Chapitre 4 : Espérance d'une variable aléatoire

Définition 0.0.1 (Fonction indicatrice). On note $\forall A \in \mathcal{A}$, $\mathbb{1}_A$ la variable aléatoire dite "indicatrice" de A.

Aussi nommée variable de Bernoulli a, elle est définie par : $\mathbbm{1}_A=\begin{cases} 1 \ si \ A \ est \ r\'ealis\'e \\ 0 \ sinon \end{cases}$

a. attention: un seul "i"

Définition 0.0.2 (Variable étagée). Soit $\alpha_1, \alpha_2, \dots, \alpha_n \geq 0$ et $A_1, A_2, \dots, A_n \in \mathcal{A}$. $X = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i} \text{ est une variable aléatoire étagée.}$

Définition 0.0.3 (Espérance d'une variable aléatoire étagée). Soit X la variable étagée précédemment décrite. On pose $\mathbb{E}[X] \stackrel{\text{déf.}}{=} \sum_{i=1}^{n} \alpha_i \mathbb{P}(A_i)$.

Propriété-Définition 0.0.4 (Espérance d'une variable aléatoire positive). Soit X une variable aléatoire positive et $(X_n)_{n\in\mathbb{N}}$ une suite croissante de variables aléatoires étagées. a

On suppose également que cette suite de fonctions converge simplement vers X presque surement.

Dans ce cas, on note par définition,

$$\mathbb{E}[X] \stackrel{\text{def.}}{=} \lim_{n \to +\infty} \mathbb{E}[X_n].$$

a. On a $X_0 \leq X_1 \leq \ldots \leq X_n$

Remarque: Cette espérance peut éventuellement être infinie.

Définition 0.0.5 (Généralisation à une variable aléatoire réelle). Soit X une variable aléatoire à valeurs dans $\mathbb R$ telle que $\mathbb E[|X|] < +\infty$.

On a:

$$\mathbb{E}[X] \stackrel{\text{def.}}{=} \mathbb{E}[\max(0, X)] - \mathbb{E}[-\min(0, X)].$$

a. on dit de X qu'elle est "intégrable"

Propriété 0.0.6 (Linéarité). Si X et Y sont intégrables et $\alpha, \beta \in \mathbb{R}$ alors

$$\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$$

Theorème 0.0.7 (Convergence monotone). Soit $X \geq 0$ et $(X_n)_{n \in \mathbb{N}}$ une suite croissante de variables aléatoires telle que $X_n \xrightarrow[n \to +\infty]{} X$. On a :

$$\mathbb{E}[X] = \lim_{n \to +\infty} \mathbb{E}[X_n].$$

Exercice 0.0.8. On tire au hasard un entier entre 1 et 100. On considère alors les trois événements suivants :

- A₁: "obtenir un nombre pair"
- $-A_2$: "obtenir un multiple de 5"
- A₃: "obtenir un multiple de 10"

On note N le nombre d'événements réalisés. Par construction, $N(\Omega) \subset \{0; 1; 2; 3\}$.

Exercice 0.0.9. Soit X une variable aléatoire à valeurs entières. Démontrer que $\mathbb{E}[X] = \sum_{n=0}^{+\infty} \mathbb{P}(X > n)$.

Solution : Il faut remarquer ici que "X est le nombre d'entiers qui précède X". Formellement,

$$X = \sum_{k=0}^{+\infty} \mathbb{1}_{(k < X)} = \lim_{n \to +\infty} \sum_{k=0}^{n} \mathbb{1}_{(k < X)}$$

Remarque : on pourra brièvement noter que le terme dans lequel on passe à la limite est égal à $\min(n, X)$.

Or $\left(\sum_{k=0}^n \mathbbm{1}_{(k < X)}\right)_{n \in \mathbb{N}}$ définit une suite croissante de variables aléatoires étagées qui converge vers X.

D'après la propriété-définition, il vient que :

$$\mathbb{E}[X] = \lim_{n \to +\infty} \mathbb{E}\left[\sum_{k=0}^{n} \mathbb{1}_{(X > k)}\right]$$

L'application de la linéarité suivi du passage à la limite permet alors de trouver le résultat : $\mathbb{E}[X] = \sum_{n=0}^{+\infty} \mathbb{P}(X > n)$.

Encore une fois, cette limite est éventuellement égale à $+\infty$.

Application : Cette formule permet de calculer plus facilement l'espérance d'une loi géométrique de paramètre p=1-q.

De fait, $\forall n \in \mathbb{N}, \mathbb{P}(X > n) = q^n$ que l'on utilise dans la formule précédente :

$$\mathbb{E}[X] = \sum_{k=0}^{+\infty} q^k = \frac{1}{1-q} = \frac{1}{p}.$$

Exercice 0.0.10. Soit $X \geq 0$ et $\forall t \geq 0, S(t) = \mathbb{P}(X > t)^{1}$. Prouver que $\mathbb{E}[X] = \int_{0}^{+\infty} S(t) dt$.

Remarque : Cette formule fait le lien entre une intégrale de Lebesgue à gauche et une intégrale de Riemann à droite.

Solution: Il faut déjà remarquer les égalités suivantes.

$$X = \text{longueur}([0, X]) = \int_0^X 1 \,dt + \int_X^{+\infty} 0 \,dt = \int_0^{+\infty} \mathbb{1}_{(X>t)} \,dt.$$

On pose alors $\forall n \in \mathbb{N}, X_n \stackrel{\text{def.}}{=} \int_0^n \mathbbm{1}_{(X>t)} \, \mathrm{d}t. \ (X_n)_{(n\in\mathbb{N})}$ définit alors une suite de variables aléatoires positives qui converge vers X en croissant.

Le théorème de convergence monotone permet alors d'avancer la première égalité du calcul :

$$\mathbb{E}[X] = \mathbb{E}\left[\int_0^{+\infty} \mathbb{1}_{(X>t)} \, \mathrm{d}t\right] \stackrel{!!}{=} \int_0^{+\infty} \mathbb{E}[\mathbb{1}_{(X>t)}] \, \mathrm{d}t$$

Ce qui donne le résultat final : $\mathbb{E}[X] = \int_0^{+\infty} \mathbb{P}(X > t) dt$.

Suite de l'exercice

Soit T= temps d'apparition de la première occurrence dans le processus de Poisson de paramètre $\lambda>0$.

On a vu dans un chapitre précédent que $\forall t > 0$, $\mathbb{P}(T > t) = \mathbb{P}(N_t = 0) = e^{-\lambda t}$.

Pour un match de "pied-ballon" classique, on a $\lambda t=2,4,$

d'où $\mathbb{P}(\text{"match 0-0"}) = e^{-2.4}$.

Aussi,
$$\mathbb{E}[T] = \int_0^{+\infty} S(t) dt = \int_0^{+\infty} e^{-\lambda t} dt = \frac{1}{\lambda}$$
.

on retiendra donc que $\boxed{\mathbb{E}[T] = \frac{1}{\lambda}}$. Ainsi, en interprétant $\mathbb{E}[T]$ comme le temps moyen séparant deux occurences, λ est le nombre d'occurences par unité de temps, d'où le lien "le temps est l'inverse de la fréquence".

^{1.} communément appelée "fonction de survie"

^{2.} loi exponentielle