Discrete Optimization 2010 Lecture 1 Introduction / Algorithms & Spanning Trees

Marc Uetz University of Twente

m.uetz@utwente.nl

Lecture 1: sheet 1 / 43

Marc Uetz

Outline

Introduction

2 Analysis of Algorithms

Minimum Spanning Trees

Lecture 1: sheet 2 / 43

Organization

Lectures

- lecture of 2×45 min. approx., maybe sometimes:
- discussion of homework exercises

Your Assignments

- Following the lectures
- Reading the literature
- Solving homework assignments (in teams of 2-3, please)
 - Hand-In (next Lecture) or email (by Monday 13:00)
 - Homework is corrected by TA (Ruben Hoeksma)
- Written exam

Lecture 1: sheet 3 / 43 Marc Uetz Discrete Optimization

Organization

Grading

- Homework exercises 40%
- Written exam 60%

Norm

• to pass, exam ≥ 5.5 and total grade ≥ 5.5

Online Material

http://www.math.utwente.nl/~uetzm/do/

Lecture 1: sheet 4 / 43 Marc Uetz Discrete Optimization

Literature

Reader, with selcted chapters from

- R. K. Ahuja, T. L. Magnanti and J. B. Orlin: Network Flows, Prentice Hall, 1993.
- Cook, W. J., W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial Optimization, Wiley, 1998.
- Cormen, T. H., C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press, 1990.
- U. Faigle, W. Kern, and G. Still: Algorithmic Principles of Mathematical Programming, Springer, 2002
- V. V. Vazirani, Approximation Algorithms, Springer, 2001.

For the reader, pay € 5,- in cash or transfer to account

ABN-AMRO bank (BIC: ABNANL2A)

Account nr. 405343663 (IBAN: NL33ABNA0405343663)

Reference: "OFI 500.30100, LNMB reader"

Lecture 1: sheet 5 / 43 Marc Uetz Discrete Optimization

Overview & Schedule (Preliminary)

Date	Session Topics
20.09.	Introduction, Minimum Spanning Trees
27.09.	Matroids, Shortest Path Algorithms
04.10.	Maximum Flow Algorithms
11.10.	Minimum Cost Flow Algorithms
18.10.	Matchings & Total Unimodularity
25.10.	Glimpse of Integer Programming
01.11.	P, NP, NP-completeness
08.11.	NP-complete problems
15.11.	Approximation Algorithms
22.12.	Randomized Algorithms & Derandomization
29.11.	Primal Dual Approximation Algorithms
06.12.	Approximation Schemes & Inapproximability
17.01.	Exam (Location & Time TBA), Utrecht

Discrete Optimization

Lecture 1: sheet 6 / 43 Marc Uetz

Outline

1 Introduction

- 2 Analysis of Algorithms
- Minimum Spanning Trees

Lecture 1: sheet 7 / 43

Optimization Problems

Definition

An instance I = (S, f) of an optimization problem P is

- S = set of solutions
- $f: S \to \Re$ objective function

Any $s \in S$ is a solution, and f(s) its value.

Definition

A solution s^* is an optimal solution for instance I = (S, f) if

$$f(s^*) \leq (\geq) f(s) \quad \forall s \in S.$$

Lecture 1: sheet 8 / 43

Optimization Problems

Definition

An optimization problem $P = \text{set of all instances } I \in P$ (sharing the same description)

Examples:

- Linear Programming instances: $c \in \mathbb{Q}^n, A \in \mathbb{Q}^{n \times m}, b \in \mathbb{Q}^m$
- MST Instances: edge-weighted graph G = (V, E, c)

Definition

A combinatorial (discrete) optimization problem P is an optimization problem, so that for any instance $I = (S, f) \in P$ the solution set S is finite (or at most countable)

