Lineare Algebra

Vorlesung WiSe 23 Prof. Dr. Alexander Engel

January 26, 2024

Mittwoch, 18.10.23 ¹

1 Grundlagen

1.1 Aussagenlogik

Definition 1.1

Eine Aussage ist ein Satz, der entweder wahr oder falsch ist. Beispiele:

- "8 ist eine gerade Zahl." (wahre Aussage)
- "4 ist eine Primzahl." (falsche Aussage)
- "Es gibt unendlich viele Primzahlzwillinge." (bei dieser Aussage ist der Wahrheitsgehalt unbekannt. Nur weil wir den Wahrheitsgehalt noch nicht kennen heißt das nicht, dass es keine Aussge ist.)
- "Heute ist ein schöner Tag." (keine Aussage, da der Wahrheitsgehalt von der Person abhängt, die die Aussage macht.)

Aus schon gegebenen Aussagen können wir neue Aussagen bilden.

Definition 1.2

Es seien A und B Aussagen.

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
W	W	f	W	W	W	W
w	f	f	f	w	f	f
f	w	w	f	w	w	f
f	f	w	f	f	w	W

 $^{^{1}\}mathrm{Die}$ Inhalte dieser Vorlesung beziehen sich ungefähr auf Seite 1 bis 3 aus Baer.

Bemerkung

- 1. $\neg A$ wird gesprochen 'nicht A'.
- 2. $A \wedge B$ wird gesprochen 'A und B'.
- 3. $A \vee B$ wird gesprochen 'A oder B'.
- 4. $A \Rightarrow B$ wird gesprochen 'A impliziert B', 'Aus A folgt B', 'A ist hinreichend für B', 'B ist notwendig für A', 'Wenn A dann B'.
- 5. $A \Leftrightarrow B$ wird gesprochen 'A äquivalent B', 'A ist notwendig und hinreichend für B', 'A genau dann wenn B'

Bemerkung

Warum folgt aus einer falschen Aussage etwas Wahres? 1

In Beweisen müssen wir zeigen, dass etwas immer wahr ist. Wenn zum Beispiel n gerade ist, dann n^2 gerade. Wenn n ungerade, dann müssten wir diesen Fall im Beweis auch abdecken. Durch die Definition der Implikation können wir diesen Fall aber ignorieren, da die Aussage dann automatisch wahr ist.

Lemma 1.3

Sei A eine Aussage. Dann ist $A \vee \neg A$ wahr.

Beweis

Wir untersuchen die zwei Fälle für A: A ist wahr oder A ist falsch. Wir betrachten die Wahrheitstabelle von $A \vee \neg A$

A	¬ A	$A \lor \neg A$
W	f	W
f	w	w

Hinweis: Ein Beweis per Wahrheitstafel ist eine valide Beweismethode.

Hinweis: Eine Tautologie ist eine Aussage, die immer wahr ist.

Bemerkung

Das \neg (Negation) Zeichen bindet stärker als die anderen Verknüpfungen. Beispiel: $\neg A \lor B$ ist äquivalent zu $(\neg A) \lor B$

Außerdem gibt es die Konvention, dass das 'und' und das 'oder' stärker bindet als die Implikation.

Die Reihenfolge der Stärke der Bindung ist also: $\neg, \wedge, \vee, \rightarrow$

 $^{^{1}}$ Wikipedia

Lemma 1.4

Es seien $A,\ B$ und C Aussagen. Dann sind die folgenden Aussagen jeweils äquivalent:

- 1. $A \to B$ und $\neg A \lor B$
- 2. $A \leftrightarrow B$ und $(A \to B) \land (B \to A)$
- 3. A und $\neg \neg A$
- 4. A und $\neg A \rightarrow \text{falsch}$
- 5. $A \to B$ und $\neg B \to \neg A$
- 6. $A \wedge B$ (Konjunktion) und $B \wedge A$
- 7. $A \vee B$ (Disjunktion) und $B \vee A$
- 8. $(A \wedge B) \wedge C$ und $A \wedge (B \wedge C)$
- 9. $(A \lor B) \lor C$ und $A \lor (B \lor C)$
- 10. $A \wedge (B \vee C)$ und $(A \wedge B) \vee (A \wedge C)$
- 11. $A \vee (B \wedge C)$ und $(A \vee B) \wedge (A \vee C)$
- 12. $\neg (A \land B)$ und $\neg A \lor \neg B$
- 13. $\neg (A \lor B)$ und $\neg A \land \neg B$

Bemerkungen

Die linke Aussage ist äquivalent \leftrightarrow zur rechten Aussage und damit immer wahr.

- zu 1: Man kann in a und b auch statt \rightarrow und \leftrightarrow auch \lor und \land nutzen.
- zu 4: Aufbau eines Widerspruchsbeweises. d
 rechtfertigt also den Widerspruchsbeweis.
- zu 5: Kontraposition von a.
- zu 6 und 7: Kommutativit ät von \wedge .
- zu 8 und 9: Assoziativität von \land und \lor . Wenn ich mehrere Aussagen mit \land oder \lor verknüpfe, dann ist es egal in welcher Reihenfolge man die Klammern setzt (und ob man sie setzt).
- zu 10 und 11: $Distributivit \ddot{a}t$ von \wedge und \vee .
- zu 12 und 13: De Morgan'sche Regel (oder 'Gesetze').

Beweis (Aussage 1)

Beweis per Wahrheitstafel.

A	В	¬ A	$A \rightarrow B$	$\neg A \lor B$
w	w	f	W	W
w	f	f	f	f
f	w	w	W	w
f	f	w	W	W

Wenn wir die letzten beiden Spalten vergleichen, sehen wir, dass die Aussagen äquivalent sind.

Damit ist die Aussage bewiesen. \square Donnerstag, 19.10.23 2

1.2 Mengenlehre

Definition 1.5

Nach Cantor 1895: "Unter einer Menge versteht man jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente der Menge genannt werden) zu einem Ganzen." 3

Hinweis: diese Definition wäre heute nicht mehr zulässig, da sie zu ungenau ist. Intuitiv: Eine Menge ist ein Sack, in dem Dinge sind. Notation: $a \in M$ bedeutet, dass a ein Element von M ist. Andernfalls schreiben wir $a \notin M = \neg (a \in M)$.

Beispiele

- 1. $\mathbb{N} = \{1, 2, 3, 4, 5, ...\}$ (Menge der natürlichen Zahlen)
- 2. $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ (Menge der ganzen Zahlen)
- 3. $\emptyset = \{\}$ (leere Menge)
- 4. $A = \{N, 1, \emptyset\}$

Hinweis: die letzte Menge hat 3 Elemente. Außerdem: nutzt man die 'Sack Analogie' wird auch klar, wieso die leere Menge ein Element einer Menge sein kann. Man stellt sich einen Sack vor, der in einem anderen Sack liegt.

Wichtig: In Beispiel A gilt: $1 \in A$ und $N \in A$ aber $2 \notin A$. Man muss klar zwischen Elementen einer Menge und Mengen unterscheiden. Man beachte außerdem:

- 1. Für $M:=\{1,2,3\}$ und $N:=\{1,2,3\}$ gilt M=N. Die Reihenfolge der Elemente ist egal.
- 2. Für $M := \{1, 1\}$ und $N := \{1\}$ gilt M = N.

Aussagen über Mengen werden oft über Quantoren ausgeführt.

 $^{^{2}}$ vgl. S. 11 - 18 aus Baer.

³Cantor

Definition 1.7

Der Allquantor:

 $\forall m \in M : A(m)$ bedeutet: Für alle m in M gilt A(m).

Der Existenzquantor:

 $\exists m \in M : A(m)$ bedeutet: Es gibt mindestens ein m in M mit A(m).

 $\exists ! m \in M : A(m)$ bedeutet: Es gibt genau ein m in M mit A(m).

Hinweis: ∃! hat keine eigene Bezeichnung.

Beispiel 1.8

- 1. $\exists_n \in \mathbb{Z} : n^2 = 25 \text{ (wahr)}$
- 2. $\exists_n! \in \mathbb{Z} : n^2 = 25 \text{ (falsch)}$
- 3. $\forall_q \in \mathbb{Q} \exists_n \in \mathbb{N} : q \leq n \text{ (wahr)}$
- 4. $\exists_n \in \mathbb{N} \forall_q \in \mathbb{Q} : q \leq n \text{ (falsch)}$

In 3 und 4 sieht man: die Reihenfolge der Quantoren ist wichtig. Beim Vertauschen können komplett andere Aussagen entstehen.

Regel 1.9

- 1. $\neg(\forall m \in M : A(m))$ ist äquivalent zu $\exists m \in M : \neg A(m)$
- 2. $\neg(\exists m \in M : A(m))$ ist äquivalent zu $\forall m \in M : \neg A(m)$

Das heißt um eine Aussage zu negieren, muss man den Quantor wechseln und die Aussage negieren!

Definition 1.10

Es seien M und N Mengen. Dann ist $M \subset N$ (M ist Teilmenge von N) wenn folgendes gilt:

$$m \in M \Rightarrow m \in N$$

 $\forall m \in M : m \in N$

Beispiel 1.11

Es gilt $\mathbb{N} \subset \mathbb{Z}$.

Lemma 1.12

Für jede Menge M gilt $\emptyset \subset M$.

Beweis

Wir müssen die Aussage $x \in \emptyset \Rightarrow x \in M$ als immer wahr einsehen (Tautologie). Da $x \in \emptyset$ immer falsch ist, ist die Implikation $x \in \emptyset \Rightarrow x \in M$ immer wahr. \square

Anmerkung

 $\emptyset \in M$ gilt nicht unbedingt. Das hängt von der Menge M
 ab, aber die leere Menge ist immer Teilmenge von M. Hier sieht man erneut die Wichtigkeit der Unterscheidung von Mengen und Elementen.

Bemerkung 1.13

Zwei Mengen M und N sind gleich, wenn folgendes gilt:

$$(M \subset N) \land (N \subset M)$$

Das wird sehr häufig in Beweisen benutzt um die Gleichheit von Mengen zu zeigen.

Beispiel

Die Gleichungen $x^2 = 4$ und |x| = 2 haben die gleiche Lösungsmenge.

Schritt 1: Sei x eine Lösung von $x^2 = 4$. Dann ist |x| = 2.

Schritt 2: Sei x eine Lösung von |x| = 2. Dann ist $x^2 = 4$.

Definition 1.14

Es seien M und N Mengen. Wir definieren die folgenden Mengen:

$$M \cup N \leftrightarrow x \in M \lor x \in N \ (Vereinigung)$$

 $M \cap N : \leftrightarrow x \in M \land x \in N \ (Durchschnitt)$
 $M \setminus N : \leftrightarrow x \in M \land x \notin N \ (Differenz)$

Konvention: bei Aussagen sagt man eher, dass sie äquivalent sind. \leftrightarrow kann aber durch := ersetzt werden ohne falsch zu sein.

Lemma 1.15

Es seien M und N Mengen. Dann gilt:

$$M \cap (N_1 \cup N_2) = (M \cap N_1) \cup (M \cap N_2)$$

$$M \cup (N_1 \cap N_2) = (M \cup N_1) \cap (M \cup N_2)$$

$$M \setminus (N_1 \cup N_2) = (M \setminus N_1) \cap (M \setminus N_2)$$

$$M \setminus (N_1 \cap N_2) = (M \setminus N_1) \cup (M \setminus N_2)$$

Es sind also eine Art Distributivgesetze.

Beweis

Wir beweisen nur die erste Aussage. Der Rest wird in der Übung gemacht. Es gilt folgende Kette von Äquivalenzen:

$$x \in M \cap (N_1 \cup N_2) \overset{1.14b}{\Leftrightarrow} x \in M \wedge x \in (N_1 \vee N_2)$$

$$\overset{1.14a}{\Leftrightarrow} x \in M \wedge (x \in N_1 \vee x \in N_2)$$

$$\overset{1.4j}{\Leftrightarrow} (x \in M \wedge x \in N_1) \vee (x \in M \wedge x \in N_2)$$

$$\overset{1.14b}{\Leftrightarrow} (x \in M \cap N_1) \vee (x \in M \cap N_2)$$

$$\overset{1.14a}{\Leftrightarrow} x \in (M \cap N_1) \cup x \in (M \cap N_2)$$

Mittwoch, 25.10.23 ⁴

Definition 1.16

Sei M eine beliebige Menge. Die Potenzmenge $\mathcal{P}(M)$ ist die Menge aller Teilmengen von M, d.h.

$$\mathcal{P}(M) := \{U : U \subset M\}$$

Hinweis: die Formel ist nicht notwendiger Teil der Definition. Der Satz davor würde als Definition ausreichen.

Bemerkung und Beispiele 1.17

a) in Lemma 1.12 haben wir gezeigt, dass $\emptyset \subset M$ für jede Menge M gilt. Es ist also immer $\emptyset \in \mathcal{P}(M)$.

Hinweis: man beachte den Unterschied zwischen dem Symbol \subset und \in . Im ersten Fall ist es eine Teilmenge, im zweiten Fall ist es ein Element aber auch eine Teilmenge.

b) Für $M=\{1,2\}$ gilt $\mathcal{P}(M)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$ Hinweis: anstatt von $\{1,2\}$ kann man auch M schreiben.

Frage: Wie lautet die Potenzmenge von \emptyset ?

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

Erklärung: die Frage ist, für welche U gilt $U \subset \emptyset$. Die Antwort ist: nur für \emptyset , denn für $U \subset \emptyset$ gilt:

$$x \in U \Rightarrow x \in \emptyset$$

 $^{^4}$ vgl. S. 11 - 18 aus Baer.

Da U aber die Leere Menge ist, ist die Implikation nur wahr, wenn $x \in U$ falsch ist ('aus Falschem folgt Wahres'). Das ist aber nur für $x \in \emptyset$ der Fall. Also ist die Aussage nur für $U = \emptyset$ wahr. Damit ist die einzige Teilmenge von \emptyset die leere Menge.

Definition 1.18

Es seien M und N Mengen. Dann ist das $Kartesische Produkt <math>M \times N$ die Menge aller geordneten Paare (a,b) mit $a \in M$ und $b \in N$:

$$M\times N:=\{(a,b):a\in M\wedge b\in N\}$$

Bemerkung und Beispiele 1.19

a) in der Regel gilt $(a, b) \neq (b, a)$ es sei denn a = b.

Hinweis: (a, b) ist keine Menge, sondern ein geordnetes Paar. Diese Notation bezeichnet ein eigenständiges Objekt.

b) Sei
$$M = \{1, 2, 3\}$$
 und $N = \{a, b\}$. Dann ist $M \times N = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

c) Sei $M = \{1\}$ und $N = \{1, 2\}$. Dann ist $M \times N = \{(1, 1), (1, 2)\}$ Man beachte: in der Regel gilt $M \times N \neq N \times M$. In Beispiel c) gilt:

$$N \times M = \{(1,1), (2,1)\}$$

Gilt M = N, dann ist natürlich $M \times N = N \times M$.

Aufgabe: Es sei M eine Menge. Was ist das Kartesische Produkt $M \times \emptyset$?

Lösung: $M \times \emptyset = \emptyset$

Begründung: $M \times \emptyset = \{(a,b) : a \in M \land b \in \emptyset\}$. Da $b \in \emptyset$ immer falsch ist, ist die gesamte Aussage immer falsch. Damit ist die Menge leer. Der Teil hinter dem : wird als *membership test* bezeichnet. Wenn dieser falsch ist, ist ein Element kein Element der Menge. In unserem Beispiel ist dieser Test immer falsch. Also ist das Kartesische Produkt leer.

Hinweis: Wenn das karthesische Produkt in dem Beispiel undefiniert wäre, dann wäre die Definition nicht korrekt und müsste die leere Menge als Ausnahme beinhalten.

d) Es gilt immer $M \times \emptyset = \emptyset$ und $\emptyset \times M = \emptyset$.

Anmerkung 1.20

Man kann auch ebenso $M \times N \times Q$ definieren als die Menge aller Tripel (a, b, c) mit $a \in M$, $b \in N$ und $c \in Q$. Ebenso natürlich auch $M_1 \times M_2 \times ... \times M_n$ für n-viele Mengen $M_1, M_2, ..., M_n$. In der linearen Algebra begegnet uns oft \mathbb{R}^n

was eine Notationsabkürzung für $\mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ (n-mal) ist. Aus der Schule kennen wir bereits das kartesische Koordinatensystem. Dieses ist nichts anderes als \mathbb{R}^2 .

Definition 1.21

Unter der $M\ddot{a}chtigkeit$ bzw. der $Kardinalit\ddot{a}t$ einer Menge M verstehen wir die Anzahl der Elemente von M.

Notation: |M|

Beispiele 1.22

- a) Für $M := \{a, b, \text{Blauer Elefant}\}\ \text{gilt } |M| = 3.$
- b) Für $M = \emptyset$ gilt |M| = 0.
- c) $|\mathbb{N}| = \infty$ und ebenso $|\mathbb{R}| = \infty$.

Hinweis: eigentlich sind es 2 unterschiedliche Unendlichkeiten.

Lemma 1.23

a) Für jede Menge M gilt $|\mathcal{P}(M)| = 2^{|M|}$.

Das ist auch der Grund, warum Potenzmenge Potenzmenge heißt. Die Anzahl der Elemente der Potenzmenge ist die Potenz von 2.

b) Für Mengen M und N gilt $|M \times N| = |M| \cdot |N|$.

Beweis

Salopp: wir müssen für alle Teilmengen zeigen, dass sie entweder in der Potenzmenge sind oder nicht, d.h. wir haben für jede denkbare Kombination der Elemete der einzelnen Teilmengen zwei Möglichkeiten: entweder ist das Element in der Menge oder nicht.

Das heißt wir haben $2\times 2\times ... \times 2$ viele Möglichkeiten. Also $2^{|M|}$ viele. Der komplette korrekte Beweis ist wesentlich länger.

1.3 Abbildungen

Definition 1.24

Es seien M und N Mengen. Eine Abbildung (oder auch Funktion) $f: M \to N$ ist eine Vorschrift, die jedem Element $x \in M$ genau ein Element $f(x) \in N$ zuordnet.

M heißt Definitionsbereich und N heißt Zielbereich oder auch Wertebereich. Hinweis: diese Definition ist nicht ganz korrekt, da wir noch nicht wissen, was eine Vorschrift ist.

Bemerkungen

Zu dem Datum (?) einer Funktion f gehört nicht nur die Vorschrift, sondern auch ihr Definitionsbereich und ihr Zielbereich.

Die Funktionen $f: \mathbb{N} \to \mathbb{N}, n \mapsto n^2$ und $g: \mathbb{N} \to \mathbb{R}, n \mapsto n^2$ sind nicht gleich, da sie unterschiedliche Zielbereiche haben.

Eine Vorschrift kann alles mögliche sein.

Beispiele 1.25

a) $f: \mathbb{R} \to \mathbb{R}, (x, y) \mapsto x + y$

b)
$$f: \mathbb{R} \to \mathbb{N}, x \mapsto \begin{cases} 1 & \text{falls } x \in Q \\ 0 & \text{sonst} \end{cases}$$

c) $f: M \to M, x \mapsto x$

Diese Abbildung heißt Identität von M oder auch identische Abbildung.

Beispiel und Nicht-Beispiel 1.26

Bemerkung 1.27

Eine Abbildung $f:M\to N$ ist eine Teilmenge des kartesischen Produktes $M\times N$ mit

$$\forall_x \in M \exists_y \in N : (x,y) \in f$$

Hinweis: Wenn ich ein geordnetes Paar habe wird der erste Eintrag x auf den zweiten Eintrag y abgebildet.

Donnerstag, 26.10.23 ⁵

Definition 1.28

Es sei $f:M\to N$ eine Abbildung und $M'\subset M$ eine Teilmenge von M. Dann ist das Bild von M' unter f definiert als

$$f(M') := \{ f(x') : x' \in M' \} \subset N$$

Bemerkung 1.29

im Falle M' = M heißt f(M') auch Bild von f.

Definition 1.30

Es sei $f:M\to N$ eine Abbildung und $N'\subset N$ eine Teilmenge von N. Dann ist das Urbild von N' unter f definiert als

$$f^{-1}(N') := \{x \in M : f(x) \in N'\} \subset M$$

Hinweis: $f^{-1}(N)$ hat 3 Bedeutungen: das Urbild, die Umkehrfunktion (falls f umkehrbar) und manchmal wird es benutzt um das Reziproke zu bezeichnen.

 $^{^5}$ vgl. S. 19 - 23 aus Baer.

Beispiele 1.31

a) Für $f: \mathbb{N} \to \mathbb{N}, n \mapsto n^2$ ist das Bild von f die Menge aller Quadratzahlen. Hinweis: das Bild kann man sich vorstellen als all das, was f produziert, also den Output von f.

b) Für $f: \mathbb{R} \to \mathbb{R}, (x,y) \mapsto x+y$ ist beispielsweise $f^{-1}(\{0\}) = \{(x,-x): x \in \mathbb{R}\}$ Hinweis: dies ist die Addition in \mathbb{R} . Außerdem muss die 0 in $\{0\}$ stehen, da wir in das Urbild eine Menge geben müssen und nicht ein einzelnes Element.

c) Für $f: \mathbb{N} \to \mathbb{N}, n \mapsto 2n$ ist $f^{-1}(\{3, 5, 7\}) = \emptyset$

Lemma 1.32

Es sei $f: A \to B$ eine Abbildung.

a) Es seien ferner $A_1, A_2 \subset A$ Teilmengen von A. Dann gilt:

i)
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

ii)
$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$$

b) Es seien ferner $B_1, B_2 \subset B$ Teilmengen von B. Dann gilt:

i)
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

ii)
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

Beweis

Wir beweisen exemplarisch nur i) von a).

Schritt 1: Wir zeigen

$$f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)$$

Sei also $x \in f(A_1 \cup A_2)$. Wir müssen zeigen, dass $x \in f(A_1) \cup f(A_2)$ gilt. Es ist

$$f(A_1 \cup A_2) = \{ f(x') : x' \in A_1 \cup A_2 \}$$

(Definition 1.28). Für unser x heißt das

$$\exists x' \in A_1 \cup A_2 : x = f(x')$$

Für dieses x' gilt $x' \in A_1$ oder $x' \in A_2$.

