

Module

Technologies de l'Internet des Objets

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

CARTHAGE
المدرسة الوطنية للمهندسين بقرطاح
Ecole Nationale d'Ingénieurs de Carthage

Structuration du cours

- 1. Introduction à l'IoT
- 2. Architecture des systèmes IoT
- 3. Technologies de l'IoT
- 4. Plateformes IoT

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

 $Chapitre\ 2$

Architectures des systèmes IoT

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

المتربسة الوطنية للمهنميين بقرط ole Nationale d'Ingénieurs de Carthage

■N¹CARTHAGE Introduction à l'Internet des

- **Composants IoT**
- · Connectivité entre les composants IoT
- · Hardware, systèmes embarqués & gestion d'énergie
- · Systèmes d'exploitation pour les dispositifs à ressources limitées

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

Actionneur & contrôleur

- → Actionneur = Moteur de base qui peut être utilisé pour contrôler un système
 - \rightarrow Permet d'agir dans le monde physique et changer son état
 - ightarrow Prend en charge de transformer un signal électrique en résultat physique
 - ightarrow Peut être hydraulique, électrique ou pneumatique
 - → Exemple : allumage d'un éclairage, déclenchement d'un avertisseur sonore, commande de robots....
- → Contrôleur ≡ équipement en charge de la collecte des données via les capteurs et de la connectivité réseau.
 - → peut avoir la capacité de prendre des décisions immédiates.
 - ightarrow peut également envoyer des données à distance à des ordinateurs plus puissants pour les analyser.

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

Passerelles IoT (3)

Types de passerelles dans un système IoT :

- Passerelles pour l'IoT en industrie
- Passerelles pour le traitement de bord « edge comuting » (réseaux de capteurs…)
- Passerelles pour « home automation »
- Routeurs dans les réseaux des opérateurs

Améliorations du réseau loT par présence de passerelles :

- Haute évolutivité ⇒ supporter tout type de données et traitement intelligent pour envoie/réception des centre de données au réseaux (dispositifs finaux)
- Faible coût des dispositifs ⇒ dispositifs ne demandent pas un traitement intelligent car c'est le rôle des passerelles
- Réduction du coût global du réseau ⇒ moins de communications M2M et taille réduit des réseaux WANs
- Réduction des risques ⇒ passerelles isolent les parties du réseau IoT global

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

17

Composants cloud (1)

→ Cloud Computing (CC) = technologie permettant de délocaliser les données et les applications sur des infrastructures dématérialisées accessibles depuis Internet.

Source : Whatis.com

→ mode de structuration et externalisation des composants du système d'information de l'entreprise qui repose sur les technologies de virtualisation et automatisation.

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

Composants cloud (3)

- → Trois caractéristiques clés du CC :
 - → Service avec mise à jour automatique et en continu
 - ightarrow Self-service & paiement à l'usage, en fonction de la consommation
 - → Allocation dynamique de capacité (adaptation élastique aux pics de charge)

Topologies du Cloud:

- Cloud public ⇒ externe à l'entreprise et partagé via l'accès à Internet, géré par un prestataire externe propriétaire des infrastructures.
- Cloud privé ⇒ structure interne à l'entreprise, dont l'accès est complètement dédié et sécurisé.
 - Cloud virtuellement privé (virtual private) ⇒ le cloud est externe de l'entreprise mais complètement dédié
 - Cloud communautaire ⇒ cas particulier ouvert aux partenaires de l'entreprise : clients, fournisseurs...
- Cloud hybride ⇒ conjonction des deux types (privé + public)

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

Technologie	Fréquence	Portée	Débit	Consommation d'énergie
Wifi	De 2,4 GHz à 6 GHz	300 m	Jusqu'à 54 Mbps	gourmande
Wifi Halow	900 MHz	De 60 à 80 m	Jusqu'à 18 Mbps	faible
.IFI (ou /LC)	480 THz & 670 THz	Qcq dizaines de mètres	Jusqu'à 96 Mbps	Moyenne
BLE	2,4 GHz	Qcq dizaines de mètres	1 Mbps	faible
ZigBee	2,4 GHz	100 m	Jusqu'à 250 kbps	faible
Z-Wave	868 MHz & 908 MHz	50 m	jusqu'à 40 Kbps	faible
RFID	900 MHz 13,56 MHz 125 KHz	De qcq cm à qcq mètres	En fonction de la fréquence	faible

-	المدرسة الوطن Iongue portée					
Technologie	:	Fréquence	Portée	Débit	Consommation d'énergie	
SigFox		900 MHz	Jusqu'à 50 km	1 kbps	Très faible	
oRaWAN		variable	Jusqu'à 15 km	≤ 50 kbps	faible	
RPMA-Inge	nu	2,4 GHz	Jusqu'à 65 km	Jusqu'à 100 kbytes	faible	
	EC-GSM- IoT	850 MHz 900 MHz	Jusqu'à 15 km	~ 10 kbps	faible	
Réseaux cellulaires classiques	LTE-M	700 MHz- 900 MHz	Jusqu'à 11 km	Jusqu'à 1 Mbps		
	NB-IoT	Même que LTE-M	Jusqu'à 11 km	~ 150 kbps		

