Kurtis Evan David

kurtisdavid.github.io | kurtis.e.david@gmail.com

EDUCATION

UT AUSTIN

MS IN COMPUTER SCIENCE Thesis Advisor: Dr. Qiang Liu August 2020 | Austin, TX GPA: 3.83

UT AUSTIN

BS IN COMPUTER SCIENCE BS IN MATHEMATICS May 2019 | Austin, TX GPA: 3.92

COURSEWORK

GRADUATE

Combinatorics and Graph Theory Convex Optimization Deep Learning Seminar Deep Probabilistic Modeling Fair/Transparent Machine Learning Natural Language Processing Physical Simulation Programming Languages

UNDERGRADUATE

Algorithms and Complexity
Artificial Intelligence
Competitive Programming
Computer Graphics
Computer Vision
Data Mining
Machine Learning
Mathematical Modeling
Mathematical Statistics
Neural Networks
Numerical Methods
Software Engineering

SKILLS

PROGRAMMING

Python • C++ • C • SQL Matlab • Java • JavaScript R • Pine Script

FRAMEWORKS

PyTorch • Caffe2 • TensorFlow OpenGL • OpenCV

EXPERIENCE

HRL LABORATORIES | AI RESEARCH INTERN

July 2020 - October 2020 | Malibu, CA

- Focused on adversarial attacks on convolutional neural networks
- Investigated novel defenses through pruning and Fourier analysis to target robust/nonrobust features

INSTAGRAM | Software Engineering Intern

May 2019 - August 2019 | San Francisco, CA

- Developed new Stories ranking models, balancing Direct and Stories metrics
- Implemented neural network pruning and tested the Lottery Ticket Hypothesis on production ranking models

FACEBOOK, INC. | SOFTWARE ENGINEERING INTERN

May 2018 - Aug 2018 | Menlo Park, CA

- Developed new features for feed ads ranking model through big data pipelines
- Implemented new pooling layers in their neural network architectures using Caffe2

RESEARCH

UT STATISTICAL LEARNING AND AI | RESEARCH ASSISTANT

March 2019 - August 2020 | Austin, TX

- Supervised by **Prof. Qiang Liu** and **Dr. Ruth Fong**, with a focus on interpretability and fairness of neural networks. Master's Thesis: *Debiasing Convolutional Neural Networks via Meta Orthogonalization*.
- Developed and implemented explainable neural architectures, saliency map conditioning, interpretability method analysis, monotonic neural networks.

SELECTED COURSE PROJECTS

Links Provided

- Realistic Image Perturbation Distributions for Model Agnostic Anchors
- Bidirectional Decoding Schemes in Seq2Seq Learning for Machine Translation
- Kawaii Motion Capture to 3D Skeleton Animation

PUBLICATIONS

- [1] Kurtis Evan David, R. Fong, and Q. Liu. Debiasing convolutional neural networks via meta orthogonalization. In NeuRIPS Workshop on Algorithmic Fairness through the Lens of Causality and Interpretability, 2020.
- [2] Kurtis Evan David, H. Keane, and J. M. Noh. Ganchors: Realistic image perturbation distributions for anchors using generative models (arXiv Preprint), 2019.

SERVICE

Spring 2020	Graduate TA for Data Science Laboratory
Fall 2019	Graduate TA for Data Science Principles
Spring 2019	Undergraduate TA for Data Science Principles
Spring 2018	Undergraduate TA for Computer Organization and Architecture