CPSC 661: Sampling Algorithms in ML

Andre Wibisono

March 8, 2021

Yale University

References

 Dwivedi, Chen, Wainwright, and Yu, Log-Concave Sampling: Metropolis-Hastings Algorithms are Fast, Journal of Machine Learning Research, 2019

Recap: To sample from ν on \mathbb{R}^n

- 1. Start from any Markov chain P
- 2. Apply Metropolis-Hastings filter to get \tilde{P} reversible wrt ν
- 3. Assume ν is α -SLC, so isoperimetric with $\psi = \Omega(\sqrt{\alpha})$
- 4. Show \tilde{P} satisfies one-step overlap property:

$$x, y \in \mathcal{R}_s, \ \|x - y\|_2 \le \Delta_s \ \Rightarrow \ \mathsf{TV}(\tilde{P}_x, \tilde{P}_y) \le \frac{3}{4}$$

Recap: To sample from ν on \mathbb{R}^n

- 1. Start from any Markov chain P
- 2. Apply Metropolis-Hastings filter to get \tilde{P} reversible wrt ν
- 3. Assume ν is α -SLC, so isoperimetric with $\psi = \Omega(\sqrt{\alpha})$
- 4. Show \tilde{P} satisfies one-step overlap property:

$$x, y \in \mathcal{R}_s, \|x - y\|_2 \le \Delta_s \Rightarrow \mathsf{TV}(\tilde{P}_x, \tilde{P}_y) \le \frac{3}{4}$$

- $\Rightarrow \tilde{P}$ has s-conductance $\phi_s = \Omega(\sqrt{\alpha} \Delta_s)$
- \Rightarrow mixing time in TV distance: $\tau(\epsilon) = O\left(\frac{1}{\alpha \Delta_s^2} \log \frac{2M}{\epsilon}\right)$

What random walk?

```
1. P = \text{Brownian motion (Gaussian walk)}
\Rightarrow \tilde{P} = \text{Metropolis Random Walk (MRW)}
(Last time)
```

```
2. P = \text{Unadjusted Langevin Algorithm (ULA)}

\Rightarrow \tilde{P} = \text{Metropolis-Adjusted Langevin Algorithm (MALA)}

(Today)
```

Last time: Metropolis Random Walk (MRW)

To sample from $\nu \propto e^{-f}$ on \mathbb{R}^n :

1. From x_k , let

$$y_k = x_k + \sqrt{2\eta} \, z_k$$

where $z_k \sim \mathcal{N}(0, I)$ is independent, $\eta > 0$ is step size.

2. Set

$$x_{k+1} = \begin{cases} y_k & \text{with prob } a_{x_k}(y_k) = \min\left\{1, \frac{\nu(y_k)}{\nu(x_k)}\right\} \\ x_k & \text{with prob } 1 - a_{x_k}(y_k). \end{cases}$$

Set up

Assume $\nu \propto e^{-f}$ on \mathbb{R}^n is α -SLC and L-log-smooth:

$$\alpha I \leq \nabla^2 f(x) \leq LI$$

Define **condition number**: $\kappa = \frac{L}{\alpha} > 1$

•
$$\nu = \mathcal{N}(\mu, \Sigma)$$
: $\nabla^2 f(x) = \Sigma^{-1}$, $\alpha = \frac{1}{\lambda_{\max}(\Sigma)}$, $L = \frac{1}{\lambda_{\min}(\Sigma)}$, $\kappa = \frac{\lambda_{\max}(\Sigma)}{\lambda_{\min}(\Sigma)}$

Warm start

Let $x^* = \arg\max_{x \in \mathbb{R}^n} \nu(x) = \arg\min_{x \in \mathbb{R}^n} f(x)$ be the *mode* of ν

Lemma: $\rho_0 = \mathcal{N}\left(x^*, \frac{1}{L}I\right)$ is warm with $M = M_{\nu}^{\infty}(\rho_0) \leq \kappa^{n/2}$

- With $M = \kappa^{n/2}$, $\log(\frac{2M}{\epsilon}) = O(n \log \frac{\kappa}{\epsilon^{1/n}})$
- So mixing time is

$$\tau(\epsilon) = O\left(\frac{n}{\alpha \Delta_s^2} \log\left(\frac{\kappa}{\epsilon^{1/n}}\right)\right) = \tilde{O}\left(\frac{n}{\alpha \Delta_s^2}\right)$$
ignores log factors

6

Last time: Mixing time of MRW

Theorem

Under setup above, with step size

$$\eta = c \frac{1}{n\kappa L \log(\frac{\kappa}{\epsilon^{1/n}})} = \tilde{\Theta}\left(\frac{1}{n\kappa L}\right),$$

