Introduction to Action Principle

and its applications

1D Lagrangian & Hamiltonian Recap

- Let M be a manifold with metric g.
- The 1D time-dependent Lagrangian is a smooth function:

$$\mathscr{L}: \mathbb{R} \times TM \to \mathbb{R}$$

• And, the 1D time-dependent Hamiltonian is a smooth function:

$$\mathcal{H}: \mathbb{R} \times T^*M \to \mathbb{R}$$

A classical example of above Lagrangian:

$$\mathscr{L}(t,x,v) = \frac{1}{2}g_x(v,v) - V(t,x)$$

Generalized Lagrangian

• Let M, N be two manifolds of dimension m, n respectively. We denote the configuration space as:

$$C = M \times N$$

• and, the space of canonical velocity as:

$$V = \bigcup_{(x,q)\in C} L(T_xM, T_qN), \quad (\dim(V) = m + n + mn)$$

Bundle Structure Recap

- A C^{∞} fiber bundle is the structure that consists of:
 - three C^{∞} manifolds
 - *E*, called the *total* space of the bundle
 - *M*, called the base space of the bundle
 - F, called the standard fiber of the bundle
 - a surjective C^{∞} map $\pi: E \to M$, called the projection
 - an open covering $\mathcal U$ of M, and for each $U \in \mathcal U$ a C^∞ map $\varphi: \pi^{-1}U \to F$ such that the map $(\pi,\varphi): \pi^{-1}U \to U \times F$ is a diffeomorphism; the map (π,φ) is called a *bundle chart* on E over U.
- A differentiable section $\sigma: M \to E$ of the bundle satisfies that $\pi \circ \sigma = \mathrm{Id}$.

Bundle Structure Recap Continued

• Let $h: N \to M$ be a C^∞ map. The pullback of a bundle $F \to E \overset{\pi}{\to} M$ is:

$$h^*E = \{(p,\xi) \in N \times E \mid h(p) = \pi(\xi)\} = \bigcup_{p \in M} \{p\} \times \pi^{-1}(h(p))$$

• A classical example of the pullback function is $h=\pi_{A,B}$, which is projection function from A to B.

Generalized Lagrangian Picture

- Lets denote $\wedge_k M = \bigcup_{x \in M} \wedge_k (T_x M)$, where \wedge_k is the space of totally antisymmetric k-linear forms on $T_x M$.
- We define the Lagrangian $\mathcal L$ as a differentiable section of the pullback bundle:

$$\pi_{V,M}^* \wedge_m M$$

Generalized Lagrangian Picture Continued

• We define the Lagrangian $\mathcal L$ as a differentiable section of the pullback bundle:

$$\pi_{V,M}^* \wedge_m M = \bigcup_{v \in V} \{v\} \times \pi_{\wedge_m M,M}^{-1}(\pi_{V,M}(v))$$

• And, with $u:M\to N$, we see that $du|_{\chi}:T_\chi M\to T_{u(\chi)}N$. So $du(\chi)$ is a section of $(V,\pi_{V,M})$.

Generalized Action

- . Now, we have: $du(x):M\to V, \mathscr{L}:V\to \pi_{V,M}^*\wedge_m M$
- With \mathcal{L} and du(x) in mind, we could define the action of u as:

$$\mathscr{A}_{\mathscr{L}}[u;D] = \int_{D} \mathscr{L} \circ du$$

• where D is any open sets with compact closure in M.

