FIT3139: Lab questions for week 5

- 1. A model of insect populations (in which all adults are assumed to die before next breeeding) leads to the difference equation
 - $N_{k+1} = \frac{\lambda N_k}{1+aN_k}$ where λ and a are positive constants.
 - (a) Write the equation in the form $N_{k+1} = N_k + R(N_k)N_k$ and hence identify the growth rate.
 - (b) What is the general shape of the graph of $R(N_k)$?
 - (c) Express the unrestricted growth rate r and the carrying capacity K, for this model, in terms of the parameters a and λ .
- 2. Another alternative model for restricted population growth is given by: $N_{k+1} = N_k e^{a(1-N_k/K)}$, where K is the carrying capacity and a is a positive constant.
 - (a) Write the equation in the form $N_{k+1} = N_k + R(N_k)N_k$ and hence identify the variable growth rate $R(N_k)$.
 - (b) Sketch $R(N_k)$ and compare it with $R(N_k)$ of a discrete logistic equation.
 - (c) Show that $a = \log(r+1)$ where r, the unrestricted growth rate, is defined as the limit of $R(N_k)$ as $N_k \to 0$.
 - (d) Use a computer to iterate numerically the above model when K=1000, $N_0=100$ and you should use your own choice of values of a. Describe the types of behaviour which appear for different values of a. In particular:

- i. When do 2-cycles (oscillations with a periodicity of 2) first appear?
- ii. When do 2-cycles become 4-cycles?
- iii. Does the model exhibit chaos?
- 3. A model which has been used to analyse insect populations, a modification of the one introduced in Question 1, is:

$$N_{k+1} = \frac{\lambda N_k}{(1+N_k)^b}$$

for the insect population N_k . Using a computer, sketch solutions for the following values of the parameters:

	λ	b
Moth	1.3	0.1
Mosquito	10.6	1.9
Potato Beetle	75.0	3.4

Test the above with your own choices of N_0 . Observe the behaviour when you vary N_0 .

- 4. For the discrete logistic equation with K=1000 examine N_{100} as you vary N_0 slightly in each of the following cases:
 - (a) r = 0.5
 - (b) r = 2.3
 - (c) r = 3

Start with $N_0 = 100$ and then try $N_0 = 101$ and $N_0 = 99$. What happens for each value of r?

- 5. In a host-parasite system, a parasite searches for a host on which to deposit its eggs. Define:
 - N_k = Number of host species in kth breeding season
 - P_k = Number of parasite species in kth breeding season
 - \bullet f =fraction of hosts not parasitized
 - c = average number of eggs laid by parasite which survive
 - $\lambda = \text{host rate}$, given that all adults die before their offspring can breed.

- (a) Show that N_k and P_k satisfy: $N_{k+1} = \lambda f N_k$ and $P_{k+1} = c N_k [1-f]$
- (b) If $f = e^{-\gamma P_k}$ numerically simulate this model for $\gamma = 0.068$, c = 1 and $\lambda = 2$. What observations can you gather from this simulation?