

Universidade de Braslia IE - Departamento de Estatística Trabalho 2 - Análise de Séries Temporais

Trabalho 2 de Análise de Séries Temporais

Ananda Almeida de Sa Julia Birbeire Machado Tiago Goncalves de Sampaio Alves

Prof.Augusto Fiorucci

Brasília Setembro de 2022

Introdução

O presente trabalho foi realizado com base na série temporal de ID 2049, presente no banco de dados da competição de previsão M3, disponibilizada no pacote Mcomp do R.

Newsprint, United States, shipments from mills

Para melhor visualização da série, foi feita sua decomposição utilizando a função mstl(). Os resultados obtidos são observados na figura a seguir.

Nota-se que a série escolhida tem tendência de crescimento de forma linear. Em relação a componente de sazonalidade, a série é mensal, ou seja, apresenta ciclo sazonal m=12. Já em relação aos resíduos, parece que ainda há sazonalidade presente, afastando os mesmos de um comportamento completamente aleatório, não sendo próxima de um ruído branco.

ARIMA

Série sem transformação

Primeiro foi verificado pela função ndiffs() do R que para que série se tornar estacionária seria necessário aplicar apenas 1 diferenciação, e para retirar a raiz unitária sazonal precisaria também de uma diferença a partir da função nsdiffs(), também do R. Com isso, aplicou-se as diferenças e a estacionariedade da série diferenciada não foi rejeitada através do teste KPSS (kpss.test()), que teve p-valor maior que 0.05, dessa maneira, à um nível de 5% de significância, não rejeitamos a hipótese de estacionariedade.

	Estatística	p_valor
KPSS Level	0.110118	0.1

Com os resultados à cima, partimos para os gráficos de ACF e PACF, com o objetivo de escolher o melhor modelo ARIMA para a série sem transformação de Box-Cox:

No gráfico ACF, nota-se uma queda amortizada olhando o gráfico como um todo e, quanto à parte sazonal, observa-se um corte no lag=1. E no PACF, há um corte no lag=1 olhando para o gráfico em geral e ao analisar a parte sazonal, observa-se uma queda amortizada. Tais análises nos permitem concluir que os modelos mais adequados para a série são **Auto Regressivo**, com p=1 e **Médias Móveis Sazonal**, com Q=1.

Além disso, ajustamos o modelo e verificamos, pelos coeficientes, que as raízes do modelo $\mathbf{ARIMA}(1,1,0)\mathbf{x}(0,1,1)_{12}$ estão fora do círculo unitário, tornando o modelo inversível. O modelo candidato, seus coeficientes e raízes são mostrados abaixo:

	Coeficientes
ar1	-0.3842381
sma1	-0.4371492

Modelo
Arima(y = serie, order = c(1, 1, 0), seasonal = c(0, 1, 1), include.mean = F, method = "CSS")

Agora, parte-se para a análise de resíduos para verificar se o modelo selecionado foi adequado.

Resíduos após inicialização do modelo

Percebe-se pelos gráficos acima que os resíduos estão aleatorizados, são normais pelo Teste de Shapiro-Wilk, estacionários pelo teste KPSS e independentes pelo teste de Ljung-Box. Além de não sobrar nenhuma correlação significativa para os resíduos no gráfico ACF. As suposições dos resíduos são seguidas.

Série com transformação de Box-Cox

Primeiramente, para a série com transformação de Box-Cox (parâmetro $\lambda=0,837$), leu-se pela função ndiffs() do R que para que série se tornar estacionária seria necessário aplicar 1 diferenciação, e para excluir a raiz unitária sazonal precisaria também de uma diferença a partir da função nsdiffs(). Com isso, aplicou-se as diferenças e a estacionariedade da série diferenciada não foi rejeitada através do teste KPSS (kpss.test()), que teve p-valor maior que 0.05, dessa maneira, à um nível de 5% de significância, não foi rejeitada a hipótese de estacionariedade.

