

# Bridge

PRACTICAL WORK 4

TIZIANO NARDONE
UNIVERSITY OF REIMS | FRANCE

# Table of Contents

| ١.  | Е   | Basic configuration                                                            | 3   |
|-----|-----|--------------------------------------------------------------------------------|-----|
|     |     | Starting with Bridges                                                          | . 3 |
|     | 0.  | Configuration private bridge                                                   | 3   |
|     | 1.  | Question 1 : Start up bridge configuration & plug in the (host only) interface | 3   |
|     | 2.  | Question 2: Connection between Bridges and Alpine Linux VMTs using TAPs        |     |
|     | (   | Create TAP (tap0 & tap1) interfaces:                                           |     |
|     | F   | Forwarding ports between host and SSH VMs & Building tap back end network      | . 4 |
|     | A   | Add TAP interfaces to the bridge:                                              | . 5 |
| Ш.  | •   | Test ping                                                                      | . 5 |
| IV. |     | Starting with containers                                                       | . 5 |
|     | 3.  | Install LXC containers                                                         | . 5 |
|     | 4.  | Container network configuration                                                | 6   |
|     | (   | CTN02 on host:                                                                 | 6   |
|     | (   | CTN02 on guest:                                                                | 6   |
|     | (   | CTN03 on host:                                                                 | 6   |
|     | (   | CTN03 on guest:                                                                | 6   |
| ٧.  | 7   | Test ping                                                                      | . 7 |
| VI. |     | Ping between VMs & containers                                                  | . 7 |
|     | 5.  | Starting up VMs                                                                | . 7 |
|     | 6.  | Starting up containers                                                         | . 7 |
|     | 7.  | Test between host and all guests                                               | . 7 |
|     | 8.  | Test between CTN02 and host and other guests                                   | . 8 |
|     | 9.  | Test VM2 host and other guests                                                 | . 8 |
| VI  | l.  | Public bridge                                                                  | . 9 |
|     | 10. | Starting up VMs connected to br0                                               | . 9 |
|     | 11. | Create a public bridge br1 connected to public interface on the host           | . 9 |
|     | 12. | Starting up containers connected to br1                                        | . 9 |
| VI  | II. | Test ping                                                                      | 10  |
|     | 13. | Between guests                                                                 | 10  |
|     | 14. | Outside network                                                                | 10  |
|     | 15. | Between host and guest                                                         | 10  |
| IX. | •   | NAT                                                                            | 10  |
| Χ.  | 1   | Appendix                                                                       | 10  |



## PRACTICAL WORK 4 VERSION : 23 DECEMBER 2021

| 16. | Delete screen          |
|-----|------------------------|
| 17. | Start new screen       |
| 18. | Attach running session |
| 19. | Detach                 |
| 20. | Create a windows       |
| 21. | Change windows         |
| 22. | List windows           |
| 23. | Show window bar        |
| 24. | Kill current window    |
| 25. | Kill all window        |
| 26. | Rename window          |
| 27. | Split horizontally11   |
| 28. | Split vertically       |
| 29. | Jump between win       |



PRACTICAL WORK 4 VERSION : 23 DECEMBER 2021

## I. Basic configuration

- Create a linked clone of the last VMs created during the third practical work
- Network
  - Host-only
    - Update MAC address if necessary



- NAT
- Check if all QEMU & LXC packages are installed
- Check the QEMU Alpine VM
- Create rebase for each Alpine VM needed & checked the installation of all packages required

#### Since now the Ubuntu VM is considered as the host!

# II. Starting with Bridges

In this first part on networking configuration, all bridges will be created at launch. So, all bridges definitions must be included in *netplan* configuration

#### 0. Configuration private bridge

In this part, all host connected to this configuration must have an fixed IP address. The IP addressing is up to you!

