Gradual Intersection Types

Pedro Ângelo, Mário Florido February 5, 2018

1 Language Definition

Syntax

```
Types \ T ::= \ Int \mid Bool \mid Dyn \mid T \rightarrow T' \mid T \cap \ldots \cap T
           T' ::= Int \mid Bool \mid Dyn \mid T' \rightarrow T'
Ground Types G ::= Int \mid Bool \mid Dyn \rightarrow Dyn
Casts \ c \ ::= c : T' \Rightarrow^l T' \ ^{cl} \ | \ blame \ T' \ T' \ l \ ^{cl} \ | \ \varnothing \ T' \ ^{cl}
Expressions e := x \mid \lambda x : T \cdot e \mid e \mid e \mid n \mid true \mid false
                              |e:T'\Rightarrow^l T'|e:c\cap\ldots\cap c|blame_T|
Cast\ Values \ cv ::= cv1 \mid cv2
                      cv1 ::= \varnothing T'^{cl} : G \Rightarrow^{l} Dyn^{cl}
                                 | \varnothing T'^{cl} : T'_1 \to T'_2 \Rightarrow^l T'_3 \to T'_4^{cl}
                                  |cv1:G\Rightarrow^l Dyn^{cl}
                                 |cv1:T_1'\to T_2'\Rightarrow^l T_3'\to T_4'^{cl}
                      cv2 \ ::= blame \ T' \ T' \ l^{\ cl}
                                 | \varnothing T'^{cl} |
Values \ v \ ::= x \mid \lambda x : T \ . \ e \mid n \mid true \mid false \mid blame_T \ l
                     |v:G\Rightarrow^l Dyn
                     |v:T_1' \to T_2' \Rightarrow^l T_3' \to T_4'
                     |v:cv_1\cap\ldots\cap cv_n| such that
                      \neg(\forall_{i \in 1..n} \ . \ cv_i = blame \ T' \ T' \ l^{cl}) \land
                      \neg(\forall_{i\in 1..n} \ . \ cv_i = \varnothing \ T'^{cl})
```

Figure 1: Gradual Intersection System

$$\begin{array}{c|c} \hline \Gamma \vdash_{\cap G} e : T & \text{Typing} \\ \hline x : T \in \Gamma \\ \hline \Gamma \vdash_{\cap G} x : T & Var & \hline \Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T \\ \hline \Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T \\ \hline \Gamma, x : T_i \vdash_{\cap G} e : T \\ \hline \Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T \\ \hline \Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T \\ \hline \Gamma \vdash_{\cap G} e_1 : PM & PM \rhd T_1 \cap \ldots \cap T_n \to T \\ \hline \Gamma \vdash_{\cap G} e_2 : T_1' \cap \ldots \cap T_n' & T_1' \cap \ldots \cap T_n \to T \\ \hline \Gamma \vdash_{\cap G} e : T_1 \dots & \Gamma \vdash_{\cap G} e : T_n \\ \hline \Gamma \vdash_{\cap G} e : T_1 \dots & \Gamma \vdash_{\cap G} e : T_n \\ \hline \Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline \Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline \Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T_1 \cap T_1 \cap T_1 \cap T_1 \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T_1 \cap T_1 \cap T_1 \cap T_1 \cap T_1 \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T_1 \cap T_1 \cap T_1 \cap T_1 \cap T_1 \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T_1 \cap T_1 \cap T_1 \cap T_1 \cap T_1 \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & \hline T_1 \cap T_1 \cap T_1 \cap T_1 \cap T_1 \cap T_1 \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \cap T_1 \cap T_1 \cap T_1 \cap T_1 \cap T_1 \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n \cap T_1 \cap T_1$$

Figure 2: Gradual Intersection Type System $(\vdash_{\cap G})$

$$rules \ in \ Figure \ 2 \ and$$

$$rules \ in \ Figure \ 2 \ and$$

$$\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$$

$$\Gamma \vdash_{\cap CC} e_2 : T_1' \cap \ldots \cap T_n' \quad T_{11} \sim T_1' \ldots T_{n1} \sim T_n'$$

$$\Gamma \vdash_{\cap CC} e_1 : e_2 : T_{12} \cap \ldots \cap T_{n2}$$

$$\Gamma \vdash_{\cap CC} e : T_1 \quad T_1 \sim T_2$$

$$\Gamma \vdash_{\cap CC} e : T_1 \quad T_1 \sim T_2$$

$$\Gamma \vdash_{\cap CC} e : T_1 \Rightarrow^l T_2 : T_2$$

$$\Gamma \vdash_{\cap CC} e : T_1 \Rightarrow^l T_2 : T_2$$

$$\Gamma \vdash_{\cap CC} e : T_1 \Rightarrow^l T_2 : T_1 \cdots \vdash_{\cap IC} C_n : T_n$$

$$\frac{initial Type(c_1) \cap \ldots \cap initial Type(c_n) = T}{\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n }$$

$$\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$$

$$\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$$

$$\Gamma \vdash_{\cap CC} e : T_1 \Rightarrow^l T_2 \cap \ldots \cap T_n$$

$$\Gamma \vdash_{\cap CC} e : T_1 \Rightarrow^l T_2 \cap \ldots \cap T_n$$

$$\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n \cap T_n$$

$$\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n \cap T_n \cap T_n \cap T_n \cap T_n$$

$$\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n \cap T_n$$

Figure 3: Intersection Cast Calculus $(\vdash_{\cap CC})$

$$\begin{array}{c} \boxed{\Gamma \vdash_{\cap CC} e \leadsto e : T} \quad \text{Compilation} \\ \hline & x : T \in \Gamma \\ \hline \Gamma \vdash_{\cap CC} x \leadsto x : T \\ \hline \\ \Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e \leadsto e' : T \\ \hline \Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \cdot e) \leadsto (\lambda x : T_1 \cap \ldots \cap T_n \cdot e') : T_1 \cap \ldots \cap T_n \to T \\ \hline \\ PM \rhd T_1 \cap \ldots \cap T_n \to T \quad \Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : PM \\ PM \rhd T_1 \cap \ldots \cap T_n \to T \quad \Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T'_1 \cap \ldots \cap T'_n \\ T'_1 \cap \ldots \cap T'_n \leadsto T_1 \cap \ldots \cap T_n \quad instances(PM) = S_1 \\ instances(T_1 \cap \ldots \cap T_n \to T) = S_2 \quad instances(T'_1 \cap \ldots \cap T'_n) = S_3 \\ instances(T_1 \cap \ldots \cap T_n) = S_4 \quad S_1, S_2, e'_1 \to e''_1 \quad S_3, S_4, e'_2 \to e''_2 \\ \hline 1 \vdash_{\cap CC} e_1 e_2 \leadsto e''_1 e''_2 : T \\ \hline \\ instances(T_1) = \{T\} \\ \hline instances(Dm) = \{Dm\} \\ instances(Dm) = \{Dm\} \\ instances(T_1) = \{T_{11}, \ldots, T_{1n}\} \\ \hline i$$

Figure 4: Compilation to the Cast Calculus

$e \longrightarrow_{\cap CC} e$ Evaluation

Simulate casts on data types

$$is \ value \ v_1: cv_1 \cap \ldots \cap cv_n \\ \exists i \in 1..n \ . \ is Arrow Compatible(cv_i) \\ \frac{((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s)) = simulate Arrow (cv_1, \ldots, cv_n)}{(v_1: cv_1 \cap \ldots \cap cv_n) \ v_2 \longrightarrow_{\cap CC} \\ (v_1: c_1^s \cap \ldots \cap c_m^s) \ (v_2: c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$$
 Simulate O

$Merge\ casts$

$$\frac{v:c'_1\cap\ldots\cap cv_n}{v:c'_1\cap\ldots\cap c'_m=mergeIC(v:cv_1\cap\ldots\cap cv_n:T_1\Rightarrow^lT_2)}{v:cv_1\cap\ldots\cap cv_n:T_1\Rightarrow^lT_2\longrightarrow_{\cap CC}v:c'_1\cap\ldots\cap c'_m}\text{ MergeIC}\cap$$

$$is \ value \ v: T_1 \Rightarrow^l T_2 \\ \frac{v: c_1' \cap \ldots \cap c_m' = mergeCI(v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n)}{v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v: c_1' \cap \ldots \cap c_m'} \ \text{MergeCI} \cap$$

$$\frac{is \ value \ v: cv_1 \cap \ldots \cap cv_n}{v: c''_1 \cap \ldots \cap c''_j = mergeII(v: cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m)}{v: cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m \longrightarrow_{\cap CC} v: c''_1 \cap \ldots \cap c''_j} \ \text{MergeII} \cap$$

$Evaluate\ intersection\ casts$

$$\frac{\neg(\forall i \in 1..n \ . \ is \ cast \ value \ c_i)}{c_1 \longrightarrow_{\cap IC} cv_1 \ ... \ c_n \longrightarrow_{\cap IC} cv_n} \\ \frac{c_1 \longrightarrow_{\cap IC} cv_1 \ ... \ c_n \longrightarrow_{\cap IC} cv_n}{v: c_1 \cap ... \cap c_n \longrightarrow_{\cap CC} v: cv_1 \cap ... \cap cv_n} \\ \\ \text{EvaluateCasts} \cap$$

Transition from cast values to values

$$\frac{}{v:\varnothing\;T_1\;^{cl_1}\cap\ldots\cap\varnothing\;T_n\;^{cl_n}\longrightarrow_{\cap CC}v}\;\text{RemoveEmpty}\cap$$

