LOCKHEED MISSILES AND SPACE CO INC HUNTSVILLE AL HUN--ETC F/6 21/8.2 SUPERSONIC FLOW OF CHEMICALLY REACTING GAS-PARTICLE MIXTURES. V--ETC(U) JAN 76 M M PENNY. S D SMITH, P G ANDERSON NAS9-14517 LMSC-HREC-TR-D496555-2 NL AD-A094 633 UNCLASSIFIED 1 or 5 4D: 4094633

14 LMSC-HREC-TR-D496555-延

SUPERSONIC FLOW LAND GAS-PARTICLE MIXTURES,

Volume II.

— A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

Morris M./Penny Sheldon D./Smith Peter G./Anderson Peter R./Sulyma Marcus L./Pearson

> Lockheed Missiles & Space Company, Inc. Huntsville Research & Engineering Center / 4800 Bradford Drive, Huntsville, AL 35807

January 1976

13 Contract NAS9-14517

Prepared for

National Aeronautics and Space Administration Johnson Space Center Houston, TX 77058

DISTRIBUTION STATEMENT A

81

LOCKHEED

FOR EW OR D

This document is Volume II of a two volume report describing the Reacting and Multi-Phase (RAMP) Computer Code developed by the Advanced Technology Systems Section of Lockheed's Huntsville Research & Engineering Center. Volume II addresses the computer code along with the program input and output. Volume I deals with the theory and numerical solution for the computer code.

Documentation of the computer code was prepared in partial fulfillment of contract requirements (Contract NAS9-14517) with the NASA-Johnson Space Flight Center, Houston, Texas, in support of Space Shuttle related exhaust plume applications. The contracting officer's technical representative for this study was Mr. Barney B. Roberts of the Aerodynamics Systems Analysis Section.

The authors acknowledge the efforts of a number of individuals who contributed to the development of the RAMP code. These include Dr. Terry F. Greenwood and Mr. David C. Seymour of the NASA-Marshall Space Flight Center; and Messrs. Robert J. Prozan, Jon A. Freeman, L. Ray Baker and A. W. Ratliff of Lockheed-Huntsville. Ideas and suggestions for improvement of the analysis are reflected by frequent consultation with these individuals.

Companion documents to this report include a theory and numerical solution document for the RAMP computer code; a report which describes the modifications made to the NASA-Lewis TRAN72 computer code; and documentation of a one-dimensional solution which provides a supersonic startline for the RAMP code. These documentation are, respectively:

- "Supersonic Flow of Chemically Reacting Gas-Particle Mixtures Volume I – A Theoretical Analysis and Development of the Numerical Solution," LMSC-HREC TR D496555-I.
- "User's Guide for TRAN72 Computer Code Modified for use with RAMP and VOFMOC Flowfield Codes," LMSC-HREC TM D390409.
- "General One-Dimensional Flow of Gas-Particle System," LMSC-HREC TM 390876.

NTIS TOTAL	X
D 4.7	-
r.	ا م المعد
Latter of	File
<u> </u>	
7° '	
	1.33
	1
Files.	L
A	
H	

CONTENTS

Section		Page
	FOREWORD	
1	INTRODUCTION AND SUMMARY	1-1
2	USER'S INPUT/OUTPUT GUIDE FOR THE MODIFIED TRAN72 COMPUTER CODE	2-1
	2.1 User of the Modified TRAN72 Program with the RAMP Program	2-1
	2.2 Use of the Modified TRAN72 Program with the VOFMOC Program	2-6
3	REACTING AND MULTIPHASE (RAMP) COMPUTER PROGRAM	3-1
	3.1 Capabilities and Limitations	3-15
	3.2 User's Input Guide for the RAMP Program	3-19
	3.2.1 RAMP Program Input Information3.2.2 Control Card Set-Up for Univac 1108 Exec 8 and Program Overlay Structures	3-19 3-47
	3.3 Output Format	3-51
	3.3.1 Description of Printed Output 3.3.2 Description of Unformatted Binary Output	3-51 3-91
	3.4 Program Utilization Comments	3-96
	3.4.1 Mesh Control Variables 3.4.2 Explanation of Error Messages and Other Messages 3.4.3 Problems Commonly Encountered and Sugge	3-96 3-103 sted 3-107
	Fixes	
	3.5 Brief Description of Routines in Functional Groupi	ngs 3-114
	3.5.1 General Flow Properties Routines 3.5.2 Shock Calculation Routines 3.5.3 Input Routines 3.5.4 Logic Control Routines 3.5.5 Free Molecular Routines 3.5.6 Output Routines 3.5.7 Transonic Routines	3-114 3-117 3-118 3-118 3-119 3-119
	3.5.8 Startline Routines	3-120

Section		Page
3	3.5.9 Boundary and Problem Limit Routines 3.5.10 Interpolation and Iteration Routines 3.5.11 Property Retrieval Routines 3.5.12 Chemistry Routines 3.5.13 Compatibility Equation Coefficient Routines 3.5.14 Corner Point Solution Routines 3.5.15 Initialization Routines 3.5.16 Performance Calculation Routines 3.5.17 Characteristic Routines 3.5.18 Miscellaneous Routines 3.6 Detailed Discussion of the Individual Routines	3-121 3-122 3-123 3-124 3-124 3-125 3-125 3-126 3-126
	3.7 Example Problems	3-250
4	CONCLUSIONS	4 - 1
5	REFERENCES	5 - 1
Appendix	(es	
Α	User's Input Guide for the RAMP Radial Lookup Program	A - 1
В	On the Accuracy of Predicted Exhaust Plume Flowfield Variables	B - 1
С	Empirical Input Data and Input Data Suggestions	C - 1

Section 1 INTRODUCTION AND SUMMARY

Most solid rocket motor propellants contain metal additives which increase the energy content of the system and also suppress combustion pressure instabilities. The presence of these metal additives, however, results in condensed products in the exhaust which can do no expansion work and thereby reduce the effectiveness of the nozzle. Also, the presence of liquid or solid particles in the exhaust will contribute significantly to radiation and plume impingement heating on structures which are either immersed or in proximity to the exhaust plume. It is therefore important to know the physical properties of both the solids and gases throughout the nozzle and exhaust plumes.

This report describes two computer programs which are applicable to the analysis of chemically reacting gas-particle flow fields. The programs are:

- The NASA-Lewis FORTRAN IV Computer Program for Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems (TRAN72)
- The Lockheed Reacting and Multi-Phase Computer Program (RAMP).

These programs are currently operational on the CDC, Univac and IBM computers. To facilitate the use of the codes, they are constructed such that automatic transmission of data to other computer programs is possible via magnetic tapes.

Section 2 presents a description of the modifications made to the TRAN72 computer program to meet the general requirements of Lockheed's RAMP program and provides instructions for operating the modified TRAN72 program. Four example cases are presented which show the required input format

and resultant output for creation of thermodynamic data for typical rocket performance problems. No attempt is made here to report on the program itself since this information is documented in Refs. 1 and 2.

Section 3 of this report discusses the RAMP program. Included are:

- A discussion of the basic capabilities and limitations of the program.
- · A user's input guide for the RAMP program.
- A description of the typical input/output for a two-phase chemical equilibrium flow problem; a single phase chemical equilibrium flow problem with free molecular considerations and a single phase finite—rate chemistry flow problem.
- A discussion of typical user problems and possible fixes.
- A list of helpful hints and a presentation of example deck set-ups.
- A brief description of each of the basic routines in functional groupings.
- A detailed discussion of each individual routine used in the program.
- Program overlay structure.
- A section of typical example problems including a statement of the problem, accompanying figure and sample input and output.

The gas-particle capability has been incorporated into a streamlinenormal method of characteristics computer program (Ref. 3). Choosing
this technique provides several important advantages in describing flowfields
which contain a gas-particle mixture not found in conventional method of
characteristics program (Ref. 4), and at the same time, retains the same
sophistication and capabilities of these programs. First, the streamlinenormal method allows a data point on a particle limiting streamline to be
treated in the same fashion as a data point on a gas streamline. This greatly
simplifies the tracing of particle trajectories through the flow field. Also,
another important feature is the reduction in computer storage requirement
to identify the particle locations. Flow fields containing shock waves (both

right-running and left-running or in combination) can be analyzed in one continuous operation, hence expediting the flowfield description of nozzles and plumes or other complicated geometries.

These computer programs are extremely large and complex so that a complete description of them is not feasible in this report. It is possible, however, to utilize the programs with the information contained herein while total understanding of the methods is made possible by study of the supporting documentation.

The computer programs are available for external distribution. Further information on obtaining the programs is available from the authors.

Section 2

USER'S INPUT/OUTPUT GUIDE FOR THE MODIFIED TRAN72 COMPUTER CODE

The TRAN72 computer program (developed by NASA-Lewis Research Center (Ref. 1)) was synthesized by combining a program for the transport properties calculation with the CEC 71 program (Ref. 2) for the thermodynamic properties calculation. The TRAN72 program was subsequently modified to meet the requirements of Lockheed's reacting and Multi-Phase (RAMP) Computer Program (Ref. 5). The requirements satisfied were: (1) calculation of the theoretical rocket performance (for both equilibrium and frozen compositions) during a "gaseous-only" expansion, after a two-phase combustion chamber calculation; and (2) automated communication of these properties to the RAMP program.

2.1 USE OF THE MODIFIED TRAN72 PROGRAM WITH THE RAMP PROGRAM

Modifications were made to the TRAN72 chemical equilibrium calculational scheme in order to generate thermochemical data consistent with the assumptions utilized in the RAMP program formulation. The assumptions being addressed in the RAMP program are:

- The total mass of the mixture is constant.
- The total energy of the mixture is constant.
- The gas obeys the perfect gas law and is either chemically frozen, in chemical non-equilibrium or in chemical equilibrium.
- There is no mass exchange between the phases.
- The particles are inert.

In the modified TRAN72 calculational scheme, the chamber calculations are performed initially with the condensed species considered. The total mass and total enthalpy of the mixture are then adjusted by removing the mass and

enthalpy associated with the condensed species predicted to exist in the chamber after combustion. The total mass adjustment is made by removing the appropriate amount of mass of each of the elements which comprise the condensed species that exist in the chamber. The total enthalpy is adjusted by removing the enthalpy associated with the condensed species that exist in the chamber. Next, the adjusted elemental mass balance relationships and the adjusted total enthalpy are referenced to the adjusted total mass of the mixture. All condensed species are then removed from the list of possible products being considered by the program. The chamber calculations and subsequent equilibrium chemistry expansion are then made with a gaseous-only composition. When the thermodynamic calculations are completed, the transport properties are calculated in the manner described in Ref. 1. The resultant equilibrium chemistry expansion and corresponding transport properties data are for the case in which there is no heat transfer between the condensed and gaseous species during the equilibirum chemistry expansion process. To account for the effects of the heat transfer that does take place between the condensed and gaseous species during the flowfield calculations, additional thermochemical data are required. To generate the required data, the total enthalpy of the gaseous-only mixture is perturbed (mass is held constant) and the thermochemical data calculational scheme is repeated. The total enthalpy is repeatedly perturbed; the result being an array of equilibrium expansion processes and corresponding transport properties, each with a different degree of heat transfer between the two phases.

Experience in thermodynamical modeling of rocket exhaust flows has indicated that many chemical systems experience a transition from equilibrium to frozen chemistry during the expansion process. The standard TRAN72 program has an option to treat this problem. Under the pressure freeze option the chamber and initial expansion calculations are made assuming equilibrium chemistry. At a predetermined pressure ratio (chamber to local static), the chemistry of the system is frozen and the remainder of the expansion is completed with frozen chemistry. With this option, the transport properties are calculated as outlined in Ref. 1.

The thermochemical and transport data are communicated to the RAMP computer program automatically through the use of a magnetic tape (or rapid access storage, i.e., disk, FASTRAN, etc.). Creation of the data tape (or file) is accomplished by means of an additional subroutine (MOCDAT) added to the TRAN72 program. Logic is provided in this routine for creation of a new data tape (or file) and adding data to an existing Master data list. Each data case must be identified with a unique case name which is subsequently used by the RAMP (see card 8 of RAMP input guide) program to determine if thermodynamic data are available. An additional namelist has been added to the run stream to control use of the options available in the MOCDAT subroutine.

The modified TRAN72 program is used to generate thermodynamic and transport properties of the gaseous phase of the products of combustion being considered in a two-phase flow analysis. Control of the program function for this application is handled through three input groups; the reactant data cards, the \$INPT2 namelist, and the \$RKTINP namelist. A detailed description of the standard TRAN72 program input is given in Ref. 1. Thermodynamic data required for this application are calculated using the RKT option under the \$INPT2 namelist. Selection of this option permits calculation of theoretical rocket performance for both equilibrium and frozen compositions during expansions. The variables MOC2P, PARTHT, QDOTP and NQI have been added to the \$INPT2 namelist. The MOC2P variable controls the selection of the two-phase flow analysis option (MOC2P=T). The variables PARTHT, QDOTP and NQI control the selection (PARTHT=T) and use of the variable total enthalpy option when the effects of heat transfer between the condensed and gaseous species are to be determined in a two-phase flow analysis. When PARTHT=T, QDOTP is set equal to the amount by which the total enthalpy of the gaseous only mixture is to be perturbed. NQI is set equal to the number of QDOTP values input. The specific values of the ratio of chamber to local static pressures (P_C/P) at which thermodynamic and transport data are generated are input to the program in the \$RKTINP namelist. The pressure freeze option is activated by setting the variable NFZ under the \$RKTINP namelist

equal to the number of the pressure ratio at which transition from equilibrium to frozen chemistry is to occur. (The chamber is considered to be number one, the throat number two, etc.). Freeze pressures may be the chamber value or any supersonic pressure. No provision is made for freeze pressures between chamber and throat. The parameters which are generally utilized by the RAMP program are local Mach number, static pressure and temperature, isentropic coefficient (gamma), molecular weight, entropy, Prandtl number, viscosity, specific heat at constant pressure and the total enthalpy (gas only). These parameters, with the exception of the total enthalpy, are calculated for each value of (P_c/P) ratio by the program. A detailed description of the logic involved in the standard TRAN72 program computation is presented in flow chart form in Ref. 1. This information can be consulted for an in-depth understanding of the calculational scheme.

To automatically create a tape for communication with the RAMP program requires that one of the two tape-write options be selected (MOCT=T, or MOCTF=T) under the \$INPT2 namelist. The MOCT variable is utilized when the thermochem data are to be run completely under the equilibrium assumption. The MOCTF variable is utilized when the thermochem data are to be run completely or partially frozen. If one or these options is selected an additional namelist, \$TAPGEN, must be input to control the tape-write function and the input of the case name card. The \$TAPGEN data are input after the \$INPT2 data but prior to the case name card and \$RKTINP namelist inputs. Table 2-1 summarizes the program variables added to the modified TRAN72 program.

Four example cases showing the required input format and resultant output for creation of thermodynamic data for typical rocket performance problems are presented in Table 2-2. Case 1 is the required input to perform a calculation of theoretical rocket performance for both the equilibrium and frozen composition assumptions during an isentropic expansion. (No tape is generated.) Case 2 is the same as Case 1 except that a tape for communication with other programs is generated for the frozen composition assumption

Table 2-1
ADDITIONAL INPUT VARIABLES FOR MODIFIED* TRAN72 PROGRAM

		\$1	NPT2 NAM	ELIST	
Variable	Dimension	Type	Common Label	Value Before Read	Comment
мост	1	L	HREC	F	Selects tape-write option if true for equil.run.
MOC2P	1	L	HREC	F	Selects two-phase flow analysis option if true.
MOCTF	1	L	HREC	F	Selects tape-write option if true for frozen and pressure freeze options.
PARTHT	1	L	TWOPAS	F	Selects variable total enthalpy option if true for two-phase analysis run.
QDOTP**	26	R	TWOPAS	0.0	Set equal to the amount by which the total enthalpy of the gaseous-only mixture is to be perturbed.
NQI	1	I	TWOPAS	0	Set equal to the number of QDOTP values input.
		\$T	APGFN NAI	MELIST	
IREAD	1	I	_	1	If equal 0, new data added to master data tape list; if equal 1 data written on new data tape.
IO	I	I		8	Tape unit of old master tape list.
*** IN	1	I	-	10	Tape unit of new data tape.
Case Nam Format:			L		

^{*}Routines modified from the original TRAN72 program are: LINK, MAIN1 REACT, SEARCH, EQLBRM, ROCKET, RKTOUT, OUT1, TRANSP, OUT.

^{**} The values of QDOTP must always be input in ascending order (from the most negative to the most positive).

^{***}When running multiple cases, the data of the last case must always be placed on tape unit 10 if it is to be communicated automatically to the RAMP or VOFMOC programs.

during expansion (MOCTF=T). Case 3 is the required input format for creation of thermodynamic data for use with the RAMP program (MOC2P=T); a tape is generated for the equilibrium composition assumption during the isentropic expansion (MOCT=T). (The effects of heat transfer between the condensed and gaseous species are not determined.) Finally, Case 4 is the same as Case 3 except that the effects of heat transfer between the condensed and gaseous species are determined (PARTHT=T).

2.2 USE OF THE MODIFIED TRAN72 PROGRAM WITH THE VOFMOC PROGRAM

The TRAN72 program has been modified to meet the requirements of the RAMP computer program. The data tape (or file) created for communication with the RAMP program contains additional data not required by the VOFMOC program (Ref. 6). For that reason, the tape read statement and format statement in subroutines GASTAP and GASRD, respectively, must be modified to read the additional data as "dummy" variables. The following statements must be changed in the above subroutines before the data tape generated by the TRAN72 program can be read correctly by the VOFMOC program.

• Subroutine GASRD

Old Statement: 1 FORMAT(4A6.5X.A3.6X.12.3X.12)

New Statement: 1 FURMAT(6A4.5X,A3,6X.12.3X.12)

• Subroutine GASTAP

Old Statement: 10 READ(10)(BETA(1), 1=1.4).10F.15

New Statement: 10 READ(10)(BETA(1), I=1.4).DU.DU.IOF.IS

No other limitations are placed on the use of the modified TRAN72 program.

EXAMPLE CASES SHOWING THE REQUIRED INPUT FORMAT FOR CREATION OF THERMODYNAMIC DATA FOR TYPICAL ROCKET PERFORMANCE PROBLEMS

Case 1: Required input to perform a calculation of theroretical rocket performance for both the equilibrium and frozen composition assumptions during expansion. (No tape is generated.)

REACTANTS					
H 2.00		1.00	0•0	6298 • 15	۲
U 2.00		1.00	0.0	G278 · 15	Ų
U 2100	(Insert Blank Card)				
NAMELISTS					
\$INPTZ					
KKT=T+P5	IA=T, NASE=00001. H=200.00. UF	=T.M1X=0.0)		
あたいなど					
#KK I INP					
PCP=1030	50iu0.,500l00050005	00000 • • 1000	0000-000	000•	
SEINU					

Resultant Output for Case 1

		1013 1013 1013 1013 1013 1013 1013 1013							
		•	3		1		:	i i	. 600 66
			•						
			. Grandensk + 00.	· notablicate · no.	**************************************	· (1)+10000000000			:
		•	*コロ・オックレンショウ・	************	• 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	・ログーとうつつつについる			
			- 400 + 300 300 500 500 6	concounted	- econoposide + co + -	CONTRACT			!
			****************	* 5-4-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 100 CCCUR • 15 •				
######################################					+104100100000	************			
	# # # # # # # # # # # # # # # # # # #		. 60-10010000	***********		* ロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
	# # # # # # # # # # # # # # # # # # #		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		***********				-
			*87*100001ng*	*67*33000000°	************	************			
		:			**************************************	************			
			・ロー・ロー・ロー・ロー・	***********	・こう・こう・こうできる	***********			
				voeceve trey voe	-escenantipoe				
			* では * おっけのけいける *	************	**************************************	**************************************			
	**************************************		**************************************			LC+400000000			
		•	**************************************	・こうとはいいないのか		. Care Court + CO.			
				1 - 4 th 4 th 4 th 4 th 1 th 1 th 1 th 1 th	. e data da a da a da a da a da a	- Out of the Control			
	# # # # # # # # # # # # # # # # # # #					00043333333			
			4.5.0			The state of the state of the state of		,	
							•		
				33.43.43.	•				
					-				
			•			7.644 77.5			
		•	*********		יייייייייייייייייייייייייייייייייייייי				
				40000000000000000000000000000000000					
			**************************************	• 7 * 4 11 11 11 11 11 11 11 11 11 11 11 11 1	• • • • • • • • • • • • • • • • • • • •	•000000000			
				· · · · · · · · · · · · · · · · · · ·		4 C 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
000-4400000000000000000000000000000000	**************************************		***************************************	***************************************		*************			
	**************************************		* 33+ 10 3333350		- 4 5 0 4 1 5 0 0 0 0 2 4 0 0 4 .				
0 - 4 - 10 - 10 - 10 - 10 - 10 - 10 - 10	000-4400000000000000000000000000000000		.0.440.0000.00.	•000-00-00		. LOSCOCLE+Du.			
07.4 47.700				*************	- eudrichtente -	ectationality			
	# # # # # # # # # # # # # # # # # # #		• 111 111 111 111 •	021277777					
000-4000000000000000000000000000000000		•							
# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #								
# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #	•							
	# # # # # # # # # # # # # # # # # # #			e de ce de de de la celebra de la celebr	. もじひゃないないない + たいも.		:		
			・ロウ・オウンウンファウラ・	• 60+370706033•	***********	• LeGGeetert • 30 •			
• • • • • • • • • • • • • • • • • • •			- etenotitionestere	Allegandite South		م بننه عيائي من منم			
			•	· · · · · · · · · · · · · · · · · · ·	01.40.000.11				
		•	•	•	•				
	a. a. b. ta								
• 4	• •								
1	1	•	* 1					-	
		1							

Resultant Output for Case 1 (Cont'd)

		. (
		.			
	5'	:			
######################################					
	1				:
# 1			- Q(+4)		}
	!				
	}	The state of the s	- Canadadada Antana		
		***********	•		ļ
AND THE PART OF THE PART OF THE SYSTE OF THE PART OF T		* 30 * 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
AND THIS SYSTEM OF TH		• 1 • • • • • • • • • • • • • • • • • •			f : :
STEC.ES DE NAS CONSTOERED IN THIS SYSTE LA SAL INCO DE NAS ENDENSEN L'ASAL NEURONNE DE L'ASAL NEUR NEUR NEUR NEUR NEUR NEUR NEUR NEUR					
STELLES DE FINS CONSTORACO IN THIS SYSTE LIST OF LANDENSEN LIST OF CHANDENSEN LIST OF CHANDENSE LIST OF CHANDENSEN LIST OF CHANDENSE					
ATTICES OF INCO CONSIDERS IN INCO AND ATTICES OF A STATE OF THE SEASON OF A STATE				t	1
A SANTER TO LEAVE THE SEARCH TO LEAVE THE SEARCH THE SE	,	71	59/117 1	H20131	n
ANTION AZULLI DE LUMBEMSEM SANTION SA	, 05	7 6/62 0		EO	3
ANATION AND TELL AND					
### First # T	SPECIES FRUN_SCANCH	N_SEANCH		The state of the s	
### Tith # T # Control					
200 - 100 -		· · · · · · · · · · · · · · · · · · ·			!
2					
		.00+300000000	*.030.000£+00*		
**************************************		Graffenson-	- 一・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
		*************	• י י י י י י י י י י י י י י י י י י י		
100-441100-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		• (•		:	
7 (3 (4) 4) 1 (3) 6 (4) 1 (3) 1	1		- was a supply a signature		
			• • • • • • • • • • • • • • • • • • • •		
	·	•			
	17-17		- 0 + w		
3		>	· · · · · · · · · · · · · · · · · · ·		
	• ·	· · · · · · · · · · · · · · · · · · ·			
·	: •			1	
	•	•			
4					

Resultant Output for Case 1 (Cont'd)

# 45			
\$500		•	1
ენ ო გადმინშ		EFFECTIVE DAIDANI	NSUBO
ENTINEEPT KI/KG	repair)	agut Junit	(1)08
247757	, yyzoy301+00	.000ub000 .000ub000	14172757400
3			
	9.000		
PC/PIE 10728076 T #	3229.03		
pt/F = 1-726724 #	3229.25		
	020.1		
5 -11.548 -17.676 6 -11.559 -26.621	0000		
1	3.00.0		
#######	2000		
240-66- 270-61- C.	2000		

Resultant Output for Case 1 (Cont'd)

Inductions actably reason and producted facilitation correstion contra

		-	HT FRACTION ENERGY STATE TEMP DENSITY	ENERGY 5	TATE	TEMP	06551TY
CERTICAL FORMULA	•		ISEE WILL	CALIMOL	- - -	ULG K	37/9
1 2 BOLLE			1.30000	700.	•	298.15	0000
			000001	•63•	; ;	-63c - 4 - 248+15 +u63c	3000

1	LHAMBER	LMANACK IMMUAT	EALL	EALL.	EA1T.	TIVE	EAIT	EALT	EALT.	E X I I	- EA1T	L A :
2618	1.0000	1.7207	10.000	30.05	50.00	155.00	ý	1000.00	03-0005 ng-0001	0.00004	percentage of recepta	00000
	A	41884	83040		277	+000	-276-	4		4 3 3 3	-	
	1965		2756	2456	2306	2008	1562	1305	5 A P.	567	A 5.5	777
77/9 . 042	9-721646 Ba9756+9	9+9121e4	9.4565.0	3-1354-5	2-0152-6-1-1171-5	5-1111111	2.8547-6	9-968941	1-050L++ 9-0504+	7.4750-6	4.7434	1-4162-
() () () () () () () () () ()	• 1	-274.9	-1.52.4	9.4041	-1637.6	-1853-3	-2208.7	-2413.0	-2081.5	6.66.62-	7.9867-	C+0/35+
5: CAL/ [w] [k]4:2711 4:3711	11/201	11/6+4	4.5711	445741	11/5+4	412711	4.5711	4.5711	4.5711	115712	443711	. a
	120909	2414LL 94441	13.680	16951	2000-11	140-14	111081	1110:1	211011	14.112	211.62 - 511.81	1
102777	12063-1- 81663021	-1-53021	-11687	F9900-1-	-1.60319	-1.0.135	-1.00JU-1- SE1.00-1- 5/603-1-			-1.00600	-1.00036	
10.47.2.137		-11771	1103744	10101	1.0782		6100-1-	Latite	30000	1.0000	Logoca	1.222
LALLIGITAL	3.1639	2.7674	2 . 6739	1 - 4322	1.1889	1956.	.7528	.7173	0199.	¥602.	11/5.	* 6 7 •
101 4:	1.1207	1.1409	101304	1.1402	1.1027	1.1873	1.2350	1.2435	1.2757	1.3178	1.3273	674707
	1505.7	1510.6	1375.6	1247.3	1201.0	1210.6	167101	1007	20407	674.4	4.779	5,1,3
The St. of the St. St. of the St.				20079	20934	1421	4.664	10808	5447H	70391	254154	37506
		1.00	2.4280.	5.4C53	7.9544	13.469	46.028	16.028 78.146	200-21	1500.93	2512-17 6255-01	6255.0
Jackit Filable		7624	7624	7624	7624	7624	7624	7624		7624	7624	705
!		.093	-	1.500	1.593	5400	1.875	1.934	2. U.S.	20132	151.2	2.104
114416-SEC/LB		291.9	Ī	399.7	415.2	_	466.1	470.0	495.7	5;2+3	515.7	• I 7 ¢
Tore transetter		4040	342-	**************************************	37.45	40-10-1	4 4 4 4	4484	9484	50505	50302	20715

HULE PRACTIONS

)	.) ,1	, ,		<u>ر</u> .	4	.1	ر ز	ý
	. • CC	. 44.	.756	, , , ,	1 13 9	1,00	•	0:110
	00000-	.24799	10057.	*00°C	-duration		יייין.	Lluner Cui
	00100	.24399	-19957.	33633.	- ئىلىنامە	97709•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N ALL AS
	-02200-	.24349	129521	00000.	HE TOWN	. duta.	301010)4 62-30n
	200000	.24396	75606.		Danna	• Juli		۸۰۰ ۰۶۱
2	nocone	-24342	.75593	.6110	- tanaa	·Littùl	,	c 6653 JH
		47471	. 75254	• i.'. uth	200-44	761000	えいいり・	4 7 t c t o t o
	. Hittin		2444	dicai.	41000	.6,1465	410000	104 Jan
74410.	- 01655+	*2374	1.05.7.		460004	/*8").	913-7	7 2 2
.36722	00000-	.23970	.76.484	• בּיבֿיניני	1815	.1627.	210	5162720 0
0540	. Litter	07842.	£0179.	, coor	107	loce.		ENE CU
**-01.	400002 - 400001	.25264	.62306	10000		1064.7		ALUITOMAL PRODUCTS WHICH GENE CONSTUENTU OUT TOUS THE FARLITOTS ALME LESS THAM TECHNOLOGIES FOR ALL ASCIONED CURDITIO.S
	!						1	HAL PRO
£	103	17	37.5	7412		5	70	30.1.0.14

C. F. CALLERY OF THE BALL DAILSANTS

CALL PASSAGE PARALLES OF PASSAGE TO TOTAL FOLLS

2-11

Resultant Output for Case 1 (Cont'd)

	u/F=	uzes beinog	BUZ INSSMEY	FUEL 15.2057	EMULYALE	EMULYALENCE MATTOR 143227		CHANDER PRESSURES 13.609 ATH	ESSURE 1	3.6UV ATH	
1 2 2	VISCOSLT.	MONATUHIC INTER		FRUZEN	REACTION E	E EUILIBRIUN CONU	CP FRU2	, C P	PKANDIL FROZ	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2
2 Pr 6	P015£	***************************************		1 (CM) (SEC) (CAL/ (LM) (SEC) (K)		CAL/(6)(K)	6) (1)	10	TTT DIMENSIONLESS TOTAL	
3307	1027-x10-6	721.413-0	804.×3	1 0-6 1525-X14-6	"		7589.	3.1839	20 6 20 -	2754.	2076.
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	986	100	172-	14520	26400	3673.	96590	75,0,2	.0193	60/40	41.17.
9 4 7 7		- 5 . d		1.93.	-1345-	24380	5 B 3 4 G	104322	.6257	£ 105.	0.00
2300		475.		1023-	847.	1676.	.8230	1.1884	. 6273	4444	7. 22 1
28	719.	436.	2,85.	921.	384	1285.	861189	19563	12794	65753	4.6.3.
1502		34%	1310	680	•51	.695	.7462	.7548	•129•	. 6135	
100		314.	272.	.000	3.	587.	6917.	-7193		#514.	7.00.7.
7 % 5		24	.004	100.	· •	+00+	9159•	• • 5 1 6	. 0045	74:34.	
101		- ipi	- 70.	221•	•0		- 6 B 3 9	8484	2014.	*****	
	0.120	12%	54.0	164.	3	104.	11750	11/50	.5580	J. 64.	1
		1 1	<u>.</u>	,		-6-1	.555.5	17.55	. 5753	6475.	

Resultant Output for Case 1 (Cont'd)

3												
Í							٠					
£	•] d	P. FRACTION	ENERGY	STATE	ILNP	¥718410
£	CHENICAL FURNOLA	4					\$3	(SEE NUTE)	CALINUL		UEGR	27/5
	300		,			•	*	1.00000	•	.c.3u	444.15	3.00
פייא פיילאיי	2.00000							1.00000	•	9 900.	240.15	3
	3.4	*.0000 PE	CENT FUE	MCENT FUEL = 14.2857		EWOIVALENCE MATION	j	1.3227 H	MEACTANT U	UE4511fm	,	;
	# # #	T A D E E	E A 1 T	- - -	EA11	- F A I T	EX 1	EAIT	£ 4 1 7	EAIT	F > 1	1.4.7
アント	1.000	1.1147	1350	70.05	5	100.00	30.00	1200.001	00.00004	0.0000	0.000001	ちょうしょうじょう
E14 40	13.609	7.0407	1.3009	.4536	.2722	1301	272	•0136	.6.27			.,
13. UEB K	1387 0.3556-4	107455-403	7.5494-5	3.744.0-5	206172-5	5-7025-1	4.2005-0	2.5197-0	7 - 4005-7	1.04001	6 - 41 GO TO	2.53.7.2
2/10/14		-20407	44.64	-132207		-1791-	K+8151-		-21910-	-23:3.0	1.1/57	
31 C. L/16/1K)	1125.4	11/004	1114.4	1125.4	4.57 11	11/504	112004	4.571.	11/0.4	4.07.11	4.571.	-
	12.904	12.7.24	12.404	12.404	12.707	12.709	106071	12.769	¥0 ¥ • ₹ !	1	1,01.7:	
-CF AL C 113 184-	75 8 A s	67700	-1777	72024	20	466/1	Banda	21.10	-21-44-	20/14	87100	
6A 151	1-2642	102130	1.229	1.2423	1.2-13	1.4033	1.2712	1115-1	1.22.17	4.36.4	20000	****
500 . TL 10/ 5E6	1040.3	1543.4	132704	1-4071	714011	1.74.0	4.4.0	7./40	1-2.4	0 · r · //	1.011	0.000
בשםוייי שואש	770.	1.00	2.156	2.703	3.042	2046	4.380	. 0 . 4	947.0	T++ 00	Y Y	1.000.11
16/24		1.3340	4512.2	4.545.	5,44.4	12.404	35.455	172.05	109.7	1067.37	£1.4991	< < • * to .;
4. 3. 14 1. f 1/3t		123	24.47	7.13	7 1 4 4	36.67	7434	11.11	1433	1111	143	
زن		-682	1.200	507.1	1.543	1.020	1.707	1.014	1.491	1.450	1.400	7 1
1,46,60-566/60		20101	***	375	387.0	7 4 3 1 T	424.9	- 43245	44514	450.2	420+	406.
150. 10-566/18	:	h•/c1	272.3	334.3	356.2	375.0	4,60	5 • 8 ≈ F	436.6	451.6	A + + C +	r > n *
HAPE ERECTIONS												
		•										
	. 36144	NOE		. 00003	2		.25264	H20		•60366		
202%	. 100000-	3	1	C633C	ני				1	· · · · · · · · · · · · · · · · · · ·		

SDOOD-ES FOR ALL ASSIGNED CONDITIONS

ANALITURAL PRULVETS WHICH WENE CUNSTUEKED BUT WHUSE HOLE FRACTIONS WENE LESS THAN

HUIE. METWHT PHACTION OF FUEL IN TOTAL FUELS AND UF UATUANT IN TUTAL UALVANTS

H201L)

H2013)

2-13

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Resultant Output for Case 1 (Cont'd)

FROZEN COMPUS FROZEN CONU 1.61 CAL 1.31 CAL 1.31 CAL 1.31 CAL 1.31 CAL 1.31 CAL 1.327	######################################	NG ENTANAION	CHANDER PRESSUNES 13.039 ATM	FRO.Z.		2042	7.70.	1.00.00.00.00.00.00.00.00.00.00.00.00.00	26.95				4.100.
PERCENT FULLE 14.2657 EQUIVALENCE HATTUR 1.3227 FERCENT FULLE 14.2657 EQUIVALENCE HATTUR 1.3227 LEMP VISCUSITY MONATURIC 10.TERNAL FRULEN COND COND COND COND COND JAN JAN 1.327.A12-0 721.A1U-0 BUH-A1U-0 1525.A10-0 JAN JAN 1.327.A12-0 721.A1U-0 BUH-A1U-0 1525.A10-0 JAN	THANSPURT PHOPERTIES OF NUCLET EARAUS! ASSUL 10, PRULE 14.2657 EUGlYDELICE HATTON 1.3227	INCO NOILIS	CHAMBER P	802	L/(6)(K)		, p 77 4	2.07.	ł				. 27.0
PERCENT FULLE 14-2057 ENGINALLICE HATI PERCENT FULLE 14-2057 ENGINALLICE HATI UEU K POISE CAL/(CH)(SEC)(K) 1440 243 740 524 524 565 1019 620 4100 3320 1014 372 203 157 1014 372 203 157 1014 372 203 157 1015 1110 64 120 1017 1110 700	THANSPORT PHOPENTIES OF NUCRET EARADS! ASSULT 'SO GOODGO PERCENT FUELS 14.2657 EQUIVALENCE HATI COND COND	PRUZEN COMPO	U= 1.3227			1525.A10-6	1, 31	* 27 7 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• 71,0	. 202	747	. 571	.077
PERCENT FULL 14.2657 TEMP VISCUSITY NONATURIC SAUD 3387 1327-A12-0 721-A10-0 4410-1049 1440 144	THANSPURT FUDER 14.2657 EANAU	St. Abuch. "se	PALEINCE MATI	LOND	(CM) (SEC) (K)				2/10	157.	.771	• • • •	240
JEN PROPERTIES OF N. PERCENT FULLE 14.2. 3387 1327.412-0 3483 740. 3483 740. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820. 1428 820.	THANSPURT PROPERTIES OF N. 600000 PERCENT FOLE 14.2. 3587 1527.412-0 5083 740. 1019 0.20. 1019 0.	UCRET EAMAU)		NONATORIC CORD	CAL/	721.416-0	5.24	 		203.	244.	• • •	0.20
1	1 KANSPORT PROP 1 E M P E K C E L L L L L L L L L L L L L L L L L L	ENTIES OF NE	FULLE 14028	, iscosity	POISE	1.27.412-0	740.	.07.5		37.4.	214.	• 1 1 1	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PURT PROP	PEKELIT	TEMP	OEC K	7855	60.77	0 T	. 6	7,7	2 7 n	^	707

Table 2-2 (Continued)

Case 2: Same as Case 1 except that a tape for communication with other programs is generated for the frozen composition assumption during expansion (MOCTF \approx T).

```
HEALTANTS
H 2.00
                                     1.00
                                            0.0
                                                   G298 • 15
00•ك ك
                                     1.00
                                                   6298.15
                                            0.0
               (Insert Blank Card)
NAMILL 1515
DINHIZ
     KKT=T.P51A=T.KASE=00001.P=200.00.OF=I.mix=6.0.MULTF=T
$LINU
STAPULN
     INEAU=1.10=8.1N=10
事につじ
CASE C
SHRTINH
 SEIND
```

The resultant output for Case 2 is identical to that of Case 1 except for a listing of the data placed on tape for communication with other programs. The following is a listing of that data.

÷.

J. 3636	# # # # # # # # # # # # # # # # # # #	,	11-1000-11		10-061667	-2136:72: -4		10-801/05-01	•275313£+31		+0-501/Chq+	1	*304210F+21	1047017024		3426550.25		.540710 -C1	10419/00564	10-501294		*4848728+D1		10-5012019+			.6437105-01	12+8+11++8*		0.10.00	100 + 5 · 7 6 · 60 6 *		10-6717.44			\$317 33-35	
) () () () () () () () () () (•	***		Charle Con.	122055	05-2-00	*9434747*22	10+1327+01	0000000	-9364747=02		.125:253+01)	10+6.1849.		20-2424346.	1	• 55-0-33 • 530-343-02		-1311776-01		\$6-2424666.	1339747461	6699999	\$0-18180r6.	+1341947+11	٠.	31047	.134537340,		60-2425666*	1365783+51	26.006.00.	- COMESSEC.	
W() + P : (2 0 0 m +		•	6129454951.	7346713+72	46700044-05	1296941402		.6700844-05	.129594R+02	1372747+04		,	.1206948+02		60-re40-376.	12.24.94.84.02		.6700949*05	~ 1	1918392+D4 		.1294949402	2316A52+04	.67Cna44+05	.1296948-02	7101745+34	.6700044-05	.129494A+32			2c+dh5y5cl+	46+1660166+	50-6+0-465	1 000 x 6 6 6 6 7 8 7 8		あいまましています。	
10.9011256.	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	1-+-211756.	. 1391489-12	#C+28586J4•	. 4571126+21.	20-9421801.	. 4734585+79	19571126+01	60681 8 8 .	0048684800		.4571125+91	80+600x-60+	00.00000000	- HE 71126±31	64-51518-03	.6036585+31	*4571126+01	.4365774-03		15+92111290+	.3458572-11	.6936565+99	1044611244-	- 1264042	.6036565439	1.47211240	1 -625851.		11-421124.	.1058472+71	*4735765*	154721127431	*******	のできるこうことを	
43487197464			FC+[6][946	-B725736+CC	.2526375+^^	271.121.366	J. + 1 1 + + 2 7 0 *	.2936476.03	7 . • 4 1 5 5 6 6 6 7	u. + > 1 2 5 2 3 4 *			8 25 4 1			100000000000000000000000000000000000000	60.496.6566.	6257436463	.1963/51-04	. 445016240C		EC++Covesu.	.6447645+13	.2526379+03	524919475	\$L+2261+37*	.2576170+73	.3152594+33	4786364476	. 1526378.53	8741981546	-6174542400	16. 180257.		-6471147454	.Z\$55.70+73	
41360314	_	*	15+545:435 .	•	42.37 temp=54	3	 	u.	- 4081 71 54	- K364.			CC+0/07626.	6 1 6 6 6 8 7 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 20 10 10 10 10 10		F1618605.		D.	. 7727776.	3	*1340914-01	87571-	+2074548-34	. 721879 - 22		v	2771929-13			65-11:0096.	4	#5-6#5+482+	PS-5202547	オ・まのひのにひしま。	A Take of Late	
	• 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1000000	3765	+3220013		. 0	.61.3022-01	· ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	他ですたまました。	. 4 1 13 6 7 2 - 71 -	CC-2004970.			- ^					01+V50/10/10/04	, ABA5755+02.	10 + C COUCUS+	£49010194	12-246814.	7 -5 2 2 5 3 5 9 4	Distaicits.	10-2030014.					たくまればかいでしょう	•	6071269736.	00200000	. 514202271	1、 "我们我还是这一

Table 2-2 (Cont'd)

Case 3: Required input for creation of thermodynamic data for use with the RAMP program (MOC2P=T); a tape is generated for the equilibrium composition assumption during expansion (MOCT=T). (The effects of heat transfer between the condensed and gaseous species are not determined.)

```
REACTANTS
AL 1.0
                                               16.
                                                       0.0
                                                                5296 • 15 F
                                               12.04
C 0.884
         H 10.004 U .2/6
                                                       -12000 •
                                                               5298 . 15
                           N .264
         0 3.0
                                                       -197300. 5298.15
FE2.0
C 6.15
         H 6.47
                 0 1.17
                            €0. N
                                               1.96
                                                       -28300 · $298 · 15
            4.0
                            CL 1.0
N 1.0
                  J 4.0
                                               64.60
                                                       -70690 $290 15 F
                 (Insert Blank Card)
OMIT
               AL(S)
                               AL(L)
                                               ALCL3(5)
                                                              ALCL3(L)
DMIT
               ALN(S)
                               ALN
                                               ALZCLO
                                                              AL202
OMIT
                                                              CH2
               CCL3
                               CCLA
                                               CH
                                              COLLZ
               CH3
                               CH4
                                                              C2CL2
OMIT
OMIT
                               C302
                                                              C5
               C2H6
                                               C4
                                              FECL2(5)
                                                              FECL2(L)
OMIT
               FL(S)
                               FE(L)
UMIT
               H20(5)
                               H20(L)
NAMELISTS
 SINPIZ
      RKT=T+PSIA=T+NASE =00001+P=554+00+MUCZP=1+MUCT=T
 SEND
 STAPGEN
      IREAD=1.10=8.1N=10
 SEND
 CASE 3
 SHKTIND
  PCP=10:+30+-20+,100++500++1000++50000+100000+500000+
 SEND
```

Resultant Output for Case 3

1	ن ن		<u>.</u> 11		ا ن ن •	 1	() () () ()	00•	·vn	296-150	í.	000
		,) (1 [1 4 3 4	,		30,000	٠.		L	
	F	9	CP / C	2	. 07	: د د د	01517		n v		. la	١.
,	0.77.0	2	1.17.0	z	1363	3 3	3.94.0	07.00687-	,	4.16.1	Ļ	
	, () • ,	0	3033.4	 	1.666	.1	2000000	J0.06.00/-	s	391.867		• !
			AL (1)) T	1515	(7)5777					
	AL (5)		At:.		,1,4		1.77					
	ברר ז פרר ז		לנו ד		5 3	53	٠.٠٠					
	673	1	[36]			1	Z L L K		j J	:	:	
	(S-3)		(1		1011	70	(=) = = :					
	H412151		TZCIL	_								
:	i	7	,		- 1		- 1					٠
	5.0	• 00 + 3.1. °		CCCCCE		.5•3n0′6c366•		100-1000				
	51	£ 400 p		מוכטנו)) () () () () () () () () () () () () ()				
	-	100+31		300000		00.4400100.000*		100cF+300°				
	•.	18300		00000		10+30000000n+						
		0.640.34		COCOCC								
	٠, '	- ان ان		ر را را		00+40000000000		100F + 50 p				
-				בינטנו)		00+00°				
						.0.43.0 0.840.		. 00+300%				
		ر المال		100000				000F+300				
				00000		(1. 17.) (1. 1 · · ·		CCCL+66.	!	;		
				50000		79.3.7 3.7 7.						
		•	i	300000		****	- (1000 annon			1	1
	•			100000		10.00 D-072.		3000€+00				
				000000								
				SCHECK		.0+4000000000+0+		, r				
	٠.)	3		CCSSOL		\$0+300.000.040*		•00+7000	1			
	,	10011		100000		23+300~35300•		101.01.01.				
1		(1.1.1)		733377	- 1	50447636363634	ı	151 Ct 150 a	1			
	L.	ن و خان ن ه		• COLFCORE+00•		.0050000000.						
	-	· 17 · 17 ·	1000	CCGCCGF					1	1		
•					•	:			;	: ! !		
••								- 1				
•		Chetine.	-	riconie e	2.00.c	*02*305505650	4	000000000000000000000000000000000000000				
	3735ng	1.5 + 5 (4.4	•	CUCCOR	00.	.0+3000000000	•	000000000000000000000000000000000000000				
			•	0+30000000	• 00 •) 0. 00000000000000000000000000000000000	3	.005£+00 s		1	i	
	י מהני ניי	÷ 4										
	. 5541	1.5.03.		0000000000		.5.0(00008 F0		* 00+300000n0n0	1			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			UCCCLE		13+400000000		10005-100				
	1 1 1 1 1 1 1	1.1 1.1 1.1 1.1				10-10-00		POUCE + CC.				
			1			10 - 300 June 10	ļ	000-300				
								000 + 000°				
			?				•	000.0000	:			
			1 (•	• • • • • • • • • • • • • • • • • • • •				
	ت. د	•			•			1	1	1 : 1	,	

(Cont'd)
3
Case
\mathfrak{tor}
Output
Resultant

300000000 300000000 300000000 300000000	**OUCCOCCE******************************		.04600000E.00.	*00***C00000**	*	•	
**************************************	**OUCCOCOTE***** **OUCCOCOTE***** **OUCCOCOTE**** **OUCCOCOTE*** **OUCCOCOTE** **OUC						! !
*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** **	**************************************		.00000000E.00 .00000001E.00				
# F	* * * * * * * * * * * * * * * * * * *		• • • • • • • • • • • • • • • • • • •				
* T * Ducepooge + Oce Coop + Oce Coop + Oce Oce + Oc. * Cucc Coop + Oce + Oce Oce + Oce Oce + Oc. * Cucc Coop + Oc. * Oce Oce Oce + Oc. * Oce Oce Oce + Oc. * Oce Oce + Oc. * Oce Oce + Oc. * Oce Oce Oce + Oc. * Oce Oce Oce + Oc. * Oce Oce + Oce + Oc. * Oce Oce + Oc.	* F . * * * * * * * * * * * * * * * * *						
value Glver For of Eural, Fa. or FPct + 1	value GlvFr FOR OF, EGRAT, FA, OR FPCT	4 8 8 4 7 4 4 7 4 1 4 0	.00000000E+00. .00000000E+00. .00000000E+00.	.0000000000000000000000000000000000000	.00000000E+00. .00000000E+00. .0000000E+00.	.0000000£+00, .00000000+00, .00000000+00,	
VAIUE GIVER FOR OF , ECRAT, FA, OR +1 +1 +8	VAIUE GIVFN FOR OF, EGRAT, FA, OR +1 +1 +6 +6 +6 +10	4		*000000000*00* *000000000**00*	•00000000 •00.	•00v000t0t+00•	
			61 vFr. FOR OF.	2 S	1		

UNANT PECAL

SPECIES OF 10 CONSIDERED IN THIS SYSTEM OF A CONSIDERED IN THI

Resultant Output for Case 3 (Cont'd)

12/69 C3		20 20	216		6/7	-	4			٥
1,17.5 1,000 1,0	7	707		,	;	ני	00/0	,,,,	10/0 7	,
	2/20 2/20 2/20 2/20 2/20		9/65	. 273	-	נרלה		الد الد		FECL
	2000 2000 2000 2000 2000 2000 2000 200	ECLZ	9/92	FECL3(5)		FECL3(L)		FECL3		2
		£0(r)	9 4	F £ 0	•	FEU2H215)	-	믜	9/9	FE03-3(5
1,1270 1,025 1,0	1	E2614	6/65	FE263151	9/0	FE304(5)	59/6 6	I		MALO
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ı	נר	12/69	Z J I	2/7	HCu	J12170	HVCO		ı Ç
1, 2, 2, 2, 3, 3, 4, 6, 7, 2, 1, 2, 5, 6, 6, 7, 3, 1, 6, 7, 3, 1, 2, 2, 3, 3, 4, 6, 7, 3, 1, 2, 2, 3, 3, 4, 6, 7, 3, 1, 2, 2, 3, 3, 4, 5, 5, 5, 7, 3, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	ı	NO.2	6/6	TONE.		7 ŋ#		71		120
1, 15 15 15 15 15 15 15	ı	202		z	01/210	004	J12/71	12	312/65	757
1 9/05 N2 11/20 11/2	ı	13	9/9	0	012/65	NOCL		202	315/65	40204
		0.3	ے	N.2	9/7	N2114	12/6	N20	9/6	#07N
151 OF GONDENSED SPECIES FROM SEANCH 151		2	9/9	0	01770	40	9/6	0.2	ò	. 0
153 ALPOSIT C(5) FECL3(5) FECL3(1)			GONDENSEU	SPECIES		1	<u>.</u>	1		
15.1 FEOLIS FEORISS		1	(37)	6.6.1.3.9						
118.1 - 30C30201E-00 00C00000E-00 00C00000E-00 00C00000E-00 00C00000E-00 00C00000E-00 00C00000E-00 00C0000E-00 00C00		i	27.0							
**************************************	. E304(S1.		?	- {						
	# % / -				i					
	-									
. 000000000000000000000000000000000000	ir.	*00+3000000nc*	;	1000E+00	*300000000F +00*	!	00			
. 000000000000000000000000000000000000		•00000000E+00•		0001+00.	• 00000000E • 00 .		• 00			
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7077777777777	3000000				
	a			- Oct + 100 a	•000000000		00.			
. 000000000000000000000000000000000000	r		9 0	+ 00 + 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000000000000000000000000000000000000	ļ	00			
. DUCCORCOZE-SO . LUCTUCONES-SO . LUCTUCONOS-SO . LUCT				CCOE+00.	.00000000000000000000000000000000000000		.00			
. L.C. 2007 26 + 26		00+300000000	•		•					
. Successon From . Successor .			35.	1000E+02	¥ 30000000s	j	03,			
.10cr.0cnce.co55cscooce.vo0c0oocoue.couococouce.oouococouce.ouococococe.ouococococe.ouococococe.ouococococe.ouococococe.ouococococe.ouocococococe.ouocococococe.ouococococe.ouocococococe.ouocococococe.ouocococococe.ouocococococe.ouocococococe.ouocococococococococococococococococococ		.5uccesonE+c3.	21.	000E+04	.500u00000e+04,		05,			
.0uccouce.000uccouce.000ucuocouc.00cuccoucuc.0 .0uccouce.000uccoucoce.00uuccoucoce.00uuccoucoce.00 .cuccoucoce.00uuccoucoce.00uuccoucoce.00uuccoucoce.00 .uuccoucoce.00uuccoucoce.00uuccoucoce.00 .uuccoucoce.00 .uuc		• 100r.00rnE+76•	09.	1000E+06.	•000000000•	٠	00.		,	
.00000006.00000000006.00000000006.0000000000		. Out:30000E+30	00.	000E+00.	00000000	+300000co* '	,00			
.000000005+00000000000+000 .00000000 .00000000 .00000000		*66+35005544no**	5	000E+00.	000000000	* ~ 000000000 · ~	• 00			
### ### ### ### ### ### #### #### ######			90.	1000F +00						:
######################################		•								
######################################	: *		:	i i					:	
	•	•							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10 EG K1/KG22321037+03 -0000u000022321037+03 -0000u000022321037+03 -0000u000022321037+03 -0000u000022315889-02222315889-02222315889-02222315889-03222315889-03222315889-03222315889-03222315889-03222315889-03222315889-03222315889-03222315889-03223	> 0 - 4 - 4 - 4	14. 14.	:	Ĭ.		DANT	M I X I C X E			
#	1 50 6	9	22321037+	03	00000000			+03		
AL	9875401345			:	80P(1.1)		80(1)			
• y4112869-02 • 4708e374-01 • 64331585-01 • 62445374-02 • 50000000 • 50196372-04 • 50000000 • 50196372-04 • 60000000 • 60000000				63	00000000		.59297840	-07		
.4708e374-01 .00900000 .24331565-01 .00000000 .87445374-02 .00000000 .80796372-04 .00000000 .89238458-02 .00000000			. V 4 1 1 2 8 6 9 -	205	00000000		.94112869	70-1		
. 2431565-01 . 00000000 52445374-02 00000000 5079445372-04 00000000 572504 57050	1		37080374-	10	000000000		.37080374	10-1		;
**************************************	C		.24331565-	10.	•00000000•		.24331585	10-1		
**************************************	,		.62445374-	.02	00000000	1	.62445374	20-1		
.59237456-52 .003uucou .597	.		-276990064	ť	000000000		.50096372	¥0-:		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	: ون	• · · · · · · · · · · · · · · ·	Ð	.02	00000000		86446765.	70-1	,	
	;		c	z	ŝ	-				
		C	7		/	12.000				

Resultant Output for Case 3 (Cont'd)

•								OF PRACTION	¥32.01	5.415	:k : :31	31.18114
	CHEMICAL FORMULA	4						(SEE NUTE)			× 330	00/5
1974								.1611	ល •	'n	298.15	0,000
		H :04-09406	o	.27800	Z	001970		0,071.	613.03321-	S	294.15	0000
· 1. E. D	1 E 2 . 000010 0. 3	3.30000						#00+CO	-197350-1-5	ιΛ	298.15	0700
		000/6.9 H	0	1.17000	z	.03000		26710.	-283(0.000	5	295.15	0.000
¢	1.00000 I	******	0	00000*	ر			P6080.	472670.000	· s	298.15	0,00.
	07F= .0G	.0000 PE	RCE 1,1	PERCENT FUEL=100.0000	ō•00		EUDIVALENCE KATION 1.6977	1.6977	REACTANT DENSITY	1 7 Y =	2000.	
	Cri A Marfic	14041		EXIT						}		:
d/3c	1.0000		:			:					•	
•	37.597											
اد د ×	3391		-	; ;		l					٠	
٠٠٠ ٠٠٠٠	3.5340-3											
9,11											1	i
S. CALLIOTES	. 3005 .	!	į	1				:				
TA HON AT	28.304											
102.701.217	-1.51875						:		-			
011:17:	1.0.0.3											
C. 2. 1 / 1 / 1 / 1 / 1 / K											1	
(5) 4								:				
)35/0: 134	1064.8											

											,	
.1000	-0000.	041994	1 (7) 3 .	751CJ.	. CC 3 3 7	10000	- 64150	10323.	445/00	.23.61		
ر 4	41 34.01	3,012	2 2 4	AL. C.	+ 5 % =	3.0.2	25.025	0674	(りをしごう)	č	,	6 7

SECTIONS SING

Resultant Output for Case 3 (Cont'd)

.

															CALCULATION ING OF SPECIE/NG OF MINTUNES	.15130+UC .15136+JD	00030.	.055567	114465+00 .28603+00	. 60000	.00000 .28603+00	,000000 ,28603+60
	1 r	• 00.00	23511.	.13403	*66603	.25637	C40***	10700.	10003	.0000					BEING REMOVED FOR THO PHASE	A A	U	:	0		38	J
7 7 7 1	• • • • • • • • • • • • • • • • • • • •	6-5-4	i	1	- T	~~		.	12	5. M.3	22	27	υ	I.O	4ASS OF ELFMENTS		V-2					:

\$: 6 I -	C2 C4 20 Fg 3 4 (5)
EREU BUT MHUSE HOLE FRACTIONS WERE LESS THAN .50000-05 FOR ALL ASSIGNED CONDITIONS	CN2 CL02 FE203 5)
0000-05 FOR A	C C C N N C C C C C C C C C C C C C C C
THAN .50	3-3(5)
CTIONS WERE LESS	C C C C C C C C C C C C C C C C C C C
E MOLE FRAC	CCL2 C212 FEU(L)
SIDERED BUT MHUS	CCH CCL CCL CCL CCL CCL CCL CCL CCL CCL
CH MEKE COP	C234 FECI 3
AETTIONAL PRODUCTS HHICH MEKE CONSIDER	C(S) C2H2 FECL3(L)
AC: 11108AL	44203(S) 627 FFC13(S)

CN2 CL02 FE203/5) NC0 U3 CLCN FR2CL4 H202 N3 CN C3 FE03F3(S) FE03F3(S) CH20 C20 F20242(S) H303 H203 CCE2 C21.2 FEU (L) CCL CZN FLO(S). PAO HU3 6244 FECT 3 FACT 3 NOZCL C2H2 FECL3(L) HCN NO2 FFC13151

23-6615, .u. . Laistokenit

			; ;		ALCL3 AL024 CH20	COCL COCL	FE0 HCL HN02 H202 H202 NH3	2		
	01.5 01.5 01.5	0 <i>NS</i> 10 <i>NS</i> 10 <i>NS</i>	045 045		4102 4102 4102	CO C2H2 C3 C3	FLCL3 HALO HALO HAO HAO HAO HAO	N204 03		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FOR THU PHASE CALCULATIONS FOR THU PHASE CALCULATIONS FOR THU PHASE CALCULATIONS	FOR THU PHASE CALCULATIONS FOR THU PHASE CALCULATIONS FOR THU PHASE CALCULATIONS	FOR THU PHASE CALCULATIONS FOR THU PHASE CALCULATIONS FOR THU PHASE CALCULATIONS	F, F,	ALCL ALUH	C24 C20 C20 C102	HNCO HNCO NH NH	N20 02 CL -20.2%2 12.000	-20.294 12.000 -20.294 4.000 -20.069 4.000	-24-114 4-000 -24-104 5-10-5 -21-104 4-50-
. \$194669-51 0 . \$229166-51 N . 6746253-62 FL . 7516621-54	KOH PRODUCTS LIST KOH PRODUCTS LIST KOH PRODUCTS LIST	PKOUUCTS LIST PKOUUCTS LIST PKOUUCTS LIST	FROM PRODUCTS LIST F FROM PRODUCTS LIST F	OMITTED FROM PRODUCTS LIST FOR OMITTED FROM PRODUCTS LIST FOR CONSIDERED IN TWO PHASE SYSTEM	1)	~	613	N FE	13.815 = 15.216 = 13.947 = 11.668 = 13.947 = 11.668 = 13.948 = 13.	-14.307 -12.950 -5. -14.507 -11.650 -5.
10240	HAS BEEN CHITTEU F HAS BEEN CHITTED F HAS BEEN CHITTEU F	OMITTED ONITTED ONITTED	HAS BEEN ONITIED F HAS BEEN ONITIED F HAS BEEN, ONITIED F		PION PER	C C C C C C C C C C C C C C C C C C C	TECOLIA TECOLI	N2H4 0 0 1 1 0 0 1 1 2 0 4 9 - 1 7 - 8 4 9 9 -	17.699	4147.46 -9.760 -20.974 -10.761 -10.761
	AL20315) - AL2031E) - (15)	FECU3(5) FECU3(5)	FFOIL) FE02H2(5) FE03H3(5)	FF203(5) HAS BEEN FF304(5) HAS BEEN FF304(5) HAS BEEN	A L O A L C O	2000	FE FE SAL A	N2 6 6 7 1 1 1 1 4 C	1 = 17.454 = 13.39 2 = 17.454 = 13.424 2 = 17.454 = 13.424 2 = 17.454 = 13.424	1.4/27a 1.743161 1.8 3 = 17.660 = 12.601 5 = 12.046 = 12.000 = 10.000 = 11.602

Resultant Output for Case 3 (Cont'd)

	i			1			
4.000	4.000	4.000		9.000		300°5	
-10-135 -25.220	-28.541	-30.313	-3.956 -35.218	-43.520	11 -71-107 12-186 -12-294 -77-103 -16-754 -4-010 -45-216	-4.642 -50.64Q	!
-13.135	-7.001		-3.956	-3.945	010.4-	-4.602	
-14.717	-15.022	-15.180	-15.026	-10.451	-16.754	-17.461	!
-27.308	-35.203	-39.505	-51.774	-73.344	-77-133	-09-118	
-10.381	-6.980 -10.664 -35.203	-10.602 -39.505	.788 -11.16/ -51.77d -15.026	-11.980	-12.299	-13.032	
-21.4C6 -10.502 -10.381 -27.308 -14.717	-6.980		.788	11.113	12.186	-AA.629 14.662 -13.834 -69.116 -17.461	• '
-21.406	-29.265	-33.100	- +4.524	104.64-	-71.102	. 620.BF.	
•	7	30	•	0.	-	2 :	

Resultant Output for Case 3 (Cont'd)

" CK.! PERFURMANCE ASSUMING ENVILIBATUM COMPOSITION DURING EXTANSION FOR THU PHESE MOC CALCULATION

							-	AT FRACTIO	N E'LPGY	STATE	1 1 1	(1
	CHEMICAL FORMULA	CRMCL	•					(SEE NOTE)	CALIMOL		2 € 6 ×	,
4	070001 14							00091.	000.	S	296.15	
	CONSTRUCT I 10.08480	1	0.08400		0 .27800 N .2640U	z	.26400	•12040	*12540 -12950.516 S 298-15	л	298.15	
1 14 1 14 1 14 1	00000 0 00000 X 44	0	3.00000					00400	.00400 -1973co.000	S	298.15	
	C 4.15003	1	207649	0	1.17990	Ξ	.03000	19410+	-28300.00	s	296.15	
ا بيا	Full . 1.00000 H 4.00000 0 4.00000 CL 1.00000	I	1.00000	0	30000**	٤	1.60939	00069·	• 6900u -70650.000 S	S	298.15	
	0/6	076= .0000		RCE's	T FUEL #10	0.01	PERCENT FUEL #100 - LGOD - LJUISE ENCE MATIO# 1.6977 MEACTALT DENSITY# .0000	1.6977	KEACTANT DENS	.117=	0000.	

