

Malware Detection Systemusing Machine Learning Techniques

Under the guidance of

Dr. Inadyuti Dutt,
Asst. Prof., Dept. of Computer Applications

Presented By-

Arpita Chowdhury(11571021002) Ankita Poria(11571021009) Ankita(11571021013) Shilpa Das(11571021017)

CONTENTS

INTRODUCTION

Malicious software or malwares are programs that are created to harm, interrupt or damage computers, networks and other resources associated with it.

Malwares are transferred in computers without the knowledge of its owner. Mostly the medium used to spread malwares are networks and portable devices.

A lot of malware detectors have been created, the effectiveness of these detectors depend upon the techniques being used.

OBJECTIVE

The main objective of the project is to detect the malware and classify its type once detected. Malwares exist in different forms, they are broadly categorized in following classes. They are not mutually exclusive although many of them exist in more than one class.

Tools and Environment Used

Hardware Requirement:

Device :Laptop, Smart Phones or Desktop Computer

Processor: core i3 3rd Gen (minimum) and above

RAM: 4GB(minimum) and above

Hard disk: 100 GB (minimum) and above

Software Requirement:

Operating System: Windows, Linux – Ubuntu

Platforms: Jupyter, Spyder, Google Collab,

Anaconda prompt, Virtual Box

Languages: Python

Web browsers: Chrome, Firefox

FUNCTIONAL MODULES

MODULE DESCRIPTION

Data Extraction Module

• This module would extract the dataset by converting the dataset (.xlsx) to.csv file.

Data Pre-processing Module

- Collecting necessary information to model or account for noise.
- Strategies for handling missing data fields.

Data Reduction Module

• Finding useful features to represent the data depending on the goal of the task.

Data Mining
Algorithm Module

Selecting method(s) to be used for searching for patterns in the data.

Data Interpretation Module

- Consolidating discovered knowledge.
- Testing the unknown data with the proposed model.

Dataset Used

- UNSW NB-15 data set has been used University of New South Wales, Australia comprising of malwares that were designed to intrude the university system
- The raw network packets of the UNSW-NB 15 dataset was created by the IXIA PerfectStorm tool in the Cyber Range Lab of UNSW Canberra for generating a hybrid of real modern normal activities and synthetic contemporary attack behaviours.
- ☐ This dataset has nine types of attacks, namely, Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms.

Features of the dataset are:

• UNSW-NB15 dataset consists of 49 features that can be classified into four groups: Flow, Basic, Content and Time. There are some more features that are regarded as the "general purpose" and "connection-based features".

Sl. No.	Feature (s)	Description		
1	Srcip	Source IP address		
2	Sport	Source port number		
3	Dstip	Destination IP address		
4	Dsport	Destination port number		
5	Proto	Transaction protocol		

Flow-Based Features

Sl. No.	Feature (s)	Description
6	State	The state and its dependent protocol ACC, CLO, else (-)
7	Dur	Record total duration
8	Sbytes	Source to destination bytes
9	Dbytes	Destination to source bytes
10	Sttl	Source to destination time to live
11	Dttl	Destination to source time to live
12	Sloss	Source packets retransmitted or dropped
13	Dloss	Destination packets retransmitted or dropped
14	Service	http, ftp, ssh, dns,, else(-)
15	Sload	Source bits per second
16	Dload	Destination bits per second
17	Spkts	Source to destination packet count
18	Dpkts	Destination to source packet count

Basic Features

Sl. No.	Feature (s)	Description	
19	Swin	Source TCP window advertisement	
20	Dwin	Destination TCP window advertisement	
21	Stepb	Source TCP sequence number	
22	Dtcpb	Destination TCP sequence number	
23	Smeansz	Mean of the flow packet size transmitted by the src	
24	Dmeansz	Mean of the flow packet size transmitted by the dst	
25	Trans_depth	the depth into the connection of http request/response transaction	
26	Res_bdy_len	The content size of the data transferred from the server's http service	

Content Feature

Sl. No.	Feature (s)	Description
27	Sjit	Source jitter (mSec)
28	Djit	Destination jitter (mSec)
29	Stime	Record start time
30	Ltime	Record last time
31	Sintpkt	Source inter-packet arrival (mSec)
32	Dintpkt	Destination inter-packet arrival time (mSec)
33	Tcprtt	The sum of 'synack' and 'ackdat' of the TCP
34	Synack	The time between the SYN and the SYN_ACK packets of the TCP
35	Ackdat	The time between the SYN_ACK and the ACK packets of the TCP