Fall 1: $x' \in A_1$.

Wegen x = f(x') gilt $x \in f(A_1)$. Dann gilt ebenso

$$x \in f(A_1) \lor x \in f(A_2), \text{ d.h. } x \in f(A_1) \cup f(A_2)$$

Fall 2: $x' \in A_2$.

Wegen x = f(x') gilt $x \in f(A_2)$. Dann gilt ebenso

$$x \in f(A_1) \lor x \in f(A_2), \text{ d.h. } x \in f(A_1) \cup f(A_2)$$

 $\underline{\operatorname{Schritt}\ 2:}$ Wir führen diesen Schritt weniger ausführlich durch. Zu zeigen ist also

$$f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)$$

Sei $x \in f(A_1) \cup f(A_2)$. Dann gibt es ein $x' \in A_1$ mit x = f(x') oder ein $x' \in A_2$ mit x = f(x'). In beiden Fällen gilt dann $x \in f(A_1 \cup A_2)$. \square

1.4 Surjektiv und Injektiv

Definition 1.33

Eine Abbildung $f: M \to N$ heißt *surjektiv*, wenn gilt:

$$\forall y \in N \exists x \in M : f(x) = y$$

Anders ausgedrückt: f(M)=N. Das Bild der Funktion ist also die gesamte Zielmenge. Nochmal anders ausgedrückt:

$$\forall y \in N : |f^{-1}(\{y\})| \ge 1$$

Beispiele 1.34

- a) Die Abbildung $f: \mathbb{Z} \to \mathbb{N}, m \mapsto |m|$ ist surjektiv.
- b) Die Abbildung $f: \mathbb{Z} \to \mathbb{Z}, m \mapsto |m|$ ist nicht surjektiv.

Hier sieht man wie wichtig der Zielbereich für die Surjektivität ist.

Definition 1.35

Eine Abbildung $f: M \to N$ heißt *injektiv*, wenn gilt:

$$\forall x_1, x_2 \in M : (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

Die Kontraposition der Definition macht die Aussage etwas anschaulicher:

$$\forall x_1, x_2 \in M : (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$

Anders ausgedrückt:

$$\forall y \in N : |f^{-1}(\{y\})| \le 1$$

Hinweis zu den Klammern: alles was nach einem Doppelpunkt kommt kann man sich als geklammert vorstellen. Vor dem Doppelpunkt stehen Quantoren, welche für die Aussagen hinter dem Doppelpunkt gelten.

Beispiele 1.36

- a) Die Abbildung $f: \mathbb{N} \to \mathbb{N}, m \mapsto m^2$ ist injektiv.
- b) Die Abbildung $f: \mathbb{Z} \to \mathbb{N}, m \mapsto m^2$ ist nicht injektiv.

Definition 1.37

Eine Abbildung heißt bijektiv, wenn sie injektiv und surjektiv ist.

Beispiele 1.38

- a) Für eine Menge M ist die Identität $id_M: M \to M$ bijektiv (siehe Beispiel 1.25c)
- b) Die Abbildung $f: \mathbb{Z} \to \mathbb{Z}, m \mapsto m^3$ ist injektiv aber nicht surjektiv und somit nicht bijektiv. Auch hier haben wir wieder ein Beispiel dafür, dass bei gleicher Vorschrift sowohl Definitions- als auch Zielbereich wichtig sind. Das Arbeiten mit Injektivität und Surjektivität ist zu Beginn schwierig. Die Begriffe sind aber sehr wichtig.

Lemma 1.39

Sei $f:X\to Y$ eine Abbildung und $A\subset X, B\subset Y$ Teilmengen. a) Es gilt stets $f^{-1}(f(A))\supset A$.

b) Es ist f injektiv genau dann, wenn:

$$\forall_A \subset X : f^{-1}(f(A)) = A$$

- c) Es gilt stets $f(f^{-1}(B)) \subset B$.
- d) Es ist f surjektiv genau dann, wenn:

$$\forall_B \subset Y : f(f^{-1}(B)) = B$$

Beweis

Hier nur a). Sei also $x \in A$. Es ist $f^{-1}(f(A)) = \{x \in X : f(x) \in f(A)\}$ laut Definition des Urbilds 1.38. Wegen $x \in A$ gilt $f(x) \in f(A)$, d.h. $x \in f^{-1}(f(A))$. \square

Mittwoch, 01.11.23 ⁶

Definition 1.40

Es seien $g: X \to Y$ und $f: Y \to Z$ Abbildungen. Dann heißt:

$$f \circ g: X \to Z, x \mapsto f(g(x))$$

die Komposition oder Verkettung von f mit g. Hinweis: wenn "f nach g" gesagt wird, ist $f \circ g$ gemeint, nicht $g \circ f$.

⁶vgl. S. ? aus Baer.

Beispiele 1.41

a) Sei $g: \mathbb{R} \to \mathbb{R}, x \mapsto x+2$ und $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Dann ist

$$(f \circ g)(x) = f(g(x)) = f(x+2) = (x+2)^2$$

andererseits:

$$(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 2$$

Hinweis: wir könnten auch $f: \mathbb{R} \to \mathbb{R}, f(a) = a^2$ definieren. Trotz verändertem Variablen Namen handelt es sich nach wie vor um die gleiche Funktion. Durch das Ändern des Variablen Namens wird alles etwas übersichtlicher.

b) Sei
$$g: \mathbb{R}_{\infty} \to \mathbb{R}$$
, $g(x) = \frac{x}{x+1}$ und $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x - 1$. Dann ist
$$f \circ g: \mathbb{R}_{\infty} \to \mathbb{R}$$
, $x \mapsto \frac{x}{x+1} - 1$

Bemerkung 1.42

Es ist $f \circ g$ nur dann definiert, wenn der Zielbereich von g exakt mit dem Definitionsbereich von f übereinstimmt (Beispiel 1.41b).

Sind sowohl $f\circ g$ als auch $g\circ f$ definiert, brauchen sie in der Regel nicht übereinstimmen. (Beispiel 1.41a)

Bemerkung 1.43

(Hinweis: Die Klammern bei den folgenden Dreier-Kompositionen fehlen, weil wir die Komposition von 2 Abbildungen definiert haben, nicht aber von 3.) Seien $h:A\to B,g:B\to C$ und $f:C\to D$ Abbildungen. Es kann dann $f\circ (g\circ h)$ interpretiert werden als $(f\circ g)\circ h$ oder $f\circ g\circ h$. Das ist aber dasselbe: Für $a\in A$ gilt:

$$((f \circ q) \circ h)(a) = (f \circ q)(h(a)) = f(q(h(a)))$$

und auch

$$(f \circ (g \circ h))(a) = f((g \circ h)(a)) = f(g(h(a)))$$

Die beiden Klammerungen produzieren dasselbe, ähnlich wie beim Asoziaitivgesetz.

Hinweis: Wenn wir 2 Abbildungen klammern, erhalten wir eine neue Abbildung.

Lemma 1.44

Es seien $g:X\to Y$ und $f:Y\to Z$ Abbildungen.

- a) Ist $f \circ g$ surjektiv, so ist f surjektiv.
- b) Ist $f \circ g$ injektiv, so ist g injektiv.

Beweis

- a) Sei $z \in Z$. Da $f \circ g$ surjektiv ist, gibt es ein $x \in X$ mit $(f \circ g)(x) = z$. Das heißt aber f(g(x)) = z, d.h. z ist im Bild von f. \square
- b) Seien $x_1, x_2 \in X$ mit $g(x_1) = g(x_2)$. Dann ist auch $f(g(x_1)) = f(g(x_2))$, d.h. $(f \circ g)(x_1) = (f \circ g)(x_2)$. Da $f \circ g$ injektiv ist, folgt $x_1 = x_2$. Das bedeutet, dass g injektiv ist. Hinweis: Auf Grund der Definition von Injektiv sieht man sofort, dass aus $(f \circ g)(x_1) = (f \circ g)(x_2)$ folgt, dass $x_1 = x_2$ gilt. \square

Lemma 1.45

Es sei $f: M \to N$ eine Abbildung.

- a) f ist surjektiv genau dann, wenn es eine Abbildung $g: N \to M$ gibt (man beachte, dass sich Ziel- und Definitionsbereich gedreht haben), mit $f \circ g = id_N$. Hier sagt man g ist die *Rechtsinverse* von f.
- b) f ist injektiv genau dann, wenn es eine Abbildung $g:N\to M$ gibt, mit $g\circ f=id_M$. Hier sagt man g ist die Linksinverse von f.
- c) f ist bijektiv genau dann, wenn es eine Abbildung $g: N \to M$ gibt, mit $f \circ g = id_N$ und $g \circ f = id_M$. Man sagt hier auch g ist die *Umkehrabbildung* oder *Inverse* von f. Vor allem dieses c) wird häufig benutzt.

Beweis

a)

Hinweis: wir starten mit der "schnellen" Richtung.

Beweisschritt 1:

Es existiere ein $g: N \to M$ mit $f \circ g = id_N$ (da id_N bijektiv ist, ist f nach 1.44b surjektiv und g ist injektiv, was aber irrelevant ist). Da id_N surjektiv ist, ist f nach 1.44a surjektiv.

Beweisschritt 2:

Sei f surjektiv. Wir konstruieren g wie folgt (Hinweis: das Problem ist, dass einige Elemente in N von mehreren Elementen aus M getroffen werden können. Da wir in einer "Rückwärts" Abbildung g, die etwas mit f zu tun haben muss, nicht ein Element aus N auf mehrere Elemente aus M abbilden können, müssen wir uns für eines entscheiden. Das machen wir mit der Auswahl von g):

Für $y \in N$ existiert ein (von y abhängiges) Element $x_y \in M$ mit $f(x_y) = y$ da f surjektiv ist. Wir definieren dann $g(y) := x_y$ für jedes $y \in N$. Damit ist die Abbildung g definiert. (Hinweis: wir wissen eigentlich nicht was g macht, aber wir wissen, dass g existiert. Das ist ein wichtiger Unterschied.) Dann gilt:

$$(f \circ g)(y) = f(g(y)) = f(x_y) = y = id_N(y)$$

b)

Beweisschritt 1:

Es existiere ein $g: N \to N$ mit $g \circ f = id_M$. Da id_M injektiv ist, ist f nach 1.44b injektiv.

Beweisschritt 2:

(Hinweis: auch hier ist wieder die Idee, dass wir die Pfeile, die von M nach N gehen, umdrehen. Das Problem ist hier, dass wir alle Elemente aus N abbilden müssen. Bisher werden durch f nicht alle Elemente in N getroffen. Unsere Lösung ist, dass wir die bisher von f nicht getroffenen Elemente auf Elemente in M abbilden, die bereits durch f nach N abbilden. Wir treffen diese Elemente also mehrmals.)

Sei f injektiv. Wir wählen ein $x_0 \in M$. Dieser Schritt funktioniert nur, wenn $M \neq \emptyset$. Die Abbildung $g: N \to M$ definieren wir als:

$$g(y) := \begin{cases} (\text{eindeutiges}) \ x \in M \ \text{mit} \ f(x) = y & \text{falls} \ y \in f(M) \\ x_0 & \text{sonst} \end{cases}$$

Dann gilt für $x \in M$:

$$(g \circ f)(x) = g(f(x)) = g(y) = x$$
 (der 1. Fall in der Definition von g) $(id_M(x) = x)$?

c)

Reweisschritt 1

Es existiere ein $g: N \to M$ mit $f \circ g = id_N$ und $g \circ f = id_M$. Dann ist f nach a) und b) surjektiv und injektiv, also bijektiv.

Beweisschritt 2:

Hinweis: hier könnte man auch auf die Idee kommen a) und b) zu benutzen. Das Problem ist jedoch, dass wir verschiedene g erhalten könnten. Wir wissen nicht, ob die g aus a) und b) gleich sind.

Sei f bijektiv. Aus a) folgt die Existenz eines $g_1: N \to M$ mit $f \circ g_1 = id_N$. Aus b) folgt die Existenz eines $g_2: N \to M$ mit $g_2 \circ f = id_M$. Wir zeigen, dass $g_1 = g_2$ gilt:

$$q_1 = id_M \circ q_1 = (q_2 \circ f) \circ q_1 = q_2 \circ (f \circ q_1) = q_2 \circ id_N = q_2$$

Bemerkung 1.46

Aus dem Beweis von Lemma 1.45c) folgt, dass die Umkehrabbildung f^{-1} einer bijektiven Abbildung eindeutig ist.

Die Rechts- bzw. Linksinverse einer Abbildung ist im Allgemeinen nicht eindeutig. Das sieht man auch in den Beweisen. In a) sieht man beispielsweise, dass die Eindeutigkeit schief geht, da wir uns für ein Element entscheiden mussten.

2 Lineare Gleichungssysteme und Matrizen

2.1 Lineare Gleichungssysteme

Beispiele 2.1

a) Wir führen Bezeichnungen ein:

Wir erhalten folgende Gleichungen:

$$A \cdot 15 + B \cdot 40 = 2 \cdot 50$$

 $A \cdot 25 = 2 \cdot 25 + B \cdot 50$

Umsortieren und Kürzen ergibt:

$$A \cdot 3 + B \cdot 8 = 20$$
$$A - B \cdot 2 = 2$$

Jetzt ziehen wir von der ersten Zeile das 3-fache der zweiten Zeile ab und erhalten:

$$B \cdot 14 = 14$$
, d.h. $B = 1$

Einsetzen von B=1 in eine der obigen Gleichungen ergibt dann A=4. Es gibt also eine eindeutige Lösung.

b) Wir betrachten folgende Reaktionsgleichung aus der Chemie zur Hersetllung von Trinitrotoluol (TNT):

$$x \cdot C_7 H_8 + y \cdot HNO_3 \rightarrow z \cdot C_7 H_5 O_6 N_3 + W \cdot H_2 O_6 N_5 O_6 N_5 O_6 N_5 O_6 N_5 O_6 N_5 O_6$$

Wir stellen Gleichungen für die einzelnen Elemente auf:

Kohlenstoff
$$C: 7x + 0y = 7z + 0w$$

Wasserstoff $H: 8x + 1y = 5z + 2w$
Stickstoff $N: 0x + 1y = 3z + 0w$
Sauerstoff $O: 0x + 3y = 6z + 1w$

⁷vgl. S. ? aus Baer.

Wir wollen x,y und w abhängig von z wissen. Wir sehen sofort x=z und y=3z. Setzen wir das noch in die Formel für den Sauerstoff ein, folgt als letztes w=3z.

Wir haben also unendlich viele Lösungen, nämlich für jedes $z \in \mathbb{R}$ Eine.

c) Es gibt auch lineare Gleichungssysteme ohne Lösung.

$$3x + 3y + z = 1$$
$$x + 2y + 3z = 4$$
$$-2x - 4y - 6z = 6$$

Addieren wir das Doppelte der zweiten Zeile zur dritten Zeile, erhalten wir:

$$0 = 14$$

Es gibt also keine $x, y \in \mathbb{R}$, welche dieses Gleichungssystem lösen.

Hinweis: wir arbeiten dieses Semester mit den reellen Zahlen. Es gibt aber auch andere Zahlenmengen, z.B. die komplexen Zahlen, mit denen wir lineare Gleichungssysteme aufstellen können.

Definition 2.2

Ein lineares Gleichungssystem LGS ist eine Kollektion von Gleichungen der folgenden Form:

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$\dots$$

$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

Hierbei sind die Koeffizienten $A_{ij} \in \mathbb{R}$ für $1 \leq i \leq m$ und $1 \leq j \leq n$ und die rechten Seiten $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ vorgegeben und die Unbekannten $x_1, ..., x_n \in \mathbb{R}$ sind gesucht.

Eine Lösung vom obigen LGS ist ein n-Tupel $x = (x_1, ..., x_n) \in \mathbb{R}^n$, welche alle Gleichungen erfüllt.

Die Lösungsmenge des LGS ist die Menge aller Lösungen des LGS. Sie ist also Teilmenge des \mathbb{R}^n .

Hinweise:

- 1. Anstatt von Kollektion kann man auch Ansammlung, Liste etc. verwenden.
- 2. Wir haben $m \cdot n$ verschiedene Koeffizienten.
- 3. Das *n*-Tupel $x=(x_1,...,x_n)\in\mathbb{R}^n$ ist ein Element des n-fachen Produktes von \mathbb{R} .
- 4. Wenn die Lösungsmenge nicht als Teilmenge des \mathbb{R}^n interpretiert werden kann, ist die Lösung vermutlich falsch.

Erklärung 2.3

Wir betrachten Beispiel 2.1a) nochmal. Zunächst benennen wir die Variablen um, damit sie in unsere Definition passen.

$$x_1 := A$$
$$x_2 := B$$

und stellen dann das LGS auf:

$$15x_1 + 40x_2 = 100$$
$$25x_1 - 50x_2 = 50$$

In der Notation von Definition 2.2 ist also n=2 (Anzahl der Unbekannten), m=2 (Anzahl der Gleichungen/Zeilen), $A_{11}=15, A_{12}=40, A_{21}=25, A_{22}=-50, b_1=100, b_2=50.$

Die Lösungsmenge ist in diesem Fall $\{(4,1)\}\subset \mathbb{R}^2$.

Definition 2.4

Es sei ein LGS gegeben. Folgende Veränderungen davon bezeichnet man als elementare Zeilenumformungen:

- 1. Vertauschen zweier Zeilen
- 2. Multiplikation einer Zeile mit einer Konstanten $\lambda \in \mathbb{R} \setminus \{0\}$
- 3. Addition des Vielfachen einer Zeile zu einer Anderen.

Hinweis zu 3: Das Vielfache darf auch 0 sein.

Satz 2.5

Elementare Zeilenumformungen ändern die Lösungsmenge eines LGS nicht.

Beweis

Hinweis: wir nehmen ein gegebenes LGS und führen eine der 3 elementaren Zeilenumformungen durch. Wir zeigen, dass die Lösungsmenge gleich bleibt. Wir müssen also die wie üblich zeigen, dass beide Lösungsmengen ineinander enthalten sind.

1. Vertauschen zweier Zeilen

Es ist klar, dass sich beim Vertauschen von Zeilen die Lösungsmenge nicht ändert, da sich die Gleichungen nicht ändern. Die Definition der Lösungsmenge gibt nur an, welche Lösungsmenge alle Gleichungen löst. Die Reihenfolge der Gleichungen ist also irrelevant.

2. Multiplikation einer Zeile mit einer Konstanten $\lambda \in \mathbb{R} \setminus \{0\}$ Beweisschritt 1:

Es erfülle $x = (x_1, ..., x_n)$ eine Gleichung der Form

$$A_{i1}x_1 + \ldots + A_{in}x_n = b_i$$

für ein $i \in \{1,...,m\}$. (Hinweis: Wir haben also m
 Gleichungen und multiplizieren eine davon mit $\lambda \in \mathbb{R} \setminus \{0\}$. Wir ändern also nur die i-te Zeile und ändern an den anderen Gleichungen nichts.)

Dann erfüllt es auch die Gleichung

$$\lambda A_{i1}x_1 + \dots + \lambda A_{in}x_n = \lambda b_i$$

für ein $\lambda \in \mathbb{R}$. (Hinweis: das bisher hingeschriebene ist ein Beispiel für einen schlecht aufgeschrieben Beweis. Wir haben einfach nur aufgeschrieben, was wir zeigen wollen. Wir haben also die Behauptung, die wir zeigen wollen einfach nur aufgeschrieben und nicht begründet. Das müssen wir noch begründen, damit der Beweis vollständig wird. Außerdem: Warum dürfen wir beide Seiten mit λ multiplizieren und es ändert die LM nicht? Wir betrachten die Funktion $f: \mathbb{R} \to \mathbb{R}, f(x) = \lambda x$. Per Definition was eine Funktion ist gilt $a = b \to f(a) = f(b)$.)

Ist $\lambda \neq 0$, so gilt die Argumentation auch rückwärts, da wir mit $\frac{1}{\lambda}$ multiplizieren können.

Beweisschritt 2:

Analog zum vorherigen Beweisschritt, da $(x,y)\mapsto \lambda x+y$ eine wohldefinierte Funktion ist. \Box

Mittwoch, 08.11.23 ¹

Zur platzsparenden Notation beim Lesen von LGS führen wir die Matrixnotation ein:

Definition 2.6

Eine $m \times n$ -Matrix reeller Zahlen ist ein rechteckiges Schema der Form:

$$\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix}$$

wobei $A_{ij} \in \mathbb{R}$ für $i \in \{1, ..., m\}$ und $j \in \{1, ..., n\}$ die *Einträge* der Matrix sind. Hinweise: 1. In einer Matrix können auch andere Zahlen stehen, z.B. komplexe

¹Die Inhalte dieser Vorlesung beziehen sich ungefähr auf Seite ? aus Baer.

Zahlen aber auch Polynome usw. 2. Diese Definition ist mathematisch formal nicht ganz korrekt, da wir nicht definiert haben, was ein rechteckiges Schema ist.

Haben wie ein LGS der Form

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$\dots$$

$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

gegeben, so heißt die Matrix

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix}$$

die Koeffizientenmatrix des LGS und die Matrix

$$(A,b) = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} & b_1 \\ A_{21} & A_{22} & \dots & A_{2n} & b_2 \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m2} & \dots & A_{mn} & b_m \end{pmatrix}$$

die erweiterte Koeffizientenmatrix des LGS.

Hinweis: Matrizen werden meist mit Großbuchstaben bezeichnet. Wenn eine zusätzliche Spalte hinzu kommen soll, schreiben wir die Matrix mit runden Klammern.

Eine 2x3 Matrix wäre beispielsweise:

$$A = \begin{pmatrix} 1 & 0 & \pi \\ e^2 & \sqrt{2} & -5 \end{pmatrix}$$

Definition 2.7

Eine Matrix ist in Zeilenstufenform, wenn jede Zeile mindestens eine führende Null mehr hat als die vorherige Zeile, es sei denn die darüberliegende Zeile hat nur Nullen. Dann hat auch die nächste Zeile nur Nullen.

