Ganzrationale Funktionen

- 1. Gegeben ist die Funktion f mit $f(x) = \frac{1}{2}x^3 \frac{1}{8}x^4$.
 - a. Untersuchen Sie das Schaubild K von f auf Symmetrie, Schnittpunkte mit der x-Achse, Extrem- und Wendepunkte. Zeichnen Sie K in ein Koordinatensystem im Intervall $-2 < x \le 4,5$.
 - b. Bestimmen Sie die Gleichung der Tangente an K, die durch den Ursprung geht.
 - c. Ein Dreieck wird durch die Eckpunkte $O(0 \mid 0)$, $P(u \mid 0)$ und $Q(u \mid f(u))$, 0 < u < 4, definiert. Bestimmen Sie u so, dass der Flächeninhalt maximiert wird. Wie groß ist dieser Flächeninhalt?
- 2. Der Graph einer Funktion 3. Grades hat einen Tiefpunkt in $T(1 \mid 0)$ und geht durch die Punkte $P(2 \mid 2)$ und $Q(-1 \mid 1)$. Bestimmen Sie die Funktionsgleichung.
- 3. Der Graph einer Funktion 4. Grades ist y-achsensymmetrisch und hat in $W(2\mid 1)$ einen Wendepunkt. Die Normale zur Kurve im Wendepunkt geht durch den Ursprung. Bestimmen Sie die Funktionsgleichung.
- 4. Durch $f_t(x) = \frac{t}{8}(x^3 12x^2 + 36x)$ ist für t > 0 eine Funktionenschar gegeben.
 - a. Bestimmen Sie die Nullstellen und Extrempunkte des Schaubilds von f_t und zeigen Sie, dass $W(4 \mid 2t)$ der einzige Wendepunkt ist.
 - b. Stellen Sie die Gleichungen der Tangente und Normalen im Wendepunkt auf.
 - c. Für t=1 ist die Gleichung der Wendetangente $y=8-\frac{3}{2}x$. Fertigen Sie eine Skizze mit dem Schaubild K_1 von f_1 und der Wendetangente an.
 - d. Berechnen Sie die Größe der Fläche, die von dieser Wendetangente, der y-Achse und der Kurve K_1 eingeschlossen wird.
 - e. Wie groß muss t sein, damit der Inhalt der eingeschlossenen Fläche zwischen der Kurve K_t und der x-Achse 81 FE beträgt?