Lecture 1: sheet 9 / 43 Marc Uetz Discrete Optimization

Example: Linear Programming a.k.a. LP

Each instance of LP (standard form) is given by

•
$$c \in \mathbb{Q}^n, A \in \mathbb{Q}^{n \times m}, b \in \mathbb{Q}^m$$

minimize
$$cx$$

subject to $Ax \le b$
 $x \ge 0$

- solutions $S = \{x \in \Re^n \mid x \ge 0, Ax \le b \}$
- values f(x) = cx for all $x \in S$

LP problem

Find solution $x \in S$ minimizing cx

Lecture 1: sheet 10 / 43 Marc Uetz Discrete Optimization

LP is a Combinatorial Problem

Suffices to consider finitely many solutions

- $S = \{\bullet\}$ = basic feasible solutions
 - = vertices of the polyhedron $\{x \in \Re^n \mid x \ge 0, Ax \le b \}$

Solved combinatorially by Dantzig's simplex algorithm (1949)

Lecture 1: sheet 11 / 43 Marc Uetz Discrete Optimization

Integer Programming a.k.a. IP

Just as LP, only restrict to x integer

Clearly: solutions set S finite (or, at most countable) by definition, as vertices in general not integer, not solved via LP

Lecture 1: sheet 12 / 43

Spanning Trees

Definition: Minimal connected subgraph of given G = (V, E)

Lecture 1: sheet 13 / 43

Minimum Spanning Tree a.k.a. MST

Each instance of MST is given by

An edge-weighted undirected graph G = (V, E, c) with

- V = set of vertices / nodes
- $E = \text{set of edges} \subseteq \{\{v, w\} \mid v, w \in V\}$
- edge costs c_e for all $e = \{v, w\} \in E$
- solutions $S = \{ T \subseteq E \mid T \text{ is a spanning tree } \}$
- values $f(T) = \sum_{e \in T} c_e$

MST problem

Find a minimum cost spanning tree T

Lecture 1: sheet 14 / 43 Marc Uetz Discrete Optimization

Algorithms

Definition

Informally: Set of rules specifying a computational procedure, where *rules* are arithmetic and logical instructions (such as :=, \pm , \cdot , /, \leq , AND, OR, IF, THEN, ...) which, given some initial state (input), terminate in some final state (output)

Etymology

Persian Al-Khwarizmi (780-850), father of Algebra, wrote "On Calculation with Hindu Numerals"; this was translated into latin "Algoritmi on...", later evolving into "algorithm" = "calculation method"

Lecture 1: sheet 15 / 43

Marc Uetz

Algorithm Design

Algorithm = think of a procedure that computes solutions to (combinatorial) problems

Main Issues

- Efficiency: How long does it take to compute a solution?
- Quality: Claims about the quality of the solution?

Possibilities for analyzing algorithms

- empirical
- average case
- worst case

Lecture 1: sheet 16 / 43 Marc Uetz Discrete Optimization

Why so Pessimistic (Worst Case)?

Empirical Analysis

- Computer dependent (Moore's Law: factor 2 per 18 months)
- Language dependent (C++, C#, Java, C, FORTRAN,...)
- Compiler & Programmer dependent (Code optimization,...)

Average case

- Distribution of problem instances?
- Difficult analytically

Worst Case

- Simple & sound statements: Performance guarantees!
- Downside: too pessimistic ("pathological instances")

Lecture 1: sheet 17 / 43 Marc Uetz Discrete Optimization

Computation Time of an Algorithm

Definition

The computation time of an algorithm is the number of basic instructions that the algorithm performs until termination.

Want ...

- asses computation time for problems, rather than instances
- focus only on behavior for large instances (size $\to \infty$)

Need to capture

- how to asses the problem size?
- 2 if size $\rightarrow \infty$, what computation time? (asymptotic analysis)

Lecture 1: sheet 18 / 43 Marc Uetz Discrete Optimization

Problem Size & Data Structures

bytes to represent the instance, depends on data structure

Example: Given a graph G = (V,E). |V| = n, |E| = m.

