

Propagating terrace in a semi-discrete model of Incompressible Porous Medium (IPM) equation

Yulia Petrova

PUC-Rio (\Rightarrow IME-USP)

yulia-petrova.github.io

Webinar on Evolution Equations and Dynamical Systems

16 October 2024

Sergey Tikhomirov (PUC-Rio)

Based on:
Propagating terrace in a two-tubes
model of gravitational fingering

ArXiv: 2401.05981 To appear in SIMA

Yalchin Efendiev (Texas A&M)

Outline

- Introduction
 Miscible displacement in porous media
 - viscous fingering
 - gravitational fingering

- 2. Problem statement
 - Two-tubes model
 - Main theorem

- 3. Proof:
 - traveling waves
 - slow-fast systems
 - geometric singular perturb. theory

Outline

- Introduction
 Miscible displacement in porous media
 - viscous fingering
 - gravitational fingering

- Two-tubes model
- Main theorem

- traveling waves
- slow-fast systems
- geometric singular perturb. theory

Gravitational fingering instability

- Miscible displacement
- porous media (averaged models of flow)
- Relatively small speeds
 Navier Stokes → Darcy's law

Applications?

Heavy fluid

Light fluid

Credit: Nicolas Valade, INRIA

Viscous fingering phenomenon (blue color) water polymerized water (red color)

> Appears in applications: **Enhanced Oil Recovery**

Incompressible Porous Medium eq – IPM, 2D (Two formulations)

Gravitational fingering


```
c_t + div(uc) = \varepsilon \cdot \Delta c div(u) = 0 (\text{gravity}) \qquad u = -\nabla p - (0, c) (\text{viscosity}) \qquad u = -m(c) \ K \ \nabla p c = c(t, x, y) - \text{concentration} \quad \varepsilon \geq 0 - \text{diffusion} u = u(t, x, y) - \text{velocity} \qquad m(c) - \text{mobility} p = p(t, x, y) - \text{pressure} \qquad K - \text{permeability}
```


many laboratory and numerical experiments show linear growth of the mixing zone

Question: how to find speeds v^b and v^f of propagation?

1969 – R. Wooding (JFM) *Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell*

2018 – J. Nijjer, D. Hewitt, J. Neufeld (JFM) *The dynamics of miscible viscous fingering from onset to shutdown.*

2022 – F. Bakharev, A. Enin, A. Groman, A. Kalyuzhnyuk, S. Matveenko, Y. Petrova, I. Starkov, S. Tikhomirov (JCAM)

IPM: $\varepsilon = 0$ (without diffusion)

Active scalar:

$$c_t + u \cdot \nabla c = 0$$
$$u = A(c)$$

$$u = \nabla^{\perp} (-\Delta)^{-1} \partial_1 c$$
 (Biot-Savart law)

<u>Discontinuous initial data</u>: free boundary problem (Muskat problem) – ill-posed for unstable stratification

2011 – A. Córdoba, D. Córdoba, F. Gancedo (Annals of Mathematics) "Interface evolution: the Hele-Shaw and Muskat problems"

Existence: smooth initial data

2007 – D. Cordoba, F. Gancedo, R. Orive (JMP): local well-posedness for initial data H^S

global solution vs finite-time blow-up?

open

2017 – T. Elgindi (ARMA): global solution for small perturbations of c=-y

2023 – S. Kiselev, Y. Yao (ARMA): if solutions stay "smooth" for all times, then there is blow-up at $t=+\infty$

<u>Uniqueness</u>: non-uniqueness of weak solutions

by convex integration

2011 – D. Córdoba, D. Faraco, F. Gancedo (ARMA)

2012 – L. Szekelyhidi Jr. (Annales de l'ENS)

<u>Asymptotic stability of stable stratification:</u>

2024 – R. Bianchini, T. Crin-Brat, M. Paicu (ARMA)

...and many others...

IPM: $\varepsilon > 0$ (with diffusion)

Estimates on the growth:

2005 – F. Otto, G. Menon. Proved estimates

- Full model (IPM)
- $v^f \leq 2$
- Simplified model (TFE) $v^f \le 1$

Transverse Flow Equilibrium = TFE
$$p(t, x, y) \approx p(t, y)$$

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$
$$div(u) = 0$$
$$u = (u^1, u^2), \ u^2 = \overline{c} - c$$

Why fingers appear?

It is a hair-trigger effect!

$$\frac{u^2=0}{u^2=0} \qquad \qquad \frac{1}{1}$$

Velocity u changes due to concentration c

Concentration c changes due to velocity u

IPM: $\varepsilon > 0$ (with diffusion)

Estimates on the growth:

2005 – F. Otto, G. Menon. Proved estimates

- Full model (IPM)
- $v^f \leq 2$
- Simplified model (TFE) $v^f \leq 1$

Transverse Flow Equilibrium = TFE
$$p(t,x,y) \approx p(t,y)$$

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$
$$div(u) = 0$$
$$u = (u^1, u^2), \ u^2 = \bar{c} - c$$

<u>Idea of proof</u> (TFE): comparison to 1D Burgers eq $(\bar{c} \le 1 \text{ then } u^2 \le 1 - c)$

$$c_t^{\max} + (1 - c^{\max}) \cdot \partial_y c^{\max} = \varepsilon c_{yy}^{\max}$$

Theorem (Otto, Menon): If $c(0, x, y) \le c^{\max}(0, y)$, then $c(t, x, y) \le c^{\max}(t, y)$ for any t > 0.

Question: Are those estimates sharp?

Are the estimates sharp?

Estimates on the growth (theory):

2005 – F. Otto, G. Menon

- Full model (IPM) $v^f \le 2$
- Simplified model (TFE) $v^f \le 1$

Estimates on the growth (numerics):

2022 – G. Bofetta, S. Musacchio

- Full model (IPM, 2D) $v^f \approx 0.67$
- Full model (IPM, 3D) $v^f \approx 0.43$

<u>Viscous fingering:</u> this gap in empirical and numerical estimates is even bigger

SLOW-DOWN of fingers... Why?

Two (possible) mechanisms:

- Transport in transverse direction
- 2. Intermediate concentration on tip of finger

Outline

- 1. Introduction
 - Miscible displacement in porous media
 - viscous fingering
 - gravitational fingering

- 2. Problem statement
 - Two-tubes model
 - Main theorem

- 3. Proof:
 - traveling waves
 - slow-fast systems
 - geometric singular perturb. theory

IDEA: semi-discrete model of gravitational fingering

- Discretize in horizontal direction
- Take n tubes, n = 2,3,4,...

Tubes (layer, lane,...) models:

Limit of numerical scheme

- Finite volume
- Upwind

• For simplicity, n=2

We observe two traveling waves:

$$c(y,t) = c(y - vt)$$

- 1995 Y. Yortsos "A theoretical analysis of vertical flow equilibrium"
- 2006 J.C. Da Mota, S. Schecter "Combustion fronts in a porous medium with two layers"
- 2019 A. Armiti-Juber, C. Rohde "On Darcy- and Brinkman-type models for two-phase flow in asympt. flat domains"
- 2019 H. Holden, N. Risebro "Models for dense multilane vehicular traffic"

Two-tubes model

1. Original equation on *c*: Two-tubes equations on c:

$$c_t + div(uc) - \Delta c = 0$$

$$\partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B$$

$$\partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = +B$$

- parameter

Original equation on p: Two-tubes equations on p:

$$u = -\nabla p - (0, c)$$

$$u_1 = -\partial_y p_1 - c_1$$

$$u_2 = -\partial_y p_2 - c_2$$

$$u_T = -\frac{p_2 - p_1}{l}$$

3. Original equation on
$$u$$
:
Two-tubes equations on u :

$$div(u) = 0$$

$$\partial_y u_1 + \frac{u_T}{I} = 0$$

$$B = \begin{cases} \frac{u_T}{l} \cdot c_1, & u_T > 0, \\ u_T \cdot c_2, & u_T < 0 \end{cases}$$

