PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-331945

(43) Date of publication of application: 30.11.2001

(51)Int.CI.

G11B 7/007 G11B 7/004 G11B 20/12

(21)Application number: 2001-069466

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

12.03.2001

(72)Inventor: FUKUSHIMA TOSHIYUKI

UEDA HIROSHI ITOU MOTOYUKI TAKAUCHI KENJI

(30)Priority

Priority number: 2000068306

Priority date: 13.03.2000

Priority country: JP

(54) INFORMATION RECORDING MEDIUM, INFORMATION RECORDING AND REPRODUCING METHOD AND INFORMATION RECORDING AND REPRODUCING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an information recording medium with which adequate recording and reproducing conditions may be acquired, an information recording and reproducing method and an information recording and reproducing device.

SOLUTION: This information recording medium 101 has a data region 103 for recording data, a drive information region 102 for recording at least drive information and the data region 103 includes plural segment regions 103 segmented in the radial direction of the information recording medium. Each of the at least one drive information includes the recording and reproducing conditions corresponding to one among the plural segment regions.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-331945 (P2001 - 331945A)

(43)公開日 平成13年11月30日(2001.11.30)

(51) Int.Cl.7	
G11B	7/007
	7/004
•	20/12

酸別記号

FΙ G11B 7/007 7/004 20/12

5 D 0 4 4 5D090

テーマコード(参考)

審査請求 未請求 請求項の数77 OL (全 27 頁)

(21)出顧番号	特顏2001-69466(P2001-69466)	(71)出顧人	000005821 松下電器産業株式会社	
(22) 出願日	平成13年3月12日(2001.3.12)	(72)発明者	大阪府門真市大字門真1006番地 福島 俊之	
(31) 優先権主張番号 (32) 優先日	特賦2000-68306 (P2000-68306) 平成12年3月13日 (2000.3.13)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	大阪府門真市大字門真1006番地 産業株式会社内	松下電器
(33)優先権主張国	日本 (JP)	(72)発明者	植田 宏 大阪府門真市大字門真1006番地 産業株式会社内	松下電器
		(74)代理人		

最終頁に続く

(54) 【発明の名称】 情報記録媒体、情報記録再生方法及び情報記録再生装置

(57)【要約】

【課題】 より適切な記録再生条件を取得する。

【解決手段】 本発明の情報記録媒体101は、データ を記録するためのデータ領域103と、少なくとも1つ のドライブ情報を記録するためのドライブ情報領域10 2と、を備えた情報記録媒体101であって、前記デー 夕領域102は前記情報記録媒体の半径方向に区分され た複数の区分領域103を含み、前記少なくとも1つの ドライブ情報のそれぞれは、前記複数の区分領域のうち の1つに対応する記録再生条件を含む。

【特許請求の範囲】

【請求項1】 データを記録するためのデータ領域と、 少なくとも1つのドライブ情報を記録するためのドライ ブ情報領域と、を備えた情報記録媒体であって、

前記データ領域は前記情報記録媒体の半径方向に区分された複数の区分領域を含み、

前記少なくとも1つのドライブ情報のそれぞれは、前記 複数の区分領域のうちの1つに対応する記録再生条件を 含む、情報記録媒体。

【請求項2】 前記記録再生条件は、前記情報記録媒体を装着し得る情報記録再生装置がデータを記録再生する際の動作条件を規定する、請求項1に記載の情報記録媒体。

【請求項3】 前記複数の区分領域のそれぞれは、前記記録再生条件を求めるための学習領域を含む、請求項1 に記載の情報記録媒体。

【請求項4】 前記データ領域は、ユーザ領域と、前記ユーザ領域に含まれる欠陥領域の代わりに使用され得る代替領域を含むスペア領域とを含み、

前記スペア領域内の未使用の代替領域が前記記録再生条件を求めるために使用される、請求項1に記載の情報記録媒体。

【請求項5】 前記データ領域は、前記記録再生条件を求めるためのみに使用される学習専用領域を含む、請求項1に記載の情報記録媒体。

【請求項6】 前記複数の区分領域のそれぞれは、ZC LV方式またはZCAV方式のいずれかに従う少なくと も1つのゾーンに相当する、請求項1に記載の情報記録 媒体。

【請求項7】 前記ドライブ情報領域は誤り訂正符号を計算するためのN個のECCブロックを含み、前記N個のECCブロックのそれぞれは複数のセクタを含み、前記複数の記録再生条件のそれぞれは、前記複数のセクタのうち対応する1つのセクタ内に記録されており、Nは1以上の整数である、請求項1に記載の情報記録媒体。

【請求項8】 前記ドライブ情報は、前記記録再生条件が求められた条件を示すバージョン情報をさらに含む、 請求項1に記載の情報記録媒体。

【請求項9】 前記複数の区分領域の少なくとも1つは、少なくとも1つの記録再生指示領域を含む、請求項1に記載の情報記録媒体。

【請求項10】 データを記録するためのデータ領域と、

少なくとも1つのドライブ情報を記録するためのドライブ情報領域と、を備えた情報記録媒体であって、

前記情報記録媒体の周囲温度の範囲を示す温度領域は、複数の区分温度領域を含み、

前記少なくとも1つのドライブ情報のそれぞれは、前記 複数の区分温度領域の1つに対応する記録再生条件を含 む、情報記録媒体。 【請求項11】 前記記録再生条件は、前記情報記録媒体を装着し得る情報記録再生装置がデータを記録再生する際の動作条件を規定する、請求項10に記載の情報記録媒体。

【請求項12】 前記ドライブ情報領域は誤り訂正符号を計算するためのN個のECCブロックを含み、前記N個のECCブロックのそれぞれは複数のセクタを含み、前記複数の記録再生条件のそれぞれは、前記複数のセクタのうち対応する1つのセクタ内に記録されており、Nは1以上の整数である、請求項10に記載の情報記録媒体

【請求項13】 前記ドライブ情報は、前記記録再生が 求められた条件を示すバージョン情報を含む、請求項1 0に記載の情報記録媒体。

【請求項14】 半径方向に区分された複数の区分領域を有するデータ領域を備えた情報記録媒体のための情報記録再生方法であって、

- (a) 前記複数の区分領域のうち記録再生の対象となる 区分領域を指示するステップと、
- (b) 前記指示された区分領域に対応する記録再生条件を取得するステップと、
- (c) 前記取得された記録再生条件に基づいて記録再生を行なうステップと、を包含する情報記録再生方法。

【請求項15】 前記記録再生条件は、前記情報記録媒体を装着し得る情報記録再生装置が記録再生する際の動作条件を規定する、請求項14に記載の情報記録再生方法。

【請求項16】 前記ステップ(b)は、学習処理により前記記録再生条件を求めるステップを含む、請求項14に記載の情報記録再生方法。

【請求項17】 (d)前記記録再生条件を前記情報記録媒体に記録するステップをさらに包含する、請求項16に記載の情報記録再生方法。

【請求項18】 前記情報記録媒体は、前記記録再生条件を含むドライブ情報が記録されたドライブ情報領域を さらに備え、

前記ステップ(b)は、前記ドライブ情報領域に記録された前記記録再生条件を読み出すステップを含む、請求項14に記載の情報記録再生方法。

【請求項19】 前記ドライブ情報は、前記記録再生条件が求められた条件を示すバージョン情報を含み、

(e) 前記バージョン情報に基づき、前記記録再生条件を利用するか更新するかを判定するステップをさらに包含する、請求項18に記載の情報記録再生方法。

【請求項20】 前記バージョン情報は、前記情報記録 再生装置のファームウェアに関する履歴情報を含む、請 求項19に記載の情報記録再生方法。

【請求項21】 前記ステップ(b)は、前記学習処理 において、前記複数の区分領域のそれぞれに含まれる学 習領域を使用するステップを含む、請求項16に記載の 情報記録再生方法。

【請求項22】 前記データ領域は、ユーザ領域と、前記ユーザ領域に含まれる欠陥領域の代わりに使用され得る代替領域を含むスペア領域とを含み、

前記ステップ(b)は、前記学習処理において前記スペア領域内の未使用の代替領域を使用するステップを含む、請求項16に記載の情報記録再生方法。

【請求項23】 前記ステップ(b)は、前記データ領域に含まれる学習専用領域を前記学習処理においてのみ使用する、請求項16に記載の情報記録再生方法。

【請求項24】 前記複数の区分領域のそれぞれは、Z CLV方式またはZCAV方式のいずれかに従う少なく とも1つのゾーンに相当する、請求項14に記載の情報 記録再生方法。

【請求項25】 前記複数の区分領域の少なくとも1つは、少なくとも1つの記録再生指示領域を含む、請求項14に記載の情報記録再生方法。

【請求項26】 情報記録媒体のための情報記録再生方法であって、

情報記録再生装置の装置温度の範囲を示す温度領域は、 複数の区分温度領域を含み、

前記情報記録再生方法は、

- (a) 前記情報記録再生装置の装置温度を測定するステップと、
- (b) 前記測定された装置温度が属する区分温度領域に 対応する記録再生条件を取得するステップと、
- (c) 前記取得された記録再生条件に基づいて記録再生 を行なうステップと、を包含する情報記録再生方法。

【請求項27】 前記記録再生条件は、前記情報記録媒体を装着し得る情報記録再生装置がデータを記録再生する際の動作条件を規定する、請求項26に記載の情報記録再生方法。

【請求項28】 前記ステップ(b)は、学習処理により前記記録再生条件を求めるステップを含む、請求26 に記載の情報記録再生方法。

【請求項29】 (d) 前記記録再生条件を前記情報記録媒体に記録するステップをさらに包含する、請求項28に記載の情報記録再生方法。

【請求項30】 前記情報記録媒体は、前記記録再生条件を含むドライブ情報が記録されたドライブ情報領域を さらに備え、

前記ステップ(b)は、前記ドライブ情報領域に記録された前記記録再生条件を読み出すステップを含む、請求項26に記載の情報記録再生方法。

【請求項31】 前記ドライブ情報は、前記記録再生条件が求められた条件を示すバージョン情報を含み、

(e) 前記バージョン情報に基づき、前記記録再生条件 を利用するか更新するかを判定するステップをさらに包 含する、請求項30に記載の情報記録再生方法。

【請求項32】 前記バージョン情報は、前記情報記録

再生装置のファームウェアに関する履歴情報を含む、請求項31に記載の情報記録再生方法。

【請求項33】 複数の記録再生条件を含むドライブ情報を記録するためのドライブ情報領域を備えた情報記録 媒体のための情報記録再生方法であって、

- (a) 前記ドライブ情報領域に含まれる複数の記録再生 条件の中に第1の記録再生条件があるか否かを判定する ステップと、
- (b) 前記第1の記録再生条件がない場合、前記ドライブ情報領域に含まれる複数の記録再生条件の中に第2の記録再生条件があるか否かを判定するステップと、
- (c)前記第2の記録再生条件がある場合、前記第2の記録再生条件と所定の条件式を用いて前記第1の記録再 生条件を算出するステップと、
- (d)前記算出した第1の記録再生条件に基づいて記録 再生を行なうステップと、を包含する情報記録再生方 法。

【請求項34】 前記複数の記録再生条件のそれぞれ は、前記情報記録媒体を装着し得る情報記録再生装置が データを記録再生する際の動作条件を規定する、請求項 33に記載の情報記録再生方法。

【請求項35】 (e) 前記算出した第1の記録再生条件を、前記ドラフト情報領域に記録するステップをさらに包含する、請求項33に記載の情報記録再生方法。

【請求項36】 前記ステップ(d)は、前記算出された第1の記録再生条件で、データを試し記録再生を行なうステップを含み、

(f)前記試し記録再生の結果に基づいて、前記ドライブ情報を更新するか、学習処理により前記第1の記録再生条件を求めるかを判定するステップをさらに包含する、請求項33に記載の情報記録再生方法。

【請求項37】 前記情報記録媒体はデータを記録する ためのデータ領域をさらに含み、

前記データ領域は前記情報記録媒体の半径方向に区分された複数の区分領域を含み、

前記複数の記録再生条件のそれぞれは前記複数の区分領域のうちの少なくとも1つに対応する、請求項33に記載の情報記録再生方法。

【請求項38】 前記所定の条件式は前記情報記録媒体の半径の関数である、請求項37に記載の情報記録再生方法。

【請求項39】 前記所定の条件式は前記情報記録媒体の線速度の関数である、請求項37に記載の情報記録再 生方法

【請求項40】 前記複数の区分領域の少なくとも1つは、少なくとも1つの記録再生指示領域を含む、請求項37に記載の情報記録再生方法。

【請求項41】 情報記録再生装置の装置温度の範囲を示す温度領域は複数の区分温度領域を含み、

前記複数の記録再生条件のそれぞれは前記複数の区分温

度領域のうちの少なくとも1つに対応する、請求項33 に記載の情報記録再生方法。

【請求項42】 前記所定の条件式は装置温度の関数である、請求項41に記載の情報記録再生方法。

【請求項43】 前記複数の区分領域のそれぞれは、Z CLV方式またはZCAV方式のいずれかに従う少なく とも1つのゾーンに相当する、請求項33に記載の情報 記録再生方法。

