac{\text{cycles}}{\text{program}} \times \frac{\text{seconds}}{\text{cycle}}$$

Saat tiklemeleri çevrimin başı ve sonunu gösterir:

- Çevrim zamanı = tikler arası zaman = çevrim başına saniye
- Saat oranı (frekans) = saniye başına çevrim
 (1 Hz. = 1 çevrim/saniye, 1 MHz. = 10⁶ çevrim / saniye)
- $\ddot{O}rnek$: 200 Mhz $\frac{1}{200 \times 10^6} \times 10^9 = 5$ nanoseconds çevrim süresi eder

Performans Denklemi I

$$\frac{\text{seconds}}{\text{program}} = \frac{\text{cycles}}{\text{program}} \times \frac{\text{seconds}}{\text{cycle}}$$

Bir program için:

CPU çalışma zamanı = CPU saat çevrim sayısı x Saat çevrimi zamanı

- Dolayısıyla, performansı artırmak için:
 - Bir programın çevrim sayısını düşür veya
 - Saat çevrim zamanını düşür veya
 - Saat frekansını artır (overclock)

Bir program için ne kadar çevrim gerekli?

Çevrim sayısı = komut sayısı ??

- Bu varsayım kesinlikle yanlıştır! Çünkü:
 - Farklı komutların işlenmesi farklı zamanlar(çevrimler) alır
 - Neden...?

Bir program için ne kadar çevrim gerekli?

- Çarpma toplamadan daha çok zaman alır
- Virgüllü (kayan noktalı) işlemler tamsayılardan daha çok zaman alır.
- Belleğe erişim kaydedicilere erişimden daha çok zaman alır
- Çok önemli: çevrim zamanını değiştirmek donanım tasarımının değişmesine neden olduğundan komutların çalışması için gerekli çevrim sayısını değiştirir.

Örnek I

- En sevdiğimiz program 400Mhz olan A bilgisayarında 10 saniye çalışıyor.
- Bir bilgisayar tasarımcısına, bu programı 6 saniye içinde çalıştıracak yeni bir B makinesi tasarlamasına yardımcı olmaya çalışıyoruz.
- Tasarımcı, saat hızını önemli ölçüde artırmak için yeni (veya belki de daha pahalı) teknolojiyi kullanabilir, ancak bu artışın CPU tasarımının geri kalanını etkileyeceğini ve aynı program için B makinesinin A makinesinden 1.2 kat daha fazla saat çevrimi gerektirmesine neden olacağını bize bildirdi..
- Tasarımcıya hangi saat hızını hedef olarak bildirmeliyiz?

Terminoloji

- Bir program çalışmak için aşağıdakileri gerektirir:
 - Komutlar
 - Çevrimler
 - Saniyeler
- Bu büyüklükleri aşağıdaki terimler ile açıklarız:
 - Çevrim zamanı (çevrim / saniye)
 - Saat frekansı (çevrim / saniye)
 - (ortalama) CPI (çevrim / komut cycles per instruction)
 - Kayan nokta yoğun bir uygulamada yüksektir
 - IPC (komut / çevrim)
 - MIPS (milyon komut / saniye)
 - Basit komutlardan oluşan bir programda yüksek

Hızlanma Vs. Oran

- o "Hızlanma" bir orandır. «kat», «kere» ile ifade edilir
 - = eski çalışma zamanı / yeni çalışma zamanı

- "İyileşme- Bağıl Değişim", "artış", "düşüş" genellikle belirli bir referansa göre yüzdelik değeri verir
 «daha» fazla, hızlı, yavaş, çok…
 - = (yeni perf eski perf) / eski perf
- Bağıl değişim = hızlanma 1

ÖRNEK 2

Bir program eski laptopta 100 saniye, yenisinde 70 saniye çalışıyor

Hızlanma ne kadar?

Hızlanma =
$$(1/70) / (1/100) = 1.42 \text{ kat}$$

 Performanstaki iyileşme /bağıl değişim oranı ne?

$$(1/70 - 1/100) / (1/100) = 42\%$$
 daha fazla

- Çalışma zamanındaki düşüm ne kadar?

