第一章 邏輯與推論

★邏輯定義: 邏輯是應用一些規則來做推論,形式邏輯 (formal logic) 或符號邏輯 (symbolic logic) 是可應用在任可觀念上的推論方法。我們僅討論命題邏輯 (propositional logic)及述詞邏輯 (predicate logic)。

1.1 邏輯運算

- (1)命題可以經由邏輯運算 (logical operations) 產生新的命題
 - ① "非" (not): 命題 p 的否定命題 (negation), 為 "非 p" , 以 ¬p 表示之。 (T 表真, F 表假)

p	$\neg p$	
$\mid T \mid$	F	
F	T	

② "<u>目</u>" (and): 命題 "p 且 q",稱 "合取命題" (conjunction),以 p ^ q 表示之。

p	q	$p \wedge q$
T	T	T
$\mid T \mid$	F	F
$\mid F \mid$	T	F
F	F	F

③ "或" (or): 命題 "p 或 q",稱 "選言命題" (disjunction),以 p∨q 表示之。

p	q	$p \lor q$
$\mid T \mid$	$\mid T \mid$	T
$\mid T \mid$	F	T
F	T	T
F	F	F

離散數學重點講義

④ "若...則..." (if... then...): 命題若"p 則 q",稱蘊涵式 (implication) 或條件句 (conditional),以 p → q 表示之。其中 p 稱為前提 (premise) 或假設(hypothesis), q 稱為結論 (conclusion)

p	q	$p \rightarrow q$
T	T	T
$\mid T \mid$	F	F
F	T	T
$\mid F \mid$	F	T

⑤ "若且唯若" (if and only if): 命題"p 若且唯若 q", 為命題 p → q 及其逆命題(converse) q → p 所結合而成的雙條件句 (biconditional), 以 p↔q 表示之。

p	\overline{q}	$p \leftrightarrow q$
T	T	T
$\mid T \mid$	F	F
F	T	F
F	F	T

(2)邏輯運算符號的優先順序

運算符號	優先順序
¬	1
\wedge	2
$\vee \oplus$	3
\rightarrow	4
\leftrightarrow	5

1.2 命題邏輯的應用

(1)將日常語句翻譯成邏輯符號

※例題 1-1: 只有戶籍在永康的新生與外籍生才可以申請住學校宿舍。

(令 n 表示「你是新生」、t 表示「你的戶籍在永康」、f 表示「你是外籍生」、d 表示「你可以申請住學校宿舍」。)

 $d \rightarrow n \wedge \neg t \vee f$

1.3 邏輯等價

(1) 當 p, q 兩個命題有相同的真假值時, 即 p 值為真時 q 值為真, p 值為假時 q 值為假, 反之亦然, 則稱 p、q 為邏輯等價或簡稱等價, 表示為 p ≡ q。例如,

"A 君身高超過 180 公分"與 "A 君身高不在 180 公分以下"是等價的。

※例題 1-2: 只有兩位老耆,一個說"好東西不會便宜",另一位說"便宜的東西不會好",這兩句話的意思是否等價。

令 p 表命題"東西是好的", q 表命題"東西便宜", 故第一位說的是 p → ¬q, 而第二位說的是 q → ¬p, 由真值表可知其等價。

p	q	$\neg p$	$\neg q$	$p \to \neg q$	$q \to \neg p$
T	$\mid T \mid$	F	F	F	F
$\mid T \mid$	$\mid F \mid$	F	T	T	T
$\mid F \mid$	$\mid T \mid$	T	F	T	T
F	$\mid F \mid$	T	T	T	T

※例題 1-3 試証以下的命題為等價:

- 1. 若週末天氣晴朗且無事情,我將去百貨公司。
- 2. 若週末天氣明朗, 則若無事情, 我將去百貨公司。

定義 p, q, r 如下:

p: 週末天氣晴朗

q: 無事情

r: 我將去百貨公司

則第一個命題表為 $(p \land q) \rightarrow r$,第二個命題表為 $p \rightarrow (q \rightarrow r)$,由真值表可知兩者等價。

p	q	r	$p \wedge q$	$p \wedge q \rightarrow r$	$q \rightarrow r$	$p \to (q \to r)$
T	T	T	T	T	T	T
$\mid T \mid$	T	F	T	F	F	F
$\mid T \mid$	F	T	F	T	T	T
T	F	F	F	T	T	T
F	T	T	F	T	T	T
F	T	F	F	T	F	T
F	F	T	F	T	T	T
F	F	F	F	T	T	T

離散數學重點講義

(2)邏輯等價之命題

①同一律 (identity laws)

$$p \wedge T \equiv p$$

$$p \vee F \equiv p$$

②支配律 (domination laws)

$$p \vee T \equiv T$$

$$p \wedge F \equiv F$$

③冪等律 (Idempotent Laws)

$$p \wedge p \equiv p$$

$$p \vee p \equiv p$$

④雙否定律 (Double negation law)

$$\neg(\neg p) \equiv p$$

⑤交換律 (Commutative laws)

$$p \wedge q \equiv q \wedge p$$

$$p \vee q \equiv q \vee p$$

⑥結合律 (Associative laws)

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

$$p \vee (q \vee r) \equiv (p \vee q) \vee r$$

⑦分配律 (Distributive laws)

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

⑧笛摩根定律 (De Morgan's laws)

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

⑨吸收律 (Absoption laws)

$$p \vee (p \wedge q) \equiv p$$

$$p \wedge (p \vee q) \equiv p$$

⑩否定律 (negation laws)

$$p \vee \neg p \equiv T$$

$$p \wedge \neg p \equiv F$$

離散數學重點講義

⑪逆反命題之等價

$$p \,\rightarrow\, q \,\equiv\, \neg q \,\rightarrow\, \neg p$$

12其他

$$p \rightarrow q \equiv \neg p \lor q$$
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$
$$p \rightarrow p \equiv T$$