N-Channel Logic Level Enhancement Mode Field Effect Transistor

P0903BDG TO-252 (DPAK) Lead-Free

PRODUCT SUMMARY

$V_{(BR)DSS}$	R _{DS(ON)}	I _D		
25	9.5m	50A		

- 1. GATE
- 2. DRAIN
- 3. SOURCE

ABSOLUTE MAXIMUM RATINGS (Tc = 25 °C Unless Otherwise Noted)

PARAMETERS/TEST C	SYMBOL	LIMITS	UNITS	
Gate-Source Voltage		V_{GS}	±20	V
Continuous Drain Current	T _C = 25 °C		50	
	T _C = 100 °C		35	A
Pulsed Drain Current ¹	I _{DM}	200		
Avalanche Current		I _{AR}	40	
Avalanche Energy	L = 0.1mH	E _{AS}	250	m l
Repetitive Avalanche Energy ²	L = 0.05mH	E _{AR}	8.6	— mJ
Power Dissipation	$T_C = 25^{\circ}C$	7	50	W
	$T_{\rm C} = 100 {\rm ^{\circ}C}$	PD	30	VV
Operating Junction & Storage Temp	T_{j}, T_{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for	T _L	275		

THERMAL RESISTANCE RATINGS

THERMAL RESIS	STANCE /	SYMBOL	TYPICAL	MAXIMUM	UNITS
Junction-to-Case		R _θ JC		2.5	
Junction-to-Ambient		$R_{ hetaJA}$		62.5	°C / W
Case-to-Heatsink		$ ightharpoonup R_{ hetaCS}$	0.6		

¹Pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS (T_C = 25 °C, Unless Otherwise Noted)

PARAMETER	SYMBOL	TEST CONDITIONS		LIMITS		
PARAMETER	STMBOL TEST CONDITIONS		MIN	TYP	MAX	UNIT
		STATIC				
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250 \mu A$	25			V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.6	3	V
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0V$, $V_{GS} = \pm 20V$			±250	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 20V$, $V_{GS} = 0V$			25	^
Zero Gate voltage Drain Current		$V_{DS} = 20V, V_{GS} = 0V, T_{C} = 125 ^{\circ}C$			250	μΑ

²Duty cycle ≤ 1%

NIKO-SEM

N-Channel Logic Level Enhancement Mode Field Effect Transistor

P0903BDG TO-252 (DPAK) Lead-Free

On-State Drain Current ¹	$I_{D(ON)}$	$V_{DS} = 10V, V_{GS} = 10V$	50			Α			
Drain-Source On-State	0	$V_{GS} = 4.5V, I_D = 20A$		11	16				
Resistance ¹	$R_{DS(ON)}$	$V_{GS} = 10V, I_D = 25A$		7.5	9.5	m			
Forward Transconductance ¹	g fs	$V_{DS} = 10V, I_{D} = 25A$		32		S			
DYNAMIC									
Input Capacitance	C_{iss}			J20ø	1800				
Output Capacitance	C _{oss}	$V_{GS} = 0V, V_{DS} = 15V, f = 1MHz$		600	1000	pF			
Reverse Transfer Capacitance	C _{rss}		\nearrow	350	500				
Total Gate Charge ²	Q_g			25	50				
Gate-Source Charge ²	Q_gs	$V_{DS} = 10V, V_{GS} = 10V,$	>	15		nC			
Gate-Drain Charge ²	Q_{gd}	I _D = 25A		10					
Turn-On Delay Time ²	t _{d(on)}			6	16				
Rise Time ²	t _r	$V_{DS} = 15V_{r}R_{L} = 1$		120	250	nS			
Turn-Off Delay Time ²	$t_{d(off)}$	$V_{DS} = 15V, R_L = 1$ $I_D \cong 50A, V_{GS} = 10V, R_{GEN} = 24$		40	90	113			
Fall Time ²	t _f			105	200				
SOURCE-DRAIN D	OODE RAT	INGS AND CHARACTERISTICS (Tc	= 25 °	C)					
Continuous Current	I _S				50	٨			
Pulsed Current ³	I _{ŞM}				150	Α			
Forward Voltage ¹	V _{SD}) _S = 25A, V _{GS} = 0V		0.9	1.3	V			
Reverse Recovery Time	tri			70		nS			
Peak Reverse Recovery Current	I _{RM(REC)}	$I_F = I_S$, $dI_F/dt = 100A / \mu S$		200		Α			
Reverse Recovery Charge	Q _{rr}			0.043		μС			

¹Pulse test : Pulse Width ≤ 300 μsec, Duty Cycle ≤ 2%.

REMARK: THE PRODUCT MARKED WITH "P0903BDG", DATE CODE or LOT #

Orders for parts with Lead-Free plating can be placed using the PXXXXXXG parts name.

²Independent of operating temperature.
³Pulse width limited by maximum junction temperature.

N-Channel Logic Level Enhancement Mode Field Effect Transistor

P0903BDG TO-252 (DPAK) Lead-Free

TYPICAL CHARACTERISTICS

ON- RESISTANCE VARIATION WITH TEMPERATURE

TRANSFER CHARACTERISTICS

ON- RESISTANCE VARIATION WITH DRAIN CURRENT AND GATE

ON-RESISTANCE VARIATION WITH GATE-TO-SOYRCE VOLTAGE

BODY DIODE FORWARD VOLTAGE VARIATION WITH SOURCE CURRENT AND TEMPERATURE

NIKO-SEM

N-Channel Logic Level Enhancement Mode Field Effect Transistor

P0903BDG TO-252 (DPAK) Lead-Free

MAXIMUMSAFE OPERATINGAREA

TRANSIENT THERMAL RESPONSE CURVE

r 🖽 ,NORMALIZED EFFECTIVE

t1, TIME(ms)

TO-252 (DPAK) MECHANICAL DATA

Diagonalian	mm			Division	mm		
Dimension	Min.	Тур.	Max.	Dimension	Min. <	Тур.	Max.
А	9.35		10.4	Н	0.89		2.03
В	2.2		2.4	I	6.35		6.80
С	0.45		0.6	J	5.2		5.5
D	0.89		1.5	к/_	0.6		1
Е	0.45		0.69	4	0.5		0.9
F	0.03		0.23	M	3.96	4.57	5.18
G	5.2		6.2	N			

