컴퓨터 산술(9,10장)

성결대학교 컴퓨터공학부 최정열 교수 (passjay@sungkyul.ac.kr)

게으른 자여 네가 어느 때까지 누워 있겠느냐 네가 어느 때에 잠이 깨어 일어나겠느냐 좀더 자자, 좀더 졸자, 손을 모으고 좀더 누워있자 하면 네 빈궁이 강도 같이 오며 네 곤핍이 군사 같이 이르리라(잠언6:9-11)

수업 목표

- □ 산술논리연산장치의 구성요소와 그 기능을 이해한다
- □ 10진수, 2진수, 16진수들 간의 변환을 할 수 있다
- □ 2의 보수 표현을 설명할 수 있다
- □정수 산술 연산(가감승제)을 할 수 있다
- □ 부동 소수점 표현을 설명할 수 있다
- □ 부동 소수점 산술 연산이 어떻게 수행되는지 설명할 수 있다

목차

- □산술논리연산장치
- □정수 표현
- □정수의 산술 연산
- □ 부동소수점 표현
- □ 부동소수점의 산술 연산
- □논리 연산

1. 산술논리연산장치(The Arithmetic and Logic Unit, ALU)

□ 중앙처리장치(CPU)의 구성

- _____
 - (Arithmetic & Logic Unit : ALU)
 - 산술 및 논리 연산을 수행
- ____
- •

CPU의 구성 요소

ALU 내부 구성 요소

- □ 산술 연산장치
 - +, -, x, ÷등을 수행
- □논리 연산장치
 - AND, OR, XOR, NOT 등을 수행
- □ 시프트 레지스터
 - shift register
 - 비트들을 좌우측으로 이동
- □ 보수기(complementer)
 - 2진 데이터를 2의 보수로 변환
 - 음수를 만드는 역할
- □상태 레지스터(status register)
 - 연산 결과의 상태를 나타내는 플래그(flag)들을 저장

ALU의 구성 장치

제어 유닛 "

레지스터

산술 논리 연산장치

ALU의 연산 동작 예

- \square ADD AC, B; AC \leftarrow AC + B
 - t_1 : TEMP1 \leftarrow AC
 - t_2 : TEMP2 \leftarrow B
 - t_3 : AC \leftarrow TEMP1 + TEMP2

ALU의 내부 구조

2. 정수 표현

□ 10진수의 개념

- 0 ~ 9의 10가지의 기호를 이용하여 수를 표현
- 10진수 (724)₁₀의 분석 : 700+20+4
- 10의 승수(10N)로 표현
 - 10진수의 표시: (724)₁₀ = _____

□2진수의 개념

- 0과 1만을 가지고 수를 표현
- 10진수의 관계는_____로 표현
 - 예) (101101)₂ =_____= (45)₁₀

□ 16진수의 개념

- _____나누어 16진수로 표현
- 0~9, A, B, C, D, E, F의 기호를 사용
- 16진수와 10진수의 관계는 16진수를 16의 승수(16N)로 표현
 - 예) (F3)₁₆ = _____ = (243)₁₀

진법 변환

□ 10진수를 2진수로의 변환

- 연속적으로 2로 나눗셈을 수행하면서 얻어지는 나머지에 의해서 만들어진다.
- 예) (41)₁₀의 2진수로 변환
 - 41을 2로 연속해서 나눗셈
 - 생성된 나머지를 정렬
 - $-(41)_{10} = (101001)_2$

□ 2진수를 10진수로의 변환

- 2진수를 2N로 표현
- 예) $(101001)_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 32 + 8 + 1 = (41)_{10}$

음수의 표현

- □ 음수를 표현하기 위해서 단어의 가장 맨 좌측 비트를 부호 비트로 사용
- □ 부호 비트를 사용한 음수의 표현 방법들
 - 부호 크기 표현(signed-magnitude representation)
 - 보수 표현(complement representation)

