Ex5.1 The Dual of Locally Free Module Sheaf.

 (X, \mathcal{O}_X) を ringed space とし、 \mathcal{E} を有限階数の locally free \mathcal{O}_X -module とする. また、 \mathcal{E} の双対を $\check{\mathcal{E}} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$ で定める. ($\mathcal{H}om$ は Ex1.15 で定義されている.) \mathcal{E}^{\sim} も同様である.

補題 Ex5.1.1

 $\mathcal{F} :: \mathcal{O}_X$ -module, $x \in X$ とする. このとき, x に対して n > 0 が存在して

$$(\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F}))_x \cong (\mathcal{F}_x)^{\oplus n} \cong \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{E}_x,\mathcal{F}_x).$$

(証明). Ex5.7 の内容は使う. U :: open in X を十分小さく取れば $\mathcal{E}|_U$ は free module になる. したがって以下が成り立つ.

$$(\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F}))(U)$$

$$= \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{E}|_U, \mathcal{F}|_U)$$

$$\cong \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{O}_U^{\oplus n}, \mathcal{F}|_U)$$

$$\cong \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{O}_U, \mathcal{F}|_U)^{\oplus n}$$

$$\cong (\mathcal{F}|_U)^{\oplus n}$$

$$= \lim_{W \supseteq U} (\mathcal{F}(W))^{\oplus n}$$

(TODO: 4 行目が怪しい) 最後で \bigoplus と \varliminf が可換であることを用いた. このことから以下を得る.

$$\varinjlim_{U\ni x}\varinjlim_{W\supset U}(\mathcal{F}(W))^{\oplus n}=\varinjlim_{W\ni x}(\mathcal{F}(W))^{\oplus n}=(\mathcal{F}_x)^{\oplus n}.$$

あとは $\mathcal{O}_{X,x}$ -module の同型から最後の同型を得る.

$$(\mathcal{F}_x)^{\oplus n} \cong \operatorname{Hom}_{\mathcal{O}_{X,x}}((\mathcal{O}_{X,x})^{\oplus n}, \mathcal{F}_x) \cong \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{E}_x, \mathcal{F}_x).$$

 \mathcal{O}_X -homomorphism を構成し、それが stalk で module の射として isomorphism になっていることを確認する.

(a) $\mathcal{E}^{\sim} \cong \mathcal{E}$.

写像 $\Phi: \mathcal{E} \to \mathcal{E}^{\sim}$ を以下のように定める.

$$(\Phi_U(s))_V(\phi) = \phi(s|_V)$$
 where $U, V :: \text{ open in } X, V \subseteq U, s \in \mathcal{E}(U), \phi \in \check{\mathcal{E}}(V).$

これが \mathcal{O}_X -homomorphism であることは明らか. $x \in X$ を任意に取ると, Φ_x は以下のようになる.

$$\Phi_x(s_x)(\phi_x) = \phi_x(s_x)$$
 where $s_x \in \mathcal{E}_x, \phi_x \in \check{\mathcal{E}}_x$

補題より、 $\check{\mathcal{E}}_x$ 、 $(\mathcal{E}^{\sim})_x$ が計算できる.

$$\check{\mathcal{E}}_x \cong \mathscr{H}om(\mathcal{E}, \mathcal{O}_X)_x \cong (\mathcal{E}_x)^*, \quad (\mathcal{E}^{\leadsto})_x \cong \operatorname{Hom}(\check{\mathcal{E}}_x, \mathcal{O}_{X,x}) = (\mathcal{E}_x)^{**}.$$

ただし、 $(\mathcal{E}_x)^*$ は \mathcal{E}_x の $\mathcal{O}_{X,x}$ -module としての双対である。 $(\mathcal{E}_x)^*$ は free module だから、上記の同型が成り立つ。上記の $\Phi_x:\mathcal{E}_x\to (\mathcal{E}^{\sim})_x\cong (\mathcal{E}_x)^{**}$ が同型写像であることはよく知られている。よって Prop1.1 より、 Φ も同型。

(b) For any \mathcal{O}_X -module \mathcal{F} , $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F})\cong \check{\mathcal{E}}\otimes_{\mathcal{O}_X}\mathcal{F}$.

写像 Ψ を以下で定める.

$$\begin{array}{cccc} \Psi_U: & \check{\mathcal{E}}(U) \otimes \mathcal{F}(U) & \to & \mathscr{H}om(\mathcal{E},\mathcal{F})(U) \\ & \phi_U \otimes f & \mapsto & \left[\mathcal{E}(V) \ni s \mapsto \phi_V(s) \cdot f|_V \in \mathcal{F}(V)\right] \end{array}$$

ただし U,V は X の開集合で $V\subseteq U$ を満たし, [] 内は $\mathcal{E}(V)\to\mathcal{F}(V)$ の写像の定義である.これの $x\in X$ における stalk は以下のようになる.

$$\Psi_x: \quad \operatorname{Hom}(\mathcal{E}_x, \mathcal{O}_{X,x}) \otimes \mathcal{F}_x \quad \to \quad \quad \operatorname{Hom}(\mathcal{E}_x, \mathcal{F}_x)$$
$$\phi_x \otimes f_x \qquad \mapsto \quad \left[\mathcal{E}_x \ni s_x \mapsto \phi_x(s_x) \cdot f_x \in \mathcal{F}_x\right]$$

(c) For any \mathcal{O}_X -module \mathcal{F}, \mathcal{G} , $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{E} \otimes \mathcal{F}, \mathcal{G}) \cong \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{G}))$

U:: open in X を任意に取る. テンソル積の定義(普遍性)より,以下が成り立つ.

$$\operatorname{Hom}(\mathcal{E}(U) \otimes \mathcal{F}(U), \mathcal{G}(U)) \cong \operatorname{Hom}(\mathcal{F}(U), \operatorname{Hom}(\mathcal{E}(U), \mathcal{G}(U)))$$

テンソル積と Hom は $\mathcal{O}_X(U)$ -module としてのものである. あとは

$$\operatorname{Hom}_{\mathcal{O}_X(U)}(\mathcal{E}(U),\mathcal{G}(U)) \cong \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{E},\mathcal{G})(U)$$

を示せば良い. (TODO: 主張自体が怪しい.) これは以下の写像で得られる.

$$\Theta_U: \quad \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{G})(U) \quad \to \quad \operatorname{Hom}_{\mathcal{O}_X(U)}(\mathcal{E}(U), \mathcal{G}(U))$$

$$\phi: \mathcal{E}|_U \to \mathcal{G}|_U \quad \mapsto \quad \phi_U: \mathcal{E}(U) \to \mathcal{G}(U)$$

これは $x \in U$ について $\Theta_x : \phi_x \mapsto \phi_x$ を与えるから、同型写像.

(d) Projection Formula.

 $f:(X,\mathcal{O}_X) o (Y,\mathcal{O}_Y)$ を ringed space の morphism とし、 \mathcal{F} を \mathcal{O}_X -module, \mathcal{E} を finite rank locally free \mathcal{O}_Y -module とする. すると $f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{E}) \cong f_*(\mathcal{F}) \otimes_{\mathcal{O}_X} \mathcal{E}$ という自然同型がある. これを示す. 米田の補題を用いて証明する. \mathcal{G} を任意の \mathcal{O}_Y -module とする.

$\operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G}, f_*(\mathcal{F} \otimes f^*\mathcal{E}))$	
$\cong \operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G}, \mathcal{F} \otimes f^*\mathcal{E})$	(Ex1.18)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G}, \mathcal{F} \otimes f^*\mathcal{E})$	(a)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G}, \mathcal{F} \otimes (f^*\check{\mathcal{E}}))$	(?)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G}, \operatorname{\mathscr{H}\!\mathit{om}}_{\mathcal{O}_X}(f^*\check{\mathcal{E}}, \mathcal{F}))$	(b)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G} \otimes f^*\check{\mathcal{E}}, \mathcal{F})$	(c)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(f^*(\mathcal{G} \otimes \check{\mathcal{E}}), \mathcal{F})$	(?)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{G} \otimes \check{\mathcal{E}}, f_*\mathcal{F})$	(Ex1.18)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{G}, \mathscr{H}om(\check{\mathcal{E}}, f_*\mathcal{F}))$	(c)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{G}, \mathcal{E}^{} \otimes f_*\mathcal{F})$	(b)
$\cong \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{G}, f_*\mathcal{F} \otimes \mathcal{E})$	(a)

 $\check{\mathcal{E}},\mathcal{E}^{\sim},f^{*}\mathcal{E}$ が finite rank locally free module であることは容易に分かる. 残すは以下の 2 つの主張である.

主張 Ex5.1.2

$$f^*\mathcal{E}^{\check{}}\cong (f^*\check{\mathcal{E}})\check{}$$
.

