PROCESS FOR PREPARING ALDEHYDES

Publication number: JP51149217

Publication date: 1976-12-22

Inventor:

OGINO YOSHISADA; SAITOU YASUO; ITOI KAZUO

Applicant:

KURARAY CO

Classification:

- international:

C07C45/29; B01J21/00; B01J21/02; B01J23/00; B01J23/06; B01J23/08; C07B61/00; C07C45/00; C07C47/02; C07C47/20; C07C47/21; C07C67/00; B01J21/00; B01J23/00; B01J23/06; B01J23/08; C07B61/00; C07C45/00; C07C47/02; C07C47/20; C07C67/00; (IPC1-7): B01J21/02; B01J23/06; B01J23/08; C07C45/16; C07C47/02; C07C47/20

- european:

Application number: JP19750073515 19750617 Priority number(s): JP19750073515 19750617

Report a data error here

Abstract of **JP51149217**

PURPOSE:Aldehydes are prepared in high selectivity by contacting alcohols with the melt of a metal selected from Zn, In, T1, A1 and Ga or an alloy of a low melting point comprising either of them.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁

特許庁長官 1. 発明の名称

アルデヒドの製造法

特許庁

50. 6. 18

BURE

3. 特許出願人

y.代理人

東京都中央区日本橋3丁目10番5号

徳カビル 株式会社 クラレ内 電話 東京 03 (271) 1321 (代表)

(6747) # 唯 :: 本 多

①特開昭 51-149217

昭51. (1976) 12 22 43公開日

② 特願昭 50-73515.

22出願日 昭50. (1975) 6.17

未請求

(全8頁)

庁内整理番号

6771 43 6771 43 6703 4A

52日本分類

16 8511 16 B52 1319)G2

51) Int. C12.

CO7C 47/02 CO1C 47/20

CO.7C 45/16

BOIJ 23/06

BOIJ 23/08

BOIJ 21/02

z - C H = - O H

で変わされるアルコールを亜鉛、 接触させることを特徴とする。

一般式

Z - CHO .

(式中、2は上記の意味を有する)で表わされ るアルデヒドの製造法。

飽和の炭化水素基である)

わされるアルコールを亜鉛、インジウム、タ アルミニウムおよびガリウムから遊ばれ またはこれを含む低酸点合金の溶酸状物と 逆触させることにより、一般式1

溶離状物といえを有する)で表わされるアルデヒドを製造する方

従来、一般式[のアルコールを一般式[のアル デヒドに変換する方法はいくつか知られており、

(1) 重クロム酸塩のような酸化剤を用いて酸化す る方法

特開 昭51-149217(2)

(2) Cu-Zn、Cu-Cr、ZnO をどの固体無葉を用 いて直接脱水業する方法、

(3) IB族金属またはこれらの合金を含む固体飲 鉄および分子状態素を用いて接触的に酸化脱水素 する方法などである。

(1)の方法では多量の酸化剤を消費する欠点があ り、(2)の方法ではたとえばゲラニオールの脱水業 においてシトラールのほかにシトラールの二重結 合が水素化されたシトロネラールを大量に生成す る。(3)の方法によればたとえばゲラニオールとネ ロールとの、混合物を頂料とする場合、80%以 上の選択事でシトラールが得られる。しかしなが らこの (3) の方法の場合にかぎらず一般に固体 厳 量子子子 を用いる気相反応では触媒の構造とくに触媒要表 1字 であつてかつその 触点が約 6 0 0 C 以下のものを 部の微細を構造などによつて反応成績が著しく変し、指す。かかる合金の例としてはIn-Zn合金、In 化することを避け難く、無葉の質製に特別の注意 と無線を要する。

本発明者らは上述のような問題を伴わない触媒 として俗骸状腺の金属および合金を用いる各種の 反応について鋭意研究を重ねてきた結果、このた

エタノール、イソプロペノール、第二プタノール シクロヘキサノールなどの低級アルコールの脱水 素活性を有することは本発明者らの発表によって 既に公知であるが、同様の溶験金属および溶血合 金が高級アルコールである一般式」のアルコール の脱水煮反応に対して有効な触媒作用を発揮する とと、および株に高温において必ずしも十分に安 定ではない一般式目のアルデヒド類がこのような 方法によつて高い遺択率で得られることは予知し 得なかつた新しい事実である。

本発明に従う反応は、たとえば原料アルコール をベンセン、アセトンなどの本反応に悪い効果を 与えないような溶剤で着駅して溶繊粒媒中に導入 するか、または、より好ましくは、原料アルコー ルをヘリウムガス、窒素ガスなどの不活性ガスと 共に蒸気状で溶酸触媒中に吹き込むことによって 便利に行うことができる。原料アルコールの供給 速度および反応温度などによって反応成績は変化 する。一般に原料アルコールの供給速度を約 0.9~ 2 モルノ 触 紙 4時 と す る 場 合 に 好 結 果 が 得 ら れ る 。

