Introduction to Reinforcement Learning 2

Review

In the previous lecture, you learned:

Basic concept of reinforcement learning

Previous Reinforcement Learning

Markov Chain / Markov Decision Process

State-Value function

$$V^{\pi}(s) = \mathbb{E}_{\tau}[R^{\pi}(\tau)|s_0 = s] = r(s, \pi(s)) + \gamma \sum_{s'} P_{ss'}^{\pi(s)} V^{\pi}(s')$$

Previous Reinforcement Learning

- Value iteration
 - 1. Let V_0 be any vector in \mathbb{R}^N
 - 2. At each iteration $k = 1, 2, \dots, K$
 - ► Compute $V_{k+1} = \mathcal{T}V_k$ $\mathcal{T}W(x) = \max_{a \in A} [r(x,a) + \gamma \sum_{y} p(y|x,a)W(y)].$
 - 3. Return the *greedy* policy

$$\pi_K(x) \in \arg\max_{a \in A} \left[r(x, a) + \gamma \sum_y p(y|x, a) V_K(y) \right].$$

- Policy iteration
- Curses of modeling, dimensionality

State-action Value Function

 Also known as Q-function, which measures the value of action a for given state s

• Optimal policy $\pi*$ is the action that maximizes the sum of current and future rewards

$$\pi^*(s) = \operatorname*{argmax}_{a \in A} Q^{\pi^*}(s, a)$$

Action-Value Function

On policy vs. off policy

$$V^{\pi}(s) = r(s,\pi(s)) + \gamma \sum_{s'} P_{ss'}^{\pi(s)} V^{\pi}(s')$$

$$Q^{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} P^a_{ss'} Q^{\pi}(s',\pi(s'))$$

Value iteration

$$V^{\pi}(s) = r(s, a) + \gamma \sum_{s'} P_{ss'}^{a} V^{\pi}(s')$$

$$Q^{\pi^*}(s, a) = r(s, a) + \gamma \sum_{s'} P_{ss'}^{a} \max_{a' \in A} Q^{\pi^*}(s', a')$$

Q-learning

How do we solve the curse of modeling?

With Q-learning (value iteration, but 2nd step is approximated with sampling)!

With the (k+1)th sample of (s, a, r, s'):

$$Q_{k+1}^*(s,a) \approx Q_k^*(s,a) + \alpha_k (r + \gamma \max_{a' \in A} Q_k^*(s',a') - Q_k^*(s,a))$$
TD target Temporal-difference (TD) error

 Q^*_{k+1} converges to the optimal Q-function after many iterations (which should contain all state-action pairs).

As you can see, Q-learning is model-free (no need to know transition probabilities)

• In this example, we will show how to find the optimal way to get to room 5 from inside the room with the Q-learning algorithm.

 We can represent this problem with a graph in which each room is a node, and each door is a link

- Now we define the reward for each link. The doors that lead immediately to the goal (node 5) have a reward of 1.
- Other doors not directly connected to the target have zero reward like below.

- We can summarize the rewards for each state-action pair like the below table (R = reward table).
- The "state" means the current position of the agent and the "action" means moving to the room of that number.
- -1 represents an impossible state-action pair.

		Action								
	State	0	1	2	3	4	5			
	0	-1	-1	-1	-1	0	-1			
R =	1	-1	-1	-1	0	-1	1			
	2	-1	-1	-1	0	-1	-1			
	3	-1	0	0	-1	0	-1			
	4	0	-1	-1	0	-1	1			

• For example (state:1, action:3) means the agent in room 1 took an action to move to room 3, and the reward is 0

		Act	tion			
0	1	2	3	4	5	
-1	-1	-1	-1	0	-1	
-1	-1	-1	0	-1	1	
-1	-1	-1	0	-1	-1	
-1	0	0	-1	0	-1	
0	-1	-1	0	-1	1	ر ر
	-1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 0	0 1 2 -1 -1 -1 -1 -1 -1 -1 0 0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	0 1 2 3 4 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 0 -1 -1 0 0 -1 0	0 1 2 3 4 5 -1 -1 -1 -1 0 -1 -1 -1 -1 0 -1 1 -1 -1 -1 0 -1 -1 -1 0 0 -1 0 -1

۸ ما نام

- The Q-Learning algorithm (which is essentially value iteration) goes as follows:
 - 1. Set environment rewards and both the alpha and gamma parameters to a value between 0 and 1.
 - 2. Initialize matrix Q (or the Q-table).
 - 3. For each episode:
 - Set the initial state.
 Do while the current state is not a terminal state
 - Choose one among all possible actions for the current state.
 - Compute: $Q_{k+1}^*(s,a) \approx Q_k^*(s,a) + \alpha_k (r + \gamma \max_{a' \in A} Q_k^*(s',a') Q_k^*(s,a))$
 - Set the next state (determined by the action that was chosen) as the current state.
 - 4. The optimal policy is then the action that has the max value in the Q-table for each state.

