EE3731C: Signal Processing Methods

Lecture II-3: Random Signals I

Outline

- Introduction to Random Signals
- Time Averages
- Ensemble Averages
- Stationary Processes
- Ergodic Processes
- Auto-correlation Function
- Cross-correlation Function

Deterministic & Nondeterministic (Random) Signal

- A deterministic signal: its value at any given instant of time can be
 - computed using a closed form mathematical function of time, OR
 - –predicted from the knowledge of a few past values of the signal.
- A signal that does not satisfy the above condition is nondeterministic (random).

Stochastic (Random) Processes

- A stochastic (random) process is a random quantity that changes over time.
- A typical random process is specified by
 X(t, s) where s is an outcome and t is time.

Stochastic (Random) Processes

- A sample function is the time function associated with outcome of an experiment.
- The ensemble of a stochastic process is the set of all possible time functions that can result from an experiment.

-Sampling a random process repeatedly gives an

Random Processes vs. Random Variables

- For a random variable, the outcome of a random experiment is mapped onto variable, e.g., a number.
 - -E.g., outcome of tossing a die
- For a random process, the outcome of a random experiment is mapped onto a waveform that is a function of time.
 - -E.g., recording of an electrocardiogram (ECG) in an environment with random noise.

Realization vs. Ensemble

Ensemble: the set of all realizations

When can one infer the statistical properties of the ensemble from the statistical properties of a single realization?

Example: Ensemble of Coin Tossers

Consider *N* people, each independently having written down a long random binary string of ones and zeros, with each entry chosen independently of any other entry in their string (similar to a sequence of independent coin tosses).

- The random process comprises this ensemble of strings.
- A realization of the process is obtained by randomly selecting a person (and therefore one of the N strings of ones and zeros).

Time Average vs. Ensemble Average

Time average of a random process

$$\langle x(t) \rangle \stackrel{\triangle}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$

$$\langle x[n] \rangle \stackrel{\triangle}{=} \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n]$$

Ensemble average of a random process

$$E(x(t)) \stackrel{\triangle}{=} \int_{-\infty}^{\infty} X f_x(X; t) dX$$

Time Average vs. Ensemble Average

ensemble average is a number that in general may be a function of the time variable t.

Example

Compute the time average and ensemble average of the random process shown below

$$X_1(t) = a$$
 $P_1 = 1/4$

$$X_2(t) = 0$$
 $P_2 = 1/2$

$$X_3(t) = -a$$
 $P_3 = 1/4$

Example

Time average

$$\langle X(t) \rangle = \begin{cases} a & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -a & \text{with probability } 1/4 \end{cases}$$

Ensemble average

$$E[X(t)] = X_1(t)P_1 + X_2(t)P_2 + X_3(t)P_3$$
$$= a \cdot 1/4 + 0 \cdot 1/2 + (-a) \cdot 1/4 = 0$$

Important Concepts

Stationarity:

- Statistical properties of the random process vary or remain constant over time?

• Ergodicity:

– Time-averages over a single realization approach statistical expectations over the ensemble?

• Autocorrelation Function:

the 2nd order statistical properties of a random process

Cross-correlation Function:

 the 2nd order statistical relationships between two random processes

Stationary Processes

- Stationarity is an important statistical property of a random process.
- Strict Sense Stationary (SSS)
 - A very restrictive class of random processes
- Wide Sense Stationary (WSS)
 - A much border class of random processes
- SSS implies WSS, but the converse is not true.

Strict Sense Stationary (SSS)

A random process, x[n], is SSS if the following property holds:

$$p(x[i] = x_0, \dots, x[i + N - 1] = x_{N-1}) =$$

$$p(x[j] = x_0, \dots, x[j + N - 1] = x_{N-1})$$
for all i, j, N and $\{x_0, x_1, \dots, x_{N-1}\}$

- The signal statistics do not inform us about index or time.
- Example: Gaussian independent and identically distributed (i.i.d.) process
- All i.i.d. processes are SSS.

Gaussian I.I.D. Process

 x[n] are sampled independently and identically from the same marginal density

$$x[n] \sim N(x; 0, \sigma^2)$$

Wide Sense Stationary (WSS)

- WSS only considers up to the 2nd order statistics of a random process.
- A random process x[n] is WSS if the following properties hold:

```
E\{x[n]\} = \mu_x \quad \forall i

E\{x[n]x[n+m]\} = R_x[m] depends only on m
```

- $R_{x}[m]$: auto-correlation function
- SSS implies WSS.
- WSS implies SSS only when all of the joint densities of the random process are Gaussian

Gaussian Random Walk

 The evolution equation for (Gaussian) random walk is specified in terms of a linear difference equation

$$y[0] = 0$$

$$y[n] = y[n-1] + x[n]$$

$$x[n] \sim N(x; 0, \sigma^{2})$$

Is this random process stationary?

Gaussian Random Walk

$$y[0] = 0$$

$$y[n] = y[n-1] + x[n]$$

$$x[n] \sim N(x; 0, \sigma^{2})$$

The mean is constant over all time, but the variance grows linearly with time!