부호 크기 표현

- □ 부호가 있는 n비트의 2진수에서, 고 나머지 n-1개의 비트들은 를 나타낸다
 - 예) +9 = 0 0001001
- -9 = 1 0001001
- □ 부호를 표현할 수 있는 가장 간단한 방법
- □ 덧셈과 뺄셈 연산을 수행하기 위해서는 부호 비트와 크기 부분을 별도 로 처리해야 한다
- □ 0(zero)의 표현이 2개 존재하므로 표현할 수 있는
 - \bullet 0 00000000 = +0 1 00000000 = -0
 - 즉, n비트 단어로 표현할 수 있는 수가 2ⁿ이 아니라 임

보수 표현

- □ 2진수에서 1의 보수 표현: 모든 비트들을 반전시킨다
- □ 2진수에서 2의 보수 표현: 모든 비트들을 _____
- □ 2의 보수로 표현된 2진수(양수)를 십진수로 변환(부호 비트 a_{n-1} = 0) A = a_{n-2} × 2ⁿ⁻² + a_{n-3} × 2ⁿ⁻³ + ... + a₁ × 2¹ + a₀ × 2⁰
- □ 2의 보수로 표현된 2진수(음수)를 십진수로 변환(부호 비트 $a_{n-1} = 1$) A =-2ⁿ⁻¹ + ($a_{n-2} \times 2^{n-2} + a_{n-3} \times 2^{n-3} + ... + a_1 \times 2^1 + a_0 \times 2^0$)
 - 또는, 먼저 __________붙인다

수의 표현 범위

□2의 보수로 표현된 n비트 데이터의 표현 할 수 있는 수의 범위

□ 비트에 따른 수의 범위와 최대값과 최소값의 표현

● 16비트 2의 보수: -32768 ≤ N ≤ +32767 2¹⁵-1 = 011111111 1111111 = +32767 -2¹⁵ = 100000000 00000000 = - 32768

예) 4비트 정수에 대한 다른 표현들

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation	Biased Representation
+8	_	_	1111
+7	0111	0111	1110
+6	0110	0110	1101
+5	0101	0101	1100
+4	0100	0100	1011
+3	0011	0011	1010
+2	0010	0010	1001
+1	0001	0001	1000
+0	0000	0000	0111
-0	1000	_	_
-1	1001	1111	0110
-2	1010	1110	0101
-3	1011	1101	0100
-4	1100	1100	0011
-5	1101	1011	0010
-6	1110	1010	0001
- 7	1111	1001	0000
-8	_	1000	_

비트 확장(bit extension)

□ 부호가 있는 데이터의 비트 수를 늘리는 연산

□ 부호화-크기 표현

● 부호 비트를 맨 좌측으로 이동시키고, 그 외의 비트들은 0으로 채운다

□ 2의 보수 표현

● 확장된 상위 비트들을 부호 비트와 _____채운다.

```
+18 = 00010010 (8비트)
+18 = 0000000000010010 (16비트)
-18 = 1111111111111101110 (16비트)
```

3. 정수의 산술 연산

- □음수화
- □ 덧셈 C = A + B
- □뺄셈 C = A B
- □곱셈 C = A × B
- □ 나눗셈 C = A / B

음수화(negation)

- □ 부호-크기 표현
 - 부호 비트를 반전시킨다
- □ 2의 보수를 사용
 - 예) 2의 보수를 이용하여 -19을 이진수로 표현

+19: 00010011

1의 보수: 11101100

+ 1

-19: 11101101

2의 보수로 표현된 수들의 덧셈

□ 두 수가 부호 없는 수인 것으로 간주하고 진행

- 연산의 결과가 양수이면 정상적인 2진수로 표현된 양수를 얻음
- 연산의 결과가 음수이면 2의 보수 형태의 음수를 얻음

1001 = -7 $+0101 = 5$ $1110 = -2$ (a) (-7) + (+5)	1100 = -4 +0100 = 4 10000 = 0 (b) (-4) + (+4)
$0011 = 3 + 0100 = 4 \hline 0111 = 7 (c) (+3) + (+4)$	1100 = -4 +1111 = -1 11011 = -5 (d) (-4) + (-1)
0101 = 5 + $0100 = 4$ 1001 = Overflow (e) (+5) + (+4)	1001 = -7 +1010 = -6 10011 = Overflow (f) (-7) + (-6)