(証明). U:: open in X をとる.

$$\begin{split} (f^*\check{\mathcal{E}}) &= \mathcal{H}om(f^{-1}\check{\mathcal{E}}, \mathcal{O}_X) \\ &= f^{-1}\mathcal{H}om(\check{\mathcal{E}}, \mathcal{O}_X) \\ &= f^{-1}\mathcal{E}^{\sim} \otimes \mathcal{O}_X \end{split}$$

ここで $\mathcal{H}om(f^{-1}*,*) \cong f^{-1}\mathcal{H}om(*,*)$ とした. TODO:どう示す.

主張 Ex5.1.3

$$f^*\mathcal{F}\otimes f^*\mathcal{G}\cong f^*(\mathcal{F}\otimes\mathcal{G}).$$

(証明).

$$f^*\mathcal{F} \otimes f^*\mathcal{G}$$

$$= (f^{-1}\mathcal{F} \otimes \mathcal{O}_X) \otimes (f^{-1}\mathcal{G} \otimes \mathcal{O}_X)$$

$$\cong (f^{-1}\mathcal{F} \otimes f^{-1}\mathcal{G}) \otimes \mathcal{O}_X$$

$$\cong f^{-1}(\mathcal{F} \otimes f^{-1}\mathcal{G}) \otimes \mathcal{O}_X$$

$$\cong f^{-1}f^{-1}(\mathcal{F} \otimes \mathcal{G}) \otimes \mathcal{O}_X$$

$$= f^{-1}(\mathcal{F} \otimes \mathcal{G}) \otimes \mathcal{O}_X$$

$$= f^*(\mathcal{F} \otimes \mathcal{G})$$

ここで f^{-1} (colimit) と $(-) \otimes \mathcal{G}$ (left adjoint functor) が可換であることを用いた.

(証明). これは次のページにある証明である: https://math.stackexchange.com/questions/92398 (c) と $f^* \dashv f_*$:: adjoint pair をもちいる.

$$\operatorname{Hom}(f^*\mathcal{F}\otimes f^*\mathcal{G},-)$$

$$\cong \operatorname{Hom}(f^*\mathcal{F},\mathcal{H}om(f^*\mathcal{G},-))$$

$$\cong \operatorname{Hom}(\mathcal{F},f_*\mathcal{H}om(f^*\mathcal{G},-))$$

$$\cong \operatorname{Hom}(\mathcal{F},\mathcal{H}om(\mathcal{G},f_*-))$$

$$\cong \operatorname{Hom}(\mathcal{F}\otimes\mathcal{G},f_*-)$$

$$\cong \operatorname{Hom}(f^*(\mathcal{F}\otimes\mathcal{G}),-)$$

途中で $f_*\mathcal{H}om(f^*\mathcal{G},-)\cong\mathcal{H}om(\mathcal{G},f_{*}-)$ を使ったが、これは次の計算で示される.

$$\begin{split} &\Gamma(V, f_* \mathcal{H}om_X(f^*G, H)) \\ &= \operatorname{Hom}_{f^{-1}(V)}(f^*G|_{f^{-1}(V)}, H|_{f^{-1}(V)}) \\ &= \operatorname{Hom}_{f^{-1}(V)}(f_V^*G|_V, H|_{f^{-1}(V)}) \\ &= \operatorname{Hom}_V(G|_V, (f_V)_* H|_{f^{-1}(V)}) \\ &= \operatorname{Hom}_V(G|_V, (f_*H)|_V) \\ &= \Gamma(V, \mathcal{H}om_Y(G, f^*H)) \end{split}$$

Ex5.2 Module Sheaves over the Spec of a D.V.R.

R :: D.V.R., $X=\operatorname{Spec} R, K=\operatorname{Quot}(R)$ とおく. X は 2 点空間 $\{\zeta,\mathfrak{m}\}$ $(\zeta=(0))$ であり、開集合系は $\{\emptyset,\{\zeta\},X\}$ である.

(a) \mathcal{O}_X -module $\mathcal{F} \leftrightarrow \rho : M \otimes_R K \to L$.

 $\mathcal{F}:: \mathcal{O}_X$ -module をとる. $\mathcal{O}_X(\{\zeta\}) = K, \mathcal{O}_X(X) = R^{\dagger 1}$ だから、 \mathcal{F} は K-module $L = \mathcal{F}(\{\zeta\})$ とR-module $M = \mathcal{F}(X)$ と、以下の図式を可換にする restriction map $\tilde{\rho}$ で与えられる.

$$\begin{array}{ccc}
M & \xrightarrow{\tilde{\rho}} & L \\
\uparrow & & \uparrow \\
R & \xrightarrow{\tilde{\rho}} & K
\end{array}$$

ここで $l:R\to K=R_{(0)}$ は標準的な局所化写像である.したがって L も R-module とみなせて,以下の図式にある $\rho:m\otimes x\mapsto \tilde{\rho}(m)\cdot x$ が得られる.

逆に $\rho: M \otimes_R K \to L$ があるとき、 $\tilde{\rho} = \rho|_{M \otimes R}$ とすれば $\tilde{\rho}: M \to L$ が得られる.

(b) \mathcal{F} :: quasi-coherent $\iff \rho$:: isomorphism.

■ ⇒ . \mathcal{F} :: quasi-coherent のとき, $M := \Gamma(X, \mathcal{F})$ とすると, Prop5.1a から $\mathcal{F} = \tilde{M}$. \tilde{M} の定義から, restriction map $\tilde{\rho}$ は次のようなものである.

$$\begin{array}{cccc} \tilde{\rho}: & M & \to & \tilde{M}(\{\zeta\}) \\ & m & \mapsto & [\zeta \mapsto m/1 \in M_{\zeta}] \end{array}$$

こうして ρ が定まる.

$$\rho: \quad M \otimes K \quad \to \qquad \tilde{M}(\{\zeta\})$$

$$m \otimes x \quad \mapsto \quad [\zeta \mapsto x(m/1) \in M_{\zeta}]$$

逆写像が $[\zeta \mapsto m/s] \mapsto m \otimes (1/s)$ (この逆写像が加群準同型かつ well-defined map であることは容易 に分かる)で定まるからこれは同型である.

■ ← . 仮定より,

$$\mathcal{F}(X) = M, \quad \mathcal{F}(\{\zeta\}) = L \stackrel{\rho}{\cong} M \otimes K \cong M_{\zeta} \cong \tilde{M}(\{\zeta\})$$

 $^{^{\}dagger 1}$ $\mathcal{O}_X(\{\zeta\})$ は affine scheme の sheaf の定義から分かる. つまり, $\mathcal{O}_X(\{\zeta\})$ の元は $\{\zeta\} \to \mathcal{O}_{X,\zeta} = K$ の写像であって local には R の元の分数で書けるものである. $\{\zeta\}$ は 1 点集合だから,これは $\zeta \mapsto f/g \in K$ なる写像全体を取れば良い. $\mathcal{O}_X(\{\zeta\})$ と K に集合としての全単射だけでなく同型もあることは自明であろう.一般に,点 $x \in X$ について $\{x\}$ が開集合ならば $\mathcal{F}(\{x\}) \cong \mathcal{F}_x$.

Ex5.3 $\tilde{\Box}$ and $\Gamma(X,\Box)$ are Adjoint Pair.

A :: ring, $X=\operatorname{Spec} A$ とする. この時, $\tilde{\square}$ と $\Gamma(X,\square)$ は adjoint である. すなわち, 任意の M :: A-module, \mathcal{F} :: \mathcal{O}_X -module について,

$$\operatorname{Hom}_A(M, \Gamma(X, \mathcal{F})) \cong \operatorname{Hom}_{\mathcal{O}_X}(\tilde{M}, \mathcal{F}).$$

写像 $\Phi: \operatorname{Hom}_A(M,\Gamma(X,\mathcal{F})) \to \operatorname{Hom}_{\mathcal{O}_X}(\tilde{M},\mathcal{F})$ を次のように定める. U:: open in X に対し, $\tilde{M}(U)$ の元 s は

$$\sigma: \quad U \quad \to \quad M_u$$
$$\quad u \quad \mapsto \quad m/s$$

のような写像である. この元 σ を $\alpha \in \operatorname{Hom}_A(M, \Gamma(X, \mathcal{F}))$ によって以下のように写す.

$$(\Phi(\alpha))_U: \quad \tilde{M}(U) \quad \to \quad \mathcal{F}(U)$$

$$\sigma \quad \mapsto \quad \bar{\alpha}(\sigma)|_U$$

ただし A_u -module homomorphism $\alpha_{(u)}$ を $m/s \mapsto \alpha(m)/s$ で定めた.

TODO: A-module homomorphism $\alpha \in \operatorname{Hom}_A(M,\Gamma(X,\mathcal{F}))$ に対し、 A_x -module homomorphism $\tilde{M}_x \to \mathcal{F}_x$ は $m/s \mapsto \alpha(m)_x/s$ で定まる.これを貼り合わせれば良い.

