IV

Algorithmes de calcul de Tri Topologique

Tri topologique: motivation

 Chercher dans un ensemble de tâches à exécuter liées par une relation de précédence (exemple : un MakeFile), un séquencement qui respecte cette relation

• Les graphes sont utilisés pour représenter cette relation de précédence (ils forment la classe des graphes orientés acycliques)

 Une séquence respectant cette précédence est un tri topologique

Algorithme du tri topologique

Il y a deux algorithmes pour faire un tri topologique

1) On cherche un évènement qui peut se produire. On enregistre cet évènement puis on recommence

```
Tri_topologique_1 (graphe G )
   TANT-QUE resteSommet(G) FAIRE
        chercher sommet s tq degréEntrant(s) = 0
        enregistrer s
        supprimer tous arcs sortant de s
        supprimer s
   FIN-TANT-QUE
```

2) On utilise le parcours en profondeur

```
Tri_topologique_2 (graphe G )
DFS_run(G)
Ordonner les sommets suivant dateFin(s) par ordre décroissant
```

On considère le graphe de précédence suivant

- degreEntrant(A) = 0
- Enregistrement et supression du sommet A
- Supression des arcs partant de A

- degreEntrant(D) = 0
- Enregistrement et supression du sommet D
- Supression des arcs partant de D

- degreEntrant(F) = 0
- Enregistrement et supression du sommet F
- Supression des arcs partant de F

- degreEntrant(C) = 0
- Enregistrement et supression du sommet C
- Supression des arcs partant de C

- degreEntrant(B) = 0
- Enregistrement et supression du sommet B
- Supression des arcs partant de B

- degreEntrant(E) = 0
- Enregistrement et supression du sommet E
- Supression des arcs partant de E

- Fin de l'algorithme
- On a obtenu un tri topologique du graphe de départ
- Tous les arcs sont orientés vers l'avant

• On considère maintenant : la matrice d'adjacence du même graphe de précédence

	A	B	C	D	E	F
A	0	1	0	1	0	0
B	0	0	0	0	1	0
C	0	1	0	0	0	0
D	0	0	0	0	1	0
E	0	0	0	0	0	0
F	0	0	1	0	1	0
						1

- degreEntrant(A) = $0 \Leftrightarrow$ colonne 1 ne contient que des 0
- Suppression du sommet A ⇔ suppression colonne 1

- degreEntrant(D) = $0 \Leftrightarrow$ colonne 3 ne contient que des 0
- Suppression du sommet D ⇔ suppression colonne 3
- Suppression des arcs partant de D ⇔ suppression ligne 3

- degreEntrant(F) = $0 \Leftrightarrow$ colonne 4 ne contient que des 0
- Suppression du sommet $F \Leftrightarrow$ suppression colonne 4
- Suppression des arcs partant de $F \Leftrightarrow$ suppression ligne 4

$$\begin{cases}
B & C & E & F \\
B & 0 & 0 & 1 & 0 \\
C & 1 & 0 & 0 & 0 \\
E & 0 & 0 & 0 & 0 \\
F & 0 & 1 & 1 & 0
\end{cases}$$

$$A \longrightarrow D$$

$$F$$

- $degreEntrant(C) = 0 \Leftrightarrow colonne 2 ne contient que des 0$
- Suppression du sommet C ⇔ suppression colone 2

$$\begin{cases}
B & C & E \\
B & 0 & 0 & 1 \\
C & 1 & 0 & 0 \\
E & 0 & 0 & 0
\end{cases}$$

$$A \longrightarrow E$$

$$F \longrightarrow C$$

- degreEntrant(B) = $0 \Leftrightarrow$ colonne 1 ne contient que des 0
- Suppression du sommet $B \Leftrightarrow suppression colonne 1$

- degreEntrant(E) = $0 \Leftrightarrow$ colonne 2 ne contient que des 0
- Suppression du dernier sommet E ⇔ dernière case 0
- On a obtenu le même tri topologique

 $egin{pmatrix} m{E} \ m{E} \ m{0} \end{pmatrix}$

- Deuxième algorithme de tri topologique
- On considère maintenant un parcours en profondeur sur le même graphe de précédence.

- On aligne les sommets du graphe sur une ligne suivant les dates de fin dans l'ordre décroissant
- On obtient alors un tri topologique du graphe

V

Graphes eulériens &

Graphes hamiltoniens

Problème des 7 ponts

« Lors d'une promenade, est-il possible de passer sur tous les ponts de la ville de Königsberg une et une seule fois ? »

« Existe-t-il dans le graphe, un chemin où les arêtes sont différentes deux à deux et qui revient sur le sommet de départ ? »

Lemme des poignées de mains

Théorème - (lemme des poignées de main)

- i. La somme de tous les degrés est un nombre pair.
 C'est le double du nombre d'arêtes
- ii. Le nombre de sommets de degré impair est pair.

