IR1: Introduction to Information Retrieval

Some slides due to Raghavan et al.

Agenda

- What is search?
- Boolean retrieval
- Vector space model
- tf-idf
- Assessing rank quality
 - Precision/Recall Curves
 - Kendall's Tau
 - Mean Reciprocal Rank

cliat

Google

a what sound do cows make?

Google Search

I'm Feeling Lucky

sever

Search backend

Mogic: Searches Internet

Mos!

ahead of time

1 Download
Internet

(2) Build an index

vun time

1) Use index

2 Kank results

3 Doit fast.

Key problem: ranking results

- 33% clicks on top result
- Different ranking methods
 - Use words on page
 - Pre-Google
 - Today's lecture
 - Use links on page
 - Next time
 - Google

Agenda

- What is search?
- Boolean retrieval
- Vector space model
- tf-idf
- Assessing rank quality
 - Precision/Recall Curves
 - Kendall's Tau
 - Mean Reciprocal Rank

Boolean retrieval

- For each doc, two possible outcomes of query processing
 - TRUE or FALSE
 - "exact match" retrieval
 - Simplest form of search, used to be common

Query

- Which plays of Shakespeare contain the words
 Brutus AND Caesar but NOT Calpurnia?
- Answer queries like this using a term-document incidence table
- Basically, a table of Booleans

Term-document incidence

Which plays of Shakespeare contain the words **Brutus** AND **Caesar** but NOT **Calpurnia**?

1 if	play			
contains				
wo	rd			

	Tempest	Hamlet	Othello	Macbeth
Antony	0	0	0	1
Brutus	0	1	0	0
Caesar	0	1	1	1
Calpurnia	0	0	0	0
Cleopatra	0	0	0	0
mercy	1	1	1	1
worser	1	1	1	0

Ranking search results

- Boolean queries simply include or exclude a document from results
- When we have many hits, we need to sort (rank) the results

Agenda

- What is search?
- Boolean retrieval
- Vector space model
- tf-idf
- Assessing rank quality
 - Precision/Recall Curves
 - Kendall's Tau
 - Mean Reciprocal Rank

Documents as vectors

 Each document is a vector of values, one component for each term

- We thus have a *vector space*
 - A doc is a point in the space
- How many dimensions?
- Is this space sparse or dense? Why?

Documents as vectors

- Each document is a vector of values, one component for each term
- We thus have a vector space
 - A doc is a point in the space
- How many dimensions?
 - Dimension for every possible term (word)
- Is this space sparse or dense? Why?
 - Sparse. Most documents do not have most words.

Documents in 3D space

 Documents that are "close together" in space are close in meaning

Documents in 3D space

 Documents that are "close together" in space are close in meaning

Vector space query model

- 1. Treat a query as a short document
- 2. Sort documents by increasing distance (decreasing similarity) to the query document
- 3. Easy to compute, both query and doc are vectors
- First used in Salton's SMART system (1970). Now used by almost every information retrieval system.

Vector representation

- Docs and queries are vectors
- Position 1 corresponds to term 1
 Position t corresponds to term t
- Weight of term stored in each position

$$D_i = w_{d_{i1}}, w_{d_{i2}}, ..., w_{d_{it}}$$
 $Q = w_{q1}, w_{q2}, ..., w_{qt}$
 $w = 0$ if a term is absent

Documents in 3D space

 Term weights indicate length of document vector along a dimension

Vector magnitude

- With Boolean search, the values in a vector (one for each term) are 0 or 1
- Next, we'll consider values [0, 1]

Agenda

- What is search?
- Boolean retrieval
- Vector space model
- •tf-idf
- Assessing rank quality
 - Precision/Recall Curves
 - Kendall's Tau
 - Mean Reciprocal Rank

Term frequency

- Which doc is a better match for the query "kangaroo", one with a single mention of "kangaroo", or a doc that mentions it 10 times?
- Find a few good examples and bad examples on the web for "kangaroo"
 - How many times does the word appear?

Term frequency

- Which doc is a better match for the query "kangaroo", one with a single mention of "kangaroo", or a doc that mentions it 10 times?
- The doc that mentions it 10 times

• Term frequency: how many times the word appears

in current document

Higher is better

Document frequency

 Which term is more indicative of document similarity, "Book" or "Rumpelstiltskin"?

