Lyft-Uber-Price-Prediction

Nishtha Chaudhary

24 October 2019

IMPORTING DATASETS AND CLEANING THEM

Importing dataset cab rides

```
cab rides <- read.csv("C:/Users/nisht/Desktop/MITA/Fall/MVA/Final</pre>
Project/cab rides.csv")
summary(cab_rides)
##
       distance
                    cab type
                                     time stamp
##
   Min.
           :0.020
                    Lyft:307408
                                   Min.
                                          :1.543e+12
##
   1st Qu.:1.280
                    Uber:385663
                                   1st Qu.:1.543e+12
   Median :2.160
                                   Median :1.544e+12
##
   Mean
          :2.189
##
                                   Mean
                                          :1.544e+12
    3rd Qu.:2.920
##
                                   3rd Ou.:1.545e+12
##
   Max.
           :7.860
                                          :1.545e+12
##
                destination
##
                                                source
                                                                 price
    Financial District: 58851
                                Financial District: 58857
##
                                                             Min.
                                                                     : 2.50
##
   Theatre District : 57798
                                Theatre District : 57813
                                                             1st Qu.: 9.00
##
    Back Bay
                      : 57780
                                Back Bay
                                                   : 57792
                                                             Median :13.50
##
    Boston University: 57764
                                Boston University : 57764
                                                             Mean
                                                                     :16.55
##
    Haymarket Square : 57764
                                North End
                                                   : 57763
                                                             3rd Qu.:22.50
##
    Fenway
                      : 57757
                                Fenway
                                                   : 57757
                                                             Max.
                                                                     :97.50
    (Other)
                                                   :345325
##
                                                             NA's
                      :345357
                                 (Other)
                                                                     :55095
    surge multiplier
                                                         id
##
                     00005b8c-5647-4104-9ac6-94fa6a40f3c3:
##
   Min.
           :1.000
                                                                1
   1st Qu.:1.000
                     00006eeb-0183-40c1-8198-c441d3c8a734:
                                                                1
##
##
   Median :1.000
                     00008b42-5ecc-4f66-b4b9-b22a331634e6:
                                                                 1
                     000094c0-00c4-43f1-ae1b-4693eec2a580:
                                                                 1
##
   Mean
           :1.014
    3rd Qu.:1.000
                     0000a8b2-e4d3-4227-8374-af8a2366e475:
                                                                 1
##
                     0000b5d6-59be-4534-b371-8214334d94f0:
##
    Max.
           :3.000
##
                     (Other)
                                                          :693065
##
                                    product id
                                                          name
    6d318bcc-22a3-4af6-bddd-b409bfce1546: 55096
##
                                                   Black SUV: 55096
##
    6f72dfc5-27f1-42e8-84db-ccc7a75f6969: 55096
                                                   UberXL
                                                            : 55096
                                                            : 55096
##
    9a0e7b09-b92b-4c41-9779-2ad22b4d779d: 55096
                                                   WAV
##
    6c84fd89-3f11-4782-9b50-97c468b19529: 55095
                                                   Black
                                                            : 55095
    8cf7e821-f0d3-49c6-8eba-e679c0ebcf6a: 55095
                                                   Taxi
                                                            : 55095
    55c66225-fbe7-4fd5-9072-eab1ece5e23e: 55094
                                                   UberX
                                                            : 55094
   (Other)
                                                   (Other) :362499
```

Creating a date_time column

```
cab_data$date_time<-as.POSIXct((cab_data$time_stamp/1000),origin = "1970-01-
01 00:53:20", tz="GMT")</pre>
```

Importing dataset weather

```
weather <- read.csv("C:/Users/nisht/Desktop/MITA/Fall/MVA/Final</pre>
Project/weather.xls")
summary(weather)
##
      i..temp
                                 location
                                                clouds
## Min.
          :19.62
                   Back Bay
                                     : 523
                                            Min.
                                                   :0.0000
## 1st Qu.:36.08
                   Beacon Hill
                                     : 523
                                            1st Ou.:0.4400
## Median :40.13
                   Boston University : 523
                                            Median :0.7800
## Mean
         :39.09
                   Fenway
                                     : 523
                                            Mean
                                                   :0.6778
## 3rd Qu.:42.83
                   Financial District: 523
                                            3rd Qu.:0.9700
## Max.
         :55.41
                   Haymarket Square : 523
                                            Max.
                                                   :1.0000
##
                   (Other)
                                     :3138
##
      pressure
                         rain
                                     time stamp
                                                          humidity
## Min. : 988.2
                    Min.
                           :0.000
                                    Min.
                                           :1.543e+09
                                                       Min.
                                                              :0.450
##
   1st Qu.: 997.7
                    1st Ou.:0.005
                                    1st Qu.:1.543e+09
                                                       1st Qu.:0.670
## Median :1007.7
                    Median :0.015
                                    Median :1.544e+09
                                                       Median :0.760
## Mean
          :1008.4
                    Mean
                          :0.058
                                    Mean
                                           :1.544e+09
                                                       Mean
                                                              :0.764
## 3rd Qu.:1018.5
                    3rd Qu.:0.061
                                    3rd Qu.:1.545e+09
                                                       3rd Qu.:0.890
## Max.
                    Max.
                                    Max. :1.545e+09
          :1035.1
                          :0.781
                                                       Max.
                                                              :0.990
##
                    NA's
                           :5382
##
        wind
## Min.
          : 0.290
## 1st Qu.: 3.518
## Median : 6.570
## Mean
         : 6.803
   3rd Qu.: 9.920
##
## Max.
         :18.180
##
str(weather)
                   6276 obs. of 8 variables:
## 'data.frame':
## $ i..temp : num 42.4 42.4 42.5 42.1 43.1 ...
## $ location : Factor w/ 12 levels "Back Bay", "Beacon Hill",..: 1 2 3 4 5
6 7 8 9 10 ...
## $ clouds
               : num
                      1111111111...
## $ pressure
               : num
                      1012 1012 1012 1012 1012 ...
## $ rain
               : num
                      0.1228 0.1846 0.1089 0.0969 0.1786 ...
## $ time stamp: int 1545003901 1545003901 1545003901 1545003901 1545003901
1545003901 1545003901 1545003901 1545003901 1545003901 ...
```

```
## $ humidity : num 0.77 0.76 0.76 0.77 0.75 0.77 0.77 0.77 0.78 0.75 ...
## $ wind : num 11.2 11.3 11.1 11.5 ...
weather_data<-weather
```

creating a date_time column in weather_data

```
weather data$date time<-as.POSIXct(weather data$time stamp,origin = "1970-01-
01 00:53:20", tz="GMT")
str(weather_data)
## 'data.frame':
                   6276 obs. of 9 variables:
## $ i..temp : num 42.4 42.4 42.5 42.1 43.1 ...
## $ location : Factor w/ 12 levels "Back Bay", "Beacon Hill", ..: 1 2 3 4 5
6 7 8 9 10 ...
## $ clouds : num 1 1 1 1 1 1 1 1 1 ...
## $ pressure : num 1012 1012 1012 1012 1012 ...
## $ rain : num 0.1228 0.1846 0.1089 0.0969 0.1786 ...
## $ time stamp: int 1545003901 1545003901 1545003901 1545003901 1545003901
1545003901 1545003901 1545003901 1545003901 1545003901 ...
## $ humidity : num 0.77 0.76 0.76 0.77 0.75 0.77 0.77 0.77 0.78 0.75 ...
               : num 11.2 11.3 11.1 11.1 11.5 ...
## $ date_time : POSIXct, format: "2018-12-17 00:38:21" "2018-12-17
00:38:21" ...
```

merge the datasets to reflect the same time for a location

```
cab_data$merge_date<-paste(cab_data$source,"-",as.Date(cab_data$date_time),"-
",format(cab_data$date_time,"%H:%M:%S"))
weather_data$merge_date<-paste(weather_data$location,"-
",as.Date(weather_data$date_time),"-
",format(weather_data$date_time,"%H:%M:%S"))

#making those values as characters
weather_data$merge_date<-as.character(weather_data$merge_date)
cab_data$merge_date<-as.character(cab_data$merge_date)</pre>
```

verify that merge_date has unique values.

```
weather_data<-subset(weather_data,!duplicated(weather_data$merge_date))
isTRUE(duplicated(weather_data$merge_date))
## [1] FALSE</pre>
```

Merging both the dataframes.

```
merge_data<-merge(x=weather_data, y=cab_data,by='merge_date', all.x=TRUE)
str(merge_data)</pre>
```

```
## 'data.frame':
                  9306 obs. of 21 variables:
## $ merge date : chr "Back Bay - 2018-11-26 - 04:34:05" "Back Bay -
2018-11-26 - 05:34:13" "Back Bay - 2018-11-26 - 05:34:58" "Back Bay - 2018-
11-26 - 05:36:38" ...
                 : num 41 40.6 40.6 40.6 40.6 ...
## $ i..temp
## $ location
                   : Factor w/ 12 levels "Back Bay", "Beacon Hill", ...: 1 1
11111111...
## $ clouds
                   : num 0.87 0.86 0.86 0.86 0.86 0.95 0.95 0.94 0.93
0.93 ...
## $ pressure : num 1014 1014 1014 1014 ...
## $ rain
                   : num NA NA NA NA NA NA NA NA NA ...
## $ time_stamp.x : int 1543203645 1543207253 1543207298 1543207398
1543207398 1543207777 1543207777 1543208142 1543208578 1543209183 ...
## $ humidity : num 0.92 0.93 0.93 0.93 0.93 0.92 0.92 0.92
0.92 ...
              : num 1.46 2.57 2.59 2.65 2.65 2.59 2.59 2.83 3 3.01
## $ wind
## $ date time.x : POSIXct, format: "2018-11-26 04:34:05" "2018-11-26
05:34:13" ...
## $ distance : num NA NA 1.44 1.36 1.22 1.34 1.1 NA NA NA ...
                   : Factor w/ 2 levels "Lyft", "Uber": NA NA 2 1 2 2 2 NA
## $ cab type
NA NA ...
## $ time_stamp.y
                   : num NA NA 1.54e+12 1.54e+12 1.54e+12 ...
## $ destination : Factor w/ 12 levels "Back Bay", "Beacon Hill",..: NA
NA 3 10 9 4 9 NA NA NA ...
                    : Factor w/ 12 levels "Back Bay", "Beacon Hill",..: NA
## $ source
NA 1 1 1 1 1 NA NA NA ...
## $ price
                     : num NA NA 8.5 16.5 NA 26.5 7.5 NA NA NA ...
## $ surge multiplier: num NA NA 1 1 1 1 1 NA NA NA ...
                    : Factor w/ 693071 levels "00005b8c-5647-4104-9ac6-
## $ id
94fa6a40f3c3",..: NA NA 548701 610037 513190 566219 94420 NA NA NA ...
## $ product id : Factor w/ 13 levels "55c66225-fbe7-4fd5-9072-
eab1ece5e23e",..: NA NA 7 10 5 3 1 NA NA NA ...
                   : Factor w/ 13 levels "Black", "Black SUV", ...: NA NA 13
## $ name
4 9 2 11 NA NA NA ...
## $ date_time.y : POSIXct, format: NA NA ...
```

