Sve izmjene e biti pisane ovim fontom i bojom (oldgateLANEoutline ili sl.), neki dio teksta e biti highlightan(žuto), strelice, pokušaj slika itd. :) ali nijedan originalan dio ne e biti brisan! (samo strelice i sl. ne e biti zelene nego crvene)

Mobilne komunikacije

Sve primjedbe, greške, možda dodatne komentare koje imate vi u bilj. pa da ih dodam i sve što može pomo i poboljšanju ovoga javite na PM!

Mobilne komunikacije

- korisnici usluga prilikom komunikacije s dugim korisnicima mogu mijenjati svoj položaj unutar područja pokrivanja pojedinog operatora (davatelja usluga)
- promjena položaja podrazumijeva da je pristup sustavu ostvaren preko tzv. radijskog sučelja (bežično)
 - mobilni korisnik sa svojim korisničkim uređajem mobilnom postajom,
 predstavlja jedan kraj, a bazna postaja drugi kraj radijskog kanala
- mobilni komunikacijski sustav je obično povezan sa javnim fiksnim mrežama čineći tako globalnu komunikacijsku mrežu
- ukoliko se usluge pružaju unutar zatvorenog sustava bez mogućnosti javnog pristupa, tada se govori o privatnima mobilnim sustavima

- javni mobilnih komunikacijski sustavi su ćelijske vrste
 - bazna postaja (BS, Base Station) sadrži odašiljačku/prijamnu opremu za odašiljanje/prijam signala do/od korisničke opreme te uređaje koji omogućavaju povezivanje sustava na jezgrenu mrežu
 - ćelija je područje koje bazna postaja pokriva radijskim signalom
 - oblik i veličina ćelije ovise o frekvencijskom području, dijagramu zračenja antenskog sustava i izračenoj snazi bazne postaje
 - oblik ćelije aproksimira se krugom ili češće šesterokutom
 - domet radijskog signala približno je jednak u svim smjerovima oko bazne postaje (100 m do 30 km) ako nema zemljopisnih prepreka (nevažne brojke)
 - tipični domet u mobilnim komunikacijskim sustavima iznosi nekoliko km

- za pokrivanje većih područja rabi se više baznih postaja
- rubna se područja susjednih ćelija preklapaju
 - omogućeno je prekapčanje veze (*handover*) i kontinuirana komunikacija pri prijelazu mobilne postaje (MS, *Mobile Station*) iz jedne ćelije u drugu

- ograničenje u planiranju ćelijskog sustava je istokanalna smetnja (interferencija)
 - javlja se između ćelija koje rabe istu frekvenciju (kanal)
 - korisni signal iz jedne ćelije, u drugoj ćeliji djeluje kao smetajući signal
 - ćelije koje rade na istom kanalu ne smiju biti prostorno smještene jedna blizu druge
- radi povećanja kapaciteta sustava ograničava se snaga baznih postaja (ćelije postaju manje)
 - dopušteno je ponavljanje frekvencija (kanala) u prostorno udaljenim ćelijama bez opasnosti od pojave istokanalnih smetnji
- skup ćelija kod kojeg su jednom iskorišteni svi raspoloživi kanali naziva se grozd ćelija (cell cluster)

- zadatak ćelijskog planiranja
 - dodijeliti kanale ćelijama u grozdu te grozdovima pokriti određeno područje pazeći da razmak istokanalnih ćelija bude dovoljno velik kako bi istokanalna interferencija ostala u prihvatljivim granicama

Dvosmjerni (dupleksni) prijenos

- omogućava kontinuiranu i istodobnu komunikaciju u silaznoj vezi (DL, down-link), od bazne postaje prema korisničkim mobilnim uređajima i uzlaznoj vezi (UL, up-link), od korisničkog uređaja prema baznoj postaji (full duplex)
 - bazna postaja i mobilni uređaji moraju imati i odašiljač i prijamnik
- u realizaciji dupleksnog prijenosa mogu se rabiti dva pristupa
 - frekvencijski dupleks (FDD, Frequency Division Duplex)
 - silazna i uzlazna veza odvojene su frekvencijski
 - uzlazna veza je uvijek na nižoj frekvenciji od silazne veze
 - koriste se dva odijeljena bloka frekvencija između kojih se nalazi zaštitni interval (guard interval)
 - vremenski dupleks (TDD, Time Division Duplex) (ovo se ne može koristit za
 - uzlazna i silazna veza odijeljene su u vremenu razgovore :)
 - može se koristiti samo jedan blok frekvencija koji se dijeli na vremenske odsječke (slots) za uzlaznu vezu i za silaznu vezu

