Application of duality: The max-flow min-cut theorem

Outline:

- Define network flow graph
- Maximizing the flow on a graph
- Define minimum cut of a graph
- Max-flow as a linear program (LP)
- Take the dual of the max-flow LP
- Prove max-flow min-cut theorem using strong duality

Network flow graph

- Let G = (V, A) be a directed graph, where V denotes a set of vertices and A
 denotes a set of arcs (directed eges).
- Example: $V = \{s, t, u, v\}, A = \{su, sv, ut, vt\}.$

- For every arc $uv \in A$, there is an associated capacity $c_{uv} \ge 0$.
- Designate special vertices $s, t \in V$ called *source* and *sink*, respectively.

Flow on a graph

A flow is a nonnegative number assigned to every arc such that it doesn't exceed the capacity of the arc.

Definition of flow

- A valid *s-t* flow must obey the **flow in = flow out** rule.
- Denote the a flow by a vector $x \in \mathbb{R}^{|A|}$.
- $x_{uv} = \text{flow on arc } uv$.

$$x = \begin{bmatrix} x_{sv_1} \\ x_{sv_2} \\ x_{v_1 v_3} \\ x_{v_2 v_4} \\ x_{v_1 v_2} \\ x_{v_3 v_2} \\ x_{v_4 v_3} \\ x_{v_3 t} \\ x_{v_4 t} \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ 10 \\ 4 \\ 0 \\ 0 \\ 0 \\ 10 \\ 4 \end{bmatrix}$$

- The flow **into** v is $f_x^+(v) = \sum_{(v,u) \in A} x_{vu}$.
- The flow **out of** v is $f_x^-(v) = \sum_{(u,v) \in A} x_{uv}$.

Increasing flow: example

- If x is a valid flow, then $f_x^+(s) = f_x^-(t)$.
- We call the flow out of s, $f_x^+(s)$, the *total flow*.
- To increase the flow out of s, we must take into account the capacities of the subsequent edges.
- For example, we can increase the flow by 1.

• Total flow is now $f_x(s) = 11 + 4 = 15$.

Example

We can also increase the flow out of s by 4.

Total flow is now $f_x(s) = 11 + 8 = 19$.

Maximizing total flow

- How do we determine when we have reached the highest possible flow?
- How do we know that a different flow would give an even higher total flow?
- It is clear we cannot increase the current flow any further in this graph due to
 a bottleneck at t (and at s).

Bottleneck upper bounds the flow

- These bottlenecks can be defined more formally as *s-t* cuts.
- **Definition**: given a set of vertices $U \subset V$ such that $s \in U$ and $t \notin U$, the corresponding s-t cut is

$$\delta^+(U) := \{(u, v) \in A : u \in U, v \notin U\}.$$

- The notation $\delta^+(U)$ means "edges leaving U".
- **Definition**: the capacity of a cut $\delta^+(U)$ is given by the sum of capacities of all arcs in $\delta^+(U)$.

$$c(\delta^+(U)) := \sum_{uv \in \delta^+(U)} c_{uv}$$

Notice: the total flow on a graph cannot exceed the capacity of any s-t cut.

Cuts and bottlenecks: example

Let $U := \{s, v_1, v_2, v_3, v_4\} \subset V$. Then $\delta^+(U) = \{v_3t, v_4t\} \subset A$.

The capacity $c(\delta^+(U))$ of the cut is

$$c(\delta^+(U)) = c_{v_3t} + c_{v_4t} = 15 + 4 = 19.$$

Max-flow min-cut theorem

- The max-flow min-cut theorem: the max capacity s-t flow is equal to the minimum capacity s-t cut.
- A surprising fact: this can be proved using LP and strong duality!
- Start by writing the max flow LP as a linear program.

maximize
$$f_x^+(s)$$
 subject to $f_x^+(v) - f_x^-(v) = 0 \ \forall v \in V \setminus \{s,t\}$ $0 \le x \le c$

Vertex-arc incident matrix

Vertex-arc incident matrix. $M \in \mathbb{R}^{m \times n}$ where

$$m = |V| - 2$$
 $n = |A|$.

For all $i \in V \setminus \{s, t\}$ and $j \in A$.

$$M_{ij} = egin{cases} +1 & ext{if vertex } i ext{ is the tail of arc } j \ -1 & ext{if vertex } i ext{ is the head of arc } j \ 0 & ext{if vertex } i ext{ is not an endpoint of arc } j \end{cases}$$

Recall x_i denotes the flow assigned to arc j.

Let's look at Mx row-by-row. Fix a vertex $v \in \{1, ..., m\}$.

$$\operatorname{row}_v(Mx) = \sum_{uv \in A} x_{uv} - \sum_{vu \in A} x_{vu} = f_x^+(v) - f_x^-(v)$$

Vertex-arc incident matrix example

$$V = \{s, t, u, v\}$$

$$A = \{su, sv, ut, vt\}$$

rows of M:
$$i \in \{u, v\}$$

columns of M:
$$j \in \{su, sv, ut, vt\}$$

$$(11,10)$$
 u $(12,10)$ t $(6,4)$ v $(4,4)$

$$M = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} x = \begin{bmatrix} x_{su} \\ x_{sv} \\ x_{ut} \\ x_{vt} \end{bmatrix}$$

$$Mx = \begin{bmatrix} x_{su} - x_{ut} \\ x_{sv} - x_{vs} \end{bmatrix} = \begin{bmatrix} 10 - 10 \\ 4 - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Max-flow LP

Therefore we can write the constraint

$$f_x^+(v) - f_x^-(v) = 0 \ \forall v \in V \setminus \{s,t\}$$
 as $Mx = 0$.

