Universidade Federal de Uberlândia Faculdade de Matemática Curso de Graduação em Estatística

DISCIPLINA: Controle Estatístico de Qualidade

Trabalho 2 – Valor: 10,0 pontos – Data e entrega: 11/04/2024

MATERIAL DE ENTREGA:

1. Arquivo 1: dados digitados, em Excel

2. **Arquivo 2:** relatório com o desenvolvimento das questões abaixo. O relatório pode ser digitado em qualquer editor de texto e convertido em pdf

ROTEIRO PARA O TRABALHO - Utilização de Software e análise de dados com aplicação de gráficos de controle por atributos.

ALUNOS	DADOS
Augusto	PROBLEMAS 1 e 4
Bruno	PROBLEMAS 2 e 4
Grazielly	PROBLEMAS 3 e 4
Nathan	PROBLEMAS 5 e 4
Maxwel	PROBLEMAS 1 e 4

^{*}Consultar problemas no final deste arquivo

1) Arquivo 1: Digite os dados no excel, no formato a seguir.

Rótulo	Rótulo

- 2) Arquivo 2: Utilize o software R para responder as questões a) a i), conforme os dados :
- a) Descrição e apresentação dos dados.
- b) No contexto dos dados, qual é a característica de interesse a ser monitorada no processo?
- c) Qual o gráfico de controle apropriado para monitorar o processo?
- d) O processo está em controle (fase 1)? Apresente o gráfico gerado no R e os comandos para gerá-lo.
- e) Qual é o parâmetro do processo em controle (p₀ ou u₀, de acordo com o tipo de gráfico)?
- f) Quais são os limites do gráfico para monitorar futuras observações (fase 2)?
- g) Qual é probabilidade de ocorrer alarme falso? Apresentar os comandos.
- h) Qual é o poder do gráfico ao monitorar diferentes aumentos nos parâmetros do processo? Fixe 3 valores para o parâmetro fora de controle (p_1 ou u_1) e calcule o poder desse gráfico. Apresentar os comandos. *Valores diferentes entre os grupos.

Aumento em p ou u	(p ₁ ou u ₁)	Pd	NMA ₁
40%			
100%			
200%			

i) Proponha 3 futuras observações para exemplificar o monitoramento na fase 2 (livre escolha) e apresente o gráfico gerado pelo R. Apresentar os comandos.

PROBLEMAS

PROBLEMA 1: Um processo produz peças de titânio para roda de automóveis. Inicialmente, amostras de tamanho 250 foram inspecionadas durante 20 dias

Dia	Peças de titânio	
	defeituosas	
1	3	
2	2	
3	4	
4	2	
5	5	
6	2	
7	1	
8	2	
9	0	
10	5	

Dia	Peças de titânio	
	defeituosas	
11	2	
12	4	
13	1	
14	3	
15	8	
16	0	
17	1	
18	2	
19	3	
20	2	

PROBLEMA 2: Os defeitos da superfície de placas de aço foram observados em 24 placas retangulares.

HODELINA E. OS acicitos da			
Placas	Número de		
	defeitos na placa		
1	1		
2	0		
3	4		
4	3		
5	1		
6	2		
7	5		
8	0		
9	2		
10	1		
11	1		
12	0		
13	8		

Placas	Número de	
	defeitos na placa	
14	0	
15	2	
16	1	
17	3	
18	5	
19	4	
20	6	
21	3	
22	10	
23	2	
24	4	

PROBLEMA 3: 0 gerente de uma linha de montagem de placas de circuitos que controlar estatisticamente o seu processo. Os dados a seguir correspondem ao número de não conformidades encontradas nas primeiras 20 amostras examinadas (cada amostra consiste de 3 placas)

Amostra	Número de não	
	conformidades,	
	em 3 placas	
1	1	
2	2	
3	0	
4	3	
5	1	
6	1	
7	5	

Amostra	Número de não	
	conformidades,	
	em 3 placas	
14	2	
15	1	
16	1	
17	2	
18	3	
19	0	
20	2	

8	1
9	0
10	3
11	0
12	2
13	0

PROBLEMA 4: Os dados a seguir apresentam aos resultados da inspeção de todos os notebooks produzidos nos últimos 10 dias. *PARA TODOS*

Dia	Notebooks	Notebooks	Fração de notebooks
	inspecionados	defeituosos	defeituosos
1	80	4	0.050
2	110	7	0.064
3	90	5	0.056
4	75	8	0.107
5	130	6	0.046
6	120	6	0.050
7	70	4	0.057
8	125	5	0.040
9	105	8	0.076
10	95	7	0.074

PROBLEMA 5: Um processo produz correias de borracha em lotes de tamanho 2500. O resultados da inspeção dos últimos 20 lotes são apresentados a seguir

Lotes	Correias de
	borracha
	defeituosas
1	230
2	435
3	221
4	346
5	230
6	327
7	285
8	311
9	342
10	308

Lotes	Correias de
	borracha
	defeituosas
11	456
12	394
13	285
14	331
15	198
16	414
17	131
18	269
19	221
20	407