EECS240 - Spring 2010

Lecture 24: PLL and CDR Overview

Elad Alon Dept. of EECS

Linear Model cont'd

Lecture 24

EECS240

Clock Generation Ref_clk PFD vco ► CIk (from down Filter crystal) Fb_clk ÷Ν • Typical (low-cost) crystals give <500 MHz clock • 5 Gb/s link → where to get a 5 GHz clock? • PLL: multiply frequency up, align phase · While maintaining low jitter, power Lecture 24

Loop Components: Phase Detectors • Basic idea: create pulses with width α to phase difference

VCOs

EECS240 Lecture 24 8

Noise and Jitter

EECS240 Lecture 24 9

Linear (Hogge) Phase Detector

EECS240

Lecture 24

Bang-Bang (Alexander) Phase Detector

- Edge clock T_{sym}/2 away from data
- Derive early/late from data and edge samples:
- Dn: (d_n!= e_n) & (d_{n-1}!= d_n) Up: (d_n == e_n) & (d_{n-1}!= d_n) Lecture 24

dcik early:

dcik late: