Capstone Project Cardiovascular Risk Prediction

By - Arindam Paul (aripaul05@gmail.com)

Points of Discussion

01 02

Problem Statement Data Description

03

Data Preparation EDA (Exploratory and Cleaning Data Analysis)

Points of Discussion

05 07 06

Hypothesis Feature

Testing Engineering

Implementation

Model

08 09

Conclusion **Model**

Interpretation

01 Problem Statement

Classification Goal of the project

Problem Statement

Cardiovascular diseases (CVDs) are the major cause of mortality worldwide.

The dataset is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. The classification goal is to predict whether the patient has a 10-year risk of future coronary heart disease (CHD). The dataset provides the patients information. It includes over 4,000 records and 15 attributes. Each attribute is a potential risk factor. There are both demographic, behavioral, and medical risk factors.

Data Description

There are a total of **16 feature columns** where **'TenYearCHD'** is the **dependent variable** column. The total number of **observations(rows)** are **3390**.

There are **no duplicate rows** in the dataset.

Also there are **missing values** in the columns **education**, **cigs per day**, **BP meds**, **totChol**, **BMI**, **heart rate** and **glucose**.

Data Description

- > Demographic:
- Sex: male or female ("M" or "F")
- **Age**: Age of the patient (Continuous Although the recorded ages have been truncated to whole numbers, the concept of age is continuous)
- Education: The level of education of the patient (categorical values 1,2,3,4)
- > Behavioral:
- is_smoking: whether or not the patient is a current smoker ("YES" or "NO")
- Cigs Per Day: the number of cigarettes that the person smoked on average in one day.(can be considered continuous as one can have any number of cigarettes, even half a cigarette.)
- Medical (history):
- BP Meds: whether or not the patient was on blood pressure medication (Nominal)
- Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal)
- Prevalent Hyp: whether or not the patient was hypertensive (Nominal)
- **Diabetes**: whether or not the patient had diabetes (Nominal)

Data Description

- Medical (current):
- **Tot Chol**: total cholesterol level (Continuous)
- Sys BP: systolic blood pressure (Continuous)
- Dia BP: diastolic blood pressure (Continuous)
- **BMI**: Body Mass Index (Continuous)
- Heart Rate: heart rate (Continuous In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.)
- Glucose: glucose level (Continuous)
- > Predict variable (desired target):
- **TenYearCHD:** 10-year risk of coronary heart disease CHD(binary: "1", means "Yes", "0" means "No")

Data Preparation & Cleaning

- There are no duplicate rows in the dataset.
- There are missing values in the columns education, cigs per day, BP meds, totChol, BMI, heart rate and glucose.
- Changed the names of all the columns for ease of use.
- I have also defined the continuous variables, dependent variable and categorical variables for ease of plotting graphs.

04 Exploratory Data Analysis

Analyzing data sets with statistical graphs

Ten Year CHD by Age

- CHD probability is high for above 65+ aged peoples.
- So, older people have a higher risk of having coronary heart disease in next 10 years.

> Ten Year CHD by Sex

- The **gender distribution** is not even with high count for **females**. **53.2%** are there for males and 46.8% for females.
- Men are generally at a higher risk of having coronary heart disease.

- The **negative cases** are **more** for the **non smokers** compared to the positive cases for non smokers.
- Statistically, **10 year risk of CHD** is **not dependent** on **smoking** with a 95% confidence.

Other Notable Observations

 Patients who have high blood pressure and have been taking BP medication have comparatively higher risk of CHD.

Other Notable Observations

 Patients who have a history of hypertension and had a stroke previously have comparatively higher risk of CHD.

ten_year_chd

Other Notable Observations

• Similarly, patients with high cholesterol and glucose level (with diabetes) have higher risk of having CHD.

> Correlation of features

- There is a significant correlation between systolic BP and prevalent hypertension.
- Similarly diastolic BP and systolic BP are highly correlated.
- Also glucose level and diabetes are correlated.

-0.50

05 Hypothesis Testing

Observation of an experiment under a given assumption

Hypothesis Testing

Null hypothesis: There is no association between education level and CHD outcome.

