

MATEMÁTICA Raíz enésima y Propiedades de raíces

 $E = \ln c = \pi n^{2}$ $\int_{\pi} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$ $\int_{\pi} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$ $\int_{\pi} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$

Docentes: Montserrat Guerrero – Susana Hueicha

Docente: Diferencial: Verónica Jara Cursos: Segundo A – Segundo B

Raíz enésima

Si un número real a multiplicado por si mismo "n veces" da como resultado el número real b, tal que se tiene la potencia $a^n = b$ entonces siempre se cumple $\sqrt[n]{b} = a$ y se dice: "a es la raíz enésima de b"

 $a^n = b \leftrightarrow \sqrt[n]{b} = a$ "a es la raíz enésima de b"

Cuando el índice es 2, no es necesario escribirlo en la raíz. $\sqrt[2]{9} = \sqrt{9}$

n es número natural (\mathbb{N}) mayor que 1. a y b pertenecen al conjunto de los números reales R

Ejemplos:

- $\sqrt{9} = 3$ porque $3 \cdot 3 = 3^2 = 9$ "3 es la raíz cuadrada de 9"
- Si el índice es 2, la raíz se llama raíz *cuadrada*. Si el índice es 3, la raíz se llama raíz *cúbica*. Si el índice es 4, la raíz se llama raíz *cuarta*. Etc.
- $\sqrt[3]{8} = 2$ porque $2 \cdot 2 \cdot 2 = 2^3 = 8$ "2 es la raíz **cúbica** de 8"
- $\sqrt[5]{-19} = x$ porque $x \cdot x \cdot x \cdot x \cdot x \cdot x = x^5 = -19$ "x es la raíz quinta de -19"

Restricción de Raíces

$$\sqrt[n]{a} = b$$

Si el índice de la raíz (n) es un valor par, las raíces pueden clasificarse según el signo del radicando, es decir:

Caso 1:

Cuando el radicando es un número positivo a > 0, el resultado de la raíz (b) siempre será positivo y por lo tanto pertenece al conjunto de los números reales \mathbb{R}

Ejemplos:

- $\sqrt[4]{16} = 2$ porque $2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$
- $\sqrt{9} = 3$ porque $3 \cdot 3 = 3^2 = 9$

Caso 2:

Si el radicando es un número negativo a < 0, el resultado de la raíz (b) no existe en el conjunto de los números reales \mathbb{R}

Ejemplos:

• $\sqrt{-9} = x$ porque $x^2 = -9$. Sin embargo no existe un número real tal que al elevarse al cuadrado de como resultado -9. Por lo tanto $\sqrt{-9} = no$ existe

Restricción de Raíces

$$\sqrt[n]{a} = b$$

Si el índice de la raíz (n) es un valor impar, las raíces pueden clasificarse según el signo del radicando, es decir:

Caso 1:

Cuando el radicando es un número positivo a > 0, el resultado de la raíz (b) siempre será positivo y por lo tanto pertenece al conjunto de los números reales \mathbb{R}

Ejemplos:

- $\sqrt[3]{27} = 3$ porque $3 \cdot 3 \cdot 3 = 3^3 = 27$
- $\sqrt[5]{32} = 2$ porque $2^5 = 32$

Caso 2:

Cuando el radicando es un número negativo a < 0, el resultado de la raíz (b) siempre será negativo y por lo tanto pertenece al conjunto de los números reales \mathbb{R}

Ejemplos:

•
$$\sqrt[3]{-8} = -2$$
 porque $-2 \cdot -2 \cdot -2 = (-2)^3 = -8$

•
$$\sqrt[5]{-100.000} = -10 \text{ porque}$$

 $-10 \cdot -10 \cdot -10 \cdot -10 \cdot -10 = (-10)^5 =$
 $= -100.000$

Calcular Raíces

Exactas (Perfectas)

Para resolver una raíz $\sqrt[n]{a}$ basta con buscar el número que multiplicado por si mismo *n veces* (*índice de la raíz*) de como resultado a (*radical*). Cuando el resultado de la raíz es un número entero (\mathbb{Z}), entonces la raíz se denomina **raíz exacta o raíces perfecta.**

a)
$$\sqrt[3]{-27}$$
?
Si $-3 \cdot -3 \cdot -3 = (-3)^3 = -27$ entonces $\sqrt[3]{-27} = -3$

b)
$$\sqrt[4]{625}$$
 ?
Si $5 \cdot 5 \cdot 5 \cdot 5 = (5)^4 = 625$ entonces $\sqrt[4]{625} = 5$

