Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Worum geht es?

- ein Netzwerk ist ein gerichteter Graph mit Kantenkapazitäten
- welche maximale Ladung kann von einer Quelle zu einer Senke transportiert werden?
- Anwendung: Matchings in bipartiten Graphen

Definition

Ein (endlicher) gerichteter Graph G besteht aus

- \blacksquare einer endlichen Menge V(G) von Knoten und
- einer Menge $E(G) \subseteq V(G) \times V(G)$ von gerichteten Kanten

Eine Kante der Form (v, v) nennt man Schleife

Notation

wir bezeichnen mit

$$\partial^+ v = \partial^+_G v = \{w \in V : (w,v) \in E(G)\}, \quad \partial^- v = \partial^-_G v = \{w \in V : (v,w) \in E(G)\}$$

die eingehende und die ausgehende Nachbarschaft von *v*

ferner definiere

$$d_G^+(v) = |\partial_G^+ v|, \qquad \qquad d_G^-(v) = |\partial_G^- v|$$

als den eingehenden und den ausgehenden Grad von *v*

Breitensuche

- wir haben BFS für ungerichtete Graphen kennengelernt
- der Algorithmus überträgt sich auf gerichtete Graphen, indem in der Hauptschleife (Schritt 8) nur $u \in \partial^- v$ in die Warteschlange eingefügt werden
- der Algorithmus bestimmt dann kürzeste *gerichtete* Pfade in *G*

Definition

Ein Netzwerk N = (G, c, s, t) besteht aus

- einem gerichteten Graphen G
- \blacksquare einer Kapazitätsfunktion $c: V \times V \to \mathbb{R}_{>0}$, so daß

$$c(v, w) = 0$$
 falls $(v, w) \notin E(G)$

- einer Quelle $s \in V(G)$
- einer Senke $t \in V(G) \setminus \{s\}$

Definition

Ein Fluß in einem Netzwerk N ist eine Funktion $f: V \times V \to \mathbb{R}$, so daß

- $f(v, w) \le c(v, w)$ für alle $v, w \in V(G)$
- f(v, w) + f(w, v) = 0 für alle $v, w \in V(G)$

Der Wert von f ist definiert als

$$|f| = \sum_{w \in V(G)} f(s, w)$$

Notation

Für eine Funktion $f: V \times V \to \mathbb{R}$, $v \in V$ und $A, B \subset V$ definieren wir

$$f(v, A) = \sum_{w \in A} f(v, w)$$
$$f(A, v) = \sum_{w \in A} f(w, v)$$
$$f(A, B) = \sum_{v \in A} \sum_{w \in B} f(v, w)$$

Lemma

Sei N ein Netzwerk und f ein Fluß. Für alle $A, B, W \subseteq V$ gilt

$$f(A, A) = 0$$

$$f(A, B) + f(B, A) = 0$$

$$f(A \cup B, C) = f(A, C) + f(B, C) \qquad \text{sofern } A \cap B = \emptyset$$

$$f(C, A \cup B) = f(C, A) + f(C, B) \qquad \text{sofern } A \cap B = \emptyset$$

A. Coja-Oghlan| June 10, 2022

Das Max Flow-Problem

- gegeben ist ein Netzwerk N
- das Ziel ist, einen Fluß mit maximalem Wert (einen "maximalen Fluß") zu bestimmen
- die Idee ist, ausgehend vom Nullfluß den aktuellen Fluß immer weiter zu "augmentieren"

Restflüsse

Sei N ein Netzwerk und f ein Fluß

■ die Restkapazität von f in N ist definiert als

$$c_f(v, w) = c(v, w) - f(v, w) \qquad (v, w \in V(G))$$

a das Restnetzwerk von f in N ist das Netzwerk mit Kantenkapazitätsfunktion c_f und Kantenmenge

$$E_f = \{(v, w) \in V(G) : c_f(v, w) > 0\}$$

Lemma

Angenommen N ist ein Netzwerk, f ist ein Fluß in N und g ist ein Fluß in N_f . Dann ist f+g ein Fluß in N mit Wert |f+g|=|f|+|g|.

