# Plane Polar Coordinates and Inverse Trigonometric Functions

Objective: To understand inverse trig functions and polar coordinates, and be able to convert between polar and cartesian coordinates.

#### Recap of previous material:

Consider the diagram below, showing a general point with coordinates (x, y) (pictured here in the third quadrant, but it could be anywhere):



- 1. Express the length r from the origin to (x, y) in terms of x and y.
- 2. Express x in terms of r and  $\theta$ , using a trigonometric function.
- 3. Express y in terms of r and  $\theta$ , using a trigonometric function.
- 4. For the specific point (-4, 2), find r.
- 5. For the specific point with r=2,  $\theta=\frac{4\pi}{3}$ , find the (x,y)-coordinates. Plot this point on the above diagram.

## Warm-up:

- 1. What angle does the point (-1,1) make with the positive x-axis?
- 2. What is the distance from the origin to (-1,1)?
- 3. Hence find the point on the unit circle which makes the same angle with the positive x-axis as (-1,1).
- 4. Hence write down an angle  $\theta$  such that  $\cos(\theta) = \frac{-1}{\sqrt{2}}$  and  $\sin(\theta) = \frac{1}{\sqrt{2}}$
- 5. Is there any other angle  $\phi$  such that  $\cos(\phi) = \frac{-1}{\sqrt{2}}$ ?
- 6. Is there any other angle  $\psi$  such that  $\sin(\psi) = \frac{1}{\sqrt{2}}$ ?

## Theory - Inverse Trigonometric Functions:

Given any angle  $\theta$ , we can find  $\cos(\theta)$  and  $\sin(\theta)$  as the x- and y-coordinates respectively of the point on the unit circle at angle  $\theta$ . We can then find  $\tan(\theta)$  as the ratio of these two numbers:

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}.$$

Can we go the other way? If we know  $\sin(\theta)$  and  $\cos(\theta)$ , we can plot the point with coordinates  $(\cos(\theta), \sin(\theta))$ , which will lie on the unit circle, and measure the angle it forms with the positive x-axis. There are computational methods, such as Newton-Raphson, for figuring out the precise angle  $\theta$  without the inaccurate approach of plotting the point and measuring the angle with a protractor.

What if we just know  $\sin(\theta)$ , without knowing  $\cos(\theta)$ ? Then there are two possible angles  $\theta$ , because there are two points on the unit circle with the same y-coordinate. Similarly, if we know  $\cos(\theta)$ , there are two points with the same x-coordinate, so two possible values of  $\theta$ . This means that the trigonometric functions **cannot properly be inverted**.

However, we can partly invert them. The **inverse trigonometric function** arccos (often denoted  $\cos^{-1}$ ) returns the **smallest** non-negative angle with a given cosine, always in the range  $0 \le \theta \le \pi$ . The inverse trigonometric functions arcsin and arctan (often denoted  $\sin^{-1}$  and  $\tan^{-1}$  respectively) return the unique angle between  $\frac{-\pi}{2}$  and  $\frac{\pi}{2}$  having a given sine or tangent respectively.

So  $\sin(\sin^{-1}(x)) = x$ , but  $\sin^{-1}(\sin(\theta))$  might not equal  $\theta$ , but is instead the angle closest to zero with the same sine as  $\theta$ . Similarly,  $\cos(\cos^{-1}(x)) = x$ , but  $\cos^{-1}(\cos(\theta))$  might not equal  $\theta$ , and  $\tan(\tan^{-1}(x)) = x$ , but  $\tan^{-1}(\tan(\theta))$  might not equal  $\theta$ .

### Example - arccos:



The two points shown both lie on the unit circle and have the same x-coordinate,  $x = \frac{-1}{\sqrt{2}}$ . Therefore

$$\cos\left(\frac{3\pi}{4}\right) = \cos\left(\frac{5\pi}{4}\right) = \frac{-1}{\sqrt{2}}$$

The arccos function returns the smallest non-negative angle having a given cosine, so

$$\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{3\pi}{4}$$

Looking on the graph of the cosine function, we can see the two angles between 0 and  $2\pi$  which have cosine  $\frac{-1}{\sqrt{2}}$ . We also see that there are other angles having the same cosine, because the cos function is  $2\pi$ -**periodic**: it repeats exactly every  $2\pi$ , so  $\cos(\theta + 2\pi) = \cos(\theta)$ .



## Example - arcsin:



The two points shown both lie on the unit circle and have the same y-coordinate,  $y = \frac{-\sqrt{3}}{2}$ . Therefore

$$\sin\left(\frac{4\pi}{3}\right) = \sin\left(\frac{5\pi}{3}\right) = \frac{-\sqrt{3}}{2}$$

The arcsin function returns the angle closest to 0 having a given sine, so

$$\sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) = \frac{-\pi}{3}$$

Shifting by  $2\pi$  to get a positive angle gives us  $\frac{5\pi}{3}$ .