결과값의 최상위 비트를 넘어가는 올림수 비트가 발생되면 무시한다

오버플로우: 어떤 덧셈에서 결과 값이 한 단어로 표현할 수 있는 범위를 초과

2의 보수로 표현된 수들의 뺄셈

□ 어떤 수(피감수: minuend) 에서 다른 수(감수: subtrahend)를 빼기 위해 서는 감수의 보수를 취한 뒤 그것을 피감수 와 더한다

$ \begin{array}{rcl} 0010 & = & 2 \\ +1001 & = & -7 \\ 1011 & = & -5 \end{array} $	$ 0101 = 5 \\ +1110 = -2 \\ 10011 = 3 $
(a) $M = 2 = 0010$	(b) $M = 5 = 0101$
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
$ 1011 = -5 \\ +1110 = -2 \\ 11001 = -7 $	$ \begin{array}{rcl} 0101 &=& 5 \\ +0010 &=& 2 \\ \hline 0111 &=& 7 \end{array} $
(c) $M = -5 = 1011$	(d) $M = 5 = 0101$
S = 2 = 0010	S = -2 = 1110
-S = 1110	-S = 0010
0111 = 7	1010 = -6
+ $0111 = 7$	+ $\frac{1100}{0110} = -4$
1110 = Overflow	10110 = Overflow
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

2의 보수 정수들의 기하학적 표현

덧셈/뺄셈 하드웨어 블록 다이어그램

OF = overflow bit

SW = Switch (select addition or subtraction)

곱셈

□ 곱하여 지는 수를 피승수(multiplicand, M), 곱하는 수를 승수(multiplier, Q)

□ 부호가 없는 경우의 곱셈의 예

● 4비트의 두 수가 서로 곱셈을 수행하면, 2배인 8비트의 길이의 결과를 출력

1011 ×1101	Multiplicand (11) Multiplier (13)	M Q
1011 0000	Dantial products	
1011	Partial products	
1011)	
10001111	Product (143)	

부호 없는 2진 곱셈을 위한 하드웨어 구현

С	A	Q	M		
0	0000	1101	1011	Initial Values	
0	1011	1101	1011	Add { First	
0	0101	1110	1011	Shift ∫ Cycle	
0	0010	1111	1011	Shift } Second Cycle	
0	1101	1111	1011	Add } Third	
0	0110	1111	1011	Shift \int Cycle	
1	0001	1111	1011	Add { Fourth	
0	1000	1111	1011	Shift ∫ Cycle	

계산 예

부호없는 2진 곱셈의 흐름도

부호있는 두 수의 곱셈: Booth 알고리즘

- □ 승수와 피승수를 Q와 M 레지스터에 저장
- Q 레지스터의 LSB인 Q₀ 오른쪽에 Q₁ 라는 한 비트 레지스터 추가
- Q₀ 와 Q₁ 가 같으면: A, Q, Q₁ 레지스터의 모든 비트를 우측으로 한 비트씩 산 술시프트
- □ Q₀ 와 Q₋₁ 가 0 1 이면: 피승수를 A에 더한다 & 우측 산술시프트
- Q₀ 와 Q₁ 가 1 0 이면: A로부터 피승수를 뺀다 & 우측 산술시프트

A 0000	Q Q_ 001 <u>1 0</u>	_	Initial Va	lues
1001	0011 0	0111) First
1100	1001 1		A ← A - M Shift	Cycle
1110	010 <u>0 1</u>	0111	Shift	} Second Cycle
0101 0010	010 <u>0 1</u> 101 <u>0 0</u>	0111 0111	A←A+M Shift	} Third Cycle
0001	0101 0 간	0111	Shift	} Fourth Cycle

Booth 알고리즘을 사용한 예

나눗셈

부호 없는 2진 정수의 나늦셈 예

부호 없는 2진 나눗셈을 위한 흐름도

A	Q	
0000	0111	Initial value
0000	1110	Shift
1101		Use twos complement of 0011 for subtraction
1101		Subtract
0000	1110	Restore, set $Q_0 = 0$
0001	1100	Shift
1101		
1110		Subtract
0001	1100	Restore, set $Q_0 = 0$
0011	1000	Shift
1101		
0000	1001	Subtract, set Q ₀ = 1
0001	0010	Shift
1101		
1110		Subtract
0001	0010	Restore, set $Q_0 = 0$
나미지	몫	

