GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Iowa State University

September 29, 2013

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The model

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler Gibbs steps Estimated heterosis

orobabilities GPU parallelism

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The mode

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

Will Landau

Biological background

DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps

Estimated heterosis probabilities GPU parallelism

DNA

··· GTGCATCTGACTCCTGAGGAGAAG ··· CACGTAGACTGAGGACTCCTCTTC ···

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler
Gibbs steps
Estimated betavesis

Estimated heteros probabilities GPU parallelism

RNA

··· GUGCAUCUGACUCCUGAGGAGAAG ···

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Proteins

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Central dogma: how organisms make proteins

GTGCATCTGACTCCTGAGGAGAAG ... DNA GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological Central dogma

Central dogma: how organisms make proteins

GTGCATCTGACTCCTGAGGAGAAG DNA
CACGTAGACTGAGGACTCCTCTTC

(transcription)
GUGCAUCUGACUCCUGAGGAGAAG RNA

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Central dogma of genetics

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological Central dogma

HSP₆₀

- ► HSP = heat shock protein.
- ▶ Prevent heat damage to other proteins.

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampl
Gibbs steps
Estimated heterosis
probabilities

Temperature spike triggers HSP60 production.

HSP60 Gene

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities GPU parallelism

Temperature spike causes HSP60 expression.

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities GPU parallelism

Temperature spike causes HSP60 expression.

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

RNA-seq

- ► RNA sequencing: measure gene expression using relative abundance of RNA.
- ► Illumina Genome Analyzer:

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

RNA-seg data: counts of amplified RNA fragments

	Treatment I		Treatr	nent 2	Treatment 3		
Gene I	100	225	0	70	279	300	106
Gene 2	0	1	1	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
Gene 34897	10	13	6	819	761	902	912

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological RNA-sea

The model

Goal: use RNA-seq to study hybrid vigor (heterosis).

GPU-parallel Gibbs sampling of a hierarchical

High-parent heterosis: child's trait surpasses both parents

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Low-parent heterosis: child's trait is weaker than in each parent

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

Mid-parent heterosis: child's trait is different than average of parents

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological Hybrid vigor

High-parent heterosis in gene expression

	Parent I			Ch	ild	Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	I	I	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
							•••
Gene 34897	10	13	6	819	761	902	912

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological Hybrid vigor

Low-parent heterosis in gene expression

	Parent I			Ch	ild	Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	I	I	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
Gene 34897	10	13	6	819	761	902	912

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological Hybrid vigor

Mid-parent heterosis in gene expression

	Parent I			Ch	ild	Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	I	I	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
		•••	•••				
Gene 34897	10	13	6	819	761	902	912

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he mode

Fhe Gibbs sample Gibbs steps Estimated heterosis probabilities

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The model

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heterosi probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$c_n \stackrel{\text{ind}}{\sim} \text{N}(c_n \mid 0, \sigma_c^2)$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs samp
Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$
 $c_n \stackrel{\text{ind}}{\sim} \mathsf{N}(c_n \mid 0, \sigma_c^2)$

$$\varepsilon_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0, \eta_g^2)$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{aligned} y_{g,n} &\overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))) \\ c_n &\overset{\text{ind}}{\sim} \mathsf{N}(c_n \mid 0, \sigma_c^2) \\ \sigma_c &\sim \mathsf{U}(\sigma_c \mid 0, \sigma_{c0}) \\ \varepsilon_{g,n} &\overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0, \eta_g^2) \end{aligned}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities

$$\begin{split} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ c_n & \overset{\text{ind}}{\sim} \mathsf{N}(c_n \mid 0,\sigma_c^2) \\ & \sigma_c \sim \mathsf{U}(\sigma_c \mid 0,\sigma_{c0}) \\ \varepsilon_{g,n} & \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 & \overset{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\begin{split} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ c_n & \overset{\text{ind}}{\sim} \mathsf{N}(c_n \mid 0,\sigma_c^2) \\ & \sigma_c \sim \mathsf{U}(\sigma_c \mid 0,\sigma_{c0}) \\ \varepsilon_{g,n} & \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 & \overset{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0,d_0) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ c_n & \overset{\text{ind}}{\sim} \mathsf{N}(c_n \mid 0,\sigma_c^2) \\ & \sigma_c \sim \mathsf{U}(\sigma_c \mid 0,\sigma_{c0}) \\ \varepsilon_{g,n} & \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 & \overset{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \end{aligned}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heterosi: probabilities GPU parallelism

