LDL_f/LTL_f-to-DFA in practice

Marco Favorito (PhD student)

Recommended prerequisite:

- Slides on "DFA, NFA, AFA on finite words"
- Slides on "Linear Temporal Logics on Finite Traces: LTLf and LDLf"

The Problem

Why care?

Many applications in Al and CS, based on DFAs

- Often easier to work with logic than with automata
 - Logics are closer to natural language

Semantics: finite traces of propositional interpretations

Given a set of propositions ${\mathcal P}$, traces are <u>sequences of propositional interpretations</u> $(2^{{\mathcal P}})^*$

E.g. from the Yale Shooting domain:

$$\mathcal{P} = \{alive, working\}$$

$$2^{\mathcal{P}} = \{\emptyset, \{alive\}, \{working\}, \{alive, working\}\}$$

An example of trace:

$$\pi = \{alive, working\}, \{alive, working\}, \{alive\}, \{alive\}, \{working\}$$

Set of traces <-> Language

A I	•
Αl	\ /I \ \ \ \ /
$\boldsymbol{\mu}$	$\mathcal{M} = \mathcal{M} = \mathcal{M}$
<i>,</i> , , ,	view

Language-theoretic view

set of prop. int. $\,2^{\mathcal{P}}$

alphabet \sum

trace $\pi \in (2^{\mathcal{P}})^*$

word $w \in \Sigma^*$

set of traces $\ \prod \subseteq (2^{\mathcal{P}})^*$

Language (set of words) $\mathcal{L} \subseteq \Sigma^*$

Chomsky hierarchy

Chomsky hierarchy

Marco Favorito LTL_f/LDL_f to DFA 8/65

Logics, automata and (regular) languages

$$\mathcal{L} = \{ w \mid w \models true^* a \ true^* \}$$
 (liveness)

Example of language that is regular but NOT star-free regular

$$\mathcal{L} = \{(aa)^n \mid n \geq 0\}$$

(words of even length)

Logics, automata and (regular) languages

Deterministic Finite Automata (DFA)

Nondeterministic Finite Automata (NFA)

Alternating Finite Automata (AFA)

Note:

Automata with finite, constant memory

Monadic Second-order logic (MSO)

Regular Expressions (RE)

Linear Dynamic Logic (LDL)

Past Linear Dynamic Logic (PLDL)

First-order Logic (FOL)

Star-free regular expressions (sf-RE)

Linear Temporal Logic (LTL)

Past Linear Temporal Logic (PLTL)

Logics, automata and (regular) languages

Deterministic Finite Automata (DFA)

Nondeterministic Finite Automata (NFA)

Alternating Finite Automata (AFA)

The "——" means: "can be translated to (in general)"

Monadic Second-order logic (MSO)

Regular Expressions (RE)

Linear Dynamic Logic (LDL)

Past Linear Dynamic Logic (PLDL)

First-order Logic (FOL)

Star-free regular expressions (sf-RE)

Linear Temporal Logic (LTL)

Past Linear Temporal Logic (PLTL)

Nonelementary is bad

- size of DFA cannot be upper-bounded a priori wrt any formula 2^n
- Arbitrary tower of exponentials: $2^{2\cdots^2}$
 - Still: <u>it works well in practice!</u> (see later)

- (only one) exponential blow-up good
- Regexes are NOT closed under <u>negation</u> and <u>conjunction</u> bad
- <u>Negation</u> requires an exponential blow-up bad

(De Giacomo and Vardi, 2013):

- LDL_f ≈ LTL_f + Regular Expressions good
- Closed under negation good
- Complexity is double-exponential: 2^{2^n} fair enough
 - The same holds for LTL_f

(De Giacomo, Di Stasio, Fuggitti, Rubin, 2020):

- One exponential good
- PLDL, to LDL, costs 2EXP bad
 - we can only work within PLDL_f

Other approaches

 Encoding of LTL_f into FOL (Zhu et al., 2017), (Bansal et al. 2020):

• From LDL, directly to DFA (De Giacomo and Favorito, 2021)

MSO -> DFA: The MONA tool

MONA is a C library and tool for translating MSO (and hence FOL too) formulae to DFA.

