"Logistics regression is done in two ways"

$$\Rightarrow z = \vec{w} \cdot \vec{x} + b$$

$$\Rightarrow f(z) = \frac{1}{1 + e^{-2}}$$

$$f_{\omega_{|b}}(\vec{x}) = g(\vec{\omega} \cdot \vec{x} + b) = \frac{1}{1 + e^{-(\vec{\omega} \cdot \vec{x} + b)}}$$
$$= P(y = 1 \mid x; \vec{\omega}, b)$$

A threshold makes it easier to make decisions because we only have to predict categories.

• Is
$$\int_{\overrightarrow{w},b} (\overrightarrow{x}) \geq 0.5 \rightarrow \text{Yes} \qquad No$$

$$\widehat{\gamma} = 1 \qquad \widehat{\gamma} = 0$$

$$\Rightarrow g(z) \geq 0.5$$

$$\Rightarrow \overrightarrow{w} \cdot \overrightarrow{x} + b \geq 0 \text{ (refer from graph in brev. notes; } g(0) = 0.5)$$

$$\Rightarrow y = 1$$

• Is
$$f_{\vec{w},b}(\vec{x}) \stackrel{\checkmark}{\sim} 0.5 \rightarrow \text{Yes}$$
 No $\hat{\gamma} = 0$ $\hat{\gamma} = 1$

$$\Rightarrow 9^{(z)} < 0.5$$

$$\Rightarrow \vec{w} \cdot \vec{x} + 6 < 0.5$$

$$\Rightarrow \hat{\gamma} = 0$$

This threshold is graphically shown using a decision boundary.

Decision Boundary

$$f_{\omega_1 b}(\vec{x}) = g(z) = g(\omega_1 x_1 + \omega_2 x_2 + b)$$

two variables

Let
$$w_1 = 1, w_2 = 1$$
 and $b = -3$

decision boundary equation

$$z = \overrightarrow{w} \cdot \overrightarrow{x} + b = 0$$
, $z = x_1 + x_2 - 3 = 0$

O because it is the deciding factor (less than $0 = \hat{y} = 0$ and greater than or equal to $0 = \hat{\gamma} = 1$

$$x_1 + x_2 - 3 = 0$$

 $\Rightarrow x_1 + x_2 = 3$ is the decision boundary line

Non-linear decision boundaries

Decision boundaires are not necessarily lines, it

for eq. let's take a polynomial empression

$$f_{\vec{w},b}(\vec{x}) = g(z) = g(w, x_1^2 + w_2 x_2^2 + b)$$

Let $w_1 = 1$, $w_2 = 1$ and $b = -1$

$$Z = x_1^2 + x_2^2 - 1 = 0$$
; $x_1 + x_2 = 1$

eg. of more complex decision boundaries

$$f_{\vec{w},b}(\vec{x}) = g(w_1x + w_2x_2 + w_3x_1^2 + w_4x_1x_2 + w_5x_2^2)$$

formed using feature engineering and polynomials of higher order

