Supporting Bottleneck Structure Graphs in ALTO: Use Cases and Requirements

Jordi Ros-Giralt, Sruthi Yellamraju, Qin Wu, Richard Yang, Luis Contreras, Kai Gao, Jensen Zhang

I-Draft: draft-giraltyellamraju-alto-bsg-requirements-00.txt

https://datatracker.ietf.org/doc/draft-giraltyellamraju-alto-bsg-requirements/

IETF Plenary 113

ALTO WG Session

3/23/2022

Table of Contents

- Brief Introduction to Bottleneck Structures
- Bottleneck Structure Graph (BSG) Service: ALTO Use Cases
- Introducing Bottleneck Structures in the IETF ALTO WG: Requirements

Brief Introduction to Bottleneck Structures

Framework and Implementation Details in the Following Papers

- [1] "On the Bottleneck Structure of Congestion-Controlled Networks," ACM SIGMETRICS, Boston, June 2020 [https://bit.ly/3eGOPrb].
- [2] "Designing Data Center Networks Using Bottleneck Structures," accepted for publication at ACM SIGCOMM 2021 [https://bit.ly/2UZCb1M].
- [3] "Computing Bottleneck Structures at Scale for High-Precision Network Performance Analysis," SC 2020 INDIS, November 2020 [https://bit.ly/3BriwaB].
- [4] "A Quantitative Theory of Bottleneck Structures for Data Networks", Reservoir Labs Technical Report, 2021 [https://bit.ly/38u8ARs].

Conventional View: Single Bottleneck Model

Figure 1: Window Flow Control 'Self-clocking'

[*] Van Jacobson, "Congestion Avoidance and Control," SIGCOMM, 1988 [https://bit.ly/3FQouFf]

Problem Positioning: The Hiding Root Cause of System-Wide Performance

Analogy:

- Structure of the congestion problem in data networks:
 - The single-bottleneck problem is the tip of the iceberg (the symptom)
 - The bottleneck structure is the submerged portion (determines system-wide performance)

Communication Network:

Communication Network:

Communication Network:

Communication Network:

Communication Network:

Bottleneck Structure:

Flow bandwidth allocation: $\mathbf{r} = [8.3, 16.6, 8.3, 16.6, 75, 8.3]$

 f_5

f

Propagation Lemmas

bottleneck links.)

bottleneck links.)

bottleneck links.)

bottleneck links.)

Propagation Equations

Link and flow equations:

(a) Link equation:

(b) Flow equation:

Propagation Equations

Link and flow equations:

(a) Link equation:

(b) Flow equation:

Example:

(c) Link gradient: (d) Flow gradient:

Propagation Equations

Link and flow equations:

(a) Link equation:

Example:

(c) Link gradient: (d) Flow gradient:

Optimal Flow Throughput Reduction

Communication Network:

$$\mathbf{r} = [8.3, 16.6, 8.3, 16.6, 75, 8.3]$$
 $f_1 \quad f_2 \quad f_3 \quad f_4 \quad f_5 \quad f_6$

Optimal Flow Throughput Reduction

$$\mathbf{r} = [8.3, 16.6, 8.3, 16.6, 75, 8.3]$$

F: Total network flow

$$\partial F/\partial r_1^- = 1$$

$$\partial F/\partial r_2^- = 1$$

$$\partial F/\partial r_3^- = 1/4$$

$$\partial F/\partial r_4^- = 0$$

$$\partial F/\partial r_5^- = 1$$

$$\partial F/\partial r_6^- = -1/2$$

Optimal Flow Throughput Reduction

- (a) Without removing any flow.
- (b) Removing the heavy-hitter flow f_5 .

Table 3: As predicted by the theory of bottleneck ordering,

flow f_6 is a significantly higher impact flow than flow f_5 .

(c) Removing a low-hitter flow f_6 .

Types of Perturbations (derivatives) Supported by the Bottleneck Structure Graph

- Flow routing
- Traffic shaping (BW enforcement)
- Link capacity upgrades
- Link capacity fluctuations (e.g., SNR in a wireless channel)
- Path shortcuts
- Flow scheduling
- Flow completion
- Job mapping
- Multi-job scheduling

Bottleneck Structure Graph (BSG) Service: ALTO Use Cases

Bottleneck Structure Graphs (BSG): Use Cases

Potential WGs collaborations with ALTO

PANRG

PCE

TEAS

CDNI

COINRG

NETMOD

DETNET

NMRG / digital twins

CAN (BOF)

IAB / Path Signals

Others...

Bottleneck Structure Graphs (BSG): Use Cases Documented in the I-Draft

- Application Rate Limiting for CDN and Edge Cloud Applications
- Time-bound Constrained Flow Acceleration for Large Data Set Transfers
- Application Performance Optimization Through AI Modeling
- Optimized Joint Routing and Congestion Control
- Service Placement for Edge Computing
- Training Neural Networks and Al Inference for Edge Clouds, Data Centers and Planet-Scale Networks
- 5G Network Slicing

Bottleneck Structure Graphs (BSG): Use Cases Documented in the I-Draft

- Application Rate Limiting for CDN and Edge Cloud Applications
- Time-bound Constrained Flow Acceleration for Large Data Set Transfers
- Application Performance Optimization Through AI Modeling
- Optimized Joint Routing and Congestion Control
- Service Placement for Edge Computing
- Training Neural Networks and Al Inference for Edge Clouds, Data Centers and Planet-Scale Networks
- 5G Network Slicing

We will focus on "Optimized Joint Routing and Congestion Control". For details on all other use cases, see the I-Draft:

https://datatracker.ietf.org/doc/html/draft-giraltyellamraju-alto-bsg-requirements-00

Assume Google's B4 Network from [B4-SIGCOM]:

Figure 4: Google's B4 network introduced in [B4-SIGCOMM].

+	 -	
Link Adjacent data centers	Link	Adjacent data centers
11 DC1, DC2	111	DC10, DC12
12 DC1, DC3	112	DC4, DC5
13 DC3, DC4	113	DC5, DC6
14 DC2, DC5	114 	DC11, DC12
15 DC3, DC6	115 	DC4, DC7
16 DC6, DC7	116 	DC4, DC8
17 DC7, DC8	117 	DC7, DC8
18 DC8, DC10	118	DC9, DC11
19 DC9, DC10	119	DC10, DC11
110 DC7, DC11	+ 	
T		r+

Table 1: Link connectivity (adjacency matrix) in the B4 network.

Assume Google's B4 Network from [B4-SIGCOM] (human friendly version):

- Assume a simple configuration with a pair of flows (one for each direction) connecting every data center in the US with every data center in Europe.
- All links are assumed to have a capacity of 10 Gbps except for the transatlantic links (DC7-DC11 and DC8-DC10), which are configured at 25 Gbps.
- Then the bottleneck structure is the graph shown on the right.

Figure 4: Google's B4 network introduced in [B4-SIGCOMM].

Figure 5: Bottleneck structure of Google's B4 network example.

Suppose that an application needs to place a new flow on Google's B4 network to transfer a large data set from data center 11 (DC11) to data center 4 (DC4). There are multiple path choices:

- Using bottleneck structures, we can compute in O(V+E*log(V)) the path that will yield maximal throughput while considering the reaction of the congestion control algorithm (See [G2-TREP]).
- The optimal path corresponds to DC11 → I19 → DC10 → I8 → DC8 → I16 → DC4 yielding a throughput of 2.5 Gbps.
- Note that this is higher than the shortest path DC11 -> I10 -> DC7 -> I15 -> DC4, which yields a throughput of 1.429 Gbps.
- SLA management: Bottleneck structures can also be used to qualify and quantify the ripple effects produced on all other flows when placing the new flow to ensure their SLAs are preserved. See next slide.

Introducing Bottleneck Structures in the IETF ALTO WG: Requirements

Requirement 1: Bottleneck Structure Graph (BSG) Abstraction

- Requirement 1A (R1A). The ALTO server MUST compute the bottleneck structure graph to allow applications optimize their performance using the BSG service.
- Requirement 1B (R1B). The ALTO server MUST at least support the computation of one bottleneck structure type from Section 3.7. Depending on the network information available (e.g., presence of QoS class information), the ALTO server MAY support all the three bottleneck structure types, in which case the ALTO client MAY be able to choose the bottleneck structure type for retrieval. Also, it is RECOMMENDED that the ALTO server supports the computation of the path gradient graph (PGG) as the default bottleneck structure implementation for retrieval by the ALTO clients.

Requirement 2: Information Received from the Network

- Topology Object (T). The T Object is a data structure that includes:
 - (1) A Topology Graph (V, E), where V is the set of routers and E is the set of links connecting the routers in the network.
 - (2) A Capacity Dictionary (C), a key-value table mapping each link with its capacity (in bps).
- Flow Dictionary (F). The F Dictionary is a key-value table mapping every flow with the set of links it traverses.
- Requirement 2A (R2A). The ALTO server MUST collect information about (1) the set of routers
 and links in a network, (2) the capacity of each link and (3) the set of links traversed by each
 flow.

Requirement 3: Information Passed to the Application

- Requirement 3A (R3A). The ALTO client MUST be able to query the ALTO server to
 obtain the current bottleneck structure of the network, represented as a digraph.
- Requirement 3B (R3B). One or more ALTO services (the Network Map, the Cost Map, the Entity Property Map or the Endpoint Cost Map) MUST support reporting to ALTO clients additional network state information derived from the bottleneck structure to the ALTO client.

Requirement 4: Features Needed to Support the Use Cases

- Requirement 4A (R4A). The ALTO BSG service MUST be able to compute the effect
 of network reconfigurations using bottleneck structure analysis and according to the
 types described in Section 3.9.
- Requirement 4B (R4B). The BSG service MUST be able to update the bottleneck structure graph in near-real time, at least once a minute or less.

References

- [G2-SIGCOMM] Ros-Giralt, J., Amsel, N., Yellamraju, S., Ezick, J., Lethin, R., Jiang, Y., Feng, A.,
 Tassiulas, L., Wu, Z., and K. Bergman, "Designing data center networks using bottleneck structures",
 ACM SIGCOMM, 2021.
- [G2-TREP] Ros-Giralt, J., Amsel, N., Yellamraju, S., Ezick, J., Lethin, R., Jiang, Y., Feng, A., Tassiulas, L., Wu, Z., and K. Bergman, "A Quantitative Theory of Bottleneck Structures for Data Networks", Reservoir Labs (Qualcomm) Technical Report, 2021.
- [G2-SIGMETRICS] Ros-Giralt, J., Bohara, A., Yellamraju, S., Langston, H., Lethin, R., Jiang, Y., Tassiulas, L., Li, J., Tan, Y., and M. Veeraraghavan, "On the Bottleneck Structure of Congestion-Controlled Networks", ACM SIGMETRICS, 2020.
- [B4-SIGCOMM] Jain et al, S., "B4: Experience with a Globally-Deployed Software Defined WAN", ACM SIGCOMM, 2013.

Discussion Q&A

Thank you