南山人壽:理賠客戶再購與商品推薦

指導業師 陳仕龍

指導老師石百達、張智星

工管系大四 胡進揚 財金所碩一 張芮綺 財金系大四 馮啟倫 生醫電資所碩一 曾煒翔

目錄

- 1. 專案研究方向
- 2. 再購定義與資料處理
 - a. 再購定義
 - b. 資料處理
- 3. 模型訓練
 - a. 訓練目標與模型
 - b. 訓練結果
- 4. 專案結果分析

研究方向

- 1. 何謂理賠客戶再購
- 2. 理賠客戶再購預測模型
- 3. 理賠客戶商品推薦模型
- 4. 家庭關係與再購

本次專案完成的部分

再購定義(一)

- 理賠檔篩選
 - 2017年有發生理賠紀錄的客戶
- 再購檔篩選
 - 最初篩選: 僅含有2018年再購客戶
 - 改進篩選: 包含2017與2018有發生再購的客戶
- 檔案串接
 - 理賠檔中的被保險人欄位與再購檔中的被保險人欄位相同被對被)
 - 理賠檔中的被保險人藍位與在購檔中的要保人欄位相同被對要)

再購定義(二)

資料處理

- 最初資料處理
 - 數值資料進行正規化(Z-normalization)
 - o Dummy Variable轉成0與1的形式
- 改善後資料處理
 - 將資料分門別類,共分成三類: Personal Data, Behavioral Data, All data
 - o Personal Data: 客戶個人資訊 ex: 年齡、性別
 - Behavioral Data: 客戶行為資訊 ex: 過去持有保單、VIP等級
 - o All Data: Personal Data + Behavioral Data + 未能分類的欄位

訓練目標與模型

- **訓練目標:** 根據客戶理賠資訊,預測客戶未來是否有再購行為,提升模型的Recall Rate 為主要目標並以提升整體預測率 (total accuracy)為次要目標。
- 預測任務:為二元分類問題,預測未來是否有再購行為發生
 - 若預測值為1:未來<mark>有</mark>再購需求
 - 若預測值為0: 未來無再購需求

Recall rate =

模型實際抓到再購人數

樣本再購的總人數

• 資料輸入:

- 進行理賠檔欄位、客戶屬性檔欄位分類,並分成三種資料進行模型訓練:
- Behavior data, ex: 過去持有保單紀錄、VIP等級
- Personal data, ex: 年齡、性別
- All data (behavior data + personal data + 未能分類的欄位)

訓練目標與模型

使用模型							
隨	機森林(Random Forest)		SVM-支持向量機		深度學習(DNN)模型		
1.	利用隨機抽取 sample跟 feature建構許多決策樹	1.	將資料投影至高維度 處理原始空間無法處 理的問題	1.	利用多個非線性回歸方程 式捕捉資料特性		
2.	能找出每個特徵的重要性 (Feature Importance)			2.	易解決多維度問題		

Training model without bootstrapping

	Random Forest	SVM	DNN
Testing set Accuracy	89.85%	89.76%	90.27%
Recall Rate	6.32%	8.56%	22.22%

Bootstrapping to preprocess the imbalanced data

	Random Forest	SVM	DNN
Testing set Accuracy	74.23%	82.72%	68%
Recall Rate	65.84%	51.10%	70%

(註: Recall rate = 模型實際抓到再購人數 / 樣本再購的總人數)

Machine Learning Model Training Result

	Behavioral	Personal	All data
Random Forest Accuracy	74.23%	58.95%	73.77%
Random Forest Recall Rate	65.84%	59.33%	44.49%
SVM Accuracy	82.72%	85.51%	82.07%
SVM Recall Rate	51.10%	1.62%	49.97%
DNN Accuracy	68%	55%	61%
DNN Recall Rate	70%	64%	77%

專案結果分析

- Bootstrapping 去平衡原始資料比例,能更準確的訓練捕獲再購者的模型。
- Behavior Data 行為資料對再購預測的影響比 Personal data個人資料 更大。
- 藉由調整再購定義(時間區隔調整),可以抓到更多有效的再購資料進行訓練。
- 從Random Forest發現:

客戶年收入、客戶年齡、客戶戶齡和理賠金額大小對再購意願有較大的影響。

● 此三模型可以抓出平均6成以上的再購客戶,且表現最好DNN能抓到高達7成願意再購的客戶。

Thank you for listening