

Algorytmy geometryczne

Sprawozdanie 1 | Predykaty Geometryczne

Paweł Fornagiel | Informatyka rok II | Grupa 1

Data Wykonania: 14.10.2024 | Data Oddania: 31.10.2024

1. Opis ćwiczenia i realizacja

1.1. Informacje wstępne

Celem ćwiczenia jest implementacja podstawowych klasyfikacji położenia punktów względem prostej w zależności od ustalonej tolerancji uznania odległości za równą zeru, metody obliczania wyznacznika oraz użytej precyzji typów liczbowych dla 4 zdefiniowanych zbiorów punktów o równomiernym rozkładzie, tj.:

- 1. **Zestaw A** 10^5 punktów na płaszczyźnie $[-1000, 1000]^2$
- 2. **Zestaw B** 10^5 punktów na płaszczyźnie $\left[-10^{14}, 10^{14}\right]^2$
- 3. **Zestaw C** 1000 punktów leżących na okręgu w układzie współrzędnych o środku O=(0,0) i promieniu R=100
- 4. **Zestaw D** 1000 punktów o współrzędnych niezależnych z przedziału [-1000, 1000] leżących na prostej zdefiniowanej przez wektor (a, b), gdzie a = [-1.0, 0.0], b = [1.0, 0.1]

1.2. Generowanie punktów

Równomierny rozkład punktów został zrealizowany za pomocą metody random.uniform biblioteki numpy, generującej liczby typu float64 z zadanego zakresu domkniętego. Dodatkowo, każdy zestaw punktów został wygenerowany używając typów liczbowych float64 i float32 w celu analizy ich doboru wpływu na wyniki. Aby uzyskać powtarzalność wyników ustawiono wartość random. seed biblioteki numpy na stałą wartość.

Punkty położone na okręgu w *Zestawie C* zostały wygenerowane używając funkcji trygonometrycznych korzystając z parametrycznego równania okręgu.

```
1| angles = np.random.uniform(0, 2*np.pi, n)
2| x = R * np.cos(angles) + 0[0]
3| y = R * np.sin(angles) + 0[1]
4| tuples = [(x[i], y[i]) for i in range(n)]
```

Punkty położone na prostej w *Zestawie D* zostały wygenerowane używając równania parametrycznego prostej przechodzącej przez dwa punkty *a* i *b* w przestrzeni dwuwymiarowej.

```
1| a1,a2 = a
2| b1,b2 = b
2| v = (a1-b1,a2-b2)
3| x_normalised_lower_bound = (x_lower_bound-a[0])/abs(v[0])
4| x_normalised_upper_bound = (x_upper_bound-a[0])/abs(v[0])
5| points = np.random.uniform(x_normalised_lower_bound,x_normalised_upper_bound,n)
6| tuples = [(a1 + point * v[0], a2 + point * v[1]) for point in points]
```

1.3. Obliczanie wyznacznika

Kategoryzacja położenia punktów względem prostej była realizowana za pomocą wyznacznika macierzy zawierającej współrzędne punktów a i b należących do prostej oraz punktu c będącego przedmiotem kwalifikacji. Metody obliczania wyznaczników dla poszczególnych funkcji opisane są w Tabela 1

Nazwa funkcji	Metoda obliczenia		
	Reguła Sarrusa dla		
mat_det_3x3	$\det(a,b,c) = egin{bmatrix} a_x & a_y & 1 \ b_x & b_y & 1 \ c_x & c_y & 1 \end{bmatrix}$		
	Reguła Sarrusa dla		
mat_det_2x2	$\det(a,b,c) = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}$		
mat_det_3x3_lib	Wykorzystanie implementacji w bibliotece numpy		
mat_det_2x2_lib	Wykorzystanie implementacji w bibliotece numpy		

Tabela 1 : Metody obliczania wyznacznika

Kategoryzację punktów umożliwiała funkcja categorize_points, która dla kolekcji współrzędnych przechowywanych w obiekcie DataFrame biblioteki pandas stosuje opisane wyżej metody i zwraca obiekt DataFrame, w którym do każdego punktu przypisana jest cecha category przyjmująca wartości odpowiadające kwalifikacji punktu zależnie od wyniku.

