МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

С.В.Пустынников, А.Г.Сипайлов, Е.Б.Шандарова

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ЧАСТЬ 1

Рекомендовано в качестве учебного пособия Редакционно-издательским советом Томского политехнического университета

Издательство
Томского политехнического университета
2015

УДК 621.3(075.8) ББК 31.2я73

П896

Пустынников С.В., Сипайлов А.Г., Шандарова Е.Б./

П896 Теоретические основы электротехники часть 1: учебное пособие / С.В Пустынников; А.Г.Сипайлов; Е.Б.Шандарова. Национальный исследовательский Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2014. — 92 с.

В учебном пособии изложены основные темы, изучаемые в дисциплине «теоретические основы электротехники часть 1». Представлены расчетно-графические работы по расчету цепей постоянного тока, синусоидального тока, несинусоидальных и трехфазных цепей, даны методические указания по их выполнению. Предназначено для студентов ЭНИН, изучающих ТОЭ.

УДК 621.3(075.8) ББК 31.2я73

Рецензенты

© ФГБОУ ВПО НИ ТПУ, 2015

© Пустынников С.В., Сипайлов А.Г.,

Шандарова Е.Б., 2014

© Оформление. Издательство Томского политехнического университета, 2015

ВВЕДЕНИЕ

Данное учебное пособие предназначено для студентов электротехнических специальностей, изучающих дисциплину «теоретические основы электротехники».

В учебном пособии в краткой форме изложены основные темы, изучаемые в дисциплине «теоретические основы электротехники». Представлены также четыре расчетно-графические работы по расчету цепей постоянного тока, синусоидального тока несинусоидального тока и трехфазных цепей, даны методические указания по их выполнению. Учебное пособие позволяет значительно облегчить изучение курса «теоретические основы электротехники» и является дополнением к лекционному и практическому курсу по данной дисциплине.

ТЕМА 1. ЭЛЕМЕНТЫ И ПАРАМЕТРЫ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, ОСНОВНЫЕ МЕТОДЫ РАСЧЕТА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Свойства линейных электрических цепей и методы их расчета подробно изложены в [1 - 4].

Электротехника— область техники, связанная с получением, распределением, преобразованием и использованием электрической энергии..

Электрическое поле - это вид материи, посредством которого осуществляется связь и взаимодействие между электрическими зарядами.

Магнитное поле - это вид материи, посредством которого осуществляется взаимодействие между движущимися электрическими зарядами или токами в проводниках.

Электрический токi, A (Ампер) — это перемещение электрических зарядов одного знака q, Кл (Кулон)в каком-нибудь направлении,

определяемое скоростью изменения элементарных зарядов $i = \frac{dq}{dt}$.

Потенциал ϕ , B (Вольт) электрического поля в точке «a» — численно равен работе, которую совершают силы электрического поля при перемещении единичного положительного заряда из точки «a» в бесконечно удаленную точку, потенциал которой равен нулю..

Напряжение равно разности электрических потенциалов в двух точках «**a**» и «**b**» электрической цепи $u = \phi_a - \phi_b$, B

Идеальный независимый источник ЭДС e, B — это источник, характеризующийся тем, что электродвижущая сила в нем не зависит от протекающего через него тока, т.е. u = e. Предполагается, что внутреннее сопротивление идеального источника ЭДС равно нулю $R_E = 0$.

 ${\it B}$ цепи постоянного тока: e=E=const, u=U, i=I.

Идеальный независимый источник тока J,A — это источник, ток которого не зависит от напряжения на его зажимах. Предполагается, что внутреннее сопротивление идеального источника тока бесконечно велико $R_J = \infty$, и поэтому параметры внеш-

ней электрической цепи, от которых зависит напряжение на зажимах источника, не влияют на ток источникатока i=J .

В цепи постоянного тока: J = const, $u_J = U_J$.

$$u_J$$

Активное сопротивление (резистор) R, Om - это физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношениюнапряжения на концах проводника к силе тока, протекающего по нему (**закон Ома**) $R = \frac{u}{i}$. Резистор необратимо преобразует электрическую энергию в тепловую.

$$+iR$$

Мощность p, Bm (Ватт), потребляемая резистором, определяется по **законуДжоуля-Ленца:** $p = ui = i^2 R$.

Проводимость – величина, обратная сопротивлению $g = \frac{1}{R}$, См (Сименс).

 $\it Uндуктивность L$, $\it \Gamma_H$ (Генри) — это параметр электрической цепи, определяющий величину ЭДС самоиндукции, наводимой в цепи при изменении протекающего по ней тока. При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим то-

ком
$$W_{_{\mathrm{M}}} = \frac{L \cdot i^2}{2}$$
, Джс (Джоуль).

Связь между током и напряжением в индуктивности определяется законом электромагнитной индукции $u = L \frac{di}{dt}$ или $i = \frac{1}{L} \int u dt$.

При постоянном токе i = I = const индуктивность имеет нулевое сопротивление и является «закороткой»:

Конденсатор — элемент, обладающий электрической ёмкостью. **Ёмкость** C, Φ (Фарада) — это способность конденсатора накапливать электромагнитную энергию в собственном электрическом поле, образуемом обкладками конденсатора. Величина запасаемой энергии равна

$$W_{\scriptscriptstyle \mathfrak{I}\!\!J}=rac{C\cdot u^2}{2}$$
, Дже

Связь между током и напряжением в ёмкости: $i=C\frac{du}{dt}$ или $u=\frac{1}{C}\int idt$

При постоянном напряжении u = U = const ёмкость имеет бесконечно большое сопротивление и является «разрывом цепи»:

$$U$$
 $I=0$

Схема замещения — это электрическая схема, в которой все реальные элементы заменены максимально близкими по функциональности цепями из идеальных элементов.

Ветвь — это участок цепи, который включен между двумя соседними узлами и по которому протекает один и тот же ток. В схеме на рисунке три ветви с токами i_1, i_2, i_3 .

 ${\it Узел}$ — точка соединения не менее трех ветвей. В схеме два узла ${\it aub}$.

Контур — любой замкнутый путь, проходящий по нескольким ветвям схемы. На рисунке схема имеет три контура (направление обхода контуров указано стрелками).

Независимый (элементарный) контур— это контур, отличающийся от любого другого контура хотя бы одним элементом. На рисунке схема имеет два независимых контура.

Последовательное соединение резисторов — это такое соединение, когда конец первого проводника соединен с началом второго, конец второго проводника соединен с началом третьего и так далее: $R_{ab} = R_1 + R_2 + R_3 + \dots R_n$

$$a \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_3} b$$

Параллельное соединение резисторов — это такое соединение, когда начала всех проводников соединены в одну точку, а концы про-

водников – в другую точку:
$$\frac{1}{R_{ab}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

или
$$g_{ab} = g_1 + g_2 + g_3 + \dots$$

 ${\it Двухполюсник}$ — это электрическая цепь, содержащая две точки для соединения с другими цепями. На схеме - это точки ${\it a,b}$, к которым подключается сопротивление нагрузки ${\it R}_{\it H}$.

Если в двухполюснике есть источник ЭДС или источник тока, то такой двухполюсник называют *активным*. *Активный двухполюсник* обозначается буквой \mathbf{A} , *пассивный двухполюсник* не содержит источники электроэнергии и обозначается буквой $\mathbf{\Pi}$.

Законы Кирхгофа и методы расчета электрических цепей

Первый закон Кирхгофа — алгебраическая сумма токов, сходящихся в узле равна нулю или сумма токов втекающих в узел равна сумме токов, вытекающих из узла. $\sum i_K = 0$.

Для узла \boldsymbol{a} : $i_1 - i_2 - i_3 = 0$

Второй закон Кирхгофа— алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. $\sum u_K = \sum e_K$. Если в контуре нет источников ЭДС, то суммарное падение напряжений равно нулю. Для контура **abcd**: $u_R + u_L - u_C + u_J = e$ или $i_1 R + L \frac{di_2}{dt} - \frac{1}{C} \int i_3 dt + U_J = e$

Метод законов Кирхгофа. Если рассматриваемая цепь состоит из N_B ветвей и N_y узлов, то её расчёт сводится к нахождению токов в N_B ветвях. Для этого необходимо составить N_y-1 независимых уравнений по первому закону Кирхгофа и N_B-N_y+1 независимых уравнений по второму закону Кирхгофа. Соответствующие этим уравнениям узлы и контуры называются независимыми (т.е. содержащими хотя бы одну ветвь, не принадлежащую другим узлам / контурам).

Число ветвей $N_B=3$, число узлов $N_V=2$. Заданы: E,J,R_1,R_2 . Определить: I_1,I_2,U_J .

По 1 закону Кирхгофа составляем 2-1= 1 уравнение, по 2 закону Кирхгофа составляем 3-2+1=2 уравнения.

Система уравнений по законам Кирхгофа:

узел
$$a:I_1-I_2=J$$
1 контур: $I_1R_1+I_2R_2=E$
2 контур: $-U_J-I_2R_2=0$

Баланс мощности -то выражение закона сохранения энергии в электрической цепи. Определение баланса мощностей звучит так: сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками. $P_{II} = P_{II}$

$$P_{U} = \sum_{k=1}^{n} E_{k} \cdot I_{k} + \sum_{k=1}^{n} U_{Jk} \cdot J_{k}, P_{\Pi} = \sum_{k=1}^{n} R_{k} \cdot I_{k}^{2}.$$

Здесь U_I – напряжение на источнике тока.

Для рассматриваемой схемы:

Мощность источников: $P_{II} = E \cdot I_1 + U_J \cdot J$

Потребляемая мощность: $P_{II} = I_1^2 R_1 + I_2^2 R_2$

Погрешность расчетов не должна превышать 3%:

$$\delta_P = \frac{\left| P_M - P_M \right|}{P_M} \cdot 100\% < 3\%$$

Метод контурных токов — это метод расчёта электрических цепей, при котором за неизвестные принимаются токи в независимых контурах. Токи в ветвях представляют собой алгебраические суммы контурных токов, протекающих по тем же ветвям. Для расчета токов в сложной электрической цепи необходимо составить лишь число $N_B - N_V + 1$ независимых уравнений.

Правило составления уравнений:

а) контурный ток рассматриваемого контура умножается на сопротивления своего контура, причем перед этим произведением всегда

ставится знак «+».

- б) соседний контурный ток умножается на общее сопротивление смежной ветви, причем пред этим произведением ставится знак «+», если направления этих контурных токов в общем сопротивлении совпадают между собой, если не совпадают— ставится знак «—».
- в) в правой части уравнения записывается алгебраическая сумма ЭДС рассматриваемого контура, причем со знаком «+» берутся те ЭДС, направления которых совпадает с направлением рассматриваемого контурного тока.
- г) ток в любой ветви равен алгебраической сумме контурных токов протекающих через данную ветвь. Со знаком «+» учитываются контурные токи того же направления, что и ток в ветви, а со знаком «-» противоположного направления. Если по ветви течет только один контурный ток, то ток в ветви соответственно равен этому контурному току.

Очень важно! Если схема содержит источник тока, то через него должен проходить только один контурный ток, равный по величине и направлению величине тока источника тока.

Например, для схемы:

Задаем контурные токи так, чтобы через каждую ветвь схемы проходил хотя бы один контурный ток. Контурный ток, проходящий через источник тока, равен: $J_{1k}=J$. Для определения неизвестного контурного тока J_{2k} составляем уравнение:

$$J_{2k}(R_1 + R_2 + R_3) + J_{1k}(R_1 + R_3) = E$$

Знак «+» в уравнении берется потому, что контурные токи, протекающие совместно в ветви с сопротивлениями R_1,R_3 , совпадают по направлению. Ток J_{2k} и ЭДС E также совпадают по направлению.

Токи ветвей схемы:
$$I_1 = J_{1k} + J_{2k}$$
; $I_2 = J_{2k}$

Метод узловых потенциалов – это метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате

применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях. Для расчета потенциалов в сложной электрической цепи необходимо составить лишь число $N_{\rm V}-1$ независимых уравнений.

Токи в ветвях схемы выражаются с помощью закона Ома через потенциалы узлов:

$$a I_{1} R_{1} b c E R_{2} I_{2} d$$

$$I_{1} = \frac{\phi_{a} - \phi_{b}}{R_{1}} = (\phi_{a} - \phi_{b})g_{1}; I_{2} = \frac{\phi_{c} - \phi_{d} + E}{R_{2}} = (\phi_{c} - \phi_{d} + E)g_{2}$$

Потенциал одного из узлов, принятого за *опорный* узел, принимается равным нулю. Если схема содержит ветвь с источником ЭДС без сопротивления, то за *опорный* узел берется любой из узлов, к которым подключена эта ветвь. $\phi_c = 0$, $\phi_d = E$.

$$c - E + d$$

Для остальных узлов составляются уравнения по 1 закону Кирхгофа для токов, выраженных через потенциалы узлов.

Правило составления уравнений для любого k-того узла произвольной схемы в общем виде заключается в следующем:

$$g_{kk}\cdot\phi_k-\sum g_{km}\cdot\phi_m=J_{kk}.$$

Здесь g_{kk} – узловая проводимость k-того узла, т.е. сумма проводимостей ветвей сходящихся в этом узле;

 $g_{\it km}$ – общая проводимость ветвей соединяющих узлы ${\it k}$ и ${\it m}$;

 $J_{\it kk}$ – узловой ток $\it k$ -того узла.

$$J_{kk} = \sum \pm E_{km} \cdot g_{km} + \sum \pm J_{km}$$

- 1. Потенциал опорного узла принимается равным нулю;
- 2. Потенциал κ -го узла ϕ_k умножается на сумму проводимостей ветвей подходящих к этому узлу;
- 3. Потенциал соседнего*m*-узла ϕ_m умножается на проводимость ветви, соединяющей *к*-узел с *m*-узлом (всегда со знаком "-");
- 4. В правой части записывается алгебраическая суммаподходящих к k-узлу токов источников тока и произведений ЭДС на проводимости своих ветвей, причем со знаком «+» берутся источники энергии направленные к рассматриваемому узлу k.

После определения потенциалов узлов схемы определяют токи в ветвях по закону Ома. Например, для схемы:

Потенциал опорного узла: $\phi_a=0$, тогда $\phi_c=E_2$. Для узла ${m b}$ составляем уравнение: $\phi_b(g_1+g_3)-\phi_cg_3-\phi_ag_1=E_1g_1-J$.

Определяем токи ветвей:

$$I_1 = (\phi_a - \phi_b + E_1)g_1, I_2 = (\phi_c - \phi_a)g_2, I_3 = (\phi_b - \phi_c)g_3.$$

По 1 закону Кирхгофа определяем ток: $I_4 = I_2 - I_3$. Напряжение на источнике тока равно: $U_J = \phi_a - \phi_b$.

Метод наложения - это метод расчета, в котором используется принцип наложения. Принцип наложения заключается в следующем: ток или напряжение в какой либо ветви можно рассматривать как алгебраическую сумму составляющих действующих от каждого источника в отдельности. Эти составляющие называются частичными.

Для расчета частичных токов и напряжений исходная схема разбивается на подсхемы, в каждой из которых действует один источник ЭДС или тока, причем остальные источники ЭДС считаются «закороткой» а источники тока разрывом ветви. Рассчитав частичные составляющие, определяются токи и напряжения исходной схемы. При этом со знаком «+» пишутся те составляющие, направление которых совпадает с направлением результирующих величин.

$$I_k = \sum \pm I_k^{uacm.}$$
; $U_k = \sum \pm U_k^{uacm.}$.

Например, для схемы:

В первой подсхеме размыкаем источник тока, имеющий бесконечное внутреннее сопротивление, и определяем: $I_2' = \frac{E}{R_1 + R_2 + R_3}$.

Во второй подсхеме замыкаем источник ЭДС, имеющий нулевое внутреннее сопротивление, и определяем: $I_2'' = -J \frac{R_1 + R_3}{R_1 + R_2 + R_3}$

Ток ветви равен: $I_2 = I_2' + I_2''$.

Метод эквивалентного генератора (ЭГ). Любую сложную схему, содержащую источники электрической энергии, относительно ветви с нагрузкой можно заменить активным двухполюсником. Этот двухполюсник можно преобразовать до двух эквивалентных параметров:

 E_{Γ} - ЭДС генератора и R_{Γ} - сопротивление генератора или $J_{\Gamma} = \frac{E_{\Gamma}}{R_{\Gamma}}$ - источник тока генератора и R_{Γ} - сопротивление генера-

тора.

Ток в нагрузке определяется по формуле Тевенена-Гельмгольца для 1 схемы ЭГ: $I_H = \frac{E_\Gamma}{R_\Gamma + R_H}$ и по формуле Нортона-Поливанова для 2 схемы ЭГ: $I_H = \frac{J_\Gamma}{1 + \frac{R_H}{R_\Gamma}}$

Параметры ЭГ можно определить тремя методами:

1) из опытов холостого хода (ХХ) и короткого замыкания (КЗ):

B onlime XX:
$$R_H = \infty$$
, $I = 0$, $U_{XX} = E_{\Gamma}$;

В опыте К3:
$$R_H = 0, U_H = 0, R_\Gamma = \frac{U_{XX}}{I_{K3}}$$
.

2) методом двух нагрузок:

Задаются два разных сопротивления нагрузки R_1 и R_2 , измеряются напряжения U_1 , U_2 и токи I_1 , I_2 . Составляется система уравнений по 2 закону Кирхгофа: $\begin{cases} E_{\varGamma} = U_1 + I_1 R_{\varGamma} \\ E_{\varGamma} = U_2 + I_2 R_{\varGamma} \end{cases}, \text{после решения которой, получаем:}$ $E_{\varGamma} = \frac{U_2 I_1 - U_1 I_2}{I_1 - I_2}, R_{\varGamma} = \frac{U_2 - U_1}{I_1 - I_2}.$

3) расчетнымметодом:

Для расчета выделяем ветвь, в которой определяем ток, считая оставшуюся часть цепи эквивалентным генератором. Размыкаем зажимы сопротивления выделенной ветви и определяем на них напряжение, которое является напряжением холостого хода генератора U_{xx} , причем $U_{xx} = E_{\Gamma}$, где $E_{\Gamma} - \Im$ ДС генератора. Сопротивление нагрузки R_H равно сопротивлению выделенной ветви. Сопротивление генератора R_{Γ} равно внутреннему сопротивлению генератора относительно разомкнутых зажимов. Оно определяется из схемы, в которой источники \Im ДС считаются «закоротками» а источники тока— разрывом цепи. Определив \Im параметры, рассчитываем искомый ток.

В расчетной схеме необходимо определить ток I_3 . Рисуем схему опыта XX, в котором $R_H=\infty$, и определяем по 2 закону Кирхгофа напряжение холостого хода на разомкнутых зажимах нагрузки:

$$E_{\Gamma} = U_{XX} = E_1 - E_2 + JR_1.$$

Для определения R_{Γ} рисуем вспомогательную схему, в которой источники ЭДС замкнуты, а источники тока разомкнуты:

Так как сопротивление R_2 замкнуто накоротко, получаем: $R_{\varGamma}=R_1$. Определяем ток в нагрузке: $I_3=\frac{E_{\varGamma}}{R_{\varGamma}+R_3}$.