【請求項44】 前記ドライブ情報は、前記記録再生条件が求められた条件を示すバージョン情報を含み、

(g) 前記バージョン情報に基づき、前記複数の記録再 生条件を利用するか更新するかを判定するステップをさ らに含む、請求項33に記載の情報記録再生方法。

【請求項45】 前記バージョン情報は、前記情報記録 再生装置のファームウェアに関する履歴情報を含む、請 求項44に記載の情報記録再生方法。

【請求項46】 半径方向に区分された複数の区分領域を有するデータ領域を備えた情報記録媒体のための情報記録再生装置であって、

前記複数の区分領域のうち記録再生の対象となる区分領域に対応する記録再生条件を取得する学習情報処理部 と

前記取得された記録再生条件に基づいて記録再生を行なう記録再生制御部と、を備える情報記録再生装置。

【請求項47】 前記記録再生条件は、前記情報記録再生装置がデータを記録再生する際の動作条件を規定する、請求項46に記載の情報記録再生装置。

【請求項48】 前記学習情報処理部は、学習処理により前記記録再生条件を求める、請求項46に記載の情報記録再生装置。

【請求項49】 前記学習情報処理部は、前記記録再生 条件を前記情報記録媒体に記録する、請求項48に記載 の情報記録再生装置。

【請求項50】 前記情報記録媒体は、前記記録再生条件を含むドライブ情報が記録されたドライブ情報領域を さらに備え、

前記学習情報処理部は、前記ドライブ情報領域に記録された前記記録再生条件を読み出す、請求項46に記載の情報記録再生装置。

【請求項51】 前記ドライブ情報は、前記記録再生条件が求められた条件を示すバージョン情報を含み、前記学習情報処理部は、前記バージョン情報に基づき、前記記録再生条件を利用するか更新するかを判定する、

【請求項52】 前記バージョン情報は、前記情報記録 再生装置のファームウェアに関する履歴情報を含む、請 求項51に記載の情報記録再生方法。

請求項50に記載の情報記録再生装置。

【請求項53】 前記学習情報処理部は、前記複数の区分領域のそれぞれに含まれる学習領域から前記記録再生条件を前記学習処理により求める、請求項48に記載の

情報記録再生装置。

【請求項54】 前記データ領域は、ユーザ領域と、前記ユーザ領域に含まれる欠陥領域の代わりに使用され得る代替領域を含むスペア領域とを含み、

前記学習情報処理部は、前記スペア領域内の未使用の代替領域から前記記録再生条件を前記学習処理により求める、請求項48に記載の情報記録再生装置。

【請求項55】 前記学習情報処理部は、前記データ領域に含まれ、前記記録再生条件を求めるためのみに使用される学習専用領域から前記記録再生条件を前記学習処理により求める、請求項48に記載の情報記録再生装置。

【請求項56】 前記複数の区分領域のそれぞれは、Z CLV方式またはZCAV方式のいずれかに従う少なく とも1つのゾーンに相当する、請求項46に記載の情報 記録再生装置。

【請求項57】 前記複数の区分領域の少なくとも1つは、少なくとも1つの記録再生指示領域を含む、請求項46に記載の情報記録再生装置。

【請求項58】 情報記録媒体のための情報記録再生装置であって、

前記情報記録再生装置の装置温度の範囲を示す温度領域は、複数の区分温度領域を含み、

前記情報記録再生装置は、

前記情報記録再生装置の装置温度を測定する温度測定部と、

前記測定された装置温度が属する区分温度領域に対応する記録再生条件を取得する学習情報処理部と、

前記取得された記録再生条件に基づいて記録再生を行なう記録再生制御部と、を備える情報記録再生装置。

【請求項59】 前記記録再生条件は、前記情報記録再生装置がデータを記録再生する際の動作条件を規定する、請求項58に記載の情報記録再生装置。

【請求項60】 前記学習情報処理部は、学習処理により、前記記録再生条件を求める、請求項58に記載の情報記録再生装置。

【請求項61】 前記学習情報処理部は、前記記録再生 条件を前記情報記録媒体に記録する、請求項60記載の 情報記録再生装置。

【請求項62】 前記情報記録媒体は前記記録再生条件を含むドライブ情報が記録されたドライブ情報領域をさらに備え、

前記学習情報処理部は、前記ドライブ情報領域に記録された前記記録再生条件を読み出す、請求項58に記載の情報記録再生装置。

【請求項63】 前記ドライブ情報は、前記記録再生条件が求められた条件を示すバージョン情報を含み、前記学習情報処理部は、前記バージョン情報に基づき、前記記録再生条件を利用するか更新するかを判定する、請求項62に記載の情報記録再生装置。

【請求項64】 前記バージョン情報は、前記情報記録 再生装置のファームウェアに関する履歴情報を含む、請 求項63に記載の情報記録再生装置。

【請求項65】 複数の記録再生条件を含むドライブ情報を記録するためのドライブ情報領域を備えた情報記録 媒体のための情報記録再生装置であって、

前記ドライブ情報領域に含まれる複数の記録再生条件の中から、第1の記録再生条件があるか否かを判定し、前記第1の記録再生条件がない場合、前記ドライブ情報領域に含まれる第2の記録再生条件があるか否かを判定

し、前記第2の記録再生条件がある場合、前記学習情報 処理部は、前記第2の記録再生条件と所定の条件式を用 いて前記第1の記録再生条件を算出する、前記学習情報 処理部と、

前記記録再生制御部は、前記算出した第1の記録再生条件に基づいてデータを記録再生する記録再生制御部と、 を備える情報記録再生装置。

【請求項66】 前記複数の記録再生条件のそれぞれ は、前記情報記録再生装置がデータを記録再生する際の 動作条件を規定する、請求項65に記載の情報記録再生 装置。

【請求項67】 前記学習情報処理部は、前記算出した 第1の記録再生条件を前記ドライブ情報領域に記録す る、請求項65に記載の情報記録再生装置。

【請求項68】 前記記録再生制御部は、前記算出された第1の記録再生条件でデータを試し記録再生を行ない。

前記学習情報処理部は、前記試し記録再生の結果に基づいて、前記ドライブ情報を更新するか、学習処理により前記第1の記録再生条件を求めるかを判定する、請求項67に記載の情報記録再生装置。

【請求項69】 前記情報記録媒体はデータを記録する ためのデータ領域をさらに含み、

前記データ領域は前記情報記録媒体の半径方向に区分された複数の区分領域を含み、

前記複数の記録再生条件のそれぞれは前記複数の区分領域のうちの少なくとも1つに対応する、請求項65に記載の情報記録再生装置。

【請求項70】 前記所定の条件式は前記情報記録媒体の半径の関数である、請求項69に記載の情報記録再生装置。

【請求項71】 前記所定の条件式は前記情報記録媒体の線速度の関数である、請求項69に記載の情報記録再 生装置

【請求項72】 前記複数の区分領域の少なくとも1つは、少なくとも1つの記録再生指示領域を含む、請求項69に記載の情報記録再生装置。

【請求項73】 前記情報記録再生装置の装置温度の範囲を示す温度領域は複数の区分温度領域を含み、

前記複数の記録再生条件のそれぞれは前記複数の区分温

度領域のうちの少なくとも1つに対応する、請求項65 に記載の情報記録再生装置。

【請求項74】 前記所定の条件式は装置温度の関数である、請求項73に記載の情報記録再生装置。

【請求項75】 前記複数の区分領域のそれぞれは、Z CLV方式またはZCAV方式のいずれかに従う少なく とも1つのゾーンに相当する、請求項65に記載の情報 記録再生装置。

【請求項76】 前記ドライブ情報は、記録再生条件が 求められた条件を示すバージョン情報を含み、

前記学習情報処理部は、前記バージョン情報に基づき、 前記複数の記録再生条件を利用するか更新するかを判定 する、請求項65に記載の情報記録再生装置。

【請求項77】 前記バージョン情報は、前記情報記録 再生装置のファームウェアに関する履歴情報を含む、請 求項76に記載の情報記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、情報記録媒体およびその情報記録媒体のための情報記録再生方法および情報記録再生装置に関する。

[0002]

【従来の技術】セクタ構造を有する情報記録媒体として 光ディスクが知られている。近年、光ディスクの高密度 化、大容量化が進んでおり、光ディスクの信頼性を確保 することが重要になっている。この信頼性を確保するた め、光ディスク装置は、装着された光ディスクに対して 記録再生する際に利用する記録再生条件を求める学習処 理を行っている。記録再生条件は、データの記録時に光 ディスクに照射する半導体レーザーの最適なパワーを示 す記録パワー条件を含む。記録パワー条件は、記録パワー 学習によって求められる。

【0003】記録パワー学習として、例えば、特開平4 -141827号公報に記載されている方法がある。記録パワー学習は、光ディスク装置に光ディスクを装着した後、光ディスク装置を起動するたびに、あるいは、温度変化などの要因により光ディスクの特性、または、光ディスク装置の特性が所定以上に変化するたびに行われる

【0004】このような記録パワー条件を含む記録再生条件は、光ディスクの内周領域と外周領域に設けられたドライブテスト領域のいずれかで求められる。光ディスク装置は、装着された光ディスクに対し、求められた記録再生条件を用いて記録再生処理を行っている。

[0005]

【発明が解決しようとする課題】最近では、光ディスクの更なる大容量化、高密度化が進んでいるため、従来のように単にドライブテスト領域で求められた記録再生条件が、ディスク全面に対して、または、記録再生条件が求められた情報記録再生装置の装置温度と異なる装置温

度で記録再生する場合に、適切ではない場合が生じている。より精密に記録再生条件を学習するための1つの方法としてデータを記録再生する毎にドライブテスト領域で記録再生条件を求めることが考えられるが、これは、記録再生条件の学習による待機時間が長くなり、現実的ではない。

【0006】本発明は、上記問題点に鑑みてなされたものであり、適切な記録再生条件を取得することが可能な情報記録媒体、情報記録再生方法、及び、情報記録再生装置を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明の情報記録媒体は、データを記録するためのデータ領域と、少なくとも1つのドライブ情報を記録するためのドライブ情報領域と、を備えた情報記録媒体であって、前記データ領域は前記情報記録媒体の半径方向に区分された複数の区分領域を含み、前記少なくとも1つのドライブ情報のそれぞれは、前記複数の区分領域のうちの1つに対応する記録再生条件を含む。

【0008】前記記録再生条件は、前記情報記録媒体を装着し得る情報記録再生装置がデータを記録再生する際の動作条件を規定してもよい。

【0009】前記複数の区分領域のそれぞれは、前記記録再生条件を求めるための学習領域を含んでもよい。

【0010】前記データ領域は、ユーザ領域と、前記ユーザ領域に含まれる欠陥領域の代わりに使用され得る代替領域を含むスペア領域とを含み、前記スペア領域内の未使用の代替領域が前記記録再生条件を求めるために使用されてもよい。

【0011】前記データ領域は、前記記録再生条件を求めるためのみに使用される学習専用領域を含んでもよい

【0012】前記複数の区分領域のそれぞれは、ZCL V方式またはZCAV方式のいずれかに従う少なくとも 1つのゾーンに相当してもよい。

【0013】前記ドライブ情報領域は誤り訂正符号を計算するためのN個のECCブロックを含み、前記N個のECCブロックのそれぞれは複数のセクタを含み、前記複数の記録再生条件のそれぞれは、前記複数のセクタのうち対応する1つのセクタ内に記録されており、Nは1以上の整数であってもよい。

【0014】前記ドライブ情報は、前記複数の記録再生 条件が求められた条件を示すバージョン情報をさらに含 んでもよい。

【0015】前記複数の区分領域の少なくとも1つは、 少なくとも1つの記録再生指示領域を含んでもよい。

【0016】本発明の情報記録媒体は、データを記録するためのデータ領域と、少なくとも1つのドライブ情報を記録するためのドライブ情報領域と、を備えた情報記録媒体であって、前記情報記録媒体の周囲温度の範囲を

示す温度領域は、複数の区分温度領域を含み、前記少なくとも1つのドライブ情報のそれぞれは、前記複数の区分温度領域の1つに対応する記録再生条件を含む。

【0017】前記記録再生条件は、前記情報記録媒体を装着し得る情報記録再生装置がデータを記録再生する際の動作条件を規定してもよい。

【0018】前記ドライブ情報領域は誤り訂正符号を計算するためのN個のECCブロックを含み、前記N個のECCブロックのそれぞれは複数のセクタを含み、前記複数の記録再生条件のそれぞれは、前記複数のセクタのうち対応する1つのセクタ内に記録されており、Nは1以上の整数であってもよい。

【0019】前記ドライブ情報は、前記記録再生条件が 求められた条件を示すバージョン情報を含んでもよい。

【0020】本発明の情報記録再生方法は、半径方向に 区分された複数の区分領域を有するデータ領域を備えた 情報記録媒体のための情報記録再生方法であって、

(a)前記複数の区分領域のうち記録再生の対象となる 区分領域を指示するステップと、(b)前記指示された 区分領域に対応する記録再生条件を取得するステップ と、(c)前記取得された記録再生条件に基づいて記録 再生を行なうステップと、を包含する。

【0021】前記記録再生条件は、前記情報記録媒体を装着し得る情報記録再生装置が記録再生する際の動作条件を規定してもよい。

【0022】前記ステップ(b)は、学習処理により前記記録再生条件を求めるステップを含んでもよい。

【0023】(d)前記記録再生条件を前記情報記録媒体に記録するステップをさらに包含してもよい。

【0024】前記情報記録媒体は、前記記録再生条件を含むドライブ情報が記録されたドライブ情報領域をさらに備え、前記ステップ(b)は、前記ドライブ情報領域に記録された前記記録再生条件を読み出すステップを含んでもよい。

