

LAD: Efficient Accelerator for Generative Inference of LLM with Locality Aware Decoding

Haoran Wang, Yuming Li, Haobo Xu, Ying Wang, Liqi Liu, Jun Yang, Yinhe Han

Research Center for Intelligent Computing Systems
Institute of Computing Technology, Chinese Academy of Sciences

HPCA 2025

The pursuit of longer context length in LLM inference

- Linearly growing size with respect to context length
- Repeated accesses during auto-regressive decoding

- Linearly growing size with respect to context length
- Repeated accesses during auto-regressive decoding

- Linearly growing size with respect to context length
- Repeated accesses during auto-regressive decoding

- LLM decoding is bottlenecked by the huge cost of accessing the KV cache
- Attention accounts for over 50% of the end to end latency for long sequence decoding

Remembering the complete decoding history is important for the LLM ability

Is it possible to access the complete history without retrieving the entire KV cache?

combine K with V into fixed-size intermediate cache, reducing the sequence dimension

a_i, b_i are linear coefficients determined by the range of the QK_i^T

Intermediate caches: d x d tensor

1 x d tensor

Intermediate caches A and B are fixed-size and much smaller than long context KV cache

Challenge:

How to deal with changing a_i, b_i? Is the cost of maintaining intermediate caches affordable?

Observation: numerical locality of attention scores

The numerical range of attention scores (QK^T-max) across decoding steps

Observation: numerical locality of attention scores

- On average, each position's attention score has > 74% probability to fall into the its top-1 likely interval
- > 95% probability to fall into its top-1 or top-2 likely intervals

Utilizing locality in attention scores

Associate each position i with its mode (i.e. top-1) interval's linear coefficients a_i^* , b_i^* to maintain intermediate caches

Actual interval's coefficients: a_i , b_i Top-1 interval's coefficients: a_i^* , b_i^* suppose $a_1^* \neq a_1$, $b_1^* \neq b_1$

a_i*, b_i* rarely change: low cost for updating the intermediate cache

A small portion of positions are active (where a_i , $b_i \neq a_i^*$, b_i^*), thus it's cheap to compute based on a_i^* , b_i^* first and then make corrections

correction computation for active position 1

Attention mechanism for decoding

$$o = \frac{\sum_{i} (a_i(qk_i^T - m) + b_i)v_i}{\sum_{i} (a_i(qk_i^T - m) + b_i)}$$

Original attention with piecewise linear method

Attention mechanism for decoding

$$o = \frac{\sum_{i} (a_i(qk_i^T - m) + b_i)v_i}{\sum_{i} (a_i(qk_i^T - m) + b_i)}$$

$$= \left(\frac{\overline{qA - mB + C + }}{qD - mE + F}\right)$$

Computation based on intermediate caches

Intermediate caches

$$A = \sum_{i} a_i^* k_i^T v_i, B = \sum_{i} a_i^* v_i, C = \sum_{i} b_i^* v_i$$

$$D = \sum_{i} a_i^* k_i^T, E = \sum_{i} a_i^*, F = \sum_{i} b_i^*$$

Attention mechanism for decoding

$$o = \frac{\sum_{i} (a_i(qk_i^T - m) + b_i)v_i}{\sum_{i} (a_i(qk_i^T - m) + b_i)}$$

$$=\frac{qA-mB+C+\sum_{i\in J}\alpha_{i}qk_{i}^{T}v_{i}-m\sum_{i\in J}\alpha_{i}v_{i}+\sum_{i\in J}\beta_{i}v_{i}}{qD-mE+E+\sum_{i\in J}\alpha_{i}qk_{i}^{T}-m\sum_{i\in J}\alpha_{i}+\sum_{i\in J}\beta_{i}}\right\}$$

Correction computations for active positions

Coefficient difference

$$\left\{ \alpha_i = a_i - a_i^*, \beta_i = b_i - b_i^* \right\}$$

Computing accurate attention scores s_i requires accessing the full K cache:

$$s_1 = < q, \underbrace{k_1}_{} >, \dots, s_n = < q, \underbrace{k_n}_{} >$$
 accessed from main memory

