Topological Vector Space

xuascaler

May 25, 2025

1. Local geometry of topological vector space

Let (X, \mathcal{F}) be a topological space.

Remark.

- A base for \mathcal{F} is a subcollection $\mathcal{F}' \subset \mathcal{F}$ s.t. $\forall U \in \mathcal{F}, \exists V \in \mathcal{F}', V \subset U$. A base \mathcal{F}' determines \mathcal{F} since $U \subset \mathbb{F} \Rightarrow \exists S, \forall U \subset \mathcal{F}, U = \{ \cup e_i \mid i \in S, e_i \in \mathcal{F}' \}$.
- A local base of x is a subcollection $\mathcal{F}'_x \subset \mathcal{F}_x$ s.t. $\forall U \subset \mathcal{F}_x, \exists V \in \mathcal{F}'_x$ s.t. $V \subset U$. However, elements in \mathcal{F}_x may be not union of elements in \mathcal{F}'_x .

Example. (X, d) is a metric space.

- $\mathcal{F}' = \{B(x,r) \mid x \in X, r > 0\}$ is a base.
- $\mathcal{F}' = \{B(x,r), | r > 0\}$ is a local base at x.
- $\mathcal{F}' = \{B(x, \frac{1}{n}) \mid n \in \mathbb{N}\}\$ anohter local base at x, countable elements.

Now let X be topological vector space. Last time we showed that $\forall a \in X, \forall \alpha \neq 0$, the maps

- $T_a: X \to X, x \to x + a$
- $M_a: X \to X, x \to \alpha x$

are both homeomorphism. As a consequence, we see

Corollary. A set $A \subset X$ is open $\Leftrightarrow a + A$ is open, $\forall a \in X \Leftrightarrow \alpha A$ is open, $\forall \alpha \neq 0$

So the topological \mathcal{F} is determined by any local base at 0 whose elements have special gemometric properties for topological vector space.

Definition. X is locally convex if there is a local base whose elements are convex

Example. Normed Vector Space are locally convex since $\{B(0,r) \mid r > 0\}$ are convex.

Proof.
$$x, y \in B(0, r) \Leftrightarrow ||x|| < r, ||y|| < r \Leftrightarrow ||\alpha x + (1 - \alpha)y|| \le \alpha ||x|| + (1 - \alpha)||y|| \le r$$

Definition. A set $E \subset X$ is absorbing if $\forall x \in X, \exists \delta > 0$ s.t. $\alpha x \in E, \forall |\alpha| < \delta. (Obviously \ 0 = 0 * x \in E)$

Property. In a topological vector space, any neighborhood of 0 is absorbing.

Proof. Let U be a neighborhood of 0. $\forall x \in X$, the map $\mathbb{C} \to X : \alpha \to \alpha x$ is continuous. since it is the composition $\mathbb{R} \to \mathbb{R} \times X \to X : \alpha \to (\alpha, x) \to \alpha x$ both of which are continuous.

Remark. The function $F: X \to Y$ is continuous $\Leftrightarrow \forall Y' \subset Y, Y'$ is open set, the preimage of Y' is open set.

So the pre-image of U is an open set in \mathbb{R} , which obviously contains 0. So $\exists \delta \text{ s.t. } \forall |\alpha| < \delta, \alpha x \in U.$

Corollary. For any neighborhood U of $0, X = \bigcup_{k=1}^{\infty} (kU)$

Proof.
$$\forall x \in X, \exists k, \frac{1}{k} < \delta, \frac{1}{k} x \in U \Rightarrow x \in kU.$$

Definition. A set $E \subset X$ is symmetric if E = -E.

Property. $\forall U, 0 \in U$, one can find a symmetric neighborhood V of 0 s.t. $V+V \subset U$.

Proof. Since 0+0=0, and addition is continuous, for the neigborhood U of 0, one can find neigborhoods U_1, U_2 of 0 s.t. $U_1+U_2\subset U$. Take $V=U_1\cap U_2\cap (-U_1)\cap (-U_2)$. V is symmetric and $0\in V$. $V\subset U_1, V\subset U_2, V+V\subset U$.

Remark. By iteration, one can find V s.t. $V + V + V + V \subset U$

Definition. A neighborhood of 0 in X in balanced if $\alpha E \subset E$ for all α with $|\alpha| \leq 1$.

