UNSW School of Mathematics and Statistics

MATH5825 Measure, Integration and Probability

Semester 2/2014

Homework Week 2

- 1. Let $X = \{1, 2, 3, 4, 5\}$.
 - (a) Let

$$C = {\emptyset, X, {1}, {2,3}, {1,2,3}, {4,5}}$$

Write down $\sigma(\mathcal{C})$.

(b) Define γ on \mathcal{C} by:

$$\gamma(\emptyset) = 0,$$
 $\gamma(\{1\}) = 1,$ $\gamma(\{2,3\}) = 1$ $\gamma(\{1,2,3\}) = 2,$ $\gamma(\{4,5\}) = 1,$ $\gamma(X) = 3$

Let μ^* be the outer measure, defined on 2^X . Is μ^* , if restricted to $\sigma(\mathcal{C})$, a measure?

- 2. Let μ^* be an outer measure as in Definition 1.12. Show the properties
 - (a) $\mu^*(\emptyset) = 0$
 - (b) If $A, B \in 2^X$ such that $A \subset B$, then $\mu^*(A) \leq \mu^*(B)$.
- 3. Let $X = \mathbb{R}$, and let \mathcal{T} be the system of countably infinite unions of intervals $\{(a,b): a,b \in \mathbb{R} \cup \{-\infty,+\infty\}\}$. Show that (\mathbb{R},\mathcal{T}) is a topological space. The σ -algebra $\sigma(\mathcal{T})$ is called the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ on \mathbb{R} . Show that the Borel σ -algebra is generated by any of the following systems:

$$\mathcal{E}_1 = \{(a, b) : a, b \in \mathbb{R}\}, \quad \mathcal{E}_2 = \{[a, b] : a, b \in \mathbb{R}\},$$

 $\mathcal{E}_3 = \{(a, b] : a, b \in \mathbb{R}\}, \quad \mathcal{E}_4 = \{[a, b) : a, b \in \mathbb{R}\}$

(Hint: Show that a set U is open iff $\forall x \in U \exists \varepsilon > 0 : (x - \varepsilon, x + \varepsilon) \subset U$ using that \mathbb{Q} is dense in \mathbb{R} .) Is $\mathcal{B}(\mathbb{R})$ generated also generated by

$$\mathcal{E}_5 = \{(a, b) : a, b \in \mathbb{Q}\}$$
?

- 4. In older textbooks, the Borel sets are often introduced as the smallest family ${\cal M}$ of sets which
 - contains all open sets (that is, elements of T)
 - is closed under countable intersections and countable unions.

Show that

- (a) \mathcal{M} is well-defined and $\mathcal{M} \subset \sigma(\mathcal{T})$; (Hint: proceed as with σ -algebras)
- (b) If $U \in \mathcal{T}$, then $U^{\complement} \in \mathcal{M}$, that is, \mathcal{M} contains all closed sets; (hint: any closed set can be written as the countable intersection of suitable open sets)
- (c) $\{B \in \mathcal{M} : B^{\complement} \in \mathcal{M}\}$ is a σ -algebra;
- (d) $\sigma(\mathcal{T}) \subset \{B \in \mathcal{M} : B^{\complement} \in \mathcal{M}\} \subset \mathcal{M}$

Hence $\sigma(\mathcal{T}) = \mathcal{M}$.