

Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA QUÍMICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA MODELO 2017

Duração da prova: 120 minutos

Nome:			
B.I. / Passaporte N.º	Emitido por:	Validade:	/

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos que tenham obtido aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das notas aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Só se consideram os cursos que previamente tenham sido objeto de homologação pelo conselho técnico científico.
- Indique em todas as folhas o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação <u>deverão estar desligados</u>. A utilização deste equipamento implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- Grupo 2 Um problema de matemática.
- **Grupo 3 -** Três questões de resposta múltipla de física.
- **Grupo 4** Um problema de física.
- **Grupo 5** Cinco questões de resposta múltipla enquadradas nos conteúdos do curso.
- Grupo 6 Um problema no âmbito do curso.
- **Grupo 7** Questão para desenvolvimento de assunto de cultura científica na área do curso.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

Considere a função real de variável real $f(x) = e^x + x - 1$.

1.	A equação da ret	a tangente ao gráf	ico da função	$f \operatorname{em} x = 0 \operatorname{\'e}$:
----	------------------	--------------------	---------------	--

- \Box (A) y = 2x + 2
- $\square (B) \frac{y+2}{2} = x$
- \square (C) $x-2=\frac{1}{2}(y-1)=2-z$
- \square (D) $(x, y) = (-1,4) + k(1,2), k \in \mathbb{R}$
- \square (E) y = 2x
- 2. O valor do $\lim_{x\to 0} \frac{f(x)}{x}$ é:
 - □ (A) 1
 - \square (B) 0
 - \square (C) + ∞
 - □ (D) 2
 - \square (E) $-\infty$
- **3.** Quantos números naturais de três algarismos diferentes se podem escrever, não utilizando o algarismo 2 nem o algarismo 5?
 - □ (A) 256
 - □ (B) 278
 - □ (C) 286
 - □ (D) 294
 - □ (E) 336

(Cotação: 2,0 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere a função $g(x) = \frac{e^{x^2 + x}}{2x + 1}$, definida em $\mathbb{R} \setminus \left\{ -\frac{1}{2} \right\}$.

- a) Mostre que $g'(x) = \frac{((2x+1)^2-2)e^{x^2+x}}{(2x+1)^2}$.
- b) Determine, caso existam, os zeros de g'.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Indique <u>as respostas corretas</u> do seguinte modo ⊠.

1. Um corpo, inicialmente na origem de um sistema de eixos, é sujeito a um movimento retilíneo e a sua velocidade em função do tempo está indicada no gráfico.

Diga qual das afirmações é verdadeira:

- ☐ (A) O corpo permaneceu parado no intervalo de tempo [2,4] s
- \square (B) No instante t = 5 s o corpo encontra-se de novo na posição de onde partiu.
- ☐ (C) A aceleração do corpo é nula no intervalo de tempo [8,10] s
- ☐ (D) Ao fim dos primeiros 5 segundos, o corpo percorreu a distância de 100 m
- ☐ (E) O movimento do corpo nunca é retardado

2. Um homem, uma ave e um inseto deslocam-se com velocidades de módulos $v_{\rm H} = 3,6~{\rm km\cdot h}^{-1}$, $v_{\rm A} = 30~{\rm m\cdot min}^{-1}$ e $v_{\rm I} = 60~{\rm cm\cdot s}^{-1}$, respetivamente. Essas velocidades satisfazem a relação:

- $\square (A) v_{I} > v_{H} > v_{A}$
- \square (B) $v_{A} > v_{I} > v_{H}$
- \square (C) $v_{\rm H} > v_{\rm A} > v_{\rm I}$
- $\square (D) v_A > v_H > v_I$
- $\square (E) v_{H} > v_{I} > v_{A}$

3. A figura representa a trajetória de uma partícula que se desloca no sentido de A para E, sem nunca inverter o sentido do movimento, passando por vários pontos onde estão representados vetores da velocidade \vec{v} e da força resultante \vec{F} a que está sujeito.

