Feature Engineering and Text Classification

Ayoub Bagheri

Introduction to Text Mining with R

Table of Contents

Lecture's Plan	3
Text Classification	3
Text classification	3
Text classification?	4
Pipeline	4
Text Representation	5
How to represent a document	5
Vector space model	5
Vector space model	5
Vector space model	5
An illustration of VS model	5
Vector space model	6
Bag of Words (BOW)	6
BOW representation	6
BOW weights: Binary	7
BOW weights: Term frequency	7
BOW weights: TFiDF	7
In R	7
In R	8
Feature Selection	8
Feature selection for text classification	8
Feature selection methods	8
Document frequency	9
Information gain	9
Gini Index	10
Gini Index	10
Classification Algorithms	11

	How to classify this document?	11
	Text Classification: definition	11
	Hand-coded rules	11
	Supervised Machine Learning	11
	Rocchio Classifier (Nearest Centroid)	12
	Rocchio Classifier (Nearest Centroid)	12
	K-Nearest Neighbor	12
	K-Nearest Neighbor	13
	Naïve Bayes	13
	Bayes' Rule	13
	Multinomial Naïve Bayes Independence Assumptions	14
	Multinomial Naïve Bayes Classifier	14
	Parameter estimation	14
	Problem with Maximum Likelihood	15
	Laplace (add-1) smoothing for Naïve Bayes	15
	Multinomial Naïve Bayes: Learning	15
	Decision Tree	16
	Random Forest	17
	Support Vector Machine	17
	Support Vector Machine	18
E	valuation	19
	Data Splitting	19
	Cross Validation	19
	Confusion matrix	20
	Accuracy	21
	Precision and recall	22
	A combined measure: F	23
T	he Real World	23
	No training data?	23
	Very little data?	24
	A reasonable amount of data?	25
	A huge amount of data?	26
	Accuracy as a function of data size	27
	How to tweak performance	28

Terminology	28
Some terminology	28
Summary	
Summary	
Practical 3	

Lecture's Plan

- 1. How to represent a document?
- 2. What are vector space and bag-of-words models?
- 3. Features in text? And how to do text feature selection?
- 4. How to classify text data?
- 5. How to evaluate a classifier?

Text Classification

Text classification

- Supervised learning: Learning a function that maps an input to an output based on example input-output pairs.
 - infer a function from labeled training data
 - use the inferred function to label new instances
- Human experts annotate a set of text data
 - Training set

Document	Class		
Email1	Not spam		
Email2	Not spam		
Email3	Spam		
•••	•••		

Text classification?

- Which problem is not a text classification task? (less likely to be)
 - Author's gender detection from text
 - Finding about the smoking conditions (yes/no) of patients from clinical letters
 - Grouping similar news articles
 - Classifying reviews into positive and negative sentiment

Go to www.menti.com and use the code 9594 3321

Pipeline

Text Representation

How to represent a document

- Represent by a string?
 - No semantic meaning
- Represent by a list of sentences?
 - Sentence is just like a short document (recursive definition)
- Represent by a vector?
 - A vector is an ordered finite list of numbers.

Vector space model

- A vector space is a collection of vectors
- Represent documents by concept vectors
 - Each concept defines one dimension
 - k concepts define a high-dimensional space
 - Element of vector corresponds to concept weight

Vector space model

- Distance between the vectors in this concept space
 - Relationship among documents
- The process of converting text into numbers is called Vectorization

Vector space model

- Terms are generic features that can be extracted from text
- Typically, terms are single words, keywords, n-grams, or phrases
- Documents are represented as vectors of terms
- Each dimension (concept) corresponds to a separate term

$$d = (w_1, \ldots, w_n)$$

An illustration of VS model

• All documents are projected into this concept space

Vector space model

- Bag of Words
- Topics
- Word Embeddings

Bag of Words (BOW)

- With Bag of Words (BOW), we refer to a Vector Space Model where:
 - Terms: words (more generally we may use n-grams, etc.)
 - Weights: number of occurrences of the terms in the document

BOW representation

- Term as the basis for vector space
 - Doc1: Text mining is to identify useful information.
 - Doc2: Useful information is mined from text.
 - Doc3: Apple is delicious.

