Exercice 1: Pratique de l'alignement semi-global

Score: identité +2, substitution -1, insertion ou délétion -1

		Т	Т	Α	С	Т	G	Т	G
	0	0	0	0	0	0	0	0	0
Α	0	-1	-1	2	1	0	-1	-1	-1
С	0	-1	-2	1	4	3	2	1	0
Т	0	2	1	0	3	6	5	4	3
G	0	1	1	0	2	5	8	7	6
Α	0	0	0	3	2	4	7	7	6
G	0	-1	-1	2	2	3	6	6	9
Α	0	-1	-2	1	1	2	5	5	8
С	0	-1	-2	0	3	2	4	4	7

		Т	Т	Α	С	Т	G	Т	G
	0	0	0	0	0	0	0	0	0
Α	0	-1	-1	2	1	0	-1	-1	-1
С	0	-1	-2	1	4	3	2	1	0
Т	0	2	1	0	3	6	5	4	3
G	0	1	1	0	2	5	8	7	6
Α	0	0	0	3	2	4	7	7	6
G	0	-1	-1	2	2	3	6	6	9
Α	0	-1	-2	1	1	2	5	5	8
С	0	-1	-2	0	3	2	4	4	7

		Т	Т	Α	С	Т	G	Т	G
	0	0	0	0	0	0	0	0	0
Α	0	-1	-1	2	1	0	-1	-1	-1
С	0	-1	-2	1	4	3	2	1	0
Т	0	2	1	0	3	6	5	4	3
G	0	1	1	0	2	5	8	7	6
Α	0	0	0	3	2	4	7	7	6
G	0	-1	-1	2	2	3	6	6	9
Α	0	-1	-2	1	1	2	5	5	8
С	0	-1	-2	0	3	2	4	4	7

Score de l'alignement optimal: 9

Exercice 2: Dissimilarité versus similarité

Indel(x) > 0, coût de l'insertion ou de la délétion du nucléotide x, Diff(x,y) > 0 si $x \neq y$, et 0 si x = y.

Question 1: formule de récurrence pour calculer la distance Dist

Exercice 2: Dissimilarité versus similarité

Indel(x) > 0, coût de l'insertion ou de la délétion du nucléotide x, Diff(x,y) > 0 si $x \neq y$, et 0 si x = y.

Question 1: formule de récurrence pour calculer la distance Dist

$$\begin{split} & \operatorname{Dist}(0,0) &= 0 \\ & \operatorname{Dist}(0,j) &= \operatorname{Dist}(0,j-1) + \operatorname{Indel}(V(j)) \\ & \operatorname{Dist}(i,0) &= \operatorname{Dist}(i-1,0) + \operatorname{Indel}(U(i)) \\ & \operatorname{Dist}(i,j) &= \min \left\{ \begin{array}{l} \operatorname{Dist}(i-1,j-1) + \operatorname{Diff}(U(i),V(j)) \\ \operatorname{Dist}(i-1,j) + \operatorname{Indel}(U(i)) \\ \operatorname{Dist}(i,j-1) + \operatorname{Indel}(V(j)) \end{array} \right. \end{split}$$

Méthode : programmation dynamique

Question 2: quid de l'alignement local ?

- pas adapté
- la distance est une fonction croissante: les différences s'accumulent. Il faut une fonction non monotone pour l'alignement local.

Exercice 3: Les palindromes génétiques

- palindrome génétique: mot de la forme $u\bar{u}$ où u est un mot et \bar{u} est obtenu à partir de u en l'inversant et en le complémentant
- problème du palindrome maximal

Donnée : une séquence S d'ADN Question : quel est le plus long sous-mot de S qui soit un palindrome génétique?

longueur du palindrome maximal dans ACCGGATT ?

$$P(i,j) = j - i + 1$$
 si $S(i..j)$ est un palindrome, 0 sinon

Question 1: formule de récurrence pour calculer P

$$P(i,j)=0$$
, si $j <= i$
 $P(i,i+1)=2$, si $S(i) = S(i+1)$, 0 sinon
 $P(i,j)=2+P(i+1,j-1)$ si $S(i) = S(j)$ et $P(i+1,j-1)>0$,
0 sinon

Question 2: implémentation

- matrice à deux dimensions
- deux boucles imbriquées
- ordre de calcul des indices

```
for i in range(n,0,-1):
    P(i,i)=1
    P(i,i+1)=...
    for j in range(i,n+1):
        P(i,j)=...
```

• le palindrome le plus long est donné par la valeur la plus élevée de la matrice. Les positions de début et fin de ce palindrome sont les indices *i* et *j* de la valeur maximale.

