5CCS2FC2: Foundations of Computing II

Probability & Average Time Complexity

Week 10

Dr Christopher Hampson

Department of Informatics

King's College London

Warm-up: The Birthday Paradox

- What is the minimum group size needed so that it is more likely than not that two people in the group share a birthday?
- How many pairs of students would you expect to share a birthday in this class? (~ 287 students enrolled for FC2)

Enter your Birthday below to play along!

https://goo.gl/forms/ PIWuTpLTj8kznoSb2

Random Variables

Random Variables

Random Variables

ullet A random variable on is a *measurment* of a random event $e \in E$

Random Variables

- Probability Mass Function (p.m.f.)
 - The probability mass function of a random variable X is a function which says how likely a given value is to appear as the measurement of a random event.

$$p_X(k) \ = \ Pig(\{ ext{ all events } e ext{ such that } X_e = k \ \}ig)$$

Expectation and Variance

Expectation of a Random Variable

Expectation

• The expectation of a random variable X is the weighted average of the possible values of X

$$\mathrm{E}[X] \; = \; \sum_k k \; p_X(k)$$

(where p_X is the probability mass function for X)

Example Let X be the value thrown on a biased six-sided dice where the probability of rolling a 6 is five times as likely as rolling any other value.

$$\mathbf{E}[X] = \sum_{k=1}^{6} k \times P(\text{rolling value } k)$$

$$= 1\left(\frac{1}{10}\right) + 2\left(\frac{1}{10}\right) + 3\left(\frac{1}{10}\right) + 4\left(\frac{1}{10}\right) + 5\left(\frac{1}{10}\right) + 6\left(\frac{5}{10}\right) = \frac{9}{2}$$

Expectation of a Random Variable

Variance

• The $ext{variance}$ of a random variable X is a measure of the expected deviation from the average $\mu = \mathrm{E}[X]$ (Greek letter 'mu')

Expectation of a Random Variable

Example

Consider the same biased dice whose expectation is E[X] = 9/2.

$\underline{}$	p(k)	$k-\mathrm{E}[X]$	$(k-\mathrm{E}[X])^2$	$(k - \mathrm{E}[X])^2 imes p(k)$
1	1 10	$-\frac{7}{2}$	<u>49</u> 4	49 40
2	1 10	$-\frac{5}{2}$	<u>25</u> 4	25 40
3	<u>1</u> 10	$-\frac{3}{2}$	9 4	9 40
4	<u>1</u>	$-\frac{1}{2}$	$\frac{1}{4}$	1 40
5	1 10	1/2	<u>1</u>	9 40
6	<u>5</u> 10	3 2	9 4	35 40

$$\Rightarrow$$
 Var(X) = $\frac{128}{40}$ = 3.2

Properties of Expectation and Variance

Theorem Let X and Y be any two random variable and let $a, b \in \mathbb{R}$ be real numbers. Then:

(i)
$$E[aX + b] = a E[X] + b$$
,

(ii)
$$E[X + Y] = E[X] + E[Y]$$
,

(iii)
$$Var(aX + b) = a^2 Var(X)$$
,

(iv)
$$Var(X+Y) = Var(X) + Var(Y)$$
,

(if X and Y are independent)

(v)
$$Var(X) = E[X^2] - E[X]^2$$
.

Proof:

Not given in this course!

Bernoulli Distribution

- Bernoulli Random Variable
 - A random variable is said to be Bernoulli distributed if:
 - it only takes the values 1 (true) or 0 (false)
 - Has the following probability mass function (p.m.f)

$$p_X(1) = p$$
 and $p_X(0) = (1-p)$

(in which case we write $X \sim \operatorname{Ber}(p)$)

Theorem Let $X \sim \operatorname{Ber}(p)$ be Bernoulli distributed. Then we have that

$$\mathrm{E}[X] = p$$
 and $\mathrm{Var}(X) = p(1-p)$

Average-Time Complexity

Average-Time Complexity

Worst-Case Time Complexity

• The (worst-case) time complexity of an algorithm is the maximum time that the algorithm requires to run on any input of size n.

i.e. an upper bound on T(n)

$$T(n) = \text{number of steps for input of size } n$$

Average-Time Complexity

• The average-time complexity of an algorithm is the expectation of the (random) variable T(n), which may vary randomly for different inputs of size n,

average-time complexity
$$= \mathrm{E}[\,T(n)\,]$$

• The **Bucket Sort algorithm** can be used to arrays whose items are **uniformly** distributed throughout a given interval (usually the unit interval [0, 1]).

