# More with Chi-squared

# **Degrees of Freedom (physics)**

The number of independent ways by which a dynamic system can move, without violating any constraint imposed on it. (wikipedia)



# **Degrees of Freedom (statistics)**

The number of parameters that are free to vary, without violating any constraint imposed on it.

#### **Parameters**

 $p_{acu}, p_{sham}, p_{trad}$ 

Since  $\sum_{i=1}^{k} p_i = 1$ , one of our parameters is contrained, leaving k-1 that are free to vary. Generally:

 $df = (number\ of\ rows - 1) imes (number\ of\ columns - 1)$ 

# Shape of the $\chi^2$



# Confidence Intervals for $\chi^2$

These make no sense. Why not?

- We don't really care what the *true*  $\chi^2$  parameter value is.
- A two-sided interval wouldn't make sense
  - Distribution is bounded on the left by zero
  - Only "extreme" values are in the right tail

# **Chi-squared Goodness of Fit**

#### Ex: Diversity at Reed



In terms of ethnic diversity, how does the first year student body compare to the general population of Oregon?

#### Facts about Reed

#### BROUGHT TO YOU BY INSTITUTIONAL RESEARCH

Institutional Research

Home

**Students** 

Alumni

**Graduation Rates** 

**Outcomes** 

Institutional

**Faculty** 

**Finance** 

**Other Statistics** 

**IR Grant Activities** 

Contact us

#### First-year Students Ethnicity–2019

|         | Asian | Black | Hispanic | Internat'i | Native<br>Amer | Pacific<br>Islander | White | Unknown | Total | Percent |
|---------|-------|-------|----------|------------|----------------|---------------------|-------|---------|-------|---------|
| Women   | 29    | 6     | 19       | 17         | 8              | 0                   | 126   | 4       | 209   | 53%     |
| Men     | 29    | 7     | 9        | 23         | 3              | 0                   | 113   | 1       | 185   | 47%     |
| Total   | 58    | 13    | 28       | 40         | 11             | 0                   | 239   | 5       | 394   | 100%    |
| Percent | 15%   | 3%    | 7%       | 10%        | 3%             | 0%                  | 61%   | 1%      | 100%  |         |

Note: Updated September 23, 2019.

#### Oregon

|                                                                     | Want more? Browse data | a sets for Oregon |
|---------------------------------------------------------------------|------------------------|-------------------|
| People QuickFacts                                                   | Oregon                 | USA               |
| Population, 2014 estimate                                           | 3,970,239              | 318,857,056       |
| Population, 2010 (April 1) estimates base                           | 3,831,073              | 308,758,105       |
| Population, percent change - April 1, 2010 to July 1, 2014          | 3.6%                   | 3.3%              |
| Population, 2010                                                    | 3,831,074              | 308,745,538       |
| Persons under 5 years, percent, 2014                                | 5.8%                   | 6.2%              |
| Persons under 18 years, percent, 2014                               | 21.6%                  | 23.1%             |
| Persons 65 years and over, percent, 2014                            | 16.0%                  | 14.5%             |
| Female persons, percent, 2014                                       | 50.5%                  | 50.8%             |
| White alone, percent, 2014 (a)                                      | 87.9%                  | 77.4%             |
| Black or African American alone, percent, 2014 (a)                  | 2.0%                   | 13.2%             |
| American Indian and Alaska Native alone, percent, 2014 (a)          | 1.8%                   | 1.2%              |
| Asian alone, percent, 2014 (a)                                      | 4.3%                   | 5.4%              |
| Native Hawaiian and Other Pacific Islander alone, percent, 2014 (a) | 0.4%                   | 0.2%              |
| Two or More Races, percent, 2014                                    | 3.6%                   | 2.5%              |
| Hispanic or Latino, percent, 2014 (b)                               | 12.5%                  | 17.4%             |
| White alone, not Hispanic or Latino, percent, 2014                  | 77.0%                  | 62.1%             |

#### The data

| Ethnicity  | Asian | Black | Hispanic | White | Other | Total |
|------------|-------|-------|----------|-------|-------|-------|
| Reed count | 58    | 13    | 28       | 239   | 51    | 394   |
| Oregon %   | .043  | .02   | .125     | .77   | .042  | 1     |

If the students at Reed were drawn from a population with these proportions, how many *counts* would we expect in each group?

exp. count = 
$$n \times p_i$$

### The data

| Ethnicity  | Asian | Black | Hispanic | White  | Other  | Total |
|------------|-------|-------|----------|--------|--------|-------|
| Obs. count | 58    | 13    | 28       | 239    | 51     | 394   |
| Exp. count | 16.94 | 7.88  | 49.25    | 303.38 | 16.548 | 394   |

• Some sampling variability is expected, but how far from expected is too far?

