Lecture 33 Cauchy's Integral Formula-1

Dr. Mahesha Narayana

Intended learning Outcomes

At the end of this lecture, student will be able to:

- State Cauchy's integral theorem and its utility
- Apply Cauchy's integral theorem to evaluate complex

integrals

Topics

- Cauchy theorem
- Extension of Cauchy theorem
- Cauchy's integral formula
- Cauchy inequality

Cauchy's Theorem

Let f(z) be an analytic in a simply connected domain D, then for every closed path C in D we have

$$\iint_C f(z)dz = 0$$

Independence of Path of Integration

If f(z) is analytic in a simply connected domain D then the integral of f(z) is independent of path of integration

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

Extension of Cauchy's Theorem

If C_1 and C_2 are two simple closed curves such that C_2 lies entirely within C_1 and if f(z) is analytic on C_1 , C_2 and ir the region bounded by C_1 and C_2 ther

$$\iint_{C_1} f(z)dz = \iint_{C_2} f(z)dz$$

If C is a simple closed curve enclosing non overlapping simple closed curves C_1 , C_2 and C_3 and f(z) is analytic in the annular region between C and these

curves then

$$\iint_{C} f(z)dz = \iint_{C_{1}} f(z)dz + \iint_{C_{2}} f(z)dz + \iint_{C_{3}} f(z)dz$$

Cauchy's Theorem

• Cauchy's Theorem: If f(z) is analytic in R then

$$\iint_C f(z) dz = 0$$

• First, note that if f(z) = w = u + iv, then

$$\iint_{C} f(z)dz = \iint_{C} udx - vdy + i \iint_{C} vdx + udy ;$$

now use a well-known vector analysis result to prove

Cauchy Integral Formula

• f(z) is assumed analytic in R but we multiply by a factor $\frac{1}{(z-z_0)}$ that is

analytic except at z_0 and consider the integral around C

$$\int_{C} \frac{f(z)}{(z-z_0)} dz$$

• To evaluate, consider the path $C + c_1 + c_2 + C_0$ shown that encloses a simply connected region for which the integrand is analytic on and inside the path:

$$\int_{C+\frac{f(z)}{2}+c_0} \frac{f(z)}{z-z_0} dz = 0 \quad \Rightarrow \quad \int_{C} \frac{f(z)}{z-z_0} dz = -\int_{C_0} \frac{f(z)}{z-z_0} dz$$

Cauchy Integral Formula, cont⁷d

$$\int_{C} \frac{f(z)}{z - z_0} dz = -\int_{C_0} \frac{f(z)}{z - z_0} dz$$

Evaluate the C_0 integral on a circular path, $z - z_0 = re^{i\theta}$, $dz = rie^{i\theta}d\theta$:

$$\int_{C_0} \frac{f(z)}{(z-z_0)} dz \stackrel{r\to 0}{=} f(z_0) \int_{2\pi}^0 \frac{fi e^{i\theta} d\theta}{fe^{i\theta}} = -2\pi i f(z_0) \text{ for } r\to 0$$

$$\Rightarrow \int_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0) \Rightarrow f(z_0) = \frac{1}{2\pi i} \iint_C \frac{f(z)}{z - z_0} dz$$
 Cauchy Integral Formula

The value of f(z) at z_0 is completely determined by its values on C!

Cauchy Integral Formula, cont'd

Note that if z₀ is outside C, the integrand is analytic inside C;
 hence by the Cauchy integral theorem,

$$\frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = 0$$

• In summary,

$$\iint_{C} \frac{f(z)}{z - z_0} dz = \begin{cases}
2\pi i f(z_0), z_0 \text{ inside } C \\
0, z_0 \text{ outside } C
\end{cases}$$

Derivative Formulas

• Since f(z) is analytic in C, its derivative exists; let's express it in terms of the Cauchy formula,

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

•
$$f(z_0 + \Delta z) = \frac{1}{2\pi i} \underbrace{\int_C f(z)}_{z-z_0 - \Delta z} dz$$

$$\Rightarrow \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{1}{2\pi i \Delta z} \iint_C \left(\frac{f(z)}{z - z_0 - \Delta z} - \frac{f(z)}{z - z_0} \right) dz$$
$$= \frac{1}{2\pi i \Delta z} \iint_C f(z) \left(\frac{\Delta z}{(z - z_0 - \Delta z)(z - z_0)} \right) dz$$

$$\Rightarrow \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{1}{2\pi i} \iint_C f(z) \left(\frac{1}{(z - z_0 - \Delta z)(z - z_0)} \right) dz$$

$$\Rightarrow f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^2} dz$$
We've also just proved we can
differentiate w.r.t. z_0 under the integral sign! 10

Similarly,

$$f''(z_0) = \frac{2}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^3} dz$$

• In general,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$

or
$$f^{(n)}(z_0) = \frac{1}{2\pi i} \iint_C f(z) \frac{d^n}{dz_0^n} \left(\frac{1}{z - z_0}\right) dz$$

• \Rightarrow If f(z) is analytic in C, then its derivatives of all orders exist, and hence they are analytic as well.

Derivative Formulas, cont'd

Similarly,

$$f''(z_0) = \frac{2}{2\pi i} \iint_C \frac{f(z)}{(z - z_0)^3} dz$$

In general,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

or
$$f^{(n)}(z_0) = \frac{1}{2\pi i} \iint_C f(z) \frac{d^n}{dz_0^n} \left(\frac{1}{z - z_0}\right) dz$$

• \Rightarrow If f(z) is analytic in C, then its derivatives of all orders exist, and hence they are analytic as well.

Cauchy's Inequality

Suppose f(z) is (a) analytic in, (b) bounded (|f(z)| < M) on, and
 (c) has a convergent power series representation,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

within a circle of radius R about the origin. Then $|a_n| \le \frac{M}{R^n}$.

By the Cauchy Integral Formula,

$$\frac{1}{2\pi} \int_{|z|=R} \frac{f(z)}{z^{m+1}} dz = \frac{1}{2\pi} \sum_{n=0}^{\infty} a_n \int_{|z|=R} z^{n-m-1} dz = \frac{1}{2\pi} 2\pi i a_m$$

$$\Rightarrow |a_{m}| = \frac{1}{2\pi} \left| \int_{|z|=R} \frac{f(z)}{z^{m+1}} dz \right| \le \frac{1}{2\pi} \int_{|z|=R} \frac{|f(z)|}{|z^{m+1}|} |dz| \le \frac{1}{2\pi} \int_{0}^{2\pi} \frac{M}{R^{m+1}} \mathcal{R} d\theta = \frac{M}{R^{m}}$$

$$\Rightarrow |a_n| \le \frac{M}{R^n}, \quad M = \max_{|z|=R} |f(z)|$$

Session Summary

• Cauchy's integral theorem states that if f(z) is analytic in a simply connected domain D, then for every closed path C in D

• If f(z) is analytic the complex line integral is independent of the path joining end points of the curve.

$$\oint_C f(z) dz = 0.$$