SPECTRE DES LAPLACIENS DE LICHNEROWICZ SUR LES SPHÈRES ET LES PROJECTIFS RÉELS

Mohamed Boucetta

Abstract _

In this paper, we compute the spectrum of the Lichnerowicz laplacian on the symmetric forms of degree 2 on the sphere S^n and the real projective space $\mathbb{R}P^n$. This is obtained by generalizing to forms the calculations of the spectrum of the laplacian on fonctions done via restriction of harmonic polynomials on euclidean space.

1. Introduction

Soit (M,g) une variété riemannienne compacte. Pour tout $p \in \mathbb{N}$, on notera $\Omega^p(M)$ l'espace des p-formes différentielles sur M et \mathcal{S}^pM l'espace des p-formes symétriques sur M avec $\Omega^0(M) = \mathcal{S}^0M = C^\infty(M)$.

Pour tout $0 \le p \le \dim M$, $\Omega^p(M)$ est muni d'un opérateur elliptique Δ^p à savoir le laplacien de Hodge-de Rham. dim Ker Δ^p étant le p-ième nombre de Betti de M, et pour d'autres propriétés, cet opérateur a été amplement étudié. Le spectre et les sous-espaces propres des Δ^p sur la sphère S^n , munie de sa métrique canonique, ont été déterminés dans [Be-Ga-Ma], [Be-Mi], [Ga-Me], [Ik-Ta], [Iw-Ka].

L'espace des tenseurs le plus simple à considérer, après les $\Omega^p(M)$, est l'espace \mathcal{S}^2M . Dans [**Be-Eb**], cet espace a été étudié et il a été démontré la décomposition suivante:

$$(H_1) S^2 M = \operatorname{Ker} \delta_1 \bigoplus \delta_1^*(\Omega^1(M)),$$

où $\delta_1^*:\Omega^1(M)\longrightarrow \mathcal{S}^2M$ est l'opérateur différentiel défini par

$$\delta_1^*(\alpha) = L_{\#\alpha}g, \quad (\alpha \in \Omega^1(M)),$$

 $\#\alpha$ est le champ de vecteurs associée à la 1-forme α grâce à la métrique g et $\delta_1: \mathcal{S}^2M \longrightarrow \Omega^1(M)$ est l'adjoint formel de δ_1^* pour les structures préhilbertiennes sur $\Omega^1(M)$ et \mathcal{S}^2M définies par la métrique g.

Dans le même papier, il a été démontré que $\operatorname{Ker} \delta_1$ est l'espace tangent en g à l'espace des structures riemaniennes sur M. C'est l'espace des déformations infinitésimales non-triviales de g.

L'espace S^2M admet aussi la décomposition (voir [**Be2**, p. 130])

$$(H_2) \mathcal{S}^2 M = \operatorname{Ker} \delta_1 \cap Tr^{-1}(0) \bigoplus \left(\delta_1^*(\Omega^1(M)) + C^{\infty}(M)g \right),$$

où $Tr: \mathcal{S}^2M \longrightarrow C^{\infty}(M)$ est la trace par rapport à g. Ker $\delta_1 \cap Tr^{-1}(0)$ peut aussi être regardé comme l'espace des déformations infinitésimales non-triviales et non-conformes de g.

Dans [L, p. 27], Lichnerowicz a introduit, pour tout $p \in \mathbb{N}$, un laplacien $\Delta_M^p : \mathcal{S}^p M \longrightarrow \mathcal{S}^p M$, Δ_M^0 et Δ_M^1 étant les laplaciens de Hodgede Rham respectivement sur $C^\infty(M)$ et sur $\Omega^1(M)$. Les laplaciens de Lichnerowicz possédent des propriétés remarquables et se sont avérés très utiles pour l'étude de différents problèmes géométriques (voir [Be-Eb], [Be2], [M]). Il est à noter que le laplacien de Lichnerowicz $\Delta_M^2 : \mathcal{S}^2 M \longrightarrow \mathcal{S}^2 M$ respecte les décompositions (H_1) et (H_2) si la variété (M,g) est à courbure de Ricci parallèle.

Dans cet article, on se propose de calculer le spectre avec multiplicité et les sous-espaces propres de $\Delta_{S^n}^2$ sur la sphère de dimension n munie de sa métrique canonique. Par suite, on exhibe deuxe bases de vecteurs propres qui engendrent deux sous-espaces propres denses dans $\operatorname{Ker} \delta_1$ et dans $\operatorname{Ker} \delta_1 \cap Tr^{-1}(0)$.

Pour illustrer l'intérêt que peuvent avoir ces bases dans la résolution de versions infinitésimales de différents problèmes géométriques, on retrouve des résultats bien connus à savoir le théorème de représentation conforme sur la sphère S^2 [**Be-Eb**] et la rigidité de la structure d'Einstein canonique sur la sphère S^n .

Finalement, en utilisant le revêtement riemannien $S^n \longrightarrow \mathbb{R}P^n$, on déduit le spectre et les sous-espaces propres de $\Delta^1_{\mathbb{R}P^n}$ et de $\Delta^2_{\mathbb{R}P^n}$.

Le calcul du spectre de $\Delta_{S^n}^2$ nécessitant la connaissance du spectre de $\Delta_{S^n}^1$, nous donnons le spectre avec multiplicité et les sous-espaces propres de $\Delta_{S^n}^1$ en utilisant une méthode qui différe légérement de celle utilisée dans [Ga-Me].

Pour ce travail, on généralise la méthode utilisée dans [**Be-Ga-Ma**] pour le calcul du spectre de $\Delta^0_{S^n}$ alors que les décompositions (H_1) et (H_2) nous servent de guides.

2. Laplaciens de Lichnerowicz sur les tenseurs symétriques

Soit (M,g) une variété riemannienne de dimension d. Soit D la connexion de Levi-Civita associée.

Pour tout $p \in \mathbb{N}$, le fibré vectoriel des p-tenseurs $\bigotimes^p T^*M \longrightarrow M$ est muni d'une structure de fibré vectoriel euclidien donnée par

$$\langle h, f \rangle_m = \sum_{i_1, \dots, i_p=1}^d h(e_{i_1}, \dots, e_{i_p}) f(e_{i_1}, \dots, e_{i_p}),$$

où $m \in M$, $h, f \in \bigotimes^p T_m^* M$ et (e_1, \dots, e_d) est une base orthonormée quelconque de $T_m M$.

Pour tout entier naturel p, la connexion de Levi-Civita définit un opérateur différentiel $D_p: C^{\infty}(\bigotimes^p T^*M) \to C^{\infty}(\bigotimes^{p+1} T^*M)$. On notera D_p^* son adjoint formel. Soit \mathcal{S}^pM le $C^{\infty}(M)$ -module des formes symétriques sur M.

En symétrisant l'opérateur D, on obtient un opérateur différentiel $\delta_p^*: \mathcal{S}^pM \to \mathcal{S}^{p+1}M$ défini par

$$\delta_p^* h(X_1, \dots, X_{p+1}) = \sum_{i=1}^{p+1} D_{X_i} h(X_1, \dots, \widehat{X_i}, \dots, X_{p+1}).$$

Soit $\delta_p: \mathcal{S}^{p+1}M \to \mathcal{S}^pM$ son adjoint formel.

L'adjoint formel de δ_p^* est appelé divergence et est donné par

$$\delta_p f(X_1, \dots, X_p) = -\sum_{i=1}^d D_{Y_i} f(Y_i, X_1, \dots, X_p),$$

où $f \in \mathcal{S}^{p+1}M$, (X_1, \ldots, X_p) est une famille quelconque de champs de vecteurs sur M et (Y_1, \ldots, Y_d) est une base orthonormée de champs de vecteurs (locaux) sur M.

Pour tout $\alpha \in \mathcal{S}^1 M$, on a (voir [**Be2**, p. 35])

(1)
$$\delta_1^*(\alpha) = L_{\#\alpha}g.$$

 $\#: T^*M \to TM$ est l'inverse de l'homomorphisme musical $\omega^{\flat}: TM \to T^*M$ qui à $v \mapsto g(v,.)$.

Si la variété M est compacte, en tant que \mathbb{R} -espace vectoriel, $C^{\infty}(\bigotimes^p T^*M)$ est muni d'un produit scalaire donné par

$$\langle h, f \rangle = \int_{M} \langle h(m), f(m) \rangle_{m} \mu_{g},$$

où μ_g est la mesure canonique de (M,g).

Dans le cas où M est compacte, D_p et D_p^* ; δ_p et δ_p^* sont adjoints pour le produit scalaire \langle,\rangle .

Définition 2.1 [L]. Le laplacien de Lichnerowicz sur les *p*-formes symétriques est l'opérateur $\Delta^p_M: \mathcal{S}^pM \longrightarrow \mathcal{S}^pM$ défini par

$$\Delta_M^p = D_p^* D_p + K_p,$$

où K_p est l'opérateur d'ordre 0 défini par

$$K_0 = 0$$

$$K_p(h)(X_1, \dots, X_p) = \sum_{i=1}^p r(X_i, \#i_{X_1 \dots \widehat{X}_i \dots X_p} h)$$
$$-Tr_g[(U, V) \mapsto \sum_{i \neq j} h(R(X_i, U)X_j, V, X_1, \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots, X_p)],$$

R et r désignent respectivement la courbure tensorielle et la courbure de Ricci de g, Tr_g désigne la trace par rapport à g, # l'isomorphisme inverse de l'isomorphisme musical et $i_{X_1...\widehat{X_i}...X_p}h$ le produit intérieur de h par $X_1...\widehat{X_i}...X_p$.

Dans le cas où M est compacte, Δ_M^p est un opérateur auto-adjoint pour le produit scalaire \langle , \rangle .

Remarques.

i) Δ_M^0 et Δ_M^1 sont les laplaciens de Hodge-de Rham respectivement sur $C^\infty(M)$ et \mathcal{S}^1M . La formule

$$\Delta_M^1 = D_1^* D_1 + K_1$$

n'est rien d'autre que la fameuse formule de Bochner [**Boc**], puisque $K_1(\alpha) = r(\#\alpha,.)$, pour tout $\alpha \in \mathcal{S}^1M$.

ii) On a clairement

$$\Delta_M^1 \circ d = d \circ \Delta_M^0.$$

Théorème 2.1. Les définitions et notations sont celles ci-dessus. On a les propriétés suivantes:

i) Si la métrique g est à courbure de Ricci parallèle, on a

$$\Delta_M^2 \circ \delta_1^* = \delta_1^* \circ \Delta_M^1 \quad et \quad \Delta_M^1 \circ \delta_1 = \delta_1 \circ \Delta_M^2.$$

- ii) $Tr_g \circ \Delta_M^2 = \Delta_M^0 \circ Tr_g$.
- iii) Pour toute function $f \in C^{\infty}(M)$, on a $\Delta_M^2(fg) = \Delta_M^0(f)g$.

