FY1001/TFY4109/TFY4145. Institutt for fysikk, NTNU. Høsten 2015. Øving 6. Veiledning: 5. - 8. oktober.

Oppgave 1: Stupebrett

En stuper med masse M står på kanten av et stupebrett med lengde L og masse m. Stupebrettet er festet til to støtter som vist i figuren. Støttene står en avstand d fra hverandre. Bruk A som referansepunkt.

- a) Hvor stor kraft F_B virker på stupebrettet i festet til støtten i B?
- A) gd(M m/2)/L B) gd(M + m/2)/L
- C) gL(M + m/2)/d D) gd(M + m/2)/d
- b) Hvor stor kraft F_A virker på stupebrettet i festet til støtten i A?

- A) $F_B + (M m)g$ B) $F_B + (M + m)g$ C) $F_B (M m)g$ D) $F_B (M + m)g$

Oppgave 2: Ball på vegg

a) En ball med masse M og radius R henger mot en vertikal vegg. Ei snor med lengde L er festet til veggen og ballen som vist i figuren til venstre. Anta i første omgang at det ikke er friksjon mellom veggen og ballen. Hva er da snordraget S og normalkraften N fra veggen?

$$\begin{array}{ll} \text{A)} & S = Mg \, \frac{L+R}{\sqrt{L(L+2R)}} & \qquad N = Mg \, \frac{R}{\sqrt{L(L+2R)}} \\ \text{B)} & S = Mg \, \frac{L+R}{\sqrt{R(L+2R)}} & \qquad N = Mg \, \frac{R}{\sqrt{R(L+2R)}} \\ \text{C)} & S = Mg \, \frac{2L+R}{\sqrt{L(L+2R)}} & \qquad N = Mg \, \frac{2R}{\sqrt{L(L+2R)}} \\ \text{D)} & S = Mg \, \frac{2L+R}{\sqrt{R(L+2R)}} & \qquad N = Mg \, \frac{2R}{\sqrt{R(L+2R)}} \end{array}$$

$$N = Mg \frac{R}{\sqrt{L(L+2R)}}$$

B)
$$S = Mg \frac{L+R}{\sqrt{R(L+2R)}}$$

$$N = Mg \, \frac{R}{\sqrt{R(L+2R)}}$$

C)
$$S = Mg \frac{2L + R}{\sqrt{L(L + 2R)}}$$

$$N = Mg \, \frac{2R}{\sqrt{L(L+2R)}}$$

D)
$$S = Mg \frac{2L + R}{\sqrt{R(L + 2R)}}$$

$$N = Mg \, \frac{2R}{\sqrt{R(L+2R)}}$$

- (Tips 1: Forlengelsen av snora må passere gjennom ballens tyngdepunkt B. Hvorfor?
- Tips 2: Vurder om uttrykkene for S og N er rimelige hvis snora er veldig lang, $L \gg R$.)
- b) Hvor stor må den statiske friksjonskoeffisienten μ (minst) være for at ballen skal kunne henge med snorfestet på toppen, som vist i figuren til høyre?
- A) $\mu \ge \tan \alpha$ B) $\mu \ge 1$ C) $\mu \ge R/L$ D) $\mu \ge 0.5$

Oppgave 3: Sluresnelle

Ei snelle – to hjul med radius R forbundet med en aksling med radius r – ligger på et skråplan med helningsvinkel θ . Ei snor er vikla om akslingen, og strukket parallellt med skråplanet til et festepunkt P på oversiden av det lille hjulet. Snellas treghetsmoment om akslingen er I, massen er M, statisk friksjonskoeffisient mot skråplanet er μ_s , og kinetisk friksjonskoeffisient er μ_k , der $\mu_k < \mu_s$.

a) Hva er maksimal helningsvinkel θ_0 uten at snella glir (slurer) nedover skråplanet?

