13 - (UART) Olá Você!

Rafael Corsi - rafael.corsi@insper.edu.br Abril - 2017

Introdução

Conunicação Digital

Figura 1:

 Quais são os principais protocolos de comunicação entre dispositivos de um PC?

Figura 2: usb

Serialização

Figura 3: usb

Uso

- Comunicação serial é amplamente utilizada para interface entre dois dispositivos, normalmente referenciado como :
 - Machine Two Machine (m2m)
- Interface entre Sensores, atuadores e outras partes digitais do sistema.

UART (universal asynchronous receiver/transmitter)

UART (universal asynchronous receiver/transmitter)

UART (universal asynchronous receiver/transmitter)

- Protocolo utilizado amplamente em eletrônica embarcada
- Assíncrono
- Comunicação com dispositivos

UART

Figura 4: Protocolo UART

UART parâmetros

- Bits pro segundo (baudrate), típico : 1200, 2400, 4800, 9800, 19200, 38400, 57600, and 115200.
- Data: 8 ou 9 bits
- Paridade: 0 ou 1 bit
- Stop: 1 ou 2 bits

Classificação de comunicação Serial

Podemos classificar uma comunicação serial nas seguintes categorias :

- Assíncrona/Síncrona
- Half Duplex / Full Duplex
- Com/Sem controle de fluxo
- Multi mestre/ Multi escravo

XPLD

Debug

Using a UART to communicate with a PC via USB

Figura 5: Yiu, Joseph. pg. 46

Debug computação embarcada

Figura 6: SAME70-XPLD

(SAME70-XPLD User Guide, sec. 3.1)

 The SAME70-XPLD contains the Atmel Embedded Debugger (EDBG) for on-board debugging. The EDBG is a composite USB device of three interfaces: a debugger, Virtual COM Port, and a Data Gateway Interface (DGI).

EDGB

Figura 7: SAME70-XPLD EDBG

Figura 8: SAME70-XPLD EDBG

Tá mais qual ?

- Pinos
 - PB4
 - PA21

Figura 9: PB4 mux

Figura 10: PA21 mux

PIO?

Periféricos

Figura 11: PA21 mux

18

PIO?

Figura 12: PA21 mux

Periféricos

Periféricos UART

Existem dois periféricos no SAME70 que implementam a comunicação UART, são eles :

- Universal Synchronous Asynchronous Receiver Transceiver (USART)
- Universal Asynchronous Receiver Transmitter (UART)

Table 45-3. Peripheral IDs

Table 45-5. Tempheranibs		
Instance	ID	
USART0	13	
USART1	14	
USART2	15	

able 46-3. Peripheral IDs		
ID		
7		
8		
44		
45		
46		

Tá mais qual ?

- Pinos
 - PB4
 - PA21

Estão conectados ao USART1, entrada do mux D e A

Instance	Signal	I/O Line	Peripheral
USART0	CTS0	PB2	С
USART0	DCD0	PD0	D
USART0	DSR0	PD2	D
USART0	DTR0	PD1	D
USART0	RI0	PD3	D
USART0	RTS0	PB3	С
USART0	RXD0	PB0	С
USART0	SCK0	PB13	С
USART0	TXD0	PB1	С
USART1	CTS1	PA25	А
USART1	DCD1	PA26	А
USART1	DSR1	PA28	А
USART1	DTR1	PA27	А
USART1	LONCOL1	PA3	В
USART1	RI1	PA29	А
USART1	RTS1	PA24	А
USART1	RXD1	PA21	А
USART1	SCK1	PA23	А
USART1	TXD1	PB4	D
USART2	CTS2	PD19	В

Configuração

- Devemos configurar o periférico USART primeiramente para operar em modo serial Asynchronous
- Devemos configurar os parâmetros (baudrate/ paridade/ data/ stopbit)
- Devemos inicializar a transmissão e a recepção

Envio e recebimento

Os dados recebidos são salvo no registrador :

- USART Receive Holding Register (US RHR)
 - Pode ser acessado pela função :

Os dados a serem transmitidos devem ser salvo no registrador :

- USART Transmit Holding Register (US_THR)
 - pode ser acessado pela função :

Interrupção?

- Podemos configurar algumas interrupções no USART, são algumas delas elas :
 - RXRDY: RXRDY Interrupt Enable
 - TXRDY: TXRDY Interrupt Enable
 - OVRE: Overrun Error Interrupt Enable
 - FRAME: Framing Error Interrupt Enable
 - PARE: Parity Error Interrupt Enable
 - TIMEOUT: Time-out Interrupt Enable
 - TXEMPTY: TXEMPTY Interrupt Enable
- Podendo ser configurada pela função :

```
usart_enable_interrupt(USART_SERIAL, US_IER_RXRDY);
```