Lecture #23

MA 511, Introduction to Analysis

June 30, 2021

A Review of the Reals

- When we first defined the Real numbers we discussed a few important properties
 - \blacksquare R is an ordered field
 - \mathbb{Z} \mathbb{R} contains \mathbb{Q}
 - \blacksquare is complete (Axiom of Completeness)
- lacktriangleright has some other interesting properties worth exploring in generality
 - \blacksquare is a topological space
 - \blacksquare is a (real) normed vector space
 - **6** \mathbb{R} is a (real) inner product space
 - 7 \mathbb{R} is a measure space
- Each of these properties can be explored in more generality
- Many of these properties automatically give other properties

$$I.P.S \implies N.V.S \implies M.S \implies T.S$$

Our Focus for This Course

- \blacksquare Most of what we have done has been focused on $\mathbb R$ as a metric space
- We have discussed toplogical properties but these discusses always used the frame of metric spaces
- \blacksquare We have used the ordered field properties of $\mathbb R$ implicitly but only to help our work on $\mathbb R$ as a metric space
- Our discussions of functions and sequences thereof were all in terms of metric space properties as well

Metric Spaces

lacktriangle We can generalize the properties of distances on $\Bbb R$ to any set with an appropriately defined notion of distance

Definition (Metric Space)

A metric space is a set, X, along with a map, $d: X \times X \to \mathbb{R}$, called the metric, which satisfies the following properties for all x, y

- 1 $d(x,y) \ge 0$ and $d(x,y) = 0 \implies x = y$
- d(x, y) = d(y, x)
- 3 d satisfies the triangle inequality: For all $z \in X$, we get $d(x,y) \le d(x,z) + d(z,y)$
 - This matches all of our intuitions about what "distance" should mean

Sequences in Metric Spaces

Definition (Convergent Sequences)

A sequence, (x_n) , of points in the metric space (X,d) is said to converge to a limit x if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(x_n,x) < \varepsilon$ for all $n \geq N$

Definition (Cauchy Sequences)

A sequence, (x_n) , of points in the metric space (X,d) is said to be Cauchy if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon$ for all $n, m \ge N$

Theorem

Any sequence which converges is a Cauchy sequence

Definition (Completeness)

A metric space is complete if all Cauchy sequences converge to a point in \boldsymbol{X}

A Brief Introduction to Topology

Definition (Topology on a Set)

A topology on a set, X, is a collection of subsets, \mathcal{T} , such that for all $A_i \in \mathcal{T}$, the following hold

- $oldsymbol{1}$ $\mathcal T$ contains both X and \emptyset
- **2** \mathcal{T} contains $\bigcup_{i \in I} A_i$ for any index I
- 3 \mathcal{T} contains $\bigcap_{j=1}^n A_j$

 $O \subseteq X$ is called open if $O \in \mathcal{T}$. $C \subseteq X$ is called closed if C^c is open

Definition (Basis for a Topology)

A basis, \mathcal{B} , for a topology is a collection of sets $B_i \in \mathcal{T}$ such that all sets $A \in \mathcal{T}$ can be written as $A = \bigcup_{i \in I} B_i$ or $A = \bigcap_{j=1}^n B_j$

 Having open sets allows us to discuss properties like continuity in more general terms

The Metric Topology

Definition (ε -neighborhoods)

Let (X, d) be a metric space. We define the ε -neighborhood of x as $V_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}$

Theorem (The Metric Topology)

The set of all ε -neighborhoods of all points is basis for a topology on X. We call this the metric topology

 Defining the metric topology like this unifies the topological definitions of properties with the metric space notions

Properties of the Metric Topology

Theorem

A set, A, is open if and only if for all $x \in A$, there is $\varepsilon > 0$ such that $V_{\varepsilon}(x) \subseteq A$

Definition (Limit Points)

x is a limit point of A if $V_{\varepsilon}(x) \cap A \neq \{x\}$

$\mathsf{Theorem}$

x is a limit point of A if and only if there exists a sequence of points $(x_n) \in A \setminus \{x\}$ such that $(x_n) \to x$

Theorem

A set, A, is closed if and only if A contains all of its limits points

Compactness

Definition (Compact Sets)