【0025】前記ドライブ情報は、前記記録再生条件が 求められた条件を示すバージョン情報を含み、(e)前 記バージョン情報に基づき、前記記録再生条件を利用す るか更新するかを判定するステップをさらに包含しても よい。

【0026】前記バージョン情報は、前記情報記録再生 装置のファームウェアに関する履歴情報を含んでもよい

【0027】前記ステップ(b)は、前記学習処理において、前記複数の区分領域のそれぞれに含まれる学習領域を使用するステップを含んでもよい。

【0028】前記データ領域は、ユーザ領域と、前記ユーザ領域に含まれる欠陥領域の代わりに使用され得る代替領域を含むスペア領域とを含み、前記ステップ(b)は、前記学習処理において前記スペア領域内の未使用の代替領域を使用するステップを含んでもよい。

【0029】前記ステップ(b)は、前記データ領域に 含まれる学習専用領域を前記学習処理においてのみ使用 してもよい。

【0030】前記複数の区分領域のそれぞれは、ZCL V方式またはZCAV方式のいずれかに従う少なくとも 1つのゾーンに相当してもよい。

【0031】前記複数の区分領域の少なくとも1つは、 少なくとも1つの記録再生指示領域を含んでもよい。

【0032】本発明の情報記録媒体のための情報記録再生方法は、情報記録再生装置の装置温度の範囲を示す温度領域は、複数の区分温度領域を含み、前記情報記録再生方法は(a)前記情報記録再生装置の装置温度を測定するステップと、(b)前記測定された装置温度が属する区分温度領域に対応する記録再生条件を取得するステップと、(c)前記取得された記録再生条件に基づいて記録再生を行なうステップと、を包含する。

【0033】前記記録再生条件は、前記情報記録媒体を装着し得る情報記録再生装置がデータを記録再生する際の動作条件を規定してもよい。

【0034】前記ステップ(b)は、学習処理により前記記録再生条件を求めるステップを含んでもよい。

【0035】(d)前記記録再生条件を前記情報記録媒体に記録するステップをさらに包含してもよい。

【0036】前記情報記録媒体は、前記記録再生条件を含むドライブ情報が記録されたドライブ情報領域をさらに備え、前記ステップ(b)は、前記ドライブ情報領域に記録された前記記録再生条件を読み出すステップを含んでもよい。

【0037】前記ドライブ情報は、前記記録再生条件が 求められた条件を示すバージョン情報を含み、(e)前 記バージョン情報に基づき、前記記録再生条件を利用す るか更新するかを判定するステップをさらに包含しても よい。

【0038】前記バージョン情報は、前記情報記録再生装置のファームウェアに関する履歴情報を含んでもよい。

}

【0039】本発明の情報記録再生方法は、複数の記録 再生条件を含むドライブ情報を記録するためのドライブ 情報領域を備えた情報記録媒体のための情報記録再生方 法であって、(a)前記ドライブ情報領域に含まれる複 数の記録再生条件の中に第1の記録再生条件があるか否 かを判定するステップと、(b)前記第1の記録再生条 件がない場合、前記ドライブ情報領域に含まれる複数の 記録再生条件の中に第2の記録再生条件があるか否かを 判定するステップと、(c)前記第2の記録再生条件が ある場合、前記第2の記録再生条件と所定の条件式を用 いて前記第1の記録再生条件を算出するステップと、

(d) 前記算出した第1の記録再生条件に基づいて記録 再生を行なうステップと、を包含する。

【0040】前記複数の記録再生条件のそれぞれは、前

記情報記録媒体を装着し得る情報記録再生装置がデータ を記録再生する際の動作条件を規定してもよい。

【0041】(e)前記算出した第1の記録再生条件 を、前記ドラフト情報領域に記録するステップをさらに 包含してもよい。

【0042】前記ステップ(d)は、前記算出された第 1の記録再生条件で、データを試し記録再生を行なうス テップを含み、(f)前記試し記録再生の結果に基づい て、前記ドライブ情報を更新するか、学習処理により前 記第1の記録再生条件を求めるかを判定するステップを さらに包含してもよい。

【0043】前記情報記録媒体はデータを記録するためのデータ領域をさらに含み、前記データ領域は前記情報記録媒体の半径方向に区分された複数の区分領域を含み、前記複数の記録再生条件のそれぞれは前記複数の区分領域のうちの少なくとも1つに対応してもよい。

【 O O 4 4 】前記所定の条件式は前記情報記録媒体の半 径の関数であってもよい。

【0045】前記所定の条件式は前記情報記録媒体の線 速度の関数であってもよい。

【0046】前記複数の区分領域の少なくとも1つは、 少なくとも1つの記録再生指示領域を含んでもよい。

【 0 0 4 7 】情報記録再生装置の装置温度の範囲を示す 温度領域は複数の区分温度領域を含み、前記複数の記録 再生条件のそれぞれは前記複数の区分温度領域のうちの 少なくとも1つに対応してもよい。

【0048】前記所定の条件式は装置温度の関数であっ てもよい。

【0049】前記複数の区分領域のそれぞれは、ZCL V方式またはZCAV方式のいずれかに従う少なくとも 1つのゾーンに相当してもよい。

【0050】前記ドライブ情報は、記録再生条件が求められた条件を示すバージョン情報を含み、(g)前記バージョン情報に基づき、前記複数の記録再生条件を利用するか更新するかを判定するステップをさらに含んでもよい。

【0051】前記バージョン情報は、前記情報記録再生装置のファームウェアに関する履歴情報を含んでもよい

【0052】本発明の情報記録再生装置は、半径方向に 区分された複数の区分領域を有するデータ領域を備えた 情報記録媒体のための情報記録再生装置であって、前記 複数の区分領域のうち記録再生の対象となる区分領域に 対応する記録再生条件を取得する学習情報処理部と、前 記取得された記録再生条件に基づいて記録再生を行なう 記録再生制御部と、を備える。

【0053】前記記録再生条件は、前記情報記録媒体を 装着し得る情報記録再生装置がデータを記録再生する際 の動作条件を規定してもよい。

【0054】前記学習情報処理部は、学習処理により前

記記録再生条件を求めてもよい。

【0055】前記学習情報処理部は、前記記録再生条件を前記情報記録媒体に記録してもよい。

【 O O 5 6 】前記情報記録媒体は、前記記録再生条件を含むドライブ情報が記録されたドライブ情報領域をさらに備え、前記学習情報処理部は、前記ドライブ情報領域に記録された前記記録再生条件を読み出してもよい。

【0057】前記ドライブ情報は、前記記録再生条件が 求められた条件を示すバージョン情報を含み、前記学習 情報処理部は、前記バージョン情報に基づき、前記記録 再生条件を利用するか更新するかを判定してもよい。

【0058】前記バージョン情報は、前記情報記録再生 装置のファームウェアに関する履歴情報を含んでもよい。

【0059】前記学習情報処理部は、前記複数の区分領域のそれぞれに含まれる学習領域から前記記録再生条件を前記学習処理により求めてもよい。

【0060】前記データ領域は、ユーザ領域と、前記ユーザ領域に含まれる欠陥領域の代わりに使用され得る代替領域を含むスペア領域とを含み、前記学習情報処理部は、前記スペア領域内の未使用の代替領域から前記記録再生条件を前記学習処理により求めてもよい。

【0061】前記学習情報処理部は、前記データ領域に 含まれ、前記記録再生条件を求めるためのみに使用され る学習専用領域から前記記録再生条件を前記学習処理に より求めてもよい。

【0062】前記複数の区分領域のそれぞれは、ZCL V方式またはZCAV方式のいずれかに従う少なくとも 1つのゾーンに相当してもよい。

【0063】前記複数の区分領域の少なくとも1つは、 少なくとも1つの記録再生指示領域を含んでもよい。

【 0 0 6 4 】本発明の情報記録媒体のための情報記録再生装置であって、情報記録再生装置の装置温度の範囲を示す温度領域は、複数の区分温度領域を含み、前記情報記録再生装置は、情報記録再生装置の装置温度を測定する温度測定部と、前記測定された装置温度が属する区分温度領域に対応する記録再生条件を取得する学習情報処理部と、前記取得された記録再生条件に基づいて記録再生を行なう記録再生制御部と、を備える。

【 0 0 6 5 】前記記録再生条件は、前記情報記録再生装置がデータを記録再生する際の動作条件を規定してもよい。

【0066】前記学習情報処理部は、学習処理により、 前記記録再生条件を求めてもよい。

【0067】前記学習情報処理部は、前記記録再生条件を前記情報記録媒体に記録してもよい。

【0068】前記情報記録媒体は前記記録再生条件を含むドライブ情報が記録されたドライブ情報領域をさらに備え、前記学習情報処理部は、前記ドライブ情報領域に記録された前記記録再生条件を読み出してもよい。

【0069】前記ドライブ情報は、前記記録再生条件が 求められた条件を示すバージョン情報を含み、前記学習 情報処理部は、前記バージョン情報に基づき、前記記録 再生条件を利用するか更新するかを判定してもよい。

【0070】前記バージョン情報は、前記情報記録再生 装置のファームウェアに関する履歴情報を含んでもよい。

【0071】本発明の情報記録再生装置は、複数の記録再生条件を含むドライブ情報を記録するためのドライブ情報領域を備えた情報記録媒体のための情報記録再生装置であって、前記ドライブ情報領域に含まれる複数の記録再生条件の中から、第1の記録再生条件があるか否かを判定し、前記第1の記録再生条件がない場合、前記ドライブ情報領域に含まれる第2の記録再生条件があるか否かを判定し、前記第2の記録再生条件がある場合、前記学習情報処理部は、前記第2の記録再生条件と所定の条件式を用いて前記第1の記録再生条件を算出する、前記学習情報処理部と、前記記録再生制御部は、前記算出した第1の記録再生条件に基づいてデータを記録再生する記録再生制御部と、を備える。

【0072】前記複数の記録再生条件のそれぞれは、前記情報記録媒体を装着し得る情報記録再生装置がデータを記録再生する際の動作条件を規定してもよい。

【0073】前記学習情報処理部は、前記算出した第1 の記録再生条件を前記ドライブ情報領域に記録してもよい。

【0074】前記記録再生制御部は、前記算出された第 1の記録再生条件でデータを試し記録再生を行ない、前 記学習情報処理部は、前記試し記録再生の結果に基づい て、前記ドライブ情報を更新するか、学習処理により前 記第1の記録再生条件を求めるかを判定してもよい。

【0075】前記情報記録媒体はデータを記録するためのデータ領域をさらに含み、前記データ領域は前記情報記録媒体の半径方向に区分された複数の区分領域を含み、前記複数の記録再生条件のそれぞれは前記複数の区分領域のうちの少なくとも1つに対応してもよい。

【0076】前記所定の条件式は前記情報記録媒体の半径の関数であってもよい。

【0077】前記所定の条件式は前記情報記録媒体の線速度の関数であってもよい。

【0078】前記複数の区分領域の少なくとも1つは、 少なくとも1つの記録再生指示領域を含んでもよい。

【0079】前記情報記録再生装置の装置温度の範囲を示す温度領域は複数の区分温度領域を含み、前記複数の記録再生条件のそれぞれは前記複数の区分温度領域のうちの少なくとも1つに対応してもよい。

【0080】前記所定の条件式は装置温度の関数であってもよい。

【0081】前記複数の区分領域のそれぞれは、ZCL V方式またはZCAV方式のいずれかに従う少なくとも 1つのゾーンに相当してもよい。

【0082】前記ドライブ情報は、記録再生条件が求められた条件を示すバージョン情報を含み、前記学習情報処理部は、前記バージョン情報に基づき、前記複数の記録再生条件を利用するか更新するかを判定してもよい。 【0083】前記バージョン情報は、前記情報記録再生装置のファームウェアに関する履歴情報を含んでもよい。

[0084]

【発明の実施の形態】本発明の情報記録媒体は、情報記録媒体にデータを記録する区分領域またはデータを記録再生する際の周囲温度に対応する記録再生条件をドライブ情報領域に記録していることで、最適な記録再生条件を読み出すことができる。区分領域とは、情報記録媒体を半径方向に分けたときにできる領域で、最小単位のデータに対する記録および再生の少なくとも一方が可能な記録再生指示領域を含む。情報記録媒体は複数の区分領域を含む。複数の記録再生条件は、情報記録媒体が装着される情報記録再生装置内の任意のメモリに記録されてもよい。記録再生指示領域は、データを記録することが指示される領域(記録指示領域)、あるいは、その領域からデータを再生することが指示される領域(再生指示領域)のどちらか一方から構成されてもよいし、その両方で構成されてもよい。

【0085】ドライブ情報領域に記録された複数の記録 再生条件の中に最適な記録再生条件がないと判断される 場合、最適な記録再生条件を学習処理により求める。情 報記録媒体のドライブ情報領域に記録された複数の記録 再生条件は、例えば、次回の起動時に読み出され、記録 再生を行う際に利用される。ドライブ情報領域は、装着 された情報記録再生装置に対する記録再生条件と、装着 された情報記録再生装置に関する情報とを記録してもよい

【0086】このように情報記録媒体のドライブ情報領域に記録された記録再生条件を再利用することにより、記録再生条件の学習を簡略化することが可能になる。その結果、記録再生条件の学習に要する時間を短縮することが可能となり、記録再生上条件の学習による待機時間を短縮することが可能となる。

【0087】本明細書において、記録再生条件の取得は、(1)記録再生条件を学習により求める、(2)記録された記録再生条件を読み出す、(3)記録再生条件を算出することによって行なわれる。また、本明細書において、記録再生条件の学習は記録再生条件を求めることを意味する。

