Graph and discrete structure

Myriam Preissman (GSCOP) - 4 lectures. *Lecture 1*

Room affectation problem

Set of course $c_1, c_2 \cdots c_n$ on the same day.

 $\mathcal{C}_i = (B_i, K_i)$

k class rooms.

Examples

 $c_1 = 08:00 - 11:00 \mapsto R_1$ $c_2 = 09:00 - 12:30 \mapsto R_2$ $c_3 = 12:00 - 14:00 \mapsto R_1$ $c_4 = 13:00 - 16:00 \mapsto R_2$

 $c_5 = 10:00 - 11:00 \mapsto R_3$

Could it be assigned to 2 rooms instead? No.

Graph transposition

Graph:

- $V=\{c_1,c_2\cdots c_n\}$ set of courses.
- $c_i c_i \in E, c_i$ and c_i cannot be affected by the same room.

Definition

K-coloring

k-coloring o a graph : $cV \mapsto \{1,2,\cdots k\} \ni c(v)
eq c(w), orall vw \in E$

The problem is equivalent to decide if G has a k-coloring.

Decide if G has a k-coloring

Decide if G has a k-coloring is NP-complete for arbitrary G and k.

Remarks

- $k \ge |V| \Rightarrow \exists k$ -coloring.
- any k-coloring is also a k'-coloring for $k' \geq k$.

Chromatic number

• $\chi(G)$: chromatic number of a graph = $min\{k, G \text{ is a } k\text{-}coloriable\}$

Clique

$$\omega(G)$$
 the clique number of $\mathsf{G} = max\{|W|, W \leq V \ni ww' \in E, \forall ww' \in W\}$

So:

$$\omega(G) \le \chi(G) \le |V|$$

Question

Exist a 3 coloring graph with $\omega(G)=2$? Yes, if an odd cycle graph.

Case k=2

G 2-colorable $\Leftrightarrow G$ is bipartite.

G k-colorable $\Leftrightarrow \exists$ partition of V(G) into k-stable sets ($w \subseteq V$ containing no edge).

Algorithm = Give color 1 to an arbitrary vertex as long as there is an edge xy where x has a colors and y no. BFS exploration.

$$c(x)=1\Rightarrow c(y):=2$$

$$c(x) = 2 \Rightarrow c(y) := 1$$

If at the end of the algorithm there is an edge between two vertices of the same color we want to show that there is an odd cycle in G.

Proof that G is bipartite

G is bypartite $\Leftrightarrow G$ contains no odd cycle.

Greedy algorithm to obtain a proper coloring of the vertices

Greedy procedure:

Start with an ordering of the vertices $v_1, v_2 \cdots v_n$.

$$egin{aligned} c(v_1) &= 1 \ c(v_i) &= \min\{ji \ni \textit{there is no neighbour of } v_i \textit{ that is colored } j\} \end{aligned}$$

Bipartite Graph

Bad coloring exemple

Exercice

Exists and ordering of the vertices s.t. the greedy procedure based on this order give coloring in $\chi(G)$ color ?

Until v_i use only k-color, if there is a clique of size k, giving a new color is OK \to The greedy procedure will give a coloring in minimum number of color.

Simplicial Vertex

A Simplicial Vertex of a graph G is a vertex such that N(v) is clique of G. (with N(G)= neighborhood)