Ex5.4 The Original Definition of (Quasi-)Coherent Sheaves.

- ■quasi-coherent \iff cokernel of free sheaves locally. \mathcal{F} :: sheaf on X が quasi-coherent ならば、任意の open affine subset $U = \operatorname{Spec} A$ について $\mathcal{F}|_U \cong \tilde{M}$ となる A-module M が存在する (Prop5.4). M は cokernel of free module として表現できる(Ati-Mac Prop2.3 の証明を参照せよ)から、完全列 $0 \to A^m \to A^n \to M \to 0$ に対して functor $\tilde{\Box}$ を用いれば $\mathcal{F}|_U \cong \tilde{M}$ は cokernel of free sheaves で表現できる事が得られる $^{\dagger 2}$. 逆は free sheaf が quasi-coherent であることと Prop5.7 より従う.
- ■coherent \iff cokernel of finite rank free sheaves locally. X が Noetherian で $\mathcal F$ が coherent ならば、任意の open affine subset $U=\operatorname{Spec} A$ について $\mathcal F|_U\cong \tilde M$ となる finitely generated A-module M が存在する (Prop5.4). $\tilde M$ が finite rank free sheaf であることは quasi-coherent の場合と同様. 逆は finite rank free sheaf が coherent であることと Prop5.7 より従う.

Ex5.5 Is $f_*\mathcal{F}$ Coherent?

(a) An Example that \mathcal{F} is Coherent but $f_*\mathcal{F}$ is NOT Coherent.

材料は次の通り.

$$A = \mathbb{C}, \ B = \mathbb{C}[x], \ X = \operatorname{Spec} A = \operatorname{Spec} \mathbb{C}, \ \mathcal{F} = \tilde{\mathbb{C}} = \mathcal{O}_X.$$

明らかに \mathcal{F} は coherent \mathcal{O}_X -module である (Example 5.2.1). $f:\operatorname{Spec} B \to \operatorname{Spec} A$ を標準的埋込み $A \hookrightarrow B$ から誘導されるものとすると、Prop5.1e より

$$f_*\mathcal{F} \cong (\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}[x]) \cong (\mathbb{C}[x]) = \tilde{B}$$

 $^{^{+2}}$ Ex5.3 から $\tilde{\Box}$ は left adjoint なので direct sum (colimit) と可換であることに注意.

となる. $B = \mathbb{C}[x]$ は明らかに finitely generated A-module でない.

(b) Closed Immersion is a Finite Morphism.

 $f: X \to Y ::$ closed immersion をとる. Y の open affine subset $U = \operatorname{Spec} A$ をとり、 $V = f^{-1}(U)$ とすると、 $f|_V: V \to \operatorname{Spec} A$ は closed immersion になっている. Cor5.10(あるいは Ex3.11b)より $V \cong \operatorname{Spec} A/\mathfrak{a}$ となるイデアル \mathfrak{a} が存在する.

以上から任意の open affine subset $U = \operatorname{Spec} A \subseteq Y$ に対し $V = f^{-1}(U) = \operatorname{Spec} A/\mathfrak{a}$ かつ B :: finitely generated A-module $(1 + \mathfrak{a}$ で生成される) なので f :: finite.

(c) If X,Y:: noetherian schemes, $f:X\to Y::$ finite and $\mathcal F::$ coherent on X, then $f_*\mathcal F::$ coherent.

f:: finite から、任意の affine open subset $\operatorname{Spec} B \subset Y$ に対して $f^{-1}\operatorname{Spec} B$ は affine scheme $\operatorname{Spec} A$ であり、かつ A:: finitely generated B-module である、 $U = \operatorname{Spec} A, V = \operatorname{Spec} B$ としておこう.

Prop5.4 より、 $\mathcal{F}|_{\operatorname{Spec} A} = \tilde{M}$ なる finitely generated A-module M が存在する. $f|_U: \operatorname{Spec} A \to \operatorname{Spec} B$ だから Prop5.1 から

$$(f_*\mathcal{F})|_V \cong f_*(\mathcal{F}|_U) \cong f_*\tilde{M} \cong (M \otimes_B A).$$

(一番左の同型は任意の V の開集合上での section を見れば良い.) 今 M,B は共に finitely generated A-module だから, $f_*\tilde{M}$ も finitely generated \mathcal{O}_V -module. V は任意の affine open subset としていたから, $f_*\mathcal{F}$:: coherent.

Ex5.6 Support.

(a) Supp m = V(Ann(m)).

 $A :: \operatorname{ring}, M :: A\operatorname{-module}, X = \operatorname{Spec} A$ とおく、さらに $\mathcal{F} = \tilde{M}$ とする、 $m \in M = \Gamma(X, \mathcal{F})$ について、 $\operatorname{Supp} m = \{\mathfrak{p} \in X \mid m_{\mathfrak{p}} \neq 0\}$ を考える、 $\operatorname{Ann} m = \{a \in A \mid am = 0\}$ とする、

$$m_{\mathfrak{p}} = 0 \iff \exists a \in A - \mathfrak{p}, \ am = 0$$

だから、 $m_{\mathfrak{p}} \neq 0$ となるのは $(A - \mathfrak{p}) \cap \mathrm{Ann}\, m = \emptyset$ であるとき、すなわち $\mathrm{Ann}\, m \subseteq \mathfrak{p}$ となっているときである.よって $\mathrm{Supp}\, m = V(\mathrm{Ann}\, m)$.

(b) If $X :: Noetherian and <math>M :: Finitely Generated, then Supp <math>\mathcal{F} = V(Ann M)$.

 $\operatorname{Prop}5.1$ から $\mathcal{F}_{\mathfrak{p}}\cong M_{\mathfrak{p}}$. M の生成元全体を G とすると、以下のようになる.

$$M_{\mathfrak{p}} \neq 0 \iff {}^{\exists}g \in G, \ g_{\mathfrak{p}} \neq 0 \iff {}^{\exists}g \in G, \ \mathfrak{p} \supseteq \operatorname{Ann}g \iff \mathfrak{p} \supseteq \bigcap_{g \in G} \operatorname{Ann}g.$$

 $\operatorname{Ann} M = \bigcap_{g \in G} \operatorname{Ann} g$ は明らか、よって $\operatorname{Supp} \mathcal{F} = V(\operatorname{Ann} M)$.

(c) The Support of a Coherent Sheaf on a Noetherian Scheme is Closed.

 $\mathcal{F}|_U$ が finitely generated module ならば $\operatorname{Supp} \mathcal{F}|_U$:: closed. このような開集合 U は有限個で十分 だから $\operatorname{Supp} \mathcal{F}$ が閉集合の有限和となり,したがって閉集合である.

- (d) $\Gamma_{\mathfrak{a}}(M)^{\sim} \cong \mathcal{H}_{Z}^{0}(\mathcal{F}).$
- (e) \mathcal{F} :: (Quasi-)Coherent $\implies \mathcal{H}^0_Z(\mathcal{F})$:: (Quasi-)Coherent.

Ex5.7 A Sheaf is Locally Free \iff Its Stalks are Free.

 (X, \mathcal{O}_X) & noetherian ringed space $\succeq \cup$, \mathcal{F} & coherent sheaf $\succeq \dagger \eth$.

(a) \mathcal{F}_x :: free $\implies \mathcal{F}|_U$ is free for a $x \in U$:: open in X.

 \mathcal{F} :: coherent より, $\mathcal{F}|_U = \tilde{M}$ となる $U = \operatorname{Spec} A$:: open in $X \geq M$:: finitely generated A-module が存在する. M の generator がn 個あるとすると, finite rank free module $A^{\oplus n}$ の generator を M の generator に写す surjective module homomorphism f によって exact sequence が出来る.

$$0 \longrightarrow \ker f \longrightarrow A^{\oplus n} \xrightarrow{f} M \longrightarrow \operatorname{coker} f = 0 \longrightarrow 0$$

この exact sequence を functor $\tilde{\Box}$ で写し x での stalk をとると, Prop5.2, 5.1 から, 再び exact sequence が得られる.

$$0 \longrightarrow \ker f_x \longrightarrow (A_x)^{\oplus n} \xrightarrow{f_x} M_x \longrightarrow \operatorname{coker} f_x = 0 \longrightarrow 0$$

今 $(\mathcal{F}|_U)_x = \tilde{M}_x = M_x$ だから、f の作り方から f_x :: iso. よって $\ker f_x = 0$. したがって十分小さな開集合 $(x \in) V$ $(\subseteq U)$ をとれば $\ker f|_V = 0$ となる。f :: iso on V ということになるから、 $\Gamma(V,\mathcal{F}|_V) \cong A^{\oplus n}$ 、 $\mathcal{F}|_V \cong (A^{\oplus n})$.

