Intro to Geometry Processing

Announcements

Assignment 8 due last night. Last one! Good job!

Tutorial on Friday for bonus homework assignment stuff and/or questions about theory for exam prep

Bonus assignment due Sunday 16 August

Final exam Saturday 22 August at 9pm (according to vote)

Course Evaluations

Computational Fabrication

Today:

General Overview

Geometry Processing course assignments

Reconstruction

Registration

Smoothing

Deformation

Parameterization

Any Questions?

birth

e.g., scan of a physical object or modeling in Maya

Search the Site...

Symposium on Geometry Processing 2020

In practice

Traditionally we think of the geometry processing *pipeline*...

In practice

... in the wild this pipeline is leaky

Good enough for visualization does not imply good enough for admit geometric computation

Isolating subproblems from full pipeline can make robustness harder

Isolating subproblems from full pipeline can make robustness harder

Solve heat equation on this microscope modeled as union of 24 overlapping parts

Isolating subproblems from full pipeline can make robustness harder

Solve heat equation on this microscope modeled as union of 24 overlapping parts

Isolating subproblems from full pipeline can make robustness harder

Novel Boolean algorithm accepts all piecewise-constant winding number meshes

Validate in the wild on 10,000 models

mesh entire convex hull conform to surface up to small *epsilon* extract interior via generalized winding number

Course Structure (at least when I took it)

Lectures on math and algorithms – on the board

- Mostly discuss first the problem in the continuous setting (energies, operators)
- Then sometimes move onto the discrete analog (matrices, usually sparse)
- Read papers + README to implement assignments
- PDEs experience is "not required" but very useful

7 assignments
Course project
Course participation – contribute to the geometry
processing Wikipedia article

Course Structure (at least when I took it)

Lectures on math and algorithms – on the board

- Mostly discuss first the problem in the continuous setting (energies, operators)
- Then sometimes move onto the discrete analog (matrices, usually sparse)
- Read papers + README to implement assignments
- PDEs experience is "not required" but very useful

7 assignments
Course project
Course participation – contribute to the geometry
processing Wikipedia article

Fundamentals

Fundamentals

Fundamentals

Assignments

Reconstruction

Given a point cloud (this type of data can come from 3D scanning

Make an "explicit surface representation" (mesh)

Poisson surface reconstruction http://hhoppe.com/poissonrecon.pdf

Registration

Align one surface with another

Compute Hausdorff distance – a scalar that measures how poorly the surfaces are matched

Each iteration estimate R and T that will align each point to its match

Iterative closest point method https://en.wikipedia.org/wiki/Iterative closest point

Align o

Compu measu

Each it point to

Iterativ https://

Smoothing

Given noisy data (signal) on a surface

Denoise

Surface fairing

Smoothing using the Laplacian http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf

Smoothing

Deformation

Given a mesh, place "handles"

When a handle is moved, deform the mesh

ARAP (As rigid as possible)

Alternate between finding optimal rotations and optimal vertex positions http://sites.fas.harvard.edu/~cs277/papers/sorkine

asrigid.pdf

Parameterization

How do you flatten a shape?

Called parameterization because 2D coordinate system can be interpreted as a parameterization of the 3D surface

What does this remind you of? https://dl.acm.org/doi/10.1145/566654.566590

Local info about a shape

Compute difference curvature quantities

Useful for define energies salient points provide constraints for remeshing

https://en.wikipedia.org/wiki/Curvature#Precise_definition

Done for Today