XX Olimpiada Iberoamericana de Matemáticas Cartagena de Indias 2005

Primer Día

Septiembre 27 de 2005

1. Determine todas las ternas de números reales (x, y, z) que satisfacen el siguiente sistema de ecuaciones:

$$xyz = 8,$$

$$x^{2}y + y^{2}z + z^{2}x = 73,$$

$$x(y-z)^{2} + y(z-x)^{2} + z(x-y)^{2} = 98.$$

2. Una pulga salta sobre puntos enteros de la recta numérica. En su primer movimiento salta desde el punto 0 y cae en el punto 1. Luego, si en un movimiento la pulga saltó desde el punto a y cayó en el punto b, en el siguiente movimiento salta desde el punto b y cae en uno de los puntos b + (b - a) - 1, b + (b - a), b + (b - a) + 1.

Demuestre que si la pulga ha caído dos veces sobre el punto n, para n entero positivo, entonces ha debido hacer al menos t movimientos, donde t es el menor entero mayor o igual que $2\sqrt{n}$.

3. Sea p > 3 un número primo. Si

$$\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{(p-1)^p} = \frac{n}{m}$$

donde el máximo común divisor de n y m es 1, demuestre que p^3 divide a n.

Tiempo total: $4\frac{1}{2}$ horas.

Cada problema recibe un máximo de 7 puntos.

XX Olimpiada Iberoamericana de Matemáticas Cartagena de Indias 2005

Segundo Día

Septiembre 28 de 2005

4. Dados dos enteros positivos a y b, se denota por $(a \bigtriangledown b)$ el residuo que se obtiene al dividir a por b. Este residuo es uno de los números $0, 1, \ldots, b-1$. Encuentre todas las parejas de números (a, p) tales que p es primo y se cumple que

$$(a \bigtriangledown p) + (a \bigtriangledown 2p) + (a \bigtriangledown 3p) + (a \bigtriangledown 4p) = a + p.$$

- 5. Sea O el circuncentro de un triángulo acutángulo ABC y A_1 un punto en el arco menor BC de la circunferencia circunscrita al triángulo ABC. Sean A_2 y A_3 puntos en los lados AB y AC respectivamente, tales que $\angle BA_1A_2 = \angle OAC$ y $\angle CA_1A_3 = \angle OAB$. Demuestre que la recta A_2A_3 pasa por el ortocentro del triángulo ABC.
- 6. Dado un entero positivo n, en un plano se consideran 2n puntos alineados A_1, A_2, \ldots, A_{2n} . Cada punto se colorea de azul o rojo mediante el siguiente procedimiento:

 En el plano dado se trazan n circunferencias con diámetros de extremos A_i y A_j , disyuntas dos a dos. Cada A_k , $1 \le k \le 2n$, pertenece exactamente a una circunferencia. Se colorean los puntos de modo que los dos puntos de una misma circunferencia lleven el mismo color.

Determine cuántas coloraciones distintas de los 2n puntos se pueden obtener al variar las n circunferencias y la distribución de los dos colores.