Dynamics of Neural Systems Extensions of the HH Model and Simplified Neuron Models

Martin A. Giese

Martin.giese@uni-tuebingen.de

Nov 18, 2024

Overview

- Extensions of the HH model
- Simplified neuron models

Overview

- Extensions of the HH model
- Simplified neuron models

Extensions of the HH model

- While the dynamics of the classical HH model is quite rich it does not capture certain phenomena.
- Example: channels with other types of kinetics (e.g. Ca²⁺ channels).

Potassium A-type current

- Different from delayed rectifier potassium current, as originally described by Hodgkin and Huxley.
- Type A current is inactivating and has lower activation threshold.
- Found e.g. in hippocampal CA1 and CA3 cells.
- Isolated by blocking sodium channels by Tetrodotoxin (TTX) or applying appropriate voltage step paradigms.

Delayed rectifier current

Type-A current for different clamp voltages

Model with A-type current I

- Model by Stevens and Connor (Connor et al. 1977).
- Introduction of new current: $I_A = g_A(V)(V(t) E_A)$
- Conductance defined by an activation variable a and the inactivation variable b according to the relationship: $g_A = \overline{g}_A a^3 b$
- Linear kinetic equations and form of voltage dependence as HH.
- Differential equation for membrane potential:

$$C\frac{\mathrm{d}V}{\mathrm{d}t} + \overline{g}_{\mathrm{K^{+}}}n^{4}(V - E_{\mathrm{K^{+}}}) + \overline{g}_{\mathrm{Na^{+}}}m^{3}h(V - E_{\mathrm{Na^{+}}}) + \overline{g}_{\mathrm{A}}a^{3}b(V - E_{\mathrm{A}}) + \overline{g}_{\mathrm{L}}(V - E_{\mathrm{L}}) = I_{\mathrm{e}}(t)$$
Delayed rectifier current
Type A current

Other parameters of HH model need to be adapted.

Model with A-type current II

- Model with A current and HH model behave quite differently.
- For injection of constant current strongly delayed spike emission (delay of 300 ms) for A-type model.
- Reason: A-type K⁺ channel is open during the increase of the membrane potential towards the firing threshold; this delays the increase of the membrane potential substantially.

Model with A-type current III

 Very different current-spikefrequency characteristics from HH.

 Increase of spike rate when input current exceeds threshold.

 Model with type A current shows gradual increase of spike rate with input current ('type I neuron').

 For HH model spike rate jumps to nonzero value above threshold activation ('type II neuron').

 Difference can be understood in terms of nonlinear dynamics (see part II of this course).

Modeling of ligand-gated channels I

- Some channels are activated by intra- or extracellular ligands or second messengers.
- Examples: Ca²⁺ or cyclic AMP-controlled channels.
- Calcium channels responsible for a variety of interesting effects (we discuss some examples here and coarse ideas how they can be modeled; details: Sterratt book).
- Many different types of Ca²⁺ conductances with:
 - persistent characteristics (e.g. L type)
 - transient characteristics (e.g. T type)
 - Some may be involved in transmitter release at synapses (e.g. N and P type)

Modeling of ligand-gated channels II

Opening probability of channel depends on Ca²⁺ concentration:

epends on Ca²⁺ concentration:
$$P(\text{channel open}) = \frac{[\text{Ca}^{2+}]^n}{K_{0.5}^n + [\text{Ca}^{2+}]^n}$$
Half maximal effective concentration
$$Hill \text{ equation}$$
Hill coefficient
$$\text{Hill coefficient}$$

- Integration in activation dynamics by defining calciumcontrolled conductivity, e.g. $g_{KCa} = \overline{g}_{KCa} w$
- The activation variable follows the kinetic equation:

$$\frac{dw}{dt} = \frac{w_{\infty} - w}{\tau_{w}} \quad \text{with} \quad w_{\infty} = \frac{[Ca^{2+}]^{n}}{K_{0.5}^{n} + [Ca^{2+}]^{n}}$$