Half the memory access of the original attention mechanism: not efficient

Key Idea
$$< q, k_i > \approx \pm < q, k_j > \frac{\|k_i\|}{\|k_j\|}$$
 if $\cos(\theta_{k_i, k_j}) \approx \pm 1$

- Determining attention scores' intervals does not require accurate computation
- Fetch a small portion of keys without affecting LAD's accuracy

Key Idea
$$< q, k_i > \approx \pm < q, k_j > \frac{\|k_i\|}{\|k_j\|}$$
 if $\cos(\theta_{k_i, k_j}) \approx \pm 1$

keys:

 k_0

-0.1 1.1

directional centers: k₀

Key Idea
$$< q, k_i > \approx \pm < q, k_j > \frac{\|k_i\|}{\|k_j\|}$$
 if $\cos(\theta_{k_i, k_j}) \approx \pm 1$

keys:

 k_0

 k_1

-0.1 1.1

-0.2 2.0

directional centers: k₀

$$\cos(\theta_{k_0,k_1}) = 0.999 > \underline{0.98}$$

Not taken as new direction

→ predefined threshold

Key Idea
$$< q, k_i > \approx \pm < q, k_j > \frac{\|k_i\|}{\|k_j\|}$$
 if $\cos(\theta_{k_i, k_j}) \approx \pm 1$

if
$$\cos(\theta_{k_i,k_j}) \approx \pm 1$$

keys:

 k_0

 k_1

 k_2

-0.1 1.1

-0.2 2.0

1.2 1.6

directional centers: k₀, k₂

$$\cos(\theta_{k_0,k_2}) = 0.742 < 0.98$$

Taken as new direction

Key Idea
$$< q, k_i > \approx \pm < q, k_j > \frac{\|k_i\|}{\|k_j\|}$$
 if $\cos(\theta_{k_i, k_j}) \approx \pm 1$

if
$$\cos(\theta_{k_i,k_j}) \approx \pm 1$$

keys:

 k_0

 \mathbf{k}_1

 k_2

 k_3

-0.1 1.1

-0.2 2.0

1.2 1.6

0.3 - 3.4

directional centers: k₀, k₂

$$\cos(\theta_{k_0,k_3}) = -0.999$$
 $\cos(\theta_{k_2,k_3}) = -0.744$ Not taken as new direction < -0.98

Key Idea
$$< q, k_i > \approx \pm < q, k_j > \frac{\|k_i\|}{\|k_i\|}$$
 if $\cos(\theta_{k_i, k_j}) \approx \pm 1$

keys:

 k_0

 k_1

 k_2

 k_3

-0.1 1.1

-0.2 2.0

1.2 1.6

0.3 -3.4

-0.3 3.2

directional centers: k₀, k₂

$$\cos(\theta_{k_0,k_4}) = 0.999$$
 $\cos(\theta_{k_2,k_4}) = 0.741$ Not taken as new direction > 0.98

Key Idea
$$< q, k_i > \approx \pm < q, k_j > \frac{\|k_i\|}{\|k_j\|}$$
 if $\cos(\theta_{k_i, k_j}) \approx \pm 1$

keys:

 \mathbf{k}_1 k_3 k_2 k_5 k_0 -0.3 3.2 -0.2 2.0 -1.1 -1.6 1.2 1.6 0.3 - 3.4 -0.1 1.1

directional centers: k₀, k₂

 $cos(\theta_{k_0,k_5}) = -0.769$ $cos(\theta_{k_2,k_5}) = -0.999$ Not taken as new direction

Key Idea
$$< q, k_i > \approx \pm < q, k_j > \frac{\|k_i\|}{\|k_j\|}$$
 if $\cos(\theta_{k_i, k_j}) \approx \pm 1$

if
$$\cos(\theta_{k_i,k_j}) \approx \pm 1$$

keys:

 k_0

 \mathbf{k}_1

 k_2

 k_3

 k_5

 k_6

-0.1 1.1

-0.2 2.0

1.2 1.6

0.3 -3.4

-0.3 3.2

-1.1 -1.6

-0.2 2.1

directional centers: k₀, k₂

$$\cos(\theta_{k_0,k_6}) = 0.999$$
 $\cos(\theta_{k_2,k_6}) = 0.739$ Not taken as new direction

- The number of directional centers grows sub-linearly with the keys, more advantageous for long-context scenarios
- Suitable for auto-regressive decoding, where keys are iteratively generated one by one
- Introduce no extra storage of centers

Compute with mode-based intermediate cache

intermediate caches

only active position's KV needs to be accessed

on-chip

① compute accurate attention scores for active positions, confirm its actual interval

$$s_4 = \langle q, k_4 \rangle = 4.98 \rightarrow s_4 - m = -5.34 \rightarrow$$
 in interval 2, while mode interval is 1

$$\frac{qA - mB + C + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i) v_i}{qD - mE + F + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i)}$$

only active position's KV needs to be accessed

on-chip

① compute accurate attention scores for active positions, confirm its actual interval

$$s_4 = \langle q, k_4 \rangle = 4.98 \rightarrow s_4 - m = -5.34 \rightarrow$$
 in interval 2, while mode interval is 1

2 compute coefficient differences for active positions

$$\alpha_4 = a_2 - a_1 = 0.0133$$
 $\beta_4 = b_2 - b_1 = 0.0735$

$$\frac{qA - mB + C + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i) \nu_i}{qD - mE + F + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i)}$$

only active position's KV needs to be accessed

on-chip

- ① compute accurate attention scores for active positions, confirm its actual interval $s_4 = \langle q, k_4 \rangle = 4.98 \rightarrow s_4 m = -5.34 \rightarrow$ in interval 2, while mode interval is 1
- 2 compute coefficient differences for active positions

$$\alpha_4 = a_2 - a_1 = 0.0133$$
 $\beta_4 = b_2 - b_1 = 0.0735$

③ compute correction factors for active positions $c_4 = \alpha_4(s_4 - m) + \beta_4 = 0.0025$

$$\frac{qA - mB + C + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i) v_i}{qD - mE + F + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i)}$$

only active position's KV needs to be accessed

on-chip

- ① compute accurate attention scores for active positions, confirm its actual interval $s_4 = \langle q, k_4 \rangle = 4.98 \rightarrow s_4 m = -5.34 \rightarrow$ in interval 2, while mode interval is 1
- 2 compute coefficient differences for active positions

$$\alpha_4 = a_2 - a_1 = 0.0133$$
 $\beta_4 = b_2 - b_1 = 0.0735$

③ compute correction factors for active positions $c_4 = \alpha_4(s_4 - m) + \beta_4 = 0.0025$

$$\frac{qA - mB + C + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i) v_i}{qD - mE + F + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i)}$$

(4) correct the numerator and denominator

$$numerator + c_4v_4 = (0.1916, 0.0966)$$

 $denominator + c_4 = 0.9493$

Missing positions and cache updates

on-chip

Add positions missing from intermediate caches to the result

$$s_7 = -7.95 \Rightarrow \text{ in interval 1}$$
 $numerator + (a_1s_7 + b_1)v_7 = (0.1917, 0.0967)$
 $denominator + (a_1s_7 + b_1) = 0.9499$
 $output = \frac{numerator}{denominator} = (0.2018, 0.1018)$

Update intermediate caches

For each position *i* changing its mode (*i* must be among the active positions)

$$A += \alpha_i k_i^T v_i$$
 $B += \alpha_i v_i$ $C += \beta_i v_i$

$$D += \alpha_i k_i^T$$
 $E += \alpha_i$ $F += \beta_i$

overwrite intermediate caches

main memory

- ① Efficient Attention Score (EAS) Module
- Compute approximate attention scores based on key centers
- Update key centers adding the newly generated key

- ① Efficient Attention Score (EAS) Module
- Compute approximate attention scores based on key centers
- Update key centers adding the newly generated key

