Psychoacoustical Models ws 2016/17

related lectures:
Applied and Virtual Acoustics (Winter Term)
Advanced Psychoacoustics (Summer Term)

Sound Perception

TECHNISCHE UNIVERSITÄT

ILMENAU

Frequency and Level Range of Human Hearing

Threshold in Quiet or the Absolute Threshold

Hearing threshold of 100 persons with normal hearing for sine tones (50% curve is the median)

frequency in Hz

Figure after: Zwicker, E.; Feldtkeller, R. (1967). Das Ohr als Nachrichtenempfänger, Hirzel Verlag, Stuttgart.

Approximations:

$$\frac{L_{T_q}}{dB} = 3.64 \left(\frac{f}{kHz}\right)^{-0.8} - exp\left(-0.6\left(\frac{f}{kHz} - 3.3\right)^2\right) + 10^{-3}\left(\frac{f}{kHz}\right)^4$$

 $4 kHz Signal with Amplitude \pm 1 LSB (16 bit)$

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Source: U. Zölzer, "Digital Audio Signal Processing"

Threshold in Quiet or the Absolute Threshold

Source: Zwicker & Fastl "Psychoacoustics Facts and Models"

Hearing Threshold and age

Figures left: Average pure-tone audiograms in dB HearingLoss in (a) men and (b) women grouped by their age in decades (the parameter is age group in years). The extended high-frequency range is zoomed for clarity.

Figure right: Pure-tone threshold standard deviation of all participants as a function of frequency (the parameter is age in 10-year groups).

Figures: Milan Jilek, Daniel Suta, and Josef Syka, "Reference hearing thresholds in an extended frequency range as a function of age ", J. Acoust. Soc. Am., Vol. 136, No. 4, October 2014

- Loudness Level:
 - Loudness N: psychological concept to describe the <u>magnitude</u> of an auditory sensation, the loudness of a sound (measured in 'sone')
 - loudness level L_N of a sound is measured in 'phon'
 - \mathbf{L}_{N} of a sound is the sound pressure of a 1 kHz tone which is as loud as the sound

Fig: Fletcher, "Speech and Hearing in Communication", 1953.

<u>Equal-Loudness Level Contours</u>

Equal loudness contours of pure tones in a free sound field.

The parameter is expressed in **loudness level**, L_N , and **loudness**, N. Can be observed:

The sensitivity of the human ear - a function of frequency
The most sensitive to sounds around 2-4 kHz

Links to measure the sensitivity on different frequenc http://www.phys.unsw.edu.au/jw/hearing.html

http://www.phys.unsw.edu.au/music/dB/loudness.html, 2010

Fig: Suzuki et al., "Precise and Full-range Determination of Two-dimensional Equal Loudness Contours". 2003.

TECHNISCHE UNIVERSITÄT
ILMENAU

Loudness Scale:

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

- aim: double the number of units on this scale means magnitude of sensation is doubled
 - \rightarrow relation between loudness level L_N and the loudness N (rule of thumb):

$$2 \cdot N \cong L_N + 10 \ phon$$

• one potential experiment: listen to a sound with L_{N1} and then adjust the same sound until $N_2=2\cdot N_1$, then compare L_{N_1} and L_{N_2}

Loudness Scale

Source of sound	sound pressure	sound pressure level	loudness
	pascal	dB re 20 μPa	sone
threshold of pain	100	134	~ 676
hearing damage during short-term effect	20	approx. 120	~ 256
jet, 100 m distant	6 - 200	110 - 140	~ 128 - 1024
jack hammer, 1 m distant / discotheque	2	approx. 100	~ 64
hearing damage during long-term effect	6×10 ⁻¹	approx. 90	~ 32
major road, 10 m distant	2×10 ⁻¹ - 6×10 ⁻¹	80 - 90	~ 16 - 32
passenger car, 10 m distant	2×10 ⁻² - 2×10 ⁻¹	60 - 80	~ 4 - 16
TV set at home level, 1 m distant	2×10 ⁻²	ca. 60	~ 4
normal talking, 1 m distant	2×10 ⁻³ - 2×10 ⁻²	40 - 60	~ 1 - 4
very calm room	2×10 ⁻⁴ - 6×10 ⁻⁴	20 - 30	~ 0.15 - 0.4
leaves' noise, calm breathing	6×10 ⁻⁵	10	~ 0.02
auditory threshold at 2 kHz	2×10 ⁻⁵	0	0

Fig: en.wikipedia.org/wiki/Sone, 2010.

Sound Examples

Example 1: Sensitivity of hearing as function of frequency

Sweep from 0-16000 Hz (equal amplitude)

Example 2: Upper limit of hearing

8 kHz 10 kHz 12 kHz 14 kHz 16 kHz

■ 17 kHz 18 kHz 19 kHz 20 kHz

Critical Bands

Frequency Grouping in Human Hearing

Different interpretations that produce the same

segmentation

- Constant distance in the Cochlea
- By using tones under the threshold in quiet,

their intensity add up in a critical band and are now audible

- Tones in a critical band above the threshold in quiet: their energy adds up
- Formula for the width of the critical bands
 - for frequencies < 500 Hz: Constant 100Hz

width

for frequencies > 500 Hz: 0.2*frequency

13

Frequency Grouping Bandwidth **The Critical** Bands

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Source: Zwicker & Fastl "Psychoacoustics Facts and Models"

Critical bandwidth as a function of frequency, that quantifies the cochlear filter passbands.

Approximations for low and high frequency ranges are indicated by broken lines.

Excursus - Critical Bands and Loudness

- Spectral effects influence of frequency separation:
 - measure the loudness level (or level of the equally loud 1 kHz tone) of 2 tones by varying the frequency separation

Fig: Zwicker, Fastl "Psychoacoustics - Facts and Models", 2nd Edition, 1999.

Excursus - Critical Bands and Loudness

- intensity density dens
- Spectral effects influence of bandwidth:
 - bandwidth of the signals plays an important role
 - sound level also influence loudness level
 - total sound intensity (SPL) have to be constant to measure loudness as function of bandwidth

• **■** critical bandwidth

Fig: Zwicker, Fastl "Psychoacoustics - Facts and Models", 2nd Edition, 1999.

16

Critical Bands: Bark Scale

 Critical-band concept used in many models and hypothesis

- scale ranging from 0 24, unit "Bark"
- relation between z and f
 is important for understanding many characteristics of human ear

z/Bark	f_u/Hz	$f_o/{ m Hz}$	$\Delta f_G/{ m Hz}$	$f_m/{ m Hz}$
0	0	100	100	50
1	100	200	100	150
2	200	300	100	250
3	300	400	100	350
4	400	510	110	450
5	510	630	120	570
6	630	770	140	700
7	770	920	150	840
8	920	1080	160	1000
9	1080	1270	190	1170
10	1270	1480	210	1370
11	1480	1720	240	1600
12	1720	2000	280	1850
13	2000	2320	320	2150
14	2320	2700	380	2500
15	2700	3150	450	2900
16	3150	3700	550	3400
17	3700	4400	700	4000
18	4400	5300	900	4800
19	5300	6400	1100	5800
20	6400	7700	1300	7000
21	7700	9500	1800	8500
22	9500	1200	2500	10500
23	12000	15500	3500	13500
24	15500			

Critical Bands: Bark Scale

- Critical-band concept used in many models and hypotheses
 →unit was defined leading to so-called critical-band rate scale
- scale ranging from 0 24, unit "Bark" (after Zwicker)
- One Bark corresponds to one critical band
- Attempt to approximate critical bands with formulas:

Critical Bandrate z:

$$\frac{z}{Bark} = 13 \arctan\left(0.76 \frac{f}{kHz}\right) + 3.5 \arctan\left(\frac{f}{7.5 \ kHz}\right)^2$$

Critical Bandwidth:

$$\Delta f_B = 25 + 75 \left(1 + 1.4 \left(\frac{f}{kHz} \right)^2 \right)^{0.69}$$

Masking

Masking

data compression

exploitation of perception in critical bands with reference to the threshold in quiet is not enough

Basic principle:

- a **test signal**, called a **maskee** is placed at the center frequency of the critical bandwidth
- one **masking signal**, called **masker** (equal power and distance from maskee)
- If the P_{maskee} is weak relative to the total power of the maskers

 the test signal is not audible

 test signal is masked
- In order for the test signal to become audible, its power has to be raised to above a certain level **masking threshold**.