Alternate hypothesis: There is an association between education level and CHD outcome.

- I choose the chi-squared test of independence to test the hypothesis that the 'education' column does not impact the outcome of chronic heart disease (CHD).
- In this case, both education level and CHD outcome are categorical variables.

ten_year_chd education	0	1
1.0	1135	256
2.0	872	118
3.0	479	70
4.0	319	54
p-value: 6.03	864674	9234552e-05

06 Feature Engineering

Extracts features from raw data

Handling Missing Values

- To fill up the absence of data in our categorical variables i have used simple imputer that imputes the null values with feature label that is most frequent in the feature column.
- In continuous variables, i have used
 KNN imputer which uses a
 unsupervised clustering algorithm
 to come up with values of the
 features.

Handling Outliers

 Used the Interquartile Range (IQR) method to identify and remove outliers in the continuous columns (systolic_bp, diastolic_bp, total cholesterol, glucose etc.) of the dataset.

Distribution plot of glucose

- After splitting data into train and test sets with ratio 80:20, i have used
 SMOTETomek links to handle the imbalanced dataset.
- By combining oversampling of the minority class with undersampling of the majority class, I was able to achieve a balanced dataset, where train set of size 4586 with 2712 samples of each of the class.

07

Model Implementation

Train MI Algorithms to get best model

ML Model Implementation

 Since we're trying to predict continuous variable, I trained various classification algorithms along with hyper parameter tuning and cross validation to get the best model.

01	02	03	04
Logistic	Decision	Random	Support Vector
Regression	Tree	Forest	Machine

05 06 07

Xtreme Gradient Naive Bayes Neural Network

Logistic Regression

Train Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.713455	0.749237	0.730908	2293
1.0	0.735996	0.699084	0.717066	2293
accuracy	0.72416	0.72416	0.72416	0.72416
macro avg	0.724726	0.72416	0.723987	4586
weighted avg	0.724726	0.72416	0.723987	4586

Test Classification Report:

1		precision	recall	f1-score	support
	;	:	:	:	:
I	0.0	0.90303	0.776042	0.834734	576
1	1.0	0.295082	0.529412	0.378947	102
1	accuracy	0.738938	0.738938	0.738938	0.738938
1	macro avg	0.599056	0.652727	0.606841	678
	weighted avg	0.811569	0.738938	0.766164	678

After Tuned

Train Classification Report:

1 1	precision	recall	f1-score	support	
:	:	:	:	:	
0.0	0.713455	0.749237	0.730908	2293	
1.0	0.735996	0.699084	0.717066	2293	
accuracy	0.72416	0.72416	0.72416	0.72416	
macro avg	0.724726	0.72416	0.723987	4586	
weighted avg	0.724726	0.72416	0.723987	4586	

	precision	recall	f1-score	support	1
:	:	:	:	:	i
0.0	0.90303	0.776042	0.834734	576	ĺ
1.0	0.295082	0.529412	0.378947	102	
accuracy	0.738938	0.738938	0.738938	0.738938	I
macro avg	0.599056	0.652727	0.606841	678	1
weighted avg	0.811569	0.738938	0.766164	678	1,

Decision Tree

Train Classification Report:

1	precision	recall	f1-score	support
:	:	:	:	:
0.0	1	1	1	2293
1.0	1	1	1	2293
accuracy	1	1	1	1
macro avg	1	1	1	4586
weighted avg	1	1	1	4586

Test Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.862709	0.807292	0.834081	576
1.0	0.201439	0.27451	0.232365	102
accuracy	0.727139	0.727139	0.727139	0.727139
macro avg	0.532074	0.540901	0.533223	678
weighted avg	0.763226	0.727139	0.743557	678

After Tuned

Train Classification Report:

l	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.863825	0.724815	0.788238	2293
1.0	0.76296	0.885739	0.819778	2293
accuracy	0.805277	0.805277	0.805277	0.805277
macro avg	0.813393	0.805277	0.804008	4586
weighted avg	0.813393	0.805277	0.804008	4586