Figure 5: Cast Calculus Semantics $(\longrightarrow_{\cap CC})$

$$\langle c : T_1 \Rightarrow^l T_2 \ ^{cl} \rangle^{cl'} = \langle c \rangle^{cl'} : T_1 \Rightarrow^l T_2 \ ^{cl'}$$

$$\langle blame \ T_l \ T_F \ l \ ^{cl'} \rangle^{cl} = blame \ T_l \ T_F \ l \ ^{cl}$$

$$\langle \varnothing \ T \ ^{cl'} \rangle^{cl} = \varnothing \ T \ ^{cl}$$

$$is Arrow Compatible (c) = Bool$$

$$is Arrow Compatible (c) = Bool$$

$$is Arrow Compatible (c) = T_{11} \rightarrow T_{12} \Rightarrow^l T_{21} \rightarrow T_{22} \ ^{cl}) = is Arrow Compatible (c)$$

$$is Arrow Compatible (\varnothing \ (T_1 \rightarrow T_2) \ ^{cl}) = True$$

$$separate Intersection Cast (c) = (c, c)$$

$$separate Intersection Cast (c) = (c, c)$$

$$separate Intersection Cast (\varnothing \ T \ ^{cl}) = (\varnothing \ T_1 \ ^{cl} : T_1 \Rightarrow^l T_2 \ ^{cl}, c)$$

$$separate Intersection Cast (\varnothing \ T \ ^{cl}) = (\varnothing \ T \ ^{cl}, \varnothing \ T \ ^{cl})$$

$$breakdown Arrow Type (c) = (c, c)$$

$$breakdown Arrow Type (\varnothing \ T_{11} \rightarrow T_{12} \ ^{cl} : T_{11} \rightarrow T_{12} \Rightarrow^l T_{21} \rightarrow T_{22} \ ^{cl}) = (\varnothing \ T_1 \ ^{cl} : T_{21} \Rightarrow^l T_{21} \rightarrow T_{22} \ ^{cl})$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \varnothing \ T_2 \ ^{cl})$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \varnothing \ T_2 \ ^{cl})$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \varnothing \ T_2 \ ^{cl})$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \varnothing \ T_2 \ ^{cl})$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \varnothing \ T_2 \ ^{cl})$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \varnothing \ T_2 \ ^{cl})$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \varnothing \ T_2 \ ^{cl})$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \ldots, (c_m_1, c_{m_2}, c_m^s))$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}) = (\varnothing \ T_1 \ ^{cl}, \ldots, (c_m_1, c_m_2, c_m^s))$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}, \ldots, (c_m_1, c_m_2, c_m^s))$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}, \ldots, (c_m_1, c_m_2, c_m^s))$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}, \ldots, (c_m_1, c_m_2, c_m^s))$$

$$breakdown Arrow Type (\varnothing \ T_1 \rightarrow T_2 \ ^{cl}, \ldots, (c_m_1, c_m_2, c_m^s))$$

Figure 6: Definitions for auxiliary semantic functions

$$\begin{split} \text{getCastLabel}(c) &= \text{cl} \\ \text{getCastLabel}(c: T_1 \Rightarrow^l T_2 \ ^{cl}) = \text{cl} \\ \text{getCastLabel}(blame \ T_l \ T_F \ l \ ^{cl}) = \text{cl} \\ \text{getCastLabel}(\otimes T \ ^{cl}) = \text{cl} \\ \text{getCastLabel}(c, c) &= \text{Bool} \\ \text{sameCastLabel}(c_1, c_2) = \text{getCastLabel}(c_1) == 0 \\ \text{sameCastLabel}(c_1, c_2) = \text{getCastLabel}(c_2) == 0 \\ \text{sameCastLabel}(c_1, c_2) = \text{getCastLabel}(c_1) == \text{getCastLabel}(c_2) \\ \text{joinCasts}(c, c) &= c \\ \text{joinCasts}(c: T_1 \Rightarrow^l T_2 \ ^{cl}, c') = \text{joinCasts}(c, c') : T_1 \Rightarrow^l T_2 \ ^{cl} \\ \text{joinCasts}(blame \ T_l \ T_F \ l \ ^{cl}, c) = blame \ T_l \ T_F \ l \ ^{cl} \\ \text{getCastLabel}(\otimes T \ ^{cl}, c) = \langle c \rangle^{cl} \\ \\ \hline mergeIC(e) &= e \\ \\ (c'_1, \ldots, c'_m) = \text{filter} \ (\lambda x \ . \ \text{finalType} \ x == T_1) \ (c_1, \ldots, c_n) \\ (cl_1, \ldots, cl_m) = \text{map getCastLabel}(c'_1, \ldots, c'_m) \\ \hline mergeCI(e) &= e \\ \\ (c'_1, \ldots, c'_m) = \text{filter} \ (\lambda x \ . \ \text{initialType} \ x == T_2) \ (c_1, \ldots, c_n) \\ (c'_1, \ldots, c'_m) = \text{filter} \ (\lambda x \ . \ \text{initialType} \ x == T_2) \ (c_1, \ldots, c_n) \\ \hline mergeCI(e: T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n) = e : c'_1 \cap \ldots \cap c'_m \\ \hline \hline mergeII(e) &= e \\ \\ (c'_1, \ldots, c'_o) &= \text{[joinCast} \ y \ x \mid x \leftarrow (c_{11}, \ldots, c_{1m}), \ y \leftarrow (c_{21}, \ldots, c_{2n}), \\ \hline \text{sameCastLabel}(e: c_{11} \cap \ldots \cap c_{1m} : c_{21} \cap \ldots \cap c_{2n}) = e : c'_1 \cap \ldots \cap c'_o \\ \hline \hline mergeII(e: c_{11} \cap \ldots \cap c_{1m} : c_{21} \cap \ldots \cap c_{2n}) = e : c'_1 \cap \ldots \cap c'_o \\ \hline \hline mergeII(e: c_{11} \cap \ldots \cap c_{1m} : c_{21} \cap \ldots \cap c_{2n}) = e : c'_1 \cap \ldots \cap c'_o \\ \hline \hline \end{array}$$

Figure 7: Definitions for auxiliary semantic functions

$$\begin{array}{c|c} \hline \vdash_{\cap IC} c:T & \text{Typing} \\ \\ \hline \frac{\vdash_{\cap IC} c:T_1 & T_1 \sim T_2}{\vdash_{\cap IC} (c:T_1 \Rightarrow^l T_2 \stackrel{cl}{:}):T_1} & \text{T-SingleC} & \hline \\ \hline \hline \vdash_{\cap IC} blame \ T_I \ T_F \ l^{\ cl}:T_F & \\ \hline \end{array} \\ \begin{array}{c} \hline \vdash_{\cap IC} blame \ T_I \ T_F \ l^{\ cl}:T_F & \\ \hline \end{array}$$

Figure 8: Intersection Casts Type System $(\vdash_{\cap IC})$

$$c \longrightarrow_{\cap IC} c$$
 Evaluation

Push blame to top level

$$\overline{blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}}\ \text{PushBlameC}$$

 $Evaluate\ inside\ casts$

$$\frac{\neg(is\; cast\; value\; c) \qquad c \longrightarrow_{\cap IC} c'}{c: T_1 \Rightarrow^l T_2 \stackrel{cl}{} \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{} } \text{ EvaluateC}$$

Detect success or failure of casts

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: T \Rightarrow^l T \stackrel{cl}{\longrightarrow}_{\cap IC} c} \ \text{IdentityC}$$

$$\frac{is\; cast\; value\; 1\; c \vee is\; empty\; cast\; c}{c:G\Rightarrow^{l_1} Dyn^{\; cl_1}: Dyn\Rightarrow^{l_2} G^{\; cl_2} \longrightarrow_{\cap IC} c} \; \text{SucceedC}$$

$$\frac{is\; cast\; value\; 1\; c \vee is\; empty\; cast\; c}{\neg(same\; ground\; G_1\; G_2) \qquad initial Type(c) = T_I} \\ \frac{c: G_1 \Rightarrow^{l_1} Dyn^{\; cl_1}: Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{\longrightarrow}_{\cap IC} blame\; T_I\; G_2\; l_2 \stackrel{cl_1}{\longrightarrow}_{\cap IC} blame\; T_I\; G_2 \stackrel{cl_2}{\longrightarrow}_{\cap IC} blame\; T_I \stackrel{cl_2}{\longrightarrow}_{\cap IC} blame\; T_I \stackrel{cl_2}{\longrightarrow}_{\cap IC}$$

Mediate the transition between the two disciplines

$$\begin{array}{c} \textit{is cast value 1 } c \lor \textit{is empty cast } c \\ \textit{G is ground type of } T & \neg \textit{(ground } T) \\ \hline c: T \Rightarrow^{l} \textit{Dyn} \xrightarrow{cl} \longrightarrow_{\cap IC} c: T \Rightarrow^{l} G \xrightarrow{cl} : G \Rightarrow^{l} \textit{Dyn} \xrightarrow{cl} \end{array} \\ \text{GroundC}$$

$$\frac{\text{is cast value 1 $c \lor is$ empty cast c}}{G \text{is ground type of T} \qquad \neg (ground \ T)} \frac{c : Dyn \Rightarrow^l T \xrightarrow{cl} \rightarrow_{\cap IC} c : Dyn \Rightarrow^l G \xrightarrow{cl} : G \Rightarrow^l T \xrightarrow{cl}}{\text{ExpandC}}$$

Figure 9: Intersection Casts Semantics $(\longrightarrow_{\cap IC})$

 $[e]_e = e$ Erase identity casts

$$[x]_{e} = x$$

$$[\lambda x : T \cdot e]_{e} = \lambda x : T \cdot [e]_{e}$$

$$[e_{1} \ e_{2}]_{e} = [e_{1}]_{e} \ [e_{2}]_{e}$$

$$[n]_{e} = n$$

$$[true]_{e} = true$$

$$[false]_{e} = false$$

$$[e : T \Rightarrow^{l} T]_{e} = [e]_{e}$$

$$[e : T_{1} \Rightarrow^{l} T_{2}]_{e} = [e]_{e} : T_{1} \Rightarrow^{l} T_{2}$$

$$[c_{1}]_{c} = \varnothing T_{1}^{cl_{1}} \dots [c_{n}]_{c} = \varnothing T_{n}^{cl_{n}}$$

$$[e : c_{1} \cap \dots \cap c_{n}]_{e} = [e]_{e}$$

$$[c_{1}]_{c} = c'_{1} \dots [c_{n}]_{c} = c'_{n}$$

$$[e : c_{1} \cap \dots \cap c_{n}]_{e} = [e]_{e} : c'_{1} \cap \dots \cap c'_{n}$$

 $[c]_c = c$ Erase identity casts

$$\begin{split} [c:T\Rightarrow^l T^{cl}]_c &= [c]_c \\ [c:T_1\Rightarrow^l T_2^{cl}]_c &= [c]_c:T_1\Rightarrow^l T_2^{cl} \\ [blame\ T_I\ T_F\ l^{cl}]_c &= blame\ T_I\ T_F\ l^{cl} \\ [\varnothing\ T^{cl}]_c &= \varnothing\ T^{cl} \end{split}$$

Figure 10: Identity Cast Erasure

2 Proofs

Lemma 1 (Consistency reduces to equality when comparing static types). If T_1 and T_2 are static types then $T_1 = T_2 \iff T_1 \sim T_2$.

