SISTEMA DE BOMBEAMENTO

Aluno: José André de Amorim

Disciplina: Instrumentação Industrial

APRESENTAÇÃO DO PROBLEMA

 O sistema simplificado ao lado apresenta a ideia geral e inicial da problemática apresentada.

CONSIDERAÇÕES

- O fluido transportado será água;
- Os tanques estão a uma distancia de 15 metros um do outro;
- A água transportada estará na temperatura ambiente com salinidade e pH corrigidos;
- A tubulação será do material PVC;
- A tubulação terá o diâmetro 60 mm;
- As conexões serão do mesmo material da tubulação

RESERVATORIOS

- Será considerado que o volume de água produzido será de procedência de condensação, obtido através de uma torre de resfriamento, onde a água obtida foi retirada de um processo e por motivos de economia interna resolveu-se reutilizar esta água para demais processos da indústria.
- Será tomada uma vazão de 10 m³/h para este projeto e como os equipamentos tanto de condensação quanto de armazenamento de água serão alocados fora do galpão.
- Para a água ser transportada para o segundo galpão a tubulação deve seguir pelo pipe-way

RESERVATORIOS

 Como também representado, os galpões estarão localizados a uma distancia de 4 metros do pipe-way, esse dado será importante na determinação do comprimento de tubulação necessária para o projeto.

RESERVATORIOS

- Nossos reservatórios deverão possuir uma capacidade de 15 mil litros e suas dimensões serão apresentadas ao lado:
- Os reservatórios serão construídos de alvenaria para redução de custos.

TUBULAÇÃ0

- COMPRIMENTO DE TUBULAÇÃO

nossa tubulação até a base do segundo reservatório deverá possuir um comprimento de 23 metros, considerando as duas partes de 4 metros somadas a de 15 metros, além de um comprimento adicional de 2 metros para que a tubulação chegue ao topo do reservatório 2, totalizando assim:

• $L_{total} = 15 m + 4m + 4m + 2m = 25 m$

PERDA DE CARGA - CÁLCULO DA VELOCIDADE

Para se determinar o fator de atrito será necessário se obter a velocidade que o fluido se desloca dentro dos tubos, para isso utilizaremos os dados de fluxo e diâmetro da tubulação, a seguir apresentamos os cálculos:

$$Q = v \cdot A = v \cdot \pi \cdot \frac{D^2}{4}$$

Reorganizando a equação para isolar a velocidade, teremos:

$$v = \frac{Q \cdot 4}{\pi \cdot D^2} = \frac{10 \cdot 4}{3600 \cdot \pi \cdot 0.060^2} = 0,9824 \approx 1.0 \, m/s$$

PERDA DE CARGA - CÁLCULO DO NÚMERO DE REYNOLDS

Como nosso processo exige que o fluido seja condensado através da torre de resfriamento e armazenado em um reservatório, a temperatura do fluido tende a se estabilizar com a do ambiente, logo possuirá as seguintes características para a temperatura de 25°C:

- $\mu 0.8903 \times 10^{-3} \text{ N.s/m}^2$;
- $\rho 997,05 \text{ kg/m}^3$.

Logo teremos:

Re =
$$\rho * V * D / \mu : Re = 997,05.1,0.0.060 / 0,8903x10-3 = 6,7194x105$$

Como o número de Reynolds é superior a 2400, podemos concluir que o nosso escoamento é turbulento.

PERDA DE CARGA - CÁLCULO DA RUGOSIDADE

• Rugosidade Relativa = ε / D

Vamos considerar a $\varepsilon = 0.08$ utilizando A PNB 591/77(ABNT, 1977).

Logo a rugosidade relativa será:

Rugosidade relativa = 0.08 / 60 = 0,0013

Tabela 1 – Valores referenciais de rugosidades absolutas para tubos de PVC, segundo diferentes autores.

Rugosidade absoluta - ε (mm)	Fonte
0,0015-0,010	Porto (2000)
0,01-0,06	Marques & Souza (2011)
0,08-0,12	PNB 591/77 (ABNT, 1977)
O,1	Azevedo Netto & Alvarez (1982)
0,0015	Rossman (2000)
0,0015-0,12	Faixa resultante

PERDA DE CARGA - CÁLCULO DO FATOR DE ATRITO

- Pelo diagrama de Moody termos:
- Pela área destacada em vermelho temos que o nosso fator de atrito é f = 0,021.

PERDA DE CARGA - PERDAS LOCALIZADAS

- As perdas localizadas são as que ocorrem por meio de conectores ou alterações nos diâmetros da tubulação, como no nosso caso nos tratamos apenas de joelhos, pelo catálogo da Tigre.
- Como destacado em amarelo na imagem, a perda localizada causada por cada joelho é de 3,4 m, totalizando 13,6 m para os quatro joelhos.

		Joelho 90°	Joelho 45°	Curva 90°	Curva 45°	Të 90° Passagem Direita	Të 90° Saída de lado	Të 90° Saída Bilateral	Entrada Normal	Entrada de Borda	Saída de Canalização	Válvula de Pé e Crivo	Válvula de Retenção Tipo Leve	Válvula de Retenção Tipo Pesado	Registro de Globo Aberto	Registro de Gaveta Aberto	Registro de Ângulo Aberto
DE (mm)	D. ref. (pol.)						-E:			•	•				Ā		A
20	1/2"	1,1	0,4	0,4	0,2	0,7	2,3	2,3	0,3	0,9	0,8	8,1	2,5	3,6	11,1	0,1	5,9
25	3/4"	1,2	0,5	0,5	0,3	0,8	2,4	2,4	0,4	1,0	0,9	9,5	2,7	4,1	11,4	0,2	6,1
32	1"	1,5	0,7	0,6	0,4	0,9	3,1	3,1	0,5	1,2	1,3	13,3	3,8	5,8	15,0	0,3	8,4
40	11/4"	2,0	1,0	0,7	0,5	1,5	4,6	4,6	0,6	1,8	1,4	15,5	4,9	7,4	22,0	0,4	10,5
50	11/2"	3,2	1,3	1,2	0,6	2,2	7,3	7,3	1,0	2,3	3,2	18,3	6,8	9,1	35,8	0,7	17,0
60	2"	3,4	1,5	1,3	0,7	2,3	7,6	7,6	1,5	2,8	3,3	23,7	7,1	10,8	37,9	0,8	18,5
75	21/2"	3,7	1,7	1,4	0,8	2,4	7,8	7,8	1,6	3,3	3,5	25,0	8,2	12,5	38,0	0,9	19,0
85	3"	3,9	1,8	1,5	0,9	2,5	8,0	8,0	2,0	3,7	3,7	26,8	9,3	14,2	40,0	0,9	20,0
110	4"	4,3	1,9	1,6	1,0	2,6	8,3	8,3	2,2	4,0	3,9	28,6	10,4	16,0	42,3	1,0	22,1

PERDA DE CARGA - PERDAS DISTRIBUÍDAS

Pela expressão geral da perda de carga de Darcy e Weisbach termos:

$$J = f \cdot \frac{l}{d} \cdot \frac{v^2}{2g}$$

Como já possuímos todos os dados necessários para a equação, basta substituirmos os valores.

$$J = 0.021 \cdot \frac{25}{0.060} \cdot \frac{1.0^2}{2.9.81} = 0.4460 \text{ m}$$

Logo é notável que nosso sistema possui uma baixa perda de carga distribuída, portanto as perdas conjuntas será de:

$$J_{total} = J_{distribuída} + J_{localizada} = 0,4460 + 13,60 = 14,0460 m$$

CURVA DA INSTALAÇÃO

cálculo da altura manométrica nos proporciona a possibilidade de desenhar a curva da instalação e facilitar

ā seleção da bomba adequada para o projeto.
$$H=h_e+J-\frac{v_3^2}{2g}+H_b-H_r$$

Logo, teremos ao aplicar os valores:
$$H = 2 + 14,0460 - \frac{1^2}{2.9,81} = 16,00 \ m. \ c. \ a$$