- <u>cs-au-dk/MONA</u>
- DFAs in MONA are represented by shared, multi-terminal BDDs.
 - The representation is **explicit** in the state space,
 - o and **symbolic** in the transitions

Classic representation:

MONA DFA data structure:

MONA DFA

Classic representation 16 (2⁴) letters and 10 states Transition table entries: 160 MONA DFA multi-terminal, shared Binary Decision Diagram Acyclic, directed graph with only 35 nodes

$LTL_f/PLTL_f -> FOL -> DFA$ (Zhu et al. 2017)

Encoding of LTL_f into FOL, and then use MONA

Implementations:

- Syft "Itlf2fol" + MONA: https://github.com/Shufang-Zhu/Syft
 - Written in C++
 - Used by <u>Lisa</u> (Bansal et al. 2020)
- LTLf2DFA (also supports PLTLf):
 - Written in Python, uses MONA
 - GitHub: https://github.com/whitemech/LTLf2DFA/
 - Web app: http://ltlf2dfa.diag.uniroma1.it/

Encoding of LTLf into MSO?

Shown to perform worse than FOL encoding:

<u>First-Order vs. Second-Order</u> <u>Encodings for LTLf-to-Automata</u> <u>Translation (Zhu et al. 2019)</u>

LDL_f/PLDL_f -> MSO -> DFA

- Encodings from LDL_f/PLDL_f to MSO Then, use MONA to compute the DFA

Not done yet! (Possible topic for projects/theses)

LDL_f/PLDL_f -> AFA -> NFA -> DFA

No scalable implementations exist! (Possible topic for projects/theses)

LDL_f -> DFA (De Giacomo and Favorito, 2021)

From LDL, directly to DFA

- Implemented in the Lydia tool:
 - Uses the MONA DFA representation (but not MSO)
 - o GitHub repo: https://github.com/whitemech/lydia
 - Web app: https://lydia.whitemech.it
- Compositional: breaks down formulae in smaller parts and compute their DFA
- NONELEMENTARY (instead of best theoretical bound of 2EXPTIME)
 - But works fairly well in practice

How Lydia works (TL;DR)

- Mapping from LDLf operators to DFA operations
- Inductively apply these mappings
- If we encounter LTLf formulae, translate them in LDLf

E.g. $\Diamond \varphi \lor \Box \psi$ $\mathcal{A}_{\Box \psi} \cup \mathcal{A}_{\Diamond \varphi}$ $A_{\Diamond \varphi}$ $\mathcal{A}_{\square \, \psi}$

How to compute $A_{\Diamond a \land \Box b}$?

*
$$\Diamond \varphi \equiv \langle true^* \rangle (\varphi \wedge \neg end)$$

Marco Favorito LTL_f/LDL_f to DFA 26/65

 $^* \Box \varphi \equiv [true^*](\varphi \vee end)$

Marco Favorito LTL_f/LDL_f to DFA 28/65

$$f(\wedge, \mathcal{A}_{\Diamond a}, \mathcal{A}_{\Box b}) = \mathcal{A}_{\Diamond a} \cap \mathcal{A}_{\Box b}$$

LDLf syntax

- We use the LDLf syntax that works for empty traces (Brafman, De Giacomo, and Patrizi, 2018)
- Given a set of propositional symbols P, LDLf formulae are built as follows:

$$\varphi ::= tt \mid ff \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \langle \rho \rangle \varphi \mid [\rho] \varphi$$

$$\rho ::= \phi \mid \varphi? \mid \rho_1 + \rho_2 \mid \rho_1; \rho_2 \mid \rho^*$$

• Where φ is a propositional formula over P

LTLf -> LDLf (linear)

$$tr(\phi) = \langle \phi \rangle tt \ (\phi \ \text{propositional})$$
 $tr(\neg \varphi) = \neg tr(\varphi)$
 $tr(\varphi_1 \land \varphi_2) = tr(\varphi_1) \land tr(\varphi_2)$
 $tr(\varphi_1 \lor \varphi_2) = tr(\varphi_1) \lor tr(\varphi_2)$
 $tr(\Diamond \varphi) = \langle true \rangle (tr(\varphi) \land \neg end)$
 $tr(\varphi_1 \mathcal{U} \varphi_2) = \langle (tr(\varphi_1)?; true)^* \rangle (tr(\varphi_2) \land \neg end)$

 $\mathsf{LDL}_\mathsf{f} \, \mathsf{formula}$

DFA

tt

 $\rightarrow q_0$

ff

Marco Favorito LTL_f/LDL_f to DFA 32/65

 LDL_f formula

$$\phi \rangle \varphi$$

$$[\phi]\varphi$$

 q_0 q_1

DFA

Marco Favorito LTL_f/LDL_f to DFA 33/65

 $\mathsf{LDL}_\mathsf{f} \, \mathsf{formula}$

DFA

 $\varphi \wedge \psi$

 $\mathcal{A}_{arphi}\cap\mathcal{A}_{\psi}$

 $/\psi$

 $eta_{arphi}\cup \mathcal{A}_{\psi}$

1arphi

 $\overline{4_{\odot}}$

Marco Favorito

$$\langle \rho^* \rangle \varphi$$

- Compute ${\cal A}_{\langle
 ho
 angle}end$
- Compute Kleene closure $\mathcal{A}_{\langle
 ho
 angle end}^*$
- 3. Compute \mathcal{A}_{arphi} 4. Concatenate $\mathcal{A}^*_{\langle
 ho \rangle end}$ and \mathcal{A}_{arphi}

$$arepsilon$$
-NFA equivalent to $\langle
ho^*
angle arphi$

(if ho is test-free)

