# Cvičenie 1 Opakovanie

#### Ciel' cvičenia:

1. Opakovanie základných typov dynamických modelov, parametrických aj neparametrických: typové modely pre systémy 1. rádu, 2. rádu (aperiodický aj kmitavý systém), systém s dopravným oneskorením.

## Úlohy

Pre dynamické modely systémov 1. a 2. rádu (zadané diferenciálnou rovnicou):

- a)  $28\dot{y}(t) + 0.30y(t) = 1.5u(t)$
- b)  $0.1\ddot{y}(t) + 2.4\dot{y}(t) + 8y(t) = u(t)$
- c)  $0.1\ddot{y}(t) + 0.4\dot{y}(t) + 8y(t) = u(t)$



- nájdite prenosovú funkciu, určite zosilnenie, póly a časové konštanty, pre kmitavý systém určite aj tlmenie, prirodzenú a vlastnú frekvenciu,
- vykreslite prechodovú funkciu v Matlabe, odčítajte príslušné parametre (zosilnenie a dobu nábehu, časovú konštantu, pre kmitavý systém odčítajte z ustálených kmitov vlastnú frekvenciu).
- vykreslite frekvenčné charakteristiky v komplexnej rovine (Nyquistova charakteristika) a v logaritmických súradniciach (Bodeho charakteristika). Sledujte vplyv zmeny zosilnenia na tvar frekvenčnej charakteristiky. Pre prípad c) (kmitavý systém) sledujte vplyv zmeny tlmenia na tvar frekvenčnej charakteristiky.
- pomocou spätnej Laplaceovej transformácie vypočítajte impulznú a prechodovú funkciu,

Pre dynamický systém s dopravným oneskorením  $10\dot{y}(t) + y(t) = 2u(t-10)$ :

- napíšte prenosovú funkciu, dopravné oneskorenie aproximujte Padého rozvojom.
- v Matlabe zadajte prenosovú funkciu a Padého aproximáciu, vykreslite impulznú a prechodovú charakteristiku.
- vykreslite frekvenčné charakteristiky v komplexnej rovine (Nyquistova charakteristika)
  a v logaritmických súradniciach (Bodeho charakteristika). Sledujte vplyv zmeny dopravného
  oneskorenia na tvar frekvenčnej charakteristiky.

#### Teoretický základ

<u>Prenosová funkcia LDS</u> je podiel Laplaceovho obrazu výstupnej veličiny k obrazu vstupnej veličiny pri nulových počiatočných podmienkach.

*Póly systému* sú korene polynómu menovateľa prenosovej funkcie.

Nuly systému sú korene polynómu čitateľ a prenosovej funkcie.

Impulzová funkcia je odozva systému na Diracov impulz.

Graf impulzovej funkcie sa nazýva impulzová charakteristika.

*Prechodová funkcia* je odozva systému na (Heavisideov) jednotkový skok.

Graf prechodovej funkcie sa nazýva prechodová charakteristika.

Pozn.: Pre prechodovú charakteristiku kauzálneho systému vždy platí h(0) = 0

<u>Frekvenčná charakteristika</u> je odozva systému na harmonický vstupný signál rôznych frekvencií. <u>Doba nábehu</u> je čas, za ktorý sa prechodová charakteristika dostane z 10% na 90% svojej ustálenej hodnoty

#### Prenosové funkcie typových systémov:

a) Systém 1. rádu

$$G_1(s) = \frac{K}{Ts+1} = \frac{K_1}{s+a}$$
  $K$  – zosilnenie,  $T$  – časová konštanta systému

b) Systém 2. rádu – aperiodický (s reálnymi pólmi)

$$G_2(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)} = \frac{K_1}{(s + a_1)(s + a_2)}$$
  $K$  – zosilnenie,  $T_1$ ,  $T_2$  – časové konštanty

systému

c) Systém 2. rádu – kmitavý (s komplexnými pólmi)

$$G_3(s) = \frac{K}{T_0^2 s^2 + 2bT_0 s + 1} = \frac{K_1}{(s + \alpha)^2 + \omega_v^2}$$

