

MVMoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts

Jianan Zhou¹, Zhiguang Cao², Yaoxin Wu³, Wen Song⁴, Yining Ma¹, Jie Zhang¹, Chi Xu⁵

¹Nanyang Technological University ²Singapore Management University ³Eindhoven University of Technology ⁴Shandong University ⁵A*STAR

Vehicle Routing Problems (VRPs)

- A class of NP-hard combinatorial optimization problems
- ☐ Find an optimal solution that satisfies all constraints
- Exact methods (e.g., B&B framework); Heuristic methods (e.g., LKH3)
- Neural methods

Motivation

- Recent neural methods are only structured and trained independently on a specific problem, making them less generic and practical
- Machine Learning (ML): foundation models (FMs) have shown great success in language and vision domains
- ☐ Operation Research (OR): generality is a favorable objective in the community

Contribution

- ☐ An early work studying the cross-problem generalization in VRPs
- A unified neural solver to deal with multiple VRPs
- A hierarchical gating for a trade-off between performance and computation
- ☐ Strong empirical results on 16 VRPs
- Extensive studies on the effect of MoE configurations

	Capacity (C)	Open Route (O)	Backhaul (B)	Duration Limit (L)	Time Window (TW				
CVRP	│ ✓								
OVRP	✓	\checkmark							
VRPB	✓		\checkmark						
VRPL	✓			\checkmark					
VRPTW	✓				\checkmark				
OVRPTW	✓	\checkmark			\checkmark				
OVRPB	✓	\checkmark	\checkmark						
OVRPL	✓	\checkmark		\checkmark					
VRPBL	✓		\checkmark	\checkmark					
VRPBTW	✓		\checkmark		\checkmark				
VRPLTW	✓			\checkmark	\checkmark				
OVRPBL	✓	\checkmark	\checkmark	\checkmark					
OVRPBTW	✓	\checkmark	\checkmark		\checkmark				
OVRPLTW	✓	\checkmark		\checkmark	\checkmark				
VRPBLTW	✓		\checkmark	\checkmark	\checkmark				
OVRPBLTW	✓	\checkmark	\checkmark	\checkmark	\checkmark				

Methodology

Multi-Task VRP Solver

- ☐ Autoregressive Construction Solver: AM, POMO, LEHD, ...
- Attribute Composition
- Static features of node i: $S_i = [y_i, \delta_i, e_i, l_i]$
- Dynamic features of decoding step t: $D_t = [c_t, t_t, l_t, o_t]$
- Missing features are padded to the default values
- CVRP Example: $S_i = [y_i, \delta_i, 0, 0], D_t = [c_t, 0, l_t, 0]$
- Can solve 2^n problem variants
- RL Training

$$\nabla_{\theta} \mathcal{L}(\theta|\mathcal{G}) = \mathbb{E}_{p_{\theta}(\tau|\mathcal{G})} [(c(\tau) - b(\mathcal{G})) \nabla_{\theta} \log p_{\theta}(\tau|\mathcal{G})]$$

Mixture-of-Experts

- ☐ An MoE layer consists of
- m experts $\{E_1, E_2, ..., E_m\}$, each of which is a linear layer or FFN
- a gating network G

$$MoE(x) = \sum_{j=1}^{m} G(x)_{j} E_{j}(x)$$

- \square A sparse vector G(x) only activates a small subset of experts with partial parameters
- Load balancing is required for MoE's training (e.g., by using an auxiliary loss)

	E_1	E_2	E_3	E_4		E_1	E_2	E_3	E_4	
1	2.31	0.45	0.74	-0.53	<i>x</i> ₁	2.31	0.45	0.74	-0.53	
2	0.65	1.43	-0.68	0.76	<i>x</i> ₂	0.65	1.43	-0.68	0.76	
3	1.20	-1.02	0.98	1.97	x_3	1.20	-1.02	0.98	1.97	
4	-0.35	1.26	0.87	0.36	x_4	-0.35	1.26	0.87	0.36	
										, ,

