Rynz A. Daval CS 34

Task 1: Ping PDU Capture

Step 2: Examine the Packet List pane.

What protocol is used by ping?

ICMP

What is the full protocol name?

• Internet Protocol Version 4, Internet Control Message Protocol

What are the names of the two ping messages?

• Echo (ping) request and Echo (ping) reply

Are the listed source and destination IP addresses what you expected? Why?

 Yes, they are as I expected. The source IP address is similar to my IP address and the destination address is a public IP address.

Step 3: Select the first echo request packet on the list.

Locate the two different types of "Source" and "Destination". Why are there two types?

 The first Source and Destination is the IP Address, and the second is the MAC Address. IP addresses are for computers to communicate with each other while the MAC addresses are for communication in the local network.

What protocols are in the Ethernet frame?

• In the particular ping request that I am viewing, the protocol in the Ethernet frame is of type IPv4 (0x0800). Other data packets have ARP (0x0806).

Task 2: HTTP PDU Capture

Step 2: Scroll through the PDUs listed.

32.3 23.202020	1,11,1,15,150	201127121121	4020	00 11000000 10,2000 (1.07) 0020-0225077105152255212127710015215250017511	41
3146 29.262556	172.17.5.238	146.190.62.39	TLSv1.3	621 Client Hello (SNI=httpforever.com)	4
3147 29.263985	146.190.62.39	172.17.5.238	TCP	1514 80 → 62930 [ACK] Seq=24514 Ack=1975 Win=64128 Len=1460 [TCP segment of a reassembled PDU]	1
3148 29.268853	146.190.62.39	172.17.5.238	TCP	2974 80 → 62930 [PSH, ACK] Seq=25974 Ack=1975 Win=64128 Len=2920 [TCP segment of a reassembled P	4
3149 29.268853	146.190.62.39	172.17.5.238	HTTP	771 HTTP/1.1 200 OK (image/x-icon)	ł
3150 29.268951	172.17.5.238	146.190.62.39	TCP	54 62930 → 80 [ACK] Seq=1975 Ack=29611 Win=65536 Len=0	1
3151 29.298717	104.17.24.14	172.17.5.238	QUIC	65 Protected Payload (KP0)	1
2452 22 24225	470 47 5 000	50 400 440 040	Ton	E4 C04C0 440 F40V3 C 4E404 A 1 C0E W 0E0 1 0	41

Step 3: In the Packet List pane, highlight an HTTP packet that has the notation "(text/html)" in the Info column.

Rynz A. Daval CS 34

Task 4: Reflection

 Using Wireshark has helped me understand the difference between the data link layer and the network layer, along with the different protocols that each layer handles. These are important to understand if ever I will need to troubleshoot or analyze network behavior in the future if ever I get into this field of work.

Task 5: Challenge

Discuss how protocol analyzer:

- 1. Troubleshoot the failure of a webpage to download successfully to a browser on a computer.
 - Protocol analyzers like Wireshark help in figuring out why a webpage isn't loading by looking at the data traveling between your computer and the web server, checking for problems like slow connections, errors in communication, or issues with the website itself.
- 2. Identify data traffic on a network that is required by users.
 - Wireshark helps us find and focus on the internet activities users do, like web browsing or email, by looking at the data flowing through the network. Through this, it can be analyzed by cross-referencing them with user expectations and organizational requirements to confirm whether the observed network activities align with the intended and necessary user behaviors, ensuring that the network traffic meets organizational needs.