고급수학 및 연습 1 기말고사

(2013년 6월 8일 오후 1:00-3:00)

학번: 이름:

모든 문제의 답에 풀이과정을 명시하시오. (총점 200점)

Problem 1 (25 pts). Let $P_l(\mathbf{x}), P_m(\mathbf{x})$ be the orthogonal projections of the point $\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$

onto the lines $l: x = \frac{y}{2} = \frac{z}{3}$ and $m: x = \frac{y}{2} = \frac{z-4}{3}$, respectively.

- (a) (10pts) Find the 3×3 matrix A satisfying $P_l(\mathbf{x}) = A\mathbf{x}$.
- (b) (15pts) Show that $P_m(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for some constant vector \mathbf{b} and find \mathbf{b} .

Problem 2 (20pts). Let A be an $n \times n$ matrix. Suppose that $|A\mathbf{x}| = 2013|\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^n$.

- (a) (10pts) Show that $A\mathbf{x} \cdot A\mathbf{y} = 2013^2 \ \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (b) (10pts) Find the value of $|\det A|$. (Hint: Use $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^t \mathbf{y}$.)

Problem 3 (20pts). Let \mathcal{M} be the set of all 2×2 matrices with real entries. When we identify a matrix

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}$$

with a vector $(a, b, c, d) \in \mathbb{R}^4$, show that the map

$$T: \mathcal{M} \to \mathcal{M}, \quad T(X) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} X$$

is linear and find the matrix corresponding to T.

Problem 4 (20pts). Find the constant t satisfying the following equation.

$$\det \begin{pmatrix} 3a_1 + 5b_1 & 3a_2 + 5b_2 & 3a_3 + 5b_3 \\ 4b_1 + 5c_1 & 4b_2 + 5c_2 & 4b_3 + 5c_3 \\ 8c_1 + 5a_1 & 8c_2 + 5a_2 & 8c_3 + 5a_3 \end{pmatrix} = t \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

Problem 5 (20pts). For points A = (1,1,3), B = (2,3,2), $C = (0,2,5) \in \mathbb{R}^3$, consider two line segments $L_1 = \overline{AB}$ and $L_2 = \overline{AC}$.

- (a) (10pts) Find the equation of the plane containing L_1 and L_2 .
- (b) (10pts) Find the area of the parallelogram obtained by orthogonal projecting the parallelogram with two sides L_1, L_2 onto the plane 3x 5y + z = 1.

Problem 6 (20pts). For a curve $X(t) = (t, t^2, t^3, t^4)$, (t > 0) on \mathbb{R}^4 , let X_1, X_2, X_3, X_4 be mutually distinct points on this curve. Show that vectors $\overrightarrow{OX_i}$ (i = 1, 2, 3, 4) are linearly independent. (O = (0, 0, 0, 0))

Problem 7 (30pts). For a curve on \mathbb{R}^2 given by $l: r = 1 + \cos \theta$, $(0 \le \theta \le 2\pi)$ in polar coordinates, consider the curve l' obtained by restricting l to $0 \le \theta < \pi$.

- (a) (10pts) Parametrize the curve l' by arc length.
- (b) (10pts) Find the point on the curve l' which divides l' into the two connected parts with the same length.
- (c) (10pts) Find the center of the curve l.

Problem 8 (20pts). Let a curve be given by $r = f(\theta)$ in polar coordinates. Show that the curvature of this curve is

$$\kappa(\theta) = \frac{|2(r')^2 - rr'' + r^2|}{\{(r')^2 + r^2\}^{3/2}}.$$

Problem 9 (25pts). In a graph of the function $y = e^x$, find the point whose radius of curvature is minimal and the center of the osculating circle at that point.