A set A, is compact in the sequential/metric sense if every sequence (x_n) contained in A has a subsequence (x_{n_k}) which converges to a point in A

Definition (Boundedness)

A set, A, in a metric space is bounded if for all $x, y \in A$, there exists M > 0 such that $d(x, y) \leq M$

Theorem

Any compact set in a metric space must be closed and bounded

- Notice that this theorem is NOT an if and only if statement
- Just like many functions had nice properties on compact subsets of \mathbb{R} , functions on compact sets of more general spaces often have nice properties

Maps Between Spaces

Definition (Continuity)

Let (X,d_X) and (Y,d_Y) be metric spaces. A map $f:X\to Y$ is continuous at $x\in X$ in the metric sense if for all $\varepsilon>0$, there exists $\delta>0$ such that $d_X(x,x')<\delta$ implies that $d_Y(f(x),f(x'))<\varepsilon$

- \blacksquare We can define uniform continuity as well as notions of convergence of sequences of maps in a similar way as with $\mathbb R$
- We cannot define series of points or of functions because we do not have a way of adding points together
- lacktriangle Many theorems about the behavior of functions from $\Bbb R$ carry over directly to (complete) metric spaces as well
- Anything which required the statement "closed and bounded implies compact" is likely to fail (in ∞-dimensional spaces in particular)

Density of Sets

Definition (Closure of a Set)

The closure of A is defined to be

$$\overline{A} = \{x \in X : a \text{ is a limit points of } A\}$$

Definition (Dense Sets)

A set, A, is dense in (X, d) if $\overline{A} = X$.

Definition (Interior of a Set)

The interior of a set, A, is the set

$$A^{\circ} = \{x \in A : \exists \varepsilon > 0 \text{ such that } V_{\varepsilon}(x) \subseteq A\}$$

Definition (Nowhere-Dense Sets)

A set, A, is nowhere-dense if $\overline{A}^{\circ} = \emptyset$

The Baire Category Theorem

Theorem

Let $\{O_n\}_{n=1}^{\infty}$ be a countable collection of open, dense sets. Then,

$$\bigcap_{n=1}^{\infty} O_n \neq \emptyset$$

Theorem

A set, A, is nowhere dense if and only if \overline{A}^c is dense

Theorem (Baire Category Theorem)

If (X, d) is a complete metric space, then X cannot be written as a countable union of nowhere-dense sets

So, in all metric spaces, there is a natural categorization of sets by whether they can or cannot be expressed as the countable union of nowhere-dense sets

Differentiability is Rare

Theorem

The set of functions,

$$D=\{f\in C[0,1]: f \ \textit{is differentiable at at least 1 point}\}$$
 is of first category in $(C[0,1],d_{\infty})$

- One key idea used in the proof is the equivalence between the statements $|f(x)-p(x)|<\varepsilon$ for all $x\in[0,1]$ " and $d_\infty(f,p)<\varepsilon$ " for p any continuous function
- This gives us a new perspective on the Stone-Weierstrass theorem (and the other approximation theorems). Any set of continuous functions satisfying the SW theorem hypotheses must be dense in $(C[0,1],d_{\infty})$

Topological Notions

Definition (Compactness)

A set, A, is compact in the topological sense if every cover of A by open sets has a finite subcover

Definition (Continuity)

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f: X \to Y$ is continuous at $x \in X$ in the topological sense if for all $B \in \mathcal{T}_Y$ such that $f(x) \in B$, there is a set $A \in \mathcal{T}_X$ such that $x \in A$ and $f(A) \subseteq B$

Definition (Density)

A set, A, is dense in (X, \mathcal{T}) in the topological sense if for all $B \in \mathcal{T} \setminus \{\emptyset\}$, $A \cap B \neq \emptyset$

Topological Notions (Continued)

Definition (Interior)

The interior of a set, A, is the set

$$A^{\circ} = \{x \in A : \exists B \in \mathcal{T} \text{ such that } x \in B \text{ and } b \subseteq A\}$$

Definition (Nowhere-Density)

A set, A, is nowhere-dense if $\overline{A}^{\circ} = \emptyset$

Theorem

For metric spaces with the respective metric topologies, the topological and metric definitions of the previous properties are equivalent.