CURVA DA INSTALAÇÃO

Com a altura manométrica definida, podemos encontrara curva da instalação, para que, por fim, possamos cruzar com a curva da bomba. A curva da bomba pode ser definida por:

$$H = h_e + K*Q^2$$

Determinando o valor de K:

$$K = \frac{H - h_e}{Q^2} = \frac{16,00 - 2,00}{10,00^2} = 0,14$$

Portanto a curva da instalação irá obedecer a seguinte expressão:

$$H = 2,00 + 0,14 \cdot Q^2$$

- Para determinar a bomba utilizaremos os dados de altura manométrica e vazão já apresentados, H = 16 m.c.a e Q = 10 m³/h.
- Como apresentado na figura, foi selecionada uma bomba com motor elétrico de lcv com altura de 16 m.c.a e vazão de 10,1 m³/h, modelo BC-92 S/T HB.

				2	Altura máxima de sucção (m ca)	Ø Rotor (mm)								CARACT	ERÍSTICA	AS HIDR	AULICAS	
MODELO	Potenda (cv)	(pot)	(pd)	Pressio máxima sem vazão (m ca.)									1	LTURA N	ANOMÉT	TRICA TOT	AL (m ca	4
		950	- A				5	6	8	10	12	14	16	18	20	22	24	26
			(20)										VAZÃO	EM m3/h	VÁLIDA	PARA SU	ÇÃO DE	0 m ca
BC-92 S/T HB	3/4	11/2	11/4	21	8	110	14,5	13,9	12,7	11,4	10,0	8,5	6,7					
	19	11/2	11/4	24	8	120	16,4	15,9	14,9	13,8	12,7	11,5	10,1	8,6	6,9			
	1,5	11/2	1 1/4	30	8	130			16,9	16,1	15,3	14,4	13,5	12,5	11,5	10,3	9,0	7,4
	2	11/2	1 1/4	37	8	140						16,8	16,0	15,2	14,3	13,3	12,3	11,2
	3	11/2	11/4	43	8	150									17,3	16,6	15,8	15,0

CURVA DA BOMBA EM FUNÇÃO DA CURVA DO SISTEMA

Para determinarmos a curva da bomba utilizamos dados fornecidos pelo fabricante da mesma bomba para diferentes vazões e com ajuda de um script na linguagem Python traçamos a curva e obtemos a equação da curva da bomba a seguir:

ANÁLISE DA PRESSÃO QUE O FLUIDO EXERCE NA TUBULAÇÃO

Por Bernoulli deterinamos a pressão máxima do sistema

$$\left(\frac{P1}{997,05 \times 9,81}\right) - \left(\frac{2352 \cdot 10 \times 3}{997,05 \times 9,81}\right) = 16$$

A partir daí, teremos P_1 = 391,6970 kPa, como mencionado no catálogo da Tigre os tubos utilizados nesse projeto suportam até 750 kPa, portanto sabemos que a tubulação irá suportar a pressão exercida pelo fluido.

ANÁLISE DO NPSH

Pela equação do número característico de rotações por minuto:

$$nq = \frac{n * \sqrt{Q}}{\sqrt[4]{H_u^3}}$$

$$nq = \frac{3600 * \sqrt{0,002778}}{\sqrt[4]{16^3}} = 23,7180 \, rpm$$

Logo, para esse valor de nq obtemos a velocidade específica real da bomba:

$$ns = 3,65 * 23,7180 .: ns = 86,5708 rpm$$

Verifica-se que a bomba será do tipo centrífuga lenta pois ns < 90.

$$NPSHreq = \sigma H$$

De forma que:

- σ = Fator de cavitação de Thoma
- H = Altura manométrica

Sendo uma bomba centrifuga, teremos $\phi = 0.0011$, temos um fator de correção sigma como sendo:.

