

# 数学实验

# **Experiments in Mathematics**

# 实验10 方差分析

清华大学数学科学系

## 方差分析

- 1、方差分析的基本概念、实例
- 2、单因素方差分析
- 3、双因素方差分析
- 4、MATLAB统计工具箱 (Statistics Toolbox)的使用

## 单因素方差分析示例——灯泡寿命

用4种工艺生产灯泡,从每种工艺制成的灯泡中各抽取若干个测量其寿命(小时),如表,试推断这几种工艺制成的灯泡寿命是否有显著差异。

| 工艺 | $A_1$ | $A_2$ | $\mathbf{A}_3$ | A $_4$ |
|----|-------|-------|----------------|--------|
| 序号 |       |       |                |        |
| 1  | 1620  | 1580  | 1460           | 1500   |
| 2  | 1670  | 1600  | 1540           | 1550   |
| 3  | 1700  | 1640  | 1620           | 1610   |
| 4  | 1750  | 1720  |                | 1680   |
| 5  | 1800  |       |                |        |
| 平均 | 1708  | 1635  | 1540           | 1585   |

从平均值看 $A_1$ 最大,但其中最小者比 $A_4$ 中最大者要小。

数据间的差异 有两个原因: 不同工艺造成 的系统差异; 同一工艺内的 随机差异。

## 双因素方差分析示例---小麦产量

为分析4种化肥和3个小麦品种对小麦产量的影响,把 试验田等分成24块,对种子和化肥的每一组合种植2 块田,产量如下表,问品种、化肥对小麦产量有无显 著影响,二者的交互作用对小麦产量有无显著影响。

#### 小麦产量试验数据(公斤)

| 化肥 品种 | $A_1$                            | $A_2$    | $A_3$    | $A_4$    |
|-------|----------------------------------|----------|----------|----------|
| $B_1$ | 173, 172<br>175, 173<br>177, 175 | 174, 176 | 177, 179 | 172, 173 |
| $B_2$ | 175, 173                         | 178, 177 | 174, 175 | 170, 171 |
| $B_3$ | 177, 175                         | 174, 174 | 174, 173 | 169, 169 |

## 方差分析的基本概念

指标: 关心的试验结果

灯泡的寿命,小麦的产量

因素: 需要考察、可以控制的条件

灯泡寿命中的4个工艺 / 小麦产量中的品种和化肥用量

单因素

双因素

水平: 因素所设定的状态

灯泡寿命: 工艺4水平

小麦产量: 品种3 水平,化肥4水平

### 单因素方差分析(因素A)

#### 数学模型

r 个水平 $A_1, A_2, ... A_r$  , $A_i$  下总体 $x_i \sim N(\mu_i, \sigma^2), i=1, \cdots r$  , $\mu_i, \sigma^2$  未知。  $x_i$  中抽取容量为 n 的样本  $x_j \sim N(\mu_i, \sigma^2), i=1, \cdots r$  , $j=1, \cdots n$  且相互独立。

| _  |     | $A_1$             | $A_2$             | ••• | $A_{r}$                    | 判断A的r个 |
|----|-----|-------------------|-------------------|-----|----------------------------|--------|
| 数据 | 1   | x <sub>11</sub>   | $\mathbf{x}_{21}$ | ••• | $X_{r1}$                   | 水平对指标  |
| 表格 | 2   | $\mathbf{x}_{12}$ | $\mathbf{X}_{22}$ | ••• | $x_{r2}$                   | 有无显著影  |
|    | ••• | •••               | •••               | ••• | •••                        |        |
|    | n   | $\mathbf{x}_{1n}$ | $\mathbf{x}_{2n}$ | ••• | $\mathbf{x}_{\mathrm{rn}}$ | 响,等价于: |

假设检验: Η<sub>1</sub>: μ<sub>1</sub>=μ<sub>2</sub>=...=μ<sub>r</sub> ; Η<sub>1</sub>: μ<sub>1</sub>, μ<sub>2</sub> , ...μ<sub>r</sub>不全相等。