Modeling of ligand-gated channels III

- In the following we discuss interesting phenomena that are induced by different types of Ca²⁺ conductances.
- Example 1: Calcium spikes and burst activity:
 - Slow transient Ca²⁺ conductance;
 similar to sodium conductance
 - Can generate slower transient depolarization than AP ('calcium spike')
 - Normal Na⁺ dynamics rides on top of this slow depolarization.
 - \Rightarrow burst activity.
 - Spike trains can be elicited by longer periods of hyperpolarization (rebound activity).
 - Model (like sodium channel): $g_{\text{CaT}}(t) = \overline{g}_{\text{CaT}}M^2(t)H(t)$

Burst elicited by hyperpolarization

Modeling of ligand-gated channels IV

- Example 2: Firing modes of thalamic relay neurons:
 - Different firing modes for awake state and sleep.
 - Model by Wang (1994): five conductances: (HH conductances, Ca²⁺, persistent Na⁺ cond., mixed cation cond.)
 - Single neurons can realize multiple firing modes, dependent on injected current:
 - a) no current \Rightarrow neuron silent
 - b) pos. current ⇒ regular APs (wake state)
 - c) small neg. current ⇒ bursting (sleep state)
 (hyperpolarization deinactivates transient Ca²⁺ currents)

Modeling of ligand-gated channels V

- Example 3: Periodic bursting:
 - Neurons generating periodic bursts, even without external input, very important for central pattern generators (CPGs) in the control of walking or chewing, or digestion.
 - Example: crustacaen somatogastric ganglion (STG) → Controls chewing and digestive rhythms in lobster and crabs.
 - Model (Turrogiano et al. 1995) contains
 HH currents, A current, transient Ca²⁺
 conductance, and Ca²⁺-dependent K⁺ conductance (K(Ca); to be discussed in the following)
 - K(Ca) conductance helps repolarization of membrane after AP.

Modeling of ligand-gated channels VI

- Example 3: Periodic bursting: (contd.)
 - Model of the K(Ca) conductance:
 Ca²⁺-dependent K⁺ current:

$$I_{\text{KCa}} = \overline{g}_{\text{KCa}} c^4 (V - E_{K^+})$$

The activation variable *c* follows a linear kinetic equation with:

$$c_{\infty} = \frac{[\text{Ca}^{2+}]}{[\text{Ca}^{2+}] + k_1} \frac{1}{1 + \exp(-(V - k_2)/k_3)}$$
$$\tau_c = k_4 - \frac{1}{1 + \exp(-(V - k_5)/k_6)}$$

- The concentration [Ca²⁺] increases though the Ca²⁺ current; in addition, an exponential decay is assumed, motivating the DEQ:

$$\frac{d[Ca^{2+}]}{dt} = -k_7 I_{Ca^{2+}} - \frac{[Ca^{2+}]}{\tau_{Ca^{2+}}}$$

Remark: calcium inflow creates neg. membrane current

Modeling of ligand-gated channels VII

- Example 3: Periodic bursting: (contd.)
 - Model produces periodic bursts.
 - Ca spikes with regular APs 'riding' on top.
 - Ca²⁺ current during bursts results in a dramatic increase of (intracell.) [Ca²⁺].
 - The increase of [Ca²⁺] activates K⁺
 current, which helps to stop the burst.
 - After burst the Ca²⁺ concentration decays slowly.
 - Low [Ca²⁺] inactivates the K(Ca) current, allowing a new burst to be generated.

Model STG neurons

Modeling of ligand-gated channels VIII

- Example 3: Periodic bursting: (contd.)
 - Neural dynamics behaves similar to a nonlinear oscillator.
 - By coupling of such nonlinear oscillators quite complex behaviors can be generated.
 - Example: EPFL salamander robot (A. ljspeert and colleagues):
 - * realizes locomotion on ground and in water, and the transition between these two locomotion styles.
 - * based on **dynamically coupled central pattern generators** (nonlinear oscillators).
 - * works in reality (even on the lake of Geneva).

