Time mapping system

A research on building map system with additional time dimension

Viet Vu

UET, VNU

May 21, 2015

Supervisor: Assoc. Prof. Nguyen Viet Ha

Outline

- Introduction
- 2 Approach
- 3 Experiments
- 4 Conclusions

Introduction

- Understanding History is difficult
 - Hard to image
 - Missing
- History are featured by events
 - What, when, where it happened?
 - These events are related
 - ► To understand, need to consider the connections
- The data changes
 - New data is found
 - To make a conclusion: Need to review the new events set

Figure: August revolution events relationships

Overview

- Need a method to modeling data
 - Data is featured by: Location, time
 - There are relationships between data
- Mechanism to visualizing data for better understanding
 - Show changes of data through time
 - Show relationships of event on the map
- Purpose of the thesis is to build
 - Method to model map with time data
 - Propose mechanism to visualize these data
 - Implement a framework for building map system on top of it

Data model

- Events are related to each other
 - It is appropriate to use graph to model these data
 - ► Reasonable, easy to image
- Events and relationships are modeled by a directed graph
- Events are nodes
- Relationships are edges

Graph

Field name	Meaning
id	id of the node
name	name of the event
lon	longitude
lat	latitude
time	time when event
	happened
description	description of the
	event
keywords	keywords featured
	the event

Field name	Meaning
id	id of the relationship
type	type of relationship
name	name of the event
from	id of start node
to	id of end node

Table: Attributes of egdes

Table: Attributes of nodes

Types of relationships

- Connected events
- Are edges in graph. Divided in 2 groups
- Change attribute relationship: Node's attribute are different
 - CHANGE_LOCATION
 - ► CHANGE_NAME
- Connecting relationship
 - ► CHILD

VNU timeline

A sample of modeled data on VNU and its member, on a timeline.

Figure: Timeline of VNU and its members

Definitions

- **Object:** set of nodes: connected to each other, have different attributes, and describe the same thing.
- Current time: with given time t, current_time greatest value of attribute time in all nodes of an object o, and time ≤ t.
- Window_time: Define the range of current_time. The size of window_time is window_size.
- Current state: Set of nodes represents for objects in database, at current_time, with window_time.

Figure: window_time with current_time and window_size

Queries sets

Set of queries performed on database

- Query current view: Get nodes corresponding to window_time of the database.
- Query object: Get nodes represent an object.
- Query related object: Get related nodes to given node.

Visualizing mechanisms

- Purpose
 - visualize modeled data for better understanding
 - show changes of data corresponding to time on the view
- Map each node to a marker on the map
- Change view on map based on current time

Figure: Node view on map as layer

Visualizing mechanism

- Change current view based on time
 - Query new current state, redraw
- View timeline of a object
 - View the change of specific location through time.
- View related object
 - View the related nodes on view.

System architecture

Figure: System architecture

Expriments specifications

- Implemented
 - Data model on graph database
 - Client run on web browser
- Demo data
 - 20 events of VNU and its members since 1906
 - 26 relationships between events

Name	Details
Client	Laptop HP 4530s on Windows 8.1. CPU:
	2x2.3GHz. Memory: 4GB.
Webserver	Apache 2
Tools & verions	Openlayers 3.0; Neo4j 2.1.6; JQuery 1.11
Network	Local area network

Table: Experiments environment

Table: System specification

Database view

Client view

Figure: Data in graph DB

16 / 19

Viet Vu (UET, VNU) Time mapping system May 21, 2015

Conclusions

Achievements

- Proposed method for modeling map data with time information using Graph theory
- Proposed mechanisms for visualizing the data, user interaction
- Implementation experiments using Graph Database and Web technology
 - ▶ The system showed the feasibility of the approach

Drawbacks

- Data size is too small
- Too few relationships between events
- Only working with point data, haven't considered regional data

Future work

The work in this thesis can be improved in the future:

- Work on a larger data set
- Work on regional data, not just point
- Refine data model
 - Provide more relationships between events
 - Add weight for relationships for path selection
 - Method to determine type of relationships and weight automatically

Thank you for your attention

Get current node algorithm

```
Algorithm 1 Get current nodes procedure

function GET_CURRENT_NODES(nodes, time, window)

if exist c_n nodes in nodes and node.time in [t-s,t+s] then

return c_n nodes

else

return node with greatest node.time in nodes

end if

end function
```

Figure: Get current nodes

Get current state algorithm

```
Algorithm 2 Query current state with current time, windo time
  function QUERY_TIME(t, s)
     results := []
     fetch nodes in database
     while empty not nodes do
        fetch first node in nodes
        get object\_nodes of node, same object in nodes
        remove object nodes from nodes
        object \ nodes = get \ current \ nodes(object \ nodes, t, s)
        results := results + object nodes
     end while
     return results
  end function
```

Figure: Get current state

View timeline

Figure: View timelime