Beispiele 2.8

Die Matrizen

$$A = \begin{pmatrix} 1 & 3 & -7 & 5 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 3 & -7 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

sind in Zeilenstufenform, aber nicht die Folgenden:

$$C = \begin{pmatrix} 1 & 3 & -7 & 5 \\ 0 & 0 & 0 & 4 \\ 0 & 2 & 0 & 0 \end{pmatrix} \text{ und } D = \begin{pmatrix} 1 & 3 & -7 & 5 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Fakt 2.9

Hinweis: wir nennen es Fakt, da es nicht bewiesen wird, da der Beweis sehr lang ist.

Jede Matrix lässt sich durch elementare Zeilenumformungen in Zeilenstufenform bringen.

Gauß-Algorithmus 2.10

Es sei ein LGS mit erweiterter Koeffizientenmatrix (A,b) gegeben.

- 1. Überführe (A,b) durch elementare Zeilenumformungen in (A',b') in Zeilenstufenform.
- 2. Prüfe ob die Lösungsmenge leer ist.
- 3. Wenn die Lösungsmenge nicht leer ist, ermittle die Lösungsmenge durch sukzessives Einsetzen von unten nach oben.

Bemerkung 2.11

Sei (A',b') in Zeilenstufenform. Wenn es eine Zeile gibt, in der alle Einträge von A' nur aus Nullen bestehen, aber $b'\neq 0$ ist, so ist die Lösungsmenge leer. Das ist die einzige Möglichkeit, in der die Lösungsmenge leer ist. Dies ist auch durch Schritt 3 aus 2.10 nachprüfbar.

Beispiel 2.12

Was heißt im Gauß-Algorithmus "sukzessives Einsetzen von unten nach oben"? Wir betrachten die Matrix

$$(A',b') = \begin{pmatrix} 1 & 2 & 4 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

wobei die ersten 3 Spalten die Koeffizientenmatrix A' und die letzte Spalte die rechte Seite b' ist.

Die Lösungsmenge ist:

Hinweise: 1. Wir haben die Lösungsmenge hier zur besseren Übersicht untereinander geschrieben.

2. "Woher weiß ich, wann ich fertig bin mit dem Aufschreiben meiner Lösung? Im oberen Beispiel haben wir die Lösungsmenge mit 3 Zeilen angegeben." Antwort: man hätte theoretisch auch schon nach der 2. Zeile aufhören können. Wir haben weiter umgeformt, um die Lösungsmenge übersichtlicher zu gestalten.

Ist (A', b') in Zeilenstufenform, so kann man genau ablesen, welche Variablen frei wählbar sind und welche durch die Formeln von den frei wählbaren abhängen (Vorsicht: das ist nicht eindeutig.)

Die frei wählbaren Variablen sind jene, die <u>nicht</u> die führenden nicht-Null Einträge von Zeilen sind.

Die führenden nicht-Null Einträge sind also fest. Im Beispiel 2.12 hatten wir die Matrix:

$$(A',b') = \begin{pmatrix} 1 & 2 & 4 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Her sind die führenden nicht-Null Einträge in der 1. Zeile 1 und in der 2. Zeile 1. Das heißt, dass x_1 und x_3 nicht frei wählbar sind aber x_2 schon. Ein weiteres Beispiel:

$$(A',b') = \begin{pmatrix} * & * & * & * & * \\ 0 & * & 0 & 0 & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Hier sind x_1, x_2, x_4 abhängig und x_3 frei wählbar.

Donnerstag, 09.11.23 ¹

¹Die Inhalte dieser Vorlesung beziehen sich ungefähr auf Seite? aus Baer.

2.2 Struktur und Lösungsmenge eines LGS

Definition 2.13

Sei $n \in \mathbb{N}$. Auf dem \mathbb{R}^n definieren wir die Addition:

$$+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, (x, y) \mapsto x + y$$

$$x + y := (x_1 + y_1, ..., x_n + y_n) \text{ für } x = (x_1, ..., x_n), y = (y_1, ..., y_n).$$

und Multiplikation mit Skalaren wie folgt:

$$\cdot : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, (\lambda, x) \mapsto \lambda \cdot x$$

$$\lambda \cdot x := (\lambda \cdot x_1, ..., \lambda \cdot x_n) \text{ für } x = (x_1, ..., x_n) \in \mathbb{R}^n.$$

Bemerkung 2.14

Ist $x \in \mathbb{R}^n$ und $y \in \mathbb{R}^m$ mit $n \neq m$, so ist x + y <u>nicht</u> definiert.

Ebenso ist für $x \in \mathbb{R}^n$ und $y \in \mathbb{R}^n$ (bisher) noch keine Multiplikation $x \cdot y$ definiert.

Beispiel 2.15

Es sei $x=(1,2,-5)\in\mathbb{R}^3$ und $y=(0.5,0,4)\in\mathbb{R}^3$ und $\lambda=2\in\mathbb{R}.$

Dann ist
$$x + \lambda y = \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0.5 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 8 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$$

Hinweis: wir schreiben das λ direkt vor y da die Konvention "Punkt vor Strich" gilt.

Lemma 2.16

Es gelten folgende Rechenregeln für $x, y, z \in \mathbb{R}^n$ und $\lambda, \mu \in \mathbb{R}$:

- a.1) x + (y + z) = (x + y) + z (Assoziativität)
- a.2) x + y = y + x (Kommutativität)
- a.3) x + 0 = x wobei $0 = (0, ..., 0) \in \mathbb{R}^n$ (Existenz eines neutralen Elements)
- a.4) x + (-x) = 0 wobei $-x = (-x_1, ..., -x_n)$ wenn $x = (x_1, ..., x_n)$ (Existenz eines inversen Elements)
- b.1) $(\lambda + \mu) \cdot x = \lambda x + \mu x$ (Distributivität von Skalaren)
- b.2) $\lambda \cdot (x+y) = \lambda x + \lambda y$ (Distributivität von Vektoren)
- b.3) $(\lambda \cdot \mu) \cdot x = \lambda \cdot (\mu \cdot x)$ (Assoziativität)
- b.4) $1 \cdot x = x$, wobei $1 \in R$ (Existenz eines neutralen Elements)

Hinweis: das hier ist die Definition des Vektorraums \mathbb{R}^n . Die Definition für einen Vektorraum ist noch allgemeiner.

Beweis

Hier nur a.1): Per Definition ist

$$x + (y + z) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 + z_1 \\ \vdots \\ y_n + z_n \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} (x_1 + y_1) + z_1 \\ \vdots \\ (x_n + y_n) + z_n \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_n + (y_n + z_n) \end{pmatrix} = \begin{pmatrix} x_1 + (y_1 + z_1) \\ \vdots \\ x_$$

Definition 2.17

Ein LGS heißt homogen, wenn die rechte Seite davon jeweils 0 ist, d.h. $b_1 = \dots = b_n = 0$ in der Notation von Definition 2.2. Ansonsten heißt es inhomogen.

Definition 2.18

Für ein LGS mit erweiterter Koeffizientenmatrix (A, b) schreiben wir Lös $(A, b) \subset \mathbb{R}^n$ für die Lösungsmenge des LGS.

Satz 2.19

Es sei ein homogenes LGS mit Koeffizientenmatrix A gegeben. Dann gilt:

- a) Es ist $(0,0,...,0) \in \text{L\"os}(A,0)$. Insbesondere also ist $\text{L\"os}(A,0) \neq \emptyset$.
- b) Für $x, y \in \text{L\"os}(A, 0)$ gilt $x + y \in \text{L\"os}(A, 0)$.
- c) Ist $x \in \text{L\"os}(A, 0)$ und $\lambda \in \mathbb{R}$, so ist $\lambda x \in \text{L\"os}(A, 0)$.

Beweis

Es sei $i \in \{1, ..., m\}$ und $A_{i1} \cdot x_1 + ... + A_{in} \cdot x_n = 0$ die i-te Gleichung des LGS (es reicht aus den Beweis separat für alle i zu führen).

a) Es gilt offensichtlich $A_{i1} \cdot 0 + ... + A_{in} \cdot 0 = 0$.

Hinweis: hier sieht man schon, dass wir ein homogenes Gleichungssystem brauchen, denn mit einem inhomogenen wäre das nicht möglich.

b) Wegen $x, y \in \text{L\"os}(A, 0)$ gilt

$$A_{i1} \cdot x_1 + \dots + A_{in} \cdot x_n = 0$$
und
$$A_{i1} \cdot y_1 + \dots + A_{in} \cdot y_n = 0$$

Dann gilt auch

$$=\underbrace{A_{i1} \cdot (x_1 + y_1) + \dots + A_{in} \cdot (x_n + y_n)}_{=0} + \underbrace{A_{i1} \cdot x_1 + \dots + A_{in} \cdot x_n}_{=0} + \underbrace{A_{i1} \cdot y_1 + \dots + A_{in} \cdot y_n}_{=0}$$

c) Wegen $x \in \text{L\"os}(A, 0)$ gilt

$$A_{i1} \cdot x_1 + \dots + A_{in} \cdot x_n = 0$$

Für $\lambda \in \mathbb{R}$ gilt dann

$$A_{i1} \cdot (\lambda x_1) + \dots + A_{in} \cdot (\lambda x_n)$$

= $\lambda \cdot (A_{i1} \cdot x_1 + \dots + A_{in} \cdot x_n)$
= $\lambda \cdot 0 = 0$

Satz 2.20

- a) Hat ein homogenes LGS eine Lösung $x \neq 0 \in \mathbb{R}^n$, so hat es unendlich viele verschiedene Lösungen.
- b) Hat ein inhomogenes LGS zwei verschiedene Lösungen, so hat es unendlich viele verschiedene Lösungen.

Satz 2.21

Hat ein homogenes LGS mehr Unbekannte als Gleichungen, so besitzt es eine Lösung $\neq 0$.

Hinweis: "Warum ist dieser Satz interessant?" Er bringt 2 unterschiedliche Dinge zusammen. Die Anzahl der Unbekannten von Gleichungen und die Lösungsmenge 0.

Beweis

Wir bringen die Koeffizientenmatrix A des LGS in Zeilenstufenform A'.

Wir wissen von letzter Vorlesung (siehe die Bemerkung ganz am Ende davon): Freie Variablen in der Lösungsmenge sind jene, die nicht die führenden nicht-Null Einträge von Zeilen von A' sind.

Haben wir mehr Unbekannte als Gleichungen, haben wir immer mindestens eine freie Variable.

Satz 2.22

Wir betrachten ein LGS mit erweiterter Koeffizientenmatrix (A,b). Es sei $L\ddot{o}s(A,b) \neq \emptyset$ und $y \in L\ddot{o}s(A,b)$. Dann gilt:

$$L\ddot{o}s(A, b) = \{x + y | x \in L\ddot{o}s(A, 0)\}\$$

Beweis

 $Beweisschritt\supset:$

Sei $x \in \text{L\"os}(A,0)$ und $y \in \text{L\"os}(A,b)$. Wir m\"ussen zeigen, dass $x+y \in \text{L\"os}(A,b)$ gilt.

Wir betrachten die i-te Gleichung des LGS. Es gilt:

$$A_{i1} \cdot x_1 + \dots + A_{in} \cdot x_n = 0$$
und
$$A_{i1} \cdot y_1 + \dots + A_{in} \cdot y_n = b_i$$

wobei $x = (x_1, ..., x_n)$ und $y = (y_1, ..., y_n)$ sowie $b = (b_1, ..., b_m)$ ist. Dann gilt auch:

$$=\underbrace{A_{i1}\cdot(x_1+y_1)+\ldots+A_{in}\cdot(x_n+y_n)}_{=0} +\underbrace{A_{i1}\cdot x_1+\ldots+A_{in}\cdot x_n}_{=0} +\underbrace{A_{i1}\cdot y_1+\ldots+A_{in}\cdot y_n}_{=b_i}$$

$$=0+b_i=b_i$$

 $Beweisschritt \subset:$

Wir setzen x := z - y, sodass z = x + y mit $y \in \text{L\"os}(A, b)$ gilt.

Wir müssen $x \in \text{L\"os}(A, 0)$ zeigen.

Das ist eine analoge Rechnung wie im vorherigen Beweisschritt.

Hinweis: das Minuszeichen ist bisher eigentlich undefiniert.

Mittwoch, 15.11.23 $^{8}\,$

2.3 Matrixabbildungen

Definition 2.23

Es sei Aeine $m\times n$ -Matrix. Wir definieren eine Abbildung $\varphi_A:\mathbb{R}^n\to\mathbb{R}^m$ durch

$$\varphi_A(x) := \begin{pmatrix} A_{11} \cdot x_1 + \dots + A_{1n} \cdot x_n \\ \vdots \\ A_{m1} \cdot x_1 + \dots + A_{mn} \cdot x_n \end{pmatrix}$$

wobei $x = (x_1, ..., x_n) \in \mathbb{R}^n$ ist.

Bemerkung 2.24

Aus der Definition von φ_A sehen wir sofort: Für jedes $b \in \mathbb{R}^m$ gilt $\text{L\"os}(A, b) = \varphi_A^{-1}(b)$.

Beispiel 2.25

Für $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 2 \end{pmatrix}$ ist die Abbildung $\varphi_A : \mathbb{R}^2 \to \mathbb{R}^3$ gegeben durch

$$\varphi_A(x) = \begin{pmatrix} x_1 \\ 0 \\ 2x_2 \end{pmatrix}$$

für $x = (x_1, x_2) \in \mathbb{R}^2$.

Lemma 2.26

Es sei eine $m \times n$ -Matrix A gegeben und $\varphi_A : \mathbb{R}^n \to \mathbb{R}^m$ die zugehörige Matrixabbildung. Dann gilt:

- a) $\varphi_A(x+y) = \varphi_A(x) + \varphi_A(y)$ für alle $x, y \in \mathbb{R}^n$.
- b) $\varphi_A(\lambda x) = \lambda \cdot \varphi_A(x)$ für alle $x \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$.
- c) $\varphi_A(0) = 0$.

Hinweise: 1. Das ähnelt dem, was wir über die Lösungsmenge von homogenen

 $^{^8}$ vgl. S. 11 - 18 aus Baer.

LGS wissen.

2. Das erste Plus in a) von $\varphi_A(x+y)$ ist das Plus im \mathbb{R}^n und das zweite Plus in $\varphi_A(x) + \varphi_A(y)$ ist das im \mathbb{R}^m .

Beweis

a) Schreibe
$$x = (x_1, ..., x_n), y = (y_1, ..., y_n)$$
 und $A = \begin{pmatrix} A_{11} & ... & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & ... & A_{mn} \end{pmatrix}$.

Dann ist:

$$\varphi_{A}(x+y) = \begin{pmatrix} A_{11} \cdot (x_{1}+y_{1}) + \dots + A_{1n} \cdot (x_{n}+y_{n}) \\ \vdots \\ A_{m1} \cdot (x_{1}+y_{1}) + \dots + A_{mn} \cdot (x_{n}+y_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} \cdot x_{1} + \dots + A_{1n} \cdot x_{n} + A_{11} \cdot y_{1} + \dots + A_{1n} \cdot y_{n} \\ \vdots \\ A_{m1} \cdot x_{1} + \dots + A_{mn} \cdot x_{n} + A_{m1} \cdot y_{1} + \dots + A_{mn} \cdot y_{n} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} \cdot x_{1} + \dots + A_{1n} \cdot x_{n} \\ \vdots \\ A_{m1} \cdot x_{1} + \dots + A_{mn} \cdot x_{n} \end{pmatrix} + \begin{pmatrix} A_{11} \cdot y_{1} + \dots + A_{1n} \cdot y_{n} \\ \vdots \\ A_{m1} \cdot y_{1} + \dots + A_{mn} \cdot y_{n} \end{pmatrix}$$

$$= \varphi_{A}(x) + \varphi_{A}(y)$$

b) Analog zu a).

c)

$$\varphi_A(0) = \begin{pmatrix} A_{11} \cdot 0 + \dots + A_{1n} \cdot 0 \\ \vdots \\ A_{m1} \cdot 0 + \dots + A_{mn} \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = 0$$

Hinweis: in der Vorlesung haben wir hier den Beweis nicht aufgeschrieben, da er trivial ist.

Bemerkung 2.27

a) Es gilt auch $\varphi_A(x-y)=\varphi_A(x)-\varphi_A(y)$ für alle $x,y\in\mathbb{R}^n,$ denn

$$\varphi_A(x-y) = \varphi_A(x+(-1)\cdot y) = \varphi_A(x) + \varphi_A((-1)\cdot y) = \varphi_A(x) + (-1)\cdot \varphi_A(y) = \varphi_A(x) - \varphi_A(y)$$

b) Es gilt weiterhin $\varphi_A(\lambda_1 v_1 + ... + \lambda_k v_k) = \lambda_1 \varphi_A(v_1) + ... + \lambda_k \varphi_A(v_k)$ für alle $v_1, ..., v_k \in \mathbb{R}^n$ und $\lambda_1, ..., \lambda_k \in \mathbb{R}$.

Hinweis zu den Indices: wir haben k-viele Elemente aus dem \mathbb{R}^n .

Definition 2.28

Sei A eine $m \times n$ -Matrix und φ_A die zugehörige Matrixabbildung. Dann heißt

$$\ker(\varphi_A) := \varphi_A^{-1}(\{0\}) = \{x \in \mathbb{R}^n : \varphi_A(x) = 0\}$$

der Kern von φ_A .

Lemma 2.29

Für $x, y \in \mathbb{R}^n$ gilt:

Es ist $\varphi_A(x) = \varphi_A(y)$ genau dann, wenn $x - y \in \ker(\varphi_A)$.

Beweis

Wir formen einfach um:

$$\varphi_{A}(x) = \varphi_{A}(y) \Leftrightarrow \varphi_{A}(x) - \varphi_{A}(y) = 0$$

$$\Leftrightarrow^{\text{Bem.}, 2.27a} \varphi_{A}(x - y) = 0$$

$$\Leftrightarrow^{\text{Def.}, 2.28} x - y \in \ker(\varphi_{A})$$

Korollar 2.30

Die Abbildung φ_A ist injektiv genau dann, wenn $\ker(\varphi_A) = \{0\}.$

Beweis

"⇒":

Sei φ_A injektiv. Sei $x \in \ker(\varphi_A)$. Dann gilt $\varphi_A(x) = 0$. Da φ_A injektiv ist, folgt x = 0. Also ist $\ker(\varphi_A) = \{0\}$.

"**←**"

Sei $\ker(\varphi_A) = \{0\}$. Es sei $\varphi_A(x) = \varphi_A(y)$. Dann gilt mit Lemma 2.29 $x - y \in \ker(\varphi_A)$.

Es muss dann x - y = 0 gelten, also x = y.

Sei A eine $(m \times n)$ -Matrix und B eine $(k \times m)$ -Matrix. Dann sind $\varphi_A : \mathbb{R}^n \to \mathbb{R}^m$ und $\varphi_B : \mathbb{R}^m \to \mathbb{R}^k$ verknüpfbar. Ist $\varphi_B \circ \varphi_A : \mathbb{R}^n \to \mathbb{R}^k$ wieder von einer Matrix induziert? Wir schreiben mal die Formel auf:

$$(\varphi_{B} \circ \varphi_{A})(x) = \varphi_{B} \begin{pmatrix} A_{11} \cdot x_{1} + \dots + A_{1n} \cdot x_{n} \\ \vdots \\ A_{m1} \cdot x_{1} + \dots + A_{mn} \cdot x_{n} \end{pmatrix}$$

$$= \begin{pmatrix} B_{11} \cdot (A_{11} \cdot x_{1} + \dots + A_{1n} \cdot x_{n}) + \dots + B_{1m} \cdot (A_{m1} \cdot x_{1} + \dots + A_{mn} \cdot x_{n}) \\ \vdots \\ B_{k1} \cdot (A_{11} \cdot x_{1} + \dots + A_{1n} \cdot x_{n}) + \dots + B_{km} \cdot (A_{m1} \cdot x_{1} + \dots + A_{mn} \cdot x_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} B_{11} \cdot A_{11} \cdot x_{1} + \dots + B_{1m} \cdot A_{m1} \cdot x_{1} + \dots + B_{11} \cdot A_{1n} \cdot x_{n} + \dots + B_{1m} \cdot A_{mn} \cdot x_{n} \\ \vdots \\ B_{k1} \cdot A_{11} \cdot x_{1} + \dots + B_{km} \cdot A_{m1} \cdot x_{1} + \dots + B_{k1} \cdot A_{1n} \cdot x_{n} + \dots + B_{km} \cdot A_{mn} \cdot x_{n} \end{pmatrix}$$

$$= \begin{pmatrix} (B_{11} \cdot A_{11} + \dots + B_{1m} \cdot A_{m1}) \cdot x_{1} + \dots + (B_{11} \cdot A_{1n} + \dots + B_{1m} \cdot A_{mn}) \cdot x_{n} \\ \vdots \\ (B_{k1} \cdot A_{11} + \dots + B_{km} \cdot A_{m1}) \cdot x_{1} + \dots + (B_{k1} \cdot A_{1n} + \dots + B_{km} \cdot A_{mn}) \cdot x_{n} \end{pmatrix}$$

Dies beweist folgendes Lemma:

Lemma 2.31

Es sei A eine $(m \times n)$ -Matrix und B eine $(k \times m)$ -Matrix. Dann ist die Verknüpfung $\varphi_B \circ \varphi_A$ durch die Matrix

$$\begin{pmatrix} B_{11} \cdot A_{11} + \dots + B_{1m} \cdot A_{m1} & \dots & B_{11} \cdot A_{1n} + \dots + B_{1m} \cdot A_{mn} \\ \vdots & & \ddots & \vdots \\ B_{k1} \cdot A_{11} + \dots + B_{km} \cdot A_{m1} & \dots & B_{k1} \cdot A_{1n} + \dots + B_{km} \cdot A_{mn} \end{pmatrix}$$

gegeben.

Definition 2.32

Sei A eine $(m \times n)$ -Matrix und B eine $(k \times m)$ -Matrix. Wir definieren das Produkt $B \cdot A$ als die $(k \times n)$ -Matrix, deren ij-ter Eintrag wie folgt ist:

$$(B \cdot A)_{ij} := B_{i1} \cdot A_{1j} + \dots + B_{im} \cdot A_{mj} = \sum_{r=1}^{m} B_{ir} \cdot A_{rj}$$

Bemerkung 2.33

Man kann Lemma 2.31 auch so formulieren:

Es gilt $\varphi_B \circ \varphi_A = \varphi_{B \cdot A}$.

