Hermidæmi02 Greining og Hönnun stýrikerfa TÖV201G

Donn Eunice Bartido deb5@hi.is

Janúar 2023

Hönnunarforsendur

Öryggiskerfi í húsi hefur fimm skynjara:

- Við glugga 1
- Við glugga 2
- Við útihurð
- Hreyfiskynjara fyrir svæði 1
- Hreyfiskynjara fyrir svæði 2

Stöðubreytur

- Kerfi er á = 1
- Enginn er á staðnum = 1

Öryggiskerfið á að virka eins og hér segir:

- Ef kerfið er á og engin á staðnum þá mun merki frá hvaða skynjara sem er virkja öryggiskerfið.
- Ef einhver er á staðnum þá mun aðeins merki frá gluggum og hurðum virkja örygggiskerfið.
- Ef kerfið er ekki á, þá virkjast öryggiskerfið aldrei.
- Gerið ráð fyrir að skynjararnir gefi 0 þegar allt er eðlilegt, 1 annars (merki).

Lausn

Byrjaði á því að gera sannleikstöflu fyrir inngangana

Ég setti þetta þannig upp að ég sameinaði nokkrar breytur saman.

- A = gluggi01, gluggi02, hurð
- B = Skynjari01 og Skynjari02
- C = Þegar kerfið er á (1) þegar kerfið er ekki á (0)
- D = Enginn á staðnum (0) Einhver er á staðnum (1)

Α	В	С	D	Output
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Síðan bjó ég til Karnaugh-kort út frá sannleikstöflunni.

Karnaugh-kort

$ \overline{A}.\overline{B} \overline{C}.\overline{D} \overline{C}.D C.D C.\overline{D} $ $ \overline{A}.B 0 0 0 0 $ $ \overline{A}.B 0 0 1 0 $	Map									
$\overline{\mathbf{A}}.\mathbf{B} 0 0 \boxed{1} 0$		$\overline{C}.\overline{D}$	\overline{C} .D	C.D	$C.\overline{D}$					
	$\overline{A}.\overline{B}$	0	0	0	0					
	\overline{A} .B	0	0	1	0					
A.B 0 0 1 1	A.B	0	0	1	1					
$A.\overline{B} 0 0 1 1$	$A.\overline{B}$	0	0	1	1					

Eins og við sjáum út frá K-korti það sem er merkt;

- Blátt = AC
- Grænt = BCD

Ef við tökum C(Kerfið) út fyrir sviga fáum við C(A+BD), Það passar við þarf kerfið þarf að vera á þegar öryggis fer í gang.

• Ef C=1 og D=1 þá fer öryggiskerfið í gang.

Rásir sett upp í Cedar Logic

Eins og sést á sannleikstöflunni eru inngangar

- A = Gluggi01, Gluggi02, og Hurð
- B = Skynjari01 og Skynjari02
- C = Kerfið er á (C=1)
- D = Enginn er á staðnum (D=0)

K-kortið sýnir okkur að boolean jafnan C(A+BD). C og (A+BD) AND-að saman A-liðirnir eru svo OR-aðir saman

CDB eru svo AND-aðar saman og það tengt við C(A+BD) = C(A+BD)+(CDB)

Hér sjáum við að það er ekkert mál að útvikka kerfið hvort sem það sé að bæta við glugga eða skynjara. Við fáum sömu útkömurnar

Skil

Skil Fyrir þessa æfingu er ætlast til að þið útfærið greinagerð þar sem þið farið yfir framkvæmd og niðurstöður. Segið í stuttu máli frá reynslu ykkar við að leysa verkefnið:

- 1. Um hvað snérist verkefnið.
- 2. Hvað gerðuð þið.
- 3. Hvernig gekk hvað fór úrskeiðis/gekk vel annað áhugavert.
- 4. Niðurstöður. Setjið greinargerðina skipulega upp. Notið myndir og sannleikstöflur ykkur til stuðnings.
- 1. Verkefnið snérist um að hanna öryggiskerfi út frá hönnunarkröfum og stöðubreytum.
- 2. Ég byrjaði á því að gera sannleikstöflu og svo k-kort útfrá því. Eftir það setti ég þetta upp í Circuitverse.org og prófaði breyturnar til að sjá útkomuna
- 3. Þetta gekk erfiðilega fyrst þar sem ég var upphaflega með 7 gildi (Gluggi1-2,Hurð,Skynjarar1-2,Kveikt á kerfið og einhver/enginn er á staðnum. Með 7 breytum var erfitt fyrir mig að búa til k-kort út frá sannleikstöflu þar sem það voru of mörg niðurstöður sem ég þyrfti að vinna með. Þegar ég sameinaði nokkrar breytur þá fóru þetta frá 7 niður í 4, með 4 breytum var auðvelt fyrir mig að setja þetta í k-kort.
- 4. Hægt að sjá niðurstöður út frá sannleikstöflu og myndir af rásunum ásamt k-korti

In []: