Тема 4. Доверительные интервалы и границы.

1. Доверительный интервал, нижняя и верхняя доверительные границы.

Всякая точечная оценка сообщает лишь одно значение, которое принимается за приближенное значение оцениваемой величины, при этом полученное значение в большинстве случаев, конечно, не совпадает с истинным значением оцениваемой величины, поэтому в ряде случаев требуется указать интервал, в котором с большой вероятностью находится оцениваемая величина.

Пусть $(\xi_1,...,\xi_n)$ — серия наблюдений, θ — неизвестный скалярный параметр и Θ — множество допустимых значений параметра θ .

Определение 4.1.

Пусть $T_1(\xi_1,...,\xi_n)$ и $T_2(\xi_1,...,\xi_n)$ — статистики. Интервал $(T_1(\xi_1,...,\xi_n);T_2(\xi_1,...,\xi_n))$ называется доверительным интервалом для величины $\tau(\theta)$ с уровнем доверия (доверительной вероятностью) P_{δ} (0 < P_{δ} < 1), если:

$$\inf_{\theta \in \Theta} P\{T_1(\xi_1,...,\xi_n) < \tau(\theta) < T_2(\xi_1,...,\xi_n)\} = P_{\theta}.$$

Из условия 2) определения 4.1 следует, что статистики $T_1(\xi_1,...,\xi_n)$ и $T_2(\xi_1,...,\xi_n)$ устроены таким образом, что каким бы ни оказалось значение параметра θ величина $\tau(\theta)$ «накрывается» интервалом $(T_1(\xi_1,...,\xi_n);T_2(\xi_1,...,\xi_n))$ с вероятностью не меньше чем P_{δ} .

Определение 4.2.

Статистика $T(\xi_1,...,\xi_n)$ называется верхней доверительной границей для $\tau(\theta)$ с уровнем доверия (доверительной вероятностью) P_a (0 < P_a < 1), если:

$$\inf_{\boldsymbol{\theta} \in \Theta} \ P\{\tau(\boldsymbol{\theta}) < T(\boldsymbol{\xi}_1, ..., \boldsymbol{\xi}_n)\} = P_{\boldsymbol{\delta}}.$$

Определение 4.3.

Статистика $T(\xi_1,...,\xi_n)$ называется нижней доверительной границей для $\tau(\theta)$ с уровнем доверия (доверительной вероятностью) P_{δ} (0 < P_{δ} < 1), если:

$$\inf_{\theta \in \Theta} P\{T(\xi_1, ..., \xi_n) < \tau(\theta)\} = P_{\delta}.$$

Существует достаточно общий метод построения доверительных интервалов и границ, который основывается на функции специального вида, называемой центральной статистикой.

Определение 4.4.

Пусть $(\xi_1,...,\xi_n)$ — совокупность наблюдений и случайная функция $\varphi(\xi_1,...,\xi_n;\tau(\theta))$ зависит как от величин $(\xi_1,...,\xi_n)$, так и от неизвестной величины $\tau(\theta)$. Случайная функция $\varphi(\xi_1,...,\xi_n;\tau(\theta))$ называется *центральной статистикой для величины* $\tau(\theta)$, если:

- 1) распределение $\varphi(\xi_1,...,\xi_n;\tau(\theta))$ известно (то есть никаким образом не зависит от неизвестного параметра θ),
- 2) при всех реализациях $(x_1,...,x_n)$ серии наблюдений $(\xi_1,...,\xi_n)$ одновременно функция $\varphi(x_1,...,x_n;t)$ непрерывна и строго монотонна по t (например, при всех $(x_1,...,x_n)$ функция $\varphi(x_1,...,x_n;t)$ непрерывна и возрастает по t).

Предположим, что некоторым образом построена центральная статистика для $\tau(\theta) - \varphi(\xi_1,...,\xi_n;\tau(\theta))$, поскольку функция распределения $\varphi(\xi_1,...,\xi_n;\tau(\theta))$ известна (условие 1), то всегда можно найти числа y_1^* и y_2^* такие, что:

$$\begin{cases} P\{y_1^* < \varphi(\xi_1, ..., \xi_n; \tau(\theta)) < y_2^*\} = P_{\theta} \\ y_2^* - y_1^* = \min_{y_1, y_2 : P\{y_1 < \varphi < y_2\} = P_{\theta}} (y_2 - y_1) \end{cases}.$$

Поскольку функция $\varphi(x_1,...,x_n;t)$ непрерывна по t при всех реализациях $(x_1,...,x_n)$, то при каждом $(x_1,...,x_n)$ существуют решения t_1^* и t_2^* системы уравнений (рисунок 4.1):

$$\begin{cases} y_1^* = \varphi(x_1, ..., x_n; t_1^*) \\ y_2^* = \varphi(x_1, ..., x_n; t_2^*) \end{cases} \Leftrightarrow \begin{cases} t_1^* = t_1^*(x_1, ..., x_n; y_1^*) \\ t_2^* = t_2^*(x_1, ..., x_n; y_2^*) \end{cases}$$

Если функция $\varphi(x_1,...,x_n;t)$ возрастает по t при всех реализациях, тогда события $\{y_1^* < \varphi(\xi_1,...,\xi_n;\tau(\theta)) < y_2^*\}$ и $\{t_1^*(\xi_1,...,\xi_n;y_1^*) < \tau(\theta) < t_2^*(\xi_1,...,\xi_n;y_2^*)\}$ эквивалентны и вероятности событий равны, то есть:

$$P\{t_{1}^{*}(\xi_{1},...,\xi_{n};y_{1}^{*}) < \tau(\theta) < t_{2}^{*}(\xi_{1},...,\xi_{n};y_{2}^{*})\} = P\{y_{1}^{*} < \varphi(\xi_{1},...,\xi_{n};\tau(\theta)) < y_{2}^{*}\} = P_{\theta}.$$

Пусть статистики $T_1(\xi_1,...,\xi_n) = t_1^*(\xi_1,...,\xi_n;y_1^*)$ и $T_2(\xi_1,...,\xi_n) = t_2^*(\xi_1,...,\xi_n;y_2^*)$, тогда интервал $(T_1(\xi_1,...,\xi_n);T_2(\xi_1,...,\xi_n))$ является доверительным интервалом для $\tau(\theta)$ с уровнем доверия P_{θ} , поскольку для всех допустимых значений параметра θ :

$$P\{T_1(\xi_1,...,\xi_n) < \tau(\theta) < T_2(\xi_1,...,\xi_n)\} = P_{\theta}$$

следовательно,

$$\inf_{\theta \in \Theta} P\{T_1(\xi_1,...,\xi_n) < \tau(\theta) < T_2(\xi_1,...,\xi_n)\} = \inf_{\theta \in \Theta} P_{\theta} = P_{\theta}.$$

Если функция $\varphi(x_1,...,x_n;t)$ убывает по t при всех реализациях, тогда эквивалентны события $\{y_1^*<\varphi(\xi_1,...,\xi_n;\tau(\theta))< y_2^*\}$ и $\{t_2^*(\xi_1,...,\xi_n;y_2^*)<\tau(\theta)< t_1^*(\xi_1,...,\xi_n;y_1^*)\}$ и равны вероятности:

$$P\{t_{2}^{*}(\xi_{1},...,\xi_{n};\boldsymbol{y}_{2}^{*}) < \tau(\theta) < t_{1}^{*}(\xi_{1},...,\xi_{n};\boldsymbol{y}_{1}^{*})\} = P\{\boldsymbol{y}_{1}^{*} < \varphi(\xi_{1},...,\xi_{n};\tau(\theta)) < \boldsymbol{y}_{2}^{*}\} = P_{\theta} \; .$$

Пусть статистики $T_1(\xi_1,...,\xi_n)=t_2^*(\xi_1,...,\xi_n;y_2^*)$ и $T_2(\xi_1,...,\xi_n)=t_1^*(\xi_1,...,\xi_n;y_1^*)$, тогда интервал $(T_1(\xi_1,...,\xi_n);T_2(\xi_1,...,\xi_n))$ является доверительным интервалом для $\tau(\theta)$ с уровнем доверия P_{θ} , поскольку для всех допустимых значений параметра θ :

$$P\{T_{1}(\xi_{1},...,\ \xi_{n}) < \tau(\theta) < T_{2}(\xi_{1},...,\ \xi_{n})\} = P_{\theta},$$

тогда,

$$\inf_{\theta \in \Theta} P\{T_1(\xi_1, ..., \xi_n) < \tau(\theta) < T_2(\xi_1, ..., \xi_n)\} = \inf_{\theta \in \Theta} P_{\theta} = P_{\theta}$$

Аналогичным образом, с помощью центральной статистики $\varphi(\xi_1,...,\xi_n;\tau(\theta))$ могут быть построены доверительные границы.

2. Доверительный интервал для математического ожидания нормального распределения с известной дисперсией.

Пусть $(\xi_1,...,\xi_n)$ — выборка из нормального распределения с неизвестным математическим ожиданием m и известной дисперсией σ^2 , построим доверительный интервал для математического ожидания m с уровнем доверия P_a .

