Power MOSFET

6 Amps, 30 Volts N-Channel SO-8 FETKY™

The FETKY product family incorporates low R_{DS(on)} MOSFETs packaged with an industry leading, low forward drop, low leakage Schottky Barrier rectifier to offer high efficiency components in a space saving configuration. Independent pinouts for MOSFET and Schottky die allow the flexibility to use a single component for switching and rectification functions in a wide variety of applications.

Features

Pb–Free Packages are Available

Applications

- Buck Converter
- Buck-Boost
- Synchronous Rectification
- Low Voltage Motor Control
- Battery Packs
- Chargers
- Cell Phones

MOSFET MAXIMUM RATINGS

(T_{.1} = 25°C unless otherwise noted) (Note 1)

, -			
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	30	Vdc
Drain-to-Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	V_{DGR}	30	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc
$ \begin{array}{ll} \text{Drain Current} - (\text{Note 2}) \\ - \text{ Continuous } @ \text{ T}_{\text{A}} = 25^{\circ}\text{C} \\ - \text{ Single Pulse (tp } \leq 10 \mu\text{s)} \\ \\ \text{Total Power Dissipation } @ \text{ T}_{\text{A}} = 25^{\circ}\text{C} \\ \text{ (Note 2)} \\ \end{array} $	I _D I _{DM} P _D	6.0 30 2.0	Adc Apk Watts
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 30$ Vdc, $V_{GS} = 5.0$ Vdc, $V_{DS} = 20$ Vdc, $I_L = 9.0$ Apk, $L = 10$ mH, $R_G = 25$ Ω)	E _{AS}	325	mJ

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Pulse Test: Pulse Width ≤ 250 μs, Duty Cycle ≤ 2.0%.
- Mounted on 2" square FR4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), 10 sec. max.

ON Semiconductor®

http://onsemi.com

MOSFET
6.0 AMPERES
30 VOLTS

24 m Ω @ V_{GS} = 10 V (Typ)

SCHOTTKY DIODE 6.0 AMPERES 30 VOLTS 420 mV @ I_F = 3.0 A

MARKING DIAGRAM & PIN ASSIGNMENT

SO-8 CASE 751 STYLE 18

E6N3 = Device Code x = Blank or S A = Assembly Location

Y = Year WW = Work Week ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMSD6N303R2	SO-8	2500/Tape & Reel
NTMSD6N303R2G	SO-8 (Pb-Free)	2500/Tape & Reel
NTMSD6N303R2SG	SO-8 (Pb-Free)	2500/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SCHOTTKY RECTIFIER MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}	30	Volts
DC Blocking Voltage	V_{R}		
Average Forward Current (Note 3) (Rated V _R) T _A = 104°C	I _O	2.0	Amps
Peak Repetitive Forward Current (Note 3) (Rated V _R , Square Wave, 20 kHz) T _A = 108°C	I _{frm}	4.0	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half-wave, single phase, 60 Hz)	I _{fsm}	30	Amps

THERMAL CHARACTERISTICS - SCHOTTKY AND MOSFET

Thermal Resistance – Junction-to-Ambient (Note 4) – MOSFET	$R_{\theta JA}$	167	°C/W
Thermal Resistance – Junction-to-Ambient (Note 5) – MOSFET	$R_{ heta JA}$	97	
Thermal Resistance – Junction-to-Ambient (Note 3) – MOSFET	$R_{\theta JA}$	62.5	
Thermal Resistance – Junction-to-Ambient (Note 4) – Schottky	$R_{\theta JA}$	197	
Thermal Resistance – Junction-to-Ambient (Note 5) – Schottky	$R_{\theta JA}$	97	
Thermal Resistance – Junction-to-Ambient (Note 3) – Schottky	$R_{\theta JA}$	62.5	
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect

- Mounted on 2" square FR4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), 10 sec. max.
 Mounted with minimum recommended pad size, PC Board FR4.
- 5. Mounted on 2" square FR4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), Steady State.

SCHOTTKY RECTIFIER ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristics		Symbol	Value		Unit
Maximum Instantaneous Forward Voltage (Note 6)		V _F	T _J = 25°C	T _J = 125°C	Volts
	$I_F = 100 \text{ mAdc}$ $I_F = 3.0 \text{ Adc}$ $I_F = 6.0 \text{ Adc}$		0.28 0.42 0.50	0.13 0.33 0.45	
Maximum Instantaneous Reverse Current (Note 6)	.,	I _R	T _J = 25°C	T _J = 125°C	
	V _R = 30 V		250 -	_ 25	μA mA
Maximum Voltage Rate of Change	V _R = 30 V	dV/dt	10,	000	V/μs

6. Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty Cycle} \leq 2.0\%$

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_C = 25^{\circ}\text{C unless otherwise noted})$

