

t

7

BINARY MULTIPLIER

- Multiplication of binary numbers is done in the same way as decimal numbers
- Multiplicand B is multiplied by the multiplier A starting from the LSB.
- Successive partial products are shifted one position from the left and the final product is obtained from the sum of partial products.

B_1	B_0
A_1	A_0
$\overline{A_0B_1}$	A_0B_0

$$\begin{array}{ccc} A_1B_1 & A_1B_0 \\ \hline C_3 & C_2 & C_1 & C_0 \end{array}$$

10

10

PRACTICE EXERCISES

- X Design a 3-bit by 4-bit multiplier
- x Design a 4-bit by 4-bit multiplier

14

14

17

MAGNITUDE COMPARATOR

- Definition: A magnitude comparator is a combinational circuit that compares two numbers A & B to determine whether:
 - X A > B, or X A = B, or
 - X A < B
- X Inputs
 - First n-bit number A
- X Second n-bit number B
 X Outputs
 - X 3 output signals (GT, EQ, LT), where:
 - GT = 1 IFF A > B
 - EQ = 1 IFF A = B
 - LT = 1 IFF A < B

Note: Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0's

1

18

MAGNITUDE COMPARATOR (4 BIT)

- X Problem: Design a magnitude comparator that compares two 4-bit numbers A and B and determines whether:
 - X A > B, or
 - X A = B, or
 - X A < B

19

MAGNITUDE COMPARATOR (4 BIT)

- Inputs: 8-bits (A \Rightarrow 4-bits , B \Rightarrow 4-bits)
 - X A and B are two 4-bit numbers
- X Let $A = A_3A_2A_1A_0$, and
- $X \quad \text{Let B} = B_3 B_2 B_1 B_0$
- Inputs have 2⁸ (256) possible combinations (size of truth table and K-map?)
- X Not easy to design using conventional techniques

The circuit possesses certain amount of regularity ⇒ can be designed algorithmically.

20

20

MAGNITUDE COMPARATOR (\P BIT) $A = A_3 A_2 A_1 A_0 \\ B = B_3 B_2 B_1 B_0$ Can you think of an operator which is 1 when both inputs are 1 or both inputs are 0

MAGNITUDE COMPARATOR

- X How can we determine that two numbers are equal?
 - X Equal if every digit is equal
 - $A_3 A_2 A_1 A_0 = B_3 B_2 B_1 B_0 \text{ if and only if}$ $A_3 = B_3 \text{ and } A_2 = B_2 \text{ and } A_1 = B_1 \text{ and } A_0 = B_0$
- X Which gate?
 X XNOR (Equivalence)

22

MAGNITUDE COMPARATOR (4 BIT)

Designing EQ

- \times Define $X_i = A_i \times NOR B_i$; $A_i B_i + A_i' B_i'$
 - $X \rightarrow X_i = 1 \text{ IFF } A_i = B_i \ \forall \ i = 0, 1, 2$ and 3

$$A = A_3 A_2 A_1 A_0$$
$$B = B_3 B_2 B_1 B_0$$

- $X \rightarrow X_i = 0 \text{ IFF } A_i \neq B_i$
- \times Therefore, the condition for A = B or EQ=1 IFF
 - $X A_3 = B_3 \rightarrow (X_3 = 1)$, and
 - $X A_2 = B_2 \rightarrow (X_2 = 1)$, and
 - $X A_1 = B_1 \rightarrow (X_1 = 1)$, and
 - $X A_0 = B_0 \rightarrow (X_0 = 1).$
- X Thus, EQ=1 IFF $X_3 X_2 X_1 X_0 = 1$. In other words, $EQ = X_3 X_2 X_1 X_0$

24

24

MAGNITUDE COMPARATOR (4 BIT)

$$x_0 = (A_0'B_0 + A_0B_0')' = A_0B_0 + A_0'B_0'$$

XNOR

25

MAGNITUDE COMPARATOR (4 BIT)

Designing LT & GT

■ GT = 1 if A > B:

- If $A_3 > B_3 \rightarrow A_3 = 1$ and $B_3 = 0$
 - If $A_3 = B_3$ and $A_2 > B_2$
 - If $A_3 = B_3$ and $A_2 = B_2$ and $A_1 > A_1$
 - If $A_3 = B_3$ and $A_2 = B_2$ and $A_1 = B_1$ and $A_0 > B_0$

$$GT = (A > B) = A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$$

$$LT = (A < B) = A_3B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$$

Compare:
$$A = 1010$$
 and $B = 0101 \rightarrow (A > B) = 1$
 $A = 0101$ and $B = 1010 \rightarrow (A < B) = 1$

27

31

DECODERS

- X A decoder selects one output based on binary input
- \times Converts *n*-bit code into 2^n outputs, only one being active for any combination of inputs
- X Selects output x if input is binary representation of x
- \times Also called *n*-to-*m* line decoders for example:
 - X 2-to-4 line decoder
 - X 3-to-8 line decoder

32

32

DECODERS

- X Selection of any kind
 - X Microprocessor memory system: selecting different banks of memory.
 - X Microprocessor I/O: Selecting different devices.
- X Implementing arbitrary logic functions

DECODER EXAMPLES

X 1-to-2-line Decoder

34

34

DECODER EXAMPLES

X 2-to-4-Line Decoder

A ₁	\mathbf{A}_0	\mathbf{D}_0	D ₁	\mathbf{D}_2	D	
0	0	1	0	0	0	
0	1	0	1	0	0	
1	0	0	0	1	0	
1	1	0	0	0	1	

DECODER EXAMPLES

X 3-to-8-Line Decoder

37

DECODER EXAMPLES

X 3-to-8-Line Decoder

			Outputs							
Binary Inputs			D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

•Three inputs are decoded into eight outputs, each representing one of the minterms of the three input variable

•If the input corresponds to minterm m_i then the decoder ouput will be the corresponding single output

38

38

X When is output 0 chosen?

X If x'y'z'

X When is output 1 chosen?

X If x'y'z

X ... and so on ...

39

DECODER WITH ENABLE INPUT

- X The decoder is enabled when EN = 1. The output whose value = 1 represents the minterm is selected by inputs A and B.
- X The decoder is disabled when $EN = 0 \rightarrow D_0 \dots D_3 = 0$

42

DECODER WITH ENABLE INPUT

- X A Decoder with enable input is called a demultiplexer.
- X Demultiplexer receives information from a single line and directs it to the output lines.

43

ΛЛ

DEMULTIPLEXER

X A demultiplexer "connects" a data input to one and only one output. The selected output is specified by a decoding of the control inputs.

D	Α	В	F3	F2	F1	F0
D	0	0	0	0	0	D
D	0	1	0	0	D	0
D	1	0	0	D	0	0
D	1	1	D	0	0	0

45

DECODER WITH ENABLE

- X EN is called a Control Signal
- X Control Signals can be
 - X Active High Signal
 - EN = 1 Turns "ON" Decoder
 - X Active Low Signal
 - EN=0 Turns "ON" Decoder

48

48

DECODER WITH ENABLE INPUT - NAND

- × 2-to-4 line decoder with *Enable* NAND implementation
- X Circuit generates output only if *Enable* is selected (E=0)
- X If disabled (E=1), no output line is picked
- X Truth table for NAND decoder
- X Complemented outputs and Enable

49

A 4x16 DECODER

When w = 1, the top decoder is disabled and the bottom is enabled.

Bottom decoder generates 8 minterms 1000 to 1111, while the top decoder outputs are 0's.

When w = 0, the top decoder is enabled and the bottom is disabled.

Top decoder generates 8 minterms 0000 to 0111, while the bottom decoder outputs are 0's.

52

IMPLEMENTING FUNCTIONS WITH DECODERS

- \times Implement m functions of n variables with:
 - X Sum-of-minterms expressions
 - X One n-to- 2^n -line decoder
 - X m OR gates, one for each output
- X Approach
 - X Find the minterms for each output function
 - X OR the minterms together

53

EXAMPLE: FULL ADDER WITH DECODER

X The sum and carry outputs of a full adder are given by:

$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$

$$C(x, y, z) = \Sigma(3, 5, 6, 7)$$

Α	В	C_{in}	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

54

54

EXAMPLE: FULL ADDER WITH DECODER

$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$

 $C(x, y, z) = \Sigma(3, 5, 6, 7)$

57