日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添行の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年10月17日

出 願 番 号

Application Number:

特願2001-319657

[ST.10/C]:

[JP2001-319657]

出願人

Applicant(s):

オリンパス光学工業株式会社

2002年 2月 8日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

A000105075

【提出日】

平成13年10月17日

【あて先】

特許庁長官 殿

【国際特許分類】

A61B 17/12

【発明の名称】

生体組織のクリップ装置

【請求項の数】

5

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

村松 潤一

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

小林 司

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

鈴木 孝之

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

· 【氏名】

山本 哲也

【特許出願人】

【識別番号】

000000376

【氏名又は名称】

オリンパス光学工業株式会社

【代理人】

【識別番号】

100058479

【弁理士】

【氏名又は名称】 鈴江 武彦

【電話番号】 03-3502-3181

【選任した代理人】

【識別番号】 100084618

【弁理士】

【氏名又は名称】 村松 貞男

【選任した代理人】

【識別番号】 100068814

【弁理士】

【氏名又は名称】 坪井 淳

【選任した代理人】

(A)

【識別番号】 100091351

【弁理士】

【氏名又は名称】 河野 哲

【選任した代理人】

【識別番号】 100100952

【弁理士】

【氏名又は名称】 風間 鉄也

【先の出願に基づく優先権主張】

【出願番号】 特願2001-28483

【出願日】 平成13年 2月 5日

【手数料の表示】

【予納台帳番号】 011567

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0010297

【プルーフの要否】 要

٠,

【書類名】

明細書

【発明の名称】 生体組織のクリップ装置

【特許請求の範囲】

【請求項1】 生体腔内に挿入可能な導入管と、

この導入管内に進退自在に挿通された操作ワイヤと、

基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性 をもち、前記基端部に前記操作ワイヤの先端部が直接係合したクリップと、

を具備しており、

前記クリップが前記導入管の先端部に係合し、前記クリップの基端部と操作ワ イヤの先端部を引き離す方向の力が印加された際に、前記クリップの基端部もし くは前記操作ワイヤの先端部の少なくとも一方に設けられた係合手段のうち、少 なくとも一方が変形して、前記クリップと前記操作ワイヤの係合を解除すること を特徴とする生体組織のクリップ装置。

【請求項2】 生体腔内に挿入可能な導入管と、

この導入管内に進退自在に挿通された操作ワイヤと、

基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性 をもち、

前記基端部に前記操作ワイヤの先端部が直接係合したクリップと、

このクリップの腕部に被嵌して装着することによりクリップの挟持部を閉成す るクリップ締付リングと、

前記導入管もしくは前記クリップ締付リングの少なくとも一方に設けられ、ク リップ及びクリップ締付リングが導入管の前方に突出した際に導入管とクリップ 締付リングを係合させ、クリップ締付リングが導入管内に再度収納されることを 禁止する係合手段と、

を具備しており、

前記クリップが前記導入管の先端部に係合し、クリップの基端部と前記操作ワ イヤの先端部を引き離す方向の力が印加された際に、前記クリップの基端部もし くは操作ワイヤ先端部の少なくとも一方に設けられた係合手段のうち、少なくと も一方が変形して、前記クリップと前記操作ワイヤの係合を解除することを特徴 とする生体組織のクリップ装置。

【請求項3】 生体腔内に挿入可能な導入管と、

この導入管内に進退自在に挿通された操作部材と、

この操作部材内に進退自在に挿通された操作ワイヤと、

基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性をもつクリップと、

このクリップの腕部に被嵌して装着することによりクリップの挟持部を閉成し、基端部が操作部材の先端部と係合可能なクリップ締付リングと、

を具備しており、

前記クリップが操作部材の先端部に係合し、クリップの基端部と前記操作ワイヤの先端部を引き離す方向の力が印加された際に、前記クリップの基端部もしくは前記操作ワイヤの先端部の少なくとも一方に設けられた係合手段のうち、少なくとも一方が変形して、前記クリップと前記操作ワイヤの係合を解除することを特徴とする生体組織のクリップ装置。

【請求項4】 生体腔内に挿入可能な導入管と、

この導入管内に進退自在に挿通された操作ワイヤと、

基端部を有しこの基端部より延出する腕部の先端に挟持部を形成したクリップと、

を具備する生体組織のクリップ装置において、

前記クリップの基端部に前記操作ワイヤを挿通可能な孔を設け、クリップの基端部の孔に挿通された操作ワイヤの先端部に孔よりも大きな膨隆部を設けたことを特徴とする生体組織のクリップ装置。

【請求項5】 生体腔内に挿入可能な導入管と、

この導入管内に進退自在に挿通された操作ワイヤと、

基端部を有しこの基端部より延出する腕部の先端に挟持部を形成した少なくと も2個以上のクリップと、

を具備する生体組織のクリップ装置において、

2個以上のクリップを直列に配置するとともに、それぞれのクリップの基端部 に前記操作ワイヤを挿通可能な孔を設け、それぞれのクリップの基端部の孔に挿 通された操作ワイヤの先端部に孔よりも大きな膨隆部を設けたことを特徴とする 生体組織のクリップ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、生体の体腔内に挿入して生体組織を把持する生体組織のクリップ装置に関する。

[0002]

【従来の技術】

生体組織のクリップ装置としては、例えば特開昭60-103946号公報、 実開昭62-170010号公報、実開平2-6011号公報などが知られている。

[0003]

特開昭60-103946号公報において、クリップと操作ワイヤの係合は、クリップ基端部に設けられた鉤と操作ワイヤ先端部に設けられたフックを介して行われている。クリップの腕部には、クリップ締付リングが被嵌して装着されている。クリップ締付リングの基端部は、導入管内に進退自在に挿通された操作管の先端部に係合可能である。クリップを結紮時には、導入管よりクリップを突出し、操作ワイヤを牽引して行う。このとき、クリップの基端部に設けられた鉤が引き伸ばされることにより、クリップと操作ワイヤの係合が分離し、生体組織へのクリップの留置が可能になる。

[0004]

実開昭62-170010号公報においては、クリップと操作ワイヤの係合は、クリップの基端部に設けられた鉤と操作ワイヤの先端部に設けられたフックとの間に設けられた連結板を介して行われている。特開昭60-103946号公報と同じように、結紮時には、導入管よりクリップを突出し、操作ワイヤを牽引して行う。このとき、クリップの基端部に設けられた鉤が引き伸ばされることにより、クリップと操作ワイヤの係合が分離し、生体組織へのクリップの留置が可能になる。

[0005]

実開平2-6011号公報においては、クリップと操作ワイヤの係合は、操作ワイヤの先端部に設けられたフックとフックの先端に設けられ、鉤を有する連結部材を介して行われている。特開昭60-103946号公報と同じように、結紮時には、導入管よりクリップを突出し、操作ワイヤを牽引して行う。このとき、連結板の先端部に設けられた鉤が引き伸ばされることにより、クリップと操作ワイヤの係合が分離し、生体組織へのクリップの留置が可能になる。

[0006]

13

【発明が解決しようとする課題】

このように、従来の生体組織のクリップ装置は、操作ワイヤとクリップの係合部分において、フックや連結部材などの係合部品が必要である。これより部品点数が増大し、製造コストが増大してしまうことが問題であった。

[0007]

また、1発目のクリップを生体組織に留置後に、2発目のクリップを続けて生体組織に留置したい場合には、内視鏡チャンネルよりクリップ装置を一度抜去し、操作ワイヤの先端部にクリップを装填した後で、再び内視鏡のチャンネル内に挿入していかなければならない。このときに、前述した従来のクリップ装置は、クリップと操作ワイヤの間に係合部品があることで、クリップの装填作業に時間がかかり、また大変煩わしい作業となっていた。

[0008]

この発明は、前記事情に着目してなされたもので、その目的とするところは、クリップと操作ワイヤを直接係合させることにより、クリップと操作ワイヤの係合部分の部品点数を減らし、製造コストの低減を図るとともに、製造時のクリップの装着作業を容易にすることができ、また、1発目のクリップを生体組織内に留置後、内視鏡チャンネルよりクリップ装置を抜去せずに、2発目以降のクリップを結紮することができる生体組織のクリップ装置を提供することにある。

[0009]

【課題を解決するための手段】

この発明は、前記目的を達成するために、請求項1は、生体腔内に挿入可能な

導入管と、この導入管内に進退自在に挿通された操作ワイヤと、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性をもち、前記基端部に前記操作ワイヤの先端部が直接係合したクリップとを具備しており、前記クリップが前記導入管の先端部に係合し、前記クリップの基端部と操作ワイヤの先端部を引き離す方向の力が印加された際に、前記クリップの基端部もしくは前記操作ワイヤの先端部の少なくとも一方に設けられた係合手段のうち、少なくとも一方が変形して、前記クリップと前記操作ワイヤの係合を解除することを特徴とする。

[0010]

請求項2は、生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通された操作ワイヤと、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性をもち、前記基端部に前記操作ワイヤの先端部が直接係合したクリップと、このクリップの腕部に被嵌して装着することによりクリップの挟持部を閉成するクリップ締付リングと、前記導入管もしくは前記クリップ締付リングの少なくとも一方に設けられ、クリップ及びクリップ締付リングが導入管の前方に突出した際に導入管とクリップ締付リングを係合させ、クリップ締付リングが導入管の方に突出した際に導入管とクリップ締付リングを係合させ、クリップ締付リングが導入管内に再度収納されることを禁止する係合手段とを具備しており、前記クリップが前記導入管の先端部に係合し、クリップの基端部と前記操作ワイヤの先端部を引き離す方向の力が印加された際に、前記クリップの基端部もしくは操作ワイヤ先端部の少なくとも一方に設けられた係合手段のうち、少なくとも一方が変形して、前記クリップと前記操作ワイヤの係合を解除することを特徴とする

[0011]

