

SAT - problem

Remember that ...

- ☐ Given a propositional **CNF** formula **F**;
- □ Question: Is **F satisfiable**?

Example:

- □ Given $F = (A \lor B) \land (\neg B \lor C \lor \neg D) \land (\neg A \lor D)$. F is satisfiable?
- □ Answer: $\mathcal{A}(F) = 1$ for this assignment: $\mathcal{A}(A) = 1$, $\mathcal{A}(B) = 0$, $\mathcal{A}(C) = 0$, and $\mathcal{A}(D) = 1$.
- ☐ Then **F** is satisfiable.

Resolution

- **Resolution** is a simple syntactic transformation applied to formulas.
- Process:
 - □ From **two** given **formulas** in a **resolution step** (if provided resolution is applicable to the formulas), a **third formula is generated**.
 - ☐ This new formula can then be used in further resolution steps, and so on.
- A collection of such "mechanical" transformation rules we call a calculus.

In the case of the **resolution calculus**, the task is to prove **unsatisfiability** of a given formula.

3

Calculus. Correctness and Completeness

- The definition of a calculus is sensible only if its correctness and its completeness can be established.
- Correctness (soundness) means that every formula for which the resolution calculus claims unsatisfiability indeed is unsatisfiable.
- Completeness means that for every unsatisfiable formula there is a way to prove this by means of the resolution calculus.

Resolution

 A general precondition for the application of resolution to a formula is that the formula (or set of formulas) is in CNF. That is, if necessary, the formula has to be transformed into an equivalent CNF formula

$$F = (L_{1,1} \vee \cdots \vee L_{1,n_1}) \wedge \cdots \wedge (L_{k,1} \vee \cdots \vee L_{k,n_k})$$

where the L_{ij} are literals, i.e.

$$L_{i,j} \in \{A_1, A_2, \cdots\} \cup \{\neg A_1, \neg A_2, \cdots\}$$

For the presentation of resolution it is advantageous to represent formulas in CNF as sets of so-called clauses where a clause is a set of literals:

$$F = \{\{L_{1,1}, \ldots, L_{1,n_1}\}, \ldots, \{L_{k,1}, \ldots, L_{k,n_k}\}\}$$

- Example:
 - □ Given $F = (A \lor B) \land (\neg B \lor C \lor \neg D) \land (\neg A \lor D)$.

$$F = \{\{A,B\}, \{\neg B,C,\neg D\}, \{\neg A,D\}\}$$

5

Resolvent

Definition (resolvent)

■ Let C_1 , C_2 and R be clauses. Then R is called a resolvent of C_1 and C_2 if there is a literal $L \in C_1$ such that $\bar{L} \in C_2$ and R has the form:

$$R = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\}).$$

here \bar{L} is defined as:

$$\overline{L} = \left\{ \begin{array}{cc} \neg A_i & \text{if } L = A_i \ , \\ A_i & \text{if } L = \neg A_i \end{array} \right.$$

• Graphically we denote this situation by the following diagram: C_1 C_2

Example:

□ Given $F = (A \lor B) \land (\neg B \lor C \lor \neg D) \land (\neg A \lor D)$.

$$F = \{\{A,B\}, \{\neg B,C,\neg D\}, \{\neg A,D\}\}$$

 $C_1 = \{A,B\}, C_2 = \{\neg B,C,\neg D\}$ then $R = \{A,C,\neg D\}$

Resolvent

- The definition of **resolvent** also includes the case that R is the **empty set** (if C_1 ,={L} and C_1 ,={ \bar{L} } for some literal L) This **empty clause** is denoted by the special symbol \square .
- Please note that, the empty clause, □ , is unsatisfiable. Therefore, a clause set which contains □ as an element is unsatisfiable.
- Why?
 - □ Let's see how the resolution rule is applied to $C_1 = \{S\}$ and $C_2 = \{\neg S\}$.
 - □ It is easy to see that $S \equiv False \lor S$ and $\neg S \equiv False \lor \neg S$
 - □ So $C_1 = \{False, S\}$ and $C_2 = \{False, \neg S\}$ then resolvent of C_1 and C_2 is $C_{1,2} = \{False\}$.
 - \Box F= {C₁, C₂, ..., C_n, False} is False i.e is unsatisfiable.