【0088】ここで、記録再生条件とは、情報記録再生 装置が情報記録媒体に情報を記録し、または、情報記録 媒体に記録された情報を再生する際の情報記録再生装置 の動作条件をいう。

【0089】記録再生条件は、情報記録媒体に照射され

るレーザパルスに関するパルス条件と、記録再生時の各種サーボの動作を決定するサーボ条件と、再生信号を処理するための再生信号処理条件とのうち少なくとも1つを含む。

【0090】パルス条件は、例えば、記録時に情報記録媒体に照射されるレーザーパルスのパワー値を含む。あるいは、パルス条件は、情報記録媒体上にマーク(情報の最小単位)を形成するためのレーザーパルスの条件を含んでいてもよい。情報記録媒体上にマークを形成する際にマークの前端から後端にかけて複数のパルスを情報記録媒体に照射する場合には、パルス条件は、そのマークの前端に対応する第1パルスの発生タイミングと、その第1パルスの長さと、その最終パルスの発生タイミングと、その最終パルスの長さと、その最終パルスの上ず一光の独度と、その最終パルスの長さと、その最終パルスのレーザー光の強度とのうち少なくとも1つを含み、マークの長さとそのマークの前後に配置されているスペースの長さとに応じて定められている。

【0091】サーボ条件は、例えば、対物レンズと光ディスクの記録再生面との距離を示すフォーカス位置条件を示す。あるいは、光ディスクに照射されるレーザをトラックに追従させるためのトラッキング位置条件を含んでもよい。

【0092】あるいは、記録再生条件は、情報記録再生 装置に含まれる各種回路の設定値またはその設定値を示 すコード情報であってもよい。

【0093】なお、以下の説明では、記録再生条件の具体例として、記録パワー条件、フォーカス位置条件を説明するが、記録再生条件はこれらに限定されるものではない

【0094】以下、図面を参照しながら本発明の実施の 形態を説明する。

【0095】(実施の形態1)図1は、本発明の実施の形態1による情報記録媒体101の構造を示す。情報記録媒体101の構造を示す。情報記録媒体101は、DVD-RAMなどの任意の光ディスクであり得る。円盤状の光ディスク101には、複数のトラック102が同心円状に形成されている。あるいは、光ディスク101には、単一のトラック102がスパイラル状に形成されていてもよいし、複数のトラック102がスパイラル状に形成されていてもよい。トラック102は、複数のセクタ103に分割されている。ゾーン106は複数のトラック102から構成される。

【0096】光ディスク101の領域は、1以上のディスク情報領域104とデータ領域105とを含む。

【0097】ディスク情報領域104には、光ディスク101をアクセスするのに必要なパラメータが記録されている。ディスク情報領域104は、例えば、光ディスク101の最内周と最外周とに配置される。光ディスク101の最内周に配置されたディスク情報領域104は、リードイン領域(Lead-in Area)とも

呼ばれる。光ディスク101の最外周に配置されたディスク情報領域104は、リードアウト領域(Lead-out Area)とも呼ばれる。

【0098】データの記録再生はデータ領域105に対して行われる。データ領域105の全てのセクタ103には物理セクタ番号(Physical Sector

Number;以下、PSNと略す)といわれる絶対 番地が割り付けられている。

【0099】図2は、図1に示される光ディスク101の最内周に配置されるディスク情報領域104(すなわち、リードイン領域201)の構造を示す。なお、図1に示される光ディスク101の最外周に配置されるディスク情報領域104も図2に示される構造と同一の構造を有し得る。

【0100】リードイン領域201は、光ディスクの識別情報等をエンボスピットにより記録したエンボス領域202と、情報を記録するデータ記録領域204と、エンボス領域202とデータ記録領域204との間にあるミラー領域203とを含む。

【0101】データ記録領域204は、データを含まないガード領域205と、光ディスク101を製造する際に制質を検査する際に利用するディスクテスト領域206と、光ディスク装置が装着された光ディスク101の状態を検証するために利用されるドライブテスト領域207、光ディスク101の様々な特性などの情報を格納することに利用されるディスク識別領域208、そして、欠陥管理情報を格納する欠陥管理領域209とを含む。

【0102】図3は、誤り訂正符号の計算単位であるECCブロックと、光ディスク101上に記録されるセクタとの関係を示すECCブロックとセクタの構成図である。大容量を有する光ディスクであるDVDでは、高い誤り訂正能力と低い冗長度を両立させるために、1つのECCブロックは16セクタから構成される。但し、この図では、簡略化の目的で、4つのセクタからECCブロックが構成されるとする。

【0103】図3(a)は、ECCブロックの構成図である。ECCブロックは、172バイト×48行にメインデータを配置し、その1行毎に(横方向に)誤り訂正符号を計算した内符号パリティPIと、その1列毎に(縦方向に)誤り訂正符号を計算した外符号パリティPOとを含む。

【0104】内符号パリティPIと外符号パリティPOを有するものは、一般的に積符号と呼ばれる。積符号は、ランダムエラーとバーストエラー(局所的に集中した誤り)の両方に強い誤り訂正方式である。例えば、ランダムエラーに加えて、引っ掻き傷で2行分のバーストエラーが発生した場合を考えてみる。バーストエラーは、外符号からみれば殆どが2バイト誤りなので訂正できる。ランダムエラーが多く存在した列は、外符号で訂

正できずに誤りが残るが、この残った誤りは内符号によって大抵の場合訂正できる。内符号によっても誤りが残ったとしても、再び外符号で訂正すれば、さらに誤りを減らすことができる。DVDでは、このような積符号を採用したことによって、パリティの冗長度を抑えながら、十分な訂正能力が実現されている。言い換えれば、パリティの冗長度を抑えた分、ユーザデータの容量を高めることができている。

【0105】図3(b)は、セクタの構成図である。E CCブロックの外符号パリティを1行ずつ各セクタへ均 等に配分している。その結果、1つの記録セクタは、1 82バイト×13行のデータから構成される。

【0106】光ディスク装置は、装着された光ディスク101に対してセクタ単位に再生を行うことを命令されると、指定されたセクタを含むECCブロックを光ディスク101から再生して、誤り訂正を施した後、その指定されたセクタに相当するデータ部分だけを、例えば、バッファ上に格納し、上位制御装置へ転送する。光ディスク装置は、装着された光ディスク101に対してセクタ単位に記録を行うことを命令されると、指定されたセクタを含むECCブロックを光ディスク101から再生して、誤り訂正を施した後、指定されたセクタに相当するデータ部分を記録すべきデータに置き換えて、誤り訂正符号を再計算して記録すべきデータに付け直し、その指定されたセクタを含むECCブロックを光ディスク101に記録する。

【0107】以下の説明において、ブロックとは、上述 したECCブロックを意味する。

【0108】図4は、図2に示されるディスク識別領域208の構成を示す。ディスク識別領域208は、4個のECCブロックからなるディスク識別情報領域402と、2個のECCブロックからなるドライブ情報領域403と、2個のECCブロックからなる予約領域404とを含む。ECCブロックは、誤り訂正符号を計算するために使用される。誤り訂正符号はECCブロック単位に計算される。

【0109】ディスク識別情報領域402のそれぞれのECCブロックには、ディスク識別情報405が記録される。ドライブ情報領域403のそれぞれのECCブロックには、ドライブ情報406が記録される。予約領域404のそれぞれのECCブロックには、予約407に関する情報が記録される。

【0110】ドライブ情報406は、例えば、複数の記録再生条件406aのリスト形式で表現される。従って、ドライブ情報406は、記録再生条件リストとも呼ばれる。また、ドライブ情報406を記録する2個のECCブロックのそれぞれには、同じ内容の記録再生条件リストが記録されるように更新してもよい。

【0111】図4において、記号#に続く値は、記録再 生条件406aが記録された時系列を示すために便宜上 つけたものであり、記録再生条件406aの内容に含まれるものではない。ここでNは0以上の整数である。図4に示される例では、ドライブ情報406のそれぞれは、N個の記録再生条件406aを含んでいてもよい。N個の記録再生条件406aのそれぞれは、1つのセクタに記録されている。

【0112】この記録再生条件406aは記録された順序に配列されている。例えば、N個の記録再生条件406aは、光ディスクに記録された時刻の新しいものから古いものへの順に配列されている。

【0113】記録再生条件406aは、光ディスク装置を製造したメーカーを識別するためのメーカー識別子410と、そのメーカーにおいてその光ディスク装置を識別するためのドライブ識別子408と、例えば、学習により求められた学習結果を格納する学習結果格納領域409とを含む。

【0114】本実施の形態では、データを記録する半径 方向に区分された複数の区分領域のうちの1つに対応す る記録再生条件を求める。図5は、本発明の実施の形態 1による情報記録再生装置(光ディスク装置)500の 構成を示すブロック図である。

【0115】情報記録再生装置500は、上位制御装置 (一般的にはホストコンピュータが相当する)と I/O バス580を介して接続される。また、情報記録再生装 置500は、上位制御装置からの命令を処理する命令処 理部510と、光ディスクに対する記録または再生の制 御を行なう記録再生制御部525と、検索の制御を行な う検索制御部590と、再生したドライブ情報に記録さ れていた情報を格納するドライブ情報格納バッファ54 0と、記録及び再生データを一時的に格納するデータバ ッファ550と、情報記録再生装置500の装置温度を 測定する温度測定部560と、ドライブ情報領域及び記 録パワー学習処理の制御を行う学習情報処理部570を 機能的に備えている。記録再生制御部525は、光ディ スクへの記録時の制御を行う記録制御部520と、光デ ィスクからの再生時の制御を行う再生制御部530とを 備える。なお、検索とは、いわゆるシーク処理であり、 光ディスク装置のヘッドを移動させる動作を意味する。

【0116】学習情報処理部570は、ドライブ情報領域より記録再生条件リストを読み出す記録再生条件リスト読込部571と、記録再生条件リストを作成し、作成したリストをドライブ情報領域に記録する制御を行う記録再生条件リスト更新部572と、記録パワー学習処理の制御を行う記録パワー学習処理部573と、フォーカス位置学習を行い最適なフォーカス位置条件を取得するフォーカス位置学習処理部574を含む。

【0117】以下に、本実施の形態によるデータを記録 再生する区分領域に対応する記録再生条件を求める手順 を示す。

【0118】図6Aは、データを記録する記録指示領域

の半径位置に対応する記録パワー条件を求めるための記録パワー学習の手順を示す。この学習処理は、図5に示す情報記録再生装置500の記録制御部520、及び、記録パワー学習処理部573によって実行される。本明細書において、記録再生条件を求めるための学習を行なう領域を学習領域とよぶ。

【0119】命令処理部510を通して記録コマンドを受信した記録制御部520は、記録するデータをデータバッファ550に格納し、記録処理を中断する(ステップ601)。次に、記録パワー学習処理部573は、記録コマンドが示す記録指示領域で記録パワー学習が完了したする(ステップ602)。記録パワー学習が完了した後、記録制御部520は記録パワー学習により求められた記録パワー条件を用いて、データバッファ550に格納してあるデータを記録コマンドが示す記録指示領域に記録する(ステップ603)。

【0120】このように、記録制御部520は、一旦、記録処理を中断した後、記録パワー学習処理部573を利用して記録コマンドが示す記録指示領域で記録パワー学習を実行し、求めた記録パワー条件を利用して記録処理を実行する。記録コマンドが示す記録指示領域は記録パワーの学習に使用された結果、記録コマンドが示す記録指示領域に予め記憶されていたデータが破壊されても、その記録指示領域にはデータが記録されるので問題は生じない。このように記録指示領域に応じて記録パワー条件を求めながら、ユーザのデータを破壊することなく記録パワー学習を実行することで、最適な記録パワー条件で記録を行うことが可能となる。

【0121】図6Bは、本発明の実施の形態1における 記録指示領域に対応する記録パワー条件を求めるための 別の記録パワー学習の手順を示す。記録制御部520 は、命令処理部510を通して記録コマンドを受信する (ステップ611)。次に、記録パワー学習処理部57 3は、記録コマンドが示す記録指示領域で記録を行なう ことが可能かどうか判定する(ステップ612)。記録 することが不可能な場合、すなわち、その記録指示領域 に適切な記録再生条件が取得されていない場合、記録コ マンドが示す記録指示領域で記録パワー学習を行なうこ とが可能かどうか判定する(ステップ613)。記録パ ワー学習を行なうことが可能かどうかの判定基準として 記録パワー学習を行なう領域が存在しているかどうかを 判定してもよい。記録パワー学習を行なうことが可能な 場合、記録制御部520は、記録するデータをデータバ ッファ550に格納し(ステップ614)、記録パワー 学習を実行する(ステップ615)。記録パワー学習が 完了した後、記録制御部520は記録パワー学習により 求められた記録パワー条件を利用して、データバッファ 550に格納してあるデータを記録コマンドが示す記録 指示領域に記録する(ステップ616)。ステップ61 2においてデータを記録することが可能な場合、すなわ ち、例えばすぐ隣の記録指示領域において適切な記録再 生条件が求められており、記録再生条件を再度求める必 要がないと判断できる場合、または、ステップ613に おいて記録パワー学習が可能でない場合、記録制御部5 20は記録パワー学習を行なうことなく、記録コマンド が示す記録指示領域にデータを記録する。

