(12) INTERNATIONAL APPLICATION PUBLISHED LINDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 October 2001 (18.10.2001)

PCT

(10) International Publication Number WO 01/77525 A1

(51) International Patent Classification7: F03D 7/04, 11/00

(21) International Application Number: PCT/US01/11670

(22) International Filing Date: 9 April 2001 (09.04.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/195,743 7 April 2000 (07.04.2000) US 60/207,722 26 May 2000 (26.05.2000) US 09/828,500 6 April 2001 (06.04.2001) US

(71) Applicant: WINDLYNX SYSTEMS, B.V. [US/US]; Suite 1720, 402 W. Broadway, San Diego, CA 92101 (US).

(72) Inventors: PIONZIO, Dino, J., Jr.; Diagonal, 652, EDF.D 7a, E-08034 Barcelona (ES). PETERSON, Curt,

W.; 8672-2 Villa La Jolla Drive, La Jolla, CA 92037 (US). BARNES, David, L.; 2526 Camino Avena, Alpine, CA 91901 (US). L1BBY, William, J.; 9750 Oviedo Street, San Diego, CA 92129 (US). LEE, Mark; 10842 Penora Street, San Diego, CA 92126 (US). REEVE, Benjamin; 21 Valley Road, Arlington, MA 02174 (US).

(74) Agent: TROESCH, Hans, R.; Fish & Richardson P.C., 2200 Sand Hill Road #100, Menlo Park, CA 94025 (US).

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

with international search report

 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: WIND FARM CONTROL SYSTEM (SCADA)

(57) Abstract: A Supervisory Command and Data Acquisition (SCADA) system for managing wind turbines for electric power generation. One implementation includes a SCADA element (63) at each wind turbine (62), configured to collection data and provide an interface to control the turbine and communicate with other parts of the system; a SCADA element (53) at a substation (52), configured to collect data from the substation, to communicate with other parts of the system, and to store substation data locally; a SCADA element (43) at each meteorological site (40), configured to collect meteorological data from sensors on and at a meteorology tower (42), to communicate with other parts of the system, and to store meteorology tower (42), to communicate with other parts of the system, and to store meteorology data locally; a data communication network (20); a server (10) coupled over the network with the wind turbines, the substation, and the meteorological sites through their respective the SCADA elements; and a user interface through which authorized users can exercise command and control functions.

WO 01/77525 A

WO 91/77525 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WIND FARM CONTROL SYSTEM (SCADA)

BACKGROUND OF THE INVENTION

The invention relates to SCADA (Supervisory Command and Data Acquisition) systems in the context of commercial electric power generation.

5

10

15

20

25

30

A wind farm of wind turbines operated for commercial electric power generation requires a considerable infrastructure to support control and monitoring functionality of the wind turbines and utility interconnect. In general, the manufacturers of wind turbines offer only wind turbine controllers and related command and control systems that are specific to their turbine products. Such offerings generally provide little or no means for integrating the products or systems of one manufacturer with those of another. Such offerings also generally provide only an engineering view of the operation of a wind farm rather than a business or financial view.

Thus, there is a need for a SCADA system that can be used in a cost effective and efficient manner to operate a reliable and profitable wind farm.

SUMMARY OF THE INVENTION

In general, in one aspect, the invention provides a Supervisory Command and Data Acquisition (SCADA) system for managing wind turbines for electric power generation. One implementation includes a SCADA element at each wind turbine, configured to collect data and provide an interface to control the turbine and communicate with other parts of the system; a SCADA element at a substation, configured to collect data from the substation, to communicate with other parts of the system, and to store substation data locally; a SCADA element at each meteorological site, configured to collect meteorological data from sensors on and at a meteorology tower, to communicate with other parts of the system, and to store meteorology data locally; a data communication network; a server coupled over the network with the wind turbines, the substation, and the meteorological sites through their respective the SCADA elements; and a user interface through which authorized users can exercise command and control functions.

In general, in another aspect, the invention provides a system for managing a wind farm having an array of wind turbines for electric power generation. The system includes a SCADA element at each wind turbine configured to collect data from the turbine; a SCADA element at each of one or more meteorological sites configured to collect

meteorological data; and a SCADA element at each of one or more substations, the substations being electrically connected with the wind turbines for power transmission; and a server coupled to communicate with the wind turbine, meteorological, and substation SCADA elements. The server is configured to receive and to store data received from the elements at regular intervals and to perform database management on the received data, and to gather and maintain detailed current and historical data as to the inputs, operating conditions, and outputs of all turbines of the wind farm at a high degree of time resolution.

5

10

15

20

25

30

The invention can be implemented to realize one or more of the following advantages. A person working on any part of the wind power system can use a portable device to connect to a local controller, such as a turbine processing unit at a turbine site, through a direct connection, such as an RS232 interface, and through the controller communicate with any other component of the system through the user interface of the system. A controller can be connected to the system through any interface that supports TCP/IP (Transmission Control Protocol/Internet Protocol). Local storage of data provides fault tolerant data acquisition, ensuring no loss of data. The use of configuration databases allows an operator to perform real-time system configuration without interfering with system operation. For example, system can continue to monitor and process data while an operator is adding or subtracting turbines from the system database.

The design also allows for seamless integration with any other program products that can access the databases of the system.

Because system reliably gathers and maintains detailed current and historical information as to the inputs, operating conditions, and outputs of all components at a high degree of time resolution, the system provides the detailed information needed for predictive analysis, performance analysis, and model design and verification for a variety of model types, such as financial, airflow, process, and mechanical.

Having computing and data storage resources in the on-site controllers such as the turbine processing units allows sophisticated data processing. monitoring, and control functions to be performed in a highly scalable way and on data gathered at a very high data rate.

Because of its modular and open design, the system can be implemented using a variety of alternative technologies.

The details of one or more implementations of the invention are set forth in the accompanying drawings and the description below. Other features and advantages of the invention will become apparent from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 (made up of FIG. 1A and FIG. 1B) is a schematic diagram of a wind farm control system in accordance with the invention.

5

10

15

20

25

30

- FIG. 2 is a schematic diagram of a Turbine Processing Unit (TPU) in accordance with the invention associated with a turbine tower.
- FIG. 3 is a schematic diagram of a meteorology tower associated with the system in accordance with the invention.
- FIG. 4 is a schematic diagram illustrating the components and interfaces used for data collection on a meteorology tower.
 - FIG. 5 is a schematic diagram of the principal subsystems of the system.
- FIG. 6 is a schematic diagram illustrating a top-level architecture of a central server of the system.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

This specification describes a system for managing an array of wind turbines of the kind deployed for electric power generation on a commercial scale. The system is called TACS (Turbine Array Control System).

As shown in FIG. 1, a turbine array and TACS can be viewed as a Supervisory Command and Data Acquisition (SCADA) system. The six primary entities of a wind power system are the Array Processing Unit (APU) 10, Array Communications Network (ACN) 20, workstations 30 and 31, meteorological sites 40, power substation sites 50 and turbine sites 60. Workstations 31 can be located in an operations and maintenance (O&M) site 80 remotely over a wide area network (WAN) and can be directly connected directly to the network, as is workstation 32. (An "array" or "turbine array" is a group, which may be widely dispersed, of wind turbines 62 and related equipment. A "site" is a logical grouping of all equipment and components at a physical location.) The architecture of TACS provides high performance monitoring and control, as well as excellent expansion capability with support for virtually any number and/or type of devices.

Site entities each contain one or more processing elements along with the equipment being monitored and/or controlled. Turbine sites have one or more turbine towers 200 (FIG. 2), with each turbine tower containing a Turbine Processing Unit 63 (TPU) functioning as the SCADA element for that tower 200 or wind turbine 63. Substation sites 50 and meteorological sites 40 each contain a processing element referred to as the Substation Processing Unit 53 (SPU) and Meteorological Processing Unit 43 (MPU), respectively, again functioning as the SCADA element for the particular site.

5

10

15

20

25

30

TACS collects and stores raw data from the sites. The data is used for real time display and preserved in long term storage. TACS reduces the raw data and presents it for analysis to operations and financial personnel.

TACS provides both manual and automatic controls of the wind turbines and the substation or substations through which energy is delivered to the electric power grid. The turbines and substations can be controlled both manually and automatically. Automatic control can be based on power production. TACS provides a mechanism to modify the state of the discrete outputs of the substation interface manually with a check for reasonableness and security. TACS provides a configuration interface to the control algorithm to limit energy output to the substation based on time and power limits that will automatically shut off the appropriate number of turbines.

TACS includes a network 20 designed to ensure continuous communication. The network is a managed Ethernet star configuration. In case of a network failure, each TACS subsystem is able to store its raw data locally. TACS provides an interface to monitor and control the network and uninterruptible power supplies for the units. TACS supports remote network access. The wind turbine processors 210 also provide remote network access to support on site operations access of remote systems.

TACS notifies personnel of any major alarms that may occur. A graphical user interface provides an interface to alarms, alarm definitions and notification instructions.

The Array Processing Unit (APU)

Shown in FIG. 1, the Array Processing Unit (APU) 10 is also referred to as the server.

The APU executes application programming, which will be described below, that is responsible for collecting data from and controlling the elements of the wind power system. The APU application is built on the client-server architecture where the APU is referred to as the server and the site entities are referred to as the clients.

The site entities are connected to the APU over a standard Ethernet network. The transport medium is optical fiber to eliminate electromagnetic and radio frequency interference, ground loops and other sources of interference present in an industrial environment.

Workstations 30 and 31 execute a Microsoft Windows NT application that processes the data from the APU into various reports and allows real-time monitoring and control of the wind power system. The term "workstation" is used to refer to client computers of any kind, including ordinary personal computers, laptop computers, personal digital assistants, and so on. Workstations with remote access provide a subset of the functionality of local workstations and are primarily used for site administration (e.g., software updates); however, remote access workstations – which connect to TACS through the public switched telephone network 70, for example – can be used as replacements for, or in addition to, the local workstations. Thus, an O&M site 80 can be

Site-based processing elements or units execute a client application providing local data collection and site control. Each processing unit functions mainly as a store and forward device with alarm processing and local measurement data storage sufficient to bridge any anticipated unavailability of the server. Remote system administration can be performed from any standard PC connected to the network using standard Windows NT tools.

Monitoring Data

located remotely (FIG. 1B).

5

10

15

20

25

The APU provides database management and reporting functions. It collects data from all network components at frequent intervals, at least once a minute. It collects data (controller state, wind speed, energy levels, alarms, and so on) from the wind turbine controller 220 at a high frequency, such as once a second.

The APU collects and stores meteorological data (vertical and horizontal wind speeds, wind direction, temperature, pressure, battery level) from all towers once every 30 seconds.

The APU collects and stores substation data from the SPU once a second.

30 Processing Data

The APU also performs data processing functions. For example, it computes and stores meteorology and power production measurement data for each turbine and park.

A "park" is a grouping of turbines, which may be logical or physical. In the particular implementation being described, parks are defined to group physically-related turbines. However, parks can also be defined along other lines, for example, to group financial or ownership interests, contractual obligations, equipment types, and so on. With parks of different kinds, an array of turbines can be subdivided into multiple sets of parks for reporting and management purposes.