Передача энергии от эквивалентного генератора в нагрузку.

Уравнение внешней вольтамперной характеристики (BAX) эквивалентного генератора: $U(I) = E_{\Gamma} - I_{H}R_{\Gamma}$;

Уравнение BAX нагрузки: $U(I) = I_H R_H$

Графическое решение этих двух уравнений позволяет определить ток в сопротивлении нагрузки $R_{\scriptscriptstyle H}$:

Из уравнения баланса мощностей определяется мощность в нагрузке:

$$P_H(I_H) = E_{\Gamma}I_H - I_H^2 R_{\Gamma}$$

Из условия максимума функции: $\frac{dP_{\!{}_{\! H}}}{dI_{\!{}_{\! H}}} = E_{\Gamma} - 2I_{\!{}_{\! H}}R_{\Gamma} = 0$, получаем:

$$I_H = \frac{E_{arGamma}}{2R_{arGamma}}$$
 . По формуле Тевенена–Гельмгольца: $I_H = \frac{E_{arGamma}}{R_{arGamma} + R_{argamma}}$

Условие максимальной мощности в нагрузке: $R_H = R_\Gamma$, такой режим работы называется *согласованным*.

КПД передачи энергии в нагрузку:

$$\eta = \frac{P_{H}}{P_{\Gamma}} = \frac{E_{\Gamma}I_{H} - I_{H}^{2}R_{\Gamma}}{E_{\Gamma}I_{H}} = 1 - \frac{I_{H}R_{\Gamma}}{E_{\Gamma}} = 1 - \frac{I_{H}R_{\Gamma}}{I_{H}(R_{\Gamma} + R_{H})} = \frac{R_{H}}{R_{\Gamma} + R_{H}}$$

В согласованном режиме работы $\eta = 0.5$

Графические зависимости:

Эквивалентные преобразования электрических схем.

а) Правило распределения токов в параллельных ветвях («правило разброса»):

$$I_1 = I_3 \frac{R_2}{R_1 + R_2}, I_2 = I_3 \frac{R_1}{R_1 + R_2}.$$

б) Последовательное соединение ЭДС и сопротивлений:

$$E_{1} \quad R_{1} \quad R_{2} \quad E_{2} \\
E_{3} = E_{1} - E_{2}, \quad R_{3} = R_{1} + R_{2}.$$

в) Параллельное соединение источников тока:

г) Параллельное соединение ветвей с ЭДС и сопротивлениями:

д) Эквивалентная замена источника ЭДС на источник тока и наоборот:

е) Перенос источника тока:

ж) Перенос источника ЭДС через узел:

з) Преобразование звезды в треугольник и наоборот:

Сопротивления сторон треугольника: $R_{ab} = R_a + R_b + \frac{R_a R_b}{R_c}$,

$$R_{bc} = R_b + R_c + \frac{R_b R_c}{R_a}, \quad R_{ca} = R_c + R_a + \frac{R_c R_a}{R_b}.$$

Сопротивления лучей звезды:

$$R_{a} = \frac{R_{ab}R_{ca}}{R_{ab} + R_{bc} + R_{ca}}, \ R_{b} = \frac{R_{bc}R_{ab}}{R_{ab} + R_{bc} + R_{ca}}, \ R_{c} = \frac{R_{ca}R_{bc}}{R_{ab} + R_{bc} + R_{ca}}.$$

Свойства линейных цепей

а) Принцип взаимности. Применяется для цепи с одним источником ЭДС. Ток I_{cd} в ветви cd, создаваемый ЭДС E, расположенной в ветви ab, равен току I_{ab} в ветви ab, если в ветвь cdпереместить ту же ЭДС E.

б) Принцип линейности. В линейной цепи при изменении какоголибо из параметров (источника ЭДС, источника тока или сопротивления), любые две величины (токи или напряжения) связаны линейным соотношением вида: y = ax + b

ТЕМА 2. РАСЧЕТ ЦЕПЕЙ С СИНУСОИДАЛЬНЫМИ НАПРЯЖЕНИЯМИ И ТОКАМИ

Все законы и методы расчета линейных электрических цепей синусоидального тока сохраняют те же свойства, что и при расчете цепей постоянного тока.

 $\it Cинусоидальный ток ($ напряжение) – это величина, мгновенное значение которой меняется по синусоидальному закону. Например, для тока $\it i(t) = I_m \sin(\omega t + \psi_i)$, где $\it I_m -$ амплитудное (максимальное) значение тока; $\it \omega = 2\pi f = \frac{2\pi}{T}$, $\it pad/c$ (радиан/секунду) – угловая частота; $\it f = \frac{1}{T}$, $\it \Gamma u$ (Герц) – частота; $\it T$, $\it c$ (секунда) – период синусоиды;

 ψ_i , pad (радиан или градус, $\pi pad = 180^{\circ}$) — начальная фаза.

В России:
$$f = 50 \Gamma \mu$$
., $\omega = 314 \frac{pao}{c}$, $T = 0.02 c$.

Векторная диаграмма — это изображение синусоиды в виде вращающегося вектора в прямоугольной системе координат. Длина вектора равна амплитуде синусоиды. Угол поворота вектора равен начальной фазе и отсчитывается от оси абсцисс против часовой стрелки.

Волновая диаграмма — это график зависимости синусоидального тока от времени.

Действующее или*среднеквадратичное* значение синусоидального тока определяется из соотношения

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) dt} = \frac{I_{m}}{\sqrt{2}}.$$

Физический смысл этого значения заключается в следующем: Действующее значение гармонического тока i численно равно такому постоянному току I, который за время T в том жесопротивлении R выделяеттакое же количества тепла W.

Исходя из вышеизложенного, действующие значения синусоидальных токов, напряжений и ЭДС в $\sqrt{2}$ раз меньше их амплитудных значений.

$$I = \frac{I_m}{\sqrt{2}}, \quad U = \frac{U_m}{\sqrt{2}}, \quad E = \frac{E_m}{\sqrt{2}}.$$

Резистор в цепи синусоидального тока.

При токе $i(t) = I_m \sin(\omega t + \psi_i)$, по закону Ома $u = iR = \sqrt{2}U \sin(\omega t + \psi_i)$. Для действующих значений: U = IR. Ток и напряжение в резисторе совпадают по фазе, т.е. угол сдвига фаз $\phi = 0$.

Мгновенная активная мощность в резисторе:

$$p = ui = 2I^2R\sin^2(\omega t + \psi_i) = I^2R(1 - \cos 2(\omega t + \psi_i))$$

Средняя за периодT активная мощность: $P = \frac{1}{T} \int_{0}^{T} p(t) dt = I^{2}R$, Bm.

P — называется активной мощностью и используется в балансе активных мощностей.

Индуктивность в цепи синусоидального тока

При токе $i(t) = I_m \sin(\omega t + \psi_i)$, по закону электромагнитной индукции:

$$u = L\frac{di}{dt} = \sqrt{2}I\omega L\cos(\omega t + \psi_i) = \sqrt{2}U\sin(\omega t + \psi_i + 90^\circ)$$

Для действующих значений: $U = I\omega L = IX_L$, где $X_L = \omega L$, OM -индуктивное реактивное сопротивление.

Напряжение на индуктивности опережает ток на 90° , т.е. угол сдвига фаз $\phi = 90^{\circ}$.

Мгновенная активная мощность:

$$p = ui = 2I^2 X_L \sin(\omega t + \psi_i) \cos(\omega t + \psi_i) = Q_L \sin 2(\omega t + \psi_i),$$

где $Q_L = I^2 X_L$, вар (вольт-ампер реактивный) — индуктивная реактивная мощность, применяется в балансе реактивных мощностей.

Средняя за периодT активная мощность: $P = \frac{1}{T} \int_{0}^{T} p(t) dt = 0$.

Когда $p \ge 0$ индуктивность запасает энергию в магнитном поле, тогда $p \le 0$, запасенная энергия возвращается в сеть.

Ёмкость в цепи синусоидального тока

При токе $i(t) = I_m \sin(\omega t + \psi_i)$ для напряжения получим: $u = \frac{1}{C} \int i(t) dt = -\sqrt{2} \frac{I}{\omega C} \cos(\omega t + \psi_i) = \sqrt{2} U \sin(\omega t + \psi_i - 90^0).$

Для действующих значений: $U = \frac{I}{\omega C} = IX_C$, где $X_C = \frac{1}{\omega C}$, OM — емкостное реактивное сопротивление. Напряжение на ёмкости отстает от тока на 90° , т.е. угол сдвига фаз $\phi = -90^\circ$.

Мгновенная активная мощность:

$$p = u \cdot i = -2I^2 X_C \sin(\omega t + \psi_i) \cdot \cos(\omega t + \psi_i) = Q_C \sin 2(\omega t + \psi_i),$$
 где $Q_C = -I^2 X_C$, вар — емкостная реактивная мощность, применяется в балансе реактивных мощностей.

Средняя за периодT активная мощность: $P = \frac{1}{T} \int_{0}^{T} p(t) dt = 0$.

Когда $p \ge 0$ ёмкость запасает энергию в электрическом поле, $p \le 0$, запасенная энергия возвращается в сеть.

Последовательное соединение R, L, C

При токе $i=\sqrt{2}I\sin(\omega t+\psi_i)$, по 2 закону Кирхгофа входное напряжение равно: $u=u_R+u_L+u_C$.

Построим векторную диаграмму для действующих значений тока и напряжений. Получим треугольник напряжений abc, где $U = \sqrt{U_R^2 + \left(U_L - U_C\right)^2}$ — действующее значение входного напряжения, $\phi = arctg \, \frac{U_L - U_C}{U_R}$ — сдвиг фазы между входным напряжением и током

(угол нагрузки),

 $u = \sqrt{2}U\sin(\omega t + \psi_i + \phi)$ – мгновенное значение входного напряжения.

На основании треугольника напряжений получаем треугольник сопротивлений и треугольник мощностей:

Из треугольника сопротивлений:

$$Z = \frac{U}{I} = \sqrt{R^2 + (X_L - X_C)^2}, \ \phi = arctg \frac{X_L - X_C}{R},$$

где $Z(O_M)$ – полное сопротивление цепи.

Из треугольника мощностей:

$$.S = UI = \sqrt{P^2 + (Q_L - Q_C)^2}, \ \phi = arctg \frac{Q_L - Q_C}{P}.,$$

где S, BA (вольт-ампер) — полная мощность цепи; $\cos\phi = \frac{P}{S}$ — коэффициент мощности.

На основании треугольника мощностей составляется баланс мощности электрической цепи.

- a) мощность источников: $S_{\mu} = UI$, $P_{\mu} = S\cos\phi$, $Q_{\mu} = S\sin\phi$.
- б) потребляемая мощность:

$$P_{_{\Pi}} = I^{2}R, \quad Q_{_{\Pi}} = I^{2}X_{_{L}} - I^{2}X_{_{C}}, \quad S_{_{\Pi}} = \sqrt{P^{2} + Q^{2}}$$

Погрешность расчета (небаланс):

$$\delta_{P} = \frac{\left| P_{\text{M}} - P_{\text{\Pi}} \right|}{P_{\text{M}}} \cdot 100\% \le 3\% , \qquad \delta_{Q} = \frac{\left| Q_{\text{M}} - Q_{\text{\Pi}} \right|}{Q_{\text{M}}} \cdot 100\% \le 3\%$$

Параллельное соединение R, L, C.

При напряжении $u=\sqrt{2}\ U\sin(\omega t+\psi_u)$, по 1 закону Кирхгофа входной ток равен: $i=i_R+i_L+i_C$. Построим векторную диаграмму для действующих значений напряжения токов. Получим треугольник токов abc, где $I=\sqrt{I_R^2+\left(I_L-I_C\right)^2}$ – действующее значение входного тока,

 $\phi = arctg \frac{I_L - I_C}{I_R}$ — сдвиг фазы между входным напряжением и током (угол нагрузки).

 $i = \sqrt{2}I\sin(\omega t + \psi_u - \phi)$ – мгновенное значение входного тока.

На основании треугольника токов получаем треугольник проводимостей.

Из треугольника проводимостей:

$$Y = \frac{I}{U} = \sqrt{g^2 + (b_L - b_C)^2}, \phi = arctg \frac{b_L - b_C}{g},$$

где Y, C_M (Сименс) — полная проводимость цепи;

$$g = \frac{1}{R}$$
, C_M — активная проводимость;

$$b_{L} = \frac{1}{X_{L}}, C_{M} - \text{индуктивная реактивная проводимость;}$$

$$b_{C} = \frac{1}{X_{C}}, C_{M} - \text{емкостная реактивная проводимость.}$$

$$b_C = \frac{1}{X_C}$$
, C_M — емкостная реактивная проводимость.

Изображение синусоидальных токов и напряжений комплексными

Синусоидальной функции времени напряжения или тока соответствует изображение в виде комплексного числа (КЧ) на комплексной плоскости.

$$i = \sqrt{2}I\sin(\omega t + \psi_i) \leftrightarrow \dot{I} = Ie^{j\psi_i} = a + jb$$

где $j = \sqrt{-1}$ — мнимая единица; \dot{I} — комплекс действующего значения тока; $Ie^{j\psi_i}$ – показательная форма записи КЧ; a+jb – алгебраическая форма записи КЧ; $a = \text{Re}(Ie^{j\psi_i})$ – действительная часть КЧ; $b = \text{Im}(Ie^{j\psi_i})$ - мнимая часть КЧ.

Система координат (+j, +1) называется комплексной плоскостью.

(+1) — действительная ось, (+j) — мнимая ось.

Обе формы КЧ связаны тригонометрическими соотношениями:

$$a = I \cos \psi_i$$
, $b = I \sin \psi_i$, $I = \sqrt{a^2 + b^2}$, $\psi_i = arctg \frac{b}{a} \pm 180^0$,

причем ($\pm 180^{\circ}$) учитывается, когда $a \le 0$.

Операции с комплексными числами.

1) сложение и вычитание:

$$\dot{A}_1 \pm \dot{A}_2 = (a_1 + jb_1) \pm (a_2 + jb_2) = (a_1 \pm a_2) + (b_1 \pm b_2) = a_3 + jb_3 = \dot{A}_3$$

2) умножение:

$$\dot{A}_1\dot{A}_2 = A_1e^{j\psi_1} \cdot A_2e^{j\psi_2} = A_1A_2e^{j(\psi_1+\psi_2)} = A_3e^{j\psi_3} = \dot{A}_3$$

3) деление:
$$\frac{\dot{A}_1}{\dot{A}_2} = \frac{A_1 e^{j\psi_1}}{A_2 e^{j\psi_2}} = \frac{A_1}{A_2} e^{j(\psi_1 - \psi_2)} = A_3 e^{j\psi_3} = \dot{A}_3$$

- 4) возведение в степень: $(Ae^{j\psi})^n = A^n e^{j\psi \cdot n}$
- 5) извлечение корня: $\sqrt[n]{Ae^{j\psi}} = \sqrt[n]{Ae^{j\frac{\psi}{n}}}$
- 6) комплексно-сопряжённое число \dot{A}^* : если $\dot{A} = Ae^{j\psi} = a + jb$, то $\dot{A}^* = Ae^{-j\psi} = a ib$
- 7) некоторые соотношения:

$$j = e^{j90^{\circ}}; \ (-j) = e^{-j90^{\circ}}; \ 1 = e^{j0^{\circ}}; \ (-1) = e^{j180^{\circ}}; \ \frac{1}{j} = -j; \ j^2 = -1$$

8) дифференцирование:

т.к.
$$(\sqrt{2}A\sin(\omega t + \psi))' = (\sqrt{2}\omega A\sin(\omega t + \psi + 90^{\circ}), \text{ то}$$

 $(Ae^{j\psi})' = \omega Ae^{j(\psi+90^{\circ})} = j\omega \dot{A}$

9) интегрирование:

т.к.
$$\int \sqrt{2} A \sin(\omega t + \psi_i) dt = \sqrt{2} \frac{A}{\omega} \sin(\omega t + \psi_i - 90^0), \text{ то}$$
$$\int A e^{j\psi} dt = \frac{A}{\omega} e^{j(\psi - 90^0)} = \frac{\dot{A}}{j\omega} = -j\frac{\dot{A}}{\omega}$$

Законы электротехники в комплексной форме

a) Закон Ома.

При токе $i = \sqrt{2} I \sin(\omega t + \psi_i)$, в комплексной форме получим изображения действующих значений тока и напряжений на элементах: $\dot{I} = Ie^{j\psi_i}$, $\dot{U}_R = \dot{I}R$, $\dot{U}_L = \dot{I}jX_L$, $\dot{U}_C = \dot{I}(-jX_C)$.

Полное комплексное сопротивление цепи: $\underline{Z} = R + jX_L - jX_C = Ze^{j\phi}$ По закону Ома входное напряжение равно: $\dot{U} = \dot{I}\underline{Z} = Ue^{j(\psi_i + \phi)} = Ue^{j\psi_u}$

б) **Первый закон Кирхгофа**. Для узла $a: \dot{I}_1 - \dot{I}_2 - \dot{I}_3 = 0$.

г) **Второй закон Кирхгофа.** Для контура 1: $\dot{U}_R + \dot{U}_L - \dot{U}_C + \dot{U}_J = \dot{E}$ или $\dot{I}_1 R + \dot{I}_2 j X_L - \dot{I}_3 (-j X_C) + \dot{U}_J = \dot{E}$.

Баланс мощности в комплексной форме.

Для расчета мощности источников используется комплексносопряжённое значение тока.

мощность источников:

$$\begin{split} \dot{S}_{_{\mathrm{H}}} &= \sum \dot{E} \cdot \dot{I}^{*} + \sum \dot{U}_{_{J}} \cdot \dot{J}^{*} = Se^{j\phi} = S\cos\phi + jS\sin\phi = P_{_{\mathrm{H}}} + jQ_{_{\mathrm{H}}} \\ \text{активная потребляемая мощность: } P_{_{\mathrm{H}}} &= \sum I^{2}R \\ \text{реактивная потребляемая мощность: } Q_{_{\mathrm{H}}} &= \sum I^{2}X_{_{L}} - \sum I^{2}X_{_{C}} \\ \text{погрешность расчета (небаланс):} \\ \delta_{_{P}} &= \frac{\left|P_{_{\mathrm{H}}} - P_{_{\mathrm{H}}}\right|}{P} \cdot 100\% \leq 3\% \;, \qquad \delta_{_{Q}} &= \frac{\left|Q_{_{\mathrm{H}}} - Q_{_{\mathrm{H}}}\right|}{O} \cdot 100\% \leq 3\% \end{split}$$

Резонанс — это такой режим электрической цепи, содержащей емкости и индуктивности, при котором общее входное сопротивление или входная проводимость цепи будут **резистивными**. В этом режиме цепь потребляет только активную мощность и входные ток и напряжение совпадают по фазе.

Резонанс напряжений

Резонанс напряжений возникает при последовательном соединении участков цепи с индуктивным и емкостным характером. Входное сопротивление цепи: $\underline{Z} = R + j(X_L - X_C)$.

Условие резонанса: $X_L = X_C$ или $\omega L = \frac{1}{\omega C}$.

Резонансные величины: $\omega_0 = \frac{1}{\sqrt{LC}}$; $C_0 = \frac{1}{\omega^2 L}$; $L_0 = \frac{1}{\omega^2 C}$.

В режиме резонанса $\underline{Z} = R$; $\dot{I} = \dot{I}_{\text{max}} = \dot{U}/R$; $\phi = \text{arctg} \frac{X_L - X_C}{R} = 0$;

 $Q = UI \sin \phi = 0$; $S = P = UI \cos \phi = I^2 R$.

Зависимости $Z = \sqrt{R^2 + X^2}$, $X = \omega L - 1/\omega C$ и $\phi = \operatorname{arctg} \frac{X}{R}$ от угловой частоты ω :

Если $X_L=X_C>R$, то $\dot{U}_L=jX_L\dot{I}$, $\dot{U}_C=-jX_C\dot{I}$ будут равны по модулю и превысят входное напряжение $U_L=U_C>U$.

$$\rho = \sqrt{\frac{L}{C}} = \omega_0 L = \frac{1}{\omega_0 C} [\text{Ом}] - \textbf{волновое} \quad (\text{характеристическое}) \quad \text{сопротивле-}$$

ние контура; $G = \frac{U_L}{U} = \frac{U_C}{U} = \frac{X_L}{R} = \frac{X_C}{R} = \frac{\rho}{R} - \textit{добротность}$ контура, котораяопределяет резонансные свойства контура. Чем больше доброт-

ность G , тем меньше отличаются $\omega_{\scriptscriptstyle L}$ и $\omega_{\scriptscriptstyle C}$ от резонансной частоты и тем острее становятся все три резонансные кривые $I(\omega)$, $U_{\scriptscriptstyle C}(\omega)$, $U_{\scriptscriptstyle L}(\omega)$

Векторная диаграмма резонанса напряжений

Резонанс токов

Резонанс токов возникает при параллельном соединении участков цепи с индуктивным и емкостным характером.

$$\dot{I}_{R} = \frac{\dot{U}}{R} = g\dot{U}; \dot{I}_{L} = \frac{\dot{U}}{jX_{L}} = -\dot{U}jb_{L}; \dot{I}_{C} = \frac{\dot{U}}{-jX_{C}} = \dot{U}jb_{C},$$

где
$$g = \frac{1}{R}$$
; $b_L = \frac{1}{X_L}$; $b_C = \frac{1}{X_C}$.

По первому закону Кирхгофа: $\dot{I}=\dot{I}_R+\dot{I}_C+\dot{I}_L=\dot{U}(g+j(b_C-b_L))=\dot{U}\underline{Y}$, где $\underline{Y}=g+j(b_C-b_L)$ – комплекс полной проводимости цепи.

Условие резонанса токов: $b_L = b_C$ или $\frac{1}{\omega} = \omega C$.

Резонансные величины:
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
; $C_0 = \frac{1}{\omega^2 L}$; $L_0 = \frac{1}{\omega^2 C}$.

В режиме резонанса токов проводимость $\underline{Y} = g = \frac{1}{R}$ и входной ток бу-

дут минимальны;
$$\phi = \operatorname{arctg} \frac{b_C - b_L}{g} = 0$$
; $Q = UI \sin \phi = 0$;

$$S = P = UI\cos\phi = I_R^2R.$$

Если
$$g<\omega_0C=\frac{1}{\omega_0L}$$
 , то $I_L=I_C>I$; $y=\sqrt{\frac{C}{L}}$ — волновая проводимость

контура;
$$G = \frac{I_L}{I} = \frac{I_C}{I} = \frac{R}{X_L} = \frac{R}{X_C} = \frac{y}{g}$$
 – добротность контура.

Частотные характеристики

Векторная диаграмма при резонансе токов

$$\begin{array}{c|c}
i_{C} \\
i_{E} \\
i_{L}
\end{array}$$

Резонанс токов в параллельном контуре с потерями

$$\underline{Y}_1 = \frac{1}{R_1 + jX_L}; \ \underline{Y}_2 = \frac{1}{R_2 - jX_C}; \ \underline{Y} = \underline{Y}_1 + \underline{Y}_2 = \frac{1}{R_1 + jX_L} + \frac{1}{R_2 - jX_C}$$

По условию резонанса мнимая часть полной проводимости цепи должна равняться нулю. Чтобы выделить мнимую часть умножим числитель и знаменатель на комплексно сопряженные числа:

$$\begin{split} &\frac{R_{1}-jX_{L}}{R_{1}^{2}+X_{L}^{2}}+\frac{R_{2}+jX_{C}}{R_{2}^{2}+X_{C}^{2}}=\left(\frac{R_{1}}{R_{1}^{2}+X_{L}^{2}}+\frac{R_{2}}{R_{2}^{2}+X_{C}^{2}}\right)+\\ &+j\left(\frac{X_{C}}{R_{2}^{2}+X_{C}^{2}}-\frac{X_{L}}{R_{1}^{2}+X_{L}^{2}}\right). \end{split}$$

Приравняв к нулю мнимую часть, находим условие резонанса в параллельном контуре с потерями:

$$\frac{X_C}{R_2^2 + X_C^2} = \frac{X_L}{R_1^2 + X_L^2}.$$

Из этого выражения находим резонансную частоту:

$$\omega_{\rm p} = \omega_0 \sqrt{\frac{\rho^2 - R_1^2}{\rho^2 - R_2^2}}$$
, где $\omega_0 = 1/\sqrt{LC}$; $\rho = \sqrt{L/C}$.

При $\dot{U}=Ue^{j0}$, токи в параллельных ветвях $\dot{I}_L=\frac{\dot{U}}{R_1+jX_L}=I_{La}-jI_{Lp}$; $\dot{I}_C=\frac{\dot{U}}{R_2-jX_C}=I_{Ca}+jI_{Cp}\,.$

Векторная диаграмма

ТЕМА 4.ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ВЗАИМНОЙ ИНДУКТИВНОСТЬЮ

При наличии в цепи катушек, взаимодействующих своими магнитными потоками, цепь называют *индуктивно связанной* или *цепью с взаимной индуктивностью*.В общем случае любое число катушек может иметь индуктивную связь.

Магнитный поток Φ_1 , $B\delta$ (Вебер)первого контура (создается i_1) частично замыкается вокруг витков первого контура, создавая поток рассеяния Φ_{11} , и частично проходит через витки второго контура, создавая поток взаимной индукции) Φ_{21} : $\Phi_1 = \Phi_{11} + \Phi_{21}$.

Магнитный поток Φ_2 второго контура (создается i_2) частично замыкается вокруг витков второго контура, создавая поток рассеяния Φ_{22} , и

частично проходит через витки первого контура, создавая поток взаимной индукции Φ_{12} : $\Phi_2 = \Phi_{22} + \Phi_{12}$.

Потокосцепление первого контура:

$$\psi_1 = w_1(\Phi_1 \pm \Phi_{12}),$$

потокосцепление второго контура:

$$\psi_2 = w_2(\Phi_2 \pm \Phi_{21})$$
, где

 w_1, w_2 — число витков первого и второго контуров.

$$L_{\rm l} = \frac{w_{\rm l} \Phi_{\rm l1}}{i_{\rm l}}$$
 ; $L_{\rm l} = \frac{w_{\rm l} \Phi_{\rm l2}}{i_{\rm l}}$, Γ н – собственные индуктивности контуров;

$$M_{12}=rac{w_1oldsymbol{\Phi}_{12}}{i_2}\,;\; M_{21}=rac{v_2oldsymbol{\Phi}_{21}}{i_1},\, arGamma_{\mathcal{H}}-$$
 взаимные индуктивности.

Для линейных цепей $\Phi_{21} = \Phi_{12}$; $M_{12} = M_{21} = M$.

Степень магнитной связи двух катушек характеризуется коэффициентом связи $k = \frac{M}{\sqrt{L_1 L_2}}$. Начала обмоток называются одноимёнными

зажимами и обозначаются на схеме звездочками или точками.

Направление магнитного потока в катушке индуктивности определяется по правилу буравчика, поэтому, если потоки взаимной индукции Φ_{21} и Φ_{12} совпадают по направлению, то такое включение называют *согласным включением*. При этом токи направлены одинаковым образом относительно одноименных зажимов:

При *встречном включении* взаимные магнитные потоки Φ_{21} и Φ_{12} направлены навстречу друг другу. При этом токи направлены различным образом относительно одноименных зажимов:

Мгновенное значение напряжения на индуктивно связанных катушках:

 $u_1 = w_1 \frac{d(\Phi_{11} \pm \Phi_{12})}{dt} = L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt}; \quad u_2 = w_2 \frac{d(\Phi_{22} \pm \Phi_{21})}{dt} = L_2 \frac{di_2}{dt} \pm M \frac{di_1}{dt},$ знак «+» берется при согласном включении катушек, а «-» – при встречном включении.

Комплексы действующих значений напряжений на катушках $\dot{U}_1 = \dot{U}_{L1} \pm \dot{U}_{M1} = j X_{L1} \dot{I}_1 \pm j X_M \dot{I}_2 \, ; \quad \dot{U}_2 = \dot{U}_{L2} \pm \dot{U}_{M2} = j X_{L2} \dot{I}_2 \pm j X_M \dot{I}_1 \, ,$ где $X_{L1} = \omega L_1 \, ; \quad X_{L2} = \omega L_2 \, ; \quad X_M = \omega M \, , \, O_M \, - \, \,$ реактивное сопротивление индуктивной связи; $\dot{U}_{M1} = j X_M \dot{I}_2 \, , \, \dot{U}_{M2} = j X_M \dot{I}_1 \, - \,$ комплексные напряжения взаимной индукции.

При согласном включении берется знак «+» и вектора \dot{U}_{M1} и \dot{U}_{M2} опережают свои токи \dot{I}_2 и \dot{I}_1 на 90^0 (индуктивный характер), а при встречном включении берется знак «-», и вектора \dot{U}_{M1} и \dot{U}_{M2} отстают от своих токов на 90^0 (емкостной характер).

При расчете цепи по уравнениям Кирхгофа напряжение $\dot{U}_M = \pm j\omega M \dot{I}$ учитывается наравне с другими падениями напряжения с учетом вида включения (согласное или встречное).

Последовательное соединение двух индуктивно связанных катушек

По закону Ома: $\dot{U}_{R1}=\dot{I}R_1$; $\dot{U}_{R2}=\dot{I}R_2$; Напряжения на катушках: $\dot{U}_1=jX_{L1}\dot{I}\pm jX_M\dot{I}=\dot{U}_{L1}\pm\dot{U}_M$; $\dot{U}_2=jX_{L2}\dot{I}\pm jX_M\dot{I}=\dot{U}_{L2}\pm\dot{U}_M$. Входное сопротивление цепи $\underline{Z}=R_1+R_2+j(X_{L1}+X_{L2}\pm 2X_M)$.

Общий ток
$$\dot{I} = \frac{\dot{U}}{\underline{Z}} = \frac{\dot{U}}{R_1 + R_2 + j(X_{L1} + X_{L2} \pm 2X_M)}$$
,

«+» – при согласном включении; «-» – при встречном.

При неизменном действующем значении входного напряжения больший по величине ток будет при встречном включении.

Векторные диаграммы

Параллельное соединение двух индуктивно связанных катушек

Уравнения по законам Кирхгофа в комплексной форме с учетом влияния индуктивной связи:

$$\dot{I} = \dot{I}_1 + \dot{I}_2; \quad \dot{U} = \dot{I}_1 R_1 + j X_{L1} \dot{I}_1 \pm j X_M \dot{I}_2; \quad \dot{U} = \dot{I}_2 R_2 + j X_{L2} \dot{I}_2 \pm j X_M \dot{I}_1.$$

Совместное решение уравнений позволяет определить ток:
$$\dot{I} = \dot{U} \, \frac{\underline{Z}_1 + \underline{Z}_2 - 2(\pm j X_M)}{\underline{Z}_1 \, \underline{Z}_2 + X_M^2},$$

где $\underline{Z}_1 = R_1 + jX_{L1}$;. $\underline{Z}_2 = R_2 + jX_{L2}$., при этом знак «+» берется при согласном включении катушек,а «-» - при встречном.

При неизменном входном напряжении больший ток будет при встречном включении.

Потребляемая реактивная мощность с учетом индуктивной связи катушек определяется по формуле

$$Q_{\Pi} = \sum_{i} I_{i}^{2} X_{Li} - \sum_{k} I_{k}^{2} X_{Ck} \pm 2X_{M} I_{d} I_{r} \cos(\psi_{d} - \psi_{r})$$
, где

слагаемое $\pm 2X_{_M}I_{_d}I_{_r}\cos(\psi_{_d}-\psi_{_r})$ учитывает индуктивную связь; знак «+» ставится при согласном включении катушек и «-» при встречном; I_d , I_r — действующие значения токов индуктивно связанных катушек; ψ_d , ψ_r – их начальные фазы.

Развязка индуктивной связи

Используется с целью упрощения расчетов. После развязки схема может быть рассчитана любым методом в комплексной форме.

Развязка последовательно соединенных катушек:

Развязка индуктивных связей катушек, имеющих общий узел:

• если катушки подключены к общему узлу одноименными зажимами, то в эквивалентной схеме без индуктивной связи последовательно к каждому из них подключается сопротивление $-jX_M$, а в общую ветвь сопротивление jX_M :

• если катушки подключены к общему узлу разноименными зажимами, то в эквивалентной схеме без индуктивной связи последовательно к каждому элементу подключается сопротивление jX_{M} , а в общую ветвь сопротивление $-jX_{M}$:

ТЕМА 5. ДВУХОБМОТОЧНЫЙ ТРАНСФОРМАТОР В ЛИНЕЙНОМ РЕЖИМЕ

Трансформатор предназначен для преобразования величин переменных токов и напряжений при неизменной частоте. В простейшем случае он представляет собой две обмотки на замкнутом сердечнике из ферромагнитного материала. Передача энергии из первичной во вторичную обмоткупроисходит благодаря явлению взаимной индукции. Обмотка $1-1^1$ называется первичной и подключается к источнику электроэнергии с напряжением u_1 , обмотка $2-2^1$ называется вторичной и подключается к нагрузке с напряжением u_2 .

Схема замещения линейного трансформатора:

Уравнения трансформатора в линейном режиме:

$$\begin{cases} \dot{U}_{1} = \dot{I}_{1}R_{1} + \dot{I}_{1}jX_{L1} - \dot{I}_{2}jX_{M} = \\ = \dot{U}_{R1} + \dot{U}_{L1} + \dot{U}_{M1} \\ 0 = \dot{U}_{2} + \dot{I}_{2}R_{2} + \dot{I}_{2}jX_{L2} - \dot{I}_{1}jX_{M} = \\ \dot{U}_{2} + \dot{U}_{R2} + \dot{U}_{L2} + \dot{U}_{M2} \end{cases}$$

где $\dot{U}_2 = \dot{I}_2 Z_{_{\mathrm{H}}} = \dot{I}_2 (R_{_{\mathrm{H}}} + j X_{_{\mathrm{H}}})$ - напряжение на нагрузке.

Коэффициент трансформации — это отношение напряжения на зажимах обмотки высшего напряжения (вн) к напряжению на зажимах обмотки низшего напряжения (нн) в режиме холостого хода: $k_{\rm тp} = \frac{U_{\rm вн}^{\rm x}}{U_{\rm ни}^{\rm x}}$.

Если $U_1>U_2$ и $R_1<< X_{L1}$, то $k_{\rm Tp}=\frac{w_1}{w_2}$, где w_1,w_2 — числа витков первичной и вторичной обмоток. Если в режиме холостого хода ($\underline{Z}_{\rm H}=\infty,\underline{I}_2=0$) $U_1>U_2,\ k_{\rm Tp}>1$, то трансформатор называют понижающим, если $U_1< U_2,\ k_{\rm Tp}<1$ — повышающим.

Диаграммы работы трансформатора в режиме холостого ходаи короткого замыкания:

Эквивалентная схема трансформатора без индуктивной связи (за общий узел принимается точка в схеме замещения с индуктивной связью):

ТЕМА 6. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ИСТОЧНИКАМИ НЕСИНУСОИДАЛЬНЫХ ПЕРИОДИЧЕСКИХ НАПРЯЖЕНИЙ И ТОКОВ

Несинусоидальные периодические напряжения и токи возникают в цепях содержащих нелинейные элементы — электроника, автоматика, радиотехника, и т.д. Расчет таких цепей заключается в следующем:

- 1. Разложение несинусоидальных ЭДС или токов источников тока в ряд Фурье.
- 2. Расчет электрической цепи по принципу наложения и определение постоянной и гармонических составляющих токов и напряжений в ветвях цепи.
- 3. Определение мгновенных или действующих значений токов и напряжений.

Разложение несинусоидальных ЭДС или токов источников тока в ряд Фурье.

Для разложения в ряд Фурье используется следующая форма записи:

$$f(t) = A_0 + \sum_{1}^{\infty} A_{km} \sin(k\omega t + \psi_k)$$
, где $A_0 = \frac{1}{T} \int_{0}^{T} f(t) dt$ $A_{km} = \sqrt{B_{km}^2 + C_{km}^2}$, $\psi_k = arctg \frac{C_{km}}{B_{km}}$, причем

$$B_{km} = \frac{1}{\pi} \int_{0}^{T} f(t) \sin(k\omega t) dt, C_{\kappa} = \frac{2}{T} \int_{0}^{T} f(t) \cos(\kappa \omega t) dt$$

Здесь A_0 — постоянная составляющая, $A_{1m}\sin(\omega t + \psi_1)$ — первая (основная) гармоника, ее период $T = \frac{2\pi}{\omega}$ равен периоду самой функции. Все остальные гармоники называются высшими.

Так, $A_{km}\sin(k\omega t + \psi_k)$ — гармоническая составляющая k-го порядка, (k-я гармоника), чей период $T_k = \frac{2\pi}{k\omega} = \frac{T}{k}$. Каждой гармонике может быть сопоставлена ее комплексная амплитуда:

$$\dot{A}_{km} = A_{km}e^{j\psi_k} = B_{km} + jC_{km}$$

Действующие и средние значения несинусоидальных величин Пусть известно разложение некоторого тока в ряд Фурье:

$$i(t) = I_0 + \sum i_k = I_0 + \sum I_{km} \sin(k\omega t + \psi_k).$$

Найдем его действующее (среднеквадратичное) значение:

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) dt} = \sqrt{I_{0}^{2} + \frac{I_{m1}^{2}}{2} + \frac{I_{m2}^{2}}{2} + \dots} = \sqrt{I_{0}^{2} + I_{1}^{2} + I_{2}^{2} + \dots}.$$

Действующее значение не зависит от начальных фаз гармоник. Его можно измерить приборами электромагнитной и электродинамической систем (а действующее значение напряжения — еще и электростатическими вольтметрами).

