Q.2. (A) The composition of the Vapor from the Flash Drum is as follows:- (Without Quenching)

Molar flow rate of vapor is 4006.95 lbmol/hr

With flow rate different components i.e., for H₂ is 1996.83 lbmol/hr; For CH₄ is 1976.21 lbmol/hr; for Benzene is 31.6485 lbmol/hr; For toluene is 2.26553 lbmol/hr

Then comes the compositions of the components :-

- (a) H_2 (in vapor) = 0.49384
- (b) CH_4 (in vapor) = 0.49316
- (c) Benzene(in vapor) = 0.00789839
- (d) Toluene(in vapor) = 0.0005654

(1)

Both above flowsheets are the Quench(II) and without Quench(I)

With Quenching, (Table)

Mole	Ibmol	9937.05	9937.05	5930.10	9937.05	5337.09	46	5337.09	4006.95	593.010
Flows	/hr	9008	9008	4545	9008	409	00	409	4463	4545

H2	Ibmol	2028.54	2028.54	31.7194	2028.54	28.5474	20	28.5474	1996.82	3.17194
	/hr	6256	6256	2668	6256	8401	00	8401	6829	2668
CH4	Ibmol	2213.93	2213.93	237.723	2213.93	213.951	20	213.951	1976.21	23.7723
	/hr	7519	7519	9177	7519	5259	00	5259	3601	9177
Benze	Ibmol	4714.99	4714.99	4683.35	4714.99	4215.01	50	4215.01	31.6485	468.335
ne	/hr	8649	8649	0147	8649	5132	0	5132	014	0147
TOLU	Ibmol	979.576	979.576	977.311	979.576	879.579	10	879.579	2.26553	97.7311
ENE	/hr	5849	5849	0534	5849	948	0	948	1492	0534

(B) As it is seen that Impact of Quench on Flash Separation

- The quench reduces the temperature before flashing but does not significantly change the equilibrium separation at 500 psia. The vapor-to-liquid ratio remains nearly the same, confirming that quenching affects cooling efficiency but not phase separation.
- There is not much change in the vapor phase mole fraction and molar flow rates of the components.
- The quench stream effectively lowers the process stream temperature but has **minimal impact** on flash separation results.

Q.5. (I)

	Units	ANIN -	ANOUT →	CAIN →	CAOUT →	FEED ▼
Pressure	bar	7	6	7	5.8	7
Molar Vapor Fraction		0	0	0	0.0117514	0
Molar Liquid Fraction		1	1	1	0.988249	1
Molar Solid Fraction		0	0	0	0	0
Mass Vapor Fraction		0	0	0	0.00162759	0
Mass Liquid Fraction		1	1	1	0.998372	1
Mass Solid Fraction		0	0	0	0	0
Molar Enthalpy	cal/mol	-71336.6	-71141.5	-71336.6	-70574	-71336.6
Mass Enthalpy	cal/gm	-3287.7	-3277.91	-3287.7	-3273.07	-3287.7
Molar Entropy	cal/mol-K	-34.6944	-34.4851	-34.6944	-34.1364	-34.6944
Mass Entropy	cal/gm-K	-1.59897	-1.58893	-1.59897	-1.58317	-1.59897
Molar Density	mol/cc	0.0510238	0.0505696	0.0510238	0.0127847	0.0510238
Mass Density	gm/cc	1.10711	1.09753	1.10711	0.275663	1.10711
Enthalpy Flow	cal/sec	-1.09727e+09	-1.10024e+09	-3.65757e+08	-3.57896e+08	-1.46303e+09
Average MW		21.698	21.7033	21.698	21.562	21.698
Mole Flows	kmol/hr	55373.8	55676.1	18457.9	18256.4	73831.7
Mole Fractions						
Mass Flows	kg/sec	333.75	335.654	111.25	109.346	445
H2O	kg/sec	250.313	251.321	83.4375	81.4205	333.75
02	kg/sec	0	0.895641	0	0	0
H2	kg/sec	0	0	0	0.112848	0
КОН	kg/sec	83.4375	83.4375	27.8125	27.8125	111.25

Here the Shortcut method was used.

