Package 'drimmR'

February 23, 2021

```
Type Package
Title Estimation, Simulation and Reliability of drifting Markov Models
Version 1.0.0
Author Vlad Stefan Barbu,
      Geoffray Brelurut,
      Annthomy Gilles,
      Arnaud Lefebvre,
      Victor Mataigne,
      Alexandre Seiller,
      Nicolas Vergne
Maintainer Nicolas Vergne < Nicolas . Vergne@univ-rouen.fr>
Description This package introduces the drifting Markov models (DMMs) which are
      non-homogeneous Markov models designed for modeling the heterogeneities of
      sequences in a more flexible way than homogeneous Markov chains or even
      hidden Markov models. In this context, we developed an R package dedicated to
      the estimation, simulation and reliability of drifting Markov models.
      The implemented methods are described in
      Vergne, N. (2008), <doi:10.2202/1544-6115.1326> and
      Barbu, V.S., Vergne, N. (2019) <doi:10.1007/s11009-018-9682-8>.
License GPL
Encoding UTF-8
LazyData true
Suggests utils,
      knitr,
     rmarkdown
Imports seqinr,
      Biostrings,
      testthat,
      stats,
      ggplot2,
     parallel,
      foreach,
      future,
      doParallel,
```

doSNOW, tidyverse, dplyr,

2 aic

reshape2, Rdpack

RdMacros Rdpack

RoxygenNote 7.1.1

VignetteBuilder knitr

Depends R (>= 2.10)

R topics documented:

aic	Akaike Information Criterion (AIC)	
inaex		
Index		28
	word_probas	27
	word_proba	
	words_probas	
	stationaryLaw_evol	
	simulate.dmmsum	
	simulate	
	reliability	21
	maintainability	20
	loglik.dmmsum	19
	loglik	18
	length_probas	17
	lambda	17
	getTransitionMatrix.dmmsum	16
	getTransitionMatrix	15
	getStationaryLaw.dmmsum	14
	getStationaryLaw	13
	getDistribution.dmmsum	12
		11
	failureRate	10
	dmmsum	8
	Distribution_evol	7
	bic.dmmsum	6
	bic	5
	availability	<i>3</i>
	aic.dmmsum	3

Description

Generic function computing the Akaike Information Criterion of the model 'x', with the list of sequences 'sequences'.

Usage

```
aic(x, sequences)
```

aic.dmmsum 3

Arguments

An object of class 'dmm' for which the logikelihood can be computed.

sequences A vector of character or a list of vector of character representing the sequences

for which the AIC criterion must be computed.

Value

A numeric value giving the value of the AIC.

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

aic.dmmsum

Evaluate AIC

Description

Evaluate AIC

Usage

```
## S3 method for class 'dmmsum'
aic(x, sequences)
```

Arguments

x An object of class 'dmm', 'dmmsum'

sequences A character vector or a list of character vector representing the sequence

Value

A list of numeric, AIC

Author(s)

Victor Mataigne, Alexandre Seiller

4 availability

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, loglik, aic

Examples

```
data(lambda, package = "drimmR")
sequence <- c("a","g","g","t","c","g","a","t","a","a","a","a")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
aic(dmm,sequence)</pre>
```

availability

Availability function

Description

Pointwise (or instantaneous) availability of a system at time $l \in N$

Usage

```
availability(x, k1, k2, s1, output_file = NULL, plot = FALSE)
```

Arguments

X	An object of class 'dmm'
k1	Start position: a positive integer giving the start position along the sequence from which the availabilities of the DMM should be computed
k2	End position: a positive integer giving the end position along the sequence until which the availabilities of the DMM should be computed
s1	Character vector of the subspace working states among the state space vector such that $s1 < s$
output_file	(Optional) A file containing matrix of availability probabilities (e.g, "C://AVAL.txt")
plot	'FALSE' (no figure plot of availability by position); 'TRUE' (figure plot)

Details

The pointwise (or instantaneous) availability is the probability that the system is in a working state at time l, independently of the fact that the system worked or not during the time interval [0; l)

Value

A matrix with positions and availability probabilities of states (and figure plot)

bic 5

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8.

See Also

dmmsum, getTransitionMatrix, reliability, maintainability

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
k1 <- 1
k2 <- 200
s1 <- c("c","t")  # vector of working states
availability(dmm,k1,k2,s1,plot=TRUE)</pre>
```

bic

Bayesian Information Criterion (BIC)

Description

Generic function computing the Bayesian Information Criterion of the model 'x', with the list of sequences 'sequences'.

Usage

```
bic(x, sequences)
```

Arguments

An object of class 'dmm' for which the logikelihood can be computed.

sequences

A vector or a list of vector of character representing the sequences for which the BIC criterion must be computed.

Value

A numeric value giving the value of the BIC.

Author(s)

Victor Mataigne, Alexandre Seiller

6 bic.dmmsum

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

bic.dmmsum

Evaluate BIC

Description

Evaluate BIC

Usage

```
## S3 method for class 'dmmsum'
bic(x, sequences)
```

Arguments

x An object of class 'dmm', 'dmmsum'

sequences A character vector or a list of character vector representing the sequence

Value

A numeric, BIC

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, loglik, bic

```
data(lambda, package = "drimmR")
sequence <- c("a","g","g","t","c","g","a","t","a","a","a","a")
dmm<-dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
bic(dmm,sequence)</pre>
```

Distribution_evol 7

Distribution_evol

Plot distributions for a range of positions between <start> and <end>

Description

Plot distributions for a range of positions between <start> and <end>

Usage

```
Distribution_evol(
    x,
    start = 1,
    end = NULL,
    step = NULL,
    output_file = NULL,
    plot = FALSE
)
```

Arguments

X	An object of class 'dmm'
start	Start position: a positive integer giving the start position along the sequence from which the distributions of the DMM should be computed
end	End position : a positive integer giving the end position along the sequence until which the distributions of the DMM should be computed
step	A step (integer)
output_file	(Optional) A file containing matrix of distributions (e.g, "C://DIST.txt")
plot	'FALSE' (no figure plot of dist evolution); 'TRUE' (figure plot)

Value

A matrix with positions and distributions of states (and figure plot)

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getDistribution, getStationaryLaw

8 dmmsum

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
Distribution_evol(dmm,start=1,end=1000,step=100, plot=TRUE)</pre>
```

dmmsum

Point by point estimates of a k-th order drifting Markov Model

Description

Estimation of d+1 points of support transition matrices and $|E|^k$ initial law of a k-th order drifting Markov Model starting from one or several sequences.

Usage

```
dmmsum(
  sequences,
  order,
  degree,
  states,
  init.estim = c("mle", "freq", "prod", "stationary", "unif")
)
```

Arguments

sequences A list of character vector(s) representing one (several) sequence(s)

order Order of the Markov chain

degree Degree of the polynomials (e.g., linear drifting if degree=1, etc.)

states Vector of states space of length s > 1

init.estim Default="mle". Method used to estimate the initial law. If 'init.estim' = "mle",

then the classical Maximum Likelihood Estimator is used, if 'init.estim' = "freq", then, the initial distribution 'init.estim' is estimated by taking the frequences of the words of length k for all sequences. If 'init.estim' = "prod", then, 'init.estim' is estimated by using the product of the frequences of each letter (for all the sequences) in the word of length k. If 'init.estim' = "stationary", then 'init.estim' is estimated by using the stationary law of the point of support transition matrices of each letter. If 'init.estim' = "unif", then, 'init.estim' of each letter is estimated by using $\frac{1}{s}$. Or 'init.estim' = customisable vector of length $|E|^k$. See

Details for the formulas.

Details

The dmmsum function creates a drifting Markov model object ('dmm', 'dmmsum').

Let $E=1,\ldots,s,$ $s<\infty$ be random system with finite state space, with a time evolution governed by discrete-time stochastic process of values in E. A sequence X_0,X_1,\ldots,X_n with state space $E=1,2,\ldots,s$ is said to be a linear drifting Markov chain (of order 1) of length n between the Markov transition matrices Π_0 and Π_1 if the distribution of $X_t, t=1,\ldots,n$, is defined by $P(X_t=v\mid X_{t-1}=u,X_{t-2},\ldots)=\Pi_{\frac{t}{n}}(u,v),$; $u,v\in E$, where $\Pi_{\frac{t}{n}}(u,v)=(1-\frac{t}{n})\Pi_0(u,v)+$

dmmsum 9

 $\frac{t}{n}\Pi_1(u,v),\ u,v\in E$. The linear drifting Markov model of order 1 can be generalized to polynomial drifting Markov model of order k and degree d.Let $\Pi_{\frac{i}{d}}=(\Pi_{\frac{i}{d}}(u_1,\ldots,u_k,v))_{u_1,\ldots,u_k,v\in E}$ be d Markov transition matrices (of order k) over a state space E.

The initial distribution of a k-th order drifting Markov Model is defined as $\mu_i = P(X_1 = i)$. The initial distribution of the k first letters is freely be customisable by the user, but five methods are proposed for the estimation of the latter:

Estimation based on the Maximum Likelihood Estimator: The Maximum Likelihood Estimator for the initial distribution. The formula is: $\widehat{\mu_i} = \frac{Nstart_i}{L}$, where $Nstart_i$ is the number of occurences of the word i (of length k) at the beginning of each sequence and L is the number of sequences. This estimator is reliable when the number of sequences L is high.

Estimation based on the frequency: The initial distribution is estimated by taking the frequences of the words of length k for all sequences. The formula is $\widehat{\mu}_i = \frac{N_i}{N}$, where N_i is the number of occurences of the word i (of length k) in the sequences and N is the sum of the lengths of the sequences.

Estimation based on the product of the frequences of each state: The initial distribution is estimated by using the product of the frequences of each state (for all the sequences) in the word of length k.

Estimation based on the stationary law of point of support transition matrix for a word of length ${\bf k}$: The initial distribution is estimated using $\mu(\Pi_{\underline{k-1}})$

Estimation based on the uniform law: $\frac{1}{s}$

Value

An object of class 'dmm', dmmsum

Author(s)

Geoffray Brelurut, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

```
data(lambda, package = "drimmR")
states <- c("a","c","g","t")
order <- 1
degree <- 1
dmmsum(lambda,order,degree,states, init.estim = "freq")</pre>
```

10 failureRate

failureRate Failure rates function	
------------------------------------	--

Description

Estimation of two different definition of the failure rate: the BMP-failure rate and RG-failure rate.

As for BMP-failure rate, consider a system S starting to work at time l=0. The BMP-failure rate at time $l\in N$ is the conditional probability that the failure of the system occurs at time l, given that the system has worked until time l-1.

The RG-failure rate is a discrete-time adapted failure-rate proposed by D. Roy and R. Gupta. Classification of discrete lives. *Microelectronics Reliability*, 32(10):1459–1473, 1992.

Usage

```
failureRate(
    x,
    k1,
    k2,
    s1,
    failure.rate = c("BMP", "RG"),
    output_file = NULL,
    plot = FALSE
)
```

Arguments

Х	An object of class 'dmm'
k1	Start position: a positive integer giving the start position along the sequence from which the failure rates of the DMM should be computed
k2	End position: a positive integer giving the end position along the sequence until which the failure rates of the DMM should be computed
s1	Character vector of the subspace working states among the state space vector such that $s1 < s$
failure.rate	Default="BMP", then BMP-failure-rate is the method used to estimate the failure rate. If 'failure.rate'= "RG", then RG-failure rate is the method used to estimate the failure rate.
output_file	(Optional) A file containing matrix of failure rates at each position (e.g, "C://ER.txt")
plot	'FALSE' (no figure plot of failure rates by position); 'TRUE' (figure plot)

Details

The BMP-failure rate denoted by $\lambda(l), l \in N$ is usually considered for continuous time systems.