Série Transformada

	Estatística	p_valor
KPSS Level	0.1093645	0.1

Com os resultados à cima, partimos para os gráficos de ACF e PACF, com o objetivo de escolher o melhor modelo ARIMA para a série com transformação de Box-Cox:

A partir da interpretação dos gráficos, percebe-se, do ponto de vista sazonal, um claro corte da série no gráfico ACF no Lag 1, como também uma amortização no gráfico PACF, sendo então um modelo **MA Sazonal**, onde Q=1. Já do ponto de vista da série sem a sazonalidade, percebe-se uma amortização tanto no gráfico ACF e também um corte no PACF, o que indica um modelo **AR**, onde adotaremos p=1.

Além disso, ao ajustar e verificar o modelo, vê-se, pelos seus coeficientes, que as raízes do modelo $\mathbf{ARIMA}(1,1,0)\mathbf{x}(0,1,1)_{12}$ estão fora do círculo unitário, tornando o modelo inversível e estacionário. O modelo candidato, seus coeficientes e raízes são mostrados abaixo:

	Coeficientes
ar1	-0.3883829
sma1	-0.4335351

Modelo
Arima(y = serie_bc, order = $c(1, 1, 0)$, seasonal = $c(0, 1, 1)$, include.mean = F, lambda = lambda, method = 'CSS')

Agora, parte-se para a análise de resíduos para verificar se o modelo escolhido foi adequado.

Resíduos após inicialização do modelo

Percebe-se pelos gráficos acima que os resíduos estão aleatorizados, são normais pelo Teste de Shapiro-Wilk, estacionários pelo teste KPSS e independentes pelo teste de Ljung-Box. Além de não sobrar nenhuma correlação significativa para os resíduos no gráfico ACF. As suposições dos resíduos são seguidas.

ETS

Série sem transformação

Como foi visto na introdução, sabe-se que a série possui tendência positiva e sazonalidade anual, por isso, para seleção do modelo ETS, será testado todas as combinações de modelos com sazonalidade e tendencia. Além disso, sabe-se que a série é extritamente positiva e por isso serão testados modelos com erros aditivos e multiplicativos, com exceção dos modelos com erros aditivos e sazonalidade multiplicativa pois estes são instáveis.

A tebela a seguir apresenta para cada modelo o resultado do critério de informação de Akaike (AIC), o AIC corrigido (AICc) e o critério de informação Bayesiano (BIC).

Modelo	AIC	AICc	BIC
$\overline{\mathrm{ETS}(\mathrm{A,A,A})}$	1694.690	1700.999	1741.354
$\mathrm{ETS}(\mathrm{A},\mathrm{Ad},\mathrm{A})$	1697.918	1705.043	1747.326
$\mathrm{ETS}(\mathrm{M,A,A})$	1695.813	1702.123	1742.477
$\mathrm{ETS}(\mathrm{M},\mathrm{Ad},\mathrm{A})$	1698.046	1705.171	1747.455
ETS(M,A,M)	1699.682	1705.992	1746.346
ETS(M,M,M)	1699.022	1706.147	1748.431
ETS(M,Ad,M)	1699.252	1706.377	1748.661
$\mathrm{ETS}(\mathrm{M},\mathrm{Md},\mathrm{M})$	1699.022	1706.147	1748.431

Os resultados apresentados na tabela anterior mostram que o modelo ETS(A,A,A) foi o que apresentou o menor valor para o AIC, AICc e BIC e por isso foi o escolhido. O modelo apresentou os parâmetros: alpha = 0.4866, beta = 1e-04 e gamma = 0.0011.

O gráfico a seguir mostra a decomposição da série.

Decomposition by ETS(A,A,A) method

É interessante notar no gráfico anterior que a componente de crescimento (slope) não varia muito, o que também pode ser verificado pelo valor de beta muito próximo de zero.

A seguir será feita a análise de resíduos

A partir da análise dos gráficos anteriores, percebe-se que não há indicação de autocorrelação dos resíduos e que eles parecem seguir normalidade. Para confirmar o que foi percebido nos gráficos, foram realizados os testes de Shapiro-Wilk, Kpss e Ljung-Box. Os p-valores apresentados na tabela a seguir confirmam que não deve-se rejeitar as hipóteses de normalidade, estacionaridade e independência dos resíduos.

	Estatística	p_valor
W	0.9935819	0.8764679
KPSS Level	0.1145089	0.1000000
X-squared	11.2692718	0.5059939

Série com transformação de Box-Cox

Para realizar a transformação de Box-Cox na série escolhida, foi utilizado $\lambda=0,837$, obtido através da função BoxCox.lambda(). Após a transformação, tem-se a série apresentada a seguir.

Serie com transformacao de Box-Cox

Após a transformação, percebe-se que a série ainda apresenta tendencia e sazonalidade então serão analisados modelos ETS com sazonalidade e tendencia. Além disso, a série é estritamente positiva, então serão considerados erros aditivos e multiplicativos. Assim como no caso sem tranformação, não serão analisados modelos com erros aditivos e sazonalidade multiplicativa pois estes são instáveis.

A tebela a seguir apresenta para cada modelo o resultado do critério de informação de Akaike (AIC), o AIC corrigido (AICc) e o critério de informação Bayesiano (BIC).

Modelo	AIC	AICc	BIC
$\overline{\mathrm{ETS}(\mathrm{A,A,A})}$	1379.825	1386.135	1426.489
$\mathrm{ETS}(\mathrm{A},\mathrm{Ad},\mathrm{A})$	1383.095	1390.220	1432.504
ETS(M,A,A)	1380.092	1386.401	1426.756
ETS(M,Ad,A)	1383.324	1390.449	1432.733
ETS(M,A,M)	1382.900	1389.209	1429.563
ETS(M,M,M)	1383.394	1389.703	1430.058
ETS(M,Ad,M)	1384.575	1391.700	1433.984
$\mathrm{ETS}(\mathrm{M},\mathrm{Md},\mathrm{M})$	1384.689	1391.814	1434.098

A tabela anterior mostra que o modelo ETS(A,A,A) foi o que apresentou menor valor para todos os critérios mas esses valores foram muito próximos do modelo EST(M,A,A), como a variação da sazonalidade aparenta ser razoavelmente constante, o erro aditivo é o mais adequado. O modelo

selecionado foi o ETS(A,A,A), ele apresentou os parâmentros alpha = 0.4627, beta = 1e-04 e gamma = 1e-04.

O gráfico a seguir mostra a decomposição da série.

Decomposition by ETS(A,A,A) method

A seguir será feita a análise de resíduos

A partir da análise dos gráficos anteriores, percebe-se que não há indicação de autocorrelação dos resíduos e que eles aparentam seguir normalidade. Além disso, os testes de Shapiro-Wilk, Kpss e Ljung-Box apresentaram p-valor maior do que 0.5, ou seja, a um nível de significância de 5%, há evidências para afirmar que os resíduos são estacionários, independentes e apresentam distribuição normal.

Estudo de desempenho preditivo

Para elaboração do estudo de desempenho preditivo por janela deslizante, considera-se o estudo de janela em n-14 e o os erros para os horizontes até 5. Considerando os modelos já mencionados anteriormente para constriuir as funções de previsão, os gráficos e a tabela a seguir representa os resultados dos erros absolutos por horizonte de previsão.

	ARIMA	ETS	ARIMA Transformada	ETS Transformada
h=1	132.0103	152.7189	132.6752	150.3117
h=2	143.9468	176.9903	145.1233	173.9133
h=3	187.8027	209.2596	189.2591	210.8276
h=4	201.5919	229.5085	202.3724	226.1206
h=5	200.5603	237.9805	199.9427	237.9954

Gráfico dos horizontes e seus erros de previsão

Gráfico dos horizontes e seus erros de previsão - Box-Cox

Resultados

mento para o caso original e transformado.

A tabela a seguir apresenta a acurácia dos modelos selecionados e dos benchmarks.

	MAE
Arima	494.2717
ETS	358.3335
Arima BoxCox	497.6726
ETS Box Cox	332.1068
Auto arima	359.7783
Ses	358.3335
Holt	212.4885
Ets	358.3335
Stlf	344.8304

	MAE
Bats	206.7913
Tbats	226.7613

Com auxílio dos resultados obtidos na tabela de acurária, quando comparado os quatro modelos, sem e com transformação, percebe-se que o valor do erro absoluto médio (MAE) é menor apenas para o ETS com transformação. Portanto, a utilização da transformação no caso do ARIMA não traz uma melhor acurácia para o modelo. Em relação a comparação de todos os modelos dispostos, sugere-se a utilização do modelo com o menor valor do MAE, nesse caso, o modelo Bats é o que possui o menor valor do MAE.