Proof. We proceed by structural induction on T.

Base cases:

- $T_1 = Int$.
 - If Int = Int, then by the definition of \sim , $Int \sim Int$.
 - If $Int \sim Int$, then, Int = Int.
- $T_1 = Bool$.
 - If Bool = Bool, then by the definition of \sim , $Bool \sim Bool$.
 - If $Bool \sim Bool$, then, Bool = Bool.
- $T_1 = Dyn$. This case is not considered due to the assumption that T_1 is a static type.

Induction step:

- $T_1 = T_{11} \to T_{12}$.
 - If $T_{11} \rightarrow T_{12} = T_{21} \rightarrow T_{22}$, for some T_{21} and T_{22} , then $T_{11} = T_{21}$ and $T_{12} = T_{22}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and $T_{12} \sim T_{22}$. Therefore, by the definition of \sim , $T_{11} \rightarrow T_{12} \sim T_{21} \rightarrow T_{22}$.
 - If $T_{11} \to T_{12} \sim T_2$, then by the definition of \sim , $T_2 = T_{21} \to T_{22}$ and $T_{11} \sim T_{21}$ and $T_{12} \sim T_{22}$. By the induction hypothesis, $T_{11} = T_{21}$ and $T_{12} = T_{22}$. Therefore, $T_{11} \to T_{12} = T_{21} \to T_{22}$.
- $\bullet \ T_1 = T_{11} \cap \ldots \cap T_{1n}.$
 - If $T_{11} \cap \ldots \cap T_{1n} = T_2$, then $\exists T_{21} \ldots T_{2n} \cdot T_2 = T_{21} \cap \ldots \cap T_{2n}$ and $T_{11} = T_{21}$ and \ldots and $T_{1n} = T_{2n}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and \ldots and $T_{1n} \sim T_{2n}$. Therefore, by the definition of \sim , $T_{11} \cap \ldots \cap T_{1n} \sim T_{21} \cap \ldots \cap T_{2n}$.
 - If $T_{11} \cap \ldots \cap T_{1n} \sim T_2$, then either:
 - * $\exists T_{21} ... T_{2n} . T_2 = T_{21} \cap ... \cap T_{2n} \text{ and } T_{11} \sim T_{21} \text{ and } ... \text{ and } T_{1n} \sim T_{2n}$. By the induction hypothesis, $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. Therefore, $T_{11} \cap ... \cap T_{1n} = T_{21} \cap ... \cap T_{2n}$.
 - * $T_{11} \sim T_2$ and ... and $T_{1n} \sim T_2$. By the induction hypothesis, $T_{11} = T_2$ and ... and $T_{1n} = T_2$. Due to the idempotence property of intersection types, $T_2 \cap \ldots \cap T_2 = T_2$ Therefore, $T_{11} \cap \ldots \cap T_{1n} = T_2$.

Theorem 1 (Conservative Extension). Depends on Lemma 1. If e is fully static and T is a static type, then $\Gamma \vdash_{\cap S} e : T \iff \Gamma \vdash_{\cap G} e : T$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap S}$ and $\vdash_{\cap G}$ for the left and right direction of the implication, respectively.

Base case:

- Rule Var.
 - If $\Gamma \vdash_{\cap S} x : T$, then $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap G} x : T$.
 - If $\Gamma \vdash_{\cap G} x : T$, then $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap S} e : T$.
- Rule Int.
 - If $\Gamma \vdash_{\cap S} n : Int$, then $\Gamma \vdash_{\cap G} n : Int$.
 - If $\Gamma \vdash_{\cap G} n : Int$, then $\Gamma \vdash_{\cap S} n : Int$.
- Rule True.
 - If $\Gamma \vdash_{\cap S} true : Bool$, then $\Gamma \vdash_{\cap G} true : Bool$.
 - If $\Gamma \vdash_{\cap G} true : Bool$, then $\Gamma \vdash_{\cap S} true : Bool$.
- \bullet Rule False.
 - If $\Gamma \vdash_{\cap S} false : Bool$, then $\Gamma \vdash_{\cap G} false : Bool$.
 - If $\Gamma \vdash_{\cap G} false : Bool$, then $\Gamma \vdash_{\cap S} false : Bool$.

Induction step:

- Rule $\rightarrow I$.
 - If $\Gamma \vdash_{\cap S} \lambda x . T_1 \cap \ldots \cap T_n . e' : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e' : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e' : T$. Therefore, $\Gamma \vdash_{\cap G} \lambda x . T_1 \cap \ldots \cap T_n . e' : T_1 \cap \ldots \cap T_n \to T$.
 - If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e' : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e' : T$. Therefore, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_1 \cap \ldots \cap T_n \to T$.
- Rule $\rightarrow I'$.
 - If $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap S} e' : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap G} e' : T$. Therefore, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$.
 - If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap G} e' : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap S} e' : T$. Therefore, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$.
- Rule $\rightarrow E$.
 - If $\Gamma \vdash_{\cap S} e_1 e_2 : T$ then $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T$ by the definition of consistency $(T \sim T)$, $T_1 \cap \ldots \cap T_n \sim T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap G} e_1 e_2 : T$.

- If $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$ then $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap G} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the definition of \rhd , $PM = T_1 \cap \ldots \cap T_n \to T$, therefore $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$. By Lemma 1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$, and therefore $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap S} e_1 e_2 : T$.

• Rule $\cap I$.

- If $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. Therefore, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$.
- If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. Therefore $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$.

• Rule $\cap E$.

- If $\Gamma \vdash_{\cap S} e : T_i$ then $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$. As $T_i \in \{T_1, \ldots, T_n\}$, then $\Gamma \vdash_{\cap G} e : T_i$.
- If $\Gamma \vdash_{\cap G} e : T_i$ then $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$. As $T_i \in \{T_1, \ldots, T_n\}$, then $\Gamma \vdash_{\cap S} e : T_i$.

Theorem 2 (Monotonicity w.r.t. precision). If $\Gamma \vdash_{\cap G} e : T$ and $e' \sqsubseteq e$ then $\Gamma \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$ for some T'.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base case:

- Rule Var. If $\Gamma \vdash_{\cap G} x : T$ and $x \sqsubseteq x$, then $\Gamma \vdash_{\cap G} x : T$ and $T \sqsubseteq T$.
- Rule Int. If $\Gamma \vdash_{\cap G} n : Int$ and $n \sqsubseteq n$, then $\Gamma \vdash_{\cap G} n : Int$ and $Int \sqsubseteq Int$.
- Rule True. If $\Gamma \vdash_{\cap G} true : Bool$ and $true \sqsubseteq true$, then $\Gamma \vdash_{\cap G} true : Bool$ and $Bool \sqsubseteq Bool$.
- Rule False. If $\Gamma \vdash_{\cap G} false : Bool$ and $false \sqsubseteq false$, then $\Gamma \vdash_{\cap G} false : Bool$ and $Bool \sqsubseteq Bool$.

Induction step:

• Rule $\cap I$. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ and $\lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \sqsubseteq \lambda x : T_1 \cap \ldots \cap T_n \cdot e$, then $\Gamma \vdash_{\cap G} e : T$, $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$. As $\Gamma \vdash_{\cap G} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_1 \cap \ldots \cap T'_n \to T'$, and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \to T' \sqsubseteq T_1 \cap \ldots \cap T_n \to T$, then it is proved.

- Rule $\cap I'$. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T$ and $\lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \sqsubseteq \lambda x : T_1 \cap \ldots \cap T_n \cdot e$, then $\Gamma \vdash_{\cap G} e : T, T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$. As $\Gamma \vdash_{\cap G} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_i \to T'$, and by the definition of \sqsubseteq , $T'_i \to T' \sqsubseteq T_i \to T$, then it is proved.
- Rule $\to E$. If $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$ and $e'_1 \ e'_2 \sqsubseteq e_1 \ e_2$ then $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_{11} \cap \ldots \cap T_{1n} \to T$, $\Gamma \vdash_{\cap G} e_2 : T_{21} \cap \ldots \cap T_{2n}$, and $T_{21} \cap \ldots \cap T_{2n} \sim T_{11} \cap \ldots \cap T_{1n}$, $e'_1 \sqsubseteq e_1$ and $e'_2 \sqsubseteq e_2$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e'_1 : PM'$ and $PM' \sqsubseteq PM$ and $PM' \rhd T'_{11} \cap \ldots \cap T'_{1n} \to T'$ and $\Gamma \vdash_{\cap G} e'_2 : T'_{21} \cap \ldots \cap T'_{2n} \ and \ T'_{21} \cap \ldots \cap T'_{2n} \subseteq T_{21} \cap \ldots \cap T_{2n} \ and \ T'_{21} \cap \ldots \cap T'_{2n} \sim T'_{11} \cap \ldots \cap T'_{1n}$. By the definition of \sqsubseteq and $\rhd T'_{11} \cap \ldots \cap T'_{1n} \to T' \sqsubseteq T_{11} \cap \ldots \cap T_{1n} \to T$, and therefore, $T' \sqsubseteq T$. As $\Gamma \vdash_{\cap G} e'_1 \ e'_2 : T'$, it is proved.
- Rule $\cap I$. If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$, then $\Gamma \vdash_{\cap G} e : T_1$ and \ldots and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'_1 \text{ and } T'_1 \sqsubseteq T_1$ and \ldots and $\Gamma \vdash_{\cap G} e' : T'_n \text{ and } T'_n \sqsubseteq T_n$. Then, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$, then it is proved.
- Rule $\cap E$. If $\Gamma \vdash_{\cap G} e : T_i$ and $e' \sqsubseteq e$, then $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap G} e' : T'_i$ and by the definition of \sqsubseteq , $T'_i \sqsubseteq T_i$, then it is proved.

