

Primeiro Teste da Avaliação Discreta Análise Matemática I

Duração: 1h30m 4 de novembro de 2013

1	a)	
	b)	
2		
3		
4		
5	—	
6		
7		
8		
9		
10	a)	
	b)	
	c)	
	d)	

Número:	Classificação:

Notas importantes: 1. Os resultados usados devem ser enunciados com precisão. O rigor das deduções e o cuidado prestado à sua redação são elementos importantes para a apreciação da qualidade das respostas.

- 2. Não é permitido usar máquinas de calcular, consultar apontamentos ou quaisquer outros elementos.
- 3. Não é permitido se ausentar da sala sem antes dar o seu teste por concluído e o entregar ao docente.
- 4. Qualquer tentativa de fraude implica (entre outras consequências) a classificação de zero.
- 5. Se tiver dúvidas na interpretação das questões, explicite-as na prova.
- 6. A cotação de cada pergunta está indicada entre parêntesis retos.
 - 1. [3.0] Considere a função $f(x) = \ln(4 x^2)$.

Nome:

(a) Determine o domínio e o contradomínio de f.

(b) Indique (justificando) se f é ou não é uma função injetiva.

Pode usar o verso das páginas para continuar as suas respostas, caso seja necessário.

4. [2.0] Para o conjunto $A:=[0,1]\cap\mathbb{Q}$, determine (justificando devidamente) o seu interior, fronteira, aderência e derivado.

5.	[2.0]	Demonstre que o limite de uma sucessão convergente é único.
6.	[1.0]	Defina (matematicamente) "sucessão de Cauchy".
7.	[1.0]	Defina (matematicamente) "função contínua num ponto p do seu domínio".
8.	[1.0]	Enuncie o Teorema dos Valores Intermédios (ou de Bolzano).

9. [1.5] Sejam $a_n, c_n \in \mathbb{R}$, para todo $n \in \mathbb{N}$. Demonstre que se $|a_n| \leq c_n$ para $n \geq n_0$ (onde n_0 é um número natural fixo) e se $\sum_{n=1}^{\infty} c_n$ converge, então $\sum_{n=1}^{\infty} a_n$ converge.

10. [5.5] Indique (justificando) se as seguintes séries convergem ou divergem.

(a)
$$\sum_{n=40}^{+\infty} \frac{n^3 + 4n^2 + 5}{3n^3 + 2n^2 + n + 1}$$

(b)
$$\sum_{n=1}^{+\infty} \sin \frac{1}{n^4}$$

(c)
$$\sum_{n=1}^{+\infty} \frac{1}{2e^n}$$

(d)
$$\sum_{n=1}^{+\infty} \frac{n!}{n^n}$$