Thermal Design Principles

· Primary system temperature and pressure
- coolant selection and plant thermal
Performance

· Plant Temperature (PWR)

LWR Thermal Conditions

Tout Primary	<u>PWR</u> 32.4°C	BWR 2.88°C
P. "	15.5 MPa	7.17 MSa
P - turbine condition	57 MPa	71) MPa
T ,	272.3°C	2875°C
Plant theronal efficiency	33.5 %	32.9%

Energy Production and Heat Transfer

Core power : Q Core power donsit : Q/V = Q" core specific power: Q/mass of heavy atoms. volumetric heat generation rate: q"(v) Surface heat flux: 9"(5) Linear heat-generation rate : g(z) Rate of everyy goneration per pin: & Sques = SS ques = SS question dx $\int_{\gamma} g'(z)dz = \iiint_{\gamma} g'''(\bar{\gamma})ds$ g = SS q"(v)dV V= volume of fact pin $\dot{Q} = \sum_{n=1}^{N} \dot{q}_n$ Q=N<q>=NL(q'>=NLTTDco < g"co> = NLTIRfo < 9"> Dro = ciad outside diameter Rfc = fuel pellet moins

Thermal Dosign Lionits

· Required for the integrity of the clad.

Typical Values

haraderistics	PWR	BWR		. LMFBR
Darnage limit	1% clad strain	1% c	lad Spain R < too	0.7% clad Shain
lesign Limits				Tu-
Fuel Centerline Timp. Steady S.				
Steady S.	· 	-		_
Transieret	No incipient	- Melt =		=
Clad. Ave. Temp. 5.5	<i>'</i>	_		1200-1300°F
Trom sicul.	Z 2200°	FCLOCA)	×	1458 (7880
Surface Heat flux				
5.5.	-	M	CRR>1.2	_
5.5. Transient	MANDE			-
I—————————————————————————————————————				
MCPR- minimu	ion conficer	power p	ratio	
MDNBR- mim	min depo	where from	nuel	ente briling.

CHF - contical heat fax

CHFR (Fredickd), q"

Channel length Z

Channel length Z

Figure of Merit for Core theronal Performance.

Power Density: Evergy generated relative to core volume.

Specific power - energy generated per unit mass of fact

specific power = $\frac{Q}{mass g}$ heavy astron = $\frac{Q'}{TR_{fe}^2 f_{pellet}f}$ = $\frac{Q'}{TR_{fe} f_{pellet}}$ Someward = $\frac{Q'}{TR_{fe} f_{pellet}}$ The specific power = $\frac{Q'}{TR_{fe} f_{pellet}}$

7- enrichment

ff- fishionable fuel

nf- non- "

M- moleculor weight