Teil 5: ANOVA

Varianzanalyse

• In der vorherigen Lektion haben wir Z- und t-Verteilungen verwendet, um die Frage zu beantworten:

"Wie groß ist die Wahrscheinlichkeit, dass zwei Proben aus derselben

Population stammen?"

Varianzanalyse

- In dieser Lektion stellen wir eine neue Verteilung vor: die F-Verteilung
- Sie wird verwendet, um die Frage zu beantworten: "Wie groß ist die Wahrscheinlichkeit, dass zwei Stichproben aus Populationen mit derselben Varianz stammen?"

Varianzanalyse

- In dieser Lektion stellen wir eine neue Verteilung vor: die F-Verteilung
- Sie kann ebenfalls die Frage beantworten: "Wie groß ist die Wahrscheinlichkeit, dass drei oder mehr Stichproben aus der selben Population stammen?"

ANOVA Varianzanalyse

- In dem letzten Kapitel haben wir zwei Stichproben getestet, um zu sehen, ob sie wahrscheinlich von derselben Grundgesamtheit (parent population) stammen.
- Was wäre, wenn wir drei (oder mehr) Stichproben hätten?
- Könnten wir hier gleich vorgehen?

• Unsere Nullhypothese würde wie folgt aussehen:

$$H_0: \mu_A = \mu_B = \mu_C$$

• Wir könnten jedes Paar testen:

$$H_0$$
: $\mu_A = \mu_B$ $\alpha = 0.05$
 H_0 : $\mu_A = \mu_C$ $\alpha = 0.05$
 H_0 : $\mu_B = \mu_C$ $\alpha = 0.05$

• Das Problem ist, dass unser Konfidenzintervall zurückgeht:

$$H_0$$
: $\mu_A = \mu_B$ $\alpha = 0.05$
 H_0 : $\mu_A = \mu_C$ $\alpha = 0.05$
 H_0 : $\mu_B = \mu_C$ $\alpha = 0.05$

$$.95 \times .95 \times .95 = 0.857$$

85.7% confidence level

- Hier kommt ANOVA ins Spiel!
- Wir berechnen einen F-Wert und vergleichen ihn mit einem kritischen Wert, der durch unsere Freiheitsgrade bestimmt wird (die Anzahl der Gruppen und die Anzahl der Elemente in jeder Gruppe).

• Lass uns mit einigen Daten arbeiten:

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43

Kalkuliere zuerst das Stichprobenmittel

• Anschließend das Mittel über alle Gruppen

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

 $\mu_{A,B,C}$

ANOVA berücksichtigt zwei Arten von Varianz:

Zwischen Gruppen

wie weit die Gruppe von der Gesamtsumme abweicht

Innerhalb von Gruppen

wie weit einzelne Werte von ihrer jeweiligen Gruppe abweichen

• Der F-Wert, den wir zu berechnen versuchen, ist einfach das Verhältnis zwischen diesen beiden Varianzen!

$$F = \frac{Varianz\ zwischen\ den\ Gruppen}{Varianz\ innerhalb\ der\ Gruppe}$$

• Erinnern wir uns an die Gleichung für die Varianz:

$$s^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1} = \frac{SQ}{df}$$

• Hier ist $\Sigma(x-\bar{x})^2$ die "Summe der Quadrate" SQ und n-1 sind die "Freiheitsgrade" df

Somit wird die Formel für den F-Wert:

$$F = \frac{Varianz\ zwischen\ den\ Gruppen}{Varianz\ innerhalb\ der\ Gruppe} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

SSG = Sum of Squares Groups (quadratische Mittelwerte der Gruppen) SSE = Sum of Squares Error (gesamte Abweichung von den Mittelwerten in den Gruppen) df_{groups} = degrees of freedom [groups] Freiheitsgrade der Gruppen df_{error} = degrees of freedom [error] Freiheitsgrade des Fehlers

$$SSG = 420$$

 $\mu_{A,B,C}$

Quadratsumme Gruppen

$$(\mu_A - \mu_{TOT})^2 = (44 - 49)^2 = 25$$

$$(\mu_B - \mu_{TOT})^2 = (50 - 49)^2 = 1$$

$$(\mu_C - \mu_{TOT})^2 = (53 - 49)^2 = 16$$
42

Multipliziere mit der Anzahl der Elemente in jeder Gruppe:

$$42 \times 10 = 420$$

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

$$SSG = 420$$

 $df_{groups} = 2$

 $\mu_{A,B,C}$

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

		• •	1 .			
Lrai	\mathbf{n}	けっていつへ	\cap	(_rii	n	1
		itsgrad	י סו	OH U	IJ	JEII
			. •	O . O.	r	.

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

ΔΝΟΥΔ	Varianzanal	VCA
ANUVA	Vallalizatial	yse

SSG = 420	
$df_{groups} =$	2
SSE = 3300	

=49

 $\mu_{A,B,C}$

 μ_{TOT}

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

$(x_{\Delta}-\mu_{\Delta})^2$	$(x_{\Delta}-\mu_{\Delta})^2$	$(x_B-\mu_B)^2$	$(x_B-\mu_B)^2$	$(x_c-\mu_c)^2$	$(x_{c}-\mu_{c})^{2}$
49—	64	144	<u> 16</u>	9	1
256	121	529	36	100	0
64	25	361	361	25	100
1	25	196	1	1	144
16	441	49	49	16	100

1742

Quadratsumme Abweichungen

3300 **TOTAL**

496

1062

Freiheitsgrade Abweichungen

$$df_{error} = (n_{rows} - 1) * n_{groups}$$

= $(10 - 1) * 3$
= 27

SSG = 420
$df_{groups} = 2$
SSE = 3300
$df_{error} = 27$

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

$$SSG = 420$$

 $df_{groups} = 2$
 $SSE = 3300$
 $df_{error} = 27$

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

Setze nun alles in die Formel ein:

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{grror}}} = \frac{\frac{420}{2}}{\frac{3300}{27}} = \frac{210}{122.22} = 1.718$$

$\mu_{A,B,C}$	44
μ_{TOT}	49

ANOVA mit Excel Data Analysis

4	A	В	С	D	Е		Data Analysis				?	X
1	Anova: Single Factor											
2							Analysis Tools	5			ОК	
3	SUMMARY						Anova: Single			^	_	
4	Groups	Count	Sum	Average	Variance			Factor With Replica Factor Without Rep			Canc	el
5	GroupA	10	440	44	118		Correlation				<u>H</u> elp	0
6	GroupB	10	500	50	193.555556		Covariance Descriptive S	tatistics				
7	GroupC	10	530	53	55.11111111		Exponential S	Smoothing				
8							F-Test Two-S Fourier Analy	ample for Variance	es			
9							Histogram	313		~		
10	ANOVA					L						
11	Source of Variation	SS	df	MS	F	I	P-value	F crit				
12	Between Groups	420	2	210	1.718181818	0.1	198430533	3.354130829				
13	Within Groups	3300	27	122.2222								
14												
15	Total	3720	29									
16								_				

F-Verteilung

F-Verteilung

F-Verteilung

- In der F-Tabelle findest du den kritischen Wert
- Verwende eine Tabelle mit einer Konfidenz von 95%
- Finde den Zähler df
- Und den Nenner df

• kritischer Wert = 3,35

F-Werte in Excel

• In Microsoft Excel gibt die folgende Funktion einen F-Wert aus:

α	df1	df2	Formel	Output
0.05	2	27	=FINV(A2,B2,C2)	3.3541308285292

F-Werte in Python

```
>>> from scipy import stats
>>> stats.f.ppf(1-.05,dfn=2,dfd=27)
3.3541308285291986
```

• Erinnere dich an die Nullhypothese:

$$H_0: \mu_A = \mu_B = \mu_C$$

 Da der F-Wert kleiner ist als der kritische Wert (F_{critical})

40

verwerfen wir die Nullhypothese nicht!

- Um eine schnellere Zahlung von Rechnungen zu erhalten, führt ein Unternehmen zwei Rabattpläne ein
- Eine Gruppe von Kunden erhält 2% Rabatt, wenn sie ihre Rechnung vorzeitig bezahlen
- Einer anderen Gruppe wird 1% angeboten
- Eine dritte Kundengruppe erhält keine Vergünstigungen

- Die Ergebnisse sehen wie folgt aus:
- Können wir mit ANOVA herausfinden, ob die Angebote schnellere Zahlungen zur Folge haben?

