$\neg \Box (A \land \neg \Box A)$ (in KT)

Build a Tableau

To Check Whether it is Valid

Hypothesis

 $\neg \Box$ (A $\land \neg \Box$ A) is a theorem of KT.

• So we can use all the rules, plus the special rules for T.

 $\neg \Box (A \land \neg \Box A)$

1. 1, $\mathbb{F} \neg \Box (A \land \neg \Box A)$ Assumption

Start with it being false at 1.

$$\neg \Box (A \land \neg \Box A)$$

Turn false ¬ false into true unnegated sentence.

$$\neg \Box (A \land \neg \Box A)$$

It's KT, so whatever is necessary is true.

$$\neg \Box (A \land \neg \Box A)$$

1.	1,	Assumption
2.	1,	¬ ⊤ , 1
3.	1, T A∧¬□A✓	T 🗆 2
4.	1, ⊤ A	∧T, 3
5.	1,	∧T,3

Both sides of a conjunction have to be true.

$$\neg \Box (A \land \neg \Box A)$$

1.	1,	Assumption
2.	1,	¬ ⊤ , 1
3.	1, T A∧¬□A✓	T 🗆 2
4.	1, ⊤ A	∧T, 3
5.	1, T ¬□A✓	∧T, 3
6.	1,	¬ ೯ , 5

Whatever isn't true is false.

 $\neg \Box (A \land \neg \Box A)$

1.	1,	Assumption
2.	1,	¬⊤,1
3.	1, T A∧¬□A✓	T 🗆 2
4.	1, ⊤ A	∧T,3
5.	1, T ¬□A✓	∧T, 3
6.	1,	¬೯, 5
7.	1.1,	□ F ,6

A false Box sentence requires a world that makes it false. What can we do now?

¬ □ (A ∧ ¬ □ A)

1.	1,	Assumption
2.	1,	¬ ⊤ ,1
3.	1, T A∧¬□A✓	T □ 2
4.	1,	∧ T ,3
5.	1, T ¬□A✓	∧ T , 3
6.	1,	¬ , 5
7.	1.1, F A	□ F ,6
8.	1.1,	□ T , 2

Line 3 is a \square sentence, so the unboxed part applies everywhere accessible.

$\neg \Box (A \land \neg \Box A)$

1.	1,	Assumption
2.	1,	¬ ⊤ , 1
3.	1, T A∧¬□A✓	T □ 2
4.	1, ⊤ A	∧T, 3
5.	1, T ¬□A✓	∧T, 3
6.	1,	¬೯,5
7.	1.1,	□ F , 6
8.	1.1, T A∧¬□A✓	□ T , 2
9.	1.1, ⊤ A	∧T,8
	×	

And both parts of an and sentence have to be true - though the first is enough to close this tree.

Philosophical Consequences

- This is a philosophically interesting result.
- If

 means "Is known by X", then it says that X can't know of a
 particular proposition that it is true but they don't know it.
- Assuming that X is not omniscient, so there are some things they don't know, this means there are limits to X's knowledge.

Idealism

- Let B = "Brian doesn't know that B is true". (And assume, for now, that this kind of self-reference makes sense.
- That's surely true. My knowing it implies a contradiction in the way we've just shown.
- So we all know it, because we can all follow the proof.

Idealism

- Let B = "Brian doesn't know that B is true". (And assume, for now, that this kind of self-reference makes sense.
- That's surely true. My knowing it implies a contradiction in the way we've just shown.
- · So we all know it, because we can all follow the proof.
- Except wait it's true, and it says I don't know it, so I must not know it.
- So there's something you all know that I don't know.
- Though just why I don't know it is something of a mystery, since I do have a well-supported (and correct) belief that it is true.