Exponents (negative, positive, fractional, variables)

Negative Exponents -> Positive Exponent

- 1. Take the reciprocal of the base
- 2. Raise it to the positive power
- 3. Evaluate/Simplify
- Negative exponents in denominator will move to the numerator with a positive exponent
- Fractional exponents $\sqrt[n]{x^m} = x$ to the $\frac{m}{n}$ power

Exponential equations

Solving Exponential Equations

- 1. Rewrite the equation with a common base
- 2. Set the equation equal by comparison
- 3. Solve

Relations vs functions

Relation: A pairing of input values with output values (x,y)

Function: Every element of the domain corresponds to one and only one element in the range.

Types of functions

Function Relation: Every element f the domain corresponds to one and onel element in the range

Vertical Line- Test: If any vertical line passes through more than one point on the graph of a relation, the relation is not a function

One to One Function: A function is 1-1 if every element of the range of the function corresponds to exactly one element of the domain

Horizontal Line-Test: If any horizontal line passes through more than one point on the graph of a function, the function is not a one to one function.

Onto Function: For every element in the range of the function there is an element in the domain of the function

Function Notations: An equation that can be used to describe infinite sets of ordered pairs

Domain and Range (on a graph and in an algebraic function) (find the vertex as well)

Domain: Set of all first elements of ordered pairs (x,y)

Range: Set of all second elements of ordered pairs (x,y)

Type of Function	Parent Function	Domain	Range	Comment
Constant	f(x) = c	Anything	Constant	
Linear	f(x) = x	Anything	Anything	onto function
Quadratic	$f(x) = x^2$	Anything	x≥0	
Cubic	$f(x) = x^3$	Anything	Anything	onto function
Absolute Value	f(x) = x	Anything	x≥0	
Radical	$f(x) = \sqrt{x}$	x≥0	x≥0	
Rational	$f(x) = \frac{1}{x}$	All Real Numbers except 0		

Transformations

1. $f(x) \rightarrow f(x) + h$: Translation h units up

2. $f(x) \rightarrow f(x) - h$: Translation h units down

3. $f(x) \rightarrow f(x+h)$ Translation h units left

4. $f(x) \rightarrow f(x-h)$ Translation h units right

5. $f(x) \rightarrow -f(x)$ Reflection of x-axis

6. $f(x) \rightarrow f(-x)$ Reflection of y- axis

7. $f(x) \rightarrow af(x)$ Vertically stretched by a factor of a (compression) (a>1)

8. $f(x) \rightarrow f(ax)$ Horizontally stretched (0<a<1) of 1/a (Horizontally compression, a>1)

Vertex Form: $f(x) = a(x-h)^2 + k$

Vertex (h,k)

Axis of Symmetry: x=h