Multilineární algebra

Poznámkový text vyšší algebry pro teoretickou fyziku

Obsah

1	Duá	ální prostor a tensory	1
	1.1	Lineární formy	1
	1.2	Tensorový součin	4
	1.3	Kovariantní a kontravariantní tensory	6

1. Duální prostor a tensory

"Tenser, said the Tensor. Tension, apprehension, and dissension have begun."

Alfred Bester

V první kapitole se budeme zabývat duálními prostory (nebo zkráceně duály) k vektorovým prostorům. Základními poznatky, na kterých budeme stavět tedy budou pojmy jako *vektorový prostor*, *báze*, *dimense a matice přechodu*. Některé ze základních pojmů si tedy zopakujme.

Konvence. V tomto textu se budeme držet standardu, tedy že v případě vektorů budeme zapisovat souřadnice indexy nahoře, kdežto u bázových vektorů budeme psát indexy dolů. Dále budeme dodržovat Einsteinovu sumační konvenci: V takovéto representaci vektorů - jakožto lineární kombinace bázových vektorů - dále vynecháváme sumační znak Σ .

Opakování. Lineárně nezávislé množině generátorů $\{e_i\}$ vektorového prostoru V říkáme $b\acute{a}ze$ prostoru V. Pokud bázi $\{e_i\}$ vektorového prostoru V napíšeme jako seznam (e_i) , mluvíme o $uspo\check{r}\acute{a}dan\acute{e}\ b\acute{a}zi$.

Dále lze ukázat, že báze prostoru není dána jednoznačně, ale její počet prvků ano. Každá báze prostoru V má tedy vždy stejný počet prvků, jenž nazýváme dimense prostoru V a značíme jej $\dim V$.

To znamená, že libovolný vektor v z vektorového prostoru V s bází $M = \{e_1, \dots, e_n\}$ můžeme napsat jako

$$v = \sum_{i=1}^{\dim V} v^i e_i = v^i e_i,$$

kde v poslední rovnosti využíváme Einsteinovy sumační konvence v indexu i.

Nechť máme dvě báze $M = \{e_1, \dots, e_n\}, M' = \{e'_1, \dots, e'_n\}$ vektorového prostoru V dimense n. $Matice\ p\check{r}echodu\ od\ M\ k\ M'$, pro kterou platí²

$$e'_{j} = \sum_{i=1}^{n} e_{i}(A)_{ij} =: A^{i}_{j}e_{i},$$

$$v^{j} = \sum_{i=1}^{n} (A)_{ji}v'^{i} \equiv A^{j}_{i}v'^{i},$$

$$v'^{j} = (A^{-1})^{j}_{i}v^{i}.$$

1.1 Lineární formy

Definice 1.1.1. Nechť V je vektorový prost Homor nad tělesem \mathbb{F} . Definujme prostor $V^* := \operatorname{Hom}(V,\mathbb{F})$ všech lineárních forem (také lineárních funkcionálů, kovektorů) na V. Tento prostor se nazývá *duální prostor* k prostoru V.

Poznámka. Podle věty o dimensi prostoru homomorfismů víme, že dim $V^* = \dim V$.

¹V případě kovektorů je konvence přesně opačná.

 $^{^2}$ První rovnost pochází z definice, kdežto druhá je triviálním tvrzením o maticích přechodu a třetí je ekvivalentní druhé, neboť $(A^{-1})^j_{\ i}v^i=(A^{-1})^j_{\ i}A^i_{\ k}v'^k=\delta^j_{\ k}v'^k=v'^j.$

 $^{^3}$ Věta říká, že dimense prostoru Hom(V,W) všech homomorfismů mezi prostory V,W dimense n,m v uvedeném pořadí, je dim $(\text{Hom}(V,W))=n\cdot m$.