Hinweis: Um die Matrixmultiplikation zu definieren wäre der naive Ansatz ja:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae & bf \\ cg & dh \end{pmatrix}$$

Diese Definition ist aber nutzlos. Die Formel aus Lemma 2.31 bringt einem aber was, nämlich die Bemerkung 2.33.

Bemerkung 2.34

Interpretieren wir ein $x \in \mathbb{R}^n$ entsprechend der Notation $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ als eine $(n \times 1)$ -Matrix, so ist $\varphi_A(x)$ dieselbe Formel wie das Matrixprodukt $A \cdot x$.

$$A \cdot x = \begin{pmatrix} A_{11} \dots A_{1n} \\ \vdots \\ A_{m1} \dots A_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} A_{11} \cdot x_1 + \dots + A_{1n} \cdot x_n \\ \vdots \\ A_{m1} \cdot x_1 + \dots + A_{mn} \cdot x_n \end{pmatrix} = \varphi_A(x)$$

Donnerstag, 16.11.23 ⁹

Das Falk Schema S.49 aus Baer

Um 2 Matrizen miteinander zu multiplizieren kann man das Falk Schema verwenden.

Bemerkung 2.35

Ist A eine $(m \times n)$ -Matrix und B eine $(k \times m)$ -Matrix, so ist zwar $B \cdot A$ definiert, aber $A \cdot B$ nicht. Dies ist nur definiert, wenn k = n ist. Die Anzahl der Spalten muss gleich der Anzahl der Zeilen sein.

Selbst wenn A und B quadratische Matrizen derselben Größe sind sodass $A \cdot B$ und $B \cdot A$ definiert sind, müssen sie nicht unbedingt übereinstimmen:

Für
$$A=\begin{pmatrix}1&0\\1&1\end{pmatrix}$$
 und $B=\begin{pmatrix}1&3\\2&4\end{pmatrix}$ gilt $A\cdot B=\begin{pmatrix}1&3\\3&7\end{pmatrix}$ und $B\cdot A=\begin{pmatrix}4&3\\6&4\end{pmatrix}$.

⁹vgl. S. ? aus Baer.

Das heißt die Kommutativität gilt für die Matrixmultiplikation nicht. Bei der Matrixmultiplikation kann auch folgendes passieren:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Das Produkt von nicht-Null Matrizen kann also Null werden.

Lemma 2.36

Es sei A eine $(m \times n)$ -Matrix, B eine $(n \times k)$ -Matrix und C eine $(k \times l)$ -Matrix. Dann gilt:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Das heißt, dass Assoziativität gilt.

Beweis

Für $i \in \{1, ..., m\}$ und $j \in \{1, ..., l\}$ gilt:

$$((A \cdot B) \cdot C)_{ij} = \sum_{s=1}^{k} (A \cdot B)_{is} \cdot C_{sj}$$

$$= \sum_{s=1}^{k} \left(\sum_{r=1}^{n} A_{ir} \cdot B_{rs} \right) \cdot C_{sj}$$

$$= \sum_{s=1}^{k} \sum_{r=1}^{n} (A_{ir} \cdot B_{rs} \cdot C_{sj})$$

$$= \sum_{r=1}^{n} \sum_{s=1}^{k} (A_{ir} \cdot B_{rs} \cdot C_{sj})$$

$$= \sum_{r=1}^{n} A_{ir} \cdot \left(\sum_{s=1}^{k} B_{rs} \cdot C_{sj} \right)$$

$$= \sum_{r=1}^{n} A_{ir} \cdot (B \cdot C)_{rj}$$

$$= (A \cdot (B \cdot C))_{ij}$$

Das zeigt, dass die ij-ten Einträge von $(A\cdot B)\cdot C$ und $A\cdot (B\cdot C)$ übereinstimmen für alle i,j. \square

Hinweise: In Zeile 3 sehen wir das Distributivgesetz. In Zeile 4 das Kommutativgesetz. In Zeile 4 können wir das Distributivgesetz anwenden, da das A_{ir} den Index s nicht enthält. Das heißt A_{ir} ändert sich in der inneren Summe nicht und deshalb können wir es ausklammern. Das Ergebnis ist in Zeile 5.

Bemerkung 2.37

Es sei E_k die $(k \times k)$ -Matrix die wie folgt aussieht:

$$E_k = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Diese Matrix hat in der Diagonalen Einsen und sonst Nullen. Dann gilt für jede $(m \times n)$ -Matrix A:

$$E_m \cdot A = A \cdot E_n = A$$

 E_k nennen wir die Einheitsmatrix.

2.4 Untervektorräume des \mathbb{R}^n

Definition 2.38

Eine Teilmenge $U \subset \mathbb{R}^n$ heißt Untervektorraum~(UVR), wenn:

- a) $0 \in U$ wobei $0 = (0, ..., 0) \in \mathbb{R}^{\kappa}$ ist (Existenz eines neutralen Elements).
- b) Für alle $x, y \in U$ gilt $x + y \in U$ (Abgeschlossenheit unter Addition).
- c) Für alle $x \in U$ und $\lambda \in \mathbb{R}$ gilt $\lambda x \in U$ (Abgeschlossenheit unter Skalarmultiplikation).

Hinweis: a) ist redundant, weil dies auch aus $\lambda = 0$ folgt.

Beispiele 2.39

- a) Satz 2.19 besagt, dass $L\ddot{o}s(A,0)$ ein UVR des \mathbb{R}^n ist (Satz 2.19 hat exakt a, b und c aus obigem 2.38 als Aussagen).
- b) $U := \{0\}$ und $U := \mathbb{R}^n$ sind UVR des \mathbb{R}^n .
- c) Für $x \in \mathbb{R}^n$ ist $\{t \cdot x : t \in \mathbb{R}\}$ ein UVR des \mathbb{R}^n .

d) Für $x \in \mathbb{R}^n$ mit $x \neq 0$ ist $U := \{x\}$ kein UVR des \mathbb{R}^n .

Hinweis: welche der 3 Eigenschaften aus 2.38 ist für d) nicht erfüllt?

e) Lös(A, b) mit $b \neq 0$ ist kein UVR. Dies folgt aus Aufgabe 3 der Ubungen 04 (dort wurde $0 \in \text{Lös}(A, b) \Rightarrow b = 0$ gezeigt).

Bemerkung 2.40

Für eine Abbildung $\varphi_A : \mathbb{R}^n \to \mathbb{R}^m$ induziert durch eine $(m \times n)$ -Matrix A haben wir in Satz 2.19 gezeigt, dass $\ker(\varphi_A)$ ein UVR des \mathbb{R}^n ist.

Hinweis: Warum ist das so? In Satz 2.19 haben wir gesehen, dass im Kern von φ_A jene $x = (x_1, ..., x_n)$ liegen, die Lösungen des homogenen LGS $A \cdot x = 0$ sind.

1. Natürlich ist $\varphi(0) = 0$.

- 2. Wenn wir 2 Lösungen x und y haben, ist $\varphi_A(x+y)=\varphi_A(x)+\varphi_A(y)=0+0=0.$
- 3. Auch wenn wir x mit einem Skalar λ multiplizieren, ist $\varphi_A(\lambda x)=\lambda\cdot\varphi_A(x)=\lambda\cdot 0=0.$

Deshalb ist $\ker(\varphi_A)$ ein UVR des \mathbb{R}^n .

Lemma 2.41

Das Bild von φ_A , d.h. $\varphi_A(\mathbb{R}^n)$, ist ein UVR des \mathbb{R}^m .

Beweis

Wir überprüfen Definition 2.38.

- a) Es gilt $\varphi_A(0) = 0$ (Bemerkung 2.27c), d.h. $0 \in \varphi_A(\mathbb{R}^n)$.
- b) Es seien $x, y \in \varphi_A(\mathbb{R}^n)$. Es gibt also $a, b \in \mathbb{R}^n$ mit $\varphi_A(a) = x$ und $\varphi_A(b) = y$ (dieser Rechenschritt stammt aus der gestrigen Vorlesung). Dann ist:

$$\varphi_A(a+b) = \varphi_A(a) + \varphi_A(b) = x+y$$

d.h. $x + y \in \varphi_A(\mathbb{R}^n)$.

c) Sei $x \in \varphi_A(\mathbb{R}^n)$ und $\lambda \in \mathbb{R}$. Dann gibt es $a \in \mathbb{R}^n$ mit $\varphi_A(a) = x$. Dann ist:

$$\varphi_A(\lambda x) = \lambda \cdot \varphi_A(x) = \lambda \cdot x$$

d.h. $\lambda x \in \varphi_A(\mathbb{R}^n)$.

Bemerkung 2.42

Allgemeiner gilt:

Ist U ein UVR des \mathbb{R}^n , so ist $\varphi_A(U)$ ein UVR des \mathbb{R}^m .

Hinweis: der Beweis ist analog zum Oberen, nur dass wir statt \mathbb{R}^n ein U nehmen.

3 Geometrie in der Ebene

3.1 Skalarprodukt, Norm und Abstand

Definition 3.1

Für $x=(x_1,x_2),\,y=(y_1,y_2)\in\mathbb{R}^2$ heißt

$$\langle x, y \rangle := x_1 \cdot y_1 + x_2 \cdot y_2$$

das Skalarprodukt von x und y.

Eine andere übliche Notation ist $x \cdot y$.

Anschauung 3.2

Anschaulich gilt $\langle x,y\rangle$ ist die Länge von $x\cdot \mu$ wobei die Länge die *orthogonale Projektion* von x auf y ist (bis auf das Vorzeichen).

Das Skalarprodukt ist eine Abbildung $\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ für welche folgende Rechenregeln gelten:

Lemma 3.3

Für alle $x, x', y \in \mathbb{R}^2$ und $t \in \mathbb{R}$ gilt:

- a) $\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle$
- b) $\langle t \cdot x, y \rangle = t \cdot \langle x, y \rangle$
- c) $\langle x, y \rangle = \langle y, x \rangle$
- d) $\langle x, x \rangle > 0$
- e) $\langle x, x \rangle = 0 \Leftrightarrow x = (0, 0)$

¹Die Inhalte dieser Vorlesung beziehen sich ungefähr auf Seite? aus Baer.

Die Punkte a bis c ergeben zusammen Folgendes:

a')
$$\langle x, y + y' \rangle = \langle x, y \rangle + \langle x, y' \rangle$$

b')
$$\langle x, t \cdot y \rangle = t \cdot \langle x, y \rangle$$

Definition 3.4

Für $x \in \mathbb{R}^2$ heißt $||x|| := \sqrt{\langle x, x \rangle}$ die Norm von x.

Hinweis: Für Norm sagen wir auch Länge falls x durch einen Pfeil dargestellt wird.

Bemerkung 3.5

Wegen Lemma 3.3d ist $\sqrt{\langle x, x \rangle}$ immer wohldefiniert.

Für $x=(x_1,x_2)$ gilt $||x||=\sqrt{\langle x,x\rangle}=\sqrt{x_1\cdot x_1+x_2\cdot x_2}$, was per Satz des Pythagoras wirklich die Länge von x ist.

Satz 3.6 (Cauchy-Schwarz-Ungleichung)

Für alle $x, y \in \mathbb{R}^2$ gilt:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Beweis

Wir schreiben $x = (x_1, x_2)$ und $y = (y_1, y_2)$ und berechnen:

$$(\|x\| \cdot \|y\|)^2 - (\langle x, y \rangle)^2 = \|x\|^2 \cdot \|y\|^2 - \langle x, y \rangle^2$$

$$= \langle x, x \rangle \cdot \langle y, y \rangle - \langle x, y \rangle^2$$

$$= (x_1^2 + x_2^2) \cdot (y_1^2 + y_2^2) - (x_1 \cdot y_1 + x_2 \cdot y_2)^2$$

$$= x_1^2 \cdot y_2^2 + x_2^2 \cdot y_1^2 + x_2^2 \cdot y_2^2 - (x_1^2 \cdot y_1^2 + 2 \cdot x_1 \cdot y_1 \cdot x_2 \cdot y_2 + x_2^2 \cdot y_2^2)$$

$$= x_2^2 \cdot y_1^2 + x_1^2 \cdot y_2^2 - 2 \cdot x_1 \cdot y_1 \cdot x_2 \cdot y_2$$

$$= (x_2 \cdot y_1 - x_1 \cdot y_2)^2$$

d.h. $(\|x\|\cdot\|y\|)^2 \ge (\langle x,y\rangle)^2$. Da $\|x\|\ge 0$, $\|y\|\ge 0$ und $|\langle x,y\rangle|\ge 0$ ist, können wir die Wurzel ziehen und erhalten

$$||x|| \cdot ||y|| \ge |\langle x, y \rangle|$$

Hinweise: Zeile 3: Definition des Skalarproduktes und in Zeile 4 kürzen wir. Beim Wurzelziehen im letzten Satz benutzen wir, das die Wurzelfunktion monoton steigend ist. Was haben uns die ganzen Umformungen jetzt gebracht? Der letzte Ausdruck der Umformungen ist eine Quadratzahl und damit nicht negativ.

Lemma 3.7

Für alle $x, y \in \mathbb{R}^2$ und $t \in \mathbb{R}$ gilt:

- a) $||x|| \ge 0$
- b) $||x|| = 0 \Leftrightarrow x = (0,0)$
- c) $||t \cdot x|| = |t| \cdot ||x||$
- d) $||x + y|| \le ||x|| + ||y||$

Beweis

- a) ist klar aus der Definition $\|x\|=\sqrt{\langle x,x\rangle}$ da die Wurzelfunktion nie negative Werte produziert.
- b) Es gilt

$$||x|| = 0 \Leftrightarrow \sqrt{\langle x, x \rangle} = 0$$

 $\Leftrightarrow \langle x, x \rangle = 0$
 $\Leftrightarrow x = (0, 0)$

Hinweis: im letzten Schritt benutzen wir das Lemma 3.3e. c) Es gilt

$$\begin{aligned} ||t \cdot x|| &= \sqrt{\langle t \cdot x, t \cdot x \rangle} \\ &= \sqrt{t^2 \cdot \langle x, x \rangle} \\ &= \sqrt{t^2} \cdot \sqrt{\langle x, x \rangle} \\ &= |t| \cdot ||x|| \end{aligned}$$

d) Es gilt

$$\begin{split} \|x+y\|^2 &= \langle x+y, x+y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &= \|x\|^2 + \frac{\leq 2\|x\| \cdot \|y\| \text{ Cauchy-Schwarz}}{2 \cdot \langle x, y \rangle} + \|y\|^2 \\ &= (\|x\| + \|y\|)^2 \end{split}$$

und jetzt auf beiden Seiten die Wurzel ziehen. \Box

Bemerkung 3.8

Die Eigenschaft im Lemma 3.7d) heißt Dreiecksungleichung:

Definition 3.9

Zu $x, y \in \mathbb{R}^2$ heißt

$$d(x,y) := ||x - y||$$

der Abstand von x und y.

Lemma 3.10

Für alle $x,y,z\in\mathbb{R}^2$ gilt: a) $d(x,y)\geq 0$ b) $d(x,y)=0\Leftrightarrow x=y$

- c) d(x,y) = d(y,x)
- d) $d(x, y) \le d(x, z) + d(z, y)$

Hinweis: Punkt d) ist die Dreiecksungleichung.

Der Beweis erfolgt per Nachrechnen unter unter Ausnutzung von Lemma 3.7.

Donnerstag, 30.11.23 10

3.2 Geraden und Dreiecke

Definition 3.11

Eine Gerade in der Ebene ist eine Menge der Form

$$G_{a,v} := \{ a + t \cdot v : t \in \mathbb{R} \}$$

wobei $a \in \mathbb{R}^2$ Aufpunkt und $v \in \mathbb{R}^2 \setminus \{0\}$ Richtungsvektor der Gerade heißt.

Anmerkung 3.12

Wäre v=(0,0) zugelassen, so wäre in diesem Fall $G_{a,v}=\{a\}$. Das ist aber anschaulich keine Gerade.

Lemma 3.13

Es sei $G_{a,v}$ eine Gerade und $p \in G_{a,v}$. Dann gilt $G_{a,v} = G_{p,v}$.

¹⁰vgl. S. ? aus Baer.

Beweis

Wegen $p \in G_{a,v}$ gibt es ein $t \in \mathbb{R}$ mit $p = a + t \cdot v$. (*) $G_{a,v} \supset G_{p,v}$: Sei $q \in G_{p,v}$, d.h. es gibt ein $t_1 \in \mathbb{R}$ mit $q = p + t_1 \cdot v$. Wir setzen (*) ein und erhalten

$$q = p + t_1 \cdot v$$

= $(a + t_0 \cdot v) + t_1 \cdot v$
= $a + (t_0 + t_1) \cdot v$

d.h. $q \in G_{a,v}$.

 $\begin{array}{l} G_{a,v}\subset G_{p,v}\colon\\ \overline{\mathrm{Sei}\ x\in G_{a,v}},\,\mathrm{d.h.\ es\ gibt\ ein}\ t_1\in\mathbb{R}\ \mathrm{mit}\ x=a+t_1\cdot v.\\ \mathrm{Aus\ (*)\ folgt}\ a=p-t_0\cdot v^{(**)}\ \mathrm{und\ damit} \end{array}$

$$x = a + t_1 \cdot v$$

= $p - t_0 \cdot v + t_1 \cdot v$
= $p + (t_1 - t_0) \cdot v$

d.h. $x \in G_{p,v}$.

Hinweis: (**) wurde in Zeile 2 benutzt.

Lemma 3.14

Es sei $G \in \mathbb{R}^2$ eine Gerade. Sind $a, b \in G$ mit $a \neq b$, so ist

$$G = G_{a,b-a}$$

Hinweis: 2 Punkte legen eine Gerade also eindeutig fest.

Beweis

G ist eine Gerade, d.h. es gibt $p \in \mathbb{R}^2$ und $v \in \mathbb{R}^2 \setminus \{0\}$ mit $G = G_{p,v}$. Wegen Lemma 3.13 gilt $G_{a,v} = G_{p,v}$. Wegen $b \in G = G_{a,v}$ gibt es ein $t_0 \in \mathbb{R}$ mit $b = a + t_0 \cdot v$. Wegen $b \neq a$ ist $t_0 \neq 0$. Wir zeigen jetzt, dass $G_{a,v} = G_{a,b-a}$: $G_{a,v} \subset G_{a,b-a}$:

Zu jedem $x \in G_{a,v}$ gibt es ein $t_1 \in \mathbb{R}$ mit $x = a + t_1 \cdot v$. Jetzt gilt:

$$x = a + t_1 \cdot v$$
$$= a + t_1 \cdot \frac{1}{t_0} \cdot (b - a)$$

d.h. $x \in G_{a,b-a}$.

Hinweis: wir haben im Beweis genutzt, dass $b = a + t_0 \cdot v$ und $t_0 \neq 0$ und daraus folgt $v = \frac{1}{t_0} \cdot (b - a)$.

 $G_{a,b-a} \subset G_{a,v}$:

Für $y \in G_{a,b-a}$ existiert ein $t_2 \in \mathbb{R}$ mit $y = a + t_2 \cdot (b-a)$.

$$y = a + t_2 \cdot (b - a)$$
$$= a + t_2 \cdot t_0 \cdot v$$

d.h. $y \in G_{a,v}$.

Hinweis: wir haben im Beweis genutzt, dass $b=a+t_0\cdot v$ und daraus folgt $b-a=t_0\cdot v$.

Lemma 3.15 (Mittelpunktslemma)

Sei $G \subset \mathbb{R}^2$ eine Gerade und $a,b \in G$ mit $a \neq b$. Dann existiert genau ein Punkt $c \in G$ mit d(a,c)=d(b,c). Für diesen Punkt c gilt ferner:

$$c = \frac{1}{2} \cdot (a+b)$$
 und $d(a,c) = \frac{1}{2} \cdot d(a,b) = d(b,c)$

Hinweis: in diesem Lemma sind 2 Aussagen versteckt:

- 1. Es gibt einen Punkt c, der von a und b den gleichen Abstand hat.
- 2. Dieser Punkt ist eindeutig definiert. Für diesen Punkt gilt, dass wir ihn als Mittelpunkt ausrechnen können.

Das kann man mit der Aussage verbinden, dass der kürzeste Weg zwischen 2 Punkten eine Gerade ist, da wenn ich die halbe Strecke laufe und auf dem Mittelpunkt lande, dann bin ich auf der Geraden.

Beweis

Nach Lemma 3.14 gilt, dass $G=G_{a,b-a}$ ist. Sei $q=a+t_0\cdot (b-a)\in G$ für ein $t_0\in\mathbb{R}.$ Dann gilt:

$$\begin{aligned} d(a,q) &= \|a - q\| \\ &= \|a - (a + t_0 \cdot (b - a))\| \\ &= \| - t_0 \cdot (b - a)\| \\ &= | - t_0| \cdot \|b - a\| \\ &= |t_0| \cdot \|b - a\| \end{aligned}$$

und ebenso

$$d(b,q) = ||b - q||$$

$$= ||b - (a + t_0 \cdot (b - a))||$$

$$= ||b - a \underbrace{-t_0 \cdot (b + t_0 \cdot a)}_{=t_0(-b+a)}||$$

$$= ||(1 - t_0) \cdot (b - a)||$$

$$= |1 - t_0| \cdot ||b - a||$$

Damit gilt dann:

$$d(a,q) = d(b,q) \Leftrightarrow |t_0| \cdot ||b-a|| = |1-t_0| \cdot ||b-a||$$

$$\Leftrightarrow |t_0| = |1-t_0|$$

$$\Leftrightarrow t_0^2 = (1-t_0)^2$$

$$\Leftrightarrow t_0^2 = 1 - 2 \cdot t_0 + t_0^2$$

$$\Leftrightarrow t_0 = \frac{1}{2}$$

Damit ist $c=a+\frac{1}{2}\cdot(b-a)=\frac{1}{2}\cdot(a+b)$ der einzige Punkt auf G der von a und b den gleichen Abstand hat. Für diesen Abstand gilt $d(a,c)=\frac{1}{2}\cdot\|b-a\|=d(b,c)$. \square

Hinweis: in Zeile 2 haben wir benutzt, dass $||b-a|| \neq 0$ ist.

Definition 3.16

Ein Dreieck ist ein Tripel (a, b, c) von Punkten $a, b, c \in \mathbb{R}^2$. Das Dreieck (a, b, c) heißt *entartet*, falls die Punkte a, b, c auf einer Geraden liegen.

Definition 3.17

Eine Seitenhalbierende in einem nicht entarteten Dreieck ist eine Gerade durch eine der Ecken des Dreiecks sowie den Mittelpunkt der anderen beiden Ecken. Die 3 Seitenhalbierenden sind:

$$G_a, \frac{1}{2}(b+c) - a$$

 $G_b, \frac{1}{2}(a+c) - b$
 $G_c, \frac{1}{2}(a+b) - c$

Satz 3.18

In jedem nicht-entarteten Dreieck schneiden sich die 3 Seitenhalbierenden im Punkt $\frac{1}{3}(a+b+c)$.

Beweis

Wir zeigen, dass $\frac{1}{3}(a+b+c)$ auf allen Seitenhalbierenden liegt. Für

$$G_a, \frac{1}{2}(b+c) - a = \{a + t \cdot (\frac{1}{2}(b+c) - a) : t \in \mathbb{R}\}$$

wählen wir $t = \frac{2}{3}$ und erhalten

$$a + \frac{2}{3} \cdot (\frac{1}{2}(b+c) - a) = a + \frac{1}{3}(b+c) - \frac{2}{3}a$$
$$= \frac{1}{3}(a+b+c)$$

Analog verfährt man mit den beiden anderen Seitenhalbierenden. \Box

Anmerkung 3.19

Der Schnittpunkt teilt die Seitenhalbierenden im Verhältnis2:1.

Mittwoch, $06.12.23^{-1}$

3.3 Winkel

Sind $x, y \in \mathbb{R}^2 \setminus \{0\}$, so gilt

$$\left|\frac{\langle x,y\rangle}{\|x\|\cdot\|y\|}\right| = \frac{|\langle x,y\rangle|}{\|x\|\cdot\|y\|} \le \frac{\|x\|\cdot\|y\|}{\|x\|\cdot\|y\|} = 1$$

d.h. $\frac{\langle x,y \rangle}{\|x\|\cdot\|y\|} \in [-1,1]$. Wir erinnern uns an die Kosinusfunktion cos : $[0,\pi] \to [-1,1]$, welche mit diesem Definitionsbereich und Zielbereich bijektiv ist.

Sie hat also eine Umkehrfunktion $\arccos: [-1,1] \to [0,\pi].$

Definition 3.20

Für $x,y\in\mathbb{R}^2\backslash\{0\}$ heißt die Zahl

$$\angle(x,y) := \arccos\left(\frac{\langle x,y\rangle}{\|x\| \cdot \|y\|}\right)$$

der Innenwinkel von x und y (nie mehr als 180 Grad).

Obige Definition gibt den Winkel in Bogenmaß an, wo ein voller Kosinus dem

Bogenmaß $\alpha\pi$ entspricht.

 $^{^{1}\}mathrm{Die}$ Inhalte dieser Vorlesung beziehen sich ungefähr auf Seite ? aus Baer.

Beispiele 3.21

a)

$$\angle(x,x) = \arccos\left(\frac{\langle x,x\rangle}{\|x\|\cdot\|x\|}\right) = \arccos\left(\frac{\|x\|^2}{\|x\|\cdot\|x\|}\right) = \arccos(1) = 0$$

b)

$$\angle(x, -x) = \arccos\left(\frac{\langle x, -x \rangle}{\|x\| \cdot \| - x\|}\right)$$

$$= \arccos\left(\frac{-\langle x, x \rangle}{\|x\| \cdot \|x\|}\right)$$

$$= \arccos(-1)$$

$$= \pi \triangleq 180^{\circ}$$

c) Ist $\langle x, y \rangle = 0$, so gilt $\angle(x, y) = \arccos\left(\frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}\right) = \arccos(0) = \frac{\pi}{2} \triangleq 90^{\circ}$.

Definition 3.22

Falls $\langle x,y\rangle=0$, so heißen x und y orthogonal zueinander, d.h. sie stehen senkrecht aufeinander.

Satz 3.23 (Kosinussatz)

Sei (a,b,c) ein nicht-entartetes Dreieck und sei $\alpha=\angle(b,c)^2=d(a,b)^2+d(a,c)^2-2\cdot d(a,b)\cdot d(a,c)\cdot\cos(\alpha).$

Beweis

Wir weisen die umgestellte Gleichung

$$d(b,c)^{2} - d(a,b)^{2} - d(a,c)^{2} = -2 \cdot d(a,b) \cdot d(a,c) \cdot \cos(\alpha)$$

nach:

$$d(b,c)^{2} - d(a,b)^{2} - d(a,c)^{2} = \|c - b\|^{2} - \|b - a\|^{2} - \|c - a\|^{2}$$

$$= \langle c - b, c - b \rangle - \langle b - a, b - a \rangle - \langle c - a, c - a \rangle$$

$$= \langle c, c \rangle - 2 \cdot \langle b, c \rangle + \langle b, b \rangle - (\langle b, b \rangle - 2 \cdot \langle a, b \rangle + \langle a, a \rangle)$$

$$- (\langle c, c \rangle - 2 \cdot \langle a, c \rangle + \langle a, a \rangle)$$

$$= -2 \cdot \langle b, c \rangle + 2 \cdot \langle a, b \rangle + 2 \cdot \langle a, c \rangle - 2 \cdot \langle a, a \rangle$$

$$= -2 \cdot (\langle b, c \rangle - \langle a, b \rangle - \langle a, c \rangle + \langle a, a \rangle)$$

$$= -2 \cdot \langle b - a, c - a \rangle$$

$$= -2 \cdot \langle b - a, c - a \rangle \cdot \frac{\langle b - a, c - a \rangle \cdot \langle a - c, a - c \rangle}{\|b - a\| \cdot \|c - a\|}$$

$$= -2 \cdot d(a, b) \cdot d(a, c) \cdot \cos(\alpha)$$

Korollar 3.24

Die Seitenlängen eines nicht entarteten Dreiecks legen die Innenwinkel eindeutig fest.

Korollar 3.25 (Satz des Pythagoras)

Ist
$$\alpha = \frac{\pi}{2}$$
, so gilt $d(a,b)^2 + d(a,c)^2 = d(b,c)^2$.

Definition 3.26

Für $\theta \in \mathbb{R}$ definieren wir die Drehmatrix

$$R_{\theta} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Anschaulich ist $R_{\theta} \cdot v$ die Drehung von v gegen den Uhrzeigersinn im Winkel θ (im Bogenmaß).

Lemma 3.27

a) Für $\theta := 0$ gilt $\varphi_{R_{\theta}} = \mathrm{id}_{\mathbb{R}^2}$

b) Für $\theta_1, \theta_2 \in \mathbb{R}$ gilt $R_{\theta_1} \cdot R_{\theta_2} = R_{\theta_1 + \theta_2}$

c) Für $\theta \in \mathbb{R}$ gilt $R_{\theta} \cdot R_{-\theta} = \varepsilon_2 = R_{-\theta} \cdot R_{\theta}$

Hinweise: in a ist $\varphi_{R_{\theta}}$ die induzierte Abbildung $\mathbb{R}^2 \to \mathbb{R}^2$ In c ist ε_2 die Einheitsmatrix.

Beweis

Der Beweis erfolgt durch Nachrechnen (siehe Übung).

Lemma 3.28

Für alle $v, w \in \mathbb{R}^2$ und alle Drehmatrizen R_θ gilt:

a) $\langle R_{\theta} \cdot v, R_{\theta} \cdot w \rangle = \langle v, w \rangle$

b) $||R_{\theta} \cdot v|| = ||v||$

c) $\angle (R_{\theta} \cdot v, R_{\theta} \cdot w) = \angle (v, w)$

d) $\langle R_{\theta} \cdot v, v \rangle = \cos \theta \cdot \langle v, v \rangle$

Interpretation von d: Wir haben:

$$\angle(R_{\theta} \cdot v, v) = \arccos\left(\frac{\langle R_{\theta} \cdot v, v \rangle}{\|R_{\theta} \cdot v\| \cdot \|v\|}\right)$$

$$= \arccos\left(\frac{\cos \theta \langle v, v \rangle}{\|v\| \cdot \|v\|}\right)$$

$$= \arccos(\cos \theta)$$

$$= \theta$$

Das heißt R_{θ} rotiert um den Winkel θ .

Beweis

a) Für alle $v = (v_1, v_2), w = (w_1, w_2)$ und $\theta \in \mathbb{R}$ berechnen wir:

$$\begin{split} \langle R_{\theta} \cdot v, R_{\theta} \cdot w \rangle &= \langle \begin{pmatrix} \cos \theta \cdot v_1 - \sin \theta \cdot v_2 \\ \sin \theta \cdot v_1 + \cos \theta \cdot v_2 \end{pmatrix}, \begin{pmatrix} \cos \theta \cdot w_1 - \sin \theta \cdot w_2 \\ \sin \theta \cdot w_1 + \cos \theta \cdot w_2 \end{pmatrix} \rangle \\ &= (\cos \theta \cdot v_1 - \sin \theta \cdot v_2) \cdot (\cos \theta \cdot w_1 - \sin \theta \cdot w_2) \\ &+ (\sin \theta \cdot v_1 + \cos \theta \cdot v_2) \cdot (\sin \theta \cdot w_1 + \cos \theta \cdot w_2) \\ &= (\cos \theta)^2 \cdot v_1 w_1 - \sin \theta \cos \theta \cdot v_2 w_1 - \cos \theta \sin \theta \cdot v_1 w_2 + (\sin \theta)^2 \cdot v_2 w_2 \\ &+ (\sin \theta)^2 \cdot v_1 w_1 + \cos \theta \sin \theta \cdot v_2 w_1 + \sin \theta \cos \theta \cdot v_1 w_2 + (\cos \theta)^2 \cdot v_2 w_2 \\ &= v_1 w_1 + v_2 w_2 \\ &= \langle \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \rangle \\ &= \langle v, w \rangle \end{split}$$

b) Folgt sofort aus a:

$$||R_{\theta} \cdot v|| = \sqrt{\langle R_{\theta} \cdot v, R_{\theta} \cdot v \rangle} = \sqrt{\langle v, v \rangle} = ||v||$$

c) Wir berechnen:

$$\angle(R_{\theta} \cdot v, R_{\theta} \cdot w) = \arccos\left(\frac{\langle R_{\theta} \cdot v, R_{\theta} \cdot w \rangle}{\|R_{\theta} \cdot v\| \cdot \|R_{\theta} \cdot w\|}\right)$$

$$= \arccos\left(\frac{\langle v, w \rangle}{\|v\| \cdot \|w\|}\right)$$

$$= \arccos\left(\frac{\langle v, w \rangle}{\|v\| \cdot \|w\|}\right)$$

$$= \angle(v, w)$$

Ist a erfüllt, so sind auch b und c erfüllt.

d) Es gilt:

$$\langle R_{\theta} \cdot v, v \rangle = \langle \begin{pmatrix} \cos \theta \cdot v_1 - \sin \theta \cdot v_2 \\ \sin \theta \cdot v_1 + \cos \theta \cdot v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \rangle$$

$$= (\cos \theta \cdot v_1 - \sin \theta \cdot v_2) \cdot v_1 + (\sin \theta \cdot v_1 + \cos \theta \cdot v_2) \cdot v_2$$

$$= \cos \theta \cdot v_1 \cdot v_1 + \cos \theta \cdot v_2 \cdot v_2$$

$$= \cos \theta \cdot (v_1 v_1 + v_2 v_2)$$

$$= \cos \theta \cdot \langle v, v \rangle$$

Donnerstag, 07.12.23 11

3.4 Orthogonalität

Wir definieren die Matrix

$$\mathcal{J} := R_{\frac{\pi}{2}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

 $\mathcal J$ stellt die Drehung um 90 Grad

gegen den Uhrzeigersinn dar.

Definition 3.29

Für $\theta \in \mathbb{R}$ definieren wir die Spiegelungsmatrix

$$S_{\theta} := \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

Anschaulich ist $S_{\theta} \cdot v$ die Spiegelung

von v an der Geraden mit dem Winkel θ zur x-Achse.

¹¹vgl. S. ? aus Baer.

Lemma 3.30

Sei $\theta \in \mathbb{R}$ und setze $e_{\theta} := \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \in \mathbb{R}^2$. Dann gilt:

a) $S_{\theta} \cdot e_{\theta} = e_{\theta}$

b)
$$S_{\theta} \cdot (\mathcal{J} \cdot e_{\theta}) = -(\mathcal{J} \cdot e_{\theta})$$

Die beiden Punkte zeigen die genaue Interpretation von S_{θ} als Spiegelung.

Beweis

a) Es gilt:

$$S_{\theta} \cdot e_{\theta} = \begin{pmatrix} \cos 2\theta \cdot \cos \theta + \sin 2\theta \cdot \sin \theta \\ \sin 2\theta \cdot \cos \theta - \cos 2\theta \cdot \sin \theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
$$= e_{\theta}$$

Hinweis: in der 2. Zeile haben wir die Additionstheoreme benutzt. b) Analog zur selbstständigen Übung. □

Lemma 3.31

Für alle $v, w \in \mathbb{R}^2$ und alle $\theta \in \mathbb{R}$ gilt:

a) $\langle S_{\theta} \cdot v, S_{\theta} \cdot w \rangle = \langle v, w \rangle$

b) $||S_{\theta} \cdot v|| = ||v||$

c) $\angle(S_{\theta} \cdot v, S_{\theta} \cdot w) = \angle(v, w)$

Beweis

Der Beweis ist komplett analog zu dem von Lemma 3.28.

Lemma 3.32

Für alle $\theta_1, \theta_2 \in \mathbb{R}$ gilt:

a)
$$S_{\theta_1} \cdot S_{\theta_2} = R_{2(\theta_1 - \theta_2)}$$

a)
$$S_{\theta_1} \cdot S_{\theta_2} = R_{2(\theta_1 - \theta_2)}$$

b) $S_{\theta_1} \cdot R_{\theta_2} = S_{\theta_1 - \frac{\theta_2}{2}}$

c)
$$R_{\theta_1} \cdot S_{\theta_2} = S_{\theta_2 + \frac{\theta_1}{2}}$$

Beweis per direktem Nachrechnen mit Hilfe der Additionstheoreme in den Übungen.

Satz 3.33

Es sei Teine (2 × 2)-Matrix. Dann sind die folgenden beiden äquivalent zueinander:

a) Es gilt $\langle T \cdot v, T \cdot w \rangle = \langle v, w \rangle$ für alle $v, w \in \mathbb{R}^2$.

b) Es ist T eine Rotations- oder Spiegelungsmatrix.

Beweis

a) $b \Rightarrow a$:

Die Implikation ist Lemma 3.28 a) bzw. Lemma 3.31 a).

Es gelte $\langle T \cdot v, T \cdot w \rangle = \langle v, w \rangle$ für alle $v, w \in \mathbb{R}^2$.

Dann gilt für $e_1 = (1,0) \in \mathbb{R}^2$:

$$||T \cdot e_1|| = \sqrt{\langle T \cdot e_1, T \cdot e_1 \rangle}$$

$$= \sqrt{\langle e_1, e_1 \rangle}$$

$$= ||e_1||$$

$$= 1$$

d.h. $T \cdot e_1 = (\cos \theta, \sin \theta)$ für ein $\theta \in \mathbb{R}$.

Analog sieht man $||T \cdot e_2|| = 1$ für $e_2 = (0,1)$ und außerdem gilt $\langle T \cdot e_1, T \cdot e_2 \rangle = \langle e_1, e_2 \rangle = 0$, d.h. $T \cdot e_1$ steht senkrecht auf $T \cdot e_2$. Daher ist $T \cdot e_2 \pm (\sin \theta, \cos \theta)$. Im Falle $T \cdot e_2 = (-\sin \theta, \cos \theta)$ gilt:

$$T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

(Hinweis: die erste Spalte ist $T \cdot e_1$ und die 2. Spalte ist $T \cdot e_2$. Außerdem: wenn wir die i-te Spalte einer Matrix wissen wollen, dann multiplizieren wir die Matrix mit dem i-ten Einheitsvektor.) und im Falle $T \cdot e_2 = (-\sin \theta, \cos \theta)$ gilt:

$$T = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} = S_{\frac{\theta}{2}}$$

Definition 3.34

Wir definieren $\mathcal{O}(2)$ als die Menge aller (2×2) -Matrizen T für die gilt:

$$\langle T\cdot v, T\cdot w\rangle = \langle v, w\rangle$$
 für alle $v, w\in \mathbb{R}^2$

Lemma 3.35

- a) Für alle $S, T \in \mathcal{O}(2)$ gilt $S \cdot T \in \mathcal{O}(2)$.
- b) Für alle $R, S, T \in \mathcal{O}(2)$ gilt $R \cdot (S \cdot T) = (R \cdot S) \cdot T$.
- c) Es ist $E \in \mathcal{O}(2)$ und für alle $T \in \mathcal{O}(2)$ gilt $T \cdot E_2 = T = E_2 \cdot T$.
- d) Für alle $T \in \mathcal{O}(2)$ gibt es ein $S \in \mathcal{O}(2)$ mit $T \cdot S = E_2 = S \cdot T$. Hinweis: das ist die Definition einer Gruppe in einem Spezialfall.

Beweis

a) Für alle $v, w \in \mathbb{R}^2$ gilt:

$$\begin{split} \langle (S \cdot T) \cdot v, (S \cdot T) \cdot w \rangle &= \langle S(T \cdot v), S(T \cdot w) \rangle \\ &= \langle T \cdot v, T \cdot w \rangle \\ &= \langle v, w \rangle \end{split}$$

d.h. $S \cdot T \in \mathcal{O}(2)$.

- b) Schema gezeigt in Lemma 2.36.
- c) $E_2 \in \mathcal{O}(2)$ ist offensichtlich, da $E_2 \cdot v = v$ für alle $v \in \mathbb{R}^2$ und $T \cdot E_2 = T = E_2 \cdot T$ ist schon in Bemerkung 2.37 erwähnt worden.
- d) Wir betrachten Satz 3.33.

<u>Fall 1:</u> Wähle $S := R_{-\theta}$. <u>Fall 2:</u> Wähle $S := S_{\theta}$.

3.5 Kongruenzabbildungen

Definition 3.36

Eine Abbildung $F: \mathbb{R}^2 \to \mathbb{R}^2$ der Form F(x) = Ax + b mit $A \in \mathcal{O}(2)$ und $b \in \mathbb{R}^2$ heißt Kongruenzabbildung oder auch euklidische Bewegung in der Ebene. Wir beweisen heute:

Satz 3.37

Es sei $F: \mathbb{R}^2 \to \mathbb{R}^2$ eine Abbildung. Dann sind äquivalent:

a) F ist eine euklidische Bewegung.

b) F ist Abstandserhaltend, d.h. für alle $p, q \in \mathbb{R}^2$ gilt d(F(p), F(q)) = d(p, q). Was ist z.B. mit einer Drehung um den Winkel θ um einen Punkt p? So eine Abbildung ist eine Verkettung der Verschiebung um -p, der Drehung um θ um den Koordinatenursprung und der anschließenden Rückverschiebung um p:

$$x \mapsto R_{\theta}(x-p) + p = R_{\theta} \cdot x + (p - R_{\theta} \cdot p)$$

Also eine Kongruenzabbildung im Sinne der Definition 3.36.

Beweis

 $a) \Rightarrow b$:

Sei F von der Form F(x) = Ax + b mit $A \in \mathcal{O}(2)$ und $b \in \mathbb{R}^2$. Dann gilt für $x, y \in \mathbb{R}^2$:

$$d(F(x), F(y)) = ||F(x) - F(y)||$$

$$= ||Ax + b - (Ay - b)||$$

$$= ||Ax - Ay||$$

$$= ||A(x - y)||$$

$$= ||x - y||$$

$$= d(x, y)$$

Hinweise:

In Zeile 4 haben wir das Lemma 2.26 und Bemerkung 2.34 benutzt. In Zeile 5 haben wir das Lemma 3.28 b) bzw. Lemma 3.31 b) benutzt.

 $b) \Rightarrow a$:

Sei F abstandserhaltend. Wir setzen b = F(0) und $\varphi(x) := F(x) - b$ für $x \in \mathbb{R}^2$. Dann ist $\varphi(0) = F(0) - b = 0$ und wir zeigen gleich, dass φ eine Matrixabbildung

ist, deren Matrix in $\mathcal{O}(2)$ liegt.

Schritt 1:

Wir zeigen $\langle \varphi(x), \varphi(y) \rangle = \langle x, y \rangle$ für alle $x, y \in \mathbb{R}^2$. Wir betrachten das Dreieck (0, x, y). Die Abbildung F bildet es auf (b, F(x), F(y)) ab und die Seitenlängen bleiben gleich! Translationen sind ebenso abstandserhaltend und deswegen hat dann das Dreieck $(0, \varphi(x), \varphi(y))$ ebenso die selben Seitenlängen wie das Dreieck (0, x, y).

Wegen Korollar 3.24 sind also die Innenwinkel von $(0, \varphi(x), \varphi(y))$ und (0, x, y) gleich, insbesondere also $\angle(\varphi(x), \varphi(y)) = \angle(x, y)$. Damit ergibt sich:

$$\begin{split} \langle \varphi(x), \varphi(y) \rangle &= \cos(\measuredangle(\varphi(x), \varphi(y))) \cdot \|\varphi(x)\| \cdot \|\varphi(y)\| \\ &= \cos(\measuredangle(x,y)) \cdot d(\varphi(x),0) \cdot d(\varphi(y),0) \\ &= \cos(\measuredangle(x,y)) \cdot d(F(x),b) \cdot d(F(y),b) \\ &= \cos(\measuredangle(x,y)) \cdot d(F(x),F(0)) \cdot d(F(y),F(0)) \\ &= \cos(\measuredangle(x,y)) \cdot d(x,0) \cdot d(y,0) \\ &= \cos(\measuredangle(x,y)) \cdot \|x\| \cdot \|y\| \\ &= \langle x,y \rangle \end{split}$$

Schritt 2:

Wir zeigen, dass φ eine Matrixabbildung ist.

