

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 238 970 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 11.09.2002 Bulletin 2002/37
- (21) Application number: 00979945.3
- (22) Date of filing: 06.12.2000

- (51) Int CI.7: **C07D 207/09**, C07D 211/26, C07D 405/12, C07D 409/12, C07D 401/12, C07D 401/04, C07D 409/14, C07D 405/14, C07D 401/14, C07D 401/06, C07D 413/06, C07D 409/06
- (86) International application number: PCT/JP00/08627
- (87) International publication number: WO 01/042208 (14.06.2001 Gazette 2001/24)
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 08.12.1999 JP 34877899
- (71) Applicant: TEIJIN LIMITED
 Osaka-shi Osaka 541-0054 (JP)

- (72) Inventors:
 - SHIOTA, Tatsuki c/o Teijin Limited Hino-shi, Tokyo 191-0065 (JP)
 - YOKOYAMA, Tomonori c/o Teijin Limited Hino-shi, Tokyo 191-0065 (JP)
 - KAMIMURA, Takashi c/o Teijin Limited Hino-shi, Tokyo 191-0065 (JP)
- (74) Representative: Hallybone, Huw George et al Carpmaels and Ransford,
 43 Bloomsbury Square London WC1A 2RA (GB)

(54) CYCLOAMINE CCR5 RECEPTOR ANTAGONISTS

(57) Remedies or prophylactics for diseases in association with CCR5 such as AIDS, rheumatoid arthritis or nephritis comprising a cyclic amine compound represented by the following formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C₁-C₆ alkyl addition salt thereof, as an active ingredient.

Description

Technical Field

[0001] The present invention relates to CCR5 antagonists expectable of effects as remedies and/or prophylactics for diseases in which infiltration and activation of monocytes/macrophages, T-cells and the like into tissues play an important role in progression and maintenance of the diseases such as rheumatoid arthritis, nephritis (nephropathy), multiple sclerosis, rejection after organ transplantation, graft-versus-host diseases (GVHD), diabetes, chronic obstructive pulmonary diseases (COPD), asthma, atopic dermatitis, sarcoidosis, fibrosis, atherosclerosis, psoriasis and inflammatory bowel diseases or AIDS (acquired immunodeficiency syndrome) caused by infection of HIV (human immunodeficiency virus).

Background Art

25

35

[0002] The CCR5 is a receptor for MIP-1α (an abbreviation for macrophage inflammatory protein-1α), MIP-1β (an abbreviation for macrophage inflammatory protein-1β) or RANTES (an abbreviation for regulated upon activation normal T-cell expressed and secreted) and is known to be expressed in lymphoid tissues such as thymus and spleen, monocytes/macrophages, T-cells or the like (see, for example, Samson, M. et al., Boichemistry, 1996, 35, 3362; Raport, C.J. et al., J. Biol. Chem., 1996, 271, 17161; and Combadiere, C. et al., J. Leukoc. Biol., 1996, 60, 147).

[0003] As to information about the relationship between the CCR5 and diseases, it has been reported that the CCR5 was expressed in leukocytes such as T-cells in arthrosynovial tissues and synovial fluid of patients suffering from rheumatoid arthritis (see Loetscher, P. et al., Nature, 1998, 391, 344; Mack, M. et al., Arthritis Rheum., 1999, 42, 981 and the like), CCR5 deficient homozygotes were not found in patients suffering from rheumatoid arthritis (see Gomez-Reino, J.J. et al., Arthritis Rheum., 1999, 42, 989), CCR5 was expressed in T-cells in renal biopsy samples of patients suffering from glomerulonephritis, interstitial nephritis and rejection after transplantation (see Segerer, S. et al., Kidney Int., 1999, 56, 52), many T-cells expressing CCR5 were found in blood of patients suffering from multiple sclerosis (see Balashov, K.E., Proc. Natl. Acad. Sci. USA, 1999, 96, 6873), CCR5 was expressed in T-cells infiltrated into liver injury sites of a mouse graft-versus-host disease (GVHD) model and the infiltration of the T-cells was suppressed by administration of an anti-CCR5 antibody (see Murai, M. et al., J. Clin. Invest., 1999, 104, 49), the progression of morbid states in a mouse diabetes model was associated with MIP-1α and CCR5 (see Cameron, M.J. et al., J. Immunol., 2000, 165, 1102) and the like.

[0004] Accordingly, CCR5 is thought to be associated with initiation, progression and maintenance of diseases in which the accumulation and activation of monocytes/macrophages and/or T-cells in disease sites can be assumed to be deeply associated with progression of lesions, for example rheumatoid arthritis, nephritis (nephropathy), multiple sclerosis, rejection after organ transplantation, graft-versus-host diseases (GVHD) and diabetes.

[0005] Furthermore, based on a report that the CCR5 is specifically expressed in Th1 cells among the T-cells, CCR5 is thought to be associated with initiation, progression and maintenance of many autoimmune diseases and inflammatory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, atopic dermatitis, sarcoidosis, fibrosis, atherosclerosis, psoriasis and inflammatory bowl diseases in which Th1 cells can be assumed to be associated with morbid states including the above diseases (see Bonecchi, R. et al., J. Exp. Med., 1998, 187, 129; Loetscher, P. et al., Nature, 1998, 391, 344 and the like).

[0006] On the other hand, although CD4 is known as a receptor when a host cell is infected with HIV (human immunodeficiency virus), it has been suggested that a second receptor (a coreceptor receptor) is necessary because the infection of HIV is not established only with the CD4. Usually, HIV-1 is roughly classified into a macrophage-tropic (M-tropic) strain and a T-cell-tropic (T-trophic) strain depending on the species of cells that the virus can infect, and it has been elucidated that a coreceptor essential to the infection of the macrophage-tropic strain is CCR5 (see, for example, Deng, H. et al., Nature, 1996, 381, 661; Dragic, T. et al., Nature, 1996, 381, 667; Alkhatib, G. et al., Science, 1996, 272, 1955; Choe, H. et al., Cell, 1996, 85, 1135; and Doranz, B.J. et al., Cell, 1996, 85, 1149).

[0007] Therefore, drugs capable of inhibiting the binding of HIV-1 to CCR5 are thought to be effective as new remedies and/or prophylactics for AIDS (acquired immunodeficiency syndrome) (see Michael, N.L. et al., Nature Med., 1999, 5, 740; Proudfoot, A.E.I. et al., Biochem. Pharmacol., 1999, 57, 451; Murakami et al., Protein, Nucleic Acid and Enzyme, 1998, 43, 677 and the like). As information supporting the above inference, it has been reported that RANTES, MIP-1α and MIP-1β which are ligands of CCR5 were suppressive factors for HIV-1 infection (see Cocchi, F. et al., Science, 1995, 270, 1811), humans without expressing normal CCR5 at all by deficiency of 32 base pairs of CCR5 gene had resistance to HIV-1 infection and any other abnormality in health is not caused by the deficiency (see Liu, R. et al., Cell, 1996, 86, 367; Samson, M. et al., Nature, 1996, 382, 722; Dean, M. et al., Science, 1996, 273, 1856 and the like), anti-CCR5 monoclonal antibodies inhibited the infection of peripheral blood monocytes by macrophage-tropic HIV-1 (see Wu, L. et al., J. Exp. Med., 1997, 185, 1681), RANTES in which the amino terminals were missing or modified

was an antagonist of the RANTES to inhibit the infection with macrophage-tropic HIV-1 (see Arenzana-Seisdedos, F. et al., Nature, 1996, 383, 400; Proost, P. et al., J. Biol. Chem., 1998, 273, 7222; Simmons, G. et al., Science, 1997, 276, 276 and the like) and the like.

[0008] As mentioned above, a compound which inhibits the binding of MIP- 1α , MIP- 1β or RANTES that is an in vivo ligand of the CCR5 to the CCR5 or the binding of HIV-1 which is a pathogenic virus of AIDS to the CCR5, i.e. a CCR5 antagonist is thought to be useful as a remedy and/or prophylactic for diseases such as AIDS, rheumatoid arthritis, nephritis (nephropathy), multiple sclecrosis, rejection after organ transplantation, graft-versus-host diseases (GVHD), diabetes, chronic obstructive pulmonary diseases (COPD), asthma, atopic dermatitis, sarcoidosis, fibrosis, atherosclerosis, psoriasis or inflammatory bowel diseases.

[0009] It has recently been reported that substituted bis-acridine derivatives (see WO9830218), substituted anilide derivatives (see WO9901127; WO0006085; WO0006146; WO0006153; WO0040239; and WO0042852), substituted alkenanilide derivatives (see WO9932100; WO0010965; WO0037455; and Baba, et al., Proc. Natl. Acad. Sci. USA, 1999, 96, 5698), 3-(4-piperidinyl)indole derivatives (see W09917773 and W0042045), azacycloalkane derivatives (see EP1013276; WO0038680; and WO0039125) benzodipyran derivatives (see WO0053175) and pyrrolidine derivatives (see WO0059497; WO0059498; WO0059502; and WO0059503) have an antagonistic activity against CCR5. These compounds, however, are different from the compounds used in the present invention.

[0010] On the other hand, although the compounds used in the present invention are the same as those described in WO9925686, the compounds are not known to have the antagonistic activity against the CCR5.

Disclosure of the Invention

20

40

45

[0011] It is an object of the present invention to provide a small-molecular compound having the inhibitory activity against the binding to the CCR5, i.e. a CCR5 antagonist.

[0012] It is another object of the present invention to provide a small-molecular compound having the inhibitory activity against the binding of an in vivo ligand of the CCR5 such as RANTES to CCR5 on target cells or the inhibitory activity against the binding of HIV-1, which is a pathogenic virus of AIDS to the CCR5.

[0013] It is a further object of the present invention to provide a remedial and/or prophylactic method for diseases in which the binding of an in vivo ligand of CCR5 to CCR5 on target cells is one of pathogeneses.

[0014] It is still another object of the present invention to provide a remedial method and/or a prophylactic method for AIDS caused by HIV infection.

[0015] As a result of intensive studies, the inventors have found that cyclic amine derivatives having an arylalkyl group, pharmaceutically acceptable C₁-C₆ alkyl addition salts thereof or pharmaceutically acceptable acid addition salts thereof have the CCR5 antagonistic activity. Furthermore, studies have been promoted according to findings that those compounds can be useful as remedies or prophylactics for diseases considered to be in association with CCR5. Thereby, the present invention has been accomplished.

[0016] Namely, according to the present invention, there are provided a medicine having the CCR5 antagonistic activity and comprising a compound represented by the following formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C₁-C₆ alkyl addition salt thereof, as an active ingredient:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(1)

wherein, R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms; the phenyl group or the aromatic heterocyclic group in the above R^1 may be condensed with a benzene ring, or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms to form a condensed ring; the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R^1 may be substituted with an optional number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxy groups, carbamoyl groups, C_1 - C_6 alkyl groups, C_3 - C_8 cycloalkyl groups, C_2 - C_6 alkenyl groups, C_1 - C_6 alkoxy groups, C_1 - C_6 alkylenoxy groups, C_1 - C_6 alkylenoxy groups, phenyl groups, phenoxy groups, phenylthio groups, benzyl groups, benzyloxy groups, benzoylamino groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoylamino groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoylamino groups, C_2 - C_7 N-alkylcarbamoyl groups, C_4 - C_9 N-cycloalkylcarbamoyl groups, piperidinocar-

bonyl groups, morpholinocarbonyl groups, 1-pyrrolidinylcarbonyl groups, bivalent groups represented by the formula: -NH(C=O)O-, bivalent groups represented by the formula:

-NH(C=S)O-, amino groups, mono(C_1 - C_6 alkyl)amino groups or di(C_1 - C_6 alkyl)amino groups; the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may further be substituted with an optional number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 - C_6 alkyl groups or C_1 - C_6 alkoxy groups;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group; the C_1 - C_6 alkyl group or the phenyl group in the R^2 may be substituted with an optional number of halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups or C_1 - C_6 alkoxy groups, with the proviso that R^2 is not a hydroxy group when i is 0:

j is an integer of 0 to 2;

k is an integer of 0 to 2;

m is an integer of 2 to 4;

n is 0 or 1;

10

15

20

25

30

35

40

45

50

55

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group which may be substituted with (one or two phenyl groups which may respectively be substituted with the same or different optional number of halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups or C_1 - C_6 alkoxy groups);

 R^4 and R^5 are the same or different and are each a hydrogen atom, a hydroxy group, a phenyl group or a C_1 - C_6 alkyl group; the C_1 - C_6 alkyl group in the R^4 and R^5 may be substituted with an optional number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxy groups, carbamoyl groups, mercapto groups, guanidino groups, C_3 - C_8 cycloalkyl groups, C_1 - C_6 alkoxy groups, C_1 - C_6 alkylthio groups, phenyl groups (which may be substituted with an optional number of halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups, C_1 - C_6 alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoyloxy g

p is 0 or 1;

q is 0 or 1;

G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O- or -O-CO-NH-, wherein, R⁷ is a hydrogen atom or a C_1 - C_6 alkyl group or R⁷, together with R⁵, may form a C_2 - C_5 alkylene group;

R⁶ is a phenyl group, a C₃-C₈ cycloalkyl group, a C₃-C₆ cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms; the phenyl group, the benzyl group or the aromatic heterocyclic group in the R6 may be condensed with a benzene ring or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms to form a condensed ring; the phenyl group, the C3-C8 cycloalkyl group, the C3-C6 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above R⁶ may further be substituted with an optional number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxy groups, carbamoyl groups, trifluoromethyl groups, C1-C6 alkyl groups, C3-CB cycloalkyl groups, C2-C6 alkenyl groups, C1-C6 alkoxy groups, C3-C8 cycloalkyloxy groups, C1-C6 alkylthio groups, C1-C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3-phenylureido groups, C2-C7 alkanoyl groups, C2-C7 alkaxycarbonyl groups, C_2 - C_7 alkanoyloxy groups, C_2 - C_7 alkanoylamino groups, C_2 - C_7 N-alkylcarbamoyl groups, C_1 - C_6 alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C₁-C₆ alkyl)sulfamoyl groups, amino groups, mono(C₁-C₆ alkyl) amino groups, di(C₁-C₆ alkyl)amino groups, benzylamino groups, C₂-C₇ (alkoxycarbonyl)amino groups, C₁-C₆ (alkylsulfonyl)amino groups or bis(C1-C6 alkylsulfonyl)amino groups; the substituents of the phenyl group, the $\textbf{C}_3\textbf{-}\textbf{C}_8 \text{ cycloalkyl group, the } \textbf{C}_3\textbf{-}\textbf{C}_8 \text{ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the } \textbf{C}_3\textbf{-}\textbf{C}_8 \textbf{-}\textbf{C}_8 \textbf{$ condensed ring may further be substituted with an optional number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C1-C6 alkyl groups, C1-C6 alkoxy groups, C1-C6 alkylthio groups, mono(C₁-C₆ alkyl)amino groups or di(C₁-C₆ alkyl)amino groups.

[0017] Furthermore, according to the present invention, there is provided a remedy or a prophylactic for diseases in association with CCR5 comprising the compound represented by the above formula (I), the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable alkyl addition salt thereof, as an active ingredient.

[0018] The compound represented by the above formula (I) has the CCR5 antagonistic activity and the inhibitory activity against physiological actions of in vivo ligands of CCR5 on target cells, i.e. the compound represented by the above formula (I) are a CCR5 antagonist.

5 Best Mode for Carrying Out the Invention

20

[0019] In the above formula (I), R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms; the phenyl group or the aromatic heterocyclic group in the above R^1 may be condensed with a benzene ring or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms to form a condensed ring; the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R^1 may further be substituted with an optional number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxy groups, carbamoyl groups, C_1 - C_6 alkyl groups, C_3 - C_8 cycloalkyl groups, C_2 - C_6 alkenyl groups, C_1 - C_6 alkylene groups, C_2 - C_4 alkylenoxy groups, C_1 - C_6 alkylenedioxy groups, phenyl groups, phenoxy groups, benzyl groups, benzyl groups, groups, benzoylamino groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoyloxy groups, C_2 - C_7 alkanoyloxy

-NH(C=O)O-, bivalent groups represented by the formula: -NH(C=S)O-, amino groups, mono(C_1 - C_6 alkyl)amino groups or di(C_1 - C_6 alkyl)amino groups.

[0020] The "C₃-C₈ cycloalkyl group" in R¹ means a cyclic alkyl group, and includes for example cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group and the like. The "C₃-C₈ cycloalkyl group" is preferably cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.

[0021] The "aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms" in R¹ means an aromatic heterocyclic group, and includes for example thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, pyridyl group, pyrimidinyl group, triazinyl group, triazolyl group, oxadiazolyl (furazanyl) group, thiadiazolyl group and the like. The "aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms" is preferably thienyl group, furyl group, pyrrolyl group, isoxazolyl group, pyridyl group and the like.

[0022] The "condensed ring" in R¹ means a bicyclic aromatic heterocyclic group formed by condensing the phenyl group or the aromatic heterocyclic group with a benzene ring or the aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms in an optional position, and includes for example naphthyl group, indolyl group, benzofuranyl group, benzothienyl group, quinolyl group, benzimidazolyl group, benzoxazolyl group, benzoxadiazolyl group, benzoxadiazolyl group, benzoxadiazolyl group, benzoxadiazolyl group, benzothiadiazolyl group and the like.

[0023] Among them, it is especially preferable for R¹ to be a phenyl group, a thienyl group, a pyrrolyl group, a pyrazolyl group, an isoxazolyl group or an indolyl group.

[0024] The "halogen atoms" as the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 mean a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and fluorine atom, chlorine atom, bromine atom and iodine atom are specifically preferable.

[0025] The "C₁-C₆ alkyl groups" as the substituents of R¹ mean C₁-C₆ straight or branched alkyl groups, and include for example, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group, isohexyl group, 2-methylpentyl group, 1-ethylbutyl group and the like. The "C₁-C₆ alkyl groups" are, as specifically preferable concrete examples, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group and the like

[0026] The " C_3 - C_8 cycloalkyl groups" as the substituents of R^1 are the same as defined in the " C_3 - C_8 cycloalkyl group" in the above R^1 , and specifically preferably include for example the same groups.

[0027] The " C_2 - C_6 alkenyl groups" as the substituents of R¹ mean C_2 - C_6 straight or branched alkenyl groups, and include for example vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 3-butenyl group, 2-methyl-1-propenyl group, 4-pentenyl group, 5-hexenyl group, 4-methyl-3-pentenyl group and the like. The " C_2 - C_6 alkenyl groups" are specifically preferably vinyl group and 2-methyl-1-propenyl group or the like.

[0028] The " C_1 - C_6 alkoxy groups" as the substituents of R^1 mean groups composed of the above C_1 - C_6 alkyl groups and oxy group, and methoxy group, ethoxy group or the like is specifically preferable.

[0029] The " C_1 - C_6 alkylthio groups" as the substituents of R¹ mean groups composed of the above C_1 - C_6 alkyl groups and thio group, and methylthio group, ethylthio group or the like is specifically preferable.

[0030] The " C_3 - C_5 alkylene groups" as the substituents of R^1 mean C_3 - C_5 bivalent alkylene groups, and include for example, trimethylene group, tetramethylene group, pentamethylene group, 1-methyltrimethylene group and the like.

The "C3-C5 alkylene groups" are specifically preferably trimethylene group, tetramethylene group or the like.

10

[0031] The " C_2 - C_4 alkylenoxy groups" as the substituents of R^1 mean groups composed of C_2 - C_4 bivalent alkylene groups and oxy group and include, for example, ethylenoxy group (- CH_2CH_2O -), trimethylenoxy group (- $CH_2CH_2CH_2O$ -), 1,1-dimethylethylenoxy group (- $CH_2C(CH_3)_2O$ -) and the like. The " C_2 - C_4 alkylenoxy groups" are specifically preferably ethylenoxy group, trimethylenoxy group or the like. [0032] The " C_1 - C_3 alkylenedioxy groups" as the substituents of R^1 mean groups composed of C_1 - C_3 bivalent alkylene groups and two oxy groups and include, for example, methylenedioxy group (- OCH_2O -), ethylenedioxy group (- OCH_2CH_2O -), trimethylenedioxy (- $OCH_2CH_2CH_2O$ -) group and propylenedioxy (- $OCH_2CH(CH_3)O$ -) group and the like. The " C_1 - C_3 alkylenedioxy groups" are specifically preferably methylenedioxy group, ethylenedioxy group or the like

[0033] The " C_2 - C_7 alkanoyl groups" as the substituents of R^1 mean C_2 - C_7 straight or branched alkanoyl groups, and include for example, acetyl group, propanoyl group, butanoyl group, pentanoyl group, hexanoyl group, heptanoyl group, isobutyryl group, 3-methylbutanoyl group, 2-methylbutanoyl group, group, 4-methylpentanoyl group, 3,3-dimethylbutanoyl group, 5-methylhexanoyl group and the like, and acetyl group or the like is specifically preferable.

[0034] The "C₂-C₇ alkoxycarbonyl groups" as the substituents of R¹ mean groups composed of the above C₁-C₆ alkoxy groups and carbonyl group, and methoxycarbonyl group, ethoxycarbonyl group or the like is specifically preferable.

[0035] The " C_2 - C_7 alkanoyloxy groups" as the substituents of R^1 mean groups composed of the above C_2 - C_7 alkanoyl groups and oxy group, and acetyloxy group or the like is specifically preferable.

[0036] The "C₂-C₇ alkanoylamino groups" as the substituents of R¹ mean groups composed of the above C₂-C₇ alkanoyl groups and amino group, and acetylamino group or the like is specifically preferable.

[0037] The "C₂-C₇ alkylcarbamoyl groups" as the substituents of R¹ mean groups composed of the above C₁-C₆ alkyl groups and carbamoyl group, and N-methylcarbamoyl group, N-ethylcarbamoyl group or the like is specifically preferable.

[0038] The "C₄-C₉ N-cycloalkylcarbamoyl groups" as the substituents of R¹ mean the above C₃-C₈ cycloalkyl groups and carbamoyl group, and N-cyclopentylcarbamoyl group, N-cyclohexylcarbamoyl group or the like is preferable.

[0039] The " C_1 - C_6 alkylsulfonyl groups" as the substituents of R^1 mean groups composed of the above C_1 - C_6 alkyl groups and sulfonyl group, and methylsulfonyl group or the like is specifically preferable.

[0040] The "C₃-C₈ (alkoxycarbonyl)methyl groups" as the substituents of R¹ mean groups composed of the above C₂-C₇ alkoxycarbonyl groups and methyl group, and (methoxycarbonyl)methyl group, (ethoxycarbonyl)methyl group or the like is specifically preferable.

[0041] The "mono(C_1 - C_6 alkyl)amino groups" as the substituents of R^1 mean amino groups substituted with the above C_1 - C_6 alkyl groups, and methylamino group, ethylamino group or the like is specifically preferable.

[0042] The "di(C_1 - C_6 alkyl)amino groups" as the substituents of R^1 mean amino groups substituted with the same or different two C_1 - C_6 alkyl groups described above, and dimethylamino group, diethylamino group, N-ethyl-N-methylamino group or the like is specifically preferable.

[0043] Among those described above, examples of the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R¹ are specifically preferably halogen atoms, hydroxy groups, cyano groups, C_1 - C_6 alkyl groups, C_2 - C_6 alkenyl groups, C_1 - C_6 alkoxy groups, C_1 - C_6 alkylenoxy groups, alkylenedioxy groups, acetyl groups, phenyl groups, amino groups and di(C_1 - C_6 alkyl)amino groups, and halogen atoms, hydroxy groups, cyano groups, C_1 - C_6 alkyl groups, C_1 - C_6 alkoxy groups, C_3 - C_5 alkylene groups, methylenedioxy groups and amino groups are especially preferable.

[0044] Moreover, the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R¹· may further be substituted with an optional number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 - C_6 alkyl groups or C_1 - C_6 alkoxy groups. The halogen atoms, C_1 - C_6 alkyl groups and C_1 - C_6 alkoxy groups are the same as defined for the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R¹, and the same groups are specifically preferable. [0045] In the above formula (I), R² is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group; and the C_1 - C_6 alkyl group or phenyl group in R² may be substituted with an optional number of halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups or C_1 - C_6 alkoxy groups, with the proviso that R² is not a hydroxy group when j is 0.

[0046] The C_1 - C_6 alkyl group and C_2 - C_7 alkoxycarbonyl group in R^2 are each the same as defined for the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and the same examples are specifically preferable.

[0047] The halogen atoms, C_1 - C_6 alkyl groups and C_1 - C_6 alkoxy groups as the substituents of the C_1 - C_6 alkyl group or the phenyl group in R^2 are the same as defined for the substituents of the phenyl group, the C_3 - C_6 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R^1 , and the same examples are specifically preferable.

- [0048] Among them, it is especially preferable for R² to be a hydrogen atom.
- [0049] In the above formula (I), j is an integer of 0 to 2, and it is especially preferable for j to be 0.
- [0050] In the above formula (I), k is an integer of 0 to 2; m is an integer of 2 to 4. Among them, it is especially preferable for the compounds to be 2-substituted pyrrolidines wherein k is 0 and m is 3; 3-substituted pyrrolidines wherein k is 1 and m is 2; 3-substituted piperidines wherein k is 1 and m is 3; 4-substituted piperidines wherein k is 2 and m is 2; or 3-substituted hexahydroazepines wherein k is 1 and m is 4, and 3-substituted pyrrolidines wherein k is 1 and m is 2 and 4-substituted piperidines wherein k is 2 and m is 2 are especially preferable.
- [0051] In the above formula (i), n is 0 or 1.
- [0052] In particular, 3-amidopyrrolidines wherein k is 1; m is 2 and n is 0 and 4-(amidomethyl)piperidines wherein k is 2; m is 2 and n is 1 are especially preferable.
- [0053] In the above formula (I), R^3 is a hydrogen atom or a C_1 - C_6 alkyl group which may be substituted with (one or two phenyl groups which may respectively be substituted with an optional number of the same or different halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups or C_1 - C_6 alkoxy groups).
- [0054] The C₁-C₅ alkyl group in R³ is the same as defined for the substituent of the phenyl group, the C₃-C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R¹, and methyl group, ethyl group and propyl group are specifically preferable.
 - [0055] The halogen atoms, C_1 - C_6 alkyl groups and C_1 - C_6 alkoxy groups as the substituents of the phenyl groups as the substituents of the C_1 - C_6 alkyl group in R^3 are each the same as defined for substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R^1 , and the same examples are specifically preferable.
 - [0056] Among them, it is especially preferable for R^3 to be a hydrogen atom and an unsubstituted C_1 - C_6 alkyl group. [0057] In the above formula (I), R^4 and R^5 are each the same or different and are each a hydrogen atom, a hydroxy group, a phenyl group or a C_1 - C_6 alkyl group; and the C_1 - C_6 alkyl group in R^4 and R^5 may be substituted with an optional number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxy groups, carbamoyl groups, mercapto groups, guanidino groups, C_3 - C_8 cycloalkyl groups, C_1 - C_6 alkoxy groups, C_1 - C_6 alkylthio groups, (phenyl groups which may be substituted with an optional number of halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups, C_1 - C_6 alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoyloxy groups, C_2 - C_7 alkanoylamino groups, C_2 - C_7 alkanoyloxy groups, C_1 - C_6 alkylsulfonyl groups, amino groups, mono(C_1 - C_6 alkyl)amino groups, di(C_1 - C_6 alkyl)amino groups or (aromatic heterocyclic groups having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms or condensed rings formed by condensation thereof with benzene rings) or both R^4 and R^5 together may form a three-to a six-membered cyclic hydrocarbon.
 - [0058] The C_1 - C_6 alkyl group in R^4 and R^5 is the same as defined for the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R^1 , and the same examples are specifically preferable.
 - [0059] The halogen atoms, C_1 - C_6 alkoxy groups, C_1 - C_6 alkylthio groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoyloxy groups, C_2 - C_7 alkanoylamino groups, C_2 - C_7 N-alkylcarbamoyl groups, C_1 - C_6 alkyl-sulfonyl groups, mono(C_1 - C_6 alkyl-)amino groups and di(C_1 - C_6 alkyl-)amino groups as the substituents of the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R^1 , and the same examples are specifically preferable.
 - [0060] The C_3 - C_8 cycloalkyl groups and the aromatic heterocyclic groups having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms as the substituents of the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the above R^1 , and the same examples are preferable.
- [0061] The halogen atoms, C₁-C₆ alkyl groups and C₁-C₆ alkoxy groups as the substituents of the phenyl groups as the substituents of the C₁-C₆ alkyl group in R⁴ and R⁵ are the same as defined for the substituents of the phenyl group, the C₃-C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R¹, and the same examples are specifically preferable.
 - [0062] The "three- to a six-membered cyclic hydrocarbon" composed of R⁴, R⁵ and the adjacent carbon atoms are specifically preferably cyclopropane, cyclobutane, cyclopentane, cyclohexane and the like.
 - [0063] Among them, the hydrogen atom and C₁-C₆ alkyl group are especially preferable for R⁴ and R⁵.
 - [0064] In the above formula (I), p is 0 or 1; and q is 0 or 1. Both p and q are especially preferably 0.
 - [0065] In the above formula (I), G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O- or -O-CO-NH-,
- wherein, R⁷ is a hydrogen atom or a C₁-C₆ alkyl group or R⁷, together with R⁵, may form a C₂-C₅ alkylene group, wherein, -CO- is a carbonyl group, -SO₂- is a sulfonyl group and -CS- is a thiocarbonyl group. G is especially preferably the group represented by -NR⁷-CO- or -NH-CO-NH-.
 - [0066] The C_1 - C_6 alkyl group in \mathbb{R}^7 is the same as defined for the substituents of the phenyl group, the C_3 - C_8 cycloalkyl

group, the aromatic heterocyclic group or the condensed ring in the above R¹, and the same examples are specifically preferable.

[0067] The " C_2 - C_5 alkylene group" composed of R^5 and R^7 means a C_2 - C_5 straight or branched alkylene group, for example, methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, 1-methyltrimethylene group, pentamethylene group and the like, and ethylene group, trimethylene group, tetramethylene group or the like is specifically preferable.

[0068] Among them, it is especially preferable for R⁷ to be a hydrogen atom.

[0069] In the above formula (I), R⁶ is a phenyl group, a C₃-C₈ cycloalkyl group, a C₃-C₆ cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms; and the phenyl group, the benzyl group or the aromatic heterocyclic group in the above R⁶ may be condensed with a benzene ring or the aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms to form a condensed ring; and the phenyl group, the C₃-C₈ cycloalkyl group, the C₃-C₆ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above R⁶ may be substituted with an optional number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxy groups, carbamoyl groups, trifluoromethyl groups, C₁-C₆ alkyl groups, C₃-C₈ cycloalkyl groups, C₂-C₆ alkenyl groups, C₁-C₆ alkoxyl groups, C₃-C₈ cycloalkyloxy groups, C₁-C₆ alkylthio groups, C₁-C₆ alkylenedioxy groups, phenyl groups, phenyl groups, phenyl groups, phenylamino groups, C₂-C₇ alkanoyloxy groups, C₂-C₇ alkanoyloxy groups, C₂-C₇ alkanoyloxy groups, C₂-C₇ alkanoyloxy groups, C₁-C₆ alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C₁-C₆ alkyl)sulfamoyl groups, amino groups, mono(C₁-C₆ alkyl)amino groups, di(C₁-C₆ alkyl)amino groups, benzylamino groups, C₂-C₇ (alkoxycarbonyl)amino groups, C₁-C₆ alkylsulfonyl)amino groups or bis(C₁-C₆ alkylsulfonyl)amino groups.

[0070] The C_3 - C_8 cycloalkyl groups, aromatic heterocyclic groups having oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms, or condensed rings in R^6 are the same as defined for the above R^1 , and the same examples are specifically preferable.

[0071] The "C₃-C₈ cycloalkenyl groups" in R⁶ mean cycloalkenyl groups, for example, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cyclohexenyl group, and 1-cyclopentenyl group, 1-cyclohexenyl group or the like is specifically preferable.

[0072] Among them, it is especially preferable for R⁶ to be a phenyl group, a furyl group, a thienyl group, a pyrazolyl group, a benzothienyl group and an indolyl group.

[0073] The halogen atoms, C_1 - C_6 alkyl groups, C_1 - C_6 alkenyl groups, C_1 - C_6 alkoxy groups, C_1 - C_6 alkylthio groups, C_1 - C_6 alkylenedioxy groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoyl groups, C_2 - C_7 alkanoylamino groups, C_2 - C_7 alkylcarbamoyl groups, C_1 - C_6 alkylsulfonyl groups, mono(C_1 - C_6 alkyl)amino groups and di(C_1 - C_6 alkyl)amino groups as the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 are the same as defined for the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R^1 , and the same examples are specifically preferable.

[0074] The C_3 - C_8 cycloalkyl groups as the substituents of R^6 are the same as defined for the C_3 - C_8 cycloalkyl groups in the above R^1 , and the same examples are specifically preferable.

[0075] The "C₃-C₈ cycloalkyloxy groups" as the substituents of R⁶ mean groups composed of the above C₃-C₈ cycloalkyl groups and oxy groups, and cyclopropyloxy group, cyclopentyloxy group, cyclohexyloxy group or the like is specifically preferable.

[0076] The "N,N-di(C_1 - C_6 alkyl)sulfamoyl groups" as the substituents of R^6 mean sulfamoyl groups substituted with the same or different two C_1 - C_6 alkyl groups described above, and N,N-dimethylsulfamoyl group, N,N-diethylsulfamoyl group, N-ethyl-N-methylsulfamoyl group or the like is specifically preferable.

[0077] The " C_2 - C_7 (alkoxycarbonyl)amino groups" as the substituents of R⁶ mean groups composed of the above C_2 - C_7 alkoxycarbonyl groups and amino groups, and (methoxycarbonyl)amino group, (ethoxycarbonyl)amino group or the like is specifically preferable.

[0078] The "C₁-C₆ (alkylsulfonyl)amino groups" as the substituents of R⁶ mean groups composed of the above C₁-C₆ alkylsulfonyl groups and amino groups, and (methylsulfonyl)amino group or the like is specifically preferable.

[0079] The "bis(C_1 - C_6 alkylsulfonyl)amino groups" as the substituents of R⁶ mean amino groups substituted with the same or different two C_1 - C_6 alkylsulfonyl groups described above, and bis(methylsulfonyl)amino group or the like is specifically preferable.

[0080] Among them, halogen atoms, nitro groups, trifluoromethyl groups, C₁-C₆ alkyl groups, C₁-C₆ alkoxy groups, phenyl groups, phenylsulfonyl groups, amino groups, benzylamino groups and the like are preferable for the substituents of the phenyl group, the C₃-C₈ cycloalkyl group, the C₃-C₈ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed group in R⁶, and halogen atoms, nitro groups, trifluoromethyl groups, C₁-C₆ alkyl groups, C₁-C₆ alkoxy groups, phenylsulfonyl groups and amino group are especially preferable.

[0081] Furthermore, the substituents of the phenyl group, the C_3 - C_8 cycloalkyl group, the C_3 - C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in such R^6 may further be substituted with an optional number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C_1 - C_6 alkyl groups, C_1 - C_6 alkylthio groups, mono(C_1 - C_6 alkyl)amino groups or di-(C_1 - C_6 alkyl)amino groups. [0082] The halogen atoms, C_1 - C_6 alkyl groups, C_1 - C_6 alkyl)amino groups, mono(C_1 - C_6 alkyl)amino groups, the substituents of the substituents of the phenyl group, the C_3 - C_6 cycloalkyl group, the C_3 - C_6 cycloalkyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above C_3 - C_6 cycloalkyl group, the aromatic heterocyclic aromatic group or the condensed ring in the above C_3 - C_6 cycloalkyl group, the aromatic heterocyclic aromatic group or the condensed ring in the above C_3 - C_6 cycloalkyl group, the aromatic heterocyclic aromatic group or the condensed ring in the above C_3 - C_6 cycloalkyl group, the aromatic heterocyclic aromatic group or the condensed ring in the above C_3 - C_6 cycloalkyl group, the aromatic heterocyclic aromatic group or the condensed ring in the above C_3 - C_6 cycloalkyl group, the aromatic heterocyclic aromatic group or the condensed ring in the above C_3 - C_6 cycloalkyl group, the aromatic heterocyclic aromatic group or the condensed ring in the above C_3 - C_6 cycloalkyl group, the cycloalkyl group, the

[0084] Namely, the cyclic amine derivative represented by the above formula (I), the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C_1 - C_6 alkyl addition salt thereof can be administered orally or parenterally such as intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

[0085] For example, a tablet, a pill, a granule, a powder, a liquid, a suspension or a capsule can be cited as the dosage form of the oral administration.

[0086] The tablet can be prepared by using a vehicle, for example, lactose, starch or crystalline cellulose; a binder, for example, carboxymethylcellulose, methylcellulose or polyvinylpyrrolidone; or a disintegrator, for example, sodium alginate, sodium bicarbonate or sodium lauryl sulfate or the like according to a conventional method.

[0087] The pill, powder and granule can similarly be prepared with using the above vehicle or the like according to a conventional method. The liquid and suspension are prepared with using glycerin esters, for example, tricaprylin or triacetin or alcohols, for example, ethanol according to a conventional method. The capsule is prepared with filling a granule, powder or liquid in a capsule made from gelatin on the like.

[0088] A parenteral injection such as the form of an aqueous or a nonaqueous solution formulation is cited as the dosage form of subcutaneous, intramuscular or intravenous administration. For example, an isotonic sodium chloride solution is used as the aqueous solution. Propylene glycol, poly(ethylene glycol), olive oil or ethyl oleate is, for example, used for the nonaqueous solution. An antiseptic, a stabilizer or the like, if necessary, is added thereto. The parenteral injection is sterilized by suitably carrying out treatment such as filtration through a bacterial filter or combination of a disinfectant.

[0089] For example, an ointment or a cream is cited as the dosage form of percutaneous administration. The ointment is prepared by using fats and fatty oils such as castor oil or olive oil or vaseline, and the cream is prepared by using a fatty oil or an emulsifying agent such as di(ethylene glycol) or sorbitan mono-fatty acid ester according to a conventional method.

[0090] A usual suppository such as a gelatin soft capsule is used for intrarectal administration.

[0091] The dose of the cyclic amine derivative, pharmaceutically acceptable acid addition salt thereof or pharmaceutically acceptable C_1 - C_6 alkyl addition salt thereof, in the present invention, varies with the types of diseases, routes of administration, age and sex of patients and severity of diseases and the like, but is usually 1 to 500 mg/day for an adult.

[0092] Concrete examples of the cyclic amine derivative represented by the above formula (I) preferably includes compounds having respective substituents shown in the following Tables 1.1 to 1.221.

[0093] In Tables 1.1 to 1.221, and "Compd. No." means "compound number". "Chirality" means the "absolute configuration", and the "chirality (absolute configuration)" means the absolute configuration of asymmetric carbon on the ring of the cyclic amine. "R" means that the asymmetric carbon atom on the ring of the cyclic amine has the absolute configuration of R, and "S" means that the asymmetric carbon atom has the absolute configuration of S. "-" means that the compound is a racemate or the compound has no asymmetric carbon atom on the cyclic amines.

55

20

Table 1.1

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
10	1	CI—(1	2	0	~	н	-CH ₂ -N-C-
15	2	CI(CH₂-	1	2	0	-	н	-CH ₂ -N-C-CH ₃
	3	CI-√CH₂-	1	2	0	-	н	-CH ₂ -N-C-
20	4	CI-()-CH ₂ -	1	2	0	-	н	-CH ₂ -N-C-CF ₃
25	5	CI-(1	2	0	S	н	-CH ₂ -N-C-CF ₃
30	6	CICH ₂ -	1	2	0	Ş	н	-CH ₂ -N-C- F ₃ C.
35	7	CI-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-Br
40 .	8	CICH ₂ -	1	2	0	S	н	-CH ₂ -N-C
45	9	CH ₂ -	1	2	0	S	н	-a+2-11 c − C − a
10	10	CI-CH ₂ -	1	2	0	s	н	-CH ₂ -N-C
50	11	а-{	1	2	0	s	н	OCH3 -CH2-N-C-OCH3
55								

Table 1.2

5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $-(CH_2)_{q}$ $+ \frac{R^6}{R^5}$
10	12	CI-(1	2	0	S	н	-CH ₂ -N-C- OCH ₃
15	13	CI—(1	2	0	s	н	-CH ₂ -N-C-CF ₃
	14	CI-(1	2	0	s	н	- CH ₂ -N-C-CH ₃
20	15	CI-(1	2	0	s	н	-a+2-H-c-<->-a
25	16	CI-CH ₂ -	1	2	0	S	н	-CH₂-N-C
30	17	CI(CH ₂	1	2	0	S	н	-CH ₂ -N-C-CI
35	18	CI————————————————————————————————————	1	2	0	S ·	н	-CH ₂ -N-C-CN
40	19	CI—CH₂-	1	2	0	s	н	-CH2-N-C
45	20	CI⟨CH₂-	1	2	0	. S	н	-CH ₂ -N-C-CF ₃
	21	a-{_}-cH₂-	1	2	0	S	н	-CH ₂ -N-C-S-CF ₃
50	22	CI-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-3
55								·

Table 1.3

				_				
5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $+$
10	23	a-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
15	24	CI-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-OCF ₃
	25	CI-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
20	26	CI—CH ₂ -	1	2	0	s	H .	$-CH_2 - N - C - O_2 N$
25	27	CI-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-NO ₂
30	28	CI-CH ₂ -	1	2	0	S	H	-CH ₂ -N-C
35	29	CI-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- CF ₃
40	30	CI-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
45	31	CI	1	2	0	R	н	-CH ₂ -N-C-Br
		CI-CH ₂ -						-CH ₂ -N-C-F
50	33	CI-CH ₂ -	,1	2	0	R	н	-CH ₂ -N-C- CI
55								

Table 1.4

5	Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R ³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	34	a-{_}-a+2-	1	2	0	R	Н	-CH ₂ -N-C
15	35	CI-(-)-CH ₂ -	1	2	0	R	н	-CH2-MC OCH3
	36	Q-(1.	2	0	R	н	-CH ₂ -N-C-OCH ₃
20	37	Q-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	38	Q-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CH ₃
30	39	a-{a+2-	1	2	0	R	н	-CH2-N-C
35	40	CI-CH ₂ -	1	2	0	R	н	-CH2-N-C-(-)-OCH3
40	41	a-{a+2-	1	2	0	R	н	-CH ₂ -H-C
. 45	42	a-{a+2-	1	2	0	R	н	-CH ₂ -N-C-
		CI-CH ₂ -					н	-CH2-HC-0
50	44	CI-CH ₂ -	1	2	0	R ·	Ħ	-CH ₂ -N-C
55								

Table 1.5

5	Compd.	R ¹ (CH ₂) _J	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	45	a-{_}-cH ₂ -	1	2	0	R.	н	-CH ₂ -N-C
15	46	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
.5	47	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
20	48	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	49	CI—CH2-	1	2	0	R	н	-CH ₂ -N-C
30	50	Ci—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
35	51	CI(CH ₂	1	2	0	R	н .	-CH ₂ -N-C
40	52	CI(CH ₂	1	2	0	R ·	н	-CH2-N-C
	53	a-(a+2-	1	2	0	R	н	-CH2-N-C-
45		CI—CH _Z					н	-CH ₂ -N-C
50	55	a⊢aH₂-	1	2	0	R	н	-CH ₂ -N-C
55							~~·	

Table 1.6

5	Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
10	56	CI—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C- H₃C
	57	CI—CH _Z —	1	2	0	R	н	H ₃ C H ₃ C -CH ₂ -N-C H ₃ C
15	58	a—{_}a+ _{z−}	1	2	0	·R	н	-CH ₂ -N-C-
20	59	CI-(C)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
25	60	a_{	1	2		R	н	-CH ₂ -N-C-
30	61	CI(CH ₂	1	2	0	R	н	-CH2-N-C
<i>35</i>	62	CI(CH ₂	1	2	0	R	н	-CH2-N-C
	63	CI-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
40	64	a-{aH_z-	1	2	0	R	н	-CH2-N-C
45	65	a—(¯)—a+₂—	1	2	0	R	н	
50		a-√_>-CH ₂					н	-CH ₂ -N-C-
<i>55</i>								н 🖃

Table 1.7

5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	67	a-{	1	2	0	R	Н	-CH₂-N-C
15	68	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	69	CICH ₂ -	1	2	0	R	н	-CH ₂ -N-C
20	70	CI—CH ₂ —	1	2	0	R	Н	-;CH ₂ -;H°C
25	71	CH ₂ -	1	2	0	R	н	-сн ₂ -N-с- н ₃ -со
30	72	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- √ -OCF₃
35	73	G	1	2	0	R	н	-CH ₂ -N-C
40	74	CH ₂ -	1	2	0	R	н	-CH2-N-C-<>-CO2CH3
	75	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√-F
45	76	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
50	77	CI(CH ₂	1	2	0	R	н	-CH ₂ -N-C-F
55						_		•

Table 1.8

5	Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	78	СI—СН ₂ —	1	2	0	R	н	-CH ₂ -N-C
15	79	a-(-)-a+2-	1	2	0	R	н	-CH ₂ -N-C
	80	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	81	CI-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH3
25 ·	82	а-{	1	2	0		—сн₃	-CH ₂ -N-C-CF ₃
30	83	а-{}-сн ₂ -	1	2	0	R	н	-CH ₂ -N-C
35	84	CI-CH ₂ -	1	2	0	R	H	-CH2-N-CNO2
40	85	CI-CH ₂ -	1	2	0	-	Н	-(CH ₂) ₂ -N-C-
45	86	CI-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -N-C
₩	87	а-(1	2	0	s	н	-(CH ₂) ₂ -N-C-CF ₃ CF ₃
50	88	a-{	1	2	0	S	н	$-(CH_2)_2$ $-N$ CF_3 $-(CH_2)_2$ $-N$ CF_3 F_3 C
55							•	

Table 1.9

								·
5	Compd.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{G}$ $+(CH_2)_{q}^{G}$ $+(CH_2)_{q}^{G}$
10	89	a-{	1	2	0	\$	н	-(CH ₂) ₂ -N-C
15	90	CI()-CH ₂	1	2	0	S	н	-(CH ₂) ₂ -N-C
20	91	a—√a+₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
	92	a-{_}-a+₂-	1	2	0	S	н	-(CH ₂) ₂ -H-C
25	93	CI(-)-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
30	94	CI-CH ₂ -	1	2	0	s	н	-(CH ₂) ₂ -N-С-С-ОСН ₃
35	95	CI-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
40	96	CI-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CH ₃
45	97	a-€cH₂	1	2	0	S	н	-(CH ₂) ₂ -N-C⟨
	98	a-√	1	2	0	s	н	-(CH ₂) ₂ -N-С
50	99	Q-(CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
55								-,

Table 1.10

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	100	а-{	1	.2	0	s	н .	-(CH ₂) ₂ -N-C-CN
15	101	а-Сн ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
	102	a-{	. 1	2	0	s	н	-(CH ₂) ₂ -N-C-
20	103	a-{_}-cH₂-	1	2	0	s	н	-(CH ₂) ₂ -N-C
25	104	CH ₂ -	1	2	0	s	н	-(CH ₂) ₂ -N-C
30	105	CI—(1	2	0	S	н	-(CH ₂) ₂ -N-C
35	106	CH2-	1	2	0	s	н	-(CH ₂) ₂ -N-C
40	107	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-F
	108	CI—CH₂-	1	2 .	0	s	н	-(CH ₂) ₂ -N-C
45	109	CI-CH ₂ -					н	-(CH ₂) ₂ -N-C-NO ₂
50	110 ⁻	CI-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-CNO ₂
55		· 						

. Table 1.11

5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R ³	-(CH ₂) _p R ⁴ (CH ₂) _q -G-R ⁶
10	111	Q-(CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃ CF ₃
15	112	α—(1	2	0	R	н	-{CH ₂ } ₂ -N-C
	113	С1—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
20	114	CI{	1	2	0	R	н	-(CH ₂) ₂ -N-C-
25	115	CI-(1	2	0	R	н	-(CH ₂) ₂ -N-C
30	116	a—(a+	1	2	0	R	н	-(CH ₂) ₂ -N-C → OCH ₃
35	117	a—{	1	2	0	R	Н	-(CH ₂) ₂ -N-C-OCH ₃
40	118	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- → OCH ₃ → OCH ₃
45	119	CI-√CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
	120	CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
50	121	a-√cH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-C-C
55								

Table 1.12

				·				
5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
10	122	CI—CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
15	123	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-C
,,	124	_ CI-()-CH ₂ -	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-CN
20	125	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
25	126	CI-(1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
30	127	CI—CH ₂ —	1	2	0	R	н	-(CH ₂) ₂ -N-C
35	128	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
40	129	CI-CH ₂ -	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
45	130	CI-CH ₂ -	1	2	0	R *	н	-(CH ₂) ₂ -N-C
43	131	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-CF
50	132	CI — CH_2 — CH	1	2	0	R	Н	-(CH ₂) ₂ -N-C
55								

Table 1.13

133 $C - CH_{2} - 1 $									
134 $G \mapsto CH_{2^{-}} = 1 + 2 + 0 + R + H + \frac{CH_{2}}{CH_{2}} = \frac{1}{11} = \frac{1}{12} = 1$	5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
135 $CC - CC - CC - CC - CC - CC - CC - CC$	10	133	CI-CH ₂ -	1	2	0	Ŕ	н	-(CH ₂) ₂ -N-C-NO ₂
25 136 CH_{2} CH_{2	15	134	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		135	a-(1	2	0	R	н	-(CH ₂) ₂ -N-C-Br
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	136	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	137	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
140 $CI \longrightarrow CH_{2-}$ 1 2 0 R H $-(CH_{2})_{2} \longrightarrow CI \longrightarrow H_{3}CC$ 141 $CI \longrightarrow CH_{2-}$ 1 2 0 R H $-(CH_{2})_{2} \longrightarrow CI \longrightarrow H_{3}CC$ 142 $CI \longrightarrow CH_{2-}$ 1 2 0 R H $-(CH_{2})_{2} \longrightarrow CI \longrightarrow H_{3}CC$ 50 143 $CI \longrightarrow CH_{2-}$ 1 2 0 R H $-(CH_{2})_{2} \longrightarrow CI \longrightarrow Br$	30	138	а—СН ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
141 $Q - CH_2 - 1 2 0 R H - (CH_2)_2 - N C - H_3 CO O O O O O O O O O O O O O O O O O O$	35	139	a-(1	2	0	R	H	-(CH ₂) ₂ -N-C
142 CH_{2} 1 2 0 R H $-(CH_{2})_{2}$ CH_{2} 1 2 0 R H $-(CH_{2})_{2}$ CH_{2} 1 2 0 R H $-(CH_{2})_{2}$ CH_{2}	40	140	а-{	1	2	0	R	н	-(CH ₂) ₂ -N-C
142 CI—CH ₂ — 1 2 0 R H —(CH ₂) ₂ —N-C — SI 50 143 CI—CH ₂ — 1 2 0 R H —(CH ₂) ₂ —N-C — Br	45	141	01	1	2	0	R	н	
	4 5	142	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
55	50	143	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
	55								

Table	1	.1	4
--------------	---	----	---

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	144	. а-{	1	2	0	R	н	-(CH ₂) ₂ -N-C-
15	145	a-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
	146	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
20	147	a-(-)-a+2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₂ CH ₃
25	148	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CN
30	149	CI	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
35	150	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
40	151	CI{	1	2.	0	R	н	-(CH ₂) ₂ -N-C
45	152	Q-(CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
45	153	CI-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C
50	154	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
55								

Table 1.15

5	Compd. No.	R1 R2 (CH2)j-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{P_1}}(CH_2)^{\frac{G}{q}}G^{-R^6}$
10	155		1	2	0	R	н .	-(CH ₂) ₂ -N-C
15	156	CI(CH ₂	1	2	0	R	н	-(CH ₂) ₂ -N-C
20	157	CH ₂	1	2	0	·R	н	-(CH ₂) ₂ -N-C
	158	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
25	159	CI—CH-	1	2	0	R	н	-(CH ₂) ₂ -N C F
30	160	CI—CH2	1	2	0	R	н	-(CH ₂) ₂ -N-C
35	161	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-F
40	162	CI-CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F
45	163	CI-(CH_2-					н	-(CH2)2-N-CF3 $F3C$
.5	164	CI-CH ₂ -	1	2	0	R	н	$-(CH_{2})_{2}-N C - CH_{3}$ $-(CH_{2})_{2}-N C - CH_{3}$
50	165	a—{	1	2	0	R	H	-(CH ₂) ₂ -N-C-CH ₃
55								

Table 1.16

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	166	CH	1	2	0	R	н	(S) Q CF ₃ -CH-N-C CF ₃
15	167	CI(CH ₂	1	2	0	R	н	(S) P Br -CH-N-C- Br
	168	CI—CH2-	1	2	0	R	н	СН- СН- СН- СН- СН- СН- СН- СН- СН- СН-
20	169	CI-CH ₂ -	1	2	0	R	н	(S) CH A C
25	170	а-СH ₂ -	1	2	0	R	н .	(S) -CH-N-C CH ₃ F
30	171	a-€cH ₂ -	1	2	0	R	. н	(S) P CH ₃ CH ₃
35	172	α-{_}-cH₂-	1	2	0	R	н	(S) P CH ₃
40	173	a—(cн₂-	1	2	0	R	н	(S) NO 2 CH ₃ CH ₃
45	174	α_{CH₂-					н	(R) -CH-N-C i H CH ₃
	175	а-{сн ₂ -	1	2	0	R	н	CH ₃
50	176	а-СH ₂ -	1	2	0	R	н	(R) PC CI CI CH3 (R) PC CI CI CI CH3 (R) PC CI
55								

Table 1.17

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ \frac{R^4}{R^5}$ $+ (CH_2)_{\overline{q}}$ $+ G^{-R^6}$
10	177	a—€cH ₂ -	1	2	0	R	н	(R) P C C C C C C C C C C C C C C C C C C
15	178	a—(cH₂-	1	2	0	R	н	CH ₃ CF ₃
	179	CI—CH2-	1	2	0	R	н	CH3 -CH-N-C- C
20	180	CI	1	2	0	R	н	CH3 - CH-N-C- (N) 0.
25	181	CI-CH ₂ -	1	2	0	R	н	CH ₃
30	182	CI-(-)-CIH ₂ -	1	2	0	R	н	CH3 CF3
35	183	CI-CH ₂ -	1	2	0	R	. н "	CH ₃ O Br CH ₃ C
40	184	CI—(CH ₂	1	2	0	R	н	CH ₃ O CI
45	185	CI(-)CH ₂	1	2	0	R	н	CH ₃ O CI CH ₃ O CF ₃ . CH ₃ O CF ₃ . CH ₃ CF ₃ .
	186	CI—CH2-	1	2	0	R	н	CH ₃ O CF ₃ . -CH-N-C-CF ₃
50	187	CI—CH ₂ —CH ₂ —	1	2	0	R	н	CH3 0
55						<u> </u>		

Table 1.18

							_	
5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p
10	188	a-{	1	2	0	R	н	CH ₃ P -CH-N-C- CH ₃
15	189	a-()-a+ ₂ -	1	2	0	R	н	CH ₃ P NO ₂ -CH-N-C-\(\sigma\) CH ₃
	190	a-(a+2+	1	2	0	R	н	CF3
20	191	CI-CH ₂ -	1	2	0	R	н	CH-NG-C
25	192	CI-CH ₂ -	1	2	0	R	н	GH- NG- CI
30	193	CI-CH ₂ -	1	2	0	R	н	CI CH NC CI CI
35	194	a—(□)—aH₂-	1	2	0	R	н	CH-NC-F3
40	195	CI—⟨CH ₂ -	1	2	0	R	н	CH ₂ -C _S -C _I
45	196	CI- √ _CH ₂ -	1	2	0	R	н	(R) PC-C
70	197	CICH2-	1	2	0	R	н	CH-N-C-NO ₂
50	198	a-√cH ₂	1	2	0	R ·	н	CH ₂ -S NO ₂ CH ₂ -S NO ₂ CH ₂ -S CH ₃ -S CH ₄ -S
55								
33								

Table 1.19

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p
10	199	a-{	1	2	0	R	н	CH H C
15	200	a-(-) CH ₂	1	2	0	R	н	-CH-H-C-C1
	201	CI—CH ₂ —	1	2	0	R	н	CI CHNC-CI CI
20	202	CICH ₂	1	2	0	R	н.	CH ₂ CF ₃
25	203	CI-(1	2	0	R	н	(S) P-CI
30	204	CICH ₂ -	1	. 2	0	R	н	CHY S
35	205	CI-(1	2	0	R	н	(S) CH ₂ (S) CH ₂ (S)
40	206	CI—CH _Z —	1	2	0	R	н	(S) CH-N-C-CF ₃ (CH ₂) ₂ (CH ₃)
<i>45</i>	207	CI(CH ₂	1	2	0	R	н	(CH ₂) ₂
-	208	CI—CH2—	1	2	0	R	н	(CH ₂) ₂ -\$CH ₃
50	209	CI—CH2—	1	2	0	R	H	(CH ₂) ₂ CH ₃
55								*

Table 1.20

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	210	CI—CH ₂ —	. 1	2	0	R	Н	(S) CFs -GH-11-C-CFs (CH-2)-11-CH3 F
15	211	CI-CH ₂ -	1	2	0	R	Н	(CH ₂) ₂ -3-CH ₃
20	212	а-{	1	2	0	R	н	(CH ₃)2-{CH ₃
	213	а—СН ₂ -	1	2	0	R	н .	(CH ₂)
25	214	α-√CH ₂ -	1	2	0	-	Н	-(CH ₂) ₃ -C-
30	215	a-√_}-cH ₂ -	1	2	0	-	Н	-(CH ₂) ₃ -C
35	216	а-{}-сн ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C(S)
40	217	CI-CH ₂ -	1	2	0	<u>.</u> .	н	$(CH_2)_2$ C CH_3 C
45	218	a-{_}-cH₂-	1	2	0	-	Н	-(CH ₂) ₂ -C-(CH ₃ H ₃ C
50	219	CI-CH ₂ -	1	2	0	-	н	$-(CH_2)_2$ $-C$ $-CH_3$ $-(CH_2)_2$ $-C$ $-CH_3$
30	220	CI(-)-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-CH ₃
55								

Table 1.21

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_$
10	221	a-{	1	2	0	-	н	-(CH ₂) ₂ -C-
15	222	a—{	1	2	0	-	н	-(CH ₂) ₂ -C
	223	CH ₂ -	1	2	0	-	н .	-(CH2)2-C-С>-(CH2)3CH3
20	224	a-{	1	2	0	-	н	-CH ₂ -\$
25	225	CI-(1	2	0	-	н	-(CH ₂) ₃ -C-N-(-)
30	226	CI-(C)-CH ₂ -	1	2	0	-	н	OCH ₃ -(CH ₂) ₃ -C-N-
35	227	CICH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-
40	228	CI-(1	2	0	-	• н	-(CH ₂) ₃ -С-N
45	229	CI-CH ₂ -	1	2	0	-	н	CH₃ Q -CH₂-C-CH₂-C-N(-)-CH₃ CH₃
٠	230	CI-CH ₂ -	1	2	0	-	н	-CH ₂ -CH ₂ -C-N-F
50	231	CI-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N
55	····						· · · · · · · · · · · · · · · · · · ·	

Table 1.22

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	232	a-{_}-a+ _z -	1	2	0	-	Н	-(CH ₂) ₃ -C-N-
15	233	C:-(1	2	0	-	н	-(CH ₂) ₃ -C- _H -CH ₂ -
20	234	CI—(1	2	0	÷	H	-(CH ₂) ₃ -C-N-CH ₃
	235	CI-CH ₂ -	1	2	0	-	н	-cH₂-CH-CH₂-C-N+CH₂-(-)-CI
25	236	а-{-}-сн ₂ -	1	2	0		н	-CH ₂ -N-S
30	237	a-{_}_cH ₂ -	1	2	0	-	Н	-CH ₂ -N-C-O-CH ₂ -
35	238	a-{	1	2	0	-	н	-c+0-c-h-
40	239	—CH ₂ —	1	2	0	S	н	CH ₂ -N-C
45	240	CH _Z -	1	.2	0	S	н	CH ₂ -N-C
50	241	CH _Z -	1	2	. 0	S	н	-CH ₂ -N-C-CF ₃
30	242	CI—(CH ₂ —	1	2	0	S	н	-CH ₂ -N-C-CF ₃
55								<u> </u>

Table 1.23

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-(CH_2)_{q}$ $+\frac{R^6}{R^5}$
10	243	CI CH _Z	1	2	0	S	н	-CH ₂ -N-C-CF ₃
15	244	CH ₂ -	1	2	0	S	н	CH ₂ -N-C-CF ₃
	245	F_CH _F	1.	2	0	S	н	-CH ₂ -N-CF ₃
20	246	CH ₂ —	1	2	0	S	н	-CH ₂ -N-C-CF ₃
25	247	CI—CH ₂ —CH ₂ —	1	2	0	S	н	-CH ₂ -N-CF ₃
30	248	H₃CO_CH ₂ -	1	2	0	s	H	-CH ₂ -N-C-CF ₃
35	249	F ₃ C —CH ₂ —	1	2	0	S	H .	-CH ₂ -N-C-CF ₃
40	250	H ₃ C —CH _Z -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
45	251	FCH ₂ -	1	2	0	S	н '	-CH ₂ -N-C-CF ₃
	252	H ₃ CO—CH _Z -	1	2	0	s	н -	-CH2-N-C-CF3
50	253	H ₃ C-CH _Z -	1	2	0	S	н	-CH _{2-N} -C-CF ₃
55								

Table 1.24

5	Compd.	R ¹ R ² (CH ₂) _J	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	254	NO₂ CH _Z	1	2	0	S	н	-CH ₂ -N-C-CF ₃
15	255	O ₂ NCH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
.5	256	0 ₂ N-{CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
20	257	CF₃ CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
25	258	CO 2CH2CH3	1	2	0	s	н	-CH ₂ -N-C-CF ₃
30	259	CH₃	1	2	0	S	н	CH ₂ -N-C
35	260	a CH₂-	1	2	0	S	н	-CH2-N-C-CF3
40	261	F ₃ C—CH ₂ —	1	2	0	S	н	-CH2-N-C-CF3
45	262	Br CH₂-	1	2	0	s	н	-CH ₂ -N-C-CF ₃
40	263	Br_CH _Z -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
50	264	Q-0-01 ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
55								

Table 1.25

						_	
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
265	Br—CH _Z -	1	2	0	S	Н	-CH2-N-C-CF3
266	CH2-	1	2	0	S .	н .	-CH ₂ -N-C-CF ₃
267	OCH ₂ -	1	2	0	S.	н	CH ₂ -N-C
268	но-с - И — сн2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
269	H ₃ CH ₂ -	1	2	0	S	н	-CH ₂ -N-CF ₃
270	H ₃ CO ₂ C	1	2	0	s	н	-CH ₂ -N-C-CF ₃
271	CH _Z -	1	2	0	s	н	CH ₂ -N-C-CF ₃
272	HO()CH ₂	1	2	0	S	н	-CH ₂ -N-C
273	CN CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
	NCCH ₂ _					н	-CH ₂ -N-C-CF ₃
275	NC-CH _Z -	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.26

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
10	276	F-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
15	277	○ - ○ -CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
	278	H ₃ CO ₂ C-CH ₂ -CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
20	279	F₃ ∞—€—CH ₂ —	1	2	0	S	Ĥ	-сн ₂ -N-с-С _{F3}
25	280	F ₃ COCH _Z -	1	2	0	S	н	-CH2-N-C-CF3
30	281	HO ₂ C—CH ₂ —	1	2	0	S	н	-CH ₂ -N-C-CF ₃
35	282	(H ₃ C) ₃ C-CH ₂ -	-1	2	0	S	н	-CH2-N-C-CF3
40	283	CH ₃ CH ₂ - CH ₃	1	2	0	S	н	-CH2-N-C-CF3
45	284		1	2	0	S	• н	-CH ₂ -N-C-CF ₃
	285		1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	286	€_CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
55								

Table 1.27

5	Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p \frac{R^4}{R^5} (CH_2)_q G - R^6$
10	287	CH ₂ -	t	2	0	R	Н	-CH ₂ -N-C-CF ₃
15	288	CH_CH2-	1	2	. 0	R	н	-CH2-N-C-CF3
	289	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	290	CH ₃	1	2	0	R	н	CH ₂ -N-C-CF ₃
25	291	F_CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
30	292	CI,CH	1	2	0	R	н	-CH2-N-CF3
35	293	CICH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
40	294	H3COCH_T-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
45	295	F ₃ C CH ₂ -	1	2	0	R	н	CH ₂ NC
	296	H₃C —CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
50	297	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
55								

Table 1.28

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	298	H₃CO-{CH ₂ -	1	2	0	R	Ĥ	-CH ₂ -N-C-CF ₃
15	299	H ₃ C-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	300	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	301	O ₂ N	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	302	O ₂ N—CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
30	303	CF ₃	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
35	304	CH_CH_CO2CH2CH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
40	305	CH ₃					н	-CH2-N-C-CF3
	306	CI CH _Z -	1	2	0	R	н	-CH ₂ -N-C-
45	307	F ₂ C—CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	308	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
55								

Table 1.29

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
10	309	Br_CH _Z -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
15	310	CH ₂ -	1	2	0	R	. н	CH ₂ -N-C-CF ₃
00	311	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	312	0 -CH ₂ -	1	2	0	R	н	-CH_N-C-CF3
25	313	OCH₃ CH _Z -	1	2	0	R	н	-CH2-N-C-CF3
30	314	ньс-с-н С-сн-	1	2	0	·R	н	-CH ₂ -N-C-CF ₃
35		H ₂ CH ₂ —					н	CH ₂ -N-C
40	316	H₃CO₂C ———————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
45	317	CH ₂ -	1	2	Ö	R	н	-CH ₂ -N-C-CF ₃
		HO-CH _Z -					Н	-CH ₂ -N-C-CF ₃
50	319	CN CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
55								

Table 1.30

5	Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	320	NC CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
15	321	NC-CH _Z -	1	2	0	R	н	-CH2-N-C-CF3
	322	F-CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
20	323	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	324	H ₃ CO ₂ C	1	2	0	R	н	CH ₂ -N-C
30		F₃ ∞-{				R	н	-CH ₂ -N-C-CF ₃
35	326	F ₃ CCH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
40	327	HO₂C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
45	328	(H ₃ C) ₃ C	1	2	0	R	н	-CH ₂ -N-CF ₃
45	329	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	330	CI—CH₂-	0	3	1		н	-CH ₂ -N-C-CF ₃
<i>55</i>								

Table 1.31

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality .	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
10	331	CI—(0	3	1	<u>.</u>	н	-CH ₂ -N-C-CH ₃
15	332	CI-CH ₂ -	0	3	1	-	н	-сн ₂ -ү-с- осн ₃ осн ₃
20	333	a-{_}-a+2-	0	3	1	-	н	-CH2-N-C-
	334	а-{	0	3	1	-	н	-сн ₂ -N-с-Сн ₃
25	335	a-(-)-a+2-	0	3	1	-	Н	-CH ₂ -N-C-\(\sigma\)
30	336	CI-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-CF ₃
35	337	CH2-	0	3	1	-	н	-CH ₂ -N-C- H ₃ C
40	338	Q-√CH ₂ -	0	3	1	-	Н	-CH ₂ -N-C
45	339	CI-CH ₂ -	0	3	1	R	Н	-CH ₂ -N-C-CF ₃
	340	CI—CH ₂ —	0	3	1	s	Н	-CH ₂ -N-C-CF ₃
50	341	а—(0	3	1	-	н	-CH ₂ -N-C-CF ₃
55								

Table 1.32

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	342	CI—(0	3	1	-	н	CH3 O -CHN-C-
15	343	CI—CH ₂ -	0	3	1	-	Н	-CHN-C- HH CH(CH ₃) ₂
	344	а-{	0	3	1	-	н	-CHN-C- H CH ₂ CH(CH ₃) ₂
20	345	а—Ст₂-	. 0	3	1	-	н	-(CH ₂) ₃ -C-
25	346	CH₂-	0	. 3	1	-	н	-(CH ₂) ₂ -C
30	347	a-{}-a+2-	0	3	1	-	н	-(CH ₂) ₂ -C-CH ₃
35	348	CI—Ç—CH₂-	0	3	1	ě	н	-(CH ₂) ₂ -C-CH ₃
40	349	a-√	0	3	1	-	н	-CH ₂ -\$-CH ₃
45	350	CI-CH ₂ -						
	351	C:CH ₂	0	3	1		н	-CH ₂ -N-C-O-CH ₂
50	352	CI-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-O-CH ₂
55								

Table 1.33

55

Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R
353	a-{_}-c+₂-	1	2	1	-	Н	-CH2-H-C-
354	a-√cH ₂ -	1	3	0	-	Н	-CH2-H-C-
355	a-√cH ₂ -	1	3	0	-	н	-CH ₂ -N-C-CH ₃
356	a—€cH ₂ -	1	3	0	-	н	-CH2-N-C-
357	CI-CH ₂ -	1	3	0	-	н	-CH ₂ -N-C- H ₃ C
358	CI-CH ₂ -	1	3	0	-	Н	-CH ₂ -N-C-CF ₃
359	а-⟨сн₂-	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	CI(CH ₂	1	3	0	-	н	-(CH ₂) ₂ -N-C
361	a-√_>-c+₂-	1	3	0	-	н	-(CH ₂) ₃ -C-
362	CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -С-С
363	a-√cH ₂ -	1	3	0	- -	н	-(CH ₂) ₃ -C-(S)

Table 1.34

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
10	364	а-{	1	3	0	-	н	O OCH ₃ -(CH ₂) ₂ -C-\ H ₃ \
15	365	а-{	1	3	0	-	н	-(CH ₂) ₂ -C
	366	a-{	1	3	0	-	н	-(CH ₂) ₂ -C
20	367	CI-CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
25	368	CI—CH ₂ —	1	3	0	-	н	-(CH ₂) ₂ -C-
30	369	а-{	1	3	0	-	н	-(CH ₂) ₂ -c
35	370	CI	1	3	0	-	н	-(CH ₂) ₂ -С-{\rightarrow}-Q(CH ₂) ₃ CH ₃
40	371	CI-CH ₂ -	1	3	0		н .	-(CH ₂) ₂ -C
	372	CI	1	3	0	-	H	CH ₂ -\$CH ₃
45	373	a-{a+z-	1	3	0	-	н	-(CH ₂) ₃ -C-N-
50	374	CI-CH ₂ -CH ₂ -	1	3	.0	-	н	OCH ₃
55								

