

INTERSECTIONS OF LINE SEGMENTS AND POLYGONS

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount], [Kukral], and [Drtina]

Version from 13.11.2014

Talk overview

- Intersections of line segments (Bentley-Ottmann)
 - Motivation
 - Sweep line algorithm recapitulation
 - Sweep line intersections of line segments
- Intersection of polygons or planar subdivisions
 - See assignment [21] or [Berg, Section 2.3]
- Intersection of axis parallel rectangles
 - See assignment [26]

Geometric intersections – what are they for?

One of the most basic problems in computational geometry

- Solid modeling
 - Intersection of object boundaries in CSG
- Overlay of subdivisions, e.g. layers in GIS
 - Bridges on intersections of roads and rivers
 - Maintenance responsibilities (road network X county boundaries)
- Robotics
 - Collision detection and collision avoidance
- Computer graphics
 - Rendering via ray shooting (intersection of the ray with objects)
-

Line segment intersection

- Intersection of complex shapes is often reduced to simpler and simpler intersection problems
- Line segment intersection is the most basic intersection algorithm
- Problem statement:
 Given n line segments in the plane, report all points where a pair of line segments intersect.
- Problem complexity
 - Worst case $I = O(n^2)$ intersections
 - Practical case only some intersections
 - Use an output sensitive algorithm
 - $O(n \log n + I)$ optimal randomized algorithm
 - $O(n \log n + I \log n)$ sweep line algorithm %

Plane sweep line algorithm recapitulation

- Horizontal line (sweep line, scan line) \(\ell \) moves top-down (or vertical line: left to right) over the set of objects
- The move is not continuous, but ℓ jumps from one event point to another
 - Event points are in priority queue or sorted list (~y)
 - The top-most event point is removed first
 - New event points may be created (usually as interaction of neighbors on the sweep line) and inserted in the queue
- Scan-line status
 - Stores information about the objects intersected by ℓ

It is updated while stopping on event point

Line segment intersection - Sweep line alg.

- Avoid testing of pairs of segments far apart
- Compute intersections of neighbors on the sweep line only
- $O(n \log n + I \log n)$ time in O(n) memory
 - 2n steps for end points,
 - I steps for intersections,
 - log n search the status tree
- Ignore "nasty cases" (most of them will be solved later on)
 - No segment is parallel to the sweep line
 - Segments intersect in one point and do not overlap
 - No three segments meet in a common point

Line segment intersections

- Status = ordered sequence of segments intersecting the sweep line ℓ
- Events (waiting in the priority queue)
 - = points, where the algorithm actually does something
 - Segment end-points
 - known at algorithm start
 - Segment intersections between neighboring segments along SL
 - Discovered as the sweep executes

Detecting intersections

- Intersection events must be detected and inserted to the event queue before they occur
- Given two segments a, b intersecting in a point p, there must be a placement of sweep line ℓ prior to p, such that segments a, b are adjacent along ℓ (only adjacent will be tested for intersection)
 - segments a, b are not adjacent when the alg. starts
 - segments a, b are adjacent just before p
 - => there must be an event point when *a,b* become adjacent and therefore are tested for intersection

Data structures

Sweep line ℓ status = order of segments along ℓ

- Balanced binary search tree of segments
- Coords of intersections with ℓ vary as ℓ moves
 => store pointers to line segments in tree nodes
 - Position of ℓ is plugged in the y=mx+b to get the x-key

Felkel: Computational geometry

Data structures

Event queue (postupový plán, časový plán)

Define: Order < (top-down, lexicographic)</p>

$$p < q$$
 iff $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$ top-down, left-right approach (points on ℓ treated left to right)

Operations

- Insertion of computed intersection points
- Fetching the next event (highest y below ℓ)
- Test, if the segment is already present in the queue
 - (Delete intersection event in the queue)

top-down

Problem with duplicities of intersections

Data structures

Event queue data structure

Heap

- Problem: can not check duplicated intersection events (reinvented more than once)
- Intersections processed twice or even more
- Memory complexity up to $O(n^2)$
- Ordered dictionary (balanced binary tree)
 - Can check duplicated events (adds just constant factor)
 - Nothing inserted twice
 - If non-neighbor intersections are deleted
 i.e., if only intersections of neighbors along ℓ are stored
 then memory complexity just O(n)

