Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$\left\{ A=\widehat{A}\right\}$
	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \frac{A_{TL} A_{TR}}{A_{BL} A_{BR}} \right) = \left(\frac{L \setminus U_{TL} U_{TR}}{\widehat{A}_{BL} \widehat{A}_{BR}} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < 0 $
5a	$ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \to \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \to \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \to \cdots $ where α_{11} is 1×1 , λ_{11} is 1×1 , ν_{11} is 1×1
6	$ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L \setminus U_{00} & u_{01} & U_{02} \\ \widehat{a}_{10}^T & \widehat{\alpha}_{11} & \widehat{a}_{12}^T \\ \widehat{A}_{20} & \widehat{a}_{21} & \widehat{A}_{22} \end{pmatrix} $ $ \land L_{00}U_{00} = \widehat{A}_{00} L_{00}u_{01} = \widehat{a}_{01} L_{00}U_{02} = \widehat{A}_{02} $
8	$a_{10}^T := l_{10}^T = \widehat{a}_{10}^T U_{00}^{-1} = a_{10}^T U_{00}^{-1} \qquad (U_{00} \text{ is stored in the upper triangular part of } A_{00})$ $\alpha_{11} := v_{11} = \widehat{\alpha}_{11} - l_{10}^T u_{01} = \alpha_{11} - a_{10}^T a_{01}$ $a_{12}^T := u_{12}^T = \widehat{a}_{12}^T - l_{10}^T U_{02} = a_{12}^T - a_{10}^T A_{02}$
7	$ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L \setminus U_{00} & u_{01} & U_{02} \\ l_{10}^T & v_{11} & u_{12}^T \\ \widehat{A}_{20} & \widehat{a}_{21} & \widehat{A}_{22} \end{pmatrix} \\ \begin{pmatrix} L_{00}U_{00} = \widehat{A}_{00} & L_{00}u_{01} = \widehat{a}_{01} & L_{00}U_{02} = \widehat{A}_{02} \\ \wedge & l_{10}^T U_{00} = \widehat{a}_{10}^T & l_{10}^T u_{01} + v_{11} = \widehat{\alpha}_{11} & l_{10}^T U_{02} + u_{12}^T = \widehat{a}_{12}^T \end{pmatrix} $
5b	$ \left(\begin{array}{c cccc} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c cccc} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c cccc} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c cccc} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$ \left\{ \begin{array}{c c} \left(\frac{A_{TL}}{A_{BL}} \middle A_{TR} \right) = \left(\frac{L \backslash U_{TL}}{\widehat{A}_{BL}} \middle U_{TR} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \right. $
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) < n) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	{
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{egin{array}{cccccccccccccccccccccccccccccccccccc$
1b	{