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21

1. Berechne die Mittelwerte

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
$\mu_{2,1,0}$	12	17	16
μ_{TOT}	15		

SSG = 70

ANOVA Übung #1

2. Ermittle die Quadratsumme Gruppen

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

$$(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$$

$$(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$$

$$= 14$$

Multipliziere mit der Anzahl der Items in jeder Gruppe:

$$14 \times 5 = 70$$

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
$\mu_{2,1,0}$	12	17	16
μ_{TOT}	15		

3. Freiheitsgrade Gruppen

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21
12	17	16
15		
	11 16 9 14 10	16 15 9 23 14 10 10 16

SSG = 70 $df_{groups} = 2$ SSE = 198

•	4.	Quad	lratsumme	A	bweic	hungen
---	----	------	-----------	----------	-------	--------

$(x_2-\mu_2)^2$	$(x_1-\mu_1)^2$	$(x_0-\mu_0)^2$
1	16	4
16	4	25
9	36	4
4	49	0
4	1	25
34	106	58
	TOTAL	198

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
$\mu_{2,1,0}$	12	17	16
μ_{TOT}	15		

$$SSG = 70$$

 $df_{groups} = 2$
 $SSE = 198$
 $df_{error} = 12$

 $\mu_{2.1}$

5. Freiheitsgrade Abweichungen

$$df_{error} = (n_{rows} - 1) * n_{groups}$$

= $(5 - 1) * 3$
= 12

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
,0	12	17	16
Т	15		

SSG = 70 $df_{groups} = 2$ SSE = 198 $df_{error} = 12$

6. Berechne nun den F-Wert

$$F = \frac{\frac{SSG}{dfgroups}}{\frac{SSE}{dferror}} = \frac{\frac{70}{2}}{\frac{198}{12}} = \frac{35}{16.5} = 2.121$$

2% disc 1% disc no disc

7. Finde F_{critical}: 3.885

μ_{TOT}	15

ANOVA

• Da F links von F_{critical} liegt

verwerfen wir die Nullhypothese nicht!

ANOVA

Smp To

Wir haben also nicht genug, um die Idee weiter zu verfolgen, dass sich mit unseren Rabatten etwas daran ändert, wie viele Tage die Kunden im Durschnitt zur Begleichung ihrer Rechnungen benötigen.

- In den vorherigen Beispielen verwendeten wir eine Ein-Wege-ANOVA, um eine unabhängige Variable zu testen.
- Für das Rechnungsproblem war die unabhängige Variable der angebotene Rabatt.
- Die abhängige Variable war die Zeit, die für die Zahlung benötigt wurde.

- Mit der Zwei-Wege-ANOVA können wir zwei unabhängige Variablen gleichzeitig testen
- Für das Rechnungsbeispiel könnten wir zusätzlich den fälligen Betrag berücksichtigen
- Wir haben zum Beispiel 3 Rechnungen für 50€, 3 Rechnungen für 100€ usw. und bieten verschiedene Anreize für jeden Betrag.

- Die resultierenden Daten könnten folgendermaßen aussehen:
- Hier wird jeder Zeilen- oder Eurobetrag als Block bezeichnet.
- Im Wesentlichen wollen wir jede Varianz der Blöcke isolieren und entfernen, um die Varianz in den Gruppen besser zu verstehen.

	2%	1%	no
	disc	disc	disc
€50	16	23	21
€100	14	21	16
€150	11	16	18
€200	10	15	14
€250	9	10	11

• Nun, wie gehen wir dabei vor?

	2%	1%	no
	disc	disc	disc
€50	16	23	21
€100	14	21	16
€150	11	16	18
€200	10	15	14
€250	9	10	11

- Das Ziel einer ANOVA ist es, verschiedene Aspekte der Gesamtvarianz zu trennen.
- In den vorherigen Beispielen hatten wir nur die
- Quadratsumme Gruppen (SSG)
- Quadratsumme Abweichungen (SSE) » innerhalb von Gruppen

» zwischen Gruppen

 Diese zwei Varianten SSG und SSE addieren sich zu unserer Gesamtvarianz auf Quadratsumme Total (SST)

- Quadratsumme Gruppen (SSG)
 » zwischen Gruppen
- Quadratsumme Abweichungen (SSE)» innerhalb von Gruppen

