

Course Description and Outcome Form

Department of Computer Science and Engineering School of Engineering and Computer Science Brac University

A. Course General Information:

Course Code:	CSE251 CSE251L
Course Title:	Electronic Devices and Circuits Electronic Devices and Circuits Laboratory
Credit Hours (Theory+Lab):	3 + 0
Contact Hours (Theory+Lab):	3 + 3
Category:	Program Core
Type:	Required, Engineering, Lecture + Laboratory
Prerequisites:	CSE250
Co-requisites:	None

B. Course Catalog Description (Content):

Introduction to semiconductors, p-type and n-type semiconductors; I-V characteristics of Non-linear devices; p-n junction diode characteristics; Diode applications: half and full wave rectifiers, regulated power supply using zener diode, diode-logic circuits. Bipolar Junction Transistor (BJT): principle of operation, I-V characteristics; Operational Amplifiers (OPAMP): linear applications of OPAMPs – summer, subtractor, differentiator, integrator; gain, input and output impedances; Application of OPAMPs as comparator; Transistor circuit configurations (CE), BJT biasing, load lines; Switching circuits using BJTs; Small-signal analysis of single-stage amplifiers. Field Effect Transistors (FET): the principle of operation of MOSFET; Depletion and enhancement type NMOS and PMOS; biasing of FETs; Switching circuits using FETs; Mathematical analysis of BJT and MOSFET-based circuits; The course includes a compulsory 3-hour laboratory work each week.

C. Course Objective:

The objectives of this course are to:

- a. Introduce Electronic Devices such as Diodes and Transistors, and the semiconductor physics principles used to make them
- b. Introduce the Piece-Wise Linear modeling technique to analyze circuits with non-linear devices
- c. Show the application of diodes in constructing various circuits, such as rectifiers, regulators, etc.
- d. Show the application of transistors in building switching circuits and amplifiers with appropriate biasing methods.
- e. Introduce students to the Operational Amplifier, its application as a comparator, and also in different circuits to perform analog signal-processing tasks, such as Summing, Subtracting, Exponentiating, etc.
- f. Training students to prototype circuits in hardware and analyze their behavior

- g. Exposing students to Circuit simulation tools to aid them in analyzing circuit behavior before implementing them in real life.
- h. Guiding students to complete a project using transistors and Op-Amps to implement their knowledge of Non-linear devices.

D. Course Outcomes (COs):

Upon successful completion of this course, students will be able to

Sl.	CO Description	Weightage (%)
CO1	Understand and compare the characteristics and operation of electronic devices such as Diode, BJT, MOSFET, and Op-Amps.	10%
CO2	Analyze the behavior of electronic circuits consisting of different non-linear electronic devices such as Diodes, BJT, and MOSFETs using tools such as piece-wise linear modeling and the method of assumed states	25%
CO3	Design various electronic circuits for power-generation and analog signal-processing applications such as rectifiers, regulators, switching, analog-to-digital and digital-to-analog conversion, amplification, performing arithmetic operations on analog Signals, e.g, summing, subtracting, exponentiation, and generating voltage waveforms of different shapes.	35%
CO4	Demonstrate competence in using electronic laboratory equipment to build, test, and troubleshoot electronic circuits.	15%
CO5	Collaborate effectively in a group to design, build, and execute a project that demonstrates the application of electronic devices and circuits to a real-world problem.	10%

E. Mapping of CO-PO-Taxonomy Domain & Level- Delivery-Assessment Tool:

,	Sl.	CO Description	POs	Bloom's	Delivery	Assessment
				taxonomy	methods	tools
				domain/level	and activities	

