ADATSZERKEZETEK ÉS ALGORITMUSOK

Egyszerű sor → prioritásos sor

- Egyszerű sor:
 - FIFO szemantika
 - Elem hozzáadása, törlése konstans $(\mathcal{O}(1))$ igényű
- Mit tegyünk, ha a sorban lévő elemeknek valamifajta rendezése is van?
 - Ezt általában prioritásnak nevezzük.
 - Úgy kell rendezzük az elemeket, hogy a legnagyobb (legkisebb) prioritású elemet töröljük először.

- Példa
 - sürgősségi osztály
 - különböző súlyosságú esetek

- Példa
 - sürgősségi osztály
 - különböző súlyosságú esetek

- Példa
 - sürgősségi osztály
 - különböző súlyosságú esetek

- Példa
 - sürgősségi osztály
 - különböző súlyosságú esetek

- Példa
 - sürgősségi osztály
 - különböző súlyosságú esetek

- Mire lehet használni?
 - Tennivalók, melyiket kell először elvégezni
 - Operációs rendszer, mely prioritásos feladatokat (jobokat) dolgoz fel
 - Itt különböző további algoritmusok, amelyek a prioritást meghatározzák egy-egy folyamat (job) számára
 - Telekommunikációban a csomagok továbbításánál is

Elsőbbségi (prioritásos) sor műveletei

Műveletek

- empty
- isempty
- insert:
- delmax:
- max:
- Megszorítások:
 - delMax és max nem működhet üres soron

"full" nem szerepel

az üres prior. sor konstruktor – létrehozás

üres a prioritásos sor?

elem betétele a prioritásos sorba

maximális elem kivétele a pr. sorból

maximális elem lekérdezése

- Kérdés: hogyan ábrázoljuk, mivel reprezentáljuk?
 - Rendezetlen tömbbel, a beérkezési idő szerint
 - max műveletigénye mindig egy maxker, vagyis $\Theta(n)$
 - Rendezett tömbbel
 - insert műveletigénye:

• A hely megkeresése \rightarrow logaritmikus keresés $\Theta(\log_2 n)$

• Tőle jobbra léptetés $\Theta(n)$

• Összesen $\Theta(n)$

Heap (kupac) adatszerkezettel