Chapter 1 Background

Outlines

- Brief introduction to system software
- System software and machine architecture
- Simplified Instructional Computer (SIC)
 - Architecture
 - Assembly language
- Architecture of real machines
 - CISC
 - RISC

Introduction

- Purpose of system software: users or application software can <u>focus on problem solving</u>, without needing to know how the <u>machine</u> works internally.
- System software:
 - Operating system
 - Text editor
 - Compiler
 - Assembler
 - Linker
 - Loader
 - debugger

Introduction

- This course aims at:
 - Understanding what is going on "behind the scenes"
 - The design and implementation of system software, such as
 - Assemblers
 - Loaders and linkers
 - Macro processors
 - Compilers
 - Operating systems

System Software and Architecture

- Machine dependency of system software
 - System programs are intended to support the operation and use of the computer.
 - Machine architecture differs in:
 - Machine code
 - Instruction formats
 - Addressing mode
 - Registers
- Machine independency of system software
 - General design and logic is basically the same:
 - Code optimization
 - Subprogram linking

System Software and Architecture

- System software will be discussed:
 - The basic functions
 - 2. Machine-dependent functions
 - 3. Machine-independent functions
 - 4. Design options (single-pass vs. multi-pass)
 - 5. Examples of implementations

Simplified Instructional Computer

SIC and SIC/XE

- Why the simplified instructional computer
 - To avoid various unique features and idiosyncrasies of a particular machine
 - To focus on central, fundamental, and commonly encountered features and concepts
- Two versions
 - Standard model (SIC) and an XE version (SIC/XE)
 - Upward compatible
 - Programs for SIC can run on SIC/XE

Memory

- Registers
 - Five 24-bit registers

Inemonic Number		Special use		
A	0	Accumulator; used for arithmetic operations		
X	1	Index register; used for addressing		
L	2	Linkage register; the Jump to Subroutine (JSUB)		
0.7		instruction stores the return address		
3-7: reserve	d for future us	in this register		
3-7: reserve	ed for future us			

- Data formats
 - Characters: 8-bit ASCII codes
 - Integers:
 - 24-bit binary numbers
 - 2's complement for negative values
 - Floating-point numbers:No

Decimal	Signed- magnitude	Signed-1's complement	Signed-2's complement
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	1000	1111	Χ
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	X	Х	1000

Instruction formats

Addressing modes

Mode	Indication	Target address calculation
Direct	x = 0	TA = address
Indexed	x = 1	TA = address + (X)

(): Contents of a register or a memory location

- Instruction set
 - Load and store registers
 - LDA, LDX, STA, STX
 - Integer arithmetic operations (involve register A and a word in memory, save result in A)
 - ADD, SUB, MUL, DIV
 - Comparison (involves register A and a word in memory, save result in the condition code (CC) of SW)
 - COMP
 - Conditional jump instructions (according to CC)
 - JLT, JEQ, JGT
 - Subroutine linkage
 - JSUB (jumps and places the return address in register L)
 - RSUB (returns to the address in L)

- Input and output
 - Each IO device is assigned a unique 8-bit code
 - One byte at a time to or from the rightmost 8 bits of register A
 - Three instructions:
 - Test device (TD):
 - Test whether the device is ready to send/receive
 - Test result is set in CC
 - Read data (RD): read one byte from the device to register A
 - Write data (WD): write one byte from register A to the device

Memory: from 32768 to 1 mega

Registers: 4 additional registers

Mnemonic	Number	Special use
A	0	Accumulator; used for arithmetic operations
X	addit 1	Index register; used for addressing
L	2	Linkage register; the Jump to Subroutine (JSUB) instruction stores the return address in this register
PC	8	Program counter; contains the address of the next instruction to be fetched for execution
SW	9	Status word; contains a variety of

Mnemonic	Number	Special use
В	3	Base register; used for addressing
S	4	General working register—no special use
T	5	General working register—no special use
F	6	Floating-point accumulator (48 bits)

Data formats

- Characters: 8-bit ASCII codes
- Integers:
 - 24-bit binary numbers
 - 2's complement for negative values
- Floating-point numbers (48 bits)
 - sign bit s
 - fraction f: a value between 0 and 1
 - exponent e: unsigned binary number between 0 and 2047
 - value: $(-1)^s \times f \times 2^{e-1024}$

```
1 11 36
s exponent 1 fraction
```