LDL, equivalences

$$\langle \psi? \rangle \varphi \equiv \psi \wedge \varphi$$

$$[\psi?] \varphi \equiv \neg \psi \vee \varphi$$

$$\langle \rho_1; \rho_2 \rangle \varphi \equiv \langle \rho_1 \rangle \langle \rho_2 \rangle \varphi$$

$$[\rho_1; \rho_2] \varphi \equiv [\rho_1] [\rho_2] \varphi$$

$$\langle \rho_1 + \rho_2 \rangle \varphi \equiv \langle \rho_1 \rangle \psi \vee \langle \rho_2 \rangle \varphi$$

$$[\rho_1 + \rho_2] \varphi \equiv [\rho_1] \psi \wedge [\rho_2] \varphi$$

$$[\rho^*] \varphi \equiv \neg \langle \rho^* \rangle \neg \varphi$$

Let
$$\varphi = \langle a + b \rangle \langle c; d \rangle tt$$
.

Transform it into:

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt$$

Note that $\varphi \equiv \varphi'$.

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

 $\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt$. (The same as before, but replacing b with a):

Finally, $\mathcal{A}_{\varphi'} = \mathcal{A}_{\langle a \rangle \langle c \rangle \langle d \rangle tt} \cup \mathcal{A}_{\langle b \rangle \langle c \rangle \langle d \rangle tt}$.

Lydia Links

- whitemech/lydia
- whitemech/lydia-benchmark
- whitemech/lydia-web-app

https://lydia.whitemech.it/

Takeaway

For your projects, you will most likely want to use one of the following:

Takeaway

What you could implement:

Python packages

We implemented several Python packages to make it easy to use the above algorithms

- whitemech/pylogics: library to handle temporal logic formulae
- whitemech/pythomata: library to handle automata
- whitemech/logaut: from temporal LOGics to AUTomata
 - wrap tools like MONA and Lydia to translate logics into DFA

Pylogics

A Python library for logic formalisms representation and manipulation.

Code: https://github.com/whitemech/pylogics

Docs: https://whitemech.github.io/pylogics/

```
from pylogics.parsers import parse_pl
formula = parse_pl("(a & b) | (c & d)")

from pylogics.semantics.pl import evaluate pl
evaluate_pl(formula, {'a'}) # returns False
evaluate_pl(formula, {'a', 'b'}) # returns True
```

Pylogics (LTL_f)

```
from pylogics.parsers import parse ltl
parse ltl("a") # atom
parse ltl("X(a)")  # next
parse ltl("N(b)") # weak next
parse ltl("F(a)") # eventually
parse ltl("G(b)") # always
parse ltl("a U b") # until
parse ltl("a R b")  # release
parse ltl("a W b") # weak until
parse ltl("a M b") # strong release
```

Pylogics (PLTL_f)

```
from pylogics.parsers import parse_pltl
parse_pltl("Y(a)")  # before
parse_pltl("a S b")  # since
parse_pltl("O(b)")  # once
parse_pltl("H(a)")  # historically
```

Pylogics (LDL_f)

```
from pylogics.parsers import parse ldl
parse ldl("tt")
parse ldl("ff")
parse ldl("<a>tt")
parse ldl("[a & b]ff")
parse ldl("<a + b>tt")
parse ldl("<a ; b><c>tt")
parse ldl("<(a ; b) *><c>tt")
parse ldl("<true><a>tt") # Next a
parse ldl("<(?<a>tt;true)*>(<b>tt)") # (a Until b) in LDLf
```

Pylogics: supported features

Logics	Identifier	Parsing	Syntax	Semantics
Propositional Logic	pl	✓	✓	✓
Linear Temporal Logic (fin. traces)	ltl	✓	✓	×
Past Linear Temporal Logic (fin. traces)	pltl	✓	✓	×
Linear Dynamic Logic (fin. traces)	ldl	✓	✓	×
Past Linear Dynamic Logic (fin. traces)	pldl	×	×	×
First-order Logic	fol	×	×	×
Monadic Second-order Logic	mso	×	×	×

