Let the numbers talk!

Use Excel to learn how probability & statistics speak for your data

Rutgers Libraries - NB Data Science Workshop Series

Pratiksha Sharma Oct 06, 2022

Fall 2022 Hours

Pratiksha Sharma - Data Science Graduate Specialist

Email: pratiksha.sharma@rutgers.edu

Topics: Data Science, Tableau, Python, SQL & NoSQL Databases

Office Hours (by appointment):

Thursday 12:30 - 01:00 pm (on days when workshop ends at 12:30 pm)

Thursday 01:00 - 01:30 pm (on days when workshop ends at 01:00 pm)

General Consultation: Request an appointment via email

Location:

Zoom Meeting Link

Meeting ID: 926 5210 0393

Passcode: 772895

Data Science What's all the fuss about?

- A combination of Maths & Statistics, Computer Science and Domain Knowledge.
- This workshop is about Maths & Statistics!
- You don't need to be an expert but maths & statistics are the building blocks of nature:)

Motivation

Source: Bill Waterson | Universal Press Syndicate

Before we begin..

- We will be using MS Excel in this workshop
- Particularly some examples from the Analysis ToolPak: <u>Load Analysis ToolPak</u> for Excel
- You are encouraged to participate & follow along!
- Data would be provided in the Zoom chat & will be available later on with the workshop materials on: <u>Rutgers Libguides Data Science Workshops</u>

Probability & Statistics

We will cover...

- Data & its types
- Back to the Basics: Probability
- Back to the Basics: Statistics
- Probability Distribution: Normal Distribution

Data & its types

Data can be categorized into two types:

Data & its types Gold! Data Ratio **Nominal** Weight RUID Zipcode Price/Income **Ordinal** Interval **Temperature Shoe Size** Rank Age (not Kelvin)

Back to the Basics: Probability

Probability is the likelihood of the occurrence of an event

$$p(x) = \frac{number\ of\ outcome\ x}{total\ number\ of\ outcomes}$$

x = picking a red card

$$p(x) = \frac{\text{total number of } red \text{ cards in the deck}}{\text{total number of } cards \text{ in the deck}}$$

$$p(x) = \frac{26}{52} = \frac{1}{2}$$

Back to the Basics: Probability

What is the probability of getting an ace or a red card?

$$A = picking an ace$$

 $B = picking a red card$

$$p(A) = \frac{\text{total number of aces in the deck}}{\text{total number of cards in the deck}} = \frac{4}{52}$$

$$p(B) = \frac{\text{total number of } \text{red } \text{cards in the } \text{deck}}{\text{total number of } \text{cards in the } \text{deck}} = \frac{26}{52}$$

$$p(A \text{ and } B) = \frac{\text{total number of } \text{red aces in the deck}}{\text{total number of cards in the deck}} = \frac{2}{52}$$

$$p(A or B) = p(A) + p(B) - p(A and B)$$

$$p(A \text{ or } B) = \frac{4}{52} + \frac{26}{52} - \frac{2}{52} = \frac{28}{52}$$

Back to the Basics: Probability

 Repetition: What is the probability of picking a red card (with replacement), three times in a row?

x = picking a red card three times in a row

$$p(x) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

• Enter probability distributions!

- Statistics is the practice of collecting & analyzing numerical data
- Let's jump to MS Excel with our first example dataset!
- In this case, our population itself was the height of 30 students in a class, but what if our population is massive?

Motivation

Source: Bill Waterson | Universal Press Syndicate

- Statistics is the practice of collecting & analyzing numerical data
- Let's jump to MS Excel with our first example dataset!
- In this case, our population itself was the height of 30 students in a class, but what if our population is massive?
- More appropriate: Statistics is the practice of collecting & analyzing massive numerical data
- The relationship between statistics & probability theory exists because you
 now want to approximate characteristics about your population data given you
 have some characteristics from sample data

Before we jump into Probability Distributions

 Descriptive Statistics focus on describing the visible/visual characteristics of your data such as Measures of Central Tendency (Mean, Median, Mode, Range) or Measures of Variability/Dispersion (Standard Deviation, Variance, Interquartile Range) or Measures of Asymmetry.