Masking of Pure Tones by Noise - Broad-Band Noise

•broad-band noise:

•white noise from 20 Hz - 20 kHz

•figure:

 masking threshold for pure tones masked by broad band noise of different levels

•uniform masking noise (UMN) by equalization of the 10 dB per decade slope

Fig: Zwicker, Fastl "Psychoacoustics - Facts and Models", 2nd Edition, 1999.

Masking of Pure Tones by Noise - Narrow-Band Noise

•narrow-band noise:

 noise with a bandwidth equal or smaller than critical bandwidth

•figure:

- threshold of pure tones masked by narrow-band noise for different centre frequencies
- difference between maximum of masked threshold and test tone level

Fig: Zwicker, Fastl "Psychoacoustics - Facts and Models", 2nd Edition, 1999.

TECHNISCHE UNIVERSITÄT
ILMENAU

Masking of Pure Tones by Noise - Narrow-Band Noise

•narrow-band noise:

 noise with a bandwidth equal or smaller than critical bandwidth

•figure:

- dependence of masked threshold on level of narrow-band noise
- •dips at higher levels nonlinear effects (difference noise caused by interactions between test tone and noise)

Fig: Zwicker, Fastl "Psychoacoustics - Facts and Models", 2nd Edition, 1999.

TECHNISCHE UNIVERSITÄT

Test: Narrow Band Noise Masking Tone

Example 3:

- Narrow Band Noise at 1000 Hz, width 160 Hz;
- Sine tones at 600, 800, 1000, 1200, 1400, 1600 Hz at varying levels (-80 to -20 dB)

Fraunhofer

Sound Examples: Masking with White Noise

- Example 4: Masking with white noise
 - 500 Hz sinusoid tone at varying amplitude ALONE
 - Level: -40,-35,-30,-25,-20,-15,-10 dB

Example 5: Masking with white noise

- 500 Hz tone at varying amplitude with White Noise
- Level: -40,-35,-30,-25,-20,-15,-10 dB
- Noise Level: -50 dB

Example 6: Masking with white noise

- 5000 Hz tone at varying amplitude with White Noise
- Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de as Example 5

25

Masking of Pure Tones by Low-Pass or High-Pass Noise

Source: Zwicker & Fastl "Psychoacoustics Facts and Models"

Masking of Pure Tones by Pure Tone

•pure tone:

single frequency

•figure:

- •1 kHz masking tone with level of 80 dB
- threshold for 'detection of anything'

difficulties:

- •beats (hatching)
- masker and difference tone (stippling)

Source: Zwicker & Fastl "Psychoacoustics Facts and Models"

TECHNISCHE UNIVERSITÄT

27

Masking of Pure Tone by Complex Tones

•complex tone:

•fundamental tone with its harmonics

•figure:

nreshold of pure tones masked by a complex tone with 200 Hz fundamental acry and nine

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Source: Zwicker & Fastl "Psychoacoustics Facts and Models"

Fraunhofer

Tonality (1)

- Tonality index α:
 - noisy signal: $\alpha = 0$
 - tonal signal: $\alpha = 1$
- System theory
 - Sharp spectral lines = Signal is periodicSignal is predictable
 - Approximation: If the signal is predictable then it should be periodic
 - Therefore we can use prediction to approximate if a signal is tonal (by periodicity)

Tonality (2)

