RELACIÓN DE PROBLEMAS DEL TEMA V

- 1. Considera un transistor NMOS fabricado sobre Si tal que el óxido de puerta tiene un espesor de 15 nm. El óxido de puerta es SiO₂, con una permitividad relativa $\varepsilon_r = 3.9$. La movilidad de electrones en el canal es $\mu_n = 550 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$. La relación entre la anchura del canal y la longitud del canal es W/L = 20. La tensión umbral es $V_T = 2.3 \text{ V}$.
 - a) Determina el valor de V_{GS} necesario para que el transistor opere en saturación con $I_D = 0.2$ mA.
 - b) ¿Para qué rango de la tensión V_{DS} el transistor operará en las condiciones especificadas en el apartado anterior?
 - c) Determina la corriente I_D para $V_{DS} = 20$ mV. Compruebe la validez de la aproximación lineal en este caso.

Datos: permitividad del vacío $\varepsilon_0 = 8,854 \times 10^{-14} \text{ Fcm}^{-1}$, $k = \frac{W}{L} \mu_n C_{ox}$

- 2. El transistor del circuito de la figura 2 está caracterizado por $V_T = -3$ V y k = 0.05 AV⁻². Determina en qué región opera el transistor y calcula V_{GS} , V_{DS} e I_D para las siguientes tensiones de alimentación:
 - a) $V_1 = 2 \text{ V}$; $V_2 = 5 \text{ V}$.
 - b) $V_1 = 3.5 \text{ V}$; $V_2 = 4 \text{ V}$.
 - c) $V_1 = 5 \text{ V}$; $V_2 = 1 \text{ V}$.

- **3.** Para los dos circuitos de la figura 3 determina en qué región opera el transistor y los valores de V_{GS} , V_{DS} e I_D . Parámetros del transistor: $V_T = 2.5 \text{ V}$ y $k = 10 \text{ mAV}^{-2}$.
- **4.** El transistor del circuito de la figura 4 se caracteriza por: $V_T = -3$ V y k = 3 mAV⁻². Determina en qué región opera y los valores de V_{GS} , V_{DS} e I_D para $R_D = 800$ Ω y $R_D = 25$ k Ω .

Relación 4: Transistores

- 5. Los parámetros del transistor de la figura 5 son: $V_T = 2.5 \text{ V y } k = 4 \times 10^{-4} \text{ AV}^{-2}$.
 - a) Determina la tensión de salida V_{out} para las entradas $V_{in} = 0$ y $V_{in} = 5$ V. (Observe que el circuito opera como un inversor lógico).
 - b) Calcula el rango de valores de R que garantiza que $V_{out} \le 0.5 \text{ V}$, cuando $V_{in} = 5 \text{ V}$.
- **6.** El circuito de la figura 6 corresponde a un inversor CMOS. Calcula V_{out} para $V_{in} = 0$ y $V_{in} = 5$ V. Considera que para los dos transistores $|V_T| = 2.5$ V y $k = 84 \times 10^{-4}$ AV⁻².
- 7. El transistor del circuito de la figura 7 tiene los siguientes parámetros: $V_T = 1 \text{ V}$, $k = 2 \text{ mAV}^{-2}$. Determina en que región de operación se encuentra el transistor, la corriente I_D y las tensiones V_{GS} y V_{DS} .
- **8.** El transistor del circuito de la figura 8 tiene los siguientes parámetros: $V_T = -0.3 \text{ V}$; $k = 0.6 \text{ mAV}^{-2}$.
 - a) Demuestra que si $V_{IN} = V_{DD}$ entonces $V_{OUT} = 0$.
 - **b**) Calcula el rango de valores de R_D que garantiza que cuando $V_{IN} = 0$ se cumple $V_{OUT} \ge 1,1$ V.

CUESTIONES

- 1. Justifica por qué la corriente de puerta de un MOSFET es prácticamente nula.
- 2. Define o explica qué es la tensión umbral de un MOSFET.
- **3.** ¿Qué cambia en la estructura física entre un transistor NMOS y un transistor PMOS? ¿Y qué cambia en la manera de crear el canal de conducción?