Note del corso di Fisica 1

Gabriel Antonio Videtta

22 marzo 2023

Derivate parziali e integrali di linea

Definizione. Una forza $\vec{F}(\vec{r})$ si dice *conservativa* se il lavoro effettuato da tale forza tra due punti A e B è lo stesso, qualsiasi sia la traiettoria che li congiunge, ordinata da A a B.

Definizione. Data $f: \mathbb{R}^3 \to \mathbb{R}$ nelle variabili $x, y \in z$, si definisce gradiente come il vettore $\vec{\nabla} f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$.

Osservazione. Sia U(x,y,z) l'energia potenziale, e sia \vec{F} conservativa. Poiché $dL=-dU,\ dL=\vec{F}\cdot d\vec{r}=F_xdx+F_ydy+F_zdz$ e $dU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy+\frac{\partial U}{\partial z}dz$, si ricava che:

$$\vec{F} = -\vec{\nabla}U$$

Definizione. Si definisce rotore di un vettore \vec{F} la seguente quantità:

$$\vec{\nabla} \times \vec{F} = \operatorname{rot} \vec{F} = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} F_x & \frac{\partial}{\partial y} F_y & \frac{\partial}{\partial z} F_z \end{pmatrix}.$$

Osservazione. Se la forza è conservativa, per il teorema di Schwarz le derivate parziali miste in $\vec{\nabla} \times \vec{F}$ commutano, e quindi $\vec{\nabla} \times \vec{F} = \vec{0}$

Osservazione. In sintesi, sono equivalenti le seguenti affermazioni:

- (i) la forza \vec{F} è conservativa,
- (ii) $L_{\gamma(A,B)}(\vec{F})$ non dipende da γ , ma solo da A e B,
- (iii) $\oint_{\gamma} \vec{F} \cdot d\vec{r} = 0$.

Osservazione. Se $\vec{F} = \vec{a} + \vec{b}$, dove \vec{a} è conservativa, allora, per il teorema dell'energia cinetica, $L_{\gamma(P_0,P)} = K_P - K_{P_0}$. Pertanto, grazie all'additività del lavoro, si può ricavare che:

$$L_{\gamma(P_0,P)}\vec{F} = L_{\gamma(P_0,P)}\vec{a} + L_{\gamma(P_0,P)}\vec{b}.$$

Poiché \vec{a} è conservativa, $L_{\gamma(P_0,P)}\vec{a}=U_{P_0}-U_P,$ e quindi, se $\Delta K=0$:

$$\Delta U = L_{\gamma(P_0,P)}\vec{b} \implies U_P = U_{P_0} + L_{\gamma(P_0,P)}\vec{b}.$$

Supponiamo che $\vec{F} = \sum_{i=1}^N \vec{F_i}$ sia la somma di sole forze conservative su un corpo di massa m. Allora ad ogni forza $\vec{F_i}$ possiamo associare un'energia potenziale $U_P^{(i)} - U_{P_0}^{(i)} = -L_{\gamma(P_0,P)}(\vec{F_i})$, da cui $\Delta U = U_P - U_{P_0} = \sum_{i=1}^N \left[U_P^{(i)} - U_{P_0}^{(i)} \right] = -L_{\gamma(P_0,P)}(\vec{F_i}) = K_{P_0} - K_P = -\Delta K$.

Sia E=K+U, detta energia meccanica, allora si ricava che $\Delta E=0$. Infatti, in presenza di forze conservative, $\frac{dE}{dt}=0$. Altrimenti $\Delta E=L_{\gamma(P_0,P)}(\vec{b})$.

Esempio. Se si è in presenza di un campo uniforme (ossia dove $\vec{F}(\vec{r}) = \vec{f}$, $\forall \vec{r}$), il rotore è nullo, e quindi la forza è conservativa (e.g. la forza peso).