

Automated Recommender System (RecSys)

Quanming Yao^{1,2}, Yong Li¹, Chen Gao¹, Huan Zhao², Yongqi Zhang²

¹Department of Electronic Engineering, Tsinghua University

²4Paradigm Inc.

https://quanmingyao.github.io/AutoML.github.io/ijcai21-tutorial.html

Tutorial Outline

- 1. An introduction to Automated Machine Learning (AutoML)
 - Background on technical tools from machine learning
- 2. Why AutoML is Needed in RecSys and Recent Advances
 - Exemplar works introducing AutoML into RecSys
- 3. Automated Graph Representation Learning for RecSys
 - Explore neural architecture search for GNN based RecSys
- 4. Automated Knowledge Graph (KG) Embedding
 - Explore AutoML for KG Embedding based RecSys

Schedule at a Glance

Time	Event				
0:00-0:40 minutes	Part 1: An introduction to Automated Machine Learning (AutoML)				
	Speaker: Quanming Yao				
0:40-1:20 minutes	Part 2: Why AutoML is Needed in RecSys and Recent Advances				
	Speaker: Chen Gao				
1:20-1:30 minutes	Break				
1:30-2:10 minutes	Part 3: Automated Graph Neural Network for RecSys				
	Speaker: Huan Zhao				
2:10-2:50 minutes	Part 4: Automated Knowledge Graph Embedding				
	Speaker: Yongqi Zhang				
2:50-3:00 minutes	Part 5: Discussion				

Automated Recommender System (RecSys) Tutorial

Part 1: An Introduction to Automated Machine Learning (AutoML)

Quanming Yao^{1,2}

¹Assistant professor - Department of Electronic Engineering, Tsinghua University ²Founding Leader (ML research team), 4Paradigm Inc.

qyaoaa@tsinghua.edu.cn

Outline

- 1. What is Machine Learning?
- 2. What is Automated Machine Learning (AutoML)?
- 3. Summary & Next Works

What is Machine Learning (ML)?

Applications

Image Classification

Predict the class of the object

Face Recognition

Who is the person

Drug Design
Learn to make decisions

Better Performance
Higher Efficiency

Definition

- [1]. Machine Learning, Tom Mitchell, McGraw Hill, 1997.
- [2]. 周志华著. 机器学习, 北京: 清华大学出版社, 2016年

ML = Data + Knowledge

Design a **hypothesis** (function) f to perform the learning task

Not everything can be learnt

PAC-Learning (Definition 2.3 in [1]): What kind of problems can be solved in polynomial time **No Free Lunch Theorem** (Appendix B [2]): No single algorithm can be good on all problems

^{[1].} M. Mohri, A. Rostamizadeh, A. Talwalkar. Foundations of machine learning. 2018

^{[2].} O. Bousquet, et.al. Introduction to Statistical Learning Theory. 2016

How to use ML Well?

The Advancement of Learning

- An iteration between theory and practice
- A feedback loop

Generalization: What kind of *f* should we use?

Optimization: How can we find such f?

"All models are wrong, but some are useful"[2]

Better understanding of prior knowledge → Better hypothesis → Better generalization performance

Continual Trends in Machine Learning

Road Map in Recent History

Core Issue in Machine Learning: Improving learning performance (with higher efficiency)

Rule-based

association rules mining, learning classifier systems 1990s

Statistics-based

support vector machine, sparse dictionary learning 2000s

Deep Learning-based

convolutional neural networks, transformer 2010s

Larger hypothesis (more complex models) are being used

- Optimization is getting complex (even mixed up with generalization)
- The prior knowledge is imposed on more abstract level

Better performance

What is ML – Summary

- Machine learning = Data (optimization) + Knowledge (generalization)
 - Core Issue: Improving learning performance (with high efficiency)
- The advance and usage of ML is an iterative process
 - Better understanding of prior knowledge → Better generalization performance
- Continual trends in machine learning
 - The prior knowledge is imposed on more abstract level

Outline

- 1. What is Machine Learning?
- 2. What is Automated Machine Learning (AutoML)?
 - Explanation from a Simple Example
 - Recent Industrial and Research Examples
 - A Generalization Viewpoint for AutoML
 - How to use AutoML
- 3. Summary & Next Works

Simple Example – Tune hyper-parameter

- Large λ leads to sparse w^*
- Grid search: enumerating $\lambda \in \{1,2,4,8,...\}$

[1]. Image source: Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods.

