CISC/CMPE452/COGS400/CISC874 Unsupervised Learning I

Ch. 5 - Textbook

Farhana Zulkernine

Unsupervised Learning

- Small kids are able to recognize patterns => a significant amount of learning is accomplished by biological processes as "unsupervised" without a teacher.
- "Unsupervised" learning proceeds to discover special features and pattern from available data without using external help.

Unsupervised Learning Applications

- Tasks for which this is used are:
 - Clustering
 - Vector quantization
 - Approximation of data distribution
 - Feature extraction and
 - Dimensionality reduction
- Most unsupervised techniques bear resemblance to existing statistical methods.

Clustering

- Given a number of data points, determine a set of representative centroids, (or also called prototypes, cluster centers, or reference vectors)
- Find distances of a given pattern from the centroids.
- Typically it belongs to the cluster whose centroid is the closest.

centroids indicated in red

Example: Clustering

Reasonable number of clusters

Small Number of Clusters

Too Many Clusters

Fig. Three different ways of clustering the same set of sample points.

• Clusters are *evaluated* by measuring the average squared distance between each input pattern and the centroid of the cluster in which it is placed.

$$E_{cluster} = \frac{1}{number\ of\ patterns} \sum_{patterns} ||\ (pattern-centroid)||2$$

$$\mathbf{E}_{\text{total}} = \sum_{clusters} \mathbf{E}_{cluster}$$

• In NN used for clustering, weights from the input layer to each output node constitute a *weight vector w* of that node, which represents the **centroid** of one cluster of input patterns.

Vector Quantization

- This is a task that applies unsupervised learning to divide an input space into several connected regions called *Voronoi Regions*, representing a quantization of the space.
- Each region is represented using a single vector called a *Codebook Vector (CV)* which are also called *Voronoi centres*.

Figure: **Voronoi Diagram** with 8
voronoi regions and codebook vectors of $\{cv_1,...,cv_8\}$

Vector Quantization

- Every point in the input space belongs to a region and is mapped to the corresponding CV.
 - Many input data vectors may be mapped to the same
 CV.
 - Two training approaches
 - Region may be given for each data point in a supervised learning and the CV has to be determined.
 - □ In unsupervised learning, a normal clustering approach can be applied.
- Therefore, the set of CVs is a compressed form of information represented by all input data.

Approximation of Data Distribution

- The data distribution in b is a concise description of the larger amount of data in a drawn from a probability distribution.
 - Data distribution in b is considered to be an approximation of that in a.
 - Points in b may not be a subset of points in $a \leftarrow$ can be done using unsupervised learning.
 - Clustering, if used, will extract only one point for each cluster.

Feature Extraction and Dimensionality Reduction

- Patterns in different clusters should ideally be distinguished by some *feature*. Ex. All red balls in one cluster and green in the other 'color' is the identifying feature.
- The goal of **feature extraction** is to find the most important features, i.e., those with the highest variation in a given population.
- Important side-effect is reduction of input dimensionality and thereby, improve in processing time and cost.

Winner-Take-All Networks

- Most unsupervised neural networks rely on **competitive learning** algorithms to compute and compare distances, determine the "winner" node with the highest level of activation, and use that to adapt weights.
- Patterns in the same cluster are as alike as possible.

Hamming Networks

Figure: A network to calculate Hamming distance (H) between stored vectors and input vectors

- Weights on links from an input layer to an output layer represent components of stored input patterns.
- Hamming networks
 compute the "hamming
 distance", the number of
 differing bits, of input and
 stored vectors.
- So, with P output nodes a NN can store P vectors each associated with a weight vector.

Hamming Networks (cont...)

- Let $i_{p,j} \in \{+1, -1\}$ be the j th element of the p th stored vector.
- Components of the weight matrix W and threshold θ vector are given by $w_{p,j} = i_{p,j}/2$, j=1,...,n and p=1,...,P and $\theta = -(n/2)$, respectively.
 - Uses constant bias.
- Input layer has *n* nodes (dimension of input vector) and output layer has *P* nodes (total number of stored vectors)
- pth output node generates the negative of Hamming distance between pth stored pattern and the input pattern.