Two-tubes model

Original equation on c:
 Two-tubes equations on c:

$$c_t + div(uc) - \Delta c = 0$$

$$\partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B$$

$$\partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = +B$$

2. Original equation on p: Two-tubes equations on p:

$$u = -\nabla p - (0, c)$$

$$u_1 = -\partial_y p_1 - c_1$$

$$u_2 = -\partial_y p_2 - c_2$$

$$\frac{\overline{u_T}}{l} = -\frac{p_2 - p_1}{l^2}$$

3. Original equation on u: Two-tubes equations on u:

$$div(u) = 0$$

$$\partial_y u_1 + \left| \frac{u_T}{l} \right| = 0$$

$$B = \begin{cases} \frac{u_T}{l} \cdot c_1, & u_T > 0, \\ \frac{u_T}{l} \cdot c_2, & u_T < 0 \end{cases}$$

Main result

Questions?

$$\begin{cases} \partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B \\ \partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = B \end{cases}$$

$$(*) \begin{cases} u_1 = -\partial_y p_1 - c_1 \\ u_2 = -\partial_y p_2 - c_2 \end{cases}$$

$$\partial_y u_1 = -\partial_y u_2 = \frac{p_2 - p_1}{l^2}$$

$$B = \begin{cases} -\partial_y u_1 \cdot c_1, & \partial_y u_1 < 0, \\ +\partial_y u_2 \cdot c_2, & \partial_y u_1 > 0 \end{cases}$$

$$y \to +\infty$$
: $c_{1,2} \to +1$; $u_{1,2,T} \to 0$
 $y \to -\infty$: $c_{1,2} \to -1$; $u_{1,2,T} \to 0$

Theorem (P., Tikhomirov, Efendiev, arXiv: 2401.05981, accept. SIMA)

Consider a two-tube model with gravity (*).

Then for all l > 0 sufficiently small there exists $c_1^*(l), c_2^*(l)$

such that there exist two traveling waves (TW):

TW1 with speed $v^b(l)$: $(-1,-1) \rightarrow (c_1^*,(l) c_2^*(l))$

TW2 with speed $v^f(l)$: $(c_1^*, (l) c_2^*(l)) \rightarrow (1, 1)$.

Moreover, $\lim_{l \to 0} c_1^*(l) = -\lim_{l \to 0} c_2^*(l) = -\frac{1}{2};$ $\lim_{l \to 0} v^f(l) = -\lim_{l \to 0} v^b(l) = \frac{1}{4}.$

As $t \to \infty$ we observe:

Many tubes: numerics

Questions: (open)

- (1) explain the structure of "asymptotic solutions" for n tubes and study their stability
- (2) find speed of growth of the mixing zone
- (3) understand the behaviour as $n \to \infty$. Do we approximate 2-dim IPM?
- (4) can we repeat this story for the many tubes viscous fingering model?

Well-posedness for two-tubes model?

 $t \ge 0$

Two-tubes IPM

$$\begin{cases} \partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B \\ \partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = B \end{cases}$$

$$u_1 = -\partial_y p_1 - c_1$$

$$u_2 = -\partial_y p_2 - c_2$$

$$B = \begin{cases} -\partial_y u_1 \cdot c_1, & \partial_y u_1 < 0, \\ +\partial_y u_2 \cdot c_2, & \partial_y u_1 > 0 \end{cases}$$

$$\partial_y u_1 = -\partial_y u_2 = \frac{p_2 - p_1}{l^2}$$

Two-tubes TFE

$$\begin{cases}
\partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B \\
\partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = B
\end{cases}$$

$$u_1 = \frac{c_2 + c_1}{2} - c_1 = \bar{c} - c_1$$

$$B = \begin{cases}
-\partial_y u_1 \cdot c_1, & \partial_y u_1 < 0, \\
+\partial_y u_2 \cdot c_2, & \partial_y u_1 > 0
\end{cases}$$

l = 0: singular limit

Initial Condition:

$$c_1(0, y) = c_1^0(y)$$

 $c_2(0, y) = c_2^0(y)$

Conditions at $y = \pm \infty$:

 $l \rightarrow 0$?

$$c_{1,2}(t, +\infty) = +1$$

 $c_{1,2}(t, -\infty) = -1$

$$u_{1,2}(t,\pm\infty) = 0$$
$$(p_2 - p_1)(t,\pm\infty) = 0$$

- Questions
- Does there exist global solution $(c_1, c_2, u_1, u_2, p_1, p_2) \in C([0, \infty]; X)$ for suitable Banach space X?
- (open): As $t \to \infty$ does solution converge to a propagating terrace (combination of two traveling waves)?
 - Can we rigorously justify the singular limit as $l \to 0$?

