CS 234 Session 5 Policy Gradients

Contents

- Motivation
- Deterministic vs. Stochastic Policies
- Policy Gradients Objective
- Finite Difference and Vanilla Policy Gradients
- Variance Reduction
- Off Policy Policy Gradients
- Trust Region Policy Optimization

Motivation

Why use Policy Gradients?

PROS

- Better **convergence** properties (recall Q-learning not guaranteed to converge when using function approx.)
- Effective in **high-dimensional** or **continuous action** spaces
 - Why does vanilla DQN not work on continuous action spaces?
- Can learn **stochastic policies** (see next section for why we may want stochastic policies)

CONS

Typically data inefficient and high variance

Deterministic vs. Stochastic Policies

Why use stochastic policies?

Deterministic Policy may not be optimal

• What action should we take in the gray state below?

Why use stochastic policies?

Strategic Exploration

 Taking action according to probability distribution of softmax output often better exploration strategy than epsilon-greedy

Policy Gradients Objective

Episodic Setting / Finite Horizon

Probability of a trajectory

$$\pi_{\theta}(\tau) = \pi_{\theta}(s_1, a_1, ..., s_T, a_T) = P(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) P(s_{t+1}|s_t, a_t)$$

Objective Function

$$J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} \gamma^{t} r(s_{t}, a_{t}) \right] = \int \pi_{\theta}(\tau) r(\tau) d\tau \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t} r(s_{i,t}, a_{i,t})$$

Optimal Parameters

$$\theta^* = rg \max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} \gamma^t r(s_t, a_t) \right]$$

Exercise 1

• In the lecture notes, for **episodic environments**, the objective function is given below. What **assumption** is made in this objective function?

$$J_1(\theta) = V^{\pi_{\theta}}(s_1)$$

Answer to Exercise 1

• There is a single start state, s1. In general, there can be a distribution of start states, in which case there should be an **expectation over distribution of start states**, μ .

$$J_1(\theta) = V^{\pi_{\theta}}(s_1)$$

$$J_1(\theta) = \mathbb{E}_{s \sim \mu}[V^{\pi_{\theta}}(s)]$$

Continuous Setting / Infinite Horizon

- Define $P_{\theta}(s, a) = d^{\pi_{\theta}}(s)\pi_{\theta}(a|s)$
- Optimal Parameters

$$\theta^* = \arg\max_{\theta} \sum_{t=1}^{\infty} \mathbb{E}_{(s,a) \sim P_{\theta}(s,a)} [\gamma^t r(s,a)]$$

$$= \arg\max_{\theta} \frac{1}{1 - \gamma} \mathbb{E}_{(s,a) \sim P_{\theta}(s,a)} [r(s,a)]$$

$$= \arg\max_{\theta} \mathbb{E}_{(s,a) \sim P_{\theta}(s,a)} [r(s,a)]$$

Exercise 2

- In the lecture notes, for **continuous environments**, two possible objective functions were given. Which of them is the **same** as the **objective** in the previous slide?
- Average Value:

$$J_{avV}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

• Average Reward Per Time Step:

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$$

Answer to Exercise 2

 Average Reward per Time Step. In particular, the expectation can be expanded into a summation of states and actions (assuming discrete states and actions; if continuous, use integrals).

$$\mathbb{E}_{(s,a)\sim P_{\theta}(s,a)}[r(s,a)]$$

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$$

Finite Difference and Vanilla Policy Gradients

Finite Difference Methods

- See Lecture Notes for one way to do this
- Another way:
 - Randomly generate K small changes ($\Delta\Theta$) to policy and use R rollouts to estimate change in J (ΔJ) for each change in policy parameters. ($\Delta\Theta g = \Delta J$).

