Further topics in Linear Algebra

4433LALG3: Linear Algebra

Week 3, Lecture 12, Valente Ramírez

Mathematical & Statistical Methods group — Biometris, Wageningen University & Research

Overview

- Abstract vector spaces
- Norms
- Inner products

References:

■ 3Blue1Brown Ch.16

Section 1

Abstract vector spaces

Vector spaces

In this course, we have made extensive use of the vector notation $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$.

But we have also emphasized that the "coordinates" are just a name.

What the notation really means is that we should use the numbers v_i to combine certain basis vectors:

$$\mathbf{v}=v_1\mathbf{e}_1+\ldots+v_n\mathbf{e}_n$$
 or $\mathbf{v}=v_1\mathbf{b}_1+\ldots+v_n\mathbf{b}_n$ or \ldots something else?

Vector spaces

Definition

A **vector space** is a set V of "objects" (we will call them vectors) such that:

- We can add them: if $\mathbf{v}, \mathbf{w} \in V$, the operation $\mathbf{v} + \mathbf{w}$ makes sense
- We can re-scale them: if $\mathbf{v} \in V$ and $\alpha \in \mathbb{R}$, then $\alpha \mathbf{v}$ makes sense
- There is a special vector 0 that serves as "zero-vector"
- The above operations satisfy "the usual algebraic properties"

Vector spaces

Rules for vectors addition and scaling

$$1. \vec{\mathbf{u}} + (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = (\vec{\mathbf{u}} + \vec{\mathbf{v}}) + \vec{\mathbf{w}}$$

$$2.\vec{\mathbf{v}} + \vec{\mathbf{w}} = \vec{\mathbf{w}} + \vec{\mathbf{v}}$$

- 3. There is a vector **0** such that $\mathbf{0} + \vec{\mathbf{v}} = \vec{\mathbf{v}}$ for all $\vec{\mathbf{v}}$
- 4. For every vector $\vec{\mathbf{v}}$ there is a vector $-\vec{\mathbf{v}}$ so that $\vec{\mathbf{v}} + (-\vec{\mathbf{v}}) = \mathbf{0}$

$$5. a(b\vec{\mathbf{v}}) = (ab)\vec{\mathbf{v}}$$

$$6.1\vec{\mathbf{v}} = \vec{\mathbf{v}}$$

$$7. a(\vec{\mathbf{v}} + \vec{\mathbf{w}}) = a\vec{\mathbf{v}} + a\vec{\mathbf{w}}$$

$$8. (a+b)\vec{\mathbf{v}} = a\vec{\mathbf{v}} + b\vec{\mathbf{v}}$$

5

- 1. We can add and re-scale matrices.
 - The space Mat(m, n) of all $m \times n$ matrices is a vector space.
- 2. We can add and re-scale functions.
 - The space $\mathcal{C}^0(\mathbb{R})$ of all continuous functions $f \colon \mathbb{R} \to \mathbb{R}$ is a vector space.
- 3. We can add and re-scale random variables.
 - The space X of all random variables is a vector space.

Linear transformations

Definition

A transformation between vector spaces $T: V \to W$ is **linear** if:

- $T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2)$ for all $\mathbf{v}_1, \mathbf{v}_2 \in V$,
- $\blacksquare \ T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}) \ \text{ for all } \alpha \in \mathbb{R} \text{ and } \mathbf{v} \in V.$

Examples:

- 1. Transposition $\top \colon \mathrm{Mat}(m,n) \to \mathrm{Mat}(n,m)$ is a linear transformation.
- 2. Integration $\int_a^b : \mathcal{C}^0(\mathbb{R}) \to \mathbb{R}$ is a linear transformation.
- 3. Expectation $\mathbb{E} \colon \mathbb{X} \to \mathbb{R}$ is a linear transformation.

Basis and dimension

■ The following matrices form a **basis** for Mat(2,2):

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Therefore the **dimension** of Mat(2,2) is 4.

■ A **basis** for the space of *polynomial* functions is:

$$1, x, x^2, x^3, \dots$$

This space is infinite dimensional.

Subspaces

Definition

A linear subspace of a vector space V is a (non-empty) subset $S \subseteq V$ that is a vector space itself (i.e. with the operations inherited from V).

