## Лабораторная работа№4

для потоков A-1,2,3,15-19 и A-4,6,7,8,9,12-19 «Вычислительные методы» *«ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ КОШИ»* 

**Задача 1.** Найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения (ОДУ) 1 порядка

$$y' = r(t)y(t)$$
  $t \in [t_0, T],$   
 $y(t_0) = y_0$ 

и вычислить и погрешность приближенного решения.

## ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Найти аналитическое решение задачи.
- 2. Найти приближенное решение задачи Коши с шагом  $h=\frac{T-t_0}{10}$  явным методом Эйлера (см.

файл для студентов), методом Эйлера-Коши, усовершенствованным методом Эйлера (самостоятельно написать программы поиска приближенного решения указанными методами).

- 3. Используя метод Рунге-Кутты 4 порядка точности (см. Приложение A), найти приближенное решение задачи Коши с тем же шагом h.
- 4. Найти величины погрешностей приближенных решений по формуле  $\varepsilon = \max_{0 \le i \le N} |y(t_i) y_i|$ , где  $y(t_i)$ и  $y_i$  значения точного и приближенного решений в узлах сетки  $t_i$ , i=0..N.
- 5. Построить таблицы и графики найденных решений (на одном чертеже). Сравнить полученные результаты.

ИНДИВИДУАЛЬНЫЕ ВАРИАНТЫ ЗАДАНИЙ.

| N  | r(t)                    | yθ            | t0     | T               | N       | r(t)                    | yθ    | t0              | T                  |
|----|-------------------------|---------------|--------|-----------------|---------|-------------------------|-------|-----------------|--------------------|
| 1  | -tg(0.5t)               | 1             | 0      | $\frac{\pi}{2}$ | 10.1.16 | <u>4t</u>               | 0.1   | 0               | 2                  |
|    |                         |               |        |                 |         | $\overline{t^2+1}$      |       |                 |                    |
| 2  | 1                       | 0.5           | 1      | 2               | 10.1.17 | $-2\sin(2t) + 0.2$      | e     | 0               | $\frac{\pi}{2}$    |
|    | $\overline{t+3}$        |               |        |                 |         |                         |       |                 | 2                  |
| 3  | ctg(0.5t)               | 1             | $\pi$  | $\frac{3\pi}{}$ | 10.1.18 | $\frac{t+1}{}$          | 0.908 | 0.5             | 2                  |
|    |                         |               |        | 2               |         | 2 <i>t</i>              |       |                 |                    |
| 4  | 0.4tg(0.4t)             | 1             | 0      | $\frac{\pi}{2}$ | 10.1.19 | $-2\sin(3t)-0.1$        | 1.948 | 0               | $\frac{\pi}{2}$    |
|    |                         |               |        |                 |         |                         |       |                 | 2                  |
| 5  | $-\frac{1}{5}ctg(0.2t)$ | 1             | $5\pi$ | $4\pi$          | 10.1.20 | 1                       | 1.414 | 0               | 2                  |
|    | 5                       |               | 2      |                 |         | 2t + 1                  |       |                 |                    |
| 6  | 1                       | 1             | 0      | $\pi$           | 10.1.21 | $-\cos(3t) - 0.1$       | 0.68  | _               |                    |
|    |                         | 1             |        | ,,,             | 10.1.21 | $-\cos(3i)$ – 0.1       | 0.00  | $\frac{\pi}{6}$ | $\frac{\pi}{2}$ 2e |
| 7  | $-\frac{1+t^2}{2t}$     | 1             | 0      | 2               | 10.1.22 | 1                       | 1     | e               | 20                 |
| /  | $\frac{2t}{1-2}$        | $\frac{1}{2}$ | 0      | 2               | 10.1.22 | 1                       | 1     | 6               | 26                 |
|    | $1+t^2$                 |               |        |                 |         | $t \ln(t)$              |       |                 |                    |
| 8  | $-\frac{2t}{}$          | 1             | 0      | 2               | 10.1.23 | $-2\cos(3t) + 0.2$      | 0.57  | $\frac{\pi}{6}$ | $\frac{\pi}{}$     |
|    | $-\frac{1}{1+t^2}$      |               |        |                 |         |                         |       | 6               | $\frac{\pi}{2}$    |
| 9  | -4t                     | 1             | 0      | 2               | 10.1.24 | $\cos(2t) + 0.1$        | 1.783 | 0               | $\frac{\pi}{2}$    |
|    | $1+t^2$                 |               |        |                 |         |                         |       |                 | $\frac{}{2}$       |
| 10 | 1                       | 1             | e      | 2e              | 10.1.25 | 2                       | 1     | 0               | 2                  |
|    | $t \ln(t)$              |               |        |                 |         | $\overline{1+4t^2}$     |       |                 |                    |
| 11 | t                       | 1             | 0      | 2               | 10.1.26 | 1                       | 1     | e               | 2e                 |
|    | $\overline{1+t^2}$      |               |        |                 |         | $-\frac{2t \ln(t)}{2t}$ |       |                 |                    |

