# Interacting Hopf Algebras

Fabio Zanasi

Joint work with Filippo Bonchi and Paweł Sobociński



May 22, 2014

A principal ideal domain R



The calculus of string diagrams for subspaces over the field of fractions on R

#### Technology

A principal ideal domain R



The calculus of string diagrams for subspaces over the field of fractions on R

Mat R

#### Technology

A principal ideal domain R



The calculus of string diagrams for subspaces over the field of fractions on R



#### Technology

A principal ideal domain R



The calculus of string diagrams for subspaces over the field of fractions on R



#### Technology

A principal ideal domain R

The calculus of string diagrams for subspaces over the field of fractions on R



Cospan(MatR)

Lack's theory for

composing **PROPs** 

A principal ideal domain R



The calculus of string diagrams for subspaces over the field of fractions on R



#### Technology

A principal ideal domain R

The calculus of string diagrams for subspaces over the field of fractions on R



#### Technology

A principal ideal domain R



The calculus of string diagrams for subspaces over the field of fractions on R



#### Technology

A principal ideal domain R



The calculus of string diagrams for subspaces over the field of fractions on R



#### Technology

A principal ideal domain R



The calculus of string diagrams for subspaces over the field of fractions on R



#### Technology

Lack's theory for composing PROPs

#### **Applications**

Compositional understanding of theories of string diagrams appearing in various fields (concurrency, control theory, physics, ...).

# The Z<sub>2</sub> case

## The cube for $Z_2$



# The theory $\mathbb{IH}_{Z_2}$



#### Theories of string diagrams featuring both Bialgebras and Frobenius Algebras:

- o Quantum information: ZX-calculus [Coecke & Duncan '08]
- Concurrency: algebra of stateless connectors [Bruni, Lanese, Montanari
   '07], algebra of Petri Nets with boundaries [Sobocinski '10].

## Z<sub>2</sub>-subspace Relational Semantics

Semantics  $S: \mathbb{IH}_{Z_2} \to \mathbb{SV}_{Z_2}$ 



Domain of interpretation: the PROP  $SV_{Z_2}$  of  $Z_2$ -sub-vector spaces

- $\circ$   $\mathbb{SV}_{\mathsf{Z}_2}[n,m] = \text{subspaces of } \mathsf{Z}_2^n \times \mathsf{Z}_2^m$
- relational composition

## Z<sub>2</sub>-subspace Relational Semantics

Semantics  $S: \mathbb{IH}_{Z_2} \to \mathbb{SV}_{Z_2}$ 



Domain of interpretation: the PROP  $SV_{Z_2}$  of  $Z_2$ -sub-vector spaces

- $\mathbb{SV}_{\mathsf{Z}_2}[n,m]$  = subspaces of  $\mathsf{Z}_2^n \times \mathsf{Z}_2^m$
- relational composition

#### Characterization result

 $S: \mathbb{IH}_{z_2} \to \mathbb{SV}_{z_2}$  is an isomorphism.

⇒ Equality of string diagrams can be checked by computing their subspace.

## The cube for $Z_2$



## The cube for $Z_2$



8



















Idea: ring = abelian group + monoid + axioms describing their interaction



Idea: ring = abelian group + monoid + axioms describing their interaction

#### Composing PROPs [S.Lack, 2004]

PROPs are monads (in a certain bicategory)

PROP composition = Distributive law between monads

To define the PROP C;M we need a distributive law:

 $\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$ 



Idea: ring = abelian group + monoid + axioms describing their interaction

#### Composing PROPs [S.Lack, 2004]

PROPs are monads (in a certain bicategory)

PROP composition = Distributive law between monads

To define the PROP C:M we need a distributive law:

$$\lambda \colon \mathbb{M} : \mathbb{C} \Rightarrow \mathbb{C} : \mathbb{M}$$



Idea: ring = abelian group + monoid + axioms describing their interaction

#### Composing PROPs [S.Lack, 2004]

PROPs are monads (in a certain bicategory)

PROP composition = Distributive law between monads

To define the PROP C;M we need a distributive law:

$$\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$$
  
: Cospan( $\mathbb{F}$ )  $\Rightarrow$  Span( $\mathbb{F}$ )



 $\lambda: \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$  defined by pullback in  $\mathbb{F}$ :

$$n \int_{f}^{p} \int_{g}^{z} q m$$

$$\lambda \colon (p,q) \mapsto (f,g)$$



 $\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$  defined by pullback in  $\mathbb{F}$ :



 $\lambda: \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$  defined by pullback in  $\mathbb{F}$ :





 $\lambda: \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$  defined by pullback in  $\mathbb{F}$ :





 $\lambda: \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$  defined by pullback in  $\mathbb{F}$ :



#### $\mathbb{B}$ as composed PROP

- $\circ \mathbb{B} \cong \mathbb{C}; \mathbb{M}$
- $\circ \mathbb{B} \cong \operatorname{Span}(\mathbb{F})$





 $\lambda: \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$  defined by pullback in  $\mathbb{F}$ :



#### B as composed PROP

- $\circ \mathbb{B} \cong \mathbb{C}; \mathbb{M}$
- $\circ \mathbb{B} \cong \mathsf{Span}(\mathbb{F})$
- factorisation for B-circuits



## The cube for $Z_2$



## The theory of $Z_2$ -matrices

The PROP B of bialgebras characterises spans:

$$\mathbb{B} \cong \operatorname{Span}(\mathbb{F}) \cong \operatorname{Mat} \mathbb{N}$$

The PROP of antiseparable bialgebras characterises Z<sub>2</sub>-matrices:

 $\mathbb{H}\mathbb{A}_{\mathsf{Z}_2}\cong\mathsf{Mat}\,\mathsf{Z}_2$  (Y. Lafont, A. Burroni 1992-95)



## The theory of $Z_2$ -matrices

The PROP B of bialgebras characterises spans:

$$\mathbb{B} \cong \operatorname{\mathsf{Span}}(\mathbb{F}) \cong \operatorname{\mathsf{Mat}} \mathbb{N}$$

The PROP of antiseparable bialgebras characterises Z<sub>2</sub>-matrices:

$$\mathbb{HA}_{Z_2} \cong MatZ_2$$
 (Y. Lafont, A. Burroni 1992-95)



The matrix encoding of a string diagram of  $\mathbb{H}A_{Z_2}$ :

The PROP B of bialgebras characterises spans:

$$\mathbb{B} \cong \operatorname{\mathsf{Span}}(\mathbb{F}) \cong \operatorname{\mathsf{Mat}} \mathbb{N}$$

The PROP of antiseparable bialgebras characterises Z<sub>2</sub>-matrices:

$$\mathbb{HA}_{Z_2} \cong Mat Z_2$$
 (Y. Lafont, A. Burroni 1992-95)



The matrix encoding of a string diagram of  $\mathbb{H}A_{z_2}$ :



The PROP B of bialgebras characterises spans:

$$\mathbb{B} \cong \operatorname{\mathsf{Span}}(\mathbb{F}) \cong \operatorname{\mathsf{Mat}} \mathbb{N}$$

The PROP of antiseparable bialgebras characterises Z<sub>2</sub>-matrices:

$$\mathbb{HA}_{Z_2} \cong Mat Z_2$$
 (Y. Lafont, A. Burroni 1992-95)



The matrix encoding of a string diagram of  $\mathbb{H}\mathbb{A}_{z_2}$ :



The PROP B of bialgebras characterises spans:

$$\mathbb{B} \cong \operatorname{\mathsf{Span}}(\mathbb{F}) \cong \operatorname{\mathsf{Mat}} \mathbb{N}$$

The PROP of antiseparable bialgebras characterises Z<sub>2</sub>-matrices:

$$\mathbb{H}\mathbb{A}_{\mathsf{Z}_2} \cong \mathsf{Mat}\,\mathsf{Z}_2$$
 (Y. Lafont, A. Burroni 1992-95)



The matrix encoding of a string diagram of  $\mathbb{H}A_{z_2}$ :



The PROP B of bialgebras characterises spans:

$$\mathbb{B} \cong \operatorname{\mathsf{Span}}(\mathbb{F}) \cong \operatorname{\mathsf{Mat}} \mathbb{N}$$

The PROP of antiseparable bialgebras characterises Z<sub>2</sub>-matrices:

$$\mathbb{H}\mathbb{A}_{z_2} \cong \mathsf{Mat}\,\mathsf{Z}_2$$
 (Y. Lafont, A. Burroni 1992-95)



The matrix encoding of a string diagram of  $\mathbb{H}A_{z_2}$ :



#### The cube for Z<sub>2</sub>



O / NO / NE / NE / E











Composing  $\mathbb{H}\mathbb{A}_{\mathsf{Z}_2}$ ,  $\mathbb{H}\mathbb{A}_{\mathsf{Z}_2}^{op}$ : black-black & white-white interaction.

