Today's Plan

HW3 Review

INFSCI 2500 Lecture 7 Binary Trees

- · HW 3 review
- · Midterm review
- · Understand what binary trees are
- · Binary Tree Theorem
- External Path Length Theorem
- HW 4 Assign

Midterm Review

Binary Tree Definition

A binary tree t is either empty or consists of an element, called the root, and two distinct binary trees called left subtree and right subtree.

leftTree(t)
rightTree(t)

Binary Tree Definition

- Root is shown at the top
- Elements are connected by lines
- Subtrees are also binary trees

• Examples 1-4

Binary Tree Properties

- tree whole structure
- root topmost element
- branch line from root to subtree
- leaf element with empty subtrees

Binary Tree Properties

• Number of leaves in a tree t (pseudocode)

```
if t is empty
    leaves(t) = 0
else if t consists of root only
    leaves(t) = 1
else
    leaves(t)=leaves(leftTree(t))+
    leaves(rightTree(t))
```

Binary Tree Properties

• Each element is uniquely identified by location (ex 5)

element value = "-" at root(t)

element value = "-" at root(rightTree(leftTree(t)))

Binary Tree Properties

- Parent X is parent of Y and Z (ex 6)
- Left child Y is left child of X
- Right child Z is right child of X
- Each element has 0,1, or 2 children
- Each element has 0 or 1 parent

Binary Tree Properties

Recursive definition of height pseudocode

```
if t is empty
    height(t)= -1
else
    height(t) =
    1+max[height(leftTree(t)),height(rightTree(t))]
```

Binary Tree Properties

- Two-tree
 - binary tree that is empty or each nonleaf has two branches (ex 8)

Binary Tree t is a two-tree if:
t is empty
OR
both subtrees of t are empty or
both subtrees of t are nonempty two-trees

Binary Tree Properties

- Ancestor A is an ancestor of B if B is in the subtree with root A
- Descendant B is a descendant of A if A is the root of the subtree B is in.
 - If A is ancestor of B, B is descendant of A
- Path If A is ancestor of B, path from A to B is the sequence where each element is the parent of the next in sequence (ex 4)

Binary Tree Properties

- · Height describes the whole tree
- Level partially describes an element's position
 level(e) = # of branches between root and e (ex 7)

Binary Tree Properties

 Full tree – binary tree t is full if it is a two-tree with all leaves on same level (ex 9)

Binary tree t is full if t is empty OR

t's left and right subtrees have the same height and are both full

Binary Tree Properties

- Height Number of branches between root and farthest leaf. (ex 7)
 - AKA 1 plus height of tallest subtree
 - Root only tree has height=0
 - Therefore empty tree has height = -1

Binary Tree Properties

• Recursive definition of level pseudocode

```
if x is the root element,
    level(x) = 0
else
    level(x)=1+level(parent(x))
```

Binary Tree Properties

- Number of elements n(t) in a full binary tree is proportional to height(t)

Binary Tree Properties

- Complete If tree t is full through to the nextto-lowest level and leaves are on the left.
- · All full binary trees are complete
 - reverse not true (ex 10)

Binary Tree Properties

 Position – we can assign position numbers to elements in a complete binary tree

Root = 0

If element at position i has children,

left child position = 2i+1

right child position = 2i+2 (ex11)

parent position = (i-1)/2 //int division

• We can use position to implement binary trees with arrays (element at position i stored at index i)

Binary Tree Theorem

For a binary tree t, leaves(t)<= n(t) and leaves(t)=n(t) IFF t is empty or t only has one element

Binary Tree Theorem

For a nonempty binary tree t

- 1. $leaves(t) \le [n(t)+1]/2.0$ //float division (ex 12)
- 2. $[n(t)+1]/2.0 \le 2^{height(t)}$
- 3. Equality holds in 1 IFF t is a two-tree (ex 13)
- 4. Equality holds in 2 IFF t is full (ex 13)

Binary Tree Theorem

Logic lesson – IFF implies a bi-conditional relationship.