A Little More Concrete Example of Action

• Consider Φ be a section of the bundle $\wedge_m M \overset{\pi_{\wedge_m M,M}}{\to} M$. And, let $u: \mathbb{R}^m \to M$ be a smooth map. Then, we can define the action:

$$\mathscr{A}_{\mathscr{L}}[u;D] = \int_{D} \Phi_{u(x)}(\frac{\partial u}{\partial x^{1}}(x), \cdots, \frac{\partial u}{\partial x^{m}}(x))) dx^{1} \wedge \cdots \wedge dx^{n}$$

• We see that our previous example is also an example of above Φ with minor modification:

$$\Phi(p)v = \frac{1}{2}g_p(v, v) - V(p)$$

Euler-Lagrange Equations

The simple Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}}{\partial q^i}(t, q(t), \dot{q}(t)) - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}^i}(t, q(t), \dot{q}(t)) = 0$$

The generalized Euler-Lagrange equation:

$$\frac{\partial \mathcal{L}}{\partial q^k}(v) - \frac{\partial}{\partial x^l} \frac{\partial \mathcal{L}}{\partial v_l^k}(v) = 0$$

Canonical Momentum

• We define the C-vertical derivative of $\mathscr L$ at v_0 , where $\pi_{V,C}(v_0)=(x,q)$, to be:

$$\frac{\partial \mathcal{L}}{\partial v}(v_0)v_1 = \lim_{t \to 0} \frac{\mathcal{L}(v_0 + tv_1) - \mathcal{L}(v_0)}{t}$$

- for $v_1 \in \pi_{V,C}^{-1}(x,q) = L(T_x M, T_q N)$.
- If we consider the restriction $\mathscr{L}: L(T_{\chi}M, T_qN) \mapsto \bigwedge_m (T_{\chi}M)$, then:

$$\frac{\partial \mathcal{L}}{\partial v}(v_0) \in L(L(T_xM, T_qN), \wedge_m (T_xM))$$

Canonical Momentum Continued

• If we consider the restriction $\mathscr{L}: L(T_xM, T_qN) \mapsto \wedge_m(T_xM)$, then:

$$\frac{\partial \mathcal{L}}{\partial v}(v_0) \in L(L(T_x M, T_q N), \wedge_m (T_x M))$$

• We show that $L(T_qN, \wedge_{m-1}M) \cong L(L(T_xM, T_qN), \wedge_m M)$ by the isomorphism:

$$(i\alpha)v_1(X_1,\cdots,X_m) = \sum_{i=1}^m (-1)^{i-1}\alpha(\dot{v}(X_i))(X_1,\cdots,\langle X_i\rangle,\cdots X_m), \quad \forall, X_1,\cdots,X_m \in T_xM$$

• where $\alpha \in L(T_qN, \wedge_{m-1}M), v_1 \in L(T_xM, T_qN)$.

Canonical Momentum Continued

. So, we have now recognize our $\frac{\partial \mathcal{L}}{\partial v}$ as element of $L(T_qN, \wedge_{m-1}M) \cong L(L(T_xM, T_qN), \wedge_m M)$. We make one final simplification by denoting:

$$\wedge_{k,l}(M,N) = \bigcup_{(x,q)\in C} L(\wedge^k(T_xM), \wedge_l(T_qN)) = \bigcup_{(x,q)\in C} L(\wedge^l(T_qN), \wedge_k(T_xM))$$

• where $\wedge^k(V)$ is the totally antisymmetric k-fold tensor product of V with itself.

• Therefore, we finally have identified $\frac{\partial \mathcal{L}}{\partial v}$ to be a section of $\pi_{V,C}^* \wedge_{m-1,1} (M,N)$. And, we define the **canonical momentum** to be the section:

$$p = \frac{\partial \mathcal{L}}{\partial v}$$

Euler-Lagrange Equations

• The generalized Euler-Lagrange equation:

$$\frac{\partial \mathcal{L}}{\partial q^k}(v) - \frac{\partial}{\partial x^l} \frac{\partial \mathcal{L}}{\partial v_l^k}(v) = 0$$

