

Machine learning avec R

FAYZI Houssam

Plan

- ☐ Comprendre le Machine learning
- ☐ Application du Machine learning
- Langages
- ☐ Types
- ☐ Implémentation du Machine learning algorithme avec R

C'est quoi ML?

• L'apprentissage automatique(en anglais machine learning est un type d'intelligence artificielle qui confère aux ordinateurs la capacité d'apprendre sans être explicitement programmés.

• Il consiste en la mise en place d'algorithme ayant pour objectif d'obtenir une analyse prédictive à partir de données, dans un but précis.

Comprendre le ML

Exemples:

- La voiture autonome de Google
- Classification des emails Gmail
- Moteur de recherche de Google
- La traduction en temps réel de Skype.
- la reconnaissance vocal de Siri d'Apple.
- La reconnaissance facial.

• Les algorithme de Machine learning utilisent donc nécessairement une phase dite d'apprentissage.

• Les programmes d'apprentissage automatique détectent des schémas dans les données et ajustent leur fonctionnement en conséquence.

Difference Entre Machine Learning / Data Mining

 Data Mining: retraiter les données déjà connues pour en sortir des propriétés et des précisions encore inconnues.

 Machine Learning: apprendre aux systèmes à prédire ce que pourrait être le résultat sorti de données encore inconnues à partir de données connues.

Les Language de Machine learning

Why R?

Orienté objet

Open source

programmation fonctionnelle

OUTPUT f(x)

Turing complet

Les étapes du machine learning

Les Types du ML

Dans ce chapitre, je vais vous présenter les grandes familles d'algorithmes d'apprentissage existantes.

Apprentissage "supervisé" ou "non supervisé"

Apprentissage supervisé

- Règle de Bayes
- Classification naïve bayésienne
- Régression multivariée
- Régression régularisée
- Protocole d'apprentissage
- Les k plus proches voisins
- Dilemme biais/variance
- Arbre de décision
- Bagging
- Forêt aléatoire
- Perceptron
- > Perceptron multicouche
- Les réseaux de neurones
- Deep learning

Apprentissage supervisé

- K-moyennes
- > Cartes auto-organisatrices

PARTIE II

Implémentation du Machine Learning en prédictions des mouvement des marchés financiers

Données utilisés

- Les données quotidiennes historiques du EUR/USD (13/03/2012 → 13/03/2020)
- 2074 lignes
- 4 colonnes

Explication des données

- Noms et explication des colonnes :
- Date : le jour concerné
- Prix_debut : le prix à 00:00 (début de la journée)
- Prix_haut : prix maximum pendant la journée
- Prix_bas : prix minimum pendant la journée
- Prix_fin : le prix à la fin de la journée

Terminologie

- EURUSD : le taux d'échange entre l'EURO et le DOLLAR Américain
- Exemple : prix = $1,35000 \rightarrow 1$ EUR = 1,35 USD
- Le marcher des devises est le plus grand marcher du monde (capital de 5 trillions dollars par jour échangé entre banques, individus)

Visualisation

Prédiction du Prix du fin de la journée en utilisant la méthode KNN

Chargement des données

donnees5<-read.csv("C:/Users/HOUSSAM/Desktop/EURUSD.csv",stringsAsFactors = FALSE)</pre>

Importation des données depuis un fichier CSV

Visualisation

Remarques

- On observe une forte corrélation entre le prix au début de la journée et le prix à la fin
- Très petite variance entre les points
- La régression linéaire peut être la meilleure méthode de prédire le future puisqu'on a des point sous forme d'une ligne

Test de corrélation

 On utilise la fonction col() pour déterminer le niveau de corrélation entre les variables :

```
> cor(donnees5$prix_debut, donnees5$prix_fin)
[1] 0.9982876
```

 99% de corrélation positive entre le prix de début et le prix de la fin

Test de corrélation

 On va prendre les colonnes (prix_debut,prix_haut,prix_bas,prix_fin) pour savoir la corrélation entre eux :

