Métodos Numéricos para Autovalores

Curso de Graduação em Ciência de Dados

- Autovalores aparecem em PCA, SVD, Cadeias de Markov
- Veremos os principais algoritmos e teoremas
- Espere um humor rápido

Teoremas

Teorema Espectral

- Para matrizes reais simétricas (ou Hermitianas):
 - Autovalores são reais.
 - Autovetores podem ser escolhidos ortonormais.

Relevância:

Matrizes reais simétricas aparecem frequentemente (como matrizes de covariância em PCA). Saber que os autovalores são todos reais e os autovetores são ortonormais torna as coisas mais estáveis e fáceis de calcular.

Teorema dos Círculos de Gershgorin

• Autovalores estão dentro dos discos de Gershgorin:

$$D(a_{ii},R_i) \quad ext{com} \quad R_i = \sum_{j
eq i} |a_{ij}|.$$

• Maneira rápida de estimar onde os autovalores podem estar.

Significado:

O teorema diz que cada autovalor está em pelo menos um dos discos centrados em cada entrada da diagonal com raio igual à soma dos valores absolutos na mesma linha.

Relevância:

É uma maneira rápida de limitar ou adivinhar onde os autovalores podem estar, para que você não entre em uma busca desenfreada por eles.

Decomposição de Schur

ullet Toda matriz quadrada A pode ser transformada unitariamente:

$$A = QUQ^*$$

 $\operatorname{\mathsf{com}} U$ triangular superior.

ullet Autovalores estão na diagonal de U.

Significado:

Qualquer matriz pode ser "quase" diagonalizada. Em vez de diagonal, você obtém uma forma triangular superior com os mesmos autovalores na diagonal.

Relevância:

É a base de muitos algoritmos de autovalores (como o método QR) que dependem da redução de uma matriz a algo mais simples, mas preservando os autovalores.

Método da Potência

O Básico

- Processo: Repetidamente faça $v_{k+1} = A v_k / \|A v_k\|$.
- Resultado: Converge para o autovetor com o maior autovalor em magnitude.
- Advertência: Se seu vetor inicial for ortogonal ao autovetor principal, azar o seu (embora seja raro).

Quando Usar

- Matrizes enormes e esparsas.
- Precisa apenas do autovalor dominante.

Algoritmo QR

A Ideia

- 1. Fatore $A_k = Q_k R_k$.
- 2. Forme $A_{k+1}=R_kQ_k$.
- 3. Repita até que A_k seja triangular superior (autovalores na diagonal).

Por Que Importa

- Padrão ouro para matrizes densas.
- Detalhe de implementação: "Shifts" aceleram a convergência.

Método de Jacobi (para simétricas)

Esboço

- Rotacione pares de eixos para zerar as entradas fora da diagonal.
- Converge para uma matriz diagonal com autovalores na diagonal.

Uso Real

- Fácil de entender para ensino.
- Não é o mais rápido para problemas de grande escala, mas conceitualmente simples.

Iteração do Quociente de Rayleigh

Passos Principais

- Atualize a estimativa do autovalor via $ho(x) = rac{x^T A x}{x^T x}$.
- Ajuste o shift em cada iteração.

Desempenho

- Convergência cúbica perto de um autovalor real (rápido, mas cada iteração pode ser cara).
- Bom quando você precisa de alta precisão para um autopar.

Método de Lanczos (para simétricas grandes)

Destaques

- ullet Constrói um subespaço de Krylov: $\mathcal{K}_m(A,v)=\{v,Av,A^2v,\dots,A^{m-1}v\}.$
- ullet Produz uma matriz tridiagonal cujos autovalores se aproximam dos de A.

Caso de uso

- Eficiente para matrizes esparsas e grandes.
- ullet Geralmente usado para obter apenas os k autovalores principais.

Método de Arnoldi (não simétricas)

O que é?

- Generaliza Lanczos para matrizes não simétricas (ou não Hermitianas).
- Constrói uma matriz de Hessenberg superior que se aproxima dos autovalores (valores de Ritz).

Caso de uso

 Problemas grandes, esparsos e não simétricos (como matrizes de adjacência de grafos direcionados).

Conclusão

- Métodos da Potência / Rayleigh: abordagens iterativas "atire para o topo".
- QR: robusto para espectro completo, usado em bibliotecas padrão.
- Lanczos / Arnoldi: mantenha barato e aproxime para matrizes grandes.
- Teoria espectral: real simétrico é o melhor cenário. Não simétrico precisa de cautela extra.