Aprendizagem de Máquina Seleção de Atributos e Interpretabilidade

Prof. Luiz Eduardo S. Oliveira

Universidade Federal do Paraná Departamento de Informática www.inf.ufpr.br/lesoliveira

Introdução

- Um dos principais aspectos na construção de um bom classificador é a utilização de características discriminantes.
- Não é difícil encontrar situações nas quais centenas de características são utilizadas para alimentar um classificador.
- A adição de uma nova característica não significa necessariamente um bom classificador.
 - Depois de um certo ponto, adicionar novas características pode piorar o desempenho do classificador.
- Outro aspecto importante consiste em entender a contribuição de cada característica

Introdução

- Aspectos diretamente relacionados com a escolha das características:
 - Desempenho
 - Tempo de aprendizagem
 - Tamanho da base de dados
- Seleção de características
 - Tarefa de identificar e selecionar um subconjunto de características relevantes para um determinado problema, a partir de um conjunto inicial
 - * Características relevantes, correlacionadas, ou mesmo irrelevantes.

Introdução

- Não é um problema trivial
 - ► Em problemas reais, características discriminantes não são conhecidas a priori.
 - Características raramente são totalmente independentes.
 - ▶ Duas características irrelevantes, quando unidas pode formar uma nova característica relevante e com bom pode de discriminação.

Objetivos

- Encontrar um subconjunto que pode ser:
 - Ideal
 - * O menor subconjunto necessário e suficiente para resolver um dado problema
 - Clássico
 - ★ Selecionar um subconjunto de M características a partir de N características, na qual M < N, de maneira a minimizar uma dada função objetivo.
 - Melhor desempenho
 - * Buscar um subconjunto que melhore o desempenho de um dado classificador.

Visão Geral

- Um método de seleção de características deve utilizar um método de busca para encontrar um subconjunto M a partir de N características
 - ► Espaço de busca é 2^N
- Para cada solução encontrada nessa busca, uma avaliação se faz necessária.
- Critério de parada
- Validação

Visão Geral

Gerando subconjuntos candidatos

- Existem diferentes abordagens que podem ser usadas para gerar os subconjuntos
 - Exaustiva
 - ★ Explora todas as possíveis combinações do espaço de busca (2^N)
 - ★ Garante que o subconjunto ótimo será encontrado.
 - * Custo computacional elevado e inviável quando o espaço de busca é grande.
 - Heurísticas
 - ★ Forward Selection
 - * Backward Elimination
 - Computação evolutiva
 - ★ Algoritmos Genéticos
 - ★ Particle Swarm Optimization

Funções de Avaliação

- Para julgar se um dado subconjunto é ótimo, temos que avaliar o mesmo.
- As funções de avaliação podem ser divididas em:
 - Filter: Independentes do algoritmo de aprendizagem.
 - Wrapper: Dependente do algoritmo de aprendizagem.
 - ▶ Embedded: Usa algoritmos capazes de avaliar o poder de discriminação de características.

Métodos Filter

- Geralmente usados como uma passo de pré-processamento
- Independente de qualquer algoritmos de aprendizagem
- Importância das características são medidas através de diversos testes estatísticos, por exemplo, características com pouca variância.
- Sklearn implementa alguns desses métodos na classe feature_selection

Métodos Wrapper

- Em geral produz melhores resultados do que métodos filter
- Custo computacional mais alto
- É importante ter em mente que o processo de seleção de características deve ser visto como um processo de aprendizagem
- Sendo assim, é importante utilizar uma base de validação para evitar over-fitting.
- Quando possível utilize uma base diferente de todas para calcular a função de avaliação

Métodos Wrapper

- Devido ao poder de explorar grandes espaços de busca, algoritmos genéticos tem sido largamente utilizados em problemas de seleção de características
- Um objetivo (desempenho ou um índice qualquer)
- Múltiplos objetivos (quantidade de características, desempenho, etc..)

Métodos Embedded

- Combina as qualidades as abordagens filter e wrapper.
- Utiliza algoritmos de aprendizagem que tem a capacidade de avaliar características, como por exemplo, árvores de decisão.

```
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import load_tris
>>> from sklearn.feature_selection import SelectFromModel
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> clf = ExtraTreesClassifier(n_estimators=50)
>>> clf = clf.fit(X, y)
>>> clf feature_importances_
array([ 0.04..., 0.05..., 0.4..., 0.4...])
>>> model = SelectFromModel(clf, prefit=True)
>>> X_new = model.transform(X)
>>> X_new.shape
(150, 2)
```

Exemplo da classe SelectFromModel implementado no Sklearn

Análise de Componentes Principais (PCA)

- Uma ferramenta que pode ser utilizada para redução de dimensionalidade
- A idéia é aplicar PCA na base de aprendizagem e encontrar os principais autovetores da base.
- Abordagem filter, visto que o algoritmo de aprendizagem não é utilizado.
- Note que após o PCA, os dados se encontram em um novo espaço de representação.
- Apesar de uma possível redução, todas as características devem continuar sendo extraídas.
- O custo da extração de características não é alterado (somente o custo do algoritmo de aprendizagem)

Como interpretar as características?

