Spatial Reading Group

February 16, 2017

Outline

Motivation

Classical Frequentist Spatial Stats Spatial Relationships Estimating $\rho(u)$

Maximum Likelihood Estimation

Kriging

Extension - Preferential Sampling

Bayesian Estimation and Prediction

Motivation

Why Spatial Data needs Spatial Stats

- Spatial Data are continuous but measured discretely.
- ▶ As a result the measurements tend to be correlated.
- ▶ The measurements are rarely taken at random
- ▶ Different versions of distance.

Figure: The Geevor Mine

Outline

Motivation

Classical Frequentist Spatial Stats
Spatial Relationships
Estimating o(u)

Maximum Likelihood Estimation

Kriging

Extension - Preferential Sampling

Bayesian Estimation and Prediction

Assumptions

For the rest of the presentation we are in \mathbb{R}^2

- Smooth data (Except for "nugget effect")
- Stationary data
 - Does a trend extend beyond the bounds of the study?
 - Is the covariance consistent in the bounds of the study?
- ▶ ${S(x) : x \in \mathbb{R}^2}$ Is Gaussian with
 - ightharpoonup mean $=\mu$
 - variance $\sigma^2 = Var\{S(x)\}$
 - correlation fxn $\rho(u) = Corr\{S(x), S(x')\}$
 - $u_i = ||x_i x'||$
- $Y_i = S(x_i) + Z_i$

Spatial Covariance $\rho(u)$

► Similar to Autocovariance in time series, except time lag is replaced by distance *u*.

Figure: Measurements are some distance u from each other.

Mattern Function

- General function describing how quickly the correlation decays.
- $\rho(u) = \{2^{\kappa 1} \Gamma(\kappa)\}^{-1} \frac{u}{\phi} {}^{\kappa} K_{\kappa}(\frac{u}{\phi})$
 - \triangleright κ : order of differentiation, smoothness.
 - $ightharpoonup \phi$: scale, degree of decay over time.
 - K_{κ} (): Modified Bessel function.
- Special cases:
 - $\kappa = 0.5$: Exponential decay in \mathbb{R}^2 .
 - $\kappa \to \infty$: Gaussian decay in \mathbb{R}^2 .
- ightharpoonup and ϕ are not orthogonal.

Outline

Motivation

Classical Frequentist Spatial Stats Spatial Relationships Estimating $\rho(u)$

Maximum Likelihood Estimation

Kriging

Extension - Preferential Sampling

Bayesian Estimation and Prediction

Variogram

Visualising the decay of $\rho(u)$ with distance

- ▶ Bin the variance between all the points into set distances
- $ightharpoonup au^2$: The nugget
- au $au^2 + \sigma^2 = Var(y)$: The sill
- ▶ When $V_Y(u) = Var(y)$: Range

Variogram part 2

What is it actually?

$$V(u) = \frac{1}{2} Var\{S(x)S(xu)\}$$
 (1)

$$=\sigma^2\{1-\rho(u)\}\tag{2}$$

Gaussian model

$$Y \sim N(D\beta, \sigma^2 R(\phi) + \tau^2 I)$$

with covariates matrix $D_{n \times p}$, regression coefficients β , covariance of a parametric model for S(x), and nugget variance τ^2 .

▶ The log-likelihood function is

$$L(\beta, \tau^2, \sigma^2, \phi) = -0.5\{n\log(2\pi) + \log\{|(\sigma^2 R(\phi) + \tau^2 I)|\} + (y - D\beta)^T(\sigma^2 R(\phi) + \tau^2 I)^{-1}(y - D\beta)\}$$

Let $\nu^2 = (\tau^2/\sigma^2)$, $V = R(\phi) + \nu^2 I$, then $L(\beta, \tau^2, \sigma^2, \phi)$ is maximized at

$$\hat{\beta}(V) = (D^T V^{-1} D)^{-1} D^T V^{-1} y \tag{4}$$

$$\hat{\sigma}^{2}(V) = n^{-1} \{ y - D\hat{\beta}(V) \}^{T} V^{-1} \{ y - D\hat{\beta}(V) \}$$
 (5)

