Complex Analysis from the context of the course MTH 425: Complex Analysis

Kaedon Cleland-Host

January 12, 2023

Contents

1	Fun	adamentals	2
	1.1	Complex Numbers	2
		1.1.0 Euler's Formula	
	1.2	Functions	2

Chapter 1

Fundamentals

1.1 Complex Numbers

Definition 1.1.1. The set of **complex numbers** $\mathbb C$ is defined where $i^2=-1$ by

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Definition 1.1.2. The **complex conjugate** of a complex number $a + bi = z \in \mathbb{C}$ denoted \overline{z} is defined as $\overline{z} = a - bi$.

Definition 1.1.3. The **norm** of a complex number $z \in \mathbb{C}$ denoted |z| is defined as $|z| = \sqrt{z\overline{z}}$.

Theorem 1.1.1. Euler's Formula states that for any real number $\varphi \in \mathbb{R}$,

$$e^{i\phi} = \cos\phi + i\sin\phi$$

Proposition 1.1.1. Any complex number $z \in \mathbb{C}$ can be represented in the form $z = re^{i\phi}$.

Definition 1.1.4. The **nth roots of unity** are the complex numbers $e^{i2/n}$ for k = 0, 1, ..., n - 1.

Definition 1.1.5. A field R is a set with two laws of composition denoted + and \times that satisfy the following axioms:

- **Identity** \exists elements denoted $0, 1 \in R$ such that $1 \times a = a$ and $0 + a = a, \forall a \in R$.
- Additive Inverse For all $a \in R$, there exists an element $-a \in R$ such that -a + a = 0.
- Multiplicative Inverse For all nonzero $a \in F$, there exists an element $a^{-1} \in R$ such that $a \times a^{-1} = 1$.
- Associativity For all $a, b, c \in R$, $a \times (b \times c) = (a \times b) \times c$ and a + (b + c) = (a + b) + c.
- Commutativity For all $a, b \in R$, $a \times b = b \times a$ and a + b = b + a.
- **Distributivity** For all $a, b, c \in R$, $a \times (b + c) = (a \times b) + (a \times c)$.

Proposition 1.1.2. The complex numbers \mathbb{C} is a field with multiplicative inverses $z^{-1} = \frac{\overline{z}}{|z|^2}$ for any $z \in \mathbb{C}$.

Proposition 1.1.3. \mathbb{R} is a subfield of \mathbb{C} .

1.2 Functions

Definition 1.2.1. A function $f: A \to B$ is a subset of $X \times Y$ such that $\forall x \in X, \exists$ exactly one element $y \in B, (x, y) \in f$.

Definition 1.2.2. The **domain** of a function $f: A \to B$ is $\{a \in A : \exists b \in B \text{ such that } (a, b) \in f\}$.

Definition 1.2.3. The range of a function $f: A \to B$ is $\{b \in B : \exists a \in A \text{ such that } (a, b) \in f\}$.

Definition 1.2.4. A function is a **injective** denoted $f: A \hookrightarrow B$ iff $f(x) = f(u) \Rightarrow x = y$.

Definition 1.2.5. A function is a surjection denoted $f: A \rightarrow B$ iff the range of f equals B.

Definition 1.2.6. A function is a **bijection** denoted $f: A \hookrightarrow B$ iff it is both an injection and a surjection.

"Then he became a philosopher, which is very sad."				