Lecture 11b: Decision Theory

CSCI 360 Introduction to Artificial Intelligence USC

Here is where we are...

	3/1		Project 2 Out	
9	3/4	3/5	Quantifying Uncertainty	[Ch 13.1-13.6]
	3/6	3/7	Bayesian Networks	[Ch 14.1-14.2]
10	3/11	3/12	(spring break, no class)	
	3/13	3/14	(spring break, no class)	
11	3/18	3/19	Inference in Bayesian Networks	[Ch 14.3-14.4]
	3/20	3/21	Decision Theory	[Ch 16.1-16.3 and 16.5]
	3/23		Project 2 Due	
12	3/25	3/26	Advanced topics (Chao traveling to National Science Foundation)	
	3/27	3/28	Advanced topics (Chao traveling to Na	tional Science Foundation)
	3/29		Homework 2 Out	
13	4/1	4/2	Markov Decision Processes	[Ch 17.1-17.2]
	4/3	4/4	Decision Tree Learning	[Ch 18.1-18.3]
	4/5		Homework 2 Due	
	4/5		Project 3 Out	
14	4/8	4/9	Perceptron Learning	[Ch 18.7.1-18.7.2]
	4/10	4/11	Neural Network Learning	[Ch 18.7.3-18.7.4]
15	4/15	4/16	Statistical Learning	[Ch 20.2.1-20.2.2]
	4/17	4/18	Reinforcement Learning	[Ch 21.1-21.2]
16	4/22	4/23	Artificial Intelligence Ethics	
	4/24	4/25	Wrap-Up and Final Review	
	4/26		Project 3 Due	
	5/3	5/2	Final Exam (2pm-4pm)	

Outline

- What is Al?
- Part I: Search
- Part II: Logical reasoning
- Part III: Probabilistic reasoning
 - Quantifying Uncertainty
 - Bayesian Networks
 - Inference in Bayesian Networks

- Decision Theory
- Markov Decision Processes
- Part IV: Machine learning

Recap: Making rational decisions

Rational decision depends on

- (1) The relative importance of various goals and
- (2) likelihood that (and degree to which) they will be reached

Decision theory = Utility theory + Probability theory

Choose an action that yields the <u>maximum expected utility (MEU)</u>, averaged over all the possible outcomes of the action, weighted by the probability

Recap: Deterministic environment

- In a deterministic environment, given the current state s, compute next state s'
 - s' = RESULT(s₀, a)
- What about a non-deterministic environment where the agent does not even know the current state?
 - RESULT(a) is random, meaning that the outcome is a <u>lottery</u>

Recap: Deterministic environment

 In a deterministic environment, given the current state s, compute next state s'

```
- s' = RESULT(s<sub>0</sub>, a)
```

- What about a non-deterministic environment where the agent does not even know the current state?
 - RESULT(a) is random, meaning the outcome is a <u>lottery</u>

The probability of each outcome (s'), given evidence (e) and action (a), is

$$P(RESULT(a) = s' \mid a, \mathbf{e})$$

Taking a course with
 Professor X

deterministic

Taking a course with
 Professor Y

getting A g

getting C

non-deterministic

- Taking a course with
 Professor X
 - getting B(3)

Taking a course with
 Professor Y

getting A(4) getting C(2)

- ✓ Professor Y (seeking the best case 4.0)
- ✓ Professor X (avoiding the worst case 2.0)

Which one do **YOU** choose?

Taking a course with
 Professor X

getting B(3) (100%) 3*100% = 3

Taking a course with
 Professor Y

SHOULD Which one — do— you choose?

Taking a course with
 Professor X

Taking a course with
 Professor Y

SHOULD Which one — do— you choose?

Taking a course with
 Professor X

getting B(3) (100%) 3*100% = 3

Taking a course with
 Professor Y

getting A(4) getting C(2)
(25%) (75%)

$$4*25\% + 2*75\% = 2.5$$

SHOULD Which one — do— you choose?