| N  | r(t)                    | yθ        | t0    | T                | N       | r(t)                  | yθ    | t0   | T               |
|----|-------------------------|-----------|-------|------------------|---------|-----------------------|-------|------|-----------------|
| 12 | $-\frac{1}{4}tg(0.24t)$ | 1         | 0     | $\frac{\pi}{2}$  | 10.1.27 | $-\frac{2}{1+4t^2}$   | 1     | 0    | $\frac{\pi}{2}$ |
| 13 | $-\frac{2t+1}{t}$       | 0.1<br>35 | 1     | 2                | 10.1.28 | $-\frac{1}{2+0.5t^2}$ | 1     | 0    | $2\pi$          |
| 14 | -ctg(0.5t)              | 1         | $\pi$ | $\frac{3\pi}{2}$ | 10.1.29 | $\frac{1}{2+0.5t^2}$  | 1     | 0    | $2\pi$          |
| 15 | $\frac{1}{1+t^2}$       | 1         | 0     | π                | 10.1.30 | $\frac{t+2}{t+1}$     | 0.303 | -0.5 | 0.5             |

Задача 2. (для студентов, претендующих на оценку «хорошо»)

Найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения (ОДУ) 1-го порядка

$$y' = f(t, y), t \in [t_0, T],$$
  
 $y(t_0) = y_0$ 

и оценить погрешность решения задачи при разных значениях шага. Подобрать шаг, при котором достигается точность  $\varepsilon = 10^{-4}$  .

## ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ

- 1. Составить программу, реализующую метод, указанный в индивидуальном варианте. Проверить правильность работы программы на задаче Коши для уравнения  $y' = y + 3t^2 t^3$ , точным решением которого является функция  $y(t) = t^3$  (начальное условие поставьте самостоятельно).
- 2. Используя эту программу, найти решение исходной задачи с шагом h0 = (T t0)/10. Построить график полученного решения.
- 3. Найти решение той же задачи с шагом  $h = 2 \cdot h0$  и определить погрешность  $r_i$  по правилу Рунге (в тех точках, в которых это возможно). Вычислить величину  $R = \max |r_i|$ .
- 4. Подобрать шаг h2, при котором погрешность по правилу Рунге ( $R = \max_i \left| r_i \right|$ ) не превосходит точности  $\varepsilon = 10^{-4}$ . Построить график полученного решения.
- 5. Используя метод Рунге-Кутты 4 порядка точности (см. Приложение A), найти решение исходной задачи с шагом h0 = (T t0)/10 и погрешность этого решения по правилу Рунге.
- 6. Найдите шаг h3, при котором погрешность встроенной функции ( $R = \max_i \left| r_i \right|$ , найденная по правилу Рунге) не превосходит той же точности  $\varepsilon = 10^{-4}$ .
- 7. Заполнить таблицу

| Метод                                   | Порядок<br>точности<br>метода | Погрешност<br>ь при шаге<br>h0 | , , |
|-----------------------------------------|-------------------------------|--------------------------------|-----|
| Индивидуальный метод (название)         |                               |                                |     |
| Метод Рунге-Кутты 4-го порядка точности |                               |                                |     |

8. Описать кратко, как в проведенных расчетах проявилась устойчивость и порядок точности методов. Сравните (если возможно) примененные методы по этим показателям.