Gating Mechanism

- ☐ Gating Level: **Node** / Instance / Problem
- ☐ Gating Algorithm: Random / Input-Choice / Expert-Choice / Soft MoE
- ☐ Trade-off between performance and computation: Employing MoEs in the decoder - can significantly boost the empirical performance
 - can significantly increase the training overheads due to the autoregressive nature
- ☐ An MoE layer with **Hierarchical Gating** consists of
- an upper gating network G_1
- a sparse layer: m experts $\{E_1, E_2, ..., E_m\}$ + a lower gating network G_2
- a dense layer: D

$$Hierarchical_MoE(x) = \begin{cases} G_1(x)_0 \sum_{j=1}^m G_2(x)_j E_j(x) \\ G_1(x)_1 D(x) \end{cases}$$

☐ The hierarchical gating enhances computational efficiency with a minor loss on in-distribution performance but significantly improves out-of-distribution performance

Experiment

■ Performance Comparison & Ablation

Table 1. Performance on 1K test instances of trained VRPs. * represents 0.000%, with which the gaps are computed.									Table	2. Zero-shot g	eneraliz	zation on	1K tes	t instanc	ces of uns	een VR	Ps. *	represents 0.	000%,	with whi	ch the g	gaps are	compute	d.					
	Method	Obj.	n = 50 Gap	Time	Obj.	n = 100 Gap	Time	Method	Ot	n = 50 j. Gap	Time	Obj.	n = 100 Gap	Ξ	Method	Obj.	n = 50 Gap	Time	Obj.	n = 100 Gap	Time		Method	Obj.	n = 50 Gap	Time	Obj.	n = 100 Gap	Time
RP	HGS LKH3 OR-Tools OR-Tools (x10)	10.334 10.346 10.540 10.418	* 0.115% 1.962% 0.788%	4.6m 9.9m 10.4m 1.7h	15.504 15.590 16.381 15.935	* 0.556% 5.652% 2.751%	9.1m 18.0m 20.8m 3.5h	HGS LKH3 OR-Tools OR-Tools	14.5 14.6 14.9 (x10) 14.6	0.664% 0.664% 0.694%	8.4m 5.5m 10.4m 1.7h	24.339 24.721 25.894 25.212	* 1.584% 6.297% 3.482%	OVRPB	OR-Tools OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L	5.764 5.745 6.116 6.092 6.122	0.332% * 6.430% 5.999 % 6.522%	10.4m 1.7h 2s 3s 3s	8.522 8.365 8.979 8.959 8.972	1.852% * 7.335% 7.088% 7.243%	20.8m 3.5h 8s 9s 9s	OVRPL	OR-Tools OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L	6.522 6.490 6.668 6.650 6.659	0.480% * 2.734% 2.454% 2.597%	10.4m 1.7h 2s 3s 3s	9.966 9.790 10.126 10.097 10.106	1.783% * 3.441% 3.148% 3.244%	20.8m 3.5h 9s 10s 9s
CA	POMO POMO-MTL MVMoE/4E MVMoE/4E-L	10.418 10.437 10.428 10.434	0.806% 0.987% 0.896% 0.955%	3s 3s 4s 4s	15.734 15.790 15.760 15.771	1.488% 1.846% 1.653% 1.728%	9s 9s 11s 10s	POMO POMO-M MVMoE/- MVMoE/-	E 14.9	32 3.637% 99 3.410%	3s 3s 4s 3s	25.367 25.610 25.512 25.519	4.307% 5.313% 4.903% 4.927%	VRPBL	OR-Tools OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L	8.131 8.029 8.188 8.172 8.180	1.254% * 1.971% 1.776% 1.872%	10.4m 1.7h 2s 3s 3s	12.095 11.790 11.998 11.945 11.960	2.586% * 1.793% 1.346% 1.473%	20.8m 3.5h 8s 9s 9s	VRPBTW	OR-Tools OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L	15.053 14.771 16.055 16.022 16.041	1.857% * 8.841% 8.600% 8.745%	10.4m 1.7h 3s 4s 4s	26.217 25.496 27.319 27.236 27.265	2.858% * 7.413% 7.078% 7.190%	20.8m 3.5h 10s 11s 10s