Adjacency matrix (a_{ii}) :

 $\left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$

Adjacency list L:

$$L_1 o \{2,3\} \ L_2 o \{1,3,4\} \ L_3 o \{1,2\}$$

 $L_{\Delta} \rightarrow \{2\}$

n+2m = 12 bytes

Lecture 1: sheet 19 / 43

Marc Uetz

Why Data Structures Matter

Consider Problem "EDGE"

- Given graph G = (V, E), two vertices $i, j \in V$
- Question: Does edge $\{i, j\}$ exist?

```
Adjacency matrix A: If (a_{ij} == 1) return "yes"; else return "no"; one basic instruction only O(1)
```

```
Adjacency lists L: for all k \in L_i {
            if (k == j) return "yes"; }
            return "no";
            at most |L_i| + 2 basic instructions O(n)
```

Side remark: Why would I ever use adjacency lists then?

Lecture 1: sheet 20 / 43 Marc Uetz Discrete Optimization

Asymptotic upper bounds (Big-O)

Definition

$$g(n) \in O(f(n)) \Leftrightarrow$$
 There is constant $c > 0$ and $n_0 \in \mathbb{N}$ so that $g(n) \le c \cdot f(n) \ \forall \ n \ge n_0$

Lecture 1: sheet 21 / 43

Asymptotic lower bounds (big- Ω)

Definition

$$g(n) \in \Omega(f(n)) \Leftrightarrow$$
 There is constant $c > 0$ and $n_0 \in \mathbb{N}$ so that $g(n) \geq c \cdot f(n) \ \forall \ n \geq n_0$

Lecture 1: sheet 22 / 43

Asymptotic equivalent (big- Θ)

Definition

$$g(n) \in \Theta(f(n)) \Leftrightarrow g(n) \in O(f(n)) \text{ and } g(n) \in \Omega(f(n))$$

Lecture 1: sheet 23 / 43

Marc Uetz

Asymptotically Insignificant (little-o)

Definition

$$g(n) \in o(f(n)) \Leftrightarrow \forall \text{ constants } c > 0 \text{ there is } n_0 \in \mathbb{N} \text{ so that}$$
 $g(n) < c \cdot f(n) \ \forall \ n \geq n_0$

Lecture 1: sheet 24 / 43

Marc Uetz

Examples (you may try to prove them all)

$$-7n^{2} + 1000n \in O(n^{2})$$
 $-1000n \in O(n^{2})$
 $-n \log n \in O(n^{2})$
 $-n! \in \Omega(2^{n})$
 $-7n^{2} + 1000n \in \Theta(n^{2})$
 $-\log n \in o(n^{\epsilon}) \text{ for all } \epsilon > 0$
 $-n \log n \in o(n^{2})$
 $-n^{k} \in o(c^{n}) \text{ for all } k \text{ and all } c > 1$

Lecture 1: sheet 25 / 43 Discrete Optimization

Notation for Functions $f \in \dots$

O(1) constant

 $O(\log n)$ logarithmic

 $O([\log n]^c)$ polylogarithmic

o(n) sublinear

O(n) linear

 $O(n\log n)$ quasilinear

 $O(n^2)$ quadratic

 $O(n^c), c > 0$ polynomial

 $\Omega(c^n)$ exponential

 $\Omega(n!)$ factorial or combinatorial

Lecture 1: sheet 26 / 43

Marc Uetz

Encoding Length of a Problem

Example: Given graph G = (V, E) with |V| = n and |E| = m

Adjacency matrix

Encoding length $\ell(G) \in \Theta(n^2)$

 $\left[\frac{1}{2}n^2\right]$

Adjacency lists

Encoding length
$$\ell(G) \in \Theta(n+m)$$

[n+2m]

Notice: both encoding length of problems and computation time of algorithms depend on data structures! Is that a problem?

