

(IFCT0310) ADMINISTRACIÓN DE BASES DE DATOS

- Computadores para BBDD -

Estructura de un computador como sistema de almacenamiento y gestión de datos

Los avances tecnológicos en materia de energía eléctrica

- Antigüedad: Los antiguos griegos, egipcios y romanos conocían ciertos fenómenos eléctricos.
- Siglo XVIII: Benjamin Franklin, científico y político estadounidense, experimentó con una cometa en una tormenta eléctrica en 1752 → Existencia de cargas eléctricas positivas y negativas, así como la teoría del flujo de carga eléctrica.
- Siglo XIX: Michael Faraday, científico británico → Su trabajo fue fundamental para el desarrollo de generadores y motores eléctricos.
- Siglo XIX: Thomas Edison y Nikola Tesla, entre otros, contribuyeron significativamente al desarrollo
 de sistemas de generación y distribución de electricidad en la forma en que la conocemos hoy.
 - ☑ Edison → Invención de la bombilla eléctrica y el sistema de corriente continua.
 - ☑ Tesla → Desarrolló sistemas de corriente alterna y numerosos dispositivos eléctricos.

Electricidad vs. Electrónica

Electricidad	Electrónica			
Altos voltajes (110 – 220) VAC	Bajos voltajes 5 – 12 V			
Corrientes Altas 15 Amp.	Corrientes Bajas 1 Amp. Uso en dispositivos pequeños GPS, Celulares, Computadores, Ipad, etc.			
Uso en electrodomesticos Nevera, T.V, Licuadora, Luz Domestica etc.				
Onda	Línea Recta			

La arquitectura Von Neumann

4 componentes

Periféricos de Entrada

La arquitectura Von Neumann

Representación de la información

 Los componentes electrónicos (semiconductores) manejan cargas eléctricas

Abstraemos dichas cargas mediante dos símbolos (bit):
 0 – descargado | 1 – cargado (Sistema digital binario)

¿Qué significado atribuimos a dichas cargas eléctricas desde la perspectiva de la gestión de la información y el conocimiento?

Representación de la información

El sistema digital binario, un milagro que sigue dando de qué hablar:

Representación de la información

Con un byte es posible realizar (28) 256 combinaciones diferentes:

990

Interpretación de la información: Aplicaciones binarias

Almacenaje de cantidades numéricas

Transformación de binario a decimal 11010011 = 211

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	1	0	1	0	0	1	1

- 1 minion a (28) 256 colores = 100px x 50px x 1 byte = 5000 bytes / 1024 = 4,9 Kb
- 1 minion a (2¹⁶) 65536 colores = 100px x 50px x 2 bytes = 10000 bytes / 1024 = 9,8 Kb
- 1 minion a (2³²) ~ 4,3 mill. colores = 100px x 50px x 4 bytes = 20000 bytes / 1024 = 19,5 Kb

Interpretación de la información: Aplicaciones binarias

Almacenaje de vídeos (datos masivos)