A)
$$\theta_0 = \arctan \left[\mu_s \left(1 + R/r \right) \right]$$
 B) $\theta_0 = \arccos \left[\mu_s \left(1 + R/r \right) \right]$

B)
$$\theta_0 = \arccos \left[\mu_s \left(1 + R/r \right) \right]$$

C)
$$\theta_0 = \arctan \left[\mu_s \left(1 + r/R \right) \right]$$
 D) $\theta_0 = \arccos \left[\mu_s \left(1 + r/R \right) \right]$

D)
$$\theta_0 = \arccos \left[\mu_s (1 + r/R) \right]$$

b) Hva er snordraget S når $\theta = \theta_0$?

A)
$$S = Mg\mu_s(r/R)\cos\theta_0$$
 B) $S = Mg\mu_s(r/R)\sin\theta_0$

B)
$$S = Mg\mu_s(r/R)\sin\theta_0$$

C)
$$S = Mg\mu_s(R/r)\cos\theta_0$$
 D) $S = Mg\mu_s(R/r)\sin\theta_0$

D)
$$S = Mau_s(R/r)\sin\theta_0$$

c) Anta nå at helningsvinkelen holdes fast på en vinkel θ som er noe større enn θ_0 . Hva blir snellas akselerasjon a nedover skråplanet?

A)
$$a = g \frac{\sin \theta - \mu_k \cos \theta (1 + R/r)}{1 + I/Mr^2}$$

B)
$$a = g \frac{\cos \theta - \mu_k \sin \theta (1 - r/R)}{1 + I/Mr^2}$$

C)
$$a = g \frac{\sin \theta - \mu_k \cos \theta (1 - r/R)}{1 + I/Mr^2}$$

D)
$$a = g \frac{\cos \theta - \mu_k \sin \theta (1 + R/r)}{1 + I/Mr^2}$$

Oppgave 4: Elementær snooker

Snooker er en krevende sport, og fordrer at spilleren har et godt praktisk grep på kulers tyngdepunktsbevegelse og rotasjon, friksjonskreftenes rolle, samt resultatet av elastiske støt mellom kuler. Her skal vi ta for oss en "enkel" problemstilling som likevel er en god illustrasjon av den relativt subtile mekanikk som kommer til anvendelse på snookerbordet. Oppgaven hører ikke til de enkleste, men den er lærerik, for fysikkstudenter såvel som snookerspillere.

Situasjonen vi skal se på er som følger: Snookerkula med masse M og radius R får et kraftig, men kortvarig støt av en horisontal kø. Vi legger et koordinatsystem xyz med origo på bordflata og xy-planet lik vertikalplanet gjennom kulas massesenter.

Køen er rettet i x-retning og treffer kula (som ligger i ro) i xy-planet med en kraft F i x-retning. Treffpunktet er i høyden h over massesenteret (eller under, hvis h < 0), se figuren. Kinetisk friksjonskoeffisient mellom snookerkula og bordflata er μ_k .

Støtet er så kraftig og er over på så kort tid at vi under selve støtet kan neglisjere innvirkningen av friksjonskraften fra snookerbordet. Etter støtet derimot, vil friksjonskraften f spille en viktig rolle for kulas fortsatte bevegelse. Vi antar for enkelhets skyld at kraften F er konstant i støtets korte varighet Δt .

a) Det kortvarige støtet gir kula en impuls $\Delta p = F \Delta t$, som resulterer i at massesenteret får starthastigheten V_0 . Det kortvarige støtet gir også kula en dreieimpuls $\Delta L = \tau \Delta t$, som resulterer i at kula starter opp med vinkelhastigheten ω_0 . Hva blir sammenhengen mellom V_0 og ω_0 ?

