Javna pokretna mreža - završni ispit

- koncept ne kontinuirane emisije postupak gašenja emisije odašiljača u trenucima pauza u govoru
 - koristi se VAD (Voice Activity Detection)
 - smanjenje potrošnje baterije MS-a i smanjenje interferencijskih smetnji u radijskoj vezi
 - uvodi se komforni šum kako sugovornik ne bi pomislio da je veza prekinuta
 - osnovni problem: razlika između govora i šumova
- modovi rada MS-a:
 - dedicated mode stanje u kojem mobilna postaja ima aktivnu vezu s mrežom i zauzima fizički kanal, koji sadrži barem 2 logička kanala
 - mreža daje sve važne parametre za podržavanje i kontrolu veze, kao i podatke o ćeliji kojoj se veza ostvaruje
 - idle mode stanje u kojem je MS upaljena, ali je u stanju mirovanja, nema ostvarenu aktivnu vezu s mrežom
 - MS mora u određenom ritmu pratiti tzv. paging kanal, kako bi mogla primiti dolazni poziv
 - MS i u idle stanju može promijeniti ćeliju; ta se promjena razlikuje od promjene ćelije za vrijeme trajanja poziva prekapčanja
 - u idle stanju mobilna stanica sama odlučuje o promjeni čelije
- upravljanje pokretljivošću HLR i VLR
 - mreža nadzire uključivanje i isključivanje MS-a
 - nakon uključivanja MS-a slijedi:
 - utvrđivanje u kojoj se ćeliji trenutno nalazi
 - provjera autentičnosti i identiteta opreme
 - registracija lokacijske informacije u VLR-u
 - registracija se obavlja periodički i nakon promijene lokacije
- LAI (Location Area Identity) jedinstveni identifikacijski broj lokacijskog područja
 - LAC Location Area Code
 - BTS šalje svim MS-ovima putem BCCH kanala LAI
 - ako MS primi nepoznati LAI, znači da je promijenila lokacijsko područje te traži obnovu podataka o svojoj lokaciji (mijenjaju se podaci u HLR i VLR)
 - upućivanje poziva MS-u:
 - na osnovu MSRN pronalazi se MSC nadležan za pozivani MS
 - upitom područnom VLR-u dobiva se LAI
 - upućuje se skupni (paging) poziv preko svim područnih BTS-ova na koji se javlja pozivana MS
- slučajni pristup u GSM mreži
 - potaknut od strane mreže (paging poziv)

- potaknut od MS-a (IMSI Attach, IMSI Detach, ažuriranje lokacije, odlazni poziv, SMS)
- postupak:
 - MS šalje kratki burst preko zajedničkog kontrolnog kanala RACH koristeći Slotted Aloha načelo
 - BSC vraća Immediate Assignment (AGCH) poruku koja uključuje:
 - parametri dodijeljenog fizičkog kanala (frekvencija nositelja, vremenski odsječak) u kojem je smješten pridruženi SDCCH kanal
 - parametar Timing Advance
 - MS nakon toga šalje poruku na dodijeljenom SDCCH kanalu indicirajući razlog pristupanja mreži
- komunikacija se tijekom poziva šifrira (chipering)
- dolazni poziv GMSC pronalazi HLR koji je zadužen za pozivani MS preko IMSI broja
 - potom od VLR-a traži TMSI koji se dalje koristi u komunikaciju

UMTS

- Universal Mobile Telecommunication System
- IMT-200 u SAD-u
- uz pokretljivost terminala, riješena je osobna pokretljivost te pokretljivost, prenosivost i transparentnost usluga
- zahtjevi:
 - do 144 kbit/s u svim uvjetima, do 384 kbit/s na otvorenom prostoru, do 2 Mbit/s u zatvorenom prostoru
 - komutacija kanala i paketa
 - simetrični i asimetrični prijenos
 - kvaliteta govora usporediva s onom u fiksnoj mreži
 - više istodobnih usluga
 - integracija s fiksnom mrežom
 - koegzistencija s GSM-om
 - brzi pristup internetu u pokretu
- zahtjevi na usluge:
 - fleksibilnost kretanje između različitih mreža
 - pristup uslugama bez obzira na pristupnu mrežu u kojoj se MS nalazi
 - prilagođenje usluge s obzirom na korišteni terminal
 - dostupnost usluge s obzirom na lokaciju
 - upravljanje profilom usluge bez obzira na lokaciju i pristupnu mrežu
- domena predočuje skup funkcija pojedinog elementa UMTS mreže
 - međusobno odvojene referentnim točkama
 - USIM Domain (UMTS SIM) podaci i procedure za nedvosmislenu i sigurnu identifikaciju osobe
 - Mobile Equipment Domain
 - pokretna oprema ME