Table 1.35

55

5	Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
10	375	α-{	1	3	0	-	н	-(CH ₂) ₃ -C-N-Cl
15	376	a-{_}-CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C-N
,5	377	а-{	1	3	0	-	Н	ÇH₃ Q CH₂-Ç-CH₂-C-N
20 .	378	CH₂-	1	3	Ó	-	н	-CH ₂ CH ₂ -C-N-F
25	379	CICH ₂ -	. 1	3 .	0	-	Н	-(CH2)3-C-N-(
30	380	а—(1	3	0	- .	Н	-(CH ₂) ₃ -C-N-CH ₂ -
35	381	сі—СН₂-	1	3	0	-	н	-CH ₂ -N-\$
40	382	СІ—(1	3	0	-	н	-CH ₂ -N-C-O-CH ₂
	383	CI-CH ₂ -	1	3	0	-	н	-¢H-0-¢-N-
45		CI(CH ₂					н	-CH ₂ -N-C-CH ₃
50	385	CI-(2	2	0	-	н	-CH ₂ -N-C-

Table 1.36

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $-G^ -R^6$
10	386	€ CH _Z -	2	2	0	-	н	-CH ₂ -N-C-
15	387	CH ₂ -	2	2	0	-	н	-CH2-N-C-
	388	(CH₂-	2	2	0	•	н	-CH ₂ -N-C
20	389	CH ₂ -	2	2	0	-	н	-cH2-N-C-(co2cH3
25	390	CH ₂ -	2	2	0	•	н	-CH ₂ -N-C-CF ₃
30	391	⟨ _>-cн ₂ -	2	2	0	٠,	н	CH ₂ -N-C
35	392	CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-C
40	393	CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-
45	394	CH ₂ -	2	2	0		н	CH2-N-C
	395	L .					н	-CH ₂ -N-CBr
50	396	CH ₂ -	2	2	0	-	н	-CH ₂ -N-C
55								

Table 1.37

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	397		2	2	0	-	. Н	-CH2-N-C
15	398	CH _Z −	. 2	2	0	-	н	-(CH ₂) ₂ -N-C-
	399	CH _Z −	2	2	0	-	н	-(CH ₂) ₂ -N-C
20	400	— cH ₂ -	2	2	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
25	401		2	2	0	-	н	-(CH ₂) ₂ -N-C
30	402	CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
35	403		2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
40	404	€ CH ₂ -	2	2	0	-	Н	-(CH ₂) ₂ -N-C
	405				0	-	н	-(CH ₂) ₂ -N-C-
45	406		2	2	0		Н	-(CH ₂) ₂ -N-C-Br
50	407	CH2-	2	2	0	-	н	-(CH ₂) ₂ -N-C-Br
55								

Table 1.38

			_					
5	Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R ³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
10	408		2	2	0	-	н	-(CH ₂) ₂ -N-C
15	409	(CH ₂ −CH ₂ −	. 2	2	0	-	н	-(CH ₂) ₂ -N-C-C-C
20	410	◯ -cH ₂ -	2	2	0	-	н	(S)
20	411	CH ₂ −	2	2	0	-	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
25	412	◯ -CH ₂ -	2	2	0	-	н	(S) NO ₂ -CH-N-C-\(\text{N-O}\) CH ₂ CH(CH ₃) ₂
30	413	(C)-CH ₂ -	2	2	0	-	н	(S) -CH-N-C-C-CO ₂ CH ₃ CH ₂ CH(CH ₃) ₂
35	414	-CH ₂ -	2	2	0	-	н	(S) ————————————————————————————————————
40	415	(T)042-	2	2	0	-	Н	(S) CF ₃ -CH-N-C-CF ₃ -CH ₂ CH(CH ₃) ₂ F
45	416	CH₂-	2	2		•	н	(S) -CH-N-C- -CH ₂ CH(CH ₃) ₂
	417	CH-CH-	2	2	0	-	. Н	(S) P Br -C+-N-C
50	418	CH ₂ -	2	2	0	-	н	(S)
55								

Table 1.39

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G -R ⁶
10	419	⊘ −сн ₂ −	2	2	0	-	Н	(S) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
15	420	(_)—СН ₂ —	2	2	0	-	Н	(S) P F CH ₂ CH ₂ CH ₂ CH ₃) ₂
	421	().−CH ₂	2	2	0	-	H .	(S) -CH-N-C
20	422		2	2	0	-	Н	(R) -CH-N-C- CH ₂ CH(CH ₃) ₂
25	423	CH ₂ -	2	2	0	-	н	(R) P CH ₂ CH ₂ CH ₅ CH ₅ D ₂
30	424	— CH ₂ —	2	2	0	-	н	(R) -CH-N-C- -CH ₂ CH(CH ₃) ₂
35	425	CH ₂ -	2	2	0	-	н	(R) 0 -CH-N-C-C-CO2CH3 CH2CH(CH3)2
40	426		2	2	0	-	н	(R) CF ₃ -CH-N-C-C EH-N-C-CH ₃ CH ₂ CH(CH ₃) ₂
45	427	CH ₂ -	2	2	0	-	н	CF ₃ CH-N-C-CF ₃ CH ₂ CH(CH ₃) ₂ F
+5	428	(_)−CH ₂ −	2	2	0	-	н	(R) -CH-N-C
50	429		2	2	0	-	н	CH ₂ CH(CH ₃) ₂
55								

Table 1.40

					_			
5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+(CH_2)_{\overline{q}}$ $+(CH_2)_{q$
10	430	CH ₂ -	2	2	0	-	Н	(R) —ÇH—N-C- — H CH ₂ CH(CH ₃) ₂
15	431	CH _Z -	2	2	0	-	н	(R) -CH-N-C
20	432	_CH ₂ _	2	2	0	-	н	(R) -CH-N-C
20	433	CH ₂ -	2	2	0	-	н	(R) -ÇH-N-C
25	434	CI—CH _Z -	1	3	1	-	н	-CH2-N-C-
30	435	CI—CH _Z -	1	3	1	-	н	-CH ₂ -N-C-
35	436	CI—CH _Z —CH _Z —	1	3	1	-	Н	-CH ₂ -N-C
40	437	CI—CH _Z -	1	3	1	-	н	-CH ₂ -N-C
45	438	CI(CH _Z	1	3	1	-	н	CH ₂ -N-C-CF ₃
	439	CI-CH _Z -	1	3	1	-	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
50	440	CHZ-CHZ-	1	3	1	-	н	-CH ₂ -N-C-COCF ₃
55								

Table 1.41

5	Compd. No.	R ¹ (CH ₂) -	k	m	n	chirality	R³	-(CH ₂) _p
10	441	CI—(CH	1	3	1	-	н	-CH2-N-C-S
15	442	CI(CH _Z	1	3	1	-	Н	-a+2-N-c-
	443	CI-CH ₂ -CH ₂ -	1	3	1	-	н	-CH ₂ -N-CBr
20	444	CH_CH _Z	1	3	1	·	н	-CH ₂ -N-C
25	445	CI—()—CH	1	3	1	-	H .	-CH ₂ -N-C
30	446	CI-CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
35	447	CI—CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
40	448	CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-O ₂
45	449	CI-CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-CO ₂ CH ₃
	450	a—€——CH ₂ —	1	3	1	-	н	-(CH ₂) ₂ -N-C-CF ₃
50	451	CHZ-CHZ-	1	3	1	.	H	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-CF ₃
55		(Ý))					

Table 1.42

	_							
5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G R ⁶
10	452	CI(-)CH ₂ -	1	3	1	•	н	-(CH ₂) ₂ -N-C-C
15	453	a-CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C
20	454	CICH _Z	1	3	1	-	Н	-(CH ₂) ₂ -N-C
	455	CH2-	1	3	1	-	н	-(CH ₂) ₂ -N
25	456	a-(=)-a+z-	1	3	1	-	н	-(CH ₂) ₂ -N-C
30	457	CI-CH _Z -CH _Z	1	3	1	-	н	-(CH ₂) ₂ -N-C-C-CI
35	458	CI-(2	2	1	-	н	-CH ₂ -N-C-
40	459	CI-(-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
45	460	CI(-)CH ₂	2	2	1	-	н	-CH ₂ -N-C
	461	CI-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
50	462	a-{a ₂ - a-{a ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CH ₃ -N-C-C-CH ₃ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
55		· · · · · · · · · · · · · · · · · · ·			·····			

Table 1.43

5	Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ \frac{R^4}{R^5}(CH_2)_{\overline{q}}G - R^6$
10	463	а-√СН₂-	2	2	1	-	Н	-CH ₂ -N-C-
15	464	CI—CH ₂ -	2	2	1	-	н	-cH₂-H-c- ocH₃ ocH₃
	465	CI————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-\\
20	466	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
25	467	CI—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
30	468	a-{a+2-	2	2	1	-	Н	-CH ₂ -N-C
35	469	a-(-)-a+2-	2	2	1	•	н	-CH2-H-C-
40	470	а-СH ₂ -	2	2	1	-	. Н	-CH2-HC
45	471	CI-CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C
	472	CI—CH2-	2	2	1	-	н	-CH ₂ -N-C
50	_. 473	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-С-СН ₃
55								

Table 1.44

5	Compd.	R ¹ R ² (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	474	a—{_}aH₂-	2	2	1	-	н	-CH ₂ -N-C
15	475	CI	2	2	1	-	Н	-CH ₂ -N-C-(CH ₃) ₂
	476	CI-(-)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
20	477	CI(CH ₂ -	2	2	1	-	Н	-CH2-N-C
25	478	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CN- H ₃ C
30	479	CI-CH ₂	2	2	1	-	Н	-cH₂-prc-
35	480	CI—CH ₂ —	2	. 2	1	•	н	-сн ₂ -р-С-С
40	481	CI-CH ₂ -	2	2	1	-	Н	CH2-N-C-(S)
45	482	CI-CH ₂ -	2	2	1	-	Н	-CH2-N-C-S
•		CI-CH ₂ -					н	-CH ₂ -N-C-S CH ₃
50	484	CICH ₂	2	2	1	-	н	-CH ₂ -N-C-N-C-N-H
55								

Table 1.45

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(СН ₂) _{Р R} ⁴ (СН ₂) _q G-R ⁶
10	485	a-{_}-cH₂-	2	2	1	-	н	-CH ₂ -N C-CF ₃
15	486	CI-(2	2	1	-	н	-CH ₂ -N-CN
	487	CI—(2	2	1	-	н	-CH ₂ -N-C
20	48 <u>8</u>	CI(-) CH ₂	2	2	1	-	н	-CH ₂ -N-C
25	489	CI-CH ₂ -	2	2	1	~	н	-CH ₂ -N-C
<i>30</i>	490	CI-CH2-	2	2	1	-	н	-CH2-N-C-
35	491	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
40	492 ·	CI(CI-)-CH2-	2	2	1	-	н	-CH ₂ -N-C-C-C-S
	493	a-{_}-c+₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
45	494	CH2-	2	2	1	-	H	-CH ₂ -N-C-CF ₃
50	495	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
55					·			

Table 1.46

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	496	а-{	2	2	1	-	H	-CH ₂ -N-C
15	497	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
. 20	498	CI-CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
20	499	CICH ₂	2	2	1	-	н	-CH ₂ -N-C-\(CH ₃) ₂
25	500	CI-CH ₂ -	2	2	1	-	н	-сн₂-№ с осн₃
30	501	CI-(2	2	1	-	н	-CH ₂ -N-C
35	502	a—⟨¯_}-c+ _z	2	2	1	-	н	-CH ₂ -N-C
40	503	CH2-	2	2	1	•	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
45	504	CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-COCH ₃
	505	CICH ₂ -	2	2	1	-	н	CH ₂ -N-C
50	506	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-O NO ₂
55								

Table 1.47

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
10	507	a—⟨a-a+2-	2	2	1	- .	н	-CH2-N-C-0
15	508	a-{	2	2	1	-	н	-CH2-N-C-S
20	509	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S
20	510	CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-OT _{CH₃}
25	511	CI—CH ₂ —	2	2	1	-	н .	-CH ₂ -N-C
30	512	CI-CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C-
35	513	CICH ₂	2	2	1	-	H	-CH ₂ -N-C-CH ₃
40	514	CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-(CH ₃) ₃
45	515	CI—(2	2	1	-	н	-сн ₂ -№ с
	516	H ₂ N—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
50	517	H ₂ N CH ₂ -	2	2	1	· _	н	-CH2-N-C-CF3
55	•							

Table 1.48

			_					
5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
10	518	NH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
15	519		2	2	1	-	н	-CH ₂ -N-C-CF ₃
20	520	а-{	2	2	1	-	—сн ₃	-CH2-N-C-CF3
20	521	CI	2	2	1	-	-(CH ₂) ₂ CH	-CH ₂ -N-C-CF ₃
25	522	CI{	2	2	1	-	-CH ₂ CH-	-CH2-N-C-CF3
30	523	C	2	2	1	-	-(CH ₂) ₂ CH-	-CH ₂ -N-C-
35	524	CI(2	2	1	-	-cн ₂ сн-	-CH ₂ -N-C
40	52 5	CI-CH ₂ -	2	2	1	. -	Н	-CH ₂ -N-C-SO
45	526	CI-(2	2	1	-	,	-cH2-H-C-C
	527	CI—CH ₂ -	2	2	1	-	н	-CH2-N-C-
50	528	a—€cн _z -	2	2	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃
55								

T	ab	le	1.	.49
	ᇝ	16		. – .

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R²	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	529	G-{	2	2	1	-	н	-CH2-N-C-(3)NO2
15	530	a-√_}-cн₂-	2	2	1	-	н	-CH2-NO-CHO
	531	a-{_}-cн _z -	2	2	1	-	н	-CH ₂ -N-C-Us
20	532	a-€cH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
25	533	a-€cH ₂ -	2	2	1	-	н	-CH ₂ -N-C
30	534	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-NO ₂
35	535	CH₂-	2	2	1	-	н	CH2-N-CS H3 CCD-
40	536	CI_CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-X-CH ₃ H ₃ C CH ₃
45	537	CICH ₂ -	2	2	1	-	н	-CH ₂ -N-C-(C(CH ₃) ₃
45	538	CI—CH _z —	2	. 2	1	-	н	-cH ₂ -N-
50	539	CI—CH ₂ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ F ₅ C
55								

Table 1.50

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	540	a—{a+	2	2	1	-	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
15	541	a—⟨	2	2	1	-	н .	-CH ₂ -N-C
	542	a-€cH ₂ -	2	2	1	-	н	CH ₂ -N-C
20	543	a-√cH ₂ -	2	2	1	-	н	_сн ₂ _N-с-{сн ₂ сн ₃
25	544	CI(C)(CH ₂	2	2	1		н	-CH ₂ -N-C-
30	545	a-√_>-cH₂-	2	2	1	- .	н	-CH2-N-C-
35	546	CI—CH₂-	2	2	1	-	Н	-CH2-N-C-
40	547	CI⟨	2	2	1		Н	-CH2-N-C-CI
45	548	G-{	2	2	1	-	н	-CH2-N-C-C
	549	Q-√CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
50	550	CH₂- CH₂-	2	2	1	-	н	-CH ₂ -N-C
55								

Table 1.51

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	551	a-{	2	2	1	-	Н	-CH2-N-C-CH2-CH3
15	552	a-√c+ ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
20	553	a-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃ CF ₃
20	554	CH ₂ -	2	2	1	-	н	-CH2-N-CH2-F
25	555	a-€cH ₂ -	2	2	1	-	н	-CH2-NC-HTC
30	556	CI-CH ₂ -	2	2	1	-	Н	-CH2-N-CH3
35	557	CI-CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -N-C-
40	558	CI-CH ₂ -	2	2	1	- .	н	-CH ₃ O -CH ₁ C-
45	559	CH2-					н	-CHNC-CF3
	560	CI-CH2-	2	2	1	-	н	-CH-M-C-CN
50	561	CI—CH2-	2	2	1	-	н	-CHNC-Br
5 5								

Table 1.52

		 						
5	Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
10	562	a-{	2	2	1	-	Н	-CH-N-C-
15	563	a—{cн₂-	2	2	1	-	Н	-CH-N-C
20	564	a-CH ₂ -	2	2	1	-	н	-CHN-C-OCH2CH3
	565	a—{_}-a+₂-	2	2	1	-	Н	-CHN-C-CF3
25	566	CI-(2	2	1	- -	н .	-chyc-Coct3
30	567	CI	2	2	1	-	н	-CHN-C-CF3
35	568	CI—CH ₂ -	2	2	1,	-	н	-CHNCCCF3
40	569	a—(∑)—cH₂—	2	2	1		н	-CHNCCF3
45	570	CI—CH ₂ —	2	2	1	-	н	-CH-N-C
50	571	CI—CH₂— CH₂—CH₂—	2	2	1	-	н	-CH ³ CH(CH ³)2
50	572	а—(2	2	1		н	-CHNCF3
55								

Table 1.53

5	Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
10	573	а-{	2	2	1	-	н	-CH-N-C-S
15	574	а-{_}-сн₂-	2	2	1	-	н	-CH-N-C-S Br
20	575	CH ₂ -	2	2	1	-	н	-CH-N-C-(CH3)3
	576	CH2−	2	2	1	-	н	-chycha
25	577	CI-CH ₂ -	2	2	1	-	н	-CH-NC-
30	578	CI-(2	2	1	-	н	-CHN-C-S
35	579	CI-CH ₂ -	2	2	1	-	н	-c+N-c-N
40	580	CH ₂ -	2	2	1	-	н	-CHN-C-S CH3
45	581	CI-(2	2	1	-	н	-ch hc-(s)
	582	а—(ан ₂	2	2	1	-	H	-CH-NC-S
50	583	CI—CH ₂ —	2	2	1	-	н .	-CH-NC-S
55								

Table 1.54

5	Compd. No.	R ¹ (CH ₂) _J	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	584	a-{	2	2	1	-	н	-c+ h c -c -c -c
15	585	CI(CH _Z	2	2	1	-	н	-сн. й-с
20	586	a-(2	2	1	-	н	-сн-й-с-——а о
	587	CI—CH2-	2	2	1	-	н	-сн-н-с
25	588	C:CH ₂	. 2	2	1	-	н	-CH-N-C
30	589	α-√CH₂-	2	2	1	-	н	-CHNC
35	590	a-CH ₂ -	2	2	1	-	н	-CH-N-C
40	591	CI-CH ₂ -	2	2	1	-	н	-CHNCH₃)2 CH₃
45	592	CI—CH ₂ -	2	2	1	-	н	-сн к с сн ₃
50		CI—CH ₂ -						ОПЗ
50	594	CI-CH ₂ -	2	2	1	-	Н	-сн-у-с- сн₃
55								

Table 1.55

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p \int_{R^5}^{R^4} (CH_2)_{\overline{q}} G^{-R^6}$
10	595	a-{	2	2	1	•	н	-CH-N-C
15	596	a—{	2	2	1	.	н	-CHN-C-C-CH3
20	597	CI—CH _z -	2	2	1	-	н	-CH-N-C
20	598	CI—CH ₂ -	2	2	1	-	н	-c++c-
25	599	CICH ₂	2	2	1	-	н	-CH N-C- CH3 CH3
30	600	CI-(2	2	1	-	н	-CH-N-C-OBr
35	601	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CH3
40	602	а-{	2	2	1	-	н	-C+N-C>N(CH ₃)₂ -CH ₃
45	603	CI—(2	. 2	1	-	н	-c+NC-NH2
	604	а_Сн ₂ -						-CH-N-C-N-H
<i>50</i>	605	а—(=>-cн ₂ -	2	2	1	-	н	-CH-N-C-C
55							0	

Table 1.56

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	606	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-C3
15	· 607	CI—CH ₂ -	2	2	1	-	н	-CH-N-CS
	608	CI—CH _Z -	2	2	1	-	н	CH ₃ H ₃ C
20	609	CI—CH _Z -	2	2	1	-	Н	-CH-N-C
25	610	CI	2	2	1	-	н	-CH-N-C-CH3
30	611	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-C(CH ₃) ₃
35	612	CI-CH ₂ -	2	2	1	-	н	-ch h -ch
40	613	CI-CH ₂ -	2	2	, 1	-	н	CH ₃ F ₃ C
45	614	CI-CH ₂ -	2	2	1		н	CH ₃ F ₃ C CH ₃
45	615	CI-(CH ₂ -	2	2	ì	-	н	-CH-P-C-NH
50	616	CI(□)CH ₂ -	2	2	1	-	н	CH ₃ F ₃ C CH ₃ -CH-N-C NH -CH-N-C CH ₃
55								

Table 1.57

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	617	α-{_}-αH ₂ -	2	2	1	-	н	-CH-N-C-CF3
15	618	CI(□)CH ₂ -	2	2	1	-	н	-CH-N-C-C
20	619	CI(CH₂-	2	2	1	-	н	-CH-N-C- H H CH(CH ₃) ₂
20	620	CH2-	2	2	1	-	н	-CH+N-C
25	621	CH₂-	2	. 2	1	-	н	-CH-N-C
30	622	CICH ₂ -	2	2	1	-	н	-CH-N-C
35	623	CI—CH₂-	2	2	1	-	н	-CH-N-C
40	624	CI—CH₂-	2	2	1	-	н	-CH-N-C
45	625	CI—CH2−	2	2	1	-	н	-CH-N-C
	626	CI—CH₂-	2	2	1	-	н	F ₃ C O -CH-N-C H CH (CH ₃) ₂ CF ₃
50	627	CI-CH ₂ -	2	2	1	-	- Н	OCH ₂ CH ₃ -CH-N-C
55								

Table 1.58

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	628	а-{}-сн ₂ -	2	2	1	-	н	-CH-N-C-CO ₂ CH ₃
15	629	CI-(2	2	1	-	н	-CH-N-C-CF3 -CH(CH ₃) ₂
20	630	CI-(2	2	1	-	н	OCF ₃ -CH-N-C
20	631	CI(CH ₂ -	2	2	1	-	H .	OCH CH(CH ₃) ₂ CF ₃
25	632	CI-CH2-	2	2	1	-	Н	-CH-N-C-CH(CH ₃) ₂ CF ₃
30	633	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CF ₃ -CH(CH ₃) ₂ F
35	634	a-()-a+ ₂ -	2	2	1	-	н	O CF3 -CH-N-C
40	635	CI-CH ₂ -	2	2	1	-	н	-CHNCH ₃) ₂
45	636	a-(a-	2	2	1	-	н	-CH-N-C-CH ₃ -CH(CH ₃) ₂
50	637	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-CF3 -CH(CH ₃) ₂
<i>50</i>	638	CI-CH ₂ -	2	2	1	-	н	-CHN-C-CN CH(CH ₃) ₂
55								

Table 1.59

5	Compd. No.	R ¹ (CH ₂) _j	k	m	ń	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	639	CI-(2	2	1	-	н	-CH-N-C
15	640	CI—CH ₂ —	2	2	1	-	н	-сн н с- сн (сн ₃) ₂
20	641	CI—CH₂-	2	2	1	-	н	-CH-N-C
	642	CI—(2	2	1	-	н	-CH-N-C
25	643	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CF ₃ CH(CH ₃) ₂
30	644	CH2-	2	2	1	-	н	-сн н с — с(сн ₃) ₃ сн (сн ₃) ₂
35	645	a—€cH ₂ -	2	2	1	-	н	-CH-N-C
40	646	CH ₂ −	2	2	, 1	-	Н	-сн-ү-с- Сн(сн ₃) ₂ -сн ₂ он
45	647	CI-CH ₂ -	2	2	1	-	Н	-снус- сн(сн ₃) ₂
50		CI-CH ₂ -						-CHNC-CH(CH ₃) ₂ CH(CH ₃) ₂
Ju	649	а—(ан _г	2	2	1	-	Н	-CH-N-C
55		······································						

Table 1.60

							_	
5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁵ (CH ₂) _q G-R ⁶
10	650	а—{_}-сн₂-	2	2	1	-	н	CH(CH ₅) ₂
15	651	CI-(2	2	1	-	н	-CH(CH ₃) ₂
20	652	CI-(-)-CH ₂ -	2	2	1	-	н	-CH-N-C
	653	CI-(2	2	1	-	н	-CH-N-C
25	654	CH ₂ -	2	2	1	-	н	-CH-N-C-CH3
30	655	CI-(2	2	1	-	н	-CH-N-CF3
35	656	CH₂-	2	2	1		н	-сн-и-с- сн(сн ₃₎₂
40	657	CI-(2	2	1	-	н	-CH-N-C-S CH(CH ₃) ₂
45	658	CI(CH ₂ -	2	· 2	1	-	н	-CH-N-C-NH
	659	CI-CH ₂ -	2	2	1	-	Н	-CH-N-CS OH(CH ₃) ₂ NO ₂
50	660	CI-(2	2	1	-	н	-CH-NE-NO
55				·				

Table 1.61

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	661	а-С-	2	2	1	-	н	-CH-N-CS CH(CH ₃) ₂ OCH ₃
15	662	а-{	2	2	1	-	н	CH-N-C
·	663	CI-CH ₂ -	2	2	1	~	н	-CH-N-C-43 CH(CH3)2
20	6 64	а-{_}-сн ₂ -	2	2	1	-	н	-CH-N-C
25	665	СІ—(СН₂-	2	2	1	-	н	-CH-NC-CS CH(CH3)2
30	666	a-⟨¯}-c+₂-	2	2	1	-	н	-CH-N-CCH3 CH3 CH3 CH3 CH3
35	667	a-CH ₂ -	2	2	1	-	н	-CH-N-C-CP CH(CH ₀) ₂
40	668	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CH ₃
45	669	CH₂-	2	2	1	. -	н	-CH-N-C-(N-N-CH(CH ₃) ₂ CH ₃
45	670	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-(CH ₃) ₂
50	671	CI—CH ₂ -	2	2	1		Н	-CH-N-C- NO ₂
55		<u> </u>						

Table 1.62

5	Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	672	C!(CH ₂ ·	2	2	i	-	н	-CH-N-C
15	673	CI-CH ₂ -	2	2	1	-	н	-сн-N-с- ссн _{э)2}
	674	CI—⟨¯_}-CH₂-	2	2	1	-	н	-CH-N-C-S CH(CH ₃) ₂
20	675	CI—CH ₂ —	2	2	1	-	Н	-CH-N-C-S-CH ₃
25	676	CI—CH₂−	2	. 2	1	-	н	-CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
30	677	G-€	2	2	1	-	н	-CH-N-C
35	678	a—{	2	. 2	1	-	н	-ÇH-N-C
40	679	a—{	2	2	1	-	н	-CH-N-C-S-CH CH(CH ₃) ₂
45	680	CI—CH₂-	2	2	1	-	н	-CH-N-C-S H S Br
	681	G-€-CH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃ CH ₃) ₂ CH ₃
50	682	a-CH₂-	2	2	1	-	н	-сн-N-с С(СН ₃) ₃
55								

Table 1.63

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	683	a-(2	2	1	-	н	CH(CH ₃) ₂ SCH ₃
15	684	a-{_}-cH₂-	2	2	1	-	н	-CH-N-CS G-CH(CH3)2 CH(CH3)2
	685	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-S CH ₃
20	68 6	CI-CH ₂ -	2	2	1	•	н	-CHN-C- HH CH2CH(CH3)2
25	687	CI(CH ₂	2	2	1		н	-CHN-C-
30	688	CI-(CH ₂ -	2	2	1	-	н	-CHN-C
35	689	CI—CH _Z -	2	2	1	-	н	-CH-N-C-CN
40	690	CH2-	2	2	1	-	н	-chyc-
45	691	CI-CH ₂ -	2	2	1	-	н	-CHN-C
	692	CI-CH ₂ -	2	2	1	-	н	-CHN-C
50	693	a-CH ₂ -	2	2	1	-	H	-CHN-C
55						·		

Table 1.64

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	694	CI—CH ₂ —	2	2	1	•	Н	-CHN-C-CH3
15	695	a-€cH ₂ -	2	2	1	-	н	-CHN-C
20	696	CI	2	2	1	-	н	-CHNC-COCF3
	697	а—Сн ₂ -	2	2	1	-	н	-cH-и-с
25	698	a-{_}_cн _z -	2	2	1	•	н	-CH-N-C
30	699	CICH ₂	2	2	1	-	н	-CHN-C-C→OCH3
35	700	CI-CH ₂ -	2	2	1	-	н	-CHN-C
40	701	a—(¯)-cH₂-	2	2	1	-	н	-CHN-C-C-CH3
45	702	CH ₂ -	2	2	1	-	н	-CHN-C
50	703	G-€-CH ₂ -	2	2	1	-	н	-CHN-C
	704	G — CH₂-	2	2	1	-	н	-CHN-CNO2
55·								

Table 1.65

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{P}}_{\frac{R}{R^5}}(CH_2)_{\overline{q}}G-R^6$
10	705	a-{-}-cH ₂ -	2	2	1	-	н	-CH-N-C-S
15	706	a-{	2	2	1	-	н	-CHN-C-STCH3
	707	а-Сн ₂ -	2	2	1	-	н	-CH-N-C-CF3
20	708	а-СH ₂ -	2	2	1	·.	н	-CH-N-C-S Br
25	709	a-(2	2	1	-	н	-CH-N-C-S SCH ₃
30	710	CI(CH ₂	2	2	1	-	н	CHN S Br
35	711	CI(CH ₂ -	2	2	1	-	н	-CHN-C-(CH ₃
40	7.12	CI()-CH ₂ -	2	2	1	-	н	-CHNC-ST
	713	CI-CH ₂ -	2	2	1	-	н	-CHN-C 1
45	714	CI(C)CH ₂	2	2	1	-	н	-CHNC-N
50	715	CI-(2	2	1	-	н	-CHNC H ₃ C
55				· 				

	Iable	1.00						
5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(СН ₂) _{р-R} ⁴ (СН ₂) _q -G-R ⁶
10	716	CI-CH ₂ -	2	2	1	-	н	-ching H
15	717	CH2-	2	2	1	-	н	-CHN-C-()NO2
20	718	а-{_}-сн ₂ -	2	2	1	-	н	-CHNC-N
25	719	CI-()-CH ₂ -	2	2	1	-	н	-CHN C-C)
	720	а-{	2	2	1		н	-CHN-C-OJBr
30	721	СН ₂ —	2	2	1	~	н	-сни-б- сн _з
35	722	CI-CH ₂ -	2	2	1	~	н	-cH-N-CCH₂OH
40	723	CI-CH ₂ -	2	2	1	-	H	-CH-N-C-NH ₂
45	724	а-{	2	2	1	-	н	-CH-N-C-(CH ₃) ₃
50	725	а-{CH ₂ -	2	2	1	-	н	-CHN-C-C-C-C
	726	CH2-	2	2	1	-	н	-CH-N-C-CH3
55						<u>. </u>		

Ta	b	le	1	.67

5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	(CH ₂) _p R ⁴ / _R (CH ₂) _q G-R ⁶
10	727	a-{_}-a+2-	2	2	1	-	н	-chn c-a
15	728	a-{	2	. 2	1	-	н	-CH-N-C-(NH ₂
20	729	CI-CH ₂ -	2	2	1	-	н	-CHN-C-C
	730	a-()-a+2-	2	2	1	-	н	-chn-c-C
25	731	a-€cH₂-	2	2	1	-	н	-ching-og-ch
30	732	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3
35	733	a-()-a+2-	2	2	1		• н	-CH-N-C
40	734	CI-(2	2	1	-	н	-CHNC-CF3
45	735	CI(н .	-CH-N-CCF3
	736	a-(2) a+2-	2	2	1	-	н	-CH-N-C
50	737	CI-(2	2	1	-	н	-CHN-C-CF ₃
55								

5	Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	738	а-{_}-сн ₂ -	2	2	1	•	н	-CH-N-C-CH-3
15	739	а-{	2	2	1	-	н	-chn-c-NH
20	740	CH ₂ -	2	2	1	· ·	н	-CH-N-C NO ₂
05	741	a-{-}-a+2-	2	2	1	-	н	-CHNO SNO2
25	742	CI-(2	2	1	-	н	-CHN-C-CIS
30	743	CI-CH ₂ -	2	2	1	-	н	-ching-
35	744	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃
40	745	CI-CH ₂ -	2	2	1		Н	-CHNC (C(CH3)3
45	746	CI-CH ₂ -	2	2	1	-	н	-CH4N-CH3
	747	CI-CH ₂ -	2	2	1	-	н	-CH+N-C
50	748	CI-CH ₂ -CH ₂ -	2	2	1	-	н	-CHN-C-CH3 -CHN-C-CH3
55								

Ta	b	le	1.	6	9

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p
10	749	a-⟨	2	2	1	-	н	-CHNO CHO
15	750	CI(CH ₂ -	2	2	1	-	н	-CHN-C-C
20	751	a-(-)-a ₁₂ -	2	2	1	-	н	CH-N-C-CH ₃
25	752	a-{	2	2	1	-	н	CH-N-C-CF3
25	753	CI—CH₂-	2	2	1	-	н	-CH-N-C-CN CH ₂ OH
30	754	CI-(2	2	1	-	н	-CH-N-C-CI CH2OH
35	755	CI-(2	2	1	-	н	-CH-N-C> CH2OH
40	756	CI-(CH ₂ -	2	2	1	-	н	CH-N-C-NO2 CH ₂ OH
45	757	CICH ₂ -	2	2	1	-	н	-CH-N-C
50	758	CI—CH ₂ -	2	2	1	-	.н	CH-N-C-CH-N-C-CH ₂ OH
	759	CI—CH ₂ -	2	2	1	-	н	-CH-N-C- H CH₂OH
55							Tr.	

