Задача 5. Календарь на Альфе Центавра

На планете в системе Альфы Центавра год состоит из m месяцев, пронумерованных от 1 до m, а каждый месяц из d дней, пронумерованных от 1 до d. В свою очередь неделя у поселенцев на этой планете состоит из w дней, проиндексированных строчными английскими буквами, от «а» до w-й буквы английского алфавита.

Первый день первого месяца первого года соответствует букве «a».

Требуется определить, какой букве будет соответствовать i-й день j-го месяца k-го года.

Формат входных данных

Первая строка ввода содержит три целых числа d, m и w $(1 \le d, m \le 100, 1 \le w \le 26)$. Вторая строка ввода содержит три целых числа i, j и k $(1 \le i \le d, 1 \le j \le m, 1 \le k \le 10^9)$.

Формат выходных данных

Выведите одну строчную букву английского алфавита — какой букве соответствует i-й день j-го месяца k-го года.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Доп. ограничения	Необходимые подзадачи	Информация о проверке
1	16	d = 1, m = 1		первая ошибка
2	16	$m = 1, k \le 10^7$	1	первая ошибка
3	17	i = 1, j = 1		первая ошибка
4	17	k = 1		первая ошибка
5	17	$k \leqslant 100$	4	первая ошибка
6	17	нет	1–5	первая ошибка

Пример

стандартный ввод	стандартный вывод
30 12 7	b
18 1 2021	

Замечание

Обратите внимание, при решении этой задачи рекомендуется использовать 64-битные типы данных, например «long long» в C++, «int64» в Паскале.

Задача 6. Числа

Аня любит, когда числа состоят из одинаковых цифр. Поэтому ей нравятся числа 777 или 5555, а вот число 1234 ей совсем не нравится.

Иногда у Ани бывает хорошее настроение, тогда ей по прежнему нравятся все числа, состоящие из одинаковых цифр, но также нравятся числа, в которых все цифры кроме одной одинаковые, как, например, в числе 77727.

У Ани есть число x. Аня хочет найти минимальное целое число $y \geqslant x$, которое ей понравится.

Требуется написать программу, которая по заданному целому числу x и информации, хорошее ли настроение у Ани, находит минимальное целое число $y \geqslant x$, которое нравится Ане.

Формат входных данных

Первая строка ввода содержит целое число x ($1 \le x \le 10^{17}$, обратите внимание, что число x не может быть сохранено в стандартном 32-битном типе данных, необходимо использовать 64-битный тип данных, например «long long» в C+++, «int64» в Паскале).

Вторая строка ввода содержит число k, равное 0 или 1. Значение k=1 означает, что у Ани хорошее настроение, а значение k=0— что это не так.

Формат выходных данных

Следует вывести одно целое число y.

Должны выполняться следующие свойства:

- $y \geqslant x$;
- \bullet если k=0, то все цифры в десятичной записи числа y должны совпадать;
- \bullet если k=1, то все цифры в десятичной записи числа y, кроме, может быть, одной, должны совпадать.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Ограничения	Необходимые подзадачи	Информация о проверке
1	15	$1 \leqslant x \leqslant 10^5, k = 0$		полная
2	20	$1 \leqslant x \leqslant 10^{17}, k = 0$	1	первая ошибка
3	21	$1\leqslant x\leqslant 10^5, k=0$ или $k=1$	1	полная
4	44	$1\leqslant x\leqslant 10^{17}, k=0$ или $k=1$	1–3	первая ошибка

Примеры

стандартный ввод	стандартный вывод
700	777
0	
700	700
1	

Задача 7. Хорошие раскраски

Назовем раскраску клеток таблицы $n \times m$ хорошей, если никакие четыре клетки, центры которых образуют вершины прямоугольника со сторонами, параллельными осям координат, не покрашены в один цвет.

Иначе говоря, для раскраски не должно быть четверки целых чисел x_1, x_2, y_1, y_2 , что $1 \leqslant x_1 < x_2 \leqslant n, \ 1 \leqslant y_1 < y_2 \leqslant m,$ и клетки $(x_1, y_1), \ (x_2, y_1), \ (x_1, y_2)$ и (x_2, y_2) покрашены в одинаковый цвет.

Требуется написать программу, которая по заданным целым числам $n,\ m$ и c находит любую хорошую раскраску таблицы $n\times m$ в c цветов.

Формат входных данных

В первой строке записаны три целых числа $n, m, c \ (2 \le n, m \le 10, 2 \le c \le 3)$.

Гарантируется, что для заданных во входных данных значений существует хотя бы одна хорошая раскраска.

Формат выходных данных

Выведите n строк по m чисел в каждой.

В качестве *j*-го числа *i*-й строки выведите $a_{i,j}$ — цвет клетки (i,j) $(1 \leqslant a_{i,j} \leqslant c)$.

Если есть несколько хороших раскрасок, можно вывести любую из них.

Система оценивания

Кроме теста из примера в этой задаче 20 тестов, каждый независимо оценивается в 5 баллов. Среди этих тестов в пяти тестах c=2 и в пятнадцати тестах c=3.

Для каждого теста сообщается результат проверки на этом тесте.

Пример

стандартный ввод	стандартный вывод	
2 2 2	1 2	
	2 2	

Задача 8. А+В

Рассмотрим a, b и c — целые неотрицательные числа, записанные в десятичной системе счисления. Пусть они имеют одинаковую длину n, при этом запись может начинаться с нуля. Числа записаны одно под другим, цифры расположены в три строки и n столбцов. Рассмотрим пример такой записи:

01211 12099 23300

Требуется переставить столбцы в этой записи таким образом, чтобы выполнялось равенство a+b=c. В полученной записи ведущие нули уже запрещены. Сколько существует различных способов это сделать?

Перестановки столбцов считаются различными, даже если полученные записи совпадают. Например, если в записи выше переставить два последних столбца, получится другая перестановка, хотя цифры в этих колонках совпадают.

Поскольку ответ может быть довольно большим, требуется посчитать для него остаток по модулю $10^9 + 7$.

Формат входных данных

Во входных данных записаны целые неотрицательные числа a, b и c по одному в строке. Каждое число состоит из n десятичных цифр и может начинаться c нуля $(2 \le n \le 2 \cdot 10^5)$.

Формат выходных данных

Выведите количество подходящих перестановок столбцов по модулю $10^9 + 7$.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Ограничения	Необходимые подзадачи	Информация о проверке
1	7	$2 \leqslant n \leqslant 6$		первая ошибка
2	14	$2 \leqslant n \leqslant 18$	1	первая ошибка
3	15	$2\leqslant n\leqslant 200$, нет цифры ноль		первая ошибка
4	5	$2 \leqslant n \leqslant 200$	1–3	первая ошибка
5	17	$2\leqslant n\leqslant 750$, нет цифры ноль	3	первая ошибка
6	5	$2 \leqslant n \leqslant 750$	1–5	первая ошибка
7	20	$2\leqslant n\leqslant 2\cdot 10^5$, нет цифры ноль	3, 5	первая ошибка
8	17	$2 \leqslant n \leqslant 2 \cdot 10^5$	1–7	первая ошибка

Примеры

стандартный ввод	стандартный вывод
123	6
123	
246	
01	1
02	
03	
01211	4
12099	
23300	
121	0
214	
999	

Пояснения к примерам

В первом примере подходят все перестановки столбцов.

Во втором примере единственная подходящая перестановка -10+20=30. 01+02=03 не считается из-за наличия ведущих нулей.

В третьем примере возможны варианты 10121 + 21909 = 32030 и 12101 + 20919 = 33020, причём каждый из них может быть получен двумя разными перестановками.