PHYS 20323 - HW 13

Johané Fritz

November 2023

1 Introduction

PHYS 20323/60323: Fall 2023 - LaTeX Example

1. The following questions refers to the Table below

Note: There may be multiple answers.

Name	Mass	Luminosity	Lifetime	Temperature	Radius
η Car.	$60.~{\rm M}_{\odot}$	$10^6~{\rm L}_{\odot}$	$8.0 \times 10^5 \text{ years}$		
ε Eri.	$6.0~{ m M}_{\odot}$	$10^3~{\rm L}_{\odot}$		20,000 K	
δ Scu.	$2.0~{ m M}_{\odot}$		$5.0 \times 10^8 \text{ years}$		$2~{ m R}_{\odot}$
β Cyg.	$1.3~{ m M}_{\odot}$	$3.5~{ m L}_{\odot}$			
α Cen.	$1.0~{ m M}_{\odot}$				$1~{ m R}_{\odot}$
γ Del.	$0.7~{ m M}_{\odot}$		$4.5 \times 10^{10} \text{ years}$	5000 K	

- (a) (4 points) Which of these stars will produce a planetary nebula.
- (b) (4 points) Elements heavier than Carbon will be produced in which stars.
- 2. An electron is found to be in the spin state (in the z-basis): $x = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$
 - (a) (5 points) Determine the possible values of A such that the state is normalized.
 - (b) (5 points) Find the expectation values of the operators S_x , S_y , S_z and $\vec{S^2}$.

The matrix representation in the z-basis for the components of electron spin operators are given by:

$$S_x = \overline{\frac{\overline{h}}{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad S_y = \overline{\frac{\overline{h}}{2}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \qquad S_z = \overline{\frac{\overline{h}}{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

3. The average electrostatic field in the earth's atmosphere in fair weather is approximately given:

$$\vec{E} = E_0 (Ae^{-\alpha z} + Be^{-\beta z})\hat{z},\tag{1}$$

where A, B, α , β , are positive constants and z is the height above the (locally flat) earth surface.

- (a) (5 points) Find the average charge density in the atmosphere as a function of height.
- (b) (5 points) Find the electric potential as a function height above the earth.