Algoritmi Fundamentali

Ruxandra Marinescu - Ghemeci

verman@fmi.unibuc.ro ruxandra.marinescu@fmi.unibuc.ro

ruxandra.marinescu@unibuc.ro

Programa

Programa

- Algoritmi în grafuri
 - Parcurgeri
 - Arbori parţiali de cost minim
 - Distanțe în grafuri, drumuri minime
 - Fluxuri în rețele de transport
 - Grafuri planare
 - Probleme de colorare
 - Grafuri euleriene și hamiltonieie
- Şiruri de caractere

Structura

- Curs
 - 2 ore pe săptămâna

Laborator

- 2 ore la două săptămâni
- limbaj C/C++ sau Python

Seminar

- 2 ore la două săptămâni
- discuții probleme curs/laborator, complexități + exerciții

Obiectiv general

 Dezvoltarea gândirii algoritmice prin familiarizarea cu algoritmi fundamentali și aplicații ale acestora

Obiective specifice

- Prezentarea principalelor noțiuni și rezultate + utilitatea acestora
- Modelarea problemelor cu ajutorul grafurilor + elaborarea de algoritmi de grafuri pentru rezolvarea acestora
- Justificare a corectitudinii algoritmilor propuşi + estimarea eficienței acestora
- Implementarea eficientă a algoritmilor

Motivații

- Domeniu fundamental
- ✓ Numeroase aplicații în diverse domenii procesarea imaginilor, bioinformatică, rețele, baze de date, proiectare, strategii
- ✓ Instrumente pentru a dezvolta algoritmi eficienți
- ✓ Probleme de algoritmică ce apar des la interviuri
- ✓ Baza pentru cursuri viitoare

Evaluare

Evaluare

- Examen scris 40 % din notă
- Laborator 50 % din notă
 - teme obligatorii punctaj teme_oblig ≤ 4
 - teme suplimentare (mai dificile) punctaj tema_suplim ≤ 6
 - test de laborator punctaj test ≤ 6
 - Punctajul de la temele suplimentare poate înlocui punctajul de la testul de laborator sau poate contribui la creșterea acestuia.

Astfel, nota finala la laborator va fi

tema_oblig + min(6, max(tema_suplim,
$$\frac{\text{tema_suplim}}{3}$$
 + test))

- Seminar 10 % din notă
 - teme de seminar (!trebuie prezentate în cadrul seminarului)
 - bonus 1 punct

Evaluare

Condiție necesară:

Nota (nerotunjită) de la laborator ≥ 5 puncte

Nota (nerotunjită) de la examen scris ≥ 5 puncte

Bibliografie

BIBLIOGRAFIE - Algoritmică

- Jon Kleinberg, Éva Tardos, Algorithm Design, Addison-Wesley 2005 http://www.cs.princeton.edu/~wayne/kleinberg-tardos/
- > T.H. Cormen, C.E. Leiserson, R.R. Rivest- Introducere in algoritmi, MIT Press, trad. Computer Libris Agora
- S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani Algorithms, McGraw-Hill, 2008
- Steven S. Skiena Algorithms, Springer, 2008
- H. Georgescu, Tehnici de programare, Editura Universității din București, 2005

BIBLIOGRAFIE - Teoria grafurilor

- Douglas B. West, Introduction to Graph Theory, Prentice Hall 1996, 2001
- J.A. Bondy, U.S.R Murty Graph theory with applications, The Macmillan Press 1976 / Springer 2008
- Dragoș-Radu Popescu, Combinatorică şi teoria grafurilor, Editura Societatea de Științe Matematice din România, București, 2005.

BIBLIOGRAFIE - Exerciții curs + seminar

- Dragoș-Radu Popescu, R. Marinescu-Ghemeci, Combinatorică şi teoria grafurilor prin exerciții şi probleme, Editura Matrixrom, 2014
- Ioan Tomescu, Probleme de combinatorica si teoria grafurilor/ Problems in Combinatorics and Graph Theory

BIBLIOGRAFIE

- coursera.org
- infoarena.ro, leetcode.com ...

Materiale curs, laborator, seminar

- MoodleUB
- MS Teams
- Consultații

Aplicații

Rețele de transport în comun, trasee turistice, gps

Analiza rețelelor

- Interacţiuni
 - Rețele sociale
 - Rețele biologice
 - Rețele de citări, de știri, de spionaj etc

Rețele sociale

http://social-dynamics.org/twitter-network-data/

Softuri pentru vizualizarea și analiza rețelelor

https://gephi.org/

http://nodexl.codeplex.com/

Rețele sociale

Rețea de colaborări între cercetătorii de la Institutul Santa Fe

Clusterele - corespund departamentelor de cercetare

Rețele sociale

Clubul de carate al lui Zachary: membri + interacțiuni în afara clubului

⇒ comunități

Santo Fortunato, Community detection in graphs, Physics Reports 486 (2010) 75-174

Zachary, W. W. (1977), Information Flow Model for Conflict and Fission in Small Groups, J. of Anthropological Research 33, 452-473.

http://historicaldataninjas.com/karate-clubnetwork/

https://en.wikipedia.org/wiki/Zachary%27s_karate_club

Rețele

Rețele de știri – detectarea de știri false

https://neo4j.com/blog/machine-learning-graphs-fake-news-epidemic-part-2/https://cambridge-intelligence.com/detecting-fake-news/

Rețele de teroriști

Rețele

Numeroase noțiuni de grafuri folosite în analiza rețelelor sociale:

- grad => centraliate
- distanță, diametru
- componente biconexe, tare conexe
- conectivitate, tăieturi, flux etc

Bioinformatică

grafuri de interacțiuni gene/proteine

http://domaingraph.bioinf.mpi-inf.mpg.de/docu/dg_network.php

- clustering
- grafuri de intersecție, grafuri De Bruijn
- arbori filogenetici

Bioinformatică

https://openi.nlm.nih.gov/detailedresult.php?img=PMC4219702_pone.01111116.g002&req=4

Image segmentation

- > tăietura minimă fluxuri în rețele de transport
- medicină

Spatially Varying Color Distributions for Interactive Multi-Label Segmentation (C. Nieuwenhuis, D. Cremers), In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 35, 2013

Computer vision

F. Zhou and F. De la Torre, Deformable Graph Matching, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013 http://www.f-zhou.com/gm/2013_CVPR_DGM.pdf

https://www.ini.rub.de/PEOPLE/wiskott/Projects/EGMFaceRecognition.html

Baze de date

- Graph database
 - Neo4J https://neo4j.com/

https://en.wikipedia.org/wiki/Graph_database

Exemplu - De câte săli este nevoie minim pentru programarea într-o zi a n conferințe cu intervale de desfășurare date?

```
Conf. 1: interval (1,4)
```

Conf. 2: interval (2,3)

Conf. 3: interval (2,5)

Conf. 4: interval (6,8)

Conf. 5: interval (3,8)

Conf. 6: interval (6,7)

Exemplu - De câte săli este nevoie minim pentru programarea într-o zi a n conferințe cu intervale de desfășurare date?

Conf. 1: interval (1,4)

Conf. 2: interval (2,3)

Conf. 3: interval (2,5)

Conf. 4: interval (6,8)

Conf. 5: interval (3,8)

Conf. 6: interval (6,7)

Graful intersecției intervalelor

Sunt necesare minim 3 săli

Sala 1: (1,4), (6,7)

Sala 2: (2,3), (3,8)

Sala 3: (2,5), (6,8)

În termeni de grafuri problema se exprimă astfel:

Care este numărul cromatic al grafului interval asociat intervalelor de desfășurare?

 Graful intersecției intervalelor este 3-colorabil, dar NU este 2-colorabil

Cum se poate exprima în termeni de grafuri problema spectacolelor studiată la PA la metoda Greedy?

Cum se poate exprima în termeni de grafuri problema spectacolelor studiată la PA la metoda Greedy?

Cum se poate exprima în termeni de grafuri problema spectacolelor studiată la PA la metoda Greedy?

Determinați o mulțime independentă de vârfuri (adică de vârfuri neadiacente două câte două) din graful interval asociat.