MRW satisfies one-step overlap with

$$\Delta_s^2 \ge \eta = \widetilde{\Theta}\left(\frac{1}{n \, \text{KL}}\right)$$

so the mixing time of MRW is $\sqrt{\frac{n}{\alpha \Delta_s^2}} = \frac{n}{\alpha \eta} = \frac{n}{\alpha} \cdot nKL = n^2 K^2$

$$\tau(\epsilon) = O\left(n^2 \kappa^2 \log^2\left(\frac{\kappa}{\epsilon^{1/n}}\right)\right) = \tilde{O}\left(n^2 \kappa^2\right).$$

Today

```
1. P = Brownian motion (Gaussian walk) 
 \Rightarrow \tilde{P} = Metropolis Random Walk (MRW) 
 (Last time)
```

```
2. P = \text{Unadjusted Langevin Algorithm (ULA)}

\Rightarrow \tilde{P} = \text{Metropolis-Adjusted Langevin Algorithm (MALA)}

(Today)
```

Unadjusted Langevin Algorithm (ULA)

To sample from $\nu \propto e^{-f}$ on \mathbb{R}^n :

$$x_{k+1} = x_k - \eta \nabla f(x_k) + \sqrt{2\eta} z_k$$
gradient
Becomin descent

descent

Gaussian noise

where $z_k \sim \mathcal{N}(0, I)$ is independent and $\eta > 0$ is step size.

Unadjusted Langevin Algorithm (ULA)

To sample from $\nu \propto e^{-f}$ on \mathbb{R}^n :

$$x_{k+1} = x_k - \eta \nabla f(x_k) + \sqrt{2\eta} z_k$$

where $z_k \sim \mathcal{N}(0, I)$ is independent and $\eta > 0$ is step size.

Let P = Markov chain for ULA: $P_x = \mathcal{N}(x - \eta \nabla f(x), 2\eta I)$

$$P_{x}(y) = \frac{1}{(4\pi\eta)^{n/2}} \exp\left(-\frac{\|y - x + \eta \nabla f(x)\|^{2}}{4\eta}\right)$$

Note: not symmetric: $P_x(y) \neq P_y(x)$

Note: Does *not* converge to ν (even in Gaussian case, see PS1)

Metropolis-Adjusted Langevin Algorithm (MALA)

To sample from $\nu \propto e^{-f}$:

1. From x_k , let

ULA:
$$y_k = x_k - \eta \nabla f(x_k) + \sqrt{2\eta} z_k$$

where $z_k \sim \mathcal{N}(0, I)$ is independent, $\eta > 0$ is step size.

2. Set

$$\text{MH:} \quad x_{k+1} = \begin{cases} y_k & \text{with prob } a_{x_k}(y_k) = \min\left\{1, \frac{\nu(y_k)P_{y_k}(x_k)}{\nu(x_k)P_{x_k}(y_k)}\right\} \\ x_k & \text{with prob } 1 - a_{x_k}(y_k). \end{cases}$$

Mixing time of MALA

Same setup: ν is α -SLC and L-log-smooth, $\kappa = \frac{L}{\alpha}$

Warm start $\rho_0 = \mathcal{N}(x^*, \frac{1}{L}I)$ with $M = \kappa^{n/2}$

Assume $\kappa \ll n$ (high-dimensional regime)

Theorem

With step size
$$\eta = \Theta\left(\frac{1}{nL}\right)$$
, MALA has mixing time

$$\tau(\epsilon) = O\left(n^2 \kappa \log\left(\frac{\kappa}{\epsilon^{1/n}}\right)\right) = \tilde{O}(n^2 \kappa).$$

Proof

Show MALA satisfies one-step overlap: (see [DCWY'19, Theorem 1])

Lemma: If $\eta \leq c \frac{1}{nL} \min \left\{ 1, \sqrt{\frac{n}{\kappa r(s)^2}} \right\}$, then $\Delta_s^2 \geq \eta$.