【0122】上述したように、本実施の形態において記録コマンドが示す記録指示領域の全て、あるいは、一部は学習領域として機能する。

【0123】なお、複数の区分領域を有する光ディスク101に対してデータを記録する場合、記録コマンドが示す記録指示領域に対し上記方法を用いて求めた記録パワー条件を、その記録コマンドが示す記録指示領域を含む区分領域に対する記録パワー条件として、例えば、ドライブ情報格納バッファ540に格納し、次回、同じ区分領域に対する記録コマンドを受信した際、ドライブ情報格納バッファ540に格納された記録パワー条件を用いて記録するようにしてもよい。また、記録パワー条件は、光ディスクのドライブ情報領域に記録されてもよい。

【0124】また、DVD-RAMの場合、ゾーンを区分領域としてもよい。記録再生指示領域は、セクタ、または、セクタを含むECCブロックを含んでもよい。

【0125】本実施の形態は、データの記録または再生可能な最小単位の記録再生領域すべてに対して常に記録パワー条件を求めることを意図するものではなく、光ディスクのデータを記録する記録指示領域に対応して、あるいは、半径方向に分けられた区分領域に対応して、記録パワー条件を取得することを意図する。

【0126】なお、ランドトラックとグルーブトラックで最適な記録パワー条件が異なる媒体に対して記録する場合、ランドトラックとグループトラックを同時に記録パワー学習するため、記録する領域に含まれるランドトラックとグループトラックの切替点を検索し、その切替点を挟む領域で学習するようにしてもよい。

【 O 1 2 7 】 なお、記録パワー学習では、従来、BER (Byte Error Rate)を利用しているが、再生信号と源信号との時間的なずれを示すジッター、あるいは、再生信号の非対称性を示すアシンメトリを利用するようにしてもよい。

【0128】なお、上記説明では、記録再生条件として 記録パワー条件を説明したが、これは、記録パワー条件 に限定するものではない。記録再生条件は、例えば、記 録パルス条件を含む。

【0129】(実施の形態2)実施の形態2では、データを記録再生する記録再生指示領域に近いスペア領域で記録再生条件の学習を実行することにより、データを記録再生する記録再生指示領域に対応する記録再生条件を求めることができる。本発明の実施の形態2における情報記録再生装置の構成を示すブロック図は図5で示され

た情報記録再生装置500と同様であり、実施の形態1 で説明済みなので割愛する。

【0130】図7は、スペア領域を含む光ディスクのフォーマットの一例である。図7において、上下方向は光ディスクの内周、外周方向を示す。例えば、2.6GB DVD-RAMがこのフォーマットを有する。

【0131】本実施の形態において、光ディスクは、マ ップ領域701と、ユーザ領域702と、スペア領域7 03とを含む。マップ領域701は代替処理の情報を記 録するための領域であり、ユーザ領域702はユーザの データを記録するための領域である。また、スペア領域 703はユーザ領域702に欠陥セクタが存在した場合 にその代替処理に使用可能なセクタが配置される領域で ある。ユーザ領域702は、対応するスペア領域703 に隣接して設けられる。マップ領域701は、領域0~ Kの両端に設けられてもよい。ここでKはO以上の整数 である。区分領域は、少なくとも1つのユーザ領域とス ペア領域を含む。また、ユーザ領域およびスペア領域は それぞれ、少なくとも1つの記録再生指示領域を含む。 【0132】以下に、本実施の形態による記録再生の対 象とする領域に対応する記録再生条件を求める手順を示 す。

【0133】図8は、記録パワー条件を求めるための記録パワー学習処理の手順を示す。この処理は、図5に示す情報記録再生装置500の記録制御部520、及び、記録パワー学習処理部573によって実行される。

【0134】命令処理部510を通して記録コマンドを 受信した記録制御部520は、記録するデータをデータ バッファ550に格納し、記録処理を中断する(ステッ プ801)。次に、マップ領域701に格納された情報 を用いて、記録コマンドが示す記録指示領域に近いスペ ア領域703内に未使用のスペア領域がないか検索を行 う(ステップ802)。スペア領域703内に未使用の スペア領域がある場合(ステップ803の判定において 「Yes」)、記録パワー学習処理部573は、スペア 領域703内の未使用のスペア領域で記録パワー学習を 実行する(ステップ804)。スペア領域703内に未 使用のスペア領域がない場合(ステップ803の判定に おいて「No」)、記録パワー学習処理部573は、記 録コマンドが示す記録指示領域で記録パワー学習を実行 する(ステップ805)。記録パワー学習が完了した 後、記録制御部520は記録パワー学習により求められ た記録パワー条件を利用して、データバッファ550に 格納してあるデータを記録コマンドが示す記録指示領域 に記録する(ステップ806)。

【0135】このように、記録制御部520は、一旦、記録処理を中断した後、スペア領域703、または、記録コマンドが示す記録指示領域において、記録パワー学習処理部573を用いて記録パワー学習を実行し、求めた記録パワー条件を利用して記録処理を行う。その結

果、ユーザのデータを破壊することなく記録パワー学習 を実行することを可能とし、記録指示領域に対応する記 録パワー条件を求めることができ、その結果、最適な記 録パワー条件で記録を行うことを可能となる。

【0136】また、一般に、データ領域の記録可能回数は有限であるため、スペア領域703を学習領域として使用する可能性を高めることで、記録パワー学習によるユーザ領域702の劣化を防ぐことを可能とする。

【0137】なお、少なくとも1つのユーザ領域702とスペア領域703とを有する区分領域を含む光ディスクに対して記録を行う場合、記録コマンドが示す記録指示領域に対し上記方法を用いて求めた記録パワー条件を、その記録コマンドが示す記録指示領域を含む区分領域に対する記録パワー条件として、例えば、ドライブ情報格納バッファに540格納し、次回、同じ区分領域に対する記録コマンドを受信した際、ドライブ情報格納バッファ540に格納された記録パワー条件を用いて記録するようにしてもよい。また、記録パワー条件は、光ディスクのドライブ情報領域に記録されてもよい。

【0138】本実施の形態は、データの記録または再生可能な最小単位の記録再生領域すべてに対して常に記録パワー条件を求めることを意図するものではなく、光ディスクのデータを記録する記録指示領域、あるいは、区分領域に対応して記録パワー条件を取得することを意図する。

【0139】なお、上記説明では、データ領域に記録再生を行なう例を説明したが、リードイン、リードアウト領域へ情報を記録または再生する場合に記録再生条件を使用してもよい。

【0140】なお、ランドトラックとグルーブトラックで最適な記録パワー条件が異なるメディアに対して記録する場合、ランドトラックとグルーブトラックを同時に記録パワー学習するため、記録する領域に含まれるランドトラックとグルーブトラックの切替点を検索し、その切替点を挟む領域で学習するようにしてもよい。

【0141】なお、記録パワー学習では、従来、BER(Byte Error Rate)を利用しているが、再生信号と源信号との時間的なずれを示すジッター、あるいは、再生信号の非対称性を示すアシンメトリを利用するようにしてもよい。

【0142】なお、上記説明では、記録再生条件として 記録パワー条件を説明したが、記録再生条件は、記録パ ワー学習に限定されない。記録再生条件は、例えば、記 録パルス条件でもよい。

【0143】(実施の形態3)実施の形態3では、情報記録媒体が、データの記録再生の対象となる区分領域の近くに記録再生条件の学習を行うためのみに使用される学習専用領域を有し、データの記録再生の対象となる記録指示領域の位置に近い学習専用領域で記録再生条件の学習を実行することにより、データの記録再生の対象と

なる記録指示領域に対応した記録再生条件を求めることが可能となる。本発明の実施の形態3における情報記録再生装置の構成を示すブロック図は図5で示された情報記録再生装置500と同様であり、実施の形態1で説明済みなので割愛する。

【0144】図9は、本発明の実施の形態3による光ディスクのフォーマットの一例を示す。図9において、図の上下方向はトラックの内間・外間方向を示す。データ領域901はユーザのデータを記録するための領域である。また、学習専用領域902は記録再生条件の学習を行うための領域である。図9では、領域0~領域Kのそれぞれにおいて、データ領域901と学習専用領域902とが対になって示されているが、本発明はこれに限定されず、複数のデータ領域901に対して1つの学習専用領域902が設けられてもよい。ここで、Kは0以上の整数である。

【 0 1 4 5 】以下に、本実施の形態によるデータを記録 再生する区分領域に対応する記録再生条件を求める手順 を示す。

【0146】図10は、本発明の実施の形態3における 記録する記録指示領域に対応する記録パワー条件を求め るための記録パワー学習処理の手順を示す。この処理 は、図5に示す情報記録再生装置500の記録制御部5 20、及び、記録パワー学習処理部573によって実行 される。

【0147】命令処理部510を通して記録コマンドを受信した記録制御部520は、記録するデータをデータバッファ550に格納し、記録処理を中断する(ステップ1001)。次に、記録パワー学習処理部573は、記録コマンドが示す記録指示領域に近い学習専用領域902で記録パワー学習を実行する(ステップ1002)。記録パワー学習が完了した後、記録制御部520は記録パワー学習により求められた記録パワー条件を利用して、データバッファ550に格納してあるデータを記録コマンドが示す記録指示領域に記録する(ステップ1003)。

【0148】このように、記録制御部520は、一旦、記録処理を中断した後、学習専用領域902において、記録パワー学習処理部573を用いて記録パワー学習を実行し、求めた記録パワー条件を利用して記録処理を行う。その結果、ユーザのデータを破壊することなく記録パワー学習を実行することを可能とし、記録する記録指示領域の位置に応じた記録パワー条件を求めることができ、その結果、最適な記録パワー条件で記録を行うことが可能となる。

【0149】また、一般にデータ領域901の記録可能 回数は有限であるため、学習専用領域902を学習領域 として使用することで、記録パワー学習を実行する学習 領域を検索する手段を省き、待機時間の短縮、および、 学習実行の確立の向上を行なうことができる(すなわ ち、学習を行なう領域がないことで学習が行なえないことがなくなる)。さらに、データ領域901の劣化を防ぐこともできる。

【0150】なお、データ領域と学習専用領域を含む複数の記録指示領域を半径方向に分けた光ディスクに対して記録を行う場合、記録コマンドが示す記録指示領域に対し上記方法を用いて求めた記録パワー条件を、その記録コマンドが示す記録指示領域を含む区分領域に対する記録パワー条件として、例えば、ドライブ情報格納バッファ540に格納し、次回、同じ区分領域に対する記録コマンドを受信した際、ドライブ情報格納バッファ540に格納された記録パワー条件を用いて記録するようにしてもよい。

【 0 1 5 1 】本実施の形態は、データの記録または再生 可能な最小単位の記録再生領域すべてに対して常に記録 パワー条件を求めることを意図するものではなく、光ディスクのデータを記録する記録指示領域、あるいは、区 分領域に対応して記録パワー条件を取得することを意図 する。

【0152】なお、ランドトラックとグルーブトラックで最適な記録パワー条件が異なる媒体に対して記録する場合、ランドトラックとグルーブトラックを同時に記録パワー学習するため、記録する領域に含まれるランドトラックとグルーブトラックの切替点を検索し、その切替点を挟む領域で学習するようにしてもよい。

【0153】なお、記録パワー学習では、従来、BER(Byte Error Rate)を利用しているが、再生信号と源信号との時間的なずれを示すジッター、あるいは、再生信号の非対称性を示すアシンメトリを利用するようにしてもよい。

【0154】なお、上記説明では、記録再生条件として 記録パワー条件を説明したが、記録再生条件は、記録パ ワー学習に限定されない。記録再生条件は、例えば、記 録パルス条件を含む。

【0155】(実施の形態4)実施の形態4において、情報記録媒体は、ドライブ情報領域403に情報記録媒体の異なる複数の区分領域および情報記録再生装置の装置温度に対応する記録再生条件を格納する領域と、記録再生条件が求められた条件を示すバージョン情報とを有する。

【 0 1 5 6 】以下に、本実施の形態によるデータの記録 再生の対象となる区分領域および光ディスク装置の装置 温度に対応する記録再生条件を取得する方法を説明す る。ここでも、記録再生条件の具体例として、記録パワ 一条件を説明する。

【0157】図11は、図4の学習結果格納領域409の構成を示す。学習結果格納領域409は、バージョン情報1101と複数の領域記録再生条件1102とを格納する。バージョン情報1101は、例えば、記録再生条件406aに格納されている情報記録再生装置の組み

込みマイコン制御用プログラム(ファームウェア)の履 歴情報を含む。領域記録再生条件1102は、例えば、 光ディスクの複数の領域(領域O〜領域K)に対応する 記録パワー条件を含む。ここでKはO以上の整数であ る。本実施の形態において、複数の領域記録再生条件1 102のそれぞれは、複数に分けられた区分温度領域の 温度記録再生条件1103を含む。複数の区分温度領域 は、光ディスク装置の装置温度の範囲を示す温度領域を 区分したものである。図11において、この温度記録再 生条件1103のそれぞれは、領域記録再生条件110 2のそれぞれが示す領域で記録パワー学習を実行した時 点での光ディスク装置の装置温度の区分温度領域に対応 していている。したがって、記録パワー学習を行った領 域、及び、その時点での装置温度の区分温度領域に応じ た温度記録再生条件1103に、求められた記録パワー 条件が格納される。なお、バージョン情報1101は、 情報記録再生装置のハードウェアに関する履歴情報を含 んでもよい。このバージョン情報1101は、例えば、 情報記録再生装置を修理に出した後、以前に求められた 記録再生条件が修理後の情報記録再生装置に対して適切 かを判定するために使用可能である。また、バージョン 情報1101は、記録再生条件に関する履歴情報を含ん でもよい。このバージョン情報1101により、例え ば、その記録再生条件が100回使われたらそれ以降は 利用しないように設定することができる。