	CIPERE	THUNDAT	E X 1 T	EAIT	EAIT	EX1T	EXIT		EALT	EXIT	EAIT	F 4 53
d/]d	00000	1.7632	10.000	30.00	50.000	100.00	500.00	1000 • 00	5000.00	500000	1000001	100000+0 5 01 3+3
E	37.697	21.381	3.7697	1.2556	.7539	1.2506 .7539 .3770	+6/0.		+ 0075	8000·	:100. *000.	100.
1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	3341	1 3 . 7	2392	454	1771	1537	6801		687	470	# # #	70
10 10 10 10 10 10 10 10 10 10 10 10 10 1	20/379-3 106949-3 4	1.6949-3	.0075-4	1-6455-4	1.0717-4	4.2963-5	1-7778-5		2.8200-6	4 - 1 9 9 9 - 7	2.2638-7	5.5653-
. 41.76	4.35.4	435.9 254.8	-406.5	-435.4	-522.5	4630.6	-827.9		-1016.5	-1137.4	-1166.4	-1225.
CALLEDON	2.8416	2.8416 2.0416	ĺ	ĺ	914802		2.6416		2.8416	2.6416 2.8416 2.8416	2.8414	2.8414 2:54,6
1.4 20.1 4.2	20.402	20+20- 20+31	20.863	20.947	21.042	21.008	21.073	1	21.079	21.491	21.867	22.515
1	-1-11/30 -1-01/97 -	79110-1-	-	-	-1.00087	-1.00015	1.60000	7	-1,000,13	-1.02296	-1.02153	<1550•1•
4.	1.2932	1.2902 1.4133			1.0204	1.0042	1.0000			1 • 5 • 1	1.5495	1:1275
(huc. (v)(v)/	. 3 . 4	1010.		99150		1 トナエ・	. 1455	6454	2954.		1.6835	.62,4
(5)	1.1799	1.1856	-	1.2304	-	1.007.1	1.2685	1.2540			1.1212	
745/	1283.0	1231.0	0.090	414.7		1.229	730.3	0.449	570.6	!		
and and the state of	000	1.000	5.145	2.152	3.027	3.406	4 • 405	4.878	9.052	8.022		4.1.7
		1.0000	2.2454	4.7030	6.7.9	11.009	36.097	60.883	212.18	1369.11	2516.98	1005".3
745/13 484872		9000		9009			-	6006			9009	90
		.672	1.267	1.473	745.1	1.632	1.176	1.822		1.982	2.000	2.037
1446 144 3 4 - 3 - 6 / 18		231.4		304.2				351.6		1	378.1	384.
877348-47 0A54		145.5		574.9				3.0.5			373.4	3.03.5

. (60)		00000	000000	0000	000000	00000.	00000	00000	00000	00000	0 0 0 0
.0000	10000	00000	00000	20020.	000000	00000.	00000	00000	•00000	000000	67670.
1.64.1			• 00100	.00032	.0000	00000	• 0000	• 00000	• 00000	000000	
	84100		0.0534	.05135	.C.032	60000.	07070	000000	000000	•00000	40000
-			1700	.00737	£0600.	.00442	6+600.	.00743	.00961	97400.	11610.
7			() () () () ()	conta.	•60000	00777.	•00000	00000.	•00000	000000	6,600.
401.0			647.00	. (5.33	£ 00000.	60757.	100000	•00000	000000	•00000•	500 C
			6 0.10.	10255.	31703.		• [: : : : : :	•00,00	00000	.00000	
				:		5. · ·		13 (Ca*)	Chabber !	36033	f .
			44.		,	• • • • • • • • • • • • • • • • • • • •	• • • •	C+1	10 Jun 1	. ((7.))	•
٠.					. •	•	•		c 76 1.		
			4.4.				:	61,11	* L N 7 6 5	K/170.	•

Resultant Output for Case 3 (Cont'd)

		Jacana.	2000.	, , , ,	, 1			00000		3000	0000	
.~	.01742	.01872	.02373	. (.2745	< 0.3 J. 0.5	1/0+3.	.07161	91240	.14702	.20295	200:20	815-6.
#. (2)	.00000	00000.	20000	0ns55.	<u> 39000</u>	00070.	000000	00000	<u> </u>	*6633.	.[:226	.72316
	64610.	* 44 00 ·	95100	17707.	01737.	10000.	.0000	00000	00000	00000	00000.	ر ل د ر و •
7.	105034	- Dungt	, 00000	17.50	077.053	30003	65000.	000000	00000	COUNTY	70105	r:
2.12	20000	10000	00000	30.30.	00000	00000.	00000.	00000	00000.	•00000•	000000	9 U. A.J.
	£5000°	0.00.0*	+0000*	0.110	000000	unana.	00000-	00000	00000.	00000	30700.	C06. 5.
1531	4000D.	*0000·	00000.	• 66 4 4 5	03700.	.0000	000000.	• 00000	• 00000	•00000	00000•	`}
FECLE	45000+	. 2000.	1,100.	.00147	0 # 1 00.	.00.148	•00146	.00147	00100	.0000	.00001	00300.
1	* UCOU*	.0000	-000CJ*	30060•	00000	00070*	• 00000	• 00000	• 00000	00000	00000•	Chane.
F t c 2 h Z	20002	12075	200004	37.75	0.0000	6.0000	001000	00000	202000	000000	00000	00000- 7
FF 2014	00000.	.0000	10000	00000	30100.	00000.	• 65,60	•00000	+000·	.00075	•0000	• 1000•
	. 6369.	.04730	. 50428	それしらじ。	a 1000 •	2000 -	03070.	00000		00000	00000.	<u> </u>
	.14313	.14788	.15483	54441.	114015	.14403	.14362	.14301	• 14365	91441.	10441.	•15348
	70000	10000	, Sector	01010.	000B0•	00000.	00000•	00000	00000	00000	00000.	.0000
	.27673	.20240	+ 1867 ·	46738.	.31542	.32400	.35537	2/5/5.	.43644	. 46673	46:94.	.4544
	15182	16/013	.163Ca	.16066	.15793	.15118	12017	20640.	04501	15570	58400.	61200.
	10001.	00000	30000.	000000-	30000.	00000.	•00000	CnUJ ū•	04000•	07335	000000	67205•
	16033.	00000.	00000.	0/1000•	ຍາດລະ•	. 696963	000000	00000.	00000•	Unit 70 •	<u> </u>	01000
411.3	16000.	.00,00	00000	00000	00000	. 60000	• 00000	00000•	• 09 cc 1	€0000•	400.00+	
	72000	•66n37	10000	•00000•	30063•	00000.	00000•	00000•	00000	60000.	<u> ანიამი</u>	1605•
	•0800	.00915	.69123.	•09182	20766.	.09213	•09216	.07216.	81760	.09396	C9960•	しゅうい・
	97.000	.00033	73005	07003	00000	. 0000	•00000	000000	000000	00000	10000·	(1)U+
	46400°	*44.00.	.00342	• 0000	10000.	60000•	• 00000	•0000	00700.	000000	00000•	.
	7:050.	10000-	900JU•	00000	00005•	00000•	00700•	. 00000	. 00000•	01000.	10000°	() ()
TWACLIICE	PRODUCTS SHICH	H AEKF CON	SIVEREC	BUT NHUSE	MOLE FRAC	FHACTIONS MERE	LESS	THAN .50	.50000-05 FuR	414	ASSIGNED CON	CONDITIONS
							!					
	100	2733	CH20		2	N. 10		CN2	73	3	C24	5242
	C2h2	(2)	3		117	7073	,	CL 20	FECL3	7 .	пАЦС	2 1
	071	T C O	F203		H02	7074	•	, (, 0	ĭ Ľ	2	1.0CL	102
4	FOR	2274	0.52		2204	?	ر	ر ر				

Resultant Output for Case 3 (Cont'd)

THANSPORT PROPERTIES OF ROCHET EXHAUST ASSUMING EQUILIBRIUM CUMPOSITION DURING EXPANSION

ند	Programme and the second			
	ز.		PRANUTL) T.L.
	0.20	304	7081	NOMBER
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CAL/ (6) (K)	2 3 1 1 1	UIMENSIONLESS
1		The state of the s	1	
9-01x -6881	2812.X10-6 .	.4765 .956D	. 4802	.3163 2.0328
		47.23 .84.37	.4859	.3260 2.1145
1	973.	1		*4216 1.4934
	642.	4415 .5177		.5053
,	. 558.	.43464862		.5113
	473.	0444	0.4920	6105.
	•	4013 .4455	4819	. 4980
	345.	3935 . 4549		1564.
	303.	3815 .4962	2644.	0.484.
	•	3669 1.6848	• 4155	• 6 + 8 4
	. 605	3622 1.6835	•4124	.6207
		3445		0701

	ALOC	202	1034	H2	0		•		2		0000000	1	.1645857-0	-	.7756356-0	.276/278+0	·7867242-D	0000	00+0144444	0-48cox51-	1872234-0	0-1629531	•2823904+0	•	7	10.7766177	18008	,	•190989	.298735	64021	•			.2945263-01	1			. 0 4 30 . 16 . 16 .		.3254911-0	333464	
C	0 14		, 103 FECL	001	2		•				1179931+01	484	187501-	.9362504-05	+0-6669255	*1986204-04	10-6196618.		10+045481	10,517,55.	50-461-5764	*0-671016.	0-9545186	.8915276-01	:	1265470101	2793990-03	.3487737-06		45071	10-2562216.	.1240437-61	.4359248+03	0.0	.3416233-07	43346853=06	3-0	.9,84347-01		10-02-0-21.	•	70-97/95/11	(A_6/) (AC)) *
C	A C L	1 3	1 14 1 14	٠ ۲	0 2		۰.	1			•2020825+02	• 4366309+03	1333928-03	+ 6	15-919-675	· 1431325+00	.7181847-03		• 20 + 30 ° 3 + 02 •	C0+5-795-7•	.2 -0.5 Z C D C Z .	.4011297-03	1978789+00	0-8401		•20°6337*04	•	.2514822+00	+0-21611+h.	.1540307+00	+0-01502+1+	-209474602	4326721+03	.5u3u172-02	.247326640	.2626275-05	1494502+00	90-6/19865	60.40.00.00.0	- 55225 1854113	10:0 001-0	77.77	33
c	V V V V V V V V V V V V V V V V V V V	A L 2 O	773	ı	EHN.		۰, ۲	£ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i	1 ~	2812115-02	1507849-02	.1156668-04	.2470890-04	.3096038-61	444617	3	.2541578+01	• -	70-5000000	*0-630.81.	9	40156613-05		10.0451.020	.0-6*20742.	30-0961546.		20-8612824.	•2,203549-05	10+8651486	1470149	.2341226-02	3013656106.	+198030U-C6	.502/728-03	50-0-51441•	3 4	. 45 / 46 / 41 / 41 / 41 / 41 / 41 / 41 / 41	١ (7010503-07	
•	7.5.4	A.02	יני ינ ער ער ער	FEEC	2 1 2		•	· .	-	1	-3390819+0+	950024	-4379596-02	.6672308-03	· 8590271-05	000000	*1002545-04*		# U + / 9 # O # T		0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20-2054186.		1 1			010/40/35	10-1067404	3-9040556		-3430540-00	**********	.5177154-00	10-0/91301.	.1250707-03	0000000	00000 00	10-673/015.				F 40 F 2 F 2 F 2	
Ç	4.5	AL02	,	F L U.2	z	9.5	•	•	"	A L	. 1764712402	-8605050	.1507067	112	342	1687344-0	ø	=	130051	c r		7017177776		_	7	> 1 1	v 3	- r	7	367	3	.9446268-06	. 620	71.	1966693-67	-	247254-B	<u> </u>	9000000	٠,	•		
11.7	A	2014	. ~				o •				10-21-562	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	00:12:23:0	34977-	777	154609-0	518157+	9355125-0	154247463	00+++++	10-01-5-10-54)))))	19730564	-501735H-	35724/+63	0-4046	15530531	0.000000	1 1 1 A 2 4	0+54garar	. 4415771-03 435747484	*4*15635	-C041079	4100364	000000	45,	3	.2773610	**************************************		, ,	こうき きょうしつ

MANA OUPY POMISHED TO ME

- 1
Cont.'d)
~
Case
ior
Output
Resultant
Resulta

(15 hap•	1 3 4 7 4 1 3 7 4 7 5		.3713637	10-111110%	1477922-04	•3240036+60	0-00000.			11.80151-07		1477579-52		()51000.	- C+288745			.92158e7-C:	· 1473133-04	•375715¤•@u	33 0 3636		10.071.700.		01470181+00	٠	Ċ	[000000.	18625357431		0000000	.202957:+00	+ C+ C E 5 6 + 1 •	.466692440.	3000000	*8418858+O1		0000000	.2189200+0J	40-04904A4	00+2191591	0.00000	10+8299716.		E 22000.				ر د	
.9201868-71	- 0 - 1 - 1 - 1 - 1 - 1 - 1	10 + r r r r r r r r r r r r r r r r r r	0.14.77.76.4	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000	0099690•	10-13347-01	4 4 5 3 2 4	43-8248-63	202020	000000	0000000	0.000000	19-2854156	10434401	4.974	30700	• 0000000	ουσπουσι	0000000.	10-0655126		10+6534621	55764B	000000	0000000	000	.9217577-01	4 9 7 9	4 3 6 6 3 4 6 4 6 3	0.000000	رع ا		• 0100000•	10-2695467.	.1121163+01	.4359248+03	0000000	• 0000000		0000000	.7564003-01	.1210653+01	4359248	- Pricound -	• f 13 C. J. 11 C	0.00.000	10.40 40.40 40.40 40.40		
70-5146967.	1	70+27097		.237u037+Cu	.2270520-07	.1446307+00	• 6000000	60464675764	- H 2 7 9 4 3 7 + 13 3	23-266+2+6*	.2115 Y 7 3 I + CU	000000	.1436157+00	- 1	.2167340462		.9420430-02	,1850253+00	0000000	.1430149+00		ć	70-100/017	- 6 - 3 o 2 o 3 o 3 o 5 o 5 o 5 o 5 o 5 o 5 o 5 o 5	1309335+00	0000000	-	• მითითიი•	2017.104.24	- 1 1 2 1 B 2 4 3 4	9613277-02	. 4764866-01	0000000.	.1464666400	• 3000000	•2186680+02	6417	.9781362-DZ	.4476555-01	ononone.	90+2170441		*2759595*02	122552+04	19-01/21010	.4133927-02	000-0000 000-0000	٠.		
\$3-98-5071	4 9 1		. 3 . 5 . 5 . 6 . 6 . 7 . 5 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	endard).	010170.	.2.59550-04	.1:0182g-C>	1 4 3 3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4	186940194013	5 140/2011		5 to 10 to 1	13-2126364.	42-67-36-4-31-4			10-1910201.	0000000	0000000	000000	. 23-5515055.		94154940	0.4010000	030000	0000000	0000000	.7234770-05	+ 10 10 10	2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 0	300000	• 0000000		.4970333-04	41578+	.5686405-03	0000000	• ۵ ۵ ۵ ۵ ۵ ۵	• 000000	מממ	*0-9525*75*	10+8451446.	1254447		.62		1724951-17		
: :: :: •	-		コンチの・アンドナボ・コンチの・アンド	. Zo3/3:0-03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-9/6/147.	0,11,77,73	3 4 7 7 7 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				03-100/001	占	10.40		3000000	2000000.	0000000	.4697603-05	anegena.		£0+84+99	00+140104.			.2405620-03	• 2000000			10+/104004	0000000	0000000	./464976-03	0.000000	40449464844	10++45[40]	0000000	0000000*	0.0000no	./636403-03	0000000	. 37 4 H H J + G .	. •	307.307.	. o _ o g a p •	4 · · · · · · · · · · · · · · · · · · ·	* 15 min	, , , , , , , , , , , , , , , , , , , ,	
010000.	0100	3-75159	47-142		0.0000	0	ניי	.000000	٠, -	しょうかいつつ	3 (C)			() ()		۰ ن	٠.,		G		(C) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	á	37463-0	*D=00*04,60*	5 ;		יט פ	ن	0	Λ.	₹ 5	Topopone.	S		* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000	200	್ಟ್	ပ	~	J	ccoon	00000000	- 1		ũ		ن از	3.75.55.55.	0.5.72.10
.1574245455	46.6.1	くいもくさいたい	7 × × × × × × × × × × × × × × × × × × ×	40.000000000000000000000000000000000000			1511102-5	.3654474		n () L) () () () () ()	14007	00000000) ()) ()) ()			7 4	()	/ •	******	• (• :		, 0	45.11	695500 6	\$0+/5/65		, .	23-592.500	ر د د د د	-		620475	Control	С. 10	-12-54/1/11	00000	4 7 5 0	. CUF PCTE	******	· .		10-10-10-10-1		.7.3.752	

THIS PAGE IS BEST QUARTET HEACETCARLE PROM COPY FORMISHED TO DOC

Table 2-2 (Continued)

Case 4: Same as Case 3 except that the effects of heat transfer between the condensed and gaseous species are determined (PARTHT=T).

```
REACTANTS
AL 1.0
                                              16.
                                                      0.0
                                                               5298 • 15 F
C 6.884
         H 10.089 0 .278
                           N .264
                                              12.04
                                                      -12000.
                                                               $298.15
                                                      -197300 · 5298 • 15
FE2.0
         0 3.0
         H 6.97 0 1.17
                                                      -28300. S298.15
                           EQ. N
                                               1.96
C 6.15
                                                      -70690. 5298:15 F
N 1.0
           4.0
                 0 4.0
                           CL 1.0
                                              64.60
               (Insert Blank Card)
AL(L)
                                              ALLL3(S)
                                                             ALCL3(L)
OMIT
                                              AL2CL6
                              ALN
                                                             AL 202
OMIT
               ALNISI
TIMC
               CCL3
                              CCL4
                                              Сн
                                                             CH2
UMIT
               СНЗ
                              CH4
                                              COCL2
                                                             CZCLZ
OMIT
               C2H6
                              C302
                                              Ç4
                                                             C5
               FEIST
                              FE(L)
                                              FECL2(S)
                                                             FECL2(L)
OMIT
                              H20(L)
OMIT
               H20151
NAMELISTS
 $1NPT2
      HKT=1+PSIA=T+KASE-00001+P=554+00+MOCZP=1+MUCT=T+PARTHT=T+
      QUOTP=-600+0+-300+0+0+0+100+0+NQ1=4
 SEND
 & I APGEN
     IREA J=1 + 1 D=8 + IN=10
 JUSTP TEST CASE
 SHKTINE
 PCP=10..30..30..30..500..1000..5000..50000..100000..
 SEND
```

Resultant Output for Case 4

	. •					,			Ç		-		£ ;
300 • 1 • 503	6(660			-					:		١.	
7 25 5 7 7		10.69.01	0	.2760.	· ·	.2640	0000.	12.0400	₹120021÷		298.150	i a. 1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
302.2		3.0000		00000	•	00000	0000	•4990	-197300.00		298.150		• 20120
	. 0	6.4700				0350	0000.	1.9600	-28300+50	v	294.150	.	000000
		6000·	0		<u>:</u>	0000	• 0000	69.6000	-10690-00		298-150	L.	• 0000
- 1		J.) P (()		ALCL3 ((2)	ALCL3(L)					
		~ ر آ	}	3 - 0 - 0		¥ 3		Ç 11 2					
		, ~				6001		CZCLZ					
• • • • • • • • • • • • • • • • • • •		C 2 H 0		C 302		5		53					
		~ W		FE(L)		FECLZ	.2(5)	FECL2(L)					
1		150624		420(L)									
NAME	1									!			
- LE	_		•										
,		300000000	00E+00.	.0000	+30000	*00+	. BBBBBBBBBB	9090° '00÷	00000000000000				
		3003000000	00 - 300	3000	CCOE		.0000000000.		•00000000000°	,			
		.00003030	0E+00;	0000	30000		•0000000000		•000000000•				
		3300000000	460-33	0000	+00+30±0±090		00+300010000-		-000000000-00-) i	
		3000000000	೧೯+೮೮∗	7000	* 30 co		•000001000E+00		ancrence +ne.				
		300000000	* 60+30	0000	000000000E+00.		•003000000•		•0046000000•				
		3060000000	JOE+30C	2000*	LOUGE COURTOR		• processor.		•000000000•				
		3000000000	DEE-ROS	• 0000	0000000000000		*0000000000*		.00-30-00-00*				
		.00000000	CCE+CO.	2020•	• 00 a c a c a c a c • 0 a •		*00+300uCG300*		.0030300000.				
	!	30000000000		0000	999999996+ 9 8		10000000000000000000000000000000000000					1	
		3000000000	30.6 + C 3 g	0000	00000000000000000000000000000000000000		000-3000-0000		.000.000000.				
		000000	10E+C3+	0000+	00950000E+00*		0.00050008		• 000-000000.				
		000	100+30	•	.00+360000000		•000000000 +00•		•0000000000•				
•		()	4 C 3 + 3 d		100+3606060000+		•000000000e		• 00000000•				
		ė,	100-300	.000	0000000000000		. 0000JC00E+C	-	• 66666666				;
·	i i	į.	9E +9G +	0000	6095400664000	İ	•00500000€+69	-			1	!	
		50000	00+300	2020•	000000000000000		•0030000000•						
		00000	100+300	9000.	• 0.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		•0000000	-	ایدا این ایدا				
		ب	E+03;	0	C0330E+00	.00	3+3000000000	03703G* *J	10 10 E + 10 F				
		esuara	00+30	0000	COODOE+	00+							
٠, ١													
		0000	COE + OF +	3000.	. CODCOOCE + DO.	, , , ,	00+300030000		•00000000•				
		00000			• 00-30000000.		.00000000E+00.		• COCCOCO E • CC •				
) (30 E + 00 •		00+300000000000000000000000000000000000		.00300000E+00		•000000000·				
		000000	eo€+co	•))								
2 × 2		00	.0E+03+	0000	00030000E+00+		0000000000000		00 + 30 Joon 00 u				1
		Ö	20E+00•	• 6365	• 00000000E+00•		• 000000000 +00	_	• naraacae • oo •				
		00000	30€+80°	1000.	*00+3000+109a		• 000000000 • 00	_	. aaltaaale + ca,				
		3	*uD+300	• 0030	•00-300000000•		•00+350600000°		• กับกำกับกำกับกำ				
		33566	00 E + 00 3	5000.	+ 00+3-CCC3300		•000000000••00	_	**************************************				
		30000	008+00+	0000	000000000000000000000000000000000000000			•					1
!	1		ا ن الا	0003.	£000000000	110.							
~													
•		*00000000.	004 500	•	* 00 4 3 3 2 2 2 2 3 0 3 C		.00430000000000000000000000000000000000		.0000000000.				
	;					t			•	1			: 1 : : : :

(Cont.'d)
ঝ
Case
$f \circ r$
Output
Resultant
14

a i	:	*0-300000000000*	60+396056069+	-*000000000000000000000000000000000000				İ
	L L L					•.		
	1							1
	- <u>-</u>	·			;			
20 0 6 16 6 16 7 0		•			ı			
• • • • • •		.000000000						!
80	}	• 0000000000000000000000000000000000000						
10k8 10f8ug		•		-				
TRACE SIUNIT	• •	*00000000E+00	1					
184594 184591	¢ -							
F 45.2%	•							
70107 70107		1						
1 L S		ļ						l
	•							
1								
THE WAY					•			
۵. د د د د د د د د د د د د د د د د د د د		** 60000000E+03*	3000000E+03+	*00+300000000.	• :00:00:00:00:00:00:00:00:00:00:00:00:00			ĺ
	!	.00900000000000000000000000000000000000	* 60000000 + 00 +	*00+30000000*	*00+30000000.			
		600136968+00	+00000000E+00+	*0000000000	•00000000000•			
			**************************************	.00-30000000.	*000000000*			
	•							
\$ £ % D		٠			!			
AG INPTZ	2 VALUE	GIVEN FOR OF.	EGRAT, FA, OR FRCT	A			;	
STAPGEN		•						
01								
7.		01+		1				
Qr.3\$								
SPECIES	SEIN	SPECIES, SEING CONSIDERED IN I	-					
112/65		AL				3 6//2 ALCL2		ن ن ت
		ALD	J 9/64 ALOCL	5/67	AL203(L)	J. 2/68 ALUZ J. 4.102 J. 61 C.(5)	13/61	• •
-	7//	ור י ני				69/9		, Z
, -		ייי בייי בייי		12/65		9/65		7

Resultant Output for Case 4 (Cont'd)

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			3				7 7 7 7		,	
12.70 12.7						ر. در	0./		, ,	٠
12.70 FELLE J. V. V. FELLES J. V.	~ ~ ~	20.5	4		- 12 / E	(. 2.2.		1.5		i i
1270 1270	• ~	5 1 2 1 2 1		FEC 13:	60/6 D	12003107	59/65	F C 1. 3	54/43	
1978 FEECH	2			0 0 1		FE0242(5)	2:21:6	FEC2H2	5 4 7 5	. '
19.75 NO. 112.75 NO. 1		FEZCL		F E 2 G 3 (S	50/07	FEBO#155	59/67	r	.9/0	,
1157 or COGNOSCICE PRECIES FROM SENSON 20	6		112	c	012/70	9 1	0:/2!0	0.J.'H	64/6 0	1
12.70					# 4 / M O	707	19/87	2:	19/5 7	,
12770 N3	27.89	- i			12/70	A C.D	Y (HA.	50/71	
12770 N3 19785 N2 11270 OCH 12701 19785 N2 11270 OCH 12701 19785 N2 11270 OCH 112701 19785 N2 112701	9/6			_	012/65	100F	•	MC2	n + / / 1 m	
12770 N 1 15 OF COLDENSE D SPECIES FROM SERVER 12015 FED2-2[5] FED3-3 5] FED3-15 12015 FED3-3 5 FED3-3 5 FED3-15 12015 FED3-3 5 FED3-3 5 FED3-15 12015 FED2-2[5] FED3-3 5 FED3-15 12015 FED3-3 5 FED3-3 5 FED3-3 5 12015 FED3-3 5 FED3-3 5 FED3-3 5 12015 FED3-3 5 FED3-3 5 FED3-3 5 FED3-3 5 12015 FED3-3 5 FED3-3 5 5 FED3-3 5 5 FED3-3 5 5 FED3-3 5 5 FED3-3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2/6				J12765	7244	7	0 7 0	7 -	, V (
	2/7				J12/70	10	9/6	0.2	o c	••• •••
		10	0.0	VSEC SPECIES	SEARC					
					FECTOR					
	1		5033	12 (S) FE	FE203(
	2 + 6 + 5 +		,							
	7									
CONTROL CONT		-								
**************************************		6	1		***************************************					
				10C30E+03	000000		0,			
		+000000000		00+30000	i) o		, c			
## ## ## ## ## ## ## ## ## ## ## ## ##		•0000000•		•	1		ú			
	<u>:</u>	0000000	•	10000E+CC	13 C C C C + 20 C C C C C C C C C C C C C C C C C C		<u>.</u>			
COCCOUNTY**********************************		90600000		00000E+00						}
## ## ## ## ## ## ## ## ## ## ## ## ##			1		**************		·)			
**************************************		•100000			*50000000E+0Z*			:		
		• 500000000°		0.0000000000000000000000000000000000000	.5030000E+04.		• •			
		0.0000000000000000000000000000000000000		10000E+094	• 63 C C C C C C C C C C C C C C C C C C		-			
		6500000°		1000F + 00 •	• GCCCCCCCCC • CCC		•			
#ALPY HALPY HALPY HALPY HALPY HALPY HAP(2) HPP(1) HPP(1) ***OGSGGGG ***OGSGGGG ***OGSGGGGG ***OGSGGGGG ***OGSGGGGG ***OGSGGGGGGGGGG	!	32.0000	ļ				5			
#ALPY HALPY HALPY HALPY HALPY HALPY HOLIOEG KI/KG 22321037-63 #PP(1) #PP(3								
#ALPY	J		•			•				
##LPY ##LPY ##P(1)	0.4.5	ı								
#ALPY HPP(2) HPP(1) HPP(1) HPP(1) ATOMS,KG		יסטיסט	-							
HPP(2)	,	•	EFFECTI		FFECTIVE	DANT	F X X T URE			
KG-MQL)(DEG K)/KG2232[037-G3 .00020002) G-ATOMS/KG BDP[1,2) BDP[1,1) BDP[1,1) BDP[1,1) BDP[1,1) C -894]12869-22 -97200000 C -37088374-C1 -2433[585-01 -624,02000 N -624,5374-C2 -001,0000 N -624,5374-C2 -001,0000 N -624,9874-C2 -001,0000 -13,240 -11,960 -9.063 -19.674 -13.305 -11.197 -21.957 12.000	MTHALPY		Q I	(5)				•		
-ATOMS/KG 80P(11,2) -ATOMS/KG 80P(11,2) -SY289890AD2 -CCU0000 -SY112869-C2 -STC00000 -SY31585-01 -SY31	3) (TOH-5 X	χ. 7	.2232	1037+6	0000000	•	•	•		
C	G.ATOMS.K	ق	80	1,2)	81P(1,1)		80(1)			
C	4		6	9890=32	-00000000		592998	1002		
A C	U		1146.	2869-02	•000002.6•		9821146	20-7		
FE .5249 -972 .003,000 -62445374-62 .003,000 -52096372-04 .003,000 -13,240 -11,960 -9.063 -19.674 -13,305 -11.197 -21,957 12,000	x		.37	8374-C1	.00000000			3 6		
FE .50096372-04 .05030000 -52239498-02 .05030000 -52239498-02 .05030000 -13.240 -11.940 -9.063 -19.674 -13.305 -1:.197 -21.957 12.000	0		243	S S			.4244537	-07		
AL C H 0 N FE CL 13.240 -11.960 -9.063 -19.674 -13.305 -11.197 -21.957 12.000	2 (9 6	23-4-65	1010111101		50096372	*0 * 2		
AL C H O N FE CL -13.240 -11.950 -21.957 12	س <u>-</u>		200	63/2=04	0000000		59239498	1-02		
AL C H O N C -13.240 -11.960 -9.063 -19.674 -13.305 -11.197 -21.957 12										
21 /66.72 /51:11 508:61 13:624 -63:63 6:61:				o !	ا د د د د	-				
G C C C C C C C C C C C C C C C C C C C	1 -13.2	-11.969	-9.063 -	674	- 1:0101	21				

Resultant Output for Case 4 (Cont'd)

2
<u></u>
VS 101
•
ا الا
52:80
8 8 9
ڌ
-
5
-
5:
0
ī
Ü
Σ
er Ti
=
EGUICIERIUM
ш
9
÷
3
1559
4
ш
ż
3
F02834
or or
i.i
-
w
ن
٠.
ر
٥
ia.
C.
T.
* -

CASE NO.	CHEMICAL FORMULA	יטרא						:	SEE SOUTHOR	ENERG CAL/M	STA	F C C C	95851TY 6700
FUEL C 6.88400 FUEL C 6.88400 FUEL C 6.88400 FUEL C 6.88400 FUEL C 6.88600 FUEL FUEL FUEL FUEL FUEL FUEL FUEL FUEL	200000 H	10.08900 3.00000 4.00000	0 00	1.17000	z z J	.03000	1 1		• 12C + 30 • 12C + 30 • 13C + 30	-1209C.000 -197302.600 -28300.000	N N N N	298.15 298.15 298.15 298.15	00000 00000 00000
	•	0000	ERCE	PERCENT FUEL=100+0000	ageag	į !	ALL	EQUIVALENCE RATION	1.6977	REACTANT DENSITY	-X112	: :: :: ::	
PC/P	CHAMBER 1.0000	ER THROAT		EXIT			-		1				
1 DEG K 240, G/CC 1 CAL/G 5. CAL/G)(R)	3.6346-3		,		• •		. :						
#. MOL. AT (OLV/OLP)T (OLY/OLT)P (OLY/OLT)P GAMA (S) GAMA (S)	28+334 1-3331 1-3331 1-13331 1-1383	15 15 13 13											
HULE FRACTIONS		! :	į										
ALC. ALC. ALC.2 ALC.3 ALC.3 ALC.3		122	}										
AL32 AL32 AL324 AL20 AL20 CO		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
200 600 700 700	1	00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			,		1						

Resultant Output for Case 4 (Cont'd)

.03611 .13260 .00002 .25637				
00001 00001 00001 00001				
.C0867 .C0016 BEING REMOVED	OR TWO PHASE	CALCULATION (KG	FOR TWO PHASE CALCULATION (KG OF SPECIE/KG OF HIXTURE) AL .15138+00 .15138+00	
	· · · · · · · · · · · · · · · · · · ·	9 000 0 •	.15138+00	
	H	•00000	15138+00	
	0	.13465+00	.28603+0C	
	Z	80000	, 28603+00	
		00000	.28603+00	
;	ا ن	00000•	.28603+00	

3(L) FECL3 FEO(S) FEO(L)	C(S)	J	ננו	כנר ז	CH20	ž	7 2 U	2 N O	7
FECL3(L) FECL3 FEO(S) FEO(L) FEO2H2(S) FEO3H3(S) HNO HNO HNO HOO				C2k2	620	73	CLCM	CLB2	C1.20
- HCN HNCO HNO HNO HNG2 HNG3 HO2		•		FEO(L)	FE02H2(5)	FE03H3(5)	FE2CL4	FE203(5)	FE30"(5)
	:			HN02	HONE	70×	H202	0 2	ž
N20 4204				75 Z	N 2 0	4504	۲°	63	

.4473149-33

... ...

(Cont'd)
7
Case
${\rm fo} {\bf r}$
Output
Resultant

													200 T	12.0		, '	17. CL2r	ا ا ا	2013	(A)		
									1			At cl 2	AL02		500	C	- CL2	HALO.) 0 Z	NIZ	NO2CL	60
-2.2.29186-01 -8.246.253-02 -7016621-04	LIST FOR THO PHASE CALCULATIONS	JEEN DRITTED FROM PRODUCTS LIST FOR THO PHASE CALCULATIONS	LIST FOR TWO PHASE CALCULATIONS	PRODUCTS LIST FOR THO PHASE CALCULATIONS	LEEN OHIITED FROM PRODUCIS LIST FOR ING PHASE CALCULATIONS	LIST FOR TWO PHASE CALCULATIONS	LIST FOR THO PHASE CALCULATIONS	EEN OHITTED FROM PRODUCTS LIST FOR THO PHASE CALCULATIONS	LIST EOR IMO PHASE CALCULATIONS	PRODUCTS LIST FOR TWO PHASE CALCULATIONS	BEEN OMITTED FROM PRODUCTS LIST FOR THO PHASE CALCULATIONS	E SYSTEM	ALOH		C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C20	CL02		0 0 2 1	LZ	N02	
O O V V V V V V V V V V V V V V V V V V	MAS BEEN OMITIED FROM PRODUCTS LIST FOR THO	HAS BEEN DMITTED TROM PRODUCTS	MAS BEEN OMITTED FROM PRODUCTS LIST FOR	HAS BEEN ONITIED FROM PRODUCTS !	HAS REEN DHIITED FROM PRODUCIS.	HAS BEEN OMITTED FROM PRODUCTS LIST	HAS BEEN OHITTED PROM PRODUCTS LIST	HAS BEEN OMITTED FROM PRODUCTS	HAS BEEN OMITTED FROM PRODUCTS, LIST	HAS BEEN OHITTED FROM PRODUCTS	HAS BEEN OMITIED FROM PRODUCIS	S TO BE CONSIDERED IN TWO PHASE	ALOCL	:	2 C	C2N2	CC0		ب	7007 7C0	NOCL	HO
	AL203(S) H	AL 203414 H	(S)	FECL3(5) HA	EECL3(1) H	FE0(S) N	FEO(L) H	EE02h2:5) HJ	FE0343(S) HA	FE203(S)H	EE304(S1 H	SPOUSTED LIST OF SPECIES TO	A O	AL20 -	≥ 5	C 2N	CEC#	F F 7 2 1 3	L ZUK	Z Z	02	; 20

4.000

-24.279

*8.749

-12.109.

-31.668 -34.874 -34.862 -34.863

-7.764 -7.873

-1.571

-28 . 435

-3: -712

-15.216 -20.292

-13.815

-17.899

-13.393

-17.483

2.000 1.090 00000

-25.618

-25.618

-7.900 -7.900

-12.229 -12.229

1102-81 -7-973 1162-81 -8-257

PC/PTM 1-814574 1-576 P 9-1-576 P 9-

1102.32

-1.576

-4.358 -30.144

-us.883 -12.665

Resultant Output for Case 4 (Cont'd)

,	-43.569	5.640		-8.642 -51.839 -:3.CSG	-:3.050	-6.597	-6.597 -32.721	0000
s	-52.281	6.369	-8.843	-8.843 -54.292 -13.244	-13.244	-6.025	-6.025 -33.822	1.000
4	-564101	560101 70277	-9-125	-514676	-8a125 -57a676 -13a515 -5a910 -35a372	-5.930	-354372	300
_	-67.538	9.431	-9.803	-9.8C3 -67.225 -14.153	-14.153	10.154	-6.154 -39.703	3-0-5
	-74.692	10.534	-10.110	-10.110 -72.848 -14.430	-14,430	687.9-	-6.489 -42.702	5 + CCB
•	-94.390	13.416		-10.019 -87.969 -15.126		-7.777	-7.777 -48.840	ت ا ا
0	10 -123.358	17.710	-12.291	17.710 -12.291 -109.998	-16.278	-10-128	-10-128 -58-122	a. a. a. a. a. a. a. a. a. a. a. a. a. a
دیا ک	TEAPERAT	URE	2821+03	15 0UT OF	THE TEMPERATURE 2821-03 IS OUT OF RANGE FOR POINT 12	POINT	c i	
-	132+355	19.060	-12.748	-116.779	:1 -132.355 19.060 -12.748 -116.779 -16.658 -10.947 -61.351	-10.647	-61.351	0000
7 7 H	THE TEMPERATURE#	URE# . 22.434	2640+03	15 OUT OF -133.466	THE TEMPERATURE . 2640+03 IS OUT OF RANGE FOR POINT 11 is 2 -154.765 22.434 -13.914 -133.446 -17.612 -13.184 -68.490	POINT	11-68-490	000.4
u.j	TEMPERAL	1.85	2281+03	IS OUT OF	THE TEMPERATURE 2281+03 IS OUT OF RANGE FOR POINT 12	POINT	12	

Resultant Output for Case 4 (Cont'd)

¥⁴

•

7.010

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION GURING EXPANSION FOR TWO PHASE MOC CALCULATIONS

FUEL AL 1.00000 H 10.08900 -0.2 FUEL C 4.88900 H 10.08900 -0.2 FUEL C 4.15000 H 4.00000 0 1.1 FUEL C 4.15000 H 4.00000 0 4.1 FUEL N 1.00000 H 4.00000 0 4.0	.27606 . H								
AL 1.00000 C 4.88400 H 10.08700 0 FE 2.00000 0 3.00000 C 4.15000 H 4.00000 0 4. N 1.00000 H 4.00000 0 4.	*			WT	NT FRACTION	ENERGY	STATE	TEMP DEG K	DENSITY
C 4.88400 H 10.08700 0	*				.16000	000*		298.15	.0000
C 4.15000 W 4.7000 0 1. N 1.00000 H 4.00000 0 4.		26400			• 12040	-197300.000		298.15	0000
+0000 PERCENT	1.17000 N	1.00000			.69600	-70690,000	S .	298.15	0000
	FUEL-100.0000		ALENCE R	ATIOM 1	.6977 R	REACTANT DE	DENS1TY=	.0000	
THROAT			EXIT	EXIT	£1X3	EXIT	EXIT		EXIT
## 15 15 15 15 15 15 15 15 15 15 15 15 15	30.00	50.000	100-00	500.00	7210.	-6000+00-	500004 800004	7 0-00004	9-000 09
1252	•		100	- 800	151	363	262	264	228
• 6/CC 7+7355-3 4-8452-3 1-23	4.671	3.1309-4		4.2894-5	2-4039-5	6.3015-6 8	.7581-7	4.7836-7	1-1617-7
-756.4822.3		1077-3	-1116.0	-1193.0	1220.9	1274.4	91338.9	-1344.8	-1372.7
S. CAL/(6)(K) 2.3169 2.3169 2.3169	9 2.3169	2.3169	2.3169	2.3169		2.3169	2.3169	2.3169	2.3169
M. MOL MT 21.082 21.084 21.181	1 21.687	21.989	22.406	23.329	23.735	24.909	26.890	27.492	28.833
(DLV/DLP)7	3 -1.04025	-1.04385	-1.04139	-1.C2848.	.1.02881.	-1.03815.	1+03961	1,03663	-1.02558
1.0024 1.0040	-	1.6785	1 • 6553	1.3986	1.3786	1.5657	1.7373	1.7269	1.5903
.4479	4 -1.3197	99468 -		0+06	+7948-	+9963	-4-3120-	-1+3346-	1.2172
1.2739	-	1,1523	1 - 1 500	1.1846	1,2068	1.1878	1.1498	1-1427	1 - 1 333
£¢ /43+ /42.7	1		3	1		3.5			223
MACH NUMBER .000 1.000 2.175	3 2.630	3.041	3.42/	4.162		20487	9.724	1.346	8 . 3 . 8
AE/AT 1.0000 2.1684	•	^	12.103	43.889	75.923	274,29	1873.87	3390.26	13641.2
CSTAR, FT/SEC 3482 3482	2016	1	3482	3482.	3482		3462	-3462-	. 3482
• 700			1.634	1 + 801	1.858	1.961	2.066	2.090	2 • 13
		182.4	0	20408	207-1	218.2	227-1	228-8	234.5
15P. LB-SEC/LB . 75.7 137.0	0 158.9	167.1	176.9	0.70	201.1	212.3	223.6	226.3	231.6

.20000.

.00000 .19771 .07837

.05686

.04081

. 80010

.00334

.01166 .22632 .03477 .09000

.05865

+17634-+01383

108587

101062

+010+

20104

400920

1,600

40004

42,600

ALCL3

.07037

مورن رو

.00000 .15608 .08316 .00096

> • 00000 • 18325 • 00000

> > .00087

• 00000 • 00000 • 17949

.00082

.00077 .15269

.00073

.10712 .00907 .00070 .14780 .41432

. 15253 . 12432 . 00017 . 14434 . 16313 . 17099

\$0000·

.22132 .05454 .00000 .00003 .14367

FE2CL4

C02 C2H4 - +14369

.35343

.33970

1 2 5 5 5 5 T

.12173

13550

. 30643

00000

.. 0129Q.

.01230

...01203

.00.001 .00000 .00238 .24216

.15214

.18611

.06996

.00000 .39827 .05576

.00000 .41392

.00000 .41503 .05165

•0550·

Resultant Output for Case 4 (Cont'd)

25 . C7315 . 17732	.50000-05 FOR 411 455;64E0 CONDITIONS	ALP2H AL20		- 6×02				
.10366 .59793	סטטטבטפ צמא קון	2014	כסכר	C. 5	0.41	ī	n z	
.003 .1022	j	ALCH	30		r	CUR	70ZN	
.02125 .00129 .00192 .09554 .09734 .10106	TIONS MERE LESS	ALOCL	z n U		FE02H2	z	N 2 0	
	MOLE FRAC	ALO	Š	3	FEO	H202	N 2 H 4	1
.00099 .00123	ADDITIONAL PRODUCTS MAICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS MERE LESS THAN	ALCL2	CH20	620	FECLS	H02	NO3	
.000.2	WERE CONS	ALCL	ככרז	1,7	FECL	E ON I	NOZCL	!
.00034	PRODUCTS ANICE	ALH	ננר	6214	w.	70% 1 × 0 × 1	NO 2	to.
m I N Z Z	ADD 1 TIONAL	AŁ	U	C 22.3	כר 20	021	730%	. 2

Resultant Output for Case 4 (Cont'd)

NO
Ĺ
a
3
URING EXPANSI
9
ĭ
3
Z
4
a
z
9
\exists
ž
9
à
4
Σ
\exists
4
7
3
õ
٦
S
\exists
\vec{z}
Ŋ
1
넒
3
3
ĭ
ij
đ
8
9
2
-
揾
Щ
RI PROPERT
4
*
ā
IRANS
A.
Н

											:
TEHP	VISCOS1TY	MCHATOMIC	INTERNAL	FRCZEN	PEACT 104 COND	8601119810:	CP F R 0 Z	65	PRANDIL FROZ	9 N A NO 4 L	LES 1S
0E3 K	P015E	e e e e e e e e e e e e e e e e e e e		CAL/(CM)(SEC)(K)	X	; ; ; ;	CALL	CAL/(6)(K)	10	rese SS37vJlSniwlO	
1252	4-01X-9-84	5 231.X10-6	6 153.x10-6	384, X13-6	16.X1C-6	402.X10-6	162	. 4396	.4376	0667.	86594
1193	417.	214.	133.	347.	26.	373.	1600.	1.624.	9607	***	.6621
7 48	326,	179.	96	275.	104.	379.	-3857	.6476	.4579	•5575	+5579
5.69	293.	161.	86.	248.	352.	594.	.3702	1 - 3157	:675	.6454	.5731
,	261		82.	237	#05 ·	635	+3742	- 1 - 4 to B	9984	4358	5974
6C 2	265.	145.	77.	222.	390.	612.	.3716	161401	9E44.	.6127	.6251
500	227	121.		184.	191.	376.	-3574	0406.	EC+5.	.5445	. 5785
10.0	209.	.83	56.	164.	1 4 5 •	312.	9050	. 7946	3 C - 1 H *	4303	. 7987
40.4	168	18	38.		2000	323.	*325*	\$9.63	- 1 + 2 9 4 - 1	9515	4424
C 2	126.	6.7	\$1. \$1.	. 6 9	317.	3 37 •	6457.	1+3120	5975.	5625.	: . 3242
. :	117.	42.	17.	.65	334.	374.	.2871	1.3340	0688.	٠.	1.5477
	07.	30.	• • • • • • • • • • • • • • • • • • • •	7	315.	353,	.27nb	1.2172		. 333	2.2514

Resultant Output for Case 4 (Cont'd)

THEGRETICAL RUCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FOR TWO PHASE HGC CALCULATIONS

									;	1		
	10H-9X)	-300.0 (KG-HOL)(DEG K)/K	9)									
CASE NO.							#	FRACTION	E E	STATE	4 2 4	DENST
	CHEMICAL FORMULA	-					7	SEE NOTE	704/140		2000	- 1
	2	00000.00	27800	2	02.46			00000		0.0	205	
, L		300000						00+00+	-197300,000		298.15	(C)
		00026.9			.03900		i	.01960	-28300.000		298.15	() () () () () () () () () ()
z	1.00000 H	4.00000	00000**	ご	1.00000			00969.	-70690.000		298,15	0000
	9/0	34 0000	RCENT	FUEL # 100 4 0 0 0 0	1	SUIVALENCE R	RATIO= 1.	1.6977	REACTANT DE	CENSITY	0060.	
	CHAMBER	THROAT	EXIT	: 1 x 3	EXIT	EXIT	EXIT	EXIT	E X 1 T	EXIT	EXIT	E * 1 *
6778	10000		10.000	16.500	50.000	100.00	600.00	1000000	500000	5,0003	10003000	5encons
Z. 4 4 0	37.697		3 - 7 6 9 7	1.2566		.3770	.0754	.0377		.0008	1000	1000
T. DEG K	2524	2261	6651		1132	978	712	623	510	393	156	285
00/5 x0%	3.8111-3	2 • 3735-3	+_C+50+9	2		9.8961-5	2.7224-5	5-9+55+1		5.3507-7	3.0400-7	7.8424-8
4. CAL/6	-166.2	-293.1	-633.8	-751.4	- 408-	-877.8	-1004-7	-1648.2	-1131+7	-1225.0	2 * 4 7 * 5	-1239.7
2+ CAL/(8)(K)	2.6415	2.6415	2.6415		2.6415	2.6415	2.6415	2.6415	2.6415	5.6415	2.6415	2.4415
101 2	20.934	20.995	21.271	21.074	21.074	21.074	21.083	21.092	21.737	22.869	23.208	24.336
COLV/DLP)T	-1.00241	-1.00170	-1.00038	-	-1.00002	-1-00003	-1.00017	-1.00064	-1.32757	+11-01204	*1.31777	-1.03450
(DLV/DLT)P	1.0427		1.3020		1.0001	1.3004	1.0035	1.0110	1.5899	1 - 1 8 6 4	1.2714	1.6242
CF. CAL/(S)(K)	4065.	.5133	0 7 7 7 .			0954.	44955	• 5co4		.6352	. 6994	1 - 2 4 0 6
(S) YHW (S)	1 • 23 45	-	1.2709	1.274	-	1.2659	1.2367	_		1.72:2	1.2:97	1.1616
TON VELOWASEC	111243	1654.4	B95 # 5	}	75342	69716	589.1	551.4	469.9	417.6	39,45	334.4
SCH NUMBER	• 000	1.099	2 • 1 5 2	2.792	3.094	3.513	4.513	****	6 • C 6 B	7.149	7.704	9.139
1:/:/		1.0000	2 - 1 454	4.4022	6.2775	10.319	34.580	59.053	224.13	1565.81	2729.48	10379.7
COTAM: FT/SEC		5008	5008	5008	5008	50CB	8005	8008		5003	8000	5008
ن		169.	1.262	1.457	1.527	1.605	1.742	1.786		1.956	926-1	2.014
-87739546745474		194	229.9	249.4	257+1	265.9	281.B.	287.2	297.2	108.3	31.48	316-2
d 1/ 3934d 1		9 101	4.101	3.46.6		9.000	271.1	27B.0	790.	300	2.4.6	4 4 4

FOLE FRACTIONS

00000 00000 00000 00000 00000 00000 0000
00000 00000 00000 00000 00000 00000 0000
00000 00000 00000 00000 00000 00000 0000
00000 000000 000000 000000 000000 000000
00000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 N = 0 D = N O + 1 D = N O O + 1 D = N O O + 1 D = N O O + 1 D = N O O + 1 D = N O O O O O O O O O O O O O O O O O O
.00092 .000493 .00060 .00060 .00006 .00006 .00000

Resultant Output for Case 4 (Cont'd)

-				00000)) •	00000	0.0000	00000	00000	000000	.0000	000
FECL 2	56:32	.00146	.00148	8 h 1 00 °.	400147	5 4 1 00.	99000	.00020	.00002	.0000	. 29600	
1 5 2 HZ	10000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	90000
FE2014	00000*	00000	.00000	00000	.0000	.000.	.00042	+9000	.00075	.00080	10000	
1	. C0247	\$6000*	.00002	•00000	30000	.00000	00000.	•00000	.00000	.00000	.03700	.0000
T.C.	.15177	.14910	.14382	.14362	.14362	.14362	.14368	.14374	.1 4810	.15585	15016	.16585
12	• 30023	• 305ge	.32182	+33924	•35672	.37003	645240	11955	1995#*	. 43808	. 41745	5 C P 8 C .
420	.16601	16504	.15353	.13629	18421.	.10550	.05120	.02960	.01331	•02120•	.03787	.09501
443	. 00002	10000	10000	10060	10000	-00002	-50000	-01000-	B1000	*2000a	* E 120 *	95800
02	10000	00000	.00000	00000	00000.	00000	00000	.0000	00000	•00000	.00000	00000.
. 72	. 39153	28162	.09214	.09215	.09215	.09215	-09217	.09219	56460.	.09974	.10077	.10223
10	• 53024	.0000	. 63000	• 00000	.00000	• 00000	000000	.00000	.00000	•00000	00000.	00000
ADDITIONAL	ADDITIONAL PRODUCTS WHICH MERE CON	BERE CON	SIDERED	BUT MHOSE	MOLE FRAC	MOLE FRACTIONS WERE LESS THAN	E LESS T	-	SGODOG-05 FOR ALL ASSIGNED CONDITIONS	R ALL ASS	SIGNED CO.	SNCILION
אר	ALH	٨٢٥	ALO:		AL20	U		ננר	נכרז	t	CH20	₹ 5
12.20	CN2	כסכר	7			C2H2		CZN	CZNZ	Č	02	C
כרכא	CLO	CLO2	CL2		CL 20	FECL	-	FECL3	FEO	1	. 071	Z
1C0	HYCO	OZ I	CAR		HONH	H02	-	H202	z	ž	0,	ĭ
2	NOCE	N02	NO2C		NOS	NZH		N20	N204	7		
5.0	03											

Resultant Output for Case 4 (Cont'd)

- 1	
į	
ı	
- 1	
2	
ō	
-:1	
7	
4	
•	
-	
7	
9	
- 21	
OZ.	
크	
9	
Z	
0	
H	
-H	
2	
<u> </u>	
Σ	
9	
٦	
Σ	
크	
~	
60	
7	
⇉	
<u> </u>	
9	
~	
9	
3	
⋥	
2	
1988	
HASSY	
HUSSA.	
HUSSA TS	
UST ASSUR	
HUSSA TSUA	
THAUST ASSUM	
EXHAUST ASSUR	
LEXHAUST ASSUM	
ET EXHAUST ASSUM	
KET EXHAUST ASSUM	
SCKET EXHAUST ASSUN	
ROCKET EXHAUST ASSUM	
ROCKET EXHAUST ASSUM	
OF ROCKET EXHAUST ASSUM	
OF ROCKET EXHAUST ASSUM	
S OF ROCKET EXHAUST ASSUM	
IES OF ROCKET EXHAUST ASSUM	
TIES OF ROCKET EXHAUST ASSUM	
TRILES OF ROCKET EXHAUST ASSUM	
PERTIES OF ROCKET EXHAUST ASSUM	
OPERTIES OF ROCKET EXHAUST ASSUM	
PROPERTIES OF ROCKET EXHAUST ASSUM	
PROPERTIES OF ROCKET EXHAUST ASSUM	
IT PROPERTIES OF ROCKET EXHAUST ASSUM	
TRE PROPERTIES OF ROCKET EXHAUST ASSUM	
PORT PROPERTIES OF ROCKET EXHAUST ASSUM	
SPORT PROPERTIES OF ROCKET EXHAUST ASSUM	
ANSPORT PROPERTIES OF ROCKET EXHAUST ASSUM	
PANSPORT PROPERTIES OF ROCKET EXHAUST ASSUM	
TRANSPORT PROPERTIES OF ROCKET EXHAUST ASSUM	
TRANSPORT PROPERTIES OF ROCKET EXHAUST ASSUM	
TRANSPORT PROPERTIES OF ROCKET EXHAUST ASSUM	

TEMP	V15C0517	MONATOMIC	INTERNAL	FROZEN	REACTION	EGUILIBRIUM	6 0	۲ه	PRANDTL	PRANDTL	18#15
		0400	COND	0400		0×03	- FR02	GF GF	FRCZ	9	NUMBER
DEG K	Poise			CAL/(CM) (SEC) (K)		E	CAL/(61(K)	61 (K)	N 10	Olmensianless mere-	•
252 "	753.x10-6	753.x10-6 364.x10-6	6 333·XIG"6	698.X10-6	181.x30=6	879.X10-6	. 4586	.5352	2464.	.4582	1.5542
2261	.969	338.	257.	635.	. * * 6	729.	• 4516	.5124	8101.	. 4688	1.1024
3651	543	269.	202	471.	12.	.483	4273	0111	. 4924	0867.	.6525
1263	459.	232.	154.	387,	17.	****	.4107	. 4381	.4877	. 4982	+199.
> £+i-	45 54			364		277.	4037		***************************************		******
978	382.	201.	117.	318.	33.	351.	+3954	4559	.4756	0.4970	.6766
712	363.	1710	89.	260.	494	369.	. 3826	4955	9966	4861	6435
623	275.	159.	.18	239.	47.	286.	.3786	.5004	• 4342	. 4474	.6087
101.61	23.8	132	49	205	3894	594	43689	10026	P. 1. 5 Man	45.54	5663
3 5 3	187+	106.	51.	.861	76.	234.	.3486	.6352	€ E	(D) (J) (II) (II)	.5834
200	169.	94.	***************************************	137.	B).	221.	13391	# 6 6 ¥ *	9 1 2 4	.53"2	.5696
ul u	7.7	0,1	9,	0	70.	101		4040		676.	4753

Resultant Output for Case 4 (Cont'd)

	(1)
	i.
	-
	CALCULA
	S
	7
	Ü
	č
	õ
	w
	3
	FOR TAU PHAS
	0
	ج ا-
	œ
	ō
	Ξ,
	Š
	5
	Z
	ō.
	EXPAN
	LD
	Z
	DURIN
	õ
	Z
	11:01
	_
	5
	ã
	OMP
	COMP
	CH COMPC
	RIUM COMPC
	1881UM COMPC
	ILIBRIUM COMPC
	JUILIBRIUM COMPC
	EGUILIBRIUM COMPC
	w
	w
	w
	SSUMING E
	SSUMING E
	w
	NCE ASSURING E
	NCE ASSURING E
	NCE ASSURING E
	AFORMANCE ASSUMING E
:	NCE ASSURING E
	T PERFORMANCE ASSUMING E
	ET PERFORMANCE ASSUMING E
	AFORMANCE ASSUMING E
	ET PERFORMANCE ASSUMING E
	ACCAET PERFORMANCE ASSUMING E
	CCRET PERFORMANCE ASSUMING E
	AL ROCKET PERFORMANCE ASSUMING E
	AL ROCKET PERFORMANCE ASSUMING E
	AL ROCKET PERFORMANCE ASSUMING E
	AL ROCKET PERFORMANCE ASSUMING E

		こくへと りじゅうしょうきーシェン のき	9									
9											:	
•							1.54	ST FRACTION	N ENERGY	STATE	1 E E	00000
5 1.51 At 1.50								16700	00		298.15	4000
:					0 : 1 0							
ان	F 00000	000000	•	2 000.7	2010	l i	•	00000			200) () () () () () () () () () (
u)		00000							00000		61007	1000
U		00026.9	0 1.17000	₩ 000	•03000	1 1		09610	-28300,000	. 5 . 00	298,15	0000
FUEL N 1.5	н даода•	4.0000			1.00000			.69600	-70699,000		298,15	,000
	0/F.	• acac PE		RCENT FUEL-100.0000		LENCE	RATIO= 1.	1.6977	REACTANT DE	DENSITY.	0000	
			ě.									
	CHAMBER	THROAT	EXIT	EXIT	T EXIT	EXIT	EXIT	EXIT	EXIT	EXIT	EXIT	EXIT
Pod P	0000	14741	10.000	30,080	50.000	00-001	500.00	1000-60	5000+90	500005	0.000001	\$0000g
I - 4	37.697	21.381	3.7697	_		.3770	.0754	.0377		.0008	.000	.0001
1. DEG K	3391	3141	2392			1	1 789	546	687	470	373	373
RH31 G/CC	2.7379-3	1 1 1 6 7 4 9 - 3	4-50018	1.64	4 1.0917-4	6 • 2 • 8	1.7778-5	1.0272-5		4.2000-7	2.2537-7	5.5653-8
H. C.L/6	4.00	254.8	-206.5	-432.6		i	-827.9	-894.2	-1016.5	-1137.4	+ - 1 1 66 . 4	-1225.6
S. CAL/(S)(K)	2.8416	2.8416	OD:	7	~	2.8416	2.8416	2.8416	2.8416	2.8416	2.8416	2.8416
R. HOL MT	20.20R	20.431	23.663	20.997	7 21.042	21.068	21.073	21.073	21.079	21.491	21.867	22.595
(DLV/DLP)T	*1.C1733	7911201- 3	-1.0028G	;	ī	7	-1.00000	•1.00000	-: 000013	-1.02296	-1.02153	-1.00615
10_V/JLT1P	1 - 2 3 G 2		1.6555		1 1.0204	-	1.0000	1000.1	1.0032	1.5614	1.5495	1.1275
CP . CAL/16)1K)	1496.					1644.	5544	665**	. 4962	1.6848	1.6036	. 6258
GAMMA (S)	1 - 1 7 9 9	1.1856	1.2255	_	4 1.2507	1.2684	1.2485	1.2580	1.2362	1 - 1 2 4 7	1.1212	1.7107
SUN VELON/SEC	1283.5	1231.3		1	7 935.5	827.1	738.3	69.40		45243	434.9	20700
MACH NUMBER			2 . 1 45			3.406	4 + 405	4.878	6.025	8.022	8.419	4.147
4E/AT		1.0000	2.2454	4.7030	0 6.7483	11.089	36.087	60.883	212.17	1369.10	2516.99	10054,2
CSTAR FT/SEC		9009	9009	9009	9009 9	9009	9009	9009	9009	9009	9009	4004
,		.672	-			1.632	1.776	1.822	106.1	1.982	2 • 000	2.337
1 VAC. LB ~ SEC /LB		231.4	}			125.1	345+1	35146	36344	375+1	378.4	CAP B G
15F. H-SEC/LB		125.5			9 288.8	304.6	331.6	340,2	355.5	370.0	373.4	390+3

MOLE FRACTIONS

	.00011	90000	00000	00000	.00000	*00000	00000	.0000	66000.	•00000	1000.	000 00 •
	.00052	10000	.00000	• 00000	00000	00000	.00000	00000.	.00000	00000	.00,00	., (., (.,
	.00438	• 2 6 0 0 •	• 00362	.00100	.00032	.0000	•00000	.00000	.00000	•0000	00000.	• نازالال
2	15100.	99100.	.00268	+63234	.00135	.00032	02000+	00000	600000	• 00000	50000	•00000•
	-50034	2000	67.123	*C0503*	100737	-60903-	00042-		50643	19600	- 8 1 6 J C	-11-11-
0 14	.000	6666.	0000.	00000	10000.	.000·	() () () •	C0000.	67970.	30060.	00101.	
ĩ	20100.	のたっかい・	08:00.	• (9035	.10033	* C000°	C. C. C.			30000	-0-2u	
. 1	1 2 7 .	, 7		·	10.70.	1.000	٠., ٠.,		£	500000	00000	000000
	1 mg	7.			() () () () () ()	. 0.7.0.				10000	C0110.	
.; (ZH			•	0.00	ć.		(',	12 () () ()		

Resultant Output for Case 4 (Cont'd)

	10000	10000.	00000.	000000	• 0 0 0 0 0	00000.	• 60000		1000c.	ひしてしょ	00000.	
	758.7	.25057	.25128	.24733	.24402	.23720	.20597	.18563	.13083	.04.705	.04477	<u>.</u>
	70000		00000	-00000	22000-	00000	00000	00000	00000	100000	30000	ز ا
	.01742	.61972	.02373	.02945	.03335	1 7040.	.07181	.09216	.14762	.20296	.2192	. 245.
B 4 4	00000	• 00000	000000	00000	000000	000000	• 000000	.0000	00000	.00634	.01228	+0237
-)	.013+3	* 600.	-00158	.00021	•0000•	10000.	00000	•0000	.00000	• 00000	• 00000	00000
ر ر	10 COO	00000	000000	•00000	+00000	00000*	•00000	• 0000	00000	99950+	00.00	00000*
C L 2	21000.	12000.	. 10000	00000	00000.	• 00000	•00000	00000	.00000	0.000.	00000	.0000
		00000	10000	-90090-	-00000	-00000	CC000 ·		00000		95000	2000
ر از ر	\$ 000 to	*000 0 *	.0000	00060.	.0000.	3000°	00000•.	00000	00000	00000	00000+	.0000
7:05.2	.00010	56000.	1 + 1 900 •	.00147	8 t 1 D D + 8	8 7 200 •	.00148	.00147	.00100	.0000	.0000	0000
	\$ 100 k	€000 3 •	00000.	• 00000	• 35600	00000	•00000	00000•	.0000	• 00000	000000	•00000•
, E32-2	K0000.	.0000	000000	• 00000	00000	.00000	• 60009	000000	.00000	•00000	00000	000
F E 2C L 4	00000.	00000	00000	• 00000	00000•	00000	00000	•00000	.5555	.00075	.00076	.2007
+	- C3898	0273a	+0042B	. COC58	- 81000e	.00002	-00000a		00000	00000	• 00000	1000
	.14313	.14788	.15483	.14945	.14612	.14403	.14362	.1436;	.14365	91941.	.14962	.15398
637	.0002	.0000	00000	00000	60000	000000	• 00000	600L 0 •	00000	•00000	00100.	5000
* 1 4	.27013	.28240	.29874	•3095•	.31542	.32400	.35537	.37572	+43CF+	.46670	. 46396	.45497
.2.	•15192	.15731	.16368	.16066	.15793	91151.	12511	508600	104501	19500+	-C1+8F	+00719
	10000.	000000	.00000	•00000	000000	00000	00000.	0.00 LD*	0 0000.	00000	00000	.00000
E = 3	-13000	•00000	00000	-60000	40000	000 u u d	00000	- 3000g	-0.50.0.4	00000		00000
3	.00001	10000.	•0000	• 00000	. 20000	01000.	00000	(1-200-	*0000*	\$6003*	21500-
∵	*00672	. 55037	.0000	00000	00000-	0L30C*	66033•	00000 •	00000	• 60000	001004	500 CD •
22.2	C9863.	.08915	. 59123	.09182	•69252	. 19213	+09216	.09215	.09218	.09396	09560.	. 09575
0	6 Z G G G 9 4	.00033	.00000	•00000	•0000•	90000	•00000	•0000•	@0000.*	00000	00000	60000*
10	•600.	.00564	.000	•0000	10000	• 36300	0.0000	• 00000	00000.	.0000	00000	00000
3.5		00000	000004	-60000-					60000	— 5360 6 • -	-00006	قۇرۇق

9	
ŭ	
N.	
<i>5</i>	
+50000-05 FOR ALL ASSIGNED CONDIT	
æ	
ŭ.	
0-0	
0	
ij; •	
2	
-	
ESS	
ω L	
er ra	
si Z	
5	
, , , , , , , , , , , , , , , , , , ,	
u.	
RE CONSIDERED BUT WHOSE MOLE FRACTIONS AERE LESS THAN	
u u	
N C	
<u>-</u>	
100	
RE.	
301	
0 0	
a O	
a E.R	
Ţ	
T T	
13	
פֿרנ	
6 4	
74	
4: 3	
1.	
~	

62-2		152
720		₩ D C F
C 3	F & C + 3	I Z
ر بر بر	£ 20	-: eco
Z Z Z	£102	H202 N3
U	- CLCM	105 100 100
CH20	3	HN03 N20
ננר3	C 20 -	1202 1214 1214
ננו	(33)	0 M 2 O 2 Z
u	(3:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

THE SEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Resultant Output for Case 4 (Cont'd)

•	e#/0	0000	PERCENT FU	FUEL=100.0000	EQUIVALEN	EQUIVALENCE RATIO# 1.6977	į.	CHAMBER PRESSUPER		37.607 ATR	
a. ≌ 	V15C0517V H	HONATOHIC CCND	INTERNAL	FROZEN	REACTION E	EQUILIBRIUM	CP FR0Z	CP EQ	PRAYOT FROZ	G G H	LEWIS
DEG K	POISE		•	CAL/(CM) (SEC)(K)		6 1 1 0 0	CAL/(6) (K)	5) (K)	60	SSSTNOISVENTO ***	•
3391	931.x10-6	489.×10-6	434 • X10-6		923,X10-6 1889,X10-6	2812, X10~6	. 4765	. 9569	. 4802	.3163	2,0328
3141	881.	450.	406.		1423.	2280.	• 4723	.8437	44859	.3263	2 . 1 1 4 5
2332	723.	352.	312.		309.	973.	4553	0795.	096#*	• 4216	1.895#
1954	929	305.	252.	558.	• 7 6	642.	94415	.5177	44959	.5053	.8732
-+111+	- + B 5	287-	-222-				4346	4882	6484	7	÷6975
1537	528.	. 262.	193.	456.	17.6	473.	. 4244	0644	. 4920	• 5019	.6399
1039	413.	2:3.	131.	344.	25.	369.	4013	. 4455	. 4819.	4980	.5726
(T ¢	372.	197.	113.	310.	35.	345.	.3935	4.599	.4728	. 4957	.6758
487	295	-167	87	254	484	303	-3815	4962	44.32	0 4840	4
0 L *	220.	131	***	195.	378.	572.	.3669	1.6849	• 4155	6879.	10 kg
3 3 0	210•	124.	109	184.	385.	569.	13622	1.6836	.4124	. 6207	.5725
*	180	in C	50.	155.	71.	225.	.3485	.6256	0° 7 C 7 °	6165.	.5851

Resultant Output for Case 4 (Cont'd)

•

> ,

*

Ĺ . ا ا

71

CAOLINE DOUGHO OF ROLL AND A MARKET CONTROL OF THE	こうけい こうしょ こうしょう こうかい こうしょう きょうしょうり アンファイルカン まつかくのかしゅう しょう クライエンのの きょうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうかい しゅうかい しゅうかい しゅうかい しゅうかい しゅうしゅう しゅうしゅう	1 TATA CANADA TATA
		AND THE PROPERTY OF THE PROPER