Handling Missing values

```
#Filling NA values in price
merge_data$rain[is.na(merge_data$rain)]<-0

#Extracting the numerical columns in a new dataframe "df"
merge_data$temp<-merge_data[,c(2)] #renaming a column
df<-merge_data[,c(4,5,6,8,9,10,11,17,22,16)]

#Data preparation
#Dealing with missing values
summary(merge_data)</pre>
```

```
##
     merge_date
                                                             location
                           ï..temp
                                                                  : 843
##
    Length:9306
                        Min.
                                :19.62
                                         Haymarket Square
##
    Class :character
                        1st Qu.:36.74
                                         North Station
                                                                  : 801
                                                                  : 800
##
    Mode :character
                        Median :39.73
                                         Theatre District
##
                        Mean
                               :39.12
                                         Northeastern University: 788
##
                        3rd Qu.:41.86
                                         North End
                                                                  : 772
##
                        Max.
                               :55.41
                                         Fenway
                                                                  : 771
##
                                         (Other)
                                                                  :4531
##
        clouds
                         pressure
                                             rain
                                                            time stamp.x
##
    Min.
           :0.0000
                      Min.
                             : 988.2
                                                :0.00000
                                                           Min.
                                                                   :1.543e+09
                                        Min.
##
    1st Qu.:0.4500
                      1st Qu.: 992.2
                                        1st Qu.:0.00000
                                                           1st Qu.:1.543e+09
    Median :0.7700
                                        Median :0.00000
##
                      Median :1002.2
                                                           Median :1.543e+09
##
    Mean
           :0.6799
                             :1005.2
                                                           Mean
                                                                   :1.544e+09
                      Mean
                                        Mean
                                                :0.01197
##
    3rd Qu.:0.9700
                      3rd Qu.:1014.4
                                        3rd Qu.:0.00000
                                                           3rd Qu.:1.544e+09
##
    Max.
           :1.0000
                              :1035.1
                                                :0.78070
                                                                   :1.545e+09
                      Max.
                                        Max.
                                                           Max.
##
##
       humidity
                           wind
                                         date time.x
##
                      Min.
    Min.
           :0.4500
                             : 0.290
                                                :2018-11-26 04:34:04
                                        Min.
    1st Qu.:0.6700
##
                      1st Ou.: 4.183
                                        1st Ou.:2018-11-28 01:38:42
##
    Median :0.7500
                      Median : 7.490
                                        Median :2018-11-28 23:55:29
##
    Mean
           :0.7623
                             : 7.212
                                        Mean
                                                :2018-12-01 23:49:51
                      Mean
##
    3rd Qu.:0.8800
                      3rd Qu.: 9.990
                                        3rd Ou.:2018-12-02 09:31:14
##
           :0.9900
                                                :2018-12-18 19:38:22
    Max.
                      Max.
                             :18.180
                                        Max.
##
##
                                                                    destination
       distance
                     cab type
                                   time stamp.y
##
    Min.
           :0.020
                     Lyft:1732
                                  Min.
                                         :1.543e+12
                                                       Fenway
                                                                          : 344
    1st Qu.:1.250
##
                     Uber:2134
                                  1st Qu.:1.543e+12
                                                       Financial District: 342
    Median :2.140
                     NA's:5440
##
                                  Median :1.543e+12
                                                       Back Bay
                                                                          : 337
##
    Mean
                                                       Beacon Hill
                                                                          : 335
           :2.168
                                  Mean
                                         :1.543e+12
##
    3rd Qu.:2.947
                                  3rd Qu.:1.543e+12
                                                       South Station
                                                                          : 334
##
           :7.460
                                         :1.545e+12
                                                                          :2174
    Max.
                                  Max.
                                                       (Other)
##
    NA's
           :5440
                                  NA's
                                         :5440
                                                       NA's
                                                                          :5440
##
                         source
                                         price
                                                      surge multiplier
##
    Haymarket Square
                            : 392
                                     Min.
                                            : 2.50
                                                      Min.
                                                             :1.000
    North Station
##
                             : 351
                                     1st Qu.: 9.00
                                                      1st Qu.:1.000
                            : 344
##
    Theatre District
                                     Median :13.50
                                                      Median :1.000
##
    Northeastern University: 329
                                     Mean
                                            :16.67
                                                      Mean
                                                             :1.018
##
    North End
                            : 316
                                     3rd Qu.:22.50
                                                      3rd Qu.:1.000
##
    (Other)
                            :2134
                                     Max.
                                            :92.00
                                                      Max.
                                                              :2.000
##
    NA's
                            :5440
                                     NA's
                                            :5758
                                                      NA's
                                                              :5440
##
                                         id
##
    000baa63-5e1c-4f9d-891c-e4e78e830199:
                                              1
##
    002b15bc-b433-44a4-8174-b8ac95caebf8:
                                              1
    00423464-fb1b-4e96-9154-b55a00854181:
                                               1
##
    00552d6f-c5fa-4006-962a-4613097afabe:
##
                                               1
##
    005ca94d-9dad-4b34-a8ce-82a6de9058b4:
                                              1
##
    (Other)
                                          :3861
##
    NA's
                                          :5440
##
                                     product_id
                                                          name
##
    8cf7e821-f0d3-49c6-8eba-e679c0ebcf6a: 318
                                                   Taxi
                                                         : 318
```

```
6d318bcc-22a3-4af6-bddd-b409bfce1546: 308
                                                 Black SUV: 308
##
   6c84fd89-3f11-4782-9b50-97c468b19529: 307
                                                 Black
                                                          : 307
   6f72dfc5-27f1-42e8-84db-ccc7a75f6969: 306
##
                                                 UberPool: 306
##
    997acbb5-e102-41e1-b155-9df7de0a73f2: 306
                                                 UberXL
                                                          : 306
##
    (Other)
                                         :2321
                                                 (Other)
                                                          :2321
##
    NA's
                                         :5440
                                                 NA's
                                                          :5440
##
     date time.y
                                        temp
           :2018-11-26 04:34:06
                                  Min.
## Min.
                                          :19.62
    1st Qu.:2018-11-27 03:08:42
                                   1st Qu.:36.74
##
   Median :2018-11-28 14:25:28
                                  Median :39.73
##
   Mean
           :2018-11-28 08:15:46
                                  Mean
                                          :39.12
    3rd Qu.:2018-11-29 00:42:54
##
                                   3rd Qu.:41.86
##
   Max.
           :2018-12-16 20:38:27
                                  Max.
                                          :55.41
##
   NA's
           :5440
summary(df)
##
        clouds
                        pressure
                                            rain
                                                            humidity
##
   Min.
                            : 988.2
                                      Min.
                                              :0.00000
                                                         Min.
                                                                :0.4500
           :0.0000
                     Min.
##
    1st Qu.:0.4500
                     1st Qu.: 992.2
                                      1st Qu.:0.00000
                                                         1st Qu.:0.6700
## Median :0.7700
                     Median :1002.2
                                      Median :0.00000
                                                         Median :0.7500
##
   Mean
           :0.6799
                     Mean
                            :1005.2
                                      Mean
                                              :0.01197
                                                         Mean
                                                                :0.7623
    3rd Qu.:0.9700
                     3rd Qu.:1014.4
                                       3rd Qu.:0.00000
                                                         3rd Qu.:0.8800
           :1.0000
                            :1035.1
## Max.
                     Max.
                                      Max.
                                              :0.78070
                                                         Max.
                                                                :0.9900
##
                                                       distance
##
         wind
                      date time.x
           : 0.290
                            :2018-11-26 04:34:04
                                                    Min.
## Min.
                     Min.
                                                           :0.020
##
   1st Qu.: 4.183
                     1st Qu.:2018-11-28 01:38:42
                                                    1st Qu.:1.250
   Median : 7.490
                                                    Median :2.140
##
                     Median :2018-11-28 23:55:29
##
   Mean
           : 7.212
                            :2018-12-01 23:49:51
                                                    Mean
                     Mean
                                                           :2.168
    3rd Qu.: 9.990
                     3rd Qu.:2018-12-02 09:31:14
                                                    3rd Qu.:2.947
##
##
   Max.
           :18.180
                            :2018-12-18 19:38:22
                                                    Max.
                                                           :7.460
                                                    NA's
##
                                                           :5440
##
    surge multiplier
                          temp
                                          price
                     Min.
##
   Min.
           :1.000
                            :19.62
                                     Min.
                                            : 2.50
##
   1st Qu.:1.000
                     1st Qu.:36.74
                                      1st Qu.: 9.00
## Median :1.000
                     Median :39.73
                                     Median :13.50
                     Mean
                            :39.12
##
   Mean
           :1.018
                                     Mean
                                             :16.67
##
    3rd Ou.:1.000
                     3rd Ou.:41.86
                                      3rd Ou.:22.50
##
   Max.
           :2.000
                     Max.
                            :55.41
                                      Max.
                                             :92.00
##
   NA's
           :5440
                                     NA's
                                             :5758
merge data$surge multiplier = ifelse(is.na(merge data$surge multiplier),
                                      ave(merge data$surge multiplier , FUN =
function(x) mean(x, na.rm = TRUE)),
                                      merge_data$surge_multiplier)
merge_data$price = ifelse(is.na(merge_data$price),
                          ave(merge_data$price , FUN = function(x) mean(x,
na.rm = TRUE)),
```