$$\mathbf{g}_{\mathrm{FD}} = \left(\mathbf{\Delta}\mathbf{\Theta}^{T}\mathbf{\Delta}\mathbf{\Theta}\right)^{-1}\mathbf{\Delta}\mathbf{\Theta}^{T}\mathbf{\Delta}\mathbf{\hat{J}}$$

http://www.scholarpedia.org/article/Policy_gradient_methods

Note on Finite Difference Methods

• Lecture Notes give "Forward Difference"

$$\frac{\delta J(\theta)}{\delta \theta_k} \approx \frac{J(\theta + \epsilon u_k - J(\theta))}{\epsilon}$$

• In general, better to use "Central Difference"

$$\frac{\delta J(\theta)}{\delta \theta_k} \approx \frac{J(\theta + \epsilon u_k) - J(\theta - \epsilon u_k)}{2\epsilon}$$

https://en.wikipedia.org/wiki/Finite_difference

Exercise 3

 What is the key advantage of using finite difference to estimate policy gradients?

Answer to Exercise 3

 Works for arbitrary policies, even if policy is not differentiable

Vanilla Policy Gradients: Log Derivative Trick

• In general, cannot simply move derivative inside expectation. Use **log derivative trick** to do so.

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \int \pi_{\theta}(\tau) r(\tau) d\tau$$

$$= \int \nabla_{\theta} \pi_{\theta}(\tau) r(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \frac{\nabla_{\theta} \pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} r(\tau) d\tau$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$$

Exercise 4

What is the point of the log derivative trick?

CS 234 Session 5 ₂₁

Answer to Exercise 4

 By doing so, the gradient estimation will be independent of the dynamics model which, in general, is unknown. See proof on next slide.

Monte-Carlo Estimate of Vanilla Policy Gradients

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\nabla_{\theta} \left[\log P(s_{1}) + \sum_{t=1}^{T} \left(\log \pi_{\theta}(a_{t}|s_{t}) + \log P(s_{t+1}|s_{t}, a_{t}) \right) \right] r(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\nabla_{\theta} \left[\sum_{t=1}^{T} \left(\log \pi_{\theta}(a_{t}|s_{t}) \right) \right] r(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t=1}^{T} \left(\nabla_{\theta} \left(\log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=1}^{T} \gamma^{t} r(s_{t}, a_{t}) \right) \right) \right]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\nabla_{\theta} \left(\log \pi_{\theta}(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} \gamma^{t} r(s_{i,t}, a_{i,t}) \right) \right)$$

Monte-Carlo Vanilla Policy Gradients Algorithm

REINFORCE:

```
Initialize \theta arbitrarily
for each episode \{s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do
  for t = 1 to T - 1 do
    \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) G_t
  endfor
endfor
return \theta
```

Variance Reduction

Idea 1: Causality

Actions cannot affect past rewards

$$\nabla_{\theta} \mathbb{E}[R] = \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t, s_t, \theta) \sum_{t'=t}^{T-1} r_{t'}\right]$$

 Note: There's something missing in the term above! Can you spot it? (Hint: see the next slide)

Idea 2: Baseline

- Subtract a baseline for every state
- Baseline compensates for variance introduced by being in different states

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] \approx \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t, \theta) \left(\sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'} - b(s_t) \right) \right]$$

Idea 2: Baseline

• Unbiased if function of state and not action, b(s)

$$\begin{split} &\mathbb{E}_{\tau}[\nabla_{\theta} \log \pi(a_{t}|s_{t},\theta)b(s_{t})] \\ &= \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[\mathbb{E}_{s_{(t+1):T},a_{t:(T-1)}}[\nabla_{\theta} \log \pi(a_{t}|s_{t},\theta)b(s_{t})]\right] \text{ (break up expectation)} \\ &= \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[b(s_{t})\mathbb{E}_{s_{(t+1):T},a_{t:(T-1)}}[\nabla_{\theta} \log \pi(a_{t}|s_{t},\theta)]\right] \text{ (pull baseline term out} \\ &= \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[b(s_{t})\mathbb{E}_{a_{t}}[\nabla_{\theta} \log \pi(a_{t}|s_{t},\theta)]\right] \text{ (remove irrelevant variables)} \\ &= \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[b(s_{t})\cdot 0\right] \end{split}$$