Measures of Central Tendency

Count

The number of items or instances in a list associated with a population's variable

Mean

The average,
"typical" value,
or the measure
of central
tendency of a
variable

Mean(X) = Sum(X) / Count(X)

Median

The middle value of a list of variable values

 Do NOT confuse with Mean

Mode

The most commonly observed value in a list of variable values

Range

The difference between the maximum and minimum values for a variable

Range(X) = Max(X) – Min(Y)

Source: Robert Young | Rutgers NB Library

Measures of Variability (Dispersion)

Normalize

A way to adjust data to fall within a specified range, such as from 0-1

Residual

How much an observed value differs from a statistical value

Variance

The continuous spread of values compared to variable's mean value

Standard Deviation

Another way to determine the continuous spread of values, BUT on the same scale as the variable values

Skewness

The symmetry associated with the distribution of variable data

Source: Robert Young | Rutgers NB Library

Measures of Asymmetry (Skewness)

Image Source: https://www.statisticshowto.com/pearson-mode-skewness/

Measures of Asymmetry (Skewness)

Before we jump into Probability Distributions

- Inferential Statistics focus on making a generalization or prediction on the population based on a sample that is appropriately representative of the population.
- Your sample needs to be unbiased i.e. random
- Inferential Statistics includes Hypothesis Testing, Confidence Intervals, Correlation & Regression Analysis

Before we jump into Probability Distributions

- Hypothesis Testing: Eliminate the chance of getting a result by chance!
- Confidence Intervals: Remember that you are *approximating* the characteristics of a population. There will be error associated with your approximation & it is always better to say, "we are 95% confident that the mean height of students is between 5'3" & 5'8""

Image Source: Hugh Govan | researchgate.net

Before we jump into Probability Distributions

- Correlation & Regression Analysis:
- Both study the relationship between two or more variables.
- Regression particularly studies cause & effect. For eg. Does eating a chocolate cause a rise in blood sugar level?
- Correlation measures the degree of association.
 For eg. Restaurant sales & sunburns are both high on sunny days near the beach. There is definitely no cause/effect relationship here.

Motivation

Source: Bill Waterson | Universal Press Syndicate

Probability Distribution

Normal Distribution

- The most commonly occurring distribution in nature
- Its a probability 'bell' curve symmetric about the mean
- The values near to the mean are the most frequently occurring values
- The mean & the standard deviation are capable of explaining the underlying distribution of data

BELL CURVE

Image Source: Vikram Poddar | The Economic Times

Probability Distribution

Normal Distribution

- Look at data in terms of 'distance' from the mean
- 'Distance' can be measured in terms of standard deviations
- The values within 1 standard deviation are the most frequently occurring values
- Reinforce the idea that the mean & standard deviation are a capable of explaining an underlying normal distribution

Image Source: Wikipedia

MS Excel Analysis ToolPak We will cover..

- Descriptive Statistics (Summary Statistics)
- Sampling
- Correlation Analysis
- ANOVA (Single Factor)
- Next Time: Regression Analysis

Takeway

Image Source: https://www.statisticshowto.com/

Upcoming Workshops

https://libcal.rutgers.edu/nblworkshops

- "You will spend nearly 70% of your time doing this!" Organize & pre-process your Data: Oct 13
- The Power of Visual Storytelling: Learning Tableau Public: Oct 20
- "Make your computer work for you!" Learn how to use Python to program your tasks- Part 1: Oct 27
- "Make your computer work for you!" Explore popular Data Science libraries in Python - Part 2: Nov 03

Feedback Form

https://rutgers.libwizard.com/f/graduate_specialist_feedback