Example:

calculate the predictability:

$$c(t,f) = \frac{(\hat{r}(t,f) - r(t,f))^2}{r(t,f)^2} + \frac{(\widehat{\Phi}(t,f) - \Phi(t,f))^2}{\Phi(t,f)^2} \quad \begin{array}{l} c \to 1 : noisy \ signal \\ c \to 0 : tonal \ signal \end{array}$$

- If c(t, f) > 1 set it to $1 \rightarrow \alpha(t, f) = |c(t, f) 1|$
- amplitude of a spectral line in time and frequency r(t, f)
- phase of a spectral line in time and frequency $\Phi(t, f)$
- predicted values $\hat{r}(l,k)$ for amplitude and $\widehat{\Phi}(l,k)$ for phase

$$\hat{r}(t,f) = r(t-1,f) + (r(t-1,f) - r(t-2,f))$$

$$\hat{\Phi}(t,f) = \Phi(t-1,f) + (\Phi(t-1,f) - \Phi(t-2,f))$$

30

Masking - Spreading Function

 f_{l_i} ... lower frequency limit f_{u_i} ... upper frequency limit of Critical Band i

Power Spectral Density of signal x(t)

$$S_p(f) = X_R^2(f) + X_I^2(f)$$

Sound Pressure Level

$$L_s(f) = 10 \log_{10} S_p(f)$$

Calculating the Masking Threshold

Comparison of the signal level to Masking Threshold_

$$\frac{O_f(i)}{dB} = \alpha (14.5 + i) + (1 - \alpha)\alpha_v$$

$$\alpha_v = -2 - 2.05 \arctan\left(\frac{f}{4 \ kHz}\right) - 0.75 \arctan\left(\frac{f^2}{2,56 \ kHz^2}\right)$$

$$\alpha_v = -2 - 2.05 \arctan\left(\frac{f}{4 \ kHz}\right) - 0.75 \arctan\left(\frac{f^2}{2,56 \ kHz^2}\right)$$

Approximation

$$\frac{O_f(i)}{dB} = \alpha(14.5 + i) + (1 - \alpha)5.5$$

Different Masking with different maskers:

- Tone masking: (14.5 + i) dB, where / is the integer number for the critical band
- Noise as a masker: 5.5 dB

 $L_s(f)$... Sound Pressure Level $O_f(i)$... Distance to Masking Threshold

Simultaneous Masking Threshold (Power)

$$T(f) = 10^{[L_s(f) - O_f(i)]/10}$$

32

In-Band Masking

Masking Neighboring Bands

- spread of masking due to the non-linearity of auditory filters
- resulting masking threshold = sum of power of neighbouring spreading functions
- here: value at intersection of neighbouring spreading functions taken

$$S_1 = 27 \frac{dB}{Bark}$$

$$S_2 = 24 + 0.23 \left(\frac{f}{kHz}\right)^{-1} - 0.2 \frac{L_s(f)}{dB} \frac{dB}{Bark}$$

Sound Examples

Bach organ music with 16 bits per sample

Example 8: Dynamic range

Bach organ music with 11 bits per sample

Example 9: Dynamic range

Bach organ music with 6 bits per sample

Temporal Masking Effects (1)

This is not correct!

Schematic drawing to illustrate and characterize the regions within which premasking, simultaneous masking and postmasking occur. Note that postmasking uses a different time origin than premasking and simultaneous masking

ILMENAU

Source: Zwicker & Fastl "Psychoacoustics Facts and Models"

Temporal Masking Effects (2)

- Post-Masking: corresponds to decay in the effect of the masker we expected
- Pre-Masking: appears during time before masker is switched on
 - Quick build-up time for loud maskers
 - Slower build-up time for faint test sounds
- Frequency resolution
 → Blurring in time
- Frequency resolution in the ear Masking in time
- Because of in-ear fast processing between quiet to loud signals, we get Pre-Echoes
 - Pre-Masking: 1-5 ms
 - − Post-Masking: ~100ms

37

Pre-Echo: Example

Without Pre-Echo:

Castanets original

With Pre-Echo:

Castanets coded with a block size of 2048 samples

next lecture: 09.11. - Quantization and Coding