Time based Feature

Feature (s)	Description
is_sm_ips_ ports	If source equals to destination IP addresses and port numbers are equal, this variable takes value 1 else 0
ct_state_tt l ct_flw_htt p_mthd	Number for each state according to specific range of values for source/destination time to live Number of flows that has methods such as Get and post in http service
Is_ftp_logi	If the ftp session is accesses by user and password then 1 else 0
ct_ftp-cmd	Number of flows that has a command in ftp session

General Purpose Feature

Feature (s)	Description
ct_srv_src	Number of connections that contain the same service and source address
	in 100 connections
ct_srv_dst	Number of connections that contain the same service and destination
	address in 100 connections according to the last time
ct_dst_ltm	No. of connections of the same destination address in 100 connections
	according to the last time
ct_src_ltm	No. of connections of the same source address in 100 connections
	according to the last time
ct_src_dport_ltm	No of connections of the same source address (1) and the destination port
	in 100 connections according to the last time
ct_dst_sport_ltm	No of connections of the same destination address and the source port in
	100 connections according to the last time
ct_dst_src_ltm	No of connections of the same source and the destination address in 100
	connections according to the last time

Connection-based Feature

Schematic / Flow Diagram

Data Extraction Module

This module module would extract the dataset by converting the dataset (.xlsx) to.csv file. It would focus on the Datasets by creating a target data set: selecting a data set, or focusing on a subset of variables, or data samples, on which discovery is to be performed. (malware.csv by removing comma, semi-colon and blank spaces)


```
import pandas as pd
training_df =pd.read_csv ("UNSW_NB15_training-set.csv")
print(training_df)
                                        id
                                                 dur proto service state
                                                                           spkts
                                                                                  dpkts
                                                                                         sbytes
                                                                                                 dbytes
                                            0.000011
                                                       udp
                                                                      INT
                                                                                             496
                                                                                                       0
                              0
                                            0.000008
                                                       udp
                                                                                           1762
                                                                      INT
                              2
                                            0.000005
                                                       udp
                                                                      INT
                                                                                           1068
                                            0.000006
                                                       udp
                                                                      INT
                                                                                            900
                                                       udp
                                                                      INT
                                                                                           2126
                                            0.000010
                              82327
                                     82328
                                            0.000005
                                                       udp
                                                                      TNT
                                                                                                       0
                                                                                             104
                              82328
                                     82329
                                                       tcp
                                                                      FIN
                                            1.106101
                                                                                           18062
                                                                                                     354
                              82329
                                     82330
                                            0.000000
                                                       arp
                                                                      INT
                                                                                             46
                              82330
                                     82331
                                            0.000000
                                                       arp
                                                                      INT
                                                                                             46
                              82331
                                     82332
                                            0.000009
                                                       udp
                                                                      INT
                                                                                             104
                                                         ct dst ltm
                                                                     ct src dport ltm ct dst sport ltm
                                              rate
                              0
                                      90909.090200
                              1
                                     125000.000300
                              2
                                     200000.005100
                              3
                                     166666.660800
                              4
                                     100000.002500
                              82327
                                     200000,005100
                              82328
                                         24.410067
                              82329
                                          0.000000
                              82330
                                          0.000000
                              82331
                                     111111.107200
                                     ct_dst_src_ltm is_ftp_login ct_ftp_cmd ct flw http mthd
                              0
```

Data Pre-Processing Module

This module comprise of the following tasks:

- * Removal of noise or outliers.
- Collecting necessary information to model or account for noise.
- **Strategies for handling missing data fields.**

9.546604

1.369273

ct_srv_src

ct state ttl

dtype: float64

synack 0.000441 ackdat 0.000080 smean 65,000000 dmean 44.000000 trans depth 0.000000 response body len 0.000000 ct srv src 5.000000 ct state ttl 1.000000 dtype: float64

