Logical Transductions for the Typology of Ditransitive Prosody

Mai Ha Vu Aniello De Santo Hossep Dolatian

m.h.vu@iln.uio.no
 aniello.desanto@utah.edu
hossep.dolatian@ alumni.stonybrook.edu

SIGMORPHON 2022

The Talk in One Slide

- Phonological processes can refer to domains larger than words
- These domains form hierarchical layers (prosodic constituents)
- But: Prosodic constituency cannot be read directly from syntactic constituency
- ► Also: Little existing work on the computation of phrase-level phonology (Yu 2021)

In This Talk

Computational requirements for the syntactic/prosody mapping?

- Using logical tree transductions
- A case study: Ditransitives in SVO languages

- ► Prosodic domains form hierarchical layers
- ► Consider the internal arguments of a ditransitive verb...

I gave Mary books

- ▶ Prosodic domains form hierarchical layers
- ► Consider the internal arguments of a ditransitive verb...

I gave Mary books

Intonational Phrase

- Prosodic domains form hierarchical layers
- ► Consider the internal arguments of a ditransitive verb...

I gave Mary books

Intonational Phrase

Phonological Phrase

- ► Prosodic domains form hierarchical layers
- ► Consider the internal arguments of a ditransitive verb...

I gave Mary books

Intonational Phrase

Phonological Phrase

Prosodic Word

▶ How does the syntactic parse map to the prosodic parse?

gave Mary books

How does the syntactic parse map to the prosodic parse?

Syntax to Prosody?

▶ How does the syntactic parse map to the prosodic parse?

- ▶ Mismatches in the size of an XP and its prosodic phrase
- Ambiguity wrt input-output correspondences

Syntax/Prosody Mappings: Ewe

▶ SVO ditransitive phrases: four types of prosodic parses (Kalivoda 2018)

gave Mary books

Syntax/Prosody Mappings: Chimwiini

▶ SVO ditransitive phrases: four types of prosodic parses (Kalivoda 2018)

Closest-merged (VN)(N)

Mary books gave

SVO ditransitive phrases: four types of prosodic parses (Kalivoda 2018)

SVO ditransitive phrases: four types of prosodic parses (Kalivoda 2018)

Questions

- What is the complexity of these mappings?
- What syntactic information is relevant?

Logical Tree Transductions

ightharpoonup Take a mapping that changes root labels from a to b

With logical transductions, the input tree model is defined in terms of a signature $\langle D, R \rangle$

Tree Model

Domain $D = \{\varepsilon, 0, 1, 00, 01, 10, \overline{11}\}$

- $a(x) = \{\varepsilon, 0, 01, 12\}$
- $a(x) = \{c,0,01,12\}$
- $c(x) = \{11\}$

Binary relations in R:

- $\triangleleft(x,y) = \{\langle \epsilon, 0 \rangle, \langle \epsilon, 1 \rangle, \langle 0, 00 \rangle, \langle 0, 01 \rangle, \langle 1, 10 \rangle, \langle 1, 11 \rangle\}$
- $\prec (x,y) = \{\langle 0,1 \rangle, \langle 00,01 \rangle, \langle 10,11 \rangle \}$

Logical Tree Transductions

ightharpoonup Take a mapping that changes root labels from a to b

With logical transductions, the input tree model is defined in terms of a signature $\langle D, R \rangle$

Tree Model

Domain $D = \{\varepsilon, 0, 1, 00, 01, 10, 11\}$ Unary relations $L \subset R$:

Logical Transductions

- $a(x) = \{\varepsilon, 0, 01, 12\}$
- $b(x) = \{1.00\}$
- $c(x) = \{11\}$

Binary relations in R:

 ⊲(x,y) = $\{\langle \epsilon, 0 \rangle, \langle \epsilon, 1 \rangle, \langle 0, 00 \rangle, \langle 0, 01 \rangle, \langle 1, 10 \rangle, \langle 1, 11 \rangle\}$ • $\prec (x,y) = \{\langle 0,1 \rangle, \langle 00,01 \rangle, \langle 10,11 \rangle \}$

▶ Take a mapping that changes root labels from a to b

- Predicated define properties of the input segments
- Output functions define output segments wrt input segments