Exercise 5

How was the last step performed?

```
= \mathbb{E}_{s_{0:t},a_{0:(t-1)}}[b(s_t)\mathbb{E}_{a_t}[\nabla_{\theta}\log\pi(a_t|s_t,\theta)]] \text{ (remove irrelevant variables)}= \mathbb{E}_{s_{0:t},a_{0:(t-1)}}[b(s_t)\cdot 0]
```

Common Baseline Used: V(s)

• Becomes **Advantage Estimator** of the form Return - V(s)

$$A^{\pi,\gamma}(s,a) = Q^{\pi,\gamma}(s,a) - V^{\pi,\gamma}(s)$$

Answer to Exercise 5

$$\mathbb{E}_{a_t} [\nabla_{\theta} \log \pi_{\theta}(a_t | s_t)] = \int_a \pi_{\theta}(a_t | s_t) \frac{\nabla_{\theta} \pi_{\theta}(a_t | s_t)}{\pi_{\theta}(a_t | s_t)} da$$

$$= \int_a \nabla_{\theta} \pi_{\theta}(a_t | s_t) da$$

$$= \nabla_{\theta} \int_a \pi_{\theta}(a_t | s_t) da$$

$$= \nabla_{\theta} 1 = 0$$

Idea 3: N-step Estimators

- Instead of using Monte-Carlo estimate of returns can use something similar to TD Target
- Trade-off bias and variance
- Can still subtract baseline (e.g. V(s))

$$\hat{R}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1})$$

$$\hat{R}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2})$$

$$\hat{R}_{t}^{(inf)} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \cdots$$

Exercise 6

Which of the following has highest variance?

$$\hat{R}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1})$$

$$\hat{R}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2})$$

$$\hat{R}_{t}^{(inf)} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \cdots$$

Answer to Exercise 6

• Which of the following has highest variance?

$$\hat{R}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1})$$

$$\hat{R}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2})$$

$$\hat{R}_{t}^{(inf)} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \cdots$$

Off Policy Policy Gradients

Why Off Policy Policy Gradients?

- REINFORCE is On Policy. Why?
 - Objective takes expectation over trajectories drawn from $\pi_{\Theta}(\tau)$. Once we change our parameters from Θ to Θ , old trajectories cannot be reused.
- Inefficient use of data.
- Note: When evaluating algorithms, we care about performance (average and asymptotic), computational complexity and sample complexity.

Importance Sampling

$$\begin{split} &\theta^* = \operatorname*{arg\,max}_{\theta} J(\theta) \\ &= \operatorname*{arg\,max}_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] \\ &= \operatorname*{arg\,max}_{\theta} \mathbb{E}_{\tau \sim \bar{\pi}_{\theta}(\tau)} \left[\frac{\pi_{\theta}(\tau)}{\bar{\pi}_{\theta}(\tau)} r(\tau) \right] \\ &= \operatorname*{arg\,max}_{\theta} \mathbb{E}_{\tau \sim \bar{\pi}_{\theta}(\tau)} \left[\frac{P(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) P(s_{t+1}|s_t, a_t)}{P(s_1) \prod_{t=1}^{T} \bar{\pi}_{\theta}(a_t|s_t) P(s_{t+1}|s_t, a_t)} r(\tau) \right] \\ &= \operatorname*{arg\,max}_{\theta} \mathbb{E}_{\tau \sim \bar{\pi}_{\theta}(\tau)} \left[\frac{\prod_{t=1}^{T} \pi_{\theta}(a_t|s_t)}{\prod_{t=1}^{T} \bar{\pi}_{\theta}(a_t|s_t)} r(\tau) \right] \end{split}$$

Importance Sampling

• Techniques to reduce variance (causality, baseline, N-step estimators) can still be applied here.

