Логика и алгоритмы, лекция 25

лектор: Кудинов Андрей Валерьевич

25 мая 2021 г.

План лекции:

- Универсальная функция и неразрешимое множество
- Пара неотделимых перечислимых множеств
- Главные универсальные функции
- Теорема Райса-Успенского

Универсальная функция и неразрешимое множество сът (N) N)

Пусть \mathcal{F} — счётное семейство част. функций $f:X \to Y$.

 $\overline{\mathsf{y}}$ ниверсальной функцией для \mathcal{F} называем такую функцию $F:\mathbb{N} imes X o Y$, что

- ullet Для любого $e\in\mathbb{N}$ функция $F_e(x):=F(e,x)$ принадлежит $\mathcal{F}.$
- $\forall f \in \mathcal{F} \exists e \in \mathbb{N} \ \forall x \in X \ f(x) \simeq F(e, x).$

Пусть F — универсальная вычислима функция для $\mathrm{Com}(\mathbb{N},\mathbb{N})$, тогда множество

$$\underline{K} = \{\underline{x \in \mathbb{N}} : !F(\underline{x}, x)\}$$

является перечислимым и неразрешимым.

$$f(x) = P(x,x)$$

$$k = dom(f)$$

Вопрос.

Что можно сказать про множество $\overline{K} = \mathbb{N} \setminus K$?

Оно разрешимо?

Вопрос.

Что можно сказать про множество $\overline{K} = \mathbb{N} \setminus K$?

Оно разрешимо? Her

Перечислимо?

Her

K-reperuence => K pagp y K-pagp.

A - hay Koneperucukusuu, com

I - Koneperucuna

A - reperuent no

イロト イ御ト イヨト イヨト

Пара неотделимых перечислимых множеств

 $\frac{1}{2}$

Пара множеств $X,Y\subseteq\mathbb{N}$ неотделима, если

- \bullet $X \cap Y = \emptyset$
- не существует разрешимого множества $C \subseteq \mathbb{N}$ такого,что $X \subseteq C$ и $Y \cap C = \emptyset$.

Теорема 25.1

Существует неотделимая пара перечислимых множеств.

Доказательство.

Пусть $f: \mathbb{N} \to \{0,1\}$ — вычислимая функция без тотального вычислимого продолжения. Положим $X:=\{x\in\mathbb{N}: f(x)=0\}$ и $Y:=\{x\in\mathbb{N}: f(x)=1\}$.

По теореме о графике X,Y перечислимы.

Если разрешимое C отделяет X и Y, то функция

$$g(x) := \begin{cases} 0, & \text{если } x \in C; \\ 1, & \text{иначе.} \end{cases} = 1 - \chi_{\mathcal{C}}(x)$$

продолжает f на всё \mathbb{N} .

Установленные факты

- Универсальная вычислимая функция F(e, x).
- Частичная вычислимая $f: \mathbb{N} \to \{0,1\}$, не продолжаемая до тотальной вычислимой:

$$f(x) := \begin{cases} 1, & \text{если } F(x,x) = 0; \\ 0, & \text{если } !F(x,x) \neq 0; \\ \text{неопр.,} & \text{иначе.} \end{cases}$$

• $K := \{x \in \mathbb{N} : !F(x,x)\}$ перечислимое, неразрешимое.

Пара неотделимых перечислимых множеств

Пара множеств $X,Y\subseteq\mathbb{N}$ неотделима, если

- \bullet $X \cap Y = \emptyset$
- ullet не существует разрешимого множества $C\subseteq \mathbb{N}$ такого,что $X\subseteq C$ и $Y\cap C=\varnothing$.

Теорема 25.2

Существует неотделимая пара перечислимых множеств.

Доказательство. Пусть $f: \mathbb{N} \to \{0,1\}$ — вычислимая функция без тотального вычислимого продолжения. Положим $X := \{x \in \mathbb{N} : f(x) = 0\}$ и $Y := \{x \in \mathbb{N} : f(x) = 1\}$.

По теореме о графике X,Y перечислимы.

Если разрешимое C отделяет X и Y, то функция

$$g(x) := \begin{cases} 0, & \text{если } x \in C; \\ 1, & \text{иначе.} \end{cases}$$

продолжает f на всё \mathbb{N} .

Главные универсальные функции

Вычислимая универсальная функция $F: \mathbb{N}^2 \to \mathbb{N}$ называется главной, если для любой вычислимой $q:\mathbb{N}^2\to\mathbb{N}$ найдётся тотальная вычислимая функция $s: \mathbb{N} \to \mathbb{N}$ такая, что

$$\forall e, x \ g(e, x) \simeq F(\underline{s(e)}, x).$$

Теорема 25.3

Главная вычислимая универсальная функция $F: \mathbb{N}^2 \to \mathbb{N}$ существует.

На самом деле, универсальная МТ задает главную унив. функцию.

M - Burnance &

8 ta Bxog gare e

Замечание

Вычислимую функцию g(e,x) можно понимать как (возможно, не универсальный) язык программирования, где e — программа вычисления функции $x \mapsto g(e,x)$.