The APU computes and stores the availability for each turbine and park; it computes and stores the alarms which must be sent for notification; it computes and stores the actual energy produced for each turbine and park; it computes and stores the efficiencies of each turbine and park; it computes and stores the averages for the last 10 minutes and the last hour and the minima and maxima of the meteorological data for the day each time the data is collected; it computes and stores the scaled units of the substation data from substation analog inputs; and it computes and stores the line losses, active and reactive power, input power and output power for all the circuits and totals for the current data, the last 10 minutes, the last hour, and the last day. The APU also allows an authorized user to display and compare any of the collected and computed data through a graphical user interface.

The APU computes and stores alarms including alarms that must be sent to notify personnel. These include alarms from the meteorology data (e.g., battery level, data inconsistencies, data out of range), substation interface alarms, alarms from the server data (e.g., uninterruptible power supply, operation system, database, and disk drives), and other alarms (e.g., communications errors, data rates out of range, out of range values and uninterruptible power supplies states).

System Control

5

10

15

20

25

30

The APU provides a variety of tools for users to control operation of the wind power system. For example, the APU provides an interface for a user to control each turbine, subject to limits of reasonableness and security, including functions to start, stop, reset, yaw, and request alarms. The APU allows an authorized user to configure the control algorithm to limit energy output to the substation based on time and power limits that will automatically shut off the appropriate number of turbines.

The APU allows an authorized user to modify manually the state of the discrete outputs of the substation interface, with a check for reasonableness and security, and to configure automatic controls of substation transformers.

The APU allows an authorized user to configure levels of authority of system users.

User Interface

5

10

15

20

25

30

The APU provides a graphical user interface (GUI) that provides multi-level menus that allow an authorized user to exercise command and control functions for the wind power system. The GUI updates the turbine data display at a configurable rate with a default of once every 5 seconds. The GUI displays the meteorology and power production measurement data for each turbine and park, including, e.g., wind speed and energy levels. The GUI can display the availability for every turbine and park, the alarms (active and acknowledged) from every turbine for up to a period of one month, the efficiency data of each turbine and park, the state of the communication link to each turbine, the energy produced for every turbine and park, and the real and reactive power for every park.

The GUI also displays the meteorological data (vertical and horizontal wind speeds, wind direction, temperature, pressure, battery level) from all meteorology towers (FIG. 3), including the current meteorological data, last 10 minutes averages, last hour averages and the minima and maxima for the day, and the alarms (active and acknowledged) from the meteorological data (e.g., battery level, data inconsistencies, data out of range).

The GUI also displays the data from the substation interface. The GUI displays the line losses, active and reactive power, input power and output power for all the circuits and totals for the current data, the last 10 minutes, the last hour and the last day. The GUI also allows authorized users to control a substation.

The GUI provides an interface to acknowledge and classify alarms, to compute totals and display the alarm data, to create and modify alarm set points of the meteorological data, to configure which data will set alarms when out of range or unreasonable, and to configure which alarms will be sent to personnel for notification. The APU has an alarm notification system that will transmit alarms to the appropriate personnel. This system can provide visual and/or audible indication to a user from the user interface and remotely with announcements through telephone calls, e-mail messages, and pager messages. The GUI user will always have a view of any unacknowledged alarms for all components in the wind power system. When a component is detected with a critical event, the component name with an alarm icon will

be displayed prominently in the alarm window on the front panel of the GUI. By clicking on the alarm icon, the user is taken to the event view of the component with the error.

The GUI also displays the status of the uninterruptible power supply of the server and the distributed units of the system. It supports levels of authority for data access to the system users, and it provides a standard ODBC (Open Database Connectivity) interface to all data in the measurement database.

Turbine Processing Unit (TPU)

As shown in FIG. 2, a Turbine Processing Unit (TPU) 210 is associated with, and located close to, a turbine tower 200. It provides an interface between the generally-proprietary turbine controller 220 provided by the turbine manufacturer and the rest of the system. The TPU may optionally connect to the system through a premise box 230 providing a physical interface between the optical fiber 240 of the system network and the TPU 210, which can be connected to the premise box with a fiber patch cable. The TPU 210 and the turbine controller 220 can be connected using an optically isolated RS-232 connection.

A TPU performs the functions of data monitoring, system control, and communications at a turbine site. It collects data, such as controller state, wind speed, energy levels, and alarms, from the controller at a rate of once a second. It provides an interface to control each turbine.

A TPU interacts with the system through an Ethernet port and, as required, with workers who may be working at the TPU, through optically isolated serial ports.

TPU software runs on a Microsoft Windows NT Embedded operating system. All software components of a TPU operate as Windows NT services allowing them to run at an administrator permissions level on system startup.

Wind Turbine Controller Protocol

5

10 '

15

20

25

30

A TPU interacts with its turbine through a turbine controller, which is generally an off-the-shelf item provided with the turbine by the turbine manufacturer. The TPU implements a transport layer communication protocol for the turbine controller, providing a uniform interface to the system from any of a variety of turbines and controllers. The TPU-controller protocol implementation that is described below is for a controller made by KK Electronic A/S and provided by Bonus Energy A/S, both of Denmark. The protocol is a combination of network and data transport layers, and as such, it may be transmitted over any suitable physical medium.

The basic protocol follows a command-response format, whereby each packet transmitted by the master is acknowledged by the slave. Communication is initiated and controlled by the master. The protocol is entirely ASCII (text) based. Packet retransmission and cyclic redundancy checks (CRCs) are used to minimize data corruption and errors.

5

10

15

20

25

30

The master initiates communications with a particular slave by sending the start of transmission (SOT) sequence, a '\$' followed by the two digit turbine ID in hexadecimal notation (e.g., \$01). The corresponding turbine responds with the ready to receive (RTR) sequence, an '*' followed by its two digit turbine ID in hexadecimal notation (e.g., *01). If the slave does not respond, or an incorrect turbine ID is received, the master will time out. Thus, a complete command sequences made up of the SOT sequence, followed by a directive and a datafile of the associated type, terminated by either a data acceptance sequence or a transmission retry timeout. A datafile is the payload of a message. Datafile types are described below. Command sequences may be initiated indefinitely.

The master can send four directives representing command request, data request, memory write or memory read. Directives are sent immediately following a valid SOT sequence. Data acceptance is signaled by transmission of the "closing character" matching the "opening character" sent for the specific directive. Upon receipt of this character the communications sequence is terminated.

A command (CRD) request is initiated by sending a single ASCII '(' denoting the start of the datafile, followed immediately by a datafile type 1 structure. The specific command is contained in the datafile. Upon acceptance of data, the slave transmits a single ASCII ')' to the master, terminating the communications sequence.

A data request (DRD) is initiated by sending the data request sequence, namely, an '&' followed by the two digit turbine ID in hexadecimal notation (e.g., &01). The slave responds with the requested data by sending a single ASCII '[' denoting the start of the datafile, followed immediately by a datafile type 2 structure. The specific data is contained in the datafile. Upon acceptance of data, the master transmits a single ASCII '[' to the slave, terminating the communications sequence.

A memory write (MWD) is initiated by sending a single ASCII '{' denoting the start of the datafile, followed immediately by a datafile type 3 structure. Upon acceptance of data, the slave transmits a single ASCII '}' to the master, terminating the communications sequence.

A memory read (MRD) is initiated by sending the memory read sequence, a '#' followed by the two digit turbine ID in hexadecimal notation (e.g., #01). The slave responds with the requested data by sending a single ASCII '[' denoting the start of the datafile, followed immediately by a datafile type 4 structure. The specific data is contained in the datafile. Upon acceptance of data, the master transmits a single ASCII ']' to the slave, terminating the communications sequence.

If a datafile transmitted by the master is not accepted by the slave, the slave will respond with a single ASCII character '?' and wait for a retransmission.

If a datafile transmitted by the slave is not accepted by the master, the master will respond with a single ASCII character ' " ' and wait for a retransmission.

Datafile structures

A datafile contains the specified data and a CRC and is terminated with an end of transmission character (0x04). Each field is separated by a single ASCII '/'.

Datafile 1

15

10

5

A datafile 1 is used to request specific data from the turbine controller and to command the controller for manual operation. In this implementation, the type is command request data; the direction, master to slave; the size, 11 characters. The commands that can be carried include the following.

Char	Description			
С	Computer reset			
В	Brake turbine			
R	Yaw CW (clockwise)			
L	Yaw CCW (counterclockwise)			
T	Do not care			
S	Start automatic operation			
M	Motor start turbine			
Q	Quit fault code (acknowledge)			
A	Move alarm stack pointer to newest			

Datafile 2

20

A datafile 2 contains data returned from the controller. The fields all have a fixed length and the message contains all fields regardless of content. In this implementation, the type is command response data; the direction, slave to master; the size, 208 characters. The data fields of a datafile 2 function are shown in the following tables 1-6.

Table 1 - Field Definitions

Field Name	Range	Units
Year	00 - 99	Years
Month	01 - 12	Months
Day	01 - 31	Days
Hours	00 - 12	Hrs.
Minutes	00 - 59	Min.
Turbine status	see Table 2	
Brake status	see Table 3	
Generator status	see Table 4	
Yaw timer	-32765 - +32765 (1/10 sec.)	Sec.
	'-' = CCW, '+' = CW	
Power	0000.0 - 9999.9	kW
Reactive power	-999.9 - +999.9	KVar
Power factor	-9.99 - +9.99	
Wind speed	00.0 – 99.9	m/s
Grid frequency	00.0 – 99.9	Hz
Generator RPM	0000 9999	RPM
Rotor RPM	00 – 99	RPM
Generator 1 temp.	-99 – 150	°C
Generator 2 temp.	- 99 – 150	°C
Gearbox temp.	-99 – 150	°C
Ambient temp.	-99 – 150	°C
Phase R voltage	000 – 999	V
Phase S voltage	000 – 999	V
Phase T voltage	000 – 999	V
Phase R current	000 – 999	A
Phase S current	000 – 999	Α
Phase T current	000 – 999	A
Energy subtotal gen. 1	00000000 – 999999999	KWh
Prod. time subtotal gen. 1	000000 – 999999	Hrs.
Energy subtotal gen. 2	00000000 – 999999999	KWh
Prod. time subtotal gen. 2	000000 – 999999	Hrs.

Energy total gen. 1	000000000 - 999999999	KWh
Prod. time total gen. 1	000000 – 999999	Hrs.
Energy total gen. 2	00000000 – 999999999	KWh
Prod. time total gen. 2	000000 – 999999	Hrs.
Safety switch	0 = remote, 1 = local	
Operation code	see Table 6	
Error code	see Table 5	
Last error year	00 – 99	Years
Last error month	01 – 12	Months
last error day	01 – 31	Days
last error hour	00 – 23	Hrs.
last error minute	00 – 59	Min.
last error seconds	00 – 59	Sec.

