Open source tools for logic synthesis and SOC Design: An overview

About me

- CS graduate
- Currently pursuing Mtech in embedded system @ NIELIT Calicut.
- Passionate About RTL|Digital Design and FPGA based systems and accelerators.
- Other fields of interest
 - Bare Metal C Programming | HW/SW CO Design | Computer Architecture

Agenda

- Open source tools for logic synthesis
 - Functional verification of digital design
 - Synthesis and Mapping
 - Gate Level Simulation
 - Demo: Generating bitstream for an FPGA using a open source flow

• Litex

- How to install litex
- How to run your first simulation with microwatt with litex.

Functional Verification

Simulation

 Simulation is the process of checking whether the design is adhering to the given specs. The tool used for simulating the design is called a simulator.

Inputs to the simulator

- The Design.
- The Testbench.

Tool Used

iverilog

Functional Verification - iverilog flow

Logic Synthesis - What is it.?

```
mux.v > {} mux

imput a,b,s;
output y;

assign y=s?a:b;
endmodule

b BUF

A0

A1

sky130 fd sc hd mux2 1

mux

mux

mux

mux
```

Logic Synthesis - Translation

```
mux.v > {} mux

i module mux(a,b,s,y);
input a,b,s;
output y;

assign y=s?a:b;
endmodule

b

A

S

S

MUX

Y

y

mux

mux
```

Logic Synthesis - Optimisations

Logic Synthesis - Mapping

- The standard cell library
 - A standard cell library is a collection of characterized logic gates that can be used to implement digital circuits. This is usually part of set of file created by the foundry called the PDK(Process Development Kit).
 - Has many type of files including the timing/power liberty file.
 - The SkyWater Open Source PDK
 - The SkyWater Open Source PDK is a collaboration between Google and SkyWater Technology Foundry to provide a fully open source Process Design Kit and related resources, which can be used to create manufacturable designs at SkyWater's facility.

Gate Level Simulation

- Why GLS
 - check the correctness of the design after synthesis
- Synthesis Simulations Mismatches
 - Missing signals in sensitivity list
 - Blocking and Nonblocking statements
 - Missing statements in if|case blocks

GLS with iverilog

Demo

Litex

- A Framework that provides a convenient and efficient infrastructure to create FPGA Cores/SoCs
- Migen
- Buses including Wishbone and AXI
- Easy to integrate VHDL/Verilog/SystemVerilog code in LiteX!
- LiteX already supports various softcores CPUs including microwatt!!

Typical LiteX design flow

```
|FPGA toolchains|
                    +----
                     +--+----V--+
       | Migen +---->
                                       Your design
                         LiteX +---> ready to be used!
|LiteX Cores Ecosystem +-->
         -----+ +-^-----
(Eth, SATA, DRAM, USB,
 PCIe, Video, etc...) + +
                      board
                             target
                      file
                             file
```

Demo - Simulating a microwatt based SOC with Litex