Definice 1.1.2. Necht jsou dány báze $M = \{e_1, \dots, e_n\} \subseteq V$ a $M^* = \{e^1, \dots, e^n\} \subseteq V^*$. Potom tyto báze nazveme *vzájemně duální*, pokud platí, že $\forall i \in \{1, \dots, n\} : e^i(e_j) = \delta_i^i$.

Poznámka. Zajímá-li nás, jak vypadá, když nějaká i-tá forma působí na nějaký vektor v, odpověď je vcelku snadná:

$$e^{i}(v) = e^{i}(v^{j}e_{j}) = v^{j}e^{i}(e_{j}) = v^{i}.$$
 (1.1)

Lemma 1.1.1. Nechť $M=\{e_1,\ldots,e_n\}$ je báze $V,\,\alpha\in V^*$. Pak čísla

$$(\alpha_1, \ldots, \alpha_n) \equiv (\alpha(e_1), \ldots, \alpha(e_n))$$

jsou rovny souřadnicím kovektoru α vzhledem k $M^*.$

 $D\mathring{u}kaz$. Pokud $\alpha \in V^*$ je kovektor, pak pro libovolný vektor $v \in V$ a $i \in \{1, \ldots, n\}$ platí

$$\alpha(v) = \alpha(v^i e_i) = \alpha(e_i)v^i = \alpha(e_i)e^i(v) = (\alpha(e_i)e^i)(v) =: (\alpha_i e^i)(v). \tag{1.2}$$

Díky větě o zadání homomorfismu hodnotami na bázi⁴ je kovektor α čísly $(\alpha_1, \ldots, \alpha_n)$ jednoznačně zadán, tedy zobrazení α a $\alpha_i e^i$ z Hom (V, \mathbb{F}) jsou si rovna.

Příklad. Nechť $V = \mathbb{R}^2$ s bází $B = \{e_1, e_2\}$, kde $e_1 = (3, 2)$ a $e_2 = (4, 3)$. Najděme bázi duáního prostoru V^* .

 $\check{R}e\check{s}en\acute{\iota}$. Prvky duálního prostoru vždy můžeme vyjádřit ve tvar $e^1=a\epsilon^1+b\epsilon^2, e^2=c\epsilon^1+d\epsilon^2$, kde $\epsilon^k(v)=v^k$ vzhledem ke kanonické bázi. Potom musí ale platit

$$e^{1}(e_{1}) = 3a + 2b = 1,$$

 $e^{1}(e_{2}) = 4a + 3b = 0,$
 $e^{2}(e_{1}) = 3c + 2d = 0,$
 $e^{2}(e_{2}) = 4c + 3d = 1.$

Abychom uspokojili platnost nutného vztahu, stačí vyřešit systém čtyř rovnic o čtyřech neznámých. Toto řešení je

$$e^{1} = 3\epsilon^{1} - 4\epsilon^{2},$$

$$e^{2} = 3\epsilon^{2} - 2\epsilon^{1}.$$

Lemma 1.1.2. Nechť $M^* = \{e^1, \dots, e^n\}, M'^* = \{e'^1, \dots, e'^n\}$ jsou báze V^* duální k bázím M, M', A je matice přechodu od M k $M', \alpha \in V^*$. Potom

$$e'^{i} = (A^{-1})^{i}{}_{j}e^{j}, \qquad \alpha'_{i} = A^{j}{}_{i}\alpha_{j}.$$
 (1.3)

Důkaz. Ať $v \in V$ je libovolný vektor. Pro prvky bází platí $e'_i = A^j_{\ i}e_j$. Jelikož vektor se transformací báze nemění, můžeme psát⁵

$$v = v^j e_j = v'^j e'_j = v'^j A^p_{\ i} e_p = v'^p A^j_{\ p} e_j.$$

 $[\]overline{\ }^4$ V plném znění: Nechť VW jsou vektorové prostory nad \mathbb{F} , $N = \{e_1, \ldots, e_n\}$ je báze V a w_1, \ldots, w_n je n-tice vektorů z W. Pak existuje právě jedno zobrazení $f: V \to W$, pro které $\forall i \in \{1, \ldots, n\}: f(v_i) = w_i$.

