

IEL – protokol k projektu

Ronald Bednár xbednar00

17. decembra 2023

Obsah

1	Příklad 1	2
2	Příklad 2	7
3	Příklad 3	11
4	Příklad 4	13
5	Příklad 5	15
6	Shrnutí výsledků	17

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$	
D	105	85	420	980	330	280	310	710	240	200	

Riešenie

1. krok

Spojíme paralélne zapojené rezistory R_5 a R_6 . Taktiež spojíme sériovo zapojené rezistory R_7 a R_8 .

$$R_{56} = \frac{R_5 * R_6}{R_5 + R_6} \doteq 215,7843\Omega$$

$$R_{78} = R_7 + R_8 = 440\Omega$$

Použijeme transfiguráciu z trojuholníka na hviezdu medzi rezistormi R_1 , R_2 a R_3 .

3. krok

Spojíme dvojice sériovo zapojených rezistorov R_B s R_{56} a R_C s $R_4.$

$$R_{B56} = R_B + R_{56} \doteq 295,8999\Omega$$

 $R_{C4} = R_C + R_4 \doteq 466,9364\Omega$

Spojíme paralélne zapojené rezistory R_{B56} a R_{C4} .

$$R_{BC456} = \frac{R_{B56} * R_{C4}}{R_{B56} + R_{C4}} \doteq 181,1220\Omega$$

5. krok

Spojením 3 rezistorov $R_A,\,R_{BC456}$ a R_{78} dostaneme výsledný odpor $R_{EKV}.$ Následne dopočítame I.

$$R_{EKV} = R_A + R_{BC456} + R_{78} \doteq 859,0411\Omega$$

$$I = \frac{U_1 + U_2}{R_{EKV}} \doteq 0,2212A$$

Teraz budeme obvod rozkladať opačným smerom. Kedže poznáme prúd I, tak môžeme vypočítať napätie na rezistoroch R_A a R_{BC456} .

$$U_{R_{BC456}} = I * R_{BC456} \doteq 40,06V$$

 $U_{R_A} = I * R_A \doteq 52,6222V$

7. krok

Napätie na rezistoroch R_{B56} a R_{C4} sa bude rovnať, pretože sú zapojené paralélne. To znamená, že vieme dopočítať $I_{R_{B56}}$ a $I_{R_{C4}}$.

$$U_{R_{BC456}} = U_{R_{B56} = U_{R_{C4}}}$$

$$I_{R_{B56}} = \frac{U_{R_{BC456}}}{R_{B56}} \doteq 0,1354A$$

$$I_{R_{C4}} = \frac{U_{R_{BC456}}}{R_{C4}} \doteq 0,0858A$$

Kedže teraz už poznáme prúd $I_{R_{C4}}$, tak môžeme dopočítať napätie na rezistore R_{C} .

 $U_{R_C} = I_{R_{C4}} * R_C \doteq 16,0379V$

9. krok

Na záver vypočítame napätie $\boldsymbol{U_{R_2}}$ a prúd $\boldsymbol{I_{R_2}}$.

$$egin{aligned} U_{R_A} + U_{R_C} - U_{R_2} &= 0 \ & m{U_{R_2}} &= U_{R_A} + U_{R_C} \doteq \mathbf{68,6601V} \ & m{I_{R_2}} &= rac{U_{R_2}}{R_2} \doteq \mathbf{0,0701A} \end{aligned}$$

Stanovte napětí U_{R6} a proud $I_{R6}.$ Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	
С	200	70	220	630	240	450	200	

Riešenie

1. krok

Skratujeme napäťový napájací zdroj a odstránime záťaž $R_{6}.$

Spojíme sériovo zapojené zeristory R_2 a R_3 .

$$R_{23} = R_2 + R_3 = 850\Omega$$

3. krok

Spojíme paralélne zapojené rezistoro
y ${\cal R}_1$ a ${\cal R}_{23}.$

$$R_{123} = \frac{R_1 * R_{23}}{R_1 + R_{23}} \doteq 64,6739\Omega$$

Spojíme sériovo zapojené rezistory R_{123} a R_4 . Následne vypočítame R_i .

$$R_{1234} = R_{123} + R_4 \doteq 304,6739\Omega$$

 $R_i = \frac{R_{1234} * R_5}{R_{1234} + R_5} \doteq 161,6722\Omega$

5. krok

Vrátime sa k pôvodnej schéme a vypočítame U_i .