- (b) \mathcal{F} :: locally free $\iff \mathcal{F}_x$ are free $\mathcal{O}_{X,x}$ -modules for all $x \in X$. \implies は定義から、 \iff は (a) から明らか.
- (c) \mathcal{F} :: invertible $\iff {}^{\exists}\mathcal{G}$:: coherent, $\mathcal{F} \otimes \mathcal{G} \cong \mathcal{O}_X$.
- $\blacksquare \Longrightarrow . \quad \mathcal{G} = \check{\mathcal{F}} \$ とおくと、Ex5.1b から

$$\mathcal{F} \otimes \mathcal{G} \cong \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F}) \cong \mathcal{O}_X.$$

■ \Leftarrow . $x \in X$ を任意にとり、stalk をみる. \mathcal{F}, \mathcal{G} :: coherent だから、 $\mathcal{F}_x, \mathcal{G}_x$ は finitely generated $\mathcal{O}_{X,x}$ -module と同型である.

$$M_x \otimes N_x \cong \mathcal{O}_{X,x}$$
.

 $\{\mathrm{id}_{\mathcal{O}_{X,x}}\}=\mathrm{Hom}(M_x\otimes N_x,*)\cong\mathrm{Hom}(M_x,\mathrm{Hom}(N_x,*))$ だから $M_x\cong\mathcal{O}_{X,x}$ (?). (a) から $\tilde{M}\cong\mathcal{O}_X$ が得られる. よって \mathcal{F} は invertible.

Ex5.8
$$\phi(x) = \dim_{k(x)} \mathcal{F}_x \otimes_{\mathcal{O}_x} k(x)$$
.

X:: noetherian scheme, F:: coherent sheaf on X とする.

$$\phi(x) = \dim_{k(x)} \mathcal{F}_x \otimes_{\mathcal{O}_x} k(x), \quad k(x) = \mathcal{O}_x/\mathfrak{p}_x$$

という関数を考えよう. Ati-Mac Ex2.1 から $\mathcal{F}_x \otimes_{\mathcal{O}_x} k(x) \cong \mathcal{F}_x/\mathfrak{p}_x \mathcal{F}_x$.

(a) ϕ :: upper semi-continuous.

任意の $n \in \mathbb{Z}$ について $\phi^{-1}(\mathbb{Z}_{\geq n})$:: closed in X を示す。 $\mathcal{F}|_U$ が $A = \mathcal{O}_X(U)$ と置いた時 finitely generated A-module M を用いて \tilde{M} と書けるような U :: open in X をとる。このような U で X を被覆できるから, $U \cap \phi^{-1}(\mathbb{Z}_{\geq n})$:: closed in U を示せば十分である.

Prop5.1 から $x\in U$ について $\mathcal{F}_x\cong M_x$. 完全列 $0\to\mathfrak{m}_xM_x\to M_x\to M_x/\mathfrak{m}_xM_x\to 0$ と, $\mathfrak{m}_x=0$ in k(x) を考えれば, $\phi(x)=\dim_{k(x)}M_x$ と分かる.M の最小の生成元集合を G とおくと, $\dim_{k(x)}M_x$ は $g_x\neq 0$ であるような $g\in G$ の個数に等しい.そこで次の集合をとる.

$$\bigcup_{G_n \subseteq G} \bigcap_{g \in G_n} \operatorname{Supp} g \subseteq U$$

この集合の点では n 個以上の $g \in G$ が 0 にならず, $\phi(x) \ge n$ となる. ただし $\bigcup_{G_n \subseteq G}$ は丁度 n 個の元を持つ G の部分集合 G_n すべてを渡る. Ex5.6a より, $g \in G$ について Supp g :: closed で,G は有限だから,これは閉集合である.

(b) If \mathcal{F} :: locally free and X :: connected then ϕ :: constant.

 \mathcal{F} :: locally free から,U :: open in X について, $A_U=\mathcal{O}_X(U)$ とおくと $\mathcal{F}|_U=(A_U^{\oplus n_U})^{\sim}$ となる n_U が存在する.したがって U においては ϕ の値は常に n_U である.この n_U を $\mathrm{rank}\,\mathcal{F}|_U$ と書くことにする.

さて、 $U \subseteq V$ ならば、 $\mathcal{F}|_U = (\mathcal{F}|_V)|_U = ((A_V^{\oplus n_V})^{\sim})|_U$ なので $\operatorname{rank} \mathcal{F}|_U = \operatorname{rank} \mathcal{F}|_V$. ここから一般に、 $U \cap V \neq \emptyset$ ならば $\operatorname{rank} \mathcal{F}|_U = \operatorname{rank} \mathcal{F}|_V$ だと分かる.このことを元に次の同値関係を考える.

$$U \cap V \iff {}^{\exists}W_1, \dots, W_s :: \text{ open in } X, \ \ U \cap W_1, W_1 \cap W_2, \dots, W_s \cap V \neq \emptyset.$$

 $U \cap V$ ならば rank $\mathcal{F}|_U = \operatorname{rank} \mathcal{F}|_V$ であることは今や明らか. X :: conncted より,この同値関係による X の開集合の同値類はただひとつ.よって ϕ :: constant.

(c) If X :: reduced and ϕ :: constant then \mathcal{F} :: locally free.

 $\mathcal{F}|_U = M$ となるような U :: affine open in X, M :: finitely generated A-module $(A := \mathcal{O}_X(U))$ を とる. X :: reduced noetherian scheme より A :: reduced noetherian ring.

点 $\mathfrak{p} \in \operatorname{Spec} A = U$ をとり、 $n = \phi(\mathfrak{p})$ とする. 次の完全列を考える.

$$0 \longrightarrow \ker \iota_{\mathfrak{p}} \longrightarrow A_{\mathfrak{p}}^{\oplus n} \stackrel{\iota_{\mathfrak{p}}}{\longrightarrow} M_{\mathfrak{p}} \longrightarrow 0.$$

 $A^{\oplus n}$ の標準的基底を $\{e_i\}_{i=1}^n$ とすると, ι は $e_i\mapsto g_i$ なるものである. $k(\mathfrak{p})$:: field は平坦だから, $\otimes_{A_n}k(\mathfrak{p})$ は完全列を保つ.

$$0 \longrightarrow (\ker \iota_{\mathfrak{p}}) \otimes k(\mathfrak{p}) \longrightarrow A_{\mathfrak{p}}^{\oplus n} \otimes k(\mathfrak{p}) \xrightarrow{\iota_{\mathfrak{p}} \otimes 1} M_{\mathfrak{p}} \otimes k(\mathfrak{p}) \longrightarrow 0.$$

 $n=\dim_{k(\mathfrak{p})}A_{\mathfrak{p}}^{\oplus n}\otimes k(\mathfrak{p})=\dim_{k(\mathfrak{p})}M_{\mathfrak{p}}\otimes k(\mathfrak{p})$ と $\dim_{k(\mathfrak{p})}$ の加法性から、 $(\ker\iota_{\mathfrak{p}})\otimes k(\mathfrak{p})=0$. 変形すると $\ker\iota_{\mathfrak{p}}/\mathfrak{p}\ker\iota_{\mathfrak{p}}=0$. $\ker\iota_{\mathfrak{p}}$ は $A_{\mathfrak{p}}$ -module だったから、中山の補題より $\ker\iota_{\mathfrak{p}}=0$.

 $\iota:A^{\oplus n}\to M$ を、生成元を生成元へ写す標準的全射とする。もし $\ker\iota\neq 0$ ならば、 $\ker\iota_{\mathfrak{p}}\neq 0$ であるような \mathfrak{p} がとれる(by A:: reduced?)。((a)での議論と $\phi::$ constant から、M の生成元の任意の点での局所化は常に non-zero.)しかし上での議論から常に $\ker\iota_{\mathfrak{p}}=0$ だから、 $\ker\iota=0$. よって M:: free module.

Ex5.9 Quasi-Finitely Generated Graded S-Modules.

Ex5.10 Saturated Ideals and Closed Sub-Schemes.

 $S = A[x_0, ..., x_n], X = \operatorname{Proj} S$ とおく. 既に homogeneous ideal $I \subset S$ が X の closed subscheme を定めること (Ex3.12), 逆に X の closed subscheme はこのように定まることを示した (5.16). homogeneous ideal $I \subset S$ に対し、その saturation を以下で定める.

$$\bar{I} = \{ s \in S \mid \forall i = 0, \dots, n, \exists r \ge 0, x_i^r s \in I. \}$$

 $I=\bar{I}$ の時, I は saturated ideal であると言われる. S の saturated ideal と X の closed subscheme の間に一対一対応があることを示そう.

