GroupRepresentation 13

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年12月22日

$\mathbb{R}^{OB}\mathbb{E}M$ I Compute the characters of $\operatorname{Sym}^k V$ and $\bigwedge^k V$.

SOUTION. Assume $\{v_i: 1 \leq i \leq n\}$ is a basis of V, assume $\varphi(g)$ has characters $\{\lambda_i: 1 \leq i \leq n\}$. Then $\left\{\sum_{\sigma \in S_k} \bigotimes_{i=1}^k v_{\tau\sigma(i)}: \tau \in \mathcal{A}\right\}$ is a basis of $\operatorname{Sym}^k V$, where $\mathcal{A} = \left\{f \in \{1, \cdots, n\}^{\{1, 2, \cdots, k\}}: f \text{ is injection}\right\}$. And $\left\{\sum_{\sigma \in S_k} \prod_{i=1}^k \lambda_{\tau\sigma(i)}: \tau \in \mathcal{A}\right\}$ are it's characters. For the same reason, we get $\left\{\sum_{\sigma \in S_k} \bigotimes_{i=1}^k (-1)^{\operatorname{sgn}\sigma} v_{\tau\sigma(i)}: \tau \in \mathcal{A}\right\}$ is a basis of $\bigwedge^k V$. And $\left\{\sum_{\sigma \in S_k} (-1)^{\operatorname{sgn}\sigma} \prod_{i=1}^k \lambda_{\tau\sigma(i)}: \tau \in \mathcal{A}\right\}$ are it's characters

ROBEM II Find the decomposition of the reperesentation $V^{\otimes n}$ using character theory.

SOUTON. Assume $V^{\otimes n} = U^{\oplus a_n} \oplus U'^{\oplus b_n} \oplus V^{\oplus c_n}$. And $V \otimes V = U \oplus U' \oplus V$. Now we try to caculate a_n, b_n, c_n . Since $U \otimes V \cong V$ and $U' \otimes V \cong V$, we get

$$V^{\otimes n+1} = V^{\otimes n} \otimes V = (U^{\oplus a_n} \oplus U'^{\oplus b_n} \oplus V^{\oplus c_n}) \otimes V \cong U^{\oplus c_n} \oplus U'^{\oplus c_n} \oplus V^{a_n+b_n+c_n}$$

So we get

$$\begin{cases} a_{n+1} = c_n \\ b_{n+1} = c_n \\ c_{n+1} = a_n + b_n + c_n \end{cases}$$

Then $c_{n+2}=c_{n+1}+2c_n$. Since $c_1=c_2=1$, we get $c_n=\frac{2^n-(-1)^n}{3}$. Thus $a_n=b_n=\frac{2^{n-1}-(-1)^{n-1}}{3}$. \square