請求項3は、生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通された操作部材と、この操作部材内に進退自在に挿通された操作ワイヤと、 基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性を もつクリップと、このクリップの腕部に被嵌して装着することによりクリップの 挟持部を閉成し、基端部が操作部材の先端部と係合可能なクリップ締付リングと を具備しており、前記クリップが操作部材の先端部に係合し、クリップの基端部 と前記操作ワイヤの先端部を引き離す方向の力が印加された際に、前記クリップ の基端部もしくは前記操作ワイヤの先端部の少なくとも一方に設けられた係合手 段のうち、少なくとも一方が変形して、前記クリップと前記操作ワイヤの係合を 解除することを特徴とする。

[0012]

請求項4は、生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通された操作ワイヤと、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成したクリップとを具備する生体組織のクリップ装置において、前記クリップの基端部に前記操作ワイヤを挿通可能な孔を設け、クリップの基端部の孔に挿通された操作ワイヤの先端部に孔よりも大きな膨隆部を設けたことを特徴とする

[0013]

請求項5は、生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通された操作ワイヤと、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成した少なくとも2個以上のクリップとを具備する生体組織のクリップ装置において、2個以上のクリップを直列に配置するとともに、それぞれのクリップの基端部に前記操作ワイヤを挿通可能な孔を設け、それぞれのクリップの基端部の孔に挿通された操作ワイヤの先端部に孔よりも大きな膨隆部を設けたことを特徴とする。

[0014]

請求項1~5の構成によれば、クリップと操作ワイヤとを直接係合することにより、構造が簡素化され、部品点数も減少させることができるので、製造コストの低減を行うことができる。

[0015]

請求項2の構成によれば、導入管とクリップ締付リングとの係合手段によって 操作ワイヤに印加された力を確実に受けることができ、クリップ締付リングによ り、クリップの腕部が閉じ込まれるので、より強い力で生体組織を結紮できる。

[0016]

請求項3の構成によれば、操作部材によって操作ワイヤに印加された力を確実

に受けることができ、クリップ締付リングにより、クリップの腕部が閉じ込まれるのでより強い力で生体組織を結紮できるとともに、クリップを導入管より突き 出す作業をより容易で確実に行うことができる。

[0017]

請求項4の構成によれば、製造時のクリップの装着作業が容易になる。

[0018]

請求項5の構成によれば、製造時にクリップの装着作業を容易にすることができ、組立のバラツキを防ぐことができる。さらに、導入管内のクリップが操作ワイヤにより中心付近に位置するため、クリップ突き出しが低力量で行える。また、1本の操作ワイヤを牽引するだけで連続的にクリップの結紮を行えるため、操作性を向上できる。

[0019]

【発明の実施の形態】

以下、この発明の各実施の形態を図面に基づいて説明する。

[0020]

図1~図6は第1の実施形態を示し、図1~図3は生体組織のクリップ装置における先端部の縦断側面図である。導入管1は、内視鏡のチャンネル内に挿通可能な可撓性を有しており、この導入管1の先端部には先端チップ2が設けられている。この先端チップ2は導入管1の先端部に溶接、接着または圧入によって固定されている。導入管1の内部には操作ワイヤ4が進退自在に挿通され、この操作ワイヤ4の先端部には導入管1の先端部から突没自在なクリップ3が着脱可能に接続されている。

[0021]

前記導入管1は、例えば、断面が丸型の金属製ワイヤ(ステンレスなど)を密着巻きした内外面に凹凸のあるコイルシースであり、シース先端部とシース基端部にシースを圧縮する力が印加されてもシースが座屈することがない構造である。

[0022]

また、導入管1は、例えば、断面が丸型の金属製ワイヤ(ステンレスなど)を潰して、ワイヤ断面を矩形にしてから密着巻きした内外面が平坦なコイルシースで

もよい。この場合、内面が平坦なので、クリップ3の突き出し、操作ワイヤ4の 挿通が容易である。また、丸型のコイルシースに比較して、同じワイヤの素線径 を使用しても内径寸法の大きなコイルシースを実現できる。これより、クリップ 3の突出、操作ワイヤ4の挿通がさらに容易になる。

[0023]

さらに、導入管1は、例えば、高分子樹脂製(合成高分子ポリアミド、高密度 /低密度ポリエチレン、ポリエステル、ポリテトラフルオロエチレン、テトラフ ルオロエチレンーパーフルオロアルキリビニルエーテル共重合体、テトラフルオ ロエチレンーへキサフルオロプロピレン共重合体など)のチューブシースでもよ い。この場合、シース内外面に滑り性を有するので、内視鏡チャンネルへの挿脱 、クリップ3の突き出し、操作ワイヤ4の挿通が容易になる。

[0024]

また、導入管1は、例えば、壁部が内層と外層を有した2重チューブで、2重チューブの間に補強用部材が介在して埋設されたチューブシースでもよい。この場合、内層及び外層は、上記の高分子樹脂で形成されている。補強用部材は、例えば細い金属線で格子状に編まれた筒状ブレード等で形成されている。これにより、シース先端部と基端部にシースを圧縮する力が印加されたときにも、補強用部材が埋設されていないチューブシースに比べて、耐圧縮性に優れシースが座屈することがない。

[0025]

前記導入管1の寸法は、内視鏡チャンネルに挿通可能な外径であり、シースの肉厚は、その素材の剛性により決定するが、金属製シースでは0.2~0.7 m m程度、高分子樹脂製チューブでは、0.3~0.8 m m程度であるが、補強用部材を埋設することにより、肉厚を小さくし、シース内径を大きくすることができるという利点がある。

[0026]

前記先端チップ2は、金属製(ステンレスなど)の短管であり、外周面がテーパ 状で、先端部が先細りになっている。これより、内視鏡チャンネル内への導入管 1の挿通を容易にする。また、内周面もテーパになっており、クリップ3が先端 チップ 2 より突き出し易くなっている。また、先端チップ 2 の先端部の内径は、 後述するクリップ 3 の腕部に設けられた突起が係合し、クリップ 3 の腕部が開脚可能なように寸法設定されている。この先端チップ 3 の最先端の外径は ϕ 1 . 5 \sim 3 . 3 mm、先端チップ 3 の最先端の内径は、 ϕ 1 . 0 \sim 2 . 2 mm程度である。

[0027]

前記クリップ3は、図5に示すように、金属製の薄い帯板を中央部分で折り曲げ、その折り曲げ部分を基端部3aとしてなり、この基端部3aから延びた両方の腕部3b,3b'を拡開方向に折り曲げる。さらに、各腕部3b,3b'の先端縁部を向き合うように折り曲げて、これを挟持部3c,3c'とする。挟持部3c,3c'の先端は、生体組織5(図3参照)を把持し易いように、一方が凸形状3d、他方が凹形状3eに形成されている。そして、挟持部3cを開くように腕部3b,3b'に開拡習性を付与されている。基端部3aには、後方に突出する鉤3fが取り付けられている。この鉤3fは、基端部3aから延びたステンレス製の薄板をほぼJの字状に曲成している。

[0028]

なお、各腕部3b,3b'には、クリップ3を結紮時に(クリップ基端部が先端チップ内に引込まれたとき)先端チップ2と係合可能な突起3g,3g'が設けられている。

[0029]

クリップ3の薄い帯板の材質は、例えば、バネ性を有するステンレスとすることにより、剛性があり、確実に生体組織を把持できる。

[0030]

例えば、ニッケルチタニウム合金などの超弾性合金として、腕部3b,3b' に拡開習性を付与すれば、シースから突出したときにより確実に腕部3b,3b が開脚する。

[0031]

クリップ3の基端部に設けられた鉤3fに1~5kg程度の引張り力量が印加されると、鉤3fはJの字形状を維持できなくなり、変形して、略Iの字状に延

びる。

[0032]

また、クリップ3の帯板の肉厚は、 $0.15\sim0.3$ mmであり、挟持部3 c , 3 c の板幅は $0.5\sim1.2$ mm。腕部3 b , 3 b の板幅は、 $0.5\sim1.5$ mmである。突起3 g , 3 g の大きさは、 $0.2\sim0.5$ mm。基端部3 a の板幅は $0.3\sim0.5$ mm。鉤3 f はクリップ3 の基端部3 a から $1\sim3$ m 和程度の長さで突設されている。

[0033]

前記操作ワイヤ4は、図6に示すように、ループワイヤ4aと基端ワイヤ4bよりなる。金属製の撚り線より構成される基端ワイヤ4bの先端に閉じたループワイヤ4aは成形される。ループワイヤ4aを形成するのは、基端ワイヤ4bの撚り線の一本である。撚り線の芯線をループワイヤ4aに使用すると、組立て性が良い。芯線は、撚り線でも単線でも良い。ループワイヤ4aと基端ワイヤ4bの接合は、金属製の接続パイプ4cを介して、溶接または接着される。ループワイヤ4aは、クリップ3の基端部3aに設けられた鉤3fに引っ掛けられ、導入管1内に装填される。

[0034]

操作ワイヤ4は、例えば、ステンレス製の撚り線ワイヤである。撚り線とする ことで、単線ワイヤよりも可撓性があるので、導入管1自体の可撓性を損なうこ とがない。

[0035]

ループワイヤ4 a には、クリップ 3 を結紮時に $1 \sim 5$ k g の力が印加される。 このときに、ループワイヤ 4 a が破断しないように寸法を設定する必要がある。 基端ワイヤ 4 b は外径 ϕ 0. $3 \sim \phi$ 0. 6 mm、ループワイヤ 4 a は ϕ 0. 2 m m以上である。

[0036]

次に、第1の実施形態の作用について説明する。

[0037]

体腔内に挿入された内視鏡のチャンネルを介してクリップ装置の導入管1を体

腔内に導入し、図1に示すように、導入管1の先端部をクリップ対象組織5、例えば胃粘膜組織の近傍に位置させる。操作ワイヤ4を導入管1の先端方向に押出すことにより、先端チップ2の先端部よりクリップ3を突き出す。クリップ3は、挟持部3c,3c'を開くように腕部3b,3b'に開拡習性を付与されているので、先端チップ2から突き出ると同時に、図2に示すように、挟持部3c,3c'が開脚する。そして、挟持部3c,3c'を対象組織5に押し付けた状態で、操作ワイヤ4を牽引すると、クリップ3の基端部3aは先端チップ2内に引込まれ、クリップ2の腕部3b,3b'に設けられた突起3g,3g'は、先端チップ2の先端部に係合する。さらに操作ワイヤ4を牽引すると、クリップ3の基端部3aが塑性変形し、挟持部3c,3c'が閉じることにより、図3に示すように、対象組織5を挟み込むことができる。

[0038]

ここで、さらに操作ワイヤ4を牽引し、クリップ3の基端部3aに取り付けられた鉤3fに牽引力を印加する。これによりJの字状に曲成されていた鉤3fが引き延ばされ、ループワイヤ4aが鉤3fから分離し、操作ワイヤ4とクリップ3が完全に分離する。これにより、図4に示すように、クリップ3の対象組織5への留置が完了する。

[0039]

第1の実施形態によれば、クリップと操作ワイヤを直接係合させることにより、クリップと操作ワイヤの係合部分の部品点数が減少する。これにより、製造コストの低減が図られる。また、製造時のクリップの装着作業が容易になる。さらに、1発目のクリップを生体組織内に留置後、内視鏡チャンネルよりクリップ装置を抜去し、2発目のクリップを再び装填する際、クリップの鉤にループワイヤを引っ掛けるだけなのでクリップ装填作業も容易になる。

[0040]

図7及び図8は第2の実施形態を示し、図7は操作ワイヤの先端部の側面図、図8は操作ワイヤの製造方法を示す。

[0041]

前述した第1の実施形態に示した、閉じたループ部を先端部に有したワイヤは

、特開2000-271146号公報などが知られている。

[0042]

操作ワイヤの先端に接合パイプを介して、閉ループを形成するループワイヤを 結合している。しかしながら、このような構造においては、操作ワイヤとループ ワイヤを接合するための接合パイプがかならず必要になる。

[0043]

また、一方で撚り線の操作ワイヤの芯線をループワイヤとして使用し、閉ループを形成することも既になされている。しかし、ループワイヤと操作ワイヤを接合するためには、接合パイプが必要になる。

[0044]

これより、部品点数が増加し、それに伴う溶接・接着・カシメなどの接合作業 による組立工数も増加する。そして、製造コストが増大してしまうという問題が あった。

[0045]

一方、接合パイプを設けることにより、ループワイヤと操作ワイヤの接合部に 硬質部ができてしまうということも問題であった。硬質部ができることにより、 可撓性が失われ、内視鏡の鉗子チャンネルへの挿通性が悪くなる。また、内視鏡 のアングルがかかったときには、硬質部が内視鏡のアングルを挿通できず、鉗子 チャンネルの先端より突出すことができないという問題もあった。

[0046]

さらに、接合パイプを設けることにより、ループワイヤと操作ワイヤの接合部の外径が大きくなる。外径が大きくなると、内視鏡用処置具を構成する導入管(挿入部)内面とのクリアランスが減少し、接触抵抗も大きくなる。元来、内視鏡用処置具の導入管の内径は、φ1~2.5 mm程度と非常に細径であり、わずかな外径の増加でも、その挿通性を非常に悪化させるという問題があった。

[0047]

上記問題を解決するために、図7に示すように、操作ワイヤ5は、ループワイヤ5aと基端ワイヤ5bよりなる。基端ワイヤ5bは金属製の撚り線で構成され、例えば3本の素線で撚られている。

[0048]

次に、図8に基づいて操作ワイヤ5の製造方法(例えば 1×3 本撚りのワイヤで製造する方法)を示す。ワイヤ外径は ϕ 0.3 \sim 0.6 mm程度とする。

[0049]

1. 図8(a)に示すように、ワイヤ端部5cをほぐす。

[0050]

2. 図8(b)に示すように、3本のワイヤのうちの1本Aを回しながらほぐす。このとき、ワイヤ端部5cから約60mmの長さをほぐす。

[0051]

3. 図8(c)に示すように、同様に2本目のワイヤBまたはCをほぐす。このとき、同様にワイヤ端部5cから約60mmの長さをほぐす。

[0052]

4. 図8(d)に示すように、2本目のワイヤBまたはCを折り返す。このとき、折り返し端Xとほぐし端Yを十分離すこと。また、折り返しは、拡大図で示すように、丸くしたとき山になる所を曲げる方が曲げ易い。

[0053]

5. 図8(e)に示すように、折り曲げたワイヤBをほぐし方向に回して撚る(Z撚りの場合)。このとき、撚る前に端部の変形部分を切断しておく。図8(f)に示すように、撚り戻し長さは約30mmである。

[0054]

- 6. 図8(f)に示すように、ワイヤCをワイヤBに戻して戻してBに撚っていき、ワイヤBの折り返し端の位置で切断する。このとき、ワイヤCとBの間が空かないように、また、重ならないようにする。(後でワイヤAを戻す時に外れ易くなる)
- 7. 図8(g)に示すように、ワイヤAをワイヤB、ワイヤCに戻して撚っていく。このとき、ワイヤCとワイヤBの当接部は実体顕微鏡観察下で行う方がよい。また、当接部の前後を撚る時は、ワイヤCとワイヤBが動かないように気をつける。

[0055]:

さらに、図8(h)に示すように、ワイヤAを乗せる際、ワイヤB、Cを黒矢印方向にはじかないように注意する。また、ワイヤAを乗せる際は、ワイヤBとCの当接部に対して先端側(ループ側)に置くようにすると、ワイヤAを乗せやすい。

[0056]

- 8. 図8(i)に示すように、ループのきわ(イ部)でワイヤAを切断する。 【0057】
- 9. 図8(j)に示すように、完成する。なお、ループは長さ5mm程度とする。また、ワイヤB、C当接部、ワイヤA端部は、溶接、接着などの方法により、撚りのほぐれを防止しても良い。

[0058]

第2の実施形態の作用は、第1の実施形態と同じであり、説明を省略する。

[0059]

第2の実施形態によれば、第1の実施形態の操作ワイヤ4に比べて接続パイプ4 c がないので、部品点数が減少し、また、これに伴う溶接、接着、カシメ等の接合作業により生じる組立工数も減少させることができるので、製造コストを減少させることができる。また、基端ワイヤ5とループワイヤ5 a の接合部分においても、外径が大きくならないので、導入管1の内面との摩擦抵抗が増大することなく、操作ワイヤ5の挿通性が保たれる。これより、導入管1より容易にクリップ3を突き出すことができる。また、ループワイヤと操作ワイヤの接合部に硬質部ができないため、可撓性を維持することができ、内視鏡の鉗子チャンネルへの挿通性も保持できる。

[0060]

図9は第3の実施形態を示し、第1の実施形態と同一構成部分は同一番号を付して説明を省略する。図9はクリップ及び操作ワイヤの平面図及び側面図である。操作ワイヤ6は、その先端部を扁平ループ状に折り曲げてクリップ3の鉤3fに係合させたもので、導入管1の基端部まで2本の操作ワイヤ6を挿通させている。

[0061]

操作ワイヤ6には、例えば高密度/低密度ポリエチレン、ポリテトラフルオロエチレンなどの滑り性の良い高分子樹脂6 a を被膜しても良い。被膜の厚さは、0.05mm~0.1 mm程度が最適である。さらに、操作ワイヤ6の滑り性を上げるために、ワイヤ表面に0.01 mm~0.45 mmのエンボス加工を施す、またはシリコーンオイルを塗布することも効果がある。操作ワイヤ6は、撚り線もしくは単線のステンレス等の金属製ワイヤで外径はφ0.2~0.5 mm程度である。

[0062]

第3の実施形態の作用は、2本の操作ワイヤ6を一緒に牽引する。それ以外の 作用は、第1の実施形態と同じであり、説明を省略する。

[0063]

第3の実施形態によれば、第1及び第2の実施形態に比較して、より簡単な構成でクリップと操作ワイヤを係合させることができる。高分子樹脂6aの被覆を設けたことにより、操作ワイヤの滑り性が増し、導入管の内面との摩擦抵抗が減少し、牽引力量を導入管の先端まで損失なく伝達できることにより、より小さい力で結紮操作を行うことができる。

[0064]

図10は第4の実施形態を示し、第1の実施形態と同一構成部分は同一番号を 付して説明を省略する。

[0065]

[0066]

次に、第4の実施形態の作用について説明する。

[0067]

挟持部3c,3c'を対象組織5に近づけた状態で、操作ワイヤ4を牽引する。拡開方向に折り曲げられたクリップ8の腕部3b、3b'は、先端チップ2の

先端部に係合する。ここで、挟持部3c,3c'を対象組織5に押し付けた状態でさらに操作ワイヤ4を牽引すると、クリップ8の腕部3b、3b'が先端チップ2内に引込まれ、挟持部3c,3c'が閉じることにより、対象組織5を挟み込むことができる。さらに操作ワイヤ4を牽引することにより、ループワイヤ4aを破断させる。ループワイヤ4aには、クリップ8を結紮時に1~5kgの力が印加されるが、これらの力が印加されたときにループワイヤ4aが破断するように寸法設定されている。

[0068]

ループワイヤ4aが破断することにより、クリップ8と操作ワイヤ4は分離し、クリップ8を生体組織内に留置可能となる。

[0069]

なお、本実施形態においては、ループワイヤ4aの破断によりクリップ8と操作ワイヤ4の係合が分離する。その変形例として、図8(f)に示したループワイヤにおいて、ワイヤBの撚り戻し長さを短く設定して、結紮時にループの撚りがほどけることによりクリップ8と操作ワイヤ4の係合が分離するようにしてもよい。撚り戻し長さとしては、5~10mm程度が適当である。

[0070]

第4の実施形態によれば、第1の実施形態に比較して、クリップ8の基端部8 aの鉤3fがないのでより安価にクリップを成形できる。

[0071]