Remark.

- 1. If E is balanced, then E is symmetric. since $-E \subset E, -(-E) \subset -E$.
- 2. If A, B are balanced, so is A + B.

Property. In a Topological vector space, any neighborhood of 0 contains a balanced neighborhood of 0.

Proof. Let U be a neighborhood of 0. By continuity and $0 \cdot 0 = 0$, one can find $\delta > 0$ and neighborhood V_1 of 0 s.t. $\beta V_1 \subset U$ for any β with $|\beta| < \delta$. Let $V = \bigcup_{0 < |\beta| < \delta} \beta V_1$, then

- V is open as union of open sets
- $V \subset U$ since each $\beta V_1 \subset U$.

• V is balanced since $|\alpha| \le 1$, $|\beta| < \delta \Rightarrow |\alpha\beta| < \delta$.

Corollary. Every topological vector space has a balanced local base.

Remark. Similarly one can prove: any convex neighborhood of 0 contains a balanced convex neighborhood of 0. So any locally convex topological vector space has a balanced convex local base.

Definition. A subset $E \subset X$ is bounded if for any neighborhood U of 0 in X, $\exists s > 0$ s.t. $\forall t > s$, we have $E \subset tU$.

Property. E is balanced \Leftrightarrow For any sequence $\{x_n\} \subset E$ and any scalar sequence $\alpha_n \to 0$, one has $\alpha_n x_n \to 0$

Proof.

- \Rightarrow , For any neigborhood U of 0, we have $\exists s > 0, \forall t > s, E \subset tU$, Since $\alpha_n \to 0$, $\exists N, \forall n > N, |\alpha_n| < \frac{1}{t}$, we have $|\alpha_n|E \subset U \Rightarrow |\alpha_n|x_n \in U$. we have $|\alpha_n|x_n \to 0$. $\forall \delta > 0, \exists N, \forall n > N, ||\alpha_n|x_n 0| = |\alpha_n x_n| = |\alpha_n x_n 0| < \delta$. So $\alpha_n x_n \to 0$.
- \Leftarrow , If E is not bounded, then for any neigborhood U of 0, $\forall s > 0$, $\exists t > s, E \not\subset tU$. We fix U, now we construct $\{\alpha_n\}, \{x_n\}$. We choose $n \in \mathbb{N}, s = n, \exists t_n > n, \frac{E}{t_n} \not\subset U$, so $\alpha_n = \frac{1}{t_n}, x_n \in E, \frac{x_n}{t_n} \not\in U$. Now we have $\{\alpha_n \to 0, \alpha_n x_n \not\in U \Rightarrow \alpha_n x_n \not\to 0\}$. Contradiction!

So in particular, if X is a metric space, then E is bounded iff $\exists C > 0, E \subset B(0,C)$. Not every topological vector space admit a bounded open set. In fact,

Property. If V is bounded neighborhood of 0, then for any sequence $\alpha_k \to 0$, the collection $\{\alpha_k V \mid k = 1, 2, 3...\}$ is a local base of X.

Proof. We construct a set $W = V \cup -V$, $V \subset W$ and W is bounded and symmetric. For any neighborhood U of 0, $\exists s > 0, \forall t > s, W \subset tU$. Since $\alpha_n \to 0 \Rightarrow \exists \alpha_n, \frac{1}{|\alpha_n|} > t$, we have $\exists \alpha_n, |\alpha_n|W \subset U$. W is symmetric, $\alpha_n W \subset U$. $V \subset W \Rightarrow \alpha_n V \subset U$. So $\alpha_n V$ is a local base.

Definition. X is locally bounded if 0 has a bounded neighborhood.

So any locally bounded TVS has a countable local base. According the next theorem, it must be metrizable.

2.Metrization

As we mentioned at the beginning of this lecture, any metirc space has a countable local base. This gives a necessary condition for topological vector space to be metrizable. In fact this is also sufficient, and we can say more...

Theorem. Let X be a topological vector space with a countable local base. Then X is metrizable, and one can choose the metric d s.t.

- 1. d is translation invariant.
- 2. The open balls B(0,r)s are balanced.
- 3. Moreover, if X is also locally convex, then d can be chosen so that all open balls are convex.

Proof.