⁵Během důkazu mnohokrát zaměňuji indexy, abych došel ke kýženým vztahům ve stejném tvaru. Písmeno indexu je samozřejmě otevřené volbě.

Aby byla rovnost dodržena, musí platit $v^j = v'^p A^j_p$. Jelikož matice přechodu je vždy regulární (existuje inverse), můžeme ekvivalentně psát

$$v^{j}(A^{-1})_{j}^{i} = v'^{p}A_{p}^{j}(A^{-1})_{j}^{i} = v'^{p}\delta_{p}^{i} = v'^{i}.$$

Pro každý vektor $v \in V$ platí $v^i = e^i(v)$ a $v'^i = e'^i(v)$, speciálně $e^i(e_j) = \delta^i_j$. Výše ukázanou rovnost lze tedy přepsat jako $e'^i(v) = (A^{-1})^i_{\ i} e^j(v)$ neboli rovnost zobrazení

$$e^{i} = (A^{-1})^{i}{}_{i}e^{j}.$$

Podobně pro libovolné $\alpha \in V^*$ platí

$$\alpha(v) = \alpha_j e^j(v) = \alpha_j' e^{j}(v) = \alpha_j' (A^{-1})_i^j e^i(v) = \alpha_n' (A^{-1})_i^p e^j(v),$$

platí tedy nutně $\alpha_j=(A^{-1})^p_{\ j}\alpha'_p$, tudíž ekvivalentně $A^j_{\ i}\alpha_j=A^j_{\ i}(A^{-1})^p_{\ j}\alpha'_p=\delta^p_i\alpha'_p=\alpha'_i$. Závěrem tedy

$$\alpha_i' = A_i^j \alpha_j.$$

Poznámka. Doposud odvozené vztahy pro transformace můžeme shrnout do tabulky:

${f transformace}$	maticově	${ m tensorov}\check{ m e}$
prvky báze V	$e_r' = \sum_b e_b(A)_{br}$	$e_r' = A_r^b e_b$
prvky báze V^*	$e'^r = \sum_b (A^{-1})_{rb} e^b$	$e'^r = (A^{-1})^r_b e^b$
souřadnice vektoru	$(v)_{M'}^T = (v)_M^T (A^{-1})^T$	$v'^r = (A^{-1})^r_b v^b$
souřadnice kovektoru	$(\alpha)_{M'}^{T} = (\alpha)_{M}^{T} A$	$\alpha_r' = A_r^b \alpha_b$

Z tabulky je vidět, že bjekty s indexem dole se transformují pomocí matice A, tzn. kovariantně, kdežto objekty s indexy nahoře se transformují pomocí matice A^{-1} , tzn. kontravariantně.

Definice 1.1.3. Nechť V,W jsou dva vektorové prostory a $\phi:V\to W$ je homomorfismus. Potom zobrazení $\phi^*:W^*\to V^*$, definované vztahem

$$\phi^*(\alpha) = \alpha \circ \phi, \tag{1.4}$$

nazveme duální homomorfismus k homomorfismu ϕ .

Lemma 1.1.3. Nechť $\phi: V \to W$ je homomorfimus, $M \subseteq V, N \subseteq W$ jsou báze, $B = (\phi)_{NM}$ je matice homomorfismu. Potom $(\phi^*)_{M^*N^*} = B^T$, a tudíž hodnosti ϕ a ϕ^* jsou stejné.