【0158】このように、光ディスクの分けられた複数の区分領域ごと、及び、記録パワー学習を行った時点での光ディスク装置の装置温度の区分温度領域ごとに、記録パワー学習により求められた記録パワー条件を含むドライブ情報(記録再生条件リスト)をドライブ情報領域403に格納し、次回起動時に、このドライブ情報領域403よりドライブ情報406(記録再生条件リスト)を読み取り、記録パワー学習を行う必要が生じた際に利用することで、記録パワー学習に要する時間を短縮し、待機時間の短縮を可能とする。

【0159】以下、バージョン情報1101を利用して、記録再生条件を更新する方法を説明する。例えば、ある情報記録再生装置で記録再生条件を記録した情報記録媒体が、ファームウェアのバージョンを変更された同じ情報記録再生装置に装着された場合を仮定する。この時、記録再生条件がファームウェアに依存する情報を含むと、記録再生条件を引き続き変更後のファームウェアで利用できない。そこで、例えば、新たに記録パワー学習のために記録パワー条件を取得することが必要になると、バージョン情報を参照し、引き続き利用可能な情報は前の記録再生条件の情報を再利用し、引き続き利用することが不可能な情報を削除して、新たに記録再生条件の情報を求め、記録再生条件の更新を行う。なお、上記のような記録再生条件の更新は、ファームウェアだけでなく、情報記録再生装置の部品の修理など、同じ情報記

録再生装置の時系列変化による最適な記録再生条件の変化に対応することが可能にる。

【0160】このように、バージョン情報1101を参照した上で記録再生条件リストを更新する際に、例えばファームウェアの変更などに起因する、今までに格納した記録再生条件が再利用可能か判断することで、ファームウェア変更時に再利用可能な記録再生条件に関する情報を残すことが可能となり、次回起動時、記録再生条件の学習に要する待機時間の短縮を図ることが可能となる。

【0161】なお、実施の形態4では、バージョン情報 1101は学習結果格納領域409に格納される情報と したが、これに限るものではない。例えば、ドライブ識 別子408がバージョン情報1101を含んでもよい。 【0162】なお、上記説明では、区分温度領域が情報 記録再生装置の装置温度に対応する例を説明したが、これに限定されるものではない。例えば、区分温度領域 は、情報記録媒体の周囲温度に対応してもよい。

【0163】なお、情報記録媒体のフォーマットがZCAV(Zone ConstantAngular Verocity)、あるいは、ZCLV(Zone Constant Linear Velocity)である場合、半径方向に分けられた複数の領域をZone単位としてもよい。ZCAVは、回転速度一定で回転されるように情報記録媒体のゾーンを設けており、ZCLVは線速度一定で回転されるように情報記録媒体のゾーンを設けている。

【0164】なお、上記説明では、温度記録再生条件1 103に格納される記録再生条件を記録パワー条件であったが、これに限定されるものではない。記録再生条件は、例えば、記録パルス条件であってもよい。

【0165】また、領域記録再生条件1102は、装置 温度が0℃から70℃までの10℃刻みの温度記録再生 条件1103を含むとしたが、これに限るものではない。

【0166】なお、図11では、ある領域Xの領域記録再生条件が、複数の区分温度領域の温度記録再生条件を含む例を示したが、本実施の形態はこれに限定されるものではない。ドライブ情報領域が、領域記録再生条件および温度記録再生条件の少なくとも一方を格納していれば、対応する適切な記録再生条件を取得することができる

【0167】(実施の形態5)実施の形態5では、実施の形態4で説明した情報記録媒体を使用する。本発明の実施の形態5における情報記録再生装置の構成を示すブロック図は図5で示された情報記録再生装置500と同様であり、実施の形態1で説明済みなので割愛する。

【0168】以下に、本実施の形態によるデータを記録 再生する区分領域および光ディスク装置の装置温度の区 分温度領域に対応する記録再生条件を取得する手順を説 明する。

【0169】図12は、本発明の実施の形態5における記録処理と、記録パワー学習の手順と、記録再生条件リストの読取処理、及び、記録再生条件リストの更新処理の手順を示す。この処理は、記録制御部520と、記録パワー学習処理部573と、記録再生条件リスト読込部571と、記録再生条件リスト更新部572で実行される。

【0170】光ディスク装置500を起動した後、ある いは、光ディスクを光ディスク装置500に装着した 後、記録再生条件リスト読取部571は、ドライブ情報 領域403より記録再生条件リストを読み取り、記録再 生条件リストをドライブ情報格納バッファ540に格納 する(ステップ1201)。次に、命令処理部510を 通して記録コマンドを受信した記録制御部520は(ス テップ1202)、光ディスク装置の装置温度を測定し た後(ステップ1203)、記録再生条件リストはドラ イブ情報格納バッファ540に格納されている記録再生 条件に対し、記録コマンドが示す記録指示領域、及び、 光ディスク装置の装置温度に適した記録パワー条件があ るかどうか検索を行う(ステップ1204)。この検索 は、例えば、記録再生条件リストに含まれる記録再生条 件それぞれに対して、記録再生条件に含まれるメーカー 識別子、及びドライブ識別子と、光ディスク装置500 が保有するメーカー識別子、及びドライブ識別子が一致 する記録再生条件を検索することを含む。

【0171】メーカー識別子およびドライブ識別子が一 致する記録再生条件がある場合、その記録再生条件に対 して、記録コマンドが示す記録指示領域を含む区分領域 に対応する領域記録再生条件1102と、ステップ12 03で測定した光ディスク装置500の装置温度の区分 温度領域との両方に該当する温度記録再生条件1103 を学習結果格納領域409に対して検索し、該当する区 分領域および装置温度の区分温度領域に有効な記録パワ 一条件が格納されているか判定をする。この区分温度領 域の温度記録再生条件1103に有効な記録パワー条件 が格納されているかどうかの判定は、例えば、記録パワ 一条件を2桁の16進数で表す場合において、00hと いう記録パワー条件としてありえない値が格納されてい る場合は、記録パワー条件が格納されていないと判定 し、00h以外の値が入っていない場合は格納されてい ると判定する。なお、判定はこの方法に限定されるもの ではない。

【0172】ステップ1204において、記録再生条件リストに利用可能な記録パワー条件が含まれていると判定された場合(ステップ1205の判定において「Yes」)、記録制御部520は、その利用可能な記録パワー条件を読み出し(ステップ1206)、その記録パワー条件を利用して記録処理を実行する(ステップ1209)。ステップ1204において利用可能な記録再生条

件が含まれていないと判定された場合(ステップ1205の判定処理において「No」)、記録パワー学習処理部573は、記録するデータをデータバッファ550に格納し、記録処理を中断した後、記録コマンドが示す記録指示領域で記録パワー学習を実行して、記録パワー条件を求める(ステップ1207)。

【0173】記録パワー学習が完了した後、記録再生条件リスト更新部572は、求めた記録パワー条件を用いて記録再生条件リストの作成を行い、その記録再生条件リストをドライブ情報領域に記録することでドライブ情報(記録再生条件リスト)の更新を行う(ステップ1208)。その後、記録制御部520は、取得した記録パワー条件を利用して、データバッファ550に格納してあるデータを記録コマンドが示す記録指示領域に記録する(ステップ1209)。このステップ1207の記録パワー学習処理、及び、ステップ1209の記録処理は、実施の形態1で説明済みである。図12では、求められた記録パワー条件のみを記録再生条件リストに更新させたが、ステップ1206で算出された記録再生条件を記録再生条件リストに更新させてもよい。

【0174】このように、記録パワー学習処理部573 により求められた記録パワー条件を用いてドライブ情報 (記録再生条件リスト)を更新し、例えば、次回記録コマンドを受信した際に、そのドライブ情報 (記録再生条件リスト)を読み出すことにより、記録パワー学習を行う可能性を低くすることができ、その結果、記録パワー学習による待機時間の短縮を図ることが可能となる。

【0175】なお、実施の形態5では、記録パワー学習処理、及び、記録処理を実施の形態1を用いて行ったが、これに限定するものではない。例えば、実施の形態2あるいは実施の形態3を利用してもよい。

【0176】なお、上記説明では、記録再生条件として 記録パワー条件を説明したが、記録再生条件は記録パワ ー学習に限定されない。記録再生条件は、例えば、記録 パルス条件を含む。

【0177】なお、図12では、ある領域Xの領域記録 再生条件が、複数の区分温度領域の温度記録再生条件を 含む例を示したが、本実施の形態はこれに限定されるも のではない。ドライブ情報領域が、領域記録再生条件お よび温度記録再生条件の少なくとも一方を格納していれ ば、対応する適切な記録再生条件を取得することができ る。

【0178】(実施の形態6)実施の形態6では、実施の形態4で説明した情報記録媒体を利用して記録再生条件の学習を行う。本発明の実施の形態6における情報記録再生装置の構成を示すブロック図は図5で示された情報記録再生装置500と同様であり、情報記録再生装置500は実施の形態1で説明済みなので割愛する。

【0179】ここでは、記録再生条件の具体例として記録パワー条件について説明する。図13は、ある光ディ

スクの半径方向の内周から外周にかけて最適な記録パワー条件の変化の一例を示すグラフである。ここで、半径 Kは正の数である。また、図14は、ある光ディスクに 対する光ディスク装置の装置温度と最適な記録パワー条件の関係の一例を示すグラフである。ここで、装置温度 Tは任意の数である。このように、最適な記録パワー条件は、光ディスクの半径方向(すなわち、データが記録 再生される位置)、及び、装置温度に対して、変化量が 一定である場合が多い。

【0180】図15は、本発明の実施の形態6における記録処理と、記録パワー学習と、記録再生条件リストの読取処理、及び、記録再生条件リストの更新処理の手順とを示す。この処理は、記録制御部520と、記録パワー学習処理部573と、記録再生条件リスト読込部571と、記録再生条件リスト更新部572とで実行される。

【0181】ステップ1501からステップ1505と、ステップ1506、及びステップ1512の各ステップは、図12に示されたステップ1201からステップ1205と、ステップ1206、及びステップ1209と同じである。従って、その説明を割愛する。

【0182】ここで、取得されるべき記録パワー条件を第1の記録パワー条件とよび、第1の記録パワー条件が記録されていない場合に、第1の記録パワー条件を算出するために使用する記録パワー条件を第2の記録パワー条件とよぶ。

【0183】ステップ1505の判定がNoであった場 合、すなわち、第1の利用可能な記録パワー条件がない 場合、記録パワー学習処理部573は記録するデータを データバッファ550に格納し、記録処理を中断した 後、同じ領域記録再生条件の他の温度記録再生条件、あ るいは、他の領域記録再生条件の温度記録再生条件に少 なくとも1つの第2の利用可能な記録パワー条件が格納 されていないか判定を行う(ステップ1507)。第2 の利用可能な記録パワー条件があると判定された場合 (ステップ1507の判定において「Yes」)、記録 パワー学習処理部573は、第2の利用可能な記録パワ 一条件と、光ディスクの半径方向に関する記録パワ**ー**条 件の変化量、及び、光ディスク装置の装置温度に関する 記録パワー条件の変化量のいずれか1つ以上を利用し て、ステップ1503で測定した装置温度と記録コマン ドが示す領域に対する記録パワー条件を算出する。図1 5では、求められた記録パワー条件のみを記録再生条件 リストに更新させたが、ステップ1506で算出された 記録再生条件を記録再生条件リストに更新させてもよ

【0184】例えば、領域2に記録する内容を含む記録コマンドを受信した際、第2の利用可能な記録パワー条件を記録再生条件より検索した結果、隣接した領域1における記録パワー条件が10[mW]であることが判明

したと仮定する。また、光ディスクの半径方向に関する記録パワー条件の変化量は領域が1つ変わる毎に0.2 [mW]変化するとわかっているものと仮定した場合、記録コマンドが示す記録指示領域に関する最適な記録パワー条件は10.2 [mW] と算出される。

【0185】次に、記録パワー学習処理部573は、算出した記録パワー条件を用いて試し記録を実行する(ステップ1509)。試し記録に成功した場合(ステップ1509の判定において「Yes」)、記録再生条件リスト更新部572は、この記録パワー条件を用いてドライブ情報(記録再生条件リスト)の更新を行う。その後、算出した記録パワー条件を用いてデータバッファ550に格納したデータを記録コマンドが示す記録指示領域に記録する(ステップ1512)。

【0186】一方、試し記録に失敗した場合(ステップ 1509の判定において「No」)、記録パワー学習処 理部573は、記録コマンドが示す記録指示領域で記録 パワー学習を実行し、記録パワー条件を求める(ステップ1510)。

【0187】記録パワー学習が完了した後、記録再生条件リスト更新部572は、求めた記録パワー条件を用いて記録再生条件リストの作成を行い、その記録再生条件リストをドライブ情報領域に記録することでドライブ情報(記録再生条件リスト)の更新を行う(ステップ1511)。その後、記録制御部520は、求めた記録パワー条件を利用して、データバッファ550に格納してあるデータを記録コマンドが示す記録指示領域に記録する(ステップ1512)。このステップ1512の記録パワー学習処理、及び、ステップ1512の記録処理は、実施の形態1で説明済みである。