Величины ξ_i выборки имеют нормальное распределение и независимы, поэтому совокупность величин $(\xi_1,...,\xi_n)$ имеет многомерное нормальное распределение, и статистика $\frac{1}{n}\sum_{i=1}^n \xi_i$ также имеет нормальное распределение с параметрами:

$$M_{m} \left[\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \right] = \frac{1}{n} \sum_{i=1}^{n} M_{m} [\xi_{i}] = \frac{1}{n} \sum_{i=1}^{n} m = m ,$$

$$D_{m} \left[\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \right] = \frac{1}{n^{2}} \sum_{i=1}^{n} D_{m} [\xi_{i}] = \frac{\sigma^{2}}{n} .$$

Тогда статистика $\varphi(\xi_1,...,\xi_n;m)$:

$$\varphi(\xi_{1},...,\xi_{n};m) = \frac{\frac{1}{n}\sum_{i=1}^{n}\xi_{i} - m}{\frac{\sigma^{2}}{\sqrt{n}}},$$

имеет нормальное распределение N(0,1) не зависящее от неизвестного параметра m и одновременно при всех реализациях $(\xi_1,...,\xi_n)$ функция $\varphi(\xi_1,...,\xi_n;m)$ как функция m является непрерывной и убывающей. Согласно определению $\varphi(\xi_1,...,\xi_n;m)$ — центральная статистика для m . Выберем числа y_1^* и y_2^* так, чтобы выполнялись равенства:

$$\begin{cases} P\{y_1^* < \varphi(\xi_1, ..., \xi_n; m) < y_2^*\} = P_{\delta} \\ y_2^* - y_1^* = \min_{y_1, y_2 : P\{y_1 < \varphi < y_2\} = P_{\delta}} (y_2 - y_1) \end{cases}$$

или

$$\begin{cases} \Phi(y_{2}^{*}) - \Phi(y_{1}^{*}) = P_{\theta} \\ y_{2}^{*} - y_{1}^{*} = \min_{y_{1}, y_{2}: P\{y_{1} < \varphi < y_{2}\} = P_{\theta}} (y_{2} - y_{1}) \end{cases}$$

где $\Phi(y)$ - функция распределения нормальной случайной величины N(0,1). Для нахождения минимума функции y_2-y_1 при условии $\Phi(y_2)-\Phi(y_1)=P_{\theta}$ воспользуемся методом множителей Лагранжа, с функцией Лагранжа:

$$\Lambda(y_1, y_2, \lambda) = (y_2 - y_1) - \lambda(\Phi(y_2) - \Phi(y_1) - P_{\alpha}),$$

которая приводит к системе:

$$\begin{cases}
\frac{\partial \Lambda}{\partial y_{1}}\Big|_{(y_{1}, y_{2}, \lambda) = (y_{1}^{*}, y_{2}^{*}, \lambda^{*})} = 0 \\
\frac{\partial \Lambda}{\partial y_{2}}\Big|_{(y_{1}, y_{2}, \lambda) = (y_{1}^{*}, y_{2}^{*}, \lambda^{*})} = 0 \Leftrightarrow \\
\left[\frac{\partial \Lambda}{\partial \lambda}\Big|_{(y_{1}, y_{2}, \lambda) = (y_{1}^{*}, y_{2}^{*}, \lambda^{*})} = 0 \\
\frac{\partial \Lambda}{\partial \lambda}\Big|_{(y_{1}, y_{2}, \lambda) = (y_{1}^{*}, y_{2}^{*}, \lambda^{*})} = 0
\end{cases}$$

$$\begin{cases}
\lambda^{*} = \frac{1}{\Phi'(y_{1}^{*})} \\
1 - \frac{\Phi'(y_{2}^{*})}{\Phi'(y_{1}^{*})} = 0 \\
\Phi(y_{2}^{*}) - \Phi(y_{1}^{*}) - P_{\partial} = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\lambda^{*} = \frac{1}{\Phi'(y_{1}^{*})} \\
\Phi'(y_{2}^{*}) = \Phi'(y_{1}^{*}) - P_{\partial} = 0
\end{cases}$$

$$\begin{cases} \lambda^* = \frac{1}{\Phi'(y_1^*)} \\ \frac{1}{\sqrt{2\pi}} e^{-\frac{(y_2^*)^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y_1^*)^2}{2}} \Leftrightarrow \begin{cases} \lambda^* = \frac{1}{\Phi'(y_1^*)} \\ (y_2^*)^2 = (y_1^*)^2 \end{cases} \\ \Phi(y_2^*) - \Phi(y_1^*) - P_{\delta} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda^* = \frac{1}{\Phi'(y_1^*)} \\ (y_2^*)^2 = (y_1^*)^2 \\ \Phi(y_2^*) - \Phi(y_1^*) - P_{\delta} = 0 \end{cases}$$

У второго уравнения системы $\left(y_{2}^{*}\right)^{2}=\left(y_{1}^{*}\right)^{2}$ или $\left(y_{2}^{*}\right)^{2}-\left(y_{1}^{*}\right)^{2}=\left(y_{2}^{*}-y_{1}^{*}\right)\left(y_{2}^{*}+y_{1}^{*}\right)=0$, очевидно, имеется только два решения $y_{2}^{*}=y_{1}^{*}$ и $y_{2}^{*}=-y_{1}^{*}$, первое решение не удовлетворяет третьему уравнению системы $\Phi\left(y_{2}^{*}\right)-\Phi\left(y_{1}^{*}\right)-P_{\theta}=0$, тогда:

$$\begin{cases} \lambda^* = \frac{1}{\Phi'(y_1^*)} \\ y_2^* = -y_1^* \\ \Phi(-y_1^*) - \Phi(y_1^*) - P_{\theta} = 0 \end{cases}$$

Используя свойство функции нормального распределения $\Phi(x) = 1 - \Phi(-x)$ получим:

$$\begin{cases} \lambda = \frac{1}{\Phi'(y_1^*)} \\ y_2^* = -y_1^* \\ 1 - \Phi(y_1^*) - \Phi(y_1^*) - P_{\partial} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{1}{\Phi'(y_1^*)} \\ y_2^* = -y_1^* \\ \Phi(y_1^*) = \frac{1 - P_{\partial}}{2} \end{cases}.$$

Таким образом, y_1^* есть квантиль уровня $\frac{1-P_o}{2}$ распределения $N\left(0,1\right)$ и $y_2^*=-y_1^*$. Значению y_2^* можно придать иную интерпретацию:

$$\begin{cases} \Phi(y_{2}^{*}) = 1 - \Phi(-y_{2}^{*}) \\ y_{2}^{*} = -y_{1}^{*} \Rightarrow \Phi(y_{2}^{*}) = 1 - \Phi(-y_{2}^{*}) = 1 - \Phi(y_{1}^{*}) = 1 - \frac{1 - P_{\theta}}{2} = \frac{1 + P_{\theta}}{2}, \\ \Phi(y_{1}^{*}) = \frac{1 - P_{\theta}}{2} \end{cases}$$

то есть y_2^* является квантилью уровня $\frac{1+P_o}{2}$ распределения N(0,1). Таким образом, получим равенство для вероятностей:

$$P\{y_1^* < \varphi(\xi_1,...,\xi_n;m) < y_2^*\} = P_{\partial}.$$

Преобразовывая неравенства, получим:

$$P\left\{y_{1}^{*} < \frac{\frac{1}{n}\sum_{i=1}^{n}\xi_{i} - m}{\frac{\sigma}{\sqrt{n}}} < y_{2}^{*}\right\} = P_{o},$$

$$P\left\{y_{1}^{*} \frac{\sigma}{\sqrt{n}} < \frac{1}{n}\sum_{i=1}^{n}\xi_{i} - m < y_{2}^{*} \frac{\sigma}{\sqrt{n}}\right\} = P_{o}$$

$$P\left\{-\frac{1}{n}\sum_{i=1}^{n}\xi_{i} + y_{1}^{*} \frac{\sigma}{\sqrt{n}} < -m < -\frac{1}{n}\sum_{i=1}^{n}\xi_{i} + y_{2}^{*} \frac{\sigma}{\sqrt{n}}\right\} = P_{o}$$

$$P\left\{\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-y_{2}^{*}\frac{\sigma}{\sqrt{n}}< m<\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-y_{1}^{*}\frac{\sigma}{\sqrt{n}}\right\}=P_{\delta}.$$

Преобразование неравенств фактически является нахождением решения системы:

$$\begin{cases} y_{1}^{*} = \varphi(x_{1},...,x_{n};m_{1}^{*}) \\ y_{2}^{*} = \varphi(x_{1},...,x_{n};m_{2}^{*}) \end{cases} \leftrightarrow \begin{cases} y_{1}^{*} = \frac{\frac{1}{n}\sum_{i=1}^{n}x_{i} - m_{1}^{*}}{\frac{\sigma}{\sqrt{n}}} \\ y_{2}^{*} = \frac{1}{n}\sum_{i=1}^{n}x_{i} - m_{2}^{*}}{\frac{\sigma}{\sqrt{n}}} \end{cases} \Leftrightarrow \begin{cases} m_{1}^{*} = \frac{1}{n}\sum_{i=1}^{n}x_{i} - y_{1}^{*}\frac{\sigma}{\sqrt{n}} \\ m_{2}^{*} = \frac{1}{n}\sum_{i=1}^{n}x_{i} - y_{2}^{*}\frac{\sigma}{\sqrt{n}} = \end{cases} \Leftrightarrow \begin{cases} m_{1}^{*} = m_{1}^{*}(x_{1},...,x_{n};y_{1}^{*}) \\ m_{2}^{*} = m_{2}^{*}(x_{1},...,x_{n};y_{2}^{*}) \end{cases}.$$

Таким образом, при всяком значении параметра m:

$$P\left\{\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-y_{2}^{*}\frac{\sigma}{\sqrt{n}}< m<\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-y_{1}^{*}\frac{\sigma}{\sqrt{n}}\right\}=P_{\delta},$$

тогда интервал ($y_2^* = -y_1^*$):

$$\left(\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-y_{2}^{*}\frac{\sigma}{\sqrt{n}};\frac{1}{n}\sum_{i=1}^{n}\xi_{i}+y_{2}^{*}\frac{\sigma}{\sqrt{n}}\right),$$

где y_2^* — является квантилью уровня $\frac{1+P_{\delta}}{2}$ распределения N(0,1), является доверительным интервалом для m с уровнем доверия P_{δ} .

