# Praktikum 4 – Versuch 402: Quantelung von Energie

Jonas Wortmann<br/>1\* and Angelo Brade<br/>1\*

<sup>1\*</sup>Rheinische Friedrich-Wilhelms-Universität, Bonn.

\*Corresponding author(s). E-mail(s): s02jwort@uni-bonn.de; s72abrad@uni-bonn.de;

# 1 Einleitung

Elektronen emittieren bzw. absorbieren beim Übergang zwischen Orbitalen Photonen mit einer diskreten Energie. Diese Energie ist gequantelt in Vielfache des Planck'schen Wirkungsquantums h. Um die Größe der Quantelung zu bestimmen wird der Photoeffekt und die Messung der Balmer-Serie von Hg verwendet.

## 2 Photoelektrische Bestimmung von h.

## 2.1 Experimenteller Aufbau

Der experimentelle Aufbau ist in Abb. (1) zu sehen. Die Hg-Lampe diente als Lichtquelle. Mit der Blende und der Linse wurde die Intensität und Breite des Lichtstrahls so eingestellt, dass ein fokussierter Punkt auf der Photokathode zu sehen war. Dabei wurde darauf geachtet, dass der Lichtstrahl nicht die Anode berührte. Zur Vermeidung von Streulicht wurde über die Kathode-Anode-Anordnung eine Blende gestülpt, mit einem Rohrausschnitt, welcher auf das Filterrad zeigte. Mit Hilfe des Filterrades wählte man verschiedene Wellenlängen zur Beobachtung aus.

Das Gegenfeld konnte mit einer separaten Spannung eingestellt und variiert werden. Da die Spannung, die für das Gegenfeld zur Verfügung stand, bis zu 12 V ausgeben kann, wurde diese mit einem Spannungsteiler auf  $U' = \frac{R_1}{R_1 + R_2} U = \frac{100 \,\Omega}{100 \,\Omega + 333 \,\Omega} \,12 V = 2.77 \,\mathrm{V}$  gedrosselt.



Abbildung 1 Experimenteller Aufbau zum Photoeffekt.

#### 2.2 Theoretischer Hintergrund

Das Fermi-Niveau beschreibt das höchste noch besetzte Energieniveau in einem Atom, welches aufgrund des Pauli-Prinzips noch besetzt werden darf. Die Austrittsarbeit ist die Arbeit die benötigt wird, um ein Elektron aus diesem Energieniveau zu heben und vom dem Atoms zu lösen. Für verschiedene Atome ist dieses Level, wegen ihrer unterschiedlichen Elektronanzahl, nicht gleich. Makroskopisch zeigt sich dies in unterschiedlichen Austrittsarbeiten für verschiedene Materialien, wie z.B. für die Anode und die Kathode im experimentellen Aufbau.

Solche Energieniveaus können mit dem Bänderschema verdeutlicht werden. Eine mögliche Anordnung ist in Abb. (2) gezeigt. Die gestrichelten Linien unten mit den schrägen Linien darunter geben die jeweiligen Fermi-Niveaus an.  $W_{\rm K}$  und  $W_{\rm A}$  geben die Austrittsarbeit an. Die alleinstehende gestrichelte Linie ist das Vakuumniveau.

Werden Anode und Kathode miteinander verbunden, so gleichen sich ihre FERMI-Niveaus aus und es entsteht eine Potentialdifferenz von  $U_{\rm KA}$ 

zum Vakuumsniveau zwischen Anode und Kathode. Wird eine Spannung zwischen Anode und Kathode aufgebaut, so verschieben sich die Fermi-Niveaus und es baut sich eine weitere Potentialdifferenz  $U_{\rm G}$  auf.

