

AOD444/AOI444

60V N-Channel MOSFET

General Description

The AOD444/AOI444 combine advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\rm DS(ON)}$. Those devices are suitable for use in PWM, load switching and general purpose applications.

Product Summary

 $\begin{array}{ll} V_{DS} & 60V \\ I_{D} \; (at \, V_{GS} \! = \! 10V) & 12A \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 10V) & < 60 m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 4.5V) & < 85 m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
		Symbol	Maximum	Units			
Drain-Source Voltage		V_{DS}	60	V			
Gate-Source Voltage		V_{GS}	±20	V			
Continuous Drain	T _C =25°C		12				
Current ^G	T _C =100°C	ID	9	A			
Pulsed Drain Current ^C		I _{DM}	30				
Continuous Drain Current	T _A =25°C		4	Δ.			
	T _A =70°C	IDSM	3	A			
Avalanche Current ^C		I _{AS} , I _{AR}	19	А			
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	18	mJ			
	T _C =25°C	В	20	W			
Power Dissipation ^B	T _C =100°C	P _D	10	VV			
	T _A =25°C	В	2.1	W			
Power Dissipation ^A T _A =70°C		P _{DSM}	1.3	v			
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 175	°C			

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	17.4	30	°C/W		
Maximum Junction-to-Ambient AD	Steady-State	$\kappa_{\theta JA}$	50	60	°C/W		
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	4	7.5	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC P	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =48V, V _{GS} =0V				1	^
	Zero Gate Voltage Drain Current		T _J =55°C			5	μА
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250 \mu A$		1	2.4	3	V
$I_{D(ON)}$	On state drain current	V _{GS} =10V, V _{DS} =5V		30			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =12A			47	60	mΩ
			T _J =125°C		85	100	1115.2
		V_{GS} =4.5V, I_D =6A			67	85	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =20A			14		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.74	1	V
I _S	Maximum Body-Diode Continuous Current					12	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =30V, f=1MHz		360	450	540	pF
C _{oss}	Output Capacitance			40	61	80	pF
C _{rss}	Reverse Transfer Capacitance			16	27	40	pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.6	1.4	2.0	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge				7.5	10	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =30V, I _D =12A			3.8	5	nC
Q_{gs}	Gate Source Charge				1.2		nC
Q_{gd}	Gate Drain Charge				1.9		nC
t _{D(on)}	Turn-On DelayTime				4.2		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =2.5 Ω , R_{GEN} =3 Ω			3.4		ns
$t_{D(off)}$	Turn-Off DelayTime				16		ns
t _f	Turn-Off Fall Time				2		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =12A, dI/dt=100A/μs			27	35	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =12A, dI/dt=100A/μs			30		nC

A. The value of R_{0JA} is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The Power dissipation P_{DSM} is based on R $_{0JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T $_{J(MAX)}$ =175°C. Ratings are based on low frequency and duty cycles to keep initial T $_{J}$ =25°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T $_{J(MAX)}$ =175°C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 6: Body-Diode Characteristics (Note E)

- ▶ 汇集 8,000 家半导体厂商,坐拥 70,000,000 个电子元器件 datasheet
- 涉及详细参数,器件、封装、应用图,参考设计,中文PDF。
- 🕨 工程师首选 datasheet 全球数据中心,你能想到我们就能搜到

集成电路查询网:www.datasheet5.com

- 国内唯一一家电路图分享、交易平台,让电路体现你电子行业的价值
- 聚焦万量级热门免费电路,哪怕你是一个初学者,手把手教你创造出实物。

电路城:www.cirmall.com

- 百万电子行业工程师(创客)知识交流平台,电路图免费分享乐园
- 百万精品电路图为你倾心准备
- > 工程师的驿站、技术达人停泊的港湾

电子电路图网:www.cndzz.com

- 依托全球电子业 16 年的 Findchips 充当幕后器件搜索引擎
- ▶ 国内首家实时 BOM 批量比价平台,让你站在最高的舞台纵观电子行业

批量器件比价:www.bom2buy.com

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

