

1. Download the dataset

2.	Load	Data	

z. Luau Dala	
import pandas as nd	

import	pandas	as	pd
import	warning		

-
-
-

import matplotlib.pyplot as plt import seaborn as sns

Univariate Analysis

df.hist(column="Age",grid=False,edgecolor='black')
array([[<AxesSubplot:title=('center':'Age')>]], dtyp

Multi - Variate Analysis

Resure

0
 1

6. Find the outliers and replace the outliers Out[35]: <AxesSubplot:xlabel='CreditScore'>

df.isnull().sum(

4. Perform descriptive statistics on the dataset

400 500 600 700 Credit Score Trem microm.natact import load poston 1 = np.percontile(dff("castisfores"), 25, interpolation = "midpoint") 20 = np.percontile(dff("castisfores"), 75, interpolation = "midpoint") 20 = np.percontile(dff("castisfores"), 75, interpolation = "midpoint") 20 = np.midpoint = "ndf.midpoint") 20 = np.midpoint = "ndf.midpoint") 21 = np.midpoint = "ndf.midpoint") 22 = np.midpoint = "ndf.midpoint" = "ndf.midpoint") 23 = np.midpoint = "ndf.midpoint" 24 = np.midpoint = "ndf.midpoint" 25 = np.midpoint = "ndf.midpoint" 26 = np.midpoint = "ndf.midpoint" 27 = np.midpoint 28 = np.midpoint 29 = np.midpoint 20 = np.midpoint 21 = np.midpoint 22 = np.midpoint 23 = np.midpoint 23 = np.midpoint 24 = np.midpoint 25 = np.midpoint 26 = np.midpoint 26 = np.midpoint 26 = np.midpoint 27 = np.midpoint 27 = np.midpoint 28 = np.midpoin

5. Handle the Missing values

Old Shape: (9984, 14) New Shape: (9984, 14) <AxesSubplot:xlabel='CreditScore'> 600 700 CreditScore 7. Check for Categorical columns and perform encoding

8. Split the data into dependent and independent variables

n [40]:	A = df.[loc[z, z-1].values print(A)
	[[1 15634602 'Hargrave' 1 1 101348.88] [2 15647311 'Hill' 0 112542.58] [3 1561396' (nois' 1 0 11331.57]
	[9998 15584532 'Liu' 0 1 42085.58]
	[999 15682355 'Sabbatini' 1 0 92888.52] [10000 15628319 'Walker' 1 0 38190.78]]
n [41]:	B = df ilon(*, -11 values

[1 0 1 ... 1 1 0] 9. Scale the independent variables

9996	9	997 0.0167	65 Johns	tone	516	France Male 35
9997	9.	998 0.0753	127	Liu	709	France Female 36
9998	9.	999 0.4666	37 Sabba	tini	772	Germany Male 42
9999	101	000 0.2504	183 Wa	lker	792	France Female 28
	Tonuno	Balanco N	@umOfProducts	Handweard	Telatina	Momboy \
0	2	0.0		1	1	1
1	1	83807.8	16	1	0	1
2		159660.80		3	1	0
3		0.0		2	0	0
4	2	125510.82		1	1	1
9995	5	0.0	0.0	2	1	0
9996	10	57369.6	1	1	1	1
9997	7	0.0	0.0	1	0	1
9998	3	75075.3	1	2	1	0
9999	4	130142.79		1	1	0
	Petimo	tedSalarv	Puttod			
		101348.88				
		112542.58				
-		112542.58				

10. Split the data into training and testing

from sklears.nodel selection import train test split
training_data, testing_data = train_test_split(df, test_size=0.2, random_state=25)
print(fflo, of razining examples: (razining_data happe(0)))
print(fflo, of testing examples: (razining_data_shappe(0)))
No. of training examples: 1997
No. of testing_examples: 1997