C	10016 # 100.0	0 (KG-MOL)(DEG) (DEG K)/K	٠					j.	F P A C T 1 O M	FREE	STATE	d. ₩ ₩	DENSITY
Lange Lang	•								- vò	E NOTE			¥	
FE ALONGO 10.0000 10.0000 1.0000 1.0000 1.0000 1.0000 2.000		CAL FORMU								9	Ö		- ·	000
C C C C C C C C C C	4 (10.08900	0	.27800		26400	•	1	# (-12000-0			
CHANGER HARDAT EXIT EX	u ما و		3.0000							0000	19/300.00			000
CHAMBER THROAT EIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT			4.00000	o o	4.00000	ب. د	0000	:		969		ļ		300
CHANGER THROAT EITT EXIT EXIT EXIT EXIT EXIT EXIT EXI			a.	R C E	T FUEL	000.00	E.9.0	S C E	AT10- 1.	977 R	EACTANT		0	
The color of the		'		ı	ť'			1.3	1;		1 X 14)	×	EXIT
1, 0000		CHAMBER			EXIT	E X I T	LLI	EAL		- C	1 6	-6.0000a	1000000	500000
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-6/40	0000	- [1	9	30.00	4	00.00		7260	0	8000	+000	1000.
	N - 4 - 6	37.697	2.	_		• 25	? :	: ;		, ,	`	ा	#58	0
		3577	,			2 - 2	7126-6		5626-5	.0572-	.5109	,9434	• 15	• 1.2
1		2.5464-3		3.6	_	2 5 5 5	C - 57 C - 4	-537	-761.7	-837.	-975	1110.	1140	1203
		0.460	•	~	9868	8 9 8	9.48	.898	.898	999	• 8 •	8 4 8	n l	5
		. 1	•			0	10.0	1.0	.0	1.07	1.07		9	2 . 2
1.1737 1.0542 1.077 1.0459 1.077 1.0734 1.0002 1.0000 1.0004 1.1531 1.7151 1.7	ر د ٤	19.829		7	.715				0000	1.0000	1.0000	\$00.	1,0220	1,0115
1,1720	TOUNT TOUR TOUR	1,02636	ŧ	;	5.22 -1	7700		200	1.000	• 000	.000	. 13	.558	1.312
1.1726	(OLV/OLTIP	1.4234	'	-	, a	. 4	529	5	. 439	447	₹ 100 ±	~ (
STATE 125.4 125.4 1052.4 225.4 785.4 785.1 114.56 131.23 141.456 132.5 125.4	CP. CAL/16) 1K1	101737	;	-			237	*	1.27	267	•	c	~~	41341
FIVEE000 1.000 2.148 2.731 3.008 3.384 4.332 4.800 2.17.66 1331:23 2419.62 997 6248 6248 6248 6248 6248 6248 6248 6248	GAMMA (S)	10176			25.4	G	95.4	25.	a	7	61407	-1 0 G		• •
FIVEC 10000 217.66 131.23 2419.6.9518 11.502 37.553 63.109 217.66 1331.23 2419.62 997 6248 6248 6248 6248 6248 6248 6248 6248	SON VELAMOND	1000			=	•	၀ ၀	.38	.33		•	•		
** FIVEE	AC 10101	?		-		•	0	-	7.55	3.10	17.6	331.2	419.6	976
### 1256	AE/AT		0000+1	~	20 20 20	สา : ก (เ			***	624	624	2.4	7	•
# SECLLB	. FT/SE		6248		624) t	י נוע נוע	9 4		400	.92	900	0.7	2.06
**************************************			. 66B		\$ 5	Σ Γο	9 0	,	163	ø	382.7	4 4 4	+	403
**************************************	+*C++8=:SEC4F		2,000		6 6 6 7 7	# 2 # 8	020	6	3.48	57.	74.	6	9	-
**************************************	, LB-SEC/L		•	:		• . •	,							
*** **********************************	E FRACTION													
. 00002 . 000000				1	2	000	000	000	0000	0000	0	• 0000	0000	-:
.00002 .00000 .00000 .00002 .00003 .000000	· · · · ·			1			C	000	•0000	0000	•	•	0000	•
-00115 -00125 -00192 -00326 -001214 -00941 -	ALH					0026	: 0	000	.0000	0000	•	ì		•
	ALCL	100			24100	0,726	0	.00	• 1000	0000	•		900	
-30052 -00014 -00001 -00000 -000041 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -000171 -000124 -000041 -00000 -0000	ALCL 2	0000	- }	1	60038		ο.	1260	*****	1000		-	0000	•
	7.55	. 2002	.0001		0000	0000	ວ່	3666	•	• •		0	0400	•
3. 65-75. 50004. 50000. 65-75. 50000.	7.0CF	• 0018			Ç,	6 7 CU	9 5	* 0000	• •	• • :		•	S	•
3. COLOG. 60000. 60000. 00000. COLOG. 60000. 60000. 60000. 600000. 60000. 60000. 60000.	HO H	*000*	*000	• •	,56628	2000	3 C			•	.000	00.	0	•
	~	3000	0000	, .	30100		2000	0000	٠	200.	000.	• 0000	(3 (1) (1) (1)	•

٠,

ļ

p.i

Resultant Output for Case 4 (Cont'd)

7.50	10000.	.0000	10000	00000	00000.	00000	36000·	00000	00000	00000	00000	00.30
9	.24530	.24753	. 25130	.24954	.24744	.24308	.22024	.20359	.15134	-08938	.04814	€ 10 °
1000	10000	10000	00000	00000	00000	00000	00000	00000	00000	00000	00000	0000
203	*0910·	.01737	.02175	.02603	.02895	.03423	64450.	.07419	.12645	.18779	.20302	.23735
C2H4	00000	.00000	.00000	000000	. 30300	•00000	000000	00000	.00000	.000.	985Cü*	1000
ď	.01959	.01550	16,000	• 0000	• 00033	10000.	.0000	00000	•00000	• 00000	30000.	じじいしじ・
6.5	-00005	.00001	000000	01963*	•60000•	00000	•0000•	00000	.00000	•00000	00000.	-00L0•
270	£0000.	.0000	• 20000	00000.	00000+	•00000	10000.	.0000	•00000	•00000	00000	-6.200
9	-420004-				-10000 h	-64360	-90006	90000	60000	00000	-60000	10000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40000 40000 40000	400005	40000	00000	100000	0,000.	00000	00000	.0000	•00000	66769.	00000
FECL 2	15000	•00045	.00124	+ CO1++	94100+	87100.	.00148	.00146	.00142	•00003	• 000cc	0000 0 •
FEO	•0000•	#0000*	10000.	000000	•00000•	000000	00-00	.00000	.00000	•00000	.00000	•60000•
FE02H2	• 60001	10000	10000.	• G0000	• 60000	01000.	-0000G	.00000	• 00000	• 00000	.00000	.0000
FE2CL4	.0000	00000.	000000	• 88698	60000.	00000	00000.	•00000	.0000	.00072	.00075	.00378
	15881	604513	-51172-	■00238	02020	400319	00000	00000	00000	000000	00000	00000
10.1	.13522	.14386	.15400	•15454	09151.	.14650	.14363	.14362	.14362	.14403	.14625	6757.
C)	.0000	.0000	000000	000000	000000	•00000	•00000	00000	00000	.00000	.00000	•00000
2	.26816	.27394	.29220	+30257	.30791	.31614	.34103	.35775	.41001	. 46928	. 46828	. 46125
£ 5.0	-14167	.14928	.16178	.16163	•16029	.15690	.13449	.11779	.06554	. 000017	.00422	.00373
,	20000	10000.	.00000	00000	•00000	•00000	000000	00000•	.00000	•00000	.00000	•00000•
P. P.	16060*	60000	00000	00000	00000	90800	•6000	-000000	86088	00000	00000	00000
X 1.7	.00001	10000.	.00000	•00000	•00000	• 00000	•0000•	.00000	.00000	00000	•00000	•0000
413	10000.	.0000	• 60000	00000	00000	- 00000	•00000	• 00000	.00000	•0000	.0000	*0000*
0	.00129	.000,	.0000	00000	•00000	.00000	00000	• 00000	.00000	00000	.00000	•00000
۸2		-08748-	65060*-	+09142	69160.	09200	09216	. 09216	.09216	- 1+240+	.09363	.09746
0	• 50195	.00103	.0000	00000	•00000	00000	•00000	.00000	.0000	•00000	.00000	00000.
NO.	+1510+	10101	100153	-466617	+0000-	108001	100000	-00000	-99966	100000	00000	00000
92	1+000+	.0002	.0000	00000	00000	•00000	00000	00000•	00000	•00000	.00000	•00000
A001 1 100	ADDITIONAL PRODUCTS WHICH	MERE CO	NSIDERED B	BUT WHOSE	JOLE FRACTIONS	CTIONS WERE	LESS	THAN .SO	\$0000-05 FOR	. Y.	ASSIGNED CONDITIONS	NOITION
•			,		;	!	1		-			
	כנר	כנרס	CHZD		N	CNN		CN2	2	73	*	C2H2
	CSN2	C 20	ខ		CLCN	CL02	•	CL 20	FECL 3	Ĭ	HALO	NO W
c i . ·	0 21	100	POZI	_	7 OH	H202	1	NC0 03N	NOCF	70X	Z	- NOZCL
-	+ I > Z	077	400K	_	72	70						•

HCN NO2CL

COTE. MEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Resultant Output for Case 4 (Cont'd)

P VISCOSITY MONATOMIC INTERNAL FROZEN REACTION EQUILIBRIUM CP FROZ EQ FROZ EQ NUMBES COND COND COND COND COND COND COND COND		. 0/F	0000.	PERCENT FUE	FUEL#100+0000	EQUIVALE	EQUIVALENCE RATIO= 1	1.6977	CHAMBER PRESSURES		87.697 ATM	
966.X10-6 535.X10-6 448.X10-6 2701.X10-6 3684.X10-6 44797 1.1614 4478 3075 2 920. 491. 424. 915. 2216. 3131. 4478 3078 2 723. 2216. 3131. 4479 5478 3075 2 6748 4783 3075 2 6748 4783 3075 2 673. 283. 282. 613. 204. 49. 553. 4499 5547 4971 4951 1 674. 4921 128. 283. 221. 504. 49. 553. 44095 4972 4974 5530 4979 1 68. 283. 221. 504. 49. 553. 44095 4977 4979 64815 4979 1 68. 283. 230. 151. 381. 18. 399. 4097 4970 4815 4979 1 724. 129. 66. 203. 93. 297. 3560 1.7139 4141 6525 1 725. 151. 129. 65. 203. 93. 222. 389. 15148 41069 6555 1 726. 129. 65. 203. 65. 203. 66. 203. 66. 203. 660. 3770 600 1.7139 6009 6555	a H H	V15C05177	[- 1	FROZEN		EQUILIBRIUM	1		PRANDTL	PRANDTL	NC E E
\$35.x10=6 448.x10=6 933.x10=5 2701.x10=6 3684.x10=6 .4757 1.1614 .4718 .3047 1 424.	¥	P015E			L/(CH)(SEC)(К)	8 f f 1 1 1 7	CAL/	(\$) {\$?	1	no de de de	
920. 491. 424. 7216. 31314759 1.00468 .4783 .3075 2 920. 491. 424. 723. 2216. 14564613 .6748 .4934 .3584 2 773. 381. 282. 612. 204. 8144949 .5447 .4971 .4521 1 676. 283. 225. 563. 110. 6734947 .4971 .4971 .4971 676. 283. 221. 504. 49. 5534031 .4947 .4982 11 676. 283. 221. 504. 49. 5534095 .4970 .4982 .4984 .518 676. 283. 220. 151. 381. 27. 3994095 .4970 .				,	1	4-01 x 10-6	-	1014.	1.1614	. 4718	.3047	1.9347
920. 491. 424. 715. 723. 723. 1456. 4613 .6748 .4934 .3584 2 773. 381. 342. 723. 204. 814. 4499 .5447 .4971 .4521 1 676. 328. 226. 613. 140. 673. 4499 .5447 .4963 .4952 1 676. 283. 221. 504. 49. 553. 4931 .4947 .4947 .4963 .4985 .4985 .4986 .4987 .4988	۲.	7-01 K • 996				1916		.4759	1.0468	.4783	.3075	2.0181
773. 381. 342. 723. 723. 131. .4449 .5447 .4921 .1963 676. 328. 282. 282. 563. .4449 .5583 .4963 .4963 .4963 .4963 .4964 .5147 676. 283. 221. 564. 49. 553. .4977 .4944 .5147 85. 151. 128. 381. 18. 399. .4095 .4977 .4978 .4978 408. 211. 128. 339. .4002 .4470 .4978 .4978 229. 137. 66. 203. 93. 297. .3706 .7153 .4177 .5530 216. 129. 66. 203. 93. 297. .360 1.7153 .4177 .5530 216. 129. 65. 203. 93. .3540 1.1485 .4069 .4069	ru)	920.	• 1 6 *	424.	9 2	10177	- 1 1 1 1 1	4.613	6748	48644	•358+	2 • 1 9 0 6
676. 328. 282. 613. 190. 673. 14424 5283. 1463. 1494. 5147 632. 283. 221. 504. 149. 553. 14947 14947 1494. 15147 63. 230. 151. 381. 18. 399. 14095 1497 1497 73. 230. 151. 381. 18. 379. 14095 1497 1497 83. 27. 346. 14095 1497 1497 1497 83. 27. 346. 14002 14470 14816 1497 821. 158. 27. 319. 137. 1497 1553 1177 15530 229. 157. 257. 277. 1497 17153 1177 15530 1177 15530 1177 15530 1177 15530 1177 15525 1566 17153 1178 1178 15655 1578 15	5	773.	381.	342.	723.		• · ·	2 2 2 0 0	.5447	.4971	. 4521	1.5462
576. 283. 221. 504. 49. 553. .4095 .4947 .4948 453. 230. 151. 381. 18. 399. .4095 .4095 .4971 .4985 408. 211. 128. 339. 27. 366. .4002 .4470 .4976 321. 178. 27. 319. .376. .376. .376. .7153 .4177 .5530 229. 137. 66. 203. 93. 297. .3766 .7153 .4177 .5530 216. 129. 65. 181. 377. 567. .3660 1.7139 .4141 .6525 191. 222. 389. .3544 1.1485 .4069 .9655	500	676.	328.	282.	563	1100	673	- R 2 # H 4	5283	4862	4863	-1500-1
576. 283. 221. 504. 47. 399. 44095 4932 4871 8885 453. 230. 151. 381. 18. 399. 4002 4470 4810 8979 408. 211. 128. 339. 27. 366. 4002 4470 4810 8530 229. 137. 66. 203. 93. 297. 3706 7153 4177 6530 216. 129. 62. 191. 377. 567. 567. 4069 4069 4069 4655 191. 222. 389. 3544 1,1485 4069 4665		1 1						1 (1 , 1	4947	3767.	.5147	.6827
#53. 230. 151. 381. 177. 3864002 .4470 .481C .4979 #08. 211. 128. 339. 27. 3464002 .4845 .4177 .5530 229. 137. 66. 203. 93. 2973706 .7153 .4171 .6525 216. 129. 62. 191. 377. 5673660 1.7139 .4141 .6525 216. 129. 54. 167. 222. 3893544 1.1485 .4069 .5655	ş	576.	283.	221.	504	F		1000	4392	. 4871	1985	.6613
229. 137. 66. 203. 93. 297. 3706 7153 .4177 .5530 229. 137. 65. 203. 93. 297. 3506 7153 .4177 .5530 216. 129. 62. 191. 377. 567. 3560 1.7139 .4141 .6525 191. 222. 389. 3544 1.1485 .4069 .5655	۰.	4534	230	151.		27.	366.	* 4002	4470	84. D. 84.	• 407	•6739
216. 129. 62. 191. 377. 567. 1360 1.7139 .4141 .6525 191. 13. 54. 167. 222. 389. 1544 1.1485 .4069 .5655		324	137.	99	272.	93.	297.	.3706	7153	4177	.5530	.4523
	60 (.	2160	129.	4) El EV 3+ E 8-	191.	377.	567.	*3660	1.7139	1715.	. 5655 . 5655	.5354

ď

. 1

Resultant Output for Case 4 (Cont'd)

1376972202 15202540 125026401 1250	7.00	٠	ָבָי בּי	0 3 1 0 0		26.56	
1989 1989)) ()	2 2	4 U	() () () ()	X 2 C		
149899130		•		0.	•	0.	0.
10117705 10117705 10117705 1011705 101	7563738+03		52025+6	316876+0	1 80	2739130	0000000
****177****52***************************	-4989233+DD	40	~	4020671-0	563768	592	
755.77586.02	-9428998-32		5	.6356326-06	0-0		.14366A2+00
**************************************	.7031177-05	.3396975+00	1355033+00	.3444960-03	0	•	
31174-02 ***147578-03 *********************************	7563738+63	4	+1102806404	-3316876691	2108425	0 0 6 6 6 8 9 6	104#100001+
137478 1	4999204+00		4478939+00	.3734105-03	•	4359248+03	143484641
135736013 135731201 175731000 1757310001 1757310001 175731001 17	7318/1-944 401	- 20+9/4-00+	- 10-135601	414189914103	70-0916616		1111111
1207476 126	• •		-	2314876411	10.0004.1.1.		.2192553+01
######################################	00000000000000000000000000000000000000			.3792524-03	9720358+03		
117(476465 4051137-00 -1018057-01 -199912-03 -1018050201 -199912-03 -1018050201 -199912-03 -199912-	-9474387-02		1243209+00	1173380-02	350565-03	5475932-03	1843440+00
**************************************	-1370478-05	.4031337+00	10-228602.	. 9949192-03	.9212702-01		ı
13497760 13497760 1349784603 134978403 1349784603 1349784603 1349784603 1349784603 134978403 134978403 134978403 134978403 134978403 134978403 1349784603 1349784603 134978403 13	7563738+03		681	2316876+01	2168739+02	159792+0	2630043+01
177561-06** 10011182-00***********************************	.6454377+00	9311	1319709+01	. 6993245-03	1046507+04	.4359248+03	
-447720-1-06 -414220-00 -445294-03 -19474-01 -1928091-02 -197336-04 -19220-00 -200824-03 -1940776-01 -19407736-04 -19220-00 -200824-03 -1940776-01 -192736-04 -19220-00 -200824-03 -192736-03 -192736-04 -19220-00 -200824-03 -192736-03 -192736-04 -192736-03 -192736-03 -192736-04 -192736-03 -192736-03 -192736-03 -192736-03 -192736-03 -192736-03 -192736-03 -192736-03 -192736-03 -192726-04 -192726-03 -192726-0	-9701081-02		.1606201+00	.9068643-02-	1203698-0	47004136-03	
### ### ### ### ### ### ### ### ### ##	4477561-06		.5509359-01	.1228891-02	.9422703-01		
945920**********************************	7563738+03			2316876461		***************************************	-3086746+0}
**18015GT02	.6359320+00	2808	.1446776+01	.4389527-03	1077336-04	.4359248+03	4
-2137062703 -376932200 -516460901 -1525018002 -75549364-01 -155021061 -3160224901 -156021901 -1560224901 -1560224901 -1560224901 -1560224901 -1560224901 -1560224901 -1560224901 -1560224901 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -152944401 -15294401 -15	.9836150-02	20	.1763356+00	+1382/13-01	*1687723=04		+59584#10
\$563738+03	*2334062-06		•	. 1252018-02	• (
0	•	37697			2240571402	- 19+1200c11+	3426542+01
7 7539464-01	00+/50/214*		10.071.11.1.	1010111100	# 0 / 4 C T T T T T	201012121 2010121	.15949384
7539464601	10 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	30000	3 * * * * * * * * * * * * * * * * * * *		971174		
C .2272465 0 .9039898-0 .3758624-0 .119303604 .4359248-0 .301165654-01 .2263195-02 .317829-02 .310162800 .1266800 .2272465 0 .3982703+0 .4559248-0 .2272465 0 .3982703+0 .4559248-0 .2278453501+0 .2278451-0 .227	10 - 8 5 6 6 6 6 6 6 6 6 6	46014	. 0 0 1	20-1-0-7318 	10-04-96-6-4-6-4	8441840	17-8141414-
.0043556-01 .1165654-01 .263195+00 .3477145-01 .4775039-05 .8160768-03 .0000000 .3982733+01 .2525184-02 .3127628-02 .310028+00 .223454405 .223454405 .223454405 .223454405 .223454405 .223454405 .223454405 .223454405 .223454405 .223454405 .223454405 .22344559-02 .22789248-03 .22789248-03 .22789248-03 .22789248-03 .22789248-03 .22789248-03 .22789248-03 .22789248-03 .22789248-03 .22789248-03 .225563-03 .1225855-00 .1224628-03 .12258596-03 .1224628-03 .1249248-03 .225563-03 .1225896-03 .1249248-03 .225632-03 .12492248-03 .225632-03 .12492248-03 .225632-03 .12492248-03 .226482-04 .238248-03 .2386762-03 .124822248-03 .226482-03 .226482-03 .2386762-03 .2		4	•	3758624-D3	#U-98036-1-	4359248+0	
\$302512+00 \$3025000 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$3025000 \$302512+00 \$3025000 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$302512+00 \$300000 \$3000000 \$3000000 \$3000000 \$3000000 \$3000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$30000000 \$300000000		5	.2263195+00	3477145-01	.4775039-05	.8160768-0	
\$302512+00	0000000	27	.5575718-01	,1917929-02	.1010628+00		
\$302512*00	7663738+03		* 4535921 * 63	+2316876461	2373454402	+1206837+01	-4662552+01-
. 1061660-013344559-02 .2278921+00 .4081220-01119664-05 .8321213-03 .53744934+60 .40592832-01 .3011109-02 .1622885+00 .1622885+00 .1622885+00 .4359248+03 .5539465-02 .32318936-01 .22480573+02 .4359248+03 .753946-03 .9643067+00 .32266464-01 .1036589+00 .4359248+03 .4359248+03 .1261278+00 .1624085-01 .1036589+00 .1261278+00 .1261278+00 .1054005-01 .1036589+00 .1261278+00 .1261278+00 .1054005-01 .1036589+00 .1261278+00 .1261278+00 .1054005-01 .1036589+00 .1261278+00 .1261278+00 .1261278+00 .1261278+00 .1261278+00 .1261278+00 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .12612770-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .1261278-01 .2266598-00 .2266598-00 .2266598-01 .2261278-01	. 5302512+00 .	584	.7948053+00	.3127628-03	1220947+04	4359248+03	
.0000000	-10-0891901.	455	.2278921+00		-1119664-05	6321213-03	1617497+C
\$198346*03	coccoo		9.	• •	•		
0	E0+8675957*e	9	631953403	13166/6401 	20.67.00.45.	- :	
0 1264152-03		1682	•	.3225603-03		43572484	14075184
0 1264152-03		478340	1261278+00	1054045-01	1036589+00		
G .1264152-03 .1312575401 .3867612-031330938.04 .4359248.03 -1861082-06 .1977058400 .78974953-01 .97601000142715401 -1861087700264616.002316874031-012748220402142715401 -1165517-032640326.038315707-0100000009645144-03 -1521438.00226598.038315707-01983328402133297.01 -7539464-64226598.032316876.01283328402133297.01 -00000002062919.009564134-031372651.044359248.03 -00000002062919.00966000966000966000966000966000966000966000966000969000969000009690000096900009690000009690000009690000000969000000969000000969000000969000000969000000969000000969000000969000000969000000969000000969000000969000000969000000969000000096900000009690000000969000000096900000009690000000969000000096900000009690000000000	EG+5E/E45/44	63-03	282	2316876+01	2689030+02	=	6923687+01
01 .6724682-06 .1977058400 .7837445-01 .0000000 .9433831-03	· 529C227+CG	-	1312575+01	~	1330938+0+	435924	
1861087*00 **2040166*00 **394983-01 **7761839-01 **172715401 **2 0 **1165517-03 **134568*01 **393624*03 **134762000 **4359248*03 01 **1165517-03 **134568*01 **316524*03 **134762*04 **4359248*03 01 **1513244-06 **1960788*00 **316376*01 **78826*01 **9645144*03 01 **753944*004 **2285598*03 **2316876*01 **2883328*02 **1133297*01 **887701 *	.1202837-01		.1977058+00	. 7837445-01	• 0000000	33831-0	
0 -1165517-03 -2640326+03 -2316876±01 -2244220±02 -1142715±01 -03165517-03 -13494762+04 -4359248+03 -134968+01 -220520±02 -1960788+00 -22067600 -394956+01 -39496+01 -39496+01 -326949+03 -1318976+01 -389444-64 -2265598+03 -2316876+01 -2883328+02 -1133297+01 -03 -9707645-04 -1217187+01 -3554134-03 -1372651+04 -4359248+03 -3554134-03 -1372651+04 -4359248+03 -3554134-03 -1372651+04 -4359248+03 -3554134-03 -1372651+04 -12171866+02 -3554134-03 -1372651+04 -12171866+02 -3554134-03 -1372651+04 -12171866+02 -3554134-03 -1372651+04 -12171866+02 -3554134-03 -1372651+04 -12171866+02 -3554134-03 -1372651+04 -3554134-03 -355	00000000	~	.2040166.00	.3994983-01	.9761839-01		
0 .1165517-03 .134567-01 .3736727-03 .1347627-03 .7545144-03 01513244-06 .1960788+00 .8415773-01 .914826-01 .9645144-03 015234438+06 .226598+03 .2316876+01 .2883328+02 .1133297+01 01 .9707645-04 .1217187+01 .3554134-03 01 .0000000 .2662919+00 .49699*7-01 .0000000 .1011566-02	2563738+03		42640326403	42316870101	77	1035172411	13.7758174
.15194349-64 .2266946-00 .5415713-01 .9314826-01 .133297+01	DD+Deels+**	- :	_ ^	67.57.75.	- 1	0-44-5446	-1871591-
-7539464-64 -2285598-03 -2316876-01 -2883328-02 +1133297-01		1 3		5415713-01		•	
0 -9707645-64 -1217187-01 -3554134-03 -1372651-04 -4359248-03 -176561-04 -4359248-03 -17664-02 -17664-02 -17664-02 -17664-03 -	0300300	761.0	1187-040 TO BCC		2883328+02	.1133297+01	I SALALES
-01 .0000000 .2062919+00 .89699**-01 .00000000 .1011566-02 .196**77	00-1891266	.9707	7,		1372651+0	- 3	
	128775		2002919+5	969	*000000	.1011566-02	.196447743
	10-20/-071	000000					

Resultant Output for Case 4 (Cont'd)

ALC.	ALCL	A L	V V V V V V V V V V V V V V V V V V V	A CONTRACT	AL022	(0)
N T	TOH HCT	12	H 20	e HZ	7 0 1	N 2 N
0.	0.	0.	0.	0.	0.	0
!	2 :		.	~	~ * I	3
-1662248+03	,3769732002	*2523549+04	*2641502*21	.2093427+02	.1234515+01	-0100000.
.4582123+00	6580-63	+5351739+00	.8790749-03	1662746+03	*4359248+03	
.1760368-62	.3346199-02		. 97+1932-03	.1206483-03	.2517351-03	3
•2279352-G1	• 000000	8C5887-0	+1216908-04	145/23-	2	() ;
.2473379-62	.1517709+00	. 3002 301 + 00	00+0690991*	17312/2-04	<u>.</u> د	;
いっちゃっとりいうかん	2087385402	2260341464	10+2031,92	20405#5802	-	-+ 9999874 + O.
9894734	5243	i un		2930988-03	4359240+	
.9295363°	.2751438-62	*	~	9	.1266052-03	.251555
13-5818353	• 0000000	335	8	4 B B C .	.2993611-05	.4391096-07
.9452126-93	11490983+00	50	ő	66029-0	,2222973-25	,9160136
1.	- 1				,	
n : 1	732	1 C	,	30440470		+0+0+0+c+2+-
, , , ,	~ 0					4 4 4 4 4 6 6 6 7
70170 TO 180 TO	0000000	20-0766224		47443	93-9160551	1347693-
#U-689864*	. 1430173+00	, ~,	1535342+00	50-8906384	0000000	92141
.2639749-06	,					
	*1256577*01	*1262657+04		187357+62	10480E	- 578+6+7+E:
• 4582450 • CO	0785-03	+4381370+00	$\boldsymbol{\alpha}$	154.	•43592484C3	
.2913607-67	.6870374-05	20-500-50-50-50-50-50-50-50-50-50-50-50-5	-10-8940607		c (7 6
10-56EA935+	00000	01117824-00	0000000	~ (3 C C C C C C	93-7997506
*3.61.919	1436219+00	. 1392353400	00+7047961.	6067	∆_∂360A•	
	-7539463490	-1131757*94	10+2651701	2107371+02	194125022	16+1658608
. +982418+50 .		+442884B+DC	.3773834-03	8090325+03	9248	
0000000	. 1033837-05	4255	• 00000000•	0000000	• 0000000	.2106087.
10-+6/11/0.	0000000•	.1260993-07	•0000000•	13142-0	• 000000	.2569584-05
10-090aLh0.	.1436169+00-	-3507217+00		-1279010-04	• 000000 · ·	*4215155
60000000	. 1140111	- C0+01-1-04-0-1	104502445		1240915401	151241460
EC+10 40 40 40	1821281-01		1507614-03	8778451+03	60+83050mm	
	5565892-07	9426679-02	0000000	*000000	0000000	.19130161
.8648955-01		a	•6000000	.1451504-02	0000000	.1342216-04
.0000000	. 1436184+00	. 3706315+00	.1054988+00		• 000000•	.9215072-
300300°	.76.10 4	1	1046051876	42108128402	-1936658+n1	461259040
10 - E 17	10.96496.01		- 3	+0.693.04	.4359248+D3	
					.0000000	.1376347
140872400	7589053-06	0000000		6480552-0	0000000	.4155835-03
	. 1436614+00	4244859+00		.5126752-04	0000000	.9217421-

Resultant Output for Case 4 (Cont'd)

1
.000000
.4461110+00
. 6.98975+61
1,602553+0
49721170-0
.000000
.4566094+00
*39270C7*03
•6351563+00
11022956-0
•0000000•
.4386803+00
3507314+63
.6993554+00
9-85186074
•0000000
.4176481+00
2851196+03
.1240641+01
10-0898801
0000000
3445272+00

Resultant Output for Case 4 (Cont'd)

	3					•					+1179931+01 +6000000	*4359248+33	++47504-03	.9362496-05 .174209	+53770C-04	*198C203-04	. 6799682-01		1000000	かい こく こく こうかい マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	/ * 10 10 10 10 10 10 10 10 10 10 10 10 10	071000000000000000000000000000000000000	76			225498+61	*4359248+03	.2793984-C5 .180088	.3487733-66 .237307	4-20-25-95-95-95-95-95-95-95-95-95-95-95-95-95	50/867* 90=69065/0*	10-/567214°	0+040-1946+ 10+28-04-0	. 4.059248+03	5 + 9 H B 9 1 - 6 2	.3610234-67	- 9C-8569E*	4996306-07		6 .91E2346=01	. 9182346-01	.91K2346-01 -1250Z28+01	.91K2346-G1 -1250728+G1 -4359248+G3	.91K2346-61 61250728451 64359248-63 6000000
ALCL	93	14 14	NCL	0		•	2				+2020825+02	.4366310+03	0-858tft+	.24892:940	.5295637-0	0.1431325.0	.7181845-0		φ. Φ.	~	0=25557; •	0+07/4047*	20110	47975	10110	0.08633940	.206	.1231441-0	.2512822+0	0-1264444	1 (7	2099746+0		. •	.2473286+0	.2626279-0	11494502+0		0-0818844		•4788180-0 •4788180-0		4
PTC:	ALZ0	נר?	*	M H Z	:	•	· > · · ·			:	.2841597+C1	2115-6	#	*1156668-04	+2276880-04	.3896054-01	50-6194468		4+	25-415422.	20-1892991• · ·	# 0 # 1 m 0 m 0 m .	0-170125	72995		, - sec		``	3451490-05		7262134-0	2203250-0	441597	6416247-0	, ,	.2015587-06	•146636C-06	8 2	201040-046	つりつてなって		1597±01-	5766	#1592±01- 576637-03 1346595-03
? ∵ ₹	At 32	0 1	FE26	242	•		r		£ ,		3608194	\$560.250*	£85££6	•	.3596266-35	000000	00354	:	#6*1966# 1	43676	. 29~6424345.05	50-055740.	4	00000	9.00.00.00.00.00.00.00.00.00.00.00.00.00	•	5669	•		*3528476-07	000000	230537-0	4		100:870-03	125076	0000000	0000000	4	ò	è	10,	**************************************	7097 7097 8819 3152
9 1	41.02	ָר יָּ	FE03	Z		•			H 2		732	5039-	7667	2	42840	87343	6230678-05	1720780	4 3 8 C +	_	<u>-</u> :	777	643867	4	99544961	.7476643-0	.723	; =	8	ap :			4 4 4	426	7 7 7 7	٠.	. 1	2472			, .	.0000036	3010	000000 000000 000000 00000
• i 4	I 2 4	37.70	FE0	7.20		7					UI •		3:12	7	,	-100075	0+143	0-4210		00.75.00	0-1-250,	0-1-02/9	CD.	D-187	0+/486/2	•5637412-0 159247-13	421639	3387878-0	1863053-0	000	0-77	630845+3	0	50-44-16-6		*D-145062**	0000000	257456	0+449909		90	90	.272C610-04 .4353247+03 .5113287+00	.272C619-0 1532#7*03- 5113287*00
	ALM ALC ALC ALC ALC ALC ALC ALC ALC ALC ALC	ALM ALG	ALM ALCL ALCL ALCL ALCL ALCL ALCL ALCL A	ALM ALCL ALCL ALCL ALCL ALCL ALCL ALCL A	ALO2 ALO2 ALCL ALCL ALCL ALCL CO COC COC COC COC COC COC COC COC C	ALUZ ALCL ALCL ALCL ALCL CO COC. COC. COC. CC CC CC CC CC CC CC CC CC CC CC CC C	ALM ALCL ALCL ALCL ALCL CO COCC COCC COCC C	ALUZ ALCL ALCL ALCL ALCL CO COC. COC. COC. CC CC CC CC CC CC CC CC CC CC CC CC C	ALM ALCL ALCL ALCL ALCL ALC CO COC. COC. CC CC CC CC CC CC CC CC CC CC CC CC C	ALM ALCL ALCL ALCL ALCL ALC CO COC. COC. COC. CC CC CC CC CC CC CC CC CC CC CC CC C	ALM ALCL ALCL ALCL ALCL ALC CO COCC COCC CO	LUCH ALCL ALCL ALCL ALCL ALCL ALCL ALCL AL	ALCH ALC ALC ALC CO CO CO COC COC COC COC COC COC COC	LCH ALM ALCL ALCL ALCC CO COCC COCC COCC COCC C	LOH ALCL ALCL ALCL ALCL ALCL COCC COCC COCC	LCCH ALCZ ALCZ ALCZ COCC COCC COCC COCC COCC COCC COCC C	LCGH ALCZ ALCZ ALCZ COCC COCC COCC COCC CCC CCC CCC CCC C	LCH ALM ALCL ALCL COCCL COCCL ALCC ALCC COCCL COCCL COCCL COCCL COCCL COCCL COCCL COCCL COCCL COCCL COCCL COCCL COCCL COCCL CCL	LCH ALM ALCL ALCO CO COC COC COC COC COC COC COC COC C	LOH ALH ALC	LCH ALH ALC	LCH ALH ALC ALUZ ALZO COCC COCC COCC COCC COCC COCC COCC C	LCH ALUZ ALUZ ALUZ COCC COCC COCC COCC COCC COCC COCC CO	LCH ALH ALCL ALC ALC ALC ALC ALC COCC COCC CC CC CC CC CC CC CC CC CC C	LCH ALM ALC ALC ALC ALC ALC ALC ALC ALC ALC ALC	LUM	LU	LUM ALM ALCL ALCL ALCL ALCL ALCL ALCL ALCL	LUM	LUN	100	LCH ALC ALC ALC ALC ALC ALC ALC ALC ALC ALC	1004	### ALCL #### ALCL ##################################	ALCOHOLOGO	H2	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ALCO	Lange	H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H	1,	H2	H2	HZ

(Cont'd)
4
Case
for
Output
Resultant

1579295+60	0000000	0000000	.1269429-05	7263640-67	.9201865-01	cronona.
8782-C	00					
2007	3		584+585+01			一古です。かけるのます
-	.5281425-03	v	.4725370-03	6306133+03	359242	
0000	• 000000	.257889U-04	. 3235589-03	. 9034052-02		+3713656-0+
22172	6600000	.2632357-35	0000000	.2375035+00	.000000	10-61112-01
000000	•	0900000	0000000	.2278036-07	00000	-1-77-21-02
	71/8/17	.2517966-07	.2499562-04	.1440307+00	00000	+32%502*+00
1611403-00	090000		ቀ	300000	21334	6000000
59247-03	3946	41089138+	+2841597+D1	2107342+02	•1268522+G1	10+8645454
11100	; ;	+964344	3694616	779647	35974R	•
		7	90 010110			70000000
	0010000	Danna	7	30-8141314		· ·
00000	000000	000000	0000000	00+87/4603*	000000	10-010-01/0
000		0000000	0.000	۱ ا	200000	
000000	0000	· 4667//0-00	1383116-07	143615	0.0	4355566/400
20102	0000000	6000000	50+51/5+01+	0000000	5 C T 7	0000000
0000	S					1
14	.3769732-61	•9425273+03	.2841597+01	210735C+02	796	10+484484
00+46775644	. 3721050-03	•4598876+≘ŋ	.3451979-03	•	.4359248+03	
0001110	*000000	6540000	1926318-03	•	*000000	2200000
	00000000	9000000	• 0000000	.1856252+00	•0000000•	.9215891-01
3000	00000000		00000000	- 0000000	0000000	1473133-02
10000	• 0000000	.2699704-05	• 0000000	.1436149400	00000	·3757;59+00
* + 2 4 /	.000000	. 0000000	- 5303138-05-	0000000	- 9215589-01	0000000
	.000000	•	1	•		4
45424	1539463-02	-6866477463	10.76	*2107861402	*+236233+9+	++0+584+20+
. 41.34732+00	.2950794-63	.4961691+00	.3025153-03	1016549+04	.4359248+03	
9000000·	• 0000000	• 0000000•		20-06/8276*	C)	000000
00000	•000000	•000000•	• 0000000	•13C4331+30	•00000•	1470185+00
0000	0000000	0000000	0000000 •	500000	35030	E0-E#62266
	0000000	.2405710-03	0000000	4.0549	000000	4306370400
91169	6000000	P000000		0001000	10-285/174	0000000
000000	800				. 6 2 7 .	
100/2/405			104/461484	70.471141174	100/00/05	104cac770a+
*********	9 1	10+554961•	£0-1857716*	*3.0+0.7511•1	2760	
3	0000000	000000	• • • • • • • • • • • • • • • • • • • •	79-172-194-	000000	
	0000000	0000000	000000			1495248408
40-40-40-40-40-40-40-40-40-40-40-40-40-4	0000000	200000000000000000000000000000000000000		1444609400		4666960+00
	3 6		10000000000000000000000000000000000000		່ ທ່	
	> =	2222				
17247+	5		2041597+01	2186676+02	-1121162401	B# 8862+01
256803+1	.2096428-03	.1683582+01	.5686518-03	1166413+04	.4359248+03	
000000	960000	9060909	0060000		0000000	0000000
00000	• 000000	.0000000	0000000	. *476AZI-01	• 6000000	.2189178+00
22772		0600000	0000000	•000000	0000000	
93096	.000000	.7636795-03	0	.1490210+00	•000000•	.4639650+00
S	0000000	0000000	.5244972-04	• 000000		• 0000 oo
00000	000000					
#04/#24.50 ****	### 1000 1				4159248401	
		00-21-02-0	50-00000000000000000000000000000000000	10-555577		
	0000000	0000000	900000			
000000	200	000000		10-00-00-00-00-00-00-00-00-00-00-00-00-0		A7-7009041
サイン のせい いいけい	7.70000	.7925303-03	000000	.1539842+00	0000000	00-146-65F
					10.100	
72-57 20617	3,33200		CO-/-/-		-	0 0 0 0 0 0 0

Resultant Output for Case 4 (Cont'd)

C4 EHN ZHN 0. 0.		0+01 +1982916+02 +11719	.63 .6350372+03 .	42452998+00 +1166047+0	7366891-03 .6207950-0	~ r	- 0 + c y : c c - c c c + c x	7+03 .43592	34 .1367	0 - 0 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	1355632-0		+1202397+01	4359248+C3		0-P626101.		-1232027+01	+4359248+03 -8248642=04	.9511653-07		**************************************		4359248+03	77.	.3194120-0	.609899-04
EHW D		9162861. 1082916	12 .635037	,24529	3668	3521	ď	* C3 3 +	+0+1	0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0	00+	- 0.5 -	٠.	203	، ي	1		1									
N .	y	•	20.0	4 4		•	76011	- 10	71675		4086	57644434	71496+	.6362667 .383648	51301		1673 3	202	3149984+D3	.2495366+00	2590	.984173-04		-4157422+03	.3723212-02	.2474420+00	40-62-716-
	:	.287859	.3683903-0	1330929	0-61	• 5080807-101 • 5080807-101	. a	13065370	.125208#	#D-5285271.	513150		9859	56191°02 917626-0	. 0	00	6442764-0	*2898596+01	9146	2444	537	.8450266-07		4726386-03	559092-0	0-146191	. 4975531+03
0 . 0 .	I 7	.3577445+04	51364+0	54142	1833198-0	ᲔᲛᲔᲛᲛᲛᲜ Მ275324−Მ	•408397 •408397	,	450430430405	.6772983-13	0000000		٠,	.6747985+0G .3997242-02	.5562425-03	. 6600000	5587857-07	**2175088*04 · · ·	.5446834+00	.3311282-03	•000000•	0000000	*5169419-05		.1552376-5	1519	
2 O	42	+3769732+02	0-11-0-19	357893	7-6	17380-C 87846-0	13511		# 1 # D @	866 62		0-64014	9732+0		.4278853-C5		1348413-06	•1533846-02 •1256577+61	S, i	90	75517-0	78275-6	1689	39463	2341599	724370	. 3296726-03
0.0		CC+21+9+E9.	46845+00	310748-0		91-0	0 - 8 -	ሳ 13 ጋ ቀ - 3	1 -2 -2 7 1 -0	ないかない こしょ	2000000	1 + 3 5 7 8 6 + 6 0 - 3 8 7 8 1 1 1	46412+63	54015 +00	758863-0	0000000 6843326-0	1617807+0	0 + 4 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +) •		780	3454724	.2021826	434704	. 5675 356 . 5676256-57
0	. 0.	0.	H2 H2 H2 -45412+93 -3769732+92357	H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H	245412+23	H2 H2 H2 H2 H2 G46412+93 -3769732+92-7 5046845+00 -536845+00 -131374°-03 -131374°-03 -1358677-04 -131374°-03 -1358677-04 -141374°-03 -1458677-04 -1458677-04 -1458677-04 -1458677-04 -1458677-04	#45412+93	245412+03	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #	#464124-00	# # # # # # # # # # # # # # # # # # #	# 54 12 + 23	## ## ## ## ## ## ## ## ## ## ## ## ##	### ### ### ### ### ### ### ### ### ##	######################################	24412+00 246412+00 2546845+00 2558637-63 25586647-40 25586647-60	0.00 24412+00 254412	### ### ### ### ### ### ### ### ### ##	0.00 246412+00 2666445+00 2559634-60 2559634-60 25505666-00 2550666-00 25506666-00 25506666-00 25506666-00 25506666-00 25506666-00 25506666-00 25506666-00 25506666-0	245412700 2645845700 2759597702 2759597703 2759597703 275959703 2750597	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	0 00 00 00 00 00 00 00 00 00 00 00 00 0

(Cont'd)
Case 4
for
Output
Resultant

.9647754-07	+3-65D91++.					
	A0712602	13-149021-07	2898596+01	2040771016	11248329+01	.3384292+01
.5146682+00		04946593+00	.5533381-03	*•5373824+03	.4359248+03	
0000000		3842927-03	-1416561-02	59.	•	14145268-03
*15290r1=04	000000	3807	.3712160-07	.2430831+00	0000000	.3422911-01
	7122	00000	.3186651-07	+5619659-06	. 6683589-07	*1475009-02
0007000		0000000	.1863991-03	.1464963+00	1992	Ļ
00+91249514	0000000	6650060	* 0000000	**************************************	46175149=07	10-0100026-
•0000000	_	0000000				
.6346412+03	37464-61	.1239137+04	.2698596+01	2107317+02	73544+01	.4332054+C1
.4985357+00	.4529474-63	00+1581664.	*3996244-03	7616922+03	.4359248+03	
• 000:000	• 000000	Ö	.1969111-04		0000000	
•000000•	0000000	.2273234-07	0000000	.2202908+00	• 000000	10-0069765
10005000	€ 5 8	000000	000000	00000	0000000	
	,	.7028104-07	.8474228-06	1436339	0000000	00+10001464
•1344966•00	() ()	•000000	0000000	1 / 2 7 7 7	• • • • • • • • • • • • • • • • • • • •	
• 0000000	u	.000000				
S	\sim	*0.40689	78596+01		1267394+01	10+464644
30+842626+	^	00+5/969***	.3658262-03	#•8367603	• 4357248 • 03	
2000000	Ç	900000	50-17000	200/00/24/2	999999	
0000000	000000	0000000	• 0000000	00+0145607*	000000	
			1000000	1434155400) (
1177905400	<u>י</u>			9321324-06	0000000	1 (2
١ د			•			
43441340) о	2311555403	389859401	2107407402	-1941940461	5020422401-
00+1690884	.3213768-03	00+1/85+84+	.3190706-03	-,9750578+03	4359248+03	
•0000000	000000		• 0000000•	*9426750-02	0000000	C000000
•0003500	.0000000	.0000000	0000000°	.1513421+00	0000000	O
6000000	00000000	0000000	0000000	0000000	60000000	
• 6965300	• 000000	.2991052-04	• 0000000	.1436188+00	• 0000000	Ü
	ç	000000	0000000	2432948=05		4215836+01
.0000000	0000000	0000000		7000000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	706.13240.
EC+2149L	7 7 7	*** **********************************				
00.57.0566	•	004//561/	50-075607	•	*D.017466**	
0000000	0000000	0000000	0000000	8937745-01	000000	1872870400
709000	Opposo.	000000	0000000	0000000	000000	40-29123WE
	, c	.7241634-03	0000000	.1440277-00	0000000	.4692845+00
.6166081-02	00000	0000000	•0000000•	. 2802303-04	00000000	9240794-01
	• 000000	.000000				
.6346412+03		-4584027+03	2898596+01	2146061402	1122473+01	
• 6525379+00	•2166765-03	1713851+01	.5674959-03	**************************************	~, ,	
20000	*00.0000	000000	8008000	1002261	000000	203018240
	၁ (202200		10-7//6/804		7.76.00
70=/00F0000 · ·	3 C	7443044	00000	1462531400		4687766+00
		501010000		444		9.38.326.0
)	000000	000000		•		
6346412+63	4	43995016+03	2898596*01	*2229051402	1010908611	- 9519925an1
365508	3325	1148547+01	.3885959	-·1203464+04	.4359248+03	
• 2002000	0000000	.0000000	0000000	- 20-1689766	00000000	000000 · · · ·
	.000000	•000000•	0000000	,1858052-01	•0000000•	.2372927-00
10-0767681.	0060300	0000	6000000	000000	000000	275
0000000	• 0000000	.7811675-03	0m0c000•	519087	0000000	6125#4
-37315C6-52	. 0200020	2000000	0000000	**************************************	*2000000	4974566E=31

Section 3

REACTING AND MULTIPHASE (RAMP) COMPUTER PROGRAM

A precise knowledge of local flow properties in nozzles and exhaust plumes is necessary for performance, radiation, attenuation, heat transfer and impingement analyses. The reacting and multiphase (RAMP) computer program is designed to give detailed flowfield information in the supersonic region of a reacting multiphase two-dimensional or axisymmetric flow field. The boundaries of the flow field may be solid such as in a nozzle or "free" such as in a plume. The analysis may be utilized therefore to predict performances as well as plume characteristics of a given engine system. A printed record of the program results is given for user inspection while a binary tape is provided for subsequent manipulation by other analyses. A transonic solution taken from Ref. 7 is also provided internal to the program.

The flow of a gas-particle mixture is described by the equations for conservation of mass, conservation of momentum and conservation of energy. In the gaseous phase the state variables P, ρ , R and T are related by the equation of state while for the particulate phase the equations are for the particle drag, particle heat balance and the particle equation of state. Development of these equations is based on the following assumptions:

- 1. The particles are spherical in shape.
- 2. The particle internal temperature is uniform.
- 3. The gas and particles exchange thermal energy by convection and radiation (optional).
- 4. The gas obeys the perfect gas law and is either frozen and/or in chemical equilibrium, or is in chemical non-equilibrium.
- 5. The pressure of the gas and the drag of the particles contribute to the force acting on the control volume.

- 6. The gas is inviscid except for the drag it exerts on the particles.
- 7. There are no particle interactions.
- 8. The volume occupied by the particles is negligible.
- 9. There is no mass exchange between the phases.
- 10. A discrete number of particles, each of different size or chemical species, is chosen to represent the actual continuous particle distribution.
- 11. The particles are inert.

The supersonic two-phase solution accepts the starting line provided by the internally calculated transonic solution as well as other pertinent data supplied through the read function. The equations of motion under the assumptions just listed are hyperbolic and permit the use of a forward marching scheme; a streamline/normal grid structure is employed where the step lengths in the axial and radial directions are under program control. Both BCD (printer) and unformatted binary output tapes are produced. A Prandtl-Meyer expansion of the gas phase and a free boundary calculation are employed to treat the plume flow solution. The run is terminated when prespecified problem limits are reached.

The two-phase flow analysis will treat an extremely wide range of operating conditions. With few exceptions the limitations are imposed by the theory rather than numerical considerations. In this discussion dimension statement sizes which are arbitrarily set are not considered a limitation. The true limitations are:

- Supersonic regions influenced by embedded subsonic regions.
- Vacuum or limiting expansion limitation a small region of the expansion fan for a vacuum expansion cannot be treated where the Mach number is so large that treatment by continuous flow assumptions becomes meaningless (this limitation is both numerical and theoretical).

• For two-phase flow the lower boundary can only be horizontal (i.e., nozzle centerline).

A complete derivation of the governing equations are available in Volume I of this report. The characteristic equations employed in this aralysis are given in Table 3-la and 3-lb, and a list of symbols is provided in Table 3-2.

A free molecular flow calculation has been provided as an option which permits treatment of the rarefied regions of the plume. As the gas expands it first freezes out the vibrational and rotational modes. During this transition the characteristic equations continue to be employed but the equation of state is modified. At translational freezing, however, the solution switches to an effective source solution. The stream lines are considered straight and the velocity constant. Conservation of mass then determines the density while other properties are found from the equation of state.

Each of the subroutines comprising the RAMP program is listed in Table 3-3. The subroutines which call and are called by the particular routine as well as a brief statement regarding the function of the routine are also included in the table. Routines which have an asterisk in the description column are taken from the Ref. 7 analysis.

Tables 3-4a and 3-4b present a flow chart of the main routines in functional groupings for the equilibrium and finite rate versions. To attempt to completely flow chart the entire program would probably transmit less information than that given in Table 3-4 since it would be extremely complex and bulky. The functional flow chart in conjunction with Table 3-3 and the program listing is felt to be the most appropriate method for presenting the information.

ENTHALPY ENTROPY-VELOCITY FORM OF THE COMPATIBILITY EQUATIONS FOR GAS-PARTICLE FLOW (FOR CHEMICAL EQUILIBRIUM AND/OR FROZEN FLOW APPLICATIONS)

- The variables $q, \theta, \Pi, S, p^{\hat{I}}, u^{\hat{I}}, v^{\hat{I}}, h^{\hat{I}}$ completely define the gas-particle flow at a given location in the flow field.
- The slope of the gas streamline, θ, is given by

$$\frac{dy}{dx} = \tan\theta \tag{3.1}$$

and the compatibility equations which apply along gas streamlines are:

$$dH - T dS + \frac{1}{\rho} \sum_{j=1}^{NP} \rho^{j} A^{j} \left[(u - u^{j}) + \tan \theta (v - v^{j}) \right] dx = 0$$
 (3.2)

$$T dS = \frac{(C_p - R)}{q \cos \theta \rho R} \sum_{j=1}^{NP} \rho^j A^j B_1^j dx = 0$$
 (3.3)

....

$$B_{1}^{j} = \frac{1}{C_{p}/R + 1} \left\{ \vec{q} \cdot \Delta \vec{q}^{j} - \vec{q}^{j} \cdot \Delta \vec{q}^{j} + \frac{2}{3} C^{j} (T^{j} - T) + \frac{3\sigma}{A^{j} m^{j} r^{j}} \left[\mathcal{E}^{j} (T^{j})^{4} - \alpha^{j} T^{4} \right] \right\}$$
(3.4)

$$A^{j} = \frac{9}{2} \left[\frac{\nu \, (j)}{m^{j} \, (r^{j})^{2}} \right] \tag{3.5}$$

and

$$C^{j} = \frac{k \cdot G^{j}}{\nu \ell^{j}} \tag{3.6}$$

• The slope of the Mach lines is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan(\theta + \alpha) \tag{3.7}$$

and the compatibility equations which apply along each Mach line are:

$$d\theta \pm \frac{\cot \alpha}{q} \ dq \pm \frac{\sin \alpha \ \cos \alpha \ dS}{\gamma R} \mp \frac{\cot \alpha \ dH}{q^2} \mp \frac{\delta \ \sin \theta \ \sin \alpha \ dx}{y \ \cos (\theta \ \mp \alpha)}$$

$$\frac{\pm \frac{dx}{\rho q^2 \cos(\theta + \alpha)} \sum_{j=1}^{NP} \rho^j A^j \left[\pm (\mathbf{v} - \mathbf{v}^j) \cos(\theta + \alpha) + (\mathbf{u} - \mathbf{u}^j) \sin(\theta + \alpha) + \frac{B_1^j}{q \sin \alpha} \right] = 0$$
 (3.8)

• The particle streamline direction, θ^{j} , is given by

$$\frac{dy}{dx} = \frac{v^{j}}{u^{j}} = \tan \theta^{j} \quad j = 1, NP$$
 (3.9)

and the compatibility equations which apply along particle streamlines are:

$$a^{j} da^{j} = A^{j} (a \cdot a^{j}) dx \quad j = 1, NP$$
 (3.10)

$$u^{j} dv^{j} = A^{j} (v \cdot v^{j}) dx \quad j = 1, NP$$
 (3.11)

$$u^{j} dh^{j} = -\left[\frac{2}{3} A^{j} C^{j} (T^{j} \cdot T) + \frac{3\sigma}{m^{j} r^{j}} \left[\mathcal{E}^{j} (T^{j})^{4} - \alpha^{j} T^{4} \right] \right] dx \quad j = 1, NP$$
 (3.12)

 One additional equation for particle density is derived using the integral equation for particle mass conservation.

$$d\hat{m}^{j} = (2\pi)^{\delta} \rho^{j} \left\{ u^{j} (y^{j})^{\delta} dy^{j} \cdot v^{j} (y^{j})^{\delta} dx^{j} \right\}$$
(3.13)

and & takes on the value

δ = 0 for 2 dimensional flow I for axisymmetric flow PRESSURE-DENSITY-VELOCITY FORM OF THE COMPATIBILITY EQUATIONS FOR GAS-PARTICLE FLOW (FOR CHEMICAL NON-EQUILIBRIUM AND TRANSITION FLOW APPLICATIONS)

- The variables $q, \theta, P, \rho, \rho^{j}, u^{j}, v^{j}, h^{j}$ completely define the gas-particle flow at a given location in the
- The slope of the gas streamline, θ, is given by

$$\frac{ly}{lx} = tan\theta \tag{3.1}$$

and the compatibility equations which apply along gas streamlines are:

$$q dq + \frac{dP}{\rho} + \frac{1}{\rho} \sum_{j=1}^{NP} \rho^{j} A^{j} \left[(u - u^{j}) + \frac{v}{u} (v - v^{j}) \right] dx = 0.$$

$$dP - a^{2} d\rho + \frac{\psi_{1}}{u} dx - \frac{1}{u} \sum_{j=1}^{NP} \rho^{j} A^{j} B_{1}^{j} dx = 0.$$
(3.14)

and

$$\rho_{\rm U} dX_i - \dot{w}_i dx = 0 \quad i = 1, NG$$
 (3.15)

The slope of the Mach lines (left running characteristics and right running characteristics)

$$\frac{dy}{dx} = \tan(\theta + \alpha) \tag{3.7}$$

and the compatibility equations which apply along each Mach line are:

$$d\theta = \cot \frac{dP}{\rho q^2} + \frac{\delta \sin \theta \sin \alpha \ dx}{y \cos (\theta + \alpha)} + \frac{dx}{\rho q^2 \cos (\theta + \alpha)} \sum_{j=1}^{NP} \rho^j A^j \left[\pm (v - v^j) \cos (\theta + \alpha) \right]$$

$$R^j = \frac{dx}{C_n/R - 1} \sum_{j=1}^{NG} \mu_j \dot{X}_j$$

$$\overline{+} (u \cdot u^{j}) \sin(\theta \overline{+} \alpha) + \frac{B_{1}^{j}}{q \sin \alpha} = \frac{\frac{dx}{C_{p}/R - 1} \sum_{i=1}^{NC} \mu_{i} \dot{X}_{1}}{q^{3} \sin \alpha \cos(\theta \overline{+} \alpha)} = 0.$$

The particle streamline direction, θ^{j} , is given by

$$\frac{dy}{dx} = \frac{v^{j}}{u^{j}} = \tan \theta^{j} \qquad j = 1, NP$$
 (3.9)

and the compatibility equations which apply along particle streamlines are:

$$u^{j} du^{j} = A^{j} (u - u^{j}) dx \quad j = 1, NP$$
 (3.10)

$$u^{j} dv^{j} = A^{j} (v - v^{j}) dx \quad j = 1, NP$$
 (3.11)

$$u^{j} dh^{j} = -\left[\frac{2}{3} A^{j} C^{j} (T^{j} + T) + \frac{3\sigma}{m^{j} r^{j}} \left[\mathcal{E}^{j} (T^{j})^{4} - \alpha^{j} T^{4}\right]\right] dx \qquad j = 1, NP$$
 (3.12)

One additional equation for particle density is derived using the integral equation for particle

$$d\dot{m}^{j} = (2\pi)^{\delta} \rho^{j} \left[u^{j} (y^{j})^{\delta} dy^{j} - v^{j} (y^{j})^{\delta} dx^{j} \right]$$
 (3.13)

and & takes on the value

δ = 0 for 2 dimensional flow

Table 3-2 LIST OF SYMBOLS

Symbol	English	Metric	Description
A^{j}	l/sec	l/sec	Defined in Table 3-1
$B_{\mathbf{l}}^{\mathbf{j}}$	ft ² /sec ²	m^2/sec^2	Defined in Table 3-1
c^{j}	$ft^2/sec^2/^oR$	$m^2/sec^2/^oK$	Defined in Table 3-1
Cp	$ft^2/sec^2/^0R$	$m^2/sec^2/^oK$	Gas specific heat at constant pressure
ϵ^{j}	None	None	Emissivity
f ^j	None	None	Drag coefficient parameter $(C_{ m D}/C_{ m D})$
G ^j	None	None	Nusselt number parameter (Nu/Nu _{Stokes})
Н	ft^2/sec^2	m^2/sec^2	Total Enthalpy
h ^j	ft^2/sec^2	m^2/sec^2	Particle enthalpy
m ^j	slug/ft ³	kg/m^3	Mass density of a j th particle
NP, NG	None	None	Number of particle sizes, number of gaseous species
Pr	None	None	Prandtl number
q	ft/sec	m/sec	Velocity
R	$ft^2/sec^2/^0R$	$m^2/sec^2/^oK$	Gas "constant" (universal gas constant/molecular weight)
rj	ft	m	Radius of a j th particle
S	$ft^2/sec^2/^oR$	$m^2/sec^2/^oK$	Entropy
T	^o R	οK	Static temperature
$T^{\mathbf{j}}$	^o R	o _K	Particle temperature
u	ft/sec	m/sec	Gas axial velocity component
v .	ft/sec	m/sec	Gas radial velocity component
u ^j	ft/sec	m/sec	Particle axial velocity
vj	ft/sec	m/sec	Particle radial velocity
y, x	ft	m	Radial, axial coordinates

LIST OF SYMBOLS (Continued)

Symbol	English	Metric	Description
To	°R	o ^K	Local total temperature
$^{T}{}^{o}{}_{R}$	°R	°K	Reference total temperature
α	rad	rad	Mach angle
$\widetilde{\alpha}^{j}$	None	None	Accommodation coefficient
γ	None	None	Isentropic exponent
$\Delta \overline{q}^{j}$	ft/sec	m/sec	व - व _i
δ	None	None	0 — two-dimensional, 1 — axisymmetric
θ	rad	rad	Flow Angle
ν	lbf-sec/ft ² slug/ft ³	kg/m sec	Gas viscosity
ρ	slug/ft ³	kg/m^3	Density
$ ho^{ m j}$	slug/ft ³	kg/m^3	Particle density (j th particle size)
σ	ft^2/sec^3	m^2/sec^3	Stefan-Boltzmann constant
$\mu^{}_{ m i}$	Not used	cal/gm	Chemical potential of specie i
$x_{\mathbf{i}}$	Not used	gm/gm	Mass fraction of specie i

Table 3-3
RAMP PROGRAM SUBROUTINE LIST

	NAME FROM AND SUBTOUTINE 1351				
Subr	Name	Calls Following Routine(s)	Called by Following Routine(s)	Description	
1	ABCALC	~	27	*	
2	ALGINT	-	18, 31	log-log interpolation routine	
3	AOASTR	82, 98, 116, 44, 22	74	iterative solution of area ratio as a function of Mach number	
4	AVERAG	98, 21, 106, 83, 94	95	determines flow regime from Knudsen number	
5	BLKDAT	-	_	block data routine	
6	BOUND	47	7, 30, 49, 55, 70, 71, 74, 95	provides radial dimension and angle of bounding wall at given axial station	
7	BOUNDA	41, 6, 23, 46	70, 72, 92	locates wall point when a shock wave is near a wall	
8	CARCTR	77, 98, 12, 84, 11;	72, 89, 91, 92	solves an interior point compatibility equation for a downstream shock wave point	
4	CCALC	-	27	*	
1:1	CHECK	93, 69, 35, 31	70, 95	adds points to or deletes points from the solution as necessary	
11	CHEM	102, 85, 88	56	computes the species net rates of production as functions of temperature, density and gas composition	
12	COEFEQ		8, 55, 95	computes chefficients used in solution of the two-phase compatibility equations	
13	COEFF3	35, 69, 41, 77, 31	55, 95	computes the particle flow properties	
14	DELTAF	-	24, 115	computes the furning angle through an oblique shock wave	
15	DMDXSI		-	dummy routine not presently used	
16	DOTPRD	-	112	computes the dot product of two vectors	
17	DRAGCP	-	31, 77	computes the drag coefficient for the solid particle using Kliegel	
18	DRAGMR	2	31, 60, 65, 77, 107	computes the drag coefficient for the solid particle using Crowe	
19	DRIVER	40,74,108,70	51	driving routine for main program flow	
20	EMOFP	-	81	calculates Mach number from pressure and entropy	
21	EMOFV	106	4, 24, 26, 31, 34, 52, 63, 65, 70, 73, 77, 78, 81, 82, 87, 89, 91, 109, 111, 115	computes Mach number from velocity	
12	ENTROP	_	3, 24, 115	computes entropy rise across gas shock wave	
23	ERRORS	-	7, 33, 34, 41, 52, 55, 70, 72, 81, 82, 89, 90, 91, 92, 100, 106, 109, 110	routine prints various error messages as for the appropriate flag from the calling routine	
24	ESHOCK	98, 21, 75, 83, 22, 14, 115	61, 63, 90, 91, 92, 109	computes properties downstream of shock wave	
25	EXPCOR	55, 41, 93, 77, 61	70	computes the flowfield points near an expansion corner	
26	FABLE	96, 118, 106, 75, 21	98	routine used in determination of local dependent state properties	
27	FCALC	1, 9, 68	45	*	
28	FINDII	-	60, 65, 107	*	
29	FNEWTN	-	34, 55, 95	determines the Newtonian impact pressure on plume free boundary	
30	FREEMC	6, 43, 41, 117, 35, 69, 61, 62	70	computes flowfield properties in the free molecular flow regime	
31	GAPPBI	2, 69, 98, 111, 106, 21, 75, 97, 18, 17	10, 13, 71, 95	interpolates for flow properties between two data points	
32	GASRD	33, 37, 38, 36, 96, 118	74	subroutine which reads gas properties from cards	

Table 3-3 (Continued)

Table 3-5 (Continues)				
Subr No.	outines Name	Calls Following Routine(s)	Called by Following Routine(s)	Description
33	GASTAP	36, 23, 39	32	subroutine which reads gas properties from tape and outputs on tape
34	HYPER	98, 75, 21, 29, 63, 44, 100, 105, 23	70	determines hypersonic back pressure at
35	IDMPFP	85	10, 13, 30, 55, 66, 70, 78, 79, 95	function to compute the particle storage location within the PFPARY array
36	IDMTAB	-	32, 33, 73	function to compute gas property storage locations within the TABB array
37	IDMXSI	-	32	function to compute gas interpolation parameter storage locations within XSIDIM array
38	IDTAPE	96	32	writes ideal gas properties on data tape
39	IMPUT	93	33	reads chemistry input data for finite rate case
40	INITP	-	40	initializes data arrays and control variables, sets convergent criterion
41	INRSCT	23	7, 13, 25, 30, 55, 70, 71, 72, 79, 89, 91, 92, 95	solves for the intersection of two straight lines
42	INTEGR	69, 112	53	integrates conservation equations along normal
43	ITERM	-	30, 70	decides whether line should be terminated due to problem limits being exceeded
44	ITSUB	-	3, 34, 52, 58, 63, 71, 76, 81, 82, 87, 89, 90, 91, 92, 100, 104, 105, 109	general purpose iteration control routine solves function of one variable
45	JAMES	27, 57	65	•
46	KIKOFF	-	7, 106, 110	provides proper termination — card reads, tape writes for internally detected errors
47	LAGRNG	-	6	interpolates for r , θ as a function of x when wall points are input
48	LEGS	-	57	•
49	LIMITS	6	70	determines whether current boundary equation still applicable
50	LIPIN	82, 111, 98	74	prepares initial data surface for simple options
51	MAIN	19	-	driver program
52	MASCON	82, 21, 83, 44, 23	74	determines startline data from mass conservation, linear Mach number variation
53	MASSCK	42,69	70	integrates mass flow, determines cumu- lative error in mass flow
54	MAXTIM	-	62, 70	Univac 1108 system routine for checking run time against input variable for cutting off run before maxtime is reached
55	MOCSOL	77, 69, 35, 105, 75, 41, 6, 84, 13, 56, 29, 81, 113, 12, 111, 23, 93	25	solves the characteristic equations in con- tinuous regions, calling arguments control type of solution i.e., upper boundary, lower toundary, interior, single phase only
56	NEWENT	11	55, 95	computes entropy and enthalpy/OF change along a streamline
57	NEWT	48	45	•
58	NORSCK	104, 44	61	calculates pitot total pressure for finite rate case
59	NUSNUP	-	-	dummy routine presently not used
60	ONED	28, 18	65	*
61	OUT	64, 58, 24, 98, 75, 77, 112, 69, 93	25, 30, 70, 91	performs bulk of printed output function; outputs are flowfield data points
62	OUTBIN	54, 69, 97	30, 70	performs unformatted binary output of flow- field data on a magnetic tape

Table 3-3 (Continued)

			Table 3-3 (Continued	'
No.	Name	Calls Following Routine(s)	Called by Following Routine(s)	Description
63	OVEREX	98, 21, 24, 75, 44, 111, 69, 35	34	computes corner condition for over-expanded flow situation
64	PAGE	-	61, 65, 67, 73	writes page headings
65	PARTIL	60, 45, 80, 28, 18, 114, 107, 64, 93, 98, 21, 106	108	•
6.6	PARTIN	82, 110, 103, 75, 93, 98, 35, 69	74	reads gas and particle flow properties from tape or cards
67	PARTPH	64	74	reads input and sets up data table of particle. To versus 1:
68	PCALC	-	27	*
69	PFP	85	10, 13, 30, 31, 42, 53, 55, 61, 62, 63, 66, 70, 71, 73, 77, 78, 79, 95, 101	computes the particle property data storage location and retrieves data from the PFPARY array
70	PHASE1	93, 77, 61, 53, 101, 62, 6, 109, 21, 103, 75, 92, 95, 54, 49, 7, 69, 35, 41, 91, 10, 30, 98, 111, 43, 79, 78, 25, 34, 81, 113, 100, 23		this subroutine performs the overall control for the entire thosefield solution, selectively calling those calculations which are pertinent to the particular mesh construction as well as the highest level logic routine combining point or limited region solutions into an entire field solution
71	PHYSOL	69, 46, 98, 44, 31, 77, 6, 111	89, 91, 92, 95	computes intersection of physical characteristics with a "normal" data line
- 2	PHYZOL	7, 41, 23, 98, 111, 8	92	computes intersection of characteristics with "normal" at a downstream shock point
73	PLMOUT	64, 96, 36, 98, 21, 69	74	this routine outputs the input data
74	PLUMIN	73, 32, 86, 6, 3, 52, 50, 66, 67	19	this routine provides the control for all input functions by selectively calling pertinent in- put routines and/or calls transonic solution
75	POFEM	-	24, 26, 31, 34, 55, 61, 63, 66, 70, 77, 78, 81, 83, 87, 89, 91, 115	computes pressure as a function of Mach number and entropy
76	POFH	44	105	computes pressure as a function of velocity and enthalpy
77	TTT ASS	98, 106, 21, 75, 69, 97, 17, 18	8, 13, 25, 55, 61, 70, 71, 79, 92, 95	calculates and stores gas and particle de- pendent variables as a function of the inde- pendent flow variables
78	PRANDT	98, 100, 111, 21, 106, 75, 105, 93, 69, 35	70	provides overall control of Prandtl-Meyer corner calculation
79	PRFRBD	69,41,35,77	70	computes flow properties at a particle limiting intersection with a plume boundary
80	PROP	_	65, 107, 114	*
81	RGMOFP	98, 96, 113, 20, 75, 21, 44, 23	55, 70, 95	iterative solution for Mach number as a function of pressure
42	RGVOEM	98, 96, 113, 21, 44, 23	3, 50,52,66	iterative solution velocity as a function of Mach number
83	RHOFEM	75	4, 24, 52, 115	density as a function of Mach number
H4	ROTERM	-	8, 55, 95	rotational term in method of characteristics equation
85	RWU	-	11, 35, 69, 93	Univac 1108 machine language routine to access temporary storage
48	SETHIG	102, 98	74	computes 1-dimensional startline properties for a constant startline property finite rate case
87	SITER	98, 21, 75, 44	65	computes entropy as a function of pressure, total enthalpy and velocity
88	SLDP	-	11	solves a set of N simultaneous linear equa- tions using the Gauss-Gordan reduction algo- rithm with the diagonal pivot strategy
89	SI, PLIN	41, 71, 8, 75, 21, 44, 23	91, 95	performs the slip line calculations

Table 3-3 (Continued)

			Table 7 7 (Trialliand)	
Subro No.	utines Name	Calls Following Routine(s)	Called by Following Routine(s)	Description
90	SOKFLX	24, 44, 23, 98, 111	-	computes the flow properties downstream of a reflected shock
91	SOKINT	21, 41, 95, 23, 61, 24, 111, 109, 75, 44, 71, 8, 89, 98	70	computes the flow properties at the inter- section of shock waves of the opposite family
92	SOKSOL	41, 95, 111, 24, 98, 72, 71, 8, 44, 7, 23, 77	70	provides control for a shock point solution
93	SPCTX	85	10, 25, 39, 55, 61, 65, 66, 70, 78, 95	reads from or writes on data files the species mole fraction for each point (finite rate version only)
94	STGMOD	-	4	computes gas thermodynamic properties in the transition flow regime
95	STRNOR	93, 69, 35, 77, 111, 41, 89, 71, 31, 13, 84, 56, 12, 29, 4, 81, 113, 10, 6	70, 91, 92	this subroutine provides the regional control for the streamline/normal solution. It has a lower level of logical control than PHASE1 (70) being interested only in determining the location and flow properties of a single new mesh point
96	TAB	-	26, 32, 38, 73, 81, 82, 98, 108	computes the thermodynamic data storage location and retrieves data from the TABB array
97	TEMTAB	-	31, 62, 77	performs table lookup for particle T = f(h) or h = f(T)
98	THERMO	96, 26, 99	3, 4, 8, 24, 31, 34, 50, 61, 63, 65, 66, 70, 71, 72, 73, 77, 78, 81, 82, 86, 87, 90, 91, 92, 100, 109, 115	provides control of interpolation of gas thermodynamic and transport properties
99	THERMI	102, 105	98	computes gas properties as a function of total enthalpy, velocity, temperature and species mole fractions
100	ТНЕТРМ	98, 106, 105, 44, 23	34, 70, 78	this subroutine evaluates Prandtl-Meyer equation
101	THRUST	69, 112	70	starting line integration and wall pressure integration are performed here
102	TKEY	-	11, 86, 99, 104, 105	computes and interpolates thermodynamic properties from thermodynamic tables which are input
103	TOFEM	-	66, 70, 113	computes temperature as a function of Mach number
104	TOFENH	102, 44	58	computes temperature as a function of total enthalpy and velocity
105	TOFH	102, 44, 76	35, 55, 78, 99, 100	computes temperature as a function of total enthalpy, velocity and species mole fractions
106	TOFV	23, 46	4, 21, 26, 31, 65, 77, 78, 100	computes temperature as a function of velocity
107	TRACE	80, 28, 18	65	•
108	TRANS	96, 65	19	*
109	TURN	98, 21, 110, 24, 44, 111, 23	70, 91	computes shock angle and downstream properties for known turning angle
110	UOFEM	23, 46	66, 109, 111	Mach angle as a function of Mach number
111	UOFV	110, 21	8, 31, 50, 55, 63, 70, 71 72, 78, 90, 91, 92, 95, 109	Mach angle as a function of velocity
112	VEMAG	16	42, 61, 101	computes magnitude of a vector
113	VOFEM	103	55, 70, 81, 82, 95	computes velocity as a function of Mach number
114	WDGI	80	65	*
115	WEAK	98, 21, 75, 83, 22, 14	24	computes properties downstream of an ideal gas shock wave

Table 3-3 (Concluded)

	routines Name	Calls Following Routine(s)	Called by Following Routine(s)	Description
116	WOFA	-	3, 24	one-dimensional mass flow as a function of area relation
117	WIFLOF	-	30	computes area bounded by two data points
118	XS1	-	26, 32	computes storage location and retrieves data from the XSIDIM array

^{*}Reference 7

BASIC RAMP FLOW CHART BROKEN DOWN INTO FUNCTIONAL GROUPINGS FOR THE EQUILIBRIUM CHEMISTRY VERSION Table 3-4a

7

Ī.

