MOHIDLagrangian 0.01

Generated by Doxygen 1.8.13

Contents

1	Mod	lules Inc	dex											1
	1.1	Module	es List					 	 	 	 	 	 	1
2	Data	Type Ir	ndex											3
	2.1	Class I	Hierarchy					 	 	 	 	 	 	3
3	Data	a Type Ir	ndex											5
	3.1	Data T	ypes List					 	 	 	 	 	 	5
4	File	Index												7
	4.1	File Lis	st					 	 	 	 	 	 	7
5	Mod	ule Doc	umentatio	on										9
	5.1	about I	Module Re	ference				 	 	 	 	 	 	9
		5.1.1	Detailed I	Descriptio	n			 	 	 	 	 	 	9
		5.1.2	Function/	Subroutin	e Docı	ument	ation	 	 	 	 	 	 	9
			5.1.2.1	printlicpr	eamble	e() .		 	 	 	 	 	 	10
		5.1.3	Variable I	Document	ation			 	 	 	 	 	 	10
			5.1.3.1	author				 	 	 	 	 	 	10
			5.1.3.2	date .				 	 	 	 	 	 	10
			5.1.3.3	version				 	 	 	 	 	 	10
	5.2	commo	om_module	es Module	Refer	ence		 	 	 	 	 	 	10
		5.2.1	Detailed I	Descriptio	n			 	 	 	 	 	 	10
	5.3	finalize	Module R	eference				 	 	 	 	 	 	11
		E 0 1	Detailed I	Dogorintio	n									11

ii CONTENTS

	5.3.2	Function	/Subroutine Documentation	11
		5.3.2.1	closelog()	11
		5.3.2.2	deallocate_simulation()	12
		5.3.2.3	finalizemohidlagrangian()	12
		5.3.2.4	simulation_end()	13
5.4	geome	try Module	e Reference	13
	5.4.1	Detailed	Description	14
	5.4.2	Function	/Subroutine Documentation	14
		5.4.2.1	allocategeomlist()	14
		5.4.2.2	box_grid()	14
		5.4.2.3	getnp()	15
		5.4.2.4	getpointdistribution()	15
		5.4.2.5	isvalidgeom()	16
		5.4.2.6	line_grid()	16
		5.4.2.7	sphere_grid()	17
		5.4.2.8	sphere_np_count()	18
	5.4.3	Variable	Documentation	18
		5.4.3.1	geomlist	18
5.5	initializ	e Module	Reference	18
	5.5.1	Detailed	Description	19
	5.5.2	Function	/Subroutine Documentation	19
		5.5.2.1	init_caseconstants()	19
		5.5.2.2	init_parameters()	20
		5.5.2.3	init_properties()	21
		5.5.2.4	init_simdefs()	22
		5.5.2.5	init_sources()	23
		5.5.2.6	initmohidlagrangian()	24
		5.5.2.7	linkpropertysources()	24
		5.5.2.8	read_xml_geometry()	25
5.6	simula	tion_globa	als Module Reference	26

CONTENTS

	5.6.1	Detailed	Description	27
	5.6.2	Function	/Subroutine Documentation	27
		5.6.2.1	check()	27
		5.6.2.2	getintegratorname()	28
		5.6.2.3	printsimdefs()	28
		5.6.2.4	printsimparameters()	29
		5.6.2.5	setboundingbox()	29
		5.6.2.6	setdp()	29
		5.6.2.7	setdt()	30
		5.6.2.8	setgravity()	30
		5.6.2.9	setparameter()	31
		5.6.2.10	setrho()	31
	5.6.3	Variable	Documentation	32
		5.6.3.1	constants	32
		5.6.3.2	filenames	32
		5.6.3.3	parameters	32
		5.6.3.4	simdefs	32
		5.6.3.5	simtime	32
5.7	simulat	ion_logge	r Module Reference	32
	5.7.1	Detailed	Description	33
	5.7.2	Function	/Subroutine Documentation	33
		5.7.2.1	gettimestamp()	33
		5.7.2.2	initmohidlagrangianlog()	34
		5.7.2.3	tolog()	35
	5.7.3	Variable	Documentation	36
		5.7.3.1	log_unit	36
5.8	simulat	ion_memo	ory Module Reference	37
	5.8.1	Detailed	Description	37
	5.8.2	Function	/Subroutine Documentation	37
		5.8.2.1	adddef()	37

iv CONTENTS

		5.8.2.2	addsource()	 	. 38
		5.8.2.3	addtracer()	 	. 38
		5.8.2.4	getotal()	 	. 38
		5.8.2.5	initialize()	 	. 38
		5.8.2.6	printmemory()	 	. 38
		5.8.2.7	printmemorydetailed()	 	. 39
	5.8.3	Variable I	Documentation	 	. 39
		5.8.3.1	simmemory	 	. 39
5.9	simulat	ion_precis	sion Module Reference	 	. 39
	5.9.1	Detailed	Description	 	. 40
	5.9.2	Variable I	Documentation	 	. 40
		5.9.2.1	dp	 	. 40
		5.9.2.2	err_dist	 	. 40
		5.9.2.3	err_ind	 	. 40
		5.9.2.4	missing_value_default	 	. 40
		5.9.2.5	mv	 	. 40
		5.9.2.6	mv_int	 	. 41
		5.9.2.7	prec	 	. 41
		5.9.2.8	prec_time	 	. 41
		5.9.2.9	prec_wrt	 	. 41
		5.9.2.10	sp	 	. 41
5.10	simulat	ion_xmlpa	arser Module Reference	 	. 41
	5.10.1	Detailed	Description	 	. 42
	5.10.2	Function	/Subroutine Documentation	 	. 42
		5.10.2.1	gotochildnode()	 	. 42
		5.10.2.2	readxmlatt()	 	. 43
		5.10.2.3	readxmlvector()	 	. 43
5.11	source	_emitter M	Module Reference	 	. 44
	5.11.1	Detailed	Description	 	. 45
	5.11.2	Function	/Subroutine Documentation	 	. 45

CONTENTS

		5.11.2.1 alloctracers()	45
		5.11.2.2 initialize()	45
		5.11.2.3 initracers()	46
		5.11.2.4 setotalnp()	46
	5.11.3	Variable Documentation	47
		5.11.3.1 emitter	47
5.12	source	_identity Module Reference	47
	5.12.1	Detailed Description	48
	5.12.2	Function/Subroutine Documentation	48
		5.12.2.1 allocsources()	48
		5.12.2.2 initialize()	48
		5.12.2.3 linkproperty()	49
		5.12.2.4 printout()	49
		5.12.2.5 setsourceproperties()	49
	5.12.3	Variable Documentation	50
		5.12.3.1 source	50
5.13	source	s Module Reference	50
	5.13.1	Detailed Description	50
5.14	tracer_	base Module Reference	50
	5.14.1	Detailed Description	51
	5.14.2	Function/Subroutine Documentation	51
		5.14.2.1 initialize()	51
	5.14.3	Variable Documentation	52
		5.14.3.1 tracer	52
5.15	tracer_	interp Module Reference	52
5.16	tracer_	paper Module Reference	52
	5.16.1	Detailed Description	52
	5.16.2	Function/Subroutine Documentation	52
		5.16.2.1 paper_initialize()	52
5.17	tracer_	plastic Module Reference	53
	5.17.1	Detailed Description	53
	5.17.2	Function/Subroutine Documentation	53
		5.17.2.1 plastic_initialize()	53
5.18	tracers	Module Reference	54
	5.18.1	Detailed Description	54

vi

6	Data	Type D	Pocumentation	55
	6.1	geome	etry::box Type Reference	55
		6.1.1	Detailed Description	56
		6.1.2	Member Data Documentation	56
			6.1.2.1 size	56
	6.2	simula	tion_globals::constants_t Type Reference	56
		6.2.1	Detailed Description	56
		6.2.2	Member Function/Subroutine Documentation	57
			6.2.2.1 setgravity()	57
			6.2.2.2 setrho()	57
		6.2.3	Member Data Documentation	57
			6.2.3.1 gravity	57
			6.2.3.2 rho_ref	57
	6.3	source	_emitter::emitter_t Type Reference	57
		6.3.1	Member Function/Subroutine Documentation	58
			6.3.1.1 alloctracers()	58
			6.3.1.2 initialize()	58
			6.3.1.3 initracers()	58
		6.3.2	Member Data Documentation	58
			6.3.2.1 emittable	58
			6.3.2.2 emitted	58
	6.4	simula	tion_globals::filenames_t Type Reference	59
		6.4.1	Detailed Description	59
		6.4.2	Member Data Documentation	59
			6.4.2.1 mainxmlfilename	59
			6.4.2.2 propsxmlfilename	59
	6.5	geome	try::line Type Reference	60
		6.5.1	Detailed Description	60
		6.5.2	Member Data Documentation	60
			6.5.2.1 last	61

CONTENTS vii

6.6	simula	tion_memory::memory_t Type Reference	31
	6.6.1	Member Function/Subroutine Documentation	31
		6.6.1.1 adddef()	31
		6.6.1.2 addsource()	31
		6.6.1.3 addtracer()	32
		6.6.1.4 detailedprintout()	32
		6.6.1.5 getotal()	62
		6.6.1.6 initialize()	32
		6.6.1.7 printout()	32
	6.6.2	Member Data Documentation	62
		6.6.2.1 size_of_defs	62
		6.6.2.2 size_of_sources	62
		6.6.2.3 size_of_tracers	63
6.7	tracer_	_paper::paper_class Type Reference	33
	6.7.1	Detailed Description	64
	6.7.2	Member Function/Subroutine Documentation	64
		6.7.2.1 initialize()	64
	6.7.3	Member Data Documentation	64
		6.7.3.1 mnow	64
		6.7.3.2 mpar	64
6.8	tracer_	_paper::paper_par_class Type Reference	35
	6.8.1	Member Data Documentation	35
		6.8.1.1 degradation_rate	35
		6.8.1.2 density	35
		6.8.1.3 particulate	35
		6.8.1.4 size	35
6.9	tracer_	_paper::paper_state_class Type Reference	36
	6.9.1	Detailed Description	36
	6.9.2	Member Data Documentation	36
		6.9.2.1 concentration	36

viii CONTENTS

		6.9.2.2	condition	. 66
		6.9.2.3	radius	. 66
6.10	simulat	ion_global	ls::parameters_t Type Reference	. 67
	6.10.1	Member	Function/Subroutine Documentation	. 67
		6.10.1.1	check()	. 67
		6.10.1.2	printout()	. 67
		6.10.1.3	setparameter()	. 67
	6.10.2	Member	Data Documentation	. 67
		6.10.2.1	cfl	. 68
		6.10.2.2	integrator	. 68
		6.10.2.3	timemax	. 68
		6.10.2.4	timeout	. 68
		6.10.2.5	warmuptime	. 68
6.11	tracer_	plastic::pla	astic_class Type Reference	. 69
	6.11.1	Detailed	Description	. 70
	6.11.2	Member	Function/Subroutine Documentation	. 70
		6.11.2.1	initialize()	. 70
	6.11.3	Member	Data Documentation	. 70
		6.11.3.1	mnow	. 70
		6.11.3.2	mpar	. 70
6.12	tracer_	plastic::pla	astic_par_class Type Reference	. 70
	6.12.1	Member	Data Documentation	. 71
		6.12.1.1	degradation_rate	. 71
		6.12.1.2	density	. 71
		6.12.1.3	particulate	. 71
		6.12.1.4	size	. 71
6.13	tracer_	plastic::pla	astic_state_class Type Reference	. 71
	6.13.1	Detailed	Description	. 72
	6.13.2	Member	Data Documentation	. 72
		6.13.2.1	concentration	. 72