# ВАРИАНТЫ ЗАДАНИЙ

| N  | f(t,y)                                    | t0 | T   | yθ | Метод                               |
|----|-------------------------------------------|----|-----|----|-------------------------------------|
| 1  | -20y + 2t - 19.9                          | -1 | 1.5 | 1  | Эйлера-Коши                         |
| 2  | $-30y + 30\cos(\pi t) - \pi\sin(\pi t)$   | 0  | 1.5 | 1  | Усовершенствованный<br>Эйлера       |
| 3  | -25y + 1.25t - 49.95                      | 0  | 1.5 | -1 | Рунге-Кутты 3 порядка (вариант I)   |
| 4  | $-20y + 20 - 19e^{-t}$                    | 0  | 1.5 | 1  | Рунге-Кутты 3 порядка (вариант II)  |
| 5  | $-30y + \sin(2t) + 30\sin^2(t)$           | 0  | 1.5 | 1  | Усовершенствованный<br>Эйлера       |
| 6  | $-25y - \sin(2t) + 25\cos^2(t)$           | -1 | 1.5 | 1  | Рунге-Кутты 3 порядка (вариант III) |
| 7  | $-55y + 3t^2 - 10t + 5$                   | 0  | 1.5 | 5  | Эйлера-Коши                         |
| 8  | $-35y + 25 - \sqrt{t+15}$                 | 0  | 5   | 4  | Рунге-Кутты 3 порядка (вариант II)  |
| 9  | $-45y + 10t^2 \sin t - t^3 + 5$           | 0  | 3   | 3  | Эйлера-Коши                         |
| 10 | $-40y + 40\cos(\pi t) + 4\sin(\pi t)$     | 0  | 2   | 6  | Усовершенствованный<br>Эйлера       |
| 11 | $-35y - 5.5e^{-2t} - 3t$                  | 0  | 1.5 | -5 | Рунге-Кугты 3 порядка (вариант I)   |
| 12 | $-50y + 6.5 + \sqrt{t^2 + 15} - 3t$       | 0  | 2   | 2  | Рунге-Кутты 3 порядка (вариант II)  |
| 13 | $-20y + 3\sin^2(2t) + \cos t$             | 0  | 2   | 5  | Эйлера-Коши                         |
| 14 | $-25y + 16t^3 \cos t - t^2$               | 0  | 1.5 | 4  | Рунге-Кутты 3 порядка (вариант III) |
| 15 | $-30y - 1.2e^{-t} + 30e^{-1.2t} + 15$     | 0  | 2   | -1 | Усовершенствованный<br>Эйлера       |
| 16 | $-45y - 10t^2 - \sqrt{t} + 15$            | 0  | 2   | -3 | Эйлера-Коши                         |
| 17 | $-40y - 20\sin(\pi t) + \pi^2\cos(\pi t)$ | 0  | 4   | 2  | Рунге-Кутты 3 порядка (вариант II)  |
| 18 | $-30y + 5\sin^2(2t)$                      | 0  | 2   | -2 | Усовершенствованный<br>Эйлера       |
| 19 | $-30y - 10\cos(t) + 25\sin(t) - 2$        | 0  | 2   | -5 | Эйлера-Коши                         |
| 20 | $-35y + 7.2e^{-t} + 30e^{-1.6t}$          | 0  | 2   | 6  | Рунге-Кутты 3 порядка (вариант I)   |
| 21 | $-50y - 15 + \sqrt{t + 30}$               | 0  | 3   | 5  | Рунге-Кутты 3 порядка (вариант II)  |
| 22 | $-25y - 40\cos(t) + 15\sin(t) - 12$       | 0  | 2   | -3 | Усовершенствованный<br>Эйлера       |
| 23 | $-30y - 15t^2 \sin t + t^3 + 5$           | 0  | 1.5 | 2  | Рунге-Кутты 3 порядка (вариант III) |
| 24 | $-20y + 10\cos(\pi t) - \sin^2(\pi t)$    | 0  | 2   | -4 | Эйлера-Коши                         |
| 25 | $-35y + 6e^{-t} + 35e^{-6t} + 5$          | 0  | 3   | -1 | Рунге-Кутты 3 порядка (вариант I)   |
| 26 | $-35y + 14t^2 \cos t - t^2 - 5$           | 0  | 3   | 4  | Рунге-Кутты 3 порядка (вариант II)  |
| 27 | $-25y + 15\cos(0.5t) - 12\sin t$          | 0  | 1.5 | 3  | Усовершенствованный<br>Эйлера       |
| 28 | $-40y - 5.5e^{-4t} + 15$                  | 0  | 2   | -2 | Эйлера-Коши                         |

