

AD-A066 109

AD

AD-E400-270-
269

MEMORANDUM REPORT ARLCD-MR-78006

PROJECTILE INTERIOR COATING
FOR COMPOSITION B IMPROVEMENT

G. ROBERT SACCO
ROCCO MOTTO

TECHNICAL
LIBRARY

NOVEMBER 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return it to the originator.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the United States Government.

ERRATA

MEMORANDUM REPORT ARLCD-MR-78006

**PROJECTILE INTERIOR COATING
FOR COMPOSITION B IMPROVEMENT**

**G. Robert Sacco
Rocco Motto**

November 1978

The AD-E number on this report was assigned incorrectly. The correct number should be changed to AD-E-400 269.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM								
1. REPORT NUMBER ARLCD-MR-78006	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER								
4. TITLE (and Subtitle) Projectile Interior Coating for Composition B Improvement		5. TYPE OF REPORT & PERIOD COVERED Interim								
		6. PERFORMING ORG. REPORT NUMBER								
7. AUTHOR(s) G. Robert Sacco Rocco Motto		8. CONTRACT OR GRANT NUMBER(s)								
9. PERFORMING ORGANIZATION NAME AND ADDRESS Commander, ARRADCOM Applied Science Div, LCWSL Dover, NJ 07801		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 612105H840011								
11. CONTROLLING OFFICE NAME AND ADDRESS Commander, ARRADCOM STINFO, TSD (DRDAR-TSS) Dover, NJ 07801		12. REPORT DATE November 1978								
		13. NUMBER OF PAGES 19								
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED								
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE								
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.										
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)										
18. SUPPLEMENTARY NOTES										
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) <table> <tr> <td>Adhesive coating</td> <td>Zinc phosphated steel</td> </tr> <tr> <td>Bonding</td> <td>Adhesion promoters</td> </tr> <tr> <td>TNT-based explosive</td> <td>Tensile strength</td> </tr> <tr> <td>Polyurethane</td> <td></td> </tr> </table>			Adhesive coating	Zinc phosphated steel	Bonding	Adhesion promoters	TNT-based explosive	Tensile strength	Polyurethane	
Adhesive coating	Zinc phosphated steel									
Bonding	Adhesion promoters									
TNT-based explosive	Tensile strength									
Polyurethane										
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <p>A system for coating a projectile interior to provide corrosion protection for the steel and to bond the TNT-based explosive casting to the projectile has been developed. The coating material, which consists of an adhesion promoter combined with a polyurethane, has shown excellent properties in laboratory tests at low, ambient, and high temperatures. The coating is a 50/50 mixture of Estane 5715/VMCH with 1% Epon 828 dissolved in a 50/50 methyl ethyl ketone/methyl isobutyl ketone solution to give a 20% concentration. The coating material is being</p>										

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

tested on a pilot plant scale and has been effective in several loading tests performed to date. This coating appears to be sprayable with standard commercial spraying equipment.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

	<u>Page no.</u>
Discussion	1
Experimental Procedure	2
Tensile Strength of Adhesive-Coating Materials	2
Tensile Strength of Adhesive-Coating Materials with Comp B	3
Formulation of Preferred Adhesive-Coating Materials	3
Split-Shell Test	3
Materials	5
Conclusion	5
Distribution List	15

TABLES

No.

1	Tensile strength of adhesive coatings	6
2	Tensile strength of adhesive coating with Comp B	10
3	Tensile strength of selected adhesive coatings with Comp B	13

FIGURE

1	Coupon assembly for tensile test	4
---	----------------------------------	---

DISCUSSION

In this program, approximately one hundred adhesive-coating materials were evaluated for corrosion protection of steel and for use in bonding TNT-based explosives to the interiors of projectiles. Hot melts and acrylics (with and without plasticizers) were investigated, but they did not meet the requirements of the projectile adhesive-coating (see tables 1 and 2).

A United Kingdom (UK) technology which uses a paint solution was investigated as a standard for comparison. Since the paint is not readily available in this country, several paints produced in the US similar to the UK sample were ordered and evaluated. These materials were also unsatisfactory (table 2).

