Object Detection

Object Detection in the Classical LiDAR Processing Stack

The Problem of Object Detection

Why?

- Input nonground point cloud is cumbersome alone
- Need to discriminate between separate objects
 - o e.g. segment nonground point cloud
- Partition point cloud into objects
- Remove some noise

How?

- Fundamentally group point together
 - Somehow
 - Based on some metric

Euclidean Clustering

One of a small handful of classical clustering/segmentation algorithms:

- 1. create a kd-tree representation for the input point cloud dataset P;
- 2. set up an empty list of clusters C, and a queue of the points that need to be checked Q;
- 3. then for every point $p_i \in P$, perform the following steps:
 - add pi to the current queue Q;
 - for every point p_i ∈ Q do:
 - search for the set P_i^k of point neighbors of p_i in a sphere with radius $r < d_{th}$;
 - for every neighbor $p_i^k \in P_i^k$, check if the point has already been processed, and if not add it to Q;
 - when the list of all points in Q has been processed, add Q to the list of clusters C, and reset Q to an empty list
- 4. the algorithm terminates when all points $p_i \in P$ have been processed and are now part of the list of point clusters C.

[1] <u>Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments, Rusu, 2009</u>[2] <u>PCL</u>

Two other ways to look at euclidean clustering

In other words:

- 1. Start with an empty cluster
- 2. Add some point to the cluster
- 3. Find all points *near* this point, add to cluster
- 4. Repeat (2) and (3) for each new point in the cluster
- 5. When there's no more points, accept/reject cluster based on number of points
- 6. Start a new cluster with a new point

Alternatively, the graph view

- Start with point cloud
- Each point is a vertex in the graph
- Connect each point near one another
- A cluster is a connected subgraph

In other words:

- 1. Start with an empty cluster
- 2. Add some point to the cluster
- 3. Find all points *near* this point, add to cluster
- 4. Repeat (2) and (3) for each new point in the cluster
- 5. When there's no more points, accept/reject cluster based on number of points
- 6. Start a new cluster with a new point

Cluster 1, New

Cluster 2, Final

In other words:

- 1. Start with an empty cluster
- 2. Add some point to the cluster
- 3. Find all points *near* this point, add to cluster
- 4. Repeat (2) and (3) for each new point in the cluster
- 5. When there's no more points, accept/reject cluster based on number of points
- 6. Start a new cluster with a new point

Cluster 2, Final

In other words:

- 1. Start with an empty cluster
- 2. Add some point to the cluster
- 3. Find all points *near* this point, add to cluster
- 4. Repeat (2) and (3) for each new point in the cluster
- 5. When there's no more points, accept/reject cluster based on number of points
- 6. Start a new cluster with a new point

Cluster 2, Final

In other words:

- 1. Start with an empty cluster
- 2. Add some point to the cluster
- 3. Find all points *near* this point, add to cluster
- 4. Repeat (2) and (3) for each new point in the cluster
- 5. When there's no more points, accept/reject cluster based on number of points
- 6. Start a new cluster with a new point

Cluster 2, Final

In other words:

- 1. Start with an empty cluster
- 2. Add some point to the cluster
- 3. Find all points *near* this point, add to cluster
- 4. Repeat (2) and (3) for each new point in the cluster
- 5. When there's no more points, accept/reject cluster based on number of points
- 6. Start a new cluster with a new point

Cluster 2, Final

In other words:

- 1. Start with an empty cluster
- 2. Add some point to the cluster
- 3. Find all points *near* this point, add to cluster
- 4. Repeat (2) and (3) for each new point in the cluster
- 5. When there's no more points, accept/reject cluster based on number of points
- 6. Start a new cluster with a new point

Cluster 1, New

Cluster 2, Final

Near, not nearest

Near:

- All points with distance less than some threshold
- Different from nearest
- Different from k-nearest
- Best data structure for (k-nearest) is k-d tree
 - But not for near-neighbor lookups