Mach. Learn – Error decomposition

Total error in machine learning

- Approximation error
 - Which classifier to be used
 - What are their hyper-parameters
 - Distribution changes

Reduce

- Estimation error
 - Finite samples

$$\min_{w} \sum_{i} f(x_i; w) + \lambda \|w\|_{1}$$

- Regularization hyper-parameter
- Optimization error
 - Which algorithm to be used
 - How to tune its step-size

Look Inside Error Decomposition

Automatically find h^* by bi-level optimization

$$\max_{\lambda} \sum_{j} h(x_{j}; w^{*}) \quad \text{s.t.} \quad w^{*} = \min_{w} \sum_{i} f(x_{i}; w) + \lambda ||w||_{1}$$
 Validation
$$\text{Training}$$
 Performance
$$\text{objective}$$

How to further improve the performance in an automatic manner (i.e., reduce the approximation error)?

- Feature can be weak → *Automatic feature engineering*
- Linear predictor can be too restrictive → Neural architecture search
- Grid search can be slow \rightarrow Search in a supernet

What is AutoML – Practical Viewpoint

Parameterize (low-level) prior knowledge in the usage and design of machine learning

As a consequence

- Human participations can be naturally replaced by computation power
- total error of machine learning can be reduced (generalization can be improved)

Why We need AutoML?

Investment in AI industry

Practical needs

Technical trends

- Industry reduce the expense, increase usage coverage huge market value [1]
- Academy understanding data science on a higher level great intelligence value [2,3]
- [1]. Gartner: https://www.forbes.com/sites/janakirammsv/2020/03/02/key-takeaways-from-the-gartner-magic-quadrant-for-ai-developer-services/#a95b99ee3e5e
- [2]. Y. Bengio: From System 1 Deep Learning to System 2 Deep Learning | NeurIPS 2019
- [3]. F Hutter, L Kotthoff, J Vanschoren. Automated machine learning: methods, systems, challenges. Book 2019

Outline

- 1. What is Machine Learning?
- 2. What is Automated Machine Learning (AutoML)?
 - Explanation from a Simple Example
 - Recent Industrial and Research Examples
 - A Generalization Viewpoint for AutoML
 - How to use AutoML
- 3. Summary & Next Works

Industrial Example – Cross features

An example of tabular data (UCI-Bank)

	age (n)	job (c)	marital (c)	education (c)	balance (n)	housing (c)
0	30	unemployed	married	primary	1787	no
1	33	services	married	secondary	4789	yes
2	35	management	single	tertiary	1350	yes
3	30	management	married	tertiary	1476	yes
4	59	blue-collar	married	secondary	0	yes
5	35	management	single	tertiary	747	no

- Use one-hot/multi-hot encoding for categorical features
- Cross-features are empirically effective to enhance categorical features

Cross feature 'job x company' indicates that an individual takes a specific job in a specific company, and is a strong feature to predict one's income

Not all cross-features are useful and too many of them lead to overfitting

How to find them?

Industrial Example – AutoCross

Search cross features by bi-level optimization

- Obtain a classifier on training set with current cross-feature candidates
- 2. Measure cross-features' performance on validation set

All possible candidates

Candidate search process

Industrial Example – AutoCross

Academic Example – Neural archi. search (NAS)

Design choice in each layer

- number of filters
- filter height
- filter width

- stride height
- stride width
- · skip connections

The design of architectures is important to CNN performance

NAS – Search problem

NAS – Search problem

Bi-level objective:

$$\min_{\mathbf{A}} \mathcal{F}(w^*, \mathbf{A}), \text{s.t.} \begin{cases} w^* = \arg\min_{w} \mathcal{L}_{\text{train}}(w, \mathbf{A}) \\ \mathbf{a}^{(i,j)} \in \mathcal{C} \end{cases}$$

- Train the selected architecture (encoding by A) on training set
- Obtain the generalization performance of A on validation set

