

Microprocessors & Interfacing

Hardware Design

Dr. Gargi Prabhu Department of CS & IS

innovate achieve lead

Interfacing 8284 with 8086

innovate achieve lead

Min Max Mode

Difference between Minimum & Maximum Mode

Minimum mode	Maximum mode	
There can be only one processor.	There can be multiple processors.	
Performance is slower.	Performance is faster.	
The circuit is simple.	The circuit is complex.	
Multiprocessing cannot be performed.	Multiprocessing can be performed.	
MN/MX is 1 to indicate the minimum mode.	MN/MX is 0 to indicate the maximum mode	
The 8086 generates INTA for interrupt acknowledgment.	The 8288 Bus Controller generates the interrupt acknowledgment signal (INTA).	
The 8086 itself provides an ALE for the latch.	Because there are several processors, the 8288 bus controller provides ALE for the latch.	
The system is more affordable.	The system costs more money.	
It is used for small systems.	It is used for large systems.	
The multiprocessor setup is not supported.	The multiprocessor configuration is accepted.	

BITS Pilani, Pilani Campus

Demultiplexing the Buses

All computer systems have three buses:

- (1) an address bus that provides the memory and I/O with the memory address or the I/O port number
- (2) a data bus that transfers data between the micro processor and the memory and I/O in the system
- (3) a control bus that provides control signals to the memory and I/O.
- Two 74LS373 or 74LS573 transparent latches are used to demultiplex the address/data lunes

Bus Timing

- The 8086/8088 microprocessors use the memory and I/O in periods called bus cycles.
- Each bus cycle equals four system-clocking periods (T states)
- If the clock is operated at 5 MHz , one 8086 bus cycle is complete inns
- This means that the microprocessor reads or writes data between itself and memory or I/O at a maximum rate of.......... million times a second.

Generation of control signal

M/IO'	RD'	WR'	Bus cycle
1	0	1	MEMR'
1	1	0	MEMW'
0	0	1	IOR'
0	1	0	IOW'

Bus Timing

During T1

- The address of the memory or I/O location is sent out via the address bus and the address/data bus connections.
- Control signals are also sent out

During T2,

- The 8086/8088 microprocessors issue the RD' or WR' signal, DEN', and in the case of a write, the data to be written appear on the data bus.
- The DEN' signal turns on the data bus buffers, if they are present in the system, so the memory or I/O can receive data to be written, or so the microprocessor can accept the data read from the memory or I/O for a read operation

Bus Timing

During T3

• If the bus cycle happens to be a read bus cycle, the data bus is sampled at the end of T3

During T4

- All bus signals are deactivated in preparation for the next bus cycle.
- 8086/8088 samples the data bus connections for data that are read from memory or I/O.
- At the trailing edge of the WR' signal transfers data to the memory or I/O,
 which activates and writes when the WR' signal returns to a logic 1 level

lead

Bus Timing

Read Timing

Thank You