Es sei $e_1=(1,0)$ und $e_2=(0,1)$ und wir setzen $f(e_1):=\varphi(e_1)$ und $f(e_2):=\varphi(e_2)$. Für $i\in\{1,2\}$ gilt dann sowohl

$$||f_i||^2 = \langle f_i, f_i \rangle = \langle \varphi(e_i), \varphi(e_i) \rangle = \langle e_i, e_i \rangle = ||e_i||^2 = 1$$

als auch

$$\langle f_i, f_i \rangle = \langle \varphi(e_i), \varphi(e_i) \rangle = \langle e_i, e_i \rangle = 0$$

Es sei nun $x \in \mathbb{R}^2$ und wir schreiben $x = (x_1, x_2)$. Wegen Aufgabe 4 des Blatts für die Übungen 7 können wir

$$\varphi(x) \stackrel{(*)}{=} \alpha_1 f_1 + \alpha_2 f_2$$

mit geeigneten Koeffizienten $\alpha_1,\alpha_2\in\mathbb{R}$ schreiben. Dann gilt einerseits:

$$\langle \varphi(x), f_i \rangle = \langle \varphi(x), \varphi(e_i) \rangle = \langle x, e_i \rangle = x_i$$

und andererseits

$$\langle \varphi(x), f_i \rangle = \langle \alpha_1 f_1 + \alpha_2 f_2, f_i \rangle$$
$$= \alpha_1 \langle f_1, f_i \rangle + \alpha_2 \langle f_2, f_i \rangle$$
$$= \alpha_i$$

für $i \in \{1, 2\}$.

Wir folgern $x_1 \stackrel{(*)}{=} \alpha_1$ und $x_2 \stackrel{(*)}{=} \alpha_2$ und damit gilt, mit der Notation $f_1 \stackrel{(*)}{=} (\alpha_1 1, \alpha_2 1)$ und $f_2 \stackrel{(*)}{=} (\alpha_1 2, \alpha_2 2)$:

$$\varphi(x) \stackrel{(*)}{=} \alpha_1 f_1 + \alpha_2 f_2$$

$$\stackrel{(*)}{=} x_1 \cdot \begin{pmatrix} \alpha_{11} \\ \alpha_{21} \end{pmatrix} + x_2 \cdot \begin{pmatrix} \alpha_{12} \\ \alpha_{22} \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$$

d.h. φ ist eine Matrixabbildung mit Matrix

$$A := \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$$

Wir wissen jetzt, dass φ eine Matrixabbildung ist (Schritt 2), welche das Skalarprodukt erhält (Schritt 1), d.h. mit Satz 3.33 ist $A \in \mathcal{O}(2)$. Weil dann insgesamt $F(x) = \varphi(x) + b = Ax + b$ mit $A \in \mathcal{O}(2)$ gilt, ist der Beweis fertig. \square

4 Vektorräume und Lineare Abbildungen

4.1 Vektorräume

Definition 4.1

Ein Vektorraum über $\mathbb R$ ist ein Tripel $(V,+,\cdot),$ wobei Veine Menge ist und +sowie \cdot Abbildungen

$$+: V \times V \to V, (v, w) \mapsto v + w \ (Vektoraddition)$$

 $\cdot: \mathbb{R} \times V \to V, (\lambda, v) \mapsto \lambda \cdot v \ (Skalarmultiplikation)$

sind, sodass für u, v, w aus V und λ, μ aus \mathbb{R} gilt:

- a.1) u + (v + w) = (u + v) + w
- a.2) v + w = w + v
- a.3) Es gibt ein $0 \in V$ sodass gilt: v + 0 = v für alle $v \in V$ (Nullelement)
- a.4) Zu jedem $v \in V$ gibt es ein $v' \in V$ sodass gilt: v + v' = 0 (Additiv Inverses)
- b.1) $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$
- b.2) $(\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v)$
- b.3) $1 \cdot v = v$

Hinweise:

In b.1 bis b.3 sehen wir die Doppeldeutigkeit von \cdot und +.

Aus b.3 erkennen wir, dass 1 zwangsläufig $\in \mathbb{R}$ ist.

Elemente in V heißen Vektoren.

Beispiele 4.2

a)

In Lemma 2.16 haben wir bereits bewiesen, dass \mathbb{R}^n mit den beiden Abbildungen + und \cdot aus Definition 2.13 ein Vektorraum (kurz VR) ist.

b)

Es sei $\mathrm{Mat}(m \times n)$ die Menge aller $(m \times n)$ -Matrizen mit Einträgen in \mathbb{R} . Wir definieren die Abbildungen + und \cdot komponentenweise:

$$(A+B)_{i,j} := A_{i,j} + B_{i,j}$$
$$(\lambda \cdot A)_{i,j} := \lambda \cdot A_{i,j}$$

für $i \in \{1, ..., n\}$ und $j \in \{1, ..., m\}$.

Man überprüft komplett analog wie in Lemma 2.16, dass dies ein VR ist. Das Nullelement ist die Nullmatrix

 $^{^{12}}$ vgl. S. ? aus Baer.

$$0 := \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

c)

Es sei X eine nicht-leere Menge. Wir setzen $V := \text{Abb}(X, \mathbb{R})$, d.h. V ist die Menge aller Abbildungen $f: X \to \mathbb{R}$. Wir definieren + und \cdot komponentenweise:

$$f + g: X \to \mathbb{R}, x \mapsto f(x) + g(x)$$

 $\lambda \cdot f: X \to \mathbb{R}, x \mapsto \lambda \cdot f(x)$

Ebenso wie vorher prüfen wir nach, ob dies ein VR ist. Das Nullelement $0 \in \mathrm{Abb}(X,\mathbb{R})$ ist die Nullabbildung

$$0: X \to \mathbb{R}, x \mapsto 0$$

Die zu $f \in Abb(X, \mathbb{R})$ inverse Abbildung (a.4 in Definition 4.1) ist gegeben als

$$-f: X \to \mathbb{R}, x \mapsto -f(x)$$

Spezialfälle aus der Analysis

- 1. $X := \mathbb{N}$: Abb (X, \mathbb{R}) der VR der Folgen in \mathbb{R}
- 2. $X := (a, b) \subset \mathbb{R}$: Abb (X, \mathbb{R}) der VR der Funktionen $(a, b) \to \mathbb{R}$.

(h

Wir betrachten eine glatte Fläche im Raum und an einem Punkt p dieser Fläche die Tangentialebene:

Die Tangentialebene ist ein VR. Die Abbildungen + und \cdot defininieren wir geometrisch, indem wir den Punkt p als Nullpunkt der Tangentialebene bestimmen:

Lemma 4.3

Hinweis: die Abbildungen + und \cdot werden in der Notation normalerweise weggelassen.

Es sei V ein VR.

a)

Das Nullelement ist eindeutig. Weiterhin gilt:

i)
$$0 \cdot v = 0$$

ii)
$$\lambda \cdot 0 = 0$$

iii)
$$\lambda \cdot v = 0 \Rightarrow \lambda = 0$$
 oder $v = 0$

Hinweis: hier zeigt sich die Mehrdeutigkeit von 0.

b)

Für jedes $v \in V$ ist das additive Inverse eindeutig und ist gegeben durch $(-1) \cdot v$. Man schreibt deshalb auch -v für das Inverse.

Beweis

a)

Es seien $0,0' \in V$ Nullelemente. Dann gilt:

$$0 = 0 + 0' = 0' + 0 = 0!$$

i)

Von der Gleichung

$$0 \cdot v = (0+0) \cdot v \stackrel{\text{b.1}}{=} 0 \cdot v + 0 \cdot v$$

subtrahieren wir $0 \cdot v$ von beiden Seiten.

ii)

Von der Gleichung

$$\lambda \cdot 0 = \lambda \cdot (0+0) \stackrel{\text{b.2}}{=} \lambda \cdot 0 + \lambda \cdot 0$$

subtrahieren wir $\lambda \cdot 0$ von beiden Seiten.

iii)

Die Richtung \Leftarrow sind i) und ii) oben.

Um \Rightarrow zu zeigen, sei $\lambda \cdot v = 0$ und $\lambda \neq 0$. Dann ist einerseits

$$\lambda^{-1} \cdot (\lambda \cdot v) \stackrel{\text{b.3}}{=} (\lambda^{-1} \cdot \lambda) \cdot v = 1 \cdot v \stackrel{\text{b.4}}{=} v$$

und andererseits

$$\lambda^{-1} \cdot (\lambda \cdot v) \stackrel{\lambda \cdot v = 0}{=} \lambda^{-1} \cdot 0 \stackrel{\text{ii}}{=} 0$$

d.h. v = 0.

b)

Wird in den Übungen bewiesen. □

Wir besprechen jetzt Untervektorräume. Siehe Abschnitt 2.4 zum Vergleich (Kapitel 3.3 bei Baer).

Definition 4.4

Es sei V ein VR. Eine Teilmenge $W \subset V$ heißt $\mathit{Untervektorraum}$ (kurz UVR) von V, wenn gilt:

- a) $0 \in W$
- b) $v, w \in W \Rightarrow v + w \in W$
- c) $v \in W, \lambda \in \mathbb{R} \Rightarrow \lambda \cdot v \in W$

Bemerkung 4.5

Ist W ein UVR von V, so können wir die Addition + und die Skalarmultiplikation · aus V auf W einschränken, d.h. als Abbildungen + : $W \times W \to W$ und · : $\mathbb{R} \times W \to W$ auffassen.

Auf diese Weise wird W selbst zu einem VR über \mathbb{R} .

Beispiele 4.6

- a) In jedem VR V gibt es den kleinsten UVR, nämlich $W:=\{0\}\subset V$ und den größten UVR, nämlich W:=V.
- b) In $V = \mathrm{Abb}(\mathbb{N}, \mathbb{R})$, d.h. dem Raum aller reellwertigen Folgen, ist die Teilmenge aller konvergenten Folgen ein UVR.
- c) In $V = Abb((a, b), \mathbb{R})$, d.h. dem Raum aller Funktionen auf dem Intervall

(a,b), ist die Teilmenge aller stetigen Funktionen ein UVR.

Ebenso ist die Teilmenge aller k-mal stetig differenzierbaren Funktionen ein UVR und auch die Teilmenge aller Riemann integrierbaren Funktionen ist ein UVR.

Lemma / Definition 4.7

Es sei V ein VR und $X\subset V$ eine beliebig Teilmenge. Für eine beliebige (andere) Teilmenge $W\subset V$ sind äquivalent:

- a) $W = \bigcap_{U \in \mathcal{W}} U$, wobei $\mathcal{W} := \{U \subset V \mid U \text{ ist ein UVR von } V \text{ und } X \subset U\}$
- b) W ist ein UVR von V und $X\subset W$ für jeden anderen UVR $W'\subset V$ mit $X\subset W'$ gilt $W\subset W'$.
- c) $W=\{v\in V\mid \exists_n\in\mathbb{N}\exists_{v_1,\dots,v_n}\in X\exists_{\lambda_1,\dots,\lambda_n}\in\mathbb{R}:v=\lambda_1v_1+\dots+\lambda_nv_n\text{ oder }v=0\}$

Es ist W eindeutig (bei gegebenem V und X) und heißt die *lineare Hülle* bzw. den Spann von X. Notationen dafür sind vielfältig, z.B.

$$L(X), \langle X \rangle, \operatorname{span}(X)$$

Beweis

Ist $X \neq \emptyset$, so entsteht bei a), b) und c) jeweils $W = \{0\} \subset V$, d.h. das Lemma stimmt für $X \neq \emptyset$.

Wir nehmen also $X = \emptyset$ an.

 $a) \Rightarrow b$:

Es sei $W = \bigcap_{U \in W} U$ mit W wie in a).

- 1. Dass W ein UVR ist, wird komplett analog zu Aufgabe 4a des Übungsblatts 5 gezeigt.
- 2. Wegen $X \subset U$ für alle $U \in W$ gilt $X \subset W$.
- 3. Sei W'ein UVR von Vmit $X\subset W'.$ Dann ist $W'\in W$ und damit $W\bigcap_{U\in W}U\subset\bigcap_{U=W'}U=W'.$

b) \Rightarrow c):

Es sei W wie in b). Ferner sei W wie in a) und $U \in W$. Dann ist $W \subset U$ und damit auch $W \subset \bigcap_{U \in W} U$. Es ist aber auch $W \in W$ und damit $\bigcap_{U \in W} U \subset U$ a) \Leftrightarrow c):

Wir zeigen, dass die in c
) definierte Menge, welche wir mit Z bezeichnen, mit der Menge
 $\bigcap_{U \in W} U$ aus a) übereinstimmt.

Sei $U \in W$. Da U ein UVR ist, welcher X enthält, muss U alle Linearkombinationen von Elementen von X, das heißt alle Vektoren der Form $\lambda_1 v_1 + \ldots + \lambda_n v_n$ mit $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ und $v_1, \ldots, v_n \in X$ enthalten. Es folgt also $Z \subset U$ und somit $\bigcap_{U \in W} U \subset Z$. Zusammen ergibt sich $Z = \bigcap_{U \in W} U$. \square

Beispiele 4.8

Es sei V ein VR.

- a) $L(\emptyset) = \{0\}$
- b) $L(\{0\}) = \{0\}$
- c) Für $v \in V$ ist $L(\{v\}) = \{\lambda v | \lambda \in \mathbb{R}\}$
- d) L(V) = V

Lemma 4.9

Es sei V ein UVR und $X, Y \subset V$. Dann gilt $L(X) \subset L(Y)$.

Beweis

Offensichtlich. Man benutzt entweder a) oder c) aus Lemma 4.7.

Beispiel 4.10

Es seien folgende Elemente des \mathbb{R}^3 gegeben:

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Wegen Lemma 4.9 gilt $L(v_1, v_3) \subset L(v_1, v_2, v_3)$. Wir verwenden hier die Notation $L(v_1, v_3)$ statt $L(\{v_1, v_3\})$.

Da $v_2=v_1+v_3$ ist, gilt $L(v_1,v_2,v_3)\subset L(v_1,v_3)$ (siehe nächstes Lemma). Somit ist also

$$L(v_1, v_2, v_3) = \left\{ \begin{pmatrix} \lambda \\ \mu \\ \mu \end{pmatrix} \in \mathbb{R}^3 \mid \lambda, \mu \in \mathbb{R} \right\}$$

, d.h. z.B.

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \notin L(v_1, v_2, v_3)$$

Lemma 4.11

Es seien $v_0, v_1, ..., v_m \in V$. Dann sind äquivalent:

- a) $v_0 \in L(v_1, ..., v_m)$
- b) $L(v_0, v_1, ..., v_m) = L(v_1, ..., v_m)$

Beweis

 $a) \Rightarrow b$:

Wir zeigen, dass $L(v_0, v_1, ..., v_m)$ die Eigenschaft b) aus Lemma 4.7 für die Teilmenge $X := \{v_1, ..., v_m\}$ erfüllt. Damit folgt mit Lemma 4.7, dass $L(v_0, v_1, ..., v_m) = L(X) = L(v_1, ..., v_m)$.

Dass $L(v_0,v_1,...,v_m)$ ein UVR ist, ist klar.

 $L(v_0,v_1,...,v_m)$ enthält per Definition davon die Teilmenge $\{v_0,v_1,...,v_m\}$ und damit auch X.

Es sei W' ein UVR von V mit $X \subset W'$. Da $v_0 \in L(v_1,...,v_m)$ und W' ein UVR ist, ist auch $v_0 \in W'$. Damit gilt also, dass $\{v_0,v_1,...,v_m\} \subset W'$ und damit $L(v_0,v_1,...,v_m) \subset W'$.

b) \Rightarrow a):

Es ist $v_0 \in L(v_0, v_1, ..., v_m)$ und damit wegen der Annahme b) auch $v_0 \in L(v_1, ..., v_m)$. \square

Mittwoch, 08.01.24 $^{\mathrm{13}}$

Lemma 4.11

Sei $X \subset V$. Dann sind äquivalent für $v \in X$:

- a) $v \in L(X \setminus \{v\})$
- b) $L(X) = L(X \setminus \{v\})$

Lemma / Definition 4.12

Es sei V ein Vektorraum und $X \subset V$. Dann sind äquivalent:

- a) Es gibt Skalare $\lambda_1,...,\lambda_n\in\mathbb{R}$, nicht alle gleich 0, sowie paarweise verschiedene Vektoren $v_1,...,v_n\in X$ mit $0=\lambda_1v_1+...+\lambda_nv_n$
- b) Es gibt ein $v \in X$ mit $L(X \setminus \{v\}) = L(X)$

Eine Teilmenge X, die diese Eigenschaften erfüllt, $linear\ abhängig$. Ansonsten heißt X linear unabhängig.

Beweis

 $a) \Rightarrow b$:

Es gelte $\lambda_1 v_1 + ... + \lambda_n v_n = 0$ und sei oBdA $\lambda_1 \neq 0$. Dann können wir umstellen 711

$$v_1 = -\frac{\lambda_2}{\lambda_1} v_2 - \dots - \frac{\lambda_n}{\lambda_1} v_n$$

d.h. v_1 ist eine Linear kombination der Vektoren $v_2,...,v_n$. Somit ist $v_1\in L(v_2,...,v_n)=L(X\backslash\{v_1\})$.

Mit Lemma 4.11 folgt $L(X) = L(X \setminus \{v_1\})$.

b) \Rightarrow a):

Sei $v \in X$ mit $L(X \setminus \{v\}) = L(X)$. Da $v \in L(X)$, gilt $v \in L(X \setminus \{v\})$.

 $v = \mu_1 v_1 + ... + \mu_n v_n$. Wir können annehmen, dass die μ_i paarweise verschieden sind. Wir stellen um und erhalten:

$$-1 \cdot v + \mu_1 v_1 + \dots + \mu_n v_n = 0$$

Das entspricht genau a) nach Umbenennung. □

¹³vgl. S. ? aus Baer.

Beispiele 4.13

- a) Die leere Menge $X = \emptyset$ ist linear unabhängig.
- b) Es sei $v \in V$ und $X = \{v\}$.

Fall 1 (v = 0)

 $\overline{\text{Hier gilt } 5 \cdot v} = 0$, d.h. X ist linear abhängig.

Fall 2 $(v \neq 0)$

Wäre X linear abhängig, so müsste es ein $\lambda \in \mathbb{R}$ geben mit $\lambda v = 0$ aber $\lambda \cdot v = 0$ geben. Dies ist wegen $v \neq 0$ nicht möglich. Also ist X linear unabhängig. c) In \mathbb{R}^2 ist

$$X = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

linear unabhängig. Wir setzen $0 = \lambda_1 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ an. Dies entspricht einer sehr üblichen Vorhergehensweise.

Die erste Komponente dieser Gleichung laut $0 = \lambda_1 \cdot 0 + \lambda_2 \cdot 1$. Also muss $\lambda_2 = 0$ sein.

Die zweite Komponente dieser Gleichung ist $0 = \lambda_1 \cdot 1 + \lambda_2 \cdot 1$. Zusammen mit $\lambda_2 = 0$ folgt $\lambda_1 = 0$.

d) In $Abb(\mathbb{R}, \mathbb{R})$ ist $X := \{1, x, x^2, ...\}$ linear unabhängig. Wir benutzen den üblichen Ansatz $\lambda_1 \cdot 1 + \lambda_2 \cdot x + ... + \lambda_n \cdot x^n = 0$ mit paarweise verschiedenen $\lambda_i \in \mathbb{N}$.

Mit Algebra/Analysis zeigt man $\lambda_1 = \dots = \lambda_n = 0$.

e) In $Abb(\mathbb{R}, \mathbb{R})$ sei $X := \{f(x), g(x), h(x)\}$ mit f(x) = 5, $g(x) = \sin x^2$ und $h(x) = \cos x^2$.

Aus $\sin x^2 + \cos x^2 = 1$ folgt $-1 \cdot f + 5g + 5h = 0$, d.h. X ist linear abhängig.

Definition 4.14

Es sei V ein VR und $X \subset V$.

- 1. X heißt Erzeugendensystem von V, wenn L(X) = V gilt.
- 2. X heißt Basis von V, wenn X ein linear unabhängiges Erzeugendensystem von ist.

Bemerkung 4.15

- 1. Jeder VR besitzt ein Erzeugendensystem, z.B. X = V.
- 2. Ist X ein Erzeugendensystem, so kann jeder Vektor $v \in V$ als Linearkombination von Vektoren aus X geschrieben werden.

3. Ist X eine Basis, so kann jeder Vektor aus V eindeutig als Linearkombination von Vektoren aus X geschrieben werden:

Angenommen $v=\lambda_1v_1+...+\lambda_nv_n=\mu_1v_1+...+\mu_nv_n$ mit paarweise verschiedenen $v_1,...,v_n\in X$, so gilt $(\lambda_1-\mu_1)v_1+...+(\lambda_n-\mu_n)v_n=0$. Da X linear unabhängig ist, folgt $\lambda_1-\mu_1=0,...,\lambda_n-\mu_n=0$.

Beispiele 4.16

- a) Die Standardbasis von \mathbb{R}^n ist gegeben durch $X:=\{e_1,...,e_n\}$ wobei $e_i=(0,0,...,1,...,0,0)$. Für jedes $v=(v_1,...,v_n)\in\mathbb{R}^n$ gilt offensichtlich $v=v_1e_1+...+v_ne_n$, d.h. X ist ein Erzeugendensystem. Lineare Unabhängigkeit von X zeigt man mit dem üblichen Ansatz (siehe Beispiel 4.13 c).
- b) In \mathbb{R}^2 ist $X := \{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$ eine Basis. Lineare Unabhängigkeit ist in Beispiel 4.13 c) gezeigt worden.

Es ist ein Erzeugendensystem, denn für jedes $v=\begin{pmatrix}v_1\\v_2\end{pmatrix}\in\mathbb{R}^2$ gilt $v=(v_2-v_1)$

$$\binom{0}{1} + v_1 \cdot \binom{1}{1}.$$

- c) Íst $X \subset V$ linear unabhängig, so ist X eine Basis von L(X).
- d) $V = \{0\}$ hat nur die Basis $X = \emptyset$.

