Project 3 Team 43 Lily Crouse Gabe Kurfman Braden Seasor

Project Objectives

We have been tasked with the development of a Mars Cargo Rover (MACRO) prototype out of a provided kit of Legos materials and a variety of Pi bricks. MACRO must be capable of the following:

- "Precise navigation to specific sites"
- "Recognition and handling of hazards"
- "Timely delivery of mission hardware"
- "Transporting cargo from location to location without dropping or tipping"
 -Project 3 Description Fall 2022

Project Management

Metrics of Success

- PoC task execution
- Checklist of listed tasks in project description
- Consistency rates

Task Delegation

- Gabe developed code
- Decisions were made as a group
- Execution was decided on task-by-task basis

Time Management

- Met at least once a week, tried to make meaningful decisions within each meeting
- o Gantt Chart

Our Process

Design Decisions - Steering System

Tank Steering

lore efficient at high speeds

Tried and tested in modern cars

parts

radius

Uses one less motor

Design Decisions - Cargo Delivery

Alternate Dropping Mechanisms

- o Conveyor System
- o Ramp and Gate
- o Elastic Arm System
- o Trapdoor System

Other Design Features

Sensor Array

- Compact
- Easy to modify
- Gyro, Color, & Hall Sensor

Battery Compartment

- Easy to remove for charging
- Secures battery

Light Sensor

- Allows for easy user input
- Hands free

Pilots

- Cute
- Necessary component
- Guide robot to success

The Build Process – Software and Logic


```
# Follow line to path split
for i in range(0, path):
    followLineMag(side="left", speed=0.5, accel = a)
    time.sleep(0.25)
    followLine(0.5, "left")
```

```
followLineMag(side = "right", accel = 1.001, direction = 1, speed = 0.5):
    side (string, optional): "right" for right-side line following.
    accel (float, optional): Rate of turn speed increase if missing line.
    direction (int, optional): 1 for forward, -1 for reverse. Defaults to 1.
    speed (float, optional): Speed to drive in rotations/s. Defaults to 0.5.
print("%s-side line following at %.2f rotations/s until magnet detected."
   % (side.capitalize(), direction * speed))
sweepAngle = 90
if (side == "right"):
   sideInt = -1
  sideInt = 1
BP.set_motor_dps(RIGHT_MOTOR+LEFT_MOTOR, speed)
defaultTurn = 0.6
turnRate = defaultTurn
sweep = False
angle = 0
angleDirection = 1
offsetAngle = BP.get_sensor(GYRO_SENSOR)[0]
correctedDirection = 1
severity = 0
```

```
while (not magnetDetected()):
   color = BP.get_sensor(COLOR_SENSOR)
   severity = -turnRate + (2*turnRate) / (WHITE - BLACK) * (color - BLACK)
   severity *= correctedDirection
   if (angleDirection == sign(severity)):
          angle = BP.get_sensor(GYRO_SENSOR)[0] - offsetAngle
       except brickpi3.SensorError:
       if (abs(angle) > abs(sweepAngle)):
           sweep = True
           correctedDirection = -sign(angle)
           angleDirection = correctedDirection
          turnRate = defaultTurn / 2
       # Slowly ramp up turn
       elif (turnRate < 1 and not sweep):
          turnRate *= accel
       if turnRate > defaultTurn:
          turnRate = defaultTurn
       angleDirection = sign(severity)
       offsetAngle = BP.get sensor(GYRO SENSOR)[0]
       correctedDirection = 1
       sweep = False
```

The Build Process - Software and Logic

Sensor Calibration Functions

- calibrateColor
- calibrateMagnet
- calibrateLight

Sensor Reading Functions

- magnetDetected
- lightDetected
- obstacleDetected
- waitForLight
- printDebug

Drive Motor Functions

- resetMotors
- driveMotors
- turnMotors
- angleMotors
- followLine
- FollowLineMag

Cargo Motor Functions

- cargoMotor
- lockCargo
- unlockCargo

Main Code

- Follow line to correct magnet
- Turn down desired path
- Drop cargo on target
- Return to start

Final Robot Design

Design Specs

Unloaded Weight: 630 g

Size: 23 x 38 x 21 cm

Total Parts: 293

Most Common Part:

Black Technic Pin (x83)

Final Robot Design

Positives

- Superior ability to scale terrain
- Superior ability to carry cargo
- Increased stability
- Increased consistency with speed
- Refined depositing mechanism

Time (s)	Distance (cm)	Speed (cm/s)	Desired Speed (cm/s)	% Error
1.95	30	15.38	15	2.56
2.02	30	14.85	15	-0.99
1.8	30	16.67	15	11.11
1.95	30	15.38	15	2.56
1.57	30	19.11	20	-4.46
1.47	30	20.41	20	2.04
1.57	30	19.11	20	-4.46
1.43	30	20.98	20	4.90
1.18	30	25.42	25	1.69
1.23	30	24.39	25	-2.44
1.2	30	25.00	25	0.00
1.12	30	26.79	25	7.14
1.03	30	29.13	30	-2.91
1.05	30	28.57	30	-4.76
1.1	30	27.27	30	-9.09
0.98	30	30.61	30	2.04
			Average % Error:	0.31

Negatives

- Inconsistency in scaling small obstacles
- Tuned for large obstacles, and struggles on smaller ones
- Small inconsistency in detecting magnetic markers
- Average test distance from designated drop off zone: 18cm

Areas for Improvement

- Consistency in scaling small obstacles
- Consistency in detecting magnetic markers
- Consistency in making accurate turns after magnetic markers

Thank You Any Questions?