*Среднее за период значение тока*равно постоянной составляющей в разложении $I_0 = \frac{1}{T} \int\limits_0^T i(t) dt$ и может быть измерено приборами магнитоэлектрической системы.

Среднее по модулю значение тока $I_{cp} = \frac{1}{T} \int_{0}^{T} |i(t)| \, dt$ измеряется магнитоэлектрическими приборами с выпрямителем.

Волновые диаграммы и частотные спектры.

Для примера рассмотрим функцию несинусоидального тока в виде ряда Фурье: $i(t) = 1 + 3\sin(\omega t + 30^0) + 2\sin(3\omega t - 90^0)$, A

Совокупность комплексных амплитуд A_{km} всех гармоник данной функции можно рассматривать как ее дискретный спектр. На графике он может быть представлен в виде линейчатых амплитудно- и фазочастотных спектров, которые показывают зависимость амплитуд гармоник A_{km} их начальных фаз ψ_k от номеров гармоник или их частот $k\omega$.

Коэффициенты, характеризующие формунесинусоидальных кривых.

Наиболее часто употребляются следующие коэффициенты:

коэффициент амплитуды $k_{_A}$, равный отношению наибольшего значения функции к ее действующему значению $k_{_A}=\frac{F_{_{MAKC}}}{F}$; для синусоиды $k_{_A}=\sqrt{2}=1,41$.

коэффициент формы k_{ϕ} , равный отношению действующего значения функции к среднему по модулю $k_{\phi}=\frac{F}{F_{cp}}$; для синусоиды $k_{\phi}=1,11$

коэффициент искажения k_{H} , равный отношению действующего значения первой гармоники к действующему значению самой функции $k_{H}=\frac{F_{1}}{F_{1}}$; для синусоиды $k_{H}=1$.

коэффициент гармоник k_{Γ} , равный отношению действующего значения высших гармоник к действующему значению основной $\sqrt{F_2^2 + F_3^2 + ...}$

$$k_{\Gamma}=rac{\sqrt{F_2^2+F_3^2+...}}{F_1}$$
; для синусоиды $k_{\Gamma}=0$

Впромышленной сети напряжение несколько отличается от синусоидального. В стандарте вводят понятие *практически синусоидального напряжения*, у которого коэффициент искажения не должен превышать 5%.

Мощность в цепи несинусоидального тока.

Для напряжения и тока двухполюсника, заданных в виде ряда Фурье: $u(t) = U_0 + \sqrt{2}U_1\sin(\omega t + \alpha_1) + \sqrt{2}U_2\sin(2\omega t + \alpha_2) + ...$

$$i(t) = I_0 + \sqrt{2}I_1\sin(\omega t + \beta_1) + \sqrt{2}I_2\sin(2\omega t + \beta_2) + \dots$$

активная мощность, потребляемая двухполюсником равна: $P = P_0 + P_1 + P_2 + ... = U_0 I_0 + U_1 I_1 \cos \phi_1 + U_2 I_2 \cos \phi_2 + ..., \ Bm \,,$ где $\phi_1 = \alpha_1 - \beta$, $\phi_2 = \alpha_2 - \beta_2$ - сдвиги фаз между гармониками напряжения и тока.

Реактивная мощность двухполюсника $Q=Q_1+Q_2+...=U_1I_1\sin\phi_1+U_2I_2\sin\phi_2+...$, вар, причем для постоянной составляющей $Q_0=0$.

Полная мощность двухполюсника $S = UI = \sqrt{U_0^2 + U_1^2 + U_2^2 + \dots} \cdot \sqrt{I_0^2 + I_1^2 + I_2^2 + \dots} \;, \; BA$

в большинстве случаях для негармонических функций $S \neq \sqrt{P^2 + Q^2}$. Если $S = \sqrt{P^2 + Q^2}$, то формынесинусоидальных напряжения u(t) и тока i(t) одинаковы.

Коэффициент мощности $\cos \phi = \frac{P}{S} \le 1$.

В расчетах часто применяют эквивалентные синусоиды. При этом реальные несинусоидальные кривые заменяются эквивалентными синусоидами с тем же периодом T, теми же действующими значениями тока и напряжения I,U и таким углом сдвига фаз $\phi_{\ni}=\arccos\frac{P}{UI}$, который обеспечил бы ту же самую активную мощность P.

ТЕМА 7. ТРЕХФАЗНЫЕ ЦЕПИ

Трехфазная цепь — это совокупность трех электрических цепей (фаз), в которых действуют одинаковые ЭДС одной и той же частоты, сдвинутые друг относительно друга $\text{нa}120^{\circ}$:

$$e_A = E_m \sin \omega t$$
; $e_B = E_m \sin(\omega t - 120^0)$; $e_C = E_m \sin(\omega t + 120^0)$.

В комплексной форме:
$$\dot{E}_A = \frac{E_m}{\sqrt{2}} = E_{\phi}$$
; $\dot{E}_B = E_{\phi} e^{-j120^{\circ}}$; $\dot{E}_C = E_{\phi} e^{j120^{\circ}}$.

Алгебраическая сумма симметричной трехфазной системы равна нулю:

$$\dot{E}_A + \dot{E}_B + \dot{E}_C = E_{\phi}(1 + a^2 + a) = E_{\phi}(1 - 0.5 - 0.866j - 0.5 + 0.866j) = 0.$$

Фазный множитель a- это комплексная величина, которая применяется при расчете трехфазных цепей для упрощения записи: $a=e^{j120^0}=-0.5+j0.866;~a^2=e^{j240^0}=-0.5-j0.866;~a^3=e^{j360^0}=1$

Таким образом: $\dot{E}_{A}=E_{\varphi}$; $\dot{E}_{B}=E_{\varphi}a^{2}$; $\dot{E}_{C}=E_{\varphi}a$

Система ЭДС (напряжений, токов) называется *симметричной*, если она состоит из одинаковых по модулю ЭДС (напряжений, токов) одной и той же частоты, но сдвинутых относительно друг друга на 120° .

Соединение « звезда –звезда» с нулевым проводом (Y/Y)

Линейные напряжения — это напряжения между линейными проводами $(\dot{U}_{AB}, \dot{U}_{BC}, \dot{U}_{CA})$. Линейные токи $(\dot{I}_A, \dot{I}_B, \dot{I}_C)$ являются одновременно фазными токами и текут от источника к приемнику. Нейтральный провод — это провод, соединяющий нейтральную точку источников Nи нейтральную точку приемников n. Фазные напряжения приемника — это напряжения между линией и точкой $n(\dot{U}_A, \dot{U}_B, \dot{U}_C)$. Напряжение смещения нейтрали $\dot{U}_N = \dot{I}_N \underline{Z}_N$ показывает смещение точки n по отношению к точке N.

Векторная диаграмма ЭДС и линейных напряжений при соединении фаз генератора звездой:

Линейные напряжения больше фазных ЭДС в $\sqrt{3}$ раз: $\dot{U}_{_{\rm I}} = \sqrt{3} \dot{E}_{_{\rm D}} e^{j30^{\circ}}$. При симметричной нагрузке когда $\underline{Z}_A = \underline{Z}_B = \underline{Z}_C = \underline{Z}$, напряжение смещение нейтрали $\dot{U}_{\scriptscriptstyle N}=0$ и фазные напряжения на нагрузке равны фазным ЭДС: $\dot{U}_A = \dot{E}_A$, $\dot{U}_B = \dot{E}_B$, $\dot{U}_C = \dot{E}_C$. Линейные (фазные) токи $\dot{I}_A = \frac{E_A}{Z}$, $\dot{I}_{B} = \frac{E_{B}}{Z}, \dot{I}_{C} = \frac{E_{C}}{Z}$ равны по величине и сдвинуты друг относительно друга на120°

Соединение «звезда – звезда» при несимметричной нагрузке Известны \dot{E}_A , $\dot{E}_B = a^2 \dot{E}_A$; $\dot{E}_C = a \dot{E}_A$ и $\underline{Z}_A, \underline{Z}_B, \underline{Z}_C$. Найти все линейные токи: $\dot{I}_{A}, \dot{I}_{B}, \dot{I}_{C}$ и ток в нейтральном проводе.

1.Нейтральный провод разомкнут $\underline{Z}_N = \infty$, следовательно $\underline{U}_N \neq 0$.

Так как в схеме имеются только два узла, проведем расчет методом узловых потенциалов. Пусть $\phi_N = 0$, тогда напряжение смещения нейтрали равно:

$$\dot{U}_{N} = \dot{\phi}_{n} = \frac{\underline{Y}_{A} \cdot \dot{E}_{A} + \underline{Y}_{B} \cdot \dot{E}_{B} + \underline{Y}_{C} \cdot \dot{E}_{C}}{\underline{Y}_{A} + \underline{Y}_{B} + \underline{Y}_{C} + \underline{Y}_{N}},$$

где $\underline{Y}_A = \frac{1}{\underline{Z}_A}$; $\underline{Y}_B = \frac{1}{\underline{Z}_B}$; $\underline{Y}_C = \frac{1}{\underline{Z}_C}$; $\underline{Y}_N = \frac{1}{\underline{Z}_N}$ – проводимости соответст-

вующих ветвей.

Возникает *перекос фаз*, когда фазные напряжения не равны фазным ЭДС. По второму закону Кирхгофа находим фазные напряжения $\dot{U}_A = \dot{E}_A - \dot{U}_N, \dot{U}_B = \dot{E}_B - \dot{U}_N, \dot{U}_C = \dot{E}_C - \dot{U}_N$ и линейные токи $\dot{I}_A = \frac{\dot{E}_A - \dot{U}_N}{\underline{Z}_A};$ $\dot{I}_B = \frac{\dot{E}_B - \dot{U}_N}{\underline{Z}_B}; \ \dot{I}_C = \frac{\dot{E}_C - \dot{U}_N}{\underline{Z}_C}.$

Векторная диаграмма построена при активной нагрузке в фазах В и С $\underline{Z}_B = \underline{Z}_C = R$ и при включении в фазу А катушки индуктивности $\underline{Z}_A = R_K + jX_L$

2.Нейтральный провод замкнут $\underline{Z}_N=0$, следовательно $\dot{U}_N=\dot{I}_N\underline{Z}_N=0$, $\dot{\phi}_N=\dot{\phi}_n$, перекос фаз устраняется, поэтому $\dot{U}_A=\dot{E}_A$; $\dot{U}_B=\dot{E}_B$; $\dot{U}_C=\dot{E}_C$.

Тогда
$$\dot{I}_{\scriptscriptstyle A} = \frac{\dot{E}_{\scriptscriptstyle A}}{Z_{\scriptscriptstyle A}}; \ \dot{I}_{\scriptscriptstyle B} = \frac{\dot{E}_{\scriptscriptstyle B}}{Z_{\scriptscriptstyle B}}; \ \dot{I}_{\scriptscriptstyle C} = \frac{\dot{E}_{\scriptscriptstyle C}}{Z_{\scriptscriptstyle C}};$$

ток нейтрального провода $\dot{I}_N = \dot{I}_A + \dot{I}_B + \dot{I}_C = \frac{\dot{U}_N}{Z_N}$.

Векторная диаграмма построена при активной нагрузке в фазах В и С $\underline{Z}_B = \underline{Z}_C = R$ и при включении в фазу А катушки индуктивности $\underline{Z}_A = R_K + jX_L$

Соединение «звезда – треугольник»

Линейные напряжения $\dot{U}_{AB}, \dot{U}_{BC}, \dot{U}_{CA}$ являются одновременно фазными напряжениями на нагрузке. Токи $\dot{I}_{AB}, \dot{I}_{BC}, \dot{I}_{CA}$ являются фазными токами, а токи $\dot{I}_A, \dot{I}_B, \dot{I}_C-$ линейными токами.

Известны \dot{E}_A , $\dot{E}_B=a^2\dot{E}_A$; $\dot{E}_C=a\dot{E}_A$ и $\underline{Z}_{AB}=\underline{Z}_{BC}=\underline{Z}_{CA}=\underline{Z}=Ze^{j\phi}$. Найти линейные и фазные токи.

Определим линейное напряжение $\dot{U}_{{\scriptscriptstyle A}{\scriptscriptstyle B}}=\dot{E}_{{\scriptscriptstyle A}}-\dot{E}_{{\scriptscriptstyle B}},$ тогда по закону Ома

$$\dot{I}_{AB} = \frac{\dot{U}_{AB}}{\underline{Z}} \text{ M } \dot{I}_{BC} = a^2 \dot{I}_{AB}; \ \dot{I}_{CA} = a \dot{I}_{AB}.$$

По первому закону Кирхгофа определим линейные токи:

$$\dot{I}_{A} = \dot{I}_{AB} - \dot{I}_{CA}; \dot{I}_{B} = \dot{I}_{BC} - \dot{I}_{AB}; \dot{I}_{C} = \dot{I}_{CA} - \dot{I}_{BC}.$$

При симметричной нагрузке $\dot{I}_{_{\rm I}}=\sqrt{3}\dot{I}_{_{\rm Q}}e^{-j30^0}$, следовательно $\dot{I}_{_A}=\sqrt{3}\dot{I}_{_{AB}}e^{-j30^0}$, $\dot{I}_{_B}=a^2\dot{I}_{_A}$, $\dot{I}_{_C}=a\dot{I}_{_A}$. Векторная диаграмма построена для симметричной нагрузки при включении в фазах катушки индуктивности $\underline{Z}_{_{AB}}=\underline{Z}_{_{BC}}=\underline{Z}_{_{CA}}=R_{_K}+jX_{_L}$.

ТЕМА 8. МЕТОД СИММЕТРИЧНЫХ СОСТАВЛЯЮЩИХ

Для расчета несимметричных режимов в линейных трехфазных цепях может быть использован метод симметричных составляющих, так как он сводит сложную задачу при наличии несимметрии ЭДС, токов и напряжений к нескольким более простым задачам расчета той же цепи при симметричных режимах[5].

Методам расчета трехфазных цепей и широко применяется для анализа несимметричного (аварийного) режима динамических трехфазных цепей (генераторы, двигатели, трансформаторы, линии), в том числе с нестатической нагрузкой. В основе метода лежит представление несимметричной трехфазной системы переменных (ЭДС, токов, напряжений и т.п.) в виде суммы трех симметричных систем, которые называют симметричными составляющими.

Различают симметричные составляющие *прямой* (\underline{A}_1 , \underline{B}_1 , \underline{C}_1), обратной (\underline{A}_2 , \underline{B}_2 , \underline{C}_2) и *нулевой* (\underline{A}_0 , \underline{B}_0 , \underline{C}_0) последовательности.

Симметричные составляющие отличаются друг от друга порядком чередования фаз. Угол сдвига фаз между следующими друг за другом фазными величинами данной последовательности определяется формулой $\theta_{\nu} = 2\pi v/3$, где $\nu = 0, 1, 2$ – индекс последовательности.

Таким образом, симметричные составляющие можно записать в таком виде:

прямая последовательность (ν = 1): $\underline{A}_1 = a\underline{B}_1 = a^2\underline{C}_1$; обратная последовательность (ν = 2): $\underline{A}_2 = a^2\underline{B}_2 = a\underline{C}_2$; нулевая последовательность (ν = 0): $\underline{A}_0 = \underline{B}_0 = \underline{C}_0$.

Несимметричная трехфазная система векторов, обозначенных \underline{A} , \underline{B} , \underline{C} представляет собой сумму векторов ее симметричных составляющих:

$$\begin{cases} \underline{A} = \underline{A}_1 + \underline{A}_2 + \underline{A}_0; \\ \underline{B} = \underline{B}_1 + \underline{B}_2 + \underline{B}_0 = a^2 \underline{A}_1 + a \underline{A}_2 + \underline{A}_0; \\ \underline{C} = \underline{C}_1 + \underline{C}_2 + \underline{C}_0 = a \underline{A}_1 + a^2 \underline{A}_2 + \underline{A}_0. \end{cases}$$

Сложим эти три уравнения с учетом, что $a^2+a+1=0$, получим: $\underline{A}_0=(\underline{A}+\underline{B}+\underline{C})/3$.

$$\underline{A}_1 = (\underline{A} + a\underline{B} + a^2\underline{C})/3;$$

$$A_2 = (A + a^2B + aC)/3.$$

Очевидно, что симметричная система ЭДС данной последовательности вызывает в симметричном приемнике симметричные системы токов и напряжений той же самой последовательности. В этом заключается принцип независимостидействия симметричных составляющих в симметричной трехфазной цепи. Поэтому метод симметричных составляющих, как своеобразный метод наложения, идеально подходит для расчета токов и напряжений в цепи, где несимметричная система ЭДС подключена к симметричной нагрузке.

Система нулевой последовательности представляет собой неуравновешенную систему и считается симметричной только по формальным признакам. Отдельные подсхемы, в которых действует каждая из симметричных составляющих этой системы, могут отличаться как конфигурацией, так и величиной сопротивлений в силу особенностей поведения этих составляющих даже в симметричной трехфазной цепи.

При расчете несимметричных режимов трехфазных цепей методом симметричных составляющих необходимо учитывать следующие особенности:

1. В трехфазной цепи с нейтральным проводом ток в нем равен сумме линейных токов, т. е. утроенному значению составляющей нулевой последовательности этих токов:

$$\dot{I}_{N} = \dot{I}_{A} + \dot{I}_{B} + \dot{I}_{C} = 3\dot{I}_{MO}$$

В цепи же без нейтрального провода сумма линейных токов равна нулю, поэтому линейные токи не могут иметь составляющих нулевой последовательности: $\dot{I}_{_{700}} = 0$.

- 2. Сумма линейных напряжений всегда равна нулю, поэтому они не содержат составляющих нулевой последовательности: $\dot{U}_{\pi O} = 0$.
- 3. Фазные напряжения симметричной статической нагрузки, соединенной звездой, не содержат составляющих нулевой последовательности, отсюда сумма фазных напряжений равна нулю. Действительно, поскольку $\underline{Y}_A = \underline{Y}_B = \underline{Y}_C$, то

$$\begin{split} &\dot{U}_{A} = (\dot{U}_{AB}\underline{Y}_{B} - \dot{U}_{CA}\underline{Y}_{A})/(\underline{Y}_{A} + \underline{Y}_{B} + \underline{Y}_{C}) = (\dot{U}_{AB} - \dot{U}_{CA})/3. \\ &\text{Аналогично, } \dot{U}_{B} = (\dot{U}_{BC} - \dot{U}_{AB})/3, \quad \dot{U}_{C} = (\dot{U}_{CA} - \dot{U}_{BC})/3. \\ &\text{Тогда} \quad \dot{U}_{\Phi O} = (\dot{U}_{A} + \dot{U}_{B} + \dot{U}_{C})/3 = 0 \; . \end{split}$$

4. Сопротивления фаз нагрузки токам разных последовательностей в общем случае различны:

$$\underline{Z}_{1} = \dot{U}_{A1} / \dot{I}_{A1} = \dot{U}_{B1} / \dot{I}_{B1} = \dot{U}_{C1} / \dot{I}_{C1} = \dot{U}_{1} / \dot{I}_{1};$$

$$\underline{Z}_{2} = \dot{U}_{2} / \dot{I}_{2}; \quad \underline{Z}_{0} = \dot{U}_{0} / \dot{I}_{0}.$$

Нормальным режимом работы динамической трехфазной цепи является симметричный режим. В некоторых случаях (как правило, связанных с авариями — обрыв линейного провода, короткое замыкание фазы и т. п.) в цепи появляется несимметричный участок. Остальные участки симметричны, в том числе источники электрической энергии. Такая цепь называется цепью сместной несимметрией.