1.4. Tolerancja zera

Wynik był uznawany za zero przyrównując jego wartość bezwzględną do zmiennej epsilon o następujących wartościach:

0 10 ⁻⁸	10-10	10-12	10-14
--------------------	-------	-------	-------

1.5. Uzyskiwanie danych i wizualizacja

Dane dla każdego z zestawów zostały wygenerowane dla wszystkich kombinacji następujących cech: metody obliczania wyznacznika, tolerancji zera, typu liczbowego. Łącznie podejście to dało 40 przypadków dla każdego z zestawów. Informacje o zastosowanych parametrach podczas generacji oraz ilości punktów, które przyjęły daną wartość category, zostały zapisane w plikach CSV w katalogu data. Nazwy plików odpowiadają nazwą poszczególnych zbiorów.

Do wizualizacji wygenerowanych danych posłużyła biblioteka Seaborn. Wszystkie wykresy zostały uzyskane używając metody jointplot z typem wizualizacji scatter, pozwalając dodatkowo na uzyskanie wykresów gęstości oraz histogramów rozmieszczenia punktów. Kwalifikacjom punktów na wykresach odpowiadają kolory:

- Zielony oznaczenie na wykresach odpowiadające punktom zakwalifikowanym, jako leżące na prostej
- Niebieski oznaczanie na wykresach odpowiadające punktom leżącym po lewej stronie prostej
- Pomarańczowy oznaczenie na wykresach odpowiadające punktom leżącym po prawej stronie prostej

Do osi każdego z wykresów zostały dodane wykresy gęstości odzwierciedlający liczebność punktów na obejmowanym przedziale. Wykresy zostały zapisane w plikach JPG w katalogu plots. Nazwa każdego z plików odpowiada parametrom z jakimi został wygenerowany wykres.

2. Dane techniczne

Zadanie zostało przeprowadzone z użyciem narzędzi o następujących parametrach:

- Komputer HP EliteBook 840 G6:
 - ► System operacyjny: Windows 11 x64
 - ► Procesor Intel(R) Core(TM) i5-8365U CPU 1.60GHz 1.90 GHz
 - ► Pamięć RAM: 8GB
- Środowisko: Jupyter Notebook
- Język: Python 3.9.20
- Biblioteki języka: Numpy, Seaborn, Pandas, Matplotlib

3. Analiza Wyników

3.1. Zestaw A

W *Zestawie A*, niezależnie od parametrów generowania danych, kategoryzacja punktów była identyczna. Liczba punktów w każdej z kategorii przedstawia Tabela 2 oraz Wykres 1.

Liczba punktów	Liczba punktów	Liczba punktów
po lewej stronie prostej	na prostej	po prawej stronie prostej
50302	0	49698

Tabela 2 : Wyniki kategoryzacji punktów Zestawu A

Wykres 1 : A float32 1e-14 mat_det_3x3_lib Przykładowy wykres rozkładu punktów *Zestawu A*

3.2. Zestaw B

3.2.1. Omówienie wyników

W Zestawie B precyzja typu zmiennoprzecinkowego nie miała wpływ na wyniki. W przeciwieństwie do Zestawu A metoda obliczania wyznacznika miała marginalny wpływ na liczbę punktów przydzielonych do odpowiednich kategorii. Wystąpiły również pojedyńcze punkty, które zostały zakwalifikowane jako leżące na prostej przy użyciu metody obliczania wyznacznika mat_det_2x2 dla epsilon $\geq 10^{-14}$. Przez nieznaczne różnice w kwalifikacji punktów, różnice między wykresami nie są zauważalne. Przykładowe wyniki kategoryzacji są przedstawione w Tabela 3 oraz Wykres 2

Precyzja typu float	Epsilon	Metoda obliczania wyznacznika	Liczba punktów po lewej stronie prostej	Liczba punktów na prostej	Liczba punktów po prawej stronie prostej
float64	1e-14	mat_det_2x2	50300	8	49692
float64	1e-14	mat_det_2x2_lib	50302	0	49698
float64	1e-14	mat_det_3x3	50304	0	49696
float64	1e-14	mat_det_3x3_lib	50304	0	49696
float32	1e-14	mat_det_2x2	50299	11	49690
float32	1e-14	mat_det_2x2_lib	50302	0	49698
float32	1e-14	mat_det_3x3	50304	0	49696
float32	1e-14	mat_det_3x3_lib	50304	0	49696

Tabela 3 : Wyniki kategoryzacji Zestawu B dla epsilon= 10^{-14}

Wykres 2 : B float32 1e-14 mat_det_2x2 Przykładowy wykres rozkładu punktów *Zestawu B*

3.2.2. Analiza zakwalifikowanych punktów

Punkty, które zostały uznane jako leżące na proste, zostały w każdym przypadku zostały zakwalifikowane używając metody obliczania wyznacznika mat_det_2x2 dla wszystkich dokładności

 ${\tt Eps}{\ge}~10^{-14},$ różniąc się jedynie precyzją kwalifikacji. Punkty te zostały przedstawione w poniższej Tabela 4 oraz na wykresie Wykres 3.

