가

Table 15. Comparison of bulb weight based on seed bulb materials and ecotypes in spring cultivation of garlic.

Seed bulb		Total	Cloved bulb (g/bulb)	Single bulb(g/bulb)	
material	Ecotype	(g/bulb)		Total	Commercial
Bulbil	Cold type ^{a)}	10.4	12.0	5.0	3.4
	Intertype ^{b)}	7.9	0	7.9	11.7
	Warm type ^{c)}	12.4	17.3	9.6	14.2
	Mean	10.2 c	9.8 c	7.5 b	9.8 a
Single bulb	Cold type	22.3	22.3	0	0
	Intertype	14.4	25.0	12.6	14.0
	Warm type	16.0	20.2	11.3	16.0
	Mean	17.5 b	22.5 b	8.0 ab	10.0 a
Clove	Cold type	24.4	24.4	0	0
	Intertype	15.0	24.3	12.9	16.1
	Warm type	21.3	25.2	13.9	20.6
	Mean	20.2 a	24.7 a	8.9 a	12.3 a
Ecotype mean	Cold type	19.0 a	19.6 b	1.7 b	1.1 c
	Intertype	12.4 c	16.4 c	11.1 a	14.0 b
	Warm type	16.6 b	20.9 a	11.6 a	16.9 a
$S^{d)}$		**	**	*	ns
$\mathrm{E}^{\mathrm{e})}$		**	**	**	**
S×E		**	**	**	*

^{a)}Danyangjong, ^{b)}DL01, ^{c)}Namdojong, ^{d)}Seed bulb material, ^{e)}Ecotype

Same letters within a column indicate no significant difference at α =0.05 by DMRT(*, p<0.05; **, p<0.01; ns, non-significant)

종구재료 간, 생태형별 단구의 구중 분포를 보면(Fig. 3), 주아파종은 단구가 많이 생산되었지만 단구 크기가 10 g 이하 되는 소립이 대부분이었고, 분구파종은 단구파종보다 대립의 단구가 많이 형성되었다. 한지형(단양종)은 인편 분화율이 92% 이상으로 대부분이 분구가 되었으며, 생육이 저조한 개체에서 일부 단구가 형성되어 크기가 작은 소립단구가 많이 생산되었을 것으로 판단되었다. 상품성 있는 대립단구는 중간형(DL01)이 가장 많이 생산되었는데, 종구재료별로는 분구파종, 단구파종 및 주아파종의 순으로 대립단구가 많았고, 분구파종은 10 g 이상의 단구가 85%였다.

춘파재배에 따른 종구재료 및 생태형별 추대율은 Fig. 4와 같다. 종구재료별 추대율은 주아파종이 0~45%로 가장 낮았고, 단구파종과 분구파종이 높았다. 중간형(DL01)의 추대율은 주아파종이 0%, 단구파종이 9%, 분구파종이 0%로 단구파종은 추대율이 높았다. 생태형별 추대율은 한지형(단양종)이 45~80%로 가장 높았고, 중간형(DL01)이 0~9%로 가장 낮았으며, 난지형(남도종)은 28~56%였다. 중간형인 DL01은 단구형성이 뛰어난 계통으로 난지형인 남도종보다 추대율이 낮았다.

이러한 결과로, 추대율은 춘파재배가 추파재배에 비하여 낮았고, 한지형이 난지형보다 높았다. 인편분화는 품종 간 뚜렷한 차이가 있었고, 한지형은 춘파와 추파에 관계없이 100% 추대하였다는 보고(Kim, 1983)와 비슷한 경향을 보였다.