Текстовые интерфейсы для последовательности событий

Филатов Андрей

Московский физико-технический институт Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. Стрижов В.В.

7 Июня, 2023

Мотивация

Последовательность событий используется в основном для решения отдельных задач, под решение каждой задачи строится отдельная модель.

Мотивация

А что если сделать решение, которое позволяет построить единую модель для последовательности событий?

Постановка проблемы

Пусть:

- X множество последовательностей
- ightharpoonup $au_i:X o Y_i$ множество задач, \mathscr{L}_i функция ошибки на i-ой задачи.
- ▶ Текстовый интерфейс $\mathscr{T}: [X, C_i] \to \hat{Y}$, где C_i контекст, идентифицирующий задачу, \hat{Y} общее пространство ответов.
- $ightharpoonup Q_i: \hat{Y}
 ightarrow Y_i$ модель декодирования ответа для i-ой задачи.

Задача оптимизации

Тогда задачу построения текстового интерфейса можно формализовать как задачу оптимизации:

$$\arg\min_{\mathscr{T}} \ \mathbb{E}_{x \sim X, \tau \sim T} \ \mathscr{L}_{\tau}(Q_{\tau}(\mathscr{T}(x, C_{\tau})), \tau(x))$$

Цели исследования

- ▶ Построить модель для обработки последовательностей событий.
- Построить текстовый интерфейс для последовательностей.
- Проверить возможности текстового интерфейса для решения задач.
- Проверить способность текстового интерфейса решать несколько задач одновременно.

Датасет

Для экспериментов использовался датасет AlfaBattle:

- 450 млн. транзакций клиентов банка;
- В среднем 400 транзакций на клиента;
- 1.5 млн. уникальных пользователей;
- Транзакция набор из 19 признаков;

	app_id	amnt	currency	operation_kind	card_type	operation_type
0	0	0.465425	1	4	98	4
1	0	0.000000	1	2	98	7
2	0	0.521152	1	2	98	3
3	0	0.356078	1	1	5	2
4	0	0.000000	1	2	98	7

Пример транзакций

Модель

Модель последовательности событий

Для определения модели для последовательностей событий была проведена серия экспериментов:

- Исследование архитектур и предобученных моделей.
- Исследование специализированных для последовательностей событий методов предобучения моделей.

Результат

Выявлено, что авторегрессивные модели, предобученные на задачу предсказания следующего события показывают лучший результат.

Постановка вопросов

Для взаимодействия с текстовым интерфейса были сконструированы три различных типа вопросов:

- ▶ Binary. Задаётся вопрос, на который нужно ответить "Да"или "Heт". Пример: Will the amount for the next transaction will be more than 10000 rubles?
- ▶ Multichoice. Задаётся вопрос и предоставляется выбор из нескольких вариантов ответа.
 - Пример: What amount of the next transaction? Options: 1, 2, 5 rubles
- ▶ Open-ended. Задаётся вопрос в открытой форме, без указания вариантов. Пример: What amount will the next transaction have?

Решение задач

Контекстные задачи — задачи, ответ на которые можно найти в исходных данных.

- ▶ Каков наиболее популярный тип транзакции?
- Каково среднее значение суммы транзакции?

Предсказательные задачи — задачи, которые требуют предсказания будущего.

- Какой тип будет у следующей транзакции?
- Сколько транзакций будет у клиента через 30 дней?

Результат

Модель эффективно справляется с контекстными задачи, достигая качества близкого к идеальному. На предсказательных задачах качество сопоставимо с классическими решениями.

Multi-task learning

Для валидации способности текстового интерфейса решать несколько задач: предсказания дефолта, типа транзакции (МСС), объема и времени.

	Default	Next MCC	Next Amount	Next Hour
Single task	0.783	0.756	0.703	0.7043
MCC + Amount	-	0.750	0.6549	-
MCC + default	0.7715	0.7554	-	-
4 tasks	0.7616	0.7585	0.6893	0.651

Результат

Выявлено, что авторегрессивные модели, предобученные на задачу предсказания следующего события показывают лучший результат.

Результаты на защиту

- Обширное исследование модели представления событий
- Выявлена эффективность текстовых интерфейсов для последовательностей событий.
- ▶ Проверена возможность текстовых интерфейсов решать несколько задач.

Опубликованные работы

Atanov, A. **Filatov, A.**, Yeo, T., Sohmshetty A., Zamir, A. (2022) Task Discovery: Finding the Tasks that Neural Networks Generalize on. *Advances in Neural Information Processing Systems*, *35*