2의 보수 나늦셈 예(7/3)

4. 부동소수점 표현

□ 고정소수점(fixed-point) 표현 방식

$$1010.1010 = 2^3 + 2^1 + 2^{-1} + 2^{-3} = 10.625$$

● 매우 큰 수 및 매우 작은 수의 표현이 불가능

□ 부동소수점(floating-point) 표현

- 과학적 표기의 지수(exponent)를 사용하여 소수점의 위치를 이동시킬 수 있는 표현 방법
- 표현의 범위가 확대
- 예) 십진수에 대한 부동소수점 표현

$$176,000 = 1.76 \times 10^{5}$$
 $176,000 = 17.6 \times 10^{4}$ $0.000176 = 1.76 \times 10^{-4}$ $0.000176 = 17.6 \times 10^{-5}$

부동소수점 수의 표현법

$$\pm$$
 S × B \pm E

● 부호(sign), S: 가수(significand), B: 기수(base), E: 지수(exponent)

전형적인 32비트 부동소수점 형식

정규화된 표현

□지수를 이용하는 부동소수점의 수는 지수의 값에 따라 동일한 수에 대 한 부동소수점 표현이 여러 가지가 존재

 0.1001×2^5 100.1×2^2 0.01001×2^6

□ 부동소수점의 수를 통일되게 표현하는 방법

$$\pm$$
 1.bbb...b \times 2^E

• 예) 정규화된 표현의 단일 정밀도 부동소수점의 수 배열

$$1.001 \times 2^4$$

- 부호 비트 = 0(양수)
- 지수(E) = 00000100
- 가수(S) = 0010 0000 0000 0000 0000 000

31 23 22 **30** 0 00000100 0010 0000 0000 0000 0000 000

□가수

- 정규화된 표현에서 가수의 맨 좌측 비트는 항상 1로 정해져 있으므로 가수 필드에 저장할 필요가 없다
- 23비트를 이용하여 [1,2) 사이의 값을 가지는 24-비트 가수를 저장

□기수

● 기수는 묵시적이며 모든 수에 동일하므로 저장할 필요가 없다

□ 지수(바이어스된 표현)

- 지수는 부호를 가지므로 이에 대한 표현이 필요하다
- 바이어스된 표현(2^K-1)을 사용하여 음수가 아닌 부동소수점수의 크기를 비교하기 위해서 정수로 취급될 수 있다
- 바이어스된 값은 원래의 지수 비트 값에서 바이어스 값을 더해준다
- 예) 지수값: (4)₁₀ = (00000100)₂
 127로 바이어스된 지수값: 00000100 + 01111111 = 10000011

□ 예) 10진수 -13.625를 32비트 부동소수점 형식으로 표현하면?

전형적인 32-비트 형식으로 표현 가능한 수의 범위

- □ 정수: -2³¹~2³¹-1 (2³²가지의 수를 표현)
- □ 부동소수점수: -(2-2⁻²³)x2¹²⁸~-2⁻¹²⁷, 2⁻¹²⁷~(2-2⁻²³)x2¹²⁸

(a) Twos Complement Integers

(b) Floating-Point Numbers

부동소수점의 밀도

□필드에 비트할당 문제

- 표현하는 수의 범위와 정밀도를 결정
- 지수(E) 필드의 비트 수가 늘어나면, 소수점을 이동시키는 범위가 커져서 표현 가능한 수의 범위가 확장
- 가수(S) 필드의 비트 수가 늘어나면, 이진수로 표현할 수 있는 수가 많아져서 정밀도(precision)가 증가

IEEE 754 formats

(a) Single format

- (b) Double format
- 지수부(2^k-1 바이어스된 지수로 저장)
 - 지수부가 0 & 부호비트가 0이면: 0
 - 지수부가 0 & , 부호비트가 1이면: -0
 - 표현할 수 있는 가장 작은 수보다 더 작은 0이 아닌 수
 - 지수부가 제일 큰 값 & 부호비트가 0/1 = ∞/-∞
 - 표현할 수 있는 수의 범위를 벗어남