び、ある種の低酸点金属および合金が溶散状態に おいて一般式「のアルコールの脱水業活性を有す ることを見出し、本発明に至つた。

すなわち、本発明によれば、一般式しで扱わる れるアルコールを亜鉛、インジウム、タリウム、 アルミニウムおよびガリウムから遊ばれる金髯ま たはこれを含む低酸点合金の溶酸状物と接触させ ることにより、一般式工で変わされるアルデヒド を好収率で得ることができる。

ととで言う低酸点合金とは亜鉛 (m. p. 419℃)。 インジウム (m. p. 156.4℃)、タリウム (m. p. 802.5℃)、アルミニウム(m. p. 660.2℃)およびガリウム (m. p. 29.78℃) のうちの少くとも 1 種を含む合金 - Sn 合金、Zn-Bi 合金、 Cu-In 合金、 Zn-Sn 合金などを挙げることができる。なかでも In-2n 合金がとくに好ましい結果を与える。単独の金属 を用いる場合には2mを用いるのがとくに好ました。 この種の溶敷金属および溶血合金がメタノール

反応温度は用いる金属または合金の溶動温度以上 でかつ約400~700℃の範囲内が好まして。 とくに500~550℃が最適である。

固体無葉では、化学組成が同一であつても、そ の活性、遊択性は無能の調製法、質額条件によっ て着しく異なり、触媒鋼製に特別の経験と技術を 必要とし、触媒性能の再現に常時注意する必要が あるが、本発明に従つて液体金融合金煎供を用い るときは触媒性能は、触媒の純度と組成で定まり 固体触媒の場合のような注意を必要とせず、この ことは実用上きわめて重要である。また、固体触 媒では、触媒の結晶成長、焼結による性能劣化。 あるいは、反応他の分解、朝反応などにより不嫌 発性生成物の付着が生じた場合、有効要面積が低 下し性能劣化が生ずるなど、触媒性能の劣化が生 じ易いが、液体金属(合金)では、原理上、結晶 成長とか焼結は生じないので、これに伴う性能劣 化は起きない。さらに、液体金属(合金)放媒を 用いるときは、反応器底部からの反応物の吹込型 の反応方式を採用することによつて、不揮発性劇

生成物質は自動的に浮上し、反応物が常に新鮮な 触媒と接触しうるように維持でき、不揮発性副生 物に基づく触媒性能劣化も避けることができる。

本発明の方法を用いて一般式して扱わされる多 数のアルコール額を一般式』で表わされる対応す るアルデヒドに変換することができるが、原料で ルコールの入手または合成の容易さならびに生成 アルデヒトの有用性を考慮すると、次に挙げるア ルコール粗を原料とすることが好ましい。

トロネタールなどは幼若ホルモン様活性物質の合

以下、本発明を実施例により説明する。

成中側体として有用である。

シトロネロール (人人人) の 田) の 脱水素反応 を行うため図面の反応装置を使用した。図面にお いては1は耐熱ガラス製反応管(筒状部の内径20 留出物トラップ、 6 は流量計、 7. 8, 9, 1 0 および 1 1 はパイプである。

反応管1に粒状の亜鉛60~100gを充填し パイプリより精製へリウムガスを避じて采内の空 気を駆逐しながら反応管1を加熱して亜鉛を溶験 した。溶散亜鉛の温度が457℃に建したのち、 気化器 3 およびパイプ 8 を約 2 5 0 ℃に加熱して 気化器2に予め入れておいたシトロネロールをへ リウムガスとともに溶酸亜鉛中に吹込んだ。パイ プ 9 を 適して 流出 ず ガス 状 健 合 物 を 合 却 器 8 で 水! 週 用 い 、 優 8 に 配 戦 の 反応 条件 を 用 い る 以 外 は 実 施 冷し、さらに疲留出物トラップもおよび 5 で氷冷 2000 倒 1 と同様にしてシトロネロールとゲラニオール して緩縮性成分を捕集し、ガスクロマトグラフィ

原料アルコール CB. CH. CH. = C - CH. CH. CH. - CH - CH. CH. OI 生成アルデヒド CH_a $\rightarrow CH_2 = C - CH_2 CH_2 CH_3 - CH - CH_2 - CHO$ 原料アルコール CH_s СН: $CH_2 = C - CH_2 CH_2 CH_2 - C = CH - CH_2 OH$ 生成アルデヒド CH. \rightarrow CH₂ = $\overset{\circ}{C}$ - CH₂ CH₂ CH₃ - $\overset{\circ}{C}$ = CH-CHO 原料アルコール CH。 CH. CH. - CH - CH. CH. CH. - CH - CH. CH. CH. OH 生成 アルデセド CH → CH₂-CH-CH₂ CH₂ CH₂ -CH - CH₂ CHO (テトラヒドロシトラール)

