Лекция 7

7.1. Классические и квантовые случайные процессы

Целью лекции будет рассказ о том, как классические винеровский и пуассоновский случайные процессы вкладываются в симметричное (бозонное) пространство Фока. Что касается винеровского процесса, идеология такого вложения следует разложению Винера—Ито пространства L^2 -функционалов от броуновского движения [12]. Вложение пуассоновского процесса было предложено в пионерской работе [32].

Всюду ниже T обозначено одно из множеств $\mathbb{R}, \mathbb{R}_+, \mathbb{Z}$ или \mathbb{Z}_+ .

Определение 7.1. Однопараметрическое множество случайных величин $\{\xi_t, t \in T\}$ называется (*классическим*) случайным процессом, если задано совместное распределение вероятностей:

$$Pr(\xi_{t_1} \in B_1, \dots, \xi_{t_n} \in B_n)$$

для любого выбора индексов $t_j \in T$ и подмножеств $B_j \in \mathcal{B}(\mathbb{R})$.

Определение 7.2. Процесс $\{\xi_t, t \in T\}$ называется случайным процессом с независимыми приращениями, если случайные величины $\xi_{t_1} - \xi_{s_1}$ и $\xi_{t_2} - \xi_{s_2}$ независимы при любом выборе непересекающихся интервалов $(s_1, t_1) \cap (s_2, t_2)$.

Пример 7.1. Случайный процесс с независимыми приращениями $\{\xi_t, t \in \mathbb{R}_+\}$ называется *винеровским*, если $\xi_t - \xi_s \in \mathcal{N}(0, t - s)$), s < t, то есть распределение вероятностей $\xi_t - \xi_s$ является гауссовским:

$$Pr(\xi_t - \xi_s \in B) = \frac{1}{\sqrt{2\pi(t-s)}} \int_B exp\left(-\frac{x^2}{2(t-s)}\right) dx,$$

 $s < t, B \in \mathcal{B}(\mathbb{R}_+).$

Пример 7.2. Случайный процесс с независимыми приращениями $\{\xi_t, t \in \mathbb{R}_+\}$ называется *пуассоновским*, если $\xi_t - \xi_s \in \mathcal{P}(t-s), s < t$, то есть распределение вероятностей $\xi_t - \xi_s$ является пуассоновским:

$$Pr(\xi_t - \xi_s = k) = e^{-t+s} \frac{(t-s)^k}{k!},$$

 $s < t, \ k = 0, 1, 2, \dots$

Определение классических случайных процессов с независимыми приращениями может быть перенесено на квантовый случай в следующей форме:

Определение 7.3. Пара ($\{X_t, t \in T\}$, ρ), состоящая из семейства наблюдаемых $X_t \in \mathfrak{A}$ и состояния $\rho \in \mathfrak{S}$, называется квантовым случайным процессом с независимыми приращениями, если приращения процесса $X_{st} = X_t - X_s$ коммутируют (наблюдаемые совместимы):

$$[X_{s_1t_1}, X_{s_2t_2}] = 0$$

для непересекающихся интервалов $(s_1, t_1) \cap (s_2, t_2) = \emptyset$ и классические случайные величины $\xi_{s_j t_j}$ с совместным распределением, определяемым формулой (см. определение 3.15):

$$Pr(\xi_{s_1t_1} \in B_1, \dots, \xi_{s_nt_n} \in B_n) = Tr(\rho E_1(B_1) \dots E_n(B_n)),$$

где (E_j) – проекторозначные меры, отвечающие наблюдаемым $(X_{s_jt_j})$, независимы.

7.2. Симметричное пространство Фока

Рассмотрим тензорное произведение H^{\otimes^n} , состоящее из n копий гильбертова пространства H. Скалярное произведение в H^{\otimes^n} задаётся на элементарных тензорах формулой

$$\langle f_1 \otimes \cdots \otimes f_n, g_1 \otimes \cdots \otimes g_n \rangle_{H^{\otimes^n}} = \prod_{j=1}^n \langle f_j, g_j \rangle_H,$$

 $f_j,g_j\in H,$ и продолжается затем на всё пространство по линейности. Определим ортогональный проектор $P_s:H^{\otimes^n}\to H^{\otimes^n}$ по формуле

$$P_s e_1 \otimes e_2 \otimes \cdots \otimes e_n = \frac{1}{n!} \sum_{s \in S} e_{s(1)} \otimes \cdots \otimes e_{s(n)},$$

где суммирование ведётся по множеству S, состоящему из всех перестановок множества $\{1,\dots,n\}$ и $e_j\in H.$

Определение 7.4. Подпространство $H^{\otimes_s^n} = P_s H^{\otimes^n}$ называется *сим-метризованным тензорным произведением п* копий пространства H.