Felkel: Computational geometr

Line segment intersection algorithm

FindIntersections(S)

Input: A set S of line segments in the plane

Output: The set of intersection points + pointers to segments in each

- 1. init an empty event queue Q and insert the segment endpoints
- 2. init an empty status structure *T*
- 3. while Q in not empty
- 4. remove next event *p* from *Q*
- 5. handleEventPoint(*p*)

Note: Upper-end-point events store info about the segment

handleEventPoint principle

Upper endpoint *U(p)*

- insert p (on s_i) to status T
- add intersections with left and right neighbors to Q

Intersection C(p)

- switch order of segments in T
- add intersections of left and right neighbors to Q

Lower endpoint L(p)

- remove p (on s_l) from T
- add intersections of left and right
- neighbors to Q

More than two segments incident

Handle Events [Berg, page 25]

handleEventPoint(p)

- Let U(p) = set of segments whose Upper endpoint is p. These segmets are stored with the event point *p* (will be added to *T*)
- Search T for all segments S(p) that contain p (are adjacent in T): Let $L(p) \subset S(p)$ = segments whose Lower endpoint is pLet $C(p) \subset S(p)$ = segments that Contain p in interior
- if $(L(p) \cup U(p) \cup C(p))$ contains more than one segment)
- report p as intersection together with L(p), U(p), C(p)4.
- Delete the segments in $L(p) \cup C(p)$ from T Reverse order of C(p) in T Insert the segments in $U(p) \cup C(p)$ into T
- (order as below ℓ , horizontal segment as the last)
- if $(U(p) \cup C(p) = \emptyset)$ then find New Event (s_l, s_r, p) // left & right neighbors
- **else** s' = leftmost segment of $U(p) \cup C(p)$; findNewEvent(s_i , s', p) s" = rightmost segment of $U(p) \cup C(p)$; findNewEvent(s", s_r , p)

Detection of new intersections

findNewEvent(s_l , s_r , p) // with handling of horizontal segments

Input: two segments (left & right from p in T) and a current event point p Output: updated event queue Q with new intersection

1. if [(s_l and s_r intersect below the sweep line ℓ) or

```
( intersect on \ell and to the right of p ) ] and // horizontal segments ( the intersection is not present in Q )
```

2. then

insert p as a new event into Q

s' = leftmost segment of $U(p) \cup C(p)$;

$$s_l$$
 s_l
 s_l
 $s_r = s' = \text{leftmost from } U(p)$
 $s_r = s' = \text{leftmost from } C(p)$
 s_l and $s_r = s'$ intersect on ℓ

s, and s, intersect below

and to the right of p

Line segment intersections

- Memory $O(I) = O(n^2)$ with duplicities in Q or O(n) with duplicities in Q deleted
- Operational complexity
 - -n+I stops
 - log n each
 - $=> O(I+n) \log n$ total
- The algorithm is by Bentley-Ottmann

Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", *IEEE Transactions on Computers* **C-28** (9): 643-647, doi:10.1109/TC.1979.1675432.

See also http://wapedia.mobi/en/Bentley%E2%80%93Ottmann algorithm

Intersection of axis parallel rectangles

 Given the collection of *n isothetic* rectangles, report all intersecting parts

Alternate sides
belong to two
pencils of lines
(trsy přímek)

(often used with points in infinity = axis parallel)

Answer: $(r_1, r_2) (r_1, r_3) (r_1, r_8) (r_3, r_4) (r_3, r_5) (r_3, r_9) (r_4, r_5) (r_7, r_8)$

Felkel: Computational geometry

Brute force intersection

Brute force algorithm

Input: set S of axis parallel rectangles *Output:* pairs of intersected rectangles

- 1. For every pair (r_i, r_j) of rectangles $\in S, i \neq j$
- 2. if $(r_i \cap r_i \neq \emptyset)$ then
- 3. report (r_i, r_j)

Analysis

Preprocessing: None.

Query:
$$O(N^2)$$
 $\binom{N}{2} = \frac{N(N-1)}{2} \in O(N^2)$.

