

TP1: Connexionnisme et deep learning

TP : Réalisation d'un projet basé sur l'intelligence artificielle à l'aide de Tensorflow

02/12/2018

Attributs du document	
Objet du document	Rapport TP1 M2 INFO en Connexionnisme et deep learning
Référence du document	Réf:
Nom du client	Public

Auteur		
Nom	Fonction	Contact
JEAN-CHARLES Loïc	Etudiant en M2 Informatique	0690 158 668

Destinataires principaux				
Nom	Fonction	Société		
Mr PAGÉ	Professeur	Université des Antilles	Université des Antilles	

Critères de diffusion		
Confidentiel UA	Confidentiel Client	Public
[]	[]	[X]

TP : Réalisation d'un projet basé sur l'intelligence artificielle à l'aide de Tensorflow

Sujet : Générer de la musique avec Tensorflow.

Contexte: En utilisant, un RNN (réseau de neurones récurrents), je vais générer de la musique du style du groupe 'The Chainsmokers' c'est-à-dire de la musique POP.

Mes recherches et modifications?

Pour ce projet, j'ai utilisé les tutoriaux suivants :

- Générer de la musique avec un RNN : http://web.mit.edu/jisoomin/www/6S198/ps/ps6/notebook.html
- J'ai modifié le modèle de réseau de neurones en adaptant avec un plus à jour. J'ai utilisé la méthode tf.nn.rnn_cell.LSTMCell au lieu de rnn.BasicLSTMCell.
- Tutoriel sur l'implémentation basic d'un rnn-rbm : http://deeplearning.net/tutorial/rnnrbm.html
- Tutoriel vidéo YouTube par Siraj RAVAL (excellents tutoriaux sur tous ce qui est en rapport avec l'intelligence artificielle et la science des données):
 https://www.youtube.com/watch?v=ZE7qWXX05T0&list=PL2-dafEMk2A7EEME489DsI468AB0wQsMV&index=3
- J'ai ajouté le logiciel « Ffmpeg.exe » qui fonctionne en ligne de commande afin de transformer les fichiers .midi en .mp3.
- J'ai modifié les paramètres du réseau de neurones, afin d'obtenir la mélodie la plus potable que possible. Les tests et leurs résultats se trouvent dans le fichier parameters_results.txt.
 La meilleure mélodie que j'ai obtenue est pour le test 2. Pour écouter, un fichier midi il faut utiliser le lecteur Windows Media Player (lecteur par défaut) ou utiliser la commande suivante pour transformer le fichier en .mp3 :

```
..\Projet\fmpeg - i "E:\WPy3670\Projet\generated\gen\_song\_0.mid" - vn \\ - ar 44100 - ac 2 - ab 192k \\ - f mp3 "E:\WPy3670\Projet\generated\output.mp3"
```

La page suivante indique le fonctionnement interne de ce projet.

Comment ça fonctionne?

Dépendances et jeu de données

Tout d'abord, il faut télécharger le paquet MIDI qui autorise la modification des fichiers .midi dans Python avec la commande suivante :

```
pip install git + https://github.com/vishnubob/python - midi@feature/python3
```

J'ai utilisé une version de python 4 portable (version 3.6) sur Windows avec Tensorflow sur ma clé USB pour les tests. Donc, pour faire fonctionner le projet, il faut modifier les chemins d'accès aux fichiers :

- À la ligne 112 du fichier main.py : noteStateMatrixToMidi (gen_song, name = "E:\WPy3670\Projet\generated\gen_song_0")
- À la ligne 6 du fichier create_dataset.py : $songs = glob. glob (r'E:\WPy3670\Projet\util\data*.mid*')$

La base de données

Cette dernière est générée grâce aux musiques du dossier data. L'ensemble des musiques sont des fichiers mp3 du groupe « The Chainsmokers » en version piano (ce sont des reprises trouvées sur YouTube libre de droits) que j'ai converti en fichier midi.

L'ensemble de données est une liste de np. arrays, un pour chaque morceau. Chaque chanson doit avoir la forme ($longueur_de_la_chanson, num_possible_notes$), où $longueur_de_la_chanson > = min_long_length$. Les vecteurs de caractéristiques individuels des notes de la chanson sont traités en un codage one_hot , ce qui signifie qu'il s'agit de vecteurs binaires où une et une seule entrée est 1.

Le modèle du réseau neuronal récurrent (RNN)

On forme un modèle RNN sur notre base de données musicale, puis on utilise ce modèle formé pour générer une nouvelle chanson. On forme le RNN en utilisant des lots d'extraits de chansons de notre base de données grâce à Tensorflow. Puis, on définit un optimiseur pour l'apprentissage du réseau: AdamOptimizer, la fonction de perte (la perte moyenne d'entropie croisée) et la fonction de précision.

Ce modèle est basé sur une seule cellule LSTM (Réseaux de mémoire à long terme et à court terme), avec un vecteur d'état utilisé pour maintenir les dépendances temporelles entre les notes de musique consécutives. À chaque pas de temps, on alimente une séquence de notes précédentes. La sortie finale du LSTM (c.-à-d. de la dernière unité) est introduite dans une seule couche entièrement connectée pour produire une distribution de probabilité sur la note suivante. De cette façon, on modélise la distribution de probabilité : $P(xt|xt-L,\cdots,xt-1)$ où xt est un encodage one-hot de la note jouée au temps t et L est la longueur d'un extrait de chanson.

Générer la musique

Après avoir entraîné le modèle, les différentes notes que ce dernier sortira seront retranscris dans un fichier .midi. Le fichier généré se trouve dans le dossier generated. On peut améliorer le modèle en modifiant les paramètres suivants $hidden_size = 256, learning_rate = 0.001, training_steps = 2000, batch_size = 128$.

