Soutenance du Projet Filé Kaggle

Dogs vs Cats: Classification binaire de chiens et de chats

Naoto Lucas, Jean-Baptiste Gaeng, Ghada Meftah, Julien Danh

I - Travail préliminaire : Projet Kaggle Titanic

1 - Présentation du sujet :

1 - Présentation du sujet :

- Données :
- 2201 observations
- 3 variables prédictives :
 - ☐ Classe: 0 à 3,
 - Age : 0 (enfant) ou 1 (adulte)/
 - **Sexe** : 0 (femme) ou 1 (homme)
- → Objectif:
 - prédire la survie (ou le décès) d'un passager du Titanic (Y = 1 si survie, 0 sinon)

2 - Méthodes utilisées :

> On ne détaille dans la suite que **Forêt Aléatoire** et **Régression Logistique** (autres algos : cf. rapport)

2.1 - Régression logistique :

- Prélever aléatoirement ¼ du jeu d'apprentissage comme données de "test".
- Prépare le modèle avec des sous-ensembles aléatoires et de taille croissante des données restantes (de 50 à 916)
- Pour chacun de ces modèles on calcule l'*Erreur* (*Erreur* = 1.0 -*Accuracy*) sur le jeu d'apprentissage et les données de "test" prélevées initialement.

2.2 - Arbre de décision:

2.3 - Random Forest

La méthode de classification par forêt aléatoire consiste à construire une forêt d'arbres décisionnels, et de prédire le résultat final en se basant sur le résultat prédit par chaque arbre de la forêt.

3 - Résultats obtenus

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.74
0	Support Vector Machines	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.12
5	Perceptron	78.00
6	Stochastic Gradient Decent	77.67
4	Naive Bayes	72.28

II - Projet Kaggle Dogs vs Cats

1 - Présentation du sujet

> Problème de **classification binaire avec des images de chiens et de chats**. Sujet de la compétition "Dogs vs. Cats Redux: Kernels Edition": https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition

> Données fournies :

• Un dossier train: 25,000 images de chiens et chats. Chaque nom de fichier de ce dossier contient un label (cat ou dog)

Un dossier test: 12,500 images. Pour chaque photo, nous devons prédire la probabilité qu'elle corresponde à un chien (1 = chien, 0 = chat).

Modèle

Train Set

2 - Objectifs

> Minimiser la fonction LogLoss

$$ext{LogLoss} = -rac{1}{n}\sum_{i=1}^n \left[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)
ight],$$

where

- n is the number of images in the test set
- \hat{y}_i is the predicted probability of the image being a dog
- y_i is 1 if the image is a dog, 0 if cat
- log() is the natural (base e) logarithm

A smaller log loss is better.

- > Pour ce faire, utilisation d'algos simples comme pour Titanic puis plus complexes
- > Les Kernels Kaggle sont une bonne base pour les méthodes complexes

3 - Méthodes Utilisées

3.1 - Méthodes naïves

But : avoir des références de LogLoss

3.1.1 - Classifieur toujours incertain

> On ne classe pas les images, i.e on propose en guise de prédictions pour chaque image du jeu d'images tests des probabilités égales à 0,5.

Proba(Chien) = 0.5

Proba(Chien) = 0.5

Proba(Chien) = 0.5

Score de Logloss obtenu : 0.69

> Remarque : référence de Logloss non probabiliste : soumission d'un fichier de prédiction prédisant à coup sûr pour chaque image un chien. Ceci correspond à des probabilités toujours égales à 1.

Score de Logloss obtenu : 17. 27

3.1 - Méthodes naïves (2)

3.1.2 - Gradient Boosting

> Principe de la méthode :

- > Gradient Boosting : méthode particulière pour tester et entraîner les données. On peut choisir ensuite n'importe quel type d'algorithme pour prédire les données, dont les arbres de décisions (Gradient Tree Boosting)
- > Gradient Tree Boosting ~ Random Forest. Seule différence : la façon d'entraîner et de tester les données : "bagging" pour Random Forest et "boosting" pour Gradient Tree Boosting

Différences entre "bagging" et "boosting"

> Bagging:

Différences entre "bagging" et "boosting" (2)

> Boosting:

3.2 - Résultats des méthodes naïves

Méthode	Accuracy sur les données d'apprentissage	Logloss
Classification toujours incertaine	0.50	0.69
Régression Logistique probabiliste	0.68	0.66
Forêt Aléatoire	0.98	17.57
Gradient Boosting	0.70	17.61

3.3 Méthodes avancées

3.3.1 Réseau de neurones convolutifs de type VGG-16

- > Kernel Kaggle: https://www.kaggle.com/jeffd23/catdognet-keras-convnet-starter
- > Définition VGG -16 : réseau de neurones convolutifs de 16 couches, créé par Visual Geometry Group : termine premier à compétion Kaggle ImageNet (2014)

Architecture du VGG-16 pour une image de taille 224x224

Les différentes couches d'un CNN

- **Pooling**: permettant de prendre une large image et d'en réduire la taille tout en préservant les informations les plus importantes qu'elle contient
- Unité linéaire rectifiée (ReLU): remplacer par un 0 chaque fois qu'il y a une valeur négative dans un pixel. Cette opération permet au CNN de rester en bonne santé
- **Fully Connected Layer**: Raisonnement de haut-niveau. Connexions avec toutes les activations de la couche précédente.
- Softmax: fonction d'activation logistique. Sers à prendre la proba maximale des classes sur dernière couche

3.3.1 Résultats du CNN de type VGG-16

Méthode	Accuracy sur l'ensemble de validation	Logloss
CNN de type VGG-16	0.71	0.50

3.3 Méthodes avancées - Transfer Learning

3.3.3 Réseau de neurones pré-entraîné Inception V3

Pourquoi utiliser un CNN pré-entraîné? Le Transfer Learning

- > En pratique, très peu de gens entraînent un CNN de zéro car nécessite t**rès grande base de données +** machine performante
- > Du coup, utilisation d'un CNN pré-entraîné sur grande base de données (ex : ImageNET : 1,2 millions d'images, 1000 catégories) et utilisation de ce CNN comme feature extractor => principe du **transfer learning**

Différentes utilisations possibles d'un CNN pré-entraîné

1) En tant que feature-extractor fixe: on ne garde que les couches profondes qui détectent des patterns très génériques

2) Fine tuning: Autorisation de la rétropropagation: modifs des poids des neurones => Rendre le CNN plus spécifique à son problème

Principe du fine-tuning

3.3.4 Résultats du CNN pré-entraîné Inception V3

> On a utilisé les CNN pré-entraînés en **feature extractor fixe** car **le nouveau dataset est petit et similaire à l'original**, pour **éviter l'over-fitting**

Méthode	Accuracy	Logloss
CNN pré-entraîné Inception-V3	0.92	0.33
CNN pré-entraîné XCeption	0.95	0.26
CNN pré-entraîné VGG-16	0.95	0.34

4 - Combinaison de CNN pré-entraînés

- > Principe : combiner les sorties des différents CNN pré-entraînés, par exemple en faisant la moyenne.
- > Choix des pondérations pour les CNN : méthode expérimentale et heuristique -> on fait des tests et on observe ce qui marche le mieux !

Méthode	LogLoss
Combinaison XCeption + Inception V3 (1/2; 1/2)	0.21
Combinaison XCeption + Inception V3 + VGG-16 (1/3; 1/3; 1/3)	0.14

> Le gagnant de la compétition a combiné une vingtaine de CNN pré-entraînés !

Merci de votre attention!