Dvosmjerni (dupleksni) prijenos

uzlazna frekv. je niža jer je na njoj manje gušenje, koje je potrebno jer mobiteli imaju manje snage od postaja, kako bi se kompenzirao manji S/N odnos - isto kao i kod ADSL-a

- zajednički prijenos signala koji dolaze iz različitih izvora u dodijeljenom bloku frekvencija uz mogućnost njihova razdvajanja na odredištu
 - u silaznom smjeru bazna postaja odašilje signal do svih korisničkih uređaja unutar sektora ili ćelije
 - u uzlaznom smjeru rabe se tehnike višestrukog pristupa (multiple access) kako bi se izbjegle smetnje između signala koji dolaze od različitih korisničkih uređaja do iste bazne postaje
- tri temeljna postupka za višestruki pristup
 - višestruki pristup s frekvencijskom raspodjelom (FDMA, Frequency Division Multiple Access)
 - višestruki pristup s vremenskom raspodjelom (TDMA, Time Division Multiple Access)
 - višestruki pristup s kodnom raspodjelom (CDMA, Code Division Multiple Access)

FDMA

- svakom korisniku dodjeljuje se dio frekvencijskog područja
- za odašiljanje signala u silaznoj vezi rabe se frekvencije f_1^* , f_2^* , f_3^* i f_4^* koje su u paru s frekvencijama u uzlaznoj vezi f_1 , f_2 , f_3 i f_4
- korisnički uređaj izdvaja frekvenciju koja mu je unaprijed dodijeljena

- TDMA (nije isti TDMA, nego kombinacija TDMA i FDMA)
 - raspoloživi frekvencijski spektar podijeljen je na uske frekvencijske pojaseve ili kanale
 - pojedini kanal se dijeli na određeni broj vremenskih odsječaka (slot)
 - korisniku se dodjeljuje vremenski odsječak za pristup kanalu

DSSS, samo

korisniku

dodijeljen

njegov kod...

što je \$vakom

Višestruki pristup

CDMA

- korisnik ima svoj određeni kod, a skup kodova, koji se koristi u CDMA sustavu, sadrži međusobno ortogonalne kodove
- u uzlaznom smjeru digitalna informacija, koja dolazi od pojedinog korisnika, modulirana je uz uporabu jedinstvenog koda za proširenje (SC, Spreading Code)
 - signali različitih korisnika zajedno se prenose u istom frekvencijskom kao kod području i pri tome zauzimaju cijelo frekvencijsko područje koje je dodijeljeno za rad CDMA sustava
 - na prijamnoj strani signal se rekonstruira uz uporabu slijeda za sažimanje postupkom koji je inverzan postupku za raspršenje (despreading process)
- u silaznom smjeru također se rabe kodovi za proširenje, a korisnički uređaj određenog korisnika prepoznaje i izdvaja samo informacije namijenjene tom korisniku

CDMA

- kodovi za raspršenje SC1, SC2, SC3 i SC4 se dodjeljuju korisnicima u trenutku uspostavljanja veze
- u silaznom smjeru informacije korisnicima se proširuju uz uporabu skupa kodova za proširenje SC*1, SC*2, SC*3 i SC*4 koji je različit od skupa kodova za proširenje u uzlaznom smjeru

