

Fakultät Für Informatik und Mathematik Stochastic Engineering in Business and Finance

Master-Thesis

Interpretation of linear models with SHAP

Interpretation linearer Modelle mit SHAP

Betreuer: Prof. Dr. Andreas Zielke

Eingereicht von: Simon Symhoven, 49651418 Boschetsriederstraße 59A, D-81379 München simon.symhoven@hm.edu

Eingereicht am: München, den 5. November 2023

Abstract

Diese Masterarbeit beleuchtet die Interpretation linearer Modelle mit Shapley Additive exPlanations (SHAP), welches seine theoretische Basis in den Shapley-Werten der kooperativen Spieltheorie findet. Nach einer historischen Einordnung und Begriffsdefinition werden die Shapley-Werte formal hergeleitet und deren axiomatische Grundlagen beleuchtet. Der Übergang von Shapley-Werten zu SHAP wird zeigen wie Beiträge einzelner Merkmale zur Modellvorhersage beitragen. Am Beispiel einer ausgewählten Modellklasse und unter Verwendung des shap Python-Pakets wird die praktische Anwendbarkeit von SHAP auf einen konkreten Datensatz demonstriert. Die Arbeit schließt mit einer Diskussion über die Grenzen von SHAP und bietet einen Ausblick auf dessen Einsatzmöglichkeiten für transparente und nachvollziehbare Modellentscheidungen in der Datenwissenschaft.

Inhaltsverzeichnis

Inhaltsverzeichnis

Ab	kürzı	ungsver	zeichnis	v
Sy	mbol	verzeich	mis	vii
1	Einle	eitung		1
2	Histo	orischer	Kontext und Begriffsdefinitionen	3
	2.1	Die Ge	enese der Shapley-Werte in der kooperativen Spieltheorie .	3
	2.2	Shaple	ey-Werte, SHAP, SHAP-Werte und shap	4
3	The	orie der	Shapley-Werte	5
	3.1	Beispie	el: Designwettbewerb	5
	3.2	Forma	le Definition	8
	3.3	Axiom	e	8
4	Von	Shapley	y-Werten zu SHAP: Brückenschlag zur Modellinterpretation	11
	4.1	Erwart	tete Auszahlung des Models	11
	4.2	Axiom	e	11
	4.3	Approx	ximierung der Shapley Values	11
	4.4	SHAP	-Estimators	11
5	Prak	tische A	Anwendung von SHAP auf lineare Modelle	13
	5.1	Linear	e Modelle als analytische Grundlage	13
	5.2	Einfüh	arung in das shap Python-Paket	14
	5.3	Anwen	ndung: Datensatzname	15
		5.3.1	Entwicklung und Anpassung eines linearen Regressions- modells	15

iv Inhaltsverzeichnis

5.3.2 Berechnung von SHAP-Werten
5.3.3 Interpretation
6 Ausblick
7 Fazit
Literaturverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Quellcodeverzeichnis
Eidesstattliche Erklärung
Anhänge
Anhang A Quellcode

Abkürzungsverzeichnis

SHAP Shapley Additive exPlanations

Symbolverzeichnis vii

Symbolverzeichnis

 $1,\dots,|\mathcal{N}|$ Mögliche Spieler einer Koalition

 \emptyset Leere Menge (leere Koalition)

 \mathcal{N} Große Koalition (Koalition aller Spieler)

 \mathcal{P} Potenzmenge

 \mathcal{S} Koalition

 $\varphi_i(\mathcal{N}, v)$ Der Shapley-Wert eines Spielers i

 $|\mathcal{S}|$ Große Koalition \mathcal{S}

v Koalitionsfunktion

 $v(\mathcal{S})$ Wert der Koalition \mathcal{S}

1. Einleitung 1

1. Einleitung

In einer Zeit, in der datengetriebene Ansätze und automatisierte Modelle immer größere Relevanz erlangen, rückt die Notwendigkeit der Erklärbarkeit und Interpretierbarkeit von Modellen in den Vordergrund. Eines der vielversprechendsten Konzepte, das sich dieser Herausforderung annimmt, sind die sogenannten Shapley-Werte. Diese Masterarbeit erkundet die tiefgreifenden Konzepte der Shapley-Werte, ihre Anwendungen im Kontext von Machine Learning-Modellen und ihre praktische Umsetzung auf reale Datensätze.

