Quadratic Word Problems

1.	hei	on jumped off a cliff into the ocean in Acapulco while vacationing with some friends. His ight as a function of time could be modeled by the function $h(t) = -16t^2 + 16t + 480$, where t he time in seconds and h is the height in feet.
	a.	How long did it take for Jason to reach his maximum height?
	b.	What was the highest point that Jason reached?
	c.	Jason hit the water after how many seconds?
2.	pe	toy rocket is launched vertically upward from ground level with an initial velocity of 128 feet r second, then its height h after t seconds is given by the equations $h(t) = -16t^2 + 128t$ (if air istance is neglected).
	a.	How long will it take for the rocket to return to the ground?
	b.	After how many seconds will the rocket be 112 feet above the ground?
	c.	How long will it take the rocket to hit its maximum height?
	d.	What is the maximum height?

3.	A rocket is launched from atop a 101 foot cliff with an initial velocity of 116 ft/s.
	a. Substitute the values into the vertical motion formula $h(t) = -16t^2 + vt + h_0$. Let $h(t) = 0$
	b. How long will the rocket take to hit the ground after it is launched? Round to the nearest tenth of a second.
4.	You and a friend are hiking in the mountains. You want to climb to a ledge that is 20 ft above you. The height of the grappling hook you throw is given by the function $h(t) = -16t^2 + 32t + 5$. What is the maximum height of the grappling hook? Can you throw it high enough to reach the ledge?
5.	You are trying to dunk a basketball. You need to jump 2.5 ft in the air to dunk the ball. The height that your feet are above the ground is given by the function $h(t) = -16t^2 + 12t$. What is the maximum height your feet will be above the ground? Will you be able to dunk the basketball?
6.	A diver is standing on a platform 24 ft above the pool. He jumps from the platform with an initial upward velocity of 8 ft/s. Use the formula $h(t) = -16t^2 + vt + s$, where h is his height above the water, t is the time, v is his starting upward velocity and s is his starting height. How long will it take for him to hit the water?

7.	A ball is thrown upward from a height of 15 ft with an initial upward velocity of 5 ft/s. Use the formula $h(t) = -16t^2 + vt + s$ to find how long it will take for the ball to hit the ground.
8.	One of the games at a carnival involves trying to ring a bell with a ball by hitting a lever that propels the ball into the air. The height of the ball is modeled by the equations $h(t) = -16t^2 + 39t$. If the bell is 25 ft above the ground, will it be hit by the ball.
9.	A ship drops anchor in a harbor. The anchor is 49 ft above the surface of the water when it is released. Use the vertical motion formula $h(t) = -16t^2 + vt + s$ to answer the following questions.
	a. What is the value of <i>s</i> , the starting height?
	b. What is the value of h when the anchor hits the water?
	c. The starting velocity is zero. After how many seconds will the anchor hit the water?
10.	An amateur rocketry club is holding a competition. There is cloud cover at 1000 ft. If a rocket is launched with a velocity of 315 ft/s, use the function $h(t) = -16t^2 + vt + h_0$ to determine how long the rocket is out of sight.

A trebuchet launches a projectile on a parabolic arc from a height of 47 ft at a velocity of 40 ft/s. Using the function $h(t) = -16t^2 + vt + h_0$, determine when the projectile will first reach a height of 60 ft and how many seconds later it will again be at 60 feet.	
During World War I, mortars were fired from trenches 3 feet down. The mortars had a velocity of 150 ft/s. Determine how long it will take for the mortar shell to strike its target	