5. 부동소수점의 산술 연산

- □ 가수와 지수의 연산을 분리해서 수행
- □ 덧셈과 뺄셈
 - 지수를 같은 값으로 조정한 후, 가수들에 대하여 덧셈과 뺄셈을 수행
- □곱셈과 나눗셈
 - 가수끼리는 곱셈과 나눗셈을 수행
 - 지수의 연산에서는 곱셈의 경우는 덧셈을 수행하고 나눗셈의 경우에는 뺄셈을 한다

부동소수점 수들의 연산 예

Floating Point Numbers	Arithmetic Operations
$X = X_S \times B^{X_E}$ $Y = Y_S \times B^{Y_E}$	$X + Y = \left(X_s \times B^{X_E - Y_E} + Y_s\right) \times B^{Y_E}$ $X - Y = \left(X_s \times B^{X_E - Y_E} - Y_s\right) \times B^{Y_E}$ $X = \left(X_s \times B^{X_E - Y_E} - Y_s\right) \times B^{Y_E}$
	$X \times Y = (X_s \times Y_s) \times B^{X_E + Y_E}$
	$\frac{X}{Y} = \left(\frac{X_s}{Y_s}\right) \times B^{X_E - Y_E}$

Examples:

$$X = 0.3 \times 10^2 = 30$$

 $Y = 0.2 \times 10^3 = 200$

$$X + Y = (0.3 \times 10^{2-3} + 0.2) \times 10^3 = 0.23 \times 10^3 = 230$$

 $X - Y = (0.3 \times 10^{2-3} - 0.2) \times 10^3 = (-0.17) \times 10^3 = -170$
 $X \times Y = (0.3 \times 0.2) \times 10^{2+3} = 0.06 \times 10^5 = 6000$
 $X \div Y = (0.3 \div 0.2) \times 10^{2-3} = 1.5 \times 10^{-1} = 0.15$

부동소수점 수의 덧셈과 뺄셈

- 1. 0인지 검사한다
- 2. 두 수의 지수들을 같아지도록 가수의 자리수를 조정한다
- 3. 가수들 간에 덧셈/뺄셈을 수행
 - 가수들의 부호를 고려해 더해진다
- 4. 결과를 정규화한다(normalization)
 - 가장 왼쪽 비트가 0이 아닐 때까지 좌측으로 쉬프트시킨다

□예) 이진수의 부동소수점 수의 덧셈

부동소수점 덧셈과 뺄셈 연산 흐름도($Z = X \pm Y$)

부동소수점 수의 곱셈

□ 가수끼리는 곱셈 연산을 수행하고 지수끼리는 덧 셈을 수행

부동소수점 수의 나눗셈

□ 가수부분은 나눗셈 연산을 수행하고, 지수부분은 뺄셈 연산 수행

6. 논리 연산

□ 마스크(mask) 연산

- 원하는 비트들을 선택적으로 clear하는 데 사용하는 연산
- A 레지스터의 상위 4비트를 0으로 clear하는 경우의 예

비교(compare) 연산

- □ 두 데이터를 비교하는 연산으로 대응되는 비트들의 값이 같으면 해당 비트를 0으로 세트하고, 서로 다르면 해당 비트를 1로 세트
- □ 모든 비트들이 같은 경우, Z 플래그(zero 플래그)를 1로 세트

$A = 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1$	(연산 전)
$B = 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1$	비교(XOR)연산
$A = 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0$	 (연산 후)

산술적 쉬프트(arithmetic shift)

- □ 쉬프트 과정에서 부호 비트는 유지하고, 수의 크기를 나타내는 비트들 만 쉬프트한다.
- □ 산술적 좌측-쉬프트
 - D4 (불변), D3 ← D2, D2 ← D1, D1 ← 0
- □ 산술적 우측-쉬프트
 - D4 (불변), D4 → D3 , D3 → D2, D2 → D1

□예)

A = 10101110; 초기 상태

<u>1</u>1011100; A의 산술적 좌측-쉬프트 결과

1 1 0 1 0 1 1 1 ; A의 산술적 우측-쉬프트 결과

수고하고 무거운 짐 진 자들아 다 내게로 오라 내가 너희를 쉬게 하리라(마태복음11:28)