High-order bit must be 1 when normalized

Instruction formats

8 1 15

opcode x address

No memory reference

Relative addressing

Extended address field

- Addressing modes:
 - two new relative addressing for format 3

Mode	Indication	Target address calculation		
Base relative	b = 1, p = 0	TA = (B) + disp	$(0 \le disp \le 4095)$	
Program-counter relative	b = 0, p = 1	TA = (PC) + disp	$(-2048 \le \text{disp} \le 2047)$	

- direct addressing for formats 3 and 4 if b=p=0
- Indexed addressing can be combined if x=1:
 - the term (x) should be added

Mode	Indication	Target address calculation
Direct	x = 0	TA = address
Indexed	x = 1	TA = address + (X)

- Bits x,b,p,e: how to calculate the target address
 - relative, direct, and indexed addressing modes
- Bits i and n: how to use the target address (TA)
 - i=1, n=0: immediate addressing
 - TA is used as the operand value, no memory reference
 - i=0, n=1: indirect addressing
 - The word at the TA is fetched
 - · Value in this word is taken as the address of the operand value
 - i=0, n=0 (in SIC), or
 - i=1, n=1 (in SIC/XE): simple addressing
 - TA is taken as the address of the operand value
- Exception: indexing cannot be used with immediate or indirect addressing modes.

- For upward compatibility
 - 8-bit binary codes for all SIC instructions end in 00

 If n=i=0, bits b,p,e are considered as part of the 15-bit address field

Addressing type	Flag bits n i x b p e	Assembler language notation	Calculation of target address TA	Operand	Notes	c: constant between 0 and 4095 m: memory address or constant
Simple	110000	ор с	disp	(TA)	D	larger than 4095
	110001	+op m	addr	(TA)	4 D-	4: Format 4
	110010	op m	(PC) + disp	(TA)	A	
	110100	op m	(B) + disp	(TA)	Α	A. Dalativa addressina
	111000	op c,X	disp + (X)	(TA)	D	A: Relative addressing
. 68	111001	+op m,X	addr + (X)	(TA)	4 D	
	111010	op m,X	(PC) + disp + (X)	(TA)	Α	D: Direct addressing
	111100	op m,X	(B) + disp + (X)	(TA)	A	
	000	op m	b/p/e/disp	(TA)	D S-	S:Compatible with SIC
	001	op m,X	b/p/e/disp + (X)	(TA)	D S	115.4-
Indirect	100000	op @c	disp	((TA))	D	
	100001	+op @m	addr	((TA))	4 D	
	100010	op @m	(PC) + disp	((TA))	Α	
	100100	op @m	(B) + disp	((TA))	A	
Immediate	010000	op #c	disp	TA	D	
	010001	+op #m	addr	TA	4 D	
	010010	op #m	(PC) + disp	TA	A	
	010100	op #m	(B) + disp	TA	A	

Examples of addressing mode for LDA

- Instruction set
 - Load and store registers
 - LDA, LDX, STA, STX, LDB, STB, ...
 - Integer arithmetic operations
 - ADD, SUB, MUL, DIV, ADDF, SUBF, MULF, DIVF, ADDR, SUBR, MULR, DIVR
 - Comparison COMP
 - Conditional jump instructions (according to CC)
 - JLT, JEQ, JGT
 - Subroutine linkage
 - JSUB
 - RSUB
 - Register move
 - RMO
 - Supervisor call (for generating an interrupt)
 - SVC

- Input and output
 - IO device
 - Three instructions:
 - Test device (TD)
 - Read data (RD)
 - Write data (WD)
 - IO channels
 - Perform IO while CPU is executing other instructions
 - Three instructions:
 - SIO: start the operation of IO channel
 - TIO: test the operation of IO channel
 - HIO: halt the operation of IO channel