[15] training df[['dur', 'spkts', 'dpkts', 'sbytes', 'dbytes', 'rate', 'sttl', 'dttl', 'sload', 'dload']].mode() dur spkts dpkts sbytes dbytes rate sttl dttl 0 111111.1072 254 0.000009 [16] training df[['sloss', 'dloss', 'sinpkt', 'dinpkt', 'sjit', 'djit', 'swin', 'stcpb', 'dtcpb', 'dwin', 'tcprtt']].mode() sloss dloss sinpkt dinpkt sjit djit swin stcpb dtcpb dwin tcprtt 🥻 0 0.009 0.0 0.0 0.0 255 training df[['synack', 'ackdat', 'smean', 'dmean', 'trans_depth', 'response_body_len', 'ct_srv_src', 'ct_state_ttl']].mode() synack ackdat smean dmean trans_depth response_body_len ct_srv_src ct_state_ttl 🥻 **STANDARD**

DEVIATION

ct state ttl

dtype: float64


```
training_df[['synack', 'ackdat', 'smean', 'dmean',
'trans_depth', 'response_body_len', 'ct_srv_src', 'ct_state_ttl']].var()
synack
                    5.020221e-03
ackdat
                     3.035298e-03
                    4.346060e+04
smean
dmean
                    5.982929e+04
trans depth
                    2.947641e-01
response_body_len
                    1.449094e+09
ct srv src
                    1,229945e+02
```

1.138890e+00

ct_srv_src

[7] influential_features = ['rate','ct_srv_src','ct_state_ttl','ct_dst_ltm','ct_src_dport_ltm'] import seaborn as sns sns.pairplot(training_df[influential_features], size=2) racconstruction () / usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) <seaborn.axisgrid.PairGrid at 0x7f5c8e3e4e10> 1.0 -@1000@1@001@0 @ (@ (@ 0.8 0.2 -**B**, 4 ---60

60 0

ct dst Itm

1.0

ct_srv_src

ct state ttl

20

ct src dport ltm

Data Reduction Module

This module takes care of the following procedures:

- ❖ Finding useful features to represent the data depending on the goal of the task.
- ❖ Using dimensionality reduction or transformation methods to reduce the effective number of variables under consideration or to find invariant representations for the data.

Data Standardization with Z - Score

Z-score is the standardized distance of an observation from its mean value. For the predicted value of the dependent variable Y, the Z-score is given by

$$Z = \frac{Y_i - \overline{Y}}{\sigma_v}$$

where Yi is the predicted value of Y for ith observation, Y is the mean or expected value of Y, sY is the variance of Y.

Z Score Normalization

```
import scipy.stats as stats
    training df=training df.select dtypes(include='number').apply(stats.zscore)
    print(training df.head())
             id
                      dur
                              spkts
                                        dpkts
                                                  sbytes
                                                            dbytes
                                                                        rate \
₽
    0 -1.732030 -0.213727 -0.124455 -0.151816 -0.043684 -0.087369
                                                                    0.057181
    1 -1.731988 -0.213728 -0.124455 -0.151816 -0.036308 -0.087369
                                                                    0.286565
    2 -1.731946 -0.213729 -0.124455 -0.151816 -0.040351 -0.087369
                                                                    0.791209
    3 -1.731904 -0.213729 -0.124455 -0.151816 -0.041330 -0.087369
                                                                    0.566923
    4 -1.731861 -0.213728 -0.124455 -0.151816 -0.034187 -0.087369
                                                                    0.118350
          sttl
                    dttl
                             sload
                                                     ct src dport ltm \
                                         ct dst ltm
       0.71944 -0.820395
                          0.643913
                                           -0.563660
                                                             -0.468312
       0.71944 -0.820395
                          4.539351
                                          -0.563660
                                                             -0.468312
       0.71944 -0.820395
                          4.391459
                                           -0.563660
                                                             -0.468312
       0.71944 -0.820395
                          2.977031
                                           -0.444868
                                                             -0.349115
       0.71944 -0.820395
                          4.369219
                                           -0.444868
                                                             -0.349115
       ct dst sport ltm ct dst src ltm is ftp login
                                                        ct ftp cmd \
              -0.450186
                              -0.477994
                                            -0.090857
                                                         -0.090617
    0
              -0.450186
                              -0.477994
                                            -0.090857
                                                         -0.090617
    2
              -0.450186
                              -0.390391
                                            -0.090857
                                                         -0.090617
    3
              -0.450186
                              -0.390391
                                            -0.090857
                                                         -0.090617
              -0.450186
                              -0.390391
                                            -0.090857
                                                         -0.090617
       ct flw http mthd
                         ct src ltm
                                     ct srv dst is sm ips ports
                                       -0.644190
    0
              -0.203143
                          -0.640033
                                                         -0.10607
    1
              -0.203143
                          -0.640033
                                       -0.644190
                                                         -0.10607
    2
              -0.203143
                          -0.640033
                                      -0.554273
                                                         -0.10607
              -0.203143
                          -0.522990
                                      -0.554273
                                                         -0.10607
                                                         -0.10607
              -0.203143
                          -0.522990
                                      -0.554273
```

