肥 工 业 大 学 试 卷 (\mathbf{A})

2022~2023 学年第一学期复变函数与积分变换 (1400261B)

—、	埴空题	(每小题	3分.	共 15	分)
•	ス上心		U /J ,)\ TO	// /

3. 设
$$C$$
 为正向圆周 $|z|=2$, 则积分 $\oint_C \left(\frac{\overline{z}}{z}\right) dz =$ _______.

4. 设
$$a, b, c$$
 为实数. 如果函数 $f(z) = x^2 - 2xy - y^2 + i(ax^2 + bxy + cy^2)$ 在复平面上处处解析,则 $a + b + c =$

5. 函数
$$\sin t + j \cos t$$
 的傅里叶变换为 .

二、选择题(每小题 3 分, 共 15 分)

1	方程	z + i =	$ \gamma - i $	_ 1	表示的曲线是(()	١
т.	/ / 作土	z + i -	z-i	— I	化小门凹线压 ().

- A. 直线
- B. 不是圆的椭圆 C. 双曲线
- D. 圆周

2. 不等式
$$-1 \le \arg z \le \pi - 1$$
 确定是的 ().

A. 有界多连通闭区域

B. 有界单连通区域

C. 无界多连通区域

D. 无界单连通闭区域

3. 幂级数
$$\sum_{r=1}^{\infty} (iz)^r$$
 的收敛半径是 ().

A. *i*

- C. 1

D. $+\infty$

4. 下面哪个函数在
$$z=0$$
 处不可导?()

- A. 2x + 3yi

- B. $2x^2 + 3y^2i$ C. $x^2 xyi$ D. $e^x \cos y + ie^x \sin y$
- **5.** 如果 z_0 是 f(z) 的一阶极点, g(z) 的一阶零点, 则 z_0 是 $f(z)^3 g(z)^2$ 的 ().
 - A. 一阶极点
- B. 一阶零点
- C. 可去奇点 D. 三阶极点

三、解答题

1. (6 分) 设
$$z = \frac{3+i}{i} - \frac{10i}{3-i}$$
, 求 z 的模和辐角.

2. (6 分) 解方程
$$\sin z = 2 \cos z$$
.

3. (6 分) 设
$$C$$
 为从 i 到 $i - \pi$ 再到 $-\pi$ 的折线, 求 $\int_C \cos^2 z \, dz$.

- **4.** (10 分) 设 C 为正向圆周 |z-3|=4, 求 $\oint_C \frac{e^{iz}}{z^2-3\pi z+2\pi^2} dz$.
- **5.** (10 分) 假设 $v(x,y) = x^3 + y^3 axy(x+y)$ 是调和函数,求参数 a 以及解析函数 f(z) 使得 v(x,y) 是它的虚部.
- 6. (10 分) 确定函数 $f(z) = \frac{z+1}{(z-1)^2}$ 在圆环域 (1) 0 < |z| < 1; (2) $1 < |z| < +\infty$ 内的洛朗级数展开式.
- 7. (10 分) 求 $f(z) = \frac{\cos z}{z^2(z^2 \pi^2)}$ 在有限复平面内的奇点和相应的留数.
- 8. (9分) 用拉普拉斯变换求解微分方程初值问题

$$\begin{cases} y''(t) + 2y(t) = \sin t, \\ y(0) = 0, \quad y'(0) = 2. \end{cases}$$

9. (3 分) 复变函数 $f(z) = \sin z$ 和实变量函数 $g(x) = \sin x$ 的性质有什么相似和不同之处? 试列举一二.

合肥工业大学考试参考答案 (A)

2022~2023 学年第一学期复变函数与积分变换 (1400261B)

一、填空 请将你的?				(分)				
				0	4	9	=	$2\pi i\delta(\omega+1)$
							, ə.	$\frac{2\pi j\delta(\omega+1)}{2\pi j\delta(\omega+1)}.$
二、选择			•		ᅮᆉ			
请将你所证		‡ A, B, C), D 	刈 <u>炒</u> 項件	ト列衣俗5 	E:]		
题号	1	2	3	4	5			
答案	С	D	С	A	A			
三、解答	語							
1. (6分								
		i(3+i) =	2 - 6i,					(2 分
因此 z =								·····(2 分
								只有主值得 1 分
2. (6分		,				`	, .	
$ \frac{e^{iz} - e^{-iz}}{2i} = 2 \cdot \frac{e^{iz} + e^{-iz}}{2}, \qquad (2 \ \%) $ $ e^{iz} - e^{-iz} = 2i(e^{iz} + e^{-iz}), $								
$e^{2iz} = \frac{1+2i}{1-2i} = \frac{(1+2i)^2}{5}, \dots $ (1								
$2iz = \operatorname{Ln} \frac{(1+2i)^2}{5} = (2 \arctan 2 + 2k\pi)i, \cdots (1 \ \%)$								
		z = ar	$\cot 2 + k$	$k \pi, k \in \mathbb{Z}$	7 4. ·····	(2分,	只有主值得 1 分
其它答案: 3. (6 分	$z = \frac{\pi}{2} -$	$\frac{1}{2}\arctan\frac{4}{3}$	$+k\pi,k\in$	\mathbb{Z} .				
由于 \cos^2								·····(1 分
								(1 分
				z , si	n(2z)			(1 A

