$$v_1 = \frac{7,0 \,\kappa M}{6,0 \,\text{MuH}} = 70 \,\frac{\kappa M}{4 \,\text{ac}} \,. \tag{1}$$

Прямая 2 соответствует минимальной скорости, удовлетворяющей условию проезда без остановок. Ей соответствует скорость

$$v_2 = \frac{7,0 \, \kappa M}{8,0 \, MuH} = 53 \frac{\kappa M}{uac} \,.$$
 (1)

- 2.3 Закон движения «нарушителя» показан ломанной линией 4. Очевидно, что при любой скорости превышающей $v_1 = 70 \frac{\kappa M}{vac}$ время движения будет лежать в интервале от 6 до 7 мин (в зависимости от момента времени подъезда к светофору на въезде в город.
- 2.4 Закон движения велосипедиста отражается прямой 3 на диаграмме. Ей соответствует скорость

$$v_3 = \frac{1,0 \, \kappa M}{3.0 \, \text{MuH}} = 20 \frac{\kappa M}{4 \, \text{gc}} \,. \tag{3}$$

Задание 3. Бареттер.

0.1. Сопротивление проволоки бареттера R_0 при температуре 0°C равно $R_0 = \rho_0 \frac{l}{S} = \frac{\rho_0 l}{\pi r^2} = 2,18 \, \text{Ом}$

Формула зависимости сопротивления проволоки от температуры имеет вид $R = \rho \frac{l}{S} = \frac{\rho_0 l}{\pi r^2} (1 + \gamma t) = R_0 (1 + \gamma t)$

- 0.2. Мощность теплоотдачи бареттера определяется формулой $P_{\text{отд}} = \alpha S_{\text{пов}}(t-t_0)$, где $S_{\text{пов}} = 2\pi r l$ —площадь поверхности нити. Учитывая, что $t_0 = 0$,получаем, что $P_{\text{отд}} = At$, где $A = 2\pi r l \alpha = 3.14 \cdot 10^{-3} \frac{\text{Вт}}{\text{°c}}$.
- 1.1. При протекании тока I по проволоке бареттера в ней выделяется теплота с мощностью, определяемой законом Джоуля-Ленца. В тепловом равновесии выполняется условие $P_{\text{эл}} = P_{\text{отд}}$ или $I^{2}R_{0}(1+\gamma t) = At$. Отсюда для зависимости t(I) $I^{2}R_{0}$

получаем следующее выражение $t=rac{I^2R_{f 0}}{A-I^2R_{f 0}\gamma}$.

1.2. Согласно закону Ома напряжение на проволоке
$$U = IR = IR_{\mathbf{0}}(1 + \gamma t) = IR_{\mathbf{0}}\left(1 + \frac{I^{2}R_{\mathbf{0}}\gamma}{A - I^{2}R_{\mathbf{0}}\gamma}\right) = \frac{IR_{\mathbf{0}}}{1 - \frac{\gamma R_{\mathbf{0}}}{A}I^{2}}$$
 Чтобы получить отсюла

зависимость I(U) можно разрешить полученное здесь квадратное уравнение, однако этого не требуется: чтобы построить вольтамперную характеристику, можно сначала построить зависимость U(U), а затем обратить полученный график.

1.3.
$$U \to \infty$$
 , когда $1 - \frac{\gamma R_0}{A} I^2 \to 0$, то есть когда $I \to \sqrt{\frac{A}{R_0 \gamma}} = 0.487$ A . Однако такой ток через бареттер недостижим, так как из (5) следует, что при $I \to \sqrt{\frac{A}{R_0 \gamma}}$ $t \to \infty$.

- 1.4. Максимально возможным током через бареттер является ток, при котором начинает плавится проволока бареттера. Отсюда получаем для I_{max} уравнение $\frac{I^2R_0}{A-I^2R_0\gamma}=t_{пл}$. Разрешая его, получаем, что $I_{max}=\sqrt{\frac{A}{R_0}\frac{t_{пл}}{1+\gamma t_{пл}}}=0,463~\mathrm{A}$. Тогда $U_{max}=I_{max}R_0(1+\gamma t)=\sqrt{AR_0t_{пл}(1+\gamma t_{пл})}=10,4~\mathrm{B}$.
- 1.5. При $U \to \mathbf{0}$ также и $I \to \mathbf{0}$, а значит $I^2 \approx \mathbf{0}$. Следовательно, как и следовало ожидать, $U = IR_{\mathbf{0}}$ при малых напряжениях.
- 2.1. При параллельном подключении бареттера и резистора напряжение в цепи равно напряжению на бареттере, а полный ток в цепи определяется как сумма тока через

бареттер и тока через резистор, равного $\overline{R_1}$. Соответственно вольтамперная характеристика цепи может быть получена прибавлением к вольтамперной характеристике бареттера линейной функции $I = \frac{U}{R_1}$.

2.2. При последовательном подключении бареттера и резистора ток в цепи равно току

 $U = \frac{IR_0}{1 - \frac{\gamma R_0}{A} I^2} + IR_1$ на бареттере, а напряжение в цепи определяется как I(U), необходимо соответственно решить кубическое уравнение, однако этого не требуется: чтобы построить вольтамперную характеристику, можно сперва построить зависимость U(U), а затем обратить полученный график.

3.1. Для произвольной зависимости $\rho(t)$ $I^2 \frac{\rho(t)}{\rho_0} R_0 = At$. Отсюда $I(t) = \sqrt{\frac{\rho_0 At}{\rho(t) R_0}}$. Кроме того, из закона Ома следует, что параметрическая зависимость I(U) с температурой в качестве параметра.

- 3.2. Напряжение стабилизации составляет около $U_{\rm cr}=7,5$ В. 3.3. В точке стабилизации ток равен $I_{\rm cr}=0,337$ А. Соответственно области стабилизации соответствуют токи от 0,329 А до 0,345 А и напряжения от 3,0 до 10,5 В.