

第9章 序列标注 - 隐马尔科夫模型

1/2

中科院信息工程研究所第二研究室

胡玥

huyue@iie.ac.cn

自然语言处理课程内容及安排

◇ 课程内容:

自然语言研究层面

内容提要

问题引入

在自然语言处理任务中,有许多的任务可以转化为"将输入的语言序列转化为标注序列"来解决问题。如,命名实体识别、信息抽取、词性标注.....

命名实体识别(人名识别)

目标:将给定的输入序列中的人名识别出来

> {BIEO} 或 {BIO} B-词首 I-词中 E-词尾 O-单个词

序列标注问题:

标注问题是分类问题的推广,是复杂结构预测的简单形式(监督学习)

许多自然语言处理问题 均可转化为序列标注问题

命名实体识别(组织机构名识别)

目标:将给定的输入序列中的组织机构名识别出来

输入序列:新任总裁罗建国宣布了对远大公司经理国庆的任免通知

标注序列:00000000BIIE0000000

• 信息抽取

目标:将给定的输入序列中的军事术语抽取出来

输入: 鹰 式 战 斗 机 是 一 款 极 为 优 秀 的 多 用 途 战 斗 机

输出: B I I I E O O O O O O O B I I I I E

● 词性序列标注(POS)

目标:将给定的输入序列中词的词性标出来

如: 输入: Flies like a flower

输出: N V ART N

词性标注结果: Flies/N like /V a/ART flower/N

 $f: X \rightarrow Y$

Y的符号集 { 单词的词性 , 如 N 、V 等 }

● 分词、短语识别、依存分析、语义角色标注......

内容提要

9.1 序列标注问题

- 9.2 隐马尔科夫模型HHM
 - 9.2.1 马尔科夫模型
 - 9.2.2 隐马尔科夫模型 (结构)
 - 9.2.3 隐马尔科夫模型学习
 - 9.2.4 隐马模型应用
 - 9.3 条件随机场 CRF
 - 9.4 神经网络 RNN+ CRF

马尔可夫 (Andrei Andreyevich Markov, 1856.6.14 ~ 1922.7.20)

前苏联数学家。切比雪夫(1821年5月16日~1894年12月8日)的学生。在概率论、数论、函数逼近论和微分方程等方面卓有成就。他提出了用数学分析方法研究自然过程的一般图式—马尔可夫链,并开创了随机过程(马尔可夫过程)的研究。

马尔可夫链

一个系统有N个状态 S1, S2, ..., Sn,

随着时间(空间)推移,系统从某一状态转移到另一状态,注意状态序列和状态集的区别

如果系统在t时间的状态q t 只与其在时间 t -1的状态相关,则系统构成离散

的一阶马尔可夫链(马尔可夫过程)

马尔可夫假设

马尔可夫模型:

$$p(S_0, S_1, \dots, S_T) = \prod_{t=1}^T p(S_t | S_{t-1}) \ p(S_0)$$

马尔可夫链

独立于时间 t 的随机过程:

$$P(q_t = S_j | q_{t-1} = S_i) = a_{i,j}, 1 \le i, j \le N$$

其中:状态转移概率 a_{ij} 必须满足 $a_{ij} > = 0$,

模型输入:状态序列

模型输出: 状态序列的概率值

模型参数: P(qt | qt-1))

■ 马尔可夫模型组成

参数	含义	
S	模型中状态的有限集合	
Α	与时间无关的状态转移概率矩阵	
π	初始状态空间的概率分布	

■ 马尔可夫模型作用:

定量描述随机事件的变化过程

其中: 状态转移概率 a_{ij} $P(q_t = S_j \mid q_{t-1} = S_i) = a_{i,j}, 1 \le i, j \le N$ 满足 $a_{ij} > = 0$,且 $\sum_{i=1}^{N} a_{i,j} = 1$

π 初始状态向量

马尔可夫模型作用

三元组 M = (S, π, A)

参数	含义	
S	模型中状态的有限集合	
А	与时间无关的状态转移概率矩阵	
π	初始状态空间的概率分布	

例1:掷骰子

S={1 2 3 4 5 6 }

A

其中: 状态转移概率 a_{ij}

$$P(q_t = S_j \mid q_{t-1} = S_i) = a_{i,j}, 1 \le i, j \le N$$

满足 $a_{ij} > = 0$,且 $\sum_{i=1}^{N} a_{i,j} = 1$

$$1 \longrightarrow 5 \longrightarrow \cdots \longrightarrow 4 \longrightarrow 4 \longrightarrow$$

马尔科夫模型定量描述随机事件:

$$\pi$$
 = (1, 0, 0, 0, 0, 0)