図11(a)(b)は第5の実施形態を示し、第1の実施形態と同一構成部分は同一番号を付して説明を省略する。

[0072]

クリップ9は第1の実施形態におけるクリップ3の鉤3fを無くし、略U字状に屈曲し、クリップ9の基端部9aに操作ワイヤ10が挿通可能な孔21が設けられている。

[0073]

操作ワイヤ10は金属製の単線のワイヤであり、直径 ϕ 0.2 \sim 0.7 mm程度である。孔21に操作ワイヤ10を挿通させ、操作ワイヤ10の先端部に抜け

止めとなる偏平膨隆部10aを設けている。偏平膨隆部10aを成形する方法としては、例えばカシメ、レーザー、プラズマ溶接などがある。孔21の径は、0.2~0.7mm程度が適当であり、この孔21に挿通可能な操作ワイヤ10を使用する。偏平膨隆部10aの最大径は、必ず孔21の径よりも大きく、0.25~1mm程度とする。

[0074]

次に、第5の実施形態の作用を説明する。

[0075]

クリップ9の挟持部3c,3c'を対象組織に近づけた状態で、操作ワイヤ10を牽引する。拡開方向に折り曲げられたクリップ9の腕部3b,3b'は先端チップ2の先端部に係合する。ここで、挟持部3c,3c'を対象組織5に押し付けた状態でさらに操作ワイヤ10を牽引すると、クリップ9の腕部3b,3b'が先端チップ2内に引込まれ、挟持部3c,3c'が閉じることにより、対象組織を挟み込むことができる。さらに操作ワイヤ10を牽引することにより、操作ワイヤ10の先端の偏平膨隆部10aをクリップ基端部3aの孔21から引抜く。これにより、偏平膨隆部10aの径が変形し小さくなる、もしくはクリップ9の基端部3aの孔21が変形し大きくなることにより、操作ワイヤ10がクリップ3と分離する。これにより、クリップ3を生体組織内に留置可能となる。

[0076]

第5の実施形態によれば、クリップと操作ワイヤを直接係合させることにより、クリップと操作ワイヤの係合部分の部品点数が減少する。これにより、製造コストの低減が図られる。また、製造時のクリップの装着作業が容易になる。

[0077]

図12〜図14は第6の実施形態を示し、第1の実施形態と同一構成部分は同一番号を付して説明を省略する。

[0078]

先端チップ2は挿入管1の先端に溶接または接着または圧入されている。先端 チップ2は金属製(ステンレスなど)の短管であり、外周面がテーパになっており 、先端部が先細りになっている。このため、内視鏡チャンネル内への導入管1の 挿通性を容易にすることができる。

[0079]

また、先端チップ2の内周面もテーパになっており、先端部の内径においては、後述するクリップ締付リングの外径と略同じ寸法になっている。これより、クリップ締付リングのガタツキを抑えている。先端チップ2の最先端の外径は、φ1.5~3.3 mmであり、先端チップ2の最先端の内径はφ1.0~2.2 m程度である。

[0080]

また、クリップ11は金属製の薄い帯板を中央部分で折り曲げ、その折り曲げ部分を基端部11aとしてなり、この基端部11aから延びた両方の腕部11b,11b'を互いに交差させている。従って、クリップ11の基端部11a側は、略楕円形状となっている。さらに、各腕部11b,11b'の先端縁部を向き合うように折り曲げて、これを挟持部11c,11c'とする。挟持部11c,11c'の先端は、生体組織を把持しやすいように、一方が凸形状11d、他方が凹形状11eに形成されている。そして、挟持部11c,11c'を開くように腕部11b,11b'に開拡習性を付与した。基端部11aには、後方に突き出す鉤11fが取り付けられている。この鉤11fは、帯板をあらかじめJの字状に成形しておき、基端部11aで折り曲げることにより形成されている。

[0081]

クリップ11を構成する薄い帯板の材質は、例えば、バネ性を有するステンレスであり、剛性があり、確実に生体組織を把持できる。または、例えば、ニッケルチタニウム合金などの超弾性合金とし、腕部に拡開習性を付与すれば、シースから突出したときにより確実に腕部が開脚する。

[0082]

クリップ11の基端部に設けられた鉤11fに1~5kg程度の引張り力量が 印加されると、鉤11fはJの字形状を維持できなくなり、変形して、ほほIの 字状に延びる。

[0083]

また、クリップ11の帯板の肉厚は、0.15~0.3 mm。挟持部の板幅は

0.5~1.2 mm。腕部の板幅は、0.5~1.5 mm。基端部側の板幅は0.3~0.5 mm。鉤はクリップ基端部から1~3 mm程度の長さで凸設されている。

[0084]

クリップ11の基端部に設けられたクリップ締付リング12は、強度があり、かつ弾性を有する樹脂、金属などにより成形されている。なお、弾性的に変形し、円周方向に突没自在に配置された1対、2枚の羽根12a,12a'がリング外周部に設けられている。羽根12a,12a'の数は、1対、2枚に限るものではなく、3枚でも4枚でも良い。

[0085]

クリップ締付リング12の円周面に垂直方向に外力が加わると、羽根12a, 12a'は締付リング内面に折り畳まれる。羽根12a, 12a'は、導入管内面、先端チップ2の内面と接触するため、先端側が傾斜面12b, 12b'になっており、スムーズにかつ抵抗なく導入管1及び先端チップ2から押し出すことができる。

[0086]

クリップ締付リング12は、クリップ11の腕部11b, 11b'に嵌着して装着することによりクリップの腕部11b, 11b'を閉成するもので、略管状をしている。クリップ11と操作ワイヤ4の係合は、ループワイヤ4aを鉤11fに引っ掛けて係合させる。なお、操作ワイヤ4によりクリップ11が押し出されても、クリップ11と操作ワイヤ4の係合を保持し、かつクリップ11とクリップ締付リング12を仮固定できるように、シリコーン13などの高分子材料をクリップ締付リング12内に嵌入させている。

[0087]

導入管1内にクリップ締付リング12の羽根12a, 12a'は折り畳まれた 状態で装填されても良いが、羽根12a, 12a'は突き出た状態で導入管1に 装填した方が羽根12a, 12a'の弾性を長期間に渡り維持できる。また、導 入管1の内面と羽根の接触抵抗が減少するので、導入管1内でクリップ11を移 動させる際の力量も減少させることができる。 [0088]

クリップ締付リング12は、例えば、強度があり、かつ弾性を有する樹脂(ポリブチテレフタラート、ポリアミド、ポリフェニルアミド、液晶ポリマー、ポリエーテルケトン、ポリフタルアミド)などを射出成形する。または、例えば、弾性がある金属(ステンレス、ニッケルチタニウム合金などの超弾性合金)などを射出成形、切削加工、塑性加工などで成形する。

[0089]

クリップ締付リング12の管状部は、内径 ϕ 0.6 \sim 1.3 mm、外径 ϕ 1.0 \sim 2.1 mm程度である。羽根12a,12a'が突き出たときの最外径部は、先端チップ2との係合を考慮し1 mm以上とする。

[0090]

次に、第6の実施形態の作用について説明する。

[0091]

内視鏡により体腔内を観察しながら導入管1の先端を対象部位まで導く。導入管1内に装填されたクリップ11及びクリップ締付リング12を先端チップ2より突き出す。これは、操作ワイヤ4を導入管1の先端部側に押し出すことにより実現される。クリップ締付リング12の羽根12a,12a'は、先端チップ2内を通過するときに折りたたまれるが、先端チップ2を通過すると、再び羽根12a,12a'が突き出す。これにより、先端チップ2内にクリップ締付リング12が再び入り込むことを防止している。

[0092]

クリップ11の挟持部11c,11c'を対象組織に近づけた状態で、操作ワイヤ4を牽引すると、クリップ締付リング12の羽根12a,12a'が先端チップ2の端面に係合する。さらに操作ワイヤ4を牽引すると、クリップ11の基端部11aの楕円部がクリップ締付リング12内に引込まれる。ここで、楕円部の寸法は、クリップ締付リング12の内径よりも大きいので、楕円部がクリップ締付リング12により潰される。すると、腕部11b,11b'が外側に大きく拡開する。

[0093]

この状態で、図13に示すように、目的の生体組織14を挟むようにクリップ11を誘導する。さらに操作ワイヤ4を牽引することで、クリップ11の腕部11b,11b'がクリップ締付リング12内に引込まれ、クリップ11の挟持部11c,11c'が閉じられる。生体組織14をクリップの腕部11b,11b'に確実に挟み込んだ状態でさらに操作ワイヤ4を牽引し、鉤11fを引き延ばすことにより、クリップ11と操作ワイヤ4の係合を解除する。これにより、クリップ11が生体組織14を把持したまま体腔内に留置可能となる。

[0094]

第6の実施形態によれば、第1の実施形態の効果に加えて、次のような効果がある。クリップ締付リングにより、クリップの腕部が閉じ込まれるのでより強い力で生体組織を結紮できる。

[0095]

図15は第7の実施形態を示し、第1の実施形態と同一構成部分は同一番号を 付して説明を省略する。

[0096]

導入管1内に進退自在に挿通されている可撓性を有する操作部材15が設けられている。操作部材15は導入管1内に装填された後述するクリップ締付リング16の後方に配置され、クリップ11の結紮時には、操作ワイヤ4により印加された力を直接受ける。

[0097]

操作部材15は、例えば、断面が丸型の金属製ワイヤ(ステンレスなど)を密着巻きした内外面に凹凸のあるコイルシースであり、操作部材15を導入管1に対して先端側に動かすことにより、クリップ11及びクリップ締付リング16を導入管1より突き出すことが可能になる。

[0098]

操作部材15は、例えば、断面が丸型の金属製ワイヤ(ステンレスなど)を潰して、ワイヤ断面を矩形にしてから密着巻きした内外面が平坦な角型コイルシースでもよい。また、丸型のコイルシースに比較して、同じワイヤの素線径を使用しても内径寸法の大きなコイルシースを実現できる。これより、クリップの突き出