I/O Mechanisms

- Polling I/O
- Interrupt-Driven I/O
- DMA (Direct Memory Access) I/O

SIC/XE Instruction Set

Mnemonic	Format	Opcode	Effect	Notes	
ADD m	3/4	18	$A \leftarrow (A) + (mm+2)$		
ADDF m	3/4	58	$F \leftarrow (F) + (mm+5)$	XF	
ADDR r1,r2	2	90	$r2 \leftarrow (r2) + (r1)$	X	
AND m	3/4	40	$A \leftarrow (A) \& (mm+2)$	1931	ı
CLEAR r1	2	B4	r1 ← 0	X: only for XE	
COMP m	3/4	28	(A): (mm+2)	С	
COMPF m	3/4	88	(F): (mm+5)	XFC	
COMPR r1,r2	2	A0	(r1): (r2)	X C C: set CC	
DIV m	3/4	24	$A \leftarrow (A) / (mm+2)$		
DIVF m	3/4	64	$F \leftarrow (F) / (mm+5)$	XF / F: floating point	
DIVR r1,r2	2	9C	$r2 \leftarrow (r2) / (r1)$	F: floating-point	_
FIX	1	C4	$A \leftarrow (F)$ [convert to integer]	XF [/]	
FLOAT	1	C0	$F \leftarrow (A)$ [convert to floating]	XF P: privileged	
HIO	1	F4	Halt I/O channel number (A)	PX	

MUL m	3/4	20	$A \leftarrow (A) * (mm+2)$	
			information beginning at address m (see Section 6.2.1)	for interrupt
LPS m	3/4	D0	Load processor status from	PX
LDX m	3/4	04	$X \leftarrow (mm+2)$	
LDT m	3/4	74	$T \leftarrow (mm+2)$	X
LDS m	3/4	6C	$S \leftarrow (mm+2)$	X
LDL m	3/4	08	$L \leftarrow (mm+2)$	
LDF m	3/4	70	$F \leftarrow (mm+5)$	XF
LDCH m	3/4	50	A [rightmost byte] \leftarrow (m)	
LDB m	3/4	68	$B \leftarrow (mm+2)$	X
LDA m	3/4	00	$A \leftarrow (mm+2)$	
JSUB m	3/4	48	$L \leftarrow (PC); PC \leftarrow m$	
JLT m	3/4	38	$PC \leftarrow m \text{ if } CC \text{ set to } <$	
JGT m	3/4	34	$PC \leftarrow m \text{ if } CC \text{ set to } >$	
JEQ m	3/4	30	$PC \leftarrow m \text{ if } CC \text{ set to} =$	
J m	3/4	3C	PC ← m	

Mnemonic	Format	Opcode	Effect	Notes
MULF m	3/4	60	$F \leftarrow (F) * (mm+5)$	ΧF
MULR r1, r2	2	98	$r2 \leftarrow (r2) * (r1)$	X
NORM	1	C8	$F \leftarrow (F)$ [normalized]	ΧF
OR m	3/4	44	$A \leftarrow (A) \mid (mm+2)$	
RD m	3/4	D8	A [rightmost byte] ← data from device specified by (m)	P
RMO r1,r2	2	AC	$r2 \leftarrow (r1)$	X
RSUB	3/4	4C	$PC \leftarrow (L)$	
SHIFTL r1,n	2	A4	$r1 \leftarrow (r1)$; left circular shift n bits. {In assembled instruction, $r2 = n-1$ }	X
SHIFTR r1,n	2	A8	$r1 \leftarrow (r1)$; right shift n bits, with vacated bit positions set equal to leftmost bit of $(r1)$. {In assembled instruction, $r2 = n-1$ }	X
SIO	1	F0	Start I/O channel number (A); address of channel program is given by (S)	PX

SSK m	3/4	EC	Protection key for address m	PX
Set Storage Ke	ey for memory	protection	\leftarrow (A) (see Section 6.2.4)	
STA m	3/4	0C	$mm+2 \leftarrow (A)$	
STB m	3/4	78	$mm+2 \leftarrow (B)$	X
STCH m	3/4	54	$m \leftarrow (A)$ [rightmost byte]	
STF m	3/4	80	$m.m+5 \leftarrow (F)$	XF
STI m	3/4	D4	Interval timer value \leftarrow (mm+2) (see Section 6.2.1)	PX
STL m	3/4	14	$mm+2 \leftarrow (L)$	
STS m	3/4	7C	$mm+2 \leftarrow (S)$	X
STSW m	3/4	E8	$mm+2 \leftarrow (SW)$	P
STT m	3/4	84	$mm+2 \leftarrow (T)$	X
STX m	3/4	10	$mm+2 \leftarrow (X)$	
SUB m	3/4	1C	$A \leftarrow (A) - (mm+2)$	
SUBF m	3/4	5C	$F \leftarrow (F) - (mm+5)$	ΧF