Inexactas (Imperfectas)

Si el resultado es un número irracional, por ejemplo $\sqrt{12} = 3,46410$ se llaman **raíces inexactas o imperfectas**. Para resolverlas, se debe descomponer en factores el radical de modo que uno de los factores sea una raíz exacta. Por ejemplo: $\sqrt{12} = ?$

Paso 1: Buscar los factores $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3}$

Paso 2: Reducir la raíz perfecta $\sqrt{4} \cdot \sqrt{3} = 2 \cdot \sqrt{3}$

Paso 3: Expresar el resultado $\sqrt{12} = 2\sqrt{3}$

Adición y Sustracción de raíces

Se operan reduciendo términos semejantes, considerándose como condición que los radicandos e índices de las raíces involucradas deben ser iguales.

Ejemplo 1:

¿Cuál es el resultado de $5\sqrt[4]{3} + 2\sqrt[4]{3} - \sqrt[4]{3}$?

$$5\sqrt[4]{3} + 2\sqrt[4]{3} - \sqrt[4]{3} = 6\sqrt[4]{3}$$

Pueden reducirse ya que los radicandos y los índices en las tres raíces son iguales.

Ejemplo 2:

¿Cuál es el resultado de $3\sqrt{18} - \sqrt{27}$?

$$3\sqrt{18} - \sqrt{27} = 3 \cdot \sqrt{9 \cdot 2} - \sqrt{9 \cdot 3}$$

$$= 3 \cdot \sqrt{9} \cdot \sqrt{2} - \sqrt{9} \cdot \sqrt{3}$$

$$= 3 \cdot 3 \cdot \sqrt{2} - 3 \cdot \sqrt{3}$$

$$= 9\sqrt{2} - 3\sqrt{3}$$

No pueden reducirse más ya que los radicandos en ambas raíces son diferentes.

Adición y Sustracción de raíces

Se operan reduciendo términos semejantes, considerándose como condición que los radicandos e índices de las raíces involucradas deben ser iguales.

Ejemplo 3:

¿Cuál es el resultado de $2\sqrt[3]{24} - \sqrt{75} + 3\sqrt{48}$? = $2 \cdot \sqrt[3]{8 \cdot 3} - \sqrt{25 \cdot 3} + 3 \cdot \sqrt{16 \cdot 3}$ = $2 \cdot \sqrt[3]{8} \cdot \sqrt[3]{3} - \sqrt{25} \cdot \sqrt{3} + 3 \cdot \sqrt{16} \cdot \sqrt{3}$ = $2 \cdot 2 \cdot \sqrt[3]{3} - 5 \cdot \sqrt{3} + 3 \cdot 4 \cdot \sqrt{3}$ = $4\sqrt[3]{3} - 5\sqrt{3} + 12\sqrt{3}$ = $4\sqrt[3]{3} + 7\sqrt{3}$

No pueden reducirse más ya que los índices en ambas raíces son diferentes.

Observación: Tener cuidado con:

Raíz enésima y potencias de exponente fraccionario

Toda raíz se puede expresar como una potencia con exponente fraccionario y viceversa, a partir de la siguiente fórmula:

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

 \mathbf{n} es número natural (\mathbb{N}) mayor que 1.

a y b pertenecen al conjunto de los números reales \mathbb{R}

Simbología:

n: Índice de la raíz.

a: Subradical de la raíz.

m: Exponente del subradical de la raíz.

Ejemplos:

a) ¿Cuál es la potencia de la raíz $\sqrt{18}$?

$$\sqrt{18} = \sqrt[2]{18^1} = 18^{\frac{1}{2}}$$

b) ¿Cuál es la potencia de la raíz $\sqrt[5]{9}$?

$$\sqrt[5]{9} = \sqrt[5]{3^2} = 3\frac{2}{5}$$

c) ¿Cuál es la raíz de la potencia $5^{\frac{4}{2}}$?

$$5^{\frac{4}{2}} = \sqrt{5^4}$$

d) ¿Cuál es la raíz de la potencia $2^{\frac{5}{3}}$?

$$2\frac{5}{3} = \sqrt[3]{2^5}$$

Propiedades de las raíces

1. Cambio de índice de una raíz

$$\sqrt[n]{a^m} = \sqrt[n \cdot r]{a^m \cdot r}$$

En este caso, para amplificar una raíz, se multiplica por cualquier número el índice y el exponente, siempre y cuando este sea el mismo para ambos.

