Reinforcement Learning II

Lecture 20

RL Components

Policy (agent behavior), $\pi(s)$

- Determines action given current state
- Agent's way of behaving at a given time

Reward function (the goal to max), r_t

- Maps state of the environment to a reward that describes the state desirability
- Objective is to maximize total rewards

Value functions (state reward), $v_{\pi}(s)$, $q_{\pi}(s,a)$

- Total expected reward from a state if we follow the policy
- How "good" is each state

Maze Example: Policy, Value, and Reward

Each location in the maze represents a **state**

The **reward** is -1 for each step the agent is in the maze

Available **actions**: move \uparrow , \downarrow , \leftarrow , \rightarrow (as long as that path is not blocked)

Policy $\pi(s)$

(which actions to take in each state)

Start

	↓		
\rightarrow	\rightarrow	\rightarrow	\
↑		→	
	\rightarrow	\rightarrow	\downarrow
	↑		↓
\rightarrow	↑		↓

Exit

Reward r_t

(rewards are received as you transition OUT OF the state)

Start

	1		
-1	۲_	۲_	1-
-1		۲_	
	1	1	-1
	-1		-1
-1	-1		-1

Exit

State Value $v_{\pi}(s)$

(expected cumulative rewards starting from current state **if** we follow the policy)

Start

	-8		
-8	-7	-6	-7
-9		-5	
	-5	-4	ဂို
	9		-2
-8	-7		-1

Exit

Adapted from David Silver, 2015

Environment

(assumed form for most RL problems)

Goal

Find the best policy to guide our actions in an environment

Here, environment = Markov Decision Process

Learning strategy

Model-based (planning)

Model-free

Environment Knowledge of

No knowledge

Must learn from experience

Perfect knowledge Known MDP Dynamic Programming

Policy iteration Value iteration

History

The record of all that has happened in this system

Step 0: s_0, a_0

Step 1: r_1, s_1, a_1

Step 2: r_2, s_2, a_2

•

Step T: r_t, s_t, a_t

History at time $t: H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$

Markov property

Instead of needing the full history:

$$H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$$

We can summarize everything in the current state

$$H_t = \{s_t, a_t\}$$

The future is independent of the past given the present

Another way of saying this is:

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Example: student life

Two components: $\{S, P\}$

State space, *S*Transition matrix, *P*

State transition probabilities

			to state	
		1	2	3
state	1	p_{11}	p_{12}	p_{13}
ım st	2	p_{21}	p_{22}	p_{23}
F 0	3	P_{31}	p_{32}	p_{33}

Transitions out of each state sum to 1

		To state		
		Netflix	Eat	Study
ate N	etflix	8.0	0.2	0]
m sta	Eat	[0.8 0.3 0.4	0.1	0.6
F _O	tudy	L0.4	0.1	0.5

Example: student life

If we start in state 1, what's the probability we'll be in each state after one step?

$$P_1 = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

This is the first row of the state transition probability matrix

Example: student life

8.0 state transition probability 0.2 Netflix 0.3 Eat 0.4 0.1 Study 0.6 0.5 **State-space representation**

If we started in state 1, we can calculate the probabilities of being in each state at step 1 as:

$$P_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^{T} \quad P_{1} = P_{0}P_{SS'}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$\mathbf{0.1} \qquad P_{1} = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

To state

$$\mathbf{1} P_1 = P_0 P_{ss'}$$

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T = \begin{bmatrix} 0.2 \\ 0.4 \\ 0.1 \end{bmatrix}$$
Study
$$\begin{bmatrix} \text{Study} \\ 3 \end{bmatrix} = \begin{bmatrix} 0.2 \\ 0.1 \\ 0.1 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \quad \text{As } n \to \infty, \text{ we identify our steady state probabilities}$$

$$P_2 = [0.7 \quad 0.18 \quad 0.12]$$

$$P_n = P_0 P_{ss'}^n$$

$$P_{\infty} = \begin{bmatrix} 0.64 & 0.16 & 0.20 \end{bmatrix}$$

Markov Chains with absorbing state

Example: student life

Kyle Bradbury

Example: student life

Markov chains can be used to represent sequential discrete-time data

Can estimate long-term state probabilities

Can simulate state sequences based on the model

Markov property applies (current state gives you all the information you need about future states)

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Valid if the system is **autonomous** and the states are **fully observable**

Hidden Markov Models

Example: student life

What if we don't directly observe what state the system is in, but instead observe a quantity that depends on the state?

Example: the student wears an EEG monitor, and we see readings of brain **0.1** activity.

States are hidden or latent variables

Markov Models

States are **Fully Observable**

States are **Partially Observable**

Autonomous

(no actions; make predictions)

Controlled

(can take actions)

Markov Chain & Markov Reward Process

Markov Decision Process (MDP)

Hidden Markov Model (HMM)

Partially Observable Markov Decision Process (POMDP)

Applications

HMMs: time series ML, e.g. speech + handwriting recognition, bioinformatics

MDPs: used extensively for reinforcement learning

Building blocks for the full RL problem

1	Markov Chain	{state space <i>S</i> , transition probabilities <i>P</i> }
2	Markov Reward Process (MRP)	$\{S, P, + \text{ rewards } R, \text{ discount rate } \gamma\}$ adds rewards (and values)
3	Markov Decision Process (MDP)	$\{S, P, R, \gamma, + \text{actions } A\}$ adds decisions (i.e. the ability to control)

MDPs form the basis for most reinforcement learning environments

Adapted from David Silver, 2015

18