#### 单因素方差分析----示例形式

灯泡寿命数据(若每种工艺灯泡数量相同)

| 序 | 工艺号 | $A_1$ | $A_2$ | $A_3$       | $A_4$ |      |
|---|-----|-------|-------|-------------|-------|------|
|   | 1   | 1620  | 1580  | 1460        | 1500  | 单因素: |
|   | 2   | 1670  | 1600  | 1460 $1540$ | 1550  |      |
|   | 3   | 1700  | 1640  | 1620        | 1610  |      |
|   | 4   | 1750  | 1720  | 1840        | 1680  | 生产工艺 |
|   | 5   | 1800  | 1840  | 1840        | 1840  |      |

水平: **4**个: **A**<sub>1</sub> **A**<sub>2</sub> **A**<sub>3</sub> **A**<sub>4</sub> 样本量: 每组**5**个数据

假设检验: Η<sub>0</sub>: μ<sub>1</sub>=μ<sub>2</sub>=μ<sub>3</sub>=μ<sub>4</sub>; Η<sub>1</sub>: μ<sub>1</sub>, μ<sub>2</sub>, μ<sub>3</sub>, μ<sub>4</sub>不全相等。

#### 单因素方差分析----数学模型

$$x_{ij} = \mu_i + \varepsilon_{ij}$$
,  $i=1,\cdots r, j=1,\cdots n, \varepsilon_{ij} \sim N(0,\sigma^2)$ 且相互独立

$$\mu = \frac{1}{r} \sum_{i=1}^{r} \mu_{i} \sim 总均值 \qquad \alpha_{i} = \mu_{i} - \mu \sim A_{i}$$
对指标的效应

模型 
$$\begin{cases} x_{ij} = \mu + \alpha_i + \varepsilon_{ij} \\ \sum_{i=1}^r \alpha_i = 0 \end{cases}$$

$$\left\{ \sum_{i=1}^{r} \alpha_i = 0 \right.$$

$$\left| \varepsilon_{ij} \sim N(0, \sigma^2), i=1, \dots, j=1, \dots, \right|$$

原假设为 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$  (略去备选假设)

统计 
$$\bar{x}_i = \frac{1}{n} \sum_{j=1}^n x_{ij}$$
 (组平均值),  $\bar{x} = \frac{1}{r} \sum_{i=1}^r \bar{x}_i$  (总平均值)  $S = \sum_{i=1}^r \sum_{j=1}^n (x_{ij} - \bar{x})^2$  (总偏差)  $S = S_A + S_E$  (S的分解)  $S_A = \sum_{i=1}^r n(\bar{x}_i - \bar{x})^2$  (组间平方和)  $S_E = \sum_{i=1}^r \sum_{j=1}^n (x_{ij} - \bar{x}_i)^2$  (组内平方和)

$$S_A = \sum_{i=1}^r n(\bar{x}_i - \bar{x})^2$$
(组间平方和)  $S_E = \sum_{i=1}^r \sum_{j=1}^n (x_{ij} - \bar{x}_i)^2$ (组内平方和)

$$ES_E = r(n-1)\sigma^2$$
,  $ES_A = (r-1)\sigma^2 + \sum_{i=1}^r n\alpha_i^2$ 

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$$
 (A的r个水平对指标无显著影响)

若 
$$H_0$$
 成立  $\frac{S_A/r-1}{S_E/r(n-1)} \approx 1$ ,  $F = \frac{S_A/r-1}{S_E/r(n-1)} \sim F(r-1,r(n-1))$ 