Table 3-4b . Basic RAMP Flow Chart Broken Diven into Functional Groupings for the Finite Rate Chemistry Versiva

3.1 CAPABILITIES AND LIMITATIONS

The RAMP computer program described in this document can be used to solve a wide variety of problems associated with real gas, supersonic, compressible flow. Some of the more important, basic capabilities of the existing program are outlined below:

- The gas may be ideal or real. If the gas is real; frozen, equilibrium, or non-equilibrium chemistry assumptions can be made. The effects of oxidizer/fuel gradients may be considered.
- Two-dimensional or axisymmetric flow problem geometries can be used.
- Both upper and lower boundaries can be solid or free. (A solid boundary can be approximated by either a conic or polynomial equation.) (Two-phase problems require the nozzle centerline as a lower boundary).
- A nozzle wall may be curve fit with discrete points.
- Compression corners on the upper wall can be calculated.
- Any number of expansion corners can be considered on either the upper or lower wall.
- Various methods for obtaining an initial start line are utilized.
 - 1. The program will calculate a one-dimensional start line anywhere in the nozzle.
 - 2. The program will calculate a start line at points within the nozzle necessary to conserve mass.
 - 3. Data on a normal surface can be input at points across the flow field within the nozzle or in the plume.
 - 4. An exit plane startline can be punched.
 - 5. The program can be restarted from the startline punched in 4 above.
- Hypersonic or quiescent approach flow options may be used.
- Exit to ambient pressure ratios from over-expanded to highly under-expanded are possible.
- Displacement of the axis of symmetry from the center of flow (i.e., the plug nozzle flow field) is possible (for gas only cases).

- Due to computer core size limitations the code presently consists of two versions: (1) an equilibrium chemistry version, and (2) a finite rate chemistry version. The finite rate version has all the capabilities of the equilibrium programs with the following exceptions:
 - 1. Free molecular flow
 - 2. Shock Waves

It is anticipated that one version will be released at a later date.

The equilibrium version which accompanies this documentation will handle only attached (over-expanded nozzles or compression corners) right-running shocks (see sketch below). The logic for calculating left-running shocks, and coalescing shocks is in the code but has not been thoroughly checked out. When check out is completed, the program modifications will be forwarded to users.

Over-Expanded Nozzle with Right-Running Shock

Attached Right-Running Shock

- There is presently a maximum of 100 points on a normal and 50 input points.
- Reacting gas solutions which are in chemical equilibrium have been facilitated by modifying the TRAN72 computer program as described in Section 2 to provide binary tape and punched output of its equilibrium or frozen real gas calculations at any desired O/F ratio(s). The RAMP program has the capability for selecting the proper case from a large set of real gas properties cases stored on a master tape. The method of generating this master tape is outlined in Table 3-5. Cases stored are uniquely identified by some characteristic of the particular gas under consideration. For example, a LOX/LH₂ system may be identified by the following:

Gas Type	Mixture Ratio	Chamber Pressure
O2/H2	O/F = 1.5 - 8.0	PC = 546.0

New cases of general interest may be added to the master tape; however, ad hoc cases should be prepared on a separate tape. Tape preparation sequence and communication with the RAMP program is diagrammed in Table 3-5.

- Once the gas-particle flowfield solution has been obtained, the output tape may be used by the RAMP Radial Lookup Program (described in Appendix A) which determines the radial variations of flowfield properties across the nozzle and plume flowfields at constant axial stations. The Plume Impingement Program (PLIMP) (Ref. 9) may also be run to determine the effects of the rocket exhaust plume on objects immersed in the plume. Sequencing and communication of auxiliary programs with the RAMP program is shown in Table 3-5.
- Two-dimensional or axisymmetric solutions are selected by simply loading a control word in the program input data. This integer (0 or 1) is then multiplied by the term containing (1/r) in the governing differential equation. By appropriate description of the flow boundaries, it is possible to change from a solid to free boundary on either the upper or lower walls. Conversely, it is not possible to change from a free to a solid boundary on either wall.

Table 3-5
SEQUENCING AND COMMUNICATION OF AUXILIARY PROGRAMS WITH THE RAMP PROGRAM

3.2 USER'S INPUT GUIDE FOR THE RAMP PROGRAM

This section outlines in detail the procedures for using the Reacting and Multi-Phase (RAMP) Computer Program. Each card and its use is explained in Section 3.2.1. The program magnetic tape assignments are given in Table 3-6.

3.2.1 RAMP Program Input Information

The input data are organized into sections determined by their use. The description of these cards is given below.

RAMP Computer Program Input Instructions

Cards 1-3	Problem Descr Required	ription	Format 3(20A4)
Column	Parameter		Description
1 - 240	HEAD ER		Problem description may be put on three cards; however only the first 120 columns will be printed while all 240 characters will be written on the data tape. All three cards must be present even if blank.
Card 4	Run Control Card		Format 1615 (Right Adjusted)
Column	Required Parameter	Value	Description
5	ICON(1) Gaseous thermo- dynamic data con- trol parameter	1	The gas composition is either chemically frozen and/or in chemical equilibrium. The gas properties are read directly from cards 8, 9, 10 and 11.
		2	Same as ICON(1)=1 except gas properties are read directly from a data tape mounted on FORTRAN unit 10.
		3	The gas composition is in chemical non-equilibrium. The gas properties are determined, as a function of temperature in thermodynamic data tables input on cards 13.

Card 4

Column	Parameter	Value	Description
5	1CON(1)	4	Same as ICON(1)=3 except gas composition is chemically frozen.
8 - 9	NTAPE	N	If ICON(2)=2, tape unit number for startline if not input from cards. The program defaults to unit 5 (read cards) for ICON(2)=2. If ICON(2) \neq 2 and a two-phase transonic solution is being performed NTAPE is the unit on which the transonic startline will be written. In this case the program defaults to unit 8.
10	ICON(2) Start line control	0	Generate straight startline with Mach number given.
	parameter for gas only solution	i	Generate source startline with A/A^* given
		2	Startline input from cards or tape.
	or	3	Generate startline by conservation of mass using a linear Mach number distribution.
	Startline control parameter for gas-particle solution	0	Generate startline using transonic approximation.
		2	Startline input from cards.
	IGON(3) Control manner in	0	Points are spaced according to a sine distribution.
	which points along the startline are spaced	1	Points are evenly spaced (recommended)
	opare.	2	Points are evenly spaced on a circular arc based on the input value of the upper limit of the startline (card 18.CORLIP(2))
			NOTE: This option is necessary only if program is to set up its own gaseous startline.
14, 15	ICON(3)		Number of startline points. ** Maximum of 50 (right adjust)

^{***}NOTE: If particles are present and supersonic startline is generated by transonic approximation then total number of points on startline may be adjusted by transonic program depending on particle distributions.

Card 4 (Continued)

Column	Parameter	Value	Description
16-20	ICON (4)		Upper boundary specification
	Number of upper boundary equations		indicator. If specifying upper boundary by equations, set equal to number of equations to be used. Maximum of 100. Right adjust.

Option for ICON(4) when upper boundary is described by individual points and slopes

ICON(4)

- 1N000 + Number of discrete points (no boundary equation following last point) (slope at each point in radians)
- 2N000 + Number of discrete points + 1 (an upper boundary equation follows last point) (slope at each point in radians)
- 3N000 + Number of discrete points (no boundary equation following last point) (slope at each point in degrees)
- 4N000 + Number of discrete points + 1 (an upper boundary equation follows last point) (slope at each point in degrees)

 $N \sim number of points to use for Lagrangian Integration (5 max).$

If N is set to zero, a linear assumption will be made.

NOTE: If a nozzle is being run the throat must also be specified by discrete points.

Column	Parameter	<u>Value</u>	Description
21-25	ICON(5) Number of lower boundary equations		Lower boundary specification indicator. Same description and option as ICON(4).
30	ICON(6)	0	Not presently used
35	ICON(7) Flow type option	0	Two-dimensional flow problem geometry.
		l	Axisymmetric flow problem geometry.
38	INOZ	2	Calculations terminated at nozzle exit.
39	ICON(8)	0	Full printout
	Data output con- trol, used in con- junction with ICON(16	1	Print only boundary, shock, input, Prandtl-Meyer, and particle limiting streamline points.

Column	Parameter	Value	Description
40	1CON(8)	1	Print I line $(R, X, M, \theta, S \text{ and shock angle})$
		2	Print above plus Mach angle, P, ρ , T, V.
		3	Print all of above plus MWT, γ , TO*, PO*, S *.
42	MORFT		For English system of units.
	Compliments ICON(9)	0	Dimensions are in feet.
		1	Dimensions are in inches.
			For metric system of units.
		2	Dimensions are in centimeters.
		3	Dimensions are in meters
		4	System of units specified by user.
43	ICON(9)	0	Use English system of units.
	Units indicator	1	Use metric system of units.
			This option controls the units in which the flow field is calculated. The program assumes that the boundary equations are input in the same units as the units indicator (ICON(9)). This option will not override the units specification on cards 8 and 30 but will convert the units of the gas and particle thermodynamics to correspond to the units of this indicator.
44-45	ISPECS		Number of discrete particle sizes used to represent particle distribution (10 max). If gaseous only flow set equal to 0 (right adjust).
48-50	ICON(10)		Maximum iterations allowable for each point in flow field. If set to 0 program assumes value of 100. Right adjust.
51-55	ICON(11)		Case number printed at top of each page.
60	ICON(12)	0	Calculate shock wave.
		1	No rotation option.
61	ICON (13)	0	Flowfield data will be output on FORTRAN unit 3.
		1	Data will not be written on tape.

Card 4 (Concluded)

ON (13) ON (14) ON (15) ON (16) ON (16)	0 1 0 N 0 M	Free molecular calculations will not be considered. Free molecular calculations will be considered. No intermediate printout in solution iteration. Print intermediate results for Nth line. Right adjust. No intermediate printout. Print intermediate results from Mth point on each line from the Nth (ICON(14)) line on. Right adjust. No punched cards output. Punch data line at nozzle exit
ON(15) ON(16)	0 N 0 M	will be considered. No intermediate printout in solution iteration. Print intermediate results for Nth line. Right adjust. No intermediate printout. Print intermediate results from Mth point on each line from the Nth (ICON(14)) line on. Right adjust. No punched cards output.
ON(15) ON(16)	N 0 M	Print intermediate results for Nth line. Right adjust. No intermediate printout. Print intermediate results from Mth point on each line from the Nth (ICON(14)) line on. Right adjust. No punched cards output.
ON (16)	0 M 0 1	Nth line. Right adjust. No intermediate printout. Print intermediate results from Mth point on each line from the Nth (ICON(14)) line on. Right adjust. No punched cards output.
ON (16)	M 0 1	Print intermediate results from M th point on each line from the N th (ICON(14)) line on. Right adjust. No punched cards output.
	0 1	M th point on each line from the N th (ICON(14)) line on. Right adjust. No punched cards output.
	1	
ON (16)	_	Punch data line at nozzle exit
ON (16)	0	
	-	Print every line.
	N	Print every N^{th} line (use with ICON(8)). Put 0 in column 77 if $N \le 10$.
ON(16)*		Time (SEC) before end of allotted run time when new startline is to be punched. Put 0 in column 79 if time less than 10 seconds.
n Control Card (Re		Format 815 (Right Adjusted)
Parameter	Value	Description
•		Number of temperature points in thermodynamic data tables.
		Number of gaseous species (excluding 3rd bodies)
1		Number of 3rd bodies.
		Number of reactions specified.
RINT	0	No intermediate printout in chemistry calculations.
	1	Echo print of input data.
	2	Print intermediate results of chemistry calculations.
	nite Rate Chemistry n Control Card (Re ired if ICON(1)>2)	nite Rate Chemistry n Control Card (Re- ired if ICON(1)>2) Parameter Value RINT 0

^{*}NOTE: Applicable for Univac 1108 only.

Card 5 (Continued)

Column	Parameter	Value	Description
30	ICTAPE	0	Species concentrations for start- line read directly from cards.
		1	Species concentrations read directly from a data tape mounted on FORTRAN unit 10.
35	KGUP	≥2	Number of normals calculated before finite rate chemistry contributes to dS and dH.
40	IDIDO	0	Uniform species concentrations along startline.
		1	Non-uniform species concentra- tions along startline.

Card 6 Upper Boundary Description Required

If ICON(4) < 10000 use following format (I1, 3X, I1, 5X, 6E10.6).

Column	Parameter	Value	Description
1	IWALL(K, 2)	1	Conic equation $R = A[(B+CX+DX^{2})^{1/2}+E]$
			Represents throat region. (See page 3-27 for an example and description.)
		2	Polynomial equation
			$R = AX^4 + 3X^3 + CX^2 + DX + E$
		3	Free boundary equation
			$P = P_{\infty} (1 + E_{\infty} X) (1 + \gamma_{\infty} (M_{\infty} \sin(\theta_{B} - \theta_{\infty}))^{2})$
			(See page 3-27 for an example and description.)
		6	Same as IWALL=3 except oblique shock solution for plume boundary. Use if $1.5 < M_{\infty} < 5.5$.
5	ITRAN(K, 2)	0	No discontinuity follows this equation.
		1	Expansion corner follows.
		2	Compression corner follows.

Card 6 (Continued)

Column	Parameter	<u>Value</u>	Description
11-20	WALLCO(K, 1, 2)		Coefficient A or P_{∞} (psfa or N/m^2). (Units must be consistent with R in ft or m.)
21-30	WALLCO(K, 2, 2)		B or γ_{∞}
31-40	WALLCO(K, 3, 2)		C or M
41-50	WALLCO(K, 4, 2)		D or θ (deg)
51-60	WALLCO(K, 5, 2)		E or E
61-70	WALLCO(K, 6, 2)		Maximum value of X applicable to equation (feet if ICON(9)=0 meters if ICON(9)=1).
71-80	RSTAR		Throat radius (ft or m) required only on card for last equation. This is required for two-phase transonic solution only.

If 10000 < ICON(4) < 20000 use following format (I5, 5X, 3E10.6, I5, 5X, 3E10.6).

Column	Parameter	Value	Description
5	ITRANS(K, 2)		Same as before.
11-20	WALLCO(K, 3, 2)		Axial displacement (X) of point K (ft or m).
21-30	WALLCO(K, 1, 2)		Radial displacement (R) of point K (ft or m).
31-40	WALLCO(K, 2, 2)		Wall angle (0) at point K (rad).
45	ITRANS(K+1, 2)		Same as before.
51-60	WALLCO(K+1, 3, 2)		X at point K+1 (ft or m).
61-70	WALLCO(K+1, 1, 2)		R at point K+1 (ft or m).
71-80	WALLCO(K+1, 2, 2)		θ at point K+1 (rad).

NOTE: Card 6, in the above format, is repeated for each equation until all necessary equations have been input. That is, repeat Card 6, in succession in order of increasing XMAX, for $K=1,2,\ldots,ICON(4)$. All units for lengths for two-phase calculations are consistent with ICON(9), otherwise units for lengths are input at user's discretion.

Repeat Card 6, in above format, in succession, and in order of increasing X, until all required points have been input.

If 20000 < ICON(4) < 30000 the above format is used except the last segment of the upper boundary is input via an equation. The equation is input with the format for ICON(4) < 10000 except the throat radius RSTAR is not required.

If 40000 < ICON(4) < 50000, the format for 20000 < ICON(4) < 30000 is used except θ is input in dimension of degrees.

Card 6a

Format E10.6

Card 6a is used only when running a two-phase case where the upper boundary (nozzle wall) is specified by discrete points (ICON(4) > 10000). Do not input this card for any other cases.

Column	Parameter	Value	Description
1 - 10	RSTAR		Throat radius (ft or m).

Card 7 Lower Boundary Description Required

The formats and options for Card 7 are controlled by ICON(5) and are the same as for Card 6 (Upper Boundary) with the following exceptions: (1) the distance from the nozzle throat to the center (X=0) of the coordinate system for the wall equations is read in place of RSTAR. This is only necessary for two-phase cases where a transonic solution is desired and where $X\neq 0$ at the nozzle throat. This distance is positive if the center of the coordinate system is downstream of the throat and negative if the center of the coordinate system is upstream of the throat. It is not possible to run a two-phase case with the lower boundary specified by points, therefore there is no Card 7a; (2) the indices of the parameters are (-,-,1) instead of (-,-,2), e.g., WALLCO(K, 1, 1) instead of WALLCO(K, 1, 2). A nozzle throat region showing the coefficients of a circular throat and free boundary are shown in the sketch on the following page.

RC = radius of curvature of the circular arc of the throat

RT = throat radius

XO = axial distance from the origin
 of the coordinate system to the
 throat

θ = throat divergence angle corresponding to the maximum value for which the throat conic equation applies

The conic equation for this case would have the following form:

A = -1 for an upper equation, +1 for a lower equation (-1 for this case)

 $B = RC^2 - XO^2$

C = 2XO

D = -1

E = -(RC + RT)

Xmax = RC sin 9 + XO

An example of a free boundary is shown in the sketch below.

The freestream approach flow is inclined at 15 deg to the plume with a gamma (Y) of 1.4, a Mach number of 10, and a static pressure of 0.1 psfa.

PINF = 0.1 (psfa)

E = 0 (No pressure variation with axial distance)

GAMMAINF = 1.4

MINF = 10

THETAINF = -15°

Gas Property Control Format 6A4, 5X, A3, 6X, 12, 3X, 12

This card is required whether gas data input by cards or tape.

Column	Parameter	Description
1 - 24	ALPHA(I)	Gas name for real gas on tape (see Section 2, page 3). If inputting gas data via cards, may be any name.
30-32	UNITS (Independent	ENG Input gas data with English units (cards only).
	of ICON(9))	MKS Metric units (cards or tape).
39-40	IOF	Number of O/F tables for gaseous only solution or number of gas total enthalpy tables for two-phase solution
44 -45	IS	Number of entropy tables per IOF entry, 1 for gas, 2 maximum for gas chemical equilibrium solution.
Card 9	Mixture Ratio or Total Enthalpy (This card is not used if ICON(1)≥2)	Format E10.6, 8X, I2
Column	Parameter	Description
1 - 10	OFRAT(M)	For gaseous only flow input O/F ratio, for particle flow input gas total enthalpy (cal/gm for metric, Btu/lbm for English, units specified by Card 8).
Card 10	Entropy (This card is not used if $ICON(1) \ge 2$)	Format E10.6, 8X, I2
Column	Parameter	Description
1-10	STAB (M, I)	Entropy of gas (cal/gm-OK or Btu/lbm-OR, units specified by Card 8).
19-20	IVTAB(M, I)	Number of Mach numbers for this entropy value (13 max).

Card 11 Gas Properties
(This card is not used if ICON(1)≥2; units specified by Card 8)

Format 8E10.6

Column	Parameter	Description
1 - 10	XSIDIM(1)	Mach number associated with above entropy.
11-20	XSIDIM(2)	Molecular weight of gas $(gm/g - mole or lbm/lb-mole)$.
21-30	XSIDIM(3)	Gamma (C_{p}/C_{v})
31-40	XSIDIM(4)	Temperature (OK or OR)
41-50	XSIDIM(5)	Pressure (atm)
51-60	XSIDIM(6)	Prandtl number (dimensionless)
61-70	XSIDIM(7)	Absolute viscosity (poise)
71-80	X SIDIM (8)	Ideal gas (1 velocity cut per table) - viscosity temperature exponent. Real gas - C _p (cal/gm- ^o K or Btu/lbm- ^o R).

To illustrate the arrangement of Cards 9, 10 and 11, let IOF=2 and IS=2; then the proper arrangement is:

Card 9			
10			
11	(1-13)	such	cards)
10			
11	(1-13)	such	cards)
9			
10			
11	(1-13)	such	cards)
10			
11	(1 - 13)	such	cards)

Card 12 Gas Properties
(This card is required if ICON(1)>2)

Format 3E10.6

Column	Parameter	Default Value	Description
1-10	PR	0.7	Prandtl number (dimensionless).
11-20	VISO	1.0E-04	Absolute Viscosity (poise).

Card 12 (Continued)

Column	Parameter	Default Value	Description
21-30	EX	0.6	Viscosity temperature exponent.

Cards 13 Gas Thermodynamic Data (The following cards are required if ICON(1)>2)

The following set of cards contain species thermodynamic data. The first card contains the species name, molecular weight and heat of formation. The second and remaining cards contain the temperature and corresponding specific heat, entropy and enthalpy for that species. Two temperatures and corresponding thermodynamic data are placed on each card. The input table can contain up to a maximum of 30 temperature points. The data are input exactly as presented in the JANAF tables (Ref. 10) with the temperature points being the same for all species. Cards 13.1, 13.2, 13.3, etc., are repeated for each species.

Card	Column	Description	Format
13.1	1-6	Name of first species	A 6
	7-16	Molecular weight	E10.3
	17-26	Heat of formation, h298; (kcal/mole)	E10.3
13.2	1-10	First temperature point (OK)	F10.4
	11-20	c _{pi} (cal/mole- ^o K)	F10.4
	21-30	S; (cal/mole- ^o K)	F10.4
	31-40	h _i - h _{298;} (kcal/mole)	F10.4
	41-50	Second temperature point (OK)	F10.4
	51-60	c _{pi} (cal/mole- ^o K)	F10.4
	61-70	S; (cal/mole- ⁰ K)	F10.4
	71-80	h _i - h _{298;} (kcal/mole)	F10.4
13.3	1-10	Third temperature point	F10.4

etc.

Cards 14 Catalytic Species Weighting Factor Data (The following cards are required if ICON(1)>2 and NM>0)

The following set of cards specify the catalytic species (M1, M2, M3,...) and their respective composition in terms of the species participating in the reactions. Weighting factors must be read in the same order in which the thermodynamic data sets are read.

\underline{Card}	Column	Description	Format
14.1.1	1 - 6	AID(NS+1) - Name of first catalytic species (e.g., M1)	A6
14.1.2	I - 5	WF(1, 1) — Weighting factor of first species (for first catalytic species). Set weighting factor to zero for any reactant which does not contribute to the respective catalytic species.	16F5.2
	6 - 10	WF(1, 2) - Weighting factor of second species contributing to first catalytic species.	
	75 - 80	WF(1, 16) - Weighting factor of 16th species contributing to first catalytic species.	
14.1.3	1-5	WF(1, 17) — Weighting factor of 17th species contributing to first catalytic species, etc.	16F5.2
14.2.1	1-6	AID(NS+2) - Name of second catalytic	A6
14.2.2	1-5	WF(2, 1) - Weighting factor of first species contributing to second catalytic species, etc.	16F5.2
14.NM.1	1-6	AID(NS+NM) - Name of last catalytic species, etc.	A6

Cards 15 Chemical Reaction Mechanisms (The following cards are required if ICON(1)>2 and NR>2)

The following set of cards specifies the chemical reaction mechanisms for a particular problem, one card for each reaction. No particular order is required.

Card	Column	Description	Format	
15.1	1-6	Species A	A 6	
	7	+ sign		
	8-13	Species B (or M)	A6	

LOCKHEED MISSILES AND SPACE CO INC HUNTSVILLE AL HUN--ETC F/G 21/8.2 SUPERSONIC FLOW OF CHEMICALLY REACTING GAS-PARTICLE MIXTURES, V--ETC(U) JAN 76 M PENNY. 5 D SMITH, P G ANDERSON NAS9-14517 AD-A094 633 UNCLASSIFIED LMSC-HREC-TR-D496555-2 NL 2 cr 5 40 4094635

Cards 15 (Continued)

Card	Column	Description	Format
15.1	14	+ sign	
	15-20	Blank (or M)	6x(A6)
	21	= sign	
	22-27	Species C	A 6
	28	+ sign (if needed)	
	29-34	Species D (or M)	A 6
	35	+ sign (if needed)	
	36-41	Species E (or M)	A 6
	42-48	Blank	
	49-50	Reaction type, 1 to 12	12
	51	Rate constant type, 1 to 5	I 1
	52-59	A, pre-exponential factor (cm- particle-sec units)	E8.2
	60-64	N, temperature exponent	F5.2
	65-74	B, activation energy (cal/mole)	F10.1
	75-80	M, temperature exponent	F6.2
15.2		Next reaction	
15.NR		Last reaction	

Cards 16 Startline Data Format 7E10.3 (The following cards are required if ICON(1)>2 and ICTAPE=0)

The following cards contain the species mole fractions on the startline. Mole fractions must be read in the same order in which the thermodynamic sets are read.

Card	Column	Description
16.1	1 - 10	Mole fraction of first species at the first point on the startline.
	i i	
	61-70	Mole fraction of seventh species at the first point on the startline.

Cards 16 (Continued)

Card	Column	Description		
16.2	1-10	Mole fraction of eighth species at the first point on the startline.		
	:			
	61-70	Mole fraction of the fourteenth species at the first point on the startline.		
		•		
		•		
		<i>:</i>		
		etc.		

Cards 16.1 and 16.2, etc., are repeated for each point on the startline. For a uniform startline (IDIDO=0), mole fractions are read for 1 point only.

Card 17	Chamber Condition Data	Format 2E10.3
	(This card is used if ICON(1)>2	
	and ICTAPE=0)	

Column	Parameter	Description
1 - 10	PC	Chamber pressure (atm)
11-20	TC	Chamber temperature (^O K)

Card 18	Startline Data	Format 8E10.6
	(This card is not used if ICON(2)=2 or for gas particle flow).	

Use Card 18a if $ICON(1) \le 2$. Use Card 18b if ICON(1) > 2.

<u>Card</u> * 18a	Column	Parameter	Description
18a*	1 - 10	CORLIP(2)	Axial coordinate of upper limit of startline (ft or m, see Fig. 3-la)
	11-20	CORLIP(6)	Axial coordinate of lower limit of startline (ft or m, see Fig. 3-la). (If ICON(3) point spacing option = 2 this value is recalculated using CORLIP(2)).
	21-30	CORLIP(4)	Mach number $(ICON(2)=0)$ or A/A^* $(ICON(2)=1)$ for startline
	31-40	CORLIP(5)	Entropy of startline (cal/gm/°K or Btu/lbm/°R)
	41-50	CORLIP(8)	Mixture ratio (O/F) of startline

^{*}Card 18a is used to input the gas startline information when the gas chemical equilibrium, frozen or ideal gas option is utilized in the solution.

Card 18 (Continued)

Card	Column	Parameter	Description
18b*	1 - 10	CORLIP(2)	Axial coordinate of upper limit of start- line (ft or m, see Fig. 3-la)
	11-20	CORLIP(6)	Axial coordinate of lower limit of start- line (ft or m, see Fig. 3-la)
	21-30	CORLIP(4)	Mach number (ICON(2)=0) or A/A^* (ICON(2)=1) for startline
	31-40	P	Pressure for startline (atm)
	41-50	Т	Temperature for startline (OR or OK)

Card 19 Startline Data Format 6E13.7

Do not use this card if $ICON(2) \neq 2$ or for gas-particle flow. Use feet if ICON(9) = 0, meters if ICON(9) = 1. Use Card 19a if $ICON(1) \leq 2$. Use Card 19b if ICON(1) > 2.

Repeat this card in succession and in order of increasing R for $I=1, 2, \ldots$, ICON(3).

Card	Column	Parameter	Description
** 19a	1-13	R	Radial coordinate (R) of point I on startline (ft or m)
	14-26	X	Axial coordinate (X) of point I (ft or m)
	27-39	EM	Mach number at point I (dimensionless)
	40-52	THETA	Flow angle at point I (deg)
	53-65	S	Entropy at point I (cal/gm/ ^o K or Btu/lbm/ ^o R)
	66-78	OF	Mixture ratio at point I (O/F)
* 19b	1-13	R	Radial coordinate (R) of point I on start- line (ft or m)
	14-26	X	Axial coordinate (X) of point I (ft or m)
	27-39	EM	Mach number at point I (dimensionless)
	40-52	THETA	Flow angle at point I (deg)
	53-65	T	Temperature at point I (OR or OK)
	66-78	P	Pressure at point I (atm)

^{*}This card is used to input the gas startline information when the gas chemical non-equilibrium option is utilized in the solution.

^{**} See footnote on previous page.

Card 20	Cutoff Limits I	Data Format 8E10.6
_	Required (See	Fig. 3-1b)
Column	Parameter	Description
1 - 10	CUTDAT(1)	Radial coordinate defining upper limit of calculation regime (ft or m)
11-20	CUTDAT(2)	Axial coordinate defining upstream cutoff limit (ft or m)
21-30	CUTDAT(3)	Angle upper limit of calculation regime makes with horizontal (deg)
31-40	CUTDAT(4)	Radial coordinate defining downstream cutoff limit (ft or m)
41-50	CUTDAT(5)	Axial coordinate defining downstream cutoff limit (ft or m)
51-60	CUTDAT(6)	Angle downstream cutoff line makes with horizontal (deg)
Card 21	Mesh Control	Fromat 8E10.6
_	Required (See	Section 3.5.1)
Column	<u>Parameter</u>	Description
1-10	STEP(3)	Interior point insertion criteria (ft or m), See Section 3.5.1.
11-20	STEP(6)	Axis point insertion criteria (ft or m). See Section 3.5.1.
21-30	STEP(9)	Particle limiting streamline insertion criteria.
31-40	STEP(7)	Point deletion criteria.
41-50	STEP(1)	Prandtl-Meyer integration step size (deg).
51-60	STEP(8)	Interpolation factor for calculating lower wall.

Fig. 3-la - Startline Geometric Set-Up

Normal terminated by downstream cutoffs.

CUTDAT(1)

CUTDAT(2)
CUTDAT(3)

CUTDAT(4)

CUTDAT(5)
CUTDAT(6)

 Normal terminated by plume boundary.

NOTE: The normals must terminate on an upper boundary. Therefore, R_1, X_1, θ_1 must have values such that the cutoff box will always be above the plume or solid boundary. The code will attempt to fill up the cutoff box with normals until fewer than six points remain on the normal.

Fig. 3-lb - Cutoff Limits

Card 22 Free-Molecular Control Variables Format 6E10.6 (This card is not used if ICON(13)=0)

Column	Parameter	Description
1-10	VIBNO	Reciprocal of the Knudsen number at which the vibrational energy mode thermally freezes.
11-20	ROTNO	Reciprocal of the Knudsen number at which the rotational energy mode thermally freezes.
21-30	TRANNO	Reciprocal of the Knudsen number at which the translational energy mode thermally freezes.
31-40	CHARL	Characteristic length used in the Knudsen number calculation (nomally the nozzle exit radius).
41-50	VISCC	Reference viscosity (poise) if not input in thermo tables.
51-60	CONMM	Viscosity relation temperature exponent if not input in thermo tables.

Cards 23 through 35 are input only for two-phase solution.

Particle Solution Control

(Use only if ISPECS > 0)

Card 23

6-10

IDRAG

Column	Parameter	Value	Description
4	IZO	0	Nozzle wall equations are referenced to the nozzle throat.
		1	Nozzle wall equations are referenced to the nozzle exit plane.
5	IWRITE (particle print flag)	0 t	l line of print for each particle (V, θ , ΔM , h, P, T)
		1	Above plus Re, ΔV , ΔT , viscosity, $C_{\mathbf{p}}$, Pr
		2	All of above plus T_0 , P_0 , C_D/C_{DS} , Nu/Nus , A, B

(Ref. 7). 1 Use C. J. Crowe drag table coded internal to program (Ref. 11).

Use drag table coded in Kliegel program

Format 1615

Card 23 (Continued)

Column	Parameter	Value	<u>Description</u>
14-15	NSETS	0	Startline calculated by program (ICON(2)≠2)
		N	Number of startline points at which particles are present for given startline. $ICON(2) = 2$, $N \le ICON(3)$. Right adjust.
18	IPCHS	0	No punch.
		1	Punch startline from transonic program.
24	JTEM(1)		The elements of the JTEM(M) arrary indicate which temperature/enthalpy table is to be used for particle species M. The value of JTEM(1) is always set equal to 1 for particle species 1.
25, 30	JTEM(M) M = 2, ISPECS	0	Indicates that the particle species M temperature/enthalpy table will be the same as that for particle species 1. Cards 30, 31 and 32 are not required for particle species M.
65		M	Indicates that the particle species M temperature/enthalpy table will be input on Cards 30, 31 and 32 as Table M.
		N	Indicates that the particle species N temperature/enthalpy table will be the same as that for particle species M. (N < M). Cards 30, 31 and 32 are not required for particle species N.
Card 24	Particle		Format 8E10.6
Column	Parameter		Description
1 - 10	XMASSP		Ratio of particle total mass flow rate to gas mass flow rate.
Card 25	Particle Mass F Rate Fractions (ISPECS>0)		Format 8E10.6
Column	Parameter		<u>Description</u>
1-10	PERTG(1)		Ratio of particle No. 1 mass flow rate to total particle mass flow rate.

Card 25 (Continued)

Column	Parameter	Description
11-20	PERTG(2)	Ratio of particle No. 2 mass flow rate to total particle mass flow rate.
•	•	• •
•	PERTG (ISPECS)	Ratio of particle No.ISPECS mass flow rate to total particle mass flow rate.
Card 26	Particle Size Data (Use only if ISPECS>0)	Format 8E10.6
<u>Column</u>	Parameter	Description
1 - 10	PSP(2, 1)	Radius of particle No. 1 (microns).
•	•	
•	PSP(2, ISPECS)	Radius of particle No.ISPECS (microns).
Card 27	Particle Mass Density (Use only if ISPECS>0)	Format 8E10.6
Column	Parameter	Description
1-10	PSP(1, 1)	Mass density of particle No. 1 (lbm/ft^3 , or kg/m^3)
•	•	• •
•	PSP(1, ISPECS)	. Mass density of particle No.ISPECS (lbm/ft^3 , or kg/m^3).
Card 28	Emissivity Data* (Use only if ISPECS>0) (c in Eq. (3.6))	Format 8E10.6
Column	Parameter	Description
1-10	EMISS(1)	Emissivity of particle No. 1.
•	•	÷
•	EMISS(ISPECS)	Emissivity of particle No.ISPECS

^{*}The emissivity and accommodation coefficients are used to determine the local energy exchange between the gas and particles via radiation. They normally produce negligible affects on solution and usually are set to 0 (zero).

Card 29	Accommodation Coefficients (Use only if ISPECS>0) (α in Eq. (3.6)	ents Format 8E10.6
Column	Parameter	Description
1-10	ACC(1)	Accommodation coefficient of particle No. 1.
•	•	·
•	•	•
	ACC(ISPECS)	Accommodation coefficient of particle No. 1 ISPECS.
Card 30	Particle Equation of Stat (Use only if ISPECS>0)	e Format 4A6,13, A6
Coaumn	Parameter	Description
1 - 24	ALPHA	Particle name (any name).
28-33	UNIT (Independent of ICON(9))	ENG Data input in English units MKS Use metric units
Card 31	Particle Data (Use only if ISPECS>0)	Format 13, 12A6
Column	Parameter	Description
1 - 3	NPTM(I)	Number of temperature-enthalpy data points for this particle. If equal to 1, input liquid and solid heat capacities (see Card 32). Right adjust.
Card 32	Particle Enthalpy Data (Use only if ISPECS>0; units specified by Card 3	Format 7E10.6
Column	Parameter	Description
1 - 10	TM(I)	Melting point temperature of particle No.I (OR in English units, OK in MKS units).

The emissivity and accommodation coefficients are used to determine the local energy exchange between the gas and particles via radiation. They normally produce negligible affects on solution and usually are set to 0 (zero).

Card 32 (Continued)

Column	Parameter	Description
11-20	HS(I)	Enthalpy of solid phase of particle No.I at melting point temperature (Btu/lbm or cal/gm).
21-30	HM(I)	Enthalpy of liquid phase of particle No.I at melting point temperature (Btu/lbm or cal/gm)
	If NPTM(I)=1, use follow	ing format.
31-40	APHO(1, 1, I)	Heat capacity of liquid phase of particle No.I (Btu/lbm-OR or cal/gm-OK).
41-50	APHO(1, 2, I)	Heat capacity of solid phase of particle No.I (Btu/lbm-OR or cal/gm-OK).
	If NPTM(I) > 1 use follow	ing format.
31-40	APHO(1, 1, I)	Temperature for T-H table for particle No.I (OR or OK).
41-51	APHO(1, 2, I)	Enthalpy for T-H table for particle No.I (Btu/lbm or cal/gm).
51-60	APHO(2, 1, I)	Second temperature in T-H table for particle No.I (OR or OK).
61-70	APHO(2, 2, I)	Second enthalpy in T-H table for particle No.I.

The above format (APHO(J, 1, I), APHO(J, 2, I)) is continued on successive cards of format 7E10.6 for J=1, 2, ..., NPTM(I).

There are as many sets of cards 30, 31, 32 as there are different chemical species.

Card 33 Input Startline Format 6E13.7 (The following cards are required if ICON(2)=2 and ISPECS>0).

Use Card 33a if $ICON(1) \le 2$. Use Card 33b if ICON(1) > 2. Repeat this card for I=1, 2, ..., ICON(3) starting at point on nozzle axis.

Card 33a

Column	Parameter	Description
1-13	R	Radial coordinate of startline point I (ft or m).
14-26	X	Axial coordinate of startline point I (ft or m).

This card is used when gas chemical equilibrium, frozen or ideal gas option is selected.

Card 33a (Continued)

Column	Parameter	Description
27-39	EM	Mach number at point I.
40-52	THETA	Flow angle at point I (deg).
53-65	S	Entropy at point I (Btu/lbm- ^O R or cal/gm- ^O K).
66 - 78	OF	Gas total enthalpy (Btu/lbm or cal/gm).
* Card 33b		
Column	Parameter	Description
1-13	R	Radial coordinate of startline point I (ft or m).
14-26	X	Axial coordinate of startline point I (ft or m).
27-39	EM	Mach number at point I.
40-52	THETA	Flow angle at point I (deg).
53-65	T	Temperature at point I (OR or OK)
66 - 78	Р	Pressure at point I (atm).

Use Card 34a if $ICON(1) \le 2$. Use Card 34b if ICON(1) > 2.

Startline Particulate Data

(The following cards are required if ICON(2)=2 and ISPECS>0).

Card 34a

Card 34

Column	Parameter	Description
5	J1	Particle number
11-23	H1	Particle enthalpy at point I (Btu/lbm or cal/gm).
14 - 36	RHO1	Particle density at point I (slug/ft 3 or kg/m 3).
37-49	Ul	Particle axial velocity at point I (ft/sec or m/sec).
50 - 6 2	V1	Particle radial velocity at point I (ft/sec or m/sec).

Format 15, 5X, 4E13.7

^{*}This card is used when the gas chemical non-equilibrium option is selected.

Card 34b

<u>Column</u>	Parameter	Description
5	Л1	Particle number.
11-23	Hl	Particle enthalpy at point I (Btu/lbm or cal/gm.
14 - 36	RHO1	Particle density at point I (slug/ft 3 or kg/m 3).
37-49	$^{ m V}{}_{ m p}$	Particle velocity at point (I) (ft/sec or m/sec).
50 - 62	$\Theta_{\mathbf{p}}$	Particle flow angle at point I (deg).

Card 34 is repeated for each discrete particle size at each point on the start line where particles are present, starting at the nozzle wall and going toward the axis (reverse order of Card 33).

Card 35 Transonic Flow Data
(Use only if ISPEC > 0
and ICON(2) \neq 2)

Format: Namelist

Although there are many parameters that may be input via the namelist DATA, most of these have already been assigned values in the previous 32 input cards; and some of the parameters do not apply to the transonic calculation. Only those namelist parameters that could have a significant effect on the program are included below. The namelist data begins in Column 2 with \$DATA. The last card begins in Column 2 and contains only \$END.

Parameter	Assı	ımed Value
THID	Throat inlet half angle (deg)	None
THFD	Fairing angle (deg) (If THFD>THID no fairing)	5.0
THJD	Angle defining farthest downstream zone in transonic region (deg)	9.0
THIW	Angle where start line intersects nozzle wall (deg)	12.0
RRT	Throat wall radius of curvature divided by throat radius (>2.0)	None

Card 35 (Continued)

Parameter		Assumed Value
ZAX	Value of X where startline intersects nozzle axis, normalized by throat radius (If ZAX is not input the program will calculate a value.)	None
(See Fig.	3-2 for an illustration of above par	rameters.)
ZI	Number of zones into which the upstream portion of transonic zone is divided*.	3.0
ZJ	Number of zone into which the downstream po on of transoni zone is divided*	— • -

^{*}See Ref. 7.

Fig. 3-2 - Inlet and Throat Parameters for a Gas-Particle Transonic Solution (see Ref. 7)

Table 3-6 MAGNETIC TAPE ASSIGNMENTS FOR THE RAMP PROGRAM

and OUTBIN— and flowfield or use with other s struction the form used tion routines. - Store and retrieve ach point in the flow ach point in the flow ach point in the flow ach point in the flow ach point in the flow	Where Required GASTAP - Uses TRAN72 data to set up equilibrium thermodynamic data tables or uses TRAN72 data to get species distribution on startline if finite rate option is selected.	Tape Units U-1108 10	Tape Unit Function Gas properties data generated by the TRAN72 program (input data)
NTAPE*	GASTAP, IDTAPE and OUTBIN — Outputs input data and flowfield results on unit 3 for use with other auxiliary programs	3 MT A DF.	RAMP program (output data)
. 2	L — Arranges two phase tran- olution output in the form used data acquisition routines. N — Reads startline information	NTAPE*	internally by the two-phase transonic solution (input data) Variable tape unit number on which
al 1	rry to initiate a flowfield solution. P and PFP - Store and retrieve	2	startline data calculated external to program is stored (input data). Stores particle data calculated in-
	e data for each point in the flow — Stores and retrieves chemical s data for each point in the flow	1	Stores chemical species data calculated internally by the RAMP program at each point in the flow field.

*Set internally to 8 if ICON(2) = 0, NSPECS > 0 and not input on card 4. Set internally to 5 if ICON(2) = 2 (start line data read from cards) and not input on card 4.

3.2.2 Control Card Set-Up for Univac 1108 Exec 8 and Program Overlay Structures

A typical run stream set-up for the Univac 1108 Exec 8 computer is presented in this section. Also included are two tables which give the overlay structures for the two versions of the RAMP program.

Control Card Set-Up for the Univac 1108 Exec 8 **VFIN VFIN** DATA DECK ∇XQT GO OPRT. T ∇ FREE A \bigvee VCOPIN A., TPF\$. VREWIND A ∇USE 10, GAS $\nabla ASG, T 2, F$ ∇ASG, T 1, F Assign data tape containing ∇ASG, T GAS, T, 2415 thermodynamic data (if required). ∇ ASG, T TPF\$. F///1000 Assign sufficient computer storage for program. **VFREE TPF\$** ✓ ∇ASG, T A, T, 17003 Assigns program tape CUSE 13, FLOW ∇ASG, T FLOW, T, SAVE Output data tape VRUN CONTROL CARD

NOTE: This schematic is typical of a run control scheme for the Univac 1108 Exec 8 computer. It is presented to acquaint the user with magnetic tape and scratch area assignments.

The data deck has been described in Section 3.2.1 and will be presented first in flow chart form and the listed for several example problems in Section 3.7.

Tables 3-7a and 3-7b give the program overlay structure for the equilibrium and finite rate chemistry versions of the RAMP program. The equilibrium version requires 63.3K octal storage locations while the finite rate version requires 62.4K octal storage locations.

Table 3-7a RAMP OVERLAY STRUCTURE FOR EQUILIBRIUM CHEMISTRY VERSION OF PROGRAM

, , ,

71

3-49

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Table 3-7b RAMP OVERLAY STRUCTURE FOR FINITE RATE VERSION OF PROSRAM

LOCKHEED - MUNTSVILLE RESEARCH & ENGINEERING CENTER

3.3 OUTPUT FORMAT

This section describes the printed output as well as the binary tape output for the RAMP code.

3.3.1 Description of Printed Output

The program output is organized so that the initial pages contain the input data and the initial data surface. Each data surface thereafter is constructed along a "normal" to the streamlines which have been chosen to represent the flow expansion of the nozzle and exhaust plume. The computer code will treat a chemical equilibrium and/or frozen or chemical non-equilibrium flow expansion with or without the presence of particles; consequently typical printouts for each case are presented to demonstrate the output for each case. Numbered flags on the example printout sheets correspond to the numbered comments in the following description of the printout. The calculations are performed in either the English or metric system of units; hence units for both are given.

GROUP 1 - IDENTIFICATION

- (1) Computer code identification
- (2) Identifies gas-particle flow solution; does not occur for gaseous only case.
- 3 Case Number: Appears on each page may be a maximum of five digits.
- Problem Title: Identifies particular solution, appears on each page and may be 120 spaces.

GROUP 2 - PROGRAM CONTROL

(5) These 16 parameters control the execution of program according to the options selected. (See Card 4 of the Input Guide for an explanation of the individual parameters.)

GROUP 3 - BOUNDARY EQUATIONS (See input guide for a detailed description)

- 6 Type Equation: Identifies the type of boundary equation selected.
- 7 ITRANS: Indicates whether a discontinuity follows this equation.

- 8 Equation Coefficients: Apply to upper and lower boundary equations.
- 9 MAX: Maximum value of x for which this equation applies.

GROUP 4 - GAS-PARTICLE MIXTURE IDENTIFICATION

- 10 Total Enthalpy (appears for gas-particle flow): Gas total enthalpy before it is perturbed (see page 2-2).
- [1] Indicates number of discrete particles used to represent the particle distribution.
- Gas Identification: Name (24 characteristics max.) which identifies the gas. If the gas data is stored on a magnetic tape, this is the name which is used to locate the gas data on the data tape (see Card 8 of the Input Guide).

GROUP 5 - GAS PROPERTIES

- 13 Total Enthalpy (appears for gas-particle flow): Gas total enthalpy for this table.
- O/F Ratio (appears for gaseous only solution): O/F for this table.
- (14) Entropy: May be two maximum for each O/F or total enthalpy.
- Gas Thermodynamics Data Velocity: May be 13 maximum for each entropy (ft/sec or m/sec).
- Gas Constant: Value associated with particular velocity, etc., $(ft^2/sec^2/^{\circ}R \text{ or } m^2/sec^2/^{\circ}K)$.
- 17 Isentropic Exponent: Value associated with particular velocity, etc.
- Temperature: Value associated with particular velocity, etc., (OR or OK).
- Pressure: Value associated with particular velocity, etc., (lbf/ft² or N/m²).
 - Gas Transport Data: (does not appear for gaseous only solution).
- (20) Prandtl Number: Value associated with particular value of velocity, etc.
- (2) Viscosity: Value associated with particular value of velocity, etc.
- Specific Heat at Constant Pressure: This parameter appears for real gas with multiple velocity values. If only one velocity is used the parameter printed is the viscosity exponent for the equation $\mu = \mu_0 (T/T_0)^{\text{exp}}$.

GROUP 6 - PROBLEM LIMIT INFORMATION (see input guide)

- (23) R: Radial coordinate of upper cutoff (units consistent with boundary equations).
- \underline{X} : Axial coordinate of upper cutoff (units consistent with boundary equations).
- (23) THETA: Angle of upper cutoff line (deg)
- 26 R: Radial coordinate of lower cutoff (units consistent with boundary equations).
- \underline{X} : Axial coordinate of lower cutoff (units consistent with boundary equations.
- Theta: Angle of lower cutoff line (deg).

GROUP 7 - PARTICLE DESCRIPTION (does not appear for gaseous only solution)

- 29 Particle Number: Number assigned to particular particle (10 max).
- 30 Particle Radius: Radius of the particle in microns.
- Mass Density: Particle density (lbm/ft or kg_m/m^3).
- Emissivity: Coefficient of emmissivity for particle radiation to the surrounding medium.
- Accommodation Coefficient: Accommodation coefficient for radiation from the surrounding medium to the particle.
- $\sum_{j=1}^{N} \dot{\omega}_{p}^{j} / \dot{\omega}_{g}$: Particle percent loading relative to the gas.
- UNITS: Units with which the particle temperature-enthalpy table will be input (see the input guide).
- TMELT: Temperature of the particle during the phase change from liquid to solid (OR or OK).
- HSOLID: Value of enthalpy at which the particle becomes a solid (ft²/sec² or M²/sec²).
- HLIQUID: Value of enthalpy at which the particle begins the transition from liquid to solid phase (ft²/sec² or M²/sec²) constant specific heat analysis.

- (40) CPMELT: Value of the specific heat at constant pressure for the particle in the liquid state (1.2/sec2/oR).
- CPSOLID: Value of the specific heat at constant pressure for the particle in the solid state (ft²/sec²/°R or m²/sec²/°K).
- (40) TP: Value of the particle temperature (OR or OK) (50 max.).
- HP: Value of particle enthalpy corresponding to 40 (50 max.)
- (42) Re: Particle Reynolds number (28 max.).
- DRAG COEF: Particle drag coefficient parameter, f^j, corresponding to (42).

GROUP 8 - GAS START LINE INFORMATION

- R: Radial coordinate of the data point (units consistent with boundary equations).
- (45) X: Axial coordinate of the data point (units consistent with boundary equations).
- (46) M: Local value of the Mach number (must be > 1.0).
- (47) THETA: Local flow deflection angle (deg).
- $\frac{1}{48}$ S: Local value of entropy level (ft²/sec²/ $^{\circ}$ R or m²/sec²/ $^{\circ}$ K).
- 49 MACH ANGLE: Local value corresponding to M (deg).
- Shock Angle: Local value of shock angle if point is a downstream shock point (deg).
- $\frac{\text{H-TOTAL (gas-particle flow): Gas total enthalpy level}}{(\text{ft}^2/\text{sec}^2 \text{ or m}^2/\text{sec}^2)}$
- (5) O/F (gas only flow): local value of O/F.

GROUP 9 - PARTICLE START LINE INFORMATION (does not appear for gaseous only solution)

- POINT: Data point at which this particle is present.
- SPECIE: Particle number for this data point.
- 1: Particle axial component of velocity (ft/sec or m/sec).
- (5) \underline{V} : Particle radial component of velocity (ft/sec or m/sec).
- (9) Particle streamline deflection angle (rad)
- (5) h: Particle enthalpy level (ft²/sec² or m²/sec²)
- $\frac{1}{\sqrt{58}}$ $\frac{1}{\varrho}$: Local particle concentration (slug/ft³ or kg_m/m³)

GROUP 10 - MESH CONTROL CRITERIA (see input guide)

- 59 DLI: Point insert criteria for the nozzle-plume interior solution (units consistent with boundary equations).
- 60 DXA: Line insert criteria along the axis (units consistent with boundary equations).
- (6) <u>DLM</u>: Insert criteria near a particle limiting streamline (units consistent with the boundary equations).
- 62 <u>DLD</u>: Point delete criteria (units consistent with the boundary equations).
- 6) <u>DEGPM</u>: Incremental angle to be used in the numerical integration to define the Prandtl-Meyer expansion fan (deg).
- (64) F: Interpolation factor used in the axis point solution.

GROUP 11 - DATA LINE FLOW PROPERTIES

NOTE: The output format for all data surfaces are the same with each point type on the line being identified. Several different lines are shown to indicate typical line constructions.

- 65 Line: Line number; lines are numbered in ascending order.
- (66) Point: Indicates point number on the line.
- 67 Description: Indicates point type and flow regime. These options are:

	Point Type	Output Format		Flow Regime	Output	Format
a .	Input	INPUT POINT	a.	Continuum	CC	NTIN
Ь.	Interior	INTER	b.	Vibrationally Frozen	VI	BFRZ
с.	Wall	WALL	с.	Rotationally Frozen	RC	TFRZ
d.	Free Boundary	FREEBD	d.	Transitionally Frozen	n TR	NFRZ
e.	Prandtl-Meyer	PRN-MR				
f.	Upstream	UP-SHK				
g.	Downstream Shock	DWNSHK				
h.	Shock Interaction	SOKINT				
i.	Slipline	SLIP				

NOTES: The point type and flow regime will appear in the appropriate combination to completely describe the data point.

Items (70) through (81) refer to gas conditions.

- R: Radial coordinate of the data point (units consistent with the boundary equations)
- 69 X: Axial coordinate of the data point (units consistent with the boundary equations)
- M: Local value of the Mach number
- 9: Local flow deflection angle of the gas streamline (deg)
- S: Local entropy level of the gas $(ft^2/sec^2)^0$ R or $m^2/sec^2/0$ K)
- V: Local magnitude of the velocity (ft/sec or m/sec)
- H-TOTAL (gas-particle flow): Gas total enthalpy level $(ft^2/sec^2 of m^2/sec^2)$
- Mach Angle: Mach angle corresponding to the Mach number (deg)

- (11 / sec of m / sec)

 (74 O/F (gas only flow): Local value of O/F

 (75 Mach Angle: Mach angle corresponding to P: Local pressure (lb_f/in² or N/m²)

 (76 P: Local density (slug/ft³ or kgm/m³)

 (77 P: Local static temperature (°R or °K)

 (79 GAS CONST: Local value of the gas constant of the gas c GAS CONST: Local value of the gas constant $(\mathrm{ft}^2/\mathrm{sec}^2/\mathrm{^oR})$ or $\mathrm{m}^2/\mathrm{sec}^2/\mathrm{^oK}$
- LOCAL GAMMA: Local value of the isentropic exponent
- SHOCK ANGLE: Local value of the downstream shockwave angle (deg)

NOTE: Items (82) through (87) refer to the particle properties. This printout does not appear for gas only flow.

- V: Local magnitude of particle velocity (ft/sec or m/sec)
- 9: Local particle streamline deflection angle (deg)
- DM: Difference in Mach number between the gas and particle
- h: Local particle enthalpy level (ft²/sec² or m²/sec²)
- ρ: Local particle concentration (slug/ft³ or kgm/m³)
- T: Local particle temperature (OR or OK)
- Indicates the data point is on a particle limiting streamline

GROUP 12 - INTEGRATED GAS AND PARTICLE MASS FLOW RATES

NOTE: The units of the flow rates depend on the units of the boundary equation. For the following units perform the indicated operation.

Units	Factor	<u>ω</u>
in.	1/144	slug/sec
ft	1	slug/sec
M	1	kg _m /sec
None	(Ref.length) ²	slug/sec or kg _m /sec

- (89) Gas mass flow rate
- (90) Particle total mass flow rate
- $(\widehat{91})$ Sum of the gas and particle mass flow rate
- Particle percent loading relative to the gas (numerical integration results)
- (93) Particle percent loading relative to mixture

GROUP 13 - MOMENTUM INTEGRATION RESULTS

- This is a calculation of the coraponent of the net thrust due to the gas and particle momentum across the starting line.
 - FORCEX, FORCEY: Net axial and radial component of the thrust vector (lb, or N)
 - TORQZ: Net torque resulting from the thrust (ft-lb, or m-N)
 - ISP: Specific impulse corresponding to FORCEX (lbf-sec/lbm)
- (95) This is the incremental gas and particle contribution to the thrust and torque vector
 - $\underline{\rm DELFXG}, \underline{\rm DELFYG};$ Net gaseous axial and radial component of the thrust vector (lb $_{\rm f}$ or N)
 - <u>TORQZG</u>: Net torque resulting from the gaseous contribution to the thrust vector (ft-lb_f or m-N)
 - DELFXP, DELFYP: Particle momentum contribution to the thrust vector (lb, or N)
 - TOROXP: Net torque resulting from the particle contribution to the thrust vector (ft-lb, or m-N)

Problem Solution Iteration Control

96 ITR: Number of iterations required for this point to converge within the convergence criteria

GROUP 14 - PRESSURE INTEGRATION RESULTS

(97) This calculation is the thrust and torque resulting from the gas pressure acting on the nozzle wall.

 $\frac{FORCEX, FORCEY:}{(lb_f\ or\ N).}\ Axial\ and\ radial\ component\ of\ the\ thrust}$ pressure contribution.

TORQZ: Net torque resulting from the thrust (ft-lb_f or m-N) DELFX, DELFY: Incremental force in the axial and radial directions resulting from the pressure acting on the nozzle wall (lb_f or N)

ISP: Specific impulse corresponding to FORCEX (lb_f-sec/lb_m)

GROUP 15 - PERCENT CHANGE IN MASS FLOW RATE, MOMENTUM, ENERGY, AND ISP

NOTE: This is a comparison of the mass flow rate, momentum, energy and ISP relative to the mass flow rate, momentum, energy and ISP through the input (starting line) surface. The percent change should be near zero; any variation from zero is an indication of accumulated error in the numerical solution.

- (98) Percent change in the mass flow rate of the gas
- 99 Percent change in the mass flow rate of the particles
- (100) Percent change in the mass flow rate of the mixture
- (101) Percent change in the momentum of the gas
- (102) Percent change in the momentum of the particles
- (103) Percent change in the momentum of the mixture
- 10.1 Percent change in I sp
- (109) Percent change in the energy of the gas
- [106] Percent change in the energy of the particles
- 107) Percent change in the energy of the mixture.

GROUP 16 - FREE MOLECULAR CONTROL PARAMETERS

- VIBNO: Reciprocal of the Knudsen number at which the vibrational energy mode thermally freezes.
- ROTNO: Reciprocal of the Knudsen number at which the rotational energy mode thermally freezes.
- (110) TRANNO: Reciprocal of the Knudsen number at which translational energy mode thermally freezes.
- CHARL: Characteristic length used in the mean free path calculation used to compute the local value of the Knudsen number (units consistent with the boundary equations).
- GAMV: Value of the isentropic exponent to be used in the vibrationally frozen flow calculations.
- 113 GAMR: Value of the isentropic exponent to be used in the rotationally frozen flow calculations.

NOTE: Items 112 and 113 are the gas species data to be used in the calculation of parameters used in the Knudsen number calculation (10 max. may be used).

GROUP 17 - SPECIES THERMODYNAMIC AND REACTION DATA

- These 7 parameters control the execution of the finite rate chemistry calculations according to the options selected. (See Card 5 of the Input Guide for an explanation of the individual parameters.)
- (115) Prandtl number of the gas (dimensionless)
- (116) Absolute viscosity of the gas (poise)
- (117) Viscosity temperature exponent
- (118) Reaction number
- (119) Reaction being considered
- (120) A: Pre-exponential factor (cm-particle-sec)
- (121) N: Temperature exponent
- 122 B: Activation energy (cal/mole)
- (123) M: Temperature exponent
- (124) R-Type: Reaction type

- (125) K-Type: Rate constant type
- (126) Catalytic species being considered. (See Card(s) 14 for an explanation.)