Если на основе теоремы компенсации заменить несимметричный участок соответствующей трехфазной системой источников напряжения или тока, то получится симметричная цепь, в которой действует несимметричная трехфазная система ЭДС или токов эквивалентных источников. В соответствии с условиями замены можно составить необходимые дополнительные уравнения для их определения. Такую цепь можно рассчитывать методом симметричных составляющих.

Цепь с продольной несимметрией имеет несимметричный участок, включенный последовательно в фазы линии или нагрузки.

Согласно теореме компенсации заменим фазы этого участка источниками ЭДС, которые равны падениям напряжения на элементах участка. В результате получим симметричную цепь с несимметричным трехфазным источником. Если комплексные сопротивления фаз несимметричного участка известны, то вводимые вместо них фазные ЭДС связаны с токами законом Ома: $\dot{U}_A = \dot{I}_A \underline{Z}_A$; $\dot{U}_B = \dot{I}_B \underline{Z}_B$; $\dot{U}_C = \dot{I}_C \underline{Z}_C$;

Это условия несимметрии, которые следует использовать вместе с уравнениями метода симметричных составляющих для определения неизвестных токов $\dot{I}_A, \dot{I}_B, \dot{I}_C$ и напряжений $\dot{U}_A, \dot{U}_B, \dot{U}_C$. Сопротивления могут принимать любые значения от нуля и до бесконечно больших величин. Например, в случае обрыва линейного провода между точками A и и неповрежденных проводах двух других фаз окажется $Z_A \to \infty$. Если сопротивлениями проводов линии пренебречь или включить их в параметры симметричных участков, то условия несимметрии будут выглядеть так: $\dot{I}_A = 0, \quad \dot{U}_B = 0, \quad \dot{U}_C = 0.$

Цепь с поперечной несимметрией имеет несимметричный участок, подключенный параллельно фазам нагрузки или между фазами линии и нулевым проводом, роль которого может играть и «земля».

С помощью теоремы компенсации получаем, как в предыдущем случае, симметричную цепь с несимметричной системой эквивалентных ЭДС. Условия несимметрии при известных сопротивлениях фаз несимметричного участка останутся теми же \underline{Z}_A , \underline{Z}_B , \underline{Z}_C .

Иногда удобно использовать замену несимметричного участка системой эквивалентных источников тока $\dot{I}_A, \dot{I}_B, \dot{I}_C$. Например, при коротком замыкании одной фазы линии (A) на землюв системе генератордвигатель, фазы которых соединены звездой, причем нейтральная точка генератора заземлена:

Примеры расчета несимметричных режимов в линейных трехфазных цепях методом симметричных составляющих подробно изложены в [6].

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКИХ РАБОТ

Темы расчетно-графических работ, рекомендуемые к выполнению учебной программы по ТОЭ ч.1[7]:

РГР №1 «Расчет линейной цепи постоянного тока».

РГР №2 «Расчет линейной цепи синусоидального тока».

РГР №3 «Расчет линейной электрической цепи с

периодическими негармоническими напряжениями и токами»

РГР №4 «Расчет линейной трехфазной цепи».

К представленным на рецензию индивидуальным домашним заданиям предъявляются следующие требования:

- 1. Задания должны быть выполнены на чистых листах бумаги формата А4, обязательно сшитых.
- 2. Основные действия при выполнении задания должны сопровождаться достаточно подробными пояснениями.
- 3. Рисунки, графики, схемы, в том числе и заданные условием задачи, должны быть выполнены на отдельном листе бумаги (странице) аккуратно и в удобном для чтения масштабе.
- 4. Вычисления должны быть выполнены с точностью до третьей значащей цифры.
 - 5. Задание должно быть подписано студентом и указана дата.

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №1 РАСЧЕТ ЛИНЕЙНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

Граф электрической цепи представлен на рис.1. Граф содержит 4 узла – a, b, c, d, между которыми подключены 6 ветвей – ab, ac, bc, bd, da, dc. Ветви содержат активные и пассивные элементы электрической

цепи, обозначенные номерами 1...6 (рис.2). В таблице №1 заданы параметры источников электрической энергии E_1 , E_2 , J, в таблице №2 заданы параметры пассивных элементов – R, L, C, в таблице №3 заданы варианты компоновки электрической цепи.

Номер варианта каждого студента содержит 4 цифры — первая цифра номера соответствует данным из табл.№1, вторая цифра номера — данным из табл.№2, третья и четвертая цифра номера соответствуют варианту схемы из табл.№3.

- **1.** Изобразить схему для расчета параметров режима цепи при постоянных во времени источниках энергии: $e_1(t)=E_1$, $e_2(t)=E_2$, J(t)=J. Считать, что в данной цепи индуктивность имеет нулевое сопротивление, а емкость нулевую проводимость,
- 2. Заменив ветви с параллельным и последовательным соединениями резисторов на эквивалентные, преобразовать схему до трех контуров.
- **3.** Задать направления токов в ветвях схемы (в ветвях содержащих источники ЭДС токи задать по направлению ЭДС).
- **4.** Составить систему уравнений состояния цепи по законам Кирхгофа, рассчитать токи всех ветвей и напряжение на источнике тока.
- **5.** Используя метод контурных токов рассчитать токи всех ветвей и напряжение на источнике токапо второму закону Кирхгофа
- **6.** Методом узловых потенциалов рассчитать токи всех ветвей и напряжение на источнике тока.
- **7.** Определить показание вольтметра включенного параллельно ветви №6.
- **8.** Составить баланс мощностей, вычислив суммарную мощность источников энергии, и суммарную мощность, потребляемую резисторами. Небаланс не должен превышать 3 %.
- 9. Представить схему относительно ветви №4 с сопротивлением 2R эквивалентным генератором и определить его параметры (Eг, Rг, Iкз). Аналитически и графически с использованием внешней характеристики эквивалентного генератора определить ток в сопротивлении 2R.
- 10. Построить потенциальную диаграмму для любого замкнутого контурабез источника тока.

Результаты расчета токов по трем методам свести в таблицу и сравнить.

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №2 РАСЧЕТ ЛИНЕЙНОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Для схемы, параметры которой соответствуют своему номеру варианта, при частоте f=50 Γu заданы параметры источников ЭДС и тока: $e_1(t)=E_1\sqrt{2}\sin(\omega t+90^0)\,B$, $e_2(t)=E_2\sqrt{2}\sin(\omega t-45^0)\,B$, $J(t)=J\sqrt{2}\sin(\omega t+30^0)\,A$. Необходимо выполнить следующее:

- 1. Изобразить схему цепи синусоидального тока и полагая взаимную индуктивность равной M=L/2 обозначить индуктивную связь между катушками.
- 2. Преобразовать схему, заменив ветви с параллельным и последовательным соединениями резисторов на эквивалентные и в общем (буквенном) виде составить полную систему уравнений состояния цепи по законам Кирхгофа для мгновенных значений.
- 3. Представить сопротивления ветвей и действующие значения ЭДС и тока источников в комплексной форме и изобразить комплексную схему замещения цепи.
- 4. В полученной схеме методом уравнений Кирхгофа рассчитать комплексы действующих значений токов ветвей и напряжения на источнике тока.
- 5. Составить баланс активных и реактивных мощностей источников и потребителей электрической энергии. Небаланс как по активной, так и по реактивной мощностям не должен превышать 3 %.
- 6. Сделать развязку индуктивной связи, представить схему относительно ветви №4 с сопротивлением 2R эквивалентным генератором и определить его параметры (E_{Γ}, Z_{Γ}) , Рассчитать ток в сопротивлении 2R.
- 7. Определить показание вольтметра включенного параллельно ветви **№6**.
- 8. Построить топографическую векторную диаграмму напряжений, совмещенную с лучевой векторной диаграммой токов для контура с индуктивной связью.

Таблица №1

№ вар	0	1	2	3	4	5	6	7	8	9
E_{1} , B	20	30	40	50	60	70	80	90	100	120
E_2 , B	100	120	150	180	200	220	250	50	60	80
J , A	10	9	8	7	6	5	4	3	2	1

Таблица №2

№	0	1	2	3	4	5	6	7	8	9
вар										

R,OM	10	20	30	40	50	60	80	100	120	140
L ,м Γ н	31,84	63,7	95,54	127,3	159,2	191	254,7	318,4	382,1	445,8
C ,мк Φ	318,4	159,23	106,1	79,62	63,7	53,08	39,8	31,847	26,54	22,74

Рис.2 .Элементы электрической цепи Таблица №3

Ветви	ab	ac	bc	bd	da	dc
№ вар.						
01	3	1	6	2	5	4
02	3	1	5	4	6	2
03	2	6	1	5	3	4
04	1	5	2	6	3	4
05	1	5	3	4	2	6
06	6	2	1	5	3	4
07	1	5	6	2	3	4
08	1	5	3	4	6	2
09	2	6	1	3	4	5
10	1	3	2	6	4	5
11	1	3	4	5	2	6
12	6	2	1	3	4	5
13	1	3	6	2	4	5
14	1	3	4	5	6	2
15	2	6	4	1	3	5

16	4	1	2	6	3	5
17	4	1	3	5	2	6
18	6	2	4	1	3	5
19	4	1	6	2	3	5
20	4	1	3	5	6	2
21	2	6	1	3	5	4
22	1	3	2	6	5	4
23	1	3	5	4	2	6
24	6	2	1	3	5	4
25	1	3	6	2	5	4
26	1	3	5	4	6	2
27	2	6	3	1	5	4
28	3	1	2	6	5	4
29	3	1	5	4	2	6
30	6	2	3	1	5	4

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №3 РАСЧЕТ ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ С ПЕРИОДИЧЕСКИМИ НЕГАРМОНИЧЕСКИМИ НАПРЯЖЕНИЯМИ И ТОКАМИ

Для электрической цепи, схема и параметры которой соответствуют номеру варианта PГР N 1, N 2, действуют источники при $f = 50 \ \Gamma u$:

$$e_{1}(t) = E_{1} + \sqrt{2}E_{1}\sin(\omega t + 90^{\circ}) + \sqrt{2}\frac{E_{1}}{2}\sin(3\omega t - 90^{\circ})$$
 В,
$$e_{2}(t) = E_{2} + \sqrt{2}E_{2}\sin(\omega t - 45^{\circ})$$
 В,
$$J(t) = J + \sqrt{2}J\sin(\omega t + 30^{\circ}) + \sqrt{2}\frac{J}{2}\sin(3\omega t)$$
 А, выполнить следующее:

- 1. Методом уравнений Кирхгофа рассчитать комплексы действующих значений токов ветвей и напряжение на источнике тока для третьей гармоники.
- 2. Составить баланс активных и реактивных мощностей источников и потребителей электрической энергии для третьей гармоники. Небаланс как по активной, так и по реактивной мощностям не должен превышать 3 %.
- 3. Используя данные расчетно-графических работ №1 и №2 записать мгновенное значение напряжения вольтметра $U_V(t)$, включённого параллельно ветви №6 .

- 4. Определить показание вольтметра:
 - магнитоэлектрической системы,
 - электромагнитной системы.
- 5. Построить график несинусоидального напряжения вольтметра и частотные спектры амплитуд и фаз для этого напряжения.
- 6. Рассчитать коэффициенты амплитуды и искажения для кривой напряжения $U_{\scriptscriptstyle V}(t)$.
- 7. Используя данные расчетно-графических работ №1 и №2 рассчитать активную, реактивную, полную мощность и мощность искажения для источника тока.

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №4 РАСЧЕТ ЛИНЕЙНОЙ ТРЕХФАЗНОЙ ЦЕПИ

На рис.3.1-3.3представлен граф электрической цепи. Элементы цепи помещаемые между зажимами представлены на рис.4. Параметры цепи заданы в таблицах №4, №5.

Номер варианта соответствует номеру в РГР №1, №2, №3:первая цифра номера соответствует данным из табл.№4, вторая цифра — данным из табл.№5, третья и четвертая цифра номера соответствуют варианту схемы из табл.№6.

Для заданной схемы с симметричной системой фазных ЭДС и прямым порядком чередования фаз при $e_A(t) = E\sqrt{2}\sin(\omega t + \alpha)$,где $\omega = 314$ рад/с, выполнить следующее:

- 1. По номеру варианта изобразить исходную схему для расчета.
- 2. В симметричном режиме(до срабатывания ключа К)
- а)преобразовать схему включения нагрузки до эквивалентной звезды и определитькомплексы действующих значений токов и напряжений, рассчитать показание ваттметра;
- б) в исходной схеме расчетом на одну фазу определить комплексы действующих значений токов и напряжений;
- в) рассчитать балансы активных и реактивных мощностей;
- г) построить совмещенные векторные диаграммы токов и напряжений.
- 3. В несимметричном режиме(после срабатывания ключа К)
- а) методом узловых потенциалов для не преобразованной схемы определить комплексы действующих значений токов и напряжений, рассчитать показание ваттметра;
- б) составить балансы активных и реактивных мощностей,
- в) построить совмещенные векторные диаграммы токов и напряжений.

Таблица №4

№	E	α
вар	В	град
1	127	0
2	220	30
3	380	45
4	220	60
5	127	90
6	220	180
7	380	-30
8	220	-45
9	127	-60

380

0

-90

Таблица №5

№	L	C	R
вар	мГн	мкФ	Ом
1	636.94	31,8	100
2	573.24	35,3	90
3	509.56	39,8	80
4	445.86	45,4	70
5	382.16	53	60
6	318.48	63,6	50
7	254.78	79,6	40
8	191.08	106,1	30
9	126.78	159,2	20
0	63.7	318,4	10

Таблица №6

№	Рис.	1-1	2-2	3-3	4-4	5-5	6-6	7-7
вар.	N_{2}							
01	3.1	3	4	5	1	6	1	1
02	3.1	4	3	5	1	1	6	1
03	3.1	5	4	3	1	1	1	6
04	3.1	3	5	4	1	6	1	1
05	3.1	3	4	5	2	6	1	1
06	3.1	4	3	5	2	1	6	1
07	3.1	5	4	3	2	1	1	6
08	3.1	3	5	4	2	6	1	1
09	3.1	3	4	3	1	1	6	1
10	3.1	4	5	3	2	1	1	6
11	3.2	3	4	5	1	6	1	1
12	3.2	4	3	5	1	1	6	1
13	3.2	5	4	3	1	1	1	6
14	3.2	3	5	4	1	6	1	1
15	3.2	3	4	5	2	6	1	1
16	3.2	4	3	5	2	1	6	1
17	3.2	5	4	3	2	1	1	6
18	3.2	3	5	4	2	6	1	1
19	3.2	3	4	3	2	1	6	1
20	3.2	5	3	3	1	1	1	6

21	3.3	3	4	5	-	6	1	1
22	3.3	4	3	5	-	1	6	1
23	3.3	5	3	4	-	1	1	6
24	3.3	3	5	4	-	6	1	1
25	3.3	3	4	3	-	1	6	1
26	3.3	4	3	4	-	1	1	6
27	3.3	5	3	5	-	6	1	1
28	3.3	3	4	4	-	1	6	1
29	3.3	3	5	5	-	1	1	6
30	3.3	4	4	3	-	6	1	1

Рис.3.2

Рис.3.3

Рис.4. Элементы электрической цепи

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ №1

Порядок решения РГР №1 следующий.

1. Используя таблицу 1, определяем структуру схемы (номер условный, в таблице такого номера нет):

Ветви	ab	ac	bc	bd	da	dc
№ вар.						
	1	6	5	3	4	2

Из табл.2 находим параметры элементов цепи (параметры также условные):

No	E_1	E_2	J	R	\boldsymbol{L}	C
вар.	В	В	A	Ом	мГн	мкФ
	100	50	2	110	350	28.95

По заданному графу построим схему электрической цепи (рис.5). **Примечание:** в цепи постоянного тока индуктивность имеет нулевое сопротивление и заменяется «закороткой», а ёмкость — нулевую проводимость и заменяется «разрывом цепи».

2. Преобразуем схему до трех контуров:

В ветви da сопротивления включены последовательно, а в ветви ac – параллельно, поэтому

$$R_{da} = R + R = 2R = 2 \cdot 110 = 220 \ O_M;$$

$$R_{ac} = \frac{R \cdot R}{R + R} = \frac{R}{2} = \frac{110}{2} = 55 \ O_M$$

Рис.5. Схема электрической цепи

- 3. Выбираем положительные направления токов. В ветвях, содержащих ЭДС по направлению ЭДС, в остальных ветвях произвольно. Расчетная схема электрической цепи с указанными направлениями токов в ветвях и напряжением на источнике тока приведена на рис.6.
- 4. В общем (буквенном) виде составляем полную систему уравнений состояния цепи по законам Кирхгофа для расчета токов всех ветвей и напряжения на источнике тока.

Схема содержит $N_y=4$ узла и $N_B=6$ ветвей. Следовательно, по первому закону Кирхгофа можно составить: $N_y-1=4-1=3$ независимых уравнения, а по второму закону Кирхгофа: $N_B-N_y+1=6-4+1=3$ независимых уравнения.На схеме рис.6 пунктирной линией показано направление обхода контуров.

Узел **b**: $I_1 - I_4 = -J$

Узел c: $I_2 + I_4 - I_3 = 0$

Узел a: $I_3 - I_1 - I_5 = 0$

Контур 1: $U_J - I_5 \cdot 2R = E_1$

Контур 2: $I_2 \cdot R + I_3 \cdot \frac{R}{2} + I_5 \cdot 2R = E_2$

Контур 3: $I_2 \cdot R - I_4 \cdot R + U_J = E_2$

Рис.6. Расчетная схема

С помощью программы MATCHAD производим расчет уравнений в матричной форме:

$$a := \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -220 & 1 \\ 0 & 110 & 55 & 0 & 220 & 0 \\ 0 & 110 & 0 & -110 & 0 & 1 \end{pmatrix} \qquad b := \begin{pmatrix} -2 \\ 0 \\ 0 \\ 100 \\ 50 \\ 50 \end{pmatrix} \qquad i := a^{-1} \cdot b \qquad i = \begin{pmatrix} -1.009 \\ -1.155 \\ -0.164 \\ 0.991 \\ 0.845 \\ 286 \end{pmatrix}$$

Значение токов ветвей схемы и напряжение на источнике тока:

$$I_1 = -1.009 A$$
, $I_2 = -1.155 A$, $I_3 = -0.164 A$, $I_4 = 0.991 A$, $I_5 = 0.845 A$, $U_J = 286 B$

5. Методом контурных токов определяем токи в ветвях.