- radijski prijenos MT (Mobile Termination) + Aplikacija TE (Terminal Equipment)
- Access Network Domain pristup jezrenoj mreži
- Core Neetwork Domain upravljanje lokacijskom informacijom i uslugama
 - transfer korisničke i upravljačke informacije

Slika 1. UMTS Domene

- stratum predočuje funkcijsku komunikaciju između domena
 - funkcije i protokoli
 - vrste:
 - transportni stratum transport korisničkih podataka i mrežne signalizacije
 - određuje fizikalni format prijenosa
 - šifriranje podataka na radijskom sučelju
 - pristupni stratum dio transportnog stratuma
 - protokoli između UE i UTRAN
 - prijenos podataka na radijskom sučelju
 - upravljanje radijskim sučeljem
 - uslužni stratum funkcije pridružene uslugama
 - protokoli za usmjeravanje i prijenos informacija
 - domaći stratum protokoli i funkcije za pretplatničke podatke i usluge
 - usklađivanje korisničkih specifičnih informacija
 - pristup korisnički specifičnim informacijama i uslugama
 - aplikacijski stratum aplikacijski procesi za krajnje korisnike
 - protokoli i funkcije mogu biti izvan standarda UMTS

• protokoli i funkcije od pokretne opreme, preko pristupne, uslužne, tranzitne mreže do krajnjeg korisnika

Slika 2. Stratumi

UTRAN

- UMTS Radio Access Network
- zemaljski radijski pristup
- UTRAN i GSM mreža mogu koegzistirati i biti spojeni na istu jezgrenu mrežu
- karakteristike:
 - širokopojasni višestruki pristup u kodnoj podjeli (WCDMA)
 - veći kapacitet i bolja pokrivenost
 - mogućnost varijabilne brzine prijenosa
 - prikladnost za paketski i kanalski prijenos
 - višestruke istodobne usluge u jednom terminalu
 - hijerarhijsko strukturiranje ćelija
- funkcije:
 - sustavna kontrola pristupa
 - sigurnost i privatnost
 - upravljanje i kontrola radijskih resursa
 - kontrola radijskog pristupa i veze između korisničke opreme i mreže
 - prijenos korisničkih podataka između korisničke opreme i mreže
- RNS (Radio Network Subsystem) osnovni element UTRAN-a
 - sadrži:
 - RNC (Radio Network Controller)
 - CRNC (Controlling RNC)
 - SRNC (Serving RNC)
 - DRNC (Drifting RNC, prihvatni)

- Node B radijski primopredajni dio
 - pokriva više ćelija (3-6)
 - upravljanje radijskim resursima
 - modulacija (podržava FDD, TDD, CDMA)
 - fizikalni i transportni kanali
 - korekcija pogrešaka
 - povezivanje poziva s UE
 - sakupljanje prometnih podataka
- CDMA Code Division Multiple Access
 - korisnici dijele isti frekvencijski spektar u isto vrijeme, a razlikuju se po dodijeljenim kodovima
 - svaki uređaj koristi čitavi frekvencijski pojas UMTS sustava cijelo vrijeme
 - svakoj MS dodjeljuje se jednoznačni kod (Chip Sequence)
 - "1" u prijenosu se zamjenjuje sa Chip Sequence, a "0" sa komplementom od Chip Sequence
 - soft handover meko prebacivanje poziva
 - nema prekida veze prilikom prebacivanja bazne stanice
 - korisnik ima vezu sa više baznih stanica istovremeno
 - WCDMA širokopojasni višestruki pristup s kodnom podjelom
 - podrška više simultanih nosilaca i varijabilne brzine prijenosa u svakoj vezi
 - FDD 1920-1980 MHz (up), 2110-2170 MHz (down) otvoren prostor
 - TDD 1900-1920 MHz i 2010-2025 MHz zatvoren prostor
 - širina frekvencijskog pojasa 5 MHz
 - omogućava višestazni diverziti korištenjem rake prijamnika (Rake Reciever)
 - mikro diverziti
 - višestazni dolazni signal se na Rake prijamniku dekodira tako da se dekodira svaka komponenta pojedinačno, a onda se kombiniraju kako bi se izvukao maksimum iz signala
 - povećava omjer signal šum
 - višestazni signal signal koji dolazi do prijamnika umnožen i po različitim putanjama, s određenim kašnjenjem