| 29 | -20y + 2t - 19.9                        | 0 | 1.5 | 0  | Эйлера-Коши                   |
|----|-----------------------------------------|---|-----|----|-------------------------------|
| 30 | $-30y + 30\cos(\pi t) - \pi\sin(\pi t)$ | 0 | 1.5 | -1 | Усовершенствованный<br>Эйлера |

Задача 3. (для студентов, претендующих на оценку «отлично»)

Решить приближенно задачу Коши (из задания 1) с заданной точностью, используя указанный в индивидуальном варианте метод. Для получения информации о погрешности использовать правило Рунге.

### ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ.

- 1) Реализовать адаптивную процедуру вычисления решения задачи Коши с заданной точностью:
- 1.1. Выбрать начальное значение шага h=0.5.
- 1.2. Найти реализуемым методом значение приближенного решения в первой точке сетки.
- 1.3. Уменьшить шаг вдвое. Найти реализуемым методом приближенное решение в первых двух точках новой сетки.
  - 1.4. Найти модуль оценки по правилу Рунге во второй точке сетки с уменьшенным шагом.
- 1.5. Сравнить результат п.1.4 с заданной точностью. Если точность не достигнута, повторить пп.
- 1.1-1.4 для уменьшенного вдвое начального значения шага. Если точность достигнута, зафиксировать итоговое значение шага.
- 1.6. Повторить пп.1.1-1.6, для поиска следующих значений приближенного решения, начиная каждый новый подбор с предыдущего зафиксированного значения шага.

2) Заполнить таблицу

| Значение | Метод | Массив значений      | Минимальное значение шага h из |
|----------|-------|----------------------|--------------------------------|
| точности |       | использованных шагов | использованных                 |
|          |       |                      |                                |

#### ИНДИВИДУАЛЬНЫЕ ВАРИАНТЫ ЗАДАНИЙ.

|                  |    |    |    |    |      | r 1                              |
|------------------|----|----|----|----|------|----------------------------------|
| Номера вариантов |    |    |    |    | ε    | метод                            |
| 1                | 7  | 13 | 19 | 25 | 0.01 | явный метод Эйлера               |
| 2                | 8  | 14 | 20 | 26 | 0.05 | усовершенствованный метод Эйлера |
| 3                | 9  | 15 | 21 | 27 | 0.03 | метод Эйлера-Коши                |
| 4                | 10 | 16 | 22 | 28 | 0.04 | явный метод Эйлера               |
| 5                | 11 | 17 | 23 | 29 | 0.06 | усовершенствованный метод Эйлера |
| 6                | 12 | 18 | 24 | 30 | 0.02 | метод Эйлера-Коши                |

Приложение А

# Реализация метода Рунге-Кутты 4 порядка точности на Python (код отсюда можно скопировать) def RK4(f,t0,y0,h,N): y[0]=y0

