Best Papel Honorable Mention

Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models

Vitali Petsiuk, Kate Saenko Boston University

Diffusion models for image generation

the good

Diffusion model

the ugly copyrighted

nudity

...hate, harassment, violence, self-harm, porn, shocking, illegal activity...

How to limit unethical image generation?

How to limit unethical image generation?

How to limit unethical image generation?

Prior work: modify the model to erase concepts

Original model

Prompt: car

Prompt: car

This work: concepts are not really erased!

Prompt: car

Prompt: car Our prompt

Background: Denoising Diffusion Step

 c_1 = A horse standing in the field

Background: Denoising Diffusion Step

Background: Concept Inhibition

Optimize the weights to enforce some predefined output as guidance for target.

$$g(c_{\tau}) \leftarrow y_0$$
 via optimization $\theta = \arg\min_{\theta} \mathcal{L}(g_{\theta}(c_{\tau}), y_0)$

Background: Concept Inhibition

Optimize the weights to enforce some predefined output as guidance for target.

$$g(c_{\tau}) \leftarrow y_0$$
 via optimization $\theta = \arg\min_{\theta} \mathcal{L}(g_{\theta}(c_{\tau}), y_0)$

Background: Concept Inhibition

Optimize the weights to enforce some predefined output as guidance for target.

$$g(c_{\tau}) \leftarrow y_0$$
 via optimization $\theta = \arg\min_{\theta} \mathcal{L}(g_{\theta}(c_{\tau}), y_0)$

Analyzing Concept Inhibition

Optimize the weights to enforce some predefined output as guidance for target.

$$g(c_{\tau}) \leftarrow y_0$$
 via optimization $\theta = \arg\min_{\theta} \mathcal{L}(g_{\theta}(c_{\tau}), y_0)$

$$g(c_{\tau}) \leftarrow y_0$$

Modification is local (at c_{τ}):

- + requires only local update
- its effect can be limited

Analyzing Concept Inhibition

Optimize the weights to enforce some predefined output as guidance for target.

$$g(c_{\tau}) \leftarrow y_0$$
 via optimization $\theta = \arg\min_{\theta} \mathcal{L}(g_{\theta}(c_{\tau}), y_0)$

$$g(c_{\tau}) \leftarrow y_0$$

Modification is local (at c_{τ}): + requires only local update

- its effect can be limited

Hypothesis: the rate of inhibition effect decays as the distance from target concept increases.

Background: Concept Composition

'a portrait of a king'

The Stable Artist: Steering Semantics in Diffusion Latent Space, Brack et al. 2023

Background: Concept Composition

 c_1 = A horse standing in the field c_2 = A striped animal

+cake in the shape of zebra —cake

We show that as the distance between some arbitrary distractor concept c_d and inhibited concept c_τ increases, the linear combination(s) of g() can be used to compute a vector colinear with $g^*(c_\tau)$

Proposition P1. If $|c_d - c_\tau| \to +\infty$ and $g^*(c_\tau \pm c_d) = g^*(c_\tau) \pm g^*(c_d)$, then

$$g(c_{\tau} \pm c_d) \mp g(c_d) \rightarrow g^*(c_{\tau}),$$

where \rightarrow denotes convergence in the limit.

Qualitative Results

Inhibited model

zebra

R2D2

car

golf ball

Our attack

Inhibited "zebra" (AC with anchor "horse")

Inhibited "r2d2" (AC with anchor "robot")

Inhibited "car" (ESD-u)

Inhibited "golf ball" (UCE)

Quantitative Results: Nudity Inhibition

Inhibition Methods.

• ESD, UCE, SA

Concept Presence Metric

Number of images with detected nudity category (NudeNet)

Prompts

Inappropriate Image Prompts (I2P)

Quantitative Results: Object Inhibition

Inhibition Methods.

• ESD, UCE, AC

Concept Presence Metric

• CLIP Score based.

Avg. over 15 concepts

Prompts

Generated with Chat-GPT.

Conclusion

- Localized nature of existing approaches does not erase the information about the concept fully.
- Proposed compositional inference attacks are an efficient way of extracting this information.
- Inhibited models risk being circumvented in this way not only in an open-source scenario, but also via multi-prompt API calls.
- Any editing of diffusion models should take the compositional property into consideration.