Důkaz. Označme $M = \{e_i\}, N = \{f_a\}$. Matice B je definována předpisem

$$\phi(e_i) = \sum_{a=1}^{n} (B)_{ai} f_a \equiv B_i^a f_a.$$

Z definice duálního homomorfismu dále plyne

$$\left[\phi^*(f^j)\right](e_i) = f^j(\phi(e_i)) = B_i^{\ a} f^j(f_a) = B_i^{\ a} \delta_a^j = B_i^{\ j},$$

ale zároveň platí

$$(B_k^j e^k)(e_i) = B_k^j e^k(e_i) = B_k^j \delta_i^k = B_i^j.$$

Kovektory $\phi^*(f^j)$ a $B_k^j e^k$ mají stejné hodnoty na bázi M a tudíž jsou si rovny (opět využíváme věty o zadání homomorfismů hodnotami na bázi). V tradiční formě tedy přepis

$$\phi^*(f^j) = B_k^{\ j} e^k \equiv \sum_{k=1}^n (B^T)_{kj} e^k$$

jasně udává rovnost $(\phi^*)_{M^*N^*} = B^T$.

1.2 Tensorový součin

Definice 1.2.1. Nechť X,Y jsou množiny a $f:X\to\mathbb{F},\,g:Y\to\mathbb{F}$ dvě funkce na těchto množinách. Jejich tensorovým součinem rozumíme funkci

$$f \otimes g : X \times Y \to \mathbb{F};$$

 $: (x, y) \mapsto f(x)g(y).$

Poznámka. Tensorový součin není komutativní, tedy $f(x)g(y) \neq f(y)g(x)$ (dokonce opačná operace ani nemusí být definována, pokud $X \neq Y$).

Tensorový součin je komutativní, platí tedy $((f \otimes g) \otimes h)(x, y, z) = (f \otimes (g \otimes h))(x, y, z)$, tudíž má smysl psát $f \otimes g \otimes h$.

Pro tensorový součin platí

$$((r_1f_1 + r_2f_2) \otimes g)(x, y) = r_1f_1(x)g(y) + r_2f_2(x)g(y) = r_1(f_1 \otimes g)(x, y) + r_2(f_2 \otimes g)(x, y),$$

tedy že je bilineární⁶ (v druhé složce zcela analogicky).

Příklad. Tensorový součin dvou lineárních forem $\phi:V\to\mathbb{F}$ a $\psi:V\to\mathbb{F}$ je bilineární forma $\phi\otimes\psi$ splňující

$$(\phi \otimes \psi)(v, w) = \phi(v)\psi(w).$$

Jsou-li $\phi=e^i$ a $\psi=e^j$ prvky báze $M^*,$ pak

$$(e^i \otimes e^j)(v, w) = v^i w^j.$$

Příklad. Je-li $A \in M_n(\mathbb{F})$ matice, pak

$$(a_{ij}e^i\otimes e^j)(v,w)=a_{ij}v^iw^j$$

je bilineární forma, jejíž matice vzhledem k bázi M je A. Jak si můžeme povšimnout, poprvé se setkáváme s výrazem, kde jsou dvojice indexů, přes které se sčítá. Narozdíl od matice přechodu, u níž nás konvence "donutila" psát řádkový index jako horní a sloupcový jako dolní, u matice bilineární formy musíme psát oba indexy dole.

Tensorový součin k lineárních forem je k-lineární forma. Množinu všech k-lineárích forem na vektorovém prostoru V označme symbolem $T_k(V)$. Pak tensorový součin definuje také zobrazení

$$\otimes: T_p(V) \times T_q(V) \to T_{p+q}(V).$$

Lemma 1.2.1. Něchť $M = \{e_1, \dots, e_n\}$ je báze V. Označme

$$e^{a...b} := \underbrace{e^a \otimes \cdots \otimes e^b}_q \in T_q(V).$$

Množina

$$(M^*)^q := \{e^{a \dots b} \mid a, \dots, b \in \{1, \dots, n\}\}$$

tvoří bázi prostoru $T_q(V)$ a $\forall T \in T_q(V)$ platí

$$T = T_{a...b}e^{a...b},$$

⁶V obecném případě (rozšíření na více činitelů) je tensorový součin multilineární

kde

$$T_{a...b} = T(e_a, \ldots, e_b)$$

jsou souřadnice T vzhledem k $(M^*)^q.$ Pokud $M'=\{e'_1,\ldots,e'_n\}$ a A je matice přechodu od M k M', pak

$$e'^{a...b} = (A^{-1})^a_r \dots (A^{-1})^b_s e^{r...s},$$

 $T'_{a...b} = A^r_a \dots A^s_b T_{r...s}.$

Důkaz. Dle definice tensorového součinu

$$e^{a\dots b}(v,\dots,w)=v^a\dots w^b.$$

Pak ale

$$T(v, \dots, w) = T(v^a e_a, \dots, w^b e_b) = T_{a...b} v^a \dots w^b = (T_{a...b} e^{a...b})(v, \dots, w).$$

Vztah platí pro libovolnou q-tici vektorů v, \ldots, w z V, takže $T = T_{a\ldots b}e^{a\ldots b}$. Odtud zároveň plyne, že $(M^*)^q$ generuje $T_q(V)$. Pokud by existovala čísla $S_{a\ldots b}$, pro něž by platilo $S_{a\ldots b}e^{a\ldots b}=0$, pak po dosazení vektorů e_r, \ldots, e_s od levé strany plyne

$$S_{a...b}e^{a...b}(e_r...,e_s) = S_{a...b}\delta_r^a...\delta_s^b = 0,$$

čili všechny koeficienty musí být nulové a $(M^*)^q$ je také lineárně nezávislá. Z multilinearity tensorového součinu plyne

$$e'^{a...b} \equiv e'^{a} \otimes \cdots \otimes e'^{b} = (A^{-1})^{a}_{r} e^{r} \otimes \cdots \otimes (A^{-1})^{b}_{s} e^{s} = (A^{-1})^{a}_{r} \cdots (A^{-1})^{b}_{s} e^{r...s}$$

a poslední tvrzení plyne z

$$T'_{a...b} = T(e'_a, \dots, e'_b) = T(A_a^r e_r, \dots, A_b^s e_s) = A_a^r \dots A_b^s T_{r...s}.$$

Poznámka. Pokud $T_{ab...k}$ a $S_{li...t}$ jsou souřadnice $T \in T_p(V)$ a $S \in T_q(V)$ vůči M, pak

$$(T \otimes S)_{ab\ldots t} = T_{ab\ldots k} S_{li\ldots t}$$

jsou souřadnice $T \otimes S \in T_{p+q}(V)$ vůči stejné bázi.

Příklad. Pokud α je kovektor, pak se jeho souřadnice transformují jako $\alpha'_a = A^r_a \alpha_r$, neboli maticově $(\alpha)^T_{M'} = (\alpha)^T_M A$, kde $(\alpha)^T_M$ je řádkový vektor souřadnic α vůči M. Srovnejme s transformací souřadnic vektorů $(v)_M = A(v)_{M'}$, tedy $(v)^T_{M'} = (v)^T_M (A^{-1})^T$. Matici $(A^{-1})^T$ se říká matice kontragradientní k A.

Příklad. Pokud g je bilineární forma, pak se její souřadnice transformují podle vztahu

$$g'_{ab} = A^r_{\ a} A^s_{\ b} g_{rs}$$

neboli maticově

$$G' = A^T G A$$
,

kde interpretujeme souřadnice $G = (g_{ab})$ jako matici bilineární formy vzhledem k M.