上記のアルデヒド類はいずれも沓料工業におい て重要を物質であり、沓料としてあるいは香料の 合成中間原料、溶剤または保留剤として用いられ る。またこれらのアルデヒド類は医薬や農薬の合 成中間原料として有用な化合物を含んでいる。 たとえば、シトラールはピタミンAの合成中間体 として重要であり、テトラヒドロシトラール、

-- により分析した。その結果を安1に示す。

	を化 準 (角	生成の過水率等
181	8 1.4	8 7.2
178	8 0.0	9 0.8
261	7 5.8	8 9.6
	178	178 80.0

実 施 例 2.

シトロネロールのかわりにゲラニオールを用い ヘリウムガスのかわりに 霊楽ガスを用い、 霊楽ガ ス流速80~40単/=、反応温度470℃とす る以外は実施例1とほぼ同様にして反応を行い、 ゲラニオールの転化率 2 2 %、シトラール生成の 盤択率445の結果を得た。

实施例 8. ~ 1 0.

亜鉛のかわりに要 8. に記載の金属または合金を の脱水素反応を行い、最易に示す結果を付た。

実施例	放棄および	原料アルコ	反応進度	Lucian a	21227=4
番 号	了設学的作	ナリアーす	10	₩ 化 華 G	の選択事
ន	I n	シトロネロール	568	18	44
4	TL	,	5,40	24	82
5	G a	•	,	86	48
6	I n	ゲラニオール	500	5	50
7	. T L	s	,		24
8	Zn-In (188:77)	シトロネロール(アセトント	526	5 2	72
9	,	の混合物) グラーオール (アセレンと	465	24	52
10	,	(の混合物)	887	6	70

図面の簡単な説明

添附の図面は本発明の実施例に用いた反応装置 の概念図である。図面中の1は耐熱ガラス製反応 、 2 は気化器、 8 は冷却器、 4 および 5 は液状 当出物のトラップ、 6 は流量計、 7 ~ 1 1 はパイ

株式会社 ク 弁理士 本

5. 添付啓類の目録

- (1) 副

& 前記以外の発明者

宫粮集价台市川内追溯 1.5.4

(自発) 手続補正書

昭和51年5月/8日

特許庁長官 片山石郎 殿

1. 事件の設示

昭和50年特許顧館78515号

2. 発明の名称

アルデヒドの製造法

3. 補正する者 事件との関係

會數市清津1621番地

(108) 株式会社 ク ラ レ 代表取締役 岡 林 次

4. 代

倉敷市酒津腎江山2045の1 株式会社 ク ラ レ 内 電話 倉敷 0864(23) 2 2 7 1 (代表)

(6747) # 理 ± 本 多 (東京連絡先)

株式会社クラレ特許部(東京支社内) 電話 東京03 (277) 3 1 8 2

5. 補正の対象

明細書の発明の詳細な説明および図面の簡 単な説明の欄ならびに図面

6. 補正の内容

(1)明細書第9頁第3行の「説明する」のあと 化「なお実施物中の転化率は直接、目的生成物 への転化率であり、選択率は一部集された生成物 中の目的生成物の含有率である。」を加入する。 (2)明細書第9頁第6行の「図面」を「第1図」 に収める。

(3) 明細書第10頁級下行の「表3に示す結果を得た。」を「シトロネロールからはシトロネラールを得、ゲラニオールからシトラールを得た。反応条件および反応結果を表3に示す。」に改める。

(4)明細書第11頁表3の後、(「図面の簡単な説明」の上)に次の文章を加入する。

実施例 1 1

シトロネロールの脱水素反応を第2図の反応装置により実施した。なお第2図において 1 は反応管 (筒状部の直径 2 5 mm、底から筒状部上端までの長さ割10㎝)、2 は反応管 1 中の溶融金属無 蝶、3 は予熱器、4 は原料アルコール供給管、5

はキャリアーガス供給管、 6'は生成物流出管である。

実施例:1 2

実施例11と同じ反応装置を使用し、シトロネロールのかわりにゲラニオールを用い、触媒としてタリウム(708)、キャリアーガスとして伝彙ガス(液速2ℓ/hr)を用いて反応を行ない、下配の結果を得た。