# **Simulating Oregonian Reedies**

```
n < -354
p \leftarrow c(.043, .02, .125, .77, .042)
samp <- sample(c("asian", "black", "hispanic", "white", "other"),</pre>
                size = n,
                replace = TRUE,
                prob = p) %>%
  factor(levels = c("asian", "black", "hispanic", "white", "other")
table(samp)
## samp
      asian black hispanic white other
##
##
         20
                            39
                                    274
                                              12
obs \langle -c(58, 13, 28, 239, 51) \rangle
```

# Simulating Oregonian Reedies, again

# Simulating Oregonian Reedies, again again

```
samp <- sample(c("asian", "black", "hispanic", "white", "other"),</pre>
               size = n,
               replace = TRUE,
               prob = p) %>%
  factor(levels = c("asian", "black", "hispanic", "white", "other")
table(samp)
## samp
##
      asian black hispanic white
                                        other
        16
                           40
                                   271
                                             20
##
                  7
obs \leftarrow c(58, 13, 28, 239, 51)
```

# **Simulating Oregonian Reedies**

```
## Response: ethnicity (factor)
## Null Hypothesis: point
## # A tibble: 177,000 x 2
## # Groups: replicate [500]
## ethnicity replicate
## <fct> <fct>
## 1 white
## 2 white
## 3 white
## 4 asian
## 5 white
## 6 white
## 7 white
               1
## 8 black
## 9 white
## 10 white
## # ... with 176,990 more rows
```

# Inference on many ps

We *could* do a tests/CIs on  $p_{reed} - p_{oregon}$  for each group, however:

- We have the whole population of Oregon.
- Beware of multiple comparisons!





# **Creating a statistic**

For each of *k* categories:

- 1. Calculate the difference between observed and expected counts.
- 2. Scale each difference by an estimate of the SE (  $\sqrt{(exp)}$  ).
- 3. Square the scaled difference to get rid of negatives.

Then add them all up.

$$\chi^2 = \sum_{i=1}^k rac{(obs - exp)^2}{exp}$$

#### **Reed Data**

| Ethnicity  | Asian | Black | Hispanic | White  | Other | Total |
|------------|-------|-------|----------|--------|-------|-------|
| Obs. count | 49    | 10    | 34       | 206    | 55    | 354   |
| Exp. count | 15.22 | 7.08  | 44.25    | 272.58 | 14.87 | 354   |

$$egin{aligned} & 2_{asian} = (49-15.22)^2/15.22 = 74.97 \ & Z_{black}^2 = (10-7.08)^2/7.08 = 1.20 \ & Z_{hispanic}^2 = (34-51.5)^2/51.5 = 5.95 \ & Z_{white}^2 = (206-272.58)^2/272.58 = 16.26 \ & Z_{other}^2 = (55-14.87)^2/14.87 = 108.30 \end{aligned}$$

$$Z_{asian}^{2} + Z_{black}^{2} + Z_{hispanic}^{2} + Z_{white}^{2} + Z_{other}^{2} = 206.68 = \chi_{obs}^{2}$$

# Simulating $\chi^2$ under $H_0$

```
## # A tibble: 500 x 2
## replicate stat
## <fct> <dbl>
## 1 1
          0.395
## 2 2 0.986
## 3 3 5.90
## 4 4
           1.16
## 5 5
         0.676
## 6 6
           3.77
## 7 7
           7.53
## 8 8 6.80
## 9 9 5.02
## 10 10
      12.7
## # ... with 490 more rows
```

#### The null distribution



What is the probability of observing our data or more extreme (  $\chi^2=206.68$ ) under the null hypothesis that Reedies share the same ethnicity proportions as Oregon?

About zero.

# An alternate path to the null

If...

- 1. Independent observations
- 2. Each cell count has a count  $\geq 5$
- 3.  $k \ge 3$

then our statistic can be well-approximated by the  $\chi^2$  distribution with k-1 degrees of freedom.

### The null distribution



$$1 - pchisq(206.68, df = 4)$$