

"Son bir yıldır öğle yemeklerini dışarıda yemek durumunda kaldığımızdan işyerinden iki ağabeyimle Tunalı civarlarında yemeğimizi yiyor ve öğleden sonrası için de Tunalı Pasajı karşısındaki köşeden simit alıyoruz.

Yaklaşık on-on beş gündür tezgahın başka birisi tarafından işletildiğini fark etmiştim. Dün bu sefer simidi ben alacağım diyerek, tezgaha gittiğimde simitçi ortalıkta görünmüyordu.

Ben de her tezgahın başında simitçi olmadığında, Türklerin yaptığı refleks ile tezgahın camını açacak ve parayı koyarak iki tane simit alacaktım.

Öyle de yaptım tezgahın sürgülü camını açtım 1 YTL' yi rafa koydum ve tam simitleri alacaktım ki, orada üstüne el yazısıyla bir şeyler yazılmış, müsvedde kağıtları gördüm.

Beni iyi tanıyanlar ne kadar meraklı olduğumu bilirler; "Yahu bu da nedir, ne yazmış bu adam acaba, bir bakayım," dedim:

8.10 - 2

8.15 - 1

8.21 - 1

8.22 - 2

Bu listede öğleye kadar hangi dakikada kaç simit satıldığı yazıyordu.

Sonra bu listenin altına 13:55 - 2 yazıp, ne yazdığıma dikkat etsin diye 2'nin üstüne bir de yıldız koydum ve simitleri aldım.

VERİTABANI tutmaya bayılırım.

"Allah'ım adamdaki bilince bak, veritabanı tutuyor !!!! " dedim. Ama emin değildim. Belki de belediye böyle bir şeyler istemiştir falan... dedim.

Neyse uzatmayayım, bugün yine aynı simitçiye uğradım, bu sefer oradaydı. Nasılsın, iyi misin, hoşbeşinden sonra,

" 13:55 simitlerini toplama ekledin mi ? @ " diye sorunca:

"Abi sen miydin o ? @ " diyerek gülümsemeye başladı

"Neden böyle bir liste tutuyorsun?" diye sordum, "Belediye mi istiyor?"

"Yok abi, ben 15 gün önce aldım bu tezgahın işletmesini, henüz yabancısıyım müşterinin" dedi.

"Bunları dakika dakika yazıyorum, **hangi saatlerde müşteri yığılıyorsa**, ona göre sıcak simit getireceğim, <u>o gün sabahın simidi akşama kaldı, utandım</u> <u>müşteriden"</u>

deyince ellerine sarılıp öpmek geldi içimden.

İster **CRM** (*Customer Related Management*) deyin, ister **PR** (*Public Relation*), isterseniz de **Marketing Research**...

Ben simitçinin yaptığı işten kendime mesaj çıkarmazsam ölürdüm.

Ne mi çıkardım?... Yok, o kadar da uzun boylu değil, her şeyi de yazacak değilim ya!...

Herkesin mesajı kendine...

Artık her simit aldığımda aklıma **VERITABANCI SİMİTÇİ** gelecek.

Zeka, işine saygı, kar arttırma bilinci.....

Hepsinin sonucunda oluşturulan gerçek katma değer, farklılaşarak rakiplerinden ayrılma ve öne geçme....."

DATABASE

Öğr. Gör. Evgin GÖÇERİ

CONTENTS

- What is database?
- DBMS
- Database vs. File System
- Data Models
 - E/R Model
 - Relational Model
 - Network Model
 - Hierarchical Model
- Types of Databases
 - Centralized DBMS
 - Distributed DBMS
- Actors on Scene
- Database Development Process

CONTENTS

- Operations on Relations
- Relational Algebra
- SQL
- Functional Dependency
- E/R Diagrams
- Normalization
- Semantic Object Models
- DB Applications Using Internet Technology
- Special Topics
- Projects

Database ???

• Employment Records

• Medical Records

Registration to School

• Library Research

Database ?

- A collection of related data
- A random assortment of data can not be referred to as a database
- Thus, a database is a logically coherent collection of data

A DATABASE

- A DATABASE is Self-Describing (metadata)
- Examples of Metadata

Table Name	Number of Columns	Primary Key
Student	4	StudentNumber
Adviser	3	AdviserName
Course	3	ReferenceNumber
Enrollment	3	StudentNumber, ReferenceNumber

SysTables Table

Column Name	Table Name	Data Type	Length*
StudentNumber	Student	Integer	4
FirstName	Student	Text	20
LastName	Student	Text	30
Major	Student	Text	10
AdviserName	Adviser	Text	25
Phone	Adviser	Text	12
Department	Adviser	Text	15
ReferenceNumber	Course	Integer	4
Title	Course	Text	10

SysColumns Table

A DATABASE

A DATABASE is A Collection of Integrated Records

Example

Student Name	Student Phone	Adviser Name	Adviser Phone
Baker, Rex	232-8897	Parks	236-0098
Charles, Mary	232-0099	Parks	236-0098
Johns,Beth	232-4487	Jones	236-0110
Scott,Glenn	232-4444	Parks	236-0098
Zylog,Frita	232-5588	Jones	236-0110

Example

Student Name	Student Phone	Adviser Name
Baker, Rex	232-8897	Parks
Charles,Mary	232-0099	Parks
Johns,Beth	232-4487	Jones
Scott,Glenn	232-4444	Parks
Zylog,Frita	232-5588	Jones

Adviser Name	Adviser Phone
Parks	236-0098
Jones	236-0110

Components of Database Systems

Metadata Indexes

Application Metadata

DBMS-1

 A collection of programs that enables users to <u>create</u> and <u>maintain a database</u>