CONTENTS

		6.13.2.2 condition	72
		6.13.2.3 radius	72
6.14	geome	try::point Type Reference	73
	6.14.1	Detailed Description	73
6.15	geome	try::shape Type Reference	74
	6.15.1	Detailed Description	74
	6.15.2	Member Function/Subroutine Documentation	74
		6.15.2.1 getnp()	74
		6.15.2.2 getpointdistribution()	75
	6.15.3	Member Data Documentation	75
		6.15.3.1 pt	75
6.16	simulat	ion_globals::simdefs_t Type Reference	75
	6.16.1	Detailed Description	75
	6.16.2	Member Function/Subroutine Documentation	76
		6.16.2.1 printout()	76
		6.16.2.2 setboundingbox()	76
		6.16.2.3 setdp()	76
		6.16.2.4 setdt()	76
	6.16.3	Member Data Documentation	76
		6.16.3.1 dp	76
		6.16.3.2 dt	76
		6.16.3.3 pointmax	77
		6.16.3.4 pointmin	77
6.17	source	_identity::source_class Type Reference	77
	6.17.1	Detailed Description	78
	6.17.2	Member Function/Subroutine Documentation	78
		6.17.2.1 initialize()	78
		6.17.2.2 linkproperty()	78
		6.17.2.3 printout()	78
	6.17.3	Member Data Documentation	78

CONTENTS

	6.17.3.1 now	. 78
	6.17.3.2 par	. 79
	6.17.3.3 stats	. 79
	6.17.3.4 stencil	. 79
6.18 source_	_identity::source_par Type Reference	. 79
6.18.1	Member Data Documentation	. 80
	6.18.1.1 emitting_rate	. 80
	6.18.1.2 geometry	. 80
	6.18.1.3 id	. 80
	6.18.1.4 name	. 80
	6.18.1.5 property_name	. 80
	6.18.1.6 property_type	. 81
	6.18.1.7 source_geometry	. 81
	6.18.1.8 startime	. 81
	6.18.1.9 stoptime	. 81
6.19 source_	_identity::source_state Type Reference	. 81
6.19.1	Detailed Description	. 82
6.19.2	Member Data Documentation	. 82
	6.19.2.1 active	. 82
	6.19.2.2 age	. 82
	6.19.2.3 depth	. 82
	6.19.2.4 pos	. 82
	6.19.2.5 t	. 82
	6.19.2.6 vel	. 83
6.20 source_	_identity::source_stats Type Reference	. 83
6.20.1	Detailed Description	. 83
6.20.2	Member Data Documentation	. 83
	6.20.2.1 acc_t	. 83
	6.20.2.2 ns	. 83
	6.20.2.3 particles_emitted	. 84

CONTENTS xi

6.21	source	_identity::source_stencil Type Reference	84
	6.21.1	Detailed Description	84
	6.21.2	Member Data Documentation	84
		6.21.2.1 np	84
		6.21.2.2 ptlist	84
		6.21.2.3 total_np	85
6.22	geome	try::sphere Type Reference	85
	6.22.1	Detailed Description	86
	6.22.2	Member Data Documentation	86
		6.22.2.1 radius	86
6.23	tracer_	base::tracer_class Type Reference	86
	6.23.1	Detailed Description	87
	6.23.2	Member Function/Subroutine Documentation	87
		6.23.2.1 initialize()	87
	6.23.3	Member Data Documentation	88
		6.23.3.1 now	88
		6.23.3.2 par	88
		6.23.3.3 stats	88
6.24	tracer_	base::tracer_par_class Type Reference	88
	6.24.1	Member Data Documentation	88
		6.24.1.1 id	89
		6.24.1.2 idsource	89
		6.24.1.3 interp_method	89
		6.24.1.4 noise	89
		6.24.1.5 velmax	89
6.25	tracer_	base::tracer_state_class Type Reference	89
	6.25.1	Detailed Description	90
	6.25.2	Member Data Documentation	90
		6.25.2.1 acc	90
		6.25.2.2 active	90
		6.25.2.3 age	90
		6.25.2.4 depth	91
		6.25.2.5 pos	91
		6.25.2.6 vel	91
6.26	tracer_	base::tracer_stats_class Type Reference	91
	6.26.1	Detailed Description	91
	6.26.2	Member Data Documentation	92
		6.26.2.1 acc_depth	92
		6.26.2.2 acc_pos	92
		6.26.2.3 acc_vel	92
		6.26.2.4 ns	92

xii CONTENTS

7

File I	Documentation	93
7.1	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/app/main.f90 File Reference	93
7.2	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/about.f90 File Reference	93
7.3	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/common_modules.f90 File Reference	93
7.4	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/finalize.f90 File Reference	94
7.5	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90 File Reference .	94
7.6	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/initialize.f90 File Reference .	95
7.7	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90 File Reference	96
7.8	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_logger.f90 File Reference	97
7.9	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_memory.f90 File Reference	97
7.10	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_precision.f90 File Reference	98
7.11	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_xmlparser.f90 File Reference	98
7.12	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_emitter.f90 File Reference	99
7.13	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90 File Reference	99
7.14	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/sources.f90 File Reference	100
7.15	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_base.f90 File Reference	100
7.16	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_interp.f90 File Reference	101
7.17	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_paper.f90 File Reference	101
7.18	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_plastic.f90 File Reference	101
7.19	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracers.f90 File Reference	102

Chapter 1

Modules Index

1.1 Modules List

Here is a list of all modules with brief descriptions:

about		
	Module to print version, licence, preambles	9
common	n_modules	
	Module to hold all of the commonly used base modules	10
finalize		
	Module with the simulation closing related definitions and methods	11
geometr		
	Module that defines geometry classes and related methods	13
initialize		
	Module with the simulation initialization related definitions and methods. Has one public access	
	routine that is incharge of building the simulation space from input files	18
simulatio	on_globals	
	Module to hold the simulation global parameter classes and their methods	26
simulatio	on_logger	
	Module to hold all the simulation logger related definitions and methods	32
simulatio	on_memory	
	Module to hold the simulation memory managment class and its methods	37
simulatio	on_precision	
	Module to control the precision of the variables trough the project	39
simulatio	on_xmlparser	
	Module with the simulation xml parsing related definitions and routines	41
source_e		
	Module that defines an emitter class and related methods. This module is responsible for building	
	a potential tracer list based on the availble sources and calling their initializers	44
source_i	•	47
00118000	Module that defines a source class and related methods	47
sources	Module to hold and wrap all the tracer sources respective modules. Defines a source class and	
	related methods	50
tracer b		50
tracer_b	Module that defines a pure Lagrangian tracer class and related methods	50
tracer in		52
tracer_p	•	32
liacei_pi	Module that defines a Lagrangian tracer class for paper modelling and related methods. The	
	type is defined as a derived type from the pule Lagrangian tracer, and hence inherits all of it's	
	data and methods	52

2 Modules Index

tracer_pla	astic	
	Module that defines a Lagrangian tracer class for plastic modelling and related methods. The type is defined as a derived type from the pule Lagrangian tracer, and hence inherits all of it's data and methods	53
tracers		
	Module to hold and wrap all the tracer respective modules. Defines a pure Lagrangian tracer block. This is intended to serve as the base class for every type of tracer class needed, that should be built as derived of this class, with the necessary modifiers to model the desired behaviour. Basic tracer data (parameters, variables) are implemented. Tracer methods such as I/O, integration and interpolation routines are implemented	54

Chapter 2

Data Type Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

simulation globals::constants t
source_emitter_t
simulation_globals::filenames_t
simulation_memory::memory_t
tracer_paper::paper_par_class
tracer_paper::paper_state_class
tracer_plastic::plastic_par_class
tracer_plastic::plastic_state_class
geometry::shape
geometry::box
geometry::line
geometry::point
geometry::sphere
simulation_globals::simdefs_t
source identity::source class
source_identity::source_par
source_identity::source_state
source_identity::source_stats
source_identity::source_stencil
tracer_base::tracer_class
tracer_paper::paper_class
tracer_plastic::plastic_class
tracer_base::tracer_par_class
tracer_base::tracer_state_class
tracer hase-tracer state class

Data Type Index

Chapter 3

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

geometry::box
Type - point class
simulation_globals::constants_t
Case Constants class
source_emitter::emitter_t 5
simulation_globals::filenames_t
File names class
geometry::line
Type - line class
simulation_memory::memory_t
tracer_paper::paper_class
Type - The plastic material Lagrangian tracer class
tracer_paper::paper_par_class
tracer_paper::paper_state_class
Type - State variables of a tracer object representing a paper material 6
simulation_globals::parameters_t
tracer_plastic::plastic_class
Type - The plastic material Lagrangian tracer class
tracer_plastic::plastic_par_class
tracer_plastic::plastic_state_class
Type - State variables of a tracer object representing a plastic material
geometry::point
Type - point class
geometry::shape
Type - extendable shape class
simulation_globals::simdefs_t
Simulation definitions class
source_identity::source_class
Type - The source class
source_identity::source_par
source_identity::source_state
Type - state variables of a source object
source_identity::source_stats
Type - statistical variables of a source object
source_identity::source_stencil
Type - holder for the tracer creation stencil of the source

6 Data Type Index

geometry::sphere	
Type - sphere class	85
tracer_base::tracer_class	
Type - The pure Lagrangian tracer class	86
tracer_base::tracer_par_class	88
tracer_base::tracer_state_class	
Type - state variables of a pure Lagrangian tracer object	89
tracer_base::tracer_stats_class	
Type - statistical variables of a pure Lagrangian tracer object	91

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/app/main.f90
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/about.f90
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/common_modules.f90 93
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/finalize.f90
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/initialize.f90
$C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90 \\ 96 \\$
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_logger.f90 97
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_memory.f90 97
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_precision.f90 98
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_xmlparser.f90 98
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_emitter.f90 99
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90 99
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/sources.f90
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_base.f90
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_interp.f90
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_paper.f90
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_plastic.f90 101
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracers.f90

8 File Index

Chapter 5

Module Documentation

5.1 about Module Reference

Module to print version, licence, preambles.

Functions/Subroutines

• subroutine, public printlicpreamble

Birjukovs Canelas - MARETEC

Variables

- type(string) version
- type(string) author
- type(string) date

5.1.1 Detailed Description

Module to print version, licence, preambles.