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{ sample } n \text{ from parent 1} \\ \phi_g + \delta_g & \text{ sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{ sample } n \text{ from parent 3} \end{cases}$$

 $y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heteros probabilities GPU parallelism

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2)$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs samp
Gibbs steps
Estimated heterosi
probabilities
GPU parallelism

$$\mu(n,\phi_{\it g},\alpha_{\it g},\delta_{\it g}) = \begin{cases} \phi_{\it g} - \alpha_{\it g} & \text{sample n from parent 1} \\ \phi_{\it g} + \delta_{\it g} & \text{sample n from child} \\ \phi_{\it g} + \alpha_{\it g} & \text{sample n from parent 3} \end{cases}$$

$$\begin{aligned} \textit{y}_{\textit{g},\textit{n}} & \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\textit{y}_{\textit{g},\textit{n}} \mid \mathsf{exp}(\textit{c}_{\textit{n}} + \varepsilon_{\textit{g},\textit{n}} + \mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}))) \\ \phi_{\textit{g}} & \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_{\textit{g}} \mid \theta_{\textit{\phi}}, \sigma_{\phi}^{2}) \end{aligned}$$

$$\alpha_{\mathbf{g}} \overset{\mathsf{ind}}{\sim} \pi_{\alpha}^{1-l(\alpha_{\mathbf{g}})} [(1-\pi_{\alpha})\mathsf{N}(\alpha_{\mathbf{g}} \mid \theta_{\alpha}, \sigma_{\alpha}^2)]^{l(\alpha_{\mathbf{g}})}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 1} \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 3} \end{cases}$$

$$\begin{aligned} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))) \\ \phi_g &\stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \end{aligned}$$

$$\alpha_{\mathbf{g}} \overset{\mathrm{ind}}{\sim} \pi_{\alpha}^{1-l(\alpha_{\mathbf{g}})} [(1-\pi_{\alpha}) \mathsf{N}(\alpha_{\mathbf{g}} \mid \theta_{\alpha}, \sigma_{\alpha}^2)]^{l(\alpha_{\mathbf{g}})}$$

$$\delta_{\mathbf{g}} \overset{\text{ind}}{\sim} \pi_{\delta}^{1-l(\delta_{\mathbf{g}})} [(1-\pi_{\delta}) \mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^2)]^{l(\delta_{\mathbf{g}})}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 1} \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 3} \end{cases}$$

$$\begin{aligned} y_{g,n} & \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g & \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \\ \theta_\phi & \sim \mathsf{N}(\theta_\phi \mid 0, \gamma_\phi^2) \end{aligned}$$

$$\alpha_{\mathbf{g}} \overset{\mathsf{ind}}{\sim} \pi_{\alpha}^{1-I(\alpha_{\mathbf{g}})} [(1-\pi_{\alpha}) \mathsf{N}(\alpha_{\mathbf{g}} \mid \theta_{\alpha}, \sigma_{\alpha}^2)]^{I(\alpha_{\mathbf{g}})}$$

$$\delta_{g} \stackrel{\mathsf{ind}}{\sim} \pi_{\delta}^{1-l(\delta_{g})} [(1-\pi_{\delta})\mathsf{N}(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{l(\delta_{g})}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{sample n from parent 1} \\ \phi_g + \delta_g & \text{sample n from child} \\ \phi_g + \alpha_g & \text{sample n from parent 3} \end{cases}$$

$$\begin{aligned} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g &\stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \\ \theta_\phi &\sim \mathsf{N}(\theta_\phi \mid 0, \gamma_\phi^2) \end{aligned}$$

$$\begin{split} \alpha_{\mathbf{g}} & \stackrel{\text{ind}}{\sim} \pi_{\alpha}^{1-I(\alpha_{\mathbf{g}})} [(1-\pi_{\alpha}) \mathsf{N}(\alpha_{\mathbf{g}} \mid \theta_{\alpha}, \sigma_{\alpha}^2)]^{I(\alpha_{\mathbf{g}})} \\ \theta_{\alpha} & \sim \mathsf{N}(\theta_{\alpha} \mid 0, \gamma_{\alpha}^2) \end{split}$$