- With $s = \frac{\epsilon}{2M}$, $r(s) \sim \sqrt{\frac{1}{n} \log \frac{1}{s}} = \sqrt{\log(\frac{\kappa}{\epsilon^{1/n}})}$
- Assume $\kappa \log(\frac{\kappa}{\epsilon^{1/n}}) \leq n$: can take $\eta = \Theta(\frac{1}{n!})$ to get $\Delta_s^2 \geq \eta$
- ⇒ mixing time of MALA is

$$\tau(\epsilon) = O\left(\frac{n}{\alpha \Delta_s^2} \log\left(\frac{\kappa}{\epsilon^{1/n}}\right)\right) = O\left(n^2 \kappa \log\left(\frac{\kappa}{\epsilon^{1/n}}\right)\right) = \tilde{O}(n^2 \kappa)$$

Comparison

To sample from ν on \mathbb{R}^n which is α -SLC and L-log-smooth, $\kappa = \frac{L}{\alpha}$

	Algorithm	Step size	Mixing time
zero- order	MRW	$\tilde{\Theta}\left(\frac{1}{n\kappa L}\right)$	$\tilde{O}(n^2\kappa^2)$
first- order (va. VF)	MALA	$\tilde{\Theta}\left(\frac{1}{nL}\right)$	$\tilde{O}(n^2\kappa)$

Comparison: Gaussian

Figure 1. Scaling of the approximate mixing time \hat{k}_{mix} (refer to the discussion after equation (19) for the definition) on multivariate Gaussian density (19) where the covariance has condition number $\kappa = 4$. (a) Dimension dependency. (b) Error-tolerance dependency.

Comparison: Mixture of Gaussians

Figure 4. Discrete TV error on a two component Gaussian mixture. (a) Behavior of three different random walks. (b) Behavior of ULA with different choices of step sizes.

Better dimension dependence for MALA

[Chen, Dwivedi, Wainwright, Yu, Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients, JMLR, 2020]

- With conductance profile, use log-Sobolev instead of Poincaré inequality, reduce dependence $\log M \mapsto \log \log M$
- Mixing time of MALA: $\tilde{O}(n^2\kappa) \mapsto \tilde{O}(n\kappa)$ $\log m \sim n \log \kappa = \tilde{O}(n)$ $\log \log m \sim \log n$

Better dimension dependence for MALA

[Chen, Dwivedi, Wainwright, Yu, Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients, JMLR, 2020]

- With *conductance profile*, use log-Sobolev instead of Poincaré inequality, reduce dependence $\log M \mapsto \log \log M$
- Mixing time of MALA: $\tilde{O}(n^2\kappa) \mapsto \tilde{O}(n\kappa)$

[Chewi, Lu, Ahn, Cheng, Gouic, Rigollet, Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm, arXiv:2012.12810, 2020]

- Use Metropolis-Hastings as TV projection to get better n dependence (but still with $\log M$)

 O($n^{1/2}$)
- Explicit calculation in Gaussian case: $\eta \sim n^{-1/3} \Rightarrow \tau \sim O(n^{1/3})$
- How to combine them?

Why MALA?

$$MALA = ULA + Metropolis-Hastings$$

- better than MRW = Brownian Motion + Metropolis-Hastings
- Later also see: MALA as one-step discretization of Hamiltonian Monte Carlo (HMC)

Why ULA?

$$x_{k+1} = x_k - \eta \nabla f(x_k) + \sqrt{2\eta} z_k$$
gradient
descent

descent

• Discretization of continuous-time Langevin dynamics

$$\eta \rightarrow 0$$

Why Langevin dynamics?

Brownian
$$dx_t = \sqrt{2} dW_t$$
 $dX_t = -\nabla f(X_t) dt + \sqrt{2} dW_t$

gradient flow

 $\dot{x}_t = \frac{d}{dt} x_t = -\nabla f(x_t)$

The optimal dynamics for sampling

Next time: Optimization review

On space of distributions $P(x) = P(\mathbb{R}^n)$

- nice méteic: Wasseestein méteic $W_2(3,2)$
- nice functionals: KL divergence $H_2(3) = F(3)$

nla: V is strongly log-concave

How to get around convexity?

* Some results assume 2 is strongly log-concave
outside a ball

* Some results use isoperimetery

Nice conditions for 2000 e-F

* SLC is enough to get exponential contraction in W2 distance along Langevin dynamics

2. y satisfies Log-Sobolev inequality

$$\forall g: J_{\nu}(g) \geq \frac{\alpha}{2} H_{\nu}(g)$$

Relative Relative enterpy

information

* LSI is enough to Jet exp. convergence rate in Hu along Languin dynamics

* This is preserved under bounded preturbation

if
$$V = e^{-f}$$
 is $\alpha - LSI$

then
$$\tilde{\nu} = e^{-(f+g)}$$
 is $\tilde{\alpha} - LSI$

where
$$\tilde{\alpha} = \alpha - e^{-\cos(g)}$$

where
$$osc(g) = sup g(x) - inf g(y)$$

2 mmm