Gradient Descent

Learning Rate, Feature Engineering, Polynomial Regression

. Convergence test

- Learning curve
- Automatic Convergence test

. Learning rate (α)

Feature Engineering

Feature Scaling

Encoding Categorical Variables

Creating New Features

Employee_ID	Experience (Years)	Education Level	Age	Job Role	City	Working Hours/Week	Salary (₹)
1	2	Bachelor's	25	Engineer	New Delhi	40	60000
2	5	Master's	30	Manager	Mumbai	45	90000
3	8	PhD	35	Scientist	Banglore	50	120000
4	1	Bachelor's	22	Engineer	Hyderabad	38	55000
5	10	Master's	40	Manager	Kolkata	48	110000
6	NaN	PhD	45	Scientist	New Delhi	42	130000

. Encoding Categorical Variables

- Ordinal Encoding
- One-Hot Encoding
- Target Encoding

. Ordinal Encoding

Maintains Order: PhD (2) > Master's (1) > Bachelor's

(0), which reflects real-world hierarchy.

Reduces Complexity: Converts categorical values into

numerical values for linear regression models.

Increasing numbers to different levels of education

• Education Level (Bachelor's, Master's, PhD) \rightarrow (0, 1, 2)

Employee_ID	Experience (Years)	Education Level (encoded)	Age	Job Role City		Working Hours/Week	Salary (₹)
1	2	0	25	Engineer	New Delhi	40	60000
2	5	1	30	Manager	Mumbai	45	90000
3	8	2	35	Scientist	Banglore	50	120000
4	1	0	22	Engineer	Hyderabad	38	55000
5	10	1	40	Manager	Kolkata	48	110000
6	NaN	2	45	Scientist	New Delhi	42	130000

. One-Hot Encoding

Works well for categories without a meaningful order (e.g., Job Role, City).

Ensures that categorical variables don't mislead linear regression models.

Prevents the model from assuming a ranking when there isn't one.

- One-Hot Encoding is used when categorical values do not have a meaningful order.
- Job role:
- Engineer [1 0 0], Manager [0 1 0], Scientist [0 0 1]

Employee_I D	Experience (Years)	Education Level	Age	Job_Engi neer	Job_Ma nager	Job_Sci entist	City	Working Hours/Wee k	Salary (₹)
1	2	Bachelor's	25	1	0	0	New Delhi	40	60000
2	5	Master's	30	0	1	0	Mumbai	45	90000
3	8	PhD	35	0	0	1	Banglore	50	120000
4	1	Bachelor's	22	1	0	0	Hyderabad	38	55000
5	10	Master's	40	0	1	0	Kolkata	48	110000
6	NaN	PhD	45	0	0	1	New Delhi	42	130000

Target Encoding

- Target encoding is an encoding technique where we replace categorical variables with the mean of the target variable
- Step 1: Compute the Mean Salary for Each City
- Step 2: Replace City with Its Corresponding Average Salary

City	Mean Salary (₹)
New Delhi	95000
Mumbai	90000
Banglore	120000
Hyderabad	55000
Kolkata	110000

Employee_ID	Experience (Years)	Education Level	Age	Job Role	City (encoded)	Working Hours/Week	Salary (₹)
1	2	Bachelor's	25	Engineer	95000	40	60000
2	5	Master's	30	Manager	90000	45	90000
3	8	PhD	35	Scientist	120000	50	120000
4	1	Bachelor's	22	Engineer	55000	38	55000
5	10	Master's	40	Manager	110000	48	110000
6	NaN	PhD	45	Scientist	95000	42	130000

. Creating New Features

- Seniority Level: If Experience (Years) > 7, create Is_Senior = 1, else 0
- Age Group: Convert Age into categories (Young: 20-30, Mid: 30-40, Senior: 40+)
- Work-Life Balance Score: Work_Hours_Per_Week / Age (higher values indicate more work pressure)

. Polynomial regression

$$f = \sqrt{x} + \frac{1}{2}$$

$$f = \sqrt{x} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2}$$

$$f = \sqrt{1} \times + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2}$$

$$f = \sqrt{1} \times + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2$$