

Using Sentence Simplification to Solve Arithmetic Word Problems

Anonymous EACL submission

Abstract

This paper presents a sentence simplification based approach for learning to solve arithmetic word problems. In an effort to reduce parsing and classification errors, we begin by using linguistic properties to process the text such that each sentence represents a single mathematical operation. Based on the simplified sentences, a classifier is learned to predict operators for each simplified sentence that is used to build an equation to solve the problem. On the MAWPS (Koncel-Kedziorski et al., 2016) addition and subtraction problems, we demonstrate performance competitive with existing state of the art systems.

1 Introduction

Interpreting a sentence representing a single mathematical operation is simpler and less error prone than interpreting a sentence having multiple mathematical operations. For example, consider Figure 1 where splitting the first sentence into two sentences leads to a more straightforward analysis. To simplify the word problem, we execute a set of rules on each sentence to possibly produce multiple simplified sentences with the goal of a single mathematical operation associated with each simplified sentence. We then learn a operator classifier based on these simplified sentences and generate a solution equation.

2 Related Work

There have been a number of attempts to solve arithmetic word problems through machine learning (ML). Template based methods (e.g., (Kushman et al., 2014)) implicitly assumes that the solution will be generated from a set of predefined equation templates. Non-template based methods (e.g., (Hosseini et al., 2014; Roy et al., 2015b; Roy and Roth, 2015)) use different methods to extract

Example Word Problem

A spaceship traveled 0.5 light-year from Earth to Planet X and 0.1 light-year from Planet X to Planet Y. How many light-years did the spaceship travel in all ?

Simplified Sentence	Predicted Operations		
A spaceship traveled 0.5 light-year from Earth to Planet X.	+ 0.5 light-year		
A spaceship traveled 0.1 light-year from Planet X to Planet Y.	+ 0.1 light-year		
Equation: + 0.5 light-year + 0.1 light-year			

Figure 1: Equation Extraction from Simplified Sentences

similar information. Based on different representations of the extracted information, an equation is generated for the problem text. Our approach is distinct in that it uses sentence simplification to predict operators to handle addition and subtraction problems.

3 Our Method

In this section we describe how our system maps an arithmetic word problem to an equation. It consists of three main steps:

- 1. Extract simplified sentences from complex word problems using the simplification rules.
- 2. Train a model to classify operators for each simplified sentence.
- 3. Solve the problem by updating problem state with learned operators and create equations.

3.1 Sentence Simplification and Problem Decomposition

Sentences in an arithmetic word problem are sometimes complex. Hence, it is difficult to extract information from such sentences. Even more challenging is to predict the impact of the sentence on the result. We extract a total of 1218 addition subtraction problems from the MAWPS repository (Koncel-Kedziorski et al., 2016) and execute sentence simplification on all of them. We also release a dataset of simplified sentences for these

word problems.¹ We create a mapping for each sentence in the problem text to its simplified sentences by extracting their relational dependencies from the Stanford dependency parser. Currently, our system simplifies sentences based on conjunctions and punctuation characters such as comma. There are certain rules when simplifying the sentence as described in Section 3.1.1.

Notation: Given a problem text S, let the sentences in the S be $\langle s_1, ..., s_n \rangle$. Each sentence s_i will be simplified to m simplified sentences. Let the simplified sentences of s_i be $\langle k_1, ..., k_m \rangle$.

3.1.1 Rules for Simplifying Sentences

When the conjunction "and" or the punctuation character "," is encountered, our system attempts to create two simplified sentences from the actual sentence. The first sentence is the part before these elements while the second sentence is the part after them. Notably, after the split there may be some words which would be required in the second sentence. Consider the sentence in Figure 2:

S: The school cafeteria ordered 42 red apples and 7 green apples for students lunches.

