Université Ibn Zohr

Ecole Supérieur de l'Education et de la Formation - Agadir

Année Universitaire 2019/2020 Semestre: 2

TD D'OPTIQUE GEOMETRIQUE

Filières: LEESM, LEESI Série N°: 3

EXERCICE 1:

Soit un dioptre sphérique de centre C et de sommet S séparant deux milieux d'indices respectives n₁ = 4/3 et $n_2 = 1$ de courbure $\overline{SC} = -3cm$ (**Figure 1**).

- 1. Quelle est sa concavité ? et sa convergence ?
- 2. Ecrire la relation de conjugaison relative à ce dioptre sphérique ?
- **3.** Déterminer ses distances focales :
 - **a.** Distance focale objet \overline{SF} ?
 - **b.** Distance focale image $\overline{SF'}$?
- **4.** Déterminer la vergence V?
- 5. Soit un objet AB perpendiculaire à l'axe optique en A à une distance de $\overline{SA} = -10cm$ et de hauteur $\overline{AB} = 2cm$
 - **a.** Déterminez la position de l'image $\overline{A'B'}$?
 - **b.** Déterminer le grandissement γ et la hauteur de l'image $\overline{A'B'}$
 - **c.** Quelle est la nature de l'image $\overline{A'B'}$?
 - **d.** Trouvez l'image $\overline{A'B'}$ de \overline{AB} par une construction géométrique ?
- **6.** Soit un objet AB perpendiculaire à l'axe optique en A à une distance de $\overline{SA} = 10cm$ et de hauteur $\overline{AB} = 2cm$
 - **a.** Déterminez la position de l'image $\overline{A'B'}$?
 - **b.** Déterminer le grandissement γ et la hauteur de l'image $\overline{A'B'}$
 - **c.** Quelle est la nature de l'image $\overline{A'B'}$?
 - **d.** Trouvez l'image $\overline{A'B'}$ de \overline{AB} par une construction géométrique ?

EXERCICE 2:

On considère un système optique formé d'un ensemble de trois dioptres D₁, D₂ et D₃ ayant le même axe optique (figure 2). On désigne par S_1 , S_2 et S_3 les sommets de ces dioptres. Le système se trouve dans un milieu d'indice **n**₁. D₂ est un dioptre sphérique dont le centre de courbure C est confondu avec S₃. Les dioptres D_1 et D_3 sont plans.

- 1. Représenter le trajet d'un rayon lumineux monochromatique parallèle à l'axe optique et traversant le système optique dans les deux cas suivants :
 - $n_3 > n_2 > n_1$
 - **b.** $n_2 > n_3 > n_1$
- 2. Soit le point A placé sur l'axe optique. Le but de cette question est de connaître la position de l'image de ce point au travers de cette Association de dioptres. A₁, A₂, A' sont respectivement les images de A relatives au dioptre D_1 , D_1+D_2 , $D_1+D_2+D_3$.
 - a. Ecrire la relation de conjugaison relative au dioptre D₁ et exprimer la position de l'image A₁ au travers de celui-ci?
 - **b.** Ecrire la relation de conjugaison relative au dioptre D_2 ?
 - c. Ecrire la relation de de conjugaison relative au dioptre D₃ et exprimer la position de l'image A' $(\overline{S_3A'})$ en fonction de $A_2(\overline{S_3A_2})$ au travers de celui-ci?
 - **d.** Montre que la position de l'image $A'(\overline{S_3A'})$ est déterminée par l'équation :

$$\overline{S_3 A'} = \frac{n_1}{n_3} \overline{S_3 S_2} + n_1 \left[\frac{n_3 - n_2}{\overline{S_2 C_2}} + \frac{n_2 n_1}{n_1 \overline{S_2 S_1} + n_2 \overline{S_1 A}} \right]^{-1}$$

- 3. On se place dans le cas où $\mathbf{n}_3 = \mathbf{n}_2 = \mathbf{n}$ et $\mathbf{n}_1 = \mathbf{1}$ (air) et $\overline{S_1 S_3} = \mathbf{n}_1 = \mathbf{n}_2 = \mathbf{n}_3 = \mathbf{n}$
 - a. Tracer le trajet d'un rayon lumineux monochromatique issu de A traversant le système optique et ayant une inclinaison $\alpha = 30^{\circ}$ c par rapport à l'axe optique ?
 - **b.** Quel est l'angle formé entre le rayon émergeant de D₃ et l'axe optique ?
 - **c.** Exprimer $\overline{S_3A'}$ en fonction de $\overline{S_1A}$, e et n?
 - **d.** En déduire la distance $\overline{AA'}$ en fonction de e et n ?
 - e. Quelle est la nature de l'image A' de l'objet A?
 - **f.** Application numérique : n = 4/3 et e = 4 cm.

EXERCICE 3:

On considère un système optique centré (S) formé de deux dioptres sphériques séparés par un milieu d'indice n = 3/2, d'épaisseur et placé dans l'air d'indice 1. On posera:

$$R = \overline{S_1 C_1} = \overline{S_1 S_2} = e = \frac{\overline{S_1 C_2}}{2}$$

Soit (AB) un objet et (A'B') son image à travers le système. On notera (A₁B₁) l'image intermédiaire.

Pr. OUACHA

- 1. Ecrire les formules de conjugaison de position et de grandissement du 1^{er} dioptre D₁ (S₁, C₁) avec origine au centre pour le couple de points (A, A1).
- En déduire ses foyers objet F_1 et image F_1' et ses distances focales objet f_1 et image f_1'
- Ecrire les formules de conjugaison de position et de grandissement du 2^{ème} dioptre D₂ (S₂, C₂) avec origine au sommet pour le couple de points (A_1, A') .
- **4.** En déduire ses foyers objet F_2 et image F_2 et ses distances focales objet f_2 et image f_2
- 5. Montrer que les formules de conjugaison de position et de grandissement du

système (S) s'écrivent :
$$\frac{1}{\overline{S_2A'}} - \frac{n^2}{\overline{S_2A}} = \frac{(n-1)(2n-1)}{2R} \qquad et \qquad \gamma = n \frac{\overline{S_2A'}}{\overline{S_2A}}$$
6. Trouver la position, par rapport à S₂ des foyers objet F et image F' du système ?

- 7. Calculer la position du centre optique O du système ?
- 8. Calculer la position des points principaux H et H' du système ?
- Déduire les distances focales objet f et image f ' du système, donner sa nature ?