

Cold Start to Improve Market Thickness on Online Advertising Platforms: Data-Driven Algorithms and Field Experiments

Renyu (Philip) Zhang

(Joint work with Zikun Ye, Dennis J. Zhang, Heng Zhang, Xin Chen)

1. Introduction and Contribution

- 2. Theory: Model, Algorithm and Analysis
- 3. Practice: Field Implementation, Experiment Design and Empirical Results

Online Advertising Platform

- Online advertising platform: Demand Side Platform (DSP)
- Fundamental operations question of a DSP:

When an ad request (user impression) arrives, which ad should be displayed to her?

Core business logic:

The DSP runs large-scale auctions to determine which ad to display, in order to maximize the advertising revenue of each user ad impression.

Performance-Based In-Feed Ads

Ad Impression on the Platform

93%

Registration form of the Advertiser

下午2:49

住小帮-查询报价

DSP and Advertisers

- Performance-based ads: Advertisers want more conversions at a low cost.
 - Mobile games: Activation & deposit
 - eCommerce: Activation & purchase

- Auction Mechanism & Billing Option: Optimized Cost-Per-Click (oCPC)
 - The advertisers bid on conversions and pay upon clicks (a compromise between the advertisers and the DSP).
 - The ads are ranked by the expected cost-per-mile (eCPM), which is the expected revenue per unit impression.
 - The impression is allocated to the ad with the highest eCPM.

Mechanism	Charged-upon	Fee-Deduction	Rank-by
оСРС	click	pCVR * bid_convert	eCPM = pCTR * pCVR * bid_convert
			Cost Per Click (CPC)

on normal materials of the DCD

pCTR (predicted CTR) and pCVR (predicted CVR conditioned on click) are produced by underlying deep neural networks of the DSP

Cold Start on DSP

DSP

Users

Ad Impressions

Cold Start: Learning pCTR and pCVR efficiently with limited data for new ads.

Core problem in cold start: How to allocate user impressions between new and mature ads to balance the short-term revenue and the long-term market thickness?

Exploitation

VS

Exploration

Cold Start on DSP: Ad Retention and Market Thickness

- X-axis: # of conversions per day in the first 3 days.
- Y-axis: Proportion of ads that will stay active on the DSP every single day in the next 2 weeks.
- Everything is rescaled.

- Key observation: If the # of conversions in the cold start period surpasses 10, the long-term retention and value soon flatten.
- Cold start will have a non-linear long-term impact on the market thickness and advertising revenue.
 - Addressing cold start through an operations lens.
- Causality of the figure: PSM and IV analysis.
- The phenomenon of the left figure is robust with respect to different definitions of ad retention.

Key Research (and Business) Questions

• With the inaccurate predictions of CTR and CVR for new ads, how to smartly balance short-term revenue and long-term market thickness/revenue?

Primal-dual based MAB algorithms: Shadow Bidding with Learning (SBL)

• With different ads competing for the same user impressions, how to unbiasedly estimate the value of our proposed algorithm?

User-ad two-sided experiment framework

Related Literature

- Ad Cold Start: More accurate CTR and CVR predictions for new ads.
 - Dave and Varma (2012, 2014), Zhou et al. (2018), Choi et al. (2020), etc.
- Contextual Bandits: Establishing sublinear regret bounds with optimization oracles.
 - Langford and Zhang (2007), Chu et al. (2011), Bandanidiyuru et al. (2013), Agrawal et al. (2014), Agrawal et al. (2016), Jacot et al. (2018), Arora et al. (2019), Simchi-Levi and Xu (2020), etc.
- Operations problem with online learning: Bandit learning algorithms applied to pricing, inventory, and advertising problems.
 - Besbes and Zeevi (2009), Nambiar et al. (2019), Chen et al. (2019), Golrezaei et al. (2019), etc.
- Experimental evaluations of algorithms on two-sided platforms: Debiasing the estimate when SUTVA does not hold.
 - Ha-Thuc et al. (2020), Johari et al. (2020), Bojinov et al. (2020), Candogan et al. (2021), etc.