- ▶ Plug (1) and (2) into $L(\beta, \tau^2, \sigma^2, \phi)$ and obtain the concentrated log-likelihood: $L_0(\nu^2, \phi) = -0.5\{n\log(2\pi) + n\log\hat{\sigma}^2(V) + \log|V| + n\}$
- ▶ Optimize $L_0(\nu^2, \phi)$ numerically with respect to ν and ϕ ; back substitution to obtain $\hat{\sigma}^2$ and $\hat{\beta}$

- ▶ Re-parameterisation of V can be used to obtain more stable estimation, e.g the ratio σ^2/ϕ is more stable than σ^2 and ϕ
- ► Computational tool: profile log-likelihood: Assume a model with parameters (α, ψ) ,

$$L_p(\alpha) = L(\alpha, \hat{\psi}(\alpha)) = \max_{\psi}(L(\alpha, \psi))$$

- ► Non-Gaussian data:
 - (1): transformation to Gaussian (2) generalized linear model
- ▶ (1) E.g. Box-Cox transformation; denote the transformed responses $Y^* = (Y_1^*, ..., Y_n^*)$, and fit a Gaussian model

$$Y^* \sim N(D\beta, \sigma^2\{R(\phi) + \nu^2 I\})$$

Computationally demanding, transformation may impede scientific interpretation

▶ (2) Generalized linear model

$$L(\theta|S) = \prod_{i=1}^{n} f_i(y_i|S,\theta)$$

$$L(\theta,\phi) = \int_{S} \prod_{i=1}^{n} f_i(y_i|s,\theta)g(s|\phi)ds$$

Involve high dimensional integration; need MCMC/Hierarchical likelihood/Generalized estimating equations

Maximum Likelihood Estimation (An Example)

Model with constant mean							
Model	$\hat{\mu}$			$\hat{\sigma}^2$	$\hat{\phi}$	$\hat{ au}^2$	logL
$\kappa = 0.5$	863.71			4087.6	6.12	0	-244.6
$\kappa = 1.5$	848.32			3510.1	1.2	48.16	-242.1
$\kappa = 2.5$	844.63			3206.9	0.74	70.82	-242.33
Model with linear trend							
Model	\hat{eta}_0	$\hat{oldsymbol{eta}}_1$	\hat{eta}_2	$\hat{\sigma}^2$	$\hat{\phi}$	$\hat{ au}^2$	logL
$\kappa = 0.5$	919.1	-5.58	-15.52	1731.8	2.49	0	-242.71
$\kappa = 1.5$	912.49	-4.99	-16.46	1693.1	0.81	34.9	-240.08
$\kappa=2.5$	912.14	-4.81	-17.11	1595.1	0.54	54.72	-239.75

Figure: left: constant mean model; right: linear trend surface circle: sample variogram; solid line $\kappa=2.5$; dashed line $\kappa=1.5$; dotted line $\kappa=0.5$

Kriging

- ▶ Suppose our objective is to predict the value of the signal at an arbitrary location S(x).
- Note that (S(x), Y) is multivariate Gaussian with mean vector $\mu \mathbf{1}$ and covariance matrix

$$\begin{pmatrix} \sigma^2 & \sigma^2 r^T \\ \sigma^2 r & \sigma^2 V \end{pmatrix},$$

where r is a vector with elements $r_i = \rho(\|x - x_i\|)$ and $V = \sigma^2 R + \tau^2 I$.

Kriging

Conditional mean and variance:

$$E(S(x)|Y) = \mu + r^T V^{-1}(Y - \mu \mathbf{1}),$$

 $Var(S(x)|Y) = \sigma^2 (1 - r^T V^{-1} r).$

- Two types:
 - lacktriangleright Ordinary kriging: replace μ by its weighted least squares estimator

$$\hat{\mu} = (\mathbf{1}^T V^{-1} \mathbf{1})^{-1} \mathbf{1}^T V^{-1} Y.$$

- Simple kriging: replace μ by $\hat{\mu} = \bar{y}$.
- ▶ Both kriging predictors can be expressed as a linear combination: $\hat{S}(x) = \sum_{i=1}^{n} a_i(x) Y_i$, but $\sum_{i=1}^{n} a_i(x) = 1$ only for ordinary kriging.