OVRP	LKH3 OR-Tools OR-Tools (x10) POMO POMO-MTL	6.511 6.531 6.498 6.609 6.671	0.198% 0.495% * 1.685% 2.634%	4.5m 10.4m 1.7h 2s 2s	9.828 10.010 9.842 10.044 10.169	* 1.806% 0.122% 2.192% 3.458%	5.3m 20.8m 3.5h 8s 8s	LKH3 OR-Tools OR-Tools POMO POMO-M	(x10) 10.4 10.4 TL 10.5	77 1.746% 95 * 91 -0.008% 13 0.201%	7.8m 10.4m 1.7h 2s 2s	15.771 16.496 16.004 15.785 15.846	* 4.587% 1.444% 0.093% 0.479%	/ VRPLTW	OR-Tools OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L OR-Tools	14.815 14.598 14.961 14.937 14.953	1.432% * 2.586% 2.421% 2.535%	10.4m 1.7h 3s 4s 4s	25.823 25.195 25.619 25.514 25.529	2.534% * 1.920% 1.471% 1.545%	20.8m 3.5h 12s 13s 12s	OVRPBL	OR-Tools OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L OR-Tools	5.771 5.739 6.104 6.076 6.104 8.728	0.549% * 6.306% 5.843% 6.310%	10.4m 1.7h 2s 3s 3s 10.4m	8.555 8.348 8.961 8.942 8.957	2.459% * 7.343% 7.115% 7.300%	20.8m 3.5h 8s 9s 9s
	MVMoE/4E MVMoE/4E-L OR-Tools OR-Tools (x10)	6.655 6.665 8.127 8.046	2.402% 2.548% 0.989%	3s 3s 10.4m 1.7h	10.138 10.145 12.185 11.878	3.136% 3.214% 2.594%	10s 9s 20.8m 3.5h	MVMoE/- MVMoE/- OR-Tools OR-Tools	E-L 10.5	06 0.131% 37 0.592%	3s 3s 10.4m	15.812 15.821 14.635 14.380	0.261% 0.323% 1.756%	OVRPBTW	OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L	8.675 9.514 9.486 9.515	9.628% 9.308% 9.630%	1.7h 3s 4s 3s	14.384 15.879 15.808 15.841	* 10.453% 9.948% 10.188%	3.5h 10s 11s 10s	WRPLTV	OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L	8.669 8.987 8.966 8.974	3.633% 3.396% 3.488%	1.7h 3s 4s 4s	14.279 14.896 14.828 14.839	* 4.374% 3.903% 3.971%	3.5h 11s 12s 10s
VRPB	POMO POMO-MTL MVMoE/4E MVMoE/4E-L	8.149 8.182 8.170 8.176	1.276% 1.684% 1.540% 1.605%	2s 2s 2s 3s 3s	11.993 12.072 12.027 12.036	0.995% 1.674% 1.285% 1.368%	7s 7s 7s 9s 8s	POMO-M POMO-M MVMoE/- MVMoE/-	8.8 TL 8.9 E 8.9	91 2.377% 87 3.470% 64 3.210 %	3s 3s 4s 4s	14.728 15.008 14.927 14.940	2.467% 4.411% 3.852% 3.941%	VRPBLTW	OR-Tools OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L	14.890 14.677 15.980 15.945 15.963	1.402% * 9.035% 8.775% 8.915%	10.4m 1.7h 3s 4s 4s	25.979 25.342 27.247 27.142 27.177	2.518% * 7.746% 7.332% 7.473%	20.8m 3.5h 11s 12s 11s	VRPBLT	OR-Tools OR-Tools (x10) POMO-MTL MVMoE/4E MVMoE/4E-L	8.729 8.673 9.532 9.503 9.518	0.624% * 9.851% 9.516% 9.682%	10.4m 1.7h 3s 4s 4s	14.496 14.250 15.738 15.671 15.706	1.724% * 10.498% 10.009% 10.263%	20.8m 3.5h 10s 11s 10s

Summary

Towards Foundation Models for Combinatorial Optimization (FM4CO)

- □ LLMs (FMs from other domains) for CO
- Generate solutions or algorithms (i.e., code)
- Automate problem formulation or simplify tools' usage
- Enhance interpretability
- Domain FMs for CO
- A unified model to solve various optimization tasks

Limitation

- ☐ Scalability
 - The number of model parameters
 - Training on large-scale instances
- ☐ Generality
- ☐ Interpretability

Ads & Links

- Jianan Zhou is looking for a postdoc position in 2025
- Email: jianan004@e.ntu.edu.sg
- Links of WeChat, Paper, and Code:

