QTL Analysis Pipeline - Complete Pipeline & Output Documentation

Table of Contents

- 1. Pipeline Overview
- 2. Complete Workflow
- 3. Step-by-Step Pipeline Process
- 4. Output Structure
- 5. File Formats and Interpretation
- 6. Results Interpretation
- 7. Quality Control Outputs
- 8. Advanced Analysis Outputs
- 9. Troubleshooting Outputs
- 10. Best Practices for Results Analysis

Pipeline Overview

What the Pipeline Does

The QTL Analysis Pipeline performs comprehensive genetic association analysis to identify variants that influence molecular traits:

- cis-QTL Analysis: Tests variants within 1Mb of each gene
- trans-QTL Analysis: Tests variants across the entire genome
- Multi-omics Integration: Simultaneous analysis of expression, protein, and splicing
- Quality Control: Comprehensive data quality assessment
- Advanced Analyses: Interaction testing, fine-mapping, and visualization

Pipeline Architecture

```
Input Data \rightarrow Validation \rightarrow QC \rightarrow Normalization \rightarrow QTL Mapping \rightarrow Results \rightarrow Reports
   VCF/BCF
                Format
                            Sample
                                        Data
                                                     Statistical Summary Interactive
   Phenotypes Checks
                            QC
                                        Transformation Tests
                                                                     Files
                                                                                Reports
   Covariates
                           Variant QC
                                                       Association
                           PCA
                                                      Testing
   Annotations
```

Complete Workflow

High-Level Pipeline Flowchart

Runtime Expectations

Analysis	Sample Size	Variant	Expected	Memory
Туре		Count	Runtime	Usage
cis-eQTL	100 samples	1M variants	1-2 hours	8-16GB
cis-eQTL	500 samples	5M variants	4-8 hours	16-32GB
trans-eQTL	500 samples	5M variants	24-48 hours	32-64GB
Multi-omics	1000 samples	10M variants	2-3 days	64-128GB

Step-by-Step Pipeline Process

Step 1: Input Validation

Purpose: Ensure all input files are correct and compatible

Process:

- Checks file existence and permissions
- Validates file formats (VCF, BED, TSV)
- Verifies sample concordance across files
- Checks chromosome naming consistency
- Validates configuration parameters

Key Outputs:

• Validation report in logs

- Sample concordance summary
- Format compatibility check

Step 2: Quality Control

Purpose: Identify and filter low-quality data

Process:

- Sample-level QC:
 - Missingness rate calculation
 - Heterozygosity analysis
 - Sex check validation
 - Relatedness detection
- Variant-level OC:
 - Missingness rate
 - o Hardy-Weinberg Equilibrium
 - Minor Allele Frequency
 - Call rate thresholds
- Phenotype QC:
 - Missing value analysis
 - o Outlier detection
 - Distribution assessment

Key Outputs:

- QC summary reports
- Filtered genotype data
- Sample and variant exclusion lists

Step 3: Data Normalization

Purpose: Transform data to meet statistical assumptions

Process:

- eQTL Normalization:
 - VST (Variance Stabilizing Transformation)
 - o Log2 transformation

- Ouantile normalization
- TPM normalization
- pQTL Normalization:
 - o Log2 transformation with pseudocount
 - Z-score standardization
 - Quantile normalization
- sQTL Normalization:
 - o Log2 transformation for PSI values
 - Arcsinh transformation
 - Z-score standardization

Key Outputs:

- Normalized phenotype files
- Normalization comparison plots
- Transformation parameters

Step 4: Genotype Processing

Purpose: Prepare genotype data for efficient analysis

Process:

- Format conversion (VCF → PLINK/BCF)
- Chromosome normalization
- Variant filtering (MAF, missingness, HWE)
- Multi-allelic site handling
- Sample matching across datasets

Key Outputs:

- Processed genotype files
- Filtering statistics
- Format-converted data

Step 5: QTL Mapping

Purpose: Perform statistical association testing

Process:

- cis-QTL Analysis:
 - Linear regression for variant-gene pairs
 - Permutation testing for FDR calculation
 - Window-based testing (default: 1Mb)
- trans-QTL Analysis:
 - Genome-wide association testing
 - Multiple testing correction
 - Conditional analysis

Statistical Model:

```
text
```

Phenotype \sim Genotype + Covariates + ϵ

Where:

- Phenotype: Normalized molecular trait
- Genotype: Genetic variant dosage
- Covariates: Technical and biological confounders
- ε: Error term

Key Outputs:

- Association statistics
- Nominal p-values
- FDR-corrected results
- Effect size estimates

Step 6: Advanced Analyses

Purpose: Provide deeper biological insights

Process:

- Interaction Analysis: Test for context-specific effects
- Fine-mapping: Identify causal variants
- Conditional Analysis: Independent signal detection
- Pathway Enrichment: Biological context interpretation

Key Outputs:

- Interaction results
- Credible sets
- Conditional association statistics
- Pathway analysis results

Step 7: Visualization and Reporting

Purpose: Generate interpretable results and summaries

Process:

- Manhattan plots for genome-wide results
- QQ plots for inflation assessment
- Volcano plots for effect size visualization
- Locus zoom plots for regional association
- Interactive HTML reports

Key Outputs:

- Static plots (PNG/PDF)
- Interactive plots (HTML)
- Comprehensive reports
- Summary statistics

Output Structure

Complete Directory Tree

```
results/

— QTL_results/  # Main QTL analysis results

| — eqtl/  # Expression QTL results

| — cis/  # cis-eQTL results

| — hominals.txt  # All association results

| — significant.txt  # FDR-significant results

| — permutations/  # Permutation results
```

```
└─ summary.txt
                              # Analysis summary
        – trans/
                               # trans-eQTL results
          ├─ nominals.txt
          ├─ significant.txt
          └─ summary.txt
                                # Protein QTL results
  ├─ pqtl/
  └─ sqtl/
                                # Splicing QTL results
- GWAS_results/
                                 # GWAS results (if enabled)
  — gwas_combined_results.txt
  individual_phenotypes/
                               # Per-phenotype results
  └─ qc_report.txt
— QC_reports/
                                 # Quality control outputs
  — genotype_qc/
       sample_missingness.png
      ├─ maf_distribution.png
      ├─ heterozygosity.png
      — hwe_violations.txt
    — phenotype_qc/
      — expression_qc.png
      protein_qc.png

    □ splicing_qc.png

   — sample_concordance/
      ├─ overlap_summary.txt
      └─ concordance_plot.png
  └─ comprehensive_qc_report.html
                                 # All generated visualizations
– plots/
                                # Manhattan plots
  ├─ manhattan/
      ├─ eqtl_cis_manhattan.png
      ├─ eqtl_trans_manhattan.png
      ☐ gwas_manhattan.png
                                # QQ plots
  — qq/
  ─ volcano/
                                # Volcano plots
  ─ distribution/
                                # Distribution plots
  ├─ locuszoom/
                                # Locus zoom plots

    interactive/

                                # Interactive plots (HTML)
  └─ summary/
                                # Summary plots
                                # Comprehensive reports
— reports/
  — analysis_report.html
                               # Main HTML report
  pipeline_summary.txt
                               # Text summary
  results_metadata.json
                                # Results metadata

    methods_section.txt
                               # Methods for publications
— interaction_results/
                                # Interaction analysis
```

```
— age_interaction/
    sex_interaction/
   - fine_mapping_results/
                               # Fine-mapping outputs
   ├─ credible_sets/
   ─ susie_results/
   finemap_results/
  - normalization_comparison/
                               # Normalization assessment
   — eqt1/
       ├─ distribution_comparison.png
       mormalization_report.html
       └─ statistical_summary.txt
   — pqt1/
   └─ sqtl/
                               # Processed genotype data
  - genotype_processing/
   filtered_genotypes.vcf.gz
   plink_format/
   └── processing_log.txt
                               # Temporary files (cleaned up)
 — temp/
└─ logs/
                               # Pipeline execution logs
   pipeline_YYYYMMDD_HHMMSS.log
   ├─ validation.log
   ├─ qc.log
   └─ analysis.log
```

File Formats and Interpretation

Main QTL Results Files

1. Nominal Association Results (nominals.txt)

Format: Tab-separated values

```
phenotype_id variant_id chromosome position p_value beta se maf gene1 chr1_1000 1 1000 2.5e-08 0.32 0.05 0.15 gene1 chr1_2000 1 2000 1.2e-06 0.25 0.06 0.12
```

Columns:

- phenotype_id: Gene/protein/splicing event ID
- variant_id: Genetic variant identifier
- chromosome, position: Genomic coordinates
- p_value: Association p-value
- beta: Effect size (change in phenotype per additional effect allele)
- se: Standard error of effect size
- maf: Minor allele frequency

2. Significant Results (significant.txt)

Format: Tab-separated values with FDR information

```
text

phenotype_id variant_id p_value beta p_fdr q_value

gene1 chr1_1000 2.5e-08 0.32 0.001 0.001

gene2 chr2_5000 3.2e-07 0.28 0.015 0.015
```

Additional Columns:

- p_fdr: False Discovery Rate adjusted p-value
- q_value: Storey's q-value (similar to FDR)

3. Permutation Results (permutations/)

Directory containing:

- permutation_pass_1.txt: Results from first permutation round
- permutation_stats.txt: Summary of permutation distribution
- empirical_pvalues.txt: Empirical p-values from permutations

Quality Control Files

1. Sample QC Report

```
text
Sample ID Missing Rate Heterozygosity Status
```

sample1	0.02	0.32	PASS	
sample2	0.15	0.45	FAIL_MISSING	
sample3	0.01	0.29	PASS	

2. Variant QC Report

text					
Variant ID	Chromosome	Position	MAF Missing Rate	HWE_P	Status
rs12345	1	1000	0.12 0.01	0.85	PASS
rs67890	1	2000	0.005 0.08	1e-08	FAIL_HWE

3. Sample Concordance Report

text			
Dataset	Total Samples	Overlap Samples	Overlap Percentage
Genotypes	500	-	-
Expression	480	475	95.0%
Covariates	490	485	97.0%

Results Interpretation

Key Metrics to Evaluate

1. Genomic Control Lambda (λ)

What it is: Measure of test statistic inflation Interpretation:

- λ = 1.0: Perfectly calibrated (ideal)
- $1.0 < \lambda < 1.05$: Slight inflation (acceptable)
- $\lambda > 1.05$: Significant inflation (potential confounding)
- λ < 1.0: Deflation (rare, may indicate issues)

2. Number of Significant Associations

Expected ranges:

- cis-eQTLs: 10-80% of genes typically have cis-eQTLs
- trans-eQTLs: 1-10% of genes typically have trans-eQTLs
- pQTLs: 5-50% of proteins typically have pQTLs
- sQTLs: 5-30% of splicing events typically have sQTLs

3. Effect Size Distribution

Typical ranges:

- cis-eQTLs: |beta| = 0.1-1.0 (moderate to large effects)
- trans-eQTLs: |beta| = 0.05-0.3 (small to moderate effects)
- pQTLs: |beta| = 0.1-0.8 (moderate effects)
- sQTLs: |beta| = 0.2-1.5 (moderate to large effects)

How to Read Output Files

Example cis-eQTL Result Interpretation

```
# From significant.txt:
# gene1 chr1_1000_A_T 2.5e-08 0.32 0.001

Interpretation:
- Gene 'gene1' has a significant cis-eQTL at variant chr1:1000
- Association p-value: 2.5e-08 (highly significant)
- Effect size (beta): 0.32 → Each effect allele increases expression by 0.32 units
- FDR-adjusted p-value: 0.001 → 0.1% false discovery rate
```

Example Manhattan Plot Interpretation

What to look for:

- Peaks above red line: Genome-wide significant hits (p < 5e-8)
- Peaks above orange line: Suggestive hits (p < 1e-5)
- Chromosome patterns: Should be relatively uniform
- Inflation: Points above diagonal in QQ plot indicate inflation

Quality Control Outputs

Sample QC Assessment

1. Sample Missingness Plot

File: QC_reports/genotype_qc/sample_missingness.png What to check:

- Most samples should have <5% missingness
- Remove samples with >10% missingness
- Look for bimodal distribution indicating batch effects

2. MAF Distribution Plot

File: QC_reports/genotype_qc/maf_distribution.png What to check:

- Should show exponential decay (many rare variants, few common)
- Check MAF threshold is appropriate (vertical line)
- Ensure no unusual peaks or gaps

3. Heterozygosity Plot

File: QC_reports/genotype_qc/heterozygosity.png What to check:

- Most samples should cluster around population mean
- Outliers may indicate sample contamination or issues
- Different clusters may indicate population stratification

Phenotype QC Assessment

1. Expression Distribution

File: QC_reports/phenotype_qc/expression_qc.png What to check:

