Chapter 19 – Pathogenic Gram-Positive Bacteria

NIMESH PATEL| HLSC 2400 OCTOBER 10, 2017

PowerPoint® Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University

CHAPTER 19

Pathogenic Gram-Positive Bacteria

Bacteria and Viruses: What's the difference?

Gram-Positive Bacterial Pathogens

- Stain purple when Gram stained
- Two major groups based on DNA
 - Low G + C bacteria [Guanine-cytosine nucleotide base pairs vs. adenosine-thymine nucleotide base pairs]
 - Three genera of pathogenic spherical cells (cocci) -Staphylococcus, Streptococcus, and Enterococcus
 - Three genera of pathogenic rod shaped cells (bacilli) Bacillus, Clostridium, and Listeria
 - Mycoplasma lacks the cell wall, previously identified as Gram-negative [pink when Gram stained]
 - High G + C bacteria
 - Rod-shaped Corynebacterium, Mycobacterium, Propionibacterium
 - Filamentous fungus like Nocardia and Actinomyces

- Normal members of every human's microbiota
 - Reproduce on almost every square inch of human skin
- Can be opportunistic pathogens

Figure 19.1 Staphylococcus.

Structure and Physiology

- Catalase positive
- Facultative anaerobes
 - Will respire aerobically until oxygen is depleted and then ferment
- Cells occur in grapelike clusters
- Nonmotile
- Salt-tolerant
 - Tolerate salt on human skin
- Tolerant of desiccation, radiation, and heat (up to 60C for 30 minutes)
 - Survive on environmental surfaces

Structure and Physiology

- Two species commonly associated with diseases in humans:
 - Staphylococcus aureus
 - Coagulase (+)
 - More virulent strain
 - Variety of conditions depending on site of infection
 - Staphylococcus epidermidis
 - Coagulase (-), Normal microbiota of human skin
 - Opportunistic infections
 - Novobiocin sensitive
 - Staphylococcus Saprophyticus
 - Coagulase (-), Novobiocin resistant, "Honeymoon cystitis"

Staphylococcus Aureus

- Key features
 - Small, yellow colonies on blood agar
 - Beta-hemolytic
 - Coagulase positive
- Reservoir
 - Normal flora in nasal mucosa (25% of population are carriers) and skin
- Transmission
 - Hands, sneezing, surgical wounds,
 - Contaminated foods
 - Custard pastries, potato salad, canned meats

Staphylococcus Aureus

- Predisposing factors for infection
 - Surgery/wounds
 - Foreign body (tampons, surgical packing, sutures)
 - Severe neutropenia (<500/µL)
 - I.V. Drug Abuse
 - Chronic granulomatous disease
 - Cystic Fibrosis

- Infections result when staphylococci breach body's physical barriers
- Entry of only a few hundred bacteria can result in disease
- Pathogenicity results from three features:
 - Structures that enable it to evade phagocytosis
 - Production of enzymes
 - Production of toxins

Staphylococcus Aureus

- Structural Defenses Against Phagocytosis
 - Protein A coats the cell surface
 - Binds to immunoglobulin G (IgG) Fc component
 - Inhibits opsonization and the complement cascade
 - Bound coagulase
 - Converts fibrinogen into fibrin molecules
 - Fibrin clots hide the bacteria from phagocytic cells
 - Synthesize polysaccharide slime layers (capsules)
 - Inhibit leukocyte chemotaxis and phagocytosis
 - Facilitate attachment of Staphylococcus to surfaces

- Enzymes
 - Cell-free coagulase
 - Triggers blood clotting [By converting fibrinogen to fibrin]
 - Hyaluronidase
 - Breaks down hyaluronic acid
 - Enables the bacteria to spread between cells
 - Staphylokinase
 - Dissolves fibrin threads in blood clots
 - Allows S. aureus to free itself from clots

- Enzymes
 - Lipases
 - Digest lipids
 - Allow staphylococcus to grow on skin and in oil glands
 - β-lactamase
 - Breaks down penicillin
 - Allows bacteria to survive treatment with β-lactam antimicrobial drugs

- Toxins
 - Produced by various strains of S. aureus
 - Cytolytic toxins
 - Disrupt the cytoplasmic membrane of a variety of cells
 - Leukocidin can lyse leukocytes specifically
 - Exfoliative toxins
 - Cause skin cells to separate and slough off
 - Toxic-shock syndrome (TSS) toxin
 - Causes TSS
 - Enterotoxins
 - Stimulate symptoms associated with food poisoning

TABLE **19.1**

A Comparison of the Virulence Factors of Staphylococcal Species

	S. aureus	S. epidermidis
Protein A	+	_
Coagulase	+	=
Slime layer	+	+
Catalase	+	+
Hyaluronidase	+	_
Staphylokinase	+	_
Lipase	+	+
β-lactamase (penicillinase)	+	_
Toxins (cytolytic, exfoliative, toxic-shock, and entero-)	+	_

Epidemiology

- S. epidermidis is ubiquitous on human skin
- S. aureus primarily found only in moist skin folds
- Both species grow in the upper respiratory, gastrointestinal, and urogenital tracts of humans
- Transmitted by direct contact or fomites
- Handwashing and aseptic techniques help prevent infections

Staphylococcal Aureus

- Noninvasive Disease
 - Food poisoning
 - Due to ingestion of enterotoxin-contaminated food
 - Pathogenicity factors: Enterotoxin A-E preformed in food
- Cutaneous Diseases
 - Various skin conditions
 - Scalded skin syndrome, impetigo, folliculitis
 - Pathogenicity factors: Coagulase, Exfoliatins

Figure 19.2 Staphylococcal scalded skin syndrome.

Figure 19.3 Impetigo.

Staphylococcal Aureus

- Systemic Diseases
 - Toxic-shock syndrome (non-streptococcal)
 - Some Staphylococcus strains produce TSS toxin
 - TSS toxin absorbed into the blood
 - Produces fever, vomiting, rash, and low blood pressure
 - Pathogenicity factors: TSST-1

Figure 19.4 Toxic shock syndrome (TSS).

Figure 19.5 The incidence of toxic shock syndrome in the United States, 1979–2014.

Staphylococcal Aureus

- Systemic Diseases
 - Bacteremia
 - MC cause, Presence of bacteria in the blood
 - Endocarditis
 - Damage to the lining of the heart
 - Pathogenicity factors: Cytolysins
 - Pneumonia
 - Inflammation of the lungs, Salmon-colored sputum
 - Empyema occurs when pus fills the lungs
 - Pathogenicity factors: Coagulase, cytolysins
 - Osteomyelitis
 - Most common cause
 - Inflammation of the bone and bone marrow
 - Pathogenicity factors: Cytolysins, Coagulase

- Staphylococcus Epidermis
 - Infective endocarditis on prosthetic valve
 - Infections of catheters/shunts
- Staphylococcus Saprophyticus
 - "Honeymoon Cystitis"

Diagnosis, Treatment, and Prevention

- Diagnosis
 - Detect Gram-positive bacteria in grape-like arrangements
- Treatment
 - Only 5% Steph Aureus are penicillin-sensitive today
 - Methicillin (DOC)
 - Vancomycin used to treat methicillin-resistant S. aureus (MRSA) infections
 - Quinupristin and Dalfopristin used to treat Vancomycinresistant S. Aureus infections
- Prevention
 - Hand antisepsis important to prevent healthcareassociated infections

Staphylococcus Aureus