Theorem 3 (Type preservation of cast insertion). If $\Gamma \vdash_{\cap G} e : T$ then $\Gamma \vdash_{\cap CC} e \rightsquigarrow e' : T$ and $\Gamma \vdash_{\cap CC} e' : T$.

Theorem 4 (Monotonicity of cast insertion). If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T$ and $e_1 \sqsubseteq e_2$ then $e'_1 \sqsubseteq e'_2$.

Lemma 2 (Expressions annotated with only static types type with static types). *If e is annotated with only static types then*:

- 1. $\Gamma \vdash_{\cap G} e : T$, for some static T.
- 2. $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, for some static T.

Proof. (1) We proceed by induction on the length of the derivation tree of $\vdash_{\cap G}$.

Base cases:

- Rule Var. If $\Gamma \vdash_{\cap G} x : T$, then $x : T \in \Gamma$. Therefore, there must have been at some point in the typing derivation the application of the rules $(\to I)$ or $(\to I')$ to type the expression $\lambda x : T.e$, for some e. Both rules introduze the binding x : T in Γ , such that T is a static type.
- Rule Int. As $\Gamma \vdash_{\cap G} n : Int$, it is proved.
- Rule True. As $\Gamma \vdash_{\cap G} true : Bool$, it is proved.
- Rule False. As $\Gamma \vdash_{\cap G} false : Bool$, it is proved.

Induction step:

- Rule $\to I$. If $\lambda x: T_1 \cap \ldots \cap T_n$. e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By rule $(\to I)$, $\Gamma, x: T_1 \cap \ldots \cap T_n \vdash_{\cap G} e: T$. By the induction hypothesis, T is a static type. Therefore $T_1 \cap \ldots \cap T_n \to T$ is a static type. As $\Gamma \vdash_{\cap G} \lambda x: T_1 \cap \ldots \cap T_n$. $e: T_1 \cap \ldots \cap T_n \to T$, then it is proved.
- Rule $\to I'$. If $\lambda x: T_1 \cap \ldots \cap T_n$ e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By rule $(\to I')$, $\Gamma, x: T_i \vdash_{\cap G} e: T$. Since $T_1 \cap \ldots \cap T_n$ is a static type, then so is T_i . By the induction hypothesis, T is a static type, therefore so is $T_i \to T$. As $\Gamma \vdash_{\cap G} \lambda x: T_1 \cap \ldots \cap T_n \cdot e: T_i \to T$, then it is proved.
- Rule $\to E$. If e_1 e_2 is annotated with only static types, then so are e_1 and e_2 . By the induction hypothesis, PM is a static type. By the definition of \rhd , $T_1 \cap \ldots \cap T_n \to T$ is also a static type. Therefore, T is a static type. As $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$, then it is proved.
- Rule $\cap I$. If e is annotated with only static types, then by the induction hypothesis, $T_1 \dots T_n$ are static types. Therefore, $T_1 \cap \dots \cap T_n$ is a static type. As $\Gamma \vdash_{\cap G} e : T_1 \cap \dots \cap T_n$, then it is proved.
- Rule $\cap E$. If e is annotated with only static types, then by the induction hypothesis, $T_1 \cap \ldots \cap T_n$ is a static type. Therefore, T_i is a static type. As $\Gamma \vdash_{\cap G} e : T_i$, then it is proved.
- (2) We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e \leadsto e : T$.

Base cases:

• Rule Var. If $\Gamma \vdash_{\cap CC} x \leadsto x : T$, then there is a binding $x : T \in \Gamma$. Therefore, there must have been at some point in the typing derivation, the application of the rule for the term $\lambda x : T_1 \cap \ldots \cap T_n$. e for some expressions e. If e is annotated with only static types, then the rule introduzes the binding x : T in Γ , such that T is a static type.

Induction step:

- Rule Abs. If $\lambda x: T_1 \cap \ldots \cap T_n$. e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By the induction hypothesis, T is a static type. Therefore $T_1 \cap \ldots \cap T_n \to T$ is a static type. As $\Gamma \vdash_{\cap CC} \lambda x: T_1 \cap \ldots \cap T_n$. $e \leadsto \lambda x: T_1 \cap \ldots \cap T_n$. $e': T_1 \cap \ldots \cap T_n \to T$, then it is proved.
- Rule App. If e_1 e_2 is annotated with only static types, then so are e_1 and e_2 . By the induction hypothesis, PM is a static type. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T$ is also a static type. Therefore, T is a static type. As $\Gamma \vdash_{\bigcap CC} e_1 \ e_2 \leadsto e'_1 \ e'_2 : T$, then it is proved.

Lemma 3 (Static program compilation only adds identity casts). Depends on Lemmas 1 and 2. If e is annotated with only static types and $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, then any casts e' contains are identity casts.

By identity casts, we mean casts of the form $e: T \Rightarrow^l T$ for some T and casts $e: c_1 \cap \ldots \cap c_n$ such that $c_1 = \varnothing T_1^{0}: T_1 \Rightarrow T_1^{0}$ and \ldots and $c_n = \varnothing T_n^{0}: T_n \Rightarrow T_n^{0}$ for some T_1, \ldots, T_n .

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e \leadsto e : T$.

Base cases:

• Rule Var. As $\Gamma \vdash_{\cap CC} x \leadsto x : T$, and x doesn't have any casts, then it is proved.

Induction step:

- Rule Abs. If $\Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \cdot e) \leadsto (\lambda x : T_1 \cap \ldots \cap T_n \cdot e') : T_1 \cap \ldots \cap T_n \rightarrow T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e \leadsto e' : T$. By the induction hypothesis, e' either doesn't contain casts or contains only identity casts. As the rule doesn't introduze new casts, then it is proved.
- Rule App. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 \leadsto e'_1 \ e'_2 : T$, then $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : PM$ and $PM \rhd T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$ and $instances(PM) = S_1$ and $instances(T_1 \cap \ldots \cap T_n \to T) = S_2$ and $instances(T'_1 \cap \ldots \cap T'_n) = S_3$ and $instances(T_1 \cap \ldots \cap T_n) = S_4$ and $S_1, \ S_2, \ e'_1 \hookrightarrow e''_1 \ and \ S_3, \ S_4, \ e'_2 \hookrightarrow e''_2.$ By the induction hypothesis, both e'_1 as well as e'_2 either only have identity casts or no casts at all. By Lemma 2, PM and $T'_1 \cap \ldots \cap T'_n$ are static types. Therefore, by the definition of \rhd , $PM = T_1 \cap \ldots \cap T_n \to T$ and by Lemma 1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$. Therefore by the definition of $instances(T) = \{T\}$ and S, S, $e \hookrightarrow e$, only identity casts are introduzed.

Lemma 4 (Elimination of identity casts in c). For any cast c, such that $\vdash_{\cap IC} c: T_F$, $initial Type(c) = T_I$ then:

1. $\vdash_{\cap IC} [c]_c : T_F \text{ and } initialType([c]_c) = T_I.$

2. $c \longrightarrow_{\cap IC} cv \iff [c]_c \longrightarrow_{\cap IC} cv$.

Proof. (1) We proceed by structural induction on c.

Base cases:

- $c = \varnothing T^{cl}$. As $\vdash_{\cap IC} \varnothing T^{cl} : T$, $initialType(\varnothing T^{cl}) = T$ and $[c]_c = \varnothing T^{cl}$, then $\vdash_{\cap IC} [c]_c : T$ and $initialType([c]_c) = T$.
- $c = blame T_I T_F l^{cl}$. As $\vdash_{\cap IC} blame T_I T_F l^{cl} : T_F$, $initial Type(blame T_I T_F l^{cl}) = T_I$ and $[c]_c = blame T_I T_F l^{cl}$, then $\vdash_{\cap IC} [c]_c : T_F$ and $initial Type([c]_c) = T_I$.