 Schauen wir uns die Varianzen zwischen den Zeilen bzw. Blöcken an

		Group 1	Group 2	
Block A		8	11	
Block B		10	12	
Block C		12	13	μ_{TOT}
	$\mu_{1.2}$	10	12	11

- Quadratsumme Gruppen (SSG)
- Quadratsumme Abweichungen (SSE)

- » zwischen Gruppen
- » innerhalb von Gruppen

 Zuerst kalkulieren wir den Mittelwert der Blöcke

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	- 9.5
Block B	10	12	— 11
Block C	12	13	_12.5
$\mu_{1,2}$	10	12	11

- Im Anschluss die
- Quadratsumme Blöcke (SSB)
- Quadratsumme Gruppen (SSG)
- Quadratsumme Abweichungen (SSE)

- » zwischen Blöcken
- » zwischen Gruppen
- » innerhalb von Gruppen

 ANOVA berücksichtigt immer noch die Beziehung zwischen der SSG und SSE.

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	- 9.5
Block B	10	12	— 11
Block C	12	13	_12.5
$\mu_{1,2}$	10	12	11

- Quadratsumme Blöcke (SSB)
- Quadratsumme Gruppen (SSG)
- Quadratsumme Abweichungen (SSE)

- » zwischen Blöcken
- » zwischen Gruppen
- » innerhalb von Gruppen

$$F = rac{Var.Between\ Groups}{Var.Within\ Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

 Durch die Berechnung des SSB entfernen wir einen Teil der Varianz in SSE

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	- 9.5
Block B	10	12	_ 11
Block C	12	13	_12.5
$\mu_{1,2}$	10	12	11

- Quadratsumme Blöcke (SSB)
- Quadratsumme Gruppen (SSG)
- Quadratsumme Abweichungen (SSE)

- » zwischen Blöcken
- » zwischen Gruppen
- » innerhalb von Gruppen

Quadratsumme Gruppen (SSG)

$$(\mu_1 - \mu_{TOT})^2 = (10 - 11)^2 = 1$$

 $(\mu_2 - \mu_{TOT})^2 = (12 - 11)^2 = 1$
 2

Multipliziert mit der Anzahl der Elemente in jeder Gruppe:

$$2 \times 3 = 6$$

		Group 1	Group 2	$\mu_{A,B,C}$
Block A		8	11	9.5
Block B		10	12	11
Block C		12	13	12.5
	$\mu_{1,2}$	10	12	11

$$SSG = 6$$

Quadratsumme Blöcke (SSB)

$$(\mu_A - \mu_{TOT})^2 = (9.5 - 11)^2 = 2.25$$

$$(\mu_B - \mu_{TOT})^2 = (11 - 11)^2 = 0$$

$$(\mu_C - \mu_{TOT})^2 = (12.5 - 11)^2 = 2.25$$

$$4.5$$

Multipliziere mit der Anzahl der Elemente in jedem Block:

$$4.5 \times 2 = 9$$

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	- 9.5
Block B	10	12	— 11
Block C	12	13	_12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$
$$SSB = 9$$

Quadratsumme Total (SST)

$$(8-11)^{2}+(11-11)^{2}+$$

$$(10-11)^{2}+(12-11)^{2}+$$

$$(12-11)^{2}+(13-11)^{2}=16$$

keine Notwendigkeit zu multiplizieren, da jedes Item repräsentiert ist.

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11,	9.5
Block B	10	12	11
Block C	12 -	13/1	12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$

$$SSB = 9$$

$$SST = 16$$

 Quadratsumme Abweichungen (SSE)

$$SSE = SST - SSG - SSB$$

= 16 - 6 - 9 = 1

keine Notwendigkeit zu multiplizieren, da wir bereits mit Summen arbeiten

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$

$$SSB = 9$$

$$SST = 16$$

$$SSE = 1$$

- Also, wie berechnen wir nun F?
- Die Freiheitsgrade der Gruppen bleiben unverändert:

$$df_{groups} = n_{groups} - 1$$

$$= 2 - 1$$

$$= 1$$

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$

- Also, wie berechnen wir nun F?
- Die Freiheitsgrade der Abweichungen haben sich **verändert**:

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

$$df_{error} = (n_{blocks} - 1)(n_{groups} - 1)$$

$$= (3 - 1)(2 - 1)$$

$$= 2$$

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

Also, wie berechnen wir nun F?

