Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Test 20

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1}\right) \cdot \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{\sqrt{2}+1 - \left(\sqrt{2}-1\right)}{\sqrt{2}^2 - 1^2} \cdot \frac{1}{2} =$	3p
	$= \left(\sqrt{2} + 1 - \sqrt{2} + 1\right) \cdot \frac{1}{2} = 2 \cdot \frac{1}{2} = 1$	2p
2.	$f(x+1) - f(x) = (x+1)^2 + 2(x+1) - (x^2 + 2x) = x^2 + 2x + 1 + 2x + 2 - x^2 - 2x = 2x + 3$	2p
	$2x + 3 \le 7 \Rightarrow x \le 2$, deci $x \in (-\infty, 2]$	3 p
3.	$\log_2\left(x^3 - 8\right) = \log_2 19 \Rightarrow x^3 - 8 = 19 \Leftrightarrow x^3 = 27$	3 p
	x = 3, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, numerele 12, 24, 36, 48, 60, 72, 84 și 96 sunt multipli de 12, deci sunt 8 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{8}{90} = \frac{4}{45}$	1p
5.	AC = BC, deci punctul C se află pe mediatoarea segmentului AB	3p
	Mediatoarea segmentului AB este axa Oy , deci $C \in Oy$	2p
6.	$\cos B = \frac{AB}{BC} \Rightarrow \cos 30^{\circ} = \frac{AB}{8}$	3 p
	$\frac{\sqrt{3}}{2} = \frac{AB}{8} \Rightarrow AB = 4\sqrt{3}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	20*1 = 20+1-20 =	3р
	= 0 + 1 = 1	2p
2.	(x*y)*z = (x+y-20)*z = x+y+z-40, pentru orice numere reale x, y și z	2p
	x*(y*z) = x*(y+z-20) = x+y+z-40 = (x*y)*z, pentru orice numere reale x, y şi z	3p
3.	x*20 = x + 20 - 20 = x, pentru orice număr real x	2p
	20 * x = 20 + x - 20 = x, pentru orice număr real x , deci $e = 20$ este elementul neutru al legii de compoziție "*"	3 p
4.	$(2x-1) + x - 20 = 21 \Leftrightarrow 3x = 42$	3 p
	x = 14	2p
5.	$9^{x} + 3^{x} - 20 = -8 \Leftrightarrow (3^{x} + 4)(3^{x} - 3) = 0$	3 p
	Cum $3^x > 0$, obţinem $3^x = 3 \Leftrightarrow x = 1$	2p

6.	$x^{2} * (2x + 21) = x^{2} + 2x + 21 - 20 = x^{2} + 2x + 1 =$	2p
	$=(x+1)^2 \ge 0$, pentru orice număr real x	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} =$	2p
	$=1\cdot 0-0\cdot 0=0$	3 p
2.	$A(a) + A(a+1) = \begin{pmatrix} 1 & a \\ a & 0 \end{pmatrix} + \begin{pmatrix} 1 & a+1 \\ a+1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 2a+1 \\ 2a+1 & 0 \end{pmatrix}, \ 2A(-1) = \begin{pmatrix} 2 & -2 \\ -2 & 0 \end{pmatrix}$	3p
	Obţinem $2a + 1 = -2$, deci $a = -\frac{3}{2}$	2p
3.	$A(1) + A(2) + A(3) + \dots + A(2020) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 3 & 0 \end{pmatrix} + \dots + \begin{pmatrix} 1 & 2020 \\ 2020 & 0 \end{pmatrix} =$	2 p
	$= \begin{pmatrix} 2020 & 1+2+3++2020 \\ 1+2+3++2020 & 0 \end{pmatrix} = \begin{pmatrix} 2020 & \frac{2020 \cdot 2021}{2} \\ \frac{2020 \cdot 2021}{2} & 0 \end{pmatrix} = 2020 \cdot A \left(\frac{2021}{2}\right)$	3 p
4.	$A(a) \cdot A(b) = \begin{pmatrix} 1+ab & b \\ a & ab \end{pmatrix}$, $A(a) + A(b) = \begin{pmatrix} 2 & a+b \\ a+b & 0 \end{pmatrix}$, pentru orice numere reale a și b	2 p
	$\det(A(a)\cdot A(b)) - \det(A(a)+A(b)) = a^2b^2 + (a+b)^2 \ge 0$, pentru orice numere reale a și b	3 p
5.	$A(x) \cdot A(y) - A(y) \cdot A(x) = \begin{pmatrix} 0 & y - x \\ x - y & 0 \end{pmatrix}$, pentru orice numere reale x şi y	3 p
	$\det(A(x)\cdot A(y)-A(y)\cdot A(x)) = \begin{vmatrix} 0 & y-x \\ x-y & 0 \end{vmatrix} = -(x-y)(y-x) = (x-y)^2 \ge 0, \text{ pentru orice}$ numere reale $x \ne i y$	2 p
6.		
	$\det(A(a)) = -a^2$, $\det(A^2(a)) = a^4$, pentru orice număr real a	2p
	$-a^2 + a^4 = 0 \Leftrightarrow a^2(a^2 - 1) = 0 \Rightarrow a = -1, \ a = 0 \text{ sau } a = 1$	3 p