# Lecture 13: Data wrangling

Reminder:
-Exam 1 a Oct. 9 (next Manday)
- Review questions an carse website
- Review day an Friday in class

#### So far

- select: choose certain columns
- filter: choose certain rows
- summarize: calculate summary statistics
- group\_by: group rows together
- mutate: create new columns
- count: count the number of rows
- arrange: re-order the rows

#### Do dogs help exam stress?

- Data collected on 284 students at a mid-size Canadian university
- Students randomly assigned to one of three treatment groups: handler-only contact, indirect contact, and direct contact
- Well-being and ill-being measures recorded before and after treatment for each student
- Approach: compare pre/post measures of well-being and ill-being

# Recording well-being and ill-being measures

- Likert items for each well-being / ill-being measure
- Average the likert items to get a score for each measure
- E.g.:
  - Positive affect score is the average of 5 Likert items
  - Social connectedness is the average of 20 Likert items

# Example Likert item for social connectedness

"I am able to relate to my peers."

- Strongly disagree (1)
- Disagree
- Somewhat disagree
- Somewhat agree
- Agree
- Strongly agree (6)

#### The raw data

- 284 rows (one per student)
- 200+ columns

```
SCI_l

1 ritem#

DR-test

SC2-3

1 ritem#

Post-test
```

```
raw data |>
      select(starts_with) "SC"))
    SC1_1 SC1_2 SC1_3 SC1_4 SC1_5 SC1_6 SC1_7 SC1_8 SC1_9 SC1_10 SC1_11
SC1_12
                                                                          5
        5
              6
                           4
                                 6
                                              1
                                                     5
                                                           1
                                                                   4
                                                                          2
6
                           3
                                  4
                                              3
                                                                          3
                                                           4
                                                                          5
              5
                                  3
                                                           5
                                                                          4
                           5
                                        1
                                              3
                                                     5
                                                           2
        3
              6
                                                                          2
```

# Our goal for today

- Calculate the pre- and post-treatment social connectedness scores for each participant
- Question: What do we want the final data to look like?



## Initial data processing

- Social connectedness is the average of 20 Likert items
- These items should take values between 1 and 6
- However:

#### Handling errors

#### Are there any issues with this approach?

```
1 example_df

x1 x2 x3 y1 y2

1 5 7 8 5 NA

2 2 4 4 2 4

3 4 8 7 5 5

1 example_df |>

2 summarize(across(c(x1, x2, x3, y1, y2), mean))

x1 x2 x3 y1 y2

1 3.666667 6.3333333 6.333333 4 NA

1 example_df

x1 x2 x3 y1 y2

1 3.666667 6.3333333 6.333333 4 NA
```

Question: What if I want to ignore NAs when computing the mean?

na, rm = T

```
1 example_df

x1 x2 x3 y1 y2

1 5 7 8 5 NA

2 2 4 4 2 4

3 4 8 7 5 5

1 example_df |>
2 summarize(across(c(x1, x2, x3, y1, y2),
3 function(x) {mean(x, na.rm=T)}))

x1 x2 x3 y1 y2

1 3.666667 6.333333 6.333333 4 4.5 arraymals function

can pile to the state of the s
```

```
1 example_df

x1 x2 x3 y1 y2
1 5 7 8 5 NA
2 2 4 4 2 4
3 4 8 7 5 5

1 example_df |>
2 mutate(across(c(x1, x2, x3, y1, y2),
3 function(x) {x + 1} ))

x1 x2 x3 y1 y2
1 6 8 9 6 NA
2 3 5 5 3 5
3 5 9 8 6 6
```

Question: What if I want to replace values > 6 with NA?

```
1 example_df
x1 x2 x3 y1 y2
1 5 7 8 5 NA
2 2 4 4 2 4
3 4 8 7 5 5

1 example_df |>
2 mutate(across(c(x1, x2, x3, y1, y2),
3 function(x) {ifelse(x > 6, NA, x)} ))
x1 x2 x3 y1 y2
1 5 NA NA 5 NA
2 2 4 4 2 4
3 4 NA NA 5 5
```

# Handling errors

Still manually specifying each
Column (tedias)

Question: Are there any issues with this approach?

# Handling errors

all of the SC columns

# More data cleaning

- For some Social Connectedness items, "6" means "more connected"
  - e.g.: "I find myself actively involved in people's lives."
- For some Social Connectedness items, "6" means "less connected"
  - e.g.: "I feel like an outsider." 

     New PSPONSE = 7 PSPONSE
- We want higher scores to always mean "more connected"

We need to reverse the scores for some Social Connectedness items!