- makro diverziti
 - isti tok podataka se šalje preko različitih fizičkih kanala
 - uzlazna veza: UE šalje podatke istovremeno različitim baznim postajama (Node B)
 - silazna veza: prijam istog toka podataka iz više susjednih ćelija s različitim raspršnim kodovima
- prošireni frekvencijski spektar raspršeni spektar
 - prije odašiljanja se uskopojasni signal rasprši preko širokog frekvencijskog pojasa (zadržavajući gustoću snage konstantnom)
 - u prijamniku se signal vraća u izvorni uskopojasni originalni oblik
 - manja osjetljivost na uskopojasne interferencije i prigušenje
 - nema fiksnog ograničenja kapaciteta (broja korisnika)
 - nedostatak: povećanje razine interferencije od drugih pretplatnika
- omogućava dinamički promjenjive dimenzije ćelije
 - kod UMTS-a je veličina ćelije u uskoj vezi s njezinim kapacitetom
 - veličina ćelije ovisi o odnosu signal/šum zbog veće snage emitiranja udaljenih korisnika i broja aktivnih korisnika nastaju interferencije u istoj ćeliji zbog ostalih korisnika u ćeliji, kao i iz drugih ćelija, što rezultira disanjem ćelija – cell breathing
 - konstantna promjena veličine geografskog područja pokrivanja bazne postaje na temelju količine prometa unutar ćelije
 - kad je ćelija preopterećena, korisnici se prebacuju u susjedne ćelije
 - povećanjem broja korisnika, smanjuje se veličina ćelije
- jezgrena mreža:
 - dio s komutacijom kanala izveden iz GSM-a
 - dio s komutacijom paketa izveden iz GPRS-a
- IMS (Internet Multimedia Subsystem) omogućuje preusmjeravanje prometa
 - komutacija kanala Internet
 - komutacija paketa PSTN, ISDN
 - integracija interneta i ćelijskih mreža
 - pružanje usluga u stvarnom vremenu
 - višemedijske sjednice između više korisnika
 - ahitektura
 - aplikacijski sloj odvaja sadržaj i usluge od povezivanja i pristupa
 - aplikacijski poslužitelji AS
 - IMS AS prisutnost, poruke, grupe
 - SIP AS usluge temeljene na protokolu SIP
 - IP Multimedia Service Switching Function (IM SSF)
 - poslužitelj za povezivanje IMS-a s uslugama koje su bile razvijene za GSM
 - upravljački sloj zajednička IP temeljna struktura
 - elementi baze podataka
 - HSS Home Subscriber Server

- nadležni S-CSCF
- elementi upravljanja
 - funkcija za upravljanje sjednicom poziva CSCF (Call Session Control Function)
 - P-CSCF
 - posrednički SIP poslužitelj
 - prva dodirna točka između terminala i IMS mreže
 - registracija i autentifikacija korisnika
 - uspostavlja sigurnu asocijaciju s UE
 - naplata
 - S-CSCF
 - središnji upravljački čvor
 - SIP poslužitelj, upravlja sjednicom
 - osluškuje AS-ove koji sudjeluju u komunikaciji
 - usmjerava SIP poruke
 - više S-CSCF-ova u mreži
 - I-CSCF (Interrogating CSCF)
 - upitni CSCF
 - definira domenu, njegova adresa se nalazi u DNS-u
 - prva točka u vlastitoj mreži za kontakte iz gostujuće ili vanjske mreže
 - usmjerava SIP zahtjeve za nadležni S-CSCF
- elementi sučelja s upravljačkom razinom
 - MGCF Media Gateway Control Function
 - funkcija upravljanja medijskim pristupnikom
 - BGCF Brearout Gateway Control Function
 - funkcija za upravljanje pristupnikom za prebacivanje veze
 - SIP poslužitelj
 - usmjerava na temelju pozivnog broja
 - SGW Signaling Gateway
 - signalizacijski pristupnik
 - IMS MGW
- elementi resursa
 - MRF Media Resources Function
 - manipulacija medijskim tokovima
 - Controller MRFC
 - obavlja upravljanje vezama s više sudionika
 - Processor MRFP
 - distributer medija prema mreži
- element sučelja na razini mreže
 - MGW Media Gateway
- sloj povezivosti
 - UE se može povezati na IMS preko različitih pristupnih mreža

