4 Cálculo Diferencial

- 1. (Exercício IV.1 de [1]) Calcule as derivadas das funções:
 - a) tg x x,
 - b) $\frac{x+\cos x}{1-\sin x}$,
 - c) $e^{\operatorname{arctg} x}$,
 - d) $e^{\log^2 x}$,
 - e) $\operatorname{sen} x \cdot \cos x \cdot \operatorname{tg} x$,
 - f) $x^2(1 + \log x)$,
 - g) cos(arcsen *x*)
 - h) $(\log x)^x$,
 - i) $x^{\text{sen } 2x}$.
- 2. Derive:
 - a) $\operatorname{arctg} x^4 (\operatorname{arctg} x)^4$,
 - b) $(\operatorname{sen} x)^x$,
 - c) $\log \log x$,
 - d) $\frac{\operatorname{sen}\operatorname{sen}x}{\operatorname{sen}x}$,
 - e) $(\operatorname{arctg} x)^{\operatorname{arcsen} x}$.
- 3. (Exercício IV.3 de [1]) Para cada uma das seguintes funções determine o domínio de diferenciabilidade e calcule as respectivas derivadas:
 - a) x|x|,
 - b) $e^{-|x|}$,
 - c) $\log |x|$,
 - d) $e^{x-|x|}$.

- 4. (Exercício 4.9 de [2]) Determine o domínio, o domínio de diferenciabilidade e calcule a derivada das seguintes funções:
 - a) $\log(x \sinh x)$ (ver Ex. 14),
 - b) arcsen(arctg x),
 - c) $\frac{e^x}{1+x}$.
- 5. Calcule, se existirem, as derivadas laterais no ponto 0 da função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} \frac{x}{1 + e^{1/x}}, & \text{se } x \neq 0\\ 0, & \text{se } x = 0. \end{cases}$$

6. (Exercício 4.2 de [2]) Determine as derivadas laterais no ponto 0 da função f contínua em $\mathbb R$ e cujos valores para $x \neq 0$ são dados por

$$f(x) = x \frac{1 + e^{\frac{1}{x}}}{2 + e^{\frac{1}{x}}}, \quad x \neq 0.$$

7. Considere a função $f : \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} x^2 \operatorname{sen}\left(\frac{1}{x}\right), & \operatorname{se} x \neq 0\\ 0, & \operatorname{se} x = 0. \end{cases}$$

- a) Justifique que f é diferenciável em $\mathbb{R} \setminus \{0\}$, calcule f' para $x \neq 0$ e mostre que $\lim_{x\to 0} f'(x)$ não existe.
- b) Justifique que f é diferenciável no ponto 0 e calcule f'(0).
- 8. Sejam f e g duas funções em \mathbb{R} tais que f é diferenciável em \mathbb{R} , verifica $f(0) = f(\pi) = 0$, e g é dada por $g(x) = f(\sin x) + \sin f(x)$. Obtenha o seguinte resultado:

$$g'(0) + g'(\pi) = f'(0) + f'(\pi)$$

- 9. Seja $f : \mathbb{R} \to \mathbb{R}$, diferenciável. Calcule $(\operatorname{arctg} f(x) + f(\operatorname{arctg} x))'$.
- 10. Sendo $g: \mathbb{R} \to \mathbb{R}$ uma função duas vezes diferenciável, considere a função $\varphi:]0, +\infty[\to \mathbb{R}$ definida por $\varphi(x) = e^{g(\log x)}$. Supondo conhecidos os valores de g, g' e g'' em pontos convenientes, determine $\varphi'(1)$ e $\varphi''(e)$.
- 11. Sendo $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^4 e^{-x}$ para todo o x, e sendo $g: \mathbb{R} \to \mathbb{R}$ diferenciável, calcule $(g \circ f)'(x)$ em termos da função g'.
- 12. Seja $g : \mathbb{R} \to \mathbb{R}$ uma função diferenciável e estritamente monótona, com g(0) = 2 e $g'(0) = \frac{1}{2}$. Considere $f : [-1, 1] \to \mathbb{R}$ dada por $f(x) = g(\operatorname{arcsen} x)$.

- a) Justifique que f é diferenciável em] 1, 1[e calcule f'(0).
- b) Justifique que f é injectiva e, sendo f^{-1} a sua inversa, calcule $(f^{-1})'$ (2).
- 13. (Exame de 14-6-06) Considere uma função $f : \mathbb{R} \to]-1$, 1[diferenciável e bijectiva, tal que f(2) = 0 e f'(2) = 2. Seja g a função definida por

$$g(x) = \arccos(f(x))$$
.