Определение 7.5. Гильбертово пространство:

$$F(H) = \{\mathbb{C}\Omega\} \oplus \bigoplus_{n=1}^{+\infty} H^{\otimes_s^n}$$

называется симметричным (бозонным) пространством Фока. Фиксированный вектор Ω называется вакуумным, пространство $H-o\partial n$ -частичным, а пространства $H^{\otimes_s^n}-n$ -частичными.

Ранее мы рассматривали модель квантового гармонического осциллятора. Нашей целью теперь будет построение модели бесконечного множества квантовых гармонических осцилляторов в гильбертовом пространстве F(H). Модель, которую мы построим, будет сводится к единичному осциллятору, когда dim H=1. Следующее определение даёт аналог когерентных состояний для F(H).

Определение 7.6. Для $f \in H$ элемент $e(f) \in F(H)$, определяемый формулой

$$e(f) = \sum_{n=0}^{+\infty} \frac{f^{\otimes^n}}{\sqrt{n!}},$$

называется экспоненциальным вектором.

Непосредственно проверяется, что скалярное произведение экспоненциальных векторов равно

$$\langle e(f), e(g) \rangle_{F(H)} = e^{\langle f, g \rangle_H}.$$
 (7.1)

Лемма 7.1. Линейные комбинации экспоненциальных векторов из множества

$$\{e(f), f \in H\}$$

nлотны в F(H).

Доказательство. Заметим, что

$$\frac{d^n}{dt^n}(e(tf))|_{t=0} = \sqrt{n!}f^{\otimes^n}.$$

С другой стороны, множество линейных комбинаций элементарных тензоров вида f^{\otimes^n} позволяет выразить любой элементарный тензор из $H^{\otimes^n_s}$. Докажем это по индукции. Для n=2 получаем

$$f \otimes g + g \otimes f = (f+g) \otimes (f+g) - f \otimes f - g \otimes g. \tag{7.2}$$

Пусть утверждение доказано для n. Докажем его для n+1. Рассмотрим элемент h, представляющий собой симметризованное тензорное произведение f и $g^{\otimes n}$:

$$h = f \otimes g^{\otimes^n} + g \otimes f \otimes g^{\otimes^{n-1}} + \dots + g^{\otimes^n} \otimes f, \tag{7.3}$$

где $f,g\in H$. Утверждение верно, если из равенства нулю скалярного произведения

$$\langle h, u^{\otimes^{n+1}} \rangle_{H^{\otimes^{n+1}}} = 0 \tag{7.4}$$

для любого $u \in H$ следует, что

$$h = 0$$
.

Заметим, что

$$\langle h, u^{\otimes^{n+1}} \rangle_{H^{\otimes^{n+1}}} = (n+1)\langle f, u \rangle_H \langle g, u \rangle_H^n. \tag{7.5}$$

Положим u=f, тогда из (7.4)-(7.5) вытекает $\langle g,f\rangle_H=0$ для всех $f\in H$, так что g=0. Аналогично, подставляя u=g, получаем, что f=0. Тем самым h=0.

В силу леммы 7.1 любой линейный оператор в F(H) достаточно задать на экспоненциальных векторах. Экспоненциальные вектора обладают ещё одним важным свойством, которое нам потребуется в дальнейшем.

Лемма 7.2. Отображение $U: F(H \oplus K) \to F(H) \otimes F(K)$, заданное на экспоненциальных векторах формулой

$$U(e(f \oplus g)) = e(f) \otimes e(g), \ f \in H, \ g \in K,$$

является унитарным оператором.

Доказательство. Нам нужно доказать, что U сохраняет скалярное произведение. Заметим, что

$$\langle e(f_1) \otimes e(g_1), e(f_2) \otimes e(g_2) \rangle_{F(H) \otimes F(K)} = \langle e(f_1), e(f_2) \rangle_{F(H)} \langle e(g_1), e(g_2) \rangle_{F(K)} =$$

$$= e^{\langle f_1, f_2 \rangle_H + \langle g_1, g_2 \rangle_K}, f_j \in H, \ g_k \in K.$$

С другой стороны,

$$\langle e(f_1 \oplus g_1), e(f_2 \oplus g_2) \rangle_{F(H \oplus K)} = e^{\langle f_1, f_2 \rangle_H + \langle g_1, g_2 \rangle_H},$$

$$f_j \in H, \ g_k \in K.$$

Для $f \in H$ определим оператор a(f) на экспоненциальных векторах по формуле

$$a(f)e(g) = \langle f, g \rangle e(g), \ g \in H. \tag{7.6}$$