- Tunneling protokol se u UMTS-u uvodi i između UTRAN-a i SGSN-a
- SIP
 - osnovna ideja: omogućiti pozivanje korisnika u sjednicu pomoću jedinstvene adrese, neovisno o trenutnom položaju:
 - [sip:]<user>@(<host>|<domain>)
 - omogućava osobnu pokretljivost korisnika
 - primjeri sjednica: poziv u internetskoj telefoniji, distribucija višemedijskog sadržaja, višemedijska konferencija
 - entiteti:
 - korisnički agent UA
 - klijent i poslužitelj
 - poslužitelji:
 - posrednički poslužitelj
 - SIP usmjeritelj
 - prima SIP poruke od UA ili posredničkog poslužitelja
 - poslužiteli za preusmjeravanje
 - preslikava SIP adrese
 - ne prosljeđuje zahtjeve već samo vrača adresu odgovarajućeg SIP poslužitelja
 - registar
 - razlučivanje adrese, povezivanje korisnika s njegovom trenutnom lokacijom
 - SIP poruke: INVITE, ACK, CANCEL, BYE
 - odgovori statusni kodovi standardni osim što kod SIP-a ima i kod 6xx koji označava globalnu pogrešku
 - SIGTRAN Signaling Transport
 - skup protokola koji omogućavaju prijenos signalizacije SS7 preko IP mreže
 - tri komponente:
 - protokol za adaptaciju
 - Common Signaling Transport Protocol (SCTP)
 - podržava skup pouzdanih prijenosnih funkcija za prijenos signalizacije
 - Internetski protokol IP

Ključne razlike između UMTS i GSM		
	WCDMA	GSM
širina kanala	5 MHz CDMA	200 kHz TDMA
ponavljanje frekvencija	1	nakon 4-12 ćelija
prekapčanje veze	istovremena komunikacija s više baznih postaja	komunikacija s ćelijom se prekida pri spajanju na novi BS
frekvencijski diverziti	Rake prijamnik demodulira signale višestaznog širenja	interferencija i feding reduciraju se skakanjem frekvencija
kapacitet sustava	soft, ovisi o opterećenju ćelija i interferenciji	hard, ovisi o faktoru ponavljanja frekvencija
kontrola snage	1,5 kHz	2 Hz (vrlo sporo)
procedura traženja ćelije	korištenjem sinkronizacijskog kanala i PN koda	pretraživanjem frekvencija nositelja
diverziti emitiranja	podržan u silaznoj vezi	nije podržan

Slika 4. Razlike između GSM-a i UMTS-a

Evolucija ćelijskih sustava

- HSCSD High Speed Circuit Switched Dana
 - novi software
 - istovremeno korištenje nekoliko vremenskih odsječaka (moguće svih 8, u praksi 4)
 - prednost: jednostavan za primjenu, konstantna kvaliteta
 - nedostatak: kanali blokirani za prijenos govora, skupa naplata usluge

GPRS

- uvodi novi PDCH kanal koji može biti dodijeljen permanentno ili privremeno vremenskom odsječku TDMA okvira
- dinamičko i fleksibilno pridruživanje prometnih kanala i dodjela više od jednog vremenskog odsječka po okviru
- prednost: korak bliže prema UMTS, fleksibilnost
- nedostatak: veća investicija
- brzine ovise o kodiranju i broju odsječaka, a idu do 171.2 kbit/s
- uvodi četiri različita načina kodiranja razlikuju se u parametrima blokovskog i konvolucijskog kodiranja
 - blokovski koder dodaje fire code (detekcija pogrešaka) od 40 ili 16 bita, kodira
 USF (Uncoded Uplink State Flag) koristeći 3, 6 ili 12 bita i dodaje 4 tail bita
 - konvolucijski koder razlika je u omjerima koda