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious
Doc1	1	1	1	1	0	1	1	1	0	0	0
Doc2	1	1	0	0	1	1	1	0	1	0	0
Doc3	0	0	0	0	0	1	0	0	0	1	1

->

BOW weights: Binary

- Binary
 - with 1 indicating that a term occurred in the document, and 0 indicating that it did not

BOW weights: Term frequency

- Idea: a term is more important if it occurs more frequently in a document
- TF Formulas
 - Let t(c, d) be the frequency count of term t in doc d
 - Raw TF: tf(t,d) = c(t,d)

BOW weights: TFiDF

• Idea: a term is more discriminative if it occurs a lot but only in fewer documents

Let $n_{d,t}$ denote the number of times the t-th term appears in the d-th document.

$$TF_{d,t} = \frac{n_{d,t}}{\sum_{i} n_{d,i}}$$

Let N denote the number of documents annd N_t denote the number of documents containing the t-th term.

$$IDF_t = log(\frac{N}{N_t})$$

TF-IDF weight:

$$w_{d,t} = TF_{d,t} \cdot IDF_t$$

In R

In R

```
inspect(dtm)
## <<DocumentTermMatrix (documents: 2, terms: 9)>>
## Non-/sparse entries: 13/5
## Sparsity
## Maximal term length: 7
## Weighting
                      : term frequency (tf)
## Sample
##
       Terms
## Docs cours data mine one school scienc summer text utrecht
##
                      1
                                  1
                          0
                 1
                                  1
                                         1
```

Feature Selection

Feature selection for text classification

- Feature selection is the process of selecting a specific subset of the terms of the training set and using only them in the classification algorithm.
- high dimensionality of text features
- Select the most informative features for model training
 - Reduce noise in feature representation
 - Improve final classification performance
 - Improve training/testing efficiency
 - Less time complexity
 - Fewer training data

Feature selection methods

- Wrapper methods
 - Find the best subset of features for a particular classification method
 - Sequential forward selection or genetic search to speed up the search

- Filter methods
 - Evaluate the features independently from the classifier and other features
 - Feasible for very large feature se
 - Usually used as a preprocessing step
- Embedded methods
- e.g. Regularized regression, Regularized SVM

Document frequency

• Rare words: non-influential for global prediction, reduce vocabulary size

Figure 2.1. A plot of the hyperbolic curve relating f, the frequency of occurrence and r, the rank order (Adaped from Schulus ** page 120)

Information gain

• Decrease in entropy of categorical prediction when the feature is present or absent

$$IG(t) = -\sum_{c} p(c) \log p(c)$$
 Entropy of class label along
$$+p(t) \sum_{c} p(c|t) \log p(c|t) \leftarrow \text{Entropy of class label if } t \text{ is present}$$

$$+p(\bar{t}) \sum_{c} p(c|\bar{t}) \log p(c|\bar{t}) \leftarrow \text{Entropy of class label if } t \text{ is absent}$$
 probability of seeing class label c in documents where t occurs
$$\text{probability of seeing class label } c \text{ in documents where t does not occur}$$

Gini Index

Let p(c|t) be the conditional probability that a document belongs to class c, given the fact that it contains the term t. Therefore, we have:

$$\sum_{c=1}^{k} p(c|t) = 1$$

Then, the gini-index for the term t, denoted by G(t) is defined as:

$$G(t) = \sum_{c=1}^{k} p(c|t)^2$$

Gini Index

- The value of the gini-index lies in the range (1/k, 1).
- Higher values of the gini-index indicate a greater discriminative power of the term t.
- If the global class distribution is skewed, the gini-index may not accurately reflect the discriminative power of the underlying attributes.
- Other methods
 - Normalized gini-index
 - Mutual Information
 - χ^2 -Statistic

Classification Algorithms

How to classify this document?

Text Classification: definition

- Input:
 - A training set of m manually-labeled documents $(d_1, c_1), \dots, (d_m, c_m)$
 - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
- Output:
 - a learned classifier $y: d \rightarrow c$

Hand-coded rules

- Rules based on combinations of words or other features
- Rules carefully refined by expert
- But building and maintaining these rules is expensive
- Data/Domain specifics
- Not recommended!