T	_	L	ŧ	_	4	•	7	c
	a	D	ı	e	- 1	_	•	L

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	R*
10	760	CH ₂ -	2	2	1	-	н .	-CH-N-C-CF3
15	761	CI(CH ₂	2	2	1	-	н	-CH-N-C-F3 CH ₂ OH
20	762	CI-CH2-	2	2	1	-	Н	-CH-N-C
	763		2	2	1	-	н	-CH-N-C-C
25	764	CI-CH _Z	2	2	1	<u>-</u> ·	н	CH ₃ P CH ₃ P
30	765	a-(-)-a+2-	2	2	1	-	н	CH ₃ P CH ₃ CH ₃
35	766	a_CH ₂ -	2	2	1	-	н	CH ₃ 0 CF ₃
40	767	CH ₂ -	2	2	1	-	H	CH3 CCH3
45	768	a-{	2	2	1	-	H	CH ₃ O Br
	769	а-{	2	2	1	-	н	CH ₃ O OCF ₃
50	770	CH ₂ -	2	2	1	-	H .	CH ₃ O OCF ₃ CH ₃ O CF ₃ CH ₃ CF ₃ CH ₃ F
55		_						

Т	2	h	ما	1	.7	1
	a	u	16	- 1		- 1

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
771	а-{_}-сн ₂ -	2	2	1	-	н	CH3 CCF3
772	CI-CH ₂ -	2	2	1	•	н	CH ₃ O CH ₃ CF ₃
773	a-(-)	2	2	1	-	н	CH ₃ C(CH ₃) ₃
774	a-(-) a+2-	2	2	1	-	н	CH ₃ O CH ₃ SCH ₃
775	CI-CH ₂ -	2	2	1	-	н	CH ₃ Q CH ₃ C(CH ₃) ₃
776	CI-CH ₂ -	2	2	1	-	н	CH3 CH3
777	a-()-(2H ₂ -	2	2	1	-	н	CH ₃ CF ₃ CH ₃ CH ₃
778	CH2-	2	2	1	-	н	CH ₃ O NO ₂ CH ₃ CCI
779	CH2-					н	CH3 O CI
780	CI-CH2-	2	2	1	-	н	CH ₃ O NO ₂ CH ₃ O NO ₂ CH ₃ O CH
781	CI-CH ₂ -	2	2	1	•	н	CH3 P

Table 1.72

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
10	782	CI-(2	2	1	<u>.</u>	н	CH ₃ OCH ₃
15	783	CI-(CH ₂ -	2	2	1	-	н	CH ₃ O CCH ₂ CH ₃ -C-N-C-C
20	784	a-{_}-a+2-	2	2	1	•	н	CH ₃ O CH ₂ CF ₃
	785	CI-(2	2	1	-	Н	CH3 OCH3 CH3 OCH3
25	786	CI-(CH ₂	2	· 2	1	-	н	H ₂ O-CH ₂
30	787	CI(CH ₂	2	2	1	-	н	-C-N-C-SH ₃
35	788	CI—CH _Z -	2	2	1	•	Н	H ₂ C—CH ₂ CF ₃
40	789	CI-CH ₂ -	2	2	1	-	н	HE COCHE
45	790	CI-CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂ OCF ₃ OCF ₃
50	791	CI-CH ₂ -	2	2	1	-	н	-C-N-C-NO2 H ₂ C-CH ₂
	792	CH ₂ —CH ₂ —	2	2	1	•	н	H ₂ C-CH ₂
55								

Table 1.73

5	Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	793	CI(CH ₂	2	2	1	-	н	-C-N-CF H ₂ C-CH ₂
15	794	CI-CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂ F
20	795	CI(CH ₂	2	2	1	-	н	H ₂ C-CH ₂ CF ₃
	796	CI(CH ₂	2	2	1	-	Н	H ₂ C—CH ₂ SCH ₃
25	797	CI—{	2	2	1	-	н	H ₂ CCH ₂ C(CH ₃) ₃
30	798	01—(2	2	1	-	н	H ₂ C CH ₂ CH ₃
35	799	a-{au _z -	2	2	1	-	н	H ₂ C-CH ₂ CH ₃
40	800	CI	2	2	1	-	н	H ₂ C-CH ₂ NO ₂ CI
45	801	CI-(2	2	1	-	н	H ₂ C-CH ₂
50	802	CI-CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂ H ₂ C-CH ₂ OCH ₃ H ₂ C-CH ₂ OCH ₂ CH ₃
	803	a-{a+	2	2	1	-	. н	H ₂ C-CH ₂ OCH ₂ CH ₃
55								

Table 1.74

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	804	a-Ch2-	2	2	1	-	н	H ₂ C-CH ₂ CF ₃
15	805	CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂ OCH ₃
20	806	CH2-	2	2	1	-	,н	H ₂ C-CH ₂
	807	CH ₂	2	2	1	-	н	-CH-NG-NH2
25	808	· a-CH ₂ -	2	2	1	-	н	-CH-N-CH3
30	809	а-{	2	2	1	-	н	-CH-N
35	810	а-СН ₂ -	2	2	1	-	н	-CH-N-C-C9
40	811	а-Сн ₂ -	2	2	1	-	н	-CH-N-C
45	812	CH2-	2	2	1	-	н	-CHNC-SSCH ₃
	813	а-С-	2	2	1	- ,	н	-CH-N-C-(CH ₂) ₂ -G-NH ₂
50	814	CICH ₂ -	2	2	1	-	н	-CH-N-C
55								· · · · · · · · · · · · · · · · · · ·

Table 1.75

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	815	а-{¯}-сн ₂ -	2	2	1	-	н	-CH-NC
15	816	a-(2	2	1	-	н	-CH-N-CF3
20	817	CI-CH ₂ -	2	2	1	<u>-</u>	н	-CHN
	818	CI(CH ₂	2	2	1	· -	н	-CH-H
25	81 9	a-{	2	2	1	-	н	-CH-NC-CF3
30	820	a-(-)-cH ₂ -	2	2	1	-	н	-CH-N-C-NH2
35	821	CI-(2	2	1	-	н	-CH-N-C
40	822	CI-()-CH ₂ -	2	2	1	-	н	-CH-N-C-SSCH3 CH2OCH3
45	823	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-
	824	CI-(-CH ₂ -	2	2	1	-	н	-CH-N-C-C(CH ₃) ₃
50	825	CI-()-CH ₂ -	2	2	1	-	н	-cH-N-c6
55								

Table 1.76

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	N
10	826	а-{	2	2	1	-	н	-CH-N-C-CH ₃ CH ₂ OCH ₃
15	827	a-{	2	2	1	-	н	-CH-N-C-VH CH2OCH3
20	828	a-{	2	2	1	-	н	-CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
	829	a-{	2	2	1	-	н	-CH-N-C-CF3 -CH ₂ OCH ₃ F
25	830	a-CH ₂ -	2	2	1	-	н	-CH-N-C-F3 CH2OCH3
30	831	a-{	2	2	1	-	Н	-CH-N-CH ₂ OCH ₃
35	832	a-{	2	2	1	-	н	-CH-N-C-CI CH2OCH3
40	833	a-⟨	2	2	1	-	н	-CH-N-C
45	834	a—{_}-cH₂-	2	2	1	-	H .	-CH-N-C-CF3 CH2OCH3
	835		2	2	1	-	н	-сн-и-с
50	836	a-{_}-cH₂-	2	2	1	-	н	CH-N-C-CH ₃ CH ₂ OCH ₃
55								

Table 1.77

5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	-(CH ₂) _P (CH ₂) _q G-R ⁶
10	837	а-{	2	2	1	<u>-</u>	н	CH_N-C-CF3
15	838	a-⟨¯}-cH₂-	2	2	1	-	н	-CH-N-C-C-CH ₂ CH ₃
20	839	G-CH ₂ -	2	2	1	-	. н	OCH ₃ −CH−N−C− → OCH ₃ CH ₂ OCH ₃ OCH ₃
	840	CI-(2	2	1	-	н	-(CH ₂) ₃ -C
25	841	CI—⟨CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-
30	842	CI-√	2	2	1	-	н	-(CH ₂) ₂ -C-(CH ₂)-C
35	843	CI-CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
40	844	CH₂-	2	2	1	~	Н	-(CH ₂) ₂ -C-CH ₃
45	845	G-{	2	2	1	-	Н	-(CH ₂) ₂ -C
	846	CH ₂ -	2	2 .	1	-	н	-(CH ₂) ₂ -C
50	847	a-€cH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C
55								

Tab	le	1.	78
	. •	• •	. •

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	848	a-{_}-c+ ₂ -	2	2	1	-	н	-(CH ₂) ₂ -CH ₃
15	849	CI-(2	2	1		н	$\begin{array}{c} O \\ O $
20	850	CI-(2	2	1	-	H	-CH ₂ -\$-CH ₃
	851	CI(CH ₂	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
25	852	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
30	853	CI-()-CH ₂ -	2	2	1	-	Н	-CH2-HC-H-
35	854	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-CH ₃
40	855	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
45	856	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-
	857	a-{-}-a+2-	2	2	.1	-	н	-CH ₂ -N-C-N-C
50	858	CH2-	2	2	1	-	H	-сн ₂ -м-с-и
55								

Table 1.79

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	859	CH ₂ -	2	2	1	-	н	-CH2-N-C-N-C
15	860	а-{	2	2	1	-	н	-CH2-H-C-H-CN
20	861	a-{	2	2	1	-	н	-CH ₂ -N-C-N- H - H - H - H - H
	862	G-{	2	2	1	-	н	-CH2-N-C-N-C-OH3
•	863	CI(CH ₂	2	2	1	-	н	-CH ₂ -N-C-N-
30	864	CI-CH ₂ -	2	2	1	-	н.	-CH ₂ -N-C-N-C-N-OCH₃
35	865	CI	2	. 2	1	-	н	-CH ₂ -N-S-CH ₃
40	866	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-S-CF ₃
45	867	CI⟨	2	2	1	-	н	-CH ₂ -N-S-CF ₃ CF ₃
50								-CH2-N-S-CH2CH3
Ju	869	CI-CH ₂ -	2	2	1	-·	н	-CH ₂ -N-S-CH(CH ₃) ₂
55								

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R ²	᠆(СӉ _{҈)}
10	870	CH ₂ -	2	2	1	-	н	-CH ₂ -N-S-CH ₃
15	871	CH2-	2	2	1	•	Н	-CH2-N-S-(CH2)3CH3
20	872	a-{	2	2	1	-	н	-CH ₂ -N-S-
	873	а-{сн₂-	2	2	1	-	н	-сн ₂ - h-с-о-сн ₂ -
25	874	а-{	2	2	1		н	CHO-C-H-
30	875	CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
35	876	Br-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-CF ₃
40	877	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
45	878	O ₂ N————————————————————————————————————	2	2	1	~	Н	-CH ₂ -N-C-CF ₂
	879	CH _Z -CH _Z -	2	2	1	<u></u>	н	CF ₃
50	880	0^0 CH₂-	2	2	1	•	н	-CH ₂ -N-C-CF ₃
55								

Table	1.81
-------	------

5	Compd.	R ¹ (CH ₂) _J	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	881	Br CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
15	882	○-0 CH ₂ -	2	2	1	-	н	-CH ₂ -NCF ₃
20	883	CH ₂ -	2	2	1	-	н	-CH ₂ -NCC-CF ₃
	884	н₃с.с-н С-сн_	2	2	1	-	н	-CH ₂ -N-C-CF ₃
25	885	H₃C-\$-CH _Z -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
30	886	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
35	887	F ₃ C-CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
40	888	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
45	889	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	890	CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
50	891	Cl CH₂−	2	2	1	-	н	-CH ₂ -N-C-CF ₃
55								

5	Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{q}} + (CH_2)_{\overline{q}} - G - R^6$
10	892	H ₃ CO — CH ₂	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
15	893	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
20	894	HO CH_3 H_3C CH_2	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	895	(CH ₂) ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
25	896	CN CH₂−	2	2	1	•	н `	-CH ₂ -N-C-CF ₃
30	897	HO ₂ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
35	898	HO ₂ C-CH ₂ -	2	2	1	v	н	-CH ₂ -N-C-CF ₃
40 .	899	OCH₃ —CH₂-	2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
45	900	H ₃ CO ₂ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
· ·	901	○ CH	2	2	1	-	н	-CH ₂ -N-CCF ₃
50	902	O ₂ N — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
55		-2		<u>.</u>				

Table 1.83

5	Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	903	H ₃ CO CH ₂ - OCH ₃	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
15	904	HO_CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
20	905	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	906	(CH ₂) ₃ —	2	2	1	-	н	-CH ₂ -N-C-CF ₃
25	907	CH(CH ₂) ₂ —	2	2	1	-	н	-CH ₂ -N-CF ₃
30	908	→ H C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
35	909	O-1, c-1-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
40	910	CI—CH ₂ —	2	2	1	-	н	CH ₂ -N-C
45	911	CI	2	2	1	-	H	-CH ₂ -N-C-CF ₃
	912	Br CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
50	913	H₃∞—{	2	2	1		н	-CH ₂ -N-C-CF ₃
55								

Table 1.84

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	914	CH ₂ O-CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
15	915	OH CHCH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	916	NCH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
20	917	CH ₂ -	2	2	1	-	н	-CH _Z -N-C-CF ₃
25	918	. н ₃ со ₂ с-сн ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
30	919	H₃C-{	2	2	1	-	н	CH ₂ -N-C
3 5	920	OCF ₃	2	2	1	-	н	-CH ₂ -N-C-CF ₃
40	921	CH ₂ -	2	2	1		н	CH ₂ -N-C-CF ₃
	922	> -сн ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
45	923	a——CH—	2	2	1		н	-CH ₂ -N-C-⟨CF ₃
50	924	H ₂ N-C	2	2	1	-	H	-CH ₂ -N-C-CF ₃
<i>55</i>								

	lanie	1.05						
5	Compd.	R1 (CH2)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	925	H ₂ N CH ₂	2	2	1	-	н	CH2-H-C-CF3
15	926	Charles Chiz	2	2	1	-	н	-CH2-N-C-CF3
20	927	F ₃ CO —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-CF ₃
-	928	F3 CO-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
25	929	н₃сѕ-{	2	2	1	-	н	-CH _Z -N-C-CF ₃
30	930	CH ₃	2	2	1	-	н	-CH ₂ -N-C-CF3
35	931	NC —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-CF ₃
40	932	CI—CH _Z —	2	2	1	-	н	-CHZ-N-C-CF3
45	933	CH3 CH—	2	2	1	-	H	-CH ₂ -N-C-
	934	CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
50	935	O ₂ N —CH ₂ —	2	2	1		н	-CH ₂ -N-C-CF3
55								

Ta	h	le	1	R	6
	w	16			v

					_			
5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	936	NO ₂	2	2	1	<u>.</u>	н	-CH₂-N-C-CF₃
15	937	(H ₃ C) ₂ N-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-CF ₃
20	938	а————сн ₂ -	.2	2	1	-	н	-CH ₂ -N-C-CF ₃
	939	O ₂ N CI—CH ₂ —	2	2	1	-	н	-CH2-N-C-CF3
25	940	OH CH _Z -	2	2	1	•	н	-CH2-N-C-CF3
30	941	F ₃ C CH ₂ —CH ₂ —	2	2	1	-	н	-CH2-N-C-CF3
35	942	CICH ₂	2	2	1	-	Н.	-CH-N-C
40	943	CI—(1	4	0	-	н	-CH2-N-C-CF3
45	944	a-{_}-a+₂-					ŧ.	-CH ₂ -N-C-CH ₃
	945	a—()-cH₂-	1	4	0	-	Н	-CH ₂ -N-C-NO ₂
50	946	a-{_}-cH₂-	1	4	0	-	н .	-(CH ₂) ₂ -N-C-\NO ₂
55								

Table 1.87

5	Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$
10	947	CI-()-CH ₂ -	1	4	0	•	н	-(CH ₂) ₂ -N-C
15	948	a-(-)-a+2-	1	4	0	-	. н	-(CH ₂) ₃ -C-N-(Cl
20	949	CH2-	1	4	0	•	н	-(CH ₂) ₃ -C-N-CH ₂ -C
	950	CI-CH ₂ -	0	4	1	-	Н	-CH ₂ -N-C-
25	951	а-{	1	2	0	R	н	-сн ₂₋ N-с-С-сн ₃
30	952	а-{	1	2	0	R	н	-CH ₂ -N-C-N(CH ₃) ₂
35	953	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
40	954	CH₂-	1	.2	0	R		-CH ₂ -N-C-NH
45	955	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) _Z -N-C-\ H ₃ C-NH
50	956	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
50	957	CI—CH ₂ -	1	2	0	R	н	, —cH _z —N-C——
55								

Table 1.88

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - (CH_2)_q - (CH_2)_q$
10	958	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
15	959	а-{	1	2	0	R	н	-CH ₂ -N-C-CH ₃
	960	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -H-C-CH ₃
20	961	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CH ₃
25	962	C:-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CH ₃
30	963	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-С(С)-ОН
35	964	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CO ₂ CH ₃
40	965	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
45	966	а-{}-сн ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
	967	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
50	968	a—√a+₂-	1	2	0	R	Н	-CH ₂ -N-C-NH
55								

Table 1.89

5	Compd.	R ¹ /(CH ₂) _J -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
10	969	a-{_}-a+₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
15	970	CH2-	1	2	0	R	н	-CH ₂ -N-C
	971	CI	1	2	0	R	н	-(CH ₂) ₂ -N-C-\(\sigma\) (CH ₃) ₂
20	972	CI-CH ₂ -	1	2	0	R	н	-CH_N-C-\(\sigma^{\text{NH}_2}\)
25	973	CICH ₂ -	1	2	0	R	н	-(CH ₂) _Z -N-C-NH ₂
30	974	a-{_}	1	2	0	R	н	-CH_N-C-\NH2
35	975	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NH ₂
40	976	C1{	1	2	0	R	н	-CH ₂ -N-C-NH
45	977	CI-(1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
	978	CI(1	2	0	R	Н	-CH _Z -N-CH _Z N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
50	979	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂)2-N-C
55								

Table 1.90

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q} G - R^6$
10	980	a-{-}-cH ₂ -	1	2	0	R	н	-cH_N-C-CH3
15	981	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
•	982	CI-€	1	2	0	R	н	-CH ₂ -N-C
20	. 983	CI-CH ₂ -	1	2	. 0	R	н	-(CH ₂) ₂ -N-C
25	984	a-√cH₂-	1	2	0	R	н	-сн ₂ -N-С-Сн ₂ он
30	985	G-√CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
35	986	a	1	2	0	R	н	-CH ₂ -N-C-CF ₃
40	987	CH-CH ₂ -	2	2	1	-	н	-CH2-N-C-(CF3
45	988	CI-CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-CF ₃
45	989	CI-(CH ₂ -	1	4	0	~	н	-CH ₂ -N-C-O-CH ₂
50	990	CI-()-CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-
55								

Table 1.91

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	991	CI-√CH ₂ -	1	4	0	-	н	-(CH ₂) _Z -C-
15	992	CI-(1	4	0	_	н	-(CH ₂) ₂ -C
	993	CH2-	1	4	0	-	н	-(CH ₂) ₂ -C
20	994	CI-CH ₂ -	1	4	0	-	н	-(CH ₂) ₅ -¢-
25	995	C1-()-C1H2-	1	4	0	-	н	-{CH ₂) ₃ -C-{}_OCH ₃
30	996	CI—CH₂-	1	4	0	~	н	-(CH₂)₃-C-N-(CH₃
<i>35</i>	997	a-{_}-a+₂-	2	2	1	-	н	-CH-N-C
40	998	CI(CH ₂	2	2	1	-	н	CH-N-C-(CH ₃) ₂ CH ₂ CH ₁ (CH ₃) ₂
	999	а-{_}сн₂-	2	2	1	-	н	-CH-M-C-CH3
45	1000	а—{сн₂-	2	2	1	-	н	сн₂сн(сн₃)₂ -сн-п-с
50	1001	CI-CH2-	2	2	1	-	н	CH₂CH(CH₃)₂ OCH₂CH₃ —CH-N-C-
55								CH ₂ CH(CH ₃) ₂

Table 1.92

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1002	a-{	2	2	1	-	н	CH ₂
15	1003	а-{	2	2	1	-	н	-CH-N-C(CH ₂ CH ₃ CH ₂ CH (CH ₃) ₂
	1004	a-{cH₂-	2	2	1	-	н	CH-N-C-CH3 CH2CH(CH3)2 OCH3
20	1005	CI	2	2	1	-	н	-CH-N-C
25	1006	a-{_}-c+₂-	2	·2	1	-	н	ОСН ₂ СН ₃ —СН-N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С
30	1007	CI-(2	2	1	-	អ	OCH ₂ CH ₃ -CH ₂ CH _{(CH₃)₂ OCH₂CH₃}
35	1008	CH2−	2	2	1	-	н	-CH-N-C
40	1009	CI-CH ₂ -	2	2	1	-	н	(CH3)3-6-NH9 -CHH C
45	1010	CI-(2	2	1	-	н	OCH ₂ C H ₃
	1011	CI—CH₂-	2	2	1	-	н	(CH2)2-G-NH2
50	1012	CICH₂-	2	2	1	-	н	CH ₂ CH ₃ (CH ₂) ₂ -C-NH ₂ CH ₃
55								

Table 1.93

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p -R ⁴ (CH ₂) _q -G-R ⁶
10	1013	CH₂-	2	2	1	-	Н	-CH-N-C
15	1014	a—{_}-cH₂-	2	2	1	-	н	CH2) = G-NH2
	1015	a-√cH₂-	2	2	1	-	н	CH2)2-G-NH2 OCH2CH3
20	1016	CI-CH ₂ -	2	2	0	-	н	CH ₂ N-C
25	1017	а-{	2	2	0	-	н	-cH _Z -N-C-
30	1018	а-{	2	2	1	-	н	-сн ₂ -N-с осн ₂ сн ₃
35	1019	CI-CH ₂ -	2	2	1	-	н	-сн ₂ -N-сосн ₂ сн ₃ осн ₂ сн ₃
40	1020	CI-(2	2	1	-	.H .	-сн ₂ -N-с
45	1021	CI-()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
**	1022	CI-CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C-CH ₃ OCH ₃
50	1023	а-{}-сн ₂ -	2	2	.1	<u>.</u> .	н	CH ₃ OCH ₃ (S) OCH ₂ CH ₃ CH-N-C CH ₃
55								

Table 1.94

							_	
5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G - R ⁶
10	1024	C1-(2	2	1	-	Н	(S) OCH ₃ -CH-N-C OCH ₃ -CH ₃ OCH ₃
15	1025	a-{_}-a+₂-	2	2	1	-	н	CH3 OCH2CH3 OCH2CH3
20	1026	CI-(2	2	1	-	н	CH ₃ OCH₂CH ₃
25	1027	CI(2	2	1	-	н	CH3
25	1028	CI-(2	2	1	-	н	(S) OCH ₂ CF ₃ -CH-N-C-C-CH ₃ OCH ₂ CF ₃
30	1029	CI-(2	2	1	-	н	(S) OCH ₂ CH ₃ CH ₃
35	1030	CI(-)CIH ₂	2	2	1	-	н	CH ₃ P OCF ₃
40	1031	CI(2	2	1	-	н	CH-N-C OCH3
45	1032	a-{_}-a+₂-	2	2	1	-	н	(R) OCH ₃ -CH-N-C-CH ₃ CH ₃ OCH ₃
50	1033	CI-CH ₂ -	2	2	1	-	н	(R) -CH-N-C CH ₃ CH ₃
	1034	CI	2	2	1	-	н	CH3 OCH3
55						•		

Table 1.95

								
5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
10	1035	а-{	2	2	1	•.	Н	(R) OCH2CH3 -CHNC-CH3CH3
15	1036	CI-CH ₂ -	2	2	1	-	н	CH3 OCH2CH3 OCH2CH3 OCH2CH3
20	1037	CI-CH ₂ -	2	2	1	-	Н	(R) OCH ₂ CH ₃ -CH-N-C-OCH ₃ CH ₃
20	1038	CI—(2	2	1	-	H	(R) OCH ₂ CF ₃ -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
25	1039	CH ₂ -	2	2	1	-	н	(R) —ÇH-N-C OCH₂CH₃ —CH3.
30	1040	а-СH ₂ -	2	2	1	-	н	CH ₃ OCF ₃
35	1041	CH2-	2	2	1	-	н	(R) -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
40	1042	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
45	1043	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	1044	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
50	1045	a-{	2	2	1	-	н	-CH ₂ -N-C
5 5								

Table 1.96

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1046	а-{	2	2	1	-	н	-CH ₂ -N-C
15	1047	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃ H ₂ N CH ₃
20	1048	CI-()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
20	1049	CI(CH ₂	2	2	1	-	н	-CH ₂ -N-C
25	1050	CI(-)-CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C
30	1051	CI-CH ₂ -	2	2	1		н	(S) CH ₂ CH ₃ -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
35	1052	CI-CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C
40	1053	CI-CH ₂ -	2	2	1	-	Н	(S) O OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -OCH ₂ CH ₃ CH ₃
45	1054	CI—CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
	1055	CI-CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
50	1056	CI-CH ₂ -	2	2	1	-	н	(S) OCH ₂ CF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
55								

Table 1.97

(Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
	1057	a-{_}-a+₂-	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C
	1058	a-{	2	2	1	-	Н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
	1059	a—(¯)—a+₂-	2	2	1	-	н	(S) OCF ₃ CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
	1060	CI{	2	. 2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C
	1061	a-{	2	2	1	-	н	(R) OCH ₂ CF ₃ -CH-N-C-C-CH ₂ CH ₂ CF ₃ -CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
	1062	CI−CH₂−	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C-S CH ₂ CH(CH ₃) ₂
	1063	CI—CH₂-	2	2	1	-	н	(R) OCH ₃ -CH-N-C
	1064	CI—CH₂-	2	2	1	-	н	(R) OCF ₃ -CH-N-C
	1065	CI-CH ₂ -	2	2	1	-	Н	(R) -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
	1066	CI—{	2	2	1	-	н	(R) CH ₂ CH ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
	1067	CI—CH₂−	2	2		-	н	(R) OCH ₃ -CH-N-C
						•		

Table 1.98

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	1068	а-{	. 2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
15	1069	G————————————————————————————————————	2	2	1	-	н	(R) OCH ₂ CH ₃ —CH-N-C-CH ₂ CH ₃ —CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
	1070	CICH₂-	2	2	1	-	н	CH3OCH2
20	1071	CI-()-CH ₂ -	2	2	1	-	н	CH-MO N
25	1072	а—(2	2	1	-	н	CH ₂ OCH ₂ C(CH ₃) ₃
30	1073	CI-CH ₂ -	2	2	1	-	н	CH ² OCH ²
35	1074	CICH ₂ -	2	2	1	-	н	CH2OCH2CH2CH3
40	1075	CH₂-	2	2	1	-	н	-CH-NG-CCF3 CH2OCH2-C
	1076	CI-CH ₂ -	2	2	1	-	н	CH-NC-CH-NO2
45	1077	CI — CH ₂ -	2	ż	1	-	н	CH2OCH2
50	1078	CI-CH ₂ -	2	2	1	-	н	CH ₂ OCH ₂ C CH ₂ OCH ₂ C CH ₂ OCH ₂ C
55								

Table 1.99

55

						•		
5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
10	1079	CI-(CH ₂ -	2	2	1	-	Н	CHOCH-
15	1080	а-{	2	2	1	-	н	CH-NOCH-CH3
	1081	CI-CH ₂ -	. 2	2	1	-	н	CH2OCH3
20	1082	CI-CH ₂ -	2	2	1	-	н	-CH+VH-C
25	1083	a-CH ₂ -	2	2	1	-	н	CH NO CO
30	1084	CH2-	1	2	0	R	н	-CH ₂ -N-C
35	1085	a-√cH₂-	1	2	0	R	н	-CH ₂ -N-C
40	1086	a-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	1087	a—(1	2	0	R	н	-ch2-h-c-h
45	1088	a—(1	2	0	R	н .	-CH2-H-C-C)
50	1089	a-(1	2	0	R	н	-CH2-HC-()

108

Ta	h	le	1	1	0	C

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	1090	CI—⟨CH₂-	1	2	0	R	Н	-CH ₂ -N-C-OCH ₂ CH ₃
15	109 1	CI-(-)-CIH ₂ -	1	2	0	R	н	-CH2CH2-N-C
20	1092	CI-CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-NO ₂
	1093	CI-CH ₂ -	1	2	0	R	н	CH ₂ CH ₂ -N-C
25	1094	CI-CH ₂ -	1	2	0	R	н	-CH2CH2-N-C-N
30	1095	CICH2-	1	2	0	R	н	-CH₂CH₂-N-C-C
35	1096	CI-CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-F
40	1097	CI-CH ₂ -	1	2	0	· R	н	-CH2CH2-N-C-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С
45	1098	a-{_}-a+2-	1	2	0	R	н	-CH ₂ -N-CCH ₃
	1099	a-€a+2-	1	2	0	R	н	-CH ₂ -N-C
50	1100	CI-(1	2	0	'R	н	-CH ₂ -N-C
55								

Table 1.101

55

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1101	CI-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
15	1102	CI-(. 1	2	0	R	н	-CH ₂ -N-CNO ₂
.5	1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CH₃
20	1104	H₃ C-{CH _Z -	1	2	0	R	H	-CH ₂ -N-C
25	1105	H ₃ C	1	2	0	R	н	-012-HC-C1
30	1106	H ₃ C-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-H ₃
<i>35</i>	1107	H₃C-{CH _Z	,1	2	0	R	н	CH ₂ -N-CNO ₂
40	1108	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C
		CH3 CH3					н	-CH2-N-C-Sr
45	1110	CH ₃ CH ₂ CH ₂	1	2	0	R	н	-CH ₂ -N-C-CI
50	1111	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH2-N-C-CH3

Table 1.102

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
10	1112	CH₃ CH₂—	1	2	0	R	н	-CH ₂ -N-C-NO ₂
15	1113	CH2-	2	2	1	-	н	-CH ₂ -N-C-H ₃
20	1114	α—(CH ₂	2	2	1	-	н	-CH₂-N-C
•	1115	О{	2	2	1	-	н	-CH2-N-C
25	1116	a-{_}-cH₂-	2	2	1	-	.Н.	-CH ₂ -N-C-CH ₃
30	1117	CH	2	2	1	-	н	-CH ₂ -N-C-NO ₂
35	1118	المنافع	1	2	0	R	н	-CH2-N-CF3
40	•	H₃CS—CH ₂ —					н	-CH2-N-C-CF3
45	1120	H ₃ ∞ CH ₂ -OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
45	1121	H ₃ C O ₂ N—CH ₂ —	1	2	0	R	н	-CH2-N-C-CF3
50	1122	H ₃ C (H ₃ C) ₂ CH————————————————————————————————————	1	2	0	R	н	-CHZ-N-CF3
55								

Table 1.103

5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
10	1123	CH ₂ -	1	2	0	R	н	-CH2-N-C CF3.
15	1124	O₂N O CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
. 20	1125	CI	2	2	1	-	н	-CH-N-C
20	1126	α—⟨¯}—cH ₂ —	2	2	1	-	н	-CH-N-C
25	1127	CH ₂ —CH ₂ —	.2	2	1	-	н	-CHHO NH
30	1128	а—(2	2	1	-	н	CH-NC-CF,
35	1129	α—(¯)cH ₂ -	2	2	1	-	н	CH-NOCH-
40	1130	CI—CH _Z	2	2	1	-	н	CH2OCH2
	1131	α-√CH ₂	2	2	1	-	н	CH-DCH-CI
45	1132	CHZ-CHZ-	2	2	1	-	Н	· ·
50	1133	H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
55								

Table 1.104

5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline$
10	1134	H ₃ CO—CH _Z —CH _Z —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
15	1135	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	1136	H ₃ CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1137	O—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	1138	CH ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
30	1139	(CH ₂) _Z -	1	2	0	R	н	-CH2-N-C
35	1140	O ₂ N O ₂ N O ₂ N	1	2	0	R	н	-CH ₂ -N-C-CF ₃
40	1141	CH _Z −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
45	1142	CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1143	CH20 CH20—CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	1144	H ₃ CO — CH ₂ —	1	2	0	R	, Н	-CH ₂ -N-C-CF ₃
55								

Table 1.105

5		R ¹ (CH ₂) _j						-(CH ₂) _p - (CH ₂) _q G-R ⁶
10	1145	H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
15		. Су-сн²о-Су-сн²-					н	-CH ₂ -N-C-CF ₃
20	1147	ньс-8- р-С -сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
		CH ₂ -					н	-CH2-N-CF3
25	1149	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-N-C-H3
30	1150	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
35	1151	CH3 CH3	1	2	0	R	н	-CH2-N-C-CH2-CF3
40	1152	CH ₃	1	.2	0	R	н	-CH2-NC-NC-F
45	1153	CH ₃ CH ₂ — CH ₃					н	H
	1154	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-N-C-N-CH3
50	1155	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-H ₃ -CH ₂ -N-C-H ₃ F ₃ C
55		·						

Table 1.106

5	Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1156	CH ₃ N CH ₂ CH ₃	1	2	0	R	Н	-CH2-N-C-(CH3)3
15	1157	CH₃ CH₂	1	2	0	R	H	-CH2-NC-SSCH3
		CH ₃					н	-CH2-N-C
20	1159	CH ₃ CH ₂ — CH ₃	1	2	0	R	Н	-CH ₂ -N-C
25	1160	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃ H ₂ N B ₁
30		H ₃ CO—CH ₂ —					н	-CH₂-N-C-CF3
35	1162	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
40	1163	H ₃ CO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	1164	H ₃ CO—CH ₂ —	1	2	0	R	н	-CH2-N-C-CF3
45	1165	o—Ç—aH _Z -	1	2	0	R	н	-CH2-N-C-CF3
50	1166	Br H ₃ CO—CH ₂ —	1	2	0	R	н	-CH2-N-C-F3
55								

115

Ta	b	le	1.	.1	0	7

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	1167	CH _Z -CH _Z -	2	2	1	-	н	-cHz-Ng-C
15	1168	a s N atz	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
20	1169	H-C-FH-FN-CH-	1	2	0	R	н	-CH2-N-C-CF3
	1170	CH ₂ -CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
25	1171	CI—CH _Z -	1	2	0	R	Ħ,	-CH ₂ -N-C
30	1172	CICH ₂ -	1	2	0	R	н	-CH2-N-C-N-CH
35	1173	CH_CH _Z	1	2	0	R	н	-CH2-N-C-N-CH3
40	1174	CI	1	2	0	R	н	-CH ₂ -N-C-F
45	1175	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-Br
	1176	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-NC-NC-OH
50	1177	H ₃ C—CH ₂ —	1	2	0	R	н	-CH2-N-CH3
55			····					

Table 1.108

								•
5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1178	H₃ C-{	1	2	0	R	н	-CH ₂ -N-C
15	1179	H3 C-{	1	2	0	R	н	-CH ₂ -N-C
20	1180	H₃ C-{				R	н	-CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
	1181	CH ₃ CH ₂ — CH ₃	1	2	0	R	н	-CH ₂ -N-C-H ₃
25	1182	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-chz-H-CHZ-OH
30	1183	CH ₃ N CH ₂ —CH ₂ —	1	2	0	R	н	-CH2-N-CH3
35	1184	CH ₃ CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C-F H ₂ N
40	1185	CH ₃ CH ₂ CH ₃				R	н	-CH ₂ -N-O ₂ H ₂ N
45	1186	CH₃ N CH₂ CH₃	1	2	0	R	н	-CH2-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
	1187	CI—CH _Z -	2	2	1	-	н	-CH ₂ -N-C-B ₁
50	1188	а-СH ₂ -	2	2	1	•	н	-CH2-N-C-H3 -CH2-N-C-H3 OH
55								

Table 1.109

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
10	1189	CI(CH ₂	2	2	1	-	н	-CH3-H-C-N-CCH3
15	1190	CI-CH2-	2	2	1	-	н	-CH2-N-C
20	1191	CH³ CH³	1	2	0	R	н .	Q. CF ₃
	1192	CH³ CH³	1	2	0	R	н	-CH2-NC-CF3
25	1193	CH₃ CH₂- CH₃	1	2	0	R	н	-CH2-N-C-CF3
30	1194	CH ₃	1	2	0	R	н	-CH ₂ -N-C-S
35	1195	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-
40		GH³ CH³ CH³					Н	-CH2-NC-
45		CH3 CH3					н	-CH ₂ -N-C-S
45	1198	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-N-C-
50	1199 -	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-CH ₃
55								

Table 1.110

	R1						R ⁴
No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p R ⁵ (CH ₂) _q G-R ⁶
1200	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH2-N-C-C
1201	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-NCF
1202	CH₃ NSD—CH₂— CH₃	1	2	0	R	Н	-CH2-N-C-CF3
1203	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1204	H ₃ C—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1205	H ₃ C	1	2	0	R	н	-CH ₂ -N-C
1206	H ₃ CCH ₂ -	1	2	0	R	· н	-CH2-N-C
1207	H ₃ C	1	2	· 0	R	н	-CH ₂ -N-C-CF ₃
1208						н	-CH2-N-C-CI
1209	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1210	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃

Table 1.111

5	Compd.	R ¹ R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1211	H ₃ C-{	1	2	0	R	н	-CH ₂ -N-C
15	1212	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-F ₃
	1213	CI-CH _Z -	2	2	1	-	н	-CH ₂ -N-CF ₃
20	1214	CICH ₂	2	2	1	-	н	-CH ₂ -N-C-S
25	1215	CI—(2	2	1		н	-CH2-N-C-
30	1216	CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
35	1217	CI	1	2	0	R	н	-CH ₂ -N-Ccl
40		а-{					Н	-CH ₂ -N-C
45	1219	CI—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CH ₃
50	1220	CI—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
	1221	CI(CH ₂	1	2	0	R	н	$-CH_2-NC$
55								