GROUP 18 - SPECIES MOLE FRACTIONS ON THE STARTLINE

- (127) Point: Indicates the point number on the startline
- (128) Corresponding species mole fractions at the point (127)
- (129) Chamber pressure (atm)
- (130) Chamber temperature (OK)
- (131) Species mole fractions at a point on the data surface

Sample Printout for Two-Phase Chemical Equilibrium Flow

Printout for Two-Phase Chemical Equilibrium Flow
Chemical
Two-Phase
e Printout for
Sample 1

			CASE ND	©				PAGE
SHUTTLE	SEP						-	
	(1),6031	1664(2) 0	R (CON(3)	RUN CONTROL PARA	RAMETERS (5)	TCON(6) T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ICONTB3
	16011693	10111021	1C0K111)	(CON(12) 10	1008(13) 10	1C0N(14) 1	CON(15)	ICONCIA!
ALCOEATION	25 O PLOW CALCOLATIONS ARE IN EMALISH TUILL	25 154 UNITS WITH	THE P.X	CODADINATES IN FE	1			1
יינוברטַ ט	HE FOLLY FIFE OFTA WILL OF ABITING ON	BUNT ON TAPE	1 1	i 1		!		
	(1	0	(0)	UPPER BOUNDAR	TRA D	(8)	(8)	(6) XAH
CO TYPE		0.3.1.1.1.1	15340-00	000000		•	.52225	14672+00
	•		10+14515		0.0000.		.00000	1000001
•	-	-Ganazara						
			æ	LOWER BOUNDAR	.		u	7 Y Z
, -	0	99966	00000	-0000u	00000		.00000	1800000
•		:	CHAR	CHÄMBER ENTHÅLPY =		(OI)- u	(E)	
		נאנאב מאב	S PARTICLE	-SPECTES PRESENT		THE THE TARSEPARTICLE HEXTURE		
į	#A	THE FOLLOWING G	GAS PROPERTIES	S IN ENGLISH PHITS AR	ARE FOR	storphis pto	PC*1,000 (12)	
-	A Section 1	F-1111 (13)						6
-		(51) v	(10) GAHMA	(18)	(61)	PR (20)	(Z) \$11	• •
17:	-,17415+04	0 + 1, 4	4 .12039+01).	*18000+04	.57039+00	17610-05	.12302-05
1	PJ+P466.	60	-		. 161111464	.68520+00 .40100+30	.14256-05	50+50v01.
	101/11/11			-	. 18403.03	.30332+03	SDept 421	
	66547434	1461			. \$9,000,000	.59727+00	50-69-011.	10327495
	#G+9//1/*		10322401		.18000.02	.59936+00	961-24126.	·10143+05
	10.21.767.					20 · 20 · p · · · ·	40-71 B 76	2 C + 4 6 E -

Sample Printout for Two-Phase Chemical Equilibrium Flow

			CASE NO.	-			••	P A G E
SPACE SHUTTLE	SEP MOTOR NOZZLE	22LE					•	
				REAL GAS PROPERTIE	PEPTIES		•	
	H-101-H		:	: :	•			
~	>	œ	CAMMA	-	Q. -	œ	Ť,	t
-17515+04				6	100007	00404763	405.40 A	. P\$ 208+04
	*0+160hH.	.19811+04	10.24.210	. C + 2 2 5 5 1 0	0.00000	10.00.00.		
	.84241+34	₹ .	•13062+01	+0+69761.	10.00081	00.44664	40.000	10 4 10 LONG
	. 89932+A4	*U+17461.	•13317+01	•83242+03	• 36000+00	00+//285*	90-20/21	FO . FO . C.
	+U+16016.	19411+04	13413+01	.69912+03	18000+00	.58035+00.	•36-11-66	**************************************
	.93072+94	+U+11+61.	•13600+01	£0+6109h•	• 360005 •	004/07/5	4.2348-U6	ナコ・ケルをする。
44545+04	_					1	•	
	. 611933	*19995*0*	11754+01	• 44 439+04	.80000+3Z	.50737.00	40-94711 ·	CD+54951.
	PU+69611.	+19905+04	11920+31	+0+43074+04	*45254+02	.53093+00	50-612910	50+69ngl .
	.5155×04	+0+15a91.	.12187+111	.36197+04	.16900+92	.58140+00	-14247-05	-1:313+05
	40414645	+0+91461.	.12286+01	*31911+04	. 80£00+01	.59755+00	.12954-05	10726+05
	46+345+64	•	112347+01	+24012+U+	.40500+n1	.60024+00	-11729-05	117443405
1	4746474		.12374+01	.24537+04	. 2nng. +01	.59719+00	410561-05	*19334*0S
	96.454.77	+0+11+01°	12322431	*20579*04	• 8c000+00	.58942+00	.92375-05	.:0342+35
	10467148		100000	1,0000	.26667+00	59798+A3	.765.19-05	- 189381 * CT
	# C + C + C + C + C + C + C + C + C + C		10.00021	7040731	• 16000+00	.58792+00	90-99169.	. 67256+34
		1	1040404	4045661	Formon F	58718+00	90-68509.	.64608+04
	F0 - 40 - 60 - 6				1000001	58320+00	41049-06	79616+04
				10100000000000000000000000000000000000	2000000	00+CHUH'S	46-11-446	FU+#1522.
	\$U+09716.	-	113112111	6 11 4 / / 10 / 1	30-0000-			4
	+6+05Ct6.	+9+11461.	1359	- 1	.15000	001+67/5	en-900674	*D. 11 k v v *
	•	13 X	AL GAS PANPERT	PT1E5				
H-TOTAL						i	1	
•			GAMES	•	•	C D	SIA	t
34769.61	•	•						
Į,	.00000	.19923+04	10.01011.	+0+19515.	18300+34	• 550C0 +00	54-0-581	LI 18 25 + 03
	.31540.04	*19467+A4	11203210	+0+4504+	.10145+04	.54677+00	•17326-05	•12372•05
	.51037+n4	.19A23+04	•12201+D1	.39342+04	. 16000+03	.59339+00	.15166-05	.11133.75
	.67562+04	+U+b1a61.	.12277+n1	.34668+04	.18000+03	. 60145+00	13793-05	.: 0729+25
1	* 69335+N4	+0+21891.	.12330+01	. 30456 +D4		. 40279+00	-12501-05	*15499+C5
	.7-773+04	+0+11c61.	112364.01	+0+36946	* 450n0+02	• 60017 • 00	11302-05	10370.05
	40+96	+0+11561.	.1217A+01	.22387.04	18000+12	00+69865	. 98632-U6	\$C+61EQ1:
	#3+01 Z 51, 4	+0+11+01-	17791471	*17727 • 04	. Acnos+01	. 55495400	.82327-06	*3+F4BU6*
:	497647404	*0+11u61*	1000001	. 15.A 35.07.4	10+50796.	.59551+00	90-48154.	* B B E 4 B + C +
٠	. R. 953+74	:	10.40061.	117.27+04	.18cnJ+01	.59562+00	.45729-06	.85428+04
	9.047.00							
			10.69211.	.00181000	.36000+00	.59168+00	47031-06	*86459*04

3-63

Sample Printout for Two-Phase Chemical Equilibrium Flow

	:		CASE NO.	-			•	PAGE
SHUTTLE !	SEP HOTOR NOZZLE	11.6					-	
	4 - 4 - 1			REAL GAS PROPERTIES	ERTIES			
				•				
S	>	«	GAMMA	F.	• ;	œ	37A	5
53902+04			,					
	0560.		11597+01	+0+0+6+	.80000+02	. 48389+00	· 17440-05	.14517+05
	+3>82ACE+	_	11725461	+0+£655.	ZG+h955h•	90.2666h.	50-LU074.	50.27741.
	+0+61HLS+	*19862+U4	117045+111	. 39 395 + 04	.16500+02	.55086+00	15120-05	117284+05
	+9-212-04	. 19824+A4	117205+111	.34762+64	. 800000	.5841n+DQ	•13820-05	50+56111+
	4494E64.	+0+51461.	117303+01	130614+04	.40000+01	.59829+NU	12552-05	*1044K*05
	.7.538+D4	+0+c1461.	12357+61	.26455+04	.20000+01	55947473	11355-05	•104U5+05
	+0+11104.	+U+11461*	10.87.6.1.	.22530+B4	**************************	.59379+00	.99120-05	•10320+05
	. Ar 592.04	1001 - 1001 -	12784411	-17A44+64	0D+18887.	20164545	82765-05	PHORDER
	A+545+B	*0 + 1 + u 6 1 *	17476+01	+0+2+0+	.16000+00	.59602+00	.75543-06	.8A758+D4
	30407303	#U+11001	100000	111621404	10-00000	.59619+00	40-61644.	*0+9458*
							40-6266	48.4.27454
	**************************************	tite I lack to	10.90.51.	17762+01	10-06061	00.0000		10.00
	40+520v6.	+0+1:461.	17.995.6:0	• 7 A D S 4 + F 3	70-00004.	00+14245	90-4/2014	
	*0+8+1-6·	.1961.04	13560+01	.0+57713.	16000-02	.58770+00	• 5 6 5 7 5 - 0 6	*0**15*/*
	 	RFAL	AL GAS PHOPEPTIES	PTIFS				
H-TOTAL				i				
~.21872+EA								
v		a a	GARAS			24	516	5
41765+03				•				
	00000	+4+39661.	10.45811.	. C.3183+04	+000B1.	20.00065.	-18980-05	\$11+ Clab Le _
	.34056+04.	+19892+D.4	10+879111	*3.1698**	.10166+104	• 55602+00	•17769-05	12936+05
	*O+80.**.*	.19530.04	.12164+01	*0*5740**	. 36000+03	.58723+00	. 15464-D5	11111405
	447×1×64.	40+91m6:*	112253+01	+36078+N4	• 18000 + F3	.59908+00	-14714-05	90.23.00
	******	+9+21a61.	117315111	.31720+04	-90060+62	. 69269+60	•12596.05	· 1116.05 4 4 (15)
	1149696	+0+61u6:•	10445671.	*0+61F75.	.45060+02	.69123+30	11657-05	*10493 × 15
	P 57 4	+10111010	11777611	-23.74.3564	TERRETT	-595374MB-	-TCTRP-CS	- 111318+1 9
	4.7001000	+3+11.61.	10.0475;	+18517+04	10+00009•	.59771.00	.85239-06	P 3 + 5 H 2 1 C +
1	*6.*06Fe4.	*0+11961.	10+65461.	* 1 6 5 5 7 + D 4	.36503401	.59475+00	.77938-06	をして 東ののの 中
	# 13 + 13 # L # C *	*O+11661*	17974+01	414161414	.18000.01	.59925+00	90-66-89.	+ 416:38 +
	#U+956.00	.13611+G4	. 13745.0	.96651403	.36nac+na	.59827+ND	49172-nb	+0+615CH+
	37.45	#C+11071	1046.661.	60.90.1.0.	18000000	00481765	641696-65	# U+ W. 10 6 .
				PER DER CALL		100000	**************************************	- 474 36 56 4
		F 3 +		194161814	00000	50.11.11.6		
		19.0 41.00C	11525.0	P. C.	- 400000	47482+00	418225-05	\$3145917
	, :			40.00.00	C 100 C 14	49755400	20-19661	. 18C' 8+04
		**************************************	10.75011	FO-18-7	711-40/Gr	00100000	300000000	50448764
	T14014/014	F7+1015-4			40.00cc.			
	•					00.00	30.000	2006

Sample Printout for Two-Phase Chemical Equilibrium Flow

			CASE NO.	•			•	PAGE	w
SHUTTLE	SEP MOTOR MOZIL	2,15					•		
				REAL GAS PROPERTIE	PERTIES				ı
								,	
5	>	α. ¹	GAMHA	٠	a	œ	517	.	
.0.11.0.	.70757+04	40+81401	112271401	40.8404	100000	.59459+00	.12959-0.	\$0+9:601.	
					1040006	E 6 V 7 1 1 1 1	20-86-61	2047ABT	
	#U+/8#5/*		10+24521+	*0*1*0#Z*	10.0000	00400400 FREEDADO	20-05/11.	20.45.601.	
	*C+01 x 6 x *		112377401	*0.05cf.Z*	00.00000	00100000	000000	# C	
	.87227+A4	*19#11+C4	117754+01	.18680+04	.26667+00	.59820+00	.85879-06	*0+5UJ16*	
	* A 4 7 5 5 + N 4	*19811+04	112844+41	•14706+04	•16000+00	.59934+00	.78508-06	*0 • 1 v 5% 5 •	
	. 915C5+04	+0+11a61.	.12968+01	.14292+04	. 800000-01	00+46665.	90-57069.	*0+8C+98*	
	95663+0	19811+04	+1324n+n1	.97594+03	.16000-01	00+51665*	449550-06	.91612+04	
	40.01040		1341+01	. 82199+03	. 80000-02	00.01892.	.42Z83-06	- 4 Q + 6 Z 6 L .	
	.90133+64		11341+01	.54415+03	.16000-02	.59420+00	-28081-06	.75812+04	
			AL GAS PROPEPTIES	PTIES					
H-TOTAL									
19419+08					k,				
s	>	œ	GAMMA	•		Ма	ATS		
• 00000	0100	700,1006	1700401	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ביים שימר אי	50-986619	.15475+05	\Group
			10.04.11.					13716406	(1)
-	*D*/6c**	10.57461		1010202	10+0004E	00.51515.	50-01011	11671405	<u>)</u> _
	D#*/56*	FD+DF441+	16.17171.	**************************************		20.31.403.	200000	20+8CC11	_
	10.00	FO. U.Z. L. L.	10.677710	1010111	20.00001	DO COLOR	20 13 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	*U + 1 0 6 1 7 •	*0+E1#61*		* D+ * * * C * *	20.0000.	00.061000	20-06061	10 4 3 3 6 6	
	. 40+16544.	∾,		*58958404	70+00054	00.94109	60-01021	000000000000000000000000000000000000000	
	44575rb.	_	.12376+n1	.24304+U4	•18000•0•	00+40/450	cn_f1c01•	CD 4 2 5 13 1 •	
1	* 87557+04	-	112731+01	+U+61661.	• 60000•01	• 60000+00	.88132-06	#0+82+24·	
	.9:111+04	*19811+04	.12819+01	+0+0+/41+	10.00098.	• 60158 + 00	.80732-06	.90137.04	
	0+56 mi 6	+0+11m61.	112944+N1	.14807+0"	10.00081.	.60246+00	• 7 1 0 8 9 - D ¢	*U+24-16*	_
	P0+91-16.	+0+11461*	13229+01	+10132+04	.36000+00	• 60236+00	• 51 232-06	. bu+16018!	
	40+810t6.	+19411+04	113325+11	.95401+03	.18000+90	.60163+00	•43803-06	******	
	11115+05	+0+11861.	13527+91	• 54614 • 03	.36000-01	.59865+00	.29237-06	*0*7F0A7*	
.62828+34	_								
1	00(121	.20345.04	11470+91	+0+040404	.80000.02	. 46684+00	* 18474-05	.23857+05	
	11553+04	.20157+04	_	449104+04	.45836+02	.47734+00	.17643-05	27071405	
	.55.345+04	19924+04	.11861+n1	+U+1+61+.	.16000+AZ	.51537+nn		-14188+05-	
	+61212+04	.19A53+04	.12080+01	.37551+04	.400000+01	.55559+00	• 14643-05	112023+05	_
	0+50#17	.19424+04	112232+01	+33245+P4	10.00000.	.58776+90	111162-05	•11078+C5	_
	.77177+N4	+0+h1u61.	.12327+01	*29245+B4	10+00002.	.59886+AC	12:22-05	10-66-05	_
	40+25210.	.19812+04	12373+91	.24564+0+	. Annous+90	\$377ng-00	10600-05	*10137+05	
									-

Sample Printout for Two-Phase Chemical Equilibrium Flow

SPACE SHUTTLE S	SEP HOTOR NOZZLE	3 7220I					- •	!	
i	H-TOTAL	AL		REAL GAS PRAPERTIES	ERTIES				
S	>	~	GAMMA	-	•	æ	377	•	
C 7679 ·	i		12936+91	.14981+04	. 40000-01	.60325+00	.71785-06	.47357+04	
	40+60194. 40+60194.	.19812+04 .19812+04	13213+91	.10259+84 .86491+03 .57364+03	. 16060-01 . 80000-02	. 60238400 . 60275+00 . 60006+00	.44317-06 .29629-06	* \$9557+04 *74113+04	(Cont.d)
(23)			RUN	RUN CUTOES INFORMATION				(60)	
10001.	*	19003-34	THETA 60	.00000 R.	(2 <u>6</u>	LOWER	LOWER BOUNDARY	EYA. • VUUU	.vooonvoz) Group
	69	(30) (24)	(f)	PARTICLE PHYSICAL		(33)	(2)		
		10.	~ ~ (00500	(33) 400	_			
		.25000-11	25000+54 50+00055	000000		00000			+
	S	10.000.	.25010+03	00000		00000			- · • ·
	9	•65030+31	£40100520	00000		00000		•	/ Group
	THE PA	THE PARTICLES CONSTITUTE	٩	PERCENT BY WEIGHT		FLOW OF THE GAS-PARTICLE	TICLE MIXTURE	1	:
; ;	THE P	THE IND ARTICLE TEMPE	THE PARTICLE TEMPERATURE FINALPY TABLE MILL	PERCENTAGES ARE NIHALPY TABLE WILL	96	READ IN WITH ENGLISH	e C	(35)	
			PARTICLE	PARTICLE TEMPERATURE-FUTHALPY TARLE	FUTHALPY TAR	١. الراجي			
	PHASE	BATA	TO MITTHE	-418A53.04 HS0110=	01046. 4010	346101464	4450044	30	<u> </u>

Sample Printout for Two-Phase Chemical Equilibrium Flow

PAGE

9	71

Sample Printout for Two-Phase Chemical Equilibrium Flow

							111	† † †	20
Î.	SMUTTLE SEE MOTOR	R NO221F	,						
ł	 	(45)	(46)	6455 (115 511	PATING LANE	1 (4)	(50	(51)	
) œ	` *	.	1 <	\$ (48)	MACH ANGLE	SHOCK ANGLE	F H-TOTAL	
	20000	.12×47+00	14146+01		.57051+02	. 449nu+02	.00000	197 06* 08	
	.58304-02	C + 0	19+69141	00+49254.	.5706A+02	.44491+02	.00000	197n7+08	
	11661-01	~	10.4174.01	.91650+00	20+02172.	. 44R53+02	.000n	19707+08	
	10-16421.		10+101+1	.13779+n:	.572115+02	44789+N2	• 00000	_	
	23	27	1421741.	.1842401	.57325+02	.44700+02	. noon	_	
	29152	.12745+CB	10+4+6+1.	10+32155.	.57479+02	449545402	• 00000	19,707+08	
	10-686#£	.12775+21	19781.	. 27 A 9 1 + ft !	20+07872	. 44445+02	• 00000	7.19708+08	
	19-11474.	24	10.62841.	.32737+01	\$7895.02	.44279+02	• 00000	_	
	10-1-477	4	10017181.	17474111	.58157+02	440A7+02	•0000•	-;	
	10-11-01	2.5	-	.42733+111	.58457+62	24+64AF4.	00000	19709+08	
	-	5 ¢	10+46+41.	.47927+01	.58795+02	.43624+D2	• 00000	-	
	10-46144.	24	14667+01	.53267+n1	.59177+02	+43357+02	•0000		
	10-24064.	2	10+8+4+1+	.58781+01	.59501+02	43043+02	• 00000	7 -	
	13-20151	17793+66	10+882+11	.64501+01	**************************************	.42724+02		_	
	162	.12209+00	10+61441.	.70449+01.	. 6055A+02	.42349+02.	00000	7	
		.12109+Cn	10+650+1.	.76654+01	.61112+02	419A7+02	00000	2	
	10-49519.	2	.15673+01	. A3145+01	-61715+02	41544+02	00000	0-91161	
	10150+00	Ξ.	16-14651.	.92834+D1	.62654+02	40918+02	• 00000	0 + a -	
;	00+56+01*	7	115358+01	10+51116.	. 43082+02	44624+02	.00000	-19719+08	
P		7	115447401	.10122+02	*6349A+02	40341+02	• 66600	19720+98	
11	-:1497+84	• 11577+0n	-	.1103"•02	<u>-</u> '	39703+02	• 00000	19727*58	
S :	Ċ	-	-	:11757.02	*45198+02	39197+02	•00000	80+12/41:	
Pá	n1771747n	•11284+0G	10.00191.	· 12849+07	.66371+02	CU+80000	•0000•	H012/404	
G O	+13167+24	=	.1635A+fil	13856+92	.67459+02	. 37454+62	•0000•	14730+UR	
1	:	5	10475401	· 14943+92	56.4712420	.34n4R+02	•00000•	80.4577.	_
	·19574+69	•1079°•5n	16+69681.	.16001+02	211+84794.112	.34044+02	• 116038	. HD+/5/61	-,
9 mg				PARTICLE START	LINE PROPERTY	E STE		- 1	(°
ST	53 rolut	SPECIF 53	u (54)	(55)	THETA	ر (56)	ENTHALPY	_	<u></u>
27			.43A67+04	00000	00000•)	.50821+98	*0-9081F.	_
'8.A	-	~	+13++661+	• 0000	00000	20	.51228+08	+U-298+6.	
41. 1			19450404	• 00000	00000		.51674+08	111244-03	
•	-	7	.37084.04	11000ü*	01110110	0,	.52027+08	.12661-03	
<u>.</u>	-	5	.35189.04	יטטייטיי	00000.	00	•52563+0B	15780403	Group
_	-	4	.32759+94	uoman.	. Ֆոդրսն	ງຕ	.53218+08	• 9.353: -04	_
, , 	2	•••	*4 3 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20+41874	.3567	35670+00	.5r.819+08	41787-04	_
	~	7	*0*6666	.22702+92	. 3n? i	3n288+n9	.51229+DB	PU-1146.	
	~		.39465.04	*16040+62	.7376	23287+Dn	.51677+98	, 11738-03	
	~	* * *	hu. aubil.	115, 62-02	641.	14995+00	.52033+08	FD-65921•	•
	2.	· S	1339300		1001.	3762403	P 2 2 2 2 2 2 2	- L- K- X- Z- L- Z-	_
		•					v1.4: 1.7:		_

Sample Print of for Two-Phase Chemical Equilibrium Flow

		CASE	. NO.	•		#9 ; d.
TLE SFP MOTOR	NAZZLE					-
Livio	SPECIE	2	>	THETA	ENTHALPY	DEWSITT
•	-	.43891+04	.54725+02	.71435+00	.50815+08	.41730-04
σ.	~	404104	20+49144	.60664+00	.51229+08	.94683-04
•	· ~	39481+04	.32146+02	00+6+9+6	.51685+08	
•		.37905+04	.25174+02	+38053+RO	.52048+08	.12630-03
, ,	ی .	30+4034F	CE+17071	.24179+00	.52501+98	.15214-03
	· •	1047874	.6.1.41+01	. 89171-01	.5327/+0B	493737-04
: ar	o -	#U+1666#	CO+CEC8.	10739+01	. SORO8+OR	.41637-04
•	٠,	#0+4#C#	.64947+02	.91217+00	.51228+08	10-59676
=	- ۱	050940	48387+02	.70159+00	651698+08	•
ar ·	: 1 3	37930+04	37890+02	.57233+00	.52071+08	4 ,12575-03
7	. w	.35427+04	.22491+02	+34374+00	.52644+08	.15161-03
	9	.32A0A+04	.77209+01	•13484+On	.5334Z+DR	-926BZ-D4
می	_	+U+1965+	• 1.1 n 2 4 + 0 3	.14364+01	.50797+08	+0-01514
S	7	.42089+04	.89660+02	12204+01	. 151227+08	.94173-04
ur.	. ~	.3954A+04	*64315+02	.93895+00	,51712+08	.11154-03
·	;	37964+04	450758+02	.76596+00	52098+08	. 12548-03
		70+6575C"	10138+02	.48699+00	. \$2596+OB	.15092-03
		+0+BLUCE -	-1038A+D2	• 18122+Dn	.53"ZJ+DR	-92113-04
• •		+O+0+0++	EC+434614	.18029+01	•50782+08	+41354-04
· •c		#D+F#-6#	411272+03	.15321+01	.51223+08	#U-618E6
: -c		10598+04	-81516+02	.11793+01	726+0	.11169-03
) F	.38011+04	.63A27+02	. 96200+09	~	.12495-03
•	· ur	.3549B+04	137916+02	.61198+00	.52748+08	.15015-03
?	9	.32477+04	.13127+02	·22876+0A	.53497 ± D 8	-bU=86416.
,		.4408A+D4	.16740+03	.21744+01	.50763+08	+0-1211h.
	7	+0+60224.	-13622+03	13484+01	.51214+08	. 93418-64
'	6	.39660+04	.98557+02	+14235+01	.51736+0R	•11049-U3
. 1	i T	.38067+84	.77147+02	10+019111	.52149+08	112438+03
7	'n	.35544+04	*#5A67+92	60+11662+	.52791.08	.14937-03
	9	.32024+04	•1595A+02	.27771-64	•53559+178	- 60-893-04.
æ	-	+0+1/1++.	.19487+03	.25523+01	.50738+06	.0-89604
• • • • • • • • • • • • • • • • • • •	. 7	.4228R+04	.16024+03	.21701+01	90+00215*	.92984-04
æ	•	.39735+04	.11402+03	.14724+01	•51738+D8	11009-03
· •	.	. 38137+04	.90765+02	19438461	. 52160+08	.12382-03
œ	'n	.35ADR+D4	.54014+02	•86906+09	*52815+08	•14965-U3
6	•	.32980+04	. 18 A 9 4 + 0 Z	· 32824+07	-53589+0B	Ö
٥	-	*U+0\$2+**	,22718+03	.29376+01	.50708+A3	+0-6+C0+
6	7	-423An+B4	.18490+03	•24982+01	.51179+08	• 92535-64
•	~	.39827+04	.13397+03	19269+01	_	•10560±03
•	.	.38207+B4	10477+03	115702+01		£0-25121 o
o	ıΩ	*0************************************	.62415+02	110022+01	.52310.08	•14807-03
	9	.33044+04	210 45+02	• 3 A C S U + O D	-53574.78	+0-0403A
0.1	~	. 44383+04	.75840+03	13320+01	*\$5670+08	+80-5150#+
2	- 2	.42486+04	21030+03	.24337:01	86.484118.	5-0
61	e	.39923+84	.0.52231.	.21878+D1	_	10-51601.
:	:	20701+04	11190001	17814-01	.52128+B3	.12292-03
:	-	101717000		• • • • • • • • • • • • • • • • • • • •	•	

Sample Printout for Two-Phase Chemical Equilibrium Flow

		C. A.	ASE NO. 1			P A G E)E 14
HETTLF SF	A MOTOR NO.27L						
	317345 14164	n		THETA	NTHALP	DENSILL	
	-	. 44514+04	. 29073+03	.37368-01	.53624+08	.D-S120h.	
	11 2	+2.605.04	£0+54+63	19+8//16+	ED+0D:15.	- C V # # C V # # C V # # C V # # C V # # C V # # C V # C	
		SUPERCUTE.	1717493	10+39567	62424134 62077413	12266-03	
	Ŧ :	#3498ref*	5 0 5 1 5 1 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- C - C - C - C - C - C - C - C - C - C	946	CO-003711	
	2	.35 P.5 +U4	20+7 H10× •	10.50.21.	2011007C	2 1 - CB / L I	
	9	+3+84 EE •	73+47+87*	10.86.164	00+00:00:	50-0-0-	
		40+19944	. 32434413	10+175-1	00+1000	0.0000	
	2 21	47/30+04	£8+7759Z*				
	~ :		F 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	110 100011	20 + 2 2 C - 4 -	10256-01	
	7 .	#0+ - 64x	CD+CZ++1•	101277		14787-03	
		7,25	76.4./-69.	00077	1 2 2 1	202101	
	9 2	+3+84¢€€.	20+69+1E+	10+5====================================		10 C C C C C C C C C C C C C C C C C C C	
		+0+/2H++.	60+5#>SE*	10+++0%++		201000000	-
	13 2	. 42887+04	50+11262*	104494	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
•		+0+21£U+•	•21//04/03	10+10/90		100000	
î i	- ·	. 3865A+E+	ED>41.41.	10+66157*	001010101	(U=C=C=1)	
	2	190.100.	20 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	00476864	- 5 2 9 2 4 + CB	91581-04	
		7071777	NO - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	550307401	80+06#04.	.39575-04	
•		### 1 HOCK	10+12121	42736+01	504100	40-184J6.	
	-	4C+4444	23468+03	.33187+01	.51:485+08	.10606-03	
	: :	138734+04	8160+0	.26473+01	.51731+08	.12784-03	/Group 9
	· •	*36220+04	10-88-01	17474611	.52166+DB	14925-03 /	(Cont.d)
	9	3360494	39193+02	67020+00	.5246,1+OA	*0-69926*	
		40.40.404	€6+16+€+*	10+94045+	.50345+OH	.39263-04	
•	2 31	+43231+04	.35775+03	. 46648+Ct	*50804+3P	.90133-84	
	15 3	オロチムニチレス・	*257c4-B3	*36798+D1	*51253+0R	.10796-63	
	± 51	+34321+U4	.1992K+03	10.04.62.	.51568+58	112319-01	
	15 5	+0+08FAE.	*12F82+83	19727-01	451950+DB	.15029-03	
	9 51	+0.16.11.04	20+140CH.	.73467.60	. 52 a 3 l + r f	- 13864.	
	7 41	*45437+04	.47501.03	10+38265.	.50250+08	-34987-C+	
	16 2	49496464	.38542+03	10+81205+	.56695+08	*89772-04	
	16 3	#0+C##C#.	.78748+03	.39556+01	.51169+08	.16786-33	
	91	.35031+04	.21769+03	111921101	.51401+08	.12359-03	
	S 41	*34538+04	.12744+63	10.65/05.	.5;76ŋ+OR	.15136-03	
	9 91	. 33774+64	.47157+02	. ROUI 1+00	.52310+08		
	1 /1	*45478+04	.5191103	********	.50144+08	.36497-04	
i	17 2	.43439+04	*#1975+03	. 54969+01	.56,577+08	.89367-54	
	17 3	#0+6FUIF#	•36.852+N3	.42982+01	.50453+08	.10770-03	
	17 4	.39205+04	.23732+03	.34640+61	8U+6+615*	112394-63	
		40+005x1.	10.6/501.	104787401	•51551+B8	14725-03	
ł		bije at 614		L. Caden arise	The state of the s	. 46744-03	
	<u></u>	-		:	44	. 10 1 7 7 - 11 3	
	- 4			1			
		70.44 A B B B B B B B B B B B B B B B B B B	70+14546	13.45Cac.	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	C - 9096 -	
	·					10-57.71.	
					30.00	- C - C - C	

Sample Prun on the Two Observ Coomical Equilibrium Flow

-		ENTHALPY DEWSITY	*49906+08 +37957=64	.50332+98 .88214-04 ·	.50739+08 , .10679-03		•	•	•	Ī	.51185+DA .1245+D3	.52122+08 .15135-03 \	•	. 36472-04	-	*51507+08 *12174-03 ·	*4957++OA .36507-D4	\$50110+0A .85149-04	•	•	.5012C+GA .82500-04	.49320+08 - 34786-04 J	rs C	Of drond (00.056, 650.00) Group 13	(43)
		THE A	.75,681+01	10480143.	.50437+01	10+94994.	.26561+01	.78A59.01	. 44 A G 2 + D I	.52558+01	.47476+01	13-15262.	10+64524.	I L. E. 1 n Z L	.57651+01	10+65946.	.91398+01	.77583+61	. 11655.01	.99750.01	19+1997+61	410734+D?	E FOLL CATER VARIABLES		
			*61404144	.49564.03	.36642+03	.26153+03	.17199.03	*64234+03	*51639+P3	. 16 14 1 + 03	.291,35403	10.612.1.	* 21-7-12-12 *		*42772+03	.32724+03	.75431+03	.61rs7+C3	.45fp1+03	- 633744.03	.47401.03	. 900.64+03	PE CONTROLED BY THE		
			* 46717+C4	+0+411++	4941414	*3972746*	+3+64046+	443784E4	40+08C+#.	47.62314.	+32752+A4	.37175+64	.407334C4	the part of	+3.6401+.	+40070ab.	40+60J/n;	+Q+1+8+6.	.42214.P4	47471274	*U+55.55+0*	PO+F777+	* ! !. L	֝֟֜֜֜֜֜֜֜֜֝֓֜֜֜֓֓֓֓֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֜֓֓֓֓֜֓֜	
	\$1220'8 30xcd	121 568618	- 0-	19 2	. 3	- T	19 5	25 1	20 2	20 3	2.9	20 5	1 17	21 2	21 3	21 4	2.2 1	22 2	22 3	23	23 2	24 1	NOTIFICANT CONSTRUCT	.16C-61 07 AX15=	
	\$1220's Boach das Allanks abrou	, d			•									and demand of the control of the con								i		". INTERICAR	

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

PRIS PARE IN RESTRUCTION FOR THE PRINCE SECURITY.

Sample Printout for Two-Phase Chemical Equilibrium Flow

25. Harve	ONIC FLOW ANALY	SUPERSONIC FLOW AMALISIS USING THE LOCKHED MUNISVILLE MULTIPLE STOCK COMPUTER PROGRAM GASSIANA, 1 CARE NO. 1	G THE LOCFHEED-HUNTSVILLE . GAS-PARTICLE FLOW SOLUTION A ^{ke} NO. 1	מיוסה אטניויני	SHOCK COMPUTER	;	PA6E 21	
A SPACE SHUTTLE SEP MOTO	SFP MOTOR MAZALE		!				(
1106 0 08 08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99	9.	(2)	C sans	ENTROPY 72	VELOCITY 7	M-TOTAL ITM	
SPECIF GATA DESCRIPTION	7 Augle (75)	75 PRESSINE (6)	(B)	PARESSING (B) DENSITY (B) FEARENTITIE (B) GAS CONST.	E.78 645 COUST	CENSITY 86	smock angle 8	Croup 11
FUT - CORTIN	37.57.60	.41124.68	.1636#+01	,0.73856°C7.	*D*15841*	12093-01	0.0000000000000000000000000000000000000	
PARTITIC NATA	1ME . #P4242+04		01	13284.00			**5174*04	
DESTRUCTS OF SECURETAL SEC	. 36848.02	00.4540.		*0************************************	.0.8469	12101-01	0 00 ff (41 ta	
Papitol cata	9,360,000	37152-03	.18**3**01 .62**2**02	.0.16021.	+0+5+#41.	1210*01		
	110000000000000000000000000000000000000	CO-COUNTY TOTAL A THE STATE OF		()0000		75 8		_
		r .	TARTICLE PIRCENT LOSDINGS AND TOOL OF THE PROPERTY OF THE PROP	3			· · · · · · · · · · · · · · · · · · ·	
		X	ļ	£0.5		 		Group 12
		RC.	-32000-61 .200n1-62	1.63				
) Se *	10-49044 10-00059	10-1		1	1	
PRATICE WENCERY LOADING	LOADING NECATIVE TO THE	TO THE 655 0 .3774		*37744401(g) MANTICLE VENCENT COSUSTA RELATIVE TO THE OCHEMINESMATICLE VENCENT CONTINUE RELATIVE TO THE			(E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	
1	961616	FORCE B 18212-05	FORCFT . COLOO . TOPO ! C	100000 .00000 PELFIF	15P .20474+03 DELFTP	42 1. 940	8	Group 13
	10.44.66.	00000.	000000	140047-03	.00000	. choop		

NOTES: (1) Typical printout for the startline data surface.
(2) Some points have been omitted for demonstration purposes.

Sample Printout for Two-Phase Chemical Equilibrium Flow

	1			-:		-	:		
	- I	N027LF							
			~		THETA	ENTROPY	VELUCITY	H-TOTAL	=
		1	PRESSURE		TEHPERATURE	GAS CONST.	LOCAL GAMMA	SHOCK ANGLE	
	0		WA 3H A	10		NTHALPT	DEWSTIY	UEAPERATU	
		.12851-00	.12060-70	16.10591.	.13627-02	.67676.02	.53263.04	**19728*p	•
		.373011.02	. 0274.93	.67329-02	, 43364.04	PD PD SAAI	IDagaDZ:		
	23 LIMIT STREAMLING	441253.09	10722-01	2 . 1282	20.00	49070+08	.33649-04	#0+085x#*	;
	-								
	# 1 E #	56-21-51-			ZD	70.000000	10.10.6.	00.057.11.	
	3	3	20-18311-	70-11/20		49920-08	.32546-0"	*0*10***	
001 002121 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 200000000									:
00 (115387-00 (17747-0) (17147-0) (1880-0-0 (15120-0) (1	1	14204-00		10.88.11.	16061-69	ZD+45889:	10-21-21-	-80.EE (6 Le-	+
00 (115347-00 (17477-01 (17147-02 (1880-04 (15120-01 (1987-04 (1880-04 (15120-01 (1981-04 (1980-04 (18	.c. 0474				•		-		
00 .11544-00 .17447-01 .59177-0242312-041840-0412120-01		- N - O - S - S - S - S - S - S - S - S - S							;
### ### ##############################	N11802 -		.34499-03	.59177-02	. 42312-04	2005 66 48 ·	.95852.04	-80-464414	1
FORCE 1987 1	TICLES ARE PRESENT AT THE	115 PO 111							
ENT CHANGE IN ALSS, NONENTWAND ENGER NUMBER OF 105'55.01 000000 105'53.07			PRESORE	HOLLY #2 JAM!	נצמנו			(6)	
PT CHANGE IN ALSS, HOMEBYON AND EMPERT AND EMPERTURE TO CHANGE IN THE SELLVIVE TO CHE STAFT LINE (D) T CHANGE IN ALSS FLOW, GRY - 15504-00-100 PRATTICE TO CHANGE IN THE FORE STAFT LINE REE IN MACHINE, GRY - 15504-00-100 PARTICLE - 15005-00-100 MITTURE - 15005-00-1210-00-100 ERCENT CALAGE IN EMPERTY 655 - 1500-00-100 PARTICLE - 1000 MITTURE - 15005-00-100 [00]			.00000	. 00000)	<u>,</u>
(90) (90)		TH HASS, HOMENTU HASS FLOW, GRY- HTUM, GASE .75	200-00 ENERGY N	OHERICAL INT	, 00(102)	LINE - ELATI 1287-07(9) #127 17081230	VE TO THE START 194	72-01 (109) 121-0-01 (104)	
				′ሟ\		(108		10.7	
								:	

NOTES: (1) Typical printout for a data surface inside the nozzle.
(2) Some points have been omitted for demonstration purposes.

Sample Printout for Two-Phase Chemical Equilibrium Flow

		GAS-PARY	GASE NO. 1	UTION			PAGE BD	
COLF SHUTTLE SEP HOTOR HOZZLE	MOZZEE							i
3H1934 - 418380 11.C4 3H11	A 100 A 25 A	N N N N N N N N N N N N N N N N N N N	- AFRYSTA	THEFT	ENTROPY GAS CONST.	VELOCITY	ANOTE ANGLE	-
SPECI POINT DESCRIPTION] 	****	10			DÉNSTTY	AND A VALLE OF LOSE	ž
AU . PRN-ME - COUPIN	.31517.40	39810-01	10-58591.	.0.50871.	.19811.04	12788-01.	Baggeta	Γ
WO PAY OF THE PRESENT AT THIS POINT	HIS POINT					-		:
NILINOU - EXERCE . CO	.31517-06 .12435-02	10.05057.	19-69-69.	40.5424.	2006/17901.	12907-04	Badtaita	Γ
PARTY C OFFE PRESENT AT THIS POINT	*15 POINT							:
2-420	180/1818	Busabus	19066695	(Bat 5255)	20061449.	*0*44***	a	Ĩ
	.11308-02	10.01211.	.41027-04	.13341+04	*0+11461.	13031+01	:	
PARTICIO DATA 40 PARTICIOS, ARE PRESENT AT THIS POINT	MIS POINT	3						:
N ARE THE Y	HILL TO SEE	", discount	Helica 95.	CHACALIE.	20a64469.	*D-9*584.1	8 80+4+4+14	Ţ
PARTICLE DATA	10204-02		.34401-04	.11223-04	*0-118611	13157-01	:	
NO PARTICULAR AND MANUAL AND POLINE.	MIS POINT							:
60 47 PRN-HR - CONTIN	09:41516.	00.450.4.	16.911.8.	.67046-67	20.5//48.	-Das5244.	alla de la la la la la la la la la la la la la	1
PARTICLE DATA		.23595.00	.19633-04	. 92042-03	*0.1.401.	13262001		
NO PART COLON AND PROPERTY OF THE PROPERTY OF	NIO CIL							:
60 40 PRN-HR - CONTH	131517.00	M6-920-7.	14-10014-	EBettale.	2005/409.	Magada.	SCALEGALEA	
## 17 C 0474 PRESENT 4 THIS POINT ************************************	**************************************	25.65-01	••2566-05	٠،٠٥٥٠٠٠	*0011801*	10.21464		
	••••••							
N: ENG2 - MH-N	00-11-16	10-02016.	50-12616	(U-15155".	20-11-11	10-42561.	Paris and an	
PARTICLE DATA								

NOTES: (1) Typical printout for a data surface containing a Prandil-Meyer Expansion. (2) Some points have been omitted for demonstration purposes.

: •

Sample Printout for Two-Phase Chemical Equilibrium Flow

					CASE NO.	-				7486
		SPICE SHUTTLE	SEP #010R	HOZZIE						
		Patrick Parelle	AFG: NF	•	*	=	THETA	ENTROPY	VELOCITY	H-TOTAL
				MACH ANGLE	PRESSURE	DENSITY	TEMPERATORE	1		THOCK ANGLE
		de la			3 6 7 9	1		40.11.00	Brustav	-dempter to
			>0114141	•		E .				
		MALL	WILENOS .	.00700	10.45691.	19.546.25.	•00000	.66197003	*Da20510*	- Course to the
		. :		.18059-72	.18040*02	.50643-03	.25970+04	.19812-04	15365-01	j
		TICLE DATA		704475000	20000	67.00.		.22432-08	121071-05	.27626.09
		-		200000	00000	101.	-	\$3066+08	\$0-996at.	128407+64
				776:127:04	00000			.25476+08	.43749-05	.31375-04
		 - -		76695500	00000			*28232+DB	- sa-sa-Da	Made (ASA
		۔ ۔ .		72755000	00,00	1446.		.33341+08	\$0-01049	*41041+04
				675375+04	00400	.55.		-3#867+08	45327-09	50-501165
				. :			***********		*************	
THE CALL CONTIN GOODO LINE 117 BETHEEN POINTS 25 AND 26 1 BALL CONTIN GOODO LINE 117 BETHEEN POINTS 25 AND 26 1 BALL CONTIN GOODO LINE 117 BETHEEN POINTS 25 AND 26 1 CONTIN GOODO LINE 117 BETHE	THE CALL CONTIN . 100000 . 12447-01 . 13547-03 . 12557-01 . 12557-		CONTIN	!	.05075-00	10.44160.	. 490AB+02		10118-06	19737-00
#ALL COMTIN GOODO	SALE CONTIN GOODO LINE 17 DETNEEN POINTS 25 AND 26 LAKES LOGODO LAGODO LAKES LOGODO LAGODO LAKES LOGODO LAGODO LAKES LOGODO LAGODO LAKES LOGODO LAGODO LAKES LOGODO					- 4 1 5 4 9 - D.	19503135	19811504	13527901	
2-4-4-1	2-1-1-1	Ja I THE Jeas	AS REEN TH	SERTED ON LINE 1	17 BETHEEN PO	- 1	**			
2-1-1	2-4-4-1	1140 -		-	10.44441	.32648.01	.00000		.0.5+010.	1965 3-08
		1 8			.17079.02	.40396-03	10-159		10-/9521.	
1 2	~ · · · · · · · · · · · · · · · · · · ·	_		PO+PR4404	00000			.22324+08	-0-RC -02 ·	
		~		.740313+04	00000	.112		.22943+08	.34363-05	D. COC 02 0
*** 1 2	***	-		PD-#51464.	00000	. 191		• 25369+De	sD-galib	*D****
** 1 22	44 1 25	-		.762049-04	.00500	.224		-26107-08	.48477-03	
1 1 2		1 ,		*728936+D4	Opu60.	.387		20.841KK	-0-11.9	, D. C. B. D
		e		.676694+04	.00000	595.	9.00	.38764.08		
73 FREED - CONTH . : 10257-01 . ** 5.456-00 . : 15120-05 . : 15160-07 . : 15127-09	7									
ARTICE DATA ARE PRESENT AT THIS POINT	ARTICE DATA ARE PRESENT AT THIS POINT POINT NOT 21 ON CIME INC. BOLLETED		- COMPTE	10+49201	. * S X 8 6 * 0 0	. MSTV446BT	(0.0%aB)		400611011	20,464414
THICK DATA AAR ''C FG ARE PRESENT AT THIS POINT	ARP TO FREE PRESENT AT THIS POINT POINT NO. 21 ON CINE IT MAS NICE OF CENER			10+2034.	10-44410	54-26416.	.0.09 (55.	!	102/7651	
	FOIRT WO. 21 ON CIRC HY WAS DELETED	#	ESEWT AT T	HIS POINT				,		
	POINT NO. 21 ON LINE HT WAS NIEW BELETEN							4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		

NOTES: (1) Typical printout for a data surface in the exhaust plume. (2) Some points have been omitted for demonstration purposes.

3 - 75

Sample Printout for Single-Phase Chemical Equilibrium Flow with Free Molecular Considerations

Sample Printout for Single-Phase Chemical Equilibrium Flow With Free Molecular Considerations

		SUPERSONIC		FLOW ANALYSIS		USING THE LOCKHEED-HUNISVILLE	HUNTSVILLE	MULTIPLE	E SHCCK COMPUTER	OMPUTER PA	PROGRAM	
					CASE NO.	.0.						PAGE
CASEOU!	S CHECK	GASEOUS CHECK CASE WITH FR		ECULAR .	CALCHLATI	EE MOLECULAR CALCHLATIONS CONSIDERED	850					
· ·	÷	100011	1CON(2)		1CON(1)	RUN CONTROL ICON(4)	PARAMETERS Icor(5) I		1 CON (6)	1 CON (7)	ICON(8)	
		0 0	1CON(10)		1CON(71)	1CON(12)	100N(13)	i	1CON(14)	1 CON (15)	1CON(16)	
FLOF CALCULATIONS ARE IN ENGLISH	TIONS A	IR: IN ENGL	LISH UNITS	IS WITH THE	*	COORDINATES IN FEET	IN FEET					
THE FLOM FIELD DATA VILL NOT SER	LU DATA	I TILL NOT		TTEN ON TAPE						•		
3 - 3 -		FTRAGES	.00000 .20000-02	0.2	000000	UPPER BOUNDARY C C + ncooo	0UNDARY 30 30	.26795+00 •00000		E •16969+00	# # # # # # # # # # # # # # # # # # #	- F
-77		1TRA'15 U	0000		a 00000	LOWER BOUNDARY C C .	DUNDARY	00000• 0	•	. 600000	HAX •10000+04	3
			THERE	ARE '0	PASTICLE	SPECIES PRESENT IN		THE GAS-P	GAS-PARTICLE MI	HIXTURE		
		¥ 0	THE FOLLOW:	ING GAS I	ROPERTIE!	OLLOWING GAS PROPERTIES IN ENGLISH UNITS Real Gas Properti	IN ENGLISH UNITS ARE REAL GAS PROPERTIES		FOR IDEAL GAS	;		
		•	•0000•								:	
		Č	\$	>	***	¥ 9	GAMMA	-	4.		PR Y	y i s
		•		• 00000	. 20016+04			\$0+h89h5•	*1ACOC+04	-		
			• url	.55746+04	.19940+04	04 -171711401		• 50230 • 54	#0+86650.	00000	0000	.
			•	.64915+C4	.19920+04			.37476+04	.18090403	100000		.,
			• •	.71902+04	+G+6184j+		_	+32994+04	•90000+02			~
				*77695+04	.19211+64			*28962+34	.45001+02			5 ,
			a 3 ● 1	#0+2/5/8*	+0+1:64:	1048 - 12378+01		.24300+04	*180000+0X	•		
				10+89110+	*C+11861+			n0+96741.	10+50056.	000000	00000.	2.0

Sample Printout for Single-Phase Chemical Equilibrium Flow With Free Molecular Considerations SUPERSONIC FLOW ANALYSIS USING THE LOCKHEED-HUNT VILLE HULTIPLE SHOCK COMPUTER PROGRAM

-	H-TOTAL		REAL	REAL GAS PRUPERTIES	RTIES					
	S	>	æ	GAMMA	•-		•	æ	1 15	
•	.00000	P1+0419	· 19811+04	.12944+01	+14814+04		.18003+01 .0	• 00000	00000•	0000
				STARTING LINE		1 NFO				
œ	- ъ	I	THETA			MACH ANGLE S	SHOCK ANGLE	.E 0/F	رة ال	
•0000	.32324+01	.42555+n1	•00000	00-00-0			00000	•	00	
10-11615.	.32320+01	.42541+n1	.82494+On	•00 •00 ü0•		13595+02	.00000	00000	90	
. 10376+00	.323n9+01	.42533+n1	.16503+0	•		.13598+02	• 00000	00000*	. 00	
•15570+00	.32290+01	.42524+n1	.24726+0	•01 •0000		.13601+02	06300.	• 00000	. 0;	
+20777+00	.32244+01	.42513+n1	+32907+D	000000 104		.13605+02	00000*	00000	9:	
• 25955+00	.32230+01	.42498+n1	941031+C	ເວດດວ• ເນ•		.13699+62	00000.	• 35036	0(
•31122+00	.32190+01	.42479+n1	.49070+91	104 PC 104		.13616+02	005000	00000	Ö.	
.36271+00	.32142+01	.42454+01	0+66699.	•01 •0000		.13624+02	• 00000	000000	9	•
. 41 401+GA	.32087+01	.42420+ul	.64770+0	000000 104		.13635+02	• 00000	60000	ŭ	
• 46505+0≎	.32026+01	.42376+01	•72345+0	00000. 10.		13649+02	00000	00000*	0,	
+51577+00	.31958+01	.42317+n1	0.1944670	00000. 10.		.13669+02	00000	00000	0;	
•54608+09	.31845+01	.42239+n1	•86586+D	•01000 • • • • • • • • • • • • • • • • •		•13695+D2	000000	• • • • • • •	00	
• • • • • • • • • • • • • • • • • • • •	.31806+01	.42141+01	.93123+01	•01 •60000		.13727+02	• 00000	• 0000	0.	
• 6 6 5 5 8 • 0 3	.31773+01	.42031+01	+99397+CI	101000		13764+02	000000.	60000	20	
•71372+09	.31635+01	.41931+n1	•1n<75+U2	+02 •00000		13797+02	• 00000	• 00000	0	
.76189+00	.31542+01	.41858+n1	•11251+U2	• 00 0000	:	.13022+02	• 00000	00000	0.0	
• 80975 + 80	.31443+01	.41812+n1	11967+32	•32 •60000		.13837+U2	00000.	00000+	Ö.	
•85742+UJ	10+61216.	.41785+n1	•1271n+02	•02 •00000		.13846+82	00000 •	Pessa.	2	
.90499+00	.31228+01	.41770+n1	113467+02	+07 +0999		13051+02	03550	00000.	00	
. 45246+00	+31111+01	+41763+n1	•14232+62	•62 • 60000		.13e54+02	00000	00000	96	
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	

.500+01 FB * NOTE: Free malecular flow calculations can also be included in the gas-particle flow. THE HESH CONSTRUCTION WILL BE CONTROLED BY THE FOLLOWING VARIABLES
*300+01 DX AXIS= *100+01 nL LIM= *100+01 DL DELETE" *500=02 DEG P*M*= DL INTERIORS

\\ \Group 16

GANY (112) (113) GANK ...

CHARL (111)

ROTNO (109)

.10000010

•00000

•00000

THETA

UPPER ROUNDARY

.10000.

RUN CUTOFF INFCHMATION

THETA

LONER BOUNDARY

Sample Printout for Single-Phase Chemical Equilibrium Flow With Free Molecular Considerations

は、人は、中国というは、

SUPERSONIC FLOW ANALYSIS USING THE LACKHEED-HUNTAVILLE MULTIPLE SHOCK COMPUTER PROGRAM

					CASE NO.	-				PAGE 8	
	GASE(SUS CHECK	CA'SE MITH F	GASEOUS CHECK CA'S WITH FREE MOLECULAR	CALCHLATIONS	CONSIDERED				(74)	
1 146	₽ 2 2	D\$CR1P -	3 E 19: 8	R MACH ANGLE	X Pressure	A DENSITY	THETA Temperature	ENTROPY GAS CONST.	LOCAL GAMMA	SHOCK ANDERS) -
-	Ξ	F 0 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- CONTIN	.64508+00	.31723+01 .4695n+01	.42031+01 .18630+03	.99397+01 .18318+04	.19811+04	.90499+04 .12775+01	00000	Ü
~	15	I POCH	CONTIN	+71372490 +13797+02	.31435+01 .47737+01	.41931+01 .188703	.10576+02 .18384+04	.00030 .19811+04	.90*35+C4	© 0 0 0 •	٥
-	•	12904	- CONTIN	.74189+00 .11822+02	+31542+01 +48127+01	.41855+01 .19057-03	.11251+02 .18433+64	.19811+04	*90307*04 *12770*01	00000·	C
- .	. 17	Pode:	CONTIN	.80975+00 .13837+02	•31443+01 •44701+01	.41812+01	•11967+02 •18463+04	.00000	.90360+04 .12768+01	€00 0•	n
	9	1 2 4 2	CONTIN	.85742+00 .11846+02	.31339+01	.41785+31	.12710+62 .18481+04	.00000 .19811+04	.90343+0" .12768+01	. 00000.	C:
- 3-79	2	12907	CONTIN	.11851+02	.31228+01 .49n38+01	.4177C+31 .19276-33	.13467+02 .18491+04	.00000 .19811+04	.90334+54	• 0000	0
	20	INPUT	CONTIN	.95246+00 .13854+02	+31111+01 +49100+01	. 41761+01 -19295-03	•14232+U2 •18496+O4		.90329+09 .12767+01	() () () () ()	0
-	7.	# F042	CONTIN	.17856+02	+30989+01	.41757+01	*15000+02 *18499+04	19811+04	.96325+04 .12767+01	9000 0•	G
-	77	E E E	CONTIN	.17690+01	.30989+01	.45092+01 .12542-03	.19669+02 .13388+04	*D0000	.92165+89 .12865+31	00000.	0
-	23	r I Z	CONTIN	.11747+02	+30989+01 +15166+01	.49115+31	.2475G+02 .14247+04	.19811+04	.93888+04 .12944+01	90000	0
-	24	er X 1 Z 2 0.	CONTEN	.10000+01	+30489+01 +85163+00	*53333+01 *49631-04	.29624+02	.00000 .19811+04	.95494+04 .12944+01	00000	
-	25	1 2 2 0	CONTIN	.10000+01 .99026+01	.30089+01	.58148+01 .30661~04	.34499+62	+00000 +19811+04	.96989+04	0000	n
-	*	FREE CONTE	CONTIN	•10000+01 •90295+01	.23197+00	.63717+01	.39374+02 .92955+03	.19811+04	.98375+04 .12944+01	©010 0∙	C
		i		•	,	,					

C:

⁽¹⁾ Typical printout for a startline data curface containing a Prandtl-Meyer Expansion. (2) Some points have been omitted for demonstration purposes. NOTES:

Sample Printout for Single-Phase Chemical Equilibrium Flow With Free Molecular Considerations SUPERSONIC FLOW ANALYSIS USING THE LACKHEFD-HUNI-VILLE MULTIPLE SHOCK COMPUTER PROGRAM

というというというないとう

- W 7	FINE POINT	DSCKIP	DSCKIP - KEGIME	R MACH ANGLE	X PRESSURE	M DEMS: TY	THETA TEMPERATURE	ENTROPY 6AS COMST.	VELOCITY LOCAL GAMMA	SHOCK ANGLE
~	**	SATER	T CONTIN	10+613+01	.31827+01 .10068+00	•7:007+01 •95:186-05	.44254+02 .76883+03	.00000 .19811+04	. 19788+64	00000.
~	5 8	INTER	N I L NOO!	.10666+51	+31756+01 +43434+01	.70085+01 .49804-05	.49073+32 .63535+03	.19611+04	.10095+05 .12944+01	• 00000
~	52	INTER	1 100 T	.10753+01	•31 <u>480+01</u>	.88839+01 .24233-05	\$3898+02 \$1393+03	.00000 .19811+04	10199+05	<i>≎</i> 030 0•
N ,		N H R	NITNO -	.10812+01 .54815+02	.31599+01	.10100+02 .10777-05	. 58729+02 . 40486+03	.03360 .19811+04	.10292+05 .12944+01	• 00000
N	ā	INTER	- CONTIN	•10864+01 •4•174+01	•31515+01 •18136-02	.11505+02	.63566+02 .30837+03	.1901+04	.10373+05 .12944+01	• • • • • •
~	32	INTER	NI LNOU	.10908+01	•31427+01 •45n95+03	•13757+02 •14587-06	.68408+02 .22470+03	.19811+04	.10443+05	0000•
N	33	INTER	CONTIN	.10946+01	-31136+01 +85775-04	16708+02 -40470=07	.15406+03	.00000	-10502+05 +12944+01	00000
~	**	INTER	- CONTIN	.10976+01	.31244+01	+21150+02 +83055=08	.78110+02 96649+02	.19811+04	+10549+05 +12944+01	• 00000
~	35	FREEAD	FREERD - CONTIN	.10987-01	.31251+01	.20633+02	.10185+03	.19011+04	.10545+05	00000•

PERCENT CHANGE IN MASS, MOMENTUM AND ENERGY NUMERICAL INTEGRATION FOR LINE 2 RELATIVE TO THE START LINE PERCENT CHANGE IN MASS FLOW IS # **220844+00
PERCENT CHANGE IN MOMENTUM IS # **19840+04 ISP # **19827+01
PERCENT CHANGE IN ENERGY IS # **000000

NO1 LS: (1) Typical printout for a data surface in the exhaust plume. (2) Some points have been omitted for demonstration purposes.

Ų.

Sample Printout for Single-Phase Chemical Equilibrium Tow With Free Molecular Considerations

PROGRAM
CCMPUTER
NOCKS
LATELE MULTIPLE SMOCK COMPUTER PROGRAM
UNTUVILLE
C LOCKMEND-MUNI
ř
IS USING
ANALYSIS
FL0#
SUPERSONIC FLOW ANALYSIS

CASE NO.

53

PAGE

1: 	.	ιΛ	:∓				
BISTE NOCHS	0 0 0 0	6000	60000 8•	• 00000	(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	0 0 0 0	LINE
VELCCITY	.10282+05 .12944+01	.10357+05	*12944+01	.10450+05	.19483495 .16676491	10545+05 116670+01	6 RELATIVE TO THE STARF LINE
ENTROPY GAS CONST.	.00500 .19611+04	.19811+04	.19811+04	.00000	.19411404	.00000 .1941+04	
THETA TEMPERATURE	.57858+02 .415-9+03	.62256+62	.66612+02	.69344+02	•73346+U2 •15200+U3	.78371+02 .10185+03	PERCENT CHANGE IN MASS. MOMENTUM AND ENERGY NUMERICAL INTEGRATION FOR LINE NT CHANGE IN MASS FLOW IS = 1618787+01
DENSITY	10+25346.	.11297+02	+13038+02 +20727-04	.12576+02	.147 15 + 02 .20778 - 07	.13132+02	ENERGY NUMERICAL INTE 87+01
X PRESURE	.32124+01	.32158-01	•31987•01 •71057-03	.31A24+01	31A56+01 .43A79-04	•31415+01 •72497-05	TUM AND ENERGY 161987+01
R MACH ANGLE	.11712+01	.11808+01	.11890+01 .43983+01	.11956+01	*17013+01 *38782+01	*12073+01 *31529+01	IN MASS. MOMENTUM
DSCRIP . REGIME	- CONTIN	- CONTIN	. COMTIN .	+ FREE A	# FREE M	FREE	PERCENT CHANGE IN MASS FLOT
DSCRIP	INTER	INTER	INTER	INTER		INTER	PERCE RCENT CP
LINE POINT	5	39	7	32	33	ž,	71E PE
₩ 2 -	•	•	•	• 3	. • -8·1	•	

NOTES: (1) Typical printout for a data surface containing free molecular points. (2) Some points have been omitted for demonstration purposes.

Sample Printout for Single-Phase Finite Rate Chemistry Flow

Sample Printout for Single-Phase Finite Rate Chemistry Flow

9 A G.F

FASE 21 - SUULAF 6/1 COME, O/FMP,2 , FIMITE RATE, THVISCID, VAR O/F
O'N COUTPOL FARAWETERS ICON(19) ICON(12) ICON(13) COORDINATES IN FEET
0'8 COUTPOL FARAWFIERS 1001(4) 1008(5) 1 2 1 1 1009(12) 1008(13) 0
$\frac{100^{3}(1)}{3}$ $\frac{100^{3}(2)}{2}$ $\frac{100^{3}(4)}{2}$ $\frac{100^{3}(4)}{2}$ $\frac{100^{3}(4)}{2}$ $\frac{100^{3}(4)}{2}$ $\frac{100^{3}(4)}{2}$

*4x •83333+⊕1

£ 130000

00066

LONER SOUNDARY C +602500

védag•

200

Sample Printout for Single-Phase Finite Rate Chemistry Flow

100 pp p p p p p p p p p p p p p p p p p		(12) (12) (13) (14)	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	- 36000 - 35000 - 3	000	. 1.00 443	420 1.00 MM . 1.00 M2
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000000000000000000000000000000000000	·~	2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	6 0 2 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 6 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	3.265+14 6.001+13 7.23n+13		4 1405 HP 10.02 420
	x o o z o o o o o o o o o o o o o o o o	TOEBED HE		• • • • • •	TIRGE	-	1.00 CM 1.00 CO CO CO CO CO CO CO CO CO CO CO CO CO	5 80

Sample Printout for Single-Phase Finite Rate Chemistry Flow

(12)	- 1	(3)	(128		3	N 200 4M	200	7 C	0#
.74780-01	.29789-99	** 3 6 20 - 0 3	00.05.6	.0-00'28.	20	00.01.82.	60-04645	00000.	
- 60063	000000	06000.	000000	00000	00000				
79103-01	.14990-00	.63360-02	. 1340.00	120 14440-02	.:1840-02	.27820+00	.16310-03	. 00000	00000
. 90303	000000	.09750	00000	.00000	00000				
16-07072,	CH*	.62440-01	.47040+00	16-05991.	.89840-03	.24410+00	C02	00000	000000
00000	00000	.02	.00000	CH20 .00000	00000				
000004.	CH4 -22630-01	00.00,991.	.46\$10+90	. 40040-01	.35010-03	.25730.00	.74110-02	, 12170-03	*0
30,000	O NO	02000	643	CH30	040				
90003.	CH4 .32460-94	00.01.21	.31630.00	H20 .21750-00	.24520-04	. 24330-00	.21240-01	.2040-02	NO -12450-03
OH .11510-02	0H 02 -11510-02 -27660-54 -17390-04		.07000	.00000	00000				
, 20099	**7	CO H2	00 -15.27c+00	HZ0	245340-05	.31050+00	.448a0-01 .10100-01	. 10100-01	40 •23370-62
.11410-01	04 02 02 043 . 11414-02 . 11414-02 . 0000	1 A N 46-02	. 00000	CH20 • 00000	000600				
.00000	.03000	10-01959 10-019-01	10-01989	H29 .38640+90	. 00000	.32400+00	.71480-01	12700-01	. 01070-02
04 .24160-91	- 1	. 19196-62 . 12176-61 . 50000	00000	CH20 .00000	000000				1
, 19388	00000	10-04145.	.34720-01	.36498+00	.0130G	.32650-30	10-00(+8.	. * 4 1 00-02	.14240-01
ŧ	0	0.2	(#)	CH 20	OMO				

NOTE; Some points have been omitted for demonstration purposes.

Sample Printout for Single-Phase Finite Rate Chemistry Flow

21		10000	C. DELAGE	action.	. 00000	00000				
50-67 .: 4680+60 .21720+00 .30120+00 .62950-05 .30130+60 .33710-0: .45300-02 50-64 .21265-04 .00000 .00000 .00000 .00000 30-74 .21265-04 .00000 .00000 .00000 .00000 30-74 .21265-04 .00000 .00000 .00000 .00000 .00000 .000000		romanic fr	10-10-17						;	
129 14014-02 CHAHILE TEMPERATURE (0°G-X)3736 +04 (130) 129 14014-02 CHAHILE TEMPERATURE (0°G-X)3736 +04 (130) 170 170 170 170 170 170 170 1		43-629+4.	.:4C80+C0	н2 •21 ⁷ 20+90	420 •30120+90	NH3 • R 2 9 5 0 = 0 5	.36130+60	.33510-91	.45300-02	•17100-03
129 FHERE ARE D PARTICLE SPECIES PRESENT IN THE GAS-PARTICLE MIXTURE PER ROUNDARY THE METAL "GOOD AS GOOD THETAS" 19PER ROUNDARY THE METAL "GOOD AS GOOD AS GOOD AS GOOD THETAS "GOOD AS GOOD AS GOOD THETAS" 19PER POST CONSTRUCTION WILL AF CONTROLED BY THE FOLLOWING VARIABLES 50-01 DX 4XISS "15F-11 DL LIMP "DOO OF DELETE" "100-04 NEG P.M.* "400-31 F"		c	6.0	0.10	CH20	643			;	,
THE HERE ARE DEARTICLE SPECIES PRESENT IN THE GAS-PARTICLE HIXTURE THERE ARE DEARTICLE SPECIES PRESENT IN THE GAS-PARTICLE HIXTURE TO DO DO THETAE SCOOL OF THE FOLLOWING VARIABLES THE MESH CONSTRUCTION WILL ARE CONTROLLED BY THE FOLLOWING VARIABLES SOLD DY AXISE SECOND OF THE FOLLOWING VARIABLES	į	+3300-64	. 212AG-34	. 60000	00000	• 60000	(1		Group 18
9ARY +90 THETAm -400+31 Fm	-		114+82 CHAMIL	R TEMPERATUR	RE (D°6+K)	.3736 +04	(130)			(Cont'd)
9ARY +90 THETAm -4c0+31 Fm		(129	Bee Beet	D PARTICLE	Species PRE	SFNT IN THE 6	AS-PARTICLE	HIXTURE		
* 60000+00 THETAB					บีฟ ยบรบสหาให้เ		i	30464444		1
## 10+00+*	5 .	*	PER ROUNDARY	*HETAS	00005•		×	• 60000+00		46930+52
	ti R	3 10-881.	CONSTRUCTED	N WILL OF CL	OMTROLED BY .	THE FOLLOWING	VARIABLES	:		60-518

Sample Printout for Single-Phase Finite Rate Chemistry Flow

				GAS-PAR CASE NO.	21.8	GAS-PARTICLE FLOW SOLUTION CASE NO. 21	Z.			PiGE	2	
21 - SOOLRF 6	SOBLEF 6/1 CONE, 0/F=2,2		. FINITE	RATE, INVISCIS.		VAR OJF						
	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	œ		*		x .	THETA	ENTROPY	VELOCITY		H-TOTAL	4-
	1	MACH	NGLE	PRESSURE	:	DENSITY TE	TEMPERATURE	GAS CO'ST	LOCAL GAMMA	•	SHOCK ANCLE	:
Jack) .	NITHOD -	.00000 .76745+02 .21650+04	5+02 0+04	.84167mG2 .27517+03		.15274+51 .54912-52 .60006	.00000 .18993+04	.37993-04	.31052+0	• 0 0 1	.13224.08	o
	CH4 20 CH0 CH0 CH0 CH0 CH0 CH0	000	0 E	6.3824-04	NI	4,3153-01	H20	8.5705-04 NH3	1.2571	23 K2 CK3	2,8312-91	2-51
	N 1 - N C C C C C C C C C C C C C C C C C C	. 19561-02	6+02	. 27440+03 . 51479+03		10291-01 53672-92 90090	.19242+04	.38260+04	.12712+01	1	90+98621•	' ' 2
(AL)	CH4 1	- 100 - 100	002	6.3343-03	2.5	4,3862-01 0,000	C 2 T	6.4443-03 NH3	1.1841	-03 NZ	2,7621-3	10-11
NILON - LIGHT S	1		39122-02 77629+62 23854+64	. 84167-02 . 27475+03 . 51502+03	! ! ! !	.10234-91 .50759-02	.150/1+0/	.00000	.32426+94 .12878+01	# CO	•11265+EB	c
30 - E	CH4 STACT TO STACE		0 0	6.2444-02 0.0000	N I	0060.6	C # 5	1.4651-02 NH3	63 8 8 8 6 ° C	04 N2 CH3	2.5512-03	0-2
	AT L X C D .		•	. P4167-02 .27274+03 .51291+03	T	*10214+01 *43259-02 *60000	.26733+04	.33964+94	.13038+01	, , ,	.69241.07	5
CPCP104L SPECIE HOLE F9ACT10NS C	CH4 2	1025 7.2433-02 1.2171-94	0 <u>6</u>	1.6602-31	2.5	4.8516-01 7.0268-06	H20	6.0067-02 4H3	3 3.5014-04	04 NZ	3,6733-6	10+0

NOTES: (1) Typical printout for the startline data surface. (2) Some points have been omitted for demonstration purposes.

