Project NER

19th June 2022

Team: Towards_NLP

Rachit Jain Anshul Bhardwaj

NLP Scholars Al-3 C-2 @ Univ.Al

Executive Summary

- About | Understanding the motivation behind the project and the task at hand
- Data & Labels | Visualizing what the data looks like and how it can be processed
- Models & Results | Developing models for the task and iterating to improve the results
- Conclusion & Scope of Improvement | Listing the insights gained from the project and noting down areas for further improvement

Understanding the motivation behind the project and the task at hand

The project focuses on creating a NER model that identifies key tokens and classifies them into set of predefined entities. The data would involve scientific publications in the WIESP Dataset.

NER helps us extract key information from scientific papers which can help search engines to better select and filter articles.

I-ComputingFacility I-Organization I-Model I-Citation I-Location I-Formula B-Survey B-Organization I-Archive B-Citation I-Collaboration B-Person B-Instrument B-Grant B-Fellowship I-Grant B-ComputingFacility I-Person I-Telescope B-CelestialObject I-Software B-Wavelength I-Survey B-Formula B-Collaboration I-CelestialObject B-Database B-Location I-Database B-Telescope B-URL I-Observatory B-Archive B-Model B-Dataset I-Wavelength I-Dataset I-Fellowship I-CelestialObjectRegion B-Observatory I-Proposal B-Software

Fig: The NER Tags present within the dataset

2

Workshop on Information Extraction from Scientific **Publications**

Fig: WIESP dataset Fig: NER

Visualizing what the data looks like and how it can be processed

EDA

	Total	tokens/	/words	=	<i>5</i> 73	132	<u>)</u>
--	-------	---------	--------	---	-------------	-----	----------

Total sentences = 1753

Mean sentence length = 326

Number of unique NER-Tags = 63

abel_studio_id 🔻 no	er_ids ver_tags	▼ section ▼	tokens =	unique_id
487	62 O	fulltext	fit	fulltext_487_2019MNRAS.486.5558S
487	62 O	fulltext	uncertainty.	fulltext_487_2019MNRAS.486.5558S
487	62 O	fulltext	Photometric	fulltext_487_2019MNRAS.486.5558S
487	62 O	fulltext	data	fulltext_487_2019MNRAS.486.5558S
487	62 O	fulltext	are	fulltext_487_2019MNRAS.486.5558S
487	62 O	fulltext	from	fulltext_487_2019MNRAS.486.5558S
487	17 B-Mission	fulltext	K2,	fulltext_487_2019MNRAS.486.5558S
487	15 B-Instrumen	t fulltext	SMEI,	fulltext_487_2019MNRAS.486.5558S
487	27 B-Telescope	fulltext	Hipparcos	fulltext_487_2019MNRAS.486.5558S
	487 487 487 487 487 487 487	487 62 O 487 17 B-Mission 487 15 B-Instrumen	487 62 O fulltext 487 17 B-Mission fulltext 487 15 B-Instrument fulltext	487 62 O fulltext fit 487 62 O fulltext uncertainty. 487 62 O fulltext Photometric 487 62 O fulltext data 487 62 O fulltext are 487 62 O fulltext from 487 17 B-Mission fulltext K2, 487 15 B-Instrument fulltext SMEI,

Fig: WIESP Dataset & Columns Names

bibcode label studio id ner_ids ner_tags section tokens unique_id

Pre-processing

Words about years were replaced with <YEAR> token

Words containing numbers were replaced with <NUM> token

1 Stacking SimpleRNN Layers

Split sentences on '.' for shorter sentence length

Varied batch size, sentence length, # layers, etc.

Pre-processing data didn't help the model

→ 92% accuracy; 10% improvement over naive.

Fig: Basic Architecture for any model for the task

1.5 Using Word2Vec Embeddings

Trained embeddings didn't improve the model metrics due to lack of trainable parameters and embeddings not trained for this specific task.

Fig: Using Word2Vec Embeddings

	Model Type										
Mainframe 🔻	Layers	▼ Sentence Length ▼	Bidirectional ▼	Hidden Size ▼	Batch Size ▼	Epochs ▼	Dataset ▼	Loss ▼	Accuracy ▼	Validation Loss ▼	Validation Accuracy ▼
SimpleRNN	3	10 to 30	FALSE	32	8	30	After extra pre-processing	0.1811	0.9378	0.2933	0.9195
SimpleRNN	3	10 to 30	FALSE	32	8	30	Without extra pre-processing	0.2388	0.9249	0.2897	0.9166
SimpleRNN	3	10 to 30	TRUE	32	8	30	After extra pre-processing	0.2414	0.9228	0.287	0.9155
SimpleRNN	3	10 to 30	TRUE	32	8	30	Without extra pre-processing	0.2332	0.9255	0.284	0.9142
SimpleRNN	3	10 to 30	TRUE	32	8	8	After extra pre-processing	0.2031	0.9308	0.2797	0.9169
SimpleRNN	3	10 to 30	TRUE	32	8	10	Without extra pre-processing	0.218	0.9289	0.2844	0.9182
SimpleRNN	3	10 to 60	TRUE	32	8	9	Without extra pre-processing	0.1352	0.9278	0.1651	0.9191

Fig: Results using SimpleRNN architecture with varying parameters

Data & Labels

Two Bidirectional LSTMs with Dense Layers

- Achieved previous accuracy faster because of bidirectional access
- Learned context over longer sentences; thanks to LSTM
- More trainable parameters improved data fitting
- 95.75% accuracy without any pre-training!

4	SciBERT -	A BERT	based	Model
	OOIDEIXI		Daoa	MOGO

Other models based on Roberta and Longformers were also tried.

