機器學習 K-Means

授課老師:林彦廷

K-Means

- K-Means是常見的分群(Clustering)演算法之一
- K-Means屬於非監督式學習演算法
- 非監督式學習是資料並沒有標籤,讓機器直接從 資料中學習出規則

K-Means Intuition: Understanding K-Means

What K-Means does for you

What K-Means does for you

How did it do that?

STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid \rightarrow That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

STEP 1: Choose the number K of clusters: K=2

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid \rightarrow That forms K clusters

STEP 3: Assign each data point to the closest centroid \rightarrow That forms K clusters

STEP 3: Assign each data point to the closest centroid \rightarrow That forms K clusters

STEP 3: Assign each data point to the closest centroid \rightarrow That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

STEP 5: Reassign each data point to the new closest centroid.

STEP 5: Reassign each data point to the new closest centroid.

STEP 4: Compute and place the new centroid of each cluster

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

FIN: Your Model Is Ready

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

FIN: Your Model Is Ready

K-Means Intuition: Random Initialization Trap

If we choose K = 3 clusters...

...this correct random initialization would lead us to...

...the following three clusters

...the following three clusters

But what would happen if we had a bad random initialization?

STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid \rightarrow That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

STEP 1: Choose the number K of clusters: K = 3

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid \rightarrow That forms K clusters

STEP 3: Assign each data point to the closest centroid \rightarrow That forms K clusters

STEP 5: Reassign each data point to the new closest centroid.

STEP 5: Reassign each data point to the new closest centroid.

STEP 5: Reassign each data point to the new closest centroid.

STEP 5: Reassign each data point to the new closest centroid.

Solution

K-Means++

K-Means Intuition: Choosing the right number of clusters

组内平方和
$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2 + \sum_{P_i \text{ in Cluster 3}} distance(P_i, C_3)^2$$

组内平方和
$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2 + \sum_{P_i \text{ in Cluster 3}} distance(P_i, C_3)^2$$

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2$$

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2$$

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2 + \sum_{P_i \text{ in Cluster 3}} distance(P_i, C_3)^2$$

• The Elbow Method 手肘法則

• The Elbow Method 手肘法則

THE END

ytlin@mail.nptu.edu.tw