Sistemas de Computação

Mestrado Integrado em Engenharia de Comunicações

2012/2013

Hierarquia de memória (I)

- Princípios de programação estruturada conduzem ao conceito de localidade –
 programas acedem a um espaço de endereçamento limitado, em cada instante de
 tempo.
- **Localidade temporal** (resulta de ciclos): um item referenciado tem grande probabilidade de o ser novamente, num curto espaço de tempo;
- Localidade espacial (resulta da natureza sequencial dos programas): quanto um item é referenciado, há uma elevada probabilidade de os seus vizinhos o serem de seguida
- Programas e dados estão em memória.
 - Como conciliar grandes capacidades de memória com custos e um desempenho elevado?

Tecnologia	Tempo de acesso (ms)	Custo/Mbyte (Eur)
SRAM	2-5	1-5
DRAM	20-50	0.1-0.15
Discos magnéticos	7,000,000 – 15.000.000	0.0006-0.001

Hierarquia de memória (II)

- Como conciliar grandes capacidades de memória com custos e um desempenho elevado?
- Explorando o conceito de localidade e implementando uma hierarquia de memórias

Hierarquia de memória (III)

- Definições
 - Hit quando o processador acede a um item que se encontra no nível superior
 - Miss por oposição ao Hit
 - Hit Rate fracção de acessos à memória que se traduzem em Hits
 - **Miss Rate** (1.0 Hit Rate)
 - Hit Time tempo de acesso ao nível superior, incluindo o tempo de procura
 - Miss penalty tempo de actualização do nível superior, com um bloco do nível inferior
- Hit Time tem que ser muito menor que o Miss Penalty !!
- Estrutura dos programas tem um impacto muito grande na efectiva utilização desta hierarquia (compiladores)
- A gestão desta hierarquia é partilhada pelo hardware, pelo sistema operativo e, por vezes, pelas aplicações (memória virtual)

Hierarquia de memória (IV)

Cache

- Historicamente o nível entre o processador e a memória central. De uma forma mais genérica, designa qualquer meio de armazenamento implementado por forma a explorar a "localidade" dos programas.
- Como controlar o conteúdo da cache? Uma solução usa "mapeamento directo", particularmente simples de implementar

Hierarquia de memória (V)

 Exemplo (apenas com leitura), para uma cache de 8 palavras e uma memória de 32 palavras. Sequência de acessos às posições de memória:

22, 26, 22, 16, 18 e 26

Tabela de acessos

Endereço	Hit/Miss	Posição na cache
22 – 10110	Miss	10100 mod 8 = 110
26 – 11010	Miss	11010 mod 8 = 010
22 – 10110	Hit	10110 mod 8 = 110
16 – 10000	Miss	10000 mod 8 = 000
18 – 10010	Miss	10010 mod 8 = 010
26 – 11010	Miss	11010 Mod 8 = 010

Cache

Ca	Cache					
End	lereço	V	Tag	Dado		
000)					
001	-					
010)					
011						
100)					
101						
110)					
111						

Hierarquia de memória (VI)

Operações de escrita

- Evitar a inconsistência entre a cache e a memória central
- Esquema mais simples é garantir que as operações de escrita na memória afectam tanto a cache como a memória central – write-trough
- No entanto.... o desempenho pode ser muito prejudicado! Solução: usar um write-buffer.
- Outra solução é usar write-back

Memória Virtual (I)

Memória virtual:

- Método para aumentar, virtualmente, a quantidade de memória central
- A memória virtual implementa a tradução do espaço de endereçamento do programas para os endereços físicos. Desta forma existe protecção ao espaço de memória de cada programa!
- Vantagens:
 - Programas maiores do que a memória disponível
 - Maior eficiência na partilha do processador (multitasking)
- Mecanismos semelhantes aos utilizados para a cache: bloco é designado por página; o miss é designado de page fault.
- Virtual Address Space: espaço de endereçamento virtual disponível para cada aplicação (4Gbytes na plataforma wintel – 32 bits)
- Problemas de implementação: elevado custo dos page fault (centenas de milhares de ciclos de clock!).
 - O tamanho das páginas deve amortizar o tempo de acesso (4Kbytes, 16kBytes, 32KBytes, 64KBytes)
 - Reduzir a taxa de ocorrências de page faults

Memória Virtual (II)

• Memória virtual:

- Gestão das páginas:
 - Que páginas carregar e para onde?
 - Como libertar as páginas ocupadas na memória central?
- Operações de escrita
 - Write-trough: esta técnica implica um tempo de acesso proibitivo!
- Transformação de endereços virtuais em endereços reais: em tempo-real, dentro do próprio processador – TLB- Translation Look-ahead Buffer

Memória Virtual (III)

Mapeamento flexível facilita a gestão da memória (carregamento de programas e a gestão do espaço livre)

Memória Virtual (IV)

- Flexibilidade no mapeamento:
 - O sistema operativo pode substituir qualquer página na memória central
 - Mecanismo de transformação page table
 - Uma page table por cada programa
 - A dimensão da page table varia segundo as necessidades de cada programa. Normalmente, armazena também a posição no disco de cada página virtual associada ao programa.
 - Substituição de páginas: algoritmo LRU (Least Recently Used) segundo o princípio da localidade temporal, a página utilizada há mais tempo é a melhor candidata para substituição
 - Zona swap armazena as páginas temporariamente removidas, pelo sistema operativo, da memória central

Hierarquia de memória – Memória Virtual

Conclusões

- Hierarquia da memória procura minimizar o efeito da memória central ser constituída por circuitos DRAM (lentos e de capacidade "limitada"), explorando o principio da localidade (espacial e temporal). Mas...
- Velocidade das CPUs continua a aumentar a um ritmo mais elevado do que o da diminuição do tempo de acesso das memórias (ou discos):
 - Caches multinível (actualmente são implementados 2 níveis, sendo um deles interno ao circuito da CPU)
 - Desenvolver melhores estruturas de memória DRAM (ao semelhante)
 - Melhorar o desempenho dos compiladores, explorando melhor a hierarquia da memória
 - Reorganizar os programas de forma a evidenciarem melhor localidade
 - Utilizando prefetching o compilador pode antever que blocos de memória s\u00e3o necess\u00e1rios, e desencadear a sua transfer\u00eancia para n\u00eaveis mais baixos da hierarquia antes de serem referenciados.