

Aprendizaje

Temas a tratar:

- 1. Introducción
- 2. Tareas de aprendizaje
- 3. Modelos
- 4. Evaluación de modelos
- 5. Predicción
- 6. Clasificación
- 7. Clustering
- 8. Asociaciones
- 9. Técnicas de reducción de datos
- 10. Series temporales
- 11. Minería de texto
- 12. Detección de datos atípicos

1. Introducción

2. Tareas de aprendizaje

Supervisado - Clasificación

Regresión

No supervisado

Descriptivo

• Análisis exploratorio

• Agrupamiento (o Clustering)

- Correlaciones (y dependencias)- Asociaciones

Reducción de la dimensionalidad

2. Tareas de aprendizaje

Aprendizaje supervisado (predictivo)

Objetivo:

Crear una función capaz de <u>predecir</u> el valor correspondiente a cualquier objeto de entrada válida después de haber visto una serie de ejemplos (datos de entrenamiento).

- Existe conocimiento previo (tiene una variable de salida)
- El resultado de la función puede ser un valor numérico (<u>regresión</u>) o una etiqueta de clase (<u>clasificación</u>).

Aprendizaje no supervisado (descriptivo)

Objetivo:

Comprender los datos: la relación entre las variables y entre las instancias (ejemplos)

- No hay un conocimiento a priori (No tiene un atributo de salida)
- Comúnmente requiere un proceso posterior
- El resultado es:
 - Asociaciones y dependencias (variables categóricas)
 - Correlaciones (variables numéricas)
 - Agrupaciones (relaciones entre instancias)
 - ¿Qué variables le aportan al modelo?
 - ¿Que transformaciones me permiten reducir la dimensionalidad?

3. Modelos y evaluación de modelos

3. Modelos

Modelo*

Permiten comprender los datos, sus atributos y relaciones:

- Paramétricos
- No paramétricos

3. Paramétricos

Construyen la función que aproxima los datos de entrenamiento a la variable objetivo con un número fijo de parámetros

Por ejemplo, un algoritmo de regresión lineal tiene la forma:

$$a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

Modelos de regresión lineal (simple y múltiple)

Ventajas:

- Fáciles de entender
- Entrenamiento suele ser rápido

Desventajas:

- Limitar la complejidad del modelo generado.

3. No Paramétricos

No presuponen una forma concreta en el modelo a generar

Ventajas:

- Más flexibles y dando generalmente mejor resultado

- k-nearest neighbors
- Árboles de decisión
- Support Vector Machine

Desventajas:

- Requieren más datos para su entrenamiento y resultando más lentos
- Son más proclives al sobreentrenamiento y más difíciles de interpretar.

- ✓ Validación modelos:
- Miden la eficacia de un modelo

Validación cruzada (cross validation)

✓ Ajuste de un modelo

- Calcular los parámetros de un modelo
- y=a+bx, donde a y b son los parámetros

✓ Matriz de confusión:

		PREDICCIÓN			
		Positivo	Negativo		
REAL	Positivo	VP	FN		
	Negativo	FP	VN		

Clasificación

✓ Matriz de confusión:

Clasificación

 Exactitud: proporción de instancias identificadas correctamente entre todas las instancias

✓ Matriz de confusión:

Clasificación

✓ Tasa de errores: proporción de instancias identificadas incorrectamente entre todas las instancias

Funciones de valor residual (Regresión): Diferencia entre el valor predicho (o *score*) y el valor real.

Error medio cuadrado (Mean squared error) o MSE

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

Regresión

✓ Regresión lineal:

 Técnica estadística para predecir valores de una variable continua dependiente con base en valores de una variable independiente

✓ ¿Cuántos?

- ¿Cuantos twits vamos a recibir si existen por lo menos 10 influenciadores relevantes?
- ¿Cuántos email van abrir?

✓ Regresión lineal:

✓ Regresión lineal:

Regresión lineal:

✓ Regresión lineal:

✓ Técnicas:

- Regresion Lineal
 - Proceso estadístico para estimar las relaciones entre variables
 - Ayuda a entender cómo el valor de la variable dependiente varía al cambiar el valor de una de las variables independientes
 - Se ve afectado por los valores atípicos

- ✓ Maquinas de vectores de soporte
- **✓** Redes Neuronales

6. Clasificación

- ✓ Técnica que permite identificar una instancia a qué clase pertenece
- ✓ ¿Cuál categoría?
 - La imagen es un gato o un perro?
 - ¿El cliente es perfil de riesgo alto, medio o bajo?
 - ¿El twit es positivo, negativo o neutro?