Hamming Networks (cont...)

- When a new vector i is presented to this network, its upper level nodes generate the output as given below where $i_p.i$ represents the dot product $\sum_k i_{p,k} i_k$
- One shot training → Assign weights

$$W = \frac{1}{2} \begin{pmatrix} i_1^T \\ \vdots \\ i_P^T \end{pmatrix} \qquad \Theta = \begin{pmatrix} -\frac{n}{2} \\ \vdots \\ -\frac{n}{2} \end{pmatrix} \qquad o = Wi + \Theta = \frac{1}{2} \begin{pmatrix} i_1.i - n \\ \vdots \\ i_P.i - n \end{pmatrix}$$

Example 5.1

- Given i1=(1, -1, -1, 1, 1), i2 = (-1, 1, -1, 1, -1), i3 = (1, -1, 1, -1, 1) and test data x=(1, 1, 1, -1, -1), design a Hamming network.
- Weight matrix represents the 3 stored vectors i1, i2 and i3.

$$W = \frac{1}{2} \begin{pmatrix} i_1^T \\ i_2^T \\ i_3^T \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 \end{pmatrix} \qquad \Theta = \frac{1}{2} \begin{pmatrix} -5 \\ -5 \\ -5 \end{pmatrix}$$

Example 5.1

• Given test data x=(1, 1, 1, -1, -1), output can be calculated as: (See book for details)

$$Wx = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix}$$

$$o = Wx + \Theta = \frac{1}{2} \begin{bmatrix} -3-5 \\ -1-5 \\ 1-5 \end{bmatrix} = \begin{pmatrix} -4 \\ -3 \\ -2 \end{pmatrix}$$

$$x \text{ and } i_1 \text{ differs by 4}$$

$$bits, i_2 \text{ by 3 bits, } i_3 \text{ by}$$

$$2 \text{ bits}$$

Hamming Networks (cont...)

- Interestingly if all bits match (wi = n/2) then output Hamming distance = 0, otherwise < 0.
- So we can determine which stored pattern is nearest to a new input pattern by taking the maximum of the outputs.
- This can be accomplished by attaching a *Maxnet* on top of the second layer of the Hamming network.

Maxnet

- A Maxnet is a recurrent competitive one-layer network used to determine which node has the highest initial activation.
- θ = 1 and ε ≤ -1/(# of nodes)
 ensures that the node that has
 the initial highest value prevail
 as "winner", while the others
 subside to zero.
- The node function is $f(net) = \max(0, net)$ where $net = \sum_{i=1}^{n} w_i x_i$

Similar to inhibitory lateral connections in the IAM model.

Maxnet (cont...)

- All nodes update their outputs simultaneously. Each node receives *inhibitory* inputs from all other nodes, via "lateral" (intra-layer) connections.
- The maxnet allows for greater parallelism in execution, since every computation is local to each node rather than centralized.

Example 5.2

• Let initial activation values = (0.5,0.9,1)0.9,0.9) and $\epsilon = -1/5$ and $\theta = +1$. Computing outputs o_j after 1st iteration

```
o_1 = \max(0, 0.5 - 1/5(0.9 + 1 + 0.9 + 0.9)) = \max(0, -0.24) = 0

o_2 = \max(0, 0.9 - 1/5(0.5 + 1 + 0.9 + 0.9)) = \max(0, 0.24) = 0.24

o_3 = \max(0, 1 - 1/5(0.5 + 0.9 + 0.9 + 0.9)) = \max(0, 0.36) = 0.36
```

In subsequent iterations,

```
(0, 0.24, 0.36, 0.24, 0.24) \rightarrow (0, 0.072, 0.216, 0.072, 0.072) \rightarrow (0, 0, 0.1728, 0, 0)
```

• 3rd node becomes the winner although others had values very close to this node.