Polyurethane polymers supplied by Hooker Chemical, B.F. Goodrich, and Thiokol Chemical were evaluated. Initially, the aliphatic polyurethanes, aromatic-polyester polyurethanes, and polyether polyurethanes supplied were unsatisfactory. The bonds formed with zinc phosphated steel were marginal at best. Adding adhesion promoters to the polyurethanes increased the bond strengths to steel in several samples; however, only one of the polyurethanes, Estane 5715/VMCH, met the requirements of bonding to steel and reactivating at the melt temperature of Comp B to form a strong bond at the coating/Comp B interface. The slight solubility of Estane 5715 in TNT enhanced bonding. When Estane 5715 (B.F. Goodrich) and VMCH (Union Carbide Corp.) were combined in a concentration of 50/50 parts by weight (pbw) by dissolving them in ketone solvents, the resulting adhesive-coating had superior properties to the UK coating material (table 3). The combination of Estane 5715/VMCH works in almost all concentrations of from 5-95 pbw. However, the 50-50 concentration was found to give the best overall results for coating, bonding, and ease of application by spraying.

Tensile strength tests at low (-40°C), ambient (24°C), and high (63°C) temperatures and split-shell tests indicate that this coating meets all the requirements of the program. The vacuum stability test at 100°C gave the following results:

	Gas evolved (ml)
1. Comp B with 0.61 MNT + 0.5% Estane 5702	0.21
2. Estane 5715/VMCH with 1% Epon 828	0.78
3. Combination of 1 and 2, above	0.93

At present there is a problem in spray coating with the available equipment. Coating the interior of a 105-mm projectile using 10, 15, and 20% pbw solids in solvent (50/50 pbw of Estane 5715-VMCH in a 50/50 pbw of methyl ethyl ketone/methyl isobutyl ketone solvent) has not been entirely satisfactory. Satisfactory spray coatings can be achieved by using the proper spray equipment or manipulating the concentration of solvents (methyl ethyl ketone/methyl isobutyl ketone). There is also a possibility of using 2-pentanone, 3-pentanone, or 2-methyl 3-butanone, all of which have higher boiling points than methyl ethyl ketone and lower boiling points than methyl isobutyl ketone. The use of 2-pentanone, 3-pentanone or 2-methyl 3-pentanone depends on their availability in bulk quantities.

EXPERIMENTAL PROCEDURE

Tensile Strength of Adhesive-Coating Materials

Adhesive-coating materials were evaluated by coating a 1.27 x 2.54 cm (1/2 x 1 in.) area on each 2.54 x 7.62 cm (1 x 3 in.) aluminum coupon. Three samples of each adhesive-coating system were prepared and tested using a Baldwin Test Instrument. Using the tensile strength of Comp B neat as a standard [approximately 1.38 MPa(200 psi)], only samples exceeding this bond strength were tested.

Tensile Strength of Adhesive-Coating Materials with Comp B

The coating materials exceeding the 1.38 MPa (200 psi) tensile strength were further evaluated by placing them on 2.54 x 7.62 cm (1 x 3 in.) zinc phosphated steel coupons and shipping the coupons to the Energetic Materials Division. The coated coupons were heated to $80^{\circ} \pm 5^{\circ}\text{C}$, and a layer of Comp B was poured onto one coupon before the coupon was assembled to a second coupon (fig. 1). Three tensile shear-strength samples of each material were prepared and tested using an Instron Tensile Tester. Samples that met the requirements for adhesion at 24°C (75°F) were further tested at -40°C (-40°F) and 63°C (145°F). A minimum 2.54×10^{-3} cm (0.001 in.) thick coating was necessary for successful bonding.

Formulation of Preferred Adhesive -Coating Materials

A 20% pbw solution of solids in solvent was prepared as follows:

260 g	methyl ethyl ketone	Certified Grade, Fisher Chemical Co.
260 g	methyl isobutyl ketone	Certified Grade, Fisher Chemical Co.
65 g	Estane 5715	B.F. Goodrich, Adhesive Prod. Div.
65 g	VMCH	Union Carbide Corp.
1.3 g	Epon 828	Shell Chemical Co. (Stabilizer)

Split-Shell Test

After brush coating 2.54×10^{-3} to 3.81×10^{-3} cm (1 to 1.5 mil) layers of adhesive on split shells, the shells were loaded with Comp B containing 0.5% Estane 5702 and 0.6% mononitrotoluene (MNT). Brackets were attached to both halves of the shells and they were placed horizontally in a nest. A dead load of two tons was applied to the lower halves of the splits to rupture the bonds. The shells were removed from the nest and the location of the rupture determined. The acceptance criterion for this test was failure within the Comp B, not at the shell/adhesive interface.

Figure 1. Coupon assembly for tensile test.

Materials

Modified Comp B - 60/40 RDX/TNT containing 0.5% Estane 5702 plasticized with 0.6% MNT.