Document frequency

- Which term is more indicative of document similarity, "Book" or "Rumpelstiltskin"?
- Rumpelstiltskin

Document frequency: how often a word appears in

doc collection

Lower is better

Inverse document frequency

- Inverse Document Frequency (IDF) provides high values for rare words, low values for common words
- $IDF = N / n_k$
 - N = total # docs in collection C
 - n_k = # docs in C that contain T_k

Example

- Document collection: 29 million wikipedia pages
- "rumpelstiltskin" appears in 3600 wikipedia pages
- IDF = 29e6 / 3600 = 8055.556

Log inverse document frequency

- Query "Rumpelstiltskin book"
- What if "Rumpelstiltskin" appears 10 out of 29 million documents and "book" appears in 1 million out of 29 million?
- Is the term "book" 100,000 times less useful than "Rumpelstiltskin"?

Log inverse document frequency

- Query "Rumpelstiltskin book"
- What if "Rumpelstiltskin" appears 10 out of 29 million documents and "book" appears in 1 million out of 29 million?
- Is the term "book" 100,000 times less useful than "Rumpelstiltskin"?
 - Probably not.
- Solution: $log(N / n_k)$
- Sublinear function decreases the weight of "Rumpelstiltskin" compared to "book"
- Still monotonically increasing, so order is preserved

Reasoning about TF x IDF

- Term frequency high for common word in one document
- Inverse Document Frequency high for rare word in collection
- Term-Frequency x Inverse-Document-Frequency high for common word in one document that is rare in the collection
- $W_{ik} = tf_{ik} * \log(N / n_k)$
 - T_k = term k in document D_i
 - tf_{ik} = freq of term T_k in doc D_i
 - N = total # docs in collection C
 - n_k = # docs in C that contain T_k

TF x IDF

- Term-Frequency x Inverse-Document-Frequency $W_{ik} = tf_{ik} * log(N / n_k)$
 - T_k = term k in document D_i
 - tf_{ik} = freq of term T_k in doc D_i
 - N = total # docs in collection C
 - n_k = # docs in C that contain T_k
- How would these affect the weight for a term T_k ?
 - Large number of docs that contain T_k
 - Small number of docs that contain T_k
 - Large number of total documents
 - Small number of total documents

TF-IDF normalization

- Imagine two documents about kangaroos
- Document 1 mentions "kangaroo" 100 times. Total length 1000 words.
- Document 2 mentions "kangaroo" 200 times. Total length 10,000 words.
- Which document should have the greater weight?
 - Avoid giving longer doc more weight just because they are long
 - Need to normalize

TF-IDF normalization

- Normalize term weights
 - Longer docs not given more weight
 - Normalize to sum-of-squares

$$w_{ik} = \frac{tf_{ik} \log(N/n_k)}{\sqrt{\sum_{k=1}^{t} (tf_{ik})^2 [\log(N/n_k)]^2}}$$

- Some references use non-normalized tf-idf
 - $w_{ik} = tf_{ik}log(N/n_k)$

TF-IDF and the vector space

- Vector lengths are now TF-IDF values
- Vectors that are "close" are still similar in meaning

Vector space similarity

Vector space similarity is also called the cosine, or

normalized inner product

Recall that cosine:

- Depends on two adjacent vector lengths
- =1 when angle is zero (points are identical)
- Smaller when angle is greater

Vector space similarity

Similarity of two docs is:

$$Sim(Di,Dj) = \sum_{k=1}^{t} w_{ik} * w_{jk}$$

Normalized ahead of time, when computing term weights.

$$\sin(d_j, q) = \frac{\mathbf{d_j} \cdot \mathbf{q}}{\|\mathbf{d_j}\| \|\mathbf{q}\|} = \frac{\sum_{i=1}^{N} w_{i,j} w_{i,q}}{\sqrt{\sum_{i=1}^{N} w_{i,j}^2} \sqrt{\sum_{i=1}^{N} w_{i,q}^2}}$$

