Derivation of relevant expressions for non-ideal single-ended Colpitts oscilllator

These notes derive the steady-state oscillation frequency and oscillation condition for a single-ended common-drain Colpitts oscillator. The derivations focus on finding the characteristic equation (CE) and then expressing the relevant terms.

These notes are organized in the following order:

- 1. Derivation when considering inductor equivalent series resistance (ESR) only, by using determinant approach
- 2. Derivation when considering inductor ESR only, by using KCL approach
- 3. Derivation when considering inductor ESR only, by using loop gain approach
- 4. Derivation when considering inductor equivalent parallel capacitance (EPC) only, by using determinant approach
- 5. Derivation when considering inductor EPC only, by using KCL approach
- 6. Derivation when considering inductor EPC only, by using loop gain approach
- 7. Derivation when considering inductor ESR and EPC, by using loop gain approach

Derivation of same expressions were executed using multiple approaches in order to minimize errors.

Relevant variables:

- LC resonant circuit inductance

 C_1/C_2 - LC resonant circuit capacitances

2 - Total circuit resistance

Vo - MOSFET small signal output resistance

C_T - LC resonant circuit equivalent capacitance

gm - Transistor transconductance

W₀ - steady-state oscillation frequency

 R_S - LC inductor equivalent series parasitic resistance

Cp - LC inductor equivalent parallel parasitic capacitance

Relywy - real part

Tml/w\- imaginary part

Considered circuit

1. Derivation when considering inductor ESR only by using determinant approach

$$\begin{cases} \left(R + \frac{1}{5C_{2}} \right) i_{1} - \frac{1}{5C_{2}} i_{2} = g_{m} R_{65} R \\ - \frac{1}{5C_{2}} i_{1} + \left(L_{5} + R_{5} + \frac{1}{5C_{1}} + \frac{1}{5C_{2}} \right) i_{2} = 0 \end{cases}$$

$$V_{65} = V_{4} - V_{0} = Z_{3} i_{2} - Z_{2} li_{1} - i_{2} = 0$$

$$= \left(5 L + R_{5} + \frac{1}{5C_{2}} \right) i_{2} - \frac{1}{5C_{2}} i_{1}$$

$$\begin{cases} \left(R + \frac{1}{5C_{2}} \right) i_{1} - \frac{1}{5C_{2}} i_{2} = g_{m}R \left(SL+R_{S}+\frac{1}{5C_{2}} \right) i_{2} - g_{m}R \frac{1}{5C_{2}} i_{1} \\ - \frac{1}{5C_{2}} i_{1} + \left(SL+R_{S}+\frac{1}{5C_{2}} + \frac{1}{5C_{1}} \right) i_{2} = 0 \end{cases}$$

$$\begin{cases} \left(R + \frac{1}{5C_{2}} + g_{m}R \frac{1}{5C_{2}} \right) i_{1} - \left(Sg_{m}RL + \frac{1}{5C_{2}} (g_{m}R+1) \right) i_{2} = 0 \end{cases}$$

$$- \frac{1}{5C_{2}} i_{1} + \left(SL+R_{S} + \frac{1}{5C_{1}} + \frac{1}{5C_{2}} \right) i_{2} = 0$$

$$\Delta = \begin{vmatrix} R + \frac{1}{sC_2} + g_m R \frac{1}{sC_2} - (sg_m RL + g_m RR_s + \frac{1}{sC_2} (g_m R^{+1})) \\ - \frac{1}{sC_2} + \frac{1}{sC_2} + \frac{1}{sC_2} + \frac{1}{sC_2} + \frac{1}{sC_2} \end{vmatrix}$$

C1C2LR53+(C1L+C1C2RR5)52+(C1R+C2R+C1R5)5+Rgn+1 C1C252 For oscillations to be obtained, the system determinant needs to equal to zero. = 7 $\Delta = 6$ = 2

Characteristic equation (CE):

(1)

$$W_o = \frac{R(C_1+C_2)+C_1R_s}{C_1C_2LR} =$$

$$= \sqrt{\frac{1}{C_1C_2}} + \frac{Rs}{C_2LR} =$$

$$C_1C_2$$

$$W_0 = \sqrt{\frac{1}{C_T L} + \frac{Rs}{C_2 LR}}$$

(2)

From Reyw) = 0 and (2)

Rgm -
$$\frac{C_1}{C_2}$$
 - $\frac{C_1R_s^2 + C_1R_s + C_2R_s}{L}$ - $\frac{C_1R_s}{C_2R}$ = 0

Rgm = $\frac{C_1}{C_2}$ + $\frac{RR_s(C_1+C_2) + C_1R_s^2}{L}$ + $\frac{C_1}{C_2}$ · $\frac{R_s}{R}$

Rgm = $\frac{C_1}{C_2}$ + $\frac{RR_s}{C_1+C_2}$ + $\frac{C_1C_2R_s^2 + LC_1R_s}{C_2LR}$ (3)

$$Rgm = \frac{C_1}{C_2} + RR_5 \frac{C_1 + C_2}{L} + \frac{R_5}{C_2 LR} (C_1 C_2 RR_5 + LC_i)$$

As long as Rs « R we can make some approximations, such as:

$$W_0 \approx \sqrt{\frac{1}{C_7 L}}$$

$$Rgm = \frac{C_1}{C_2} + RRs = \frac{C_1 + C_2}{L}$$

2. Derivation when considering inductor ESR only by using KCL approach

From KCL at Sterminal!

$$\frac{5C_1}{5^2LC_1+5R_5C_1+1} V_0 + \frac{5C_2R+1}{R} V_0 + g_m(V_0-V_f) = 0$$

$$= 7(\frac{5C_1}{5^2LC_1+5R_5C_1+1} + \frac{5C_2R+1}{R} + g_m)V_0 - g_m V_f = 0$$
 (4)

Substituting (3) in (4)!

$$\left(\frac{sC_1}{s^2LC_1+sR_sC_1+1}+\frac{sC_2R+1}{R}+g_m\right)\left(\frac{s^2LC_1+sR_sC_1+1}{s^2LC_1+sC_1R_s}\right)V_f-g_mV_f=0$$

Assuming oscillation have begun: $V_{\uparrow} \neq 0$

$$\frac{SR(1+(s^{2}LC_{1}+sR_{5}C_{1}+1)[(sC_{2}R+1)+8mR]}{R(s^{2}LC_{1}+sR_{5}C_{1}+1)} \cdot \frac{s^{2}LC_{1}+sR_{5}C_{1}+1}{s^{2}LC_{1}+sC_{1}R_{5}} - ymV_{f}=0/\frac{1}{V_{f}}$$

Characteristic equation (CE):

Considering that the CE is the same as previously, it can be concluded that this approach will lead to the same results as previously.

3. Derivation when considering inductor ESR only by using loop gain approach

$$\begin{aligned}
Z_L &= R \parallel Z_t \\
A_V &= \frac{V_0}{V_t} = \frac{g_m V_{65} Z_L}{V_{65} + V_5} = \frac{g_m V_{65} Z_L}{V_{65} + V_0} = \\
&= \frac{g_m V_{65} Z_L}{V_{65} + g_m V_{65} Z_L} = \frac{g_m Z_L}{V_{76} + g_m Z_L} \\
\beta &= \frac{V_7}{V_0} = \frac{V_0 Z_3}{V_0 (Z_1 + Z_3)}
\end{aligned}$$

$$\beta = \frac{(5L+R_{5})SC_{1}}{S^{2}LC_{1} + SC_{1}R_{5} + 1} = \frac{S^{2}LC_{1} + SC_{1}R_{5}}{S^{2}LC_{1} + SC_{1}R_{5} + 1}$$

$$Au = \frac{Rgm(LC_{1}S^{2} + C_{1}R_{5} + 1)}{LC_{1}C_{2}R_{5}^{3} + (LC_{1} + C_{1}C_{2}R_{5} + LC_{1}R_{5} + C_{1}R_{5} + C_{1}R_{5}$$

The closed loop gain of the oscillator is:

According to the Barkhausen criterion for steady-state oscillation:

$$A_{k\cdot\beta}=1=7$$

LC1C2R53+(LC1+C1C2RR5+LC1Rgm)52+(C1R+C2R+C1R5+C1RR5ym)5+Rgm+1 Characteristic equation (CE):

4. Derivation when considering inductor equivalent parallel capacitance (EPC) only by using determinant approach

$$\begin{cases}
\left(R + \frac{1}{5C_{2}}\right)i_{1} - \frac{1}{5C_{2}}i_{2} = g_{m}k_{65}R \\
-\frac{1}{5C_{2}}i_{1} + \left(\frac{L_{5}}{L_{6}p_{5}^{2}+1} + \frac{1}{5C_{1}}+\frac{1}{5C_{2}}\right)i_{2} = 0
\end{cases}$$

$$V_{65} = V_{4} - V_{0} = Z_{3}i_{2} - Z_{2}li_{1} - i_{2}l^{2} = -\frac{L_{5}}{L_{6}p_{5}^{2}+1} + \frac{1}{5C_{2}}li_{2} - \frac{1}{5C_{2}}i_{1}$$