3. Доверительный интервал для дисперсии нормального распределения с известным математическим ожиданием.

Пусть $(\xi_1,...,\xi_n)$ — выборка из нормального распределения с известным математическим ожиданием m и неизвестной дисперсией σ^2 , построим доверительный интервал для дисперсии σ^2 с уровнем доверия P_{δ} .

Рассмотрим статистику $\varphi(\xi_1,...,\xi_n;\sigma^2)$:

$$\varphi(\xi_1,...,\xi_n;\sigma^2) = \frac{n}{\sigma^2} \cdot \frac{1}{n} \sum_{i=1}^n (\xi_i - m)^2 = \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma}\right)^2.$$

Поскольку случайные величины $\frac{\xi_i - m}{\sigma}$ имеют нормальное распределение N(0,1) и независимы, то статистика $\varphi(\xi_1,...,\xi_n;\sigma^2)$ имеет распределение $\chi^2(n)$ («хи-квадрат с n степенями свободы») и кроме того одновременно при всех реализациях выборки $(\xi_1,...,\xi_n;\sigma^2)$ функция $\varphi(\xi_1,...,\xi_n;\sigma^2)$ как функция параметра σ^2 :

$$\varphi(\xi_1,...,\xi_n;\sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (\xi_i - m)^2$$

является непрерывной и убывающей. Таким образом, статистика $\varphi(\xi_1,...,\xi_n;\sigma^2)$ является центральной статистикой для σ^2 .

Для построения доверительного интервала выберем числа y_1 и y_2 так, чтобы выполнялось равенство:

$$P\{y_1 < \varphi(\xi_1,...,\xi_n;\sigma^2) < y_2\} = P_{\theta}.$$

Для выполнения равенства достаточно, например, в качестве y_1 взять квантиль уровня $\frac{1-P_{\delta}}{2}$ распределения $\chi^2(n)$, а качестве y_2 — квантиль уровня $\frac{1+P_{\delta}}{2}$ распределения $\chi^2(n)$, действительно:

 $P\{\,y_1<\varphi(\xi_1,...,\,\,\xi_n;\sigma^2)< y_2\}=P\{\,y_1<\chi_n^2< y_2\}=F_{\chi_n^2}(\,y_2)-F_{\chi_n^2}(\,y_1)=\frac{1+P_{\partial}}{2}-\frac{1-P_{\partial}}{2}=P_{\partial}\,,$ где χ_n^2 — случайная величина, имеющая распределение $\chi^2(n)$, и $F_{\chi_n^2}(\,y)$ — функция распределения χ_n^2 .

При таких значениях y_1 и y_2 получается так называемый «центральный интервал» (название обусловлено тем, что слева от y_1 «сосредоточена» вероятность $\frac{1-P_{\theta}}{2}$ и справа от y_2 «сосредоточена» вероятность $1-\frac{1+P_{\theta}}{2}=\frac{1-P_{\theta}}{2}$). Построение «наикратчайшего» доверительного интервала, то есть нахождение чисел y_1^* и y_2^* с наименьшей разностью y_2-y_1 среди всех пар y_1 и y_2 , удовлетворяющих $P\{y_1<\varphi(\xi_1,...,\xi_n;\sigma^2)< y_2\}=P_{\theta}$, в данном случае является технически сложным ([Ивченко, Медведев 1] стр. 86), поэтому на практике ограничиваются более простым «центральным интервалом».

Преобразование неравенств приводит к следующему доверительному интервалу:

$$P\left\{\frac{y_{1} < \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (\xi_{i} - m)^{2} < y_{2}}{\sum_{i=1}^{n} (\xi_{i} - m)^{2}} < \frac{1}{\sigma^{2}} < \frac{y_{2}}{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}\right\} = P_{\delta},$$

$$P\left\{\frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{2}} < \sigma^{2} < \frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{1}}\right\} = P_{\delta}.$$

Поскольку последнее равенство справедливо при всяком значении σ^2 , то интервал:

$$\left(\frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{2}}; \frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{1}}\right),$$

где y_1 и y_2 — квантили уровней $\frac{1-P_{\delta}}{2}$ и $\frac{1+P_{\delta}}{2}$ распределения $\chi^2(n)$ соответственно, является доверительным интервалом для σ^2 с уровнем доверия P_{δ} .

Нетрудно также получить и доверительный интервал для с.к.о. σ , действительно, поскольку:

$$\begin{cases}
\sum_{i=1}^{n} (\xi_{i} - m)^{2} \\
y_{2}
\end{cases} < \sigma^{2} < \frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{1}} \Leftrightarrow \sqrt{\frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{2}}} < \sigma < \sqrt{\frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{1}}},$$

то

$$P\left\{\sqrt{\frac{\sum_{i=1}^{n}(\xi_{i}-m)^{2}}{y_{2}}} < \sigma < \sqrt{\frac{\sum_{i=1}^{n}(\xi_{i}-m)^{2}}{y_{1}}}\right\} = P\left\{\frac{\sum_{i=1}^{n}(\xi_{i}-m)^{2}}{y_{2}} < \sigma^{2} < \frac{\sum_{i=1}^{n}(\xi_{i}-m)^{2}}{y_{1}}\right\} = P_{\delta},$$

тогда при тех же значениях y_1 и y_2 интервал:

$$\left[\sqrt{\frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{2}}}; \sqrt{\frac{\sum_{i=1}^{n} (\xi_{i} - m)^{2}}{y_{1}}}\right]$$

является доверительным интервалом для σ с уровнем доверия P_{δ} .

4. Доверительный интервал для дисперсии нормального распределения с неизвестным математическим ожиданием.

Теорема 4.5. (Фишер)

Пусть $(\xi_1,...,\xi_n)$ — выборка из нормального распределения $N(m,\sigma^2)$, статистики $\hat{m}_1(\xi_1,...,\xi_n)=\frac{1}{n}\sum_{i=1}^n\xi_i$ и $\tilde{\mu}_2(\xi_1,...,\xi_n)=\frac{1}{n-1}\sum_{i=1}^n(\xi_i-\hat{m}_1)^2$, тогда:

- 1) Статистика $\frac{(n-1)\tilde{\mu}_2(\xi_1,...,\xi_n)}{\sigma^2}$ имеет распределение $\chi^2(n-1)$;
- 2) Статистики $\hat{m}_1(\xi_1,...,\xi_n)$ и $\tilde{\mu}_2(\xi_1,...,\xi_n)$ независимые случайные величины. Доказательство:
- 1) Преобразуем статистику $\frac{(n-1)\tilde{\mu}_2(\xi_1,...,\xi_n)}{\sigma^2}$ следующим образом:

$$\begin{split} \frac{n-1}{\sigma^2} \, \tilde{\mu}_2(\xi_1, \dots, \xi_n) &= \frac{n-1}{\sigma^2} \frac{1}{n-1} \sum_{i=1}^n \left(\xi_i - \hat{m}_1 \right)^2 = \sum_{i=1}^n \left(\frac{\xi_i - \hat{m}_1}{\sigma} \right)^2 = \sum_{i=1}^n \left(\frac{\xi_i - m + m - \hat{m}_1}{\sigma} \right)^2 = \\ &= \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma} + \frac{m - \hat{m}_1}{\sigma} \right)^2 = \sum_{i=1}^n \left(\left(\frac{\xi_i - m}{\sigma} \right)^2 + 2 \left(\frac{\xi_i - m}{\sigma} \right) \left(\frac{m - \hat{m}_1}{\sigma} \right) + \left(\frac{m - \hat{m}_1}{\sigma} \right)^2 \right) = \\ &= \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma} \right)^2 + 2 \left(\frac{m - \hat{m}_1}{\sigma} \right) \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma} \right) + \sum_{i=1}^n \left(\frac{\hat{m}_1 - m}{\sigma} \right)^2 = \\ &= \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma} \right)^2 + 2 \left(\frac{m - \hat{m}_1}{\sigma} \right) \frac{1}{\sigma} \left(\sum_{i=1}^n \xi_i - \sum_{i=1}^n m \right) + n \left(\frac{\hat{m}_1 - m}{\sigma} \right)^2 = \\ &= \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma} \right)^2 + 2 \left(\frac{m - \hat{m}_1}{\sigma} \right) \frac{1}{\sigma} \left(n \hat{m}_1 - n m \right) + n \left(\frac{\hat{m}_1 - m}{\sigma} \right)^2 = \\ &= \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma} \right)^2 + 2 \left(\frac{m - \hat{m}_1}{\sigma} \right) n \left(\frac{\hat{m}_1 - m}{\sigma} \right) + n \left(\frac{\hat{m}_1 - m}{\sigma} \right)^2 = \\ &= \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma} \right)^2 - 2 n \left(\frac{m - \hat{m}_1}{\sigma} \right) \left(\frac{m - \hat{m}_1}{\sigma} \right) + n \left(\frac{\hat{m}_1 - m}{\sigma} \right)^2 = \end{split}$$

$$=\sum_{i=1}^{n} \left(\frac{\xi_{i}-m}{\sigma}\right)^{2} - n\left(\frac{\hat{m}_{1}-m}{\sigma}\right)^{2} = \sum_{i=1}^{n} \left(\frac{\xi_{i}-m}{\sigma}\right)^{2} - n\left(\frac{1}{n}\sum_{i=1}^{n} \xi_{i}-m\right)^{2} = \sum_{i=1}^{n} \left(\frac{\xi_{i}-m}{\sigma}\right)^{2} - n\left(\frac{1}{n}\sum_{i=1}^{n} \xi_{i}-m\right)^{2} = \sum_{i=1}^{n} \left(\frac{\xi_{i}-m}{\sigma}\right)^{2} - n\left(\frac{1}{n}\sum_{i=1}^{n} (\xi_{i}-m)\right)^{2} = \sum_{i=1}^{n} \left(\frac{\xi_{i}-m}{\sigma}\right)^{2} - \frac{1}{n}\left(\sum_{i=1}^{n} \left(\frac{\xi_{i}-m}{\sigma}\right)\right)^{2}.$$

