

Real Analysis in a Glimpse

Suhas Adiga

SGTB Khalsa College, University of Delhi suhasadiga4physics@gmail.com

February 04, 2022

Outline

- What is Real Analysis?
- A Short Recap
- 3 Sequence and Series of a Function
- 4 Convergence of Sequence
- **5** Convergence of Series
- 6 Power Series

What is Real Analysis ?
A Short Recap
Sequence and Series of a Function
Convergence of Sequence
Convergence of Series
Power Series

What is Real Analysis?

What is Real Analysis? A Short Recap Sequence and Series of a Function Convergence of Sequence Convergence of Series Power Series

Analogous to Real Analysis

What is Real Analysis ?
A Short Recap
Sequence and Series of a Function
Convergence of Sequence
Convergence of Series
Power Series

Short Recap in 7 Slides

⚠ Warning: Completing in 7 slides is injurious to health!!

A Fact!!

• The elements in $\mathbb R$ that are not in $\mathbb Q$ is **Irrational Numbers**. This was given by the Greek Mathematician Pythagoras when he couldn't get the exact no whose square will be $\mathbf 2$

Important Definitions

$$V_{\epsilon}(a) := \{x \in \mathbb{R} : |x - a| < \epsilon\}$$

This is called ϵ - **neighbourhood** set of 'a'.

Eg:

- S={-2,-1,0,1,2,3,4 } here **Supremum**= 4 & **Infimum**= -2, This a **Bound** set.
- S={......,-2,-1,0,1,2,3,4} here **Supremum**= 4 & **Infimum**= d.n.e, This set is **unbounded** even though it's bounded above.

Sequence of a Real Numbers

Definition

A sequence of real numbers is a real-valued function defined on the set of natural numbers, i.e. a function $f:\mathbb{N} \longrightarrow \mathbb{R}$ if $a_n = f(n)$ for $n \in \mathbb{N}$, then we write the sequence f as (a_n) or $(a_1, a_2, ...)$.

- A sequence of real numbers is also called a **real sequence**.
- A sequence of Real numbers is represented usually as $\{x_n\}$, $\{u_n\}$, $\{u_n\}$, $\{u_n\}$, $\{u_n\}$, $\{u_n\}$.
- A sequence of a real number can be :
 - Convergent
 - 2 Divergent
 - Oscillatory

Convergence

• A sequence (a_n) in $\mathbb R$ is said to converge to a real number $\mathbf A$ if for every $\epsilon > 0$, there exists positive integer $\mathbb N$ (in general depending on ϵ) such that

$$|a_n - a| < \epsilon \quad \forall n \geq N$$

and in that case, the number a is called a **limit of the sequence** (a_n) , and (a_n) is called a **convergent sequence**

- Convergence can be of two types:
 - Pointwise Convergence
 - Uniform Convergence
- [SPOILER] Every Uniformly convergent sequence and series is point wise convergent.

Series of Real Numbers

Definition

For any sequence of real numbers $< a_n >_{n=1}^{\infty}$, the associated series is defined as the ordered formal sum

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$$

The Sequence of partial sums associated with the series is denoted by $\{S_n\}_{n=1}^{\infty}$

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

What is Real Analysis ?
A Short Recap
Sequence and Series of a Function
Convergence of Sequence
Convergence of Series
Power Series

Zeno Paradox

Figure: Achilles (left), Tortoise (right)

Convergence

Definition

A series $\sum_{n=1}^{\infty} a_n$ is said to be convergent if the sequence of partial sums converge.

$$\lim_{n\to\infty} S_n = S$$

Some Conclusions

Theorems

- Limit of a convergent sequence is unique.
- A convergent sequence of real numbers is bounded.

Sequence of a Function

Definition

Let f_n be a real valued function on $A \subseteq \mathbb{R}$ for each $n \in \mathbb{N}$. Then the sequence $\{f_1, f_2, f_3, \dots, f_n\}$ is called sequence of real valued function on A.

- Notation: $\{f_n : A \longrightarrow \mathbb{R}, n \in \mathbb{N} \}$ or $\{f_n\}$ or $\{f_n\}$ or $\{f_n\}$
- **Example:** f_n is a real valued function defined by $f_n(x) = x^n$ then $\{f_1(x), f_2(x), \dots, f_n\} = \{x, x^2, x^3, \dots, x^n\}$

Series of a Function

Definition

Let $\{f_n\}$ be a sequence on $A \subseteq \mathbb{R}$ for each $n \in \mathbb{N}$. Then the expression $\{f_1 + f_2 + f_3 + \dots + f_n\} = \sum_{n=1}^{\infty} f_n$ is called series of real valued function on A.