$$\begin{cases}
\left(R + \frac{1}{5C_{2}}\right)i_{1} - \frac{1}{5C_{2}}i_{2} - g_{m}R\left(\frac{Ls}{LCps^{2}+1} + \frac{1}{5C_{2}}\right)i_{2} - g_{m}R\frac{1}{5C_{2}}i_{1} \\
- \frac{1}{sC_{2}}i_{1} + \left(\frac{Ls}{LCps^{2}+1} + \frac{1}{sC_{2}} + \frac{1}{sC_{1}}\right)i_{2} = 0
\end{cases}$$

$$\begin{cases}
\left(R + \frac{1}{sC_{2}} + g_{m}R\frac{1}{sC_{2}}\right)i_{1} - \left(g_{m}R\frac{Ls}{LCps^{2}+1} + \frac{1}{sC_{2}}(g_{m}R + t)\right)i_{2} = 0
\end{cases}$$

$$- \frac{1}{sC_{2}}i_{1} + \left(\frac{Ls}{LCps^{2}+1} + \frac{1}{sC_{1}} + \frac{1}{sC_{2}}\right)i_{2} = 0$$

$$\Delta = \begin{vmatrix} R + \frac{1}{sC_2} + g_m R + \frac{1}{sC_2} - (g_m R + \frac{Ls}{LCps^2 + 1}) + \frac{1}{sC_2} (g_m R + 1) \end{vmatrix}$$

$$- \frac{1}{sC_2} \qquad \frac{Ls}{LCps^2 + 1} + \frac{1}{sC_2} + \frac{1}{sC_2}$$

$$= \frac{a_3S^3 + a_2S^2 + a_1S + Rym^{+1}}{C_1C_2C_pLS^4 + C_1C_2S^2} = 0$$

5. Derivation when considering inductor EPC only by using KCL approach

From KCL at Sterminal!

$$\frac{L(1CpS^{3}+(15) V_{0} + \frac{5C_{2}R+1}{R} V_{0} + gm(V_{0}-V_{f}) = 0}{L(C_{1}+Cp)S^{2}+1} + \frac{5C_{2}R+1}{R} + gm)V_{0} - gm V_{f} = 0$$

$$= 7(\frac{L(1CpS^{3}+(15))}{L(C_{1}+Cp)S^{2}+1} + \frac{5C_{2}R+1}{R} + gm)V_{0} - gm V_{f} = 0$$

$$= 7(\frac{L(1+Cp)S^{2}+1}{L(1+Cp)S^{2}+1} + \frac{5C_{2}R+1}{R} + gm)V_{0} - gm V_{f} = 0$$

Substituting (3) in (4)!

Assuming oscillation have begun: $\lor \not \downarrow \ne 0$

$$\frac{R[L(1 \log^{3} + C_{15}) + (sC_{2}R + 1 + gmR)(L(C_{1} + C_{p})s^{2} + 1)}{L(C_{1} + C_{p})s^{2} + 1} \frac{L(C_{1} + C_{p})s^{2} + 1}{LC_{1}s^{2}} - gmV_{f} = 0/\frac{1}{V_{f}}$$

$$\frac{a_{3}S^{3} + a_{2}S^{2} + a_{1}S + Rgm + 1}{LC_{1}RS^{2}} = 0$$

Characteristic equation (CE):

Considering that the CE is the same as previously, it can be concluded that this approach will lead to the same results as previously.

6. Derivation when considering inductor EPC only by using loop gain approach

$$Z_{t} = \frac{Z_{2}(Z_{1}+Z_{3})}{Z_{1}+Z_{2}+Z_{3}} = \frac{1}{SC_{1}} \left[\left(\frac{1}{SC_{3}} + SL \right) \frac{1}{SC_{p}} \right]$$

t-tank

$$= \frac{8mV_{6s}Z_{L}}{V_{6s}+8mV_{6s}Z_{L}} = \frac{8mZ_{L}}{1+8mZ_{L}}$$

$$\beta = \frac{V_{f}}{V_{o}} = \frac{V_{o}Z_{3}}{V_{o}(Z_{1}+Z_{3})} = \frac{Z_{3}}{Z_{1}+Z_{3}}$$

$$\beta = \frac{LC_{1}s^{2}}{L(C_{1}+C_{p})s^{2}+1}$$

$$\frac{LRgm(C_{1}+C_{p})s^{2}+Rgm}{a_{3}s^{3}+(a_{2}+LC_{1}Rgm)s^{2}+a_{1}s+Rgm+1}$$

$$\alpha_3 = C_1C_2LR + C_1C_pLR + C_2C_pLR$$

$$\alpha_2 = C_1L + C_pL + C_pLRg_m$$

$$\alpha_1 = R(C_1+C_2)$$

The closed loop gain of the oscillator is:

$$Af = \frac{Au}{1 - Au \cdot \beta}$$

$$R(S) = 0$$

$$+ \left(\frac{Au}{\beta} \right)$$

According to the Barkhausen criterion for steady-state oscillation:

= 7 Characteristic equation (CE):

Considering that the CE is the same as previously, it can be concluded that this approach will lead to the same results.