Mnemonic	Format	Opcode	Effect	Note	es
SUBR r1,r2	2	94	$r2 \leftarrow (r2) - (r1)$	X	
SVC n	2	B0	Generate SVC interrupt. {In assembled instruction, $r1 = n$ }	X	
TD m	3/4	E0	Test device specified by (m)	P	C
TIO	1	F8	Test I/O channel number (A)	PΧ	C
TIX m	3/4	2C	$X \leftarrow (X) + 1; (X): (mm+2)$		C
TIXR r1	2	B8	$X \leftarrow (X) + 1; (X): (r1)$	X	C
WD m	3/4	DC	Device specified by $(m) \leftarrow (A)$ [rightmost byte]	P	

SIC Programming Examples (1) Data Movement

SIC Programming Examples (2) Arithmetic

SIC		LDA	ALPHA	LOAD ALPHA INTO REGISTER A
SIC		ADD	INCR	ADD THE VALUE OF INCR
		SUB	ONE	SUBTRACT 1
		STA	BETA	STORE IN BETA
		LDA	GAMMA	LOAD GAMMA INTO REGISTER A
		ADD	INCR	ADD THE VALUE OF INCR
		SUB	ONE	SUBTRACT 1
		STA	DELTA	STORE IN DELTA
OI	NE	WORD	1	ONE-WORD CONSTANT
				ONE-WORD VARIABLES
Al	LPHA	RESW	1	
Bl	ETA	RESW	1	
G	AMMA	RESW	1	BETA 4 (ALDHA LINCE 1)
	ELTA	RESW	1	BETA \leftarrow (ALPHA + INCR - 1)
	NCR	RESW	1	DELTA ← (GAMMA + INCR - 1)
-				ME-GE-1: GUA

SIC Programming Examples (2) Arithmetic

SIC/XE	LDS	INCR	LOAD VALUE OF INCR INTO REGISTER S
	LDA	ALPHA	LOAD ALPHA INTO REGISTER A
	ADDR	S,A	ADD THE VALUE OF INCR
	SUB	#1	SUBTRACT 1
	STA	BETA	STORE IN BETA
	LDA	GAMMA	LOAD GAMMA INTO REGISTER A
	ADDR	S,A	ADD THE VALUE OF INCR
	SUB	#1	SUBTRACT 1
	STA	DELTA	STORE IN DELTA
	elmow 0		
*medition			ONE WORD VARIABLES
ALPHA	RESW	1 1	
BETA	RESW	1	
GAMMA	RESW	1	BETA ← (ALPHA + INCR - 1)
DELTA	RESW	1	DELTA ← (GAMMA + INCR - 1)
INCR	RESW	1 5 60 6	DELITE (OTTO IN THE IT

SIC Programming Examples (3) Looping and Indexing: part I

SIC				
OIO	LDX	ZERO	INI	TIALIZE INDEX REGISTER TO 0
MOVECH	LDCH	STR1,X	LOA	D CHARACTER FROM STR1 INTO REG A
	STCH	STR2,X	STO	RE CHARACTER INTO STR2
	TIX	ELEVEN	ADD	1 TO INDEX, COMPARE RESULT TO 11
	JLT	MOVECH	LOO	P IF INDEX IS LESS THAN 11
STR1	BYTE	C'TEST STRI	NG′	11-BYTE STRING CONSTANT
STR2	RESB	11		11-BYTE VARIABLE
·				ONE-WORD CONSTANTS
ZERO	WORD	0		
ELEVEN	WORD	11	Copy	one 11-byte string to another

SIC Programming Examples (3) Looping and Indexing: part I

SIC/XE

	LDT	#11	INITIALIZE REGISTER T TO 11
	LDX	#0	INITIALIZE INDEX REGISTER TO 0
MOVECH	LDCH	STR1,X	LOAD CHARACTER FROM STR1 INTO REG A
	STCH	STR2,X	STORE CHARACTER INTO STR2
	TIXR	T	ADD 1 TO INDEX, COMPARE RESULT TO 11
	JLT	MOVECH	LOOP IF INDEX IS LESS THAN 11
	egister X		
	ercalien		
STR1	BYTE	C'TEST ST	RING' 11-BYTE STRING CONSTANT
STR2	RESB	11	11-BYTE VARIABLE
			Copy one 11-byte string to another