Table 1.112

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	1222	a-(-)CH _Z -	1	2	0	R	Н	-CH2-N-CH3
15	1223	a-CH _Z -	1	2	0	R	Н	-CH2-N-C-C
	1224	a-(-)-a+z-	1	2	0	R	Н	-CH ₂ -N-C- HO NO₂
20	1225	H₃ C(CH ₂	1	2	0	R	Н	-CH₂-N-CCF3
25	1226	H₃ C-{CH ₂	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
30	1227	H₃ C⟨	1	2	0	R	Н	-CH2-N-C-CH3
35	1228	H ₃ C-CH _Z -	1	2	0	R	н	-CH ₂ -N-C
40	1229	H ₃ C-{	1	2	0	R	Н	-CH ₂ -N-C-F H ₂ N
45	1230	H ₃ CCH _Z -	1	2	0	R	н	-CH2-N-C-N-CH3
	1231	H₃ C-{_}-CH _Z -	1	2	0	R	Н	-CH ₂ -N-C
50	1232	H ₃ CCH ₂ -	1	2	0	R ,	Н	-CH ₂ -N-C
55								

Table 1.113

								·
5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	–(CH ₂) _p R ⁴ (CH ₂) _q G−R ⁶
10	1233	CH3 CH3	1	2	0	R	н	-CH2-N-C-S
15	1234	CH ₃ CH ₂ — CH ₃	1	2	0	R	Н	-CH ₂ -N-C-H ₃
20	1235	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C
	1236	CH₃ NDCH ₂ - CH₃	1	2	0	R	Н	-CH ₂ -N-C
25	1237	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C
30	1238	CH ₃ CH ₂ — CH ₃	1	2	0	R	н	-CH2-N-C-N-CH3
35	1239	CH₃ CH₂—	1	2	0	R ·	H	-CH2-N-C-
40	1240	CH ₃ CH ₂ CH ₃				R	н	-CH ₂ -N-C
45	1241	CI—(OH_z-	2	2	1	-	н	-CH ₂ -N-C _{CI} CF ₃
50	1242	CI—CH _Z -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
	1243	CI—(2	2	1	-	Н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃
55								

Table 1.114

5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
10	1244	a-{a+	2	2	1	•	н	-CH ₂ -N-C
15	1245	CI—(2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
	1246	а—Сн₂-	2	2	1	-	н	-CH2-N-C-N-CH3
20	1247	CH2	2	2	1	-	н	-CH2-HC-
25	1248	a-{a+	2	2	1	-	н	-CH ₂ -N-C-VO ₂
30	1249	a—⟨	1	2	0	R	н	-CH2-N-C-S-CI
35	1250	H ₃ CCH ₂	1	2	0	R	н	-CH ₂ -N-C
40	1251	CH ₃ CH ₂ —	1	2	0	R	н	-CH ₂ -NO ₂
45		a-CH ₂ -					н	-CH ₂ -N-CCH(CH ₃) ₂
50	1253	H ₃ C	1	2	0	R	н	-CH ₂ -N-C
50	1254	CH ₃ CH ₂ CH ₂	1	2	0	R	н	-CH ₂ -N-C-CH(CH ₃) ₂
55		3						

Table 1.115

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	1255	с⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C
15	1256	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
20	1257	CH ₃ CH ₂	1	2	0	R	н	-CH₂-N-CH₂-Br H₂N
	1258	H₃C-⟨CH _Z -	1	2	0	R	н	-CH ₂ -N-C-
25	1259	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-I
30	1260	H ₃ C	1	2	0	R	н	-CH2-N-C-CH2CH3
35	1261	CI—{CH _Z -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
40	1262	H ₃ C-{}-CH ₂ -	1	2	0	R	н	-CH ₂ -NC-C(CH ₃) ₃
45	1263	CH₃ N—CH₂— CH₃	1	2	0	R	н	-CH ₂ -NC-C(CH ₃) ₃
	1264	a—⟨	1	2	0	R	н	-CH2-N
50	1265	H ₃ C—CH _Z —	1	2	0	R	н	-CH2-N-H3C
55								

Table 1.116

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1266	CH³ CH³	1	2	0	R	н	-CH ₂ -N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
15	1267	CHCH	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
20	1268	а—√сн_г	1	2	0	R	Н	-сн ₂ - N-с-
	1269	а—СН2-	1	2	0	. R	. н	-CH2-N-CH2-Br
25	1270	CI—CH _Z -	1	2	0	R	Н	-CH2-N-CH2
30	1271	CI—CH _Z -	1	2	0	R	н	-CH2-N-C
35	1272	H₃ C-{\rightarrow}-CH_2-	1	2	0	R	н	-CH2-N-C-N-CCF3
40	1273	H₃ C—CH _Z —	1	2	0	R	н	-CH2-N-C-CI
45	1274	H₃C—CH _Z —	1	2	0	R	н	-CH ₂ -N-CH ₂ -Br
	1275	H ₃ C-(1	2	0	R	H _,	-cH2-HC-CI
50	1276	H₃ C-{CH	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.117

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{\overline{q}}$ $G - R^8$
10	1277	CH ₃ CH ₂ —.	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-OCF ₃
15	1278	CH ₃ CH ₂ - CH ₃	1	,2	0	R	н	-CH ₂ -N-C
20	1279	CH³ CH³	1	2	0	R	н	-CH ₂ -N-C
20	1280	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
25	1281	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C
30	128 2	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
35	1283	сн₂-	2	2	1	-	н	-CH2-N-C
40	1284	CI—CH ₂ —	2	2	1	-	н	-CH₂-N-C-Br
45	1285	α{_}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CH
	1286	H3C,	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	1287	.NO ₂	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.118

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G R ⁶
10	1288	H0 H ₃ ∞—CH _Z —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
15	1289	CH₃ N—CH₂— CH₃	1	2	0	R	н	-CH ₂ -N-CH ₃
20	1290	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ H ₂ N-CH ₃
	1291	_					н	-CH2-N-C-H3
25	1292	H³C—CH ²	1	2	0	R	н	-CH ₂ -N-C
30	1293	H ₃ CCH ₂ -	1	. 2	0	R	н	-CH2-H-C-CF3
35	1294	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F ₃
40	1295	H ₃ C	1	2	0	R	. н	-cH ₂ -N-C-(CH ₃) ₃
45	1296	H ₃ C(CH ₂	1	2	0	R	н	-CH ₂ -N-C-√S-SCH ₃
	1297	H₃C{CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C
50	1298	H ₃ CO—CH _Z —	1	2	0	R	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
55	·	<u>.</u>						

Table 1.119

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	1299	H ₃ CO — CH _Z — H ₃ CO	1	2	0	R	н	-CH2-N-C
15	1300	OCH ₃					н	-CH ₂ -N-C-CF ₃
20	1301	OCH ₃ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
-	1302	H ₃ C CH ₃ H ₃ CO CH ₂				R	н	-сн ₂ -N-с-С _{F3}
25	1303	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH2-N-C-CF3
30	1304	H ₀ CO CH ₂ O—CH ₂ —CH ₂ —	1	2	0	R	н	-сн ₂ -N-с-С ^F 3
35	1305	H ₃ co-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
40	1306	H ₃ C CH ₂ O H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
45	1307	H ₃ CO————————————————————————————————————				R	н .	-CH2-N-C-CF3
	1308	O-CH _Z -	1	2	0	R	, H	-CH2-NC-CF3
50	1309	H ₃ CO H ₃ CO————————————————————————————————————	. 1	2	0	R	н	-CH2-N-C-CF3
55		· · · · · · · · · · · · · · · · · · ·				,		

Table 1.120

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G$ $-R^6$
10	1310	H3-CCH2	1	2	0	R	н	-CH2-N-C-CF2
15	1311	0 0 CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	1312	CH ₂ −CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
05	1313	Br CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	1314	O ₂ N_CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
30	1315	H3C CO-CH2-	- 1	2	0	R	н	-CH ₂ -N-C-CF ₃
35	1316	F ₃ C CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
40	1317	O₂N C⊢—CH₂-	1	2	0	R	н .	-CH ₂ -N-C
45	1318	CI	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	1319	F, CH ₂ —CH ₂ —	1	2	0	R	н	-CH2-N-C-CF3
	1320	Br—CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
55								

Table 1.121

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1321	CH-(1	2	0	R	н	-CH ₂ -N-CCI
15	1322	CHZ-CHZ-	1	2	0	R	н	-CH2-11-C-CH3
20	1323	CI—CH _Z -	1	2	0	R	н	-CH ₂ -N-C
	1324	CI—CH _Z -	1	2	0	R	н	-CH2-N-CH3
25	1325	CI—CH _Z —CH _Z —	1	2	0	R	н	-CH2-N-G-G-G-Q
30	1326	C:CH _Z	1	2	0	R	н	-CH2-N-C
35	1327	CI—CH _Z -	1	2	0	R	H	-CH ₂ -N-C
40	1328	H ₃ C	1	2	0	R	н	-CH2-N-C
45	1329	H ₃ C-{			0	R	н	-CH2-17-CH3
	1330	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
50	1331	H₂ C-⟨CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-H ₃
55								

Table 1.122

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1332	H ₃ C	1	2	0	R	н	-CH2-N-C-C-C-C-C
15	1333	H ₃ C-{}-CH ₂ -	1	2	0	R	н	-CH2-N-C
	1334	H ₃ C-{\bigcirc}-CH_2-	1	2	0	R		-CH ₂ -N-C-H ₃
20	1335	CH₃ N CH₂ CH₃	1	2	0	R	н	-CH ₂ -N-C
25	1336	CH ₃ CH ₂ CH ₃	. 1	2	0	R	н	-CH2-N-C-CH3
30	1337	. CH₃ N CH₂ CH₃	1	2	0	R	н	-CH2-N-C
35	1338	CH ³	1	2	0	R	н	-CH2-N-CH3
40	1339	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-сн_ н С
45	1340	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-CH ₂
	1341	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-H ₂ N-C-H ₂ N-C-H ₂ -N-C-H ₂
50	1342	CI-CH _Z -	2	2	1		н	-CH ₂ -N-C
55						•		

Table 1.123

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(СН ₂) _p
10	1343	CI{	2	2	1	-	н	-CH2-N-C-CH3
15	1344	C	2	2	1	-	н	-CH2-HC-CI
20	1345	а—{	2	2	1	-	н	-CH ₂ -N-C-H ₃
	1346	CI—CH2-	2	2	1	-	н	-cH2-HC-HO
25	1347	C	1	2	0	R	н	-CH2-N-C-(S) CH3
30	1348	H₃ C-{CH _Z -	1	2	0	R	н	-CH2-NC-STCH3
35	1349	CH ₃ N CH ₂ CH ₃	1	2	0	R	н	-CH2-NC-STCH3
40	135 0	0-CH ₂ -	2	2	1	~	н	-CH ₂ -N-CSTCH ₃
45	1351	CI-CH ₂ -	1	2	0	R	н	-CH-N-CH
50	1352	H ₃ C	1	2	0	R	н	-CH-NC-H
50	1353	CH ₃ CH ₂ - CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH-NC-CH
55								

Table 1.124

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1354	CI(-)CH ₂ -	2	2	1	-	· н	-ch-NG-corp
15	1355	α—(1	2	0	R	н	-CH ₂ -N-CN H ₂ N
20	1356	H ₃ C-{	1	2	0	R	н	-CH ₂ -N-C-N H ₂ N
	1357	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-CN H ₂ N
25	1358	CH2-	2	2	1	-	н	-CH ₂ -N-C-N
30	1359	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -\\\\
35	1360	CH ₃ CH ₂ —	1	2	0	R	н	-CH2-N-CH3 CH3 CH3
40	1361	H₃C-⟨CH ₂ -	1	2	0	R	н	-CH₂-N-C
45		CH ₃ CH ₃					н	-сн <i>-</i> -М-сСН³
50	1363	CH ₃ CH ₃	1	2	0	R	Н	-CH ₂ -N-C
	1364	CH ₃ H ₃ C-⟨□⟩-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
55								

Table 1.125

5		R ¹ (CH ₂) _j -					R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	1365	CH3 CH3	1	2	0	R	н	-CH2-N-C
15	1366	CH₃ O CH₂- CH₃	1	2	0	R	н	-cH ₂ -N-C-()-сH ₃
	1367	H ₃ CCH ₂ -	1	2	0	R	н	-cH2-N-C-C-CH3
20	1368	CI—(1	2	0	R	н	-CH ₂ -N-C
25	1369	CI(CH _Z -	1	2	0	R .	н	-CH ₂ -N-C
30	1370	CI—CH ₂ —	1	2	0	R	н	-CH2-NC-S
35	1371	CI—(CH _Z -	1	2	0	R	н	-CH2-HC-C)
40	1372	CI—CH ₂ —	1	2	0	R	н	-CH2-N-C-(.)
45		H₃ C-{CH ₂					н	-CH ₂ -N-C-CF ₃
	1374	H₃ C-{CH ₂	1	2	0	R	н	-CH ₂ -N-C-S -CH ₂ -N-C-S Br -CH ₂ -N-C-S Br
50	1375	H ₃ C————————————————————————————————————	1	2	0	R	н	-CH2-NC-S Br
55								

Table 1.126

5	Compd. No.	R^1 (CH ₂) _j	k	m .	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁵
10	1376	H₃ C-{}CH _Z -	1	2	0	R	Н	-CH ₂ -NC-C
15	1377	н₃ с-{_}сн₂-					н	-CH2-N-0-
	1378	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-N-C-CF3
20	1379	CH3 CH3 CH3	1	2	0	R	н	-CH ₂ -N-C
25	1380	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-S Br
30	1381	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-
35	1382	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-cH2-N-C
40	1383	CI—⟨¯¯}—CH₂—	2	2	1	-	н	-CH2-N-C-CF3
45	1384	CHCH_2-	2	2	1	-	н	-CH2-N-C-SJBr
	1385	а-Сн _Z -	2	2	1	-	н	-CH2-NC-
50	1386	CI—CH _Z -	2	2	1	-	н	-CH2-N-C-
55								

Table 1.127

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1387	CH3 CH3	1	2	0	R	н	-CH2-NO-
1388	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃ -CH ₂ -N-C-(N-N) CH ₃
1389	CH₃ N⇒CH₂- CH₃	1	2	0	R	н	-CH ² -H _C -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1390	H ₃ C CH ₃ H ₃ C CH ₂ H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1391	H₃ C H₃ C—CH _Z —					н	-CH ₂ -N-C-CF ₃
1392	CI, H ₃ C—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	ңссн₂—СН₂-	1	2	0	R	н	-CH2-N-C-CF3
1394	O ₂ N CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1395	H ₂ C=CHCH ₂	1	2	0	R	н	-CH2-N-C-CF3
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1397	Br—CH _Z —	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.128

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	1398	CH-CH-	1	2	0	R	н	-CH _Z -N-C-CF ₃
15	1399	CH3 CH-	1	2	0	R	н	-CH2-N-C
	1400	CH₃ CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	1401	H ₃ C(CH ₂	1	2	0	R	н	-CH2-N-C-NH C
25	1402	H ₃ C-{	1	2	0	R	н	-CH ₂ -N-C
30	1403	H ₃ C-{CH ₂ -	1	2	0	R	н	-ch2-h-cn
35	1404	H ₃ C-{	1	2	0	R	н	-CH ₂ -N-C-\square
40	1405	H ₃ C(CH ₂	1	2	0	,R	н	-CH ₂ -N-C-N
45	1406	H ₃ C(CH ₂	1	2	0	R	н	-CH ₂ -N-C
	1407	H ₃ CCH ₂	1	2	0	R	н .	-CH ₂ -N-C-N
50	1408	H ₃ C-{}-CH ₂ -	1	2	0	R	Н	-CH2-N-C-
55								

Table 1.129

					_			
5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	1409	H₃ C(CH ₂	1	2	0	R	Н	-CH2-N-C-CH3
	1410	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-сн₂-ү-с- ⟨
15	1411	CH _Z	1.	2	0	R	н	H3C-Q-NH CI
20	1412	H₃ C-{_}-CH _Z -	1	2	0	R	н	H3 C-Q-NH
25	1413	CH ₃ CH ₂ CH ₃	1	2	. 0	R	н	H2C-VH -CH-NC-CI
30	1414	a-()a+ ₂	2	2	1	-	н	-CH ₂ -N-CCI
35	1415	CH2-	1	2	0	R	н	-CH ₂ -N-C-SCN
40		H₃ C-{					н	-CH ₂ -N-C
45	1417	CH₃ CH₃	1	2	0	R	н	-CH2-N-C
	1418						н	-CH ₂ -N-C-SCN
50	1419	CI—CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
55								

Table 1.130

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G−R ⁶
10	1420	H₃C-CH _Z -	1	2	0	R	н,	-CH ₂ -N-C-SH
15	1421	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-SH
	1422	CI—CH ₂ —	2	2	1	-	н	-CH2-N-C-SH
20	1423	CHZ-CHZ-	1	2	0	R	н	-CH2-N-C
25	1424	H₃C—CH _Z -	1	2	0	R	Н	-CH2-N-C
30	1425	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-cH ² -H _C -
35	1426	CICH _Z	2	2	1	-	н	-CH2-N-C-C
40	1427	CI—()—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-NH H ₃ C-NH
<i>45</i>	1428	CI—CH _Z -	2	2	1	-	н	-CH ₂ -N-C-→Br (H ₃ C) ₂ N
	1429	н₃ссн₂о-⟨С}-сн₂-	2	2	1	-	н	
50	1430	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
55		· .						

Table 1.131

5	Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1431	н _я ссн _я о_{сн ₂	2	2	1	- .	н	-CH ₂ -N-C-S
15	1432	O-CH _Z -CH _Z -	2	2	1	-	н	-CH ₂ -N-CH ₂ N-Br
20	1433	ңссң о-С}-сн-	2	2	1	-	н	-CH-NC-H HN CH ₂ -OCH ₄ CH ₅
	1434	н ₅ ссн ₂ о()сн ₂	2	2	1	-	н	-CH-NCH2 Br
25	1435	ң ссн ₂ —Сн ₂ -	2	2	1	-	н	-CH ₂ -N-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
30	1436	(H ₃ C) ₂ C H————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
35	1437	н ₅ с (сн ₂) ₂ о-{}-сн ₂ -	2	2	1	-	н	-CH ₂ -N-C
40	1438	ң ссн ₂ —Сн ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-Br
45	1439	(H ₃ C) ₂ C HCH ₂	2	2	1	-	н	-CH ₂ -N-C-S-Br
50	1440	H ₂ C(CH ₂) ₂ O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
30	1441	H₃CS-{}CH _Z -	2	2	1	-	н	-CH ₂ -N-C-Br -CH ₂ -N-C-Br -CH ₂ -N-C-Br
55								

Table 1.132

			_					
5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ \frac{R^4}{R^5}(CH_2)_{\overline{q}}$ $- \frac{G^6}{R^6}$
10	1442	н₃ссн ₂ —Сн ₂ —	2	2	1	-	н	-CH2-N-CH2-CH2CH
15	1443	(H ₃ C) ₂ C HCH ₂	2	2	1	-	н	-сн- нт сн- сн(сн ₃) ₂
,,	1444	H ₃ C(CH ₂) ₂ O-CH ₂ -CH ₂ -	2	2	1	-	н	-CH2-N-CH2-С1
20	1445	H ₃ CCH ₂ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
25	1446	(H ₃ C) ₂ C H	2	2	1	-	н	-CH ₂ -N-C
30	1447	н,с(сн,,),о-Ст-сн-	2	2	1	-	н	-CH ₂ -N-C
35	1448	H ₃ CS—CH ₂ —	2	2	1	-	H	-CH2-N-C
40	1449	н₃ссн ₂ —Сн ₂ -	2	2	1	-	н	-CH2-N-C-CF3
45	1450	(H3C)2CHCH2-	2	2	1	-	н	-CH ₂ -N-C
	1451	(H3CCH2)2N-CH	2	2	1	-	н	-CH ₂ -N-C-CF ₃
50	1452	HO H ₃ CO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-CF ₃
55								

Table 1.133

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	1453	H3C (CH2)2O-CH2-	2	2	1	-	н	-CH2-H-C-CF3
15	1454	ңссң,о-(С)-сн	2	2	1	-	н	-CH2-N-C
20	1455	H ₃ CO HO—CH _Z —	2	2	1	-,	н	-CH ₂ -N-C-CF ₃
20	1456	CH _Z -	2	2	1	-	н	-CH ₂ -N-C
25	1457	(CH ₃) ₂ N—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
<i>30</i> ·	1458	H ₃ CQ HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-CH ₂
35	1459	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
40	1460	H ₃ CQ HO—CH₂—	2	2	1		Н	-CH ₂ -N-C
45	1461	H₃CQ HO————————————————————————————————————	2	2	1	<u>.</u> .	н	-CH ₂ -N-CH ₃ -OCH ₃
	1462	H ₃ CO HO———————————————————————————————————	2	2	1	-	н	-CH2-N-CH3 CH3-OCH3 CH3-OCH3
50	1463	CH2-CH2-	2	1	1	-	н	CH2—N-C-CF3
55		_						

Table 1.134

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	1464	a-{-}-a+z-	2	1	1	-	н	-CH2-N-C-OCF3
15	1465	α—{	2	1	1	-	н	-CH ₂ -N-C
	1466	0-{	2	1	1	-	н	-CH ₂ -N-C-S
20	1467	CI—CH2-	2	1	1	-	н	-CH2-N-C
25	1468	CH _Z -CH _Z -	2	1	1	-	н	-CH2-NC-
30	1469	a	2	1	1	-	н	-CH₂-N-C
35	1470	Q-CH ₂	2	1	1	-	н	-cH2-N-C
40	1471	,CH- Z }-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C
45	1472	CH₃ S→CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1473	Br. S. CH.	1	2	0	R	н	-CH2-N-C-F3
50	1474	CH ₃ CH ₂ Br S CH ₂ CI CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
55		Cn ₃						

Table 1.135

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $+$
10	1475	CI. CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
15	1476	Br S CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF₃
	1477	Br. CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	1478	Br Chz-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	1479	H ₃ CCH ₂ -CH ₂ -CH ₃		2	0	R	н	-CH ₂ -N-C-CF ₃
30	1480	CH ₃ . CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
35	1481	H ₃ C—CH ₂ — H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
40	1482	Br CH _Z -	1	2	0	R	Н	-CH2-N-C-CF3
45	1483	H ₃ C H ₃ C CH ₂ −	1	2	0	R	Н	-CH2-N-C-CF3
	1484	o S C O COH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	1485	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-F
55								

Table 1.136

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1486	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
15	1487	H₃ C(CH _Z -	1	2	0	R	н	-CH2-NC-CH
	1488	H ₃ C	1	2	0	R	н	-CH2-HC-\
20	1489	H₃ C{CH ₂	1	2	0	·R	н	-CH2-11-C
25	1,490	H₃ C-{	1	2	0	R	н	-CH ₂ -N-C-
30	1491	H₃ C-{	1	2	0	R	н	-CH2-N-C-V
35	1492	H₃ C-{	1	2	0	R	н	-CH2-N-0-NO2
40	1493	CH₃ N—>CH₂- CH₃	1	2	0	R	н	-01-thc-63
	1494	CH3 CH3					н	-cH₂-N-c····
45	1495	CH3 CH3 CH3	1	2	0	R	н	-CH ₂ -N-CH ₃ CH ₃
50	1496	CH ₃	1	2	0	R	н	-CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH
55								

Table 1.137

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1497	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1498	CH ₃	1	2	0	R	н	-ch2-N-C-\
1499	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-c+2-Hc-√
1500	CH3 CH3-	1	2	0	R	н	-сн₂-н-с(сн₃
1501	CH³ CH³	. 1	2	0	R	H .	-CH2-H-C
1502	CH3 CH3	1	2	0	R	н .	-CH2-N-C
1503	CH ₃ N CH ₂ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1504	H ₂ N-CH ₂ -	1	2	0	R	н	-CH2-N-C
1505	CH ₂ O -CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1506	CH2-CH2-	2	1	1	-	н	-CH ₂ -N-C
1507	C├ ─ CH ₂ -	2	1	1	-	н	-CH ₂ -N-CH ₂ N-CH ₂ N-
							-

Ta	h	le	1	. 1	3	Я

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
o	1508	CI—(2	1	1	.	н	-CH ₂ -N-C
5	1509	CI—(2	1	1		н	-сн- н С
	1510	CI()CH ₂	2	1	1		н	-CH ₂ -N-C
0	1511	CI—(CH ₂ _	2	1	1	-	н	-CH2-N-C-S Br
5	1512	CI—CH _Z -	2	1	1	-	н	-CH ₂ -N-C
eo	1513	CI—CH _Z	2	1	1	-	н	-CH-HC-()
5	1514	(H ₂ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
o	1515	HQ H ₃ CO—CH ₂ —	2	2	1	-	н	-CH2-N-C-
5	1516	(H ² CCH ²) ² N		2	1	-	Н	-CH ₂ -N-C
	1517	HO H ₃ CO————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
0	1518	HQ H ₃ CO—CH ₂ —	2	2	1	-	· Н	-CH ₂ -N-C-CH ₃ CH ₂ -CH ₃ CH ₂ -CH ₃ CH ₃ -CH ₃ CH ₄ -CH ₃ -CH ₃
5								

Table 1.139

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	1519	HO H₃CO—CH₂—	2	2	1	-	н	-CH-HC-CH-OH
15	1520	Br—CH ₂ —	1	2	0	R	н	-CH ₂ -NC
	1521	H ₃ CO-CH ₂ -	1	2	0	R	н	-cH₂-N-C-S
20	1522	CH ₂	1	2	0	R	н	-CH ₂ -N-C
25	1523	H ₃ COCH _Z -	1	2	0	R	н	-CH2-N-C-Ser
30	1524	H3-CCH ₂	1	2	0	R	н	-CH ₂ -N-CBr
35	1525	Br—CH ₂	1	2	0	R	н	-CH2-N-C-COCF3
40		H ₃ CO					н	-CH ₂ -N-O-CF ₃
<i>45</i>	1527	O—CH₂-	1	2	0	R	Н	-CH2-NC-C
1 5	1528	H ₃ CO H ₂ CO—CH ₂ —						-CH ₂ -N-C-CF ₃
50	1529	H ₃ CO HO—CH ₂ —	1	2	0	R	н	-CH2-N-C
55								

Table 1.140

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1530	Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1531	H ₃ CO-{	1	2	0	R	н	-CH₂-N-CCF₃
1532	. 0—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1533	H ₃ CO H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1534	H ₃ CO HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1535	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1536	н₃со-{_}сн	1	2	0	R	н	-CH ₂ -N-C
1537	O—CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H ₃ CO H ₃ CO—CH ₂ —					н	-CH2-N-C
1539	H ₃ CO HO—CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1540	Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C

Table 1.141

							
Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G^{-1}$
1541	H₃ 00-{_}-CH _Z -	1	2	0	R	Н	-CH ₂ -N-C-F ₃
1542	CH _Z -	1	2 .	0	R	Н	-CH ₂ -N-C-F ₃
1543	H ₃ CO C C C C C C C C C C C C C C C C C C	1	2	0	R	н	-CH ₂ -N-C
1544	H ₃ CC HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-CF ₃
1545	CI_S_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1546	H ₃ CO F F CH ₂	1	2	0	R	н	-CH ₂ -N-C
1547	H ₃ CO—CH ₂ —Br	1	2	0	R	н	-CH ₂ -N-C
1548	H ₃ C	1	2	0	R	н	-CH ₂ -N-O·······CH ₃ H ₃ C CH ₃
	H₃C-{CH _Z -					н	-CH ₂ -N-CH ₃ -CH ₃
1550	H ₃ C-CH _Z -	1	2	0	R	н	-CH2-HC-CH2-HCCC
1551	H₃CCH _Z -	1	2	0	R	н	-CH2-HC-CH2

Table 1.142

		_						
5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
10	1552	H₃ C-{	1	2	0	R	н	-CH2-N-C-
15	1553	H₃ C-{CH ₂ -	1	2	0	R	н	-01-Hg-23
	1554	H ₃ C(1	2	0	R	Н	-CH2-N-C
20	1555	H ₃ CCH _Z -	1	2	0	R	н	-CH_N-CH3 CH3
25	1556	H ₃ C(CH ₂ -	1	2	0	R	н	-CH2-N-CH3
30	1557	H ₃ C————————————————————————————————————	1	2	0	R	н	-CH2-N-CH3
35	1558	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CH ₃
40	1559	H ₃ CCH _Z	1	2	0	R	н	-CH ₂ -N-C(CH ₃) ₃ H ₃ C
45	1560	H ₃ C	1	2	0	R	н	-cH2-HC
43	1561	H₃C-{CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃
50	1562	H ₃ C	1	2	0	R	н	-CH ₂ -N-C
55	:							

Table 1.143

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1563	H₃C()-CH ₂ -	1	2	0	R	н	-ch-H
1564	H ₃ C-CH ₂ -	1	2	0	R	н	-04-N0-3
1565	CH ₃	1	. 2	0	R	Н	-cH₂-N-C
1566	CH₃ N CH₂− CH₃					н	-CH ₂ -N-C
1567	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -H ₂ -H ₂ -NH ₂
1568	CH ₃ CH ₂ CH ₂ CH ₃	1	2	0	R	н	-01-H1 -05-3
1569	CH ₃ CH ₂ — CH ₃	1	2	0	R	н	
1570	H ₃ CS-CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCH ₂
1571	H ₃ CS-CH _Z -CH _Z -	2	2	1	-	н	-CHz-N-CHz-CSCH3
1572		. 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1573	4co Duc Deta	- 2	2	1	-	Н	-CH₂-N-C-CF₃

Table 1.144

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	1574	r°c∕O-tg-O-cr≻	2	2	1	-	Н	-CH2-N-C-CF3
15	1575	cr-O-light Original	2	2	1	-	н	-CH ₂ -N-C-CF ₃
20	1576	CH2-CH2-	2	2	1	-	н	-CH2-N-C-CF3
20	1577	но(сн,),-N-С-Сн,-	2	2	1		н	-CH2-N-C-CF3
25	1578	н, с Н — — снь-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
30	1579	CH ₃ O N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
35	1580	O-Hg-Q-c+-	2	2	1	-	н	-CH2-N-C
40		а—{				-	н	-CHN-G-S-NH
45	1582	α-{_}_Сн₂-	2	2	1	-	н	-on-no-phy
	1583	CI—(· 1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	1584	с⊢СТ∕СН₂	1	2	0	R	н	-CH ₂ -N-C-H ₂ N-C-F ₃ -CH ₂ -N-C-H ₂ N-C-H ₃ N-C-H ₂
55								

Table 1.145

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+\frac{R^4}{R^5}(CH_2)_{\overline{q}}$ $-G-R^6$
10	1585	CI—(1	2	0	R	н	-CH ₂ -N-CN
15	1586	CI—CH _Z -	1	2	0	R	Н	-CH2-N-C-N-C
20	1587	a—⟨cн ₂ -	1	2	0	R	н	-CH2-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
	1588	G—(¯)CH ₂	1	2	0	R	н	-CH2-HC-(CH3
25	1589	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
30	1590	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
35	1591	H₃C-⟨¯¯}-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-S
40		H ₃ CCH _Z -					н	-CH2-N-CH
<i>45</i>	1593	H ₃ CCH ₂ -	1	2	0	R	Н	-CH2-N-C-
	1594	CH ₃ N= CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C
50	1595	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C
55								-

Table 1.146

5	Compd. No.	R^{2}					R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	1596	CH₃ CH₂ CH₃	1	2	0	R	н	-CH2-N-C-N
	1597	CH ₃ CH ₂ — CH ₃	1	2	0	R	н	-CH2-N-C-N-CH
15	1598	CH ₃ N CH ₂ — CH ₃	1	2	0	R	н	-CH2-N-C-
20	1599	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-HC-CH3
25	1600	CI—(2	2	1	-	н	-CH ₂ -N-C
30	1601	CI—CH2-	2	2	1	-	н	-CH ₂ -N-C-OCF ₃
35	1602	а—СН _Z —СН _Z —	2	2	1	-	н	-CH ₂ -N-C-S
40	1603	CI—CH ₂ —	2	2	1	-	н	-CH2-H-C-C
	1604	CI-CH _Z -	2	2	1	-	Н	-CH2-HC-C
45	1605	CI-CH _Z -	2	2	1	-	н	-CH ₂ -N-C-H ₃ SCF ₃
50	1606	C	1	2	0	R	н	-CH2-N-C-SCF3
55								2

Table 1.147

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1607	H ₃ CCH ₂	1	2	0	R	н .	-CH ₂ -N-C-SCF ₃
15	1608	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
20	1609	α-√CH ₂	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
	1610	CL? O CHª	2	2	1	-	н	-CH2-N-C-CF3
25	1611		2	2	1	-	н	-CH2-N-C
30	1612	н-сокан»-Н-С-С-н-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
35	1613	4c-Q-4g-Q-c4-	2	2	1	-	н	-CH2-N-C-CF3
40	1614	F₃CS—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
45	,	F ₃ CS—CH ₂ —					н	CH ₂ -N-C-CF ₃
	1616	F ₃ CS—CH ₂ —	2	2	1	-	н.	-CH ₂ -N-C-
50	1617	F3CS-CH2-	2	2	1	-	Н	$-CH_2-N$ $-CH_$
55								

Table 1.148

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1618	HQ H₃∞—CH _Z —	1	2	0	R	н	-CH _Z -N-C-S
15	1619	HQ H₃CO—CH _Z —	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
20	1620	HQ H₃CO—CH ₂ —	1	2	0	R	н	-CH2-N-C-CF3
	1621	HQ H₃CO—CH ₂ —	1	2	0	R	н	-CH2-N-C
25	1622	HO H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
30	1623	HO{	1	2	0	R	н	CH₂-N-CSr
35	1624	HO-√CH ₂	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
40	1625	HO-CH ₂ -	1	2	0	R	н	-CH2-N-CF3
45	1626	но-СН2-		2	0	R	н	-CH ₂ -N-C-F ₃
	1627	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	1628	H ₃ CS—CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
55		1						

Table 1.149

			_					
5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
10	1629	H₃CS-{CH ₂ -	1	2	0	R	н	-CH2-N-C-F
15	1630	H₃C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
. 20	1631	H ₂ NCH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
20	1632	CF ₃ —CH ₂ —CH ₂	1	2	0	R	Н	-CH2-NC-CF3
25	1633	H₃CS NC—CH _Z —	1	2	0	R	н	-CH_NC-CF3
30	1634	(H ₃ C) ₂ C H-{CH ₂ -	1	2	0	R	Н	-CH2-NC-CF3
35	1635	H ₃ C-CH ₂ -	1	2	0	R	н	-cH ₂ -N-c-(cH ₅) ₃
40	1636	H ₃ CCH ₂ -	1	2	0	R	н	-CH2-11-CH3-CH3
45		CH ₃ CH ₂ — CH ₃					н	-CHz-N-C-(CH2)4CH3
	1638	CH₃ N CH₂- CH₃	1	2	0	R	Н	-сн _г -нд
50	1639	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-H-Q-QCH2)3CH3
55		•						·

Table 1.150

5	Compd.							$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	1640	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-H-CH29CH3
15	1641	CH3 CH3 CH3	1	2	0	R	н	-CH ₂ -N-C
20		CH³ CH³					н	-CH ₂ -N-C-N O ₂ N-C
	1643	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-N-C
25	1644	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CHZ-N-C-C-C-C
30		CH _Z					Н	-CH2-N-C-CF3
35	1646	Br O-CH ₂ -	1	2	0	R	н	-cHz-N-C-CF3
40	1647	H ₃ C(CH ₂) ₅ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-CF ₃
45	1648	н ₃ С(СН ₂)3—СН ₂ —	1	2	0	R	н	-CH2-H-C-CF3
	1649	н ₃ с(сн ₂) ₂ —Сн ₂ —сн ₂ —	2	2	1	-	н	-CH ₂ -N-C-F ₃
50	1650	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
55								

