CMPE 482 - Assignment 2

Spring 2021 Due 21.04.2021, 20.00

- 1. (2 pts.) Consider the vector v = (4, -1).
 - a. Create a matrix R that rotates this vector 30 degrees counterclockwise. Print the matrix.
 - b. Create a matrix P that projects this vector onto the line through the vector l=(1,-1). Print the matrix. (*Hint*: You can use the formulation on pg. 130)
 - c. Plot the original vector and the rotated and the projected vector.
 - d. Compute the norm of the original vector, the rotated vector, and the projected vector. How do they compare?
 - e. Plot columns of R and P. What properties (or lack thereof) of R and P lead to this? (*Hint*: What property of their columns can explain this?)
- 2. (2 pts.) Create and fix a vector $v \in \mathbb{R}^5$ by randomly sampling each entry from the unit Gaussian. (*Hint*: Do no resample v once you fixed it as it will invalidate your work that follows)
 - a. Design a matrix S that sorts v in an ascending order, creating the sorted vector v_s . Print S, v, and v_s .
 - b. Create a matrix K that reverses the order of the *sorted* vector v_s , creating a vector called v_k . Print K and v_k .
 - c. Using S and K, this time first *reverse* the original vector v and *then* apply the sorting, creating the new vector v_z . Are v_z and v_k the same or are they different?
 - d. Use K to reverse every column of S to create a new sorting matrix \hat{S} . Then sort v using \hat{S} to create v_h . Are v_h and v_k the same or are they different?
 - e. What properties questions 2d and 2e demonstrate about matrix multiplication?
- 3. (3 pts). Given a vector $v = (1, -4, 3, 7, 0, -3) \in \mathbb{R}^6$,
 - a. Create a matrix T that produces a smoothed vector $\hat{v} = Tv$, $\hat{v} \in \mathbb{R}^4$ such that $\hat{v}_i = 0.1v_i + 0.3v_{i+1} + 0.6v_{i+2}$ for $i \in {1,2,3,4}$. Print T and \hat{v} .
 - b. Does T correspond to a linear function? Demonstrate.
 - c. Imagine \hat{T} such that $\hat{T}\hat{v}=v$. Can such a \hat{T} exist? If yes, please print the matrix. If not, please explain why. (Hint: Is T invertible?)
 - d. Express the relationship between \hat{T} , \hat{v} , and v as a system of linear equations (even if a perfect solution is not feasible). Is this an overdetermined or underdetermined system? Why?
 - e. Apply least-squares method to create a best approximation of v from \hat{v} , called \tilde{v} . Print \tilde{v} .
 - f. Is \hat{T} a (pseudo-)inverse of T? If yes, which one?
- 4. (2 pts). [IALA, Q11.12] Combinations of invertible matrices. Suppose the $n \times n$ matrices A and B are both invertible. Determine whether each of the matrices given below is invertible, without any further assumptions about A and B.
 - a. A+B

b.
$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$
c.
$$\begin{bmatrix} A & 0 \\ A+B & B \end{bmatrix}$$

- 5. (3 pts). Implement the following steps:
 - a. Generate 20 equispaced points in the interval [-1,1], i.e. with equal intervals among them. (*Hint:* you can use the function np.linspace(-1,1,20)).
 - b. For all 20 points compute $y = \sin(2\pi x/T) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ with $\sigma = 0.1$. Create a scatter plot of x vs y for the 20 points you generated for period parameter T = 1.5 (see slide 13.15 for scatter plot examples you may ignore the fitted lines).
 - c. For approximating y with a polynomial of degree at most 10, construct the Vandermonde matrix V based on x, where V has the form $V_{ij} = x_i^j$ (see slide 13.14).
 - d. Compute the QR decomposition of V. Let q_0, \dots, q_{10} be the columns of Q, Plot each of the first 5 individual columns of the matrix Q against x as a scatter plot, similar to that of in Q5b.
 - e. We wish to compute a series of successive approximations to y, by computing $Qc^{(j)}$ where $j \in 0, \dots, 10$. Here, $c^{(j)}$ corresponds to the vector $[c_0, c_1, \dots, c_j, 0, 0, 0]^T$. How can we find the best $c^{(j)}$ that minimizes the $\|y Qc^{(j)}\|$ for each j? Plot x vs y as well as the approximations for j = 0, 5, and 10 (which we can name $y^{(0)}, y^{(5)}, y^{(10)}$) in a scatter plot, comparing the original relationship to the three approximations.
 - f. Repeat the previous approximation experiment with $y=Vc^{(j)}$, again compute the approximations and plot x vs y as well as $y^{(0)}, y^{(5)}, y^{(10)}$. Compare these approximations with those in question 5e. Which approximation worked better? Why do you think this is the case? Do the matrices V and Q span different subspaces?