し、操作ワイヤの挿通がさらに容易になる。

[0099]

さらに、操作部材15は、例えば、高分子樹脂製(合成高分子ポリアミド、高密度/低密度ポリエチレン、ポリエステル、ポリテトラフルオロエチレン、テトラフルオロエチレンーパーフルオロアルキリビニルエーテル共重合体、テトラフルオロエチレンーへキサフルオロプロピレン共重合体など)のチューブシースでもよい。シース内外面に滑り性を有するので、導入管1内での挿通、操作ワイヤ4の挿通が容易になる。

[0100]

さらに、操作部材15は、例えば、壁部が内層と外層を有した2重チューブで、2重チューブの間に補強用部材が介在して埋設されたチューブシースでもよい。内層及び外層は、前述したような高分子樹脂で形成されている。補強用部材は、例えば細い金属線で格子状に編まれた筒状ブレード等で形成されている。これにより、シース先端部と基端部にシースを圧縮する力が印加されたときにも、補強用部材が埋設されていないチューブシースに比べて、耐圧縮性に優れシースが座屈することがない。

[0101]

操作部材15は、導入管1内に挿通可能な外径と操作ワイヤ4が挿通可能な内径を有し、外径φ3mm以下。内径はできる限り大きくする。ただし、確実に突き出し力量を伝達でき、クリップ11を結紮時に力が印加されても、座屈しないだけの肉厚は必要である。

[0102]

また、クリップ締付リング16は、クリップ11の腕部11b,11b'に嵌着して装着することによりクリップ11の腕部11b,11b'を閉成するもので、略管状をしている。クリップ11と操作ワイヤ4の係合は、ループワイヤ4aを鉤11aに引っ掛けて係合させる。

[0103]

クリップ締付リング16は、例えば、強度がある樹脂(ポリブチテレフタラート、ポリアミド、ポリフェニルアミド、液晶ポリマー、ポリエーテルケトン、ポ

リフタルアミド)などを射出成形する。または、例えば、金属(ステンレスなど) を射出成形、切削加工、塑性加工などによって成形しても良い。

[0104]

また、クリップ締付リング 16、内径 ϕ 0. $6\sim1$. 3 mm、外径 ϕ 1. $0\sim2$. 1 mm程度である。

[0105]

次に、第7の実施形態の作用について説明する。内視鏡により体腔内を観察しながら導入管1の先端を生体組織14まで導く。導入管1内に装填されたクリップ11、及びクリップ締付リング16を導入管1より突き出す。これは、操作部材15を導入管1の先端部側に押し出すことにより実現される。もしくは、導入管1を基端側に牽引することでも実現される。

[0106]

クリップ11の挟持部11c,11c'を生体組織14に近づけた状態で、操作ワイヤ4を牽引すると、クリップ締付リング16の基端面16aが操作部材先端面15aに係合する。さらに操作ワイヤ4を牽引すると、クリップ11の基端部11aの楕円部がクリップ締付リング16内に引込まれる。ここで、楕円部の寸法は、クリップ締付リング16の内径よりも大きいので、楕円部がクリップ締付リング16により潰される。すると、腕部11b,11b'が外側に大きく拡開する。

[0107]

この状態で、目的の生体組織14を挟むようにクリップ11を誘導する。さらに操作ワイヤ4を牽引することで、クリップ11の腕部11b, 11b' がクリップ締付リング16内に引込まれ、クリップ11の挟持部11c, 11c' が閉じられる。生体組織14をクリップの挟持部11c, 11c' に確実に挟み込んだ状態でさらに操作ワイヤ4を牽引し、鉤11fを引き延すことにより、クリップ11と操作ワイヤ4の係合を解除する。これにより、クリップ11が生体組織14を把持したまま体腔内に留置可能となる。

[0108]

第7の実施形態によれば、第6の実施形態の効果に加えて、次のような効果が

ある。クリップを導入管より突き出す作業をより容易で確実に行うことができる

[0109]

図16及び図17は第8の実施形態を示し、クリップ17と操作ワイヤ18が第7の実施形態と異なる。クリップ17は、第7の実施形態に示されたクリップ11の鉤11fがない。それ以外の構成はクリップ11と同じである。

[0110]

操作ワイヤ18は、単線もしくは撚り線の金属製ワイヤよりなり、先端部が曲成され、ループ部18aを形成している。外径寸法は、 φ 0.3~ φ 0.6 mm程度である。図16に示すように、操作ワイヤ18のループ部18aは、クリップ17の基端部17aに直接係合している。

[0111]

なお、クリップが結紮される際には、 $1 \sim 5 \text{ k g}$ の力がループ部 1 8 a が印加されると、図 1 7 に示すように、ループ部 1 8 a は略直線状に引き延ばされる。これにより、クリップ 1 7 と操作ワイヤ 1 8 o 係合が解除される。

[0112]

次に、第8の実施形態の作用について説明する。

[0113]

クリップ17の挟持部を生体組織14に近づけた状態で、操作ワイヤ18を牽引すると、クリップ締付リング16の基端面16aが操作部材先端面15aに係合する。さらに操作ワイヤ18を牽引すると、クリップ17の基端部の楕円部がクリップ締付リング16の内径よりも大きいので、楕円部がクリップ締付リング16により潰される。すると、腕部17b,17b'が外側に大きく拡開する。

[0114]

この状態で、目的の生体組織14を挟むようにクリップ11を誘導する。さらに操作ワイヤ18を牽引することで、クリップ17の腕部17b,17b'がクリップ締付リング16内に引込まれ、クリップ17の挟持部が閉じられる。生体組織14をクリップ17の挟持部に確実に挟み込んだ状態でさらに操作ワイヤ18を牽引し、ループ部18aを略直線状に引き延ばす。これにより、クリップ1

7と操作ワイヤ18の係合が解除され、クリップ17が生体組織14を把持した まま体腔内に留置可能となる。

[0115]

第8の実施形態によれば、第7の実施形態の効果に加え、次のような効果がある。クリップ17の基端部に鉤11fを成形する必要がないので、より安価にクリップ17を製造できるようになる。また、操作ワイヤ18の先端のループ部18aもワイヤを曲成しているだけなので、より安価に操作ワイヤ18を成形でき、クリップ17の基端部と容易に係合させることができる。

[0116]

図18は第9の実施形態を示し、(a)~(d)は生体組織のクリップ装置の作用を示す縦断側面図である。第7の実施形態と同一構成部分は同一番号を付して説明を省略する。操作部材15には操作ワイヤ10が進退自在に挿通されている。

[0117]

クリップ9は、図11(a)(b)に示す第5の実施形態と同一構造であり、 クリップ9の基端部9aには操作ワイヤ10が挿通可能な孔21が設けられてい る。操作ワイヤ10の先端部には孔21より大きい抜け止めとなる膨隆部10a が設けられている。さらに、操作部材15の先端面とクリップ9の基端部との間 には円筒状のパイプからなるクリップ締付リング16が操作ワイヤ10に挿通し た状態で介在されている。

[0118]

次に、第9の実施形態の作用を説明する。

[0119]

図18(a)に示すように、結紮前においては、導入管1の先端部にはクリップ9が装填されており、操作部材15はクリップ締付リング16を介してクリップ9の基端部9aに当接している。

[0120]

同図(b)に示すように、操作部材15を前進または導入管1を後退させると、クリップ9及びクリップ締付リング16が導入管1の先端部から突出する。こ

2 5

の状態で、操作ワイヤ10を牽引すると、クリップ9の基端部9aはクリップ締付リング16の内部に引き込まれ、同図(c)に示すように、クリップ9の腕部9b,9b'は大きく拡開する。このとき、操作ワイヤ10により印加された力はクリップ締付リング16を介して操作部材15により確実に受けることができる。

[0121]

この状態で、クリップ9の挟持部9c,9c'を対象組織14に押し付けた状態で、操作ワイヤ10をさらに牽引すると、クリップ9の腕部9b,9b'がクリップ締付リング16内に引込まれ、挟持部9c,9c'が閉じることにより、同図(d)に示すように、対象組織14を挟み込むことができる。さらに操作ワイヤ10を牽引することにより、操作ワイヤ10の先端の膨隆部10aによってクリップ9の基端部9aの孔21が変形し大きくなる、もしくは膨隆部10aの径が変形して小さくなることにより、操作ワイヤ10がクリップ9と分離する。これにより、クリップ9を生体組織内に留置可能となる。

[0122]

第9の実施形態によれば、クリップと操作ワイヤを直接係合させることにより、クリップと操作ワイヤの係合部分の部品点数が減少する。これにより、製造コストの低減が図られる。また、製造時のクリップの装着作業が容易になる。

[0123]

また、操作ワイヤにより印加された力を操作部材により確実に受けることができるので、より強い力で生体組織を結紮できる。また、クリップ締付リングによりクリップの腕部が閉じ込まれるので、さらに強い力で生体組織を結紮できる。

[0124]

図19は第10の実施形態を示し、(a)~(c)は生体組織のクリップ装置の作用を示す縦断側面図である。第7の実施形態と同一構成部分は同一番号を付して説明を省略する。操作部材15には操作ワイヤ10が進退自在に挿通されている。

[0125]

クリップ9は、図11(a)(b)に示す第5の実施形態及び第9の実施形態

と同一構造であり、クリップ9の基端部9aには操作ワイヤ10が挿通可能な孔21が設けられている。操作ワイヤ10の先端部には孔21より大きい抜け止めとなる膨隆部10aが設けられている。さらに、操作部材15の先端面とクリップ9の基端部との間には図14に示す第6の実施形態と同一構造の係合手段としてのクリップ締付リング12が操作ワイヤ10を挿通した状態で介在されている

[0126]

次に、第10の実施形態の作用を説明する。

[0127]

