Fundamentos de MATLAB & Simulink

8 de marzo de 2023

Marcos Pesante

Código y Presentación (GitHub)

https://github.com/M4rqu1705/Fundamentos-de-MATLAB-Simulink

¿Qué es MATLAB?

- MATrix LABoratory
- ► Calculadora de matrices → Ambiente de:
 - Computación Numérica
 - Programación
 - Análisis de datos
 - Desarrollo de algoritmos
 - Creación de aplicaciones
 - Modelaje y Simulación
 - Más ...
- Aplicado a ciencia, economía e ingeniería
- Paquetes de herramientas al que llaman "toolboxes"

Elementos de la Interfaz Gráfica

Tipos de Datos

- Numéricos
 - ► Enteros, reales y <u>números complejos</u>
 - ▶ De tipo "double" por default.
- "Logical" (booleanos)
 - ▶ Valores ciertos (1) o falsos (0)
- Caracteres y Strings
 - Secuencias de caracteres
 - Utilizados para representar texto
- Matrices y Vectores

magic(3)

$$ans = 6$$

Matrices y Vectores

- Creación de Matrices y Vectores
 - Manualmente
 - Funciones
 Especializadas
 (`zeros`, `ones`,
 eye`, `rand`, ...)
 - Operador <u>`:`</u>
- Índices
 - Posición (fila, columna)
 - Índice individual
 - Valores lógicos
 - LOS ÍNDICES COMIENZAN EN 1

Operaciones Aritméticas

- Operaciones en <u>orden de precedencia</u>
 - 1. Paréntesis ()
 - 2. <u>Transpuesta</u> (.') y <u>Exponentes</u> (^)
 - ▶ Para elevar una matriz Aⁿ , A debe ser una matriz cuadrada y n un escalar.
 - 3. <u>Multiplicación</u> (*) y <u>División</u> (/)
 - ▶ Para multiplicar A×B, A debe tener tantas columnas como B tiene filas
 - 4. <u>Suma</u> (+) y <u>Resta</u> (-)
 - ► Matrices deben tener mismas dimensiones (<u>size</u>)
- Para <u>exponentes</u>, <u>multiplicaciones</u> y <u>divisiones</u>, añadir un punto antes de cada operador permite llevar a cabo estas operaciones "element-wise" (a cada elemento individual de la matriz)

Seno	<u>sin</u>	<u>sin</u> <u>sind</u>		<u>asin</u>	<u>asind</u>	
Coseno	<u>cos</u>	<u>cosd</u>		acos	<u>acosd</u>	
Tangente	<u>tan</u>	<u>tand</u>	<u>atan</u>	<u>atand</u>	atan2	atan2d
Conversión Radianes/Grados	deg2rad				rad2deg	
Exponencial y Logaritmos	<u>exp</u>		log		<u>log10</u>	
Números Complejos	<u>abs</u>	<u>angle</u>	<u>conj</u>	<u>real</u>	<u>imag</u>	
Misceláneo	<u>sign</u>	<u>sqrt</u>	<u>nthroot</u>		<u>integral</u>	<u>diff</u>

Otros Operadores Útiles

¡Auxilio!

- ▶ Para repasar o investigar comandos, existen 2 alternativas principales:
 - <u>help</u> Provee información resumida del comando y enlaces adicionales desde el Command Window
 - `doc` Abre el navegador de ayuda, que además de proveer la misma información que `help` provee más detalles y ejemplos.
- Posibles alternativas para aprender sobre comandos son:
 - Search Engine Utiliza funciones de búsqueda dentro del "help browser"
 - Foros de Mathworks Answers La comunidad responde preguntas.
 - ► Google No solo busca en los foros de MathWorks, pero además puede encontrar libros y páginas web de profesores que pueden clarificar dudas.

Higiene del Workspace

- <u>`clc`</u> Remueve todo el texto del Command Window.
- <u>`home</u>` Mueve el cursor del Command Window hacia arriba.
- `clear`
 - Borra variables del ambiente de trabajo
 - > `clear all` borra TODAS las variables y funciones del ambiente de trabajo.
- `close`
 - Cierra figuras que estén abiertas
 - `close all` cierra TODAS las figuras del ambiente de trabajo.
- Los <u>comentarios (`%`)</u> permiten describir código sin afectarlo.
- Los <u>puntos y comas (;)</u> suprimen la salida de un comando.

Scripts

- Archivos donde se organizan secuencias de comandos de MATLAB.
- Corren todos los comandos o solo secciones en orden que aparecen.
- Scripts / M-Files
 - Archivo de texto más sencillo (y popular).
 - Ayuda a automatizar tareas o reducir la repetición en el Command Window.
- Live Scripts
 - Archivos multimedia con el mismo propósito que los m-files.
 - Permite incluir texto, ecuaciones, enlaces, imágenes y elementos interactivos.
 - Más fácil de usar y presenta los resultados de forma más visual y limpia.
- Forma más común de elaborar programas avanzados y compartirlos.

<u>Variables</u>

- Se utilizan para almacenar entradas, valores intermedios y salidas.
- Sus nombres comienzan con letras, seguidas por más letras, digitos o underscores (_). Además, son sensitivos a letras mayúsculas.
- Se pueden editar de múltiples formas:
 - Reasignar un valor nuevo a la variable existente.
 - ▶ Doble-click el valor en el Workspace Browser y cambiar.
 - ▶ Doble-click el nombre en el Workspace Browsser y editar en Variable Editor.
- ► ¡LAS VARIABLES SE BORRAN AL CERRAR MATLAB!
 - Se puede mitigar esto creando scripts o guardándolas en un MAT-File.

Gráficas - Funciones

- Se pueden hacer gráficas de funciones en 2 y 3 dimensiones.
- Pasos generales para graficar funciones en MATLAB son:
 - 1. Preparar un dominio de valores (variables independientes)
 - 2. Preparar el resultado (variable dependiente) en función del dominio.
 - 3. Graficar utilizando el comando apropiado.
 - 4. Añadir <u>título</u> y <u>leyenda</u> y <u>etiquetar ejes</u>
- `figure` Crea y configura múltiples ventanas separadas.
- ▶ `<u>subplot</u>` Hace más de una gráfica dentro de una ventana.
- `hold` Grafica mútiples funciones compartiendo los mismos ejes.
- ▶ `grid` Añade un cuadriculado de referencia para los ejes.

Gráficas -Otros Comandos Útiles

2 Dimensiones

▶ `plot`

- 3 Dimensiones
 - ▶ `plot3`
 - `surf`
 - `contour`
 - ▶ `<u>heatmap</u>`
 - histogram2
 - `scatter3`
 - `<u>bar3</u>`
 - `quiver3`
 - `streamline`

- Atributos de figuras
 - ▶ `xlim`
 - ▶ `ylim`
 - ▶ `<u>zlim</u>`
 - `axis`
 - `box`
 - `xtickangle`

- ▶ `<u>area</u>` ▶ `loglog` `<u>semilogx</u>`, `semilogy` histogram
 - `scatter`

 - polarplot
 - ▶ `pie`

Estructuras de Control: <u>If</u>

- Añade "inteligencia" al programa al condicionalmente correr comandos.
- Las condiciones deben poder ser evaluadas como valores lógicos.
 - Operadores Relacionales
 - Operadores Lógicos
- Las indentaciones ayudan a identificar qué está dentro del `if` y qué no. No son obligatorias.

```
if a == 1
    % a es exactamente 1
elseif a > 1
    % a no es 1 y es
    % mayor que 1
else
    % a no cumple con las
    % condiciones anteriores
end
```