Mimo, że punkty znajdują się w pobliżu prostej, ręczna weryfikacja ich przynależności wykazała, że ich odległość od prostej jest większa niż dowolna z przyjętych precyzji Eps. Wskazuje to prawdopodobnie na mniejszą precyzję kwalifikacji punktów używając metody mat_det_2x2 względem pozostałych metod.

Współrzędna X	Współrzędna Y	Precyzja typu float
-99550446485504.00	-4973350879232.00	float32
-95395370301686.34	-4760374840241.67	float64, float32
-91521813667435.31	-4556439929295.75	float64, float32
-91016212250624.00	-4560953802752.00	float64, float32
-61373260235653.51	-3070303412621.33	float32
59903653111930.81	2989497329631.28	float64, float32
70668089830303.72	3548766641817.48	float64, float32
79277612364346.72	3954381882519.00	float64, float32
80103709691155.47	4002107667469.69	float64, float32
83403429491424.22	4202409245064.83	float64
89794268889088.00	4495321858048.00	float32
91209653551104.00	4556835520512.00	float32

Tabela 4 : Punkty Zestawu B zakwalifikowane jako leżące na prostej

Wykres 3 : Wizualizacja punktów z Tabela 4

3.3. Zestaw C

Podobnie jak w Zestawie A, w Zestawie C niezależnie od parametrów generowania danych, kategoryzacja punktów była identyczna. Liczba punktów w każdej z kategorii przedstawia Tabela 5 oraz Wykres 4.

Liczba punktów	Liczba punktów	Liczba punktów
po lewej stronie prostej	na prostej	po prawej stronie prostej
507	0	493

Tabela 5 : Wyniki kategoryzacji punktów Zestawu C

Wykres 4: C float64 1e-12 mat det 3x3

3.4. Zestaw D

W Zestawie D występuje duża rozbieżność w kwalifikacji punktów dla różnych doborów parametrów testowych, mimo że teoretycznie każdy z punktów został wygenerowany na prostej. Wyniki przedstawione są w Tabela 6.

Własne implementacje metody obliczania wyznacznika (mat det 2x2, mat det 3x3) w znacznie większej liczbie kategoryzowały punkty jako leżące na prostej w porównaniu z implementacjami bibliotecznymi (mat det 2x2 lib, mat det 3x3 lib), co widoczne jest szczególnie dla epsilon=0. Przykładem są Wykres 9 oraz Wykres 10.

Precyzja liczby zmiennoprzecinkowej w sposób znaczący wpływała na grupowanie danych. Typ float64 w znacząco większej liczbie uznawał przynależność punktu do prostej niż float32 w każdym z przypadków testowych. Przykładem są Wykres 5 i Wykres 6

Tolerancja zera epsilon miała wpływ na wyniki w następujący sposób:

- epsilon = 0, w żadnym z testowanych przypadków nie uznano, że wszystkie z punktów znajdują się na prostej. Pozytywnego grupowania dokonywały jedynie metody implementacji obliczania wyznacznika mat det 2x2 oraz met det 3x3.
- epsilon= 10^{-14} , jedyną metodą uznającą przynależność wszystkich punktów do prostej była met det 3x3 (precyzja float64). Wyznaczniki 3x3 zdecydowanie częściej przydzielały punktom kategorie Middle.
- epsilon= 10^{-12} , obydwie metody obliczania wyznacznika 3x3 przypisały przynależność do prostej dla całego zbioru (precyzja float64). Porównanie wyznacznika 3x3 i 2x2 widoczne jest na Wykres 7 oraz Wykres 8.
- epsilon= 10^{-10} i epsilon= 10^{-8} , dla obydwu przypadków wyniki są zbliżone, każdy z wyznaczników w precyzji float64 kwalifikował cały zbiór jako leżący na prostej.