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$A = \hat{A}$
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{\begin{array}{c} \\ \\ \\ \\ \end{array}\right.$
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$\{A = \widehat{A}\}$
4	where
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right $
3	while do
2,3	$ \left\{ \begin{array}{c c} \left(\frac{A_{TL} & A_{TR}}{A_{BL} & A_{BR}} \right) & = & \left(\frac{L \setminus U_{TL} & U_{TR}}{\widehat{A}_{BL}} & \widehat{A}_{BR} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} & L_{TL}U_{TR} = \widehat{A}_{TR} & \wedge \right\} $
5a	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \mid L_{TL} U_{TR} = \widehat{A}_{TR} \\ \end{array} \right\} $
	endwhile
2,3	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \wedge \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$\{A = \widehat{A}\}$
4	where
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \mid L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\} $
	endwhile
2,3	$ \left\{ \left(\frac{A_{TL}}{A_{BL}} \begin{vmatrix} A_{TR} \\ A_{BL} \end{vmatrix} A_{BR} \right) = \left(\frac{L \setminus U_{TL}}{\widehat{A}_{BL}} \begin{vmatrix} U_{TR} \\ \widehat{A}_{BR} \end{vmatrix} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \left L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) < A_{TL}) \right \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\} $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \mid L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	where
6	
8	
7	
5b	
2	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
2,3	endwhile $ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \backslash U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) <) \right\} $
1b	$\left\{ A = L \backslash U \land LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	$\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \rightarrow \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \rightarrow \cdots$ where α_{11} is 1×1 , λ_{11} is 1×1 , v_{11} is 1×1
6	
8	
7	
5b	$ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \leftarrow \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \leftarrow \cdots $
2	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \mid L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) <) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	$ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \rightarrow \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \rightarrow \cdots $ where α_{11} is 1×1 , λ_{11} is 1×1 , ν_{11} is 1×1
6	$ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L \setminus U_{00} & u_{01} & U_{02} \\ \widehat{a}_{10}^T & \widehat{\alpha}_{11} & \widehat{a}_{12}^T \\ \widehat{A}_{20} & \widehat{a}_{21} & \widehat{A}_{22} \end{pmatrix} $ $ \land L_{00}U_{00} = \widehat{A}_{00} L_{00}u_{01} = \widehat{a}_{01} L_{00}U_{02} = \widehat{A}_{02} $
8	
7	
5b	$\left\langle \begin{array}{c c} A_{BL} & A_{BR} \end{array} \right\rangle = \left\langle \begin{array}{c c} A_{20} & a_{21} & A_{22} \end{array} \right\rangle = \left\langle \begin{array}{c c} L_{BL} & L_{BR} \end{array} \right\rangle = \left\langle \begin{array}{c c} U_{BL} & U_{BR} \end{array} \right\rangle$
2	$ \left\{ \begin{array}{c c} \left(\frac{A_{TL}}{A_{BL}} \middle A_{TR} \right) = \left(\frac{L \setminus U_{TL}}{\widehat{A}_{BL}} \middle \widehat{A}_{BR} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \\ \end{array} \right\} $
	endwhile
2,3	$ \left\{ \left(\frac{A_{TL}}{A_{BL}} \middle A_{TR} \right) = \left(\frac{L \setminus U_{TL}}{\widehat{A}_{BL}} \middle \widehat{A}_{BR} \right) \land L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \land \neg (m(A_{TL}) < \right\} \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	$ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \to \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \to \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \to \cdots $ where α_{11} is 1×1 , λ_{11} is 1×1 , v_{11} is 1×1
6	$ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L \setminus U_{00} & u_{01} & U_{02} \\ \widehat{a}_{10}^T & \widehat{\alpha}_{11} & \widehat{a}_{12}^T \\ \widehat{A}_{20} & \widehat{a}_{21} & \widehat{A}_{22} \end{pmatrix} $ $ \land L_{00}U_{00} = \widehat{A}_{00} L_{00}u_{01} = \widehat{a}_{01} L_{00}U_{02} = \widehat{A}_{02} $
8	
7	$ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L \setminus U_{00} & u_{01} & U_{02} \\ l_{10}^T & v_{11} & u_{12}^T \\ \widehat{A}_{20} & \widehat{a}_{21} & \widehat{A}_{22} \end{pmatrix} \\ \begin{pmatrix} L_{00}U_{00} = \widehat{A}_{00} & L_{00}u_{01} = \widehat{a}_{01} & L_{00}U_{02} = \widehat{A}_{02} \\ \wedge & l_{10}^T U_{00} = \widehat{a}_{10}^T & l_{10}^T u_{01} + v_{11} = \widehat{\alpha}_{11} & l_{10}^T U_{02} + u_{12}^T = \widehat{a}_{12}^T \end{pmatrix} $
5b	$ \left(\begin{array}{c cccc} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c cccc} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c cccc} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c cccc} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\} $
	endwhile
2,3	$ \left\{ \left(\frac{A_{TL}}{A_{BL}} \middle A_{TR} \right) = \left(\frac{L \setminus U_{TL}}{\widehat{A}_{BL}} \middle \widehat{A}_{BR} \right) \land L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \land \neg (m(A_{TL}) < \right\} \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_{UNB_VAR3}(A)$
1a	$\{A = \widehat{A} \}$
	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \frac{A_{TL} A_{TR}}{A_{BL} A_{BR}} \right) = \left(\frac{L \setminus U_{TL} U_{TR}}{\widehat{A}_{BL} \widehat{A}_{BR}} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	$\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \to \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \to \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \to \cdots$ where α_{11} is 1×1 , λ_{11} is 1×1 , v_{11} is 1×1
6	$ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L \setminus U_{00} & u_{01} & U_{02} \\ \widehat{a}_{10}^T & \widehat{\alpha}_{11} & \widehat{a}_{12}^T \\ \widehat{A}_{20} & \widehat{a}_{21} & \widehat{A}_{22} \end{pmatrix} $ $ \land L_{00}U_{00} = \widehat{A}_{00} L_{00}u_{01} = \widehat{a}_{01} L_{00}U_{02} = \widehat{A}_{02} $
8	$a_{10}^T := l_{10}^T = \widehat{a}_{10}^T U_{00}^{-1} = a_{10}^T U_{00}^{-1} \qquad (U_{00} \text{ is stored in the upper triangular part of } A_{00})$ $\alpha_{11} := v_{11} = \widehat{\alpha}_{11} - l_{10}^T u_{01} = \alpha_{11} - a_{10}^T a_{01}$ $a_{12}^T := u_{12}^T = \widehat{a}_{12}^T - l_{10}^T U_{02} = a_{12}^T - a_{10}^T A_{02}$
7	$ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L \setminus U_{00} & u_{01} & U_{02} \\ l_{10}^T & v_{11} & u_{12}^T \\ \widehat{A}_{20} & \widehat{a}_{21} & \widehat{A}_{22} \end{pmatrix} \\ \begin{pmatrix} L_{00}U_{00} = \widehat{A}_{00} & L_{00}u_{01} = \widehat{a}_{01} & L_{00}U_{02} = \widehat{A}_{02} \\ \wedge & l_{10}^T U_{00} = \widehat{a}_{10}^T & l_{10}^T u_{01} + v_{11} = \widehat{\alpha}_{11} & l_{10}^T U_{02} + u_{12}^T = \widehat{a}_{12}^T \end{pmatrix} $
5b	$ \left(\begin{array}{c cccc} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c cccc} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c cccc} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c cccc} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$ \left\{ \begin{array}{c c} \left(\frac{A_{TL}}{A_{BL}} \middle A_{TR} \right) = \left(\frac{L \backslash U_{TL}}{\widehat{A}_{BL}} \middle U_{TR} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \right. $
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) < n) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Algorithm: $A := LU_{UNB_VAR3}(A)$
$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
while $m(A_{TL}) < m(A)$ do
$ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \to \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \to \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \to \cdots $ where α_{11} is 1×1 , λ_{11} is 1×1 , v_{11} is 1×1
$a_{10}^T := l_{10}^T = \widehat{a}_{10}^T U_{00}^{-1} = a_{10}^T U_{00}^{-1} \qquad (U_{00} \text{ is stored in the upper triangular part of } A_{00})$ $\alpha_{11} := v_{11} = \widehat{\alpha}_{11} - l_{10}^T u_{01} = \alpha_{11} - a_{10}^T a_{01}$ $a_{12}^T := u_{12}^T = \widehat{a}_{12}^T - l_{10}^T U_{02} = a_{12}^T - a_{10}^T A_{02}$
$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
endwhile