Figure 2: Example Sentence

In s, the split based on "and" will result in two sentences as shown below:

 k_1 :The school cafeteria ordered 42 red apples

 k_2 :7 green apples for students lunches

Here k_1 has a subject and a verb while k_2 does not have them, making it an improper sentence. Hence, there are some rules for adding words to simplified sentences:

3.1.2 Rules for adding words to simplified sentences.

1. If k_1 starts with an existential and has a verb after it and if k_2 does not have either expletive or verb, distribute them to k_2 . Consider the example in Figure 3:

S: There were 2 siamese cats and 4 house cats.
k_1 : There were 2 siamese cats.
k_2 : There were 2 house cats.

Figure 3: Example sentence for Rule 1

2. If k_1 starts with a noun, and if k_2 starts with a verb, the noun from the former will be distributed to the latter. Refer to an example in Figure 4.

S: Joan ate 2 oranges and threw 3 apples.	
k_1 : Joan ate 2 oranges.	
ka: Ioan threw 3 apples	

Figure 4: Example sentence for Rule 2.

3. If k_1 starts with a noun and k_2 has a *noun* verb pattern, do nothing.

:	: Tom has 9 yellow balloons and Sara has 8 yello	W
1	alloons.	

 k_1 : Tom has 9 yellow balloons. k_2 : Sara has 8 yellow balloons.

Figure 5: Example sentence for Rule 3.

In the example presented in Figure 5, No words from k_1 were added to k_2 since it had the *noun verb* (Sara has) pattern.

4. If k_2 contains a preposition at the end and k_1 does not, it will be distributed from k_2 to k_1 . Consider the example presented in Figure 6:

S: Joan found 6 seashells and Jessica found 8 seashells on the beach.

 k_1 : Joan found 6 seashells on the beach.

 k_2 : Jessica found 8 seashells on the beach.

Figure 6: Example sentence for Rule 4.

After splitting the sentence based on *and*, the preposition and the words after it *on the beach* were added to the first sentence.

5. Based on the output by the dependency parser and our rules, there might be some words which might not have been identified. But we still need those words in the simplified sentences. Therefore, the sentence simplification system identifies all such words. If these words appear before the conjunction, they are added to k_1 at the correct index and if they appear after the conjunction, they are added to k_2 .

4 Operation Prediction Classifier

After all the sentences are simplified, we randomly divide the dataset into training and testing in the ratio of 3:1. We train our model using Random Forest classifier that predicts one of the following classes for each simplified sentence in the word problem:

Class Label	Description
+	Addition Operation.
-	Subtraction Operation
?	Fragment asking some question
=	Assignment Operation
i	Irrelevant information

Figure 7: Labels for Operator Prediction Classifier

¹URL not provided to maintain anonymity.

4.1 Features

4.1.1 Position based

The index of simplified sentence in the question is important to determine the operation that sentence will perform. We take 2 such features into consideration as shown in Figure 8

Feature	Description			
IsItAFirstSentence	Most word problems in the training data had a positive operation in the first sentence.			
IsItALastSentence	Almost always the last sentence in the word problem is a question sentence.			

Figure 8: Position based Features

4.1.2 Relation based

Existence of some important dependency relations is used as a feature. Refer to Figure 9 for the list of relation based features:

Feature	Description
nsubj	The sentence is more likely to perform an operation in the
dobj	presence of these two relations.

Figure 9: Relation based Features

4.1.3 Parts of Speech based

Existence of some Parts of Speech of the words in the sentence is used as a feature. Refer to Figure 10 for the list of POS based features:

Feature	Description
CD: Cardinal	
WRB: WH-Adverb	
EX: Expletive	The sentence is more
RBR: Comparative Adverb	likely to perform an operation in the presence
RBS: Superlative Adverb	of these Parts of Speech.
VBD: Past tense Verb	
VB: Base form Verb	

Figure 10: Parts of Speech based Features

4.1.4 Verb Similarity based

A *Positive Verb* is a verb which indicates that the subject in the sentence is gaining some quantified object. A *Negative Verb* is a verb which indicates that the subject is losing something. We extract the most frequent verbs in + and - labeled sentences. Based on the frequencies we extract 13 significantly differentiating verbs for each class. The similarity of the lemma of these verbs to the action verb in the sentence is then used as a feature. Therefore, we have a total of 26 such features. The similarity score is calculated based on

the WUP word similarity using WordNet (Miller, 1995).