Table 1.151

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
10	1651	н,скн2),-Сн2	2	2	1	-	н	-CH ₂ -N-C
15	1652	н,скну,-С-сн-	2	2	1	-	н	-CH ₂ -N-C-Br
	1653	н ₃ С(СН ₂) ₂ —СН ₂ —	2	2	1	-	н	-CH ₂ -N-C
20	1654	H ₃ C ₁ CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
25	1655	Н ₃ С(СН ₂) ₃ —СН ₂ —	2	2	1	-	н	-CH2-N-CH2)3CH
30	1656	н ₃ с(сн ₃) ₃ —(Сн ₂ —	2	2	1	-	н	-CH ₂ -N-C-
35	1657	н ₃ с(сн ₃) ₂ —Сн ₂ —	2	2	1	-	н .	-CH_HCH_CH2)2CH
40	1658	н ₃ с(сн ₂) ₂ {}-сн ₂ -	2	2	1	-	н	CH ₂ -N-C
	1659	CI—CH _Z —CH _Z —			. 1		Н	-CH ₂ -N-C
45	1660	Br—CH ₂ —	1	2	0	R	н	-CH ₂ -N-CF ₃
50	16 61	Br—CH ₂ —	1	2	0	R	н	-CH ₂ -N-CF ₃ H ₂ N OCF ₃ -CH ₂ -N-CH ₂ H ₂ N
55				, ,		•		

Table 1.152

	Idble	1.102						
5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH$
10	1662	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
15	1663	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-H ₂ N
20	1664	H ₃ CS—CH ₂ -	2	2	1		н	-CH ₂ -N-C-F ₃
	1665	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
<i>25</i>	1666	H₃CSCH ₂	2	2	1	-	н	-CH ₂ -N-C
30	1667	н₃ссн₂—Сн₂-	2	2	1	-	Ĥ	-CH ₂ -N-C-OB _B
35	1668	ң₃ссн₂—Сн₂-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
40	1669	н₃ссн₂—сн₂-	2	2	1	-	н	-CH ₂ -N-C
45	1670	•			1	-	н	-CH2-N-C-
	1671	н ₅ ссн₂—Сн₂-	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
50	1672	н₃ссн₂—сн₂-	2	2	1	-	н	-CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃
55		·						

161

Table 1.153

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality .	R ²	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1673	H ₃ CCH ₂ —CH ₂ —	2	2	1	-	, н	-CH2-N-C
15	1674	F—CH ₂ -	2	2	1	-	н	-CH2-NC-OBr
	1675	F-CH _Z -	2	2	1	-	н	-CH2-N-C
20	1676	F-CH ₂ -	2	2	1	-	н	-CH2-N-C
25	1677	F—CH _Z	2	2	1	-	н	-CH ₂ -N-C
30	1678	FCH ₂ -	2	2	1	-	н	-CH2-N-C
35	1679	FCH ₂	2	2	1		н	-CH ₂ -N-C-
40	1680	F	2	2	1	-	н	-CH ₂ -N-C
	1681	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
45	1682	FCH ₂ -	2	2	1	-	н	-
<i>50</i>	1683		2	2	1	-	н	-CH2-N-C-Br
55								

Table 1.154

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1684	O hy CH	2	2	1	•	н	-CH ₂ -N-CF H ₂ N
15	1685	OH CH	2	2	1	-	н	-CH ₂ -N-C-F
	1686	O-hg-CH2	2	2	1	-	• Н	-CH ₂ -N-C
20	1687	O-N-CH-	2	2	1	-	Н	-CH ₂ -N-C-V
25	1688	CH2-CH2	2	2	1	-	Н	-CH ₂ -N-C
30	1689		2	2	1	٠	н	-CH ₂ -N-C-S
35	1690	O-N-C-	2	2	1	-	н	-CH ₂ -N-C-F ₃
40		O-N-E-CH2-				-	н	-CH2-NC-Br
	1692	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-JBr
45	1693	CH ₃ H ₃ C—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
50	1694	CH ₃	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.155

Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1695	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
1696	H₃ C-{CH₃ -CH₂-	1	2	0	R	н	-CH ₂ -N-C
1697	H ₃ C—CH ₂ —CH ₂ —	1	2	0	R	н	
1698	H ₃ C-CH ₂ -	1	2	0	R	`н	-CH ₂ -N-C
1699	CH ₃ H₃C—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-F ₃
1700	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1701	H ₂ C=CH_CH ₂	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1702	H ₃ CO-CH ₂ -	1	2	0	R	н	
1703	CH _Z -	1	2	0	R	н	-CH ₂ -N-CF ₃
1704	HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1705	HO-CH ₂ -CH ₂ -	1	2 ·	0	R	н	CF ₃ -CH ₂ -N-CF ₃

Table 1.156

55

Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} + (CH_2)_{q} - (CH_2)_{q} + (C$
1706	O-CH _Z -	1	2	0	R	Н	-CH ₂ -N-CF ₃
1707	H₃CS—CH _Z -	1	2	0	R	н	-CH ₂ -N-C
1708	н₃ссн₂—Сн₂–сн₂–	1	2	0	R	н	-CH ₂ -N-C
1709	. (H ₃ C) _Z C H	1	2	0	R	н	-CH ₂ -N-CF ₃
1710	H ₃ C Br—CH ₂ — H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1711	CH₃ CH₂–	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ O HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1713	HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1714	H ₃ CO—CH ₂ —	1	2	0	R	. Н	-CH ₂ -N-C-CF ₃
1715	N_CH _Z -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.157

55 ---

Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1717	H₃CO— N——CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1718	CH3 CH3	1	2	0	R	н	-CH₂-N-C-CF3
1719	EN-CH2-	1	2	0	R	н	-CH₂-N-CCF3
1720	H3CO-CH3-	1	2	0	R	н	-CH2-N-C-CF3
1721	H ₆ CCH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
1722	CH _Z -	1	2	0	R	н	-CH ₂ -N-C-F ₃
1723	CH ₂ −	1	2	0	R	н	-CH₂-N-C-CF₃
	CH ₃ -CH ₂ -					н	-CH2-H-C-CF3
1725	H ₃ C CH ₂ CH ₂ CH ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1726	н₃ссн₂—Сн₂-	1	2	0	R	н	-CH2-N-C-CF3
1727	CH _Z	1	2	0	R	н	-CH2-N-C-F3

Table 1.158

Compd. R2 CH2)									
1729 $H_3 \subset CH_3$ 1 2 0 R H $CH_2 \cap CH_3$ 1 2 0 R H $CH_3 \cap CH_4$ 1 2 0 R H $CH_4 \cap CH_5$ 1 2 0 R H $CH_5 \cap CH_5$ 1 1 2 0 R H $CH_5 \cap CH_5$ 1 1 2 0 R H $CH_5 \cap CH_5$ 1 1 2 0 R H $CH_5 \cap CH_5$ 1 1 1 2 0 R H $CH_5 \cap CH_5$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	Compd.	R ¹ (CH ₂) _j -	k	m·	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1730 1730 1731 1740 1751 1751 1751 1752 1752 1754 1755 1755 1755 1755 1755 1756 1756 1756 1756 1756 1757 1756 1756 1756 1757 1756 1756 1757 1756 1756 1756 1756 1757 1756 1757 1756 1757	10	1728	-CH _Z -	1	2	0	R	н .	-CH ₂ -N-C-F ₃
26 1731 $H_{3} C C C H_{2} C H_{2} C H_{2} C H_{2} C H_{3} C H_{2} C H_{2} C H_{3} C H_{4} C H_{2} C H_{4} $	15	1729	CH ₃ C→ CH _Z -	1	2	0	R	н	-CH ₂ -N-CF ₃
1731 $H_3 C C C H_{2r} C H_{2$		1730	H ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1732 HOCH ₂ CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 30 1733 CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 35 1734 H ₃ CS CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 40 1736 CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 45 1737 H ₃ C CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 45 1738 H ₃ C CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 50 1738 H ₃ C CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 50 1738 H ₃ C CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 50 1738 H ₃ C CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 50 1738 H ₃ C CH ₂ 1 2 0 R H -CH ₂ N CF ₃	20	1731	H ₂ CQ TN CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1732	носн _г Сн _г	1	2	0	R	н	-CH2-N-C
1735 $H_{0}CCH_{2}$ CH_{2} 1 2 0 R H $-CH_{2}$ NCH_{2} F 1736 CH_{2} 1 2 0 R H $-CH_{2}$ NCH_{2} F 1737 $H_{3}C$ CH_{2} 1 2 0 R H $-CH_{2}$ NCH_{2} F 50 1738 $H_{3}C$ CH_{2} 1 2 0 R H $-CH_{2}$ NCH_{2} F $-CH_{2}$ F $-C$	30	1733	CH _Z -	1	2	0	R	н	-CH ₂ -N-C
1736 CH_{Z} 1 2 0 R H $-CH_{Z}$ N CF_{3} 1737 $H_{3}C$ CH_{Z} 1 2 0 R H $-CH_{Z}$ CH_{3} 1 2 0 R $-CH_{2}$ CH_{3} 1 2 0 R $-CH_{2}$ CH_{3} 1 2 0 R $-CH_{2}$ CH_{3} CH	35	1734	H₃CS—CH _Z —	1	2	0	R	н	-CH2-N-C
1737 $H_3C \longrightarrow CH_2$ 1 2 0 R H $-CH_2 \longrightarrow CF_3$ 1738 $H_3C \longrightarrow CH_2$ 1 2 0 R H $-CH_2 \longrightarrow CF_3$	40	1735	ң₅ссн ₂ —Сн ₂ -	1	2	Ó	R	н	-CH ₂ -N-C-F ₃
1737 H_3C CH_2 1 2 0 R H $-CH_2$ N CH_3 1 2 0 R $-CH_2$ N $-CH_2$ N $-CH_3$ 1 2 0 R $-CH_2$ N $-CH_3$		1736	O-{CH2−	1	2	0	R	н	-CH ₂ -N-C
	45	1737	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
	50	1738	CH ₃ H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
	55							·	

Table 1.159

5	Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $+ (CH_2)_{q}$ $+ (CH_2)_{q}$ $+ (CH_2)_{q}$
10	1739	(H3C)2CH	1	. 2	.0	R	н	-CH ₂ -N-C-F
15	1740	-CH ₂ -	1	2	0	R	н	-CH2-N-C-Br
20	1741	H ₃ CS—CH ₂ —	1	2	0	R	н	-CH2-N-C-SBr
20	1742	н₃ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH ² -No-S _B r
25	1743	CH ₂	1	2	0	R	н	-CH 2-N-C
30	1744	H₃C—CH₂—	1	2	0	R	н	-CH ₂ -N-CBr
35	1745	H ₃ C CH ₃ CH ₂ CH ₂	1	2	0	R	н	-CH2-N-C-Br
40	1746	(H ₃ C) ₂ C HCH ₂	1	2	0	R	н	-CH ₂ -N-C
45	1747	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
		H₃CCH ₂ —CH ₂ —					н	-CH ₂ -N-C
50	1749	H ₃ C-CH ₃	1	2	0	R	н	-CH ₂ -N-C
55		_						

Table 1.160

5	Compd.	R ¹ (CH ₂) _j	k	m	n (chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1750	J—CH _Z —	1	. 2	0	R ·	н	-CH2-N-C-COCF3
15	1751	H₃CS—CH _Z —	1	2	0	R	н	-CH2-N-C-C
	1 752	ң ссн₂—Сн₂–	1	2	0	R	н	-CH ₂ -N-C
20	1753	0-_CH ₂ -	1	. 2	0	R	н	-CH2-N-C-C
25	1 754	CH ₃	1	2	0	R	н	-CH2-N-C-CH3
30	1755	H ₃ C—CH ₂ —CH ₂ —	1	2	. 0	Ŗ	н :	-CH2-N-C-CF3
<i>35</i>	1756	(H ₅ C) ₂ C H-{	1	2	0	R	 H	-CH ₂ -N-C-CF ₃
40		Br Br CH ₂ -					н	-CH2-N-C-
45	1758	Br Br CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1759	H ₃ C-(1	2	0	R	. H .	-cH ₂ -M ₂ -CH ₃
50	1760	H₃ C-{	1	2	0	R	н	-CH ₂ -N-CF ₃ -CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₂ -N-CF ₂ CHCIF
55								-

Table 1.161

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) ₀
1761	H ₃ CCH ₂ -	1	2	0	R	н	-сн-йс-Д нис-й
1762	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-cH-Hc-C)
1763	~ -⇔	2	2	0	-	н	-CH ₂ -N-C-OC
1764	(2	2	0	-	н	-сн₂сн <u>г-ү</u> -с-
1765	— CH ₂ —	2	2	0	-	н	(S) -CH-N-C-CH(CH ₃) ₂
1766	CH ₂ -	2	2	0	-	н	(R) -CH-N-C CH ₂ CH(CH ₃) ₂
1767	CHCH	1	3	1	-	н	-cH2-N-C-
1768	CICH ₂	1	3	1	-	н	-cH₂CHz-H-C-
1769	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-N-C
1770	CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ - CH ₃	. 1	2	0	R	н	-c4-4c-50
						н	

Table 1.162

						· .		
5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1772	CH ₃ CH ₂ CH ₃	1	2	0	R	н	#5 # # # # # # # # # # # # # # # # # #
15	1773	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	H3 C H C H C H C H C H C H C H C H C H C
20	1774	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-H ₃ -CCH ₃
	1775	HO-CH ₂ - H ₃ CO	1	2	0	R	н	-CH ₂ -N-C
25	1776	H ₃ COCH ₂	1	2	0	R	н	-CH ₂ -N-C
30	1777	CH2−CH2−	2	2	1	-	н	-CH ₂ -N-C-CF ₃
35	1778	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
40	1779	CH _Z	2	2	1	-	н	-CH ₂ -N-C-CF ₃
45	1780	Br—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-√S H ₂ N
	1781	HOCH ₂	2	2	1	-	н	-CH ₂ -N-C
50	1782	H ₂ C=C H=-CH ₂ =-	2	2	1	-	н *	-CH ₂ -N-C- H ₂ N CF ₃ -CH ₂ -N-C- H ₂ N CF ₃ -CH ₂ -N-C- H ₂ N
55								

Table 1.163

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	(CH ₂) _P (CH ₂) _q G-R ⁶
10	1783	NC-{\bigce}-CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-CF ₃
15	1784	CH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
20	1785	CH3(CH2)2-(CH2-	2	2	1	-	н	-CH ₂ -N-CF ₃
	1786	0-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F ₃
	1787	сн _е (сн _е) ₂ —Сн ₂ —	1	2	0	R	н.	-CH ₂ -N-C
30	178 8	H ₃ C—CH ₂ —CH ₂ —	2	2	.1	-	н	-CH ₂ -N-C-CF ₃
35	1789	H ₃ ∞{CH ₂	2	2	1	-	н	-CH ₂ -N-C-F ₃
40	1790 '	CI—CH ₂ —	1	2	0	S	н	-CH ₂ -N-CF ₃
45		CICH ₂					н	-CH ₂ -N-C
50	1792	H ₃ C—CH ₂ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
	1793	CI—CI—CI CI—CH2—	2	2	1	•	н	-CH ₂ -N-C
55								

Table 1.164

				_				
5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} -G -R^6$
10	1794	H ₃ C-{}-CH ₂ -	2	2	1	•	н	-CH2-N-CH2-F
15	1795	0-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
20	1796	Br—CH _Z —	2	2	1	-	н	-CH ₂ -N-C
	1797	HO-{CH_2-	2	2	1	٦.	н	-CH ₂ -N-C-F H ₂ N
25	1798	H ₃	2	2	1	-	н	-CH ₂ -N-C
30	1799	H ₂ C-CH-Q-CH ₂ -	2	2	i	-	н	-CH ₂ -N-C-F H ₂ N
35	1800	NC-CH ₂ -	2	2	1	-	н	-CH2-N-CF-F
40	1801			2		-	н	-CH ₂ -N-CF H ₂ N
45	1802	HO-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
50	1803	HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃ -CH ₂ -N-CF ₄ -CH ₂ -N-CF ₄
	1804	H ₃ C (CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C+
55								

Table 1.165

5	Compd.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \stackrel{R^4}{\underset{R^5}{\longleftarrow}} (CH_2)_{\overline{q}} G - R^6$
10	1805	Br—CH2-	1	2	0	R	н	-CH ₂ -N-CSCF ₃
15	1806	H₃CO-{}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
20	1807	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
	1808	HQ H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
25	1809	но-{СН₂-	1	2	0	R	н	-CH2-N-C-SCF3
30	1810	CH2−	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
35	1811	CH ₂ -CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-SCF ₃
40	1812	H₃C9CH2-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
45	1813	H ₃ CCH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
50	1814	CH2-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
	1815	CH ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
55								

Table 1.166

Comp No.	od. R	1 2 -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ G - R^6$
181	6 (сн	у₂сн-{}_сн₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
181	7 (сн	₃₎₃ C-{	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
181	8 8	-CH2-	1	2	0	R	н	-CH ₂ -N-C-CH ₂
181	9 н₃	со-{сн_г-	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
182	н 0 н	3 CC CH ₂ -	1	2	0	R	н	-ch₂-N-c-
182	1 _{H3}	HO CO—CH ₂ —	1	2	0	·R	н	-CH ₂ -N-C-CH ₂
182	2 н	О{СН₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₂
182	3	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
182	4	CH ₂ -	1	2	0	R	н	-CH2-H-C-CHF2
182	5 н₃	сэ—(сн	1	2	0	R	н	OCHF ₂ -CH ₂ -N-C-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
182	6 н.с	CH2—CH2—	1	2	0	R	н	-CH ₂ -N-C

Table 1.167

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1827	O-CH2-	1	2	0	R	н	-CH ₂ -N-C
15	1828	CH₃ H₃ C-{_}}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
20	1829	H ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
0.5	1830	(CH3)2CH	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
25	1831	Br—CH₂-	1	2	0	R	н	-cH₂-N-C-(CH₃)₃
30	1832	H₃ CO	1	2	0	R	н	-CH2-H-C-(CH3)3
35	1833	H₃ CO HO—CH₂—	1	2	0	R	н	-CH2-N-C-(CH3)3
40	1834	H0 H₃ CCH₂-	1	2	0	R	н	-CH2-N-C-(CH3)3
45	1835	HO-{}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
50	1836	O-CH2-	1	2	0	R	н	-CH_NC C(CH ₅) ₃
	1837	CH ₂ -	1	2	0	R	н	-CH2-N-C (CH3)3
55								

Table 1.168

5	Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	1838	н₃с9-{_}_сн₂-	. 1	2	0	R	н	-CH2-N-C-(CH3)3
15	1839	н₃ссн₂—Сн₂-	1	2	0	R	н	-CH2-N-C(CH3)3
20	1840	0-CH2-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
	1841	сн ₃ −сн ₂ −	1	2	0	R	н	-CH2-N-C(CH3)3
25	1842	H ₃ C CH ₃ H ₃ C CH ₂	1	2	0	R	н	-CH2-N-C(CH3)3
30	1843	(CH ³) ² CH————————————————————————————————————	1	2	0	R	н	-CH2-N-C-(CH3)3
35	1844	(CH³)³C—{	1	2	0	R	н	-cH2-N-C(CH3)3
40		H ₆ CCH ₂ —CH ₂ —CH ₂ —					н	-сн ₂ -мс-двг
45	1846	H ₃ C—CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
		(CH ₃) ₃ C					н	-CH ₂ -N-C-C
50	1848	H ₃ CO HO ← CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
55								

Table 1.169

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1849	-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-
15	1850	н _а ссн _г —Сн _г -	1	2	0	R	н	-cн²-И-с
20	1851	CH ₃	1	2	0	R	н	-сн-Ис-
	1852	O-CH2-	1	2	0	R	н	-cH ₂ -N
25	1853	H₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-
30	1854	CH ₂ -	1	2	0	R	н	-CH2-N-C-
35	1855	Н₃ССН₂—СН₂–	1	2	0	R	н	-CH ₂ -N-C-
40	1856	CH ₃	1	2	0	R	н	-CH2-N-C-
45	1857	CH ₂ -			0	R	μ	-CH ₂ -N-C-
	1858	ВСН2-	1	2	0	R	н	-CH ₂ -N-CBr
50	1859	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
55								

Table 1.170

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1860	H ₃ CO HO———————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-
15	1861	H0 H₃∞—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-
20	1862	HO€	1	2	0	R	н	-CH ₂ -N-C
	1863	0-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C
25	1864	H ₃ C9	1	2	0	R	н	-CH ₂ -N-C
30	1865	0-CH ₂ -	1	2	0	R	н	-CH2-N-C
35	1866	H ₃ C CH ₂ H ₃ C	1	2	0	R	н	-CH ₂ -N-C
40	1867	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CS ^B r
45	1868	(CH ³) ³ C-CH ² -	1	2	0	R	H	-CH ₂ -N-C
	1869	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
50	1870	H ₃ CO-CH _Z -	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.171

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
10	1871	H3CO H0	1	2	0	R	н	-CH ₂ -N-C
15	1872	HO H ₃ CO—CH ₂ —	1	2	0	R	н	-CH2-N-C-
20	1873	HO-CH2-	1	2	0	. R	н	-CH ₂ -N-CH ₂ N
	1874	O-CH2-	1	2	0	R	н	-CH2-N-C-
25	1875	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
30	1876	H ₃ C9—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-
35	1877	H₃CCH ₂ —CH ₂ —	1	2	0	R .	H ·	-CH ₂ -N
40	1878	O→CH ₂ -	1	2	0	R	Н	-CH ₂ -N-0-1
45	1879	H ₃ C CH ₂ CH ₂ -	1	2	0	R	н	-cH ₂ -N-c
	1880	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н	-CH2-N-C
50	1881	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.172

	Table 1	1.172						
5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + (CH_2)_{q$
10	1882	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
15	1883	H₃CO- ()-CH _Z -	1	2	0	R	н	-CH ₂ -N-C
20	1884	H3-CO HO	1	2	0	R	н	-CH ₂ -N-C
	1885	HO H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
	1886	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
30	1887	O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C ₂ -NO ₂
35	1888	CH _Z -	1	2	0	R	н	CH ₂ -N-C
40	1889	н₃сѕ-{_}-сн₂-	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
45	1890	н₃ссн₂Сн₂	1	2	0	R	н	-CH ₂ -N-O ₂
50	1891	0-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
	1892	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
55								

Table 1.173

5	Compd.	R ¹ R ² (CH ₂) _j					R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1893	H ₃ C—CH ₂ — H ₃ C	1	2	0	R	н	-CH ₂ -N-C-NO ₂
15	1894	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н	-CH2-N-C
20	1895	(CH ₃) ₃ C⟨CH ₂	1	2	0	R	н	-CH2-NC-
	1896	HO H₃ CO	1	2	0	R	н	-CH ₂ -N-C-CH ₃
25	1897	н₃сѕ-{_}сн₂-	1	2	0	R	н	-CH ₂ -N-C
30	1898	H ₃ CCH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-CF ₃
35	1899	(CH3)2CH-{	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
40	1900	H ₃ CO HO———————————————————————————————————	1	2	0	R	н .	-CH ₂ -N-C
45	1901	H ₃ C(CH ₂) ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
	1902	0-K-CH2-	1	2	0	R	н	
50	1903	(CH ₃) ₂ CH-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃
55						<u> </u>		***

Table 1.174

5	Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	1904	H ₃ C(CH ₂) ₂	2	2	1	-	н	-CH ₂ -N-C
15	1905	a-√2-cH ₂ -	1	2	0	R	н	-CH ₂ -N-C
20	1906	O-CH ₂ -	1.	. 2	0	R	н	-CH ₂ -N-C-CH ₃
	1907	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
25	1908	H ₃	1	2	0	R	н	-CH ₂ -N-CCF ₃
30	1909	H ₂ C=CH-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
35	1910	Br-CH ₂ -	2	2	1	-	н.	-CH ₂ -N-C-CF ₃
40	1911	a—CH₂—	2	2	1	•	н	-CH2-N-C- H2N
45	1912	HO	2	2	1	-	н	-CH ₂ -N-C
	1913	CH ₃ H ₃ C CH ₂ H ₂ C CH ₂	2	2	1	-	н	-CH ₂ -N-C
50	1914	H₂C—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
55	•							

Table 1.175

5	Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}}$
10	1915	H ₀ CCH ₂ O HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
15	1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
20	1917	Ho-CH2-	2	2	1	-	н	-CH ₂ -N-OCF ₃
	1918	H₃ C HO—CH₂—	2	2	1	-	н	-CH ₂ -N-C
25	1919	CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-CF ₃
30	1920	CI—CH _Z —	2	2	1	-	н	-CH _{2-N} -CF
35	1921	CH_CH_	1	2	0	R	н	-CH ₂ -N-CCF ₃
40	1922	CH _Z —CH _Z —	2	2	1	-	н	-CH₂-N-C
45	1923	Br—CH ₂ —	2	2	1	-	н .	-CH2-N-C-SCF3
	1924	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
50	1925	F-CH _Z -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
55								

Table 1.176

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ \frac{R^4}{R^5}$ $+ (CH_2)_{\overline{q}}$ $+ G^6$
10	1926	F_CH ₂ _	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
15	1927	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
20	1928	€-СН2-	2	2	1	-	н	-CH2-N-C-SCF3
	1929	CH ₂ -	2	2	1	-	н	-CH2-NC-SCF3
25	1930	H3C9-()-CH2-	2	2	1	-	н	-CH2-N-C-SCF3
30	1931	н₃ссн _г —Сн _г —сн _г —	2	2	1	-	н	-CH2-N-C-SCF3
35	1932	O-CH ₂ -	2	2	1	-	н	-CH2-N-C-SCF3
40		H ₃ C-CH ₂ -				-	Н	-CH2-N-C-SCF3
45		H₃ C ← CH₂ − CH₂ −					н	-CH2-N-C-SCF3
	1935	0 ₂ N-CH ₂ -	2	2	1	-	н	-CH2-N-C-SCF3
50	1936	H ₃ C-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-SCF ₃
55								

Table 1	.1	7	7
---------	----	---	---

Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
1937	(сн ₃) ₂ с н-{	2	2	1	-	. н	-CH2-N-C-SCF3
1938	Br—CH ₂ -	2	2	1	-	н	-CH ₂ -NC-CH ₃
1939	H ₃ CO-CH _Z -	2	2	1	-	н	-CH ₂ -N-C
1940	F—CH2	2	2	1	-	н	-CH ₂ -N-C
1941	F-CH _Z -	2	2	1	-	н	−CH ₂ −N-C−−CH ₃
1942	HO	2	2	1	-	Н	-CH ₂ -N-C
1943	CH ₂	2	2	1	-	н	-CH₂-N-CCH₃
1944		2	2	1	-	н	-CH₂-N-CCH₃
1945	H₃CS-{}CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1946	н₃ссн ₂ —Сн ₂ —	2	2	1	-	н	-CH ₂ -N-C
1947	CH ₂ -	2	2	1	-	н	-CH2-N-C-CH3

Table 1.178

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	1948	CH ₃ CH ₂ -CH ₂ -	2	2	1	_	н	−CH ₂ −N-C−−CH ₃
15	1949	H ₃ C — CH ₂ - H ₃ C	2	2	1	-	н	-cH ₂ -N-c⟨Sr -cH ₃
20	1950	O ₂ NCH ₂ -	2	2	1	-	н	-CH ₂ -N-CCH ₃
	1951	H ₃ C-CH _Z -	2	2	1	-	н	-CH ₂ -N-CH ₃
25	1952	Br-CH2-	2	2	1	-	н	-CH ₂ -N-C
30	1953	H ₃ CO	2	2	1	-	н	-CH ₂ -N-C-F
35	1954	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-O
40	1955	F-CH ₂ -	2	2	1	-	н	-CH2-NO-Br
45·	1956	но-{	2	2	1	-	н	-CH ₂ -N-C
	1957	CH₂−	2	2	1	-	н	-CH ₂ -N-C-F
50	1958	CH ₂ -	2	2	1	-	н	-CH2-N

Table 1.179

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
10	1959	H3CS-CH2-	2	2	1	-	н	-CH ₂ -N-C
15	1960	H ₃ CCH ₂ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-Br
20	1961	CH ₂ F	2	2	1	-	н	-CH ₂ -N-C-Br
	1962	CH ₃	2	2	1	-	н	-CH ₂ -N-C
25	1963	H₃ C CH₂-	2	2	1	-	н	-OHZ-N-O-F
30	1964	0 ₂ N{CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C
35	1965	Н₃С-{СН_2-	2	2	1	-	н	-CH ₂ -N-C-Br
40	1966	(CH ₃) ₂ CH-CH ₂ -CH ₂ -	2	2	1	· ·	н	-CH ₂ -N-C
45	1967	Br-CH2-	2	. 2	1	-	н	-CH ₂ -N-C
	1968	H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
50	1969	HO{_}-CH ₂	2	2	1	-	н	-CH ₂ -N-CH ₂
55								

Table 1.180

	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	1970	O-CH _Z -	2	2	1	-	н	-CH ₂ -N-C
15	1971	-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
20	1972	H₃C9(CH ₂	2	2	1	-	н	-CH ₂ -N-C
	1973	ң ссн _г -Сн _г -	2	2	1	-	н	-CH ₂ -N-C
25	1974	CH ₃ C−CH ₂ −	2	2	1	-	н	-CH2-N-C
30	1975	O ₂ N-⟨CH _Z -	2	2	1	-	н	-CH ₂ -N-C
35	1976	н₃с-{}_сн₂-	2	2	1	-	н	-CH ₂ -N-C
40	1977	NC-CH2-	2	2	1	-	н	-CH ₂ -N-C
45	1978	(CH3 ¹ °C H-CH ² -	2	2	1	.	н	-CH ₂ -N-C
45	1979	CH2-	2	2	1	-	н	-CH ₂ -N-C
50	1980	0-15-CH2-	2	2	1	-	н	-CH ₂ -N-C
								-

Table 1.181

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
10	1981	0 ₂ N-{CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
15	1982	NC-{_}-CH₂-	2	2	1	-	н	-CH ₂ -N-C
20	1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CH ₂ -F
	1984	Br-CH ₂ -	2	2	1	. -	н	-CH2-N-C-
25	1985	H₃ ∞ - CH _Z -	2	2	1	-	н	-CH ₂ -N-C-
30	1986	но-СН2-	2	2	1	-	н	-CH ₂ -N-C
35	1987	O-CH2-	2	2	1	-	н	-CH ₂ -N-C-
40	1988	CH2-	2	2	1	-	н	-CH ₂ -N-C-
. 45	1989	н₃сѕ-{}сн₂-					н	-CH ₂ -N-C
	1990	н₃ссн₂—Сн₂—сн₂—	2	2	1	-	н	-CH ₂ -N-C-
50	1991	O-CH2-	2	2	1	-	H	-CH ₂ -N-CH ₂ N
55								-

Table 1.182

	lable	1.102						
5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{q$
10	1992	CH₃ H₃ C-⟨	2	2	1	-	н	-CH 2 N C-
15	1993	0 ₂ N-{	2	2	1	-	н	-CH2-17-C
. 20	1994	H3 C-{	2	2	1	-	н	-CH2-N-C
	1995	NC-CH2-	2	2	1	-	н	-CH ₂ -N-C
25	1996	(CH ₃) ₂ C H-CH ₂ -				-	н	-CH2-N-C-
30	1997	H ₃ C — CH ₂ -	2	2	1	-	н	-CH2-N-C-
35	1998	Br—CH₂-	2	2	1	-	н	-an-the-Ca
40	1999	H ₃ COCH ₂	2	2	1	-	н	-cH2-H-C-C
	2000	F-CH _Z -	2	2	1	-	н	-CH2-N-C-
45	2001	HO-CH ₂ -	2	2	1	-	н	-сн ₂ -N-б-С
50	2002	O-CH ₂ -	2	2	1	-	Н	-CH2-N-C-C

Table 1.183

5	Compd.	R ¹ R ² (CH ₂) _J	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \int_{R^5}^{R^4} (CH_2)_{\overline{q}} G - R^6$
10	2003	-CH ₂ -	2	2	1	•	н	-CH2-N-C-
15	2004	н₃с9-{_}сн₂-	2	2	1	•	н	-CH ₂ -N-C
20	2005	н₃ссн _г —Сн _г -	2	2	1	-	. н	-cH2-H-C-C
-	2006	H ₃ C—{ CH ₃ CH ₂ −	2	2	1	-	н	-0H2-HC-C
25	2007	0 ₂ N-CH ₂ -	2	2	1	-	н	-cH2-HQ-C
30	2008	H ₃ C	2	2	1	-	н	-CH2-N-C-C
35	2009	ис-СН2-	2	2	1	-	н	-CH2-N-C-
40	2010	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-cH2-HC-C
45	2011	H ₃ C CH ₂ -	2	2	1	-	н	-a+2-H-C-C
	2012	BrCH ₂ -	2	2	1	-	н	-cH ₂ -N-C
50	2013	H₃CO————————————————————————————————————	2	2	1	-	н	-CH2-N-C-BI

Table 1.184

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³.	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	2014	HO-CH ₂ -	2	2	1	-	н	-citz-N-c
15	2015	CH₂-	2	2	1	-	н	-CH ₂ -N-C
20	2016	-CH ₂ -	2	2	1	-	н	-atz-Mc-Sar
	2017	H₃CS-{}-CH₂-	2	2	1	-	н	-CH2-N-C
25	2018	н₃ссн₂—Сн₂-	2	2	1	-	н .	-CH2-NCBr
30	2019	CH ₂	2	2	1	-	н	-anz-N-c
35	2020	H₃ C-{-}-CH₂-	2	2	1	-	H	-atz-No-Ca
40	2021	02N-CH2-	2	·2	1	-	н	-cHz-N-C
45	2022	н₃с-{сн _z	2	2	1	-	н	-CH2-N-C
	2023	NC-CH2-	2	2	1	-	н	-CH2-NC-C
50	2024	(CH ₃) ₂ CH-CH ₂ -	2	2	1	<u>.</u> .	н	-chz-N-c-
55								

Table 1.185

5	Compd.	R^{2}					R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
10	2025	H ₃ C — CH ₂ —	2	2	1	-	н	-cH2-N-C-S-a
15	2026	F—CH ₂ —	2	2	1	-	н	-CH2-N-C-Br
20	2027	Вг{СН₂-	2	2	1	-	н	-CH2-N-C-St
	2028	H ₃ CO—CH _Z —	2	2	1	-	н	-CH2-N-C
25	2029	но-СН-	2	2	1	-	н	-CH2-N-C
30	2030	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
35	2031	-CH2-	2	2.	1	-	н	-CH ₂ -N-CH ₂
40 _	2032	0-{CH ₂ -	2	2	1	-	н	-CH2-N-C
4 <i>5</i>		CH ₃					н ,	-CH ₂ -N-CH ₂
	2034	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
50	2035	H ₃ C	2	2	1	•	н	-CH ₂ -N-C-H
55								·