A propos des palindromes:

https://en.wikipedia.org/wiki/Palindromic_sequence

Exercice 4: Réplication hasardeuse

Une bactérie est atteinte par un virus qui affecte la machinerie de la réplication de la sorte

- chaque A peut être remplacé par 2 A,
- chaque C peut être remplacé par 2 C,

La multiplication des bases n'est pas systématique, et il se peut qu'à une position donnée la copie soit correcte.

Question 1: algorithme qui pour deux séquences U et V détermine si U peut être une version infectée de V. On définit

```
I(i,j) = vrai si U(1..i) est une version infectée de V(1..j) = faux sinon
```

Question 1: algorithme qui pour deux séquences U et V détermine si U peut être une version infectée de V. On définit

I(i,j) = vrai si U(1..i) est une version infectée de V(1..j)

```
= faux sinon
I(0,0) = vrai
I(0,j) = \text{faux}(j>0)
I(i,0) = \text{faux}(i>0)
I(i, j) = \text{si } U(i) \neq V(j), \text{ alors faux}
            sinon si U(i) \in \{G, T\}, alors I(i-1, j-1)
            sinon on a U(i) \in \{A, C\}
                si U(i-1) \neq U(i), alors I(i-1, i-1)
                sinon (I(i-1, i-1)) ou I(i-2, i-1)
```

Question 2: En plus d'induire une copie multiple d'une position, il est également possible que la base soit oubliée, provoquant une délétion. Modifiez l'algorithme précédent pour prendre en compte ce nouveau phénomène.

```
\begin{array}{lll} I(0,0) &=& \mathrm{vrai} \\ I(0,j) &=& \mathrm{vrai} \ (j>0) \\ I(i,0) &=& \mathrm{faux} \ (i>0) \\ I(i,j) &=& \mathrm{si} \ U(i) \neq V(j), \ \mathrm{alors} \ I(i,j-1) \\ \mathrm{sinon} \ \mathrm{si} \ U(i) \in \{G,T\}, \ \mathrm{alors} \ I(i-1,j-1) \ \ \mathrm{ou} \ I(i,j-1) \\ \mathrm{sinon} \ \ \mathrm{on} \ \ a \ U(i) \in \{A,C\} \\ \mathrm{si} \ U(i-1) \neq U(i), \ \mathrm{alors} \ (I(i-1,j-1) \ \mathrm{ou} \ I(i,j-1)) \\ \mathrm{sinon} \ (I(i-1,j-1) \ \mathrm{ou} \ I(i,j-1)) \end{array}
```

Exercice 5: Tous les alignements locaux

		t	а	С	g	С	g	t	g	g	а	t	t	g	а	t	С
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
а	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0
С	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	1
g	0	0	0	1	3	2	2	1	1	1	0	0	0	1	0	0	0
а	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	1	0
t	0	1	0	0	1	0	0	2	1	0	1	3	2	1	1	3	2
С	0	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	4
g	0	0	0	0	2	1	3	2	2	1	0	1	0	2	1	1	3
а	0	0	1	0	1	0	2	1	1	0	2	1	0	1	3	2	2
t	0	1	0	0	0	0	1	3	2	1	1	3	2	1	2	4	3
g	0	0	0	0	1	0	1	2	4	3	2	2	1	3	2	3	2
а	0	0	1	0	0	0	0	1	3	2	4	3	2	2	4	3	2
t	0	1	0	0	0	0	0	1	2	1	3	5	4	3	3	5	4
а	0	0	2	1	0	0	0	0	1	0	2	4	3	2	4	4	3

Quels sont les poids pour une identité, une substitution, un indel ?