Simple Competitive Learning

- The Hamming net and Maxnet assist more complex unsupervised learning networks, helping to determine the *node whose weight vector* is nearest to an input pattern.
- The figure shows a generalized version where inputs are n-dimensional real value vectors, $\mathbb{R}^n \to [0,1]$.
- Also known as Kohonen Learning.

Figure: A simple competitive learning network

Design Objectives

- The objective is to attach each output node to a stored pattern as represented by its weight vector.
- Any **distance measure** at the output layer estimate how similar an input vector is to a weight vector.
 - Winner node at Kohonen layer is closest to the input vector.
- Iterative training \rightarrow Weight update rule: Adjust the weights of the winner output node such that \mathbf{w}_i for Kohonen node i is as near as possible to all input samples for which the node is winner of the competition.

Clustering using Euclidean Distance

Example of competitive learning with three hidden nodes

• Continues for the epoch and for multiple iterations

Clustering (cont...)

- At the end the outputs of the network are at the center of the input data.
- Depending on their initial random values and the order of presentation of input data, the centroids of the clusters may be different.

Kohonen Learning (cont...)

- Simple competitive learning can be accomplished using a Maxnet.
- The *j*th output node is described by its weight vector from the input nodes,

$$w_j = (w_{j,1}, ..., w_{j,n})$$
 $l=\{1,...,n\}$ input dimension

• A competition occurs to find the "winner" in the outer layer node j* whose weight vector (or "prototype" or "node position"), is nearest to the input vector i_1 $d(w_{j*},i_1) \le d(w_{j},i_1)$ where $j=\{1,...,m\}$ # of output nodes $k=\{1,...,P\}$ # of data points, d is **Euclidean distance** =

$$d(w_{j}, i_{k}) = \sqrt{\sum_{l=1}^{n} (i_{l,k} - w_{j,l})^{2}}$$

How Kohonen Learning Works

- $d(w_j, i_l) = \sqrt{\sum_{l=1}^n (i_{l,k} w_{j,l})^2}$ When expanded with $||i_l|| = ||w_j|| = 1$ (unit vectors $||\mathbf{p}|| = \sqrt{p_1^2 + p_2^2 + \dots + p_n^2} = \sqrt{\mathbf{p} \cdot \mathbf{p}}$) $d^2(w, i) = \mathbf{i_k \cdot i_k} + \mathbf{w_j \cdot w_j} 2\sum_{l=1}^n i_{lk} w_{jl} = 2 2\sum_{l=1}^n i_{lk} w_{jl} = 2 2\mathbf{i} \cdot \mathbf{w}$
- So, the distance will be minimum when i.w (dot product) is maximum ($||i|| ||w|| \cos \theta$ is maximum at $\theta = 0$). To generate output i.w, use linear output neuron.
- Hamming network helps detect the distance as *i.w* in the first phase.
- Highest *i.w* indicates closest centroid. In the *winner-takes-all* phase, the *maxnet* recurrent network in the output layer finds the maximum distance *i.w* as the winning node.

Kohonen Learning (cont...)

• Weights w_j^* of the winning node j^* are adjusted keeping other weights unchanged so that w_j^* moves closer to the input i_l .

$$\Delta w_{j^*} = \eta \ (i_l - w_{j^*})$$

• It can be shown that in the limiting case, i.e., if and when **there is no significant change in the weight vector** when an input pattern is presented, $\Delta w_j < \varepsilon$, a predefined minimum threshold, w_i converges to

$$w_j = \frac{1}{\sum_{\ell} \delta_{j,\ell}} \sum_{\ell} i_{\ell} \ \delta_{j,\ell},$$

$$\delta_{j,\ell} = \left\{ \begin{array}{l} 1 \quad \text{if the jth node is "winner" for input i_{ℓ},} \\ 0 \quad \text{otherwise,} \end{array} \right.$$

averaging input vectors for which w_i is the winner.

• The learning rate may vary such that $\eta(t+1) \le \eta(t)$, resulting in faster convergence (gradually reduce the rate).

Kohonen Learning (cont...)

