Промежуточные градиентные методы с относительным шумом

Корнилов Никита Научный руководитель: д.ф.-м.н. А.В. Гасников

Московский физико-технический институт Факультет управления и прикладной математики Кафедра "Интеллектуальные системы"

16 декабря, 2023

Постановка задачи и цели

Цель

Исследовать поведение промежуточных ускоренных алгоритмов в условии относительного шума и оценить влияние шума на ускорение.

Рассмотрим задачу оптимизации

$$\min_{x} f(x),$$

где f выпуклая или сильно выпуклая функция.

Зашумленный оракул первого порядка со значением $\hat{arepsilon} \in [0,1)$:

$$\|\widetilde{\nabla} f(x) - \nabla f(x)\|_2 \le \hat{\varepsilon} \|\nabla f(x)\|_2, \quad \forall \hat{\varepsilon} \in [0, 1].$$

Мотивация

Проблема

Для теоретического анализа относительного шума существует мало техник, однако такая постановка является довольно распространённой.

Нахождение градиента — решение подзадачи с нужной точностью точности

- Решение задачи минимизации функционала
- Решение систем PDE
- Машинные ошибки

Решение

Решение

Предлагается использовать численный метод доказательств Performance Estimation Problem(PEP) для получения точных оценок сходимости, из которых получается теория.

PEP позволяет задавать любую выпуклую гладкую функцию как набор векторов и условий на них, тем самым переходя к задаче конечномерной выпуклой оптимизации

ISTM

Algorithm Intermediate Similar Triangle Method (ISTM) [1]

Require: Initial point x^0 , number of iterations N, smoothness constant L > 0, and step size parameter $a \ge 1$, intermediate parameter $p \in [1,2]$. Set $A_0 = \alpha_0 = 0$, $y^0 = z^0 = x^0$. for $k = 0, 1, \ldots, N-1$ do $\text{Set } \alpha_{k+1} = \frac{(k+2)^{p-1}}{2aL}, \ A_{k+1} = \alpha_{k+1} + A_k. \\ x^{k+1} = \frac{1}{A_{k+1}} \left(A_k y^k + \alpha_{k+1} z^k\right). \\ z^{k+1} = z^k - \alpha_{k+1} \widetilde{\nabla} f(x^{k+1}). \\ y^{k+1} = \frac{1}{A_{k+1}} \left(A_k y^k + \alpha_{k+1} z^{k+1}\right).$

Ensure: y^N

Мы можем контролировать a,p, чтобы достичь лучшей сходимости. Чем больше $p\in[1,2]$, тем сильнее влияние шума $(\sim\hat{\varepsilon}N^{p-1})$, но быстрее сходимость $\sim\frac{1}{N^p}$.

PEP

Запускаем алгоритм ISTMstep на N итераций на выпуклой гладкой функции f с градиентом g и зашумленным градиентом \hat{g} и смотрим максимальное отклонение

$$\max_{\substack{n,x^*,f^*,g^*\\ \{x^i,y^i,z^i\}_{i=0}^N\\ \{f^i,g^i,\widetilde{g}^i\}_{i=0}^N}}$$

 $f^N - f^*$

$$\begin{split} f: \mathbb{R}^n &\to \mathbb{R} \text{ is L -smooth and convex,} \\ f^k &= f(x^k), \quad g^k \in \nabla f(x^k), \quad k = *, 0, 1 \dots, N, \\ g^* &= 0, \\ \|x^0 - x^*\|_2^2 &\le R^2, \\ \|\widetilde{g}^k - g^k\|_2^2 &\le \widehat{\varepsilon}^2 \|g^k\|_2^2, \quad k = \overline{0, N-1}, \\ x^{k+1}, y^{k+1}, z^{k+1} &= \mathsf{ISTMstep}(x^k, y^k, z^k, \widetilde{g}^k), \quad k = \overline{0, N-1}. \end{split}$$

H. М. Корнилов 16 декабря, 2023 6 / 15

Theorem ([3])

Для набора $\{x^i, f^i, g^i\}_{i \in I}$ существует выпуклая и L-гладкая функция f такая, что для всех $i \in I$ мы имеем $g^i \in \partial f(x^i)$ и $f^i = f(x^i)$ тогда и только тогда, когда для любой пары индексов $i \in I$ и $j \in I$ верно следующее неравенство

$$f^{i} - f^{j} - (g^{j})^{\top}(x_{i} - x_{j}) \ge \frac{\|g^{i} - g^{j}\|^{2}}{2}.$$

Заменяем оптимизацию на бесконечном домене $f:\mathbb{R}^n \to \mathbb{R}^n$ на набор неравенств для всех точек.

◆ロ ト ◆ 個 ト ◆ 差 ト ◆ 差 ・ 夕 Q ○

$$\max_{\substack{n,x^*,f^*,g^*\\ \{x^i,y^i,z^i\}_{i=0}^N\\ \{f^i,g^i,\widetilde{g}^i\}_{i=0}^N}} f^N - f^*$$

$$f^i - f^j - (g^j)^\top (x_i - x_j) \ge \frac{\|g^i - g^j\|_2^2}{2}, \ i,j = *,0,\dots,N,$$

$$\|x^0 - x^*\|_2^2 \le R^2, g^* = 0,$$

$$\|\widetilde{g}^k - g^k\|_2^2 \le \widehat{\varepsilon}^2 \|g^k\|_2^2, \quad k = \overline{0,N-1},$$

$$x^{k+1}, y^{k+1}, z^{k+1} = \mathsf{ISTMstep}(x^k, y^k, z^k, \widetilde{g}^k), \ k = \overline{0,N-1}.$$

Проблема линейна по скалярным произведениям относительно оптимизируемых векторов и скаляров, так что, определив матрицу Грамма $G:=V^\top V\in\mathbb{R}^{2(N+2)\times 2(N+2)}$, где $V=\left(x^0,x^*,\{g^i\}_{i\in I},\{\widetilde{g}^i\}_{i\in I}\right)\in\mathbb{R}^{d\times 2(N+2)}$ и $\mathbf{f}=(f_*,f_0,\ldots,f_N)\in\mathbb{R}^{N+2}$, мы получим задачу SDP.

H. М. Корнилов 16 декабря, 2023 8 / **15**

Численные эксперименты

Считаем $N_{\text{pep}}(a,\hat{\varepsilon},p)$ на котором $\{ au_i\}_{i=0}^{N_{\text{max}}}$ перестаёт уменьшаться. Ориентируясь на $N_{\text{pep}}(a,\hat{\varepsilon},p)$, мы выводим функцию $a=C^2N^p\hat{\varepsilon}^2$ или $N_{\text{theory}}(a,\hat{\varepsilon},p)=\left(\frac{C^2a}{\hat{\varepsilon}^2}\right)^{\frac{1}{p}}$.

Рис.: Графики $N_{\text{pep}}(a,\hat{\varepsilon},p)$ для различных p с L=1,R=1 и Слева: $\hat{\varepsilon}=0.75,$ Справа: $\hat{\varepsilon}=0.75.$

Теоретические результаты ISTM

Theorem ([2])

Пусть f выпуклая и L-гладкая функция с относительным шумом $\hat{\varepsilon} \in [0,1]$. Тогда после $N \geq 1$ итераций ISTM с параметром $p \in [1,2]$ и

$$a = O\left(\max\left\{1, N^{\frac{p}{4}}\sqrt{\hat{\varepsilon}}, N^{\frac{p}{2}}\hat{\varepsilon}, N^{p}\hat{\varepsilon}^{2}\right\}\right),\tag{1}$$

верна следующая оценка

$$f(y^N) - f(x^*) \le \frac{16aLR_0^2}{(N+1)^p}, \quad R_0 = ||x^0 - x^*||_2.$$
 (2)

Учитывая а из (1), мы имеем

$$f(y^N) - f(x^*) \le O\left(\max\left\{\frac{LR_0^2}{N^p}, \frac{\sqrt{\hat{\varepsilon}}LR_0^2}{N^{\frac{3p}{4}}}, \frac{\hat{\varepsilon}LR_0^2}{N^{\frac{p}{2}}}, \frac{\hat{\varepsilon}^2LR_0^2}{N^{\frac{p}{2}}}\right\}\right).$$
(3)

H. M. Корнилов 16 декабря, 2023 10 / 15

Сильно выпуклый случай

В случае μ -сильно выпуклой функции мы применяем технику рестартов (алгоритм RISTM)

- ① Запустить ISTM с теоретическими параметрами (x^i, N^i, L^i, a^i, p) и получить y^i
- **2** Задать ответ как новую начальную точку $x^{i+1} = y^i$

Teopeтические результаты RISTM

Theorem ([2])

Пусть f L-гладкая и μ -сильно выпуклая функция c относительным шумом $\hat{\varepsilon}$. Если $\hat{\varepsilon}$ достаточно мал, а именно

$$\hat{\varepsilon} \lesssim \sqrt{\frac{\mu}{4L}},$$

то для достижения $f(x) - f(x^*) \le \varepsilon$, RISTM с параметром $p \in [1,2]$ необходимо

$$K = \left\lceil \log_2 \left(\frac{\mu R_0^2}{\varepsilon} \right) + 1 \right\rceil$$
 рестартов,
$$N_{total} = \left\lceil \left(\frac{L}{\mu} \right)^{\frac{1}{p}} \log_2 \left(\frac{\mu R_0^2}{\varepsilon} \right) \right\rceil$$
 оракульных вызовов.

Н. М. Корнилов 16 декабря, 2023 12 / 15

Обсуждение результатов

- В выпуклом случае алгоритм сходится к значению $\hat{\varepsilon}^2 L R_0^2$, промежуточность p никак не влияет.
- В сильно выпуклом случае сходимость остаётся такой же, как и без шума, при $\hat{\varepsilon} \lesssim \sqrt{\frac{\mu}{4L}}.$ Промежуточность вновь не никак влияет.
- Исследован лишь один конкретный алгоритм, хотя оценки в силу РЕР являются точными.

13 / 15

H. M. Корнилов 16 декабря, 2023

Публикации

Результаты представлены как часть статьи Kornilov, N., Gorbunov, E., Alkousa, M., Stonyakin, F., Dvurechensky, P., Gasnikov, A. (2023). Intermediate Gradient Methods with Relative Inexactness. arXiv preprint arXiv:2310.00506.

Литература

Technical report, Technical report, CORE-2013017, 2013.

Adrien B Taylor, Julien M Hendrickx, and François Glineur. Smooth strongly convex interpolation and exact worst-case performance of first-order methods.

Mathematical Programming, 161:307-345, 2017.