The RG-failure rate denoted by $r(l), l \in N$ is adapted to work in discrete time systems.

Value

A matrix with positions and failure rate scores of states (and figure plot)

getDistribution 11

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Roy D, Gupta R (1992). "Classification of discrete lives. Microelectronics Reliability." *Microelectronics Reliability*, 1459–1473. doi: 10.1016/00262714(92)90015D, https://doi.org/10.1016/0026-2714(92)90015-D.

See Also

dmmsum, getTransitionMatrix, reliability

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
k1 <- 1
k2 <- 200
s1 <- c("c","t")  # vector of working states
failureRate(dmm,k1,k2,s1,failure.rate="BMP",plot=TRUE)</pre>
```

getDistribution

Get the distributions of the DMM

Description

Generic function evaluating the distribution of the DMM at a given position or at every position

Usage

```
getDistribution(x, pos, all.pos = FALSE, internal = FALSE)
```

Arguments

X	An object of class 'dmm'
pos	A positive integer giving the position along the sequence on which the distribution of the DMM should be computed
all.pos	$\mbox{`FALSE' (evaluation at position index) ; `TRUE' (evaluation for all position indices)}$
internal	'FALSE' (default); 'TRUE' (for internal use of the Distribution_evol function)

Details

Distribution at position 1 is evaluated by $\mu_l = \mu_0 \prod_{t=k}^l \pi_{\frac{t}{n}}, \forall l \geq k, k \in N^*$ order of the DMM

Value

A vector or matrix of distribution probabilities

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

getDistribution.dmmsum

Get the distributions of the DMM

Description

Evaluate the distribution of the DMM at a given position or at every position

Usage

```
## S3 method for class 'dmmsum'
getDistribution(x, pos, all.pos = FALSE, internal = FALSE)
```

Arguments

X	An object of class 'dmm', 'dmmsum'
pos	A positive integer giving the position along the sequence on which the distribution of the DMM should be computed
all.pos	'FALSE' (default, evaluation at position index); 'TRUE' (evaluation for all position indices)
internal	'FALSE' (default); 'TRUE' (for internal use of Distribution_evol function)

Details

Distribution at position 1 is evaluated by $\mu_l = \mu_0 \prod_{t=k}^l \pi_{\frac{t}{2}}, \forall l \geq k, k \in N^*$ order of the DMM

Value

A vector or matrix of distribution probabilities

Author(s)

Alexandre Seiller

getStationaryLaw 13

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, Distribution_evol, getStationaryLaw

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
t <- 10
getDistribution(dmm,pos=t)</pre>
```

getStationaryLaw

Get the stationary laws of the DMM

Description

Generic function evaluating the stationary law of the DMM at a given position or at every position

Usage

```
getStationaryLaw(x, pos, all.pos = FALSE, internal = FALSE)
```

Arguments

Х	An object of class 'dmm'
pos	A positive integer giving the position along the sequence on which the stationary law of the DMM should be computed
all.pos	$\label{eq:FALSE'} \mbox{(default, evaluation at position index) ; `TRUE' \mbox{(evaluation for all position indices)}$
internal	'FALSE' (default): 'TRUE' (for internal use of the initial law computation)

Details

Stationary law at position t is evaluated by solving $\mu_t \, \pi_{\frac{t}{n}} = \mu$

Value

A vector or matrix of stationary law probabilities

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

```
getStationaryLaw.dmmsum
```

Get the stationary laws of the DMM

Description

Evaluate the stationary law of the DMM at a given position or at every position

Usage

```
## S3 method for class 'dmmsum'
getStationaryLaw(x, pos, all.pos = FALSE, internal = FALSE)
```

