

Mathématiques et calculs 1 : Contrôle continu n°1 15 Octobre 2012

L1: Licence sciences et technologies, mention mathématiques, informatique et applications

Nombre de page de l'énoncé : 1. Durée 1h30.

NB: Ce sujet contient 5 exercices. Chaque résultat doit être démontré clairement. Tout document est interdit. Les calculatrices et les téléphones portables, même à titre d'horloge, sont également interdits.

Exercice 1

- 1) Mettre le nombre complexe $z = \frac{2}{1-i}$ sous forme algébrique.
- 2) Donner le module et l'argument de z. En déduire les racines carrées de z sous forme exponentielle.
- 3) Calculer les racines carrées de z sous forme algébrique.
- 4) En déduire les valeurs de $\cos(\pi/8)$, $\sin(\pi/8)$.

Exercice 2

NB : Les trois questions de cet exercice sont indépendantes.

- 1) Soit $\omega = e^{2i\pi/7}$. Que vaut $\omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 + \omega^7$?
- 2) Linéariser $\cos^5(\theta)$, c'est-à-dire l'exprimer en fonction des $\cos(k\theta)$ et $\sin(k\theta)$.
- 3) Exprimer $\cos(4\theta)$ et $\sin(4\theta)$ à l'aide de $\cos(\theta)$ et de $\sin(\theta)$ pour $\theta \in \mathbb{R}$ quelconque.

Exercice 3

Pour $\theta \in \mathbb{R}$ on pose $S(\theta) = \sin(\theta) + \sin(2\theta) + \sin(3\theta) + \sin(4\theta)$.

- 1) Calculer $1 + e^{i\theta} + e^{2i\theta} + e^{3i\theta} + e^{4i\theta}$ pour θ dans \mathbb{R} .
- 2) Que vaut $S(\theta)$ pour $\theta = 2k\pi$ avec $k \in \mathbb{Z}$? 3) Montrer que $S(\theta) = \frac{\sin(2\theta)\sin(5\theta/2)}{\sin(\theta/2)}$ pour $\theta \notin \{2k\pi \; ; \; k \in \mathbb{Z}\}.$
- 4) Question bonus : En déduire toutes les solutions $\theta \in \mathbb{R}$ de l'équation $S(\theta) = 0$.

Exercice 4

Calculer, si elles existent, les limites des suites suivantes :

1)
$$u_n = \frac{-2n^3 + n}{4n^3 - 7n^2 + 3}$$

1)
$$u_n = \frac{-2n^3 + n}{4n^3 - 7n^2 + 3}$$
 2) $v_n = \frac{\log(n) + \cos(3\sqrt{n})}{\sqrt{n} + (-1)^{n^2}}$

3)
$$w_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{2^k}$$
 4) $x_n = \frac{2^n((-1)^n + 2)}{n^4}$

4)
$$x_n = \frac{2^n((-1)^n + 2)}{n^4}$$

Exercice 5

Soit f la fonction de la variable réelle définie par $f(x) = \frac{1}{2-x}$.

- 1) Quel est le domaine de définition de f?
- 2) On définit la suite (u_n) par $u_0 = -1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n \leq 1$.
 - b) Montrer que (u_n) est croissante.
 - c) En déduire que (u_n) converge et calculer sa limite.
- 3) On définit la suite (v_n) par $v_0 = 3$ et $v_{n+1} = f(v_n)$.
 - a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, $v_{n+1} = u_n$.
 - b) Montrer que (v_n) converge et calculer sa limite.