atProblem 1.

Fill in the following table, specifying the dependent variable, the independent variable(s), the order of the differential equation and whether it is linear or non-linear and explain why. If the system is non-linear, place a box around the term(s) making it non-linear. All equations are in terms of a function of an independent variable.

SYSTEM	ORDER?	Dependent Variable	Independent Variable(s)	Autonomous or Non- Autonomous?	LINEAR OR NON-LINEAR? Circle any term(s) that make it non-linear.
$x^2y'' + xy' + y = \cos(x)$	2	У	х	Non	Linear
y' + <mark>e</mark> ^y = x	1	У	Х	Non	Nonlinear
$\frac{d^2y}{dt^2} = -t^2 \frac{dy}{dt} + e^t$	2	У	t	Non	Linear
$\frac{d^3x}{dt^3} + \frac{x}{x}\frac{dx}{dt} = t\frac{\ln(x)}{\ln(x)}$	3	х	t	Non	Nonlinear
$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{k} = E\sin(kt)$	2	i	t	Non	Linear

Problem 2 (Separation of Variables)

Find the IVP solution for the following differential equation by separation of variables:

a.
$$4tdy = (y^2 + ty^2)dt$$
 $y(1) = 1$

