Towards an Efficient and Economic Deductive System of Matching Logic

FSL group January 11, 2017

We aim for a Hilbert style deductive system which has a relatively large number of axioms but only a few inference rules.

1 Grammar and extended grammar

The formal language \mathcal{L} we use to write matching logic patterns is defined as follows.

```
P ::= x
      |P_1 \rightarrow P_2|
       |\neg P|
       | \forall x.P
      |\sigma(P_1,\ldots,P_n)|
(* * * extended * **)
      |P_1 \vee P_2|
      |P_1 \wedge P_2|
       |P_1 \leftrightarrow P_2|
       |\exists x.P
       |P|
       |\lfloor P \rfloor
      | P_1 = P_2
      |P_1 \neq P_2|
       | T
       | _
       |P_1 \subseteq P_2|
       | x \in P
```

with the extended grammar defined as

$$\begin{split} P_1 \vee P_2 &\coloneqq \neg P_2 \to P_1 \\ P_1 \wedge P_2 &\coloneqq \neg (\neg P_1 \vee \neg P_2) \\ P_1 \leftrightarrow P_2 &\coloneqq (P_1 \to P_2) \wedge (P_2 \to P_1) \\ \exists x.P &\coloneqq \neg \forall x. \neg P \\ \lfloor P \rfloor &\coloneqq \neg \lceil \neg P \rceil \\ P_1 &= P_2 &\coloneqq \lfloor P_1 \leftrightarrow P_2 \rfloor \\ P_1 \neq P_2 &\coloneqq \neg (P_1 = P_2) \\ \bot &\coloneqq x_1 \wedge \neg x_1 \\ \top &\coloneqq \neg \bot \\ P_1 \subseteq P_2 &\coloneqq \lfloor P_1 \to P_2 \rfloor \\ x \in P &\coloneqq \lceil x \wedge P \rceil \end{split}$$

We will extend the grammar to a many-sorted one in the future.

2 Hilbert proof system

Axioms in \mathcal{L} are given by the following nine axiom schemata where P, Q, R are arbitrary patterns and x, y are variables.

- (K1) $P \rightarrow (Q \rightarrow P)$
- $\bullet \ (\mathrm{K2}) \ (P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$
- (K3) $(\neg P \rightarrow \neg Q) \rightarrow (Q \rightarrow P)$
- (K4) $\forall x.(P \rightarrow Q) \rightarrow (P \rightarrow \forall x.Q)$ if x does not occur free in P
- (K5) $\exists y.x = y$
- (K6) $\exists y.Q = y \rightarrow (\forall x.P(x) \rightarrow P[Q/x])$ if Q is free for x in P
- (K7) $P_1 = P_2 \to (Q[P_1/x] \to Q[P_2/x])$
- (M1) $x \in y = (x = y)$
- (M2) $x \in \neg P = \neg (x \in P)$
- (M3) $x \in P \land Q = (x \in P) \land (x \in Q)$
- (M4) $x \in \exists y.P = \exists y.x \in P$ where x is distinct from y
- (M5) $x \in \sigma(\dots, P_i, \dots) = \exists y. y \in P_i \land x \in \sigma(\dots, y, \dots)$

Inference rules include

• (Modus Ponens) From P and $P \rightarrow Q$, deduce Q.

- (Universal Generalization) From P, deduce $\forall x.P$.
- (Membership Introduction) From P, deduce $\forall x.x \in P$, where x occurs free in P.
- (Membership Elimination) From $\forall x.x \in P$, deduce P, where x occurs free in P.

Theorem 1 (Soundness of $K_{\mathcal{L}}$). Theorems of $K_{\mathcal{L}}$ are valid.

We provide some metatheorems of $K_{\mathcal{L}}$.

Proposition 2 (Tautology). For any propositional tautology $\mathcal{A}(p_1, \ldots, p_n)$ where p_1, \ldots, p_n are propositional variables,

$$\vdash \mathcal{F}(P_1,\ldots,P_n).$$

Proof. Omit proof here.

Remark Proposition 2 makes any metatheorem of propositional logic a metatheorem of $K_{\mathcal{L}}$.

Proposition 3 (Variable Substitution). $\vdash \forall x.P \rightarrow P[y/x]$.

Proposition 4 (Functional Substitution). $\vdash \exists y.(Q = y) \rightarrow (P[Q/x] \rightarrow \exists x.P(x)).$

Proposition 5 (\vee -Introduction). $\vdash P \text{ implies } \vdash P \vee Q$.

Proof. Use Proposition 2 and Modus Ponens. Note that in general, $\vdash P \lor Q$ does not imply $\vdash P$ or $\vdash Q$.

Proposition 6 (\land -Introduction and Elimination). $\vdash P$ and $\vdash Q$ iff $\vdash P \land Q$.

Proof. Use Proposition 2 and Modus Ponens.

Proposition 7 (Equality Introduction). $\vdash P = P$.

Proof. Use Membership Introduction and Proposition 2.

