- P12.9 (a) This NMOS transistor is operating in saturation because we have $v_{GS} \ge V_{to}$ and $v_{DS} \ge v_{GS} V_{to}$. Thus, $I_a = K(v_{GS} V_{to})^2 = 1.8 \text{ mA}$.
 - (b) This PMOS transistor is operating in saturation because we have $v_{GS} \le V_{to}$ and $v_{DS} = -4 \le v_{GS} V_{to} = -3 (-1) = -2$. Thus, $I_b = K(v_{GS} V_{to})^2 = 0.8$ mA.
 - (c) This PMOS transistor is operating in the triode region because we have $v_{\mathcal{GS}} \leq V_{to}$ and $v_{DS} = -1 \geq v_{\mathcal{GS}} V_{to} = -5 (-1) = -4$. Thus, $I_c = K[2(v_{\mathcal{GS}} V_{to})v_{DS} v_{DS}^2] = 1.4 \text{ mA}$.
 - (d) This NMOS transistor is operating in the triode region because we have $v_{\mathcal{GS}} \geq V_{to}$ and $v_{\mathcal{DS}} = 1 \leq v_{\mathcal{GS}} V_{to} = 3 1 = 2$. Thus, $I_d = K[2(v_{\mathcal{GS}} V_{to})v_{\mathcal{DS}} v_{\mathcal{DS}}^2] = 0.6$ mA.
- P12.13

$$i_D=k(V_{GS}-V_{t0})^2$$

$$0.8 = 0.2(V_{GS}+1)^2$$

P12.31* We can write $V_{DD} = V_{DSQ} + R_S I_{DQ}$. Substituting values and solving, we obtain $R_S = 3 \text{ k}\Omega$. Next we have $K = \frac{1}{2} \text{KP}(W/L) = 2 \text{ mA/V}^2$. Assuming that the NMOS operates in saturation, we have

Substituting values and solving, we find $V_{\mathcal{GSQ}}=0$ V and $V_{\mathcal{GSQ}}=2$ V. The correct root is $V_{\mathcal{GSQ}}=2$ V. (As a check we see that the device does operate in saturation because we have greater than) Then we have $V_{\mathcal{G}}=V_{\mathcal{GSQ}}+R_{\mathcal{S}}I_{\mathcal{DQ}}=8$ V. However we also have

Substituting values and solving, we obtain $R_2 = 2 \text{ M}\Omega$.

P12.33 We have $V_G = V_{GSQ} = 5R_2/(R_1 + R_2) = 2.5$ V. Then we have $I_{DQ} = K(V_{GSQ} - V_{to})^2 = 1.28$ mA. $V_{DSQ} = V_{DD} - R_D I_{DQ} = -0.12$ V. For the MOSFET to operate in saturation R_D cannot exceed 2.65 $k\Omega$

P12.53* (a)
$$V_{\mathcal{G}} = V_{DD} \frac{R_2}{R_1 + R_2} = 20 \frac{0.3}{1.7 + 0.3} = 3 \text{ V}$$

$$V_{\mathcal{GSQ}} = V_{\mathcal{G}} = 3 \text{ V}$$

$$K = \frac{1}{2} KP(W / L) = 2.5 \text{ mA/V}^2$$

$$I_{DQ} = K(V_{\mathcal{GSQ}} - V_{to})^2 = 10 \text{ mA}$$

$$V_{DSQ} = V_{DD} - R_D I_{DSQ} = 10 \text{ V}$$

$$g_m = 2 \sqrt{KI_{DQ}} = 0.01 \text{ S}$$

(b)
$$R'_{L} = \frac{1}{1/R_{D} + 1/R_{L}} = 500 \Omega$$

 $A_{V} = -g_{m}R'_{L} = -5$
 $R'_{in} = \frac{1}{1/R_{1} + 1/R_{2}} = 255 \text{ k}\Omega$
 $R_{o} = R_{D} = 1 \text{ k}\Omega$

P12.62