Induction step:

- $c = c' : T_1 \Rightarrow^l T_2$ cl. There are two cases:
 - $T_1 \neq T_2$. As $\vdash_{\cap IC} c' : T_1 \Rightarrow^l T_2 \stackrel{cl}{=} : T_2$ and $initialType(c' : T_1 \Rightarrow^l T_2 \stackrel{cl}{=} : T_1) = initialType(c')$, then $\vdash_{\cap IC} c' : T_1$. By the induction hypothesis, $\vdash_{\cap IC} [c']_c : T_1$ and $initialType([c']_c) = initialType(c')$. With $[c]_c = [c']_c : T_1 \Rightarrow^l T_2 \stackrel{cl}{=} : T_1 = : T_2 = : T_2 = : T_2 = : T_2 = : T_1 = : T_2 = : T_$
 - $\begin{array}{l} -T_1=T_2. \text{ As } \vdash_{\cap IC} c':T_1\Rightarrow^l T_1 \stackrel{cl}{=} :T_1 \text{ and } initial Type(c':T_1\Rightarrow^l T_1 \stackrel{cl}{=} :T_1 \text{ and } initial Type(c':T_1\Rightarrow^l T_1 \stackrel{cl}{=} :T_1 \text{ and } initial Type(c':T_1). \\ \text{By the induction hypothesis, } \vdash_{\cap IC} [c']_c:T_1 \text{ and } initial Type([c']_c)=initial Type(c'). \\ \text{With } [c]_c=[c']_c,\vdash_{\cap IC} [c]_c:T_1 \text{ and } initial Type([c]_c)=initial Type([c']_c)=initial Type(c')=initial Type(c). \end{array}$
- (2) We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

- Rule PushBlameC.
 - There are two cases:
 - * $T_1 \neq T_2$. As $[c]_c = blame \ T_I \ T_F \ l_1 \ ^{cl_1} : T_1 \Rightarrow^{l_2} T_2 \ ^{cl_2}$ and by rule PushBlameC, $blame \ T_I \ T_F \ l_1 \ ^{cl_1} : T_1 \Rightarrow^{l_2} T_2 \ ^{cl_2} \longrightarrow_{\cap IC} blame \ T_I \ T_2 \ l_1 \ ^{cl_1}$ it is proved.
 - * $T_1 = T_2$. If $T_1 = T_2$, then by rules T-SingleC and T-BlameC, $T_F = T_1$. Therefore, $c = blame\ T_I\ T_1\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_1\ ^{cl_2}$. By rule PushBlameC, $blame\ T_I\ T_1\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_1\ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_1\ l_1\ ^{cl_1}$. Since $[c]_c = blame\ T_I\ T_1\ l_1\ ^{cl_1}$, and it is already a value, it is proved.
 - There are two cases:
 - * $T_1 \neq T_2$. As c equals $blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2}$ or may contain adicional identity casts, then $[c]_c = blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2}$. By the rule PushBlameC, $blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}$. By the rules PushBlameC and IdentityC, $c \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}$, then it is proved.
 - * $T_1 = T_2$. As c equals $blame \ T_I \ T_F \ l_1 \ ^{cl_1} : T_1 \Rightarrow^{l_2} T_1 \ ^{cl_2}$ or may contain adicional identity casts, then $[c]_c = blame \ T_I \ T_F \ l_1 \ ^{cl_1}$. As $blame \ T_I \ T_F \ l_1 \ ^{cl_1}$ is already a value, it reduced to itself. By rules T Single C and T Blame C, $T_F = T_1$. By the rules PushBlameC and IdentityC, $c \longrightarrow_{\cap IC} blame \ T_I \ T_F \ l_1 \ ^{cl_1}$, then it is proved.
- Rule IdentityC.
 - By rule IdentityC, $c: T \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c$. As c is a value, it doesn't contain identity casts, therefore $[c]_c = c$. As $[c]_c$ is already a value, it reduces to itself, therefore it is proved.
 - As c equals $c': T \Rightarrow^l T^{cl}$ or may contain a dicional identity casts, then $[c]_c = c'$. As c' is already a vaue, it reduced to itself. By rules IdentityC, $c \longrightarrow_{\cap IC} c'$, then it is proved.

\bullet Rule SucceedC.

- By rule SucceedC, $c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{\cap IC} c$. As c is already a value, then it doesn't contain identity casts, so $[c]_c = c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}$. Therefore, $[c]_c \longrightarrow_{\cap IC} c$.
- As c equals $c': G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}$ or may contain adicional identity casts, then $[c]_c = c': G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}$. By rule SucceedC, $c': G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{\cap IC} c'$. By rules SucceedC and IdentityC, $c \longrightarrow_{\cap IC} c'$, then it is proved.

• Rule FailC.

- By rule FailC, $c: G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2 \xrightarrow{cl_2} \longrightarrow_{\cap IC} blame T_I G_2 \ l_2 \xrightarrow{cl_1}$. As c is already a value, then it doesn't contain identity casts, so $[c]_c = c: G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2 \xrightarrow{cl_2}$. Therefore, $[c]_c \longrightarrow_{\cap IC} blame T_I G_2 \ l_2 \xrightarrow{cl_1}$.
- As c equals $c': G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2}$ or may contain adicional identity casts, then $[c]_c = c': G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2}$. By rule FailC, $c': G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2} \longrightarrow_{\cap IC} blame T_I G_2 l_2^{cl_1}$. By rules FailC and IdentityC, $c \longrightarrow_{\cap IC} blame T_I G_2 l_2^{cl_1}$, then it is proved.

\bullet Rule GroundC.

- By rule GroundC, $c: T \Rightarrow^l Dyn^{cl} \longrightarrow_{\cap IC} c: T \Rightarrow^l G: G \Rightarrow^l Dyn^{cl}$. As c is a value, it doesn't contain identity casts, therefore $[c]_c = c: T \Rightarrow^l Dyn^{cl}$. Therefore $[c]_c \longrightarrow_{\cap IC} c: T \Rightarrow^l G: G \Rightarrow^l Dyn^{cl}$.
- As c equals $c': T \Rightarrow^l Dyn^{-cl}$ or may contain adicional identity casts, then $[c]_c = c': T \Rightarrow^l Dyn^{-cl}$. By rule GroundC, $c': T \Rightarrow^l Dyn^{-cl} \longrightarrow_{\cap IC} c': T \Rightarrow^l G: G \Rightarrow^l Dyn^{-cl}$. By rules GroundC and IdentityC, $c \longrightarrow_{\cap IC} c': T \Rightarrow^l G: G \Rightarrow^l Dyn^{-cl}$, then it is proved.

• Rule ExpandC.

- By rule ExpandC, $c: Dyn \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c: Dyn \Rightarrow^l G: G \Rightarrow^l T^{cl}$. As c is a value, it doesn't contain identity casts, therefore $[c]_c = c: Dyn \Rightarrow^l T^{cl}$. Therefore $[c]_c \longrightarrow_{\cap IC} c: Dyn \Rightarrow^l G: G \Rightarrow^l T^{cl}$.
- As c equals $c': Dyn \Rightarrow^l T^{cl}$ or may contain adicional identity casts, then $[c]_c = c': Dyn \Rightarrow^l T^{cl}$. By rule ExpandC, $c': Dyn \Rightarrow^l T^{cl} \xrightarrow{}_{\cap IC} c': Dyn \Rightarrow^l G: G \Rightarrow^l T^{cl}$. By rules ExpandC and IdentityC, $c \xrightarrow{}_{\cap IC} c': Dyn \Rightarrow^l G: G \Rightarrow^l T^{cl}$, then it is proved.

Induction step:

\bullet Rule EvaluateC.

- There are two cases:

* $T_1 \neq T_2$. By rule EvaluateC, $c \longrightarrow_{\cap IC} c'$. By the induction hypothesis, $[c]_c \longrightarrow_{\cap IC} c'$. As $[c]_c$ equals $[c]_c : T_1 \Rightarrow^l T_2$ cl , then by rule EvaluateC, $[c]_c \longrightarrow_{\cap IC} c' : T_1 \Rightarrow T_2$ cl .

- * $T_1 = T_2$. By the induction hypothesis, as $c \longrightarrow_{\cap IC} cv'$, then $[c]_c \longrightarrow_{\cap IC} cv'$. By rule EvaluateC, $c: T_1 \Rightarrow^l T_1 \stackrel{cl}{} \longrightarrow_{\cap IC} cv': T_1 \Rightarrow^l T_1 \stackrel{cl}{} \longrightarrow_{\cap IC} tv': T_1 \Rightarrow^l T_1 \stackrel{cl}{} \longrightarrow_{\cap IC} tv'$. However, as $cv': T_1 \Rightarrow^l T_1 \stackrel{cl}{} \longrightarrow_{\cap IC} tv'$. As $[c]_c \longrightarrow_{\cap IC} cv'$, then it is proved.
- There are two cases:
 - * $T_1 \neq T_2$. As c equals $c': T_1 \Rightarrow^l T_2$ cl or may contain aditional identity casts, then $[c]_c = [c']_c : T_1 \Rightarrow^l T_2$ cl . By rule EvaluateC, $[c']_c : T_1 \Rightarrow^l T_2$ $^{cl} \longrightarrow_{\cap IC} c'' : T_1 \Rightarrow^l T_2$ cl . By rule EvaluateC, $[c']_c \longrightarrow_{\cap IC} c''$, then by the induction hypothesis $c' \longrightarrow_{\cap IC} c''$. Therefore, by rules EvaluateC and IdentityC, $c \longrightarrow_{\cap IC} c'' : T_1 \Rightarrow^l T_2$ cl , then it is proved.
 - * $T_1 = T_2$. As c equals $c': T_1 \Rightarrow^l T_1$ or may contain aditional identity casts, then $[c]_c = [c']_c$. By rule EvaluateC, $[c']_c \longrightarrow_{\cap IC} c''$, then by the induction hypothesis $c' \longrightarrow_{\cap IC} c''$. By rules EvaluateC and IdentityC, $c': T_1 \Rightarrow^l T_1$ or $c'' \longrightarrow_{\cap IC} c''$, then it is proved.

Lemma 5 (Elimination of identity casts in e). Depends on Lemma 4. For any expression e, such that $\Gamma \vdash_{\cap CC} e : T$:

1. $\Gamma \vdash_{\cap CC} [e]_e : T$.

2. If $\Gamma \vdash_{\cap CC} e' \leadsto e$ for some e' then $e \longrightarrow_{\cap CC} v \iff [e]_e \longrightarrow_{\cap CC} v$.

Proof. (1) We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e : T$.

Base cases:

- Rule Var. As x doesn't contain casts, then $[e]_e = x$. Therefore it is proved.
- Rule Int. As n doesn't contain casts, then $[e]_e = n$. Therefore it is proved.
- Rule True. As true doesn't contain casts, then $[e]_e = true$. Therefore it is proved.
- Rule False. As false doesn't contain casts, then $[e]_e = false$. Therefore it is proved.
- Rule T-Blame. As $blame_T \ l$ doesn't contain casts, then $[e]_e = blame_T \ l$. Therefore it is proved.