Применение – см. на след. странице.

```
In [63]:
          # поиск с помощью метода Рунге-Кутты 4 порядка точности
          import numpy as np
          import matplotlib.pyplot as plt
          #правая часть
          def f(t, y):
              return y/(1+t*t)
          #точное решение
          def Yt(t):
              return np.exp(np.arctan(t))
          #метод Рунге-Кутты 4 порядка точности
          def RK4(f,t0,y0,h,N):
              y[0] = y0
              for i in range (N):
                  K1=f(t0+i*h, y[i])
                  K2=f(t0+i*h+h/2, y[i]+h*K1/2)
                  K3=f(t0+i*h+h/2,y[i]+h*K2/2)
                  K4=f(t0+i*h+h,y[i]+h*K3)
                  y[i+1] = y[i]+h/6*(K1+2*K2+2*K3+K4)
              return y
          t0=0
          y0=1
          T=np.pi/2
          N=5
          h=(T-t0)/N;
          y=[0]*(N+1)
          y=RK4(f,t0,y0,h,N)
          print(y)
          plt.grid(True)
          xx = np.linspace(t0, T, 100)
          plt.plot(xx,Yt(xx), color='blue', label='точное решение')
          x = np.linspace(t0, T, N+1)
          plt.plot(x, y, color='red', label='метод РК4', ls='', marker='.', markersize
          plt.legend()
```

[1, 1.3557962013203753, 1.7523476753806593, 2.1292244630454618, 2.456157506 401115, 2.728755604858967]

Out[63]: <matplotlib.legend.Legend at 0xa9c7370>



### Файл для студентов

# Лаборатроная работа №4

для потоков А-1,2,3,15-19 и А-4,6,7,8,9,12-19 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ "ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ КОШИ"

Поиск решеничя методом Рунге-Кутты 4 порядлка точности

 $\begin{aligned} \mathbf{r}(\mathbf{t}) &\coloneqq \frac{1}{1+\mathbf{t}^2} & \mathbf{t}_0 &\coloneqq 0 \\ \mathbf{f}(\mathbf{t},\mathbf{y}) &\coloneqq \mathbf{y} \cdot \mathbf{r}(\mathbf{t}) & \mathbf{T} &\coloneqq \frac{\pi}{2} \end{aligned} \qquad \mathbf{y}_0 &\coloneqq 1$ Исходные данные:

Точное решение:

$$Y(t) := e^{atan(t)}$$

Шаг сетки: 
$$h := \frac{T - t_0}{N}$$

$$h = 0.1570796327$$

Получение решения задачи Коши методом Рунге-Кутты 4 порядка точности:

$$yRK4 := rkfixed(y,t_0,T,N,f)$$

входные параметры:

у - вектор начальных значений;

t<sub>0</sub>- начальная точка отрезка; Т - конечная точка отрезка;

N - число узлов сетки;

f - функция правой части. Функция rkfixed возвращает матрицу, первый столбец которой содержит узлы сетки, а второй - приближенное решение в этих узлах.

Точное решение: i := 0..N

$$t_i := t_0 + i \cdot h$$

$$yt_i := Y(t_i)$$

Точки сетки:

|     |    | 0            | l    |
|-----|----|--------------|------|
|     | 0  | 0            |      |
|     | 1  | 0.1570796327 |      |
|     | 2  | 0.3141592654 |      |
|     | 3  | 0.471238898  |      |
| t = | 4  | 0.6283185307 |      |
| . — | 5  | 0.7853981634 | yt = |
|     | 6  | 0.9424777961 |      |
|     | 7  | 1.0995574288 |      |
|     | 8  | 1.2566370614 |      |
|     | 9  | 1.4137166941 |      |
|     | 10 | 1.5707963268 |      |
|     |    |              |      |

| Точное | решение: |
|--------|----------|
|        |          |

|    | ,            |        |
|----|--------------|--------|
|    | 0            |        |
| 0  | 1            |        |
| 1  | 1.1686000571 |        |
| 2  | 1.3558055742 |        |
| 3  | 1.5532898179 |        |
| 4  | 1.7523927085 |        |
| 5  | 1.9459956532 | yRK4 = |
| 6  | 2.1293015522 |        |
| 7  | 2.2997052535 |        |
| 8  | 2.4562531843 |        |
| 9  | 2.5990628989 |        |
| 10 | 2.7288624076 |        |
|    |              |        |

