Approximate Bayesian Calibration of a Movement Model

Movement model

Laziness
Basket size
Food radius
Concentration

Turning angle $\alpha \in N(\mu = 0, sd = concentration)$

Observed data: y_{obs}

Model simulations: y_{sim}

$$\min(d(y_{obs} - y_{sim}))$$
 Likelihood

$$\min(d(y_{obs} - y_{sim})) \longrightarrow ?$$

$$\min(d(y_{obs} - y_{sim})) \qquad \longrightarrow \qquad ?$$

$$\min(d(y_{obs} - y_{sim})) \longrightarrow ?$$

Summary statistics *s* :

$$\min(\mathbf{d}(s_{obs} - s_{sim})) \longrightarrow L(\vartheta) \propto P(y_{obs}|\vartheta)$$

$$> 0$$

$$-50$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$-150$$

$$P(\boldsymbol{\vartheta}|y_{obs}) = P(y_{obs}|\boldsymbol{\vartheta})P(\boldsymbol{\vartheta}) c$$
 Bayesian

$$P(\boldsymbol{\vartheta}|y_{obs}) = P(y_{obs}|\boldsymbol{\vartheta})P(\boldsymbol{\vartheta}) c$$
 Bayesian

1. Summary Statistics s_{obs}

$$P(\boldsymbol{\vartheta}|y_{obs}) = P(y_{obs}|\boldsymbol{\vartheta})P(\boldsymbol{\vartheta}) c \longrightarrow \text{Bayesian}$$

$$P(s_{obs}|\boldsymbol{\vartheta})$$

$$P(\boldsymbol{\vartheta}|y_{obs}) = P(y_{obs}|\boldsymbol{\vartheta})P(\boldsymbol{\vartheta}) c \qquad \text{Bayesian}$$

- 1. Summary Statistics s_{obs}
- 2. Rejection Sampling

$$P(\boldsymbol{\vartheta}|y_{obs}) = P(y_{obs}|\boldsymbol{\vartheta})P(\boldsymbol{\vartheta}) c \qquad \text{Bayesian}$$

1. Summary Statistics s_{obs}

$$d(s_{obs}, s_{sim}) < \varepsilon$$

$$P(\boldsymbol{\vartheta}|y_{obs}) = P(y_{obs}|\boldsymbol{\vartheta})P(\boldsymbol{\vartheta}) c \qquad \text{Bayesian}$$

- 1. Summary Statistics s_{obs}
 - Approximation
- 2. Rejection Sampling

Known

*****----

Concept

Movement model

Unknown

Laziness
Basket size
Food radius
Concentration

"Observations"

1. Approximation: from observations to path characteristics

ID	day	time	x y	•	
•••				Meansteplength	4.888
90	1	3.54	53.811 3.	S. 353 Sdsteplength	8.433
91	1	3.58	55.605 0	0.198 Meanturning	0.578
92	1	3.63	56.668 -	-0.646 Meandayreturns	11.00
93	1	3.67	58. 46 - S	-2.96 Mediandisttocamp	11.606
• • •				•••	

2. Approximation: rejection sampling

2. Approximation: rejection sampling

1. Approximation revisited: sufficient summary statistics

$$rf_{1}(c \sim s_{1} + s_{2} + \dots + s_{15}, data = s_{sim})$$

$$rf_{2}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c}, data = s_{sim})$$

$$rf_{3}(L \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs}, data = s_{sim})$$

$$rf_{3}(L \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs}, data = s_{sim})$$

$$rf_{4}(Foo \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{4}(Foo \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

$$rf_{5}(bs \sim s_{1} + s_{2} + \dots + s_{15} + \hat{c} + \hat{bs} + \hat{L}, data = s_{sim})$$

2. Approximation: rejection sampling

ABC posterior distributions

True Parameter value

Concentration

Basket size

Random forest regression

Laziness

Food radius

Predicting paths

Predicting paths

Thank you!

Random forest: summary statistics importance

RF1: variable importance (impurity)

Meandisplacement3	42.57915
Displacementbydistance	63.40940
meandisplacement	68.09301
meandisttocamp	90.80862
sddisplacement3	92.88594
quantile50	93.97087
xquantile90	95.74502
sddisplacement	114.44592
maxdisttocamp	131.01203
mediandisttocamp	131.63789
sdturning3	341.68142
Meandayreturns	454.50767
sdturning	517.69378
meanturning3	688.93763
Meanturning	1144.57222

RF2: variable importance (impurity)

Sdturning	3982.244
maxdisttocamp	5657.688
meanturning	7387.011
sdturning3	10913.640
С	13574.786
sddisplacement3	17892.071
xquantile90	27949.146
meanturning3	40984.235
Meandisplacement3	42971.396
sddisplacement	62092.707
meandisttocamp	86890.544
meandisplacement	108211.122
xquantile50	138974.935
mediandisttocamp	215024.889
Displacementbydistance	311789.108
meandayreturns	378759.727

ABC posterior distributions for 1000 individuals