

Προσομοίωση βιολογικών νευρώνων σε συστήματα παράλληλης επεξεργασίας

Πρακτική άσκηση Στρατής Τσιρτσής

Περιεχόμενα

- 1. Εισαγωγή
- 2. Τεχνικές παράλληλου προγραμματισμού
- 3. Αλγόριθμος προσομοίωσης
- 4. Αποτελέσματα
- 5. Συμπεράσματα

Το φυσικό πρόβλημα

Συγχρονισμός σε συστήματα ταλαντωτών

Συγχρονισμός

Η δυνατότητα ενός συνόλου συζευγμένων ταλαντωτών να αποκτήσουν την ίδια συχνότητα ταλάντωσης.

Το φυσικό πρόβλημα

Χιμαιρικές καταστάσεις σε δίκτυα βιολογικών νευρώνων

Χιμαιρική κατάσταση

Η ταυτόχρονη ύπαρξη συγχρονισμένων και ασυγχρόνιστων περιοχών σε ένα σύνολο συζευγμένων ταλαντωτών.

Το μοντέλο Leaky Integrate-and-Fire

Δυναμικό μεμονωμένου νευρώνα

$$\frac{du(t)}{dt} = \mu - u(t)$$

Το μοντέλο Leaky Integrate-and-Fire

Δυναμικό μεμονωμένου νευρώνα

$$\frac{du(t)}{dt} = \mu - u(t)$$

Κατώφλι

$$\lim_{\varepsilon\to 0} u(t+\varepsilon) = 0, u \ge u_{th}$$

Το μοντέλο Leaky Integrate-and-Fire

Δυναμικό μεμονωμένου νευρώνα

$$\frac{du(t)}{dt} = \mu - u(t)$$

Κατώφλι

$$\lim_{\varepsilon\to 0} u(t+\varepsilon) = 0, u \ge u_{th}$$

Περίοδος εφησυχασμού

Το δυναμικό διατηρείται στο μηδέν για χρονικό διάστημα p_r .

Στοιχεία θεωρίας Το μοντέλο Leaky Integrate-and-Fire

Μη-Τοπική Συνδεσιμότητα

Γειτνίαση

Ο κάθε νευρώνας στο δισδιάστατο πλέγμα είναι συνδεδεμένος με τους νευρώνες σε ένα τετράγωνο πλευράς 2R+1 γύρω από αυτόν.

Μη-Τοπική Συνδεσιμότητα

Γειτνίαση

Ο κάθε νευρώνας στο δισδιάστατο πλέγμα είναι συνδεδεμένος με τους νευρώνες σε ένα τετράγωνο πλευράς 2R+1 γύρω από αυτόν.

Οριακές συνθήκες

Οι οριακές συνθήκες είναι τοροειδείς, δηλαδή συνεχίζουν από τη μία πλευρά του πλέγματος κυκλικά στην απέναντι πλευρά.

Στοιχεία θεωρίας Μη-Τοπική Συνδεσιμότητα

Γειτνίαση

Τοροειδείς Οριακές Συνθήκες

Νευρώνες LIF με Μη-Τοπική Συνδεσιμότητα

Διαφορική εξίσωση

$$\frac{du_{ij}(t)}{dt} = \mu - u_{ij}(t) + \frac{\sigma}{|N_{ij}| - 1} \sum_{(k,l) \in N_{ij}} (u_{ij}(t) - u_{kl}(t)), \forall (i,j) \in [1,N]^2$$

Περιορισμοί

- $\lim_{\varepsilon \to 0} u_{ij}(t+\varepsilon) = 0$, $u \ge u_{th}$
- Περίοδος εφησυχασμού p_r

Χιμαιρικές καταστάσεις Μοντέλο LIF με Μη-Τοπική Συνδεσιμότητα

Περιεχόμενα

- 1. Εισαγωγή
- 2. Τεχνικές παράλληλου προγραμματισμού
- 3. Αλγόριθμος προσομοίωσης
- 4. Αποτελέσματα
- 5. Συμπεράσματο

Μοντέλα παραλληλισμού

Σειριακό μοντέλο εκτέλεσης

Μοντέλα παραλληλισμού

Παραλληλισμός επιπέδου διεργασιών

Μοντέλα παραλληλισμού

Παραλληλισμός επιπέδου νημάτων

Τεχνικές παράλληλου προγραμματισμού Προγραμματιστικά περιβάλλοντα

Επιγραμματικά

- POSIX Threads
- OpenMP
- CUDA

Περιεχόμενα

- 1. Εισαγωγή
- 2. Τεχνικές παράλληλου προγραμματισμοί
- 3. Αλγόριθμος προσομοίωσης
- 4. Αποτελέσματα
- Συμπεράσματο