Proposition 8 (Equality Replacement). $\vdash P_1 = P_2 \text{ and } \vdash Q[P_1/x] \text{ implies } \vdash Q[P_2/x].$

Proof. Use Axiom (K7) and Modus Ponens.

Proposition 9 (Equality Establishment). $\vdash P \leftrightarrow Q \text{ implies} \vdash P = Q$.

Proof. Use Membership Axoims and ∨-Introduction.

Corollary 10. $\vdash P \text{ implies} \vdash P = \top$.

Proposition 11. $\vdash x \in [y]$.

Proof.

$$\vdash x \in \lceil y \rceil$$

if $\vdash \forall x.(x \in \lceil y \rceil)$ (K5, K6, and Modus Ponens)
iff $\vdash \lceil y \rceil$.

Proposition 12. $\vdash P \rightarrow \lceil P \rceil$.

Proof.

$$\begin{split} &\vdash P \to \lceil P \rceil \\ &\text{iff} \vdash \forall x.(x \in P \to \lceil P \rceil) \\ &\text{iff} \vdash x \in P \to \lceil P \rceil \\ &\text{iff} \vdash x \in P \to x \in \lceil P \rceil \\ &\text{iff} \vdash x \in P \to \exists y.(y \in P \land x \in \lceil y \rceil) \\ &\text{iff} \vdash x \in P \to \neg \forall y.(y \notin P \lor x \notin \lceil y \rceil) \\ &\text{iff} \vdash \forall y.(y \notin P \lor x \notin \lceil y \rceil) \to x \notin P \\ &\text{if} \vdash x \notin P \lor x \notin \lceil x \rceil \to x \notin P \\ &\text{iff} \vdash x \in P \to x \in P \land x \in \lceil x \rceil \\ &\text{iff} \vdash x \in P \to x \in \lceil x \rceil \\ &\text{iff} \vdash x \in P \to x \in \lceil x \rceil \end{split}$$

Remark Similarly we can show $\vdash \lfloor P \rfloor \rightarrow P$.

Proposition 13. $\vdash \forall x.(x \in P) = \lfloor P \rfloor$, where x occurs free in P.

Proof. By Proposition 9 and 6, it suffices to show

$$\vdash \forall x. (x \in P) \to \lfloor P \rfloor \tag{1}$$

and

$$\vdash \lfloor P \rfloor \to \forall x. (x \in P). \tag{2}$$

To show (1),

$$\vdash \forall x.(x \in P) \rightarrow \lfloor P \rfloor$$

$$\text{iff} \vdash \forall x.[x \land P] \rightarrow \neg \lceil \neg P \rceil$$

$$\text{iff} \vdash [\neg P] \rightarrow \exists x. \neg [x \land P]$$

$$\text{iff} \vdash \forall y.(y \in (\lceil \neg P \rceil \rightarrow \exists x. \neg [x \land P \rceil))$$

$$\text{if} \vdash \forall y \in (\lceil \neg P \rceil \rightarrow \exists x. \neg [x \land P \rceil))$$

$$\text{if} \vdash \exists z_1.(z_1 \notin P \land y \in [z_1]) \rightarrow$$

$$\exists x. \neg (\exists z_2.(z_2 = x \land z_2 \in P \land y \in [z_2]))$$

$$\text{iff} \vdash \exists z_1.(z_1 \notin P \land \top) \rightarrow \qquad \text{(Proposition 11, 8, and Corollary 10)}$$

$$\exists x. \neg (\exists z_2.(z_2 = x \land z_2 \in P \land \top))$$

$$\text{iff} \vdash \exists z_1.(z_1 \notin P) \rightarrow \exists x. \neg (\exists z_2.(z_2 = x \land z_2 \in P))$$

$$\text{iff} \vdash \forall x.(\exists z_2.(z_2 = x \land z_2 \in P)) \rightarrow \forall z_1.(z_1 \in P)$$

$$\text{if} \vdash \forall x.(\exists z_2.(z_2 = x \land z_2 \in P)) \rightarrow (z_1 \in P)$$

$$\text{if} \vdash \forall x.(\exists z_2.(z_2 = x \land z_2 \in P)) \rightarrow (z_1 \in P).$$

$$\text{Since} \vdash \forall x.(\exists z_2.(z_2 = x \land z_2 \in P)) \rightarrow \exists z_2.(z_2 = z_1 \land z_2 \in P), \text{ it suffices to show}$$

$$\vdash \exists z_2.(z_2 = z_1 \land z_2 \in P) \rightarrow (z_1 \in P)$$

$$\text{iff} \vdash z_1 \notin P \rightarrow \forall z_2.(z_2 \neq z_1 \lor z_2 \notin P)$$

$$\text{iff} \vdash \forall z_1 \notin P \rightarrow z_2 \neq z_1 \lor z_2 \notin P)$$

$$\text{iff} \vdash z_1 \notin P \rightarrow z_2 \neq z_1 \lor z_2 \notin P$$

$$\text{iff} \vdash z_1 \notin P \rightarrow z_2 \neq z_1 \lor z_2 \notin P$$

$$\text{iff} \vdash z_1 \notin P \rightarrow z_2 \neq z_1 \lor z_2 \notin P$$

$$\text{iff} \vdash z_2 = z_1 \land z_2 \in P \rightarrow z_1 \in P.$$

And we proved (1).

