形式语言与自动机理论

课程简介与基础知识

王春宇 chunyu@hit.edu.cn

> 计算学部 哈尔滨工业大学

2021 年 4 月

课程简介与基础知识

- 课程简介
- 基础知识

计算理论

核心问题

计算机的基本能力和限制是什么?

- 究竟哪些问题, 可通过计算解决? 可计算性理论
- 2 解决可计算的问题, 究竟需要多少资源? 计算复杂性理论
- ❸ 为了研究计算, 要使用哪些计算模型? 形式语言与自动机理论

什么是自动机理论?

自动机理论: 研究抽象机器及其所能解决问题的理论.

- 图灵机
- 有限状态机
- 文法, 下推自动机

什么是形式语言?

形式语言: 经数学定义的语言.

	自然语言			形式语言		
	English		中文	化学分子式	C 语言	
	字符	A,a,B,b,	天, 地,	A-Z,a-z,0-9	A-Z,a-z,0-9	
语言	单词	apple	苹果	${ m H_2O}$	char	
	句子	How're you?	早上好!	$2H_2 + O_2 = 2H_2O$	char a = 10;	
	语法	Grammar	语法规则	精确定义的规则		

计算理论研究的意义

不同时间复杂度的计算时间比较 (假设每条指令 1 µs)

T(n)	n = 10	n = 50	n = 100	n = 1000
$\log_2 n$	3.3 µs	5.6 µs	$6.4\mu s$	9.9 µs
n	$10.0\mu s$	$50.0\mu s$	$100.0\mu s$	$1.0\mathrm{ms}$
n^2	$100.0\mu s$	$2.5\mathrm{ms}$	$10.0\mathrm{ms}$	$1.0\mathrm{s}$
2^n	$1.0\mathrm{ms}$	35.8 y	4.0e16 y	3.4e 287 y
3^n	$59.0\mathrm{ms}$	$2.3\mathrm{e}10\mathrm{y}$	$1.6\mathrm{e}34\mathrm{y}$	4.2e 463 y
n!	3.6 s	9.7e50 y	3.0e144 y	1.3 e $2554\mathrm{y}$

布尔可满足性 (SAT)

- 判断给定布尔公式是否可满足, 第一个被证明属于 NP 完全的问题
- 解决 3-SAT 的最好算法

$O(1.32793^n)$	Liu [2018] ¹
$O(1.3303^n)$	Makino, Tamaki and Yamamoto [2011, 2013]
$O(1.3334^n)$	Moser and Scheder [2011]
$O(1.439^n)$	Kutzkov and Scheder [2010]
$O(1.465^{n})$	Scheder [2008]
$O(1.473^{n})$	Brueggemann and Kern [2004]
$O(1.481^n)$	Dantsin, Goerdt, Hirsch, Kannan, et al [2002]
$O(1.497^{n})$	Schiermeyer [1996]
$O(1.505^{n})$	Kullmann [1999]
$O(1.6181^n)$	Monien and Speckenmeyer [1979, 1985]
$O(2^n)$	Brute-force search

¹Sixue Liu. Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT. In: 45th International Colloquium on Automata, Languages, and Programming.

运算最快的计算机 – www.top500.org • PFLOP: PetaFLOP, 每秒 10¹⁵ 次浮点运算

	Machine	PFLOPs
2020-11	Fugaku	442.01
2020-06	Fugaku	415.53
2019-06	Summit	148.60
2018-11	Summit	143.50
2018-06	Summit	122.30
2016-06	Sunway TaihuLight	93.01
2013-06	Tianhe-2	33.86
2012-06	Blue Gene/Q	16.32
2011-06	K computer	8.16

模拟计算 3-SAT 问题

- 计算机: 使用不同时期最快的
- 算法: 使用目前最快的 O(1.32793ⁿ)

	Machine	PFLOPs	n = 150	n = 200	n = 400
2020-11	Fugaku	442.01	6.8 s	113.0 d	1.3e24 y
2020-06	Fugaku	415.53	7.2 s	120.2 d	1.4e24 y
2019-06	Summit	148.60	20.1 s	336.1 d	4.0e24 y
2018-11	Summit	143.50	20.8 s	348.1 d	4.1e24 y
2018-06	Summit	122.30	24.5 s	1.1 y	4.8e24 y
2016-06	Sunway TaihuLight	93.01	32.2 s	1.5 y	6.4e24 y
2013-06	Tianhe-2	33.86	1.5 m	4.1 y	1.7e25 y
2012-06	Blue Gene/Q	16.32	3.1 m	8.4 y	3.6e25 y
2011-06	K computer	8.16	6.1 m	16.8 y	7.3e25 y

```
模拟计算 3-SAT 问题
```

