

ESTRUCTURAS DE DATOS Y ALGORITMOS

2º de Grado en Ingeniería Informática (Curso 2020-2021) PRÁCTICA 2

1. NORMAS GENERALES

- El código deberá mostrar modularidad, calidad, legibilidad y el uso apropiado de estructuras y la inclusión de comentarios. En esta práctica deberá codificarse tanto en C como en C#.
- 2. El alumno deberá subir a la plataforma virtual la práctica realizada. La subida al espacio habilitado podrá realizarse hasta el 02/12/2020 en convocatoria ordinaria y hasta el 13/06/2021 en convocatoria extraordinaria, ambas fechas inclusive.
- 3. En las Partes 1 y 3 podrá utilizarse, si el alumno lo desea, la plantilla proporcionada. Para las partes 2, 4 y 5 no se proporciona plantilla.
- 4. Se deberá subir únicamente un fichero *.rar, nombrado del siguiente modo: PR2_NombreApellido.rar (Ejemplo: PR2_AntonioPerez.rar). El nombre y el apellido del alumno no deberá contener acentos.
- 5. El fichero *.rar contendrá:
 - En el caso de C únicamente los ficheros fuente, nombrados siguiente modo: PR2_P1_NombreApellido.c, PR2_P2_NombreApellido.c (Ejemplo: PR2_P1_AntonioPerez.c, PR2_P2_AntonioPerez.c). El nombre y apellido del alumno, no deberán contener acentos.
 - En el caso C# todo el proyecto de Visual Studio.
- 6. Aquellos ejercicios cuyos ficheros de entrega no cumplan la normativa de nombrado se calificarán con 0 puntos.
- 7. El ejercicio deberá realizarse individualmente.

2. OBJETIVOS

• El objetivo es familiarizarse con algunas estructuras de datos: conjuntos, pilas, listas y colas.

3. ENUNCIADO

3.1. Primera parte: Conjuntos (en C)

Debe desarrollarse un programa en C en el que dados dos archivos Archivo1, Archivo2 que contienen palabras separadas por un blanco o fin de línea, se creen dos conjuntos con las palabras de Archivo1 y Archivo2, y se realicen determinadas operaciones con ellos.

Diseñar y codificar en C un programa que muestre por la salida estándar un menú con las siguientes opciones:

MENU

- 1. Mostrar conjuntos 1 y 2.
- 2. Unir conjuntos 1 y 2.
- 3. Intersección de conjuntos 1 y 2.
- 4. Diferencia de conjuntos 1 y 2.
- 5. Salir del programa.

3.2. Segunda parte: Conjuntos (en C#)

Debe desarrollarse un programa en C# que: introduzca en el conjunto 1 los números pares comprendidos entre 1 y 10, y en el conjunto 2 los números entre 1 y 10 múltiplos de cuatro. Debe utilizarse obligatoriamente la librería System.Collections así como las clase HashSet. El programa presentará el siguiente menú de opciones:

MENU

- 1. Mostrar conjuntos 1 y 2.
- 2. Unir conjuntos 1 y 2.
- 3. Intersección de conjuntos 1 y 2.
- 4. Diferencia de conjuntos 1 y 2.
- 5. Salir del programa.

Los resultados de las opciones 1, 2, 3 y 4 se mostrarán por pantalla. La opción 5 mostrará la palabra "Adios" y el programa terminará.

3.3. Tercera parte: Pilas y Colas (en C)

Diseñar y codificar en C un programa que muestre por la salida estándar un menú con las siguientes opciones:

MENU

- 1. Gestionar pilas.
- 2. Mostrar pilas.
- 3. Gestionar colas.
- 4. Mostrar colas.
- 5. Salir del programa.

Se describe a continuación la funcionalidad de cada una de estas opciones:

1. Gestionar pilas

Escribir un programa con el que se trabaje con un total de 4 pilas (n=4). Se solicitará al usuario dos enteros i, j, tal que $1 \le abs(i) \le n$. De tal forma que el criterio de selección y llenado de las pilas es el siguiente:

- Si i >0 se colocará el elemento j en la pila pi.
- Si i <0 se eliminará un elemento de la pila pi.
- Si i=0 no se hace nada.

Debe respetarse el mecanismo de gestión de pilas (accediendo por la cima).

2. Mostrar pilas

Esta opción muestra en pantalla el contenido de las pilas.

3. Gestionar colas

Escribir un programa con el que se trabaje con un total de 4 colas (n=4). Se solicitará al usuario dos enteros i, j, tal que $1 \le abs(i) \le n$. De tal forma que el criterio de selección y llenado de las colas es el siguiente:

- Si i >0 se colocará el elemento j en la cola ci.
- Si i <0 se eliminará un elemento de la cola ci.

Debe respetarse el mecanismo de gestión de colas (accediendo por la cola).

4. Mostrar colas

Esta opción muestra en pantalla el contenido de las colas.

5. Salir del programa

Escribe "Adios" y el programa termina.

Ejemplo de ejecución:

Elegimos la opción 1:

Introducimos el número 2 en la pila 1.

Elegimos la opción 2:

Elegimos la opción 1 e introducimos el número 5 en la pila 1.

Elegimos la opción 2:

Ahora elegimos la opción 1, quitamos el número 2 de la pila 1:

Elegimos la opción 2:

3.4. Cuarta parte: Pilas y Colas (en C#)

Mismo enunciado que el apartado 3.3 , pero en C#. Debe utilizarse obligatoriamente la librería System.Collections así como las clases Stack y Queue.

3.5. Quinta parte: listas enlazadas (en C)

Un polinomio puede ser descrito como una lista enlazada. El primer nodo de la lista simboliza el primer término, el segundo el segundo término y así de modo sucesivo. Cada nodo de la lista enlazada contiene el coeficiente y el exponente del término.

Diseñar y codificar en C un programa que muestre por la salida estándar un menú con las siguientes opciones:

MENU

- 1. Evaluar polinomio
- 2. Sumar dos polinomios
- 3. Obtener polinomio derivada.
- 4. Salir del programa.

Se describe a continuación la funcionalidad de cada una de estas opciones:

1. Evaluar polinomio

Está opción, para un polinomio p1, solicitará el coeficiente y el exponente del término al usuario y lo introducirá en una lista enlazada. El coeficiente y el exponente serán números enteros. Se pedirá al usuario un valor entero x, y calculará para él el valor del polinomio. Se mostrarán en pantalla: los términos del polinomio y el valor obtenido para x.

2. Sumar dos polinomios

Está opción, para cada polinomio p1 y p2, solicitará el coeficiente y el exponente del término al usuario y lo introducirá en una lista enlazada. El coeficiente y el exponente serán números enteros. Se pedirá al usuario un valor de x, y calculará para él el valor del polinomio suma. Se mostrarán en pantalla: los términos del polinomio suma y el valor obtenido para x.

3. Obtener polinomio derivada

Está opción, para un polinomio p1, solicitará el coeficiente y el exponente del término al usuario y lo introducirá en una lista enlazada. Se pedirá al usuario un valor de x, y calculará para él el valor del polinomio derivada. Se mostrarán en pantalla: los términos del polinomio derivada y el valor obtenido para x.

4. Salir del programa

Escribe "Adios" y el programa termina.