Similarly, to show (2),

$$\vdash \lfloor P \rfloor \to \forall x.(x \in P)$$

$$\text{iff} \vdash \exists x. \neg \lceil x \land P \rceil \to \lceil \neg P \rceil$$

$$\text{iff} \vdash \forall y.(y \in \exists x. \neg \lceil x \land P \rceil \to \lceil \neg P \rceil)$$

$$\text{iff} \vdash y \in \exists x. \neg \lceil x \land P \rceil \to \lceil \neg P \rceil$$

$$\text{iff} \vdash \exists x. \neg \exists z_2.(z_2 = x \land z_2 \in P) \to \exists z_1.(z_1 \notin P)$$

$$\text{iff} \vdash \forall z_1.(z_1 \in P) \to \exists z_2.(z_2 = x \land z_2 \in P)$$

$$\text{iff} \vdash x \in P \to \exists z_2.(z_2 = x \land z_2 \in P).$$

We proved (2).

Remark If *x* occurs free in *P*, the result does not hold. For example, let *P* be upto(x) where $upto(\cdot)$ is interpreted to $upto(n) = \{0, 1, ..., n\}$ on \mathbb{N} .

Proposition 14 (Deduction Theorem). *If* $\Gamma \cup \{P\} \vdash Q$ *and the proof does not use* $\forall x$ -Generalization where x is free in P, then $\Gamma \vdash P \rightarrow Q$. In particular, when P is closed, $\Gamma \cup \{P\} \vdash Q$ implies $\Gamma \vdash P \rightarrow Q$.

Proposition 15 (More Theorems in \mathcal{L}).

$$\vdash \exists x.x
\vdash \lceil x \rceil
\vdash \exists y.x = y
\vdash P_1 = P_2 \rightarrow Q[P_1/x] = Q[P_2/x]$$

Proof. (1)

$$\frac{\forall x. \neg x \vdash \neg x}{\forall x. \neg x \vdash \neg x} \frac{\forall x. \neg x \vdash \neg x}{\forall x. \neg x \vdash \neg x} \frac{\cdot}{\forall x. \neg x \vdash \neg x \to (x \to \neg x)} \frac{(K1)}{(MP)}$$

$$\frac{\exists \forall x. \neg x \vdash x \to \neg x}{\vdash (\forall x. \neg x) \to (x \to \neg x)} \frac{(DEDUCT)}{(MP)}$$

$$\frac{\vdash \neg \forall x. \neg x}{\vdash \exists x. x} \frac{(DEF)}{(DEF)}$$

$$\frac{\frac{\cdot}{x=x}}{\frac{\cdot}{(\mathsf{K7})}} \xrightarrow{(\mathsf{MP\&TAUT})} \frac{\frac{\cdot}{\vdash \forall y. \neg(x=y) \rightarrow \neg(x=x)}}{\frac{\vdash \neg \neg(x=x)}{\vdash \neg \neg(x=x) \rightarrow \neg \forall y. \neg(x=y)}} \xrightarrow{(\mathsf{K6})} \frac{(\mathsf{MP\&K3})}{(\mathsf{MP})} \\
\frac{\vdash \neg \forall y. \neg(x=y)}{\vdash \exists y. x=y} \xrightarrow{(\mathsf{DEF})} (\mathsf{DEF})$$

Before we prove the adequacy theorem of $K_{\mathcal{L}}$, we prove some lemmas.

Proposition 16. If a pattern is valid, then its closure is valid.

Proposition 17. If a pattern's closure is a theorem of $K_{\mathcal{L}}$, then itself is a theorem of $K_{\mathcal{L}}$, too.

Proposition 18. If P is not a theorem of $K_{\mathcal{L}}$, then $K_{\mathcal{L}}$ extended with adding $\neg P$ as an axiom is consistent.

Proposition 19. If S is a consistent extended system of $K_{\mathcal{L}}$, then for any theorem P of S, there exists a model M and an M-evaluation ρ such that $M, \rho \models P$.

3 Inference rules

Axioms

$$\frac{\cdot}{\Gamma \vdash A}$$

where A is an axiom.

Inclusion

$$\frac{\cdot}{\Gamma \vdash P}$$

where $P \in \Gamma$.

Modus Ponens

$$\frac{\Gamma \vdash Q \to P \quad \Gamma \vdash Q}{\Gamma \vdash P}$$

Closed-Form Deduction Theorem

$$\frac{\Gamma \cup \{P\} \vdash Q}{\Gamma \vdash P \to Q}$$

where P is closed.

Universal Generalization

$$\frac{\Gamma \vdash P}{\Gamma \vdash \forall x.P} \ (\forall x)$$

Conjunction Splitting

$$\frac{\Gamma \vdash P \quad \Gamma \vdash Q}{\Gamma \vdash P \land Q}$$