Primer Certamen Algoritmos y Complejidad

14 de noviembre de 2015

- 1. Hay F_{n+2} palabras formadas de a,b que no contienen aa (las describe la expresión regular $(ab \mid b)^*(a \mid \epsilon)$). Explique cómo obtener el número promedio de a en estas palabras de largo n usando funciones generatrices multivariadas. (30 puntos)
- 2. El número promedio de inversiones en permutaciones de largo n es n(n-1)/4. Explique porqué métodos de ordenamiento que solo consideran elementos vecinos tienen tiempo promedio $\Omega(n^2)$.

(20 puntos)

3. El método tradicional para multiplicar dos matrices de $N \times N$ demanda $O(N^3)$ operaciones. Descomponiendo las matrices de $N \times N$ en 4 matrices de $N/2 \times N/2$, y usando una fórmula que permite evaluar el producto de dos matrices de 2×2 en 7 multiplicaciones y 4 sumas, Strassen obtuvo un algoritmo aplicando esta idea recursivamente. Analícelo en forma aproximada. ¿Es mejor que el método tradicional?

(20 puntos)

4. Los números de Fibonacci se definen por la recurrencia:

$$F_{n+2} = F_{n+1} + F_n$$
 $F_0 = 0, F_1 = 1$

¿Cuántas llamadas recursivas hace una función basada directamente en esta recurrencia para calcular F_n ? (25 puntos)

5. Esboce el algoritmo enseñado en el colegio para multiplicar. Considerando operaciones entre dígitos individuales como medida de tiempo, derive la complejidad para multiplicar dos números de n dígitos mediante esta técnica. (25 puntos)

Torpedo oficial

Algunas series notables

En lo que sigue, $m, n, k \in \mathbb{N}_0$, $\alpha \in \mathbb{C}$.

$$\frac{1}{1-az} = \sum_{k\geq 0} a^k z^k \qquad \frac{1-z^{m+1}}{1-z} = \sum_{0\leq k\leq m} z^k \qquad (1+z)^{\alpha} = \sum_{k\geq 0} \binom{\alpha}{k} z^k \qquad \frac{z}{(1-z)^2} = \sum_{n\geq 0} nz^n \qquad \frac{z+z^2}{(1-z)^3} = \sum_{n\geq 0} n^2 z^n$$

$$\binom{\alpha}{n} = \frac{\alpha^k}{k!} = \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{-n}{k} = (-1)^k \binom{n+k-1}{n-1} \qquad \binom{1/2}{k} = \frac{(-1)^{k-1}}{k2^{2k-1}} \binom{2n-2}{k-1} \qquad (k\geq 1) \qquad \binom{-1/2}{k} = \frac{(-1)^k}{2^{2k}} \binom{2k}{k}$$

Secuencias notables

Sumas de potencias:

$$\sum_{0 \le k \le n} n = \frac{n(n+1)}{2} \qquad \sum_{0 \le k \le n} n^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{0 \le k \le n} n^3 = \frac{n^2(n+1)^2}{4}$$

Números de Fibonacci:

$$F_0 = 0 F_1 = 1 F_{n+2} = F_{n+1} + F_n F_n = \frac{\tau^n - (1-\tau)^n}{\sqrt{5}} \tau = \frac{1+\sqrt{5}}{2} \approx 1,61803$$

$$\sum_{n\geq 0} F_n z^n = \frac{z}{1-z-z^2} \sum_{n\geq 0} F_{n+1} z^n = \frac{1}{1-z-z^2} \sum_{n\geq 0} F_{n+2} z^n = \frac{1+z}{1-z-z^2}$$

Conjuntos: Cuentan número de conjuntos de *k* elementos elegidos entre *n*

$$\binom{n}{0} = 1 \quad \binom{0}{k} = [k = 0] \quad \binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k} \quad \binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}$$

$$\sum_{k,n} \binom{n}{k} x^k y^n = \frac{1}{1 - (1+x)y} \quad \sum_{n} \binom{n}{k} z^n = \frac{z^k}{(1-z)^{k+1}} \quad \sum_{n} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}}$$

Método simbólico

Teorema (Método simbólico, OGF; objetos no rotulados). Sean \mathcal{A} y \mathcal{B} clases de objetos, con funciones generatrices ordinarias respectivamente A(z) y B(z). Entonces funciones generatrices ordinarias enumeran:

1.
$$\mathscr{A} + \mathscr{B}: A(z) + B(z)$$
 2. $\mathscr{A} \times \mathscr{B}: A(z) \cdot B(z)$ 3. $\mathscr{A}^{\bullet}: zA'(z)$ 4. $\mathscr{A} \circ \mathscr{B}: A(B(z))$ 5. SEQ(\mathscr{A}): $1/(1 - A(z))$ 6. SET(\mathscr{A}): $\prod_{n \geq 0} (1 + z^n)^{a_n} = \exp\left(\sum_{k \geq 1} (-1)^{k+1} A(z^k)/k\right)$ 7. MSET(\mathscr{A}): $\prod_{n \geq 1} (1 - z^n)^{-a_n} = \exp\left(\sum_{k \geq 1} A(z^k)/k\right)$ 8. CYC(\mathscr{A}): $\sum_{n \geq 1} \frac{\phi(n)}{n} \ln \frac{1}{1 - A(z^n)}$

Teorema (Método simbólico, EGF; objetos rotulados). *Sean* \mathcal{A} \mathcal{Y} \mathcal{B} *clases de objetos, con funciones generatrices exponenciales* $\widehat{A}(z)$ \mathcal{Y} $\widehat{B}(z)$, respectivamente. Entonces funciones generatrices exponenciales enumeran:

$$1. \mathcal{A} + \mathcal{B}: \widehat{A}(z) + \widehat{B}(z) \qquad 2. \mathcal{A} \star \mathcal{B}: \widehat{A}(z) \cdot \widehat{B}(z) \qquad 3. \mathcal{A}^{\bullet}: z \widehat{A}'(z) \qquad 4. \mathcal{A} \circ \mathcal{B}: \widehat{A}(\widehat{B}(z)) \qquad 5. \operatorname{SEQ}(\mathcal{A}): 1/(1 - \widehat{A}(z))$$

$$6. \operatorname{MSET}(\mathcal{A}): \exp(\widehat{A}(z)) \qquad 7. \operatorname{CYC}(\mathcal{A}): -\ln(1 - \widehat{A}(z)) \qquad 8. \mathcal{A}^{\square} \star \mathcal{B}: \int_0^z \widehat{A}'(u) \cdot \widehat{B}(u) \, \mathrm{d}u$$

Dividir y Conquistar

La recurrencia $T(n) = aT(n/b) + cn^e$ tiene solución:

$$T(n) = \begin{cases} O(n^e) & a < b^e \\ O(n^e \log n) & a = b^e \\ O(n^{\log_b a}) & a > b^e \end{cases}$$