Near

Nearest:

- Use k-d tree
- O(log N) for lookup

Using the right data structure

Integer lattice/Spatial hash

- 1. Subdivide space into voxels: O(n)
- 2. Find voxel for query point: O(1)
- 3. Find all voxels a *near* point could possibly fall in: O(1)
- 4. Iterate over all points in all *near* voxels: O(k)
 - Add to output each point that is *near* the query point

Average query complexity: O(1) * O(1) * O(k) = O(k)

Let *n* be total number of points, *k* be the average number of neighbors

Even has its own wiki page

- 1. Subdivide space into voxels: O(n)
- 2. Find voxel for query point: O(1)
- 3. Find all voxels a *near* point could possibly fall in: O(1)
- 4. Iterate over all points in all *near* voxels: O(k)
 - Add to output each point that is near the query point

Unclassified

- 1. Subdivide space into voxels: O(n)
- 2. Find voxel for query point: O(1)
- 3. Find all voxels a *near* point could possibly fall in: O(1)
- 4. Iterate over all points in all *near* voxels: O(k)
 - Add to output each point that is near the query point

Query point

Near points

Voxel near

Unclassified

- 1. Subdivide space into voxels: O(n)
- 2. Find voxel for query point: O(1)
- 3. Find all voxels a *near* point could possibly fall in: O(1)
- 4. Iterate over all points in all *near* voxels: O(k)
 - Add to output each point that is *near* the query point

Query point

Near points

Voxel near

- 1. Subdivide space into voxels: O(n)
- 2. Find voxel for query point: O(1)
- 3. Find all voxels a *near* point could possibly fall in: O(1)
- 4. Iterate over all points in all *near* voxels: O(k)
 - Add to output each point that is near the query point

Query point

Near points

Voxel near

- 1. Subdivide space into voxels: O(n)
- 2. Find voxel for query point: O(1)
- 3. Find all voxels a *near* point could possibly fall in: O(1)
- 4. Iterate over all points in all *near* voxels: O(k)
 - Add to output each point that is *near* the query point

Query point

Near points

Voxel near

(Average-case) Complexity Analysis

O(n)O(1)

- 1. create a kd-tree representation for the input point cloud dataset P;
- 2. set up an empty list of clusters C, and a queue of the points that need to be checked Q;
- 3. then for every point $p_i \in P$, perform the following steps:
- O(1)
- O(n(k + Q(k)))
- add pi to the current queue Q;
- O(k + Q(k))• for every point p_i ∈ Q do: _
- O(Q(k))
 - search for the set P^k of point neighbors of p_i in a sphere with radius $r < d_{th}$;

O(k)

- for every neighbor $p_i^k \in P_i^k$, check if the point has already been processed, and if not add it to Q; • when the list of all points in Q has been processed, add Q to the list of clusters C, and reset Q to an empty list
- 4. the algorithm terminates when all points $p_i \in P$ have been processed and are now part of the list of point clusters C.

Total complexity: O(n + n(k + Q(k)) = O(n(k + Q(k)))

Original algorithm: $Q(k) = k \log n \rightarrow O(kn(1+\log n))$

Integer lattice: $Q(k) = k \rightarrow O(kn)$

If k is a problem defined constant, we went from linearithmic to linear!

O(1)

Geometric Object Detection - Summary

- Object detection algorithms are needed to distinguish individual collidable objects
- Most object detection algorithms use some kind of region growing method
 - On voxels
 - In euclidean space
 - In angles in the range-image space
- Autoware.Auto uses a version of euclidean clustering

Important optimizations

- Using the right data structure:
 - O(n log n) -> O(n)
 - Important since n can get big: 10k-1m!
- Concretely:
 - Autoware.ai: Barely 100ms runtime with aggressive downsampling
 - Autoware.Auto: Comfortable 10ms runtime with no* downsampling