Author

Ricardo Birjukovs Canelas

5.1.2 Function/Subroutine Documentation

5.1.2.1 printlicpreamble()

```
subroutine, public about::printlicpreamble ( )
```

Birjukovs Canelas - MARETEC

Public licence and preamble printer routine. Here is the caller graph for this function:

5.1.3 Variable Documentation

5.1.3.1 author

```
type(string) about::author [private]
```

5.1.3.2 date

```
type(string) about::date [private]
```

5.1.3.3 version

```
type(string) about::version [private]
```

5.2 commom_modules Module Reference

Module to hold all of the commonly used base modules.

5.2.1 Detailed Description

Module to hold all of the commonly used base modules.

Author

Ricardo Birjukovs Canelas

5.3 finalize Module Reference

Module with the simulation closing related definitions and methods.

Functions/Subroutines

• subroutine simulation_end

Birjukovs Canelas - MARETEC

• subroutine deallocate_simulation

Birjukovs Canelas - MARETEC

· subroutine closelog

Birjukovs Canelas - MARETEC

• subroutine, public finalizemohidlagrangian

Birjukovs Canelas - MARETEC

5.3.1 Detailed Description

Module with the simulation closing related definitions and methods.

Author

Ricardo Birjukovs Canelas

5.3.2 Function/Subroutine Documentation

5.3.2.1 closelog()

```
subroutine finalize::closelog ( ) [private]
```

Birjukovs Canelas - MARETEC

Private logfile closing routine. Here is the caller graph for this function:

5.3.2.2 deallocate_simulation()

```
subroutine finalize::deallocate_simulation ( ) [private]
```

Birjukovs Canelas - MARETEC

Private globals deallocation routine. Here is the caller graph for this function:

5.3.2.3 finalizemohidlagrangian()

```
subroutine, public finalize::finalizemohidlagrangian ( )
```

Birjukovs Canelas - MARETEC

Public finalization routine. Destroys, deallocates and closes the simulation space Here is the call graph for this function:

5.3.2.4 simulation_end()

```
subroutine finalize::simulation_end ( ) [private]
```

Birjukovs Canelas - MARETEC

Private closing statement routine. Here is the caller graph for this function:

5.4 geometry Module Reference

Module that defines geometry classes and related methods.

Data Types

• type box

Type - point class.

type line

Type - line class.

type point

Type - point class.

• type shape

Type - extendable shape class.

type sphere

Type - sphere class.

Functions/Subroutines

· subroutine, public allocategeomlist

Birjukovs Canelas - MARETEC

• logical function, public isvalidgeom (geomname)

Birjukovs Canelas - MARETEC

• subroutine getnp (self, np, dp)

Birjukovs Canelas - MARETEC

• subroutine getpointdistribution (self, np, dp, ptlist)

Birjukovs Canelas - MARETEC

• subroutine sphere_np_count (dp, r, np)

Birjukovs Canelas - MARETEC

• subroutine sphere_grid (dp, r, np, ptlist)

Birjukovs Canelas - MARETEC

• subroutine box_grid (dp, size, np, ptlist)

Birjukovs Canelas - MARETEC

• subroutine line_grid (dp, dist, np, ptlist)

Birjukovs Canelas - MARETEC

Variables

• type(string), dimension(:), allocatable, public geomlist

String list (array) with the name of possible geometry types.

5.4.1 Detailed Description

Module that defines geometry classes and related methods.

Author

Ricardo Birjukovs Canelas

5.4.2 Function/Subroutine Documentation

5.4.2.1 allocategeomlist()

```
subroutine, public geometry::allocategeomlist ( )
```

Birjukovs Canelas - MARETEC

Public routine to allocate the possible geometry name list

5.4.2.2 box_grid()

```
subroutine geometry::box_grid (
          real(prec), intent(in) dp,
          type(vector), intent(in) size,
          integer, intent(in) np,
          type(vector), dimension(np), intent(out) ptlist ) [private]
```

Birjukovs Canelas - MARETEC

private routine that returns the points distributed on a grid with spacing dp inside a box

Parameters

```
in dp,size,np,ptlist
```

Here is the caller graph for this function:

5.4.2.3 getnp()

Birjukovs Canelas - MARETEC

method to get the number of points that fill a given geometry

Parameters

```
in self,np
```

Here is the call graph for this function:

5.4.2.4 getpointdistribution()

```
real(prec), intent(in) dp,
type(vector), dimension(np), intent(inout) ptlist ) [private]
```

Birjukovs Canelas - MARETEC

method to get the number of points that fill a given geometry

Parameters

```
in self,np
```

Here is the call graph for this function:

5.4.2.5 isvalidgeom()

Birjukovs Canelas - MARETEC

Public function that returns a logical if the input geometry name is valid

Parameters

```
in geomname
```

5.4.2.6 line_grid()

```
integer, intent(in) np,
type(vector), dimension(np), intent(out) ptlist ) [private]
```

Birjukovs Canelas - MARETEC

private routine that returns the points distributed on a grid with spacing dp along a line

Parameters

```
in dp,size,np,ptlist
```

Here is the caller graph for this function:

5.4.2.7 sphere_grid()

Birjukovs Canelas - MARETEC

private routine that returns the points distributed on a grid with spacing dp inside a sphere

Parameters

```
in | dp,r,np,ptlist |
```

Here is the caller graph for this function:

5.4.2.8 sphere_np_count()

Birjukovs Canelas - MARETEC

private routine that returns the number of points distributed on a grid with spacing dp inside a sphere

Parameters

```
in dp,r,np
```

Here is the caller graph for this function:

5.4.3 Variable Documentation

5.4.3.1 geomlist

```
type(string), dimension(:), allocatable, public geometry::geomlist
```

String list (array) with the name of possible geometry types.

5.5 initialize Module Reference

Module with the simulation initialization related definitions and methods. Has one public access routine that is incharge of building the simulation space from input files.

Functions/Subroutines

• subroutine linkpropertysources (linksNode)

Birjukovs Canelas - MARETEC

• subroutine init_properties (case_node)

Birjukovs Canelas - MARETEC

• subroutine read_xml_geometry (source, source_detail, geometry)

Birjukovs Canelas - MARETEC

• subroutine init_sources (case_node)

Birjukovs Canelas - MARETEC

• subroutine init_simdefs (case_node)

Birjukovs Canelas - MARETEC

• subroutine init_caseconstants (case_node)

Birjukovs Canelas - MARETEC

• subroutine init_parameters (execution_node)

Birjukovs Canelas - MARETEC

• subroutine, public initmohidlagrangian (xmlfilename)

Birjukovs Canelas - MARETEC

5.5.1 Detailed Description

Module with the simulation initialization related definitions and methods. Has one public access routine that is incharge of building the simulation space from input files.

Author

Ricardo Birjukovs Canelas

5.5.2 Function/Subroutine Documentation

5.5.2.1 init_caseconstants()

Birjukovs Canelas - MARETEC

Private case constant parser routine. Builds the simulation parametric space from the input xml case file.

Parameters

in *parsedxml*

Here is the call graph for this function:

Here is the caller graph for this function:

5.5.2.2 init_parameters()

Birjukovs Canelas - MARETEC

Private parameter parser routine. Builds the simulation parametric space from the input xml case file.

Parameters

in	parsedxml	

Here is the call graph for this function:

Here is the caller graph for this function:

5.5.2.3 init_properties()

Birjukovs Canelas - MARETEC

Private property xml parser routine. Reads the properties tab from the xml file and links these to the corresponding source

Parameters

Here is the call graph for this function:

Here is the caller graph for this function:

5.5.2.4 init_simdefs()

Birjukovs Canelas - MARETEC

Private simulation definitions parser routine. Builds the simulation geometric space from the input xml case file.

Parameters

Here is the call graph for this function:

Here is the caller graph for this function:

5.5.2.5 init_sources()

Birjukovs Canelas - MARETEC

Private source definitions parser routine. Builds the tracer sources from the input xml case file.

Parameters

```
in parsedxml
```

Here is the call graph for this function:

Here is the caller graph for this function:

5.5.2.6 initmohidlagrangian()

Birjukovs Canelas - MARETEC

Public xml parser routine. Builds the simulation space from the input xml case file.

Parameters

in	xmlfilename	
in	xmlfilename	.xml file name

Here is the call graph for this function:

5.5.2.7 linkpropertysources()

Birjukovs Canelas - MARETEC

Private property xml parser routine. Reads the properties tab from the xml file and links these to the corresponding source

Parameters

```
in parsedxml
```

Here is the call graph for this function:

Here is the caller graph for this function:

```
initialize::linkpropertysources initialize::init_properties initialize::initmohidlagrangian
```

5.5.2.8 read_xml_geometry()

Birjukovs Canelas - MARETEC

Private geometry xml parser routine. Reads a geometry from the xml depending on the geometry type of the node

Parameters

in	source,geometry	
in	source	Working xml node
in	source_detail	Working xml node details
in,out	geometry	Geometrical object to fill

Here is the call graph for this function:

Here is the caller graph for this function:

5.6 simulation_globals Module Reference

Module to hold the simulation global parameter classes and their methods.

Data Types

• type constants_t

Case Constants class.

• type filenames_t

File names class.

- · type parameters_t
- type simdefs_t

Simulation definitions class.

Functions/Subroutines

• subroutine setparameter (self, parmkey, parmvalue)

Birjukovs Canelas - MARETEC

• subroutine check (self)

Birjukovs Canelas - MARETEC

• subroutine printsimparameters (self)

Birjukovs Canelas - MARETEC

• subroutine getintegratorname (name, code)

Birjukovs Canelas - MARETEC

• subroutine setgravity (self, grav)

Birjukovs Canelas - MARETEC

```
• subroutine setrho (self, read_rho)
```

Birjukovs Canelas - MARETEC

• subroutine setdp (self, read_dp)

Birjukovs Canelas - MARETEC

• subroutine setdt (self, read dt)

Birjukovs Canelas - MARETEC

· subroutine setboundingbox (self, point, coords)

Birjukovs Canelas - MARETEC

• subroutine printsimdefs (self)

Birjukovs Canelas - MARETEC

Variables

- real(prec_time), public simtime
- type(parameters_t), public parameters
- type(simdefs_t), public simdefs
- type(constants_t), public constants
- type(filenames_t), public filenames

5.6.1 Detailed Description

Module to hold the simulation global parameter classes and their methods.

Author

Ricardo Birjukovs Canelas

5.6.2 Function/Subroutine Documentation

5.6.2.1 check()

Birjukovs Canelas - MARETEC

Private parameter checking method. Checks if mandatory parameters were set Here is the call graph for this function:

5.6.2.2 getintegratorname()

Birjukovs Canelas - MARETEC

private routine to get integrator scheme name Here is the caller graph for this function:

5.6.2.3 printsimdefs()

Birjukovs Canelas - MARETEC

Public simulation definitions printing routine. Here is the call graph for this function:

5.6.2.4 printsimparameters()

Birjukovs Canelas - MARETEC

Private parameter printing method. Here is the call graph for this function:

5.6.2.5 setboundingbox()

Birjukovs Canelas - MARETEC

Private bounding box setting routine.

Parameters

```
in point_,coords
```

5.6.2.6 setdp()

Birjukovs Canelas - MARETEC

Private dp setting routine.