[5 rows x 40 columns]

Pearson's Correlation Coefficient

- ❖ Pearson correlation coefficient measures the strength between the different variables and their relationships. Therefore, whenever any statistical test is conducted between the two variables, it is always a good idea for the person analyzing to calculate the value of the correlation coefficient to know how strong the relationship between the two variables is.
- ❖ Pearson's Correlation Coefficient formula is as follows,

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

Where,

- ightharpoonup r = Pearson Coefficient
- > n= number of the pairs of the stock
- \triangleright $\sum xy = \text{sum of products of the paired stocks}$
- $\sum x = \text{sum of the } x \text{ scores}$
- \triangleright $\sum y = \text{sum of the y scores}$
- $\Sigma x^2 = \text{sum of the squared } x \text{ scores}$
- $ightharpoonup \sum y^2 = \text{sum of the squared y scores}$

Example:

Let us consider two columns from the dataset and 10 rows to show that how Pearson's Correlation Coefficient works

spkts=X	sbytes=Y	X*X	Y*Y	X*Y
2	496	4	246016	992
2	1762	4	3104644	3524
2	1068	4	1140624	2136
2	900	4	810000	1800
2	2126	4	4519876	4252
2	784	4	614656	1568
2	1960	4	3841600	3920
2	1384	4	1915456	2768
1	46	1	2116	46
1	46	1	2116	46

r = Pearson Coefficient
N=10

$$\sum xy = 21052$$

 $\sum x = 18$
 $\sum y = 10572$
 $\sum x^2 = 34$
 $\sum y^2 = 16197104$
r = $(n (\sum xy) - (\sum x)(\sum y))/(\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]})$
r = $(10 * (21052) - (18)(10572))/(\sqrt{[10 *34 - (324)^2] * [10 * 16197104 - (111767184)^2)})$
r = 0.713573195

Pearson's Correlation Coefficient Heatmap

CODE:

import pandas as pdimport seaborn as sns import matplotlib.pyplot as plt figure(figsize=(80,60))sns.heatmap(training_df.corr(m ethod='pearson'), annot=True, annot_kws={'size':30}) plt.show()

Heatmap output of Pearson's Correlation Coefficient

Conclusion

The main intention of this project is to extract the necessary and relevant features for identifying the Malwares in a system

We have extracted the relevant features using Pearson's Coefficient. The features that are found to have higher coefficient (>=0.60) are:

- sloss , spkts
- Sbytes , spkts
- dloss , dpkts
- dbytes , dpkts
- Swin, dttl
- dwin, dttl
- is_sm_ips_ports , sinpkt
- sjit , dinpkt
- stcpb, swin
- dtcpb, swin
- dwin, swin
- stcpb, dwin
- dwin, dtcpb
- tcprtt , synack
- tcprtt, ackdat

- ct_srv_src , ct_dst_ltm
- ct_srv_src , ct_src_dport_ltm
- ct_srv_src , ct_src_sport_ltm
- ct_srv_src , ct_dst_src_ltm
- ct_srv_src , ct_src_ltm
- ct_srv_src , ct_srv_dst
- ct_state_ttl , ct_src_ltm
- ct_state_ttl , ct_srv_dst
- ct_dst_ltm , ct_srv_src
- ct_dst_ltm , ct_src_dport_ltm
- ct_dst_sport_ltm , ct_dst_src_ltm
- ct_src_ltm , ct_srv_dst
- ct_src_dport_ltm , ct_srv_src
- Ct_dst_ltm , ct_dst_sport_ltm
- Ct_dst_ltm , ct_dst_src_ltm
- Ct_dst_ltm, ct_src_dst

THANK YOU!

