Integrarea sistemelor informatice

Suport curs nr. 1
Programator >> Arhitect
Introducere

2024-2025

C1 – Introducere

Objective

- Introducere în domeniul sistemelor informatice integrate
- Identificarea procesului de dezvoltare a proiectelor software
- Înțelegerea rolului integrării în dezvoltarea sistemelor informatice

Dezvoltarea sistemelor informatice

Punctele de bază

- Problema mea Cerințele
 - Client și Utilizator
 - Cum reuşim?
- Echipa mea Comunicarea
 - Distribuția echipei
 - Cum lucrăm împreună?
- Punctul de plecare Decizii
 - Ce este deja făcut? Refolosire
 - Cu ce încep? Instrumente

Image by Freepik

Evoluția dezvoltării software-ului

- Problema dezvoltării de software
 - Continua și constanta creștere în volum și complexitate
- Primele abordări de Software Engineering
 - Erau o replică a hardware-ului sau a altor discipline inginerești
- Cheia pentru un software bun ...

The ascent of man.

Studiu de caz: legea lui Gall

"A complex system that works is invariably found to have evolved from a simple system that worked", John Gall

Studiu de caz – Lansarea în 2013 a platformei healthcare.gov pentru tranzacționare asigurări de sănătate (Affordable Care Act)

- Integrări complexe comunicare cu baze de date guvernamentale, transmiterea datelor la sute de asiguratori
- Obiectiv general o platformă complexă care să funcționeze pentru toată lumea din momentul lansării (inclusiv pentru multele cazuri excepționale) – complexitate ridicată din start

Studiu de caz: legea lui Gall

Rezultat – platforma nu a funcționat pentru niciun utilizator – toți utilizatorii au apelat la call-center pentru soluționarea cererilor

- Cauze Au existat mulți manageri de proiect dar niciun manager de produs (ar fi susținut că un astfel de produs este imposibil de realizat în forma prevăzută în proiect – cu toate funcționalitățile incluse din start)
- Totuşi, se putea altfel lansare iterativă? "That's not how government works", Clay Shirky (NYU)
- Buget inițial: 93.7 mil. USD ... costuri finale: 1.7 mld. USD

Administrativ – notare

- Laborator: https://ocw.cs.pub.ro/courses/isi
- Notare
 - 40p examen
 - 60p semestru
 - 20p activitate laborator
 - 40p proiect laborator
 - 10p prezentare iniţială
 - 10p prezentare intermediară (3 etape)
 - 20p prezentare finală și demo
 - 5p bonus evaluare echipe proiect
 - 5p bonus teste curs
- Cerințe minime pentru promovare
 - 50% examen
 - 50% punctaj semestru (din fiecare activitate, exc. bonus)
 - 7 prezențe la laborator

Administrativ – proiect

Proiect

- Tema generală: Aplicație GIS care să rezolve o problemă concretă în mod interactiv
- Echipe de 3 studenți
 - Evaluarea echipei și a membrilor (punctaj diferențiat)
- Etape
 - Specificarea temei înregistrare în tabel
 - Prezentare inițială obiective, schemă bloc, cazuri de utilizare, funcționalități, planificare
 - Prezentare intermediară
 - Setup inițializare proiect, mediu de dezvoltare, resurse
 - Implementare realizarea componentelor aplicației
 - Integrare integrarea componentelor și testarea aplicației
 - Evaluare finală
 - Prezentare finală proiect
 - Demo aplicație

Sisteme informatice

- Un sistem informatic constă din oameni și mașini care produc și/sau folosesc informații care sunt unite prin sisteme de comunicații
- Un sistem informatic este integrat dacă:
 - Procesele de afaceri și procesele informatice care le susțin sunt corelate în profunzime
 - Legătura între diferitele programe este în mare măsură automatizată
 - Datele sunt achiziționate și disponibile pentru toate programele, fiind gestionate în mod centralizat
- Un sistem informatic redă atât procesele productive, interne cât și schimburile din interiorul firmei și dintre firmă și mediul înconjurător

