COMP 6714 Assignment 1 Yu Han Z5219071

Q1

```
(1) Intersect (A, B):
    If A.len == B.len == 1 then
        Do If A == B then Return A;
        Else Return [ ];
Else:
        List A_less, A_greater, B_less, B_greater;
        V = sum(A) / A.len;
        For i in list A:
            Do If i < V then A_less.append(i);
        Else A_greater.append(i);
        For j in list B:
            Do If j < V then B_less.append(j);
        Else: B_greater.append(j);
        Return Intersect (A_less, B_less) + Intersect (A_greater, B_greater);
        End;</pre>
```

(2) For k sub-lists, we only need to change the List A_less, A_greater and B_less, B_greater to k lists. For example, A_1 ... A_k, and B_1 ... B_k. And let V be the largest number of A, and V1 = V/(k-1), V2 = V1+V/(k-1) ... V(k-1) = V(k-2) + V(k-1). Then traversal list A and B and allocate each value to the suitable range (V1 to V2 to V3 to V(k-1)). Finally, return Intersect (A_1, B_1) + Intersect (A_2, B_2) + Intersect (A_k, B_k).

Q2

- (1) The logarithmic merge strategy is similar like the gallop search algorithm. Let's assume the indexes are I_0 , I_1 , I_2 ... and the size of the indexes are $2^0 * M$, $2^1 * M$, $2^2 * M$... Postings percolate up this sequence of indexes and are processed only once on each level. As before, up to M pages of postings are accumulated in an in-memory auxiliary index, which we call I_0 . When the limit M is reached, the I_0 0 * M pages of postings in I_0 1 are transferred to a new index I_0 1 that is created on disk. The next time I_0 2 is full, it is merged with I_0 2 to create an index I_0 3 of size I_0 4. Then I_0 5 is either stored as I_0 6 (if there isn't already an I_0 7) or merged with I_0 1 into I_0 2 (if I_0 1 exists) and so on. We service search requests by querying in-memory I_0 2 and all currently valid indexes I_0 3 on disk and merging the result.
 - for example, we have 7 sub-indexes without merge. In the logarithmic merge algorithm, we il combine four old sub-indexes as a new one and combine another two old sub-indexes as a new one, and the rest one as another new one. Therefore, we used $\log_2 t$.
- (2) Because each page is processed only once on each of the $\log_2 t$ levels, and the total number of pages is t * M, the total I/O cost for the logarithmic merge is O (t * M * $\log_2 t$).

- (1) Precision = 6/20 = 0.3
- (2) Recall = 6 / 8 = 0.75F1 = 2PR / (P + R) = 3 / 7 = 0.43

Precision & Recall Table

K	1	2	3	4	5	6	7	8	9	10
Precision (%)	1/1	2/2	2/3	2/4	2/5	2/6	2/7	2/8	3/9	3/10
Recall (%)	1/8	2/8	2/8	2/8	2/8	2/8	2/8	2/8	3/8	3/8

K	11	12	13	14	15	16	17	18	19	20
Precision (%)	4/11	4/12	4/13	4/14	5/15	5/16	5/17	5/18	5/19	6/20
Recall (%)	4/8	4/8	4/8	4/8	5/8	5/8	5/8	5/8	5/8	6/8

(3) 8 * 0.25 = 2

Therefore, the uninterpolated precisions could be 1, 2/3, 2/4, 2/5, 2/6, 2/7, 1/4

- (4) The interpolated precision is 4 / 11 = 0.364 at 33% recall.
- (5) MAP = 1/8 * (1 + 1 + 3/9 + 4/11 + 5/15 + 6/20) = 0.4163
- (6) $MAP_{largest} = 1/8 * (1 + 1 + 3/9 + 4/11 + 5/15 + 6/20 + 7/21 + 8/22) = 0.5034$
- (7) $MAP_{smallest} = 1/8 * (1 + 1 + 3/9 + 4/11 + 5/15 + 6/20 + 7/9999 + 8/10000) = 0.4165$
- (8) 0.5034 0.4163 = 0.0871

Q4

(1) P(Q|d1) = 2/10 * 3/10 * 1/10 * 2/10 * 2/10 * 0/10 = 0P(Q|d2) = 7/10 * 1/10 * 1/10 * 1/10 * 0/10 * 0/10 = 0

Therefore, the two documents have the same score 0.

(2) P(Q|d1) = (0.8*0.2+0.2*0.8) * (0.8*0.3+0.2*0.1) * (0.8*0.1+0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.2*0.025) * (0.8*0.025) * (0.8*0.025) * (0.8*0.025) * (0.8*0.025) * (0.8*0.025) * (0.8*0.025) * (0.8*0.025) * (0.8*0

$$P(Q|d2) = (0.8*0.7 + 0.2*0.8) * (0.8*0.1 + 0.2*0.1) * (0.8*0.1 + 0.2*0.025) * (0.8*0.1 + 0.2*0.025) * (0.8*0 + 0.2*0.025) * (0.8*0 + 0.2*0.025) = 1.3 * 10^{-8}$$

P(Q|d1) > P(Q|d2), so document 1 would be ranked higher.