COMP 341 Intro to Al Bayesian Networks – Exact Inference

How certain are we that the butler did it?

Asst. Prof. Barış Akgün Koç University

Example: Alarm Network

Е	P(E)	
+e	0.002	
-e	0.998	

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

Probabilistic Inference

- Inference: Calculating a useful quantity from a joint probability distribution
- We have seen "inference by enumeration"

- Posterior Probability: $P(Q|E_1=e_1,...,E_k=e_k)$
- Most Likely Explanation: $\operatorname{argmax}_q P(Q = q | E_1 = e_1, ..., E_k = e_k)$
- Mary called me to tell me that my house alarm was ringing. How likely is it that there is a burglar?
- Why did Mehmet get a medical report for the exam?

Probabilistic Inference Methods

- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Exact Inference is NP-Hard

Sampling (approximate)

Inference by Enumeration given the Joint Dist.

General case:

 $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ $All \ variables$ Evidence variables: Query* variable: • Hidden variables:

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 1: Select the entries consistent with the evidence

	*	P(x)	
a A	-3	0.05	
TI	-1	0.25	
76	0	0.07	,
	1	0.2	
	5	0.01	2/0.15

Step 2: Sum out H to get joint of Query and evidence (marginalize)

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

Inference by Enumeration in BNs

- Easy! Just need lots of time
 - State all conditional probabilities needed
 - Figure out all atomic probabilities needed
 - Combine, marginalize and normalize
- E.g. P(B, E, A, J, M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)P(B|+j, +m) = ?

Inference Example

$$P(B|+j,+m) = \frac{P(B,+j,+m)}{P(+j,+m)} = \alpha P(B,+j,+m) = \alpha \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \alpha \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$= \alpha (P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a)$$

$$+ P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a)$$

$$+ P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$+ P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Calculate for both +b and –b. Then normalize to get rid of α

Another Example

P(LiabilityCost|ShadedVariables) =?

Would be cumbersome with enumeration (aka brute force), but there is a much easier way for this example

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually faster than inference by enumeration

First we'll need some new notation: factors

Factors

• Factorization: "Decomposition of an object into product of other objects or factors"

Pointwise product of two factors:

$$f_1(x_1, ..., x_n, \underline{y_1}, ..., \underline{y_k}) \cdot f_2(\underline{y_1}, ..., \underline{y_k}, z_1, ..., z_l) = f(x_1, ..., x_n, \underline{y_1}, ..., \underline{y_k}, z_1, ..., z_l)$$

What are some factors that we can use in BNs?

Factors I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals (unobserved variables) affect dimensionality of the table

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factors II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

• Family of conditionals:

P(X | Y)

- Multiple conditionals
- Entries P(x | y) for all x, y
- Sums to |Y|

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

P(W|T)

Т	W	Р	
hot	sun	0.8	D(W/L 4)
hot	rain	0.2	ig P(W hot)
cold	sun	0.4	
cold	rain	0.6	ig ig P(W cold)

Factors III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(r)	rain T	7)	
Т	W	Р	
hot	rain	0.2	$\bigcap P(rain hot)$
cold	rain	0.6	$\left ight. ight. P(rain cold)$

- In general, a factor is $P(Y_1, ..., Y_N | X_1, ..., X_M)$
 - Multi-dimensional array
 - Its values are $P(y_1 ... y_N \mid x_1 ... x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

• R: Raining

• T: Traffic

L: Late for class!

P(R)
+r	0.1

P	T	$ R\rangle$

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

$$P(R)$$
+r 0.1
-r 0.9

$$\begin{array}{c|cccc} P(T|R) \\ \hline +r & +t & 0.8 \\ +r & -t & 0.2 \\ \hline -r & +t & 0.1 \\ \hline -r & -t & 0.9 \\ \hline \end{array}$$

•		
+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

P(L|T)

- Any known values are selected
 - E.g. if we know $L=+\ell$ the initial factors are

$$P(R)$$
+r 0.1
-r 0.9

$$\begin{array}{c|cccc} P(T|R) \\ \hline +r & +t & 0.8 \\ +r & -t & 0.2 \\ \hline -r & +t & 0.1 \\ \hline -r & -t & 0.9 \\ \hline \end{array}$$

$$P(+\ell|T)$$

$$\begin{array}{c|ccc} +t & +1 & 0.3 \\ \hline -t & +1 & 0.1 \end{array}$$

• Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

Computation for each entry: pointwise products

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$

Example: Multiple Joins

P(R)

