Data: Nume:

Test AC Varianta 6

1. a) Construiți, folosind limbajul Verilog, un modul de rotire a biților a unei intrări definite pe 6 biți, așa cum este ilustrat mai jos.

b) Redactați, folosind limbajul Verilog, un **testbench** pentru verificarea exhaustivă al modulului **rot_r**, implementat la subpunctul a).

unde **b = RotateRight (a,2).**

2. Să se proiecteze un dispozitiv combinaţional având o intrare i pe 3 biţi şi o ieşire o pe 3 biţi, care codifică un număr pe 3 biţi în formatul Gray, codificare descrisă în tabelul de mai jos. Se urmăreşte obţinerea formelor minime (inclusiv diagramele Karnaugh) pe baza cărora se va desena schema logică a dispozitivului. Se cere apoi, construirea unui modul Verilog, cu numele grey_enc, care să implementeze funcţionalitatea dispozitivului descris.

Inputs			Outputs		
I_2	I_1	I_0	02	o_1	o_0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

Data: Nume:

3. Se consideră arhitectura unui Linear Feedback Shift Register (LFSR) de 6 ranguri:

- a) Să se determine periodicitatea secvenței de ieșire generând toți vectorii nenuli pe 6 biți, pe o foaie de hârtie.
- b) Să se implementeze, folosind un **bloc generate**, structura LFSR prezentată mai sus.
- c) Să se redacteze în limbajul Verilog un **testbench** care să verifice funcționalitatea modulului Verilog implementat anterior.