Preuve: Pour i) et ii) voir [L, pp. 28–29]. Montrons, maintenant iii). Soit $h \in S^2M$ quelconque. On a

$$\langle \Delta_M^2(fg), h \rangle = \langle fg, \Delta_M^2(h) \rangle = \int_M f Tr_g(\Delta_M^2(h)\mu_g.$$

En utilisant ii), on obtient

$$\langle \Delta_M^2(fg),h\rangle = \int_M f \Delta_M^0(Tr_gh) \mu_g = \int_M Tr_gh \Delta_M^0(f) \mu_g = \langle h,\Delta_M^0(f)g\rangle.$$

D'où le résultat. ■

Lemme 2.1. Pour tout entier p > 0 et pour tout $h \in S^pM$, on a $\delta_p \circ \delta_p^* h - \delta_{p-1}^* \circ \delta_{p-1} h = D_p^* D_p h - K_p(h)$.

Preuve: Pour établir cette égalité, il suffit de la vérifier pour les formes pôlaires. Soit X un champs de vecteurs et soit (E_1, \ldots, E_d) une base orthonormée de champs de vecteurs (locaux). On a

$$\begin{split} &\delta_{p} \circ \delta_{p}^{*}h(X,\ldots,X) \\ &= -\sum_{i=1}^{d} D_{E_{i}} \delta_{p}^{*}h(E_{i},X,\ldots,X) \\ &= -\sum_{i=1}^{d} E_{i}.\delta_{p}^{*}h(E_{i},X,\ldots,X) + \sum_{i=1}^{d} \delta_{p}^{*}h(D_{E_{i}}E_{i},X,\ldots,X) \\ &+ p\sum_{i=1}^{d} \delta_{p}^{*}h(E_{i},D_{E_{i}}X,X,\ldots,X) \\ &= -\sum_{i=1}^{d} E_{i}.D_{E_{i}}h(X,\ldots,X) - p\sum_{i=1}^{d} E_{i}.D_{X}h(E_{i},X,\ldots,X) \\ &+ \sum_{i=1}^{d} D_{D_{E_{i}}E_{i}}h(X,\ldots,X) + p\sum_{i=1}^{d} D_{X}h(D_{E_{i}}E_{i},X,\ldots,X) \\ &+ p\sum_{i=1}^{d} D_{E_{i}}h(D_{E_{i}}X,X,\ldots,X) + p\sum_{i=1}^{d} D_{D_{E_{i}}X}h(E_{i},X,\ldots,X) \\ &+ p(p-1)\sum_{i=1}^{d} D_{X}h(E_{i},D_{E_{i}}X,X,\ldots,X) \\ &= -\sum_{i=1}^{d} E_{i}.D_{E_{i}}h(X,\ldots,X) - p\sum_{i=1}^{d} D_{E_{i}}D_{X}h(E_{i},X,\ldots,X) \\ &+ \sum_{i=1}^{d} D_{D_{E_{i}}E_{i}}h(X,\ldots,X) + p\sum_{i=1}^{d} D_{E_{i}}h(D_{E_{i}}X,X,\ldots,X) \\ &= D_{p}^{*}D_{p}h(X,\ldots,X) - p\sum_{i=1}^{d} D_{E_{i}}Xh(E_{i},X,\ldots,X). \end{split}$$

D'un autre côté et par un calcul direct, on obtient

$$\delta_{p-1}^* \circ \delta_{p-1} h(X, \dots, X) = -p \sum_{i=1}^d D_{(X, E_i)}^2 h(E_i, X, \dots, X)$$
$$-p \sum_{i=1}^d (D_{E_i} h(D_X E_i, X, \dots, X))$$
$$+ D_{D_X E_i} h(E_i, X, \dots, X)).$$

En utilisant l'identité de Ricci, on obtient donc

$$\delta_{p} \circ \delta_{p}^{*}h(X, \dots, X) - \delta_{p-1}^{*} \circ \delta_{p-1}h(X, \dots, X) = D_{p}^{*}D_{p}h(X, \dots, X)$$
$$- [pr(X, \#(i_{X...X}^{p-1}h)) - p(p-1) \sum_{i=1}^{d} h(R(E_{i}, X)X, E_{i}, X, \dots, X)]$$
$$+ p \sum_{i=1}^{d} (D_{E_{i}}h(D_{X}E_{i}, X, \dots, X) + D_{D_{X}E_{i}}h(E_{i}, X, \dots, X)).$$

Or, pour tout v vecteur tangent en un point m, il existe un champ de vecteurs X et une base orthonormée (E_i, \ldots, E_d) tels que X(m) = v et $(D_X E_i)_m = 0$ pour $i = 1, \ldots, d$. Comme c'est une relation tensorielle, on a le lemme.

Remarque importante. En vertu ce lemme, on obtient une expression plus fine du laplacien de Lichnerowicz à savoir

(2)
$$\Delta_M^p = \delta_p \circ \delta_p^* - \delta_{p-1}^* \circ \delta_{p-1} + 2K_p.$$

Cette expression nous sera très utile par la suite.

Proposition 2.1. Soit $h = \sum_{i_1, \dots, i_p = 1}^d h_{i_1, \dots, i_p} dx_{i_1} \dots dx_{i_p}$ une p-forme symétrique sur $(\mathbb{R}^d, \operatorname{can})$. On a

$$\Delta_{\mathbb{R}^d}^p h = \sum_{i_1,\dots,i_p=1}^d \Delta_0 h_{i_1,\dots,i_p} \, dx_{i_1} \dots dx_{i_p}$$

avec $\Delta_0 = -\sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}$.

Preuve: Evidente.

3. Laplaciens de Lichnerowicz sur les sphères

3.1. Préliminaires.

On se place maintenant dans \mathbb{R}^{n+1} muni de sa métrique canonique qu'on notera indifféremment can ou \langle , \rangle . On notera \widetilde{D} la connexion de Levi-Civita associée, \vec{r} le champ de vecteurs radial et $N=\frac{\partial}{\partial r}$ le champ de vecteurs unitaire radial.

$$\vec{r} = \sum_{i=1}^{n+1} x_i \frac{\partial}{\partial x_i}, \quad N = \frac{1}{r} \sum_{i=1}^{n+1} x_i \frac{\partial}{\partial x_i},$$

avec $r = \sqrt{x_1^2 + \ldots + x_{n+1}^2}$ et (x_1, \ldots, x_{n+1}) les coordonnées canoniques de \mathbb{R}^{n+1} .

Pour tout champ de vecteurs X sur \mathbb{R}^{n+1} , on a

(3)
$$\widetilde{D}_X N = \frac{1}{r} (X - \langle X, N \rangle N).$$

En particulier $\widetilde{D}_N N = 0$.

Soit D la connexion de Levi-Civita associée à la métrique canonique de S^n . Pour tout champs de vecteurs X,Y tangents à S^n , on a

(4)
$$\widetilde{D}_X Y = D_X Y - \langle X, Y \rangle N.$$

Proposition 3.1. Soit $H \in \mathcal{S}^p\mathbb{R}^{n+1}$ et soit (X, X_1, \dots, X_p) une famille de champs de vecteurs tangents à S^n . Soit h la restriction de H à S^n . Alors, en restriction à S^n , les formules suivantes sont vérifiées:

$$\begin{split} \widetilde{D}_X H(X_1,\ldots,X_p) &= D_X h(X_1,\ldots,X_p) \\ &+ \sum_{i=1}^p \langle X,X_i \rangle H(N,X_1,\ldots,\widetilde{X}_i,\ldots,X_p), \\ \widetilde{D}_N H(X_1,\ldots,X_p) &= L_N H(X_1,\ldots,X_p) - ph(X_1,\ldots,X_p), \\ \widetilde{D}_N H(N,X_1,\ldots,X_{p-1}) &= L_N \circ i_N H(X_1,\ldots,X_{p-1}) \\ &- (p-1)H(N,X_1,\ldots,X_{p-1}). \end{split}$$

Preuve: La première formule est une conséquence immédiate de (3). On a

$$\widetilde{D}_N H(X_1, \dots, X_p) = N.H(X_1, \dots, X_p) - \sum_{i=1}^p H(X_1, \dots, \widetilde{D}_N X_i, \dots, X_p).$$

Or $\widetilde{D}_N X_i = [N, X_i] + \widetilde{D}_{X_i} N$ et, en restriction à S^n , on a en vertu de (3), $\widetilde{D}_{X_i} N = X_i$. Ceci permet d'établir la deuxième formule.

Un calcul analogue donnerait la troisième formule.

Dans tout ce qui suit, on notera $\widetilde{\delta}^*$ et $\widetilde{\delta}$ respectivement la codivergence et la divergence de $(\mathbb{R}^{n+1}, \operatorname{can})$ et δ^* et δ ceux de $(S^n, \operatorname{can})$.

Proposition 3.2. Soit $H \in S^{p+1}\mathbb{R}^{n+1}$ et soit h sa restriction à S^n . Alors, la formule suivante est vérifiée en restriction à S^n :

$$\widetilde{\delta}_p H = \delta_p h - ni_N H - L_N \circ i_N H.$$

Preuve: Soit $x \in S^n$ et soit (E_1, \ldots, E_n) une base orthonormée de champs de vecteurs au voisinage de x et tangents en x à S^n . Soit (X_1, \ldots, X_p) une famille de champs de vecteurs tangents à S^n . On a

$$\widetilde{\delta}_p H(X_1,\ldots,X_p) = -\sum_{i=1}^n \widetilde{D}_{E_i} H(E_i,X_1,\ldots,X_p) - \widetilde{D}_N H(N,X_1,\ldots,X_p).$$

Or, d'après la Proposition 2.1, on a

$$\widetilde{D}_{E_i}H(E_i, X_1, \dots, X_p) = D_{E_i}h(E_i, X_1, \dots, X_p)$$

$$+ \langle E_i, E_i \rangle H(N, X_1, \dots, X_p)$$

$$+ \sum_{j=1}^p H(N, \langle E_i, X_j \rangle E_i, X_1, \dots, \widetilde{X}_j, \dots, X_p),$$

$$\widetilde{D}_N H(N, X_1, \dots, X_p) = L_N \circ i_N H(X_1, \dots, X_p) - pH(N, X_1, \dots, X_p).$$

Ceci permet de conclure. ■

On pourrait, de la même manière, établir une formule reliant $\widetilde{\delta}_p^*$ et δ_p^* ; mais pour ce qu'on envisage de faire, on se contentera d'une formule dans les cas p=0,1,2.