Precyzja typu float	Epsilon	Metoda obliczania wyznacznika	Liczba punktów po lewej stronie prostej	Liczba punktów na prostej	Liczba punktów po prawej stronie prostej
float64	1e-08	mat_det_2x2	0	1000	0
float64	1e-08	mat_det_2x2_lib	0	1000	0
float64	1e-08	mat_det_3x3	0	1000	0
float64	1e-08	mat_det_3x3_lib	0	1000	0
float64	1e-10	mat_det_2x2	0	1000	0
float64	1e-10	mat_det_2x2_lib	0	1000	0
float64	1e-10	mat_det_3x3	0	1000	0
float64	1e-10	mat_det_3x3_lib	0	1000	0
float64	1e-12	mat_det_2x2	88	828	84
float64	1e-12	mat_det_2x2_lib	128	744	128
float64	1e-12	mat_det_3x3	0	1000	0
float64	1e-12	mat_det_3x3_lib	0	1000	0
float64	1e-14	mat_det_2x2	146	719	135
float64	1e-14	mat_det_2x2_lib	452	98	450
float64	1e-14	mat_det_3x3	0	1000	0
float64	1e-14	mat_det_3x3_lib	34	932	34
float64	0.0	mat_det_2x2	154	704	142
float64	0.0	mat_det_2x2_lib	494	0	506
float64	0.0	mat_det_3x3	314	306	380
float64	0.0	mat_det_3x3_lib	476	0	524
float32	1e-08	mat_det_2x2	420	188	392
float32	1e-08	mat_det_2x2_lib	420	188	392
float32	1e-08	mat_det_3x3	420	188	392
float32	1e-08	mat_det_3x3_lib	420	188	392
float32	1e-10	mat_det_2x2	422	185	393
float32	1e-10	mat_det_2x2_lib	422	185	393
float32	1e-10	mat_det_3x3	422	185	393
float32	1e-10	mat_det_3x3_lib	422	185	393
float32	1e-12	mat_det_2x2	422	185	393
float32	1e-12	mat_det_2x2_lib	438	139	423
float32	1e-12	mat_det_3x3	422	185	393
float32	1e-12	mat_det_3x3_lib	422	185	393
float32	1e-14	mat_det_2x2	431	165	404
float32	1e-14	mat_det_2x2_lib	499	21	480
float32	1e-14	mat_det_3x3	422	185	393
float32	1e-14	mat_det_3x3_lib	428	171	401
float32	0.0	mat_det_2x2	431	164	405
float32	0.0	mat_det_2x2_lib	507	0	493
float32	0.0	mat_det_3x3	485	44	471
float32	0.0	mat_det_3x3_lib	509	0	491

Tabela 6 : Wyniki kategoryzacji $Z\!e\!stawu\,D$

Wykres 9 : D float64 1e-14 mat_det_2x2_lib

500

1000

-20

-40 -60

-1000

-500

60 - 40 - 20 - -20 - -40 - -500 0 500 1000

Wykres 10 : D float64 1e-14 mat_det_2x2

4. Wnioski

Na podstawie przeprowadzonego eksperymentu można wyciągnąć następujące wnioski:

- Stabilność klasyfikacji dla zestawów losowych: Dla zestawów A i C, rozkład klasyfikacji punktów pozostawał niezmienny niezależnie od użytych parametrów. Oznacza to, że generowanie punktów z losowego rozkładu w płaszczyźnie jest mniej podatne na wpływ zmiennych, takich jak precyzja liczbowa czy tolerancja zera.
- Wpływ parametrów na zestaw punktów na prostej: W przypadku punktów leżących na prostej (*Zestaw D*) zauważalny był znaczny wpływ doboru metod wyznaczania wyznaczników oraz tolerancji zera na końcowe wyniki klasyfikacji. Dodatkowo typ danych (float64, float32) istotnie wpływał na rezultaty, zwłaszcza przy niższych wartościach tolerancji, co potwierdza wyraźną zależność między precyzją obliczeń a dokładnością klasyfikacji.
- Efektywność bibliotecznych implementacji wyznacznika: Zaimplementowane metody wyznacznika (szczególnie mat_det_2x2 i mat_det_3x3) lepiej klasyfikowały punkty na prostej niż ich biblioteczne odpowiedniki dla mniejszych wartości epsilon w pryzpadku *Zestawu D*, lecz nie były precyzyjne w przypadku pojedyńczych punktów *Zestawu B*. Biblioteczne implementacje okazały się mniej precyzyjne w rozpoznawaniu położenia punktów dokładnie na prostej w *Zestawie D* co sugeruje, że zależnie od sytuacji manualnie dopasowane algorytmy mogą oferować lepszą dokładność niż gotowe funkcje i vice versa.

9