## 平成18年度 日本留学試験(第1回)

# 試験問題

### 数学 コース 2

### (上級コース)

#### 「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらか一方のコースを選んで解答してください。「コース2」を選ぶ場合は、右のように、解答用紙の左上にある「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。選択したコースが正しくマークされていないと、採点されません。

#### < 解答用紙記入例 >

| 解答コース Course      |          |
|-------------------|----------|
| コース l<br>Course l | Course 2 |
| 0                 | •        |

| _ |   | _ |
|---|---|---|
| ı | - |   |
| 1 |   |   |
| ŀ |   |   |
| ı |   |   |
| ı |   |   |
|   |   |   |

問 1 2次関数  $y = 5x^2 + 2x$  のグラフを C とする。C は頂点の座標が

$$\left(\begin{array}{c} AB \\ \hline C \end{array}, \begin{array}{c} DE \\ \hline F \end{array}\right)$$

の放物線である。

- (1) C を原点に関して対称移動してできる放物線の方程式は y=  $\boxed{\mathbf{GH}} x^2 + \boxed{\mathbf{I}} x$  である。

注) 対称移動: symmetric transformation, 平行移動: parallel translation

問 2  $A = \{x \mid x^2 \le 9\}$ ,  $B = \{x \mid 2x^2 - 4x - 5 > 0\}$  とする。集合  $A \cap B$  に属するすべての整数の個数を求めよう。

$$A = \left\{ x \middle| - \bigsqcup \le x \le \boxed{\mathsf{M}} \right\}$$

$$B = \left\{ x \middle| x < \boxed{\mathsf{N}} - \frac{\sqrt{\boxed{\mathsf{OP}}}}{\boxed{\mathsf{Q}}} \right\}$$
 \$\pi t \tau \bar{\mathbb{N}} + \frac{\sqrt{\bar{\mathsf{OP}}}}{\boxed{\mathsf{Q}}} < x \bar{\mathbb{N}}

であるから,  $A \cap B$  に属する整数は R 個である。

 $oxed{I}$  の問題はこれで終わりです。 $oxed{I}$  の解答欄  $oxed{S}$  ~  $oxed{Z}$  は空欄にしてください。



問1 関数

$$y = \begin{cases} |x-2| & (x \ge 0) \\ |x+2| & (x < 0) \end{cases}$$

のグラフを  $\ell$  とし、y = ax + 1 のグラフを m とする。

- (1)  $a = \frac{1}{4}$  のとき、 $\ell$  と m の共有点の個数は  $\boxed{\mathbf{A}}$  個である。 a = -1 のとき、 $\ell$  と m の共有点の個数は  $\boxed{\mathbf{B}}$  個である。
- (2)  $\ell$ とmが4個の共有点をもつようなaの値の範囲は

$$-\frac{\boxed{\mathsf{C}}}{\boxed{\mathsf{D}}} < a < \frac{\boxed{\mathsf{E}}}{\boxed{\mathsf{F}}}$$

である。

問 2 数列  $\{a_n\}$  の初項から第 n 項までの和を  $S_n$  とする。条件

$$a_1 = 1$$
,  $S_n = na_n - 2n^3 + 2n$   $(n = 1, 2, 3, \dots)$ 

を満たす数列  $\{a_n\}$  を考える。このとき

$$S_{n-1} = (n-1)a_{n-1} - \boxed{\mathbf{G}} n^3 + \boxed{\mathbf{H}} n^2 - \boxed{\mathbf{I}} n \qquad (n=2,3,4,\cdots)$$

であるから

$$a_n - a_{n-1} =$$
  $n$   $(n = 2, 3, 4, \dots)$ 

が成り立つ。したがって

$$a_n = \boxed{\mathsf{K}} n^2 + \boxed{\mathsf{L}} n - \boxed{\mathsf{M}} \qquad (n = 1, 2, 3, \dots)$$

である。また

$$\lim_{n \to \infty} \frac{S_n}{na_n} = \frac{\mathsf{N}}{\mathsf{O}}$$

である。

 $oxed{II}$  の問題はこれで終わりです。 $oxed{II}$  の解答欄  $oxed{P}$  ~  $oxed{Z}$  は空欄にしてください。



右図の平行四辺形 ABCD において 問 1

AE // GC,

BF // HD,

 $AH : HE = 1 : 2, \quad BE : EF = 1 : 1$ 

とする。



(1)  $\overrightarrow{AB} = \overrightarrow{a}$ ,  $\overrightarrow{AD} = \overrightarrow{b}$  とする。このとき

$$\overrightarrow{AE} = \overrightarrow{a} + \frac{\overrightarrow{A}}{B} \overrightarrow{BF}$$

$$\overrightarrow{HD} = \overrightarrow{b} - \frac{\overrightarrow{C}}{D} \overrightarrow{AE}$$

