CAE simulation 4

Figure 1. Overload protection device

$$T = 1858 [N]$$
 $A_x = 0$, $A_y = -743.4 [N]$

Figure 2. Ansys model analysis

1. Reaction force at pin A

Figure 3. Reaction force at pin A

$$A_x = 0$$
, $A_y = -743.31 [N]$

As can be seen in the **Figure 2**, reaction force value at pin A is same with theoretical value.

2. Mesh convergence test

1) mesh size : 5 [mm]

2) mesh size : 4 [mm]

3) mesh size : 3 [mm]

4) mesh size : 2 [mm]

5) mesh size : 1 [mm]

As can be seen in the figures above, unlike deformation values, equivalent stress values increase as mesh size decreases. This is because as mesh size gets smaller, the more stress concentration at specific point occurs. Furthermore, skewness of mesh used in this simulation is under 0.9, which indicates that the quality of mesh is good enough to use.

x Sheet ✓ Solid	✓ Sold-Surface			
Error Check	Quality Criterion	Warning Limit	Error (Failure) Limit	Worst
	Max Aspect Ratio	Default (5)	Default (1000)	30.863
	Min Element Quality	Default (0.05)	Default (5e-04)	0.024
	Min Jacobian Ratio (Corner Nodes)	Default (0.05)	Default (0.025)	0.26
	Min Jacobian Ratio (Gauss Points)	Default (0.05)	Default (0.025)	0.384
	Max Element Edge Length	Default (65.057 mm)	Default (130.114 mm)	6 mm
	Max Corner Angle	Default (150 °)	Default (170 °)	137.77 °
	Min Element Edge Length	Default (0.651 mm)	Default (0.065 mm)	0.303 mm
	Max Skewness	Default (0.9)	Default (0.999)	0.531
	Min Tet Collapse	Default (0.1)	Default (1e-03)	NA .
	Max Warping Angle	Default (20 °)	Default (30 °)	NA .

Figure 4. Mesh quality worksheet

3. Thickness of device to prevent material yield (safety factor = 3)

Tensile yield strength of material used in this simulation is 280 [MPa]. To consider the safety factor over 3 in the aspect of material yield, thickness of it has to be increased. Stress concentration factor K is considered with 1.9.

$$I = \frac{t \cdot (0.02)^{3}}{12}$$

$$\sigma_{max} = \frac{Mc}{I} = \frac{22.3 \cdot 0.01}{\frac{t \cdot (0.02)^{3}}{12}}, \quad \sigma_{max}' = K \cdot \sigma_{max} = 1.9 \cdot \sigma_{max} = \frac{1.9 \cdot 22.3 \cdot 0.01}{\frac{t \cdot (0.02)^{3}}{12}} = \frac{5.0844}{t \cdot (0.02)^{3}}$$

$$\frac{\sigma_{yield}}{\sigma_{max}'} = \frac{280 \cdot 10^{6}}{\frac{5.0844}{t \cdot (0.02)^{3}}} \ge 3.0 \text{ (safety factor)}$$

$$t \ge 6.84 \text{ [mm]}$$