Accuracy & F1 score was the highest with SciBERT

BERT Limitation: Supports maximum sequence length of 512.

	precision	recall	f1-score	support
weighted avg	0.97	0.97	0.97	89990.00
macro avg	0.60	0.65	0.61	89990.00
0	0.99	0.99	0.99	73164.00
I-Organization	0.94	0.94	0.94	2787.00
I-Citation	0.99	0.99	0.99	2743.00
I-Formula	0.95	0.90	0.93	1532.00
B-Organization	0.91	0.91	0.91	1383.00
B-Citation	0.99	0.91	0.95	1020.00
B-Person	0.98	0.99	0.99	755.00
B-Grant	0.85	0.85	0.85	645.00
I-Grant	0.70	0.82	0.76	623.00
I-Person	1.00	0.99	0.99	474.00
B-CelestialObject	0.92	0.86	0.89	473.00
B-Wavelength	0.83	0.84	0.83	434.00
B-Formula	0.89	0.88	0.88	387.00
I-CelestialObject	0.95	0.93	0.94	268.00
B-Location	0.85	0.84	0.85	264.00
B-Telescope	0.80	0.69	0.74	253.00
I-Observatory	0.98	0.89	0.93	248.00
B-Model	0.48	0.57	0.52	247.00
I-Wavelength	0.83	0.77	0.80	202.00
I-Fellowship	0.84	0.75	0.79	195.00
B-Observatory	0.89	0.85	0.87	182.00
B-Software	0.76	0.77	0.76	146.00
I-ComputingFacility	0.74	0.77	0.76	145.00
I-Model	0.36	0.54	0.44	125.00
I-Location	0.93	0.79	0.86	102.00

Listing the insights gained from the project and noting down areas for further improvement

Current Insights and Scope of Work

Right batch size of 4 or 8 allows sufficient training without loosing onto data patterns

Data & Labels

More trainable parameters at right locations allows the model to be more flexible

Deep Architectures allow for subtle nuances to be explored instead of predicting from a glance

Transfer Learning allows complex models trained over huge corpus to be extended for specific tasks

Use of custom loss function to handle class imbalance in dataset

Increase data on which the model is trained, especially for under-represented NER tags

Use embeddings trained for Scientific NER like ELMo or other pretrained embeddings

Named Entity Recognition (NER)

Rachit Jain, Anshul Bhardwaj

ABOUT

The project focuses on creating a NER model that identifies key tokens and classifies them into set of predefined entities. The data would involve scientific publications in the **WIESP Dataset**.

NER helps us extract key information from scientific papers which can help search engines to better select and filter articles.

MODELS & RESULTS

USING SIMPLE RNN

Accuracy maxed out at **92%** with multiple design changes

USING WORD2VEC

The trained embeddings **do not do well** for our task

BASELINE: 2 LSTM STACKED

Improvement over RNNs; 92.5% accuracy after fine-tuning

	Model Type							1				
Mainframe ▼	Layers	₩ 9	Sentence Length	Bidirectional	Hidden Size ▼	Batch Size 🔻	Epochs ▼	Dataset 💌	Loss	Accuracy	Validation Loss ▼	Validation Accuracy ▼
SimpleRNN	3		10 to 30	FALSE	32	8	30	After extra pre-processing	0.1811	0.9378	0.2933	0.9195
SimpleRNN	3		10 to 30	FALSE	32	8	30	Without extra pre-processing	0.2388	0.9249	0.2897	0.9166
SimpleRNN	3		10 to 30	TRUE	32	8	30	After extra pre-processing	0.2414	0.9228	0.287	0.9155
SimpleRNN	3		10 to 30	TRUE	32	8	30	Without extra pre-processing	0.2332	0.9255	0.284	0.9142
SimpleRNN	3		10 to 30	TRUE	32	8	8	After extra pre-processing	0.2031	0.9308	0.2797	0.9169
SimpleRNN	3		10 to 30	TRUE	32	8	10	Without extra pre-processing	0.218	0.9289	0.2844	0.9182
SimpleRNN	3		10 to 60	TRUE	32	8	9	Without extra pre-processing	0.1352	0.9278	0.1651	0.9191

Fig: Different experiments with basic model architectures by tuning parameters

2 BIDIRECTIONAL LSTM LAYERS

DATA & LABELS

Input Data

Fig: Basic

Architecture

The basic architecture of any

model remains the same. What

defines its success is how well it

is put into use!

- bibcode: Can be used to extract the texts.
- 2. label studio id: Can also be used to extract texts.
- 3. **ner_ids**: Can be used as label encoded values for the ner tags.
- 4. **section**: Two types: fulltext or acknowledgement.
- 5. **tokens**: The units whose entities need to be found by the model.
- 6. unique_id: This could also be used to separate out units of texts.

SCOPE OF IMPROVEMENT

This allowed model to **learn context over long sentences** and have enough trainable
parameters to increase its robustness. Accuracy
rose to **95.75%** without any pre-training system

BERT-BASED MODEL

After multiple BERT versions, the best accuracy of **97.2%** came on the model based on **SciBERT**: A Pretrained Language Model for Scientific Text

CONCLUSION

Right Batch Size, Early Stopping, More Trainable Parameters, Deep Architectures and Transfer Learning truly boost the performance of models.

- . Class Imbalance: use custom loss function
- 2. More data for under-represented tokens o
- . Use embeddings trained for Scientific NER

Project NER

19th June 2022

Team: Towards_NLP

Rachit Jain Anshul Bhardwaj
NLP Scholars, Al-3 C-2
Univ.Al

Thank You!