5.2 晶体管的高频特性

1. 晶体管的高频模型

晶体管结构示意图

上页 下页

上页 下页 后退

集电极电流将与发射结电阻两端的电压成正比

上页

下页

电路模型

晶体管混合π型等效模型

通常re、re很小,rce、rb'c很大,均可以忽略。

上页 下页 后退

简化的混合π型等效模型

晶体管混合π型低频等效电路与微变等效电路的关系

低频等效电路

微变等效电路

两者等效

两者等效

故有

$$r_{\rm be} = r_{\rm bb} + r_{\rm b'e}$$

$$\beta_0 = g_{\rm m} r_{\rm b'e}$$

其中 β。为晶体管低频电流放大系数

上页 下页 后退

表示晶体管的发射结电压 $\dot{U}_{\mathrm{b'e}}$ 对管子集电极电流 \dot{I}_{c} 的控制能力,称为跨导。

定义:

$$oldsymbol{g}_{\mathrm{m}} = rac{\mathrm{d} i_{\mathrm{C}}}{\mathrm{d} u_{\mathrm{R}'\mathrm{E}}}\Big|_{u_{\mathrm{CE}} = \mathbb{R} \mathfrak{B}}$$

晶体管混合π型电路的密勒等效电路

密勒等 效电路

上页

下页

$$C_{\rm M} = C_{\rm b'c}(1-A)$$

$$C_{\rm ce}' = C_{\rm b'c} \left[1 - \frac{1}{A} \right]$$

$$\dot{A} = \frac{U_{\mathrm{ce}}}{\dot{U}_{\mathrm{b'e}}} \approx \frac{U_{\mathrm{ce}}}{U_{\mathrm{b'e}}}$$

2. 晶体管的高频特性和高频参数

(1) 晶体管电流放大倍数 $\beta = \beta(f)$

实际的幅频曲线

上页

下页

β 的相频特性

(2) 晶体管特征频率 $f_{\rm T}$

定义

当 $f=f_{\mathrm{T}}$ 时, $|\dot{\beta}|=1$

$$1 = \frac{\beta_0}{\sqrt{1 + \left[f_{\rm T}/f_\beta\right]^2}}$$

由于 $f_{\mathrm{T}} >> f_{\beta}$

 f_{β} 和 f_{T} 都与晶体管的静态工作点有关

故 $f_{\rm T} \approx \beta_0 f_{\beta}$

fr是衡量晶体管高频特性的最常用指标

(3) 晶体管电流放大倍数 $\alpha = \dot{\alpha}(f)$

可以证明

$$\dot{\alpha} = \frac{\alpha_0}{1 + \mathbf{j} f / f_{\alpha}}$$

式中

 $lpha_0$ ——晶体管共基极低频电流放大系数

 f_{α} ——晶体管共基极截止频率

由
$$\dot{\alpha}$$
与 $\dot{\beta}$ 的关系 $\dot{\alpha} = \frac{\beta}{1+\dot{\beta}}$

将
$$\dot{\beta} = \frac{\beta_0}{1+jf/f_\beta}$$
 代入上式

得晶体管共基极截止频率

$$f_{\alpha} = (1 + \beta_0) f_{\beta}$$

通常将 $f_{\alpha} > 3$ M 的晶体管称为高频管 将 $f_{\alpha} < 3$ M 的晶体管称为低频管