Arguments

x	An object of class 'dmm', 'dmmsum'
pos	A positive integer giving the position along the sequence on which the stationary law of the DMM should be computed
all.pos	'FALSE' (default, evaluation at position index); 'TRUE' (evaluation for all position indices)
internal	'FALSE' (default); 'TRUE' (for internal use of th initial law of dmmsum and

Stationary law at position t is evaluated by solving $\mu_t \; \pi_{\frac{t}{\alpha}} = \mu$

word applications)

Value

Details

A vector or matrix of stationary law probabilities

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

getTransitionMatrix 15

See Also

dmmsum, getTransitionMatrix, stationaryLaw_evol, getDistribution

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
t <- 10
getStationaryLaw(dmm,pos=t)</pre>
```

getTransitionMatrix

Get transition matrix of the drifting Markov Model

Description

Generic function evaluating the transition matrix of the DMM at a given position

Usage

```
getTransitionMatrix(x, pos)
```

Arguments

x An object of class 'dmm'

pos A positive integer giving the position along the sequence on which the transition

matrix of the DMM should be computed

Value

A transition matrix at a given position

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

getTransitionMatrix.dmmsum

Get transition matrix of the drifting Markov Model

Description

Evaluate the transition matrix of the DMM at a given position

Usage

```
## S3 method for class 'dmmsum'
getTransitionMatrix(x, pos)
```

Arguments

x An object of class 'dmm', 'dmmsum'

pos A positive integer giving the position along the sequence on which the transition

matrix of the DMM should be computed

Value

A transition matrix at a given position

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'),init.estim = "freq")
t <- 10
getTransitionMatrix(dmm,pos=t)</pre>
```

lambda 17

ambda lambda genome

Description

Complete data from phage genome [WT71] of length 48502

Usage

```
data(lambda)
```

Format

A vector object of class "Rdata".

Examples

data(lambda)

length_probas	Probability of occurrence of the observed word of size n in a sequence
	at several positions

Description

Probability of occurrence of the observed word of size n in a sequence at several positions

Usage

```
length_probas(n, sequence, pos, x, output_file = NULL, plot = FALSE)
```

Arguments

n	An integer, the length word
sequence	A vector of characters
pos	A vector of integer positions
X	An object of class "dmm"
output_file	(Optional) A file containing the vector of probabilities (e.g,"C://PROB.txt")
plot	'FALSE' (no figure plot of words probabilities); 'TRUE' (figure plot)

Value

A dataframe of probability by position (and probability plots)

Author(s)

Victor Mataigne, Alexandre Seiller

18 loglik

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, word_proba

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
n <- 2
length_probas(n, lambda, c(1,length(lambda)-n+1), dmm,plot=TRUE)</pre>
```

loglik

Loglikelihood S3

Description

Generic function computing the loglikelihood of the model 'x', with the list of sequences 'sequences'.

Usage

```
loglik(x, sequences)
```

Arguments

x An object of class 'dmm' for which the logikelihood can be computed.

sequences A vector of character or list of vectors representing the sequences for which the

log-likelihood of the model must be computed.

Value

A numeric, the log-likelihood

Author(s)

Annthomy Gilles, Alexandre Seiller

loglik.dmmsum

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

loglik.dmmsum

Evaluate Log-likelihood

Description

Evaluate Log-likelihood

Usage

```
## S3 method for class 'dmmsum'
loglik(x, sequences)
```

Arguments

x An object of class 'dmm', 'dmmsum'
sequences A character vector or a list of character vectors representing the sequence

Value

A list of log-likelihood (numeric)

Author(s)

Annthomy Gilles, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix

```
data(lambda, package = "drimmR")
sequence <- c("a","g","g","t","c","g","a","t","a","a","a")
dmm <-dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
loglik(dmm,sequence)</pre>
```

20 maintainability

|--|--|

Description

Maintainability of a system at time $k \in N$.

Usage