Die Arbeit beginnt mit einer umfassenden Einführung in die Shapley-Werte und ihre historischen Wurzeln. Dabei wird insbesondere auf die kooperative Spieltheorie als Ursprung dieser Konzepte eingegangen. Anhand ausgewählter Literatur werden die theoretischen Grundlagen erörtert und der Forschungsstand auf diesem Gebiet aufgezeigt.

Im Anschluss daran wird die Brücke zur aktuellen Landschaft des maschinellen Lernens geschlagen. Es wird beleuchtet, wie die Shapley-Werte adaptiert werden können, um Einblicke in die Gewichtung von Merkmalen in komplexen Machine Learning-Modellen zu gewinnen. Dabei wird auf bestehende Methoden und Ansätze Bezug genommen und diskutiert, wie diese auf verschiedene Modelle angewendet werden können.

Ein zentraler Schwerpunkt der Arbeit liegt auf der praktischen Anwendung der Shapley-Werte. Ein realer Datensatz wird vorgestellt und die Methodik wird auf diesen angewendet, um die Wirksamkeit und Aussagekraft der Shapley-Werte in der Praxis zu evaluieren. Dies ermöglicht eine kritische Reflexion über die Stärken und Limitationen dieses Ansatzes im Kontext der Datenerklärung.

Abschließend werden die gewonnenen Erkenntnisse zusammengeführt und ein Ausblick auf zukünftige Entwicklungen und Forschungsrichtungen gegeben. Die Arbeit trägt somit dazu bei, das Verständnis für die Shapley-Werte als Instrument der Erklärbarkeit in komplexen Modellen zu vertiefen und ihre praktische Anwendbarkeit zu beleuchten.

2. Historischer Kontext und Begriffsdefinitionen

2.1. Die Genese der Shapley-Werte in der kooperativen Spieltheorie

Der Ursprung der Shapley-Werte liegt in der kooperativen Spieltheorie, einem fundamentalen Zweig der Spieltheorie. Dieser Bereich beschäftigt sich mit der Analyse von Situationen, in denen Akteure zusammenarbeiten, um gemeinsame Ziele zu erreichen. Zentrales Anliegen ist dabei die gerechte Verteilung der entstehenden Gewinne unter den Akteuren. Ein Schlüsselkonzept dieser Theorie ist die sogenannte "Charakteristische Funktion", welche die Bewertung der Gewinnverteilung einer Koalition von Akteuren ermöglicht.

Die Shapley-Werte, entwickelt von Lloyd Shapley in den 1950er Jahren, bieten einen methodischen Ansatz, um den individuellen Beitrag eines jeden Akteurs zur kooperativen Zusammenarbeit gerecht zu bewerten. Dies geschieht durch die Durchschnittsbewertung der Beiträge über sämtliche mögliche Koalitionen hinweg. Diese Methode erweist sich als äußerst nützlich, um eine gerechte und rationale Verteilung von Gewinnen in vielfältigen Szenarien zu ermöglichen, sei es in wirtschaftlichen Verhandlungen oder der Aufteilung von Ressourcen.

Das Verständnis der kooperativen Spieltheorie und ihrer Anwendung in Form der Shapley-Werte ermöglicht es, dieses theoretische Konzept auf den Bereich des maschinellen Lernens zu übertragen. In dieser Arbeit wird der Übergang von abstrakten Spieltheorie-Konzepten zu konkreten Anwendungen in der Welt der datengetriebenen Modelle erforscht.

Zur Erreichung dieses Ziels werden in den kommenden Abschnitten nicht nur die formalen Definitionen und Eigenschaften der Shapley-Werte erläutert, sondern auch ihre Adaption und Anwendung auf Machine Learning-Modelle in Betracht gezogen. Die Anwendbarkeit wird durch die praktische Anwendung auf einen realen Datensatz verdeutlicht.

2.2. Shapley-Werte, SHAP, SHAP-Werte und shap

Zur Verdeutlichung und Abgrenzung der verschiedenen, jedoch verwandten Begrifflichkeiten, die im Kontext dieser Arbeit Verwendung finden, ist eine kurze Einordnung essenziell.

Beginnend mit den Shapley-Werten, entstammt dieser Begriff der kooperativen Spieltheorie und beschreibt eine Methode, um den fairen Beitrag eines Spielers zu der Gesamtauszahlung eines kooperativen Spiels zu bestimmen.

