

pumas^{Al}

DeepPumas Embedded ML

Niklas Korsbo and Mohamed Tarek

Let's have a look at MeNets.

The integration of mixed effects and neural networks.

What are Mixed Effects?

- Fixed effects, θ
 - Model parameters modelled as deterministic quantities
- Random effects, η
 - Model parameters modelled as random variables

Hierarchical

We typically define hierarchies where θ are shared parameters but η is subject-specific.

- θ all the population parameters.
 - Shared across subjects
- η random effects of all subjects.
 - η_1 specific to subject 1
 - Typically has heta-dependent priors
- x covariates of all the subjects
 - x_1 specific to subject 1
- y responses of all the subjects
 - y_1 specific to subject 1

In a Pumas model

```
@model begin
                  @param begin
                     \theta \in VectorDomain(4, lower = zeros(4))
                     \Omega \in PSDDomain(2)
                     \Sigma \in \text{RealDomain(lower = 0.0)}
                     a ∈ RealDomain(lower = 0.0, upper = 1.0)
                   end
                   @random begin
                     η \sim MvNormal(Ω)
                   end
                   @covariates sex wt etn
                   @pre begin
                     \theta 1 := \theta[1]
                     CL = \theta[2] * ((wt / 70)^0.75) * (\theta[4]^sex) *
                       exp(\eta[1])
                     Vc = \theta[3] * exp(\eta[2])
                   end
y_i|\theta,\eta_i,x_i
                   @dynamics begin
                     Depot' = -Ka * Depot
                     Central' = Ka * Depot - (CL / Vc) * Central
                     Res' = Depot - Central
                   end
                   @derived begin
                     conc = @. Central / Vc
                     dv \sim @. Normal(conc, conc * \Sigma)
                     T_{max} = maximum(t)
                   end
                   @observed begin
                     obs_cmax = maximum(dv)
                   end
                 end
```


Don't assign too much meaning to the random effects

- Indicates unknown parameters that vary between subjects (or whatever hierarchy we use)
- Usually tied very closely to a fixed effect in pharmacometrics. $CL = tvCL \cdot \exp(\eta_{cl})$.
- Used in machine learning (called "latent variables") without assigning much meaning to them.
- Enables degrees of freedom along which the model can account for outcome heterogeneity.

Random effects during simulation?

Simple
Just sample and use

```
@model begin
                   @param begin
                      \theta \in VectorDomain(4, lower = zeros(4))
                     \Omega \in PSDDomain(2)
           \theta
                     \Sigma \in \text{RealDomain(lower = 0.0)}
                      a ∈ RealDomain(lower = 0.0, upper = 1.0)
                   @random begin
                     η \sim MvNormal(Ω)
                   end
          \chi_i
                    @covariates sex wt etn
                   @pre begin
                      \theta 1 := \theta[1]
                      CL = \theta[2] * ((wt / 70)^0.75) * (\theta[4]^sex) *
                        exp(\eta[1])
                     Vc = \theta[3] * exp(\eta[2])
                   end
y_i|\theta,\eta_i,x_i
                   @dynamics begin
                     Depot' = -Ka * Depot
                     Central' = Ka * Depot - (CL / Vc) * Central
                     Res' = Depot - Central
                   end
                   @derived begin
                      conc = @. Central / Vc
                     dv \sim @. Normal(conc, conc * \Sigma)
                     T_{max} = maximum(t)
                   end
                   @observed begin
                     obs_cmax = maximum(dv)
                   end
                 end
```


Fitting with random effects

Their effect is largely determined by how they contribute to the loss function of a model fit

Conditional probability

Probability of the response $m{y}$ according to the model given specific values of $m{ heta}$, $m{\eta}$ and $m{x}$

$$p_c(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{\eta}, \mathbf{x})$$

Fit model by simply finding the values of θ and η that maximizes the conditional probability?

Fitting with random effects

Their effect is largely determined by how they contribute to the loss function of a model fit

Marginal probability (!)

Integrates out the effect of the random effects

$$p_m(y \mid \boldsymbol{\theta}, \boldsymbol{x}) = \int p_c(y \mid \boldsymbol{\theta}, \boldsymbol{\eta}, \boldsymbol{x}) \cdot p_{prior}(\boldsymbol{\eta} \mid \boldsymbol{\theta}) d\boldsymbol{\eta}$$

Average conditional probability weighted by a prior.

