

CSCI-GA.3033-012

Graphics Processing Units (GPUs): Architecture and Programming

Lecture 5: CUDA Threads

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Software <-> Hardware

- From a programmer's perspective:
 - Blocks
 - Kernel
 - Threads
 - Grid
- Hardware Implementation:
 - -SMs
 - -SPs (per SM)
 - Warps

Some Restrictions First

- All threads in a grid execute the same kernel function
- A grid is organized as a 2D array of blocks (gridDim.x and gridDim.y)
- Each block is organized as 3D array of threads (blockDim.x, blockDim.y, and blockDim.z)
- Once a kernel is launched, its dimensions cannot change.
- All blocks in a grid have the same dimension
- The total size of a block is limited to 512 threads
- Once assigned to an SM, the block must execute in its entirety by the SM

Courtesy: NDVIA

- Thread ID is unique within a block
- Using block ID and thread ID we can make unique ID for each thread per kernel

Revisiting Matrix Multiplication

```
// Matrix multiplication kernel - thread specification
  global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
  // 2D Thread ID
  int tx = threadIdx.x:
  int ty = threadIdx.y;
  // Pvalue stores the Pd element that is computed by the thread
  float Pvalue = 0:
  for (int k = 0: k < Width: ++k)
                                                            This is what we did
                                                                  before...
     float Mdelement = Md[ty * Width + k]:
     float Ndelement = Nd[k * Width + tx];
                                                             What is the main
     Pvalue += Mdelement * Ndelement:
                                                              shortcoming??
  // Write the matrix to device memory each thread writes one element
  Pd[ty * Width + tx] = Pvalue:
```

Revisiting Matrix Multiplication

```
// Matrix multiplication kernel - thread specification
  global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
  // 2D Thread ID
  int tx = threadIdx.x:
  int ty = threadIdx.y;
  // Pvalue stores the Pd element that is computed by the thread
  float Pvalue = 0:
  for (int k = 0: k < Width: ++k)
                                                            Can only handle 16
     float Mdelement = Md[ty * Width + k]:
                                                             elements in each
     float Ndelement = Nd[k * Width + tx];
                                                                dimension!
     Pvalue += Mdelement * Ndelement:
  // Write the matrix to device memory each thread writes one element
  Pd[ty * Width + tx] = Pvalue:
                                                       Reason:
                                                       We used 1 block,
```

and a block is limited to 512 threads

Revisiting Matrix Multiplication

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equals tile size

Revisiting Matrix Multiplication

```
// Setup the execution configuration
  dim3 dimGrid(Width/TILE WIDTH, Width/TILE WIDTH):
  dim3 dimBlock(TILE WIDTH, TILE WIDTH):
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
global void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
 // Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE WIDTH + threadIdx.y:
 // Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x:
float Pvalue = 0:
// each thread computes one element of the block sub-matrix
for (int k = 0: k < Width: ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]:
Pd[Row*Width+Col] = Pvalue:
```

Synchronization

_syncthreads()

- called by a kernel function
- The thread that makes the call will be held at the calling location until every thread in the block reaches the location
- Beware of if-then-else
- Threads in different blocks cannot synchronize -> CUDA runtime system can execute blocks in any order

The ability to execute the same application code on hardware with different number of execution resources is called **transparent scalability**

Thread Assignment

- Threads assigned to execution resources on a block-by-block basis.
- CUDA runtime automatically reduces number of blocks assigned to each SM until resource usage is under limit.
- Runtime system:
 - maintains a list of blocks that need to execute
 - assigns new blocks to SM as they compute previously assigned blocks
- Example of SM resources
 - computational units
 - number of threads that can be simultaneously tracked and scheduled.

GT200 can accommodate 8 blocks/SM and up to 1024 threads can be assigned to an SM.

What are our choices for number of blocks and number of threads/block?

Thread scheduling is an implementation concept.

FERMI

Warps

- Once a block is assigned to an SM, it is divided into units called warps.
 - Thread IDs within a warp are consecutive and increasing
 - Warp 0 starts with Thread ID 0
- Warp size is implementation specific.
- Warp is unit of thread scheduling in SMs

Warps

- Partitioning is always the same
- DO NOT rely on any ordering between warps
- Each warp is executed in a SIMD fashion (i.e. all threads within a warp must execute the same instruction at any given time).
 - Problem: branch divergence

Branch Divergence in Warps

 occurs when threads inside warps branches to different execution paths.

50% performance loss

Example of underutilization

32 warps, 32 threads per warp, round-robin scheduling

Dealing With Branch Divergence

- A common case: avoid divergence when branch condition is a function of thread ID
 - Example with divergence:
 - If (threadIdx.x > 2) { }
 - This creates two different control paths for threads in a block
 - Example without divergence:
 - If (threadIdx.x / WARP SIZE > 2) { }
 - Also creates two different control paths for threads in a block
 - Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path
- There is a big body of research for dealing with branch divergence

Dealing With Branch Divergence

Predication

- If p1 is TRUE, instruction executes normally
- If p1 is FALSE, instruction treated as NOP

Example of Predication

Latency Tolerance

- When an instruction executed by the threads in a warp must wait for the result of a previously initiated long-latency operation, the warp is not selected for execution -> latency hiding
- Priority mechanism used to schedule ready warps
- Scheduling does not introduce idle time -> zerooverhead thread scheduling
- Scheduling is used for tolerating long-latency operations, such as:
 - pipelined floating-point arithmetic
 - branch instructions

This ability of tolerating long-latency operation is the main reason why GPUs do not dedicate as much chip area to cache memory and branch prediction mechanisms as traditional CPUs.

Exercise: Suppose 4 clock cycles are needed to dispatch the same instruction for all threads in a Warp in G80. If there is one global memory access every 4 instructions, how many warps are needed to fully tolerate 200-cycle memory latency?

Exercise

- The GT200 has the following specs (maximum numbers):
- 512 threads/block
- 1024 threads/SM
- 8 blocks/SM
- 32 threads/warp

What is the best configuration for thread blocks to implement matrix multiplications 8x8, 16x16, or 32x32?

Myths About CUDA

- GPUs have very wide (1000s) SIMD machines
 - No, a CUDA Warp is only 32 threads
- Branching is not possible on GPUs
 - Incorrect.
- · GPUs are power-inefficient
 - Nope, performance per watt is quite good
- CUDA is only for C or C++ programmers
 - Not true, there are third party wrappers for Java,
 Python, and more

G80, GT200, and Fermi

GPU	G80	GT200	GF100
Transistors	681 million	1.4 billion	3.0 billion
CUDA Cores	128	240	512
Double Precision Floating Point	None	30 FMA ops / clock	256 FMA ops /clock
Single Precision Floating Point	128 MAD ops/clock	240 MAD ops / clock	512 FMA ops /clock
Special Function Units / SM	2	2	4
Warp schedulers (per SM)	1	1	2
Shared Memory (per SM)	16 KB	16 KB	Configurable 48 KB or 16 KB
L1 Cache (per SM)	None	None	Configurable 16 KB or 48 KB
L2 Cache	None	None	768 KB
ECC Memory Support	No	No	Yes
Concurrent Kernels	No	No	Up to 16
Load/Store Address Width	32-bit	32-bit	64-bit

Conclusion

- We must be aware of the restrictions imposed by hardware:
 - threads/SM
 - blocks/SM
 - threads/blocks
 - threads/warps
- The only safe way to synchronize threads in different blocks is to terminate the kernel and start a new kernel for the activities after the synchronization point