	SSG	6	
<i>E</i> —	$\overline{df_{groups}}$	$\frac{3}{1}$	= 12
$\Gamma = \frac{1}{2}$	SSE	1	-12
	$\overline{df_{error}}$	2	

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

 $F_{groups} = 12$ fühlt sich an wie ein hoher Wert

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

In einer Zwei-Wege-ANOVA wird $F_{critical}$ jedoch für Gruppen und Blöcke separat ermittelt!

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

 $F_{groups} = 12$ fühlt sich an wie ein hoher Wert

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

Für Gruppen mit 1 df im Zähler und 2 df im Nenner

$$F_{critical} = 18.5$$

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

Zwei-Wege-ANOVA Beispielübung

- Lasst uns das Problem mit den Rechnungen in eine Zwei-Wege-ANOVA umwandeln!
- Unsere Nullhypothese lautet, dass das Anbieten von Rabatten die Anzahl der Tage bis zur Zahlung der Rechnung nicht verändert.

	2%	1%	no
	disc	disc	disc
€50	16	23	21
€100	14	21	16
€150	11	16	18
€200	10	15	14
€250	9	10	11

- Jetzt werden wir zudem Blöcke zu den Gruppen hinzufügen.
- Mal sehen, ob wir die gleichen Ergebnisse wie beim letzten Mal erhalten!

	2%	1%	no
	disc	disc	disc
€50	16	23	21
€100	14	21	16
€150	11	16	18
€200	10	15	14
€250	9	10	11

- Gehen wir zurück zum Rechnungsproblem und fügen eine neue unabhängige Variable hinzu
- Hier repräsentiert jeder Block einen Rechnungsbetrag
- Die abhängige Variable ist die Zahl der Tage, die bis zur Zahlung verstrichen sind

	2%	1%	no
	disc	disc	disc
€50	16	23	21
€100	14	21	16
€150	11	16	18
€200	10	15	14
€250	9	10	11

 Berechne nun das Gruppenmittel, den Mittelwert der Blöcke und den Gesamtmittelwert

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

2. Quadratsumme Gruppe

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

$$(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$$

$$(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$$
14

Multipliziert mit der Anzahl der Items je Gruppe:

$$14 \times 5 = 70$$

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

3. Quadratsumme Freiheitsgrade

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

$$df_{groups} = 2$$

4. Quadratsumme Blöcke

$$(\mu_{50} - \mu_{TOT})^2 = (20 - 15)^2 = 25$$

$$(\mu_{100} - \mu_{TOT})^2 = (17 - 15)^2 = 4$$

$$(\mu_{200} - \mu_{TOT})^2 = (15 - 15)^2 = 0$$

$$(\mu_{200} - \mu_{TOT})^2 = (13 - 15)^2 = 4$$

$$(\mu_{250} - \mu_{TOT})^2 = (10 - 15)^2 = 25$$
58

58	X	3	1		4
	•		-	_ /	-

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
$$SSB = 174$$

$$df_{groups} = 2$$

5. Quadratsumme Total

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

$$SSB = 174$$

$$SST = 268$$

$$df_{groups} = 2$$

6. Quadratsumme Abweichungen

$$SSE = SST - SSG - SSB$$

= $268 - 70 - 174 = 24$

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

SSB = 174

SST = 268

SSE = 24

$$df_{groups} = 2$$

7. Freiheitsgrade Abweichungen

$$df_{error} = (n_{blocks} - 1)(n_{groups} - 1)$$

= $(5 - 1)(3 - 1)$
= 8

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

$$SSB = 174$$

$$SST = 268$$

$$SSE = 24$$

$$df_{groups} = 2$$
$$df_{error} = 8$$

8. Kalkuliere nun F

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{70}{2}}{\frac{24}{8}} = \frac{35}{3} = 11.67$$

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

$$SSB = 174$$

$$SST = 268$$

$$SSE = 24$$

$$df_{groups} = 2$$

 $df_{error} = 8$
 $F = 11.67$

9. Suche nun F_{critical}

$$lpha = 0.05$$
 $df_{numerator} = 2$
 $df_{denominator} = 8$
 $F_{critical} = 4.46$