5 Word Problem Solver

5.1 Using Operator Prediction Results

Based on the predicted operators for each simplified sentence, we create a representation for every subject having one or more objects. Refer to Figure 11 for details:

S: Joan found 70 seashells on the beach . she gave			
Sam some of her seashells . She has 27 seashell . How			
many seashells did she give to Sam ?			
k_1 : Joan found 70 seashells on the beach.			
k_2 : she gave Sam some of her seashells .			
k_3 : She has 27 seashell .			
k_4 : How many seashells did she give to Sam?			

Figure 11: Example Word Problem

The representation of the above simplified sentences would be as shown in Figure 12: We

Sentence	Predicted	Representation		
	Operator			
k_1	+	$Joan \leftarrow 70$ seashell		
k_2	_	$Joan \leftarrow 70 - X$ seashell		
		$Sam \leftarrow +X$ seashell		
k_3	=	$Joan \leftarrow 70 - X = 27$		
		seashell		

Figure 12: Word Problem State Representation

use Spacy² to extract dependency relations and attempt to extract equation for a word problem based on the subject and object identified in the question sentence. There are 4 scenarios we consider:

- 1. If the question sentence has a singular subject and an object, we map the subject to one of the entities in our representation and output the result.
- 2. If the question sentence has a plural subject (For Example: *they*) and an object, we perform all the identified operations for that object.
- 3. If the question sentence has a comparative adjective and multiple subjects or multiple objects, we output the result by subtracting the smaller quantity from the greater one.
- 4. If the question sentence does not fall in any one of the above cases, we perform all the identified operations in our representation and output the result.

²https://spacy.io

Experimental Results

6.1 Operator Prediction Classifier

Out of 1218 simplified word problems, we use 1015 to train our classifier and the remaining 203 to test.

Class	Training	Testing	Precision	Recall	
Class	Count	Count	Precision		
+	1811	375	96.23	74.93	
_	528	102	85.57	87.25	
?	1015	203	100	100	
=	113	28	25	53.57	
i	317	44	35.48	75	
Accuracy: 82.57%					

Figure 13: Operator Prediction Results

We achieve nearly 75% or more precision and recall for all three important operations.

6.2 Word Problem Solver

	MA1	IXL	MA2	Total
Hosseini et al. (2014)	83.6	75.0	74.4	77.7
Roy and Roth (2015)	-	-	-	78.0
Kushman et al. (2014)	89.6	51.1	51.2	64.0
Proposed Method	97.8	59.28	76.03	77.7

Figure 14: Solver Results for AI2 Dataset

Overall, we perform as good as (Hosseini et al., 2014) and we achieve better results in 2 datasets because of our improvement in operator prediction. The word problems in MA2 are comparatively complex, and hence our sentence simplification system needs improvement to simplify sentences more accurately.

MAWPS Dataset	Training	Testing
Count	1015	203
Accuracy	90.14	91.62

Figure 15: Solver Results for MAWPS Dataset

We achieve exceptional results on the universal dataset for arithmetic word problems.

7 Error Analysis

7.1 Sentence Simplification

We analyzed the errors in sentence simplification system where minimal manual intervention was required to simplify the sentences correctly. We present our analysis in Figure 16.

7.2 Solver

There are 4 major classes of errors for the solver as shown in 17. In the first category, the parser is not able to correctly identify the subject and object in the sentence. The second category refers

Error Type	Description	Example
Dataset Errors 2%	Improper formed sentences in the dataset.	Joan has 5 apples Mary has 2 apples.
Compound Nouns 2%	Unable to identify compound nouns.	Joan has 5 blue and 2 red marbles.
Conditional Beginnings 5%	Sentences beginning with conditional words such as if or when.	If her fund was worth 1472 before, how much is it worth now?
Parsing Errors 8%	Uncertainty of depen- dency parser while pars- ing complex sentences.	Each year, salmon travels upstream, going from the ocean to the rivers where they were born.

