PCDAC12-4

Analogue Output Board

Technical Manual

Product Information

Full information about other Arcom products is available via the **Fax-on-Demand System**, (Telephone Numbers are listed below), or by contacting our **WebSite** in the UK at: **www.arcom.co.uk** or in the US at: **www.arcomcontrols.com**

Useful Contact Information

Customer Support Sales

Tel: +44 (0)1223 412 428 Tel: +44 (0)1223 411 200 Fax: +44 (0)1223 403 400 Fax: +44 (0)1223 410 457 E-mail: support@arcom.co.uk E-mail sales@arcom.co.uk

or for the US

E-mail icpsales@arcomcontrols.com

United I	Kingdom	United	States	France		Germar	ıy	Belgiur	n
Arcom (Control Systems Ltd	Arcom	Control Systems Inc	Arcom (Control Systems	Kostenl	ose Infoline:	Groen I	Nummer:
Clifton I	Road	13510 S	outh Oak Street	Centre	d'affaires SCALDY	Tel:	0130 824 511	Tel:	0800 7 3192
Cambrid	dge CB1 4WH, UK	Kansas	City MO 64145 USA	23 rue (Colbert	Fax:	0130 824 512	Fax:	0800 7 3191
Tel:	01223 411 200	Tel:	816 941 7025	7885 SA	AINT QUENTIN	FoD:	0130 860 449		
Fax:	01223 410 457	Fax:	816 941 0343	Cedex,	FRANCE			Nether	lands
FoD:	01223 240 600	FoD:	800 747 1097	Tel:	800 90 84 06	Italy		Gratis	o6 Nummer:
				Fax:	800 90 84 12	Numero	Verde:	Tel:	06022 11 36
				FoD:	800 90 23 80	FoD:	1678 73600	Fax:	06022 11 48

The choice of boards or systems is the responsibility of the buyer, and the use to which they are put cannot be the liability of Arcom Control Systems Ltd. However, Arcom's sales team is always available to assist you in making your decision.

© 1996 Arcom Control Systems Ltd Arcom Control Systems is a subsidiary of Fairey Group Plc. Specifications are subject to change without notice and do not form part of any contract. All trademarks recognised. Arcom Control Systems Lid operate a company-wide quality management system which has been certified by the British Standards Institution (BSI) as compilant with ISO9001:1994

FREE Windows NT4.0 Drivers

Visit the 'PC(ISA) bus Boards' page on the Arcom Website, www.arcom.co.uk/ntdrv10_AR.exe to download.

Preface

Packing List

This product is shipped as follows:

- Board
- User Manual
- Utility Disk
- PCbus Library Datasheet

If any of the above appear to be missing, please telephone Arcom 01223 411200.

Utility Disk

This product is shipped with a utility disk which contains:

- PCbus library Manual
- Source Code for all PCbus I/O boards
- Test programs for calibration.

Handling

This board contains CMOS devices which could be damaged in the event of static electricity being discharged through them. At all times please observe anti-static precautions when handling the board and always unpack and install the board in an anti-static working area.

Please ensure that should a board need to be returned to Arcom, it is adequately packed and if a battery is fitted, that it is isolated.

Revision History

Manual	РСВ	Comments
Issue A	V1 Iss 1B	960724
Issue B	V1 Iss 1B	980116 [ECO2684].

Contents

Preface
Packaging list
Utility Disk
Handling (ESD/Packaging)2
Revision History
Introduction
Features
Getting Started
Operation
Reading or Writing to the Board6
Setting a DAC Value
Special Functions
I/O Map6
I/O Function Registers
DAC Data Registers7
Links8
Default Link Position Diagram
Base Address Switches
Board Functions
User Configuration Record Diagram9
Calibration
Connectors
Installation for CE Compliance
Circuit Diagrams

Introduction

The PCDAC12-4 is an 8-bit ISA bus add-on board with four 12-bit digital to analogue converters (DAC). Voltage output ranges of 5V or 10V, and uni-polar or bi-polar operation may be selected by jumpers. The board also supports 4-20mA current outputs sourced from a regulated 15V supply.

