PSALTer results panel $S = \frac{\int \int \int (\frac{1}{6}(2(t_{1} - 2t_{3}) \mathcal{A}^{\alpha_{i}}_{\alpha} \mathcal{A}^{\theta}_{i} + 6 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau(\Delta + \mathcal{K})_{\alpha\beta} - 4t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{i}f^{\alpha_{i}} + 8t_{3} \mathcal{A}^{\theta}_{\alpha} \partial_{i}f^{\alpha_{i}} + 4t_{1} \mathcal{A}^{\theta}_{i} \partial_{i}f^{\alpha}_{\alpha} - 8t_{3} \mathcal{A}^{\theta}_{i} \partial_{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\theta}_{\theta} \partial_{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\theta}_{\theta} \partial_{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\theta}_{\theta} \partial_{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\alpha}_{\theta} \partial_{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha}_{\alpha}$

 $6r_{.5}^{\alpha}\partial_{\alpha}\mathcal{R}^{\alpha_{i}\theta}\partial_{\kappa}\mathcal{R}_{,\ \theta}^{\ \kappa}+12r_{.5}^{\alpha}\partial^{\theta}\mathcal{R}_{\ \alpha}^{\alpha_{i}}\partial_{\kappa}\mathcal{R}_{,\ \theta}^{\ \kappa}+6r_{.5}^{\alpha}\partial_{\alpha}\mathcal{R}^{\alpha_{i}\theta}\partial_{\kappa}\mathcal{R}_{,\ \theta}^{\ \kappa}-12r_{.5}^{\alpha}\partial^{\theta}\mathcal{R}_{\ \alpha}^{\alpha_{i}}\partial_{\kappa}\mathcal{R}_{,\ \theta}^{\ \kappa}))[t,\ x,\ y,\ z]dzdydxdt$

Wave operator

_	[∪] . <i>'A</i> ("	•	$0.f^{\perp}$	∪. ℋ	_									
^{0,+} <i>Я</i> [∥] †	<i>t</i> . 3	$-i\sqrt{2} kt$.	0	0										
0. ⁺ <i>f</i> [∥] †	$i\sqrt{2} kt$.	$2k^2t$.	0	0										
0. ⁺ <i>f</i> [⊥] †	0	0	0	0										
^{0.} ℋ [∥] †	0	0	0	-t. 1	$^{1^{+}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$^{1.}^{+}\mathcal{F}^{\perp}{}_{lphaeta}$	$1.^+f^{\parallel}_{\alpha\beta}$	$1^{\boldsymbol{\cdot}} \mathcal{A}^{\parallel}{}_{\alpha}$	$^{1}\mathcal{H}_{\alpha}^{\perp}$	$^{1}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
				$^{1^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t}{\sqrt{2}}$	$-\frac{i k t}{\sqrt{2}}$	0	0	0	0			
				$\overset{1^+}{\cdot} \mathcal{H}^{\scriptscriptstyle \perp} \dagger^{\alpha\beta}$	$-\frac{t}{\sqrt{2}}$	0	0	0	0	0	0			
				$1.^+f^{\parallel}$ † $^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	0	0	0	0	0	0			
				$^{1}\mathcal{F}^{\parallel}\dagger^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_{.5} + t_{.1} + 4 t_{.3} \right)$	$\frac{t2t.}{\frac{1}{3}\frac{3}{\sqrt{2}}}$	0	$\frac{1}{3}$ ik $(t_1 - 2t_1)$			
				$^{1}\mathcal{A}^{\perp}\dagger^{\alpha}$	0	0	0	$\begin{array}{c} t \cdot -2 t \cdot \\ \frac{1}{3} \frac{3}{3} \sqrt{2} \end{array}$	$\frac{t.+t.}{\frac{1}{3}}$	0	$\frac{1}{3} i \sqrt{2} k (t_1 + t_2)$			
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_1)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_2)$	0	$\frac{2}{3}k^2(t_1+t_1)$	$^{2\overset{+}{.}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$2^+f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{t}{2}$	$-\frac{i k t}{\sqrt{2}}$	0
											$\overset{2^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$.	0
											${}^{2}\mathcal{H}^{\parallel} \dagger^{\alpha\beta\chi}$	0	0	$\frac{t}{2}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0.^{+}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1
$-2 \bar{i} k^{0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2ik \cdot 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- _τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^{+}_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2ik 2^+_{\cdot}\sigma^{\parallel^{\alpha\beta}} + 2^+_{\cdot}\tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\alpha}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\alpha$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$	

16

Massive spectrum

Total expected gauge generators:

Massive particle

Pole residue:	$\frac{\frac{6t.t.(t.+t.)-3r.(t.^{2}+2t.^{2})}{\frac{1}{3}\frac{3}{1}\frac{1}{3}\frac{3}{1}\frac{5}{1}\frac{1}{3}\frac{3}{5}\frac{1}{1}\frac{3}{3}}>0}{2r.(t.+t.)(-3t.t.+r.(t.+t.))}>0$
Square mass:	$-\frac{\frac{3t.t.}{13}}{\frac{2r.t.+2r.t.}{51} + \frac{2r.t.}{53}} > 0$
Spin:	1
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

 $(t_{1} < 0 \&\& 0 < t_{3} < -t_{1} \&\& r_{5} < 0) \mid\mid (t_{1} > 0 \&\& ((t_{3} < -t_{1} \&\& r_{5} < 0) \mid\mid (t_{3} > 0 \&\& r_{5} < 0)))$