Breve introdução aos Métodos de Runge-Kutta

OBS: Não perder de vista que os métodos dados até ao momento, nomeadamente, os Métodos de Euler, Euler-Cromer, Euler Implícito, Crank-Nicolson, têm como objectivo a integração numérica de equações diferenciais ordinárias!

Como ponto de partida considerou-se uma ODE do tipo

 $\frac{dy}{dt} = f(t, y)$, com uma CI (condição inicial) conhecida.

Introdução Breve

► Recordemos o <u>Método de Euler</u>...

$$y_{k+1} = y_k + f(t_k, y_k) * h$$
 para $k = 0, 1, 2, ..., N-2$

Pela figura podemos verificar que na iteração k, entre os intantes t_k e t_{k+1} , a função incremento,

f(t_k, y_k), (a derivada), é calculada no ponto inicial do intervalo (t_k,

 y_k). Já vimos que essa aproximação vai introduzir erros.

ERRO GLOBAL do método de EULER ► O(h)!

►E recordemos também o <u>Método de Crank-Nicolson</u>...

$$y_{k+1} = y_k + \left[f\left(t_k, y_k\right) + f\left(t_{k+1}, y_{k+1}\right) \right] * \frac{h}{2} \quad O(h^2)$$

Neste caso, em cada iteração, a função incremento, **f(t**_k, **y**_k), (a derivada), é calculada em dois pontos, no ponto inicial (t_k, y_k) e no

ponto final (t_{k+1}, y_{k+1}) do intervalo. No algoritmo é considerada uma média destes dois valores.

Consequência prática \blacktriangleright ERRO GLOBAL do método de Crank-Nicolson é $O(h^2)$!

A precisão aumentou!

E porque não usar a expansão em série de Taylor?

Mas o cálculo das derivadas de ordem superior é normalmente complexo!

E em alternativa, porque não calcular a função incremento, (a derivada), em vários pontos intermédios? Será que se ganha mais precisão, como no método de Crank-Nicolson?

Métodos de Runge-Kutta

Os métodos de Runge-Kutta conseguem a precisão da série de Taylor, sem o cálculo de derivadas de ordem superior.

Como?

Considerando o cálculo da função incremento, f, em vários pontos do intervalo $[t_k, t_{k+1}]$.

<u>Como exemplo consideremos um método de Runge-Kutta de 4 ordem:</u>

$$y_{k+1} = y_k + \frac{1}{6} (r_1 + 2 * r_2 + 2 * r_3 + r_4) * h$$

Neste caso, a função incremento é calculada em 4 pontos distintos:

1° ponto

P1
$$\rightarrow$$
 (t_k, y_k) e $r_1 = f(t_k, y_k)$ (função incremento)

À custa desta função incremento, r_1 , encontram-se as coordenadas do 2° ponto,

2° ponto

P2
$$(t_k + \frac{h}{2}, y_k + r_1 * \frac{h}{2})$$
 e $r_2 = f(t_k + \frac{h}{2}, y_k + r_1 * \frac{h}{2})$

De modo semelhante, r_2 , vai ser usado para calcular as coordenadas do 3º ponto,

3° ponto

P3
$$(t_k + \frac{h}{2}, y_k + r_2 * \frac{h}{2})$$
 e $r_3 = f(t_k + \frac{h}{2}, y_k + r_2 * \frac{h}{2})$

E r₃, vai ser usado para calcular as coordenadas do 4º ponto,

4° ponto

P4
$$(t_k + h, y_k + r_3 * h)$$
 e $r_4 = f(t_k + h, y_k + r_3 * h)$

A função incremento, obtida para um dado ponto, vai gerar a coordenada y do ponto seguinte, e assim sucessivamente.

A função incremento final é uma média ponderada das funções incremento (r1, r2, r3 e r4), (a derivada), obtida nos 4 pontos do intervalo. Repare que no instante $t_k + \frac{h}{2}$, há dois valores para y.

E o ERRO GLOBAL é $O(h^4)$! E não foi necessário calcular derivadas de ordem superior!

Representação de BUTCHER-EXEMPLO

Consulte os slides 7, 8, 9 e 10 da AULA3

$$\begin{vmatrix}
r_1 = f(t_k, y_k) \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & 1
\end{vmatrix}$$

$$r_1 = f(t_k, y_k)$$

$$r_2 = f\left(t_k + \frac{h}{2}, y_k + r_1 * \frac{h}{2}\right)$$

$$r_3 = f\left(t_k + \frac{h}{2}, y_k + r_2 * \frac{h}{2}\right)$$

$$r_4 = f(t_k + h, y_k + r_3 * h)$$

$$y_{k+1} = y_k + \frac{1}{6} (r_1 + 2 * r_2 + 2 * r_3 + r_4) * h$$

Coluna 1	
0	$t_k + 0 * h$
1/2	$t_k + 1/2 * h$
1/2	$t_k + 1/2 * h$
1	$t_k + 1 * h$

			Coordenada y
Matriz			
1/2			$y_k + r_1 * h * \frac{1}{2}$
0	1/2		$y_k + r_1 * h * 0 + r_2 * h * 1/2$
0	0	1	$y_k + r_1 * h * 0 + r_2 * h * 0 + r_3 * h * 1$

Linha (Pêsos)						
1/6	1/3	1/3	1/6			
$y_{k+1} = y_k + \frac{1}{6} (1 * r_1 + 2 * r_2 + 2 * r_3 + 1 * r_4) * h$						