

Table 14.4-8: SAR Values (WLAN - Head) - 802.11a 18Mbps

Frequ	uency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
56	5280	Left	Touch	1	15.45	15.5	0.130	0.13	0.335	0.34	0.03
56	5280	Left	Tilt	/	15.45	15.5	0.128	0.13	0.340	0.34	0.14
56	5280	Right	Touch	Fig.27	15.45	15.5	0.153	0.15	0.479	0.48	-0.06
56	5280	Right	Tilt	/	15.45	15.5	0.132	0.13	0.384	0.39	0.03
132	5660	Left	Touch	/	16.46	16.5	0.072	0.07	0.192	0.19	-0.13
132	5660	Left	Tilt	/	16.46	16.5	0.067	0.07	0.186	0.19	0.03
132	5660	Right	Touch	/	16.46	16.5	0.081	0.08	0.262	0.26	0.03
132	5660	Right	Tilt	/	16.46	16.5	0.069	0.07	0.210	0.21	0.06
128	5640	Left	Touch	/	16.79	17	0.023	0.02	0.075	0.08	0.13
165	5825	Left	Touch	/	16.79	17	0.021	0.02	0.071	0.07	0.06
165	5825	Left	Tilt	/	16.79	17	0.018	0.02	0.065	0.07	-0.12
165	5825	Right	Touch	/	16.79	17	0.016	0.02	0.052	0.05	0.04
165	5825	Right	Tilt	/	15.45	15.5	0.130	0.13	0.335	0.34	0.03

Table 14.4-9: SAR Values (WLAN - Body) - 802.11a 18Mbps

Table 1111 of 67 th Values (112/th Body) occinia follops										
Frequ	uency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	· ·		_	Power	_	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
56	5280	Front	/	16.46	16.5	0.047	0.05	0.127	0.13	0.00
56	5280	Rear	/	16.46	16.5	0.110	0.11	0.355	0.36	0.08
56	5280	Left	/	16.46	16.5	0.019	0.02	0.042	0.04	-0.04
56	5280	Right	/	16.46	16.5	0.015	0.02	0.045	0.05	0.07
56	5280	Тор	/	16.46	16.5	0.086	0.09	0.224	0.23	0.05
132	5660	Front	/	17.18	17.5	0.098	0.11	0.284	0.31	0.04
132	5660	Rear	/	17.18	17.5	0.107	0.12	0.302	0.33	-0.07
132	5660	Left	/	17.18	17.5	0.071	80.0	0.176	0.19	0.11
132	5660	Right	/	17.18	17.5	0.073	80.0	0.187	0.20	0.13
132	5660	Тор	Fig.28	17.18	17.5	0.169	0.18	0.467	0.50	-0.05
165	5825	Front	/	17.37	18	0.032	0.04	0.066	0.08	-0.05
165	5825	Rear	/	17.37	18	0.035	0.04	0.126	0.15	0.09
165	5825	Left	/	17.37	18	0.021	0.02	0.039	0.04	0.06
165	5825	Right	/	17.37	18	0.025	0.03	0.049	0.06	-0.12
165	5825	Тор	/	17.37	18	0.062	0.07	0.182	0.21	0.09

Note: The distance between the EUT and the phantom bottom is 10mm.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.4-10: SAR Values (WLAN - Head) - 802.11a 18Mbps (Scaled Reported SAR)

Frequ	Frequency		Test	Actual duty	maximum	Reported	Scaled reported
MHz	Ch.	Side	Position	factor	duty factor	SAR (1g) (W/kg)	SAR (1g) (W/kg)
5280	56	Right	Touch	85.29%	100%	0.48	0.56
5660	132	Right	Touch	87%	100%	0.26	0.30
5825	165	Left	Touch	86.93%	100%	0.08	0.09

Table 14.4-11: SAR Values (WLAN - Body) – 802.11a 18Mbps (Scaled Reported SAR)

Frequency		Test	D	Actual	maximum	Reported SAR	Scaled reported
MHz	Ch.	Position	(mm)	duty factor	duty factor	(1g) (W/kg)	SAR (1g) (W/kg)
5280	56	Rear	10	86.43%	100%	0.36	0.42
5660	132	Тор	10	87.44%	100%	0.50	0.57
5825	165	Тор	10	86.93%	100%	0.21	0.24

Picture 14.3 The plot of duty factor for U-NII-2A (Head)

Picture 14.4 The plot of duty factor for U-NII-2C (Head)

Picture 14.5 The plot of duty factor for U-NII-3 (Head)

Picture 14.6 The plot of duty factor for U-NII-2A (Body)

Picture 14.7 The plot of duty factor for U-NII-2C (Body)

Picture 14.8 The plot of duty factor for U-NII-3 (Body)

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body W1700 (1g)

Fred	luency	Toot	Specing	Original	First	The	Second
Ch.	MHz	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1537	1712.4	Rear	10	1.07	1.06	1.01	1

Table 15.2: SAR Measurement Variability for Body W1900 (1a)

Fred	quency	Test	Spacing	Original	First	The	Second
Ch.	MHz	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
9938	1907.6	Rear	10	1.08	1.06	1.02	1

Table 15.3: SAR Measurement Variability for Body LTE B2 (1g)

Frequ	ency		Test	Spacing	Original	First	The	Second
Ch.	MHz	Mode	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
19100	1900	1RB_Mid	Rear	10	1.03	1.02	1.01	1

Table 15.4: SAR Measurement Variability for Body LTE B7 (1g)

Frequ	ency		Test	Spacing	Original	First	The	Second
Ch.	MHz	Mode	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
21100	2535	1RB_High	Rear	10	0.808	0.801	1.01	1

Table 15.5: SAR Measurement Variability for Body LTE B66 (1g)