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Sample Printout for Single-Phase Finite Rate Chamistry Flow

	i				GAS-PARTICLE	RTICL	ARTICLE FLOW SOLUTION					39 4	2.
12 3×43	ב פֿטנייטן	- SACLAF 6/1 COME, 0/Fx2.2		FINITE	RATE. INVISCIO	-	VAR CIF						
CINC POINT	147 DSCRIP	TO LE	œ		×		I	THETA	ENTROPY		VELOCITY		M-101AL 119
	i .		MACH ANGL	GLE	PRESSIRE	:	DENSITY TO TE	HPERATURE	EAS CON		LOCAL GAMMA	SHOCK	
C'	1 WALL	- CONTIN	.01630 .29496+02	7 0 5	. 65120.02	•••	•20063+01 •17854-02 •00000	.0000f0 .13825+04	.91272-0 .37993+U		.52447+04	• 13	E 80+26161.
Cur 41CA	7.4745.92 5.5364-04 5.1725-10	CHE 41CAL SPECIF MOLE F9ACTIONS C 7-4745-72 CH4 2-07/ CC 5-1775-10 CH0 1-13/	- 4 - 1	C 2 C 2	6,3824-04	24	4,3153-01	H 20	8.5705-04 3.9207-35	2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	1.2571-03	2.2 C.H.3	3.0251-18
£ 4	21 : * ALI.	- CONTRA	.51639-01 .35733-02 .56034-04	-0- +02	.55u52-01 .70385-02 .35518+03		•19568+91 •10656=62 •00000	.15000+07 .37807+04	.25158+04	+05	.12518+01	. 360	.36075+07 3
0 F 600	1	CH WICAL SPECIE BOLF FRACTIONS G.00-07 CH4 4-966 COV 3-30-04-12 H 3-456 CH20 9-51-35-09 CH0 H-41	55-03 14-05	00	1.7120-04	#0 H0	2.1814-016-016-016-016-016-016-016-016-016-016	H20 0	3.0192-01 6.4868-06	NH3 02	8.3046-56 4.3406-06	N 2 CH 3	3.7145-01
			E D		PRESSI FORCEY	SSURE I	INTEGRATION RE TORGZ • DDDDD	RESULTS nELFX	00000.	066.FY 000	159	ູ້	
ē	4 18 8 - E	F CONTIN	.296864B.	+ + 0 + 12	.63188+02	•••	*20242+91 *17445-02 *00000	.13728+64	.91334-0	+05	.52747+04 .13019+31		.13195.09 3
60.0		4745-07 CH4 2-07 4745-07 CH4 2-07 6344-04 H 3-37 1774-10 CH0 1-20	81-51 60-19 94-18	00 %	6.3874-04	7.E	4.3153-01 1.5902-25	C	8,5705-04 \$,52[2-35	22	1.2571-03	N2 CF3	2.9582-31
5	21 #461	+ CONTIN	. 52095-01 - 37445-02	+02	. 57151-01 . 68429+02		*19735+01 *10418-02	.15000+02	.78410+02 .25158+04	+05	.67916+04 .12521+01	.356	.35058+07 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CUPMICAL SPECIF 10 CO2 3,3845-02 CU30 9,2748-03	1015 FRACTIONS 14.06 14.	35 53 15	C C 1	1.4015-01	315	2,1819-01	c	3.0190-01	0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.3047-06	7.2 CH3	3.0165-01
		•	FORCEX	× e	FRESSURE FRACEV		INTEGRATION PE Torot .Arring	PESULTS 051FX 14831+01	00.	DELFY	15P +24354+0	2	

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

NOTES: (1) Typical printout for a data surface inside the nozzle. (2) Some points have been omitted for demonstration purposes.

Sample Printout for Single-Phase Finite Rate Chemistry Flow

25					٠.		CA 36 20.		CAME NO. 21	z 0				PAGE	•	
	CASE	21 - SOOLAF	NO3 174	E. 0/F.	~	INITE		915	VAR OFF							
25	7 1 46	POINT DSCR!	P . RE6		•		×			THETA		7 d 0 A	VELOCITY	i		- 4
C SECTION CH4 SOBING CONTIN	:				ACH AN	פר ב	PRESSURE			EHPERATURI		0457	LOCKL GAMME.	SHOCK	3194 v	
	=	25 944	- CON	Ť		700	. \$9106-91 . \$9106-91		.35807-01	.29767+01	F	37+03 45+04	. \$3012+04 . \$2938+01	• 36	189+07	.,
C SPRN-MR	CHENICO CH 20	24. SPECIE H 3.60A9-02 2.2873-08	OLE FRA CHO	6.50	-03	002	1.3896-01	10	2,1947-01	0 0	3.0133-01 1.3375-06	NH3	8.308A-06 1.6412-06	55.	3.0160-01	. 00
CALE SPECIE FOLE FRACTIONS 1.30%-01 HZ 2.1947-01 HZ 3.0133-01 HH3 6.3086-06 CH3 3.5049-07 4.4020-02 1.7129-04 0.11163-04 0.113375-06 0.2 1.6412-06 CH3 2.5445-03 NO 1.7129-04 O.11163-04 O.113375-06 O.2 1.6412-06 CH3 2.5445-03 O.11163-04 O.116412-06 O.11163-04 O.1163-04 O.116	• -	X-246 98	NO 0	2	15175	700	.20517+00 .27979+91 .50267+02			33459+02		15.04	.12999-01	\$¢:	189.07	v
HEMICAL SPECIE HOLE FRAETIONS HEMICAL SPECIE HOLE FRAETIONS CHASS-02 .19633-01 .63034-04 .17637-04 .25145-04 .13063-01 .3613-01 Chassed Chassed Chassed Colored Colored Chassed Cha	02.5	3.5049-02 2.2823-08	CH4 CH4 CH0	5.0639 2.9945 4.9038	000	0.0	1.7129-04	2.5	2.1447-01		3.0133-01 1.3375-06		8 3088-06 1 6 412-06	7.5 C.5.3	1.7015-08	6 6
HEFFCAL SPECIE HOLE FRAETIONS O.0000	=	27 PRN-1	.NOJ - W		.14553	700	. 19633-01	. ·		.17837+04		37+03	.13963-04	.36		₽
	CHEMIC CCO2 CH20	3.5089-02 2.2423-08	OLE FRA CH4 CH0	5.0639 2.9945 4.9038	000	89	10-3866-1	2.5	2.1047-01	H 20 0	3.0133-01 [.5375-06	NH3 02	8+3088-06 1+6412-06	N2 C#3	3.0180.0	
CAL SPECIF MOLE FRACTIONS 0.0000	=	20 M	¥ 00	1 LA	.91755 .13743 .66307	10-	. 13481+01 . 13481+01	' ·	.42109.01 .47135-04	. 163A0+0		15.04	.13135+04	36.	184-07	•
	200	3.5039-02 2.5039-02 2.2033-08	0 E E E E E E E E E E E E E E E E E E E	5.0639 2.9945 4.9038	!	5 5	1.3896-01	10	2-1947-01	H20	3.0133-01	NH3 02	1.6412-06	KZ CHS	3.0180-01	C C

NOTES: (1) Typical printout for a data surface containing a Prandtl-Meyer Expansion. (2) Some points have been omitted for demonstration purposes.

3-89

Sample Printout for Single-Phase Finite Rate Chemistry Flow

!					CASE NO.	441¢F	GASLFARTCLE FLOW SOLUTION ASE NO. 21					PAGE 1	115
CASE 2	CASE 21 - SOCLAF 6/1 CONE. OFFE	. CONE.	~	. FINITE	RATE, IMVISCIO.		*** 0/F						
4		916	•		,		*	THETA	ENTROPY	7 4 (VELOCITY	Ī	M-TOTAL ITR
		2	MACH ANGLE	יאפרנ	PRESTA		DENSITY TE	TEMPERATIFIE	GAS COUST.	13.1	Унько] коод	SHOCK ANGL	ANGLE
<u>.</u>	1 8466	- CONTIN	00000.	200	.12341-00	•••	.29826.61 .50779-03 .00000	.°1813-03	.37993+04	50-1	.64753+04 .13509+D3	• 131	13187-08
CHEMIC CO2 CH20	CHEMICAL SPECIE MOLE FRACTIONS C 7.4745-02 CH4 2.07 CO2 5.6364-06 H 1.26 CH90 5.1793-10 CH0 4.35	M	2 4 4	S S	6.3874=04 0.0000	710	4,3[53-0]	C I O	8.5705-04	NH 3	1.2571-03		2.8312-01
129	St. FREED - CONTIN	CONTIN	IN	12-01	. 1347.400		.58115+01 .80696-05	.60194.02 .95627.03	.25140+09	1000	10475405	98.	.36062+07 - 7
CHENIC C C C C C C C C C C C C C C C C C C	CHENICAL SPECIE MOLE FRACTIONS C 0.0000 CH 5.06 CC 3.5096-02 M 2.79 CH20 2.7825-08 CH0 2.49	CH4 SCTT	0.4 PO 1	002	1,3479-01	10	2.1951-01	0 1 2 2	3.0149-01	NH 3	0.3105-06	7.2 CH3	3.9186-0
	5 9 9 9 5 9 5 9 9 9			T 2 1 0 4	NO 35 ON	L I NE	129 HAT BEEN	AFEN DELETED		,			
136	Tar.	- CONTIN			. 22490+09 12244+02	 	.29853+ri .50609-03	.91725-03	. 37993-04	5-05	.64778.04		13186+08 2
CHE#10 CO2 CH20	CHEMICAL SPECIE MOLE FRACTIONS C 7.4785-02 CH 2.97 CO2 5.6364-06 H 1.24 CH20 5.1793-10 CH0 4.35	CHT 2	0-0	6 0 U 2	6.3824=04	2 2	215	j ;	A.5705-04 0.0000	4H3	1.2571-03	%2 CH3	1.4575-17
130	130 33 FREEBD - CONTIN	FREEBD - CONTIN	:	.96187-01 .99094-01	. 20776+0C . 13477-09		.58139+n1 .60679-95	.60318.02 .95650.03	.14056+03)	.13514+01	• 361	.3606 4.07
CHEMIC CO2 CH20	CHEMICAL SPECIF MOLE PRACTIONS CO 3.0000 CH 5.06 CO2 3.5097-02 H 2.76 CM20 2.2025-08 CH0 2.79	CH4 S	5.0652-08 2.7646-03 2.7967-04	0 C T	1.3876-01	7 H	1.1562-04	HZD	1.3376-06	NH3 02	1.6416-06	H2 CH3	1.70187-01

NOTES: (1) Typical printout for a data surface in the exhaust plume. (2) Some points have been omitted for demonstration purposes.

\$ 7 •

3.3.2 Description of Unformatted Binary Output

The binary tape output on unit 13 is described in this section. Initial input data are written on the first part of the data tape and gaseous and particle data are written out for each data point in the flow field. This tape is formatted so that it may be used by other auxiliary routines (plot, plume impingement or radiation).

GROUP I - General Information

Number of Records = I

Write () (HEADER(I), I=1, 60), ISPECS, IMETRIC

- HEADER
 - run identification (2A4)
 - date (3A4)
 - description (55A4)
- ISPECS = number of particle species to be considered
- IMETRIC = 0 English flowfield units = 1 Metric flowfield units

GROUP II - Gas Data

Number of Records = 1 + IOF*IS

Write () (BETA(I), I=1, 6), IOF, IS

- BETA is gas identification name (6A4)
- IOF number of total enthalpy cuts through "Mollier chart" (max = 10)
- IS number of entropy cuts (max = 2)

DO M=1, IOF DO I=1, IS

Write () IV, IDATA, ((TEMP(J,K), K=1, IDATA), J=1, IV), IVT. ((CPM(J,K), K=1,3), J=1.IVT), RSTAR, PINF, EMINF, GAMINF, FINF, EXINF, XSHIFT

^{*}Determined from ICON (9).

- IV number of velocity cuts through "Mollier chart" for this total enthalpy and entropy
 + 2 (max = 15)
- IDATA number of gaseous species present for this total enthalpy and entropy (max = 98)
- GAMINF freestream isentropic exponent
- IVT = IV-2
- RSTAR throat radius (ft or meters)
- PINF ambient pressure (psf or Newtons/m²)
- EMINF freestream or external stream Mach number
- EXINF limit to which equation applies
- FINF linear static pressure gradient (slope) θ approach
- TEMP contains the following information for each value of IOF, IS
- XSHIFT nozzle length (ft or meters)

- p freeze pressure (atm)
- Htg total enthalpy of the gas (cal/gm)
- P pressure (atm)
- T temperature (^oK)
- S entropy (cal/gm-^OK)
- ψ molecular weight (gm/gm-mole)

- γ isentropic exponent
- M chamber Mach number = 0
- M* throat Mach number = 1
- M Mach number for this table entry
- CPM contains the following information

- Pr Prandtl number
- μ viscosity (poise)
- C_p specific heat at constant pressure (cal/gm-OK)

GROUP III - Gas Partical Data

Number of Records = ISPECS+1

Write () IDUM, ((PSP(I, J), I=1, 2), J=1, ISPECS)

- IDUM dummy word
- PSP(1, J) mass density of jth particle (slug/ft³ or kg_m/m³)
- PSP(2, J) radius (ft or m)

DO I=1, ISPECS

- NTABl number of table entries for this species
- TMELT melt temperature (OR or OK)
- HSOL enthalpy before phase change (ft²/sec²-OR or m²/sec²-OK)
- HLIQ enthalpy after phase change (ft²/sec²-OR or m²/sec²-OK)
- HFIT(N, 1, I) temperature (OR or OK)
- HFIT(N, 2, I) enthalpy (ft²/sec² or m²/sec²)
- NTAB number of table entries for this species

Note that if NTAB=1 species is ideal and HFIT(1, 1, I)= $C_{\rm PL}$ (specific heat of liquid) and HFIT(1, 2, I)= $C_{\rm PS}$ (specific heat of the solid).

GROUP IV - Flowfield Data

Number of Records = 1 + 2 * ILAST

Write () (ILAST, I=1,7), THRUST, AEXIT, IEXIT

- ILAST

 number of data points on the following normal surface. If ILAST = 0 there is no information to follow
- THRUST thrust (lb_f or Newtons)
 AEXIT exit plane area (ft² or m²)
- IEXIT exit flag 0 if no exit 1 if exit

Write () ((ITYPE, R, X, M, θ , S, μ , δ , Htg), I=1,ILAST), (V, I=1,ILAST). (\dot{W}_{g} , I=1,ILAST), ((ρ , P, T, γ , \hat{R}), I=1,ILAST)

- ITYPE identifies type of point (wall, shock, interior, etc.)
 - 0 input point
 - l interior point
 - 2 wall point
 - 3 free boundary
 - 4 upstream shock point
 - 5 Prandtl-Meyer point
 - 6 downstream shock point
 - 7 slip line
 - 8 shock intersection point
 - 9 vibrational mode frozen
 - 10 rotational mode frozen
 - 11 translational mode frozen
- R radial coordinate (ft or m)
- X axial coordinate (ft or m)
- M Mach number
- θ flow angle (rad)
- S entropy $(\text{ft}^2/\text{sec}^2 {}^{0}\text{R or m}^2/\text{sec}^2 {}^{0}\text{K})$
- μ Mach angle (rad)
- δ shock angle (rad)
- Htg gas total enthalpy (ft²/sec² or m²/sec²)

• V	velocity (ft/sec or m/sec)
• \dot{w}_g	mass flow between this streamline and axis (slug/sec or kg _m /sec) gas density (slug/ft ³ or kg _m /m ³) pressure (lb _f -ft ² or N/m ²)
• ρ	gas density (slug/ft ³ or kg_m/m^3)
• P	pressure $(lb_f-ft^2 \text{ or N/m}^2)^{m}$
• T	temperature (OR or OK)
• γ	isentropic exponent
• R	universal gas constant divided by molecular weight (ft ² /sec ² -OR or m ² /sec ² -OK)

DO I = 1, ILAST

Write () ISP, ((U, V, T, H, ρ), J=1, ISP), ILIMIT

• ISP	number of particle sizes at this point					
• U	axial velocity component (ft/sec or m/sec)					
• V	radial velocity component (ft/sec or m/sec)					
• T	temperature (OR or OK)					
• H	enthalpy (ft 2 /sec 2 or m 2 /sec 2)					
• ρ	particle density (slug/ft ³ or kg _m /m ³)					
** ** ***	0) not a limiting streamline					
• ILIMIT	1 is a limiting streamline					

NOTE: The flowfield data are repetitively stored on tape as indicated above - normal surface after normal surface. When ILAST = 0 the end of the data has been reached.

3.4 PROGRAM UTILIZATION COMMENTS

The primary purpose of this section is to provide the prospective user of Lockheed's RAMP program backup information for inputting and trouble-shooting the code. This section also presents the authors' experience on what to look for and what to do if certain problems are encountered while using the program. Included in the discussion are:

- 1. A description of each mesh control parameter and some suggested values
- 2. An explanation of "error" messages and other diagnostics, and
- 3. Problems commonly encountered and suggestions to correct them.

It is envisioned that this section will aid the user in becoming familiar with the use of the code. However, only experience in utilizing the code will provide knowledge for applying the code.

3.4.1 Mesh Control Variables

This subsection discusses each of the mesh control parameters which the program utilizes. The function of each of these parameters is discussed in relation to potential mesh control problems in construction of a typical flow solution.

Control of the insertion of interior points and the deletion of points on a known data surface is the function of subroutine CHECK. CHECK is normally called from subroutine PHASE1 after a line has been completed unless a special circumstance is encountered where a point needs to be inserted or deleted due to streamline crossings. The axial step control is performed by PHASE1.

3.4.1.1 Lower Wall Interpolation Factor (STEP(8))

Characteristic theory governs the construction of the initial data point on a new surface. The maximum axial step at the lower boundary is determined by the intersection of the right-running characteristic (RRC) emanating from the first interior point on the normal and the lower boundary. The RRC is inclined at the local characteristic angle $(\theta-\mu)$ toward the lower boundary. The axial step downstream of the known data surface is determined by the intersection of the RRC line (which is located a factor of STEP(8) (\leq 1.0) of the distance between the axis point and first interior point) with the lower boundary. Details of this construction are noted in the sketch below.

 ΔX_1 = Initial Axial Step

 ΔR_0 = Initial Radial Point Spacing

 $\Delta X_0 = Maximum Initial Axial Step$

 μ = Local Characteristic Angle

V = Local Velocity

The $\triangle RRC$ Step $\triangle X_1$ is given by:

$$\Delta R_1 = \Delta R_0 [1 - STEP(8)]$$

$$\Delta X_1 \cong \Delta R_0 * STEP(8) * tan(\pi/2 - \mu_1)$$

Consequently, STEP(8) is the primary parameter which controls the mesh construction and also has a significant impact on program run time. The radial point spacing on the start or previous line also helps to determine the initial axial step. The closer the point spacing the smaller the axial step.

Step size also affects the conservation of mass flow, momentum and energy. Most cases will maintain good mass flow conservation. However, there can be cases where poor mass flow conservation is observed. In these instances, normally there is an error in some of the input data. If no error is detected it may be necessary to take smaller step sizes to maintain the particle mass flow conservation. Gaseous cases with larger gradients across the flow field may also require smaller steps and more mesh points in order to conserve mass flow.

3.4.1.2 Axis Point Insertion Criteria (STEP(6))

The axis point insertion control parameter, STEP(6), limits the maximum axial step between data surfaces. If the data surface location between axis points for any reason exceeds STEP(6), the interpolation factor for the lower wall solution (STEP(8)) will be multiplied by 0.8. This results in a smaller axial step. The new axis point will be recomputed until it is less than a distance of STEP(6) away from the known axis point.

Typical values for STEP(6) are: 0.1 throat radii for two-phase nozzle flow problems, 0.1 exit radii for two-phase plume flow problems and 0.2 throat/radius for gas only nozzle solution and 0.2 exit radius for gas only plume flows.

3.4.1.3 Interior Point Insertion Criteri (STEP(3))

The purpose of the point insertion capability is to provide control of the streamline spacing in a rapidly expanding flow. Insertion of a streamline is accomplished in the following manner. The distance along a normal line between two grid points is computed in subroutine CHECK. If this distance exceeds STEP(3) a new streamline will be inserted midway between the two existing points. The new streamline point will be retained as the solution progresses.

3.4.1.4 Particle Limiting Streamline Insertion Criteria (STEP(9))

This parameter provides for control of streamline spacing on a data surface based on the entropy difference between two streamlines. This option is only used for two-phase flow cases and then only between a particle limiting streamline and the adjoint gas streamline. STEP(9) is the maximum allowable percentage change in entropy near a particle limiting streamline. The procedure is to first calculate the entropy difference (Δ S) between the particle limiting streamline and the adjacent streamline, above or below the particle limiting streamline. If Δ S is greater than STEP(9) times the entropy level of the limiting streamline then a new streamline point will be inserted midway between the two points. The procedure is identical to the interior point insertion scheme once the program has determined that a point should be added.

This mesh control parameter is utilized to avoid large entropy gradients near limiting streamlines. There will naturally be an entropy gradient across a limiting streamline, from a region where particles are present to a gas-only region. However, use of the STEP(9) control can minimize the chance of encountering numerical difficulties near limiting streamlines in two-phase flow problems.

3.4.1.5 Prandtl-Meyer Integration, (STEP(1))

This parameter controls the number of mesh points which are distributed through the Prandtl-Meyer expansion. STEP(1) is the size of the integration step in degrees that is used to numerically integrate the Prandtl-Meyer function. STEP(1) then becomes the number of degrees between mesh points in the expansion fan.

3.4.1.6 Point Deletion Criteria (STEP(7))

The purpose of this mesh control parameter is to limit the spacing of adjacent streamline points on a normal to a minimum value. When streamlines begin to converge the solution can encounter numerical difficulty when computing locations of intersections of characteristic lines with normals to streamlines.

The procedure is to determine the radial and axial spacing, the Mach number difference and flow angle differences between two consecutive points on a normal (ΔR , ΔX , ΔM , $\Delta \theta$). The average R, X, Mach number and flow angle for the two points are calculated (\overline{R} , \overline{X} , \overline{M} , $\overline{\theta}$). \overline{R} and \overline{X} are multiplied by STEP(7) and \overline{M} and $\overline{\theta}$ are multiplied by built in values. If ΔR and ΔX are less than the average locations (\overline{R} and \overline{X}) times STEP(7) and ΔM and $\Delta \theta$ are less than the average values (\overline{M} and $\overline{\theta}$) times the built-in values then one of the two points will be deleted. This procedure is shown in the sketch on the following page.

The program will not delete the following types of points: upper or lower boundary, free boundary, Prandtl-Meyer, shock, slipline or limiting streamlines. Normally, the I point is deleted.

DOLD TO THE WILL BY AND AM LT ST AND AD LT TO Then the point let F will be deleted where M is the local Machininter and the set the local flow angle.

3.4.1.7 Finite Rate Chemistry Mesh Controls

The mesh control parameters for a finite rate chemistry case are the same as in the previous sections with the following exception.

The lower wall interpolation factor, STEP(8), is overriden by the "CFL" condition which requires that the Mach lines from any new point must intersect the base line between the base point and either of its neighboring points. This condition is assured by the equation

CFL =
$$\Delta_N \sqrt{M^2 - 1}$$

where Δ_N is the normal distance between any 2 adjacent points on the base line and M is the Mach number. CFL is the maximum distance along the streamline through the base point the new point may extend and still ensure that the Mach lines intersect the adjacent points. This distance is calculated for each point on the base line and the minimum distance is used for the entire new line.

3.4.1.8 Recommended Mesh Control Variables

Table 3-8 presents a set of recommended values for the mesh control variables. This set of mesh control values has been found by the authors to be general for most of the cases which have been run. However, there probably will be cases where the run time or conservation of mass flow, energy and momentum will be unsatisfactory and adjustments to the mesh will be required. As the user becomes familiar with the code and runs more cases, changes in the mesh control variables and the resulting effect on the flow solution will become apparent.

3.4.1.9 Mesh Spacing Effect on Run Time and Conservation Equations

Run time is significantly affected by the point density for two reasons:
(1) the computer run time is a direct function of the number of points on the

Table 3-8
RECOMMENDED MESH CONTROL VALUES

96						
Phunia ser Allinde Ser Allinde Ser Allinde	6.0	0.5 R _E	$0.3~\mathrm{R}_\mathrm{E}$	0.005	9.0	0.0001
Spullilly Asish Asish Asish Asish Asis Asis Asis	0.9	$0.3~\mathrm{R}_\mathrm{E}$	$0.2~\mathrm{R}_\mathrm{E}$	0.005	0.7	0.2
Plume Low Allitude Plume Low Allitude Two Low Allitude	4.0	$0.2~\mathrm{R}_\mathrm{E}$	0.2 RE	0.005	0.7	1000.0
Sephare Sepharowith Sepharowith	4.0	0.1 RE	0.1 RE	0.005	0.5	0.2
SPE TWO. DASSON	4.0	0.1 R _T	0.1 R _T	0.001	0.7	0.2
No2816-G28	4.0	0.1 R _T	$0.2~\mathrm{R}_\mathrm{T}$	0.001	6.0	1000.0

 R_{T} = Throat Radius

RE = Exit Radius

NOTE: If no limiting streamline, axis insertion, or interior insertion control is desired input a large number (~1000). If no deletion is desired use an extremely small number (1.E-5).

STEP(8), Axis Point Interpolation

STEP(6), Axis Insertion STEP(7), Delete Criteria

STEP(9), Limiting Streamline

STEP(1), Prandtl-Meyer Control

STEP(3), Interior Insertion

normals, i.e., for the same number of normal surfaces and twice the number of points on each normal there will be a factor of two difference in run time, (2) the more points on a given normal, the smaller will be the step size which will result in more execution time, i.e., twice as many points on a surface will result in the maximum axial step having one-half the length. This coupled with twice the points on the normal will result in four times as much computer time.

Coupled with conserving run time is the necessity that the solution be numerically valid, i.e., conserve mass, momentum and energy. The conservation functions for numerical solutions of the type employed by the RAMP program are somewhat controlled by the mesh spacing. For flows which contain large gradients in flow properties it is desirable to have more mesh points to avoid any large errors in mass flow, system energy and momentum. Thus there is some happy median between run time and system conservation.

3.4.1.10 Point Spacing

The type of solution which the RAMP code employs lends itself to uniformly spaced points on each data surface. However, particular flow solutions which have large radial gradients require close point spacing in the region of the large gradients. For these cases, smaller axial steps are necessary.

3.4.2 Explanation of Error Messages and Other Messages

1. Previously noted errors have propagated to lower boundary or problem limits have been reached. Case terminated.

The program has terminated properly, the problem limits set by the user have been reached or another error which has been identified via a message has been encountered.

2. Lower boundary solution will not converge.

The program is unable to obtain a solution at the lower boundary within the user specified number of iterations. The code will back up the line a maximum of 10 times in order to try to obtain a solution. If no solution is reached then the execution will terminate.

3. Interior solution will not converge.

The program is unable to obtain a solution for an interior point within the user specified number of iterations. The code will backup and take a smaller step. If the point still will not converge after backing up ten times then the solution will be terminated.

Possible causes of this problem are:

- Input error in boundary equations
- Numerical difficulties due to large point spacing in regions of steep gradients. Use more points or take smaller steps.
- If this occurs early in the solution, the startline may not be physically or numerically suited to the problem. Check the startline.
- Check for obvious errors in thermodynamic data.
- 4. Upper boundary solution will not converge

The program is unable to obtain a solution at the upper boundary. Causes and fixes are same as item 3.

5. Shock solution will not converge. Line terminated.

The code is unable to obtain a solution for a shock point within the user specified number of iterations. If this occurs early in solution it could be due to an inconsistency of the startline and boundary equations. May be taking too large a step — decrease step size.

6. ITSUB will not converge in RGMOFP

Real gas solution of Mach number as a function of pressure will not converge within preset number of iterations. Check the thermodynamic tables for errors and also the plume boundary conditions.

7. ITSUB will not converge in RGVOFM

Real gas solution of velocity as a function of Mach number will not converge within preset number of iterations. Check the thermodynamic tables for errors. For two-phase, real gas cases with a startline input from cards, be sure all the input Mach numbers fall within the thermodynamic table entries.

8. ITSUB WNC in THETPM

Unable to balance the last Prandtl-Meyer point pressure with the back pressure at the free boundary or flow angle

at a solid boundary, within the preset number of iterations. This can be caused by poor thermodynamic table construction or incompatible plume boundary conditions.

9. ITSUB WNC in AOASTR

Unable to balance the mass flow at input A/A^{*} with mass flow at throat within the preset number of iterations. Check thermodynamic tables.

10. ITSUB WNC in TURN

Unable to turn the flow through a specified turning angle within the preset number of iterations. Usually caused by flow going subsonic.

11. ITSUB WNC in OVEREX

Unable to turn the flow through a specified turning angle to match the plume boundary pressure within the preset number of iterations. Usually caused by the flow going subsonic.

12. The following case cannot be found on the master tape.

The program is unable to find the desired gas case among the cases present on the master tape. This is usually caused by the gas header card not matching any of the header cards which appear on the tape or the wrong tape was mounted.

13. ITSUB WNC in HYPER

Program is unable to find a velocity which will give the ambient boundary conditions within the number of preset iterations. Can be caused by trying to expand the flow too far or bad thermodynamic tables.

14. Subsonic Mach number encountered in TOFV

The characteristic theory utilizes Mach number in the definition of Mach angle $(\sqrt{M^2 - 1})$ and is limited to supersonic flow. Possible causes for this message are:

- Flow went subsonic
- Error in boundary equations
- Error in other input data
- A situation is encountered which the code is unable to handle.

15. Negative velocity encountered in TOFV

Something has happened during the solution which has resulted in a negative velocity being calculated. Probable causes are:

- Error in boundary equations
- Error in gas thermodynamic data
- Mesh problem caused by too large a step in a region of steep gradients. Try taking smaller steps.
- Program limitation.
- 16. ITSUB does not converge in PHYSOL

Subroutine PHYSOL is unable to determine the characteristic intersection with the known data surface within the preset number of iterations. This is usually caused by too small a mesh size or a data surface that has been input, which is not a true normal.

17. Two straight lines in INRSCT are parallel

Subroutine INRSCT's function is to determine the intersection of two straight lines. If two lines are found to be parallel this message is printed out. Usually caused by some inconsistency in the input data.

18. Slipline computation does not converge in SLPLIN

The program is unable to converge on the slipline points (i.e., match flow angle and pressure) within the preset number of iterations. Usually caused by taking too large a step.

19. Characteristic lines diverge, last P-M point set free molecular

Subroutine MOCSOL is unable to intersect right and left running lines while constructing the normal around a Prandtl-Meyer expansion. This is usually caused by trying to take too large a step past an expansion corner.

20. MOCSOL would not converge

MOCSOL is unable to find the intersection of two characteristic lines within the preset number of iterations.

21. A problem with a RRC intersection with line X has been encountered. The line will be recalculated.

This is the result of either an interior solution taking too many iterations or a situation where the program is unable to intersect the right running characteristic from the new point to the known data surface. The program will back up and take a smaller step for a maximum of ten iterations. If the same problem is still encountered the case will be terminated. This is usually caused by an error in a boundary equation, a startline which is not a normal, a poor point spacing.

22. Particle limiting streamline intersection with the boundary

This message occurs whenever a particle limiting streamline intersects a boundary (solid or free). The solution proceeds while assuming all mass which intersects the boundary passes on through.

23. Point number X on line Y has been deleted

This message is printed whenever a point is thrown out because it did not satisfy the mesh control criteria or whenever a gas and particle streamline cross.

24. A new streamline has been inserted on line Y between points X and Z.

This message will appear each time a point is added on a line due to mesh control criteria being exceeded between two points.

25. Due to gas-particle streamline crossing the point X has been replaced.

This message occurs for two phase cases whenever a gas and

This message occurs for two-phase cases whenever a gas and particle limiting streamline cross. The gas streamline is thrown out.

26. Your are trying to throw out point X, the point is a wall, limiting streamline or free boundary point. You probably have an error in your input.

This error message is usually due to an error in the startline or an error in the boundary equations. Check your input data.

3.4.3 Problems Commonly Encountered and Suggested Fixes

This section is intended to aid the user in utilizing the program and avoiding some common problems. Also included are some general comments on inputting the code.

The following is a list of hints to the user:

• The numerical scheme which the program utilizes lends itself to evenly spaced points. Therefore, when setting up a startline try to insure that the points are as evenly spaced as possible. The only exception to this rule is in the vicinity of large gradients in flow properties, (e.g., Prandtl-Meyer corners). The points in this region should be closer together and smaller axial steps should be taken.

In the region immediately downstream of a Prandtl-Meyer expansion it is necessary for the program to patch together a characteristic mesh with the streamline normal mesh (Section 6.9, Vol.I). This mesh construction can result in two unique problems. First, if the first normal beyond the corner is too far downstream of expansion, it is possible for the code to be unable to intersect characteristic lines. This normally will only occur for high altitude cases. To fix this take a small step. If too large a step is taken at lower altitudes, streamlines may cross which can result in a subsonic Mach number or negative velocity message. To correct, take smaller steps. On the other hand, if the first normal downstream of the corner is too close to the lip the points in the fan may be too close together. This may cause problems with characteristic line intersections with previous data surfaces and result in excessive iterations or no convergence of points in this region. It may also result in the necessity to take too small a step in order to proceed with the solution. To correct this problem, a slightly larger step must be taken so that the first normal is further downstream of the corner. Below are sketches of normals which are too close and too far from expansion corners.

3-108

- The transonic solution requires the location of the intersection of the startline with the axis (ZAX) and the nozzle wall (THIW). There is an option in the code to let the program calculate a ZAX based on the input THIW. This is accomplished by not inputting a value on the transonic namelist. The value of ZAX which the code computes will result in a near normal startline. It should also be noted that the startline must be supersonic so if a subsonic Mach number is encountered from the transonic solution the startline must be moved further downstream (Card 36).
- Since the program uses streamlines and normals to streamlines to construct the mesh it is always assumed that each data surface is a true normal. If a startline is input which is not a normal, it is possible to encounter difficulties in getting the solution started. Below are three sketches of candidate initial data surfaces. Sketch A

Sketch A - True Normal

Sketch B - Normal Inclined Too Much

Sketch C - Normal Not Inclined Enough 3-109

is a true normal, Sketch B is inclined too much and Sketch C is not inclined enough. In the case of the data surface which is inclined too much the code will probably have trouble finding the characteristic line intersections with this surface during the next line's solution. When the code is unable to obtain an intersection, the new data surface is backed up until a solution is reached or if no solution is reached after backing up ten times the case is terminated. A normal which is not inclined enough will result in normal lines crossing as shown in Sketch C. The solution will usually have no trouble in obtaining a solution for the new data surface although several lines may overlap. To fix both of these cases, regenerate the startline so the normal line is a true normal.

- A large percentage of problems encountered are due to errors in the boundary equations. These errors can result in messages being printed out such as; subsonic Mach number, negative velocity or possible systems error messages due to bad interpolation factors. If any anomalies are encountered while the code is solving an upper boundary point, the following are some of the errors to look for:
 - a. A discontinuity in boundary equations where they are supposed to match
 - b. The boundary equations are not in the same units as the startline
 - c. The startline does not fall on the first boundary equation
 - d. For two-phase cases the input throat radius is not consistent with the throat equation
 - e. There is an error in the equation itself.
- Care should be taken in selecting the particle size distribution for any particular case. If the particle sizes are too large for the motor being analyzed then the lags are too great, thereby compromising the results. If the sizes are too small then the particles may try to thermally and translationally equilibrate with the gas which may result in numerical problems. A discussion on how the authors determine mean sizes and distributions is contained in Appendix C of this volume.
- If the user is only interested in such things as nozzle wall pressure and initial plume expansion angle then a single particle size having the mean size for the motor is sufficient for good results. However, if the user is interested in two-phase impingement, then a good distribution is necessary in order to get satisfactory impingement results. Appendix C contains a discussion of particle distribution.
- There are some specific dos and don'ts associated with inputting a startline with cards. The following hints are what to be careful of when setting up a case where the startline is read from cards.

- a. Make sure that the number of gaseous startline points corresponds to the value input on Card 4 (ICON(3)).
- b. The gaseous startline points should be input starting from the nozzle centerline and proceeding to the upper boundary. The particle properties should be input starting with the first point nearest the upper boundary which has particles present and inputting the particle data down to the nozzle centerline. For each point the particles should be input from the smallest size (particle 1) up to the largest size (particle 6). The same particle number must always be used for each specific size.
- c. A common mistake users make is to forget to input the number of gas points (NSETS, Card 23) which have particles present. This only applies to two-phase cases.
- d. Whenever a restart is used it is necessary that the last point on the startline (upper boundary point) be a point on the first boundary equation. The first boundary equation must also be a type 1 or 2 boundary (conic or polynomial). Therefore, all boundary equations prior to the one which applies at the boundary startline point, must be removed and ICON(4) adjusted accordingly. Cases which are trying to be restarted in the plume require a fictitious boundary for the first equation. This equation consists of a straight line which passes through the boundary point and has the same slope. The next boundary equation should be the original free boundary equation. A sketch describing this requirement is shown below.

Fictitious Boundary for Plume Restart

- e. The code presently has a limit of 50 startline points. If a line has been punched which has more than 50 points, omit enough points to obtain 50 maximum.
- f. The Mach number which is input on the startline cards must be within the thermodynamic table entries for two-phase cases which utilize equilibrium tables with multiple enthalpy and entropy tables. This is normally a problem only for high altitude plume restarts. If this is ever encountered contact the authors for a temporary change to the program so that gas velocity may be read in instead of Mach number.
- If gas thermodynamic data is coming from tape be sure to set ICON(1) = 2 (Card 4) and also use exactly the same gas header card (Card 8) as was used by the TRAN72 program to generate the tape.
- For gas data coming from cards be sure that the units of the gas properties are consistent with the units identifier on the gas header card (Card 9).
- The entropy and total enthalpy levels of any startlines input into the program must be consistent with the gas thermodynamic tables. This is generally only important in two-phase cases. If the startline was punched by the program on a previous run and the same gas thermodynamic tables are used then the gas entropy and total enthalpy levels are consistent. However, if the startline is generated by some other code, care should be taken to enter the entropy and total enthalpy to obtain the correct static gas properties (P, p, T). For ideal gas two-phase cases the total enthalpy is calculated as follows:

$$H_T = C_p T_{OL}$$

where C_p is the ideal gas C_p defined as $C_p = \gamma R/(\gamma-1)$ and T_{OL} is the local total temperature including any two-phase losses. T_O and P_O are the combustion chamber total temperature and pressure. The static pressure is calculated via the following relationship:

$$P = \frac{P_{0} (T_{OL}/T_{O})^{\gamma/\gamma - 1}}{e^{S/R} (1 + \frac{(\gamma - 1)}{2} M^{2})^{\gamma/\gamma - 1}}$$

The local static temperature is calculated using the local total temperature.

For equilibrium chemistry two-phase cases, the head loss due to the difference in total temperature between local and chamber conditions is accounted for by the change in entropy level between the total enthalpy tables. It is therefore necessary to use 2 entropy tables and more than one total enthalpy table for two-phase equilibrium cases. The user must also be sure that the gas total enthalpy at any point in the plume will never exceed that of the highest total enthalpy table ($\Delta H = 0$) or be less than the lowest total enthalpy table ($\Delta H_T = -\Delta H$ max). A ΔH_T of -300 cal/gm is probably the largest heat loss that need be used in the modified TRAN72 program for two-phase cases.

- For finite rate chemistry cases the following precautions should be taken
 - 1. Be sure that the order in which the chemical species names appear are the same for the thermodynamic data tables, the startline mole fractions and the catalytic species.
 - 2. Be sure that the temperatures in the data tables are the same for each species and that the number of temperatures are the same.
 - 3. Be sure that the enthalpies and entropies are referenced to the same temperature for each species.
 - 4. The program is set up to "freeze" the chemistry on the startline and will keep the chemistry frozen until a complete normal has been computed. It is recommended that the startline should be as near to a normal as possible.
 - 5. The run time for a finite rate chemistry case is much longer than for an equilibrium case.

3.5 BRIEF DESCRIPTION OF ROUTINES IN FUNCTIONAL GROUPINGS

The following subsection contains a brief description of the individual routines which comprise the RAMP program. The basic flow of the program is presented in Table 3-8. The routines are grouped and presented as indicated below:

- General flow properties routines
- Shock calculation routines
- Input routines
- Logic control routines
- Free molecular routines
- Output routines
- Transonic routines
- Startline routines
- Boundary and problem limits routines
- Interpolation and iteration routines
- Property retrieval routines
- Chemistry routines
- Compatibility equation coefficient routines
- Corner point routines
- Initialization routines
- Performance calculation routines
- Characteristic routines
- Miscellaneous routines

3.5.1 General Flow Properties Routines

Routine	Description
EMOFP	This function computes the local Mach number as a function of local pressure (static) and local entropy.
$v \operatorname{MO} v V$	This function computes the Mach number as a function of local velocity.
X. (2131)	This subroutine interpolates for the gas and particle properties between two known data points.

Table 3-8 SCHEMATIC OF BASIC SOLUTION FOR VARIOUS TYPES OF POINTS

Routine	Description
POFEM	This function computes static pressure as a function of Mach number and entropy and total temperature (ideal gas two-phase only).
POFH	This routine utilizes the tabulated data of enthalpy and specific heat as functions of temperature for each species of a finite rate chemistry case to cal- culate pressure, as a function of enthalpy for a real gas, in a Prandtl-Meyer expansion.
PPATPT	This routine calculates and stores gas and particle dependent variables as a function of the independent flow properties.
RGMOFP	This subroutine finds Mach number as a function of pressure, O/F ratio (or total enthalpy) and entropy. The difference between this routine and EMOFP is that in this case the gas properties are not known prior to entry.
RGVOFM	This function computes velocity as a function of Mach number, entropy and O/F ratio (or total enthalpy). The difference between this routine and VOFEM is that the gas properties are not known prior to entry.
RHOFEM	This function computes the local density as a function of Mach number and entropy.
TOFEM	This function computes the local static temperature as a function of Mach number. TOFEM and TOFV are quite similar; the difference being if Mach number or velocity is the known quantity.
TOFENH	This function calculates the temperature as a function of enthalpy for a finite-rate chemistry case.
TOFH	This function calculates the temperature as a function of enthalpy for a finite-rate chemistry case during a Prandtl-Meyer expansion.
TOFV	This function computes the local static temperature as a function of velocity. TOFV and TOFEM are quite similar; the difference being if Mach number or velocity is the known variable.
UOFEM	This function computes the local Mach angle as a function of local Mach number. Prior to the calculation, a test is made to ensure that the Mach number is greater than one.
UOFV	This function computes the local Mach angle as a function of local velocity.
VOFEM	This function computes velocity as a function of Mach number.

3.5.2 Shock Calculation Routines

Routine	Description
DELTAF	This function computes the turning angle through an oblique shock wave knowing the shock angle and the upstream Mach number.
ENTROP	This function utilizes the oblique shock relations to find the entropy rise across a shock as a function of the shock angle and the upstream Mach number.
ESHOCK	This subroutine employs an iterative solution to perform the equilibrium shock calculations for a real or ideal gas. The real and ideal gas calculations are similar, the difference being that an ideal gas case converges on the first iteration.
NORSCK	This routine uses local flow properties to calculate properties downstream of a normal shock to obtain pitot pressure. This routine is used only for finiterate chemistry, real gas cases.
SLPLIN	This subroutine handles the calculation of the points on the slipline. Two points are assigned to every slipline.
SOKINT	This subroutine computes the flow properties at the intersection of shock waves of the opposite family.
SOKSOL	This subroutine provides control for a shock point solution.
TURN	This subroutine solves for a shock wave which has a known turning angle (δ). A condition of known turning angle exists when the flow is turned through a compression corner on a solid boundary. Real gas effects are considered in calculating conditions downstream of the shock.
WEAK	This subroutine determines the independent variables, entropy and velocity, SD, VD, downstream of a weak oblique shock. The gas properties upstream of the shock are known prior to entry.

3.5.3 Input Routines

Routine	Description
GASRD	This subroutine reads in the gas properties. These properties may be real or ideal and read in via cards or tape. The routine also converts input gas properties from MKS units to English (ENG) units if necessary.

Routine	Description
GASTAP	This subroutine reads the real gas properties from the thermochemical data tape generated by the modified TRAN72 computer program and writes this same data on a flowfield tape for communication with other programs.
IMPUT	This routine reads the input cards or tape for the chemistry package. The reaction rate equations, rate constants, and startline species concentrations are read in and the appropriate conversions, if any, are performed. Tables of enthalpy, entropy and specific heats for each species are also input.
PARTIN	This subroutine reads in gas and particle property startline data. Data is read in from cards or tape.
PARTPH	This subroutine reads and sets up the data table of particle temperature versus enthalpy. This routine also prints out the particle drag tables as well as the temperature versus enthalpy tables.
PLUMIN	This subroutine reads in the input data (input via cards) necessary to perform the streamline-normal solution. This routine provides control for all input functions by selectively calling pertinent input routines and/or the transonic solution.

3.5.4 Logic Control Routines

Routine	Description
DRIVER	This subroutine provides the highest order control for program execution. The initialization and logic subroutines are called from here. Most of the common storage needed in the remainder of the program is specified in DRIVER.
MAIN	This subroutine drives the program.
MOCSOL	This subroutine solves the characteristic equations for gas only flow in the region around and downstream of an expansion corner.
PHASEI	This subroutine performs the overall control for the entire flowfield solution, selectively calling those calculations which are pertinent to the particular mesh construction as well as the highest level logic routine combining point or limited region solutions into an entire field solution.

Routine

Description

PLUMIN

This subroutine reads in the input data (input via cards) necessary to perform the streamline/normal solution. This routine provides control for all input functions by selectively calling pertinent input routines

and/or the transonic solution.

STRNOR

This subroutine provides the regional control for the streamline/normal solution. It has a lower level of logical control than PHASE1 being interested only in determining the location and flow properties of a single new mesh point.

TRANS

This subroutine provides overall control for initializing the data and reading the namelist data for the Kliegel two-phase transonic solution of a supersonic gas particle startline.

3.5.5 Free Molecular Routines

Routine	Description
AVERAG	This subroutine determines the appropriate flow regime based on Knudsen number for non-continuum flow and sets the appropriate gas total conditions.
FREEMC	This subroutine computes flowfield properties in the free molecular regime.
STGMOD	This subroutine computes the gas thermodynamic properties in the transition flow regime.
WTFLOF	This function computes the area normal to the flow which is bounded by two streamline points.

3.5.6 Output Routines

Routine	Description
ERRORS	This subroutine contains print messages for various errors which may occur. This is an open ended routine in that it can easily be extended to handle more print messages.
IDTAPE	This subroutine writes the gas properties which were input via cards on the flowfield program tape. The format used to write them on tape is compatible with that used for a real gas.

Routine	Description
OUT	This subroutine writes the calculated data for data points along with the corresponding title and headings.
OUTBIN	This subroutine writes the calculated normal data on the binary output tape. This is done for any number of data points.
PAGE	This subroutine page ejects and writes the header comments and page number on each page of the printout.
PLMOUT	This subroutine prints the data read by PLUMIN.
RITE	This subroutine tells the program user (in no uncertain terms) that he has made a "fatal" error. The next executable statement is a STOP.

3.5.7 Transonic Routines

Routine	Description
ABCALC CCALC DCALC FCALC FIND 11 JAMES LEGS NEWT ONED PARTIL	A complete description of each of these routines is contained in Ref. 7.
PCALC PROP STRMLN TRACE TRANS WDGI	

3.5.8 Startline Routines

Routine	Description
AOASTR	This function finds the Mach number corresponding to a given area ratio by one-dimensional theory. Real gas effects are considered in this calculation.
LIPIN	This subroutine calculates information for the starting line points when the simplified straight start line option is used (i.e., when ICON(2) \notin 2).

Routine	Description
MASCON	This subroutine calculates the Mach number distribution at an area downstream of the throat such that total mass flow is conserved. Mass flow, calculated at the throat, is used as the constant for comparison.
SETHTG	This subroutine computes the gas total enthalpy for a case when finite-rate chemistry is being used and the startline is to be generated by the program for gaseous flows only.
WOFA	This subroutine computes the weight flow per unit area as a function of Mach number. This calculation is only used in function AOASTR.

3.5.9 Boundary and Problem Limit Routines

Routine	Description
BOUND	This subroutine finds the radial coordinate and flow angle (radians) for a given axial coordinate on an upper or lower solid boundary.
FNEWTN	This function solves for the Newtonian impact pressure along the plume boundary. The calculation is applicable for all free stream velocities including quiescent conditions (i.e., $M_{\infty} = 0$).
ITERM	This function tests each normal lower wall point to determine if it is within the predefined problem limits. If the point falls outside the limits, the case is terminated.
LAGRNG	This subroutine determines the radial location and flow angle for solid boundaries which are input as tables of R, X and flow angle.
LIMITS	This subroutine tests the new boundary point to determine if it is within the limits of the current boundary equation.
PRFRBD	This subroutine calculates the flow properties at the intersection of a particle limiting streamline and a plume boundary.

3.5.10 Interpolation and Iteration Routines

Routine	Description
ALGINT	This routine does a log interpolation between two values of a variable.
DRAGCP	This routine determines the drag coefficient F (${\rm C_D/C_D}_{\rm Stokes}$) as a function of Reynolds number.
DRAGMR	This subroutine determines the local drag coefficient (${\rm C_D/C_D}_{\rm Stokes}$) as a function of particle
	Reynolds number and particle Mach number.
GAPPBI	This subroutine interpolates for the gas and particle properties between two known data points.
ITSUB	This subroutine controls the iterative solution of any set of equations which can ultimately be expressed as a function of one variable; it can also be used to control an integration loop.
SITER	This subroutine computes entropy as a function of pressure, total enthalpy and velocity.
TEMTAB	This subroutine will perform a table lookup for particle temperature as a function of enthalpy or for particle enthalpy as a function of temperature.
TKEY	This routine determines the proper index to be used in the enthalpy and specific heat tables and calculates interpolation factors.

3.5.11 Property Retrieval Routines

Routine	Description	
IDMPFP	This function computes the particle storage location within the PFPARY array.	
IDMTAB	This function computes the gas property storage location within the TABB array.	
IDMXSI	This function computes the gas interpolation parameter storage location within the XSIDIM	

Routine	Description
PFP	This function computes the particle property data storage location and retrieves data from the PFPARY array.
RWU	This routine is a MSFC Univac 1108 system routine used to read and write from FASTRAN files.
SPCTX	This routine controls the input and output from a FASTRAN file of the chemical species in a finite-rate chemistry case.
TAB	This function computes the thermodynamic data storage location and retrieves data from the TABB array.
XSI	This function computes the storage location for the nonlinear interpolation weighting functions required for thermodynamic property look-up and retrieves data from XSIDIM.

3.5.12 Chemistry Routines

Routine	Description
CHEM	This routine evaluates the chemical reaction-rate equations to determine the new chemical species concentrations.
FABLE	This subroutine utilizes real or ideal gas information obtained from a master tape or input cards to calculate properties locally in the flow. The maximum size of the array used by FABLE is limited to eight gas properties (V. R, γ , T_o , P_o , μ , Pr , C_p) at 13 velo-
	city "cuts" for each of two entropy cuts and 10 O/F or total enthalpy cuts.
THERMO	This subroutine utilizes real or ideal gas information obtained from the flowfield tape (or tables) and a local O/F ratio (or total enthalpy) to call subroutine FABLE to calculate thermodynamic gas properties locally in the flow.
THERMI	This routine determines the gas thermodynamic properties for a finite-rate chemistry case.

3.5.13 Compatibility Equation Coefficient Routines

Routine	Description
COEFEQ	This subroutine calculates the coefficients CI and CIJ for use in the gas-particle system compatibility equation along the gas Mach lines. CI is the gas total enthalpy term and CIJ is the particle contribution to the equation.
COEFF3	This subroutine calculates the new particle properties at the point under consideration, and the intersection of the particle streamlines through this point with the J-line.
NEWENT	This subroutine calculates the change in entropy and gas total enthalpy along a gas streamline for gas particle flows.
ROTERM	This function computes the geometrical factor, F_{I} , F_{II} ,
	used in the axisymmetric term of the compatibility equation and as an interpolation parameter.

3.5.14 Corner Point Solution Routines

Routine	Description
EXPCOR	This subroutine calculates the flow properties of those field points near an expansion corner.
HYPER	This subroutine calculates the balanced pressure at a corner point (i.e., at the intersection of a solid boundary and the pressure boundary). The pressure balance is determined for either the overexpanded or underexpanded case with impact or ambient freestream pressure.
OVEREX	This subroutine solves for the shock angle at the nozzle lip when the flow is over expanded. Provisions are made to calculate the shock angle for an upper or lower lip point. Real gas effects are considered in calculating flow properties downstream of the shock.
PRANDT	This subroutine computes the Prandtl-Meyer expansion angle for a given boundary angle and divides this angle into a series of expansion "rays" (unless the number of rays has been specified in the input). The flow properties at each angular increment are set and stored in the PHO array.

Routine

Description

THETPM

This subroutine performs a numerical integration to calculate properties through a Prandtl-Meyer expansion. Either the case of known final velocity or known final expansion angle may be handled.

3.5.15 Initialization Routines

Routine Description BLKDAT This routine initializes the Kliegel (Ref.7) and Crowe (Ref. 11) gas-particle drag coefficients which are used by the code. INITP This subroutine initializes the values of various control parameters, thereby providing for proper operation of the program. These initial values include: 1. The counter for the upper and lower boundary equations, 2. The counter for the first characteristic line, 3. The initial number of degrees per Prandtl-Meyer 4. Convergence criteria, and 5. Maximum number of iterations. SETHTG This subroutine computes the gas total enthalpy for a case when finite-rate chemistry is being used and the startline is to be generated by the program for gaseous flows only.

3.5.16 Performance Calculation Routines

Routine	Description	
INTEGR	This subroutine calculates the incremental force and energy between two adjacent points in the flow field.	
MASSCK	This subroutine keeps a running check on the mass flow. Mass flow at the starting line is calculated and compared with that crossing each normal line downstream.	

Routine

Description

THRUST

This subroutine computes the vacuum thrust produced by a two-dimensional or axisymmetric nozzle. Addition of the thrust at the throat and the integrated pressure along the nozzle wall yields the final thrust.

3.5.17 Characteristic Routines

Routine	Description
BOUNDA	This subroutine finds the radial and axial coordinates as well as flow angle at the intersection of a straight line with a solid boundary.
CARCTR	This subroutine calculates velocity along either a I or II characteristic line with a known or assumed flow angle.
MOCSOL	This subroutine solves the characteristic equations for gas only flow in the region around and downstream of an expansion corner.
PHYSOL	This subroutine computes the intersection of physical characteristics with a "normal" data line.

3.5.18 Miscellaneous Routines

Routine	Description
CHECK	This subroutine determines whether or not to add or delete streamline points based on user input mesh controls.
DOTPRD	This function calculates the dot product of two vectors and returns the result to the calling routine.
INRSCT	This subroutine finds the intersection of two straight lines.
KIKOFF	This subroutine terminates the use if an error in the calculation is encountered.
MAXTIM	This subroutine is a Univac 1108 machine language routine that checks a user input time (seconds) against the remaining CPU time before run termination and returns to a specified label in the calling routine.

Routine

Description

SLDP

This subroutine finds the solutions to a set of N simultaneous linear equations.

VEMAG

This function determines the magnitude of a vector.

LOCKHEED MISSILES AND SPACE CO INC HUNTSVILLE AL HUN--ETC F/G 21/6.2 SUPERSONIC FLOW OF CHEMICALLY REACTING GAS-PARTICLE MIXTURES. V--ETC(U) JAN 76 M M PENNY, S D SMITH, P G ANDERSON NAS9-14517 LMSC-MREC-TR-D496555-2 NL AD-A094 633 UNCLASSIFIED 3 or 5 AD-A094638

3.6 DETAILED DISCUSSION OF THE INDIVIDUAL ROUTINES

This subsection contains a detailed description of each routine used in the program.

Described are:

- Function (if applicable) of each routine
- Calling sequence
- Common blocks and other routines used, and
- The method used in performing the routine functions

For your convenience, the routines are organized alphabetically.

NOTE: The following routines are not included in this section as they comprise the two-phase transonic solution of Kliegel which is incorporated in the RAMP code. A complete description of each of these routines is contained in Ref. 7.

ABCALC	JAM ES	PARTIL
CCALC	LEGS	PCALC
FCALC	NEWT	PROP
FIND11	ONED	TRACE
		wngi

FUNCTION NAME: ALGINT

DESCRIPTION

This routine does a log interpolation between two values of a variable.

CALLING SEQUENCE

= ALGINT (H, R1, R2)

where H is the interpolation factor and R1 and R2 are the values of the variables between which the interpolation is being made.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON - None

UTILITY - None

METHOD OF SOLUTION

A = ln (R1) + H * (ln (R2) - ln R1)

 $ALGINT = e^A$

FUNCTION NAME: AOASTR

DESCRIPTION

This function finds the Mach number corresponding to a given area ratio by one-dimensional theory. Real gas effects are considered in this calculation.

CALLING SEQUENCE

EM = AOASTR (OF, S, AOA, K1W1, K2W2)

where EM is the Mach number which exists, one-dimensionally, at an area ratio of AOA, an entropy S, and at an O/F ratio or total enthalpy, OF.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON-None

ERRORS

ITSUB

RGVOFM

THERMO

WOFA

METHOD OF SOLUTION

The weight flow per unit area at Mach one is evaluated. An initial guess for the desired Mach number is made and ITSUB is initialized. An iterative solution of the equation FOFEM = AOA - WOFAI/WOFA(EM), driving FOFEM to zero, is performed with the aid of ITSUB.

SUBROUTINE NAME: AVERAG

DESCRIPTION

This subroutine determines the appropriate flow regime based on Knudsen number for non-continuum flow and sets the appropriate gas total conditions.

CALLING SEQUENCE

CALL AVERAG(IS, J, N, K, ITYPE)

where IS is the base point streamline number on the J data surface, N is the streamline point on the K line for which the flow regime is to be determined and ITYPE is a flag which is returned to the calling routine to indicate the flow regime.

ITYPE	Flow Regime
1	Continuum
2	Vibrationally frozen
3	Rotationally frozen
4	Translationally frozen

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/TOTAL/	TOFV
COMMON/GSV/	RHOFEM
COMMON/GAPPA/	STGMOD
COMMON/GASCON/	
COMMON/CONTRL/	
COMMON/FREE/	
COMMON/FSTAG/	
COMMON/DATAR/	
COMMON/MOL/	
COMMON/TEMPER/	
THERMO	
EMOFV	

METHOD OF SOLUTION

The average Knudsen number between the old streamline base point is calculated via the following equation:

$$Kn = .788539 \, \overline{\gamma} \, (\overline{M}^2/\overline{R}_E) \, |\ln T_1 - \ln T_2| / dS$$

where the (-) properties are averaged between the old (1) and new (2) streamline points. The flow regime is determined by checking the calculated Knudsen number against the input Knudsen number criteria for vibrational, rotational or translational freezing. Once the flow regime has been determined the appropriate specific heat ratio (gamma) and total conditions are calculated.

SUBROUTINE NAME: BLKDAT

DESCRIPTION

This routine initializes the Kliegel (Ref. 7) and Crowe (Ref. 11) gasparticle drag coefficients which are used by the code.

CALLING SEQUENCE

None

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DRAGCF/
COMMON/DRUG/
UTILITY - None

METHOD OF SOLUTION

Not applicable

SUBROUTINE NAME: BOUND

DESCRIPTION

This subroutine finds the radial coordinate and flow angle (radians) for a given axial coordinate on an upper or lower solid boundary.

CALLING SEQUENCE

CALL BOUND (R, X, THETA, ITYPE, K1W1, K1W2)

where R is the radial coordinate, X is the known axial coordinate, THETA is the wall angle and ITYPE indicates whether upper or lower boundary equations are to be used.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/

COMMON/WAFT/

LAGRNG

METHOD OF SOLUTION

The common block region DATAR contains boundary equations or wall coordinates necessary to evaluate R and THETA. The two types of equations used are:

$$r = a \sqrt{b + cx + dx^{2} + e}$$
Conic Type 1
$$r = ax^{4} + bx^{3} + cx^{2} + dx + e$$
Polynomial Type 2

When the upper or lower boundary is described by discrete points (R, X, THETA) subroutine LAGRNG is called to interpolate for the R and THETA of the point. The input fixed point variable ITYPE has a one or a two in the units position which selects the upper (2) or lower (1) coefficients or points and control information. IEQNOW contains the number of the equation to be used.

SUBROUTINE NAME: BOUNDA

DESCRIPTION

This subroutine finds the radial and axial coordinates as well as flow angle at the intersection of a straight line with a solid boundary.

CALLING SEQUENCE

CALL BOUNDA (PL, PM, RB, XB, AB, ITYPE, K1W1, K1W2)

where

PL(8) is the storage array for the known boundary point

PM(8) is the storage array for the known field point where the straight line passes through

RB and XB are the radial and axial coordinates of the point of intersection

AB is the angle of the solid boundary at the point of intersection

ITYPE denotes the type of combination being considered

ITYPE	Type of Straight Line	Boundary
51	normal	lower
52	normal	upper
61	II-characteristic	lower
62	I-characteristic	upper
121	right-running shock wave	lower
122	left-running shock wave	upper

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/DATAR/

COMMON/TEMPOI/

BOUND

ERRORS

INRSCT

KIKOFF

CONTRL

TEMP01

METHOD OF SOLUTION

Intersection of the straight line from PM and the tangent from PL is found first with the aid of subroutine INRSCT. The radial coordinate and the flow angle on the boundary at this given axial coordinate of the intersection just found can be calculated from the solid boundary equation by using subroutine BOUND. Then, if the boundary is not a straight line, the newly found point on the boundary is used to repeat the same process until the exact intersection is found.

SUBROUTINE NAME: CARCTR

DESCRIPTION

This subroutine calculates velocity along either a I or II characteristic line with a known or assumed flow angle.

CALLING SEQUENCE

CALL CARCTR (LOORUP, P3I, K1W1, K1W2)

where

LOORUP = 1 for a I characteristic = 2 for a II characteristic P3I(8) is the storage array for the point under consideration

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTROL/

COMMON/CRITER/

COMMON/DATAR/

COMMON/GASCON/

COMMON/SLIPPT/

COMMON/PARTP2/

COMMON/GAPPA/

ROTERM

UOFV

PPATPT

THERMO

COEFEQ

METHOD OF SOLUTION

For the first pass of the solution the flow properties, except the flow angle, at the point under consideration are assumed to be identical to those of the upstream point on the same streamline. Equation (3.3) is then used to calculate the "updated" velocity. Other properties are calculated according to the new velocity. This routine is used in the iteration for a shock point solution.

SUBROUTINE NAME: CHECK

DESCRIPTION

This subroutine determines whether or not to add or delete streamline points based on user input mesh controls.

CALLING SEQUENCE

CALL CHECK (I, K, IS, J, IGO, ITOTK, ITOT J)

where (I, K) and (IS, J) are the two points the program is checking the mesh control constraints against. IGO = -1 for checking deletion and greater than zero for inserting points. ITOTK and ITOTJ are the total number of points on the J and K normals.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/ SPCTX

COMMON/GLOBAL/ PFP

COMMON/PARTPI/ IDMPFP

COMMON/PARTP2/ GAPPBI

COMMON/STEPC/

COMMON/CONTRL/

COMMON/GAPPA/

COMMON/FSTAG/

COMMON/DROP/

COMMON/CHEMCN/

METHOD OF SOLUTION

See Section 3.5.1 for a description of mesh control parameters.

SUBROUTINE NAME: CHEM

DESCRIPTION

This routine evaluates the chemical reaction-rate equations to determine the new chemical species concentrations.

CALLING SEQUENCE

CALL CHEM (DXX, RHO, U, T)

where DXX is the distance along the gas streamline from the base point to the new point

RHO = gas density

U = gas velocity

T = gas temperature

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CRITER/

COMMON/RUE/

COMMON/CONTRL/

COMMON/CHEMCN/

COMMON/GASDAT/

COMMON/CHEMXX/

COMMON/CHEMYY/

TKEY

RWU

SLDP

METHOD OF SOLUTION

The reaction rate equations for the various chemical reactions are solved simultaneously using an implicit finite differencing scheme.

SUBROUTINE NAME: COEFEQ

DESCRIPTION

This subroutine calculates the coefficients CI and ClJ for use in the gas-particle system compatibility equation along the gas Mach lines. CI is the gas total enthalpy term and ClJ is the particle contribution to the equation.

CALLING SEQUENCE

where M is equal to 1 for limiting streamlines, IPA is the base point number for the RRC, IPB is the base point number of the LRC and IPC is the new point number.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/SLIPPT/

COMMON/DATAR/

COMMON/GAPPA/

COMMON/ONTSPT/

COMMON/AVPROP/

COMMON/CONTRL/

COMMON/CHEMXX/

COMMON/CHEMCN/

UTILITY - None

METHOD OF SOLUTION

The following finite difference relations are used to solve for the coefficients:

$$CI_{1,2} = \frac{\cos \overline{\alpha}_{1,2}}{\sin \overline{\alpha}_{1,2} - \overline{q}_{1,2}^2}$$

and

$$C1J_{1,2} = \left\{ \sum_{j=1}^{NP} \overline{\rho}_{1,2}^{j} \overline{A}_{1,2}^{j} \left[\pm (\overline{v}_{1,2} - \overline{v}_{1,2}^{j}) \cos \overline{\beta}_{1,2} + (\overline{u}_{1,2} - \overline{u}_{1,2}^{j}) \sin \overline{\beta}_{1,2} + \overline{\frac{B}{q}_{1,2}} \overline{q}_{1,2}^{2} \sin \overline{q}_{1,2} \right] \right\} \frac{\Delta x_{1,2}}{\overline{\rho}_{1,2} \overline{q}_{1,2}^{2} \cos \overline{\beta}_{1,2}}$$

For a detailed description of the calculation procedure, see Volume I, Section 3.3.

SUBROUTINE NAME: COEFF3

DESCRIPTION

This subroutine calculates the new particle properties at the point under consideration, and the intersection of the particle streamlines through this point with the J-line.

CALLING SEQUENCE

CALL COEFF3 (KP, M, VERT, IH, KH, I8, K8, I9, K9, I7, K7, ITYPE, IPA, IPB, IPC, P3, PG)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/	COMMON/PSEC/
COMMON/DATAR/	COMMON/PSLD/
COMMON/TOTAL/	COMMON/XXSH/
COMMON/PARTP1/	COMMON/GASCON/
COMMON/GAPPA/	COMMON/CPMUK/
COMMON/ONTSPT/	COMMON/SLIPPT/
COMMON/POINTC/	IDMPFP
COMMON/PARSTU/	PFP
COMMON/CRITER/	INRSCT
	PPATPT
	GAPPBI

METHOD OF SOLUTION

For a detailed description of the calculation procedure, see Volume I, Section 6.1.

FUNCTION NAME: DELTAF

DESCRIPTION

This function computes the turning angle through an oblique shock wave knowing the shock angle and the upstream Mach number.