Es ist $Y = \{0\}$ keine Basis, da Y <u>nicht</u> linear unabhängig ist. Die 0 verhindert automatisch lineare Unabhängigkeit.

Lemma 4.17

Sei $X \subset V$ linear unabhängig und $v \in V \setminus L(X)$. Dann ist $X \cup \{v\}$ weiterhin linear unabhängig.

Donnerstag, $11.01.24^{-14}$

Proposition 4.18

Sei V ein VR, $V \neq \{0\}$, und $X \subset V$ eine Teilmenge. Dann sind äquivalent:

- 1. a) X ist eine Basis von V
- 2. b) X ist ein minimales Erzeugendensystem, d.h. für alle $v \in X$ gilt $L(X \setminus \{v\}) \neq V$
- 3. c) X ist eine maximale linear unabhängige Teilmenge von V, d.h. für alle $v \in V \setminus X$ gilt $X \cup \{v\}$ ist linear abhängig.

Beweis

 $a) \Rightarrow b$:

Wir wollen Zeigen, dass wenn X eine Basis ist, dann ist X ein minimales Erzeugendensystem.

Angenommen X wäre nicht minimal, d.h. $\exists_v \in X : L(X \setminus \{v\}) = V = L(x)$. Dann wäre X aber wegen der Bedingung b) für lineare Abhängigkeit linear abhängig, was ein Widerspruch zur Definition der Basis ist.

b) \Rightarrow a):

Sei X ein minimales Erzeugendensystem. Wegen der Minimalität gilt für alle $v \in X$ dass $L(X \setminus \{v\}) \neq V = L(X)$. Das ist gerade die Negation von b) aus der Definition der linearen Abhängigkeit. Also ist X linear unabhängig, d.h. X ist eine Basis.

 $a) \Leftrightarrow c)$:

Übungsaufgabe.

Proposition 4.19

Es sei V ein VR und $X, Y \subset V$ eine endliche Teilmenge von V, sodass X linear unabhängig und Y ein Erzeugendensystem ist. Dann gilt $|X| \leq |Y|$.

¹⁴vgl. Kapitel 3.4 aus Baer.

Beweis

Es sei $X = \{v_1, ..., v_n\}$ und $Y = \{w_1, ..., w_m\}$. Wir nehmen an, dass n > m ist. Da Y ein Erzeugendensystem ist, lässt sich jeder Vektor $v_j \in X$ als Linearkombination von Vektoren $w_i \in Y$ schreiben, d.h. es gibt reelle Zahlen $A_{i,j} \in \mathbb{R}$ mit i = 1, ..., m und j = 1, ..., n sodass gilt:

$$v_j = A_{1,j}w_1 + \dots + A_{m,j}w_m$$

Wir betrachten das homogene lineare Gleichungssystem

$$A_{1,1}x_1 + \dots + A_{m,1}x_n = 0$$
...
$$A_{m,1}x_1 + \dots + A_{m,n}x_n = 0$$

Da wir mehr Unbekannte als Gleichungen haben, also n > m, hat dieses Gleichungssystem nach Satz 2.21 eine nicht-triviale Lösung $(x_1, ..., x_n) \neq (0, ..., 0)$. Dann folgt, dass

$$x_1v_1 + \dots + x_nv_n = x_i \cdot (A_{1,1}w_1 + \dots + A_{m,1}w_m) + \dots + x_n \cdot (A_{1,n}w_1 + \dots + A_{m,n}w_m)$$

$$= \underbrace{(x_1A_{1,1} + \dots + x_nA_{m,1})}_{=0} w_1 + \dots + \underbrace{(x_1A_{m,1} + \dots + x_nA_{m,n})}_{=0} w_m$$

$$= 0$$

Das ist die Bedingung a) aus der Definition der linearen Abhängigkeit, was aber ein Widerspruch zur linearen Unabhängigkeit von X ist. \square

Beispiel 4.20

- 1. Wir wissen, dass $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ ein Erzeugendensystem von \mathbb{R}^2 ist.
- 2. Wir betrachten $X := \left\{ \begin{pmatrix} 37 \\ 0 \end{pmatrix}, \begin{pmatrix} -102 \\ 1 \end{pmatrix} \right\}$. X ist linear unabhängig.

Unsere Behauptung ist, dass X sogar eine Basis ist.

Angenommen X wäre kein Erzeugendensystem. Dann gibt es ein $v \notin L(X)$. Dann wäre aber $X \cup \{v\}$ wegen Lemma 4.17 linear unabhängig. Dann wäre aber $|X \cup \{v\}| = 3$. Dann würde aus Proposition 4.19 folgen, dass

$$|X\cup\{v\}|=3\leq |\left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\right\}|=2$$

, was ein Widerspruch ist. Also ist X eine Basis. \square

Definition 4.21

Ein VR V heißt endlich erzeugt, wenn es eine endliche Teilmenge $X\subset V$ gibt, mit L(X)=V.

Beispiele 4.22

- a) \mathbb{R}^n ist endlich erzeugt, z.B. mit der Standardbasis.
- b) $Mat(n \times m)$ ist endlich erzeugt (siehe Übung)

Lemma 4.23

Es sei V ein VR, $X_1\subset X_2\subset V$, sodass jedes X_j linear unabhängig ist. Dann ist auch $X:=\bigcup\limits_{j=1}^{\infty}X_j$ linear unabhängig.

Beweis

Seien $v_1,...,v_n\in X$ paarweise verschieden und $\lambda_1,...,\lambda_n\in\mathbb{R}$ sodass $\lambda_1v_1+...+\lambda_nv_n=0$. Nach Definition von X gibt es ein $j_k\in\mathbb{N}$ mit $v_k\in X_{j_k}$. Wir setzen $N:=\max\{j_1,...,j_n\}$. Dann ist $v_k\in X_{j_k}\subset X_N$. Damit ist (*) eine Gleichung in X_N und X_N ist nach Annahme linear unabhängig. Daraus folgt, dass $\lambda_1=...=\lambda_n=0$ ist. Damit ist X linear unabhängig. \square

Lemma 4.24

Für einen VR V sind äquivalent:

- 1. a) V ist endlich erzeugt
- 2. b) V enthält eine unendliche, linear unabhängige Teilmenge

Beweis

 $a) \Rightarrow b$:

Es sei V nicht endlich erzeugt. Wir wählen dann $v \in V$ mit $v \neq 0$ und wir setzen $X_1 := \{v_1\}$. Da V nicht endlich erzeugt ist, gibt es ein $v_2 \in V \setminus L(X_1)$. Wir setzen $X_2 := X_1 \cup \{v_2\} = \{v_1, v_2\}$.

Da V nicht endlich erzeugt ist, gibt es ein $v_3 \in V \setminus L(X_2)$. Setze $X_3 = \{v_1, v_2, v_3\}$. Fahre so fort und erhalte Mengen $X_j \subset V, j \in \mathbb{N}$ mit $X_j = X_j \cup \{v_j\}$ für ein $v_j \in V \setminus L(X_{j-1})$.

Es ist $|X_j|=j$ und jedes X_j ist auf Grund von Lemma 4.17 linear unabhängig. Weiterhin gilt $X_j\subset X_{j+1}$. Wegen Lemma 4.23 ist $X:=\bigcup_{j\in\mathbb{N}}X_j$ auch linear unabhängig und $|X|=\infty$.

b) \Rightarrow a):

Angenommen V hat eine unendlich linear unabhängige Teilmenge aber ein endliches Erzeugendensystem. Das wäre aber ein Widerspruch zu Proposition 4.19. \square

Beispiel 4.25

Die Menge $\mathrm{Abb}(\mathbb{N},\mathbb{R})$ ist nicht endlich erzeugt, da es unendliche linear unabhängige Teilmengen gibt.

Siehe dazu Übungsblatt 8, Aufgabe 4.

Satz 4.26

Basisauswahlsatz Sei $X\subset V$ ein endliches Erzeugendensystem. Dann gibt es ein $B\subset X$ sodass B eine Basis von V ist. (Salopp: Aus einem Erzeugendensystem kann ich so lange Dinge rausschmeißen, bis es linear unabhängig ist.) $Basiserg\ddot{a}nzungssatz$ Sei V endlich erzeugt und $X\subset V$ linear unabhängig. Dann

gibt es eine Basis B von V mit $X \subset B$.

Beweis

Ausgelassen/Übung.

Korollar 4.27

Jeder endlich erzeugte VR besitzt eine Basis und alle Basen sind gleich mächtig.

Beweis

V besitzt ein endliches Erzeugendensystem aus dem mit Satz 4.26 eine Basis ausgewählt werden kann. Sind B_1 und B_2 Basen von V, so folgt mit Proposition

4.19

$$|B_1| \leq |B_2| \quad \text{und} \quad |B_2| \leq |B_1|$$
lin. unabhängig Erzeugendensystem

Daraus folgt, dass $|B_1| = |B_2|$ ist. \square

Definition 4.28

Sei V ein VR. Wir definieren die Dimension dim(V) von V als die Anzahl der Elemente einer Basis von V, falls V endlich erzeugt ist und falls V nicht endlich erzeugt ist als dim $(V) := \infty$.

Beispiel 4.29

- a) $\dim(\mathbb{R}^n) = n$
- b) $\dim(\operatorname{Mat}(n \times m)) = n \cdot m$ (siehe Übung)
- c) $\dim(Abb(\mathbb{N}, \mathbb{R})) = \infty$

Mittwoch, 17.01.24 ¹

Bemerkung 4.30

Sei $W \subset \mathbb{R}^n$ ein UVR. Aus Aufgabe 3 des Aufgabenblatts 9 wissen wir:

- 1. $\dim(W) \leq n$
- 2. $\dim(W) = n \Leftrightarrow W = \mathbb{R}^n$

Das können wir behaupten, um induktiv eine Basis von W zu finden.

Als Beispiel sei
$$W = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 = 0 \right\}.$$

Wir erraten einen nicht-trivialen Vektor $v_1 \in W$, nämlich $v_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Jetzt wollen wir zeigen, dass dies kein Erzeugendensystem ist, also dass $L(v_1) \neq W$. Doch wie machen wir das? Wir finden einen Vektor, der in W liegt, aber

¹Die Inhalte dieser Vorlesung beziehen sich ungefähr auf Seite ? aus Baer.

nicht in $L(v_1)$. Ein solcher Vektor ist $v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$. Jetzt müssen wir das Lemma

von letzter Woche anwenden:

Gilt $W = L(v_1, v_2)$?

Aus der Vorlesung wissen wir: $\{v_1, v_2\}$ ist linear unabhängig. Also ist $\dim(W) \ge 2$ (die Anzahl der Vektoren in der Basis ist immer eine untere Schranke für die Dimension).

Es ist aber $\dim(W) \leq 3$ (siehe oben). Es ist $\dim(W) = 2$. (Hinweis: es ist nicht $\dim(W) = 3$, denn dann wäre $W = \mathbb{R}^3$. Durch die Bedingung schließen wir einige Vektoren des \mathbb{R}^3 aus, also kann die Dimension nicht 3 sein).

Bemerkung 4.31

Wie überprüfen wir, ob eine Teilmenge $X=\{v_1,...,v_n\}$ des \mathbb{R}^n linear unabhängig ist?

Wir setzen $\lambda_1 v_1 + ... + \lambda_n v_n = 0$ an schreiben dies als homogenes lineares Gleichungssystem:

$$\lambda_1 v_1^{(1)} + \dots + \lambda_m v_m^{(1)} = 0$$

$$\vdots$$

$$\lambda_1 v_1^{(n)} + \dots + \lambda_m v_m^{(n)} = 0$$

wobei wir
$$v_1 = \begin{pmatrix} v_1^{(1)} \\ \dots \\ v_1^{(n)} \end{pmatrix}, \dots, v_m = \begin{pmatrix} v_m^{(1)} \\ \dots \\ v_m^{(n)} \end{pmatrix}$$
 schreiben.

Hat dieses homogene LGS nur die triviale Lösung $\lambda_1 = ... = \lambda_m = 0$, so ist X linear unabhängig.

Gibt es hingegen eine Lösung mit einem $\lambda_i \neq 0$ für ein $i \in \{1, ..., m\}$, so ist X linear abhängig und es gilt $L(X) = L(X \setminus \{v_i\})$ (siehe Lemma 4.11). Dies ist das gleiche Verfahren wie das, des Basisauswahlsatzes.

Bemerkung 4.32

Wie überprüfen wir, ob eine Teilmenge $X = \{v_1, ..., v_m\}$ des \mathbb{R}^n ein Erzeugendensystem ist?

Dazu muss für jedes $b \in \mathbb{R}^n$ die Gleichung $\lambda_1 v_1 + ... + \lambda_m v_m = b$ lösbar sein. Dies können wir als ein inhomogenes lineares Gleichungssystem schreiben:

$$\lambda_1 v_1^{(1)} + \dots + \lambda_m v_m^{(1)} = b^{(1)}$$

:

$$\lambda_1 v_1^{(n)} + \dots + \lambda_m v_m^{(n)} = b^{(n)}$$

Ist dieses inhomogene LGS für jedes $b \in \mathbb{R}^n$ lösbar, so ist X ein Erzeugendensystem von \mathbb{R}^n .

Definition 4.33

Sei A eine $(m \times n)$ -Matrix.

- 1. Es seien $x_1, ..., x_n$ die einzelnen Spalten von A, aufgefasst als Vektoren des \mathbb{R}^m .
- 2. Es seien $y_1,...,y_m$ die einzelnen Zeilen von A, aufgefasst als Vektoren des $\mathbb{R}^n.$
- a) Der Spaltenrang von A ist $\dim(L(x_1,...,x_n))$.
- b) Der Zeilenrang von A ist $\dim(L(y_1,...,y_m))$.

Beispiel 4.34

Der Spaltenrang der Matrix $A = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$ ist 2.

Es gilt

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ und } \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

(die 3. und 4. Spalte sind Linearkombinationen der ersten Beiden), d.h. es gilt:

$$L\left(\begin{pmatrix}1\\1\\0\end{pmatrix},\begin{pmatrix}0\\1\\1\end{pmatrix},\begin{pmatrix}1\\2\\1\end{pmatrix},\begin{pmatrix}-1\\0\\1\end{pmatrix}\right) = L\left(\begin{pmatrix}1\\1\\0\end{pmatrix},\begin{pmatrix}0\\1\\1\end{pmatrix}\right)$$

Ferner sind $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ und $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ linear unabhängig zueinander. Der Spaltenrang ist 2.

Proposition 4.35

Sei A eine $(m \times n)$ -Matrix. Dann gilt:

Zeilenrang von A = Spaltenrang von A

Beweis

Man nennt dies deswegen einfach den Rang von A.

Notation: rg(A)

Hinweis: diesen Beweis haben wir in der Vorlesung nicht gemacht.

Schreibe $A = \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \dots & A_{mn} \end{pmatrix}$. Seien y_1, \dots, y_m die Zeilenvektoren von A, d.h. für $j \in \{1, \dots, m\}$ ist $y_j = \begin{pmatrix} A_{j1} \\ \dots \\ A_{jn} \end{pmatrix} \in \mathbb{R}^n$ (*).

d.h. für
$$j \in \{1, ..., m\}$$
 ist $y_j = \begin{pmatrix} A_{j1} \\ ... \\ A_{jn} \end{pmatrix} \in \mathbb{R}^n$ (*).

Sei der Zeilenrang von A gleich r. Es gibt also r linear unabhängige Vektoren

$$z_1 = (b_{11}, ..., b_{1n}), ..., z_r = (b_{r1}, ..., b_{rn})$$
 (**)

die eine Basis von $L(y_1,...,y_m)$ bilden, d.h. für jedes $j \in \{1,...,m\}$ gilt

$$y_i = k_{i1}z_1 + \dots + k_{ir}z_r (***)$$

für gewisse $k_{jt} \in \mathbb{R}$ für $1 \le j \le m$ und $1 \le t \le r$. Somit gilt dann aber

$$A_{1j} = k_{11}b_{1i} + \ldots + k_{1r}b_{ri}$$

$$\vdots$$

$$A_{mi} = k_{m1}b_{1i} + \ldots + k_{mr}b_{ri}$$

Satz 4.36

Sei A eine $(m \times n)$ -Matrix. Es seien $x_1, ..., x_n$ die einzelnen Spalten von A und es sei $b \in \mathbb{R}^m$. Wir schreiben (A, b) für die Matrix A mit zusätzlicher Spalte b. Dann gilt:

a)
$$L\ddot{o}s(A, b) \neq \emptyset \Leftrightarrow b \in L(x_1, ..., x_n)$$

 $\Leftrightarrow rg(A, b) = rg(A)$
b) $L\ddot{o}s(A, b) = \emptyset \Leftrightarrow b \notin L(x_1, ..., x_n)$
 $\Leftrightarrow rg(A, b) = rg(A) + 1$

Beweis

a) Es gelten folgende Äquivalenzen:

$$\begin{split} \operatorname{rg}(A,b) &= \operatorname{rg}(A) \Leftrightarrow \dim(\operatorname{L}(x_1,...,x_n,b)) = \dim(\operatorname{L}(x_1,...,x_n)) \\ &\Leftrightarrow \operatorname{L}(x_1,...,x_n,b) = \operatorname{L}(x_1,...,x_n) \\ &\Leftrightarrow b \in \operatorname{L}(x_1,...,x_n) \\ &\Leftrightarrow \exists_{t_1,...,t_n} \in \mathbb{R} : t_1x_1 + ... + t_nx_n = b \\ &\Leftrightarrow \operatorname{L\ddot{o}s}(A,b) \neq \emptyset \end{split}$$

b) Folgt aus a), weil Hinzunahme einer zusätzlichen Spa
öte den Spaltenrang höchstens um eins erhöhen kann (es gilt also entweder
rg(A,b) = rg(A) oder rg(A,b) = rg(A) + 1). \square

Bemerkung 4.37

Sei A eine Matrix. In Aufgabe 4 des Übungsblattes 8 haben wir gezeigt, dass elementare Zeilenumformungen die von den Zeilen aufgespannten Unterräume nicht verändern.

Also bleibt der Zeilenrang von A bei elementaren Zeilenumformungen erhalten. Gehe A' aus A durch elementare Zeilenumformungen heraus und A' in Zeilenstufenform. Dann ist die Anzahl der nicht-0-Zeilen der Zeilenrang.

$$\begin{pmatrix} 1 & * & 1 & * & * \\ 0 & 0 & 2 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 + \lambda_4 v_4 + \lambda_5 v_5 = 0$$

Die Stufen in der Matrix sind da, wo wir den ersten nicht-0-Eintrag in einer Zeile haben. Man schaut sich nacheinander die Einträge an, wo die Stufen sind und schaut sich dann die Lambdas an. Am Ende argumentiert man, dass diese Lambdas alle 0 sein müssen. Am Ende sehen wir, dass diese 3 Zeilen eine Basis sind.

Donnerstag, $18.01.24^{-1}$

4.2 Lineare Abbildungen

Definition 4.38

Es seien V,W VR. Eine Abbildung $\varphi:V\to W$ heißt linear oder Vektorraumhomomorphismus, wenn gilt:

- 1. a) Für alle $v, v' \in V$ gilt $\varphi(v + v') = \varphi(v) + \varphi(v')$
- 2. b) Für alle $v \in V$ und $\lambda \in \mathbb{R}$ gilt $\varphi(\lambda v) = \lambda \varphi(v)$

Beispiele 4.39

- a) Sei A eine $(m \times n)$ -Matrix und $\varphi_A : \mathbb{R}^n \to \mathbb{R}^m$ die zugehörige Abbildung. Lemma 2.26 besagt, dass φ_A linear ist.
- b) Die Nullabbilung $0:V\to W,v\mapsto 0$ ist immer linear.
- c) Die Identitätsabbildung id $_V: V \to V, v \mapsto v$ ist immer linear.
- d) Die Abbildung $\varphi: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ ist <u>nicht</u> linear. Es ist

$$\varphi(1+1) = \varphi(2) = 4 \text{ aber } \varphi(1) + \varphi(1) = 1+1=2$$

- e) Es sei $(a,b) \subset \mathbb{R}$ ein Intervall. Es bezeichne $C^1(a,b)$ den VR aller den Raum aller stetig differenzierbaren Funktionen $(a,b) \to \mathbb{R}$ und $C^0(a,b)$ den Raum aller stetigen Funktionen $(a,b) \to \mathbb{R}$. Dann ist das Differenzieren $C^1(a,b) \to C^0(a,b), f \mapsto f'$ linear.
- f) Es sei $[a,b] \subset \mathbb{R}$ ein Intervall. Dann ist das Integrieren eine lineare Abbildung $C^0([a,b]) \to \mathbb{R}, f \mapsto \int_a^b f(x) dx$.

Lemma 4.40

Es sei $\varphi:V\to W$ linear. Dann gilt:

- 1. a) $\varphi(0) = 0$
- 2. b) Für alle $v, v' \in V$ gilt $\varphi(v v') = \varphi(v) \varphi(v')$
- 3. c) Für alle $v_1,...,v_n \in V$ und $\lambda_1,...,\lambda_n \in \mathbb{R}$ gilt $\varphi(\lambda_1v_1+...+\lambda_nv_n) = \lambda_1\varphi(v_1)+...+\lambda_n\varphi(v_n)$

¹Die Inhalte dieser Vorlesung basieren auf Kapitel 4.1 und 4.2 aus Baer.

Beweis

- 1. a) Es gilt $\varphi(0) = \varphi(0+0) = \varphi(0) + \varphi(0)$ und jetzt subtrahieren wir $\varphi(0)$ von beiden Seiten.
- 2. b) Es gilt $v v' = v + (-1) \cdot v'$ (vgl. Lemma 4.3b). Damit ist dann

$$\begin{split} \varphi(v-v') &= \varphi(v+(-1)\cdot v') \\ &= \varphi(v) + \varphi((-1)\cdot v') \\ &= \varphi(v) + (-1)\cdot \varphi(v') \\ &= \varphi(v) - \varphi(v') \end{split}$$

3. c) Es gilt

$$\varphi(\lambda_1 v_1 + \dots + \lambda_n v_n) = \varphi(\lambda_1 v_1 + (\lambda_2 v_2) + \dots + \lambda_n v_n)$$
$$= \varphi(\lambda_1 v_1) + \varphi(\lambda_2 v_2 + \dots + \lambda_n v_n)$$

und so weiter. \square

Proposition 4.41

Jede lineare Abbildung $\mathbb{R}^n \to \mathbb{R}^m$ ist eine Matrixabbildung.