Examples:

- 1. The space of diagonal matrices is a subspace of Mat(n, n)
- 2. The space of differentiable functions is a subspace of $\mathcal{C}^0(\mathbb{R})$.
- 3. The space of variables X for which $\mathbb{E}(X) = 0$ is a subspace of \mathbb{X} .

Kernel and image

Consider the following linear transformation on $\mathcal{C}(\mathbb{R})$:

$$T \colon \mathcal{C}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$$
 such that $T(f(x)) = \frac{f(x) + f(-x)}{2}$.

■ The **kernel** (null space) of T is the space of all *odd functions*:

$$f(x)$$
 is odd if $f(-x) = -f(x)$.

■ The **image** (column space) of T is the space of all *even functions*:

$$g(x)$$
 is even if $g(-x) = g(x)$.

Eigenvalues and eigenvectors

Consider the derivative $\frac{d}{dx}$ as a linear transformation on the space of differentiable functions.

What are the eigenvalues and eigenvectors?

Set the usual equation: $\frac{d}{dx} f(x) = \lambda f(x)$.

- Any real number is an eigenvalue.
- The corresponding **eigenfunction** is $f(x) = e^{\lambda x}$.

Section 2

Norms

Norms

A norm is a way to measure the length (the size) of a vector.

This can be on \mathbb{R}^n or for an abstract vector space.

Depending on the situation, a particular way of measuring length might be more convenient than another.

If you are on \mathbb{R}^2 and can only move horizontally and/or vertically, you might want to measure length using:

$$\|\mathbf{x}\|_1 = |x_1| + |x_2|$$
 instead of $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2}$.

If you are dealing with observations from a $\mathcal{N}(\mathbf{0},\Sigma)$ -distribution, you should measure length using:

$$d_{\Sigma}(\mathbf{x}) = \sqrt{\mathbf{x}^{\top} \Sigma^{-1} \mathbf{x}}.$$

Norms

It's OK to measure length in some alternative way, as long as a few axioms are satisfied.

Definition

A **norm** in a vector space V is a function $F \colon V \to \mathbb{R}$ satisfying:

- $\blacksquare F(\mathbf{x}) \geq 0$
- $F(\mathbf{x}) = 0$ only if $\mathbf{x} = \mathbf{0}$
- $\blacksquare F(\alpha \mathbf{x}) = |\alpha| F(\mathbf{x})$
- $F(\mathbf{x} + \mathbf{y}) \le F(\mathbf{x}) + F(\mathbf{y})$

In practice, people write $\|\mathbf{x}\|_F$, or $\|\mathbf{x}\|_V$, or something similar. Sometimes we just write $\|\mathbf{x}\|$, if it is clear from the context **which** norm we are talking about.

There are many ways to measure how big a matrix is.

For example, consider $M \in Mat(m, n)$.

■ The *operator norm* is given by:

$$||M||_O = \max \left\{ \frac{||M\mathbf{x}||}{||\mathbf{x}||} \mid \mathbf{x} \neq \mathbf{0} \right\}.$$

■ The *spectral norm* is given by:

$$||M||_S = \sigma_{\max}(A)$$
, i.e. the largest singular value of A .

There are many ways to measure how big a continuous function is.

Consider $C^0([0,1])$, the space of continuous functions $f:[0,1]\to\mathbb{R}$.

■ The *uniform norm* is given by:

$$\|M\|_U = \max\left\{\,|f(x)| \quad \text{with} \quad x \in [0,1]\,\right\}.$$

■ The L^1 -norm is given by:

$$||f||_1 = \int_0^1 |f(x)| \, \mathrm{d}x.$$

■ The L^2 -norm is given by:

$$||f||_2 = \sqrt{\int_0^1 (f(x))^2 dx}.$$

Section 3

Inner products

Inner products

What about "alternative dot products"?

They also exist, and are called inner products.