Figure 16: Sentence Simplification Errors

to errors that require set completion knowledge. For example, played can be divided into win and lose. Also, we find irrelevant information with cardinals that add to errors in the solver. For example, to identify the count of cards, it is not required to know how many of them were torn.

Error Type	Example
Parsing Issues 15%	Sally had 27 Pokemon cards. Dan gave her 41 new Pokemon cards. How many Pokemon cards does Sally have now?
Set Completion 5%	Sara's school played 12 games this year. They won 4 games. How many games did they lose?.
Irrelevant Information 10%	Sara has 20 baseball cards but 9 were torn. She gave 10 baseball cards to Joan. How many cards does she now have?
Others 10%	In March it rained 0.81 inches. It rained 0.35 inches less in April than in March. How much did it rain in April?

Figure 17: Solver Errors

Conclusion

This paper presents a method for understanding and solving addition and subtraction arithmetic word problems. We develop a novel theoretical framework, centered around the notion of sentence simplification for operator predictions. We show this by developing a classifier that yields strong performance on several benchmark collections. Our approach also performs equally well on multistep problems, even when it has never observed a particular problem type before.

400	References	450
401	Peter Clark. 2015. Elementary school science and	451
402	math tests as a driver for ai: Take the aristo challenge! In <i>Proceedings of the Twenty-Ninth AAAI</i>	452
403	Conference on Artificial Intelligence, AAAI'15,	453
404	pages 4019–4021. AAAI Press.	454
405	Mohammad Javad Hosseini, Hannaneh Hajishirzi,	455
406	Oren Etzioni, and Nate Kushman. 2014. Learning	456
407	to solve arithmetic word problems with verb cate-	457
408	gorization. In Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors, <i>Proceedings of the 2014</i>	458
409	Conference on Empirical Methods in Natural Lan-	459
410	guage Processing, EMNLP 2014, October 25-29,	460
411	2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 523–533. ACL.	461
412		462
413	K. Kipper, A. Korhonen, N. Ryant, and M. Palmer.	463
414	2006. Extending verbnet with novel verb classes. In Proceedings of the Fifth International Conference	464
415	on Language Resources and Evaluation (LREC-	465
416	2006), Genoa, Italy, May. European Language Re-	466
417	sources Association (ELRA). ACL Anthology Identifier: L06-1280.	467
418		468
419	Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. 2016. Mawps:	469
420	A math word problem repository. In <i>Proceedings of</i>	470
421	the 2016 Conference of the North American Chap-	471
422	ter of the Association for Computational Linguistics:	472
423	Human Language Technologies, pages 1152–1157, San Diego, California, June. Association for Com-	473
424	putational Linguistics.	474
425	Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and	475
426	Regina Barzilay. 2014. Learning to automatically	476
427	solve algebra word problems. In Proceedings of the	477
428	52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages	478
429	271–281, Baltimore, Maryland, June. Association	479
430	for Computational Linguistics.	480
431	George A. Miller. 1995. Wordnet: A lexical database	481
432	for english. <i>Commun. ACM</i> , 38(11):39–41, Novem-	482
433	ber.	483
434	Subhro Roy and Dan Roth. 2015. Solving general	484
435	arithmetic word problems. In Llus Mrquez, Chris	485
436	Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors, <i>EMNLP</i> , pages 1743–1752. The	486
437	Association for Computational Linguistics.	487
438	Subhro Roy, Tim Vieira, and Dan Roth. 2015a. Rea-	488
439	soning about quantities in natural language. <i>Trans</i> -	489
440	actions of the Association for Computational Lin-	490
441	guistics, 3:1–13.	491 492
442	Subhro Roy, Tim Vieira, and Dan Roth. 2015b. Rea-	
443	soning about quantities in natural language. Trans-	493
444	actions of the Association for Computational Linguistics, 3:1–13.	494
445	· ·	495
446	D. Vickrey and D. Koller. 2008. Sentence simplification for semantic role labeling. In <i>Proceedings of the</i>	496 497
447 448	46th Meeting of the Association for Computational	497
448	Linguistics: Human Language Technologies.	498
443		499