Table 2 - Turbine Status Codes

Code	Description
F	Fault condition
S	Out of work, must be started manually
W	Too strong wind to operate
w	Too strong wind to start
R	Cables are twisted automatically clockwise (CW), sensor
L	Cables are twisted automatically counter-clockwise (CCW),
	sensor
r	Cables are twisted automatically CW, yaw timer
1	Cables are twisted automatically CCW, yaw timer
S	Stopped for twisting, waiting for less wind speed
M	Manual motor start in progress
A	Automatic motor start in progress
0	Not yawed up in the wind yet
P	Start at wind limit for bypass small generator
t	Control time for wind speed before start
ь	Wind enough for automatic start and motor start
*	No operation, wind too weak

Table 3 - Brake Status

Code	Description
В	Brake pulled
b	Not sufficient pressure yet
=	Brake released

Table 4 – Generator Status

Code	Description			
G	Large generator cut in			
I	Large generator cutting in			
g	Small generator cut in			
i	Small generator cutting in			
m	Motor start on generator			
t	Motor start not allowed in 7.5 min.			
*	Generator is inactive			

Table 5 - Error Codes

Code	Description			
00	System Faultless			
01	24 volt control voltage cut off			
02	Uncontrolled yawing 24 volt cut off			
03	Software watchdog error			
04	Cut out error on large generator, free wheeling			
05	Brake time exceeded, free wheeling			
06	Large generator time cut out			
07	Error temperature measurement			
08	Anemometer error			
09	Ambient temperature less than -20 degrees			
10	Yaw motor superheated			
11	Yaw contactor or thermal error			
12	Cable twist sensor activation error			
13	Continuous yaw limit exceeded			
14	Frequency error on mains			

15	Asymmetry in current				
16	Voltage error on mains				
17	Vibration sensor activated				
18	Oil level in gearbox too low				
19	Pressure in brake system too low				
20	Hydraulic pump error				
21	Worn or overloaded brake blocks				
22	Thermally cut out large generator				
23	Large generator RPM sensor error				
24	Generator contactor error				
25	By pass contactor error				
26	RPM on rotor has exceeded max limit				
27	Main bearings superheated				
28	Main shaft RPM sensor error				
29	Motor start not succeeded 5 times				
30	Large generator superheated				
31	Oil in gearbox superheated				
32	Thyristors superheated				
33	Overproduction in large generator				
34	Current asymmetry in small generator				
35	Small generator thermally cut out				
36	Belt error or RPM sensor error, small generator				
37	Motor start RPM limit exceeded				
38	Small generator superheated				
39	Sequential error				
40	Error during performance of averaging				

Table 6 - Operation Codes

Code	Description			
00	Normal operation			
01	Operational stop with automatic start			
02	Motor start cut out due to fault			
03	Small generator cut out due to fault			

04	Stopped for manual start
05	Stopped has to be restarted
06	Free wheeling has to be restarted by reset

Datafile 3

5

10

15

20

25

30

A datafile 3 is used for setting the onboard clock, averaging times for data collection, and adjusting limits and control values. If the contents of the data field is 'XXXXX', the memory location will not be written, but the address is selected for reading on the following memory read directive. This function performs word writes only. In this implementation, the type is memory write data; the direction, master to slave; the size, 20 characters.

Datafile 4

A datafile 4 reads data from the selected memory location. The function is used to view data not available in the standard datafile 2 payload. In this implementation, the type is memory read data; the direction, slave to master; the size, 20 characters.

Meteorological Processing Unit (MPU)

As illustrated in FIG. 3, a Meteorological Processing Unit 43 (MPU) provides meteorological data from sensors 310-319 on and at a meteorology tower through a data logger. The MPU collects and stores meteorology tower data, such as vertical and horizontal wind speeds, wind direction, temperature, pressure, and battery level, from all the towers regularly, such as once every 30 seconds.

As illustrated in FIG. 3, in one design, a meteorology tower (also referred to as a "met mast") 42 monitors wind speed and direction from 4 levels above the ground, vertical wind speed, temperature, and pressure. The data is logged through a Campbell CR10X data logger 320, available from Campbell Scientific, Inc. of Logan, Utah. The data logger has a remote RS-232 serial communication interface through which sensor values in engineering units can be requested.

There will generally be multiple met masts and thus multiple loggers associated with each park.

Meteorology Tower Components and Interfaces

FIG. 4 illustrates the components and interfaces used for data collection on a met mast. The temperature sensor 318 is a Campbell 107 sensor. The pressure sensor 330 is a Vaisala PTB101B sensor. The vertical wind speed sensor 311 is a RM Young 27160T

sensor. The horizontal wind direction sensors 310, 313, 315, 317 are NRG Type 200P sensors. The horizontal wind speed sensors 312, 314, 316, 319 are NRG Type 40 sensors. The met mast equipment also includes battery backup and charging components 340 and a fiber optic (FO) modem 350.

5 Met Mast Logging

10

15

20

All met mast data is time stamped with Julian day, year, hour, minute, and second.

The APU collects the following data for a met mast data screen of the TACS GUI in real time from the MPU: battery level, temperature, atmospheric pressure, four horizontal wind speeds, and four horizontal wind directions. These measurements are made available to the GUI through the database.

The APU also processes the raw data into the following summary data for a summary met mast data screen. These processed values are made available to the GUI through the database.

Data Item	Daily	Daily	Daily	Daily	10 Minute	10 Minute
	Max	Min	Average	Standard	Average	Standard
			·	Deviation		Deviation
Battery level	Х	X	Χ.	Х		
temperature	Х	X	X	Х		
atmospheric pressure	X	Х	Х	Х		
vertical wind speed	Х	Х	Х	X		
horizontal wind speed	Х	Х	Х	X		
wind direction					X	X

Substation Processing Unit (SPU)

A Substation Processing Unit (SPU) is the on-site interface of the system to a substation. A substation 52 (FIG. 4) is the interface between the wind turbine power plant and the electrical grid. The SPU is implemented using a programmable logic controller (PLC) 54 that manages the substation interface.

The PLC is an Allen-Bradley SLC 500 processor-based controller. The SLC 5/05 processor provides high bandwidth networking. As shown in FIG. 5, the PLC 510 is connected to the Server 10 over an Ethernet link using RSLinx as an interface driver and

is programmed with the RSLogix tool. RSLogix 500 provides consolidated project view and drag-and-drop editing. (As shown in FIG. 1B, the server and the substation controller can be collocated at a substation site.) The modules for discrete inputs are sinking DC input modules, product number 1746-IB32; the analog I/O modules, product number 1746-NI8, and the digital output modules, product number 1746-OX8.

The IB-32 Module provides 32 digital sinking inputs, used with 24 VDC. It is organized into four groups, each with eight digital inputs and two commons. All commons are connected to the common measurement ground connection point. A +24 VDC signal present at the input indicates the input is in the active state.

5

10

15

20

25

30

The OX-8 Module provides eight fully isolated relay contact pairs, which can be used for digital output connection.

The NI-8 Module provides eight differential analog inputs which can be connected for differential or single-ended measurement. As configured in this system they are connected in a differential arrangement with the positive and negative input terminals connected to the respective positive and negative outputs of the sensors. Shielded cable is used for analog connections to minimized noise and ensure the greatest measurement accuracy.

The PLC program monitors the substation transformer and keeps the output within limits by controlling the transformer step adjustment.

The PLC program announces errors though memory tags containing the state of the alarm condition.

The Array Communications Network (ACN)

The ACN 20 is the network component of the system. The network is a local area network based on Ethernet technology. The interconnections are generally based on optical fibers. The ACN is used to collect data from all network components, generally at the rate of at least once a minute. The ACN also provides a mechanism to configure, operate, and maintain the network components and to display configuration and operational status (such as communication errors and data rates) of all the network components. All control and monitoring equipment is interconnected by the network. In case of a network failure, each subsystem is expected to store its raw data locally for up to 48 hours.

Interface Definitions

Figure 5 is a block diagram of the principal subsystems and shows the names of the interfaces used.

The Database Interface (DBIF) is a standard interface that the TACS components use to communicate with the database. This interface consists of three parts: database language statements, function interface, and network protocol. The database language statements and function interface are encapsulated within a database application programming interface (API). The TACS database provides native database API support for Microsoft OLE DB and ODBC.

5

10

15

20

25

30

The TACS database allows client connection using three network protocols: named pipes, TCP/IP (Transmission Control Protocol / Internet Protocol) sockets, and multiprotocol. The Multiprotocol Net-Library uses the Windows remote procedure call (RPC) facility.

The Legacy Controller Interface (LCIF) controller protocol provides a generic turbine interface definition in order to support the future installations of TACS in sites where different turbine controllers are used.

The Campbell CR10X Logger supports a Campbell proprietary serial communication interface. This is recognized by the MM listener and used as a meteorological mast interface (MMIF).

The Substation Interface (SSIF) connects the Allen-Bradley Programmable Logic Controller (PLC) in a substation to the server. The SSIF communicates with the PLC using the Allen-Bradley RSLinx communication protocol over the Ethernet network.

Any remote subsystems can be connected through a generic remote equipment interface (RECIF) protocol to control and communicate with all of the TACS subsystems.

To support the notification of alarms to users of TACS, a short message service interface (SMSIF) provides an interface to a wireless Short Message Service to deliver pager or email messages.

The APU (Continued)

FIG. 6 shows the top-level architecture of the APU. The APU is implemented on a conventional computer server platform, such as a Dell™ PowerEdge 2300 computer. The server runs Microsoft Windows NT Server 4.0 with Service Pack 5 or later. Online disk memory is advantageously a RAID (Redundant Array of Inexpensive/Independent

Disks) configuration with about 40 gigabytes of storage, estimating about 10 gigabytes to store the raw data for one month of operation.

The following paragraphs describe the software architecture of the APU.

Data Storage Agent

5

10

15

20

25

30

The Data Storage Agent 610 is the encapsulation of the data storage and data interface for TACS. The DBIF provides the TACS applications an Application Program Interface to access, store and update data in the databases.

The TACS database is implemented using Microsoft SQL (Structured Query Language) Server Version 7.0. The database supports remote communication through ODBC to the subsystems. The TACS database includes a configuration, an events, and a repository database, which will be described.

The current month's and last month's data are maintained online. At the end of each month, all of last month's data is archived and the current month's data becomes last month's data. Annual accumulated totals of production and other data are maintained and available throughout the year.

A Data Mapper class is provided to allow a common interface between TACS applications and the TACS database. The class provides a connection service and an add service to put data into the TACS repository database.

Microsoft SQL Server 7.0 utilities are used to manage the database. Generally, the databases are defined and instantiated upon installation of the system. The SQL Server incorporates services to manage the databases automatically and manually.

Data Display Agent

The Data Display Agent 620 supports interaction with TACS through the GUI, which can be accessed locally or remotely. Local access can be through a direct connection to the ACN or to an element of the system. Remote access 640 can be over a WAN (wide area network), including over the Internet, or through a telephonic connection, such as through a wireless link or a public switched telephone link. The user interface is organized in a tree structure and supports the drill down to any specific information the user may wish to view. The user interface supports multiple views to each subsystem to allow users access to real time data, summary data, alarms data, and subsystem controls.

The tree structure is displayed to give the user easy access to the components in the system. By double clicking on the icon representing a component in the tree, the

window for the component is displayed in the main GUI window. The icons displayed in the tree display show the state of the related components, such as turbines and met masts. Each of the elements in the tree structure provides an interface to the window into the element. Each window contains a number of tabs to provide different views into the element.

The following tabs are typically available in the GUI window. Each can be selected to display a corresponding view, as described below.

Tab Name	Description of View		
Tabular Raw data presented in tabular format			
Graphical	A strip chart of raw data and bar chart of reduced data		
Summary	Data reduced from raw data for real time data analysis		
Control	Control interface to the element		
Events	List of all the unacknowledged events from the element		
Instrumented	Raw data presented in graphical format		

The GUI can provide a graphical view of the whole array, or of any park individually. This interface can provide an overview of the whole array at a glance.

10 Data Processing Agent (DPA)

5

15

20

25

The Data Processing Agent (DPA) 630 is implemented as a generic NT service that periodically makes one or more decisions by evaluating data in the database.

The configuration details for each DPA decision are saved as a DPA rule in the configuration database. Each DPA rule has an enable flag, description, evaluation group, evaluation procedure (stored procedure) name, and optional action fields. If the enable flag for a particular DPA rule is zero, then that DPA rule is not evaluated during processing. If the enable flag is set to '1', then it is enabled for evaluation.

Each DPA rule also belongs to a class. The class distinction allows the DPA additional execution flexibility in the implementation of the processing engine.

The DPA wakes up once a second and queries the database for evaluation groups. Each evaluation group has an evaluation period that is compared against the current system time to determine whether the group should be processed at the current time.

When an evaluation group is processed, the DPA queries the database for all DPA rules belonging to the group. Then, the evaluation procedure for each DPA rule belonging to the group is executed. If the DPA rule evaluation returns a result set (the result of a SELECT statement in the stored procedure), the DPA checks whether the rule

has an action procedure to execute. If so, the DPA executes the specified action procedure with zero or more parameter values from the corresponding evaluation result set. This allows field values from the result set to be passed to the action procedure.

Each DPA rule contains the configurable fields described in the table below. If the configuration for a parameter is NULL, then the DPA will not include that parameter when executing the action stored procedure.

5

10

Field	Description
Evaluation_proc_name	The name of the evaluation stored procedure
has_action	Set true if this DPA rule has an action to process. Otherwise, set false.
action_proc_name	The name of the action stored procedure
action_param_1	If not NULL and has_action is true, this string is passed as the first parameter when the action_proc_name stored procedure is called.
action_param_2	If not NULL and has_action is true, this string is passed as the second parameter when the action_proc_name stored procedure is called.
action_param_3	If not NULL and has_action is true, this string is passed as the third parameter when the action_proc_name stored procedure is called.
action_param_4_fieldkey	If not NULL and has_action is true, this string is used to look up a value in the result set which will be passed as the fourth parameter when the action_proc_name stored procedure is called.
action_param_5_special	If both fields are not NULL and has_action is true then these fields create the fifth parameter to be passed when
action_param_5_fieldkey	the action_proc_name stored procedure is called.
action_param_6_special	If both fields are not NULL and has_action is true then these fields create the sixth parameter to be passed when
action_param_6_fieldkey	the action_proc_name stored procedure is called.

The evaluation stored procedure may contain any valid combination of SQL commands, although if multiple result sets are returned, the DPA will only review the first data set.

The action stored procedure may contain any valid combination of SQL commands.

The DPA has two methods of reporting error conditions. Problems executing an evaluation procedure or action procedure are saved as an event record in the events

database. Initialization or operational problems with the DPA service are stored in the NT event log.

The DPA is used to implement the following three main functional components of TACS: automatic power control, post processing, and event processing.

Autopilot Agent

5

10

15

20

It is at times necessary to limit the power output of the wind power system; for example, the utility company may need to work on power lines. The Autopilot Agent 650 is notified when it is necessary to increase or decrease a line power level. The Autopilot Agent monitors the power level and queues a turbine control command when necessary. The Autopilot Agent determines which turbine should be turned off to decrease the power level or which turbine to turn on to increase the power level.

An authorized user can enter Autopilot rules through the GUI. For example, a user can enter the Autopilot time range, power limits, and a short description through the GUI.

When an operator deletes an existing automatic control record, the GUI will execute a stored procedure to delete the record. This stored procedure is in the configuration database.

When the operator adds a new automatic control record or edits an existing record, a pop-up dialog box is displayed. Pressing the OK button will cause the GUI to execute a stored procedure to add or edit the record. These stored procedures are in the configuration database.

The table below describes how the DPA rule action parameters are configured to implement the Autopilot Agent.

Field	Description
Evaluation_proc_name	dpa_rule_autopilot_evaluation - The name of the stored procedure to evaluate all autopilot records.
has_action	1 - which indicates it has an action to process.
action_proc_name	dpa_action_autopilot_control – The name of the stored procedure to perform the autopilot action for all autopilot records.
action_param_1	Minimum power limit in Watts
action_param_2	Maximum power limit in Watts
action_param_3	Time range, start time in UTC seconds
action_param_4_fieldkey	main_active_power - This column value is read from the result set and passed as the fourth parameter to the action

	procedure. Since the evaluation procedure selects from the substation_latest table, this will get the latest real power value and pass it to the action procedure.
action_param_5_special	Time range, end time in UTC seconds
action_param_5_fieldkey	NULL
action_param_6_special	NULL
action_param_6_fieldkey	time_stamp - returns the current UTC time to the action procedure.

The stored procedure dpa_rule_autopilot_evaluation determines, at regular intervals such as every 30 seconds whether there is an autopilot record to process. If there is and if (i) the current time is within the time range specification and the total power is outside the maximum or minimum power limits, then the dpa_action_autopilot_control stored procedure is performed. This procedure finds a turbine to shut down if total power exceeds the maximum or finds a turbine to turn on if total power is less than the minimum. Such a turbine must be under auto control. If such a turbine is found, a command to the turbine is enqueued and an information event is created. If no such turbine is found to turn off, a critical event is created.

Additional functionality for the Autopilot Agent is encapsulated in the stored procedure dpa_rule_autopilot_maintenance, which is periodically executed. This procedure looks for autopilot control commands that have timed out and creates an event. It also looks for turbines that have been manually controlled by an operator and removes these turbines from control by the autopilot.

Post Processing Agent

5

10

15

20

The Post Processing Agent periodically processes the raw data collected from system components and stores the reduced data in the summary data tables for the GUI summary screens. This agent also implements other periodic system functionality such as subsystem communication failure detection and event creation.

The table below describes how the DPA rule action parameters are configured to implement the post processing data reduction agent.

Field	Description
Evaluation_proc_name	Contains the name of the stored procedure that will perform the desired data processing. The stored procedure should be located in the repository database. The name should follow the convention 'dpa_rule_nnnnn_xx' where 'nnnnn' is the associated DPA rule key identifier and 'xx' describes the

	effect of this post processing operation.
has_action	0 – which indicates it has no action
All remaining fields	NULL

The specific functionality for each data reduction is encapsulated in the corresponding evaluation stored procedure for that DPA rule. Note that the action fields are not used for the data reduction agent.

The table below describes the evaluation stored procedures used by the data reduction agent.

5

DPA Rule	Evaluation Procedure Name	Description
1000	dpa_rule_turbine_cmd_cleaner	Detects stale turbine control commands
1010	dpa_rule_autopilot_maintenance	Detects problems with automatic control of turbines
1020	dpa_rule_tpu_command_bridge	Handles processing of operator manual control commands from the GUI
1030	dpa_rule_01030_sub_comm_fail	Detects communication failure with the substation data collection
1040	dpa_rule_01040_met_comm_fail	Detects communication failure with the meteorological mast data collection
1090	dpa_rule_post_time	Posts the current time for SQL
_		access
10001	dpa_rule_10001_turbine_summary	Creates summary data for turbines
10002	dpa_rule_10002_mets_env_tabular	Creates environmental summary data over all meteorological sites
10003	dpa_rule_10003_mets_wind_tabular	Creates wind summary data over all meteorological sites
10004	dpa_rule_10004_mets_summary	Creates summary data for all meteorological sites
10005	dpa_rule_10005_one_met_summary	Creates summary data for each meteorological site
10010	dpa_rule_10010_turbine_comm	Detects communication failure with the turbine data collection
10020	dpa_rule_10020_spain_summary	Creates summary data for all parks in an aggregation called Spain
10100	dpa_rule_10100_park_summary	Creates summary data for the parks

DPA Rule	Evaluation Procedure Name	Description
10101	dpa_rule_10101_park_tabular	Creates summary data for the parks tabular window in the GUI
11000	dpa_rule_11000_10MIN_data	Creates summary data for 10 minute values
12000	dpa_rule_12000_turbine_availability	Creates summary data of turbine availability

Event Notification Agent

5

10

The Event Notification Agent is responsible for notifying operators of TACS events. Events may be informational, warning, or critical. Critical events are alarm conditions in the system. This agent detects the specific event condition, adds an event record in the log, and notifies operators of the event.

A TACS system administrator can configure event criteria using the TACS configuration console. The event criteria include specification of comparison operands, comparison operator, evaluation group, event description, and alerting information. The GUI adds, edits, or deletes event configuration records by executing the respective stored procedure sp_dpa_add_event_record, sp_edit_event_record, or sp_delete_event_record in the configuration database.

The table below describes how the action parameters are configured in the DPA rules to implement the event processing agent.

Field	Description
evaluation_proc_name	Contains the name of the stored procedure for this event notification. The stored procedure is in the repository database. The name follows the convention 'dpa_rule_20nnn_event_detection', where 'nnn' is the associated DPA rule key identifier (between 20000 and 20999.
has_action	1 – which indicates it has an action to process
action_proc_name	Contains the name of the stored procedure that will be executed if this event is detected. For the configurable events the stored procedure is 'dpa_action_20000_event_notify'.
action_param_1	The DPA rule number; used as the event identifier number in the event log
action_param_2	The event level for the event log: 1 = informational, 2 = warning, 3 = critical
action_param_3	The event source category for the event log: 2 = TPU, 3 = meteorological site, 4 = Substation

action_param_4_fieldkey	The column name (corresponding to the evaluation procedure SELECT table) to return the event source number for the event log.
action_param_5_special	A short description of the event for alerting
action_param_5_fieldkey	field name – The column name of a field value to include in the event description.
action_param_6_special	The alerting string: If NULL then alerting is disabled. If exists then it is included in the alerting record. This string contains the alerting group information.
action_param_6_fieldkey	NULL

System Health Monitor

The System Health Monitor 660 is responsible for collecting and evaluating events that are related to the status of the system health and reporting the results to the events database. The System Health Monitor also checks the subsystems and reports when there is a failure to respond.

Remote Access

5

10

15

20

The APU provides remote access 640 for the TPUs and the GUI. The TPU Control Agent 520 (FIG. 5) receives messages that are sent to the TPU through the RECIF interface. Control messages are sent from the Autopilot thread of the DPA 630 and from the user through the GUI.

Substation Processing Unit Control

The Substation Processing Unit (SPU) Control 670 process continually monitors the substation for discrete and analog inputs. The SPU Control also manages the discrete outputs set through the GUI or otherwise.

The SPU Control is implemented using the Rockwell Software's RSSql and RSLinx software packages. RSSql is responsible for interfacing with the Allen-Bradley PLC (which manages the substation interface) through RSLinx. This process collects data samples from the substation and stores them in the substation data tables of the TACS database. The PLC program converts all of the analog inputs to the correct engineering units before storing them in the memory tag to be read by the server.

RSSql also monitors the database for requests to pulse substation discrete control outputs. When a record is inserted into the substation control table, RSSql reads the output command then sets the PLC output command symbol. After the command has been sent to the PLC the command record is removed from the database. The PLC reads

the command output in the output command symbol then holds the corresponding discrete output line closed as required. Then the PLC clears the output command symbol value.

Met Mast Listener

5

10

15

20

25

30

The Met Mast Listener process (MMListener) 680 collects the raw data from the met mast data loggers. Once the data is collected from a logger, the Met Mast Listener uses the TACS Data Mapper interface to connect to the TACS databases and store the data in the TACS repository database.

If communication with the met mast is lost and the raw data is not available for sampling, the logger will continue to collect the raw data and reduce the values into the data required for any mandatory data reductions. The reduced data can be accessed from the logger locally or through the network when communication is restored. The data can be retrieved with the Campbell Scientific PC208W tool.

The MMListener is implemented as an NT Service dependent on the SQL Server Service. The service reads the TACS SQL configuration database and determines if there are any meteorological towers. A worker thread is started for each of the met masts. The worker threads are set up to run once a second. On startup, the treads open a connection to the database and the communication port for the met mast. Then, synchronized communication with the logger is established. Any failure creates an alarm condition.

The worker thread is responsible for requesting the raw input sensor data from the logger. The data is sampled in two sets because there is a different update rate for each of the sets of data. The first set of data is the wind data. This data is collected once a second from the 8 horizontal wind sensors and the 1 vertical wind sensor. The second set of data is the environment data. This data is collected once every 30 seconds from the atmospheric pressure, temperature and battery level sensors.

Database Schema

The TACS database 530 (FIG. 5) includes a configuration database, an events database, and a repository database.

The configuration database contains the data associated with the current configuration of the system. This includes names and identities of all the TPUs, met masts, and substations in the system. The current Data Processing Rules and Alarm Configuration are also stored here.

The events database contains records of the events that have occurred in the system. Some of the events are alarms; some, simply informational. The tables include

occurrence time and message, acknowledgement time and message, and closure time and message.

The repository database contains all of the raw data samples collected from the TPUs, met masts and substations. This raw data is available for post processing and data analysis. To save data storage space, data that can be reduced from the raw data is only updated in tables to make the data available to the GUI. Some of the raw data is also stored in updated tables with the same data so that the GUI can access data tables with very few records.

Repository Database

10 TABLE turbine_latest

5

A record is updated in the turbine_latest database table each second by each TPU. The source of the data is the TPU, except as noted. This table contains the latest value of the turbine data samples. The data in this table is used in the GUI turbine window tabular view.

Field	Description	History
turbine_number	TPU database identifier number	1
time_stamp	Time Stamp. Here and elsewhere, time is in seconds since midnight, January 1, 1970, coordinated universal time (UTC) or Greenwich mean time (GMT).	√
operational_status	Operational State. A code for one of: running OK; fault; no communication (set by DPA if communication fails); offline; available; not ready.	√
turbine_status	Turbine Status. A code for one of: fault; off; too much wind; cables twisted (left or right); manually starting; automatically starting; not yawed; start at wind limit; control time before start; enough wind; too little wind	✓
brake_status	Brake Status. A code for one of: brake pulled; not enough pressure; brake released.	1
generator_status	Generator Status. A code for one of: large generator cutting in; small generator cutting in; motor start on generator; no motor start for 7.5 minutes; generator inactive.	√
generator_rpm	Generator RPM	1
generator_1_temp	Generator 1 Temperature	1
generator_2_temp	Generator 2 Temperature	1

gearbox_temp	Gearbox Temperature	1
ambient_temp	Ambient Temperature	1
wind_speed	Wind Speed	1
grid_freq	Grid Frequency	1
rotor_rpm	Rotor RPM	1
Yaw	Yaw	1
wind_direction	Wind Direction. Calculated from turbine yaw value in database	
real_power	Real Power (KW)	1
reactive_power	Reactive Power (KVar)	1
power_factor	Power Factor	1
phase_r_voltage	Phase R Voltage	1
phase_s_voltage	Phase S Voltage	1
phase_t_voltage	Phase T Voltage	1
phase_r_current	Phase R Current	1
phase_s_current	Phase S Current	1
phase_t_current	Phase T Current	1
gen_1_energy_ttl	Generator 1 Energy Total (KWh)	
gen_2_energy_ttl	Generator 2 Energy Total (KWh)	
gen_1_prod_time_ttl	Generator 1 Production Time Total (Hours)	
gen_2_prod_time_ttl	Generator 2 Production Time Total (Hours)	
safety_switch	Safety Switch: remote or local.	√
operation_code	Turbine Operational Code. A code for one of: normal operation; operational stop with automatic start; motor start cut out due to fault; small generator cut out due to fault; stopped for manual start; stopped – must be restarted; free wheeling – must be restarted by reset.	

TABLE turbine_history

A record is added to the turbine_history database table each second by each TPU. This table contains a history of the turbine data samples. The fields of this table are identified by a check mark in the description of the turbine_latest database table, above.

TABLE turbine_summary

This database table contains one record for each TPU. All records in this table are updated once a second (unless stated otherwise) by the DPA. The data in this table is used in the GUI turbine window summary view.

Field	Description
turbine_number	(a blank description means that a previously-given description applies.)
time_stamp	
operational_status	Operational State, from turbine_latest table
avg_prod_parker	Average Production over 10 minutes (KW). Here and elsewhere, production is calculated according to the measurement algorithm from IEC 61400-12:1998(E) Wind turbine generator systems – Part 12: Wind turbine power performance testing ("Parker").
expected_prod_parker	Expected Production over 10 minutes (KW)
production_efficiency	Production Efficiency. This is 100% times avg_prod_parker divided by expected_prod_parker
availability_per_hour	Availability per Hour. This value is calculated once a minute (as a percent) using the previous 3600 samples of the operational_status.
number_of_alarms	Number of active unacknowledged alarm records for this
	turbine

5 TABLE turbine_control_requests

This database table contains the queue for TPU control requests from the GUI. A request record can be inserted into the database table by the GUI or other system device. The DPA examines this database table once a second to process waiting command requests. When the DPA reads the record, it also deletes the record.

Field	Source	Description
turbine_number	GUI	TPU database identifier number
transaction_number	SQL	Request Transaction Number. A transaction number is added by the SQL server when a record is inserted in the substation_control_queue.
command_str	GUI	Command String. A code representing one of: manual start request; manual stop request; manual reset request.

TABLE turbine control

5

10

15

This database table contains the queue for TPU control requests. A request record may be inserted into this table by the DPA in response to a request record being inserted in the turbine_control_requests table. Each TPU examines this table once a second to see if a control record is waiting. When the TPU reads the record from the table it also deletes the record indicating that the control request has been received.

Field	Source	Description
turbine_number	DPA	TPU database identifier number
transaction_number	SQL	Request Transaction Number, as above
command_str	DPA	Command String, either 1=start or 2=stop
time_stamp	DPA	Time command was inserted into this queue

TABLE turbine_autocontrol

This database table contains one record for each turbine in the system. Turbines that are allowed to be automatically controlled by autopilot will have their autopilot_enabled field set by the GUI. If an operator manually controls a turbine through the GUI, the turbine is removed from automatic control.

Field	Source	Description
turbine_number		TPU database identifier number
autopilot_enabled	DPA, GUI	Autopilot Enabled Status
autopilot_shutdown	DPA	Autopilot State
shutdown_count	DPA	Number of times this turbine has been shut off by autopilot. Incremented each time turbine is automatically shut off by autopilot. This counter is used by autopilot algorithm to determine which turbine to shut off.

TABLE turbine_comm_latest

This database table contains one record for each turbine in the system. The source is the DPA. The comm_failure field specifies the latest communication status for the respective turbine.

Field	Description
turbine_number	
time_stamp	
comm_failure	Communication status

TABLE turbine_comm_history

A new record is inserted in this database table each time the communication status changes for each turbine.

Field	Description	•	
turbine_number			
time_stamp			· · · · · · · · · · · · · · · · · · ·
comm_failure			

TABLE WTG10MIN

5 This database

This database table contains 10 minute summaries of the wind turbine data. A new record is inserted in this database table for each turbine every 10 minutes if at least one sample record is found for this turbine.

Field	Description
time_stamp	
Wdate	Date String (DD/MM/YYYY)
Wtime	Time String (24 hour)
wtg_id	Turbine Number
circuit_id	Circuit Identifier. This corresponds to the park number for the turbine and may be found in the park_configuration table.
wind_speed	Wind Speed. Mean value over the last 10 minute for turbine wind speed (from turbine_history.wind_speed).
Power	Power. Mean value over the last 10 minute for turbine power (from turbine_history.real_power)
status_fault	Turbine Fault. Set to 1 if the turbine had a fault during the previous 10 minutes (from turbine_history.operational_status)
status_offline	Turbine Offline. Set to 1 if the turbine was offline during the previous 10 minutes (from turbine_history.operational_status)
status_running	Turbine Running. Set to 1 if the turbine was running during the previous 10 minutes (from turbine_history.operational_status)
status_communication_error	Communication Error. Set to 1 if the turbine had a communication error during the previous 10 minutes (from turbine_history.operational_status)

status_autopilot	Autopilot Enabled. Set to 1 when the turbine was shutdown by autopilot during the previous 10 minutes (from turbine_history.operational_status, and turbine_autocontrol table)
downtime_category	Downtime Category
Communications	Complete Communication Failure. Set to 1 if the turbine had no successful communication during the previous 10 minutes (from turbine_history.operational_status)
Events	Communication Failure Overload. Set to 1 if the turbine had communication failures when the previous 10 minutes started (from turbine_history.operational_status)

TABLE turbine_control

5

10

The turbine_control database table contains one record for each turbine. All records in this table are updated once a second by the DPA. The data in this table is used in the GUI turbine window control view. When the GUI changes a field in this table for a particular turbine, the DPA detects the change and send the control information to the TPU.

Field	Description	
turbine_number	There is one record in this table for each turbine	
time_stamp	Sample time stamp, as above	
turbine_controller_on	ON/OFF	
turbine_reset	Set to TRUE to initiate a reset. The TPU controller sets FALSE after reset.	
yaw_cw	ON/OFF	
yaw_ccw	ON/OFF	

TABLE park_tabular

The park_tabular database table contains one record for each park. All records in this table are updated once a second by the DPA. The data in this table is used in the GUI park window tabular view.