Parameters

```
in read_dp
```

Here is the call graph for this function:

5.6.2.7 setdt()

Birjukovs Canelas - MARETEC

Private dt setting routine.

Parameters

Here is the call graph for this function:

5.6.2.8 setgravity()

Birjukovs Canelas - MARETEC

Public Gravity setting routine.

Parameters

```
in | grav |
```

5.6.2.9 setparameter()

Birjukovs Canelas - MARETEC

Private parameter setting method. Builds the simulation parametric space from the input case file.

Parameters

```
in parmkey,parmvalue
```

5.6.2.10 setrho()

Birjukovs Canelas - MARETEC

Provate Rho_Ref setting routine.

Parameters

```
in read_rho
```

Here is the call graph for this function:

5.6.3 Variable Documentation

5.6.3.1 constants

```
type(constants_t), public simulation_globals::constants
```

5.6.3.2 filenames

```
type(filenames_t), public simulation_globals::filenames
```

5.6.3.3 parameters

```
type(parameters_t), public simulation_globals::parameters
```

5.6.3.4 simdefs

```
type(simdefs_t), public simulation_globals::simdefs
```

5.6.3.5 simtime

```
real(prec_time), public simulation_globals::simtime
```

5.7 simulation_logger Module Reference

Module to hold all the simulation logger related definitions and methods.

Functions/Subroutines

```
• subroutine, public gettimestamp (timestamp)
```

```
Birjukovs Canelas - MARETEC
```

• subroutine, public tolog (tologstr, timeoption)

```
Birjukovs Canelas - MARETEC
```

• subroutine, public initmohidlagrangianlog (outpath)

```
Birjukovs Canelas - MARETEC
```

Variables

```
    integer, public log_unit = -1
    'Number' of log file
```

5.7.1 Detailed Description

Module to hold all the simulation logger related definitions and methods.

Author

Ricardo Birjukovs Canelas

5.7.2 Function/Subroutine Documentation

5.7.2.1 gettimestamp()

Birjukovs Canelas - MARETEC

Public timestamp builder

Parameters

```
in timestamp
```

Here is the caller graph for this function:

5.7.2.2 initmohidlagrangianlog()

Birjukovs Canelas - MARETEC

Public log file initizalization routine.

Parameters

in outpath

5.7.2.3 tolog()

Birjukovs Canelas - MARETEC

Public log serialization routine

Parameters

in	outpath	
----	---------	--

Here is the call graph for this function:

Here is the caller graph for this function:

5.7.3 Variable Documentation

5.7.3.1 log_unit

integer, public simulation_logger::log_unit = -1

'Number' of log file

5.8 simulation_memory Module Reference

Module to hold the simulation memory managment class and its methods.

Data Types

· type memory_t

Functions/Subroutines

```
• subroutine initialize (self)
```

Birjukovs Canelas - MARETEC

• subroutine getotal (self, size)

Birjukovs Canelas - MARETEC

• subroutine addsource (self, size)

Birjukovs Canelas - MARETEC

• subroutine addtracer (self, size)

Birjukovs Canelas - MARETEC

• subroutine adddef (self, size)

Birjukovs Canelas - MARETEC

• subroutine printmemory (self)

Birjukovs Canelas - MARETEC

· subroutine printmemorydetailed (self)

Birjukovs Canelas - MARETEC

Variables

type(memory_t), public simmemory

5.8.1 Detailed Description

Module to hold the simulation memory managment class and its methods.

Author

Ricardo Birjukovs Canelas

5.8.2 Function/Subroutine Documentation

5.8.2.1 adddef()

Birjukovs Canelas - MARETEC

Private method to add the size of a definition to the memory log.

5.8.2.2 addsource()

Birjukovs Canelas - MARETEC

Private method to add the size of a Source to the memory log.

5.8.2.3 addtracer()

Birjukovs Canelas - MARETEC

Private method to add the size of a Tracer to the memory log.

5.8.2.4 getotal()

Birjukovs Canelas - MARETEC

Private method to retreive the total size of the allocated memory.

5.8.2.5 initialize()

Birjukovs Canelas - MARETEC

Private memory logger initialization method.

5.8.2.6 printmemory()

Birjukovs Canelas - MARETEC

Private method to print the allocated memory. Here is the call graph for this function:

5.8.2.7 printmemorydetailed()

Birjukovs Canelas - MARETEC

Private method to print the allocated memory. Here is the call graph for this function:

5.8.3 Variable Documentation

5.8.3.1 simmemory

```
type(memory_t), public simulation_memory::simmemory
```

5.9 simulation_precision Module Reference

Module to control the precision of the variables trough the project.

Variables

```
integer, parameter sp = kind(1._R4P)
```

Simple precision definition switch.

• integer, parameter dp = kind(1._R8P)

Double precision definition switch.

- integer, parameter, public prec = sp
- integer, parameter, public prec_time = sp
- integer, parameter, public prec_wrt = sp
- real(prec), parameter, public missing_value_default = -9999.0_dp
- real(prec), parameter, public mv = MISSING_VALUE_DEFAULT
- real(prec), parameter, public mv_int = int(MISSING_VALUE_DEFAULT)
- real(prec), parameter, public err dist = 1E8 dp
- integer, parameter, public err_ind = -1

5.9.1 Detailed Description

Module to control the precision of the variables trough the project.

Author

Ricardo Birjukovs Canelas

5.9.2 Variable Documentation

```
5.9.2.1 dp
```

```
integer, parameter simulation_precision::dp = kind(1._R8P) [private]
```

Double precision definition switch.

5.9.2.2 err_dist

```
real(prec), parameter, public simulation_precision::err_dist = 1E8_dp
```

5.9.2.3 err_ind

```
integer, parameter, public simulation_precision::err_ind = -1
```

5.9.2.4 missing_value_default

```
real(prec), parameter, public simulation_precision::missing_value_default = -9999.0_dp
```

5.9.2.5 mv

```
real(prec), parameter, public simulation_precision::mv = MISSING_VALUE_DEFAULT
```

```
5.9.2.6 mv_int
real(prec), parameter, public simulation_precision::mv_int = int(MISSING_VALUE_DEFAULT)
5.9.2.7 prec
integer, parameter, public simulation_precision::prec = sp
5.9.2.8 prec_time
integer, parameter, public simulation_precision::prec_time = sp
5.9.2.9 prec_wrt
integer, parameter, public simulation_precision::prec_wrt = sp
5.9.2.10 sp
```

integer, parameter simulation_precision::sp = kind(1._R4P) [private]

Simple precision definition switch.

5.10 simulation_xmlparser Module Reference

Module with the simulation xml parsing related definitions and routines.

Functions/Subroutines

- subroutine, public readxmlatt (xmlnode, tag, att_name, att_value, mandatory)
 - Birjukovs Canelas MARETEC
- subroutine, public readxmlvector (xmlnode, tag, vec, mandatory)
 - Birjukovs Canelas MARETEC
- subroutine, public gotochildnode (currentNode, targetNode, targetNodeName, mandatory)

Birjukovs Canelas - MARETEC

5.10.1 Detailed Description

Module with the simulation xml parsing related definitions and routines.

Author

Ricardo Birjukovs Canelas

5.10.2 Function/Subroutine Documentation

5.10.2.1 gotochildnode()

Birjukovs Canelas - MARETEC

Private routine to retrieve a node within a node. Returns a nullifyed pointer if not found, stops if mandatory.

Parameters

in	currentNode,targetNode,targetNodeName,mandatory	
in	mandatory	Swich for optional or mandatory tags

Here is the caller graph for this function:

5.10.2.2 readxmlatt()

Birjukovs Canelas - MARETEC

Private attribute xml parser routine. In the format <Tag att_name="att_value"

Parameters

in	xmlnode,tag,vec,mandatory	
in	xmlnode	Working xml node
in	tag	Tag to search in xml node
in	att_name	Atribute name to collect from tag
out	att_value	Attribute value
in	mandatory	Swich for optional or mandatory tags

Here is the caller graph for this function:

5.10.2.3 readxmlvector()

Birjukovs Canelas - MARETEC

Private vector xml parser routine. Vector must be in format <Tag x="vec%x" y="vec%y" z="vec%z">

Parameters

in	xmlnode,tag,vec,mandatory	
in	xmlnode	Working xml node
in	tag	Tag to search in xml node
out	vec	Vector to fill with read contents
in	mandatory	Swich for optional or mandatory tags

Here is the caller graph for this function:

5.11 source_emitter Module Reference

Module that defines an emitter class and related methods. This module is responsible for building a potential tracer list based on the availble sources and calling their initializers.

Data Types

• type emitter_t

Functions/Subroutines

• subroutine initracers (self, srcs)

Birjukovs Canelas - MARETEC

• subroutine alloctracers (self, srcs)

Birjukovs Canelas - MARETEC

• subroutine initialize (self, srcs)

Birjukovs Canelas - MARETEC

• subroutine setotalnp (src)

Birjukovs Canelas - MARETEC

Variables

type(emitter_t), public emitter

5.11.1 Detailed Description

Module that defines an emitter class and related methods. This module is responsible for building a potential tracer list based on the availble sources and calling their initializers.

Author

Ricardo Birjukovs Canelas

5.11.2 Function/Subroutine Documentation

5.11.2.1 alloctracers()

Birjukovs Canelas - MARETEC

method that initializes an emmiter class object. Computes the total emittable particles this emmiter will allocate and sets other variables

Parameters

```
in self,src
```

5.11.2.2 initialize()

Birjukovs Canelas - MARETEC

method that initializes an emmiter class object. Computes the total emittable particles this emmiter will allocate and sets other variables

Parameters

```
in self,src
```

Here is the call graph for this function:

5.11.2.3 initracers()

Birjukovs Canelas - MARETEC

method that calls the tracer initialization from the emmiter object

Parameters

```
in self,src
```

5.11.2.4 setotalnp()

Birjukovs Canelas - MARETEC

private routine that returns the total number of tracers an input source will potentially create

Parameters

 $NP_{total}^{source-i} = (T_{end}^{source-i} - T_{start}^{source-i}) * Rate^{source-i} * NP_{emission}^{source-i} \ \text{Here is the caller graph for this function:}$

5.11.3 Variable Documentation

5.11.3.1 emitter

type(emitter_t), public source_emitter::emitter

5.12 source_identity Module Reference

Module that defines a source class and related methods.

Data Types

type source_class

Type - The source class.

- type source_par
- · type source state

Type - state variables of a source object.

• type source_stats

Type - statistical variables of a source object.

• type source_stencil

Type - holder for the tracer creation stencil of the source.

Functions/Subroutines

• subroutine, public allocsources (nsources)

Birjukovs Canelas - MARETEC

• subroutine, public setsourceproperties (srcid_str, ptype, pname)

Birjukovs Canelas - MARETEC

• subroutine initialize (src, id, name, emitting_rate, start, finish, source_geometry, geometry)

Birjukovs Canelas - MARETEC

• subroutine linkproperty (src, ptype, pname)

Birjukovs Canelas - MARETEC

• subroutine printout (src)

Birjukovs Canelas - MARETEC

Variables

• type(source_class), dimension(:), allocatable, public source

5.12.1 Detailed Description

Module that defines a source class and related methods.