$$\nabla_{\theta'} J(\theta') = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\frac{\nabla_{\theta'} \pi_{\theta'}(\tau)}{\pi_{\theta}(\tau)} r(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\frac{\pi_{\theta'}(\tau)}{\pi_{\theta}(\tau)} \nabla_{\theta'} \log \pi_{\theta'}(\tau) r(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\prod_{t=1}^{T} \frac{\pi_{\theta'}(a_{t}|s_{t})}{\pi_{\theta}(a_{t}|s_{t})} \right) \left(\sum_{t=1}^{T} \nabla_{\theta'} \left(\log \pi_{\theta'}(a_{t}|s_{t}) \right) \right) \left(\sum_{t=1}^{T} \gamma^{t} r(s_{t}, a_{t}) \right) \right]$$

Trust Region Policy Optimization

Why TRPO?

- Importance of step size.
 - Too small -> Updates are too slow
 - Too large -> Policy may suddenly become bad
- What is wrong with a policy becoming bad? We know for SGD, loss fluctuates anyway.
 - o For supervised learning, quickly returns back to good
 - For reinforcement learning, data is collected from policy. Bad Policy = Bad Data. May never recover.

What do we want to guarantee?

Monotonic Improvement of Policy!

Exercise 7

• Why can't we perform the following optimization?

$$\max_{\pi'} J(\pi') = \max_{\pi'} J(\pi') - J(\pi)$$

$$= \max_{\pi'} \mathbb{E}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]$$

Answer to Exercise 7

- We want to find π '. But, to do that, we need to do rollouts using π '. Unable to do so.
- Importance Sampling to the rescue!

Relative Policy Performance Identity

$$J(\pi') - J(\pi) = \mathbb{E}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^{\pi'} \\ a \sim \pi'}} [A^{\pi}(s, a)]$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^{\pi'} \\ a \sim \pi}} [\frac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s, a)]$$

$$\approx \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^{\pi} \\ a \sim \pi}} [\frac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s, a)]$$

$$= \frac{1}{1 - \gamma} L_{\pi}(\pi')$$

Key Idea in TRPO

- When is the approximation true?
 - If $\pi'=\pi$, then holds with equality. But we want to improve the policy.
- Construct lower bound of $J(\pi')$ - $J(\pi)$ that is tight at π . When optimizing over lower bound, we are guaranteed improvement!
- Intuitively, the lower bound should depend on how different π and π ' are.

Skipping the Proof...

Lower Bound

$$\frac{1}{1 - \gamma} L_{\pi}(\pi') - \frac{4\epsilon\gamma}{(1 - \gamma)^2} \alpha^2 \le V^{\pi'} - V^{\pi}$$

• Optimizing Lower Bound

$$\max_{\pi'} L_{\pi}(\pi') - \frac{4\epsilon\gamma}{(1-\gamma)}\alpha^2$$

• Problem: Optimizing Lower Bound results in too small a change in policy (slow convergence).

Y **convergence**).

See lecture notes or TRPO paper or CPO paper for detailed proof

 $L_{\pi}(\pi') = \mathbb{E}_{\substack{s \sim d^{\pi} \\ a \sim \pi(\cdot|s)}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s, a) \right]$ $\epsilon = \max_{s, a} |A^{\pi}(s, a)|$ $\alpha = \max_{s} D_{TV}(\pi || \pi')$

Convert to Constraint Optimization

• Constraint Optimization with hyperparameter δ

$$\max_{\pi'} L_{\pi}(\pi')$$
 s.t. $\alpha^2 \leq \delta$

• However, α requires taking max over all states. Hard to estimate this. As a heuristic, use expectation so can estimate with samples.

$$\max_{\pi'} L_{\pi}(\pi')$$

s.t.
$$\bar{D}_{KL}(\pi, \pi') \leq \delta$$
 where $\bar{D}_{KL}(\pi, \pi') = \mathbb{E}_{s \sim d^{\pi}}[D_{KL}(\pi || \pi')[s]]$

How to solve this optimization problem?

- Natural Policy Gradients
- http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture 13 advanced pg.pdf