Выбираем независимые контуры. В рассматриваемой схеме их три (рис.6). При этом, поскольку ветвь bdсодержит идеальный источник тока, эта ветвь может входить только в один контур. Ток этого контура равен току источника: $J_{2k} = J = 2 \ A$.

Для остальных контурных токов составляем уравнения:

$$\begin{cases} J_{2\text{k}}(2R+R+\frac{R}{2}) + J_{1\text{k}}2R - J_{3\text{k}}\frac{R}{2} = E_2 \\ J_{3\text{k}}(R+\frac{R}{2}) + J_{1\text{k}} \cdot 0 - J_{2\text{k}}\frac{R}{2} = -E_1 \end{cases}$$

После переноса в правую часть постоянных коэффициентов уравнения примут вид:

$$\begin{cases} J_{2k}(2R+R+\frac{R}{2}) - J_{3k}\frac{R}{2} = E_2 - J2R \\ -J_{2k}\frac{R}{2} + J_{3k}(R+\frac{R}{2}) = -E_1 \end{cases}$$

Численно получим:

$$\begin{cases} 385J_{_{2\mathtt{k}}} - 55J_{_{3\mathtt{k}}} = -390 \\ -55J_{_{2\mathtt{k}}} + 165J_{_{3\mathtt{k}}} = -100 \end{cases}$$

В матричной форме уравнения будут иметь вид:

$$\begin{pmatrix} 385 & -55 \\ -55 & 165 \end{pmatrix} \times \begin{pmatrix} J_{2k} \\ J_{3k} \end{pmatrix} = \begin{pmatrix} -390 \\ -100 \end{pmatrix}$$

После расчета получим:

$$J_{2k} = -1.155 A; J_{3k} = -0.991 A.$$

Определяем токи ветвей:

$$I_1 = -J_{1k} - J_{3k} = -2 + 0.991 = -1.009 A;$$

$$I_2 = J_{2k} = -1.155 A$$
;

$$I_3 = J_{2k} - J_{3k} = -1.155 + 0.991 = -0.164 A;$$

$$I_4 = -J_{3k} = 0.991 A$$
;

$$I_5 = J_{1k} + J_{2k} = 2 - 1.155 = 0.845 A.$$

Согласно второму закону Кирхгофа,

$$U_J - I_5 R + I_1 \cdot 0 = E_1$$
,

Отсюда

$$U_J = I_5 R + E_1 = 0.845 \cdot 220 + 100 = 286 B$$
.

6. Определим токи в ветвях схемы методом узловых потенциалов. Между узлами \boldsymbol{a} и \boldsymbol{b} включена ветвь с идеальным источником ЭДС без сопротивления. Поэтому в качестве базисного (ϕ = 0) удобно принять узел \boldsymbol{a} , тогда ϕ_a = 0; ϕ_b = E_1 = 100 B.

Для узлов c и d составляем узловые уравнения:

$$\begin{cases} \phi_{c} \left(\frac{1}{R} + \frac{1}{R} + \frac{2}{R} \right) - \phi_{d} \frac{1}{R} - \phi_{b} \frac{1}{R} = \frac{E_{2}}{R} \\ -\phi_{c} \frac{1}{R} + \phi_{d} \left(\frac{1}{R} + \frac{1}{2R} \right) = -J - \frac{E_{2}}{R} \end{cases}$$

Перенеся слагаемое $\phi_b \frac{1}{R}$ в правую часть уравнения и подставив известные числовые значения, получаем:

$$\begin{cases} \phi_c \left(\frac{1}{110} + \frac{1}{110} + \frac{2}{110} \right) - \phi_d \frac{1}{110} = \frac{50}{110} + \frac{100}{110} \\ -\phi_c \frac{1}{110} + \phi_d \left(\frac{1}{110} + \frac{1}{220} \right) = -2 - \frac{50}{110} \end{cases}$$

В матричной форме уравнения будут иметь вид:

$$\begin{pmatrix} 0.03636 & -0.00909 \\ -0.00909 & 0.0136363 \end{pmatrix} \times \begin{pmatrix} \phi_c \\ \phi_d \end{pmatrix} = \begin{pmatrix} 1.3636 \\ -2.4545 \end{pmatrix}$$

После расчета получим:

$$\phi_c = -9 B, \phi_d = -186 B$$

Токи в ветвях схемы определятся по обобщенному закону Ома:

$$I_{2} = \frac{\varphi_{d} - \varphi_{c} + E_{2}}{R} = \frac{-186 + 9 + 50}{110} = -1.154 A$$

$$I_{3} = \frac{2 \cdot \varphi_{c}}{R} = \frac{2(-9)}{110} = -0.163 A$$

$$I_{4} = \frac{\varphi_{b} - \varphi_{c}}{R} = \frac{100 + 9}{110} = 0.991 A$$

$$I_{5} = -\frac{\varphi_{d}}{2R} = \frac{186}{220} = 0.845 A$$

$$U_{L} = \varphi_{b} - \varphi_{d} = 100 + 186 = 286 B$$

Ветвь ab содержит только одну ЭДС E_1 и проводимость этой ветви равна ∞ , поэтому ток I_1 невозможно определить через потенциалы узлов. Для узлаa составим уравнение по первому закону Кирхгофа:

$$I_1 = I_3 - I_5 = -0.163 - 0.845 = -1.008 A$$
.

7. Составляем уравнение баланса мощности.

Мощность источников:

$$P_u = E_1 I_1 + E_2 I_2 + U_J J = 100(-1.009) + 50(-1.155) + 286 \cdot 2 = 413.35 \ Bm$$
 Мощность потребителей:

$$P_n = I_2^2 R + I_3^2 \frac{R}{2} + I_4^2 R + I_5^2 2R =$$

 $(-1.155)^2 \cdot 110 + (-0.164)^2 \cdot 55 + 0.991^2 \cdot 110 + 0.845^2 \cdot 220 = 413.336 \ Bm$

Погрешность расчета (небаланс) составила

$$\delta = \left| \frac{P_u - P_n}{P_u} \right| \cdot 100\% = \left| \frac{413.36 - 413.336}{413.36} \right| \cdot 100\% = 0,0058\%.$$

Таким образом, небаланс в пределах допуска ($\delta \le 1$ %).

8. Определим ток I_5 в ветви с сопротивлением 2R методом эквивалентного генератора.

Изобразим схему относительно ветви *ad* в виде эквивалентного генератора в режиме холостого хода (рис.7).

Из схемы рис.7 определим ЭДС эквивалентного генератора $E_{\scriptscriptstyle \Gamma}$ = $U_{\scriptscriptstyle XX}$.

Согласно второму закону Кирхгофа, $U_{XX} - JR + I_{3XX} \cdot \frac{R}{2} = E_2$,

откуда:
$$E_{\Gamma} = U_{XX} = E_2 + JR - I_{3XX} \cdot \frac{R}{2}$$

Для определения тока $I_{\rm 3XX}$ воспользуемся методом контурных то-

KOB:
$$J_{1K} = J = 2 A$$
, $J_{2K}(R + \frac{R}{2}) + J_{1K}R = E_1$

Подставляя численные значения, получим:

$$I_{3XX}=J_{2K}=rac{E_1-J_{1K}R}{R+R/2}=rac{110-2\cdot 110}{110+55}=-0.727~A$$
, тогда
$$E_{\varGamma}=U_{XX}=50+2\cdot 110+0.727\cdot 55=310~B$$

Рис.7. Эквивалентный генератор в режиме холостого хода

Для определения R_{Γ} рисуем вспомогательную схему (рис.8), в которой источники ЭДС замкнуты, а источники тока разомкнуты.

Рис. 8. К определению сопротивления эквивалентного генератора

Из расчета схемы получаем:

$$R_{\Gamma} = R + \frac{R \cdot \frac{R}{2}}{R + \frac{R}{2}} = 110 + \frac{110 \cdot 55}{110 + 55} = 146.66 \ Om.$$

По формуле Тевенена-Гельмгольца определяем ток в сопротивлении нагрузки:

$$I_5 = \frac{E_{\Gamma}}{R_{\Gamma} + 2R} = \frac{310}{146.66 + 220} = 0.845 A$$

Ток короткого замыкания эквивалентного генератора определится как

$$I_{K3} = \frac{E_{\Gamma}}{R_{\Gamma}} = \frac{310}{146.66} = 2.113 A.$$

Определим ток I_5 графически. Для этого построим в одних осях внешнюю характеристику эквивалентного генератора и вольтамперную характеристику нагрузки (сопротивления 2R). Внешняя характеристика является линейной и пересекает оси координат в точках U_{xx} и I_{xx} .

Вольтамперная характеристика нагрузки также линейна и строится по закону Ома: $U_5 = I_5 \cdot 2R$. При этом достаточно задать два значения тока, например $I_5 = 0$ и $I_5 = 1A$.

Точка пересечения характеристик будет рабочей точкой генератора, нагруженного на сопротивление 2R, а ее проекция на оси координат – искомыми током и напряжением (рис.9). Получаем графические значения $U_5 \approx 186\,B,\ I_5 \approx 0.85\,A.$

Рис.9. Графическое определение тока и напряжения на сопротивлении 2R

9. Построим потенциальную диаграмму для контура *add'c*(рис.6), не содержащего источника тока.

Принимаем
$$\phi_a=0$$
 Тогда $\phi_d=\phi_a-I_52R=0-0.845\cdot 220=-185.9~B$ $\phi_{d'}=\phi_d+E_2=-185.9+50=-135.9~B$ $\phi_c=\phi_{d'}-I_2R=-135.9+1.155\cdot 110=-8.85~B$ $\phi_a=\phi_c-I_3\frac{R}{2}=-8.85+0.164\cdot 55\approx 0~B$

Диаграмма приведена на рис.10.

Рис.10. Потенциальная диаграмма для контура $a\ d\ d\ c\ a$

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ №2

- 1. Изобразим схему электрической цепи для условного варианта, рассмотренного в методических указаниях к заданию №1 (рис.11).
- 2. В общем (буквенном) виде составляем полную систему уравнений состояния цепи по законам Кирхгофа для расчета токов всех ветвей и напряжения на источнике тока.

Схема содержит $N_{\scriptscriptstyle V}=4$ узла и $N_{\scriptscriptstyle B}=7$ ветвей. Следовательно, по первому закону Кирхгофа можно составить $N_{\scriptscriptstyle V}-1=4-1=3$ независимых уравнения, а по второму закону Кирхгофа $N_{\scriptscriptstyle B}-N_{\scriptscriptstyle V}+1=7-4+1=4$ независимых уравнения.

В индуктивных элементах токи $i_2(t), i_3(t)$ ориентированы одинаковым образом относительно одноименных зажимов, обозначенных звёздочками, поэтому имеем вариант *согласного включения*.

Узел
$$\boldsymbol{a}$$
: $i_3 - i_1 - i_5 = 0$
Узел \boldsymbol{b} : $i_1 - i_{R4} - i_{C4} = -J$

Узел
$$d$$
: $i_5 - i_2 = J$

Контур 1:
$$U_J - i_5 2R = e_1$$

Контур 2:
$$i_5 2R + i_2 R + L \frac{di_2}{dt} + M \frac{di_3}{dt} + i_3 \frac{R}{2} + L \frac{di_3}{dt} + M \frac{di_2}{dt} = e_2$$

Контур 3:
$$i_2R + L\frac{di_2}{dt} + M\frac{di_3}{dt} - \frac{1}{C}\int i_{C4}dt + u_J = e_2$$

Контур 4: $\frac{1}{C} \int i_{C4} dt - i_{R4} R = 0$

Рис.11. Схема электрической цепи переменного тока

2. Определим реактивные сопротивления:

$$X_L = \omega L = 314 \cdot 0.35 = 110 O_M; \quad X_M = \omega M = 314 \cdot 0.185 = 55 O_M;$$

$$X_C = \frac{1}{\omega C} = \frac{1}{314 \cdot 28.95 \cdot 10^{-6}} = 110 \ Om.$$

Здесь и далее $\omega = 2\pi \cdot f = 2 \cdot 314 \cdot 50 = 314 \ pa\partial/c$ – угловая частота источников ЭДС и тока.

3. Полные сопротивления ветвей схемы:

$$\underline{Z}_1 = 0;$$

$$\underline{Z}_{2} = R + jX_{L} = 110 + j110 O_{M};$$

$$\underline{Z}_3 = \frac{R}{2} + jX_L = 55 + j110 \,OM;$$

$$\underline{Z}_4 = \frac{R \cdot (-jX_C)}{R - jX_C} = R_4 - jX_{C4} = \frac{110 \cdot (-j110)}{110 - j110} = 55 - j55 Om;$$

$$Z_5 = 2R = 220 \, O_M.$$

Комплексы действующих значений ЭДС и тока источников:

$$\dot{E}_1 = 100e^{j90^0} = 0 + j100 B;$$

$$\dot{E}_2 = 50e^{-j45^0} = 35.35 - j35.35 B; \quad \dot{J} = 2e^{j30^0} = 1.732 + j1 A.$$

Расчетная схема с комплексными источниками ЭДС и тока и комплексными сопротивлениями ветвей показана на рис.12.

Рис.12. Расчетная комплексная схема замещения электрической цепи

4. Составляем систему уравнений в комплексной форме по законам Кирхгофа для расчета токов ветвей и напряжения на источнике тока:

Узел
$$\boldsymbol{b}$$
: $\dot{I}_1 - \dot{I}_4 = -\dot{J}$

Узел
$$c$$
: $\dot{I}_2 + \dot{I}_4 - \dot{I}_3 = 0$

Узел
$$a$$
: $\dot{I}_3 - \dot{I}_1 - \dot{I}_5 = 0$

Контур 1:
$$\dot{U}_J - \dot{I}_5 2R = \dot{E}_1$$

Контур 2:
$$\dot{I}_2 \underline{Z}_2 + \dot{I}_3 j X_M + \dot{I}_3 \underline{Z}_3 + \dot{I}_2 j X_M + \dot{I}_5 \underline{Z}_5 = \dot{E}_2$$

Контур 3:
$$\dot{I}_2 \underline{Z}_2 + \dot{I}_3 j X_M - \dot{I}_4 \underline{Z}_4 + \dot{U}_J = \dot{E}_2$$

Подставляя численные значения, получим:

Узел **b**:
$$\dot{I}_1 - \dot{I}_4 = -\dot{J}$$

Узел
$$c$$
: $\dot{I}_2 + \dot{I}_4 - \dot{I}_3 = 0$

Узел
$$a$$
: $\dot{I}_3 - \dot{I}_1 - \dot{I}_5 = 0$

Контур 1:
$$\dot{U}_J - \dot{I}_5 220 = j100$$

Контур 2:
$$\dot{I}_2(110+j165)+\dot{I}_3(55+j165)+\dot{I}_5220=35.35-j35.35$$

Контур 3:
$$\dot{I}_2(110+j110)+\dot{I}_3j55-\dot{I}_4(55-j55)+\dot{U}_J=35.35-j35.35$$

С помощью программы MATCHAD производим расчет уравнений в матричной форме:

$$a := \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -220 & 1 \\ 0 & 110 + 165i & 55 + 165i & 0 & ^{70}220 & 0 \\ 0 & 110 + 110i & 55i & -55 + 55i & 0 & 1 \end{pmatrix} \qquad b := \begin{pmatrix} -1.732 - i \\ 0 \\ 0 \\ 100i \\ 35.35 - 35.35i \\ 35.35 - 35.35i \end{pmatrix}$$

$$d = \begin{pmatrix} -1.322 + 0.931i \\ -0.625 - 0.579i \\ -0.215 + 1.352i \\ 0.41 + 1.931i \\ 1.107 + 0.421i \\ 243.538 + 192.623i \end{pmatrix} \qquad d := a^{-1} \cdot b$$

Следует учесть, что мнимая единица в программе MATCHAD обозначается как і вместо обозначения j, применяемого в электротехнике.

Значение токов ветвей схемы и напряжение на источнике тока в алгебраической и в показательной формах:

$$\begin{split} \dot{I}_1 &= -1.322 + j0.931 = 1.617e^{j144.8^0} A \\ \dot{I}_2 &= -0.625 - j0.579 = 0.852e^{-j137.2^0} A \\ \dot{I}_3 &= -0.215 + j1.352 = 1.369e^{j99^0} A \\ \dot{I}_4 &= 0.41 + j1.931 = 1.974e^{j78^0} A \\ \dot{I}_5 &= 1.107 + j0.42 = 1.183e^{j20.7^0} A \\ \dot{U}_J &= 243.358 + j192.623 = 310.5e^{j38.34^0} B \end{split}$$

5. Составим баланс активной и реактивной мощностей. Полная мошность источников составит:

$$\dot{S}_{H} = P_{H} + jQ_{H} = \dot{E}_{1}\dot{I}_{1}^{*} + \dot{E}_{2}\dot{I}_{2}^{*} + \dot{U}_{J}\dot{J}^{*} =$$

$$= j100(-1.322 - j0.931) + (35.35 - j35.35)(-0.625 + j0.579) +$$

$$+(243.538 + j192.623)(1.732 - j1) = 705.905 + j0.446 BA$$

Здесь \dot{I}^* – сопряженный комплекс тока.

Таким образом, активная мощность источников энергии составит $P_{\scriptscriptstyle H} = 705.905~Bm$; реактивная мощность $Q_{\scriptscriptstyle H} = 0.446~Bap$.

Активная мощность потребителей:

$$P_{II} = I_2^2 R + I_3^2 \frac{R}{2} + I_4^2 R_4 + I_5^2 2R =$$

$$= 0.852^2 \cdot 110 + 1.369^2 \cdot 55 + 1.974^2 \cdot 55 + 1.183^2 \cdot 220 = 703.13 \, Bm$$

Реактивная мощность потребителей при согласном включении индуктивностей с токами \dot{I}_2, \dot{I}_3 :

$$Q_{II} = I_2^2 X_L + I_3^2 X_L - I_4^2 X_{C4} + 2I_2 I_3 X_M \cos(\psi_2 - \psi_3) =$$

$$= 0.852^2 \cdot 110 + 1.369^2 \cdot 110 - 1.974^2 \cdot 55 +$$

$$+2 \cdot 0.852 \cdot 1.369 \cdot 55 \cdot \cos(-137.2^{\circ} - 99^{\circ}) = 0.435 \, eap$$

Погрешность расчета (небаланс) составила:

по активной мощности

$$\delta_P = \left| \frac{P_M - P_M}{P_M} \right| \cdot 100\% = \left| \frac{705.905 - 705.13}{705.905} \right| \cdot 100\% = 0.11\%$$

по реактивной мощности

$$\delta_{Q} = \left| \frac{Q_{H} - Q_{\Pi}}{Q_{H}} \right| \cdot 100\% = \left| \frac{0.446 - 0.435}{0.446} \right| \cdot 100\% = 2.4\%$$

Таким образом, небаланс как по активной, так и по реактивной мощности в пределах допуска ($\delta \leq 3$ %).

