Recommendations and Future Directions

Recommendations

Open-sourced text-editing models

- EdiT5: (to be released)
- EditNTS: <u>github.com/YueDongCS/EditNTS</u>
- Felix: github.com/google-research/google-research/tree/master/felix
- GECToR: github.com/grammarly/gector
- LaserTagger: <u>github.com/google-research/lasertagger</u>
- LEWIS: github.com/machelreid/lewis
- PIE: <u>github.com/awasthiabhijeet/PIE</u>
- Seq2Edits:
 <u>github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/research/tra</u>

 <u>nsformer_seq2edits.py</u>
- (Straka et al., 2021): github.com/ufal/wnut2021_character_transformations_gec

Tutorial Proposal

https://textedit.page.link/paper

Contains:

(1) a summary of the tutorial topics

(2) list of references

Open problems and future directions

- 1. Learned edit operations
- 2. Tokenization optimized for editing
- 3. Text-editing specific pre-training
- 4. Sampling
- 5. Scaling up text-editing models

Speculative Decoding

Papers

Fast Inference from Transformers via Speculative Decoding

Yaniv Leviathan *1 Matan Kalman *1 Yossi Matias 1

Accelerating Large Language Model Decoding with Speculative Sampling

 ${\bf Charlie\ Chen^1,\ Sebastian\ Borgeaud^1,\ Geoffrey\ Irving^1,\ Jean-Baptiste\ Lespiau^1,\ Laurent\ Sifre^1\ and\ John\ Jumper^1}$

Converting distribution ("Du": 70%, "Ich": 20%, etc.) to token:

- Greedy decoding,
- Sampling,
- TopK sampling, TopP sampling Result: "Ich"

Transformer decoders are slow

Compared to what?

• The encoder.

Why is decoding from transformers slow?

Solutions

Throughput is a concern?

• Batching (do more compute for the memory we transfer)

Latency is a concern?

- Distillation into smaller model
 - Quality concerns
- Speculative Decoding!

Batching, for latency!

 Have a drafter model, much smaller than the original model

```
[START] japan ' s benchmark nikkei 22 75

[START] japan ' s benchmark nikkei 22 75

[START] japan ' s benchmark nikkei 225 index rose 226 69 points or 1 5 percent to 10 989 79 in tekyo late

[START] japan ' s benchmark nikkei 225 index rose 226 69 points or 1 5 percent to 10 989 79 in late morning trading [END]
```

Making the distributions match

Drafter results: _my _favourite _pet _was _a _dog _named _rex

What we have:

- Q distribution (drafter model) for each token
- P distribution (large model) for next token given pr

Distributions can be:

Vanilla sampling

P - large model

cat: 0.35

dog: 0.4

the: 0.02

...

Making the distributions match

Case 1: Q(token) > P(token)

- Keep with probability P(token)/Q(token)
- Probability of sampling and keeping is now P(token).
- Reject: sample a new token from among those where Q(token) <= P(token), proportional to abs(P(token) -Q(token).

Case 2: Q(token) <= P(token)

Just accept.

Making the distributions match

Next token

Case 1: Q(token) > P(token)

- Keep with probability P(token)/Q(token)
- Probability of sampling and keeping is now P(token).
- Reject: sample a new token from among those where Q(token) <= P(token), proportional to abs(P(token) -Q(token).

Case 2: Q(token) <= P(token)

Just accept.

Tradeoffs

Constants

- Alpha: Per-token acceptance prok
- Gamma Number of tokens we d from the draft model for each token from the large model.
- Latency of drafter / large

Figure 2. The expected number of tokens generated by Algorithm 1 as a function of α for various values of γ .

Theoretical analysis

C - latency of small/large = 0.01Maximum number of tokens predicted 23 22 21 = 0.0520 -c = 0.119 18 17 16 Optimal y

0.50

0.55

0.60

0.65

Figure 3. The optimal γ as a function of α for various values of c.

0.70

Probability of acceptance

0.75

0.80

0.85

0.90

Figure 4. The speed improvement and increase in number of operations as a function of α for various values of γ .