Outline

- 1. Introduction
 - Miscible displacement in porous media
 - viscous fingering
 - gravitational fingering

- 2. Problem statement
 - Two-tubes model
 - Main theorem

- 3. Proof:
 - traveling waves
 - slow-fast systems
 - geometric singular perturb. theory

Main result

Questions?

$$\begin{cases} \partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B \\ \partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = B \end{cases}$$

$$(*) \begin{cases} u_1 = -\partial_y p_1 - c_1 \\ u_2 = -\partial_y p_2 - c_2 \end{cases}$$

$$\partial_y u_1 = -\partial_y u_2 = \frac{p_2 - p_1}{l^2}$$

$$B = \begin{cases} -\partial_y u_1 \cdot c_1, & \partial_y u_1 < 0, \\ +\partial_y u_2 \cdot c_2, & \partial_y u_1 > 0 \end{cases}$$

$$y \to +\infty$$
: $c_{1,2} \to +1$; $u_{1,2,T} \to 0$
 $y \to -\infty$: $c_{1,2} \to -1$; $u_{1,2,T} \to 0$

Theorem (P., Tikhomirov, Efendiev, arXiv: 2401.05981, accept. SIMA)

Consider a two-tube model with gravity (*).

Then for all l > 0 sufficiently small there exists $c_1^*(l), c_2^*(l)$

such that there exist two traveling waves (TW):

TW1 with speed $v^b(l)$: $(-1,-1) \rightarrow (c_1^*,(l) c_2^*(l))$

TW2 with speed $v^f(l)$: $(c_1^*, (l) c_2^*(l)) \rightarrow (1, 1)$.

Moreover, $\lim_{l \to 0} c_1^*(l) = -\lim_{l \to 0} c_2^*(l) = -\frac{1}{2};$ $\lim_{l \to 0} v^f(l) = -\lim_{l \to 0} v^b(l) = \frac{1}{4}.$

As $t \to \infty$ we observe:

Scheme of proof

$$c_{1}(t, y) = c_{1}(y - vt)$$

$$c_{2}(t, y) = c_{2}(y - vt)$$

$$u_{1}(t, y) = u_{1}(y - vt)$$

$$u_{2}(t, y) = u_{2}(y - vt)$$

$$p_{1}(t, y) = p_{1}(y - vt)$$

$$p_{2}(t, y) = p_{2}(y - ct)$$

Theorem

For sufficiently small l > 0 and for each v close to $\frac{1}{4}$ there exists a TW: $(c_1^*, c_2^*, u_1^*, u_2^*, p_1^* - p_2^*) \rightarrow (1,1,0,0,0)$

Similarly,
$$(-1, -1, 0, 0, 0) \rightarrow (c_1^{**}, c_2^{**}, u_1^{**}, u_2^{**}, p_1^{**} - p_2^{**})$$

Step 2: existence of a propagating terrace of two traveling waves

• Find a common intermediate state $(c_1,c_2,u_1,u_2,p_1-p_2)$ for traveling waves above

Scheme of proof: step 1

Travelling wave (TW) ansatz with fixed v:

$$c_1(t, y) = c_1(y - vt)$$

$$c_2(t, y) = c_2(y - vt)$$

$$u_1(t, y) = u_1(y - vt)$$

$$u_2(t, y) = u_2(y - vt)$$

$$p_1(t, y) = p_1(y - vt)$$

$$c_1(+\infty) = 1$$

$$c_2(+\infty) = 1$$

$$u_1(+\infty) = 0$$

$$u_2(+\infty) = 0$$

$$(p_1 - p_2)(+\infty) = 0$$

Obs:

Key tool:

 $p_2(t, y) = p_2(y - ct)$

System of ODEs in \mathbb{R}^6 :

$$\begin{cases} \dot{X} = F_{v}(X, Y) \\ l \cdot \dot{Y} = AY - BX \end{cases}$$

Here:

•
$$X = \begin{pmatrix} c_1 \\ c_2 \\ \partial_{\xi} c_1 \\ \partial_{\xi} c_2 \end{pmatrix} \in \mathbb{R}^4$$
, $Y = \begin{pmatrix} u_1 \\ p_1 - p_2 \end{pmatrix} \in \mathbb{R}^2$

•
$$A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
, $B \in M^{2 \times 4}$, $l \ll 1$

for $l \to 0$ this system has a "slow-fast" structure geometric singular perturbation theory (GSPT)

1979 – N. Fenichel (JDE); 2020 – M. Wechselberger

Scheme of proof: step 2 − propagating terrace of 2 TW √

- 1) For each $v^f \in I_f \subset \mathbb{R}$ we find all points s.t. there exists a TW: $(c_1,c_2) \to (1,1)$
- 2) For each $v^b \in I_b \subset \mathbb{R}$ we find all points s.t. there exists a TW:

$$(-1,-1) \to (c_1,c_2)$$

3) Find the intersection points of these two curves

l = 0 – these curves are just straight lines

 $0 < l \ll 1$ – perturbation argument

Slow-fast systems: simple example

 $\varepsilon = 0.1$

Slow system

$$\begin{cases} \dot{x} = -x \\ \varepsilon \cdot \dot{y} = x^2 - y \end{cases}$$

$$t = \varepsilon \cdot s$$

$$0 < \varepsilon \ll 1$$

Fast system

$$\begin{cases} x' = \varepsilon \cdot (-x) \\ y' = x^2 - y \end{cases}$$

Formally

$$\varepsilon \to 0$$

$\varepsilon \to 0$

Formally $\varepsilon \to 0$

Reduced fast system

$$\begin{cases} x' = 0 \\ y' = x^2 - y \end{cases}$$

Reduced slow system

$$\begin{cases} \dot{x} &= -x \\ 0 &= x^2 - y \end{cases}$$

$$x$$
 — slow variable $S = \{x^2 - y = 0\}$
 y — fast variable S - critical set

Geometric singular perturbation theory (GSPT)

Slow system (t - slow time)

$$\begin{cases} \dot{X} = F(X,Y,\varepsilon) \\ \varepsilon \cdot \dot{Y} = G(X,Y,\varepsilon) \end{cases}$$
Formally
$$\varepsilon \to 0$$

Reduced slow system

$$\begin{cases} \dot{X} = F(X,Y,0) \\ 0 = G(X,Y,0) \end{cases}$$

Fast system (s – fast time)

$$\begin{cases} X' = \varepsilon \cdot F(X, Y, \varepsilon) \\ Y' = G(X, Y, \varepsilon) \end{cases}$$
Formally
$$\varepsilon \to 0$$

Reduced fast system

$$\begin{cases} X' = 0 \\ Y' = G(X, Y, 0) \end{cases}$$

$$S = \{G(X, Y, 0) = 0\} - \text{critical set}$$

empty or consists of isolated points

(regular perturbation problem)

contains a differentiable manifold

(singular perturbation problem)

Normally hyperbolic manifolds ("fast-slow" version)


```
 \begin{cases} X' = \varepsilon \cdot F(X,Y,\varepsilon) & (X,Y) \in \mathbb{R}^m \times \mathbb{R}^n, \quad F(X,Y,\varepsilon), G(X,Y,\varepsilon) - \text{smooth} \\ Y' = G(X,Y,\varepsilon) & S = \{(X,Y) \in \mathbb{R}^{m+n} \colon G(X,Y,0) = 0\} - \text{critical manifold} \end{cases}
```

Definition: A smooth compact manifold $S_0 \subset S$ is called normally hyperbolic if the $n \times n$ matrix $DG_Y(X,Y,0)$ is hyperbolic for all $(X,Y) \in S_0$.