- (a) Justifique que g é injectiva e diferenciável e, sendo g^{-1} a função inversa de g, determine g'(2) e $(g^{-1})'(\frac{\pi}{2})$.
- (b) Determine o domínio de g^{-1} e justifique que g^{-1} não tem máximo nem mínimo. Será g^{-1} limitada?
- 14. As funções seno hiperbólico e coseno hiperbólico definem-se da forma seguinte:

$$sh x = \frac{e^x - e^{-x}}{2}$$
 $ch x = \frac{e^x + e^{-x}}{2}$.

- a) Deduza as igualdades (comparando-as com as correspondentes para as funções trigonométricas):
 - $i) ch^2 x sh^2 x = 1$
 - ii) sh(x + y) = sh x ch y + ch x sh y
 - iii) ch(x + y) = ch x ch y + sh x sh y
 - iv) sh 2x = 2 sh x ch x
 - $v) ch 2x = ch^2 x + sh^2 x$
- b) Verifique que a função sh é ímpar, e a função ch é par.
- c) Calcule $\lim_{x\to +\infty} \sinh x$, $\lim_{x\to +\infty} \cosh x$, $\lim_{x\to -\infty} \sinh x$, $\lim_{x\to -\infty} \cosh x$.
- d) Estude sh e ch quanto à continuidade e diferenciabilidade. Calcule (sh x)' e (ch x)'.
- e) Estude sh e ch quanto a intervalos de monotonia e extremos e esboce os respectivos gráficos.
- f) As funções inversas das funções hiperbólicas sh e ch designam-se, respectivamente por argsh e argch, isto é, $x = \operatorname{sh} y$ sse $y = \operatorname{argsh} x$, $y \in \mathbb{R}$, e $x = \operatorname{ch} y$ sse $y = \operatorname{argch} x$, $y \in \mathbb{R}^+$. Deduza

$$\operatorname{argsh} x = \log(x + \sqrt{x^2 + 1})$$
 $\operatorname{argch} x = \log(x + \sqrt{x^2 - 1})$.

Calcule $(\operatorname{argsh} x)' = (\operatorname{argch} x)'$.

Outros exercícios: 4.5, 4.6, 4.10, 4.11, 4.12, 4.17 de [2].

15. (Exercício 4.27 de [2]) Seja $f:]0,1[\to \mathbb{R}$ uma função diferenciável tal que

$$f\left(\frac{1}{n+1}\right) = 0$$
, para todo o $n \in \mathbb{N}$.

Diga se cada uma das seguintes proposições é verdadeira ou falsa. Justifique as respostas.

- a) Para qualquer $n \ge 2$, a restrição da função f ao intervalo $\left[\frac{1}{n+1}, \frac{1}{n}\right]$ tem necessariamente um máximo.
- b) A função *f* é necessariamente limitada.
- c) A função f' tem necessariamente infinitos zeros.
- 16. Prove que se $f: \mathbb{R} \to \mathbb{R}$ é duas vezes diferenciável e o seu gráfico cruza a recta y = x em três pontos, então f'' tem pelo menos um zero.
- 17. Prove que a equação $3x^2 e^x = 0$ tem exactamente três zeros.
- 18. (Exercício 4.32 de [2]) Prove que se $f: \mathbb{R}_0^+ \to \mathbb{R}$ é diferenciável e satisfaz $f(n) = (-1)^n$, para $n \in \mathbb{N}$, então a sua derivada não tem limite no infinito.
- 19. (Exercício 4.36 de [2]) Seja f uma função diferenciável em $\mathbb R$ tal que f(0) = 0 e cuja derivada é uma função crescente. Mostre que a função definida por $g(x) = \frac{f(x)}{x}$ é crescente em $\mathbb R^+$. (**Sugestão**: Aplique o Teorema de Lagrange a f num intervalo adequado para mostrar que $g'(x) \ge 0$.)
- 20. Prove que se f é de classe C^1 em \mathbb{R} e a equação $f(x) = x^2$ tem três soluções, sendo uma negativa, uma nula e outra positiva, então f' tem pelo menos um zero.
- 21. (Exercício IV.7 de [1]) Determine intervalos de monotonia, extremos locais e extremos absolutos (se existentes) para as funções:
 - a) $\frac{x}{x^2+1}$,
 - b) $\frac{1}{x} + \frac{1}{x^2}$,
 - c) $|x^2 5x + 6|$,
 - d) $x \log x$,
 - e) e^{-x^2} ,
 - f) $\frac{e^x}{x}$,
 - g) xe^{-x} ,
 - h) $\arctan x \log \sqrt{1 + x^2}$.
- 22. (Exame 23-7-2000) Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = |x|e^{-\frac{x^2}{2}}$.