Storage: O(N)

Plane sweep intersection algorithm

- Vertical sweep line moves from left to right
- Stops at every x-coordinate of a rectangle (either its left side or its right side).
- active rectangles a set
 - = rectangles currently intersecting the sweep line
 - left side event of a rectangle
 - => the rectangle is added to the active set.
 - right side
 - => the rectangle is deleted from the active set.
- The active set used to detect rectangle intersection

Example rectangles and sweep line

Interval tree as sweep line status structure

- Vertical sweep-line => Only y-coordinates along it
- Turn our view in slides 90° right
- Sweep line (y-axis) will be drawn as horizontal

Intersection test – between pair of intervals

• Given two intervals $R = [y_1, y_2]$ and $R' = [y'_1, y'_2]$ the condition $R \cap R'$ is equivalent to one of these mutually exclusive conditions:

Static interval tree – stores all end points

- Let $v = y_{med}$ be the median of end-points of segments
- ullet S : segments of S that are completely to the left of y_{med}
- S_{med} : segments of S that contain y_{med}
- S_r : segments of S that are completely to the right of y_{med}

Static interval tree – Example

Static interval tree [Edelsbrunner80]

Primary structure – static tree for endpoints

Secondary lists of incident interval end-pts.

Active nodes – intersected by the sweep line

Query = sweep and report intersections

RectangleIntersections(S)

Input: Set S of rectangles

Output: Intersected rectangle pairs

```
Preprocess(S)
                                // create the interval tree T (for y-coords)
                                // and event queue Q
                                                                 (for x-coords)
    while (Q \neq \emptyset) do
        Get next entry (x_i, y_{il}, y_{ir}, t) from Q
                                                         // t \in \{ left \mid right \}
        if (t = left) // left edge
                 a) QueryInterval (y_{il}, y_{ir}, root(T))
5.
                                                         // report intersections
                 b) InsertInterval (y_{il}, y_{ir}, root(T))
                                                         // insert new interval
                        // right edge □
        else
                 c) DeleteInterval (y_{il}, y_{ir}, root(T)
8.
```


Preprocessing

Preprocess(S)

Input: Set S of rectangles

Output: Primary structure of the interval tree T and the event queue Q

- 1. T = PrimaryTree(S) // Construct the static primary structure// of the interval tree -> sweep line STATUS T
- 2. // Init event queue Q with vertical rectangle edges in ascending order ~x // Put the left edges with the same x ahead of right ones
- 3. for i = 1 to n
- 4. insert($(x_{il}, y_{il}, y_{ir}, left)$, Q) // left edges of *i-th* rectangle
- 5. insert($(x_{ir}, y_{il}, y_{ir}, right)$, Q) // right edges

Interval tree – primary structure construction

PrimaryTree(S) // only the y-tree structure, without intervals

Input: Set S of rectangles

Output: Primary structure of an interval tree T

- 1. $S_v = Sort$ endpoints of all segments in S according to y-coordinate
- 2. $\vec{T} = BST(S_v)$
- 3. return T

BST(S_y)

- 1. if $|S_v| = 0$ return null
- 2. $yMed = median of S_y$
- 3. $L = \text{endpoints } p_v \leq yMed$
- 4. R = endpoints $p_v > yMed$
- 5. t = new Interval TreeNode(yMed)
- 6. t.left = BST(L)
- 7. t.right = BST(R)
- 8. return t

Interval tree - search the intersections

```
QueryInterval (b, e, T)
         Interval of the edge and current tree T
                                                                    New interval being
Output: Report the rectangles that intersect [b, e]
                                                              H(v)
                                                                   tested for intersection
1. if (T = \text{null}) return
   i=0; if( b < H(v) < e ) // forks at this node
       while (MR(v).[i] \ge b) && (i < Count(v)) ... Report all intervals inM
           ReportIntersection; i++
       QueryInterval( b,e,T.LPTR ) ←
       QueryInterval( b,e,T.RPTR ) ← •
    else if (H(v) \le b \le e) // search RIGHT (\leftarrow)
                                                                      Crosses A,B
       while (MR(v).[i] \ge b) \&\& (i < Count(v))
8.
           ReportIntersection; i++
       QueryInterval( b,e,T.RPTR)
                                                    Crosses A,B,C
11. else // b < e \leq H(v) //search LEFT(\Rightarrow) Crosses C
       while (ML(v).[i] \le e)
12.
13.
            ReportIntersection; i++
                                         Stored intervals
                                         of active rectangles
    —QueryInterval( b,e,T.LPTR)
                                          T.LPTR •
                                                                 T.RPTR
```