马尔可夫模型作用

三元组 $M = (S, \pi, A)$

参数	含义
S	模型中状态的有限集合
А	与时间无关的状态转移 概率矩阵
π	初始状态空间的概率分 布

定量描述随机事件:天气变化

例2:预测天气变化

S={晴云雨}

其中: 状态转移概率 a_{ij}

$$P(q_t = S_j \mid q_{t-1} = S_i) = a_{i,j}, 1 \le i, j \le N$$

满足 $a_{ij} > = 0$,且 $\sum_{j=1}^{N} a_{i,j} = 1$

$$\pi = (1, 0, 0)$$

例3: 假定一段时间内的气象可由一3状态马尔可夫模型 M 描述:

 S_1 :雨, S_2 :多云, S_3 :晴,转移概率矩阵为:

如果第一天为晴天,根据这一模型,求在今后七天中天气为 S="晴晴雨雨晴云晴"的概率

即,求

的概率

解: 马尔可夫模型状态序列概率:

$$p(S_0, S_1, \dots, S_T) = \prod_{t=1}^T p(S_t | S_{t-1}) \ p(S_0)$$

S=晴晴雨雨晴云晴

0.1

0.1

8.0

内容提要

9.1 序列标注问题

9.2 隐马尔科夫模型HHM

- 9.2.1 马尔科夫模型
- 9.2.2 隐马尔科夫模型 (结构)
- 9.2.3 隐马尔科夫模型学习
 - 9.2.4 隐马模型应用
- 9.3 条件随机场 CRF
- 9.4 神经网络 RNN+ CRF

隐马尔可夫模型 (Hidden Markov Model, HMM)

--- 创建于20世纪70年代 ---

描写:该模型是一个双重随机过程,我们不知道具体的状态序列,只知道状态转移的概率,即模型的状态转换过程是不可观察的(隐蔽的),而可观察事件的随机过程是隐蔽状态转换过程的随机函数。

通过可见的事物的变化揭示深藏其后的内在的本质规律

马尔可夫模型:

天气变化

马尔可夫模型: —— 隐马尔可夫模型 HMM

S:

π: 晴云雨 (1,0,0)

O:

观察序列变化由状态序列变化引起

(两者相关联)

隐马尔可夫模型 HMM作用

S:

A:		雨	云	晴	_
 	雨	0.4	0.3	0.3	
A = [a _{ij}]=	云	0.2	0.6	0.2	
 	晴	0.1	0.1	8.0	

π: 晴云雨 (1,0,0)

0:

当状态序列不可见时

可以通过观察序列推出状态序列

隐马尔可夫模型(HMM)组成:

湿润

要素	含义	实例
Ø	模型中状态的有 限集合	天气
0	每个状态可能的 观察值	海藻
Α	与时间无关的状 态转移概率矩阵	天气转移概率 矩阵
В	给定状态下,观 察值概率分布	每个天气状态 的海藻观测概 率
π	初始状态空间的 概率分布	初始时选择某 天气概率

HMM五元组 说明:

- 1. 隐藏状态s:一个系统的(真实)状态,可以由一个马尔科夫过程进行描述(如,天气)
- 2. 观察状态 o:在这个过程中'可视'的状态(例如,海藻的湿度)
- **3. 状态转移概率矩阵 A = a_{ij}**:包含了一个隐藏状态到另一个隐藏状态的概率。其中,

$$\begin{cases} a_{ij} = p(q_{t+1} = S_j \mid q_t = S_i), & 1 \leq i, j \leq N \\ a_{ij} \geq 0 \\ \sum_{j=1}^{N} a_{ij} = 1 \end{cases}$$

4. 观察概率矩阵 $B=b_j(k)$: 从隐藏状态 S_j 观察到某一特定符号 V_k 的概率分布矩阵。 其中 I

$$\begin{cases} b_{j}(k) = p(O_{t} = v_{k} | q_{t} = S_{j}), & 1 \leq j \leq N, \quad 1 \leq k \leq M \\ b_{j}(k) \geq 0 \\ \sum_{k=1}^{M} b_{j}(k) = 1 \end{cases}$$

5. 初始状态的概率分布为: $\pi = \pi_i$, 其中,

$$\begin{cases} \pi_i = p(q_1 = S_i), & 1 \le i \le N \\ \pi_i \ge 0 \\ \sum_{i=1}^N \pi_i = 1 \end{cases}$$

HMM的三个假设:

对于一个随机事件,有一观察值序列: $O=O_1,O_2,...O_T$

该事件隐含着一个状态序列: $Q = q_1, q_2, ... q_{T_0}$

假设1:马尔可夫性假设(状态构成一阶马尔可夫链)

$$P(q_i|q_{i-1}...q_1) = P(q_i|q_{i-1})$$

假设2:不动性假设(状态与具体时间无关)

$$P(q_{i+1}|q_i) = P(q_{i+1}|q_i)$$
,对任意 i ,j成立

假设3:输出独立性假设(输出仅与当前状态有关)

$$p(O_1,...,O_T | q_1,...,q_T) = \Pi p(O_t | q_t)$$

HMM的特点:

- HMM的<mark>状态是</mark>不确定或<mark>不可见</mark>的,只有通过观测序列的随机过程 才能表现出来
- 观察到的事件与状态并不是一一对应,而是通过一组概率分布相联系
- HMM是一个双重随机过程,两个组成部分:
 - > 马尔可夫链:描述状态的转移,用转移概率描述。
 - 一般随机函数:描述状态与观察序列间的关系, 用观察值概率描述。

隐马尔可夫模型(HMM):

观察序列 输入:

1. 观察序列的概率值 2. 隐状态序列 输出:

B矩阵 A矩阵

参数:	$P(q_t c)$	_{t-1}) ,	P(O _t	$ \mathbf{q_t}\rangle$
-----	------------	--------------------	------------------	------------------------

用隐马尔可夫模型可求:

- I. 在给定模型中出现观察序列的可能性(概率值) HMM评估问题
- Ⅱ. 通过观察序列找出最大可能的**隐状态序列 HMM解码问题**

要素	含义	实例
S	模型中状态的有限集 合	天气
0	每个状态可能的观察 值	海藻
Α	与时间无关的状态转 移概率矩阵	天气转移概率矩阵
В	给定状态下,观察值 概率分布	每个天气状态的海 藻观测概率
π	初始状态空间的概率 分布	初始时选择某天气 概率

HMM评估问题:

对于给定观察序列 $O=O_1,O_2,...O_T$,以及模型 $\lambda=(A,B,\pi)$ 求观察序列的概率 $P(O|\lambda)$

求:观察序列概率 $P(O|\lambda)=?$

问题:

- 1. 观察序列概率P(O|λ)定义
- 2. 如何计算 P(O|λ)

己知

1. 观察序列概率P(O|λ)定义

■ 对于给定的一个状态序列 $Q = q_1q_2...q_T$,

$$P(O,Q \mid \lambda) = \pi_{q1} a_{q1q2} a_{q2q3} ... a_{qT-1qT} b_{q1} (O_1) b_{q2} (O_2) ,... b_{qT} (O_T)$$

$$P(Q \mid \lambda) \qquad P(O \mid Q, \lambda)$$

$$P(O,Q \mid \lambda) = P(Q \mid \lambda) P(O \mid Q, \lambda)$$

■ 对于全部状态序列

观察序列来源

观察序列概率:

$$P(O \mid \lambda) = \sum_{Q} P(O, Q \mid \lambda) = \sum_{Q} P(Q \mid \lambda) P(O \mid Q, \lambda)$$

2. 如何计算 P(O|λ)

已知

观察序列概率:

$$P(O \mid \lambda) = \sum_{Q} P(O, Q \mid \lambda) = \sum_{Q} P(Q \mid \lambda) P(O \mid Q, \lambda)$$

(1) **穷举法**:找到每一个可能的隐藏状态的序列,这里有3³ = 27种,可观察序列的概率就是这27种可能的和。很显然,这种计算的效率非常低,尤其是当模型中的状态非常多或者序列很长的时候。

穷举法的问题:

◆困难:

如果模型 μ 有 N个不同的状态,时间长度为T,那么有 N^T 个可能的状态序列,搜索路径成指数级组合爆炸。

解决方法:

(2)前向算法(后向算法):利用动态规划使用递归来降低计算复杂度

向前算法

前向算法基本思想:

使用递归来降低计算复杂度

$$P(O \mid \lambda) = \sum_{Q} P(O, Q \mid \lambda) = \sum_{Q} P(Q \mid \lambda) P(O \mid Q, \lambda)$$

前向算法实现:

定义 前向变量 $\alpha_{t}(j)$ (部分概率),表示达到某个中间状态的概率

- ightharpoonup **t=1 时**,是初始概率, $\Pr(状态 j \mid t=1) = \pi(状态 j)$ $\alpha_1(i) = \pi_i b_i(O_1)$, t=1
 - > 当1 ≤ t ≤ T-1 时,

$$\alpha_{t-1}(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}\right]b_{j}(O_{t-1}), \quad 1 \le t \le T-1$$

最终结果
$$p(O \mid \mu) = \sum_{i=1}^{N} \alpha_T(i)$$

前向算法 (The forward procedure)