- a) Calcule $\lim_{x\to -\infty} f(x)$, $\lim_{x\to +\infty} f(x)$.
- b) Determine o domínio de diferenciabilidade de f e calcule f'.
- c) Determine os intervalos de monotonia e, se existirem, pontos de extremo, classificando-os quanto a serem máximos, mínimos, relativos ou absolutos.
- d) Determine, justificando, o contradomínio de f.
- 23. (Exame 15-1-2003) Considere a função $g : \mathbb{R} \to \mathbb{R}$ definida por:

$$g(x) = \begin{cases} e^x + \alpha x + \beta & \text{se } x \le 0, \\ \arctan(e^x + e^{-x} - 1) & \text{se } x > 0. \end{cases}$$

onde α e β são constantes reais.

- a) Determine α e β sabendo que g tem derivada finita em x = 0.
- b) Determine $\lim_{x\to -\infty} g(x)$, $\lim_{x\to +\infty} g(x)$.
- c) Estude *g* quanto à diferenciabilidade e calcule *g'* nos pontos onde existir.
- d) Estude *g* quanto à existência de extremos e intervalos de monotonia.
- e) Determine o contradomínio de *g*.
- 24. Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = |x|e^{-|x-1|}$.
 - a) Calcule $\lim_{x\to -\infty} f(x)$, $\lim_{x\to +\infty} f(x)$.
 - b) Determine o domínio de diferenciabilidade de f e calcule f'.
 - c) Determine os intervalos de monotonia e, se existirem, pontos de extremo, classificando-os quanto a serem máximos, mínimos, relativos ou absolutos.
 - d) Determine, justificando, o contradomínio de f.
- 25. (Exame 9-1-06) Considere a função $f : \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = x + 2 \arctan |x|$$
.

- a) Calcule ou mostre que não existem: $\lim_{x\to-\infty} f(x)$, $\lim_{x\to+\infty} f(x)$.
- b) Determine o domínio de diferenciabilidade de f e calcule a derivada f'.
- c) Determine os intervalos de monotonia e, se existirem, pontos de extremo relativo, classificando-os quanto a serem máximos, mínimos, relativos ou absolutos.
- d) Determine o contradomínio da restrição de f ao intervalo $]-\infty,0]$.
- 26. (Exame 23-1-06) Seja g uma função diferenciável tal que g(0) = g'(0) = 0 e g' é uma função estritamente monótona. Define-se

$$\varphi(x) = 2 \operatorname{tg} (g(x)) - g(x).$$

Mostre que $\varphi(0)$ é um extremo local de φ .

- 27. (Exercício 4.48 de [2]) Seja f uma função definida numa vizinhança de zero $V_{\epsilon}(0)$, diferenciável em $V_{\epsilon}(0) \setminus \{0\}$ e tal que xf'(x) > 0 para todo $x \in V_{\epsilon}(0) \setminus \{0\}$.
 - a) Supondo que f é contínua no ponto 0, prove que f(0) é um extremo de f e indique se é máximo ou mínimo. No caso de f ser diferenciável em 0 qual será o valor de f'(0)?
 - b) Mostre (por meio de um exemplo) que sem a hipótese da continuidade de f no ponto 0 não se pode garantir que f(0) seja um extremo de f.
- 28. (Exercício IV.12 de [1]) Calcule os limites:

a)
$$\lim_{x\to 0} \frac{a^x-b^x}{x}$$
,

b)
$$\lim_{x\to+\infty}\frac{\log(x+e^x)}{x}$$
,

c) $\lim_{x\to 1} (\log x \cdot \log \log x)$,

d)
$$\lim_{x\to 0^+} \frac{e^{-1/x}}{x}$$
,

e)
$$\lim_{x\to 0^-} \frac{e^{-1/x}}{x}$$
,

f)
$$\lim_{x\to 1^+} x^{\log\log x}$$
,

g)
$$\lim_{x\to+\infty} x^{\frac{1}{x-1}}$$
.

29. (Exercício 4.59 de [2]) Determine os limites:

a)
$$\lim_{x\to 0} \frac{10^x-5^x}{x}$$
,

b)
$$\lim_{x\to 0^+} \frac{x^2 \sin \frac{1}{x}}{\sin x}$$
.