注意 Ex5.10.1

 $x_i^r s \in I$ は $s \in (I:x_i^r), x_i^r \in (I:s)$ と同値である. なので I:: saturated ideal について次が成り立つ.

$$\forall s \in S, \quad \left[\forall i = 0, \dots, n, \quad x_i \in \sqrt{(I:s)} \right] \implies s \in I.$$

 \Longrightarrow の左辺は $S_1 \subseteq \sqrt{(I:s)}$ とも表現できる. あるいは次のようにも表現できる.

$$\bigcap_{i=0,\dots,n} \bigcup_{r>0} (I:x_i^r) \subseteq I.$$

(a) I:: Homogeneous Ideal $\implies \bar{I}::$ Also.

 $s\in \bar{I}$ をとり、 $s=s_u+\cdots+s_v$ と斉次分解する.今、 $i=0,\ldots,n$ を任意に取る.i に対して次を満たす r が存在する: $x_i^rs\in I$.したがって

$$(x_i^r s_u) + \dots + (x_i^r s_v) \in I$$

が成立している. I:: homogeneous なので $x_i^r s_u, \ldots, x_i^r s_v \in I$. よって $s_u, \ldots, s_v \in \bar{I}$ となる.

(b) $\bar{I}_1 \cong \bar{I}_2 \iff \operatorname{Proj} S/I_1 \cong \operatorname{Proj} S/I_2$.

次を示す:

- 1. I:: homogeneous ideal について $Proj S/I \cong Proj S/\bar{I}$.
- 2. I_1, I_2 :: saturated homogeneous ideal について $\operatorname{Proj} S/I_1 \cong \operatorname{Proj} S/I_2$ ならば $I_1 \cong I_2$.

注意 Ex5.10.2

 $S=k[x,y], I_1=(x), I_2=(y)$ の時, I_1,I_2 は saturated ideal かつ $I_1\neq I_2$. しかし $\operatorname{Proj} S/I_1,\operatorname{Proj} S/I_2$ はどちらも hyperplane で同型である.なので,主張を $\bar{I}_1=\bar{I}_2\iff\operatorname{Proj} S/I_2\cong\operatorname{Proj} S/I_2$ と理解してはいけない.

 \blacksquare Proj $S/I \cong$ Proj S/\bar{I} . $I \subseteq \bar{I}$ なので、次の全射準同型がある.

$$\iota: \quad S/I \quad \to \quad S/\bar{I}$$
$$s+I \quad \mapsto \quad s+\bar{I}$$

 ι が誘導する $(S/I)_{(x_i+I)} \to (S/\bar{I})_{(x_i+\bar{I})}$ の写像は明らかに全射であり,以下で示すように単射でもある. これは isomorphism of affine schemes $\operatorname{Spec}(S/\bar{I})_{(x_i+\bar{I})} \xrightarrow{\cong} \operatorname{Spec}(S/I)_{(x_i+I)}$ を誘導し,これで被覆される $\operatorname{Proj} S/\bar{I} \xrightarrow{\cong} \operatorname{Proj} S/I$ も同型である.

主張 Ex5.10.3

 ι から誘導される $\phi_i: (S/I)_{(x_i+I)} \to (S/\bar{I})_{(x_i+\bar{I})}$ は単射.

(証明). i = 0, ..., n を一つ取る.

$$\begin{array}{cccc} \phi_i: & (S/I)_{(x_i+I)} & \to & (S/\bar{I})_{(x_i+\bar{I})} \\ & \frac{s+I}{x_i^{\deg s}+I} & \mapsto & \frac{s+\bar{I}}{x_i^{\deg s}+\bar{I}} \end{array}$$

 $\frac{s+I}{r^d+I}$ の像が 0 となるのは次が成立する時

$$\exists r \geq 0, \quad x_i^r s \in \bar{I}.$$

 $ar{I}$ の定義より, $R\geq 0$ を十分大きくすると $x_i^{r+R}s\in I$ となる.これは $\frac{s+I}{x_i^{\deg s}+I}=0$ を意味する.よって $\ker\phi_i=0$.

■ $\operatorname{Proj} S/I_1 \cong \operatorname{Proj} S/I_2 \implies I_1 \cong I_2.$ $S/I_1, S/I_2$ が S_0 -module として同型であることを示す。 $f: \operatorname{Proj} S/I_2 \xrightarrow{\cong} \operatorname{Proj} S/I_1, \phi_i = (f|_{D_+(x_i+I_1)})^\#$ とする。この時, $\phi_i: (S/I_1)_{(x_i+I_1)} \xrightarrow{\cong} (S/I_2)_{(y_i+I_2)}$ であり, $y_i+I_2 \in (S/I_2)_1$ である^{†3}.

主張 Ex5.10.4

 $ho_i: S/I_1 o (S/I_1)_{(x_i+I_1)}$ を $s+I_1 \mapsto rac{s+I_1}{r^{\deg(s+I_1)}+I_1}$ で定める. $d \geq 0$, $s+I_1, t+I_1 \in (S/I_1)_d$ をとる.

$$[\forall i = 0, \dots, n, \ \rho_i(s + I_1) = \rho_i(t + I_2)] \implies s + I_1 = t + I_1.$$

すなわち, $\bigoplus_{0 \le i \le n} \rho_i$ は単射である.

(証明). 任意の i について $\frac{s+I_1}{x_i^d+I_1}=\frac{t+I_1}{x_i^d+I_1}$ となることは次と同値.

$$\forall i = 0, \dots, n, \quad \exists r \ge 0, \quad x_i^r(sx_i^d - x_i^d t) = x_i^{r+d}(s-t) \in I_1.$$

saturated ideal の定義から, $s-t \in I_1$.

 I_1 を I_2 に、 x_i を y_i に変えても同様である.(s-t の斉次分解を経由する.)これを $\sigma_i:S/I_2\to (S/I_2)_{(y_i+I_2)}$ としておこう. ρ_i,σ_i は定義の仕方から全射である.したがって主張と合わせて次の全単射が構成できる.

$$(S/I_1)_d \xrightarrow{\bigoplus_i \rho_i} \bigoplus_{0 \leq i \leq n} \{s/x_i^d \in (S/I_1)_{(x_i+I_1)}\} \xrightarrow{\bigoplus_i \phi_i} \bigoplus_{0 \leq i \leq n} \{t/y_i^d \in (S/I_2)_{(y_i+I_2)}\} \xrightarrow{\bigoplus_i \sigma_i)^{-1}} (S/I_2)_d.$$

すなわち S/I_1 と S/I_2 は S_0 -module として同型である. I_1,I_2 は同じ S の部分加群だから, $I_1\cong I_2$.

 $^{^{\}dagger 3}$ $D_+(x_i)$ が $\operatorname{Proj} S/I_1$ を被覆するから $\phi D_+(x_i) = D_+(y_i)$ が $\operatorname{Proj} S/I_2$ を被覆する. したがって $\{y_i\}$ が S/I_2 の生成元であり,それは $(S/I_2)_1$ の元である.

(c) The Ideal $\Gamma_*(\mathcal{I}_Y)$ is saturated.

 $i:Y\to X=\operatorname{Proj} S$ を closed immsersion とすると、 $\mathcal{I}_Y=\ker i^\#\subseteq\mathcal{O}_X.$ $\mathcal{O}_X(n)\otimes\mathcal{J}_Y(d)\cong\mathcal{J}_Y(n+d)$ (pp.115-116) に注意.

Prop5.13 より、 $S = \Gamma_*(X, \mathcal{O}_X)$ 、そこで $s \in \Gamma(X, \mathcal{O}_X(n))$ をとり、次が成り立つとする.

$$\forall i = 0, \dots, n, \quad \exists r_i \ge 0, \quad x_i^{r_i} s \in \Gamma(X, \mathcal{J}_Y(n+r_i)).$$

この時 $s\in\Gamma(X,\mathcal{J}_Y(n))$ となることを示せば良い. $x_i^{-r_i}$ は $\Gamma(D_+(x_i),\mathcal{O}_X(-r_i))=(S(-r_i))_{(x_i)}$ の元だから,

$$x_i^{-r_i}(x_i^{r_i}s) = s \in \Gamma(D_+(x_i), \mathcal{O}_X(-r_i) \otimes \mathcal{J}_Y(n+r_i)) \cong \Gamma(D_+(x_i), \mathcal{J}_Y(n)).$$

よって $s \in \bigcap_i \Gamma(D_+(x_i), \mathcal{J}_Y(n))$. \mathcal{J}_Y の Gluability Axiom を用いて、主張が得られる.

(d) Saturated Homogeneous Ideals \leftrightarrow Closed Subschemes of $X = \operatorname{Proj} S$.

 \rightarrow は(b)から、 \leftarrow は(c)からわかる.

Ex5.11 The Segre Embedding.

S,T を $S_0=T_0=A$ であるような graded ring とする. (S,T) は A-module である.) これらの Cartesian product $S\times_A T$ を $\bigoplus_{d\geq 0} S_d\otimes_A T_d$ とする. $X=\operatorname{Proj} S,Y=\operatorname{Proj} T$ の時, $\operatorname{Proj}(S\times_A T)=X\times_A Y$ であること、加えて $\mathcal{O}_{\operatorname{Proj}(S\times_A T)}(1)\cong (\operatorname{pr}_1^*\mathcal{O}_X(1))\otimes (\operatorname{pr}_2^*\mathcal{O}_Y(1))$ となることを示す.