Canonical Force

• We want to define a N-horizontal derivative of \mathscr{L} . This requires a choice of connection A on TN with associated covariant derivative D. Let also assume it to be symmetric:

$$D_{Y}Z - D_{Z}Y = [Y, Z]$$

- for Y, Z are vectors fields on N.
- Now, consider a curve $\gamma:(-1,1)\to N$ through q by $\gamma(0)=q$ with tangent vector $\dot{\gamma}(0)=Q$. We can define a curve $\gamma_{TN}^{\#Q'}(-1,1)\to TN$ where $\gamma_{TN}^{\#Q'}(0)=Q'\in T_qN$. such that:

$$\pi_{TN,N} \circ \gamma_{TN}^{\#Q'} = \gamma$$

• This is called the horizontal lift of γ to TN through Q'. And, the tangent vector $\gamma_{TN}^{\dot{\dagger}Q'}(0)$ is called the horizontal lift to TN through Q' of the vector $Q \in T_qN$, and it is denoted by $Q_{TN}^{\#Q'}$

Canonical Force Continued

- Again, let $\gamma:(-1,1)\to N$ be a curve in N through $q=\gamma(0)$ with $Q=\dot{\gamma}(0)$. We now define a lift to V.
- We can define a curve $\gamma_V^{\#\nu}: (-1,1) \to V$ through $\nu = \gamma_V^{\#\nu}(0)$ by requiring that:
 - $\bullet \quad \pi_{V,N} \circ \gamma_V^{\#_V} = \gamma$
 - For some fixed $\pi_{V,M}(v)=x\in M$, we have $\pi_{V,M}\circ\gamma_V^{\#v}=x$
 - For each $X \in T_x M$, we must have: $\gamma_V^{\#_V} \cdot X = \gamma_{TN}^{\#_{V} \cdot X}$
- With these tools, we define the N-horizontal derivative of $\mathscr L$ at v relative to the connection A be the element

$$D\mathcal{L}(v) \in L(T_qN, \wedge_m(T_xM)) \text{ where } (x,q) = \pi_{V,C}(v)$$

$$D\mathcal{L}(v) \cdot Q = \frac{d}{dt} \big|_{t=0} \mathcal{L}(\gamma_V^{\#v}(t)), \forall Q \in T_q N$$

• where γ is any curve in N through q with $\dot{\gamma}(0) = Q$.

Canonical Force Continued

• With these tools, we define the N-horizontal derivative of $\mathscr L$ at v relative to the connection A be the element

$$D\mathcal{L}(v) \in L(T_qN, \wedge_m(T_xM))$$
 where $(x, q) = \pi_{V,C}(v)$

$$D\mathcal{L}(v) \cdot Q = \frac{d}{dt} \big|_{t=0} \mathcal{L}(\gamma_V^{\#v}(t)), \forall Q \in T_q N$$

- where γ is any curve in N through q with $\dot{\gamma}(0) = Q$.
- We see from above that $DL(v) \in \wedge_{m,1}(M,N)$, and DL is a differential section of the bundle $\pi_{V,C}^* \wedge_{m,1}(M,N)$. And, we define the canonical force f to be the section:

$$f = DL$$

Application of Generalized Euler-Lagrange Equations

- Harmonic Functions
 - Lets take our manifold $M = \mathbb{R}^m, N = \mathbb{R}$, and we define

$$\mathcal{L}(\mathbf{x},q,v_1,\cdots,v_m)(X^1,\cdots,X^m)\cdots = \frac{1}{2}\sum_{i=1}^m v_i^2\omega(X^i,\cdots,X^m)$$

- where ω is the volume form.
- Then, the action is:

$$\mathscr{A}_{\mathscr{L}}[u;D] = \int_{D} \mathscr{L}(\mathbf{x}, u(\mathbf{x}), du(\mathbf{x})) = \frac{1}{2} \int_{D} \sum_{i=1}^{m} \left(\frac{\partial u}{\partial \mathbf{x}^{i}}\right)^{2} d\mathbf{x} = \frac{1}{2} \int_{D} ||\nabla u||^{2} d\mathbf{x}$$

Application of Generalized Euler-Lagrange Equations

- Harmonic Functions
 - Then, the action is:

$$\mathscr{A}_{\mathscr{Z}}[u;D] = \int_{D} \mathscr{L}(\mathbf{x}, u(\mathbf{x}), du(\mathbf{x})) = \frac{1}{2} \int_{D} \sum_{i=1}^{m} \left(\frac{\partial u}{\partial \mathbf{x}^{i}}\right)^{2} d\mathbf{x} = \frac{1}{2} \int_{D} \left|\left|\nabla u\right|\right|^{2} d\mathbf{x}$$