- 1 Efficient Attention Score (EAS) Module
- 2 Active Position Identification (APID) Module
- Compare each position's score with its mode interval boundary, identify active positions
- Increment non-active positions' mode interval counters

- 1 Efficient Attention Score (EAS) Module
- 2 Active Position Identification (APID) Module
- Compare each position's score with its mode interval boundary, identify active positions
- Increment non-active position's mode interval counter

- 1 Efficient Attention Score (EAS) Module
- 2 Active Position Identification (APID) Module
- 3 Mode Discrepancy (MD) Module
- Compute accurate scores for active positions and confirm their actual intervals
- Increment the actual interval counter and identify updating mode positions
- Compute α_i , β_i , $\alpha_i s_i$

- 1 Efficient Attention Score (EAS) Module
- 2 Active Position Identification (APID) Module
- ③ Mode Discrepancy (MD) Module
- Compute accurate scores for active positions and confirm their actual intervals
- Increment the actual interval counter and identify updating mode positions
- Compute α_i , β_i , $\alpha_i s_i$

- 1 Efficient Attention Score (EAS) Module
- 2 Active Position Identification (APID) Module
- 3 Mode Discrepancy (MD) Module
- Compute accurate scores for active positions and confirm their actual intervals
- Increment the actual interval counter and identify updating mode positions
- Compute α_i , $\alpha_i s_i$, β_i

$$\frac{qA - mB + C + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i) \nu_i}{qD - mE + F + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i)}$$

- 1 Efficient Attention Score (EAS) Module
- 2 Active Position Identification (APID) Module
- 3 Mode Discrepancy (MD) Module
- 4 Attention Computation (AC) Module
- Compute with intermediate caches
- Compute corrections
- Update intermediate caches

$$\frac{qA - mB + C}{qD - mE + F} + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i) v_i$$

- 1 Efficient Attention Score (EAS) Module
- 2 Active Position Identification (APID) Module
- 3 Mode Discrepancy (MD) Module
- 4 Attention Computation (AC) Module
- Compute with intermediate caches
- Compute corrections
- Update intermediate caches

$$\frac{qA - mB + C + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i) v_i}{qD - mE + F + \sum_{i \in J} (\alpha_i (qk_i^T - m) + \beta_i)}$$

- 1 Efficient Attention Score (EAS) Module
- 2 Active Position Identification (APID) Module
- 3 Mode Discrepancy (MD) Module
- 4 Attention Computation (AC) Module
- Compute with intermediate caches
- Compute corrections
- Update intermediate caches

Evaluation: accelerator details

Hardware composition

TABLE III
AREA AND POWER OF ONE LAD TILE

Module	Area	Dynamic	Static				
Wiodule	(mm^2)	Power(mW)	Power(mW)				
Attention Pipeline Modules (not including VPU)							
EAS module	0.003	1.37	0.78				
APID module	0.006	2.31	0.99				
MD module	0.001	1.06	0.34				
AC module	0.087	92.20	20.20				
Compu	tation Mo	dules					
VPUs (×7)	0.398	291.78	77.60				
SFM	0.069	43.29	16.90				
On-	chip SRA	M					
SRAM in LAD-1.5 (1.5 MB)	1.596	733.33	118.25				
SRAM in LAD-2.5 (2.5 MB)	2.231	841.97	193.58				
SRAM in LAD-3.5 (3.5 MB)	3.187	1202.82	276.55				
I	LAD Tile						
LAD-1.5	2.160	1165.34	235.06				
LAD-2.5	2.795	1273.98	310.39				
LAD-3.5	3.751	1634.83	393.36				

 On-chip SRAM accounts for 73-84% of the area and 60-73% power consumption

 Specialized attention pipeline modules account for 17% area and 22% power consumption of on-chip logic excluding SRAM

Evaluation: preserving model accuracy

TABLE I
DECODING ACCURACY EVALUATION: ROUGE SCORES BETWEEN LAD/QSERVE/H2O DECODING RESULTS AND THE ORIGINAL MODEL'S RESULTS

