

Spatial Filtering

李东晚

<u>lidx@zju.edu.cn</u>

Contents

- 3.4 Fundamentals of Spatial filtering
- 3.5 Smoothing Spatial Filters
- 3.6 Sharpening Spatial Filters
- 3.7 Highpass, Bandreject, and Bandpass Filters from Lowpass Filters
- 3.8 Combining Spatial Enhancement Methods

Basic Spatial Domain Image Enhancement

Most spatial domain enhancement operations can be reduced to the form

g(x, y) = T[f(x, y)]where f(x, y) is the input image, g(x, y) is the processed image and T is some operator defined over some neighbourhood of (x, y)

Neighbourhood Operations

Neighbourhood operations simply operate on a larger neighbourhood of pixels than point operations

Origin

Neighbourhoods are mostly a rectangle around a central pixel

Any size rectangle and any shape filter are possible

Simple Neighbourhood Operations

Some simple neighbourhood operations include:

- Min: Set the pixel value to the minimum in the neighbourhood
- Max: Set the pixel value to the maximum in the neighbourhood
- Median: The median value of a set of numbers is the midpoint value in that set (e.g. from the set [1, 7, 15, 18, 24] 15 is the median). Sometimes the median works better than the average

Simple Neighbourhood Operations

The Spatial Filtering Process

The above is repeated for every pixel in the original image to generate the filtered image

Spatial Filtering: Equation Form

 $g(x,y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$

Filtering can be given in equation form as shown above

Notations are based on the image shown to the left

Smoothing Spatial Filters

One of the simplest spatial filtering operations we can perform is a smoothing operation

- Simply average all of the pixels in a neighbourhood around a central value
- Especially useful in removing noise from images
- Also useful for highlighting gross detail

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Simple averaging filter

Smoothing Spatial Filtering

The above is repeated for every pixel in the original image to generate the smoothed image

The image at the top left is an original image of size 500*500 pixels

The subsequent images show the image after filtering with an averaging filter of increasing sizes:

3, 5, 9, 15 and 35

Notice how detail begins to disappear

Original

3x3 Filter

5x5 Filter

9x9 Filter

15x15 Filter

35x35 Filter

Weighted Smoothing Filters

More effective smoothing filters can be generated by allowing different pixels in the neighbourhood different weights in the averaging function

Pixels closer to the central pixel are more important

 Often referred to as a weighted averaging

1/16	² / ₁₆	1/16
² / ₁₆	⁴ / ₁₆	² / ₁₆
¹ / ₁₆	² / ₁₆	1/16

Weighted averaging filter

Another Smoothing Example

By smoothing the original image we get rid of lots of the finer detail which leaves only the gross features for thresholding

Original Image With Noise

Image After Averaging Filter

Image After Median Filter

Filtering is often used to remove noise from images

Sometimes a median filter works better than an averaging filter

Original

Averaging Filter

Median Filter

Simple Neighbourhood Operations

At the borders of an image we are missing pixels to form a neighbourhood Origin

There are a few approaches to dealing with missing border pixels:

- Omit missing pixels
 - Only works with some filters
 - Can add extra code and slow down processing
- padarray(A, padsize, padval, direction)
 - padsize
 - padval: 0 (default), 'circular', 'replicate', 'symmetric'
 - direction: 'both'(default), 'post', 'pre'

Zero Padding

Replicate
Border Pixels

Wrap Around Border Pixels

Correlation & Convolution

The filtering we have been talking about so far is referred to as *correlation* with the filter itself referred to as the *correlation kernel*

Convolution is a similar operation, with just one subtle difference

a	b	C
d	e	e
f	8	h

Original Image Pixels

r	S	t
и	v	W
X	У	Z

Filter

$$e_{processed} = v^*e + \\ z^*a + y^*b + x^*c + \\ w^*d + u^*e + \\ t^*f + s^*g + r^*h$$