Modeling of ligand-gated channels IX

 Coupled CPGs generate walking rhythms ('dynamic movement primitives'); e.g. walking and swimming.

Modeling of ligand-gated channels X

EPFL salamander robot ljspeert et al. (2007)

Overview

- Extensions of the HH model
- Simplified neuron models

Simplified neuron models

- So far we have mainly extended the HH model by integration of more / different components.
- Resulting models very difficult to analyze mathematically.
- For many applications it is useful to reduce the complexity of such models, retaining essential dynamical properties.
- Main reasons:
 - 1) understanding what the necessary essential components are
 - 2) building and analysis of models with many neurons
- Different approaches for the reduction of model complexity.

- Lumping up compartments, similar to the Rall model discussed before; not always justified!
- Example: Pinsky-Rinzel model of CA3 neurons in the hippocampus:
 - Two compartments modeling soma and dendrite.
 - Derived from 19 compartment model by Traub et al. (1991).
 - Soma compartment: sodium (Na) and potassium delayed-rectifier (K(DR)) current + leak current (L).

- Example: Pinsky-Rinzel model (cont.)
 - Dendrite compartment: voltage-dependent calcium current (Ca),
 voltage-independent Ca-dep. potassium AHP current (AHP: after hyperpolarization), calcium-dependent potassium current (K(C))
 - coupling conductance between compartments $g_{\rm c}$
 - In addition, variation of proportion of membrane surface that is belonging to the soma vs. dendrite (details: Sterratt book)
 - Model reproduces variety of realistic activity patterns.

Example: Pinsky-Rinzel model (cont.)

Reduction of number of state variables

- Example: Morris-Lecar model
 - Single compartment ⇒ mathematically much simpler; allows application of dynamical systems theory (see later).
 - Originally model for barnacle giant muscle fibre.
 - Potassium and calcium conductance;
 both **not inactivating**. ⇒ Both represented
 by a single state variable.
 - Additional leak conductance; Na can be neglected.
 - Further assumption: Ca²+ dynamics responds
 instantaneously to voltage changes. ⇒
 Dynamic equation for [Ca²+] can be neglected, and
 concentration is defied by the stationary value [Ca²+]_∞; this trick
 removes another dynamical state variable.
 - Only two state variables: V and w (potassium state).

- Example 2: Morris-Lecar model (contd.)
 - Model equations:

$$C\frac{dV}{dt} + \overline{g}_{K^{+}} w (V - E_{K^{+}}) + \overline{g}_{Ca^{2+}} m_{\infty}(V) (V - E_{Ca^{2+}}) + \overline{g}_{L} (V - E_{L}) = I_{e}(t)$$

$$\frac{dw}{dt} = \frac{w_{\infty}(V) - w}{\tau_{w}(V)}$$
with
$$m_{\infty}(V) = 0.5 (1 + \tanh(V - V_{1}) / V_{2})$$

$$w_{\infty}(V) = 0.5 (1 + \tanh(V - V_{3}) / V_{4})$$
Constants: $\overline{g}_{i}, E_{i}, V_{i}, \phi$

$$\tau_{w}(V) = \phi / \cosh \frac{V - V_{3}}{2V_{4}}$$

- Example 2: Morris-Lecar model (contd.)
 - Dependent on parameters, type I and type II behavior can be generated:

Integrate and fire (IF) models I

- Direct modeling of spikes by delta peaks; neglecting details of underlying dynamics.
- First used by Lapicque (1907); analyzed in detail much later.
- Simple IF model: Passive membrane dynamics integrates current until potential reaches threshold θ , then spike is initiated and potential is reset to $E_{\rm m}$.