- One start with a countable local base $\{U_n\}$. Choose a balanced neigborhood V_1 of 0 in U_1 . Then choose a neigborhood \tilde{U}_2 of 0 s.t. $\tilde{U}_2 + \tilde{U}_2 + \tilde{U}_2 + \tilde{U}_2 + \tilde{U}_2 V_1 \cap U_2$. Choose a balanced neigborhood of V_2 of 0 in \tilde{U}_2 . Note we have $V_2 + V_2 + V_2 + V_2 \subset V_1$. Continue this way, we get a balanced local base $\{V_n\}$ s.t. $V_{n+1} + V_{n+1} + V_{n+1} + V_{n+1} \subset V_n$. Moreover, if X is locally convex, one can choose V_n s.t. V_n is also convex.
- Let $D = \{r \in \mathbb{Q} \mid r = \sum_{n=1}^{\infty} C_n(r) 2^{-n}$, only finitely many $C_n(r) = 1$, other $C_n(r) = 0\}$. So elements of D are 2-adic rationals with finite digits.

Remark. D is dense in [0,1).

• For any $r \in D$, we define A(r) to be the subset $A(r) = C_1(r)V_1 + C_2(r)V_2 + C_3(r)V_3 + ...$ (finite sum, so it make sense). For $r \geq 1$, set A(r) = X.

Property.
$$\forall r, s \in D, A(r) + A(s) \subset A(r+s).$$

Proof.

$$r = \sum_{1}^{M} C_n(r) 2^{-n}, s = \sum_{1}^{N} C_n(s) 2^{-n}$$

we choose $K = \max\{M, N\}$.

$$r = \sum_{1}^{K} C_n(r) 2^{-n}, s = \sum_{1}^{K} C_n(s) 2^{-n}, r + s = \sum_{1}^{K} C_n(r+s) 2^{-n}$$

 $V_{n+1} + V_{n+1} + V_{n+1} + V_{n+1} \subset V_n \Rightarrow V_{n+1} + V_{n+1} \subset V_n$, so we have $\sum_{1}^{2^i} V_{K-i} \subset V_K$. $C_n(r) + C_n(s)$ can be $\{0,1,2\}$, if $C_n(r) + C_n(s) = 2$, $V_n + V_n \subset V_{n+1}$, we can have $A(s) + A(r) \subset A(s+t)$.

Remark.

- Each A(r) is balanced. (A, B are balanced $\Rightarrow A + B$ is balanced.)
- $\forall r < s, A(r) \subset A(s).(A(r) + A(s-r)) \subset A(s), 0 \in A(s-r))$
- $f(x) = \inf \{r : x \in A(r)\}$. Then $0 \le f(x) \le 1$, and
 - -f(0) = 0 since $\forall r, 0 \in A(r)$
 - If $x \neq 0$, then $\exists N, \forall n \geq N, x \notin V_n, \Rightarrow f(x) \geq 2^{-N}$, since $V_N = A(2^{-N}), 2^{-N} \in D$.
 - -f(x) = f(-x) since A(r) is balanced $\Rightarrow A(r)$ is symmetric.
 - $f(x+y) \le f(x) + f(y)$

Proof. It is enough to check this for f(x)+f(y)<1. For $\epsilon>0$, $\exists r,s\in D$ (since D is dense.), $f(x)< r< f(x)+\epsilon, f(y)< s< f(y)+\epsilon$. So $x\in A(r),y\in A(s)$. So $x+y\in A(r+s)$, i.e. $f(x+y)\leq r+s< f(x)+f(y)+2\epsilon$ This is true for $\forall \epsilon>0$, so $f(x+y)\leq f(x)+f(y)$. \square

• Now it is standard d(x,y) = f(x-y) define a translation-invariant metric on X. Finally, by definition the open balls centered at 0 are $B(0,\delta) = \{x : f(x) < \epsilon\} = \bigcup_{r < \delta} A(r)$. They are the local basis of the original topology since $\forall r < 2^{-n}, A(r) \subset V_n \Rightarrow \forall \delta < 2^{-n}, B(0,\delta) \subset V_n$. In view of the fact $0 < r < s, A(r) \subset A(s)$, it is easy to see that $B(0,\delta)$ is balanced since each A(r) is balanced and if each V_n is convex, so is A(r), and that so is $B(0,\delta)$, and thus so is $B(x,\delta)$.