Conclusão

O modelo ARIMA obteve os menores erros médios para previsão em todos os cinco horizontes. Porém, percebe-se pela tabela de acurácia, que os dois modelos ARIMA, tanto sem e com transformação, foram os que apresentaram os maiores valores do MAE em relação a todos os modelos dispostos.

Logo, deve-se considerar um estudo mais aprofundado para decidir qual modelo utilizar, visto que o ARIMA foi o que obteve o melhor comportamento em relação ao desempenho preditivo, mas ao analisar com outros modelos, o modelo que possui a melhor acurácia, ou seja, apresenta o menor valor do erro absoluto médio (MAE), foi o de Bats.

Anexo

```
# Biblioteca
library(Mcomp)
library(tseries)
library(tidyverse)
library(forecast)

# Escolha da série
data(M3)
id=2049
serie <- M3[[id]]$x

# Visualização da série escolhida
plot(serie)

# Decomposição da série
mstl(serie, lambda = 'auto') %>%
    autoplot() +
```

```
labs(x = "Ano") +
  theme_bw()
# ARIMA
# estacionariedade
serie %>% ndiffs()
serie %>% diff() %>% nsdiffs()
X <- serie %>% diff() %>% diff(lag=12)
p valor <- c(kpss.test(X)$p.value)</pre>
Estatística <- c(kpss.test(X)$statistic)</pre>
Teste <- c("Estacionariedade")</pre>
d <- data.frame(Estatística,p_valor)</pre>
knitr::kable(d)
cbind('Série Original' = serie, 'Uma Diferença' = diff(serie),
      'Diferença Sazonal' = X) %>%
  autoplot(facets = T) +
  labs(x = "Ano", y = "Remessas de usina de Papel de Jornal") +
  scale_x_continuous(breaks = seq(1982, 1992, 1)) +
  theme_bw()
# GRAFICOS ACF E PACF
par(mfrow=c(1,2)) # NORMAL E SAZONAL
acf(X,lag.max = 5*12) # AMORTIZADO E CORTE NO 1
pacf(X,lag.max = 5*12) # CORTE NO 1 E AMORTIZADO
# AR 1 e MAs 1
# ARIMA(1,1,0)x(0,1,1)_{12}
fit = Arima(serie, order=c(1,1,0), seasonal = c(0,1,1),
            method = "CSS",include.mean = F)
dfit= data.frame(fit$coef)
names(dfit) = "Coeficientes"
knitr::kable(dfit, align = "c")
knitr::kable(data.frame(
 Modelo='Arima(y = serie, order = c(1, 1, 0), seasonal = c(0, 1, 1),
  include.mean = F, method = "CSS")'),align = "c") #call do modelo
# analise de residuos
par(mfrow=c(1,1))
residuos <- fit$residuals %>% window(start=c(1984,3))
\#par(mfrow=c(1,3))
```

```
plot(residuos, main="Resíduos após inicialização do modelo");
par(mfrow=c(1,2))
qqnorm(residuos); qqline(residuos);
acf(residuos, lag.max=12*5)
p_valor <- c(shapiro.test(residuos)$p.value,kpss.test(residuos)$p.value,</pre>
             Box.test(residuos, lag=15, type = "Ljung-Box")$p.value)
Estatística <- c(shapiro.test(residuos)$statistic,kpss.test(residuos)$statistic,</pre>
                  Box.test(residuos, lag=15, type = "Ljung-Box")$statistic)
Teste <- c("Normalidade", "Estacionariedade", "Independencia")</pre>
d <- data.frame(Estatística,p_valor)</pre>
knitr::kable(d)
# Serie com transformação
## USANDO BOXCOX
lambda <-BoxCox.lambda(serie)</pre>
serie_bc <- BoxCox(serie, lambda = lambda)</pre>