-

Resolvent

Examples:

• The following are some examples for **resolvents**:

■ **Exercise:** Give the entire list of **resolvents** which can be generated from the set of clauses:

$$\{\{A, E, \neg B\}, \{\neg A, B, C\}, \{\neg A, \neg D, \neg E\}, \{A, D\}\}$$

Resolvent

Very Important!

- Note that in resolving two clauses, only one pair of literals may be resolved at a time, even though there are multiple resolvable pairs.
- For example, the following is not a legal application of resolution. C₁= {p,q} and C₂ = {¬p, ¬q} and the resolvent is the empty clause, □ Wrong!
- For C_1 = {p,q} and C_2 = {¬p, ¬q} the legal **resolvents** are C_3 = {p,¬p} and C_4 = {q,¬q}

9

D

Resolution

Lemma (resolution lemma)

Let F be a **CNF** formula, represented as a set of clauses. Let R be a **resolvent** of two clauses C_1 and C_2 in F. Then **F and F** \cup **{R}** are **equivalent**.

Proof: Let \mathcal{A} be an assignment that is suitable for F (and also for $F \cup \{R\}$). If $\mathcal{A} \models F \cup \{R\}$ then immediately, $\mathcal{A} \models F$. Conversely, suppose $\mathcal{A} \models F$, that is, for all clauses $C \in F$, $\mathcal{A} \models C$. Assume the resolvent R has the form $R = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$ where $C_1, C_2 \in F$ and $L \in C_1, \overline{L} \in C_2$.

Case 1: $A \models L$.

Then, by $A \models C_2$ and $A \not\models \overline{L}$, it follows $A \models (C_2 - {\overline{L}})$, and therefore $A \models R$.

Case 2: $A \not\models L$.

Then, by $A \models C_1$, it follows $A \models (C_1 - \{L\})$, and therefore $A \models R$.

Definition (Res*(F))

Let F be a set of clauses. Then Res(F) is defined as

 $Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}.$

Furthermore, define

$$Res^{0}(F) = F$$

 $Res^{n+1}(F) = Res(Res^{n}(F))$ for $n \ge 0$.

and finally, let

$$Res^*(F) = \bigcup_{n>0} Res^n(F)$$
.

• Exercise: For the following set of clauses,

$$F = \{\{A, \neg B, C\}, \{B, C\}, \{\neg A, C\}, \{B, \neg C\}, \{\neg C\}\}$$

determine $Res^n(F)$ for n = 0, 1, and 2.

11

Resolution Theorem

Theorem (Resolution Theorem)

■ A clause set F is **unsatisfiable** if and only if $\Box \in Res^*(F)$.

(see Prof. in the Schoning's book, Chapter 1)

 Note that from the Resolution Theorem we can infer the correctness and completeness of the resolution calculus (with respect to unsatisfiability).

Algorithm (from Resolution Theorem)

 Algorithm that decides satisfiability for a given input formula in CNF form

```
Instance: a formula F in CNF
```

- Form a clause set from F (and continue to call it F);
 repeat
 □ G := F;
 □ F := Res(F);
 until (□ ∈ F) or (F = G);
 if □ ∈ F then "F is unsatisfiable"
 else "F is satisfiable";
- Note that in some cases this algorithm can come up with a decision quite <u>fast</u>, but there do exist examples for **unsatisfiable** formulas where <u>exponentially many</u> <u>resolvents</u> have to be generated before the until condition is satisfied.

