CHAPTER

12

VECTOR MECHANICS FOR ENGINEERS: DYNAMICS

Ferdinand P. Beer
E. Russell Johnston, Jr.
Phillip J. Cornwell
Brian P. Self

Kinetics of Particles: Newton's Second Law

HW Problems Week 4 (Due Wed 02/07): 12.74, 12.77, 12.82, 13.8, 13.24, 13.29

Lecture 6 01/29 Modified from Original

Angular Momentum of a Particle

- $\vec{H}_O = \vec{r} \times m\vec{V} = moment \ of \ momentum \ or the \ angular$ momentum of the particle about O.
- \vec{H}_O is perpendicular to plane containing \vec{r} and $m\vec{V}$

Magnitude:
$$H_O = rmV \sin \phi$$
 \vec{i} \vec{j} \vec{k} $= rmv_{\theta}$ $\vec{H}_O = \vec{k}$ \vec{j} \vec{k} Note: $v_{\theta} = r\dot{\theta}$ $= mr^2\dot{\theta}$ mv_x mv_y mv_z

• Derivative of angular momentum with respect to time,

$$\begin{split} \dot{\vec{H}}_O &= \dot{\vec{r}} \times m\vec{V} + \vec{r} \times m\dot{\vec{V}} = \vec{V} \times m\vec{V} + \vec{r} \times m\vec{a} \\ &= r \times \sum \vec{F} \\ &= \sum \vec{M}_O \end{split}$$

• It follows from Newton's second law that the sum of the moments about O of the forces acting on the particle is equal to the rate of change of the angular momentum of the particle about O.

Conservation of Angular Momentum

- When only force acting on particle is directed toward or away from a fixed point *O*, the particle is said to be *moving under a central force*.
- Since the line of action of the central force passes through O, $\sum \vec{M}_O = \dot{\vec{H}}_O = 0$ and

$$\vec{r} \times m\vec{V} = \vec{H}_O = \text{constant}$$

- Position vector and motion of particle are in a plane perpendicular to \vec{H}_O .
- Magnitude of angular momentum,

$$H_O = rmV \sin \phi = \text{constant}$$

= $r_0 mV_0 \sin \phi_0$

or
$$H_O = mr^2\dot{\theta} = \text{constant}$$

$$\frac{H_O}{m} = r^2\dot{\theta} = h = \frac{\text{angular momentum}}{\text{unit mass}}$$

Conservation of Angular Momentum

• Radius vector *OP* sweeps infinitesimal area

$$dA = \frac{1}{2}r^2d\theta$$

• Define areal velocity
$$=\frac{dA}{dt} = \frac{1}{2}r^2 \frac{d\theta}{dt} = \frac{1}{2}r^2 \dot{\theta}$$

• Recall, for a body moving under a central force, $h = r^2 \dot{\theta} = \text{constant}$

• When a particle moves under a central force, its areal velocity is constant.

Newton's Law of Gravitation

- Gravitational force exerted by the sun on a planet or by the earth on a satellite is an important example of gravitational force.
- Newton's law of universal gravitation two particles of mass M and m attract each other with equal and opposite force directed along the line connecting the particles,

$$F = G \frac{Mm}{r^2}$$

G =constant of gravitation

$$= 66.73 \times 10^{-12} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2} = 34.4 \times 10^{-9} \frac{\text{ft}^4}{\text{lb} \cdot \text{s}^4}$$

• For particle of mass m on the earth's surface,

$$W = m \frac{MG}{R^2} = mg$$
 $g = 9.81 \frac{m}{s^2} = 32.2 \frac{ft}{s^2}$

Sample Problem 12.12

STRATEGY:

• Since the satellite is moving under a central force, its angular momentum is constant. Equate the angular momentum at *A* and *B* and solve for the velocity at *B*.

A satellite is launched in a direction parallel to the surface of the earth with a velocity of 18820 mi/h from an altitude of 240 mi. Determine the velocity of the satellite as it reaches it maximum altitude of 2340 mi. The radius of the earth is 3960 mi.

Sample Problem 12.12

REFLECT and THINK:

• Note that in order to increase velocity, a spacecraft often applies thrusters to push it closer to the earth. This central force means the spacecraft's angular momentum remains constant, its radial distance r decreases, and its velocity v increases.

MODELING and ANALYSIS:

• Since the satellite is moving under a central force, its angular momentum is constant. Equate the angular momentum at *A* and *B* and solve for the velocity at *B*.

$$rmv\sin\phi = H_O = \text{constant}$$

 $r_A m v_A = r_B m v_B$
 r_A

$$v_B = v_A \frac{r_A}{r_B}$$

= $(18820 \,\text{mi/h}) \frac{(3960 + 240) \,\text{mi}}{(3960 + 2340) \,\text{mi}}$

$$v_B = 12550 \,\mathrm{mi/h}$$