• **Example:** $\{f_n\}$ be a sequence of real valued function defined by $f_n(x) = \frac{\cos nx}{n^2}$, $x \in [0,1]$ then

$$\sum_{n=1}^{\infty} f_n(x) = \frac{\cos x}{1} + \frac{\cos 2x}{4} + \frac{\cos 3x}{9} + \frac{\cos 4x}{16} + \dots + \frac{\cos nx}{n^2}$$

is called series of a real valued function in [0,1]

Pointwise Convergence

• Sequence of function $\{f_n\}$ is said to be pointwise convergent if for each $x \in A$ sequence $\{f_n\}$ of real numbers converge.

$$\lim_{n\to\infty} f_n(x) = f(x) \quad \forall \ x \ \epsilon \ \textbf{A}$$

• The pointwise convergence means that, given each $x \in A$, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon \ \forall n \geq N$

Note

N here depends on both x and ϵ

Eg 1.1

• Question: $f_n(x) = \frac{x^2 + nx}{n}$, $x \in \mathbb{R}$

Solution:

for some $x \in \mathbb{R}$.

$$f_n(x) = x + \frac{x^2}{n}$$

$$\lim_{n\to\infty} \left(x + \frac{x^2}{n}\right) = x$$

therefore $f_n(x) \to f(x) = x$ pointwise on \mathbb{R}

Figure: Plot of $f_n(x) = x + \frac{x^2}{n}$

Eg 1.2

• Question: $g_n(x) = x^n$ on [0,1]

Solution:

Clearly $g_n(1)=1$ for all $n \in \mathbb{N}$ therefore $g_n(1) \to 1$ and for $0 \le x < 1$ $g_n(x)$ on [0,1) is 0, therefore,

$$g_n(x) = \begin{cases} 0 & 0 \le x < 1 \\ 1 & x = 1 \end{cases}$$

The pointwise limit function g is not continues at x=1, therefore $g_n(x)$ converges to g on the set [0,1]

What is Real Analysis? A Short Recap Sequence and Series of a Function Convergence of Sequence Convergence of Series Power Series

Think !!

What about convergence for A ϵ [0,2] ?

Figure: Plot of $g_n(x) = x^n$

Eg 1.3

• Question: $f_n(x) = \frac{\sin(nx+n)}{n}$ for $x \in \mathbb{R}$

Solution: Let f(x) = 0 for all $x \in \mathbb{R}$

Since sin(nx + n) can have maximum value of 1 or minimum of -1.

Therefore using squeeze theorem of sequences,

$$\frac{-1}{n} \leq \frac{\sin(nx+n)}{n} \leq \frac{1}{n}$$

$$\lim_{n\to\infty}\frac{1}{n}=0=f_n(x)$$

Therefore $f_n(x)$ converges to f in \mathbb{R} . Also,

$$|f_n(x) - f(x)| = 0 < \epsilon$$

Figure: Plot of $f_n(x) = \frac{\sin(nx+n)}{n}$

Eg 1.4

• Question: Consider the sequence f_n of functions defined by $f_n(x) = n^2 x^n$, $\forall 0 \le x \le 1$. Determine whether f_n is pointwise convergent.

Solution: Clearly $f_n(0) = 0$ for every $n \in \mathbb{N}$

So the sequence f_n is a constant and converges to $\mathbf{0}$.

Now for 0 < x < 1,

$$n^2 x^n = n^2 e^{n \log_e x}$$

but,

$$\log_e x < 0$$
 when $0 < x < 1$

$$\lim_{n\to\infty} f_n(x) = 0 \text{ when } 0 \le x < 1$$

Finally,

$$f_n(1) = n^2$$

$$\lim_{n \to \infty} n^2 = \infty$$

Therefore f_n is not pointwise convergent in [0,1]

Think !!

Will the same sequence $f_n(x)$ be pointwise convergent in [0,1)?

Figure: Plot of $f_n(x) = n^2 x^n$

Uniform Convergence

Definition

Let $f_n: A \to \mathbb{R}$ and $f: A \to \mathbb{R}$ be given functions. We say that the sequence $\{f_n\}$ converges uniformly on A to function f if, for every $\epsilon > 0$, there exists an N ϵ N such that whenever x ϵ A and n \geq N it follows that :

$$|f_n(x) - f(x)| < \epsilon$$

• Notation: $f_n(x) \Rightarrow f(x) \ \forall \ x \in A$ or $f_n \Rightarrow f \ \forall \ x \in A$

Uniform Convergence

Note

- For pointwise convergence, given $\epsilon > 0$, the number N is to be found after $x \in A$ is given (so N depends on x), while for the uniform convergence, the number N is to be found that works for every $x \in A$ (so N is independent of x).
- Every sequence which is Uniformly Convergent is Pointwise Convergent and the converse isn't always true.

