Generative Adversarial Imitation Learning A summary of Ho & Ermon (NIPS 2016)

Giuseppe Gabriele Russo

Università di Pisa

June 4, 2025

1. Motivation & Problem Statement

Goal (offline imitation learning):

Given only expert trajectories, learn a policy π that reproduces expert behaviour *without* knowing the reward.

Behavioral Cloning

- Supervised mapping $s \rightarrow a$.
- Covariate shift: errors snowball when the agent enters unseen states.

Inverse Reinforcement Learning

- Infer reward, then run RL as an inner loop.
- Heavy computation & poor sample efficiency; struggles with high-dimensional control.

Desired solution:

Direct policy learning that scales to high-dimensional continuous

2. Core Idea: Occupancy-Measure Matching

Match occupancy measures $\rho_{\pi}(s, a)$ vs. $\rho_{E}(s, a)$

 ρ_π : discounted visitation frequency under policy π ρ_E : visitation frequency of the expert

Objective: bring ρ_{π} close to ρ_{E} \Rightarrow indistinguishable behavior trajectories

Why occupancy and not raw actions?

Matching the entire state—action distribution prevents covariate shift and captures long—term effects of actions.

Minimax formulation

$$\min_{\pi} \max_{D} \ \mathbb{E}_{
ho_E}[\log D(s,a)] + \mathbb{E}_{
ho_{\pi}}[\log(1-D(s,a))] - \lambda \, H(\pi)$$

3. Key Objective Equation

Definition

Maximum-Entropy GAN Objective

$$\min_{\pi} D_{\mathrm{JS}}(\rho_{\pi} \parallel \rho_{\mathsf{E}}) - \lambda H(\pi)$$

- $D_{\rm JS}$ Jensen–Shannon divergence induced by the discriminator (zero when $\rho_{\pi}=\rho_{\rm E}$).
- $H(\pi) = \mathbb{E}_{\pi}[-\log \pi(a|s)]$ causal entropy bonus encourages exploration and smooth policies.
- Optimal value is reached when the agent's occupancy measure matches the expert's: perfect imitation.

4. GAIL Algorithm

Algorithm 1 Generative Adversarial Imitation Learning

- 1: Initialise policy π_{θ} and discriminator D_{w}
- 2: while not converged do
- 3: Collect trajectories $\tau \sim \pi_{\theta}$
- 4: Update D_w by maximising:

$$\log D_w(s,a)$$
 for $(s,a) \sim \tau_E \& \log(1-D_w(s,a))$ for $(s,a) \sim \tau$

5: Update π_{θ} with TRPO on cost:

$$c(s,a) = -\log D_w(s,a) + \lambda H(\pi_\theta)$$

- 6: end while
- 7: **return** π_{θ}

5. Empirical Benchmarks

Benchmarks: 9 MuJoCo control tasks (CartPole → Humanoid)

Figure 1: (a) Performance of learned policies. The y-axis is negative cost, scaled so that the expert achieves 1 and a random policy achieves 0. (b) Causal entropy regularization λ on Reacher.

6. Key Findings

- GAIL attains 70–100% of expert return with \sim 25 demonstration trajectories.
- Outperforms Behavioral Cloning, FEM, and GTAL on every task.
- Handles 376-dimensional HUMANOID while remaining sample-efficient.

7. Strengths & Limitations

Novelty: bridges IRL and GAN via occupancy-measure matching

Key Strengths

- Direct policy learning no reward inference.
- Scales to high-dimensional continuous control.
- Requires fewer demos than Behavioral Cloning.

Main Limitations

- Still sample-inefficient vs. model-based methods.
- TRPO/PPO updates are computationally heavy.
- No online expert feedback.

8. Essential References

- J. Ho & S. Ermon, "Generative Adversarial Imitation Learning," in NeurIPS 29, 2016.
- P. Abbeel & A. Ng, "Apprenticeship Learning via Inverse Reinforcement Learning," ICML, 2004.
- I. Goodfellow et al., "Generative Adversarial Nets," NeurIPS, 2014.
- J. Schulman et al., "Trust Region Policy Optimization," ICML, 2015.