Algebra Linear e Geometria Analítica EGI+EIC Exame da Época de Recurso – ano lectivo 2005/2006 – 16 de Fevereiro de 2006
Exame da Época de Recurso – ano lectivo 2005/2006 – 16 de Fevereiro de 2006
1
Departamento de Matemática para a Ciência e Tecnologia – Guimarães – Universidade do Minho
Curso: Nome: Número: Classificação:
A prova tem a duração de 120 minutos, é sem consulta e não é permitida a utilização de máquina de calcular. Durante a realização da prova os telemóveis devem estar desligados e só se pode abandonar a sala passados 20 minutos do seu início. A prova é constituído por três grupos e termina com a palavra "Fim". No início de cada grupo indicam-se as cotações na escala de 0 a 200.
Grupo I — Indique, na folha do enunciado da prova sem apresentar cálculos nem justificações, se as seguintes proposições são verdadeiras ou falsas usando para tal os caracteres "V" ou "F", respectivamente. Cotações — resposta certa: 5; resposta em branco: 0; resposta errada: -5, sendo 0 é cotação mínima neste grupo.
I.1
I.2 Uma matriz ortogonal pode ser singular.
I.3 $[]$ $\{(x_1,x_2,x_3)\in\mathbb{R}^3 x_1+x_2=0\}$ é um subespaço de \mathbb{R}^3 .
I.4 \square No espaço vectorial real \mathbb{R}^2 , $(1,-1)$ é uma combinação linear de $(1,2)$ e $(2,-2)$.
I.5
I.6 Seja a aplicação $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $f(x,y,z) = (0,0)$. Então, $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$.
I.7 Espa $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ tal que $f(i, j) = (2i - j, i)$. Então, a matriz da aplicação f é $\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$.
I.8
Grupo II — Complete, na folha do enunciado da prova sem apresentar cálculos nem justificações, as seguintes frases de modo a obter proposições verdadeiras. Cotações — resposta certa: 5; resposta em branco ou errada: 0.
II.1 No espaço vectorial real \mathbb{R}^2 , o conjunto de vectores $\{(\alpha^2,1),(\alpha,0)\}$ é linearmente independente se e só se $\alpha\in$
II.2 Considere, em \mathbb{R}^3 , a recta r cujas equações cartesianas são $x=2y+1$ e $z=0$. Então,
é um vector director de r . II.3 À quádrica $2x^2-z=0$ chama-se

П.4

são equações possíveis para descrever o parabolóide circular

cuja representação gráfica é

Grupo III — Responda, nas folhas que lhe foram distribuídas e por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efectuar, bem como as respectivas justificações. Cotações: 20+15+15+(5+5)+20+20+20+20.

- III.1 Seja $x \in \mathcal{M}_{n \times 1}(\mathbb{R})$ tal que $x^T x = 1$. Mostre que a $I_n 2xx^T$ é uma matriz simétrica e ortogonal.
- III.2 Considere o conjunto \mathbb{R}^2 munido das operações $(x_1, x_2) \oplus (y_1, y_2) = (x_1 + 2y_1, x_2 + 2y_2)$ e $\alpha \odot (x_1, x_2) = (\alpha x_1, 2\alpha x_2)$, $\alpha \in \mathbb{R}$. Verifique se é válida a afirmação: $\forall \alpha \in \mathbb{R}, \forall x, y \in \mathbb{R}^2 : \alpha \odot (x \oplus y) = \alpha \odot x \oplus \alpha \odot y$.
- III.3 Defina conjunto gerador de um espaço vectorial, conjunto linearmente independente e base de um espaço vectorial.
- III.4 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 3 & -7 \\ -5 & 1 \end{bmatrix}$ e cujo vector dos termos independentes é $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
 - (a) Mostre, sem o resolver, que o sistema de equações lineares dado é possível e determinado.
 - (b) Considere o seguinte teorema, conhecido por Regra de Cramer: "Seja Ax = b um sistema de n equações lineares a n incógnitas. Se o sistema é possível e determinado então $x_i = \frac{\Delta_i}{|A|}, i = 1, \ldots, n$, em que Δ_i é o determinante da matriz que se obtém a partir da matriz A, na qual se substitui a coluna i pelo vector b."

 Resolva o sistema de equações lineares dado através da Regra de Cramer.
- III.5 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 4 & -1 \\ 2 & -3 & 2 \\ -1 & 2 & 1 \end{bmatrix}$ e cujo vector dos termos independentes é $b = \begin{bmatrix} 1 \\ 21 \\ 17 \end{bmatrix}$. Resolva-o através do método de Gauss e do método de Gauss-Jordan.
- III.6 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 1 & k \\ 2 & k & -2 \end{bmatrix}$ e cujo vector dos termos independentes é $b = \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix}$. Discuta-o em função do parâmetro real k.
- III.7 Determine o espectro da matriz $A = \begin{bmatrix} 7 & 5 & -1 \\ 0 & -2 & 1 \\ 20 & 0 & 3 \end{bmatrix}$, bem como o conjunto dos vectores próprios associados ao valor próprio de maior módulo.
- III.8 Considere, em \mathbb{R}^3 , a recta r definida pelos pontos A=(1,2,0) e B=(0,1,-1). Determine a distância da recta r à origem.

Fim.