plot.ts(serie_bc,main="Série Transformada")
serie_bc %>% ndiffs()
serie_bc %>% diff() %>% nsdiffs()
X_bc <- serie_bc %>% diff() %>% diff(lag=12)
p_valor <- c(kpss.test(X_bc)$p.value)</pre>
Estatística <- c(kpss.test(X_bc)$statistic)</pre>
Teste <- c("Estacionariedade")</pre>
d <- data.frame(Estatística,p_valor)</pre>
knitr::kable(d)
cbind('Série Transformada' = serie_bc, 'Uma Diferença' = diff(serie_bc),
      'Diferença Sazonal' = X_bc) %>%
  autoplot(facets = T) +
  labs(x = "Ano", y = "Remessas de usina de Papel de Jornal") +
  scale_x_continuous(breaks = seq(1982,1992,1)) +
  theme_bw()
##GRAFICOS ACF E PACF
par(mfrow=c(1,2))
                      # NORMAL E SAZONAL
acf(X_bc,lag.max = 5*12) # AMORTIZADO E CORTE NO 1
pacf(X_bc,lag.max = 5*12) # CORTE NO 1 E AMORTIZADO
#AR 1 E MAs 1
```

```
# ajustando o modelo
fit2 = Arima(serie_bc, order=c(1,1,0), seasonal = c(0,1,1),
             method = "CSS",include.mean = F,lambda = lambda)
dfit2= data.frame(fit2$coef)
names(dfit2)= "Coeficientes"
knitr::kable(dfit2, align = "c")
knitr::kable(data.frame(Modelo="Arima(y = serie_bc,
                         order = c(1, 1, 0), seasonal = c(0, 1, 1),
                         include.mean = F, lambda = lambda, method = 'CSS')"),
             align = "c") #call do modelo
# analise de residuos
par(mfrow=c(1,1))
residuos <- fit2$residuals %>% window(start=c(1984,3))
\#par(mfrow=c(1,3))
plot(residuos, main="Resíduos após inicialização do modelo");
par(mfrow=c(1,2))
qqnorm(residuos); qqline(residuos);
acf(residuos, lag.max=12*5)
p_valor <- c(shapiro.test(residuos)$p.value,kpss.test(residuos)$p.value,</pre>
             Box.test(residuos, lag=15, type = "Ljung-Box")$p.value)
Estatística <- c(shapiro.test(residuos)$statistic,kpss.test(residuos)$statistic,</pre>
                 Box.test(residuos, lag=15, type = "Ljung-Box")$statistic)
Teste <- c("Normalidade", "Estacionariedade", "Independencia")</pre>
d <- data.frame(Estatística,p_valor)</pre>
knitr::kable(d)
# F.TS
# Resultado de critério de informação ETS sem transformação
fit1<- ets(serie,model = "AAA")</pre>
fit2<- ets(serie,model = "AAA",damped = TRUE)</pre>
fit3<- ets(serie,model = "MAA")</pre>
fit4<- ets(serie,model = "MAA",damped = TRUE)</pre>
fit5<- ets(serie,model = "MAM")</pre>
fit6<- ets(serie,model = "MMM")</pre>
fit7<- ets(serie,model = "MAM",damped = TRUE)</pre>
fit8<- ets(serie,model = "MMM", damped = TRUE)</pre>
AIC <- rbind(fit1$aic,fit2$aic,fit3$aic,fit4$aic,
             fit5$aic,fit6$aic,fit7$aic,fit8$aic)
AICc <- rbind(fit1$aicc,fit2$aicc,fit3$aicc,fit4$aicc,
              fit5$aicc,fit6$aicc,fit7$aicc,fit8$aicc)
BIC <- rbind(fit1$bic,fit2$bic,fit3$bic,fit4$bic,
             fit5$bic,fit6$bic,fit7$bic,fit8$bic)
```

```
Modelo <- cbind(c("ETS(A,A,A)","ETS(A,Ad,A)","ETS(M,A,A)","ETS(M,Ad,A)","</pre>
                   "ETS(M,A,M)","ETS(M,M,M)","ETS(M,Ad,M)","ETS(M,Md,M)"))