• 计算机: 使用目前最快的 – 442.01 PFLOPs

 $T(2^n)$

• 算法: 使用不同时期最快的

2008

	Complexity	n = 150	n = 200	n = 400
2018	$T(1.32793^n)$	7.2 s	120.2 d	1.4e24 y
2013	$T(1.3303^n)$	9.4 s	172 d	2.9e24 y
2011	$T(1.3334^n)$	13.3 s	273.5 d	7.3e25 y
2010	$T(1.439^n)$	14.2 d	3.1e6 y	1.3e38 y

 $T(1.465^n)$ 209.1 d 1.1e8 y 1.7e41 y

1.1e20 y 1.3e35 y 2.0e95 y

课程内容

- 正则语言
 - 有穷自动机
 - 正则表达式
 - 正则语言的性质
- 上下文无关语言
 - 上下文无关文法
 - 下推自动机
 - 上下文无关语言的性质
- 计算导论
 - 图灵机及其扩展
 - 不可判定性

教材

- Introduction to Automata Theory, Languages, and Computation 3rd Ed.
 - 作者 John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman
 - http://infolab.stanford.edu/~ullman/ialc.html
 - 影印版《自动机理论、语言和计算导论》机械工业出版社

参考书

- Models of Computation, by Jeff Erickson http://algorithms.wtf
- Introduction to Theoretical Computer Science, by Boaz Barak https://introtcs.org
- Introduction to the Theory of Computation, 3ed, by Michael Sipser

课程简介与基础知识

- 课程简介
- 基础知识
 - 基本概念
 - 语言和问题
 - 形式化证明

基本概念

1. 字母表: 符号 (或字符) 的非空有穷集.

基本概念

1. 字母表: 符号 (或字符) 的非空有穷集.

$$\Sigma_1 = \{0, 1\},$$
 $\Sigma_2 = \{a, b, ..., z\},$
 $\Sigma_3 = \{x \mid x$ 是一个汉字}.

2. 字符串: 由某字母表中符号组成的有穷序列.

3. 空串: 记为 ϵ , 有 0 个字符的串.

字母表 Σ 可以是任意的, 但都有 $\varepsilon \notin \Sigma$.

4. 字符串的长度: 字符串中符号所占位置的个数, 记为 📖.

4. 字符串的长度: 字符串中符号所占位置的个数, 记为 |_□|. 若字母表为 Σ, 可递归定义为:

$$|w| = \left\{ \begin{array}{ll} 0 & w = \varepsilon \\ |x| + 1 & w = xa \end{array} \right.,$$

其中 $a \in \Sigma$. w 和 $x \in \Sigma$ 中字符组成的字符串.

4. 字符串的长度: 字符串中符号所占位置的个数. 记为 [...] 若字母表为 Σ. 可递归定义为:

$$|w| = \left\{ \begin{array}{ll} 0 & w = \varepsilon \\ |x| + 1 & w = xa \end{array} \right.,$$

其中 $a \in \Sigma$. w 和 x 是 Σ 中字符组成的字符串.

- 字母表: Σ, Γ, Δ, ... • 字符: a, b, c,...

 - 字符串: ..., w, x, y, z
 - 集合: A.B.C....

5. 字符串 x 和 y 的连接: 将首尾相接得到新串的运算, 记为 $x \cdot y$ 或 xy.

5. 字符串 x 和 y 的连接: 将首尾相接得到新串的运算, 记为 $x \cdot y$ 或 xy. 同样, 可递归定义为

$$x \cdot y = \begin{cases} x & y = \varepsilon \\ (x \cdot z)a & y = za \end{cases},$$

其中 $a \in \Sigma$, 且 x,y,z 都是字符串.

5. 字符串 x 和 y 的连接: 将首尾相接得到新串的运算, 记为 $x \cdot y$ 或 xy. 同样, 可递归定义为

$$x \cdot y = \left\{ \begin{array}{ll} x & y = \varepsilon \\ (x \cdot z)a & y = za \end{array} \right.,$$

其中 $a \in \Sigma$, 且 x, y, z 都是字符串.

对任何字符串 x, 有 $\varepsilon \cdot x = x \cdot \varepsilon = x$.

连接运算的符号"·"一般省略.