Пусть $\xi = (\xi_1,...,\xi_n)$ есть вектор-столбец исходной выборки, определим вектор-столбец случайных величин $\alpha = (\alpha_1,\alpha_2,...,\alpha_n)$:

$$\alpha_i = \frac{\xi_i - m}{\sigma},$$

$$i = \frac{\sigma}{1 n}$$

или в матричной форме,

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \frac{1}{\sigma} & 0 & \dots & 0 \\ 0 & \frac{1}{\sigma} & \dots & 0 \\ \vdots \\ 0 & 0 & \frac{1}{\sigma} & \dots \\ 0 & 0 & 0 & \frac{1}{\sigma} \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix} - \begin{pmatrix} \frac{m}{\sigma} \\ \vdots \\ \frac{m}{\sigma} \\ \vdots \\ \frac{m}{\sigma} \end{pmatrix} ,$$

$$\alpha = A_{\alpha} \xi - b_{\alpha}$$

Поскольку случайные величины ξ_i имеют совместное нормальное распределение, то случайные величины α_i также имеют совместное нормальное распределение (как линейное преобразование совместно нормальных случайных величин). Легко видеть, что математическое ожидание $M[\alpha]$ есть нулевой вектор $\overline{0}_n$:

$$M\left[\alpha\right] = M\left[A_{\alpha}\xi + b_{\alpha}\right] = A_{\alpha}M\left[\xi\right] - b_{\alpha} =$$

$$= \begin{pmatrix} \frac{1}{\sigma} & 0 & \dots & 0 \\ 0 & \frac{1}{\sigma} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \frac{1}{\sigma} \end{pmatrix} \begin{pmatrix} M\left[\xi_{1}\right] \\ M\left[\xi_{2}\right] \\ \dots & \dots & \dots \\ M\left[\xi_{n}\right] \end{pmatrix} - \begin{pmatrix} \frac{m}{\sigma} \\ \sigma \\ \end{pmatrix} = \begin{pmatrix} \frac{M\left[\xi_{1}\right] - m}{\sigma} \\ \dots \\ \frac{m}{\sigma} \\ \end{pmatrix} = \begin{pmatrix} \frac{m-m}{\sigma} \\ \frac{m-m}{\sigma} \\ \dots \\ \frac{m-m}{\sigma} \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \dots \\ 0 \end{pmatrix} = \overline{0}_{n}.$$

Поскольку исходный вектор ξ является выборкой, то дисперсионная матрица $D[\xi]$ исходного вектора ξ является диагональной матрицей:

$$\|D[\xi]\|_{i,j} = \operatorname{cov}(\xi_i - m, \xi_j - m) = \begin{cases} D[\xi_i] & , i = j \\ 0 & , i \neq j \end{cases} = \begin{cases} \sigma^2 & , i = j \\ 0 & , i \neq j \end{cases},$$

$$D[\xi] = \sigma^2 E_n,$$

где E_n — единичная матрица размера $n \times n$. Дисперсионная матрица $D[\alpha]$ вектора α является единичной матрицей E_n (A_α^* — транспонированная матрица A_α):

$$D[\alpha] = D[A_{\alpha}\xi - b_{\alpha}] = A_{\alpha}^*D[\xi]A_{\alpha} = A_{\alpha}^*\sigma^2E_nA_{\alpha} = \sigma^2A_{\alpha}^*A_{\alpha} = \sigma^2A_{\alpha}^*A_{\alpha}$$

$$=\sigma^{2} \begin{pmatrix} \frac{1}{\sigma^{2}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sigma^{2}} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \frac{1}{\sigma^{2}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 1 \end{pmatrix} = E_{n},$$

Легко видеть, что в результате преобразования исходная статистика преобразуется к следующему виду:

$$\frac{n-1}{\sigma^2}\widetilde{\mu}_2(\xi_1,...,\xi_n) = \sum_{i=1}^n \left(\frac{\xi_i-m}{\sigma}\right)^2 - \frac{1}{n} \left(\sum_{i=1}^n \left(\frac{\xi_i-m}{\sigma}\right)\right)^2 = \sum_{i=1}^n \alpha_i^2 - \left(\frac{1}{\sqrt{n}}\sum_{i=1}^n \alpha_i\right)^2.$$

Пусть $A_{_{eta}}$ — ортогональная матрица (т.е. $A_{_{eta}}^{^{-1}}=A_{_{eta}}^{^{*}}$, где $A_{_{eta}}^{^{*}}$ — транспонированная матрица A_{β}), в которой все элементы первой строки равны $\frac{1}{\sqrt{n}}$:

$$A_{\beta} = \begin{pmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \dots & \frac{1}{\sqrt{n}} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
(4.1)

Определим вектор-столбец случайных величин $\beta = (\beta_1, \beta_2, ..., \beta_n)$:

$$\frac{1}{\sqrt{2}}$$
 ... $\frac{1}{\sqrt{2}}$

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \dots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \dots & \frac{1}{\sqrt{n}} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{pmatrix} .$$

Случайные величины $\beta_i = \sum_{j=1}^{n} \|A_{\beta}\|_{ij} \alpha_j$ имеют совместно нормальное распределение, поскольку компоненты α_i имеют совместно нормальное распределение. Математическое ожидание $M[\beta]$ есть нулевой вектор $\overline{0}_n$, действительно:

$$M\left[\beta\right]=M\left[A_{\beta}\alpha\right]=A_{\beta}M\left[\alpha\right]=A_{\beta}\overline{0}_{n}=\overline{0}_{n}\,,$$

и дисперсионная матрица $D[\beta]$ есть единичная матрица E_n :

$$D[\beta] = D[A_{\beta}\alpha] = A_{\beta}^* D[\alpha] A_{\beta} = A_{\beta}^* E_n A_{\beta} = A_{\beta}^* A_{\beta} = A_{\beta}^{-1} A_{\beta} = E_n,$$

поскольку A_{β} — ортогональная матрица ($A_{\beta}^{-1}=A_{\beta}^{*}$). Таким образом, случайные величины β_{i} некоррелированными, а поскольку β_i имеют совместно распределение, то, следовательно, случайные величины β_i независимы.

Легко проверить, что ортогональное преобразование $\beta = A_{_{\beta}}\alpha$ не изменяет вторую норму векторов, то есть $\sum_{i=1}^{n} \beta_{i}^{2} = \sum_{i=1}^{n} \alpha_{i}^{2}$, действительно:

$$\sum_{i=1}^{n} \beta_{i}^{2} = \beta^{*} \beta = (A_{\beta} \alpha)^{*} A_{\beta} \alpha = \alpha^{*} A_{\beta}^{*} A_{\beta} \alpha = \alpha^{*} A_{\beta}^{-1} A_{\beta} \alpha = \alpha^{*} E_{n} \alpha = \alpha^{*} \alpha = \sum_{i=1}^{n} \alpha_{i}^{2}.$$

Из определения матрицы A_{β} (4.1):

$$\beta_{1} = \sum_{j=1}^{n} \left\| A_{\beta} \right\|_{1,j} \alpha_{j} = \sum_{j=1}^{n} \frac{1}{\sqrt{n}} \alpha_{j} = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \alpha_{j}$$
(4.2)

Таким образом, исходная статистика преобразуется к виду:

$$\frac{n-1}{\sigma^2} \tilde{\mu}_2(\xi_1, \dots, \xi_n) = \sum_{i=1}^n \alpha_i^2 - \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \alpha_i\right)^2 = \sum_{i=1}^n \beta_i^2 - \beta_1^2 = \beta_2^2 + \dots + \beta_n^2$$
(4.3)

где все величины β_i имеют нормальное распределение N(0,1) и независимы, поэтому статистика $\frac{n-1}{\tau^2} \tilde{\mu}_2(\xi_1,...,\ \xi_n)$ имеет распределение $\chi^2(n-1)$.

2) Из (4.2) следует:

$$\hat{m}_{1}(\xi_{1},...,\xi_{n}) = \frac{1}{n} \sum_{i=1}^{n} \xi_{i} = \frac{1}{n} \sum_{i=1}^{n} (\sigma \alpha_{i} + m) = \frac{\sigma}{n} \sum_{i=1}^{n} \alpha_{i} + m = \frac{\sigma}{\sqrt{n}} \beta_{1} + m$$

Из (4.3) следует:

$$\tilde{\mu}_2(\xi_1,...,\xi_n) = \frac{\sigma^2}{n-1}(\beta_2^2 + ... + \beta_n^2).$$

Поскольку случайные величины β_i независимы, то следовательно независимы $\hat{m}_1(\xi_1,...,\,\xi_n)$ и $\tilde{\mu}_2(\xi_1,...,\,\xi_n)$.

Теорема доказана.

Теорема 4.5 позволяет построить доверительный интервал для дисперсии нормального распределения в случае, когда математическое ожидание неизвестно. Пусть $(\xi_1,...,\xi_n)$ – выборка из нормального распределения $N(m,\sigma^2)$, из теоремы 4.5 следует, что статистика $\varphi(\xi_1,...,\xi_n;\sigma^2)$:

$$\varphi(\xi_1,...,\xi_n;\sigma^2) = \frac{n-1}{\sigma^2} \widetilde{\mu}_2(\xi_1,...,\xi_n) = \frac{1}{\sigma^2} \sum_{i=1}^n \left(\xi_i - \frac{1}{n} \sum_{i=1}^n \xi_i\right)^2$$

имеет распределение $\chi^2(n-1)$, не зависящее от неизвестных параметров m и σ^2 , и одновременно при всех реализациях выборки $(\xi_1,...,\xi_n)$ функция $\varphi(\xi_1,...,\xi_n;\sigma^2)$ как функция σ^2 является непрерывной и убывающей. Следовательно, статистика $\varphi(\xi_1,...,\xi_n;\sigma^2)$ является центральной статистикой для σ^2 . Пусть y_1 и y_2 – квантили уровней $\frac{1-P_o}{2}$ и $\frac{1+P_o}{2}$ распределения $\chi^2(n-1)$, тогда:

$$\begin{split} P\left\{y_{1} < \varphi(\xi_{1},...,\xi_{n};\sigma^{2}) < y_{2}\right\} &= P_{\partial},\\ P\left\{y_{1} < \frac{n-1}{\sigma^{2}}\widetilde{\mu}_{2}(\xi_{1},...,\xi_{n}) < y_{2}\right\} &= P_{\partial},\\ P\left\{\frac{(n-1)\widetilde{\mu}_{2}(\xi_{1},...,\xi_{n})}{y_{2}} < \sigma^{2} < \frac{(n-1)\widetilde{\mu}_{2}(\xi_{1},...,\xi_{n})}{y_{1}}\right\} &= P_{\partial}. \end{split}$$

Таким образом, интервал

$$\left[\frac{\sum_{i=1}^{n} \left(\xi_{i} - \frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right)^{2}}{y_{2}}; \frac{\sum_{i=1}^{n} \left(\xi_{i} - \frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right)^{2}}{y_{1}}\right],$$

где y_1 и y_2 являются квантилями уровней $\frac{1-P_{\delta}}{2}$ и $\frac{1+P_{\delta}}{2}$ распределения $\chi^2(n-1)$, является доверительным интервалом для дисперсии σ^2 с уровнем доверия P_{δ} . Заметим, что при тех же значениях y_1 и y_2 интервал

$$\left\{ \sqrt{\frac{\sum_{i=1}^{n} \left(\xi_{i} - \frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right)^{2}}{y_{2}}}; \sqrt{\frac{\sum_{i=1}^{n} \left(\xi_{i} - \frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right)^{2}}{y_{1}}} \right\}$$

является доверительным интервалом для с.к.о. σ с уровнем доверия $P_{\scriptscriptstyle \delta}$.

5. Доверительный интервал для математического ожидания нормального распределения с неизвестной дисперсией.

Пусть $(\xi_1,...,\xi_n)$ — выборка из нормального распределения с неизвестным математическим ожиданием m и неизвестной дисперсией σ^2 , и требуется построить доверительный интервал для m с уровнем доверия P_{δ} .

Рассмотрим статистику $\varphi(\xi_1,...,\xi_n;m)$:

$$\varphi(\xi_{1},...,\xi_{n};m) = \frac{\frac{\hat{m}_{1} - m}{\sigma}}{\sqrt{\frac{(n-1)\tilde{\mu}_{2}}{\sigma^{2}}}} = \frac{\hat{m}_{1} - m}{\sqrt{\tilde{\mu}_{2}}} \sqrt{n} , \qquad (4.4)$$

$$\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n \xi_i , \ \widetilde{\mu}_2 = \frac{1}{n-1} \sum_{i=1}^n (\xi_i - \hat{m}_1)^2 .$$

Заметим, что:

1) $\frac{\hat{m_1} - m}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$, поскольку все величины ξ_i имеют нормальное распределение и

независимы в совокупности;

2)
$$\frac{\hat{m_1} - m}{\frac{\sigma}{\sqrt{n}}}$$
 и $\frac{(n-1)\tilde{\mu}_2}{\sigma^2}$ независимы, поскольку в силу теоремы 4.5 статистики $\hat{m_1}$ и $\tilde{\mu}_2$

независимы;

3)
$$\frac{(n-1)\tilde{\mu}_2}{\sigma^2}$$
 имеет распределение $\chi^2(n-1)$ в силу теоремы 4.5.

Из 1)-3) следует, что статистика $\varphi(\xi_1,...,\xi_n;m)$ имеет распределение Стьюдента с n-1 степенью свободы T(n-1). Кроме того, при всех реализациях выборки $(\xi_1,...,\xi_n)$ функция $\varphi(\xi_1,...,\xi_n;m)$ как функция m является непрерывной и убывающей, следовательно, случайная функция $\varphi(\xi_1,...,\xi_n;m)$ является центральной статистикой для m.

Пусть
$$y_1$$
 и y_2 — квантили уровней $\frac{1-P_{\delta}}{2}$ и $\frac{1+P_{\delta}}{2}$ распределения $T(n-1)$, тогда:
$$P\{\,y_1<\varphi(\xi_1,...,\;\xi_n;m)< y_2\}=P_{\delta}\,,$$

$$\begin{split} P\left\{y_1 < \frac{\hat{m}_1 - m}{\sqrt{\tilde{\mu}_2}} \sqrt{n} < y_2\right\} &= P_{\delta}, \\ P\left\{\hat{m}_1 - y_2 \sqrt{\frac{\tilde{\mu}_2}{n}} < m < \hat{m}_1 - y_1 \sqrt{\frac{\tilde{\mu}_2}{n}}\right\} &= P_{\delta}. \end{split}$$

Поскольку функция плотности вероятности распределения Стьюдента T(n-1) является симметричным относительно нуля, то для функции распределения $F_{T_{n-1}}(t)$ справедливо равенство:

$$F_{T_{n-1}}(t) = 1 - F_{T_{n-1}}(-t)$$
.

Отсюда следует, что $-y_1 = y_2$, действительно:

$$F_{T_{n-1}}(-y_1) = 1 - F_{T_{n-1}}(y_1) = 1 - \frac{1 - P_{\delta}}{2} = \frac{1 + P_{\delta}}{2} = F_{T_{n-1}}(y_2).$$

Таким образом,

$$P\left\{\hat{m}_1 - y_2\sqrt{\frac{\tilde{\mu}_2}{n}} < m < \hat{m}_1 + y_2\sqrt{\frac{\tilde{\mu}_2}{n}}\right\} = P_{\delta}$$

и следовательно интервал,

$$\left(\hat{m}_1 - y_2 \sqrt{\frac{\tilde{\mu}_2}{n}}; \hat{m}_1 + y_2 \sqrt{\frac{\tilde{\mu}_2}{n}}\right),$$

в котором $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n \xi_i$, $\tilde{\mu}_2 = \frac{1}{n-1} \sum_{i=1}^n \left(\xi_i - \hat{m}_1 \right)^2$ и y_2 — квантиль уровня $\frac{1+P_{\vartheta}}{2}$ распределения

Стьюдента с n-1 степенью свободы, является доверительным интервалом для m с уровнем доверия $P_{\scriptscriptstyle a}$.

6. Метод построения центральной статистики.

Пусть ξ — случайная величина с непрерывной и возрастающей по x функцией распределения $F_{\xi}(x\,|\,\theta)$, возможно зависящей от параметра θ . Рассмотрим случайную величину $\eta=F_{\xi}(\xi\,|\,\theta)$, легко видеть, что функция распределения $F_{\eta}(y\,|\,\theta)$ случайной величины η :

$$F_{\eta}(y \mid \theta) = P\{\eta < y\} = P\{F_{\xi}(\xi \mid \theta) < y\} = \begin{cases} 0, & y < 0 \\ P\{\xi < F_{\xi}^{-1}(y \mid \theta)\}, & 0 \le y \le 1, \\ 1, & 1 < y, \end{cases}$$

где обратная функция $F_{\xi}^{-1}(y \mid \theta)$ существует, поскольку функция распределения $F_{\xi}(\xi \mid \theta)$ непрерывна и возрастает. Заметим, что если $0 \le y \le 1$, то:

$$P\{\xi < F_{\xi}^{-1}(y \mid \theta)\} = F_{\xi}(F_{\xi}^{-1}(y \mid \theta)) = y$$
,

таким образом,

$$F_{\eta}(y) = \begin{cases} 0 & , y < 0 \\ y & , 0 \le y \le 1 , \\ 1 & , 1 < y \end{cases}$$

и следовательно случайная величина η имеет равномерное распределение R[0,1], не зависящее от параметра θ .

Пусть $(\xi_1,...,\xi_n)$ — совокупность наблюдений и $T(\xi_1,...,\xi_n)$ — статистика, функция распределения которой $F_T(t\,|\,\theta)$ непрерывна и возрастает по t и кроме того известна

полностью либо известна с точностью до значения параметра θ . Рассмотрим случайную величину $\varphi(\xi_1,...,\xi_n\mid\theta)=F_T(T(\xi_1,...,\xi_n)\mid\theta)$, согласно рассмотренному выше свойству функции распределения, случайная величина $\varphi(\xi_1,...,\xi_n\mid\theta)$ имеет равномерное распределение R[0,1], не зависящее от параметра θ . Если при фиксированных $\xi_1,...,\xi_n$ функция $F_T(T(\xi_1,...,\xi_n)\mid\theta)$ как функция параметра θ является непрерывной и монотонной, тогда $\varphi(\xi_1,...,\xi_n\mid\theta)$ по определению является центральной статистикой.