Induction step:

• Rule $\to I$. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} [e]_e : T$. As $[e]_e = \lambda x : T_1 \cap \ldots \cap T_n \cdot [e]_e$, then $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap \ldots \cap T_n \to T$.

- Rule $\to I'$. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap CC} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap CC} [e]_e : T$. As $[e]_e = \lambda x : T_1 \cap \ldots \cap T_n \cdot [e]_e$, then $\Gamma \vdash_{\cap CC} [e]_e : T_i \to T$.
- Rule $\to E$. If $\Gamma \vdash_{\cap CC} e_1 e_2 : T$, then $\Gamma \vdash_{\cap CC} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap CC} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e_1]_e : PM$ and $\Gamma \vdash_{\cap CC} [e_2]_e : T'_1 \cap \ldots \cap T'_n$. As $[e]_e = [e_1]_e [e_2]_e$, therefore $\Gamma \vdash_{\cap CC} [e]_e : T$.
- Rule $\cap I$. If $\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n$, then $\Gamma \vdash_{\cap CC} e : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e]_e : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} [e]_e : T_n$. Therefore $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap \ldots \cap T_n$.
- Rule $\cap E$. If $\Gamma \vdash_{\cap CC} e : T_i$, then $\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap \ldots \cap T_n$. Therefore $\Gamma \vdash_{\cap CC} [e]_e : T_i$.
- Rule T-App. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T_{12} \cap \ldots \cap T_{n2}$, then $\Gamma \vdash_{\cap CC} e_1 : T_{11} \rightarrow T_{12} \cap \ldots \cap T_{n1} \rightarrow T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T_{11} \sim T'_1 \ldots T_{n1} \sim T'_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e_1]_e : T_{11} \rightarrow T_{12} \cap \ldots \cap T_{n1} \rightarrow T_{n2}$ and $\Gamma \vdash_{\cap CC} [e_2]_e : T'_1 \cap \ldots \cap T'_n$. As $[e]_e = [e_1]_e \ [e_2]_e$, therefore $\Gamma \vdash_{\cap CC} [e]_e : T_{12} \cap \ldots \cap T_{n2}$.
- Rule T-Cast. There are two possibilities:
 - $T_1 \neq T_2$. If $\Gamma \vdash_{\cap CC} e' : T_1 \Rightarrow^l T_2 : T_2$, then $\Gamma \vdash_{\cap CC} e' : T_1$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e']_e : T_1$. As $[e]_e = [e']_e : T_1 \Rightarrow^l T_2$, then $\Gamma \vdash_{\cap CC} [e]_e : T_2$.
 - $T_1 = T_2$. If $\Gamma \vdash_{\cap CC} e' : T_1 \Rightarrow^l T_1 : T_1$, then $\Gamma \vdash_{\cap CC} e' : T_1$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e']_e : T_1$. As $[e]_e = [e']_e$, then $\Gamma \vdash_{\cap CC} [e]_e : T_1$.
- Rule T-Intersection C ast. If $\Gamma \vdash_{\cap CC} e' : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$, then $\Gamma \vdash_{\cap CC} e' : T$, $\vdash_{\cap IC} c_1 : T_1$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $initial Type(c_1) \cap \ldots \cap initial Type(c_n) = T$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e']_e : T$. We now have 2 possibilities:
 - $\begin{array}{l} -\neg (\forall i\in 1..n \ .\ is Empty Cast\ [c_i]_c) \colon \text{For all casts } c_i, \ \text{with } i\in 1..n, \ \text{that} \\ \text{don't contain identity casts, then } [c_i]_c = c_i, \ \text{therefore } \vdash_{\cap IC} [c_i]_c \colon T_i \\ \text{and } initial Type([c_i]_c) = initial Type(c_i). \ \text{For the remaining casts, by} \\ \text{Lemma } 4, \, \vdash_{\cap IC} [c_i]_c \colon T_i \ \text{and } initial Type([c_i]_c) = initial Type(c_i). \\ \text{Therefore, with } [e]_e = [e']_e \colon [c_1]_c \cap \ldots \cap [c_n]_c, \, \Gamma \vdash_{\cap CC} [e]_e \colon T_1 \cap \ldots \cap T_n. \end{array}$
 - ∀ $i \in 1..n$. isEmptyCast $[c_i]_c$: As all casts are empty casts, then for all casts $[c_i]_c$, by Lemma 4 and by rule T-EmptyC, $\vdash_{\cap IC} [c_i]_c : T_i$ and $initialType([c_i]_c) = T_i$. Therefore $[e]_e = [e']_e$. We now have two possibilities:
 - * If T is not an intersection type, then $T_1 = \ldots = T_n = T$ and by idempotence of \cap , we have that $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap \ldots \cap T_n$.
 - * If T is an intersection type, then $T = T_1 \cap ... \cap T_n$. Therefore $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap ... \cap T_n$.

(2) We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap CC}$.

Base cases:

- Rule β -reduction. With $[e]_e = (\lambda x : T \cdot [e']_e) v$.
- Rule $SimulateArrow \cap$. As $v_1 : cv_1 \cap ... \cap cv_n$ and v_2 are values, then e doesn't contain identity casts. As $[e]_e = e$, then it is proved.
- Rule $MergeIC\cap$. This case is not considered due to the fact that cast insertion doesn't introduce such expressions.
- Rule *MergeCI*∩. This case is not considered due to the fact that cast insertion doesn't introduce such expressions.
- Rule $MergeII\cap$. This case is not considered due to the fact that cast insertion doesn't introduce such expressions.
- Rule $EvaluateCasts \cap$.
 - By rule EvaluateCasts \cap , $v: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v: cv_1 \cap \ldots \cap cv_n$, with $c_1 \longrightarrow_{\cap IC} cv_1$ and ... and $c_n \longrightarrow_{\cap IC} cv_n$. With $[e]_e = v: [c_1]_e \cap \ldots \cap [c_n]_e$, by Lemma 4, $[c_1]_c \longrightarrow_{\cap IC} cv_1$ and ... and $[c_n]_c \longrightarrow_{\cap IC} cv_n$. Therefore, by rule EvaluateCasts \cap , $v: [c_1]_e \cap \ldots \cap [c_n]_e \longrightarrow_{\cap CC} v: cv_1 \cap \ldots \cap cv_n$.
 - By rule EvaluateCasts∩, $v:[c_1]_c \cap \ldots \cap [c_n]_c \longrightarrow_{\cap CC} v:cv_1 \cap \ldots \cap cv_n$, with $[c_1]_c \longrightarrow_{\cap IC} cv_1$ and ... and $[c_n]_c \longrightarrow_{\cap IC} cv_n$. With $[e]_e = v:[c_1]_c \cap \ldots \cap [c_n]_c$, by Lemma 4, $c_1 \longrightarrow_{\cap IC} cv_1$ and ... and $c_n \longrightarrow_{\cap IC} cv_n$. Therefore, by rule EvaluateCasts∩, $v:c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v:cv_1 \cap \ldots \cap cv_n$.
- Rule *PropagateBlame*∩. This case is not considered due to the fact that cast insertion doesn't introduce such expressions.
- Rule $RemoveEmpty\cap$. This case is not considered due to the fact that cast insertion doesn't introduce such expressions.

Induction step:

• e =

Theorem 5 (Conservative Extension). Depends on Lemmas 3 and 5. If e is fully static, T is a static type and $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, then $e \longrightarrow_{\cap S} v \iff e' \longrightarrow_{\cap CC} v$.

Proof. By Lemma 3, we have that $[e']_e = e$. By Lemma 5, we have that $e' \longrightarrow_{\cap CC} v \iff [e']_e \longrightarrow_{\cap CC} v$. As $[e']_e = e$ and e doesn't contain casts, then we can evaluate e using just the reduction rules (of the gradual operational semantics) analogous to the static operational semantics' reduction rules. Therefore, we have that $e' \longrightarrow_{\cap CC} v \iff e \longrightarrow_{\cap S} v$.

Lemma 6 (Subject reduction of β -reduction). If e is a redex and e' is its contractum, then $\Gamma \vdash_{\cap CC} e : T \Rightarrow \Gamma \vdash_{\cap CC} e' : T$.

Proof. Let $e = (\lambda x : T_1 \cap \ldots \cap T_n : e_1)$ e_2 . There exists a type $T_1 \cap \ldots \cap T_n$ such that we can deduce $\Gamma \vdash_{\cap CC} e : T$ from $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n : e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$ (x does not occur in Γ). Moreover, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n : e_1 : T_1 \cap \ldots \cap T_n \to T$ only if $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e_1 : T$. By definition, $e' = [x \mapsto e_2] e_1$. To obtain $\Gamma \vdash_{\cap CC} [x \mapsto e_2] e_1 : T$, it is sufficient to replace, in the proof of $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e_1 : T$, the statements $x : T_i$ (introduzed by the rules Var and $\Gamma \vdash_{\cap CC} e_1 : T$) by the deductions of $\Gamma \vdash_{\cap CC} e_2 : T_i$ for $1 \le i \le n$. Proof adapted from [1].