Shapley Additive exPlanations (SHAP) ist ein Interpretationsframework, das die Shapley-Werte in den Bereich des maschinellen Lernens überträgt. Der Begriff wurde Lundberg und Lee erstmals eingeführt [5, S. 1].

Die SHAP-Werte sind dann die konkreten quantitativen Beiträge der einzelnen Merkmale zu einer bestimmten Vorhersage, berechnet basierend auf dem SHAP-Framework.

Das Python-Paket shap schließlich ist eine Implementierung, die es praktikabel macht, SHAP-Werte in der Anwendung zu berechnen und zu visualisieren. Es stellt eine reiche Auswahl an Werkzeugen zur Verfügung, um diese Werte und ihre Auswirkungen zu interpretieren.

3. Theorie der Shapley-Werte

3.1. Beispiel: Designwettbewerb

Angenommen, drei Teilnehmer, Anna, Ben und Carla, haben als Team kooperiert und den ersten Platz bei einem Designwettbewerb belegt¹. Dieser Erfolg führt zu einem Gesamtgewinn von 1000 €. Das Preisgeld für den zweiten Platz beträgt 750 €und 500 €für den dritten Platz. Die Herausforderung besteht nun darin, den Gewinn auf eine Weise zu verteilen, die den individuellen Beitrag jedes Teilnehmers zur Erzielung des ersten Platzes gerecht widerspiegelt.

Die Situation wird komplizierter, wenn man bedenkt, dass jeder Teilnehmer unterschiedlich zu dem Erfolg beigetragen hat und ihre individuellen Leistungen auch zu verschiedenen Ausgängen geführt hätten, wenn sie alleine oder in anderen Teilkonstellationen angetreten wären.

Um eine faire Aufteilung des Preisgeldes zu erreichen, betrachten wir die hypothetischen Gewinne, die Anna, Ben und Carla erzielt hätten, wenn sie in unterschiedlichen Konstellationen am Wettbewerb teilgenommen hätten. Tabelle 1 zeigt die gegegbene Gewinnverteilung der verschiedenen Koalitionen. Die Koalition \emptyset entspricht dabei der leeren Koalition – der Nichtteilnahme an dem Wettbewerb.

Koalition	Gewinn	Bemerkung
\emptyset	0 €	Keine Teilnahme
${Anna}$	500 €	3. Platz als Einzelteilnehmerin
$\{\mathrm{Ben}\}$	750 €	2. Platz als Einzelteilnehmer
{Carla}	0 €	Kein Gewinn als Einzelteilnehmerin
{Anna, Ben}	750 €	2. Platz als Team ohne Carla
{Anna, Carla}	750 €	2. Platz als Team ohne Ben
{Ben, Carla}	500 €	3. Platz als Team ohne Anna
{Anna, Ben, Carla}	1000 €	1. Platz als Gesamtteam

Tabelle 1.: Potenzielle Gewinne für verschiedene Teilnehmerkonstellationen im Designwettbewerb.

¹In Anlehung an Beispiel aus Kapitel 4 "Who's going to pay for that taxi?"[7, S.17-20]

Zur Berechnung der Shapley-Werte ist es erforderlich, den marginalen Beitrag jedes Spielers zu erfassen. Marginalbeiträge in der Spieltheorie, und speziell im Kontext der Shapley-Werte, sind die zusätzlichen Beiträge, die ein Spieler (Teilnehmer) zum Gesamtgewinn einer Koalition beiträgt, wenn er dieser beitritt. Die Berechnung des marginalen Beitrags eines Teilnehmers erfolgt, indem man den Wert der Koalition ohne diesen Teilnehmer vom Wert der Koalition mit dem Teilnehmer subtrahiert [7, S. 18].

In diesem Beispiel mit Anna, Ben und Carla, die an einem Designwettbewerb teilnehmen, ist der marginale Beitrag von Anna zur Koalition von {Ben} der zusätzliche Wert, den sie einbringt, wenn sie sich Ben anschließt, ausgehend von Bens individuellem Gewinn.

Die Tabelle 2 illustriert den Gewinn jeder möglichen Koalition ohne den betrachteten Spieler und den neuen Gesamtgewinn, sobald dieser Spieler der Koalition beitritt. Der marginale Beitrag jedes Spielers wird dann als die Differenz zwischen diesen beiden Werten berechnet und gibt Aufschluss über den individuellen Wertbeitrag zum gemeinschaftlichen Erfolg.