Interval tree - interval insertion

```
InsertInterval (b, e, T)
Input:
         Interval [b,e] and interval tree T
Output:
        T after insertion of the interval
                                                                      New interval
                                                                     being inserted
    v = root(T)
                                                            H(v)
    while( v != null ) // find the fork node
3.
       if (H(v) < b < e)
           v = v.right // continue right
       else if (b < e < H(v))
5.
6.
           v = v.left // continue left
       else // b \le H(v) \le e // insert interval
8.
           set v node to active
           connect LPTR resp. RPTR to its parent
9
10.
           insert [b,e] into list ML(v) – sorted in ascending order of b's
           insert [b,e] into list MR(v) – sorted in descending order of e's
11.
12
           break
13. endwhile
14. return T
                                    Felkel: Computational geometry
```

Example 1

Example 1 – static tree on endpoints

Interval insertion [1,3] a) Query Interval

Interval insertion [1,3] b) Insert Interval

Interval insertion [1,3] b) Insert Interval

Interval insertion [2,4] a) Query Interval

Interval insertion [2,4] b) Insert Interval

Interval delete [1,3]

Interval delete [1,3]

Interval delete [2,4]

Interval delete [2,4]

Example 2

```
RectangleIntersections(S)
                                      // this is a copy of the slide before
         Set S of rectangles
                                      // just to remember the algorithm
Input:
Output: Intersected rectangle pairs
    Preprocess(S)
                              // create the interval tree T and event queue Q
    while (Q \neq \emptyset) do
3.
       Get next entry (x_{il}, y_{il}, y_{ir}, t) from Q // t \in \{ left | right \}
       if (t = left) // left edge
5.
                                                     // report intersections
                a) QueryInterval (y_{il}, y_{ir}, root(T))
                b) InsertInterval (y_{il}, y_{ir}, root(T))
                                                      // insert new interval
                       // right edge
       else
                c) DeleteInterval (y_{il}, y_{ir}, root(T))
8.
```


Example 2

Insert [2,3] — empty => b) Insert Interval

Insert [3,7] a) Query Interval

 $H(v) \le b < e$

Insert [3,7] b) Insert Interval

Insert [0,2] a) Query Interval

 $b < e \le H(v)$

Insert [0,2] b) Insert Interval 1/2

b < e < H(v)

Insert [0,2] b) Insert Interval 2/2

Insert [1,5] a) Query Interval 1/2

b < H(v) < e

Insert [1,5] a) Query Interval 2/2

 $H(v) \le b < e$

Insert [1,5] b) Insert Interval

Insert [7,8] a) Query Interval

 $H(v) \le b < e$

Insert [7,8] b) Insert Interval

Delete [3,7] Delete Interval

Insert [4,6] b) Insert Interval

 $H(v) \le b < e$

Delete [1,5] Delete Interval

Delete [0,2] Delete Interval 1/2

 $b < e \le H(v)$

Delete [0,2] Delete Interval 2/2

Delete [7,8] Delete Interval

Delete [2,3] Delete Interval

Delete [4,6] Delete Interval

Empty tree

Complexities of rectangle intersections

- n rectangles, s intersected pairs found
- O(n log n) preprocessing time to separately sort
 - x-coordinates of the rectangles for the plane sweep
 - the y-coordinates for initializing the interval tree.
- The plane sweep itself takes $O(n \log n + s)$ time, so the overall time is $O(n \log n + s)$
- O(n) space
- This time is optimal for a decision-tree algorithm (i.e., one that only makes comparisons between rectangle coordinates).

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, and 30.
 - http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
- [Rourke] Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edu/~orourke/books/compgeom.html
- [Drtina] Tomáš Drtina: Intersection of rectangles. Semestral Assignment. Computational Geometry course, FEL CTU Prague, 2006
- [Kukral] Petr Kukrál: Intersection of rectangles. Semestral Assignment. Computational Geometry course, FEL CTU Prague, 2006
- [Vigneron] Segment trees and interval trees, presentation, INRA, France, + + http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