	2%	1%	no	μ_{block}
	disc	disc	disc	
€50	16	23	21	20
€100	14	21	16	17
€150	11	16	18	15
€200	10	15	14	13
€250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

$$SSB = 174$$

$$SST = 268$$

$$SSE = 24$$

$$df_{groups} = 2$$

 $df_{error} = 8$
 $F = 11.67$

verwerfen wir die Nullhypothese!

$$SSG = 70$$

$$SSB = 174$$

$$SST = 268$$

$$SSE = 24$$

$$df_{groups} = 2$$

 $df_{error} = 8$
 $F = 11.67$

Die Zwei-Wege-ANOVA in Excel

Ohne und mit Wiederholung

Ohne Wiederholung

Mit Wiederholung	Mit	Wied	derho	lung
------------------	-----	------	-------	------

	GroupA	GroupB	GroupC
Block1	16	23	21
Block2	14	21	16
Block3	11	16	18
Block4	10	15	14
Block5	9	10	11
Block6	8	8	10

	GroupA		GroupB	GroupC
Block1	16		23	21
	14	14		16
	11		16	18
Block2	10		15	14
	9		10	11
	8		8	10

Stichprobe hat mehrere Messwerte Stichprobe hat einen Mittelwert

- Führt das Konzept der Stichprobenmittel und Stichprobenvarianz ein
- Stellt das Konzept der Interaktionseffekte vor

- Wie bei unserer vorherigen Zwei-Wege-ANOVA betrachten wir zwei unabhängige Variablen, die in Gruppen und Blöcken organisiert sind
- Wir probieren jede Block- / Gruppenkombination aus
- Bei der Messwiederholung haben Block- / Gruppenstichproben mehrere Messungen

- Wir betrachten ein Experiment, das die Größe von Pflanzen misst
- Wir verwenden drei Arten von Dünger A, B & C das sind unsere Gruppen
- Die Pflanzen werden bei zwei unterschiedlichen Temperaturen gehalten (warm & kalt) - das sind unsere Blöcke
- Wir ordnen jeder Probe 3 Pflanzen zu

- Berechnen wir nun zunächst den Mittelwert für jede 3-Werte-Stichprobe
- Kalkuliere den Spaltenmittelwert
- Kalkuliere den Blockmittelwert
- Kalkuliere den Gesamtmittelwert

Dünger:	Α	В	C		D
Warm	13	21	18		B I
	14	19	15	16	0
	12	17	15		c k
Kalt	16	14	15		m
	18	11	13	14	i t
	17	14	8		t
obenmittel	13	19	16		e I
		13	12		•
ltenmittel	15	16	14	15	
	Warm Kalt benmittel	Warm 13 14 12 Kalt 16 18 17 Obenmittel 13	Warm 13 21 14 19 12 17 Kalt 16 14 18 11 17 14 benefitted 13 19 17 13	Warm 13 21 18 14 19 15 12 17 15 Kalt 16 14 15 18 11 13 17 14 8 Obenmittel 13 19 16 17 13 12	Warm 13 21 18 14 19 15 16 12 17 15 Kalt 16 14 15 18 11 13 14 17 14 8

 Nun berechnen wir wie bisher die Summe der Quadrate pro Block

$$(16-15)^2+(14-15)^2=2$$

$$\times$$
 9 Werte pro Block = **18**

					ı	
	Dünger:	A	В	С		D
	Warm	13	21	18		B I
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i t
		17	14	8		t
Stichpro	obenmittel	13	19	16		e I
		17	13	12		•
Spa	ltenmittel	15	16	14	15	

$$SSB = 18$$

 Nun berechnen wir wie bisher die Summe der Quadrate pro Spalte

$$(15-15)^2 + (16-15)^2 + (14-15)^2 = 2$$

× 6 Werte pro Spalte = **12**

	Dünger:	Α	В	C		D
	Warm	13	21	18		B I
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i t
		17	14	8		t
Stichpro	obenmittel	13	19	16		e I
		17	13	12		
Spa	ltenmittel	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$