 A DBMS facilities the process of defining, constructing and manipulating databases for various applications

DBMS-2

Access Control (don't authorize illegal access)

Backup/Recovery (automatically)

Concurrency Control

DBMS-3

Disadvantages

Higher programming cost

Higher hardware cost

Databases vs. File Systems

- Sharing of data
- Control of redundancy
- Better data security
- Faster development of new applications
- Better data accessibility
- More control over concurrency
- Program-data independence
- Data abstraction

Term Explanations - 1

- **Entity**: An object in the real world that is distinguisable from other objects such as; Student, Employee
 - Attribute: A property or a description of an entity
 - **Domain**: A set of posibble values for an attribute
 - **Relationship**: An association among two or more entities

Term Explanations - 2

• A degree of a <u>relationship</u> is the number of entities in the relationship

Term Explanations - 3

Data Models

- The Entity-Relationship
- Relational Model

Network Model

Hierarchical Model

Entity-Relationship Model

 The logical structure of a database can be expressed graphically by an E/R diagram

Relational Model-1

- Data Structure is table (Represents data and relationships among data by a collection of tables)
- Integrity Rules (Entity Integrity, Referencial Integrity)
- Degree of a relation (number of column)
- Cardinality of a <u>relation</u> (number of row)

Relational Model-2

<u>Name</u>	Street	<u>City</u>	<u>Number</u>
Lower	Maple	Queens	900
Shiver	North	Bronx	556
Shiver	North	Bronx	647
Hodges	Sidehill	Brooklyn	647

NumberBalance90055556100.000647105.36680110.533

Degree:4

Cardinality:4

Degree:2 Cardinality:4

Network Model-1

Directed Graphs

 Data are represented by collections of <u>records</u> and relationships among data are represented by <u>links</u> which can be viewed as <u>pointers</u>

Network Model-2

Hierarchical Model

 <u>Similar to</u> the network model in the sense that data and relationships among data are represented by <u>records</u> and <u>links</u> respectively

 <u>Differs from</u> the network model in that the records are organized as collections of <u>trees</u> rather that directed graphs

Hierarchical Model-2

Exercises

Student Table

<u>Stuid</u>	<u>Stdname</u>	<u>Major</u>	<u>Credits</u>
S1001	Smith,Tom	History	90
S1002	Chin,Ann	Math	36

Course Table

Courseid	<u>Title</u>	<u>Prof</u>	Room
ART103	Int.to Art	Adams	H221
CSC201A	Programming	Tanaka	M110

Draw Data Models(Relational, Network, Hierarchical) for the tables

- Explain how to find a grade of a student
- Explain how to find the <u>names of all the students</u> enrolled in <u>ART103A</u>
- Explain how to find the <u>titles of all the courses</u> taken by the student <u>S1001</u>

Types of Databases

- Centralized
 - Personal Computer
 - Central Computer
 - Client/Server
- Distributed
 - Homogenous
 - Hetergeneous

Centralized DBMS

- All data are located <u>at a single site</u>
- Provide greater control over accessing and updating data than distributed databases

Centralized DBMS Personal Computer Databases

- Normally have a <u>single user</u>
- Relatively simple to develop and use
- Typical applications
 - simple accounting
 - inventory management
 - customer billing

Centralized DBMS Central Computer Databases-1

- There exists a <u>central computer</u>
- Database can <u>only be accessed through the central computer</u>
- Usage is often intense with several thousand transactions per second
- Typical applications
 - airline reservation systems
 - financial institutions
 - express delivery companies

Centralized DBMS Central Computer Databases-2

Centralized DBMS Client/Server Databases

Distributed Database

 A distributed database is a <u>single logical</u> database that is <u>physically distributed</u> on several computers

Types of Distributed Databases

Distributed Databases Homogeneous Databases

- The computer operating systems are the same
- The data models are the same
- The <u>DBMSs</u> are the same
- The data at the various locations have common definitions and formats

Distributed Databases Heteregenous Databases

 Different computers and operating systems, data models and DBMSs may be used at each of the location

Actors on the scene

- Database administrators(DBA)
- Database designers
- End users
- System analysts and application programer

Database Administrators

Managing the Database Structure

- Asist in the requirements stage and evalution of alternatives
- Play an active role in database design and creation
- Develop procedures for integrity and quality of database data
- Be prepared for problems after changes are made
- Maintain documentation

Managing Data Activity

- Establish and maintain data dictionary
- Establish data proponents
- Work with data proponents to develop data access and modification rights
- Security and authorization
- Data availability and recovery from failure

Managing the DBMS

- Generate database application performance reports
- Investigate user performance complaints
- Modify database structure
- Evaluate and implement new DBMS feature

Database Designer

 The responsibility for identifying the data to be stored in the database and for choosing appropriate structures to represent and store this data

 Communicate with all prospective database users in order to understand their requirments and come up with a design that meets these requirments

End Users-1

- Casual end users
 - Occasionally access the database
 - Are typically middle or high level managers
- Naive or parametric end users
 - sizable portion of the database end users
 - use standard types of queries

End Users-2

- Sophisticated end users
 - engineers, scientists, business analysts
 - complex requirements

System Analysts and Application Programmers

- System Analysts
 - Determine the requirments of end users especially paremetric users
 - Develop specifications for transactions that meet these requirments
- Application Programmers
 - Implement these specifications as programs, then test, debug, document and maintain these programs

Database Development Process

- Planning
- Analysis
- Desing
- Implementation

Term Explanations-2

- Primary Key
- Candidate Key
- Superkey
- Foreign Key

SSK number can be P.K or C.K

Which one should be P.K, T.C. identification number or student number for the same table