

带传感器开关和单端输入电池检测的电子秤专用 A/D 转换器芯片

简介

HX712 采用了海芯科技集成电路专利技术,是一款专为高精度、省电型电子秤而设计的 24 位 A/D 转换器芯片。与其它同类型芯片相比,该芯片集成了包括传感器电源开关、片内时钟振荡器、电池电压检测单端输入等其它同类型芯片所需要的外围电路,具有集成度高、响应速度快、抗干扰性强等优点。降低了电子秤的整机成本,提高了整机的性能和可靠性。

该芯片与后端 MCU 芯片的接口和编程非常简单,所有控制信号由管脚驱动,无需对芯片内部的寄存器编程。输入低噪声放大器增益为128,当参考电压(REFP-REFN)为 5V 时,对应的满量程差分输入信号幅值为±20mV。单端输入信号 BAT 可直接连接电池,用于电池电量或其他系统参数检测。芯片内置的传感器电源MOS 开关可用于在芯片断电时关断传感器电源。芯片内的时钟振荡器不需要任何外接器件。上电自动复位功能简化了开机的初始化过程。

特点

- 可选差分信号输入或单端输入电池电量检测
- 片内低噪声放大器,增益为128
- 芯片内置的传感器电源 MOS 开关可用于在芯片断电时关断传感器电源,节省传感器功耗
- 芯片内时钟振荡器无需任何外接器件,必要时也可使用外接晶振或时钟
- 上电自动复位电路
- 简单的数字控制和串口通讯: 所有控制由管 脚输入, 芯片内寄存器无需编程
- 可选择 10Hz 或 40Hz 的输出数据速率
- 同步抑制 50Hz 和 60Hz 的电源干扰
- 耗电量:

典型工作电流: 1.0mA, 断电电流: < 1μA

- 工作电压范围: 2.6~5.5V
- 工作温度范围: -40 ~ +85℃
- 14 管脚的 SOP-14 封装

TEL: (592) 252-9530 (P. R. China)

EMAIL: market@aviaic.com

www.aviaic.com

管脚说明

SOP-14L 封装

管脚号	名称	性能	描述
1	AVDD	电源输入	模拟供电电源: 2.6 ~ 5.5V (必须 <= BAT)
2	VOUT	电源输出	模拟供电电源输出至传感器
3	REFP	模拟输入	A/D 转换参考正输入端: 1.8 ~ 5.5V
4	AGND	地输入	模拟地
5	REFN	模拟输入	A/D 转换参考负输入端: 0 ~ 1.8V
6	INN	模拟输入	信号负输入端
7	INP	模拟输入	信号正输入端
8	DGND	地输入	数字地
9	PD_SCK	数字输入	断电控制(高电平有效)和串口时钟输入
10	DOUT	数字输出	串口数据输出
11	XO	数字输入/输出	晶振输入(不用晶振时为无连接)
12	XI	数字输入	外部时钟或晶振输入,0:使用片内振荡器
13	DVDD	电源输入	数字供电电源: 2.6 ~ 5.5V (必须 <= BAT)
14	BAT	模拟输入	电池电压检测输入: 2.6 ~ 5.5V; 电压必须高于或等于 DVDD 和 AVDD; 不用时应接 DVDD 或 AVDD 中电压较高的一端,不可悬空。

表一 管脚描述

主要电气参数

参数	条件及说明	最小值	典型值	最大值	单位	
满量程差分输入范围	V(inp)-V(inn)		±0.5(REFP- REFN)/128		V	
有效位数(Effective-	增益 = 128, 速率=10Hz	19.7			Bits	
Number-of-Bits) (1)	增益 = 128,速率=40Hz	18.9			Dits	
无噪声位数(Noise-	增益 = 128, 速率=10Hz	17.3			Bits	
Free Bits) (2)	增益 = 128,速率=40Hz	16.2				
积分非线性(INL)	满量程的百分比		± 0.001		%of FSR	
输入共模电压范围		AGND+0.8		AVDD-1.3	V	
	片内振荡器		10或40			
输出数据速率	外部时钟或晶振	$ m f_{clk}/1,105,920$ 或 $ m f_{clk}/138,240$			Hz	
输出数据编码	二进制补码	800000		7FFFFF	HEX	
传感器开关导通电阻	AVDD=3.3V		3	5	Ω	
输出稳定时间 ⁽³⁾	速率 = 10Hz	400 100		ms		
	速率 = 40Hz					
输入零点漂移	增益 = 128		0.01		mV	
输入噪声	速率 = 10Hz,增益 = 128	40		nV		
	速率 = 40Hz,增益 = 128		80		(rms)	
温度系数	输入零点随温度漂移		±15		nV/℃	
(增益 = 128)	增益随温度漂移		<u>+</u> 7		ppm/℃	
输入共模信号抑制比	增益 = 128, 速率 = 10Hz		100		dB	
电源干扰抑制比	增益 = 128, 速率 = 10Hz		100		dB	
外部时钟、晶振频率		1	11.0592	20	MHz	
电源电压	DVDD	2.6		5.5	V	
	AVDD	2.6		5.5	,	
模拟电源电流	正常工作(AVDD=3.3V)	900			μA	
	断电	0.5			F	
数字电源电流	正常工作 (DVDD=3.3V)	100			μΑ	
	断电		0.1		•	