因此

$$\int_{C} \cos^{2} z \, dz = \left[\frac{z}{2} + \frac{\sin(2z)}{4} \right]_{i}^{-\pi} \dots (1 \, \%)$$

$$= -\frac{\pi}{2} - \left[\frac{i}{2} + \frac{\sin(2i)}{4} \right] \dots (1 \, \%)$$

$$= -\frac{\pi}{2} + \frac{(e^{-2} - 4 - e^{2})i}{8} \dots (1 \, \%)$$

因此

$$\oint_C f(z) dz = 2\pi i \left[\text{Res}[f(z), \pi] + \text{Res}[f(z), 2\pi] \right] \qquad \dots \qquad (2 \, \cancel{2})$$

$$= 2\pi i \left[\frac{e^{iz}}{z - 2\pi} \Big|_{z=\pi} + \frac{e^{iz}}{z - \pi} \Big|_{z=2\pi} \right] \qquad (2 \, \cancel{2})$$

$$= 2\pi i \left[\frac{1}{\pi} + \frac{1}{\pi} \right] = 4i. \qquad (3 \, \cancel{2})$$

5. (10 分)【解】

由

$$f'(z) = v_y + iv_x \qquad \cdots \qquad (2 \ \beta)$$

$$= (3y^2 - 3x^2 - 6xy) + i(3x^2 - 6xy - 3y^2) \quad \dots \quad (2 \ \%)$$

$$= 3(i-1)(x+iy)^2 = 3(i-1)z^2 \cdots (1 \%)$$

$$f(z) = u + iv$$

$$= 3xy^{2} - x^{3} - 3x^{2}y + y^{3} + C + i(x^{3} + y^{3} - 3xy^{2} - 3x^{2}y)$$

$$= (i - 1)z^{3} + C, C \in \mathbb{R}. \qquad (2 \%)$$

6. (10 分)【解】

由于 f(z) 的奇点是 1, 因此 f(z) 在这两个圆环域内都解析.

(1) 由于

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \quad \dots \qquad (1 \ \%)$$

第4页共6页

因此

$$f(z) = \frac{z - 1 + 2}{(z - 1)^2} = \frac{1}{z - 1} + \frac{2}{(z - 1)^2} = -\frac{1}{1 - z} + 2\left(\frac{1}{1 - z}\right)' \quad \dots \quad (2 \, \%)$$

$$= -\sum_{n=0}^{\infty} z^n + 2\left(\sum_{n=0}^{\infty} z^n\right)' = -\sum_{n=0}^{\infty} z^n + 2\sum_{n=1}^{\infty} nz^{n-1}$$

$$= -\sum_{n=0}^{\infty} z^n + 2\sum_{n=0}^{\infty} (n+1)z^n = \sum_{n=0}^{\infty} (2n+1)z^n. \quad \dots \quad (2 \, \%)$$

(2) 由于

因此

$$f(z) = \frac{1}{z-1} - 2\left(\frac{1}{z-1}\right)' = \sum_{n=1}^{\infty} z^{-n} - 2\left(\sum_{n=1}^{\infty} z^{-n}\right)' \qquad \dots \dots (2 \ \%)$$

$$= \sum_{n=1}^{\infty} z^{-n} - 2\sum_{n=1}^{\infty} (-n)z^{-n-1}$$

$$= \sum_{n=1}^{\infty} z^{-n} - 2\sum_{n=1}^{\infty} (-n+1)z^{-n} = \sum_{n=1}^{\infty} (2n-1)z^{-n}. \qquad \dots (2 \ \%)$$

7. (10 分)【解】

由于 0 是分母的二阶零点, 因此它是 f(z) 的二阶极点.(1 分)由于 $\pm \pi$ 是分母的一阶零点, 因此它们是 f(z) 的一阶极点.(1 分)

$$\operatorname{Res}[f(z), 0] = \left(\frac{\cos z}{z^2 - \pi^2}\right)' \Big|_{z=0} \qquad (2 \ \%)$$
$$= \frac{-\sin z \cdot (z^2 - \pi^2) - \cos z \cdot 2z}{(z^2 - \pi^2)^2} \Big|_{z=0} = 0, \qquad (2 \ \%)$$

Res
$$[f(z), \pi] = \frac{\cos z}{z^2(z+\pi)} \bigg|_{z=\pi} = -\frac{1}{2\pi^3}, \quad \dots$$
 (2 $\%$)

8. (9分)【解】

设 $\mathcal{L}[y] = Y$, 则

$$\mathcal{L}[y''] = s^2 Y - sy(0) - y'(0) = s^2 Y - 2, \quad \dots (3 \ \%)$$

因此

$$s^{2}Y - 2 + 2Y = \mathcal{L}[\sin t] = \frac{1}{s^{2} + 1}, \qquad (2 \%)$$

$$Y(s) = \frac{2}{s^{2} + 2} + \frac{1}{(s^{2} + 1)(s^{2} + 2)} = \frac{1}{s^{2} + 1} + \frac{1}{s^{2} + 2}, \qquad (2 \%)$$

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{s^{2} + 1} \right] + \mathcal{L}^{-1} \left[\frac{1}{s^{2} + 2} \right] = \sin t + \frac{\sqrt{2}}{2} \cdot \sin(\sqrt{2}t). \qquad (2 \%)$$

9. (3分)【解】

例如 (每项 1 分)

•
$$f'(z) = \cos z, g'(x) = \cos x.$$
 (1 \Re)

•
$$\sin z$$
 处处可导, $\sin x$ 处处可导.(1 分)