ENICARTHAGE Principe de gestion de l'énergie pour les objets connectés

Exigence dans le marché de l'IoT en **dispositifs autonomes** et sans fil ⇒ dispositifs disposants de leur propre source d'alimentation

♥ équipements à batteries rechargeables ou sans batterie

🔖 équipements communiquant par des protocoles radio à faible consommation d'énergie (LPWAN: SigFox, LoRaWAN...)

- Pratiques d'optimisation de la consommation d'énergie :
 - Maximiser la réserve énergétique embarquée (batterie), dans la limite des contraintes
 - Limiter les opérations les plus consommatrices (telles que la transmission de données ⇒ effectuer le traitement en local)
 - Réduire la consommation lors des communications sur le réseau local ou distant
 - Avoir recours aux technologies de récupération d'énergie (« energy harvesting ») ou « low tech »

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

ENICARTHAGE Technologies de récupération d'énergie en IoT (1)

- Technologie reposant sur la **conversion** des différents types d'énergie issues de l'environnement ambiant ou des activités humaines en énergie électrique, à stocker par la suite pour être utiliser par les dispositifs autonomes
- Conception de piles qui ne se déchargent jamais avec une durée de vie > 20 ans
- Équivalent des énergies renouvelables classiques (solaire, chaleur, vent...) mais à échelle plus petite ou on exploite les plus infimes sources d'énergie ⇒ dispositifs de Croissance du marché EH:

micro-production d'énergie

- Le « energy harvesting » fournit des quantités de courant très limitées pour des circuits électroniques à très basse consommation
- Les sources d'énergie issues de l'environnement proche :
 - Vibratoires
 - Mécaniques (force, pression)
 - Thermiques ou lumineuses (solaire)

300.000 250,000 200,000 150,000 100,000 50,000 Source : Digi-Key Electronics

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

Microcontrôleur Arduino (1)

- → Carte Arduino = carte équipée du micro-contrôleur, qui permet, à partir d'évènements détectés par des capteurs, de programmer et commander des actionneurs
 - **♦** Interface programmable
- → Extension du projet Arduino = plateforme de développement et de prototypage (développement matériel & logiciel) Open source, composé de :
 - → Carte Arduino ⇒ stocker un programme et le faire fonctionner
 - → Shields (cartes d'extension) ⇒fonctions diverses : relais, commande de moteurs, connectivité ethernet ou wifi..., afficheur LCD...
 - ightarrow IDE \Rightarrow environnement de développement intégré multi OS pour l'édition et la compilation des programmes et leurs transferts dans la carte via le port USB
- → Le microcontrôleur Arduino doté d'un processeur 1 core à 16 MHz généralement, et une faible RAM ⇒ faible consommation d'énergie et faible prix
- → Carte Arduino la plus utilisée **Arduino Uno**

F. Rouissi, Technologies de l'IoT, 3ème année Génie Info, Septembre 2021

	pour r	objet	connecté	(2)	
name	architecture	programming model	supported MCU families or vendors	programming languages	license
Contiki	monolithic	event-driven, Protothreads	AVR, MSP430, ARM7, ARM Cortex-M, PIC32, 6502	C ⁶	BSD
RIOT	microkernel RTOS	multi-threading	AVR, MSP430, ARM7, ARM Cortex-M, x86	C, C++	LGPLv2
FreeRTOS	microkernel RTOS	multi-threading	AVR, MSP430, ARM, x86, 8052, Renesas ^c	С	modified GPL ^d
TinyOS	monolithic	event-driven	AVR, MSP430, px27ax	nesC	BSD
OpenWSN	monolithic	event-driven	MSP430, ARM Cortex-M	C	BSD
nuttX	monolithic or microkernel	multi-threading	AVR, MSP430, ARM7, ARM9, ARM Cortex-M, MIPS32, x86, 8052, Renesas	С	BSD
eCos	monolithic RTOS	multi-threading	ARM, IA-32, Motorola, MIPS	С	eCos License
uClinux	monolithic	multi-threading	Motorola, ARM7, ARM Cortex-M, Atari	С	GPLv2
ChibiOS/RT	microkernel	multi-threading	AVR, MSP430, ARM Cortex-M	С	Triple License ^s
CoOS	microkernel RTOS	multi-threading	ARM Cortex-M	С	BSD
nanoRK	monlothic (resource kernel)	multi-threading	AVR, MSP430,	С	Dual License
Nut/OS	monolithic	multi-threading	AVR, ARM	С	BSD