Estructuras de Control: For Loops

- Los "loops" en general reducen la repetición de código.
- Hacen posible crear algoritmos más avanzados.
- `for` loops se especializan en:
 - Repetir un proceso una cantidad determinada de veces.
 - Visitar los elementos de una matriz.
 - Rastrear un índice de iteración para cualquiera de los anteriores.

```
a = [];
for i = 1:10
     a = [a, i^2];
end
а
 a = 1 \times 10
                           16 ...
for i = 1:2:length(a)
     a(i) = 0;
end
а
 a = 1 \times 10
                           16 ...
```

Estructuras de Control: While Loops

- Los `while` loops corren solo si una condición lógica en cierta.
- A diferencia del `if`, repetirá el código hasta que su condición sea falsa.
- "while loops" se especializan en casos donde la cantidad de iteraciones no es conocida.
 - De no garantizar que su condición sea falsa eventualmente, el "loop" podría correr eternamente.

```
num = 65;
cuenta = 0;
while num > 1
    num = num / 10;
    cuenta = cuenta + 1;
end
cuenta
```

cuenta = 2

BREAK (10 mins)

Proyecto MATLAB

- Descargar los datos del repositorio de GitHub. Extraerlos a algún folder accesible.
- 2. Cambiar el "Path to Current Folder" al folder con los datos.
- Cargar los datos de la <u>estación meteorológica</u> en `weather_data.mat` usando el comando de `load`.
 - ▶ De otra forma, se puede doble-click el documento en el "Current Folder"
- 4. Graficar los datos.
- 5. Utilizar los conceptos aprendidos de "loops" y condicionales para remover datos defectuosos.

Proyecto MATLAB: Retos Adicionales

- 1. Utilizar <u>índices</u> y <u>operaciones con matrices</u> para hacer lo mismo en menos líneas de código.
- 2. Repetir el mismo procedimiento del proyecto, pero con datos de consumo.
 - Existen datos donde la potencia aparente no concuerda con los cómputos de la potencia real y la reactiva.
 - Existen datos donde la potencia real es negativa. ¿Por qué?

<u>Simulink</u>

¿Qué es Simulink?

- Ambiente de diagramas de bloques.
- Utilizado para
 - ► Modelaje, simulación y análisis de sistemas
 - Diseño a base de modelos
 - Desarrollo y pruebas continuas
 - ► Implementación de programas en sistemas ebedidos
 - ► Integración con MATLAB
- Complementa a MATLAB de una forma más visual.
- ► Hace funcionalidades de MATLAB más accesibles para principiantes,

Diagramas de Bloques

- Cada línea representa una señal
- Cada bloque representa un sistema o un componente del mismo.
- Los sistemas y operaciones transforman las señales

Scope

- Grafica señales que recibe mediante su puerto de entrada.
- Capaz de modificar el tipo de gráfica, ejes, y esquema de colores.
- Muy parecido a las figuras en sus funcionalidades.

<u>Fuentes</u>

- Proveen entradas para la simulación
- ► Existe una variedad de señales dentro de Simulink → Sources
- Son suficientemente flexibles para configurar sus propiedades o hasta crear nuevas señales.

Operaciones Matemáticas

- Incluyen las operaciones matemáticas discutidas para MATLAB
 - Gain: Multiplica una señal
 - Sum: Suma múltiples señales
 - Product: Multiplica señales escalares o matrices
 - Absolute Value: Calcula el valor absoluto de su señal de entrada.

Función de Transferencia

- Transformada de Laplace de la salida a la entrada del sistema (presumiendo condiciones iniciales iguales a 0)
- Útil para abstraer detalles del comportamiento de circuitos y sistemas LTI a base de sus entradas y sus salidas.

Proyecto

- ► Utilizar <u>SimScape</u> y el <u>Specialized Power Systems Toolbox</u> para simular un sistema fotovoltaico y una carga eléctrica resistiva.
- Corroborar el comportamiento dictado por la Ley de Ohm.

Toolboxes y Referencias Adicionales

- Symbolic Toolbox
- Control Systems Toolbox
- SimScape
- Specialized Power Systems Toolbox
- MATLAB Coder Toolbox
- Deep Learning Toolbox