Exercice 5: Tous les alignements locaux

		t	а	С	g	С	g	t	g	g	а	t	t	g	а	t	С
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
а	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0
С	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	1
g	0	0	0	1	3	2	2	1	1	1	0	0	0	1	0	0	0
а	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	1	0
t	0	1	0	0	1	0	0	2	1	0	1	3	2	1	1	3	2
С	0	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	4
g	0	0	0	0	2	1	3	2	2	1	0	1	0	2	1	1	3
а	0	0	1	0	1	0	2	1	1	0	2	1	0	1	3	2	2
t	0	1	0	0	0	0	1	3	2	1	1	3	2	1	2	4	3
g	0	0	0	0	1	0	1	2	4	3	2	2	1	3	2	3	2
а	0	0	1	0	0	0	0	1	3	2	4	3	2	2	4	3	2
t	0	1	0	0	0	0	0	1	2	1	3	5	4	3	3	5	4
а	0	0	2	1	0	0	0	0	1	0	2	4	3	2	4	4	3

Quels sont les poids pour une identité, une substitution, un indel ? identité 1, substitution -2, indel -1

Question 1: les alignements de score optimal

		t	а	С	g	С	g	t	g	g	а	t	t	g	a	t	С
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
а	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0
С	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	1
g	0	0	0	1	3	2	2	1	1	1	0	0	0	1	0	0	0
а	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	1	0
t	0	1	0	0	1	0	0	2	1	0	1	3	2	1	1	3	2
С	0	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	4
g	0	0	0	0	2	1	3	2	2	1	0	1	0	2	1	1	3
а	0	0	1	0	1	0	2	1	1	0	2	1	0	1	3	2	2
t	0	1	0	0	0	0	1	3	2	1	1	3	2	1	2	4	3
g	0	0	0	0	1	0	1	2	4	3	2	2	1	3	2	3	2
а	0	0	1	0	0	0	0	1	3	2	4	3	2	2	4	3	2
t	0	1	0	0	0	0	0	1	2	1	3	5	4	3	3	5	4
а	0	0	2	1	0	0	0	0	1	0	2	4	3	2	4	4	3

Question 2:

- Les alignements locaux peuvent être composés de plusieurs zones similaires colinéaires, c'est-à-dire sans croisement ni chevauchement.
- Donnez un tel alignement dont le score total est 8.

Alignements colinéaires

Alignements non-colinéaires

		t	a	c	g	c	g	$\mid t \mid$	g	$\mid g \mid$	a	$\mid t \mid$	$\mid t \mid$	$\mid g \mid$	a	$\mid t \mid$	c
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0
c	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	1
g	0	0	0	1	3	2	2	1	1	1	0	0	0	1	0	0	0
a	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	1	0
t	0	1	0	0	1	0	0	2	1	0	1	3	2	1	1	3	2
c	0	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	4
g	0	0	0	0	2	1	3	2	2	1	0	1	0	2	1	1	3
a	0	0	1	0	1	0	2	1	1	0	2	1	0	1	3	2	2
t	0	1	0	0	0	0	1	3	2	1	1	3	2	1	2	4	3
g	0	0	0	0	1	0	1	2	4	3	2	2	1	3	2	3	2
a	0	0	1	0	0	0	0	1	3	2	4	3	2	2	4	3	2
t	0	1	0	0	0	0	0	1	2	1	3	5	4	3	3	5	4
a	0	0	2	1	0	0	0	0	1	0	2	4	3	2	4	4	3

		t	a	c	g	c	g	t	g	g	a	t	t	g	a	t	c
	0	(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a	0	0	(1)	0	0	0	0	0	0	0	1	0	0	0	1	0	0
c	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	1
g	0	0	0	1	3	2	2	1	1	1	0	0	0	1	0	0	0
a	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	1	0
t	0	1	0	0	1	0	0	2	1	0	1	3	2	1	1	3	2
c	0	0	0	1	0	2	1	1	0	0	0	2	1	0	0	2	$oxed{4}$
$\mid g \mid$	0	0	0	0	2	1	3	2	2	1	0	1	0	2	1	1	3
a	0	0	1	0	1	0	2	1	1	0	2	1	0	1	3	2	2
t	0	1	0	0	0	0	1	3	2	1	1	3	2	1	2	4	3
$\mid g \mid$	0	0	0	0	1	0	1	2	4	3	2	2	1	3	2	3	2
a	0	0	1	0	0	0	0	1	3	2	4	3	2	2	4	3	2
t	0	1	0	0	0	0	0	1	2	1	3	5	4	3	3	5	4
a	0	0	2	1	0	0	0	0	1	0	2	4	3	2	4	4	3

