

Câmpus Venâncio Aires

Arquitetura e Organização de Computadores

Professor: Fernando Luís Herrmann

E-mail: fernandoherrmann@ifsul.edu.br

Material de aula:

https://github.com/herrmannfl/tads-aoc-2022

Circuitos Combinacionais

Circuitos combinacionais

- Circuitos cuja saída depende única e exclusivamente das combinações entre as variáveis de entrada
- Para construir esses circuitos, necessitamos de suas expressões obtidas a partir de tabelas verdade

Onde utilizamos esses circuitos

- Dentro dos circuitos integrados como microprocessadores:
 - Na forma de circuitos aritméticos
 - somadores, subtratores, ...
 - Codificadores, decodificadores,...
 - Multiplexadores e Demultiplexadores

Mas, onde se encontram

Circuitos aritméticos

- Conjunto de circuitos combinacionais aplicados para finalidade específica nos sistemas digitais
- Utilizamos, principalmente, para construir a ULA (Unidade Lógica Aritmética) dos microprocessadores
- Também são encontrados em forma de circuitos integrados

Meio somador (half adder)

Α	В	S	Со
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Α	В	Ci	S	Со
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador completo (full adder)

$$S = \overline{A} \overline{B} C i + \overline{A} B \overline{C} i + A \overline{B} \overline{C} i + A B C i$$

 $Co = \overline{A} B C i + A \overline{B} C i + A B \overline{C} i + A B C i$

Não é possível simplificar o S. No entanto, a tabela verdade do S é equivalente se utilizarmos a seguinte expressão:

$$S = A \oplus B \oplus Ci$$

Α	В	Ci	S	Со
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador completo (full adder)

$$S = \overline{A} \overline{B} C i + \overline{A} B \overline{C} i + A \overline{B} \overline{C} i + A B C i$$

 $Co = \overline{A} B C i + A \overline{B} C i + A B \overline{C} i + A B C i$

Usando Mapa de Karnaugh para Co, temos:

$$Co = BCi + ACi + AB$$

Α	В	Ci	S	Со
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador completo (full adder)

Somador de 4 bits

Montar um sistema em blocos que efetue a soma de 2 números de 4 bits, conforme o esquema a seguir:

Decodificador para Display de 7 segmentos

- O display de 7 segmentos possibilita escrever números decimais 0 a 9 e alguns outros símbolos, que podem ser letras ou sinais.
- Os fabricantes variam a forma como eles mapeiam as entradas para os segmentos, o correspondência usada pelo Logisim é baseada no componente Texas Instruments TIL321.

Decodificador para Display de 7 segmentos

- Fazer expressões para cada um dos 7
 segmentos (a, b, c, d, e, f, g)
- Simplificar as expressões utilizando Mapa de Karnaugh

Characteres	Display	BCD 8421				1,007,000,000,00	CO 40 00 7	2000 NOV. 1277	entos			
		A	В	C	D	а	b	c	d	e	f	g
. 0	f b	0	0	0	0	1	1	1	Ί	1	1.	0
, 1	b c	0	0	0	1	0	1	1	0	0	0	0
2	g b	0	0	1	0	1	Ī	0	1	τ	0	1
3	g b c	0	0	1	1	1	ι	1	1	0	0	1
4	f g b	0	1	0	0	0	1	1	0	0	1	1
5	f g c	0	1	0	1	1	0	1	i	0	1	1
6	f g c	0	1	1	0	1	0	1	1	1	1	1
7	a c	0	ī	Ī	1	1	1	1	0	0	0	0
8	f g b e d c	1	0	0	0	1	1	1	1	1	1	1
9	f g b	1	0	0	1	1	1	1	1	0	1	1

Driver Hexadecimal para display de 7 segmentos:

https://github.com/herrmannfl/logisim

Multiplexadores

- o multiplexador conecta diversas entradas a uma única saída.
- Em um dado momento, uma das entradas é selecionada para ser passada para a saída.

Sel	S
0	A
1	В

Multiplexador para 4 bits com uma seleção

Meio subtrator (half sub)

_			
Α	В	S	Со
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

O que devo fazer

0

- Gerar expressões para S e Co
- Implementar o circuito no Logisim

Α	В	Ci	S	Со
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Subtrator completo (full sub)

Para calcular o S e Co primeiramente deve-se fazer A - B, guardar o resultado em S0 e Co0. E, depois, fazer S0 - Ci e guardar o resultado em S e Co.

- Gerar expressões simplificadas para S e Co
- Implementar o circuito no Logisim

Α	В	S 0	Ci0	Ci	S	Со
0	0	0	0	0	0	0
0	0	0	0	1	1	1
0	1	1	1	0	1	1
0	1	1	1	1	0	1
1	0	1	0	0		0
1	0	1	0	1	0	0
	1					
1	1	0	0	1	1	1

Subtrator de 4 bits

Montar um sistema em blocos que efetue a soma de 2 números de 4 bits, conforme o esquema a seguir:

