REVIEW - Midterm

Matrices and Gaussian Elimination

Vector Spaces

Orthogonality

Linear system Gaussian Eliminations

Equivalent system

of Solutions: Inconsistent: 0

Consistent $\begin{cases} \infty \\ 1 \end{cases}$

Augmented matrix [A b]

Matrices and Gaussian Elimination

Elementary row operations

 $r_i \leftrightarrow r_j, kr_i(k \neq 0), r_j + kr_i$

Row echelon form $[\boldsymbol{U} \ \boldsymbol{c}]$; Reduced echelon form $[\boldsymbol{R} \ \boldsymbol{d}]$

Matrix operations A + B, kA

A + B, KA AB, A^{-1}, A^{T}

rank

LU factorization LDU factorization

One linear system = Two triangular system

Determine A is invertible; Find A^{-1} ;

rank(**A**);

 $A = LU; A = LDU; \dots$

Solve Ax = 0; Ax = b;

Find bases;

Dependency

• • • • • • • • •

Matrix

- $\Box A + B, kA, AB, A^T$
 - operations and properties
- four fundamental subspaces
- Elementary operations
- Rank
 - □ Properties; full column/row rank; rank-nullity theorem
- Matrix factorization
 - \Box A = LU; A = LDU
 - Arr PA = LDU (P: permutation matrix)
- Square matrix
 - □ Invertible: A^{-1} (A is invertible is equivalent to ...; Gauss-Jordan method)
 - □ A^k (special matrices: A = aI + B; $A = uv^T$; elementary matrices; matrices related to transformations in geometry; ...)

Vector Spaces and Vectors

- Vector space
- □ Subspaces: Spanning sets and spanned subspaces
- Orthogonal Subspaces
- Orthogonal complement
- Linear combinations
- □ Linear dependence and linear independence
- Basis
- Inner product
- Length
- Cosines
- Orthogonal vectors

$$E = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n\}$$
 are a basis for V ,

where

Linear Transformation & Matrix Representation

 $F = \{w_1, w_2, \dots, w_m\}$ are a basis for W.

Each linear transformation T from V to W is represented by a matrix A.

$$T(v_{j}) = Av_{j} = a_{1j}w_{1} + a_{2j}w_{2} + \dots + a_{mj}w_{m}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$[T(v_{1})]_{F} [T(v_{2})]_{F} [T(v_{n})]_{F}$$

$$T(v_{1}) = a_{11}w_{1} + a_{21}w_{2} + \dots + a_{m1}w_{m}$$

$$T(v_{2}) = a_{12}w_{1} + a_{22}w_{2} + \dots + a_{m2}w_{m}$$

$$\vdots$$

$$T(v_{n}) = a_{1n}w_{1} + a_{2n}w_{2} + \dots + a_{mn}w_{m}$$

Orthogonal Subspaces

C(A) = column space of A; dimension r.

N(A) = nullspace of A; dimension n-r.

 $C(A^{T})$ = row space of A; dimension \underline{r} .

 $N(A^{\mathrm{T}}) = \text{left nullspace of } A; \text{ dimension } \underline{m-r}.$

$$\subseteq \mathbf{R}^{m}$$

$$\subseteq \mathbf{R}^{n} \quad r + (n - r) = n$$

$$\subseteq \mathbf{R}^{n} \quad r + (m - r) = m$$

Figure 3.4: The true action $Ax = A(x_{row} + x_{null})$ of any m by n matrix.

Projection onto a Line

$$\cos \theta = \frac{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}.$$

The projection proj_a satisfies

$$\operatorname{proj}_a(\boldsymbol{b}) = \frac{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}} \boldsymbol{a}.$$

Projection onto a line is carried out by a *projection matrix* P:

$$P = \frac{aa^{\mathrm{T}}}{a^{\mathrm{T}}a}.$$

The *projection matrix P* is symmetric and idempotent.

Projection onto C(*A*)

Theorem. If a system Ax = b is inconsistent (has no solution),

its least-squares solution minimizes $||Ax - b||^2$:

$$A^{T}A\widehat{x} = A^{T}b$$
. (Normal equations)

Moreover, if $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is invertible, then

$$\widehat{\boldsymbol{x}} = (\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}}\boldsymbol{b}.$$
 (Best estimate)

The projection of b onto the column space is the nearest point $A\hat{x}$:

$$p = A\widehat{x} = A(A^{T}A)^{-1}A^{T}b$$
. (Projection)

Projection onto the column space of a 3 by 2 matrix

For a system of linear equations: Ax = 0

- Always has zero solution
- May or may not has non-zero solution
 - \square always has non-zero solution when n > m
 - \Box find special solutions to span N(A)

Solve
$$Ax = 0$$

& $Ax = b$
(with parameters)

For a system of linear equations: Ax = b

- Consistent
 - ☐ It has a unique solution.
 - □ It has infinitely many solutions:

$$x = x_p + x_n$$

where $x_n \in N(A)$.

- Inconsistent
 - \Box Find \widehat{x} : Least Squares solutions
 - \Box The best \hat{x} is the vector that minimizes the squared error

$$E^2 = \|A\boldsymbol{x} - \boldsymbol{b}\|^2.$$