SANTA CLARA UNIVERSITY	ELEN 153	TA: Vinay Krishna vandra@scu.edu
Pre-Lab #1: Circuit Analysis Review		

(1) Carry out a "paper-and-pencil" analysis of the voltage divider circuit given in Figure 1.

Note: Credits will be given only for presented proof of calculation.

- (i) What would be the value of Vout, when
 - (a) R1 >> R0, eg: R1 = $10 \text{ M}\Omega$
 - (b) R1 = R0, eg: R1 = 1 K Ω
 - (c) R1 << R0, eg: R1 = 1 Ω
- (ii) If Vout needs to be close in value to ground which condition (a) or (b) or (c) is suitable?
- (iii) If Vout needs to be close to Vdd which condition (a) or (b) or (c) is suitable?
- (iv) If Vout needs to be exactly half of Vdd which condition (a) or (b) or (c) is suitable?

Figure 1

Figure 2

- (2) Carry out a "paper-and-pencil" analysis of the RC circuit given in Figure 2.
 - Assume that Vin switches instantaneously from 0 to Vdd. Vout is also referred as $V_C(t)$

Note: For Vin parameters look for Figure 2. : pw = Pulse Width, per = period. Vin is a Square wave.

- (i) Write the charging and discharging equations for $V_C(t)$. Draw the rough sketch for Vin and $V_C(t)$ waveforms with respect to time for the circuit. Assume the initial capacitor voltage is 0V.
- (ii) What is the value of $V_C(t)$ when $R0 = 1 \text{ K}\Omega$ and $C1 = 1 \mu\text{F}$ at
 - (a) t = 4 m.sec
 - (b) t = 8 m.sec
- (iii) Given R0 = 1 K Ω , and C1 = 1 μ F. How long will it take for the capacitor to reach 63% of its applied input voltage? Credits will be only given for presented proof of calculation.