XxY = { (x.4): x &X, y &Y} a rectangle in $X \times Y$ is a set of the form $A \times B$. $A \subseteq X$, $B \subseteq Y$ e.g. Q x Q is a rectorgle Def (X.S), (Y,T) mble spaces.

O S&T is the smallest σ -alg confaining $\{A \times B : A \in S : B \in T\}$ of the mble rectagle.

D a mble rectagle is $A \times B$. $A \in S$. $B \in T$. ex. E is an open unit ball in R×R. E is B(R) & B(R) mble. $E = \bigcup_{a.b.c.d \in Q} (a.b) \times (c.d)$ open sets -> Same for every open sets in R2, they are B(IR) & B(IR) mble. are mble Thm: $\mathcal{B}(IR^2) = \mathcal{B}(IR) \otimes \mathcal{B}(IR)$ Def: For $E \subset X \times Y$, the cross sections of E are $[E]_a = \{y \in Y \mid (a,y) \subseteq E\}$ mble? $[E]_b^b = \{x \in X \mid (x,b) \subseteq E\}$ set mble \Rightarrow slice mble

Thm: If $E \in S \otimes T$. then $[E]_a \in T$, $[E]_b^b \in S$. $\forall a \in X$, $b \in Y$ (Pf): let E= {EcX*Y: [E]a \in T. [E] b \in S. \frac{1}{2}. \text{\$\sigma} \text{\$\sigma} \text{\$\sigma} \frac{1}{2}. \text{\$\sigma} \text{\$\sigma} \text{\$\sigma} \frac{1}{2}. \text{\$\sigma} \text{\$\sigma} \text{\$\sigma} \frac{1}{2}. \text{\$\sigma} \text{\$\ @ {A×B| A∈S. B∈T} ⊆ & $\emptyset \int_{a} [E^{c}]_{a} = ([E]_{a})^{c} \in T.$ $[UE]_{a} = U[E]_{a} \in T.$ Thm Note: The inverse is not true. Even if all cross sections are mble, the set might not be mble Def: For $f: X \times Y \to \mathbb{R}$ the cross sections the of f are

If $J_a = f(a,y)$ If $J_b = f(x,b)$ e.g. $[I_E]_a = I_{[E]_a}$ $[I_E]_b = I_{(E)_b}$

Thm: (Cross section thus of mble thus are mble) If $f: X*Y \to \mathbb{R}$ SOT mble, then If J_a is T-mble, If J_b to S-mble, $a \in X$, $b \in Y$

Pf: For open set D

H[]a^{(1)} = {y: fca, y} \in D}

= [f^{(0)}]_a \in T.

Skip Monotone dass lemma
$$p: 120-123$$

Def: $(X. 3. p^{n})$ measure space.

A finite measure $y \in p(X) \in \infty$

A $p \in P(X) \in \mathbb{R}$ make sets $X, X_2 = \infty$

Suppose $E \in S \otimes T$. Then

 $X \mapsto V(EE]_x$ is a S -mile fix.

Pef: $(p \text{roduct measure})$
 $(X. S. p^{n}) = (Y, T. v) = 0$

Finite measure spaces

Suppose $E \in S \otimes T$. Then

 $X \mapsto V(EE]_x$ is a S -mile fix.

 $X \mapsto V(EE]_x$ is a X -mile fix.

Def: $(p \text{roduct measure})$
 $(X. S. p^{n}) = (Y, T. v) = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \in S \otimes T \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto [0, \infty] = 0$
 $(X \mapsto V \mapsto [0, \infty] = 0$
 $(X \mapsto [0, \infty] = 0$
 $(X \mapsto [0, \infty] = 0$
 $(X \mapsto [0, \infty$

$$= \int_{X}^{\infty} \sum_{i=1}^{\infty} V[E_{i}]_{x} d\mu(x) \qquad \text{Pry Monotone Convergence Thm}$$

$$= \sum_{i=1}^{\infty} \int_{X} V[E_{i}]_{x} d\mu(x) = \sum_{i=1}^{\infty} (\mu \times \nu)(E_{i}) \qquad \square$$

Thm $(X.S.\mu)$, $(Y.T.\nu)$ σ -finite measure spaces. $E \in S \otimes T$. $\Rightarrow \int_X \int_Y 1_{E}(x,y) d\nu(y) d\mu(x) = \int_Y \int_X 1_{E}(x,y) d\mu(x) d\nu(y)$ i.e. $\int_X \nu([E]_x) d\mu(x) = \int_Y \mu([E]^4) d\nu(y)$