Not normalized ahead of time

Vector space similarity

Euclidean dot product formula

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$$

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{\sum} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}} \quad \text{Already "baked" into weight}$$

$$Sim(Di,Dj) = \sum_{k=1}^{t} w_{ik} * w_{jk}$$

Vector space summary

- User's query treated as short document
- Query is in same space as docs
- Easy to measure a doc's distance to query
- Extension of Boolean retrieval

History

- IDF invented by Karen Spärck Jones
 - 1935 2007
- British Computer Scientist
- Proposed IDF in 1972 paper

Agenda

- What is search?
- Boolean retrieval
- Vector space model
- tf-idf
- Assessing rank quality
 - Precision/Recall Curves
 - Kendall's Tau
 - Mean Reciprocal Rank

- You've built a ranker. How do you know if it's any good?
- Relevance has been studied for a long time
 - Many contributing factors
 - People disagree on what is relevant
- Retrieval/assessment models differ
 - Binary relevance vs sorted relevance
 - Query-relevance vs user-relevance

- Results from an experimental search engine
- BRITNEY IS BACK
- Query: "Britney"
- URL 1: http://www.britneyspears.com
- URL 2: http://andrewdeorio.com
- URL 3: http://en.wikipedia.org/wiki/Britney-Spears

- Results from human "answer key"
- Query: "Britney"
- URL 1: http://www.britneyspears.com
- URL 2: http://en.wikipedia.org/wiki/Britney_Spears

...

• URL 90: http://andrewdeorio.com

- Results from an experimental search engine
- Query: "Britney"
- URL 1: http://www.britneyspears.com
 - Human answer: 1
- URL 2: http://andrewdeorio.com
 - Human answer: 90
- URL 3: http://en.wikipedia.org/wiki/Britney_Spears
 - Human answer: 2

- Results from an experimental search engine
 - Query: "Britney"
 - URLs: URL1, URL2, URL3, ...
 - Rank: 1, 90, 2, ...
- Large hand-marked query/result tuples form the "answer key" for the ranker
- Text REtrieval Conference (TREC) is an annual conference, also publishes data
- Different tracks have included:
 - Blog track studies information-seeking
 - Chemical IR, Legal IR

Agenda

- What is search?
- Boolean retrieval
- Vector space model
- tf-idf
- Assessing rank quality
 - Precision/Recall Curves
 - Kendall's Tau
 - Mean Reciprocal Rank

Positives and negatives

- True positive
 - Relevant doc returned
- False positive
 - Irrelevant doc returned
- True negative
 - Irrelevant doc not returned
- False negative
 - Relevant doc not returned

Positives and negatives

- Label these docs as TP, FP, TN, FN
 - Query = puppies
- Search results
 - Britney Spears (@britneyspears) Instagram photos
 - 10 Dog Breeds That Have The CUTEST Puppies
- Web pages not included in search results
 - Cats Reddit
 - Puppy Bowl XI Highlights

Positives and negatives

- Label these docs as TP, FP, TN, FN
 - Query = puppies
- Search results
 - Britney Spears (@britneyspears) Instagram photos FP
 - 10 Dog Breeds That Have The CUTEST Puppies TP
- Web pages not included in search results
 - Cats Reddit TN
 - Puppy Bowl XI Highlights FN

Precision and recall

- Precision: fraction of retrieved docs that are relevant = relevant/retrieved
- Recall: fraction of relevant docs that are retrieved = retrieved/relevant

	Relevant	Not Relevant
Retrieved	TP	FP
Not retrieved	FN	TN

- Precision P = tp/(tp+fp)
- Recall R = tp/(tp+fn)

Precision and recall

- Generally trade precision vs. recall
 - How to get a system with high recall?
- Recall is a non-decreasing function of the # of docs retrieved
 - Precision usually decreases with more docs retrieved
- Drawbacks
 - Binary relevance
 - Need human judgments
 - Must average over large corpus
 - Alternatively, skewed by corpus/author selection

Exercise

Precision: % of selected items that are correct

Recall: % of correct items

that are selected

A search engine always returns all documents

• Do you expect high or low precision?

Do you expect high or low recall?

