we have

$$\left\| f\left(\frac{u}{\|u\|}\right) \right\| \le k,$$

which implies that

$$||f(u)|| \le k||u||.$$

Thus, (3) holds.

If (3) holds, then for all $u, v \in E$, we have

$$||f(v) - f(u)|| = ||f(v - u)|| \le k||v - u||.$$

If k = 0, then f is the zero function, and continuity is obvious. Otherwise, if k > 0, for every $\epsilon > 0$, if $||v - u|| \le \frac{\epsilon}{k}$, then $||f(v - u)|| \le \epsilon$, which shows continuity at every $u \in E$. Finally, it is obvious that (4) implies (1).

Among other things, Proposition 37.56 shows that a linear map is continuous iff the image of the unit (closed) ball is bounded. Since a continuous linear map satisfies the condition $||f(u)|| \le k||u||$ (for some $k \ge 0$), it is also uniformly continuous.

If E and F are normed vector spaces, the set of all continuous linear maps $f: E \to F$ is denoted by $\mathcal{L}(E; F)$.

Using Proposition 37.56, we can define a norm on $\mathcal{L}(E; F)$ which makes it into a normed vector space. This definition has already been given in Chapter 9 (Definition 9.7) but for the reader's convenience, we repeat it here.

Definition 37.41. Given two normed vector spaces E and F, for every continuous linear map $f: E \to F$, we define the operator norm ||f|| of f as

$$||f|| = \inf \{k \ge 0 \mid ||f(x)|| \le k||x||, \text{ for all } x \in E\} = \sup \{||f(x)|| \mid ||x|| \le 1\}.$$

From Definition 37.41, for every continuous linear map $f \in \mathcal{L}(E; F)$, we have

$$||f(x)|| \le ||f|| ||x||,$$

for every $x \in E$. It is easy to verify that $\mathcal{L}(E; F)$ is a normed vector space under the norm of Definition 37.41. Furthermore, if E, F, G, are normed vector spaces, and $f: E \to F$ and $g: F \to G$ are continuous linear maps, we have

$$||g \circ f|| \le ||g|| ||f||.$$

We can now show that when $E = \mathbb{R}^n$ or $E = \mathbb{C}^n$, with any of the norms $\| \|_1, \| \|_2$, or $\| \|_{\infty}$, then every linear map $f: E \to F$ is continuous.

Proposition 37.57. If $E = \mathbb{R}^n$ or $E = \mathbb{C}^n$, with any of the norms $\| \cdot \|_1$, $\| \cdot \|_2$, or $\| \cdot \|_{\infty}$, and F is any normed vector space, then every linear map $f: E \to F$ is continuous.