

MC20902

FPGA Bridge IC

for

MIPI D-PHY Systems and LVDS to SLVS Conversion

DATASHEET

Version 1.07

August 2016

Meticom GmbH

Meticom Page 1 of 17

Revision History

MC20902

Version	Date of Issue	Change
1.00	May 31, 2013	First Draft
1.01	June 04, 2013	Table 7, correct data,Definition for BTAMinor changes in drawings
1.02	June 07, 2013	 Corrected supply current IDD / IDDIO (Table 3) Added LP supply current (Table 3)
1.03	August 22, 2013	Table 3, Table 4: values updated
1.04	March 14, 2014	BTA description details added
1.05	April 4, 2014	Package drawing update Application note added - input to output signal diagram
1.06	August 19, 2014	 Table 4: Propagation delay and delay mismach added Package dimensions updated Figure 5: Signal name error corrected
1.07	August 11, 2016	'Preliminary' status of data sheet removed Chapter 6.8 Figure number corrected

Meticom Page 2 of 17

Table of Contents

1	Ger	nera	l Description	4
2	Key	/ Fea	atures	4
3	Blo	ck D	Diagram	5
	3.1	Blo	ck Diagram	5
4	Par	ame	trics	6
	4.1	Abs	solute Maximum Ratings	6
	4.2	Re	commended Operating Conditions	6
	4.3	DC	Characteristics	7
	4.4	AC	Characteristics	8
5	Pac	kag	e Information	9
	5.1	TQ	LMP-48 Package	9
	5.2	Pin	Description	9
	5.3	Pad	ckage Information	11
6	App	olica	ition Notes	12
	6.1	App	olication Overview	12
	6.2	FP	GA to D-PHY Bridge Application	13
	6.3	FP	GA to D-PHY Bridge Application with Bus Turnaround	14
	6.4	Sig	nal Levels	15
	6.	4.1	HS-X-P and HS-X-N LVDS Inputs *)	15
	6.	4.2	LP-X-P and LP-X-N CMOS Inputs *)	15
	6.	4.3	D-PHY-X-P and D-PHY-X-N Outputs *)	15
	6.	4.4	GPIO-0, GPIO-1, BTA, PINSWAP CMOS inputs	15
	6.5	Coi	nfiguration Using GPIO-0 and GPIO-1	15
	6.6	Coi	nfiguration Using BTA	15
	6.7	Coi	nfiguration Using PINSWAP	15
	6.8	Inp	ut to Output Signal Diagram	16
7	Leg	jal D	isclaimer Notice	17
8	Cor	ntac	t Information	17

1 General Description

The MC20902 is a 5 Channel, high performance FPGA bridge IC, which converts incoming LVDS high speed and incoming CMOS low speed data streams into a MIPI D-PHY compliant output stream. The MC20902 can also convert an LVDS signal into an SLVS signal.

The MC20902 can be connected to any signal source, for example FPGAs or DSPs.

Data rates can be from 0 Mbps to 2.5 Gbps in HS (High Speed) mode and up to 20 Mbps in LPDT (Low Power Data Transmission) mode.

2 Key Features

- Output is compliant to MIPI D-PHY interfaces using the DSI, CSI-1 and CSI-2 standards
 - HS mode data rate: up to a maximum of 2.5 Gbps
 - LPDT mode data rate: up to 20 Mbps
- BTA supported (Bus Turnaround at Channel A or E)
- · Pin Swap possibility
- 5 Channel device
- · Conversion of LVDS input to SLVS output
 - o LVDS data rate: up to a maximum of 2.5 Gbps
- No additional level shifters needed
- Arbitrary power up sequence
- · Available as a bare die
 - o RoHS compliant, Pb-free
- Available in a TQLMP-48 package
 - o 7mm * 7mm * 0.9mm
 - o 0.5mm pitch
 - o RoHS compliant, Pb-free

Meticom Page 4 of 17

3 Block Diagram

3.1 Block Diagram

Figure 1: Functional Block Diagram of the MC20902

Meticom Page 5 of 17

4 Parametrics

4.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Max	Unit
V_{DDIO}	Supply voltage		-0.5	3.6	V
V_{DD}	Supply voltage		-0.5	2.0	V
T_{STG}	Storage temperature		-55	125	°C
TJ	Junction temperature		-55	125	°C
V _{ESD}	Electrostatic discharge voltage capability	(HBM; 100 pF, 1.5 kΩ)	2.0		kV
$V_{ESD-Dout}$	Electrostatic discharge voltage capability at differential I/Os	(HBM; 100 pF, 1.5 kΩ)	500		V

Table 1: Absolute Maximum Ratings

Notes:

Absolute Maximum Ratings may not be exceeded to the device without causing permanent damage or degradation. Exposures to these values for extended periods may affect device reliability. If the device is operated beyond the range of Operating Conditions functionality is not guaranteed.

4.2 Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{DDIO}	Supply voltage		2.3	2.5	2.7	V
V_{DD}	Supply voltage		1.1	1.2	1.3	٧
GND	Ground			0		V
$V_{\text{noise,VDD}}$	Maximum allowed supply noise on V _{DD}	see Figure 2			100	mV_{pp}
T _A	Ambient temperature		-40	25	100	ŝ

Table 2: Operating Conditions

Figure 2: Maximum Allowed Supply Noise on V_{DD}

Meticom Page 6 of 17

4.3 DC Characteristics

(Άt	recommended	operating	conditions)

Symbol	Parameter	Condition	Min	Тур	Max	Unit		
I _{DD}	HS mode supply current including SLVS output	D-PHY HS Mode / LVDS to SLVS	10	14.0	18	mA		
I _{DDIO}	HS mode supply current	D-PHY HS Mode / LVDS to SLVS	0.6	1.25	1.6	mA		
I _{DD}	LP mode supply current		0.5	1.25	1.5	mA		
I _{DDIO}	LP mode supply current		0.9	2.0	2.8	mA		
Single End	ed Input (LP-X-P, LP-X-N, GI	PIO-0, GPIO-1, BTA, P	INSWAP) *)				
V _{IH}	High level input voltage		0.7	V_{DDIO}	V_{DDIO}	V		
V _{IL}	Low level input voltage		0		0.5	V		
I _{IH}	High level input current	$V_{IN} \ge V_{DDIO} - 0.2$			100	nA		
I _{IL}	Low level input current	V _{IN} ≤ 0.2			100	nA		
C _{IN}	Input capacitance	Including package		1	1.5	pF		
HS Input (H	S-X-P, HS-X-N) *)							
V _{CM-IN}			700	1200	1600	mV		
$ V_{\text{IN-Diff}} $			70	200	600	mV		
Z_{IN}			80	100	125	Ω		
Differential Output (D _{PHY-X-P} , D _{PHY-X-N}) *)								
V _{CM-OUT}	Output common mode voltage	@V _{DD} =1.2V	150	200	250	mV		
V _{DO_DIFF}	Differential output voltage	$ V_{DPHY-P} - V_{DPHY-N} $ @ $V_{DD}=1.2V$	150	180	250	mV_{pp}		
Z _{OD}	Output impedance	Differential	80	100	125	Ω		

^{*)} X means the Channels A ... E

Table 3: DC Characteristics

Meticom Page 7 of 17

4.4 AC Characteristics

(At recommended operating conditions)

(At recomme	At recommended operating conditions)							
Symbol	Parameter	Condition	Min	Тур	Max	Unit	Notes	
HS Input	(HS-X-P, HS-X-N) *)							
S ₁₁	Input return loss	f <1.04GHz			15	dB		
t _{R,HS_Tx} , t _{F HS Tx}	Input data transition time	20%-80%			0.5	UI		
BR	Supported input data bit rate	for each HS Input	0		2500	Mbps		
LP Input	(LP-X-P, LP-X-N, GPIO-0), GPIO-1, BTA, PINSWAF	?) *)					
BR_LP	Maximum LP input bit rate		0		20	Mbps		
Different	ial Output (D-PHY-X-P, [D-PHY-X-N) *)						
BR	Maximum serial output data bit rate	for each PHY Output	2500			Mbps		
t _R , t _F	Output data transition time	20%-80%		90		ps		
c	Output return less	f <1.04GHz			15	dB		
S ₂₂	Output return loss	f <625MHz			18	dB		
J_{D}	Deterministic output jitter	at D _{PHY-P} / D _{PHY-N}			30	ps		
J_{R}	Generated random output jitter	at D _{PHY-P} / D _{PHY-N}		0.5	0.9	ps _{rms}		
J_{PSRR}	Jitter caused by PSRR	Supply noise @ VDD		1	2	ps/mV		
T_{DEL}	HS propagation delay	HS input to DPHY output	350	600	950	ps		
T _{SKEW}	Propagation delay mismatch	3 sigma mismatch between channels A, B, C, D, E	-	-	50	ps		
T _{HS-} PREPARE	T _{HS-PREPARE} (T2out) LP-00		45	60	75	ns		

^{*)} X means the Channels A ... E

Table 4: AC Characteristics

Meticom Page 8 of 17

5 Package Information

5.1 TQLMP-48 Package

• Package Type: Thin Quad Leadless Molded Package (TQLMP)

Package Dimensions: 7.0 x 7.0 x 0.75 mm³

Pin Pitch: 0.5 mm

5.2 Pin Description

Figure 3: Pin Assignment MC20902

Meticom Page 9 of 17

Pin Name	Pin No.	I/O	Туре	Description
VDD	21, 39	Р	Supply	Supply voltage for internal logic and SLVS output drivers
VDDIO	5	Р	Supply	Supply voltage for internal level shifters and LVDS input stage
GND	6, 9, 28, 31, 33	-	-	Global ground
D-PHY-A-P	23	I/O	SLVS/CMOS	MIPI D-PHY compliant positive output or SLVS positive output, channel A, input for BTA
D-PHY-A-N	22	I/O	SLVS/CMOS	MIPI D-PHY compliant negative output or SLVS negative output, channel A, input for BTA
HS-A-P	13	I	LVDS	Positive LVDS high speed input, channel A
HS-A-N	14	I	LVDS	Negative LVDS high speed input, channel A
LP-A-P	19	I/O	CMOS	Positive CMOS low power data input, channel A, output for BTA
LP-A-N	20	I/O	CMOS	Negative CMOS low power data input, channel A, output for BTA
D-PHY-B-P	27	0	SLVS/CMOS	MIPI D-PHY compliant positive output or SLVS positive output, channel B
D-PHY-B-N	26	0	SLVS/CMOS	MIPI D-PHY compliant negative output or SLVS negative output, channel B
HS-B-P	10	I	LVDS	Positive LVDS high speed input, channel B
HS-B-N	11	I	LVDS	Negative LVDS high speed input, channel B
LP-B-P	17	I	CMOS	Positive CMOS low power data input, channel B
LP-B-N	18	I	CMOS	Negative CMOS low power data input, channel B
D-PHY-C-P	30	0	SLVS/CMOS	MIPI D-PHY compliant positive output or SLVS positive output, channel C
D-PHY-C-N	29	0	SLVS/CMOS	MIPI D-PHY compliant negative output or SLVS negative output, channel C
HS-C-P	7	I	LVDS	Positive LVDS high speed input, channel C
HS-C-N	8	I	LVDS	Negative LVDS high speed input, channel C
LP-C-P	15	I	CMOS	Positive CMOS low power data input, channel C
LP-C-N	16	I	CMOS	Negative CMOS low power data input, channel C
D-PHY-D-P	35	0	SLVS/CMOS	MIPI D-PHY compliant positive output or SLVS positive output, channel D
D-PHY-D-N	34	0	SLVS/CMOS	MIPI D-PHY compliant negative output or SLVS negative output, channel D
HS-D-P	2	I	LVDS	Positive LVDS high speed input, channel D
HS-D-N	3	I	LVDS	Negative LVDS high speed input, channel D
LP-D-P	44	I	CMOS	Positive CMOS low power data input, channel D
LP-D-N	45	I	CMOS	Negative CMOS low power data input, channel D
D-PHY-E-P	38	I/O	SLVS/CMOS	MIPI D-PHY compliant positive output or SLVS positive output, channel E, input for BTA
D-PHY-E-N	37	I/O	SLVS/CMOS	MIPI D-PHY compliant negative output or SLVS negative output, channel E, input for BTA
HS-E-P	46	I	LVDS	Positive LVDS high speed input, channel E
HS-E-N	47	I	LVDS	Negative LVDS high speed input, channel E
LP-E-P	42	I/O	CMOS	Positive CMOS low power data input, channel E, output for BTA
LP-E-N	43	I/O	CMOS	Negative CMOS low power data input, channel E, output for BTA
GPIO-0	40	I	CMOS	General purpose configuration input 0
GPIO-1	41	I	CMOS	General purpose configuration input 1
BTA	32	I	CMOS	Bus turnaround control pin
PINSWAP	4	I	CMOS	Pin swap function control pin
N.C.	1, 12, 24, 25, 36, 48	-		Do not connect
Thermal Pad	-	-	=	Thermal Pad may be connected to GND or left floating (n.c.)

Table 5: Pin Description

Meticom Page 10 of 17

5.3 Package Information

JEDEC#	MO-220 / VKKD				
TYPE		48 L	.EAD		
Dimension	m	m	m	ils	
SYMBOL	Min	Мах	Min	Max	
Α	0.70	0.80	27.56	31.50	
A1	0	0.05	0	1.97	
A3	0.175	0.225	6.89	8.86	
D	6.9	7.1	271.65	279.53	
E	6.9	7.1	271.65	279.53	
D2	5.5	5.6	216.54	220.47	
E2	5.5	5.6	216.54	220.47	
ө	0.5	BSC	19.69	BSC	
NX b	0.20	0.30	7.87	11.81	
NX L	0.35	0.45	13.78	17.72	
θ°	0,	4*	O.	4*	
ND	12				
NE		1	2		

NOTES

- 1. SPADE WIDTH, LEAD WIDTH AND LEAD THICKNESS EXCLUSIVE OF
- 2. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASHES AND BURR DIMENSIONS
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.08mm.
- 4. WARPAGE SHALL NOT EXCEED 0.10mm.
- 5. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012.

 DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.

Figure 4: Mechanical Dimensions TQLMP-48

Meticom Page 11 of 17

6 Application Notes

6.1 Application Overview

MC20902 can be used together with D-PHY sink (such as a display) as shown. It can take standard LVDS and CMOS signals from an FPGA or DSP and converts them into D-PHY compliant output streams, which can then be fed directly into a D-PHY compliant display.

The diagram also shows the MC20901, which performs the reverse function of the MC20902.

Figure 5: Application Diagram

Meticom Page 12 of 17

6.2 FPGA to D-PHY Bridge Application

In this example one D-PHY clock lane and four D-PHY data lanes in regular configuration are shown.

Channels A ... E are arbitrary exchangeable

Figure 6: FPGA to D-PHY Bridge Application

Meticom Page 13 of 17

6.3 FPGA to D-PHY Bridge Application with Bus Turnaround

In this example one D-PHY clock lane and four D-PHY data lanes are shown. The setting for Bus Turnaround on Channel E is shown in the Figure 7 below.

Channels A ... E are arbitrary exchangeable
Configuration shown is for Bus Turnaround on Channel E.

Figure 7: FPGA to D-PHY Bridge Application with Bus Turnaround (see 6.6)

Meticom Page 14 of 17

6.4 Signal Levels

6.4.1 HS-X-P and HS-X-N LVDS Inputs *)

The allowed common mode range is between 700mV and 1.6 Volt for DC coupling. The inputs can also be AC coupled.

6.4.2 LP-X-P and LP-X-N CMOS Inputs *)

The signals are in the VDDIO domain.

6.4.3 D-PHY-X-P and D-PHY-X-N Outputs *)

These signals are compliant with the MIPI D-PHY specification.

6.4.4 GPIO-0, GPIO-1, BTA, PINSWAP CMOS inputs

The signals are in the VDDIO domain.

6.5 Configuration Using GPIO-0 and GPIO-1

GPIO-1	GPIO-0	Description	
0	0	IC Power Down	
0	1	LVDS to SLVS Level shift	
1	0	D-PHY mode, Bus Turnaround capability assigned to channel E	
1	1	D-PHY mode, Bus Turnaround capability assigned to channel A	

Table 6: GPIO Selection Bits in MIPI D-PHY Mode

6.6 Configuration Using BTA

ВТА	Description	
0	Bus Turnaround not enabled	
1	Bus Turnaround enabled on the channel selected according to Table 6. The direction of the LP data transmission is changing instantaneously.	

Table 7: BTA Selection Bits

A low level at BTA Pin means that the LP Pins are treated as input pins (normal operation). A high level at the BTA Pin means that the LP Pins for the selected channel (see Table 6) are acting as output pins. In this configuration the incoming LP signals on the selected D-PHY-X-P and D-PHY-X-N pins are outputted at the corresponding LP pins LP-X-P and LP-X-N.

6.7 Configuration Using PINSWAP

PINSWAP	Description	
0	Pin Swap off	
1	Pin Swap D-PHY-X (swaps D-PHY-X-P and D-PHY-X-N pins)	
floating	Pin Swap HS-X (swaps HS-X-P and HS-X-N pins)	

Table 8: PINSWAP Selection Bits

Meticom Page 15 of 17

^{*)} X means the Channels A to E

6.8 Input to Output Signal Diagram

Figure 8: Input to Output Signal Diagram

Meticom Page 16 of 17

7 Legal Disclaimer Notice

All product specifications and data are subject to change without notice.

Meticom GmbH, its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Meticom") disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to this product.

Meticom disclaims any and all liability arising out of the use or application of the product described herein or of any information provided herein to the maximum extent permitted by law.

The product specifications do not expand or otherwise modify Meticom's terms and conditions of sales, including but not limited to any warranties expressed therein, which apply to this product. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Meticom.

The product shown herein is not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Meticom products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Meticom for any damages arising or resulting from such use or sale. Please contact authorized Meticom personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners.

8 Contact Information

Meticom GmbH

Suedfeld 12 30989 Gehrden Germany

Tel: +49 5108 918640 Fax: +49 5108 918640

www.meticom.com

Meticom Page 17 of 17