L. Lapicque

Integrate and fire (IF) models II

 Until V reaches threshold θ the potential follows the passive membrane dynamics:

$$C\frac{\mathrm{d}V}{\mathrm{d}t} + \frac{V(t) - E_{\mathrm{m}}}{R_{m}} = I_{\mathrm{e}}(t) \quad \Leftrightarrow \quad \tau_{m} \frac{\mathrm{d}V}{\mathrm{d}t} = E_{\mathrm{m}} - V(t) + R_{m}I_{\mathrm{e}}(t)$$

• We have derived the solution of this equation for $V(0) = E_{\rm m}$ and constant input current I_0 :

$$V(t) = E_{\rm m} + R_{\rm m} I_0 (1 - e^{-t/\tau_{\rm m}})$$
 with $\tau_{\rm m} = R_{\rm m} C$

• From this we obtain with $\tilde{\theta} = \theta - E_{\rm m}$ the time between two spikes: $T_s = -\tau_m \ln \left(1 - \frac{\tilde{\theta}}{R_m I_0} \right)$

Integrate and fire (IF) models III

• With an additional absolute refractory period τ_{ref} this implies for the firing frequency: $f(I_0) = \frac{1}{T_0} = \frac{1}{T$

• Remark: for $\tau_{\rm ref} = 0$ and large I_0 because of $\ln(1-x) = -x + O(x^2)$ approximately linear transfer function: $f(I_0) \approx \frac{R_{\rm m}}{\tau_{\rm m} \widetilde{\theta}} I_0$

(b)₄₀₀ $I = 1.8 \,\mu A$ 300 $I = 2.02 \mu A$ $\tau_{\rm ref} = 0$ f (spikes/s) 000 \(\begin{aligned} \hat{\text{\te}\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\texit{\ $I = 2.2 \mu A$ 100-(E) 20 0 20 80 10 $R_{\mathrm{m}}I_{\mathrm{0}}/\widetilde{\theta}$ t (ms)

Extensions of IF models I

- Basic IF model too simple to reproduce several typical properties of neurons; extensions have been proposed that make the behavior more similar to real neurons.
- Often neurons show spike rate adaptation: Firing rate for sustained constant input current decreases throughout spike train.
- Integration in model: Add repolarizing adaptation conductance in the model that increases by $\Delta g_{\rm adapt}$ after each spike, and which decays exponentially between spikes according to the equation: IF model with spike rate adaptation

$$\frac{\mathrm{d}g_{\mathrm{adapt}}}{\mathrm{d}t} = -\frac{g_{\mathrm{adapt}}}{\tau_{\mathrm{adapt}}}$$

Extensions of IF models II

• Example simulation:

Extensions of IF models III

- For model with active conductances total ionic current changes its sign from outward to inward if potential increases beyond threshold.
- For linear IF model outward current keeps increasing close to threshold.
- Better approximation by quadratic integrate and fire neuron; membrane potential between spikes follows DEQ:

$$C \frac{dV(t)}{dt} + \frac{(V(t) - E_{\rm m})(V_{\rm thr} - V(t))}{R_{m}(V_{\rm thr} - E_{\rm m})} = I_{\rm e}(t)$$

 Other similar nonlinear models have been tested.

Real I-V characteristics

Extensions of IF models IV

 Adding a recovery variable, modeling difference between inward and outward current, one obtains Izhikevitch

model: dV

$$\frac{dV}{dt} = k(V(t) - E_{\rm m})(V(t) - V_{\rm thr}) - u + I_{\rm e}(t)$$

$$\frac{du}{dt} = a(b(V(t) - E_{\rm m}) - u)$$
where for $V > \theta$ the dyanamic variables are reset to:
$$V \rightarrow c, u \rightarrow u + d$$

 This model can reproduce many interesting behaviors of real neurons.

E. Izhikevitch

Extensions of IF models V

 Example behaviors of Izhikevitch model for different parameter settings:

Rate-based models I

- For some applications approximation if detailed spiketiming is highly relevant (e.g. for synchronization, representation of timing, etc.); for others not.
- Form the basis of what is called 'deep neural networks'.
- Dynamics of rate-based models much easier to analyze than the one of spiking networks.
- Adrian (1928): firing frequency of cutaneous sensors of the frog varies linearly with the stimulus intensity.
- Assumption of a transfer function f that maps input current directly to a spike rate.
- This approximation forms the basis of classical artificial neural networks (ANNs); often combined with learning rules for synaptic weights.