Mobilni komunikacijski sustavinisu važni detalji

- prva generacija mobilnih komunikacijskih sustava (1G)
 - uvedena je kasnih sedamdesetih godina prošlog stoljeća
 - ćelijski sustavi namijenjen prijenosu analognih govornih signala
 - rabili su modulaciju frekvencije (FM) za prijenos govornih signala
 - osnivali su se na FDMA tehnologiji
 - u Hrvatskoj je bio u uporabi nordijski mobilni telefonski sustav (NMT, Nordic Mobile Telephone)
- druga generacija mobilnih komunikacijskih sustava (2G)
 - globalni sustav mobilnih komunikacija (GSM, Global System for Mobile Communications)
 - Interim Standard 54/136 (IS-54/136) i Interim Standard 95 (IS-95)
 - osobni digitalni ćelijski sustav (PDC, Personal Digital Cellular System)

Mobilni komunikacijski sustavi nevažno

Pregled mreža u području 900 MHz

Sustav	GSM	IS-54	PDC	IS-95
Područje	Europa/Azija	SAD	Japan	SAD/Azija
Pristup	TDMA/FDB	TDMA/FDD	TOMA/FDD	CDMA/FDD
Modulacija	GMSK	π/4-DQPSK	π/4-DQPSK	QPSK
Frekvencija, MHz (DL)	935 – 960	869 – 894	810 – 826	869 – 894
(UL)	890 – 915	824 – 849	940 – 956	824 – 849
Razmak kanala, kHz	200	30	25	1250
Fizički kanal/nosilac	8	3	3	promjenljivo
Brzina prijenosa, kbit/s	270,833	48,6	42	1228,8
Kodiranje govora kbit/s	13	8	8	1 – 8 promjenljivo
Trajanje okvira, ms	4,615	40	20	20

Mobilni komunikacijski sustavi NISU VAŽNI SVI DETALJI

- treća generacija mobilnih komunikacijskih sustava (3G)
 - svrha: objedinjavanje postojećih različitih mobilnih sustava za prijenos govora i podataka u jedinstvenu mrežu te povećanje kapaciteta mreže, kvalitete usluge i brzine prijenosa
 - GSM, kao sustav druge generacije, ima svoj razvojni put prema sustavu UMTS kao sustavu treće generacije (2,5G)
 - prijenos podataka visokim brzinama uz komutaciju kanala (HSCSD, *High Speed Circuit Switched Data*)
 - opća usluga paketskog radijskog prijenosa (GPRS, General Packet Radio Service)
 - poboljšane brzine prijenosa za razvoj GSM-a (EDGE, *Enhanced Data Rate for the GSM Evolution*)
 - UMTS se temelji na tehnologiji širokopojasnoga višestrukog pristupa s kodnom raspodjelom (WCDMA, Wideband Code Division Multiple Access)

Mobilni komunikacijski sustavi

 razvoj prema trećoj generaciji mobilnih komunikacijskih sustava

Mobilni komunikacijski sustavi nisu važni ovi brojevi

- GSM osigurava jednoliku brzinu prijenosa podataka od približno 10 kbit/s bez obzira na pokrivanje i mobilnost
- GPRS osigurava brzinu prijenosa informacije reda veličine 144 kbit/s neovisno o pokrivanju i mobilnosti
- daljnja nadogradnja GSM sustava pruža promjenjivu brzinu prijenosa informacija
- kod sustava EDGE se kod niske mobilnosti mogu očekivati brzine prijenosa informacije reda veličine 384 kbit/s, a kako se mobilnost i pokrivanje povećavaju brzina opada
- treća generacija osigurava brzine do 2 Mbit/s kod niskog stupnja mobilnosti (kvazistacionarni sustavi) dok brzina opada porastom mobilnosti i područja pokrivanja

GSM nevažan slajd...

- rabi se za komunikaciju između mobilnih telefona
 - fiksna širina pojasa za govornu komunikaciju između dvaju korisnika (13 kbit/s)
 - prijenos podataka (300 9600 kbit/s) i telefaksa
 - komunikacija kratkim porukama (SMS, Short Message Service)
- inačice GSM sustava
 - GSM900
 - radi u frekvencijskom području oko 900 MHz
 - E-GSM (Extended GSM)
 - GSM900 koji radi u proširenom dijelu frekv. područja na 900 MHz
 - GSM/DCS1800 (DCS, Digital Cellular System)
 - radi u frekvencijskom području oko 1800 MHz
 - PCS1900 (PCS, Personal Communications Service)
 - istovjetan DCS1800, ali radi u frekvencijskom području oko 1900 MHz