Beweis

Sei $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ linear. Sei $\{e_1, ..., e_n\}$ die Standardbasis von \mathbb{R}^n , d.h. für alle $p = (p_1, ..., p_n) \in \mathbb{R}^n$ gilt $p = p_1 e_1 + ... + p_n e_n$. Wir definieren $a_j := \varphi(e_j)$ für $j \in \{1, ..., n\}$ und sei A die Matrix mit den Spalten $a_1, ..., a_n$. Man beachte, dass $A \cdot e_j \stackrel{**}{=} a_j$ gilt für $j \in \{1, ..., n\}$. Sei φ_A die i-te zu A gehörige Matrixabbildung. Dann gilt

$$\varphi(p) = \varphi(p_1e_1 + \dots + p_ne_n)$$

$$\stackrel{*}{=} p_1\varphi(e_1) + \dots + p_n\varphi(e_n)$$

$$\stackrel{*}{=} p_1a_1 + \dots + p_na_n$$

$$\stackrel{**}{=} p_1(A \cdot e_1) + \dots + p_n(A \cdot e_n)$$

$$\stackrel{\text{Bem 2.34}}{=} p_1\varphi_A(e_1) + \dots + p_n\varphi_A(e_n)$$

$$\stackrel{*}{=} \varphi_A(p_1e_1 + \dots + p_ne_n)$$

$$= \varphi_A(p)$$

für alle $p \in \mathbb{R}^n$. \square

Hinweis: * ist die Linearität.

Lemma 4.42

- 1. a) Seien $\varphi:V\to W$ und $\psi:W\to Z$ linear. Dann ist auch $\psi\circ\varphi:V\to Z$ linear.
- 2. b) Sei $\varphi:V\to W$ linear und invertierbar. Dann ist auch die Umkehrabbildung $\varphi^{-1}:W\to V$ linear.

Beweis

a) Schreibe $\sqsubseteq := \psi \circ \varphi$. i) Seien $v, v' \in V$. Dann gilt

$$\Box(v+v') = (\psi \circ \varphi)(v+v')
= \psi(\varphi(v+v'))
= \psi(\varphi(v) + \varphi(v'))
= \psi(\varphi(v)) + \psi(\varphi(v'))
= (\psi \circ \varphi)(v) + (\psi \circ \varphi)(v')
= \Box(v) + \Box(v')$$

- ii) Analog zeigt man $\sqsubseteq (\lambda v) = \lambda \sqsubseteq (v)$ für alle $v \in V$ und $\lambda \in \mathbb{R}$.
- b) Sei $w \in W$. Weil φ invertiertbar ist, ist es bijektiv (Lemma 1.45c) und somit gibt es ein $a \in V$ mit $\varphi(a) \stackrel{**}{=} w$.

Ebenso gibt es für jedes $w' \in W$ ein $b \in V$ mit $\varphi(b) \stackrel{**}{=} w'$. Dann gilt aber auch

 $\varphi(a+b) = \varphi(a) + \varphi(b) = w + w'*.$ Somit erhalten wir nun

$$\varphi^{-1}(w+w') \stackrel{*}{=} \varphi^{-1}(\varphi(a+b))$$

$$= a+b$$

$$= \varphi^{-1}(\varphi(a)) + \varphi^{-1}(\varphi(b))$$

$$\stackrel{*}{=} \varphi^{-1}(w) + \varphi^{-1}(w')$$

Analog zeigt man $\varphi^{-1}(\lambda w) = \lambda \varphi^{-1}(w)$ für alle $w \in W$ und $\lambda \in \mathbb{R}$. \square Lemma 4.42a) und Proposition 4.41 implizieren, dass für Matrizen A und B, für welche $\varphi_A \circ \varphi_B$ definiert ist, $\varphi_A \circ \varphi_B = \varphi_C$ für eine Matrix C gilt. Aus der Bemerkung 2.33 wissen wir, dass $C = A \cdot B$ ist.

Korollar 4.43

Sei A eine $(m \times n)$ -Matrix. Dann sind die folgenden Aussagen äquivalent:

- a) Die zugehörige Matrixabbildung φ_A ist invertierbar.
- b) Es gibt eine $(n \times n)$ -Matrix B mit $A \cdot B = B \cdot A = E_n$.

Hinweis: Man nennt B die zu A inverse Matrix und schreibt $B = A^{-1}$.

Beweis

 $b) \Rightarrow a)$:

(Dies wissen wir schon aus Kapitel 2).

Es gilt $\varphi_A \circ \varphi_B = \varphi_{A \cdot B} = \varphi_{E_n} = \mathrm{id}_{\mathbb{R}^n}$ und ebenso $\varphi_B \circ \varphi_A = \varphi_{B \cdot A} = \varphi_{E_n} = \mathrm{id}_{\mathbb{R}^n}$, d.h. φ_A ist invertierbar.

 $a) \Rightarrow b$:

Aus Lemma 4.42b) und Proposition 4.41 wissen wir, dass die Inverse (φ_A^{-1}) durch eine Matrix B gegeben ist, d.h. es gilt $\underbrace{\varphi_A \circ \varphi_B}_{=\varphi_{A \cdot B}} = \mathrm{id}_{\mathbb{R}^n} = \varphi_{E_n} = \underbrace{\varphi_B \circ \varphi_A}_{=\varphi_{B \cdot A}}$. Mit

Aufgabe 1 des Aufgabenblatts 5 (Injektivität von $C\Rightarrow \varphi_C$) folgt dann, dass $A\cdot B=B\cdot A=E_n.$ \square

Wie man eine invertierbare Matrix konkret invertiert wird später besprochen.

Mittwoch, $24.01.18^{-1}$

Lemma 4.44

Sei $\varphi: V \to W$ linear. Dann gilt:

- 1. a) Ist $V' \subset V$ ein UVR, so ist auch $\varphi(V') \subset W$ (Def. 1.28) ein UVR.
- 2. b) Ist $W' \subset W$ ein UVR, so ist auch $\varphi^{-1}(W') \subset V$ (Def. 1.30) ein UVR.

Beweis

a) Wegen $\varphi(0) = 0$ und $0 \in V'$ ist $0 \in \varphi(V')$.

Seien $w_1, w_2 \in \varphi(V')$. Es gibt also $v_1, v_2 \in V'$ mit $\varphi(v_1) = w_1$ und $\varphi(v_2) = w_2$. Es ist $v_1 + v_2 \in V'$ und $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = w_1 + w_2$, d.h. $w_1 + w_2 \in \varphi(V')$.

Analog zeigt man $\lambda w_1 \in \varphi(V')$ für alle $\lambda \in \mathbb{R}$ und $w \in \varphi(V')$.

b) Wegen $\varphi(0) = 0$ und $0 \in W'$ ist $0 \in \varphi^{-1}(W')$.

Seien $v_1, v_2 \in \varphi^{-1}(W')$, d.h. $\varphi(v_1) \in W'$ und $\varphi(v_2) \in W'$. Dann gilt $\varphi(v_1 + v_2) = \underbrace{\varphi(v_1)}_{\in W'} + \underbrace{\varphi(v_2)}_{\in W'} \in W'$, d.h. $v_1 + v_2 \in \varphi^{-1}(W')$.

Analog zeigt man $\lambda v \in \varphi^{-1}(W')$ falls $v \in \varphi^{-1}(W')$ und $\lambda \in \mathbb{R}$. \square

Korollar 4.45

Sei $\varphi: V \to W$ linear. Dann gilt:

- 1. a) Der Kern Kern $(\varphi) = \varphi^{-1}(\{0\})$ ist ein UVR von V. vgl. Def. 2.28
- 2. b) Das Bild $\varphi(V)$ von V unter φ ist ein UVR von W. vgl. Def. 1.28

Hinweis: Warum ist das relevant? Wenn es keine lineare Abbildung ist, ist es kein UVR. UVR haben aber wichtige Eigenschaften, wie Dimensionen zum Beispiel. Oft ist man nur an der Dimension des Kerns interessiert.

 $^{^{1}\}mathrm{Die}$ Inhalte dieser Vorlesung basieren auf Kapitel ? aus Baer.

Lemma 4.46

Sei $\varphi: V \to W$ linear. Dann gilt:

- 1. a) φ ist genau dann surjektiv, wenn $\varphi(V) = W$.
- 2. b) φ ist genau dann injektiv, wenn $\operatorname{Kern}(\varphi) = \{0\}.$

Beweis

- a) Das ist einfach die Definition der Surjektivität.
- b) Komplett analog wie Korollar 2.30 für die Matrixabbildungen (man entfernt einfach das A in φ_A). \square

Lemma 4.47

Sei $\varphi:V\to W$ linear. Ist $X\subset V$ ein Erzeugendensystem, so ist $\varphi(X)$ ein Erzeugendensystem von $\varphi(V)$.

 $\underline{\text{Achtung}}\text{: Die analoge Aussage mit "linear unabhängig" statt "Erzeugendensystem" ist falsch.$

Beweis

Sei $w \in \varphi(V)$. Es gibt also ein $v \in V$ mit $\varphi(v) = w$. Da X ein Erzeugendensystem von V ist, können wir $v = \lambda_1 x_1 + \ldots + \lambda_n x_n$ schreiben mit $x_1, \ldots, x_n \in X$. Dann ist $\underbrace{\varphi(v)}_{=w} = \varphi(\lambda_1 x_1 + \ldots + \lambda_n x_n) = \lambda_1 \varphi(x_1) + \ldots + \lambda_n \varphi(x_n)$ mit $\varphi(x_i) \in \varphi(X)$ für \forall_i . \square

Korollar 4.48

Sei $\varphi:V\to W$ linear. Ist V endlich erzeugt, so ist auch $\varphi(V)$ endlich erzeugt und es gilt

$$\dim(\varphi(V)) \le \dim(V)$$

Beweis

Sei X eine endliche Basis von V. Nach Lemma 4.47 ist $\varphi(X)$ ein Erzeugendensystem von $\varphi(V)$. Laut Basisauswahlsatz gibt es eine Teilmenge $Y \subset \varphi(X)$, die eine Basis von $\varphi(V)$ ist. Also ist $\dim(\varphi(V)) = \#X \ge \#Y = \dim(\varphi(V))$. \square

Definition 4.49

Sei $\varphi:V\to W$ linear. Dann heißt $\dim(\varphi(V))$ der Rang $\operatorname{rg}(\varphi)$ von φ .

Bemerkung 4.50

Ist A eine $(m \times n)$ -Matrix und $\varphi_A : \mathbb{R}^n \to \mathbb{R}^m$ die zugehörige Matrixabbildung, so gilt

$$rg(\varphi_A) = rg(A)$$

Sei $\{e_1,...,e_n\}$ die Standardbasis von \mathbb{R}^n . Dann ist

$$\operatorname{rg}(\varphi_A) = \dim(\varphi_A(\mathbb{R}^n))$$

$$= \dim(L(\varphi_A(\{e_1,...,e_n\})))$$

$$= \dim(L(a_1,...,a_n)) \text{ wobei } a_1,...,a_n \text{ die Spalten von } A \text{ sind}$$

$$= \operatorname{Spaltenrang}(A)$$

Satz 4.51 (Dimensionsformel für lineare Abbildungen)

Sei $\varphi: V \to W$ linear und sei dim $(V) < \infty$. Dann gilt

$$\dim(V) = \dim(\ker(\varphi)) + \operatorname{rg}(\varphi)$$

Beweis

Siehe das Buch von Baer S. 182.

Korollar 4.52

Sei $\varphi:V\to W$ linear und sei $\dim(V)=\dim(W)<\infty.$ Dann sind äquivalent:

- 1. a) φ ist injektiv.
- 2. b) φ ist surjektiv.
- 3. c) φ ist bijektiv.

Beweis

Per Definition gilt $a \wedge b \Leftrightarrow c$. Wir müssen als nur noch $a \Leftrightarrow b$ zeigen.

$$\varphi \text{ ist injektiv } \Leftrightarrow \ker(\varphi) = \{0\}$$

$$\Leftrightarrow \dim(\ker(\varphi)) = 0$$

$$\Leftrightarrow \dim(V) = \operatorname{rg}(\varphi)$$

$$\Leftrightarrow \dim(W) = \operatorname{rg}(\varphi) *$$

$$\Leftrightarrow \dim(W) = \dim(W)$$

$$\Leftrightarrow \varphi(V) = W$$

$$\varphi \text{ ist surjektiv}$$

* gilt, wegen Aufgabenblatt 8 (klausurrelevant):

$$\underset{=\varphi(V)}{U}\subset W\wedge\dim(U)=\dim(W)\Rightarrow U=W$$

Donnerstag, 25.01.18 $^{\rm 1}$

Lemma 4.53

Seien $\varphi, \psi : V \to W$ linear und sei $X \subset V$ ein Erzeugendensystem. Gilt $\varphi(v) = \psi(v)$ für alle $v \in X$, so gilt $\forall_v \in V : \varphi(v) = \psi(v)$.

Beweis

Sei $v \in V$. Dann gilt $v = \lambda_1 x_1 + ... + \lambda_n x_n$ für gewisse $x_1, ..., x_n \in X$. Dann ist

$$\varphi(v) = \varphi(\lambda_1 x_1 + \dots + \lambda_n x_n)$$

$$= \lambda_1 \varphi(x_1) + \dots + \lambda_n \varphi(x_n)$$

$$= \lambda_1 \psi(x_1) + \dots + \lambda_n \psi(x_n)$$

$$= \psi(\lambda_1 x_1 + \dots + \lambda_n x_n)$$

$$= \psi(v)$$

Lemma 4.54

Sei $\varphi: V \to W$ linear und $\{v_1,...,v_n\}$ eine Basis von V. a) Es ist $\{\varphi(v_1),...,\varphi(v_n)\}$ linear unabhängig genau dann wenn φ injektiv ist. b) Es ist $\{\varphi(v_1),...,\varphi(v_n)\}$ ein Erzeugendensystem von W genau dann wenn φ surjektiv ist.

Beweis

a)

1. "\Rightarrow": Sei $\{\varphi(v_1),...,\varphi(v_n)\}$ linear unabhängig. $\{\varphi(v_1),...,\varphi(v_n)\}$ ist aber auch ein Erzeugendensystem von $\varphi(V)$ (Lemma 4.47?). Somit gilt also $\dim(\varphi(V)) = n$. Mit der Dimensionsformel (Satz 4.51?) folgt dann $\dim(V) = \dim(\ker(\varphi)) + \operatorname{rg}(\varphi)$ folgt $n = \dim(\ker(\varphi)) + n$, d.h. $\dim(\ker(\varphi)) = 0$ und somit ist φ injektiv.

¹Die Inhalte dieser Vorlesung basieren auf Kapitel 4.3 aus Baer.

2. "⇐":

Sei φ injektiv. Angenommen $\{\varphi(v_1),...,\varphi(v_n)\}$ ist linear abhängig, d.h. $\underbrace{\lambda_1\varphi(v_1)+...+\lambda_n\varphi(v_n)}_{=\varphi(\lambda_1v_1+...+\lambda_nv_n)}=0$ mit $\lambda_i\neq 0$ für ein $i\in\{1,...,n\}$. Es ist $\underbrace{\lambda_1v_1+...+\lambda_nv_n}_{=\varphi(\lambda_1v_1+...+\lambda_nv_n)}$ Aber φ ist injektiv, also ist $\ker(\varphi)=\{0\}$. Somit gilt also $\lambda_1v_1+...+\lambda_nv_n=0$, d.h. $\{v_1,...,v_n\}$ ist linear abhängig, was ein Widerspruch ist. \square

b) Übungsaufgabe.

Proposition 4.55

Es seien V, W Vektorräume und es sei $\{v_1, ..., v_n\}$ eine Basis von V. Dann gibt es für jede Wahl von $w_1, ..., w_n \in W$ genau eine lineare Abbildung $\varphi : V \to W$ mit $\varphi(v_i) = w_i$ für alle $i \in \{1, ..., n\}$.

Beweis

Sei $v \in V$. Dann ist $v = \lambda_1 v_1 + ... + \lambda_n v_n$. Wir definieren

$$\varphi(v) := \lambda_1 w_1 + \dots + \lambda_n w_n$$

Seien $v, w \in V$. Schreibe $v = \lambda_1 v_1 + ... + \lambda_n v_n$ und $w = \mu_1 v_1 + ... + \mu_n v_n$. Dann gilt

$$\varphi(v+w) = \varphi(\lambda_1 v_1 + \dots + \lambda_n v_n + \mu_1 v_1 + \dots + \mu_n v_n)
= \varphi((\lambda_1 + \mu_1) v_1 + \dots + (\lambda_n + \mu_n) v_n)
= (\lambda_1 + \mu_1) w_1 + \dots + (\lambda_n + \mu_n) w_n
= (\lambda_1 w_1 + \dots + \lambda_n w_n) + (\mu_1 w_1 + \dots + \mu_n w_n)
= \varphi(\lambda_1 v_1 + \dots + \lambda_n v_n) + \varphi(\mu_1 v_1 + \dots + \mu_n v_n)
= \varphi(v) + \varphi(w)$$

Analog zeigt man $\varphi(\lambda v) = \lambda \varphi(v)$. Die Einstiegsaussage ist Lemma 4.53. \square

Bemerkung 4.56

In Kapitel 3 (Geometrie in der Ebene) haben wir eine Proposition schon oft implizit angewandt.

Definition 4.57

Eine bijektive lineare Abbildung heißt Isomorphismus.

Zwei Vektorräume V und W heißen isomorph zueinander, wenn ein Isomorphismus zwischen ihnen existiert.

Wir schreiben dann $V \cong W$.

Korollar 4.58

Zwei endlich-dimensionale Vektorräume V und W sind genau dann isomorph zueinander, wenn $\dim(V) = \dim(W)$ gilt.

Beweis

"⇒":

Seien V und W isomorph zueinander. Sei $\{v_1,...,v_n\}$ eine Basis von V und sei $\{\varphi(v_1),...,\varphi(v_n)\}$ ihr Bild unter einem Isomorphismus $\varphi:V\to W$. Mit Lemma 4.54 ist $\{\varphi(v_1),...,\varphi(v_n)\}$ eine Basis von W und somit gilt $\dim(V)=n=\dim(W)$. " \Leftarrow ":

Sei $\dim(V) = \dim(W)$. Sei $\{v_1, ..., v_n\}$ eine Basis von V und $\{w_1, ..., w_n\}$ eine Basis von W. Mit Proposition 4.55 existiert eine lineare Abbildung $\varphi : V \to W$ mit $\varphi(v_i) = w_i$ für alle $i \in \{1, ..., n\}$. Mit Lemma 4.54 ist φ injektiv und surjektiv, d.h. φ ist ein Isomorphismus. \square

Korollar 4.59

Sei V ein endlich-dimensionaler Vektorraum und sei $n=\dim(V)$. Dann ist $V\cong\mathbb{R}^n.$

Durch die Wahl einer (geordneten) Basis $\{v_1,...,v_n\}=A$ von V ist ein Isomorphismus $\Psi_A:\mathbb{R}^n\to V$ gegeben durch

$$\Psi_A(e_i) = v_i$$
 für alle $i \in \{1, ..., n\}$

Hinweis: wir müssen die Basis ordnen, damit wir wissen, welcher Vektor zu welchem Vektor gehört.

Definition 4.60

Sei V n-dimensional mit Basis A und W sei m-dimensional mit Basis B und $\varphi:V\to W$ linear. Die darstellende Matrix $M_B^A(\varphi)\in \mathrm{Mat}(m\times n)$ ist diejenige, sodass folgendes Diagramm kommutiert $(\varphi\circ \Psi_A=\Psi_B\circ M_B^A(\varphi))$:

Hinweis: $M_B^A(\varphi)$ existiert und ist eindeutig, weil Ψ_A und Ψ_B Isomorphismen sind. $M_B^A(\varphi)$ korrespondiert zu $\Psi_B^{-1} \circ \varphi \circ \Psi_A$.

Bemerkung 4.61

Sei $A=\{a_1,...,a_n\}$ eine Basis von V und $B=\{b_1,...,b_m\}$ eine Basis von W. Für $j\in\{1,...,n\}$ schreibe $\varphi(a_j)=c_{1j}b_1+...+c_{mj}b_m$. Dann ist

$$M_B^A(\varphi) = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{pmatrix}$$

 $\varphi(a_1)$ ist die erste Spalte, $\varphi(a_2)$ ist die zweite Spalte und so weiter.

Beispiel 4.62

$$\text{Sei } V := \operatorname{Mat}(2 \times 2), A := \left\{ \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{a_1}, \underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}_{a_2}, \underbrace{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}_{a_3}, \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{a_4} \right\}.$$
 Es sei $W := \mathbb{R}^4$ mit gewählter Basis $B := \left\{ \underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{b_1}, \underbrace{\begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{b_2} \right\}.$

Sei $\varphi:V\to W$ definiert durch

$$\varphi \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a+b \\ 3d \end{pmatrix}$$

Dann ist

$$M_B^A(\varphi) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 3 \end{pmatrix}$$

Spalte 1:
$$\varphi(a_1) = \varphi\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \cdot b_1 - 1 \cdot b_2$$

Spalte 1:
$$\varphi(a_1) = \varphi\begin{pmatrix} 1\\0 \end{pmatrix} = 1 \cdot b_1 - 1 \cdot b_2$$

Spalte 2: $\varphi(a_2) = \varphi\begin{pmatrix} 1\\0 \end{pmatrix} = 1 \cdot b_1 - 1 \cdot b_2$

Spalte 4:
$$\varphi(a_4) = \varphi(0) = 0 \cdot b_1 + 3 \cdot b_2$$

References

[1] Baer, Christian, Lineare Algebra und analytische Geometrie, Springer 2018.