Sisteme informatice integrate

Sisteme informatice integrate

Metode de integrare la nivel de companie/industrie

- Integrarea pe verticală
 - Aceeași companie controlează produsul final dar și părțile componente
 - Exemplu: produsele Apple (ex. iPhone, iPad, Macbook) au hardware și software proiectat de Apple
- Integrarea pe orizontală
 - Exemplu: Google deţine sistemul de operare Android şi mai multe straturi de servicii, nu are control asupra nivelului hardware sau de marketing -> nu poate garanta succesul Android în viitor
 - Google face tranziția către abordarea verticală prin achiziționarea companiilor de hardware (ex. Motorola, HTC, FitBit), social media (ex. YouTube) și advertising (ex. DoubleClick)

Sisteme informatice

Rezolvarea problemei

- Ce fel de cerințe am?
 - scrise? verbale? complete?
- Cum pot aduna cerințele și cum le pot verifica?
- Cum obțin feedback pentru efortul meu?
 - Cum îl mențin?
- Cum reduc complexitatea integrării?
- Cum şi când îmi testez produsul?
 - Când consider că este complet?

Sisteme informatice

Reutilizare și instrumente

- Ce este disponibil?
 - Comercial sau Open Source
- Ce pot folosi?
 - Buget, Complexitate, Familiaritate, Bariere legale
- Ce trebuie să folosesc?
 - Cerințe tehnice, Standarde
- Ce ajutor primesc la folosirea unor pachete?
- Cum evaluez un software Open Source?
- Ce riscuri sunt legate de reutilizare?

- Orice software este dezvoltat în cadrul unei structuri organizatorice și modelul proceselor – process model – descrie acest cadru
- Sunt descrise activitățile ce trebuie derulate și rezultatele numite artefacte – ce trebuie realizate
- Pentru fiecare activitate se definesc roluri pentru angajați, care folosesc metode, directive, convenții, liste de verificare si modele

Specificarea cerințelor

- Cerință (IEEE 729)
 - condiție/capabilitate necesară unui utilizator pentru a îndeplini un obiectiv
 - condiție/capabilitate care trebuie îndeplinită de sau incorporată într-un sistem /componentă pentru a satisface un contract, standard, specificație, sau alt document formal
 - reprezentare documentată a unei condiții /capabilități

designed by ' freepik

Specificarea cerințelor

- Funcționale cerințe care definesc funcționalitatea dorită de utilizatorul final
- Non-funcționale cerințe de calitate ale proiectului, de ex.
 - Utilizare: stabilitate, performanță, scalabilitate, fiabilitate, securitate, portabilitate, flexibilitate
 - Dezvoltare: mentenabilitate, reutilizabilitate, extensibilitate
- Specifice domeniului
 - de ex. domeniu academic, medical, financiar, militar

- Avem cerințele, cum facem cu implementarea?
- Procese de dezvoltare:
 - Waterfall 1950, evoluat din ingineria "clasică", preferat de organizații mari, fără implicarea directă a clientului
 - Agile 2001, specific domeniului software, preferat de companii flexibile care dezvoltă produse noi, cu implicarea clientului încurajată la fiecare iterație

Procese de dezvoltare

Conform dicționarului Webster, un proces este "a system of operations introducing something ... a series of actions, changes, or functions that achieve an end or result"

În strânsă legătură cu metodologiile de management al proiectelor (click for more)

Startups

Procesul (de dezvoltare)

 Procesul este deseori descris în contextul triadei: process – people – technology

• Procesul este definit ca un element de legătură în cadrul unui sistem

PEOPLE

PROCESS

TECHNOLOGY

- Ce este Waterfall?
 - Etape succesive
 - Specificarea cerințelor
 - Proiectarea sistemului
 - Implementare software
 - Integrare și testare
 - Mentenanță instalare, operare, suport

- Se bazează pe un model clasic, ingineresc
 - Aplicabil la construcția de hardware, poduri, clădiri, mașini...
- Dezavantaje pentru software
 - Necesită specificații "complete"
 - Cerințele noi sunt penalizate
 - Integrare și testare târzie
 - Duce la soluții de ultim moment
 - Planuri, termene și estimări nerealiste
 - Nu au la bază date reale

Modelul Waterfall – *teoretic* previne schimbarea și defectele

Modelul Waterfall – în practică generează multă muncă de refacere

De ce este folosit în continuare?