显著性水平:  $\alpha$ 

检验规则:  $F < F_{1-\alpha}(r-1,r(n-1))$ 时接受  $H_0$ , 否则拒绝。

单因素方差分析表 
$$H_0:\alpha_1=\alpha_2=\cdots=\alpha_r=0$$

| 方差来源 | 平方和   | 自由度          | 平方均值                            | F 值                                   | 概率               |
|------|-------|--------------|---------------------------------|---------------------------------------|------------------|
| 因素A  | $S_A$ | r-1          | $\overline{S}_A = S_A/r - 1$    | $f = \overline{S}_A / \overline{S}_E$ | $p = P\{F > f\}$ |
| 误差   | $S_E$ | r(n-1)       | $\overline{S}_E = S_E / r(n-1)$ |                                       |                  |
| 总和   | S     | <i>rn</i> −1 |                                 |                                       | $f\sim$ F的样本值    |



若
$$f < F_{1-\alpha}(r-1,n-r)$$
 (即 $p > \alpha$ ),则接受 $H_0$ 



若
$$f > F_{1-\alpha}(r-1,n-r)$$
 (即 $p < \alpha$ ), 则拒绝 $H_0$ 

#### 单因素方差分析

 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$  (A的r个水平对指标无显著影响)

 $\alpha$  =0.01, 拒绝  $H_0$  ---影响非常显著;

 $\alpha$ =0.01,不拒绝  $H_0$ ,但取 $\alpha$ =0.05,拒绝  $H_0$ ----影响显著;

 $\alpha$ =0.05, 不拒绝  $H_0$ ----无显著影响。

### 单因素方差分析----MATLAB实现

命令:

p=anova1(x)

适用于各组样本容量相同的单因素方差分析。

输入:

x为n行r列的数据矩阵,n为样本容量,r为水平数。

输出:  $p = P\{F > f\}$ 

| 方差来源 | 平方和   | 自由度          | 平方均值                            | F 值                                   |
|------|-------|--------------|---------------------------------|---------------------------------------|
| 因素 A | $S_A$ | r-1          | $\overline{S}_A = S_A / r - 1$  | $f = \overline{S}_A / \overline{S}_E$ |
| 误差   | $S_E$ | r(n-1)       | $\overline{S}_E = S_E / r(n-1)$ |                                       |
| 总和   | S     | <i>rn</i> −1 |                                 |                                       |





#### 多重比较

假设验:  $H_0$ :  $\mu_1 = \mu_2 = \mu_3 = \mu_4$ 

结论: 拒绝H<sub>0</sub>,不同工艺有显著影响。

| 工艺 序号 | $A_1$ | $A_2$ | $A_3$ | A <sub>4</sub> |
|-------|-------|-------|-------|----------------|
| 1     | 1620  | 1580  | 1460  | 1500           |
| 2     | 1670  | 1600  | 1540  | 1550           |
| 3     | 1700  | 1640  | 1620  | 1610           |
| 4     | 1750  | 1720  |       | 1680           |
| 5     | 1800  |       |       |                |
| 平均    | 1708  | 1635  | 1540  | 1585           |

#### 哪几种工艺有显著影响?

两总体的假设检验(ttest2)

| 原假设 | $\mu_1 = \mu_2$ | $\mu_1 = \mu_3$ | $\mu_1 = \mu_4$ |
|-----|-----------------|-----------------|-----------------|
| Н   | 0               | 1               | 1               |
| p   | 0.1459          | 0.0202          | 0.0408          |

A<sub>1</sub>与A<sub>3</sub>, A<sub>4</sub>有显著差异 (α=0.05),但与A<sub>2</sub>无显著差异

## 双因素方差分析

为考察某指标(如小麦产量)受两个因素 A(化肥),B(品种)影响的显著性,

将A,B各划分几个水平;

每个水平组合作若干次试验;

对试验数据进行方差分析;

检验因素A,B是否分别对指标有显著影响,

以及两因素是否对指标有显著的交互影响。

#### 双因素方差分析

数学模型

两个因素: A和B

A: r个水平A<sub>1</sub>, A<sub>2</sub>, ...A<sub>r</sub>, | B: s个水平B<sub>1</sub>, B<sub>2</sub>, ...B<sub>s</sub>

水平组合 (A<sub>i</sub>, B<sub>i</sub>):

