姓名:		學號	:	成績	:
-----	--	----	---	----	---

Electromagnetic(II) Quiz #3

Mar. 27, 2024

1. 兩種材料的導磁率分別為 μ_1 與 μ_2 ,並且在 xy 平面相接且無任何表面電流;若在 z<0 處其磁 通密度等於 $\vec{B}_{Z-} = \vec{a}_x B_a + \vec{a}_y B_b + \vec{a}_z B_c$ 請問在 z>0 的磁通密度 \vec{B}_{Z+} 為何? 20%

2. 請定義兩個線圈 C_1 和 C_2 分別有 N_1 與 N_2 圈且其電流為 I_1 與 I_2 ,若線圈包圍的面積分別為 S_1 與 S_2 ,請問要如何計算兩個線圈間的互感 (mutual inductance)?

4. 如圖所示,有空心圓柱材料其內徑與外徑分別為 2cm 與 4cm;其上繞有 10 圈的電流線, 而此材料的高度(h)為 1cm 和相對磁導率(μ_r)為 500;請計算其電感值。 20% (若無計算過程不予計分)

5. 如圖所示在無限長直導線旁有一正方型線圈其電流圈為 10 圈,兩導線間的距離與正方型 邊長均等於 0.1m,請問兩線間的互感等於多少? 20%

Electromagnetic(II) Quiz #3 Solution

1. 垂直方向磁通密度連續 $B_{z+}=B_c$,平行方向磁通強度連續 $H_{x2}=H_{x1}\Rightarrow B_{x2}=\mu_2B_a/\mu_1$ 且 $H_{y2}=H_{y1}\Rightarrow B_{y2}=\mu_2B_b/\mu_1$ ⇒

$$\vec{B}_{Z+} = \vec{a}_x \frac{\mu_2 B_a}{\mu_1} + \vec{a}_y \frac{\mu_2 B_b}{\mu_1} + \vec{a}_z B_c$$

- 2. 假設電流 I_1 在 C_2 的磁通密度為 \vec{B}_{21} ,因此在 C_2 由 C_1 所造成的磁通為 $\Phi_{21} = N_1 \int \vec{B}_{21} d\vec{s_2}$;且在 C_2 上的磁通連結為 $\Lambda_{21} = N_2 \Phi_{21}$,所以互感等於 $L_{21} = \frac{N_1 N_2 \int \vec{B}_{21} d\vec{s_2}}{I_1}$
- 3. 假設有電流 I 在內金屬柱上應用安培環路定律兩柱間的磁通密度等於

$$\oint \vec{B}d\vec{l} = \mu_0 I \Rightarrow \vec{B} = \vec{a}_{\phi} \frac{\mu_0 I}{2\pi r}$$

在兩柱單位長度所包括的磁通量為

$$\Phi = \int \vec{B} d\vec{s} = \int_{a}^{b} \int_{z}^{z+1} \frac{\mu_{0}I}{2\pi r} dz dr = \frac{\mu_{0}I}{2\pi} \ln(\frac{b}{a})$$

磁通連結 $\Lambda=\Phi$ 等效電感(L)= $\Lambda/I=2\times10^{-7}\times\ln(b/a)=\ln(b/a)^2\times10^{-7}$ (H)

4. 有電流 I 在圓柱的 10 根導線上,應用安培環路定律圓柱內的磁通密度等於

$$\oint \overrightarrow{H} d\overrightarrow{l} = 10I \Rightarrow \frac{\overrightarrow{B}}{\mu_r \mu_0} = \overrightarrow{a}_{\phi} \frac{10I}{2\pi r} (\text{or } \overrightarrow{B} = \overrightarrow{a}_{\phi} \frac{10\mu_r \mu_0 I}{2\pi r})$$

在圓柱橫截面所包括的磁通量為

$$\Phi = \int \vec{B} d\vec{s} = \int_{0.02}^{0.04} \int_{0}^{0.01} \frac{5000 \mu_0 I}{2\pi r} dz dr = \frac{50 \mu_0 I}{2\pi} \ln(2)$$

磁通連結Λ=10Φ⇒等效電感(L)=Λ/I=ln(2)×10-4 (H)

5. 有電流 I 在長直導線上,應用安培環路定律在正方形線圈磁通密度等於

$$\oint \vec{B}d\vec{l} = \mu_0 I \Rightarrow \vec{B} = \vec{a}_{\phi} \frac{\mu_0 I}{2\pi r}$$

在正方形線圈所包括的磁通量為

$$\Phi = \int \vec{B} d\vec{s} = \int_{0.1}^{0.2} \int_{0}^{0.1} \frac{\mu_0 I}{2\pi x} dy dx = \frac{0.1 \mu_0 I}{2\pi} \ln(2)$$

磁通連結Λ=10Φ⇒等效電感(L)= Λ/I=2×10⁻⁷×ln(2)= ln(4) ×10⁻⁷ (H)