Chapter Sixteen

Managing Bond Portfolios

Interest Rate Risk

- We have seen already that bond prices and yields are inversely related, and we know that interest rates can fluctuate substantially.
- As interest rates rise and fall, bondholders experience capital losses and gains.
- These gains or losses make fixed-income investments risky, even if the coupon and principal payments are guaranteed.

Interest Rate Sensitivity (1 of 2)

Observations about the sensitivity of bond prices to changes in market interest rates:

- 1. Bond prices and yields are inversely related
- 2. An increase in a bond's yield to maturity results in a smaller price change than a decrease in yield of equal magnitude
- 3. Prices of long-term bonds tend to be more sensitive to interest rate changes than prices of short-term bonds

Interest Rate Sensitivity (2 of 2)

- 4. The sensitivity of bond prices to changes in yields increases at a decreasing rate as maturity increases
 - Although interest rate sensitivity generally increases with maturity, it does so less than proportionally as bond maturity increases.
- 5. Interest rate risk is inversely related to the bond's coupon rate
 - Prices of low-coupon bonds are more sensitive to changes in interest rates than prices of high-coupon bonds.
- 6. The sensitivity of a bond's price to a change in its yield is inversely related to the YTM at which the bond is currently selling

Change in Bond Price as a Function of Change in Yield to Maturity

Prices of 8% Coupon Bond v.s. Prices of Zero-Coupon Bond

Yield to Maturity (APR)	<i>T</i> = 1 Year	<i>T</i> = 10 Years	<i>T</i> = 20 Years
8%	1,000.00	1,000.00	1,000.00
9%	990.64	934.96	907.99
Fall in price (%)*	0.94%	6.50%	9.20%

^{*}Equals value of bond at a 9% yield to maturity divided by value of bond at (the original) 8% yield, minus 1.

Yield to Maturity (APR)	<i>T</i> = 1 Year	<i>T</i> = 10 Years	<i>T</i> = 20 Years
8%	924.56	456.39	208.29
9%	915.73	414.64	171.93
Fall in price (%)*	0.96%	9.15%	17.46%

^{*}Equals value of bond at a 9% yield to maturity divided by value of bond at (the original) 8% yield, minus 1.

Duration

Observations:

- for each maturity, the price of the zero-coupon bond falls by a greater proportional amount than the price of the 8% coupon bond.
- Because we know that long-term bonds are more sensitive to interest rate movements, the greater sensitivity of zeros-coupon bonds suggests that in some sense they must represent a longer-term investment than an equal-time-to-maturity coupon bond.

Duration

In fact, this insight about the *effective maturity* of a bond can be made mathematically precise.

- The 20-year 8% bond makes many coupon payments, most of which come years before the bond's maturity date.
- Each payment may be considered to have its own 'maturity'.
- The effective maturity of the bond is therefore some sort of average of the maturities of <u>all</u> the cash flows.
- The zero-coupon bond, by contrast, makes only one payment at maturity. Its time to maturity is, therefore, well defind.

Duration

- To deal with the ambiguity of the 'maturity' of a bond making many payments, we need a measure of the average maturity of the bond's promised cash flows.
- Macaulay's duration equals the weighted average of the times to each coupon or principal payment
 - The weight applied to each payment time is proportion of total value of bond accounted for by that payment (i.e., the PV of the payment divided by the bond price)
- Duration = Maturity for zero coupon bonds
- Duration < Maturity for coupon bonds

Duration Calculation

Duration calculation:

$$D = \sum_{t=1}^{T} t \times w_t$$

$$w_t = \frac{CF_t / (1+y)^t}{P}$$

 CF_t = Cash Flow at Time t

P =Price of Bond

y = Yield to Maturity

Duration Calculation

	А	В	С	D	E	F	G
1			Time until		PV of CF		Column (C)
2			Payment		(Discount rate =		times
3		Period	(Years)	Cash Flow	5% per period)	Weight*	Column (F)
4	A. 8% coupon bond	1	0.5	40	38.095	0.0395	0.0197
5		2	1.0	40	36.281	0.0376	0.0376
6		3	1.5	40	34.554	0.0358	0.0537
7		4	2.0	1040	<u>855.611</u>	<u>0.8871</u>	<u>1.7741</u>
8	Sum:				964.540	1.0000	1.8852
9							
10	B. Zero-coupon	1	0.5	0	0.000	0.0000	0.0000
11		2	1.0	0	0.000	0.0000	0.0000
12		3	1.5	0	0.000	0.0000	0.0000
13		4	2.0	1000	822.702	<u>1.0000</u>	2.0000
14	Sum:				822.702	1.0000	2.0000
15							
16	Semiannual int rate:	0.05					
17							
18	*Weight = Present val						

Spreadsheet 16.1

Calculating the duration of two bonds

Column sums subject to rounding error.

Interest Rate Risk

- Duration helps quantify the relationship that a bond's price sensitivity to interest rate changes increases with maturity.
 - Price change is proportional to duration

$$\frac{\Delta P}{P} = -D \times \left[\frac{\Delta (1+y)}{1+y} \right]$$

• Modified duration: $D^* = D/(1+y)$

$$\frac{\Delta P}{P} = -D^* \Delta y$$

Interest Rate Risk

Example 16.1 Duration and Interest Rate Risk

Consider the 2-year maturity, 8% coupon bond in Spreadsheet 16.1 making semiannual coupon payments and selling at a price of \$964.540, for a yield to maturity of 10%. The duration of this bond is 1.8852 years. For comparison, we will also consider a zero-coupon bond with maturity and duration of 1.8852 years. As we found in Spreadsheet 16.1, because the coupon bond makes payments semiannually, it is best to treat one "period" as a half-year. So the duration of each bond is $1.8852 \times 2 = 3.7704$ (semiannual) periods, with a per-period interest rate of 5%. The modified duration of each bond is therefore 3.7704/1.05 = 3.591 semiannual periods.

Suppose the semiannual interest rate increases from 5% to 5.01%. According to Equation 16.3, the bond prices should fall by

$$\Delta P/P = -D^*\Delta y = -3.591 \times .01\% = -.03591\%$$

Duration Rules

(1 of 2)

- Rule 1
 - The duration of a zero-coupon bond equals its time to maturity
- Rule 2
 - Holding maturity constant, a bond's duration is lower when the coupon rate is higher
- Rule 3
 - Holding the coupon rate constant, a bond's duration generally increases with its time to maturity

Duration Rules

(2 of 2)

- Rule 4
 - Holding other factors constant, the duration of a coupon bond is higher when the bond's yield to maturity is lower

- Rule 5
 - The duration of a level perpetuity is equal to:

$$\frac{1+y}{y}$$

Duration Rules

(2 of 2)

- Rule 5
 - The duration of a level perpetuity is equal to:

$$\frac{1+y}{y}$$

For example, at a 10% yield, the duration of a perpetuity that pays \$100 once a year forever is 1.1/0.1 = 11 years, but at an 8% yield it is 1.08/0.08 = 13.5 years.

Exercise

A 9-year bond has a yield of 10% and a duration of 7.194 years. If the market yield changes by 50 basis points, what is the percentage change in the bond's price?

Find the duration of a 6% coupon bond making *annual* coupon payments if it has three years until maturity and has a yield to maturity of 6%.