$$\delta_{g} \stackrel{\mathsf{ind}}{\sim} \pi_{\delta}^{1-l(\delta_{g})} [(1-\pi_{\delta})\mathsf{N}(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{l(\delta_{g})}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{sample n from parent 1} \\ \phi_g + \delta_g & \text{sample n from child} \\ \phi_g + \alpha_g & \text{sample n from parent 3} \end{cases}$$

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g &\stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \\ \theta_\phi &\sim \mathsf{N}(\theta_\phi \mid 0, \gamma_\phi^2) \end{split}$$

$$\begin{split} \alpha_g & \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)} [(1-\pi_\alpha) \mathsf{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2)]^{I(\alpha_g)} \\ \theta_\alpha & \sim \mathsf{N}(\theta_\alpha \mid 0, \gamma_\alpha^2) \end{split}$$

$$\begin{split} \delta_{\mathbf{g}} & \stackrel{\text{ind}}{\sim} \pi_{\delta}^{1-I(\delta_{\mathbf{g}})} [(1-\pi_{\delta})\mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{I(\delta_{\mathbf{g}})} \\ & \theta_{\delta} \sim \mathsf{N}(\theta_{\delta} \mid 0, \gamma_{\delta}^{2}) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{sample n from parent 1} \\ \phi_g + \delta_g & \text{sample n from child} \\ \phi_g + \alpha_g & \text{sample n from parent 3} \end{cases}$$

$$\begin{split} \mathbf{y}_{g,n} & \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g & \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ & \theta_\phi & \sim \mathsf{N}(\theta_\phi \mid 0,\gamma_\phi^2) \\ & \sigma_\phi & \sim \mathsf{U}(\sigma_\phi \mid 0,\sigma_{\phi 0}) \\ \alpha_g & \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)} [(1-\pi_\alpha)\mathsf{N}(\alpha_g \mid \theta_\alpha,\sigma_\alpha^2)]^{I(\alpha_g)} \\ & \theta_\alpha & \sim \mathsf{N}(\theta_\alpha \mid 0,\gamma_\alpha^2) \end{split}$$

$$\begin{split} \delta_{\mathbf{g}} &\overset{\text{ind}}{\sim} \pi_{\delta}^{1-I(\delta_{\mathbf{g}})} [(1-\pi_{\delta})\mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{I(\delta_{\mathbf{g}})} \\ &\theta_{\delta} \sim \mathsf{N}(\theta_{\delta} \mid 0, \gamma_{\delta}^{2}) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

he Gibbs sampl Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 1} \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 3} \end{cases}$$

$$\begin{split} \mathbf{y}_{g,n} & \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g & \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ & \theta_\phi \sim \mathsf{N}(\theta_\phi \mid 0,\gamma_\phi^2) \\ & \sigma_\phi \sim \mathsf{U}(\sigma_\phi \mid 0,\sigma_{\phi 0}) \\ & \alpha_g & \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)} [(1-\pi_\alpha)\mathsf{N}(\alpha_g \mid \theta_\alpha,\sigma_\alpha^2)]^{I(\alpha_g)} \\ & \theta_\alpha \sim \mathsf{N}(\theta_\alpha \mid 0,\gamma_\alpha^2) \\ & \sigma_\alpha \sim \mathsf{U}(\sigma_\alpha \mid 0,\sigma_{\alpha 0}) \end{split}$$

$$\begin{split} \delta_{\mathbf{g}} &\stackrel{\text{ind}}{\sim} \pi_{\delta}^{1-l(\delta_{\mathbf{g}})} [(1-\pi_{\delta}) \mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{l(\delta_{\mathbf{g}})} \\ &\theta_{\delta} \sim \mathsf{N}(\theta_{\delta} \mid 0, \gamma_{\delta}^{2}) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{sample n from parent 1} \\ \phi_g + \delta_g & \text{sample n from child} \\ \phi_g + \alpha_g & \text{sample n from parent 3} \end{cases}$$

