Modele de date

1

Sumar Cursuri

BD -concepte de bază

Modelul relațional:

- BD relaționale
- Forme normale
- Algebră relațională
- SQL

Metode de proiectare:

- Entity-Relationship Model
- Object Oriented Model
- Object Relational Model

Structura fizică a BD

Indexarea BD

- Arbori B
- Hash Files

Papers & Presentations

BAZE DE DATE

Ciclu de studii: Licență

Specializare: Informatică / Matematică- Informatică

Hobbies

More

Semestrul: 3 Ore: 2+1+2 / 2+1+1

Cod conectare curs - Microsoft Teams: 1s9g8le

Courses

Seminarii Informatică / Matematică-Informatică: Camelia ANDOR (email, pagină web)

Laboratoare Informatică:

Camelia ANDOR (email, pagină web) Emilia POP (email, pagină web) Ioan SIMA (email, pagină web) Bogdan IOAN (email)

Ce este o Bază de date?

large collection of related data items

stored for record-keeping and analysis

that exists over a long period of time

Modelează aspecte ale lumii reale prin intermediul unui *model de date*

Modelul ierarhic

- Concepte:
 - structură arborescentă,
 - tip entitate,
 - relații 1-n,...

Modelul rețea

- Concepte:
 - structură de graf,
 - tip articol,
 - tip relație,...

Modelul relațional

- Concepte:
 - tabel, câmp
 - cheie primară, cheie străină
 - constrângeri de integritate,...

vertex

id	x	у	Z
1	30	30	30
2	30	30	0
3	30	0	0
4	0	0	0
5	0	0	30
6	0	30	30

Modelul orientat obiect

Schemă vs. Date

Instanță

Ce este un SGBD?

- Colecție integrată de instrumente pentru
 - ... crearea unei baze de date și specificare structurii acesteia;
 - ... interogarea și modificarea eficientă a datelor;
 - ... securizarea datelor;
 - ... controlul accesului la date de către mai mulți utilizatori la un moment dat;

SGBD-uri generale

SGBD NoSQL

SGBD Multimedia

Geographical Information Systems

(GIS)

SGBD

Real-Time

Data Warehouse

SGBD-uri active

Data Stream Management System

DBMSs are getting

smaller

and

smaller

Databases

are

getting

bigger

and

bigger

Când utilizăm baze de date?

2. Cantitate mare de date

5. Acces Concurent/Distribuit

Când
NU
utilizăm
baze de date?

1. Investiția inițială e prea mare

s","daemonu[®], 'Process",ْ"dwm","108","84504576","10313728","5709824","10024","C:\windows\system32\Dwm.exe 'Process","iexplore","774","304881664","79278080","77529088","82152","C:\Program Files (x86)\Intern e","639","157421568","22876160","12095488","38648","C:\Program Files (x86)\Intern 'igfxpers","203","83292160","10944512","5844992","10808","C:\Windows\System32\igfxpers.ex

Fişiere text vs. Bază de date

- a. Fişiere text: sistem de stocare unidimensională
- b. Bază de date: stocare multidimensională

Modele de date

- Modelul ierarhic (1965)
- Modelul rețea (1965)
- Modelul relațional (1NF) (1970s)
- Model relațional imbricat (1970s)
- Obiecte complexe (1980s)
- Model obiectual (1980)
- Model relațional-obiectual (1990s)
- XML (DTD), XML Schema (1990s)

Model relațional - idei

- Utilizează o structură de date simplă: Tabela
 - simplu de înțeles
 - utilă în modelarea multor situații/entități din lumea reală
 - conduc la interogări de o complexitate redusă
- Utilizeză matematica în descrierea/reprezentarea
 înregistrărilor și a colecțiilor de înregistrări: Relația
 - pot fi modelate formal
 - permit utilizarea de limbaje de interogare formale
 - au proprietăți ce pot fi modelate și demostrate matematic

Relația - definiție formală

- O relație sau structura unei relații R este o listă de nume de atribute $[A_1, A_2, ..., A_n]$.
- **Domeniu** = mulțime de valori scalare (tipuri atomice intreg, text, dată, etc)
- $D_i = Dom(A_i)$ domeniul lui A_i , i=1..n
- Instanța unei relații ([R]) e o submulțime a $D_1 \times D_2 \times ... \times D_n$