The Bucket Sort Algorithm

Step 1) For each $k=1,\ldots,n$, create an empty bucket $B_1,\ldots B_n$,

Step 2) For each item item $_k$ in the list, for $k=1,\ldots,n$:

- If $item_k$ is between (i-1)/n and i/n, then put $item_k$ into bucket B_i .
- Step 3) For each bucket B_1, \ldots, B_n :
 - Sort B_i using (naïve) insertion sort.
- Step 4 Concatenate each of the sorted bucket lists.

Theorem The worst-time complexity of the Bucket Sort algorithm is quadratic $O(n^2)$ — bad!.

Proof:

- **Step 1)** Suppose we have n items whose values are all < 1/n.
- **Step 2)** Every item gets placed into the first bucket B_1 in Step 2.
- **Step 3)** The insertion sort on B_1 in Step 3 takes $\Theta(n^2)$ steps.

$$T(n) = \underbrace{\Theta(n)}_{\mathsf{Step 1}} + \underbrace{\Theta(n)}_{\mathsf{Step 2}} + \underbrace{\Theta(n^2)}_{\mathsf{Step 3}} + \underbrace{\Theta(n)}_{\mathsf{Step 4}} = \Theta(n^2)$$

Theorem The average-time complexity of the Bucket Sort algorithm is linear O(n).

Proof:

Step 1) For a given (uniformly distributed) array of size n, we have that

$$T(n) = \underbrace{\Theta(n)}_{\text{Step 1}} + \underbrace{\Theta(n)}_{\text{Step 2}} + \underbrace{O(B_1^2) + \cdots + O(B_n^2)}_{\text{Step 3}} + \underbrace{\Theta(n)}_{\text{Step 4}}$$

(where B_i is a random variable denoting the number of items in bucket i)

Step 2) The expected termination time is, therefore, given by

$$E[T(n)] = E[\Theta(n) + O(B_1^2) + \dots + O(B_n^2)]$$

$$= \Theta(n) + E[O(B_1^2)] + \dots + E[O(B_1^2)]$$

$$= \Theta(n) + O(E[B_1^2]) + \dots + O(E[B_n^2])$$

(since $\mathbb{E}[\cdot]$ is linear are $\Theta(n)$ is not a constant / non-random)

Step 3) Let X_{ij} be the following Bernoulli random variable

 $X_{ij} = \text{Item } j$ is placed into the ith Bucket

(so that
$$B_i = X_{i1} + X_{i2} + \cdots + X_{in}$$
 for each $i = 1, \ldots, n$)

Step 4) Suppose we have only two buckets, then

$$E[B_i^2] = E[(X_{i1} + X_{i2})(X_{i1} + X_{i2})]$$

$$= E[X_{i1}^2 + X_{i1}X_{i2} + X_{i2}X_{i1} + X_{i2}^2]$$

$$= E[X_{i1}^2] + E[X_{i2}^2] + E[X_{i2}X_{i1}] + E[X_{i2}X_{i1}]$$

or the same calculation in general for more buckets

$$E[B_i^2] = E[(X_{i1} + \dots + X_{in})(X_{i1} + \dots + X_{in})]$$

$$= \sum_{j=1}^n E[X_{ij}^2] + 2\sum_{j=1}^n \sum_{k=1}^{j-1} E[X_{ij}X_{ik}]$$

Step 5) We can then use the fact that

$$\mathrm{E}[X_{ij}^2] \,=\, rac{1}{n}$$
 and $\mathrm{E}[X_{ij}X_{ik}] \,=\, rac{1}{n^2}$

to find that

$$\mathbf{E}[B_i^2] = \sum_{j=1}^n \left(\frac{1}{n}\right) + 2\sum_{j=1}^n \sum_{k=1}^{j-1} \left(\frac{1}{n^2}\right)$$
$$= n\left(\frac{1}{n}\right) + n(n-1)\left(\frac{1}{n^2}\right)$$
$$= 1 + \frac{n-1}{n} = 2 - \frac{1}{n}$$

Step 6) Hence we have that

$$E[T(n)] = \Theta(n) + O(E[B_1^2]) + \dots + O(E[B_n^2])$$

$$= \Theta(n) + O\left(2 - \frac{1}{n}\right) + \dots + O\left(2 - \frac{1}{n}\right)$$

$$= \Theta(n) + O(2n - 1) = O(n)$$

Q.E.D

The reason for this linear average-time upper bound, is that we have assumed something about additional about the input. Namely that the items are **uniformly distributed** in the unit interval. Otherwise we cannot improve upon the $O(n \log n)$ upper bound.

End of Module!