$$\begin{split} \mathbf{y}_{g,n} & \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g & \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ \theta_\phi & \sim \mathsf{N}(\theta_\phi \mid 0,\gamma_\phi^2) \\ \sigma_\phi & \sim \mathsf{U}(\sigma_\phi \mid 0,\sigma_{\phi0}) \\ \alpha_g & \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)}[(1-\pi_\alpha)\mathsf{N}(\alpha_g \mid \theta_\alpha,\sigma_\alpha^2)]^{I(\alpha_g)} \\ \theta_\alpha & \sim \mathsf{N}(\theta_\alpha \mid 0,\gamma_\alpha^2) \\ \sigma_\alpha & \sim \mathsf{U}(\sigma_\alpha \mid 0,\sigma_{\alpha0}) \end{split}$$

$$\begin{split} \delta_{g} &\stackrel{\text{ind}}{\sim} \pi_{\delta}^{1-I(\delta g)} [(1-\pi_{\delta})\mathsf{N}(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{I(\delta_{g})} \\ &\theta_{\delta} \sim \mathsf{N}(\theta_{\delta} \mid 0, \gamma_{\delta}^{2}) \\ &\sigma_{\delta} \sim \mathsf{U}(\sigma_{\delta} \mid 0, \sigma_{\delta 0}) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 3 \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2)$$

$$\theta_\phi \sim \text{N}(\theta_\phi \mid 0, \gamma_\phi^2)$$

$$\sigma_\phi \sim \text{U}(\sigma_\phi \mid 0, \sigma_{\phi 0})$$

$$\alpha_g \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-l(\alpha_g)} [(1 - \pi_\alpha) \text{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2)]^{l(\alpha_g)}$$

$$\theta_\alpha \sim \text{N}(\theta_\alpha \mid 0, \gamma_\alpha^2)$$

$$\sigma_\alpha \sim \text{U}(\sigma_\alpha \mid 0, \sigma_{\alpha 0})$$

$$\pi_\alpha \sim \text{Beta}(\pi_\alpha \mid a_\alpha, b_\alpha)$$

$$\delta_g \stackrel{\text{ind}}{\sim} \pi_\delta^{1-l(\delta_g)} [(1 - \pi_\delta) \text{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2)]^{l(\delta_g)}$$

$$\theta_\delta \sim \text{N}(\theta_\delta \mid 0, \gamma_\delta^2)$$

$$\sigma_\delta \sim \text{U}(\sigma_\delta \mid 0, \sigma_{\delta 0})$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{split} \mu(n,\phi_g,\alpha_g,\delta_g) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 3 \end{cases} \\ y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g \overset{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ \theta_\phi &\sim \text{N}(\theta_\phi \mid 0,\gamma_\phi^2) \\ \sigma_\phi &\sim \text{U}(\sigma_\phi \mid 0,\sigma_{\phi 0}) \\ \alpha_g \overset{\text{ind}}{\sim} \pi_\alpha^{1-l(\alpha_g)}[(1-\pi_\alpha)\text{N}(\alpha_g \mid \theta_\alpha,\sigma_\alpha^2)]^{l(\alpha_g)} \\ \theta_\alpha &\sim \text{N}(\theta_\alpha \mid 0,\gamma_\alpha^2) \end{split}$$

$$\begin{split} \delta_g & \stackrel{\text{ind}}{\sim} \pi_\delta^{1-l(\delta_g)}[(1-\pi_\delta)\mathsf{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2)]^{l(\delta_g)} \\ & \theta_\delta \sim \mathsf{N}(\theta_\delta \mid 0, \gamma_\delta^2) \end{split}$$

 $\sigma_{\delta} \sim U(\sigma_{\delta} \mid 0, \sigma_{\delta 0})$

 $\sigma_{\alpha} \sim \mathsf{U}(\sigma_{\alpha} \mid 0, \sigma_{\alpha 0})$ $\pi_{\alpha} \sim \mathsf{Beta}(\pi_{\alpha} \mid a_{\alpha}, b_{\alpha})$

 $\pi_\delta \sim \mathsf{Beta}(\pi_\delta \mid a_\delta, b_\delta)$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The mode

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler

Estimated heterosis probabilities GPU parallelism

Partition parameters by conditional independence.

