Techniques used in Developmental Biology

Example: Fate Mapping

Fate Mapping – Vital Dye (1929)

Fig. 2.5 Cleavage of the *Xenopus* embryo. The *Xenopus* embryo undergoes successive cleavages at intervals of about

20 minutes. Photographs courtesy of R. Kessel, from Kessel, R.G. et al.: 1974.

Walter Vogt

Nile Blue (尼罗蓝) Staining

Disadvantage: Dye could diffuse ---- low resolution

Fate Mapping – Cell Transplantation (1969)

Nicole Le Douarin

Fate Mapping – Cell Transplantation (1969)

Chick embryo with region of quail cells on the neural tube

chick-quail chimera

Resolution at cellular level

Weinberg. C after Woo and Fraser 1995.)

Fate Mapping – Fluorescent Dye (1980)

tribute to two or more regions. (A, B from Kozlowski et al. 1998; photographs courtesy of E.

Fate Mapping – Genetic cell lineage tracing (1990)

Fate Mapping – Genetic cell lineage tracing (2000)

Cre – LoxP system (mammal)

To study the expression a gene

mRNA - Transcription

Protein - Translation

Detection of gene expression

mRNA

Northern blot

in situ hybridization

RT-PCR

DNA Microarray (GeneChip)

Northern blot

in situ hybridization

RT-PCR

(reverse transcription-polymerase chain reaction)

DNA Microarray (GeneChip)

Overview of the Affymetrix GeneChip technology

Detection of gene expression

Protein

Protein gel electrophoresis (SDS-PAGE)

Western blot

Immunostaining

Expression of a gene is controlled

by **Enhancer & Promoter**

Detection of gene expression

Detection of gene expression

To study the function of a gene

1. Loss of function \rightarrow Phenotype

- Mutation
- RNAi

Nature, 1998

Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*

Andrew Fire 1 , SiQun Xu 1 , Mary K. Montgomery 1 , Steven A. Kostas $^{1/2}$, Samuel E. Driver 3 and Craig C. Mello 3

in situ hybridization of 4-cell stage embryos

Negative control

mex-3 mRNA expression

antisense RNA

dsRNA

The Nobel Prize in Physiology or Medicine 2006

"for their discovery of RNA interference - gene silencing by double-stranded RNA"

Andrew Fire

Craig Mello

To study the function of a gene

- 1. Loss of function \rightarrow Phenotype
 - Mutation
 - RNAi
 - Dominant negative

Necessary 必要

- 2. Gain of function → Phenotype
 - Over-expression
 - Constitutive active

Sufficient 充分

Mutation – by effect on structure

Small-scale mutations:

- change one or a few nucleotides
- affecting a single gene

Large-scale mutations:

- change of chromosomal structure
- affecting multiple genes

Small-scale mutations:

Point mutations

- Change of a single nucleotide in the DNA

ATCGAGCT

Insertions

- Add one or more extra nucleotides into the DNA.

ATCGAGCT

Deletions

- Remove one or more nucleotides from the DNA.

ATCGAGCT

Large-scale mutations:

- Inversions: reversing the orientation of a chromosomal segment
- Duplication: leading to multiple copies of a chromosomal region
- Insertion: A chromosome region is inserted into another chromosome
- Deletions: leading to loss of the genes within those regions
- Translocations: interchange of genetic parts between chromosomes

Mutation – by effect on function

Loss-of-function mutations

the gene product having less or no function.

- Amorphic mutation: complete loss of function
- Hypomorphic mutation: partial loss of function

Phenotypes associated with such mutations are most often recessive.

Gain-of-function mutations

the gene product gains a new and abnormal function.

these mutations usually have dominant phenotypes.

Dominant negative mutations

have an altered gene product that interfere with the wild-type gene product.

Mutation – by effect on fitness

Harmful mutation:

decreases the fitness of the organism.

Beneficial mutation:

increases the fitness of the organism.

Neutral mutation:

has no harmful or beneficial effect on the organism.

Mutation – by effect on protein sequence

Silent mutation:

- a point mutation that does not result in a change to the amino acid.

Neutral mutation:

- a point mutation that results in a different, but chemically similar amino acid.

Missense mutation:

- a point mutation that cause substitution of a different amino acid, which renders the resulting protein less functional.

Nonsense mutation:

- a point mutation that results in a premature stop codon, and a truncated protein.

Frameshift mutation:

- insertion or deletion of a number of nucleotides that is not evenly divisible by three, disrupt the reading frame and results in different translation of amino acids.

Mutation – by effect on protein sequence

Silent mutation:

Radiation:

X-ray

The Nobel Prize in Physiology or Medicine 1933

"for his discoveries concerning the role played by the chromosome in heredity "

Thomas Hunt Morgan (1866 –1945)

1906, began his work on D. melanogaster at Columbia University

1910, reported the white eyed mutant – the first gene (white) identified

1933, rewarded Nobel Prize in Medicine

The Nobel Prize in Physiology or Medicine 1946

"for the discovery of the production of mutations by means of X-ray irradiation "

Hermann Joseph Muller (1890 –1967)

Radiation:

X-ray

UV

Discovery: 1890s, in Bordeaux, France.

- wine workers showed an high incidence of **skin cancer** on the back of the neck.

Explanation: They exposed the back of their necks to the **sun** while bending over in the fields picking grapes.

Conclusion: The ultraviolet (**UV**) radiation in natural sunlight was later identified as a **mutagen**.

Radiation:

Chemical:

Discovery: 1775 in England, Dr. Pott noticed a high incidence of **cancer** in chimney sweeps.

Explanation: chimney soot contained **carcinogens** that could cause cancer.

Conclusion: Over 150 years later, chimney soot was found to contain **hydrocarbons** (烃) capable of **mutating DNA**.

Radiation:

Chemical:

Transposons: transposable element

Barbara McClintock (1802 –1992)

jumping genes

The Nobel Prize in Physiology or Medicine 1983

Gain of function phenotype Over-expression

Induction of ectopic eyes by targeted expression of the eyeless gene

Ectopic Eyeless expression

Expression of apoptotic genes induce cell death