#### More data cleaning

#### Suppose we want to reverse the scores for x1 and x3

## More data cleaning

#### Suppose we want to reverse the scores for x1 and x3

#### With the dog data

2 5 4 3 2 4 3 3 NA NA 5 5

**Question:** What if I want to calculate the average of the X columns for each row?

```
1 example df >
     mutate(across(c(x1, x2, x3, y1, y2),
 3
                  function(x) {ifelse(x > 6, NA, x)} ))
 x1 x2 x3 y1 y2
1 5 NA NA 5 NA
 2 4 4 2 4
 4 NA NA 5 5
 1 example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
                  function(x) {ifelse(x > 6, NA, x)} ),
           x mean = (x1 + x2 + x3)/3)
 4
 x1 x2 x3 y1 y2 x_mean = new column to centain raw averages of
1 5 NA NA 5 NA
                     NA
                                           X1, x2, x3
 2 4 4 2 4 3.333333
3 4 NA NA 5 5
                     NA
```

```
example df |>
    mutate(across(c(x1, x2, x3, y1, y2),
3
                 function(x) {ifelse(x > 6, NA, x)} ))
x1 x2 x3 y1 y2
5 NA NA 5 NA
2 4 4 2 4
4 NA NA 5 5
1 example df |>
    mutate(across(c(x1, x2, x3, y1, y2),
2
                 function(x) {ifelse(x > 6, NA, x)} ),
           x mean = mean(c(x1, x2, x3), na.rm=T))
4
                            want;
x1 x2 x3 y1 y2 x mean
                      Calalate 5
5 NA NA 5 NA 3.8
2 4 4 2 4 3.8
4 NA NA 5 5
                 3.8
                     entrons
in x1,x2,x3
(not being one rawwise)
```

```
example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 3
                  function(x) {ifelse(x > 6, NA, x)} ))
 x1 x2 x3 y1 y2
1 5 NA NA 5 NA
 2 4 4 2 4
3 4 NA NA 5 5
 1 example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 2
                  function(x) {ifelse(x > 6, NA, x)} )) |>
     rowwise() >) < calculate for each row
 4
 5
     mutate(x mean = mean(c(x1, x2, x3), na.rm=T))
# A tibble: 3 \times 6
# Rowwise:
    x1
         x2 x3
                     y1
                          v2(x mean)
 <int> <int> <int> <int><</pre>
                              <dbl>
     5
         NA
               NA
                      5
                          NA
                               5
2
        4 4 2 4 3.33
         NA NA 5 5
     4
```

```
example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 3
                  function(x) {ifelse(x > 6, NA, x)} ))
 x1 x2 x3 y1 y2
  5 NA NA 5 NA
  2 4 4 2 4
  4 NA NA 5 5
 1 example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 2
                  function(x) {ifelse(x > 6, NA, x)} )) >
     rowwise() |>
 4
     mutate(x_mean = mean(c_across(starts_with("x")), na.rm=T))
 5
# A tibble: 3 \times 6
                              Cacross Columns, within each raw
# Rowwise:
    x1
          x2
               x3
                     y1
                         y2 x mean
 <int> <int> <int> <int> <dbl>
     5
          NA
               NA
                      5
                               5
                           NA
                        4 3.33
        4 4
               NA 5
                            5
     4
          NA
```

# With the dog data

```
cleaned data <- raw data |>
      mutate(across(starts with("SC"),
 2
 3
                    function(x) {ifelse(x > 6, NA, x)}),
             across(num range("SC1 ",
 4
                              c(3, 6, 7, 9, 11, 13, 15, 17, 18, 20)),
  5
                    function(x) \{7 - x\}),
 6
             across(num range("SC2 ",
                              C(3, 6, 7, 9, 11, 13, 15, 17, 18, 20)),
 8
                    function(x) \{7 - x\})) >
 9
      rowwise() |>
10
      mutate(sc pre = mean(c across(starts with("SC1 ")), na.rm=T),
11
             sc post = mean(c across(starts with("SC2 ")), na.rm=T))
12
 1 cleaned data |>
      select(sc pre, sc post)
# A tibble: 284 × 2
# Rowwise:
   sc pre sc post
    <dbl>
           <dbl>
   3.9 3.8
    5.15 5.26
    4.1 4.15
    4.65 5.1
 4
    3.65 3.6
     4.35
           4.65
```

| 7  | 4.75 | 4.4  |
|----|------|------|
| 8  | 4.6  | 4.65 |
| 9  | 4.2  | 4.15 |
| 10 | 5.8  | 5.75 |

# **Class activity**

https://sta279-

f23.github.io/class\_activities/ca\_lecture\_13.html