Augmentierende Pfade

- \blacksquare ein f-augmentierender Pfad in N ist ein s-t-Pfad in N_f
- die Kapazität eines solchen Pfades *p* ist

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ ist eine Kante auf } p\} > 0$$

Beispiel

■ ein Netzwerkfluß f

Beispiel

 \blacksquare das Restnetzwerk N_f

Beispiel

■ ein augmentierender Pfad der Kapazität zwei

Lemma

Angenommen N ist ein Netzwerk, f ein Fluß und p ein augmentierender Pfad. Dann ist $f_p: V \times V \to \mathbb{R}$ mit

$$f_p(v, w) = (\mathbb{1}\{(v, w) \text{ ist Kante von } p\} - \mathbb{1}\{(w, v) \text{ ist Kante von } p\}) c_f(p)$$

ein Fluß mit Wert $c_f(p)$ in N_f

Korollar

Angenommen N ist ein Netzwerk, f ein Fluß und p ein augmentierender Pfad. Dann ist $f + f_p$ ein Fluß in N mit Wert $|f| + c_f(p) > |f|$.

Algorithmus FordFulkerson

- **1.** setze f(v, w) = 0 für alle $v, w \in V$
- **2.** solange es einen augmentierenden Pfad p in N_f gibt
- $3. \qquad \text{setze } f = f + f_p$
- **4.** gib *f* aus

Anmerkungen

- \blacksquare der Algorithmus spezifiziert nicht, wie/welcher Pfad ρ gefunden wird
- es ist nicht klar, daß der Algorithmus hält!
- sofern alle Kapazitäten ganz sind, ist das aber der Fall

Beispiel

das ursprüngliche Netzwerk

Beispiel

■ ein augmentierender Pfad der Kapazität zwei

- links: der aktuelle Fluß im Ursprungsnetzwerk
- rechts: das Restnetzwerk

- links: der aktuelle Fluß im Ursprungsnetzwerk
- rechts: ein augmentierender Pfad mit Kapazität eins

- links: der aktuelle Fluß im Ursprungsnetzwerk
- rechts: das Restnetzwerk

- links: der aktuelle Fluß im Ursprungsnetzwerk
- rechts: ein augmentierender Pfad mit Kapazität drei

- links: der aktuelle Fluß im Ursprungsnetzwerk
- rechts: das Restnetzwerk

- links: der aktuelle Fluß im Ursprungsnetzwerk
- rechts: ein augmentierender Pfad mit Kapazität zwei

- links: der aktuelle Fluß im Ursprungsnetzwerk
- rechts: das Restnetzwerk; *t* ist von *s* nicht mehr erreichbar

Schnitte

- angenommen N ist ein Netzwerk
- ein Schnitt in N ist eine Menge $S \subseteq V(G)$ mit

$$s \in S$$
 und $t \notin S$

■ die Kapazität eines Schnittes S ist

$$c(S) = \sum_{(v,w)\in S\times (V\setminus S)} \mathbb{1}\{(v,w)\in E(G)\}c(v,w)$$

Beispiel

der Schnitt $S = \{s, u, w, x\}$ hat Kapazität 54

Lemma

Angenommen N ist ein Netzwerk und f ist ein Fluß Für jeden Schnitt S gilt

$$|f| = f(S, V \setminus S)$$

Beweis

$$|f| = f(s, V)$$

$$= f(s, V) + f(S \setminus \{s\}, V)$$

$$= f(S, V) = f(S, V \setminus S) + f(S, S)$$

$$= f(S, V \setminus S)$$
[weil $f(S, S) = 0$]

Korollar

Wenn N ein Netzwerk, f ein Fluß und S ein Schnitt ist, gilt $|f| \le c(S)$

Beweis

Das Lemma zeigt $|f| = f(S, V \setminus S) \le c(S)$.

Theorem

["Max flow min cut theorem"]

Für jedes Netzwerk N gilt

 $\max\{|f|: f \text{ ist ein Fluß in } N\} = \min\{c(S): S \text{ ist ein Schnitt in } N\}$

Beweis

- wir suchen einen Fluß f und einen Schnitt S mit |f| = c(S)
- sei f ist ein maximaler Fluß, d.h. $|f| = \max\{|\varphi| : \varphi \text{ ist ein Fluß in } N\}$
- angenommen es gäbe einen augmentierenden Pfad p
- dann wäre $|f + f_p| > |f|$; Widerspruch!