Checking for null values

```
any(is.na(df))
## [1] FALSE
```

Adding date and time column in the df data set

```
df$day<-weekdays(df$date_time)
df$time<-format(df$date_time.x,"%H:%M:%S")
df$date_time<-as.Date(df$date_time.x)
merge_data$day=weekdays(merge_data$date_time.x)</pre>
```

Creating a Numeric dataframe

```
x<-df[,c(1,2,3,4,5,7,9)]
str(x)

## 'data.frame': 9306 obs. of 7 variables:
## $ clouds : num  0.87 0.86 0.86 0.86 0.95 0.95 0.94 0.93 0.93 ...
## $ pressure: num  1014 1014 1014 1014 ...
## $ rain : num  0 0 0 0 0 0 0 0 0 ...
## $ humidity: num  0.92 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92 ...
## $ wind : num  1.46 2.57 2.59 2.65 2.65 2.59 2.59 2.83 3 3.01 ...
## $ distance: num  2.17 2.17 1.44 1.36 1.22 ...
## $ temp : num  41 40.6 40.6 40.6 40.6 ...</pre>
```

BOXPLOT

```
boxplot(x$temp, main="Temperature Box plot",yaxt="n", xlab="Temperature",
horizontal=TRUE)
```

Temperature Box plot

boxplot(x\$pressure, main="Pressure Box plot",yaxt="n", xlab="Pressure",
horizontal=TRUE)

Pressure Box plot

boxplot(x\$humidity, main="Humidity Box plot",yaxt="n", xlab="Humidity",
horizontal=TRUE)

Humidity Box plot

boxplot(x\$wind, main="Wind Box plot",yaxt="n", xlab="Wind", horizontal=TRUE)

Wind Box plot

boxplot(x\$distance, main="Wind Box plot",yaxt="n", xlab="Wind",
horizontal=TRUE)