Ejemplo

•
$$\sqrt[2]{7^5} = \sqrt[2 \cdot 2]{7^{5 \cdot 2}} = \sqrt[4]{7^{10}}$$

En este caso, para amplificar una raíz, se multiplica por cualquier número el índice y el exponente, siempre y cuando este sea el mismo para ambos.

•
$$\sqrt[4]{7^{10}} = \sqrt[2 \cdot 2]{7^{5 \cdot 2}} = \sqrt[2]{7^5}$$

RECUERDA QUE LAS PROPIEDADES SE PUEDEN APLICAR PARA "AMBOS LADOS" DE DERECHA A IZQUIERDA O VICEVERSA, COMO SE OBSERVA EN LOS EJEMPLOS

2. Multiplicación de raíces con igual índice

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

En este caso, para multiplicar raíces con igual índice, se conserva el índice y se multiplican los subradicales

Ejemplo

•
$$\sqrt[5]{9} \cdot \sqrt[5]{5} = \sqrt[5]{9 \cdot 5} = \sqrt[5]{45}$$

En este caso, para descomponer una raíz en dos raíces con igual índice, el subradical se descompone en dos factores

•
$$\sqrt[5]{45} = \sqrt[5]{9 \cdot 5} = \sqrt[5]{9} \cdot \sqrt[5]{5}$$

RECUERDA QUE LAS PROPIEDADES SE PUEDEN APLICAR PARA "AMBOS LADOS" DE DERECHA A IZQUIERDA O VICEVERSA, COMO SE OBSERVA EN LOS EJEMPLOS

3. División de raíces con igual índice

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Ejemplo

$$\bullet \quad \frac{\sqrt{2}}{\sqrt{3}} = \sqrt{\frac{2}{3}}$$

$$\bullet \quad \sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}}$$

En este caso, para dividir raíces con igual índice, se conserva el índice y se dividen los subradicales

En este caso, un subradical fraccionario se puede separar en una fracción compuesta por dos raíces con igual índice

4. Potencia de una raíz

$$\left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$$

En este caso, el exponente de toda la raíz puede introducirse como exponente del subradical

En este caso, el exponente del subradical puede extraerse como exponente para toda la raíz.

Ejemplo

•
$$(\sqrt[9]{13})^5 = \sqrt[9]{13^5}$$

•
$$\sqrt[9]{13^5} = (\sqrt[9]{13})^5$$

RECUERDA QUE LAS PROPIEDADES SE PUEDEN APLICAR PARA "AMBOS LADOS" DE DERECHA A IZQUIERDA O VICEVERSA, COMO SE OBSERVA EN LOS EJEMPLOS

5. Raíz de una raíz

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[n \cdot m]{a}$$

Ejemplo

•
$$\sqrt[3]{\frac{5}{\sqrt{10}}} = \sqrt[3.5]{10} = \sqrt[15]{10}$$

•
$$\sqrt[3]{\sqrt[3]{10}} = \sqrt[3\cdot3\cdot3]{10} = \sqrt[27]{10}$$

Cuando se tienen raíces de otras raíces, se deben multiplicar los índices para reducir a una sola raíz.

6. Introducción y Extracción de términos de una raíz

$$\sqrt[n]{a^n \cdot b} = a \cdot \sqrt[n]{b}$$

Ejemplo

•
$$3 \cdot \sqrt[7]{8} = \sqrt[7]{3^7} \cdot \sqrt[7]{8} = \sqrt[7]{3^7 \cdot 8}$$

El número que está fuera de la raíz se introduce a esta con un exponente cuyo número es el mismo que el índice de la raíz.

•
$$\sqrt[7]{3^7 \cdot 8} = \sqrt[7]{3^7} \cdot \sqrt[7]{8} = 3 \cdot \sqrt[7]{8}$$

Se descompone la raíz en factores conservando el mismo índice, luego si uno de los factores tiene el exponente cuyo número es igual al índice de la raíz, estos se eliminan.