• We find that our ${\mathscr L}$ does not change with respect to x and we obtain the relations:

$$\frac{\partial \mathcal{L}}{\partial x}(x, u(x), v_1, \dots, v_m) = 0, \quad \frac{\partial \mathcal{L}}{\partial v_i}(x, u(x), v_1, \dots, v_m) = v_i$$

• Then, our function u satisfies the Euler-Lagrangian equation only when:

$$0 = \frac{\partial}{\partial x^l} \frac{\partial \mathcal{L}}{\partial v_l}(\mathbf{x}, u(\mathbf{x}), v_1, \dots, v_m) - \frac{\partial \mathcal{L}}{\partial u}(\mathbf{x}, u(\mathbf{x}), v_1, \dots, v_m) = \sum_{i=1}^m \frac{\partial^2 u}{(\partial x^i)^2}(\mathbf{x}) = \Delta u(\mathbf{x})$$

Background for Noether's Theorem

- Lets take a even more simplified setting:
 - Recap: $\mathcal{L}(v) \in \wedge_m (T_x M), \pi_{V,M}(v) = x$
 - We have seen that we could define something simple of the form:
 - $\mathscr{L}(v) = \mathscr{L}^*(v)\omega$
 - for $v \in V$ and $\mathcal{L}^* : V \to \mathbb{R}$.
 - Let us focus on the simplified \mathcal{L}^* only.
 - We will then assume our $M = \mathbb{R}^m$ for the rest of the discussion.
 - We will also assume that L^* only depends on q, φ for $v = (x, q, \varphi)$ with $x \in M, q \in N, \varphi \in L(T_xM, T_qN)$. Essentially, this means that $\mathcal{L}^* : TQ^{\oplus m} \to \mathbb{R}$ where $TQ^{\oplus m}$ will contain elements of form (q, v_1^1, \dots, v_m^n) .

Background for Noether's Theorem Continued

- We define the followings:
 - The l-th partial fiber derivative of \mathscr{L}^* is the map $(\mathbb{F}\mathscr{L}^*)^l:TN^{\oplus m}\to T^*N$ given by:

$$(\mathbb{F}\mathcal{Z}^*)^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m)\mathbf{w} = \frac{d}{dt} |_{t=0} \mathcal{Z}^*(q, \mathbf{v}_1, \dots, \mathbf{v}_l + t\mathbf{w}, \dots, \mathbf{v}_m)$$

• The total fiber derivative of \mathscr{L}^* is the map $\mathbb{F}\mathscr{L}^*:TN^{\oplus m}\to T^*N^{\oplus m}$ given by:

$$(\mathbb{F}\mathscr{L}^*)^l(q,\mathbf{v}_1,\cdots,\mathbf{v}_m)(\mathbf{w}_1,\cdots,\mathbf{w}_m) = (\mathbb{F}\mathscr{L}^*)^l(q,\mathbf{v}_1,\cdots,\mathbf{v}_m)\mathbf{w}_l$$

• We say that \mathcal{L}^* is regular if $\mathbb{F}\mathcal{L}^*$ is a local diffeomorphism, and it is called hyperregular if $\mathbb{F}\mathcal{L}^*$ is a global diffeomorphism.

Noether's Theorem

• **Theorem** (Noether): Let $\mathscr{L}^*: TN^{\oplus m} \to \mathbb{R}$ be a Lagrangian, and $(\varphi_s)_{s \in \mathbb{R}}$ is a 1-parameter group of diffeomorphisms of N that leaves \mathscr{L}^* invariant. Then, the Noether current $\mathscr{J} = (\mathscr{J}^1, \cdots, \mathscr{J}^m) : TN^{\oplus m} \to \mathbb{R}^m$ given by:

$$\mathcal{J}^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m) = (\mathbb{F}\mathcal{L}^*)^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m)(\frac{d}{ds}|_{s=0}\varphi_s(x))$$

• have zero divergence along the function $u:D\to N$, where $D\subset M=\mathbb{R}^m$, when u satisfies the Euler-Lagrange equation.