$$\sigma = \varphi * \sqrt[3]{n_q^4}$$

$$\sigma = 0.0011 * \sqrt[3]{23.7180^4} = 0.07496$$

Assim o NPSHreq pode ser determinado como:

$$NPSHreq = 0.07496 * 16.00 : NPSHreq = 1.2 m$$

$$NPSH_{disp} = \frac{Pa}{\gamma} - ha - Ja - hv$$

$$NPSH_{disp} = \frac{101,32 * 10^{3}}{997,05 * 9,81} - \frac{3,1698 * 10^{3}}{997,05 * 9,81} : NPSH_{disp} = 10,0052 m$$

Como o NPSHdisp > NPSHreq, a bomba não sofrerá cavitação

MOTOR ELÉTRICO

Como a bomba selecionada foi do tipo motobomba (bombas que por padrão já vem incluso um motor), algumas de suas características já são apontadas no próprio catálogo de bombas. A seguir apresentamos algumas das características que nos foram fornecidas:

- Potência de 1 cv;
- 2 Polos;
- Monofásico ou trifásico.

INSTUMENTAÇÃO - SENSORES DE NÍVEL

Serão utilizados 4 sensores de nível, o reservatório 1 conterá 2, um de nível baixo e outro de nível alto, o mesmo se aplicará para o reservatório 2. Ambos os sensores serão o mesmo modelo.

Este componente é incluso horizontalmente no reservatório, onde por se tratar de uma chave on/off será utilizado apenas para verificar se um determinado nível foi atingido ou não.

INSTUMENTAÇÃO - SENSORES DE NÍVEL

Algumas especificações do produto:

- Pressão máxima de trabalho: 2 bar;
- Temp. de trabalho: -10°C a 100°C;
- Espessura máx. parede reservatório: 9mm
- Densidade mín. do líquido: 0,76;
- Saída: contato on/off;
- Tensão de trabalho: 110V, 220V (ac) ou 5V, 12V, 24V (dc).

INSTUMENTAÇÃO - SENSORES DE NÍVEL

Como a espessura dos nossos reservatórios por serem feitos de alvenaria excedem a espessura máxima permitida para o sensor, será utilizado um tubo de PVC com adaptadores para o encaixe dos sensores, para que assim possa ser implantado no projeto sem perturbações.

ORÇAMENTO

Produtos	Valor unitário	Quantidade	Total
Bomba	R\$ 971,00	1	R\$ 971,00
Encanamento PVC 60mm	RS 135,70	5	RS 678,50
Chave de nível	R\$ 52,00	4	R\$ 156,00
Joelhos 90° de 60mm	R\$ 27,49	4	R\$ 109,96
Adaptador	R\$ 3,50	3	R\$ 10,50
Registro 60mm	R\$ 57,68	2	R\$ 115,36
Total			R\$ 2.093,32

PRODUTOS

Bomba Schneider BC-92S 1A 1,0CV - 127/220V Monofásica

☆ ☆ ☆ ☆ (Avalie agora!)

Pontos Fidelidade: 4.00

Tipo de Indução

127/220V Monofásica

De: R\$ 1,214,00

Por: R\$ 971,00

ou 6x de R\$ 161,83

Ou **922,45** à vista (5% de desconto)

Economia de R\$ 243.00

Confira as Condições de Parcelamento

₩ COMPRAR

Sensor de Nível LA16M-40

para água, óleo, combustíveis e lubrificantes

Adaptador PVC M16x25

1 peça

Formas de Pagto, e Frete

Venda mínima: R\$500,00

Cotar / Comprar 灣

TIGRE

Tubo de PVC Marrom Soldável 60mm com 6 Metros - 10120608 -TIGRE

☆☆☆☆ (Avalie agora!)
Código Copafer: 51861

TIGRE

Joelho 90° Graus Soldável 60mm -22150600 - TIGRE

☆ ☆ ☆ ☆ ☆ (Avalie agora!) Código Copafer: 134228

Mais informações do produto v

TIGRE

Registro Esfera VS Compacto Soldável 60mm - 27950353 -Tigre

☆☆☆☆☆ (Avalie agora!) Código Copafer: 796212

Mais informações do produto ∨