Author

Ricardo Birjukovs Canelas

5.12.2 Function/Subroutine Documentation

5.12.2.1 allocsources()

Birjukovs Canelas - MARETEC

source allocation routine - allocates the sources objects

Parameters

```
in nsources
```

Here is the caller graph for this function:

```
source_identity::allocsources initialize::init_sources initialize::initmohidlagrangian
```

5.12.2.2 initialize()

```
real(prec), intent(in) start,
real(prec), intent(in) finish,
type(string), intent(in) source_geometry,
class(shape), intent(in) geometry) [private]
```

Birjukovs Canelas - MARETEC

source inititalization proceadure - initializes Source variables

Parameters

```
in src,id,name,emitting_rate,source_geometry
```

5.12.2.3 linkproperty()

Birjukovs Canelas - MARETEC

source property setting proceadure - initializes Source variables

Parameters

```
in src,ptype,pname
```

5.12.2.4 printout()

Birjukovs Canelas - MARETEC

source print routine - prints a source info on console/log

Parameters

```
in src
```

5.12.2.5 setsourceproperties()

```
subroutine, public source_identity::setsourceproperties (
```

```
type(string), intent(in) srcid_str,
type(string), intent(in) ptype,
type(string), intent(in) pname)
```

Birjukovs Canelas - MARETEC

source property setting routine, calls source by id to set its properties

Parameters

in	srcid,ptype,pname	
in	srcid_str	Source id tag
in	ptype	Property type to set
in	pname	Property name to set

Here is the caller graph for this function:

5.12.3 Variable Documentation

5.12.3.1 source

type(source_class), dimension(:), allocatable, public source_identity::source

5.13 sources Module Reference

Module to hold and wrap all the tracer sources respective modules. Defines a source class and related methods.

5.13.1 Detailed Description

Module to hold and wrap all the tracer sources respective modules. Defines a source class and related methods.

Author

Ricardo Birjukovs Canelas

5.14 tracer_base Module Reference

Module that defines a pure Lagrangian tracer class and related methods.

Data Types

type tracer_class

Type - The pure Lagrangian tracer class.

- type tracer_par_class
- type tracer_state_class

Type - state variables of a pure Lagrangian tracer object.

• type tracer_stats_class

Type - statistical variables of a pure Lagrangian tracer object.

Functions/Subroutines

```
    subroutine initialize (trc, id, id_source, time, pt)
    Birjukovs Canelas - MARETEC
```

Variables

• type(tracer_class), dimension(:), allocatable, public tracer

5.14.1 Detailed Description

Module that defines a pure Lagrangian tracer class and related methods.

Author

Ricardo Birjukovs Canelas

5.14.2 Function/Subroutine Documentation

5.14.2.1 initialize()

```
subroutine tracer_base::initialize (
    class(tracer_class) trc,
    integer, intent(in) id,
    integer, intent(in) id_source,
    real(prec_time), intent(in) time,
    type(vector), intent(in) pt ) [private]
```

Birjukovs Canelas - MARETEC

Tracer initialization method

Parameters

```
in
```

5.14.3 Variable Documentation

5.14.3.1 tracer

```
type(tracer_class), dimension(:), allocatable, public tracer_base::tracer
```

5.15 tracer_interp Module Reference

5.16 tracer_paper Module Reference

Module that defines a Lagrangian tracer class for paper modelling and related methods. The type is defined as a derived type from the pule Lagrangian tracer, and hence inherits all of it's data and methods.

Data Types

· type paper class

Type - The plastic material Lagrangian tracer class.

- type paper_par_class
- type paper_state_class

Type - State variables of a tracer object representing a paper material.

Functions/Subroutines

```
    subroutine paper_initialize (trc, id, id_source, time, pt)
    Birjukovs Canelas - MARETEC
```

5.16.1 Detailed Description

Module that defines a Lagrangian tracer class for paper modelling and related methods. The type is defined as a derived type from the pule Lagrangian tracer, and hence inherits all of it's data and methods.

Author

Ricardo Birjukovs Canelas

5.16.2 Function/Subroutine Documentation

5.16.2.1 paper_initialize()

Birjukovs Canelas - MARETEC

Tracer initialization method

Parameters

5.17 tracer_plastic Module Reference

Module that defines a Lagrangian tracer class for plastic modelling and related methods. The type is defined as a derived type from the pule Lagrangian tracer, and hence inherits all of it's data and methods.

Data Types

type plastic_class

Type - The plastic material Lagrangian tracer class.

- type plastic_par_class
- type plastic_state_class

Type - State variables of a tracer object representing a plastic material.

Functions/Subroutines

subroutine plastic_initialize (trc, id, id_source, time, pt)
 Birjukovs Canelas - MARETEC

5.17.1 Detailed Description

Module that defines a Lagrangian tracer class for plastic modelling and related methods. The type is defined as a derived type from the pule Lagrangian tracer, and hence inherits all of it's data and methods.

Author

Ricardo Birjukovs Canelas

5.17.2 Function/Subroutine Documentation

5.17.2.1 plastic_initialize()

Birjukovs Canelas - MARETEC

Tracer initialization method

Parameters

5.18 tracers Module Reference

Module to hold and wrap all the tracer respective modules. Defines a pure Lagrangian tracer block. This is intended to serve as the base class for every type of tracer class needed, that should be built as derived of this class, with the necessary modifiers to model the desired behaviour. Basic tracer data (parameters, variables) are implemented. Tracer methods such as I/O, integration and interpolation routines are implemented.

5.18.1 Detailed Description

Module to hold and wrap all the tracer respective modules. Defines a pure Lagrangian tracer block. This is intended to serve as the base class for every type of tracer class needed, that should be built as derived of this class, with the necessary modifiers to model the desired behaviour. Basic tracer data (parameters, variables) are implemented. Tracer methods such as I/O, integration and interpolation routines are implemented.

Author

Ricardo Birjukovs Canelas

Chapter 6

Data Type Documentation

6.1 geometry::box Type Reference

Type - point class.

Inheritance diagram for geometry::box:

Collaboration diagram for geometry::box:

Private Attributes

type(vector) size
 Box size.

6.1.1 Detailed Description

Type - point class.

6.1.2 Member Data Documentation

6.1.2.1 size

```
type(vector) geometry::box::size [private]
```

Box size.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90

6.2 simulation_globals::constants_t Type Reference

Case Constants class.

Private Member Functions

- procedure setgravity
- procedure setrho

Private Attributes

· type(vector) gravity

Gravitational acceleration vector (default=(0 0 -9.81)) (m s-2)

• real(prec) rho_ref = 1000.0

Reference density of the medium (default=1000.0) (kg m-3)

6.2.1 Detailed Description

Case Constants class.

6.2.2 Member Function/Subroutine Documentation

6.2.2.1 setgravity()

```
procedure simulation_globals::constants_t::setgravity ( ) [private]
```

6.2.2.2 setrho()

```
procedure simulation_globals::constants_t::setrho ( ) [private]
```

6.2.3 Member Data Documentation

6.2.3.1 gravity

```
type(vector) simulation_globals::constants_t::gravity [private]
```

Gravitational acceleration vector (default=(0 0 -9.81)) (m s-2)

6.2.3.2 rho_ref

```
real(prec) simulation_globals::constants_t::rho_ref = 1000.0 [private]
```

Reference density of the medium (default=1000.0) (kg m-3)

The documentation for this type was generated from the following file:

C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation globals.f90

6.3 source_emitter::emitter_t Type Reference

Private Member Functions

- procedure initialize
- procedure alloctracers
- procedure initracers

Private Attributes

- · integer emitted
- integer emittable

6.3.1 Member Function/Subroutine Documentation

```
6.3.1.1 alloctracers()

procedure source_emitter::emitter_t::alloctracers ( ) [private]

6.3.1.2 initialize()

procedure source_emitter::emitter_t::initialize ( ) [private]

6.3.1.3 initracers()
```

procedure source_emitter::emitter_t::initracers () [private]

6.3.2 Member Data Documentation

6.3.2.1 emittable

```
integer source_emitter::emitter_t::emittable [private]
```

6.3.2.2 emitted

```
integer source_emitter::emitter_t::emitted [private]
```

The documentation for this type was generated from the following file:

 $\bullet \ \ C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_emitter.f90$

6.4 simulation_globals::filenames_t Type Reference

		lass.

Private Attributes

- type(string) mainxmlfilename
- Input .xml file name.type(string) propsxmlfilename

Properties .xml file name.

6.4.1 Detailed Description

File names class.

6.4.2 Member Data Documentation

6.4.2.1 mainxmlfilename

```
type(string) simulation_globals::filenames_t::mainxmlfilename [private]
```

Input .xml file name.

6.4.2.2 propsxmlfilename

```
\verb|type(string)| simulation_globals::filenames_t::propsxmlfilename [private]|
```

Properties .xml file name.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90

6.5 geometry::line Type Reference

Type - line class.

Inheritance diagram for geometry::line:

Collaboration diagram for geometry::line:

Private Attributes

• type(vector) last

Coordinates of the end point.

6.5.1 Detailed Description

Type - line class.

6.5.2 Member Data Documentation

6.5.2.1 last

```
type(vector) geometry::line::last [private]
```

Coordinates of the end point.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90

6.6 simulation_memory::memory_t Type Reference

Private Member Functions

- · procedure initialize
- procedure addsource
- · procedure addtracer
- · procedure adddef
- · procedure getotal
- procedure printout => printmemory
- procedure detailedprintout => printmemorydetailed

Private Attributes

• integer size_of_sources

Size of the sources in memory (bytes)

• integer size_of_tracers

Size of the tracers in memory (bytes)

integer size_of_defs

Size of the parameters and definitions in memory (bytes)

6.6.1 Member Function/Subroutine Documentation

6.6.1.1 adddef()

```
procedure simulation_memory::memory_t::adddef ( ) [private]
```

6.6.1.2 addsource()

```
procedure simulation_memory::memory_t::addsource ( ) [private]
```

Size of the sources in memory (bytes)

```
6.6.1.3 addtracer()
procedure simulation_memory::memory_t::addtracer ( ) [private]
6.6.1.4 detailedprintout()
procedure simulation_memory::memory_t::detailedprintout ( ) [private]
6.6.1.5 getotal()
procedure simulation_memory::memory_t::getotal ( ) [private]
6.6.1.6 initialize()
procedure simulation_memory::memory_t::initialize ( ) [private]
6.6.1.7 printout()
procedure simulation_memory::memory_t::printout ( ) [private]
6.6.2 Member Data Documentation
6.6.2.1 size_of_defs
integer simulation_memory::memory_t::size_of_defs [private]
Size of the parameters and definitions in memory (bytes)
6.6.2.2 size_of_sources
integer simulation_memory::memory_t::size_of_sources [private]
```

6.6.2.3 size_of_tracers

integer simulation_memory::memory_t::size_of_tracers [private]

Size of the tracers in memory (bytes)

The documentation for this type was generated from the following file:

C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_memory.f90

6.7 tracer_paper::paper_class Type Reference

Type - The plastic material Lagrangian tracer class.