であるから、 $\overrightarrow{AE}$ 、 $\overrightarrow{BF}$  を  $\overrightarrow{a}$  、 $\overrightarrow{b}$  を用いて表すと

$$\overrightarrow{AE} = \boxed{\begin{array}{c} \textbf{E} \\ \hline \textbf{F} \end{array}} \overrightarrow{a} + \boxed{\begin{array}{c} \textbf{G} \\ \hline \textbf{H} \end{array}} \overrightarrow{b}$$

$$\overrightarrow{BF} = -\boxed{\begin{array}{c} \textbf{I} \\ \hline \textbf{J} \end{array}} \overrightarrow{a} + \boxed{\begin{array}{c} \textbf{K} \\ \hline \textbf{L} \end{array}} \overrightarrow{b}$$

となる。

(2) 
$$\angle BAD = 120^{\circ}$$
 で、AELBF のとき、 $\frac{AB}{AD} = \frac{M}{N}$  である。

#### 数学-22

問 2

(1) 任意の定数 a に対し、2 直線 ax + y = 8、x - ay = 6 の交点は、円

$$(x - \boxed{0})^2 + (y - \boxed{P})^2 = \boxed{QR}$$
 .....

の周上にある。

(2) 点 (x,y)  $(x \neq 0)$  が ① の円周上を動くとき  $\frac{y+1}{x} = m$  とすれば、m のとりうる値の 範囲は

である。

 $oxed{III}$  の問題はこれで終わりです。 $oxed{III}$  の解答欄  $oxed{W}$   $\sim$   $oxed{Z}$  は空欄にしてください。

問 1 
$$f(x) = x(x-1)^{\frac{3}{2}}, \ g(x) = \frac{5+\log x}{1+\log x}$$
 に対して、 $h(x) = f(g(x))$  とする。このとき 
$$f'(x) = \frac{1}{2}(x-1)^{\frac{|A|}{|B|}} \left( \begin{array}{c} \mathbf{C} \\ x - \mathbf{D} \end{array} \right)$$
 
$$g'(x) = -\frac{\mathbf{E}}{x(1+\log x)} \mathbf{F}$$
 
$$h'(x) = -\frac{4\left( \begin{array}{c} \mathbf{GH} \\ \mathbf{H} \end{array} \right) \mathbf{F} \mathbf{E}$$

である。ただし,対数は自然対数とする。

#### 数学-24

問2 αは定数とする。

(1) 
$$\int (x-a)\sin x \, dx = \boxed{\mathsf{L}} \quad \mathtt{Cb5}.$$

 $lacksymbol{\mathsf{L}}$  には次の  $lacksymbol{\mathsf{0}}$  ~  $lacksymbol{\mathsf{3}}$  のうちから適する式を一つ選べ。ただし,C は積分定数とする。

$$(x-a)\cos x - \sin x + C$$

(2) 
$$f(a) = \int_0^{\frac{\pi}{2}} |x - a| \sin x \, dx$$
 とすると

$$a \leq M$$
 のとき  $f(a) = NOa + P$ , 
$$M < a \leq \frac{\pi}{Q}$$
 のとき  $f(a) = a + R - S \sin a$ , 
$$\frac{\pi}{Q} < a$$
 のとき  $f(a) = a - T$ 

である。

$$f(a)$$
 を  $a$  の関数とみると、 $f(a)$  は  $a = \frac{\pi}{\boxed{U}}$  で最小値

$$\frac{\pi}{|\mathbf{V}|} - \sqrt{|\mathbf{W}|} + |\mathbf{X}|$$

をとる。

注) 積分定数:integration constant

| [IV] の問題はこれで終わりです。 [IV] の解答欄 Y , Z は空欄にしてください。                                 |
|--------------------------------------------------------------------------------|
| コース2の問題はこれですべて終わりです。                                                           |
| 解答用紙には $lackbrace{lackbrace{V}}$ がありますが, $lackbrace{V}$ の問題はありませんので,空欄にしてください。 |
| この問題用紙を持ち帰ることはできません。                                                           |