

Machine Learning

Artificial Neural Networks

Overview:

- Artificial Neuron
- Activation Function
- Neuron Capacity
- Single Layer ANN
- Multilayer ANN
- Universal Approximator
- Motivation behind ANN
- Backpropagation

- Hidden unit pre-activation:

$$z(x) = \sum_{i} w_i x_i + b = \mathbf{W}^{\mathrm{T}} \mathbf{X} + b$$

- Hidden unit activation:

$$f(x) = \sigma(z(x)) = \sigma(\sum_{i} w_i x_i + b)$$

W are weight matrix connects ith hidden unit with ith input unit

b are bias vectors

 $\sigma(\cdot)$ is the activation function

Sigmoid:

$$\sigma(z) = \text{sigm}(z) = \frac{1}{1 + \exp(-z)}$$

- Squashes the hidden unit's pre-activation to between 0 and 1.
- Always positive.
- Bounded.
- Strictly increasing.

Hyperbolic tangent ("tanh"):

$$\sigma(z) = \tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)} = \frac{\exp(2z) - 1}{\exp(2z) + 1}$$

- Squashes the hidden unit's pre-activation to between -1 and 1.
- Can be positive or negative.
- Bounded.
- Strictly increasing.

Rectified Linear Unit ("ReLu"):

$$\sigma(z) = \text{ReLu}(z) = \max(0, z)$$

- Bounded below by 0 (always non-negative).
- Not bounded above.
- Strictly increasing.

- Hidden layer pre-activation:

$$z(x)_i = b_i^{(1)} + W_{i,j}^{(1)} x_j$$

Similarly in Matrix form:

$$z(X) = b^{(1)} + \mathbf{W}^{(1)} X$$

- Hidden layer activation:

$$h(X) = \sigma(z(X))$$

- Output layer activation "Φ":

$$F(X) = \Phi(b^{(2)} + \mathbf{W}^{(2)^{T}} h^{(1)}X)$$

SoftMax Activation Function

- Multi-class classification:
 - requires multiple outputs i.e. 1 output per class.
 - need to estimate the conditional probability of output belonging to a particular class c, $p(y = c | \mathbf{x})$.
- Apply the SoftMax activation function at the output:

$$\Phi(z) = \text{SoftMax}(z) = \left[\frac{e^{z_1}}{\sum_c e^{z_c}}, \dots, \frac{e^{z_1}}{\sum_c e^{z_c}}\right]^{\mathsf{T}}$$

- strictly positive
- sums to one
- Predicted class is the one with highest estimated probability

Multilayer NN with L hidden layers

• Hidden layer pre-activation for k > 0:

$$h^{(0)}(X) = X,$$

 $z^{(k)}(X) = b^{(k)} + \mathbf{W}^{(k)} h^{(k-1)} X$

Hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(X) = \boldsymbol{\sigma}(\mathbf{z}^{(k)}(X))$$

• Output layer activation (k = L+1):

$$\mathbf{F}(\mathbf{X}) = \mathbf{h}^{(L+1)}(\mathbf{X}) = \Phi(\mathbf{z}^{(L+1)}(\mathbf{X}))$$

- Range of hidden unit determined by $\sigma(.)$
- Bias b changes the position of the riff.

Bias only changes the position of the riff

Source: Pascal Vincent

- Could do binary classification.
- With sigmoid, can interpret neuron as estimating p(y = 1 | x).
- Also known as logistic regression classifier, if greater than 0.5 predict class 1, otherwise predict class 0.

Can solve linearly separable problems

- Cannot solve non-linearly separable problems
- Unless the input is transformed into a separable representation

- Hidden layer pre-activation:

$$z(x)_i = b_i^{(1)} + W_{i,j}^{(1)} x_j$$

Similarly in Matrix form:

$$z(X) = b^{(1)} + \mathbf{W}^{(1)} X$$

- Hidden layer activation:

$$h(X) = \sigma(z(X))$$

- Output layer activation "Φ":

$$F(X) = \Phi(b^{(2)} + \mathbf{W}^{(2)^T} h^{(1)}X)$$

Capacity of Single Hidden Layer Neural Network

Capacity of Single Hidden Layer Neural Network

Capacity of Single Hidden Layer Neural Network

Universal Approximation Theorem (Hornik, 1991)

"Single layer feedforward network can approximate any continuous function arbitrarily well if and only if the network's activation function is continuous, non-constant, and bounded."

- Hornik's result applies for sigmoid, tanh and many other hidden layer activation functions.
- However, modern day defacto activation function is ReLu, and it does not satisfy Hornik's theorem as the ReLu(z) = max(0, z) is unbounded from above.

 "Multilayer feedforward network can approximate any continuous function arbitrarily well if and only if the network's continuous activation function is not polynomial."