Eg 1.5

• Consider $f_n(x) = \frac{x^2 + nx}{n}$ and f(x) = x on \mathbb{R} . Does f_n converge uniformly on \mathbb{R} ?

Solution: Since we already know that $f_n(x) \to f(x)$ on $\mathbb R$

$$|f_n(x) - f(x)| = \frac{x^2}{n} < \epsilon \quad \forall \ n \ge N, does \ x \in \mathbb{R}?$$

If such an N existed, we would take $x = \sqrt{N}$ and n = N to obtain $1 < \epsilon$, a contradiction if our ϵ is chosen < 1. Therefore, the sequence (f_n) does not converge uniformly to f on R.

What is Real Analysis? A Short Recap Sequence and Series of a Function Convergence of Sequence Convergence of Series Power Series

Examples

Think !!

What about uniform convergence $\forall x \in [-b,b]$ such that $N > \frac{b^2}{\epsilon}$?

Eg 1.6

• Show that sequence of functions $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$ converges uniformly to f(x)=0 on \mathbb{R} .

Solution:

$$|f_n(x) - f(x)| = \left| \frac{\sin(nx)}{\sqrt{n}} \right|$$

$$\leq \frac{1}{\sqrt{n}}$$

and therefore if N ϵ N is such that $\frac{1}{\sqrt{N}} < \epsilon$ then if n \geq N then $|f_n(x) - 0| < \epsilon \forall x \epsilon \mathbb{R}$

Hence, f_n **converges uniformly** to f=0 on \mathbb{R}

Eg 1.7

• Let f_n be the sequence of functions on $(0, \infty)$ defined by

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

Try it out yourself!!

(Hint: Approximate $1 + n^2x^2 \approx n^2x^2$)

Cauchy Criteria for Uniform Convergence

Definition

A sequence f_n converges uniformly on A if and only if for a given $\epsilon > 0$, there exists N > 0 such that for all $n \geq m > N$ and for all $x \in A$.

$$|f_m(x) - f_n(x)| < \epsilon$$

Consequences of Uniform Convergence

Consequences

- Let $f_n:A \to \mathbb{R}$ be a sequence of functions. If f_n converges uniformly to $f:A \to \mathbb{R}$, and if each f_n is continuous, then f is also continuous.
- If $f_n:A \to \mathbb{R}$ is bounded on A for every $n \in \mathbb{N}$ and $f_n \to f$ uniformly on A. Then $f:A \to \mathbb{R}$ is bounded on A.
- If $f_n:A \to \mathbb{R}$ is a sequence of Riemann integrable functions that converges uniformly to $f:A \to \mathbb{R}$, then the limit f is also Riemann integrable,

What is Real Analysis? A Short Recap Sequence and Series of a Function Convergence of Sequence Convergence of Series Power Series

Pointwise Convergence

Defintion

Suppose that (f_n) is a sequence of functions $f_n : A \to \mathbb{R}$. Let (S_n) be the sequence of partial sums $S_n : A \to \mathbb{R}$, defined by

$$\mathbf{S_n}(\mathbf{x}) = \sum_{k=1}^{n} f_k(\mathbf{x})$$

Then the series,

$$S(x) = \sum_{n=1}^{\infty} f_n(x)$$

converges pointwise to S : A $\to \mathbb{R}$ on A if $S_n \to S$ as $n \to \infty$ pointwise on A.

Uniform Convergence

Definition

Let (f_n) be a sequence of functions $f_n: A \to \mathbb{R}$. The series :

$$\sum_{n=1}^{\infty}f_n$$

converges uniformly on A if and only if for every $\epsilon>0$ there exists N ϵ $\mathbb N$ such that :

$$\left|\sum_{k=m+1}^n f_k(x)\right| < \epsilon$$

for all $x \in A$ and all n > m > N.

Uniform Convergence

Proof

Let,

$$S_n(x) = \sum_{k=1}^n f_k(x) = f_1(x) + f_2(x) + \dots + f_n(x)$$

the sequence $< S_n >$, and therefore the series $\sum f_n$, converges uniformly if and only if for every $\epsilon > 0$ there exists N such that

$$|S_n(x) - S_m(x)| < \epsilon$$

for all x ϵ A and all n > m > N. Let's assume n > m

Uniform Convergence

Therefore,

$$S_n(x) - S_m(x) = f_{m+1}(x) + f_{m+2}(x) + \dots + f_n(x) = \sum_{k=m+1}^{m} f_k(x)$$

Weirstrass M-test

Definition

Let $< f_n >$ be a sequence of functions $f_n : A \to \mathbb{R}$, and suppose that for every n $\epsilon \mathbb{N}$ there exists a constant $M_n \ge 0$ such that :

$$|f_n(x)| \leq M_n \quad \forall \ x \in A$$

and

$$\sum M_n$$
 converges

Eg 1.8

• Is the given series uniformly convergent in $[0,2\pi]$?