Функция s есть интерпретатор, сопоставляющий программе e языка g машину Тьюринга s(e), вычисляющую ту же функцию.

(

Baparesarer Ware

12 / 21

Теорема Райса-Успенского

Какие свойства вычислимых функций распознаваемы по программе?

Примеры практически интересных свойств частичных функций f:

- $\forall x \ ! f(x)$ (тотальность);
- $f(x_0) = y_0$, где x_0, y_0 фиксированы; —
- $f = g_0$, где функция g_0 фиксирована; +
- «вычисление f(x) на некотором x приводит к стиранию всех данных на HD компьютера». \leftarrow

Пусть фиксирована универсальная вычислимая функция F. Обозначим через F_e частичную функцию с индексом e, т.е. $F_e(x) \simeq F(e,x)$.

Нетривиальным свойством вычислимых функций называем любое подмножество $\mathcal{C} \subset \operatorname{Com}(\mathbb{N}, \mathbb{N})$ такое, что $\mathcal{C} \neq \emptyset$ и $\mathcal{C} \neq \operatorname{Com}(\mathbb{N}, \mathbb{N})$.

$$I_c = \phi$$
 $I_c = N$

C каждым свойством $\mathcal C$ вычислимых функций связывается множество всех программ, вычисляющих функции со свойством \mathcal{C} , то есть множество $I_{\mathcal{C}} := \{ e \in \mathbb{N} : F_e \in \mathcal{C} \}.$

Теорема 25.4

Если C — нетривиальное свойство вычислимых функций, то множество $\{e \in \mathbb{N} : F_e \in \mathcal{C}\}$ неразрешимо.

Доказательство.

- Можно считать, что нигде не определённая функция ζ не обладает свойством C иначе заменим C на его дополнение.
- Т.к. $\mathcal{C} \neq \varnothing$, фиксируем вычислимую функцию $f_0 \in \mathcal{C}$.

Доказательство.

- Можно считать, что нигде не определённая функция ζ не обладает свойством \mathcal{C} иначе заменим \mathcal{C} на его дополнение.
- Т.к. $\mathcal{C} \neq \emptyset$, фиксируем вычислимую функцию $f_0 \in \mathcal{C}$.
- Построим тотальную вычислимую функцию $s:\mathbb{N}\to\mathbb{N}$ такую, что для всех $x\in\mathbb{N}$
 - $x \in K \iff s(x) \in I_{\mathcal{C}}.$
- Если бы $I_{\mathcal{C}} := \{e \in \mathbb{N} : F_e \in \mathcal{C}\}$ было разрешимо, то мы получили бы следующий разрешающий алгоритм для K: для данного x вычислить y = s(x) и проверить $y \in I_{\mathcal{C}}$.

Вычисляем g(e, x) в соответствии со следующим алгоритмом:

- вычислить $F_e(e)$; \checkmark
- ullet если $!F_e(e)$, очистить ленту, а затем вычислить $f_0(x)$. \subset

 Π о свойству главности получаем тотальную вычислимую функцию s такую. что

$$\forall e, x \ F_{s(e)}(x) \simeq g(e, x).$$

Тогда имеем:

огда имеем:

• Если
$$e \in K$$
, то $F_{s(e)}(x) \simeq f_0(x)$; \in

• Если $e \notin K$, то $F_{s(e)} = \zeta$

Отсюда $e \in K \iff F_{s(e)} \in \mathcal{C} \iff s(e) \in I_{\mathcal{C}}$.

Следствие 25.5

Следующие свойства вычислимых функций не распознаваемы по программе:

- тотальность,
- ограниченность,
- конечность области определения, и т.д.

Замечание

Такие свойства как

- «вычисление f(0) завершается менее, чем за 100 шагов»;
- «программа f содержит менее 100 символов» (при фиксированном алфавите)

являются разрешимыми свойствами программ. Они не соответствуют никакому классу частичных функций.

Chegabae $f \in Com(N,N)$ $f \in Fe(x) \subseteq f(x)$ $f \in Fe(x)$ $f \in Fe(x)$

т-сводимость

Говорят, что множество A натуральных чисел m-сводится к другому множеству B натуральных чисел, если существует всюду определённая вычислимая функция $f: \mathbb{N} \to \mathbb{N}$ с таким свойством:

$$x \in A \iff f(x) \in B$$

для всех $x \in \mathbb{N}$. Обозначение: $A \leqslant_m B$.

т-сводимость

Говорят, что множество A натуральных чисел m-сводится к другому множеству B натуральных чисел, если существует всюду определённая вычислимая функция $f: \mathbb{N} \to \mathbb{N}$ с таким свойством:

$$\begin{array}{c} x \not\in A \iff f(x) \not\in B \\ & \nearrow \\ \\ & \nearrow$$

для всех $x \in \mathbb{N}$. Обозначение: $A \leqslant_m B$.

4)
$$A - paypeum na n $B \neq \emptyset_{0} N$, T_{0}
 $A \leq_{m} B$
 $A \leq_{m} B \Rightarrow N A \leq_{m} N B$

to me f .$$