Field	Description
park_number	Park database identifier number
time_stamp	

operational_status	Number of TPUs in this park with operational_status of "Running OK" at this instant
turbine_status	Number of TPUs in this park with turbine_status of "Enough Wind (OK)" at this instant
generator_status	Number of TPUs in this park with generator_status of "Large Generator cut in" at this instant
avg_generator_rpm	Simple average of all generator_rpm values (excluding zero values) for the TPUs in this park at this instant
avg_ambient_temp	Simple average of all ambient_temp values for the TPUs in this park at this instant
avg_wind_speed	Simple average of all wind_speed values for the TPUs in this park at this instant
avg_rotor_rpm	Simple average of all rotor_rpm values (excluding zero values) for the TPUs in this park at this instant
total_real_power	Sum of the real_power values for all turbines in this park at this instant
total_reactive_power	Sum of the reactive_power values for all turbines in this park at this instant
power_factor	Power Factor. Calculated as total_real_power divided by the square root of the sum of the squares of total_real_power and total_reactive_power.
total_phase_r_voltage	Total Phase R Voltage. These totals are simple averages of all phase x voltage values for the TPUs in this park at this instant (for $x = r$, s, or t)
total_phase_s_voltage	Total Phase S Voltage
total_phase_t_voltage	Total Phase T Voltage
total_phase_r_current	Total Phase R Current. Sum of all phase_r_current values for the TPUs in this park at this instant.
total_phase_s_current	Total Phase S Current
total_phase_t_current	Total Phase T Current

TABLE park_summary

The park_summary database table contains a record for each park. All records in this table are updated once a second (unless otherwise stated) by the DPA. The data in this table is used in the GUI park window summary view.

Field	Description
park_number	
time_stamp	

avg_prod_parker	Avg. Production over 10 min. (KW) for all turbines in this	
	park	
expected_prod_parker	Expected Production over 10 min. (KW)	
production_efficiency	Production Efficiency	
number_of_alarms	Number of active unacknowledged alarm records for this park	
availability_per_hour	Simple average of the availability_per_hour values for all of the turbines in this park	
energy_per_10min	Energy over 10 minutes (KWH) for all turbines in this park. This is part of the measurement algorithm from IEC 61400-12:1998(E).	

TABLE met_environment_history

5

10

The met_environment database table has a record is added to it each minute from each Meteorological Processing Unit (MPU). This table contains a history of the meteorological environment data samples. The database also includes an identical table met_environment_latest, which is updated each minute with the latest meteorological values. The source of the data is the MPU. The data in the met_environment_latest table is used in the GUI Meteorological site window tabular view.

Field	Description	
met_site_number	Meteorological site database identifier number	
time_stamp		
battery_level	Battery level (volts)	
ambient_temp	Ambient temperature (° C)	
atmospheric_pressure	Atmospheric pressure (millibars)	

TABLE met wind history

The met_wind_history database table has a record added to it each second by each MPU. This table contains a history of the meteorological wind data samples. The database also includes an identical table called met_wind_latest, which is updated each second with the latest meteorological values. The source of the data is the MPU. The data in the met_wind_latest table is used in the GUI Meteorological site window tabular view.

Field	Description
met_site_number	
time_stamp	
vert_wind_speed	Vertical wind speed (m/s)
horz_40m_wind_speed	Horizontal wind speed at 40 meters (m/s) (always above ground level)
horz_30m_wind_speed	Horizontal wind speed at 30 meters (m/s)
horz_20m_wind_speed	Horizontal wind speed at 20 meters (m/s)
horz_10m_wind_speed	Horizontal Wind Speed at 10 meters (m/s)
wind_direction_40m	Wind Direction at 40 meters
wind_direction_30m	Wind Direction at 30 meters
wind_direction_20m	Wind Direction at 20 meters
wind_direction_10m	Wind Direction at 10 meters

TABLE met_summary

The met_summary database table contains a record for each MPU. This table is updated once a minute. The source of the data is the DPA. The data in this table is used in the GUI Meteorological site window summary view.

Field	Description
met_site_number	
time_stamp	
min_battery_level	Daily minimum battery level (volts)
max_battery_level	Daily maximum battery level (volts)
avg_battery_level	Daily average battery level (volts)
stdv_battery_level	Daily standard deviation battery level (volts)
min_ambient_temp	Daily minimum temperature (°C)
max_ambient_temp	Daily maximum temperature (°C)
avg_ambient_temp	Daily average temperature (°C)
stdv_ambient_temp	Daily standard deviation temperature (°C)
min_atmospheric_pressure	Daily minimum atmospheric pressure (mb)
max_atmospheric_pressure	Daily minimum atmospheric pressure (mb)
avg_atmospheric_pressure	Daily average atmospheric pressure (mb)
stdv_atmospheric_pressure	Daily standard deviation atmospheric pressure (mb)
min_vert_wind_speed	Daily minimum vertical wind speed (m/s)

Field	Description
max_vert_wind_speed	Daily maximum vertical wind speed (m/s
avg_vert_wind_speed	Daily average vertical wind speed (m/s)
stdv_vert_wind_speed	Daily standard deviation vertical wind speed (m/s)
min_horz_wind_speed	Daily minimum horizontal wind speed (m/s)
max_horz_wind_speed	Daily Max. horizontal wind speed (m/s)
avg_horz_wind_speed	Daily average horizontal wind speed (m/s)
stdv_horz_wind_speed	Daily standard deviation horizontal wind speed (m/s)
avg_wind_direction	10 min average wind direction from the MPU
stdv_wind_direction	10 min standard deviation wind direction

TABLE mets_environment_tabular

The mets_environment_tabular database table contains one record for the meteorological overview. This record is updated once a minute by the DPA. The data in this table is used in the GUI Meteorological overview window tabular view.

Field	Description	
met_cluster_number	Meteorological cluster database identifier number	
time_stamp		
avg_battery_level	Simple average of the battery_level from all meteorological sites in this cluster	
avg_ambient_temp	Simple average of the ambient_temp from all meteorological sites in this cluster	
avg_atmospheric_pressure	Simple average of the atmospheric_pressure from all meteorological sites in this cluster	

5 TABLE mets_wind_tabular

The mets_wind_tabular database table contains one record for the meteorological overview. This record will be updated once a second by the DPA. The data in this table is used in the GUI Meteorological overview window tabular view.

Field	Description
met_cluster_number	
avg_time_stamp	Time stamp
avg_vert_wind_speed	Simple average of vert_wind_speed from all meteorological sites in this cluster
avg_horz_40m_wind_speed	Simple average of horz_40m_wind_speed from all meteorological sites in this cluster

Field	Description
avg_horz_30m_wind_speed	Simple average of horz_30m_wind_speed from all meteorological sites in this cluster
avg_horz_20m_wind_speed	Simple average of horz_20m_wind_speed from all meteorological sites in this cluster
avg_horz_10m_wind_speed	Simple average of horz_10m_wind_speed from all meteorological sites in this cluster
avg_40m_wind_direction	Simple average of 40m_wind_direction from all meteorological sites in this cluster
avg_30m_wind_direction	Simple average of 30m_wind_direction from all meteorological sites in this cluster
avg_20m_wind_direction	Simple average of 20m_wind_direction from all meteorological sites in this cluster
avg_10m_wind_direction	Simple average of 10m_wind_direction from all meteorological sites in this cluster

TABLE mets_summary

The mets_summary database table contains one record for the meteorological overview. This record is updated once a minute by the DPA. The source of the data is the DPA. The data in this table is used in the GUI Meteorological overview window summary view.

The fields in this table have the same names as those in the met_summary table, described above. In the mets_summary table, the minima, maxima, averages, and standard deviations are taken over all the sites in the cluster. The minima and maxima are reset at midnight.

10 TABLE substation_latest

5

15

20

A substation record is updated in the substation_latest database table each second by the substation PLC. The data in the substation_latest table is used in the GUI Substation window tabular view.

The substation record includes substation_number (the substation identifier number) and time stamp fields. The record also includes fields for all of the data acquired by the PLC, including both discrete state data and analog measurements. These include the open or closed states of circuit breakers, the charge states of capacitor banks, the settings of transformer regulators, and the currents and voltages at particular points in the substation. In particular, it includes measurements of active power, reactive power, and calculations of the corresponding power factor for power supplied by the substation.

TABLE substation history

5

10

15

A record is added to the substation_history database table each second by the substation PLC. The data in the substation_latest table is used in the GUI Substation window tabular view. The fields are those of the substation_latest table other than the calculated power factor fields.

TABLE substation fault history

The substation_fault_history database table contains one record for each substation. The record is updated each second by the substation PLC. The field values are a substation number, a time stamp, and Boolean values indicating the presence or absence of each of the possible alarm conditions, which are used to generate alarm records.

TABLE substation_summary

The substation_summary database table contains one record for each substation. The record is updated each second by the DPA or by the RSSql agent. The data source is the substation PLC. This table is used in the GUI Substation window summary view.

Field	Description
substation_number	·
time_stamp	
main_active_energy_out	Total active energy out from the substation
main_reactive_energy_o	Total reactive energy out from the substation
ut	
main_active_energy_in	Total active energy into the substation
main_reactive_energy_in	Total reactive energy into the substation
cn_active_energy_in	Circuit n active energy in to substation circuit n (one field for each substation circuit, which may, for example, correspond to a park)
cn_active_energy_out	Circuit n active energy out
cn_reactive_energy_in	Circuit n reactive energy in
cn_reactive_energy_out	Circuit n reactive energy out

TABLE substation control

The substation_control database table contains the queue for substation control requests. A request record may be inserted into the table by the GUI, DPA, or other system component. The substation examines this table once a second to see if a control

record is waiting. When the RSSql agent reads the record from the table, it deletes the record, indicating that the control request has been received. The RSSql agent then forwards the request to the PLC at the substation providing the required signaling.

Field	Source	Description
Substation_number	GUI .	Substation identifier number
Transaction_number	SQL	Request Transaction Number
Command_str	GUI	Command String

The values for the command_str field are defined for, and interpreted by, the particular PLC as installed at the substation.

TABLE system_summary

10

The system_summary database table contains one record. The fields are updated once a second (unless otherwise noted) by the DPA. The data in this table is used in the GUI system window summary view.

Field	Description
time_stamp	
operational_status	Number of TPUs in all parks with operational_status of "OK" at this instant
turbine_status	Number of TPUs in all parks with turbine_status of "OK" at this instant
generator_status	Number of TPUs in all parks with generator_status of "OK" at this instant
avg_generator_rpm	Simple average of all generator_rpm values for the TPUs in all parks at this instant
avg_ambient_temp	Simple average of all ambient_temp values for the TPUs in all parks at this instant
avg_wind_speed	Simple average of all wind_speed values for the TPUs in all parks at this instant
avg_rotor_rpm	Simple average of all rotor_rpm values for the TPUs in all parks at this instant
total_real_power	Sum of all total_real_power values in all parks at this instant (KW)
total_reactive_power	Sum of all total_reactive_power values in all parks at this instant (KVar)
power_factor	Power Factor for total_real_power and total_reactive_power

Field	Description
avg_prod_parker	Average Production over 10 min. (KW)
expected_prod_parker	Expected Production over 10 min. (KW)
production_efficiency	Production Efficiency of average over expected production
total_phase_r_voltage	Simple average of the total_phase_r_voltage values in all parks at this instant
total_phase_s_voltage	As above, for phase s voltage
total_phase_t_voltage	As above, for phase t voltage
total_phase_r_current	Sum of the total_phase_r_current values in all parks at this instant
total_phase_s_current	As above, for phase s current
total_phase_t_current	As above, for phase t current

Configuration Database

The configuration database (named 'configuration') contains several database tables of configurable items for the system elements such as the substation, turbines, meteorological sites, parks, and so on. These tables are used by the system elements during initialization as well as by the DPA. The system configuration tables are described below.