# Composing $\mathbb{H}\mathbb{A}_{\mathsf{Z}_2}$ and $\mathbb{H}\mathbb{A}_{\mathsf{Z}_2}^{op}$

Construct the PROP  $\mathbb{H}\mathbb{A}_{z_2}^{op}$ ;  $\mathbb{H}\mathbb{A}_{z_2}$  by pullback:



# Composing $\mathbb{H}\mathbb{A}_{\mathsf{Z}_2}$ and $\mathbb{H}\mathbb{A}_{\mathsf{Z}_2}^{op}$

Construct the PROP  $\mathbb{H}A_{z_2}^{op}$ ;  $\mathbb{H}A_{z_2}$  by pullback:



Read (in Mat  $Z_2$ ) the equations of  $\mathbb{H}A_{Z_2}^{op}$ ;  $\mathbb{H}A_{Z_2}$  out of pullback squares:



**Interacting Bialgebras are Frobenius!** 

# How are these axioms enough?

#### Correctness

• Each axiom is read off by some pullback square.

14/28

## How are these axioms enough?

#### Correctness

• Each axiom is read off by some pullback square.

#### Completeness

- All the equations arising by pullback squares are derivable by the axioms.
  - $\Rightarrow$  Pullbacks in Mat Z<sub>2</sub> are constructed essentially by computing kernels of matrices.
  - ⇒ The linear algebraic calculations yielding the kernel can be mimicked at the syntactic level (using the equational theory).
  - ⇒ Graphical linear algebra!

# A glance at the equational theory of $Span(Mat Z_2)$

$$Id_0 = \bigcirc - \bigcirc = \bigcirc - \bigcirc = \bigcirc - \bigcirc = \bigcirc - \bigcirc$$









$$\Psi(n \xrightarrow{A} z \xleftarrow{B} m) = \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathbf{Z}_{2}^{n}, \mathbf{y} \in \mathbf{Z}_{2}^{m}, A\mathbf{x} = B\mathbf{y} \} 
\Phi(n \xleftarrow{A} z \xrightarrow{B} m) = \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathbf{Z}_{2}^{n}, \mathbf{y} \in \mathbf{Z}_{2}^{m}, \exists \mathbf{z} \in \mathbf{Z}_{2}^{z}. A\mathbf{z} = \mathbf{x} \wedge B\mathbf{z} = \mathbf{y} \}$$



-  $\mathbb{IH}_{z_2}$  and  $\mathbb{SV}_{z_2}$  are pushout objects.

- Unique arrow 
$$S: \mathbb{IH}_{\mathbb{Z}_2} \xrightarrow{\cong} \mathbb{SV}_{\mathbb{Z}_2}$$
  $\xrightarrow{\mathbf{x}} \mathbf{y} \xrightarrow{\mathbf{x}+\mathbf{y}} \mathbf{x} \xrightarrow{\mathbf{x}} \mathbf{y}$ 

#### Benefits

- Cube construction revealing the modular structure of IH<sub>z<sub>2</sub></sub>.
- Functorial semantics  $S_{\mathbb{IH}_{Z_2}} : \mathbb{IH}_{Z_2} \to SV_{Z_2}$ .
- Factorisation properties of IH<sub>z2</sub>

Factorisation of  $\mathbb{IH}_{Z_2}^w$  (span)

 $\begin{array}{c|c} \mathbb{H}\mathbb{A}^{op}_{\mathbb{Z}_2} & \mathbb{H}\mathbb{A}_{\mathbb{Z}_2} \\ \mathbb{W}^{\mathbb{C}} & \mathbb{b}\mathbb{M} & \mathbb{D}^{\mathbb{C}} & \mathbb{W}\mathbb{M} \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} & \mathbb{D}^{\mathbb{C}} & \mathbb{D}^{\mathbb{C}} \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} & \mathbb{D}^{\mathbb{C}} \\ \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} & \mathbb{D}^{\mathbb{C}} \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} \\ \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} \\ \\ \mathbb{D} & \mathbb{D}^{\mathbb{C}} & \mathbb{D}^{\mathbb{C}$ 