Has a full conditional that depends on...

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

Gibbs steps
Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► From the appropriate full conditional distributions, sample the following:
- 1. c_1, \ldots, c_N

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

Gibbs steps
Estimated heterosis probabilities
GPII parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► From the appropriate full conditional distributions, sample the following:
- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► From the appropriate full conditional distributions, sample the following:
- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

► From the appropriate full conditional distributions, sample the following:

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_ϕ , σ_α , σ_δ , η_1^2 , ..., η_G^2

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

The model

The Gibbs sample
Gibbs steps
Estimated heterosis

GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

► From the appropriate full conditional distributions, sample the following:

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_ϕ , σ_α , σ_δ , η_1^2 , ..., η_c^2
- 5. $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

Gibbs steps
Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

► From the appropriate full conditional distributions, sample the following:

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_{ϕ} , σ_{α} , σ_{δ} , η_1^2 , ..., η_G^2
- 5. $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$
- 6. ϕ_1, \ldots, ϕ_G

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

I he Gibbs samplei Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

► From the appropriate full conditional distributions, sample the following:

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_{ϕ} , σ_{α} , σ_{δ} , η_1^2 , ..., η_G^2
- 5. $\varepsilon_{1,1}$, $\varepsilon_{1,2}$, ..., $\varepsilon_{1,N}$, $\varepsilon_{2,N}$, ..., $\varepsilon_{G,N}$
- 6. ϕ_1, \ldots, ϕ_G
- 7. $\alpha_1, \ldots, \alpha_G$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

► From the appropriate full conditional distributions, sample the following:

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_{ϕ} , σ_{α} , σ_{δ} , η_1^2 , ..., η_G^2
- 5. $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$
- 6. ϕ_1, \ldots, ϕ_G
- 7. $\alpha_1, \ldots, \alpha_G$
- 8. $\delta_1, \ldots, \delta_G$
- ▶ and then repeat.

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

I he Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 1} \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 3} \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$$

$$y_{g,n} \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

Consider one chain with M iterations.

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$$

$$y_{g,n} \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

Consider one chain with M iterations.

$$P(\text{high-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |\alpha_g^{(i)}|)$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vicor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$$

$$\mathbf{y_{g,n}} \overset{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y_{g,n}} \mid \exp(\mathbf{c_n} + \varepsilon_{g,n} + \mu(\mathbf{n}, \phi_g, \alpha_g, \delta_g)))$$

Consider one chain with M iterations.

$$P(\text{high-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |\alpha_g^{(i)}|)$$

$$P(\text{low-parent heterosis in gene }g\) \approx \frac{1}{M} \sum_{i=1}^M I(\delta_g^{(i)} < -|\alpha_g^{(i)}|)$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vicor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 1} \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 3} \end{cases}$$

$$y_{g,n} \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

Consider one chain with M iterations.

$$P(\text{high-parent heterosis in gene } g) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |lpha_g^{(i)}|)$$

$$P(ext{low-parent heterosis in gene } g \) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} < -|lpha_g^{(i)}|)$$

$$P(\text{mid-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} \neq 0)$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

Sample in parallel:

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Sample in parallel:
 - $\blacktriangleright \phi_g$'s

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Sample in parallel:
 - $ightharpoonup \phi_g$'s
 - $ightharpoonup \alpha_{g}$'s

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Sample in parallel:
 - $\blacktriangleright \phi_g$'s
 - $ightharpoonup \alpha_{g}$'s
 - $\triangleright \delta_g$'s

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - $\triangleright \phi_{\sigma}$'s
 - $ightharpoonup \alpha_{g}$'s
 - $ightharpoonup \delta_g$'s
 - \triangleright $\varepsilon_{g,n}$'s

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - $\blacktriangleright \phi_{\sigma}$'s
 - $ightharpoonup lpha_{
 m g}$'s
 - $ightharpoonup \delta_g$'s
 - \triangleright $\varepsilon_{g,n}$'s
 - $ightharpoonup \eta_{
 m g}$'s

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - $\blacktriangleright \phi_{\sigma}$'s
 - $ightharpoonup lpha_{
 m g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{g,n}$'s
 - $\triangleright \eta_g$'s
- Use parallel reductions to calculate sufficient statistics for:

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler
Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{
 m g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{g,n}$'s
 - η_g's
- Use parallel reductions to calculate sufficient statistics for:
 - \triangleright c_n 's

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{f g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{g,n}$'s
 - $\vdash \eta_g$'s
- Use parallel reductions to calculate sufficient statistics for:
 - ► Cn'S
 - ▶ τ, d

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - $\blacktriangleright \phi_{\sigma}$'s
 - $ightharpoonup lpha_{
 m g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{g,n}$'s
 - η_g's
- Use parallel reductions to calculate sufficient statistics for:
 - ► Cn'S
 - ▶ τ, d
 - \blacktriangleright θ_{ϕ} , θ_{α} , θ_{δ}

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

I he Gibbs samplei Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{
 m g}$'s
 - δ_g 's
 - $\triangleright \varepsilon_{\sigma,n}$'s
 - η_g's
- Use parallel reductions to calculate sufficient statistics for:
 - ► Cn'S
 - ▶ τ, d
 - \bullet θ_{ϕ} , θ_{α} , θ_{δ}
 - \triangleright σ_{ϕ} , σ_{α} , σ_{δ} , σ_{c}

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

I he Gibbs samplei Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{f g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{\sigma,n}$'s
 - η_g's
- Use parallel reductions to calculate sufficient statistics for:
 - ► Cn'S
 - ▶ τ. d
 - \bullet θ_{ϕ} , θ_{α} , θ_{δ}
 - \triangleright σ_{ϕ} , σ_{α} , σ_{δ} , σ_{c}
 - \blacktriangleright π_{α} , π_{δ}

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

Example: ϕ_g 's

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis
probabilities

GPU parallelism

Example: ϕ_g 's

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

 $\phi_g \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2)$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

Example: ϕ_{ϱ} 's

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2)$$

$$\theta_\phi \sim \text{N}(\theta_\phi \mid 0, \gamma_\phi^2)$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological

GPU parallelism

Example: ϕ_{ϱ} 's

$$\begin{aligned} y_{g,n} &\overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))) \\ \phi_g &\overset{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \\ \theta_\phi &\sim \mathsf{N}(\theta_\phi \mid 0, \gamma_\phi^2) \\ \sigma_\phi &\sim \mathsf{U}(\sigma_\phi \mid 0, \sigma_{\phi 0}) \end{aligned}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background

Example: ϕ_g 's

$$\begin{aligned} y_{g,n} &\overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))) \\ \phi_g &\overset{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \\ \theta_\phi &\sim \mathsf{N}(\theta_\phi \mid 0, \gamma_\phi^2) \\ \sigma_\phi &\sim \mathsf{U}(\sigma_\phi \mid 0, \sigma_{\phi 0}) \end{aligned}$$

• Using parallel random walk Metropolis steps, sample the ϕ_g 's from their full conditional distributions,

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

Example: ϕ_{σ} 's

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2)$$

$$\theta_\phi \sim \text{N}(\theta_\phi \mid 0, \gamma_\phi^2)$$

$$\sigma_\phi \sim \text{U}(\sigma_\phi \mid 0, \sigma_{\phi 0})$$

▶ Using parallel random walk Metropolis steps, sample the ϕ_{σ} 's from their full conditional distributions.

$$p(\phi_g \mid \cdots) \propto \exp\left(\sum_{n=1}^{N} \left[y_{g,n} \cdot \mu(n, \phi_g, \alpha_g, \delta_g)\right] - \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))\right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background RNA-sea

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$\varepsilon_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0, \eta_\sigma^2)$$

Will Landau

Biological

Example: τ^2

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ &\varepsilon_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ &\eta_g^2 \stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\eta_g^2 \ \middle| \ \mathsf{shape} = \frac{d}{2} \ , \ \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ &\varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ &\eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\eta_g^2 \ \middle| \ \mathsf{shape} = \frac{d}{2} \ , \ \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \\ &d \sim \mathsf{U}(d \mid 0,d_0) \end{split}$$