$$R_{EKV} = R_1 + \frac{R_{23} * R_{45}}{R_{23} + R_{45}} = R_1 + \frac{(R_2 + R_3) * (R_4 + R_5)}{R_2 + R_3 + R_4 + R_5} \doteq 450,8442\Omega$$

$$I = \frac{U}{R_{EKV}} \doteq 0,4436A$$

$$U_{R_1} + U_{R_{45}} - U = 0 \Longrightarrow U_{R_{45}} = U - U_{R_1} = U - I * R_1 \doteq 168,9471V$$

$$I_{R_{45}} = \frac{U_{R_{45}}}{R_{45}} \doteq 0,2449A$$

$$U_i = U_{R_5} = I_{R_{45}} * R_5 \doteq 110,1928V$$

V náhradnom obvode dopočítame $\boldsymbol{U_{R6}}$ a $\boldsymbol{I_{R6}}.$

$$I_{R6} = \frac{U_i}{R_i + R_6} \doteq 0,2887A$$

$$U_{R6} = I_{R6} * R_6 \doteq 57,7369V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	
A	120	0.9	0.7	53	49	65	39	32	

Riešenie

1. krok

Napäťový napájací zdroj transformujeme na prúdový, dopočítame vodivosti a vyznačíme všetky prúdy.

Vytvoríme rovnice napätia pre jednotlivé uzly.

$$A: U_A(G_1 + G_2) + U_B(-G_2) + U_C(0) - I_1 = 0$$

$$B: U_A(-G_2) + U_B(G_2 + G_3) + U_C(-G_3) - I_2 = 0$$

$$C: U_A(0) + U_B(-G_3) + U_C(G_3 + G_4 + G_5) + I_2 - I_3 = 0$$

Rovnice prevedieme na maticový tvar.

$$\begin{pmatrix} G_1 + G_2 & -G_2 & 0 \\ -G_2 & G_2 + G_3 & -G_3 \\ 0 & -G_3 & G_3 + G_4 + G_5 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} I_1 \\ I_2 \\ -I_2 + I_3 \end{pmatrix}$$

Vyriešime pomocou Sarrusovho a Cramerovho pravidla a dostaneme výsledné napätia:

$$U_A = 65,9954V$$
 $U_B = 82,9100V$ $U_C \doteq 59,8478V$

Na záver si vyjadríme U_{R_4} a dopočítame I_{R_4} .

$$U_{R_4} = U_C \doteq 59,8478V$$
 $I_{R_4} = \frac{U_{R_4}}{R_4} \doteq 1,5346A$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	C_1 [μ F]	C_2 [μ F]	f [Hz]
D	4	5	13	15	180	90	210	75	85

Riešenie

1. krok

Vyjadríme uhlovú frekvenciu:

$$\omega = 2\pi f = 2\pi 85 = 170\pi \, rad/s$$

Prevedieme hodnoty na vyhovujúce jednotky:

$$L_1 = 180mH = 0,18H$$
 $C_1 = 210\mu F = 210 * 10^{-6}F$
 $L_2 = 90mH = 0,09H$ $C_2 = 75\mu F = 75 * 10^{-6}F$

Vypočítame impedancie jednotlivých cievok a kondenzátorov:

$$Z_{L1} = i\omega L_1 \doteq 96,1327i\Omega \qquad \qquad Z_{C1} = -\frac{i}{\omega c_1} \doteq -8,9162i\Omega$$

$$Z_{L2} = i\omega L_2 \doteq 48,0664i\Omega \qquad \qquad Z_{C2} = -\frac{i}{\omega c_2} \doteq -24,9655i\Omega$$

Zostavíme rovnice pre jednotlivé slučky.

$$I_A: I_A(Z_{L_1} + R_1 + R_2 + Z_{C_1}) + I_B(-Z_{C_1} - R_1) + I_C(-R_2) = 0$$

$$I_B: I_A(-Z_{C_1} - R_1) + I_B(Z_{C_1} + R_1 + Z_{L_2}) + I_C(-Z_{L_2}) = u_1$$

$$I_C: I_A(-R_2) + I_B(-Z_{L_2}) + U_C(R_2 + Z_{C_2} + Z_{L_2}) = -u_2$$

Rovnice prevedieme na maticový tvar.

