Konvergenzkriterien für Reihen

Monotoniekriterium Sei $a_k \geq 0$, $a_k \in \mathbb{R}$, $k \in \mathbb{N}$. Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann, wenn die Folge der Partialsummen beschränkt ist.

Cauchy-Kriterium Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann, wenn zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, so dass für alle $n > m \ge N$ gilt $\left| \sum_{k=m+1}^{n} a_k \right| < \varepsilon$.

Majorantenkriterium Sei $|a_k| \leq b_k$ für alle $k \in \mathbb{N}$. Falls die Reihe $\sum_{k=1}^{\infty} b_k$ konvergiert, so konvergiert die Reihe $\sum_{k=1}^{\infty} a_k$ und es gilt

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} b_k.$$

Minorantenkriterium Sei $0 \le a_k \le b_k$ für alle $k \in \mathbb{N}$ und $\sum_{k=1}^{\infty} a_k$ divergiere. Dann divergiert auch die Reihe $\sum_{k=1}^{\infty} b_k$.

Verdichtungskriterium Sei $(a_k)_{k\in\mathbb{N}}$ eine monoton fallende Folge positiver reeller Zahlen. Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann, wenn die "verdichtete" Reihe $\sum_{k=1}^{\infty} 2^k a_{2^k}$ konvergiert.

Def Eine Reihe $\sum_{k=1}^{\infty} a_k$ heißt absolut konvergent, falls die Reihe $\sum_{k=1}^{\infty} |a_k|$ konvergiert.

Quotientenkriterium Falls ein $q \in \mathbb{R}$, q < 1, und ein $N \in \mathbb{N}$ existieren, so dass $\left|\frac{a_{k+1}}{a_k}\right| \le q$ für alle $k \ge N$ gilt, dann konvergiert die Reihe $\sum_{k=1}^{\infty} a_k$ absolut. Falls dagegen ein $N \in \mathbb{N}$ existiert, so dass $\left|\frac{a_{k+1}}{a_k}\right| \ge 1$ für alle $k \ge N$ gilt, dann divergiert die Reihe $\sum_{k=1}^{\infty} a_k$.

Wurzelkriterium Falls ein $q \in \mathbb{R}$, q < 1, und ein $N \in \mathbb{N}$ existieren, so dass $\sqrt[k]{|a_k|} \le q$ für alle $k \ge N$ gilt, dann konvergiert die Reihe $\sum_{k=1}^{\infty} a_k$ absolut.

Ist dagegen $\sqrt[k]{|a_k|} \ge 1$ für unendlich viele $k \in \mathbb{N}$, so divergiert die Reihe $\sum_{k=1}^{\infty} a_k$.

Leibniz-Kriterium Ist $(b_k)_{k\in\mathbb{N}}$ eine monoton fallende Nullfolge, dann konvergiert die alternierende Reihe $\sum_{k=1}^{\infty} (-1)^{k-1} b_k$.