For symmetric filters it makes no difference

Correlation & Convolution

Correlation

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolution

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

For symmetric filters it makes no difference

3.6 Sharpening Spatial Filtering

- Sharpening filters
 - -1st derivative filters
 - -2nd derivative filters

Sharpening Spatial Filters

Previously we have looked at smoothing filters which remove fine detail

Sharpening spatial filters seek to highlight fine detail

- Remove blurring from images
- Highlight edges

Sharpening filters are based on *spatial* differentiation

Spatial Differentiation

Differentiation measures the *rate of change* of a function

Let's consider a simple 1 dimensional example

Spatial Differentiation

1st Derivative

The formula for the 1st derivative of a function is as follows:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

It's just the difference between subsequent values and measures the rate of change of the function

1st Derivative (cont...)

2nd Derivative

The formula for the 2nd derivative of a function is as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

Simply takes into account the values both before and after the current value

2nd Derivative (cont...)

Using 2nd Derivatives For Image Enhancement

The 2nd derivative is more useful for image enhancement than the 1st derivative

- Stronger response to fine detail
- Simpler implementation
- We will come back to the 1st order derivative later on

The first sharpening filter we will look at is the *Laplacian*

- Isotropic
- One of the simplest sharpening filters
- We will look at a digital implementation

The Laplacian

The Laplacian is defined as follows:

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

where the partial 2nd order derivative in the x direction is defined as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$
 and in the y direction as follows:

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

The Laplacian (cont...)

So, the Laplacian can be given as follows:

$$\nabla^{2} f = [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y+1) + f(x, y-1)]$$
$$-4f(x, y)$$

We can easily build a filter based on this

0	1	0
1	-4	1
0	1	0

The Laplacian (cont...)

Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities

Original Image

Laplacian Filtered Image

Laplacian
Filtered Image
Scaled for Display

But that is Not Very Enhanced!

The result of a Laplacian filtering is NOT an enhanced image

Subtract the Laplacian result from the original image to generate our final sharpened enhanced image

Laplacian
Filtered Image
Scaled for Display

$$g(x, y) = f(x, y) - \nabla^2 f$$

Laplacian Image Enhancement

In the final sharpened image, edges and fine detail are much more obvious

Laplacian Image Enhancement

Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

$$g(x, y) = f(x, y) - \nabla^{2} f$$

$$= f(x, y) - [f(x+1, y) + f(x-1, y) + f(x, y-1) + f(x, y+1) + f(x, y-1)]$$

$$-4f(x, y)]$$

$$= 5f(x, y) - f(x+1, y) - f(x-1, y)$$

$$- f(x, y+1) - f(x, y-1)$$

Simplified Image Enhancement (cont...)

This gives us a new filter which does the whole job for us in one step

Simplified Image Enhancement (cont...)

Variants On The Simple Laplacian

There are lots of slightly different versions of the Laplacian that can be used:

0	1	0
1	-4	1
0	1	0

Simple Laplacian

1	1	1
1	-8	1
1	1	1

Variant of Laplacian

Unsharp Masking

- 1. Blur the original image $\overline{f}(x, y)$
- 2. Obtain mask: $g_{\text{mask}}(x, y) = f(x, y) f(x, y)$
- 3. Add to the original:

$$g(x, y) = f(x, y) + k * g_{\text{mask}}(x, y) \qquad (k \ge 0)$$

- Unsharp masking k = 1
- highboost filtering k > 1

Unsharp Masking

Original image

Unsharp Masking

Blurred with a Gaussian filter

Mask

Result of using unsharp masking result

Result of using highboost filtering result

1st Derivative Filtering

Implementing 1st derivative filters is difficult in practice

For a function f(x, y) the gradient of f at coordinates (x, y) is given as the column vector:

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

1st Derivative Filtering (cont...)

The magnitude of this vector is given by:

$$|\nabla f| = mag(\nabla f)$$

$$= \left[G_x^2 + G_y^2\right]^{\frac{1}{2}}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{\frac{1}{2}}$$

For practical reasons this can be simplified as:

$$\left|\nabla f\right| \approx \left|G_{x}\right| + \left|G_{y}\right|$$

1st Derivative Filtering (cont...)