The Rate of production of H_2 is 0.112 kg/sec and The rate of production of O_2 is 0.895 kg/sec. Here the Water that is going to Anode and Cathode is about 333.75 kg/sec, in which the In anode the water inlet is 250.313 kg/sec and Cathode inlet is 83.4375 kg/sec, so at the end the outlet of water at anode is 251.321 kg/sec and Cathode outlet for water is 81.4205 kg/sec.

From the data:

FEED (Total Inlet): 333.75 kg/sec (H2O)

• ANOUT (Outlet): 251.321 kg/sec (H2O)

• CAOUT (Outlet): 81.4205 kg/sec (H2O)

The total water leaving the system is the sum of the water in the ANOUT and CAOUT streams:

Total Outlet Water = ANOUT (H2O) + CAOUT (H2O) = 251.321 kg/sec + 81.4205 kg/sec = 332.7415 kg/sec

The rate of water consumption is the difference between the total inlet water and the total outlet water:

Water Consumption = FEED (H2O) - Total Outlet Water = 333.75 kg/sec - 332.7415 kg/sec = 1.0085 kg/sec

So, the rate of water consumption is approximately 1.0085 kg/sec.

From the table:

• ANIN (Inlet): 250.313 kg/sec

• ANOUT (Outlet): 251.321 kg/sec

The makeup water required would be the difference between the outlet and inlet water flow rates:

Makeup Water = ANOUT (H2O) - ANIN (H2O) = 251.321 kg/sec - 250.313 kg/sec = 1.008 kg/sec

So, the makeup water required is approximately 1.008 kg/sec.

Rigorous Method

Geometrical Parameters

	Parameter	Anode	Units	Cathode	Units
٠	Active area	4	sqm	4	sqm
	Width of channel	2	meter	2	meter
	Length of channel	2	meter	2	meter
	Porosity	0.3		0.3	
	Tortuosity	3.8		3.8	
	Pore radius	1e-06	meter	1e-06	meter
	Separation b/w electrode and separator (das, dcs)	1.25	mm	1.25	mm
	Thickness of channel (ta, tc)	2	cm	2	cm
	Electrode roughness factor	1.25		1.05	
	Thickness of electrode	2	mm	2	cm
	Bubble zone width	0.5	mm	0.5	mm
	Channel roughness factor	1		1	
	Activation free energy	19229.5	cal/mol	12463	cal/mol

Membrane Parameters

	Parameter	Value	Units
٠	Active area	4	sqm
	Thickness (ts)	0.5	mm
	Porosity	0.42	
	Tortuosity	2.18	
	Wetness factor	0.85	
	Oxygen diffusivity	1.81e-05	sqcm/sec
	Hydrogen diffusivity	5.63e-05	sqcm/sec

Property options
Property method

Henry components ID

HC-1

Electrolytes calculation options
Chemistry ID

Simulation approach

Petroleum calculation options
Free-water phase properties
Water solubility method

Free-water options

STEAM-TA

Water solubility method

Water solubility method

Free-water options

Water solubility method

Water solubility method

Free-water options

Free

Reaction Components

Henry Components

a. Electrolyzer Efficiency

The efficiency of an electrolyzer can be calculated using the formula:

Efficiency=[(Energy content of hydrogen produced)/(Electrical energy input)]×100%

The energy content of hydrogen is typically given by its lower heating value (LHV), which is approximately 33.33 kWh/kg.

From the provided data:

- Total power input = 20 MW
- Number of stacks = 8
- Number of cells per stack = 230

First, calculate the total electrical energy input per second:

Electrical energy input=20 MW=20×10⁶ W=20×10⁶ J/s

Next, determine the mass flow rate of hydrogen produced. From the table, the mass flow rate of H_2 at the cathode is 0.116429 kg/s.