Beweis

- \blacksquare also gibt es keinen Pfad von s nach t in N_f
- betrachte daher die Menge

$$S = \{v \in V(G) : \text{es gibt einen Pfad von } s \text{ nach } v \text{ in } N_f\}$$

- dann ist S ein Schnitt
- ferner gibt es keine Kante $(v, w) \in S \times (V \setminus S)$ in N_f
- folglich f(v, w) = c(v, w) für alle $(v, w) \in S \times (V \setminus S)$ mit $(v, w) \in E(G)$
- also gilt c(S) = |f|

Korollar

Wenn FordFulkerson terminiert, ist die Ausgabe ein maximaler Fluß

Beweis

Wenn es keinen augmentierenden Pfad mehr gibt, ist f ein maximaler Fluß

Anmerkung

- FordFulkerson terminiert, wenn die Kapazitäten ganzzahlig sind
- allerdings kann dies $\max\{|f|: f \text{ Fluß in } N\}$ Schritte erfordern
- FordFulkerson ist also nicht effizient!

Algorithmus EdmondsKarp

- verwende in FordFulkerson Breitensuche, um den augmentierenden Pfad zu finden
- mit anderen Worte: finde jeweils einen kürzesten augmentierenden Pfad

Monotonielemma

Seien f_1, f_2, \ldots die Flüsse, die EdmondsKarp konstruiert. Sei ferner dist $N_{f_i}(s, v)$ der Abstand von s, v im Restnetzwerk N_{f_i} . Dann gilt

$$\mathsf{dist}_{N_{f_i}}(s,v) \leq \mathsf{dist}_{N_{f_i}}(s,v) \qquad \text{für alle } i \leq j, \ v \in V(G).$$

Beweis

- angenommen nicht
- wähle *i* minimal mit dist $N_{f_i}(s, v) > \text{dist}_{N_{f_{i+1}}}(s, v)$
- wähle außerdem v so, daß dist $N_{f_{i,1}}(s,v)$ minimal ist
- sei ferner p ein kürzester Pfad von s nach v in $N_{f_{i+1}}$

Beweis

- sei *u* der letzte Knoten vor *v* in *p*
- dann gilt $(u, v) \in N_{f_{i+1}}$ und dist $_{N_{f_{i+1}}}(s, u) + 1 = \text{dist}_{N_{f_{i+1}}}(s, v)$
- ferner gilt $\operatorname{dist}_{N_{f_{i,1}}}(s,u) \geq \operatorname{dist}_{N_{f_i}}(s,u)$ nach Wahl von v
- angenommen $(u, v) \in N_{f_i}$; dann gilt

$$\mathsf{dist}_{N_{f_i}}(s,v) \leq \mathsf{dist}_{N_{f_i}}(s,u) + 1 \leq \mathsf{dist}_{N_{f_{i+1}}}(s,u) + 1 = \mathsf{dist}_{N_{f_{i+1}}}(s,v),$$

im Widerspruch zur Wahl von *v*

Beweis

- weil $(u, v) \in N_{f_{i+1}}$ aber $(u, v) \notin N_{f_i}$, muß beim Augmentieren der Fluß von v nach u erhöht worden sein
- weil EdmondsKarp entlang kürzester Pfade augmentiert, enthält der kürzeste Pfad von s nach u in N_f daher die Kante (v, u)
- daraus folgt aber

$$\mathsf{dist}_{N_{f_i}}(s,v) = \mathsf{dist}_{N_{f_i}}(s,u) - 1 \le \mathsf{dist}_{N_{f_{i+1}}}(s,u) - 1 = \mathsf{dist}_{N_{f_{i+1}}}(s,v) - 2,$$

im Widerspruch zur Wahl von *v*

Satz

EdmondsKarp hat Laufzeit $O(|V(G)| \cdot |E(G)|^2)$

Beweis

- lacktriangle wir zeigen, daß EdmondsKarp nach höchstens $O(|V(G)|\cdot|E(G)|)$ Augmentierungen terminiert
- weil Breitensuche jeweils Zeit O(|E(G)|) benötigt, folgt daraus der Satz
- eine Kante (v, w) auf einem augmentierenden Pfad p ist kritisch für einen Fluß f, falls $c_f(v, w) = c_f(p)$
- dann ist (v, w) nicht in N_{f+f_p} enthalten
- wir zeigen, daß keine Kante mehr als |V(G)|/2 mal kritisch werden kann

