THE PENNSYLVANIA STATE UNIVERSITY Test SCHREYER HONORS COLLEGE

DEPARTMENT OF DEPARTMENT

TITLE OF THESIS

NAME SEASON NOW

A thesis submitted in partial fulfillment of the requirements for baccalaureate degrees in Major1 and Major2 with honors in Area of Honors

Reviewed and approved* by the following:

Some Person Professor of Something Thesis Supervisor

Some Other Person Professor of Something Else Some Other Position Honors Adviser

^{*}Signatures are on file in the Schreyer Honors College.

Abstract

Abstract abstract abstract. Abstract? Abstract! Abstract...

Table of Contents

Li	st of I	Figures	iii
Li	st of T	Tables	iv
Ac	know	vledgements	v
1	Intr	oduction and Historical Review	1
	1.1	Introduction	. 2
	1.2	Literature Review	. 2
	1.3	Thesis Outline	. 2
2	Prol	blem Statement	3
	2.1	Problem Definition	. 3
	2.2	Canonical Units Definition	. 3
	2.3	Parameter Definition	. 3
	2.4	Time Optimization (probably needs rewording)	. 3
3	Met	hodology	4
	3.1	Particle Swarm Optimization Overview	. 4
	3.2	Problem Implementation	
		3.2.1 MATLAB	. 4
		3.2.2 C++ Single Threaded	. 4
		3.2.3 C++ Parallelization	. 4
4	Resi	ults	5
	4.1	Numerical Results	. 5
	4.2	Rehydration Results	. 5
	4.3	Speedup	
Re	eferen	nce	6

List of Figures

1.1	Caption to go in list of figures	 2
1.1	cuption to go in fist of figures	 •

List of Tables

1.1	Names of table for list of tables										 		2

Acknowledgements

To Mr. Scruffles.

Chapter 1 Introduction and Historical Review

1.1 Introduction

Blah blah. Here is an example of how to include and cite a figure: see Figure 1.1

Figure 1.1: Caption to go underneath figure

1.2 Literature Review

Blah blah Here's an example of a table: see Table 1.1.

Parameter	Current Best Value
Δm^2_{21}	$7.50^{+0.19}_{-0.20} \times 10^{-3} \text{ eV}^2$
$ \Delta m_{32}^2 $	$2.32^{+0.12}_{-0.08} \times 10^{-5} \text{ eV}^2$
$\sin^2\left(\theta_{12}\right)$	$0.857^{+0.023}_{-0.025}$
$\sin^2\left(2\theta_{23}\right)$	> 0.95
$\sin^2\left(\theta_{13}\right)$	0.098 ± 0.013

Table 1.1: Name of table for caption above table

Here's an example of an equation and some math:

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix},$$
(1.1)

with $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$.

Here's an example citation: [1].

1.3 Thesis Outline

Chapter 2

Problem Statement

- 2.1 Problem Definition
- 2.2 Canonical Units Definition
- 2.3 Parameter Definition
- 2.4 Time Optimization (probably needs rewording)

Chapter 3

Methodology

3.1 Particle Swarm Optimization Overview

3.2 Problem Implementation

Stuff detailing the general rk-dopri-5 algorithm goes here

3.2.1 MATLAB

MATLAB implementation details go here e.g. ODE45, etc.

3.2.2 C++ Single Threaded

Details about Boost libraries, timers, etc. go here

3.2.3 C++ Parallelization

Details about OpenMP go Test

Chapter 4

Results

- **4.1 Numerical Results**
- 4.2 Rehydration Results
- 4.3 Speedup

Bibliography

[1] J. Beringer et al. Review of particle physics. Phys. Rev. D, 86:010001, Jul 2012.