GSM

900 MHz – 2 X 25 MHz, dupleksni razmak 45 MHz, 125 kanala (+50 kanala); (960-915)

1800 MHz – 2 X 75 MHz, dupleksni razmak 95 MHz, 374 kanala; (1805-1710)

1900 MHz – 2 X 60 MHz, dupleksni razmak 80 MHz, 300 kanala. (1930-1850)

Duplexni razmak je razmak izme u para kanala u uplinku u downlinku, zna i udaljehost istih mjesta u U i D, Elektroničke komunikacije © FER, ZRK

GSM Jako nevažan slajd

- radne frekvencije RF kanala u silaznoj vezi
 - GSM900 ⇔ 125 kanala (kanali: 0 124)
 - radna frekvencija n-tog kanala: $F_D(n)$ = 935 MHz + (0,2 MHz) · n, $0 \le n \le 124$
 - E-GSM ⇔ 50 kanala (kanali: 974 1023)
 - radna frekvencija *n*-tog kanala: $F_D(n) = 935 \text{ MHz} + (0,2 \text{ MHz}) \cdot (n-1024), \quad 974 \le n \le 1023$
 - GSM/DCS1800 ⇔ 374 kanala (kanali: 512 885)
 - radna frekvencija n-tog kanala: $F_D(n)$ = 1805 MHz + (0,2 MHz) · (n – 511), 512 ≤ n ≤ 885
- radne frekvencije RF kanala u uzlaznoj vezi
 - određuju se dodavanjem dupleksnog razmaka na $F_D(n)$
 - dupleksni razmak je razlika između početnih frekvencija silazne i uzlazne veze (GSM900: 45 MHz, GSM/DCS1800: 95 MHz)

GSM nevažne brojke

- GSM koristi FDMA/TDMA pristup gdje je svakoj frekvenciji pridružen vremenski okvir (frame) koji se sastoji od 8 vremenskih odsječaka
 - nastala matrica frekvencija/vrijeme daje sveukupno 124 x 8 = 992 moguća korisnika (jedan kanal se rabi kao zaštitni pojas)

GSM ćelijski koncept

- svakoj baznoj postaji dodjeljuje se određeni broj raspoloživih prijenosnih frekvencija, a unutar grozda iskorištene su sve raspoložive frekvencije
- u GSM sustavu koriste se grozdovi od N = 3, 7 ili 12 ćetija
 - u GSM900 raspoložive su 124 prijenosne frekveneije
 - podjelom raspoloživih frekvencija u 12 ćelija, svaka ćelija bi mogla nevažni koristiti 10 prijenosnih frekvencija
 - na svakoj prijenosnoj frekvenciji možemo imati 8 TDMA kanala što daje kapacitet od 80 istodobnih poziva unutar ćelije
 - ako u sustavu radi više operatora, npr. 3, svaka ćelija bi mogla
 koristiti tri prijenosne frekvencije (24 istodobna poziva unutar ćelije)
- uz definirani broj frekvencija po ćeliji, ukupni kapacitet sustava na određenom području može se povećati smanjenjem ćelija

GSM ćelijski koncept nevažni su brojevi!

pokrivanje istog područja različitim brojem ćelija

1 ćelija, 10 frekvencija

10x8x1=80 istodobnih poziva

19 ćelija, svaka ćelija po 3 frekvencije (ukupno 10 različitih frekvencija)

3x8x19=456 istodobnih poziva

manje ćelije → povećanje kapaciteta

Veliki broj ćelija, svaka ćelija po 3 frekvencije (ukupno 10 različitih frekvencija)