Figure 5.4 Simple competitive learning algorithm

Initialize weights randomly;

repeat

- (Optional:) Adjust learning rate $\eta(t)$;
- Select an input pattern i_k;
- Find node j* whose weight vector w_{j*} is closest to i_k;
- Update each weight $w_{j*,1},\ldots,w_{j*,n}$ using the rule:

$$\Delta w_{j^*,l} = \eta(\mathsf{t})(i_{k,l} - w_{j^*,l}) \qquad \qquad \mathsf{for} \ \ell \in \{1,\ldots,n\}$$

until network converges or computational bounds are exceeded

Example 5.3

Input vectors
$$T = \{i_1 = (1.1, 1.7, 1.8), i_2 = (0, 0, 0), i_3 = (0, 0.5, 1.5), i_4 = (1, 0, 0), i_5 = (0.5, 0.5, 0.5), i_6 = (1, 1, 1)\}$$

The network contains three input nodes; assume that there are also three output nodes, A, B, C with initial weights randomly chosen:

$$W(0) = \begin{pmatrix} w_1 : & 0.2 & 0.7 & 0.3 \\ w_2 : & 0.1 & 0.1 & 0.9 \\ w_3 : & 1 & 1 & 1 \end{pmatrix}.$$

Assuming $\eta = 0.5$.

Example 5.3 (cont...)

The first sample presented is $i_1 = (1.1, 1.7, 1.8)$. Squared Euclidean distance between A and i_1 :

$$\begin{array}{l} d_{1,1}^2=(1.1-0.2)^2+(1.7-0.7)^2+(1.8-0.3)^2=4.1. \ \mbox{Similarly,}\\ d_{2,1}^2=4.4 \ \mbox{and}\ d_{3,1}^2=1.1. \end{array}$$

C is the "winner" since $d_{3,1}^2 < d_{1,1}^2$ and $d_{3,1}^2 < d_{2,1}^2$. A and B are therefore not perturbed by this sample whereas C moves halfway towards the sample (since $\eta = 0.5$).

The resulting weight matrix is:

$$W(1) = \begin{pmatrix} w_1 : & 0.2 & 0.7 & 0.3 \\ w_2 : & 0.1 & 0.1 & 0.9 \\ w_3 : & 1.05 & 1.35 & 1.4 \end{pmatrix}$$

E.g. $w31 = w31 + \Delta w31 = 1 + 0.5 * (1.1 - 1.0) = 1.05$

Example 5.3 (cont...)

Assuming input vectors are presented repeatedly in the sequence, the weight matrix after 12 steps is :

$$W(12) = \begin{pmatrix} w_1 : & 0.55 & 0.3 & 0.3 \\ w_2 : & 0 & 0.4 & 1.35 \\ w_3 : & 1 & 1.2 & 1.25 \end{pmatrix}.$$

- Each node tends to be the winner for the same input vectors, in later iterations, and moves towards their centroid.
- Convergence is not smooth when η is high.
- Different results are observed when other distance measures are used. E.g. use Manhattan distance $d(x, y) = \sum |x_l y_l|$, and you will have different centroids.
- Using three nodes does not guarantee that three "clusters" will be obtained by the network. Close initial values may result in splitting of a cluster into two.
- Results depend on the initial weight vectors and the sequence in which samples are presented especially when η is high.

k-means Clustering

- A statistical procedure closely related to simple competitive learning, which computes cluster centroids directly instead of making small updates to node positions.
- The k-means algorithm is fast and converges to a state in which each prototype changes little, assuming that successive vectors presented to the algorithm are drawn by independent random trials from the input data distribution.
- Both k-means and simple competitive learning can lead to local minima of E.