总体  $x_{ij} \sim N(\mu_{ij}, \sigma^2)$ ,  $i = 1, \dots r$ ,  $j = 1, \dots s$ 

 $(A_i, B_j)$  下作了t个试验,所得结果记作 $x_{ijk}, x_{ijk}$  服从  $N(\mu_{ii},\sigma^2), i=1,\cdots r, j=1,\cdots s, k=1,\cdots t$ , 且相互独立

|                | $A_1$                    | ${\sf A}_2$                        | ••• | $A_{\rm r}$                                       |
|----------------|--------------------------|------------------------------------|-----|---------------------------------------------------|
| $\mathbf{B}_1$ | $x_{111}, \dots x_{11t}$ | $\mathbf{x}_{211}\mathbf{x}_{21t}$ | ••• | $X_{r11}, \dots X_{r1t}$ $X_{r21}, \dots X_{r2t}$ |
| $\mathrm{B}_2$ | $x_{121}, \dots x_{12t}$ | $x_{221}, \dots x_{22t}$           | ••• | $x_{r21}$ , $x_{r2t}$                             |
| •••            | •••                      | •••                                | ••• | •••                                               |
|                | $X_{1s1}, \dots X_{1st}$ |                                    |     |                                                   |

#### 数学模型

$$x_{ijk} \sim N(\mu_{ij}, \sigma^2)$$

 $x_{ijk}$  分解: $x_{ijk} = \mu_{ij} + \varepsilon_{ijk}$   $\varepsilon_{ijk} \sim N(0, \sigma^2)$ ,相互独立

$$\mu = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij} \sim$$
 总均值
$$\mu_{j} = \frac{1}{r} \sum_{i=1}^{r} \mu_{ij}, \, \beta_{j} = \mu_{j} - \mu$$

$$\mu_j = \frac{1}{r} \sum_{i=1}^r \mu_{ij}, \, \beta_j = \mu_j - \mu_j$$

$$\mu_{i} = \frac{1}{s} \sum_{j=1}^{s} \mu_{ij}$$
 ,  $\alpha_{i} = \mu_{i} - \mu$ 

$$\alpha_{i} \sim A_{i}$$
 对指标的效应
$$\gamma_{ij} = \mu_{ij} - \mu - \alpha_{i} - \beta_{j}$$
  $\gamma_{ij} \sim A_{i}$  ,  $B_{j}$  对指标的文

$$\gamma_{ij} \sim A_i, B_j$$
 对指标的交互效应

模型 
$$\begin{cases} x_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ikj} \\ \sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0, \sum_{i=1}^r \gamma_{ij} = \sum_{j=1}^s \gamma_{ij} = 0 \\ \varepsilon_{ijk} \sim N(0, \sigma^2), \quad i = 1, \dots r, \quad j = 1, \dots s, \quad k = 1, \dots t \end{cases}$$

假设  
检验 
$$H_{01}: \alpha_i = 0 \ (i = 1, \dots r);$$
  
$$H_{02}: \beta_j = 0 \ (j = 1, \dots s);$$
  
$$H_{03}: \gamma_{ij} = 0 \ (i = 1, \dots r, j = 1, \dots s)$$

$$\overline{x}_{ij} = \frac{1}{t} \sum_{k=1}^{t} x_{ijk} \qquad \overline{x}_{i} = \frac{1}{s} \sum_{j=1}^{s} \overline{x}_{ij}, \ \overline{x}_{j} = \frac{1}{r} \sum_{i=1}^{r} \overline{x}_{ij} \qquad \overline{x} = \frac{1}{r} \sum_{i=1}^{r} \overline{x}_{i} = \frac{1}{s} \sum_{j=1}^{s} \overline{x}_{j}$$

$$( \text{ (A)} = \frac{1}{t} \sum_{k=1}^{t} x_{ijk} \qquad \overline{x}_{i} = \frac{1}{s} \sum_{j=1}^{s} \overline{x}_{ij}$$

$$S = S_{A} + S_{B} + S_{AB} + S_{E}$$

$$S_{A} = st \sum_{i=1}^{r} (\overline{x}_{i} - \overline{x})^{2}, \qquad S_{B} = rt \sum_{j=1}^{s} (\overline{x}_{j} - \overline{x})^{2}$$

$$S_{AB} = t \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{x}_{ij} - \overline{x}_{i} - \overline{x}_{j} + \overline{x})^{2}, \qquad S_{E} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} (\overline{x}_{ijk} - \overline{x}_{ij})^{2}$$