Factorisation of  $\mathbb{IH}_{Z_2}^b$  (cospan)



# The general case

### The cube for an arbitrary PID



### The cube for an arbitrary PID



### Modular construction of $\mathbb{H}\mathbb{A}_{\mathsf{R}}$

∘ C;R;M is the composite of three PROPs



formed (equivalently, by  $\lambda_{\mathbb{R}}$ ;  $\mathbb{C}\sigma$  or  $\mathbb{R}\lambda$ ;  $\tau_{\mathbb{M}}$ ) via distributive laws

$$\bullet \ \lambda \colon \mathbb{M} \,; \mathbb{C} \Rightarrow \mathbb{C} \,; \mathbb{M} \\ \boxed{\bullet \bullet} = \boxed{\bullet} \quad \boxed{\bullet \bullet} = Id_0 \\ \boxed{\bullet} = \boxed{\bullet} \\ \boxed{\bullet} \quad \boxed{\bullet} = Id_0 \\ \boxed{\bullet} = \boxed{\bullet} \\ \boxed{\bullet} \quad \boxed{\bullet} = \boxed{\bullet} \quad \boxed{\bullet} \quad \boxed{\bullet} = \boxed{\bullet} \\ \boxed{\bullet} \quad \boxed{\bullet} = \boxed{\bullet} \quad \boxed{\bullet} \quad \boxed{\bullet} = \boxed{\bullet} \quad \boxed{\bullet} \quad \boxed{\bullet} = \boxed{\bullet} \quad \boxed{\bullet} \quad$$

• 
$$\sigma: \mathbb{M}; \mathbb{R} \Rightarrow \mathbb{R}; \mathbb{M}$$

• 
$$\tau: \mathbb{R}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{R}$$

 $\circ$   $\mathbb{H}A_R$  is  $\mathbb{C}$ ;  $\mathbb{R}$ ;  $\mathbb{M}$  quotiented by



• Interpretation of a string diagram of HA<sub>R</sub> as an R-matrix

• Interpretation of a string diagram of HA<sub>R</sub> as an R-matrix



• Interpretation of a string diagram of  $\mathbb{H}\mathbb{A}_R$  as an R-matrix



• Interpretation of a string diagram of HA<sub>R</sub> as an R-matrix



Interpretation of a string diagram of HA<sub>R</sub> as an R-matrix



Characterisation result

$$\mathbb{HA}_{R}\cong Mat\,R$$

(Y. Lafont 2003 - over fields)

## The cube for an arbitrary PID



### The cube for an arbitrary PID



#### The bottom face

$$\mathsf{Mat}\,\mathsf{R} + \mathsf{Mat}\,\mathsf{R}^{op} \longrightarrow \mathsf{Span}(\mathsf{Mat}\,\mathsf{R})$$

$$\mathsf{Cospan}(\mathsf{Mat}\,\mathsf{R}) \xrightarrow{\Psi} \mathbb{SV}_{\mathsf{R}} \xrightarrow{\Phi}$$

$$\Psi(n \xrightarrow{A} z \xrightarrow{B} m) = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathsf{k}^n, \, \mathbf{y} \in \mathsf{k}^m, \, A\mathbf{x} = B\mathbf{y}\}$$

$$\Phi(n \xleftarrow{A} z \xrightarrow{B} m) = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathsf{k}^n, \, \mathbf{y} \in \mathsf{k}^m, \, \exists \mathbf{z} \in \mathsf{k}^z. \, A\mathbf{z} = \mathbf{x} \land B\mathbf{z} = \mathbf{y}\}$$

#### The bottom face

$$\underbrace{\operatorname{Mat} \mathbf{R} + \operatorname{Mat} \mathbf{R}^{op} \longrightarrow \operatorname{Span}(\operatorname{Mat} \mathbf{R})}_{\Psi} \operatorname{SV}_{\mathbf{R}} \underbrace{\phantom{\operatorname{Mat} \mathbf{R}}}_{\Phi}$$

$$\Psi(n \xrightarrow{A} z \xleftarrow{B} m) = \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathsf{k}^n, \mathbf{y} \in \mathsf{k}^m, A\mathbf{x} = B\mathbf{y} \} 
\Phi(n \xleftarrow{A} z \xrightarrow{B} m) = \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathsf{k}^n, \mathbf{y} \in \mathsf{k}^m, \exists \mathbf{z} \in \mathsf{k}^z. A\mathbf{z} = \mathbf{x} \land B\mathbf{z} = \mathbf{y} \}$$

#### • Why R needs to be a PID?

- R is a PID iff submodules of free R-modules are free.
- Thus pullbacks in MatR exist and are as in the category of R-modules.
- For purely formal reasons also pushouts exist in MatR but generally do not coincide with those computed in the category of R-modules.