Teilnehmer	Zur Koalition	Gewinn vorher	Gewinn nachher	Marginalbeitrag
Anna	Ø	0 €	500 €	500 €
Anna	$\{Ben\}$	750 €	750 €	0 €
Anna	${Carla}$	0 €	750 €	750 €
Anna	{Ben, Carla}	500 €	1000 €	500 €
Ben	Ø	0 €	750 €	750 €
Ben	$\{Anna\}$	500 €	750 €	250 €
Ben	${Carla}$	0 €	500 €	500 €
Ben	{Anna, Carla}	750 €	1000 €	250 €
Carla	Ø	0 €	0 €	0 €
Carla	$\{Anna\}$	500 €	750 €	250 €
Carla	$\{Ben\}$	750 €	500 €	-250 €
Carla	{Anna, Ben}	750 €	1000 €	250 €

Tabelle 2.: Marginalbeiträge der einzelnen Teilnehmer zu den möglichen Koalitionen.

Nachdem die marginalen Beiträge jedes Teilnehmers für die verschiedenen Koalitionen festgestellt wurden, ist der nächste Schritt, die Shapley-Werte zu bestimmen, welche eine faire Aufteilung des Gesamtgewinns erlauben. Hierzu wird jede mögliche Reihenfolge (Permutation) betrachtet, in der die Spieler der Koalition beitreten könnten. Jede dieser Permutationen liefert unterschiedliche marginale Beiträge für die Spieler, je nach der Reihenfolge ihres Beitritts.

Im Falle dieses Beispiels mit Anna, Ben und Carla bedeutet dies, dass alle möglichen Reihenfolgen berücksichtigt werden müssen, in denen sie zum ersten Platz beigetragen haben könnten. Die Shapley-Werte werden dann als Durchschnitt der marginalen Beiträge über alle Permutationen berechnet. Dies gewährleistet, dass jeder Spieler einen Anteil des Preisgeldes erhält, der seinem durchschnittlichen Beitrag zum Erfolg entspricht.

Bei drei Teilnehmern exisitieren $3! = 3 \cdot 2 \cdot 1 = 6$ Permutationen:

- 1. Anna, Ben, Carla
- 2. Anna, Carla, Ben
- 3. Ben, Anna, Carla
- 4. Carla, Anna, Ben
- 5. Ben, Carla, Anna
- 6. Carla, Ben, Anna

Jede Permutation entspricht einer Koalitionsbildung. Anna wird in zwei Koalitionsbildungen (1. und 2.) einer leeren Koalition hinzugefügt. In weiteren zwei Koalitionsbildungen (5. und 6.) wird Anna der bestehenden Koalition aus Ben und Carla hinzugefügt. In den beiden übrigen Koalitionsbildungen wird Anna einmal der Koalition bestehend aus Ben (3.) und einmal der Koalition bestehend aus Carla (4.) hinzugefügt.

Daraus lassen sich nun die gewichteten durchschnittlichen marginalen Beiträge für Anna berechnen:

$$\frac{1}{6} (\underbrace{2 \cdot 500 \in}_{A \to \{\emptyset\}} + \underbrace{1 \cdot 0 \in}_{A \to \{B\}} + \underbrace{1 \cdot 750 \in}_{A \to \{C\}} + \underbrace{2 \cdot 500 \in}_{A \to \{B,C\}}) \approx 458,34 \in$$

Analog gilt das für Ben:

$$\frac{1}{6}(\underbrace{2\cdot750}_{\text{B}\to\{\emptyset\}} + \underbrace{1\cdot250}_{\text{B}\to\{A\}} + \underbrace{1\cdot500}_{\text{B}\to\{C\}} + \underbrace{2\cdot250}_{\text{B}\to\{A,C\}}) \approx 458,34 \in$$

und Carla:

$$\frac{1}{6}(\underbrace{2\cdot 0}_{C\rightarrow \{\emptyset\}} + \underbrace{1\cdot 250}_{C\rightarrow \{A\}} + \underbrace{1\cdot (-250)}_{C\rightarrow \{B\}} + \underbrace{2\cdot 250}_{C\rightarrow \{A,B\}}) \approx 83,34 \in$$

3.2. Formale Definition

Sei $\mathcal{N} = \{1, \dots, n\}$ eine endliche Spielermenge mit $n := |\mathcal{N}|$ Elementen. Sei v die **Koalitionsfunktion**, die jeder Teilmenge von \mathcal{N} eine reele Zahl zuweist und insbesondere der leeren Koalition den Wert 0 gibt.

$$\begin{array}{cccc} v & : & \mathcal{P}(\mathcal{N}) & \longrightarrow & \mathbb{R} \\ & : & v(\emptyset) & \mapsto & 0 \end{array}$$

Eine nicht leere Teilmenge der Spieler $S \subseteq \mathcal{N}$ heißt Koalition. \mathcal{N} selbst bezichnet die große Koalition. Den Ausdruck v(S) nennt man den Wert der Koalition S. Der Shapley-Wert ordnet nun jedem Spieler aus \mathcal{N} eine Auszahlung für das Spiel v zu.