15

Resolution Refutation in Propositional Logic

- Suppose you need to prove this logical consequence
 - □ F ⊨ G (G is True when F is True) Theorem! (set of axioms ⇒ conclusion)
 Note: F is True ⇒ the set of axioms is consistent

• Using the definition of $\mathbf{F} \to \mathbf{G}$, it's easy to prove that:

 \square if $F \models G$ then $F \land \neg G$ is a contradiction

Resolution Refutation in Propositional Logic

 \square if $F \models G$ then $F \land \neg G$ is a contradiction

- Algorithm:
 - 1. Transform the set of axioms in a clausal form, S
 - 2. Negate the theorem (**negate the conclusion**). Transform the negated conclusion in a clausal form and add it to the set of axioms in a clausal form, S.
 - 3. repeat
 - 3.1. Select two appropriate clauses C_1 and C_2 from S
 - 3.2. Compute $R = Res(C_1, C_2)$
 - 3.3. if $R \neq \square$ then add R to S

until $R = \Box$ **or** there are no two other clauses that resolve

4. **if** R = □ t**hen**

the theorem is proven

5. **else**

it is not a theorem

(the conclusion cannot be proved from the set of axioms)

17

Resolution Refutation in Propositional Logic

Example: (Resolution Refutation)

Prove: (remember that "⊨" ≡ "⇒")

$$(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow (P \rightarrow R)$$

□ Negate the conclusion:

$$F = (P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow \neg (P \rightarrow R)$$

□ Using P \rightarrow Q $\equiv \neg P \lor Q$, we obtain clause form set:

$$\{\{\neg P,Q\}, \{\neg Q,R\}, \{P\}, \{\neg R\}\}$$

- □ Derive the **empty clause** using resolution:
 - $\{Q\}$ resolving $\{P\}$ with $\{\neg P,Q\}$
 - $\{R\}$ resolving $\{Q\}$ with $\{\neg Q, R\}$
 - \Box resolving {R} with { \neg R}
- Conclusion: F is unsatisfiable then

$$(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow (P \rightarrow R)$$
 is a **theorem**

Resolution Refutation in Propositional Logic

• From the previous example we prove that:

$$(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow (P \rightarrow R)$$

- ☐ In particular we prove that:
- □ "**Toby will die**" from the statements that:
 - "Toby is a dog" and
 - "all dogs are animals" and
 - "all animals will die"

19

Resolution Refutation in Propositional Logic

- Suppose you need to prove this logical consequence
 - ☐ F ⊨ G (G is True when F is True) Theorem!

(set of axioms ⇒ conclusion)

- Remember that!
 - ☐ By the **Resolution Refutation**:
 - If we derive a **contradiction (empty clause)**, then the <u>conclusion follows from the axioms</u>.
 - If we can't obtain a contradiction, then the conclusion cannot be proved from the axioms.
 - Example:
 - \square Prove by resolution refutation: $\mathbf{P} \vee \mathbf{Q} \models \mathbf{P} \wedge \mathbf{Q}$

Example (Roadrunner & Coyote):

- Facts/Axioms:
 - □ Coyote chases Roadrunner
 - ☐ If Roadrunner is smart, Coyote does not catch it
 - ☐ If Coyote chases Roadrunner and does not catch it, then Coyote is annoyed.
 - □ Roadrunner is smart
- **Theorem:** Coyote is annoyed ????

21

- Facts/Axioms:
 - □ Coyote chases Roadrunner
 - ☐ If Roadrunner is smart, Coyote does not catch it
 - If Coyote chases Roadrunner and does not catch it, then Coyote is annoyed.
 - □ Roadrunner is smart

Theorem: Coyote is annoyed ????

- Proof strategy:
 - □ We try to prove that "Coyote is NOT annoyed" is a contradiction
 - We add "Coyote is NOT annoyed" to the clause form set, and prove False
 - ☐ We will use the following set of literals:
 - C = Coyote chases Roadrunner
 - S = Roadrunner is smart
 - B = Coyote catches Roadrunner
 - A = Coyote is annoyed
- **Exercise:** Prove this theorem by resolution refutation