		t	a	c	g	c	g	t	g	g	a	t	t	g	a	t	c
	0	0	0	0	0	0	$\frac{9}{0}$	0	0	0	0	0	0	0	0	0	0
<u> </u>	_		U								_			_		_	
a	0	0	(1)	0	0	0	0	0	0	0	1	0	0	0	1	0	$\begin{bmatrix} 0 \end{bmatrix}$
c	0	0	0	(2)	1	1	0	0	0	0	0	0	0	0	0	0	1
g	0	0	0	1	3)	2	2	1	1	1	0	0	0	1)	0	0	0
a	0	0	1	0	(2)	1	1	0	0	0	2	1	0	0	(2)	1	0
t	0	1	0	0	(1)	0	0	2	1	0	1	3	2	1	1	(3)	2
c	0	0	0	1	0	(2)	1	1	0	0	0	2	1	0	0	2	4
g	0	0	0	0	2	1	(3)	2	2	1	0	1	0	2	1	1	3
a	0	0	1	0	1	0	(2)	1	1	0	2	1	0	1	3	2	$\mid 2 \mid$
t	0	1	0	0	0	0	1	(3)	2	1	1	3	2	1	2	4	3
g	0	0	0	0	1	0	1	2	(4)	3	2	2	1	3	2	3	2
a	0	0	1	0	0	0	0	1	3	2	4	3	2	2	4	3	$\lfloor 2 \rfloor$
t	0	1	0	0	0	0	0	1	2	1	3	5	4	3	3	5	4
a	0	0	2	1	0	0	0	0	1	0	2	4	3	2	4	4	3

quel est le problème ?

Question 3: modélisation sous forme de graphes

- score seuil s
- chaque alignement est délimité par deux cellules dans la matrice: (i,j) en haut à gauche et (k,ℓ) en bas à droite
- noeuds: les alignements au delà d'un score seuil, étiquetés par le score de l'alignement
- arc entre deux alignements $(i_1,j_1)-(k_1,\ell_1)$ et $(i_2,j_2)-(k_2,\ell_2)$ si, et seulement si, $k_1< i_2$ et $\ell_1< j_2$
- alignement local final: chemin de poids maximum

Exercice 6: Alignement co-optimaux

Question 1: Exemple de deux alignments co-optimaux Indel: -2, substitution : -1, identité: 1

Score: 2

Marion Liotier

Question 2

- U et V, les deux séquences à aligner
- S(i,j): score de similarité entre U(1..i) et V(1..j), donné par la matrice de programmation dynamique
- Coop(i,j): nombre d'alignements co-optimaux entre U(1..i) et V(1..j)

$$Coop(0,0)=1$$

$$Coop(0,j)=1$$

$$Coop(i, 0) = 1$$

$$\operatorname{Coop}(i,j) = \sum \begin{cases} \operatorname{Coop}(i-1,j-1), \operatorname{si} \, \mathbb{S}(i,j) = \mathbb{S}(i-1,j-1) + \operatorname{Sub}(U(i),V(j)) \\ \operatorname{Coop}(i-1,j), \operatorname{si} \, \mathbb{S}(i,j) = \mathbb{S}(i-1,j) + \operatorname{Del}(U(i)) \\ \operatorname{Coop}(i,j-1), \operatorname{si} \, \mathbb{S}(i,j) = \mathbb{S}(i,j-1) + \operatorname{Ins}(V(j)) \end{cases}$$

Exercice 7: Alignement de séquences codantes

Si on ne tient pas compte des codons STOP

$$\begin{split} & \mathrm{S}(i,j) &= 0, \mathrm{si} \ i < 3 \ \mathrm{et} \ j < 3 \\ & \mathrm{S}(0,j) &= \mathrm{S}(0,j-3) + \mathrm{Indel}(V(j-2..j)) \\ & \mathrm{S}(i,0) &= \mathrm{S}(i-3,0) + \mathrm{Indel}(U(i-2..i)) \\ & \mathrm{S}(i,j) &= \max \left\{ \begin{array}{l} \mathrm{S}(i-3,j-3) + \mathrm{Sub}(U(i-2..i), V(j-2..j)) \\ \mathrm{S}(i-3,j) + \mathrm{Indel}(U(i-2..i)) \\ \mathrm{S}(i,j-3) + \mathrm{Indel}(V(j-2..j)) \end{array} \right. \end{split}$$