Αλγόριθμος προσομοίωσης

Μέθοδος Euler

Μαθηματικές εκφράσεις

$$u_{n+1} = u_n + h \cdot f(t_n, u_n)$$

$$f(t_n, u_{ij}(t_n)) = \mu - u_{ij}(t_n) + \frac{\sigma}{|N_{ij}| - 1} \sum_{(k,l) \in N_{ij}} (u_{ij}(t_n) - u_{kl}(t_n))$$

Κώδικας

```
unext[i][j]=u[i][j]+dt*(mi-u[i][j]+sumCoeff*sumVar);
```

Αλγόριθμος προσομοίωσης

Υπολογισμός αθροίσματος

Μαθηματική έκφραση

$$\sum_{(k,l)\in N_{ij}}(u_{ij}(t)-u_{kl}(t))$$

Κώδικας

```
sumVar=0.0;
iLeftCorner=N+i-R;
jLeftCorner=N+j-R;
for (k=iLeftCorner; k<iLeftCorner+2*R+1; k++){
  for (l=jLeftCorner; l<jLeftCorner+2*R+1; l++){
    sumVar+=(u[i][j]-u[k%N][l%N]);
  }
}</pre>
```

Αλγόριθμος προσομοίωσης Άλλα βήματα

Επιγραμματικά

- Κατώφλι
- Περίοδος εφησυχασμού

Παραλληλοποίηση

PThreads

Χρησιμότητα

Βασικό εργαλείο χαμηλού επιπέδου για την υλοποίηση παραλληλισμού νημάτων

Στρατηγική

- Στατική ανάθεση ισάριθμων γραμμών ανά νήμα
- Συγχρονισμός μεταξύ νημάτων

Παραλληλοποίηση OpenMP

Χρησιμότητα

Εύχρηστο εργαλείο υψηλού επιπέδου για την υλοποίηση παραλληλισμού νημάτων

Στρατηγική

- Προσωρινή δημιουργία συνόλου νημάτων
- Ανάθεση νευρώνων δυναμικά στα υπάρχοντα νήματα

Παραλληλοποίηση CUDA

Χρησιμότητα

Εργαλείο παραλληλοποίησης με χρήση της κάρτας γραφικών ως μέσο υπολογισμού

Στρατηγική

Απλοϊκή ανάθεση των 10000 νευρώνων σε 100 blocks των 100 threads

Περιεχόμενα

- 1. Εισαγωγή
- 2. Τεχνικές παράλληλου προγραμματισμοί
- 3. Αλγόριθμος προσομοίωσης
- 4. Αποτελέσματα
- 5. Συμπεράσματο

Παλιό πρόγραμμα - Baseline

Με πίνακα γειτνίασης. Πολυπλοκότητα επανάληψης: $\mathcal{O}(N^4)$.

Παλιό πρόγραμμα - Baseline

Με πίνακα γειτνίασης. Πολυπλοκότητα επανάληψης: $\mathcal{O}(N^4)$.

Νέο πρόγραμμα

Με άμεση χρήση δεικτών των γειτόνων κάθε νευρώνα. Πολυπλοκότητα επανάληψης: $O(N^2R^2)$.

Παλιό πρόγραμμα - Baseline

Με πίνακα γειτνίασης. Πολυπλοκότητα επανάληψης: $\mathcal{O}(N^4)$.

Νέο πρόγραμμα

Με άμεση χρήση δεικτών των γειτόνων κάθε νευρώνα. Πολυπλοκότητα επανάληψης: $\mathcal{O}(N^2R^2)$.

