

Изучение фазовых переходов в открытой квантовой оптической системе с помощью методов машинного обучения

Автор:

Научный консультант:
PhD, Fellow (старший научный сотрудник)
Научный руководитель:
к.т.н., доцент ФИТИП

Звягинцева Дарья Александровна, М3437 Кириенко Александр Анатольевич,

Ульянцев Владимир Игоревич,

Объект изучения

Решетки поляритонных конденсатов

Объект изучения - поляритонные решетки из 64 узлов

Узлы характеризуются параметром намагниченности (Sn), нормированным по трем координатам: x, y, z (Sxn, Syn, Szn).

Цвет в узлах – параметр Szn

Цель и задачи

- Цель найти новые фазы в диссипативных решетках поляритонных конденсатов.
- 🗸 Задачи:
 - Проанализировать набор данных
 - Применить методы кластеризации и классификации для поиска фаз
 - Составить фазовую диаграмму
 - Найти точную границу между фазами.

Фазовая диаграмма

Фазовая диаграмма воды

Параметр накачки (J)

Коэффициент связи (W)

Анализ набора данных

tSNE

- ✓ Метод tSNE¹ (англ. t-distributed Stochastic Neighbor Embedding) уменьшает размерность задачи, располагая на диаграмме похожие объекты близко, а разные – далеко.
- Функция определения лучшей диаграммы:
- $cnt(v \in V \mid class\left(\min_{u \in V} dist(u, v)\right)! = class(v))$

Результаты оценочной функции на X, Z

Nº	Learning rate	perplexity	PCA						
			нет	5	10	25			
1	10	5	0,694	0,717	0,646	0,728			
2	50		0,645	0,694	0,683	0,666			
3	200		0,731	0,765	0,711	0,688			
4	500		0,720	0,705	0,722	0,745			
5	1000		0,725	0,700	0,722	0,768			
6	10	30	0,694	0,657	0,708	0,671			
7	50		0,765	0,725	0,742	0,720			
8	200		0,805	0,771	0,762	0,733			
9	500		0,807	0,793	0,790	0,805			
10	1000		0,796	0,785	0,867	0,810			
11	10	100	0,839	0,725	0,671	0,671			
12	50		0,773	0,748	0,768	0,703			
13	200		0, 880	0,864	0,711	0,819			
14	500		0,877	0,833	0,858	0,827			
15	1000		0,776	0,805	0,776	0,850			

Предполагаемые фазы на tSNE диаграмме

Ожидаемая фазовая диаграмма

Построение фазовой диаграммы

- Использовался метод agglomerative clustering
- ✓ Лучшая диаграмма выбиралась следующим образом:

$$f(p) = \frac{cnt(x \in X \mid c_2(x)! = c_1(x) \land (c_1(x) = p \lor c_2(x) = p))}{|X|}$$

Результаты оценочной функции на Х,Ү, Z

Nº	Метрика	Расстояние	PCA				
			нет	5	10	25	
1	euclidean	ward	0,986	0,990	0,992	0,992	
2	euclidean	average	0,295	0,837	0,840	0,838	
3	manhattan		0,291	0,839	0,392	0,294	
4	cosine		0,298	0,548	0,792	0,798	
5	euclidean	complete	0,902	0,844	0,971	0,920	
6	manhattan		0,902	0,845	0,963	0,885	
7	cosine		0,902	0,892	0,858	0,905	

Результаты для agglomerative clustering

Местоположение границы

- Где именно проходит граница?
- ✓ Какую форму она имеет (прямая, ломаная)?

Learning by confusion

- Получив приблизительную фазовую диаграмму, будем ее уточнять.
- Необходимо найти границы между фазами.
- ✓ Для этого применим метод «learning by confusion^{»1}.

Пример искусственной разметки данных. Круги — реальные классы, звездочки — назначенные метки.

Общий вид графика зависимости accuracy(x0)

Фазовая диаграмма с границами

Полученные результаты

- Построена фазовая диаграмма
- Найдены новые фазы (антиферромагнетик с квадратичной, диагональной и прямой структурой)
- В дальнейшем возможно уточнение и улучшение фазовой диаграммы.

Мнение экспертов

- Работа велась совместно с экспертами в области квантовой оптике.
- У Это малоизвестная область физики, но машинное обучение существенно ее продвинуло.
- ♥ Фазовой диаграмме можно доверять.
- Новые фазы интересны для области
- ♥ В дальнейшем, новые фазы станут предметом публикации.

Выступления

- ▼ Выступление на IX конгрессе молодых ученых.
- ▼ Победитель конкурса докладов на поступление в магистратуру.

Спасибо за внимание!

ITSMOre than a UNIVERSITY