- (1) 有效位数 ENBs(Effective Number of Bits) = ln(*FSR/RMS Noise*)/ln(2)。*FSR* 为满量程输入或输出,*RMS Noise* 为对应的输入或输出噪声有效值。
- (2) 无噪声位数 (Noise-Free Bits) = ln(*FSR/Peak-to-Peak Noise*)/ln(2)。*FSR* 为满量程输入或输出,*Peak-to-Peak Noise* 为对应的输入或输出噪声峰-峰值,参阅图二~图五。
- (3) 输出稳定时间指从上电、复位、输入通道或增益改变到有效的稳定输出数据时间。

表二 主要电气参数表

典型特性

测试条件: 温度=25℃; AVDD=DVDD=REFP=5V, REFN=AGND; 使用片内振荡器。

图二 输出噪声(增益=128,速率=10Hz) 图三 输出噪声(增益=128,速率=40Hz)

图四 零点漂移(增益=128,速率=10Hz) 图五 增益漂移(增益=128,速率=10Hz)

模拟输入和电池检测

芯片的模拟差分信号输入端可直接与桥式 传感器的差分输出相接。芯片内的低噪声放大 器增益为 128。当参考电压(REFP-REFN)为 5V 时,所对应的差分满量程输入电压为± 20mV。

单端输入信号 BAT 可直接连接电池 (2.6 ~ 5.5V)。BAT 信号经芯片内置的 56kΩ 和 3.2kΩ 电阻分压后供 A/D 转换。电池测量时 A/D 转换的参考电压为 AVDD。当 AVDD=5V 时,如取 A/D 读数的前 13 位 (13 位 MSB)来判断电池电压,那么,每 0.1V 的 BAT 电压变化对应大约13 个数的 A/D 输出值的变化。当芯片不检测BAT 电压时,分压电阻回路的电流会被芯片内的 MOS 开关关断。

供电电源

数字电源(DVDD)与模拟电源(AVDD)可以直接相连或者完全独立。BAT 管脚电压必须高于或者等于 DVDD 和 AVDD。VDD 供电电压应与MCU 芯片的数字供电电压值一样或相当,以确保 ADC 与 MCU 之间的数字通信正确。芯片内的MOS 管传感器供电电源开关用于在芯片断电时,即当 PD_SCK 处于高电平状态时,关断传感器电源。

另外,图一所示的两个电阻 R_3 和 R_4 为可选,用于减少传感器的工作电流。同时,通过适当的调整 R_3 和 R_4 的值来调整传感器输出的共模电压,以满足 HX712 模拟信号输入的共模电压范围的要求(参见表二)。

时钟选择

如果将管脚 XI 接地,HX712 将自动选择使用内部时钟振荡器,并自动关闭外部时钟输入和晶振的相关电路。这种情况下,典型输出数据速率为 10Hz 或 40Hz。

如果需要准确的输出数据速率,可将外部输入时钟通过一个 20pF 的隔直电容连接到 XI

管脚上,或将晶振连接到 XI 和 XO 管脚上。这种情况下,芯片内的时钟振荡器电路会自动关闭,晶振时钟或外部输入时钟电路被采用。此时,若晶振频率为 11.0592MHz,输出数据速率为准确的 10Hz 或 40Hz。输出数据速率与晶振频率以上述关系按比例增加或减少。

使用外部输入时钟时,外部时钟信号不一定需要为方波。可将 MCU 芯片的晶振输出管脚上的时钟信号通过 20pF 的隔直电容连接到 XI 管脚上,作为外部时钟输入。外部时钟输入信号的幅值可低至 150mV。

串口通讯

串口通讯线由管脚 PD_SCK 和 DOUT 组成,用来输出数据,选择输入通道和增益。

当数据输出管脚 DOUT 为高电平时,表明 A/D 转换器还未准备好输出数据,此时串口时钟输入信号 PD_SCK 应为低电平。当 DOUT 从高电平变低电平后,PD_SCK 应输入 25 至 27 个不等的时钟脉冲(图六)。其中第一个时钟脉冲的上升沿将读出输出 24 位数据的最高位(MSB),直至第 24 个时钟脉冲完成,24 位输出数据从最高位至最低位逐位输出完成。第 25 至 27 个时钟脉冲用来选择下一次 A/D 转换的输入通道和增益,参见表三。