図19(a)に示すように、結紮前においては、導入管1の先端部にはクリップ9が装填されており、操作部材15はクリップ締付リング12を介してクリップ9の基端部9aに当接している。

[0128]

同図(b)に示すように、操作部材15を前進または導入管1を後退させると、クリップ9及びクリップ締付リング12が導入管1の先端部から突出する。この状態で、操作ワイヤ10を牽引すると、クリップ9の基端部9aはクリップ締付リング12の内部に引き込まれ、同図(c)に示すように、クリップ9の腕部9b,9b'は大きく拡開する。このとき、クリップ締付リング12の羽根12a,12a'は先端チップ2を通過するときに折りたたまれるが、先端チップ2を通過すると、再び羽根12a,12a'が突出し、先端チップ2に係合する。従って、クリップ締付リング12が先端チップ2内に再び入り込むのを防止でき、操作ワイヤ10により印加された力はクリップ締付リング16を介して先端チップ2により確実に受けることができる。

[0129]

この状態で、第9の実施形態と同様に、クリップ9の挟持部9c,9c'を対象組織14に押し付けた状態でさらに操作ワイヤ10を牽引すると、クリップ9の腕部9b,9b'がクリップ締付リング16内に引込まれ、挟持部9c,9c'が閉じることにより、対象組織14を挟み込むことができる。さらに操作ワイヤ10を牽引することにより、操作ワイヤ10の先端の膨隆部10aによってク

2 7

リップ9の基端部9aの孔21が変形し大きくなる、もしくは膨隆部10aの径が変形して小さくなることにより、操作ワイヤ10がクリップ9と分離する。これにより、クリップ9を生体組織内に留置可能となる。

[0130]

第10の実施形態によれば、第9の実施形態に加え、操作ワイヤにより印加された力を係合手段により確実に受けることができるので、より強い力で生体組織を結紮できる。また、クリップ締付リングによりクリップの腕部が閉じ込まれるので、さらに強い力で生体組織を結紮できる。

[0131]

図20は第11の実施形態を示し、(a)~(c)は生体組織のクリップ装置の作用を示す縦断側面図である。第5の実施形態と同一構成部分は同一番号を付して説明を省略する。

[0132]

操作ワイヤは図20に示すように、膨隆部10aと基端ワイヤ10'よりなる。基端ワイヤ10'と操作ワイヤ10は溶接または接着される。もしくは金属の撚り線より構成される基端ワイヤ10'の芯線を操作ワイや10に使用すると、1本のワイヤで済み、部品点数が少なくなるので、製造コストの低減を行うことができる。基端ワイヤ10'の径は0.3~1.5mm程度である。

[0133].

クリップ3は、基本的には図1~図5に示す第1の実施形態と同一構造であって、基端部3aには第9の実施形態と同様に孔21が設けられている。導入管1内に複数個のクリップ3が直列に装填されており、操作ワイヤ10は各クリップ3の孔21を挿通し、最前端のクリップ3の孔21に膨隆部10aが係止され、操作ワイヤ10が抜け止めされている。

[0134]

次に、第11の実施形態の作用を説明する。

[0135]

図21(a)に示すように、結紮前においては、導入管1の先端部には複数個のクリップ3が直列に装填されており、最前端のクリップ3の孔21に膨隆部1

0 a が係止されている。

[0136]

同図(b)に示すように、基端ワイヤ10'を前進または導入管1を後退させると、最前端のクリップ3が導入管1の先端部から突出して腕部3b,3b'は大きく拡開する。この状態で、基端ワイヤ10'を牽引すると、クリップ3の基端部3aは先端チップ2の内部に引き込まれ、同図(c)に示すように、クリップ3の腕部3b,3b'に設けられた突起3g,3g'は先端チップ2の先端部に係合する。さらに、基端ワイヤ10'を牽引すると、クリップ3の基端部3aが塑性変形し、挟持部3c,3c'が閉じて対象組織14を挟み込むことができる。

[0137]

基端ワイヤ10'をさらに牽引すると、操作ワイヤ10の先端の膨隆部10aによってクリップ3の基端部3aの孔21が変形し大きくなることにより、操作ワイヤ10がクリップ3と分離してクリップ3を生体組織内に留置できる。

[0138]

次に、基端ワイヤ10'を前進または導入管1を後退させると、2番目のクリップ3の孔21に操作ワイヤ10の膨隆部10aが係合し、2番目のクリップ3を導入管1の先端の先端チップ2から突き出すことができ、同様の操作を繰り返すことにより、連続的にクリップ3の結紮を行うことができる。

[0139]

第11の実施形態によれば、クリップと操作ワイヤの係合構造が簡素化され、 部品点数も減少させることができるので、製造コストの低減を図ることができる。また、製造時にクリップの装着作業を容易にすることができ、組立のバラツキを防ぐことができる。さらに、導入管内のクリップが操作ワイヤにより中心付近に位置するため、クリップ突き出しが低力量で行える。また、1本の基端ワイヤを牽引するだけで連続的にクリップの結紮を行えるため、操作性を向上できる。

[0140]

図21は第12の実施形態を示し、(a)~(d)は生体組織のクリップ装置の作用を示す縦断側面図である。第9の実施形態と同一構成部分は同一番号を付

して説明を省略する。

[0141]

導入管1の内部には複数個のクリップ9と複数個のクリップ締付リング16が 交互に直列に装填されている。クリップ9及びクリップ締付リング16は、図1 8に示す第9の実施形態と同一構造であり、クリップ9の基端部9aには操作ワイヤ10が挿通可能な孔21が設けられている。操作ワイヤ10の先端部には孔21より大きい抜け止めとなる膨降部10aが設けられている。

[0142]

さらに、操作部材15の先端面とクリップ9の基端部との間には円筒状のパイプからなるクリップ締付リング16が操作ワイヤ10を挿通した状態で介在されている。操作ワイヤ10は各クリップ9の孔21を挿通し、最前端のクリップ9の孔21に膨降部10aが係止され、操作ワイヤ10が抜け止めされている。

[0143]

次に、第12の実施形態の作用を説明する。

[0144]

図21(a)に示すように、結紮前においては、導入管1の内部には複数個の クリップ9と複数個のクリップ締付リング16が交互に直列に装填され、操作部 材15の先端は最後端のクリップ締付リング16の基端に当接している。

[0145]

同図(b)に示すように、操作部材15を前進または導入管1を後退させると、最前端のクリップ9及びクリップ締付リング16が導入管1の先端部から突出する。この状態で、操作ワイヤ10を牽引すると、クリップ9の基端部9aはクリップ締付リング16の内部に引き込まれ、同図(c)に示すように、クリップ9の腕部9b,9b'は大きく拡開する。このとき、操作ワイヤ10により印加された力はクリップ締付リング16を介して操作部材15により確実に受けることができる。

[0146]

この状態で、クリップ9の挟持部9c,9c'を対象組織14に押し付けた状態でさらに操作ワイヤ10を牽引すると、クリップ9の腕部9b,9b'がクリ

ップ締付リング16内に引込まれ、挟持部9c,9c'が閉じることにより、同図(d)に示すように、対象組織14を挟み込むことができる。さらに操作ワイヤ10を牽引することにより、操作ワイヤ10の先端の膨隆部10aによってクリップ9の基端部9aの孔21が変形し大きくなることにより、操作ワイヤ10がクリップ9と分離する。これにより、クリップ9を生体組織内に留置可能となる。

[0147]

次に、操作部材15を前進または導入管1を後退させると、2番目のクリップ9の孔21に操作ワイヤ10の膨隆部10aが係合し、2番目のクリップ9を導入管1の先端から突き出すことができ、同様の操作を繰り返すことにより、連続的にクリップ9の結紮を行うことができる。

[0148]

第12の実施形態によれば、第11の実施形態の効果に加え、操作ワイヤにより印加された力を操作部材により確実に受けることができるので、より強い力で生体組織を結紮できる。また、クリップ締付リングによりクリップの腕部が閉じ込まれるので、さらに強い力で生体組織を結紮できる。

[0149]

図22は第13の実施形態を示し、(a)~(c)は生体組織のクリップ装置の作用を示す縦断側面図である。第10の実施形態と同一構成部分は同一番号を付して説明を省略する。

[0150]

導入管1の内部には複数個のクリップ9と複数個のクリップ締付リング12が交互に直列に装填されている。クリップ9及びクリップ締付リング12は、図19に示す第10の実施形態と同一構造であり、クリップ9の基端部9aには操作ワイヤ10が挿通可能な孔21が設けられている。操作ワイヤ10の先端部には孔21より大きい抜け止めとなる膨隆部10aが設けられている。さらに、操作部材15の先端面とクリップ9の基端部との間には第10の実施形態と同一構造の係合手段としてのクリップ締付リング12が操作ワイヤ10を挿通した状態で介在されている。

[0151]

次に、第13の実施形態の作用を説明する。

[0152]

図23(a)に示すように、結紮前においては、導入管1の内部には複数個の クリップ9と複数個のクリップ締付リング12が交互に直列に装填されており、 操作部材15の先端は最後端のクリップ締付リング12の基端に当接している。

[0153]

同図(b)に示すように、操作部材15を前進または導入管1を後退させると、最前端のクリップ9及びクリップ締付リング12が導入管1の先端部から突出する。この状態で、操作ワイヤ10を牽引すると、クリップ9の基端部9aはクリップ締付リング12の内部に引き込まれ、同図(c)に示すように、クリップ9の腕部9b,9b'は大きく拡開する。このとき、クリップ締付リング12の羽根12a,12a'は先端チップ2を通過するときに折りたたまれるが、先端チップ2を通過すると、再び羽根12a,12a'が突出し、先端チップ2に係合する。従って、クリップ締付リング12が先端チップ2内に再び入り込むのを防止でき、操作ワイヤ10により印加された力はクリップ締付リング16を介して先端チップ2により確実に受けることができる。

[0154]

