Title

D. Zack Garza

Contents

1 Lecture 5A 3

Contents 2

1 Lecture 5A

1 Lecture 5A

We saw an interesting example of a function field in more than one variable which showed that valuations of rank larger than 1 can arise, but this does not happen for one variable function fields. That is, for K/k of transcendence degree 1, all valuations on K which are trivial on k are discrete. We'll now want to go farther and describe the places $\Sigma(K/k)$, which will be the set of points on an algebraic curve. Scheme-theoretically, this will literally be the set of closed points on a certain projective curve whose function field is K. Note that a priori, finding closed points on a curve over an arbitrary field is hard!

Recall that if A is a Dedekind domain such that $\mathrm{ff}(A) = K$, then for all $\mathfrak{p} \in \mathrm{mSpec}(A)$ there exists a discrete valuation v_p on K. I.e., every maximal ideal induces a discrete valuation that is A-regular, so the valuation ring will contain A. How is this obtained? Take a nonzero $x \in K^{\times}$, and take the corresponding principal fractional ideal $\langle x \rangle := Ax$, which we can factor in a Dedekind domain as $Ax = \prod_{\mathfrak{p} \in \mathrm{mSpec}(A)} \mathfrak{p}^{\alpha_{\mathfrak{p}}}$ with $\alpha_{\mathfrak{p}} \in \mathbb{Z}$. This looks like an infinite product, but for any fixed x, only

finitely many α are nonzero. Note that these α are exactly what we're looking for: the \mathfrak{p} -adic evaluation of x is given precisely by $v_{\mathfrak{p}}(x) := \alpha_{\mathfrak{p}}$, where we are using unique factorization of ideals in Dedekind domains. Thus we have a map

$$v: \mathrm{mSpec}(A) \to \Sigma(K/A)$$

 $\mathfrak{p} \mapsto v_{\mathfrak{p}}.$

So this sends a maximal ideal to a place that is A-regular, and it turns out to be a bijection.

Proposition 1.0.1(?).

The map v is a bijection, and thus we may write

$$\Sigma(K/A) \cong \mathrm{mSpec}(A).$$

Proof(?).

Claim: v is injective.

If $\mathfrak{p}_1, \mathfrak{p}_2 \in \mathrm{mSpec}(A)$ are two different maximal ideals. Then there exists an element $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_2$, and so $x^{-1} \in A_{\mathfrak{p}_2} \setminus A_{\mathfrak{p}_1}$. This follows since if x is not in \mathfrak{p}_2 , its \mathfrak{p}_2 -adic valuation is zero, and thus the \mathfrak{p}_2 -adic valuation of x^{-1} is -0 = 0 as well. On the other hand, since $x \in \mathfrak{p}_1$, its \mathfrak{p}_1 -adic valuation is positive and therefore $v_{\mathfrak{p}_1}(x^{-1}) < 0$ and x^{-1} is not in $A_{\mathfrak{p}_1}$.

Claim: v is surjective.

Let $v \in \Sigma(K/A)$, so $A \subset R_v$, i.e. take a valuation whose valuation ring contains A. Note that we're not assuming the valuation is discrete, this can be a general Krull valuation, but we're trying to show it's equal to a certain p-adic valuation. As always with a subring of a valuation ring, we can pull back the maximal ideal and consider $\mathfrak{m}_v \cap A \in \operatorname{Spec}(A)$. We're hoping that this is a maximal ideal, since maximals correspond to valuations. Since we're in a Dedekind

Lecture 5A 3

1 Lecture 5A

domain, the only prime ideal we don't want this to be is the zero ideal of A, so suppose it were. Then $A^{\bullet} \subset R_v^{\times}$, and so $K^{\times} \subset R_v^{\times}$. This is because the only element of the maximal ideal that lies in A is zero, so every nonzero element of A is not in this maximal ideal and is thus a unit. But for any unit, its inverse is also a unit, yielding the inclusion $K^{\times} \subset R_v^{\times}$. The only way this could possibly happen is if $R_v = K$, which yields the trivial valuation ring. However, by definition, in $\Sigma(K/A)$ we've excluded the trivial valuation, so this ideal can not be zero.

So we can conclude that the pullback $\mathfrak{m}_v \cap A \in \mathrm{mSpec}(A)$, and so $A_{\mathfrak{p}} \subset R_v$. This is from viewing elements in $A_{\mathfrak{p}}$ as quotients of elements in A whose denominator have \mathfrak{p} -adic valuation zero. Recall that we want to show that $R_v = A_{\mathfrak{p}}$. We know $R_v \subset K$ is a proper containment, and we can use the fact that a discrete valuation ring is maximal among all proper subrings of its fraction field. In other words, for R a DVR, there is no ring R' such that $R \subset R' \subset \mathrm{ff}(R)$. How do you prove this? This is similar to an early exercise in commutative algebra, where we looked at all rings between \mathbb{Z} and \mathbb{Q} , which generalized to looking at all rings between a PID and its fraction field, and a DVR is a local PID. So proving this statement is actually easier.

This is enough to show that $A_{\mathfrak{p}} = R_v$, and this $v \sim v_{\mathfrak{p}}$.

Remark 1.0.2: What the idea? For a general one variable function field K/k, we'll produce affine Dedekind domains R with $k \subset R \subset K$ and $\mathrm{ff}(R) = K$. This will give is subrings of this full ring of places that are \$

Lecture 5A