Proposition 3.3. Soient $\widetilde{\alpha} \in \mathcal{S}^1 \mathbb{R}^{n+1}$ et $H \in \mathcal{S}^2 \mathbb{R}^{n+1}$. Soient α et h leurs restrictions à S^n . En restriction à S^n , on a

$$\widetilde{\delta}_1^* \widetilde{\alpha} = \delta_1^* \alpha + 2\widetilde{\alpha}(N) \operatorname{can},$$

$$\widetilde{\delta}_2^* H = \delta_2^* h + 2R(H),$$

avec
$$R(H)(X, Y, Z) = H(N, \langle X, Y \rangle Z + \langle Y, Z \rangle X + \langle Z, X \rangle Y).$$

Preuve: Ces deux formules sont une conséquence immédiate de la Proposition 3.1. \blacksquare

3.2. Formule reliant $\Delta^0_{\mathbb{R}^{n+1}}$ et $\Delta^0_{S^n}$.

Proposition 3.4. Soit F une fonction sur R^{n+1} et soit f sa restriction à S^n . En restriction à S^n , on a

$$\Delta_{\mathbb{R}^{n+1}}^0 F = \Delta_{S^n}^0 f - n \frac{\partial F}{\partial r} - \frac{\partial^2 F}{\partial r^2}.$$

Preuve: On remarque que $\Delta^0_{\mathbb{R}^{n+1}}F=\widetilde{\delta}_0dF$ et on applique la Proposition 3.2 pour p=0. \blacksquare

3.3. Formule reliant $\Delta^1_{\mathbb{R}^{n+1}}$ et $\Delta^1_{S^n}$.

En vertu de (2) et du fait que (S^n, can) est une variété d'Einstein dont la courbure de Ricci $r_{\text{can}} = (n-1)$ can, on a

(5)
$$\Delta_{S^n}^1 = \delta_1 \circ \delta_1^* - \delta_0^* \circ \delta_0 + 2(n-1) \operatorname{Id}.$$

Pour établir une relation entre $\Delta^1_{\mathbb{R}^{n+1}}$ et $\Delta^1_{S^n}$, on aura besoin des deux formules suivantes:

Soit $\alpha \in \mathcal{S}^1 \mathbb{R}^{n+1}$, on a

(6)
$$i_N \widetilde{\delta}_1^* \alpha = \widetilde{\delta}_0^* i_N \alpha + L_N \alpha - \frac{2}{r} \alpha + \frac{2}{r} \alpha(N) i_N \operatorname{can}.$$

Soit $f \in C^{\infty}(S^n)$, on a

(7)
$$\delta_1(f \operatorname{can}) = -df.$$

Etablissons la formule (6). Soit X un champ de vecteurs sur \mathbb{R}^{n+1} .

$$i_N \widetilde{\delta}_1^* \alpha(X) = X.\alpha(N) + N.\alpha(X) - \alpha(\widetilde{D}_N X) - \alpha(\widetilde{D}_X N)$$
$$= \widetilde{\delta}_0^* i_N \alpha(X) + N.\alpha(X) - \alpha([N, X]) - 2\alpha(\widetilde{D}_X N).$$

En appliquant (3), on obtient (6). Un calcul direct donnerait la formule (7).

Proposition 3.5. Soit $\widetilde{\alpha} \in S^1\mathbb{R}^{n+1}$ et α sa restriction à S^n . En restriction à S^n , on a

$$\Delta^1_{\mathbb{R}^{n+1}}\widetilde{\alpha} = \Delta^1_{S^n}\alpha - L_N \circ L_N\widetilde{\alpha} - (n-2)L_N\widetilde{\alpha} - 2d\widetilde{\alpha}(N).$$

Preuve: D'après les Propositions 3.2 et 3.3, on a

$$\begin{split} \widetilde{\delta}_{1}\widetilde{\delta}_{1}^{*}\widetilde{\alpha} &= \delta_{1}\widetilde{\delta}_{1}^{*}\widetilde{\alpha} - ni_{N}\widetilde{\delta}_{1}^{*}\widetilde{\alpha} - L_{N}i_{N}\widetilde{\delta}_{1}^{*}\widetilde{\alpha} \\ &= \delta_{1}\delta_{1}^{*}\alpha + 2\delta_{1}(\widetilde{\alpha}(N)\operatorname{can}) - ni_{N}\widetilde{\delta}_{1}^{*}\widetilde{\alpha} - L_{N}i_{N}\widetilde{\delta}_{1}^{*}\widetilde{\alpha}. \end{split}$$

D'après la formule (6)

$$\begin{split} L_N \circ i_N \widetilde{\delta}_1^* \widetilde{\alpha} &= L_N \widetilde{\delta}_0^* i_N \widetilde{\alpha} + L_N \circ L_N \widetilde{\alpha} + \frac{2}{r^2} \widetilde{\alpha} - \frac{2}{r} L_N \widetilde{\alpha} \\ &+ N \left(\frac{2}{r} \widetilde{\alpha}(N) \right) i_N \operatorname{can} + \frac{2}{r} \widetilde{\alpha}(N) L_N \circ i_N \operatorname{can}. \end{split}$$

Puisque, en restriction à S^n , $L_N i_N \operatorname{can} = 0$ et $i_N \operatorname{can} = 0$, on obtient donc, en utilisant (7) et toujours en restriction à S^n ,

$$\widetilde{\delta}_{1}\widetilde{\delta}_{1}^{*}\widetilde{\alpha} = \delta_{1}\delta_{1}^{*}\alpha - 2d\widetilde{\alpha}(N) - L_{N} \circ L_{N}\widetilde{\alpha} - (n-2)L_{N}\widetilde{\alpha} + 2(n-1)\alpha - n\widetilde{\delta}_{0}^{*}i_{N}\widetilde{\alpha} - L_{N}\widetilde{\delta}_{0}^{*}i_{N}\widetilde{\alpha}.$$

D'un autre côté, toujours en vertu de la Proposition 3.2,

$$\widetilde{\delta}_0^* \widetilde{\delta}_0 \widetilde{\alpha} = \delta_0^* \delta_0 \alpha - n d\widetilde{\alpha}(N) - dL_N i_N \widetilde{\alpha}.$$

Ceci permet de conclure, en remarquant que $\tilde{\delta}_0^* = d$ et que celle ci commute avec la restriction à S^n et la dérivée de Lie.

3.4. Formule reliant $\Delta^2_{\mathbb{R}^{n+1}}$ et $\Delta^2_{S^n}$.

Proposition 3.6. On a

(8)
$$\Delta_{S^n}^2 h = \delta_2 \circ \delta_2^* h - \delta_1^* \circ \delta_1 h + 4(nh - Trh \operatorname{can}).$$

Preuve: C'est une conséquence de (2) et du fait que

$$K_2(h) = 2(nh - Trh \operatorname{can}).$$

Cette formule découle des deux formules suivantes:

$$r(X,Y) = (n-1)\operatorname{can}(X,Y),$$

$$R(X,Y)Z = \operatorname{can}(Y,Z)X - \operatorname{can}(X,Z)Y.$$

R, r les courbures tensorielle et de Ricci sur $(S^n, \operatorname{can})$ et (X, Y, Z) un triple de champs de vecteurs quelconques sur S^n .

Pour trouver une formule reliant $\Delta^2_{\mathbb{R}^{n+1}}$ et $\Delta^2_{S^n}$, le calcul sera identique au calcul fait dans le cas p=1. On aura besoin de calculer $\delta_2(R(H))$ où R(H) est la 3-forme définie dans la Proposition 3.3 et d'établir une relation entre $i_N \widetilde{\delta}_2^*$ et $\widetilde{\delta}_1^* i_N$. En plus, contrairement au cas précédent, la dérivée de Lie ne commute pas avec $\widetilde{\delta}_1^*$.

Soit $H \in \mathcal{S}^2\mathbb{R}^{n+1}$ et soit R(H) la 3-forme définie dans la Proposition 3.3. On notera aussi R(H) sa restriction à S^n .

Un clacul direct donnerait

(9)
$$\delta_2(R(H)) = -\delta_1^*(i_N H) + \delta_0(i_N H) \, \text{can},$$

(10)
$$i_N \widetilde{\delta}_2^* H = \widetilde{\delta}_1^* i_N H + L_N H - \frac{4}{r} H + \frac{4}{r} i_N H \odot i_N \operatorname{can}.$$

o désigne le produit symétrique.

Lemme 3.1. Soit (M,g) une variété riemannienne, soit D sa connexion de Levi-Civita et soit R son tenseur de courbure. Soit $\alpha \in S^1M$. Pour tout champs de vecteurs X, Y, N de M, on a la formule

$$L_N \delta_1^* \alpha(X, Y) = \delta_1^* L_N \alpha(X, Y) + \alpha(R^s(N, X, Y) - D_{X,Y}^{2,s} N),$$

avec

$$R^{s}(N, X, Y) = R(N, X, Y) + R(N, Y, X),$$

$$D_{X,Y}^{2,s}N = D_{X}D_{Y}N + D_{Y}D_{X}N - D_{D_{X}Y}N - D_{D_{Y}X}N.$$

Preuve du lemme: Un calcul direct et fastidieux.