Definition

An inner product on a vector space V is a map $\langle \ , \ \rangle \colon V \times V \to \mathbb{R}$ satisfying the following axioms:

- 1. It is symmetric
 - That is, $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$
- 2. It is positive-definite
 - $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$ for all \mathbf{v}
 - $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ only if $\mathbf{v} = \mathbf{0}$
- 3. It is bilinear
 - $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
 - $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle$

■ Let Q be a **positive-definite** symmetric matrix. Then Q defines an inner product on \mathbb{R}^n via:

$$\langle \mathbf{x}, \mathbf{y} \rangle_Q = \mathbf{x}^\top Q \mathbf{y}.$$

• On Mat(m, n) we have the inner product:

$$\langle A, B \rangle = \operatorname{tr}(A^{\top}B).$$

■ On $C^0([0,1])$ we have the inner product:

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x.$$

This last can be thought of as covariance between functions.

Induced norms

Remark

Every inner product induces a norm.

Indeed, if you have an inner product \langle , \rangle defined on V, you can set

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

If the axioms for inner products are satisfied, the axioms for norms are automatically satisfied as well.

However, not all norms come from an inner product!

Conclusion:

Inner products can provide a lot of additional structure on ${\cal V}$, which can be extremely useful.

Orthogonality

Consider $\mathcal{C}^0([0,1])$ again, with the inner product $\langle f,g\rangle=\int_0^1 f(x)g(x)\,\mathrm{d}x.$

The functions $\cos(2\pi x)$ and $\sin(2\pi x)$ are orthogonal, because

$$\int_0^1 \cos(2\pi x)\sin(2\pi x)\,\mathrm{d}x = 0.$$

In fact, the following functions form an orthogonal set:

- 1
- $\cos(2\pi nx), \text{ for } n = 1, 2, 3, \dots$
- \blacksquare $\sin(2\pi nx)$, for n = 1, 2, 3, ...

The **expansion** of a function $f \in \mathcal{C}^0([0,1])$ in terms of this orthogonal basis is called the **Fourier series** of f:

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(2\pi nx) + b_n \sin(2\pi nx)).$$

Section 4

Supplementary material

Examination material

From this lecture, the only exam material is:

■ The concept of an abstract vector space, and its subspaces

You are expected to be able to identify whether a given subset S of a vector space V is a linear subspace or not.

Example

Let \mathbf{x} be a fixed vector in \mathbb{R}^n . Consider $S = \{A \in \mathrm{Mat}(m,n) \mid A\mathbf{x} = \mathbf{0}\}$. Is this a linear subspace?

Let's see.

Consider two matrices $A, B \in S$, and $\alpha \in \mathbb{R}$.

We need to check whether A+B and αA are also in S.

- \blacksquare $(A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x} = \mathbf{0} + \mathbf{0} = \mathbf{0}$. Therefore, $A+B \in S$.
- \blacksquare $(\alpha A)\mathbf{x} = \alpha(A\mathbf{x}) = \alpha \mathbf{0} = \mathbf{0}$. So $\alpha A \in S$.

We conclude that S is indeed a subspace.

Example

Let $\lambda \neq 0$ and $\mathbf{x} \in \mathbb{R}^n$ be fixed. Consider $S = \{A \in \operatorname{Mat}(m,n) \mid A\mathbf{x} = \lambda \mathbf{x}\}$. Is this a linear subspace?

Let's see.

Consider two matrices $A, B \in S$, and $\alpha \in \mathbb{R}$.

We need to check whether A+B and αA are also in S.

■ $(A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x} = \lambda\mathbf{x} + \lambda\mathbf{x} = 2\lambda\mathbf{x}$. Because $\lambda \neq 0$, we get that $2\lambda \neq \lambda$. Therefore, $(A+B)\mathbf{x} \neq \lambda\mathbf{x}$.

We conclude that S is not a subspace.

Exercises

In each of the following cases, you are given a vector space V and $S \subseteq V$.

Is S a linear subspace of V?

- 1. V = Mat(n, n) and S is the subset of upper triangular matrices.
- 2. V = Mat(n, n) and S is the subset of matrices with zero determinant.
- 3. $V=\mathbb{X}$ and $S=\{X\in\mathbb{X}\,|\,\operatorname{Cov}(X,Y)=0\}$, Y a fixed random variable.
- 4. $V = \mathcal{C}^0([0,1])$ and $S = \{ f \in V \mid f(0) = 0 \}.$
- 5. $V = \mathcal{C}^0([0,1])$ and $S = \{ f \in V \mid \int_0^1 f(x) dx = 1 \}.$