Estane 5715 - a heat reactive aromatic-polyester polyurethane obtained from B. F. Goodrich.

VMCH - a copolymer of vinyl chloride (86%), vinyl acetate (13%) and inter-polymerized dibasic acid (1%), obtained from Union Carbide Corp.

Methyl ethyl ketone and methyl isobutyl ketone - certified grades obtained from Fisher Scientific Co.

Epon 828 - an epoxidized bisphenol A supplied by Shell Chemical Co.

CONCLUSION

Evaluation of Estane 5715-VMCH 50-50 pbw, the preferred adhesive/coating formulation, shows it to be superior in desirable properties to the adhesive/coating system used by the United Kingdom to reduce prematures under setback conditions.

Table 1

Tensile strength of adhesive coatings

Adhesive	Supplier	Bond strength 21°C (70°F) MPa (psi)
Elastomer 4693	3M	0.8, 1.1 (120, 160)
Elastomer 34	3M	< 0.7 (< 100)
Foam 4400	3M	< 0.7 (< 100)
Elastomer 1870	3M	< 0.7 (< 100)
EVA/Acrylic Acid 3765	3M	---
Elastomer 4713	3M	0.9 (130)
Polyester A 1410B	Goodrich	< 0.7 100
A 1453B	Goodrich	---
Hot Melt B4069	H. B. Fuller	1.0 (140)
Hot Melt L5056	H. B. Fuller	0.8, 0.8 (120, 110)
Amsco 112	Union Oil Co.	1.7, 1.1 (250, 160)
Amsco 114	Union Oil Co.	1.1, 1.3 (160, 190)
Amsco 115	Union Oil Co.	1.2, 1.0 (180, 150)
Amsco 125	Union Oil Co.	1.0, 1.5 (140, 220)
Amsco 319	Union Oil Co.	0.7, 1.0 (100, 140)
Hot Grip	Adhesive Products Corp.	1.1, 1.1 (160, 160)
Acrylic C 10CV	Rohm & Haas	8.3, 9.6 (1200, 1400)
Acrylic F 10	Rohm & Haas	1.3, 2.8 190, 400
Hot Melt 3134	National Adhesives Co.	2.8 400
Hycar 2100X22	Goodrich	< 0.7 (< 100)
Hycar CTBN 1300X8	Goodrich	< 0.7 (< 100)
Eastobond A-167S	Eastman Chem Co.	< 0.7 (< 100)

Table 1 - Continued

Adhesive	Supplier	Bond strength 21°C (70°F) MPa	Bond strength 21°C (70°F) psi
Eastobond A-41	Eastman Chem. Co.	3.7	(530)
Super Beckacite 2100	Reichhold Chem. Co.	<0.7	(<100)
PVA Emulsion	Borden Chemical	<0.7	(<100)
Bostik GGP 1910	USM Corp.	<0.7	(<100)
Piccolositic A-75	Penn. Ind. Chem.	<0.7	(<100)
Hydrogum 300	Reichhold Chem. Co.	<0.7	(<100)
VMCA	UCC	<0.7	(<100)
Piccodeine 6215	Penn. Ind. Chem.	<0.7	(<100)
Gantrez AN 137	GAF	<0.7	(<100)
Kraton 1107	Shell Chem. Co.	<0.7	(<100)
Kraton 1101	Shell Chem. Co.	<0.7	(<100)
Eastobond A-41-Cumar			
R-7 (1/1 pbw)	Eastman Chem. Co.	<0.7	(<100)
Eastobond A-41-MVE (1/1 pbw)*	Neville Chem. Co.	<0.7	(<100)
MVE-Super Beckacite	GAF	<0.7	(<100)
2100 (1/1 pbw)	Reichhold Chem. Co.	<0.7	(<100)
Piccolositic A-75-Cumar	Penn. Ind. Chem.	<0.7	(<100)
R-7 (1/1 pbw)	Neville Chem. Co.	<0.7	(<100)
Eastobond M-5W-Zonerez	Eastman Chem. Co.		
B115 (1/1 pbw)	Arizona Chem. Co.	2.8	(400)
Eastobond A-41-Zonester	Eastman Chem. Co.		
B85 (2/1 pbw)	Arizona Chem. Co.	2.8	(400)