```
maintainability(x, k1, k2, s1, output_file = NULL, plot = FALSE)
```

Arguments

x	An object of class 'dmm'
k1	Start position: a positive integer giving the start position along the sequence from which the maintainabilities of the DMM should be computed
k2	End position: a positive integer giving the end position along the sequence until which the maintainabilities of the DMM should be computed
s 1	Character vector of the subspace working states among the state space vector such that $s1 < s$
output_file	(Optional) A file containing matrix of maintainability probabilities (e.g, "C://MAIN.txt")
plot	'FALSE' (no figure plot of maintainability by position); 'TRUE' (figure plot)

Details

The maintainability at time $k \in N$ of a system is the probability that the system is repaired up to time l, given that is has failed at time l = 0.

Value

A matrix with positions and maintainability probabilities of states (and figure plot)

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8.

See Also

dmmsum, getTransitionMatrix

reliability 21

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
k1 <- 1
k2 <- 200
s1 <- c("c","t")  # vector of working states
maintainability(dmm,k1,k2,s1,plot=TRUE)</pre>
```

reliability

Reliability function

Description

Reliability or the survival function of a system at time $l \in N$

Usage

```
reliability(x, k1, k2, s1, output_file = NULL, plot = FALSE)
```

Arguments

X	An object of class 'dmm'
k1	Start position: a positive integer giving the start position along the sequence from which the reliabilities of the DMM should be computed
k2	End position: a positive integer giving the end position along the sequence until which the reliabilities of the DMM should be computed
s1	Character vector of the subspace working states among the state space vector such that $s1 < s$
output_file	(Optional) A file containing matrix of reliability probabilities (e.g, "C://REL.txt")
plot	'FALSE' (no figure plot of reliability by position); 'TRUE' (figure plot)

Details

The reliability at time $l \in N$ is the probability that the system has functioned without failure in the period [0, l]

Value

A matrix with positions and reliability probabilities of states (and figure plot)

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8.

22 simulate

See Also

dmmsum, getTransitionMatrix

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
k1 <- 1
k2 <- 200
s1 <- c("c","t")  # vector of working states
reliability(dmm,k1,k2,s1,plot=TRUE)</pre>
```

simulate

Simulate a sequence under a drifting Markov model

Description

Generic function simulating a sequence under a k-th order DMM.

Usage

```
simulate(x, output_file, model_size = 1e+05)
```

Arguments

```
x An object of class 'dmm'
output_file (Optional) File containing the simulated sequence (e.g, "C:/.../SIM.txt")
model_size Size of the model
```

Author(s)

Annthomy Gilles, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

simulate.dmmsum 23

simulate.dmmsum

Simulate a sequence under a drifting Markov model

Description

Simulate a sequence under a k-th order DMM.

Usage

```
## S3 method for class 'dmmsum'
simulate(x, output_file = NULL, model_size = NULL)
```

Arguments

```
x An object of class 'dmm', 'dmmsum'
output_file (Optional) File containing the simulated sequence (e.g, "C:/.../SIM.txt")
model_size Size of the model
```

Value

the vector of simulated sequence

Author(s)

Annthomy Gilles, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, getStationaryLaw

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
simulate(dmm, model_size=100)</pre>
```

24 stationaryLaw_evol

Description

Plot stationary laws for a range of positions between <start> and <end>

Usage

```
stationaryLaw_evol(
    x,
    start = 1,
    end = NULL,
    step = NULL,
    output_file = NULL,
    plot = FALSE
)
```

Arguments

x	An object of class 'dmm'
start	Start position: a positive integer giving the start position along the sequence from which the stationary laws of the DMM should be computed
end	End position : a positive integer giving the end position along the sequence until which the stationary laws of the DMM should be computed
step	A step (integer)
output_file	(Optional) A file containing matrix of stationary laws (e.g, "C://SL.txt")
plot	'FALSE' (no figure plot of SL evolution); 'TRUE' (figure plot)

Value

A matrix with positions and stationary laws of states (and figure plot)

Author(s)

Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getStationaryLaw

words_probas 25

Examples

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
stationaryLaw_evol(dmm,start=1,end=1000,step=100, plot=TRUE)</pre>
```

words_probas

Probability of several words at several positions of a DMM

Description

Probability of several words at several positions of a DMM

Usage

```
words_probas(words, pos, x, output_file = NULL, plot = FALSE)
```

Arguments

words A vector of characters containing words

pos A vector of integer positions x An object of class 'dmm'

output_file (Optional) A file containing the matrix of probabilities (e.g,"C:/.../PROB.txt")

plot 'FALSE' (no figure plot of words probabilities); 'TRUE' (figure plot)

Value

A dataframe of word probabilities along the positions of the sequence

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, word_proba, word_probas

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
words_probas(c("atcgattc", "taggct", "ggatcgg"),c(100,300),dmm, plot=TRUE)</pre>
```

26 word_proba

word	proba

Probability of a word at a position t of a DMM

Description

Probability of a word at a position t of a DMM

Usage

```
word_proba(word, pos, x, output_file = NULL, internal = FALSE)
```

Arguments

word A subsequence (string of characters)

pos A position (numeric)
x An object of class "dmm"

output_file (Optional) A file containing the probability (e.g,"C:/.../PROB.txt") internal 'FALSE' (default); 'TRUE' (for internal use of word applications)

Value

A numeric, probability of word

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, 7(1). doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, word_probas, words_probas

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
word_proba("aggctga",4,dmm)</pre>
```

word_probas 27

word_probas	Probabilities of a word at several positions of a DMM
-------------	---

Description

Probabilities of a word at several positions of a DMM

Usage

```
word_probas(word, pos, x, output_file = NULL, plot = FALSE)
```

Arguments

word A subsequence (string of characters)

pos A vector of integer positions

x An object of class "dmm"

output_file (Optional) A file containing the vector of probabilities (e.g,"C:/.../PROB.txt")

plot 'FALSE' (no figure plot of word probabilities); 'TRUE' (figure plot)

Value

A numeric vector, probabilities of word

Author(s)

Victor Mataigne, Alexandre Seiller

References

Barbu VS, Vergne N (2018). "Reliability and survival analysis for drifting Markov models: modelling and estimation." *Methodology and Computing in Applied Probability*, 1–33. doi: 10.1007/s1100901896828, https://doi.org/10.1007/s11009-018-9682-8. Vergne N (2008). "Drifting Markov models with polynomial drift and applications to DNA sequences." *Statistical Applications in Genetics Molecular Biology*, **7(1)**. doi: 10.2202/15446115.1326, https://doi.org/10.2202/1544-6115.1326.

See Also

dmmsum, getTransitionMatrix, word_proba, words_probas

```
data(lambda, package = "drimmR")
dmm <- dmmsum(lambda, 1, 1, c('a','c','g','t'), init.estim = "freq")
word_probas("aggctga",c(100,300),dmm, plot=TRUE)</pre>
```

Index

```
* datasets
    lambda, 17
aic, 2, 4
aic.dmmsum, 3
availability, 4
bic, 5, 6
bic.dmmsum, 6
Distribution_evol, 7, 11-13
dmmsum, 4-8, 8, 9, 11, 13-16, 18-20, 22-27
failureRate, 10
getDistribution, 7, 11, 15
getDistribution.dmmsum, 12
getStationaryLaw, 7, 13, 13, 23, 24
{\tt getStationaryLaw.dmmsum,}\ 14
getTransitionMatrix, 4-6, 11, 13, 15, 15,
         18-20, 22, 23, 25-27
getTransitionMatrix.dmmsum, 16
lambda, 17
length\_probas, \textcolor{red}{17}
loglik, 4, 6, 18
loglik.dmmsum, 19
maintainability, 5, 20
reliability, 5, 11, 21
simulate, 22
simulate.dmmsum, 23
stationaryLaw_evol, 15, 24
word_proba, 18, 25, 26, 27
word_probas, 25, 26, 27
words_probas, 25, 26, 27
```