Highlight of Main Contributions

• End-to-end Solution:

- Implement a novel data-driven algorithm online to address the cold start challenge for a large-scale advertising platform with minimal engineering adjustments
- Connect learning theory and online advertising practice

Theory and Algorithm:

- Tackle the cold-start challenge through an operations lens
- SBL algorithm: Duality + MAB + neural networks

- Evaluate our algorithm with two-sided experiments that restore SUTVA
- Causally demonstrate the significant value of the SBL algorithm to thicken the marketplace (+3.13%) and boost long-term advertising revenue (+5.35%)

- 1. Introduction and Contribution
- 2. Theory: Model, Algorithm and Analysis
- 3. Practice: Field Implementation, Experiment Design and Empirical Results

Model for Cold Start

- Problem setting: First-price auction, CVR=pCVR=1 (oCPC = CPC)
- A set of new ads $A:=\{1,2,\ldots,K\}$, with bids (per conversion) $\{b_1,b_2,\ldots,b_K\}$
- A set of user impressions, arriving at the DSP sequentially: $[T]:=\{1,2,\ldots,T\}$
- Context associated with each user: $x_t \in X$, i.i.d. on a countable set X, $x_t \sim \mathcal{D}$
- v_{ij}^t =0,1: Whether a user with context_i clicks ad_j in round t; $y_{tj}=0,1$: Whether display ad_j to user_t
- CTR $c_{ij} := \mathbb{E}[v_{ij}^t]$, $\hat{c}_{ij}^t :=$ pCTR estimate by the underlying DNN in round t
- Sequence of events in each round t:

Platform observes the context x_t

Platform estimates pCTR $\,\hat{c}_{x_t,j}^t$ for all ad_j

Platform decides which ad to display y_{tj}

Click-through outcome $\boldsymbol{v}_{x_t,j}^t$ realized

Modeling Cold Start Value

- If the # of conversions in the cold start period is below 10, the long-term retention and value increase linearly.
- If the # of conversions in the cold start period surpasses 10, the long-term retention and value soon flatten.

• The cold start value:

$$\sum_{j=1}^{K} \beta_j \left\{ \sum_{t=1}^{T} v_{x_t,j}^t y_{tj}, \alpha T \right\}$$

- β_j = the cold start value of ad j, determined by business sense and simulation
- αT = the threshold for cold start success

Reward Upper Bound and Regret

• Our objective is to identify a policy π to maximize the expected reward $E[\Gamma]$:

$$\Gamma := \sum_{j=1}^{K} b_j \left(\sum_{t=1}^{T} v_{x_t,j}^t y_{tj} \right) + \sum_{j=1}^{K} \beta_j \left\{ \sum_{t=1}^{T} v_{x_t,j}^t y_{tj}, \alpha T \right\}$$

Short-term revenue

Long-term cold start value

• π is a non-anticipative (randomized) ad allocation policy.

Lemma (Fluid upper bound). We have the following upper bound for the expected reward:

$$\frac{1}{T}E_{\mathcal{D}^T,\pi}[\Gamma] \leq \mathsf{OPT} := \max_{y_i \in \Delta_A, \forall i} \left\{ \sum_{j=1}^K E_{i \sim \mathcal{D}_X}[c_{ij}y_{ij}b_j] + \sum_{j=1}^K \beta_j \min \left\{ E_{i \sim \mathcal{D}_X}[c_{ij}y_{ij}], \alpha \right\} \right\}$$

where Δ_A is the probability distribution over all the ads and $y_i = (y_{i1}, y_{i2}, \dots, y_{iK}) \in \Delta_A$ is the ad assignment distribution for a user with context i.

- The regret of a policy: $\operatorname{Reg}(\pi) := T \cdot \operatorname{OPT} E_{\mathcal{D}^T,\pi}[\Gamma]$
- We seek to design an algorithm with sublinear regret and implementable on a real DSP.

