سيستم نمايش اعداد

:(base) •

• نیازها:

🔾 محاسبات در هر سیستم

۲ تبدیل از یک سیستم به سیستم دیگر

سیستم نمایش اعداد (دسیمال)

→ اعداد دسیمال:

دو بخش صحیح و اعشاری

 $A_{n-1} A_{n-2} \dots A_1 A_0 \cdot A_{-1} A_{-2} \dots A_{-m+1} A_{-m}$

که A_i عددی بین 0 تا 9 و با وزن 10^i است.

سیستم نمایش اعداد (دسیمال)

The value of

$$\sum_{i=n-1..0} (A_i * 10^i) + \sum_{i=-m..-1} (A_i * 10^i)$$

مثال:

$$(126.53)_{10}$$

= $1*10^2 + 2*10^1 + 6*10^0 + 5*10^{-1} + 3*10^{-2}$

سیستم نمایش اعداد (حالت کلی)

"base" /

```
• N = A_{n-1} * r^{n-1} + A_{n-2} * r^{n-2} + ... + A_1 * r + A_0 + A_{-1} * r^{-1} + A_{-2} * r^{-2} + ... + A_{-m} * r^{-m}
```

Most Significant Digit (MSD) Least /
Significant
Digit (LSD)

سیستم نمایش اعداد (حالت کلی)

• مثال: 6 = 1

$$(312.4)_6 = 3*6^2 + 1*6^1 + 2*6^0 + 4*6^{-1}$$

= $(116.66)_{10}$

◄ تبدیل از مبنای r به مبنای 10 با رابطهٔ بالا انجام
 می شود.

اعداد باینری (مبنای 2)

• مثال:

$$(101101.10)_2 = 1*2^5 + 0*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 0*2^{-2}$$
(in decimal) = 32 + 0 + 8 + 4 + 0 + 1 + \frac{1}{2} + 0
= (45.5)_{10}

اعداد باینری (مبنای 2)

• مثال:

$$(1001.011)_2 = 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3}$$
(in decimal) = 8 + 1 + 0.25 + 0.125
$$= (9.375)_{10}$$

اعداد باینری

```
32 16 8 4 2 1 .5 .25 .125 .0625 (1\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ )_{B} = (53.6875)_{D}
```

توان های 2

n	2 ⁿ	n	2 ⁿ	n 2 ⁿ
0	1	8	256	16 65,536
1 2	2 4	9 10	512 1,024	17 131,072 18 262,144
3	8	11	2,048	19 524,288
4 5	16 32	12 13	4,096 8,192	20 1,048,576 21 2,097,152
6	64	14	16,384	22 4,194,304
7	128	15	32,768	23 8,388,608

Memorize at least through 2^{12}

اعداد اکتال (مبنای 8)

• مبنای 8: ۲ ارقام 0 تا 7

• مثال:

$$(762)_8 = 7*8^2 + 6*8^1 + 2*8^0$$

(in decimal) = 448 + 48 + 2
= (498)₁₀

اعداد هگزادسیمال (مبنای 16)

• مبنای 16:

• مثال:

```
(3FB)_{16} = 3*16^2 + 15*16^1 + 11*16^0
(in decimal) = 768 + 240 + 11
= (1019)<sub>10</sub>
```

تبديل مبناها

$$\rightarrow$$
 اکتال \rightarrow باینری و برعکس

تبدیل دسیمال به هر مبنای ۲

$$34,761_{10} = (?)_{16}$$
 : بخش صحیح:

• تقسیم متوالی بر r تا زمانی که خارج قسمت برابر با صفر شود

• تقسیم متوالی بر r تا زمانی که خارج قسمت برابر با صفر شود

• خواندن باقیمانده ها به بالا.

• خواندن باقیمانده ها به بالا.