Modelul Waterfall

• Dă impresia că putem gestiona timpul și bugetul mai bine

dar

- Nu permite flexibilitate şi creativitate pe parcursul dezvoltării
- În practică nu se folosește Waterfall în formă pură metodele iterative sunt folosite în schimb, dar sunt la fel de vechi
- Deși pare mai simplu de gestionat și planificat "For every complex problem, there is a solution that is simple, neat, and wrong." – H. L. Mencken

Statistici privind dezvoltarea de software

- În istoria proiectelor IT sunt multe nereușite
- 30 40% din proiectele de sistem eșuează înainte de finalizare ¹
- Jumătate din proiecte își depășesc bugetul sau termenul cu 200% sau mai mult ¹
- Proiectele eșuate sunt în valoare de mai mult de 100 miliarde USD/an, doar in SUA²
- 67% din proiectele CRM eşuează ³

² Computerworld

³ The Economist

Unde să fie problema?

- Nu este doar despre partea tehnică/programare
- Modul de organizare a proiectului/companiei are un impact major asupra rezultatului (succes vs eșec)
- Este necesară o comunicare eficientă în cadrul organizației

Procese de dezvoltare – Modelul Agile

- Ce este Agile?
 - Etape succesive
 - Colectarea cerințelor
 - Proiectarea sistemului
 - Dezvoltare/iterație
 - Testare/QA
 - Distribuţie/Deployment
 - Feedback

Procese de dezvoltare – Modelul Agile

- Se bazează pe un model iterativ
 - Aplicabil la dezvoltarea de software (în principal)
 - Un produs software nu este comparabil cu un obiect fizic, este mai curând comparabil cu un organism viu – necesită dezvoltare continuă

- Permite modificarea cerințelor (se întâmplă des în practică)
 - Cerințele noi sunt integrate în următoarea iterație
- Integrare și testare continuă
 - Asigură un produs funcțional la fiecare iterație
- Planuri, termene și estimări realiste
 - Au la bază date reale (ex. feedback) de la fiecare iterație

Procese de dezvoltare – Modelul Agile

Integrarea

- Proces de inginerie care creează sau îmbunătățește fluxul de informații între sisteme informaționale create pentru diferite scopuri
- Procesul de interconectare a unui sistem cu un altul, cu scopul de a asigura un schimb util de informații, date și/sau de control între sisteme.

Prima generație de software pentru asistarea proceselor din organizații

- Soluții unicat pentru seturi particulare de funcții, asociate unor organizații individuale
- 1980-1990: îmbunătățiri importante:
 - Creșterea capacității de calcul
 - Dezvoltarea comunicaţiilor
 - Capacitate de memorare

A 2-a generație de software pentru asistarea proceselor din organizații

- Set de sisteme software orientate pe funcții specifice
 - care operează pe o bază de date comună
 - folosind un model informațional de afaceri integrat
 - destinat unei game largi de organizații
 - adaptate într-o oarecare măsură procesului de afaceri
- 1990-2000: dezvoltări notabile:
 - Sisteme ERP și CRM pentru întreprinderi
 - dezvoltate de companii mari (SAP, Oracle)

A 2-a generație de software pentru asistarea proceselor din organizații

- Clasificare (exemple)
 - ERP (Enterprise Resource Planning)
 - PDM (Product Data Management)
 - CRM (Customer Relations Management)
- Caracteristici
 - integrarea fluxurilor între sisteme pre-integrate
 - Integrări asistate de producător/vânzător
 - firme specializate în integrare
 - (de fapt personalizare/customizare)

A 3-a generație de software pentru asistarea proceselor din organizații

- Premise
 - Reducerea costurilor interne
 - Creșterea cotei de piață
 - Concentrarea pe produsele cheie/capabilitățile specializate
 - externalizarea funcțiunilor auxiliare (ex. proiectare/producție de subansamble, distribuție)
- 2000-prezent: dezvoltări notabile:
 - Combinarea acestor atribute ale "Quality era" a dus la un model de afaceri nou pentru multe organizații de producție – "the virtual enterprise"

Modelul conceptual descris în limbaj UML

- Diagrama de clase (abstractizare conceptuală)
- Sistemul integrat este format din componente şi îndeplineşte anumite funcţii în cadrul unui proces bine definit
- etc.

Figure 1 Fundamental integration concepts

Întrebări?