A)
$$V_0 = \frac{2h^2}{5R} \cdot \omega_0$$

B)
$$V_0 = \frac{5h^2}{2R} \cdot \omega_0$$

$$C) V_0 = \frac{5R^2}{2h} \cdot \omega_0$$

$$D) V_0 = \frac{2R^2}{5h} \cdot \omega_0$$

b) Hva er betingelsen for at vi allerede fra første øyeblikk får ren rulling? Dvs, i hvilken høyde h_0 må køen treffe snookerkula?

A)
$$h_0 = R/5$$

B)
$$h_0 = 2R/5$$

C)
$$h_0 = 3R/5$$

A)
$$h_0 = R/5$$
 B) $h_0 = 2R/5$ C) $h_0 = 3R/5$ D) $h_0 = 4R/5$

c) For andre verdier enn h_0 av treffhøyden h (også kalt "støtparameteren") vil snookerkula i begynnelsen gli på bordet samtidig som den roterer. Hvilken absoluttverdi og retning vil friksjonskraften f, fra bordet på kula, ha i denne fasen, dersom $h > h_0$?

3

A)
$$f = \mu_k Mg$$
 mot venstre. B) $f = \mu_k Mg$ mot høyre.

B)
$$f = \mu_k Mg$$
 mot høyre.

C)
$$f = 2\mu_k Mg/5$$
 mot venstre. D) $f = 2\mu_k Mg/5$ mot høyre.

D)
$$f = 2\mu_k Mg/5$$
 mot høyre.

Etter at støtet er overstått vil kulas totale dreieimpuls $\boldsymbol{L} = M \left(\boldsymbol{r} - \boldsymbol{r}_0 \right) \times \boldsymbol{V} + I_0 \boldsymbol{\omega}$ være bevart, dersom vi velger referansepunktet \boldsymbol{r}_0 i et punkt på skjæringslinja mellom bordets overflate og vertikalplanet gjennom kulas massesenter (dvs langs x-aksen i figuren). Enkleste valg er i origo, dvs $\boldsymbol{r}_0 = 0$, se figuren. (Hvorfor får vi dreieimpulsbevarelse med dette valget?) Vi antar at bare z-komponenten til \boldsymbol{L} er aktuell her, dvs ingen rotasjon om andre akser.

d) Pga friksjonen mellom bord og kule vil kulas bevegelse etter en viss tid gå over til ren rulling. Hva blir massesenterhastigheten V_r til kula etter at ren rulling har inntrådt? (Tips: Bruk bevaring av L_z til å finne V_r .)

A)
$$V_r = \frac{7}{5} \left(1 + \frac{h}{R} \right) V_0$$

B)
$$V_r = \frac{7}{5} \left(1 + \frac{R}{h} \right) V_0$$

$$C) \quad V_r = \frac{5}{7} \left(1 + \frac{h}{R} \right) \ V_0$$

$$D) \quad V_r = \frac{5}{7} \left(1 + \frac{R}{h} \right) \ V_0$$

e) Anta at køen treffer kula i en høyde $h > h_0$. Hvor lang tid t_r tar det da fra støtet til snookerkula ruller uten å gli?

A)
$$t_r = \frac{2V_0}{7\mu_k q} \left(\frac{5h}{2R} - 1 \right)$$

B)
$$t_r = \frac{2V_0}{7u_k a} \left(\frac{7h}{2R} - 1 \right)$$

$$C) \quad t_r = \frac{2V_0}{5\mu_k g} \left(\frac{5h}{2R} - 1\right)$$

D)
$$t_r = \frac{2V_0}{5\mu_k g} \left(\frac{7h}{2R} - 1\right)$$

(Hvis betingelsen for ren rulling er oppfylt fra første øyeblikk, skrumper denne "en viss tid" inn til null, og $V_r = V_0$. Dette kan du jo ha som en kontroll av svaret.)

Ekstraspørsmål.

- 4f) Bestem energitapet $\Delta K = K_r K_0$.
- 4g) Bestem forskjøvet strekning x_r langs underlaget i tiden t_r , dvs fra støtet til ren rulling oppnås.