- 1. Multiple choice.
 - (a) [3 pts] If $\operatorname{div} \mathbf{F}(x, y, z) = 0$ for all (x, y, z) then $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any closed curve C.
 - (i) True.
 - (ii) False.
 - (iii) Indeterminable.

- (b) [3 pts] Which of the following apply to the vector field $\mathbf{F} = (x^2 y^2)\mathbf{i} 2xy\mathbf{j} + z^2\mathbf{k}$?
 - (i) Its divergence vanishes.
 - (ii) It is conservative and its curl vanishes.
 - (iii) It is conservative, but its curl does not vanish.
 - (iv) Its curl vanishes, but it is not conservative.

- (c) [3 pts] There is a vector field \mathbf{F} on \mathbb{R}^3 such that $\operatorname{curl} \mathbf{F} = \langle x \sin(y), \cos(y), 6z xy \rangle$.
 - (i) True.
 - (ii) False.
 - (iii) Indeterminable.

- (d) [3 pts] If $\mathbf{F}(x,y,z) = \langle \sin(z), \cos(z), 0 \rangle$, then $\operatorname{curl}(\operatorname{curl}(\operatorname{curl}\mathbf{F})) = \mathbf{F}$.
 - (a) True.
 - (b) False.
 - (c) Indeterminable.

2. [5 pts] Let

$$\mathbf{F}(x, y, z) = \langle 3x^{2}yz - 3y, x^{3}z - 3x, x^{3}y + 2z \rangle.$$

Evaluate the work done by the vector field \mathbf{F} in moving a particle along the following curve from the point (0,0,2) to the point (0,3,0).

3. [5 pts] Consider the vector field $\mathbf{F}(x,y) = \langle -y^3 + \sin(\cos x), x^3 + y^{2^{y^2+2022}} \rangle$. Calculate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where C is the unit circle centered at the origin oriented counter-clockwise.

4. The plot of a vector field $\mathbf{F}(x,y)$ is drawn below.

- (a) [2 pts] Mark a point A on the plot at which $\operatorname{curl} \mathbf{F} > 0$.
- (b) [2 pts] Mark a point B on the plot at which $\operatorname{div} \mathbf{F} < 0$.
- (c) [2 pts] Sketch a closed curve C such that the work done by \mathbf{F} along C is positive.
- (d) [3 pts] Mark two points on the plot S and T and two curves C_1 and C_2 from S to T such that the work done by \mathbf{F} in moving an object along those paths is positive for C_1 and negative for C_2 .
- (e) [2 pts] Can the vector field **F** be a gradient field? In the space below explain why or why not.