- In the previous example, we have applied the principle of maximum expected utility (MEU)
- Utility function, *U(s')*, expresses the desirability of state s'

Example:

```
s' = { getting A, getting C }

U( getting A ) = 4.0

U( getting C ) = 2.0
```

- Utility function, U(s'), expresses the desirability of state s'
- Expected utility, **EU(a/e)**, is the weighted average

$$EU(a|\mathbf{e}) = \sum_{s'} P(\text{Result}(a) = s' \mid a, \mathbf{e}) U(s')$$

- a: with professor **Y** e: taking the course **s**' = { getting A, getting C }

Example:

$$P(RESULT(a) = getting A \mid a, e) * U(getting A) = 75\% * 4.0$$

 $P(RESULT(a) = getting C \mid a, e) * U(getting C) = 25\% * 2.0$

$$EU(a|e) = 75\%*4.0 + 25\%*2.0$$

Choosing an action that maximizes the expected utility

$$action = \operatorname*{argmax}_{a} EU(a|\mathbf{e})$$

This principle defines all of Al

Choosing an action that maximizes the expected utility

$$action = \operatorname*{argmax}_{a} EU(a|\mathbf{e})$$

This principle defines all of Al

Outline of today's lecture

- Maximum expected utility (MEU)
- Axioms of Utility Theory
 - E.g., why is the principle of MEU rational?
 - Characteristics of rational preferences
 - Human irrationality
- Decision making

Axioms of utility theory

- **Lottery**: the set of *probability-weighted* outcomes for each action $L = [p_1, S_1; p_2, S_2; ...; p_n, S_n]$
 - S_i denotes an outcome
 - p_i denotes the probability of S_i

Example

$$p_1 = 75\%$$

 $S_1 = getting A$

$$p_2 = 25\%$$

 $S_2 = getting C$

Axioms of utility theory

• Lottery: the set of probability-weighted outcomes for each action $L = [p_1, S_1; p_2, S_2; ...; p_n, S_n]$

Constraints that any rational preference must obey:

Orderability

Exactly one of $(A \succ B)$, $(B \succ A)$, or $(A \sim B)$ holds.

Transitivity

$$(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$$
.

Continuity

$$A \succ B \succ C \Rightarrow \exists p [p, A; 1-p, C] \sim B$$
.

Substitutability

$$A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$$
.

Monotonicity

$$A \succ B \Rightarrow (p > q \Leftrightarrow [p, A; 1 - p, B] \succ [q, A; 1 - q, B])$$
.

Decomposability

$$[p, A; 1-p, [q, B; 1-q, C]] \sim [p, A; (1-p)q, B; (1-p)(1-q), C].$$

Self-evident irrationality

- For example, an agent with "intransitivity" preference can be induced to give away all its money
- If B>C, then an agent who has C would pay 1 cent to get B
- If A>B, then an agent who has B would pay 1 cent to get A
- If C>A, then an agent who has A would pay 1 cent to get C

Theorem [von Neumann and Morgenstern, 1944]

- If an agent's preferences obey the axioms of utility, then
 - there exists a function U(s') that captures the preferences; and

$$U(A) > U(B) \Leftrightarrow A \succ B$$

 $U(A) = U(B) \Leftrightarrow A \sim B$

 the utility of a lottery is the sum of the probability of each outcome times the utility of that outcome

$$U([p_1, S_1; \dots; p_n, S_n]) = \sum_{i} p_i U(S_i)$$

Theorem [von Neumann and Morgenstern, 1944]

- If an agent's preferences obey the axioms of utility, then
 - there exists a function U(s') that captures the preferences; and

$$U(A) > U(B) \Leftrightarrow A \succ B$$

 $U(A) = U(B) \Leftrightarrow A \sim B$

 the utility of a lottery is the sum of the probability of each outcome times the utility of that outcome

$$U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$$

Utility function is not unique

 For example, an agent's behavior would not change if its utility function *U(s)* were transformed "linearly"

$$U'(S) = aU(S) + b$$

where a and b are constants and a > 0.

This is called "affine" transformation.