Grafuri de dependențe/ interacțiuni

Drum critic în grafuri de dependențe asociat unui proiect

Exemplu date proiect - se cere durata minimă a proiectului:

- Activitatea 1 durata 7
- Activitatea 2 durata 4
- Activitatea 3 durata 30
- Activitatea 4 durata 12
- Activitatea 5 durata 2
- Activitatea 6 durata 5
- Dependențe între activități: (1, 2), (2, 3), (3, 6), (4, 3), (2, 6), (3, 5)

Graf asociat - problema se reduce la determinarea unui drum maxim:

Grafuri de dependențe/ interacțiuni

Programare dinamică - drum optim în grafuri fără circuite

Exemplu - Problema determinării celui mai lung subșir crescător al unui șir

Pentru șirul 8, 1, 7, 4, 6, 5, 11 graful asociat este

Problema se reduce la a determina un drum maxim în graful asociat (fără circuite - DAG)

Grafuri de dependențe/ interacțiuni

Shortest superstring problem

 $S = \{ATG, AGG, TGC, TCC, GTC, GGT, GCA, CAG\}$

Drum Hamiltonian unic: ATG, TGC, GCA, CAG, AGG, GGT, GTC, TCC => superstring ATGCAGGTCC

Chimie

- ▶ Graf ← "notaţie grafică" din chimie
 - J. Silvester, 1878

Chimie

- indici topologici (Wiener, Randic...)
- izomorfism, graf de interacțiuni...

Danail Bonchev and D.H. Rouvray, eds., *Chemical Graph Theory: Introduction and Fundamentals*, Taylor and Francis, 1991

Matematică

- Demonstrarea unor rezultate matematice
 - Matrice -> graf
 - Diagonală/ Matrice de permutări cuplaj
- Grafuri asociate grupurilor grafuri Cayley

Pe o tablă de tip șah de dimensiuni nxn sunt așezate ture, astfel încât pe fiecare linie și fiecare coloană sunt același număr de ture. Să se arate că se pot păstra pe tablă n dintre aceste ture, care nu se atacă două câte două - Cuplaje

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \longrightarrow P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \longrightarrow P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \longrightarrow P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Acoperirea unei table cu piese de domino

Tabla \Rightarrow graful grid

Tabla

Acoperire

 \Rightarrow

graful grid

 \Leftrightarrow

cuplaj perfect

- Acoperirea unei table m x n cu piese de domino
 - Tabla este acoperibilă mn par
 - Dacă tabla este acoperibilă, dar eliminăm două pătrățele din ea,
 în ce condiții rămâne acoperibilă?

Care dintre diagramele de mai sus se poate desena printr-o curbă continuă închisă fără a ridica creionul de pe hârtie şi fără a desena o linie de două ori?

Există linie continuă neînchisă care să intersecteze în interior fiecare segment o singură dată?

Alte aplicații

- Rețele de calculatoare
- Limbaje formale
- Probleme de planificări, repartiții...
- Teoria jocurilor

Istoric

Este posibil ca un om să facă o plimbare în care să treacă pe toate cele 7 poduri o singură dată?

http://think-like-a-git.net/sections/graph-theory/seven-bridges-of-konigsberg.html

1736 – Leonhard Euler *Solutio problematis ad geometriam situs pertinentis*

- Ciclu eulerian traseu închis care trece o singură dată prin toate muchiile
- Graf eulerian

Interpretare

Se poate desena diagrama printr-o curbă continuă închisă fără a ridica creionul de pe hârtie și fără a desena o linie de două ori (în plus: să terminăm desenul în punctul în care l-am început)?

Tăierea unui material

Interpretare

De câte ori (minim) trebuie să ridicăm creionul de pe hârtie pentru a desena diagrama?

• 1856 – **Hamilton** – "voiaj în jurul lumii":

Există un traseu închis pe muchiile dodecaedrului care să treacă prin fiecare vârf o singură dată

http://en.wikipedia.org/wiki/File:Dodecahedron.jpg

Noțiuni de grafuri rezultate:

- > Ciclu hamiltonian trece o singură dată prin toate vârfurile
- > Graf hamiltonian
- Problema comis-voiajorului

Problema celor 4 culori – De Morgan 1852

Se poate colora o hartă cu patru culori astfel încât orice două țări, care au frontieră comună și care **nu se reduce la un punct**, să aibă culori diferite?

Problema celor 4 culori – Appel şi Haken răspuns afirmativ în 1976 cu ajutorul calculatorului