概率论

时间: 120 分钟; 教师: cxx

- 1. 基础题: 叙述经典的中心极限定理
- 2. 设随机变量序列 $\{\xi_n\}$ 独立同分布服从 $\mathcal{E}xp(1), Y_n = \inf\{\frac{\xi_k}{k}: 1 \leq k \leq n\}$
 - (1) 计算 $\mathbb{P}(Y_n > n^{-3/2})$
 - (2) 证明: $\sum_{n>1} Y_n$ 几乎处处收敛
- 3. $\xi \sim \mathcal{U}[0,1], U := \min\{\xi, 1-\xi\}, V = 1-U,$ 确定 $\frac{V}{U}$ 的分布
- 4. 设 X,Y 为整数取值的随机变量, $d_{TV}(X,Y):=\sup_{B\in\mathscr{B}}|\mathbb{P}(X\in B)-\mathbb{P}(Y\in B)|$, 证明:

$$d_{TV}(X,Y) = \frac{1}{2} \sum_{x \in \mathbb{Z}} |\mathbb{P}(X=x) - \mathbb{P}(Y=x)|$$

- 5. 设 $\{X_i\}$ 是一列独立的随机变量, $\mathbb{P}(X_1=1)=\mathbb{P}(X_1=-1)=\frac{1}{2}; \ \forall m\geq 2,$ $\mathbb{P}(X_m=1)=\mathbb{P}(X_m=-1)=\frac{1-m^{-2}/2}{2}, \mathbb{P}(X_m=m)=\mathbb{P}(X_m=-m)=\frac{1}{4m^2}$
 - (a) 令 $S_n = \sum_{k=1}^n X_k$, 计算 $Var(S_n)$
 - (b) 设独立同分布的随机变量序列 $\{Y_n\}$ 满足 $\mathbb{P}(Y_n=1)=\mathbb{P}(Y_n=-1)=\frac{1}{2}, \forall n\geq 1$ 。 计算 $d_{TV}(X_n,Y_n)$
 - (c) 设 (X_n, Y_n) 的最优耦合 (maximal coupling) 为 (\hat{X}_n, \hat{Y}_n) , $\{(\hat{X}_n, \hat{Y}_n)\}_{n\geq 1}$ 独立,证明:

$$\sum_{n>1} \mathbb{1}_{\{\hat{X}_n \neq \hat{Y}_n\}} < \infty, \text{a.s.}$$

(d) 令 $\hat{S}_n = \sum_{k=1}^n \hat{X}_k, \hat{T}_n = \sum_{k=1}^n \hat{Y}_k$, 证明:

$$\lim_{n} \left| \frac{\hat{S}_n}{\sqrt{n}} - \frac{\hat{T}_n}{\sqrt{n}} \right| = 0, \text{a.s.}$$

- (e) 证明: $\frac{\hat{T}_n}{\sqrt{n}}$ 依分布收敛至标准正态分布
- (f) 证明: $\frac{S_n}{\sqrt{n}}$ 依分布收敛至标准正态分布