DÉNOMBREMENT

«	.combinatorics, a sort of glorified dice-throwing. » — Robert Kanig	ge!
_	'arithmétique, c'est être capable de compter jusqu'à vingt sans enlever ses ussures. » — Walt Disn	ey
	out ce dénombrement, madame, est inutile et Hectors pourraient-ils me payer un Achille ? » — Jacques Pradon, La Troa	ide
\mathbf{T}	ble des matières	
1	Introduction	1
2	Produit cartésien	2
3	Applications	3
	3.1 Généralités	3
	3.2 Injection, surjection, bijection	4
	3.3 Lien avec le cardinal	4

1 Introduction

 $D\acute{e}nombrer$, c'est compter le nombre d'éléments qu'il y a dans un ensemble, le plus souvent défini par une propriété qu'il vérifie (par exemple, ses éléments pourraient être les parties de [1,12] qui ont 5...)

Savoir dénombrer permet notamment de faire des calculs de probabilité plus compliquées à la main, et a des applications en physique ou encore en informatique.

Pour démarrer, deux exemples introductifs :

Problème 1 On considère une étagère sur laquelle se situent 4 livres différents. De combien de façons peut-on ranger ces livres ?

Problème 2 On considère maintenant un sac de 10 billes différentes. De combien de façons peut-on constituer un paquet de 4 billes parmi les 10 ?

2 Produit cartésien

Définition 2.1 (Couple de deux éléments). Soient x et y deux objets mathématiques. Le couple (x,y) est la donnée de x comme première composante et de y comme deuxième composante.

Il faut retenir la propriété caractéristique : Deux couples (a,b) et (x,y) sont égaux si et seulement si leurs composantes sont égales deux à deux :

$$(a,b) = (x,y) \iff (a = x \land b = y).$$

Définition 2.2 (Produit cartésien). Soient E et F deux ensembles. On appelle produit cartésien de E et de F, et on note $E \times F$ (lu « E croix F ») l'ensemble des couples (x,y) où $x \in E$ et $y \in F$.

Remarque 1. En général, $E \times F \neq F \times E$! Pour avoir l'égalité, les deux ensembles doivent être égaux ou l'un des deux doit être vide.

Exemple 1.

- $\mathbb{R} \times \mathbb{R} = \{(x, y) \mid x \in \mathbb{R} \text{ et } y \in \mathbb{R} \}$
- $(0,\pi) \in \mathbb{R} \times \mathbb{R}^*$ mais $(0,\pi) \notin \mathbb{R}^* \times \mathbb{R}$.

Proposition 2.3. Soient E et F des ensembles. Alors :

- $E \times \emptyset = \emptyset \times E = \emptyset$
- Si E et F sont finis, alors

$$\operatorname{Card}(E \times F) = \operatorname{Card}(E) \operatorname{Card}(F).$$

Définition 2.4 (Généralisation).

1. Soient a_1, \ldots, a_n des objets mathématiques. On définit le *n*-uplet (a_1, \ldots, a_n) comme étant le couple ayant comme première composante le n-1-uplet

 (a_1,\ldots,a_{n-1}) et comme deuxième composante a_n . Les n-1-uplets ayant été définis de la même manière à partir des n-2-uplets.

2. Soient E_1, \dots, E_n des ensembles, avec $n \in \mathbb{N}^*$. Le produit cartésien des ensembles $(E_i)_{1 \le i \le n}$ est l'ensemble des n-uplets

$$(x_1,\ldots,x_n)$$

où pour tout i entre 1 et $n,\,x_i\in E_i.$

Lorsque tous les \boldsymbol{E}_i sont égaux à un même ensemble $\boldsymbol{E},$ on notera

$$\underbrace{E \times \dots \times E}_{n \text{ fois}} = E^n.$$

Exemple 2. Ainsi, $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Proposition 2.5. Soient E, F et G trois ensembles. Par définition des n-uplets, on a

$$(E \times F) \times G = E \times (F \times G) = E \times F \times G.$$

3 Applications

Dans cette section, on définira de manière générale la notion d'application entre deux ensembles, une généralisation des fonctions que vous connaissez. E et F sont dans la suite deux ensembles.

3.1 Généralités

Définition 3.1. Une application f de E vers F, notée $f: E \longrightarrow F$ est la donnée d'une partie G de $E \times F$, appelée graphe de f. Si $(x,y) \in G$, y est appelé image de x par f, x est appelé antécédent de y par f. De plus, G doit vérifier la propriété suivante : pour tout $(x,y) \in G$, et pour tout y' de F,

$$(x, y') \in G \Rightarrow y = y'$$

c'est-à-dire qu'un élément $x \in E$ admet au plus une image. On adopte la notation des fonctions : si $(x,y) \in G$, alors

$$y = f(x)$$
.

L'ensemble des applications de E vers F est noté F^E ou encore $\mathcal{F}(E,F)$.

Bien sûr, la définition donnée ne garantit pas qu'une application $f: E \longrightarrow F$ est définie sur E tout entier. On définit alors la notion d'ensemble de définition:

Définition 3.2 (Ensemble de définition). Soit f une application de E vers F. L'ensemble de définition de f est l'ensemble des $x \in E$ qui admettent une image par f, c'est-à-dire tels qu'il existe un $g \in F$ tel que f0, f1.

Des fois, il faut considérer non pas l'application f mais une application définie sur une partie de E prenant les mêmes valeurs que f.

Proposition 3.3 (Nombre d'applications). On suppose que E et F sont finis. Le nombre d'applications de E vers F est le cardinal de $\mathcal{F}(E,F)$, qui vaut

$$Card(\mathcal{F}(E,F)) = Card(F)^{Card(E)}$$
.

3.2 Injection, surjection, bijection

Définition 3.4. Soit f une application de E vers F, que l'on suppose définie sur E tout entier. Elle est dite :

- injective si f(x) = f(x') entraı̂ne x = x'. Autrement dit, les éléments de F n'admettent au plus qu'un antécédent.
- surjective si tout $y \in F$ admet au moins un antécédent x par f.
- bijective si elle est à la fois injective **et** surjective. Autrement dit, tout élément y de F admet un et un seul antécédent par f.

Si f est bijective, alors pour tout $y \in F$ il existe un seul $x \in E$, que l'on peut noter g(y) sans ambiguïté, tel que y = f(x). L'application g ainsi définie est appelée réciproque de f et notée f^{-1} .

3.3 Lien avec le cardinal

Définition 3.5 (Cardinal, version propre). L'ensemble E est fini et est de cardinal $n \in \mathbb{N}^*$ s'il existe une bijection $\varphi : [\![1,n]\!] \longrightarrow E$, c'est-à-dire que l'on peut écrire $E = \{\varphi(1), \dots, \varphi(n)\}.$

Proposition 3.6. On suppose que E et F sont finis. Soit f une application de E vers F. Alors :

- Si f est injective alors Card E < Card F.
- Si f est surjective alors Card E > Card F.

• Si f est bijective alors $\operatorname{Card} E = \operatorname{Card} F$: les ensembles ont le même nombre d'éléments.

Le dernier point est particulièrement utile dans le cadre du dénombrement : en effet, si on peut mettre en bijection l'ensemble E dont on cherche le nombre d'éléments avec un ensemble F dont on connaît bien le cardinal, alors on en déduit que E a même cardinal de F.