

Object-Oriented Programming In Mechatronic Systems

Summer School

Module 7

Aachen, Germany, August 10th, 2018

Cybernetics Lab IMA & IfU Faculty of Mechanical Engineering RWTH Aachen University

Field bus protocols and propagation into higher information systems

Ambiguity of the term ,real-time'

Real time in everyday language

- Real time computer strategy games vs.
 Turn based (computer) strategy games
- Players actions are immediately visible
- Player has to react to opponents actions on time

- Example of a Turn based game: chess
- Opponents act one after the other
- No instant reactions

Ambiguity of the term ,real-time'

Communication by mail

- My letter might take days to arrive at the recipient
- Day of delivery, even delivery itself is uncertain
- Same holds for the answer
- Realtime? No!

Communication by eMail

- eMail is typically delivered after a short amount of time (seconds or minutes, not days)
- But: Time of delivery, even delivery itself is still uncertain
- Same holds for the answer
- Realtime? No!

Ambiguity of the term ,real-time'

Communication by telephone

- My message is delivered instant
- Delivery of message < 1 second
- Recipient can answer instantly
- Connection sometimes of bad quality, not everything someone said can be understood
- Realtime? Kind of...

Can a common definition be derived from the foreseen examples?

- Keywords used so far:
 - Fast
 - Instantly
 - Guaranty of Delivery
- Strong definition needed of the terms described before

Definition of the term ,real-time'

!

There exists an upper bound of time after which a response to a certain event is seen.

Soft real-time

- Answers have to arrive in a fixed time
- Some answers might be lost
- Answers that are too late are useless, but will not break the system
- Telephone (VoIP)
- Video Streaming

Hard real-time

- Answers have to arrive in a fixed time
- No Answer might be lost
- Answers that are too late are useless and will furthermore break the system
- ESP, ABS, Airbag Control in cars
- Machine control

Importance of real time in automation

A typical task in automation: Sensor-Actor coupling

- Detection of false products on a transportation belt by a light beam (e.g. products that are too large)
- A pneumatic cylinder will push out false products
- To push out the correct product, the cylinder has to react at exactly the right time
- Being a little too early or a little too late will result in failures

Machinery control based on PLCs

- PLC Programmable Logic Controller
- SPS Speicherprogrammierbare Steuerung
- Allow programming of logical control functions by means of a program resisting in memory

Dick Morley, Tom Bossevain, George Schwenk, and Jonas Landau with the first ever PLC "MODICON 084" in 1969

Example of a "wire-wrap" logical controller board

- Former machinery control did not allow memory residing control flows, instead everything had to be hard wired
- Still visible today in the different programming languages used in PLCs

The basics of a PLC

- Process image of input and outputs
 - Data representation of physical input and outputs as well as virtual inputs and ouputs
- PLC program
 - Logic control function setting outputs depending on inputs

The PLC Scan Cycle

- PLC programs are cyclic programs, they never terminate (purposely)
- Reaction time is predictable
- Upper bound is fixed
- Cycle scan consists of
 - 1. Reading Inputs
 - 2. Processing
 - 3. Writing outputs
- Worst case reaction time to changing inputs?

$$t_{react,max} \le 2 * t_{cycle}$$

- 1. There will be no reaction to inputs pulses shorter than cycle time
- 2. Outputs won't be written until output cycle

Logical Operators AND

Example

Turn on the light (Q0.0), if, and only if, the two switches I0.0 and I0.1 are switched on.

Truth Table

IO. 0	10.1	Q0.0
0	0	0
0	1	0
1	0	0
1	1	1

Logical Operators OR

Example

Turn on the light (Q0.0), if either of the two switches I0.0 and I0.1 is switched on.

Truth Table

I0.0	10.1	Q0.0
0	0	0
0	1	1
1	0	1
1	1	1

Flip Flops RS, SR

Example

Permanently switch a light on with a single button press

dominant set

if both set and reset are true, Q will also be true

I0.0	10.1	Q0.0
0	0	0
0	1	0
1	0	1
1	1	1

dominant reset

if both set and reset are true, Q will be false

I0.0	10.1	Q0.0
0	0	0
0	1	0
1	0	1
1	1	0

Example of signals within PLC scan cycle

Connecting Sensors and Actors Centralized Automation System

- PLCs are single point of intelligence within the whole machine
- All sensors and actors are wired into large switching cabinets

Quelle: Klotter Elektrotechnik GmbH

- A lot of wiring work has to be done
- Different devices demand different wiring strategies
 - Binary devices
 - Analog devices
 - ...
- Sensor and actor are often right next ot each other, but have to be wired separately
- No other information of a sensor than the pure value

Quelle: Elektro Berners GmbH & Co. KG

Connecting Sensors and Actors Decentralized automation systems

Can't we minimize the wiring effort?

- Standardizing interconnection between devices
- Exchanging data instead of physical signals
- Multiple signals transported on the same wire
- Using smart sensors and smart actors with own intelligence
 - Can be configured at runtime
 - Offer more data than only On/Off or continuous analog value
 - Device Information like type and manufacturer
 - Status Information
 - Complex Data Values (RFID Tags, QR codes, Bar codes, ...)
- Distributing PLCs inside the machine
- Details will be discussed in later session!

Fieldbus Protocols (traditional communication in industrial systems)

Fieldbus – Definition:

The fieldbus is a communication system that is based on serial data transfer. Fieldbus systems are generally used within industrial automation systems and process control applications

From a conceptual point-of-view, a field bus is a system that forms an industrial communication network that intends to include measurement and control devices, such as:

- Sensors
- Actuators
- Control devices
- Transducers

A programmable logic controller might be connected to all devices

Transducer

Connecting Sensors and Actors Low Level Protocols

The IO Link Protocol – IEC 61131-9

- Standardized protocol for interconnection of simple sensors an actors
- Supports switching, measuring, binary, multichannel and mixed signal devices
- Online parameterization
- Process data, status information, events
- 0-32 Bytes for each device, cyclic (process data) or acyclic (status, events)
- 3 wires per device (VCC, GND, signal)
- 24V, max. 200mA per device
- Cyclic telegram example:

Connecting Sensors and Actors Low Level Protocols

The AS-i (Actor-Sensor-Interface) protocol

- two-wire-connection, power supply (24V) and data are on the same wire
- Typically used within safety critical applications
 - Door sensors
 - Lockout mechanisms
 - Safety light curtains
- Simple installation, devices can be connected to cable directly

Thank you very much!

