Example Programs

Example programs are provided below for your use.

Environment Variable

Set this:

```
export HABANA_LOGS=~/.habana_logs
```

Copy Examples

Habana provides examples of some well known Al applications under the path. Clone the repository to your home directory.

```
cd
git clone -b 1.8.0 https://github.com/HabanaAI/Model-References.git
cd Model-References
```

Set PYTHONPATH

Find the Python path using the command:

```
which python3
```

The output will look something like:

```
/usr/bin/python3
# Or inside a virtual environment
/home/CELSGCEUserID/my_env/bin/python3
```

Set PYTHONPATH

```
export PYTHONPATH=/path/to/python3
```

Then

```
export PYTHONPATH=/path/to/Model-References:$PYTHONPATH
```

If Model-References is in your root directory, the command would be

```
export PYTHONPATH=~/Model-References:$PYTHONPATH
export PYTHONPATH=~/Model-References:$(which python)
```

Common Arguments

Below are some of the common arguments used across most of the models in the example code.

Argument	Default	Help
-b	1	Batch size for training
-batch-size		
epochs	1	Number epochs for training
world_size	1	world_size
distributed		Distribute training
hpu		Gaudi training

Argument	Default	Help
data_type		Specify data type to be either bf16 or fp32.
distributed		whether to enable distributed mode
		and run on multiple devices

MNIST

Change directory

cd ~/Model-References/PyTorch/examples/computer_vision/hello_world

Demo_mnist Arguments

Argument	Default	Help
Ir	1.0	Learning rate for training
gamma	0.7	Learning rate step gamma
data-path	'/data'	input data path for train and test

Single Gaudi Run Commands

Single Gaudi FP32 eager mode run command:

python mnist.py --hpu

Single Gaudi BF16 eager mode run command:

```
python mnist.py --hpu --hmp
```

Single Gaudi FP32 lazy mode run command:

```
python mnist.py --hpu --use_lazy_mode
```

Single Gaudi BF16 lazy mode run command:

```
python mnist.py --hpu --hmp --use_lazy_mode
```

Multi-HPU run commands

NOTE: These run examples use PyTorch DDP, Distributed Data Parallel. This is accomplished by using model replica, splitting of data, and averaging the gradient through allreduce. The HCCL, Habana Collective Communication Library, is used to perform these operations.

There are eight Gaudi cards on the system.

On 8 HPU, 1 HLS and in FP32 eager mode, run the following command:

```
mpirun -n <mark>8 --bind-to core --map-by slot:PE=7 --rank-by core --report-bindings -- allow-run-as-root python mnist.py --batch-size=64 --epochs=1 --lr=1.0 --gamma=0.7 --hpu</mark>
```

On 8 HPU, 1 HLS and in BF16 eager mode, run the following command:

```
mpirun -n <mark>8 --bind-to core --map-by slot:PE=7 --rank-by core --report-bindings -- allow-run-as-root python mnist.py --batch-size=64 --epochs=1 --lr=1.0 --gamma=0.7 --hpu --hmp-bf16=ops_bf16_mnist.txt --hmp-fp32=ops_fp32_mnist.txt</mark>
```

On 8 HPU, 1 HLS and in FP32 lazy mode, run the following command:

```
mpirun -n <mark>8 --bind-to core --map-by slot:PE=7 --rank-by core --report-bindings -- allow-run-as-root python mnist.py --batch-size=64 --epochs=1 --lr=1.0 --gamma=0.7</mark>
```

```
--hpu --use_lazy_mode
```

On 8 HPU, 1 HLS and in BF16 lazy mode, run the following command:

```
mpirun -n 8 --bind-to core --map-by slot:PE=7 --rank-by core --report-bindings --allow-run-as-root python mnist.py --batch-size=64 --epochs=1 --lr=1.0 --gamma=0.7 --hpu --hmp-bf16=ops_bf16_mnist.txt --hmp-fp32=ops_fp32_mnist.txt --use_lazy_mode
```

A DOE Office of Science User Facility

Argonne
National
Laboratory
9700 South
Cass Avenue
Building 240
Argonne, IL
60439
Contact

Internal Admin

© 2023 Argonne Leadership Computing Facility