EDGE

• novi modulacijski postupak (8 PSK) s 3 bita po simbolu

- različite klase kodiranja
- maksimalna brzina 43 kbit/s po kanalu
- prednost:
 - povećanje prijenosnog kapaciteta
 - iskorištavanje postojećih frekvencijskih pojaseva
 - zadržavanje postojeće infrastrukture
- nedostatak:
 - nužna bolja kvaliteta signala u odnosu na onu koju nudi GSM mreža
 - velike brzine nisu dostupne svuda u ćeliji
 - signal je vrlo osjetljiv na interferencije i smetnje
 - potrebna promjena softvera i hardvera u pristupnoj mreži kao i prilagodba mobilnih postaja
- definira ukupno 9 postupaka koji se razlikuju u modulaciji, kodiranju i načinu zaštite od pogrešaka – primjena ovisi o parametrima radijske veze i kvaliteti signala
 - četiri se baziraju na GMSK modulaciji
 - pet preostalih bazira se na 8PSK modulaciji
- novi prometni kanali E-TCH/F (Enchanched Circuit Switched Data)
 - E-TCH/F 28.8
 - E-TCH/F 32.0
 - E-TCH/F 43.2
- prednosti 3G i 4G mreža u odnosu na prijašnje generacije:
 - tehnologija radijskog sučelja OFDMA, CDMA
 - širina frekvencijskog pojasa kanala 5-20 MHz
 - korištenje MiMo tehnologije Multiple Input Multiple Output
 - prijem/predaja višestrukih neovisnih tokova podataka između odašiljača i prijemnika
- HSPA 3.5G
 - High Speed Packet Access
 - HSPA+ kanal širine 10 MHz
 - Node B preuzima određene funkcionalnosti od RNC-a
 - adaptivna modulacija i kodiranje
 - koristi se povratna informacija od korisničkog terminala kako bi se utvrdila najbolja modulacijska tehnika i kodirajuća shema za zadane uvjete u kanalu
 - terminal komunicira s više čvorova B i definira listu baznih stanica koje je moguće koristiti za komunikaciju (FCSS Fair Scheduling and Fast Cell Site Selection)
 - odabire ćeliju sa najboljim karakteristikama
 - kraći TTI (Transmission Time Interval) koji reducira kašnjenja i poboljšava praćenje brzih varijacija karakteristika kanala
 - određuje vrijeme zauzeća kanala
 - definira se za svakog korisnika posebno
 - varijabilna duljina okvira ovisno o vrsti prometa
 - dva terminala isti kanal s različitim TTI

- brza adaptacija linkova učinkovitija modulacija i kodiranje kanala
- dinamičko raspoređivanje kanala, dinamička promjena kapaciteta prioritet imaju oni s boljom kvalitetom signala
 - korisnicima koji se nalaze u području s boljim uvjetima doznačuje se veći kapacitet prijenosne mreže i veće prijenosne brzine čime se postiže efikasnije zauzeće kanala
 - dodijeljeni kapacitet ovisi o broju korisnika koji se nalaze unutar istog područja
- brza retransmisija
- uz QPSK koristi se i 16-QAM modulacija s 4 bita po simbolu
- MiMo antenski diveerziti
- 14.4 Mbit/s u praksi 7.2 Mbit/s
- HSPA (HSUPA/HSDPA) uplink i downlink
- nadogradnja potrebna samo u pristupnom dijelu mreže (RNC i Node B)

