Tangente en 0:
$$y = 1 + \frac{1}{2}x$$

Tongente en 0: $y = 1 + \frac{1}{2}x$

Position de \mathcal{C} par rapport à T : $f(a) - \left(4 + \frac{1}{2}x\right) = -\frac{1}{9}x^{2}$

Signe de $-\frac{1}{9}x^{2}$: $\frac{x}{3} - \frac{1}{2}x - \frac{1}{9}x^{2}$

Done pour tout x voisin de 0 , \mathcal{C} est au-dessous de T .

Tangente en 0: $y = 2 + x$

Position de \mathcal{C} par rapport à T : $f(a) - (2 + a) = \frac{1}{9}x^{2}$

Tangente en 0: $y = 2 + x$

Position de \mathcal{C} par rapport à T : $f(a) - (2 + a) = \frac{x^{3}}{6}$

Signe de $\frac{x^{3}}{6}$: $\frac{x}{2} - \frac{x}{2} + x + \frac{a^{3}}{6} + a^{3} = (a)$ Lim $E(a) = 0$

Tangente en 0: $y = 2 + x$

Position de \mathcal{C} par rapport à T : $f(a) - (2 + a) = \frac{x^{3}}{6}$

Signe de $\frac{x^{3}}{6}$: $\frac{x}{2} - \frac{x}{2} - \frac{1}{2}x + \frac{1}{2}x - \frac{1}{2}x + \frac{1}{2}x - \frac{1}{2}x + \frac{1}{2}x - \frac{1$

Danc pour xLa C est su-dessus de T

et porr x>0 est on-dessous de T

Tangerte T