TABLE dpa_classes

5

10

The dpa_classes database table contains one record for each class type used by the DPA. The DPA handles data reductions, alarm condition evaluation, and automatic control functionality for the TACS system.

Field	Description
key	DPA class numeric identifier
name	Name
description	Description

TABLE dpa_evaluation_groups

The dpa_evaluation_groups database table contains one record for each evaluation group used by the DPA. An evaluation group specifies the rate at which the DPA rules assigned to the group are evaluated.

Field	Description
key	
name	
evaluation_period	Period in seconds that the DPA rules of this class will be evaluated.

TABLE dpa_rules

The dpa_rules database table contains one record for each rule used by the DPA.

Field	Description
key	
name	
description	Description
enabled	Flag set if this rule is enabled for processing
dpa_class	Class of this DPA rule. Used in the dpa_classes table to find the class record for this rule.
evaluation_group	Evaluation group for this DPA rule. Used in the dpa_evaluation_groups table to find the group record for this rule.
eval_proc_name	Name of the stored procedure for this DPA rule to evaluate.
has_action	If true, the action_proc_name stored procedure will be executed for each record in the result set.
action_proc_name	Name of the stored procedure to execute for this DPA action. It is called once for each record returned from the evaluation. Not used if expect_result_set is false.
action_param_1	If not NULL and has_action is true, this string is passed as the first parameter when the action_proc_name stored procedure is called.
action_param_2	If not NULL and has_action is true, this string is passed as the second parameter when the action_proc_name stored procedure is called.
action_param_3	If not NULL and has_action is true, this string is passed as the third parameter when the action_proc_name stored procedure is called.
action_param_4_fieldkey	If not NULL and has_action is true, this string will be used to look up a value in the result set which will then be passed as the fourth parameter when the action_proc_name stored procedure is called.
action_param_5_special action_param_5_fieldkey	If both fields are not NULL and has action is true then these fields will create the fifth parameter to be passed when the action_proc_name stored procedure is called.

action_param_6_special	If both fields are not NULL and has_action is true then these
	fields will create the sixth parameter to be passed when the
	action_proc_name stored procedure is called.

The fifth and sixth parameters may be created using one or more of the following combinations depending on the special and fieldkey strings.

Special	Fieldkey	Description
NULL	NULL	No string is passed as the parameter in the action_proc_name stored procedure.
string	NULL .	The action_param_n_special string is passed as the n'th parameter when the action_proc_name stored procedure is called.
NULL	string	The action_param_n_fieldkey string is used to look up a value in the result set which will then be passed as the n'th parameter when the action_proc_name stored procedure is called.
string	string	The action_param_n_fieldkey string is used to look up a value in the result set which will then be inserted in the action_param_n_special string replacing the special characters '%s' and the resulting string will then be passed as the n'th parameter when the action_proc_name stored procedure is called.

TABLE event_downtime_categories

The event_downtime_categories database table contains one record for each category of event downtime. The event downtime is the reason that the system was down (unable to produce power).

Field	Description
key	Event downtime category numeric identifier
name	Name
description_key	A numeric identifier to the description of this downtime category. This number is used in the str_description_list table to identify a record (by the key field) containing the downtime category description (text).

TABLE event_levels

5

The event_levels database table contains one record for each type of event level.

The event level is used in event records added to the events database.

Field	Description
key	Event level numeric identifier
name	Name of the event level
description_key	

TABLE event_source_categories

The event_source_categories database table contains one record for each category of event source. An event source is a type of device that can add an event into the events database event_log table.

Field	Description
key	Event source category numeric identifier
name	Name of the event source
description_key	
source_cfg_table	Name of the configuration table for the this source
	category

5 TABLE event_system_sources

The event_system_sources database table contains one record for each type of event source which is contained within the system category.

Field	Description
key	Source numeric identifier for system events
name	Name
description_key	

TABLE substation_configuration

The substation_configuration database table contains one record for each substation.

Field	Description
key	Substation numeric identifier
name	Name
Description	Description

TABLE park_configuration

10

The park_configuration database table contains one record for each park.

Field	Description
key	Park numeric identifier
name	Name
description	Description

substation_number	Substation connected to this park. This number is used in the
	substation_configuration table to identify a record (by the key
	field) containing substation details.

${\bf TABLE\ turbine_configuration}$

The turbine_configuration database table contains one record for each turbine.

Field	Description
key	Turbine numeric identifier
name	Name
description	Description
park_number	Park containing this turbine. This number is used in the park_configuration table to identify a record (by the key field) containing park details.
provider_id	Provider identity for this turbine. This number is used in the provider_identity table to identify a record (by the key field) containing provider identity details.
tpu_configuration	Turbine processing unit class for this turbine. This number is used in the tpu_configuration table to identify a record (by the key field) containing TPU details.
provider_map_type	Provider map for this turbine. This number is used in the provider_map_types table to identify a record (by the key field) containing provider data mapping details.

TABLE metmast_configuration

5

The metmast_configuration database table contains one record for each meteorological data logger.

Field	Description
key	Meteorological data logger numeric identifier
name	Name
description	Description
met_type	The meteorological data logger numeric type. This value is used by the MPU listener to determine the correct communication protocol.
park_number	Park containing this meteorological data logger. This number is used in the park_configuration table to identify a record (by the key field) containing park details.
provider_id	Provider identity for this meteorological data logger. This number is used in the provider_identity table to identify a record (by the key field) containing provider identity details.

Field	Description
comm_port	Physical communication port used by the MPU listener for this meteorological data logger.
provider_map_type	Provider map for this meteorological data logger. This number is used in the provider map types table to identify a record (by the key field) containing provider data mapping details.

TABLE tpu_configuration

The tpu_configuration database table contains one record for each type of turbine controller.

Field	Description
key	TPU configuration numeric identifier
name	Name
description	Description
controller_type	Turbine controller numeric type. Used by TPU to determine correct communication protocol and processing algorithms.
sample_period	Sample period (in milliseconds) for TPU to request data from turbine controller.

TABLE provider_types

5

10

The provider_types database table contains one record for each data provider type.

A data provider is a process that adds data to the database measurement repository.

Field	Description
Key	Provider type numeric identifier
Name	Name
description	Description
cfg_table_name	Name of the configuration database table for this provider type. This name is used by the generic provider during the boot configuration process.
control_table_name	Name of the database table used by this provider to queue commands.
control_table_key_field	Name of the key field (used to identify the provider) when accessing the command queue specified by control table name.

TABLE provider_identity

The provider_identity database table contains one record for each set of data providers writing to a specific database table. A data provider is a process that adds data to the database measurement repository.

Field	Description
key	Provider identity numeric identifier
name	Name
description	Description
user_name	Provider login user name to access the database.
password	Provider login password to access the database.

TABLE provider_maps_types

The provider_map_types database table contains one record for each unique provider map. A provider map tells the provider how to map the source data fields from a (e.g. from a TPU or MPU) to the correct database fields. This mapping is handled by a unique stored procedure in the repository database for each map type.

Field	Description
key	Provider identity numeric identifier
name	Name
description	Description
stored_proc_name	Stored procedure name for this map type.
id	Map identifier for providers with multiple maps.

TABLE operator_list

5

The operator_list database table contains one record for each operator of the TACS system.

Field	Description
key	Operator numeric identifier
first_name	First name of the operator
last_name	Last name of the operator
login_username	Login user name of the operator
login_password	Login password for the operator
pager	Pager number for this operator
email	E-mail address for this operator
phone	Phone number for this operator

TABLE str_language_list

The str_language_list database table contains one record for each language type represented in the str_description_list table. The str_description_list table contains text strings in one than one language.

Field	Description
key	Language numeric identifier. This number is used in the str_description_list table to identify records (by the language_key field) which contain a description in this language.
language	Language name

5 TABLE str_description_list

The str_description_list database table contains text strings in one or more languages. Each record contains a key and a language_key field which can be used to find the same text string in any language which it is available.

Field	Description
key	Numeric identifier for this text string description
language_key	A numeric identifier to the language of this description text string. This number is used in the str_language_list table to identify a record (by the key field) containing the language of this text string description.
description	Description in the language specified by the language_key.

10

Events Database

The events database is the repository for all types of events including configurable alarms. This database is named 'events'. It includes the following table.

TABLE event log

The event_log database table contains one record for each event in the event log.

Field	Description
event_key	A unique identifier for the alarm
event_id	Event code (same as the DPA key number) for alarm events).
event_time	Date and time of the event in T-SQL datetime format. Has millisecond resolution.
event_level	A number representing the event level. Used in the event_levels table to identify a record (by the key field) containing event level details.

Field	Description
Source_category	Category of device that generated the event. Used in the event_source_categories table to identify a record (by the key field) containing event source device details.
Source_number	The number of the source device. For example, if the source_category is TPU then this number represents the TPU identifier. If the source_category is Meteorological site then this number represents the MET identifier.
description	A description of the event added by the data processing agent when the event was detected.
downtime_category	The reason that this event has caused system down time (if any). This number is used in the event_downtime_categories table (in the configuration database) to identify a record (by the key field) containing the system downtime details.
acknowledged	The acknowledge state of the event. TRUE if event has been acknowledged by an operator. Otherwise, FALSE. Acknowledging an event tells system that an operator has been successful notified of the event condition.
ack_operator	The key to the operator who acknowledged the alarm. Used in the operator_list table (in the configuration database) to identify a record (by the key field) containing the operator details (name, etc).
ack_time	The date and time the event was acknowledged.
event_comment	An optional comment which may be added by the operator when the event is acknowledged or cleared

Conclusion

The invention has been described in terms of particular embodiments. Other embodiments are within the scope of the following claims. For example, steps of the invention can be performed in a different order and still achieve desirable results. Because of its modular and open design, the system of the invention can be implemented using a variety of alternative technologies. Components subsystems can be implemented using different and multiple platforms. For example, the functions performed by the server can be performed by a single computer or distributed across multiple computers. The specific components and parameters provided in this specification are illustrative only and are not intended to be limiting.