Wind Box plot

#Q-Q Plot to check normality..

```
library(rcompanion)
## Warning: package 'rcompanion' was built under R version 3.5.3
plotNormalHistogram(x$pressure)
```



```
qqnorm(df$pressure)
qqline(df$pressure, col="red")
```


plotNormalHistogram(x\$humidity)


```
qqnorm(df$humidity)
qqline(df$humidity, col="red")
```


plotNormalHistogram(x\$wind)


```
qqnorm(df$wind)
qqline(df$wind, col="red")
```


plotNormalHistogram(x\$distance)

qqnorm(df\$distance)
qqline(df\$distance)

plotNormalHistogram(x\$temp)


```
qqnorm(df$temp)
qqline(df$temp, col="red")
```


Deviation from normality can be observed in our variables. Let's check for multivariate analysis using chi-squre plot

CORRELATION, COVARIANCE AND DISTANCE

```
#We are calculating for: clouds, pressure, rain, humidity, wind, distance,
surge_multiplier, temp, price
covariance<-cov(x) #variamce-covariance matrix created
correlation<-cor(x) #standardized
#colmeans
cm<-colMeans(x)
distance<-dist(scale(x,center=FALSE))
#Calculating di(generalized distance for all observations of our data)
d <- apply(x, MARGIN = 1, function(x) + t(x - cm) %*% solve(covariance) %*%
(x - cm))</pre>
```

The sorted distance are now plotted against the appropriate quantiles of the chi-distribution

```
plot(qc <- qchisq((1:nrow(x) - 1/2) / nrow(x), df = 5), sd <- sort(d),xlab =
expression(paste(chi[5]^2, " Quantile")),ylab = "Ordered distances")
oups <- which(rank(abs(qc - sd), ties = "random") > nrow(x) - 5)
```

```
text(qc[oups], sd[oups] - 1.5,oups)
abline(a=0,b=1,col="red")
```


#Our observations seems to deviate from linearity after a certain point

There is a complete deviation from Normality. We will apply the log transformation on our dataset.

```
#x_new<-x+1
#x_new=log(x - (min(x) - 1))
x_new<-log(x[,c(2,4,5,6,7)])

covariance<-cov(x_new) #variamce-covariance matrix created
correlation<-cor(x_new) #standardized
#colmeans
cm<-colMeans(x_new)
distance<-dist(scale(x_new,center=FALSE))
#Calculating di(generalized distance for all observations of our data)
d <- apply(x_new, MARGIN = 1, function(x_new) + t(x_new - cm) %*%
solve(covariance) %*% (x_new - cm))

plot(qc <- qchisq((1:nrow(x_new) - 1/2) / nrow(x_new), df = 6), sd <-
sort(d),xlab = expression(paste(chi[6]^2, " Quantile")),ylab = "Ordered distances")
oups <- which(rank(abs(qc - sd), ties = "random") > nrow(x) - 6)
```

```
text(qc[oups], sd[oups] - 1.5,oups)
abline(a=0,b=1,col="red")
```


We have normalized the data..

Pca || T-test || F-test

Get the Correlations between the measurements

```
cor(x_new)
##
             pressure
                         humidity
                                       wind
                                               distance
                                                              temp
## pressure 1.00000000 0.037667720 -0.57053758 0.091084564 -0.190802751
## humidity 0.03766772 1.000000000 -0.34918388 0.007457245 0.342394254
## wind
          -0.57053758 -0.349183876 1.00000000 -0.036561758 0.107101055
## distance 0.09108456 0.007457245 -0.03656176 1.000000000 -0.002908013
## temp
          sapply(x_new, sd, na.rm = TRUE)
##
    pressure
              humidity
                           wind
                                  distance
                                               temp
## 0.01242771 0.16241660 0.67116505 0.39696563 0.14798758
#There are not considerable differences between these standard deviations..
Still let's see the PCAs.
```

Using prcomp to compute the principal components (eigenvalues and eigenvectors).

With scale=TRUE, variable means are set to zero, and variances set to one

```
x_pca <- prcomp(x_new,scale=TRUE)</pre>
x_pca
## Standard deviations (1, .., p=5):
## [1] 1.3050862 1.1732928 0.9966622 0.7718227 0.5754028
##
## Rotation (n \times k) = (5 \times 5):
                   PC1
                               PC2
                                           PC3
                                                       PC4
                                                                    PC5
##
## pressure -0.6258199 0.23938719 -0.01737613 0.51939957 -0.53006170
## humidity -0.3194217 -0.65993093 -0.04083935 -0.52331376 -0.43236070
## wind
            0.6908793  0.04300622  0.11994313  0.09716528  -0.70498852
## distance -0.1208578 0.04613105 0.98636820 -0.09381744 0.03926031
            0.1199934 -0.70937108 0.10354529 0.66190935 0.18316287
## temp
summary(x_pca)
## Importance of components:
                             PC1
                                    PC2
                                           PC3
                                                  PC4
## Standard deviation
                          1.3051 1.1733 0.9967 0.7718 0.57540
## Proportion of Variance 0.3407 0.2753 0.1987 0.1191 0.06622
## Cumulative Proportion 0.3407 0.6160 0.8146 0.9338 1.00000
#x pca$rotation
```

We see that the first four components account for nearly 80% of the total variance.