Rate-based models II

Typical transfer functions:
 Linear threshold function:
 (e.g. Hartline & Ratliff, 1958;
 since 2008: 'ReLU
 nonlinearity')

Sigmoid function:

Step function:

('McCulloch-Pitts neuron',

1943)

Threshold parameter

$$f(I) = \begin{cases} 0 & \text{for } I < \theta \\ k(I - \theta) & \text{for } I \ge \theta \end{cases}$$

$$f(I) = \frac{\bar{f}}{1 + \exp(-k(I - \theta))}$$

$$f(I) = \begin{cases} 0 & \text{for } I < \theta \\ 1 & \text{for } I \ge \theta \end{cases}$$

Rate-based models II

Example 1: Feed-forward neural network:

$$I_{\text{out,n}} = \sum_{m} w_{nm} f(I_m)$$

(Used, for example, to model visual filters or object recognition.)

• Input currents: I_m ; Thresholded inputs / firing rates: $f(I_m)$ Output currents: $I_{\text{out},n}$

Rate-based models III

Example 2: Dynamic feed-forward neural network I: (ctd.)

One can interpret $I_{\mathrm{out},n}$ as function of the total synaptic input current of the neuron that is generated by the input firing

rates $f(I_m)$: $I_{\text{out,}n}(t) = \sum_{m} \int_{-\infty}^{t} \kappa(t-t') w_{nm} f(I_m(t')) dt'$

Synaptic kernel: determines shape of postsynaptic response for a spike

Choosing $\kappa(t) = \frac{1}{\tau} \exp(-t/\tau)$ gives exactly the solution of the differential equation above for $I_{\text{out},n}$ since then $\kappa(t)$ is the corresponding Green's function (impulse response).

Rate-based models IV

Example 3: Dynamic feed-forward neural network II:

$$\tau \frac{\mathrm{d}v_n}{\mathrm{d}t} = -v_n(t) + f\left(\sum_m w_{nm} f(I_m(t))\right)$$
 (frequency as state variable)
$$= -v_n(t) + f\left(\sum_m w_{nm} v_m(t)\right)$$

Interpretation: Output firing rate $v_n(t)$ reaches its stationary value with some delay since membrane acts as a low-pass filter. Remark: 'Threshold outside summation.'

Rate-based models IV

Example 4: Recurrent neural network (RNN):

$$\tau \frac{\mathrm{d}I_n}{\mathrm{d}t} = -I_n(t) + \sum_m w_{nm} f(I_m(t)) + I_{n,\text{ext}}(t)$$

Additional external input

(All neurons connected to all neurons with feed-forward and feedback connections.)

- Similar network can be formulated using firing rate as state variable ('summation inside the threshold function').
- More detailed examples follow in the 'dynamics block' of this lecture.

Things to remember

- A-type current \rightarrow 1), 3), 4)
- Type I / II neurons → 1), 3), 4)
- Roles of calcium and coarse idea how these influences can be modeled → 4)
- Strategies to simplify models → 1), 3), 4)
- IF model and extensions \rightarrow 1), 2), 3), 4)
- Rate-based models → 1), 4)

Literature (for this lecture)

- 1) Dayan P. & Abbott, L.F. (2001 / 2005) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge MA, USA. Chapters 5 and 6.
- 2) Gerstner, W. & Kistler, W. (2002) *Spiking Neuron Models Single Neurons, Populations, Plasticity.* Cambridge University Press, UK. Chapters 1, and 4.
- 3) Izhikevich, E.M. (2007) *Dynamical Systems in Neuroscience:* The Geometry of Excitability and Bursting. Cambridge MA, USA.
- 4) Sterratt, D., Graham, B, Gillies, A., Willshaw, D. (2011) *Principles of Computational Modelling in Neuroscience.* Cambridge University Press, UK. Chapters 6, and 8.