$$\begin{pmatrix} Z_{L_1} + R_1 + R_2 + Z_{C_1} & -Z_{C_1} - R_1 & -R_2 \\ -Z_{C_1} - R_1 & R_1 + Z_{L_2} + Z_{C_1} & -Z_{L_2} \\ -R_2 & -Z_{L_2} & R_2 + Z_{C_2} + Z_{L_2} \end{pmatrix} \times \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} 0 \\ u_1 \\ -u_2 \end{pmatrix}$$

Maticu vyriešime pomocou Cramerovho pravidla (s výpočtom determinantu Sarrusovým pravidlom). Výsledné hodnoty prúdov:

$$I_A \doteq -0.0119 + 0.0157iA$$

$$I_B \doteq -0.0206 - 0.0837iA$$

$$I_C \doteq -0.0458 + 0.0203iA$$

Vypočítame $|U_{L_2}|$ a φ_{L_2} .

$$I_{L_2} = I_B - I_C \doteq 0,0253 - 0,1040iA$$

 $u_{L2} = Z_{L_2} * I_{L_2} \doteq 4,9986 + 1,2141iV$

$$\begin{aligned} \pmb{U_{L_2}} &= \sqrt{Re(u_{L_2})^2 + Im(u_{L_2})^2} \doteq \pmb{5}, \pmb{1439V} \\ \pmb{\varphi_{L_2}} &= arctan\left(\frac{imag(u_{L_2})}{real(u_{L_2})}\right) \doteq arctan\left(\frac{1,2141}{4,9986}\right) \doteq 13,6524^\circ = \pmb{13^\circ39'} \end{aligned}$$

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	C[F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
	С	35	5	25	15
		R			
	\vdash		\neg		
t = 0 s					
s\	70		c		
5 \	8			u _c	
			$\neg \neg$,	
υ _† /	\perp				
۱ ((=)				

1. krok

Zostavíme rovnice vyplyvajúce z obvodu. 1. $i=\frac{u_R}{R}$

2.
$$u_R + u_C - U = 0$$

3.
$$u_C' = \frac{i}{C}$$

Vyjadríme pomocou nich diferenciálnu rovnicu.

$$u_C' = \frac{U_R}{RC}$$

$$u_C' = \frac{U - u_c}{RC} \Longrightarrow u_C' + \frac{u_c}{RC} = \frac{U}{RC}$$

2. krok

Zostavíme charakteristickú rovnicu.

$$(\lambda = u_C', 1 = u_C')$$

$$\lambda + \frac{1}{RC} = 0 \Rightarrow \lambda = -\frac{1}{RC}$$

3. krok

Dosadíme λ do očakávného riešenia a túto rovnicu zderivujeme.

$$u_C(t) = K(t) * e^{\lambda t} = K(t) * e^{-\frac{t}{RC}}$$

$$u_C'(t) = K'(t) * e^{-\frac{t}{RC}} + K(t) * (-\frac{1}{RC}) * e^{-\frac{t}{RC}}$$

Dosadíme u_C a u_{C}^{\prime} do diferenciálnej rovnice.

$$K'(t) * e^{-\frac{t}{RC}} = \frac{U}{RC}$$

$$K'(t) = \frac{U}{RC} * e^{\frac{t}{RC}}$$

$$K(t) = U * e^{\frac{t}{RC}} + k$$

$$u_c(t) = (U + k * e^{-\frac{t}{RC}})$$

5. krok

Dosadíme $u_c(0) = u_c p$

$$u_c p = U + k * e^0 \Rightarrow k = u_c p - U \Rightarrow u_c(t) = U + (u_c p - U) * e^{-\frac{t}{RC}}$$

Shrnutí výsledků

Příklad	Skupina	Výsledky	У
1	D	$U_{R2} = 68,6601V$	$I_{R2} = 0,0701A$
2	С	$U_{R6} = 57,7369V$	$I_{R6} = 0,2887A$
3	A	$U_{R4} = 59,8478V$	$I_{R4} = 1,5346A$
4	D	$ U_{L_2} = 5,1439V$	$\varphi_{L_2} = 13^{\circ}39'$
5	С	$u_C =$	