Soient X,Y deux champs de vecteurs tangents à $S^n.$ En restriction à $S^n,$ on a

(11)
$$D_{X,Y}^{2,s}N = -2\langle X, Y \rangle N.$$

Proposition 3.7. Soit $H \in S^2\mathbb{R}^{n+1}$ et soit h sa restriction à S^n . On a, en restriction à S^n ,

$$\Delta_{\mathbb{R}^{n+1}}^2 H = \Delta_{S^n}^2 h - L_N \circ L_N H - (n-4)L_N H - 4h$$
$$-2\delta_1^*(i_N H) - 2H(N, N) \cot + 2Trh \cot.$$

Preuve: D'après les Propositions 3.2 et 3.3, on a

$$\widetilde{\delta}_2\widetilde{\delta}_2^*H = \delta_2\delta_2^*h + 2\delta_2(R(H)) - ni_N\widetilde{\delta}_2^*H - L_Ni_N\widetilde{\delta}_2^*H.$$

En utilisant la formule (10), on obtient,

$$L_N i_N \tilde{\delta}_2^* H = L_N \tilde{\delta}_1^* i_N H + L_N o L_N H + \frac{4}{r^2} H - \frac{4}{r} L_N H + L_N \left(\frac{4}{r} i_N H \odot i_N \operatorname{can} \right).$$

D'après le Lemme 3.2 et la formule (11), on a

$$L_N \widetilde{\delta}_1^* i_N H = \widetilde{\delta}_1^* L_N i_N H + 2H(N, N) \operatorname{can}.$$

On obtient, donc, en utilisant (9),

$$\widetilde{\delta}_2 \widetilde{\delta}_2^* H = \delta_2 \delta_2^* h - L_N \circ L_N H - (n-4) L_N H + 4(n-1) H$$
$$- n \widetilde{\delta}_1^* i_N H - \widetilde{\delta}_1^* L_N i_N H + 2 \delta_0 (i_N H)$$
$$- 2 \delta_1^* (i_N H) - 2 H(N, N) \text{ can }.$$

D'un autre côté, en vertu des Propositions 3.2 et 3.3, on a

$$\widetilde{\delta}_1^* \widetilde{\delta}_1 H = \delta_1^* \delta_1 h - n \delta_1^* (i_n H) - \delta_1^* (L_N i_N H) + 2 \widetilde{\delta}_1 H(N) \operatorname{can}.$$

Or, d'après la Proposition 3.3, on a

$$\delta_1^*(i_N H) = \widetilde{\delta}_1^*(i_N H) - 2H(N, N) \operatorname{can},$$

$$\delta_1^*(L_N i_N H) = \widetilde{\delta}_1^*(L_N i_N H) - 2N \cdot H(N, N) \operatorname{can}.$$

Un calcul direct donnerait

$$\widetilde{\delta}_1 H(N) = \delta_0(i_N H) - nH(N, N) - N.H(N, N) + Trh.$$

Finalement, on a

$$\widetilde{\delta}_1^* \widetilde{\delta}_1 H = \delta_1^* \delta_1 h - n \widetilde{\delta}_1^* (i_n H) - \widetilde{\delta}_1^* (L_N i_N H) + 2(\delta_0 (i_N H) + Trh) \operatorname{can}.$$

Ceci permet de conclure. ■

Dans tout ce qui suit, on notera:

 \widetilde{P}_k l'espace vectoriel des polynômes homogènes de degré k sur \mathbb{R}^{n+1} .

 \widetilde{H}_k l'espace vectoriel des polynômes homogènes et harmoniques de degré k sur $\mathbb{R}^{n+1}.$

 $\mathcal{S}^p \tilde{P}_k$ (resp. $\mathcal{S}^p \tilde{H}_k$) l'espace vectoriel des *p*-formes symétriques sur \mathbb{R}^{n+1} dont toutes les composantes, dans la base canonique, sont dans \tilde{P}_k (resp. dans \tilde{H}_k).

Pour toute p-forme symétrique sur \mathbb{R}^{n+1} , $h = \sum_{i_1,\ldots,i_p=1}^{n+1} h_{i_1,\ldots,i_p} dx_{i_1}\ldots dx_{i_p}$, on pose

$$N.h = \sum_{i_1, \dots, i_p = 1}^{n+1} N.h_{i_1, \dots, i_p} dx_{i_1} \dots dx_{i_p}.$$

La propriété ii) de la proposition suivante va jouer un rôle très important par la suite.

Proposition 3.8. i) Pour tout $Q \in \widetilde{P}_k$, et tout s réel, on a

$$\Delta_{\mathbb{D}^{n+1}}^0 r^s Q = r^s \Delta_{\mathbb{D}^{n+1}}^0 Q - s(s+n-1+2\deg Q) r^{s-2} Q.$$

ii) Soit $Q \in \widetilde{H}_k$. Pour tout $j = 1 \dots n + 1$, il existe un couple unique (Q_0, Q_1) de polynômes homogènes harmoniques tels que

$$x_i Q = Q_0 + r^2 Q_1.$$

Plus précisement, on a $Q_0 \in \widetilde{H}_{k+1}$ et $Q_1 \in \widetilde{H}_{k-1}$.

Preuve: i) C'est un calcul direct.

ii) Il suffit de prendre

$$Q_0 = x_j Q - \frac{1}{2k+n-1} r^2 \frac{\partial Q}{\partial x_j},$$

$$Q_1 = \frac{1}{2k+n-1} \frac{\partial Q}{\partial x_j}$$

et d'appliquer i) pour vérifier que Q_0 est harmonique. \blacksquare

3.5. Spectre et sous-espaces propres de $\Delta_{S^n}^0$.

Proposition 3.9. Soit f la restriction à S^n d'un élément de \widetilde{H}_k . On a

$$\Delta_{S^n}^0 f = k(k-1+n)f.$$

En plus, la multiplicité de la valeur propre est égale à la dimension de \widetilde{H}_k qui est égale à

$$\frac{n(n+1)\dots(n+k-3)(n+k-2)}{k!}(n+2k-1).$$

Preuve: Découle immédiatement de la Proposition 3.4. Pour la multiplicité voir [Be-Ga-Ma, p. 162]. \blacksquare

Cette proposition permet d'avoir le spectre et tous les sous-espace propres de $\Delta^0_{S^n}$ puisque les fonctions polynômes sont denses dans $C^0(S^n)$ et on a la décomposition orhogonale ([**Be-Ga-Ma**, p. 160])

(12)
$$\widetilde{P}_k = \bigoplus_{l=0}^{\left[\frac{k}{2}\right]} r^{2l} \widetilde{H}_{k-2l}.$$

3.6. Spectre et sous-espaces propres de $\Delta^1_{S^n}$.

Il est connu, d'après un théorème de Hodge et puisque $\operatorname{Ker} \Delta^1_{S^n} = 0$, que

$$(H_3) S^1 S^n = dC^{\infty}(S^n) \bigoplus \operatorname{Ker} \delta_0.$$

Cette décomposition est orthogonale et invariante par $\Delta^1_{S^n}$.

Proposition 3.10. Soit $\alpha \in S^1 \mathbb{R}^{n+1}$. On a

$$L_N \alpha = N \cdot \alpha + \frac{1}{r} \alpha - \frac{1}{r} \alpha(N) i_N \operatorname{can},$$

$$L_N \circ L_N \alpha = N.N.\alpha + \frac{2}{r}N.\alpha - \frac{2}{r}N.\alpha(N)i_N \text{ can }.$$

Preuve:

$$\begin{split} L_N \alpha \left(\frac{\partial}{\partial x_i} \right) &= N.\alpha \left(\frac{\partial}{\partial x_i} \right) - \alpha \left(\left[N, \frac{\partial}{\partial x_i} \right] \right) \\ &= N.\alpha_i - \alpha \left(\widetilde{D}_N \frac{\partial}{\partial x_i} \right) + \alpha (\widetilde{D}_{\frac{\partial}{\partial x_i}} N) \\ &= N.\alpha_i + \frac{1}{r} \left(\alpha_i - \left\langle N, \frac{\partial}{\partial x_i} \right\rangle \alpha(N) \right), \end{split}$$

et ce en vertu de (3).

La deuxième formule est une application de la première.

Proposition 3.11. Soit $\tilde{\alpha} \in S^1 \tilde{P}_k$ et soit α sa restriction à S^n . On a, en restriction à S^n ,

$$\Delta^1_{\mathbb{R}^{n+1}}\widetilde{\alpha} = \Delta^1_{S^n}\alpha - (k(k+n-1)+n-2)\alpha - 2d\widetilde{\alpha}(\vec{r}).$$

Preuve: D'après la Proposition 3.10, on a, en restriction à S^n ,

$$L_N\widetilde{\alpha} = (k+1)\widetilde{\alpha}$$
 et $L_N \circ L_N\widetilde{\alpha} = k(k+1)\widetilde{\alpha}$.

La proposition découle alors de la Proposition 3.5 et du fait, qu'en restriction à S^n , $d\widetilde{\alpha}(N)=d\widetilde{\alpha}(\vec{r})$.

Proposition 3.12. Soit f la restriction à S^n d'un élément de \widetilde{H}_k . On a

$$\Delta_{S^n}^1 df = k(k+n-1)df.$$

Preuve: Découle de la Proposition 3.9 et du fait que $\Delta^1_{S^n}$ et $\Delta^0_{S^n}$ commutent avec d. \blacksquare

D'après (H_3) , cette proposition nous donne le spectre et les sous-espaces propres de $\Delta^1_{S^n}$ restreint à $dC^{\infty}(S^n)$. On va, dans ce qui suit, donner le spectre et les sous-espaces propres de $\Delta^1_{S^n}$ restreint à Ker δ_0 .

Soit $\widetilde{\alpha} \in \mathcal{S}^1 \widetilde{H}_k$. Contrairement au cas du $\Delta^0_{S^n}$, la restriction α de $\widetilde{\alpha}$ à S^n n'est pas un vecteur propre de $\Delta^1_{S^n}$. Dans ce qui suit, on va donner la décomposition de α suivant (H_3) .

On a, d'après la Proposition 3.8 ii),

$$\widetilde{\alpha}(\vec{r}) = \sum_{i=1}^{n+1} \alpha_i x_i = Q_0 + r^2 Q_1 \quad \text{avec} \quad Q_l \in \widetilde{H}_{k+1-2l}.$$

On pose

(13)
$$\omega_k(\widetilde{\alpha}) = \widetilde{\alpha} - \frac{1}{k+1} dQ_0 - \frac{1}{2-k-n} dr^2 Q_1.$$

 $\omega_k(\widetilde{\alpha}) \in \mathcal{S}^1\widetilde{P}_k$ et on notera $\omega_k(\alpha)$ sa restriction à S^n .

