apoptosis + gos	
mīRNA -296	glutamate-treated PC12 cell -> cell overactive (excitotoxicity)
	ROST apoptosis T
	→ Bc 2 proto-oncogene, either anti-or pro-apoptotic
	→ Bax , Caspase э
	•
mîrNA-9	apoptosis 1
	- Bc1-2111 (Bim) pro-apoptotic, bind to Bax
with the	On their I dunantic phaticily A
m(NNT-145	apoptosis V synaptic plasticity 1
	-1 KLF5
	→ JNK signaling
	•

inflammation		
miPIUA-3473b	in€lammation↑	
	→ TNOS, COX-2, TNF-a.IL-6 pro-inflammatory factor	
	-1 5005% immunity regulator	

angiogenesis k neurogenesis review paper

miRNA-126 pre-mir-126↑ → miR-126-3p/-5p↑ PTPN9¥ angiogenesis neurogenesis miRNA-874-3p

angiogenesis T neurogenesis T

→ AKT/ ERK signaling neuroprotective, angiogenesis k neurogenesis 1

- PTPNa) inhibit

https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/ S2162-2531(19)30032-0?

returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fp ii%2FS2162253119300320%3Fshowall%3Dtrue

MicroRNA-126 Regulates Angiogenesis and Neurogenesis in a Mouse Model of Focal Cerebral Ischemia

angiogenesis (inflammation)

- → Wnt/B-cottenin pathway LXCL12 progess stroke
- TNF-a, IL-1. IL-6. IL-8 pro-inflammatory factor
- → IL-10 anti-inflammatory cytoline

phagocytosis	
miRNA-98	Phagocytosis I - PAFR - INOS Pregulate
	→ PAFR
	-1 iNOS Pregulate