- → Sudo apt-get install bridge-utils
- 1. Question 1 : Start up bridge configuration & plug in the (host only) interface
- Editing /etc/netplan/"...".yaml



**PRACTICAL WORK 4** 

**VERSION: 23 DECEMBER 2021** 

```
# This is the network config written by 'subinetwork:
ethernets:
enp0s3:
dhcp4: true
enp0s8:
addresses: [10.22.141.18/24]
bridges:
br0:
addresses: [172.16.1.1/24]
version: 2
```

2. Question 2: Connection between Bridges and Alpine Linux VMTs using TAPs

Create TAP (tap0 & tap1) interfaces:

```
tub@ubuntu:~$ sudo ip tuntap add dev tap0 mode tap
```

Forwarding ports between host and SSH VMs & Building tap back end network

VM2:

```
#!/bin/bash

qemu-system-x86_64 \
    -m 256 \
    -k fr \
    -drive file=a2VM.img,format=qcow2 \
    -nographic \
    -netdev tap,ifname=tap0,id=net0,script=no,downscript=no \
    -device e1000,netdev=net0,mac=52:55:00:d1:55:01 \
    -netdev user,id=net1,hostfwd=tcp::12022-:22 \
    -device e1000,netdev=net1
```

→ sudo vi /etc/network/interfaces

```
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
address 172.16.1.2/24
```

- → sudo service networking restart
- VM3:



```
#!/bin/bash

qemu-system-x86_64 \
    -m 256 \
    -k fr \
    -drive file=a3VM.img,format=qcow2 \
    -nographic \
    -netdev tap,ifname=tap1,id=net3,script=no,downscript=no \
    -device e1000,netdev=net3,mac=52:55:00:d1:55:02 \
    -netdev user,id=net4,hostfwd=tcp::13022-:22 \
    -device e1000,netdev=net4
```

→ sudo vi /etc/network/interfaces

```
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 172.16.1.3/24
```

→ sudo service networking restart

Add TAP interfaces to the bridge:

```
tub@ubuntu:~$ ip link set tap0 master br0
```

## III. Test ping

→ Between guests

```
alpine:~$ ping 172.16.1.3
PING 172.16.1.3 (172.16.1.3): 56 data bytes
64 bytes from 172.16.1.3: seq=0 ttl=42 time=43.374 ms
64 bytes from 172.16.1.3: seq=1 ttl=42 time=9.350 ms
^C
```

→ Between host & guest

```
tub@ubuntu:~$ ping 172.16.1.2
PING 172.16.1.2 (172.16.1.2) 56(84) bytes of data.
64 bytes from 172.16.1.2: icmp_seq=1 ttl=64 time=6.25 ms
```

## IV. Starting with containers

- 3. Install LXC containers
- → sudo apt-get install lxc lxctl
- → lxd init



- → lxc remote list
- → sudo apt-get instal lxc-templates
- → lxc image list images:debian
- → lxc image list images:debian/11
- → lxc image list images: b760aa0ab29d

|     |                    |              |        | e list images:b760aa0ab29d             | <b>.</b>     |           | <b>4</b> |                               |
|-----|--------------------|--------------|--------|----------------------------------------|--------------|-----------|----------|-------------------------------|
| l i | ALIAS              | FINGERPRINT  | PUBLIC | DESCRIPTION                            | ARCHITECTURE | TYPE      | SIZE     | UPLOAD DATE                   |
| ∥i. | debian/11 (7 more) | b760aa0ab29d | yes    | Debian bullseye amd64 (20211223_05:24) | x86_64       | CONTAINER | 80.62MB  | Dec 23, 2021 at 12:00am (UTC) |

..

...

- → sudo lxc-create -n ctn02 -t ubuntu
- → sudo lxc-create -n ctn03 -t ubuntu
- 4. Container network configuration

#### CTN02 on host:

→ sudo vi /var/lib/lxc/containerName/config

```
# Network configuration
lxc.net.0.type = veth
lxc.net.0.link = br0
lxc.net.0.veth.pair = br-ct02
lxc.net.0.flags = up
lxc.net.0.hwaddr = 00:16:3e:f4:95:72
```

#### CTN02 on guest:

#### CTN03 on host:

```
# Network configuration
lxc.net.0.type = veth
lxc.net.0.link = br0
lxc.net.0.veth.pair = br-ct03
lxc.net.0.flags = up
lxc.net.0.hwaddr = 00:16:3e:81:4f:90
```