Different methods/approximations: Laplace, FOCE and EM

Fitting with random effects

Their effect is largely determined by how they contribute to the loss function of a model fit

Conditional likelihood

Marginal likelihood

Marginal vs conditional

• Consider a single subject *i*. The marginal likelihood is:

$$p(\mathbf{y_i} \mid \boldsymbol{\theta}) = \int p(\mathbf{y_i} \mid \boldsymbol{\eta_i}, \boldsymbol{\theta}) \cdot p(\boldsymbol{\eta_i} \mid \boldsymbol{\theta}) d\boldsymbol{\eta_i}$$

• However, we can write the marginal likelihood in another way:

$$p(\mathbf{y_i} \mid \boldsymbol{\theta}) = \prod_{j=1}^{m_i} p(\mathbf{y_{i,j}} \mid \mathbf{y_{i,1:j-1}}, \boldsymbol{\theta})$$

where $y_{i,1:j}$ are the observations of subject i until time point t_j , and j is an integer that goes from 1 to m_i (number of longitudinal observations for subject i).

Marginal vs conditional

• No past observations, j = 1

$$p(y_{i,1} \mid \mathbf{y_{i,1:0}}, \boldsymbol{\theta}) = p(y_{i,1} \mid \boldsymbol{\theta}) = \int p(y_{i,1} \mid \boldsymbol{\eta_i}, \boldsymbol{\theta}) \cdot p(\boldsymbol{\eta_i} \mid \boldsymbol{\theta}) d\boldsymbol{\eta_i}$$

• With past observations, j > 1

$$p(y_{i,j} \mid \mathbf{y}_{i,1:j-1}, \boldsymbol{\theta}) = \int p(y_{i,j} \mid \boldsymbol{\eta}_i, \boldsymbol{\theta}) \cdot p(\eta_i \mid \mathbf{y}_{i,1:j-1}, \boldsymbol{\theta}) d\boldsymbol{\eta}_i$$

where $p(\eta_i \mid y_{i,1:j-1}, \theta)$ is the posterior distribution of η_i given partial data $y_{i,1:j-1}$ and θ .

Fitting algorithms in DeepPumas

	Marginal likelihood	Conditional likelihood
Prior / regularization on $oldsymbol{ heta}$	MAP(FO())	JointMAP()
	MAP(FOCE())	
	MAP(Laplacel())	
No prior / regularization on $ heta$	FO()	N/A
	FOCE()	
	Laplacel()	
	SAEM()	

Algorithms

FO(), FOCE(), LaplaceI() and SAEM()

$$\theta^* = \arg \max_{\boldsymbol{\theta}} \prod_{i=1}^N p(y_i \mid \boldsymbol{\theta}, \boldsymbol{x})$$
$$\eta_i^* = \arg \max_{\boldsymbol{\eta}_i} p(y_i \mid \boldsymbol{\theta} = \boldsymbol{\theta}^*, \boldsymbol{\eta}_i, \boldsymbol{x}_i) \cdot p(\boldsymbol{\eta}_i \mid \boldsymbol{\theta} = \boldsymbol{\theta}^*)$$

MAP(FO()), MAP(FOCE()) and MAP(LaplaceI())

$$\theta^* = \arg \max_{\boldsymbol{\theta}} \ p(\boldsymbol{\theta}) \cdot \prod_{i=1}^N p(y_i \mid \boldsymbol{\theta}, \boldsymbol{x})$$
$$\eta_i^* = \arg \max_{\boldsymbol{\eta}_i} \ p(y_i \mid \boldsymbol{\theta} = \boldsymbol{\theta}^*, \boldsymbol{\eta}_i, \boldsymbol{x}_i) \cdot p(\boldsymbol{\eta}_i \mid \boldsymbol{\theta} = \boldsymbol{\theta}^*)$$

Algorithms

JointMAP()

$$\theta^*, \eta^* = \arg \max_{(\theta, \eta)} p(\theta, \eta \mid x, y)$$

$$= \arg \max_{(\theta, \eta)} p(\theta) \cdot \prod_{i=1}^{N} p(\eta_i \mid \theta) \cdot p(y_i \mid \theta, \eta_i, x_i)$$

- BayesMCMC()
 - Samples from the joint posterior $p(\theta, \eta \mid x, y)$

Mixed effect neural networks (MeNets)

What happens when you use random effects as part of your NN input?

• Let's see in an exercise!