- As we start, we will set the parameters gamma as 0.8, alpha as 1, and initial state as Room 1
- Initialize the Q-table as a zero matrix like below (Don't confuse this with the R matrix!)

		Action								
	State	0	1	2	3	4	5			
	0	0	0	0	0	0	0			
Q =	1	0	0	0	0	0	0			
	2	0	0	0	0	0	0			
	3	0	0	0	0	0	0			
	4	0	0	0	0	0	0			

• Look at the second row (state 1) of matrix R. There are two possible actions for the current state 1: go to state 3, or go to state 5. Let's say we select to go to 5 as our action.

	Action								
State	0	1	2	3	4	5			
0	-1	-1	-1	-1	0	-1			
1	-1	-1	-1	0	-1	1			
2	-1	-1	-1	0	-1	-1			
3	-1	0	0	-1	0	-1			
4	0	-1	-1	0	-1	1			

We update the Q-table.

$$Q(1, 5) = R(1, 5) + 0.8 * Max[Q(5, *)] = 1 + 0.8 * 0 = 1$$

Since room 5 is a terminal state, Q(5, *) = 0.

And then we can update the Q-table like below

				Ac	ction			
	State	0	1	2	3	4	5	
	0	0	0	0	0	0	0	
Q =	1	0	0	0	0	0	1	
	2	0	0	0	0	0	0	
	3	0	0	0	0	0	0	
	4	0	0	0	0	0	0	

- For the next episode, let's say state 3 is our initial state.
- Look at the fourth row of matrix R; it has 3 possible actions: go to state 1, 2 or 4.
 By random selection, we select to go to state 1 as our action.

Q(3, 1) = R(3, 1) + 0.8 * Max[Q(1, 3), Q(1, 5)] = 0 + 0.8 * 1 = 0.8

• And then we can update the value of Q(3,1) in Q Matrix like below

		Action								
	State	0	1	2	3	4	5			
	0	0	0	0	0	0	0			
Q =	1	0	0	0	0	0	1			
	2	0	0	0	0	0	0			
	3	0	0.8	0	0	0	0			
	4	0	0	0	0	0	0			

• Eventually the Q matrix converges

		Action								
	State	0	1	2	3	4	5			
	0	0	0	0	0	8.0	0			
Q =	1	0	0	0	0.64	0	1			
	2	0	0	0	0.64	0	0			
	3	0	8.0	0.51	0	8.0	0			
	4	0.64	0	0	0.64	0	1	ر ر		

Random Choice of the Action

- Reinforcement learning needs to balance exploitation and exploration
 - Exploitation: going for the best path
 - Exploration: choosing a random path just for the sake of exploring new paths

Epsilon-greedy algorithm: Choose an exploration probability ϵ Choose to either exploit or explore according to the probability (where exploiting would be the best action by looking at the Q-table)

Conclusion

- We learned about State-action value function (Q-function)
- We discussed Q-Learning process
- We Applied Q-learning concept in house escape example

	Action							
State	0	1	2	3	4	5		
0	-1	-1	-1	-1	0	-1		
1	-1	-1	-1	0	-1	1		
2	-1	-1	-1	0	-1	-1		
3	-1	0	0	-1	0	-1		
4	0	-1	-1	0	-1	1	ر	

Assignment 3

- The third assignment is open on KLMS
- You will be provided a Frozen Lake map like side picture
- Your goal is to train your robot (the red one) to reach the yellow destination point with Q-learning method
- You can refer to the uploaded documentation in KLMS to get more detailed information
- Due date: 5/25 23:59
- Submission Guidelines submit a zip file named "studentid_studentname.zip" containing the logs folder, the Q-table file named "q_table.npy", and student.py to KLMS

- If you have any questions, contact Email to TA with the following address
 - munjw777@kaist.ac.kr
 - shk0724@kaist.ac.kr
 - hochang.lee91@kaist.ac.kr

Thank you