Для построения "центрального" доверительного интервала достаточно вычислить число $\alpha = \frac{1-P_{_{\theta}}}{2}$, где $P_{_{\theta}}$ — уровень доверия, $0.5 < P_{_{\theta}} < 1$, тогда:

$$P\{\alpha < \varphi(\xi_1,...,\xi_n \mid \theta) < 1-\alpha\} = F_{\varphi}(1-\alpha) - F_{\varphi}(\alpha),$$

где $F_{\varphi}(x)$ — функция распределения $\varphi(\xi_1,...,\xi_n\mid\theta)$. Поскольку $\varphi(\xi_1,...,\xi_n\mid\theta)$ имеет равномерное распределение R[0,1], то $F_{\varphi}(1-\alpha)=1-\alpha$ и $F_{\varphi}(\alpha)=\alpha$, тогда:

$$\begin{split} P\{\alpha < \varphi(\xi_1, \dots, \ \xi_n \mid \theta) < 1 - \alpha\} &= 1 - \alpha - \alpha = 1 - 2\alpha = P_{\partial}\,, \\ P\{\alpha < F_T(T(\xi_1, \dots, \ \xi_n) \mid \theta) < 1 - \alpha\} &= P_{\partial}\,. \end{split}$$

Разрешая неравенства $\alpha < F_T(T(\xi_1,...,\xi_n) \mid \theta) < 1-\alpha$ относительно θ , получим доверительный интервал. Если функция $F_T(T(\xi_1,...,\xi_n) \mid \theta)$ возрастает по θ , тогда:

$$P\{F_{\theta}^{-1}(T(\xi_1,...,\xi_n),\alpha) < \theta < F_{\theta}^{-1}(T(\xi_1,...,\xi_n),1-\alpha)\} = P_{\delta}.$$

Если функция $F_T(T(\xi_1,...,\xi_n)|\theta)$ убывает по θ , тогда:

$$P\{F_{\theta}^{-1}(T(\xi_1,...,\xi_n),1-\alpha)<\theta< F_{\theta}^{-1}(T(\xi_1,...,\xi_n),\alpha)\}=P_{\delta}.$$

Если функция $F_T(T(\xi_1,...,\xi_n)\,|\,\theta)$ возрастает по θ , то для построения нижней доверительной границы достаточно взять $\alpha=1-P_\delta$ и рассмотреть вероятность:

$$\begin{split} P\{\alpha < \varphi(\xi_1, ..., \xi_n \mid \theta)\} &= 1 - F_{\varphi}(\alpha) = 1 - \alpha = 1 - (1 - P_{\delta}) = P_{\delta}, \\ P\{\alpha < F_T(T(\xi_1, ..., \xi_n) \mid \theta)\} &= P_{\delta}, \\ P\{F_{\theta}^{-1}(T(\xi_1, ..., \xi_n), \alpha) < \theta\} &= P_{\delta}. \end{split}$$

Для построения верхней доверительной границы достаточно взять $\alpha = P_{\delta}$ и рассмотреть вероятность:

$$\begin{split} P\{\varphi(\xi_1, \dots, \xi_n \mid \theta) < \alpha\} &= F_{\varphi}(\alpha) = \alpha = P_{\partial}, \\ P\{F_T(T(\xi_1, \dots, \xi_n) \mid \theta) < \alpha\} &= P_{\partial}, \\ P\{\theta < F_{\theta}^{-1}(T(\xi_1, \dots, \xi_n), \alpha)\} &= P_{\partial}. \end{split}$$

Если функция $F_T(T(\xi_1,...,\xi_n)|\theta)$ убывает по θ , то для построения нижней доверительной границы следует взять $\alpha=P_{\theta}$ и рассмотреть вероятность:

$$\begin{split} P\{\varphi(\xi_1, \dots, \xi_n \mid \theta) < \alpha\} &= F_{\varphi}(\alpha) = \alpha = P_{\partial}, \\ P\{F_T(T(\xi_1, \dots, \xi_n) \mid \theta) < \alpha\} &= P_{\partial}, \\ P\{F_{\theta}^{-1}(T(\xi_1, \dots, \xi_n), \alpha) < \theta\} &= P_{\partial}. \end{split}$$

Для построения верхней доверительной границы следует взять $\alpha = 1 - P_{\scriptscriptstyle \partial}$ и рассмотреть вероятность:

$$\begin{split} P\{\alpha < \varphi(\xi_1,...,\xi_n \mid \theta)\} &= 1 - F_{\varphi}(\alpha) = 1 - \alpha = 1 - (1 - P_{\delta}) = P_{\delta}, \\ P\{\alpha < F_T(T(\xi_1,...,\xi_n) \mid \theta)\} &= P_{\delta}, \\ P\{\theta < F_{\theta}^{-1}(T(\xi_1,...,\xi_n),\alpha)\} &= P_{\delta}. \end{split}$$

7. Построение доверительных интервалов на основе асимптотической нормальности. Доверительный интервал для вероятности события.

Пусть $(\xi_1,...,\xi_n)$ — серия наблюдений и случайная величина $\varphi(\xi_1,...,\xi_n|\theta)$ имеет асимптотически (при $n \to \infty$) нормальное распределение $N(m(\theta),\sigma^2(\theta))$:

$$\varphi(\xi_1,...,\xi_n \mid \theta) \sim N(m(\theta),\sigma^2(\theta))$$
, при $n \to \infty$;

В силу асимптотической нормальности:

$$\frac{\varphi(\xi_{1},...,\xi_{n}\mid\theta)-m(\theta)}{\sigma(\theta)}\sim N\left(0,\!1\right),\,\mathrm{при}\ n\to\infty\ ,$$

тогда для y_2 при больших n справедливо приближенное равенство для вероятностей:

$$P\left\{-y_{2}<\frac{\varphi(\xi_{1},...,\xi_{n}\mid\theta)-m(\theta)}{\sigma(\theta)}< y_{2}\right\}\approx\Phi(y_{2})-\Phi(-y_{2})=\Phi(y_{2})-(1-\Phi(y_{2}))=2\Phi(y_{2})-1.$$

Пусть y_2 является квантилью распределения N(0,1) уровня $\frac{1+P_o}{2}$, где P_o – уровень доверия:

$$\Phi(y_2) = \frac{1 + P_{\theta}}{2},$$

тогда,

$$P\left\{-y_{2} < \frac{\varphi(\xi_{1},...,\xi_{n} \mid \theta) - m(\theta)}{\sigma(\theta)} < y_{2}\right\} \approx 2\Phi(y_{2}) - 1 = 2\frac{1 + P_{\theta}}{2} - 1 = P_{\theta}.$$

Разрешая неравенство слева относительно θ , получим «приближенный» доверительный интервал:

$$P\{T_1(\xi_1,...,\xi_n,y_2) < \theta < T_2(\xi_1,...,\xi_n,y_2)\} \approx P_{\alpha}$$

Воспользуемся вышеизложенным методом для построения «приближенного» доверительного интервала неизвестной вероятности события в схеме n независимых испытаний. Пусть (ξ_1 ,..., ξ_n) — выборка, в которой каждая случайная величина ξ_i является бинарной и принимает значение 1 с некоторой неизвестной вероятностью p и значение 0 с вероятностью 1-p:

$$\xi_i = \begin{cases} 1 & , p \\ 0 & , 1-p \end{cases}.$$

Требуется построить приближенный доверительный интервал для вероятности p. Рассмотрим случайную величину $\varphi(\xi_1,...,\xi_n\mid p)$:

$$\varphi(\xi_1,...,\xi_n \mid p) = \sum_{i=1}^n \xi_i.$$

Случайные величины ξ_i независимы, имеют одинаковое распределение и конечные математическое ожидание и дисперсию, поэтому для случайных величин ξ_i справедлива центральная предельная теорема, в соответствии с которой сумма $\sum_{i=1}^n \xi_i$ имеет асимптотически (при $n \to \infty$) нормальное распределение с параметрами $N\left(M\left[\sum_{i=1}^n \xi_i\right], D\left[\sum_{i=1}^n \xi_i\right]\right)$, где:

$$M\left[\sum_{i=1}^{n} \xi_{i}\right] = np,$$

$$D\left[\sum_{i=1}^{n} \xi_{i}\right] = np(1-p),$$

тогда случайная величина:

$$\frac{\varphi(\xi_{1},...,\xi_{n}) - np}{\sqrt{np(1-p)}} = \frac{\sum_{i=1}^{n} \xi_{i} - np}{\sqrt{np(1-p)}}$$

имеет асимптотически (при $n \to \infty$) нормальное распределение N(0,1):

$$\frac{\varphi\left(\xi_{1},...,\,\xi_{n}\right)-np}{\sqrt{np\left(1-\,p\right)}}\sim\,N\left(0,\!1\right),\,\mathrm{Пр}\,\mathrm{U}\,\,n\,\rightarrow\,\infty\,\,.$$

Пусть y_2 — квантиль распределения $N\left(0,1\right)$ уровня $\frac{1+P_{\delta}}{2}$, тогда при больших n :

$$P\left\{ -y_{2} < \frac{\varphi(\xi_{1},...,\xi_{n}) - np}{\sqrt{np(1-p)}} < y_{2} \right\} \approx P_{o},$$

$$P\left\{ -y_{2} < \frac{\sum_{i=1}^{n} \xi_{i} - np}{\sqrt{np(1-p)}} < y_{2} \right\} \approx P_{o},$$

$$P\left\{ -y_{2} < \frac{\frac{1}{n} \sum_{i=1}^{n} \xi_{i} - p}{\sqrt{\frac{p(1-p)}{n}}} < y_{2} \right\} \approx P_{o},$$

$$P\left\{ \left| \frac{\frac{1}{n} \sum_{i=1}^{n} \xi_{i} - p}{\sqrt{\frac{p(1-p)}{n}}} \right| < y_{2} \right\} \approx P_{o},$$

$$P\left\{ \left| \frac{\hat{m}_{1} - p}{\sqrt{\frac{p(1-p)}{n}}} \right| < y_{2} \right\} \approx P_{o},$$

где
$$\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n \xi_i$$
.

Далее можно применить несколько различных способов построения приближенного доверительного интервала различных по трудоемкости и ширине получаемого интервала.

Способ A (наиболее трудоемкий): разрешая неравенство относительно неизвестной вероятности p , получим:

$$\left| \frac{\hat{m}_{1} - p}{\sqrt{\frac{p(1-p)}{n}}} \right| < y_{2} \Leftrightarrow \left(\frac{\hat{m}_{1} - p}{\sqrt{\frac{p(1-p)}{n}}} \right)^{2} < y_{2}^{2} \Leftrightarrow \frac{(\hat{m}_{1} - p)^{2}}{\frac{p(1-p)}{n}} - y_{2}^{2} < 0 \Leftrightarrow \frac{(\hat{m}_{1} - p)^{2} - y_{2}^{2}}{\frac{p(1-p)}{n}} < 0 \Leftrightarrow \frac{\hat{m}_{1}^{2} - 2\hat{m}_{1}p + p^{2} - \frac{y_{2}^{2}}{n}p + \frac{y_{2}^{2}}{n}p^{2}}{\frac{p(1-p)}{n}} < 0 \Leftrightarrow \frac{\left(1 + \frac{y_{2}^{2}}{n}\right)p^{2} - \left(2\hat{m}_{1} + \frac{y_{2}^{2}}{n}\right)p + \hat{m}_{1}^{2}}{\frac{p(1-p)}{n}} < 0 \Leftrightarrow \frac{p(1-p)}{n}$$

$$\begin{cases} \left[\frac{2\hat{m}_1 + \frac{y_2^2}{n} \right) - \sqrt{\left(2\hat{m}_1 + \frac{y_2^2}{n}\right)^2 - 4\left(1 + \frac{y_2^2}{n}\right)\hat{m}_1^2}}{2\left(1 + \frac{y_2^2}{n}\right)}
$$\begin{cases} \left[\frac{2\hat{m}_1 + \frac{y_2^2}{n} - \sqrt{4\hat{m}_1\frac{y_2^2}{n} + \frac{y_2^2}{n^2} - 4\frac{y_2^2}{n^2}}}{2\left(1 + \frac{y_2^2}{n}\right)} + \sqrt{4\hat{m}_1\frac{y_2^2}{n} + \frac{y_2^2}{n^2} - 4\frac{y_2^2}{n^2}}} \right] \right] \Leftrightarrow \frac{p(1-p)}{n} \neq 0 \end{cases}$$

$$\begin{cases} \frac{p(1-p)}{n} \neq 0 \end{cases} \Rightarrow \begin{cases} \frac{p(1-p)}{n} \Rightarrow 0$$$$

Отсюда, приближенный доверительный интервал:

$$\left[\frac{\left(2\hat{m}_{1} + \frac{y_{2}^{2}}{n}\right) - \sqrt{4\frac{y_{2}^{2}}{n}\hat{m}_{1}(1-\hat{m}_{1}) + \frac{y_{2}^{4}}{n^{2}}}}{2\left(1 + \frac{y_{2}^{2}}{n}\right)}; \frac{\left(2\hat{m}_{1} + \frac{y_{2}^{2}}{n}\right) + \sqrt{4\frac{y_{2}^{2}}{n}\hat{m}_{1}(1-\hat{m}_{1}) + \frac{y_{2}^{4}}{n^{2}}}}{2\left(1 + \frac{y_{2}^{2}}{n}\right)}\right].$$

Если в полученной системе пренебречь слагаемыми с множителем $\frac{1}{n}$ и с множителем $\frac{1}{n^2}$ под корнем, получим приближенное неравенство:

$$\begin{cases} 2\hat{m}_{1} - \sqrt{4y_{2}^{2} \frac{\hat{m}_{1}(1 - \hat{m}_{1})}{n}}
$$\begin{cases} 2\hat{m}_{1} - 2y_{2}\sqrt{\frac{\hat{m}_{1}(1 - \hat{m}_{1})}{n}}
$$\begin{cases} \frac{p(1 - p)}{n} \neq 0 \\ \frac{p(1 - p)}{n} \neq 0 \end{cases}$$$$$$

Таким образом,

$$P\left\{\hat{m}_{1}-y_{2}\sqrt{\frac{\hat{m}_{1}(1-\hat{m}_{1})}{n}}$$

и «приближенный» доверительный интервал для вероятности р имеет вид:

$$\left(\hat{m}_1 - y_2 \sqrt{\frac{\hat{m}_1(1 - \hat{m}_1)}{n}}; \hat{m}_1 + y_2 \sqrt{\frac{\hat{m}_1(1 - \hat{m}_1)}{n}}\right).$$

Способ Б: последний интервал может быть получен несколько иным путем. Необходимость в решении громоздкого квадратного уравнения возникает из-за того, что неизвестный параметр p содержится и в числителе и в знаменателе. Замена параметра p в знаменателе некоторой оценкой, например, выборочным средним \hat{m}_1 избавляет от необходимости решения квадратного уравнения:

$$\begin{split} P \left\{ \left| \frac{\hat{m}_1 - p}{\sqrt{\frac{\hat{m}_1(1 - \hat{m}_1)}{n}}} \right| < y_2 \right\} &\approx P_o, \\ P \left\{ -y_2 < \frac{\hat{m}_1 - p}{\sqrt{\frac{\hat{m}_1(1 - \hat{m}_1)}{n}}} < y_2 \right\} &\approx P_o, \\ P \left\{ \hat{m}_1 - y_2 \sqrt{\frac{\hat{m}_1(1 - \hat{m}_1)}{n}} < p < \hat{m}_1 + y_2 \sqrt{\frac{\hat{m}_1(1 - \hat{m}_1)}{n}} \right\} &\approx P_o. \end{split}$$

Отсюда приближенный доверительный интервал:

$$\left(\hat{m}_{1} - y_{2} \sqrt{\frac{\hat{m}_{1}(1 - \hat{m}_{1})}{n}}; \hat{m}_{1} + y_{2} \sqrt{\frac{\hat{m}_{1}(1 - \hat{m}_{1})}{n}}\right).$$

Способ В (наименее трудоемкий): другой способ устранить зависимость знаменателя от параметра p заключается в том, чтобы весь знаменатель заменить на его оценку сверху, например, на наибольшее значение знаменателя.

Поскольку из выполнения условия $\frac{\hat{m_1} - p}{\sqrt{\frac{p(1-p)}{n}}} < y_2$ следует выполнение условия

$$\left| \frac{\hat{m_1} - p}{\max_{p} \sqrt{\frac{p(1-p)}{n}}} \right| < y_2$$
, то имеет место вложенность событий:

$$\left\{\omega: \left|\frac{\hat{m}_1(\xi_1(\omega), \dots, \xi_n(\omega)) - p}{\sqrt{\frac{p(1-p)}{n}}}\right| < y_2\right\} \subseteq \left\{\omega: \left|\frac{\hat{m}_1(\xi_1(\omega), \dots, \xi_n(\omega)) - p}{\max_{p} \sqrt{\frac{p(1-p)}{n}}}\right| < y_2\right\}.$$

Откуда следует неравенство для вероятностей

$$P_{o} \approx \left\{ \omega : \left| \frac{\hat{m}_{1}(\xi_{1}(\omega), \dots, \xi_{n}(\omega)) - p}{\sqrt{\frac{p(1-p)}{n}}} \right| < y_{2} \right\} \leq \left\{ \omega : \left| \frac{\hat{m}_{1}(\xi_{1}(\omega), \dots, \xi_{n}(\omega)) - p}{\max_{p} \sqrt{\frac{p(1-p)}{n}}} \right| < y_{2} \right\}.$$

Таким образом,

$$P\left\{ \frac{\hat{m}_1 - p}{\max_{p} \sqrt{\frac{p(1-p)}{n}}} < y_2 \right\} \approx P_{\delta}$$

Легко видеть, что наибольшее значение выражения p(1-p) достигается при $p=\frac{1}{2}$, тогда:

$$\max_{p} \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{\max_{p} p(1-p)}{n}} = \sqrt{\frac{\frac{1}{2}\left(1-\frac{1}{2}\right)}{n}} = \sqrt{\frac{1}{4n}}.$$

Таким образом,

$$\begin{split} P\left\{\left|\frac{\hat{m}_1-p}{\sqrt{\frac{1}{4n}}}\right| < y_2\right\} &\approx P_o\,,\\ P\left\{-y_2 < \frac{\hat{m}_1-p}{\sqrt{\frac{1}{4n}}} < y_2\right\} &\approx P_o\,,\\ P\left\{\hat{m}_1-y_2\sqrt{\frac{1}{4n}} < p < \hat{m}_1+y_2\sqrt{\frac{1}{4n}}\right\} &\approx P_o\,. \end{split}$$

Отсюда приближенный доверительный интервал имеет вид:

$$\left(\hat{m}_{1}-y_{2}\sqrt{\frac{1}{4n}};\hat{m}_{1}+y_{2}\sqrt{\frac{1}{4n}}\right).$$

Нетрудно заметить, что полученный приближенный доверительный интервал является самым широким из всех полученных ранее.