Inheritance diagram for tracer_paper::paper_class:

Collaboration diagram for tracer_paper::paper_class:

Private Member Functions

• procedure initialize => paper_initialize

Private Attributes

- type(paper_par_class) mpar
 To access material parameters.
- type(paper_state_class) mnow

To access material state variables.

6.7.1 Detailed Description

Type - The plastic material Lagrangian tracer class.

6.7.2 Member Function/Subroutine Documentation

6.7.2.1 initialize()

```
procedure tracer_paper::paper_class::initialize ( ) [private]
```

6.7.3 Member Data Documentation

6.7.3.1 mnow

```
type(paper_state_class) tracer_paper::paper_class::mnow [private]
```

To access material state variables.

6.7.3.2 mpar

```
type(paper_par_class) tracer_paper::paper_class::mpar [private]
```

To access material parameters.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_paper.f90

6.8 tracer_paper::paper_par_class Type Reference

Private Attributes

- real(prec) density
 - density of the material
- real(prec) degradation_rate

degradation rate of the material

· logical particulate

flag to indicate if the material is a particle (false) or a collection of particles (true)

· real(prec) size

Size (radius) of the particles (equals to the tracer radius if particulate==false)

6.8.1 Member Data Documentation

6.8.1.1 degradation_rate

```
real(prec) tracer_paper::paper_par_class::degradation_rate [private]
```

degradation rate of the material

6.8.1.2 density

```
real(prec) tracer_paper::paper_par_class::density [private]
```

density of the material

6.8.1.3 particulate

```
logical tracer_paper::paper_par_class::particulate [private]
```

flag to indicate if the material is a particle (false) or a collection of particles (true)

6.8.1.4 size

```
real(prec) tracer_paper::paper_par_class::size [private]
```

Size (radius) of the particles (equals to the tracer radius if particulate==false)

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_paper.f90

6.9 tracer_paper::paper_state_class Type Reference

Type - State variables of a tracer object representing a paper material.

Private Attributes

• real(prec) radius

Tracer radius (m)

• real(prec) condition

Material condition (1-0)

• real(prec) concentration

Particle concentration.

6.9.1 Detailed Description

Type - State variables of a tracer object representing a paper material.

6.9.2 Member Data Documentation

6.9.2.1 concentration

```
real(prec) tracer_paper::paper_state_class::concentration [private]
```

Particle concentration.

6.9.2.2 condition

```
real(prec) tracer_paper::paper_state_class::condition [private]
```

Material condition (1-0)

6.9.2.3 radius

```
real(prec) tracer_paper::paper_state_class::radius [private]
```

Tracer radius (m)

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_paper.f90

6.10 simulation_globals::parameters_t Type Reference

Private Member Functions

- procedure setparameter
- · procedure check
- procedure printout => printsimparameters

Private Attributes

```
• integer integrator = 1

Integration Algorithm 1:Verlet, 2:Symplectic, 3:RK4 (default=1)
```

• real(prec) cfl = 0.5

Courant Friedrichs Lewy condition number.

• real(prec) warmuptime = 0.0

Time to freeze the tracers at simulation start (warmup) (s) (default=0.0)

• real(prec) timemax = MV

Simulation duration (s)

• real(prec) timeout = MV

Time out data (1/Hz)

6.10.1 Member Function/Subroutine Documentation

```
6.10.1.1 check()
```

```
procedure simulation_globals::parameters_t::check ( ) [private]
```

6.10.1.2 printout()

```
procedure simulation_globals::parameters_t::printout ( ) [private]
```

6.10.1.3 setparameter()

```
procedure simulation_globals::parameters_t::setparameter ( ) [private]
```

6.10.2 Member Data Documentation

```
6.10.2.1 cfl
real(prec) simulation_globals::parameters_t::cfl = 0.5 [private]
Courant Friedrichs Lewy condition number.
6.10.2.2 integrator
integer simulation_globals::parameters_t::integrator = 1 [private]
Integration Algorithm 1:Verlet, 2:Symplectic, 3:RK4 (default=1)
6.10.2.3 timemax
real(prec) simulation_globals::parameters_t::timemax = MV [private]
Simulation duration (s)
6.10.2.4 timeout
real(prec) simulation_globals::parameters_t::timeout = MV [private]
Time out data (1/Hz)
6.10.2.5 warmuptime
real(prec) simulation_globals::parameters_t::warmuptime = 0.0 [private]
```

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90

Time to freeze the tracers at simulation start (warmup) (s) (default=0.0)

The documentation for this type was generated from the following file:

6.11 tracer_plastic::plastic_class Type Reference

Type - The plastic material Lagrangian tracer class.

Inheritance diagram for tracer_plastic::plastic_class:

Collaboration diagram for tracer_plastic::plastic_class:

Private Member Functions

• procedure initialize => plastic_initialize

Private Attributes

- type(plastic_par_class) mpar
 - To access material parameters.
- type(plastic_state_class) mnow

To access material state variables.

6.11.1 Detailed Description

Type - The plastic material Lagrangian tracer class.

6.11.2 Member Function/Subroutine Documentation

6.11.2.1 initialize()

```
procedure tracer_plastic::plastic_class::initialize ( ) [private]
```

6.11.3 Member Data Documentation

6.11.3.1 mnow

```
type(plastic_state_class) tracer_plastic::plastic_class::mnow [private]
```

To access material state variables.

6.11.3.2 mpar

```
type(plastic_par_class) tracer_plastic::plastic_class::mpar [private]
```

To access material parameters.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_plastic.f90

6.12 tracer_plastic::plastic_par_class Type Reference

Private Attributes

- real(prec) density
 - density of the material
- real(prec) degradation_rate

degradation rate of the material

· logical particulate

flag to indicate if the material is a particle (false) or a collection of particles (true)

· real(prec) size

Size (radius) of the particles (equals to the tracer radius if particulate==false)

6.12.1 Member Data Documentation

6.12.1.1 degradation_rate

```
real(prec) tracer_plastic::plastic_par_class::degradation_rate [private]
```

degradation rate of the material

6.12.1.2 density

```
real(prec) tracer_plastic::plastic_par_class::density [private]
```

density of the material

6.12.1.3 particulate

```
logical tracer_plastic::plastic_par_class::particulate [private]
```

flag to indicate if the material is a particle (false) or a collection of particles (true)

6.12.1.4 size

```
real(prec) tracer_plastic::plastic_par_class::size [private]
```

Size (radius) of the particles (equals to the tracer radius if particulate==false)

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_plastic.f90

6.13 tracer_plastic::plastic_state_class Type Reference

Type - State variables of a tracer object representing a plastic material.

Private Attributes

• real(prec) radius

Tracer radius (m)

· real(prec) condition

Material condition (1-0)

• real(prec) concentration

Particle concentration.

6.13.1 Detailed Description

Type - State variables of a tracer object representing a plastic material.

6.13.2 Member Data Documentation

6.13.2.1 concentration

```
real(prec) tracer_plastic::plastic_state_class::concentration [private]
```

Particle concentration.

6.13.2.2 condition

```
real(prec) tracer_plastic::plastic_state_class::condition [private]
```

Material condition (1-0)

6.13.2.3 radius

```
real(prec) tracer_plastic::plastic_state_class::radius [private]
```

Tracer radius (m)

The documentation for this type was generated from the following file:

 $\bullet \ \ C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_plastic.f90$

6.14 geometry::point Type Reference

Type - point class.

Inheritance diagram for geometry::point:

Collaboration diagram for geometry::point:

6.14.1 Detailed Description

Type - point class.

The documentation for this type was generated from the following file:

 $\bullet \ \ C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90$

6.15 geometry::shape Type Reference

Type - extendable shape class.

Inheritance diagram for geometry::shape:

Private Member Functions

- procedure getnp
 - Gets the number of points that define that geometry (based on GLOBALS::dp)
- procedure getpointdistribution

Gets the actual list of points always referant to the origin (based on GLOBALS::dp)

Private Attributes

type(vector) pt
 Coordinates of a point.

6.15.1 Detailed Description

Type - extendable shape class.

6.15.2 Member Function/Subroutine Documentation

6.15.2.1 getnp()

```
procedure geometry::shape::getnp ( ) [private]
```

Gets the number of points that define that geometry (based on GLOBALS::dp)

6.15.2.2 getpointdistribution()

```
procedure geometry::shape::getpointdistribution ( ) [private]
```

Gets the actual list of points always referant to the origin (based on GLOBALS::dp)

6.15.3 Member Data Documentation

6.15.3.1 pt

```
type(vector) geometry::shape::pt [private]
```

Coordinates of a point.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90

6.16 simulation_globals::simdefs_t Type Reference

Simulation definitions class.

Private Member Functions

- · procedure setdp
- procedure setdt
- procedure setboundingbox
- procedure printout => printsimdefs

Private Attributes

real(prec) dp = MV

Initial particle spacing at source generation.

• real(prec_time) dt

Timestep for fixed step integrators (s)

• type(vector) pointmin

Point that defines the lowest corner of the simulation bounding box.

• type(vector) pointmax

Point that defines the upper corner of the simulation bounding box.

6.16.1 Detailed Description

Simulation definitions class.

6.16.2 Member Function/Subroutine Documentation

```
6.16.2.1 printout()
procedure simulation_globals::simdefs_t::printout ( ) [private]
6.16.2.2 setboundingbox()
\verb|procedure simulation_globals::simdefs_t::setboundingbox ( ) [private]|\\
6.16.2.3 setdp()
procedure simulation_globals::simdefs_t::setdp ( ) [private]
6.16.2.4 setdt()
procedure simulation_globals::simdefs_t::setdt ( ) [private]
6.16.3 Member Data Documentation
6.16.3.1 dp
real(prec) simulation_globals::simdefs_t::dp = MV [private]
Initial particle spacing at source generation.
6.16.3.2 dt
real(prec_time) simulation_globals::simdefs_t::dt [private]
Timestep for fixed step integrators (s)
```

6.16.3.3 pointmax

```
type(vector) simulation_globals::simdefs_t::pointmax [private]
```

Point that defines the upper corner of the simulation bounding box.

6.16.3.4 pointmin

```
type(vector) simulation_globals::simdefs_t::pointmin [private]
```

Point that defines the lowest corner of the simulation bounding box.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90

6.17 source_identity::source_class Type Reference

Type - The source class.

Collaboration diagram for source_identity::source_class:

Private Member Functions

- procedure initialize
- · procedure linkproperty
- procedure printout

Private Attributes

• type(source_par) par

To access parameters.

• type(source_state) now

To access state variables.

• type(source_stencil) stencil

To acess stencil variables.

• type(source_stats) stats

To access statistics.

6.17.1 Detailed Description

Type - The source class.

