

Incerteza

- Situação geral:
 - Variáveis observadas (evidência): agente sabe algumas coisas do mundo (ex: sintomas, valor de sensores, etc.)
 - Variáveis não observadas: agente precisa raciocinar sobre outros aspectos (ex: onde o fantasma deve estar ou que doença o paciente tem, etc.)
 - Modelo: agente sabe algo sobre como as variáveis observadas se relacionam com as não observadas.

 Raciocínio probabilístico nos fornece um framework para lidar com nossas crenças (beliefs) e nosso conhecimento (knowledge).

Variáveis Aleatórias

- Um aspecto do mundo sobre o qual pode existir incerteza
 - R = Está chovendo?
 - T = Quente ou frio?
 - D = Distância até o trabalho?
 - L = Onde está o fantasma?

• Domínios

- R: {true, false} (usualmente, {+r, -r})
- T: {hot, cold}
- D: $[0, \infty)$
- L : posições possíveis, {(0,0), (0,1), ...}

Distribuição de probabilidade

• Temperatura:

P(T)

Т	Р
hot	0.5
cold	0.5

Tempo (clima):

P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Distribuição de probabilidade

• Variáveis aleatórias não observadas possuem distribuição

P(T)			
T P			
hot	0.5		
cold 0.5			

1 (V V)	
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

P(W)

Uma distribuição é uma TABELA de probabilidade de valores

 Uma probabilidade (letra minúscula por conveção) é um valor

$$P(W = rain) = 0.1$$

$$\forall x \ P(X=x) \ge 0$$

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

$$\sum_{x} P(X = x) = 1$$

Resumo sobre probabilidade

Probabilidade condicional

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Regra do produto

$$P(x,y) = P(x|y)P(y)$$

■ Regra da cadeia $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ = $\prod_{i=1}^{n} P(X_i|X_1, ..., X_{i-1})$

- X, Y são independentes se e somente se: $\forall x,y: P(x,y) = P(x)P(y)$ $X \perp\!\!\!\perp Y$
- X e Y são condicionalmente independentes dado Z se somențe se:

$$X \perp \!\!\!\perp Y | Z \qquad \forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$
$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Redes (de Crença) Bayesiana (BBN)

Redes (de Crença) Bayesiana (BBN)

BBN usada para modelar e prever o impacto da comercialização dos **Non-Timber Forest Product** (NTFP) (qualquer recurso biológico encontrado em florestas exceto madeira) em meios de subsistência.

Newton, A., et al. (2007). Use of a Bayesian belief network to predict the impacts of commercializing non-timber forest products on livelihoods. *Ecology and Society*, 11(2).

Semântica

- Conjunto de nós, um por variável
- Grafo acíclico direcionado
- Distribuição condicional para cada nó
 - Descrição de um processo causal ruidoso

$$P(X|A_1\ldots A_n)$$

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Rede bayesiana =

Topologia (grafo) + Probabilidades condicionais locais

Redes Bayesianas

• Como responder a consultas sobre a distribuição?

D-separation

Método para responder às consultas Estudo das propriedades de independência para triplas de variáveis

Cadeias causais

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

X independente de Z dado Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Sim!

Evidência na cadeia bloqueia a influência

Causa comum

Y: Projeto para casa

X: Movimentação do fórum de discussão

Z: Ocupação do laboratório

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

X e Z independente dado Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Sim!

 Observar a causa bloqueia influência entre efeitos.

Efeito comum (estruturas v)

- X e Y independentes?
 - Sim: Chuva e Jogo não são relacionados
- X e Y independentes dado Z?
 - Não: observar tráfego coloca Chuva e Jogo em competição pela explicação do raciocínio
- Observar um efeito ativa a influência entre causas possíveis

Caminhos ativos / inativos

- X e Y são condicionalmente independentes dadas as variáveis de evidência {Z}?
 - Sim, se X e Y são "d-separados" por Z
 - Dentre todos os caminhos (indiretos) de X à Y, se não houverem caminhos ativos = independência!

Caminhos ativos:

- Cadeia causal: $A \rightarrow B \rightarrow C$ com B não observado (qualquer direção)
- Causa comum: $A \leftarrow B \rightarrow C$ com B não observado
- Efeito comum: (estrutura v): A → B ← C com B ou um de seus descendentes ser observado

Triplas ativas

Triplas inativas

Exemplos

 $R \! \perp \! \! \perp \! \! B$ Sim

 $R \! \perp \! \! \! \perp \! \! B | T$ Não

 $R \! \perp \! \! \! \perp \! \! B | T'$ Não

Exemplos

	$L \! \perp \! \! \perp \! T'$	T	Sim
--	--------------------------------	---	-----

 $L \! \perp \! \! \! \perp \! \! B$ Sim

 $L \! \perp \! \! \! \perp \! \! B | T$ Não

 $L \! \perp \! \! \perp \! \! B | T, R$ Sim

Exemplo

 $T \! \perp \! \! \! \perp D$ Não

 $T \bot\!\!\!\bot D | R$ Sim

Inferência

- Calcular algo a partir de uma distribuição de probabilidade conjunta
 - Probabilidade posterior $P(Q|E_1=e_1,\ldots E_k=e_k)$
 - Explicação mais comum $\operatorname{argmax}_q P(Q=q|E_1=e_1\ldots)$

Exemplo: alarme

"Você possui um novo alarme contra ladrões em casa que é muito confiável na detecção de ladrões. Entretanto, ele também pode disparar caso ocorra um terremoto.

Você tem dois vizinhos, João e Maria, os quais prometeram telefonarlhe no trabalho caso o alarme dispare. João sempre liga quando ouve o alarme. Entretanto, algumas vezes confunde o alarme com o telefone e também liga nestes casos. Maria, por outro lado, gosta de ouvir música alta e às vezes não escuta o alarme."

Exemplo: alarme

Α	J	P(J A)
+a	+j	0.9
+a	ij.	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Е	P(E)
+e	0.002
Ψ	0.998

В	Е	A	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Video of Demo BN Applet

Exemplo: alarme

В	P(B)
+b	0.001
-b	0.999

В		
	人	
		>

Е	P(E)
+e	0.002
-e	0.998

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

	C	
(A)		
	Α	
	+a	-
	+a	,
(J) (M)	-a	-
	- a	

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) =$$

$$P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) =$$

$$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Inferência por enumeração

Caso geral:

- Variáveis de evidência: $E_1 \dots E_k = e_1 \dots e_k$ • Variável de consulta: Q• Variáveis escondidas: $H_1 \dots H_n$
- Queremos:

$$P(Q|e_1 \dots e_k)$$

 Passo 1: selecionar as entradas consistentes com as evidências Passo 2: Somatório em H para computar prob conjunta entre Q e E Passo 3: Normalizar

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

Inferência por enumeração

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

$$= \propto < 0.000593, 0.001492 >$$

Inferência por enumeração

$$P(M| +b, +a) = ?$$