	OPT-2.7B			OPT-6.7B				
	rouge1(%)	rouge2(%)	rougeL(%)	rougeLsum(%)	rouge1(%)	rouge2(%)	rougeL(%)	rougeLsum(%)
alpaca	95.1/NA/22.0	93.8/NA/16.9	94.8/NA/21.5	94.9/NA/21.8	96.7/NA/23.4	95.7/NA/14.0	96.5/NA/22.5	96.5/NA/22.3
gsm8k	98.3/NA/56.5	97.9/NA/48.2	98.2/NA/55.1	98.2/NA/56.1	98.1/NA/53.4	97.6/NA/45.7	98.0/NA/51.4	98.0/NA/52.9
mmlu	97.4/NA/38.3	96.5/NA/28.2	97.2/NA/36.8	97.2/NA/37.6	97.2/NA/39.9	96.2/NA/28.4	96.9/NA/37.9	97.0/NA/38.9
	LLaMA2-7B			LLaMA2-13B				
	rouge1(%)	rouge2(%)	rougeL(%)	rougeLsum(%)	rouge1(%)	rouge2(%)	rougeL(%)	rougeLsum(%)
alpaca	95.9/54.1/19.2	94.4/42.5/17.6	95.4/51.9/19.1	95.5/51.6/19.2	95.8/58.5/19.1	94.0/46.8/17.1	95.3/55.7/19.1	95.6/56.0/19.1
gsm8k	97.2/77.6/54.1	96.4/71.0/49.0	96.9/75.6/52.9	97.0/77.1/53.9	97.2/74.3/56.4	96.2/66.7/47.8	97.0/72.0/53.7	97.1/73.6/55.9
mmlu	96.0/66.3/36.4	94.5/54.7/29.1	95.5/62.5/34.6	95.8/65.0/35.9	95.2/70.6/43.1	93.4/58.9/32.9	94.6/65.9/40.1	95.0/68.6/42.7

LAD generates sequences faithful to the original model: on average 96.3% ROUGE scores between sequences generated by LAD and original models

Evaluation: preserving model accuracy

TABLE II
ACCURACY/PERPLEXITY EVALUATION OF ORIGINAL/LAD/QSERVE/H2O MODELS ON POPULAR DATASETS

	OPT-2.7B	OPT-6.7B	LLaMA2-7B	LLaMA2-13B
wikitext2 (ppl)	14.32/14.32/NA/15.72	12.29/12.29/NA/13.38	8.71/8.71/8.83/8.82	7.68/7.68/7.77/7.75
openbookQA (acc)	0.25/0.25/NA/0.16	0.28/0.28/NA/0.15	0.31/0.31/0.31/0.18	0.35/0.35/0.34/0.17
lambada-std (ppl)	7.41/7.40/NA/NA	5.22/5.21/NA/NA	4.13/4.13/4.43/6.43	3.69/3.69/3.78/5.19

No degradation in accuracy metrics was observed across testcases over three popular benchmarks

Evaluation: attention layer performance

Evaluation: end-to-end performance

Evaluation: attention layer energy efficiency

Scenario 1

Context length of 512-2048

1.5MB SRAM

29.3x energy efficiency

2.5MB SRAM

30.4x energy efficiency

3.5MB SRAM

29.0x energy efficiency

Scenario 2

Context length of 2048-4096

1.5MB SRAM

36.9x energy efficiency

2.5MB SRAM

51.2x energy efficiency

3.5MB SRAM

52.4x energy efficiency

Evaluation: end-to-end energy efficiency

Scenario 1

Context length of 512-2048

1.5MB SRAM

10.9x energy efficiency

2.5MB SRAM

10.6x energy efficiency

3.5MB SRAM

10.0x energy efficiency

Scenario 2

Context length of 2048-4096

1.5MB SRAM

14.4x energy efficiency

2.5MB SRAM

14.2x energy efficiency

3.5MB SRAM

13.4x energy efficiency

Thank you!

Please contact us at the email address below if you have any questions: wanghaoran20g@ict.ac.cn