Ex5.12 Very Ample Invertible Sheaves.

Ex5.13 The *d*-uple Embedding.

S:: graded ring とし、 S_0 -algebra として S_1 で生成されているとする。この S と正整数 d>0 に対して

$$S_n^{(d)} := S_{nd}, \quad S^{(d)} := \bigoplus_{n>0} S_n^{(d)}$$

とおく. $\operatorname{Proj} S^{(d)} \cong \operatorname{Proj} S$ を示そう.

仮定より S_1 が S を S_0 -algebra として生成する.また,明らかに $S_1^{(d)}=S_d$ が $S^{(d)}$ を S_0 -algebra として生成する.そこで $g_0\in S_1$ を適当にとる.すると $f\in S_1$ について $S_{(f)}=S_{(ff_c^{(d-1)})}^{(d)}$ が簡単に分かる.

$$\frac{a}{f^n} = \frac{a \cdot f_0^{n(d-1)}}{f^n \cdot f_0^{n(d-1)}}.$$

ここで $a, f^n \in S_n, af_0^{n(d-1)}, f^n f_0^{n(d-1)} \in S_n^{(d)}$ に注意する。逆に $f' \in S_1^{(d)}$ をとると, $f \setminus f'$ であるような $f \in S_1$ について $S_{(f)} = S_{(f')}^{(d)}$ となる。したがって次が分かる。

$$\forall f \in S_1, f' \in S_1^{(d)}, \ f \backslash f' \implies \operatorname{Spec} S_{(f)} = \operatorname{Spec} S_{(f')}^{(d)}.$$

S の生成元 $f \in S_1(\text{resp.} \ S^{(d)})$ の生成元 $f' \in S_1^d$)を様々に取れば $\operatorname{Spec} S_{(f)}(\text{resp.} \ \operatorname{Spec} S_{(f')}^{(d)})$ で $\operatorname{Proj} S(\text{resp.} \ \operatorname{Spec} S^{(d)})$ を被覆できる $(S_1 \ o \ n \ \text{\small{mononoone}} \ o \ S_1^{(d)}$ は生成されるから f' に対応する f は常に存在すると考えて良い). よって $\operatorname{Proj} S \cong \operatorname{Proj} S^{(d)}$.

 S_1 の n 個の元の積 f' をとり, $f \setminus f'$ となる $f \in S_1$ をとる. $X_{(f')} = \operatorname{Spec} S_{(f')}^{(d)}$ 上の $\mathcal{O}(1)$ の元

$$h \cdot \frac{a'}{f'^n}$$
 $(a' \in S_n^{(d)}, h \in S_1^{(d)})$

は、分子分母に $(f/f')^n$ をかければ直ちに

$$h \cdot \frac{a}{f^n} \quad (a \in S_n, h \in S_d)$$

と読み替えられる.よって $\mathcal{O}_{\operatorname{Spec} S_{(f')}^{(d)}}(1) = \mathcal{O}_{\operatorname{Spec} S_{(f)}}(d)$, $\mathcal{O}_{\operatorname{Spec} S^{(d)}}(1) = \mathcal{O}_{\operatorname{Spec} S}(d)$.

Ex5.14 The *d*-uple Embedding is Projectively Normal.

これは ch I, Ex3.17b で私が考察したことの Scheme における一般化である.

A :: ring, $S_A^r = A[x_0, \dots, x_r]$, X :: closed subscheme of $\mathbb{P}_A^r = \operatorname{Proj} S_A^r$ とおく. $i: X \to \mathbb{P}_A^r$ を埋め込みとし, $\mathcal{I}_X = \ker i^\#$ とおく. さらに $n \in \mathbb{Z}$ に対して以下のように定義する (p.50, p.117, p.118).

$$S_A^r(n) = \bigoplus_{d \in \mathbb{Z}} (S_A^r)_{d+n}, \quad \mathcal{O}_X(n) = (S_A^r(n))\tilde{\ }, \quad \mathcal{I}_X(n) = \mathcal{I}_X \otimes_{\mathcal{O}_X} \mathcal{O}_X(n), \quad \Gamma_*(\mathcal{I}_X) = \bigoplus_{d \in \mathbb{Z}} \Gamma(X, \mathcal{I}_X(d))$$

Ex3.12, Cor5.12 より, $I = \Gamma_*(\mathcal{I}_X)$, $S(X) = S_A^r/I$ とおくと $X \cong \operatorname{Proj} S(X)$ となる. また, X が normal であるとは, 任意の点で X の local ring が integrally closed であることで, X が projectively normal であるとは, S(X) が integrally closed であることである.

以下 k :: integrally closed field, X :: connected normal closed subscheme of \mathbb{P}^r_k とし、S=S(X) とする. X の d-uple embedding(Ex5.13) が十分大きな d>0 について projectively normal であることを示す。

- (a) $S :: \text{ domain and } S' := \bigoplus_{n \geq 0} \Gamma(X, \mathcal{O}_X(n)) = \bar{S}.$
- (i) S :: domain.
- ■X:: integral projective scheme. X:: integral scheme ならば、任意の $f \in S_+$ について $\mathcal{O}_X(D_+(f)) = S_{(f)}$:: domain. したがって前段落より S:: domain とわかる. なので X:: integral scheme を示す. まず X:: normal より、任意の $x \in X$ について $\mathcal{O}_{X,x}$:: integral. なので Ex2.3a より X:: reduced. 次の段落で証明するとおり X:: irreducible もわかる. Prop1.1 から X:: integral scheme. (以上の証明から、X:: normal scheme $\Longrightarrow X$:: disjoint union of integral schemes が分かる.)
- ■X:: irreducible. X が二つ以上の異なる irreducible component を持っていたとして,それぞれ C_1,C_2 とする. X:: connected より, $C_1\cap C_2\neq\emptyset$ であるようにとれる.そこで $x\in C_1\cap C_2$ をとる と, $\mathcal{O}_{X,x}$ は integrally closed になり得ない.実際, $x\in\operatorname{Spec} R=U$ を affine open subset とすると,U は二つの異なる irreducible component $U\cap C_1,U\cap C_2$ をもつから,R はこれらに対応する 2 つの極小素イデアル $\mathfrak{p}_1,\mathfrak{p}_2$ をもつ.x に対応する素イデアル $\mathfrak{q}\in V(\mathfrak{p}_1)\cap V(\mathfrak{p}_2)$ での局所化によって R の極小素イデアルが消えることはないから,結局 $R_{\mathfrak{q}}\cong\mathcal{O}_{X,x}$ は二つの極小素イデアルをもつ.これは $\mathcal{O}_{X,x}$:: integral domain に反する.よって X:: irreducible.
- ■X:: integral projective scheme $\implies S$:: domain. k:: algebraically closed field なので、Prop4.10 から、X は projective variety V に対応する。V:: irreducible に注意。 Ex2.14d から V の homogeneous coordinate ring は S だから、S:: domain (cf. ch I, Ex2.4)。K:: function field of X としておく。

(ii) S' :: integrally closed.

■ \mathcal{J} の定義. \mathcal{J}_x の元. $\mathcal{J} = \bigoplus_{n \geq 0} \mathcal{O}_X(n)$ とおくと $S' = \Gamma(X, \mathcal{J})$ とみなせる. 点 $x \in X$ をとり, \mathcal{J}_x を考えよう. direct sum と stalk (どちらも direct limit) は可換だから,

$$\mathcal{J}_x = \bigoplus_{n>0} (\mathcal{O}_X(n))_x = \bigoplus_{n>0} (S(n))_x.$$

各 $(S(n))_x$ は次のような集合である.

$$(S(n))_x = (S(n))_{(\mathfrak{p}_x)} = \left\{ \frac{a}{f} \mid d \ge 0, f \in (S - \mathfrak{p}_x)_d, \ a \in (S(n))_d = S_{d+n} \right\}.$$

ただし \mathfrak{p}_x は点 x に対応する S の斉次素イデアルである. $n \geq 0$ だから

$$\mathcal{J}_x = \left\{ \frac{a}{f} \in S_{\mathfrak{p}_x} \mid f :: \text{ homogeneous, } \text{ ord } a \ge \deg f \right\}.$$

ここでの deg, ord は S に付与されているものである. ただし ord a は a が持つ斉次成分の次数で最低のものである. Quot $(\mathcal{J}_x)=\mathrm{Quot}(S)$ も分かる.

■S' :: integrally closed. Thm5.19 の証明後半から, $S' \subseteq \bar{S}$. Thm4.11 より, \bar{S} は S を含む K の全 C of valuation ring の共通部分である.したがって, $S' \supseteq \bar{S}$ は, $a \in K$ が S を含む全ての valuation ring に含まれるならば $a \in S'$,ということと同値である.