6. Сделаем развязку индуктивной связи и определим ток \dot{I}_5 в сопротивлении 2R методом эквивалентного генератора. На рис.13 представлена схема опыта холостого хода с развязкой индуктивной связи при подключении индуктивностей к узлу cразноименными зажимами.

Напряжение \dot{U}_{xx} определим по второму закону Кирхгофа:

$$\dot{U}_{XX} = \dot{E}_2 + \dot{J}(\underline{Z}_2 + \underline{Z}_M) - \dot{I}'_1(\underline{Z}_3 + \underline{Z}_M) = 35.35 - j35.35 + +2e^{j30^0} \cdot (110 + j165) - 2.54e^{j104.54^0} \cdot (55 + j165) = = 501.59 + j330.43 = 600.646e^{j33.37^0}B$$

Ток \dot{I}'_1 определим методом контурных токов (рис.13):

$$\dot{J}_{1K} = \dot{J} = 2e^{j30^0} A$$

 $\dot{J}_{2K}(\underline{Z}_3+\underline{Z}_M+\underline{Z}_4-\underline{Z}_M)+\dot{J}_{1K}(\underline{Z}_4-\underline{Z}_M)=\dot{E}_1$, подставляя численные значения, получим:

$$\dot{J}_{2K}(110+j55) = j100 - 2e^{j30^{0}} \cdot (55-j110)$$
$$\dot{I}'_{1} = \dot{J}_{2K} = \frac{312.377e^{j131.1^{0}}}{122.983e^{j26.56^{0}}} = 2.54e^{j104.54^{0}} A$$

Рис.13. Схема опыта холостого хода

Для определения сопротивления эквивалентного генератора Z_{Γ} рисуем вспомогательную схему, в которой шунтируем источники ЭДС и размыкаем источники тока (рис.14):

Рис.14. К определению сопротивления эквивалентного генератора

$$\underline{Z}_{\Gamma} = \underline{Z}_{2} + \underline{Z}_{M} + \frac{(\underline{Z}_{3} + \underline{Z}_{M}) \cdot (\underline{Z}_{4} - \underline{Z}_{M})}{\underline{Z}_{3} + \underline{Z}_{4}} = 110 + j165 + \frac{(55 + j165) \cdot (55 - j110)}{110 + j55} = 275 + j100 O_{M}$$

По формуле Тевенена-Гельмгольца определяем ток в нагрузке:

$$\dot{I}_{5} = \frac{\dot{U}_{XX}}{\underline{Z}_{\Gamma} + 2R} = \frac{600.646e^{j33.37^{0}}}{275 + j100 + 220} = 1.189e^{j21.95^{0}} A$$

7. Определить показание вольтметра, включенного параллельно ветви №6.

Поскольку ветвь №6 включена между узлами a и c, то по второму закону Кирхгофа получим:

$$\dot{U}_V = \dot{I}_3 \underline{Z}_3 + \dot{I}_2 \underline{Z}_M = 1.369e^{j99^0} \cdot (55 + j110) + +0.852e^{-j137.2^0} \cdot 55e^{j90^0} = -128.33 + j16.33 = 129.36e^{j172.7^0} B$$

Показание вольтметра: $U_V = 129.36 \ B$

8. Построим топографическую векторную диаграмму напряжений и лучевую векторную диаграмму токов для контура с индуктивной связью. Для этого изобразим комплексную схему замещения контура с указанными направлениями векторов напряжений (рис. 15.а).

Рис.15а. К построению векторной диаграммы

На векторной диаграмме вектора напряжений направлены в точку высшего потенциала от которой течет ток, т.е. так, как показано на рис.15а: \dot{U}_{L2} - направлено из точки c в точку c

Определим действующие значения напряжений на элементах цепи в заданном контуре (длины векторов):

 $U_{L2} = I_2 X_L = 0.852 \cdot 110 = 93.72 \, B$ (вектор \dot{U}_{L2} опережает вектор \dot{I}_2 на 90^0);

 $U_{M2} = I_3 X_M = 1.369 \cdot 55 = 73.5 \, B$ (вектор \dot{U}_{M2} при согласном включенииопережает вектор \dot{I}_3 на 90^0);

 $\boldsymbol{U}_{R2} = \boldsymbol{I}_2 \boldsymbol{R} = 0.852 \cdot 110 = 93.72 \, \boldsymbol{B}$ (вектор $\dot{\boldsymbol{U}}_{R2}$ совпадает с вектором $\dot{\boldsymbol{I}}_2$ по фазе);

 $U_{R5} = I_5 2R = 1.183 \cdot 220 = 260.26\,B$ (вектор \dot{U}_{R5} совпадает с вектором \dot{I}_5 по фазе);

 $U_{L3} = I_3 X_L = 1.369 \cdot 110 = 150.6 B$ (вектор \dot{U}_{L3} опережает вектор \dot{I}_3 на 90^0);

 $U_{M3} = I_2 X_M = 0.852 \cdot 55 = 46.86 \, B$ (вектор \dot{U}_{M3} при согласном включенииопережает вектор \dot{I}_2 на 90^0);

 $U_{R3} = I_3 \frac{R}{2} = 1.369 \cdot 55 = 75.3 \, B$ (вектор \dot{U}_{R3} совпадает с вектором \dot{I}_3 по фазе).

Вектора токов и ЭДС строятся со своими углами:

$$\dot{I}_2 = 0.852e^{-j137.2^{\circ}} A$$
, $\dot{I}_3 = 1.369e^{j99^{\circ}} A$, $\dot{I}_5 = 1.183e^{j20.7^{\circ}} A$, $\dot{E}_2 = 50e^{-j45^{\circ}} B$.

Все вектора токов строятся из начала координат комплексной плоскости, а для построения топографической диаграммы напряжений за нулевой потенциал можно принять любую точку схемы, например точку \mathbf{c} , как принято в данном примере.

Примечание:

а) Если рассматриваемый контур содержит ветвь с параллельно включенными R и C, то при построении векторной диаграммы применяется эквивалентное преобразование данной ветви в последовательное соединение R_3 и C_3 . В данном примере (рис.15б)

$$\underline{Z}_4 = \frac{R(-jX_C)}{R - jX_C} = R_4 - jX_{C4} = \frac{110(-j110)}{110 - j110} = 55 - j55 OM$$

Рис.15 б. Схема эквивалентного преобразования параллельного в последовательное соединение

 $U_{C4} = I_4 X_{C4} = 1.974 \cdot 55 = 108.57 \ B$ (вектор \dot{U}_{C4} отстает от вектора \dot{I}_4 на 90^0 и направлен из точки \boldsymbol{c} в точку $\boldsymbol{6}$);

 $U_{R4} = I_4 R_4 = 1.974 \cdot 55 = 108.57 \ B$ (вектор \dot{U}_{R4} совпадает с вектором \dot{I}_4 по фазе и направлен из точки $\boldsymbol{6}$ в точку \boldsymbol{b})

б) Если рассматриваемый контур содержит ветвь с источником тока, то вектор напряжения на источнике тока строится со своим углом и направлен по правилу векторного вычитания в точку с более высоким потенциалом. В данном примере (рис.15в) вектор напряжения $\dot{U}_J = 310e^{j38.34^0}$ В направлен из точки dв точку b.

Рис.15в. К построению вектора напряжения на источнике тока

Лучевая векторная диаграмма токов и топографическая векторная диаграмма напряжений приведена на рис.16.

Рис.16. Лучевая диаграмма токов и топографическая диаграмма напряжений

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ №3

1. Изобразим схему электрической цепи (рис.17) для расчета токов и напряжений третьей гармоники (токи и напряжения расчета постоянной составляющей и первой гармоники источников соответствуют данным расчета РГР №1 и РГР №2):

Рис.17. Расчетная схема замещения цепи для третьей гармоноки

Определим реактивные сопротивления индуктивностей и емкости для третьей гармоники:

$$x_L^3 = 3\omega L = 3 \cdot 314 \cdot 0.35 = 330 OM;$$

$$x_M^3 = \frac{x_L^3}{2} = 165 OM;$$

$$x_C^3 = \frac{1}{3\omega C} = \frac{1}{3 \cdot 314 \cdot 28.95 \cdot 10^{-6}} = 36.66 OM.$$

Здесь и далее $\omega = 2\pi \cdot f = 2 \cdot 314 \cdot 50 = 314 \ pad/c$ – угловая частота источников ЭДС и тока.

Полные сопротивления ветвей схемы:

$$\underline{Z}_{1}^{3} = 0;$$

$$\underline{Z}_{2}^{3} = R + jx_{L}^{3} = 110 + j330 OM;$$

$$\underline{Z}_{3}^{3} = \frac{R}{2} + jx_{L}^{3} = 55 + j330 OM;$$

$$\underline{Z}_{4}^{3} = \frac{R \cdot (-jx_{C}^{3})}{R - jx_{C}^{3}} = R_{4} - jx_{C4}^{3} = \frac{110 \cdot (-j36.66)}{110 - j36.66} = 31.617e^{-j71.56^{0}} = 10 - j30 OM;$$

$$\underline{Z}_{5}^{3} = 2R = 220 OM.$$

Комплексы действующих значений ЭДС и тока источников:

$$\dot{E}_1^3 = 50e^{-j90^0} = 0 - j50 B;$$

$$\dot{E}_{2}^{3} = 0; \quad \dot{J}^{3} = 1e^{j0^{0}} = 1 + j0 A.$$

Составляем систему уравнений в комплексной форме по законам Кирхгофа для расчета токов ветвей и напряжения на источнике тока:

Узел**b**:
$$\dot{I}_{1}^{3} - \dot{I}_{4}^{3} = -\dot{J}^{3}$$

Узел**c**: $\dot{I}_{2}^{3} + \dot{I}_{4}^{3} - \dot{I}_{3}^{3} = 0$
Узел **a**: $\dot{I}_{3}^{3} - \dot{I}_{1}^{3} - \dot{I}_{5}^{3} = 0$
Контур 1: $\dot{U}_{J}^{3} - \dot{I}_{5}^{3} \cdot 2R = \dot{E}_{1}^{3}$
Контур 2: $\dot{I}_{2}^{3} \cdot \underline{Z}_{2}^{3} + \dot{I}_{3}^{3} \cdot jX_{M}^{3} + \dot{I}_{3}^{3} \cdot \underline{Z}_{3}^{3} + \dot{I}_{2}^{3} \cdot jX_{M}^{3} + \dot{I}_{5}^{3} \cdot \underline{Z}_{5}^{3} = 0$
Контур 3: $\dot{I}_{2}^{3} \cdot \underline{Z}_{2}^{3} + \dot{I}_{3}^{3} \cdot jX_{M}^{3} - \dot{I}_{4}^{3} \cdot \underline{Z}_{4}^{3} + \dot{U}_{J}^{3} = 0$

С помощью программы MATCHADпроизводим расчет уравнений в матричной форме:

$$a := \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -220 & 1 \\ 0 & 110 + 495i & 55 + 495i & 0 & 220 & 0 \\ 0 & 110 + 330i & 165i & -10 + 30i & 0 & 1 \end{pmatrix} b := \begin{pmatrix} -1 \\ 0 \\ 0 \\ -50i \\ 0 \\ 0 \end{pmatrix} d := a^{-1} \cdot b$$

$$d = \begin{pmatrix} -0.435 - 0.626i \\ -0.407 + 0.409i \\ 0.158 - 0.218i \\ 0.565 - 0.626i \\ 0.593 + 0.409i \\ 130.524 + 39.897i \end{pmatrix}$$

Значение токов ветвей схемы и напряжение на источнике тока в алгебраической и в показательной формах:

$$\dot{I}_{1}^{3} = -0.435 - j0.626 = 0.762e^{j235.2^{0}} A$$

$$\dot{I}_{2}^{3} = -0.407 + j0.409 = 0.577e^{j134.86^{0}} A$$

$$\dot{I}_{3}^{3} = 0.158 - j0.218 = 0.269e^{-j54^{0}} A$$

$$\dot{I}_{4}^{3} = 0.565 - j0.626 = 0.843e^{-j48^{0}} A$$

$$\dot{I}_{5}^{3} = 0.593 + j0.409 = 0.72e^{j34.6^{0}} A$$

$$\dot{U}_{I}^{3} = 130.524 + j39.9 = 136.48e^{j17^{0}} B$$

2. Составим баланс активной и реактивной мощностей.

Полная мощность источников составит:

$$\dot{S}_{II}^{3} = P_{II}^{3} + Q_{II}^{3} = \dot{E}_{1}^{3} \cdot \dot{I}_{1}^{*3} + \dot{U}_{J}^{3} \cdot \dot{J}^{*3} = -j50 \cdot (-0.435 + j0.626) + +(130.524 + j39.9) \cdot 1 = 161.774 + j61.65 BA$$

Здесь \dot{I}^* – сопряженный комплекс тока.

Таким образом, активная мощность источников энергии составит $P_{\scriptscriptstyle H}^3=161.774\ Bm$; реактивная мощность $Q_{\scriptscriptstyle H}^3=61.65\ вар$.

Активная мощность потребителей:

$$P_{II}^{3} = (I_{2}^{3})^{2} \cdot R + (I_{3}^{3})^{2} \cdot \frac{R}{2} + (I_{4}^{3})^{2} \cdot R_{4} + (I_{5}^{3})^{2} \cdot 2R =$$

$$= 0.577^{2} \cdot 110 + 0.269^{2} \cdot 55 + 0.843^{2} \cdot 10 + 0.72^{2} \cdot 220 = 161.75 \ Bm$$

Реактивная мощность потребителей при согласном включении индуктивностей с токами $\underline{I}_2^3, \underline{I}_3^3$:

$$Q_{II}^{3} = (I_{2}^{3})^{2} \cdot X_{L}^{3} + (I_{3}^{3})^{2} \cdot X_{L}^{3} - (I_{4}^{3})^{2} \cdot X_{C4}^{3} + 2 \cdot I_{2}^{3} \cdot I_{3}^{3} \cdot X_{M}^{3} \cdot \cos(\psi_{2}^{3} - \psi_{3}^{3}) =$$

$$= 0.577^{2} \cdot 330 + 0.269^{2} \cdot 330 - 0.843^{2} \cdot 30 + 2 \cdot 0.577 \cdot 0.269 \cdot \cos(134.86^{0} + 54^{0}) =$$

$$= 61.81 \, \epsilon ap$$

Погрешность расчета (небаланс) составила:

по активной мощности

$$\delta_P = \left| \frac{P_H^3 - P_H^3}{P_H^3} \right| \cdot 100\% = \left| \frac{161.774 - 161.75}{161.774} \right| \cdot 100\% = 0.012\%$$

по реактивной мощности

$$\delta_{Q} = \left| \frac{Q_{H}^{3} - Q_{\Pi}^{3}}{Q_{H}^{3}} \right| \cdot 100\% = \left| \frac{61.65 - 61.68}{61.65} \right| \cdot 100\% = 0.26\%$$

Таким образом, небаланс как по активной, так и по реактивной мощности в пределах допуска ($\delta \le 3$ %).

3. Напряжение вольтметра включённого параллельно ветви №6 между узлами "**a**" и "**c**" на третьей гармонике составит:

$$\dot{U}_{V}^{3} = \dot{I}_{3}^{3} \cdot \underline{Z}_{3}^{3} + \dot{I}_{2}^{3} \cdot \underline{Z}_{M} = 0.269 \cdot e^{-j54^{0}} \cdot (55 + j330) + 0.577e^{j134.86^{0}} \cdot 165e^{j90^{0}} = 13.03 - j26.945 = 29.93e^{-j64.2^{0}} B$$

расчета РГР №1 и РГР №2 известно напряжение вольтметра: $U_V^0 = -9.02~B,~\dot{U}_V^1 = 129.36e^{j172.7^0}~B$.

Мгновенное значение напряжения вольтметра $U_{V}(t)$, включённого параллельно ветви №6, составит:

$$U_V(t) = -9.02 + 129.36\sqrt{2}\sin(\omega t + 172.7^{\circ}) + 29.93\sqrt{2}\sin(3\omega t - 64.2^{\circ})B$$

- 4. Определим показание вольтметра
 - магнитоэлектрической системы: $U_V = U_V^0 = -9.02 \ B$
 - электромагнитной системы:

- электромагнитной системы:
$$U_V = \sqrt{(U_V^0)^2 + (U_V^1)^2 + (U_V^3)^2} = \sqrt{(-9.02)^2 + 129.36^2 + 29.93^2} = 133.08\,B$$

5. Используя программу МАТСНА Опостроим график негармонического напряжения вольтметра для одного периода первой гармоники $T = \frac{2\pi}{\omega} = \frac{6.28}{314} = 0.02 c$. График показан на рис.18.

Для построения графика начальную фазу гармоник переводим в радианы: $U(t) = -9.02 + 182.4\sin(314t + 3.014) + 42.2\sin(942t - 1.12)$ В

Рис.18. График несинусоидального напряжения на вольтметре

Частотные спектры амплитуд и фаз напряжения вольтметра представлены на рис.19 а,б.

а) Спектр амплитуд

б) спектр фаз

Рис. 19

Поскольку $U_V^0 = -9.02 B$, то $\psi_U^0 = 180^0$.

6. Рассчитаем коэффициенты амплитуды и искажения для кривой напряжения $U_{\scriptscriptstyle V}(t)$.

Коэффициент амплидуды:
$$K_a = \frac{U_{Vm}}{U_V} = \frac{\left|-229.9\right|}{133.08} = 1.728$$
, здесь

 U_{Vm} - максимальное амплитудное значение напряжения вольтметра, измеренное по графику на рис. 18.

 U_V - действующее значение напряжения вольтметра, измеряемое вольтметром электромагнитной системы (п.4).

Коэффициент искажения:
$$K_{\scriptscriptstyle H} = \frac{U_{\scriptscriptstyle V}^{\scriptscriptstyle 1}}{U_{\scriptscriptstyle V}} = \frac{129.36}{133.08} = 0.972$$
 , здесь

 $U_{\scriptscriptstyle V}^{\scriptscriptstyle 1}$ - действующее значение напряжения вольтметра первой гармоники.

7. Рассчитаем активную, реактивную, полную мощность и мощность искажения для источника тока.