統计分析 
$$H_{01}: \alpha_i = 0, H_{02}: \beta_j = 0, H_{03}: \gamma_{ij} = 0$$

$$ES_A = (r-1)\sigma^2 + st \sum_{i=1}^r \alpha_i^2 ES_B = (s-1)\sigma^2 + rt \sum_{j=1}^s \beta_j^2$$

$$ES_{AB} = (r-1)(s-1)\sigma^2 + t \sum_{i=1}^r \sum_{j=1}^s \gamma_{ij}^2 \qquad ES_E = rs(t-1)\sigma^2$$

$$H_{01} 成立 \qquad F_A = \frac{S_A/r-1}{S_E/rs(t-1)} \sim F(r-1,rs(t-1)) \qquad F_A < F_{1-\alpha}(r-1,rs(t-1))$$
接受H<sub>01</sub>

$$H_{02} 成立 \qquad F_B = \frac{S_B/s-1}{S_E/rs(t-1)} \sim F(s-1,rs(t-1)) \qquad F_B < F_{1-\alpha}(s-1,rs(t-1))$$

$$F_{03} 成立 \qquad F_{AB} = \frac{S_{AB}/(r-1)(s-1)}{S_E/rs(t-1)} \sim F((r-1)(s-1),rs(t-1))$$

### 随机变量 $F_A$ , $F_B$ 和 $F_{AB}$ 代入样本值后,分别记成 $f_A$ , $f_B$ 和 $f_{AB}$

|       |          |            | 方差分析表                                   |                                                 |                               |
|-------|----------|------------|-----------------------------------------|-------------------------------------------------|-------------------------------|
| 方差来源  | 平方和      | 自由度        | 平方均值                                    | F 值                                             | 概率                            |
| 因素A   | $S_{A}$  | r-1        | $\overline{S}_A = S_A/r - 1$            | $f_A = \overline{S}_A / \overline{S}_E$         | $P_A = P(F_A > f_A)$          |
| 因素B   | $S_B$    | s-1        | $\overline{S}_B = S_B / s - 1$          | $f_B = \overline{S}_B / \overline{S}_E$         | $P_B = P(F_B > f_B)$          |
| 因素A×B | $S_{AB}$ | (r-1)(s-1) | $\overline{S}_{AB} = S_{AB}/(r-1)(s-1)$ | $f_{AB} = \overline{S}_{AB} / \overline{S}_{E}$ | $P_{AB} = P(F_{AB} > f_{AE})$ |
| 误差    | $S_E$    | r(t-1)     | $\overline{S}_E = S_E / rs(t-1)$        | _                                               | _                             |
| 总和    | S        | rst-1      |                                         | 显著性力                                            | 平 $\alpha$                    |

检验 规则

检验  $f_A < F_{1-\alpha}(r-1,rs(t-1))(即P_A > \alpha)$ 时接受  $H_{01}$ , 否则拒绝  $H_{01}$ ;

规则  $f_{\scriptscriptstyle B} < F_{\scriptscriptstyle 1-\alpha}(s-1,rs(t-1))(P_{\scriptscriptstyle B}>\alpha)$ 时接受  $\mathrm{H}_{\scriptscriptstyle 02}$ , 否则拒绝  $\mathrm{H}_{\scriptscriptstyle 02}$ ;

 $f_{{\scriptscriptstyle AB}} < F_{{\scriptscriptstyle I-\alpha}}((r-1)(s-1),rs(t-1))(P_{{\scriptscriptstyle AB}} > lpha)$ 时接受  ${\rm H}_{{\scriptscriptstyle 03}}$ ,否则拒绝  ${\rm H}_{{\scriptscriptstyle 03}}$ 。

#### 双因素方差分析----无交互影响情况

根据经验或某种分析能够事先断定两因素之间 没有交互影响,每组试验就不必重复,t=1.