HSPA

- poboljšanje radijskih performansi
- optimizacijski postupci za dodatno smanjenje kašnjenja u prijenosu podataka te povećanje kapaciteta
- paketski prijenos govora i podataka
- potpuno iskorištenje mogućnosti višestrukog pristupa WCDMA
- 42 Mbit/s (down), 11.5 Mbit/s (up) u praksi duplo manje brzine
- prvi korak prema pristupnoj mreži LTE te novoj jezgrenoj mreži SAE (System Architecture Evolution) – all IP
- LTE − 4G
 - Long Term Evolution
 - širina kanala od 1.25 MHz do 20 MHz
 - 100 Mbit/s u dolaznom smjeru i 50 Mbit/s u odlaznom smjeru (326 Mbit/s, 86 Mbit/s)
 - više usluga, niže cijene pojednostavljenje arhitekture, otvorena sučelja
 - vrijeme odziva RTT (Round Trip Time) manje od 10 ms
 - smanjenje broja mrežnih elemenata
 - koegzistencija sa GSM i UMTS
 - OFDMA u dolaznom smjeru, a SC-FDMA u odlaznom smjeru
 - MiMo višestruke antene, više paralelnih strujanja podataka prema pojedinom korisniku
 - all IP
 - dodjela frekvencijskih resursa u dolaznom i odlaznom smjeru definirana blokovima širine 180 kHz
 - nova jezgrena mreža EPC (Envolved Packet Core)
 - podržava pristupnu mrežu E-UTRAN uz smanjenje broja mrežnih elemenata
 - pojednostavljene funkcionalnosti, smanjenje kašnjenja
 - mogućnosti povezivanja i prekapčanja s fiksnim i ostalim bežičnim pristupnim tehnologijama

- LTE + SAE = 4G EPS (Envolved Packet System)
- MME (Mobility Menagment Entity)
 - temeljni čvor jezgrene mreže
 - brine o signalizacijskim porukama koje se izmjenjuju između UE i čvorova jezgrene mreže
 - nadležan za velik broj Node B
 - funkcionalnosti:
 - sigurnost
 - autentifikacija
 - prekapčanje poziva
 - dodjela mrežnih resursa
 - upravljanje pristupom, sjednicom i vezom
 - upravljanje lokacijom terminala u mirovanju
 - služi samo za razmjenu signalizacije
- čvorovi prilaza SAE Gateway
 - S-GW (Serving Gateway)
 - tunelira podatke prema P-GW
 - prati kretanje korisničkog terminala između čvorova eNodeB pristupne mreže
 - upravljanje pokretljivošću
 - brine o uspostavi veze s korisnicima drugih mreža
 - P-GW (Packet Data Network Gateway)
 - usmjerava podatke od jezgrenog dijela mreže prema ostalim mrežama
 - dodjela IP adrese korisničkim uređajima
 - naplata
 - pružanje usluga s određenom kvalitetom
- HSS (poslužitelj domaćih pretplatnika)
 - baza podataka koja sadrži podatke o pretplatnicima, njihovim profilima, uslugama, ograničenjima i ostalim parametrima bitnim za pružanje usluga
- čvor za upravljanje resursima i terećenjem (Policy Control and Charging Rules Function PCRF)
 - terećenje, autorizacija, pružanje usluge a obzirom na pretplatnički profil, provođenje pravila operatora i sl.

Slika 5. LTE/SAE arhitektura

Slika 6. Napredni LTE (LTE-A)

- pristup internetu prilikom uključivanja UE u mrežu, čvor MME kreira UE kontekst u kojem su zapisane karakteristike veze i mogućnosti korisničkog terminala dobivene na temelju korisničkog profila preuzetog iz HSS-a, IP adresa
 - uspostava veze UE P-GW:
 - UE inicira i uspostavlja vezu s eNodeB
 - UE šalje zahtjev za uspostavom IP veze s čvorom P-GW
 - eNodeB uspostavlja logičku vezu s MME
 - MME ažurira lokaciju UE u HSS i od HSS dobiva pretplatničke podatke
 - MME inicira uspostavu veze između S-GW i P-GW
 - P-GW dodjeljuje IP adresu UE
 - MME uspostavlja vezu između eNodeB i S-GW
 - aktivira se UE kontekst