Proposition 3.13. On a

$$\Delta_{S^n}^1 \omega_k(\alpha) = (k(k+n-1) + n - 2)\omega_k(\alpha).$$

Preuve: D'après (13), on a

$$\omega_k(\widetilde{\alpha})(\overrightarrow{r}) = \frac{1 - 2k - n}{2 - k - n} r^2 Q_1,$$

$$\Delta_{\mathbb{R}^{n+1}}^1 \omega_k(\widetilde{\alpha}) = -\frac{1}{2 - k - n} d\Delta_{\mathbb{R}^{n+1}}^0 (r^2 Q_1)$$

$$= -2 \frac{1 - 2k - n}{2 - k - n} dQ_1,$$

d'après i) Proposition 2.8. On aura donc

$$2d\omega_k(\widetilde{\alpha})(\vec{r}) = -\Delta_{\mathbb{R}^{n+1}}^1 \omega_k(\widetilde{\alpha}) = 2\frac{1-2k-n}{2-k-n} dQ_1,$$

et la Proposition 3.11 permet de conclure. ■

Si $\widetilde{\alpha} \in \mathcal{S}^1 \widetilde{H}_k$ et si α est sa restriction à S^n , la décomposition de α selon (H_3) est donnée par

(14)
$$\alpha = \omega_k(\alpha) + \frac{1}{k+1}dQ_0 + \frac{1}{2-k-n}dQ_1.$$

En plus, $\omega_k(\alpha)$, dQ_0 et dQ_1 sont des vecteurs propres de $\Delta_{S^n}^1$. On notera

$$\lambda_k^0 = k(k+n-1),$$

$$\lambda_k^1 = k(k+n-1) + n - 2,$$

$$E_{\lambda_k^0} = \{ df/f = F/_{S^n} \quad \text{et} \quad F \in \widetilde{H}_k \},$$

$$E_{\lambda_k^1} = \{ \omega_k(\alpha)/\widetilde{\alpha} \in \mathcal{S}^1 \widetilde{H}_k \},$$

$$\mathcal{P}^1(S^n, \text{can}) = \left(\bigoplus_{k=1}^{\infty} E_{\lambda_k^0} \right) \bigoplus \left(\bigoplus_{k=1}^{\infty} E_{\lambda_k^1} \right).$$

Proposition 3.14.

$$\dim E_{\lambda_k^0} = \dim \widetilde{H}_k \quad pour \quad k \ge 1,$$

$$\dim E_{\lambda_k^1} = (n+1) \dim \widetilde{H}_k - (\dim \widetilde{H}_{k+1} + \dim \widetilde{H}_{k-1}).$$

Preuve: La première égalité est triviale.

Soit $\Phi_k : \widetilde{H}_{k+1} \times \widetilde{H}_{k-1} \longrightarrow \mathcal{S}^1 \widetilde{H}_k$ définie par

$$\Phi_k(Q_0,Q_1) = \frac{1}{k+1} dQ_0 + \frac{1}{2-k-n} dr^2 Q_1 + \frac{1-2k-n}{2-k-n} Q_1 i_{\vec{r}} \operatorname{can}.$$

Il est facile de voir que $\Phi_k(Q_0, Q_1) \in \mathcal{S}^1 \widetilde{H}_k$.

Soit

$$\omega_k : \mathcal{S}^1 \widetilde{H}_k \longrightarrow E_{\lambda_k^1}$$
 $\widetilde{\alpha} \mapsto \omega_k(\alpha).$

Pour avoir la proposition il suffit de montrer que la suite

$$0 \longrightarrow \widetilde{H}_{k+1} \times \widetilde{H}_{k-1} \longrightarrow \mathcal{S}^1 \widetilde{H}_k \longrightarrow E_{\lambda_k^1} \longrightarrow 0$$

est exacte. Ceci découle immédiatement du fait que

$$\Phi_k(Q_0, Q_1)(\vec{r}) = Q_0 + r^2 Q_1.$$

Théorème 3.1. i) $\mathcal{P}^1(S^n, \operatorname{can})$ est dense au sens de la convergence uniforme dans \mathcal{S}^1S^n .

ii) Le spectre de $\Delta^1_{S^n}$ avec (n > 2) est donné par

$$\operatorname{Spec} \Delta^1_{S^n} = \{ k(k+n-1) \quad k \ge 1, \, k(k+n-1) + n - 2/ \quad k \ge 1 \}.$$

Les multiplicités des valeurs propres sont données par

$$\operatorname{multp}(\lambda_1^0) = n + 1,$$

$$\operatorname{multp}(\lambda_k^0) = \frac{n(n+1)\dots(n+k-3)(n+k-2)}{k!}(n+2k-1), \quad k > 1,$$

$$\mathrm{multp}(\lambda_1^1) = \frac{n(n+1)}{2},$$

$$\text{multp}(\lambda_2^1) = \frac{(n-1)(n+1)(n+3)}{3},$$

$$\operatorname{multp}(\lambda_k^1) = \frac{(n-1)n(n+1)\dots(n+k-3)}{(k+1)!}k(2k^2+3(n-1)k+(n-1)^2)$$

pour $k \geq 3$.

Preuve: i) Découle du fait que l'espace des polynômes homogènes est dense dans $C^{\infty}(S^n)$ de (12) et (14).

ii) Découle des Propositions 3.12, 3.13 et 3.14. Il reste à calculer $\operatorname{multp}(\lambda_k^1)$. On a

$$\dim \widetilde{H}_k = \frac{n(n+1)\dots(n+k-3)(n+k-2)}{k!}(n+2k-1).$$

On en déduit que

$$(n+1)\dim \widetilde{H}_k - (\dim \widetilde{H}_{k+1} + \dim \widetilde{H}_{k-1})$$

$$= \frac{n(n+1)\dots(n+k-3)}{(k+1)!} (A(n,k) - B(n,k) - C(n,k))$$

avec

$$A(n,k) = (n+1)(n+k-2)(k+1)(n+2k-1),$$

$$B(n,k) = (n+k-2)(n+k-1)(n+2k+1),$$

$$C(n,k) = (n+2k-3)k(k+1).$$

Un calcul simple donnerait

$$A(n,k) = 2(n+1)k^3 + 3(n+1)(n-1)k^2$$

$$+ (n+1)(n^2 - 3)k + (n-1)(n-2)(n+1),$$

$$B(n,k) = 2k^3 + 5(n-1)k^2 + (4n^2 - 7n + 1)k + (n+1)(n-2)(n-1),$$

$$C(n,k) = 2k^3 + (n-1)k^2 + (n-3)k.$$

Ceci permet de conclure. ■

Remarque. Spec $\Delta_{S^2}^1=\{k(k+1) \mid k\geq 1\}$, et multp(k(k+1))=2(2k+1).

Proposition 3.15. On a

- i) $\#E_{\lambda_1^1}$ est l'algèbre des champs de Killing de $(S^n, \operatorname{can})$.
- ii) $\bigoplus_{k=1}^\infty E_{\lambda_k^1}$ est dense au sens de la convergence uniforme dans $\operatorname{Ker} \delta_0.$

Preuve: i) Soit X un champ de Killing de $(S^n, \operatorname{can})$ et soit $\alpha = \omega^{\flat}(X)$. On a, d'après (1), $\delta_1^*(\alpha) = 0$. D'un autre côté, un calcul simple donne que

$$\delta_0(\alpha) = -\frac{1}{2} Tr \delta_1^*(\alpha) = 0.$$

Donc d'après (5), on aura

$$\Delta_{S^n}^1(\alpha) = 2(n-1)\alpha.$$

Or $\lambda_1^1 = 2(n-1)$ et donc, si \mathcal{G}_1 désigne l'algèbre des champs de Killing de $(S^n, \operatorname{can})$, $\omega^{\flat}(\mathcal{G}_1)$ est contenu dans $E_{\lambda_1^1}$ et, puisque ils ont la même dimension, ils sont égales.

ii) Découle de (H_3) et de la Proposition 3.13. \blacksquare

3.7. Spectre et sous-espaces propres de $\Delta_{S^n}^2$.

Comme pour $\Delta_{S^n}^1$, notre calcul sera guidé par les deux décompositions (H_1) et (H_2) données dans l'introduction et que nous rappelons içi.

$$(H_1) S^2 S^n = \operatorname{Ker} \delta_1 \bigoplus \delta_1^* (\Omega^1(S^n)),$$

$$(H_2) \quad \mathcal{S}^2 S^n = \operatorname{Ker} \delta_1 \cap Tr^{-1}(0) \bigoplus \left(\delta_1^*(\Omega^1(S^n)) + C^{\infty}(S^n) \operatorname{can} \right).$$

Proposition 3.16. Soit $H \in \mathcal{S}^2 \mathbb{R}^{n+1}$. On a

$$L_N H = N.H + \frac{2}{r}H - 2(i_N H \odot i_N \operatorname{can}),$$

$$L_N \circ L_N H = N.N.H + \frac{4}{r}N.H + \frac{2}{r^2}H - \frac{2}{r}N.(i_N H \odot i_N \operatorname{can})$$

$$-\frac{4}{r}(i_N H \odot i_N \operatorname{can}) - 2(i_N L_N H \odot i_N \operatorname{can}).$$

Preuve.

$$L_N H\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = N.H_{ij} - H\left(\left[N, \frac{\partial}{\partial x_i}\right], \frac{\partial}{\partial x_j}\right) - H\left(\left[N, \frac{\partial}{\partial x_j}\right], \frac{\partial}{\partial x_i}\right).$$

Or, d'après (3),

$$\left[N, \frac{\partial}{\partial x_i}\right] = -\widetilde{D}_{\frac{\partial}{\partial x_i}} N = -\frac{1}{r} \left(\frac{\partial}{\partial x_i} - \left\langle N, \frac{\partial}{\partial x_i} \right\rangle N\right).$$

Ce qui permet d'avoir la première formule. La deuxième est une application de la première. \blacksquare

Proposition 3.17. Soit $H \in S^2 \widetilde{P}_k$ et soit h sa restriction à S^n . On a, en restriction à S^n ,

$$\Delta_{\mathbb{R}^{n+1}}^2 H = \Delta_{S^n}^2 h - (k(k+n-1) + 2(n-1))h - 2\delta_1^*(i_{\vec{r}}H) - 2H(\vec{r}, \vec{r}) \operatorname{can} + 2Trh \operatorname{can}.$$

Preuve: D'après la Proposition 3.16, on a, en restriction à S^n ,

$$L_N H = (k+2)h,$$

$$L_N \circ L_N H = (k(k+3)+2)h.$$

La Proposition 3.7 permet alors de conclure. ■

Proposition 3.18. Soit $F \in \widetilde{H}_k$, soit f sa restriction à S^n et soit $\widetilde{\alpha} \in S^1 \widetilde{H}_k$. On a

$$\Delta_{S^n}^2(f \operatorname{can}) = k(k+n-1)f \operatorname{can},$$

$$\Delta_{S^n}^2 \delta_1^*(df) = k(k+n-1)\delta_1^*(df),$$

$$\Delta_{S^n}^2 \delta_1^*(\omega_k(\alpha)) = (k(k+n-1)+n-2)\delta_1^*(\omega_k(\alpha)).$$

Preuve: Ces égalités découlent du Théorème 2.1 et des Propositions 3.9, 3.12 et 3.13. \blacksquare

Cette proposition nous donne le spectre et les sous-espaces propres de $\Delta_{S^n}^2$ en restriction à $\operatorname{Im} \delta_1^* + C^{\infty}(S^n)$ can. Dans ce qui suit, on va donner le spectre et les sous-espaces propres de $\Delta_{S^n}^2$ en restriction à $\operatorname{Ker} \delta_1 \cap Tr^{-1}(0)$ et ce en vertu de (H_2) .

