MEMS1045 Automatic control

Lecture 4
Block diagrams

Objectives

- Represent the equations of motion in block diagram
- Reduce a block diagram to the transfer function

Block diagrams

- ❖ A complicated system can consist of many components (or subsystems)
- ❖ Each component can be represented by a transfer function with its input and output
- We can treat each component as a block and connect them to form the system
- ❖ The block diagram, which shows the interconnection of blocks, can then be used to graphically represent the mathematical relationship between variables in a system

Block diagram elements

Block diagram elements

System or component

$$\begin{array}{c}
R(s) \\
\hline
C(s) \\
\hline
C(s) \\
\hline
R(s)
\end{array}$$

- ❖ When G(s) = K = constantIt is called a "Gain"
- ❖ When G(s) = 1/sIt is called an integrator

Blocks in series:

Parallel form:

Blocks in feedback loop (basis of feedback control):

Closed-loop transfer function

Terminology:

Open-loop transfer function:
$$\frac{B(s)}{E(s)} = G(s)H(s)$$

Feedforward transfer function:
$$\frac{C(s)}{E(s)} = G(s)$$

Rearranging blocks after summer to before summer:

Rearranging blocks before summer to after summer:

Rearranging blocks around pickoff points:

Putting it together

Putting it together

Reduce the block diagram shown to a single transfer function

$$d = a + b - c$$

$$d = a - c + b$$

$$\frac{C(s)}{R(s)} = \frac{\frac{G_1 G_2}{1 - G_1 H_1 + G_2 H_2}}{1 + \frac{G_1 G_2}{1 - G_1 H_1 + G_2 H_2}} (1)$$

Reduce the block diagram shown to two transfer functions. Determine the state space representation for the system

Example 2a

Example 2b

Example 2b

$$\frac{X(s)}{G(s)} = \frac{s}{s^2 + 31}$$

$$\frac{X(s)}{F(s)} = \frac{7}{s^2 + 31} \text{ and } \frac{X(s)}{G(s)} = \frac{s}{s^2 + 31}$$

$$\ddot{x} + 31x = 7f(t) \text{ and } \ddot{x} + 31x = \dot{g}(t)$$
Define state variables as $x_1 = x$ and $x_2 = \frac{dx}{dt}$
Derivatives of state variables $\dot{x}_1 = \frac{dx}{dt} = x_2$
and $\dot{x}_2 = \frac{d^2x}{dt^2} = 7f - 31x = 7f - 31x_1$
Also $\dot{x}_2 = \frac{d^2x}{dt^2} = \dot{g} - 31x = \dot{g} - 31x_1$
Define $u_1 = f$ and $u_2 = \dot{g}$

State equation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -31 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 7 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Output equation:

$$[y] = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Construct the block diagram for: $m\ddot{x} + b\dot{x} + cx = f$

Hint: Integrate \ddot{x} will get \dot{x} and integrate \dot{x} will get x

The integration can be accomplished with a "integrator" component shown

Generate \dot{x} and x from \ddot{x}

$$\frac{\ddot{x}}{s} \frac{1}{s} \frac{\dot{x}}{s}$$

Rearrange the EOM to:

$$\ddot{x} = \frac{1}{m}(f(t) - b\dot{x} - kx)$$

How to generate the \ddot{x} from the above components?

$$\ddot{x} = \frac{1}{m}(f(t) - b\dot{x} - kx)$$

Reduce the block diagram to confirm the answer!