

Cor

- O que é cor?
 - ◆ Cor é uma sensação produzida no nosso cérebro pela luz que chega aos nossos olhos.
 - ◆ É um problema <u>psico-físico</u>.

Paradigmas de Abstração

- Universos: físico → matemático → representação → codificação.
- Luz → modelo espectral → representação tricromática → sistemas de cor.

3

CSP

Modelo Espectral de Cor

- Luz é uma **radiação** eletromagnética que se propaga a 3×10^5 km/s ($E = h \cdot v$, $c = \lambda \cdot v$).
 - h é a constante de Planck (6.626 ×10⁻³⁴ J·s).
- Luz branca é uma *mistura* de radiações com diferentes comprimentos de onda.

Luz Visível

Range (nm)	Colour
380 – 450	Violet
450 – 490	Blue
490 – 560	Green
560 – 590	Yellow
590 – 640	Orange
640 – 730	Red

7

Sistemas Físicos de Cor

- •O olho é um sistema físico de processamento de cor (sistema refletivo).
 - Similar a uma câmera de vídeo.
 - Converte luz em impulsos nervosos.

Percepção de Cor

- Diferente para cada espécie animal.
 - Camarão "mantis" possui 12 tipos fotorreceptores de cor, ou seja, eles enxergam mais cores que os humanos.
- Dentre os mamíferos, só o ser humano e algumas espécies de macaco enxergam cores (tri-cromático).
- Aves têm uma visão muito mais acurada do que a nossa. A retina delas tem milhões de fotorreceptores, os quais aumentam o alcance visual.

Representação

- Amostragem gera uma representação **finita** de uma função de distribuição espectral.
- Todo sistema refletivo possui um número finito de sensores, que fazem uma amostragem em n faixas do espectro.

Sistema Visual Humano

- Dois tipos de células receptoras com sensibilidades diferentes: <u>cones</u> e <u>bastonetes</u>.
 - ◆ Bastonetes → luz de baixa intensidade (sem cor).
 - Cones → luz de média e alta intensidade (com cor).
- Três tipos de cones que amostram: comprimento de onda curto (azul), médio (verde) e longo (vermelho).

11

Cones e Bastonetes pigment epithelium rods code code inmining membrane horizontal cells bipolar cells amagrine cells amagrine rembrane inner limiting membrane > 120 milhões de bastonetes (em cada olho). > 6 milhões de cones (por olho).

Tipos de Cones e Eficiência Luminosa

- Brilho aparente varia com o comprimento de onda.
- Pico do brilho é diferente para níveis baixos (bastonetes), médios e altos (cones).
 - Máximo na faixa do verde.

40

Representação Discreta de Cor

- O espaço de todas as distribuições espectrais possui dimensão **infinita**.
- Representação **finita** requer um processo de amostragem.
 - Aproxima um espaço de dimensão infinita por um espaço de dimensão finita (há perda de informação).
- Pode-se utilizar um vetor de dimensão finita na representação discreta de cor.

$$R: f \in D \to (f(x_1), f(x_2), ..., f(x_n)) \in \Re^n$$

Sistemas Padrão e de Interface

- Padronizada pela CIE Comission Internationale de L'Eclairage (criada em 1913).
- Sistemas Padrão:
 - CIE-RGB.
 - 700 mμ (Red), 546 mμ (Green), 435.8 mμ (Blue).
 - CIE-CMY.
 - Ciano (azul piscina), Magenta (violeta), Amarelo.
 - CIE-XYZ.
- Sistemas de Interface:
 - Baseados em coordenadas: HSV, HSL.
 - Baseados em amostras: Pantone, Munsell.

15

CSP

Sistema Padrão (RGB)

 As cores primárias utilizadas são o vermelho, o verde e o azul.

 O espectro de cores é formado a partir da combinação linear das cores primárias.

TSP

Sistema Padrão (XYZ)

- •Sistema aditivo de cores primárias da CIE.
 - Descreve as cores através de 3 cores primárias virtuais X, Y e Z.
 - Sistema foi criado devido à inexistência de um conjunto finito de cores primárias que produza todas as cores visíveis possíveis.
 - ◆ As cores *C_I* podem ser expressas pela seguinte equação:
 - $C_i = x.X + y.Y + z.Z \rightarrow com x + y + z = 1.$
 - X, Y e Z especificam as quantidades das primárias padrões necessárias para descrever uma cor espectral
- Este conjunto de cores visíveis forma um cone convexo, chamado de sólido de cor.
 - Espaço de cor é o conjunto das retas que passam pela origem.

19

Conversão Entre Sistemas Padrões

• Conversão de RGB para XYZ e Vice-Versa

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.489989 & 0.310008 & 0.200003 \\ 0.176962 & 0.812400 & 0.010638 \\ 0.000000 & 0.009999 & 0.990001 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix},$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 2.364666 & -0.896583 & -0.468083 \\ -0.515155 & 1.426409 & 0.088746 \\ 0.005203 & -0.014407 & 1.009204 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}.$$

•Conversão de RGB para CMY

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

TSP

Sistemas de Interface

- Oferecem uma **interface** adequada a especificação de cores por um usuário comum.
- Sistema bem mais intuitivo.
- Em geral, especificam cores através de três parâmetros: <u>matiz</u>, <u>saturação</u> e <u>luminância</u>.
- Tipos de Sistemas de Interface:
 - Baseados em coordenadas: HSV, HSL.
 - Baseados em **amostras**: Pantone, Munsell.

21

TSP

Sistema HSV (Definição)

- Sistema HSV foi criado por Alvy Ray Smith.
 - \bullet H → Hue (matiz)
 - ◆S → Saturation (saturação)
 - ◆ V → Value (valor da luminância)
- Projeta o cubo RGB ortogonalmente sobre o plano: x + y + z = 3.
- A representação gráfica tridimensional do sistema HSV é um cone de 6 lados derivado do cubo RGB.
- Conversão para RGB <u>não</u> é uma transformação linear.

TSP

Facilidades do Sistema HSV e HSL

- Os sistemas HSV e HSL permitem que se pense em termos de cores mais "claras" e mais "escuras".
- As cores são especificadas através de um ângulo, e os diversos *shades*, *tints*, e *tones* de cada cor são obtidos através do ajuste do brilho ou luminosidade e da saturação.
- As cores mais claras são obtidas através do aumento do brilho ou da luminosidade e as cores mais escuras pela diminuição dos mesmos.
- As cores intermediárias são obtidas através da diminuição da saturação.

25

TSP

Sistemas Baseados em Amostras

- Amostram matizes, saturação e luminância.
- Sistema Munsell (1915):
 - Obedece o critério da uniformidade perceptual.
- Sistema Pantone (1960):
 - Criado pela indústria gráfica.
 - Usado no processo de impressão em papel.