Démonstration (i)

Chaque arête est comptée deux fois :
 Une fois pour le sommet de départ.
 Une fois pour le sommet d'arrivée.

Lemme des poignées de mains

Démonstration (ii)

- Soit S_{total} le nombre de sommets du graphe
- Soit S_{imp} le nombre de sommets de degré impair Somme des degrés $= \sum_{i=1}^{S_{imp}} degImp_i + \sum_{i=S_{imp}+1}^{S_{total}} degPaire_i$

$$\sum_{i=1}^{S_{imp}} (2k_i + 1) + \sum_{i=S_{imp}+1}^{S_{total}} (2k_i)$$

$$= 2\sum_{i=1}^{S_{total}} (k_i) + S_{imp}$$

Somme des degrés est paire ⇒ S_{imp} est paire

Lacet de Jordan

- Dans un graphe non orienté, on dit qu'un chemin $(v_0, v_1, v_2, ..., v_{k-1}, v_k)$ est un :
 - Chemin de Jordan si les arêtes qu'il emprunte sont distinctes deux à deux :

$$\forall i, j \in \{0, ..., k-1\}, i \neq j \Rightarrow (v_i, v_{i+1}) \neq (v_j, v_{j+1})$$

Lacet de Jordan si c'est un chemin de Jordan

avec
$$v_0 = v_k$$

 Cycle de Jordan si c'est un lacet de Jordan et si les sommets intermédiaires sont distincts 2 à 2

$$\forall i, j \in \{1, ..., k-1\}, i \neq j \Rightarrow v_i \neq v_j$$

Graphe Eulérien

- On dit qu'un graphe non orienté est :
 - Eulérien s'il existe un lacet de Jordan contenant toutes les arêtes du graphe.

 Semi-Eulérien s'il existe un chemin de Jordan contenant toutes les arêtes du graphe (mais pas de lacet de Jordan).

 Pré-eulérien ou chinois s'il existe un lacet contenant au moins une fois chacune des arêtes du graphe.

Théorème de caractérisation

- Théorème de caractérisation :
 - Un graphe connexe est Eulérien ssi tous ses sommets sont de degré paire
 - Un graphe connexe est Semi-Eulérien ssi il ne contient que 2 sommets de degré impaire

- Eulérien ⇒ Tous les sommets ont un degré pair
 - Eulérien ⇒ un lacet de Jordan qui passe par toutes les arrêtes.
 - En suivant ce lacet on passe par tous les arcs une et une seul fois
 - On suit ce lacet en enregistrant pour :
 - Le sommet départ :

l'arc sortant $\Rightarrow DEG + 1$

Les sommets intermédiaires :

l'arc entrant et l'arc sortant $\Rightarrow DEG + 2$

Le sommet d'arrivée :

l'arc entrant $\Rightarrow DEG + 1$

- Cycle \Rightarrow sommet départ = sommet arrivée \Rightarrow DEG + 1 + 1
- Tous les degrés obtenus sont paires

- Semi-eulérien ⇒Exactement 2 degrés impairs
 - On applique la même méthode
 - Semi-eulérien ⇒ sommet départ ≠ sommet arrivée
 - Si un sommet n'est ni le départ ni le sommet d'arrivée :
 - A chaque occurrence de ce sommet dans le chemin on fait

$$DEG + 2$$

- Le degré obtenu pour ce sommet est paire
- Pour le sommet de départ (resp. d'arrivé) :
 - On fait DEG + 1 au départ (resp. a l'arrivée)
 - A chaque occurrence de ce sommet dans le chemin on fait

$$DEG + 2$$

Le degré obtenu pour ce sommet est impaire

$$DEG = (nbOccurrences \times 2) + 1$$

Lemme :

Si tous les sommets ont un degré pair, on peut toujours étendre un chemin de Jordan vers un lacet de Jordan

Démonstration :

• Soit un chemin de Jordan de u a v si $u \neq v$ alors :

On a emprunter un nombre impaire arêtes de v

- Puisque par hypothèse v a un nombre paire d'arêtes, il reste au moins une arrête qui n'appartient pas au chemin de Jordan.
- Donc $u \neq v \Rightarrow$ on peut étendre le chemin
- Or il y a un nombre fini d'arêtes ⇒ extension pas infini
- On finit donc par avoir u = v
- On peut toujours étendre ce chemin vers un lacet de Jordan