Beweis

- angenommen (v, w) wird kritisch für eine Fluß f für den Pfad p, den EdmondsKarp auswählt
- weil p ein kürzester Pfad ist, gilt für die Abstände in dem Netzwerk N_f :

$$\operatorname{dist}_{N_f}(s, w) > \operatorname{dist}_{N_f}(s, v)$$

- angenommen (*v*, *w*) wird später noch einmal kritisch
- \blacksquare dann muß die Kante (v, w) zunächst wieder in das Restnetzwerk eingefügt worden sein
- dies ist nur möglich, wenn die Kante (w, v) auf dem augmentierenden Pfad für einen Fluß f' gelegen hat
- für den Fluß f' gilt dann dist $_{N_{f'}}(s,v) > \text{dist}_{N_{f'}}(s,w)$

Beweis

das Monotonielemma zeigt also

$$\operatorname{dist}_{N_{f'}}(s, v) \geq \operatorname{dist}_{N_f}(s, v) + 2$$

■ weil dist $_{N_{\mathcal{E}'}}(s,v) \leq |V(G)|$, kann (v,w) also nur |V(G)|/2 mal kritisch werden

Matchings

■ ein Matching in einem ungerichteten Graphen G = (V, E) ist eine Menge $M \subseteq E$ von Kanten, so daß

$$e \cap f = \emptyset$$
 für alle $e, f \in M, e \neq f$

- mit v(G) wird die maximale Größe eines Matchings in G bezeichnet ("Matchingzahl von G")
- G heißt bipartit, falls $\chi(G) = 2$
- eine Bipartition von G ist ein Paar (S, T) von stabilen Mengen, so daß $S \cup T = V(G)$ und $S \cap T = \emptyset$

Satz von Hall

Sei G ein bipartiter Graph mit Bipartition (S, T). Es gilt $\nu(G) = |S|$ genau dann, wenn

$$|\partial U| \ge |U|$$
 für alle $U \subseteq S$.

Erinnerung: $\partial U = \{v \in V(G) : \exists u \in U : v \in \partial u\}$

Beweis

- wenn v(G) = |S|, dann gilt $|\partial U| \ge |U|$ für alle $U \subseteq S$
- nehme nun umgekehrt an, daß $|\partial U| \ge |U|$ für alle $U \subseteq S$
- konstruiere ein Netzwerk $N = (\Gamma, c, s, t)$, so daß

$$V(\Gamma) = V(G) \cup \{s, t\} \quad \text{mit} \quad s, t \notin V(G)$$

$$E(\Gamma) = \{(v, w) \in S \times T : vw \in E(G)\} \cup \{s\} \times S \cup T \times \{t\}$$

■ ferner ist c(v, w) = 1 für alle $(v, w) \in E(\Gamma)$

Beweis

- sei nun $f: V(\Gamma) \times V(\Gamma) \rightarrow \{0,1\}$ ein maximaler Fluß
- dann ist

$$M = \{vw \in E(G) : f(v, w) = 1\}$$

ein Matching von G

- \blacksquare zu zeigen ist also, daß |f| = |S|
- nach dem max flow min cut theorem genügt es zu zeigen, daß für jeden Schnitt Y von N gilt

$$c(Y) \ge |S|$$

Beweis

- definiere daher $A = Y \cap S$ und $B = Y \cap T$
- nach Konstruktion von N gilt dann

$$c(Y) \ge |S \setminus A| + |\partial A|$$

■ weil ferner $|\partial A| \ge |A|$, folgt $c(Y) \ge |S|$

Matchings via Flüsse

- mit der Konstruktion eines Netzwerkes aus dem Beweis erhalten wir ein effizientes Verfahren, um die Matchingzahl bipartiter Graphen zu berechnen
- wir wenden auf dieses Netzwerk einfach FordFulkerson an
- da alle Kapazitäten {0, 1} sind, ist der optimale Fluß auch {0, 1}-wertig
- lacktriangle es gibt effizientere Algorithmen für dieses Problem \leadsto VL Effiziente Algorithmen

Zusammenfassung

- Flüsse in Netzwerken
- FordFulkerson und EdmondsKarp-Algorithmen
- max flow min cut
- Matchings in bipartiten Graphen