Name:	COMBN		
Signature:	•••••		

P525/1 Chemistry Paper 1 APRIL 2024 2 ¾ hours

UGANDA ADVANCED CERTIFICATE OF EDUCATION S.5 CHEMISTRY TEST TWO Paper 1 2 ³/₄ hours

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in section A and any six questions in section B
- All questions must be answered in the spaces provided
- The Periodic Table, with relative atomic masses, is supplied.
- Mathematical tables(3 figure tables) are adequate or non-programmable scientific electronic calculators may be used
- Illustrate your answers with equations where applicable.

Where necessary, use the following:

- Molar gas constant R = $8.31 \, \mathrm{JK}^{-1} \, \mathrm{mol}^{-1}$
- Molar volume of a gas at s.t.p is 22.4 litres.
- Standard temperature = 273 K
- Standard pressure = 101325 N m ⁻²

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

KIBUGO Page **1** of **20**

SECTION A

1. (a)	State Graham's law of diffusion.	(01 mark)
Under the	rtain volume of oxygen diffused through a porous same conditions, the same volume of a gas X diffus ne formula mass of X	
(c) S	tate one application of diffusion of gases	(01mark)
2. An o	rganic compound R has a structure; Br H ₂ C=CH ₂ C HCH ₂ COOH CH ₃	
(a)	Name any three functional groups present in R.	(03 marks)

KIBUGO Page 2 of 20

	(b)	Name the following organic compounds	
	(i)	CH_3CH_2Br	(01 mark)
	(ii)	Br CH3CH2CCH CH3 CH3	(01 mark)
	(iii)	CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃	(01 mark)
b) Wı	rite the	e structural formula of each of the following c	organic compound
(i)		2,3-dimethylbutane	(01 mark)
(ii)		3-bromo-2-chloropentane	(01 mark)
(iii)		4-ethyl-3,4-dimethylheptane	(01 mark)
	3. (a)	What is meant by first electron affinity?	(01 mark)
	••••••		

KIBUGO Page 3 of 20

(b) Write an equation for first electron affinity of oxygen. (01 mark) (C). The first electron affinity of oxygen is exothermic while the second				
4. The combustion of a hydrocarbon P gave 8.8g of comparer, if the molecular mass of P is 58. Determine the (a) Empirical formula of P $^{\rm P}$	_			
	••••••			
(b) Molecular formula of P				

KIBUGO Page 4 of 20

5. (a) The diagram below shows the isothermals of a gas.

KIBUGO Page 5 of 20

	thas a vapour der	•	_	a pressure of 101P	a.
b) Tn anatha			325.cm ³ voddo	l at 7ºc and pressur	
	Pa. Determine th	nen number	of moles of gas X	present under thos	se
7. Complete	the following equ	uations for 1	nuclear reactions.		
a.	²³⁹ ₉₄ Pu + ⁴ ₂ He —		+ ²⁷ ₁₃ Al	(01 mark)	
b.	²⁵⁰ ₉₈ Cf +		$^{257}_{103}Lw + 4^1_0n$	(01 mark)	
	•		ioactive decay of te the half-life o	protactinium f protactinium.(03m	ıks)
					•••••

KIBUGO Page 6 of 20

8.	(a)	What is meant by the following terms	
	(i) A	d-block element	(01 mark)
•••••	••••••		
	(ii)Aı	n orbital	(01 mark)
b) V	Vrite th	ne electronic configuration of the following	9
	(i) Bo	pron	(01 mark)
	(ii) A	luminium	(01 mark)
•••••			
(i) C	obalt	(01 mark)

9. The table below shows the first four successive ionisation energies of elements ${\bf A}$, ${\bf B}$, ${\bf C}$ and ${\bf D}$

Element	1 st I.E (KJmol ⁻¹)	2 nd I.E (KJmol ⁻¹)	3 rd I.E	4 th I.E
A	800	2400	3700	25000
В	900	1800	14800	21000
С	500	4600	6900	9500
D	1090	2400	4600	6200

KIBUGO Page 7 of 20

(a)	With reasons, state the group of the periodic table t element A belongs.	o which the
G	roup	(01 mark)
R	Reason	(02 marks)
(b)	State the formula of the oxide of B.	(01 mark)
	c) State the elements that belong to the same group in (01 mark)	the periodic
	<u>SECTION B</u> Attempt any <i>six</i> questions from this section	1.
10. (a) ((i) Distinguish between an ideal gas and a real gas	(02 marks)
(i	i) State two properties of an ideal gas (01mark)	

KIBUGO Page 8 of 20

(b) Explain how liquefication of a gas can be affected by(i) Pressure.	(1½ marks)
(ii)Temperature	(02 marks)
P (atm.)	the ideal behaviour O2 - H2 - CO2 - Ideal gas
(i) State why hydrogen shows a small deviation f behaviour compared to other gases. (01 mar	

KIBUGO Page 9 of 20

• •	a reason for your answ		lioxide from the ide $(1rac{1}{2}$ marks)	eal
11. (a) State two f	actors affecting stabil	ity of a nucleus	of an atom. (02mks	5)
				•••••
	of number of neutrons for different nuclei	against numbe	r of neutrons agains	5†

c). State r	now the to	ollowing nuclide can gain stability	
	(i)	Q	(01 mark)
	(ii)	R	(01 mark)
	(iii)	Р	(01 mark)
(d) State	two prope	rties of a stable nuclide	(02 marks)
12. Explair	n the follo	owing	
	(i)	the first ionisation energy of method that of aluminium.	nagnesium is higher than (03 marks)
	(ii)	the atomic radius of sodium ato ionic radius of sodium ion is 0.0	