Tree transduction

$$\begin{array}{cccc} \mathbf{root_a}(x) & \stackrel{\mathsf{def}}{=} & \mathsf{a} \land \neg \exists y [\lhd(y,x)] \\ \lhd(x',y') & \stackrel{\mathsf{def}}{=} & \lhd(x,y) \\ \phi \mathsf{a}(x') & \stackrel{\mathsf{def}}{=} & \mathsf{a}(x) \land \neg \mathbf{root_a}(x) \\ \phi \mathsf{b}(x') & \stackrel{\mathsf{def}}{=} & \mathsf{b}(x) \lor \mathbf{root_a}(x) \\ \phi \mathrel{\subset}(x') & \stackrel{\mathsf{def}}{=} & \mathsf{c}(x) \end{array}$$

- Pronounced vs unpronounced nodes
 - ⇒ prosody works over overt or pronounced terminal items
- Headedness
 - ⇒ can be reconstructed from local geometry of the tree
- Tree geometry
 - ⇒ sensitivity to sisterhood and c-command
- Argument structure
 - ⇒ two configurations: with and without head-movement
- Linearity
 - ⇒ the verb is phrased with its closest argument
- Category labels
 - ⇒ syntax/prosody mappings generally blind to category labels

- Pronounced vs unpronounced nodes
 - ⇒ prosody works over overt or pronounced terminal items
- Headedness
 - ⇒ can be reconstructed from local geometry of the tree
- Tree geometry
 - ⇒ sensitivity to sisterhood and c-command
- Argument structure
 - ⇒ two configurations: with and without head-movement
- Linearity
 - \Rightarrow the verb is phrased with its $\emph{closest}$ argument
- Category labels
 - ⇒ syntax/prosody mappings generally blind to category labels

- Pronounced vs unpronounced nodes
 - ⇒ prosody works over overt or pronounced terminal items
- Headedness
 - ⇒ can be reconstructed from local geometry of the tree
- Tree geometry
 - ⇒ sensitivity to sisterhood and c-command
- Argument structure
 - ⇒ two configurations: with and without head-movement
- Linearity
 - ⇒ the verb is phrased with its *closest* argument
- Category labels
 - ⇒ syntax/prosody mappings generally blind to category labels

- Pronounced vs unpronounced nodes
 - ⇒ prosody works over overt or pronounced terminal items
- Headedness
 - ⇒ can be reconstructed from local geometry of the tree
- Tree geometry
 - ⇒ sensitivity to sisterhood and c-command
- Argument structure
 - ⇒ two configurations: with and without head-movement
- Linearity
 - ⇒ the verb is phrased with its *closest* argument
- Category labels
 - ⇒ syntax/prosody mappings generally blind to category labels

- Pronounced vs unpronounced nodes
 - ⇒ prosody works over overt or pronounced terminal items
- Headedness
 - ⇒ can be reconstructed from local geometry of the tree
- Tree geometry
 - ⇒ sensitivity to sisterhood and c-command
- Argument structure
 - ⇒ two configurations: with and without head-movement
- Linearity
 - ⇒ the verb is phrased with its *closest* argument
- Category labels
 - ⇒ syntax/prosody mappings generally blind to category labels

- Pronounced vs unpronounced nodes
 - ⇒ prosody works over overt or pronounced terminal items
- Headedness
 - ⇒ can be reconstructed from local geometry of the tree
- Tree geometry
 - ⇒ sensitivity to sisterhood and c-command
- Argument structure
 - ⇒ two configurations: with and without head-movement
- Linearity
 - ⇒ the verb is phrased with its *closest* argument
- Category labels
 - ⇒ syntax/prosody mappings generally blind to category labels

Broad Result

First-order Tree Transductions derive the alignment mismatches between syntactic and prosodic constituents!

General Takeaways

- Usually unspecified mapping details matter!
 - Head-movement and locality
 - Predictions from category Blindness
 - Complexity of the mappings
- ► Tree transductions to refine long-standing theoretical questions
- Inspect theoretical assumptions about linguistic representations across sub-domains

Summing Up

Broad Result

First-order Tree Transductions derive the alignment mismatches between syntactic and prosodic constituents!

General Takeaways

- Usually unspecified mapping details matter!
 - Head-movement and locality
 - Predictions from category Blindness
 - Complexity of the mappings
- ► Tree transductions to refine long-standing theoretical questions
- Inspect theoretical assumptions about linguistic representations across sub-domains

Thank you!