Proof of Noether's Theorem

- **Theorem** (Noether): Let $\mathscr{L}^*: TN^{\oplus m} \to \mathbb{R}$ be a Lagrangian, and $(\varphi_s)_{s \in \mathbb{R}}$ is a 1-parameter group of diffeomorphisms of N that leaves \mathscr{L}^* invariant. Then, the Noether current $\mathscr{J} = (\mathscr{J}^1, \cdots, \mathscr{J}^m) : TN^{\oplus m} \to \mathbb{R}$ given by:
- $\mathcal{J}^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m) = (\mathbb{F}\mathcal{L}^*)^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m)(\frac{d}{ds}|_{s=0}\varphi_s(x))$
- have zero divergence along the function $u:D\to N$, where $D\subset M=\mathbb{R}^m$, when u satisfies the Euler-Lagrange equation.
- Let $u_s=\varphi_s\circ u$. By invariance, we must have all u_s satisfy the Euler-Lagrange equation. And, we must have:

$$\frac{\partial u_s}{\partial x^l}(x) = d(\varphi_s)_{u(x)}(\frac{\partial u}{\partial x^l}(x))$$

- Writing above in coordinate form, we have:
- $(u_s(x), \nabla u_s(x)) = (q^1(s, x), \dots, q^n(s, x), v_1^1(s, x), \dots, v_m^n(s, x))$
- And, the condition of invariance is simply:

$$\mathscr{L}^*(u_{\scriptscriptstyle S}(x),\nabla u_{\scriptscriptstyle S}(x))=\mathscr{L}^*(u(x),\nabla u(x))$$

Proof of Noether's Theorem

- **Theorem** (Noether): Let $\mathscr{L}^*: TN^{\oplus m} \to \mathbb{R}$ be a Lagrangian, and $(\varphi_s)_{s \in \mathbb{R}}$ is a 1-parameter group of diffeomorphisms of N that leaves \mathscr{L}^* invariant. Then, the Noether current $\mathscr{J} = (\mathscr{J}^1, \cdots, \mathscr{J}^m): TN^{\oplus m} \to \mathbb{R}$ given by:
- $\mathcal{J}^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m) = (\mathbb{F}\mathcal{L}^*)^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m)(\frac{d}{ds}|_{s=0}\varphi_s(x))$
- have zero divergence along the function $u:D\to N$, where $D\subset M=\mathbb{R}^m$, when u satisfies the Euler-Lagrange equation.
- And, the condition of invariance is simply:
- $\mathscr{L}^*(u_{\scriptscriptstyle S}(x),\nabla u_{\scriptscriptstyle S}(x))=\mathscr{L}^*(u(x),\nabla u(x))$
- We take derivative against *s* on both side, and we find:

$$0 = \sum_{k=1}^{n} \frac{\partial \mathcal{L}^{*}}{\partial q^{k}} (u_{s}(x), \nabla u_{s}(x)) \frac{\partial q^{k}}{\partial s} (s, x) + \sum_{l=1}^{m} \sum_{k=1}^{n} \frac{\partial \mathcal{L}^{*}}{\partial v_{l}^{k}} (u_{s}(x), \nabla u_{s}(x)) \frac{\partial u_{l}^{k}}{\partial s} (s, x)$$

$$= \sum_{k=1}^{m} \sum_{l=1}^{n} \frac{\partial}{\partial x^{l}} \left(\frac{\partial \mathcal{L}^{*}}{\partial v_{l}^{k}} (u_{s}(x), \nabla u_{s}(x)) \right) \frac{\partial q^{k}}{\partial s} (s, x) + \sum_{l=1}^{m} \sum_{k=1}^{n} \frac{\partial \mathcal{L}^{*}}{\partial v_{l}^{k}} (u_{s}(x), \nabla u_{s}(x)) \frac{\partial}{\partial x^{l}} (\frac{\partial q^{k}}{\partial s} (s, x))$$

$$= \sum_{l=1}^{m} \frac{\partial}{\partial x^{l}} \left(\sum_{k=1}^{n} \frac{\partial \mathcal{L}^{*}}{\partial v_{l}^{k}} (u_{s}(x), \nabla u_{s}(x)) \frac{\partial q^{k}}{\partial s} (s, x) \right)$$

