

Elite Master's Programme in Advanced Materials and Processes

Miniproject Report

Summer Semester 2017

Self-Assembly of Core-Shell nanoparticles

This miniproject is in partial fulfilment (8 ECTS) of the M4 Module in the focal subject "Computational Material Science and Process Simulation"

Student's Name	The Artist of
	Trunov, Mikhail
Matriculation Number	
	22245933
Senior Supervisor	
_	Prof. Dr. rer. nat. Michael Engel
Direct Supervisor (where applicable)	
Institute where miniproject was carried out	MSS

Abstract

Core-shell nanoparticles have been extensively studied as potential candidates for a wide range of applications, including bioimaging, sensors, thermometry and more in recent years. Typically a core-shell nanoparticle has a multi-layered structure, consisting of a host core covered by one or several shells. Improvements in computer performance contributed to advances in the behavior of many body particle systems research. The simulation of core-shell nanoparticles has recently revealed interesting 2D structures that particles arrange in, which motivated this work to computationally study many body coreshell nanoparticle systems behavior in three dimensions.

The present work employs event-driven molecular dynamics to study core-shell particle self-assembly. Two simulation approaches are performed. In the first approach the shell potential is slowly being increased while shell-to-core ratio and packing density are kept constant. In the second approach a range of shell-potential vs packing density combinations is simulated at three different shell-to-core ratios. Two new particle crystal configurations are discovered. The first configuration represents modulated body-centered cubic structure. The second found configuration is an icosahedral quasi-crystal.

I hereby declare that this project report is my own work, that I have only made use of the cited and/or acknowledged documents/resources and that this report has not been previously submitted as academic coursework elsewhere.

Erlangen, 29.09.2017	Diffee .
Erlangen, 29.09.2017	L'IMPO

Elite Master's Programme in Advanced Materials and Processes

Miniproject Report

Summer Semester 2017

Self-Assembly of Core-Shell nanoparticles

Grading Sheet

This miniproject is in partial fulfilment (8 ECTS) of the M4 Module in the focal subject "Computational Material Science and Process Simulation"

Student's Name	Trunov, Mikhail
Matriculation Number	22245933
Grade awarded:	
Comments:	

City, Date	Signature of supervising professor or lecturer with permission to examine
(CIIV. Dale	i Signature di supervising professor di fecturer with permission to examine
orty, zace	orginature of supervising professor of recturer with permission to chamme

Note to grader: Please fill in and sign this form and return by mail or electronically to Dagmar Senft (MAP Office or dagmar.senft@fau.de) within 1 month after the submission.