Der marginale Beitag eines Spieler $i \in N$, also der Wertbeitrag eines Spielers zu einer Koalition $S \subseteq N$, durch seinen Beitritt, ist

$$v(\mathcal{S} \cup \{i\}) - v(\mathcal{S}).$$

Der Shapley-Wert eines Spielers i errechnet sich als das gewichtete Mittel der marginalen Beiträge zu allen möglichen Koalitionen:

$$\varphi_{i}(\mathcal{N}, v) = \sum_{\mathcal{S} \subseteq \mathcal{N} \setminus \{i\}} \underbrace{\frac{|\mathcal{S}|! \cdot (n - 1 - |\mathcal{S}|)!}{n!}}_{\text{Gewicht}} \underbrace{v(\mathcal{S} \cup \{i\}) - v(\mathcal{S})}_{\text{marginaler Beitrag von Spieler } i \text{ zur Koalition } \mathcal{S}}_{\text{Spieler } i \text{ zur Koalition } \mathcal{S}}.$$

3.3. Axiome

Pareto-Effizienz Der Wert der großen Koalition wird an die Spieler verteilt:

$$\sum_{i \in \mathcal{N}} \varphi_i(\mathcal{N}, v) = v(\mathcal{N}).$$

Symmetrie Zwei Spieler i und j, die die gleichen marginalen Beiträgen zu jeder Koalition haben,

$$v(\mathcal{S} \cup \{i\}) = v(\mathcal{S} \cup \{j\})$$

erhalten das Gleiche:

$$\varphi_i(\mathcal{N}, v) = \varphi_j(\mathcal{N}, v).$$

Null-Spieler-Eigenschaft Ein Spieler der zu jeder Koalition nichts bzw. den Wert seiner Einer-Koalition beiträgt, erhält null bzw. den Wert seiner Einer-Koalition:

$$\varphi_i(\mathcal{N}, v) = 0,$$

bzw.

$$\varphi_i(\mathcal{N}, v) = v(\{i\}).$$

Additivität Wenn das Spiel in zwei unabhängige Spiele zerlegt werden kann, dann ist die Auszahlung jedes Spielers im zusammengesetzten Spiel die Summe der Auszahlungen in den aufgeteilten Spielen:

$$\varphi_i(\mathcal{N}, v + w) = \varphi_i(\mathcal{N}, v) + \varphi_i(\mathcal{N}, w).$$

- 4. Von Shapley-Werten zu SHAP: Brückenschlag zur Modellinterpretation
- 4.1. Erwartete Auszahlung des Models
- 4.2. Axiome
- 4.3. Approximierung der Shapley Values
- 4.4. SHAP-Estimators

5. Praktische Anwendung von SHAP auf lineare Modelle

In diesem Kapitel wird der Einsatz des SHAP-Frameworks zur Interpretation linearer Modelle im Kontext des maschinellen Lernens untersucht. Lineare Modelle, gekennzeichnet durch ihre Transparenz und einfache Struktur, bilden oft die Basis für das Verständnis komplexerer Algorithmen. Dennoch bleibt die Herausforderung bestehen, die Beiträge individueller Merkmale zur Modellvorhersage zu quantifizieren und zu interpretieren.

Die Anwendung von SHAP-Werten ermöglicht es, diesen Herausforderungen zu begegnen und Einblicke in die Modellvorhersagen zu gewähren, die über traditionelle Methoden hinausgehen. Dieses Kapitel führt in die Grundlagen des shap-Pakets ein, demonstriert dessen Anwendung auf einen spezifischen Datensatz und diskutiert die Berechnung sowie Interpretation der resultierenden SHAP-Werte. Die daraus gewonnenen Erkenntnisse leisten einen Beitrag zur Erklärbarkeit von Vorhersagemodellen und unterstützen somit die wissenschaftliche Diskussion um die Verantwortlichkeit und Nachvollziehbarkeit in der maschinellen Lernforschung.