 Quality drops slower that latency gains up to T5 sr

Table 2. Empirical results for speeding up inference from a T5-XXL 11B model.

					20
TASK	M_q	ТЕМР	γ	α	SPEED
EnDE	T5-SMALL ★	0	7	0.75	3.4X
ENDE	T5-BASE	0	7	0.8	2.8X
ENDE	T5-LARGE	0	7	0.82	1.7X
EnDE	T5-small ★	1	7	0.62	2.6X
ENDE	T5-BASE	1	5	0.68	2.4X
EnDe	T5-LARGE	1	3	0.71	1.4X
CNNDM	T5-SMALL ★	0	5	0.65	3.1X
CNNDM	T5-BASE	0	5	0.73	3.0X
CNNDM	T5-LARGE	0	3	0.74	2.2X

T5-SMALL ★

T5-BASE

T5-LARGE

CNNDM

CNNDM

CNNDM

0.53

0.55

0.56

2.3X

2.2X

1.7X

Table 3. Empirical α values for various models M_p , approximation models M_q , and sampling settings. T=0 and T=1 denote argmax and standard sampling respectively⁶. $\frac{}{M_p} \frac{M_q}{M_p} \frac{\text{SMPL}}{\Omega} \alpha$

		GPT-LIKE (97M) GPT-LIKE (97M) GPT-LIKE (97M) GPT-LIKE (97M) GPT-LIKE (97M) GPT-LIKE (97M)	Unigram Bigram GPT-like (6M) Unigram Bigram GPT-like (6M)	T=0 T=0 T=0 T=1 T=1 T=1	0.03 0.05 0.88 0.03 0.05 0.89
•	Greedy easier than samplin	T5-XXL (ENDE) T5-XXL (ENDE) T5-XXL (ENDE) T5-XXL (ENDE) T5-XXL (ENDE)	UNIGRAM BIGRAM T5-SMALL T5-BASE T5-LARGE	T=0 T=0 T=0 T=0 T=0	0.08 0.20 0.75 0.80 0.82
•	Works (sort of) even with excheap drafters	T5-XXL (ENDE) T5-XXL (ENDE) T5-XXL (ENDE) T5-XXL (ENDE) T5-XXL (ENDE)	UNIGRAM BIGRAM T5-SMALL T5-BASE T5-LARGE	T=1 T=1 T=1 T=1 T=1	0.07 0.19 0.62 0.68 0.71
	cricap drarters	T5-XXL (CNNDM)	UNIGRAM BIGRAM T5-SMALL T5-BASE T5-LARGE UNIGRAM BIGRAM T5-SMALL T5-BASE	T=0 T=0 T=0 T=0 T=0 T=1 T=1 T=1	0.13 0.23 0.65 0.73 0.74 0.08 0.16 0.53 0.55
		T5-XXL (CNNDM) LAMDA (137B) LAMDA (137B) LAMDA (137B) LAMDA (137B) LAMDA (137B) LAMDA (137B)	LAMDA (100M) LAMDA (2B) LAMDA (8B) LAMDA (100M) LAMDA (2B)	T=0 T=0 T=0 T=1 T=1	0.56 0.61 0.71 0.75 0.57 0.71

Table 1 | Chinchilla performance and speed on XSum and HumanEval with naive and speculative sampling at batch size 1 and K = 4. XSum was executed with nucleus parameter p = 0.8, and HumanEval with p = 0.95 and temperature 0.8.

Sampling Method	Benchmark	Result	Mean Token Time	Speed Up	
ArS (Nucleus)	XSum (ROUGE-2)	0.112	14.1ms/Token	1×	
SpS (Nucleus)		0.114	7.52ms/Token	1.92×	
ArS (Greedy)	XSum (ROUGE-2)	0.157	14.1ms/Token	1×	
SpS (Greedy)		0.156	7.00ms/Token	2.01×	
ArS (Nucleus)	HumanEval (100 Shot)	45.1%	14.1ms/Token	1×	
SpS (Nucleus)		47.0%	5.73ms/Token	2.46×	

Thank You