Compresión de imágenes sin pérdida a través de la súper resolución

Sheng Cao, Chao-Yuan Wu, Philipp Krähenbühl.

Citación

```
@article { cao2020lossless ,
   title = { Compresión de imagen sin pérdida a través de la superresolución
} ,
   author = { Cao, Sheng y Wu, Chao-Yuan y Kr {\ "a} henb {\" u} hl, Philipp
} ,
   año = { 2020 } ,
   journal = { arXiv preprint arXiv: 2004.02872 } ,
}
```

Si usa nuestra base de código, considere también citar L3C

Visión general

Esta es la implementación oficial de SReC en PyTorch . SReC enmarca la compresión sin pérdidas como un problema de súper resolución y aplica redes neuronales para comprimir imágenes. SReC puede lograr tasas de compresión de vanguardia en grandes conjuntos de datos con tiempos de ejecución prácticos. El entrenamiento, la compresión y la descompresión son totalmente compatibles y de código abierto.

Empezando

Recomendamos los siguientes pasos para comenzar.

- 1. Instala las dependencias necesarias
- 2. Descargue el conjunto de validación de Open Images
- 3. Ejecute la compresión en el conjunto de validación de imágenes abiertas con pesos de modelos entrenados

Instalación

Consulte aquí las instrucciones de instalación.

Pesas modelo

Hemos lanzado modelos entrenados para ImageNet64 y Open Images (PNG) . Todos los resultados de compresión se miden en bits por subpíxel (bpsp).

Conjunto de datos	Bpsp	Pesas modelo
ImageNet64	4.29	models / imagenet64.pth
Imágenes abiertas	2,70	modelos / openimages.pth

Formación

Para ejecutar el código, debe estar en el directorio de nivel superior.

```
python3 -um src.train \
    --train-path "path to directory of training images" \
    --train-file "list of filenames of training images, one filename per line" \
    --eval-path "path to directory of eval images" \
    --eval-file "list of filenames of eval images, one filename per line" \
    --plot "directory to store model output" \
    --batch "batch size"
```

Las imágenes de entrenamiento deben organizarse en forma de trainpath/filenamenombre de archivo en el archivo de tren. Lo mismo se aplica a las imágenes eval.

Hemos incluido nuestros archivos de capacitación y evaluación utilizados para ImageNet64 y Open Images (PNG) en el datasetsdirectorio.

Para ImageNet64, utilizamos un conjunto ligeramente diferente de hiperparámetros que los hiperparámetros de Open Images, que son los predeterminados. Para entrenar a ImageNet64 según la configuración de nuestro artículo, ejecute

```
python3 -um src.train \
    --train-path "path to directory of training images" \
    --train-file "list of filenames of training images, one filename per line"
\
    --eval-path "path to directory of eval images" \
    --eval-file "list of filenames of eval images, one filename per line" \
    --plot "directory to store model output" \
    --batch "batch size" \
    --epochs 10 \
    --lr-epochs 1 \
    --crop 64
```

Ejecute python3 -um src.train --helppara obtener una lista de hiperparámetros ajustables.

Evaluación

Dado un punto de control del modelo, esto evalúa bits teóricos / subpíxel (bpsp) en función de la probabilidad de registro. El log-verosimilitud bpsp limita el bpsp de compresión real.

```
python3 -um src.eval \
   --path "path to directory of images" \
   --file "list of filenames of images, one filename per line" \
   --load "path to model weights"
```

Compresión / Descompresión

Con torchac instalado, puede ejecutar compresión / descompresión para convertir cualquier imagen en archivos .srec. Lo siguiente comprime un directorio de imágenes.

```
python3 -um src.encode \
   --path "path to directory of images" \
   --file "list of filenames of images, one filename per line" \
   --save-path "directory to save new .srec files" \
   --load "path to model weights"
```

Si desea un tiempo de ejecución preciso, le recomendamos ejecutar Python con -obandera para deshabilitar las afirmaciones. También incluimos un -- decodeindicador opcional para que pueda verificar si descomprimir el archivo .srec proporciona la imagen original, así como proporcionar tiempo de ejecución para la decodificación.

Para convertir archivos .srec a PNG, puede ejecutar

```
python3 -um src.decode \
   --path "path to directory of .srec images" \
   --file "list of filenames of .srec images, one filename per line" \
   --save-path "directory to save png files" \
   --load "path to model weights"
```

Descargando ImageNet64

Puede descargar los conjuntos de capacitación y validación de ImageNet64 aquí .

Preparación de un conjunto de datos de imágenes abiertas (PNG)

Utilizamos el mismo conjunto de imágenes de capacitación y validación de Open Images que L3C .

Para imágenes de validación, puede descargarlas aquí.

Para **imágenes de entrenamiento** , por favor clone el repositorio L3C y ejecute el script desde aquí

Consulte este problema para conocer las diferencias entre Open Images JPEG y Open Images PNG.

Reconocimiento

Gracias a L3C por implementaciones de EDSR, mezclas logísticas y codificación aritmética. Un agradecimiento especial a Fabian Mentzer por informarnos sobre problemas con el script de preprocesamiento para Open Images JPEG y resolverlos rápidamente.