The D-50 I/O connector conforms to Arcom's standard Signal Conditioning System (SCS) and may be used to drive a range of Signal Conditioning Boards (SCB); see Arcom's PCbus catalogue for more details.

Features

- CE compliant design
- Four independent 12-bit DAC channels
- Voltage output ranges 5V, 10V or external.
- Uni-polar or bi-polar outputs.
- High stability on-board references, 25ppm/°C.
- Current loop outputs, 4-20mA, 15V sourced.
- Compact I/O addressing scheme (link selectable base address)
- Board access LED
- User controlled indicator LED
- 8-bit ISA bus interface
- I/O connector conforms to Arcom Signal Conditioning System (SCS)
- Operating temperature range +5°C to +55°C
- Power required: +5V @ 200mA typical, +12V @ 200mA max.
- MTBF: 235,000 hours (using generic figures from MIL-HDBK-217F at ground benign)

Getting Started

- Switch off PC
- Install board in supplied configuration
- Switch on PC
- Run EXAMP-01 (supplied on utility disk)
- An access LED should flash. If not check default link configuration.

Operation

Reading or Writing to the Board

Control of the PCO24 is achieved by writing to a **pointer register** and then accessing a **data register** to read or write the required I/O register. The pointer register need only be written with a new value if a different register is to be accessed. The board occupies only two bytes of PCbus I/O space. Each time the board is accessed the red LED will flash momentarily.

Setting a DAC value

The DAC channel is first selected by writing to the pointer register. On this board, unlike other Arcom ISA boards, the value is then written to two dedicated data registers. The standard function data register at Base+1 is not used when writing to the DAC's. DAC data is in binary for uni-polar operation and offset binary for bi-polar operation.

Special Functions

The PCDAC12-4 has two special function registers, User LED and Board Identifier. After the pointer register is set, Read/Write Data for either of these registers is addressed to Base+1

I/O Map

A value written to the Pointer register is used to select the Function register, or DAC channel next to be accessed.

This board occupies four consecutive addresses and must be set to an address which is a multiple of 4. (e.g. 180h, 184h, 200h)

Address	Read/Write	Register name	Register function
Base	Write only	Pointer register	Select DAC or data register
Base + 1	Read/write	Functions registers	On-boarddata/control
Base + 2	Write only	DAC low byte	LS Data to DAC
Base + 3	Write only	DAC high byte	MS data to DAC

I/O Function Registers

Pointer value (hex)	Read/Write	Function Register Name	Data Bit	Function
0	Write	DAC 0	None	Select DAC 0 for data write
01	Write	DAC 1	None	Select DAC 1 for data write
02	Write	DAC 2	None	Select DAC 2 for data write
03	Write	DAC 3	None	Select DAC 3 for data write
80	Write	User LED	Bit 0 only	1 = Green LED on
				0 = Green LED off
81	Read	Board identification	Bit 0-7	Always 29h for PCDAC12-4

DAC Data Registers

Address	Register Name	Data Bit	Function
Base +2	DAC low byte	Bit 0-3	Not Used
		Bit 4-7	DAC data bit 0-3
Base + 3	DAC high byte	Bit 0-7	DAC data bit 4-11

Links

Default Link Position Diagram

Base address switches

The three rotary switches adjust the base addresss of the board. A hexadecimal value for the address is shown directly in the dial windows.

Board functions

LK1, LK2, LK3, LK4

These links select the range independently for each DAC. LK1 operates with DAC0, LK2 with DAC1 etc.

+	LK14A	5V output range
	LK14B	10V output range
LK14C External range		External range

An external reference, or audio band AC signal must be connected to the corresponding input pin on the D50, when the 'C' position is set.

LK11, LK12, LK13, LK14

These links select uni-polar or bi-polar operation for the corresponding DAC channel. LK11 operates with DAC0, LK12 with DAC1 etc.

