Homework 3 STAT 5333 (Spring 2021)

Md Abul Hayat

Problem 2.22 (a)

Diagnosis	Drugs	No Drugs	Row Sum
Schizophrenia	105	8	113
Affective Disorder	12	2	14
Neurosis	18	19	37
Personality Disorder	47	52	99
Special Symptoms	0	13	13
Column Sum	182	94	276

```
# General Code
n_table= matrix(c(105,8,12,2,18,19,47,52,0,13), nrow=5, byrow=TRUE)
n_rows = dim(n_table)[1]
n_cols = dim(n_table)[2]
```

Finding $\{\hat{\mu}_{i,j}\}$

```
mu_table = matrix(rep(0,n_rows*n_cols), nrow=n_rows, byrow=TRUE)
for (i in 1:n_rows){
   for (j in 1:n_cols){
      mu_table[i,j]=(sum(n_table[i,])*sum(n_table[,j]))/sum(n_table)
   }
}
(mu_table)
```

```
## [,1] [,2]

## [1,] 74.514493 38.485507

## [2,] 9.231884 4.768116

## [3,] 24.398551 12.601449

## [4,] 65.282609 33.717391

## [5,] 8.572464 4.427536
```

Pearsons $\chi^2_{I-1,J-1}$ test statistic for $(I \times J)$ table

$$\chi_{I-1,J-1}^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}}$$

```
chi2_stat = sum((n_table-mu_table)^2/mu_table)
(chi2_stat)
```

[1] 84.18847

p-value of test statistic

```
df = (n_rows-1)*(n_cols-1)
p_value = 1-pchisq(chi2_stat,df)
(p_value)
```

[1] 0

There is significant evidence against H_0 hypothesis. Hence, drugs are *not* being prescribed irrespective of disease.

Problem 2.30

Treatment	Cancer Controlled	Cancer Not Controlled	Row Sum
Surgery	21	2	23
Radiation Therapy	15	3	18
Column Sum	36	5	41

Here, H_0 : $\theta = 1$ and H_{α} : $\theta > 1$

```
(phyper(20,36,5,23))
```

[1] 0.6191663

```
data = matrix(c(21,2,15,3),2,2,byrow=TRUE)
fisher.test(data,'greater')
```

```
##
## Fisher's Exact Test for Count Data
##
## data: data
## p-value = 0.6384
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.2089115 27.5538747
## sample estimates:
## odds ratio
## 2.061731
```