- (1) 初始化: $\alpha_1(i) = \pi_i b_i(O_1), 1 \le i \le N$
- (2) 循环计算:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i)a_{ij}\right]b_{j}(O_{t+1}), \qquad 1 \le t \le T-1$$

(3) 结束,输出:

$$p(O \mid \mu) = \sum_{i=1}^{N} \alpha_{T}(i)$$

前向计算过程见附录

算法的时间复杂性:

每计算一个 $\alpha_t(i)$ 必须考虑从 t-1 时的所有 N 个状态转移到状态 S_i 的可能性,时间复杂性为 O(N),对应每个时刻 t,要计算 N 个前向变量: $\alpha_t(1)$, $\alpha_t(2)$, …, $\alpha_t(N)$,所以,时间复杂性为: $O(N) \times N = O(N^2)$ 。 又 因 t = 1, 2, …, T,所以前向算法总的复杂性为: $O(N^2T)$

穷举算法的时间开销是和 T 指数相关 即 O(NT)

例1: 已有天气和海藻关系的HMM模型 λ ; 求连续3 天海藻湿度的观察结果是(干燥、潮湿、湿润)的概率。

○ = {湿润,潮湿,稍干,干燥}

海藻

干 稍干 潮湿 湿润
B 天气 阴天
$$\begin{pmatrix} 0.60 & 0.20 & 0.15 & 0.05 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.05 & 0.10 & 0.35 & 0.50 \end{pmatrix}$$

$$\pi = (1, 0, 0)$$

解:用向前算法

晴天 阴天 下雨 海藻 干 稍干 潮湿 湿润 晴天
$$\begin{pmatrix} 0.50 & 0.25 & 0.25 \\ 0.375 & 0.25 & 0.375 \\ 0.25 & 0.125 & 0.625 \end{pmatrix}$$
 天气 晴天 $\begin{pmatrix} 0.60 & 0.20 & 0.15 & 0.05 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.05 & 0.10 & 0.35 & 0.50 \end{pmatrix}$ $\pi = \begin{pmatrix} 1, & 0, & 0 \end{pmatrix}$

1. 前向算法

- (1) 初始化: $\alpha_1(i) = \pi_i b_i(O_1)$, $1 \le i \le N$
- (2) 循环计算:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij}\right] b_{j}(O_{t+1}), \quad 1 \le t \le T-1$$

(3) 结束,输出:

$$p(O \mid \mu) = \sum_{i=1}^{N} \alpha_{T}(i)$$

$$p(O \mid \mu) = \sum_{i=1}^{N} \alpha_T(i) = 0.0025 + 0.0068 + 0.0293 = 0.0386$$

例 2:

$$p(O | \mu) = \sum_{i=1}^{N} \alpha_T(i) = .0018 + .01123 + .01537 = .0284$$

向后算法

后向算法:与前向算法一样,运用动态规划计算后向量

归纳顺序: $\beta_T(x), \beta_{T-1}(x), \dots, \beta_1(x)$

 O_{T-1} O_{T} 观察序列 \triangleright 当 t=T 时, $\beta_{T}(i)=1$, $1 \le i \le N$

定义后向变量 $\beta_t(i)$

 $O_{t} \qquad O_{t+1} \qquad O_{s_{1}} \qquad O_{s_{2}} \qquad O_{s_{3}} \qquad \vdots \qquad O_{s_{N}} \qquad \vdots \qquad O_{s_{N}} \qquad \vdots \qquad O_{s_{N}} \qquad O_{s_{N}}$

> 当T-1 ≥ t≥1 时,

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(O_{t+1}) \beta_{t+1}(j), \quad T - 1 \ge t \ge 1, \quad 1 \le i \le N$$

> 结果:

$$P(O | \mu) = \sum_{i=1}^{N} \pi_i b_i(O_1) \beta_1(i)$$

后向算法 (The backward procedure)

(1)初始化: $\beta_T(i)=1$, $1 \le i \le N$

(2)循环计算:

$$\beta_{t}(i) = \sum_{j=1}^{N} a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j), \quad T-1 \ge t \ge 1, \quad 1 \le i \le N$$

(3) 输出结果:

$$P(O | \mu) = \sum_{i=1}^{N} \pi_i b_i(O_1) \beta_1(i)$$

算法的时间复杂性: $O(N^2T)$

HMM解码问题:

对于给定观察序列 $O=O_1,O_2,...O_T$,以及模型 $\lambda=(A,B,\pi)$ 如何选择一个对应的状态序列 $S=S_1,S_2,...S_T$,使得S能够最为合理的解释观察序列 O