7. Derivation when considering inductor ESR and EPC by using loop gain approach

$$Z_{t} = \frac{1}{Z_{1} + Z_{2} + Z_{3}} = \frac{1}{SC_{1}} \left(\frac{1}{SC_{3}} \right)^{-1} \frac{1}{SC_{3}}$$

$$Z_{1} = R \parallel Z_{t}$$

$$= \frac{8mV_6sZ_L}{V_6s+8mV_6sZ_L} = \frac{8mZ_L}{1+8mZ_L}$$

$$\beta = \frac{V_4}{V_0} = \frac{V_0Z_3}{V_0(Z_1+Z_3)} = \frac{Z_3}{Z_1+Z_3}$$

$$\beta = \frac{LC_1S^2 + C_1R_5.5}{L(C_1+C_p)S^2 + R_5(C_1+C_p)S + 1}$$

The closed loop gain of the oscillator is:

$$A f = \frac{Au}{1 - Au \cdot \beta}$$

According to the Barkhausen criterion for steady-state oscillation:

= 7 Characteristic equation (CE):

$$u_0 = \frac{R(C_1+C_2) + C_1R_S + C_PR_S + C_PR_S g_m}{LR(C_1C_2 + C_P(C_1+C_2))}$$

$$W_0 = \sqrt{\frac{\left(C_1+C_2\right)}{\left[\left(1\left(2+C_p\left(C_1+C_2\right)\right]} + \frac{R_s}{R} \cdot \frac{C_1+C_p}{C_1+C_2} \cdot \frac{1}{L\left(C_7+C_p\right)} + \frac{C_pR_{sgm}}{C_1+C_2} \cdot \frac{1}{L\left(C_7+C_p\right)}}}$$

$$\omega_0 = \sqrt{\frac{1}{L(C_T + C_p)} + \frac{R_s}{R}} \frac{C_1 + C_p}{C_1 + C_2} \frac{1}{L(C_T + C_p)} + \frac{C_p}{C_1 + C_2} \cdot R_{sym} \frac{1}{L(C_T + C_p)}$$

As long as Rs \ll R, Cp \ll C1 and Cp \ll C1 we can make some approximations, such as:

$$W_0^2 \sqrt{\frac{1}{L(C_T + C_D)}} \qquad (1) \quad C_T = \frac{C_1 C_2}{C_1 + C_2}$$

From Reyw) = 0 and (2); $L(1^{2}+L(1)(2+C_{1}(2^{2}RR_{5}+C_{1}^{2}(2RR_{5}+C_{1}^{2}(pRR_{5}+C_{2}^{2}(pRR_{5}+2C_{1}C_{2}CpRR_{5}=L(1(2)Rg_{m}+1))}$ $\frac{C_{1}}{C_{2}}+1+\frac{C_{2}}{L}RR_{5}+\frac{C_{1}}{L}RR_{5}+\frac{C_{1}}{LC_{2}}CpRR_{5}+\frac{C_{2}}{LC_{1}}CpRR_{5}+\frac{2CpRR_{5}}{L}=Rg_{m}+1$ $Rg_{m}=\frac{C_{1}}{C_{2}}+RR_{5}\frac{C_{1}+C_{2}}{L}+\frac{C_{2}RR_{5}}{L}(\frac{C_{1}}{C_{1}}+\frac{C_{2}}{C_{1}}+2)$

$$R_{ym} = \frac{C_1}{C_2} + RR_5 \frac{1}{L} + \frac{C_1R_5}{L} + \frac{C_1R_5}{C_2} + \frac{C_1}{C_1} + \frac{C_2}{C_1} + \frac{C_1C_2}{C_2}$$

$$R_{ym} = \frac{C_1}{C_2} + RR_5 \frac{C_1C_2}{L} + \frac{C_1R_5}{L} \cdot \frac{C_1C_2}{C_1C_2}$$

$$C_1C_2$$

$$Rg_{m} = \frac{C_{1}}{C_{1}} + RR_{5} \frac{c_{1}+C_{2}}{L} + \frac{CpRR_{5}}{L} \frac{(c_{1}+c_{2})^{2}}{C_{1}C_{2}}$$

$$Rg_{m} = \frac{C_{1}}{C_{1}} + RR_{5} \frac{C_{1}+C_{2}}{L} + RR_{5} \frac{Cp}{C_{1}} \frac{C_{1}+C_{2}}{C_{1}}$$

$$C_{1}$$