ALGEBRA E MATEMATICA DISCRETA

Coss di lamea: Informatica

SVOLGITIENTO DEGLI ESERCIZI PER CASA 1 (3 PARTE)

die x he offere no shi voui, e, al cose le stara, le s' hovies

1)
$$(2) \times = 3 \mod 5$$

I Colcho
$$d = MCD(a,n) = \PiCD(2,5) = 1$$

$$a=2$$

III les me d=1/3=b, le conqueure he in frute sourvour intère, that in una unce (d=1) closse d'conqueure usolub n=5.

$$d = MCD(e,n) =) \exists d, \beta \in \mathbb{Z} \mid d = da + \beta n$$
 $\Rightarrow b = a \cdot (\alpha q) + m (\beta q)$ $\Rightarrow d \mid b \Rightarrow \exists q \in \mathbb{Z} \mid b = d \cdot q$

$$0=2$$
 $j=$ $5=2\cdot2+1$ \Rightarrow $1=5\cdot1+2\cdot(-2)$ $0=1$ Euclide $0=1$

$$d=1 = 9 = b=3$$

=) uslights
$$1=5+2\cdot(-2)$$
 for $q=3$
sharp $3=5\cdot3+2\cdot(-2)\cdot3$
 $5=5\cdot3+2\cdot(-2)\cdot3$
 $5=5\cdot3+2\cdot(-2)\cdot3$

IVI la cognersa he come schizoni hitri e sa' i numer' inten'

nelle done d'enqueue

$$[\times_0]_5 = [-6]_5 = [4]_5 = \{4+5k \mid k \in \mathbb{Z}\}$$

realgo un representante positivo delle clone $[-6]_5$:

prendo $C \in [-6]_5$ cn $0 \le C < 5$, pe cui

 $C = -6 + 5 \cdot 2 = -6 + 10 = 4$

2)
$$6x \equiv 9 \mod 15$$

I Colcolo d=MCD(a, m) = MCD(6,15)=3

 $d=3/9=b \Rightarrow$ La congueure he in fule soluristi juhere, riprotte in d=3 classi d' congrueure modulo m=15

I Ceco me shuzone to delle con juine

aco q:
$$d=3$$
 $=3$ $=3$ $= \frac{b}{d} = \frac{9}{3} = 3$

[V] Scalp un representante pritivo delle clone d'engueure [∞) : [∞] $_{15} = [-6+15]_{15} = [-9]_{15}$

Preudo
$$x_0 = 9$$

 $x_1 = x_0 + 1 \cdot \frac{m}{d} = 9 + 1 \cdot \frac{15}{3} = 9 + 5 = 14$
 $x_2 = x_0 + 2 \cdot \frac{m}{d} = 9 + 2 \cdot \frac{15}{3} = 9 + 2 \cdot 5 = 9 + 10 = 19$
N.B. $[x_2]_{15} = [19]_{15} = [19 - 15]_{15} = [4]_{15}$

le 3 dans d'eongneure modulo 15 mi cu' s'aprilisero le Sourion sono: [4]15, [9]15 e [14]15

Le s'Shizori delle cognieur 2000:

{4+15k|kEZ3U{9+15k|kEZ3U{14+15k|kEZ}

I Proce d=7+3=6, le conqueuze NONHA SOLUZIONI.

II d=4 |8=6 ⇒ Le congruere he in frite sauzon' intère, rijonhe i d=4 clossi d' congruere usaulo n=12

$$0=4$$

$$0=12$$

$$0=12$$

$$0=12\cdot0+4$$

$$0=12\cdot0+4$$

$$0=12\cdot0+4$$

$$0=12\cdot0+4$$

$$0=12\cdot0+4$$

$$0=12\cdot0+4$$

$$0=12\cdot0+4$$

$$0=12\cdot0+4$$

$$b = 8$$
 $3 = 9 = \frac{b}{d} = \frac{8}{4} = 2$

[iv]
$$x_0=2$$

 $x_1=x_0+1\cdot \frac{n}{d}=2+1\cdot \frac{12}{4}=2+3=5$

$$x_2 = x_0 + 2 \cdot \frac{n}{d} = 2 + 2 \cdot \frac{12}{4} = 2 + 2 \cdot 3 = 2 + 6 = 8$$

$$d-1$$
 $x_3 = x_0 + 3 \cdot \frac{m}{d} = 2 + 3 \cdot \frac{12}{4} = 2 + 3 \cdot 3 = 2 + 9 = 11$

Le 4 dazi d'anjueure undulo 12 in eni si zjontimon le Shu 2: su: [2], [5], [5], [8], [11], [11]

le souroni delle copenne sono: {2+12k|keZ}U}S+12k|keZ}U}8+12k|keZ}U}11+12k|keZ}

- [] Col colo d= MCD(e,n) = MCD(4,12)=4
- II Poche d=4/2=6, LA CONGRUENZA NON HA SOLUZIONI.

- I Color d= MCD(e,n)= MCD(4,11)=1
- I Poice d=1/2=6, le congruenze he infinite souzon' notre, Thite is use twee (kne d=1) dose of en preme would m=11
- III Caco Xo une shi zone delle cogreene:

$$b = 2$$
 $= 2$ $= 2$ $= 2$ $= 2$ $= 2$

[IV] le shozai delle co peure sons heti je" whe' dille done $16J_{11} = \{6+11\kappa \mid \kappa \in \mathbb{Z}\}.$

18 l'cdest, x hore

1) L'invers d'7 moduls 10

$$\exists d, \beta \in \mathbb{Z} \mid \mathcal{D} = \forall a + \beta n$$

$$d = b \Rightarrow q = d$$

$$d = b \Rightarrow q = d$$

$$a = 7$$
 $y = 7$ $y = 10 = 7 \cdot 1 + 3$ $y = 3 = 10 - 7$
 $y = 4$ $y = 3$
 y

$$= 2 + 3 + 10 \cdot (-2) = 3 \times 6 = 3$$

- 2) l'invess d' 4 un dub 10 NON ESISTE perè TCD (4,10) = 2 \$ 1.
- 3) l'inverso d' 6 modulo 15 NON ESISTE perè TICD (6,15) = 3 + 1.

4) L'invers d'8 audulo 15

$$a=8$$
 $m=15$
 $= 8 \cdot 1 + 7$
 $= 15-8$
 $= 8 \cdot 1 + 7$
 $= 15-8$
 $= 8 \cdot 1 + 1$
 $= 15-8$
 $= 8 \cdot 1 + 1$
 $= 15-8$
 $= 8 \cdot 1 + 1$
 $= 15-8$
 $= 8 \cdot 1 + 1 = 15$
 $= 15-8$
 $= 8 \cdot 1 + 1 = 15$
 $= 15-8$
 $= 15-8$
 $= 15-8$
 $= 15-8$
 $= 15-8$
 $= 15-8$
 $= 15-8$

$$= \begin{cases} 1 = 8.2 + 15.(-1) \Rightarrow x_0 = 2 \\ x_0 + x_1 + x_2 = 2 \end{cases}$$

$$[8]_{15}^{-1} = [2]_{15}$$