証明には Ex4.5 を用いる. R を S を含む K の valuation ring とする. この時, Ex4.5b から, $\mathcal{O}_{X,x}\subseteq R$ となる $x\in X$ がただひとつ存在する. Thm4.11 と仮定 (X:: normal) から, $\mathcal{O}_{X,x}=R$.

(b) $S_d = S'_d$ for all sufficiently large d.

S が Ex5.9 の仮定を満たすことは明らか. $\tilde{S} = \mathcal{O}_X$ なので、Ex5.9c から $S \approx S' = \Gamma_*(\mathcal{O}_X)$.

(c) $S^{(d)}$ is integrally closed for sufficiently large d.

(b) より,d を十分大きく取れば, $S_{nd}=S'_{nd}$ $(n\geq 0)$ となる($S_0=k=\bar{k}=S'_0$ に注意).なので,このd について,斉次環 $S^{(d)}=\bigoplus_{n\geq 0}S_{nd}$ はS' の部分環である. $S^{(d)}$ の元を係数に持つ多項式がQuot $(S^{(d)})$ に根を持っていたとする.

$$\left(\frac{f}{g}\right)^r + c_{r-1} \left(\frac{f}{g}\right)^{r-1} + \dots + c_0 = 0 \text{ where } f, g \in S^{(d)}, \{c_i\}_{i=0}^{r-1} \subset S^{(d)}.$$

 $S^{(d)}\subset S'$ かつ (a) から S' は integrally closed なので, $h:=f/g\in S'$. 上の等式で $(f/g)^r=h^r$ を移項してみると, $\deg c_i$ が d の倍数であることから, $\deg h^r=r\deg h$ も d の倍数だと分かる.r はいくらでも大きくできるから,r と d が互いに素であるようにすれば, $\deg h$ が d の倍数であることが得られる.以上から $h=f/g\in S^{(d)}$ であり, $S^{(d)}$:: integrally closed.

(d) X :: projectively normal $\iff X$:: normal and $\Gamma(\mathbb{P}^r_A, \mathcal{O}_{\mathbb{P}^r_A}(n)) \to \Gamma(X, \mathcal{O}_X(n))$ is surj.

 $X\subseteq \mathbb{P}^r_A$:: connected closed subscheme とする. X:: projectively normal と,X:: normal かつ自然な写像 $\Gamma(\mathbb{P}^r,\mathcal{O}_{\mathbb{P}^r}(n)) \to \Gamma(X,\mathcal{O}_X(n))$ が $n\geq 0$ の時全射であること,が同値であることを示す.

- ⇒ . X :: projectively normal の時,定義から $S = \bar{S}$ なので,(a) 後半から $S \cong S' = \Gamma(X, \mathcal{J})$. $x \in X$ とすると, $\mathcal{O}_{X,x} = S_{(\mathfrak{p}_x)} = \mathcal{J}_x$ であり,(a) 後半の証明から \mathcal{J}_x :: integrally closed.また closed immersion の定義から全射 $\mathcal{O}_{\mathbb{P}^r} \to \mathcal{O}_X$ が存在する.homomorphism of graded rings の定義を考えれば,全射が $\Gamma(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(n)) \to \Gamma(X, \mathcal{O}_X(n))$ に遺伝することが分かる.
- \leftarrow . $S_A^r(n) = \Gamma(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(n)) \rightarrow \Gamma(X, \mathcal{O}_X(n)) = S(n)$ が全射かつ X :: normal とする. すると直 ちに全射 $\Gamma_*(\mathcal{O}_{\mathbb{P}^r}) \rightarrow \Gamma_*(\mathcal{O}_X)$ が得られる. Ex5.9 より,全射 $(\mathcal{O}_{\mathbb{P}^r}) \rightarrow \mathcal{O}_X$ が存在し, \mathcal{I}_X の定義から,これの ker が I である. Prop5.13 より $\Gamma_*(\mathcal{O}_{\mathbb{P}^r}) \cong S_A^r$ なので, $S = S_A^r/I \cong \Gamma_*(\mathcal{O}_X) = S'$. (a) 後半から,これは integrally closed. (k :: integrally closed field は (c) でのみ使われている.)

Ex5.15 Extension of Coherent Sheaves.

X:: noetherian scheme, U:: open in X, F:: coherent sheaf on U とする. この時, F':: coherent sheaf on X であって $F'|_U = F$ となるものが存在する. つまり Noetherian Scheme の開集合上の coherent sheaf は拡張できる. これをいくつかの段階に分けて証明する.

Ex5.16 Tensor Operations on Sheaves.

 (X, \mathcal{O}_X) :: ringed space, \mathcal{F} :: \mathcal{O}_X -module とする.

(a) If \mathcal{F} :: locally free \mathcal{O}_X -module then $T^r(\mathcal{F}), S^r(\mathcal{F}), \bigwedge^r(\mathcal{F})$:: locally free.

Prop5.1,5.2 (まとめたものが Cor5.5) と、M :: free A-module に対して $T^r(M)$, $S^r(M)$, $\bigwedge^r(M)$:: free modules となることから、 $T^r(\mathcal{F})$, $S^r(\mathcal{F})$, $\bigwedge^r(\mathcal{F})$:: locally free が分かる.

また、それぞれの rank も計算できる. rank M=n $(M\cong A^{\oplus n})$ とする

$$\operatorname{rank} T^r(M) = \operatorname{rank} \left(\bigotimes_{i=1}^r A^{\oplus n} \right) = n^r.$$

 $\operatorname{rank} S^r(M)$ は r 個の一次独立な元を n 個の基底 $(A^{\oplus n}$ の基底) からとる重複組み合わせの総数に等しい.

rank
$$S^{r}(M) = H_{r}^{n} = \binom{n+r-1}{r} = \binom{n+r-1}{n-1}.$$

 $\mathrm{rank}\bigwedge^r(M)$ は r 個の一次独立な元を n 個の基底 $(A^{\oplus n}$ の基底) からとる(重複なし)組み合わせの総数 に等しい.

$$\operatorname{rank} \bigwedge^r(M) = C_r^n = \binom{n}{r}.$$

(b) the multiplication map induces $\bigwedge^r \mathcal{F} \cong (\bigwedge^{n-r} \mathcal{F}) \otimes \bigwedge^n \mathcal{F}$.

M:: locally free A-module とし、M の基底を x_1, \ldots, x_n とする.

■Notation. $S=\{1,\ldots,n\}$ とし、 $I\subseteq S$ に対して $x_I=\bigwedge_{i\in I}x_i$ とする. ただし, $i\in I$ は小さいものから取る. 例えば $I=\{3,2,5\}$ なら $x_I=x_2\wedge x_3\wedge x_5$ である. $x_\emptyset=1\in A$ としておく. また $\operatorname{sgn} I=\pm 1$ を $x_I\wedge x_{I^c}=(\operatorname{sgn} I)x_S$ で定める.

 \blacksquare →. $\bigwedge^n M = Ax_S \cong A$ が分かる. $\bigwedge M$ の multiplication map は次のものである.

$$\mu: \bigwedge^r M \otimes \bigwedge^{n-r} M \quad \to \quad \bigwedge^n M \cong A$$
$$x_I \otimes x_J \quad \mapsto \quad x_I \wedge x_J.$$

ただし $I,J \subset S$ は #I = r, #J = n - r を満たす。定義より $I \cap J \neq \emptyset$ ならば $\mu(x_I,x_J) = 0$, $I \cap J = \emptyset$ ならば $\mu(x_I,x_J)$ は $\operatorname{sgn} I = \pm 1 \in A$ へ写る。そこで, $I \subseteq S, x_I \in \bigwedge^r M$ に対し, $\mu(x_I,*) \otimes (x_{I^c} \wedge x_I)$ を x_I の像とする。以上で $\bigwedge^r M$ 全体からの写像が出来た.

■←. $\phi \otimes x_S \in (\bigwedge^{n-r} M)^{\check{}} \otimes \bigwedge^n M$ の像を次のように定める.

$$\sum_{I\subseteq S, \#I=n-r} (\operatorname{sgn} \sigma_I) \phi(x_I) x_{I^c}.$$

ただし S_n はn 次対称群である.

■isomorphism であること. $\mu(x_I,x_J)\neq 0$ となるのは $J=I^c$ の時のみ.なので x_I の像 $\mu(x_I,*)\otimes (x_{I^c}\wedge x_I)$ の像は $(\operatorname{sgn} I)^2x_I=x_I$.逆に $\phi\otimes x_S$ の像 $\sum_I(\operatorname{sgn} I)\phi(x_I)x_{I^c}$ の像は, $\phi=\sum_I(\operatorname{sgn} I)\phi(x_I)\mu(x_{I^c},*)$ ゆえに $\phi\otimes x_S$.