Решение методом Рунге-Кутты 4 порядка:

|   | 0            | 1            |
|---|--------------|--------------|
| 0 | 0            | 1            |
| 1 | 0.1570796327 | 1.1685999555 |
| 2 | 0.3141592654 | 1.3558049763 |
| 3 | 0.471238898  | 1.5532882488 |
| 4 | 0.6283185307 | 1.7523899589 |
| 5 | 0.7853981634 | 1.9459918092 |
| 6 | 0.9424777961 | 2.1292968349 |
| 7 | 1.0995574288 | 2.2996998833 |
| 8 | 1.2566370614 | 2.4562473283 |

1.4137166941 2.5990566693 10 1.5707963268 2.7288558767

Графики приближенного и точного решений:



#### Расчетные формулы методов

Метод Эйлера-Коши

$$\overline{y}_{i+1} = y_i + h \cdot f(t_i, y_i), \quad y_{i+1} = y_i + \frac{h}{2} \cdot [f(t_i, y_i) + f(t_{i+1}, \overline{y}_{i+1})].$$

Усовершенствованный метод Эйлера

$$\mathbf{y}_{i+1} = \mathbf{y}_i + hf\left(t_i + \frac{h}{2}, \mathbf{y}_i + \frac{h}{2}f(t_i, \mathbf{y}_i)\right).$$

Метод Рунге-Кутты 3-го порядка (вариант I)

$$m{y}_{i+1} = m{y}_i + rac{h}{6}(m{k1} + 4 \cdot m{k2} + m{k3}),$$
 где  $m{k1} = f(t_i, y_i), \ m{k2} = f\left(t_i + rac{h}{2}, y_i + h rac{k1}{2}\right), \ m{k3} = f(t_i + h, y_i - h \cdot k1 + 2h \cdot k2).$ 

Метод Рунге-Кутты 3-го порядка (вариант II)

$$m{y_{i+1}} = m{y_i} + rac{h}{4}(m{k1} + 3 \cdot m{k3}),$$
 где  $m{k1} = f(t_i, y_i), \ m{k2} = f\left(t_i + rac{h}{3}, y_i + hrac{k1}{3}\right), \ m{k3} = f\left(t_i + rac{2}{3}h, y_i + hrac{2}{3}k2\right).$ 

Метод Рунге-Кутты 3-го порядка (вариант III)

$$\mathbf{y}_{i+1} = \mathbf{y}_i + \frac{h}{9}(2 \cdot \mathbf{k} \mathbf{1} + 3 \cdot \mathbf{k} \mathbf{2} + 4 \cdot \mathbf{k} \mathbf{3}),$$
 где  $\mathbf{k} \mathbf{1} = f(t_i, y_i), \quad \mathbf{k} \mathbf{2} = f\left(t_i + \frac{h}{2}, y_i + h \frac{k1}{2}\right), \quad \mathbf{k} \mathbf{3} = f\left(t_i + \frac{3}{4}h, y_i + h \frac{3}{4}k2\right).$ 

Метод Рунге-Кутты 4-го порядка  $y_{i+1} = y_i + \frac{h}{6}(k\mathbf{1} + 2 \cdot k\mathbf{2} + 2 \cdot k\mathbf{3} + k\mathbf{4}),$  где

$$k1 = f(t_i, y_i), k2 = f\left(t_i + \frac{h}{2}, y_i + h\frac{k1}{2}\right), k3 = f\left(t_i + \frac{h}{2}, y_i + h\frac{k2}{2}\right), k4 = f(t_i + h, y_i + h \cdot k3).$$

Правило Рунге практической оценки погрешности (правило удвоенного пересчета):

$$y(t_n) - y^{\frac{h}{2}}(t_n) \approx \frac{y^{\frac{h}{2}}(t_n) - y^h(t_n)}{2^m - 1}$$

Здесь m – порядок точности метода, а вычисления ведутся в узлах сетки  $\mathbf{t}_n$  с шагом h.