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$

Solution:

$$S_n(x) = \frac{\sin nx}{n^2}$$

$$\lim_{n\to\infty}\frac{\sin nx}{n^2}=0=S(x)$$

Continued

$$|S_n(x) - S(x)| = \left| \frac{\sin nx}{n^2} \right| < \epsilon$$

$$\leq \frac{1}{n^2}$$

and therefore if N ϵ N is such that $\frac{1}{N^2} < \epsilon$ then if n \geq N then $|S_n(x) - 0| < \epsilon \forall x \in \mathbb{R}$

Hence, S_n converges uniformly to S=0 on \mathbb{R}

Eg 1.9

• Is the given series uniformly convergent in $[0,2\pi]$?

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$

Solution:

Using Weirstrass- M test

$$|f_n(x)| = |\frac{\sin nx}{n^2}| \le \frac{1}{n^2} = M_n(say) \quad \forall x \in [0, 2\pi] \ n \in \mathbb{N}$$

Let's now see the second condition

$$\sum M_n = \sum \frac{1}{n^2}$$
 is convergent

Therefore,

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2} is uniformly convergent on [0, 2\pi]$$

Do you remember ??

In p-series,

$$\sum \frac{1}{n^p}$$

- ullet is convergent if p>1
- ullet is divergent if p ≤ 1

Eg 1.10

• Is the given series uniformly convergent in \mathbb{R} ?

$$\sum_{n=1}^{\infty} \frac{1}{(n+x^2)^2}$$

Solution:

Using Weirstrass- M test

$$|f_n(x)| = \left| \frac{1}{(n+x^2)^2} \right| \quad \forall x \in \mathbb{R} \ n\epsilon \mathbb{N}$$

$$n + x^{2} \ge n$$

$$(n + x^{2})^{2} \ge n^{2}$$

$$\frac{1}{(n + x^{2})^{2}} \le \frac{1}{n^{2}}$$

$$|f_{n}(x)| = \frac{1}{n^{2}} = M_{n}(say) \quad \forall x \in \mathbb{R} \ n \in \mathbb{N}$$

Now $\sum M_n$ should be convergent, clearly its a p-series so it's convergent.

$$\sum_{n=1}^{\infty} \frac{1}{(n+x^2)^2}$$
 is uniformly convergent on \mathbb{R}

Definition

A power series is an infinite series of power functions:

$$\sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + a_3 (x-c)^3 + \dots$$

The point c is called the center of the power series and sequence $\langle a_n \rangle$ is called the sequence of coefficients of the power series. The power series also converges at its center c. In what follows, we always assume c = 0.

Example: 1)
$$(\frac{2^n}{n!})x^n$$

Let's consider,

$$\sum_{n=0}^{\infty} a_n x^n$$

If there is a +ve Real number 'R' such that the circle $|x-x_0|=R$ consisting all values of x for which $\sum_{n=0}^{\infty} a_n x^n$ is convergent. Then the circle is known as **circle of convergence** and 'R' is known as **Radius of convergence**

Note: If a power series converge only for $x=0 \rightarrow Nowhere\ convergence$ If a power series converge only for all $x \rightarrow Everywhere\ convergence$

Radius of Convergence

$$S = \{x \in R \mid \sum_{n=0}^{\infty} a_n x^n \text{ converges} \}$$
 Then,

- S=0. In this case, the power series converges only at center 0.
- S=R.In this case, the power series converges at every $x \in R$.
- S ≠ R & S ≠ 0

The power series is:

Convergent if $|x| \leq R = \sup(S)$

Divergent is $|x| > R = \sup(S)$

Radius of convergence

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$\frac{1}{R} = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$

$$\frac{1}{R} = \lim_{n \to \infty} |a_n|^{\frac{1}{2}}$$

What is Real Analysis? A Short Recap Sequence and Series of a Function Convergence of Sequence Convergence of Series Power Series

Thanks for your patience!!

References

- Robert G Bartle, Donald R Sherbert, Introduction to Real Analysis, 4th Edition.
- Kenneth A Ross, Elementary Analysis,- The theory of Calculus,2nd Edition.
- Prof. S H Kulkarni, Module-9, Real Analysis, NPTEL.
- Li Jiayi, Joanna, Sequence and Series of Function, University of Hongkong.
- Sequence and Series of Function, Michigan State University.