Lemma 7 (Subject reduction of $\longrightarrow_{\cap IC}$). If $\vdash_{\cap IC} c: T$ for some T and $c \longrightarrow_{\cap IC} c'$ then $\vdash_{\cap IC} c': T$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

- Rule PushBlameC. $\vdash_{\cap IC} blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2}: T_2$ and by rule PushBlameC, $blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}: T_2$, then it is proved.
- Rule IdentityC. If $\vdash_{\cap IC} c: T \Rightarrow^l T^{cl}: T$, then $\vdash_{\cap IC} c: T$. By rule IdentityC, $c: T \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c$. Therefore it is proved.
- Rule SucceedC. If $\vdash_{\cap IC} c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}: G$, then $\vdash_{\cap IC} c: G$. By rule SucceedC, $c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{\cap IC} c$. Therefore it is proved.
- Rule FailC. If $\vdash_{\cap IC} c: G_1 \Rightarrow^{l_1} Dyn \stackrel{cl_1}{=} : Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{=} : G_2$, and by rule FailC, $c: G_1 \Rightarrow^{l_1} Dyn \stackrel{cl_1}{=} : Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{=} \longrightarrow_{\cap IC} blame T_I G_2 l_2 \stackrel{cl_1}{=} : G_2$, it is proved.
- Rule GroundC. If $\vdash_{\cap IC} c: T \Rightarrow^l Dyn^{cl}: Dyn \text{ then } \vdash_{\cap IC} c: T$. By rule GroundC, $c: T \Rightarrow^l Dyn^{cl} \longrightarrow_{\cap IC} c: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl}$. As $\vdash_{\cap IC} c: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl}: Dyn$, it is proved.
- Rule ExpandC. If $\vdash_{\cap IC} c: Dyn \Rightarrow^l T^{cl}: T$ then $\vdash_{\cap IC} c: Dyn$. By rule ExpandC, $c: Dyn \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}$. As $\vdash_{\cap IC} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}: T$, it is proved.

Induction step:

• Rule EvaluateC. If $\vdash_{\cap IC} c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:} T_2$ then $\vdash_{\cap IC} c: T_1$. By rule EvaluateC, $c \longrightarrow_{\cap IC} c'$. By the induction hypothesis, $\vdash_{\cap IC} c': T_1$. By rule EvaluateC, $c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:} \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{:}$. As $\vdash_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{:} T$

Lemma 8 (Initial type preservation of $\longrightarrow_{\cap IC}$). If initial Type(c) = T for some T and $c \longrightarrow_{\cap IC} c'$ then initial Type(c') = T.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

- Rule PushBlameC. By the definition of initialType, initialType($blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2}) = T_I$. By rule PushBlameC, $blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}$. Since initialType($blame\ T_I\ T_2\ l_1\ ^{cl_1}$) = T_I , it is proved.
- Rule IdentityC. By the definitions of initialType, $initialType(c: T \Rightarrow^l T^{cl}) = initialType(c)$. By rule IdentityC, $c: T \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c$. Therefore it is proved.
- Rule SucceedC. By the definition of initialType, $initialType(c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{\Rightarrow} : Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{\Rightarrow}) = initialType(c)$. By rule SucceedC, $c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{\Rightarrow} : Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{\Rightarrow} \longrightarrow_{\cap IC} c$. Therefore it is proved.
- Rule FailC. By the definition of initialType, $initialType(c: G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2}) = T_I$. By rule FailC, $c: G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2} \longrightarrow_{\cap IC} blame T_I G_2 l_2^{cl_1}$. Since $initialType(blame T_I G_2 l_2^{cl_1}) = T_I$, it is proved.
- Rule GroundC. By the definition of initialType, $initialType(c: T \Rightarrow^l Dyn^{cl}) = initialType(c)$. By rule GroundC, $c: T \Rightarrow^l Dyn^{cl} \longrightarrow_{\cap IC} c: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl}$. Since $initialType(c: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl}) = initialType(c)$, it is proved.
- Rule ExpandC. By the definition of initialType, $initialType(c:Dyn \Rightarrow^l T^{cl}) = initialType(c)$. By rule ExpandC, $c:Dyn \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c:Dyn \Rightarrow^l G^{cl}:G \Rightarrow^l T^{cl}$. Since $initialType(c:Dyn \Rightarrow^l G^{cl}:G \Rightarrow^l T^{cl}) = initialType(c)$, it is proved.

Induction step:

• Rule EvaluateC. By the definition of initialType, $initialType(c: T_1 \Rightarrow^l T_2^{cl}) = initialType(c)$. By rule EvaluateC, $c \longrightarrow_{\cap IC} c'$. By the induction hypothesis, initialType(c') = initialType(c). By rule EvaluateC, $c: T_1 \Rightarrow^l T_2^{cl} \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2^{cl}$. Since $initialType(c': T_1 \Rightarrow^l T_2^{cl}) = initialType(c')$, it is proved.

Theorem 6 (Subject reduction of $\longrightarrow_{\cap CC}$). Depends on Lemmas 6, 7 and 8. If $\Gamma \vdash_{\cap CC} e : T$ and $e \longrightarrow_{\cap CC} e'$ then $\Gamma \vdash_{\cap CC} e' : T$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap CC}$.

Base case:

- Rule β -reduction. The proof of $\Gamma \vdash_{\cap CC} e' : T$ can be obtained from that of $\Gamma \vdash_{\cap CC} e : T$ by replacing any deduction of a type for e, by the corresponding deduction of the same type for e' (by Lemma 6).
- Rule $Simulate \cap$. If $\Gamma \vdash_{\cap CC} (v_1 : cv_1 \cap \ldots \cap cv_n) v_2 : T_{12} \cap \ldots \cap T_{n2}$, then $\Gamma \vdash_{\cap CC} v_1 : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$ with $\vdash_{\cap IC} cv_1 : T_1$ and \ldots and $\vdash_{\cap IC} cv_n : T_n$, such that $\exists i \in 1..n$. $T_i = T_{i1} \rightarrow T_{i2}$ and $\Gamma \vdash_{\cap CC} v_1 : T'_1 \cap \ldots \cap T'_l$ and $I_1 = initialType(cv_1)$ and \ldots and $I_n = initialType(cv_n)$ such that either $T'_1 \cap \ldots \cap T'_l = I_1 \cap \ldots \cap I_n$ or $\{I_1, \ldots, I_n\} \subset \{T'_1, \ldots, T'_l\}$

and $\Gamma \vdash_{\cap CC} v_2 : T_{11} \cap \ldots \cap T_{n1}$. For the sake of simplicity lets elide cast labels and blame labels. As $\vdash_{\cap IC} cv_1' : T_{11} \to T_{12}$ and \ldots and $\vdash_{\cap IC} cv_m' : T_{m1} \to T_{m2}$ then $cv_1' = cv_1'' : T_{11}' \to T_{12}' \Rightarrow T_{11} \to T_{12}$ and \ldots and $cv_m' = cv_m'' : T_{m1}' \to T_{m2}' \Rightarrow T_{m1} \to T_{m2}$. By the definition of simulate Arrow, $c_{11} : \varnothing T_{11} : T_{11} \Rightarrow T_{11}'$ and \ldots and $c_{m1} = \varnothing T_{m1} : T_{m1} \Rightarrow T_{m1}'$ and $c_{12} : \varnothing T_{12}' : T_{12}' \Rightarrow T_{12}$ and \ldots and $c_{m2} = \varnothing T_{m2}' : T_{m2}' \Rightarrow T_{m2}$ and $initial Type(r_1) = I_1$ and \ldots and $initial Type(r_m) = I_m$ and $\vdash_{\cap IC} r_1 : T_{11}' \to T_{12}'$ and \ldots and $\vdash_{\cap IC} r_m : T_{m1}' \to T_{m2}'$. Therefore $\Gamma \vdash_{\cap CC} v_1 : r_1 \cap \ldots \cap r_m : T_{11}' \to T_{12}' \cap \ldots \cap T_{m1}' \to T_{m2}'$ and $\Gamma \vdash_{\cap CC} v_2 : c_{11} \cap \ldots \cap c_{m1} : T_{11}' \cap \ldots \cap T_{m2}'$ and therefore $\Gamma \vdash_{\cap CC} (v_1 : r_1 \cap \ldots \cap r_m) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : T_{12}' \cap \ldots \cap T_{m2}'$. Therefore, $\Gamma \vdash_{\cap CC} (v_1 : r_1 \cap \ldots \cap r_m) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2} : T_{12} \cap \ldots \cap T_{m2}$, such that $\{T_{12}, \ldots, T_{m2}\} \subset \{T_{12}, \ldots, T_{n2}\}$. By rule Simulate \cap , $(v_1 : cv_1 \cap \ldots \cap cv_n) v_2 \longrightarrow_{\cap CC} (v_1 : r_1 \cap \ldots \cap r_m) (v_2 : c_{11} \cap \ldots \cap r_m) (v_2 : c_{11} \cap \ldots \cap c_{m2}) : c_{12} \cap \ldots \cap c_{m2}$, therefore it is proved.