Question for you (1)

- Given two options
 - (A). You will get \$240 for sure
 - (B). You will get \$1000 with 25% chance, and nothing with 75%

You might want to choose (A)

```
U(B) = U(1000*25\% + 0*75\%) = U($250)

U(A) = U($240)
```

I get it - you don't care about money

Question for you (2)

- Given two options
 - (C). You will lose \$760 for sure
 - (D). You will lose \$1000 with 75% chance, and nothing with 25%

You might want to choose (D)

```
U(D) = U(-1000*75\% + 0*25\%) = U(-\$750)

U(C) = U(-\$760)
```

Wait a second - you do care about money

Human irrationality

Most people prefer A in Question 1 and D in Question 2

Net loss, given both questions:

$$240*0.25 - 760*0.75 = -\$510$$

Net loss, given both questions:

$$250*0.25 - 750*0.75 = - $500$$

Outline of today's lecture

- Maximum expected utility (MEU)
- Axioms of Utility Theory
 - E.g., why is the principle of MEU rational?
 - Characteristics of rational preferences
 - Human irrationality
- Decision making

Situation:

- You can buy one of 4 indistinguishable blocks of ocean drilling rights (numbered 1-4), exactly one of which contains oil worth 5 (million) dollars.
- The price of each block is 1 (million) dollars.

Question:

Situation:

 You can buy one of 4 indistinguishable blocks of ocean drilling rights (numbered 1-4), exactly one of which contains oil worth 5 (million) dollars. The price of each block is 1 (million) dollars.

Question:

Should you buy one or should you abstain from the purchase?

Human decision makers are often **risk-averse** in high-stake situations that do not repeat; they consider the <u>worst-case</u> more than <u>average</u> outcome.

Situation:

 You can buy one of 4 indistinguishable blocks of ocean drilling rights (numbered 1-4), exactly one of which contains oil worth 5 (million) dollars. The price of each block is 1 (million) dollars.

Question:

Situation:

 You can buy one of 4 indistinguishable blocks of ocean drilling rights (numbered 1-4), exactly one of which contains oil worth 5 (million) dollars. The price of each block is 1 (million) dollars.

Question:

Situation:

 You can buy one of 4 indistinguishable blocks of ocean drilling rights (numbered 1-4), exactly one of which contains oil worth 5 (million) dollars. The price of each block is 1 (million) dollars.

Question:

Situation:

 A seismologist can survey Block 1 for you and find out definitively "whether it contains oil", for 1 (million) dollars.

Question:

Situation:

 A seismologist can survey Block 1 for you and find out definitively "whether it contains oil", for 1 (million) dollars.

Question:

Situation:

 A seismologist can survey Block 1 for you and find out definitively "whether it contains oil", for 1 (million) dollars.

Question:

Situation:

 A seismologist can survey Block 1 for you and find out definitively "whether it contains oil", for 1 (million) dollars.

Question:

Situation:

 A seismologist can survey Block 1 for you and find out definitively "whether it contains oil", for 1 (million) dollars.

Question:

Situation:

 A seismologist can survey Block 1 for you and find out definitively "whether it contains oil", for 1 (million) dollars.

Question:

Situation:

 A seismologist can survey Block 1 for you and find out definitively "whether it contains oil", for 1 (million) dollars.

Answer:

Yes, for an expected profit of 0.5 (million) dollars.

The plan:

- Ask the seismologist.
- If the seismologist says that Block 1 contains oil, buy it.
- If the seismologist says that Block 1 does not contain oil, buy one of the other blocks.
- this is a conditional plan, not a sequence of actions. In general, plans are no longer sequences of actions for probabilistic environment.

Situation:

 A seismologist can survey Block 1 for your and find out definitively "whether it contains oil", for 1 (million) dollars.

Example: oil drilling (yet another question)

- Situation:
 - The seismologist now wants <u>more money</u> for the information.
- Question:
 - How much should you pay at most for the information?

Information is money...

- Answer:
 - 1.25 (million) dollars, which makes you indifferent between
 - (a) buying one of the blocks unseen or
 - (b) paying the seismologist for the information, for an expected profit of 0.25 (million) dollars in both cases.

Example: oil drilling (yet another question)

Situation:

 A seismologist can survey Block 1 for your and find out definitively "whether it contains oil", for 1 (million) dollars.

Summary

Basis of Utility Theory

- E.g., why is the principle of MEU rational?
- Characteristics of rational preferences
- Human irrationality

Decision making