Supervised Machine Learning

• Logistic regression

- K-nearest neighbors
- Naïve Bayes
- Support vector machines
- Neural networks

Rocchio Classifier (Nearest Centroid)

Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Using a training set of documents, the Rocchio algorithm builds a prototype vector, centroid, for each class. This prototype is an average vector over the training documents' vectors that belong to a certain class.

$$\mu_{\mathbf{c}} = \frac{1}{|D_c|} \sum_{\mathbf{d} \in D_c} \mathbf{d}$$

Where D_c is the set of documents in the corpus that belongs to class c and d is the vector representation of document d.

Rocchio Classifier (Nearest Centroid)

The predicted label of document d is the one with the smallest (Euclidean) distance between the document and the centroid.

$$\hat{c} = \underset{c}{\operatorname{argmin}} ||\mu_{c} - \mathbf{d}||$$

K-Nearest Neighbor

- Given a test document d,. the KNN algorithm finds the k nearest neighbors of d among all the documents in the training set, and scores the category candidates based on the class of the k neighbors.
- After sorting the score values, the algorithm assigns the candidate to the class with the highest score.
- The basic nearest neighbors classification uses uniform weights: that is, the value assigned to a query point is computed from a simple majority vote of the nearest neighbors. C
- Can weight the neighbors such that nearer neighbors contribute more to the fit.

K-Nearest Neighbor

Finding Neighbors & Voting for Labels

Naïve Bayes

Bayes' Rule

- Applied to documents and classes
- For a document *d* and a class *c*

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

Multinomial Naïve Bayes Independence Assumptions

- Bag of Words assumption: Assume position doesn't matter
- Conditional Independence: Assume the feature probabilities $P(w_i|c_j)$ are independent given the class c.

$$P(w_1, ..., w_n | c) = P(w_1 | c) \cdot P(w_2 | c) \cdot P(w_3 | c) \cdot ... \cdot P(w_n | c)$$

Multinomial Naïve Bayes Classifier

$$C_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(w_1, w_2, \dots, w_n | c) P(c)$$

$$C_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{w \in V} P(w | c)$$

$$C_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{i \in positions} P(w_i | c_i)$$

Parameter estimation

- First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$$

$$\hat{P}(w_i|c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

• fraction of times word w_i appears among all words in documents of topic c_i

Problem with Maximum Likelihood

What if we have seen no training documents with the word coffee and classified in the topic positive (thumbs-up)?

$$\hat{P}("coffee"|positive) = \frac{count("coffee", positive)}{\sum_{w \in V} count(w, positive)}$$

Zero probabilities cannot be conditioned away, no matter the other evidence!

$$C_{MAP} = \underset{c}{\operatorname{argmax}} \hat{P}(c) \prod_{i} \hat{P}(w_{i}|c)$$

Laplace (add-1) smoothing for Naïve Bayes

$$\hat{P}(w_i|c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c) + 1)}$$
$$= \frac{count(w_i, c) + 1}{(\sum_{w \in V} count(w, c) + |V|)}$$

Multinomial Naïve Bayes: Learning

- · From training corpus, extract Vocabulary
- Calculate $P(c_j)$ terms
 - For each c_j in C do $docs_i$ ← all docs with class = c_i

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Calculate $P(w_k|c_i)$ terms
 - $Text_j \leftarrow \text{single doc containing all } docs_j$
 - For each word w_k in Vocabulary

 $n_k \leftarrow \#$ of occurrences of w_k in $Text_j$

$$P(w_k|c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha|Vocabulary|}$$

Decision Tree

- A decision tree is a hierarchical decomposition of the (training) data space, in which a condition on the feature value is used in order to divide the data space hierarchically.
- Top-down, by choosing a variable at each step that best splits the set of items.
- Different algorithms to measure the homogeneity of the target variable within the subsets.
 - Gini impurity
 - Information gain

Random Forest

- Random forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time.
- Fit multiple trees to bootstrapped samples of the data AND at each node select best predictor from only a random subset of predictors. Combine all trees to yield a consensus prediction

Support Vector Machine

- The main principle of SVM is to determine separators in the search space which can best separate the different classes.
- SVM tries to make a decision boundary in such a way that the separation between the two classes is as wide as possible.