#### CTN03 on guest:



## V. Test ping

→ Between guests

```
ubuntu@ctn02:~$ ping 172.16.1.13

PING 172.16.1.13 (172.16.1.13) 56(84) bytes of data.

64 bytes from 172.16.1.13: icmp_seq=1 ttl=64 time=0.120 ms

64 bytes from 172.16.1.13: icmp_seq=2 ttl=64 time=0.126 ms

64 bytes from 172.16.1.13: icmp_seq=3 ttl=64 time=0.118 ms
```

→ Between host & guest

```
tub@ubuntu:~$ ping 172.16.1.13
PING 172.16.1.13 (172.16.1.13) 56(84) bytes of data.
64 bytes from 172.16.1.13: icmp_seq=1 ttl=64 time=0.096 ms
```

# VI. Ping between VMs & containers

#### 5. Starting up VMs

- → sudo ip tuntap add dev tap0 mode tap
- → sudo ip tuntap add dev tap1 mode tap
- → sudo ./a2powerup.sh
- → sudo ./a3powerup.sh
- → sudo ip link set dev tap0 master br0
- → sudo ip link set dev tap1 master br0
- → sudo ip link set dev tap0 up
- → sudo ip link set dev tap0 up

#### 6. Starting up containers

- → sudo lxc-start -n ctn02
- → sudo lxc-console -n ctn02
- → sudo lxc-start -n ctn03
- → sudo lxc-console -n ctn03

#### 7. Test between host and all guests

```
tub@ubuntu:~$ ping 172.16.1.2
PING 172.16.1.2 (172.16.1.2) 56(84) bytes of data.
64 bytes from 172.16.1.2: icmp_seq=1 ttl=64 time=7.98 ms
--- 172.16.1.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 7.984/7.984/7.984/0.000 ms
tub@ubuntu:~$ ping 172.16.1.3
PING 172.16.1.3 (172.16.1.3) 56(84) bytes of data.
64 bytes from 172.16.1.3: icmp_seq=1 ttl=64 time=1.13 ms
--- 172.16.1.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.125/1.125/1.125/0.000 ms
tub@ubuntu:~$ ping 172.16.1.12
PING 172.16.1.12 (172.16.1.12) 56(84) bytes of data.
64 bytes from 172.16.1.12: icmp_seq=1 ttl=64 time=0.055 ms
--- 172.16.1.12 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.055/0.055/0.055/0.000 ms
tub@ubuntu:~$ ping 172.16.1.13
PING 172.16.1.13 (172.16.1.13) 56(84) bytes of data.
64 bytes from 172.16.1.13: icmp_seq=1 ttl=64 time=0.026 ms
--- 172.16.1.13 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.026/0.026/0.026/0.0000 ms
tub@ubuntu:~$ ping 172.16.1.3: icmp_seq=1 ttl=64 time=0.026 ms
--- 172.16.1.13 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.026/0.026/0.026/0.0000 ms
tub@ubuntu:~$ ping 172.16.1.3: icmp_seq=1 ttl=64 time=0.026 ms
```



**PRACTICAL WORK 4** 

#### 8. Test between CTN02 and host and other guests

```
ubuntu@ctn02:~$ ping 172.16.1.1
PING 172.16.1.1 (172.16.1.1) 56(84) bytes of data.
64 bytes from 172.16.1.1: icmp_seq=1 ttl=64 time=0.032 ms
^C
--- 172.16.1.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.032/0.032/0.032/0.0000 ms
ubuntu@ctn02:~$ ping 172.16.1.13
PING 172.16.1.13 (172.16.1.13) 56(84) bytes of data.
64 bytes from 172.16.1.13: icmp_seq=1 ttl=64 time=0.108 ms
^C
--- 172.16.1.13 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.108/0.108/0.108/0.000 ms
ubuntu@ctn02:~$ ping 172.16.1.2
PING 172.16.1.2 (172.16.1.2) 56(84) bytes of data.
64 bytes from 172.16.1.2: icmp_seq=1 ttl=64 time=0.864 ms
^C
--- 172.16.1.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.864/0.864/0.864/0.000 ms
ubuntu@ctn02:~$ ping 172.16.1.3
PING 172.16.1.3 (172.16.1.3) 56(84) bytes of data.
64 bytes from 172.16.1.3: icmp_seq=1 ttl=64 time=1.46 ms
^C
--- 172.16.1.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.461/1.461/1.461/0.000 ms
ubuntu@ctn02:~$
■
```