Soit $H \in \mathcal{S}^2\widetilde{H}_k$ et soit h sa restriction à S^n . Comme pour le calcul du spectre de $\Delta^1_{S^n}$, h n'est pas un vecteur propre de $\Delta^2_{S^n}$. On se propose, dans ce qui suit, de décomposer h suivant (H_2) et trouver un vecteur propre de $\Delta^2_{S^n}$ pour la valeur propre $\lambda^2_k = k(k+n-1) + 2(n-1)$.

Pour cela, si $H \in \mathcal{S}^2 \widetilde{P}_k$ et si h est sa restriction à S^n , on pose

$$\Phi(H) = \Delta_{\mathbb{R}^{n+1}}^2 H + 2\delta_1^*(i_{\vec{r}}H) + 2H(\vec{r}, \vec{r}) \cos -2Trh \cos.$$

 $\phi(H)$ est une 2-forme symétrique sur S^n .

Soit $H \in \mathcal{S}^2 \widetilde{H}_k$ et soit h sa restriction à S^n . On a

$$i_{\vec{r}}H = \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} H_{ij}x_j dx_i.$$

Or, d'aprés la Proposition 3.8, on a, pour tout $i = 1 \dots n + 1$

$$\sum_{i=1}^{n+1} H_{ij} x_j = \alpha_i^0 + r^2 \alpha_i^1,$$

avec $\alpha_i^0 \in \widetilde{H}_{k+1}$ et $\alpha_i^1 \in \widetilde{H}_{k-1}$.

On pose

$$\alpha_0 = \sum_{i=1}^{n+1} \alpha_i^0 dx_i, \text{ et } \alpha_1 = \sum_{i=1}^{n+1} \alpha_i^1 dx_i.$$

Toujours d'après la Proposition 3.8, on a

$$\alpha_0(\vec{r}) = P_0^0 + r^2 P_1^0$$
 et $\alpha_1(\vec{r}) = P_0^1 + r^2 P_1^1$,

avec $P_0^0 \in \widetilde{H}_{k+2}$, $P_1^0 \in \widetilde{H}_k$, $P_0^1 \in \widetilde{H}_k$ et $P_1^1 \in \widetilde{H}_{k-2}$. On a, d'après (13),

$$\begin{split} i_{\vec{r}}H &= \alpha_0 + r^2\alpha_1 \\ &= \omega_{k+1}(\alpha_0) + r^2\omega_{k-1}(\alpha_1) \\ &\quad + \frac{1}{k+2}dP_0^0 + \frac{1}{1-k-n}dr^2P_1^0 + \frac{r^2}{k}dP_0^1 + \frac{r^2}{3-k-n}dr^2P_1^1, \\ H(\vec{r},\vec{r}) &= P_0^0 + r^2(P_1^0 + P_0^1) + r^4P_1^1. \end{split}$$

En remarquant que, en restriction à $S^n, TrH = Trh + H(\vec{r}, \vec{r})$, on obtient que

$$\begin{split} \Phi(H) &= 2\delta_1^*(\omega_{k+1}(\alpha_0)) + 2\delta_1^*(\omega_{k-1}(\alpha_1)) \\ &+ \frac{2}{k+2}\delta_1^*(dP_0^0) + \frac{2}{1-k-n}\delta_1^*(dr^2P_1^0) \\ &+ \frac{2}{k}\delta_1^*(dP_0^1) + \frac{2}{3-k-n}\delta_1^*(dr^2P_1^1) \\ &+ 4(P_0^0 + P_1^0 + P_0^1 + P_1^1) \operatorname{can} - 2TrH \operatorname{can}. \end{split}$$

On pose, maintenant

$$\Omega_{k}(H) = h - \frac{1}{k} \delta_{1}^{*}(\omega_{k+1}(\alpha_{0})) + \frac{1}{k+n-1} \delta_{1}^{*}(\omega_{k-1}(\alpha_{1}))$$

$$- \frac{1}{2(k+1)(k+2)} \delta_{1}^{*}(dP_{0}^{0}) + \frac{1}{(n-1)(1-k-n)} \delta_{1}^{*}(dP_{1}^{0})$$

$$+ \frac{1}{(n-1)k} \delta_{1}^{*}(dP_{0}^{1}) + \frac{1}{2(k+n-2)(3-k-n)} \delta_{1}^{*}(dP_{1}^{1})$$

$$+ \left(-\frac{1}{k+1} P_{0}^{0} + \frac{2}{n-1} (P_{1}^{0} + P_{0}^{1}) \right)$$

$$+ \frac{1}{k+n-2} P_{1}^{1} + \frac{1}{1-n} Tr H \right) can,$$

$$(15)$$

$$\tilde{\Omega}_{k}(H) = H - \frac{1}{k} \tilde{\delta}_{1}^{*}(\omega_{k+1}(\alpha_{0})) + \frac{r^{2}}{k+n-1} \tilde{\delta}_{1}^{*}(\omega_{k-1}(\alpha_{1}))$$

$$- \frac{1}{2(k+1)(k+2)} \tilde{\delta}_{1}^{*}(dP_{0}^{0}) + \frac{r^{2}}{(n-1)(1-k-n)} \tilde{\delta}_{1}^{*}(dP_{1}^{0})$$

$$+ \frac{r^{2}}{k(n-1)} \tilde{\delta}_{1}^{*}(dP_{0}^{1}) + \frac{r^{4}}{2(k+n-2)(3-k-n)} \tilde{\delta}_{1}^{*}(dP_{1}^{1})$$

$$- 2 \frac{k^{2} + 3(n-1)k + (n^{2}-1)}{k(n-1)(1-k-n)} P_{1}^{0} can + \frac{1}{1-n} Tr H can$$

$$+ \frac{2k^{2} + (3n-7)k + n^{2} - 4n + 7}{(3-k-n)(k+n-1)(k+n-2)} r^{2} P_{1}^{1} can.$$

Un calcul direct utilisant la Proposition 3.3 permet de vérifier que $\widetilde{\Omega}_k(H) \in \mathcal{S}^2 \widetilde{P}_k$ et que sa restriction à S^n est exactement $\Omega_k(H)$.

Proposition 3.19. Soit $H \in S^2 \widetilde{H}_k$. On a

$$\Delta_{Sn}^2 \Omega_k(H) = (k(k+n-1) + 2(n-1))\Omega_k(H).$$

Preuve: D'après la Proposition 3.17, il suffit de vérifier que $\Phi(\tilde{\Omega}_k(H))=0.$

Or $\Omega_k(H) - h$, restriction de $\tilde{\Omega}_k(H) - H$, est la somme de vecteurs propres de $\Delta_{S^n}^2$ dont les coefficients on été déterminée pour que justement $\Phi(\tilde{\Omega}_k(H))$ soit égale à 0. La vérification peut se faire, en remarquant que, si ϕ est un vecteur propre de $\Delta_{S^n}^2$ pour la valeur propre λ et $\tilde{\phi}$ est une 2-forme homogène de degré k qui prolonge ϕ , on a, en vertu de la Proposition 3.17, que

$$\Phi(\widetilde{\phi}) = (\lambda - (k(k+n-1) + 2(n-1)))\phi. \quad \blacksquare$$

Proposition 3.20. Soit $H \in S^2 \widetilde{H}_k$. On a

$$Tr\Omega_k(H) = 0$$
 et $\delta_1(\Omega_k(H)) = 0$.

Preuve: D'après la proposition précédente, $\Omega_k(H)$ est un vecteur propre de $\Delta_{S^n}^2$ pour la valeur propre k(k+n-1)+2(n-1) et donc, d'après la Proposition 3.18, on a

$$\langle \Omega_k(H), f \operatorname{can} \rangle = \langle \Omega_k(H), \delta_1^*(df) \rangle = \langle \Omega_k(H), \delta_1^*(\omega_k(\alpha)) \rangle = 0$$

pour tout $f \in \widetilde{H}_k$ et tout $\widetilde{\alpha} \in \mathcal{S}^1 \widetilde{H}_k$. Par un argument de densité, on déduit que $\Omega_k(H)$ est orthogonal à $C^{\infty}(S^n)$ can et à $\delta_1^*(\mathcal{S}^1 S^n)$, ce qui prouve la proposition.

Soit $H \in \mathcal{S}^2 \widetilde{H}_k$ et si h est sa restriction à S^n , la décomposition de h suivant (H_2) est donnée par

$$(16)$$

$$h = \Omega_k(H) + \frac{1}{k} \delta_1^*(\omega_{k+1}(\alpha_0)) - \frac{1}{k+n-1} \delta_1^*(\omega_{k-1}(\alpha_1))$$

$$+ \frac{1}{2(k+1)(k+2)} \delta_1^*(dP_0^0) - \frac{1}{(n-1)(1-k-n)} \delta_1^*(dP_1^0)$$

$$- \frac{1}{(n-1)k} \delta_1^*(dP_0^1) - \frac{1}{2(k+n-2)(3-k-n)} \delta_1^*(dP_1^1)$$

$$+ \left(+ \frac{1}{k+1} P_0^0 - \frac{2}{n-1} (P_1^0 + P_0^1) - \frac{1}{k+n-2} P_1^1 - \frac{1}{1-n} TrH \right) \text{can}.$$

D'un autre côté et puisque $Tr\Omega_k(H) = 0$, TrH ne dépend que de α_0 et α_1 . Pour calculer la multiplicité des valeurs propres, on définit alors

$$\begin{split} \Psi_k(\alpha_0,\alpha_1) &= -\frac{1}{k} \widetilde{\delta}_1^*(\omega_{k+1}(\alpha_0)) + \frac{r^2}{k+n-1} \widetilde{\delta}_1^*(\omega_{k-1}(\alpha_1)) \\ &- \frac{1}{2(k+1)(k+2)} \widetilde{\delta}_1^*(dP_0^0) + \frac{r^2}{(n-1)(1-k-n)} \widetilde{\delta}_1^*(dP_1^0) \\ &+ \frac{r^2}{k(n-1)} \widetilde{\delta}_1^*(dP_0^1) + \frac{r^4}{2(k+n-1)(3-k-n)} \widetilde{\delta}_1^*(dP_1^1) \\ &- 2\frac{k^2 + 3(n-1)k + (n^2-1)}{k(n-1)(1-k-n)} P_1^0 \operatorname{can} + \frac{1}{1-n} Tr H \operatorname{can} \\ &+ \frac{2k^2 + (3n-7)k + n^2 - 4n + 7}{(3-k-n)(k+n-1)(k+n-2)} r^2 P_1^1 \operatorname{can}. \end{split}$$

On notera

$$\begin{split} \lambda_k^0 &= k(k+n-1), \\ \lambda_k^1 &= k(k+n-1)+n-2, \\ \lambda_k^2 &= k(k+n-1)+2(n-1), \\ G_{\lambda_k^0} &= \{f \operatorname{can} + \delta_1^*(dq)/f = F/_{S^n}, \quad q = Q/_{S^n} \quad \text{et} \quad F, Q \in \widetilde{H}_k \}, \\ G_{\lambda_k^1} &= \{\delta_1^*(\omega_k(\alpha))/\widetilde{\alpha} \in \mathcal{S}^1 \widetilde{H}_k \}, \\ G_{\lambda_k^2} &= \{\Omega_k(H)/H \in \mathcal{S}^2 \widetilde{H}_k \}, \\ \mathcal{P}^2(S^n, \operatorname{can}) &= \left(\bigoplus_{k=0}^\infty G_{\lambda_k^0}\right) \bigoplus \left(\bigoplus_{k=2}^\infty G_{\lambda_k^1}\right) \bigoplus \left(\bigoplus_{k=2}^\infty G_{\lambda_k^2}\right). \end{split}$$

Proposition 3.21. On a

$$\begin{split} \dim G_{\lambda_0^0} &= 1, \\ \dim G_{\lambda_1^0} &= n+1, \\ \dim G_{\lambda_k^0} &= 2 \dim \widetilde{H}_k \quad pour \quad k \geq 2, \\ \dim G_{\lambda_k^1} &= (n+1) \dim \widetilde{H}_k - (\dim \widetilde{H}_{k+1} + \dim \widetilde{H}_{k-1}) \quad pour \quad k \geq 2, \\ \dim G_{\lambda_k^2} &= \frac{1}{2} (n+2) (n+1) \dim \widetilde{H}_k - (n+1) (\dim \widetilde{H}_{k+1} + \dim \widetilde{H}_{k-1}). \end{split}$$

Preuve: Les deux premières égalités sont triviales. Montrons la troisième. Soient $F,Q\in \widetilde{H}_k$ et soient f,q leurs restrictions à S^n . Supposons que

$$f \operatorname{can} + \delta_1^*(dq) = 0.$$

D'après (7) et (19), on a

$$\delta_1(f \operatorname{can}) = -df,$$

 $\delta_1 \delta_1^*(dq) = 2(k(k+n-1) - (n-1))dq.$

On en déduit que f = 2(k(k+n-1)-(n-1))q et par homogénéité F = 2(k(k+n-1)-(n-1))Q.

D'un autre côté, un calcul direct donne

$$Tr\delta_1^*(dq) = -2\delta_0(dq) = -2k(k+n-1)q$$

et en prenant la trace dans (*), on déduit que q=0 et par homogénéité on aura F=Q=0. Ceci prouve la troisième égalité.

Soit
$$\Phi_k: \mathcal{S}^1\widetilde{H}_{k+1} \times \mathcal{S}^1\widetilde{H}_{k-1} \longrightarrow \mathcal{S}^2\widetilde{H}_k$$
 définie par

$$\Phi_k(\alpha_0, \alpha_1) = -\Psi_k(\alpha_0, \alpha_1) + \beta \odot i_{\vec{r}} \operatorname{can},$$

où β est définie de manière unique pour que $i_{\vec{r}}\Phi_k(\alpha_0,\alpha_1)=\alpha_0+r^2\alpha_1$. Et soit

$$\Omega_k : \mathcal{S}^2 \widetilde{H}_k \longrightarrow G_{\lambda_k^2}$$

$$H \mapsto \Omega_k(H).$$

Pour avoir la proposition il suffit de montrer que la suite

$$0 \longrightarrow \mathcal{S}^1 \widetilde{H}_{k+1} \times \mathcal{S}^1 \widetilde{H}_{k-1} \longrightarrow \mathcal{S}^2 \widetilde{H}_k \longrightarrow G_{\lambda_k^2} \longrightarrow 0$$

est exacte. Ce qui est très simple à vérifier. \blacksquare

Théorème 3.2. i) $\mathcal{P}^2(S^n, \operatorname{can})$ est dense au sens de la convergence uniforme dans \mathcal{S}^2S^n .

ii) Le spectre de $\Delta_{S^n}^2$ (n > 2) est donné par

Spec
$$\Delta_{S^n}^2 = \{k(k+n-1) \mid k \ge 0, k(k+n-1)+n-2 \mid k \ge 2, k(k+n-1)+2(n-1) \mid k \ge 2\}.$$

Les multiplicités des valeurs propres sont données par

$$\begin{split} & \mathrm{multp}(\lambda_0^0) = 1, \\ & \mathrm{multp}(\lambda_1^0) = n+1, \\ & \mathrm{multp}(\lambda_k^0) = 2\frac{n(n+1)\dots(n+k-3)(n+k-2)}{k!}(n+2k-1), \quad k \geq 2, \\ & \mathrm{multp}(\lambda_k^1) = \frac{(n-1)(n+1)(n+3)}{3}, \\ & \mathrm{multp}(\lambda_k^1) = \frac{(n-1)n(n+1)\dots(n+k-3)}{(k+1)!}k \\ & \qquad \times (2k^2+3(n-1)k+(n-1)^2) \quad k \geq 3, \\ & \mathrm{multp}(\lambda_2^2) = \frac{(n+1)(n+2)(n+3)(n-2)}{12}, \\ & \mathrm{multp}(\lambda_k^2) = \frac{1}{2}\frac{n(n+1)\dots(n+k-3)}{(k+1)!}(n+1)(n-2) \\ & \qquad \times (2k^3+3(n-1)k^2+(n^2-4n+1)k-n(n-1)) \quad k \geq 3. \end{split}$$

Preuve: i) Découle du fait que l'espace des polynômes homogènes est dense dans $C^{\infty}(S^n)$ de (12) et (16).

ii) Découle des Propositions 3.18, 3.19 et 3.21. Il reste à vérifier $\mathrm{multp}(\lambda_k^1)$ et $\mathrm{multp}(\lambda_k^2)$.

La relation (1), la Proposition 3.15 et le Théorème 3.1 permettent de donner la multiplicité de multp (λ_k^1) .

$$\dim \widetilde{H}_k = \frac{n(n+1)\dots(n+k-3)(n+k-2)}{k!}(n+2k-1).$$

On en déduit que

$$\frac{1}{2}(n+2)(n+1)\dim \widetilde{H}_k - (n+1)(\dim \widetilde{H}_{k+1} + \dim \widetilde{H}_{k-1})
= \frac{(n+1)}{2} \frac{n(n+1)\dots(n+k-3)}{(k+1)!} \left(\frac{n+2}{n+1} A(n,k) - 2B(n,k) - 2C(n,k)\right),$$

avec

$$A(n,k) = (n+1)(n+k-2)(k+1)(n+2k-1),$$

$$B(n,k) = (n+k-2)(n+k-1)(n+2k+1),$$

$$C(n,k) = (n+2k-3)k(k+1).$$

Avec (voir la preuve du Théorème 3.1)

$$A(n,k) = 2(n+1)k^3 + 3(n+1)(n-1)k^2$$

$$+ (n+1)(n^2 - 3)k + (n-1)(n-2)(n+1),$$

$$B(n,k) = 2k^3 + 5(n-1)k^2 + (4n^2 - 7n + 1)k + (n+1)(n-2)(n-1),$$

$$C(n,k) = 2k^3 + (n-1)k^2 + (n-3)k.$$

Ceci permet de donner la multiplicité de multp (λ_k^2) .

Remarque. Spec $\Delta_{S^2}^2 = \{k(k+1) \mid k \geq 1\}$, et multp(k(k+1)) = 3(2k+1).

Soit $F \in \widetilde{\mathcal{H}}_k$ et soit f sa restriction à S^n . On pose

(18)
$$N(f) = \delta_1^*(df) + 2(k(k+n-1) - (n-1))f \operatorname{can}.$$

Proposition 3.22. Soit $F \in \widetilde{\mathcal{H}}_k$ et soit f sa restriction à S^n . On a

$$\delta_1(N(f)) = 0.$$

Preuve: D'après la Proposition 3.12, on a

$$\Delta_{S^n}^1 df = k(k+n-1)df.$$

Soit, en vertu de (5),

$$\delta_1 \delta_1^*(df) = (k(k+n-1) - 2(n-1))df + d\delta_0 df.$$

Or, d'après la Proposition 3.9, $\delta_0 df = k(k+n-1)f$. On obtient donc que

$$\delta_1 \delta_1^*(df) = 2(k(k+n-1) - (n-1))df.$$

On peut conclure, en remarquant que $\delta_1(f \operatorname{can}) = -df$.

On note

$$N(\widetilde{\mathcal{H}}_k)=\{\delta_1^*(df)+2(k(k+n-1)-(n-1))f$$
 can
$$f=F/_{S^n}\quad {\rm et}\quad F\in\widetilde{\mathcal{H}}_k\},$$

$$N=\bigoplus_{k=0}^\infty N(\widetilde{\mathcal{H}}_k).$$

Comme annoncé dans l'introduction, on obtient:

Théorème 3.3. i) $N \bigoplus \left(\bigoplus_{k=2}^{\infty} G_{\lambda_k^2}\right)$ est dense au sens de la convergence uniforme dans $\operatorname{Ker} \delta_1$.

ii) $\left(\bigoplus_{k=2}^{\infty} G_{\lambda_k^2}\right)$ est dense au sens de la convergence uniforme dans $\ker \delta_1 \cap Tr^{-1}(0)$.

Preuve: D'après les Propositions 3.22 et 3.20, on a

$$N \bigoplus \left(\bigoplus_{k=2}^{\infty} G_{\lambda_k^2} \right) \subset \operatorname{Ker} \delta_1, \quad \left(\bigoplus_{k=2}^{\infty} G_{\lambda_k^2} \right) \subset \operatorname{Ker} \delta_1 \cap Tr^{-1}(0).$$

i) et ii) découlent alors des décomposition (H_1) et (H_2) .

Pour finir cette section, on va donner deux applications du Théorème 2.2 pour retrouver deux résultats bien connus.

Théorème 3.4 [Be-Eb]. Pour toute 2-forme symétrique h sur S^2 , il existe un couple (f, X) où f est une fonction différentiable et X un champ de vecteurs, tels que

$$h = L_X \operatorname{can} + f \operatorname{can}$$
.

Preuve: Découle de i) du Théorème 3.2 et du fait que, pour n=2, $\dim G_{\lambda_k^2}=0.$ \blacksquare

Proposition 3.23. La structure d'Einstein canonique sur S^n est rigide.

Preuve: Soit h une déformation d'Einstein infinitésimale. D'après [**Be2**, p. 347] et un calcul simple, h vérifie

$$Trh = 0, \, \delta_1(h) = 0 \quad \text{et} \quad \Delta_{S^n}^2(h) = 4(n-1)h.$$

4. Laplaciens de Lichnerowicz sur les projectifs réels

On notera $P: S^n \longrightarrow \mathbb{R}P^n$ le revêtement canonique du projectif réel de dimension n par la sphère S^n .

Proposition 4.1. Soit $f \in C^{\infty}(\mathbb{R}P^n)$, $\alpha \in S^1\mathbb{R}P^n$ et $h \in S^2\mathbb{R}P^n$. On a

$$\Delta_{S^n}^0(P^*f) = P^* \Delta_{\mathbb{R}P^n}^0(f),$$

$$\Delta_{S^n}^1(P^*\alpha) = P^* \Delta_{\mathbb{R}P^n}^1(\alpha),$$

$$\Delta_{S^n}^2(P^*h) = P^* \Delta_{\mathbb{R}P^n}^2(h).$$

Preuve: Pour la première relation voir [**Be-Ga-Ma**, p. 129]. Les deux dernières découlent du fait que le revêtement $P: S^n \longrightarrow \mathbb{R}P^n$ est une isométrie locale. \blacksquare

On identifiera $C^{\infty}(\mathbb{R}P^n)$ au sous-espace vectoriel de $C^{\infty}(S^n)$ des fonctions paire pour l'antipodie, $S^1\mathbb{R}P^n$ au sous-espace vectoriel de S^1S^n des 1-formes invariante par l'antipodie et $S^2\mathbb{R}P^n$ au sous-espace vectoriel des 2-formes symétriques invariantes par antipodie.

Les notations sont celles la section précédente. On notera

$$\mathcal{P}^{1}(\mathbb{R}P^{n}, \operatorname{can}) = \left(\bigoplus_{k=1}^{\infty} E_{\lambda_{2k}^{0}}\right) \bigoplus \left(\bigoplus_{k=0}^{\infty} E_{\lambda_{2k+1}^{1}}\right),$$

$$\mathcal{P}^{2}(\mathbb{R}P^{n}, \operatorname{can}) = \left(\bigoplus_{k=0}^{\infty} G_{\lambda_{2k}^{0}}\right) \bigoplus \left(\bigoplus_{k=2}^{\infty} G_{\lambda_{2k+1}^{1}}\right) \bigoplus \left(\bigoplus_{k=1}^{\infty} G_{\lambda_{2k}^{2}}\right),$$

$$N^{+} = \bigoplus_{k=0}^{\infty} N(\widetilde{\mathcal{H}}_{2k}).$$

Les résultats suivants sont une conséquence immédiates des Théorèmes 3.1, 2.2, 2.3, la Proposition 3.15 et la Proposition 4.1.

Théorème 4.1. i) $\mathcal{P}^1(\mathbb{R}P^n, \operatorname{can})$ est dense au sens de la convergence uniforme dans $\mathcal{S}^1\mathbb{R}P^n$.

ii) Le spectre de $\Delta^1_{\mathbb{R}P^n}$ avec (n>2) est donné par

Spec
$$\Delta^1_{\mathbb{R}P^n} = \{2k(2k+n-1) \mid k \ge 1, (2k+1)(2k+n) + n - 2/ \mid k \ge 0\}.$$

Les multiplicités des valeurs propres sont données par

$$\operatorname{multp}(\lambda_{2k}^0) = \frac{n(n+1)\dots(n+2k-3)(n+2k-2)}{(2k)!}(n+4k-1), \quad k \ge 1,$$

$$\operatorname{multp}(\lambda_1^1) = \frac{n(n+1)}{2},$$

$$\text{multp}(\lambda_{2k+1}^1) = \frac{(n-1)n(n+1)\dots(n+2k-2)}{(2k+2)!}$$

$$\times (2k+1)(8k^2+2(3n+1)k+(n+1)n)$$

pour $k \geq 1$.

Théorème 4.2. i) $\mathcal{P}^2(\mathbb{R}P^n, \operatorname{can})$ est dense au sens de la convergence uniforme dans $\mathcal{S}^2\mathbb{R}P^n$.

ii) Le spectre de $\Delta^2_{\mathbb{R}P^n}$ (n > 2) est donné par

$$\operatorname{Spec} \Delta^2_{\mathbb{R}P^n} = \{2k(2k+n-1) \quad k \geq 0, \, (2k+1)(2k+n)+n-2 \quad k \geq 1, \,$$

$$2k(2k+n-1)+2(n-1)$$
 $k > 2$.

Les multiplicités des valeurs propres sont données par

$$\operatorname{multp}(\lambda_0^0) = 1,$$

$$\text{multp}(\lambda_{2k}^0) = 2 \frac{n(n+1)\dots(n+2k-3)(n+2k-2)}{(2k)!}$$

$$\times (n+4k-1), \quad k \ge 1,$$

$$\text{multp}(\lambda_{2k+1}^1) = \frac{(n-1)n(n+1)\dots(n+2k-2)}{(2k+2)!}$$

$$\times (2k+1)(8k^2+2(3n+1)k+(n+1)n),$$

$$\text{multp}(\lambda_2^2) = \frac{(n+1)(n+2)(n+3)(n-2)}{12},$$

$$\operatorname{multp}(\lambda_{2k}^2) = \frac{1}{2} \frac{n(n+1)\dots(n+2k-3)}{(2k+1)!} (n+1)(n-2)$$

$$\times \left(16k^3 + 12(n-1)k^2 + 2(n^2 - 4n + 1)k - n(n-1)\right) \quad k \ge 2.$$

Proposition 4.2. On a

- i) $\#E_{\lambda_1^1}$ est l'algèbre des champs de Killing de $(\mathbb{R}P^n, \operatorname{can})$.
- ii) $\bigoplus_{k=0}^{\infty} E_{\lambda_{2k+1}^1}$ est dense au sens de la convergence uniforme dans $\text{Ker } \delta_0$.

Théorème 4.3. i) $N^+ \bigoplus \left(\bigoplus_{k=1}^{\infty} G_{\lambda_{2k}^2}\right)$ est dense au sens de la convergence uniforme dans $\operatorname{Ker} \delta_1$.

ii) $\left(\bigoplus_{k=2}^{\infty} G_{\lambda_{2k}^2}\right)$ est dense au sens de la convergence uniforme dans $\ker \delta_1 \cap Tr^{-1}(0)$.

Références

- [Be1] A. Besse, "Manifolds all of whose geodesics are closed," Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- [Be2] A. Besse, "Einstein manifolds," Springer-Verlag, Berlin-Heidelberg-New York, 1987.
- [Be-Eb] M. BERGER ET D. EBIN, Some decomposition of the space of symmetric tensors on riemannian manifold, *J. Differential Geom.* **3** (1969), 379–392.
- [Be-Ga-Ma] M. BERGER, P. GAUDUCHON ET E. MAZET, "Le spectre d'une variété riemannienne," Lecture Notes in Math. 194, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- [Be-Mi] B. L. BEERS ET R. S. MILLMAN, The spectra of the Laplace-Beltrami operator on compact, semisimple Lie groups, *Amer. J. Math.* **99(4)** (1975), 801–807.
- [Ga-Me] S. GALLOT ET D. MEYER, Opérateur de courbure et laplaciens des formes différentielles d'une variété riemannienne, *J. Math. Pures Appl.* **54** (1975), 259–289.
- [Ik-Ta] A. IKEDA ET Y. TANIGUCHI, Spectra and eigenforms of Laplacian on S^n and $P^n(\mathbb{C})$, Osaka J. Math. 15(3) (1978), 515–546.
- [Iw-Ka] I. IWASAKI ET K. KATASE, On the spectrum of the Laplace operator on $\bigwedge^*(S^n)$, *Proc. Japan Acad. Ser. A Math. Sci.* **55** (1979), 141–145.
- [L] A. LICHNEROWICZ, Propogateurs et commutateurs en relativité générale, *Inst. Hautes Études Sci. Publ. Math.* **10** (1961).

[M] R. MICHEL, Problèmes d'analyse géométrique liés à la conjecture de Blaschke, *Bull. Soc. Math. France* **101** (1973), 17–69.

Faculté des Sciences et Techniques Université Cadi-Ayyad Gueliz, BP 618 Marrakech MAROC

e-mail:fstg@cybernet.net.ma

Primera versió rebuda el 19 de gener de 1998, darrera versió rebuda el 16 de desembre de 1998