假设检验:  $H_{01}$ :  $\alpha_i = 0$   $(i=1,\dots,r)$ ;  $H_{02}$ :  $\beta_j = 0$   $(j=1,\dots,s)$ 

统计  

$$H_{01}: \alpha_i = 0 \quad (i = 1, \dots, r); \quad H_{02}: \beta_j = 0 \quad (j = 1, \dots, s)$$
  
 $S = \sum_{i=1}^r \sum_{j=1}^s (x_{ij} - \bar{x})^2, \quad S = S_A + S_B + S_E$   
 $S_A = s \sum_{i=1}^r (\bar{x}_i - \bar{x})^2, \quad S_B = r \sum_{j=1}^s (\bar{x}_j - \bar{x})^2, \quad S_E = \sum_{i=1}^r \sum_{j=1}^s (x_{ij} - \bar{x}_i - \bar{x}_j + \bar{x})^2$ 

$$ES_E = (r-1)(s-1)\sigma^2$$
,  $ES_A = (r-1)\sigma^2 + s\sum_{i=1}^r \alpha_i^2$ ,  $ES_B = (s-1)\sigma^2 + r\sum_{j=1}^s \beta_j^2$ 

$$H_{01}$$
 成立时,  $F_A = \frac{S_A/r - 1}{S_E/(r-1)(s-1)} \sim F(r-1,(r-1)(s-1))$ 

当 
$$H_{\infty}$$
成立时,  $F_B = \frac{S_B/s-1}{S_E/(r-1)(s-1)} \sim F(s-1,(r-1)(s-1))$ 

| اد در | N IC  |            |                                   |                                           |                      |
|-------|-------|------------|-----------------------------------|-------------------------------------------|----------------------|
| 5 统计  | 一分析   |            | 方差分析表                             |                                           |                      |
| 方差来源  | 平方和   | 自由度        | 平方均值                              | F 值                                       | 概率                   |
| 因素 A  | $S_A$ | r-1        | $\overline{S}_A = S_A / r - 1$    | $f_A = \overline{S}_A  /  \overline{S}_E$ | $P_A = P(F_A > f_A)$ |
| 因素 B  | $S_B$ | s-1        | $\overline{S}_B = S_B / s - 1$    | $f_B = \overline{S}_B  /  \overline{S}_E$ | $P_B = P(F_B > f_B)$ |
| 误差    | $S_E$ | (r-1)(s-1) | $\overline{S}_E = S_E/(r-1)(s-1)$ |                                           |                      |
| 总和    | S     | rs-1       |                                   |                                           |                      |

$$f_{A} < F_{I-\alpha}(r-1,(r-1)(s-1))$$
(即 $P_{A} > \alpha$ ) 时接受  $H_{01}$ ,否则拒绝  $H_{01}$ ;

$$f_{\scriptscriptstyle A} < F_{\scriptscriptstyle 1-lpha}(r-1,(r-1)(s-1))$$
(即 $P_{\scriptscriptstyle A} > lpha$ ) 时接受  $H_{01}$ ,否则拒绝  $H_{01}$ ; 
$$f_{\scriptscriptstyle B} < F_{\scriptscriptstyle 1-lpha}(s-1,(r-1)(s-1))$$
(即 $P_{\scriptscriptstyle B} > lpha$ ) 时接受  $H_{02}$ ,否则拒绝  $H_{02}$ 。

### MATLAB实现

#### 双因素方差分析(无交互作用)

命令: p=anova2(x)