- Capacidade de entender e explicar como um modelo toma suas decisões ou faz previsões
- É um aspecto crucial para garantir a confiança, a transparência e a responsabilidade nos sistemas de aprendizado de máquina
 - Especialmente em aplicações críticas como medicina, finanças e justiça.
- Métodos Intrínsecos
 - ▶ Árvores de decisão: Cada decisão é baseada em uma série de regras simples e claras.
 - ▶ Regressão Linear/Logística: As relações entre as variáveis são representadas por coeficientes que indicam a importância de cada característica.
- Métodos Pós-Hoc
 - SHAP (SHapley Additive exPlanations): Usa valores de Shapley para explicar as contribuições de cada característica em uma predição.
 - ▶ LIME (Local Interpretable Model-agnostic Explanations): Cria explicações locais aproximando o comportamento do modelo complexo com um modelo interpretable simples.

SHAP Values

- Os valores de Shapley, originados da teoria dos jogos, são usados para atribuir importância às contribuições de cada característica (ou variável) em um modelo de aprendizado de máquina.
- Eles fornecem uma forma justa de atribuir crédito a cada característica com base em seu impacto no resultado do modelo.
- Para calcular os valores de Shapley de uma característica específica, são consideradas todas as possíveis combinações das características. Isso é muito caro computacionalmente.
- Uma aproximação que torna o cálculo mais viável é o SHAP (SHapley Additive exPlanations)

Waterfall

- Esse gráfico mostra os valores SHAP para uma dada observação da base de dados.
- E[f(x)] = 9.933 é o valor médio das predições do modelo para toda base.
- f(x) = 13.043 é a predição para um dado exemplo
- Os valores SHAP mostram quanto cada característica contribui
 - ► 13.043 9.933 = 3.11
 - ightharpoonup 1.68+0.98-0.85+0.78+0.42+0.22-0.09-0.03 = 3.11

Force Plot

- Esse gráfico pode ser visto como o gráfico anterior condensado.
- Começando no valor base (9.933), é possível visualizar o quanto cada característica contribui para a valor final de predição (13.04)

Stacked Force Plot

- Os dois gráficos anteriores são usados para analizar uma predição.
- O Stacked Force Plot combina vários Force Plot
 - ► Gráfico interativo (é possível escolher a variável de interesse)

Stacked Force Plot

- No exemplo abaixo a variável "shell weight" foi escolhida
- Nesse caso, pode-se observar que valores maiores dessa variável aumentam os Shap Values

Mean Shap

- Mostra as características mais importantes.
- O valor médio de todas as observações é utilizado.
- Características com maiores contribuições (positiva/negativa) apresentam maiores valores médios.
- Muito útil para aqueles modelos que n\u00e3o possuem o atributo de "feature_importance", por exemplo, SVM.

BeeSwarm

- Mostra todos os SHAP Values
- No eixo y, os valores são agrupados por característica. Para cada grupo, a cor doss pontos é determinado pelo valor da característica (vermelho \rightarrow maior)
- Impacto na predição
 - Por exemplo, valores maiores para "shell weight" tem um valor maior na predição. O contrário é observado para "shucked weight"

- Explica uma instância especifica dos dados.
- Para isso, cria um conjunto de dados artificiais ao perturbar a instância original.
 - Isso é feito gerando variações da entrada e obtendo as previsões do modelo para essas variações.
- Com base nas previsões do modelo para os dados perturbados, o LIME ajusta um modelo interpretable e simples, como uma regressão linear, que se aproxima das previsões do modelo complexo para a instância específica.
- O modelo simples fornece uma explicação mais fácil de entender sobre como as características da instância influenciam a previsão do modelo complexo.

- Perturbação em variáveis categóricas é mais desafiador.
 - Perturbar variáveis categóricas requer substituir categorias por outras categorias válidas, o que é diferente de perturbar variáveis numéricas onde podemos adicionar ou subtrair valores contínuos.
- Uma alternativa é usar a codificação one-hot. Nesse caso, as perturbações são feitas em variáveis binárias.

Cor Original	Vermelho	Verde	Azul
Vermelho	1	0	0
Azul	0	0	1
Verde	0	1	0

Exemplo de codificação one-hot

Exemplo

Prediction probabilities

bad

alcohol <= 9.50
0.17
0.26 < volatile acidit...
0.04
total sulfur dioxide >...

5.20 < residual suga...
10.03
free sulfur dioxide > ...

0.04 < chlorides <=... 0.02

3.09 < pH <= 3.18

0.99 < density <= 1.00

good

0.47 < sulphates <=... 0.02 6.30 < fixed acidity ...

Feature Value

í	alcohol	9.50
volatile acidity		0.27
total sulfur dioxide		196.00
residual sugar		8.30
free sulfur dioxide		52.00
ch	lorides	0.05
sul	phates	0.48
fixed acidity		6.40
	pН	3.18
	density	1.00

Exemplo