 Donc notre variable cible (prix_fin) est très prédictible

Normalisation

```
normalize <- function(x) {
  return ((x - min(x)) / (max(x) - min(x))) }
donnees5.subset.norm<-as.data.frame(lapply(donnees5.subset, normalize))</pre>
```


Training set

Contient 70% des données choisi par hasard

• Contient 30% des données choisi par hasard :

```
test <- donnees5.subset.norm[-dat.d,] # 30% test data
test_labels <- donnees5.subset[-dat.d,4]</pre>
```


 On a choisi k=2 qui a donné les meilleures résultats (marge d'erreur minimum)

```
donnees5_pred <- unfactor(knn(train = train, test = test, cl = train_labels, k=2))
```

 La fonction unfactor() empêche la transformations des données en facteurs

 Pour évaluer notre modèle on a créé une nouvelle dataset qui va stocker les résultat de knn (prédite) et les résultat réelles (observé)

```
# fusionner `donnees5_pred` et `testLabels`
fusion <- data.frame(donnees5_pred, testLabels,stringsAsFactors = FALSE)
# noms des colonnes
names(fusion) <- c("Predite", "Observe")</pre>
```


 Ensuite on a calculé la différence entre ces deux variables pour savoir la marge d'erreur

Remarques

 On observe une distribution normale sur l'histogramme des différence donc on peut avoir un intervalle qui contient la majorité des différences (erreurs)

Evaluation du modèle

- Donc après avoir déterminer graphiquement l'intervalle, on peut dire qu'on a une marge d'erreur de <u>±0,002</u>
- Conclusion du modèle :
- Prix à la fin de la journée = Prix prédit par KNN ±0,002

Prédiction du Prix du fin de la journée en utilisant la méthode de la régression linéaire

Remarques

 On a déjà observé le nuage des point antérieurement et mentionné que cette méthode peut être plus appropriée

Variables utilisées

 Dans cet exemple on a prédit la prix de la fin par le prix au début :

```
\label{lem:donnees5.subset1} $$ donnees5.subset1 < -lem: connection of the connect
```


Interprétation des résultats

Quelques informations sur les résidus, on a une distribution symétrique

```
call:
lm(formula = prix_fin ~ prix_debut, data = donnees5.subset1)
Residuals:
                10 Median
     Min
                                            Max
-0.028232 -0.003414 -0.000016 0.003317
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.002355 0.001539
                                 1.53
                                         0.126
                    0.001285 776.63 <2e-16 ***
prix_debut 0.997994
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.005788 on 2071 degrees of freedom
Multiple R-squared: 0.9966, Adjusted R-squared: 0.9966
F-statistic: 6.032e+05 on 1 and 2071 DF, p-value: < 2.2e-16
```


Interprétation des résultats

```
Informations sur les moindres-
carrés
a = 0,997994
b = 0,002355
Y = 0,997994X + 0,002355
p-value < 2e-16 < 0,05
Donc le prix_debut fait une
estimation fiable du prix fin
```

```
call:
lm(formula = prix_fin ~ prix_debut, data = donnees5.subset1)
Residuals:
                10 Median
     Min
                                             Max
-0.028232 -0.003414 -0.000016 0.003317
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.002355 0.001539
                                  1.53
                                         0.126
prix_debut 0.997994
                    0.001285 776.63
                                       <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.005788 on 2071 degrees of freedom
Multiple R-squared: 0.9966, Adjusted R-squared: 0.9966
F-statistic: 6.032e+05 on 1 and 2071 DF, p-value: < 2.2e-16
```


Interprétation des résultats

Multiple R-squared: 0.9966, Adjusted R-squared: 0.9966

F-statistic: 6.032e+05 on 1 and 2071 DF, p-value: < 2.2e-16

```
Coefficient de détermination = 0,9966
F = 6,032^{e}+05
```


Résultat

• Prix de la fin journée = 0,997994 x Prix début journée + 0,002355

Autres méthodes de prédiction

Concept

- Cette méthode consiste qu'après chaque x jours consécutives en une seule direction, on assume que le jour suivant va prendre une direction inverse
- Direction haussière prix_fin > prix_debut
- Direction baissière → prix_fin < prix_debut

- Création d'une nouvelle colonne :
- Direction haussière = 1
- Direction baissière = 0

```
#savoir les directions :
donnees$direction <- 1
donnees$direction <- ifelse(donnees$prix_debut > donnees$prix_fin,0,donnees$direction)
```


• Création d'une nouvelle colonne pour compter les jours consécutives en même direction :

```
#compter les jours consecutives ayant une seule direction :
donnees$compteur<-1
for (i in 2:nrow(donnees))
    {
      if(donnees[i,]$direction == donnees[i-1,]$direction)
      {
          donnees[i,]$compteur<-donnees[i-1,]$compteur+1
      }
}</pre>
```


 Création d'une nouvelle colonne contenant le direction du jour suivant (observation)

```
#savoir la direction du jour suivant:
shift<-function(x,n)
{
   c(x[-(seq(n))],rep(NA,n))
}
donnees$direction_suiv<-shift(donnees$compteur,1)</pre>
```


3 jours de direction haussière consécutifs

Le marché va changé la direction le jour suivant

3 jours de direction baissière consécutifs

• Ensuite on va calculer les probabilités de continuation/changement de direction :

```
#tableau des evenements :
table<-table(donnees$compteur,donnees$direction_suiv)
table
#probabilites des evenements:
table.pourcentage<-prop.table(table,1)
#table de probabilite:
print.table(local({table.pourcentage[table.pourcentage==0]<-NA;table.pourcentage}))</pre>
```


Après 6 jours consécutifs en même direction on a une probabilité de 80% pour que le jour suivant va prendre le direction inverse et 20% pour qu'il va continuer en même direction le 7ème jour

Conclusion méthode 1

- Cette méthode simple peut être combiner avec les méthodes de prédiction qu'on a déjà étudié :
- Par exemple on a une marge d'erreur de ±0,002 en KNN, on peut réduire cette marge sachant que le prix a une forte probabilité de changer la direction le jour suivant
- On peut aussi éliminer quelques fausses prédiction (prédiction haussière par KNN et prédiction baissière par cette méthode) et compter seulement les prédictions en même direction par ces 2 méthodes pour augmenter renforcer notre probabilité

Conclusion méthode 1

- Exemple temps réel :
- L'heure et 00:00, sachant le prix du début de la journée à 00:00 est 1,3000, on peut prédire le prix de la fin de cette journée par KNN, supposons qu'il est 1,5000, donc on a prédit que ce jour à une direction haussière puisque 1,3<1,5, donc on a décidé d'acheter maintenant à 1,3 et vendre en fin de la journée à 1,5 → un profit de 0,2 par chaque unité acheté
- Supposons qu'on est déjà en 7^{ème} jour consécutif en direction haussière donc on a une probabilité de 80% que ce jour là va prendre une direction baissière
- → Donc on a 2 prédictions opposés → on évite d'acheter ce jour

- Cette méthode est plus complexe que la première
- On utilise ce qu'on appelle une moyenne mobile et on peut prédire le prix de la fin du jour seulement par savoir X prix de fin antérieurs par le calcul de la moyenne de X prix_fin

- Le ligne rouge représente la moyenne mobile
- On peut prédire le prix de la fin de la journée en observant la tendance du moyenne mobile

- On a de méthode de prédiction :
- 1- si la direction de la moyenne mobile et haussière → les prix de fin des jours de futurs vont continuer à augmenter jusqu'au changement de direction de la moyenne mobile
- 2- on calcul la moyenne des distances entre les points et la ligne et si un point a une distance beaucoup plus grandes de la moyenne (très loin de la ligne), on dit que le/les points suivant vont retourner vers cette moyenne

 Ces méthodes sont plus subjectives et plus complexe à évaluer , donc on va utiliser le graphes pour les évaluer

Conclusion

 Machine Learning est un domaine très intéressant utilisé par les grandes banques, plus que 70% des décisions d'achat/vente dans les bourses est faites par des algorithmes développés en utilisant le concept du Machine Learning

Sources:

- https://www.tradingview.com/symbols/EURUSD/
- https://seekingalpha.com/article/4230982-algo-tradingdominates-80-of-stock-market