Looking on the graph of the sine function, we can see the two angles between 0 and  $2\pi$  which have sine  $\frac{-\sqrt{3}}{2}$ . We also see that there are other angles having the same sine, because the sin function is  $2\pi$ -**periodic**: it repeats exactly every  $2\pi$ , so  $\sin(\theta + 2\pi) = \sin(\theta)$ .



#### Example - arctan:

Consider the graph of the tangent function, and suppose we want to find angles  $\theta$  such that  $\tan(\theta) = 1$ :



We have that  $\tan\left(\frac{\pi}{4}\right) = 1$ , so  $\tan^{-1}(1) = \frac{\pi}{4}$ . However, the tan function is  $\pi$ -periodic (compared with  $2\pi$ -periodic for sin and cos), so  $\tan\left(\frac{5\pi}{4}\right) = 1$  also, and, in fact, for any whole number n:

$$\tan\left(\frac{\pi}{4} + n\pi\right) = 1.$$

So we have seen that for all three trig functions, there are **infinitely many** solutions  $\theta$  to the equation  $\sin(\theta) = x$ , or  $\cos(\theta) = x$ , or  $\tan(\theta) = x$ , and two of these solutions will satisfy  $0 \le \theta < 2\pi$ . Either of these can be the "correct" solution to a given problem, so care must be taken to choose the right one. The infinitely many other solutions are just copies of these two as the functions repeat themselves.

# Practice:

1. 
$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$$
. What is  $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ ?

2. 
$$\cos\left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$
. What is  $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ ?

3. 
$$\tan(\frac{4\pi}{3}) = \sqrt{3}$$
. What is  $\tan^{-1}(\sqrt{3})$ ?

## Application: Plane Polar Coordinates:

We have seen that if we know the distance r of a point from the origin and the angle  $\theta$  that point makes with the positive x-axis, we can find the (x, y)-coordinates of the point by the formulae

$$x = r\cos(\theta)$$
  $y = r\sin(\theta)$ .

We have also seen that the distance r can be found by Pythagoras' Theorem:

$$r = \sqrt{x^2 + y^2}.$$

Now that we have the inverse trig functions, we can also find  $\theta$  from x and y. We have:

$$\frac{y}{x} = \frac{r\sin(\theta)}{r\cos(\theta)}$$
$$= \frac{\sin(\theta)}{\cos(\theta)}$$
$$= \tan(\theta)$$

Now, it **does not follow** that  $\theta = \tan^{-1}(y/x)$ , because the arctan function returns the smallest angle having the given tangent. So either  $\theta = \tan^{-1}(y/x)$  or  $\theta = \pi + \tan^{-1}(y/x)$ . We can find which it is by considering whether x and y are positive or negative, and therefore which quadrant the point must lie in.

So given (x, y)-coordinates for a point (we call these the **cartesian coordinates** of the point), we can find  $(r, \theta)$ -coordinates (we call these **plane polar coordinates** or just **polar coordinates**) using

$$r = \sqrt{x^2 + y^2}$$
  $\tan(\theta) = \frac{y}{x}$ ,

and given polar coordinates  $(r, \theta)$  for a point, we can find the cartesian coordinates by

$$x = r\cos(\theta)$$
  $y = r\sin(\theta)$ .

So cartesian and polar coordinates are equivalent ways to describe a point. In some problems, one or other coordinate system makes it easier to find the solution. We will particularly see this when we look at complex numbers and later at calculus.

Note: some people call cartesian coordinates rectangular coordinates instead.

# Practice:

- 1. Convert the following points from cartesian coordinates to plane polars:
  - (a) (0,4)
  - (b) (-3,7)
  - (c) (12, -2)
  - (d) (-1, -8)
- 2. Convert the following points from polar coordinates to cartesians:
  - (a)  $(5, \frac{\pi}{2})$
  - (b) (7, 3.729)

## Key Points to Remember:

- 1. The **inverse trigonometric functions** arcsin, arccos, and arctan return the **angle closest to 0** (and positive for arccos)  $\theta$  having a given sine, cosine, or tangent, respectively, but there will be infinitely many other angles possible, and two will lie between 0 and  $2\pi$ .
- 2. Cartesian coordinates (or rectangular coordinates) are the usual (x, y)coordinates for describing a point's position.
- 3. Plane polar coordinates describe a point's position by its distance from the origin r and the angle  $\theta$  that it makes with the positive x-axis.
- 4. To convert from polar coordinates to cartesian coordinates, use the formulae:

$$x = r\cos(\theta)$$
  $y = r\sin(\theta)$ .

5. To convert from cartesian coordinates to polars, use the formulae:

$$r = \sqrt{x^2 + y^2}$$
  $\tan(\theta) = \frac{y}{x}$ ,

and consider the quadrant to decide whether

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) \text{ or } \pi + \tan^{-1}\left(\frac{y}{x}\right).$$