1. Theodosius Dobzhansky (1948) reported H, the genetic heterozygosity in the fruit fly *Drosophila persimilis*.

Alt 850	н H1 0.59	Н2	Н3	H4
	0.37			
6200	0.40	0.40/0.18		0.348
8000	0.31		-0.118	
8600	0.18			
10000	0.20			

Compute H normalized to its maximum value (H1), and to its minimum value (H2). Then compute H3 the deviation normalized to the mean. Compute H4 the deviation normalized to the standard deviation.

$$std(H) = 0.139694$$

$$H1 = \frac{H}{max(H)}$$

$$H2 = \frac{H}{min(H)}$$

$$H3 = \frac{H - mean(H)}{mean(H)}$$

$$H4 = \frac{H - mean(H)}{std(H)}$$

2. Convert 100 kilometres travelled in 24 hours to speed in metre/second.

$$\frac{100km}{24hr} \cdot \frac{1000m}{km} \cdot \frac{1hr}{60min} \cdot \frac{1min}{60sec} = 1.1574$$
rounded to 1.16

3. Complete the following computations.

$$(10 \text{ km})^{1.4} =$$
 _____25.12 km^{1.4}____
 $R = (100 \text{ km})/(1 \text{ km}) \log_{10}(R) =$ _____2