Algorithm: $A := LU_{UNB_VAR3}(A)$

$$A \to \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) , L \to \left(\begin{array}{c|c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) , U \to \left(\begin{array}{c|c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right)$$

where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0

while $m(A_{TL}) < m(A)$ do

$$\left(\begin{array}{c|cccc}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \to \left(\begin{array}{c|cccc}
A_{00} & a_{01} & A_{02} \\
\hline
a_{10}^T & \alpha_{11} & a_{12}^T \\
A_{20} & a_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|cccc}
L_{TL} & L_{TR} \\
\hline
L_{BL} & L_{BR}
\end{array}\right) \to \cdots, \left(\begin{array}{c|cccc}
U_{TL} & U_{TR} \\
\hline
U_{BL} & U_{BR}
\end{array}\right) \to \cdots$$

where α_{11} is 1×1 , λ_{11} is 1×1 , v_{11} is 1×1

$$a_{10}^T := l_{10}^T = \widehat{a}_{10}^T U_{00}^{-1} = a_{10}^T U_{00}^{-1}$$
 (U_{00} is stored in the upper triangular part of A_{00})

$$\alpha_{11} := v_{11} = \widehat{\alpha}_{11} - l_{10}^T u_{01} = \alpha_{11} - a_{10}^T a_{01}$$

$$a_{12}^T := u_{12}^T = \widehat{a}_{12}^T - l_{10}^T U_{02} = a_{12}^T - a_{10}^T A_{02}$$

$$\frac{a_{12}^{T} := u_{12}^{T} = \widehat{a}_{12}^{T} - l_{10}^{T} U_{02} = a_{12}^{T} - a_{10}^{T} A_{02}}{\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}} \leftarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^{T} & \alpha_{11} & a_{12}^{T} \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \leftarrow \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \leftarrow \cdots$$

endwhile