السلسلة 02، الوحدة 1/ فيزياء

التمرين الاول:

في محلول مائي، و عند درجة الحرارة $T=20^{\circ}C$ ، يتفاعل الماء الأوكسيجيني مع شوارد اليود $I^{-}_{(aq)}$ وفق المعادلة الكيميائية التالية: $H_2O_2(aq)+2I^{-}(aq)+2H_3O^{+}(aq)=I_2(aq)+4H_2O(\ell)$

المحلول المائي لثنائي اليود (aq) يتميز بلون بني في حين المحلول المائي ليود الهيدروجين

عند اللحظة t = 0 نحضر مزيجا تفاعليا و ذلك بمزج:

حجم $K^+(aq)+I^-(aq)$ من محلول يود البوتاسيوم ($K^+(aq)+I^-(aq)$) تركيزه المولي . $C_2=2 imes 10^2\ mo\ell/m^3$

، $\lambda_{SO_4^{2-}} = 8 \times 10^{-3} \text{S.} \, m^2 / mo\ell$: يعطى

$$\lambda_{K^{+}} = 7.35 \times 10^{-3} \text{S.} \, m^{2} / mo\ell$$

$$\lambda_{I^{-}} = 7,68 \times 10^{-3} \text{S.} \, m^{2} / mo\ell$$

 $\lambda_{H_{3}O^{+}} = 35 \times 10^{-3} \text{S.} \, m^{2} / mo\ell$

من خلال معادلة التفاعل، تعرف على الثنائيتين
المتدخلتين في هذا التفاعل.

 $n_0(H_2O_2) = 2.8 \times 10^{-3} mo\ell$ نحقق أن (3 $n_0(I^-) = 1.0 \times 10^{-2} mo\ell$ و $n_0(H_3O^+) = 1.2 \times 10^{-2} mo\ell$

- 4) انجز جدو لا لتقدم التفاعل الكيميائي ثم حدد التقدم الأعظمي xmax (4
- $\sigma = 6.1 845x$ المريج عند اللحظة t تحقق العلاقة النوعية في المزيج عند اللحظة t تحقق العلاقة t الناقلية النوعية $\sigma = 6.1 845x$ الناقلية النوعية $\sigma = 6.1 845x$ تقدم التفاعل بالمول $\sigma = 6.1 845x$ الناقلية النوعية $\sigma = 6.1 845x$ تقدم التفاعل بالمول $\sigma = 6.1 845x$ الناقلية النوعية $\sigma = 6.1 845x$
 - 6) استنتج σ_f الناقلية النوعية في نهاية التحول .
 - . $\sigma = f(t)$ يمثل المنحنى (الشكل-1) تغيرات الناقلية النوعية بدلالة الزمن (7) مثل المنحنى (الشكل-1) تغيرات الناقلية النوعية بدلالة الزمن نصف التفاعل $t_{1/2}$
 - . $v_{vol}=-rac{1}{845V_T}rac{d\sigma}{dt}$ بين أن عبارة السرعة الحجمية للتفاعل تكتب على الشكل عبارة السرعة الحجمية التفاعل بين أن عبارة السرعة الحجمية التفاعل المتحدد المتحدد
 - . t=0 عند الحجمية عند $mo\ell.m^{-3}$. min^{-1} عند (حسب بالوحدة