:

5

ABSTRACT

To provide a method of controlling a conductivity of a Ga_2O_3 system single crystal with which a conductive property of a β - Ga_2O_3 system single crystal can be efficiently controlled.

The light emitting element includes an n-type β -Ga₂O₃ substrate, and an an n-type β -AlGaO₃ cladding layer, an active layer, a p-type β -AlGaO₃ cladding layer and a p-type β -Ga₂O₃ contact layer which are formed in order on the n-type β -Ga₂O₃ substrate. A resistivity is controlled to fall within the range of 2.0 \times 10⁻³ to 8 \times 10² Ω cm and a carrier concentration is controlled to fall within the range of 5.5 \times 10¹⁵ to 2.0 \times 10¹⁹/cm³ by changing a Si concentration within the range of 1 \times 10⁻⁵ to 1 mol³.