Ex5.17 Affine Morphisms.

Scheme morphism $f: X \to Y$ が affine morphism であるとは、Spec $A \in \mathfrak{U}$ ならば $f^{-1}(\operatorname{Spec} A)$ も affine であるような Y の affine cover $\mathfrak U$ が存在する、ということである.

(a) $f: X \to Y ::$ affine \iff for any $\operatorname{Spec} A \subseteq Y$ $f^{-1}\operatorname{Spec} A ::$ affine.

 \iff は明らか。 \implies を示す。 $\operatorname{Spec} A \subseteq Y$ をとり, $U = \operatorname{Spec} A, V = f^{-1}\operatorname{Spec} A$ とおく。 $f|_V:V \to \operatorname{Spec} A$ だけを考えれば十分なので $f:X \to \operatorname{Spec} A = Y$ とする。 $\operatorname{Ex3.1}$ の解答で証明した "Nike's Lemma"(と $\operatorname{Ex2.13b}$; $\operatorname{sp}(Y)$:: quasi-compact)を使うと, $\bigcup_{i=1}^r D_A(a_i) = Y$ かつ $f^{-1}D_A(a_i)$:: affine となる $\{a_i\}_{i=1}^r \subset A$ が存在することが分かる。

 $f^{-1}D_A(a_i)=\operatorname{Spec} B_i$ としよう、さらに $\phi=f_Y^\#:A=\mathcal{O}_Y(Y)\to\mathcal{O}_X(X)=B$ とする、Ex3.1 で証明した別の補題 "Preimage of POS is POS"を使うと、 $f^{-1}D_A(a_i)=D_{B_i}(b_i)$ となる $b_i\in B_i$ が存在する事が分かる、 $\bigcup_{i=1}^r D_A(a_i)=Y$ より $(a_1,\ldots,a_r)=(1)=A$ だから、 $(\phi(a_1),\ldots,\phi(a_r))=(1)=B$. "Preimage of POS is POS"の証明(b_i の定め方)から、 $X_{\phi(a_1)}=D_{B_i}(b_i)$:: affine、以上から Ex2.17b より $f^{-1}\operatorname{Spec} A$:: affine.

(b) An affine morphism is quasi-compact and separated. finite \implies affine

finite morphism が affine morphism であることは定義から明らか. affine morphism ならば quasi-compact (定義は Ex3.2) であることは Ex2.13b から分かる. affine morphism ならば separated であることは, Cor4.6f と Prop4.1 から.

(c) Spec \mathcal{A} .

Y:: scheme, A:: quasi-coherent sheaf of \mathcal{O}_Y -algebra とする. この時,以下のような X:: scheme, $f:X\to Y$ が一意に存在する: 任意の affine open subset $U\subseteq V\subseteq Y$ について, $f^{-1}U\cong\operatorname{Spec}\mathcal{A}(U)$

15

であり、 $f^{-1}U \hookrightarrow f^{-1}V$ が restrction map $\mathcal{A}(V) \to \mathcal{A}(U)$ に対応する. この X を **Spec** \mathcal{A} で表す.

- ■Construct X. Gluing Lemma(Ex2.12) を用いて X を構成する。貼り合わせるのは Spec $\mathcal{A}(\operatorname{Spec} R)$ である。V,W:: affine open subset of Y に対し, $U_V = \operatorname{Spec} \mathcal{A}(V), U_W = \operatorname{Spec} \mathcal{A}(W)$ とする。2 つの restriction map $\operatorname{res}_V, \operatorname{res}_W : \mathcal{A}(V), \mathcal{A}(W) \to \mathcal{A}(V \cap W)$ から誘導される写像 i_V, i_W : $\operatorname{Spec} \mathcal{A}(V \cap W) \to U_V, U_W$ をとる。 $U_{V,W} = \operatorname{im} i_V, U_{W,V} = \operatorname{im} i_W$ とおくと,open immersion の定義に沿って $U_{V,W}, U_{W,V}$:: open in U_V, U_W が確かめられる。 $(\mathcal{O}_{U_V}|_{U_{V,W}} \cong \mathcal{O}_{\operatorname{Spec} \mathcal{A}(V \cap W)})$ となる。)以上の設定で gluing が出来ることは明らか。f は Ex2.12 にある isomorphism $(\psi_V)^{-1}: \psi_V(U_V) \to U_V$ を貼り合わせれば良い。
- ■X satisfies the additional condition. V,W :: affine open subset of Y をとる. $V\subseteq W$ の時, $f^{-1}V\to f^{-1}W$ は $i_W:\operatorname{Spec} \mathcal{A}(V\cap W)=\operatorname{Spec} \mathcal{A}(V)\to\operatorname{Spec} \mathcal{A}(W)$ に対応し, i_W は定義から res_W に対応する.

■Uniqueness.

- (d) $f: X \to Y$:: affine $\iff \mathcal{A} \cong f_*\mathcal{O}_X$:: quasi-coherent \mathcal{O}_Y -algebra and $X \cong \mathbf{Spec}\mathcal{A}$.
- ⇒ . $\mathcal{A} = f_*\mathcal{O}_X$ とおく. $U = \operatorname{Spec} A \subseteq Y$ とすると, $f^{-1}U$:: affine だから $f^{-1}U = \operatorname{Spec} \mathcal{O}_X(f^{-1}U) = \operatorname{Spec} \mathcal{A}(U)$. また, $\operatorname{Spec} \mathcal{A}(U) = f^{-1}U \hookrightarrow f^{-1}V = \operatorname{Spec} \mathcal{A}(V)$ は直ちに res_V^U : $\mathcal{A}(V) \to \mathcal{A}(U)$ を誘導する.したがって(c)より $X \cong \operatorname{Spec} \mathcal{A}$. また,任意の U :: affine open subset in Y について, $\mathcal{A}(U)$ は $f_U^\# : \mathcal{O}_Y(U) \to f_*\mathcal{O}_X(U) = \mathcal{A}(U)$ によって $\mathcal{O}_Y(U)$ -algebra とみなすことが 出来る.よって \mathcal{A} :: quasi-coherent \mathcal{O}_Y -algebra.
- \leftarrow . $\mathcal{A} ::$ quasi-coherent \mathcal{O}_Y -algebra ならば, (c) から $\mathbf{Spec}\mathcal{A}$ が存在する. $\mathbf{Spec}\mathcal{A}$ の定義 から $f: \mathbf{Spec}\mathcal{A} \to Y$ は affine. $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ を考えると, $U = \mathrm{Spec}\mathcal{A} \subseteq Y$ について $f^{-1}U \cong \mathrm{Spec}\mathcal{A}(U)$ だから $\mathcal{O}_X(f^{-1}U) = (f_*\mathcal{O}_X)(U) \cong \mathcal{A}(U)$. このようなU でY を被覆できるから, $\mathcal{A} \cong f_*\mathcal{O}_X$.
- (e) { quasi-coherent \mathcal{O}_X -modules } \leftrightarrow { quasi-coherent \mathcal{A} -modules }.

 $f: X \to Y$ を affine morphism とし、 $\mathcal{A} = f_* \mathcal{O}_X$ とおく. (b) と Prop5.8c より、 \mathcal{F} :: quasi-coherent \mathcal{O}_X -module について $f_*\mathcal{F}$:: quasi-coherent \mathcal{A} -module が得られる.

逆に、 \mathcal{M} :: quasi-coherent \mathcal{A} -module をとる。 $U = \operatorname{Spec} A$:: open in Y をとると、 $f^{-1}U$:: affine なので $f^{-1}U = V = \operatorname{Spec} B$ とする。この時、 $\mathcal{M}|_U \cong \tilde{M}$ となる B-module($B = \mathcal{A}(U)$) が存在する。 $\phi = f_U^\#: A \to B$ によって M を A-module とみなしたものを $_AM$ と書くことにして、 $\tilde{M}|_U = (_AM)$ ~とおく。こうして \tilde{M} を構成する $^{\dagger 4}$. $(_AM) \otimes_A B \cong M$ が容易にわかるから,Prop5.2 から $f_*(\tilde{\mathcal{M}}|_U) \cong \mathcal{M}|_U$. $(_AM \otimes_A B) \cong M$ も同様にわかるから, $(_{*}(M|_U) \cong \mathcal{M}|_U$. $(_{*}D \otimes_A B) \cong M$ を可能にないるとおりであることは $(_{*}D \otimes_A B) \cong M$ をとると、 $(_{*}D \otimes_A B) \cong M$ を可能にないるとおりである。以上で主張が示せた。

Ex5.18 Vector Bundles.

 $^{^{\}dagger 4}$ つまるところ $ilde{M}=f^*M$ であるが,上の構成は M が \mathcal{O}_X -module でないという点で $\operatorname{Prop} 5.2$ の内容と異なる.