ントロネラール 年成の選択等 (劣)	2.5	3.6	4.3	8 8	. 87	4 6	83
シトロネロール シトロネラール 転 化 單 年成の選択率 (劣) (劣)	9	12	11	13	18	. 0	42
反応温度 (c)	520	550	563	497	510	535	561
シトロネロード/ アォトントルル ストナトン	ſ	ı	i	0.135	•		
シトロネロール シトロネロール 反応過度 Bun A 供 給 選 度 / アセトン (mole/hr) モ ル 比 (て)	4027		•	0007	*	•	•
Bun A6	-	2	к)	•	ıo	•	7

聚

	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	9.	-	m 	∞ 	-ю-	9	_ 0	ж го
	グルドキー 5 情 (2) 単 (26)	67	9	o,	1 9	2 1	88	83	1.8
us	反応遺歴 (で)	3 9 0	2 2 4	4 5 0	3 9 5	4 1 5	44 10 10	4 8 8	471
鉄	ナタニオール / アセト ソ モ ル 比	1	i	ı	0 . 1 1		1	•	•
- :	ゲラニオール 供 *B 過 既 (mole/br)	0.028	•	•	0 . 0 0 4 1	•	•		
	Run Ak	' 1	~	ø	4	6	φ	1	60

突旋例 1

実施例11と同じ反応装置を用い、値々の触 無を用いて、アセトンで希釈したシトロネロー ルの脱水業反応を行ない、下配の結果を得た。 盤乗キャリアーガスは、洗過2 4 / hr)とした。

(4) (4)	(田) (田) (田)	イト・ナーン 土土 ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナ	(C)	(元) (元) (元)	任氏の強を確
(0 /)u9 - u7	0.0058	0.112	445	***	87
Zn 14~17	•	•	9	9	1
*	•	•		0.9	
(4,1	•	•	519	3.0	7.0
Zp (60)	010	0.974	a		
			0 0		
	•	•	- C	. *	
			3 4) w	
			ı		
(n/)u1-1	C01175	4316	0	4.2	7.2
(Zn15atok)	•	•	505		
/2/	•	•	2		
	•	•	5 4 5	4	99
		0.//2			
Ge (20)	00058	#	451		
_	•	•	493	6.4	
	•	•	5 1 5		
	•	•	▼	5.7	90
T((70)	00057	110			100
	•	•	æ	30	7 6
	•	•	-	- CC	8 7
		•	55.55	- 	99

実施例 1.4

実業例11と同じ反応装置を用い、値々の創 様を用いて、アセトンで考察したゲラニオール の脱水業反応を行ない、下配の結果を得た。協 素キャリアーガスは産業24~hr トレーケー

•	. 武 子静				
	ットゥ 肝成の値 (多)	2 2 2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 00 00 00 00 00 00 00 00 00 00 00 00 00	27 42 35 35	N N N N N Ø P - 40 EI 80
	ゲッニキード (多) 番 (多)	- 2 4 5 2 5 5 4 4 5 5 5	12 25 25 18	10 12 9	23 28 25 18
	反応温度 (c)	580 405 452 452	10 10 14 4 20 10 14 4 20 10 10 10 10 10 10 10 10 10 10 10 10 10	408 438 467 498	844 444 484 484
<u>:</u>	グラニメード / ア セ ト ソ ト ル 九	D114	0114 4	a.114	a107
	ゲラニメード (東 都 斯 (mole/hr)	00045	00045	00045	00041
	(6) #	8n(70) 14~17 3€)	In(69) 15at%)	(07)	(02)

`実施例15

実施例1-1-1-1 日ので、安装量を用い、放棄としてT4 X は 2 n-1 n 合金を用い、盤 森 キャリア ーガス 洗過 2 4 / hr とし、アセトンで 看来した ネロールの 脱水 素反応を行なつた 結果を 次 表 8 に示す。

(&)	**ロール*ロール DKBB *ロール AB 1 1 1 1 1 1 1 1 1	オロードント・アンド・ドド	反応温度 (こ)	* /* ******************************	? ∰
T# (75)	0.0039	6900	400		0 7
	•	•	4 3 0	9-	36
	•	•	45 80 80	20	26
Zn-In(70)	27000	0.075	390	10	3.5
(Zn 15a 1%)	•	•	425	2	3.2
		•	8 4	\$	25

(5) 朝細書の「図面の簡単な説明」の概(明細書第 1 1 頁下から 7 行目から 3 行目まで)を次のとおりに補正する。

「旅付の図面第1図および第2図は本発明の実施例に用いた反応装置の概念図である。第1図中の1は耐熱ガラス製反応管、2は気化管、3は冷却器、4および5は液状留出物のトラップ、6は流量計、7~11はパイプである。また第2図中の1は反応管、2は反応管1中の溶験金融無、5分は予熱器、4は原料アルコール供給管、5分はキャリアーガス供給管、6位生成物流出管である。」

- (6) 顧客に銀付した「図面」を開1図」に改める。
 - (7) 新たに別紙「第2図」を補充する。

BL 上