30% daha az

Etki faktörleri

- Saat çevrim zamanı : teknoloji ve pipeline
- CPI: mimari ve komut seti tasarımı
- Komut sayısı: komut seti tasarımı ve derleyici
- CPI (cycles per instruction) veya
 IPC (instructions per cycle) matematiksel olarak doğru hesaplanamaz

CPU Performansını Etkileyen Unsurlar

CPU time	= Seconds	= Instructions x	Cycles x	Seconds
	Program	Program	Instruction	Cycle

	Inst Count	СРІ	Clock Rate
Program	X		
Compiler	Х	(X)	
Inst. Set.	X	X	
Organization		Х	х
Technology			х

Örnek CPI hesabı

Ortalama CPI = 1.5

Performans Ölçümü

- Performans çalışma zamanı ile ölçülür
- Diğer değişkenler de performans ölçümünde kullanılabilir mi?
 - Programın çalışması için gerekli çevrim sayısı?
 - Programdaki komut sayısı ?
 - Saniye başına çevrim sayısı ?
 - Komut başına ortalama çevrim sayısı ?
 - Saniye başına ortalama komut sayısı
- ortak bir tuzak: Değişkenlerden birini kabul etmek, başka bir veri yoksa performans göstergesidir.

Performans Denklemi II

```
CPU execution time = Instruction count × average CPI × Clock cycle time for a program for a program
```

■ Bu denklemi 1 nolu denklemden türetiniz

Performans Denklemi II

CPU execution time = Instruction count × average CPI × Clock cycle time for a program for a program

Bu denklemi 1 nolu denklemden türetiniz

Örnek III (CPI)

- Aynı komut seti mimarisinin (ISA) iki farklı uyarlaması olsun. Bir program için:
 - A makinesi 10ns saat çevrimi zamanına sahip ve CPI=2.0
 - B makinesi 20ns saat çevrim zamanı ve CPI = 1.2
- Hangi makine ne kadar hızlıdır?
- Eğer iki makine de aynı ISA'ya sahip ise, saat hızı, CPI, çalışma zamanı, komut sayısı ve MIPS gibi büyüklüklerden hangileri benzer olur?

Örnek IV(CPI)

- Bir derleyici tasarımcısı belirli bir makine için iki farklı kod arasında karar vermeye çalışmaktadır.
- Donanıma bağlı olarak, 3 farklı komut kümesi vardır: A, B ve C sınıfı, ve sırasıyla 1,2,3 çevrim değerlerine sahiptirler.
- İlk kod dizisi 5 komuta sahip:
 - 2 adet A, 1 adet B, ve 2 adet C
- İkinci kod dizisi 6 komuta sahip:
 - 4 adet A, 1 adet B, and 1 adet C.
- Hangi kod daha hızlıdır? Ne kadar hızlıdır? Her kod dizisinin CPI değeri nedir?

Örnek IV (CPI)

- Bir derleyici tasarımcısı belirli bir makine için iki farklı kod arasında karar vermeye çalışmaktadır.
- Donanıma bağlı olarak, 3 farklı komut kümesi vardır: A, B ve C sınıfı, ve sırasıyla 1,2,3 çevrim değerlerine sahiptirler.
- İlk kod dizisi 5 komuta sahip:
 - 2 adet A, 1 adet B, ve 2 adet C
- İkinci kod dizisi 6 komuta sahip:
 - 4 adet A, 1 adet B, and 1 adet C.
- Hangi kod daha hızlıdır? Ne kadar hızlıdır? Her kod dizisinin CPI değeri nedir?

Örnek V(MIPS)

- Üç farklı komut sınıfına sahip bir 500 MHz lik makine üzerinde iki farklı derleyici test edilmektedir. Komut setleri Sınıf A, Sınıf B ve Sınıf C ve sırasıyla 1, 2 ve 3 çevrim gerektirmektedir.
- Her iki derleyici de büyük bir yazılım kodu üretmek için kullanılır.
- Derleyici 1, 5 milyar A Sınıfı komutu, 1 milyar B Sınıfı komutu ve 1 milyar Sınıf C komutu ile kod üretir.
- Derleyici 2, 10 milyar A Sınıfı komutu, 1 milyar B Sınıfı komutu ve 1 milyar Sınıf C komutu ile kod üretir.
- Hangi derleyici MIPS e göre daha hızlıdır?
- Çalışma zamanına göre hangi dizi daha hızlıdır?

