PRINCIPLES OF POLYMER SYSTEMS

Second Edition

FERDINAND RODRIGUEZ
Professor of Chemical Engineering
Cornell University

OHEMISPHERE PUBLISHING CORPORATION Washington New York London

McGRAW-HILL BOOK COMPANY New York St. Louis San Francisco Auckland Bogotta Hamburg Johannesburg London Madrid Mexico Montreal New Delhi Panama Raris São Paulo Singapore Sydney Tokyo Toronto

PRINCIPLES OF POLYMER SYSTEMS

Second Edition

AACR2

Copyright © 1982, 1970 by Hemisphere Publishing Corporation.
All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

234567890 BCBC 898765432

This book was set in Press Roman
by Hemisphere Publishing Corporation.
The editors were Julienne V. Brown, Valerie M. Ziobro,
and Elizabeth Dugger;
the designer was Sharon Martin DePass;
the production supervisor was Miriam Gonzalez;
and the typesetter was Wayne Hutchins.
BookCrafters, Inc., was printer and binder.

Library of Congress Cataloging in Publication Data

Rodriguez, Ferdinand, date
Principles of polymer systems.

(McGraw-Hill chemical engineering series)
Bibliography: p.
Includes indexes.
1. Polymers and polymerization. I. Title.
II. Series.

TP156.P6R62 1982 668.9 81-6641

ISBN 0-07-053382-2

Preface	xiii
Preface to	the First Ea

7	Introduction		
	1-1	Polymers	1
	1-2	Polymer-Based	In
	1-3	Feedstocks for	Pc

- 1-4 Polymer Science1-5 Future Trends
- 1-5 Future Trends
 Problems 1
 References

Basic Structures of

2-1	1 Classification	
2.2	Danding	10

- 2-2 Bonding 18
 2-3 Single Molecules
- 2-4 Network Molecule
- 2-5 Cohesive Energy I Problems 30 References 3

3 Physical States and

- 3-1 Physical States
- 3-2 Amorphous Polyn
 - 3-3 Plasticization
- 3-4 Crystallinity

Chemical composition of polymer	Typical specific gravity of pure polymer near room temperature		
Aliphatic hydrocarbons			
(polyethylene, polyisoprene)	0.8-1.0		
Aromatic hydrocarbons and silicones			
(polystyrene)	1.0-1.1		
Oxygen and nitrogen-containing polymers	2.2		
(cellulosics, polyesters, polyamides)	1.1-1.4		
Chlorinated polymers	1.2-1.8		
Fluorinated polymers	1.8-2.2		

10-5 THERMAL PROPERTIES

Many polymers have a coefficient of linear thermal expansion α_e in the range of 2 to 20×10^{-5} cm/cm $^{\circ}$ C, compared to steel at about 1×10^{-5} . This complicates the design of molds for precision parts and the design of metal inserts in polymer parts. Of course, α_e varies with the state of the polymer, as indicated earlier in comments on the variations of specific volume at T_g and T_m (Sec. 3-4). Replacement of polymer by less expansile fillers lowers the overall expansion.

Thermal conductivity k_c of polymers is uniformly low. Values of $k_c = 0.05$ to 0.20 Btu/ft·h·°F are common.

$$\frac{242 \text{ Btu}}{\text{ft} \cdot \text{h} \cdot \text{°F}} = \frac{1 \text{ cal}}{\text{cm} \cdot \text{s} \cdot \text{°C}} = \frac{419 \text{ watt}}{\text{m} \cdot \text{°C}}$$

Conductivity is not easily increased. A high concentration of a metal in powder or fiber form can raise it perhaps tenfold. In Table 10-3 the thermal conductivity of the base resins can be increased by aluminum or copper metal. These also increase electrical conductivity. If low electrical conductivity (for example, 10^{-16} S) is desired, the mixture of aluminas can give a high thermal conductivity. Foaming with air or some other gas is used to decrease thermal conductivity. A foamed polystyrene with a

TABLE 10-2 Specific Gravity of Filled Polymers

Parts by weight	Polymer	Specific gravity	Parts by weight	Filler	Specific gravity	Final specific gravity
100	Natural rubber	0.93	50	Carbon black	1.8	1.1
100	Natural rubber	0.93	100	Calcined clay	2.6	1.4
100	Epoxy resin	1.2	200	Glass fibers	2.5	1.8
100	Phenolic resin	1.3	100	Wood flour	0.9	1.1
100	Polyurethane	1.2	900	Nitrogen		0.12
	•		(pts by vol)	Ŭ		

BEST AVAILARIE COPY

TABLE 10-3
Thermal Conductivity of Various F

Filler	Volume p fille comp
Aluminum, 30 mesh	6
Sand, coarse grain	6.
Mica, 325 mesh	2.
Alumina, tabular	5 .
Alumina, 325 mesh	5 .
Copper powder	61
Silica, 325 mesh	3!
Mixture of:	
Alumina, tabular	
(20 to 30 mesh)	4:
Alumina, 325 mesh	20

density of 2.5 lb/ft³ and a $k_c = 0.0$ of applications from picnic baskets average temperature is shown in Fig

A specific heat of 0.4 ± 0.1 ca generally have the average specific that varies with the physical state of

The yielding of a polymer u at a deflection temperature that is distortion temperature is still used in

Flammability is a function of foamed material or a thin film pre: heavy solid section. Chemical comp molecular-weight compounds. In ger

Most flammable: Nitrated polym
Oxygen-contair
Hydrocarbon p

Polyamides
Least flammable: Halogenated po

Certain plasticizers (phosphate este trioxide combined with chlorinated On the other hand, nitroglycerine objective is to maintain the flammab

10-6 ELECTRICAL PROPER'.

Resistance is a familiar electrical prophrms of a material 1 cm thick, t, a R of any other configuration is given