- Distribution should be smooth without extreme outliers
- Missingness pattern should be random, not systematic
- Batch effects visible as blocks in missingness heatmap

2. Sample Concordance

File: QC_reports/sample_concordance/concordance_plot.png What to check:

- Overlap should be >80% between genotypes and phenotypes
- Low overlap indicates sample ID mismatches
- Investigate samples present in one dataset but not others

Advanced Analysis Outputs

Interaction Analysis Results

1. Interaction Summary

```
phenotype_id variant_id p_nominal p_interaction beta_interaction

gene1 chr1_1000 2.5e-08 0.01 0.15
```

Interpretation:

- p_interaction: Significance of interaction term
- beta_interaction: Effect size of interaction
- Example: The genetic effect on gene1 differs by the interaction covariate

2. Stratified Results

Files: interaction_results/age_stratified/

- Contains results split by interaction covariate levels
- Useful for understanding direction of interaction effects

Fine-mapping Results

1. Credible Sets

```
phenotype_id variant_id posterior_probability credible_set
gene1 chr1_1000 0.45 1
gene1 chr1_2000 0.35 1
gene1 chr1_3000 0.15 1
```

Interpretation:

- posterior_probability: Probability variant is causal
- credible_set: Set of variants containing causal variant with 95% probability
- Variants in same credible set should be in high LD

2. Fine-mapping Summary

- Number of credible sets per locus
- Size of credible sets (smaller = better resolution)
- Posterior probabilities of top variants

Troubleshooting Outputs

Common Issues and Diagnostic Files

1. Memory Issues

Check: logs/pipeline_*.log for memory warnings Solutions:

- Increase memory_gb in configuration
- Enable process_by_chromosome: true
- Use force_plink: true for large datasets

2. No Significant Results

Diagnostic files to check:

- QC_reports/comprehensive_qc_report.html Data quality issues
- normalization_comparison/ Normalization effectiveness
- plots/qq/ Test statistic inflation

Common causes:

- Insufficient sample size
- Poor data quality
- Inappropriate normalization
- Overly strict multiple testing correction

3. Long Runtime

Check: logs/analysis.log for bottleneck steps Optimization strategies:

- Increase num_threads
- Use qtl_mode: "cis" instead of "both"
- Reduce num_permutations
- Use BCF instead of VCF format

Log File Interpretation

Example Log Entry Analysis

```
text

2024-01-15 10:30:15 - QTLPipeline - INFO - Q Running eQTL cis analysis...

2024-01-15 10:35:22 - QTLPipeline - INFO - ✓ eQTL cis: 1250 significant associations

2024-01-15 10:35:23 - QTLPipeline - WARNING - ↑ High genomic inflation detected: λ = 1.12

2024-01-15 10:35:24 - QTLPipeline - ERROR - ★ trans-eQTL analysis failed:

Memory allocation failed
```

Interpretation:

- cis-eQTL analysis completed successfully with 1250 hits
- Genomic inflation suggests potential confounding
- trans-eQTL failed due to memory limits

Best Practices for Results Analysis

1. Start with QC Assessment

- Always examine QC reports before interpreting results
- Check sample and variant filtering thresholds
- Verify normalization effectiveness

2. Validate Key Findings

- Check top hits in external databases (GTEx, eQTL Catalogue)
- Verify effect directions make biological sense
- Consider replication in independent datasets

3. Use Multiple Visualization Types

- Manhattan plots for genome-wide overview
- QQ plots for inflation assessment
- Locus zoom for regional context
- Volcano plots for effect size distribution

4. Consider Biological Context

- Annotate significant hits with known genes
- Check for enrichment in functional categories
- Consider tissue/cell type specificity

5. Document Analysis Decisions

- Keep configuration files for reproducibility
- Document filtering thresholds and normalization methods
- Record any manual curation steps

Example Results Workflow

bash

```
# 1. Check pipeline completed successfully
cat results/pipeline_summary.txt

# 2. Examine QC reports
open results/reports/analysis_report.html

# 3. Check significant hit counts
wc -1 results/QTL_results/eqtl/cis/significant.txt

# 4. Generate custom visualizations for top hits
```

- # (Using the provided plotting utilities)
- # 5. Export results for downstream analysis
- cp results/QTL_results/eqtl/cis/significant.txt my_analysis/top_qtls.txt