CO1	Understand and compare the characteristics and operation of electronic devices such as Diode, BJT, MOSFET, and Op-Amps	PO1	Cognitive/An alyze, Understand	Lectures, Notes/Handout s, Simulation Demo	Quiz, Exam, Assignment
CO2	Analyze the behavior of electronic circuits consisting of different non-linear electronic devices i.e., Diodes, BJT, MOSFETs, using appropriate models and methods such as piece-wise linear models and Method of assumed states	PO2	Cognitive/An alyze, Apply	Lectures, Notes/Handout s, Simulation Demo	Quiz, Exam, Assignment
CO3	Design various electronic circuits for power-generation and analog signal-processing applications such as rectifiers, regulators with diodes, switching, and amplification using transistors, and perform arithmetic operations on Analog Signals, e.g, Summing, Subtracting, Exponentiation using Op-Amps.	PO3, PO5	Cognitive/Eva luate, Apply, Analyze	Lectures, Notes/Handout s, Simulation Demo	Quiz, Exam, Assignment
CO4	Demonstrate competence in using laboratory equipment to build, test, and troubleshoot electronic circuits	PO3, PO9	Cognitive/ Analyze, Apply, Psychomotor/ Precision, Manipulation	Lab Class	Lab Work, Lab Test
CO5	Collaborate effectively in a group to design, build, and execute an electronic project that demonstrates the application of electronic devices and circuits to a real-world problem.	PO3, PO9	Cognitive/Cre ate, Analyze, Apply, Psychomotor/ Precision, Manipulation	Lab Class	Lab Work, Q/A, Presentatio n

F. Course Materials:

i. Text and Reference Books:

Sl.	Title	Author(s)	Publication	Edition	Publisher	ISBN
			Year			
1	Foundations of	Anant Agarwal,	2005	1 st ed.	Morgan	978-1-55-860735-4
	Analog and	Jeffrey H. Lang			Kaufmann	
	Digital Electronic				Publishers	
	Circuits					
2	Microelectronic	Adel S. Sedra,	2015	7 th ed.	Oxford	978-0-19-933913-6
	Circuits	Kenneth C. Smith			University	
					Press	
3	The Art of	Paul Horowitz,	2016	3 rd ed.	Cambridge	978-0-521-80926-9
	Electronics	Winfield Hill			University	
					Press	
4	Operational	Robert F.	2001	6 th ed.	Prentice	978-0-130-14991-6
	Amplifiers and	Coughlin,			Hall	
	Linear Integrated	Frederick F.				
	Circuits	Driscoll				

ii. Other Materials (Video Lectures)

- a. CSE 251 Central Playlist YouTube
- b. CSE 251 Playlist by PDS YouTube

G. Lesson Plan:

Theory

No	Topic	Week/Lecture#	Related CO (if any)
1	History and Importance of Electronic Devices – Diodes, Electronic Switches, and Amplifiers, Transition from Mechanical Switches to Vacuum Tubes to Solid State Devices, Current State-of-the-Art in Electronics/Semiconductor Technology	Lecture-1	CO1
2	Alternative circuit representation; Review of KCL, KVL, Nodal analysis	Lecture-2	CO3
3	Introduction to Operational Amplifiers – Differential Amplifiers; Solving Op-Amp based circuits using KCL, KVL, and Nodal Analysis; Op-Amp Circuits in Open-Loop Configuration – Square Wave Generator, Characteristics of Infinite Gain.	Lecture-3	CO1, CO2
4	Op-Amp Circuits in Closed Loop Configuration - Controlling Gain through Negative Feedback, Virtual Ground Op-Amp Circuits in Closed Loop Configuration – Inverting Amplifier, Non-Inverting Amplifier,	Lecture-4	CO2,CO3