#### 9. Test VM2 host and other guests

```
alpine:~$ ping 172.16.1.1
PING 172.16.1.1 (172.16.1.1): 56 data bytes
64 bytes from 172.16.1.1: seq=0 ttl=42 time=2.161 ms
--- 172.16.1.1 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 2.161/2.161/2.161 ms
alpine:~$ ping 172.16.1.3
PING 172.16.1.3 (172.16.1.3): 56 data bytes
64 bytes from 172.16.1.3: seq=0 ttl=42 time=5.399 ms
^C
--- 172.16.1.3 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 5.399/5.399/5.399 ms
alpine:~$ ping 172.16.1.12
PING 172.16.1.12 (172.16.1.12): 56 data bytes
64 bytes from 172.16.1.12: seq=0 ttl=42 time=1.661 ms
^C
--- 172.16.1.12 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 1.661/1.661/1.661 ms
alpine:~$ ping 172.16.1.13
PING 172.16.1.13 (172.16.1.13): 56 data bytes
64 bytes from 172.16.1.13: seq=0 ttl=42 time=1.889 ms
--- 172.16.1.13 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 1.889/1.889/1.889 ms alpine:~$
```



**VERSION: 23 DECEMBER 2021** 

## VII. Public bridge

- 10. Starting up VMs connected to br0
- → sudo ./a2powerup.sh
- → sudo ./a3powerup.sh
- 11. Create a public bridge br1 connected to public interface on the host
- → sudo vi /etc/netplan/...yaml

```
# This is the network config written by 'subique network:
ethernets:
enp0s3:
dhcp4: true
enp0s8:
addresses: [10.22.141.18/24]
bridges:
br0:
addresses: [172.16.1.1/24]
br1:
dhcp4: true
version: 2
```

→ sudo ip link set dev enp0s3 master br1

### 12. Starting up containers connected to br1

→ sudo vi /var/lib/lxc/ctn02/config

```
# Network configuration
lxc.net.0.type = veth
lxc.net.0.link = br1
lxc.net.0.veth.pair = br-ct02
lxc.net.0.flags = up
lxc.net.0.hwaddr = 00:16:3e:f4:95:72
```

- → sudo lxc-start -n ctn02
- → sudo lxc-console -n ctn02
- → sudo vi /etc/netplan/...yaml

```
network:
   ethernets:
    eth0: {dhcp4: true}
   version: 2
```

```
eth0@if21: <BROADCAST,N
link/ether 00:16:3e:f4
inet 10.0.2.17/24 brd
```

→ Repeat the same commands for the CTN03

```
2: eth0@if22: <BROADC/
link/ether 00:16:3
inet 10.0.2.16/24
```



## VIII. Test ping

#### 13. Between guests

```
ubuntu@ctn02:~$ ping 10.0.2.16
PING 10.0.2.16 (10.0.2.16) 56(84) bytes of data.
64 bytes from 10.0.2.16: icmp seg=1 ttl=64 time=0.041 ms
```

## 14. Outside network

```
ubuntu@ctn02:~$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp seq=1 ttl=118 time=21.1 ms
```

## 15. Between host and guest

- → Host unreachable
- → Guest unreachable

## IX. NAT

# X. Appendix

- 16. Delete screen
- → screen -X -S ID quit
- 17. Start new screen
- → screen -S nameScreen
- 18. Attach running session
- → screen -r nameScreen
- 19. Detach
- → screen -d / C-a d
- 20. Create a windows
- **→** C-a c

## 21. Change windows

→ C-a number



- 22. List windows
- → C-a "
- 23. Show window bar
- → C-a w
- 24. Kill current window
- → C-a k
- 25. Kill all window
- **→** C-a \
- 26. Rename window
- → C-a A
- 27. Split horizontally
- → C-a S
- 28. Split vertically
- → C-a |
- 29. Jump between win
- → C-a Tab