6. Clasificación

✓ Técnicas:

- ✓ K-NN: K-vecinos más cercanos
 - Se basa en similitud (distancia)
 - Buen desempeño en instancias difíciles de explicar
 - Requiere gran cantidad de memoria
 - Se ve afectado por datos atípicos
- Regresión logística
 - Probabilidad de que una instancia pertenezca o no a una clase

✓ Naïve Bayes

- Se basa en probabilidades
- Es capaz de tener en cuenta las características que parecen insignificantes (características independientes)
- Permite seleccionar las mejores instancias
- Poca información de falsos positivos y negativos
- Usa solo valores categóricos
- Modelos eficientes y rápidos

6. Clasificación

✓ Técnicas:

✓ Arboles de decisión

- Divide el problema en partes
- Los modelos son fáciles de comprender
- Requieren definir criterio de parada (Prepoda, post-poda)
- Si se requiere postpoda requiere muchos recursos

Reglas de clasificación

- Modelos basados en reglas
- Fácil de comprender
- Características nominales
- Pueden ser utilizadas para identificar datos atípicos

✓ Maquinas de vectores de soporte

- Buscar un hiperplano que separe lo mejor posible las clases.
- Pueden usar muchos tipos de funciones del núcleo que permiten encontrar una separación no lineal de las clases

Redes Neuronales

- Gran capacidad de ser utilizada como un mecanismo de función de aproximación arbitraria que "aprende" a partir de datos observados
- No es fácilmente comprensible el por qué de su respuesta

7. Clustering (Agrupamiento)

- ✓ Técnica que permite clasificar de acuerdo con propiedades de grupos homogéneos (agrupación natural)
- ✓ ¿Cuáles grupos?
 - ¿Cuáles compradores tienen gustos similares?
 - ¿Cuáles temas se están hablando en redes sociales?
 - ¿Cuáles tiendas son similares?

7. Clustering

- ✓ Técnicas:
- ✓ K-medias
 - Se debe definir el número de grupos (k)
 - Se emplea el algoritmo de K-medias
 - Cada grupo debe ser analizado y etiquetado manualmente
- ✓ BDSCAN

- ✓ Hierarchical clustering
 - Agglomerative Clustering
 - Divisivo

Los resultados del hierarchical clustering pueden representarse como un árbol en el que las ramas representan la jerarquía con la que se van sucediendo las uniones de clusters

✓ SPECTRAL CLUSTERING

8. Asociaciones, dependencias o correlaciones

8. Asociaciones

Reglas de asociación (Apriori)

- ✓ Reglas accionables que son fáciles de entender y ofrecen conocimientos accionables.
- ✓ Ej: {colchón} → {almohada}
- Reglas triviales que son claras, pero dan algo de valor adicional.
- ✓ Ej: {zapatos} → {correa}
- Reglas inexplicables que no son claras y no ofrecen ningún conocimiento práctico.
- \checkmark Ej: {pañales} \rightarrow {cerveza}.

9. Técnicas de reducción de datos

Reducción de la dimensionalidad:

- ✓ Selección de características
 - Selección hacia adelante
 - Eliminación hacia atrásPCARFE
 - Inducción del árbol de decisión
- **✓** Extracción de características

Discretización de los datos:

- Binning
- **✓** Agrupamiento

10. Series temporales

Series temporales

Agrupa una serie de datos recopilados cronológicamente en intervalos de tiempos constantes

- Tendencia
- Estacionalidad

11. Minería de texto

Técnicas de minería de texto para:

- Recuperar información
- Clasificar documentos, según categorías conocidas
- Encontrar grupos de documentos similares
- Análisis de sentimientos

11. Minería de texto

Técnicas

Bolsas de palabras

Ej: Doc 1: Better three hours too soon that a minute too late

Doc 2: Better a witty fool than a foolish wit

	Better	three	hours	minute	late	fool	wit
Doc 1	1	1	1	1	1	0	0
Doc 2	1	0	0	0	0	2	2

Frecuencias de términos Frecuencia inversa de documento

Se deben aplicar técnicas de normalización, stemming y eliminación de stopwords

11. Minería de texto

Técnicas

N-gramas

Tri-gramas			
smoking_patient_			
with			
patient_with_lung			
with_lung_cancer			

Extracción de entidades con nombre:

- Nombre: Personas, lugares, empresas
- Patrón: coordenadas, códigos
- Conceptos: un automóvil, un humano
- Hechos: vínculos entre entidades
- Sentimientos: Actitudes, gestos o emociones

Se diferencia del ruido este en que este no es suficientemente importante para marcarlo como atípico

¿Cuál es extraño?

- ¿Un cliente puede registrar tantas facturas en un día?
- ¿Un cliente puede comprar tanto en un día?

Tipos:

Global o puntual: Un dato suficientemente inconsistente

Contextual: es consistente dentro de un contexto

Colectivo: es atípico si está combinado con otro dato similar sin condiciones sin contextos

Técnicas:

Estadísticas

- Operan con base en un ajuste de distribución
 - Ej: Valores que se encuentren a 3 desviaciones estándar son atípicos
- Valores que no pertenecen a un bin o pertenece al bin de puntuación alta
- Valores que no pertenecen al rango intercuartil

Basadas en distancias

- Agrupamiento K-medias
- K-NN

Técnicas:

Supervisadas

 Con algunos datos de ejemplo desarrollar un modelo de detección de datos atípicos

Semi-supervisadas

- Primero se realiza un agrupamiento
- Todos los puntos o clusters indivuduales que no pertenezcan a un cluster son considerados atípicos

