1 Alphabete, Abbildungen, Aussagenlogik

1.1 Alphabete

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Was ein Zeichen ist, wird nicht weiter diskutiert, hinterfragt, o.ä., weshalb man letzten Endes "theoretisch" *jede* endliche nichtleere Menge als Alphabet nehmen könnte. Das machen wir aber nicht.

1.2 Relationen und Abbildungen

Kartesisches Produkt erst mal an einfachem endlichen Beispiel klar machen:

$$\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

Begriff der Relation:

- Des öfteren ist bei einer Relation $R \subseteq A \times B$ auch A = B; man spricht dann auch von einer Relation auf der Menge A.
- \bullet Beispiel "Kleiner-Gleich-Relation" auf der Menge $M=\{1,2,3\},$ d. h. als Teilmenge von $M\times M,$ gegeben durch die Paare

$$R_{\leq} = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

- Manchmal benutzt man bekanntlich lieber Infixschreibweise und notiert $1 \le 3$ statt $(1,3) \in R_{\le}$.
- Spezialfälle $A = \emptyset$ oder/und $B = \emptyset$: dann ist auch $A \times B = \emptyset$ und die einzig mögliche Relation ist $R = \emptyset$.

Linkstotal etc.

- Begriffe linkstotal, rechtseindeutig und Abbildung an Beispielen wiederholen, Definitionen in äquivalente umformulieren, z.B. "rechtstotal, wenn es kein $b \in B$ gibt, zu dem kein $a \in A$ in Relation steht"
- Begriffe linkseindeutig/injektiv und rechtstotal/surjektiv und bijektiv wiederholen
- Begriffe Definitionsbereich, Zielbereich

1.3 Logisches

Achtung: der letzte Teil über Quantoren kommt nicht auf dem aktuellen Übungsblatt vor, wurde aber in der ersten Vorlesung schon besprochen.

Anmerkung zur Notation: Wir schreiben

- \mathbb{N}_+ für die Menge der positiven ganzen Zahlen, also $\mathbb{N}_+ = \{1, 2, 3, \dots\}$
- \mathbb{N}_0 für die Menge der nichtnegativen ganzen Zahlen, also $\mathbb{N}_0 = \mathbb{N}_+ \cup \{0\} = \{0, 1, 2, 3, \dots\}$

Wahrheitstabellen:

- Wenn man größere Formeln "auswerten" will, dann kann man Wahrheitswerte unter die Konnektive schreiben:
 - 1. Wahrheitswerte für die Variablen:

(A	\wedge	B)	V	A
falsch		falsch		falsch
falsch		wahr		falsch
wahr		falsch		wahr
wahr		wahr		wahr

2. Wahrheitswerte für die Teilformel $(A \wedge B)$:

(A	\wedge	B)	V	A
falsch	falsch	falsch		falsch
falsch	falsch	wahr		falsch
wahr	falsch	falsch		wahr
wahr	wahr	wahr		wahr

3. Wahrheitswerte für die ganze Formel

(A	\wedge	<i>B</i>)	V	A
falsch	falsch	falsch	falsch	falsch
falsch	falsch	wahr	falsch	falsch
wahr	falsch	falsch	wahr	wahr
wahr	wahr	wahr	wahr	wahr

- 4. Man sehe die Äquivalenz von $(A \wedge B) \vee A$ und A.
- Als Beispiel kann man auch gerne Aufgabe 2 aus der Klausur vom September 2010 durchrechnen lassen.

Implikation:

- ausführlich erklärt; sehen Sie sich bitte die Folien noch mal an.
- wesentlich: $A \Rightarrow B$ ist äquivalent zu $\neg A \lor B$
- Auswirkung auf Beweis von Aussagen der Form $A \Rightarrow B$: Man muss nur etwas tun, wenn A wahr ist. (so etwas wird sehr oft vorkommen)

Äquivalenz von aussagenlogischen Formeln

- Man bespreche noch einmal, was äquivalente Aussagen sind.
- Beachte: Äquivalente Aussagen enthalten "meistens" die gleichen Aussagevariablen:
 - Die Formeln A und C sind nicht äquivalent.
 - Denn es kann ja A wahr sein und C falsch.
 - Ausnahmen sind so etwas wie z. B. $A \wedge \neg A$ und $C \wedge \neg C$