170S Week 2 Discussion Notes

Colin Ni

January 15, 2025

Warm-up

Let v, w be two distinct points in \mathbb{R}^m . Find a constant-speed parametrization $\ell(t)$ of the line passing through v and w such that $\ell(0) = v$ and $\ell(1) = w$.

Solution. Set

$$\ell(t) = (1 - t)v + tw.$$

It is easy to check that $\ell(0) = v$ and $\ell(1) = w$, and this has constant speed $\|\ell'(t)\| = \|(-1)v + w\|$.

Sample percentiles

Let $x_1, \ldots, x_n \in \mathbb{R}$ be a sample, and denote by $x_{(1)}, \ldots, x_{(n)}$ the order statistics of this sample.

Recall. The (100p)th sample percentile $\tilde{\pi}_p$ of this sample is not defined for every value $p \in [0,1]$ but rather only for $p \in [\frac{1}{n+1}, \frac{n}{n+1}]$. To define $\tilde{\pi}_p$, write (n+1)p uniquely as r+t where $r \in \mathbb{Z}$ and $t \in [0,1)$, and set

$$\tilde{\pi}_p = (1 - t)x_{(r)} + tx_{(r+1)}.$$

Notice the similarity between $\tilde{\pi}_p$ and the answer to the warm-up. Let us spell out the intuition.

Intuition. The sample percentile $\tilde{\pi}_p$ is a constant-speed path from $x_{(r)}$ to $x_{(r+1)}$ on the interval $p \in [\frac{r}{n+1}, \frac{r+1}{n+1}]$. In particular $\tilde{\pi}_{\frac{r}{n+1}} = x_{(r)}$.

Example. Consider a sample such that

$$x_{(1)} = -2, \quad x_{(2)} = 0, \quad x_{(3)} = \frac{1}{2}, \quad x_{(4)} = \frac{7}{2}.$$

Then $\tilde{\pi}_p$ is defined for $p \in [\frac{1}{5}, \frac{4}{5}]$, and the values $\tilde{\pi}_{\frac{1}{5}}$, $\tilde{\pi}_{\frac{2}{5}}$, $\tilde{\pi}_{\frac{3}{5}}$, $\tilde{\pi}_{\frac{4}{5}}$ are simply $x_{(1)}$, $x_{(2)}$, $x_{(3)}$, $x_{(4)}$. You should check that the 65th percentile $\tilde{\pi}_{0.65}$ is $\frac{5}{4}$, and you should draw a picture that shows that as p increases from $\frac{1}{5}$ to $\frac{4}{5}$, the speed of $\tilde{\pi}_p$ is $\frac{20}{2}$, then $\frac{5}{2}$, then $\frac{15}{2}$.

Sample mean and variance

Let again $x_1, \ldots, x_n \in \mathbb{R}$ be a sample.

Recall. The sample mean and the sample variance of this sample are

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

As a quick exercise, let us do a problem from the homework.

Exercise. Consider a linear transformation $y_i = ax_i + b$ of this sample, where $a, b \in \mathbb{R}$. Show that $\bar{y} = a\bar{x} + b$ and $s_y^2 = a^2 s_x^2$.

Solution. At once,

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \cdot \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n} \sum_{i=1}^{n} b = a\bar{x} + b$$

and

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - (a\bar{x} + b))^2 \qquad \text{(using that } \bar{y} = a\bar{x} + b)$$

$$= \frac{1}{n-1} \sum_{i=1}^n (ax_i - a\bar{x})^2$$

$$= \frac{a^2}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$= a^2 s_x^2,$$

as required.

One should wonder why we use $\frac{1}{n-1}$ instead of $\frac{1}{n}$ when computing the sample variance. This correction (multiplying the naive estimator by $\frac{n}{n-1}$) is called Bessel's correction, and it makes the estimator unbiased, as we will now explain.

Bessel's correction. Let X_1, \ldots, X_n be i.i.d. random variables with mean μ and variance σ^2 . The estimators

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $s_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{x})^2$

of μ and σ^2 are unbiased.

Proof. Being unbiased means $\mathbb{E}[\bar{x}] = \mu$ and $\mathbb{E}[s_X^2] = \sigma^2$. For the former, observe that

$$\mathbb{E}[\bar{x}] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X_{i}] \qquad \text{(linearity of expectation)}$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mu \qquad \text{(the }X_{i} \text{ are i.i.d. with mean }\mu\text{)}$$

$$= \mu,$$

and in fact we can compute its variance as

$$\begin{aligned} \operatorname{Var}(\bar{x}) &= \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \\ &= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}) \\ &= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} \\ &= \frac{\sigma^{2}}{n}. \end{aligned} \tag{basic properties of Var)}$$

For the latter, observe that the naive estimator can be written as

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^{n} ((X_i - \mu) - (\bar{x} - \mu))^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} ((X_i - \mu)^2 - 2(X_i - \mu)(\bar{x} - \mu) + (\bar{x} - \mu)^2) \quad \text{(expand)}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - 2(\bar{x} - \mu) \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu) + \frac{1}{n} \sum_{i=1}^{n} (\bar{x} - \mu)^2$$
(distribute the sum)
$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - 2(\bar{x} - \mu)^2 + (\bar{x} - \mu)^2 \quad \text{(definition of } \bar{x})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - (\bar{x} - \mu)^2,$$

so its expected value is

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{x})^{2}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}-(\bar{x}-\mu)^{2}\right]$$

$$=\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[(X_{i}-\mu)^{2}]-\mathbb{E}[(\bar{x}-\mu)^{2}]$$
(linearity of expectation)
$$=\frac{1}{n}\sum_{i=1}^{n}\mathrm{Var}(X_{i})-\mathrm{Var}(\bar{x})$$
(the definition $\mathrm{Var}(Y)=\mathbb{E}[(Y-\mathbb{E}[Y])^{2}]$ of variance, and $\mathbb{E}[\bar{x}]=\mu$)
$$=\sigma^{2}-\frac{\sigma^{2}}{n}$$
(the X_{i} are i.i.d. with variance σ^{2} , and $\mathrm{Var}(\bar{x})=\frac{\sigma^{2}}{n}$)
$$=\frac{n-1}{n}\sigma^{2}.$$

Thus the correction of multiplying by $\frac{n}{n-1}$ makes the expected value σ^2 .