6. 字符串 x 的 n 次幂($n \ge 0$), 递归定义为

$$x^n = \left\{ \begin{array}{ll} \varepsilon & n = 0 \\ x^{n-1}x & n > 0 \end{array} \right.$$

7. 集合 A 和 B 的连接, 记为 $A \cdot B$ 或 AB, 定义为

 $A \cdot B = \{ w \mid w = x \cdot y, \ x \in A \coprod y \in B \}.$

8. 集合 A 的 n 次幂 $(n \ge 0)$, 递归定义为

$$A^n = \left\{egin{array}{ll} \{arepsilon\} & n=0 \ A^{n-1}A & n \geq 1 \end{array}
ight. .$$

8. 集合 A 的 n 次幂 $(n \ge 0)$, 递归定义为

$$A^n = \left\{ \begin{array}{ll} \{\varepsilon\} & n=0 \\ A^{n-1}A & n \ge 1 \end{array} \right.$$

那么, 若 Σ 为字母表, 则 Σ^n 为 Σ 上长度为 n 的字符串集合. 如果 $\Sigma = \{0,1\}$, 有

$$\Sigma^0 = \{\varepsilon\}$$

$$\Sigma^1 = \{0, 1\}$$

$$\Sigma^2 = \{00, 01, 10, 11\}$$

$$\Sigma^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$$

9. 克林闭包(Kleene Closure):

$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i.$$

9. 克林闭包(Kleene Closure):

$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i.$$

10. 正闭包(Positive Closure):

$$\Sigma^+ = \bigcup_{i=1}^{\infty} \Sigma^i$$
.

显然,

$$\Sigma^* = \Sigma^+ \cup \{\varepsilon\}.$$

9. 克林闭包(Kleene Closure):

$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i$$
.

10. 正闭包(Positive Closure):

$$\Sigma^+ = \bigcup_{i=1}^{\infty} \Sigma^i.$$

显然.

$$\Sigma^* = \Sigma^+ \cup \{\varepsilon\}.$$

其他概念如有向图, 树, 字符串的前缀, 后缀等定义这里省略.

语言

定义

若 Σ 为字母表且 $\forall L \subseteq \Sigma^*$, 则 L 称为字母表 Σ 上的语言.

语言

定义

若 Σ 为字母表且 $\forall L \subseteq \Sigma^*$, 则 L 称为字母表 Σ 上的语言.

- 自然语言, 程序设计语言等
- $\{0^n 1^n \mid n \ge 0\}$
- The set of strings of 0's and 1's with an equal number of each:

$$\{\varepsilon, 01, 10, 0011, 0101, 1100, \ldots\}$$

∅, {ε} 和 Σ* 都是任意字母表 Σ 上的语言, 但注意 ∅ ≠ {ε}

语言

定义

若 Σ 为字母表且 $\forall L \subseteq \Sigma^*$, 则 L 称为字母表 Σ 上的语言.

- 自然语言, 程序设计语言等
- $\bullet \ \left\{ 0^n 1^n \mid n \ge 0 \right\}$
- The set of strings of 0's and 1's with an equal number of each:

$$\{\varepsilon, 01, 10, 0011, 0101, 1100, \ldots\}$$

∅, {ε} 和 Σ* 都是任意字母表 Σ 上的语言, 但注意 ∅ ≠ {ε}

关于语言

唯一重要的约束就是所有字母表都是有穷的.

问题

典型问题

判断给定的字符串 w 是否属于某个具体的语言 L,

$$w \in L$$
?

- 任何所谓问题, 都可以转为语言成员性的问题
- 语言和问题其实是相同的

形式化证明: 演绎法, 归纳法和反证法

例 1. 若 x 和 y 是 Σ 上的字符串, 请证明 |xy| = |x| + |y|.

证明: 通过对 |y| 的归纳来证明

• 基础: 当 |y| = 0, 即 $y = \varepsilon$

$$|x\varepsilon| = |x|$$
 连接的定义 $= |x| + |\varepsilon|$ 长度的定义

② 递推: 假设 $|y| = n \ (n \ge 0)$ 时命题成立, 那么当 |y| = n + 1, 即 y = wa

$$|x(wa)| = |(xw)a|$$
 连接的定义
 $= |xw| + 1$ 长度的定义
 $= |x| + |w| + 1$ 归纳假设
 $= |x| + |wa|$ 长度的定义

形式化证明: 演绎法, 归纳法和反证法

例 1. 若 x 和 y 是 Σ 上的字符串, 请证明 |xy| = |x| + |y|.

证明: 通过对 y 的结构归纳来证明

基础: y = ε 时

$$|x\varepsilon| = |x|$$
 连接的定义 $= |x| + |\varepsilon|$ 长度的定义

② 递推: 假设 $y = w (w \in \Sigma^*)$ 时命题成立, 那么当 y = wa 时

$$|x(wa)| = |(xw)a|$$
 连接的定义 $= |xw| + 1$ 长度的定义 $= |x| + |w| + 1$ 归纳假设 $= |x| + |wa|$ 长度的定义

chunyu@hit.edu.cn
http://nclab.net/~chunyu

