Devoir surveillé n°8 Version n°2

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice d'intégration.

Soit $a, b \in \mathbb{R}$ tels que a < b. Soit $f : [a, b] \to \mathbb{R}$ continue telle que pour toute fonction $g : [a, b] \to \mathbb{R}$ en escaliers, on ait $\int_a^b fg = 0$. Montrer que f est nulle sur [a, b].

II. Un petit problème de dénombrement.

Soit E et F deux ensembles finis, non vides, de cardinaux respectifs n et p. On note S_n^p le nombre de surjections de E sur F.

- 1) Calculer S_n^1 , S_n^n , ainsi que S_n^p pour p > n.
- 2) On suppose $p \leq n$, montrer que

$$S_n^p = p(S_{n-1}^{p-1} + S_{n-1}^p).$$

Avec $a \in E$, on pourra s'intéresser aux surjections de $E \setminus \{a\}$ sur F.

- 3) Soit $0 \le j \le p$. Déterminer en fonction des S_n^k le nombre d'applications de E dans F prenant exactement j valeurs distinctes.
- **4)** Montrer que, pour tout $n \ge 1$ et tout $p \ge 1$,

$$S_n^p = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} k^n.$$

III. Dualité en dimension finie.

Soit E un \mathbb{K} -ev de dimension finie n non nulle.

L'ensemble $\mathcal{L}(E,\mathbb{K})$ des formes linéaires de E est un \mathbb{K} -ev appelé le dual de E et noté E^* .

Le dual de E^* est appelé le bidual de E et noté E^{**} . On a ainsi $(E^*)^* = E^{**}$.

Partie I — Base duale —

Soit $\mathscr{B} = (e_k)_{1 \leq k \leq n}$ une base de E. Pour tout $i \in [1, n]$, on note e_i^* l'unique forme linéaire de E définie par la relation :

$$\forall j \in [1, n], e_i^*(e_j) = \delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}.$$

On rappelle que δ est appelé symbole de Kronecker.

La famille $(e_k^*)_{1 \leq k \leq n}$ est alors notée \mathscr{B}^* .

- 1) Pour tout $k \in [1, n]$, e_k^* est appelée l'application coordonnée d'indice k de \mathscr{B} . Justifier cette appellation en montrant que pour tout $x \in E$ on a $x = \sum_{k=1}^{n} e_k^*(x)e_k$.
- 2) a) Montrer que \mathscr{B}^* est une famille libre de E^* .
 - **b)** Montrer que pour toute $f \in E^*$, $f = \sum_{k=1}^n f(e_k)e_k^*$.
 - c) En déduire que \mathscr{B}^* est une base de E^* , appelée la base duale de \mathscr{B} .

Partie II — Bidual et base antéduale —

- 3) Pour tout $x \in E$ on note ev_x l'application $E^* \to \mathbb{K}$, appelée évaluation $f \mapsto f(x)$ de f en x.
 - a) Soit $x \in E$. Montrer que ev_x appartient à E^{**} .
 - **b)** Montrer que l'application ev : $E \to E^{**}$ est un isomorphisme de $x \mapsto \operatorname{ev}_x$ $E \operatorname{sur} E^{**}.$
 - c) Quelle est l'application e_i^{**} ?
- 4) Soit $\mathscr{F} = (f_1, \ldots, f_n)$ une base de E^* . Montrer qu'il existe une et une seule base $\mathscr{G} = (g_1, \ldots, g_n)$ de E telle que $\mathscr{G}^* = \mathscr{F}$. Cette base est appelée base antéduale de \mathscr{F} .

Partie III — Orthogonalité —

Pour tout sev F de E^* , on appelle orthogonal de F la partie F^\perp de E définie par

$$F^{\perp} = \{ x \in E \mid \forall f \in F, f(x) = 0_E \}.$$

- 5) Soit F un sev de E^* .
 - a) Montrer que F^{\perp} est un sev de E.
 - b) Soit p la dimension de F et (f_1, \ldots, f_p) une base de F. On complète cette base en une base (f_1, \ldots, f_n) de E^* . On introduit la base antéduale (e_1, \ldots, e_n) associée.
 - En utilisant ces objets, donner une base de F^{\perp} .
 - c) En déduire l'égalité dim $F + \dim F^{\perp} = \dim E$.
- 6) Soient F et G deux sev de E^* .
 - a) Montrer que si $F \subset G$, alors $G^{\perp} \subset F^{\perp}$.
 - **b)** Montrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
 - c) En déduire que $F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$.

Partie IV — Équations —

Soient $f_1, f_2, ..., f_q \in E^*$ et $F = \{ x \in E \mid \forall k \in [1, q], f_k(x) = 0 \}$. On note r le rang de la famille $(f_1, f_2, ..., f_q)$.

7) Montrer que F est un sous-espace vectoriel de E de dimension n-r.

— FIN —