Volte

- prijenos govora putem pokretne mreže temeljene na IP protokolu
- arhitektura se temelji na IMS-u (IP Multimedia Subsystem)
- problem: veliki broj signalizacijskih poruka kod prijenosa govora
- povezivanje s WLAN mrežama
 - ne omogućava pokretljivost korisnika
 - pristup internetu velikim brzinama
 - PDG (Packet Dana Gateway) provodi registraciju korisnika spojenih na WLAN
 - lokalna IP adresa javna IP adresa
 - sadrži informacije o usmjeravanju podataka za korisnike spojene preko mreže WLAN na Internet
 - WAG (WLAN Access Gateway) osigurava vezu s internetom preko odgovarajućeg PDG-a
 - vatrozid
 - generira informacije o naplati

Mobile TV

- velik broj simultanih konekcija
- pokretno više-odredišno razašiljanje
- triple play u pokretnom telefonu govor, video, podaci
- novi čvor u jezgrenoj mreži centar za više-odredišno razašiljanje
- zauzimanje mrežnih resursa ne ovisi o broju korisnika koji traže uslugu već isključivo o broju različitih sadržaja koji se nude
- femto ćelije bežične pristupne točke male snage, rade u licenciranom dijelu spektra
 - služe za spajanje standardnih pokretnih uređaja na mrežu pokretnog operatora preko DSL-a ili širokopojasnog kabelskog pristupa

Sigurnost pokretne mreže

- identifikacija korisnika i opreme:
 - MSISD dodjeljuje mrežni operator
 - IMSI dodjeljuje mrežni operator
 - IMEI dodjeljuje proizvođač opreme
 - 15 znamenki
 - trajno zapisan u memoriji pokretnog uređaja i ne može se promijeniti
 - MSISDN i IMSI su međusobno odvojeni čime je ostvarena bolja sigurnost i tajnost korisnika
- tajni ključ Ki
 - jedinstven, 128 bita
 - osiguranje komunikacije na zračnom sučelju
 - ne izmjenjuje se kroz mrežu već se izravno upisuje u SIM i AUC
 - algoritmi A3 i A8
- pohrana identifikacije i ključeva:
 - SIM IMSI, MSISDN, Ki, algoritmi A3 i A8
 - HLR IMSI, MSISDN
 - AUC Ki
 - EIR IMEI
- autentičnost pretplatnika
 - poznavanje IMSI-a omogućuje lažno predstavljanje i neovlašten pristup mreži jer je IMSI jednoznačno povezan s MSISDN-om
 - zaštita: provjera autentičnosti SIM-a prilikom zahtjeva za registracijom
 - HLR od AUC-a traži Ki i generira pet trojki
 - trojka RAND, SRES, Kc
 - RAND 128 bitni slučajni broj
 - SRES = A3(RAND, Ki), 32 bita
 - Kc 64 bita, generiran pomoću Ki, ključ za šifriranje
 - MSC odabire jednu trojku
- autentičnost opreme
 - gubitak ili krađa pokretne opreme
 - zaštita: kompromitiranom MS-u ne omogućuje se autentifikacija
 - kompromitiranom SIM-u se zabranjuje pristup mreži
- anonimnost pretplatnika
 - dohvaćanjem IMSI na zračnom sučelju, može se ustanoviti pretplatnikova lokacija i pratiti kretanje
 - zaštita: nakon provjere identiteta pretplatnika, VLR mu dodjeljuje privremeni identitet TMSI čime se smanjuje upotreba IMSI na zračnom sučelju
- tajnost komunikacije
 - prisluškivanje na zračnom sučelju
 - zaštita: šifriranje podataka na zračnom sučelju

- algoritam A5, sjednički ključ Kc
 - svaka komunikacija drugi ključ
 - šifriranje se obavlja koristeći algoritam A5 i ključ Kc
- algoritam A8 zapisan je na SIM-u
 - služi za generiranje 64 bitnog ključa Kc
 - Kc = A8 (RAND, Ki)

GPRS

- identifikacija i autentifikacija slične kao kod GSM-a
 - SGSN vrši autentifikaciju i šifriranje podataka pomoću sigurnosnih algoritama i ključeva koji su prilagođeni paketskom prijenosu podataka
 - umjesto TMSI koristi se TLLI (Temporary Logical Link Identity) i RAI (Routing Area Identity)
 - sedam GPRS algoritama (GEA) za zaštitu komunikacijskog kanala i podataka
 - mrežna sigurnost vatrozid

UMTS

- sigurnosne skupine
 - sigurnost mrežnog pristupa
 - sigurnost domene operatora
 - sigurnost korisničke opreme
 - sigurnost aplikacija
- za razliku od GMS kod kojeg se provodi samo autentifikacija korisnika, u UMTS mreži se provodi uzajamna identifikacija korisnika i mreže
 - postupak autentifikacije uključuje:
 - slučajni broj RAND
 - XRES
 - ključ šifriranja Kc
 - ključ integriteta IK
 - autentifikacijski token za mrežnu autentifikaciju (AUTN)
- tajnost komunikacije provjera cjelovitosti i poboljšani postupak autentifikacij
 - provjera cjelovitosti provjerava se između UE i RNC-a
 - ključevi za šifriranje se duži nego kod GSM-a
 - UMTS Integrity Algorithm UIA, f9 algoritam za provjeru cjelovitosti
 - algoritam f8 šifriranje korisničkih i signalizacijskih podataka
 - računaju se zaštitni bitovi i provodi XOR operacija između tako izračunatog slijeda i podataka koji se šalju
 - na odredištu se na isti način računaju zaštitni bitovi i provodi XOR operacija iz čega se dobiva poslani podatak
- mrežna sigurnost komunikacija čvorova u jezgrenoj mreži obavlja se preko sigurnosne inačice MAP (Mobile Application Part) protokola – MAP sec

- zaštita na aplikacijskom sloju, dodavanje posebnih sigurnosnih zaglavlja koja štite poruke
- IPsec
 - sigurnosni prilazi- SEG-ovi
 - IPsec ESP tunel
 - AES protokol
- usmjerivači, vatrozidi, posrednički poslužitelji za filtriranje prometa

Virtualni operator pokretne mreže

- MVNO Mobile Virtual Network Operator
- nudi pokretne usluge korisnicima
 - <u>ne posjeduje koncesiju frekvencijskog spektra</u>
 - ne posjeduje vlastitu infrastrukturu
 - mrežnim operatorima koji posjeduju koncesiju plača korištenje njihove pokretne mreže
- vitrualni operator je zapravo preprodavač usluga pokretne mreže, kupuje usluge od mrežnih operatora na veliko pa ih preprodaje svojim korisnicima
- prednosti minimalno ulaganje i konkurentnost
- nedostaci
 - nude osnovne usluge na teritorijalno ograničenom području
 - ne nude usluge prelaženja (roaminga)
 - ne nude korisnicima posebne ponude i pogodnosti
- davatelj usluge
 - service provider
 - nudi određene usluge
 - nema mrežnu infrastrukturu, ali posjeduje potrebnu opremu (poslužitelje)

Slika 7. Odnos mobilnog operatora, MVNO-a i davatelja usluga

- kategorije MVNO:
 - četiri tipa prema rastućoj neovisnosti
 - MVNO-1
 - u potpunosti preuzima mrežnu infrastrukturu od svog operatora
 - pruža osnovne usluge
 - nizak trošak ulaganja, mali rizik poslovanja
 - MVNO-2
 - posjeduje određene čvorove pokretne mreže (HLR)
 - vlastite SIM kartice za korisnike
 - nudi neke dodatne usluge
 - MVNO-3
 - posjeduje djelomično vlastitu infrastrukturu (MSC, HLR)
 - nudi niz dodatnih naprednih usluga
 - vlastita podrška za inteligentnu mrežu
 - vlastite usluge
 - MVNO-4
 - posjeduje vlastitu infrastrukturu (MSC, HLR, GMSC)
 - podržava vlastito usmjeravanje prometa (GMSC)
- primjeri automobilska tvrtka, aviokompanija
 - u HR: Bonbon, Multiplus, Telco Grupa, ZABA, Tomato
- virtualni omogućitelj pokretne mreže MVNE (Mobile Virtual Network Enabler)
 - nema izravan kontakt s korisnicima
 - nudi tehničku infrastrukturu (HLR, SMS-C, MMS-C, SGSN, GGSN)
 - usluge naplate
 - administracija
 - podrška za bazne postaje
 - niz pokretnih usluga
 - primjer HR Aspider Soulutins