Broj istodobnih poziva određen je brojem ćelija,

npr. broj ćelija = 126 3x8x126=3024 istodobna poziva

GSM ćelijski koncept

• stvarni oblik ćelija ovisi o konfiguraciji terena

Raspodjela GSM spektra u Hrvatskoj

ne pamtit, samo pogledat

	Frekvencijski pojasevi [MHz]	Blokovi radijskih frekvencija	Način pristupa
		925,3 - 930,3/880,3 - 885,3 MHz Tele 2 d.o.o.	
		930,3 - 932,7/885,3 - 887,7 MHz Hrvatski Telekom d.o.o.	
GSM 900	925 - 960/ 880 - 915	941,1 - 953,1/896,1 - 908,1 MHz Hrvatski Telekom d.o.o.	TDMA/ FDD
		932,7 - 940,9/887,7 - 895,9 MHz VIP NET d.o.o.	
		953,3 - 959,5/908,3 - 914,5 MHz VIP NET d.o.o.	
		1805,1 - 1817,1/1710,1 - 1722,1 MHz Tele 2 d.o.o.	
GSM/ DCS-1800	1805 - 1880/ 1710 - 1785	1835,1 - 1843,5/1740,1 - 1748,5 MHz Hrvatski Telekom d.o.o.	TDMA/ FDD
		1855,1–1865,1/1760,1–1770,1 MHz VIP NET d.o.o.	

Raspodjela GSM spektra u Hrvatskoj

isto ne pamtit, samo vidjet kvalitativno!

925/880 MHz 960/915 MHz frekvencija (silazna/uzlazna)

Tele 2	нт	VIP NET	нт	VIP NET	
5	2.4	8.2	12	6.2	širina (MHz

1805/1710 MHz 1880/1785 MHz frekvencija (silazna/uzlazna)

Tele 2	НТ	VIP NET	
12	20	10	širina (MHz)

Osobine UMTS tehnologije

- UMTS sustav temelji se na WCDMA pristupu i FDD ili TDD
- širina kanala iznosi 5 MHz bez obzira na vrstu dupleksa

- u sustavima s WCDMA pristupom svi korisnici dijele isti pojas frekvencija i iste vremenske odsječke
- korisnici se razlikuju po M različitih ortogonalnih kodova
- u domeni signala, snage pojedinih korisnika slažu " se sloj po sloj"
- da bi se maksimirao broj korisnika za ukupnu razinu snage, potrebno je da svaki sloj ima jednaku širinu (snagu)
- zbog toga je kontrola snage u CDMA sustavima izrazito važna

1 korisnik koristi sve frekvencije, samo što ima dodijeljen svoj kod

Osobine UMTS tehnologije ni slu ajno ne pamtit ove brojke!

- frekvencijsko područje od 1900 do 1920 MHz se koristi za rad s vremenskim dupleksom TDD (tzv. neupareni frekvencijski pojas)
- frekvencije od 1920 do 1980 MHz koriste se za za uzlazni dio veze, a od 2110 do 2170 MHz se za silazni dio veze (tzv. upareni frekvencijski pojasevi (FDD s dupleksnim razmakom 190 MHz)

Raspodjela spektra za UMTS u Hrvatskoj

totalno nevažan slajd!

	Frekvencijski pojasevi [MHz]	Blokovi radijskih frekvencija	Način pristupa	
	1900-1920	1900 - 1905 MHz Hrvatski Telekom d.o.o.	CDMA / TDD	
		1905 - 1910 MHz Tele 2 d.o.o.		
		1910 - 1915 MHz VIP NET d.o.o.		
UMTS	2110 - 2170/ 1920 - 1980	2110 - 2125/1920 - 1935 MHz Hrvatski Telekom d.o.o.		
		2125 - 2140/1935 - 1950 MHz Tele 2 d.o.o.	CDMA / FDD	
		2140 - 2155/1950 - 1965 MHz		
		VIP NET d.o.o.		

1900 MHz 1920 MHz 2110/1920 MHz 2110/1920 MHz 2170/1980 MHz frekvencija (silazna/uzlazna)

širina (MHz)

Propisi u području elektroničkih komunikacija

Vrste propisa Slajdove poslije ovog, pa do kraja nabrzinu pro³², toliko važni!

- Propisi tehničke vrste (primjena nije obvezna ali je u interesu kako proizvođača opreme tako i korisnika elektroničkih komunikacija):
 - norme (standardi),
 korisni propisi, pa se zato koriste
 - tehnička izvješća,
 - tehničke preporuke.
- Propisi administrativne vrste (propisi s obveznom primjenom):
 - zakoni,
 - podzakonski propisi (pravilnici),
 - međunarodni sporazumi (obvezna je primjena ako im je pristupila RH),
 - Smjernice Europske komisije (primjenjuju se u EU).
- Propisi se donose i primjenjuju na nacionalnoj razini i na međunarodnoj razini.

