Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

Mathias Niepert

Pasquale Minervini

Luca Franceschi

Motivating Example 1

- ◆ Learning to Plan
 - 1. A complex neural network learns to assign weights to cells in a map
 - 2. Weights are used as input to a shortest-path solver
 - 3. A shortest path is returned by the solver and used in a downstream loss function, comparing the shortest path with a gold shortest path

Motivating Example 2

- ◆ Learning to Explain
 - 1. A complex neural network learns to assign weights to input features
 - 2. Weights are treated as parameters of a discrete distribution with k-subset constraint
 - 3. Subset of size exactly k is sampled and used as input to the classification model
 - 4. At test time, the argmax (MAP) is used to select k most important words

in the aroma, coffee and chocolate that is quite pronounced. in the taste, coffee, dry chocolate and a hit of hoppy bitterness. a small bite and medium bodied mouthfeel, with a dry roasty coffee in the aftertaste. a nice coffee and chocolate taste, nice hop presence, really freakin good.

in the aroma, coffee and chocolate that is quite pronounced. in the taste, coffee, dry chocolate and a hit of hoppy bitterness. a small bite and medium bodied mouthfeel, with a dry roasty coffee in the aftertaste. a nice coffee and chocolate taste, nice hop presence, really freakin good.

input text

Weight θ assigned to each token

Sample discretely exactly k tokens

Chen et al. Learning to Explain: An Information-Theoretic Perspective on Model Interpretation, ICML 2018

Discrete Exponential Family Distribution

◆ We can turn any discrete combinatorial optimization problem (with linear objective) into a discrete probability distribution

$$p(z; \boldsymbol{\theta}) = \begin{cases} \exp(\langle z, \boldsymbol{\theta} \rangle & -A(\boldsymbol{\theta})) & \text{if } z \in \mathcal{C}, \\ 0 & \text{otherwise.} \end{cases}$$

Assigns probability mass to every z which statisfies contraints

Maximum a-posteriori (MAP) state of p (a most probable configuration)

Problem Definition

- 1. We *only* assume that the combinatorial optimization algorithm can be executed when given input θ
- 2. We *only* assume ability to compute MAP (most probable) states of the discrete probability distribution with parameters θ

Central question: How do we compute/estimate $\nabla_{\theta}L$?

$$oldsymbol{z} egin{pmatrix} 1 & 0 & \cdots & 0 \ 1 & 0 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Maximum Likelihood Learning (MLE)

Central question: How do we compute/estimate $\nabla_{\theta}L$?

For the model above, we have exact MLE gradients for any y:

$$\boldsymbol{\nabla}_{\boldsymbol{\theta}}L(\boldsymbol{x},\boldsymbol{y}) = \boldsymbol{\nabla}_{\boldsymbol{\theta}}[-\text{log } p\left(\boldsymbol{y};\boldsymbol{\theta}\right)] = \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z};\,\boldsymbol{\theta})}[\boldsymbol{z}] - \boldsymbol{y}$$

We only need a way to approximate the marginals $\mathbb{E}_{z \sim p(z; \theta)}[z]$ (we use perturb and MAP explained on the next slide)

Maximum likelihood learning reduces the KL divergence between the model distribution $p_{\mathbf{W}}\mathbf{y}; \boldsymbol{\theta}_{\mathbf{X}}$ and the data distribution

The setting has been addressed by several prior methods [Pogancic et al. 2019, Berthet et al. 2020]

Perturb and MAP

lacktriangle Since we only assume the ability to compute MAP states (execute the discrete component), we use *local* perturb and MAP to approximately sample from p

 We introduce a new Sum-of-Gamma distribution for noise perturbations which has beneficial properties

Implicit MLE

Central question: How do we compute/estimate $\nabla_{\theta}L$?

In the above model, we do **not** have access to the empirical distribution $q(z; \theta')$ (y here is not of the same type as the *latent* z) \rightarrow vanilla MLE **not** applicable

Idea: Construct a surrogate empirical distribution (= target distribution) $q(z; \theta')$

Target Distribution

- ◆ Based on perturbation-based implicit differentiation [Domke 2010]
- lacktriangle Change the parameters θ using the downstream, loss-induced gradients

◆ **Note:** Straight-through estimator uses these loss-induced gradients directly

Putting the Pieces Together

$$\overline{oldsymbol{z}} = \mathtt{MAP}(oldsymbol{ heta} + oldsymbol{\epsilon}) \ ext{and} \ oldsymbol{\epsilon} \sim
ho(oldsymbol{\epsilon})$$