Definition

A set F of functions in $L^{\infty}_{loc}(R^n)$ is dense in $C(R^n)$ if for every function $g \in C(R^n)$ and for every compact set $K \subset R^n$, there exists a sequence of functions $f_i \in F$ such that

$$\lim_{f\to\infty}||g-f_j||_{L^\infty(K)}=0.$$

Theorem

(Leshno et al., 1993) Let $\sigma \in M$, where M denotes the set of functions which are in $L^{\infty}_{loc}(\Omega)$.

$$\Sigma_n = span\{\sigma(w \cdot x + b) : w \in \mathbb{R}^n, b \in \mathbb{R}\}\$$

Then Σ_n is dense in $C(\mathbb{R}^n)$ if and only if σ is not an algebraic polynomial (a.e.).

Parallel with the visual vortex

- Parallel with the visual vortex

- Parallel with the visual vortex

- Parallel with the visual vortex
- Edges

- Parallel with the visual vortex
- Edges
- Higher level features such as nose, mouth, eyes

- Face

- Firing rates of different input neurons combine to influence the firing rate of other neurons:
 - depending on the dendrite and axon, a neuron can either work to increase (excite) or decrease (inhibit) the firing rate of another neuron
- This is what artificial neurons approximate:
 - the activation corresponds to a "sort of" firing rate
 - the weights between neurons model whether neurons excite or inhibit each other
 - the activation function and bias model the threshold behavior of action potentials

Forward propagation

- Randomly Initialize **6**
- $\Theta = \{W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}, ..., W^{(L+1)}, b^{(L+1)}\}$

Objective Function for Multi-class Classification

$$\underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} l(F(\mathbf{x}^{(i)}; \theta), y^{(i)}) + \lambda \Omega(\theta)$$

Loss Function: Negative log likelihood

$$l(F(x,\theta),y) = -\sum_{c} \mathbf{1}_{(y=c)} \log F(x)_{c}$$

Cho & Chow, Neurocomputing 1999

Backpropagation

- Optimization Algorithm e.g. stochastic gradient descent
- Objective Function
- Gradient of Output Layer
- Gradient of Hidden Layer
- Gradient of Activation Function
- Gradient of Parameters

Optimization Algorithm

Stochastic (incremental) gradient descent

For each training example ($x^{(i)}, y^{(i)}$)

For N iterations

- Compute $\Delta = -\nabla_{\theta} l(\mathbf{F}(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)}) \nabla_{\theta} \lambda \Omega(\theta)$
- Update $\theta \leftarrow \theta + \alpha \Delta$

Loss Gradient at Output Layer

•
$$\nabla_{\mathbf{F}(\mathbf{x})} - \boldsymbol{log}\mathbf{F}(\mathbf{x})_{y} = \frac{-\mathbf{e}(y)}{\mathbf{F}(\mathbf{x})_{y}}$$

Loss Gradient at Output Pre-activation

•
$$\nabla_{\mathbf{z}^{(L+1)}(\mathbf{x})} - log \mathbf{F}(\mathbf{x})_y = -(\mathbf{e}(y) - \mathbf{F}(\mathbf{x}))$$

Loss Gradient at Hidden Layer

•
$$\nabla_{\mathbf{z}^{(k)}(\mathbf{x})} - log\mathbf{F}(\mathbf{x})_{\mathbf{y}}$$

= $\nabla_{\mathbf{h}^{(k)}(\mathbf{x})} - log\mathbf{F}(\mathbf{x})_{\mathbf{y}} \odot [..., \sigma'(\mathbf{z}^{(k)}(\mathbf{x})),...]$

Sigmoid Function Derivative:

•
$$\sigma(z) = \text{sigm}(z) = \frac{1}{1 + \exp(-z)}$$

•
$$\sigma'(z) = \sigma(z) (1 - \sigma(z))$$

Hyperbolic tangent ("tanh") Derivative:

•
$$\sigma(z) = \tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)} = \frac{\exp(2z) - 1}{\exp(2z) + 1}$$

•
$$\sigma'(z) = 1 - \sigma(z)^2$$

Gradient of Weights

•
$$\nabla_{\mathbf{w}^{(k)}} - log\mathbf{F}(\mathbf{x})_{y}$$

= $(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - log\mathbf{F}(\mathbf{x})_{y}) \mathbf{h}^{(k-1)}(\mathbf{x})^{\mathsf{T}}$

Gradient of Biases

•
$$\nabla_{\mathbf{b}^{(k)}} - log\mathbf{F}(\mathbf{x})_{\mathbf{y}}$$

= $(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - log\mathbf{F}(\mathbf{x})_{\mathbf{y}})$

Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Aurélien Géron
- Pattern recognition and machine learning, Christopher M. Bishop
- The Elements of Statistical Learning, Hastie, Tibshirani, and Friedman

Blogs, code snippets, lecture notes, etc.

- https://github.com/stephencwelch/Neural-Networks-Demystified This tutorial uses numpy and python
- http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch
 Classifier in python from scratch
- http://deeplearning.net/tutorial This set of tutorials uses the Theano package, which is pretty tricky to learn (but very powerful because it calculates gradients for you automatically, among other things)
- http://www.cs.stir.ac.uk/courses/ITNP4B/lectures/kms/1-Intro.pdf
 For some of the history and possible connections to neuroscience
- http://www.dmi.usherb.ca/~larocheh/index_en.html Modified from Hugo Larochelle