CALLING SEQUENCE

DELTA = DELTAF (EPS, EM, K1W1, K1W2)

where DELTA, the turning angle is found from the shock angle, EPS, and the upstream Mach number, EM. NOTE: The appropriate values of gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

UTILITY - None

METHOD OF SOLUTION

The oblique shock relationships are used to determine the turning angle through an oblique shock wave.

$$\delta = \epsilon - \tan^{-1} \left\{ \tan \epsilon \left(\frac{1}{M^2 \sin^2 \epsilon} + \frac{\gamma - 1}{2} \right) \left(\frac{2}{\gamma + 1} \right) \right\}$$

FUNCTION NAME: DOTPRD

DESCRIPTION

This function calculates the dot product of two vectors and returns the result to the calling routine.

CALLING SEQUENCE

= DOTPRD(V1, V2)

where V1 and V2 are any two vectors.

UTILITY ROUTINES AND COMMON REFERENCES

None

METHOD OF SOLUTION

Vector V1 is dotted into vector V2. The resultant is a scalar returned as DOTPRD.

FUNCTION NAME: DRAGCP

DESCRIPTION

This routine determines the drag coefficient F (${\rm C_D/C_D}_{\rm Stokes}$) as a function of Reynolds number.

CALLING SEQUENCE

= DRAGCP (RE)

where

RE is the particle Reynolds number.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DRAGCF/ UTILITY - None

METHOD OF SOLUTION

 $C_{
m D}/C_{
m D}_{
m Stokes}$ is tabulated as a function of particle Reynolds number and a linear interpolation is performed based on Reynolds number to obtain ${
m CD/CD}_{
m Stokes}$. This tabulation is that of Kliegel (Ref. 7).

FUNCTION NAME: DRAGMR

DESCRIPTION

This subroutine determines the local drag coefficient (${\rm C_D/C_D}_{\rm Stokes}$) as a function of particle Reynolds number and particle Mach number.

CALLING SEQUENCE

= DRAGMR (EM, RE)

where

EM is the particle Mach number RE is the particle Reynolds number.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DRUG/ ALGINT

METHOD OF SOLUTION

 $^{\rm C}_{\rm D}/^{\rm C}_{\rm D_{Stokes}}$ as presented by Crowe (Ref. II) is tabulated as a function of particle Reynolds number and Mach number. A logarithmic interpolation is performed based on RE and EM to obtain the appropriate value of $^{\rm C}_{\rm D}/^{\rm C}_{\rm D_{Stokes}}$.

SUBROUTINE NAME: DRIVER

DESCRIPTION

DRIVER provides the highest order control for program execution. The initialization and logic subroutines are called from here. Most of the common storage needed in the remainder of the program is specified here.

CALLING SEQUENCE

CALL DRIVER (K, K1W1, K1W2)

where K is a control constant indicating whether or not errors exist in the execution of the program. (K = 1 for a detected error, K = 0 for no errors.) K1W1 and K1W2 are flags which have various uses in the code.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/AUX/	COMMON/TPEH/
COMMON/CONTRL/	COMMON/WAFT/
COMMON/CRITER/	COMMON/NSF/
COMMON/DRAGCF/	COMMON/XSICOM/
COMMON/CUTFO/	COMMON/GAPPA/
COMMON/DATAR/	COMMON/DISCOM/
COMMON/XXSH/	COMMON/GRINT,
COMMON/FREE/	COMMON/TFLAG/
COMMON/FORCE/	COMMON/TEMPER/
COMMON/GASCON/	COMMON/ONTSPT/
COMMON/HEAD/	COMMON/WRITPT/
COMMON/SIGNAL/	COMMON/PSLD/
COMMON/INPUT/	COMMON/CPMUK/
COMMON/MASSC/	COMMON/MOL/
COMMON/STEPC/	COMMON/FAB/
COMMON/TAPRIT/	COMMON/WT/
COMMON/PARTPI/	INITP
COMMON/PARTP2/	PLUMIN
COMMON/GASDAT/	PHASE I

METHOD OF SOLUTION: Not applicable.

3-147

FUNCTION NAME: EMOFP

DESCRIPTION

This routine computes the local Mach number as a function of local pressure (static) and local entropy.

CALLING SEQUENCE

$$EM = EMOFP(P, S, K1W1, K1W2)$$

where EM is the resultant Mach number found from the pressure, P, and entropy, S. NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/TEMPER/

COMMON/GASCON/

UTILITY - None

METHOD OF SOLUTION

Thermally perfect gas relationships are used to find the Mach number.

$$M = \sqrt{\left[\frac{P_o e^{-S/R} (T_o/T_c)^{\gamma/\gamma-1}}{P}\right]^{\gamma-1/\gamma} - 1 \frac{2}{\gamma-1}}$$

FUNCTION NAME: EMOFV

DESCRIPTION

This routine finds Mach number as a function of local velocity.

CALLING SEQUENCE

$$EM = EMOFV (V, K1W1, K1W2)$$

where EM is the local Mach number found as a function of the local velocity, V. NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

TOFV

METHOD OF SOLUTION

Thermally perfect gas relationships are used to find the Mach number.

$$M = \sqrt{\left(\frac{T_o}{T} - I\right)\left(\frac{2}{\gamma - I}\right)}$$

FUNCTION NAME: ENTROP

DESCRIPTION

This routine utilizes the oblique shock relations to find the entropy rise across a shock as a function of the shock angle and the upstream Mach number.

CALLING SEQUENCE

$$SD = ENTROP (EPS, EMU, K1W1, K1W2)$$

where SD is the entropy rise across the shock and is a function of the shock angle, EPS, and the upstream Mach number, EMU. NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

UTILITY - None

METHOD OF SOLUTION

The oblique shock relations are employed to find the entropy rise across the shock.

$$ds = \frac{R}{\gamma - 1} \left\{ \ln \left[\frac{(2\gamma M^2 \sin^2 \epsilon - (\gamma - 1))}{\gamma + 1} \right] + \gamma \ln \left[\frac{\tan(\epsilon - \delta)}{\tan \epsilon} \right] \right\}$$

SUBROUTINE NAME: ERRORS

DESCRIPTION

ERRORS contains print messages for various errors which may occur. This is an open ended routine in that it can easily be extended to handle more print messages.

CALLING SEQUENCE

CALL ERRORS (I, K1W1, K1W2)

where I selects the message to be printed.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/ UTILITY - None

METHOD OF SOLUTION

Not applicable.

SUBROUTINE NAME: ESHOCK

DESCRIPTION

This subroutine employs an iterative solution to perform the equilibrium shock calculations for a real or ideal gas. The real and ideal gas calculations are similar, the difference being that an ideal gas case converges on the first iteration.

CALLING SEQUENCE

CALL ESHOCK (OF, S1, V1, EP, DELTA, S2, V2, K2W, K1W)

where the input properties are, OF, the upstream O/F ratio or total enthalpy, S1, V1, the upstream entropy and velocity and, EP, the shock angle. The subroutine returns with DELTA, the turning angle and S2, V2, the downstream entropy and velocity.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/GASCON/

EMOFV

THERMO

POFEM

DELTAF

ENTROP

RHOFEM

WEAK

METHOD OF SOLUTION

The continuity equation coupled with the equations for conservation of normal and tangential momentum are solved in an iterative manner utilizing thermochemical property data to satisfy the conservation of energy equation.

This set of four equations is expressed in terms of the four unknown quantities:

 ϵ = shock angle

 δ = turning angle

 S_2 = entropy downstream of shock

V₂ = velocity downstream of shock

3-152

SUBROUTINE NAME: EXPCOR

DESCRIPTION

EXPCOR calculates the flow properties of those field points near an expansion corner.

CALLING SEQUENCE

CALL EXPCOR (NPM, J, K, ITOTJ, ITOTK, IPNT, K2W, K1W)

where

NPM = number of Prandtl-Meyer expansion rays emanating from the expansion corner

J = known normal line upstream of the expansion corner

K = the normal line under consideration downstream of the expansion corner

ITOTJ = adjusted total number of points on the J-line, not including the Prandtl-Meyer expansion points NPM

ITOTK = number of points on K-line before the Prandtl-Meyer expansion points are added; returns to the calling routine with the total number of points on K-line including Prandtl-Meyer expansion points

IPNT indicates if an upper (=2) or lower (=1) boundary is being considered.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CHEMXX/	COMMON/FSTAG/
COMMON/GLOBAL/	COMMON/GAPPA/
COMMON/CONTRL/	INRSCT
COMMON/DATAR/	MOCSOL
COMMON/INPUT/	OUT
COMMON/STEPC/	SPCTX
COMMON/AUX/	PPATPT

METHOD OF SOLUTION

PRANDT). Calculation starts from one of the corner points which have zero turning angle and proceeds toward the point with an increasing turning angle. Subroutine MOCSOL is used to solve for the flow properties of the intersection of the characteristic lines from two known points. The properties of the intersection of the normal from the known point on the new line (K-line, normal to the streamlines), with the characteristic of the corresponding point at the corner, are then interpolated. This point is then used along with another point at the expansion corner to find another new point, and so forth. The last of the expansion corner points is used twice in the calculation to find two points on the new normal — one on the characteristic line, the other on the streamline.

A weak shock is then initialized at the point on this last characteristic line and a mesh point is inserted between this point and the point on the last expansion ray which is a streamline rather than a characteristic line.

For a detailed description of the calculation procedure, see Volume I, Section 6.9.

SUBROUTINE NAME: FABLE

DESCRIPTION

This subroutine utilizes real or ideal gas information obtained from a master tape or input cards to calculate properties locally in the flow. The maximum size of the array used by FABLE is limited to eight gas properties $(V, R, \gamma, T_o, P_o, \mu, Pr, C_p)$ at 13 velocity "cuts" for each of two entropy cuts and 10 O/F or total enthalpy cuts.

CALLING SEQUENCE

CALL TABLE (SS, VV, IF)

where SS is the local entropy, IF is the O/F or enthalpy table of interest and VV is the local velocity at the point of interest.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/XSICOM/	COMMON/GASDAT/
COMMON/CONTRL/	COMMON/MOL/
COMMON/GASCON/	COMMON/FILIT/
COMMON/FAB/	TOFV
COMMON/GRINT/	POFEM
COMMON/TEMPER/	EMOFV
COMMON/CPMUK/	XSI
COMMON/PARTEP/	TAB

METHOD OF SOLUTION

The routine is entered with an O/F or enthalpy table, IF, the local entropy, SS, and velocity, VV. A test is then made to determine if the gas is real or ideal. If the test indicates an ideal gas, the local properties are set to those stored in the TABB common array. If the test indicates real gas, a double interpolation scheme is utilized to locate gas properties between tabulated values of velocity and entropy. In the case of an entry beyond the range of the tables, an ideal gas extrapolation from the last table value is made to determine the gas properties.

FUNCTION NAME: FNEWTN

DESCRIPTION

This function solves for the Newtonian impact pressure along the plume boundary. The calculation is applicable for all free stream velocities including quiescent conditions (i.e., $M_{\infty} = 0$).

CALLING SEQUENCE

where P_{IM} is the hypersonic Newtonian impact pressure at the plume boundary, THETA3 is the local flow angle at the boundary, X is the axial coordinate of the boundary point, and ITYPE indicates if an upper (=2) or lower (=1) boundary is being considered.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/

UTILITY - None

METHOD OF SOLUTION

The common block region WALLCO contains the necessary information to evaluate the freestream gas properties at the plume boundary point. The impact pressure is then calculated using the following equation

$$P = P_{\infty} (1 + eX) \left[1 + \gamma_{\infty} M_{\infty}^{2} \sin^{2}(\theta_{B} - \theta_{\infty}) \right]$$

SUBROUTINE NAME: FREEMC

DESCRIPTION

This subroutine computes flowfield properties in the free molecular regime.

CALLING SEQUENCE

CALL FREEMC (II, JI, KI, ITOT, IOO, IOUT, IMOD)

where II is the point number for the first free molecular point on a normal, II is the old data surface, KI is the new data surface, ITOT is the total number of points on the line, IOO is the line number for which a complete line is to be printed, IOUT is the total number of lines to skip between complete printout and IMOD is the number of points to shift on the old data surface to locate each base point streamline.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/	COMMON/GLOBAL/
COMMON/DATAR/	BOUND
COMMON/PARTP1/	ITERM
COMMON/PARTP2/	INRSCT
COMMON/FREE/	WTFLOF
COMMON/GASCON/	IDMPFP
COMMON/FSTAG/	PFP
COMMON/CUTFO/	OUT
COMMON/STEPC/	OUTBIN
COMMON/CRITER/	

METHOD OF SOLUTION

Once it has been determined that a point is free molecular all successive calculations of the particular streamline point are made via FREEMC. The point properties are determined assuming that temperature, gas velocity, flow angle, gas constant and specific heat ratio (γ) are constant along a streamline. The gas density is determined from a source flow calculation (i.e., conservation of mass between streamlines).

$$\rho_2 = \frac{\rho_1 u_1 A_1}{u_2 A_2}$$

where subscript 1 is the old data surface properties and subscript 2 is the new data surface properties. The pressure at the new point is then determined from the equation of state.

SUBROUTINE NAME: GAPPBI

DESCRIPTION

This subroutine interpolates for the gas and particle properties between two known data points.

CALLING SEQUENCE

CALL GAPPBI (18, JU, 19, KU, JB, M, ISKIPG, PG, FACTOR, M1)

where I8 is the base point number, JU is the base point line number, I9 is the second point number, KU is the second point line number, JP is the temporary location in the IPFP array to store the interpolated data, M is the number of particles present, ISKIPG is a flag used to determine what arrays to use to do the interpolation, PG is the array in which the interpolated point properties are stored, FACTOR is the interpolation factor, and M1 = 0 gas only, M1 = 1 particles present.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/TFLAG/	COMMON/DRAGCF/
COMMON/DATAR/	COMMON/PCTC/
COMMON/PARTPI/	COMMON/VISEX/
COMMON/PARTP2/	ALGINT
COMMON/GAPPA/	PFP
COMMON/GASCON/	THERMO
COMMON/POINTC/	UOFV
COMMON/CPMUK/	TOFV
COMMON/CONTRL/	EMOFV
COMMON/FSTAG/	POFEM
COMMON/TEMPER/	TEMTAB
COMMON/CRITER/	DRAGMR
COMMON/PSLD/	DRAGCP
COMMON/XXSH/	

METHOD OF SOLUTION

The routine performs a linear interpolation between the properties of two known points and stores the results in temporary arrays which are used in other parts of the program during the calculation. ISKIPG is a flag which tells GAPPBI which arrays to use for the interpolation and whether or not to interpolate on particle properties.

SUBROUTINE NAME: GASRD

DESCRIPTION

This subroutine reads in the gas properties. These properties may be real or ideal and read in via cards or tape. The routine also converts input gas properties from MKS units to English (ENG) units if necessary.

CALLING SEQUENCE

CALL GASRD (IPAR)

where IPAR is a 1 for two-phase flow and a zero for gas-only flow.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/XSICOM/

COMMON/CONTRL/

COMMON/INTCR/

COMMON/GASCON/

COMMON/GASDAT/

COMMON/MOL/

COMMON/FSTAG/

XSI

GASTAP

IDMXSI

IDTAPE

IDMTAB

TAB

METHOD OF SOLUTION

The gas name, ALPHA(I), type units, number of O/F tables and number of entropy cuts are read in from an input card. If the gas properties are on cards, this subroutine reads the cards. If the gas properties are on tape, control of the reading of properties is given to GASTAP. In either case, the properties are converted from MKS to English (ENG) units by this subroutine if necessary.

SUBROUTINE NAME: GASTAP

DESCRIPTION

GASTAP reads the real gas properties from the thermochemical data tape generated by the modified TRAN72 computer program and writes this same data on a flowfield tape for communication with other programs.

CALLING SEQUENCE

CALL GASTAP

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASDAT/ COMMON/XXSH/
COMMON/CONTRL/ COMMON/BPRESW/
COMMON/DATAR/ COMMON/TAPRIT/
COMMON/HEAD/ COMMON/SIGMB/
COMMON/PARTP2/ IDMTAB
COMMON/CHEMCN/ ERRORS
COMMON/PCTC/ IMPUT

METHOD OF SOLUTION

The gas name, ALPHA(I), specified on the input data is compared with available cases on the TRAN72 thermochemical data tape until a match is found. This particular case is then read, stored in core, arranged in a form such that automatic transmission of data to other programs is possible, and then written on the RAMP flowfield tape.

SUBROUTINE NAME: HYPER

DESCRIPTION

This subroutine calculates the balanced pressure at a corner point (i.e., at the intersection of a solid boundary and the pressure boundary). The pressure balance is determined for either the overexpanded or underexpanded case with impact or ambient freestream pressure.

CALLING SEQUENCE

CALL HYPER (PB, I, K, ITYPE1, K1W1, K1W2)

where PB is the boundary pressure, I, K locates the boundary point, and ITYPE1 indicates if an upper (=2) or lower (=1) boundary is being considered.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/	FNEWTN
COMMON/DATAR/	OVEREX
COMMON/PCTC/	ITSUB
COMMON/FSTAG/	THETPM
THERMO	TOFH
POFEM	ERRORS
EMOFV	

METHOD OF SOLUTION

The boundary pressure (may be impact or ambient) is compared to the static pressure at the corner point. Depending on whether the comparison indicates the flow is overexpanded or underexpanded, a branch is made to OVEREX or THETPM. In either of these routines an iterative process balances the boundary pressure with the flowfield pressure at the boundary.

FUNCTION NAME: IDMPFP

DESCRIPTION

This function computes the particle storage location within the PFPARY array.

CALLING SEQUENCE

= IDMPFP (I, J, K, L)

where I, J, K, L are indices used to determine the storage location.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/PARTPI/

COMMON/PARTP2/

COMMON/PARTP3/

RWU

METHOD OF SOLUTION

The particle storage location is computed using the following relation

IDMPFP = I + 5 * (J-1 + 10 * (K-1 + 100 * (L-1)))

FUNCTION NAME: IDMTAB

DESCRIPTION

This function computes the gas property storage location within the $TABB\ array.$

CALLING SEQUENCE

= IDMTAB (!, J, K, L)

where I, J, K, L are indices used to determine the storage location.

UTILITY ROUTINES AND COMMON REFERENCES

None

METHOD OF SOLUTION

The gas property storage location, is computed using the following relation

IDMTAB = I + 10 * (J-1 + 2 * (K-1 + 13 * (L-1)))

FUNCTION NAME: IDMXSI

DESCRIPTION

This function computes the gas interpolation parameter storage location within the XSIDIM array.

CALLING SEQUENCE

= IDMXSI (I, J, K, L)

where I, J, K, L are indices used to determine the storage location.

UTILITY ROUTINES AND COMMON REFERENCES

None

METHOD OF SOLUTION

The gas interpolation parameter storage location is computed using the following relation

IDMXSI = I + 10 * (J-1 + 2 * (K-1 + 13 * (L-1)))

SUBROUTINE NAME: IDTAPE

DESCRIPTION

This subroutine writes the gas properties which were input via cards on the flowfield program tape. The format used to write them on tape is compatible with that used for a real gas.

CALLING SEQUENCE

CALL IDTAPE (UNITS, K1W1, K1W2)

where UNITS indicates whether the gas properties are being read in with English (ENG) or MKS units.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/XXSH/	COMMON/BPRESW/
COMMON/TAPRIT/	COMMON/PARTP2/
COMMON/CONTRL/	COMMON/GASDAT/
COMMON/HEAD/	TAB

METHOD OF SOLUTION

Gas property data are read in from cards. If not already in MKS units, the data are converted. These converted data are then written on the flow-field tape.

SUBROUTINE NAME: IMPUT

DESCRIPTION

This routine reads the input cards or tape for the chemistry package. The reaction rate equations, rate constants, and startline species concentrations are read in and the appropriate conversions, if any, are performed. Tables of enthalpy, entropy, and specific heats for each species are also input.

CALLING SEQUENCE

CALL IMPUT (IDATA)

where IDATA specifies the proper index of the array being input from a CEC data tape from which species concentrations are being extracted.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/CHEMCN/

COMMON/DATAR/

COMMON/GASDAT/

COMMON/CHEMXX/

COMMON/CPMUK/

COMMON/VISEX/

COMMON/PCTC/

COMMON/GASCON/

COMMON/VARSL/

SPCTX

METHOD OF SOLUTION

The routine reads species thermodynamic data and constructs a Gibbs free energy array to replace the entropy array. The reaction rate constant data, reactions, and third body data are input and stored. Finally the start-line species concentrations are input via cards or tape and converted to mole/mass ratios.

SUBROUTINE NAME: INITP

DESCRIPTION

This subroutine initializes the values of various control parameters, thereby providing for proper operation of the program. These initial values include:

- 1. The counter for the upper and lower boundary equations,
- 2. The counter for the first characteristic line,
- 3. The initial number of degrees per Prandtl-Meyer ray,
- 4. Convergence criteria, and
- 5. Maximum number of iterations.

CALLING SEQUENCE

CALL INITP (K1W1, K1W2)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/CRITER/

COMMON/DATAR/

COMMON/DISCOM/

COMMON/HEAD/

COMMON/STEPC/

UTILITY - None

METHOD OF SOLUTION

Not applicable.

SUBROUTINE NAME: INRSCT

DESCRIPTION

INRSCT finds the intersection of two straight lines.

CALLING SEQUENCE

CALL INRSCT (T1, T2, T3, T4, T5, T6, R3, X3, K1W1, K1W2)

where T1, T2, T3 and T4, T5, T6 define the equations of the two straight lines which intersect at R3, X3.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON - None

ERRORS

METHOD OF SOLUTION

The equations of the straight lines are written

$$r = tanT3 (x - T2) + T1$$

and

$$x = \cot T6 (r - T4) + T5$$

These equations are solved for x, but a test on the slopes is made to prevent indeterminate forms. If an indeterminate form is possible, the points are mapped one onto another, thus precluding the possibility of indeterminancy except when the lines are parallel.

SUBROUTINE NAME: INTEGR

DESCRIPTION

This subroutine calculates the incremental force and energy between two adjacent points in the flow field.

CALLING SEQUENCE

CALL INTEGR (DELX, DELY, THTBR, R, DA, V, RHO, P, X, I, K, FXP, FYP, TRP, FXG, FYG, TRG, AXO2D, ENU, EG, EP, EM, DW)

where

DELX = difference in axial position between the two points

DELY = difference in radial position between the two points

THTBR = average flow angle of the two points

R = average radial position of the two points

DA = absolute distance between the two points

V = average gas velocity of the two points

RHO = average gas density of the two points

P = average gas pressure of the two points

X = average axial position of the two points

I = point number of the base point

K = line number of the base point

FXP = incremental force in axial direction due to the particle momentum

FYP = incremental force in radial direction due to the particle momentum

TRP = incremental torque due to particle momentum

FXG = incremental force in axial direction due to gas

FYG = incremental force in radial direction due to gas

TRG = incremental torque due to gas axial and radial forces

AXO2D = geometric term for axisymmetric or 2-D flow

ENU = angle the line connecting the two points has referenced to horizontal

EG = incremental gas energy

EP = incremental particle energy

EM = sum of incremental particle and gas energy (i.e., mixture)

DW = incremental gas mass flow between the two points.

UTILITY ROUTINES AND COMMON REFERENCE

COMMON/CONTRL/

COMMON/PARTPI/

COMMON/PARTP2/

COMMON/DATAR/

COMMON/FSTAG/

COMMON/INTCR/

PFP

VEMAG

METHOD OF SOLUTION

This subroutine calculates the mass flow, energy, momentum and thrust produced by the particles and gas contained in each streamtube bounded by two streamline points on a normal. The resulting values are integrated along each normal and compared to the initial data surface to determine how well the solution is conserving the conservation equations.

FUNCTION NAME: ITERM

DESCRIPTION

ITERM tests each normal lower wall point to determine if it is within the predefined problem limits. If the point falls outside the limits, the case is terminated.

CALLING SEQUENCE

FUNCTION = ITERM (IP, K, K1W1, K1W2)

where IP identifies the characteristic point on the new K line.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CUTFO/ COMMON/DATAR/ UTILITY - None

METHOD OF SOLUTION

The angular orientation of a line drawn from the upper or lower cutoff coordinates to the characteristic point is determined. Comparing this angle to the angle of the upper or lower cutoff line determines if the point is inside or outside the problem limits.

SUBROUTINE NAME: ITSUB

DESCRIPTION

This subroutine controls the iterative solution of any set of equations which can ultimately be expressed as a function of one variable; it can also be used to control an integration loop.

CALLING SEQUENCE

CALL ITSUB (FOFY, Y, SAVE, CONV, NTIMES, K1W1, K1W2) where

FOFY is the function of Y which is driven to zero

Y is the variable which is iteratively solved for

SAVE is the program control array, i.e., SAVE(1) is a control counter, SAVE(2) is the Y increment

CONV is the convergence criteria for FOFY

NTIMES = maximum number of iterations to be performed

UTILITY ROUTINES AND COMMON REFERENCES

None

METHOD OF SOLUTION

ITSUB modifies Y in the proper direction by the increment value SAVE(2) until the root has been bracketed. The method of false position is then used to modify Y until the solution is reached. Immediately after entering ITSUB each time, the function is inspected for convergence. If the function has converged, a program control is set, and computer control is transferred to the calling routine.

SUBROUTINE NAME: KIKOFF

DESCRIPTION

This subroutine terminates the use if an error in the calculation is encountered.

CALLING SEQUENCE

CALL KIKOFF (K1W1, K2W2)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/ UTILITY - None

METHOD OF SOLUTION

Not applicable.

SUBROUTINE NAME: LAGRNG

DESCRIPTION

This subroutine determines the radial location and flow angle for solid boundaries which are input as tables of R, X and flow angle.

CALLING SEQUENCE

CALL LAGRNG (IER, ID, ARG, R, THETA, ITYPE)

where

IER is an error flag, ID is a table location,

ARG is the axial value for which the radial coordinate, R, of the wall and flow angle, THETA, at the wall are desired.

ITYPE indicates if an upper (= 2) or lower (= 1) boundary is being considered.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/

COMMON/CONTRL/

COMMON/WAFT/

UTILITY - None

METHOD OF SOLUTION

The routine uses the Lagrange interpolation formula to solve for R and flow angle as a function of axial position, X, from a set of tabular points describing a solid boundary. The routine uses the three closest points to the desired X to solve the interpolation formula. In the vicinity of large nonlinear variations in R and flow angle the points should be placed close together.

SUBROUTINE NAME: LIMITS

DESCRIPTION

This subroutine tests the new boundary point to determine if it is within the limits of the current boundary equation. Depending on the test, the options are:

- 1. use the current boundary equation,
- 2. advance to the next boundary equation, or
- 3. the current equation is the last one specified.

CALLING SEQUENCE

CALL LIMITS (I, K, ITYPE, IOK, K1W1, K1W2)

where I, K represents the location of the boundary point in the PHO array, ITYPE indicates if an upper or lower boundary is being considered, and IOK is a control indicating if option 1, 2 or 3 is to be used.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/DATAR/

BOUND

METHOD OF SOLUTION

The radius, RMAX, and boundary angle, THETAMAX, at the limiting axial value XMAX is calculated in BOUND. RMAX or XMAX is compared to R or X for the point in question. The results of the comparison determine which of options 1, 2 or 3 is to be used.

SUBROUTINE NAME: LIPIN

DESCRIPTION

LIPIN calculates information for the starting line points when the simplified straight start line option is used (i.e., when ICON(2) \neq 2).

CALLING SEQUENCE

CALL LIPIN (COOR, S, INTOT, DELM, K1W1, K1W2)

where COOR is the starting line information array, S is the entropy level of the start line, INTOT is the total number of input points specified (50 Max), DELM is Mach number gradient along the startline, and K1W1 is a flag which determines the type of startline point distribution.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/INPUT/

COMMON/CONTRL/

COMMON/PCTC/

COMMON/FSTAG/

COMMON/GASCON/

RGVOFM

UOFV

THERMO

METHOD OF SOLUTION

The startline input data are divided into the specified number of increments. Radial gradients in Mach number, X and 0, are calculated.

KlWl = 0 The startline points are concentrated near the upper boundary

KIWI = 1 The startline points are evenly spaced

KIW1 = 2 The startline points are evenly spaced on a source line

SUBROUTINE NAME: MASCON

DESCRIPTION

MASCON calculates the Mach number distribution at an area downstream of the throat such that total mass flow is conserved. Mass flow, calculated at the throat, is used as the constant for comparison.

CALLING SEQUENCE

CALL MASCON (E, SE, DELM, KIWI, KIW2)

where E is the input line array CORLIP, SE is the input line entropy level, and DELM is the Mach number gradient along the startline.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

RGVOFM

ERRORS

EMOFV

ITSUB

RHOFEM

METHOD OF SOLUTION

The mass flow rate at the throat, \dot{m}^* , is calculated. This \dot{m}^* is compared to that at the input line location for an initial Mach number distribution. The Mach number distribution is then perturbed until mass flow is conserved.

SUBROUTINE NAME: MASSCK

DESCRIPTION

This subroutine keeps a running check on the mass flow. Mass flow at the starting line is calculated and compared with that crossing each normal line downstream.

CALLING SEQUENCE

CALL MASSCK (ILAST, ISTART, K, K1W1, K1W2)

where ILAST is the last point on the normal line, ISTART is a number of the first point on the normal and K represents the normal line under consideration.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/	COMMON/FORCE/
COMMON/MASSC/	COMMON/WT/
COMMON/INPUT/	COMMON/PARTP1/
COMMON/PSLD/	COMMON/PARTP2/
COMMON/CONTRL/	COMMON/INTCR/
COMMON/NSF/	COMMON/FSTAG/
COMMON/STEPC/	INTEGR
COMMON/SIGNAL/	PFP

METHOD OF SOLUTION

The mass flow through the startline is calculated and stored. Mass flow through lines downstream is calculated and these values compared with the initial value. A percent change in mass flow is printed for each normal line. The total mass flow passing under each point on a characteristic line is stored so the mass flow can be written on the output tape to permit streamline tracing.

SUBROUTINE NAME: MAXTIM

DESCRIPTION

This subroutine is a Univac 1108 machine language routine that checks a user input time (seconds) against the remaining CPU time before run termination and returns to a specified label in the calling routine.

CALLING SEQUENCE

CALL MAXTIM (\$LABEL, TIME)

where

LABEL = the statement number in the calling routine where execution is sent if TIME is greater than the remaining CPU time for the run.

TIME = time in seconds before CPU maximum time when the run is to be terminated normally.

UTILITY ROUTINES AND COMMON BLOCKS

None

METHOD OF SOLUTION

TIME is checked against the remaining CPU time for the particular run. If the remaining CPU time is less than TIME then control of program execution is returned to statement LABEL in the calling routine.

SUBROUTINE NAME: MOCSOL

DESCRIPTION

This subroutine solves the characteristic equations for gas only flow in the region around and downstream of an expansion corner.

CALLING SEQUENCE

CALL MOCSOL (IN, KN, IN1, KN1, IN2, KN2, IFLAG, ITYPE, K1W1, K1W2 where IN, KN identifies the storage location for the new point to be computed, IN1, KN1 identifies the right running known point, and IN2, KN2 identifies the left running known point. IFLAG is an error indicator and ITYPE selects the type calculation.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/PARTP1/	COEFF3
COMMON/PARTP2/	INRSCT
COMMON/GAPPA/	POFEM
COMMON/ONTSPT/	COEFEQ
COMMON/AVPROP/	PPATPT
COMMON/SLIPPT/	PFP
COMMON/GLOBAL/	IDMPFP
COMMON/FSTAG/	BOUND
COMMON/FREE/	ROTERM
COMMON/STEPC/	VOFEM
COMMON/CPMUK/	RGMOFP
COMMON/PCTC/	FNEWTN
COMMON/CONTRL/	TOFH
COMMON/CRITER/	UOFV
COMMON/DATAR/	NEWENT
COMMON/GASCON/	ERRORS
	SPCTX

METHOD OF SOLUTION

The four characteristic equations are written as a function of five variables, R, X, 0, V and S. An additional relationship is obtained by assuming the entropy, S, varies linearly between known data points. Using these characteristic equations in finite difference form, the routine solves for a new mesh point, knowing two mesh points of an opposite family.

The solution is begun by setting the average values of properties over the step length equal to the known values at the base points. Subsequent passes in the iterative solution result in "updated" average values. The iterative solution is continued until the desired convergence on velocity or flow angle is reached or until the maximum number of iterations is exceeded.

MOSCOL is utilized by subroutine EXPCOR to solve the normal line immediately downstream of any expansion corner.

SUBROUTINE NAME: NEWENT

DESCRIPTION

This subroutine calculates the change in entropy and gas total enthalpy along a gas streamline for gas particle flows.

CALLING SEQUENCE

CALL NEWENT (NP, IT1, IT2, S3, H3, K, PB)

where

NP = number of particles present on streamline

IT1 = 1 for interior point

2 for wall point

IT2 = 1 for interior or lower wall point

= 2 for upper wall point

S3 = entropy at new point

H3 = total enthalpy at new point

K = 5 gas only streamline

7 gas and particles present on streamline

PB = array containing streamline base point properties (upstream)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/CHEMXX/

COMMON/CHEMXY/

COMMON/CHEMCN/

COMMON/AVPROP/

COMMON/VISEX/

COMMON/GAPPA/

COMMON VISE

COMMON/SLIPPT/

CHEM

METHOD OF SOLUTION

The compatibility relations for gas total enthalpy and entropy (Eqs. (3.2), and (3.1) of Table 3-1) are solved at the new streamline point knowing the gas and particle properties at the new and base streamline points. For gas only flows (and streamlines not crossing a shock) the gas total enthalpy and entropy are held constant along a given streamline.

SUBROUTINE NAME: NORSCK

DESCRIPTION

This routine uses local flow properties to calculate properties downstream of a normal shock to obtain pitot pressure. This routine is used only for finite rate chemistry, real gas cases.

CALLING SEQUENCE

CALL NORSCK (VI, PI, EMI, TI, GMI, RI, HI, POSTR)

where

VI, PI, ..., HI are the local values of velocity, pressure, Mach number, temperature, gamma, gas constant and enthalpy
POSTR is the pitot pressure.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/ COMMON/PCTC/ TOFENH ITSUB

METHOD OF SOLUTION

The downstream conditions are first estimated using ideal gas relations. The routine then performs an iteration as follows:

- 1. Calculate downstream static enthalpy from energy equation.
- 2. Iterate in subroutine TOFENH for temperature, gamma and gas constant.
- 3. Calculate downstream pressure from continuity and equation of state.
- 4. Check to see if resultant pressure satisfies the Rayleigh line equation. If not, increment the downstream velocity and repeat steps 1 through 4.
- 5. When the iteration is complete, the pitot pressure is determined from the downstream conditions.

SUBROUTINE NAME: OUT

DESCRIPTION

OUT writes the calculated data for data points along with the corresponding title and headings.

CALLING SEQUENCE

CALL OUT (11, 12, K, K1W1, K1W2)

where I1, I2 refer to the point numbers of the points to be output (any number of points may be output at one time. K represents the current normal line (takes on the value 1 or 2).

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/	COMMON/CHEMCN/
COMMON/DATAR/	COMMON/CHEMXX/
COMMON/GASCON/	COMMON/GASDAT/
COMMON/HEAD/	POFEM
COMMON/PARTP1/	PAGE
COMMON/PARTP2/	PFP
COMMON/GAPPA/	THERMO
COMMON/WRITPT/	PPATPT
COMMON/TEMPER/	NORSCK
COMMON/FSTAG/	VEMAG
COMMON/CRITER/	SPCTX
COMMON/TOTAL/	ESHOCK

METHOD OF SOLUTION

Not applicable.

SUBROUTINE NAME: OUTBIN

DESCRIPTION

This subroutine writes the calculated normal data on the binary output tape. This is done for any number of data points.

CALLING SEQUENCE

CALL OUTBIN (I1, I2, JK, K1W1, K1W2)

where I1, I2 identifies the range of points to be written on tape (I1 is first point, I2 is last). JK represents the current characteristic line (1 or 2).

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/TAPRIT/

COMMON/DATAR/

COMMON/FORCE/

COMMON/GAPPA/

COMMON/PARTPI/

COMMON/PARTP2/

COMMON/CONTRL/

COMMON/GLOBAL/

COMMON/AUX/

MAXTIM

PFP

TEMTAB

METHOD OF SOLUTION

Not applicable.

SUBROUTINE NAME: OVEREX

DESCRIPTION

OVEREX solves for the shock angle at the nozzle lip when the flow is over expanded. Provisions are made to calculate the shock angle for an upper or lower lip point. Real gas effects are considered in calculating flow properties downstream of the shock.

CALLING SEQUENCE

CALL OVEREX (PB,I,K,ITYPE1,K1W1,K1W2)

where PB is the freestream pressure at the boundary; I, K defines the location of the lip point in the characteristic data (PHO) array and ITYPE1 indicates whether an upper (=2) or lower (=1) boundary is to be considered.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/

COMMON/PARTPI/

COMMON/PARTP2/

EMOFV

ESHOCK

THERMO

POFEM

ITSUB

PFP

UOFV

IDMPFP

ERRORS

METHOD OF SOLUTION

For the first pass through the solution, an initial shock angle is assumed. This shock angle is perturbed in ITSUB and the result used to calculate flow properties including static pressure downstream of the shock. The calculated static pressure is compared with the boundary pressure to determine if the desired convergence has been obtained. If the solution has not converged ITSUB is called again and the above procedure is repeated.

SUBROUTINE NAME: PAGE

DESCRIPTION

This subroutine page ejects and writes the header comments and page number on each page of printout.

CALLING SEQUENCE

CALL PAGE (LCNT, K1W1, K1W2)

where LCNT is a counter which monitors the number of lines of printed output per page. LCNT is reinitialized in PAGE.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/HEAD/
COMMON/CONTRL/
UTILITY - None

METHOD OF SOLUTION

When the maximum number of lines per page (55) have been output, PAGE is called to page eject. It then prints the identifying information and the page number, increments the page number and reinitializes the line counter.

SUBROUTINE NAME: PARTIN

DESCRIPTION

This subroutine reads in gas and particle property startline data. Data is read in from cards or tape.

CALLING SEQUENCE

CALL PARTIN (NSETS, NTAPE)

where

NSETS is the number of startline points where particles are present

NTAPE is the FORTRAN unit to read the startline data from (=7 for cards)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/PARTPI/	COMMON/PCTC/
COMMON/PARTP2/	COMMON/GASDAT/
COMMON/INPUT/	COMMON/VISEX/
COMMON/CONTRL/	COMMON/FSTAG/
COMMON/MASSC/	RGVOFM
COMMON/WT/	UOF EM
COMMON/PSLD/	TOFEM
COMMON/ONTSPT/	POFEM
COMMON/GASCON/	SPCTX
COMMON/TEMPER/	THERMO
COMMON/NSF/	IDMPFP
COMMON/LIPCOM/	PFP

METHOD OF SOLUTION

The gas startline points are read starting with the axis point and input up to the boundary, while the particle startline data is input starting with the last limiting streamline or last gas startline point and input down to the axis.

SUBROUTINE NAME: PARTPH

DESCRIPTION

This subroutine reads and sets up the data table of particle temperature versus enthalpy. This routine also prints out the particle drag tables as well as the temperature versus enthalpy tables.

CALLING SEQUENCE

CALL PARTPH (IPFTOC, LCT, NGS)

where

IPFTOC = zero for two phase case

= 10000 for gas only case

LCT = line counter for printout purposes

NGS is a dummy variable

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASTPE/

COMMON/CONTRL/

COMMON/TPEH/

COMMON/GASDAT/

COMMON/DRAGCF/

COMMON/PARTP2/

COMMON/DATAR/

COMMON/TFLAG/

PAGE

METHOD OF SOLUTION

Not applicable.

FUNCTION NAME: PFP

DESCRIPTION

This function computes the particle property data storage location and retrieves data from the PFPARY array.

CALLING SEQUENCE

$$= PFP(I, J, K, L)$$

where

I, J, K, L are indices used to determine the storage location.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/PARTP1/

COMMON/PARTP2/

COMMON/PARTP3/

RWU

METHOD OF SOLUTION

The particle property data storage location is computed using the following relation

$$IX = I + 5 * (J-1 + 10 * (K-1 + 100 * (L-1)))$$

and retrieved using the relation

PFP = PFPARY(IX).

SUBROUTINE NAME: PHASE!

DESCRIPTION

This subroutine provides the necessary controlling logic for the complete flowfield calculation. Proper subroutines are called to handle different kinds of calculation.

CALLING SEQUENCE

Call PHASE1 (IFINIS, K2W1, K2W2)

where IFINIS is set to zero.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/	OUTBIN
COMMON/DROP/	SPCTX
COMMON/GASCON/	PPATPT
COMMON/NSF/	LIMITS
COMMON/DATAR/	BOUND
COMMON/GAPPA/	BOUNDA
COMMON/INPUT/	PRANDT
COMMON/GLOBAL/	UOFV
COMMON/STEPC/	ITERM
COMMON/PARTPI/	TURN
COMMON/TEMPO1/	HYPER
COMMON/TEMPO2/	POFEM
COMMON/TOTAL/	EMOF V
COMMON/OVERLA/	RGMOFP
COMMON/CRITER/	VOFEM
COMMON/INTEU/	THETPM
COMMON/PSEC/	TOFEM
COMMON/TEMPO3/	SOKSOL
COMMON/FREE/	STRNOR
COMMON/XXSH/	ERRORS
COMMON/BPRESW/	MAXTIM
COMMON/PCTC/	MASSCK
COMMON/CHEMXX/	CHE C K
COMMON/VISEX/	PFP
COMMON/EXPER/	IDMPFP
COMMON/GASDAT/	INRSCT
COMMON/FSTAG/	SOKINT
OUT	FREEMC
THRUST	THERMO
	PRFRBD
	EXPCOR

METHOD OF SOLUTION

This subroutine makes most of the tests to determine what kind of calculation should be carried out for the point under consideration. The point may be a regular field point, solid or free boundary point, left- or right-running shock points, incident shock points or reflected shock points on the solid boundary, attached shock points on the solid boundary, shock wave intersection points (opposite family), slipline points, incident shock points and expansion corner points at the free boundary, expansion corner points at solid boundary, etc.

SUBROUTINE NAME: PHYSOL

DESCRIPTION

This subroutine finds the reference properties on the characteristic line so that the compatibility equations can be used to calculate the flow velocity and angle of a point downstream of the known reference normal line (or surface).

CALLING SEQUENCE

CALL PHYSOL (PRET, IS, JS, IN, KN, IDIR, IFLAG, K1W1, K1W2, PIS, PIN, PM, PM1, IPM, IPM1, KPM, JAG, P, ARGN, ISLIP, KSLIP, IFIX, I141, IQUAD, H, SAVE. DP)

where

PRET(8)	is the storage array of reference properties found
(IS, JS)	is the point on the reference normal line (J-line), normally on the same streamline as the one under consideration
(IN, KN)	is a known point just below the point under consideration on the new normal line (K-line)
IDIR	<pre>indicates if a I-characteristic (=+1) or a II-characteristic (=-1) is being considered</pre>
IF LAG	is a control indicator to return the proper message to the calling subroutine in order that a proper measure can be taken
PIS(8)	array containing the flow properties of the streamline base point
PIN(8)	array containing the new flow properties of the stream-line point
PM(8)	array containing the flow properties of point IPM which brackets the characteristic intersection
PMI(8)	array containing the flow properties of point IPM1 which brackets the characteristic intersection
IPM, IPM I	the point numbers of the two adjacent points on the old data surface which brackets the characteristic intersection

KPM if the characteristic line intersects a boundary, shock or slipline KPM is the point number on the new data surface which bounds the intersection JAG the point immediately above or below the streamline base point. This point is used to detect the presence of a slipline. P(8) array in which the characteristic intersection flow properties are stored ARGN the angle of the normal **ISLIP** flag which indicates if not enough data is known to obtain the characteristic intersection if KSLIP is a 1 the characteristic has intersected a KSLIP slipline IFIX index used within PHYSOL which indicates if the two points which bracket the characteristic intersection have been found I141 flag which indicates if the characteristic intersection is below the first point or above the last point on the old data surface **IQUAD** 1 - interpolation is being made on R 2 - interpolation is being made on X Н interpolation factor between point IPM and IPM1 necessary to obtain the characteristic intersection array which is used to retain data from previous SAVE(8) intersections DP(8) array which contains the flow property differences between points IPM and IPM1.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/POINTC/ COMMON/GASCON/ COMMON/TEMPER/ COMMON/FSTAG/ COMMON/CHEMXX/ COMMON/CONTRL/ COMMON/DATAR/ COMMON/SLIPPT/ COMMON/TEMPO2/ COMMON/PARTP1/	COMMON/PARTP2/COMMON/GAPPA/COMMON/DROP/COMMON/CRITER/BOUNDTHERMOINRSCTITSUBPFPUOFV
COMMON/PARTPI/	GAPPBI
	PPATPT

METHOD OF SOLUTION

The characteristic line is drawn from the point under consideration to intersect the known upstream reference normal line. The reference properties of this intersection are interpolated from the two known points on the reference normal line. Subroutine ITSUB and the average quantities are used to obtain a better approximation of the reference properties.

If the reference properties are not readily available, IFLAG is set to 2, and the reference properties are then assumed to enable the calculation to be continued. Normally, the calculation of this point is repeated afterward to obtain the correct reference properties for the calculation of the new point under consideration.

SUBROUTINE NAME: PHYZOL

DESCRIPTION

This subroutine handles the downstream shock points and wall point near the corner of a reflected or an attached shock wave.

CALLING SEQUENCE

CALL PHYZOL (P5I, P6I, P4I, KANT, IS, JS, IN, KN, ANGLE, IFLAG, ITYPE, K1W1, K1W2)

where

uei	C	
	P5I (8)	is the storage array of the shock downstream point near the corner where the shock reflected or attached
	P6I(8)	is the storage array of the shock downstream point at the point where shock reflected or attached
	P4I(8)	is the storage array of the intersection of the wall with the average normal drawn from point P5I
	KANT	 first time calculation iterative calculation
	(IS, JS)	denotes the storage location of point P6I
	(IN, KN)	denotes the storage location of the shock upstream point opposite of point P5I
	ANGLE	is the angle between the shock wave and the axial coordinate
	IFLAG	is a control indicator for sending in and out the proper information in order that corresponding measures can be taken
	ITYPE	indicates if a strong or weak shock is being considered and where the shock is reflected or attached
		strong shock 51 (lower wall) 52 (upper wall) weak shock 151 (lower wall) 152 (upper wall)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/	BOUNDA
COMMON/PHISOL/	CARCTR
COMMON/SLIPPT/	ERRORS
COMMON/TEMPO1/	INRSCT
COMMON/CONTRL/	THERMO
	UOFV

METHOD OF SOLUTION

The shock points at the wall (where the shock reflected or attached) are known. The shock upstream point slightly downstream of the shock attachment point is also calculated, though the results may not be the final ones. The oblique shock relations are used to calculate the downstream point P5I. Through this point an average normal line is drawn to intersect the wall (BOUNDA). The flow properties of this point P4I are initially assumed to be the same as those of point P6I. Point P4I is treated as a wall point. The velocity of point P5I is then recalculated with the shock downstream properties; this newly calculated velocity is then compared with the velocity calculated with the oblique shock relations. Shock strength is adjusted until the velocity of point P5I calculated by both methods converge to the same value. The final results of the shock points, as well as the wall point downstream of the attached or reflected shock, are then returned to the calling subroutine. See Volume I, Section 6.8 for the details of calculation.

SUBROUTINE NAME: PLMOUT

DESCRIPTION

PLMOUT prints the data read by PLUMIN.

CALLING SEQUENCE

CALL PLMOUT (KP, LCNT, K1W1, K1W2)

where KP is a control parameter set in PLUMIN, and LCNT is the printed line counter.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/	COMMON/WT/
COMMON/CUTFO/	COMMON/STEPC/
COMMON/GASDAT/	COMMON/WAFT/
COMMON/DATAR/	COMMON/FREE/
COMMON/GASCON/	COMMON/MOL/
COMMON/HEAD/	COMMON/TAPRIT/
COMMON/INPUT/	COMMON/FSTAG/
COMMON/GAPPA/	PAGE
COMMON/PARTPI/	TAB
COMMON/PARTP2/	IDMTAB
COMMON/MASSC/	EMOFV
COMMON/PARTTP/	THERMO
COMMON/PSLD/	PFP
COMMON/DRAGCF/	

METHOD OF SOLUTION

Not applicable.

SUBROUTINE NAME: PLUMIN

DESCRIPTION

PLUMIN reads in the input data (input via cards) necessary to perform the streamline-normal solution. This routine provides control for all input functions by selectively calling pertinent input routines and/or the transonic solution.

CALLING SEQUENCE

CALL PLUMIN (K1W1, K1W2, NTAPE, NSETS, RRT, XSHSV, ITRS)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/LIPCOM/
COMMON/DRAGCF/
COMMON/PSLD/
COMMON/CRITER/
COMMON/WAFT/
COMMON/XXSH/
COMMON/FREE/
COMMON/MOL/
COMMON/TAPRIT/
COMMON/CHEMCN/
GASRD
BOUND
LIPIN
AOASTR
MASCON
SETHTG
PARTIN
PARTPH
PLMOUT

METHOD OF SOLUTION

Not applicable.

FUNCTION NAME: POFEM

DESCRIPTION

This function computes the local static pressure as a function of Mach number, entropy and total temperature (ideal gas, two phase only).

CALLING SEQUENCE

$$P = POFEM (EM, S, K1W1, K1W2)$$

where P is the resultant static pressure found from the Mach number, EM, and entropy, S. NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

COMMON/TEMPER/

UTILITY - None

METHOD OF SOLUTION

Thermally perfect gas relationships are used to find the pressure.

$$p = p_o e^{-S/R} \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\gamma/\gamma - 1} \left(\frac{T_o}{T_c}\right)^{-\gamma/\gamma - 1}$$

SUBROUTINE NAME: POFH

DESCRIPTION

This routine utilizes the tabulated data of enthalpy and specific heat as functions of temperature for each species of a finite rate chemistry case to calculate pressure, as a function of enthalpy for a real gas, in a Prandtl-Meyer expansion.

CALLING SEQUENCE

CALL POFH (VF, HT, DELTA)

where

VF is the final velocity
HT is the total enthalpy
DELTA is the flow deflection angle.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/
COMMON/PCTC/
COMMON/EXPER/
COMMON/CPMUK/
ITSUB

METHOD OF SOLUTION

The routine solves for pressure by incrementally changing the flow angle until the final flow angle is obtained. At each increment the routine determines new gas properties from the tables on enthalpy and specific heat as functions of temperature, then uses these properties for the next increment. The result is an integration of the flow properties through the angular change, DELTA.

SUBROUTINE NAME: PPATPT

DESCRIPTION

This subroutine calculates and stores gas and particle dependent variables as a function of the independent flow properties.

i

CALLING SEQUENCE

CALL PPATPT (M, IC, KC, VG, THETA, SG, K2W1, K2W2, KP, ISKIP, PG)

where

M	is the number of particle sizes present at the point
IC	is the point number for which particle and gas flow properties are to be calculated
KC	is the line identification flag
VG	is the gas velocity at the point
THETA	is the gas flow angle at the point
SG	is the gas entropy at the point
K2W1	is a dummy variable
K2W2	is a dummy variable
ΚP	is the temporary array storage location for the particle and gas flow properties
ISKIP	= 0 calculate particle properties only
	= 20 calculate gas and particle properties
	= 40 calculate gas properties only
PG	array containing the point independent flow properties

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/TFLAG/	COMMON/VISEX/
COMMON/PARTP1/	COMMON/TEMPER/
COMMON/PARTP2/	COMMON/FSTAG/
COMMON/GAPPA/	COMMON/DATAR/
COMMON/ONTSPT/	COMMON/FREE/
COMMON/GASCON/	COMMON/CRITER/
COMMON/CONTRL/	COMMON/PSLD/
COMMON/CPMUK/	COMMON/XXSH/

COMMON/DRAGCF/

POFEM

COMMON/PCTC/

PFP

THERMO

TEMTAB

TOFV

DRAGMR

EMOFV

DRAGCP

METHOD OF SOLUTION

The routine is entered knowing the gas independent variables (V, S, OF or H_T) and particle independent variables (u, v, ρ , h). The gas dependent variables (T, P, ρ , μ , C_p, Pr) and particle dependent variables (R_E, drag and heat transfer terms) are calculated and stored for use in other parts of the code.

SUBROUTINE NAME: PRANDT

DESCRIPTION

This subroutine computes the Prandtl-Meyer expansion angle for a given boundary angle and divides this angle into a series of expansion "rays" (unless the number of rays has been specified in the input). The flow properties at each angular increment are set and stored in the PHO array.

CALLING SEQUENCE

CALL PRANDT (I, J, THETAB, NPM, IFLAG, ITYPE, K1W1, K1W2)

where

I represents the corner point

J indicates a characteristic line

THETAB is the boundary angle

NPM = number of Prandtl-Meyer increments (calculated in PRANDT)

IFLAG is an error flag

ITYPE indicates if upper (2) or lower (1) boundary is being considered

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CRITER/	THERMO
COMMON/DATAR/	THETPM
COMMON/GASCON/	UOFV
COMMON/STEPC/	EMOFV
COMMON/CONTRL/	TOFV
COMMON/PCTC/	POFEM
COMMON/CPMUK/	TOFH
COMMON/PARTPI/	SPCTX
COMMON/PARTP2/	PFP
COMMON/FSTAG/	IDMPFP
COMMON/CHEMXX/	

METHOD OF SOLUTION

The routine is entered with known flow properties at the point of discontinuity along with the known corner and boundary flow angles. From the known angles and the preset number of degrees per ray, the number of increments is calculated. The distribution of P-M rays is then adjusted by a weighting function. Subroutine THETPM is entered with known initial conditions and the number of degrees per ray and returns with a velocity. These new conditions are then set into the PHO array. See Volume I, Sections 5 and 6.9, for the details of calculation.

SUBROUTINE NAME: PRFRBD

DESCRIPTION

This subroutine calculates the flow properties at the intersection of a particle limiting streamline and a plume boundary.

CALLING SEQUENCE

CALL PRFRBD (IS, JS, IN, KN, I, K)

where

IS = point number of the old (J) data surface plume boundary

JS = line indicator of the old data surface

IN = point number of the old (J) data surface limiting streamline

KN = line indicator of the old data surface

I = point number of the new (K) data surface limiting streamline

K = line indicator of the new data surface.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/ COMMON/CONTRL/

COMMON/PARTP1/ COMMON/FSTAG/

COMMON/PARTP2/ PFP

COMMON/GAPPA/ INRSCT

COMMON/SLIPPT/ IDMPFP

COMMON/ONTSPT PPATPT

METHOD OF SOLUTION

Once the new data surface has been completed and it has been determined that a particle limiting streamline has crossed the plume boundary, the location of the intersection is determined by the intersection of a line passing through the old and new limiting streamline points. This establishes two interpolation factors. One along the limiting streamline and one along the plume boundary. Gas properties at the intersection point are interpolated for between the two plume boundary points and particle properties are interpolated for between the two limiting streamline points. The interpolated point and properties are then used as the plume boundary point for the new line and the calculation for the next line is then initiated.

FUNCTION NAME: RGMOFP

DESCRIPTION

This subroutine finds Mach number as a function of pressure, O/F ratio (or total enthalpy) and entropy. The difference between this routine and EMOFP is that in this case the gas properties are not known prior to entry.

CALLING SEQUENCE

EM = RGMOFP (OF, S, P, K2W1, K1W1)

where EM is the resultant Mach number, P is the local static pressure, S is the local entropy, and OF is the local O/F ratio (or total enthalpy).

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/GASCON/

COMMON/ISEA/

COMMON/GASDAT/

POFEM

EMOFV

ITSUB

VOFEM

EMOFP

ERRORS

TAB

THERMO

METHOD OF SOLUTION

The real gas tables have, as independent variables, OF ratio (total enthalpy), entropy and velocity. If the velocity is not known, an iterative solution must be employed to find Mach number from pressure, entropy, and OF ratio (or total enthalpy).

FUNCTION NAME: RGVOFM

DESCRIPTION

This subroutine finds velocity as a function of Mach number, entropy and O/F ratio (or total enthalpy). The difference between this routine and VOFEM is that the gas properties are not known prior to entry.

CALLING SEQUENCE

V = RGVOFM (OF, S, EM, K2W, K1W)

where V is the resultant velocity computed from O/F ratio or total enthalpy, OF, entropy, S, and Mach number, EM.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/CHEMCN/

COMMON/GASDAT/

COMMON/GASCON/

THERMO

TAB

VOFEM

EMOFV

ITSUB

ERRORS

METHOD OF SOLUTION

The real gas tables have, as independent variables, OF ratio (or total enthalpy), entropy and velocity. If the velocity is not known, an iterative solution must be employed to find the velocity from Mach number, OF ratio (or total enthalpy) and entropy.

FUNCTION NAME: RHOFEM

DESCRIPTION

RHOFEM computes the local density as a function of Mach number and entropy.

CALLING SEQUENCE

RHO = RHOFEM (EM, S, K1W1, K1W2)

where RHO is the resultant density found from local Mach number and local entropy. NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

POFEM

METHOD OF SOLUTION

Thermally perfect gas relationships are used to find the density.

$$\rho = \rho_0 \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-(1/\gamma - 1)}$$

SUBROUTINE NAME: RITE

DESCRIPTION

This subroutine tells the program user (in no uncertain terms) that he has made a fatal error. The next executable statement is a STOP.

CALLING SEQUENCE

CALL RITE(I)

UTILITY ROUTINES AND COMMON REFERENCES

None

METHOD OF SOLUTION

Not applicable.

FUNCTION NAME: ROTERM

DESCRIPTION

ROTERM computes the geometrical factor, $\mathbf{F}_{\mathbf{I}}$, $\mathbf{F}_{\mathbf{II}}$, used in the axisymmetric term of the compatibility equation and as an interpolation parameter.

CALLING SEQUENCE

where

THETA is the flow angles of the known points $(\overline{\theta}_{I} \text{ or } \overline{\theta}_{II})$ DELTA defines the quadrant being considered EMU is the Mach angles of the known points $(\overline{\mu}_{I} \text{ or } \overline{\mu}_{II})$ R3 is the coordinates of the new point $(\overline{\mathbf{r}}_{III} \text{ or } \overline{\mathbf{x}}_{III})$ RI is the coordinates of the known point $(\mathbf{r}_{I} \text{ or } \mathbf{x}_{I})$

UTILITY ROUTINES AND COMMON REFERENCES

None

METHOD OF SOLUTION

The method-of-characteristics solution uses this routine to determine a coefficient needed in its solution. This term (see Eq. (6.29), Section 6 of Ref. 4) can be written as:

$$F = \frac{\left|\sin\mu\right| (d_{III} - d)}{\sin(\pi/4 + \delta(\overline{\theta} + \overline{\mu} - \pi/4))}$$

By the proper choice of d(r or x), δ and the sign of μ , indeterminant forms are eliminated in the evaluation.

SUBROUTINE NAME: RWU

DESCRIPTION

This routine is a MSFC Univac 1108 system routine used to read and write from FASTRAN files.

CALLING SEQUENCE

CALL RWU (KSUNIT, A(I, J), NS, KSEC, IFCN, ISTAT, NWT)

where

KSUNIT is the unit number of the FASTRAN file

A(I, J) is the array being read or written

NS is the number of entries in the array

KSEC is the location in the file of the required data

IFCN indicates to read data (=16) or write data (=8)

ISTAT is a status indicator

NWT is an output indicator

UTILITY ROUTINES

None

METHOD OF SOLUTION

Not applicable.

SUBROUTINE NAME: SETHTG

DESCRIPTION

This routine computes the gas total enthalpy for a case when finite rate chemistry is being used and the startline is to be generated by the program for gaseous flows only.

CALLING SEQUENCE

CALL SETHTG

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/VISEX/

COMMON/PCTC/

COMMON/GASCON/

COMMON/CHEMCN/

COMMON/CHEMXX/

COMMON/LIPCOM/

COMMON/SIGMB/

COMMON/GASDAT/

TKEY

THERMO

METHOD OF SOLUTION

The routine interpolates for the flow properties at the specified startline Mach number using the equilibrium thermodynamic data tables. The resultant temperature and velocity are then used to obtain the flow properties from the species enthalpy and specific heat tables. The total enthalpy is calculated from the static enthalpy and velocity. This procedure is used to ensure property compatibility when transferring from the equilibrium tables to the species finite rate tables.

SUBROUTINE NAME: SITER

DESCRIPTION

This routine determines the entropy of the gas knowing the velocity, static pressure and total enthalpy or O/F ratio.

CALLING SEQUENCE

CALL SITER (HG, S, EM, V, PC, PL)

where

HG is the known total enthalpy or O/F ratio
S is the gas entropy
EM is the gas Mach number
V is the known gas velocity
PC is the gas total pressure
PL is the known gas static pressure

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/ EMOFV ITSUB POFEM THERMO

METHOD OF SOLUTION

This subroutine iterates on the gas entropy until the guessed entropy, known velocity and enthalpy results in a static pressure which is within the convergence criteria of the known static pressure.

SUBROUTINE NAME: SLDP

DESCRIPTION

This subroutine finds the solutions to a set of N simultaneous linear equations.

CALLING SEQUENCE

CALL SLDP(X, A, N)

where

 \boldsymbol{X} is the solution matrix

A is the coefficient matrix

N is the order of the coefficient matrix

UTILITY ROUTINES AND COMMON REFERENCES

None

METHOD OF SOLUTION

The set of N simultaneous equations are solved using a Gauss-Jordan reduction scheme with the diagonal pivot strategy.

SUBROUTINE NAME: SLPLIN

DESCRIPTION

This subroutine handles the calculation of the points on the slip line.

Two points are assigned to every slip line.

CALLING SEQUENCE

CALL SLPLIN (IS, JS, IN, KN, IFLAG, ICAUNT, K1W2, K2W2)

where

- IS, JS is the storage array of the known point on the lower side of the slip line of the reference normal line (J-line)
- IN, KN is the storage array of the known point below the slip line on the current normal (K-line)
- IFLAG is a control indicator for sending in and out necessary messages
- ICAUNT indicates the status of the iterative solution
 - 0 first time calculation of a particular slip line
 - 1 calculated results converged
 - 2 calculation completed but not final

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/	EMOFV
COMMON/CRITER/	ERRORS
COMMON/DATAR/	INRSCT
COMMON/DROP/	ITSUB
COMMON/GASCON/	PHYSOL
COMMON/SLIPPT	POFEM
CARCER	

CARCTR

METHOD OF SOLUTION

The slipline points location is found by the usual manner as one of the interior points, and their flow properties are assumed initially to be identical to those of the corresponding points on the reference normal line. The velocity of the lower side point of the slipline is calculated with the aid of subroutines PHYSOL and CARCTR by using the II-characteristic. Pressure is then calculated with subroutine POFEM.

Letting the upper side point of the slipline have the same flow angle as the lower side point; the velocity of the upper side point can be calculated with the I-characteristic. Pressure is then calculated.

The pressure calculated for the slipline points is compared. The flow angle is adjusted, if necessary, until identical pressure is attained on both sides of the slipline.

See Volume I, Section 6.10 for the details of the calculation.

SUBROUTINE NAME: SOKFLX

DESCRIPTION

This subroutine solves for the flow properties downstream of a reflected shock knowing the turning angle and the reflected shock upstream flow properties. Real gas effects are considered in the calculations.

CALLING SEQUENCE

CALL SOKFLX (PD, PU, J, K, ITYPE, K1W1, K2W2)

where

PD is the array containing the downstream flow properties
PU is the array containing the upstream flow properties
J is the line identifier for the upstream flow properties
K is a dummy variable
K1W1 is a dummy variable
K2W2 is a dummy variable

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CRITER/

COMMON/GASCON/

COMMON/DATAR/

COMMON/CONTRL/

ESHOCK

ITSUB

ERRORS

THERMO

UOFV

METHOD OF SOLUTION

The routine is entered with the flow properties, PU, downstream of the incident shock and a known flow angle downstream of the reflected shock. An initial shock angle is assumed and a flow angle is calculated. The calculated flow angle is compared to the known flow angle and successive iterations on shock angle are performed until the flow angle difference is sufficiently close to zero.

SUBROUTINE NAME: SOKSOL

DESCRIPTION

This subroutine handles the calculation of different types of shock wave points. The following cases are considered:

1.	Right-running shock	(ITYPE = 111)
2.	Left-running shock	(ITYPE = 112)
3.	Right-running shock incident on a lower boundary	(ITYPE = 121)
4.	Left-running shock incident on an upper boundary	(ITYPE = 122)
5.	Right-running shock attached at upper compression corner	$(ITYPE \approx 131)$
6.	Left-running shock attached at lower compression corner	$(ITYPE \approx 132)$
7.	Right-running shock reflected from the upper boundary	(ITYPE = 141)
8.	Lest-running shock reflected from the lower boundary	(ITYPE = 142)
9.	Right-running weak shock at the upper wall	(ITYPE = 151)
10.	Left-running weak shock at the lower wall	(ITYPE = 152)

CALLING SEQUENCE

CALL SOKSOL (IN, KN, IS, J, ITOTK, IFLAG, ITYPE, K2W1, K2W2)

where

(IN, KN):	storage location in PHO array for the shock upstream point on the new normal (KN-line)
(IS, J):	storage location in PHO array for a reference point on the known normal (J-line)
ITOTK:	total number of the KN-line; this is corrected according to the type of shock point
IFLAG:	for sending in and out necessary messages
ITYPE:	denotes type of shock points to be calculated

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CRITER/	BOUNDA
COMMON/GASCON/	CARCTR
COMMON/DATAR/	ERRORS
COMMON/CONTRL/	ESHOCK
COMMON/SLIPPT/	INRSCT
COMMON/PHISOL/	ITSUB
COMMON/TEMPO1/	PHYSOL
COMMON/TEMPO2/	PHYZOL
COMMON/DROP/	PPATPT
COMMON/GLOBAL/	STRNOR
COMMON/GAPPA/	THERMO
COMMON/FSTAG/	STRNOR
COMMON/PARTEP/	

METHOD OF SOLUTION

The general technique for handling shock wave points is: (1) find the location of the shock points and the flow properties of the shock upstream point, (2) calculate the flow properties of the shock downstream point with the oblique shock relation by using the shock upstream properties, (3) calculate the flow velocity of the shock downstream point with one characteristic line by using the shock downstream properties, (4) compare the velocity calculated from Steps 2 and 3, and (5) if the velocity is not the same, adjust the shock strength and repeat the process from Step 1.

For each individual case, see Vol.I of this report for detail.

SUBROUTINE NAME: SPCTX

DESCRIPTION

This routine controls the input and output from a FASTRAN file of the chemical species in a finite rate chemistry case.