							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Freque	ency		Toot	Spacing	Original	First	The	Second
Ch.	MHz	Mode	Test Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
132072	1720	1RB_Mid	Rear	10	0.926	0.918	1.01	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

<u> </u>	6.1 Measurement Uncertainty for Normal SAR Tests (300MH2~3GH2)									
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	&
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	d	•		•		
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

	Combined standard uncertainty	$u_{c}^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
_	inded uncertainty fidence interval of	ı	$u_e = 2u_c$					19.1	18.9	
16.	2 Measurement Ui	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)			
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	d					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedom	
Mea	Measurement system										
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8	
			Test	sample related	1						
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
			Phan	tom and set-u	p						
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	

19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$= \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
Expanded uncertainty (confidence interval of 95 %)		1	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
	•		value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedom	
Meas	Measurement system										
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	&	
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	&	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8	
Test sample related											
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder	A	3.4	N	1	1	1	3.4	3.4	5	

©Copyright. All rights reserved by CTTL.

	uncertainty									
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$= \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
_	inded uncertainty Eidence interval of)	ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 24, 2018	One year	
02	Power meter	NRVD	102083	November 04, 2017	One yeer	
03	Power sensor	NRV-Z5	100542	November 01, 2017	One year	
04	Signal Generator	E4438C	MY49071430	January 2,2018	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 23, 2018	One year	
07	BTS	CMW500	149646	October 31, 2017	One year	
08	E-field Probe	SPEAG EX3DV4	7464	September 12,2017	One year	
09	DAE	SPEAG DAE4	1525	October 2, 2017	One year	
10	Dipole Validation Kit	SPEAG D750V3	1017	July 19, 2017	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 19, 2017	One year	
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 21, 2017	One year	
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 26, 2017	One year	
14	Dipole Validation Kit	SPEAG D2450V2	853	July 21, 2017	One year	
15	Dipole Validation Kit	SPEAG D2600V2	1012	July 21, 2017	One year	
16	Dipole Validation Kit	SPEAG D5GHzV2	1060	July 25, 2017	One year	

END OF REPORT BODY

ANNEX A Graph Results

850 Right Cheek High

Date: 2018-5-27

Electronics: DAE4 Sn1525 Medium: Head 850 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.901 \text{ mho/m}$; $\epsilon r = 41.93$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7464 ConvF(10.28, 10.28, 10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.373 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.901 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.340 W/kg; SAR(10 g) = 0.258 W/kgMaximum value of SAR (measured) = 0.374 W/kg

Fig.1 850MHz

Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2018-5-27

Electronics: DAE4 Sn1525 Medium: Body 850 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.993 \text{ mho/m}$; $\epsilon r = 55.76$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7464 ConvF(10.21, 10.21, 10.21)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.655 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.44 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.930 W/kg

SAR(1 g) = 0.544 W/kg; SAR(10 g) = 0.310 W/kgMaximum value of SAR (measured) = 0.676 W/kg

Fig.2 850 MHz

Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Right Cheek Middle

Date: 2018-5-28

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.446 \text{ mho/m}$; $\epsilon r = 40.71$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:2

Probe: EX3DV4– SN7464 ConvF(8.39, 8.39, 8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.247 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.724 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.292 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.115 W/kgMaximum value of SAR (measured) = 0.224 W/kg

Fig.3 1900 MHz

Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Rear High

Date: 2018-5-28

Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.594$ mho/m; $\epsilon r = 52.88$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2

Probe: EX3DV4– SN7464 ConvF(8.32, 8.32, 8.32)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.831 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.397 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.738 W/kg; SAR(10 g) = 0.387 W/kgMaximum value of SAR (measured) = 0.888 W/kg

Fig.4 1900 MHz

Fig. 4-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Right Cheek Middle

Date: 2018-5-27

Electronics: DAE4 Sn1525 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.889$ mho/m; $\epsilon r = 42.065$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28, 10.28, 10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.221 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.916 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.255 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.151 W/kg

Fig.5 WCDMA 850

Fig. 5-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Rear Low

Date: 2018-5-27

Electronics: DAE4 Sn1525 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.971$ mho/m; $\epsilon r = 55.956$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21, 10.21, 10.21)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.394 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.71 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.562 W/kg

SAR(1 g) = 0.328 W/kg; SAR(10 g) = 0.190 W/kgMaximum value of SAR (measured) = 0.401 W/kg

Fig.6 WCDMA 850

Fig. 6-1 Z-Scan at power reference point (WCDMA850)

WCDMA 1700 Left Cheek Low

Date: 2018-5-29

Electronics: DAE4 Sn1525 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.307$ mho/m; $\epsilon r = 40.677$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1750 Frequency: 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.70, 8.70, 8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.237 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.211 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.203 W/kg; SAR(10 g) = 0.129 W/kg Maximum value of SAR (measured) = 0.234 W/kg

Fig.7 WCDMA1700

Fig. 7-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Rear Low

Date: 2018-5-29

Electronics: DAE4 Sn1525 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.503$ mho/m; $\epsilon r = 53.618$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4–SN7464 ConvF(8.60, 8.60, 8.60)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.21 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.54 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.582 W/kgMaximum value of SAR (measured) = 1.32 W/kg

Fig.8 WCDMA1700

Fig. 8-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1900 Right Cheek Middle

Date: 2018-5-28

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.446 \text{ mho/m}$; $\epsilon r = 40.71$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4–SN7464 ConvF(8.39, 8.39, 8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.273 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.546 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.321 W/kg

SAR(1 g) = 0.210 W/kg; SAR(10 g) = 0.129 W/kgMaximum value of SAR (measured) = 0.249 W/kg

Fig.9 WCDMA1900

Fig. 9-1 Z-Scan at power reference point (WCDMA1900)