SIC Programming Examples (4) Looping and Indexing: part II

SIC	Galerando	LDA	ZERO	INITIALIZE INDEX VALUE TO 0
SIC	and the first	STA	INDEX	
	ADDLP	LDX	INDEX	LOAD INDEX VALUE INTO REGISTER X
		LDA	ALPHA, X	LOAD WORD FROM ALPHA INTO REGISTER A
		ADD	BETA, X	ADD WORD FROM BETA
		STA	GAMMA, X	STORE THE RESULT IN A WORD IN GAMMA
		LDA	INDEX	ADD 3 TO INDEX VALUE
		ADD	THREE	
		STA	INDEX	
		COMP	K300	COMPARE NEW INDEX VALUE TO 300
		JLT	ADDLP	LOOP IF INDEX IS LESS THAN 300
	INDEX	RESW	1	ONE-WORD VARIABLE FOR INDEX VALUE
	- FURTHER			ARRAY VARIABLES100 WORDS EACH
	ALPHA	RESW	100	
	BETA	RESW	100	
	GAMMA	RESW	100	
	· DXX			ONE-WORD CONSTANTS
	ZERO	WORD	0	
	K300	WORD	300	
	THREE	WORD	3	GAMMA [] \leftarrow ALPHA [] + BETA []

SIC Programming Examples (4) Looping and Indexing: part II

SIC/XE

		W. 2	
	LDS	#3	INITIALIZE REGISTER S TO 3
	LDT	#300	INITIALIZE REGISTER T TO 300
	LDX	#0	INITIALIZE INDEX REGISTER TO 0
ADDLP	LDA	ALPHA, X	LOAD WORD FROM ALPHA INTO REGISTER A
	ADD	BETA, X	ADD WORD FROM BETA
	STA	GAMMA, X	STORE THE RESULT IN A WORD IN GAMMA
	ADDR	S,X	ADD 3 TO INDEX VALUE
	COMPR	X,T	COMPARE NEW INDEX VALUE TO 300
	JLT	ADDLP	LOOP IF INDEX VALUE IS LESS THAN 300
	ni shand		
			TOTAL TRANSPIRE 100 MORDS EASI
			ARRAY VARIABLES100 WORDS EACH
ALPHA	RESW	100	
BETA	RESW	100	
GAMMA	RESW	100	GAMMA[] ← ALPHA[] + BETA[]

SIC Programming Examples (5) Input and Output

Read one byte from device F1

The sales of the s		
TD	INDEV	TEST INPUT DEVICE
JEQ	INLOOP	LOOP UNTIL DEVICE IS READY
RD	INDEV	READ ONE BYTE INTO REGISTER A
STCH	DATA	STORE BYTE THAT WAS READ
\//ri	to one byte t	to dovice 05
. ۷۷11	le one byte	io device 05
TD	OUTDEV	TEST OUTPUT DEVICE
JEQ	OUTLP	LOOP UNTIL DEVICE IS READY
LDCH	DATA	LOAD DATA BYTE INTO REGISTER A
WD	OUTDEV	WRITE ONE BYTE TO OUTPUT DEVICE
e (SHEET)		
ur wand		
on Albert Charle		
BYTE	X'F1'	INPUT DEVICE NUMBER
BYTE	X'05'	OUTPUT DEVICE NUMBER
RESB	1	ONE-BYTE VARIABLE
	JEQ RD STCH Write TD JEQ LDCH WD BYTE BYTE	JEQ INLOOP RD INDEV STCH DATA Write one byte TD OUTDEV JEQ OUTLP LDCH DATA WD OUTDEV