*K* − zosilnenie systému,

b – relatívne tlmenie systému, pre kmitavé systémy  $0 \le b < 1$ 

 $T_0$  – časová konštanta systému, platí  $T_0 = \frac{1}{\omega_n}$ ,  $\omega_n$  je prirodzená uhlová frekvencia,

Platí  $\omega_n T = 2\pi$ , kde T je perióda ustálených kmitov prechodovej charakteristiky,  $f = \frac{1}{T}$ 

Systém s dopravným oneskorením:

 $G(s) = G_0(s)e^{-T_d s}$   $T_d$  je časová konštanta dopravného oneskorenia

Aproximácia dopravného oneskorenia Padého rozvojom (najčastejšie 1. rádu)

$$G(s) = G_0(s)e^{-T_d s} \cong G_0(s)\frac{1-s\frac{T_d}{2}}{1+s\frac{T_d}{2}}$$

# Základné príkazy v Matlabe

# I. Toolbox (GENERAL)

help

syntax - help on MATLAB command syntax.

demo - run demonstrations.

who - výpis aktuálnych premenných v prac. priestore

whos - podrobný výpis premenných

clear - vymazanie premenných a funkcií z pamäti.

load - načítanie premenných z disku do prac. priestoru.
save - uloženie premenných z prac. Priestoru na disk.

what - výpis matlabovských súborov (podľa typu - .m, .mat, .mdl) v adresári

type - výpis m-file.

which - lokalizácia funkcií a súborov (výpis cesty).

diary - Save text of MATLAB session.

format - nastavenie výstupného formátu (forma tshort, format long, format bank, ...)

pwd - zobrazenie aktuálneho pracovného adresára

dir - výpis súborov v adresári

1s

- výpis súborov v adresári

#### II. Toolbox CONTROL

## A. Zadávanie matematických modelov lineárnych dynamických systémov (LDS)

- zadanie lineárneho systému v tvare spojitej prenosovej funkcie (*num* – polynóm čitateľa, *den* - polynóm menovateľa)

```
g = tf(num,den)
```

- zadanie spojitej prenosovej funkcie lineárneho systému v tvare zosilnenie K + vektor núl (zeros)
- + vektor pólov (poles); ak systém nemá nuly, zadáme z=[]

```
g = zpk(z,p,k)
```

- zadanie lineárneho systému v tvare stavového modelu

```
dx/dt = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)
```

```
g = ss(A,B,C,D)
```

- zadanie neparametrického modelu LDS v tvare frekvenčnej charakteristiky (najprv treba zadať LDS v niektorom z horeuvedených tvarov, g)

```
nyquist(g) – frekvenčná charakteristika (FCH) v komplexnej rovine bode(g) – frekvenčná charakteristika (FCH) v logaritmických súradniciach
```

### B. Spätné získavanie údajov zo zadaného modelu (objektu)

Takto zadané modely sú objekty, spätne z nich údaje získame príkazmi

tfdata - extrahuje čitateľa a menovateľa[cit,men]=tfdata(g,'v')

zpkdata - extrahuje vektor núl, vektor pólov a zosilnenie
 [z,p,k]=zpkfdata(g,'v')

- ssdata - extrahuje matice stavového opisu.
 [a,b,c,d]=ssdata(g)

### C. Konverzia medzi jednotlivými typmi modelov

```
g=zpk(g)
g=ss(g)
```

# E. Prechodová funkcia, prechodová charakteristika, impulzná funkcia, impulzná charakteristika

```
Výpočet prechodovej funkcie
```

```
[h,t] = step(g)
```

Vykreslenie prechodovej charakteristiky

step(g)

Výpočet impulznej funkcie

[h,t] = impulse(g)

Vykreslenie prechodovej charakteristiky

impulse(g)

#### F. Zadávanie systému s dopravným oneskorením

```
g1d=tf(num,den,'ioDelay',10)
g1p=pade(g1d,1)
g1p3=pade(g1d,3)
Padeho aproximácia 1. rádu
Padeho aproximácia 3. rádu
```

#### G. Rozklad na parciálne zlomky

```
[r,p,k] = residue(g)
```