 Nun berechnen wir wie bisher die Freiheitsgrade pro Spalte

$$df_{columns} = (3-1) = 2$$

	Dünger:	A	В	С		D
	Warm	13	21	18		B I
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i t
		17	14	8		t
Stichpro	obenmittel	13	19	16		e I
'		17	13	12		-
Spa	Itenmittel	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$

- Wir haben eine neue Statistik:
 SS Interactions (Interaktionseffekt)
- Für jeden Stichprobenmittelwert subtrahieren wir die übereinstimmenden Block- und Spaltenmittel addieren den Gesamtmittelwert, und quadrieren das Ergebnis

	Dünger:	Α	В	С		D
	Warm	13	21	18		B
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i t
		17	14	8		t
Stichpro	obenmittel	13	19	16		e I
,		17	13	12		-
Spa	ltenmittel	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$

$$(13-16-15+15)^{2} +$$

$$(19-16-16+15)^{2} +$$

$$(16-16-14+15)^{2} +$$

$$(17-14-15+15)^{2} +$$

$$(13-14-16+15)^{2} +$$

$$(12-14-14+15)^{2} = 28$$

$$\times 3 \ Werte \ pro \ Stichprobe = 84$$

	Dünger:	Α	В	С		В
	Warm	13	21	18		I
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	l t
		17	14	8		t
Stichprobenmittel		13	19	16		e I
		17	13	12		
Spaltenmittel		15	16	14	15	
SS	SB = 18	SSC :	= 12	d	f_{columr}	ns = 2

SSI = 84

 Kalkuliere nun die Gesamtquadratsumme

			_
4	36	9	
1	16	0	
9	4	0	
1	1	0	
9	16	4	
4	1	49	164

					I	
	Dünger:	Α	В	С		ιВ
	Warm	13	21	18		
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	l t
		17	14	8		t
Stichpro	obenmittel	13	19	16		e I
•		17	13	12		-
Spa	ltenmittel	15	16	14	15	
						_
SS	SB = 18	SSC =	= 12	d	f	₃₅ = 2

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$
 $SST = 164$

 Kalkuliere nun die Quadratsumme der Abweichungen, indem du die anderen Werte von SST (Gesamtquadratsumme) abziehst:

$$164 - 18 - 12 - 84 = 50$$

	Dünger:	Α	В	C		D
	Warm	13	21	18		B I
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i t
		17	14	8		t
Stichpro	obenmittel	13	19	16		e I
		17	13	12		
Spa	ltenmittel	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$
 $SST = 164$

Abweichungen der Freiheitsgrade

Blöcke
$$\times$$
 Spalten \times (Werte – 1)
= 2 \times 3 \times (3 – 1) = **12**

	Dünger:	Α	В	С		D
	Warm	13	21	18		B I
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i t
		17	14	8		t
Stichprobenmittel		13	19	16		e I
		17	13	12		
Spaltenmittel		15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$ $df_{error} = 12$
 $SST = 164$

• Kalkuliere nun F

$$F = \frac{\frac{SSC}{df_{columns}}}{\frac{SSE}{df_{error}}} = \frac{\frac{12}{2}}{\frac{50}{12}} = \mathbf{1.44}$$

	Dünger:	A	В	С		D
	Warm	13	21	18		B I
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i t
		17	14	8		t
Stichprobenmittel		13	19	16		e I
		17	13	12		•
Spaltenmittel		15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$ $df_{error} = 12$
 $SST = 164$

$$F = 1.44$$

• Suche nun nach dem kritischen Wert F_{critical}

$$F_{(0.05, 2, 12)} = 3.885$$

	Dünger:	Α	В	С		В
	Warm	13	21	18		D
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i
		17	14	8		t
Stichprobenmittel		13	19	16		e I
		17	13	12		
Spaltenmittel		15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$ $df_{error} = 12$
 $SST = 164$

- 2-Wege-ANOVA mit Wiederholen
 - Interaktion:

	Dünger:	Α	В	С		D
	Warm	13	21	18		B I
		14	19	15	16	0
		12	17	15		c k
	Kalt	16	14	15		m
		18	11	13	14	i t
		17	14	8		t
Stichprobenmittel		13	19	16		e I
		17	13	12		-
Spaltenmittel		15	16	14	15	
						_

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$ $df_{error} = 12$
 $SST = 164$

Zwei-Wege-ANOVA in Excel

Als nächstes: Regressionen