Table 1 - Continued

Adhesive	Supplier	Bond strength 210°C (700°F) MPa psi
Kraton 1107 - S.P. 1068 (2/1 pbw)	Shell Chem. Co. Schenectady Chem.	< 0.7 (< 100)
Kraton 1107-CRJ 683 (2/1 pbw)	Shell Chem. Co. Schenectady Chem.	< 0.7 (< 100)
Eastobond A-1675-Zonerez B115 (3/1 pbw)	Eastman Chem. Co. Arizona Chem. Co.	< 0.7 (< 100)
Eastobond A-41- Zonester B85 (3/1 pbw)	Eastman Chem. Co. Arizona Chem. Co.	< 0.7 (< 100)
Eastobond M-5W-Piccotex 100 (4/1 pbw)	Eastman Chem. Co. Penn. Ind. Co.	< 0.7 (< 100)
Eastobond A-41-Piccotex 100 (4/1 pbw)	Eastman Chem. Co. Penn. Ind. Co.	2.4 (350)
Eastobond A-41-XYHL (4/1 pbw)	Eastman Chem. Co. U.C.C.	1.7 (250)
Bostik 6590, Cat #213 Bostik 6590, Cat #27002	U.S.M. Corp. U.S.M. Corp.	1.0 (150)
Estane 5702 Estane 58630 Estane 58300	Goodrich Goodrich Goodrich	1.0 (150) No Bond No Bond
Bostik 6590-Piccotex 75 (4/1 pbw)	V.S.M. Corp Penn. Ind. Chem.	1.9 (275)
Eastobond A-41-Eastobond A-167S (4/1 pbw)	Eastman Chem. Co.	1.0 (285)
Eastobond A-41-Piccotex 75 (4/1 pbw)	Penn. Ind. Chem.	2.1 (300)

Table 1 - Continued

Adhesive	Supplier	Bond strength 21°C (70°F) MPa	Bond strength 21°C (70°F) psi
Bostik 6323	U.S.M. Corp.	2.1	(300)
Bostik 6363	U.S.M. Corp.	1.1	(160)
Eastobond A-41-Amsco 125 (3/1 pbw)	Eastman Chem. Co. Union Oil of California Coronet Paper Co.	3.4	(500)
Hot Melt 8096	General Mills	0.8	(110)
Versalon 1300	General Mills	4.6	(670)
Versamide 872	General Mills	1.6	(230)
Eastobond A-41-Piccotex 75 (3/1 pbw)	Eastman Chem. Co. Penn. Ind. Co.	1.3	(190)
Eastobond A-41-Amsco 125 (3/1 pbw)	Eastman Chem. Co. Union Oil of California	3.4	(500)

Table 2

Tensile strength of adhesive coating with Comp B

Adhesive	Bond strength 21°C (70°F) MPa	(psi)	Bond failure
Estane 5702 w/7% TNT Thermogrip 6590 Piccotex 75 (4/1 pbw)	0.7 1.5	(100) (220)	Adhesive to metal failure 40% adhesive-adhesive bonding (1) 40% adhesive failure (2) 70% adhesive-adhesive bonding
A41/167 S (4/1 pbw)	0.9	(130)	
A41/Piccotex 75 (4/1 pbw)	1.4	(205)	(1) 20% adhesive-failure (2) 80% adhesive-adhesive bonding
3M Hot Melt Bostik 6323	1.1 1.4	(165) (200)	30% adhesive failure (1) 20% adhesive-adhesive bonding
A-41	0.5 --	(75) ----	(2) Composition B failure Adhesive to Composition B failure Adhesive to Composition B failure Adhesive to Composition B failure Adhesive to Composition B failure
4713	0.4	(60)	
1870	0.2	(35)	

Table 2 - Continued

Adhesive	Bond strength 21°C (70°F) MPa (psi)	Bond failure
B 4069	0.3 (50)	Adhesive to Composition B failure
L 5056	0.6 (80)	Composition B cracked
Hot Grip	0.5 (70)	Adhesive extremely elastic
AMSCO 1.2	0.2 (25)	Adhesive to Composition B failure
Kew-Lux Acrylic Paint	0.7 (100)	Adhesive failure
11 Ferrothane Polyurethane Paint	0.8 (110)	Adhesive failure
U.K. Paint	1.1 (165)	10/90 Composition B / adhesive failure
U.K. Paint Solution	1.3 (190)	50/50 Composition B / adhesive failure
U.K. Paint	0.1 (19) (63°C, 145°F)	Adhesive failure
90/10 pbw Estane 5702/Poly Vinyl Acetate (PVA)	1.9 (275)	Composition B failure
90/10 pbw Estane 5702/PVA	0.2 (23) (63°C, 145°F)	Adhesive failure
75/25 pbw Estane 5702/PVA	1.7 (240)	Composition B failure
75/25 pbw Estane 5702/PVA	0.5 (70) (63°C, 145°F)	Adhesive failure