Now, calculate the energy content of the hydrogen produced per second:

Energy content of hydrogen=0.116429 kg/s×33.33 kWh/kg×3600 s/h Energy content of hydrogen≈13999.8 kJ/s Now, calculate the efficiency:

Efficiency = $[(13999.8 / 20 \times 10^3)] \times 100\% \approx 70\%$

b. Energy Requirements per Unit Mass of H₂ Production

The energy requirement per unit mass of hydrogen production can be calculated as:

Energy requirement = Electrical energy input/Mass flow rate of hydrogen

Using the values from above:

Energy requirement=20×10⁶ /0.116429≈171.8 MJ/kg

This value can also be expressed in kWh/kg:

Energy requirement=171.8/3.6≈47.7 kWh/kg

(III) Flowsheet as follows:-

	Units	ANIN -	ANOUT →	CAIN -	CAOUT -	FEED -	
Enthalpy Flow	cal/sec	-1.09727e+09	-1.12389e+09	-3.65757e+08	-3.341e+08	-1.46303e+09	
Average MW		21.698	21.622	21.698	21.819	21.698	
- Mole Flows	kmol/sec	15.3816	15.8178	5.1272	4.72002	20.5088	
H2	kmol/sec	0	6.58123e-05	0	0.058042	0	
02	kmol/sec	0	0.0290538	0	4.901e-11	0	
H2O	kmol/sec	13.8945	14.3016	4.63149	4.16626	18.5259	
кон	kmol/sec	1.48715	1.48715	0.495717	0.495718	1.98287	
 Mole Fractions 							
H2		0	4.16063e-06	0	0.012297	0	
O2		0	0.00183678	0	1.03834e-11	0	
H2O		0.903316	0.904142	0.903316	0.882678	0.903316	
кон		0.0966837	0.0940172	0.0966837	0.105025	0.0966837	
- Mass Flows	kg/sec	333.75	342.014	111.25	102.986	445	
H2	kg/sec	0	0.00013267	0	0.117006	0	
O2	kg/sec	0	0.929687	0	1.56826e-09	0	
H2O	kg/sec	250.313	257.647	83.4375	75.0563	333.75	
кон	kg/sec	83.4375	83.4375	27.8125	27.8126	111.25	
 Mass Fractions 							
H2		0	3.87907e-07	0	0.00113613	0	
O2		0	0.00271827	0	1.52279e-11	0	
H2O		0.75	0.753322	0.75	0.728802	0.75	
кон		0.25	0.243959	0.25	0.270062	0.25	
Volume Flow	l/min	18087.6	25737	6029.19	21089.4	24116.8	
◆ Vanor Phase							

The molar mass of H_2 is approximately 2 g/mol or 0.002 kg/mol.

Molar flow rate of $H_2 = 0.117006/0.002 = 58.503$ mol/s

Since the purity of H_2 is 96%, the actual molar flow rate of H_2 produced is: Actual Mass flow rate of H_2 = 58.503/0.96 = 60.94 mol/s

According to the stoichiometry of the reaction, 1 mole of water is required to produce 1 mole of H₂.

So, Molar flow rate of H2O=60.94 mol/s

The molar mass of water (H₂O) is approximately 18 g/mol or 0.018 kg/mol.

Mass Flow rate of $H_2O = 60.94 \times 0.018 = 1.096 \text{ kg/s}$

1.

For separation of the C2/C3 (direct separation)

• Flowsheet for Direct Sequence (C2/C3 separation first)

By Binary analysis plot of C2/C3 we get a range of flash temperature to operate

Temperature range for flash = -40 to -47.5 °C

For separation of the C3/C4 (Indirect separation)

• Binary Analysis of C3/C4

By Binary analysis plot of C3/C4 we get a range of flash temperature to operate
 Temperature range for flash = -2.5 to -5.0 °C