【0188】このように、例えば、光ディスク装置がある装置温度のとき、記録コマンドが示す記録指示領域を含む区分領域に対応する記録パワー条件が記録再生条件に含まれていない場合でも、他の区分領域、他の装置温度に関する記録パワー条件が記録再生条件に含まれていれば、その記録パワー条件と予め判明している事項(例えば、所定の条件式)を用いて最適な記録パワー条件を算出することが可能であり、その結果、記録パワー学習を実行する可能性が低くなる。したがって、記録パワー学習に必要な時間を短縮することが可能となり、記録再生条件の学習による待機時間の短縮を可能とする。

【0189】なお、上記説明では、記録パワー学習処理、及び、記録処理を実施の形態1を用いて行ったが、これに限定するものではない。例えば、実施の形態2あるいは実施の形態3を利用してもよい。

【0190】なお、上記では、他の領域、または、他の 装置温度に関する記録パワー条件を用いて、目的の記録 パワー条件を算出するようにしたが、算出された記録パ ワー条件を利用して、記録パワー学習で求められた記録 パワー条件が正しいかどうかを判定することに利用して もよい。また、他の領域および他の光ディスク装置温度 の少なくとも一方に関する記録パワー条件を用いて、目 的の記録パワー条件を算出してもよい。

【0191】なお、上述の説明では、記録再生条件は、記録領域を利用して記録パワー学習を行なう記録パワー条件を説明したが、記録再生条件は記録パワー条件に限定されるものではない。例えば、記録再生条件は記録パルス条件であってもよい。

【0192】(実施の形態7)実施の形態7では、実施の形態6で説明した情報記録媒体の特徴を利用する。本発明の実施の形態7における情報記録再生装置の構成を示すブロック図は図5に示された情報記録再生装置500と同様であり、情報記録再生装置500は実施の形態1で説明済みなので割愛する。

【0193】ここでも、記録再生条件の具体例として記録パワー条件について説明する。

【0194】図11に示す領域記録再生条件1102、及び、温度記録再生条件1103の数は有限である。従って、領域記録再生条件1102は、例えば、光ディスクを半径方向に複数に分けた区分領域毎に一つの領域記録再生条件1102は各区分領域の半径方向に対して中央の位置で求められたものと仮定する。また、温度記録再生条件1103は、例えば、0℃から70℃の範囲で10℃ごとに一つの温度記録再生条件1103は、例えば、20℃で求めた記録再生条件1103は、例えば、20℃で求めた記録再生条件を20℃の温度記録再生条件とすると仮定する。

【0195】しかしながら、記録パワー学習を求めた区分領域の位置、及び、その時の光ディスク装置の装置温度によっては、領域記録再生条件1102が示す区分領域の位置、あるいは、温度記録再生条件1103が示す装置温度に一致しないことがある。

【0196】実施の形態7では、実施の形態6で説明した記録パワー条件の特徴を用いて、記録パワー学習を行った区分領域、あるいは、その時の装置温度にかかわらず、ステップ1511において、領域記録再生条件1102、及び、温度記録再生条件1103に格納する値を算出する方法について説明する。

【0197】実施の形態7における記録処理と、記録パワー学習と、記録再生条件リストの読取処理、及び、記録再生条件リストの更新処理の手順は図12にしめされたものと同様であり、これは実施の形態5で説明済みなので割愛する。

【0198】図16は、光ディスクを半径方向に複数に分けた区分領域のX番目の領域における最適な記録パワー条件の変化の一例を示す。ここで、Xは0以上の整数である。

【0199】例えば、ステップ1207において記録パワー学習を行った領域の半径位置が、領域Xにおける内周より4分の3の位置(図16のQ)である場合を仮定

する。記録再生条件リスト更新部572は、求めた記録パワー条件と、光ディスクの半径方向に対する記録パワー条件の変化量を利用して、領域×に対応した領域記録再生条件1102に格納する記録パワー条件を算出し、ドライブ情報(記録再生条件リスト)の更新を行う(ステップ1508)。例えば、同一領域の内周と外周における最適な記録パワー条件の差が0.4[mW]であり、図16のQの位置で求めた記録パワー条件が11[mW]であった場合、領域×に対応する領域記録再生条件に格納する記録パワー条件は10.9[mW]であると算出される。

【0200】図17は、ある光ディスクに対する光ディスク装置の装置温度と最適な記録パワー条件の関係を、 装置温度が15℃から25℃の付近に関して示した一例 を示す。

【0201】例えば、ステップ1207において記録パワー学習を行った時の光ディスク装置の装置温度が23℃である場合を仮定する。記録再生条件リスト更新部572は、求めた記録パワー条件と、光ディスク装置の装置温度に関する記録パワー条件の変化量を利用して、20℃に対応する温度記録再生条件1103に格納される記録パワー条件を算出し、ドライブ情報(記録再生条件リスト)の更新を行う(ステップ1508、151

1). 例えば、装置温度が1℃変化するごとに最適な記録パワー条件が0.1 [mW]減少し、装置温度が23℃での記録パワー条件が10 [mW]であった場合、20℃に対応する温度記録再生条件に格納する記録パワー条件は10.3 [mW]であると算出される。

【0202】このように、記録パワー学習を行った区分領域の半径位置、あるいは、その時の光ディスク装置の装置温度が、領域記録再生条件が示す領域、あるいは、温度記録再生条件が示す光ディスクの装置温度に対応していない場合でも、その記録パワー条件と予め判明している事項(例えば、所定の条件式)を用いて適切な記録パワー条件を算出することが可能である。その結果、領域記録再生条件が示す領域、及び、温度記録再生条件が示す装置温度に最適な記録パワー条件を算出することが可能となり、次回記録パワー学習を効率的に行うことを可能とする。

【0203】なお、図18は、ZCLVのフォーマットをもつ光ディスクにおける最適な記録パワー条件と半径位置との関係の一例を示すグラフである。また、図19は、ZCLVのフォーマットをもち、内周から外周にかけて最適な記録パワー条件が変化する光ディスクにおける最適な記録パワー条件と半径位置との関係の一例を示すグラフである。

【0204】図18及び図19のように記録パワー条件が変化する場合、各領域における最適な記録パワー条件PWを、PW=aX+bnという計算式より算出することが可能である。ここで、aは予め判明している半径位

置に対する記録パワー条件の変化量、Xは半径位置、b nは各領域毎に異なる固定値である。このように、記録パワー条件の変化に関する条件式が、例えば、各領域毎に異なる場合、各領域ごとに最適な記録パワー条件を算出する条件式を予め求め、記録パワー条件を求めた半径位置に応じて、その領域に対応した領域記録再生条件を算出するようにしてもよい。

【0205】なお、上記説明では、記録再生条件として 記録パワー条件を説明したが、記録再生条件は記録パワ 一条件に限定されない。記録再生条件は、例えば、記録 パルス条件を含む。

【0206】(実施の形態8)上記実施の形態1~7においては、記録再生条件の具体例として、記録パワー条件を中心に説明した。本実施の形態においては、記録再生条件の具体例として、フォーカス位置条件を説明する。

【0207】図20は、ある光ディスクの半径方向の内 周から外周にかけて最適なフォーカス位置条件の変化を 示すグラフである。図21は、ある光ディスクの半径方 向の内周から外周にかけて最適なフォーカス位置条件の 変化をその時の装置温度毎に示すグラフである。図21 において、Tは温度を示し、ここでT1はT2より高 い。

【0208】このように、最適なフォーカス位置条件の 光ディスクの半径位置に対する変化量は一定である場合 が多い。また、装置温度が異なる場合、同じ半径位置に おける最適なフォーカス位置条件は異なるが、光ディス クの内周から外周にかけての変化量は装置温度が異なる 温度であっても変わらない場合が多い。

【0209】このように、フォーカス位置条件の場合でも、光ディスクの半径位置および/または装置温度に対応するフォーカス位置条件を取得することは、適切な条件でフォーカスを行なうために望ましい。

【0210】図20、図21に示されるグラフでは、光 ディスクの半径位置の内周から外周にかけて装置温度に 関係なく変化量が一定であるが、装置温度に応じて変化 量(傾き)が変化する場合もあり得る。

【0211】さらに、半径位置と最適な記録パワー条件との関係を説明するために図18、図19で示したのと同様に、最適なフォーカス位置条件の半径位置に対する変化は内周から外周にかけて連続的なものでなくてもよい。

【0212】以下に、記録再生条件の一例としてフォーカス位置条件を取得した検索処理を示す。

【0213】フォーカス位置条件は、領域記録再生条件 1102(図11を参照)に含まれ得る。複数の領域記 録再生条件1102のそれぞれは、複数の温度記録再生 条件1103を含んでもよい。また、光ディスクの内周 位置および外周位置のフォーカス位置条件を求め、2つ のフォーカス位置条件から半径方向全体のフォーカス位 置条件を算出することができる場合、領域記録再生条件 の個数Kは2でよい。

【0214】図22は、フォーカス位置条件を学習する 手順を示す。例えば、この手順は起動時に行われる。こ の学習処理は、光ディスク装置500の温度測定部56 0、検索制御処理部590、及び、フォーカス位置学習 処理部574によって実行される。

【0215】まず始めに、温度測定処理部560は、その時点での装置温度を測定する(ステップ2201)。次に、検索制御処理部590により光ディスクの内周に位置する学習領域に移動した後(ステップ2202)、フォーカス位置学習処理部574は、フォーカス位置学習を行い、内周位置のフォーカス位置条件を求める(ステップ2203)。続いて、検索制御処理部590により光ディスクの外周に位置する学習領域に移動した後(ステップ2204)、フォーカス位置学習を行い、外周のフォーカス位置条件を求める(ステップ2205)。この内周と外周で求めたフォーカス位置条件を用いて以後の検索処理を行う。

【0216】なお、ここでは、内周と外周に位置する学習領域を使ってフォーカス位置学習を行ったがこれに限定されるものではない。例えば、データ領域の任意の半径位置においてフォーカス位置学習を行い、学習を行なった地点から半径方向にある一定以上離れた別のデータ領域でフォーカス位置学習を行ってもよい。

【0217】図23は、検索処理の手順を示す。検索処理は、例えば、記録コマンドや再生コマンドを受信し、そのコマンドが示す記録再生指示領域に移動する際に行われる。この処理は、光ディスク装置500の検索制御処理部590、及び、フォーカス位置学習処理部574によって実行される。

【0218】命令処理部510を通して検索処理(いわゆるシーク処理)を行うように指示を受けた検索処理部590は、検索の目標半径位置を確認する(ステップ2301)。次に、フォーカス位置学習処理部574は、先に求めた2点のフォーカス位置条件を用いて検索目標半径位置のフォーカス位置条件を算出する(ステップ2302)。例えば、図20において、位置Sと位置Eでのフォーカス位置条件を求めていて、位置Sと位置Eの真ん中に位置する位置Pが検索の目標半径位置の場合、位置Pでのフォーカス位置条件は、【(位置Sでのフォーカス位置条件)】÷2で算出される。次にその算出したフォーカス位置条件を設定し、目標半径位置にヘッドを移動させる(ステップ2303)。

【0219】その結果、光ディスクの半径位置に応じて、最適なフォーカス位置条件を取得することが可能となり、検索処理を行う際、実際に目標半径位置のフォーカス位置条件を求めることなく、最適なフォーカス位置条件を利用することが可能になる。

【0220】図24は、装置温度が変化した際の検索処 理の手順を示す。図24は、図23に対して装置温度も 考慮した手順を示す。このような検索処理により、記録 コマンドや再生コマンドを受信し、そのコマンドが示す 記録再生指示領域にヘッドを移動させる。この学習処理 は、光ディスク装置500の検索制御部590、温度測 定部560、記録再生条件リスト更新部572、及び、 フォーカス位置学習処理部574によって実行される。 【0221】命令処理部510を通して検索処理(いわ ゆるシーク処理)を行うように指示を受けた検索制御部 590は(ステップ2401)、まず、半径方向におけ る検索目標位置を取得する(ステップ2402)。次 に、温度測定部560は、装置温度を測定する(ステッ プ2403)。その後、フォーカス位置学習処理部57 4は、検索動作が可能かどうかを判断する(ステップ2 404)。判断の方法としては、先に取得した装置温度 に適応したフォーカス位置条件を格納しているかどうか であってもよい。取得した装置温度に適したフォーカス 位置条件を保有している場合(ステップ2404の判定 において「Yes」)、フォーカス位置学習処理部57 4は、検索目標位置に応じたフォーカス位置条件を算出 したのち(ステップ2405)、算出されたフォーカス 位置条件を設定し検索処理を実行する(ステップ240 9)。一方、例えば、長時間連続して使用することで装 置温度が変化することにより、取得した装置温度に適応 したフォーカス位置条件を保有していない場合(ステッ プ2404の判定において「No」)、フォーカス位置 学習処理部574は、フォーカス位置学習が可能か否か の判定を行う(ステップ2406)。この判定は、例え ば、検索目標位置、或いは、その近辺でフォーカス位置 学習が実行できる学習領域があるか否かであってもよ い。フォーカス位置学習が実行できない場合(ステップ 2406の判定で「No」)、フォーカス位置学習処理 部574は、例えば、前回検索処理を行う際に利用した 装置温度を再利用し、その装置温度に適したフォーカス 位置条件を算出する(ステップ2405)。次に、算出 したフォーカス位置条件を利用して検索処理を実行する (ステップ2409)。また、フォーカス位置学習が実 行できる場合(ステップ2406の判定で「Ye s」)、フォーカス位置学習処理部574は、学習を実 行し、フォーカス位置条件を求める(ステップ240 7) 記録再生条件リスト更新部572は、求めたフォ ーカス位置条件と装置温度を元に記録再生条件リストを 更新する。例えば、図21において、前回の検索処理の 際に測定した装置温度がT1で、今回の検索処理で測定 した装置温度がT2だった場合、装置温度T2に対応す る位置Sでのフォーカス位置条件は、(装置温度T1に おける位置Sでのフォーカス位置条件)+{(装置温度 T2における位置Pでのフォーカス位置条件)- (装置 温度T1における位置Pでのフォーカス位置条件))と なり、装置温度T2に対応する位置Eでのフォーカス位置条件は、(装置温度T1における位置Eでのフォーカス位置条件)+((装置温度T2における位置Pでのフォーカス位置条件)-(装置温度T1における位置Pでのフォーカス位置条件)}となる。このようにして算出されたフォーカス位置条件を用いて、記録再生条件リストを更新する。最後に、取得したフォーカス位置条件を用いて検索処理を行う(ステップ2409)。