求:状态序列序列 $S = S_1, S_2, ... S_T$

求:状态序列序列 $S = S_1, S_2, ... S_T$

(1) **穷举法**:找到每一个可能产生观察序列的状态序列,这里有3³ = 27种,计算 每种可能情况下观察序列的概率,概率最大的状态序列就是要找的状态序列。 很显 然,这种计算的效率非常低,尤其是当模型中的状态非常多或者序列很长的时候。

解决方法:

(2) Viterbi 搜索算法:利用动态规划使用递归来降低计算复杂度

Viterbi 搜索算法

Andrew Viterbi

安德鲁.维特比(Andrew Viterbi)

1967年发明了维特比算法。

维特比算法: 利用动态规划方法解决特殊的 篱笆网络有向图的最短路径问题。 是现代数 字通信中使用最频繁的算法; 同时也是很多自 然语言处理的解码算法。

Viterbi 算法基本思想: 使用递归来降低复杂度

- 1. 如果概率最大路径(或说最短路径)经 i 时刻某个点,一定可以找到S到该点的最短路径(可将i时刻点的最短路径记录)
- 2. 从S到E 的路径必定经过 i时刻的某个点
- 3. 当从状态 i 进入到i+1状态时计算S到i+1 状态时,只考虑 i状态所有节点最短路径和和它们到 i+1状态的距离即可。

Viterbi 算法实现:

(1) 部分最优路径概率

定义一个部分概率 δ ;用 δ (i, t)来表示在t时刻, 到状态i的所有可能的序列(路径)中概率最大 的序列的概率

$$\begin{split} & \delta_1(i) = \pi_i b_i(O_1), \quad 1 \le i \le N \\ & \delta_t(j) = \max_{1 \le i \le N} [\delta_{t-1}(i) \cdot a_{ij}] \cdot b_j(O_t), \quad 2 \le t \le T, \quad 1 \le j \le N \end{split}$$

(2)向后指针记录最优路径

利用一个后向指针 φ 来记录导致某 个状态最大局部概率的前一个状态

 $\phi_t(i) = \arg\max_{i} (\delta_{t-1}(j)a_{ii})$

$$q_t^* = \varphi_{t+1}(q_{t+1}^*), \quad t = T-1, T-2,...,1$$

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T - 1, T - 2, ..., 1$

算法的时间复杂度: $O(N^2T)$

设:
$$\pi = (1, 0, 0)$$

解:用Viterbi 搜索算法

晴天
阴天
下雨
$$\begin{pmatrix} 0.50 & 0.25 & 0.25 \\ 0.375 & 0.25 & 0.375 \\ 0.25 & 0.125 & 0.625 \end{pmatrix}$$

海澡

$$\pi = (1, 0, 0)$$

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

$$\varphi_{t}(j) = \underset{1 \le i \le N}{\operatorname{arg\,max}} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \le t \le T, 1 \le j \le N$$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T-1, T-2,...,1$

(干燥、潮湿、湿润),最可能的天气序列:(晴、雨、雨)

例2: HMM模型如下, 试根据Viterbi算法计算产生观察符号序列 O={ABAB}的最优状态序列Q

解: 初始概率矩阵π=(1,0,0)

第一次观察时:

t=1₽

$$\delta_1(1) = \pi_1 * b_1(A) = 1*0.7 = 0.7, \ \psi_1(1) = 0$$

第二次观察时:

t=2₊

$$\delta_2(1) = \delta_1(1) * a_{11} * b_1(B) = 0.7 * 0.4 * 0.3 = 0.084, \ \psi_2(1) = 1$$

$$\delta_2(2) = \delta_1(1) * a_{12} * b_2(B) = 0.7 * 0.6 * 0.6 = 0.252 \; , \;\; \psi_2(2) = 1$$

Q: 0: q1

q2 B **q3** △

-<u>Viterbi</u> 搜索算法

- 递归: $\delta_t(j) = [\max_{1 \leq i \leq N} \delta_{t-1}(i)a_{ij}]b_j(O_t), \quad 2 \leq t \leq T, 1 \leq j \leq N$
 - $\varphi_{t}(j) = \underset{1 \leq i \leq N}{\arg\max} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}) , \quad 2 \leq t \leq T, 1 \leq j \leq N$
- 终结: $p^* = \max_{1 \le i \le N} [\delta_T(i)]$, $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$
- **路径回溯**: $q_t^* = \varphi_{t+1}(q_{t+1}^*)$, t = T 1, T 2,...,1

A: 0.7 A:0.4 A:0.8

B:0.3 B:0.6 B:0.2

q4 B

解:

第三次观察时:

t=3

$$\delta_3(1) = \delta_2(1) * a_{11} * b_1(A) = 0.084 * 0.4 * 0.7 = 0.02352, \ \psi_3(1) = 1$$

$$\delta_3(2) = \max \{ \delta_2(1) * a_{12}, \delta_2(2) * a_{22} \} * b_2(A)$$

$$= \max \{ 0.084 * 0.6, 0.252 * 0.8 \} * 0.4 , \psi_3(2) = 2$$

$$= 0.08064$$

q1

Q:

0:

Viterbi 搜索算法

- $\delta_1(i) = \pi_i b_i(O_1)$, $\varphi_1(i) = 0$, $1 \le i \le N$

$$\varphi_{t}(j) = \arg \max_{t \in N} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \le t \le T, 1 \le j \le N$$

- 终结: $p^* = \max_{1 \le i \le N} [\delta_T(i)]$, $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$
- **路径回溯**: $q_t^* = \varphi_{t+1}(q_{t+1}^*)$, t = T 1, T 2,...,1

A: 0.7 A:0.4 A:0.8

B:0.3 B:0.6 B:0.2

q3 q4 A B

q2

第四次观察时:

t=4

$$\delta_4(1) = \delta_3(1) * a_{11} * b_1(B) = 0.0028224, \ \psi_4(1) = 1$$

$$\delta_4(2) = \max\{\delta_3(1) * a_{12}, \delta_3(2) * a_{22}\} * b_2(B)$$

$$= \max\{0.014112, 0.064512\} * 0.6 , \psi_4(2) = 2$$

$$= 0.0387072$$

$$\begin{split} \delta_4(3) &= \max \{ \delta_3(2) * a_{23}, \delta_3(3) * a_{33} \} * b_3(B) \\ &= \max \{ 0.08064 * 0.2, 0.04032 * 1 \} * 0.2, \ \psi_4(3) = 3 \\ &= 0.008064 \end{split}$$

Q: q1 q2 0: A B

Viterbi 搜索算法

- $\bullet \quad \text{if } \mathcal{C}_1(i) = \pi_i b_i(O_1), \quad \varphi_1(i) = 0, \quad 1 \le i \le N$
- 送归: $\delta_{t}(j) = [\max_{1 \le i \le N} \delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \le t \le T, 1 \le j \le N$ $\varphi_{t}(j) = \arg\max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \le t \le T, 1 \le j \le N$
- 终结: $p^* = \max_{1 \le i \le N} [\delta_T(i)]$, $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$
- **路径回溯**: $q_t^* = \varphi_{t+1}(q_{t+1}^*)$, t = T 1, T 2,...,1

q4

B

B:0.3 B:0.6 B:0.2

q3

解:

其递推结果为:

$$p^* = \max_{1 \le i \le 3} [\delta_4(i)] = \max[0.0028224, 0.0387072, 0.008064] = 0.0387072$$

$$q_4^* = \arg\max_{1 \le i \le 3} [\delta_4(i)] = 2$$

$$q_3^* = \psi_4(q_4^*) = \psi_4(2) = 2$$

$$q_2^* = \psi_3(q_3^*) = \psi_3(2) = 2$$

$$q_1^* = \psi_2(q_2^*) = \psi_2(2) = 1$$

最后的结果状态序列为: S1、S2、S2、S2

Q: 0: q1 A q2 B **q3**

q4 B

Viterbi 搜索算法

• 初始化: $\delta_1(i) = \pi_i b_i(O_1)$, $\varphi_1(i) = 0$, $1 \le i \le N$

• 递归: $\delta_t(j) = [\max_{1 \le i \le N} \delta_{t-1}(i)a_{ij}]b_j(O_t), \quad 2 \le t \le T, 1 \le j \le N$

 $\varphi_{t}(j) = \underset{1 \leq i \leq N}{\arg\max} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}) \text{ , } 2 \leq t \leq T, 1 \leq j \leq N$

• 终结: $p^* = \max_{1 \le i \le N} [\delta_T(i)]$, $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

路径回溯: $q_t^* = \varphi_{t+1}(q_{t+1}^*)$, t = T - 1, T - 2,...,1

A: 0.7 A:0.4 A:0.8

B:0.3 B:0.6 B:0.2

内容提要

9.1 序列标注问题

9.2 隐马尔科夫模型HHM

- 9.2.1 马尔科夫模型
- 9.2.2 隐马尔科夫模型 (结构)
- 9.2.3 隐马尔科夫模型学习
- 9.2.4 隐马模型应用
- 9.3 条件随机场 CRF
- 9.4 神经网络 RNN+ CRF

9.2.3 隐马尔科夫模型学习

HMM参数学习

隐马尔科夫模型参数

$$P(S_t | S_{t-1}) = \frac{P(S_{t-1}S_t)}{P(S_{t-1})} \qquad P(O_t | S_t) = \frac{P(O_t | S_t)}{P(S_t)}$$

训练思路:

通过观察序列 $O = O_1O_2 ...O_T$ 作为训练数据,用最大似然估计,使得观察序列 O 的概率 $p(O|\mu)$ 最大。

9.2.3 隐马尔科夫模型学习

情况1: 产生观察序列 O 的状态 Q = $q_1q_2...q_T$ 已知,可以采用有监督的学习方法,用最大似然估计来计算 μ 的参数:

$$\begin{split} \overline{\pi}_i &= \mathcal{S}(q_1, S_i) \\ \overline{a}_{ij} &= \frac{Q \text{中从状态}q_i 转移到}{Q \text{中所有从状态}q_i 转移到另一状态(包括q_j自身)的总数} = \frac{\sum_{t=1}^{T-1} \mathcal{S}(q_t, S_i) \times \mathcal{S}(q_{t+1}, S_j)}{\sum_{t=1}^{T-1} \mathcal{S}(q_t, S_i)} \end{split}$$

其中, $\delta(x,y)$ 为<u>克罗奈克(Kronecker)函数</u>,当 x= y 时, $\delta(x,y)$ =1, 否则 $\delta(x,y)$ = 0。

$$\bar{b}_{j}(k) = \frac{Q + \text{N状态}q_{j} 输出符号v_{k} 的次数}{Q \text{到达}q_{j} 的总次数} = \frac{\sum_{t=1}^{T} \delta(q_{t}, S_{j}) \times \delta(O_{t}, v_{k})}{\sum_{t=1}^{T} \delta(q_{t}, S_{j})}$$

其中, v_k 是模型输出符号集中的第 k 个符号。

9.2.3 隐马尔科夫模型学习

情况2:HMM 中的状态序列Q 是观察不到的,这时,最大似然估计方法不可行。可以采用无监督的EM学习方法。

解决方法:

期望最大化EM 算法。根据**EM 算法**调节模型的参数 π_i a_{ij} , $b_{j(k)}$, 使得观察序列O的概率P(O|M)最大 , 主要使用**前向后向算法** (鲍姆-韦尔奇 Baum-Welch) 算法。

(略)

内容提要

9.1 序列标注问题

9.2 隐马尔科夫模型HHM

- 9.2.1 马尔科夫模型
- 9.2.2 隐马尔科夫模型 (结构)
- 9.2.3 隐马尔科夫模型学习
 - 9.2.4 隐马模型应用
- 9.3 条件随机场 CRF
- 9.4 神经网络 RNN+ CRF

HMM模型在自然语言处理中有着广泛的应用

- ★ 分词: HMM的评估问题: 当分词出现多种可能时,求观察序列 O=O₁O₂...O₁
 的概率,结果取概率最大的序列;解码问题:用序列标注直接进行分词
- → **词性标注**:相当HMM的解码问题。即求观察序列 $O=O_1O_2...O_7$ 下,概率 最大的标注序列 argmax P(Q|O, μ)
 - ★ 其他:如 短语识别、语音识别

HMM模型相关工具 HTK 地址: http://htk.eng.cam.ac.uk/

1. 应用中HMM中各部分与自然语言的对应关系:

观察序列 $O=O_1O_2...O_7$: 处理的语言单位,一般为 词

状态序列 S = S1S2...ST : 与语言单位对应的句法信息 , 一般为 词类

模型参数:初始状态概率、状态转移概率、发射概率 需要学习获得

2. 参数学习(获得)方法:

情况1: 有大规模分词和词性标注语料 用最大似然估计方法计算各概率

$$\bar{\pi}_{pos_i} = \frac{POS_i 出现在句首的次数}{所有句首的个数}$$

注: ● aij 中状态数目POS:为语料中词类标记符号的总个数

不同的语料标记个数不同,如 滨州树库汉语33个词类标记; 北大语料106个标记

● bj(k) 为所有词类到各单词的概率 如某单词无某一词类,则该词类到此单词的发射概率为 0

情况2: 无标注语料:

- ◆ 需要一部有词性标注的词典
 - ➤ 获取词类个数(POS状态数);
 - ➢ 获取对应每种词类的词汇数(观察符号数)
- ◆ 利用无监督**EM迭代算法**获取初始 状态概率、 状态转移概率 和 发射概率

例: HMM模型在词性标注中的应用

设,有如下从语料库训练得到的词性转移概率矩阵和词语生成概率矩阵

词性转移概率

- 14 IN IN IN I	
词性。	估计
PROB(ARTIØ)	0.71
PROB(N ø)	0.29
PROB(NIART)	1
PROB(V N)	0.43
PROB(NIN)	0.13
PROB(PIN)	0.44
PROB(NIV)	0.35
PROB(ART V)	0.65
PROB(ART P)	0.74
PROB(N1P)	0.26