sample scores stored in x_pca\$x # singular values (square roots of eigenvalues) stored in x_pca\$sdev

loadings (eigenvectors) are stored in x_pca\$rotation # variable means stored in x_pca\$center

variable standard deviations stored in x pca\$scale

A table containing eigenvalues and %'s accounted, follows

Eigenvalues are sdev^2

```
(eigen_x <- x_pca$sdev^2)</pre>
## [1] 1.7032500 1.3766159 0.9933355 0.5957103 0.3310884
names(eigen_x) <- paste("PC",1:5,sep="")</pre>
eigen_x
##
         PC1
                    PC2
                               PC3
                                          PC4
                                                     PC5
## 1.7032500 1.3766159 0.9933355 0.5957103 0.3310884
sumlambdas <- sum(eigen x)</pre>
sumlambdas #total sample variance
## [1] 5
propvar <- eigen x/sumlambdas</pre>
propvar
                      PC2
                                  PC3
##
          PC1
                                              PC4
## 0.34065000 0.27532318 0.19866709 0.11914205 0.06621768
cumvar_x <- cumsum(propvar)</pre>
cumvar_x
##
         PC1
                    PC2
                               PC3
                                          PC4
                                                     PC5
## 0.3406500 0.6159732 0.8146403 0.9337823 1.0000000
matlambdas <- rbind(eigen_x,propvar,cumvar_x)</pre>
rownames(matlambdas) <- c("Eigenvalues", "Prop. variance", "Cum. prop.</pre>
```

Sample scores stored in x_pca\$x

We need to calculate the scores on each of these components for each individual in our sample.

```
#x pca$x
xtyp_pca <- cbind(data.frame(df$price),x_pca$x)</pre>
str(xtyp pca)
                   9306 obs. of 6 variables:
## 'data.frame':
## $ df.price: num 16.7 16.7 8.5 16.5 16.7 ...
## $ PC1
           : num -2.29 -1.73 -1.6 -1.56 -1.52 ...
## $ PC2
             : num -1.003 -0.967 -1.014 -1.017 -1.029 ...
## $ PC3
            : num -0.1144 -0.0228 -1.0382 -1.1765 -1.4464 ...
## $ PC4
            : num -0.225 -0.232 -0.134 -0.12 -0.094 ...
## $ PC5
            : num 0.647 0.021 -0.0276 -0.0579 -0.0686 ...
#xtyp pca
```

Merging price column

```
colnames(xtyp_pca)[colnames(xtyp_pca)=="df.price"] <- "price"
str(xtyp_pca)

## 'data.frame': 9306 obs. of 6 variables:
## $ price: num 16.7 16.7 8.5 16.5 16.7 ...
## $ PC1 : num -2.29 -1.73 -1.6 -1.56 -1.52 ...
## $ PC2 : num -1.003 -0.967 -1.014 -1.017 -1.029 ...
## $ PC3 : num -0.1144 -0.0228 -1.0382 -1.1765 -1.4464 ...
## $ PC4 : num -0.225 -0.232 -0.134 -0.12 -0.094 ...
## $ PC5 : num 0.647 0.021 -0.0276 -0.0579 -0.0686 ...</pre>
```

Sample scores stoted. x_pca\$x

T-Test— We see that true difference in all the means is different from zero.

```
t.test(xtyp_pca$PC1,xtyp_pca$price,var.equal = TRUE)
```

```
##
##
  Two Sample t-test
##
## data: xtyp_pca$PC1 and xtyp_pca$price
## t = -265.73, df = 18610, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to \theta
## 95 percent confidence interval:
## -16.79675 -16.55077
## sample estimates:
##
       mean of x
                     mean of y
## -1.534642e-14 1.667376e+01
t.test(xtyp_pca$PC2,xtyp_pca$price,var.equal = TRUE)
##
##
   Two Sample t-test
##
## data: xtyp_pca$PC2 and xtyp_pca$price
## t = -266.92, df = 18610, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -16.79620 -16.55132
## sample estimates:
      mean of x
                   mean of y
## 4.850155e-15 1.667376e+01
t.test(xtyp_pca$PC3,xtyp_pca$price,var.equal = TRUE)
##
##
   Two Sample t-test
## data: xtyp pca$PC3 and xtyp pca$price
## t = -268.34, df = 18610, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -16.79555 -16.55197
## sample estimates:
       mean of x
                     mean of v
## -3.485127e-16 1.667376e+01
t.test(xtyp pca$PC4,xtyp pca$price,var.equal = TRUE)
##
  Two Sample t-test
##
## data: xtyp pca$PC4 and xtyp pca$price
## t = -269.84, df = 18610, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -16.79488 -16.55264
## sample estimates:
```

```
mean of x mean of v
## 1.371754e-14 1.667376e+01
t.test(xtyp_pca$PC5,xtyp_pca$price,var.equal = TRUE)
##
## Two Sample t-test
##
## data: xtyp_pca$PC5 and xtyp_pca$price
## t = -270.85, df = 18610, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -16.79443 -16.55309
## sample estimates:
      mean of x
                     mean of y
## -1.304992e-14 1.667376e+01
#F-Test #Testing Variation
```

Variance Test-Test for variance

```
var.test(xtyp_pca$PC1,xtyp_pca$price)
##
## F test to compare two variances
##
## data: xtyp_pca$PC1 and xtyp_pca$price
## F = 0.048752, num df = 9305, denom df = 9305, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.04681082 0.05077444
## sample estimates:
## ratio of variances
           0.04875236
var.test(xtyp_pca$PC2,xtyp_pca$price)
##
## F test to compare two variances
##
## data: xtyp_pca$PC2 and xtyp_pca$price
## F = 0.039403, num df = 9305, denom df = 9305, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03783386 0.04103737
## sample estimates:
## ratio of variances
           0.03940307
##
var.test(xtyp_pca$PC3,xtyp_pca$price)
```

```
##
## F test to compare two variances
##
## data: xtyp_pca$PC3 and xtyp_pca$price
## F = 0.028432, num df = 9305, denom df = 9305, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02730007 0.02961165
## sample estimates:
## ratio of variances
          0.02843238
var.test(xtyp_pca$PC4,xtyp_pca$price)
##
## F test to compare two variances
##
## data: xtyp_pca$PC4 and xtyp_pca$price
## F = 0.017051, num df = 9305, denom df = 9305, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.01637204 0.01775832
## sample estimates:
## ratio of variances
           0.0170511
##
var.test(xtyp_pca$PC5,xtyp_pca$price)
##
## F test to compare two variances
## data: xtyp pca$PC5 and xtyp pca$price
## F = 0.0094768, num df = 9305, denom df = 9305, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.009099379 0.009869852
## sample estimates:
## ratio of variances
          0.009476789
##
```

