Least Upper Bound - Supremum

Joseph Song

1 Axiom of Completeness

Axiom of Completeness - Every nonempty set of real numbers that is bounded above has a least upper bound.

Definition (Upper bound). Set $A \subseteq R$ is bounded above if there exists a real number b such that it is greater than all the values in A. $(\exists b \in \mathbb{R} : a \leq b, \forall a \in A)$

Definition (Least Upper Bound - Supremum). The least upper bound is an element s in A, such that:

- 1. s is an upper bound
- 2. For any other upper bound, $b, s \leq b$

This means that out of all the bounds, s is the smallest. The supremum is denoted as $s = \sup(A)$.

Example 1.1. For a set A and a number $c \in \mathbb{R}$, define

$$c + A = \{c + a : a \in A\}$$

and show $\sup(c+A) = c + \sup A$.

Proof.