5.1. Lineare Modelle als analytische Grundlage

In linearen Regressionsmodellen wird die Zielgröße als eine gewichtete Kombination der Eingangsmerkmale bestimmt. Die einfache lineare Struktur dieser Modelle erleichtert das Verständnis der Beziehungen zwischen den Eingangsdaten und den Vorhersagen.

Die Einsatzmöglichkeiten linearer Modelle erstrecken sich darauf, wie eine abhängige Variable, oft als y bezeichnet, mit einem oder mehreren Merkmalen, die als x repräsentiert werden, zusammenhängt. Die Beziehungen, die in diesen Modellen gelernt werden, folgen einer linearen Gleichung und können für jede einzelne Beobachtung i wie folgt spezifiziert werden:

$$y_i = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \epsilon,$$

wobei das Ergebnis, das von einem linearen Modell für eine gegebene Beobachtung vorhergesagt wird, sich als Summe der mit Gewichten versehenen Merkmale p ergibt.

Diese Gewichte oder Koeffizienten β_j spiegeln den Einfluss jedes Merkmals auf die Vorhersage wider. Der erste Wert dieser Reihe, β_0 , wird als Achsenabschnitt oder y-Achsenabschnitt bezeichnet; er wird der Summe hinzugefügt, ohne dass er mit einem Merkmal multipliziert wird. Der Fehlerterm ϵ repräsentiert die Abweichung zwischen der Vorhersage des Modells und dem tatsächlichen Wert, also das, was das Modell nicht erklären kann. Es wird angenommen, dass diese Fehler einer normalen Verteilung folgen, was bedeutet, dass Fehler sowohl in positiver als auch in negativer Richtung auftreten können, mit einer höheren Wahrscheinlichkeit für kleinere Fehler und einer geringeren Wahrscheinlichkeit für große Fehler [6, S. 37].

In einem linearen Modell stellt der Achsenabschnitt die Basislinie dar, an der die Auswirkungen aller anderen Merkmale gemessen werden. Dieser Wert gibt an, was das Modell für die Zielvariable vorhersagen würde, wenn alle anderen Merkmale nicht vorhanden wären – der Ausgangspunkt der Vorhersage für einen Datensatz, in dem alle anderen Variablen auf null gesetzt sind. Es ist wichtig zu erwähnen, dass der Achsenabschnitt für sich genommen nicht immer eine praktische Bedeutung hat, da es selten vorkommt, dass alle Variablen tatsächlich den Wert null annehmen. Die wahre Aussagekraft des Achsenabschnitts tritt zutage, wenn die Daten so standardisiert wurden, dass ihre Mittelwerte bei null und die Standardabweichung bei eins liegen. Unter diesen Umständen repräsentiert der Achsenabschnitt die erwartete Zielvariable für einen hypothetischen Fall, in dem alle Merkmale ihren Durchschnittswert aufweisen.

Bei der Betrachtung einzelner Merkmale innerhalb des Modells sagt das Gewicht β_j eines Merkmals, um wie viel sich die Zielvariable y ändert, wenn das Merkmal x_j um eine Einheit erhöht wird – und zwar unter der Annahme, dass alle anderen Merkmale unverändert bleiben. Dies ermöglicht es, den isolierten Effekt eines jeden Merkmals auf die Vorhersage zu verstehen [6, S. 39].

TODO: Fehlermaße erklären?

5.2. Einführung in das shap Python-Paket

Das Python-Paket shap ist eine Open-Source-Bibliothek, die es Nutzern ermöglicht, die Auswirkungen von Merkmalen auf Vorhersagen von maschinel5. Praktische Anwendung von SHAP auf lineare Modelle

15

len Lernmodellen zu interpretieren und zu visualisieren. Entwickelt wurde die Bibliothek ursprünglich von Scott Lundberg und weiteren Mitwirkenden im Rahmen der Forschungsarbeit an der University of Washington [5]. Das Paket basiert auf dem Konzept der Shapley-Werte aus der kooperativen Spieltheorie und überträgt diese auf den Kontext des maschinellen Lernens, um als Tool für die Interpretierbarkeit und Erklärbarkeit von Modellvorhersagen zu dienen [4].

Die Kernfunktion des shap-Pakets ist die Berechnung von SHAP-Werten, welche die Auswirkung der Einzelmerkmale auf die Modellvorhersage quantifizieren. Jeder SHAP-Wert ist ein Maß dafür, wie viel jedes Merkmal zur Vorhersage beigetragen hat, im Vergleich zu einer durchschnittlichen Vorhersage über den gesamten Datensatz. Diese Werte sind besonders wertvoll, weil sie ein Maß für die Bedeutung jedes Merkmals liefern, das sowohl lokal (für einzelne Vorhersagen) als auch global (über das gesamte Modell) interpretiert werden kann.

Mit shap können Benutzer die Vorhersagen einer Vielzahl von Modellen interpretieren, von linearen Modellen bis hin zu komplexen Konstrukten wie tiefe neuronale Netzwerke. Die Bibliothek bietet eine vielseitige Auswahl an Visualisierungsoptionen, darunter Beeswarm-Plots, Dependence-Plots und Summary-Plots, die es ermöglichen, die SHAP-Werte intuitiv zu verstehen. Diese Visualisierungen erleichtern es, Muster und Beiträge einzelner Merkmale zu erkennen, was nicht nur wertvolle Einblicke in die Leistung des Modells bietet, sondern auch zu faireren und transparenteren Modellentscheidungen führen kann.

Das shap-Paket ist auf GitHub gehostet [3], die Dokumentation ist über GitHub Pages verfügbar [4].

5.3. Anwendung: Datensatzname

TODO: Einleitung in den Datensatz

5.3.1. Entwicklung und Anpassung eines linearen Regressionsmodells

TODO: Modell fitten

5.3.2. Berechnung von SHAP-Werten

TODO: Berechnung der SHAP-Werte.

5.3.3. Interpretation

TODO: Analyse der Ergebnisse, Interpretation von SHAP-Werten, Vergleich der Koeffizienten mit den **SHAP-Werten!**.

6. Ausblick 17

6. Ausblick

7. Fazit 19

7. Fazit

Literaturverzeichnis 21

Literaturverzeichnis

[1] Encarnación Algaba, Vito Fragnelli, and Joaquín Sánchez-Soriano. Handbook of the shapley value. 2019.

- [2] Daniel Fryer, Inga Strümke, and Hien Nguyen. Shapley values for feature selection: The good, the bad, and the axioms. *IEEE Access*, 9:144352–144360, 2021.
- [3] Scott Lundberg. Shap/shap: A game theoretic approach to explain the output of any machine learning model.
- [4] Scott Lundberg. Welcome to the shap documentation.
- [5] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
- [6] Christoph Molnar. Interpretable machine learning: A guide for making Black Box models explainable. Chistoph Molnar c/o Mucbook Clubhouse, Heidi Seibold, 2 edition, 2022.
- [7] Christoph Molnar. Interpreting machine learning models with SAP A guide with python examples and theory on Shapley Values. Chistoph Molnar c/o MUCBOOK, 1 edition, 2023.
- [8] Raquel Rodríguez-Pérez and Jürgen Bajorath. Interpretation of machine learning models using shapley values: Application to compound potency and multi-target activity predictions journal of computer-aided molecular design, May 2020.
- [9] Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Sebastian Nilsson, and Rik Sarkar. The shapley value in machine learning. In Lud De Raedt, editor, Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pages 5572-5579. International Joint Conferences on Artificial Intelligence Organization, 7 2022. Survey Track.

22 Literaturverzeichnis

[10] L. S. Shapley. 17. A Value for n-Person Games, pages 307–318. Princeton University Press, Princeton, 1953.

Abbildungsverzeichnis

Tabellenverzeichnis 25

Tabellenverzeichnis

Tabelle 1:	Potenzielle Gewinne für verschiedene Teilnehmerkonstellatio-	
	nen im Designwettbewerb	5
Tabelle 2:	Marginalbeiträge der einzelnen Teilnehmer zu den möglichen	
	Koalitionen	6

${\bf Quell code verzeichn is}$

Eidesstattliche Erklärung

Ich versichere an Eides statt, dass ich die vorstehende Arbeit selbständig und ohne fremde Hilfe angefertigt und mich anderer als der im beigefügten Verzeichnis angegebenen Hilfsmittel nicht bedient habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen übernommen wurden, sind als solche kenntlich gemacht. Alle Internetquellen sind der Arbeit beigefügt.

Des Weiteren versichere ich, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und dass die eingereichte schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

München, 5. November 2023

SIMON SYMHOVEN

A. Quellcode

Quellcode