Data Visualization

Dr. Kalidas Y., IIT Tirupati

Scatter Plot

Plot – An attribute vs Target

Scatterplot for quality characteristic XXX

Visualize a high dimensional data set?

Project it onto 2D plat and visualize!

How to 'project'?

PCA – Projection on to 2D

- PCA(n_components=2)
- PCA fit(X)
- X_pca = PCA.transform(X)

• now X_pca is a set of 2D points, we can plot them and visualize

127) key phrase... "MDS" Multi Dimensional Scaling

- Formulation idea
 - 'pairwise distances be same before and after transformation'
- Distance between points and dot product
 - $dist(X[i], X[j]) = \sqrt{\sum_{k=0}^{d-1} (X[i][k] X[j][k])^2}$
 - $|a-b|^2 = |a|^2 + |b|^2 2ab\cos(\theta)$
 - $dist(X[i], X[j])^2 = |X[i]|^2 + |X[j]|^2 2(X[i] \cdot X[j])$
 - If all vectors are unit vectors, then
 - $d(X[i], X[j])^2 \propto 1 k(X[i], X[j])$
 - Where k(a,b) is some similarity function between two vectors a and b
- We need to maintain almost identical distances between points before and after transformation
- Let
 - Input X[i] be k dimensional
 - $W_{k\times 2}$ be the transformation matrix
 - Determine transformed coordinates, $Z = X \times x$
 - Dot products should remain same!
 - $XX^T \approx ZZ^T$
 - Loss function, $L(W) = |XX^T XWW^TX|^2$ minimize this function over 'W' parameters

128) key phrase... "TSNE" t-test based stochastic neighbourhood embedding