词语生成概率

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB (like V)	0.1
PROB (like P)	0.068
PROB (like 1 N)	0.012
PROB(a ART)	0.360
PROB(a N)	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB(birds N)	0.076

试对 "flies like a flower "进行词性标注

解: 问题求解目标:对每个词标出其词性

该问题属于序列标注问题,可用HMM模型进行标注

观察集(词集): flies,like, a,flower

状态集(词性集):N,V,P,ART

- 共有 256 种可能标注结果
- > 可用 Viterbi 搜索算法 解码

词性转移概率

11 11 17 17 1	
词性	估计
PROB(ARTIØ)	0.71
PROB(N ø)	0.29
PROB(N ART)	1
PROB(V N)	0.43
PROB(NIN)	0.13
PROB(PIN)	0.44
PROB(NIV)	0.35
PROB(ART V)	0.65
PROB (ART P)	0.74
PROB(N1P)	0.26

词语生成概率

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB (like V)	1.0
PROB (like P)	0.068
PROB (like 1 N)	0.012
$PROB(a \mid ART)$	0.360
$PROB(a \mid N)$	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB(birds N)	0.076

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

2. 递归:
$$\delta_t(j) = [\max_{1 \le i \le N} \delta_{t-1}(i)a_{ij}]b_j(O_t)$$
, $2 \le t \le T, 1 \le j \le N$

$$\varphi_{t}(j) = \underset{1 \leq i \leq N}{\arg\max} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \leq t \leq T, 1 \leq j \leq N$$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T - 1, T - 2,...,1$

观察序列

词性转移概率

词性 估计 PROB(ARTIØ) 0.71 PROB(NIØ) 0.29 PROB(NIART) PROB(VIN) 0.43 PROB(NIN) 0.13 PROB(PIN) 0.44 PROB(NIV) 0.35 PROB(ART | V) 0.65 PROB(ART | P) 0.74 PROB(N1P) 0.26

词语生成概率

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB (like \ V)	0.1
PROB (like P)	0.068
PROB (like 1 N)	0.012
$PROB(a \mid ART)$	0.360
$PROB(a \mid N)$	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB(birds N)	0.076

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

2. 递归:
$$\delta_t(j) = [\max_{1 \le i \le N} \delta_{t-1}(i)a_{ij}]b_j(O_t), 2 \le t \le T, 1 \le j \le N$$

$$\varphi_{t}(j) = \underset{1 \leq i \leq N}{\operatorname{arg\,max}} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \leq t \leq T, 1 \leq j \leq N$$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T - 1, T - 2,...,1$

观察序列

(词) flies like a flower

词性转移概率

词性 估计 PROB(ARTIØ) 0.71 PROB(NIØ) 0.29 PROB(NIART) PROB(VIN) 0.43 PROB(NIN) 0.13 PROB(PIN) 0.44 PROB(NIV) 0.35 PROB(ART | V) 0.65 PROB(ART | P) 0.74 PROB(N1P) 0.26

词语生成概率

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB (like \ V)	0.1
PROB (like P)	0.068
PROB (like N)	0.012
$PROB(a \mid ART)$	0.360
PROB(a N)	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB(birds N)	0.076

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

2. 递归:
$$\delta_t(j) = [\max_{1 \le i \le N} \delta_{t-1}(i)a_{ij}]b_j(O_t), 2 \le t \le T, 1 \le j \le N$$

$$\varphi_{t}(j) = \underset{1 \le i \le N}{\operatorname{arg\,max}} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \le t \le T, 1 \le j \le N$$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T-1, T-2,...,1$

观察序列(词)

flies /N

like /V

a /ART

flower /N

结果

HMM 等生产式模型存在的问题

1. 由于生成模型定义的是联合概率,必须列举所有观察序列的可能值,这对多数领域来说是比较困难的。

在自然语言处理中,常知道各种各样但又不完全确定的信息,需要一个统一的模型将这些信息综合起来。

2. 输出独立性假设要求序列数据严格相互独立才能保证推导的正确性,导致其不能考虑上下文特征

在自然语言处理中,常常需要考虑上下文关系。

解决方案 条件随机场(CRF)

参考文献:

http://wenku.baidu.com/view/3cf29130f111f18583d05a57.html

http://wenku.baidu.com/view/9121f528bd64783e09122b80.html

http://wenku.baidu.com/view/bbd57f82fc4ffe473268ab59.html?from=search

邹博, 熵导论与最大熵模型, 机器学习班

李航,统计学习方法 清华大学出版社

宗成庆,统计自然语言处理(第2版)

在此表示感谢!

調調各位!

附录:

前向计算过程演示

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i)a_{ij}\right]b_{j}(O_{t+1})$$

