Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Lecture 8 Power Cycles for Nuclear Plants Rankine and Brayton

Topics to be Covered

- Review of Rankine Cycle
 - Basic
 - Superheat
 - Multi-fluid cycles
- Brayton cycle
 - Pressure Ratios

Important Terms and Concepts

- Enthaply h = Btu/lbm (heat content)
- Entropy Btu/⁰R
- Specific Heat C_p Btu/lbm ⁰R at constant pressure
- Mass Flow Rate = m lbm/hr
- Pressure Ratio P₂/P₁ (For gas systems)
- Power Watts Btu/hr
- Work Btu
- Efficiency $(\underline{W_{\underline{t}} W_{\underline{p}}}) / Q_{in}$ (Heat Added)

Governing Equations

- Heat Transfer
 - Mass flow, specific heat, temperature
 - Mass flow, specific enthalpy
 - Efficiency factors heat loss
- Use of Steam Tables
- Quality

Rankine Cycle

FIG. 2-5. Schematic of two-loop nuclear power plant.

FIG. 2-4. Internally reversible Rankine cycle with saturated vapor.

Thermal Efficiency = <u>Heat Added - Heat Rejected</u> Heat Added

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008

Department of Nuclear Science & Engineering

Page 5

Figures © Intext Educational. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Important Equations

$$Q_{in} = \dot{m} (h_1 - h_B)$$

$$W_t = \dot{m} (h_1 - h_2)$$

$$W_p = \dot{m} (h_B - h_3)$$

$$Q_{in} = C_p \dot{m} (T_{in} - T_{ou})$$

FIG. 2-4. Internally reversible Rankine cycle with saturated vapor.

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008

Department of Nuclear Science & Engineering

Page 6

Figures © Intext Educational. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Rankine Cycle with Feedwater Heaters

FIG. 2-9. Schematic of Rankine cycle with two closed-type feedwater heaters.

Prof. Andrew C. Kadak, 2008 Page 7

REFINED RANKINE CYCLE USING SUPERHEATING AND REGENERATIVE HEATING

Thermal Efficiency = $\frac{\text{(Heat Added - Heat Rejected)}}{\text{Heat Added}} \cong 0.42_{\text{max}}$

Power Cycles

FIG. 2-12. Internally reversible Rankine cycle with superheat and a variable-temperature heat source.

FIG. 2-13. Ts diagram of internally reversible supercritical and reheat cycles.

Binary Cycle Plants

FIG. 2-16. Schematic of a mercury-steam binary-vapor power plant.

Prof. Andrew C. Kadak, 2008 Page 10

Gas Reactor Cycles

- Brayton Cycle
- Brayton-Rankine Dual Cycle
- Real Example Pebble Bed
- Choices for Efficiency and Cost
 - Materials
 - Costs
 - Efficiency Trade-offs

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Brayton Gas Cycle - Open

FIG. 7-1. The direct open cycle.
(a) Cycle diagram; (b) Ts diagram.

Perfect Gas Relationships

TABLE 2-1 Perfect-gas Relationships

Process	p, v, T relationships	$u_2 - u_1$	$h_1 - h_1$	$s_2 - s_1$	₩ (nonflow)	Q
Isothermal	$T = \text{const}$ $p_1/p_2 = v_2/v_1$	0	0	$(R/J) \ln (v_3/v_1)$	$(p_1v_1/J)\ln(v_2/v_1)$	$(p_1v_1/J) \ln (v_2/v_1)$
Constant pressure	$p = const$ $T_2/T_1 = v_2/v_1$	$c_v(T_2-T_1)$	$c_p(T_2-T_1)$	$c_p \ln (T_2/^3T_1)$	$p(v_2-v_1)/J$	$c_p(T_2-T_1)$
Constant volume	$v = \text{const}$ $T_2/T_1 = p_2/p_1$	$c_v(T_2-T_1)$	$c_p(T_2-T_1)$	$c_v \ln \left(T_z/T_i\right)$. 0	$c_v(T_2-T_1)$
Isentropic(adiabatic reversible)			$c_p(T_2-T_1)$	0	$\frac{p_2v_2-p_1v_1}{J(1-\gamma)}$	0
Throttling	$h = \text{const}$ $T = \text{const}$ $p_1/p_2 = v_2/v_1$	0	0	$(R/J) \ln (v_2/v_1)$	0	0
Polytropic	$ p_1 v_1^n = p_2 v_2^n T_2 / T_1 = (v_1 / v_2)^{n-1} T_2 / T_1 = (p_2 / p_1)^{(n-1)/n} $	$c_v(T_2-T_1)$	$c_p(T_2-T_1)$	$c_v \ln (p_2/p_1) + c_p \ln (v_2/v_1)$	$\frac{p_2v_2-p_1v_1}{J(1-n)}$	$c_v\left(\frac{\gamma-n}{1-n}\right) (T_2-$

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Indirect Brayton Open Cycle

Brayton Cycle – Direct Closed

FIG. 7-3. The direct closed cycle.

Indirect Closed Cycle – Gas to Gas

Prof. Andrew C. Kadak, 2008 Page 16

Indirect Gas to Steam Generator

FIG. 7-5. The indirect closed cycle, gas to water.

Specific Heats of Gases

FIG. 7-6. Variation of molar c_p with temperature for various gases.

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008

Department of Nuclear Science & Engineering

Page 18

Ideal Brayton Cycle

Prof. Andrew C. Kadak, 2008 Page 19

Non-Ideal Brayton Cycle

FIG. 7-12. Closed nonideal Brayton cycle with regeneration.

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008

Department of Nuclear Science & Engineering

Page 20

BRAYTON CYCLE WITH REGENERATIVE HEATING

BRAYTON CYCLE WITH REGENERATIVE HEATING

Prof. Andrew C. Kadak, 2008 Page 21

Gas-Steam Reactor Power Plant

FIG. 8-1. Schematic of a simple-cycle gas-steam-reactor power plant.

FIG. 8-2. Temperature-enthalpy diagram of a gas-steam heat exchanger in simple cycle.

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008

Page 22

Figures © Intext Educational. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

COMBINED CYCLE BRAYTON (Topping), RANKINE (Bottoming)

Figures © Intext Educational. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

VARIOUS VAPOR POWER CYCLES OPERATING BETWEEN THE SAME TEMPERATURE LIMITS

BRAYTON CYCLE WITH REGENERATIVE HEATING

Figures © Intext Educational. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Reading and Homework Assignment

- 1. Outside Reading El Wakil Chapters 7, 8
 - 1. Handout Problem

Handout Problem

Power Cycles and Heat Removal

- 1. An indirect closed cycle, gas to water reactor power plant generates 2 x 10⁻⁶ lbm/hr of steam at 1,000 psia and 800 F from feedwater at 200 F. Helium coolant at 200 psia leaves the reactor at 840 F and the boiler ate 540 F, is pumped with a polytropic exponent n=1.50, and undergoes a 60 psi pressure drop throughout the primary loop. (assume that 2/3 of the pressure drop occurs in the reactor vessel). Assuming no heat losses:
 - a. Draw the T-S diagram for this cycle including the helium loop.
 - b. Calculate the mass flow rate of the helium coolant
 - c. Calculate the reactor power output in Mw thermal
 - d. Calculate the thermal efficiency of the cycle

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.