an ordinary differential equation CODE) is an equation that involves an unknown function of one variable, and its derivatives (Arrit, second, third, in). The order of an OPE is the order of the highest derivative in the ODE. $\frac{dy}{dx} = y' \qquad \frac{d^2y}{dx^2} = y''$ Note: $y' = \cos(x+y)$ first order Bramples y = y2x+xy+y Second order $\frac{J^3y}{Jx^3} + \frac{3}{Jx} = 7xy$ third order

Goal: Gren an ODE, find y that satisfies the ODE.
Example: $y''q-y'+y=e^{x}(x+1)$
Note $y = xe^{x}$ is a solution because $y' = e^{x} + xe^{x}$ $y'' = e^{x} + e^{x} + xe^{x}$ $y'' = e^{x} + e^{x} + xe^{x}$ $y'' - y' + y = e^{x} + xe^{x} = e^{x}(x+1)$
Vertying a solution & easy. Finding a solution is hard,
Growth Pecay equation (no tel.
Rate of change of y = 5%, i.e. proportional to y,
de zky where KER or Kisa constant.
If K70, Hen #20 always and you have uprestruted growth
It KCO, Hon of Lo always and you have radioactive decay
It has then the and the population stays constant.

The second department of the second department

and the second of the second o

Physics Example
Horri M
Hooke's law! restoring force = -kx where k is the spring constant.
$F=ma (Newton's Law)$ $-kx = m \cdot \frac{d^2x}{dt^2} \Rightarrow x'' = (-k)x$
Simple Harmonic Oscillator bet j=(k) 12 . Hen for any constant C.
Let $J = (m)$ then for any constant L . $X = C \sin C j t$) is a solution, $X' = j C \sin c j t$) $X'' = j^2 (-c \sin c j t)$ $= -k C \sin c j t$) Similarly $X = C \cos c j t$) is a solution.
13 a solution. 1. The general solution is Cysin(3t) + Cycos (3t)

The control of the co

Often we want to solve an an initial condition.	ODE subject to
Bx: $= 2y$ $y(0) = 0$	<u> </u>
The general solutions your we want $\gamma(0)=4$ $4=\gamma$ is general solution subject to $4e^{2x}$.	
	entre de la companya
······································	e e e e e e e e e e e e e e e e e e e

·	e e como e e como como como como e como e como como