Глава 1: Кинематика точки

§ 2 Косоугольные координаты

Здесь можно немного добавить строгости, а то ничерта не понятно. Пусть V — евклидово пространство (линейное со скалярным произведением). Как нам определяли, $q_{ik} = \mathbf{e_i} \cdot \mathbf{e_k}$,

$$\mathbf{a} \cdot \mathbf{b} = \sum_{ij} a^i b^j g_{ij}$$

Здесь a^k — коэффициенты разложения по $\mathbf{e_k}$ — называются контравариантными координатами.

Пусть V^* — сопряжённое к V, его базисом являются координатные функции f_k :: $f_k(\mathbf{x}) = x^k$. Поскольку задано скалярное произведение, задан канонический изоморфизм $V \to V^*$. Нам, правда, потребуется $V^* \to V$.

Введём ещё одну систему *векторов* в $V: \mathbf{e^k} = \mathbf{f_k^*}$, то есть $\mathbf{f_k(x)} = \mathbf{e^k \cdot x}$. Она и называется взаимным базисом, коэффициенты разложения по ней — ковариантные координаты. Из линейности скалярного произведения, ровно такие же координаты будут у соответствующей формы в V^* . Линейную независимость легко получить из ЛНЗ $\mathbf{f_k}$, а раз их $\dim V$, то полученные векторы являются базисом.

Так что можно сформулировать правило:

- Контравариантные координаты коэффициенты разложения по базису линейного пространства.
- Ковариантные координаты коэффициенты разложения по базису пространства линейных форм.

Ещё можно определить $g^{ij}=\mathbf{e^i}\cdot\mathbf{e^j}$, и перенести это на соответствующие линейные формы. Обобщая дальше, можно вообще сказать, что $g_i^k=\delta_{ij}$. Тогда g будет задавать действие формы на вектор. Вроде физикам это зачем-то надо. А после тирады выше уже развлекаться с индексами.

Утверждение 1. $e^k \cdot e_i = \delta_{ki}$

▼

Следует из определения координатной функции, ведь $\mathbf{e}^{\mathbf{k}} \cdot \mathbf{x} = f_{\mathbf{k}}(\mathbf{x})$

Утверждение 2. $\mathbf{a} \cdot \mathbf{b} = \sum_i a^i b_i$

Утверждение 3. Пусть $\mathbf{r} = \sum_k \xi^k \mathbf{e_k} \ u = \sum_k \xi_k \mathbf{e^k}$. Тогда $\xi_k = \mathbf{r} \cdot \mathbf{e_k} = \sum_i \xi^j g_{jk}$

 $lack extsf{V}$ Hy, $\mathbf{r}\cdot\mathbf{e_k}=\sum_j \xi_j\,\mathbf{e^j}\cdot\mathbf{e_k}=\sum_j \xi_j\,\delta_{jk}=\xi_k.$ Вроде всё.

-Аналогичная ситуация с ξ^k .

Утверждение 4. $\xi^k = \mathbf{r} \cdot \mathbf{e^k} = \sum_i \xi_j g^{jk}$.

Утверждение 5.

$$\mathsf{e}^{\mathsf{k}} = \sum_{j} g^{jk} \mathsf{e}_{\mathsf{j}}, \quad \mathsf{e}_{\mathsf{k}} = \sum_{j} g_{jk} \mathsf{e}^{\mathsf{j}}$$

. Первое домножить на ${f e}^{{f i}}$, второе на ${f e}_{{f i}}$.

Утверждение 6. $\sum_i g^{i\ell} g_{ik} = \delta_{\ell k}$

 \blacktriangledown

$$\sum_{i}g^{i\ell}g_{ik}=\sum_{i}g^{i\ell}\mathbf{e_{i}}\cdot\mathbf{e_{k}}=\mathbf{e}^{\ell}\cdot\mathbf{e_{k}}=\delta_{\ell k}$$

тут не опечатка, а отсыл- Как видно, когда определения безкоординатные, жызнъ прекрасна!.

ка к известной картинке;)

Глава А: Обозначения

f — линейная форма. $\langle \mathbf{x} - \mathbf{x} \rangle$ x — вектор. $\langle \mathbf{x} \rangle$