# The "15 minutes" city A data science project

**JULY 2020** 

#### Content

- Background
- Project goals
- Assumptions and decisions
- Approach
- Findings & analysis
- Conclusions & opportunities

### Background

The city of Paris wants to make key services available within a 15 minutes walk or bike ride from home

#### WHY?

- Improve quality of life and ease of access to services
- Reduce need for car trips → reduce pollution and improve air quality
- Reconnect people with their neighborhoods

### Project goals

Is the "15 minutes" goal realistic and how far is the city of Paris from achieving this goal?

Specifically, let's try to answer **2 questions**:

- 1. What is the overall current state of readiness of the city and the districts within it in respect to this "15 minutes" goal?
- 2. Can we identify neighborhoods that share similar characteristics and group them together so that specific dedicated action plans can be defined to enable the "15 minutes" vision in these neighborhoods?

### Assumptions and decisions

| Challenges or constraints | Assumptions and decisions                                                                                                                                                               |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data volume               | Limit our project to 3 districts of Paris (17 <sup>th</sup> , 18 <sup>th</sup> and 19 <sup>th</sup> )*                                                                                  |
|                           | Limit our project to key medical services:  • Doctor's office  • Dentist's office  • Hospital  • Medical center  • Optical shop                                                         |
| Data availability         | Foursquare for Medical Services data  Private residences (apartments, condos, houses) not available via Foursquare →  use social residences lists available via Paris open data website |
| Access to free APIs       | Could not find free API to calculate true walking times → use a Python library for calculating distances between 2 coordinates and divide by walking time of 5 km/h                     |

<sup>\*</sup> The city of Paris includes 20 districts

### Approach

Data retrieval & cleanup

- Retrieve medical services venues from Foursquare
- Retrieve social residences from Paris open data website
- Remove duplicates, select districts, select relevant medical service categories
- Prepare dataframes for next steps

Travel time calculations

- From each residence to each medical service venue
- Identify shortest trips for each residence/medical service pair
- Prepare dataframes for next step to enable statistical calculations, visualizations and mapping

Exploratory data analysis & mapping

- Calculations, visualizations → interpretations and conclusions
- Plotting of residences on map of Paris with color indicators and pop-up boxes

Clustering & interpretation

- Cluster residences using 15 minutes status specific to each type of medical service
- Identify potential clusters characteristics
- Interpretations and conclusions

### Findings and interpretation Walking times across all 3 districts

All residences in all 3 districts are within a 15 minutes walk from a Doctor's Office and a Dentist's Office.



Histogram of walking times for all residences in all 3 districts, to doctor's offices and dentist's offices

Max values < 15 minutes

A majority of residences are within 15 minutes of a Hospital



Histogram of walking times for all residences in all 3 districts, to hospitals

Similar types of histograms show that for Medical Centers and Optical Shops a majority of residences are NOT within a 15 minutes walk. (see detailed report)

## Findings and interpretation Overall districts comparison

Only in the 19<sup>th</sup> district do we find residences (96) that are within a 15 minutes walk of <u>all</u> medical services



A clickable map enables to visualize residences and the number and type of medical services within 15 minutes (in Jupyter notebook)



## Findings and interpretation Analysis by medical services in 17<sup>th</sup> district

- All residences are within 15 minutes of a doctor's office, a dentist's office or a hospital
- A majority are NOT within 15 minutes of a medical center (81%) or an optical shop (60%)



## Findings and interpretation Analysis by medical services in 18<sup>th</sup> district

- All residences are within 15 minutes of a doctor's office or a dentist's office
- A large majority of residences are within 15 minutes of a hospital (97%)
- A large majority are NOT within 15 minutes of a medical center (91%) or an optical shop (96%).



## Findings and interpretation Analysis by medical services in 19<sup>th</sup> district

- All residences are within 15 minutes of a doctor's office or a dentist's office
- A large majority of residences are within 15 minutes of a hospital (88%)
- A majority of residences are within 15 minutes of a medical center (57%) or an optical shop (71%).



## Findings and interpretation Clustering

Clustering applied to residences after converting their boolean 15 minutes status by type of medical service into clustering parameters

#### **KEY OBSERVATIONS**

- Residences are clustered in fairly distinct areas on the map, with almost no mixing of residences from distinct clusters in the same area
- Some clusters are split into 2 areas on the map, but these areas are fairly well delimited and do not include residences from other clusters (except 1 outlier)



Easier to come up with specific strategies for neighborhoods because of limited dispersion of clusters on the map

But we need to understand the meaning of these clusters → do residences in a given cluster share common interpretable characteristics?

## Findings and interpretation Clustering interpretation

Analysis of clusters based on ratio of residences within 15 minutes of each type of medical service

#### **KEY OBSERVATIONS**

Clusters have clear characteristics in terms of which medical services are within 15 minutes of residences in these clusters.



This enables to define a common approach to address potential gaps within each cluster

Cluster 3 does not need any remediation (all residences within 15 minutes of all types of medical services)

12 residences in cluster 0 will require an adhoc approach regarding access to hospitals

### Conclusion & opportunities

#### We have been able to answer our 2 initial questions:

- 1. What is the overall current state of readiness of the city and the districts within it in respect to this "15 minutes" goal?
  - For the districts that we included we could determine "15 minutes" readiness overall and by residence, and by medical service.
  - We identified some differences of readiness that can help determine appropriate action plans.
- 2. Can we identify neighborhoods that share similar characteristics and group them together so that specific dedicated action plans can be defined to enable the "15 minutes" vision in these neighborhoods?
  - Our clustering process yielded some interpretable groupings of residences, in well defined areas, and each cluster was defined by clear characteristics.
  - This enables the definition of strategies specific to each cluster.

### Conclusion & opportunities

#### Opportunities for improvement and scalability

Generic approach which requires minimal coding adjustments to:

| include more or all districts   | modify 1 line of code where we specify the districts retained in our residences dataframe                               |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| include more services           | specify additional Foursquare Venue Category IDs in our Foursquare data retrieval code                                  |
| include all types of residences | modify the function retrieving residences (e.g point to a different API or import a list and convert it to a dataframe) |
| use true walking times          | 1 function to change, with inputs and outputs remaining the same                                                        |

#### **Opportunities for additional outputs**

| neighborhood selector          | if we include more services, depending on someone's priorities in terms of services they could identify where to move to benefit the most from a "15 minutes" convenience |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| baseline for progress tracking | 15 minutes readiness statistics obtained can be used as a baseline to track the progress and effectiveness of measures introduced to address access gaps.                 |