The Problem

- So far we have assumed the sampling locations X are fixed, or assumed known.
- What if the sampling locations depend on the underlying field S?

Example

- ▶ Pollution data from measuring stations
- Ocean temperature data from marine mammals

Figure: Example of a single realisation of S and corresponding 100 sampling locations selected using a spatial Poisson Process with intensity $\lambda(x) = \exp(\beta S(x))$.

(a) Example of 100 preferentially (b) Example of 100 non-preferentially sampled locations ($\beta=2$) sampled locations ($\beta=0$)

Solution

▶ We must account for the dependence between *X* and *S*.

$$L(\theta) = \int [X, Y, S] dS.$$
 (6)

- ▶ Diggle et al. 2010 Monte Carlo
- Integrated Nested Laplace Approximation (INLA) Joe
- Template Model Builder Danny

Results

Model	Parameter	Standard MLE	TMB
Preferential	Bias	(0.77, 1.36)	(0.41, 0.94)
Preferential	Root-mean-square error	(0.86, 1.40)	(0.60, 1.05)

Table: Comparison of approximate 95% confidence intervals for the root-mean-square errors and bias between standard MLE and TMB over 50 independent simulations for preferential ($\beta=2$) at location $x_0=(0.49,0.49)$.

Problems with the MLE approach

- ▶ MLE method seperates parameter estimation and spatial prediction as two distinct problems.
- ► First the model is formulated, and it's parameters estimated.
- These estimated parameters are assumed true and spatial prediction equations are computed with these estimates plugged-in.
- Parameter uncertainty is ignored when making spatial prediction.
- ▶ Parameter uncertainty is often VERY HIGH. Even with seemingly large datasets (n > 10,000), the positive correlation dilutes the information present. Largely different values of correlation parameters ϕ often fit the data equally well.

Bayesian approach

 Account for parameter uncertainty when making spatial prediction and hence make more conservative estimates of prediction accuracy.

$$[S|Y] = \int [S|Y, \theta][\theta|Y]d\theta$$

- ▶ The Bayesian predictive distribution is a weighted average of plug-in predictive distributions $[S|Y,\hat{\theta}]$, weighted by the posterior uncertainty of the model values θ .
- Arbitrary nonlinear functional T(S) of S can be estimated (along with credible intervals, standard errors etc) by simple deterministic transformations of the posterior samples of S.

Problems with Bayesian implementation

- ▶ Due to the flexibility of the Matern correlation function, many different combinations of the correlation parameters ϕ fit the data equally well.
- A consequence of this is that the posterior distribution of $[\theta|Y]$ has non-negligible probability mass across a wide range of the parameter space.
- ► The first consequence of this is that posterior distributions are extremely sensitive to prior distributions. Apparently 'diffuse' priors can still heavily affect the location and scale of the posterior distribution.
- ▶ Secondly, MCMC samplers must be formulated with large transition jumps to ensure the whole parameter space is explored. This leads to VERY LONG MCMC chains needing to be run (100,000 +).

The joy of INLA

- ▶ INLA enables **very** accurate deterministic approximations to both $[\theta|Y]$ and $\int [S|Y,\theta][\theta|Y]d\theta$ to be obtained.
- ► INLA handles most well-known response functions (Binomial, Poisson, Gamma etc), enabling Generalized Geostatistical Models to be fit.
- Through a combination of high-accuracy Laplace approximations and cubic spline interpolation, values from INLA are often indistinguishable from the 'true' values from an MCMC chain.
- INLA is FAST. Taking only seconds minutes to run compared with the hours - days that MCMC can take.
- Multiple responses can be fit to the same spatial process! (E.g poisson process and intensity process enabling preferential sampling to be investigated.)

Real example: Predicting total Tin in Cornwall, UK

Figure: Predicted mean field .

Predicted log total tin

Real example: Predicting total Tin in Cornwall, UK

Figure: Upper and lower 95% credible fields.