Pylogics: supported features

Logics	Identifier	Parsing	Syntax	Semantics
Propositional Logic	pl	✓	✓	1
Linear Temporal Logic (fin. traces)	ltl	✓	✓	×
Past Linear Temporal Logic (fin. traces)	pltl	✓	✓	×
Linear Dynamic Logic (fin. traces)	ldl	✓	✓	×
Past Linear Dynamic Logic (fin. traces)	pldl	X	×	×
First-order Logic	fol	×	×	×
Monadic Second-order Logic	mso	×	×	×

Projects

Pythomata

Python library to handle automata:

Code: https://github.com/whitemech/pythomata

Docs: https://whitemech.github.io/pythomata/

Pythomata example

```
from pythomata import SimpleDFA
alphabet = {"a", "b", "c"}
states = {"s1", "s2", "s3"}
initial state = "s1"
accepting states = {"s3"}
transition function = {
   },
dfa = SimpleDFA(states, alphabet, initial state, accepting states, transition function)
```

Pythomata example

```
dfa.states
Out[3]: {'s1', 's2', 's3'}
dfa.initial state
Out[4]: 's1'
dfa.accepting states
                                                                s1
Out[5]: { 's3'}
list(dfa.alphabet)
Out[6]: ['a', 'c', 'b']
                                                                s2
dfa.transition function
Out[7]: {
's1':
  {'b': 's1', 'a': 's2'},
's2':
 {'a': 's3', 'b': 's1'},
's3': {'c': 's3'}
```

Pythomata example

```
# a word is a list of symbols
word = "bbbac"
dfa.accepts(word) # True
# without the last symbol c,
# the final state is not reached
dfa.accepts(word[:-1]) # False
                                                          s2
# operations
dfa minimized = dfa.minimize()
dfa trimmed = dfa.trim()
# print
dfa trimmed.to graphviz().render("path to file")
```

Pythomata example with Symbolic DFA

```
from pythomata.impl.symbolic import SymbolicDFA
automaton = SymbolicDFA()
q0 = 0
q1 = automaton.create state()
automaton.set initial state(q0)
automaton.set accepting state(q1, True)
automaton.add transition((q0, "~a", q0))
automaton.add transition((q0, "a", q1))
automaton.add transition((q1, "true", q1))
automaton.to graphviz().render("dfa")
```


Logaut

- The "Keras" of temporal-logics-to-DFA
- You can extend it by implementing a custom backend
- Code: https://github.com/whitemech/logaut

```
from logaut import ltl2dfa
from pylogics.parsers import parse_ltl
formula = parse_ltl("F(a)")  # pylogics' formula
dfa = ltl2dfa(formula, backend="lydia")  # pythomata's DFA
```

Logaut: custom Backend

```
from logaut.backends.base import Backend
class MyBackend(Backend):
  def ltl2dfa(self, formula: Formula) -> DFA:
  def ldl2dfa(self, formula: Formula) -> DFA:
  def pltl2dfa(self, formula: Formula) -> DFA:
  def pldl2dfa(self, formula: Formula) -> DFA:
  def fol2dfa(self, formula: Formula) -> DFA:
  def mso2dfa(self, formula: Formula) -> DFA:
```

```
from logaut.backends import register
register(
    id_="my_backend",
    entry_point="dotted.path.to.MyBackend"
)
dfa = ltl2dfa(formula, backend="my_backend")
```

Currently supported backends:

- Lydia (only LTL_f/LDL_f)
- LTLf2DFA (only LTL_f/PLTL_f)

Projects

- LTL_f -> DFA
- PLTL_f -> DFA
- PLDL_f -> DFA
- LDL_f -> MSO -> DFA (using MONA)
- PLDL_f -> MSO -> DFA (using MONA)
- Extensive benchmark between tools: Lydia/MONA/Lisa/SPOT
- Implementation of small features to libraries: pylogics, pythomata, logaut etc.

Contact me for more information: favorito@diag.uniroma1.it

References

- 1. MONA User Manual: https://www.brics.dk/mona/mona14.pdf
- 2. G. De Giacomo and M. Vardi. "Linear temporal logic and linear dynamic logic on finite traces." In IJCAI, 2013.
- 3. R. Brafman, G. De Giacomo, and F. Patrizi. LTLf/LDLf non-markovian rewards. In AAAI, 2018.
- 4. S. Bansal, Y. Li, L. Tabajara, and M. Vardi. Hybrid compositional reasoning for reactive synthesis from finite-horizon specifications. In AAAI 2020.
- 5. G. De Giacomo and M. Favorito, "Compositional Approach to Translate LTLf/LDLf into Deterministic Finite Automata," in ICAPS 2021 (to appear)