

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

No aplica No aplica No aplica

Relación con otras asignaturas

Anteriores Posteriores

No aplica No aplica

Nombre de la asignatura Departamento o Licenciatura

Marcos de trabajo orientados a objetos Ingeniería en Telemática

Ciclo Clave Créditos Área de formación curricular

2 - 2 IT0214 6 Profesional Asociado y Licenciatura Básica

Tipo de asignatura Horas de estudio

 HT
 HP
 TH
 HI

 Seminario
 32
 16
 48
 48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

El estudiante será capaz de programar ejercicios específicos utilizando los componentes proporcionados por diversas cajas de herramientas y marcos de trabajo. Identificar los elementos que caracterizan a las cajas de herramientas y marcos de trabajo. Comprender la importancia de las cajas de herramientas y los marcos de trabajo en la reusabilidad de elementos y creación de entornos. Utilizar las principales cajas de herramientas y marcos de trabajo. Construir entornos de software utilizando diversos componentes de cajas de herramientas y marcos de trabajo.

Objetivo procedimental
No aplica
Objetivo actitudinal
No aplica
Unidades y temas
Unidad I. CONCEPTOS PRINCIPALES
No aplica
1) Bibliotecas de clase
2) Cajas de herramientas
3) Frameworks y Toolkits comparados con bibliotecas estructuradas
4) Widgets y componentes versus Funciones y Procedimientos
Unidad II. EL PARADIGMA MODELO/VISTA O EL PATRÓN OBSERVER No aplica
1) El Framework como una biblioteca de clases
2) Componentes de un programa
3) Ventanas y vistas
a) Vistas de control
b) Vistas de datos
4) Estructura y organización de un programa
a) Separación de la aplicación de vistas y modelo

b) Mecanismos de control comparados con componentes de control
5) Control manejado por eventos
a) Agrupamiento de eventos
b) Ciclo principal de eventos
c) Manejo de eventos
6) Ventanas
7) Menús
8) Etiquetas
9) Campos de edición de texto
10) Botones
11) Botones de Radio
12) Casillas de verificación
a) Listas
b) Combos
13) Paneles
14) Áreas de texto
15) Lienzos
16) Barras de desplazamiento
17) Marcos

Unidad III. EXTENSIBILIDAD DE LOS TOOLKITS Y FRAMEWORKS

3) Visual Component Library (VCL) de Borland

Ν	0 8	pl	ica
---	-----	----	-----

No aplica
1) Extensibilidad mediante Herencia
2) Extensibilidad mediante Manejadores de Eventos
3) Ambientes Integrados de Desarrollo (IDE)
a) Borland Delphi/Borland C++
b) Visual Basic
c) Kdeveloper
d) Glade
e) Forté for Java
Unidad IV. CASOS DE ESTUDIO No aplica
1) Revision histórica
a) Smalltalk
b) Turbo Vision
c) C++ Views
d) ObjectWindows
2) Microsoft Foundation Classes (MFC)

4) Abstract Windowing Toolkit (AWT) de Java5) Gimp Tool Kit (GTK)6) KDE y Qt7) GNOME y BONOBO

8) Comparación entre casos de estudio

Actividades que promueven el aprendizaje

Exposición del docente.

Docente

Propondrá diversos ejercicios y/o problemas a resolver.

Promoverá discusiones de diferentes ejemplos de aplicación en grupo.

Promoverá el trabajo colaborativo a través de tareas o ejercicios extraclase.

Propondrá análisis de lecturas de temas relacionados con la asignatura.

Promoverá la programación de ejercicios, la elaboración de prototipos y desarrollo de proyectos.

Estudiante

El alumno participará ampliamente en discusiones promovidas en las clases.

Solucionará problemas bajo la guía del profesor. Implementará programas usando diversos toolkits y frameworks.

Realizará lecturas e investigaciones.

Actividades de aprendizaje en Internet

No aplica.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Trabajo e investigación	10
Participación y ejercicios individuales	25
Trabajo colaborativo	10
Proyectos o exposiciones	25
Total	100

Fuentes de referencia básica

Bibliográficas

Chamorro, F. Programación y Diseño en Entornos Gráficos. McGraw-Hill. ISBN 84-481-0921-X.

Deitel, H. Y Deitel, P. Cómo Programar en Java. Pearson. ISBN 970-17-044-9.

Main, I. GTK Tutorial. Documento electrónico.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Chartre, F. Programación con Delphi 5. Anaya Multimedia. ISBN 84-415-0967-0.

Sweet, D. Desarrollo de Aplicaciones con KDE 2.2. Prentice-Hall. ISBN 970-26-0164-9.

Van M. Free Component Library (FCL): Reference Guide. Documento electrónico.

Sweet, Michael, Craig P. Earls y Bill Spitzak. FLTK 1.1.1 Programming Manual. Documento electrónico.

Zhao, T. y Marc O. A Graphical User Interface Toolkit for X. Documento electrónico.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura o ingeniería en computación o carreras afines, preferentemente nivel de Maestría en Ingeniería de software.

Docentes

Tener experiencia docente mínima de 3 años a nivel superior en asignaturas afines

Profesionales

Tener experiencia como desarrollador de aplicaciones de usuario con interfaz gráfica, en el sector industrial o gerencia de sistemas.