输入: x为s行r列的数据矩阵。

输出: $p = P\{F_A > f_A\}, P\{F_B > f_B\}$ 

| 方差来源 | 平方和   | 自由度        | 平方均值                             | F值                                      |
|------|-------|------------|----------------------------------|-----------------------------------------|
| 因素 A | $S_A$ | r-1        | $\overline{S}_A = S_A/r - 1$     | $f_A = \overline{S}_A / \overline{S}_E$ |
| 因素 B | $S_B$ | s-1        | $\overline{S}_B = S_B / s - 1$   | $f_B = \overline{S}_B / \overline{S}_E$ |
| 误差   | $S_E$ | (r-1)(s-1) | $\bar{S}_{E} = S_{E}/(r-1)(s-1)$ |                                         |
| 总和   | S     | rs-1       |                                  |                                         |

#### MATLAB实现

#### 双因素方差分析(有交互作用)

命令: p=anova2(x,rep)

输入:  $x为st行r列的数据矩阵,每一个试验水平(A_i,B_j)$ 的t个数据按列排列,rep=t重复试验的次数。

输出:  $p = P\{F_A > f_A\}, P\{F_B > f_B\}, P\{F_{AB} > f_{AB}\}$ 

方差来源 平方和 自由度 平方均值 
$$F$$
 值 因素 A  $S_A$   $r-1$   $\overline{S}_A = S_A/r-1$   $f_A = \overline{S}_A/\overline{S}_E$  因素 B  $S_B$   $s-1$   $\overline{S}_B = S_B/s-1$   $f_B = \overline{S}_B/\overline{S}_E$  因素 A×B  $S_{AB}$   $(r-1)(s-1)$   $\overline{S}_{AB} = S_{AB}/(r-1)(s-1)$   $f_{AB} = \overline{S}_{AB}/\overline{S}_E$  误差  $S_E$   $rs(t-1)$   $\overline{S}_E = S_E/rs(t-1)$  总和  $S$   $rst-1$ 

## 双因素方差分析----MATLAB实现

#### 例:小麦产量

问品种、化肥及二者的交互作用对小麦产量有无显著影响。

| 化肥<br>品种 | $A_1$    | $A_2$                            | $\mathrm{A}_3$ | A 4      |
|----------|----------|----------------------------------|----------------|----------|
| $B_1$    | 173, 172 | 174, 176<br>178, 177<br>174, 174 | 177, 179       | 172, 173 |
| $B_2$    | 175, 173 | 178, 177                         | 174, 175       | 170, 171 |
| $B_3$    | 177, 175 | 174, 174                         | 174, 173       | 169, 169 |

假设检验 
$$H_{01}: \alpha_i = 0 \ (i = 1, \dots 4);$$

$$H_{02}: \beta_{j} = 0 \ (j = 1, \dots 3);$$

$$H_{03}: \gamma_{ij} = 0 \ (i = 1, \dots 4, \ j = 1, \dots 3)$$

## 双因素方差分析----MATLAB实现

|             | ANOVA | Table | 9      |       |
|-------------|-------|-------|--------|-------|
| Source      | SS    | df    | MS     | F     |
| Columns     | 90.83 | 3     | 30.28  | 33.03 |
| Rows        | 8.083 | 2     | 4.042  | 4.409 |
| Interaction | 51.92 | 6     | 8.653  | 9.439 |
| Error       | 11    | 12    | 0.9167 |       |
| Total       | 161.8 | 23    |        |       |

#### 结论:

因素A(化肥) 和交互作用 AB影响非常 显著, 因素 B(品种)显著.

演示 wheat.m

1、了解方差分析的基本原理

- 目的 2、根据问题的要求提出模型
  - 3、对已经确定的模型,确定参数、使用MATLAB

作业 1), 4), 6)\*

1. 目的。 2. 内容(对每一题): 模型(对应用题); 算法设计; 计算结果; 结果分析; 附程序(必要时加说明 语句)。 3. 收获和建议。