SIC Programming Examples (6) Subroutine Call

SIC	JSUB	READ	CALL READ SUBROUTINE
	. 000		
			SUBROUTINE TO READ 100-BYTE RECORD
READ	LDX	ZERO	INITIALIZE INDEX REGISTER TO 0
RLOOP	TD	INDEV	TEST INPUT DEVICE
	JEQ	RLOOP	LOOP IF DEVICE IS BUSY
	RD	INDEV	READ ONE BYTE INTO REGISTER A
	STCH	RECORD, X	STORE DATA BYTE INTO RECORD
	TIX	K100	ADD 1 TO INDEX AND COMPARE TO 100
	JLT	RLOOP	LOOP IF INDEX IS LESS THAN 100
	RSUB		EXIT FROM SUBROUTINE
	TO THE REAL PROPERTY.		
INDEV	BYTE	X'F1'	INPUT DEVICE NUMBER
RECORD	RESB	100	100-BYTE BUFFER FOR INPUT RECORD
· sala for			ONE-WORD CONSTANTS
ZERO	WORD	0	
K100	WORD	100	Charles expension for these logicularies and the process of
		Re	ad 100 bytes from device F1

SIC Programming Examples (6) Subroutine Call

SIC/XE			
SIC/AE	JSUB	READ	CALL READ SUBROUTINE
	(d. canil		
	dinsell		CURROLLETAND TO DEAD 100 DIVID DOOR
READ	LDX	#0	SUBROUTINE TO READ 100-BYTE RECORD
TUEAD			INITIALIZE INDEX REGISTER TO 0
	LDT	#100	INITIALIZE REGISTER T TO 100
RLOOP	TD	INDEV	TEST INPUT DEVICE
	JEQ	RLOOP	LOOP IF DEVICE IS BUSY
	RD	INDEV	READ ONE BYTE INTO REGISTER A
	STCH	RECORD, X	STORE DATA BYTE INTO RECORD
	TIXR	T	ADD 1 TO INDEX AND COMPARE TO 100
	JLT	RLOOP	LOOP IF INDEX IS LESS THAN 100
	RSUB		EXIT FROM SUBROUTINE
	•		
	a planting at		
	PARIDIE		
INDEV	BYTE	X'F1'	INPUT DEVICE NUMBER
RECORD	RESB	100	100-BYTE BUFFER FOR INPUT RECORD

Read 100 bytes from device F1

Real Machines

Two Categories

- Complex Instruction Set Computers (CISC)
 - Relative large and complicated instruction set, more instruction formats, instruction lengths, and addressing modes
 - Hardware implementation is complex
 - Examples:
 - VAX
 - Intel x86
- Reduced Instruction Set Computers (RISC)
 - Simplified design, faster and less expensive processor development, greater reliability, faster instruction execution times
 - Examples:
 - Sun SPARC
 - PowerPC

- Memory: 2³² bytes in virtual address space
 - consists of 8-bit bytes:
 - word: 2 bytes
 - longword: 4 bytes
 - quadword: 8 bytes
 - octaword: 16 bytes
 - can be divided into
 - System space (OS and shared space)
 - Process space (defined separately for each process)

- 32-bit registers
 - 16 general-purpose registers
 - R0-R11: no special functions
 - AP: argument pointer (address of arguments when making a procedure call)
 - FP: frame pointer (address of the stack frame when making a procedure call)
 - SP: stack pointer (top of stack in program's process space)
 - PC: program counter
 - PSL: processor status longword
 - Control registers to support OS

- Data formats
 - Characters: 8-bit ASCII codes
 - Integers:
 - 2, 4, 8, 16-byte binary numbers
 - 2's complement for negative values
 - Floating-point numbers:
 - 4 different floating-point data ranging in length from 4 to 16 bytes
 - Packed decimal data format
 - Each byte represents two decimal digits
 - Numeric format
 - To represent numeric values with one digit per byte
 - Queues and variable-length bit strings

- Instruction formats
 - Variable-length instruction format
 - Each instruction consists of
 - OP code (1 or 2 bytes)
 - Up to 6 operand specifiers (depends on instruction)

- Addressing modes
 - Register mode
 - Register deferred mode
 - Autoincrement and autodecrement modes
 - Base relative modes
 - PC relative modes
 - Index modes
 - Indirect modes
 - Immediate mode
 - etc

- Instruction set
 - Mnemonics format (e.g., ADDW2, MULL3)
 - Prefix: type of operation
 - Suffix: data type of the operands
 - Modifier: number of operands involved
 - In addition to <u>computation</u>, <u>data movement and</u> <u>conversion</u>, <u>comparison</u>, <u>branching</u>, VAX provides instructions that are hardware realizations of frequently occurring sequences of codes
 - Load and store multiple registers
 - Manipulate queues and variable-length bit fields
 - Powerful instructions for calling and returning from procedure

- Input and output
 - Each I/O device has a set of registers, which are assigned locations in the physical address space, called I/O space.
 - Association of these registers with addresses in I/O space is handled by memory management routines.
 - Device driver read/write values into these registers.
 - Software routines read/write values in I/O space using standard instructions.