For the objective, let $d \in \mathbb{R}^{|A|}$ be the indicator vector for arcs leaving s.

$$d^T x = f_x^+(s)$$
 $d_a = \begin{cases} 1 & \text{if } a \in \delta^+(s) \\ 0 & \text{otherwise} \end{cases}$

We get the following LP:

$$\begin{array}{ll}
\text{maximize} & d^T x \\
\text{subject to} & Mx = 0 \\
& 0 \le x \le c
\end{array}$$

Taking the dual of the max-flow LP

We can simplify the dual LP to the following.

$$\begin{array}{ll} \underset{y,z}{\mathsf{minimize}} & \sum_{uv \in A} c_{uv} z_{uv} \\ \mathsf{subject to} & y_s = -1 \\ y_t = 0 \\ y_u - y_v + z_{uv} \geq 0 \ \forall uv \in A \\ z \geq 0 \end{array}$$

Max-flow min-cut theorem via Strong duality

- We can check that the primal and dual LPs both have feasible solutions.
- **Strong duality** tells us they both have *optimal solutions* and their *optimal values* are equal, i.e.

$$opt(P) = opt(D).$$

- The max-flow min-cut theorem: the max capacity *s-t* flow is **equal** to the minimum capacity *s-t* cut.
- All that's missing is to show that the optimal value of (D) equals the capacity of the minimum s-t cut, i.e.

(claim) opt(D) =
$$c(\delta^+(W^*))$$
,

where $\delta^+(W^*)$ is the minimum capacity cut.

Proof of claim

Let $W^* \subset V$ be such that $\delta^+(W^*)$ is a minimum capacity s-t cut.

We begin by showing $opt(D) \le c(\delta^+(W^*))$.

Construct a feasible (\hat{y}, \hat{z}) by

$$\hat{y}_u = \begin{cases} -1 & \text{if } u \in W^*, \\ 0 & \text{otherwise;} \end{cases}$$
 $\hat{z}_{uv} = \begin{cases} 1 & \text{if } uv \in \delta^+(W^*), \\ 0 & \text{otherwise.} \end{cases}$

It's simple to check that (\hat{y}, \hat{z}) is feasible, and thus, $opt(D) \le obj(\hat{y}, \hat{z})$.

The objective function of (D) evaluates to:

$$\underbrace{\operatorname{obj}(\hat{y},\hat{z})}_{\geq \operatorname{opt}(D)} = \sum_{uv \in A} c_{uv} \hat{z}_{uv} = \sum_{uv \in \delta^+(W^*)} c_{uv} = c(\delta^+(W^*)).$$

Thus $opt(D) \le c(\delta^+(W^*))$, as required.

Proof of claim

Now we show that $c(\delta^+(W^*)) \leq \operatorname{opt}(D)$.

Let (y^*, z^*) be an optimal solution to (D), i.e.,

$$\begin{cases} (y^*, z^*) & \text{is feasible for} \quad (D), \\ obj(y^*, z^*) = opt(D). \end{cases}$$

Let $\bar{W}:=\{u\in V:\ y_u^*\leq -1\}.$ This is a valid s-t cut since $s\in \bar{W},\ t\notin \bar{W}.$

We just need to show that $obj(y^*, z^*) \ge c(\delta^+(\bar{W}))$.

Why? We assumed $\delta^+(W^*)$ is a min capacity s-t. This gives the rightmost inequality

$$\underbrace{\mathrm{obj}(y^*,z^*)}_{\mathrm{=opt}(\mathrm{D})} \geq c(\delta^+(\bar{W})) \geq c(\delta^+(W^*)),$$

as required.

Last part of the proof!

To show that $\operatorname{obj}(y^*,z^*) \geq c(\delta^+(\bar{W}))$, we write:

$$\mathrm{obj}(y^*,z^*) = \sum_{uv \in \delta^+(\bar{W})} c_{uv} z_{uv} + \sum_{uv \notin \delta^+(\bar{W})} c_{uv} z_{uv}.$$

Assume that (y^*, z^*) is integral (we skip the reason why this is the case).

Recall $\bar{W} := \{u \in V : y_u^* \le -1\}.$

Thus $\forall uv \in \delta^+(\bar{W})$, $y_v^* > -1$, and since y_v^* is an integer, $y_v^* \ge 0$.

$$z_{uv}^* \ge \underbrace{y_v^*}_{\ge 0} - \underbrace{y_u^*}_{\le -1} \ge 1 \quad \forall uv \in \delta^+(\bar{W})$$

Since (y^*, z^*) is feasible, $z_{uv}^* \ge 0 \ \forall uv \in A$. Therefore

$$\mathrm{obj}(y^*,z^*) = \underbrace{\sum_{uv \in \delta^+(\bar{W})} c_{uv} z_{uv}^*}_{\geq c(\delta^+(\bar{W}))} + \underbrace{\sum_{uv \notin \delta^+(\bar{W})} c_{uv} z_{uv}^*}_{\geq 0}.$$