30. (Exercício 4.61 de [2]) Determine os limites:

a)
$$\lim_{x\to+\infty}\frac{2^x}{x^2}$$
,

b)
$$\lim_{x\to-\infty}\frac{2^x}{x^2}$$
.

31. (Exercício 4.63 de [2]) Calcule os limites

a)
$$\lim_{x\to 0^+} (\operatorname{sen} x)^{\operatorname{sen} x}$$
,

b)
$$\lim_{x\to+\infty} (\log x)^{\frac{1}{x}}$$
.

32. (Exercício 4.66 de [2]) Calcule os limites

a)
$$\lim_{x\to+\infty} x \operatorname{sen} \frac{1}{x}$$
,

b)
$$\lim_{x\to\frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x}$$
.

33. (Exercício 4.78 de [2]) Calcule $\lim_{n \to \infty} \left(\frac{1}{n} \right)^{\sin \frac{1}{n}}$ (**Sugestão**: determine primeiro $\lim_{x \to 0} x^{\sin x}$.).

- 34. a) Determine a fórmula de MacLaurin e a fórmula de Taylor relativa ao ponto 1, ambas de ordem 2 com resto de Lagrange, das funções seguintes: e^{2x} , $\log(1+x)$, $\cos(\pi x)$.
 - b) Para a fórmula de MacLaurin, determine estimativas para o erro cometido ao aproximar a função dada pelo polinómio de MacLaurin obtido no intervalo [0,1].
- 35. Determine $e^{0.1}$ com erro inferior a 10^{-4} , sem usar a calculadora.
- 36. (Exercício 4.83 de [2]) Prove, usando a fórmula de MacLaurin com resto de Lagrange, que se tem

$$\left| e^{-x} - \left(1 - x + \frac{x^2}{2} \right) \right| \le \frac{1}{6}, \quad \text{para } x \in [0, 1].$$

- 37. Sejam f uma função 3 vezes diferenciável e g definida por $g(x) = f(e^x)$. Dado que o polinómio de Taylor de ordem 2 de f relativo ao ponto 1 é 3 x + 2(x 1) 2 , determine o polinómio de MacLaurin de ordem 2 de g.
- 38. (Exercício 4.83 de [2]) Prove, recorrendo à fórmula de MacLaurin, que se $f:\mathbb{R}\to\mathbb{R}$ verifica a condição

$$f^{(n)}(x) = 0$$
, para qualquer $x \in \mathbb{R}$

então f é um polinómio em x de grau menor do que n.

39. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função 3 vezes diferenciável. Use a fórmula de Taylor para mostrar que, para qualquer $a \in \mathbb{R}$, se tem

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}.$$

40. (Exercício 4.90 de [2]) Seja f uma função de classe $C^2(\mathbb{R})$ e considere a função g definida por g(x) = xf(x) para todo o $x \in \mathbb{R}$. Se g'' é estritamente crescente em \mathbb{R} e g''(0) = 0, prove que f(0) é mínimo absoluto de f.

(**Sugestão**: Escreva a fórmula de MacLaurin de 1ª ordem de g e use-a para determinar o sinal de f(x) - f(0)).

- 41. Determine os extremos da função $f(x) = arctg(x^2)$, classificando-os, e determine os seus pontos de inflexão. Esboce o gráfico da função.
- 42. (Exercício 4.109 de [2]) Faça um estudo tão completo quanto possível da função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^4 e^{-x}$ tendo em conta monotonia, extremos, pontos de inflexão, contradomínio. Esboce o gráfico da função.
- 43. (Exercício 4.126 de [2]) Esboce o gráfico da função $f(x) = \frac{\text{sen } x}{1-\text{sen } x}$ em $[0, 2\pi]$ (pode admitir que não existem pontos de inflexão).

44. (Exercício 4.129 de [2]) Faça o estudo da função $f(x) = \arctan\left(\frac{x}{x-1}\right)$ tendo em conta monotonia, extremos, pontos de inflexão, contradomínio. Esboce o gráfico da função.

Outros exercícios: 4.23, 4.24, 4.27, 4.31, 4.44, 4.45, 4.56, 4.58, 4.69, 4.74, 4.77, 4.82, 4.84, 4.88, 4.104, 4.105, 4.110 de [2].

Parte III Bibliografia

0 Bibliografia

- [1] J. Campos Ferreira. *Introdução à Análise Matemática*. Fundação Calouste Gulbenkian, Lisboa.
- [2] Departamento de Matemática do Instituto Superior Técnico. *Exercícios de Análise Matemática I/II*, 2ª edição, 2005. IST Press, Lisboa.