SDS 385 Exercises 9: Matrix factorization

Xinying Hao

Department of Marketing, The University of Texas at Austin

Nov.11, 2016

1 Application to marketing

1.1 Latent Dirichlet Model

LDA is to model documents as arising from multiple topics, where a topic is defined to be a distribution over a fixed vocabulary of terms. The basic idea is that we can only observe the count of categories for each document (customer) and we want to know the hidden variables represent the latent topic structure, i.e. the topics themselves and how each document (customer) exhibits them (Blei & Lafferty, 2003). Now we assume that there are d=1...D documents (customers), n=1..N, words per document, and k=1...K topics (segments).

- 1. Each document(customer) is a random mixture of topics(segments). As in Figure $1, \theta_d \sim dir(\alpha)$, which confirms to a Dirichlet distribution with parameter α, θ_d is a vector of topic proportions. In other word, θ_d indicate the probability of document d belonging to each topic.
- 2. Each category is drawn from one of topics. $Z_{d,n} \sim multi(\theta_d)$, $Z_{d,n} \in \{1,...,K\}$ is the topic assignment for each category in each document. The estimate of $Z_{d,n}$ is a list, where each element of the list, is an integer vector indicating the topic assignment for each category.
- 3. We only observe the categories of each document (customer), $W_{d,n} \sim multi(\beta_{z_{d,n}})$, which is the observed data.
- 4. So our goal is to infer the underlying topic structure, $\beta_k \sim dir(\eta)$, the distribution of

Figure 1: Graph Representation of LDA

Figure 2: Find the Optimal Number of Topics

each topic over categories. The estimates of β_k are shown in Figure 2. Note that we have the estimates of the number of times a categories was assigned to a topic.

1.2 Sparse Matrix Factorization

- Transform the data using square root, i.e. $x_{ij}^{Transform} = \sqrt{x_{ij}}$
- $-\ \lambda_u=1.8,\,\lambda_v=1.8$ (larger λ may result in large set of non-zero categories)

Diddle of the particular of th

Figure 3: Market Segments Distribution over Categories

Table 1: Top Categories_LDA

Segment1	Segment2	Segment3	Segment4	Segment5	
religion	health_nutrition	politics	college_uni	cooking	
adult	personal_fitness	news	online_gaming	fashion	
sports_fandom	outdoors	travel	${ m tv_film}$	photo_sharing	
parenting	cooking	automotive	sports_playing	beauty	
food	food	computers	art	chatter	
school	adult	chatter	adult	shopping	
family	eco	sports_fandom	music	dating	
crafts	dating	current_events	chatter	uncategorized	
beauty	spam	business	uncategorized	music	
home_and_garden	uncategorized	${ m tv_film}$	current_events	school	

Table 2: Top Categories_Sparse Matrix Factorization

Factor1		Factor2		Factor3		Factor4		Factor5	
health_nutrition	0.87	chatter	0.68	politics	0.76	cooking	0.82	cooking	0.76
personal_fitness	0.34	health_nutrition	0.65	travel	0.52	photo_sharing	0.41	photo_sharing	0.44
chatter	0.28	politics	0.28	computers	0.34	beauty	0.31	fashion	0.37
outdoors	0.20	travel	0.19	news	0.18	fashion	0.26	politics	0.27
tv_film	0.04							travel	0.11
cooking	0.03							beauty	0.05
food	0.02								
photo_sharing	0.01								

Figure 4: Word Clouds. How to target the right audience with the right messages?

Segment1 & Segment2

Segment3 & Segment4

Segment5