Em qual dos pontos esses vetores podem representar corretamente as grandezas referidas:

- (A) ponto A
- ☐ (B) ponto B
- \square (C) ponto C
- (D) ponto D
- \square (E) ponto E

(Cotação: 2,0 valores)

Uma pessoa puxa uma caixa ao longo de uma rampa, exercendo uma força F constante de intensidade 100 N. A caixa, de massa $m = 2 \,\mathrm{kg}$, desloca-se com velocidade v constante, percorrendo, no plano inclinado, uma distância de 1 m. Considere $g = 10 \,\mathrm{m\cdot s}^{-2}$.

Determine:

- a) o trabalho realizado pela força F.
- b) a variação da energia cinética sofrida pelo corpo.
- c) a variação da energia potencial sofrida pelo corpo.

(Cotação total: 3 valores; cotação parcial: 0,6 valores por questão; por cada resposta errada: -1/5 do valor)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

1. Indique qual a afirmação correta:	
☐ (A) Uma solução muito ácida ter	n pH = 12
☐ (B) Para acidificar uma solução ¡	oodemos adicionar hidróxido de sódio (NaOH)
☐ (C) Uma solução muito ácida ter	n pH = 2
☐ (D) Para acidificar uma solução	podemos adicionar cloreto de sódio (NaCl)
☐ (E) Uma solução neutra tem pH	= 0
2. A figura A representa:	
☐ (A) Um hidrocarboneto	
☐ (B) Um álcool	0
☐ (C) Um ácido	H ₂ C—C
☐ (D) Uma cetona	ОН
☐ (E) Um éter	Figura A
3. A representação simbólica NH ₃ indi	ca que:
☐ (A) Uma mole de moléculas de	amoníaco tem $6,022 \times 10^{23}$ átomos de hidrogénio
☐ (B) Uma mole de moléculas de	amoníaco tem $18,066 \times 10^{23}$ átomos de azoto
☐ (C) Uma mole de moléculas de a	moníaco tem $6,022 \times 10^{23}$ átomos de azoto
☐ (D) Duas moles de moléculas de	amoníaco têm $6,022 \times 10^{23}$ átomos de azoto
☐ (E) No amoníaco o número de	átomos de hidrogénio é quatro vezes superior ao número d
átomos de azoto	

4. A espécie ¹² ₆ X tem	4 . A	espécie	12 <i>X</i>	tem
---	--------------	---------	-------------	-----

☐ (A) 12 protões, 12 neutrões e 12 eletrões
☐ (B) 6 protões, 12 neutrões e 6 eletrões
☐ (C) 12 protões, 6 neutrões e 6 eletrões
□ (D) 6 protões, 6 neutrões e 12 eletrões
☐ (E) 6 protões, 6 neutrões e 6 eletrões
Considere a seguinte representação de Lewis, H··C::C··H . Esta representação co

5.	Considere a seguinte representação de Lewis, H··C::C··H . Esta representação corresponde a:
	☐ (A) Uma molécula que possui uma ligação covalente tripla e duas ligações covalentes simples
	☐ (B) Um átomo metálico
	☐ (C) Uma molécula que tem apenas uma ligação covalente simples
	☐ (D) Uma molécula que tem uma ligação iónica
	☐ (E) Uma molécula que tem cinco ligações covalentes simples

(Cotação: 3 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere a seguinte equação química:

$$P_4$$
 (s) + Cl_2 (g) \rightarrow PCl_3 (l)

- a) Acerte a equação química.
- b) Depois de devidamente acertada, faça a leitura quantitativa da equação química.
- c) A reação química é heterogénea ou homogénea?
- d) Sendo a reação completa e ocorrendo num reator de 2 L, calcule a concentração (mol/L) de produto formado se reagirem 3 moles de P₄.

CC / BI / Passaporte N.º

Grupo 7

(Cotação: 4 valores)

A segurança é fundamental num laboratório químico, por ser um local de trabalho com potenciais riscos de acidente. Indique os riscos a que pode estar sujeito num laboratório químico. Discuta ainda as normas básicas de segurança, a importância da sinalética no laboratório, da rotulagem dos produtos químicos e do uso de equipamento de proteção.

Escreva entre 10 a 15 lin	nhas.		