Typical search algorithms

- One-shot method^[1,2] (fast but not accurate)
 - Alternative update architecture parameter A and network weights w* by epochs
- Stand-alone method^[3,4] (accurate but slow)
 - Obtain w^* by train network from scratch with given ${f A}$

^{[1].} H. Liu et al. Darts: Differentiable architecture search. ICLR 2018

^{[2].} A. Zela et al. Understanding and robustifying differentiable architecture search. ICLR 2020

^{[3].} Neural Architecture Search with Reinforcement Learning. ICLR 2017

NAS – Promising performance

Figure is from: https://paperswithcode.com/sota/neural-architecture-search-on-imagenet

Outline

- 1. What is Machine Learning?
- 2. What is Automated Machine Learning (AutoML)?
 - Explanation from a Simple Example
 - Recent Industrial and Research Examples
 - A Generalization Viewpoint for AutoML
 - How to use AutoML
- 3. Summary & Next Works

What is AutoML – Generalization viewpoint

Parameterized the prior knowledge of learning methods, e.g.,

minimize the total error

reduce parameter numbers

Perform efficient search in the designed (new) space

combinatorial generalize new models from existing ones^[1]

Hypothesis space parameterized by γ

Parameterize (low-level) prior knowledge in the usage and design of machine learning

As a consequence

- Human participations can be naturally replaced by computation power
- total error of machine learning can be reduced (generalization can be improved)

AutoML – Successor of ML's trend

- Core Issue in Machine Learning: Improving learning performance (with higher efficiency)
- AutoML: an evolving way to improve learning performance

Rule-based

Statistics-based 2000s

Deep Learning-based 2010s

AutoML-based
From 2017

Continue the trends

- Larger hypothesis (more complex models) are being used
- Optimization is getting complex (even mixed up with generalization)
- The prior knowledge is imposed on more abstract level

Better performance

Parameterize (low-level) prior knowledge in the usage and design of machine learning

Related Areas

Sub-areas

- Neural architecture search
- Hyper-parameter search
- Automated feature engineering
- Algorithms selection
- Model selection

Related areas

- Bi-level / Derivative-free optimization
 - Focus more on algorithm design
 - AutoML objective is one kind of objective where these algorithms can be applied
- Meta-learning
 - Focus on parameterize task distributions
 - Another kind of bi-level objective
 - Do not use validation set to update hyper-parameters

Outline

- 1. What is Machine Learning?
- 2. What is Automated Machine Learning (AutoML)?
 - Explanation from a Simple Example
 - Recent Industrial and Research Examples
 - A Generalization Viewpoint for AutoML
 - How to use AutoML
- 3. Summary & Next Works

How to use AutoML

- 1. Define an AutoML problem
- Derive a search space from insights in specific domains
- Search objective is usually validation performance
- Search constraint is usually resource budgets
- Training objective usually comes from classical learning models

Search Space
$$M(F(w^*; \lambda), D_{\text{val}})$$
 Search Objective Search Space $M(F(w^*; \lambda), D_{\text{val}})$ Training Objective s. t. $G(\lambda) \leq C$ Search Constraints

- 2. Design or select proper search algorithm
- Reduce model training cost (time to get w^*)

What is AutoML – Short summary

- Exploring prior knowledge is important in machine learning
 - Cost time and critical to generalization performance
 - Continual trends in ML: imposing the prior knowledge on more abstract level
- AutoML attempts to parameterize low-level prior knowledge
 - Human participations can be naturally replaced by computation power
 - total error can be reduced (generalization can be improved)
- To use well AutoML techniques
 - Exploring high-level domain knowledge when defining the AutoML problem
 - Reducing model training cost when design search algorithm

Outline

- 1. What is Machine Learning?
- 2. What is Automated Machine Learning (AutoML)?
- 3. Summary & Next Works

Summary & Next Works

- 1. An introduction to Automated Machine Learning (AutoML)
 - Background on technical tools from machine learning
- 2. Why AutoML is Needed in RecSys and Recent Advances
 - Exemplar works introducing AutoML into RecSys
- 3. Automated Graph Representation Learning for RecSys
 - Explore neural architecture search for GNN based RecSys
- 4. Automated Knowledge Graph (KG) Embedding
 - Explore AutoML for KG Embedding based RecSys

Thanks!