Algorithm k-means Clustering

Figure 5.5 k-means clustering algorithm

Initialize k prototypes

$$w_j = i_\ell, j \in \{1, \dots, k\}, \ \ell \in \{1, \dots, P\}$$

Each cluster C_j is associated with prototype w_j . repeat

for each input vector i_ℓ do

Place i_{ℓ} in the cluster with nearest prototype w_{j*} end for

for each cluster C_j do

$$w_j = \frac{1}{|c_j|} \sum_{i_l \in c_j} i_l \quad \text{where} |c_j| \text{ is the cluster size}$$

end for

Compute
$$E = \sum_{j=1}^{k} \sum_{i_l \in c_j} |i_l - w_j|^2$$

until E no longer decreases, or cluster memberships stabilize

k-means Clustering

- k= 3. Initially 3 centroids are initialized by 3 training samples
- Takes only two iterations to stabilize

Kohonen as k-means

The simple competitive learning algorithm conducts stochastic gradient descent on the *quantization error*

$$E = \sum_{p} |i_p - \mathbb{W}(i_p)|^2$$

where $\mathbb{W}(i_p)$ is the weight vector nearest to i_p

The number of nodes is assumed to be fixed, but the right choice may not be obvious. We may attempt to minimize E+c(number of nodes) instead of E, for c>0.

The above adjustment is called **Regularization** (one approach).

Learning Vector Quantizers (LVQ)

- Sometimes clustering is used as a useful preprocessing step for solving classification problem.
- A LVQ is an application of the above, uses winner-take-all network and illustrates how unsupervised learning can be adapted to solve supervised learning.
- Class membership is known for each training pattern.
- Learns the codebook vectors.

Learning Vector Quantizers

- Each output node is associated with an arbitrary class label in the beginning.
 - Each node should be finally associated with approximately the number of training data belonging to that class.
- Initial weights are chosen randomly.
- The learning rate decreases with time helps the network converge to a state in which weight vectors are stable.
 - e.g., $\eta(t) = 1/t$ or $\eta(t) = a[1 (t/A)]$ where a > 0 and A > 1 i.e., variable rate \rightarrow decrease more with time.

LVQ (cont...)

- When pattern i from class C(i) is presented to the network, let the winner node $j^* \in C(j^*)$.
- If this is the correct class i.e., $C(i)=C(j^*)$, j^* moves closer to i

$$\Delta w_{j*,l} = \eta(t)(i_{k,l} - w_{j*l})$$

• Otherwise j^* moves away from i.

$$\Delta w_{j*,l} = - \eta(t)(i_{k,l} - w_{j*,l})$$

LVQ1 Algorithm

Figure 5.6 LVQ1 algorithm

```
Initialize all weights \in [0,1]
repeat
  Adjust \eta(t);
  for each i_k do
     find node j* whose weight vector w_{j*} is closest to i_k;
  end for
  for \ell = 1, \ldots, n do
     if the class label of node j* equals the desired class of i_k
     then
       \Delta w_{j^*,l} = \eta(t)(i_{k,l} - w_{j^*,l})
     else
        \Delta w_{i^*,l} = -\eta(t)(i_{k,l} - w_{i^*,l})
     end if
  end for
until network converges or computational bounds are exceeded
```

Example 5.5

 $\{i_1 = (1.1, 1.7, 1.8), i_2 = (0, 0, 0), i_3 = (0, 0.5, 1.5), i_4 = (1, 0, 0), i_5 = (0.5, 0.5, 0.5), \text{ and } i_6 = (1, 1, 1)\}.$ Assume only the first and last samples come from Class 1, and

$$W(0) = \begin{pmatrix} w_1 : & 0.2 & 0.7 & 0.3 \\ w_2 : & 0.1 & 0.1 & 0.9 \\ w_3 : & 1 & 1 & 1 \end{pmatrix}.$$

 w_1 is associated with Class 1, and the other two nodes with Class 2.

Simply because there are twice as many training data associated with class 2 than class 1.

Example 5.5 (cont...)

Let $\eta(t)=0.5$ until t=6, then $\eta(t)=0.25$ until t=12 and $\eta(t)=0.1$ thereafter.

- ② Sample i_1 , winner w_3 (distance 1.07), w_3 changed to (0.95, 0.65, 0.60). → But w_3 is class 2 and i_1 is class 1. So - Δw applied.
- **2** ::::

Associations between input samples and weight vectors stabilize by the second cycle of pattern presentations. Weight vectors continue to change, converging to centroids of associated input vectors in 150 iterations.