3. 向量共线共面的充要条件

定理3. 1. 1 两个向量 \vec{a} 与 \vec{b} 共线 的充要条件是存在不全为零的 常数 k_1 和 k_2 ,使得

$$k_1\vec{a} + k_2 \vec{b} = \vec{0}$$

推论3. 1. 1 在一条直线上取定一个 非零向量 \vec{e}_1 ,则该直线上任一向量 \vec{a} 必可由 \vec{e}_1 惟一地表示为 $\vec{a} = x\vec{e}_1$,其中x为一个常数.

定理3. 1. 2 三个向量 \vec{a} , \vec{b} , \vec{c} 共面 的充要条件是存在不全 为零的常数 k_1 , k_2 和 k_3 , 使得

$$k_1\vec{a} + k_2\vec{b} + k_3\vec{c} = \vec{0}$$

推论3. 1. 2 在一个平面内取定两个 不共线的向量 $\vec{e}_1, \vec{e}_2,$ 则该平面上任一向量 \vec{a} 都可由 \vec{e}_1, \vec{e}_2 唯一地表示为 $\vec{a} = x\vec{e}_1 + y\vec{e}_2$,其中x, y为常数.

定理3. 1. 3 设 \vec{e}_1 , \vec{e}_2 , \vec{e}_3 是空间中不共面的三个向量,则空间中任一向量 \vec{a} 都可由 \vec{e}_1 , \vec{e}_2 , \vec{e}_3 唯一地表示为 $\vec{a} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3$,其中x,y,z为常数.