この状態で、第9の実施形態と同様に、クリップ9の挟持部9c,9c'を対象組織14に押し付けた状態でさらに操作ワイヤ10を牽引すると、クリップ9の腕部9b,9b'がクリップ締付リング16内に引込まれ、挟持部9c,9c'が閉じることにより、対象組織14を挟み込むことができる。さらに操作ワイヤ10を牽引することにより、操作ワイヤ10の先端の膨隆部10aによってクリップ9の基端部9aの孔21が変形し大きくなることにより、操作ワイヤ10がクリップ9と分離する。これにより、クリップ9を生体組織内に留置可能となる。次に、操作部材15を前進または導入管1を後退させると、2番目のクリップ9の孔21に操作ワイヤ10の膨隆部10aが係合し、2番目のクリップ9を導入管1の先端から突き出すことができ、同様の操作を繰り返すことにより、連続的にクリップ9の結紮を行うことができる。

[0155]

第13の実施形態によれば、第11の実施形態に加え、操作ワイヤにより印加された力を係合手段により確実に受けることができるので、より強い力で生体組織を結紮できる。また、クリップ締付リングによりクリップの腕部が閉じ込まれるので、さらに強い力で生体組織を結紮できる。

[0156]

図23は第14の実施形態を示し、(a)~(d)はクリップ3,9の基端部3a,9aに設けられた孔21の変形例である。同図(a)は長孔スリットを設けたものである。長孔の長さは0.5~1.5 mm程度、高さは0.2~0.7 mm程度である。同図(b)は長孔スリットの中間部に丸孔を設けたものである。長孔の長さは0.5~1.5 mm程度、高さは0.2~0.6 mm程度、丸孔の径は長孔の高さよりも大きく0.3~0.7 mm程度である。同図(c)は十字状スリットを設けたものである。十字状スリットの長さは0.5~1.5 mm程度、高さは0.3~0.7 mm程度、スリットの幅は0.15~0.4 mm程度である。同図(d)は丸孔の内周部から中央部に向かって4本の突出片を設けたものである。丸孔の径は0.4~0.7 mm程度、突出片の高さは0.15~0.3 mm程度である。丸孔だけの場合、膨隆部が丸孔の全周に当接するため、孔を変形させるのに大きな力量が必要となる場合があり、医師や介助者がクリップ結紮を行うのに強い力が必要であった。同図(a)~(d)の孔形状の場合、膨隆部が当接した際に変形しやすい部分を作ることで強すぎない適度な力量で変形し、医師や介助者が適度な力でクリップ結紮を行うことができる。

[0157]

図24は第15の実施形態を示し、(a)~(e)は操作ワイヤ10の先端部に設けた膨隆部の変形例である。同図(a)は操作ワイヤ10の先端を扁平状に潰して扁平膨隆部10bを形成したものである。扁平膨隆部10bはクリップ基端部の孔より必ず大きく、幅は0.4~1mm程度、厚みは0.2~0.7mm程度、長さは0.3~3mm程度である。同図(b)は操作ワイヤ10の先端部にパイプ状部材10cを嵌着して膨隆部を形成したものである。パイプ状部材10cは溶接または接着で嵌着される。膨隆部の径はクリップ基端部の孔よりも必ず

大きく、0. 25~1 mm程度、膨隆部の長さは0. 25~3 mm程度である。 同図(c)は操作ワイヤ10の先端部を円錐状にカシメ加工して膨隆部10dを形成したものである。膨隆部10dの径はクリップ基端部の孔よりも必ず大きく、0. 25~1 mm程度、膨隆部10dの長さはクリップ0. 25~3 mm程度である。同図(d)は操作ワイヤ10の先端部を加熱して球状に加工した膨隆部10eを形成したものである。膨隆部10eの径はクリップ基端部の孔よりも必ず大きく、0. 25~1 mm程度である。同図(e)は操作ワイヤ10の先端部を折り返し折曲した膨隆部10fを形成したものである。操作ワイヤの径は0. 15~1 mm程度で折曲した際にクリップ基端部の孔よりも必ず大きい。また、膨隆部10fの折り返し部長さは0. 5~3 mm程度である。同図(a)~(e)の膨隆部形成は簡単でコストダウンを図ることができる。また、(b)において膨隆部の寸法制御がしやすく、結紮力量の安定化が図れる。

[0158]

前記各実施形態によれば、次のような構成が得られる。

(0159)

(付記1)生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通された操作ワイヤと、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性をもち、前記基端部に前記操作ワイヤの先端部が係合部品を介さずに直接係合したクリップとを具備する生体組織のクリップ装置において、前記クリップが前記導入管の先端部に係合し、前記クリップの基端部と操作ワイヤの先端部を引き離す方向の力が印加された際に、前記クリップの基端部もしくは前記操作ワイヤの先端部の少なくとも一方に設けられた係合手段のうち、少なくとも一方が変形して、前記クリップと前記操作ワイヤの係合を解除することを特徴とする生体組織のクリップ装置。

[0160]

(付記2)付記1において、クリップの基端部に腕部とは反対方向に突出された変形可能な鉤を設けたことを特徴とする生体組織のクリップ装置。

[0161]

(付記3)付記1において、操作ワイヤの先端部に閉じたループ部を設けたこ

とを特徴とする生体組織のクリップ装置。

[0162]

(付記4)付記3において、クリップが導入管の先端部に係合し、クリップ基端部と操作ワイヤの先端部を引き離す方向の力が印加された際に、ループ部が破断し、クリップと操作ワイヤの係合を解除することを特徴とする生体組織のクリップ装置。

[0163]

(付記5)付記1において、操作ワイヤの先端部を挿通可能なクリップの基端 部に設けた孔と、操作ワイヤの先端部に設けられ孔よりも大きな膨隆部とを構成 したことを特徴とする生体組織のクリップ装置。

[0164]

(付記6) 生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通された操作ワイヤと、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性をもち、前記基端部に前記操作ワイヤの先端部が係合部品を介さずに直接係合したクリップと、このクリップの腕部に被嵌して装着することによりクリップの挟持部を閉成するクリップ締付リングと、導入管もしくは締付リングの少なくとも一方に設けられ、クリップ及び締付リングが導入管の前方に突き出した際に導入管と締付リングを係合させ、締付リングが導入管内に再度収納されることを禁止する係合手段とを具備する生体組織のクリップ装置において、前記クリップが導入管の先端部に係合し、クリップの基端部もしくは操作ワイヤの先端部を引き離す方向の力が印加された際に、クリップの基端部もしくは操作ワイヤの先端部の少なくとも一方に設けられた係合手段のうち少なくとも一方が変形して、クリップと操作ワイヤの係合を解除することを特徴とする生体組織のクリップ装置。

[0165]

(付記7)付記6において、クリップの基端部に前記腕部とは反対方向に突出された変形可能な鉤を設けたことを特徴とする生体組織のクリップ装置。

[0166]

(付記8)付記6において、操作ワイヤの先端部に閉じたループ部を設けたこ

とを特徴とする生体組織のクリップ装置。

[0167]

(付記9)付記8において、クリップが導入管の先端部に係合し、クリップ基端部と操作ワイヤの先端部を引き離す方向の力が印加された際に、ループ部が破断し、クリップと操作ワイヤの係合を解除することを特徴とする生体組織のクリップ装置。

[0168]

(付記10)付記6において、操作ワイヤの先端部を挿通可能なクリップの基端部に設けた孔と、操作ワイヤの先端部に設けられ孔よりも大きな膨隆部とを構成したことを特徴とする生体組織のクリップ装置。

(付記11) 生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通

[0169]

された操作部材と、この操作部材内に進退自在に挿通された操作ワイヤと、 基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性を もち、前記操作ワイヤの先端部と係合部品を介さず直接係合したクリップと、こ のクリップの腕部に被嵌して装着することによりクリップの挟持部を閉成し、基 端部が操作部材先端部と係合可能なクリップ締付リングとを具備する生体組織の クリップ装置において、前記クリップが操作部材の先端部に係合し、クリップの 基端部と操作ワイヤの先端部を引き離す方向の力が印加された際に、前記クリッ プの基端部もしくは操作ワイヤの先端部の少なくとも一方に設けられた係合手段

[0170]

とを特徴とする生体組織のクリップ装置。

(付記12)付記11において、クリップの基端部に前記腕部とは反対方向に 突出された変形可能な鉤を設けたことを特徴とする生体組織のクリップ装置。

のうち、少なくとも一方が変形して、クリップと操作ワイヤの係合を解除するこ

[0171]

(付記13)付記11において、操作ワイヤの先端部に閉じたループ部を設けたことを特徴とする生体組織のクリップ装置。

[0172]

(付記14)付記11において、クリップが操作部材の先端部に係合し、クリップの基端部と操作ワイヤの先端部を引き離す方向の力が印加された際に、ループ部が破断し、クリップと操作ワイヤの係合を解除することを特徴とする生体組織のクリップ装置。

[0173]

(付記15)付記11において、操作ワイヤの先端部を挿通可能なクリップ基端部に設けた孔と、操作ワイヤの先端部に設けられ孔よりも大きな偏平膨隆部とを構成したことを特徴とする生体組織のクリップ装置。

[0174]

(付記16)少なくとも2本の素線を撚り合わせた撚り線ワイヤにおいて、 素線のうち少なくとも1本を使用して、撚り線ワイヤの先端部にループを形成し 、ループを形成した素線を再び撚り線ワイヤの手元側に撚り戻したことを特徴と する撚り線ワイヤ。

[0175]

(付記17)付記16において、素線を撚り線で構成したことを特徴とする撚り線ワイヤ。

[0176]

(付記18)付記16において、3本の素線を撚り合わせて撚り線ワイヤを形成したことを特徴とする撚り線ワイヤ。

[0177]

(付記19)付記1~4、6~9、11~14のいずれかに記載の生体組織の クリップ装置において、少なくとも2本の素線を撚り合わせた撚り線ワイヤの素 線のうち、少なくとも1本を使用して、撚り線ワイヤの先端部にループを形成し 、ループを形成した素線を再び撚り線ワイヤに撚り戻した撚り線ワイヤによって 操作ワイヤあるいは係合手段を構成したことを特徴とする生体組織のクリップ装 置。