• $16 \ 2,172 \ \text{rem}$ 9

• $16 \ 135 \ \text{rem}$ $12 = C$

• Read up

• Read up

$$34,761_{10} = 87C9_{16}$$

0 rem 8

تبدیل دسیمال به هر مبنای ۲

- بخش اعشاری:
- ضرب متوالی در r تا زمانی که بخش اعشاری صفر شود

$$0.78125_{10} = (?)_{16}$$
 حواندن بخشهای صحیح رو به پایین \bullet

$$0.78125_{10} = 0.C8_{16}$$

تبدیل دسیمال به هر مبنای ۲

 $0.1_{10} = 0.00011_{2}$

•مثالی دیگر

$$0.1_{10} = (?)_2$$

Read down

اعداد در مبناهاي مختلف

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	C
13	1101	15	Ď
14	1110	16	E
15	1111	17	F

Memorize at least Binary and Hex

باینری به اکتال باینری به هگزادسیمال

• باینری به اکتال

$$8 = 2^3 <$$

→ هر ٣ بيت باينرى به يك رقم اكتال تبديل مى شود.

• باینری به هگزادسیمال

$$16 = 2^4 <$$

 \rightarrow هر ۴ بیت باینری به یک رقم هگزادسیمال تبدیل می شود.

Binary ↔ Octal

 $(11010101000.1111010111)_2$

Binary ↔ **Hex**

Octal ↔ Hex

• ازطریق باینری انجام دهید:

 $Hex \rightarrow Binary \rightarrow Octal$ $Octal \rightarrow Binary \rightarrow Hex$

تبدیل ها (مثال)

• جدول را پر کنید:

Decimal	Binary	Octal	Hex
329.3935	?	?	?
?	10101101.011	?	?
?	?	336.5	?
?	?	?	F9C7.A

اعمال ریاضی باینری: جمع

• قوانین: مانند جمع دسیمال
• مانند جمع دسیمال
• با این تفاوت که
$$011011 + 11 + 1100110$$
 تولید نقلی $01001111 + 1100110$ تولید نقلی $0+0=0$ (sum 0 with carry 0) $<$

0+1-1+0-1(c0)

0 + 1 = 1 + 0 = 1(00) <							
1+1 = 0(c1) <							
1+1+1 = 1(c1) ≺	0	1	1	1	1	1	نقلی
							·

مضاف اليه

اعمال رياضي باينري: تفريق

• قوانين:

$$0-0 = 1-1 = 0$$
 (b0) (result 0 with borrow 0)

$$1-0 = 1 (b0) <$$

$$0-1 = 1 (b1) <$$

1				0	10	1	1 Ø	10	10	
X	229		1	1	1	Ø	Ø	1	0	1
Y	_ 46	_	0	0	1	0	1	1	1	0
X-Y	183		1	0	1	1	0	1	1	1

رقم قرضي	1	1	0	0	
مفروق	1	1	0	1	1
مفروق اليه	0	1	1	0	1
نتيجه	0	1	1	1	0

- نمایش اعداد مثبت:
- ✓ در بیشتر سیستم ها یکسان است.
 - نمایش اعداد منفی:
- (Sign magnitude) اندازه -علامت
 - (1's complement) مکمل ۹
 - (2's complement) ۲ مکمل ۲
 - در بیشتر سیستم ها: مکمل ۲
 - فرض در اسلایدهای بعدی:
 - ✓ ماشین با کلمه های ۴ بیتی:
 - ← ۱۶ مقدار مختلف قابل نمایش.
 - تقریباً نیمی مثبت، نیمی منفی.

High order bit is sign: 0 = positive (or zero), 1 = negative

Three low order bits show the magnitude: 0 (000) thru 7 (111)

Number range for n bits = $-(2^{n-1} - 1)$ to $(2^{n-1} - 1)$

Two representations for 0

مكمل ١:

If N is a positive number, then its 1's complement, \overline{N} , is defined as:

$$\overline{N} = (2^n - 1) - N$$

Example: 1's complement of 7

$$2^4 = 10000$$

$$1000 = -7 \text{ in 1's comp.}$$

Shortcut method:

Simply perform bit-wise complement

0111 -> 1000

Subtraction implemented by addition & 1's complement

Still two representations of 0! This causes some problems

Some complexities in addition

If N is a positive number, then its 2's complement, N*, is defined as:

$$N^* = 2^n - N$$

Example: 2's complement of 7

sub 7 =
$$0111$$

$$1001 = repr. of -7$$

$$2^4 = 10000$$

sub -7 =
$$1001$$

$$0111 = repr. of 7$$

Shortcut method:

2's complement = bit-wise complement + 1

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)

1100=-4

Only one representation for 0

One more negative number than positive number (-8)

Number range for n bits = $-(2^{n-1})$ to $(2^{n-1} - 1)$

Simpler addition scheme makes 2's complement the most common choice for integer number systems within digital systems

Overflow Conditions:

1. Adding two positive numbers to get a negative number:

2. Adding two negative numbers to get a positive number:

Overflow Conditions:

Overflow

Overflow

7 0111

No overflow

No overflow

Method 1: Overflow when the carry into sign ≠ carry out

Method 2: Overflow when sign(A) = sign(B) ≠ sign(result)

ضرب باینری

Shift-and-add algorithm, as in decimal

M'cand	0	0	0	1	1	0	1
M'plier	0	0	0	0	1	1	0
(1)			0	0	0	0	0
(2)		0	1	1	0	1	
(3)	0	1	1	0	1		
Sum	1	0	0	1	1	1	0

Check: 13 * 6 = 78

Binary-Coded Decimal (BCD)

- A <u>decimal</u> code:
 Decimal numbers (0..9)
 are coded using 4-bit
 distinct binary words
- ✓ Observe that the codes 1010 .. 1111 (decimal 10..15) are NOT represented (invalid BCD codes)

■ TABLE 1-3 Binary-Coded Decimal (BCD)

Decimal	BCD		
Symbol	Digi		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		

Table 1-3 Binary-Coded Decimal (BCD)

Binary-Coded Decimal

• To code a number with n decimal digits, we need 4n bits in BCD e.g. $(365)_{10} = (0011\ 0110\ 0101)_{BCD}$

- This is different from converting to binary, which is $(365)_{10} = (101101101)_2$
- Clearly, BCD requires more bits. BUT, it is easier to understand/interpret

BCD Addition

$$\begin{array}{c}
0001 & 1 \\
0101 & 5 \\
\hline
(0) 0110 & (0) 6
\end{array}$$

$$\begin{array}{c}
0110 & 6 \\
0101 & 5 \\
\hline
(0) 1011 & (1) 1
\end{array}$$

WRONG!

Case 3:

$$\begin{array}{c|c}
1000 & 8 \\
1001 & 9 \\
\hline
(1) 0001 & (1) 7
\end{array}$$

Note that for cases 2 and 3, adding number 6 (0110) gives us the correct result.

How can we identify the wrong cases?

BCD Addition (cont.)

- BCD addition is therefore performed as follows:
 - 1) Add the two BCD digits together using normal binary addition
 - 2) Check if correction is needed
 - a) 4-bit sum is in range of 1010 to 1111 OR
 - b) carry out of MSB = 1
 - 3) If correction is required, add 0110 to 4-bit sum to get the correct result
 - → BCD carry out = 1

BCD Addition (cont.)

Example: Add 448 and 489 in BCD.

```
1000 (448 in BCD)
0100 0100 /
0100/1000/ 1001 (489 in BCD)
                     (greater than 9, add 6)
             10111 (carry 1 into middle digit)
                      (greater than 9, add 6)
                  (carry 1 into leftmost digit)
1001 0011 0111 (BCD coding of 937<sub>10</sub>)
```

Gray Codes

- Gray codes are minimum change codes
 - ≺From one numeric representation to the next, only one bit changes
 - - -Later.

Gray Codes (cont.)

Binary	Gray
00 01 10 11	\[\begin{pmatrix} 00 \\ 01 \\ 11 \\ 10 \end{pmatrix} \]

Binary	Gray
000	000
001	001
010	011
011	010
100	110
101	111
110	101

Binary	Gray
0000	0000 <
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000 🗸