Příklad. Souřadnice T_{abc} trilineární formy T můžeme interpretovat buď jako $n \times n \times n$ krychličku čísel, nebo jako řádkový vektor matic

$$(T_{1bc}, T_{2bc}, \dots, T_{nbc}) =: (((T_1)_{bc}), ((T_2)_{bc}), \dots, ((T_n)_{bc})).$$

Transformační vztah $T_{abc}^{\prime}=A_{a}^{r}A_{b}^{s}A_{c}^{t}T_{rst}$ se pak dá přepsat jako

$$(T'_1, \dots, T'_n) = \left(\sum_{i=1}^n a_{i1} A^T T_i A, \sum_{i=1}^n a_{i2} A^T T_i A, \dots, \sum_{i=1}^n a_{in} A^T T_i A\right).$$

Volba toho, který bude mít "vektorový" index (ostatní dva mají indexy "maticové"), je samozřejmě volná a záleží pouze na nás, který zvolíme. Zavedení matic T_i je jenom početní a notační pomůcka, což je zdůrazeněno i tím, že jsme v posledním vztahu nepoužili sumační konvenci a zapsali elementy a_{ij} matice A tak, jak jsme zvyklí z dřívějška.

1.3 Kovariantní a kontravariantní tensory

Věta 1.3.1 [Duál duálu]. Nechť V je vektorový prostor konečné dimense nad \mathbb{F} . Pak existuje isomorfismus V a $(V^*)^*$, který nezávisí na volbě báze V.

 $D\mathring{u}kaz$. Nechť $v \in V$. Dále definujme homomorfismus $f_v : V^* \to \mathbb{F}$ tak, že pro všechna $\alpha \in V^*$ platí $f_v(\alpha) = \alpha(v)$. Platí, že f_v je lineární forma na V^* , protože pro všechna $\alpha, \beta \in V^*$ a pro všechna $r, s \in \mathbb{F}$ platí

$$f_v(r\alpha + s\beta) = (r\alpha + s\beta)(v) = r\alpha(v) + s\beta(v) = rf_v(\alpha) + sf_v(\beta).$$

Můžeme tedy také definovat zobrazení

$$\Phi: V \to (V^*)^*; : v \mapsto f_v,$$

které je též homomorfismem, neboť pro všechny $v,\,w\in V,$ pro všechna $r,\,s\in\mathbb{F}$ a pro libovolné $\alpha\in V^*$ platí

$$[\Phi(rv + sw)](\alpha) = f_{rv+sw}(\alpha) = \alpha(rv + sw)$$
$$= r\alpha(v) + s\alpha(w) = rf_v(\alpha) + sf_w(\alpha)$$
$$= r[\Phi(v)](\alpha) + s[\Phi(w)](\alpha).$$

Hodnoty zobrazení $\Phi(rv + sw)$ a $r\Phi(v) + s\Phi(w)$ se rovnají pro všechna $\alpha \in V^*$, musí tedy být totožná.

Dále ověříme, že zobrazení Φ je prosté. Podle definic

$$\operatorname{Ker} \Phi = \{ v \in V \mid \Phi(v) = 0 \} = \{ v \in V \mid \forall \alpha \in V^* : f_v(\alpha) = 0 \} = \{ v \in V \mid \forall \alpha \in V^* : \alpha(v) = 0 \}.$$

Pro každý nenulový vektor v ale existuje lineární forma α , pro kterou $\alpha(v) \neq 0$. Definujme zobrazení $\alpha: V \to \mathbb{F}$ tak, že $u + rv \mapsto r$, kde $u \in V \setminus \{v\}_l$ a $r \in \mathbb{F}$, tedy $rv \in \{v\}_l$. Pro tuto formu pro každá (u + rv), $(w + rv) \in V \setminus \{v\}_l$ a $s, t \in \mathbb{F}$ platí

$$\alpha(s[u+rv]+t[w+rv]) = \alpha([su+tw]+r(s+t)v) = r(s+t),$$

$$s\alpha(u+rv)+t\alpha(w+rv) = sr+tr = r(s+t),$$

$$\therefore \alpha(s[u+rv]+t[w+rv]) = s\alpha(u+rv)+t\alpha(w+rv).$$

Tato identita platí pro všechny hodnoty α , tudíž α je homomorfismus z V do \mathbb{F} , tj. lineární forma. Ověřili jsme tedy, že pro každý nenulový vektor v ale existuje lineární forma α , pro kterou $\alpha(v) \neq 0$. Proto Ker Φ musí být nulový podprostor.

Díky věte o dimensi jádra a obrazu Φ víme, že dim $V = \dim V^* = \dim(V^*)^*$. To znamená, že zobrazení Φ je isomorfismus. Zobrazení bylo definováno bez výběru báze, čímž je tvrzení dokázáno.

Poznámka. Zobrazení Φ použité v důkazu předchozí věty se nazývá kanonický isomorfismus V a V^* . Umožňuje ztotožnit vektory (prvky V) a "ko-kovektory" (prvky $(V^*)^*$) a v jistém smyslu vyhlásit rovnoprávnost vektorů a kovektorů: kovektor je forma na vektorech, vektor je forma na kovektorech. To lze vidět zavedením zobrazení

$$\langle \cdot, \cdot \rangle : V \times V^* \to \mathbb{F};$$

 $: (v, \alpha) \mapsto \langle v, \alpha \rangle \coloneqq \alpha(v) = [\Phi(v)](\alpha) \equiv v(\alpha),$

kterému se obvykle říká párovaní vektorů a kovektorů. Přirozená báze $(M^*)^*$ ve $(V^*)^*$ je ztotožněná přímo s bází $M = \{e_1, \ldots, e_n\}$ a definici duální báze můžeme pomocí párování zapsat jako

$$\langle e_i, e^i \rangle = \delta_i^i$$
.

V souřadnicích se pak párování vektoru v a kovektoru α vyjádří vztahem

$$\langle v, \alpha \rangle = \langle v^i e_i, \alpha_j e^j \rangle = v^i \alpha_j \langle e_i, e^j \rangle = v^i \alpha_j \delta_i^j = \alpha^i \alpha_i.$$

Poznámka. Prostory V a V^* jsou také isomorfní, protože mají stejnou dimensi. Jeden takový isomorfismus by mohl být: zvolme ve V bází M a vektoru $v \in V$ přiřaďme kovektor $\alpha \in V^*$, jehož souřadnice $(\alpha)_M$ jsou rovny $(v)_M$. Takový isomorfismus je však pro každou volbu báze různý, a proto neexistuje žádný kanonický isomorfismus mezi V a V^* .

Poznámka. V nekonečné dimensi není obecně zobrazení Φ surjektivní, máme tedy pouze kanonické vnoření V do V^* .

Chápeme-li vektory jako lineární formy na kovektorech, můžeme definovat prostor $T^q(V)$ všech q-lineárních forem na kovektorech, tzv. multivektorů. Lze tedy vyřknout obdobu lemmatu 1.2.1 pro případ k-lineárních forem.

Lemma 1.3.2. Nechť $M=\{e_1,\ldots,e_n\}$ je báze V. Označme

$$e_{a...b} := \underbrace{e_a \otimes \cdots \otimes e_b}_{q} \in T^q(V).$$

Množina

$$M^q := \{e_{a \dots b} \mid a, \dots, b \in \{1, \dots, n\}\}$$

tvoří bázi prostoru $T^q(V)$ a $\forall T \in T^q(V)$ platí

$$T = T^{a...b}e_{a...b}$$

kde

$$T^{a...b} = T(e^a, \dots, e^b)$$

jsou souřadnice T vzhledem k $M^q(V)$. Pokud $M'=\{e'_1,\ldots,e'_n\}$ a A je matice přechodu od M k M', pak

$$e'_{a...b} = A^r_{a} \dots A^s_{b} e_{r...s},$$

 $T'^{a...b} = ((A)^{-1})^a_{r} \dots ((A)^{-1})^b_{s} T^{r...s}.$

Příklad. To be continued