Θεωρητική βελτίωση για N=100, R=22

Παλιός αριθμός υπολογισμών: N²

Νέος αριθμός υπολογισμών: $(2R + 1)^2$

Βελτίωση: $\frac{N^2}{(2R+1)^2}$ ≈ 5 (τάξη μεγέθους)

Επιτάχυνση 8 ×

Παραλληλοποίηση με PThreads & OpenMP

Παράμετροι προσομοίωσης

Παράμετρος	Τιμή
Μέγεθος διάστασης <i>Ν</i>	100
Ακτίνα αλληλεπίδρασης R	22
Συντελεστής σύζευξης <i>σ</i>	0.7
Περίοδος εφησυχασμού p_r	0.22T _s
Χρονικό βήμα <i>dt</i>	0.001
Αριθμός επαναλήψεων It	2000000
Αριθμός πυρήνων (Τοπικά)	2 4 5
Αριθμός πυρήνων (Άρης)	2 4 5 10 20 25 50

Παραλληλοποίηση με PThreads & OpenMP Σύγκριση αποτελεσμάτων (Τοπικά)

Παραλληλοποίηση με PThreads & OpenMP Παρατηρήσεις

Κόστος συγχρονισμού

Μείωση χρονικής απόδοσης για μικρό αριθμό πυρήνων λόγω των αναγκών του συγχρονισμού στο PThreads και της συνεχούς δημιουργίας νέων threads στο OpenMP.

Παραλληλοποίηση με PThreads & OpenMP Παρατηρήσεις

Κόστος συγχρονισμού

Μείωση χρονικής απόδοσης για μικρό αριθμό πυρήνων λόγω των αναγκών του συγχρονισμού στο PThreads και της συνεχούς δημιουργίας νέων threads στο OpenMP.

Πλεονέκτημα δυναμικής δρομολόγησης

Μη αποδοτική δρομολόγηση του PThreads λόγω της περιόδου εφησυχασμού.

Παραλληλοποίηση με PThreads & OpenMP Σύγκριση αποτελεσμάτων (Τοπικα vs Άρης)

Παραλληλοποίηση με PThreads & OpenMP Σύγκριση αποτελεσμάτων (Άρης)

Παραλληλοποίηση με PThreads & OpenMP Αναλυτική συμπεριφορά OpenMP

Παραλληλοποίηση με CUDA και αποτελέσματα Ιδιότητες CUDA

Επεξεργαστική ισχύς

Μεγάλος αριθμός πυρήνων σε σχέση με τις κλασικές CPU. Στην κάρτα του εργαστηρίου, 1664 πυρήνες.

Παραλληλοποίηση με CUDA και αποτελέσματα Ιδιότητες CUDA

Επεξεργαστική ισχύς

Μεγάλος αριθμός πυρήνων σε σχέση με τις κλασικές CPU. Στην κάρτα του εργαστηρίου, 1664 πυρήνες.

Δυσκολία υλοποίησης

Απαιτεί καλή γνώση των μηχανισμών του hardware.

Παραλληλοποίηση με CUDA και αποτελέσματα Συνολική σύγκριση προγραμματιστικών περιβαλλόντων

Περιεχόμενα

- 1. Εισαγωγή
- 2. Τεχνικές παράλληλου προγραμματισμοί
- 3. Αλγόριθμος προσομοίωσης
- 4. Αποτελέσματα
- 5. Συμπεράσματα

Θετικά αποτελέσματα

OpenMP

Συνδυασμός ευκολίας υλοποίησης και καλής χρονικής απόδοσης.

CUDA

Μεγαλύτερη χρονική απόδοση από τις άλλες μεθόδους ακόμα και με την απλοϊκή στρατηγική διαμοιρασμού των εργασιών.

Εμπόδια

Pthreads

Συνδυασμός κακής χρονικής απόδοσης και δυσκολίας υλοποίησης.

Ανοικτά προβλήματα

Γενίκευση

Προσομοίωση άλλων μοντέλων πέρα από το LIF και πιο περίπλοκων τοπολογιών.

Ανοικτά προβλήματα

Γενίκευση

Προσομοίωση άλλων μοντέλων πέρα από το LIF και πιο περίπλοκων τοπολογιών.

Στρατηγική CUDA

Εύρεση βέλτιστου διαμοιρασμού εργασιών στους διαθέσιμους πυρήνες.

Ανοικτά προβλήματα

Γενίκευση

Προσομοίωση άλλων μοντέλων πέρα από το LIF και πιο περίπλοκων τοπολογιών.

Στρατηγική CUDA

Εύρεση βέλτιστου διαμοιρασμού εργασιών στους διαθέσιμους πυρήνες.

Κλιμάκωση CUDA

Εκτέλεση προγράμματος CUDA στον Άρη με πολλαπλά στιγμιότυπα ή εκτέλεση ενός στιγμιοτύπου σε πολλαπλά GPU nodes.