In particular, S_0 is called:

- attracting, if all eigenvalues of $DG_{\nu}(X,Y,0)$ have negative real part
- repelling, if all eigenvalues of $DG_{\nu}(X,Y,0)$ have positive real part
- of saddle-type, if it is neither attracting nor repelling

Normal hyperbolicity of critical manifold \Rightarrow 'inice' perturbation

1979 – N. Fenichel (JDE) Geometric singular perturbation theory for ordinary differential equations 2015 – C. Kuehn, Multiple Time Scale Dynamics (Chapters 1-3) – intro to slow-fast systems & Fenichel's work

Fenichel's theorem (``fast-slow'' version)

Let S_0 be a compact normally hyperbolic submanifold (possibly with boundary) of the critical manifold S of the system

$$\begin{cases} X' = \varepsilon \cdot F(X, Y, \varepsilon) \\ Y' = G(X, Y, \varepsilon) \end{cases}$$

and that $F,G \in C^r (r \geq 2)$.

Then for $\varepsilon > 0$ sufficiently small, the following hold:

- (F1) There exists a locally invariant manifold S_{ε} diffeomorphic to S_0 .
- (F2) S_{ε} has Hausdorff distance $O(\varepsilon)$ from S_0 (as $\varepsilon \to 0$).
- (F3) The flow on S_{ε} converges to the flow of the reduced slow system (as $\varepsilon \to 0$).
- (F4) S_{ε} is C^r -smooth and normally hyperbolic

Remark: S_{ε} may be not unique

Local invariance means that trajectories can enter or leave S_{ε} only through its boundaries.

Scheme of proof: step 1 (more detailed)

$$\begin{cases} \dot{X} = F_{v}(X, Y) \\ l \cdot \dot{Y} = AY - BX \end{cases}$$

- $X \in \mathbb{R}^4$ slow
- $Y \in \mathbb{R}^2$ fast
- *l* « 1

Critical manifold:

$$S = \{(X, Y): Y = A^{-1}BX\}, \quad \dim S = 4$$

• $K \subset S$ (compact) is <u>normally hyperbolic</u> as the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
 has eigenvalues $\lambda_{\pm} = \pm \sqrt{2}$

Thus, by Fenichel's theorem for $l \ll 1$

• For any compact submanifold $K \subset S$ there exists a locally invariant manifold $K_I \subset \mathbb{R}^6$

$$K_l = \{(X, Y): Y = A^{-1}BX + l \cdot h(X, l)\}$$
 for some smooth function h

Result:

6-dim system on (X,Y) \Rightarrow 4-dim system on X on K_1 :

$$\dot{X} = F_{v}(X, A^{-1}BX + l \cdot h(X, l))$$

Scheme of proof: step 1 (more detailed)

THE END

We have a perturbation problem $(X \in \mathbb{R}^4)$:

$$l > 0$$
:

$$l=0$$
:

$$\begin{cases} \dot{a} = r \\ \dot{b} = s \\ \dot{r} = -vr - \frac{a}{2}(s - r) \\ \dot{s} = -vs - ra \end{cases}$$

Fixed points: $\{r = s = 0\}$

$$\dot{X} = F_{v}(X, A^{-1}BX + l \cdot h(X, l))$$

$$\dot{X} = F_{v}(X, A^{-1}BX)$$

4-dim

...we can find all heteroclinic orbits explicitly when l=0!...

3-dim

Obs 1: there is no b in the right hand side!

2-dim

Obs 2:

there are 2-dim invariant manifolds: $\{s = 2r\}$

1-dim

Obs 3:

inside these invariant manifolds holds:

$$r = -\left(v + \frac{a}{2}\right)^2 + r_0, \qquad r_0 \in \mathbb{R}$$

Heteroclinic orbit can be represented as a transverse intersection of stable and unstable manifolds 1970 – M. Hirsh, C. Pugh, M. Shub, Invariant manifolds

Thanks to my collaborators!

