CLAIMS

1	1.	A pixel comprising:
2	a)	a substrate having a photodiode, said photodiode having a light
3	receiving a	rea;
4	b)	a color filter array (CFA) material of a first color disposed above said
5	substrate, s	aid pixel having a first relative responsivity; and
6	c)	a light shield disposed above the substrate, said light shield forming
7	an aperture	, said aperture having an area substantially equal to the light
8	receiving ar	ea adjusted by a reduction factor, said reduction factor being a result
9	of an arithn	netic operation between the first relative responsivity and a second
10	relative resp	consivity associated with a second pixel of a second color.
1	2.	The pixel of claim 1 wherein the reduction factor is the result of the
2	first relative	responsivity divided by the second relative responsivity.
1	3.	The pixel of claim 1 wherein the light shield includes a metal layer.
1	4.	The pixel of claim 1 wherein the light shield includes an opaque
2	material ·	• •

1 5. The pixel of claim 4 wherein the opaque material is a dielectric 2 material. The pixel of claim 5 wherein the dielectric material includes a 1 6. 2 silicon dioxide. 1 The pixel of claim 1 wherein the pixel is a green pixel and the 7. 2 second pixel is a blue pixel. The pixel of claim 1 wherein the pixel is a red pixel and the second 1 8. pixel is a blue pixel. 9. A method comprising the steps of: 1 2 a) determining a relative responsivity (S_1) for a pixel of a first color; 3 b) determining a relative responsivity (S2) for a pixel of a second color; 4 determining whether the relative responsivity (S₁) for the first pixel c) 5 is more than the relative responsivity (S_2) of the second pixel; if yes, forming a mask opening above the first pixel, said mask 6 opening having an area substantially equal to the light receiving area 7 8 adjusted by a reduction factor, said reduction factor being a result of an

arithmetic operation between the relative responsivity of the first pixel

- 27 - September 26, 1997 Express Mail No.: EM502292185US

9

10	and	the relative responsivity of the second pixel; and forming a mask
11	open	ing above the second pixel, said mask opening having an area
12	subst	tantially equal to the light receiving area;
13		else,
14		forming a mask opening above the first pixel, said mask
15		opening having an area substantially equal to the light receiving
16		area; and
17 [] 18		forming a mask opening above the second pixel, said mask opening having an area substantially equal to the light receiving
道 点 19		area adjusted by a reduction factor, said reduction factor being a
20		result of an arithmetic operation between the relative responsivity
2 1		for a second pixel and the relative responsivity of the first pixel.
18 19 20 21 11 11 2		
1	10.	The method of claim 9 wherein the light receiving area is
2	multiplied l	by the reduction factor.
1	11.	The method of claim 9 wherein the arithmetic operation is a
2	division op	eration.
1	12.	A method to pattern an array comprising the steps of:
2	a)	determining a relative responsivity (S ₁) for pixels of a first color;

September 26, 1997 Express Mail No.: EM502292185US

b)

3

determining a relative responsivity (S_2) for pixels of a second color;

4	c)	determining a relative responsivity (S_3) for pixels of a third color;
5	d)	determining whether the relative responsivity (S1) for pixels of the
6	first color is	s lower than the relative responsivity (S2) of pixels of the second color
7	and the rela	ative responsivity (S ₃) of pixels of a third color;
8	e)	if yes,
9		forming a mask opening above the pixels of the first color,
10		said mask opening having an area substantially equal to the
11		predetermined light receiving area;
12		forming a mask opening above the pixels of the second color,
13		said mask opening having an area substantially equal to the
14		predetermined light receiving area adjusted by a reduction factor,
15		said reduction factor being a result of an arithmetic operation
16		between S_1 and S_2 ; and
17		forming a mask opening above the pixels of a third color, said
18		mask opening having an area substantially equal to the
19		predetermined light receiving area adjusted by a reduction factor,
20		said reduction factor being a result of an arithmetic operation
21		between S ₁ and S ₃ .

The method of claim 12 wherein the mask opening formed above 13. 1 the pixels of the second color has an area substantially equal to the 2 predetermined light receiving area multiplied by (S_1/S_2) ; and the mask opening 3 formed above the pixels of a third color has an area substantially equal to the 4 predetermined light receiving area multiplied by (S_1/S_3) . 5

- 29 -

042390.P4290

c)

September 26, 1997 Express Mail No.: EM502292185US

1	14.	The method of claim 12 further comprising the steps of:
2	a)	determining whether the relative responsivity (S2) for pixels of the
3	second colo	or is less than the relative responsivity (S1) of pixels of a first color and
4	the relative	responsivity (S ₃) of pixels of a third color;
5	b)	if yes,
6		forming a mask opening above the pixels of the second color,
7		said mask opening having an area substantially equal to the
8		predetermined light receiving area;
9		forming a mask opening above the pixels of the first color,
<u> 1</u> 0		said mask opening having an area substantially equal to the
1 11		predetermined light receiving area adjusted by a reduction factor,
<u> </u>		said reduction factor being a result of an arithmetic operation
iii 13		between S_2 and S_1 ; and
10 10 11 12 13 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16		forming a mask opening above the pixels of a third color, said
15		mask opening having an area substantially equal to the
16		predetermined light receiving area adjusted by a reduction factor,
17		said reduction factor being a result of an arithmetic operation
18		between S ₂ and S ₂ .

1 15. The method of claim 12 wherein the mask opening formed above 2 the pixels of the second color has an area substantially equal to the 3 predetermined light receiving area multiplied by (S₂/S₁); and the mask opening 4 formed above the pixels of a third color has an area substantially equal to the 5 predetermined light receiving area multiplied by (S₂/S₃).

1	16.	The method of claim 12 further comprising the steps of:
2	a)	determining whether the relative responsivity (S ₃) for pixels of a
3	third color	less than the relative responsivity (S_1) for pixels of a first color and
4	the relative	responsivity (S ₂) for pixels of a second color;
5	b)	if yes,
6		forming a mask opening above the pixels of a third color, said
7		mask opening having an area substantially equal to the
8		predetermined light receiving area;
9		forming a mask opening above the pixels of a first color, said
10		mask opening having an area substantially equal to the
11		predetermined light receiving area adjusted by a reduction factor,
12		said reduction factor being a result of an arithmetic operation
13		between S_3 and S_1 ; and
14		forming a mask opening above the pixels of a second color,
15		said mask opening having an area substantially equal to the
16		predetermined light receiving area adjusted by a reduction factor,
17		said reduction factor being a result of an arithmetic operation
18		between S_3 and S_2 .

1 17. The method of claim 12 wherein the mask opening formed above 2 the pixels of the second color has an area substantially equal to the 3 predetermined light receiving area multiplied by (S₃/S₁); and the mask opening 4 formed above the pixels of a third color has an area substantially equal to the 5 predetermined light receiving area multiplied by (S₃/S₂).

042390.P4290 - 31 -

1	18.	The method of claim 12 wherein the step of determining the
2	relative res	sponsivity (S ₁) for pixels of a first color includes the steps of:
3	a)	determining an input photodiode responsivity;
4	b)	determining an input color filter array transmittance for the first
5	color;	
6	c)	determining an input IR blocking filter characteristic;
7	d)	computing a net response by multiplying the input photodiode
3 8	responsivit	y, the input color filter array transmittance for the first color, and the
12 15 15	input IR bl	ocking filter characteristics;
9 10 11 11	e)	determining an input light source spectral characteristic; and
11	f)	convolving the net response and the light source spectral
12 12 13 13 14	characterist	ics to generate the relative responsivity (S_1) for the first color.
1	19.	The method of claim 12 wherein the step of determining the
2	relative resp	ponsivity (S ₂) for pixels of a second color includes the steps of:
3	a)	determining an input photodiode responsivity;
4	b)	determining an input color filter array transmittance for the second
5	color;	•

042390.P4290

c)

6

- 32 -

determining an input IR blocking filter characteristic;

September 26, 1997 Express Mail No.: EM502292185US

- d) computing a net response by multiplying the input photodiode 7 8 responsivity, the input color filter array transmittance for the second color, and the input IR blocking filter characteristics; 9
- 10 determining an input light source spectral characteristic; and e)
- f) convolving the net response and the light source spectral 11 12 characteristics to generate a relative responsivity (S_2) for the second color.
 - 20. The method of claim 12 wherein the step of determining the relative responsivity (S_3) for pixels of a third color includes the steps of:
 - determining an input photodiode responsivity; a)
 - b) determining an input color filter array transmittance for the third color;
 - c) determining an input IR blocking filter characteristic;
- 7 d) computing a net response by multiplying the input photodiode 8 responsivity, the input color filter array transmittance for the third color, and the 9 input IR blocking filter characteristics;
- determining an input light source spectral characteristic; and 10 e)
- 11 f) convolving the net response and the light source spectral 12 characteristics to generate a relative responsivity (S₃) for the third color.

į.

1

Express Mail No.: EM502292185US

18

19

- 21. 1 The method of claim 12 wherein the first color is red, the second 2 color is green and the third color is blue.
- 22. A method for manufacturing an improved pixel cell that employs a 1 first metal layer as a light shield comprising the steps of: 2
- a) forming a substrate having active devices, said active devices 3 including a photodiode; 4
- depositing a dielectric layer on the substrate; 5 b)
- performing via lithography and etch on the dielectric layer; c)
- depositing a metal in the via; d) 7
- polishing the metal; e)
- f) depositing a metal layer on the dielectric layer; and
- 10 performing lithography and etch on the metal layer by employing a g) metal mask, said metal mask having a plurality of openings; wherein the mask 11 12 opening above pixels of a first color having a lowest responsivity is equal to the area of the predetermined light receiving area; wherein the mask opening above 13
- pixels of a second color having a responsivity greater than the responsivity of 14
- pixels of the first color is equal to the predetermined light receiving area 15
- multiplied by S_1 divided by S_2 where S_1 is the relative responsivity of the first 16
- color and S₂ is the relative responsivity of the second color; and 17

wherein the mask openings above the pixels of a third color having a responsivity greater than the responsivity of pixels of the second color is equal to

- 34 -042390.P4290 Express Mail No.: EM502292185US

- 20 the predetermined light receiving area multiplied by S_1 divided by S_3 where S_3 is
- 21 the relative responsivity of the third color.