5	Op-Amp applications in Follower, Buffer, Inverting Weighted Summer, Noninverting amplifier, Weighted Subtractor, Differentiator, Integrator, and VTC Graphs of Comparator, Inverting Amplifier, and Non-inverting Amplifier. Optional: Noninverting summer, Exponential Converter,	Lecture-5	CO2,CO3
	Logarithmic Converter, Multiplier, Divider		
6	Introduction to I-V Characteristics. I-V Characteristics of: Simple Linear Elements – Resistors, Voltage Source, and Current Source; I-V Characteristics of: Degenerate Elements – Open-Circuit and Short-Circuit;	Lecture-6	CO2
7	Introduction to Diode; Shockley Diode Equation and Diode Logic Gates;	Lecture-7	CO1, CO3
8	CVD and CVD+r diode models; Solving Diode circuits with Method of Assumed States (M.A.S);	Lecture-8	CO2, CO3
9	Solving Diode Circuits;	Lecture-9	CO2
10	Problem-Solving Class	Lecture-10	CO1, CO2, CO3
11	Midterm Syllabus Review	Lecture-11	CO1, CO2, CO3
Mi	d-Term Exam		
12	Introduction to Rectifiers, Half-Wave Rectifiers and Transfer Characteristics, Full-Wave Rectifiers and Transfer Characteristics	Lecture-12	CO1, CO3
13	Rectifiers Revisited – Average Value of Output, Smoothing Capacitor, Peak-to-Peak Ripple, Ripple Factor	Lecture-13	CO2, CO3
14	Introduction to Electronic Switches, Basic Inverter, Introduction to Controlled Sources, Introduction to MOSFET, Designing Logic Gates with MOSFETs	Lecture-14	CO1,CO3
15	Constructing a *real* MOSFET – n/p-channel, enhancement/depletion-type MOSFETs. Operation of an Ideal FET- Cut-Off, Saturation and Triode Mode, Output Characteristics, PWL Model and Non-ideal Analysis, Static Analysis	Lecture-15	CO1
16	Different MOSFET circuit configurations	Lecture-16	CO2
17	Solving MOSFET Circuits using the Method of Assumed States,	Lecture-17	CO2
18	Introduction to BJT, Voltage-Current Conversion using Resistors, Constructing a *real* BJT – npn and pnp transistors, Ebers-Moll Equation, Current and Voltage controlled logic gates	Lecture-18	CO1
19	Operation of an Ideal BJT- Cut-Off, Active, and Saturation Mode, Ideal Output Characteristics, PWL Model & Non-ideal Analysis, Solving Transistor	Lecture-19	CO1,CO2

	Circuits using Method of Assumed States, Problem-Solving				
20	Different BJT circuit configurations, Problem Solving;	Lecture-20	CO2, CO3		
21	Final Exam Review Class	Lecture-21	CO1, CO2, CO3		
22	Final Exam Review Class	Lecture-22	CO1, CO2, CO3		
Fir	Final Exam				

G. Lab Experiments & Probable Timeline:

Lab Activity	Lab Title
Exp-01	Review of Lab Equipment
Exp-02	Study of Op-Amp: Comparator, Non-Inverting Amplifier, Inverting Amplifier, Inverting Summing Amplifier, Study of VTC of Op-Amp Comparator, Non-Inverting Amplifier & Inverting Amplifier
Exp-03	Study of I-V Characteristics of Diode and Equivalent CVD Model Verification
LAB TEST-1	Syllabus: Exp-1, Exp-2 & Exp-3
Exp-04	Study of Half-Wave and Full-Wave Rectifier
Exp-05	Study of I-V Characteristics of Transistors (MOSFET) and Implementation of Logic Functions
Exp-06	Study of I-V Characteristics of Transistors (BJT) and Implementation of Logic Functions
LAB TEST-2	Syllabus: Exp-4, Exp-5 & Exp-6

H. Assessment Tools:

i. Theory:

Assessment Tools	Weightage (%)
Attendance and Class Participation	5
Quiz	14
Assignment	6
Midterm Examination	25
Final Examination	25
Total	75%

ii. Lab:

Assessment Tools	Weightage (%)
Lab Attendance	2
Lab Performance	4
Hardware Lab Report	5
Hardware Lab Test 1	7

Hardware Lab Test 2	7
Total	25%

I. CO Assessment Plan:

Assessment Tools	Course Outcomes					
	CO1	CO2	CO3	CO4	CO5	CO6
Quiz	~	V	~			
Assignment	~	~	~			
Midterm Examination	~	~	~			
Lab Work				~		
Lab Report					~	
Hardware Lab Test				~		
Final Examination	~	~	~			

J. CO Attainment Policy:

As per the course outcome attainment policy of the Department of Computer Science and Engineering.

K. Grading Policy:

As per the grading policy of the Department of Computer Science and Engineering.

L. Course Coordinators:

- i. Purbayan Das (purbayan.das@bracu.ac.bd)
 Lecturer, Department of Computer Science and Engineering, BracU
- ii. Utsab Saha (utsab.saha@bracu.ac.bd)
 Lecturer, Department of Computer Science and Engineering, BracU
- iii. Md. Moynul Asik Moni(moynul.moni@bracu.ac.bd)
 Lecturer, Department of Computer Science and Engineering, BracU