+r	0.1
-r	0.9

Join R

+t

-t

+t

+r

0.02

0.09

0.81

R, T, L

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

P(R,T,L)

+r	+t	+	0.024
+r	+t	- 1	0.056
+r	-t	+	0.002
+r	-t	- 1	0.018
-r	+t	+	0.027
-r	+t	- -	0.063
-r	-t	+	0.081
-r	-t	-	0.729

P	(L	$ T\rangle$
	-	

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Operation 2: Eliminate

Second basic operation: marginalization

Take a factor and sum out a variable

- Shrinks a factor to a smaller one
- A projection operation
- Example:

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

sum R

P(T)

+t	0.17
-t	0.83

Multiple Elimination

Thus far, we have seen multiple-join and multiple-eliminate which is inference by enumeration! Variable elimination is when we marginalize early

Traffic Domain

$$P(L) = ?$$

Inference by Enumeration

$$= \sum_t \sum_r P(L|t) P(r) P(t|r)$$
 Join on t Eliminate t

Variable Elimination (VE)

$$=\sum_t P(L|t)\sum_r P(r)P(t|r)$$
Join on r

Eliminate r

Eliminate t

Marginalizing Early! (aka VE)

0.1

0.9

Join R

_	/ _	
	(I)	TDX
-P	<i> 1</i> 5	1 1
	(1 0 9	
	•	

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

Sum out R

Join T

+t	0.17
-t	0.83

P(T)

Sum out T

+r

+r	+t	0.8
+r	-t	0.2
ŗ	+t	0.1
-r	-t	0.9

\boldsymbol{P}	T	T
Γ	(L)	.L

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

_	/ _	`	
Pl	/ / .	T	١
T	(\boldsymbol{L})		J

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

+t	+	0.3
+t	-1	0.7
-t	+	0.1
-t	-	0.9

P(T,L)

+t	+	0.051
+t	-	0.119
-t	+	0.083
-t	-1	0.747

P(L)

+	0.134
-	0.866

Evidence

- If you have evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$
+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

$$P(L|T)$$
 $\begin{array}{c|cccc} +t & +I & 0.3 \\ +t & -I & 0.7 \\ -t & +I & 0.1 \\ -t & -I & 0.9 \end{array}$

• Computing P(L|+r) the initial factors become:

$$P(+r) \qquad P(T|+r)$$
+r | 0.1 | +r | +t | 0.8 |

$$P(T + r)$$
+r +t 0.8
+r -t 0.2

$$P(L|T)$$
+t +l 0.3
+t -l 0.7
-t +l 0.1

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

- To get our answer, just normalize this!
- That 's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, ..., E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)

- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize

Example

• What is the probability of a burglar being in my house if both John and Marry calls? OR P(B|+j,+m)=?

Query Variables: B

Evidence Variables: +j, +m

Hidden Variables: A, E

Example

Choose A

$$P(A|B,E)$$
 $P(j|A)$
 $P(m|A)$
 $P(j,m,A|B,E)$
 $P(j,m|B,E)$

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$ Factors after eliminating A

Example

P(B)

P(E)

P(j,m|B,E)

Choose E

P(j,m|B,E)

P(j, m, E|B)

P(j,m|B)

P(j,m|B)

No more hidden vars, now what? "Join all remaining and normalize"

Finish with B

P(j, m, B)

P(B|j,m)

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$

P(E) P(A|B,E)

P(j|A)

P(m|A)

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B) \sum_{e} P(e) f_1(B, e, j, m)$$

$$= P(B)f_2(B,j,m)$$

marginal can be obtained from joint by summing out

use Bayes' net joint distribution expression

use
$$x^*(y+z) = xy + xz$$

joining on a, and then summing out gives f₁

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f₂

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z,y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z,y_1)f_2(Z,y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one parent.

Variable Elimination Ordering

• For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: Z, X_1 , ..., X_{n-1} and X_1 , ..., X_{n-1} , Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2²
- Does there always exist an ordering that only results in small factors?
 - No!

Variable Elimination Summary

- Interleave joining and marginalizing
- d^k entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes' net
- Better than enumeration in practice, saves time by marginalizing variables as soon as possible rather than at the end
- Not efficient enough for big BNs, so next we'll talk about Approximate
 Inference techniques