H1 CA2

Qn	Solutions	
1	$\frac{\mathrm{d}}{\mathrm{d}x}\ln\left(5-6x^2\right) = -\frac{12x}{5-6x^2}$	

Qn	Solutions	
2	From G.C, the numerical value of gradient of <i>D</i> at point $x = 1$ is 2.	
	Equation of tangent at <i>D</i> is: $y-0=2(x-1)$	
	y = 2x - 2	

Qn	Solutions	
3(a)	$\int \frac{\left(3x^2 - 1\right)^2}{x} dx$	
	$= \int \frac{9x^4 - 6x^2 + 1}{x} \mathrm{d}x$	
	$= \int 9x^3 - 6x + \frac{1}{x} dx$	
	$= \frac{9}{4}x^4 - 3x^2 + \ln x + c$	
3(b)	$\int \frac{1}{2\sqrt{1-\pi x}} \mathrm{d}x$	
	$= \frac{1}{2} \int (1 - \pi x)^{-\frac{1}{2}} dx$	
	$= \frac{1}{2} \int (1 - \pi x)^{-\frac{1}{2}} dx$ $= \frac{1}{2} \frac{(1 - \pi x)^{\frac{1}{2}}}{\frac{1}{2}(-\pi)} + c$	
	$= \frac{(1-\pi x)^{\frac{1}{2}}}{-\pi} + c$	

Qn	Solutions						
4	$R = \int_0^2 e^{1 - \frac{1}{2}x} + 3x dx$						
	$= \left[\frac{e^{\frac{1-\frac{1}{2}x}}}{\frac{1}{2}} + \frac{3x^2}{2}\right]_0^2$ $= \left[\frac{e^{\frac{1-\frac{1}{2}(2)}}}{\frac{1}{2}} + \frac{3(2)^2}{2}\right] - \left[\frac{e^{\frac{1-\frac{1}{2}(0)}}}{\frac{1}{2}} + \frac{3(0)^2}{2}\right]$ $= 4 + 2e$ $p = 4, q = e$ Since $e^{\frac{1-\frac{1}{2}x}} = m - 3x$ has no real roots,						
	m < 1.2494						
On	<i>m</i> < 1.25 (to 3 s.f.) Solutions						
Qn 5 (i)	Curve surface area = $\pi r \times \frac{4\pi}{r^2} = \frac{4\pi^2}{r}$						
	Area of rectangle = $2r \times \frac{4\pi}{r^2} = \frac{8\pi}{r}$						
(0.0)	Total surface area of the trash bin = $\frac{8\pi}{r} + \frac{4\pi^2}{r} + \frac{1}{2}\pi r^2$						
(ii)	$A = \frac{8\pi}{r} + \frac{4\pi^2}{r} + \frac{1}{2}\pi r^2$ $dA = 8\pi + 4\pi^2$ $dA = 8\pi + 4\pi^2$						
	$\frac{\mathrm{d}A}{\mathrm{d}r} = -\frac{8\pi}{r^2} - \frac{4\pi^2}{r^2} + \pi r$						
	To minimize surface area of the trash bin, $\frac{dA}{dr} = 0$						
	$-\frac{8\pi}{r^2} - \frac{4\pi^2}{r^2} + \pi r = 0$						
	$8\pi + 4\pi^2 = \pi r^3$ $r^3 = 4\pi + 8$						
	[Hence]						
	Ratio of diameter of semi-circular surface to height of the trash bin						
	$=2r:\frac{4\pi}{r^2}$						
	$=r^3:2\pi$						
	$=4\pi+8:2\pi$						
	$=2\pi+4:\pi$						

Qn	Solution		_				
6(i)	C = (35)(500)	+(0.95	$(5)(5)x - 30e^{0.5}$.01 <i>x</i>			
	$\therefore C = 17500 +$	4.75 <i>x</i> –	$-30e^{0.01x}$				
6(ii)							
	$\frac{dC}{dx} = 4.75 - 30(0.01)e^{0.01x}$						
	$=4.75-0.3e^{0.01x}$						
	For maximum or minimum, $\frac{dC}{dx} = 0$.						
	$4.75 - 0.3e^{0.01x} = 0$						
	x = 276.212						
	When $x = 276.212$, $C = 18337.01 .						
	Using 1 st derivative test,						
		х	276.10	276.212	276.23		
		$\frac{\mathrm{d}C}{\mathrm{d}x}$	0.0053045	0	- 0.004194		
	S	lope	/	-	\		
	OR						
	and a						
	Using 2 nd deri						
	$\frac{d^2C}{dx^2} = -0.003e^{0.01x} < 0 \text{(since } e^{0.01x} > 0\text{)}$						
	Hence maximum <i>C</i> .						