Используя данные по РГР №1 и РГР №2, запишем мгновенное значение величины тока источника тока имгновенное значения напряжения на источнике тока:

$$J(t)=2+2\sqrt{2}\sin(\omega t+30^{0})+\sqrt{2}\sin(3\omega t)~A$$

$$U_{J}(t)=286+310.5\sqrt{2}\sin(\omega t+38.34^{0})+136.48\sqrt{2}\sin(3\omega t+17^{0})~B$$
 Активная мощность источника тока:

$$\begin{split} P_J = & U_J^0 \cdot J^0 + U_J^1 \cdot J^1 \cdot \cos(\psi_U^1 - \psi_J^1) + U_J^3 \cdot J^3 \cdot \cos(\psi_U^3 - \psi_J^3) = 286 \cdot 2 + \\ + & 310.5 \cdot 2 \cdot \cos\cos(38.34^0 - 30^0) + 136.48 \cdot 1 \cdot \cos(17^0 - 0^0) = 1316.94 \ Bm \end{split}$$
 Реактивная мощность источника тока:

$$Q_I = U_I^1 \cdot J^1 \cdot \sin(\psi_U^1 - \psi_I^1) + U_I^3 \cdot J^3 \cdot \sin(\psi_U^3 - \psi_I^3) =$$

$$+310.5 \cdot 2 \cdot \sin(38.34^{\circ} - 30^{\circ}) + 136.48 \cdot 1 \cdot \sin(17^{\circ} - 0^{\circ}) = 129.97 \text{ } \epsilon ap$$

Полная мощность источника тока:

$$S_J = \sqrt{(U_J^0)^2 + (U_J^1)^2 + (U_J^3)^2} \cdot \sqrt{(J^0)^2 + (J^1)^2 + (J^3)^2} = \sqrt{(286)^2 + 310.5^2 + 136.48^2} \cdot \sqrt{2^2 + 2^2 + 1^2} = 1330.97 \ BA$$

Мошность искажения:

$$T_{II} = \sqrt{S_J^2 - P_J^2 - Q_J^2} = \sqrt{1330.97^2 - 1316.94^2 - 129.97^2} = 150.83 \, \text{sap}$$

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ №4

Порядок решения РГР №4 следующий. Также как и в методических указаниях по расчету РГР №1, по заданному графу построим схему электрической цепи соответственно своему варианту. На рис.20 представлена расчетная схема одного из возможных вариантов симметричной трехфазной цепи.

Данные для расчета **условного варианта** принимаем следующими: E=380 В, α = -60° , сопротивление нейтрали Z_N = 0, R = 50 Ом, L = 318.47 Гн, C = 53 мкФ.

Мгновенные значения фазных ЭДС каждой фазы: $e_{\scriptscriptstyle A}(t) = 380\sqrt{2}\sin(\omega t - 60^{\circ})\ B;\ e_{\scriptscriptstyle B}(t) = 380\sqrt{2}\sin(\omega t - 180^{\circ})\ B;$

$$e_C(t) = 380\sqrt{2}\sin(\omega t + 60^0) B.$$

Комплексные значения фазных ЭДС:

$$\dot{E}_A = 380e^{-j60^0} B; \dot{E}_B = 380e^{-j180^0} B; \dot{E}_C = 380e^{j60^0}, B.$$

Рис.20. Расчетная схема трехфазной симметричной цепи

Линейные напряжения:

$$\dot{U}_{AB}=\sqrt{3}e^{j30^{0}}\,380e^{-j60^{0}}=657.4e^{-j30^{0}}\,B;$$
 $\dot{U}_{BC}=a^{2}\dot{U}_{AB}=657.4e^{-j150^{0}}\,B;\,\,\dot{U}_{CA}=a\dot{U}_{AB}=657.4e^{j90^{0}}\,B.$
Определяем реактивные сопротивления:
 $\omega=314,\,c^{-1};\,X_{L}=\omega L=100\,$ Ом; $X_{C}=\frac{1}{\omega C}=60\,$ Ом.

1. Расчет симметричной трехфазной цепи.

Ключ К в фазе В замкнут. Для симметричной цепи точки**N**, n_I , n_2 имеют одинаковый потенциал, поэтому складываем параллельно лучи звезд с центром в точках n_1 и n_2 и последовательно с сопротивлением X_C каждой фазы соответственно, получаем эквивалентное сопротивление одной фазы $Z_{3\kappa G}$ (рис. 21).

Рис.21. Эквивалентная схема

$$\underline{Z}_{_{^{9KG}}} = \frac{R \cdot jX_{_L}}{R + jX_{_L}} - jX_{_C} = \frac{50 \cdot j100}{50 + j100} - j60 = 40 - j40 = 56.569e^{-j45^{\circ}}$$
 Ом; Из

схемы на рис.21 определяем линейные токи:

$$\dot{I}_A = \frac{\dot{E}_A}{Z_{ave}} = \frac{380e^{-j60}}{56.569e^{-j45^0}} = 6.718e^{-j15^0} A.$$

$$\dot{I}_B = a^2 \dot{I}_A = 4.2e^{j225^0} A; \dot{I}_C = a\dot{I}_A = 4.2e^{j105^0} A;$$

Применяяправило разброса тока в параллельных ветвях определяем токи в фазе А для схемы на рис. 20:

$$\dot{I}'_{A} = \dot{I}_{A} \cdot \frac{R}{R + jX_{L}} = 6.718e^{-j15^{0}} \cdot \frac{50}{50 + j100} = 3.004e^{-j78.435^{0}} A;$$

По первому закону Кирхгофа: $\dot{I}''_A = \dot{I}_A - \dot{I}'_A = 6.008e^{j11.565^0}$ A;

Токи в фазах В и С определим через фазовый оператор:

$$\dot{I}'_{B} = a^{2} \dot{I}'_{A} = 3.004 e^{j161.565^{0}} A;$$

$$\dot{I}'_{C} = a\dot{I}'_{A} = 3.004 e^{j281.565^{0}} A. \dot{I}''_{B} = a^{2} \dot{I}''_{A} = 6.008 e^{-j108.435^{0}} A;$$

$$\dot{I}''_{C} = a\dot{I}''_{A} = 6.008 e^{j131.565^{0}} A.$$

Составляем баланс мощности.

Полная мощность источников симметричной трехфазной цепи:

$$\dot{S}_{H} = 3 \cdot \dot{E}_{A} \cdot \dot{I}_{A}^{*} = 3 \cdot 380e^{-j60^{0}} \cdot 6.718e^{j15^{0}} = 7658.52e^{-j45^{0}} = 5415 - j5415 = P_{H} + jQ_{H}BA.$$

Активная мощность потребителей:

$$P_{II} = 3 \cdot I_A^{"2} \cdot R = 3 \cdot 6.008^2 \cdot 50 = 5415 \ Bm.$$

Реактивная мощность потребителей:

Небаланс по активной и реактивной мощности составляет $\delta_P = 0\%$, $\delta_O = 0\%$.

Для построения векторной диаграммы рассчитываем напряжения на элементах фазы А.

$$\dot{U}_{C_A}= \dot{I}_A^{''}\cdot (-jX_C)=403.051e^{-j105^0}~B;$$
 (вектор напряжения \dot{U}_{C_A} направлен из точки a в точку A)

$$\dot{U}_{L_A} = \ddot{I}_A'' \cdot j X_L = 300.461 e^{j11.596^0} \ B;$$
 (вектор напряжения \dot{U}_{L_A} направлен из точки n_2 в точку a)

$$\dot{U}_{R_A} = \dot{I}_A'' \cdot R = 300 e^{j11.565^0} \ B$$
; (вектор напряжения \dot{U}_{R_A} направлен из точки n_I в точку a)

Напряжения на элементах фазы В и фазы С имеют те же модули но сдвинуты по фазе на a^2 и a соответственно.

Лучевая диаграмма для токов и топографическая диаграмма для напряжений показана на рис.22. На диаграмме точкиN, n_1 , n_2 имеют одинаковый потенциал и расположены в начале координат.

Определяем показаниеваттметра:

$$P_W = U_{CA} \cdot I_B \cdot \cos(U_{CA} \wedge I_B) = 657.4 \cdot 4.2 \cdot \cos(90^0 - 225^0) = -1952.4 \text{ Bm};$$

Рис.22. Лучевая диаграмма токов и топографическая диаграмма напряжений для симметричной трёхфазной цепи

2. Расчет несимметричной трехфазной цепи.

Ни рис.23 изображена расчетная схема после размыкания ключа К

Рис.23. Расчетная схема несимметричной трёхфазной цепи

Для расчета схемы применяем метод узловых потенциалов. Принимаем потенциал узла N: $\dot{\phi}_N = 0$. Составляем систему уравнений относительно потенциалов узлов a, c, n_1 :

$$\begin{split} \dot{\phi}_{a} &(\frac{1}{-jX_{C}} + \frac{1}{R} + \frac{1}{jX_{L}}) - \dot{\phi}_{n_{1}} \frac{1}{R} = \dot{E}_{A} \frac{1}{-jX_{C}} \\ \dot{\phi}_{n_{1}} &(\frac{1}{R} + \frac{1}{R} + \frac{1}{R}) - \dot{\phi}_{a} \frac{1}{R} - \dot{\phi}_{c} \frac{1}{R} = \dot{E}_{B} \frac{1}{(R - jX_{C})}; \\ \dot{\phi}_{c} &(\frac{1}{-jX_{C}} + \frac{1}{R} + \frac{1}{jX_{L}}) - \dot{\phi}_{n_{1}} \frac{1}{R} = \dot{E}_{C} \frac{1}{-jX_{C}}. \end{split}$$

Подставляем в уравнения параметры ЭДС и сопротивлений и рассчитываем потенциалы узлов.

$$\dot{\phi}_a = 358.846 + j119.379 = 378.18 \cdot e^{j18.4^{\circ}} B;$$

$$\dot{\phi}_{n_1} = 44.811 + j80.66 = 92.27 \cdot e^{j61^{\circ}} B;$$

$$\dot{\phi}_c = -134.789 + j283.923 = 314.3 \cdot e^{j115.4^{\circ}} B;$$

Составяем уравнения по второму закону Кирхгофа и определяем токи в ветвях схемы.

$$\begin{split} \dot{I}_{A} &= \frac{\dot{E}_{A} - \dot{\phi}_{a}}{-jX_{C}} = \frac{380e^{-j60^{0}} - 358.846 - j119.378}{-j60} = \\ &= 7.474 - j2.814 = 7.968e^{-j20.63^{0}} A; \\ \dot{I}_{B} &= \frac{\dot{E}_{B} - \dot{\phi}_{n_{1}}}{R - jX_{C}} = \frac{380e^{-j180^{0}} - 44.811 - j80.66}{50 - j60} = \\ &= -2.689 - j4.84 = 5.536e^{j241^{0}} A; \\ \dot{I}_{C} &= \frac{\dot{E}_{C} - \dot{\phi}_{c}}{-jX_{C}} = \frac{380e^{j60^{0}} + 134.789 - j283.923}{-j60} = \\ &= -0.753 + j5.413 = 5.465e^{-j82^{0}} A; \\ \dot{I}_{1} &= \frac{\dot{\phi}_{a}}{jX_{L}} = \frac{358.846 + j119.379}{j100} = 1.194 - j3.588 = 3.781e^{-j71.6^{0}} A; \\ \dot{I}_{3} &= \frac{\dot{\phi}_{c}}{jX_{L}} = \frac{-134.789 + j283.923}{j100} = 2.839 + j1.348 = 3.142e^{j25.4^{0}} A; \end{split}$$

$$\dot{I}_{12} = \frac{\dot{\phi}_a - \dot{\phi}_{n_1}}{R} = \frac{358.846 + j119.379 - 44.811 - j80.66}{50} =$$

=
$$6.281 + j0.774 = 6.328e^{j7.02^{\circ}}$$
 A;

$$\dot{I}_{23} = \frac{\dot{\phi}_{n_1} - \dot{\phi}_c}{R} = \frac{44.811 + j80.66 + 134.789 - j283.923}{50} =$$

=
$$3.592 + j4.065 = 5.424e^{-j48.53^{\circ}}$$
 A;

По первому закону Кирхгофа определим ток в нейтральном проводе:

$$\dot{I}_N = \dot{I}_1 + \dot{I}_3 = 1.194 - j3.588 + 2.839 + j1.348 =$$

$$=4.033-j2.241=4.613e^{-j29^{0}}$$
 A;

Вычисляем баланс мощности. Полная мощность источников:

$$\dot{S}_{II} = \dot{E}_{A} \cdot \dot{I}_{A}^{*} + \dot{E}_{B} \cdot \dot{I}_{B}^{*} + \dot{E}_{C} \cdot \dot{I}_{C}^{*} = 380e^{-j60^{0}} \cdot 7.968e^{j20.63^{0}} + 480e^{-j180^{0}} \cdot 5.536e^{-j241^{0}} + 380e^{j60^{0}} \cdot 5.465e^{j82^{0}} =$$

$$=5.006 \cdot 10^3 - j5.04 \cdot 10^3 = P_H + jQ_H BA;$$

Активная мощность потребителей:

$$P_{II} = I_{12}^{2} \cdot R + I_{B}^{2} \cdot R + I_{23}^{2} \cdot R = 6.328^{2} \cdot 50 + 5.536^{2} \cdot 50 +$$

$$+5.424^2 \cdot 50 = 5.006 \cdot 10^3 \ Bm$$

Реактивная мощность потребителей:

$$Q_{II} = I_A^2 \cdot (-X_C) + I_B^2 \cdot (-X_C) + I_C^2 \cdot (-X_C) + I_1^2 \cdot X_L + I_3^2 \cdot X_L =$$

$$= 7.968^2 \cdot (-60) + 5.536^2 \cdot (-60) + 5.465^2 \cdot (-60) + 3.781^2 \cdot 100 +$$

$$+3.142^2 \cdot 100 = -5.04 \cdot 10^3 \text{ } eap$$

Равенство мощностей источников и потребителей позволяет судить о правильности произведенных расчетов.

Определяем показание ваттметра:

$$P_W = |\dot{U}_{CA}| \cdot |\dot{I}_B| \cos(U_{CA} \land I_B) = 657.4 \cdot 5.536 \cdot \cos(90^\circ - 241^\circ) = -3183 Bm;$$

где
$$\dot{U}_{CA} = \sqrt{3} \cdot \dot{E}_C \cdot e^{j30^0} = 657.4 \cdot e^{j90^0} \ B$$
 - линейное напряжение.

Для построения векторной диаграммы производим расчет напряжений на пассивных элементах.

$$\dot{U}_{Aa} = \dot{I}_A \cdot (-jX_C) = 479.2 \cdot e^{-j110.63^0} B$$

$$\dot{U}_{Bn_1} = \dot{I}_B \cdot (R - jX_C) = 432.401 \cdot e^{-j169.249^0} B$$

$$\dot{U}_{Cc} = \dot{I}_C \cdot (-jX_C) = 327.915 \cdot e^{j7.917^0} B$$

$$\dot{U}_{12} = \dot{I}_{12} \cdot R = 315.413 \cdot e^{j7.029^{0}} B$$

$$\dot{U}_{23} = \dot{I}_{23} \cdot R = 271.242 e^{-j48.537} B;$$

$$\dot{U}_{1} = \dot{I}_{1} \cdot jX_{L} = 378.182 \cdot e^{j18.401^{0}} B$$

$$\dot{U}_{3} = \dot{I}_{3} \cdot jX_{L} = 314.293 \cdot e^{j115.395^{0}} B$$

Выбираем масштаб токов и напряжений и строим векторную диаграмму(рис. 24.)

Рис.24. Лучевая диаграмма токов и топографическая диаграмма напряжений для несимметричной трёхфазной цепи

СПИСОК ЛИТЕРАТУРЫ

- 1. Основы теории цепей / Г.В. Зевеке, П.А. Ионкин и др. М.: Энергоатомиздат, 1989. 526 с.
- 2. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. М.: Высшая школа, 1996. 559 с.
- 3. Сметанина Р.Н., Носов Г.В., Исаев Ю.Н. Теоретические основы электротехники. Часть 1.— Томск: Изд. ТПУ, 2005.— 107 с.
- 4. Сборник задач и упражнений по ТОЭ/ Под.ред. П.А. Ионкина. М.: Энергоатомиздат, 1982. 768 с.

- 5. Эськов В.Д., Каталевская А.В., Сипайлов А.Г. Теоретические основы электротехники. Часть 1.— Томск: Изд. ТПУ, 2009.— 168 с.
- 6. Носов Г.В., Кулешова Е.О., Колчанова В.А. Теоретические основы электротехники. Установившийся режим в линейных цепях. Томск: Изд. ТПУ, 2011.—215 с.
- 7. Общая электротехника : рабочая программа, методические указания и индивидуальные домашние задания № 1, №2, № 3 / Национальный исследовательский Томский политехнический университет (ТПУ); сост. С. В. Пустынников, С. А. Новиков. Томск: Изд-во ТПУ, 2010. 43 с.: ил.. Библиогр.: с.
 - 43.http://window.edu.ru/resource/641/75641/files/RGR1_TOE.pdf
- 8. Курикова Н.В. Русский язык как иностранный: язык электротехники: учебное пособие / Н.В. Курикова, С.В. Пустынников, Е.Б. Шандарова; Национальный исследовательский Томский политехнический университет. Томск: Изд-во ТПУ, 2010. 128 с.

СОДЕРЖАНИЕ

1. Введение	c.3
2. Тема №1.Элементы и параметры электрических цепей, осно	вные
методы расчета электрических цепей	c.4
3. Тема №2. Расчет цепей с синусоидальными напряжениями	
и токами	c.19
4. Тема №3. Резонанс в цепях синусоидального тока	
5. Тема №4. Линейные электрические цепис	
взаимной индуктивностью	c.32
6. Тема №5. Двухобмоточный трансформатор в линейном режиме	c.37
7. Тема №6. Электрические цепи с источниками несинусоидальны	их пе-
риодических напряжений и токов	c.39
8. Тема №7. Трехфазные цепи	c.42
9. Тема №8 Метод симметричных составляющих	c.47
10. РГР №1. Расчет линейной цепи постоянного тока	c.51
11. РГР №2. Расчет линейной цепи синусоидального тока	c.52
12. РГР №3. Расчет линейной электрической цепи с периодическим	ли не-
гармоническими напряжениями и токами	c.55
13. РГР №4. Расчет линейной трехфазной цепи	c.56
14. Методические указания к выполнению РГР №1	c.60
15. Методические указания к выполнению РГР №2	c.68
16. Методические указания к выполнению РГР №3	c.77
17. Методические указания к выполнению РГР №4	c.83
18. Список литературы	c.90
19. Содержание	

Учебное издание

ПУСТЫННИКОВ Сергей Владимирович СИПАЙЛОВ Андрей Геннадьевич ШАНДАРОВА Елена Борисовна

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ЧАСТЬ 1

Учебное пособие

Научный редактор *кандидат технических наук*, доцент Г.В.Носов Компьютерная верстка С.В.Пустынников Дизайн обложки И.О. Фамилия

Подписанокпечати 05.11.2012. Формат 60х84/16. Бумага «Снегурочка». ПечатьХЕROX. Усл.печ.л. 9,01. Уч.-изд.л. 8,16.

Заказ . Тираж 100 экз.

Национальный исследовательский Томскийполитехническийуниверситет Системаменеджментакачества Издательства Томскогополитехническогоуниверситетасертифицирована

NATIONALQUALITYASSURANCE по стандарту BSENISO 9001:2008

издательство ТПУ. 634050, г. Томск, пр. Ленина, 30 Тел./факс: 8(3822)56-35-35, www.tpu.ru