6.17.2 Member Function/Subroutine Documentation

```
6.17.2.1 initialize()
```

```
procedure source_identity::source_class::initialize ( ) [private]
```

6.17.2.2 linkproperty()

```
procedure source_identity::source_class::linkproperty ( ) [private]
```

6.17.2.3 printout()

```
procedure source_identity::source_class::printout ( ) [private]
```

6.17.3 Member Data Documentation

6.17.3.1 now

```
type(source_state) source_identity::source_class::now [private]
```

To access state variables.

```
6.17.3.2 par
```

```
type(source_par) source_identity::source_class::par [private]
```

To access parameters.

6.17.3.3 stats

```
type(source_stats) source_identity::source_class::stats [private]
```

To access statistics.

6.17.3.4 stencil

```
type(source_stencil) source_identity::source_class::stencil [private]
```

To acess stencil variables.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90

6.18 source_identity::source_par Type Reference

Private Attributes

• integer id

unique source identification (integer)

• real(prec_time) emitting_rate

Emitting rate of the source (Hz)

• real(prec_time) startime

time to start emitting tracers

• real(prec_time) stoptime

time to stop emitting tracers

• type(string) name

source name

type(string) property_type

source property type (plastic, paper, fish, etc)

• type(string) property_name

source property name

type(string) source_geometry

Source type: 'point', 'line', 'sphere', 'box'.

· class(shape), allocatable geometry

Source geometry.

6.18.1 Member Data Documentation

```
6.18.1.1 emitting_rate
real(prec_time) source_identity::source_par::emitting_rate [private]
Emitting rate of the source (Hz)
6.18.1.2 geometry
class(shape), allocatable source_identity::source_par::geometry [private]
Source geometry.
6.18.1.3 id
integer source_identity::source_par::id [private]
unique source identification (integer)
6.18.1.4 name
type(string) source_identity::source_par::name [private]
source name
6.18.1.5 property_name
type(string) source_identity::source_par::property_name [private]
source property name
```

type(string) source_identity::source_par::property_type [private] source property type (plastic, paper, fish, etc) 6.18.1.7 source_geometry type(string) source_identity::source_par::source_geometry [private] Source type:'point', 'line', 'sphere', 'box'. 6.18.1.8 startime real(prec_time) source_identity::source_par::startime [private] time to start emitting tracers

6.18.1.9 stoptime

```
real(prec_time) source_identity::source_par::stoptime [private]
```

time to stop emitting tracers

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90

6.19 source_identity::source_state Type Reference

Type - state variables of a source object.

Private Attributes

- real(prec_time) age
- · logical active

active switch

type(vector) pos

Position of the source baricenter (m)

type(vector) vel

Velocity of the source (m s-1)

• real(prec) depth

Depth of the source baricenter (m)

· real(prec) t

Temperature of the source (Celcius)

6.19.1 Detailed Description

Type - state variables of a source object.

6.19.2 Member Data Documentation

```
6.19.2.1 active
```

```
logical source_identity::source_state::active [private]
```

active switch

6.19.2.2 age

```
real(prec_time) source_identity::source_state::age [private]
```

6.19.2.3 depth

```
real(prec) source_identity::source_state::depth [private]
```

Depth of the source baricenter (m)

6.19.2.4 pos

```
type(vector) source_identity::source_state::pos [private]
```

Position of the source baricenter (m)

6.19.2.5 t

```
real(prec) source_identity::source_state::t [private]
```

Temperature of the source (Celcius)

6.19.2.6 vel

```
type(vector) source_identity::source_state::vel [private]
```

Velocity of the source (m s-1)

The documentation for this type was generated from the following file:

C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source identity.f90

6.20 source_identity::source_stats Type Reference

Type - statistical variables of a source object.

Private Attributes

· integer particles_emitted

Number of emitted particles by this source.

real(prec_wrt) acc_t

Accumulated temperature of the tracer (Celcius)

• integer ns

Number of sampling steps.

6.20.1 Detailed Description

Type - statistical variables of a source object.

6.20.2 Member Data Documentation

```
6.20.2.1 acc_t
```

```
real(prec_wrt) source_identity::source_stats::acc_t [private]
```

Accumulated temperature of the tracer (Celcius)

6.20.2.2 ns

```
integer source_identity::source_stats::ns [private]
```

Number of sampling steps.

6.20.2.3 particles_emitted

```
integer source_identity::source_stats::particles_emitted [private]
```

Number of emitted particles by this source.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90

6.21 source_identity::source_stencil Type Reference

Type - holder for the tracer creation stencil of the source.

Private Attributes

integer np

Number of tracers by emission.

integer total_np

Total number of tracers that this source will generate.

• type(vector), dimension(:), allocatable ptlist

list of points (coordinates), relative to the source geometry point, to be generated at every emission

6.21.1 Detailed Description

Type - holder for the tracer creation stencil of the source.

6.21.2 Member Data Documentation

6.21.2.1 np

```
integer source_identity::source_stencil::np [private]
```

Number of tracers by emission.

6.21.2.2 ptlist

```
type(vector), dimension(:), allocatable source_identity::source_stencil::ptlist [private]
```

list of points (coordinates), relative to the source geometry point, to be generated at every emission

6.21.2.3 total_np

```
integer source_identity::source_stencil::total_np [private]
```

Total number of tracers that this source will generate.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90

6.22 geometry::sphere Type Reference

Type - sphere class.

Inheritance diagram for geometry::sphere:

Collaboration diagram for geometry::sphere:

Private Attributes

• real(prec) radius

Sphere radius.

6.22.1 Detailed Description

Type - sphere class.

6.22.2 Member Data Documentation

6.22.2.1 radius

```
real(prec) geometry::sphere::radius [private]
```

Sphere radius.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90

6.23 tracer_base::tracer_class Type Reference

Type - The pure Lagrangian tracer class.

Inheritance diagram for tracer_base::tracer_class:

Collaboration diagram for tracer_base::tracer_class:

Private Member Functions

· procedure initialize

Private Attributes

- type(tracer_par_class) par
 - To access parameters.
- type(tracer_state_class) now
 - To access state variables.
- type(tracer_stats_class) stats

To access statistics.

6.23.1 Detailed Description

Type - The pure Lagrangian tracer class.

6.23.2 Member Function/Subroutine Documentation

6.23.2.1 initialize()

procedure tracer_base::tracer_class::initialize () [private]

6.23.3 Member Data Documentation

```
6.23.3.1 now
```

```
type(tracer_state_class) tracer_base::tracer_class::now [private]
```

To access state variables.

6.23.3.2 par

```
type(tracer_par_class) tracer_base::tracer_class::par [private]
```

To access parameters.

6.23.3.3 stats

```
type(tracer_stats_class) tracer_base::tracer_class::stats [private]
```

To access statistics.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_base.f90

6.24 tracer_base::tracer_par_class Type Reference

Private Attributes

• integer id

unique tracer identification

• integer idsource

Source to which the tracer belongs.

real(prec) velmax

Maximum velocity of tracer to track (m/s)

- · logical noise
- type(string) interp_method

interpolation method this tracer calls

6.24.1 Member Data Documentation

6.24.1.1 id

```
integer tracer_base::tracer_par_class::id [private]
```

unique tracer identification

6.24.1.2 idsource

```
integer tracer_base::tracer_par_class::idsource [private]
```

Source to which the tracer belongs.

6.24.1.3 interp_method

```
type(string) tracer_base::tracer_par_class::interp_method [private]
```

interpolation method this tracer calls

6.24.1.4 noise

```
logical tracer_base::tracer_par_class::noise [private]
```

6.24.1.5 velmax

```
real(prec) tracer_base::tracer_par_class::velmax [private]
```

Maximum velocity of tracer to track (m/s)

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_base.f90

6.25 tracer_base::tracer_state_class Type Reference

Type - state variables of a pure Lagrangian tracer object.

Private Attributes

```
• real(prec_time) age
```

· logical active

active switch

type(vector) pos

Position of the tracer (m)

type(vector) vel

Velocity of the tracer (m s-1)

• type(vector) acc

Acceleration of the tracer (m s-2)

• real(prec) depth

Depth of the tracer (m)

6.25.1 Detailed Description

Type - state variables of a pure Lagrangian tracer object.

6.25.2 Member Data Documentation

6.25.2.1 acc

```
type(vector) tracer_base::tracer_state_class::acc [private]
```

Acceleration of the tracer (m s-2)

6.25.2.2 active

```
logical tracer_base::tracer_state_class::active [private]
```

active switch

6.25.2.3 age

```
real(prec_time) tracer_base::tracer_state_class::age [private]
```

```
6.25.2.4 depth

real(prec) tracer_base::tracer_state_class::depth [private]

Depth of the tracer (m)

6.25.2.5 pos

type(vector) tracer_base::tracer_state_class::pos [private]

Position of the tracer (m)

6.25.2.6 vel

type(vector) tracer_base::tracer_state_class::vel [private]
```

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_base.f90

6.26 tracer_base::tracer_stats_class Type Reference

Type - statistical variables of a pure Lagrangian tracer object.

Private Attributes

type(vector) acc_pos

Velocity of the tracer (m s-1)

Accumulated position of the tracer (m)

type(vector) acc_vel

Accumulated velocity of the tracer (m s-1)

real(prec_wrt) acc_depth

Accumulated depth of the tracer (m)

· integer ns

Number of sampling steps.

6.26.1 Detailed Description

Type - statistical variables of a pure Lagrangian tracer object.

6.26.2 Member Data Documentation

```
6.26.2.1 acc_depth
real(prec_wrt) tracer_base::tracer_stats_class::acc_depth [private]
Accumulated depth of the tracer (m)

6.26.2.2 acc_pos

type(vector) tracer_base::tracer_stats_class::acc_pos [private]
Accumulated position of the tracer (m)

6.26.2.3 acc_vel

type(vector) tracer_base::tracer_stats_class::acc_vel [private]
Accumulated velocity of the tracer (m s-1)
6.26.2.4 ns
```

The documentation for this type was generated from the following file:

Number of sampling steps.

integer tracer_base::tracer_stats_class::ns [private]

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_base.f90

Chapter 7

File Documentation

- 7.1 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/app/main.f90 File Reference
- 7.2 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/about.f90 File Reference

Modules

· module about

Module to print version, licence, preambles.

Functions/Subroutines

• subroutine, public about::printlicpreamble

Birjukovs Canelas - MARETEC

Variables

- type(string) about::version
- type(string) about::author
- type(string) about::date
- 7.3 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/common_← modules.f90 File Reference

Modules

• module commom_modules

Module to hold all of the commonly used base modules.

94 File Documentation

7.4 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/finalize.f90 File Reference

Modules

· module finalize

Module with the simulation closing related definitions and methods.

Functions/Subroutines

• subroutine finalize::simulation_end

Birjukovs Canelas - MARETEC

• subroutine finalize::deallocate_simulation

Birjukovs Canelas - MARETEC

· subroutine finalize::closelog

Birjukovs Canelas - MARETEC

• subroutine, public finalize::finalizemohidlagrangian

Birjukovs Canelas - MARETEC

7.5 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90 File Reference

Data Types

• type geometry::shape

Type - extendable shape class.

· type geometry::point

Type - point class.

• type geometry::line

Type - line class.

• type geometry::sphere

Type - sphere class.

• type geometry::box

Type - point class.

Modules

module geometry

Module that defines geometry classes and related methods.