Propisi na nacionalnoj razini

Zakon o elektroničkim komunikacijama (Narodne novine br. 73/08 i 90/11) krovni je nacionalni propis u RH.

HRVATSKI SABOR

2420

Na temelju članka 88. Ustava Republike Hrvatske, donosim

ODLUKU

O PROGLAŠENJU ZAKONA O ELEKTRONIČKIM KOMUNIKACIJAMA

Proglašavam Zakon o elektroničkim komunikacijama, kojega je Hrvatski sabor donio na sjednici 19. lipnja 2008. godine.

Klasa: 011-01/08-01/67 Urbroj: 71-05-03/1-08-2 Zagreb, 24. lipnja 2008.

> Predsjednik Republike Hrvatske **Stjepan Mesić**, v. r.

nevažno

Zakon o elektroničkim komunikacijama

- Zakonom o elektroničkim komunikacijama uređuje se područje elektroničkih komunikacija:
 - korištenje elektroničkih komunikacijskih mreža i pružanje elektroničkih komunikacijskih usluga, zaštita prava korisnika usluga,
 - gradnja, postavljanje, održavanje i korištenje elektroničke komunikacijske infrastrukture i povezane opreme,
 - uvjeti tržišnog natjecanja te prava i obveze sudionika na tržištu elektroničkih komunikacijskih mreža i usluga,
 - djelotvorno upravljanje radiofrekvencijskim spektrom te adresnim i brojevnim prostorom,
 - digitalni radio i televizija,
 - zaštita podataka, sigurnost i cjelovitost elektroničkih komunikacijskih mreža i usluga te obavljanje inspekcijskog nadzora i kontrole,
 - osnivanje nacionalnog regulatornog tijela za elektroničke komunikacije i poštanske usluge, njegovo ustrojstvo, djelokrug i nadležnosti,
 - postupak donošenja odluka i rješavanja sporova u elektroničkim komunikacijama.

Zakon o elektroničkim komunikacijama nevažno

Podzakonski akti – pravilnici (samo nekoliko najznačajnijih):

Pravilnik o namjeni radiofrekvencijskog spektra	NN 136/08, 17/10, 118/10, 119/10-ispr. i 87/11
Pravilnik o uvjetima dodjele i uporabe radiofrekvencijskog spektra	NN 136/08, 70/10 i 39/11
Pravilnik o dodjeli adresa i brojeva	NN 154/08
Pravilnik o načinu i uvjetima obavljanja djelatnosti elektroničkih komunikacijskih mreža i usluga	NN 154/08 i 51/11
Pravilnik o načinu i uvjetima pristupa i zajedničkog korištenja elektroničke komunikacijske infrastrukture i druge povezane opreme	NN 136/11
Pravilnik o prenosivosti broja	NN 42/09 i 62/11
Pravilnik o načinu i uvjetima određivanja zone elektroničke komunikacijske infrastrukture i povezane opreme, zaštitne zone i radijskog koridora te obveze investitora radova ili građevine	NN 42/09 i 39/11
Pravilnik o amaterskim radijskim komunikacijama	NN 61/09 i 92/09
Pravilnik o tehničkim uvjetima za elektroničku komunikacijsku mrežu poslovnih i stambenih zgrada	NN 155/09
Pravilnik o tehničkim i uporabnim uvjetima za svjetlovodne distribucijske mreže	NN 108/10
Pravilnik o elektromagnetskoj kompatibilnosti	NN 23/11
Pravilnik o radijskoj opremi i telekomunikacijskoj terminalnoj opremi	NN 112/08
Pravilnik o uvjetima uporabe norme za kodiranje digitalnog televizijskog signala u zemaljskim radiodifuzijskim sustavima	NN 73/07

Zakon o elektroničkim komunikacijama

Nadležna državna tijela:

- donosi strategije, studije, smjernice i programe politike razvoja elektroničkih komunikacija u Republici Hrvatskoj.
- priprema propise za provedbu Zakona,
- predstavlja Republiku Hrvatsku u europskim i međunarodnim organizacijama i institucijama u području elektroničkih komunikacija i informacijskog društva,
- obavlja inspekcijski nadzor u elektroničkim komunikacijama

- je nacionalna regulatorna agencija za obavljanje regulatornih i drugih poslova prema Zakonu,
- promiče tržišno natjecanje u obavljanju djelatnosti elektroničkih komunikacijskih mreža i usluga te elektroničke komunikacijske infrastrukture
- upravlja radiofrekvencijskim spektrom te adresnim i brojevnim prostorom.

Nacionalne norme

 Ciljevi su normizacije osiguranje prikladnosti kojega proizvoda, procesa ili usluge da u određenim uvjetima služi svojoj namjeni, ograničivanje raznolikosti izborom optimalnoga broja tipova ili veličina, osiguravanje spojivosti različitih proizvoda, zaštita zdravlja, sigurnost, zaštita okoliša itd.

- Hrvatski zavod za norme je neovisna i neprofitna javna ustanova osnovana kao nacionalno normirno tijelo Republike Hrvatske
 - Hrvatske norme nose oznaku HRN ispred broja norme.

Nacionalne norme

nevažno

Nekoliko hrvatskih normi iz područja elektroničkih komunikacija.

HRN EN 41003:2007

Posebni zahtjevi sigurnosti za opremu koja se priključuje na telekomunikacijske mreže (EN 41003:1998+Corr.:2000)

HRN EN 62295:2011

Multimedijski sustavi -- Opći komunikacijski protokol za međusobnu spojivost na raznovrsnim mrežama (IEC 62295:2007; EN 62295:2009)

HRN EN 300 944 V8.0.1:2003

Digitalni celularni telekomunikacijski sustav (Faza 2+) (GSM) -- Zahtjevi za izvedbu sučelja pokretnog radija (GSM 04.13. inačica 8.0.1. objavljeno 1999.) (EN 300 944 V8.0.1:2000)

Međunarodna tijela za donošenje propisa

- Međunarodna telekomunikacijska unija (ITU, International Telecommunication Union)
 - ITU je specijalizirana agencija Ujedinjenih naroda za informacijske i komunikacijske tehnologije.
 - ITU se sastoji od 3 sektora:
 - ITU-R, Radiokomunikacijski sektor (Radiocommunication Sector),
 - ITU-T, Sektor za telekomunikacijske norme (Telecommunication Standardization Sector),
 - ITU-D, Sektor za razvoj (Development Sector).
 - ITU ima 193 države članice.
- Rad u ITU odvija se u studijskim skupinama, radionicama te na regionalnima ili svjetskim konferencijama.

Međunarodna tijela za donošenje propisa

- Na godišnjoj konferenciji ITU TELECOM WORLD susreću se utjecajni predstavnici vlada i industrije radi razmjene mišljenja za dobrobit svih.
- ITU izrađuje i izdaje sljedeće vrste dokumenata:
 - rezolucije,
 - preporuke,
 - izvješća,
 - pitanja (koja zahtijevaju preporuku),
 - završne dokumente sa regionalnih ili svjetskih konferencija u kojima su obvezujući zaključci za zemlje potpisnice.

Međunarodna tijela za donošenje propisa

- Međunarodne organizacije i institucije nadležne za elektroničke komunikacije:
 - CEPT Europska konferencija poštanskih i telekomunikacijskih uprava,
 - ETSI Europski institut za telekomunikacijske norme,
 - EBU Europska radiodifuzijska unija,
 - EUTELSAT IGO Međuvladina europska satelitska organizacija,
 - ITSO Međunarodna telekomunikacijska satelitska organizacija,
 - ISO Međunarodna organizacija za normizaciju,
 - CEN Europski odbor za normizaciju,
 - CENELEC Europski odbor za elektrotehničku normizaciju,
 - IEC Međunarodno elektrotehničko povjerenstvo,
 - IEEE Institut inženjera elektrotehnike i elektronike.