【0222】なお、ここでは、学習を行う半径位置を検索目標位置としたが、本実施の形態はこれに限定されない。例えば、コマンドを受信した時点の半径位置で学習を行い、取得した内周及び外周のフォーカス位置条件を用いて検索目標位置のフォーカス位置条件を算出してもよい。

【0223】図25は、検索処理、記録再生条件リスト 読み出し処理、フォーカス位置学習処理、及び、記録再 生条件リスト更新処理の手順を示す。この処理は、光ディスク装置500の検索制御処理部590と、フォーカ ス位置学習処理部574と、記録再生条件リスト読込部 571、及び、記録再生条件リスト更新部572で実行 される。

【0224】光ディスク装置500を起動した後、或い は、光ディスクを光ディスク装置に装着した後、記録再 生条件リスト読込部571は、ドライブ情報領域より記 録再生条件リストを読み取り、記録再生条件リスト格納 バッファ540に格納する(ステップ2501)、次 に、命令処理部510などを通して検索処理の指示を受 けた検索制御部590は(ステップ2502)、光ディ スクの装置温度を測定した後(ステップ2503)、現 在の装置温度に対応したフォーカス位置条件があるかど うか、記録再生条件リストを検索する(ステップ250) 4)。この検索は、例えば、記録再生条件に含まれるメ ーカー識別子、及びドライブ識別子と、光ディスク装置 が保有するメーカー識別子、及びドライブ識別子が一致 する記録再生条件を検索することを含む。メーカー識別 子、及びドライブ識別子が一致する記録再生条件がある 場合、その記録再生条件に含まれるステップ2503で 測定した光ディスク装置の装置温度に該当する温度記録 再生条件領域を検索し、該当する装置温度に対応した有 効なフォーカス位置条件が格納されているか否かを判定 するとしてもよい。また、この有効なフォーカス位置条 件が格納されているかどうかの判定は、例えば、フォー カス位置条件を2桁の16進数で表す場合において、0 Ohというフォーカス位置条件としてありえない値が格 納されている場合は格納されていないとし、00h以外 の値が入っている場合は格納されていることにしてもよ い。なお、判定はこの方法に限定されるものではない。 ステップ2504において、記録再生条件リストに利用 可能なフォーカス位置条件が含まれていると判定された 場合(ステップ2505の判定において「Yes」)、

フォーカス位置学習処理部574は、その利用可能なフ ォーカス位置条件を用いて検索目標半径位置のフォーカ ス位置条件を算出する(ステップ2506)。一方、ス テップ2504において利用可能なフォーカス位置条件 が含まれていないと判定された場合(ステップ2505 の判定処理において「No」)、フォーカス位置学習処 理部574は、検索目標位置、或いは、その近辺でフォ ーカス位置学習を実行する(ステップ2507)。次 に、記録再生条件リスト更新部572は、算出されたフ オーカス位置条件を用いて記録再生条件リストの作成を 行い、その記録再生条件リストをドライブ情報領域に記 録することでドライブ情報(記録再生条件リスト)の更 新を行う(ステップ2508)。更新方法はすでに上述 している。最後に、検索制御部590は、取得したフォ 一カス位置条件を利用して検索目標半径位置に移動する (ステップ2509)。

【0225】このように、フォーカス位置学習処理部574により求めたフォーカス位置条件を用いてドライブ情報(記録再生条件リスト)を更新し、例えば、次回起動後に検索コマンドを受信した際、そのドライブ情報(記録再生条件リスト)を読み取ることにより、フォーカス位置学習を行う可能性を低くすることを可能とする。その結果、フォーカス位置学習による待機時間の短縮を図ることが可能となる。

【0226】実施の形態1~7で説明した記録パワー条件は、データを記録する際の条件であり、光ディスクは、書換型ディスクや追記型ディスクに適用することが考えられる。これに対し、フォーカス位置条件は、記録および再生の両方で利用されるため、光ディスクは、書換型ディスク、追記型ディスクだけでなく、再生専用ディスクにも適用可能である。

[0227]

【発明の効果】本発明によれば、記録データをデータバッファに格納し記録処理を中断した後、記録コマンドが示す記録指示領域で記録学習を行う。その後、求めた記録再生条件を用いて記録処理を行う。これにより、記録指示領域に適した記録再生条件を求めることができ、記録に失敗する可能性が低減される。このように、情報記録媒体の記録再生する記録指示領域に対応する記録再生条件を取得することで、適切な記録再生を行なうことができる。

【0228】本発明によれば、記録データをデータバッファに格納し記録処理を中断した後、記録コマンドが示す記録指示領域に近いスペア領域内に未使用のスペア領域がないか検索を行い、ある場合はそのスペア領域で記録再生条件の学習を行い、ない場合は記録コマンドが示す記録指示領域で記録再生条件の学習を行う。その後、求めた記録再生条件を用いて記録再生処理を行う。これにより、データを記録再生する記録指示領域に適した記録パワー条件を求めることができ、記録に失敗する可能

の学習を効率的に行うことを可能とする。

性が低減される。さらに、ユーザのデータを記録再生する記録指示領域の劣化を防ぐことができ、記録回数が減ることを防ぐ。

【0229】本発明によれば、データを記録する記録指示領域の近くに学習専用領域を設けた情報記録媒体に対し、記録データをデータバッファに格納し記録処理を中断した後、データを記録する領域に近い学習専用領域で記録学習を実行する。その後、求めた記録再生条件を用いて記録処理を行う。これにより、記録再生条件の学習を行う領域を確保する必要なく、記録再生する領域に適した記録再生条件を求めることができ、記録に失敗する可能性が低減される。さらに、ユーザのデータを記録再生する領域の劣化を防ぐことができ、記録回数が減ることをふせぐ。

【0230】本発明によれば、情報記録媒体が、情報記録再生装置のファームウェアに関する更新履歴を示すバージョン情報を有する。これにより、ファームウェアの変更が生じた後に記録再生条件リストを更新する際、記録再生条件が再利用可能などうかを判断することを可能とし、次回の記録再生条件の学習による待機時間を短縮することが可能になる。

【0231】本発明によれば、情報記録媒体は、複数に 分けられた区分領域に対応した複数の領域記録再生条件 と、光ディスク装置の装置温度に対応した複数の温度記 録再生条件を含む記録再生条件を格納するドライブ情報 領域を有する。情報記録再生装置は、記録コマンドを受 信した際、記録再生条件に最適な記録再生条件が含まれ ないか検索を行う。ドライブ情報領域が最適な記録再生 条件を格納していない場合は、記録再生条件の学習を行 って、記録再生条件を求める。求められた記録再生条件 を使用して記録再生を行なう。求められらた記録再生条 件は、記録再生条件リストに更新される。一方、ドライ ブ情報領域が最適な記録再生条件を格納する場合は、そ の記録記録条件を読み出して、記録再生を行う。このこ とにより、記録再生条件の学習を行う可能性を低減し、 記録再生条件の学習による待機時間の短縮を図ることを 可能とする。

【0232】本発明によれば、記録する記録指示領域を含む区分領域とは異なった区分領域、あるいは、その時の装置温度とは違った装置温度に関する記録再生条件を用いて、記録する記録指示領域とその時の装置温度に対応した記録再生条件を算出する。このことにより、たとえ記録する記録指示領域とその時の装置温度に対応した記録再生条件がドライブ情報領域に格納されていない場合でも、最適な記録再生条件を算出することを可能とし、記録再生条件の学習による待機時間の短縮を図ることが可能になる。

【0233】本発明によれば、記録再生条件を取得すべき半径位置が、領域記録再生が示す半径位置に一致しない場合、あるいは、記録再生条件を取得すべき半径位置

および装置温度が、領域記録再生条件に含まれる温度記録再生条件が示す装置温度に一致しない場合、格納されている記録再生条件と予め判明している条件式を用いて、所望な半径位置領域に対応する記録再生条件、あるいは、所望な半径位置領域および装置温度に対応する記録再生条件を算出する。このことにより、記録再生条件

【図面の簡単な説明】

【図1】本発明の実施の形態1の情報記録媒体101の 構造を示す図である。

【図2】図1に示されるディスク情報領域104の構造を示す図である。

【図3】ECCブロックの構造と、光ディスク101に 設けられているセクタ103の構造との関係を示す図で ある。

【図4】図2に示されるディスク識別領域208に記録されるドライブ情報406の構造を示す図である。

【図5】本発明の実施の形態1における情報記録再生装置500の構成図である。

【図6A】本発明の実施の形態1における記録処理、及び、記録パワー学習処理の手順を示すフローチャートである。

【図6B】本発明の実施の形態1における別の記録処理、及び、記録パワー学習処理の手順を示すフローチャートである。

【図7】本発明の実施の形態2における光ディスクのフォーマットの構成図である。

【図8】本発明の実施の形態2における記録処理、及び、記録パワー学習処理の手順を示すフローチャートで

【図9】本発明の実施の形態3における光ディスクのフォーマットの構成図である。

【図10】本発明の実施の形態3における記録処理、及び、記録パワー学習処理の手順を示すフローチャートである。

【図11】本発明の実施の形態4における領域記録再生 条件、及び、温度記録再生条件の構成図である。

【図12】本発明の実施の形態5における記録処理、記録再生条件リスト読み出し処理、記録パワー学習処理、及び、記録再生条件リスト更新処理の手順を示すフローチャートである。

【図13】本発明の実施の形態6における情報記録媒体の半径方向と記録パワー条件との相関を示すグラフである。

【図14】本発明の実施の形態6における情報記録再生装置の装置温度と記録パワー条件との相関を示すグラフである。

【図15】本発明の実施の形態6における記録処理、記録再生条件リスト読み出し処理、記録パワー学習処理、 及び、記録再生条件リスト更新処理の手順を示すフロー

(22) 101-331945 (P2001-33U58

チャートである。

【図16】本発明の実施の形態7における情報記録媒体の半径方向と記録パワー条件との相関を示すグラフである。

【図17】本発明の実施の形態7における情報記録再生 装置の装置温度と記録パワー条件との相関を示すグラフ である。

【図18】本発明の実施の形態7における情報記録媒体の半径方向と記録パワー条件との相関を示すグラフである。

【図19】本発明の実施の形態7における情報記録媒体の半径方向と記録パワー条件との相関を示すグラフである。

【図20】情報記録媒体の半径方向とフォーカス位置条件との関係を示すグラフである。

【図21】情報記録媒体の半径方向、及び、情報記録再 生装置の装置温度とフォーカス位置条件の関係を示すグ ラフである。

【図22】本発明の実施の形態8における(起動時の)フォーカス位置学習処理の手順を示すフローチャートである。

【図23】本発明の実施の形態8における(検索処理、 及び、フォーカス位置学習処理の手順を示すフローチャ ートである。

【図24】本発明の実施の形態8における(検索処理、 及び、フォーカス位置学習処理の手順を示すフローチャ ートである。

【図25】本発明の実施の形態8における(検索処理、

記録再生条件リスト読み出し処理、フォーカス位置学習 処理、及び、記録再生条件リスト更新処理の手順を示す フローチャートである。

【符号の説明】

- 500 ディスク記録再生ドライブ
- 510 命令処理部
- 520 記録制御部
- 525 記録再生制御部
- 530 再生制御部
- 540 ドライブ情報格納バッファ
- 550 データバッファ
- 560 温度測定部
- 570 学習情報処理部
- 571 記録再生条件リスト読込部
- 572 記録再生条件リスト更新部
- 573 記録パワー学習処理部
- 574 フォーカス位置学習処理部
- 580 I/Oバス
- 590 検索制御部
- 701 マップ領域
- 702 ユーザ領域
- 703 スペア領域
- 901 データ領域
- 902 学習領域
- 1101 バージョン情報
- 1102 領域記録再生条件
- 1103 温度記録再生条件

【図2】

【図3】

【図1】

【図5】

【図4】

.【図11】

【図13】

【図16】

【図19】

【図12】

'【図14】

【図18】

【図24】

【図25】

フロントページの続き

(72)発明者 伊藤 基志

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72) 発明者 高内 健次

大阪府門真市大字門真1006番地·松下電器 産業株式会社内

Fターム(参考) 5D044 DE52 DE64 DE70 DE78 DE83

5D090 AA01 BB04 CC01 CC04 CC12

CC14 DD01 EE01 EE11 FF27

GG32 GG33 HH01 HH03 JJ07

THIS PAGE BLANK (USPTO)