#### The bottom face

$$\underbrace{\operatorname{Mat} \mathsf{R} + \operatorname{Mat} \mathsf{R}^{op} \longrightarrow \operatorname{Span}(\operatorname{Mat} \mathsf{R})}_{\Psi} \to \mathbb{SV}_{\mathsf{R}} \xrightarrow{\Phi}$$

$$\Psi(n \xrightarrow{A} z \xleftarrow{B} m) = \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathbf{k}^n, \mathbf{y} \in \mathbf{k}^m, A\mathbf{x} = B\mathbf{y} \} 
\Phi(n \xleftarrow{A} z \xrightarrow{B} m) = \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathbf{k}^n, \mathbf{y} \in \mathbf{k}^m, \exists \mathbf{z} \in \mathbf{k}^z. A\mathbf{z} = \mathbf{x} \land B\mathbf{z} = \mathbf{y} \}$$

#### Why R needs to be a PID?

- R is a PID iff submodules of free R-modules are free.
- Thus pullbacks in MatR exist and are as in the category of R-modules.
- For purely formal reasons also pushouts exist in MatR but generally do not coincide with those computed in the category of R-modules.

#### Why subspaces over the field of fractions k of R?

- $\circ$   $\Psi$  and  $\Phi$  mimick the Set-like construction of pullbacks and pushouts.
- Functoriality of Ψ relies on the fact that k is a field and the category of (free) k-modules has Set-like pushouts.

### The cube for an arbitrary PID



## The cube for an arbitrary PID









$$\mathbb{H}\mathbb{A}_{\mathsf{R}} + \mathbb{H}\mathbb{A}_{\mathsf{R}}^{op} \longrightarrow \mathbb{I}\mathbb{H}_{\mathsf{R}}^{w}$$

$$\mathbb{I}\mathbb{H}_{\mathsf{R}}^{b} \longrightarrow \mathbb{I}\mathbb{H}_{\mathsf{R}}^{\mathsf{R}}$$





#### Further directions

• For k a field,  $\mathbb{IH}_{k[X]}$  can be thought as a theory of *stateful* connectors.



- $\Rightarrow$  We can characterise the sub-PROP of  $\mathbb{IH}_{k[X]}$  whose string diagrams are signal flow-graphs.
- ⇒ Study implementability of string diagrams as circuits.
- ⇒ Explore connection with John Baez's *Network Theory*.

#### Further directions

• For k a field,  $\mathbb{IH}_{k[X]}$  can be thought as a theory of *stateful* connectors.



- $\Rightarrow$  We can characterise the sub-PROP of  $\mathbb{IH}_{k[X]}$  whose string diagrams are signal flow-graphs.
- ⇒ Study implementability of string diagrams as circuits.
- ⇒ Explore connection with John Baez's *Network Theory*.
- Investigate the cube for
  - o integers (IHz characterises subspaces of rationals)
  - stochastic matrices (axiomatised by T. Fritz)
  - partial equivalence relations

#### Further directions

• For k a field,  $\mathbb{IH}_{k[X]}$  can be thought as a theory of *stateful* connectors.



- $\Rightarrow$  We can characterise the sub-PROP of  $\mathbb{IH}_{k[X]}$  whose string diagrams are signal flow-graphs.
- ⇒ Study implementability of string diagrams as circuits.
- ⇒ Explore connection with John Baez's *Network Theory*.
- Investigate the cube for
  - o integers (IHz characterises subspaces of rationals)
  - stochastic matrices (axiomatised by T. Fritz)
  - o partial equivalence relations
- Modular approach to the algebra of graphs (*cf.* Fiore & Campos) and of Petri nets.

#### References

- The general case
   Bonchi, Sobocinski, Z. Interacting Hopf Algebras
- The Z<sub>2</sub> case
   Bonchi, Sobocinski, Z. Interacting Bialgebras are Frobenius (FoSSaCS'14)
- The polynomial case Bonchi, Sobocinski, Z. A categorical semantics of signal flow graphs