Signal Statistics using Time-Averages

The mean (average) of a signal

$$\mu_x = \langle x[n] \rangle$$

The mean power of a signal:

$$P_x = \langle x[n]^2 \rangle$$

The AC power:

$$\sigma_x^2 = \langle (x[n] - \mu_x)^2 \rangle$$

Relationship:

$$P_x = \sigma_x^2 + \mu_x^2$$

Ergodicity

 Time averages of an ergodic random process approximate their statistical averages.

$$\langle x[n]^p \rangle = \mathbb{E} \{ x[n]^p \}$$
 for all p

- The left hand side is an average over all indices (or time) for a specific realization.
- The right hand side is an expectation over all realizations at a specific index (or time).
- Generally, SSS implies Ergodicity.
 - However, not all strictly stationary random processes are ergodic. Can you give one example?

Mean and Covariance Ergodicity

 Mean ergodicity - the statistical average equals the time average:

$$\langle x[n] \rangle = \mathbb{E} \{x[n]\}$$

= μ_x

 Covariance ergodicity - the variance over time is equal to the variance over realizations

$$\langle (x[n] - \mu_x)^2 \rangle = \mathbb{E} \{ (x[n] - \mu_x)^2 \}$$

Ergodicity

 Time-averages converge to statistical averages.

 Consequently, for stationary ergodic processes we can estimate statistical properties from the time-average of a single realization.

Example

For the random process shown below, determine whether it is ergodic.

$$X_{1}(t) = a \qquad P_{1} = 1/4$$

$$X_2(t) = 0$$
 $P_2 = 1/2$

$$X_3(t) = -a$$
 $P_3 = 1/4$

Autocorrelation Function

The expected value of the product of a random variable or signal realization with a time-shifted version of itself

- Can be defined as: $R_x[n_1, n_2] = E\{x[n_1]x[n_2]\}$
- Or as a function of index n and shift m

Two choices of
$$R_x[n,m] = E\{x[n]x[n+m]\}$$
 definition:
$$R_x[n,m] = E\{x[n]x[n-m]\}$$
 time index time shift

Gaussian Random Walk

Alternatively

$$y[0] = 0$$

$$y[n] = y[n-1] + x[n]$$

$$x[n] \sim N(x; 0, \sigma^{2})$$

$$y[n] \stackrel{\triangle}{=} \begin{cases} 0 & \text{if } n \le 0\\ \sum_{i=1}^{n} x[i] & \text{if } n > 0 \end{cases}$$

$$y[n] = y[n-1] + x[n]$$

 $x[n] \sim N(x; 0, \sigma^2)$ $f_x(X; n) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{X^2}{2\sigma^2}}$

Autocorrelation Function

$$R_{y}[n,m] = E\{y[n]y[n+m]\}$$

$$= E\left\{\sum_{i=1}^{n} x[i] \sum_{j=1}^{n+m} x[j]\right\} = \sum_{i=1}^{n} \sum_{j=1}^{n+m} E\left\{x[i] x[j]\right\}$$

$$E\{x[i]x[j]\} = \begin{cases} 0, & \text{if } i \neq j \\ \sigma^2 & \text{if } i = j \end{cases} \longrightarrow R_y[n, m] = \min(n, n + m)\sigma^2$$

Autocorrelation Function

For a WSS random process, the autocorrelation function does not depend on the time index n, but only on the time separation m, hence:

$$R_x[m] = E\{x[n]x[n+m]\}$$

Properties:

- Even function: $R_x[-m] = R_x[m]$
- Mean power: $R_x[0] = E\{x^2[n]\}$
- Always peaks at the origin $R_x[0] \ge |R_x[m]|$

Autocorrelation Function

Proof of
$$R_{x}[0] \ge |R_{x}[m]|$$

$$E\{(x[n] \pm x[n+m])^{2}\} \ge 0$$

$$E\{(x[n])^{2}\} + E\{(x[n+m])^{2}\} \pm 2E\{x[n]x[n+m]\} \ge 0$$

$$2(R_{x}[0] \pm R_{x}[m]) \ge 0$$

$$R_{x}[0] \ge \pm R_{x}[m]$$

$$R_{x}[0] \ge |R_{x}[m]|$$

Sample Autocorrelation

Assuming ergodic WSS, a direct estimate of the autocorrelation is the sample autocorrelation

Given
$$x[n]$$
, for $n = 0, 1, \dots, N-1$

$$\hat{R}_{x}[m] = \frac{1}{N - m - 1} \sum_{n=0}^{N - m - 1} x[n]x[n + m]$$

Note that correlation is convolution with opposite sign!

Examples

EEG: α , β , δ , and θ Waves

Brain Waves: EEG Tracings

Eight Channels of EEG

The subject displays alpha rhythm.

Auto-Correlation (p4)

Cross-correlation Function

If two processes are jointly WSS, the expected value of the product of a random variable from one random process with a time-shifted, random variable from a different random process

$$R_{xy}[m] = E\{x[n]y[n+m]\}$$

Properties:

$$R_{xy}[-m] = R_{yx}[m]$$

$$R_{x}[0]R_{y}[0] \geq \left| R_{xy}[m] \right|^{2}$$

Eight Channels of EEG

The subject displays alpha rhythm.

Cross-Correlation (p3 and p4)

Random Processes & LTI Systems

What can we say about y[n]?

a random process

Random Sequences & LTI Systems

Acknowledgements

- Chapter 11 RANDOM SIGNALS: BASIC PROPERTIES. Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.
- John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.