(a) Flipping a coin 4 times creates a finite sample space with 2⁴ = 16 elements. Each element consists of 4 coin flips and the result of each coin flip is denoted by H or T. An example element is [HHHH]. Thus, the sample space may be represented as

$$S = \{[HHHH], [HHHT], [HHTH], \dots, [TTTT]\}$$

(b) The number of damaged leaves is a countably infinite sample space which must be greater than or equal to 0.

$$S = \{0, 1, 2, \dots, \infty\}$$

(c) The lifetime of a lightbulb is an uncountably infinite sample space, with an interval beginning at an including 0 hours.

$$S = \{x : x \ge 0\}$$

(d) The weight of a rat must be greater than 0 units of mass (e.g. grams). The sample space is uncountably infinite.

$$S = \{w : w > 0\}$$

(e) The proportion of defectives in a shipment is a countably infinite sample space because it is a rational number representable by $\frac{m}{n}$, with m being the number of defectives and n being the number of items in the shipment.

$$S = \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$$

- 2. (a) $S = \{(x, y) : x \in \{0, 1\}, y \in \{g, f, s\}\}$
 - (b) $A = \{(0, s), (1, s)\}$
 - (c) $B = \{(0, g), (0, f), (0, s)\}$
 - (d) $B^c \cup A = \{(1,g), (1,f), (1,s), (0,s)\}$

3. (a)
$$A^{c} = \{x : 0 < x \le 0.5\}$$

(b)
$$A^c$$
 with respect to $\mathbb{R}^2 = \{(x,y) : x^2 + y^2 \ge 2\}$

Therefore

$$A^c \ with \ respect to \ \Omega = \{(x,y): x^2+y^2 \geq 2, |x|+|y| \leq 2\}$$

(c)
$$\bigcap_{n=1}^{\infty} B_n = \{x : \in (0,0)\} = \emptyset$$

Therefore

$$A^c=\mathbb{R}^1$$

BIOS 660 Homework 01 Question 4 and 5

	Question 4
	This proof has two parts:
	(1) If A & B = C, then A = B & C
	First we need to prove that ACBAC:
	Let XEA, then XE (ANB)U(A-B). Then XE (ANB) or XE (A-B)
	If I E (ANB), then XEB and I &C, so XEBOC.
	If $x \in (A-B)$, then $x \in A$ and $x \notin B$, so $x \in B \land C$.
	Thus ACBAC.
	Second, we need to prove that Bacca:
	let x ∈ BAC, then x ∈ (B-c)U(C-B), according to the
	definition of symmetric difference. Then te (B-c) or x e (C-B)
	If x ∈ (B-c), then x ∈ B, and x ¢ C, so x ∈ B and x ¢ A △ B.
	Then XEANB, so XEA
	If x∈ (C-B). Then x∈C and x & B, so x ∈ AAB and x & B.
	Thus ZEA
	Therefore, if ADB = C, then A = BOC
	(2) If A = Bac, then A DB = C
	First we need to prove that ADBCC:
	let x ∈ ADB, then x ∈ (A-B)U(B-A), according to the
	definition of symmetric difference. Then $x \in (A-B)$ or $x \in (B-A)$
	If z∈(A-B), then z∈ A and x &B, so x ∈ B △ C and z & B.
	Thus X € C
	If x∈ (B-A), then x∈B and x & A, so x ∈ B and x & B & C
	Then XEBAC and XEC.
-	Second, we need to prove that C < ABB.
	let x∈C, then x∈ (B∩C)U(C-B). Then, x∈ (B∩C) or
	Z∈(C-B), if Z∈(B∩C), then Z∈B but Z A, so X∈ A B.
	15 x ∈ (C-B), then x ∈ A and x ∉ B, so x ∈ A o B
	Thus CCAOB.
0	Therefore, if A = BOC, then AOB = C
	Therefore, ADB=C if and only if A=Bac, for any three sets,
	A, B, and C

Question 6

Show $(\limsup_n A_n) \cap (\limsup_n B_n) \supset \limsup_n (A_n \cap B_n)$ and $(\limsup_n A_n) \cup (\limsup_n B_n) = \limsup_n (A_n \cup B_n)$

(a) Show $(\limsup_n A_n) \cap (\limsup_n B_n) \supset \limsup_n (A_n \cap B_n)$.

Let $x \in \limsup_n (A_n \cap B_n)$, then x is in infinitely many of $A_n \cap B_n$, which means that x is in infinitely many of A_n and infinitely many of B_n . Therefore, $x \in \limsup_n A_n$ and $x \in \limsup_n B_n$, which implies $x \in (\limsup_n A_n) \cap (\limsup_n B_n)$, and $(\limsup_n A_n) \cap (\limsup_n B_n) \supset \limsup_n (A_n \cap B_n)$.

(b) Show $(\limsup_n A_n) \cup (\limsup_n B_n) = \limsup_n (A_n \cup B_n)$

Let $x \in \limsup_n (A_n \cup B_n)$, then x is in infinitely many of $A_n \cup B_n$, which means that x is in infinitely many of A_n or infinitely many of B_n . Therefore, $x \in \limsup_n A_n$ or $x \in \limsup_n B_n$, which is the same as $x \in (\limsup_n A_n) \cup (\limsup_n B_n)$. Therefore, $\limsup_n (A_n \cup B_n) \subset (\limsup_n A_n) \cup (\limsup_n B_n)$.

Let $x \in (\limsup_n A_n) \cup (\limsup_n B_n)$, then $x \in \limsup_n A_n$ or $x \in \limsup_n B_n$, which says x is in infinitely many of A_n or infinitely many of B_n . Thus, x is in infinitely many of $A_n \cup B_n$ and $x \in \limsup_n (A_n \cup B_n)$. Therefore, $\limsup_n (A_n \cup B_n) \supset (\limsup_n A_n) \cup (\limsup_n B_n)$ and we conclude $(\limsup_n A_n) \cup (\limsup_n B_n) = \limsup_n (A_n \cup B_n)$.

Question 7

Show $\lim \inf_n A_n \subset \lim \sup_n A_n$.

If $x \in \liminf_n A_n$, then there is an m such that $x \in A_n$ for all $n \ge m$, which means that $x \notin A_n$ for finitely many n < m. Therefore, x is in infinitely many of A_n , which implies that $x \in \limsup_n A_n$. We conclude that $\liminf_n A_n \subset \limsup_n A_n$.