PCA in high dimensions

• We need to solve the eigenvector/eigenvalue equation

$$\frac{1}{N}\bar{X}\bar{X}^{\top}c_i = \lambda_i c_i$$

where $c_i = \bar{X}b_i$

- We want to recover the original eigenvectors b_i of the data covariance matrix $S = \frac{1}{N} \bar{X}^\top \bar{X}$
- Left-multiplying eigenvector equation by \bar{X}^{\top} yields

$$\underbrace{\frac{1}{N}\bar{\boldsymbol{X}}^{\top}\bar{\boldsymbol{X}}}_{c_i}\bar{\boldsymbol{X}}^{\top}\boldsymbol{c}_i = \lambda_i\bar{\boldsymbol{X}}^{\top}\boldsymbol{c}_i$$

and we recover $\bar{X}^{\top}c_i$ as an eigenvector of S with (the same) eigenvalue λ_i

Note: To perform PCA as discussed in the lecture we need to make sure that $\|\bar{X}^{\top}c_i\| = 1$.