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

Example: τ^2

$$\begin{split} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \varepsilon_{g,n} \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \varepsilon_{g,n} \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 \overset{\text{ind}}{\sim} \mathsf{Inv}\text{-}\mathsf{Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(\tau^2 \mid \cdots) \\ & = \mathsf{Gamma}\left(\tau^2 \mid \mathsf{shape} = a_\tau + \frac{Gd}{2} \;, \; \mathsf{rate} = b_\tau + \frac{d}{2}\sum_{g=1}^G \frac{1}{\eta_g^2}\right) \end{aligned}$$

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{split} & p(\tau^2 \mid \cdots) \\ &= \mathsf{Gamma}\left(\tau^2 \mid \mathsf{shape} = \mathsf{a}_\tau + \frac{\mathsf{G} \mathsf{d}}{2} \;,\; \mathsf{rate} = \mathsf{b}_\tau + \frac{\mathsf{d}}{2} \sum_{g=1}^G \frac{1}{\eta_g^2} \right) \end{split}$$

Using a parallel reduction (NVIDIA's CUDA C/C++ Thrust library),
 calculate the sufficient statistic:

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

Example: τ^2

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \varepsilon_{g,n} \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 \overset{\text{ind}}{\sim} \mathsf{Inv}\text{-}\mathsf{Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(\tau^2 \mid \cdots) \\ & = \mathsf{Gamma}\left(\tau^2 \mid \mathsf{shape} = a_\tau + \frac{Gd}{2} \;, \; \mathsf{rate} = b_\tau + \frac{d}{2}\sum_{i=1}^G \frac{1}{\eta_g^2}\right) \end{aligned}$$

Using a parallel reduction (NVIDIA's CUDA C/C++ Thrust library), calculate the sufficient statistic.

$$\sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background RNA-sea

Example: τ^2

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \varepsilon_{g,n} \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(\tau^2 \mid \cdots) \end{aligned}$$

$$=\mathsf{Gamma}\left(\tau^2 \; \left| \; \mathsf{shape} = \mathsf{a}_\tau + \frac{\mathsf{G} \mathsf{d}}{2} \; , \; \mathsf{rate} = \mathsf{b}_\tau + \frac{\mathsf{d}}{2} \sum_{g=1}^G \frac{1}{\eta_g^2} \right)$$

Using a parallel reduction (NVIDIA's CUDA C/C++ Thrust library), calculate the sufficient statistic:

$$\sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

▶ Use an efficient rejection sampler to sample τ^2 .

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$\begin{split} & y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \varepsilon_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0, \eta_g^2) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

The model

Gibbs steps
Estimated heterosis
probabilities

GPU parallelism

$$\begin{split} \mathbf{y}_{\mathbf{g},n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{\mathbf{g},n} \mid \exp(c_n + \varepsilon_{\mathbf{g},n} + \mu(n,\phi_{\mathbf{g}},\alpha_{\mathbf{g}},\delta_{\mathbf{g}}))) \\ & \varepsilon_{\mathbf{g},n} \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{\mathbf{g},n} \mid 0,\eta_{\mathbf{g}}^2) \\ & \eta_{\mathbf{g}}^2 \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\eta_{\mathbf{g}}^2 \ \middle| \ \mathsf{shape} = \frac{d}{2} \ , \ \ \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{split} \mathbf{y}_{\mathbf{g},n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{\mathbf{g},n} \mid \mathsf{exp}(\mathbf{c}_n + \varepsilon_{\mathbf{g},n} + \mu(n,\phi_{\mathbf{g}},\alpha_{\mathbf{g}},\delta_{\mathbf{g}}))) \\ &\varepsilon_{\mathbf{g},n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{\mathbf{g},n} \mid 0,\eta_{\mathbf{g}}^2) \\ &\eta_{\mathbf{g}}^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\eta_{\mathbf{g}}^2 \ \middle| \ \mathsf{shape} = \frac{d}{2} \ , \ \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \\ &d \sim \mathsf{U}(d \mid 0,d_0) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{split} \mathbf{y}_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{g,n} \mid \mathsf{exp}(\mathbf{c}_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \varepsilon_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 \stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \end{split}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ &\varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ &\eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma} \left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \\ &d \sim \mathsf{U}(d \mid 0,d_0) \\ &\tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ &p(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2} \right)^{Gd/2} \left(\prod_{i=1}^G \eta_g^2 \right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2} \sum_{i=1}^G \frac{1}{\eta_g^2} \right)^{-1} \end{split}$$

$$p(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2}\right)^{Gd/2} \left(\prod_{g=1}^{G} \eta_g^2\right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2} \sum_{g=1}^{G} \frac{1}{\eta_g^2}\right) I(0 < d < d_0)$$