d <- data.frame(Modelo,AIC,AICc,BIC)</pre>
knitr::kable(d)
# Decomposição ETS sem transformação
plot(fit1)
# Análise de resíduos ETS sem transformação
E <- fit1$residuals
par(mfrow=c(2,2))
plot(E)
acf(E)
pacf(E)
qqnorm(E)
qqline(E)
# Testes para ETS sem transformação
p_valor <- c(shapiro.test(E)$p.value,kpss.test(E)$p.value,</pre>
              Box.test(E,lag=15,type="Ljung-Box",fitdf=3)$p.value)
Estatistica <- c(shapiro.test(E)$statistic,kpss.test(E)$statistic,</pre>
                  Box.test(E,lag=15,type="Ljung-Box",fitdf=3)$statistic)
Teste <- c("Normalidade", "Estacionariedade", "Independencia")</pre>
d <- data.frame(Estatistica,p_valor)</pre>
knitr::kable(d)
# ETS com transformação
lambda <- serie %>% BoxCox.lambda()
serie_box <- serie %>% BoxCox(lambda)
# Visualização e decomposição da ETS com transformação
plot(serie_box,main="Serie com\ntransformacao de Box-Cox")
mstl(serie_box)%>%plot()
# Resultado de critério de informação ETS com transformação
fit1<- ets(serie_box,model = "AAA")</pre>
fit2<- ets(serie_box,model = "AAA",damped = TRUE)</pre>
fit3<- ets(serie_box,model = "MAA")</pre>
fit4<- ets(serie_box,model = "MAA",damped = TRUE)</pre>
fit5<- ets(serie_box,model = "MAM")</pre>
fit6<- ets(serie_box,model = "MMM")</pre>
fit7<- ets(serie_box,model = "MAM",damped = TRUE)</pre>
fit8<- ets(serie_box,model = "MMM", damped = TRUE)</pre>
```

```
AIC <- rbind(fit1$aic,fit2$aic,fit3$aic,fit4$aic,
             fit5$aic,fit6$aic,fit7$aic,fit8$aic)
AICc <- rbind(fit1$aicc,fit2$aicc,fit3$aicc,fit4$aicc,
               fit5$aicc,fit6$aicc,fit7$aicc,fit8$aicc)
BIC <- rbind(fit1$bic,fit2$bic,fit3$bic,fit4$bic,
              fit5$bic,fit6$bic,fit7$bic,fit8$bic)
Modelo <- cbind(c("ETS(A,A,A)","ETS(A,Ad,A)","ETS(M,A,A)",</pre>
                   "ETS(M,Ad,A)","ETS(M,A,M)","ETS(M,M,M)",
                   "ETS(M,Ad,M)","ETS(M,Md,M)"))
d <- data.frame(Modelo,AIC,AICc,BIC)</pre>
knitr::kable(d)
# Decomposição ETS com transformação
plot(fit1)
# Análise de resíduos ETS com transformação
E <- fit1$residuals
par(mfrow=c(2,2))
plot(E)
acf(E)
pacf(E)
qqnorm(E)
qqline(E)
# Testes para ETS com transformação
p_valor <- c(shapiro.test(E)$p.value,kpss.test(E)$p.value,</pre>
             Box.test(E,lag=15,type="Ljung-Box",fitdf=3)$p.value)
Estatística <- c(shapiro.test(E)$statistic,kpss.test(E)$statistic,</pre>
                  Box.test(E,lag=15,type="Ljung-Box",fitdf=3)$statistic)
Teste <- c("Normalidade", "Estacionariedade", "Independência")</pre>
d <- data.frame(Estatística,p_valor)</pre>
knitr::kable(d)
#Funções de previsão
# Sarima
f_arima <- function(y, h){</pre>
fit = Arima(y, order=c(1,1,0), seasonal=c(0,1,1))
forecast(fit, h)
# Sarima com transformação
f_arima_boxcox <- function(y, h){</pre>
fit = Arima(y, order=c(1,1,0), seasonal=c(0,1,1), lambda = 0.837)
forecast(fit, h)
```

```
}
# ETS
f_ets <- function(y, h){</pre>
fit = ets(y, model="AAA")
forecast(fit, h)