KIBUGO Page 11 of 20

(iii) Potassium atom has a larger atomic radius than lithium	(03marks)
13 (a) Define a colligative property (01 mark)
(b) (i) State four colligative properties	(04 marks)
(ii) State two limitations of a colligative property.	(01 mark)
C) The lowering of vapour pressure of a solution of 108.2g of a su 1000g of water at 20°C is 24.790kPa. The vapour pressure of wate 2.338kPa. Calculate the relative molecular mass of X	
	•••••

KIBUGO Page 12 of 20

14. (a)Sta	ate Dalton's law of partial pressure of gases	c. (01 mark)
(b) W	hat is meant by the following terms?	
(i)	Partial pressure of a gas	(01 mark)
(ii)	Mole fraction of a gas	(01 mark)
1litre	2.0g of nitrogen, 0.4g of hydrogen and 9.0g vessel at a pressure of 22.4atm.calculate t ctive gases present in the vessel.	, -
••••••		

KIBUGO Page 13 of 20

15. (a) What is meant by the term atomic radius.	(01mark)
(b)Describe how atomic radius varies (i) Down a group.	(04 marks)
(i)Across a given period.	(04 marks)

KIBUGO Page 14 of 20

o. (a). Detine										
(i) Ro	adioactivity.		(01 mark)							
	•••••	•••••	•••••							
		•••••	••••••		•••••					
(ii).	Half life		(01mark)							
The table belo	w shows how t	he mass of rad	ioactive subst	ance R varies v	with time.					
Mass of R (g		38.5	26.0	17.2	11.1					
	.	40		100	110					
ime (minute:	s) 0	40	80	120	160					

(03 marks)

Plot a graph of mass of R against time.

KIBUGO Page 15 of 20

			I I I I I I I I I I I I I I I I I I I							District
							-			****
					******			11111		
			11111111111							
					*****			****	+++++++++++++++++++++++++++++++++++++++	+
							1.5			

								1111		
								2111		
										+
							-			
				77777777						
			DESCRIPTION OF THE PERSON NAMED IN COLUMN	2111111111						
										1111111
		1111111111			11111111111			11111		
		111111111						11111		
					111111111					
				1111111111		111111111111				
11 1111							10.11			
	· · · · · · · · · · · · · · · · · · ·		4			*****	11111			
						****	-			
		711111111	******	1211111111						
		711111111	11111111111	111111111	111111111					
	-	-	1			-				
										
				211111111						
		111111111111111111111111111111111111111								
										-
										-
		41 -4 0 +4 5	4 114 5 4 4 4 5 1					1 1 1 1		
				1000						
		4 1 4 1 4 1 1 1 1						1111		
211111111		4444444	41111111111	******	*****	5111111111				1111111
		33311 1331		11171	111111111					
		4444		11111111111						
		4 1 1 1 1 1 1 1								
				31211111		2111111111				
11111111		4444444	10000111111	*********	+++++					
						C-10				
		414444			111111111					
			11111111111							
			-							
										110000
				211111111	1111111111					

KIBUGO Page 16 of 20

(ii).Use	your graph to determine the half-life of R .	(01 mark)			
(iii).Calc	ulate the radioactive decay constant of R .	(01 mark)			
(c) Diff	erentiate between nuclear fission from nuclear fusion				
17. (a) What is meant by isomerism	(01 mark)			
(b)	Write short notes on the following types of structu	ral isomerism.			
(i)	Position isomerism	(O2marks)			

KIBUGO Page 17 of 20

(ii)	Functional group isomerism	(03 marks)
(iii)	Chain isomerism	(03 marks)
18. (a)	Define the term first ionisation energy.	(01 mark)
(b) \	Write an equation for the first ionisation energy of mo	agnesium.(01mk)
atom or io	how the following factors affect the value of ionisation. i) Electronic configuration of the atom or ion.	

KIBUGO Page 18 of 20

	(ii)	Nuclear charge				01 mark)
		ow shows the variatior he periodic table	in first io	nisation en	ergies of a	elements i
Element			F	Cl	Br	I
First ion	nisatior	n energy(KJmol ⁻¹)	1681	1255	1142	1007
(ii)	E×ţ	plain your trend in (c) (i) above.		(04 mar	ks)
•••••					•••••	•••••
•••••				••••	•••••	•••••
	•••••					
••••			•••••		•••••	•••••

END.

WELCOME TO S5 CHEMISTRY CLASS 2024.

KIBUGO Page 19 of 20

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1						do.			100							1.0 H 1	4.0 Ho 2
6.9 Li 3	9.0 Be 4											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 No 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	120000000000000000000000000000000000000	50.9 V 23	52.0 Cr 24				1	1	65.7 Zn 30		72.6 Ge 32	74.9 As 33	79.0 Se 34	79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75		192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89							100		4					1	l
Top-	\$3,273	i be	139 La 57	140 Ce 58		144 Nd 60		150 Sm 62					165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95				Es		Md	No	260 Lw 103

KIBUGO Page 20 of 20