Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Практическая работа №6

Вариант 12

Выполнил:

Степанов Арсений Алексеевич

Группа:

TeopBep 2.4

Преподаватель:

Селина Елена Георгиевна

Задание №1

Дана выборка: 3.6 3.9 4.5 3.8 4.4 4.9 4.2 3.8

Построить доверительный интервал оценки генеральной средней при заданной доверительной вероятности $\gamma=0.95$

Решение

Размер выборки n < 30, поэтому воспользуемся следующей формулой:

$$\overline{X} - t_{\frac{\gamma+1}{2}}(n-1)\frac{S}{\sqrt{n}} < m < \overline{X} + t_{\frac{\gamma+1}{2}}(n-1)\frac{S}{\sqrt{n}}$$

Рассчитаем \overline{X} :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{31.1}{8} = 4.1375$$

Paccчитаем D(X):

$$D(X) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{X}^2 = \frac{138.31}{8} - 17.1189 = 0.16985$$

Pассчитаем S:

$$S = \sqrt{\frac{n}{n-1} \cdot D(X)} = \sqrt{\frac{8}{7} \cdot 0.16985} = 0.44058$$

Находим квантиль:

$$\gamma = 0.99, n = 8$$
 $\frac{1 + 0.99}{2} = 0.995$ $t_{0.995}(7) = 3.499$

Найдём доверительный интервал:

$$4.1375 - 3.499 \cdot \frac{0.44058}{2.64575} < m < 4.1375 + 3.499 \cdot \frac{0.44058}{2.64575}$$
$$3.555 < m < 4.531$$

Задание №2

$$n = 100, \, \overline{X} = 748, \, \sigma = 3.6, \, \gamma = 0.95$$

Построить доверительный интервал оценки генеральной средней при заданной доверительной вероятности $\gamma=0.95$

Решение

Размер выборки n > 30, поэтому воспользуемся следующей формулой:

$$\overline{X} - \frac{t_{\gamma}\sigma}{\sqrt{n}} < m < \overline{X} + \frac{t_{\gamma}\sigma}{\sqrt{n}}$$

Найдём квантиль:

$$\gamma = 0.95$$
 $\frac{1 + 0.95}{2} = 0.975$ $t = 1.96$

Найдём доверительный интервал:

$$748 - \frac{1.96 \cdot 3.6}{10} < m < 748 + \frac{1.96 \cdot 3.6}{10}$$
$$747.2944 < m < 748.7056$$

Задание №3

Распределение семян сорняков в выборках семян тимофеевки:

Число семян сорняков	0	1	2	3	4	5	6	7	8	9
Число выборок	3	17	26	16	18	9	3	5	0	1

При заданном уровне значимости $\alpha=0.1$ проверить гипотезу о том, что выборка имеет распределение Пуассона

Решение

Найдём выборочное среднее, чтобы оценить параметр λ :

$$\lambda = \frac{\sum_{i=0}^{n} (x_i \cdot i)}{\sum_{i=0}^{n} x_i} = \frac{296}{98} = 3.02$$

i	n_i	p_{i}	n_i^*
0	3	0.04878	5
1	17	0.14733	14
2	26	0.22251	22
3	16	0.22402	22
4	18	0.16916	17
5	9	0.10218	10
6	3	0.05144	5
7	5	0.02219	2
8	0	0.00838	1
9	1	0.00281	0
\sum	98	-	98

Объединим строки, которые не удовлетворяют условию $p_i n \geq 9$, т.е. такие строки где $p_i < 0.092$

i	n_i	n_i^*	$\frac{(n_i - n_i^*)^2}{n_i^*}$
≤ 1	20	19	0.05263
2	26	22	0.72727
3	16	22	1.63636
4	18	17	0.05882
≥ 5	18	18	0.0
\sum	98	98	2.47509

Таким образом получаем, что $\chi^2_{\text{набл}} = 2.47509$

Найдём табличное значение $\chi^2_{\mbox{\tiny {
m KPUT}}}$:

$$\chi^2_{\text{крит}} = \chi^2_{1-\alpha}(k-l-1) = \chi^2_{0.99}(5-1-1) = \chi^2_{0.99}(3) = 11.3$$

Получаем, что $\chi^2_{\text{крит}} > \chi^2_{\text{набл}}$, наблюдаемое значение меньше критического, значит гипотеза о распределении по закону Пуассона принимается

2