Lecture 1: sheet 27 / 43 Marc Uetz

Polynomial Equivalence

Given a combinatorial optimization problem P and two different encodings L_1 and L_2 (with encoding lengths ℓ_i , i=1,2)

Definition

Encodings L_1 and L_2 are polynomially equivalent if there are two polynomial functions p_1 and p_2 such that, for all instances I,

- $\ell_1(I) \leq p_1(\ell_2(I))$
- $\ell_2(I) \leq p_2(\ell_1(I))$

Theorem

Adjacency lists and adjacency matrix are polynomially equivalent encodings for graphs. (Proof: Exercise)

Lecture 1: sheet 28 / 43

Encoding Numbers

Theorem

Given any (natural) number n, its encoding in binary is $\Theta(\log n)$

Recall, 1=1, 2=10, 3=11, 4=100, 5 = 101, ...,
$$2^k = 1 \underbrace{0000}_{k \text{ times}},...$$

Proof: Let k be such that

$$2^{k-1} \le n < 2^k$$

then binary has exactly $k = \lfloor \log_2 n \rfloor + 1 \in \Theta(\log_2 n)$ digits

Remark

All k-ary encodings are polynomially equivalent with binary, as long as $k \in O(1)$ and k > 1, because $\log_k n = \log_2 n / \log_2 k$

Lecture 1: sheet 29 / 43

Marc Uetz

Polynomial Time Algorithms

Definition

Given a combinatorial optimization problem P and encoding L. Algorithm A is a polynomial time algorithm for P if

- for any instance $I \in P$, A terminates with a solution s of I
- there is a polynomial function p such that, if $n_I = |L(I)|$ is the encoding length of I, then

$$t_A(I) \in O(p(n_I)) \quad \forall \ I \in P$$

where $t_A(I)$ is the number of basic instructions of A on I

- computation time is then said to be in O(p(n))
- A solves problem P if solution s is optimal for all $I \in P$
- encodings don't matter, as long as polynomially equivalent

Lecture 1: sheet 30 / 43 Marc Uetz Discrete Optimization

Remarks on Polytime Algorithms

The definition

- addresses the worst case (true for all instances)
- is relative to problem size, as it should be
- is asymptotic (of interest is size $\rightarrow \infty$)
- is insensitive to equivalent problem encodings

Question

Why care about polynomial time algorithms anyhow?

Lecture 1: sheet 31 / 43

Marc Uetz

Answer 1

ask him: Jack Edmonds (Photo from 2009)

Lecture 1: sheet 32 / 43 Marc Uetz Discrete Optimization

Answer 2: Computation Times on 2.2 GHz

Say, we can do $2.2 \cdot 10^9$ operations per second (2.2 GHz)

	algorithm A's computation time ^a , for $t_A(n) =$					
n	log n	n log n	n ²	n ³	2 ⁿ	
16	≈0	≈0	≈0	0.002 ms	0.03 ms	
64	≈0	≈0	0.002 ms	0.12 ms	266 y	
256	≈0	$0.001~\mathrm{ms}$	0.06 ms	7.6 ms	$1.6\cdot 10^{60}$ y	
4.096	≈0	0.02 ms	7.6 ms	31 s	???	
65.536	≈0	0.47 ms	2 s	78 h	???	
16.7 Mio	≈0	0.2 s	35 h	68066 y	???	

Lecture 1: sheet 33 / 43 Marc Uetz Discrete Optimization

^{*}s=second, ms=1/1000 s, h=hour, y=year

Outline

Introduction

2 Analysis of Algorithms

Minimum Spanning Trees

Lecture 1: sheet 34 / 43

Spanning Trees

 $T \subseteq E$ is a spanning tree for graph G = (V, E) if graph (V, T) is connected and acyclic.