Exercise

Precision: % of selected items that are correct

Recall: % of correct items

that are selected

A search engine always returns all documents

- Do you expect high or low precision?
 - Low. If all docs are returned, then many non-relevant docs are included, which will decrease the percentage of returned docs that are relevant.
- Do you expect high or low recall?
 - High. If all docs are returned, then all relevant docs must be returned.

Precision-recall curves

- A search engine will create a total ordering on all documents
- The top k are returned to the user
- We can calculate precision and recall for several values of k
- This creates a precision-recall curve

Precision-recall example

- Collection of 20 documents
- Relevant docs are ranked 1, 2, 4, 15

Precision: % of selected items that are correct

Recall: % of correct items that are selected

Agenda

- What is search?
- Boolean retrieval
- Vector space model
- tf-idf
- Assessing rank quality
 - Precision/Recall Curves
 - Kendall's Tau
 - Mean Reciprocal Rank

Take ranking into account

- Precision at fixed recall
 - Precision of top k results, for k=1,10,50,...
 - Critical for Web Search
- Kendall's Tau for comparing sorts

Kendall's tau

- Use a real ordering of documents, not just binary "relevant/not relevant"
- The correct document ordering is:
 - 1, 2, 3, 4
- Search Engine A outputs:
 - 1, 2, 4, 3
- Search Engine B outputs:
 - 4, 3, 1, 2
- Intuitively, A is better. How do we capture this numerically?

Measuring rank correlation

- Kendall's Tau has some nice properties:
 - If agreement between 2 ranks is perfect, then KT = 1
 - If disagreement is perfect,
 then KT = -1
 - If rankings are uncorrelated, then KT = 0 on average
- Intuition: Compute fraction of pairwise orderings that are consistent

Kendall's tau

- The non-normalized version is called Kendall's Tau Distance
- Also called bubble-sort distance

Kendall's tau example

- Correct ordering:
 - 1, 2, 3, 4
- Search Engine A:
 - 1, 2, 4, 3

$$\tau = \frac{5-1}{\frac{1}{2}4(4-1)} = \frac{4}{6} = 0.666$$

- Search Engine B:
 - 4, 3, 2, 1

$$\tau = \frac{0-6}{\frac{1}{2}4(4-1)} = \frac{-6}{6} = -1$$

Agenda

- What is search?
- Boolean retrieval
- Vector space model
- tf-idf
- Assessing rank quality
 - Precision/Recall Curves
 - Kendall's Tau
 - Mean Reciprocal Rank

Mean reciprocal rank

 "How close to the top of the search results is the 1st correct answer?"

$$meanreciprocalrank = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

- Good for search results
- Great for systems that return a single guess

Mean reciprocal rank example

Query set "Q"

- web.eecs.umich.edu/~jflinn/
- andrewdeorio.com
- en.wikipedia.org/wiki/Britney_S pears

Correct answer

- britneyspears.com
- instagram.com/britneyspears
- en.wikipedia.org/wiki/Britney_Sp ears

$$meanreciprocalrank = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

Query: "britney"

MRR = 1/3

Mean reciprocal rank

$$meanreciprocal rank = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

	, , , , , , , , , , , , , , , , , , ,
Windy City?	Toronto, Chicago, NYC
Tree City?	Ann Arbor, Madison, Capital City
Emerald City?	Vancouver, San Francisco, Seattle
MRR	

Mean reciprocal rank

$$meanreciprocal rank = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

Query	Results	Rank	Reciprocal rank
Windy City?	Toronto, Chicago, NYC	2	1/2
Tree City?	Ann Arbor, Madison, Capital City	1	1
Emerald City?	Vancouver, San Francisco, Seattle	3	1/3
MRR			0.611

Assessing rank quality

- Precision and Recall
 - Usually trade off each other
 - Precision-recall curve
 - Requires relevant/not-relevant judgments
- Kendall's Tau
 - Measures correlation between two rankings
 - "Fraction of pairs in agreement"
 - +1 if perfect agreement; -1 disagreement
- Mean Reciprocal Rank
 - "How close to the top of the search results is the 1st correct answer?"

Summary

- Today we used the words on a page to rank search results
- Next time, we'll use the links between web pages to improve search results