LK1114A Uni-polar voltage ou		Uni-polar voltage output
+	LK1114B	Bi-polar voltage output

Current loop outputs

To scale a current loop output correctly, the links must be set for the corresponding DAC voltage output:

LK14A	5V range
LK1114A	Uni-polar output

User Configuration Record Diagram

Link	Default	User
LK1		
LK2		
LK3		
LK4		
LK11		
LK12		
LK13		
LK14		

Calibration

PCDAC12-4 is accurately calibrated before leaving the factory, however re-calibration will be required from time to time. There are six trimmers on the board which are intended for fine adjustments only.

To calibrate the board, the test program, e.g. PCDAC124.bas or demda124.C., should be used and measurements made with a 5digit DVM (or better).

VR5, VR6 Reference Trim

VR5	10V reference adjust	
VR6	5V reference adjust	

- Set one of LK1 to LK4 to the desired range.
- Monitor the voltage at the link ref. analogue 0V.
- Adjust the corresponding trimmer to give exactly 5V or 10V

VR1, VR2, VR3, VR4 Channel Trim

These trimmers adjust individual channels, VR1 for DAC0, VR2 for DAC1 etc. The effect at the output is to adjust full-scale on a uni-polar channel, and to adjust the zero point for a bi-polar channel.

Uni-Polar Channel

- Set the jumpers for the required uni-polar range.
- Monitor the output voltage ref. analogue 0V.
- Use the program to set the DAC to half-scale (0800h)
- Adjust the corresponding trimmer to give 2.50V (5V range) or 5.00V (10V range).

Bi-Polar Channel

- Set the jumpers for the required bi-polar range.
- Monitor the output voltage ref. analogue 0V.
- Use the program to set the DAC to half-scale (0800h)
- Adjust the corresponding trimmer to give 0.00V.

Connectors

Signal Title	D Type No.	RC No.
+5V	50	50
+5V	17	49
+12V	33	48
-12V	49	47
D-A4 V.OUT	16	46
D-A3 V.OUT	32	45
D-A2 V.OUT	48	44
D-A1 V.OUT	15	43
	31	42
0VA	47	41
0VA	14	40
EXTIN4	30	39
0VA	46	38
EXTIN3	13	37
0VA	29	36
EXTIN2	45	35
0VA	12	34
EXTIN1	28	33
	44	32
OVA	11	31
	27	30
	43	29
	10	28
	26	27
	42	26
	9	25
	25	24
	41	23
	8	22
0VA	24	21
	40	20
	7	19
	23	18
	39	17
	6	16
	22	15
	38	14
	5	13
	21	12
0VA	37	11
0VA	4	10
D-A4 I.OUT	20	9
0VA	36	8
D-A3 I.OUT	3	7
0VA	19	6
D-A2 I.OUT	35	5
0VA	2	4
D-A1 I.OUT	18	3
0V	34	2
0V	1	1
		•

Installation for CE Compliance

To maintain compliance with requirements of the EMC Directive (89/336/EEC) this product must be correctly installed. The PC in which the board is housed must be CE compliant as declared by the PC Manufacturer. The external I/O cable should be Arcom CAB50CE or a fully screened cable to the same pattern.

- 1. Remove the cover of the PC observing any additional instructions of the PC manufacturer.
- **2**. Locate the board in a spare ISA slot and press gently but firmly into place.
- 3. Ensure that the metal bracket attached to the board is fully seated.
- **4**. Fit in the bracket clamping screw and firmly tighten this on the bracket.
- 5. Fit the screened I/O cable to the 50 way board connector.
- 6. Ensure that the jack screws for the cable connector are tightened (use a screw driver).
- 7. Replace the cover of the PC observing any additional instructions on the PC manufacturer.

The following standards have been applied to this product:

BS EN50081-1: 1992 Generic emissions standard, Domestic, commercial, light industry **BS EN50082-1**: 1992 Generic immunity standard, Domestic, commercial, light industry

BS EN55022 : ITE Emissions, Class B, Limits and methods.

Circuit Diagrams