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage ($V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu\text{A}$)			30	_	-	Vdc
Temperature Coefficient (Positive)			-	30	-	mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS} = 24 \text{ Vdc}, T_J = (V_{DS} = 24 \text{ Vdc}, V_{DS}$	= 25°C) = 125°C)	I _{DSS}			1.0 20	μAdc
Gate-Body Leakage Current ($V_{GS} = \pm 20 \text{ Vdc}$, $V_{DS} = 0 \text{ Vdc}$)		I _{GSS}	-	-	100	nAdc
ON CHARACTERISTICS (Note 7)		•		1		•
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$ Temperature Coefficient (Negative)		V _{GS(th)}	1.0	1.8 4.6	2.5 -	Vdc mV/°C
Static Drain-to-Source On-State Re $(V_{GS} = 10 \text{ Vdc}, I_D = 6 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 3.9 \text{ Adc})$	esistance	R _{DS(on)}	<u> </u>	0.024 0.030	0.032 0.040	Ω
Forward Transconductance (V _{DS} = 15 Vdc, I _D = 5.0 Adc)		9FS	-	10	_	Mhos
DYNAMIC CHARACTERISTICS		•		•		•
Input Capacitance		C _{iss}	-	680	950	pF
Output Capacitance	$(V_{DS} = 24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	210	300	1
Reverse Transfer Capacitance	1 = 1.5 (8) (2)	C _{rss}	-	70	135	
SWITCHING CHARACTERISTICS (Notes 7 & 8)			· ·		•
Turn-On Delay Time		t _{d(on)}	-	9	18	ns
Rise Time	(V _{DD} = 15 Vdc, I _D = 1 A,	t _r	_	22	40	
Turn-Off Delay Time	$V_{GS} = 10 \text{ V},$ $R_G = 6 \Omega)$	t _{d(off)}	-	45	80	
Fall Time	g ,	t _f	-	45	80	
Turn-On Delay Time		t _{d(on)}	-	13	30	ns
Rise Time	(V _{DD} = 15 Vdc, I _D = 1 A,	t _r	-	27	50	
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V},$ $R_{G} = 6 \Omega$)	t _{d(off)}	-	22	40	
Fall Time	,	t _f	-	34	70	
Gate Charge		Q _T	-	19	30	nC
	(V _{DS} = 15 Vdc,	Q ₁	-	2.4	-	
	$V_{GS} = 10 \text{ Vdc},$ $I_{D} = 5 \text{ A})$	Q ₂	-	5.0	-	
	,	Q_3	_	4.3	_	
BODY-DRAIN DIODE RATINGS (No	ote 7)					
Diode Forward On-Voltage	$(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ V})$ $(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C})$	V _{SD}	- -	0.75 0.62	1.0 -	Vdc
Reverse Recovery Time		t _{rr}	-	26	-	ns
	$(I_S = 5 \text{ A}, V_{GS} = 0 \text{ V},$ $dI_S/dt = 100 \text{ A/}\mu\text{s})$	ta	-	11	_	
	αι5, αι = 100 / γμο)	t _b	-	15	-	
Reverse Recovery Stored Charge (I _S = 5 A, dI _S /dt = 100 A/μs, V _{GS} = 0 V)		Q _{RR}	-	0.015	-	μC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.

TYPICAL MOSFET ELECTRICAL CHARACTERISTICS

12

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance versus Drain Current and Temperature

Figure 4. On-Resistance versus Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus
Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

TYPICAL FET ELECTRICAL CHARACTERISTICS

Figure 13. FET Thermal Response

Figure 14. Diode Reverse Recovery Waveform

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

Figure 15. Typical Forward Voltage

Figure 16. Maximum Forward Voltage

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

Figure 17. Typical Reverse Current

Figure 18. Maximum Reverse Current

Figure 19. Typical Capacitance

Figure 20. Current Derating

Figure 21. Forward Power Dissipation

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

Figure 22. Schottky Thermal Response

TYPICAL APPLICATIONS

STEP DOWN SWITCHING REGULATORS

Synchronous Buck Regulator

TYPICAL APPLICATIONS

STEP UP SWITCHING REGULATORS

MULTIPLE BATTERY CHARGERS

TYPICAL APPLICATIONS

Li-Ion BATTERY PACK APPLICATIONS

- Applicable in battery packs which require a high current level.
- During charge cycle Q2 is on and Q1 is off. Schottky can reduce power loss during fast charge.
- During discharge Q1 is on and Q2 is off. Again, Schottky can reduce power dissipation.
- Under normal operation, both transistors are on.

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AG**

SOLDERING FOOTPRINT*

mm SCALE 6:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

FETKY is a trademark of International Rectifier Corporation.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and war engineer trademarks of semiconductor components industries, Ite (SciLLC) solitate services are injective to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE
- MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	1.27 BSC		0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 ° 8	
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

STYLE 18:

- PIN 1. ANODE
 - 2 ANODE 3.
 - SOURCE GATE
 - 5. DRAIN
 - 6. DRAIN
 - CATHODE
 - CATHODE