Table 1.186

5	Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
10	2036	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
15	2037	H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
20	2038	F-CH ₂	2	2	1	-	н	-CH ₂ -N-C-Br
	2039	H ₃ C-CH ₂ -	2	2	1	-	н	-CH2-N-CN
25	2040	H₃ C-{\rightarrow}-CH_Z-	1	2	0	R	н	-CH2-N-C-CH-OH
30	2041	H₃ C-⟨CH _Z	1	2	0	R	н	—сн ₂ —N-С-Сн-
35	2042	H₃ C-{}_CH _Z -	1	2	0	Ŗ	н	-CH ₂ -N-C-CH ₃
40	2043	H₃C-{}CH ₂ -	1	2	0	R	н	-CH2-H-C-CH2-CH3
<i>45</i>	2044	CH ₃ CH ₂ —					н.	-CH2-H-C
45	2045	CH ₃ CH ₃	1	2	0	R	H	-04-H-C-H-C
50	2046	CH ₃ CH ₂ CH ₃	1	2	0	R	H	-042-H-C-H-CH3
55								

Table 1.187

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ G-R^6$
10	2047	CH3 CH3	1	2	0	R	н	-cH ₂ -H ₂ -CH ₃ -
15	2048	CH³ CH²− CH³	1	2	0	R	н	-CH2-N-C
. 20	2049	CH3 CH2-	1	2		R	н	-cH-II-CH-
	2050	H ₃ C S CH ₂	1	2	0	R	н	-CH2-N-C
25	2051	H ₃ C N_CH ₂	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
30	2052	Br CH2- OCH2CH3	2	2	1	-	н	-CH ₂ -N-C
35	2053	+6 со — СH ₂ O— СH ₂ —	2	2	1	-	н	CH ₂ -NCF H ₂ N
40	2054	$H_3 \infty$ — CH_{Z^+}	2	2	1	-	н	CH ₂ -N
45	2055	H₃ CO —CH₂— OH	2	2	1	-	н	-CH ₂ -N-C
	2056	Br_CH ₂	2	2	1	-	н	-CH ₂ -N
50	2057	Br CH ₂ -	2	2	1	-	н	$-CH_2-N$ $-CH_2-N$ $-CH_2-N$ $-CH_2-N$ $-CH_2-N$ $-CH_2-N$ $-CH_2-N$
55								

Table 1.188

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	2058	H ₃ CO OCH ₃	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
15	2059		2	2	1	-	н	-CH ₂ -N-C-F-F
20	2060	H ₃ CO————————————————————————————————————	2	2	1		н	-CH ₂ -N-CF H ₂ N
	2061	F_CH ₃	2	2	1	-	н	-CH ₂ -N-C
25	2062	H ₃ CO-CH _Z -	2	2	1	-	н	-CH ₂ -N-C
30	2063	H ₃ CO -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
35	2064	Br_CH ₂ -	2	2	1		Н	-CH2-N-C-F
40	2065	H3CCH2Q H3CCH2Q———————————————————————————————————	2	2	1	-	н	-CH2-N-FF
45	2066	OCH ₂ -					Н	-CH ₂ -N-CF H ₂ N
	2067	(ныс ъснон₂—СУ—сн ₂ —	2	2	1	-	Н	-CH2-N-C-F
50	2068	CH _Z -	2	2	1	-	Н	-CH ₂ -N-F _{H₂N} -F _F
55								-

Table 1.189

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	2069	H₃C H₃∞—CH _Z —	2	2	1	-	Н	-CH ₂ -N-C
15	2070	Br CH2- OCH3	2	2	1	-	н	-CH ₂ -N-C
20	2071	H₃CO	2	2	1	•	н	-CHZ-N-C-F
	2072	(H3C)2CHO	2	2	1	-	н	-CH ₂ -N-C-F
25	2073	CH2C	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
30	2074	H ₅ CO-O-O-CH ₂ -	2	2	1	-	н	CH ₂ -N-C-F
35	2075	H ₃ CO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
40	2076	F—CH₂-	2	2	1	-	н	-CH ₂ -N-C
45	2077	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
	2078	H ₅ C CH ₂ O OH CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF-F
50	2079	H ₃ CCH ₂ O OH CH ₂ -	2	2	1	-	H	$-CH_2$ $-CH_$
55								-

Table 1.190

5	Compd.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+(CH_2)_{q}$ $+(C$
10	2080	—————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
15	2081	HO-CH ₂ -	2	2	1	-	н	· CH ₂ -N-C-F H ₂ N
20	2082	OH H₃CO-⟨CH ₂ -	2	2	1	-	н	-CHZ-N-C-F
20	2083	H ₃ CO HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
25	2084	H ₃ CO HO—CH _Z — H ₃ CO	1	2	0	R	н	-CH ₂ -N-CF ₃
30	2085	OH H₃CO-CH₂-	1	2	0	R	н	-CH _Z -N-CF ₃
35	2086	сі но—СН₂—	1	2	0	R	н	-CH ₂ -N-C
40	2087	(H ₃ C) ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	2088	(H3CCH2)2N———————————————————————————————————	1	2	0	R	н	-CH ₂ -N-CF ₃
45	2089	F-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-F ₃
50	2090	O-O-CH2-	1	2	0	R	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
55					•			

Table 1.191

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
10	2091	CH_CH ₂ -	2	2	1	-	Н	CH CH
15	2092	CI—CH _Z -	2	2	1	-	Н	-Strict
20	2093	CI(CH ₂	2	2	1	-	н	(R) -CH-N-C- LH-N-C- LH-N-C- CH ₂ CH ₂ SCH ₃
	2094	G	2	2	1	-	Н	CH-NC-CH ₂ CH ₃
25	2095	a-CH ₂ -	2	. 2	1	-	Н	(R) -CH-N-C
30	2096	CICH ₂	2	2	1	-	. н	CH-N-C
35	2097	CH_CH_	2	2	1	-	. н	CH ₂ CH ₂ CH ₃
40	2098	CI—CH ₂ -	2	2	1	-	н	CH2—CI
45	2099	CI—CH ₂ —	2	2	1	- .	н	CHYCHS
	2100		2	2	1	-	н	(R) O CH ₂ CH ₃ -CH-N-C-CH ₃ (R) O CH ₂ CH ₃ -CH-N-C-CH ₃ -CH-N-C-CH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃
50	2101	a—⟨cн₂-	2	2	1	-	н	CH-N-O-OCH2CH
55								

Table 1.192

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	2102	CI(CH ₂	2	2	1	-	н	cHichi-&-cchi-()
15	2103	C-CH _Z -	2	2	1	-	н	(R) OCHCH CHNC- HCCHOCH-
	2104	CH2-	2	2	1	•	н	(R) OCH2CH3
20	2105	H³ CO OH	2	2	1	-	H	-CH ₂ -N-C-F
25	2106	H ₃ C OH	2	2	1	-	н	-CH ₂ -N-CF
30	2107	Br CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
35	2108	CH ₃	2	.2	1	-	н	-CH ₂ -N-CF H ₂ N
40	2109	Br_CH ₂ -	2	2	1	-	н	-CH _{2-N} -F
	2110	H ₃ CCH ₂ CH ₂ -	2	.2	1	-	н	-CH_N-C-F
45	2111	a—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
50	2112	Br H ₃ CO————————————————————————————————————	2	2	1	-	н	$-CH_2$ H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_3

Table 1.193

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p -(CH ₂) _q G-R ⁶
10	2113	H ₂ N H ₃ CO—CH ₂ —	2	2	1	-	н	CH ₂ -N
15	2114	H ₂ N H ₃ C-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
	2115	a—{aH ₂	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
20	2116	a{	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C
25	2117	a{	2	2	1	-	н .	(A) OCH2CH3 -CH-N-C
30	2118	HO—CH₂-	1	2	0	R	н	-CH ₂ -N-CF ₃
<i>35</i>	2119	OH HO—CH₂-	1	2	0	R	н	-CH_N_CF3
40	2120	Br—CH₂−	1	2	0	R	н	-CH ₂ -N-CF ₃ H ₂ N
45	2121	52		2			н	-CH ₂ -N-CF ₃
45	2122	C⊢—CH₂−	1.	2	0	. R	н _.	-CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃
50	2123	CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-CF ₃
55								

Table 1.194

								<u></u>
5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	2124	O ₂ N CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
15	2125	O ₂ N H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
	2126	O ₂ N H ₃ C—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
20	2127	S-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	2128	H ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
30	2129	H ₂ N H ₃ C—CH ₂ —	1	2	0	R	н .	-CH ₂ -N-CF ₃
35	2130	O-W	2	2	1	-	н	-CH ₂ -N-C-F-F
40	2131	CH3 CH3 CH3	2	2	1	-	н	-CH ₂ -N-C-F-F
	2132	H ₂ N CI—CH ₂ —	1	2	0	R	н	-CH _{2-N} -CF ₃
45	2133	(H ₃ C) ₂ N CI————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃
50	2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
55		·						

Table 1.195

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	2135	(H ₃ C) ₂ N H ₃ ∞————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
15	2136	(H ₃ C) ₂ N H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	2137	CH ₃	1	2	0	R	н	-CH ₂ -N-CF ₃
20	2138	CH ₃ CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
25	2139	H ₃ C. CI CH ₂ —CH ₂ —	1	2	0	R	н	CH ₂ -NCF ₃
30	2140	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
35	2141	H ₂ N HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
40	2142	H ₂ N CH ₂ -CH ₂ -	2	2	1	-	н	-CH _{2-N} -C
	2143	HW8-CH3		2	1	-	н	-CH2-N-C-F
45	2144	H ₂ N H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
50	2145	H ₂ N HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.196

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p
10	2146	CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C- H ₂ N
15	2147	H ₃ C-C-NH H ₃ C-C-NH CH ₂ -	2	2	1	-	н	-CH ₂ -N-CH ₂ N-F
	2148	H ₃ C-C-NH HO-C-C-H ₂ -	2	2	1	-	н	-CH ₂ -N-CH ₂ -F
20	2149	O ₂ N HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
25	2150	H ₃ C-CNH CII-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F ₃
30	2151	HM-C-CH3	1	2	0	R	Н	-CH ₂ -N-CF ₃
35	2152	H₃CO—NH H₃CO—CH _Z —	1	2 .	0	R	н	-CH ₂ -N-C-F ₃ H ₂ N
40	2153	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R	* н	-CH ₂ -N-C-F ₃ H ₂ N
45	2154	H ₃ CO-NH H ₃ CO-CH _Z -		2	1	-	н	-CH ₂ -N-C-F ₃
45	2155	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F ₃
50	2156	HWG-CH3	2	2	1	-	н	-CH ₂ -N-C

Table 1.197

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p -(CH ₂) _q G-R ⁶
10	2157	CH₃ HO-{_}CH₂-	1	2	0	R	н	-CH ₂ -N-CF ₃
15	2158	H ₃ C-NH HO-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C
	2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF
20	2160	H3-C-NH H0-\CH2-	2	2	1	-	н	-CH ₂ -N-F-F
25	2161	H ₃ C-NH CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-F-F
30	2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃
35	2163	H3 C−NH HO—CH2−	2	2	1	-	н	-CH ₂ -N-CF ₃
40	2164	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-CF ₃
	2165	CH2-	1	2	0	R	н	-CH ₂ -N-CF ₃
45	2166	[N−cH₂-	1	2	0	R	Н	-CH ₂ -N-CF ₃ H ₂ N
50	2167	H H CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃
								-

Table 1.198

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R²	-(CH ₂) _p + (CH ₂) _q G R ⁶
10	2168	H ₃ C CH ₂ H ₃ C CH ₂	1	2	0	R	н	-CH ₂ -N-CF ₃
15	2169	H ₃ C—CH ₃ CH ₃	1	2	0	R	н	-CH2-N-C-S
20	2170		1	2	0	R	н	-CH2-N-C-S-3
	2171	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	2172	F ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-CF ₃
30	2173	S—CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
35	2174	H ₃ C CH ₃ Br-S-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
40	2175	H ₃ 00 - CH ₂ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
45	2176	H ₃ C CH ₂ -					Н	-CH ₂ -N-C-F ₃
45	2177	H ₃ C OH N CH ₂ - CH ₂ OH	1	2	0	R	Н	-CH ₂ -N-CF ₃
50	2178	H ₃ 00-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃

Ta	h	ما	1	1	9	9
10	U	16		. 1	3	·

5	Compd.	R ² (51.2/1					R³	$-(CH_2)^{\frac{R^4}{P}}_{\frac{R}{R^5}}(CH_2)_{\overline{q}}G^{-R^6}$
10	2179	н, с-б. Сн.	1	2	0	, R	н	-CH_NCF3
15	2180	CI(CH ₂) _Z	1	2	0	R	н	-CH ₂ -N-C-F ₃
	2181	H ₃ CO N CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
20	2182	H₃C TN_CH2-	1	2	0	R	н	-CH ₂ -N-C
25	2183	S-N N-CHZ-	1	2	0	R	н	-CH ₂ -N-C-F ₃
30	2184	S-N_CH2-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
35	2185	S-N-CH2-	2	2	1	-	н	-CH ₂ -N-C
40	2186	N CH₂-	2	2	1	-	н	-CH ₂ -N-C
	2187	H ₂ N HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
45	2188	CH2-CH2	2	2	1	-	н	-CH ₂ -N-C
50	2189	CH2-	1	2	0	R	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
<i>55</i>		-						

Table 1.200

5	Compd.	R ¹ R ² (CH ₂) _j	·k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
10	2190	CH ₂	2	2	1	-	н	-CH ₂ -N-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-
15	2191	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	2192	S H O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N
20	2193	S H CH2	2	2	1	-	н	-CH ₂ -N-C-F
25	2194	H ₂ N H ₃ C—CH ₂ —	2	2	1	-	н	-CH ₂ -N-CF ₃
30	2195	H ₂ N CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-CF ₃
35	2196	H ₃ C-NH H ₃ C-CH ₂	1	2	0	R	н	-CH ₂ -N-C-S H ₂ N
40	2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F ₃ H ₂ N
45	2198	H ₃ C-NH CI—CH ₂ —	1	2	0	R	н	-CH ₂ -N-CF ₃
45	2199	H ₃ C-NH H ₃ C-NH C-CH _Z -CH _Z -	2	2	1	-	Н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
50	2200	H ₃ C-NH CH-Z-CH _Z -	2	2	1	-	н	-CH ₂ -N-CF ₃

Table 1.201

						_		
. 5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G R ⁶
10	2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
15	2202	S H CH2	1	2	0	R	н	-CH ₂ -N-CF ₃
20	2203	CH ₂	2	2	1	-	н	-CH2-N-C-F
	2204	CH ₃ . a{-}	2	2	1		н	-CH ₂ -N-C
25	2205	a—€_CH3	2	2	1	-	н	-CH ₂ -N-C-F
30	2206	CH₃ HO—CH₂—	2	2	1	-	н	-CH ₂ -N-C-F ₃
35	2207	HO-CH ₂ -	2	2	1	-	н	-CH _Z -N-C-F
40	2208	CH2-CH2	2	2	1	-	н	-CH ₂ -N-C-CF ₃
45	2209	CI—CH2—CH2—	- 2		1	-	Н .	-CH ₂ -N-C-F H ₂ N
	2210	CH ₂ -	1	2	0	R	н ,	-CH ₂ -N CF ₃
50	2211	CH ₂ -	2	2	1	-	н	-CH ₂ -N-O-CF ₃ -CH ₂ -N-O-CF ₃ -CH ₂ -N-O-CF ₃
55								

Table 1.202

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
10	2212	CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
15	2213	H ₂ N CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-CF ₃
	2214	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F ₃
20	2215	H ₃ C-HN CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
25	2216	H ₃ CCH ₂ N CH ₂	1	2	0	R	н	-CH ₂ -N-C
30	2217	ӊсо-с ^р ӊс→сн ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
35	2218	C	1	2	0	R	н	-CHE-HO CE
40	2219		1	2	0	R	н	-OHZ-II OFF
	2220	C			0	R	н	-CH-H- HN -CH(CH3)2
45	2221	C	1	2	0	R	н	-CH- HOCFs HN
50	2222	H ₃ C CO ₂ CH ₃ CH ₂ - CH ₃ C CH ₃	1	2	0	R	н	-CH2-N-O-CF3
55								

Table 1.203

				_				•
5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
10 .	2223	Q—	1	2	0	R	н	-CH ₂ -N-C-N-N-N-CF ₃
	2224	снСн	1	2	0	R	н .	-CH2-N-O-N
15	2225	а—{	1	2	0	R _.	н	-charte - h
20	2226	H ₃ C, CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
25	2227	CI—€CH ₂ —	1	. 2	0	R	н	-CH-HO-N(CH)2
30	2228	CI—CH ₂ -	1	2	0	R	н	-CH-N-O-CF3
35	2229	CH ₂	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
40	2230	H₃CCH2—CH3 CH3-CH2-	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
40		H ₃ CO-CH ₂ -					н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
45	2232	H ₃ C — CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
50	2233	CH ²	1	2	0	R	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃

Table 1.204

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P (CH ₂) _Q G-R ⁶
10	2234	CH ₂ -CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	2235	CH ₂	1	2	0	R	н	-CH2-N-C
15	2236	F CH _T	1	2	0	R	н	-CH ₂ -N-C
20 .	2237	CH CH2	1	2	0	R	н	-CH ₂ -N-C
25	2238	H ₃ CO CH ₂ -	1	2	0	R	н	-CH2-N-C
30	2239	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
35	2240	CH ₂ -CH ₃	1	2	0	R	н	-CH ₂ -N-C
	2241	H ₃ C N H	1	2	0	R	н	-CH ₂ -N-C
40	2242	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
45	2243	(H ₃ C) ₂ N-CH ₂ -	1	2	0	R	н	CH ₂ -N-C
50	2244	F CH ₂ -	1	2	0	R	H-	$-CH_2-N-C-$ $-CH$

Table 1.205

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G - R ⁶
10	2245	нс о сн	1	2	0	R	н	-CH ₂ -N-C-F ₃
15	2246	H3COH2/N 2N CH2-	1	2	0	R	н	-CH _Z -N-C-F ₃
	2247	(Hc)2CH N N N N N N N N N N N N N N N N N N N	1	2	0	R	Н.	-CH ₂ -N-C-F ₃
20	2248	H ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-CCF ₃
25	2249	H_2N $H_3 \longrightarrow CH_2$	1	2	0	R	н	-СH ₂ -N-О-СБ ₃
30	2250	H ₂ N HO—CH ₂ —	1	2	0	R	H	-CH ₂ -N-C
35	2251	H ₂ N H ₃ C—CH ₂ -					н '	-CH ₂ -N-C
40	2252	CH ₂	2	2	1	-	н	-CH ₂ -N-CF ₃
***	2253	F CH ₂	2	2	1	٠.	н	CH ₂ -N-CF ₃
45	2254	H ₃ CO CH ₂ CH ₂	2	2	1	-	н	-CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃ -CH ₂ -N-CF ₃
50	2255	H ₃ C NH	2	2	1	· <u>.</u>	н	-CH ₂ -N-CF ₃

Table 1.206

5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	. R ₃	$-(CH_2)^{\frac{R^4}{P}}_{\frac{R}{R^5}}(CH_2)_{\frac{1}{q}}G^{-\frac{1}{q}}$
10	2256	CH ₂ -					н	CH ₂ -N-C
15	2257	H3CQ CH2	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	2258	CI—CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C CI -CH ₃
20	2259	H ₃ CS—CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C CI CH ₃
25	2260	CI CICH ₂	1	2	0	R	н	(S) O -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
30	2261	CI-CH ₂ -	1	2	0	R	н	CH3 CH3 CH3
35	2262	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) O CH-N-C-N-C-N-C-N-CH ₃
40	2263	CI————————————————————————————————————	1	2	0	S _.	н	CH-N-C-CI CH ₃
40	2264	CI—CH ₂ -	1	2	0	S	н	CH-N-C-CI
45	2265	H ₃ CS—CH ₂ -	1	2	0	S	н	(S) -CH-N-C-CI CH ₃
50	2266	C	1	2	0	S	н	(S) O CI -CH-N-C-N-C-N-C-N-CI -CH-N-C-N-C-N-C-N-C-N-C-N-CH-N-C-N-C-N-C
		<u> </u>						

215

Table 1.207

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p -(CH ₂) _q G-R ⁶
10	2267	CI CI—CH₂-	2	2	1	-	н	(S) O CI -CH-N-C-CI CH ₃
15	2268	CI—CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C-C-CI -CH ₃
	2269	H ₃ CS—CH ₂ -	2 .	2	1	-	н	(S) O CI -CH-N-C-C-CI -CH ₃
20	2270	CICH₂-	2	2	1	-	н	(S) O -CH-N-C-N- CH ₃
25	2271	C⊢—CH₂-	2	2	1	-	н	(S) O -CH-N-C-N- I H H
30	2272	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N- I H H CH ₃
35	2273	CI CH2-	. 2	2	1	-	н	(S) O CI -CH-N-C-CI 1 H CH(CH ₃) ₂
40	2274	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C-CI 1 H CH(CH ₃) ₂
	2275	CI————————————————————————————————————	2	2 ·	1	-	н	(S) O CH-N-C-N- CH(CH ₃) ₂
45	2276	CI—CH₂-	2	2	. 1	-	н	(S) O -CH-N-C-N- I H H CH(CH ₃) ₂
50	2277	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N- H H CH(CH ₃) ₂

Table 1.208

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}}^{\overline{R}^4}(CH_2)_{\overline{q}}G^{-\overline{R}^6}$
10	2278	CI C⊢—CH₂-	1	. 2	0	R	н	(S) O CF ₃ -CH-N-C
15	2279	C├─ C H₂-	1	2	0	R	н	(S) O CF ₃ -CH-N-C
	2280	CI . C⊢—CH₂-	1	2	0	S	н	(S) O CF ₃ -CH-N-C - CH ₃ H ₂ N
20	2281	H ₃ CS-CH ₂ -	1	2	0	S	Н	(S) O CF ₃ -CH-N-C - CF ₃ I H CH ₃ H ₂ N
25	2282	CICH ₂ -	2	2	1	-	н	(S) O CF ₃ -CH-N-C CF ₃ -CH ₃ H ₂ N
30	2283	H ₃ CS-CH ₂ -	2	2	1	-	Н	(S) O CF3 -CH-N-C - CH3 H CH3 H ₂ N
35	2284	CI CH2-	2	2	1	-	н	(S) NH ₂ -CH-N-C CF ₃ CH(CH ₃) ₂ CF ₃
40	2285	C	2	2	1	-	Н	(S) Q (NP2 -CH-N-C (CH ₃) ₂ CF ₃
	2286	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) NH ₂ -CH-N-C CF ₃
45	2287	CI—CH ₂ -	2	2	1	-	н	(S) S -CH-N-C-N-C-N-CH(CH ₃) ₂
50	2288	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C C CI (CH ₂) ₂ CONH ₂
55							·	

Table 1.209

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}}$
. 10	2289	CI C⊢—CH₂-	2	2	1	•	н	(S) O -CH-N-C-N- H H (CH ₂) ₂ CONH ₂
15	2290	CI C⊢—CH₂-	2	2	1	-	н	(S) 0 CI -CH-N-C-CI -CH ₂ OH
	2291	CI—CH ₂ -	2	2	1	-	н	(S) Q CI -CH-N-C-CI I H CH₂OH
20	2292	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C CI CH₂OH
25	2293	CICH ₂ -	2	2	1	~	H.	(S) O CH-N-C-N- I H H CH ₂ OH
30	2294	CI—CH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N-C-N-C-N-CH ₂ OH
35	2295	H ₃ CS—CH ₂ -	2	2	1	-	H	(S) O -CH-N-C-N- I H H CH ₂ OH
40	2296	CICH ₂ -	1	2	0	R	Н	(S) Q CI -CH-N-C CI H H (CH ₂) ₂ SO ₂ CH ₃
	2297	H ₃ CS—CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C - CI H H (CH ₂) ₂ SO ₂ CH ₃
45	2298	CI————————————————————————————————————	1	2	0	R	н	(S) O CH-N-C-N- I H H (CH ₂) ₂ SO ₂ CH ₃
50	2299	H ₃ CS—CH ₂ -	1	2	0	R	н .	(S) O -CH-N-C-N- I H H (CH ₂) ₂ SO ₂ CH ₃
55							 	

Table 1.210

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)^{-\frac{R^4}{R^5}}(CH_2)^{-\frac{G-R^6}{R^5}}$
10	2300	CHCH2-	1	2	0	S	н.	(S) O CI -CH-N-C C CH-CI (CH ₂) ₂ SO ₂ CH ₃
45	2301	CI————————————————————————————————————	1	2	0	S	н	(S) Q CI -CH-N-C-(S)-CI (CH ₂) ₂ SO ₂ CH ₃
15	2302	CI CI—CH₂-	1	2	0	R	н	(S) NH ₂ -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
20	2303	CH_CH ₂ -	1	2	0	R	н	(S) 0 NH ₂ CH-N-C
25	2304	H ₃ CS—CH ₂ -	1	2	0	R	н	(S) 0 NH ₂ -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃ CF ₃
30	2305	CI CH2−	1	2	0	S	н	(S) 0 NH ₂ -CH-N-C - (CH ₂) ₂ SO ₂ CH ₃ CF ₃
<i>35</i>	2306	H ₃ CS—CH ₂ -	1	2	0	S	н	(S) 0 NH ₂ -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
40	2307	CICH ₂ -	1	2	0 .	R	н	(S) S -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
	2308	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) \$ -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
45	2309	J 22				S	н	(S) \$ -CH-N-C-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
50	2310	CH-CH ₂ -	1	2	0	s	н	(S) S -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃

Table 1.211

5	Compd.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
10	2311	H₃CS—CH₂-	1	2	0	S	н	(S) S -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
15	2312	H₃CS—CH₂-	1	2	0	R	н	(S) O CF ₃ -CH-N-C C I H CH ₃ H ₂ N
20	2313	CI C⊢—CH₂-	1	2	0	R	н	(S) O CI -CH-N-C-CI CH ₃
\$	2314	H ₃ CS—CH ₂ -	1	2	0	S	н	CH-N-C-N-C
25	2315	CI——CH₂-	2	2	1	-	н	(S) O CI -CH-N-C-CI CH(CH ₃) ₂
30	2316	C⊢—CH₂-	1	2	0	s	н	(S) 0 NH2 -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
35	2317	CI CH₂-	2	, 2	1	-	н	(S) O NH2 -CH-N-C CH ₂ OH CF ₃
40	2318	CI CH ₂ -	1	2	0	R	н	(S) \$ -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
45	2319	CI CH ₂ -	2	2	1	- .	н	(S) S -CH-N-C-N- I H CH(CH ₃) ₂
45	2320	CI—CH₂-	2	2	1	-	н	(S) S -CH-N-C-N- 1 H H CH(CH ₃) ₂
50	2321	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) S -CH-N-C-N- - H H CH(CH ₃) ₂

Table 1.212

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	2322	CI C⊢—CH₂-	2	2	1	_	н	(S) S CH-N-C-N- 1 H H CH(CH ₃) ₂
45	2323	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) S -CH-N-C-N-C-N-CH(CH ₃) ₂
15	2324	CI CI—CH₂-	2	2	1	-	н	(S) O CF3 -CH-N-C CF3 -CH3 H ₂ N
20	2325	CI CI—CH₂-	1	·2	0	R	н	(S) S -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
25	2326	CH-CH ₂ -	1	2	0	R	н	(S) S -CH-N-C-N-C-N-CH ₃
30	2327	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) S -CH-N-C-N-C H H H
35	2328	CI CI—CH₂-	1	2	0	S	н	(S) S -CH-N-C-N-C-N-C-N-CH ₃
40	2329	CI—CH₂-	1	2	0	s	н	(S) S -CH-N-C-N-C-N-C-N-CH ₃
	2330	H ₃ CS-CH ₂ -	1	2	0	S	н	(S) S -CH-N-C-N- H H CH ₃
45	2331	CI	1	2	0	S	н	(S) O CF ₃ -CH-N-C C CF ₃ -CH ₃ H ₂ N
50	2332	C├ ─C H ₂ -	1	2	0	R .	н	(S) O CI -CH-N-C CI -CH ₂) ₂ SO ₂ CH ₃

Table 1.213

5	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
10	2333	CI-CH ₂ -	1	2	0	R	н	(S) 0 -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
15	2334	H ₃ CS-CH ₂ -	1	2	0	S	н	(S) O CI -CH-N-C C CI (CH ₂) ₂ SO ₂ CH ₃
	2335	CI————————————————————————————————————	1	2	0	S	н .	(S) O -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
20	2336	CICH ₂ -	1	2	0	S	н .	(S) O -CH-N-C-N- I H H (CH ₂) ₂ SO ₂ CH ₃
25	2337	H ₃ CS—CH ₂ -	1	2	0	S	н	(S) O -CH-N-C-N- - H H (CH ₂) ₂ SO ₂ CH ₃
30	2338	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N- I H H (CH ₂) ₂ CONH ₂
35	2339	CI-CH ₂ -	2	2	1	-	н	(S) 0 NH2
40	2340	H ₃ CS—CH ₂ -	2	2	1		н	(S) 0 NH ₂ -CH-N-C - (CH ₂) ₂ CONH ₂ CF ₃
	2341	CHCH ₂ -	2	2	1	-	н	(S) 0 NH ₂ -CH-N-C - CH ₂ CH ₂ OH CF ₃
45	2342	H ₃ CS—CH ₂ -	2	2	1	-	н	(S) 0 NH ₂ -CH-N-C - CF ₃
50	2343	CI CI—CH₂-	2	2	1	-	н	(S) -CH-N-C-C-CI (CH ₂) ₂ CONH ₂
<i>55</i>							•	

Table 1.214

5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{-}{q}}G^{-R^6}$
10	2344	СН ₂ -	2	2	1	-	н	(S) Q CI -CH-N-C C CI -CH-N-C CI -CH-N-C -CH-N-C CI -CH-N-C CI -CH
15	2345	СНСН2-	2	2	1	-	н	(S) 0 -CH-N-C-N- I H (CH ₂) ₂ CONH ₂
	2346	CICH ₂ -	2	2	1	-	н	(S) 0 NH2 -CH-N-C (CH ₂) ₂ CONH ₂ CF ₃
20	2347	CI CH2-	1	2	0	S	н	(S) O -CH-N-C-N- I H H H
25	2348	CI —CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C (S) CI (CH ₂) ₂ SO ₂ CH ₃
30	2349	FCH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
35	2350	F.—CH₂-	1	2	0	R	н	(S) CI -CH-N-C
40	2351	CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C- CI H H (CH ₂) ₂ SO ₂ CH ₃
	2352	CI CI—CH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N-C-CI - H H - H - CH ₃
45	2353	CICH ₂ ~	2	2	1	-	н	(S) -CH-H-C-H-
50	2354	CH_{2} CH_{2} CH_{2} CH_{2}	1	2	0	R	н	(S) OCI -CH-N-C
55			····,					

Table 1.215

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
10	2355	CI C⊢—CH₂-	1	2	0	R	н	(S) OCI CI -CH-N-C (SH-N-C) H (CH ₂) ₂ SO ₂ CH ₃
15	2356	CI CH2-	1	2	0	R	н	(S) O CI CH-N-C (S) H (CH ₂) ₂ SO ₂ CH ₃ CI
	2357	CI CH2-	1	2	0	R	н	(S) O -CH-N-C-S CI (CH ₂) ₂ SO ₂ CH ₃
20	2358	CI C⊢—CH₂-	1	2	0	R	н .	(S) O -CH-N-C-C-CH ₃ I H (CH ₂) ₂ SO ₂ CH ₃
25	2359	CI CI—CH₂-	1	2	0	R	н	(S) O -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
30	2360	CI CH _Z -	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
35	2361	CI CH2-	1	2	0	R	н	(S) O -CH-N-C-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
40	2362	CI CH2-	1	2	0	R	н	(S) 0 -CH-N-C-N-C-OCH₃ (CH ₂) ₂ SO ₂ CH₃
	2363	CI C⊢—CH₂-			1	-	н	(S) OCI -CH-N-C -CI -CH ₃
45	2364	CI CI—CH₂-	2	2	1	-	Н	(S) -CH-H-C-CH3 . CI
50	2365	CI C⊢—CH₂-	2	2	1	-	н	CH-N-C-CI

Table 1.216

5	Compd. No.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P R ⁴ (CH ₂) _q G-R ⁶
10	2366	CI CH₂-	. 2	2	1	-	н	(S) O -CH-N-C-CH ₃ CH ₃
15	2367	CICH ₂ -	2	2	1	-	Н	(S) O -CH-N-C-S CH ₃
	2368	CI————————————————————————————————————	2	2	1	-	н	(S) O -CH-N-C- H CH ₃ CI
20	2369	CI CI—CH₂-	2	2	1	-	н	(S) O -CH-N-C-N-C-N-OCH ₃ CH ₃
25	2370	CI CH₂-	2	2	1	-	н	(S) -CH-H-C-C-CI CH3
30	2371	CI'—CH ₂ -	2	2	1	-	н	(S) -CH-N-C-CI CH ₃
35	2372	CI CH ₂ -	2	2	1	-	н	(S) -CH-N-C-CI CH ₃
40	2373	F-CH ₂ -	2	2	1	-	Н	CH-N-C-CI CH ₃
	2374	F_CH ₂ -	2	. 2	1	-	н	(S) -CH-N-C-CI -CH ₃
45	2375	F-CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C CI -CH ₃
50	2376	F_CH ₂ -	2	2	1	-	н	(S) O CI CH-N-C CI CH3 (S) O CI CH-N-C CI CH3
							·	-91-

Table 1.217

5	Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	2377	F-CH ₂ -	2	2	. 1	-	н	(S) 0 CI -CH-N-C CI -CH ₃
15	2378	CH ₂ -	2	2	1	-	Н	(S) O CI -CH-N-C CI CH ₃
	2379	CICH ₂ -	2	2	1	-	н	(S) P -CH-N-C
20	2380	CICH ₂ -	2	2	1	-	н	(S) O -CH-N-C- I CH ₃ H ₂ N
25	2381	CI CH ₂ -	2	2	1	-	н	(S) O -CH-N-C- -CH ₃ HO
30	2382	CI CI—CH ₂ -	2	2	1	-	н	(S) O -CH-N-C-OH CH ₃
35	2383	CI CI—CH ₂ -	2	2	1	-	н	(S) S -CH-N-C-N-CH ₂ -C A H CH ₃
40	2384	CI CI CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
	2385	CI—CH ₂ -	1	2	0	R	Н	(S) O CI -CH-N-C-C-CI -CH ₂) ₂ SO ₂ CH ₃
45	2386	CI CH_2 - F F CH_2 -	1	2	0	R	Н	(S) O CI -CH-N-C-C-CI -CH ₂) ₂ SO ₂ CH ₃
50	2387	F F CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C - CI (CH ₂) ₂ SO ₂ CH ₃
						•		

Table 1.218

5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
10	2388	F-CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C - CI (CH ₂) ₂ SO ₂ CH ₃
15	2389	F_CH₂-	1	2	0	R	н	(S) O CI -CH-N-C
20	2390	CI CI—CH₂-	1	2	0	R	н	(S) 0 NH2 -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃ Br
20	2391	CICH ₂ -	1	2	0	R	н	(S) O NH ₂ -CH-N-C - CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CI
25	2392	CI CI—CH₂-	1	2	0	R	н	$(S) \bigcirc \begin{matrix} NH_2 \\ -CH-N-C - \end{matrix}$ $(CH_2)_2SO_2CH_3$
30	2393	CICH ₂ -	1	2	0	R	н	(S) \$ -CH-N-C-N-CH ₂ -(S) (CH ₂) ₂ SO ₂ CH ₃
35	2394	CICH ₂ -	2	2	1	-	Н	(S) O CI -CH-N-C-CI (CH ₂) ₂ SCH ₃
40	2395	CI—CH ₂ -	2	2	1	-	Н	(S) O CI -CH-N-C-CI H CH ₂ OCH ₂ Ph
	2396	CI—CH ₂ -	2	2	1	. -	Н	(S) O CI -CH-N-C
45	2397	CI CH_2 CI CH_2	2	2	1	-	Н	
50	2398	CI—CH ₂ -	2	2	1	-	н	Hach Hach Cal

Table 1.219

	•							
5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
10	2399	CI CH₂-	2	2	1	-	н	CH-NC CI HzC COCH2Ph
15	2400	CI CH ₂ -	2	2	1	-	н	(S) +12 C C1
	2401	CI C⊢—CH₂-	2	2	1	-	н	-cH-N-G-CI
20	2402	CI CH₂-	2	2	1	-	н	(S)
25	2403	F-CH ₂ -	2	2	1	-	н	(S) O CI CH-N-C- CI CH2OH
30	2404	F F-CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C- CI H CH₂OH
35	2405	F-CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C CI CH₂OH
40	2406	F_CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C CI -CH ₂ OH
45	2407	CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C CI L H CH₂OH
45	2408	H₃CSO₂-CH₂-	2	2	1	-	н	(S) 0 CI -CI+N-C - CI I H CH₂OH
50	2409	H ₃ CO ₂ C-∕	2	2	1	-	н	(S) O CI -CH-N-C CI CH ₂ OH (S) O CI -CH-N-C CI -CH ₂ OH
55								

Table 1.220

	•							
5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
10	2410	CI CI—CH ₂ -	2	2	1	-	н -	(S) OCI -CH-N-C- I H CH₂OH
15	2411	CI CI—CH ₂ -	2	2	1	-	н	(S) OCI CI -CH-N-C- - H CH ₂ OH
	2412	CICH ₂ -	2	2	1	-	н	(S) O -CH-N-CS I H CH ₂ OH
20	2413	CI CI—CH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N-
25	2414	CI CI—CH ₂ -	2	2	1		н	(S) O S -CH-N-C-(S) I H CH ₂ OH
30	2415	CI————————————————————————————————————	2	2	1	-	н	(S) S OCH ₃ -CH-N-C-N-C-H ₃ CH ₃
35	2416	CICH ₂ -	2	2	1	-	н	(S) S CH-N-C-N
40	2417	CI CI—CH ₂ -	2	2	1		н	(S) S CH ₃ -CH-N-C-N-C-N-C-N-CH ₃ CH ₃
		CI CI—CH ₂ -					н	(S) S -CH-N-C-N-C-N-CH ₃ CH ₃
45	2419	CI CI—CH ₂ -	2	2	1	-	н	(S) S CI -CH-N-C-N-C-N-CI CH ₃
50	2420	CI—CH ₂ -	2	2	1	-	н	(S) S CI -CH-N-C-N-CI -CH-N-C-N-CI -CH-N-C-N-CI -CH-S-C-N-CI
								<u>-</u>

Table 1.221

				_				
5	Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
10	2421	CI CI—CH ₂ -	2	2	1	-	Н	(S) S -CH-N-C-N-F I H H
15	2422	CI CI—CH ₂ -	1	2	0	R	н	(S) S OCH ₃
20	2423	CI————————————————————————————————————	1	2	0	R	H	(S) \$ CH-N-C-N-C-D-OCH ₃ H H H (CH ₂) ₂ SO ₂ CH ₃
20	2424	CI————————————————————————————————————	1	2	0	R	н	$(S) \qquad \begin{array}{c} S \\ CH_3 \\ -CH_1 - C - N \\ 1 \\ 1 \\ CCH_2)_2 SO_2 CH_3 \end{array}$
25	2425	CICH ₂ -	1	2	0	R	н	(S) \$ CH-N-C-N-C-H ₃
30	2426	CI CI—CH ₂ -	1	2	0	R	н	(S) \$ CI -CH-N-C-N-C (CH ₂) ₂ SO ₂ CH ₃
35	2427	CI————————————————————————————————————	1	2	0	R	н	(S) \$ -CH-N-C-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
40	2428	CI—CH₂-	1	2	0	R	н	(S) \$ -CH-N-C-N-C-F H H (CH ₂) ₂ SO ₂ CH ₃

[0094] The acid addition salt of the cyclic amine compound is also used in the present invention. Examples of the acid include a mineral acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or carbonic acid and an organic acid such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid or formic acid.

