Exercise Sheet 1

Exercise 1

Let A: "Aldo is Italian" and B: "Bob is English". Formalize the following sentences:

- 1. Aldo is not Italian.
- 2. Aldo is Italian while Bob is English.
- 3. Aldo is Italian or if Aldo is not Italian then Bob is English.
- 4. Either Aldo is Italian and Bob is English, or neither Also is Italian nor Bob is English.

Solution

- 1. ¬A
- 2. $A \wedge B$
- 3. A \vee (\neg A \Rightarrow B)
- 4. $(A \wedge B) \vee \neg (A \vee B)$

Exercise 2

Angelo, Bruno and Carlo are three students that took the Logic exam. Consider a propositional language where:

- 1. p: Angelo passed the exam.
- 2. q: Bruno passed the exam.
- 3. r: Carlo passed the exam.

Write these propositions using p, q, and r and logical connectives (including negations).

- 1. Carlo is the only one passing the exam.
- 2. Only one among Angelo, Bruno and Carlo, passed the exam.
- 3. At least one among Angelo, Bruno and Carlo passed.
- 4. At least two among Angelo, Bruno and Carlo passed the exam.
- 5. Exactly two, among Aldo, Bruno and Carlo passed the exam.
- 6. At most two among Angelo, Bruno and Carlo passed the exam.

Solution

- 1. $r \land \neg p \land \neg q$
- $\begin{aligned} 2. & (p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \\ & \text{or} \\ & (p \vee q \vee r) \wedge \neg (p \wedge q) \wedge \neg (p \wedge r) \wedge \neg (q \wedge r) \end{aligned}$
- 3. $p \lor q \lor r$
- 4. $(p \wedge q) \vee (p \wedge r) \vee (q \wedge r)$
- 5. $(p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r)$
- 6. $\neg (p \land q \land r)$

or

$$(p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r)$$

Exercise 3

Construct a truth table for each of these compound propositions.

- 1. $(p \lor \neg q) \Rightarrow q$
- 2. $(p \Rightarrow q) \lor (p \Rightarrow \neg q)$
- 3. $(\neg p \lor q) \land (q \Rightarrow \neg r \land \neg p) \land (p \lor r)$

Solution

1.

p	q	$\neg q$	$p \vee \neg q$	$(p \vee \neg q) \Rightarrow q$
	1	Т	Т	
_	T			${ m T}$
T	_	Τ	Т	
T	T	上	Т	${ m T}$

2.

p	q	$\neg q$	$p \Rightarrow q$	$(p \Rightarrow \neg q)$	$(p \Rightarrow q) \lor (p \Rightarrow \neg q)$
1	1	Т	Т	Τ	Τ
上	T	上	Т	${ m T}$	${ m T}$
T	1	Τ		${ m T}$	${ m T}$
Γ	T	1	Γ		${ m T}$

3.
$$F = (\neg p \lor q) \land (q \Rightarrow \neg r \land \neg p) \land (p \lor r)$$

p	q	r	$\neg p$	$\neg r$	$\neg p \lor q$	$\neg r \wedge \neg p$	$q \Rightarrow \neg r \land \neg p$	$p \lor r$	F
	1	1	Т	Т	Т	T	T		\perp
_	1	$\mid T \mid$	T		Т		ightharpoons T	Т	T
1	Τ	_	T	Т	Т	${ m T}$	ightharpoons T		\perp
1	Τ	T	T	1	T			Т	\perp
T	1	1	_	Т			ight]	Т	\perp
T	1	T	1	1			m T	T	
T	Т	\perp	_	Т	T			Γ	\perp
Т	Т	T	上	上	Т			Т	\perp

Exercise 4

Show that each of these conditional statements is a tautology by/without using truth tables.

- 1. $[\neg p \land (p \lor q)] \Rightarrow q$
- 2. $[p \land (q \Rightarrow q)] \Rightarrow q$
- 3. $[(p \lor q) \land (p \Rightarrow r) \land (q \Rightarrow r)] \Rightarrow r$

Solution

1.

p	q	$\neg p$	$p \lor q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \Rightarrow q$
1	1	Т			T
\perp	T	T	T	${ m T}$	${f T}$
Τ	1	1	T		${f T}$
Τ	Т	1	Т		\mathbf{T}

$$[\neg p \land (p \lor q)] \Rightarrow q \equiv \neg [\neg p \land (p \lor q)] \lor q$$

$$\begin{split} &\equiv [p\vee\neg(p\vee q)]\vee q\\ &\equiv [p\vee(\neg p\wedge\neg q)]\vee q\\ &\equiv [(p\vee\neg p)\wedge(p\vee\neg q)]\vee q\\ &\equiv [T\wedge(p\vee\neg q)]\vee q\\ &\equiv (p\vee\neg q)\vee q\\ &\equiv p\vee\neg q\vee q\\ &\equiv p\vee T\\ &\equiv T \end{split}$$

Exercise 5

Show that the following conditional statements are logically equivalent:

- 1. $(p \Rightarrow q) \land (p \Rightarrow r)$ and $p \Rightarrow (q \land r)$
- 2. $(p \Rightarrow r) \land (q \Rightarrow r)$ and $(p \lor q) \Rightarrow r$
- 3. $(p \Rightarrow q) \lor (p \Rightarrow r)$ and $p \Rightarrow (q \lor r)$
- 4. $\neg p \Rightarrow (q \Rightarrow r)$ and $q \Rightarrow (p \lor r)$

Solution

1. Build the truth tables for the both conditional statements and compare the truth values for each possible situation.

Exercise 6

Construct DNF and CNF for the examples in Exercise 3.

Solution

- 1. CNF: $(p \lor q) \land (\neg p \lor q)$
 - DNF: $(\neg p \land q) \lor (p \land q)$
- 2. CNF: -

DNF:
$$(\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land \neg q) \lor (p \land q)$$

- $3. \ \text{CNF:} \ (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor \neg r)$
 - DNF: $\neg p \land \neg q \land r$