1	precision	recall	f1-score	support
:	:]	:	:	:
0.0	0.883721	0.725694	0.796949	576
1.0	0.229268	0.460784	0.306189	102
accuracy	0.685841	0.685841	0.685841	0.685841
macro avg	0.556495	0.593239	0.551569	678
weighted avg	0.785263	0.685841	0.723118	678

> Random Forest

Train Classification Report:

1	precision	recall	f1-score	support
:	:	:	:	:
0.0	1	1	1	2293
1.0	1	1	1	2293
accuracy	1	1	1	1
macro avg	1	1	1	4586
weighted avg	1	1	1	4586

Test Classification Report:

1	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.868167	0.9375	0.901503	576
1.0	0.357143	0.196078	0.253165	102
accuracy	0.825959	0.825959	0.825959	0.825959
macro avg	0.612655	0.566789	0.577334	678
weighted avg	0.791287	0.825959	0.803965	678

♦ After Tuned

Train Classification Report:

	precision	recall	f1-score	support
]:	:	:	:	:
0.0	0.990406	0.990406	0.990406	2293
1.0	0.990406	0.990406	0.990406	2293
accuracy	0.990406	0.990406	0.990406	0.990406
macro avg	0.990406	0.990406	0.990406	4586
weighted avg	0.990406	0.990406	0.990406	4586

1	precision	recall	f1-score	support	
:	:	:	:	:[
0.0	0.866776	0.914931	0.890203	576	
1.0	0.3	0.205882	0.244186	102	
accuracy	0.80826	0.80826	0.80826	0.80826	
macro avg	0.583388	0.560406	0.567194	678	
weighted avg	0.781509	0.80826	0.793014	678	

SVM (Support Vector Machine)

rain Classifica	tion Report:			
I	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.721981	0.724815	0.723395	2293
1.0	0.72373	0.72089	0.722307	2293
accuracy	0.722852	0.722852	0.722852	0.722852
macro avg	0.722856	0.722852	0.722851	4586
weighted avg	0.722856	0.722852	0.722851	4586

Test Classificat	cion Report:				
1	precision	recall	f1-score	support	
:	:	: -	:	:	
0.0	0.911579	0.751736	0.823977	576	
1.0	0.295567	0.588235	0.393443	102	
accuracy	0.727139	0.727139	0.727139	0.727139	
macro avg	0.603573	0.669986	0.60871	678	
weighted avg	0.818905	0.727139	0.759206	678	

After Tuned

Train Classification Report:

[precision	recall	f1-score	support
;	:	:	:	:
0.0	0.930172	0.941125	0.935617	2293
1.0	0.940424	0.92935	0.934854	2293
accuracy	0.935238	0.935238	0.935238	0.935238
macro avg	0.935298	0.935238	0.935235	4586
weighted avg	0.935298	0.935238	0.935235	4586

	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.876106	0.859375	0.86766	576
1.0	0.283186	0.313725	0.297674	102
accuracy	0.777286	0.777286	0.777286	0.777286
macro avg	0.579646	0.58655	0.582667	678
weighted avg	0.786906	0.777286	0.78191	678

Xtreme Gradient Boosting

Train Classification Report:

1	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.993932	1	0.996957	2293
1.0	1	0.993894	0.996938	2293
accuracy	0.996947	0.996947	0.996947	0.996947
macro avg	0.996966	0.996947	0.996947	4586
weighted avg	0.996966	0.996947	0.996947	4586

Test Classification Report:

1 1	precision	recall	f1-score	support	
:	:	:	:	:	
0.0	0.867955	0.935764	0.900585	576	
1.0	0.350877	0.196078	0.251572	102	
accuracy	0.824484	0.824484	0.824484	0.824484	
macro avg	0.609416	0.565921	0.576079	678	
weighted avg	0.790164	0.824484	0.802946	678	

After Tuned

Train Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0.0	1	1	1	2293
1.0	1	1	1	2293
accuracy	1	1	1	1
macro avg	1	1	1	4586
weighted avg	1	1	1	4586

[precision	recall	f1-score	support	1
[:	:	:	:	:	I
0.0	0.867624	0.944444	0.904406	576	Î
1.0	0.372549	0.186275	0.248366	102	T
accuracy	0.830383	0.830383	0.830383	0.830383	1
macro avg	0.620086	0.565359	0.576386	678	1
weighted avg	0.793143	0.830383	0.805709	678	1