Functions/Subroutines

· subroutine, public geometry::allocategeomlist

Birjukovs Canelas - MARETEC

• logical function, public geometry::isvalidgeom (geomname)

Birjukovs Canelas - MARETEC

• subroutine geometry::getnp (self, np, dp)

Birjukovs Canelas - MARETEC

• subroutine geometry::getpointdistribution (self, np, dp, ptlist)

Birjukovs Canelas - MARETEC

• subroutine geometry::sphere_np_count (dp, r, np)

Birjukovs Canelas - MARETEC

subroutine geometry::sphere_grid (dp, r, np, ptlist)

Birjukovs Canelas - MARETEC

• subroutine geometry::box_grid (dp, size, np, ptlist)

Birjukovs Canelas - MARETEC

subroutine geometry::line_grid (dp, dist, np, ptlist)

Birjukovs Canelas - MARETEC

Variables

• type(string), dimension(:), allocatable, public geometry::geomlist

String list (array) with the name of possible geometry types.

7.6 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/initialize.f90 File Reference

Modules

· module initialize

Module with the simulation initialization related definitions and methods. Has one public access routine that is incharge of building the simulation space from input files.

Functions/Subroutines

• subroutine initialize::linkpropertysources (linksNode)

Birjukovs Canelas - MARETEC

• subroutine initialize::init_properties (case_node)

Birjukovs Canelas - MARETEC

• subroutine initialize::read xml geometry (source, source detail, geometry)

Birjukovs Canelas - MARETEC

subroutine initialize::init_sources (case_node)

Birjukovs Canelas - MARETEC

• subroutine initialize::init_simdefs (case_node)

Birjukovs Canelas - MARETEC

subroutine initialize::init_caseconstants (case_node)

Birjukovs Canelas - MARETEC

• subroutine initialize::init_parameters (execution_node)

Birjukovs Canelas - MARETEC

• subroutine, public initialize::initmohidlagrangian (xmlfilename)

Birjukovs Canelas - MARETEC

96 File Documentation

7.7 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_ globals.f90 File Reference

Data Types

- · type simulation globals::parameters t
- type simulation_globals::simdefs_t

Simulation definitions class.

· type simulation_globals::constants_t

Case Constants class.

· type simulation_globals::filenames_t

File names class.

Modules

· module simulation globals

Module to hold the simulation global parameter classes and their methods.

Functions/Subroutines

• subroutine simulation_globals::setparameter (self, parmkey, parmvalue)

Birjukovs Canelas - MARETEC

• subroutine simulation_globals::check (self)

Birjukovs Canelas - MARETEC

• subroutine simulation_globals::printsimparameters (self)

Birjukovs Canelas - MARETEC

• subroutine simulation_globals::getintegratorname (name, code)

Birjukovs Canelas - MARETEC

• subroutine simulation_globals::setgravity (self, grav)

Birjukovs Canelas - MARETEC

subroutine simulation_globals::setrho (self, read_rho)

Birjukovs Canelas - MARETEC

• subroutine simulation globals::setdp (self, read dp)

Birjukovs Canelas - MARETEC

subroutine simulation_globals::setdt (self, read_dt)

Birjukovs Canelas - MARETEC

subroutine simulation_globals::setboundingbox (self, point_, coords)

Birjukovs Canelas - MARETEC

• subroutine simulation_globals::printsimdefs (self)

Birjukovs Canelas - MARETEC

Variables

- real(prec_time), public simulation_globals::simtime
- type(parameters_t), public simulation_globals::parameters
- type(simdefs_t), public simulation_globals::simdefs
- type(constants_t), public simulation_globals::constants
- type(filenames_t), public simulation_globals::filenames

7.8 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_ logger.f90 File Reference

Modules

· module simulation_logger

Module to hold all the simulation logger related definitions and methods.

Functions/Subroutines

• subroutine, public simulation_logger::gettimestamp (timestamp)

Birjukovs Canelas - MARETEC

• subroutine, public simulation_logger::tolog (tologstr, timeoption)

Birjukovs Canelas - MARETEC

• subroutine, public simulation_logger::initmohidlagrangianlog (outpath)

Birjukovs Canelas - MARETEC

Variables

integer, public simulation_logger::log_unit = -1
 'Number' of log file

7.9 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_← memory.f90 File Reference

Data Types

· type simulation memory::memory t

Modules

· module simulation_memory

 ${\it Module\ to\ hold\ the\ simulation\ memory\ management\ class\ and\ its\ methods.}$

Functions/Subroutines

• subroutine simulation_memory::initialize (self)

Birjukovs Canelas - MARETEC

• subroutine simulation memory::getotal (self, size)

Birjukovs Canelas - MARETEC

• subroutine simulation_memory::addsource (self, size)

Birjukovs Canelas - MARETEC

• subroutine simulation_memory::addtracer (self, size)

Birjukovs Canelas - MARETEC

• subroutine simulation_memory::adddef (self, size)

Birjukovs Canelas - MARETEC

• subroutine simulation_memory::printmemory (self)

Birjukovs Canelas - MARETEC

· subroutine simulation_memory::printmemorydetailed (self)

Birjukovs Canelas - MARETEC

98 File Documentation

Variables

• type(memory t), public simulation memory::simmemory

7.10 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_ precision.f90 File Reference

Modules

• module simulation_precision

Module to control the precision of the variables trough the project.

Variables

- integer, parameter simulation_precision::sp = kind(1._R4P)
 - Simple precision definition switch.
- integer, parameter simulation precision::dp = kind(1. R8P)
 - Double precision definition switch.
- integer, parameter, public simulation_precision::prec = sp
- integer, parameter, public simulation_precision::prec_time = sp
- integer, parameter, public simulation_precision::prec_wrt = sp
- real(prec), parameter, public simulation_precision::missing_value_default = -9999.0_dp
- real(prec), parameter, public simulation_precision::mv = MISSING_VALUE_DEFAULT
- real(prec), parameter, public simulation_precision::mv_int = int(MISSING_VALUE_DEFAULT)
- real(prec), parameter, public simulation precision::err dist = 1E8 dp
- integer, parameter, public simulation precision::err ind = -1

7.11 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_ xmlparser.f90 File Reference

Modules

· module simulation xmlparser

Module with the simulation xml parsing related definitions and routines.

Functions/Subroutines

- subroutine, public simulation_xmlparser::readxmlatt (xmlnode, tag, att_name, att_value, mandatory)

 Birjukovs Canelas MARETEC
- $\bullet \ \ subroutine, public \ \underline{simulation_xmlparser::readxmlvector} \ (xmlnode, tag, vec, mandatory) \\$
 - Birjukovs Canelas MARETEC
- subroutine, public simulation_xmlparser::gotochildnode (currentNode, targetNode, targetNodeName, mandatory)

Birjukovs Canelas - MARETEC

7.12 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_ emitter.f90 File Reference

Data Types

· type source_emitter::emitter_t

Modules

· module source emitter

Module that defines an emitter class and related methods. This module is responsible for building a potential tracer list based on the availble sources and calling their initializers.

Functions/Subroutines

• subroutine source emitter::initracers (self, srcs)

Birjukovs Canelas - MARETEC

subroutine source_emitter::alloctracers (self, srcs)

Birjukovs Canelas - MARETEC

• subroutine source_emitter::initialize (self, srcs)

Birjukovs Canelas - MARETEC

• subroutine source_emitter::setotalnp (src)

Birjukovs Canelas - MARETEC

Variables

• type(emitter_t), public source_emitter::emitter

7.13 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_← identity.f90 File Reference

Data Types

- type source_identity::source_par
- type source_identity::source_state

Type - state variables of a source object.

• type source_identity::source_stats

Type - statistical variables of a source object.

• type source_identity::source_stencil

Type - holder for the tracer creation stencil of the source.

• type source_identity::source_class

Type - The source class.

Modules

· module source_identity

Module that defines a source class and related methods.

100 File Documentation

Functions/Subroutines

• subroutine, public source_identity::allocsources (nsources)

Birjukovs Canelas - MARETEC

• subroutine, public source_identity::setsourceproperties (srcid_str, ptype, pname)

Birjukovs Canelas - MARETEC

• subroutine source identity::initialize (src, id, name, emitting rate, start, finish, source geometry, geometry)

Birjukovs Canelas - MARETEC

• subroutine source_identity::linkproperty (src, ptype, pname)

Birjukovs Canelas - MARETEC

subroutine source_identity::printout (src)

Birjukovs Canelas - MARETEC

Variables

• type(source_class), dimension(:), allocatable, public source_identity::source

7.14 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/sources.f90 File Reference

Modules

module sources

Module to hold and wrap all the tracer sources respective modules. Defines a source class and related methods.

7.15 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_← base.f90 File Reference

Data Types

- type tracer_base::tracer_par_class
- type tracer_base::tracer_state_class

Type - state variables of a pure Lagrangian tracer object.

• type tracer_base::tracer_stats_class

Type - statistical variables of a pure Lagrangian tracer object.

• type tracer_base::tracer_class

Type - The pure Lagrangian tracer class.

Modules

· module tracer_base

Module that defines a pure Lagrangian tracer class and related methods.

Functions/Subroutines

subroutine tracer_base::initialize (trc, id, id_source, time, pt)
 Birjukovs Canelas - MARETEC

Variables

• type(tracer class), dimension(:), allocatable, public tracer base::tracer

7.16 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_ interp.f90 File Reference

Modules

· module tracer_interp

7.17 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_ paper.f90 File Reference

Data Types

- type tracer_paper::paper_par_class
- type tracer_paper::paper_state_class

Type - State variables of a tracer object representing a paper material.

type tracer_paper::paper_class

Type - The plastic material Lagrangian tracer class.

Modules

· module tracer paper

Module that defines a Lagrangian tracer class for paper modelling and related methods. The type is defined as a derived type from the pule Lagrangian tracer, and hence inherits all of it's data and methods.

Functions/Subroutines

subroutine tracer_paper::paper_initialize (trc, id, id_source, time, pt)
 Birjukovs Canelas - MARETEC

7.18 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_ plastic.f90 File Reference

Data Types

- type tracer_plastic::plastic_par_class
- type tracer_plastic::plastic_state_class

Type - State variables of a tracer object representing a plastic material.

type tracer_plastic::plastic_class

Type - The plastic material Lagrangian tracer class.

102 File Documentation

Modules

· module tracer_plastic

Module that defines a Lagrangian tracer class for plastic modelling and related methods. The type is defined as a derived type from the pule Lagrangian tracer, and hence inherits all of it's data and methods.

Functions/Subroutines

subroutine tracer_plastic::plastic_initialize (trc, id, id_source, time, pt)
 Birjukovs Canelas - MARETEC

7.19 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracers.f90 File Reference

Modules

· module tracers

Module to hold and wrap all the tracer respective modules. Defines a pure Lagrangian tracer block. This is intended to serve as the base class for every type of tracer class needed, that should be built as derived of this class, with the necessary modifiers to model the desired behaviour. Basic tracer data (parameters, variables) are implemented. Tracer methods such as I/O, integration and interpolation routines are implemented.