- Rule $MergeIC \cap$. If $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 : T_2$ then $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : T_{11} \cap \ldots \cap T_{1n}$ and such that $\exists T_{1i} : T_{1i} = T_1$ and $\vdash_{\cap IC} cv_1 : T_{11}$ and $I_1 = initialType(cv_1)$ and \ldots and $\vdash_{\cap IC} cv_n : T_{1n}$ and $I_n = initialType(cv_n)$ and $\Gamma \vdash_{\cap CC} v : I_1 \cap \ldots \cap I_n$ and $m \leq n$. By the definition of mergeIC, $\vdash_{\cap IC} c'_1 : T_2$ and $initialType(c'_1) : I_1$ and \ldots and $\vdash_{\cap IC} c'_m : T_2$ and $initialType(c'_m) : I_m$. As $\Gamma \vdash_{\cap CC} v : I_1 \cap \ldots \cap I_m$ and therefore $\Gamma \vdash_{\cap CC} v : c'_1 \cap \ldots \cap c'_m : T_2 \cap \ldots \cap T_2$ and $T_2 \cap \ldots \cap T_2 \cap T_2 \cap T_3 \cap T_4 \cap T_4 \cap T_5 \cap T_$
- Rule $MergeCI \cap$. If $\Gamma \vdash_{\cap CC} v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n : F_1 \cap \ldots \cap F_n$ then $\Gamma \vdash_{\cap CC} v : T_1 \Rightarrow T_2 : T_2$ and $\Gamma \vdash_{\cap CC} v : T_1$ and $\vdash_{\cap IC} c_1 : F_1$ and $initialType(c_1) = T_2$ and \ldots and $\vdash_{\cap IC} c_n : F_n$ and $initialType(c_n) = T_2$. By the definition of mergeCI, $mergeCI(v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n) = v : c'_1 \cap \ldots \cap c'_n$, such that $\vdash_{\cap IC} c'_1 : F_1$ and $initialType(c'_1) : T_1$ and \ldots and $\vdash_{\cap IC} c'_n : F_n$ and $initialType(c'_n) : T_1$. As $\Gamma \vdash_{\cap CC} v : c'_1 \cap \ldots \cap c'_n : F_1 \cap \ldots \cap F_n$ and by rule $MergeCI \cap C_n : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : c'_1 \cap \ldots \cap c'_n$, then it is proved.
- Rule $MergeII \cap$. If $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m : F'_1 \cap \ldots \cap F'_m$ then $\vdash_{\cap IC} c'_1 : F'_1$ and $initialType(c'_1) = I'_1$ and \ldots and $\vdash_{\cap IC} c'_m : F'_m$ and $initialType(c'_m) = I'_m$ and $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : F_1 \cap \ldots \cap F_n$ and $\vdash_{\cap IC} cv_1 : F_1$ and $initialType(cv_1) = I_1$ and \ldots and $\vdash_{\cap IC} cv_n : F_n$ and $initialType(cv_n) = I_n$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_l$ such that either $T_1 \cap \ldots \cap T_l = I_1 \cap \ldots \cap I_n$ or $\{I_1, \ldots, I_n\} \subset \{T_1, \ldots, T_l\}$. There are two possibilities:
 - $-F_1 \cap \ldots \cap F_n = I_1' \cap \ldots \cap I_m'. \text{ By the definition of mergeII, } \vdash_{\cap IC} c_1'' : F_1'' \text{ and } \ldots \text{ and } \vdash_{\cap IC} c_j'' : F_j'' \text{ such that } F_1'' \cap \ldots \cap F_j'' = F_1' \cap \ldots \cap F_m' \text{ and } initial Type(c_1'') = I_1'' \text{ and } \ldots \text{ and } initial Type(c_j'') = I_j'' \text{ such that } I_1'' \cap \ldots \cap I_j'' = I_1 \cap \ldots \cap I_n. \text{ Therefore } \Gamma \vdash_{\cap CC} v : c_1'' \cap \ldots \cap c_j'' : F_1'' \cap \ldots \cap F_j''. \text{ By rule MergeII} \cap, v : cv_1 \cap \ldots \cap cv_n : c_1' \cap \ldots \cap c_m' \longrightarrow_{\cap CC} v : c_1'' \cap \ldots \cap c_j''. \text{ Therefore it is proved.}$
 - $-\{I'_1,\ldots,I'_m\}\subset\{F_1,\ldots,F_n\}$. By the definition of mergeII, $\vdash_{\cap IC}c''_1:F''_1$ and $initialType(c''_1)=I''_1$ and \ldots and $\vdash_{\cap IC}c''_j:F''_j$ and

 $\begin{aligned} & initial Type(c_j'') = I_j'' \text{ such that } \{I_1'', \dots, I_j''\} \subset \{I_1, \dots, I_n\} \text{ and } \{F_1'', \dots, F_j''\} \subset \\ \{F_1', \dots, F_m'\}. \text{ Therefore, } \Gamma \vdash_{\cap CC} v : c_1'' \cap \dots \cap c_j'' : F_1'' \cap \dots \cap F_j''. \text{ By } \\ & \text{rule MergeII} \cap, \ v : cv_1 \cap \dots \cap cv_n : c_1' \cap \dots \cap c_m' \longrightarrow_{\cap CC} v : c_1'' \cap \dots \cap c_j''. \end{aligned}$ Therefore, it is proved.

- Rule $EvaluateCasts \cap$. If $\Gamma \vdash_{\cap CC} v : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ then $\vdash_{\cap IC} c_1 : T_1$ and $I_1 = initialType(c_1)$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $I_n = initialType(c_n)$ and $\Gamma \vdash_{\cap CC} v : I_1 \cap \ldots \cap I_n$. By rule EvaluateCasts \cap , $c_1 \longrightarrow_{\cap IC} cv_1$ and \ldots and $c_n \longrightarrow_{\cap IC} cv_n$. By Lemmas 7 and 8, $\vdash_{\cap IC} cv_1 : T_1$ and $initialType(cv_1) = I_1$ and \ldots and $\vdash_{\cap IC} cv_n : T_n$ and $initialType(cv_n) = I_n$. Therefore $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$. By rule EvaluateCasts \cap , $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$, then it is proved.
- Rule $PropagateBlame \cap$. If $\Gamma \vdash_{\cap CC} v : blame T'_1 T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T'_n \ l_n \ ^{m_n} : T_1 \cap \ldots \cap T_n \ and by rule PropagateBlame \cap v : blame \ T'_1 \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T'_n \ T_n \ l_n \ ^{m_n} \longrightarrow_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1,$ and $\Gamma \vdash_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1 : T_1 \cap \ldots \cap T_n$, then it is proved.
- Rule $Remove Empty \cap ...$ If $\Gamma \vdash_{\cap CC} v : \varnothing T_1 \stackrel{m_1}{\longrightarrow} ... \cap \varnothing T_n \stackrel{m_n}{\longrightarrow} : T_1 \cap ... \cap T_n$, then $\vdash_{\cap IC} \varnothing T_1 \stackrel{m_1}{\longrightarrow} : T_1$ and $initial Type(\varnothing T_1 \stackrel{m_1}{\longrightarrow}) = T_1$ and ... and $\vdash_{\cap IC} \varnothing T_n \stackrel{m_n}{\longrightarrow} : T_n$ and $initial Type(\varnothing T_n \stackrel{m_n}{\longrightarrow}) = T_n$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap ... \cap T_n$. By rule Remove Empty $\cap , v : \varnothing T_1 \stackrel{m_1}{\longrightarrow} \cap ... \cap \varnothing T_n \stackrel{m_n}{\longrightarrow} \cap CC v$, therefore it is proved.

Induction step:

- Rule E-App1. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T$, then either:
 - $-\Gamma \vdash_{\cap CC} e_1 : PM, PM \rhd T_1 \cap \ldots \cap T_n \to T, \Gamma \vdash_{\cap CC} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$ or
 - $-\Gamma \vdash_{\cap CC} e_1: T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}, \ \Gamma \vdash_{\cap CC} e_2: T'_1 \cap \ldots \cap T'_n$ and $T_{11} \sim T'_1 \ldots T_{n1} \sim T'_n$.

By rule E-App1, $e_1 \longrightarrow_{\cap IC} e'_1$, so by the induction hypothesis either:

- $-\Gamma \vdash_{\cap CC} e'_1 : PM \text{ or }$
- $\Gamma \vdash_{\cap CC} e'_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}.$

Therefore, $\Gamma \vdash_{\cap CC} e'_1 e_2 : T$. As by rule E-App1, $e_1 e_2 \longrightarrow_{\cap IC} e'_1 e_2$, it is proved.

- Rule E-App2. If $\Gamma \vdash_{\cap CC} v_1 \ e_2 : T$, then either:
 - $-\Gamma \vdash_{\cap CC} v_1 : PM, PM \rhd T_1 \cap \ldots \cap T_n \to T, \Gamma \vdash_{\cap CC} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$ or
 - $-\Gamma \vdash_{\cap CC} v_1: T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}, \Gamma \vdash_{\cap CC} e_2: T'_1 \cap \ldots \cap T'_n$ and $T_{11} \sim T'_1 \ldots T_{n1} \sim T'_n$.

By rule E-App2, $e_2 \longrightarrow_{\cap IC} e_2'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e_2' : T_1' \cap \ldots \cap T_n'$. Therefore, $\Gamma \vdash_{\cap CC} v_1 e_2' : T$. As by rule E-App2, $v_1 e_2 \longrightarrow_{\cap IC} v_1 e_2'$, it is proved.

• Rule E-EvaluateCasts. If $\Gamma \vdash_{\cap CC} e: c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$, then $\Gamma \vdash_{\cap CC} e: T, \vdash_{\cap IC} c_1 : T_1$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $initialType(c_1) \cap \ldots \cap initialType(c_n) = T$. By rule E-EvaluateCasts, $e \longrightarrow_{\cap IC} e'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e' : T$. Therefore, $\Gamma \vdash_{\cap CC} e' : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$. As by rule E-EvaluateCasts, $e: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap IC} e' : c_1 \cap \ldots \cap c_n$, it is proved.

Theorem 7 (Progress of $\longrightarrow_{\cap CC}$). If $\Gamma \vdash_{\cap CC} e : T$ then $e \longrightarrow_{\cap CC} v$.

Theorem 8 (Blame Theorem). If $\Gamma \vdash_{\cap CC} e : T$ and $e \longrightarrow_{\cap CC} blame_T \ l$ then l is not a safe cast of e.

Theorem 9 (Gradual Guarantee). If $\Gamma \vdash_{\cap CC} e_1 : T_1 \text{ and } \Gamma \vdash_{\cap CC} e_2 : T_2 \text{ and } e_1 \sqsubseteq e_2 \text{ then:}$

- 1. if $e_2 \longrightarrow_{\cap CC} e_2'$ then $e_1 \longrightarrow_{\cap IC} e_1'$ and $e_1' \sqsubseteq e_2'$.
- 2. if $e_1 \longrightarrow_{\cap CC} e'_1$ then either $e_2 \longrightarrow_{\cap CC} e'_2$ and $e'_1 \sqsubseteq e'_2$ or $e'_2 \longrightarrow_{\cap CC} blame_T l$.

References

[1] Mario Coppo, Mariangiola Dezani-Ciancaglini, et al. An extension of the basic functionality theory for the λ -calculus. Notre Dame journal of formal logic, 21(4):685–693, 1980.