Avec les codons STOP: on définit les fonctions

$$\begin{split} & \text{SIndel}(w) = \text{si STOP}(w) \text{ alors } -\infty, \text{ sinon Indel}(w) \\ & \text{SSub}(v,w) = \text{si STOP}(v) \text{ ou STOP}(w), \text{ alors } -\infty, \text{ sinon Sub}(v,w) \\ & \text{SMax}(a,b,c) = \text{si } a = -\infty, b = -\infty \text{ ou } c = -\infty, \text{ alors } -\infty, \\ & \text{sinon max}(a,b,c) \\ & \text{S}(i,j) = 0, \text{si } i < 3 \text{ et } j < 3 \\ & \text{S}(0,j) = \text{S}(0,j-3) + \text{SIndel}(V(j-2..j)) \\ & \text{S}(i,0) = \text{S}(i-3,0) + \text{SIndel}(U(i-2..i)) \\ & \text{S}(i,j) + \text{SIndel}(U(i-2..i)) \\ & \text{S}(i,j-3) + \text{SIndel}(V(j-2..j)) \\ & \text{S}(i,j-3) + \text{SIndel}(V(j-2..j)) \\ \end{split}$$

Exercice 8: Pas d'insertion après une délétion, s'il vous plait

Initialisation (inchangée)

$$a(0,0) = 0$$

$$a(i,0) = -\infty$$

$$a(0,j) = -\infty$$

$$b(i,0) = -\infty$$

$$b(0,j) = 0uv + Ext \times j$$

$$c(i,0) = 0uv + Ext \times i$$

$$c(0,j) = -\infty$$

Cas général, aucune restriction

$$a(i,j) = Sub(i,j) + \max \begin{cases} a(i-1,j-1) \\ b(i-1,j-1) \\ c(i-1,j-1) \end{cases}$$

$$b(i,j) = \max \left\{ egin{array}{ll} \mathtt{Ouv} + \mathtt{Ext} + a(i,j-1) \ \mathtt{Ext} + b(i,j-1) \ \mathtt{Ouv} + \mathtt{Ext} + c(i,j-1) \end{array}
ight.$$

$$c(i,j) = \max \left\{ egin{array}{ll} \operatorname{Ouv} + \operatorname{Ext} + a(i-1,j) \ \operatorname{Ouv} + \operatorname{Ext} + b(i-1,j) \ \operatorname{Ext} + c(i-1,j) \end{array}
ight.$$

Cas général pour l'exercice

$$a(i,j) = Sub(i,j) + \max \begin{cases} a(i-1,j-1) \\ b(i-1,j-1) \\ c(i-1,j-1) \end{cases}$$

$$b(i,j) = \max \left\{ egin{array}{ll} \operatorname{Ouv} + \operatorname{Ext} + a(i,j-1) \\ \operatorname{Ext} + b(i,j-1) \\ \operatorname{OWY} / H / \operatorname{Ext} / H / \operatorname{OUV} / H / \operatorname{Ext} / H / \operatorname{OUV} / H / \operatorname{Ext} / \operatorname{OUV} / \operatorname{OUV} / H / \operatorname{Ext} / \operatorname{OUV} / \operatorname{$$

Exercice 9: Algorithme de Hirschberg

Cas 1:

$$\mathcal{A}\left(\begin{array}{c} U \\ V \end{array}\right) \;=\; \mathcal{A}\left(\begin{array}{c} U(1..i-1) \\ V(1..j-1) \end{array}\right) + \left(\begin{array}{c} U(i) \\ V(j) \end{array}\right) + \mathcal{A}\left(\begin{array}{c} U(i+1..m) \\ V(j+1..n) \end{array}\right)$$

Cas 2:

$$\mathcal{A}\left(\begin{array}{c} U \\ V \end{array}\right) \;=\; \mathcal{A}\left(\begin{array}{c} U(1..i-1) \\ V(1..j-1) \end{array}\right) + \left(\begin{array}{c} U(i) \\ - \end{array}\right) + \mathcal{A}\left(\begin{array}{c} U(i+1..m) \\ V(j..n) \end{array}\right)$$