Table 2 - Continued

Adhesive	Bond strength 21°C (70°F) MPa	Bond failure
	(psi)	
1st Coat 75/25 pbw Estane 5702/PVA	0.8	(110)
2nd Coat 100 Estane 5702		Adhesive failure
75/25 pbw Estane 5702/VMCH with 40% TiO ₂		90% Composition B failure 75% Composition B failure
75/25 pbw Estane 5715/VMCH	1.4	(206)
85/12 pbw Rohm & Haas C10LV/Monsanto Benzo flex S-432	1.5	(220)
75/25 pbw Estane 5713/VMCH	1.6	(230)
75/25 pbw Estane 5714/VMCH	1.1	(160)
75/25 pbw Estane 5701 F1 VMCH	1.2	(175)
75/25 pbw Estane 5702 F2/VMCH	1.4	(205)
75/25 pbw Estane 5708 F1/VMCH	1.2	(180)
75/25 pbw Estane 5710 F1/VMCH	1.3	(190)
75/25 pbw Estane 5715/VMCH	1.4	(205)
3/1 pbw Estane 5715/VMCH in MEK prepared 12/15/77	1.5	(220)
3/1 pbw Estane 5715/VMCH in MEK	1.4	(210)
1/1 pbw Estane 5715/VMCH in MEK	1.4	(200)
3/1 pbw Estane 5715/VMCH in THF	1.4	(210)
1/1 pbw Estane 5715/VMCH in THF	1.7	(205)
3/1 pbw Estane 5715/VMCH in MEK w/1% propylene oxide added	1.6	(240)
1/1 pbw Estane 5715/VMCH (B590) in THF	1.6	(225)
	1.4	(205)
		100% Composition B failure

Table 2 - Continued

Adhesive	Bond strength 21°C (70°F) MPa (psi)	Bond failure
3/1 pbw Estane 5715/VMCH (B590) in THF	1.1 (160)	Adhesive was not cured properly prior to heating in oven and bubbled.

Table 3

Tensile strength of selected adhesive coating with Comp B*

Bond strength @ various temperatures

Adhesive	70°F (MPa) (psi)	-40°F (MPa) (psi)	145°F (MPa) (psi)	Remarks
75/25 Estane 5715/VMCH	1.5	220	1.3	186
50/50 Estane 5715/VMCH w/1% Propylene Oxide	2.5	359	2.5	362
50/50 Estane 5715/VMCH w/1% Epon 828	2.7	385	--	--
U.K. Paint Solution	1.3	190	--	0.02
				26
				Internal adhesive failure @ 145°F

*Note: Comp B contained 0.5% Estane 5702, 0.6% MNT.

DISTRIBUTION LIST

Commander

U.S. Army Armament Research and Development Command

ATTN: DRDAR-TSS (5)
DRDAR-LCA-OA (15)
DRDAR-LCN (5)
DRDAR-LCU (5)
DRDAR-QA (2)
DRDAR-TSF (2)
DRDAR-QAA
DRDAR-QAN
DRDAR-LCE (5)

Dover, NJ 07801

Commander

U.S. Army Missile Research and Development Command

ATTN: DRDMI-EAM, Mr. E.A. Verchot
Chief, Document Section
Redstone Arsenal, Alabama 35809

Plastics Technical Evaluation Center

ATTN: Mr.H. Pebly
Mr. A. Landrock
U.S. Army ARRADCOM
Dover, NJ 07801

Commander

U.S. Naval Weapons Station

ATTN: Research and Development Div
Yorktown, VA 23491

Defense Documentation Center

Cameron Station (12)
Alexandria, VA 22314

U.S. Army Armament Materiel Readiness Command

ATTN: DRSAR-LEP-L
Rock Island, IL 61299

Director

U.S. Army TRADOC Systems Analysis Activity
ATTN: ATCAA-SL (Tech Library)
White Sands Missile Range, NM 88002

Weapons System Concept Team/CSL
ATTN: DRDAR-ACW
Aberdeen Proving Ground, MD 21010

Technical Library
ATTN: DRDAR-CLJ-L
Aberdeen Proving Ground, MD 21005

Technical Library
ATTN: DRDAR-TSB-S
Aberdeen Proving Ground, MD 21010

Technical Library
ATTN: DRDAR-LCB-TL
Benet Weapons Laboratory
Watervliet, NY 12189

U.S. Army Materiel System Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005