Part 1 - leaves(t) \leq [n(t)+1]/2.0

Part 3 - Equality holds in 1 IFF t is a two-tree

If t is a nonempty two-tree THEN leaves(t) = [n(t)+1]/2.0AND if leaves(t) = [n(t)+1]/2.0THEN t must be a nonempty two-tree

Binary Tree Theorem

From part 4: $[n(t)+1]/2.0 = 2^{height(t)}$

height(t)= $log_2([n(t)+1]/2.0)$ = $log_2(n(t)+1)-1$

Therefore height(t) for a full tree grows logarithmically

Lists grow linearly!

Binary Tree Theorem

- Chain binary tree where each nonleaf has one child (ex 14)
- Height(t) grows linearly
- If we maintain nonchain trees, then inserting and removing will be O(log(n))
- Arraylist/linkedlist inserting/removing at index is O(n)

External Path Length

For a nonempty binary tree t,

external path length of t, E(t), is the sum of the depths(levels) of the leaves in t (ex 15)

External Path Length Theorem

For a binary tree t with k>0 leaves,

 $E(t) >= (k/2) floor(log_2k)$

Lower bound on external path length

Binary Tree Traversal

Traversal – algorithm which processes each element in binary tree t exactly once.

inOrder postOrder preOrder breadthFirst

postOrder Traversal

```
    Left-Right-Root

            First process left subtree, then right subtree, then root

    postOrder(t){
```

preOrder Traversal

- For an expression tree, preOrder produces preFix notation (polish notation)
- preOrder is AKA depth-first search
 goes all the way left (down) first, then right

inOrder Traversal

```
    Left-Root-Right

            First process left subtree, then root, then right subtree

    inOrder(t){

                 if(t is not empty){
                  inOrder(leftTree(t));
                  process root of t;
                  inOrder(rightTree(t));
                  }
```

} (ex 16)

inOrder Traversal

- For a binary search tree, inOrder processes elements in order (ex 17)
- Binary Search Tree (BST) all elements in left subtree are less than the root, which is less than all elements in the right subtree. Also both subtrees are BST's

postOrder Traversal

- For an expression tree, postOrder produces postFix notation (reverse polish notation)
- Expression tree Each nonleaf is a binary operator with operands in left and right subtrees.

preOrder Traversal

```
    Root-Left-Right

            First process root, then left subtree, then right subtree

    preOrder(t){

                 if(t is not empty){
                  process root of t;
                  preOrder(leftTree(t));
                  preOrder(rightTree(t));
                 }
                  (ex 19)
                 (ex 19)
```

breadthFirst Traversal (Level by Level)

- Root, then children of root left to right, then grandchildren of the root left to right, etc. (ex 20)
- Generate level by level a list of nonempty subtrees.
- Retrieve subtrees in the same order they were generated.
- · What data structure to use?

breadthFirst Traversal (Level by Level)

```
//queue is a queue of binary trees, tree is a binary tree
breadthFirst(t){
    if (t is not empty){
        queue.enqueue(t);
        while(queue not empty){
            tree = queue.dequeue;
            process tree's root;
            if(leftTree(tree) is not empty){
                 queue.enqueue(leftTree(tree));
                 if(rightTree(tree) is not empty){
                     queue.enqueue(rightTree(tree)); }
            }//end while
    }//end breadthFirst (ex 21)
```

Binary Tree Exercises (ex 22)

- What is the root element?
- What is n(t)?
- What is leaves(t)?
- What is height(t)?
- What is height(leftTree(t))?
- What is height(rightTree(t))?
- What is level of F?
- What is depth of C?

Build SimpleBinaryTree.java

Binary Tree Exercises

- How many children does C have?
- What is the parent of F?
- What are the descendants of B?
- What are the ancestors of F?
- Output of inOrder transversal?
- Output of postOrder transversal?
- Output of preOrder transversal?
- Output of breadthFirst transversal?

HW4 Assign

Binary Tree Exercises

- Construct a 2-tree that is not complete
- Construct a complete tree that is not a 2-tree
- Construct a complete 2-tree that is not full
- How many leaves in a 2-tree with 17 elements
- How many leaves in a 2-tree with 731 elements
- Why must a 2-tree always have an odd number of elements?