Relația - definiție formală

- Grad (aritate) = numărul tuturor atributelor din structura unei relații
- **Tuplu** = un element al instanței unei relații, o înregistrare. Toate tuplurile unei relații sunt distincte!
- Cardinalitate = numărul tupluri unei relații

Exemplu de relație

Students(sid:integer; name:string;email:string; age:integer; gr:integer)

field name field type (domain)

sid	name	email	age	gr	relation schema
2833	Jones	jones@scs.ubbcluj.ro	19	231	
2877	Smith	smith@scs.ubbcluj.ro	20	232	relation
2976	Jones	jones@math.ubbcluj.ro	21	233	instance
2765	Mary	mary@math.ubbcluj.ro	22	233	

relation tuple

cardinalitate = 4, grad = 5, toate tuplurile distincte!

Baze de date relaționale

O bază de date este o mulțime de relații

 Structura unei baze de date este mulțimea structurilor relațiilor acesteia

■ Instanța (starea) unei baze de date este mulțimea instanțelor relațiilor acesteia

Repezentarea grafică a relațiilor

Students(sid:string, name:string, email:string, age:integer, gr:integer)

Courses(cid: string, cname: string, credits:integer)

Enrolled(sid:string, cid:string, grade:double)

Teachers(tid:integer; name: string; sal: integer)

Teaches(tid:integer; cid:string)

Teaches				
	tid			
	cid			

Constrângeri de integritate (CI)

- CI: sunt condiții ce trebuie să fie îndeplinite de către *orice* instanță a unei baze de date
 - specificate la momentul definirii structurii relației
 - verificate la modificarea conţinutului relaţiei
- O instanță a unei relații că este legală dacă satisface toate CI specificate
 - SGBD nu va permite instanțe ilegale

Constrângeri de integritate - exemple

- Students(sid:string, name:string, email:string, age:integer, gr:integer)
 - Constrângere de domeniu: *gr:integer*
 - Constrângere de interval: $18 \le age \le 70$
- TestResults(sid:string, TotalQuestions:integer, NotAnswered:integer, CorrectAnswers:integer, WrongAnswers:integer)
 - TotalQuestions = NotAnswered + CorrectAnswers + WrongAnswers nu e o CI!

Chei Primare

- O mulțime de atribute reprezintă o cheie a unei relații dacă:
 - 1. Nu există două tuple care au aceleași valori pentru toate atributele

ŞI

- 2. Aceste lucru nu este adevărat pentru nici o submuțime a cheii
- Dacă a 2-a afirmație este falsă → **super cheie**
- Daca există >1 cheie pentru o relație → chei candidat
- Una dintre cheile candidat este selectată ca cheie primară

Chei străine (externe)

- O cheie străină (externă) este o mulțime de câmpuri a unei relații utilizate pentru a `referi' un tuplu al unei alte relații (un fel de `pointer logic').
 - Aceasta trebuie să corespundă cheii primare din a doua relație.

De exemplu pentru

Enrolled (sid: string, cid: string, grade: double)

sid este cheie externă referind Students

Integritate referențială

■ Integritate referențială = nu sunt permise valori pentru cheia străină care nu se regăsesc în tabela referită.

Exemplu de model de date fără integritate referențială:

Link-uri HTML

Integritate referențială

- Fie *Students* și *Enrolled*; *sid* in *Enrolled* este o cheie străină ce referă o înregistrări din *Students*.
- Adaugarea in *Enrolled* a unui tuplu cu un id de student inexistent, acesta va fi respins de SGBD.

Enrolled

			1					
sid	cid	grade		Studer	ıts 💮			
1234	Alg1	9 •		sid	name	email	age	gr
1235	Alg1	10		1234	John	j@cs.ro	21	331
1234	DB1	10		1235	Smith	s@cs.ro	22	331
1237	DB2	9		1236	Anne	a@cs.ro	21	332

Integritate referențială

- Dacă o înregistrare din *Students* este ştearsă dar ea este referită din *Enrolled*:
 - se şterg toate înregistrările ce o refera din *Enrolled*.
 - nu se permite ştergerea înregistrării din *Students*
 - sid din *Enrolled* va avea asignată o valoare implicită.
 - sid din *Enrolled* va avea asignată valoarea *null*.

Enrolled

Students

sid	name	email	age	gr
1234	John	j@cs.ro	21	331
1235	Smith	s@cs.ro	22	331
1236	Anne	a@cs.ro	21	332

Repezentarea grafică a CI

