Vertex of the Quadratic

Given a quadratic $e(m) = a m^2 + b m + c$ compute its value at $m_1 = -\frac{b}{2a}$ namely $e(m_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathtt{m}_{1}{}^{\scriptscriptstyle +}\mathtt{h}$, namely $e(m_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = e(m_1 + h) - e(m_1) = a h^2$ Since $h^2>0$, therefore if a>0 then $\triangle>0$ or vertex is the

global minimum!

Example 1. $e(m) = 4 m^2 + 24 m + 32$