Will Landau

Biological background

$$\begin{split} y_{g,n} &\overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ &\varepsilon_{g,n} \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ &\eta_g^2 \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ &d \sim \mathsf{U}(d \mid 0,d_0) \\ &\tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ &p(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2}\right)^{Gd/2} \left(\prod_{g=1}^G \eta_g^2\right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2}\sum_{g=1}^G \frac{1}{\eta_g^2}\right) I(0 < d < d_0) \end{split}$$

▶ Using parallel reductions (NVIDIA's CUDA C/C++ Thrust library), calculate the sufficient statistics:

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$\begin{split} \mathbf{y}_{g,n} & \stackrel{\text{ind}}{\sim} \operatorname{Poisson}(\mathbf{y}_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \varepsilon_{g,n} & \stackrel{\text{ind}}{\sim} \operatorname{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 & \stackrel{\text{ind}}{\sim} \operatorname{Inv-Gamma}\left(\eta_g^2 \mid \operatorname{shape} = \frac{d}{2} \;,\; \operatorname{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \operatorname{U}(d \mid 0,d_0) \\ & \tau^2 \sim \operatorname{Gamma}(\tau^2 \mid \operatorname{shape} = a_\tau, \operatorname{rate} = b_\tau) \\ & p(d \mid \cdots) \propto \Gamma\left(d/2\right)^{-G} \left(\frac{d \cdot \tau^2}{2}\right)^{Gd/2} \left(\prod_{g=1}^G \eta_g^2\right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2}\sum_{g=1}^G \frac{1}{\eta_g^2}\right) I(0 < d < d_0) \end{split}$$

▶ Using parallel reductions (NVIDIA's CUDA C/C++ Thrust library), calculate the sufficient statistics:

$$\prod_{g=1}^{G} \eta_g^2 \qquad \qquad \sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ &\varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ &\eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ &d \sim \mathsf{U}(d \mid 0,d_0) \\ &\tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ &p(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2}\right)^{Gd/2} \left(\prod_{g=1}^G \eta_g^2\right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2}\sum_{g=1}^G \frac{1}{\eta_g^2}\right) I(0 < d < d_0) \end{split}$$

Using parallel reductions (NVIDIA's CUDA C/C++ Thrust library), calculate the sufficient statistics:

$$\prod_{g=1}^{G} \eta_g^2 \qquad \qquad \sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

▶ Use a random-walk metropolis step to sample *d*.

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The mode

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

The software

Ordinary C and GPU-accelerated versions, along with an R package wrapper, are available for download at https://github.com/wlandau/heterosis. GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

The Gibbs sample Gibbs steps Estimated heterosis

PU parallelism

The software

- ► Ordinary C and GPU-accelerated versions, along with an R package wrapper, are available for download at https://github.com/wlandau/heterosis.
- Time for a demo...

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Sources

- A. Gelman, J. B. Carlin, H. S. Stern, and D. S. Rubin. Bayesian Data Analysis. Chapman & Hall/CRC, 2 edition, 2004.
- Prof. Jarad Niemi's STAT 544 lecture notes.
- 3. J. Sanders and E. Kandrot. *CUDA by Example*. Addison-Wesley, 2010.
- 4. http://www.astrochem.org/sci/Nucleobases.php
- 5. http://www.biologycorner.com/bio1/DNA.html
- http://www.qualitysilks.com/images/products/ artificial-corn-stalk.jpg
- 7. http://en.wikipedia.org/wiki/dna
- 8. http://en.wikipedia.org/wiki/rna
- 9. http://en.wikipedia.org/wiki/HSP60

GPU-parallel Gibbs sampling of a hierarchical model for hybrid vigor in gene expression

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vieor

ne model

Fhe Gibbs sample Gibbs steps Estimated heterosis probabilities