Proof of Noether's Theorem

- **Theorem** (Noether): Let $\mathscr{L}^*: TN^{\oplus m} \to \mathbb{R}$ be a Lagrangian, and $(\varphi_s)_{s \in \mathbb{R}}$ is a 1-parameter group of diffeomorphisms of N that leaves \mathscr{L}^* invariant. Then, the Noether current $\mathscr{J} = (\mathscr{J}^1, \cdots, \mathscr{J}^m): TN^{\oplus m} \to \mathbb{R}$ given by:
- $\mathcal{J}^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m) = (\mathbb{F}\mathcal{L}^*)^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m)(\frac{d}{ds}|_{s=0}\varphi_s(x))$
- have zero divergence along the function $u:D\to N$, where $D\subset M=\mathbb{R}^m$, when u satisfies the Euler-Lagrange equation.
- We have

$$\sum_{l=1}^{m} \frac{\partial}{\partial x^{l}} \left(\sum_{k=1}^{n} \frac{\partial \mathcal{L}^{*}}{\partial v_{l}^{k}} (u_{s}(x), \nabla u_{s}(x)) \frac{\partial q^{k}}{\partial s} (s, x) \right) = 0$$

Recall that:

$$(\mathbb{F}\mathcal{L}^*)^l(q, \mathbf{v}_1, \dots, \mathbf{v}_m)\mathbf{w} = \frac{d}{dt} \big|_{t=0} \mathcal{L}^*(q, \mathbf{v}_1, \dots, \mathbf{v}_l + t\mathbf{w}, \dots, \mathbf{v}_m)$$

• Hence, if we set s=0, we already see that our theorem is proved.

Application of Noether's Theorem

Harmonic Functions

- Again, lets visit our previous example $\mathscr{L}^*: \mathbb{R}^{\oplus m} \to \mathbb{R}$ (where $N = \mathbb{R} \implies TN \cong \mathbb{R}$) with $\mathscr{L}^*(u, v_1, \dots, v_m) = \frac{1}{2} \sum_{i=1}^m (v_i)^2$.
- We see that the 1-parameter group of translation $\tau_s:\mathbb{R}\to\mathbb{R}$ with $\tau_s(x)=x+s$ leaves the Lagrangian invariant.
- Moreover, using our previous definition, it is easy to see that:

$$\begin{split} \mathcal{J}(u,v_1,\cdots,v_m) \\ &= (\mathcal{J}^1,\cdots,\mathcal{J}^l)(u,v_1,\cdots,v_m) \\ &= ((\mathbb{F}\mathcal{L}^*)^1(u,v_1,\cdots,v_m),\cdots,(\mathbb{F}\mathcal{L}^*)(u,v_1,\cdots,v_m)) \\ &= (v_1,\cdots,v_m) \end{split}$$

• So, this implies that $\mathcal{J}(u(x), \nabla u(x)) = \nabla u(x)$. By Noether's Theorem, it has zero divergence, which means

$$\nabla \cdot \nabla u(x) = \Delta u(x) = 0$$

Reference

Christodoulou, D. (2000). The action principle and partial differential equations. Princeton University Press.

Christodoulou, D. (2008). *Mathematical problems of general relativity I*. European Mathematical Society Publishing House.

Poor, W. A. (1981). Differential geometric structures. McGraw-Hill.

Terek, I. (n.d.). Introductory Variational Calculus on Manifolds.

Thank You!