《高等微积分 2》第十四周习题课

1 (1) 设 L_1 为曲线 $x^2 + y^2 + z^2 = a^2, x + y + z = a$, 从坐标原点看去, L_1 是逆时针方向的. 计算

$$\int_{L_1} y^2 dx + z^2 dy + x^2 dz.$$

(2) 设 L_2 为曲线 $x^2 + y^2 = 2y, y = z$, 从点 (0,1,0) 看去, L_2 是逆时针方向的. 计算

$$\int_{L_2} (y+z)dx + (z+x)dy + (x+y)dz.$$

2 计算曲线积分

$$\int_{L} (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz,$$

其中 L 为曲线

$$\begin{cases} x^2 + y^2 + z^2 = 2ax \\ x^2 + y^2 = 2bx \\ z \ge 0 \end{cases}$$

其中 0 < b < a 是给定的常数. L 的定向为: 从 (b,0,0) 看去, L 是逆时针方向的.

- 3 设 $C \subset \mathbb{R}^2$ 是简单闭曲线, 用 \mathbf{n} 表示 C 上每点处的单位外法方向.
 - (1) 设 a 是一个固定的单位向量. 证明:

$$\oint_C \cos\langle \mathbf{a}, \mathbf{n} \rangle dl = 0,$$

其中 $\langle \mathbf{a}, \mathbf{n} \rangle$ 表示 \mathbf{a} 与 \mathbf{n} 之间的夹角, dl 表示弧长微元.

(2) 设 $\langle \mathbf{i}, \mathbf{n} \rangle$ 表示 \mathbf{n} 与 x 轴正方向的夹角, $\langle \mathbf{j}, \mathbf{n} \rangle$ 表示 \mathbf{n} 与 y 轴正方向的夹角. 证明:

$$\frac{1}{2} \oint_C (x \cos\langle \mathbf{i}, \mathbf{n} \rangle + y \cos\langle \mathbf{j}, \mathbf{n} \rangle) dl = \text{area}(D),$$

其中 $D \in C$ 围成的有界区域.

4 设 $C \subset \mathbf{R}^2$ 是简单闭曲线, $D \in C$ 围成的区域, 用 \mathbf{n} 表示 C 上每点处的单位外法方向. 设 $u, v \in C^2(D)$. 证明第二 Green 公式

$$\iint_D (v\Delta u - u\Delta v) dx dy = \oint_C (\frac{\partial u}{\partial \mathbf{n}} v - \frac{\partial v}{\partial \mathbf{n}} u) dl,$$

其中 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

5 设常数 a,b,c 满足 $ac-b^2>0$, 计算第二型曲线积分

$$\oint_C \frac{-ydx + xdy}{ax^2 + 2bxy + cy^2},$$

其中 C 为单位圆周 $x^2 + y^2 = 1$, 取逆时针方向的定向.

6 (第 7 题需要用到本题的结论) 设 $f \in C^1(\mathbf{R}^2)$, a < b 是给定的实数. 定义一元函数 $g: \mathbf{R} \to \mathbf{R}$ 为

$$g(y) = \int_{a}^{b} f(x, y) dx, \quad \forall y \in \mathbf{R}.$$

证明:

$$g'(y) = \int_a^b \frac{\partial f(x,y)}{\partial y} dx.$$

7 设 $u \in C^2(\mathbf{R}^2)$ 是调和函数, 即满足

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0, \quad \forall (x,y) \in \mathbf{R}^2.$$

(1) 定义一元函数

$$g(r) = \frac{1}{2\pi} \int_0^{2\pi} u(x_0 + r\cos\theta, y_0 + r\sin\theta) d\theta, \quad \forall r > 0.$$

证明: 对 r > 0, 有 g'(r) = 0.

(2) 设 C 是以 (x_0, y_0) 为圆心半径为 R 的圆周. 证明:

$$u(x_0, y_0) = \frac{1}{2\pi R} \oint_C u(x, y) dl.$$

8 设 C 是平面上的道路连通的封闭曲线, D 是 C 围成的有界闭区域. 设 $f: \mathbf{R}^2 \to \mathbf{R}$ 是 C^1 光滑的函数.

(1) 假设 (0,0) \notin $C \cup D$. 计算

$$I = \frac{1}{2\pi} \oint_C \frac{-yf(x,y)dx + xf(x,y)dy}{x^2 + y^2} - \frac{1}{2\pi} \iint_D \frac{xf_x(x,y) + yf_y(x,y)}{x^2 + y^2} d\sigma.$$

(2) 假设 $(0,0) \in D$ 且 $(0,0) \notin C$. 证明:

$$f(0,0) = \frac{1}{2\pi} \oint_C \frac{-yf(x,y)dx + xf(x,y)dy}{x^2 + y^2} - \frac{1}{2\pi} \iint_D \frac{xf_x(x,y) + yf_y(x,y)}{x^2 + y^2} d\sigma,$$

其中积分曲线 C 按逆时针定向, $f_x = \frac{\partial f}{\partial x}, f_y = \frac{\partial f}{\partial y}$ 是 f 的两个偏导数.

9 计算积分.

(1)
$$\iint_{S} x^{2} dy dz + y^{2} dz dx + z^{2} dx dy,$$

其中 S 是曲面 $z^2 = x^2 + y^2, 0 \le z \le 1$, 定向为指向下方的.

(2)
$$\iint_{\Sigma} xydydz + yzdzdx + zxdxdy,$$

其中 Σ 是由四个平面 x=0, y=0, z=0 和 x+y+z=1 围成的封闭曲面, 定向为指向外面的.

10 令

$$S_1 = \{(x, y, z) | x^2 + y^2 + z^2 = R^2 \},$$

$$S_2 = \{(x, y, z) | (x - 2)^2 + y^2 + z^2 = 1 \},$$

$$T = \{(x, y, z) | (\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1 \},$$

都取指向外面的定向. 计算第二型曲面积分

$$\iint_{S_1} \frac{x dy dz + y dz dx + z dx dy}{(x^2 + y^2 + z^2)^{3/2}},$$

$$\iint_{S_2} \frac{x dy dz + y dz dx + z dx dy}{(x^2 + y^2 + z^2)^{3/2}},$$

$$\iint_{T} \frac{x dy dz + y dz dx + z dx dy}{(x^2 + y^2 + z^2)^{3/2}}.$$

- 11 设 $\Omega \subset \mathbf{R}^3$ 是有界闭区域, $\partial \Omega$ 的定向为指向外面的, \mathbf{n} 为法向量.
 - (1) 设 e 是一个固定的向量. 证明:

$$\iint_{\partial\Omega}\cos\langle\mathbf{e},\mathbf{n}\rangle dS=0.$$

(2) 设点 $(a,b,c) \notin \partial \Omega$. \diamondsuit $\mathbf{p}(x,y,z) = (x-a,y-b,z-c)$. 证明:

$$\iiint_{\Omega} \frac{dxdydz}{|\mathbf{p}|} = \frac{1}{2} \iint_{\partial\Omega} \cos\langle \mathbf{p}, \mathbf{n} \rangle dS.$$

12 设曲面 Σ 的法向量为 \mathbf{n} , 设 \mathbf{a} 为一个固定的向量. 证明:

$$\int_{\partial \Sigma^+} \mathbf{a} \times (x, y, z) \cdot d\mathbf{l} = 2 \iint_{\Sigma} \mathbf{a} \cdot \mathbf{n} dS.$$