[0178]

(付記20)付記1,6において、操作ワイヤの先端部を曲成し、ループ部を設けたことを特徴とする生体組織のクリップ装置。

[0179]

(付記21)生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通された操作ワイヤと、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成したクリップとを具備する生体組織のクリップ装置において、前記クリップの基端部に前記操作ワイヤを挿通可能な孔を設け、クリップの基端部の孔に挿通された操作ワイヤの先端部に孔よりも大きな膨隆部を設けたことを特徴とする生体組織のクリップ装置。

[0180]

(付記22)付記21において、クリップの腕部に被嵌して装着することにより、クリップの挟持部を閉成するクリップ締付リングと、このクリップ締付リングの後方に配置された導入管に進退自在に挿通された操作部材とを具備することを特徴とする生体組織のクリップ装置。

[0181]

(付記23)付記21において、クリップの腕部に被嵌して装着することにより、クリップの挟持部を閉成するクリップ締付リングと、導入管もしくはクリップ締付リングの少なくとも一方に設けられ、クリップ及びクリップ締付リングが導入管の前方に突出した際にクリップ締付リングを係合させ、クリップ締付リングが導入管内に再度収納されることを禁止する係合手段と、クリップ締付リングの後方に配置された導入管に進退自在に挿通された操作部材とを具備することを特徴とする生体組織のクリップ装置。

[0182]

(付記24)付記21~23のいずれかにおいて、操作ワイヤの先端部を偏平 状に潰し、膨隆部を形成したことを特徴とする生体組織のクリップ装置。

[0183]

(付記25)付記21~23のいずれかにおいて、操作ワイヤの先端部にパイプ状部材を嵌着させ、膨隆部を形成したことを特徴とする生体組織のクリップ装置。

[0184]

(付記26) 生体腔内に挿入可能な導入管と、この導入管内に進退自在に挿通

された操作ワイヤと、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成した少なくとも2個以上のクリップとを具備する生体組織のクリップ装置において、2個以上のクリップを直列に配置するとともに、それぞれのクリップの基端部に前記操作ワイヤを挿通可能な孔を設け、それぞれのクリップの基端部の孔に挿通された操作ワイヤの先端部に孔よりも大きな膨隆部を設けたことを特徴とする生体組織のクリップ装置。

[0185]

(付記27)付記26において、クリップの腕部に被嵌して装着することにより、クリップの挟持部を閉成するクリップ締付リングと、最近位に位置するクリップ締付リングの後方に配置された導入管に進退自在に挿通された操作部材とを具備することを特徴とする生体組織のクリップ装置。

[0186]

(付記28)付記26において、クリップの腕部に被嵌して装着することにより、クリップの挟持部を閉成するクリップ締付リングと、導入管もしくはクリップ締付リングの少なくとも一方に設けられ、クリップ及びクリップ締付リングが導入管の前方に突出した際にクリップ締付リングを係合させ、クリップ締付リングが導入管内に再度収納されることを禁止する係合手段と、最近位に位置するクリップ締付リングの後方に配置された導入管に進退自在に挿通された操作部材とを具備することを特徴とする生体組織のクリップ装置。

[018.7]

(付記29)付記26~28のいずれかにおいて、操作ワイヤの先端部を偏平 状に潰し、膨隆部を形成したことを特徴とする生体組織のクリップ装置。

[0188]

(付記30)付記26~28のいずれかにおいて、操作ワイヤの先端部にパイプ状部材を嵌着させ、膨隆部を形成したことを特徴とする生体組織のクリップ装置。

[0189]

【発明の効果】

以上説明したように、請求項1の発明によれば、クリップと操作ワイヤの係合

構造が簡素化され、部品点数も減少させることができるので、製造コストの低減を行うことができる。また、製造時のクリップの装着作業を容易にすることができる。さらに、1発目のクリップを生体組織内に留置後、内視鏡チャンネルよりクリップ装置を抜去し、2発目のクリップを再び装填する際のクリップ装填作業も容易になる。

[0190]

請求項2の発明によれば、操作ワイヤとループワイヤの係合部品をなくすことができるので、部品点数が減少し、それに伴う溶接・接着・カシメなどの接合作業による組立工数も減少させることができる。これにより、製造コストを減少させることができる。また、ループワイヤと操作ワイヤの接合部に硬質部ができないため、可撓性を維持することができ、内視鏡の鉗子チャンネルへの挿通性も保持できる。また、内視鏡のアングルがかかったときにも、硬質部がないので、内視鏡のアングルを容易に挿通でき、鉗子チャンネルの先端より操作ワイヤを確実に突出すことができるようになる。さらに、ループワイヤと操作ワイヤの接合部の外径が大きくなることがないため、導入管内面とのクリアランスを保持でき、接触抵抗も増加することがないので、操作ワイヤの挿通性を悪化させることがない。またさらに、クリップ締付リングにより、クリップの腕部が閉じこまれるので、より強い力で生体組織を結紮できる。

[0191]

請求項3の発明によれば、上記効果に加え、クリップ締付リングにより、クリップの腕部が閉じ込まれるのでより強い力で生体組織を結紮できるとともに、クリップを導入管より突き出す作業をより容易で確実に行うことができる。

[0192]

請求項4の発明によれば、クリップと操作ワイヤを直接係合させることにより、クリップと操作ワイヤの係合部分の部品点数が減少する。これにより、製造コストの低減が図られる。また、製造時のクリップの装着作業が容易になる。

[0193]

請求項5の発明によれば、クリップと操作ワイヤの係合構造が簡素化され、部 品点数も減少させることができるので、製造コストの低減を図ることができる。 また、製造時にクリップの装着作業を容易にすることができ、組立のバラツキを防ぐことができる。さらに、導入管内のクリップが操作ワイヤにより中心付近に位置するため、クリップ突き出しが低力量で行える。また、1本の操作ワイヤを牽引するだけで連続的にクリップの結紮を行えるため、内視鏡チャンネルよりクリップ装置を抜去せずに2発目のクリップを結紮することができ、操作性を向上できる。

【図面の簡単な説明】

【図1】

この発明の第1の実施形態を示す生体組織のクリップ装置における先端部の縦 断側面図。

【図2】

同実施形態を示し、クリップを突き出した状態の縦断側面図。

【図3】

同実施形態を示し、クリップで生体組織を挟持した状態の縦断側面図。

【図4】

同実施形態を示し、クリップを生体組織に留置した状態の側面図。

【図5】

同実施形態のクリップを示し、(a)は平面図、(b)は側面図、(c)は矢印A方向から見た図。

【図6】

同実施形態を示し、操作ワイヤの側面図。

【図7】

この発明の第2の実施形態を示す操作ワイヤの側面図。

【図8】

同実施形態を示し、(a)~(j)は操作ワイヤの製造方法を示す説明図。

【図9】

この発明の第3の実施形態を示し、クリップと操作ワイヤの平面図及び側面図

【図10】

この発明の第4の実施形態を示す生体組織のクリップ装置における先端部の縦 断側面図。

【図11】

この発明の第5の実施形態を示し、(a)はクリップの側面図、(b)は同斜 視図。

【図12】

この発明の第6の実施形態を示し、(a)はクリップ装置の縦断側面図、(b)は矢印B方向から見た図、(c)は矢印C方向から見た図。

【図13】

同実施形態のクリップを生体組織に留置した状態の縦断側面図。

【図14】

同実施形態のクリップ締付リングの斜視図。

【図15】

この発明の第7の実施形態のクリップ装置の縦断側面図。

【図16】

この発明の第8の実施形態のクリップ装置の縦断側面図。

【図17】

同実施形態の操作ワイヤの側面図。

【図18】

この発明の第9の実施形態を示し、(a)~(d)はクリップ装置の作用を示す縦断側面図。

【図19】

この発明の第10の実施形態を示し、(a)~(c)はクリップ装置の作用を示す縦断側面図。

【図20】

この発明の第11の実施形態を示し、(a) \sim (c) はクリップ装置の作用を示す縦断側面図。

【図21】

この発明の第12の実施形態を示し、(a)~(d)はクリップ装置の作用を

示す縦断側面図。

【図22】

この発明の第13の実施形態を示し、(a) \sim (c) はクリップ装置の作用を示す縦断側面図。

【図23】

この発明の第14の実施形態を示し、(a) \sim (d) はクリップの基端部に設けた孔の変形例の正面図。

【図24】

この発明の第15の実施形態を示し、(a)~(e)は膨隆部の変形例の正面 図及び側面図。

【符号の説明】

- 1…導入管
- 2…先端チップ
- 3…クリップ
- 4 …操作ワイヤ

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

要約書

【要約】

【書類名】

【課題】クリップと操作ワイヤの係合部分の部品点数を減らし、製造コストの低減を図るとともに、製造時のクリップの装着作業を容易にすることができる生体組織のクリップ装置を提供することにある。

【解決手段】生体腔内に挿入可能な導入管1と、この導入管内に進退自在に挿通された操作ワイヤ4と、基端部を有しこの基端部より延出する腕部の先端に挟持部を形成して開拡習性をもち、前記基端部に前記操作ワイヤの先端部が直接係合したクリップ3とを具備しており、前記クリップ3が前記導入管1の先端部に係合し、前記クリップ3の基端部と操作ワイヤ4の先端部を引き離す方向の力が印加された際に、前記クリップ3の基端部もしくは前記操作ワイヤ4の先端部の少なくとも一方に設けられた係合手段のうち、少なくとも一方が変形して前記クリップ3と前記操作ワイヤ4の係合を解除することを特徴とする。

【選択図】 図1

出願人履歴情報

識別番号

(000000376)

1. 変更年月日 1990年 8月20日

[変更理由]

新規登録

住 所

東京都渋谷区幡ヶ谷2丁目43番2号

氏 名

オリンパス光学工業株式会社