

Table des matières

1.1	Les bases
	1.1.1 La composante neutre
	1.1.3 Noyau et image
1.2	Actions et représentations

Soit k algébriquement clos. Un groupe algébrique sur k est une k-variété avec une structure de groupe telle que $m\colon G\times G\to G$ et $i\colon G\to G$ sont algébriques.

Remarque 1 (Cartier). Les groupes algébriques en caractéristique 0 sont réduits. (si on prends des variétés pas forcément réduites)

Remarque 2. La même définition avec des variétés complexes donne les groupes de Lie complexe.

Exemples 0.0.1. \mathbb{G}_a le groupe additif sur \mathbb{A}_k^1 et \mathbb{G}_m sur $\mathbb{A}_k^1 - 0$. C'est les seuls connexes de dimension 1.

Les sous-groupes fermés sont canoniquements des groupes algébriques pour $n \ge 1$.

Exemples 0.0.2. $SL_n/K \subset GL_n/k \subset M_n/k$. Et aussi $T_n \subset GL_n$ les triangulaires supèrieures et U_n telles que $M-I_n$ sont nilpotentes dans $T_n \cap SL_n$. $\mathbb{G}_m^n \simeq D_n \subset GL_n$. Aussi $O(n) \subset GL_n$ tq ${}^t gg = I_n$. Et $Sp(2n) \subset GL_n/k$ telles que ${}^t gJg = J$ avec $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$. Aussi, A une k-algèbre de dimension finie (possiblement non commutative). Alors, $Aut(A) \subset GL(A)$ est fermé! Pour $A = M_n$, on a $GL_n \to GL(M_n)$ donné par la conjugaison et ca passe au quotient en PGL_n ! D'où $PGL_n = Aut(M_n)$ et celui de gauche est un groupe algébrique donc, c'est non trivial à priori mdr.

Théoreme 0.0.3 (Chevalley). Tout groupe algébrique connexe est uniquement une extension d'une variété abélienne (lisse connexe propre) par un groupe algébrique affine.

Autrement dit une unique s.e.c

$$1 \to H \to G \to A \to 1$$

dans Grp donnée par des morphismees algébriques.

Théoreme 0.0.4. Tout les groupes algébriques affines sont linéaires.

Théoreme 0.0.5. Soit G/\mathbb{C} un groupe algébrique affine connexe. Alors les props suivantes sont équivalentes :

- 1. G est isomorphe à un sous-groupe auto-adjoint d'un $GL_n(\mathbb{C})$, i.e. un sous-groupe fermé algébrique stable par $g \mapsto^t \bar{g}$.
- 2. G est linéairement réductif : toute représentation linéaire de G se décompose en somme directe de représentations irréductibles. (la catégorie des représentations est semi-simple)
- 3. G est réductif : admet pas de sous-groupe fermé distingué tels que tout ses éléments nilpotents sont unipotents.
- 4. G admet une forme compacte réelle.
- 5. G admet un sous-groupe compact Zariski-dense.
- 6. $\mathbb{C}[X]^G$ est de type fini sur \mathbb{C} pour toute action algébrique de G sur une variété affine X.

Exercices 0.0.6. Prouver qu'être réductif est stable sur les sous-groupes distingués fermés ou quotients.

Chapitre 1

Groupes algébriques affines réductifs

On prend tjr k algébriquement clos.

1.1 Les bases

1.1.1 La composante neutre

Proposition 1.1.2. Soit G un groupe algébrique.

- 1. L'élément neutre est contenue dans une unique composante irréductible de G, G^0 , la composante neutre.
- 2. G⁰ est fermé normal dans G d'indice fini.
- 3. Les classes à gauche de G^0 dans G sont les composantes connexes ainsi que irréductibles de G.
- 4. Tout sous-groupe d'indice fini fermé contient G^0

Démonstration. 1. il existe un point dans une unique composante puis par translation (l'image isomorphe d'un truc irréd est irréd). Sinon juste psq c'est lisse.

2. c'est un sous-groupe irréd via l'image de $G^0 \times G^0 \to G$. Ça contient G^0 donc c'est G^0 , l'inversion envoie une c.c sur une c.c, et e sur e. La conjugaison est un automorphisme et envoie e sur e.

1.1.3 Noyau et image

Théoreme 1.1.4. Étant donné $f: G \to H$ un morphisme de groupes algébriques.

- 1. Le noyau est fermé normal.
- 2. l'image est fermée.
- 3. $f(G^0) = f(G)^0$.
- 4. f est un iso ssi c'est une bijection.

Démonstration. 1. est facile.