There is some debate as to how best to calculate these gradients but we will use:

$$|\nabla f| \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$$

which is based on these coordinates

Z ₁	Z ₂	z_3
Z_4	Z ₅	z_6
Z ₇	Z ₈	Z ₉

Sobel Operators

Based on the previous equations we can derive the *Sobel Operators*

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

To filter an image it is filtered using both operators, the results of which are added together

Roberts cross gradient Operators

Sobel Example

An image of a contact lens which is enhanced in order to make defects (at four and five o'clock in the image) more obvious

Sobel filters are typically used for edge detection

1st & 2nd Derivatives

Comparing the 1st and 2nd derivatives we can conclude the following:

- 1st order derivatives generally produce thicker edges
- 2nd order derivatives have a stronger response to fine detail e.g. thin lines
- 1st order derivatives have stronger response to grey level step
- 2nd order derivatives produce a double response at step changes in grey level

(Highpass, Bandreject, and Bandpass Filters from Lowpass Filters

Highpass, Bandreject, and Bandpass Filters from Lowpass Filters

Filter type

Spatial kernel in terms of lowpass kernel, lp

Lowpass

Highpass

$$hp(x, y) = \delta(x, y) - lp(x, y)$$

Bandreject

$$br(x,y) = lp_1(x,y) + hp_2(x,y)$$

= $lp_1(x,y) + [\delta(x,y) - lp_2(x,y)]$

Bandpass

$$\begin{split} bp(x,y) &= \delta(x,y) - br(x,y) \\ &= \delta(x,y) - \left[lp_1(x,y) + \left[\delta(x,y) - lp_2(x,y) \right] \right] \end{split}$$

1-D spatial lowpass filter — 2-D spatial lowpass filter

Zone Plate Image (同心圆反射板)

- Test image for filtering
 - -[-8.2,8.2], step 0.0275
 - 597 x 597 pixels

$$z(x,y) = \frac{1}{2} \left[1 + \cos\left(x^2 + y^2\right) \right]$$

 Spatial frequency increases with distance from the center

Result of Filtering the Zone Plate Image

Using a Separable 2-D Filter Using an Isotropic 2-D Filter

More Filtering Results

Lowpass Filtered Highpass Filtered Scaled for Display

Bandreject Filtered Bandpass Filtered Scaled for Display

Combining Spatial Enhancement Methods

Successful image enhancement is typically not achieved using a single operation

Rather we combine a range of techniques in order to achieve a final result

This example will focus on enhancing the bone scan to the right

Combining Spatial Enhancement Methods (cont...)

(c) Edge enhanced Noise also enhanced!

Combining Spatial Enhancement Methods (cont...)

(g)

Sharpened image which is sum of (a) and (f)

The product of (c) and (e) which will be used as a mask (e)

Edge enhanced Noise NOT enhanced

Image (d) smoothed with a 5*5 averaging filter

(g) Edge enhanced Noise NOT enhanced

デージップ 信息与电子工程字院 College of Information Science & Electronic Engineering, Zhejiang University

Combining Spatial Enhancement Methods (cont...)

Compare the original and final images

Assignments

课后作业题目请对照参考第4版英文原版

- 3.26(设图像大小为*N*x*N*, *N*>>8; 滤波时 图像边界外填充**0**)
- 3.34
- 3.36

Assignments

- 选做1个编程作业: Proj03-xx
 - (参见Laboratory Projects_DIP3E.pdf)

DDL: 2周后,课前

- 递交1份实验报告,命名"学号姓名_prj1.pdf",内容提纲包括:
- 1. 实验任务: 描述本次实验的任务,即所选择的Proj03-xx题目
- 2. 算法设计: 理论上描述所设计的算法
- 3. 代码实现: 描述编程环境, 给出自己编写的核心代码
- 4. 实验结果: 描述具体的实验过程, 给出每个小实验的输入数据、算法参数和实验结果, 并对结果做简要的讨论
- 5. 总结: 简要总结本次实验的技术内容,以及心得体会。