Plotting the scores of Pricipal Component 1 and Principal component 2

```
plot(xtyp_pca$PC1, xtyp_pca$PC2,xlab="PC1:", ylab="PC2")
abline(h=0)
abline(v=0)
```


Plotting the Variance of Principal Components

plot(eigen_x, xlab = "Component number", ylab = "Component variance", type =
"l", main = "Scree diagram")

Scree diagram

#Plotting the Log

variance of COmponents

```
plot(log(eigen_x), xlab = "Component number",ylab = "log(Component
variance)", type="l",main = "Log(eigenvalue) diagram")
```

Log(eigenvalue) diagram

#Variance of the

principal components

```
#View(x_pca)
diag(cov(x_pca$x))

## PC1 PC2 PC3 PC4 PC5

## 1.7032500 1.3766159 0.9933355 0.5957103 0.3310884

#x_pca$x[,1]

#x_pca$x
```

Plotting the scores

```
xlim <- range(x_pca$x[,1])
plot(x_pca$x,xlim=xlim,ylim=xlim)</pre>
```


#x_pca\$rotation[,1]
#x_pca\$rotation

Scatter plot matrix of the actual data plot(x_new)

Variance plot for each component. We can see that all components play a dominant role.

plot(x_pca)

pairs(x_pca\$x[,1:5], ylim = c(-6,4),xlim = c(-6,4),panel=function(x,y,...){text(x,y,x_new\$price)})

CLuster Analysis

```
#install.packages("cluster",
#lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/Library")
library(cluster)
## Warning: package 'cluster' was built under R version 3.5.3
```

Pulling the numerical variables in the "Cluster" dataframe. Scaling the values..

```
cluster <- df[,c(1,2,4,5,7,9)]
matstd.cluster <- scale(cluster)
dim(matstd.cluster)
## [1] 9306 6</pre>
```

Calculating the distance between all observations..

```
dist.cluster <- dist(matstd.cluster, method="euclidean")
length(dist.cluster)
## [1] 43296165</pre>
```

Invoking hclust command (cluster analysis by single linkage method)

```
hclust_cluster <- hclust(dist.cluster, method = "single")
par(mar=c(6, 4, 4, 2) + 0.1)
plot(as.dendrogram(hclust_cluster),ylab="Distance between weather
conditions",ylim=c(0,2.5),main="Dendrogram of weather conditions")</pre>
```


K-means Clustering for k=2 and then computing the percentage variance

```
#attach(cluster)
matstd.cluster <- scale(cluster)
# Computing the percentage of variation accounted for. Two clusters
kmeans2.cluster <- kmeans(matstd.cluster,2,nstart = 10)
perc.var.2 <- round(100*(1 -
kmeans2.cluster$betweenss/kmeans2.cluster$totss),1)
names(perc.var.2) <- "Perc. 2 clus"
perc.var.2
## Perc. 2 clus
## 75.4</pre>
```

Computing the percentage of variation accounted for. Three clusters

```
kmeans3.cluster <- kmeans(matstd.cluster,3,nstart = 10)
perc.var.3 <- round(100*(1 -
kmeans3.cluster$betweenss/kmeans3.cluster$totss),1)
names(perc.var.3) <- "Perc. 3 clus"
perc.var.3
## Perc. 3 clus
## 58.3</pre>
```

Computing the percentage of variation accounted for. Four clusters

```
kmeans4.cluster <- kmeans(matstd.cluster,4,nstart = 10)
perc.var.4 <- round(100*(1 -
kmeans4.cluster$betweenss/kmeans4.cluster$totss),1)
names(perc.var.4) <- "Perc. 4 clus"
perc.var.4
## Perc. 4 clus
## 50.9</pre>
```

Computing the percentage of variation accounted for. Five clusters

```
kmeans5.cluster <- kmeans(matstd.cluster,5,nstart = 10)
perc.var.5 <- round(100*(1 -
kmeans5.cluster$betweenss/kmeans5.cluster$totss),1)
names(perc.var.5) <- "Perc. 5 clus"
perc.var.5
## Perc. 5 clus
## 44.5</pre>
```

Computing the percentage of variation accounted for. Six clusters

```
kmeans6.cluster <- kmeans(matstd.cluster,6,nstart = 10)
perc.var.6 <- round(100*(1 -
kmeans6.cluster$betweenss/kmeans6.cluster$totss),1)
names(perc.var.6) <- "Perc. 6 clus"
perc.var.6
## Perc. 6 clus
## 38.7</pre>
```