Support Vector Machine

- It is not necessary to use a linear function for the SVM classifier.
- With the kernel trick, SVM can construct a nonlinear decision surface in the original feature space by mapping the data instances non-linearly to a new space where the classes can be separated linearly with a hyperplane.
- In practice, linear SVM is used most often because of their simplicity and ease of interpretability.
- SVM is quite robust to high dimensionality.

Evaluation

Data Splitting

- Training set
 - Validation set (dev set)
 - A validation dataset is a dataset of examples used to tune the hyperparameters (i.e. the architecture) of a classifier. It is sometimes also called the development set or the "dev set".
- Test set

Cross Validation

https://scikit-learn.org/stable/modules/cross_validation.html

Confusion matrix

		Predi		
		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

Accuracy

- What proportion of instances is correctly classified?
 TP + TN / TP + FP + FN + TN
- Accuracy is a valid choice of evaluation for classification problems which are well balanced and not skewed.
- Let us say that our target class is very sparse. Do we want accuracy as a metric of our model performance? What if we are predicting if an asteroid will hit the earth? Just say "No" all the time. And you will be 99% accurate. The model can be reasonably accurate, but not at all valuable.

Precision and recall

- Precision: % of selected items that are correct Recall: % of correct items that are selected
- Precision is a valid choice of evaluation metric when we want to be very sure of our prediction.
- Recall is a valid choice of evaluation metric when we want to capture as many positives as possible.

A combined measure: F

A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

The harmonic mean is a very conservative average;

Balanced F1 measure - i.e., with $\beta = 1$ (that is, $\alpha = 1/2$): F = 2PR/(P+R)

The Real World

No training data?

- Manually written rules
 - If (x or y) and not (w or z) then categorize as class1
 - Need careful crafting
 - Low accuracy
 - Domain-specific
 - Time-consuming
- Active learning
- Unsupervised methods

Very little data?

- Use Naïve Bayes, KNN, Rocchio
 - Naïve Bayes is a "high-bias" algorithm (Ng and Jordan 2002 NIPS)
- Get more labeled data
- Find ways to label data for you
- Try semi-supervised methods:
 - e.g. active learning, bootstrapping

A reasonable amount of data?

- Perfect for all the complex classifiers
 - SVM
 - Regularized Logistic Regression
 - Random forest

A huge amount of data?

- Can achieve high accuracy!
- At a cost:
 - SVMs (train time) or KNN (test time) can be too slow
 - Regularized logistic regression
 - Naïve Bayes again!
 - Deep learning

Accuracy as a function of data size

- With enough data
 - Classifier may not matter

Figure 1. Learning Curves for Confusion Set Disambiguation

https://aclanthology.org/P01-1005.pdf

How to tweak performance

- Domain-specific features and weights: very important in real performance
- Sometimes need to collapse terms:
 - Part numbers, chemical formulas, ...
 - But stemming generally doesn't help
- Upweighting: Counting a word as if it occurred twice:
 - Title words
 - First sentence of each paragraph (Murata, 1999)
 - In sentences that contain title words
- Hyperparameter optimization

Terminology

Some terminology

Corpus: is a large and structured set of texts

Stop words: words which are filtered out before or after processing of natural language data (text)

Unstructured text: information that either does not have a pre-defined data model or is not organized in a pre-defined manner.

Tokenizing: process of breaking a stream of text up into words, phrases, symbols, or other meaningful elements called tokens (see also lexical analysis)

Natural language processing: field of computer science, artificial intelligence, and linguistics concerned with the interactions between computers and human (natural) languages

Term document (or document term) matrix: is a mathematical matrix that describes the frequency of terms that occur in a collection of documents

Supervised learning: is the machine learning task of inferring a function from labeled training data

Unsupervised learning: find hidden structure in unlabeled data

Summary

Summary

- Vector space model & BOW
- Feature Selection
- Text Classification
- Evaluation

Practical 3