- Memory: virtual memory
 - consists of 8-bit bytes:
 - word: 2 bytes
 - double-word: 4 bytes
 - can be divided into a collection of segments with different sizes
 - Code, data, and stack segments
 - Each segment can be divided into pages
 - Segment/offset address is automatically translated into a physical byte address by Memory Management Unit.

- 32-bit registers
 - 8 general-purpose registers
 - EAX, EBX, ECX, EDX: data manipulation
 - ESI, EDI, EBP, ESP: addresses
 - EIP: pointer to the next instruction
 - FLAGS: processor status and calculation results
- 16-bit registers
 - CS, SS, DS, ES, FS, GS: segment registers
- 80-bit registers
 - 8 80-bit registers for FPU

- Data formats
 - Characters: 8-bit ASCII codes
 - Integers:
 - 1, 2, 4-byte binary numbers (8-byte signed integers for FPU)
 - 2's complement for negative values
 - Little-endian byte ordering
 - Binary coded decimal (packed or unpacked BCD)
 - Floating-point numbers:
 - Single-precision: 32 bits
 - Double-precision: 64 bits
 - Extended-precision: 80 bits

- Instruction formats
 - Variable-length instruction format (1-10 bytes)
 - Each instruction consists of
 - Optional prefixes containing flags that modify the operation of the instruction
 - E.g., repetition count, segment register specification
 - OP code (1 or 2 bytes)
 - A number of bytes for operands and addressing modes

- Addressing modes
 - Immediate mode
 - Register mode
 - Base relative mode
 - PC relative mode
 - Index mode
 - Direct mode
 - etc

- Instruction set (>400 instructions)
 - -0, 1, 2, or 3 operands
 - Register-to-register, register-to-memory, and memory-to-memory instructions
 - Special-purpose instructions that are frequently required in high-level languages, e.g., entering and leaving procedures, checking the bounds of an array

- Input and output
 - I/O instructions that transfer one byte, word, or double-word from an I/O device into register EAX, or vice versa.
 - Repetition prefixes can be used to transfer an entire string in a single operation.

- Memory: 2⁶⁴ bytes in virtual address space
 - consists of 8-bit bytes:
 - halfword: 2 bytes
 - word: 4 bytes
 - doubleword: 8 bytes
 - can be divided into pages
 - Virtual address is automatically translated into a physical address by the UltraSPARC Memory Management Unit.

- A large register file (>100 general-purpose registers)
 - 32 bits for original SPARC, 64 bits for UltraSPARC
 - Each procedure can access only 32 registers
 - 8 global registers
 - 24 registers in overlapped window
- A file of 64 double-precision floating-point registers fro FPU.
- Program counter PC

- Data formats
 - Characters: 8-bit ASCII codes
 - Integers:
 - 1, 2, 4, 8-byte binary numbers
 - 2's complement for negative values
 - Big- and little-endian and byte ordering
 - Floating-point numbers:
 - Single-precision: 32 bits
 - Double-precision: 64 bits
 - Quad-precision: 80 bits

- Instruction formats
 - Fix-length instruction format (32 bits long)
 - Can speed the process of instruction fetching and decoding
 - 3 basic instruction formats
 - Call instruction
 - Branch instruction
 - Register loads and stores, and three-operands arithmetic operations
 - Each instruction consists of
 - First 2 bits: identify formats
 - OP code
 - Operands

- Addressing modes
 - Immediate mode
 - Register direct mode
 - PC relative mode only for branch instructions
 - Register indirect with displacement
 - Register indirect indexed

- Instruction set (<100 instructions)
 - Register-to-register instructions
 - Load and store instructions (only instructions that access memory)
- Instruction execution is pipelined.
- Branch instructions are delayed branches
 - Instructions immediately following the branch instruction is actually executed before the branch is taken.

- Input and output
 - A range of memory locations is logically replaced by device registers.
 - Device driver read/write values into these registers.
 - Software routines read/write values in this area using standard instructions.