[0095] Furthermore, C₁-C₆ alkyl addition salt of the cyclic amine compound, for example, 1-(4-chlorobenzyl)-1-methyl-4-[(N-(3-trifluoromethylbenzoyl)glycyl) aminomethyl]piperidinium iodide is also used in the present invention. The alkyl group preferably includes methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, 2-methylpentyl and 1-ethylbutyl and the like herein; however, methyl group, ethyl group or the like is especially preferable.

[0096] A halide anion such as fluoride, chloride, bromide or iodide is preferable for a counter anion of an ammonium cation.

[0097] In the present invention, a racemate and all the possible optically active forms of the compound represented by the above formula (I) can also be used.

[0098] The compounds represented by the above formula (I) can be synthesized by using any of the following general preparation methods as described in WO9925686:

(Preparation method 1)

10

20

25

30

35

40

[0099] A preparation method comprises reacting one equivalent of a compound represented by the following formula (II):

$$\begin{array}{c}
R^{\dagger} \\
 \longrightarrow (CH_2)_j - N \\
R^2 \\
 (CH_2)_m
\end{array}$$

$$\begin{array}{c}
(CH_2)_k \\
 \longrightarrow (CH_2)_n - NH \\
 R^3$$
(II)

wherein, R^1 , R^2 , R^3 , j, k, m and n are each the same as defined in the above formula (I), with 0.1 to 10 equivalents of a carboxylic acid represented by the following formula (III):

wherein, R⁴, R⁵, R⁶, G, p and q are each the same as defined in the above formula (I), or a reactive derivative thereof in the absence or presence of a solvent.

[0100] The "reactive derivative" of the carboxylic acid represented by the above formula (III) means a carboxylic acid derivative, for example, an acid halide, an acid anhydride or a mixed acid anhydride usually used in the synthetic organic chemistry field and having high reactivity.

[0101] The reaction can more smoothly be made to proceed by suitably using an adequate amount of a dehydrating agent such as molecular sieve; a coupling reagent such as dicyclohexylcarbodiimide (DCC), N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide (EDCI or WSC), carbonyldiimidazole (CDI), N-hydroxysuccinimide (HOSu), N-hydroxybenzotriazole (HOBt), benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), 2-(5-norbornene-2,3-dicarboxyimide)-1,1,3,3-tetramethyluronium tetrafluoroborate (TNTU), O-(N-succinimidyl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TSTU) or bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBroP); a base such as an inorganic base such as potassium carbonate, calcium carbonate or sodium hydrogencarbonate; amines such as triethylamine, diisoproylethylamine or pyridine or a polymer supported base such as (piperidinomethyl)polystyrene, (morpholinomethyl)polystyrene, (dimethylaminomethyl)polystyrene or poly(4-vinylpyridine).

(Preparation method 2)

5

10

[0102] A preparation method comprises reacting one equivalent of an alkylating reagent represented by the following formula (IV):

 $\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j -X
\end{array} \qquad (IV)$

wherein, R¹, R² and j are each the same as defined in the above formula (I); X is a halogen atom, an alkylsulfonyloxy group or an arylsulfonyloxy group, with 0.1 to 10 equivalents of a compound represented by the following formula (V):

wherein, R³, R⁴, R⁵, R⁶, G, k, m, n, p and q are each the same as defined in the above formula (I), in the absence or presence of a solvent.

[0103] The reaction can more smoothly be made to proceed by suitably using a base similar to that in the preparation method 1. Furthermore, the reaction sometimes can be promoted by the presence of an iodide such as potassium iodide or sodium iodide.

[0104] In the above formula (IV), X is a halogen atom, an alkylsulfonyloxy group or an arylsulfonyloxy group. Examples of the halogen atom preferably include a chlorine atom, a bromine atom and an iodine atom. Specific examples of the alkylsulfonyloxy group preferably include a methylsulfonyloxy group, a trifluoromethylsulfonyloxy group and the like, and the specific example of the arylsulfonyloxy group preferably includes tosyloxy group.

35 (Preparation method 3)

40

45

50

55

[0105] A preparation method comprises reacting one equivalent of an aldehyde represented by the following formula (VI):

 $\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j-1} - CHO
\end{array} (VI)$

wherein, R^1 and R^2 are each the same as defined in the above formula (I); j is 1 or 2, or an aldehyde represented by the following formula (VII):

wherein, R¹ is the same as defined for R¹ in the above formula (I); the compound corresponds to the case where j is 0, with 0.1 to 10 equivalents of a compound represented by the above formula (V) in the absence or presence of a solvent.

[0106] The reaction is usually called a reductive amination reaction and a catalytic hydrogenation reaction using a

catalyst containing a metal such as palladium, platinum, nickel or rhodium, a hydrogenation reaction using a complex hydride such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride or sodium triacetoxyborohydride and borane, an electrolytic reduction or the like can be used as reductive conditions.

5 (Preparation method 4)

10

15

20

25

30

50

55

[0107] A preparation method comprises reacting one equivalent of a compound represented by the following formula (VIII):

 $\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} - N - \stackrel{0}{C} - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - NH \longrightarrow (VIII)$

wherein, R¹, R², R³, R⁴, R⁵, R⁷, j, k, m, n, p and q are each the same as defined in the above formula (I), with 0.1 to 10 equivalents of a carboxylic acid or a sulfonic acid represented by the following formula (IX):

$$HO-A-R^6$$
 (IX)

wherein, R⁶ is the same as R⁶ defined in the above formula (I); A is a carbonyl group or a sulfonyl group, or a reactive derivative thereof in the absence or presence of a solvent.

[0108] The reactive derivative of the carboxylic acid or sulfonic acid represented by the above formula (IX) means a carboxylic acid derivative or sulfonic acid derivative, for example, an acid halide, an acid anhydride or a mixed acid anhydride usually used in the synthetic organic chemistry field and having high reactivity.

[0109] The reaction can more smoothly be made to proceed by suitably using a dehydrating agent, a coupling reagent or a base similar to that in the above preparation method 1.

(Preparation method 5)

[0110] A preparation method comprises reacting one equivalent of a compound represented by the above formula (VIII) with 0.1 to 10 equivalents of an isocyanate or an isothiocyanate represented by the following formula (X):

$$Z=C=N-R^{6}$$
 (X)

wherein, R⁶ is the same as defined in the above formula (I); Z is an oxygen atom or a sulfur atom, in the absence or presence of a solvent.

(Preparation method 6)

[0111] A preparation method comprises reacting one equivalent of a compound represented by the following formula (XI):

wherein, R¹, R², R³, R⁴, R⁵, j, k, m, n, p and q are each the same as defined in the above formula (I); A is a carbonyl group or a sulfonyl group, with 0.1 to 10 equivalents of an amine represented by the following formula (XII):

 R^6 -NH₂ (XII)

wherein, R⁶ is the same as defined for R⁶ in the above formula (I), in the absence or presence of a solvent.

[0112] The reaction can more smoothly be made to proceed by suitably using a dehydrating agent, a coupling reagent or a base similar to that in the above preparation method 1.

[0113] In the above preparation methods 1 to 6, when a substrate used for each reaction has substituents regarded as usually reacting under respective reaction conditions in the organic synthetic chemistry or having adverse effects on the reaction, the functional groups can be protected with a known suitable protecting group, and the substrate can be used for the reaction and then deprotected by a conventional known method to afford the objective compound.

[0114] In addition, the compounds of the present invention can be obtained by further converting single or plural substituents of the compound produced by the above preparation methods 1 to 6 using a known reaction usually used in the organic synthetic chemistry, for example, an alkylation reaction, an acylation reaction or a reduction reaction.

[0115] In the above respective preparation methods, a halogenated hydrocarbon such as dichloromethane or chloroform, an aromatic hydrocarbon such as benzene or toluene, ethers such as diethyl ether or tetrahydrofuran, esters such as ethyl acetate, an aprotic polar solvent such as dimethylformamide, dimethyl sulfoxide or acetonitrile and alcohols such as methanol, ethanol or isopropyl alcohol are suitably used as a reaction solvent according to the reaction.
[0116] In each of the preparation methods, the reaction temperature is within the range of -78 to +150 °C, preferably within the range of 0 to 100 °C. After completing the reaction, the objective cyclic amine compound represented by the above formula (I) can be isolated by carrying out usual isolating and purifying operations, i.e., concentration, filtration, extraction, solid-phase extraction, recrystallization or chromatography. The compound can be converted into their pharmaceutically acceptable acid addition salt thereof or their C₁-C₆ alkyl addition salt thereof according to a usual method.

[0117] The specific diseases which are objects of the remedies or prophylactics of the present invention and associated with CCR5 include diseases caused by infection of HIV (human immunodeficiency virus), especially AIDS (acquired immunodeficiency syndrome), diseases accompanied by chondrolysis of cartilage or osteolysis, especially rheumatoid arthritis, nephritis or nephropathy, especially glomerulonephritis, interstitial nephritis, nephrotic syndrome, demyelinaing diseases, especially multiple sclerosis, rejection after organ transplantation, graft-versus-host diseases (GVHD), diabetes, chronic obstructive pulmonary diseases (COPD), bronchial asthma, atopic dermatitis, sarcoidosis, fibrosis, atherosclerosis, psoriasis or inflammatory bowel diseases.

Examples

30

40

45

50

55

5

[0118] The present invention will be detailed specifically based on Examples; however, the present invention is not restricted to the Examples. The Compound number (Compd. No.) assigned to each compound in the following Examples corresponds to the Compd. No. assigned to each compound cited as a preferred specific example in Tables 1.1 to 1.221.

[Reference Example 1] Synthesis of (R)-1-(4-chlorobenzyl)-3[{N-(3,4-difluorobenzovl)glycyl}amino]pyrrolidine (Compd. No. 69)

[0119] The compounds of the present invention were synthesized according to the preparation method described in WO9925686. For example (R)-1-(4-chlorobenzyl)-3-[{N-(3-(trifluoromethylthio)benzoyl)glycyl}amino]pyrrolidine, which was Compd. No. 1606, was synthesized as follows:

1) 3-Amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride

4-Chlorobenzyl chloride (4.15 g, 25.8 mmol) and ^IPr₂NEt (6.67 g, 51.6 mmol) were added to a DMF (50 mL) solution of 3-{(tert-butoxycarbonyl)amino}pyrrolidine (4.81 g, 25.8 mmol). The reaction mixture was stirred at 70 °C for 15 hours, and the solvent was removed under reduced pressure. The objective 3-{(tert-butoxycarbonyl) amino}-1-(4-chlorobenzyl)pyrrolidine (6.43 g, 80%) was obtained as an off-white solid by recrystallization (CH₃CN, 50 mL).

¹H NMR (CDCl₃, 300MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35(br,4H);

The purity was determined by RPLC/MS (98%). ESI/MS m/e 311.0 (M++H, $C_{16}H_{24}CIN_2O_2$).

To a CH₃OH (80 mL) solution of the 3-{(tert-butoxycarbonyl)amino}-1-(4-chlorobenzyl)pyrrolidine (6.38 g, 20.5 mmol), was added 1 M HCl-Et₂O (100 mL). The resulting mixture was stirred at 25°C for 15 hours. The solvent was removed under reduced pressure to provide a solid, which was purified by recrystallization (CH₃OH:CH₃CN

= 1:2, 130 mL) to afford 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.939 g, 85%) as a white powder. 1 H NMR (d₆-DMSO, 300MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H);

The purity was determined by RPLC/MS (>99%); ESI/MS m/e 211.0 (M++H, C₁₁H₁₆CIN₂).

2) (R)-3-{(N-tert-butoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl)pyrrolidine

Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride were synthesized by using the respective corresponding starting materials according to the above method. The products exhibited the same ¹H NMR as that of the above racemate.

A mixture of the (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.54 g, 16.0 mmol) with a 2 M NaOH solution (80 mL) and ethyl acetate (80 mL) was stirred, and the organic layer was separated. The aqueous layer was extracted with ethyl acetate (80 mL×2). The organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated to thereby provide free (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 99%).

Et₃N (2.5 mL, 17.6 mmol), N-tert-butoxycarbonylglycine (2.79 g, 16.0 mmol), EDCI (3.07 g, 16.0 mmol) and HOBt (12.16 g, 16 mmol) were added to a $\rm CH_2Cl_2$ (80 mL) solution of the (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 16 mmol). The reaction mixture was stirred at 25 °C for 16 hours, and a 2 M NaOH solution (80 mL) was then added to the mixture. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL X 3). The organic layers were combined and washed with water (100 mL× 2) and brine (100 mL), dried over anhydrous sodium sulfate, filtered, concentrated and purified by column chromatography (SiO₂, ethyl acetate) to afford the objective (R)-3-{N-(tert-butoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl)pyrrolidine (5.40 g, 92%).

3) Synthesis of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine

5

10

15

20

25

30

35

A 4 M HCl dioxane (38 mL) solution was added to a methanol (60 mL) solution of the (R)-3-{N-(tert-butoxy-carbonyl)glycyl}amino-1-(4-chlorobenzyl)pyrrolidine (5.39 g, 14.7 mmol). The resulting solution was stirred at room temperature for 2 hours. The reaction mixture was concentrated, and a 2 M NaOH solution (80 mL) was added to the concentrate. The resulting mixture was extracted with dichloromethane (80 mL×3), and extracts were combined, dried over anhydrous sodium sulfate, concentrated and purified by column chromatography (SiO₂, AcOEt: EtOH:Et₃N = 90:5:5) to provide (R)-3-(glycylamino)-1-(4-chlorobenzyl)pyrrolidine (3.374 g, 86%).

¹H-NMR(CDCl₃, 270MHz) δ 1.77 (dd, J = 1.3 and 6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 and 9.6 Hz, 1 H), 2.62 (dd, J = 6.6 and 9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3.57(s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39 (br, s, 1 H).

4) (R)-1-(4-chlorobenzyl)-3-[(N-(3-(trifluoromethylthio)benzoyl)glycyl)amino]pyrrolidine (Compd. No. 1606)

A mixture of 3-(trifluoromethylthio)benzoic acid (0.060 mmol) with (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol), diisopropylcarbodiimide (0.060 mmol), HOBt (0.060 mmol), tert-butanol (0.15 mL) and chloroform (1.35 mL) was stirred at room temperature for 15 hours. The reaction mixture was added to a Varian™ SCX column, successively washed with methanol:chloroform = 1:1 (12 mL) and methanol (12 mL), then eluted with a methanol solution of 4 M ammonia (5 mL) and concentrated to afford (R)-1-(4-chlorobenzyl)-3-[{N-(3-(trifluoromethylthio)benzoyl)glycyl}amino]pyrrolidine (Compd. No. 1606) (17.0 mg, 72%). The purity was determined by RPLC/ MS (97%). ESI/MS m/e 472.0 (M*+H, C₂₁H₂₁CIF₃N₃O₂S).

40 [Example 1] Measurement of inhibitory activity of a compound against binding of [125]-labeled MIP-1β to membrane fraction of the cells expressing CCR5

[0120] To a 96-well plate made of polystyrene, were respectively added 20μL of a solution prepared by diluting each test compound with an assay buffer (50 mM HEPES, pH 7.4, 5 mM MgCl₂, 1 mM CaCl₂, 0.2% BSA), 25μL of a solution obtained by diluting [125I]-labeled MIP-1β (NEN Life Science Products, Inc.) with the assay buffer so as to provide 0.1 to 0.5 nM and 155μL (including 4μg of the membrane fraction) of a suspension prepared by suspending a membrane fraction of CHO cells expressing human CCR5 (the final volume of the reaction solution: 200μL). The solutions and suspension was stirred for 2 minutes and then incubated at 27 °C for 60 minutes.

[0121] After completing the reaction, the reaction suspension was filtered through Filtermate (Packard Instrument Co.), and the filter was washed with 250µL of a precooled washing buffer (10 m M HEPES, pH 7.4, 0.5 M NaCl) nine times. Into each well, was added 50µL of liquid scintillator. The radioactivity was counted using TopCount NXT (Packard Instrument Co.).

[0122] The count when $0.2~\mu$ M of human MIP-1 α instead of the test compound was added was subtracted as nonspecific binding, and the count when the test compound was not added was taken as 100%. Thereby, the inhibitory activity of the test compound against binding of the human MIP-1 β to the membrane fraction of the cells expressing CCR5 was calculated.

Inhibition (%) = $[1- (A-B)/(C-B)] \times 100$

(wherein A is the count when the test compound is added; B is the count when the unlabeled human MIP-1 α is added; C is the count when only the [125]-labeled human MIP-1 β is added).

[0123] When the inhibitory activity of the cyclic amine derivatives of the present invention was measured, for example, the following compounds respectively showed an inhibitory activity of 20% to 50%, 50% to 80% and >80% at a concentration of 10µM.

[0124] Compounds which showed an inhibitory activity of 20% to 50% at a concentration of 10µM:

Compd.Nos.: 132, 198, 490, 516, 521, 528, 529, 601, 616, 622, 627, 642, 684, 847, 849, 850, 857, 8G7, 874, 899, 902, 1002, 1003, 1057, 1083, 1189, 1245, 1247, 1472, 1606, 1859, 1998, 2093, 2095, 2097 and 2134

[0125] Compounds which showed an inhibitory activity of 50% to 80% at a concentration of $10\mu M$:

Compd.Nos.: 461, 505, 668, 679, 782, 1042, 1073, 1114, 1559, 1583, 1609, 1703, 1718, 1783, 1833, 1836, 1855, 1917, 2157, 2189 and 2251

[0126] Compounds which showed an inhibitory activity of >80% at a concentration of 10μM: Compd. Nos. 1709, 1837, 1910, 1919, 2179, 2235 and 2241

[Example 2] Measurement of inhibitory activity of a compound against infection of cells with HIV-1

20 [0127] The inhibitory activity of a compound against infection of cells with HIV-1 was measured by using cells simultaneously expressing CD4 and CCR5 or human peripheral blood monocytes according to methods described in literatures (see, for example Mack, M. et al., J. Exp. Med., 1998, 187, 1215; and Baba, M. et al., Proc. Natl. Acad. Sci. USA, 1999, 96, 5698).

25 [Example 3] Preparation of a tablet

30

35

40

45

[0128] A tablet of the compound used in the present invention was prepared by, for example the following prescription:

Compound used in the present invention	30 mg
Lactose	87 mg
Starch	30 mg
Magnesium stearate	3 mg

[Example 4] Preparation of parenteral injections

[0129] Solution for injection of the compound used in the present invention was prepared by, for example the following prescription:

Hydrochloride of compound used in the present invention	30 mg
Sodium chloride	900 mg
Distilled water for injection	100 mL

Industrial Applicability

[0130] The cyclic amine compound used in the present invention, pharmaceutically acceptable acid addition salt thereof or pharmaceutically acceptable C₁-C₆ alkyl addition salt thereof are CCR5 antagonist and have inhibitory actions on actions of in vivo ligands of CCR5 on target cells, and mrdicine comprising the compounds as an active ingredient, therefore, are useful as remedie or prophylactic for diseases in association with CCR5.

[0131] Examples of the diseases include diseases in which infiltration into tissues and activation of monocytes/macrophages, T-cells or the like play an important role in propagation and maintenance of diseases such as rheumatoid arthritis, nephritis (nephropathy), multiple sclerosis, rejection after organ transplantation, graft-versus-host diseases (GVHD), diabetes, chronic obstructive pulmonary diseases (COPD), bronchial asthma, atopic dermatitis, sarcoidosis, fibrosis, atherosclerosis, psoriasis and inflammatory bowel diseases.

[0132] The medicine of the present invention is also useful as remedy and/or prophylactic for diseases caused by HIV infection such as AIDS by inhibitory actions on infection of host cells with HIV-1 based on the CCR5 antagonistic activity.

Claims

5

10

15

20

25

30

35

40

45

50

55

 A pharmaceutical composition having the CCR5 antagonistic activity and comprising compound represented by the general formula(I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C₁-C₆ alkyl addition salt thereof as an active ingredient:

wherein, R1 is a phenyl group, a C3-C8 cycloalkyl group or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms; the phenyl group or the aromatic heterocyclic group in the above R1 may be condensed with a benzene ring, or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms to form a condensed ring; the phenyl group, the C_3 - C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above R^1 may be substituted with an optional number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxy groups, $carbamoyl\ groups,\ C_1-C_6\ alkyl\ groups,\ C_3-C_8\ cycloalkyl\ groups,\ C_2-C_6\ alkenyl\ groups,\ C_1-C_6\ alkoxy\ g$ alkylthio groups, C3-C5 alkylene groups, C2-C4 alkylenoxy groups, C1-C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylthio groups, benzyl groups, benzyloxy groups, benzoylamino groups, C2-C7 alkanoyl groups, C2-C7 alkoxycarbonyl groups, C2-C7 alkanoyloxy groups, C2-C7 alkanoylamino groups, C2-C7 N-alkylcarbamoyl groups, C₄-C₉ N-cycloalkylcarbamoyl groups, C₁-C₆ alkylsulfonyl groups, C₃-C₈ (alkoxycarbonyl)methyl groups, N-phenylcarbamoyl groups, piperidinocarbonyl groups, morpholinocarbonyl groups, 1-pyrrolidinylcarbonyl groups, bivalent groups represented by the formula: -NH(C=O)O-, bivalent groups represented by the formula: -NH(C=S)O-, amino groups, mono(C₁-C₆ alkyl)amino groups or di(C₁-C₆ alkyl)amino groups; the substituents of the phenyl group, the C₃-C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring may further be substituted with an optional number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C₁-C₆ alkyl groups or C₁-C₆ alkoxy groups;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group; the C_1 - C_6 alkyl group or the phenyl group in the R^2 may be substituted with an optional number of halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups or C_1 - C_6 alkoxy groups, with the proviso that R^2 is not a hydroxy group when j is 0;

is an integer of 0 to 2;

k is an integer of 0 to 2;

m is an integer of 2 to 4;

n is 0 or 1;

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group which may be substituted (with one or two phenyl groups which may respectively be substituted with the same or different optional number of halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups or C_1 - C_6 alkoxy groups);

 R^4 and R^5 are the same or different and are each a hydrogen atom, a hydroxy group, a phenyl group or a C_1 - C_6 alkyl group; the C_1 - C_6 alkyl group in the R^4 and R^5 may be substituted with an optional number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxy groups, carbamoyl groups, mercapto groups, guanidino groups, C_3 - C_8 cycloalkyl groups, C_1 - C_6 alkoxy groups, C_1 - C_6 alkylthio groups, phenyl groups (which may be substituted with an optional number of halogen atoms, hydroxy groups, C_1 - C_6 alkyl groups, C_1 - C_6 alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C_2 - C_7 alkanoyl groups, or (aromatic heterocyclic groups having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms or condensed rings formed by condensation of the aromatic heterocyclic groups having the one to three oxygen atoms, sulfur atoms and/or oxygen atoms as the heteroatoms with the benzene rings), or both R^4 and R^5 together may form a three- to a six- membered cyclic hydrocarbon;

p is 0 or 1;

q is 0 or 1;

5

10

15

20

30

55

G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O- or -O-CO-NH-, wherein, R⁷ is a hydrogen atom or a C₁-C₆ alkyl group or R⁷, together with R⁵, may form a C₂-C₅ alkylene group;

R⁶ is a phenyl group, a C₃-C₈ cycloalkyl group, a C₃-C₆ cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms; the phenyl group, the benzyl group or the aromatic heterocyclic group in the R6 may be condensed with a benzene ring or an aromatic heterocyclic group having one to three oxygen atoms, sulfur atoms and/or nitrogen atoms as heteroatoms to form a condensed ring; the phenyl group, the C3-C8 cycloalkyl group, the C3-C6 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above R6 may further be substituted with an optional number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxy groups, carbamoyl groups, trifluoromethyl groups, C₁-C₆ alkyl groups, C3-C8 cycloalkyl groups, C2-C6 alkenyl groups, C1-C6 alkoxy groups, C3-C8 cycloalkyloxy groups, C1-C6 alkylthio groups, C1-C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3-phenylureido groups, C2-C7 $alkanoyl \ groups, C_2-C_7 \ alkoxycarbonyl \ groups, C_2-C_7 \ alkanoyloxy \ groups, C_2-C_7 \ alkanoylarnino \ groups, C_2-C_7 \ alkanoyloxy \ groups, C_2$ N-alkylcarbamoyl groups, C₁-C₆ alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C₁-C₆ alkyl)sulfamoyl groups, amino groups, mono(C₁-C₆ alkyl)amino groups, di(C₁-C₆ alkyl)amino groups, benzylamino groups, C2-C7 (alkoxycarbonyl)amino groups, C1-C6 (alkylsulfonyl)amino groups or bis(C1-C6 alkylsulfonyl)amino groups; the substituents of the phenyl group, the C3-C8 cycloalkyl group, the C3-C8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring may further be substituted with an optional number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C₁-C₆ alkyl groups, C₁-C₆ alkoxy groups, C₁-C₆ alkylthio groups, mono(C₁-C₆ alkyl)amino groups or di(C₁-C₆ alkyl)amino groups.

- 25 2. The pharmaceutical composition having the CCR5 antagonistic activity, according to claim 1, wherein k is 1 and m is 2 in the above formula (I).
 - The pharmaceutical composition having the CCR5 antagonistic activity, according to claim 1, wherein k is 0 and m is 3 in the above formula (I).
 - 4. The pharmaceutical composition having the CCR5 antagonistic activity, according to claim 1, wherein k is 1 and m is 3 in the above formula (I).
- 5. The pharmaceutical composition having the CCR5 antagonistic activity, according to claim 1, wherein k is 2 and m is 2 in the above formula (I).
 - 6. The pharmaceutical composition having the CCR5 antagonistic activity, according to claim 1, wherein k is 1 and m is 4 in the above formula (I).
- 7. Remedies or prophylactics for diseases in association with CCR5 comprising the compound represented by the above formula (I), the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C₁-C₆ alkyl addition salt thereof as, an active ingredient.
- 8. The remedies or prophylactics according to claim 7, wherein the diseases in association with CCR5 are diseases caused by infection of human immunodeficiency virus.
 - 9. The remedies or prophylactics according to claim 8, wherein the diseases caused by the infection of the human immunodeficiency virus are acquired immunodeficiency syndrome.
- 50 10. The remedies or prophylactics according to claim 7, wherein the diseases in association with CCR5 are diseases accompanied by chondrolysis of cartilage or osteolysis.
 - 11. The remedies or prophylactics according to claim 10, wherein the diseases accompanied by the chondrolysis of cartilage or osteolysis are rheumatoid arthritis.
 - 12. The remedies or prophylactics according to claim 7, wherein the diseases in association with CCR5 are nephritis or nephropathy.

- 13. The remedies or prophylactics according to claim 12, wherein the nephritis or nephropathy is glomerulonephritis, interstitial nephritis or nephrotic syndrome.
- 14. The remedies or prophylactics according to claim 7, wherein the diseases in association with CCR5 are demyelinating diseases.

5

20

25

30

35

40

45

50

55

- 15. The remedies or prophylactics according to claim 14, wherein the demyelinating diseases are multiple sclerosis.
- 16. The remedies or prophylactics according to claim 7, wherein the diseases in association with CCR5 are rejectionafter organ transplantation.
 - 17. The remedies or prophylactics according to claim 7, wherein the diseases in association with CCR5 are graft-versus-host diseases.
- 15. The remedies or prophylactics according to claim 7, wherein the diseases in association with CCR5 are diabetes.
 - 19. The remedies or prophylactics according to claim 7, wherein the diseases in association with CCR5 are chronic obstructive pulmonary diseases, asthma, atopic dermatitis, sarcoidosis, fibrosis, atherosclerosis, psoriasis or inflammatory bowel diseases.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/08627

			PCT/JE	00/08627
Int. C07I C07I	SIFICATION OF SUBJECT MATTER (C1 C07D207/09, C07D211/26, 0401/04, C07D409/14, C07D405/14 0413/14, C07D409/06 10 International Patent Classification (IPC) or to both fi	, C07D401/14,	C07D401/0	, C07D401/12, 6, C07D413/06.
	S SEARCHED			·
Minimum d Int. C07I C07I	ocumentation searched (classification system followed .C1	C07D405/12, C	:07D409/12 C07D401/0	6, C07D413/06,
Documentat	ion searched other than minimum documentation to th	e extent that such documen	ts ere included i	n the fields searched
	ata base consulted during the international search (nam TN) , REGISTRY (STN) , WPIDS (STN)	ne of data base and, where	practicable, sear	ch terms used)
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant p	assages	Relevant to claim No.
х	WO, 99/25686, A (Teijin Limited	d),		1-7,10-15,19
У	27 May, 1999 (27.05.99), Claims, pl, p345-354 & EP, 1030840, A			1,8,9,16-19
Y	RAPORT. C. J. Molecular C. Characterization of a Novel Hum (CCR5) for RANTES, MIP-1β, and 1996, Vol.271, No.29, pages 17	an CC Chemokine MIP-lα. J. Biol		1
Y	WO, 98/30218, A (SMITHKLEIN BE 16 July, 1998 (16.07.98), Claims, p1, p15-16 & EP, 979078, A	ECHAM CORPORATIO	, (ис	8,9
Y	MURAI. M. Active participation o in the pathogenesis of liver inj disease. J. Clin. Invest., July 1 49-57	ury in graft-ver	sus-host	17
Y	BALASHOV.K.E.CCR5° and CXCR3° T multiple sclerosis and their lig			16,18
Furthe	documents are listed in the continuation of Box C.	See patent family a	nnex.	
"A" docume consider consider date "L" docume cited to special "O" docume means	considered to be of particular relevance earlier document but published on or after the international filing date "X" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O" document referring to an oral disclosure, use, exhibition or other means output "A" understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be cons			
than the	ent published prior to the international filing date but later priority date claimed	"&" document member of		
	ctual completion of the international search anuary, 2001 (15.01.01)	Date of mailing of the int 23 January,		
	ailing address of the ISA/ nese Patent Office	Authorized officer		

Form PCT/ISA/210 (second sheet) (July 1992)

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08627

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. USA., June 1999, Vol.96, No.12, pages 6873-6878	
Y	WO, 99/01127, A (SMITHKLEIN BEECHAM CORPORATION), 14 January, 1999 (14.01.99), Claims, p1-4, p25-28 & EP, 1001766, A	19

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08627

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (IPC)

C07D403/12, C07D413/12, C07D417/12, C07D487/04 141, C07D403/06, C07D417/06, C07D513/04 331, C07D495/04 101, A61K31/40, A61K31/4025, A61K31/4545, A61K31/455, A61K31/4545, A61K31/4545, A61K31/4525, A61K31/4535, A61K31/42, A61K31/422, A61K31/4155, A61K31/427, A61K31/53, A61K31/429, A61K31/4178, A61K31/381, A61K31/505, A61K31/439, A61K31/4035, A61K31/428, A61K31/4245, A61P43/00 111, A61P29/00 101, A61P19/02, A61P13/12, A61P37/06, A61P21/00, A61P3/10, A61P11/00, A61P9/10 101, A61P17/06, A61P1/04, A61P31/18

Continuation of B. FIELDS SEARCHED (IPC)

C07D403/12, C07D413/12, C07D417/12, C07D487/04 141, C07D403/06, C07D417/06, C07D513/04 331, C07D495/04 101, A61K31/40, A61K31/4025, A51K31/4545, A61K31/445, A61K31/454, A61K31/4525, A61K31/4535, A61K31/42, A61K31/422, A61K31/4155, A61K31/427, A61K31/53, A61K31/429, A61K31/4176, A61K31/381, A61K31/505, A61K31/4439, A61K31/4035, A61K31/428, A61K31/4245

Form PCT/ISA/210 (extra sheet) (July 1992)