plots to compare

```
#install.packages("VIM")
library(VIM)

## Warning: package 'VIM' was built under R version 3.5.3

## Loading required package: colorspace

## Loading required package: grid

## Loading required package: data.table

## VIM is ready to use.

## Since version 4.0.0 the GUI is in its own package VIMGUI.

##

## Please use the package to use the new (and old) GUI.
```

```
## Suggestions and bug-reports can be submitted at:
https://github.com/alexkowa/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
##
       sleep
#install.packages("tidyverse")
library(tidyverse) # data manipulation
## Warning: package 'tidyverse' was built under R version 3.5.3
----- tidyverse 1.2.1 --
                        v purrr 0.3.0
## v ggplot2 3.1.1
                       v dplyr 0.8.0.1
## v tibble 2.0.1
## v tidyr 0.8.3
                       v stringr 1.3.1
## v readr 1.3.1
                         v forcats 0.3.0
## Warning: package 'ggplot2' was built under R version 3.5.3
## Warning: package 'tidyr' was built under R version 3.5.3
## -- Conflicts -----
- tidyverse conflicts() --
## x dplyr::between() masks data.table::between()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks data.table::first()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks data.table::last()
## x purrr::transpose() masks data.table::transpose()
#install.packages("cluster")
library(cluster) # clustering algorithms
#install.packages("factoextra")
library(factoextra)
## Warning: package 'factoextra' was built under R version 3.5.3
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at
https://goo.gl/13EFCZ
p1 <- fviz_cluster(kmeans2.cluster, geom = "point", data = cluster) +</pre>
ggtitle("k = 2")
p2 <- fviz_cluster(kmeans3.cluster, geom = "point", data = cluster) +</pre>
ggtitle("k = 3")
p3 <- fviz cluster(kmeans4.cluster, geom = "point", data = cluster) +
ggtitle("k = 4")
p4 <- fviz cluster(kmeans5.cluster, geom = "point", data = cluster) +
```

```
ggtitle("k = 5")
p5 <- fviz_cluster(kmeans6.cluster, geom = "point", data = cluster) +
ggtitle("k = 6")</pre>
```

Grid plot

```
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 3.5.3
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
grid.arrange(p1, p2, p3, p4,p5, nrow = 2)
```


Determining Optimal Clusters

```
set.seed(123)
fviz_nbclust(cluster, kmeans, method = "wss")
```


K=5 seems optimal number of clusters

fviz_cluster(kmeans5.cluster, data = cluster)

fviz_cluster(kmeans3.cluster, data = cluster)

Adding cluster number to the file for each observation-

```
clusterFile <- cbind(df, clusterNum = kmeans5.cluster$cluster)</pre>
head(clusterFile)
     clouds pressure rain humidity wind
##
                                                 date time.x distance
## 1
       0.87
             1014.39
                        0
                              0.92 1.46 2018-11-26 04:34:05 2.168125
## 2
       0.86
             1014.17
                        0
                              0.93 2.57 2018-11-26 05:34:13 2.168125
## 3
       0.86
             1014.17
                        0
                              0.93 2.59 2018-11-26 05:34:58 1.440000
                              0.93 2.65 2018-11-26 05:36:38 1.360000
## 4
       0.86
             1014.17
                        0
## 5
       0.86 1014.17
                              0.93 2.65 2018-11-26 05:36:38 1.220000
## 6
       0.95
             1013.78
                        0
                              0.92 2.59 2018-11-26 05:42:57 1.340000
     surge multiplier temp
                                price
                                         day
                                                 time date time clusterNum
             1.018365 41.04 16.67376 Monday 04:34:05 2018-11-26
## 1
             1.018365 40.63 16.67376 Monday 05:34:13 2018-11-26
## 2
                                                                           4
## 3
             1.000000 40.63 8.50000 Monday 05:34:58 2018-11-26
                                                                           4
## 4
             1.000000 40.61 16.50000 Monday 05:36:38 2018-11-26
                                                                           4
## 5
             1.000000 40.61 16.67376 Monday 05:36:38 2018-11-26
                                                                           4
## 6
             1.000000 40.72 26.50000 Monday 05:42:57 2018-11-26
                                                                           4
```

Factor Analysis:

We concluded during Principal Component Analysis that all the variables of our dataset are not highly correlated and all are significant. Hence, we did not apply Factor Analysis on our data.

```
#We found that all our columns are significant and are not so highly correlated. Hence, we would
keep them as they are. There were no considerable differences between their standard
deviations.. Still we checked with PCA and decided to keep all the variables . We need not to do
the Factor ANalysis in our dataset.. still we will verify doing so!

##Factor Analysis

```{r}

Multiplying each column of the eigenvector's matrix by the square-root of the
#corresponding eigenvalue in order to get the factor loadings
eigvec.x <- x_pca$rotation
print(x_pca)
unrot.fact.x <- sweep(eigvec.x ,MARGIN=2,x_pca$sdev[1:5],`*`)
unrot.fact.x</pre>
```

```
Standard deviations (1, .., p=5):
[1] 1.3050862 1.1732928 0.9966622 0.7718227 0.5754028
Rotation (n \times k) = (5 \times 5):
 PC1
 PC2
 PC3
pressure -0.6258199 0.23938719 -0.01737613 0.51939957 -0.53006170
humidity -0.3194217 -0.65993093 -0.04083935 -0.52331376 -0.43236070
wind 0.6908793 0.04300622 0.11994313 0.09716528 -0.70498852
distance -0.1208578 0.04613105 0.98636820 -0.09381744 0.03926031
temp 0.1199934 -0.70937108 0.10354529 0.66190935 0.18316287
 PC1 PC2 PC3 PC4
 PC5
humidity -0.4168729 -0.77429218 -0.04070304 -0.40390543 -0.24878156 wind 0.9016570 0.05045888 0.11954278 0.07499436 -0.40565237
wind
distance -0.1577298 0.05412523 0.98307587 -0.07241043 0.02259049
temp
 0.1566017 -0.83229996 0.10319967 0.51087665 0.10539243
Computing communalities
```{r}
                                                                                    ∰ ¥ ►
communalities.x <- rowSums(unrot.fact.x^2)</pre>
communalities.x
                                                                                    pressure humidity
                     wind distance
                                       temp
```

#Hence we can see we will not proceed with the Factor Analysis