5

10

CLAIMS

1. A Supervisory Command and Data Acquisition (SCADA) system for managing a wind farm having an array of wind turbines for electric power generation and one or more meteorological sites, each wind turbine being located at a turbine site and electrically connected for power transmission to a substation located at a substation site, the system comprising:

a turbine processing unit (TPU) located at each wind turbine, the TPU being a processing element functioning as the SCADA element for that turbine, the TPU being configured to collect data from the turbine and turbine site, to provide an interface to control the turbine, and to communicate with other parts of the system from the turbine site, the TPU being further configured to store locally at the TPU data collected from the turbine and turbine site;

a substation processing unit (SPU) located at the substation operating as the interface for the system to the substation, the SPU being a processing element functioning as the SCADA element for that substation, the SPU being configured to collect data from the substation, to communicate with other parts of the system, and to store locally at the SPU data collected from the substation;

a meteorological processing unit (MPU) located at each meteorological site functioning as the SCADA element for the site, the MPU being configured to collect meteorological data from sensors on and at a meteorology tower, to communicate with other parts of the system, and to store locally at the MPU data collected from sensors on and at a meteorology tower;

a data communication network;

5

10

15

20

25

30

a server coupled to communicate over the network with the wind turbines, the substation, and the one or more meteorological sites, the server being configured to receive data from them through their respective the SCADA elements (TPU, MPU, or SPU) and to provide signals to control the wind turbines and substation through their respective SCADA elements, the server being further configured to store data received from the wind turbines, meteorological sites, and substation at regular intervals and to perform database management on the received data; and

a user interface through which authorized users can exercise command and control functions for the wind farm.

2. The system of claim 1, wherein:

the user interface is a graphical user interface (GUI) that can be accessed locally through a direct connection to the network or a direct connection to an element of the system.

5 3. The system of claim 2, wherein:

the user interface provides views to each SCADA element to allow users access to real time data and subsystem controls.

4. The system of claim 1, wherein:

10

15

20

the user interface is a graphical user interface (GUI) that can be accessed remotely over a wide area network such as the Internet.

5. The system of claim 3, wherein:

the user interface provides views to each SCADA element to allow users access to real time data and subsystem controls.

6. The system of claim 1, further comprising:

one or more control workstations, a workstation being a client computer of any kind, the one or more control workstations being configured to process data from the server and to provide real-time monitoring and control of the wind power system.

7. The system of claim 1, wherein:

one or more of the TPUs are configured to provide a connection for a portable device to allow a user of the portable device to communicate through the user interface with other components of the system.

8. The system of claim 1, wherein:

each TPU is configured to store data locally for a time sufficient to bridge any anticipated unavailability of the server.

9. The system of claim 1, wherein:

each TPU is configured to collect data including wind turbine controller state, wind speed, energy levels, and alarms; and

each TPU is configured to interact with the system through an Ethernet port and with workers working at the TPU through local ports.

10. The system of claim 1, wherein:

5

10

15

20

each TPU is built on a general purpose computer platform running a general purpose operating system; and

each TPU is configured to execute a client application providing local data collection and site control.

11. The system of claim 1, wherein:

the wind turbines comprise wind turbines that have turbine controllers that are proprietary to the respective wind turbine manufacturers and the TPU for each such turbine provides a uniform interface to the system from the proprietary turbine controllers.

12. The system of claim 11, wherein:

each TPU and its turbine controller are connected using an optically isolated connection.

13. The system of claim 1, wherein:

each TPU is connected to communicate with the server through an optical fiber.

14. The system of claim 1, wherein:

the SPU is configured to monitor the substation for discrete and analog inputs and the manage outputs set by the system.

15. The system of claim 1, wherein:

at least one meteorological site has a meteorology tower with sensors to monitor horizontal wind speed and direction from at least four levels above the ground, vertical wind speed, temperature, and atmospheric pressure.

WO 01/77525 PCT/US01/11670

16. The system of claim 1, wherein:

each MPU is built on a general purpose computer platform running a general purpose operating system; and

each MPU is configured to execute a client application providing local data collection and site control.

17. The system of claim 1, wherein:

5

10

15

20

25

each TPU, MPU, and SPU is configured to store the data collected by the unit over at least 48 hours of operation; and

the server is configured to store the raw data collected over at least two months of operation of the system.

- 18. The system of claim 1, wherein: the turbines are grouped into parks.
- 19. A system for managing a wind farm having an array of wind turbines for electric power generation, the system comprising:

a Supervisory Command and Data Acquisition (SCADA) element at each wind turbine configured to collect data from the turbine;

a SCADA element at each of one or more meteorological sites configured to collect meteorological data; and

a SCADA element at each of one or more substations, the substations being electrically connected with the wind turbines for power transmission;

a server coupled to communicate with the wind turbine, meteorological, and substation SCADA elements, the server being configured to receive and to store data received from the elements at regular intervals and to perform database management on the received data, the server being further configured to gather and maintain detailed current and historical data as to the inputs, operating conditions, and outputs of all turbines of the wind farm at a high degree of time resolution.

20. The system of claim 19, wherein the data gathered at a high degree of time resolution comprises:

data including wind speed and energy production gathered from each wind turbine once a second;

meteorological data gathered from each meteorological site once every 30 seconds; and

substation data including power production each substation.

5

10

15

20

21. The system of claim 19, wherein the data gathered at a high degree of time resolution comprises:

wind turbine data including power, reactive power, wind speed, energy subtotal, and total energy data gathered from each wind turbine once a second.

- 22. The system of claim 21, wherein the wind turbine data further comprises:

 data for each wind turbine representing generator rotational speed, generator
 temperature, gearbox temperature, ambient temperature, wind speed, wind direction, real
 power, reactive power, power factor, phase voltage and phase current for each phase,
 energy production, and production time.
- 23. The system of claim 20, wherein the data gathered at a high degree of time resolution further comprises:

data including controller state gathered from each wind turbine;

meteorological data including vertical and horizontal wind speeds, wind direction, temperature, and air pressure gathered from each meteorological site; and

substation data including total active energy out from the substation, total reactive energy out from the substation, total active energy into the substation, and total reactive energy into the substation.

24. The system of claim 19, wherein the wind farm is organized into parks for reporting and management purposes and the data gathered at a high degree of time resolution comprises:

the energy produced by each park.

25. The system of claim 24, wherein the data for each park includes data collected or calculating describing:

the operational status of each turbine in the park; the total real power produced in the park; the total reactive power produced in the park; and the power factor for the park.

5

10

15

25

26. A system of claim 19, further comprising a configuration database for the wind farm, the configuration database containing information describing a current configuration of systems elements, the configuration information being used during system initialization, the configuration information comprising:

information describing the wind turbine configuration of the wind farm, the information describing all wind turbine SCADA elements in the wind farm.

- 27. The system of claim 26, the configuration information further comprising: information describing each wind turbine of the wind farm, including for each such turbine data source information describing how source data from the turbine is to be mapped to fields in a system database.
- 28. The system of claim 26, wherein:

the information describing each wind turbine further includes for each such turbine a park identifier identifying a park containing the turbine.

29. The system of claim 26, wherein the SCADA element of each wind turbine is a turbine processing unit coupled to a turbine controller, the configuration information further comprising:

a turbine controller identifier for each turbine for determining correct communication protocols and processing algorithms between the coupled turbine controller and turbine processing unit.

30. The system of claim 26, the configuration information further comprising: information describing each substation of the wind farm, the information including an identifier and a description for substation in the wind farm.

31. The system of claim 26, the configuration information further comprising: information describing the meteorological sites of the wind farm, including for each site: a site identifier for determining correct communication protocols with the site, and data source information describing how source data from the site is to be mapped to fields in a system database.

- 32. The system of claim 26, the configuration information further comprising: information describing the parks of the wind farm, including for each such park an identifier for the park, a description for the park, and information identifying the substations connected to the park and the wind turbines and meteorological sites in the park.
- 33. The system of claim 19, further comprising:

5

10

15

20

computer program processes configured to process wind turbine data to report average power production over a time window, expected power production over the time window, and production efficiency over the time window for each wind turbine in the wind farm.

34. The system of claim 19, wherein the wind farm is organized into parks for reporting and management purposes, the system further comprising:

computer program processes configured to process wind turbine data to report average power production over a time window, expected power production over the time window, and production efficiency over the time window for each wind turbine in each park.

FIG. 1B

3/6

6/6

INTERNATIONAL SEARCH REPORT

onal Application No PCT/US 01/11670

A. CLASS IPC 7	F03D7/04 F03D11/00			
According t	o International Patent Classification (IPC) or to both national class	sification and IPC		
B. FIELDS	SEARCHED			
Minimum do	ocumentation searched (classification system followed by classifit $F03D$	cation symbols)		
	tion searched other than minimum documentation to the extent th			
	ata base consulted during the International search (name of data ternal, COMPENDEX, INSPEC, WPI Dat			
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category •	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.	
Х	BRINKLER V C ET AL: "APPLICATION FOR IMPROVED WIND FARM PERFORMAL		1-33	
	OPERATIONAL RESULTS" WIND ENERGY CONVERSION. PROCEED BRITISH WIND ENERGY ASSOCIATION CONFERENCE, XX, XX, 1997, pages 421-426, XP00101249 page 421 -page 423 page 425 -page 426			
X	G.J. SMITH: "Scada in Wind Farm IEE COLLOQUIUM ON "INSTRUMENTA" ELECTRICAL SUPPLY INDUSTRY", DIGHT 1993/152, 29 June 1993 (1993-06-29), page 11/1-11/2, XP002940540 London the whole document	TION IN THE EST	1-33	
		_/		
1	<u> </u>	<u></u>		
X Furth	er documents are listed in the continuation of box C.	Petent family members are listed in	n annex.	
•	egories of cited documents:	"T" later document published after the inter or priority date and not in conflict with		
conside	nt defining the general state of the art which is not eared to be of particular relevance	cited to understand the principle or the invention	ory underlying the	
filing da		"X" document of particular relevance; the cl cannot be considered novel or cannot involve an inventive step when the doc	be considered to	
which is	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified)	"Y" document of particular relevance; the ci	almed invention entive step when the	
other m		document is combined with one or mo- ments, such combination being obviou	re other such docu-	
P" document published prior to the international flung date but later than the priority date claimed "&" document member of the same patent family			amily	
Date of the a	ctual completion of the international search	Date of mailing of the international sea	rch report	
8	August 2001	16/08/2001		
Name and m	ualling address of the ISA European Patent Office, P.B. 5618 Patentiaan 2	Authorized officer		
	Nl. – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Criado Jimenez, F		

INTERNATIONAL SEARCH REPORT

ir. ional Application No PCI/US 01/11670

		PC1/US U.	1/110/0
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with Indication, where appropriate, of the relevant passages		Relevant to claim No.
X	LEANEY, V.C.; SHARPE D.J.: "Condition Monitoring techniques for Offshore wind farms." WIND ENERGY, PROCEEDINGS 1999 21ST BWEA CONFERENCE, pages 239-248, XP002940569 Cambridge, England page 245 -page 247		1,19
A	US 5 646 343 A (PRITCHARD DECLAN NIGEL) 8 July 1997 (1997-07-08) abstract; figure 1		1
P,A	US 6 023 223 A (BAXTER JR JOHN FRANCIS) 8 February 2000 (2000-02-08) abstract		
			•
			·

INTERNATIONAL SEARCH REPORT

Information on patent family members

p.	ional Application No	
PCT	/US 01/11670	

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5646343	Α	08-07-1997	GB GB	2297163 A 2280035 A,B	24-07-1996 18-01-1995
US 6023223	Α	08-02-2000	WO	0055823 A	21-09-2000