Trifft ein Photon auf die Kathode, so lässt sich folgende Gleichung zwischen der Energie des Photons und der Energie des Elektrons aufstellen, mit  $eU_0$  der kinetischen Energie der Elektronen

$$\Leftrightarrow E_{\gamma} = h\nu = eU_0 - eU_{KA} + W_K = E_{e^-}$$
 (1)

$$\Leftrightarrow = eU_0 - (W_K - W_A) + W_K \tag{2}$$

$$\Leftrightarrow = eU_0 + W_A \qquad . \quad (3)$$



**Abbildung 2** Bänderschema der Anode und Kathode bei anlegen einer äußeren Spannung.[1]

# 2.3 Durchführung & Auswertung

Die Messung des Photostroms und des Gegenfeldes erfolgte über zwei DMMs. Jede Messung wurde zwei mal durchgeführt und jeweils der Mittelwert verwendet, da die Intensität der Hg-Lampe schwankt.

Die Spannung des Gegenfeldes wurde für alle Interferenzfilter (305 nm, 365 nm, 436 nm, 546 nm und 578 nm) von der maximalen Spannung ( $\approx 2.77 \, \mathrm{V}$ ) bis zur minimalen Spannung ( $\approx 0.0006 \, \mathrm{V}$ ) variiert und der Photostrom gemessen. Der Anodenstrom  $I_0$ , der von der Anode zu Kathode fließt, wenn die Gegenspannung maximal ist, wurde jeweils gesondert gemessen, um diesen in der Auswertung von der Messung zu subtrahieren.

Bis zu einer gewissen Gegenfeldspannung  $U_G = U_0$  fließt kein Photostrom I; ab  $U_0$  fließt dieser mit einem quadratischen Zusammenhang zu  $U_G$ .

Für die Auswertung wird  $\sqrt{I-I_0}$  – der Photostrom I abzüglich  $I_0$  unter der Wurzel – gegen die Gegenfeldspannung  $U_G$  aufgetragen. Die Graphen finden sich im Appendix von Abb. (4) bis Abb. (8).

Ein Geradenfit wird für alle Messdaten, die im quadratischen Bereich liegen durchgeführt. Die Messpunkte, die kein quadratisches Verhalten zeigen, geben des Strom von der Anode zur Kathode an und werden nicht berücksichtigt.  $\chi^2$ /ddof ist für alle Geraden viel kleiner als der ideale Wert 1. Diese Diskrepanz ist hier nicht zu kleiner Fehler sondern einer Überfittung der Geraden zuzuordnen. Die Nullstelle der Fitgeraden liefert genau den Wert der Gegenspannung, bei der kein Photostrom fließt.

| $\lambda$        | $U_0$                    |
|------------------|--------------------------|
| $305\mathrm{nm}$ | -1.1806(93) V            |
| $365\mathrm{nm}$ | $-1.509(17) \mathrm{V}$  |
| $436\mathrm{nm}$ | $-0.951(11) \mathrm{V}$  |
| $546\mathrm{nm}$ | $-0.2615(57) \mathrm{V}$ |
| $578\mathrm{nm}$ | $-0.388(15) \mathrm{V}$  |

Trägt man diese Werte gegen die jeweilige Frequenz des Lichts auf, so lässt sich ein Geradenfit durchführen, dessen Steigung genau gleich dem PLANCK'schen Wirkungsquantum ist. Dieser Plot ist in Abb. (3) zu sehen.  $\chi^2$ /ddof ist viel größer als 1, weil sich die Fehler, durch die kleinen Messfehler, in der Fehlerfortpflanzung minimiert haben. Es ergibt sich ein Wert von

$$h = 0.0228(20) \times 10^{-15} \,\text{eVs.}$$
 (4)

Der aktuelle CODATA Wert (letzer Zugriff: 2024-11-23) ist

$$h' \approx 4.136 \times 10^{-15} \,\text{eVs.}$$
 (5)

Die Abweichung des gemessenen Werts liegt daher bei ca. 100%.

#### 3 Balmer-Serie



Abbildung 3 a

4 Appendix



Abbildung 4 a



Abbildung 5  $\,$ a



Abbildung 6 a



 ${\bf Abbildung}~{\bf 7}~~{\bf a}$ 



Abbildung 8 a

# Literatur

 $[1]\,$  Praktikumsleitung: P402 quantelung von energie. Universität Bonn(2016)