Naive Bayes

Train Classification Report:

[]	precision	recall	f1-score	support	ĺ
[:]	:	:	:	:	1
0.0	0.621594	0.78587	0.694145	2293	ĺ
1.0	0.708951	0.521587	0.601005	2293	ĺ
accuracy	0.653729	0.653729	0.653729	0.653729	ĺ
macro avg	0.665272	0.653729	0.647575	4586	1
weighted avg	0.665272	0.653729	0.647575	4586	ĺ

Test Classification Report:

1	precision	recall	f1-score	support
:	:	:[.	:	:
0.0	0.880228	0.803819	0.84029	576
1.0	0.256579	0.382353	0.307087	102
accuracy	0.740413	0.740413	0.740413	0.740413
macro avg	0.568404	0.593086	0.573688	678
weighted avg	0.786405	0.740413	0.760074	678

After Tuned

Train Classification Report:

1		precision	recall	f1-score	support
1	:	:	:	:	:
1	0.0	0.645714	0.739206	0.689305	2293
1	1.0	0.695054	0.594418	0.640809	2293
ĺ	accuracy	0.666812	0.666812	0.666812	0.666812
1	macro avg	0.670384	0.666812	0.665057	4586
1	weighted avg	0.670384	0.666812	0.665057	4586

	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.882231	0.741319	0.80566	576
1.0	0.231959	0.441176	0.304054	102
accuracy	0.696165	0.696165	0.696165	0.696165
macro avg	0.557095	0.591248	0.554857	678
weighted avg	0.784403	0.696165	0.730197	678

> Neural Network

Train Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.928064	0.855212	0.89015	2293
1.0	0.86575	0.933711	0.898447	2293
accuracy	0.894461	0.894461	0.894461	0.894461
macro avg	0.896907	0.894461	0.894299	4586
weighted avg	0.896907	0.894461	0.894299	4586

Test Classification Report:

1	precision	recall	f1-score	support	
:	:	:	:	:	
0.0	0.877358	0.807292	0.840868	576	
1.0	0.25	0.362745	0.296	102	
accuracy	0.740413	0.740413	0.740413	0.740413	
macro avg	0.563679	0.585018	0.568434	678	
weighted av	/g 0.782977	0.740413	0.758897	678	

♦ After Tuned

Train Classification Report:

1 1	precision	recall	f1-score	support
:	:	:	:	:
0.0	0.885037	0.879634	0.882327	2293
1.0	0.880364	0.885739	0.883043	2293
accuracy	0.882686	0.882686	0.882686	0.882686
macro avg	0.882701	0.882686	0.882685	4586
weighted avg	0.882701	0.882686	0.882685	4586

1	precision	recall	†1-score	support	
:	:	:	:	:	
0.0	0.880734	0.833333	0.856378	576	Ι.
1.0	0.278195	0.362745	0.314894	102	
accuracy	0.762537	0.762537	0.762537	0.762537	
macro avg	0.579465	0.598039	0.585636	678	
weighted avg	0.790087	0.762537	0.774916	678	

Selection of Best Model

- Removing the overfitted models which have recall, ROC-AUC, f1 scores for train as 1.
- Selected recall as the primary evaluation metric.

Classification Model	Recall Train	Recall Test
[:	: -	:
Logistic regression	0.72416	0.738938
Logistic regression tuned	0.72416	0.738938
Decision Tree tuned	0.805277	0.685841
SVM	0.722852	0.727139
SVM tuned	0.920846	0.746313
Naive Bayes	0.653729	0.740413
Naive Bayes tuned	0.666812	0.696165
Neural Network	0.894461	0.740413
Neural Network tuned	0.894679	0.784661

08 Model Interpretation

Important features by using model explainability tool

SHAP (SHapley Additive exPlanations)

Conclusion

- The Neural Network model (tuned)
 was chosen as the final prediction
 model due to its high recall score
 compare to the other models.
- Due to the presence of much missing/ null values in dataset, the accuracy is less. But, its ok because it not affects in life risk.