8. Доверительный интервал для коэффициента корреляции двумерного нормального распределения с неизвестными математическими ожиданиями и дисперсиями.

Пусть $\begin{pmatrix} \begin{pmatrix} \xi_1 \\ \eta_1 \end{pmatrix}, ..., \begin{pmatrix} \xi_n \\ \eta_n \end{pmatrix} \end{pmatrix}$ выборка из двумерного нормального распределения $N \begin{pmatrix} m_\xi \\ m_\eta \end{pmatrix}, \begin{pmatrix} \sigma_\xi^2 & \rho_{\xi\eta} \, \sigma_\xi \, \sigma_\eta \\ \rho_{\xi\eta} \, \sigma_\xi \, \sigma_\eta & \sigma_\eta^2 \end{pmatrix} \end{pmatrix}$ с неизвестными математическими ожиданиями m_ξ и m_η , и неизвестными математическими ожиданиями m_ξ и m_η , и

неизвестными дисперсиями σ_ξ и σ_η . Требуется построить доверительный интервал для коэффициента корреляции ρ_ξ с уровнем доверия P_δ .

Если случайная величина $\begin{pmatrix} \xi \\ \eta \end{pmatrix}$ имеет распределение $N\!\left(\!\begin{pmatrix} m_\xi \\ m_\eta \end{pmatrix}\!,\!\begin{pmatrix} \sigma_\xi^2 & \rho_{\xi\eta}\,\sigma_\xi\sigma_\eta \\ \rho_{\xi\eta}\,\sigma_\xi\sigma_\eta & \sigma_\eta^2 \end{pmatrix}\!\right)$, то

коэффициент корреляции ρ_{ε_n} :

$$\rho_{\xi\eta} = \frac{\operatorname{cov}(\ \xi\,,\eta\,)}{\sigma_{\,\xi}\cdot\sigma_{\,\eta}} = \frac{M\left[(\xi-m_{\,\xi})(\eta-m_{\,\eta})\right]}{\sigma_{\,\xi}\cdot\sigma_{\,\eta}}\,.$$

Моментная оценка коэффициента корреляции $\hat{\rho}_{z_0}$ имеет вид:

$$\hat{\rho}_{\xi\eta} = \frac{\frac{1}{n} \sum_{i=1}^{n} (\xi_{i} - \hat{m}_{\xi})(\eta_{i} - \hat{m}_{\eta})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\xi_{i} - \hat{m}_{\xi})^{2}} \cdot \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\eta_{i} - \hat{m}_{\eta})^{2}}},$$

$$\hat{m}_{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i}, \hat{m}_{\eta} = \frac{1}{n} \sum_{i=1}^{n} \eta_{i}.$$

Можно показать, что статистика $\hat{\rho}_{\xi\eta}$ имеет асимптотически нормальное распределение

$$N\Bigg(
ho_{\xi\eta}-rac{
ho_{\xi\eta}\left(1-
ho_{\xi\eta}^2
ight)}{2n},rac{\left(1-
ho_{\xi\eta}^2
ight)^2}{n-1}\Bigg),$$
 однако, использовать непосредственно статистику $\hat{
ho}_{\xi\eta}$ для

построения доверительного интервала весьма затруднительно, поскольку зависимость дисперсии от $\rho_{\xi\eta}$ в конечном счете приводит к необходимости решать громоздкое квадратное уравнение, и к тому же указанное асимптотическое распределение является не слишком точным для малых n и значений $\rho_{\xi\eta}$ близких к 1 и -1.

Во избежание указанных проблем прибегают к преобразованию Фишера:

$$z(\hat{\rho}_{\xi\eta}) = arth \ \hat{\rho}_{\xi\eta} = \frac{1}{2} \ln \frac{1 + \hat{\rho}_{\xi\eta}}{1 - \hat{\rho}_{\xi\eta}}.$$

Можно показать, что статистика z имеет асимптотически нормальное распределение $N(m_z(\rho_{\varepsilon_0}),\sigma_z^2(n))$, где:

$$m_{z}(\rho_{\xi\eta}) = \frac{1}{2} \ln \frac{1 + \rho_{\xi\eta}}{1 - \rho_{\xi\eta}} + \frac{\rho_{\xi\eta}}{2(n-1)} = \operatorname{arth} \rho_{\xi\eta} + \frac{\rho_{\xi\eta}}{2(n-1)},$$
$$\sigma_{z}^{2}(n) = \frac{1}{n-3},$$

причем $\sigma_z^2(n)$ не зависит от $\rho_{\xi\eta}$. Легко видеть, что случайная величина $\varphi((\xi_1,\eta_1),...,(\xi_n,\eta_n)\,|\,\rho_{\xi\eta})$:

$$\varphi((\xi_1, \eta_1), ..., (\xi_n, \eta_n) \mid \rho_{\xi \eta}) = \frac{z(\hat{\rho}_{\xi \eta}) - m_z(\rho_{\xi \eta})}{\sigma(n)} = \sqrt{n - 3} (z(\hat{\rho}_{\xi \eta}) - m_z(\rho_{\xi \eta}))$$

будет иметь асимптотически нормальное распределение N(0,1) при возрастании n и поэтому может быть использована для построения «приближенного» доверительного интервала. Для этого достаточно вычислить y_2 — квантиль распределения N(0,1) уровня $\frac{1+P_o}{2}$, тогда:

$$P\{-y_2 < \sqrt{n-3} (z(\hat{\rho}_{\xi\eta}) - m_z(\rho_{\xi\eta})) < y_2\} \approx P_{\partial}.$$

Далее, необходимо преобразовать двойное неравенство, стоящее под знаком вероятности:

$$\begin{split} &-y_2 < \sqrt{n-3}(z(\hat{\rho}_{\xi\eta}) - m_z(\rho_{\xi\eta})) < y_2\,, \\ &-\frac{y_2}{\sqrt{n-3}} < z(\hat{\rho}_{\xi\eta}) - m_z(\rho_{\xi\eta}) < \frac{y_2}{\sqrt{n-3}}\,, \\ &z(\hat{\rho}_{\xi\eta}) - \frac{y_2}{\sqrt{n-3}} < m_z(\rho_{\xi\eta}) < z(\hat{\rho}_{\xi\eta}) + \frac{y_2}{\sqrt{n-3}}\,, \\ &z(\hat{\rho}_{\xi\eta}) - \frac{y_2}{\sqrt{n-3}} < arth \; \rho_{\xi\eta} + \frac{\rho_{\xi\eta}}{2(n-1)} < z(\hat{\rho}_{\xi\eta}) + \frac{y_2}{\sqrt{n-3}}\,. \end{split}$$

В последнем двойном неравенстве величина $\frac{\rho_{\xi\eta}}{2(n-1)}$ является малой (поскольку,

 $\mid
ho_{\xi\eta} \mid \leq 1$) и её заменяют величиной $\dfrac{\hat{
ho}_{\xi\eta}}{2(n-1)}$:

$$z(\hat{\rho}_{\xi\eta}) - \frac{y_2}{\sqrt{n-3}} < arth \ \rho_{\xi\eta} + \frac{\hat{\rho}_{\xi\eta}}{2(n-1)} < z(\hat{\rho}_{\xi\eta}) + \frac{y_2}{\sqrt{n-3}},$$

$$z(\hat{\rho}_{\xi\eta}) - \frac{y_2}{\sqrt{n-3}} - \frac{\hat{\rho}_{\xi\eta}}{2(n-1)} < arth \ \rho_{\xi\eta} < z(\hat{\rho}_{\xi\eta}) + \frac{y_2}{\sqrt{n-3}} - \frac{\hat{\rho}_{\xi\eta}}{2(n-1)}.$$

Обозначим левую и правую части неравенства статистиками $z_1(\hat{\rho}_{\xi\eta})$ и $z_2(\hat{\rho}_{\xi\eta})$:

$$\begin{split} z_1(\hat{\rho}_{\xi\eta}) &= z(\hat{\rho}_{\xi\eta}) - \frac{y_2}{\sqrt{n-3}} - \frac{\hat{\rho}_{\xi\eta}}{2(n-1)}, \\ z_2(\hat{\rho}_{\xi\eta}) &= z(\hat{\rho}_{\xi\eta}) + \frac{y_2}{\sqrt{n-3}} - \frac{\hat{\rho}_{\xi\eta}}{2(n-1)}, \end{split}$$

тогда:

$$\begin{split} &z_1(\hat{\rho}_{\xi\eta}\,) < arth \; \rho_{\xi\eta} < z_2(\hat{\rho}_{\xi\eta}\,) \;, \\ &thz_1(\hat{\rho}_{\xi\eta}\,) < \rho_{\xi\eta} < thz_2(\hat{\rho}_{\xi\eta}\,) \;. \end{split}$$

Таким образом,

$$P\{thz_{1}(\hat{\rho}_{\xi_{n}})<\rho_{\xi_{n}}< thz_{2}(\hat{\rho}_{\xi_{n}})\}\approx P_{\partial}\,,$$

и интервал (th $z_1(\hat{\rho}_{\xi\eta})$, th $z_2(\hat{\rho}_{\xi\eta})$) является приближенным доверительным интервалом для коэффициента корреляции $\rho_{\xi\eta}$ с уровнем доверия P_{δ} .

Значения функций $th\ z_1(r)$ и $th\ z_2(r)$ для различных значений $r\in[-1,1]$ сведены в таблицу, поэтому на практике после вычисления значения статистики $\hat{\rho}_{\xi\eta}$, границы доверительного интервала $th\ z_1(\hat{\rho}_{\xi\eta})$ и $th\ z_2(\hat{\rho}_{\xi\eta})$ могут быть определены из таблицы.

Рисунок 4.2. Номограмма.