Empirical Reward and Ad Allocation

• Empirically optimal ad allocation policy at round t:

eCPM of ad_j and context i
$$\max_{y_i \in \Delta_A, \forall i} \sum_{i} \sum_{j \in A} \hat{p}_i^t \hat{c}_{ij}^t b_j y_{ij} + \sum_{j \in A} \beta_j \min \left\{ \sum_{i} \hat{p}_i^t \hat{c}_{ij}^t y_{ij}, \alpha \right\}$$
 Short-term revenue Long-term cold start reward

• Linearize:

$$\max_{y_{ij} \ge 0, u_j \ge 0} \sum_{i} \sum_{j \in A} \hat{p}_i^t \hat{c}_{ij}^t b_j y_{ij} + \sum_{j \in A} \beta_j (\alpha - u_j)$$
s.t.
$$\sum_{j \in A} y_{ij} \le 1, \ \forall i, \ \sum_{i} \hat{p}_i^t \hat{c}_{ij}^t y_{ij} + u_j \ge \alpha, \ \forall j \in A$$

- u_j is the number of conversions below the threshold.
- The model has a too high dimension to solve efficiently online.

$$\min_{\substack{\lambda_j \in [0,\beta_j], \forall j \\ \lambda_j \in A}} \ \sum_i \hat{p}_i^t \max_{j \in A} \left\{ \hat{c}_{ij}^t(b_j + \lambda_j) \right\} - \alpha \sum_{j \in A} \lambda_j$$
 Adjusted eCPM for ad_j and context i

- Only K decision variables: Can be efficiently solved using sub-gradient descent!
- λ_j is the dual variable for the cold start reward constraint: $\sum_i \hat{p}_i^t \hat{c}_{ij}^t y_{ij} + u_j \geq \alpha$ We call λ_i the shadow bid of ad j.
- The shadow bid λ_i is bounded from above by the cold start value of ad j, β_i
- Actionable Insights:
 - Smartly computing the shadow bid of each new ad and incorporating it into the auctions of the DSP could effectively trade off short-term revenues with long-term cold start rewards!
 - Naturally fit into the ad auction system of a DSP in practice.

Shadow Bidding with Learning (SBL) Algorithm

- Update shadow bids at rounds au_1, au_2,\dots , with $au_{m+1}- au_m= au_m- au_{m-1}=O(T^{\frac{2}{3}})$
- For each round t=1, 2, 3, ..., T
 - 1. Observe the context $x_t = i$. With probability $\epsilon_t = t^{-\frac{1}{3}} (K \log t)^{\frac{1}{3}}$, explore uniformly at random; with probability $1 \epsilon_t$, display the ad $\operatorname{argmax}_i \hat{c}_{ij}^t (b_j + \lambda_j)$, with an arbitrary tie-breaking rule.

VS

- 2. If $t= au_m$, solve the empirical dual program to update λ , and update $m\leftarrow m+1$
- 3. Observe the click-through outcome, and update \hat{c}_{ij}^{t+1}

Existing approaches in the literature:

- Based on empirical risk minimization oracle.
- Regret benchmarked with the best policy in a policy set, dependent on the policy set size.
- Of theoretical nature, not scalable and implementable on a real DSP.

• Dual + N

SBL Algorithm:

- Dual + MAB (epsilon greedy) + ML Oracle.
 - Optimal primal ad allocation with the dual solution and prediction from the ML Oracle.
- Regret benchmarked with the optimal primal allocation under true CTR.
 - Duality gap + prediction error.
- Implementable on a large-scale DSP in practice with minimal changes to the system.

Theoretical Performance Guarantee of SBL

• Machine learning oracle assumption: With probability at least $1-\delta$, the estimate \hat{c}_{ij}^t satisfies $|\hat{c}_{ij}^t - c_{ij}| \leq O\left(\sqrt{\log(1/\delta)d/n_j^t}\right)$

where d captures the error magnitude of the underlying machine learning oracle to obtain the pCTR \hat{c}_{ij}^t , n_j^t is the number of *i.i,d.* impressions for ad j by round t.

• Satisfied by (i) linear regressions; (ii) regression trees; and (iii) fully connected neural networks.

Theorem (Regret bound). The expected regret of SBL is bounded by $O(T^{\frac{2}{3}}K^{\frac{1}{3}}(\log T)^{\frac{1}{3}}d^{\frac{1}{2}})$.