PD_SCK 脉冲数	输入通道	增益	速率
25	差分信号	128	10Hz
26	BAT		40Hz
27	差分信号	128	40Hz

表三 输入通道和输出速率选择

PD_SCK 的输入时钟脉冲数不应少于 25 或多于 27, 否则会造成串口通讯错误。

与 DOUT 相连的 MCU 接口应设置为输入口,并且不接任何拉高或拉低电阻,以减少MCU与HX712之间的电流交换(干扰)。

图六 数据输出,速率和输入通道选择时序图

符号	说明	最小值	典型值	最大值	单位
T_1	DOUT 下降沿到 PD_SCK 脉冲上升沿	0. 1			μs
T_2	PD_SCK 脉冲上升沿到 DOUT 数据有效			0. 1	μs
T_3	PD_SCK 正脉冲电平时间	0.2		50	μs
T_4	PD_SCK 负脉冲电平时间	0. 2			μs

复位和断电

当芯片上电时,芯片内的上电自动复位电 路会使芯片自动复位。

管脚 PD_SCK 输入用来控制 HX712 的断电。 当 PD_SCK 为低电平时,芯片处于正常工作状态。

如果 PD_SCK 从低电平变高电平并保持在高电平超过 60μs, HX712 即进入断电状态 (图七)。如使用芯片内的传感器电源开关,断电时,外部传感器和芯片内 A/D 转换器都会被同时断电。当 PD_SCK 重新回到低电平时,芯片

会重新进入正常工作状态。芯片从断电状态回正常工作状态后,会自动保持断电前的转换速率、增益和输入信号选择。注意,在改变PD_SCK 时钟脉冲数的当前数据周期内不应断电,如需断电,应等到下一个数据周期或者之后断电。

芯片从复位或断电状态进入正常工作状态 后,A/D 转换器需要 4 个数据输出周期才能稳 定。DOUT 在 4 个数据输出周期后才会从高电平 变低电平,输出有效数据。

应用实例

图八为 HX712 芯片应用于计价秤的一个参考电路图。该方案使用内部时钟振荡器(XI=0)。电源(2.6~5.5V)直接取用与 MCU芯片相同的供电电源。

图九 与 HX712 相关的参考 PCB 布图

参考驱动程序(汇编)

```
在ASM中调用:
               LCALL
                      ReadAD
可以在C中调用:
               extern unsigned long ReadAD(void);
               unsigned long data;
               data=ReadAD();
PUBLIC
           ReadAD
HX712ROM
           segment code
           HX712ROM
sbit
          ADDO = P1.5;
sbit
            ADSK = P0.0;
OUT: R4, R5, R6, R7 R7=>LSB
 如果在C中调用,不能修改R4,R5,R6,R7。
ReadAD:
   CLR
                        //使能AD (PD SCK置低)
       ADSK
   JΒ
         ADDO, $
                        //判断AD转换是否结束,若未结束则等待否则开始读取
   MOV
         R4, #24
ShiftOut:
   SETB
        ADSK
                        //发送脉冲 (PD_SCK置高)
   NOP
        ADSK
                        //PD_SCK置低
   CLR
   MOV
       C, ADDO
                        //读取数据(每次一位)
   XCH
       A, R7
                        //移入数据
   RLC
        Α
   XCH
         A, R7
   XCH
       A, R6
   RLC
   XCH
        A, R6
   XCH
         A, R5
   RLC
         A
   XCH
         A, R5
                        //判断是否移入24BIT
   DJNZ
         R4, ShiftOut
   SETB
                         //发送第25个脉冲
        ADSK
   NOP
   CLR
         ADSK
   RET
   END
```


参考驱动程序(C)

```
ADDO = P1^5;
sbit
sbit ADSK = P0^0;
unsigned long ReadCount(void) {
  unsigned long Count;
  unsigned char i;
  ADSK=0;
  Count=0;
  while (ADDO);
  for (i=0; i<24; i++) {
    ADSK=1;
    Count=Count<<1;</pre>
    ADSK=0;
    if(ADDO) Count++;
  ADSK=1;
  Count=Count 0x800000;
  ADSK=0;
  return(Count);
```


封装尺寸

SOP-14L 封装

注意事项

- 1. 数字输入 XI 和 PD_SCK 管脚,芯片内无内置 拉高或拉低电阻。这些管脚在使用时不应 悬空。
- 2. PD_SCK 的输入时钟脉冲数不应少于 25 或 多于 27, 否则会造成串口通讯错误。
- 3. 与 DOUT 相连的 MCU 接口应设置为输入口, 并且不接任何拉高或拉低电阻,以减少 MCU 与 ADC 之间的电流交换(干扰)。
- 4. 在改变 PD_SCK 时钟脉冲数的当前数据周期 内不应断电,断电应等到下一个数据周期 或者之后。这样,芯片从断电状态回到正 常工作状态后,会保持断电前的转换速 率、增益和输入信号选择。
- 5. BAT 管脚电压必须高于或者等于 DVDD 和 AVDD 管脚电压。BAT 管脚不用时应连接到 DVDD 或 AVDD 中电压较高的一端 , 不能悬空。