Exercice 9: Algorithme de Hirschberg

Cas 1: la position i de U est alignée avec une position j de V

$$\mathcal{A}\left(\begin{array}{c} U \\ V \end{array}\right) \; = \; \mathcal{A}\left(\begin{array}{c} U(1..i-1) \\ V(1..j-1) \end{array}\right) + \left(\begin{array}{c} U(i) \\ V(j) \end{array}\right) + \mathcal{A}\left(\begin{array}{c} U(i+1..m) \\ V(j+1..n) \end{array}\right)$$

Cas 2 : la position i de U est délétée

$$\mathcal{A}\left(\begin{array}{c} U \\ V \end{array}\right) \;=\; \mathcal{A}\left(\begin{array}{c} U(1..i-1) \\ V(1..j-1) \end{array}\right) + \left(\begin{array}{c} U(i) \\ - \end{array}\right) + \mathcal{A}\left(\begin{array}{c} U(i+1..m) \\ V(j..n) \end{array}\right)$$

Pour toute valeur de i, $0 \le i < m$, l'algorithme de Needleman et Wunsh permet de calculer l'ensemble des scores d'alignements globaux entre U(1..i-1) et tous les préfixes de V en espace linéaire par rapport à la longueur de V et en temps quadratique.

Vrai - à peu près vu en cours

On calcule le score avec la formule de récurrence de Needleman et Wunsh avec deux vecteurs pour la mémoire: U(1..i-1) en vertical, V en horizontal.

La case j de la dernière ligne donne le score entre U(1..i-1) et V(1..j).

Question 3:

3) Pour calcular les alignements globaux entre	U(1+1m) 1er
les suffixes de T pour chaque i:	
on inverse les 2 sequences v et T	
Puis on utilise e algorithme NW mun les	alingon incom's
i Pixé et las sullives.	s auguer Joseph a

Léa Vandamme

Question 3 : On peut écrire des formules de récurrence qui travaillent sur les suffixes, au lieu des préfixes

- U de longueur m et V de longueur n.
- T(i,j): score d'alignement entre U(i..m) et V(j..n)

$$\begin{array}{lll} {\rm T}(n+1,m+1) & = & 0 \\ & {\rm T}(n+1,j) & = & {\rm T}(0,j+1) + {\it Ins}(V(j)) \\ & {\rm T}(i,m+1) & = & {\rm T}(i-1,0) + {\it Del}(U(i)) \\ & {\rm T}(i,j) & = & {\rm max} \left\{ \begin{array}{l} {\it Sub}(U(i),V(j)) + {\rm T}(i+1,j+1) \\ {\it Del}(U(i)) + {\rm T}(i+1,j) \\ {\it Ins}(V(j)) + {\rm T}(i,j+1) \end{array} \right. \end{array}$$

Question 4: Fonction Score(U, V, M/2, J, Cas)

- 1. On calcule le tableau Prefix, qui donne pour tout j le score de U(1..i-1) aligné avec V(1..j)
- 2. On calcule le tableau Suffix, qui donne pour tout j le score de U(i+1..m) aligné avec V(j..m)
- 3. Cela permet de déterminer J et Cas (1 ou 2), avec une boucle sur j.

Complexité:

Question 5: algo récursif pour l'alignement global optimal

0 m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

```
function Align(U, V: Sequence)
   M:longueur de U
   N:longueur de V
begin
   Si M==0 then
      return (1..N =>'-', V);
   Sinon si N==0 then
      return (U, 1..M =>'-');
   Sinon
      Score(U, V, M/2, J, Cas);
      Si Cas == 1: substitution
         return Align(U(1..M/2-1),V(1..J-1))
           \&(U(M/2), V(J))
           &Align(U(M/2+1..M), V(J+1..N));
      Sinon -- cas 2: deletion
         return Align(U(1..M/2-1),V(1..J))
           \&(U(M/2), '-')
           &Align(U(M/2+1..M), V(J+1..N));
```

Complexité en temps

m $\frac{m}{2}j+\frac{m}{2}(n-j)$ m/2m/2m/4m/4m/4m/4 $\frac{m}{4}n$ m/8*m*/8 m/8*m*/8 m/8 m/8 $\frac{m}{8}n$ m/8

$$n(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots)=2mn$$

Complexité en espace