Perturb and MAP

$$\overline{oldsymbol{z}}$$
 $\ell(f_{oldsymbol{u}}(\overline{oldsymbol{z}}), oldsymbol{y})$

$$q(z; \boldsymbol{\theta}') = p(z; \boldsymbol{\theta} - \lambda \nabla_{z} \ell(f_{u}(\overline{z}), \boldsymbol{y}))$$

Construct target distribution

$$\nabla_{\boldsymbol{\theta}} L \approx \mathtt{MAP}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) - \mathtt{MAP}(\boldsymbol{\theta}' + \boldsymbol{\epsilon})$$

Compute approximate MLE gradients

Experiments

◆ Learning to Explain sentiment scoring

in the aroma, coffee and chocolate that is quite pronounced. in the taste, coffee, dry chocolate and a hit of hoppy bitterness. a small bite and medium bodied mouthfeel, with a dry roasty coffee in the aftertaste. a nice coffee and chocolate taste, nice hop presence, really freakin good.

in the aroma, coffee and chocolate that is quite pronounced. in the taste, coffee, dry chocolate and a hit of hoppy bitterness. a small bite and medium bodied mouthfeel, with a dry roasty coffee in the aftertaste. a nice coffee and chocolate taste, nice hop presence, really freakin good.

chocolate coffee chocolate hoppy bitterness bodied roasty nice chocolate good

output

True (positive sentiment)

False (negative sentiment)

Method	Test MSE		Subset Precision	
	Mean	Std. Dev.	Mean	Std. Dev.
k = 10				
L2X (t = 0.1)	6.68	1.08	26.65	9.39
SoftSub ($t = 0.5$)	2.67	0.14	44.44	2.27
STE ($\tau = 30$)	4.44	0.09	38.93	0.14
I-MLE MAP	4.08	0.91	14.55	0.04
I-MLE Gumbel	2.68	0.10	39.28	2.62
I-MLE ($\tau = 30$)	2.71	0.10	47.98	2.26

Experiments

Straight-through estimator vs. Score function estimator vs. I-MLE

Additional Applications

- Discrete world models
- ◆ Neural Causal Discovery
- ◆ Reinforcement learning with complex multi-step actions
- ◆ Relational Structure Discovery (e.g., for GNNs)
- ◆ Integrating statistical relational models into deep learning architectures

Limitations and "Dirty Little Secrets"

- Noise perturbation temperature and target distribution are hyperparameters of the approach and need tuning
- ◆ We have found stable learning behavior across temperatures but final results are sensitive to these parameters

Code Repository Available

Repositories with TF and PyTorch code

https://github.com/nec-research/tf-imle

https://github.com/uclnlp/torch-imle

Algorithm 1 Instance of I-MLE with perturbation-based implicit differentiation.

```
\begin{array}{ll} \textbf{function} \ \mathsf{FORWARDPASS}(\boldsymbol{\theta}) & \textbf{function} \ \mathsf{BACKWARDPASS}(\nabla_{\boldsymbol{z}}\ell(f_{\boldsymbol{u}}(\boldsymbol{z}),\hat{\boldsymbol{y}}),\lambda) \\ \text{// Sample from the noise distribution } \rho(\boldsymbol{\epsilon}) & \textbf{load } \boldsymbol{\theta}, \boldsymbol{\epsilon}, \text{ and } \hat{\boldsymbol{z}} \text{ from the forward pass} \\ \boldsymbol{\epsilon} \sim \rho(\boldsymbol{\epsilon}) & \text{// Compute a MAP state of perturbed } \boldsymbol{\theta} \\ \hat{\boldsymbol{z}} = \mathtt{MAP}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) & \text{// Single sample I-MLE gradient estimate} \\ \mathbf{save} \ \boldsymbol{\theta}, \ \boldsymbol{\epsilon}, \text{ and } \hat{\boldsymbol{z}} \text{ for the backward pass} \\ \mathbf{return } \hat{\boldsymbol{z}} & \mathbf{return } \widehat{\nabla}_{\boldsymbol{\theta}} \mathcal{L}(\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\theta}}') \\ \end{array}
```

```
@tf.custom gradient
def subset k(self, logits, k):
    # sample discretely with perturb and map
    z train = self.sample discrete forward(logits)
    # compute the top-k discrete values
    threshold = tf.expand dims(tf.nn.top k(logits, self.k, sorted=True)[0][:,-1], -1)
    z test = tf.cast(tf.greater_equal(logits, threshold), tf.float32)
    # at training time we sample, at test time we take the argmax
    z output = K.in train phase(z train, z test)
    def custom grad(dy):
        # we perturb (implicit diff) and then resuse sample for perturb and MAP
        map dy = self.sample discrete backward(logits - (self. lambda*dy))
        # we now compute the gradients as the difference (I-MLE gradients)
        grad = tf.math.subtract(z train, map dy)
        # return the gradient
        return grad, k
```