# ETS com transformação
f_ets_boxcox <- function(y, h){</pre>
fit = ets(y, model="AAA", lambda = 0.837)
forecast(fit, h)
# Tamanho da série
n = length(serie)
# Erros de previsão
CV_arima = tsCV(y=serie, forecastfunction=f_arima, h=5, initial=n-14)
CV_arima_boxcox = tsCV(y=serie, forecastfunction=f_arima_boxcox,
                       h=5, initial=n-14)
CV_ets = tsCV(y=serie, forecastfunction=f_ets, h=5, initial=n-14)
CV_ets_boxcox = tsCV(y=serie, forecastfunction=f_ets_boxcox,
                     h=5, initial=n-14)
# Cálculo do erro absoluto médio (MAE) para cada horizonte de previsão
MAE_arima = CV_arima %>% abs() %>% colMeans(na.rm=T)
MAE_arima_boxcox = CV_arima_boxcox %>% abs() %>% colMeans(na.rm=T)
MAE_ets = CV_ets %>% abs() %>% colMeans(na.rm=T)
MAE_ets_boxcox = CV_ets_boxcox %>% abs() %>% colMeans(na.rm=T)
tab = cbind(as.numeric(MAE_arima), as.numeric(MAE_ets))
tab_boxcox = cbind(MAE_arima_boxcox, MAE_ets_boxcox)
tabela_erros = data.frame(MAE arima, MAE_ets, MAE_arima_boxcox, MAE_ets_boxcox)
colnames(tabela_erros) <- c('ARIMA', 'ETS',</pre>
                             'ARIMA Transformada', 'ETS Transformada')
knitr::kable(tabela_erros)
# Gráfico das médias dos resultados dos erros
# Sem transformação <- as.numeric(tab)
par(mfrow=c(1,1))
plot.ts(tab,plot.type='s',col=c(1,2),lwd=2,xlab="h",ylab="MAE",
        main=bquote('Gráfico dos horizontes e seus erros de previsão'))
legend('topleft', legend=c("ARIMA","ETS"), col=c(1,2), lwd=2)
```

```
# Com transformação
plot.ts(tab_boxcox, plot.type='s',col=c(1,2),lwd=c(2,2),xlab="h",ylab="MAE",
        main=bquote('Gráfico dos horizontes e seus erros de previsão - Box-Cox'))
legend('topleft', legend=c("ARIMA","ETS"), col=c(1,2), lwd=c(1,2))
# Acurácia
## ajuste e previsão do modelo
#arima
xx.forec_arima <- f_arima(serie,M3[[id]]$h)</pre>
#ets
xx.forec_ets <-f_ets(serie,M3[[id]]$h)</pre>
#arima_boxcox
xx.forec_arima_boxcox <-f_arima_boxcox(serie,M3[[id]]$h)</pre>
#ets_boxcox
xx.forec_ets_boxcox <-f_ets_boxcox(serie,M3[[id]]$h)</pre>
#auto.arima
xx.forec_auto <- auto.arima(M3[[id]]$x, allowdrift=FALSE) %>% forecast(M3[[id]]$h)
xx.forec_ses <- ses(M3[[id]]$x, allowdrift=FALSE) %>% forecast(M3[[id]]$h)
#holt
xx.forec_holt <- holt(M3[[id]]$x, allowdrift=FALSE) %>% forecast(M3[[id]]$h)
#ets
xx.forec_ets <- ets(M3[[id]]$x) %>% forecast(M3[[id]]$h)
#stlf
xx.forec_stlf <- stlf(M3[[id]]$x) %>% forecast(M3[[id]]$h)
#bats
xx.forec_bats <- bats(M3[[id]]$x, allowdrift=FALSE) %>% forecast(M3[[id]]$h)
#tbats
xx.forec_tbats <- tbats(M3[[id]]$x, allowdrift=FALSE) %>% forecast(M3[[id]]$h)
## calculo do erro absoluto médio da previsão
MAE_arima2 <- mean(abs(M3[[id]]$xx - xx.forec_arima$mean))</pre>
MAE_ets2 <- mean(abs(M3[[id]]$xx - xx.forec_ets$mean))</pre>
MAE_arima_boxcox2 <- mean(abs(M3[[id]]$xx - xx.forec_arima_boxcox$mean))
MAE_ets_boxcox2 <- mean(abs(M3[[id]]$xx - xx.forec_ets_boxcox$mean))</pre>
```