- Tous les sommets ont un degré pair ⇒ Eulérien
- Raisonnements par récurrence sur n le nombre d'arêtes
 - Pour n = 1, il n'existe que deux graphes :

- Seul le premier n'a que des degrés paires et il est Eulérien
- Supposons la proposition vraie pour les graphes à n-1 arêtes
 - D'après le lemme on peut construire un lacet de Jordan
 - Les arêtes n'appartenant pas au lacet forment des comp. connexes

- Dans ces composantes tous les degrés sont paires
- Par hypothèse de récurrence elles sont Eulériennes
 - Soit L_i les lacets de Jordan les couvrant totalement
- u₀ L₀ u₀ u₁ L₁ u₁ u₂ L₂ u₂ u₃ L₃ u₃ u₄ L₄ u₄ u₅ L₀ u₅ u₀
 Forme un lacet de Jordan qui couvre tout le graphe
 ⇒ le graphe est Eulérien

Lemme :

Si exactement 2 sommets u et v ont un degré impair, on peut toujours étendre un chemin de Jordan partant de u vers un chemin de Jordan reliant u et v

- Démonstration :
 - Soit un chemin de Jordan de u a w
 - si $w \neq v$ et $w \neq u$ alors : On a emprunté un nombre impair d'arêtes de w qui avait par hypothèse un nombre pair d'arêtes.
 - si w = u: On a emprunté un nombre pair d'arêtes de u qui avait par hypothèse un nombre impair d'arêtes.
 - Dans les 2 cas il reste au moins une arête qui n'appartient pas au chemin de Jordan. ⇒ on peut étendre le chemin
 - Or il y a un nombre fini d'arêtes ⇒ extension pas infinie
 - On finit donc par avoir w = v et donc chemin de Jordan reliant u et v

- 2 sommets (u et v) avec un degré impair \Rightarrow Semi-Eulérien
- Raisonnements par récurrence sur *n* le nombre d'arêtes
 - Pour n = 1, il n'existe que deux graphes :

- Seul le deuxième a deux degrés impairs et il est Semi-Eulérien
- Supposons la proposition vraie pour les graphes à n-1 arêtes
 - D'après le lemme on peut construire un chemin de Jordan
 - Les arêtes n'appartenant pas au chemin forment des comp. connexes

- Par hypothèse de récurrence elles sont Eulériennes
- Soit L_i les **lacets** de Jordan les couvrant totalement
- u L₀ u u₁ L₁ u₁ u₂ L₂ u₂ u₃ L₃ u₃ u₄ L₄ u₄ v L₀ v
 Forme un chemin de Jordan qui couvre tout le graphe
 ⇒ le graphe est Eulérien

Les 7 ponts : La solution

- Degré(A) = 3
- Degré(B) = 5
- Degré(C) = 3
- Degré(D) = 3
- Des théorèmes précédents on peut déduire que :
 - Königsberg n'est pas un graphe Eulérien
 - Königsberg n'est pas un graphe Semi-Eulérien
- Il n'y a pas de promenade possible
- Et ce même si on ne revient pas au point départ

Graphe Hamiltonien

- On dit qu'un graphe non orienté connexe est :
 - **hamiltonien** s'il existe un cycle de Jordan contenant toutes les sommets du graphe.
 - semi-hamiltonien s'il existe un chemin de Jordan élémentaire contenant toutes les sommets du graphe (mais pas de cycle de Jordan).

Rappel :

- Un chemin $(v_0, v_1, v_2, ..., v_{k-1}, v_k)$ est élémentaire ssi $\forall i, j, v_i \neq v_j$
- Un cycle est toujours élémentaire

Exemple

Les graphes suivants sont :

Non Hamiltonien

Semi Hamiltonien

Hamiltonien

Caractérisation

- Contrairement au cas des graphes eulériens : on n'a encore trouvé aucune condition nécessaire et suffisante assurant qu'un graphe soit hamiltonien ou semi-hamiltonien.
- Il existe, cependant, de nombreux théorèmes donnant des conditions suffisantes.

Caractérisation

- Théorème de caractérisation de O. Ore :
 - Soit G un graphe simple possédant n>2 sommets :

 $\forall u, v \text{ non adjacents, } degré(u) + degré(v) \ge n$

 \Rightarrow

Le graphe G est Hamiltonien

- Rappel :
 - Un graphe est simple s'il ne contient pas de boucle et que deux sommets sont reliés par au plus une arête.
 - La propriété intéressante d'un graphe simple : degré(s) = nbVoisin(s)

Caractérisation

- Corollaire de Dirac :
 - Soit G un graphe simple possédant n>2 sommets :

$$\forall u, degré(u) \ge n/2$$

 \Rightarrow

Le graphe G est Hamiltonien