# 2D Articulated Human Pose Estimation Using Explainable Artificial Intelligence

André Oskar Andersen wpr684

Datalogisk Institut, Københavns Universitet

2021

 Articulated Human Pose Estimation og explainable artificial intelligence

- Articulated Human Pose Estimation og explainable artificial intelligence
- Anvendelse
  - 1. Motion analysis
  - 2. Augmented reality
  - 3. Virtual reality

- Articulated Human Pose Estimation og explainable artificial intelligence
- Anvendelse
  - 1. Motion analysis
  - 2. Augmented reality
  - 3. Virtual reality
- Få kilder udforsker pose estimation algoritmer

- Articulated Human Pose Estimation og explainable artificial intelligence
- Anvendelse
  - 1. Motion analysis
  - 2. Augmented reality
  - 3. Virtual reality
- ► Få kilder udforsker pose estimation algoritmer

- ► Hvorfor gør brug af XAI?
  - 1. Forbedrer præstation
  - Bygger tillid
  - Vi kan lære af modellen

- Articulated Human Pose Estimation og explainable artificial intelligence
- Anvendelse
  - 1. Motion analysis
  - 2. Augmented reality
  - 3. Virtual reality
- ► Få kilder udforsker pose estimation algoritmer

- ► Hvorfor gør brug af XAI?
  - 1. Forbedrer præstation
  - Bygger tillid
  - Vi kan lære af modellen
- Problem definition
  - Implementer Stacked Hourglass af Newell et al.
  - Udforsk Stacked Hourglass
  - Modificer Stacked Hourglass vha. viden

#### Data

#### Data

- ➤ 2017 Microsoft COCO datasæt
  - 1. Passer til problemet
  - 2. State-of-the-art



#### Data

- 2017 Microsoft COCO datasæt
  - 1. Passer til problemet
  - 2. State-of-the-art
- Beskrivelse
  - ► Træning + validering: 69.000 billeder
  - ► Flere personer i hvert billede
  - Op til 17 keypoints per person



# Preprocessing af data

### Preprocessing af data

#### Billederne

- 1. Centrerer billede omkring hver person
- 2. Resizer til  $256 \times 256$
- 3. Trække gennemsnitlig rgb fra











### Preprocessing af data

#### Billederne

- 1. Centrerer billede omkring hver person
- 2. Resizer til  $256 \times 256$
- 3. Trække gennemsnitlig rgb fra
- Keypoints
  - 1. Indsætter 1 i et tomt  $64 \times 64$  billede
  - 2. Gaussfilter
  - 3. 17 heatmaps













- Stacked hourglass
- Hourglass



- Stacked hourglass
- ► Hourglass
- ► Residual module



- Stacked hourglass
- ► Hourglass
- ► Residual module
- Activation- og lossfunction

► Kun ét hourglass

- ► Kun ét hourglass
- ► Følger ellers Newell et al. og Camilla Olsen

- Kun ét hourglass
- ► Følger ellers Newell et al. og Camilla Olsen
- Overfit



- ► Kun ét hourglass
- ► Følger ellers Newell et al. og Camilla Olsen
- Overfit
- ► Epoch 47 Validation PCK accuracy: 0.433. Test PCK accuracy: 0.441

▶ Påstand: anvendes til at "redde" information



- ▶ Påstand: anvendes til at "redde" information
- ▶ SHG med skip-connection vs SHG uden skip-connection

- ▶ Påstand: anvendes til at "redde" information
- ▶ SHG med skip-connection vs SHG uden skip-connection
- Resultat



# Fortolkning af modellen 2 - Effekt af principal komponenter

# Fortolkning af modellen 3

# Modificering af model

### Diskussion

# Konklusion

# Fejl og rettelser