Sergey Tikhomirov

Fedor Bakharev

Yalchin Efendiev

Aleksandr Enin

Dmitry Pavlov

Sergey Matveenko

Nikita Rastegaev

Ivan Starkov

Thank you for your attention!

yu.pe.petrova@gmail.com

https://yulia-petrova.github.io/

For more details see arXiv:2401.05981

See also: arXiv:2310.14260

arXiv:2012.02849

(two-tubes model)
(numerics of viscous fingering)

(numerics of viscous fingering)

Any questions, comments and ideas are very welcome!

References

Muito obrigada pela atenção!

Own works on the topic of the talk:

- **1. Yu. Petrova**, S. Tikhomirov, Ya. Efendiev "Propagating terrace in a two-tubes model of gravitational fingering" ArXiv: 2401.05981; 2024. To appear in SIMA.
- 2. F. Bakharev, A. Enin, A. Groman, A. Kalyuzhnyuk, S. Matveenko, **Yu. Petrova**, I. Starkov, S. Tikhomirov "Velocity of viscous fingers in miscible displacement: Comparison with analytical models".

 Journal of Computational and Applied Mathematics, 402, p.113808; 2022.
- 3. F. Bakharev, D. Pavlov, A. Enin, S. Matveenko, **Yu. Petrova**, N. Rastegaev, S. Tikhomirov "Velocity of viscous fingers in miscible displacement: Intermediate concentration"

 Journal of Computational and Applied Mathematics, 451, p.116107; 2024.

Other references:

Dynamics of viscous fingering:

- 1. Nijjer J., Hewitt D., and Neufeld J. The dynamics of miscible viscous fingering from onset to shutdown. Journal of Fluid Mechanics 837 (2018): 520-545.
- 2. Menon, G., Otto, F., 2006. Diffusive slowdown in miscible viscous fingering. Communications in Mathematical Sciences, 4(1), pp.267-273.
- 3. Menon, G., Otto, F., 2005. Dynamic scaling in miscible viscous fingering. Comm. in mathematical physics, 257, pp.303-317.
- 4. Homsy, G.M., 1987. Viscous fingering in porous media. Annual review of fluid mechanics, 19(1), pp.271-311.
- 5. Boffetta, G. and Musacchio, S., 2022. Dimensional effects in Rayleigh–Taylor mixing. Philosophical Transactions of the Royal Society A, 380(2219), p.20210084.

References

Muito obrigada pela atenção!

Geometric singular perturbation theory (GSPT):

- 1. Fenichel, N., 1979. Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31(1), pp.53-98.
- 2. Wechselberger, M., 2020. Geometric singular perturbation theory beyond the standard form (Vol. 6). New York: Springer.
- 3. Kuehn, C., 2015. Multiple time scale dynamics (Vol. 191). Berlin: Springer.

Well-posedness for IPM:

- 1. Kiselev, A. and Yao, Y., 2023. Small scale formations in the incompressible porous media equation. Archive for Rational Mechanics and Analysis (ARMA), 247(1), p.1.
- 2. A. Castro, D. Cordoba and D. Lear, Global existence of quasi-stratified solutions for the confined IPM equation, Archive for Rational Mechanics and Analysis (ARMA), 232 (2019), no. 1, 437–471.
- 3. T. Elgindi, On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation, Archive for Rational Mechanics and Analysis (ARMA), 225 (2017), no. 2, 573–599.

Non-uniqueness for IPM:

- 1. D. Cordoba, D. Faraco and F. Gancedo, Lack of uniqueness for weak solutions of the Incompressible Porous Media equation, Archive for Rational Mechanics and Analysis (ARMA) 200 (2011), no. 3, 725–746.
- 2. Shvydkoy, R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24(4), 1159–1174 (2011).
- 3. L. Szekelyhidi, Jr. Relaxation of the incompressible porous media equation, Ann. Sci. de l'Ecole Norm. Superieure (4) 45 (2012), no. 3, 491–509.

Stability for stratified states for IPM:

1. Bianchini, R., Crin-Barat, T. and Paicu, M., 2024. Relaxation approximation and asymptotic stability of stratified solutions to the IPM equation. Archive for Rational Mechanics and Analysis (ARMA), 248(1), p.2.