- \Leftrightarrow graph (V,T) is connected/acyclic and |T|=|V|-1
- \Leftrightarrow in (V, T) there is a unique path between any two $v, w \in V$

Lecture 1: sheet 35 / 43

Minimum Spanning Trees (MST)

MST problem

Given an edge-weighted, connected, undirected graph G=(V,E,c), with |V|=n and |E|=m, find a minimum weight spanning tree (MST).

(cheapest connected acyclic subgraph)

Lecture 1: sheet 36 / 43

Marc Uetz

Spanning Trees and Cuts

Definitions

- For subset of nodes $W \subseteq V$, $\delta(W)$ denotes the cut induced by W: all edges "leaving" W $[\delta(W) = \delta(V \setminus W)]$
- Given a spanning tree T of G, let C(e) be the cut induced by deleting edge e from T

Lecture 1: sheet 37 / 43

Marc Uetz

The Cut Condition

Theorem

Given a graph G = (V, E) with edge costs c_e , $e \in E$, then a spanning tree $T \subseteq E$ is an MST if and only if

 $c_e \leq c_f$ for all edges $e \in T$ and all edges $f \in C(e)$.

(i.e., T has the cheapest connection for any cut)

Lecture 1: sheet 38 / 43

The Cut Condition

Proof

Lecture 1: sheet 39 / 43

The Path Condition

In a tree T, denote by $P_T(v, w)$ the (unique) path from v to w

Theorem (Exercise)

Given a graph G = (V, E) with edge costs c_e , $e \in E$, then a spanning tree $T \subseteq E$ is an MST if and only if

 $c_e \leq c_f$ for all edges $f = \{v, w\} \in E \setminus T$ and all edges $e \in P_T(v, w)$

This does not mean that $P_T(v, w)$ is a shortest (v, w)-path!

Lecture 1: sheet 40 / 43 Marc Uetz Discrete Optimization

Kruskal's Algorithm (1956)

Algorithm 1: Kruskal

```
input : G = (V, E, c)

output: T \subseteq E, minimum spanning tree of G

sort edges such that c_{e_1} \le \cdots \le c_{e_m};

T = \emptyset;

for (i = 1, \dots, m) do

if (T \cup e_i) is acyclic then

T = T \cup e_i;
```

Theorem

Kruskals algorithm solves MST problem in time O($m \log m + n^2$).

Lecture 1: sheet 41 / 43 Marc Uetz Discrete Optimization

Kruskal's Algorithm: Correctness

Proof that T is a tree

- resulting T is acyclic by definition
- for any $W\subseteq V$, T contains the cheapest edge from $\delta(W)$ (by the sorting), therefore T is connected $(T\cap\delta(W)\neq\emptyset)$

Proof that T is MST (using the path condition)

- any edge $f = \{v, w\}$ not added to T creates cycle, namely $\{v, w\} \cup P_T(v, w)$, in particular, all edges $e \in P_T(v, w)$ are already in T
- by the sorting of the edges $\Rightarrow c_f \geq c_e \ \forall e \in P_T(v, w)$

Lecture 1: sheet 42 / 43

Kruskal's Algorithm: Computation Time

To start with

- $O(m \log m)$ for sorting the c_e values (MergeSort)
- need to do m times: Is $T \cup e$ acyclic?, and if so, add e to T

We need a clever data structure!

Store & update to which component any node belongs:

- Initialize $x(v) = v \ \forall \ v \in V \ [n \text{ components}]$ O(n)
- m times we do for an edge $\{v, w\}$:
 - Check $(T \cup \{v, w\} \text{ acyclic}) \Leftrightarrow x(v) \neq x(w)$ O(1)
 - If yes, add $\{v, w\}$ to T [merge 2 components, n-1 times]: For all $i \in V$: If x(i) == x(w) let x(i) := x(v) O(n)

$$O(m \log m) + O(n) + mO(1) + (n-1)O(n) \in O(m \log m + n^2)$$

Lecture 1: sheet 43 / 43 Marc Uetz Discrete Optimization