Théoreme 1.1.5 (Chevalley). Les images de flèches algébriques contiennent des ouverts dense.

Lemme 1.1.6. Si U, V sont deux ouverts denses distincts de G.

Démonstration. On a pour tout $g, U \cap g.i(V) \neq \emptyset$ d'où le résultat lol. En particulier $U^2 = G$ lol.

Proposition 1.1.7. Si H est un sous-groupe (abstrait) de G alors \bar{H} est un sous-groupe fermé de G. Si en plus H contenait un ouvert dense de \bar{H} alors H était fermé.

Démonstration. On a direct que $i(\bar{H}) = i(\bar{H}) = \bar{H}$ lol. En plus $h.\bar{H} = h\bar{H} = \bar{H}$ car L_h est un automorphisme d'où $H.\bar{H} = \bar{H}$, maintenant pour $h \in \bar{H}$ on a $\bar{H}.h = \bar{H}.h$ car le truc de gauche est fermé d'où $\bar{H}.h \subset \bar{H}$. I.e. $\bar{H}.\bar{H} \subset \bar{H}$. Si H contient U dense ouvert, $H \supset U^2 = \bar{H}$ par le lemme (omg).

Remarque 3. Les localement fermés sont fermés.

2. Grâce à Chevalley, f(G) contient un ouvert dense d'où $\overline{(}f(G))=f(G)$ vu que f(G) est un groupe. \Box

1.2 Actions et représentations

Définition 1.2.1. Une action d'un groupe algébrique G sur une variété algébrique X est un morphisme $G \times X \to X$ tel que $G \to Aut(X)$ (à droite les bijections) est un morphisme de groupe.

Définition 1.2.2. Soit $G \curvearrowright X$. Et Y un fermé de X. Le normalisateur de Y dans G, $N_G(Y)$ est le groupe des g qui préservent Y. Le centralisateur fixe Y, $C_G(Y)$. Le noyau de l'action de $N_G(Y) \curvearrowright Y$ est $C_G(Y)$. L'action est fidèle si $G \to Aut(X)$ est injective, $C_G(X) = e$. $X^G \subset X$ les points fixes par G. Quand $Y = \{x\}$, $N_G(x) = C_G(x) = G_x$ est la ifbre en x de $G \to X$.

Proposition 1.2.3 $(G \curvearrowright X)$. On a

- 1. Toutes les orbites sont localement fermés et lisses.
- 2. Toute les orbites de dimension minimale sont fermées. (donc il en existe)

Démonstration. Soit $O = G.x = im(G \times \{x\} \to X)$, ça contient un ouvert dense de \bar{O} . Comme O est \bar{O} sont stable par G et via $U \subset O \subset \bar{O}$, pour $o \in O$ on a un $g.o \in U$ d'où $g^{-1}U \cap O$ est un ouvert qui contient o dans O. En plus $\bar{O} - O$ est G-stable d'où une union de G-orbites de même dimension plus petite que \bar{O} pas forcément un nb fini.

Exemple 1.2.4. $GL_n \curvearrowright k^n \times k^n$ via l'action diagonale a une infinité d'orbites.

Définition 1.2.5. Soit G un groupe algébrique. Un G-module (rationnel) est un k-ev V muni d'une action linéaire de G, $G \to GL(V)$ algébrique, tel que tout $v \in V$ est contenu dans un G-sous module de dimension finie stable par l'action induite.

Exemple 1.2.6. Toute action algébrique $G \curvearrowright X$ fournit une action de G sur k[X] donné par $(g.f)(x) = f(g^{-1}(x))$ pour $g \in G$, $f \in k[X]$ et $x \in X$ lisse.

Proposition 1.2.7. Soit G un groupe affine agissant sur une variété algébrique X via la définition précédente. Alors k[X] est un G-module.

Démonstration. Soit $f \in k[X]$, on a $a: G \times X \to X$ d'où $a^*: k[X] \to k[G \times X] = k[G] \otimes_k k[X]$. On a $a^*(f)(g,x) = \sum a_i(g)f_i(x)$, par déf c'est $f(g^{-1}.x)$. L'espace vectoriel engendré par les $x \mapsto f_i(g^{-1}.x)$ est de dimension finie. D'où les $g.f_i$ aussi pour tout $g \in G$ qui est le résultat.

Exemple 1.2.8. L'action par translation à gauche $G \times G \to G$ si G est affine donne un G-module k[G] qui est appelé la représentation régulière.

Exemple 1.2.9. On a $\mathbb{C}[\mathbb{G}_m] = \mathbb{C}[T, T^{-1}]$ un \mathbb{G}_m -module qui se décompose en modules irreductibles.