Remark: The same regret bound holds if the shadow bids are updated via dual-mirror descent (DMD).

Sketched Regret Analysis

- Key challenges:
 - History-dependent cold start reward (i.e., the knapsack bandit setting)
 - Dual-based bidding strategy implemented on the primal space
 - Regret dependent on the underlying machine learning oracle to predict CTR
 - Too high variance with Inverse Propensity Score to estimate the expected reward
- Key ideas and the road map to overcome the challenges:
 - 1. Establish approximate complementary slackness and bound the duality gap between the empirical primal and the empirical dual, due to tie breaking in SBL by $O(T^{\frac{1}{3}}(\log T)^{\frac{1}{3}}K^{\frac{1}{3}})$
 - 2. Build an auxiliary reward process independent of history: Each click of ad j generates a reward of $b_j + \beta_j$, irrespective of whether the threshold αT is met. Under SBL, bound the gap between the auxiliary reward process and the optimal reward by $O(T^{\frac{2}{3}}(\log T)^{\frac{1}{3}}K^{\frac{1}{3}}d^{\frac{1}{2}})$
 - 3. Under SBL, bound the gap between the auxiliary reward process and the true reward process by $O(T^{rac12}(\log T)^{rac12}K^rac12)$
 - 4. Putting the above bounds together yields the expected regret of SBL is $O(T^{\frac{2}{3}}(\log T)^{\frac{1}{3}}K^{\frac{1}{3}}d^{\frac{1}{2}})$

- 1. Introduction and Contribution
- 2. Theory: Model, Algorithm and Analysis
- 3. Practice: Field Implementation, Experiment Design and Empirical Results

Online Implementation of SBL (oSBL)

Online Shadow Bidding with Learning (oSBL) Algorithm

- Update shadow bids at rounds τ_1, τ_2, \ldots , where $\tau_{m+1} \tau_m = 1$ hour; set $\alpha T = 10$, $\beta_j = 2b_j$
- For each round $t=1, 2, 3, \dots, T$
 - 1. Observe the context $x_t = i$. Choose top 150 (new & mature) ads and another 15 randomly picked new ads to join the auction.
 - 2. Obtain $\hat{c}_{ij}^t = \text{pCTR*pCVR}$. Display $\underset{j \in [K_t]}{\operatorname{argmax}}_{j \in [K_t]} \hat{c}_{ij}^t (b_{tj} + \lambda_j)$, where b_{tj} is the system bidding price calculated by the real-time PID system and $[K_t]$ is the set of the 165 ads who join the auction.
 - 3. If $t = \tau_m$, sample 4% of the auctions in the past hour \mathcal{H}_t and update the shadow bids λ by

$$\min_{\lambda_j \in [0,\beta_j], \forall j \in [K], \lambda_j = 0, \forall j \in [K']} \sum_{s \in [\mathcal{H}_t]} \max_{j \in [K_s]} \{ \hat{c}_{ij}^s(b_{sj} + \lambda_j) \} - \alpha |\mathcal{H}_t| \sum_{j \in [K_s]} \lambda_j$$

where [K] is the set of new ads and [K'] is the set of mature ads.

- 4. Observe the click-through and conversion outcome, and update \hat{c}_{ij}^{t+1}
- Conversions are incorporated into the algorithm (CVR and pCVR are much smaller than 1).
- For a mature ad, the shadow bid is 0.
- Shadow bids are updated every hour based on sampled data, implemented on top of the PID real-time bidding system.
- More like uniform exploration than epsilon-greedy.
- Cold start value is set at twice as much as the target CPA (i.e., bid_convert) of the ad: $eta_j=2b_j$

Implementing and Testing SBL

- SBL algorithm implemented on a large-scale video-sharing platform (Platform O).
- How to unbiasedly evaluate the SBL algorithm?
- Naive one-sided experiment designs:
 - Ad-side randomization:

	Treatment New Ads	Control New Ads	Non-Experiment New Ads	Mature Ads
100% UV	Treatment Condition	Control Condition		

• User-side randomization:

	100% New Ads	Mature Ads
Treatment UV	Treatment Condition	
Control UV	Control Condition	
Non-Experiment UV		

Treatment = oSBL algorithm; Control = baseline algorithm (uniformly increase the bidding price of all new ads)

Violation of SUTVA

Ad-side randomization:

	Treatment New Ads	Control New Ads	Non-Experiment New Ads	Mature Ads
100% UV	Treatment Condition	Control Condition		

User-side randomization:

	100% New Ads	Mature Ads
Treatment UV	Treatment Condition	
Control UV	Control Condition	
Non-Experiment UV		

- SUTVA (Stable unit treatment valuation assumption): The assignment of one unit to treatment or control will not affect the outcome of another unit.
- Ad-side randomization: 120% overestimate
 - Violation of SUTVA: New ads from different groups compete on the same user impressions.
- User-side randomization: 40% underestimate
 - Violation of SUTVA: The effect of oSBL spills over to the control group users.

Two-Sided Experiment Design

• A novel two-sided experiment design:

	20% Treatment New Ads	20% Control New Ads	60% Non-Experiment New Ads	Mature Ads
33% Treatment UV	B11	B12	B13	B14
33% Control UV	B21	B22	B23	B24
33% Non-Experiment UV	B31	B32	B33	B34

- Blue = oSBL, white = baseline algorithm, grey = ad blocked (to remove externalities)
- SUTVA restored! Able to generate unbiased estimates.
- Impact on long-term cold start value: Comparing B11 with B22
- Impact on short-term revenue: Comparing B11+B13+B14 with B22+B23+B24
- Experiments conducted between May 23, 2020, and May 30, 2020
- A simulation system for cold start and experimentation on online advertising platforms open-sourced @GitHub: https://github.com/zikunye2/cold-start-to-improve-market-thickness-simulation

Short- and Long-term Effects of oSBL

• Short-term effect of oSBL:

Metric of Interest	Cold start success rate	Cold start reward	Total short-term revenue	CTR Prediction AUC
Relative Change	+61.62%***	+47.71%***	-0.717%**	+7.48%*

• Long-term (post-cold start and post-experiment) effect of oSBL:

Metric of Interest	Market Thickness	CTR	Post-Cold-Start Revenue
Relative Change	+3.13%**	+11.14%***	+34.02%***

Note: The above long-term revenue boost is over-estimated because the treated ads compete with all others on impressions,

Simulation Results on Long-Term Ad Revenue

- 0.10

- 0.08

- 0.06

0.04

0.02

0.00

26

• Long-term (post-cold start and post-experiment) effect of oSBL:

Metric of Interest	Market Thickness	CTR	Post-Cold-Start Revenue
Relative Change	+3.13%**	+11.14%***	+34.02%***

Note: The above long-term revenue boost is over-estimated because the treated ads compete with all others on impressions,

- Simulation study on the global treatment effect of oSBL:
 - Based on 12 million auctions sampled from April 9, 2020, to April 30, 2020.
 - oSBL increases the market thickness by +0%~+5%, and the post-cold-start CTR by 0%~20% (i.e., sensitivity analysis).
 - The total number of ad impressions/auctions remain the same.
 - Simulation model validated by accurately predicting the shortterm revenue loss during the experiment.
- oSBL boosts the total long-term revenue by +5.35% (at a magnitude of hundred million USD per year for Platform O) if the market thickness is increased by 3.13% and CTR by 11.46%.

Takeaways

• SBL Algorithm: A smart algorithm to connect bandit learning theory and the ad cold start practice.

• Two-sided experiment: Causally estimate the value of SBL for a large-scale online advertising platform (substantial ad revenue improvement for the platform).

 SBL and two-sided experiment have the potential to optimize and evaluate more general recommender systems of online two-sided platforms.

Link to the paper: https://rphilipzhang.github.io/rphilipzhang/Cold_Start_unblinded.pdf

Thank You!

Questions?

renyu.zhang@nyu.edu and philipzhang@cuhk.edu.hk

https://rphilipzhang.github.io/rphilipzhang/index.html