# **Limits**

## **Definition of One-Sided limit**



• Suppose f(x) gets really close to R for values of x that get really close to (but are not equal to) a from the right. Then we say R is the **right-hand limit** of the function f(x) as x approaches a from the right.

We write:

$$f(x) 
ightarrow R \ \ as \ \ x 
ightarrow a^+$$
 or 
$$\lim_{x 
ightarrow a^+} f(x) = R$$

ullet If f(x) gets really close to L for values of x that get really close to (but are not equal to) a from

the left, we say that L is the **left-hand limit** of the function f(x) as x approaches a from the left.

We write:

$$f(x) 
ightarrow L$$
  $as$   $x 
ightarrow a^-$  or  $\lim_{x 
ightarrow a^-} f(x) = L$ 

### **Definition of Limit**

#### **Limit in words**

• If a function f(x) approaches some value L as x approaches a from both the right and the left, then the limit or the overall limit of f(x) exists and equals L.

#### **Limit in symbols**

lf

$$\lim_{x o a^+}f(x)=\lim_{x o a^-}f(x)=L$$

then

$$\lim_{x o a}f(x)=L$$

Alternatively,

$$f(x) \rightarrow L$$
 as  $x \rightarrow a$ 

Remember that  $\boldsymbol{x}$  is approaching  $\boldsymbol{a}$  but does not equal  $\boldsymbol{a}$ 

#### The Limit Laws:

Suppose  $\lim_{x \to a} f(x) = L$ ,  $\lim_{x \to a} g(x) = M$ 

- Then we get the following Limit Laws:
  - $\circ$  Limit Law for Addition:  $\lim_{x o a} [f(x)+g(x)]=L+M$

 $\circ$  Limit Law for Subtraction:  $\lim_{x o a} [f(x)-g(x)] = L-M$ 

 $\circ$  Limit Law for Multiplication:  $\lim_{x o a} [f(x)\cdot g(x)] = L\cdot M$ 

Limit Law for Division:

$$lacksquare If  $M 
eq 0$ , then  $\lim_{x o a} rac{f(x)}{g(x)} = rac{L}{M}$$$

- ullet If M=0 but L
  eq 0, then  $\lim_{x o a}rac{f(x)}{g(x)}$  does not exist
- If both M=0 and L=0, then  $\lim_{x\to a} \frac{f(x)}{g(x)}$  might exist, or it might not exist. More work is necessary to determine whether the last type of limit exists, and what it is if it does exist.

# **Definition of Continuous at a point**

ullet We say that a function f is **continuous at a point** x=a if

$$\lim_{x o a}f(x)=f(a)$$

- ullet In particular, if either f(a) or  $\lim_{x o a}f(x)$  fails to exist, then f is discontinuous at a.
- We say that a function f is **right-continuous at a point** x=a if,

$$\lim_{x o a^+} f(x) = f(a)$$

ullet We say that a function f is **left-continuous at a point** x=a if,

$$\lim_{x o a^-}f(x)=f(a)$$

- It is sometimes useful to classify certain types of discontinuities.
- If the left-hand limit  $\lim_{x\to a^-} f(x)$  and the right-hand limit  $\lim_{x\to a^+} f(x)$  both exist at a point x=a, but they are not equal, then we say that f has a **jump discontinuity** at x=a.



ullet If the overall limit  $\lim_{x o a}f(x)$  exists, but the overall limit does not equal f(a), then we say that f has a **removable discontinuity** at x=a



• The following functions are continuous at all real numbers:

- o all polynomials
- $\circ \sqrt[3]{x}$
- |x|
- $\circ \cos x$  and  $\sin x$
- $\circ$  exponential functions  $a^x$  with base a>0
- The following functions are continuous at the specified values of x:
  - $\circ \ \sqrt{x}$ , for x>0
  - $\circ \, an x$ , at all x where it is defined
  - $\circ \, \log _a x$  with base a>0 , for x>0

#### **Intermediate Value Theorem**

• If f is a function which is continuous on the interval [a,b], and M lies between the values of f(a) and f(b), then there is at least one point c between a and b such that f(c)=M.

(A function f is continuous on a closed interval [a,b], if it is right-continuous at a, left-continuous at b, and continuous at all points between a and b.)