

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (original). A method for copy retouching digital image data that contains a periodic pattern, which comprises:

defining a starting position of a read mark that has a phase position in relation to a periodic pattern;

defining a starting position of a write mark;

calculating a distance vector D1 between the starting position of the read mark and the starting position of the write mark;

copying image data of image points located under the read mark into image points located under the write mark; and

calculating a corrected distance vector D2 such that a phase position of the write mark is equivalent to the phase position of the read mark in relation to the periodic pattern.

Claim 2 (original). The method according to claim 1, wherein the image data is screened color separation data characterized by a screen width w and a screen angle α .

Claim 3 (currently amended). The method according to claim 2, which comprises:

expressing the distance vector D1 with rectangular components Dx1 and Dy1;

expressing the corrected distance vector D2 with rectangular components Dx2 and Dy2;

determining the rectangular components Dx2 and Dy2 with equations:

$Dx2 = (m) \times (w) \times (\cos\alpha) + (n) \times (w) \times (\sin\alpha)$, and

$Dy2 = (m) \times (w) \times (\sin\alpha) + (n) \times (w) \times (\cos\alpha)$, where m and n are integers; and

selecting the integers m and n to minimize equations: an absolute value of a difference ($Dx2 - Dx1$) and an absolute value of a difference ($Dy2 - Dy1$),

$|Dx2 - Dx1|$ and $|Dy2 - Dy1|$.

Claim 4 (currently amended). The method according to claim 1, which comprises:

expressing the distance vector D1 with rectangular components Dx1 and Dy1;

expressing the corrected distance vector D2 with rectangular components Dx2 and Dy2;

determining the rectangular components Dx2 and Dy2 with equations:

$Dx2 = (m) \times (w) \times (\cos\alpha) + (n) \times (w) \times (\sin\alpha)$, and

$Dy2 = (m) \times (w) \times (\sin\alpha) + (n) \times (w) \times (\cos\alpha)$, where m and n are integers; and

selecting the integers m and n to minimize equations: an absolute value of a difference ($Dx2 - Dx1$) and an absolute value of a difference $(Dy2 - Dy1)$

$|Dx2 - Dx1|$ and $|Dy2 - Dy1|$.