CALLING SEQUENCE

CALL SPCTX (IFCN, IPT, ILINE, JLINE)

where

IFCN indicates to write (=1) on drum or to read
 (=2) from drum

IPT is the flowfield point number

ILINE is the flowfield line number (one or two)

JLINE specifies to store the data in SPCT(I, 1) or SPCT(I, 2)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CHEMXX/

COMMON/CHEMCN/

COMMON/CONTRL/

RWU

METHOD OF SOLUTION

The routine calculates the location in the FASTRAN file where the desired data are read from or stored in. Subroutine RWU is then called to perform the indicated operation.

AD-A094 633 LOCKHEED MISSILES AND SPACE CO INC HUNTSVILLE AL HUN--ETC F/6 21/8.2 SUPERSONIC FLOW OF CHEMICALLY REACTING 636-PARTICLE MIXTURES, V--ETC(U) JAN 76 M PERNNY, S D SMITH, P G ANDERSON NAS9-14517 LMSC-HREC-TR-D496555-2 UNCLASSIFIED NL 4 or 5 AD-AC94633

SUBROUTINE NAME: STGMOD

DESCRIPTION

This subroutine computes the gas thermodynamic properties in the transition flow regime.

CALLING SEQUENCE

CALL STGMOD(I, K)

where

I = the point number

K = the line number

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

COMMON/FREE/

COMMON/GSV/

COMMON/FSTAG/

COMMON/DATAR/

UTILITY - None

METHOD OF SOLUTION

The routine is entered knowing the flow regime, Knudsen number and flow properties $(M_w, T, P, V, \gamma, S, H, \rho)$ of the (I, K) point. The specific heat ratio is then determined based on the flow regime.

Continuum $-\gamma$ is same as entered

Vibrational mode frozen – γ is set to 1.4

Rotational mode frozen – γ is set based on a curve fit of gamma from 1.4 (vibrationally frozen) to 1.667 (free molecular) based on Knudsen number

Translationally frozen (free molecular) $-\gamma = 1.667$

Once the local gamma is determined then the local static properties, T, P and V, are used to determine the local total conditions (T_0 , P_0) and Mach number.

SUBROUTINE NAME: STRNOR

DESCRIPTION

This subroutine handles the calculation of the flow properties of the point in question. The following cases are considered:

1. Interior point, uses I- and II-characteristic	(ITYPE = 11)
2. Lower solid boundary point, uses I-characteristic	(ITYPE = 21)
3. Upper solid boundary point, uses II-characteristic	(ITYPE = 22)
4. Lower free boundary point, uses I-characteristic	(ITYPE = 31)
5. Upper free boundary point, uses II-characteristic	(ITYPE = 32)

Except those ITYPE numbers shown above, sometimes, one of the following numbers (500,600,700,800,900) is added to the original number to transmit more information to this subroutine.

CALLING SEQUENCE

CALL STRNOR (II, K1, IS1, JS1, IN1, KN1, IFLAG, ITYPE, K1W1, K1W2) where

11,K1	is the storage location in the PHO array for the point in question on the new normal (K-line)
IS1, JS1	is the storage location in the PHO array for the known reference point on the old normal (J-line); normally this point is on the same streamline as the point I1, K1
IN1, KN1	is the storage location in the PHO array for the known point I1, K1 on the new normal (K-line)
IFLAG	is a control indicator for sending in and out necessary messages
ITYPE	denotes the type of point to be calculated

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/FREE/	COMMON/CPMUK/
COMMON/ISEA/	COMMON/RUE/
COMMON/CHEMCN/	COMMON/CHEMXX/
COMMON/CHEMXY/	COMMON/TUIPA/

COMMON/CONTRL/	COMMON/PARSTU/
COMMON/CRITER/	COMMON/FSTAG/
COMMON/DATAR/	BOUND
COMMON/DROP/	IDMPFP
COMMON/GASCON/	PPATPT
COMMON/PHISOL/	FNEWTN
COMMON/SLIPPT/	INRSCT
COMMON/TEMPO2/	GAPPBI
COMMON/TOTAL/	PHYSOL
COMMON/CROSS/	SPCTX
COMMON/STEPC/	PFP
COMMON/AVPROP/	RGMOFP
COMMON/PARTPI/	COEFF3
COMMON/PARTP2/	ROTERM
COMMON/GAPPA/	SLPLIN
COMMON/ONTSPT/	NEWENT
COMMON/POINTC/	UOFV
COMMON/NSF/	VOFEM
COMMON/OVERLA/	COEFEQ
COMMON/GLOBAL/	AVERAG
COMMON/PSEC/	CHECK
COMMON/INTEU/	

METHOD OF SOLUTION

Initially, the flow properties of the point in question are assumed to be the same as those of the known upstream point on the same streamline, and its location is found by intersecting the average streamline from the reference point (IS1, JS1) on the J-line and the average normal from the known point (IN1, KN1) on the K-line. Subroutine PHYSOL is used to find the reference properties for the characteristic lines and Eq. (3.3) is then used to calculate velocity and flow angle for the new point. Under normal conditions, the mass flow rate between two streamlines is conserved, but when the streamline meets a shock wave, no attempt is made to conserve the mass flow rate, because the streamline

is terminated at the shock upstream region and a new streamline is generated from the shock downstream point.

The iterative method is employed to find the velocity and the flow angle until they do not change appreciably between the successive iterations. During this iteration, the location of the new point is perturbed.

FUNCTION NAME: TAB

DESCRIPTION

This function computes the thermodynamic data storage location and retrieves data from the TABB array.

CALLING SEQUENCE

= TAB (I, J, K, L)

where

I, J, K, L are indices which are used to determine the storage location

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASDAT/

UTILITY - None

METHOD OF SOLUTION

The thermodynamic data storage location is computed using the following relation

$$IX = I + 10 * (J-1 + 2 * (K-1 + 13 * (L-1))),$$

and retrieved using the relation

TABB = TABB(IX)

SUBROUTINE NAME: TEMTAB

DESCRIPTION

This subroutine will perform a table lookup for particle temperature as a function of enthalpy or for particle enthalpy as a function of temperature.

CALLING SEQUENCE

CALL TEMTAB(X, Y, WHICH)

where

X is the unknown variable

Y is the known variable

WHICH is the lookup control variable indicating to lookup temperature (=1) or enthalpy (=2)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/TPEH/

COMMON/TFLAG/

UTILITY - None

METHOD OF SOLUTION

The unknown variable (particle temperature or enthalpy) is calculated by either assuming constant heat capacities or by applying linear interpolation techniques to the tabulated data input on cards 32.

SUBROUTINE NAME: THERMO

DESCRIPTION

This subroutine utilizes real or ideal gas information obtained from the flowfield tape (or tables) and a local O/F ratio (or total enthalpy) to call subroutine FABLE to calculate thermodynamic gas properties locally in the flow.

CALLING SEQUENCE

CALL THERMO (OF, SS, VV)

where

OF = gas total enthalpy or O/F ratio

SS = gas entropy

VV = gas velocity

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/ COMMON/GASDAT/

COMMON/CPMUK/ COMMON/FAB/

COMMON/GRINT/ COMMON/CONTRL/

COMMON/PARTP1/ TAB

COMMON/PARTP2/ FABLE

COMMON/TEMPER/ THERM:

METHOD OF SOLUTION

The routine is entered with the local O/F ratio (or total enthalpy), OF, entropy, SS, and velocity, VV. The local ratio is used to determine which set of thermodynamic tables that subroutine FABLE should use to perform table lookup of the local thermodynamic gas properties. Subroutine THERMO then uses the local thermodynamic gas properties obtained from FABLE to perform an interpolation between the O/F (or total enthalpy) tables based on the local O/F ratio (or total enthalpy).

SUBROUTINE NAME: THERMI

DESCRIPTION

This routine determines the gas thermodynamic properties for a finite rate chemistry case.

CALLING SEQUENCE

CALL THERM1(HT, V)

where

HT is the gas total enthalpy
V is the gas velocity

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/TEMPER/

COMMON/GASCON/

COMMON/PCTC/

COMMON/CPMUK/

COMMON/CONTRL/

COMMON/VISEX/

COMMON/CHEMCN/

COMMON/CHEMXX/

COMMON/GASDAT/

TKEY

TOFH

METHOD OF SOLUTION

The routine looks up enthalpy and specific heats from tabulated data of enthalpy and specific heats as functions of temperature. The enthalpy, specific heats and molecular weights of each species are used, along with species concentrations, to calculate the mixture gas constant, gamma, enthalpy, specific heat, and total pressure and temperature. These properties, along with velocity are used to calculate total enthalpy and Mach number.

SUBROUTINE NAME: THETPM

DESCRIPTION

THETPM performs a numerical integration to calculate properties through a Prandtl-Meyer expansion. Either the case of known final velocity or known final expansion angle may be handled.

CALLING SEQUENCE

CALL THETPM (OF, S, DELTA, VF, VI, IT, ITYPE, K1W, K2W)

where

OF is the local O/F ratio or total enthalpy

S is the local entropy level

DELTA is the total expansion angle

VF is the final velocity downstream of the expansion

VI is the initial velocity upstream of the expansion

IT is a control parameter indicating if expansion to a

solid wall or free boundary is taking place

ITYPE indicates if an upper (2) or lower (1) boundary is

being considered.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

COMMON/STEPC/

COMMON/CONTRL/

THERMO

TOFH

ITSUB

TOFV

ERRORS

METHOD OF SOLUTION

The integral equation

$$\int_{V_1}^{V_F} \sqrt{M^2 - 1} \, \frac{dV}{V} - \Delta\theta = f(V_F) = 0$$

where $M^2 = V^2/\gamma RT$ is solved knowing either the final velocity, V_F , or the expansion angle ($\Delta\theta$). As can be seen, if the final velocity, V_F , is known, the integration progresses straightforwardly to a solution. However, if the expansion angle is known, an iterative procedure must be employed to pick the velocity which produces the desired expansion angle.

SUBROUTINE NAME: THRUST

DESCRIPTION

THRUST computes the vacuum thrust produced by a two-dimensional or axisymmetric nozzle. Addition of the thrust at the throat and the integrated pressure along the nozzle wall yields the final thrust.

CALLING SEQUENCE

CALL THRUST (L, K, II, JI, ITYPE, ICALC, KIWI, KIW2)

where L, K designates the unknown characteristic point and I1, J1 is the known characteristic point. ITYPE specifies if the point is on the upper or lower boundary and ICALC is a counter with the values of 1, 2 or 3. (1 specifies integration at the throat, 2 - along the nozzle and 3 - at the exit.)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/

COMMON/DATAR/

COMMON/FORCE/

COMMON/INPUT/

COMMON/PARTPI/

COMMON/PARTP2/

COMMON/FSTAG/

COMMON/WT/

COMMON/PSLD/

COMMON/INTCR/

PFP

VEMAG

METHOD OF SOLUTION

Thrust is found by first computing the momentum thrust in the sonic area or throat of the nozzle. The static pressure is then integrated along the nozzle wall and the total thrust found by summation of the pressure and momentum terms (both gas and particle). Inclusion of a factor in the incremental force term accounts for either two-dimensional or axisymmetric flow.

SUBROUTINE NAME: TKEY

DESCRIPTION

This routine determines the proper index to be used in the enthalpy and specific heat tables and calculates interpolation factors.

CALLING SEQUENCE

CALL TKEY (T, TTB, ITKEY, SDT, HDT, NT)

where

T = the temperature

TTB = the temperature tables used as independent variables

ITKEY = the resultant index

SDT and HDT = interpolation factors

NT = number of entries in the temperature table.

UTILITY ROUTINES AND COMMON REFERENCES

None

METHOD OF SOLUTION

The routine searches the temperature table until the input temperature is bounded. The index of the lower bound is stored in ITKEY and the interpolation factors are calculated by the equations

$$SDT = \frac{T - TTB (ITKEY)}{TTB (ITKEY + 1) - TTB (ITKEY)}$$

and

$$HDT = \frac{TTB (ITKEY + 1) - T}{TTB (ITKEY + 1) - TTB (ITKEY)}$$

FUNCTION NAME: TOFEM

DESCRIPTION

TOFEM computes the local static temperature as a function of Mach number. TOFEM and TOFV are quite similar; the difference being if Mach number or velocity is the known quantity.

CALLING SEQUENCE

$$T = TOFEM (EM, K1W1, K1W2)$$

where T is the one-dimensionally calculated local static temperature which exists at the Mach number, . NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

UTILITY - None

METHOD OF SOLUTION

The thermalty perfect gas relationships are used to find the static temperature at the local Mach number.

$$T = \frac{T_o}{1 + \frac{\gamma - 1}{2} M^2}$$

FUNCTION NAME: TOFENH

DESCRIPTION

This routine calculates the temperature as a function of enthalpy for a finite-rate chemistry case.

CALLING SEQUENCE

= TOFENH(HU)

where HU is the static enthalpy

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

COMMON/PCTC/

COMMON/CPMUK/

COMMON/VISEX/

COMMON/CHEMCN/

COMMON/CHEMXX/

COMMON/GASDAT/

TKEY

ITSUB

METHOD OF SOLUTION

The temperature is estimated initially and this temperature is used to calculate an enthalpy from the temperature-enthalpy tables. If the resultant enthalpy does not match HU, the temperature is incremented and the process repeated until the enthalpies converge.

FUNCTION NAME: TOFH

DESCRIPTION

This routine calculates the temperature as a function of enthalpy for a finite rate chemistry case during a Prandtl-Meyer expansion.

CALLING SEQUENCE

= TOFH (HU, V)

where

HU is the enthalpy
V is the velocity

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/TEMPER/

COMMON/GASCON/

COMMON/PCTC/

COMMON/CPMUK/

COMMON/VISEX/

COMMON/CHEMON/

COMMON/CHEMXX/

COMMON/GASDAT/

TKEY

ITSUB

POFH

METHOD OF SOLUTION

The methodology is the same as for TOFENH except that the gas constant, molecular weight, gamma and Mach number are also computed.

FUNCTION NAME: TOFV

DESCRIPTION

This function computes the local static temperature as a function of velocity. TOFV and TOFEM are quite similar; the difference being if Mach number or velocity is the known variable.

CALLING SEQUENCE

$$T = TOFV (V, K1W1, K1W2)$$

where T is the local static temperature which exists at the velocity, V. NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

RITE

ERRORS

KIKOFF

METHOD OF SOLUTION

The thermally perfect gas relationships are used to find the static temperature at the local velocity.

$$T = T_o - \frac{V^2}{2R} \left(\frac{\gamma - 1}{\gamma} \right)$$

SUBROUTINE NAME: TRANS

DESCRIPTION

This subroutine provides overall control for initializing the data and reading the namelist data for the Kliegel two-phase transonic solution of a supersonic gas particle startline.

CALLING SEQUENCE

CALL TRANS (NTAPE, NSETS, RUT)

where

NTAPE = FORTRAN unit on which the startline is written

NSETS = number of startline points where particles are

present

RUT = throat radius (ft)

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CONTRL/ COMMON/PARTP2/

COMMON/GASDAT/ COMMON/ERR/

COMMON/GASCON/ COMMON/NAMEA/

COMMON/CPMUK/ COMMON/NAMEI/

COMMON/TPEH/ COMMON/NAMEW/

COMMON/MASSC/ TAB

COMMON/DRAGCF/ PARTIL

COMMON/TRANSI/

METHOD OF SOLUTION

Not applicable.

SUBROUTINE NAME: TURN

DESCRIPTION

TURN solves for a shock wave which has a known turning angle (δ). A condition of known turning angle exists when the flow is turned through a compression corner on a solid boundary. Real gas effects are considered in calculating conditions downstream of the shock.

CALLING SEQUENCE

CALL TURN (PU, PD, DELTA, IFLAG, K1W1, K1W2)

where PU, PD represent flow conditions upstream and downstream of the shock, DELTA is the turning angle, and IFLAG indicates if the solution will or will not converge.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/CRITER/

COMMON/CONTRL/

THERMO

EMOFV

UOFEM

ESHOCK

ITSUB

ERRORS

UOFV

METHOD OF SOLUTION

An initial shock angle is assumed. This shock angle is used to calculate a turning angle. The calculated turning angle is compared to the known turning angle and successive iterations on shock angle are performed until the turning angle difference is sufficiently close to zero.

FUNCTION NAME: UOFEM

DESCRIPTION

This function computes the local Mach angle as a function of local Mach number. Prior to the calculation a test is made to ensure that the Mach number is greater than one.

CALLING SEQUENCE

EMU = UOFEM (EM, K1W1, K1W2)

where EMU is the Mach angle which exists at the local Mach number, EM.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON - None

ERRORS

KIKOFF

RITE

METHOD OF SOLUTION

The following equation is solved for the local Mach angle.

$$\mu = \tan^{-1}\left(\frac{1}{\sqrt{M^2 - 1}}\right)$$

FUNCTION NAME: UOFV

DESCRIPTION

This function computes the local Mach angle as a function of local velocity.

CALLING SEQUENCE

EMU = UOFV (V, K1W1, K1W2)

where EMU is the Mach angle which exists at the local velocity, V.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON - None

UOFEM

EMOFV

METHOD OF SOLUTION

The local velocity is converted into a Mach number using EMOFV. Function UOFEM is then entered with the calculated Mach number. The Mach angle is obtained from the following equation.

$$\mu = \tan^{-1}\left(\frac{1}{\sqrt{M^2 - 1}}\right)$$

FUNCTION NAME: VEMAG

DESCRIPTION

VEMAG determines the magnitude of a vector.

CALLING SEQUENCE

= VEMAG(V)

where V is any vector.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON - None
DOTPRD

METHOD OF SOLUTION

The following equation is solved for the magnitude of a vector

$$VEMAG = \sqrt{V(1)^2 + V(2)^2}$$

where

$$\vec{V} = V(1)\vec{i} + V(2)\vec{j}$$

FUNCTION NAME: VOFEM

DESCRIPTION

This function computes velocity as a function of Mach number.

CALLING SEQUENCE

V = VOFEM (EM, K1W1, K1W2)

where V is the local velocity which corresponds to the local Mach number, EM. NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

TOFEM

METHOD OF SOLUTION

The thermally perfect gas relationship

$$V = \sqrt{\frac{R\gamma (T_0 - T)}{\left(\frac{\gamma - 1}{2}\right)}}$$

is solved for velocity. Local static temperature, T, is obtained from the input Mach number.

SUBROUTINE NAME: WEAK

DESCRIPTION

This subroutine determines the independent variables, entropy and velocity, SD, VD, downstream of a weak oblique shock. The gas properties upstream of the shock are known prior to entry.

CALLING SEQUENCE

CALL WEAK (OF, SU, VU, EPS, DELTA, SD, VD, K1W, K2W)

where OF is the upstream O/F ratio (or total enthalpy), SU, VU are the upstream entropy and velocity, EPS, DELTA are the shock angle and turning angle, and SD, VD are the downstream entropy and velocity.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

THERMO

EMOFV

POFEM .

RHOFEM

ENTROP

ENTROP

DELTAF

METHOD OF SOLUTION

From the known upstream entropy and velocity, the local gas properties, pressure, density, and upstream Mach number are calculated. The entropy rise across the shock is added to the upstream entropy to get total downstream entropy. Downstream velocity is calculated from the following relationship.

$$V_{D} = \frac{V_{U} \cos(\xi)}{\cos(\xi - \delta)}$$

FUNCTION NAME: WOFA

DESCRIPTION

WOFA computes the weight flow per unit area as a function of Mach number. This calculation is only used in function AOASTR.

CALLING SEQUENCE

Weight Flow = WOFA (EM, K1W1, K1W2)

where EM is the local Mach number. NOTE: The appropriate values of the gas properties must be stored in common upon entry to this routine.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/GASCON/

UTILITY - None

METHOD OF SOLUTION

Weight flow per unit area, W/A, is calculated from the thermally perfect gas relation.

$$\frac{\dot{W}}{A} = \sqrt{\frac{\gamma}{RT_o}} \left\{ \frac{P_o M}{\left[1 + \frac{\gamma - 1}{2} M^2\right]^{\frac{\gamma + 1}{2(\gamma - 1)}}} \right\}$$

FUNCTION NAME: WTFLOF

DESCRIPTION

This function computes the area normal to the flow which is bounded by two streamline points.

CALLING SEQUENCE

= WTFLOF (M, N, K, A)

where

M = the point number of the lower streamline point

N = the point number of the upper streamline point

K = the line number

A = a l for axisymmetric flow and a 0 for twodimensional flow.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/DATAR/

COMMON/CONTRL/

UTILITY - None

METHOD OF SOLUTION

The area bounded by two points and normal to the average local flow vector is calculated via geometric relations

FUNCTION NAME: XSI

DESCRIPTION

This function computes the storage location for the nonlinear interpolation weighting functions required for thermodynamic property lookup and retrieves data from XSIDIM.

CALLING SEQUENCE

where

I, J, K, L are indices used to determine the storage location.

UTILITY ROUTINES AND COMMON REFERENCES

COMMON/XSICOM/

UTILITY - None

METHOD OF SOLUTION

The storage location is computed using the following relation

$$IX = I + 10 * (J-1 + 2 * (K-1 + 13 * (L-1)))$$

and retrieved using the relation

XSI = XSIDIM(IX)

3.7 EXAMPLE PROBLEMS

To familiarize the user with the operation of the RAMP computer program several sample cases are presented. Each sample case will consist of a description of the problem, a listing of the input data for the problem and a listing of the pertinent solution.

Example Problem 1

This problem analyzes a single phase chemical equilibrium flow field with the following stipulations:

- 1. Generate a startline at the nozzle exit plane for example problem 2,
- 2. The gas properties are to be read from cards, and
- 3. The startline at the nozzle throat is to be calculated internal to the program.

Figure 3-4 presents a schematic of a typical nozzle plume flow field. Table 3-7 presents first a flow chart and then a listing of the input data for the specified problem; some of these cards are indicated in Fig. 3-4. Table 3-8 presents a listing of the pertinent solution.

Fig. 3-4 - Schematic of a Typical Nozzle-Plume Flow Field with Control Cards Indicated

Table 3-7
REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 1

^{*}If gas properties are input on tape (ICON(1)=2) Cards 9, 10 and 11 are not required.

Table 3-7 (Concluded)

1	UNECA CAUE #11h FREE MULECULME CALCULATIONS CONSIDERED	1256	547722 .09450723	.26744319 .i690930613.040760	10001	1000.	ENG 1 1			1750 34664 12.448	1411 3025.60 69.321	21 c 1 ' 4c3y•0	• 2524. 3747.6 12.24d	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	•2544 <876.4 3.06.1	376 2450.0 1.224B	751 195164 64083	.2019 17cs.d .2450	• 2944 1481•4 • 1625	<u> </u>	•3325 dbv•c. •0122	1.3527 507.00 .0024	1	0•0 p•c 20•	000• 0å 000 co	
1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		121	-1.		•0100				13	1 450	7	000	080	Guz ie	-	0 1 1	041	1 1 1	091 I	121	C - 1 1	160	0.0	-100·	•20 1.	
Cards 1-3 Card 4 Card 8 Card 9 Card 9 Card 10 Card 10 Card 10 Card 18a Card 18a Card 20 Card 20	. SASS	1	1	2 1	٣	~	IDEAL GAS	Q •	•	0•	1.0	1.746	2.151	20230	2.0716	~		4 • 304	4 - 750	2.014	6.279	1.coc	18a • c	100.	• 50	

Table 3-8

EXAMPLE PROBLEM 1 PERTINENT SOLUTION

				CASE NU.	_					PAGE 1
CANEGOS	CASECUS CHECK CAME ATTH FREE	ITH FREE MOLEC	ULAR	CALCULATIONS	S CONSIDERED					
	150N(1)	1 1CON(2)		RUN 1C0N(3) 1C	CUNTROL ON(1)	PAKANETERS ICONISI	1CON(6)	1508172	1CON(8)	
	1CUR(9)) 1CON(10)		1 (11) (1)	1CON(12)	1CON(13)	1CON(14)	1CON(15)	100N(14)	
CALCULATI	FLOW CALCULATIONS AME IN ENGLISH UNITS	TIND HELLON	S. WITH THE	1	R.X.COORDINATES IN FEET	FEET	* * - * - * - * - * - * - * - * - *			
ינסש בּובּנט	THE FLOW EIELD DATA WILL NOT WRITTEN ON	O MBILLEN O	NITAPE							
					UPPER BOUNDARY	DARY				
TIPE	ITRANS	*		30	U	0		w	HAK	
		10+00001*		.13333+00	+ D 0060.	- 100	1000014	F,54772+00	. 94507-0	
~ ′	(00000.		00000	20000.	197.	*26795+00	.16969+00	10+10901+	- :
•	0	10-000-01		• 00000	noong.	00000		Danna •	-n+nnnn++	
					LOWER BOUNDARY	DARY				
TYPE	LTRANS	•		60	ن	0		نيا	MAX	
2	0	00000*		.00000	00000	00000		00000	*0.00001*	
		THERE	ARE 0	PAKTICLE SI	SPECIES PRESENT IN	H	GAS-PARTICLE	HIXTURE		
		THE FOLLOWING	G A S	PROPERTIES	IN ENGLISH UNITS	NITS ARE FOR	IDEAL GAS			
				_	REAL GAS PRO	PROPERTIES				
		370								
	-	• 00000								
		5	>	•	GANNA			•	P.R.	A S CP
•]	0.	00000	+20016+0H		+U++B++++	*0+000 +0 *	•0400	00000	
•			4536+04	.19925+04			ĺ	- (1
		5.	+0+9+255	+19840+04		11 .42390+04				
		94	+0+815+04	*19820+0#		11 . 137470+04		00000		•
			.71902+04	*19817	Ī	11 .3249*+04	Ĭ			
		77	*776U5+D4	*U+11861.	1					
		.635	1577+114	A LI BOLL	u .12376+01	11 .24300+04	14 . 180co+04	00000 70000		300000
					•					

Ç

Table 3-8 (Continued)

#ITH FREE MOLECULAR CALCULATIONS CONSIDERED ##TOTAL ##TOTAL ##AL UAS PROPERTIES ##AL UAS P
8

Table 3-8 (Continued)

	SUPERSUNIC FLOW ANA	LYSIS USING TI	ANALYSIS USING THE LOCKHEED-HUNISVILLE MULTIPLE SHOCK COMPUTER PROGRAM	SVILLE MULT	IPLE SHOCK	COMPUTER	PROCRAM		
		CASE NO.	NO.					PAGE	~
US CHECK	GASEOUS CHECK CASE WITH FREE MOLECULAR CALCULATIONS CONSIDERED	ULAR CALCULAT	ONS CONSIDERED					-	
	V18N0 •16000+03	10000+02	TKANNO *1000U+00	CHARL • 10000+01	GAHV 00000	> H	6ANK .00000		
NTER LOR.	DE INTERIOR . SOO+DO DX AXIS . 200+00 DE LIM . 100+01 DE DELETE . SOO+02 DE	TION WILL BE .	JON WILL BE CONTROLED BY THE FOLLOWING VARIABLES . \$500+01 FF 1900+00	FOLLO#ING	VARIABLES.	P.M.P.	.500+01 F	100000	

		ITR									
PAGE S	-	SHOCK ANGLE	00000•	00000•	60000	• 00000	00000	00000•	00000•	00000•	
-	-	LOCAL GAMMA	.34853+04	.34853+04	+11914+01	.11914+01	• 34853+04 • 11914+01	+34653+04 +11914+01	11914+01	10+6111	
		GAS CONST.	. 19924+04	.000000	+000000 +0+2441	+00000	+000000 19924+04	.00000	19924-04	.00000	158
		THETA TEMPERATURE	.50166+04	.50166+04	900000 90105*	.00000	,00000	.50166.04	,50166+04	.00000 .50166+04	RESULTS TORUZ
	CONSIDERED	DENSIIY.	.10100+01	10100+01	10-10101	.10100+01	10100+01	10-10101.	10-10101.	10-101010	HOHENTUM INTEGRATION RESULTS
CASE NO.	CALCULATIONS CONSIDERED	PRESSURE	.10076+04	•00000 •10076+0#	.10076.04	.00000	•00000 •10076+04	.10074-04	•00000• •10076•04	, 400000 , 10076+04	HOMENTO
	GASEOUS CHECK CASE WITH FREE MOLECULAR	RACH ANGLE	.11867+00	.12780+00	.13693+NQ .81931+D2	.14606+00	. 15519+00	.16432+00 .81931+02	.61931+02	.18257+0U .41931+02 .170473+03	
	K CASE WITH	DSCHIP - MEGINE	- CCUTIN	- CCNTIN	The Live Contin	- CONTIN	CONTIN	- CONTIN	INPUT - CONTIN	RATE IS	
	US CHEC	DSCHIP	E O G K	INPUT	Indel .	INPUT	TOUNT BI	INPUT	INPUT	21 INPUT THE MASS FLOW	
	GASEO	L:NE POINT	Ŧ.	51	•	17	61	6-	20	ZI THE MA	
-		L: NE	. -	-	1 2	3-25	7	-	-		

NOTES: (1) Typical printout for the nozzle throat startline data surface. (2) Some points have been omitted for demonstration purposes.

Table 3-8 (Continued)

-		† 			CASE NO.	-				PAGE 9	: :
	GASEO	JUS CHE	GASEOUS CHECK CASE WITH FREE	FREE MOLECULAR	R CALCULATIONS	CONSIDERED				-	:
LINE	POINT	DSCRIP	P = REGIME	MACH ANGLE	PRESSURE	DENS11Y	THETA IEMPERATURE	ENTHUPY GAS CONST.	VELUCITY LOCAL GAMMA	SHOCK ANGLE	1 -
0~	7 1	HALL	WILE CERTIN	418271+00 64542+02	\$0+66006*	+11075+01	, 15560+01 , 49256+04	19911461	.37900+04	00000•	;
=	- :	# ALL	- Centla	.00000 .81931+02	.11647-01	10100401	.50166+04	*000000	.34853+04	00000•	İ
=	7	WALL	CONTIN_	+18274+0U +63705+02	.89256+03	13126-01	.17219+D1 .49180+O4	+0+01661*	+38149+04	00000	ì
71	-	WALL	- CONTIN	.0000u	.12812-01	10100+01	.50166+04	.000000	.34853+04	• 00000	
3-25	2.5	WALL	- CONTIN	.62925+02	.88438+03	•11230+01 •13026-01	*18867*01 *49106*04	+0+0164T+	10+6+611+	00000•	
8	-	WALL	- CONTIN	.01931+02	13977-01	10-1010101010101101101101101101101101101	.00000 .50166+04	.000000	.34853+04	00000•	
	7	WALL	CONTIN	.62194+02	. 13Q65-01 . 8/644+U3	.11305+01 .12928-01	+20505+U1 +49034+U4	000000	.38615+04	00000•	- 1
-	-	MALL	* CONTIN	+000000 +81931+02	15141-01	10-110101-01	.00000 .50164	.00000	.34853+04	00000•	
=	21	44.	WILNOS -	• 8285+00 • 61505+02	.86870+03	.11378+01	.48963+04	400000 000004	• 38838+04 • 11954+01	00000•	
51	-!	WALL	- CONTIN	.000000	.16306-01	10100001	.501000	*000000	+34853+04	• 00000	
. 15	7	WALL	* CONTIN	. 18289+00 +60852+02	.86115+03	11450+01	.48493+04	000000	+39057+04	00000•	1
-	-	WALL	NILPOD .	.0000u	10-17+71.	10-10101+01	.00000	.00000	+34853+04	•00000	
•	21	WALL	- COUTIN	• 1 HZ93+00	10-95191	11520+01	,25360+01	00000	,39272+04	00000•	

NOTES: (1) Typical printout for a data surface inside the nozzles, (2) Some points have been omitted for demonstration purposes.

Table 3-8 (Continued)

*

7

<u>~</u>

S

S

00000-

.12765+01

.19811+04

.18529+04

.41713+01 .19422-03

.30546+41

10+60564.

• 49595+UU • 13819+92

INTER - CONTIN

=

000000

•00000

+0+84204 112764+01

+0+11861*

000000

10+07278. *18570+04 00000

.12761+01

+19811+04

.00000

,94370+01

.41571+31 .19786-U3

,30397+01

.59260+0Q

- CONTIN

INTER

£ 1

106

يوس

*13841+92 .54451+30

- CONTIN

INTER

12

106

F0-11561. .41652+01

.3047401 10+11005

SUPERSONIC FLOM
CASE NO.
BASEBUS CHECK CASE ATTH FREE MOLECULAR CALCULATIONS CONSTDERED
R X MAGLE PRESSURE
.13752402 .30900+ .13752402 .47962+U1
.49924-01 .30496+01 .13756+02 .48068+01
.99857-01 830885+0
.14975+00 .30867+U1
*19958+00 *30842+0 *13765+02 *46255+0
.24935+00 .30H10+0
.29901+00 .30770+01 .13774+02 .48470+01
.34854+00 .30724+01 13781+9248632+01
.39799+00 .13790+02 .48847+01
.44705+00 .306 2+0

NOTES: (1) Typical printout for a data surface at the nozzle exit plane. (2) Some points have been omitted for demonstration purposes.

ITR

	1		1 1 1 1 1 1	CASE NO.			1		PAGE 34
,	GASEU	GASEUUS CHECK CAJE AITH FREE HÖL	FREE HOLECULAR	R CALCULATIONS CONSIDERED	CONSIDERED				
INE F	1410	LINE POINT DECKIP - KLUINE	HACH ANGLE	PRESSURE	DERSIT	THETA	ENTRUPT GAS COUST.	VELOCITY LOCAL GAMMA	SHOCK ANGLE
90	2.2	PRESENT COLLIN	.1965C+01	10+67805.	.44874+C1	.19590+02	.19811+04	. \$2063+04	00000
106	13	23 PHNING CONTER	.1000J+01	,30987+01 ,12887+01	49873-61	24160+02	000000	. 13011-01	00000•
904	7	PRESENT CONTIN	10-00001+	.30987-01	.23452-04	.28773+52	+0+11461.	13210+01	00000
9073-	52	PH-NH - C - 111	16700040	.30987-01	. 14163-04	,33360+02 ,83512+03	,00000.	, 96339+04 13210+01	• 00000
260	2 6	PRINCE CONTRA	10-033311	.30987+01	10-19022.	+37951+02 +A9887+03	.00000	+0+58464.	00000
901	3 7	ALVERT A CONTRA	10.20001.	30V87-01 314V92-01	+ + 395/-05	.42541+02 .57365+03	19611+04	13210-01	00000
001	87	AT TO DETECTE	. 1 000-01	.13972-01	.Y0661+31	.47131+02 .45991+03	+000000 19811+04	. 13210+01	00000•
901	29	PARTHR - COSTIN	10.0000.1.	. 30987-01	+10361+02	.35802+03	+0+11941+	+10030+05	00000
100	30	PRE-MR - COULTA	10001-01	.30987+01	.12055+02	.56311+02 .26833+D3	.19911+04	*10102*05 *13210*01_	00000•
901	5	NTIF DO - MHINNA	.100001+01	.37697-03	+14370+02 +14332-06	,60701+02 .17117+03	+0+11961* 00000	10164+05	00000
901	32	PRN-MR - CC ITIN	10.45656	• 30987+01	17735+04	.65491+02	000000	10216+05	00000•

NOTES: (1) Typical printout for a data surface contining a Prandtl-Meyer Expansion. (2) Some points have been omitted for demonstration purposes.

Example problem 2 is a continuation of the flowfield analysis begun in example problem 1 and is subject to the following stipulations:

- 1. The analysis is to begin at the nozzle exit plane and is to utilize the startline generated by example problem 1.
- 2. Free molecular calculations are to be considered, and
- 3. The gas properties are to be read from cards.

Table 3-9 presents first a flow chart and then a listing of the input data for the specified problem. Table 3-9a presents a listing of the pertinent solution.

Table 3-9
REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 2

^{*}If gas properties are input on tape (ICON(1)=2) Cards 9, 10 and 11 are not required.

Table 3-9 - (Concluded)

72.00		•	-		_	1		
מוש)	• •	ı,		•	~			•
Cards b	, , ~	0200	J			01 • 7 • 7 • 7 0 0 0 •	1000 1 000 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £ 0 £	0000
	'1						100c	
Card 8	۲. ت	ĵ			Enc	· •		
Card 9) • •		1					
	ن •	450.47		1.1778	1, 00,	124.40		
	1.0	076.740	0,	1.1711	30.5200	09.361		
	1. /40	000.07	0.0	1.4212	0. € C. ≯t	064.47		
7	101.5	Z	o n	1.2004	3747.t	12.240		
Cards 11	2.136	25.00%	7.0	1.20.47	36 79.44	6.1241		
	6.416	25.041	,1	1.2544	2006.2	3.0621		
	3.464	25.0.1		1.2376	24.00.0	1.42245		
	/ CO • •	25.01	, 1,	1.2/21	1251.4	.4003		
	4.304	25.071	٦.	1.2019	1765.0	• 450		
3 -	4.700	10・07	-1	1.62744	1401.	.1620		
- 26	0000000-	000	. 38, 56.	32,300+01	•4255560+01	• 2000000	• 0000000	0500000•
63	*J19708		. 1690.	3631712+01	.44534140+91	*8247440+00	.0000000	0000000
	20KCO 1 •	00+720) ひとりひい	10+7000625	4<20000001010101010101010100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000	• i bosco 1 5+0 i	0000000	0000000
	• 4 15 B # 8	₹85±C0	. 2867	10+010+78	• 4252460+01	• < 4 7 < 5 < 4 0 + 0 1	0000000	0000000
	.CC77	77:56 = +00	07200	3220302401	•4col340+01	. 5670767+01	0000000	0000000
	£0040	00+480	6720.	10+0+067%0	10+1606404.	•4163993+01	• 6000000	3790000°
	. 5112	2162+00	1 601 76 .	7/5+01	• 464 (967+01	•490701c+61	• 000000	0000000
	·3527	714 2+00	T+T28 •	10+01	• 4245415+01	506 374 36 + ()	• 000000	2000000•
Cards 19a	~	082+00	7/06000	122+01	•4446690+01	10+67,697,691	• ೧೯೯೮/00	0000000
	C000+	00+8850000+	760.	10+05670-8	•4637666+C1	 72.544.55±01 	0000000•	0000000
	7510.	072+00	10 t 10 +	31 3282)+C1	•4031737+01	• 75645,43+01	• 0000000	0000000
	7 (0000 -	152+00	.5180	51864/1+01	•466234401	•60000000+01	• 0000000	00000000
	.015371	00+617	.314)	314.)213+01	.42141c/+01	10+0403156.	• 000000	0000000
	:020r;•	0921+00	.31/20	£255+01	.4400015491	10+1196566.	0000000•))))))
	• /13713	132+00	. 51634	31654,5+61	4175107401	• 100 /054 +04	0000000•	0000000
	./olo3	×34+00	• 515410	107401	•4105007+01	•11colot+6c	• 0000000	0000000
	407 YOU.	00+040	+ 2144	333+01	.4101100+01	11705/7+04	0000000	• 0000000
	€09746.2	.≥a+00	6:1:0	3/1/+C1	• 41 /co) 34+01	* 10 10 JUSE + 62	0000000	• 000000
	· 104 J37	370+00	• 3126:	5+7+01	10+650/71**	• 1.340 /46+52	96000000	00 00000
	th 2 •	00+2265	11116	1.44+0.1	•4176303+01	7.+64.16.29:•	• 000000	0000000
	00000 ·• 7	0	0 FUS .	7+3+01	•4175751+01	*120000ct*	05500000•	UNDUGNU*
	100	-100	`	· , • _	3• €	·07		
Card 21	ن • •	•	7	• 1		•		
	1	``						

Table 3-9a EXAMPLE PROBLEM 2 PERTINENT SOLUTION

SUPFISSONIC FLOM ANALYSIS USING THE LUCKHEED-HUNTSVILLE MULTIPLE SHOCK COMPUTER PROGRAM

CASE NO.

PAGE

ECK CASE #17	H FREE	MOLECULAR (CALCHLATI	GASEOUS CHECK CASE WITH FREE HOLECULAR CALCULATIONS CONSTORNED	 					
		212	5	RUN CONTROL ICON(%)	PAKAMETERS LCON(S)	1 CON (&)	1 (2) (1)		1CON(9) 2	
1 66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 1 NO	_	1CON(12)	1000(13)	10001	1 CON (15)	151	1604(16) 100	
CALCULATIONS ARE IN ENGLISH UNITS MITH THE B		er L	×.	MITH THE BLX COORDINATES IN FEET	N 7:EB7					
FLOR FIELU DATA WILL NOT MRITTEN ON TAPE	N ON TAPE									
178ANS		# 000 ·	90	UPPER EQUNDARY C C noooo		0 •26795+00 •00000	F •16969•00	00+	# A A A B D D D D D D D D D D D D D D D D	
4 A 178245 1 000000. 0		4000	9	LOMER BOUNDARY C noggo		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00000•		**************************************	
TAERE ARE O PARTI	ARE 0		ر. در 3	SPFCIES PRE	PARTICLE SPECIES PRESENT IN THE GAS-PARTICLE HIXTUPE	GAS-PARTICL	E MIXTUS	la!		
THE FOLLOWING GAS PROPER.		ROPer	7 1 5	S IN ENGLISH UNITS AR Real gas properties	GAS PROPERTIES IN ENGLISM UNITS ARE FOR IDEAL GAS Real GAS PROPERTIES	OR IDEAL GA	۷n			
,000 0.										
ر د م0000	>			R	۷ 1	-	•	œ Q	VIS	t
• 0000		• • •	.20n1+0+0+			+0-00081. +0+		.00000	•00000	.00000
		•	.19925+64					00000.	.0000	000000
		•	*0 + 0 + b 6 i •					00000	00000	00000.
15+04	15+04	•	.19020404					10000	00000	00000.
	02+64	•	.19813+04					000000	•0000•	00000
		•	. 19811+04		+0+296840+			• 00000	.000	900000
77+04	77+04	:	.19811-04					•00un	₽000 °	5000C*
43+04	43+04	•	.19811+04			10+ 409∪ 9• 4 0 +		000000	@ @	3 33333.
1. HO+89H14.	+0+89	:	.19811+04	+0+ +12819+01	h0+96741+ 10+	:0+c0n9F• +0+		.0000.	00000	00000

FL0.8

Table 3-9a (Continued)

SUPERSONIC FLOW ANALYSIS USING THE LOCKHEED-HUNIEVILLE MULTIPLE SHOCK COMPUTER PROGRAM

			FASE	1 .ON 3					PAGE	C4
64SE0U	GASEDUS CHECK CASE SITH FREE	2	LECULAR CALCULATIONS CONSIDERED Real Gas Pro	TIONS CONSTDE	STDERED	<i>y</i>				
		H-TOTAL				i I				
		\$	>	G ac	GAMMA	b	•	Q.	\$13	•
		•	93361+04 .198	.19811+0+ .129	. 129444611	.14814+04	.18003+01 .0	000000	00000•	
				51	STARTILG L	LINE INFO				
	œ	•	I	⋖	v	MACH ANGLE	č.			
	00000		442555+n1	00000	.0000	.13591+02		00000		
	10-11977-01	.32320+	.42541+01	.8249440n	• ១០៸៸០០	•13595+02	•	•0000•		
	*10396+U0	•323n9•	.42533+u1	.16503+01	•00000	.13598+U2	•	0000a•		
	•15590+00		.42524+n1	.24726+01	• 00000	•13601+U2		ponna.		
	•20/77+00		.42513+ul	10+/0625.	000.00	•13675492		00000		
	• 25955 • Unit		. 42498+n1	• 41031+01	• 000000	13609+02		000000		
	•31122+00	in+n9156+ 60	.42479+n1	16+070491	001100	•13616+02	•	00000.		
	.35271+03		10+6666	.56994+01	.0000	•13024•JZ		00000		
	•41401+6U		.42420+11	10+02249*	•00000	.13635+02	•	<u> </u>		
	• 46565+39		.42376+n1	.72345+01	• 00000	.13649+02	•	00000•		
	+51577+33		.42317+n1	10+94461.	•00000•	.13549+02		00000		
	€0+009+03+		.42239+n1	.86586+01	•00000	•13695+0 2		00000		
	• 61587+US		.42141+01	.93123+01	•00000	•13727•02		00000.		
	**************************************		.42031+n1	.99397+01	• 00000	13764+02	1 3 • cococ	000000•		
	+71372+10		.41931+n1	•10<76+02	• 00000	13797+⊍2		00,000		
	•76189+63	10+2+516+ 00	.41858+n1	11251+02	•00000	13622+⊍2		100000		
	• 40975+03		.41812+n1	11967+32	• 00000	13017+∪2	•	000060		
	685742+03	10+61816+ 01	.41785+n1	•12719+02	00,100	1384610		nanan•		
	00+66+06+		.41770+01	13467402	00°00•	13:151.07		30000.		
	• 95246+00		.41763.nl	•14232+02	90000	•13854•U2	•	000nn•		
	10000011	.30987.	.41757+01	•15n00+02	00000	13555408	35 • cauno	00:00 0 •		
				RUN CUTOFF	INFORMATION	70				
		UPPER ROUND	UNDARY				LONER BOUND	- W -		
e	.10000+03	X#10000+03	3 THETA.	•00000	e Oz	• 00000	X* .20000+02)2 THETAS	. • • • • • • • • • • • • • • • • • • •	*05
		V18N0 •10006+03	ROTNO .50000+82	TRANNO .20000+02		CHARL • 10000+01	00000°	000000		
	THE INTERIORS .300	THE MESH CONSTRUC *300+01 DX ANISH	RUCTION WILL BE CONTROLED BY THE 100+01 DL LIME 101+01 DL	CONTROLED BY THE		FOLLOWING VARIABLES Deletem .500-02 D	VARIABLES	10.005.	.500+00	0
,)							1			

Table 3-9a (Continued)

SUPERSONIC FLOW ANALYSIS USING THE LACKHEED-AUNICAVILLE MULTIPLE SHOCK COMPUTER PROGRAM

PAGE

		u	0	ပ	7	9	0	c c	O	•	0	•	0	ဂ
	SHUGH	~ noo o •	0.00 00∙	• • • • • • •	ີ່ ເລຍ ດ•	• 0000)	(8500•	06100•	000 00•	1.000 0 •	• 00000	. 00000	00000•	000 00•
	VE.OCTIV	.90499404	.96×33×64 .32772+61	.96337-0-	.90560+04 .12768+01	.90343+04 .12768+01	.90334+04	.9329+04 .12767+01	.96325-04	.92165+89 .12465+81	.93888+04	.95494+04 .12944+01	.12944+01	.98375+U4 .12944•01
	ENTRUPY GAS CONST.	.19811-04	• 09030 • 1981 1+04	+0+11841.	.00030	.19811+04	.00000 .19811+04	.1961.	.00000	.00000 .19611+04	.19811+04	.00000 .19811+04	.19811+04	*0+11861*
	THETA Temperatore	.99397+01 .18318+04	.10576+62 .18384+64	.11251+62 .18433+64	.11967+02	.12710+62 .18481+04	.13467+02	.14232+02	.15000+02	.19869+02	.24750+02 .14247+04	.29624+02	.34499+02	.39374+02 .92555+63
CONSIDERED	DENSITY	.42031+01 •18630-03	.41431+01 .18874-03	.41638+01 .19057-03	.41812+01	.41785+01	***770*01 *19276-03	.41763*01 .19295-03	.41757+01 .19309-03	.45075+01 .12542-03	.49119+01	.53333+01 .49631-04	.58148+01	.63717+01 .18139-04
CALCHEATIONS	X PRESSURE	.31723+01 .4405n+01	.31435+01	.31642+01 .48127+01	.31443+01 .44701+01	.31339+01	.31728+61 .49n38+01	+31111+01 +49100+01	+30089+U1 +49+44+01	.30989+UI .26278+UI	.30989+01 .15766+01	.30989+01 .85163+00	.30°89*01	+30989+51 +23197+00
FREE MOLFCULAR	R MACH ANGLE	*64508+50 *13764+02	.71372+70 .13747+62	.74189+00 .11822+02	.87975+00 .13837+02	.85742+50 .13846+02	.96499+00	.95246+00	.19856+01 .13856+02	.12912+01	.11747+02	.10807+01 .10807+02	•15000+01 •99026+01	.100000+01 .90295+01
GASEOUS CHECK CASE MITH	361936 + 414740	i PUT - CONTIN	INPUT + CONTIN	Iroct - Contin	INDOL - CONTIN	InPut - Contra	Caput + Confr	NILANOU 1 LOGA	Paper - Contra	PRESENT CONTER	PREST CONTIN	PRN-18 + CONTIN	PRESTA CONTIN	PARILY I CONTIN
CASE OU	1510a 351.	-	چ. 		1 17	œ -	- 266	1 20		1 22	1 23	1 34	1 25	

NOTES: (1) Typical printout for a startline data surface containing a Prandtl-Meyer Expansion. (2) Some points have been omitted for demonstration purposes.

And the second s

SUPERSONIC FLOW ANALYSIS USING THE LOCKHEFD-HUNILYILLE MULTIPLE SHOCK COMPUTER PROGRLM Table 3-9a (Continued)

Theira	SASEC	JUS CHEC	K CASE #17+	GASEOUS CHECK CASE #17H FREE MOLECULAR	CALCULATIONS CONSIDERED	CONSTDERED					
INTER	LINE POINT		4 16 18 18	R MACH ANGLE	X PRESSURE	M DENSITY	THETA TEMPERATURE	ENTRUPY GAS CONST.	VELOCITY LOCAL GAMMA	SWOCK ANDER	<u>y</u>
29 INTER - CONTIN .17684-51 .31756-01 .49804-05 .63535-03 .19611-04 29 INTER - CONTIN .1753-01 .31480-01 .688839-01 .53898-02 .19611-04 30 INTER - CONTIN .17612-01 .31499-01 .17100-02 .54233-05 .19611-04 31 INTER - CONTIN .17612-01 .31499-01 .1777-05 .40486-03 .19611-04 32 INTER - CONTIN .17698-01 .31415-01 .1665-02 .40486-03 .19611-04 33 INTER - CONTIN .17698-01 .31427-01 .13757-02 .68408-02 .00000 34 INTER - CONTIN .17698-01 .31427-01 .14567-04 .22470-03 .19611-04 35 INTER - CONTIN .17698-01 .31427-01 .14567-04 .22470-03 .19611-04 36 INTER - CONTIN .17698-01 .31427-01 .14567-04 .22470-03 .19811-04 37 INTER - CONTIN .17698-01 .3144-01 .2190-02 .73254-02 .00000 38 INTER - CONTIN .17698-01 .31744-01 .2190-02 .7354-02 .00000 39 INTER - CONTIN .17698-01 .31744-01 .27633-02 .7817-02 .00000	62	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CONTIN	.10613+01 .8n889+91	.31427+01 .10n68+00	.7;067+01 .95186-05	.44254+62 .76883+03	.00000 .19811+04	• 19788+04 • 12944+01	303 00•	•
29 INTER - CONTIN .110753-01 .31480-01 .24233-05 .51393+03 .10011-04 .64628-01 .17134-01 .24233-05 .51393+03 .19211+04 .00000 .00000 .100127-02 .100777-05 .40486+03 .19211+04 .00000 .00000 .10077-02 .40486+03 .19211+04 .00000 .00000 .10077-02 .40486+03 .19211+04 .00000 .00000 .10077-02 .42748-06 .30837+03 .19211+04 .00000 .00000 .10077+01 .31427+01 .13757+02 .68408+02 .00000 .19211+04 .00000 .00000 .10076+01 .31136-01 .14587-04 .22470+03 .19211+04 .000000	2 28		- CON112	.10686+31	.31756+01	.75085+01	.49073+02 .63535+03	.0000c	*10095+05 *12944+01	.0000	*
30 INTER - CONTIN .11AB12-01 .315,99-01 .101000-02 .54729-02 .00000 31 INTER - CONTIN .11AB4+01 .315,15+01 .11665+02 .40486+03 .19811+04 32 INTER - CONTIN .11A90A+01 .314,27+01 .13757+02 .6840B+02 .00000 33 INTER - CONTIN .11A90A+01 .314,27+01 .16768-02 .2470+03 .19811+04 34 INTER - CONTIN .11A90A+01 .313,36+01 .1670B+02 .73254+02 .00000 34 INTER - CONTIN .11A97+01 .31244+01 .21190+02 .78110+02 .19811+04 35 FREEAD - CONTIN .11A97+01 .31244+01 .21190+02 .78110+02 .00000	5.6	INTER	- CON112	.64628+D1	•31480+01. •17134-01	.88839+01 .24233-05	.53898+U2	.00600 .19811+04	.10199+05	2000 0 •	•
31 INTER • CONTIN • 110864-01 • 31515+01 • 111665+02 • 63566+02 • 00000 • 49174-01 • 18136-02 • 42748-06 • 30837+03 • 19811+04 32 INTER • CONTIN • 110908+01 • 31427+01 • 16708+02 • 22470+03 • 19811+04 33 INTER • CONTIN • 110976+01 • 31736+01 • 16708+02 • 73254+02 • 00000 • 34302+01 • 31736+01 • 16708+03 • 15406+03 • 19811+04 34 INTER • CONTIN • 110976+01 • 31744+01 • 21190+02 • 78110+02 • 00000 • 27032+01 • 31701+01 • 20633+02 • 78170+02 • 19811+04	30	N N N	- CONTIN	.10812+01 .56815+01	.31599+01 .60n27-02	.10100+02 .10777-05	.58729+02	.19811+04	.16292+05	••••••	*
INTER - CONTIN .11090A+01 .314.27+01 .13757+02 .66440B+02 .000000 INTER - CONTIN .110976+01 .31336+01 .1670B+02 .73254+02 .00000 INTER - CONTIN .110976+01 .31744+01 .21190+02 .73254+02 .00000 INTER - CONTIN .110976+01 .31744+01 .21190+02 .78110+02 .00000 FREERD - CONTIN .1109776+01 .31744+01 .20633+02 .77877+02 .00000	ĩ	INTER	• CONTIN	.10864+01 .49174+01	+31515+01 +18136+02	.11655+02 .42748=06	.43566+02	.00000 .19811+04	.10373+05	•60000	*
33 INTER - CONTIN .117946+01 .31136+01 .16708+02 .73254+02 .00000 .34302+01 .85775-04 .41470-07 .15406+03 .19811+04 .34 INTER - CONTIN .117976+01 .31244+01 .211900+02 .78110+02 .00000 .27032+01 .31244+01 .20633+02 .78170+02 .00000	35		■ CONTIN	•10908+01 •41677+01	*31427+01 *45n95-03	•13757+02 •14587-04	.68408+02 .22470+03	.1981.	.10443+05	00000•	s)
34 INTER - CONTIN .11976+01 .31744+01 .21190+02 .78110+02 .000000 .27032+01 .11044-04 .83055-08 .96649+02 .19811+04 .35 FREERD - CONTIN .10987+01 .31701+01 .20633+02 .77877+02 .00000		•	- CONTIN	.34302+01	.31136+01 .85775-04	• 16708+02 • 40470-07	.73254+02	.19811+04	*10502*05 *12944+01	00000•	ú
35 FREERD - CONTIN .1 1987-01 .31201-01 .20633-02 .77877-02 .00000		INTER	- CONTIN	.10976+01	.31244+01	*21190*02 *83055=08	.78110+02	.00000	.10549+05	00000•	•
.10185+03 .19811+04		FREEAD	+ CONTIN	.10987+01 .27780+01	•31201+01 •13907-04	.20633+02	.17877+02	.19611+04	.10545+05	.0000°	*

PERCENT CHANGE IN MASS, MOMENTUM AND ENERGY NUMERICAL INTEGRATION FOR LINE 2 RELATIVE TO THE STARF LINE PERCENT CHANGE IN MASS FLOW IS # #-220844+00
PERCENT CHANGE IN MOMENTUM IS # 18840+04 ISP # #-19527+01
PERCENT CHANGE IN ENERGY IS # +000000

(1) Typical printout for a data surface in the exhaust plume.
(2) Some points have been omitted for demonstration purposes. NOTES:

Table 3-9a (Concluded)

SUPERSONIC FLOW ANALYSIS USING THE LOCKHEFD-HUNT-VILLE MULTIPLE SHOCK COMPUTER PROGRAM

CASE NO.

SASEGUS CHECK CASE AITH FREE MOLECULAR CALCHLATIONS CONSIDERED

53

PAGE

CINE POINT		05CRIP - 3EGIME	MACH ANGLE	PREASURE	DENSITY	THETA TEMPERATURE	ENTACEY GAS CONST.	VELOCITY LOCAL GANA	SHOCK NOTE
5.	1475#	24 147EK + CONTIN	.11712+01	.32324+01	.99553+01 .118:7-05	.57858+02 .41599+03	.19811+04	.10282+05 -12944+01	∍ 0 000•
30	1 N 7 E R	30 INTER + COLITY	.11898+01 .5778+01	.32158+01	.11297+62 .52584-06	.32776+03	.19611-04	.16357+05	-0655 0 -
-	31 INTER	- CONTIN	104040114	.31987+01 .71n57-03	.13038+02 .20727-0	.66012+02 .24919+03	.00000 .19811•04	.10423.05 .12944.01	6673 3.
32	32 INTER	\$ 13 3 4 4 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	10+45611+	.31824+01 .21450-03	.12576+02	.69344+02 .20930+03	.1961.	.10450405	0000 •
13	33 INTER	₹ Ы Ы Ы	.12013+91 .39782+01	+31456+01 +43479=04	.14785+02 .26778-01	./3346+U2 .15280+U3	*00000 *19811*04	.10-03-05 .16-07-01	∪09 09•
7	# N T E R	34 INTER - FREE M	.12073+n1 .31529+01	.31415+01	.18182+02 .51737-08	.78371+02	.00000	.10545+05	003 00•

PERCENT CHANGE IN MASS, MOMENTUM AND ENERGY NUMEDICAL INTEGRATION FOR LINE 6 RELATIVE TO THE START LINE PERCENT CHANGE IN MASS FLOW IS # *161987+01 PERCENT CHANGE IN WOMENTUM IS # *18485+04 ISP # *.23162+01 PERCENT CHANGE IN EVERGY IS # *000000

NOTES: (1) Typical data surface containing points in the free molecular regime. (2) Some points have been omitted for demonstration purposes.

This problem analyzes a two-phase chemical equilibrium flow field with the following stipulations:

- 1. Free molecular flow calculations are not to be considered.
- 2. The gas properties are to be read directly from a data tape mounted on FORTRAN unit 10.
- 3. The start line is to be calculated internal to the program.

Table 3-10 presents first a flow chart and then a listing of the input data for the specified problem. Table 3-11 presents a listing of the pertinent solution. Table 3-12 presents a listing of the input data required for creation of the thermodynamic gaseous properties data tape using the modified TRAN72 computer program (see Section 2 for details).

Table 3-10 REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 3

^{*}The gas properties are input on tape. Therefore, Cards 9, 10 and 11 are not required.

Table 3-10 (Concluded)

	11510	.13058333														
	25 1 1 52224999•14672105	-c.1796085.74059416 1000. 1000.		•06	•65		•	•		250•					27 - ENG 67	
	2 - 1 • 0	0 · 1 · ·	4 2	100•	• 9			સ્	4 0	250.					.32443	0 - XX - 0 1
NDZZLE	1 0.0	5.1560945 2.1824232 -1.0	MKS	0.0	•001			ر.	3 . 2	250•			<u>9</u>		1858.72688.340016	# B T C
SEP MOTON	3 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.1560945		0.0	• 15	-1		• 2	2•5	250.			1ENG		1056.726	"OC
SPACE SHUTTLE SEP MOTOR NOZZLE	25.00	1.0	PC=1800	-1000-	• 02			•2	1.7	250•			OF STATE		1358.89	TH: 0.00=01H
SPA	N 0	o - o o	SEP PROP I	10001	•03		•03805	. 1	1 • 1	250.			ALZO3 EU.	-		SEND
Cards 1-3	Card 4	Cards 6	Card 8	Card 20	Card 21	Card 23	Card 24	Card 25	Card 26	Card 27	Card 28	Card 29		Card 31	Card 32	Cards 35 {
							2	2	71							

EXAMPLE PROBLEM 3 PERTINENT SOLUTION Table 3-11

·	5 1 1 1 1 1 M S 10 1 1	270N 8010H 035	71216						
,			-1						
		(1)403	ICON(2)		TEON(4)	PARAMETERS 1Cn ¹ (5)	TCON(6)	1504(7)	1COHIB)
		(6),00	1003:001	10021	100N(12)	1007(13)	1008(14)	1CON(15)	1CON(16)
į		0	25	-		C	0	0	11510;
	FLOW CATCOLATIONS ARE 14 ENGLISH THE FL. A FFELO NATE 111 SE RRIT	in English	L.	тн тиб а, х со	UNITS WITH THE A,X CODADINATES IN FEET II ON TAPE	1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1			•
1				c	TOPPER BIJONIOAR	0 k k v	6		XAX
	4 6 1 1 3 d A 4	٠		z :	1				1 4 7 7 4 0 1
		•		00+0+0515			10+00007*-	21796+01	00465042
	3		16+116254.	• cuono	00000		• 00000	00000	100001.
1	TYPE ITRASS	\$	*	G.	LONER BOUNDAR		o.	u	MAX
	2		10040	•00000	v0000•	0.	• 00000	000000	*1000U+04
			THE RE ARE	9	CHAMMER'ENTHALPY'#	# 19819+0A	9+DA TERTICLE	#1 × T URE	
		الم و 10	-	LOWING GAS PROPERTIES	TH'ENGLISH'ONITS'ARE'FOR REAL GAS PROPERTIES	NITS ARE'F PFDT1ES	AR SEP-PROP-PC#1800	PC=1800	
	-	1-TNTAL	# L 1+11 F.					***	
	ភ		æ	GAMHA		a	E	SIA	5
	-, (75,5+0	* F n 200	# C + T O K O - T	112039+71	+3+860un•	P0+00081•	4 .S7034+00		:
		* 1977 CCC.	!	į	,	101111101		!	
		P11771+114				.15000+03			
ĺ		100611070			ļ -	EG+COVOL:		Ì	İ
		. 6.6 5.47 + 17 "	10-11461		.77927+54	• 90000			
		*71778+94	ı	;	_ #3+52##2+	45000+02	į	1	
		.77242+04			+202:11+04	•180000			•
						1040007	110740400	An-16416	3077. CK

ĭ

Table 3-11 (Continued)

-	:		CASE NO.	AST HOL	: !			PASE
SHITTE SHITTER	SE'S MOTON NOZ	13.5	2	REAL GAS PROP	PEPTIES			
	H-TOTAL			;	:			1
S		or.	W W W W W	: - - - -	a	æ .	.F.1.	b :
+0+51571	i	10 4 1 6 6 6	7947	* 1 # 4 2 2 4 € 1 *	19400046.	.50760+00	40-00560.	. F7203+04
	F 10 4 1 5 1 5 1 6		, ;	12	kr.	-535F47D3	2D-5 (4D2.	
	#D+1+/9#,		13312+01	•8a245+83	30+00096.	.58277+00	*42702-06	C
	FG+75 x 6 : -	5[+1100	13413401		.18560+CD	_*60922400*	.3631:-68	+ 10 t
	40+24046.	+0+114cl.	•13600+01	.44519+03	. 18-0000 ·	.57207£30	.2358A-05	*C+60047.
# 3 + 5 + B		!				00+24263	117754-05	* * * *
	. 60819.	*19995+O4	11754101	. 4 4 3 7 + D 4	. NOOHO-112	001/07/06	7 (0)	4
-	. 31967+n4	190115+114	.11920+31	*43074*B4	.45254+62	00454055		
	40+05515°	+U+17461.	10+58151.	.34197+04	•16700+02	00+65185.		
	40941+092	40+61a91.	.12286.01	+31911+04	* 47£30+01	.59755+73	12754-05	n0+4//01+
	#C+341177	19012+04	173-7-01	+28012+P4	10+6640%	00+#2009*	40-62/11	FD+77-FL-4
	70.46	- C - C - C - C - C - C - C - C - C - C	12374401	.24537+34	. 2000,0.001	. 69719+00	19591-05	50+76651+
	50,400,000	*O+1::e	123772431	*3*574*84	. Achoa+10	.566942+00	.92375-06	. 15342405
		1001100	12850+01	11730+04	2656; +00	60772403	•7850a-05	. 2734 140
	101.00	+U+11001	1129401	*14472+D4	.16n00+n0	.58792+00	•63766-96	7256+3
		70+1-00+	10.090.1	.12333+04	_ 10-0000	.58718+00	. 90-68.09.	0
		70+11601	13316+01	.01555+03	10-00091.	.54320+00	0 - 6 + 0	10.91952
	#0.40	0 + 1 100	10451461	.7n177+n3	- Pennu-n2	<u>1</u>	•	*0++E464.
		٠.	10.66561.	FU+10: 44.	\$1.00081.	.57264+00	.23686-05	*O • i : 5 n / •
		-	L 645	T1ES	1			
H-TOTAL	•							:
24125+08	. 60							
	,	- CE	CAR:14	•	d	PR	SIA	ون د د
+ 0 0 4 7 6 9 v.B.	•							The Part of the Part of
	000000	+0+12061.		+2,1291+04	• 1 8000 • 0 •	00+00055	0010000	70+22-61
	40+0+C+0+	.19867+N4	11203210	44705C++	+10145+04	0.4//045	50-67571	V C 4 C C 4 C C
	.53037+F4	. 19A23+04		•342+C4	.34000+03	00.485585.	10100161	
	40-64564	+G+il:41.		+34663+C+	.18000+63	60+5+109.	50-5751.	
	704.	10012+84		.30455.D4	\$00000.	. 46,279+00	12501-05	5D+56#G1*
	PO+E / / " / "	*0+1 TUG1 *	12344491	*3+57AAK*	. 45600.482	.69017+06	11:102-05	.10370-03
	200	- G+ 1 1 6 6 1 ·	12378+01	.22587.04	1 HC00+12	20+69165.	20-25 7800	50.61601.
		#U+41804	_	.17727-04	16+600034.	.55495+00.	.32327-06	_
	2462		12080421	15.0354P4	.36AUU-101	_ 129551+00	90-61154	
	# 17 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	30+	*	0117.27.61.	10+60781.	•595nZ+AB	234-0	5.5.7.2.4 5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
								C+0000000
	2010	704	10.67211	10+180C6-	00.000000.	30+37565°	001-101-	

Table 3-11 (Continued)

			CASE NO.			1	1	P 4 G E
CE SHITTLE 3	3EP MOTOR 1972	715			l		-	
	H-TOTAL		œ	REAL GAS PROF	28-11-8-21-8-31-8-31-8-31-8-31-8-31-8-31		-	
· 8	.	κ.	GAMHA	, ► ;	a .	α α	317	. 5
\$3+CO+E\$	ָ ב ב	40+04+06	10+707-1	# C + # C # 0 # •	. APABBA + 9.2	. 48389+00	.17940-05	\$0\$17*05
	32426+P4	100	1 2 /	5737.0	556447	21254	1-7007-0	50+24291.
	# E + 6 m e L	+U+C9861*	10+3+00:	0195+0	*14900+H2	5024	20-0	*122P4+05
:	+0+21264	.19A2H+AH	117205491	.34762+04	Š	. 58410+00	3820-0	111185+05
	+ + + C - + + + + + + + + + + + + + + +	α	117393+01	.3061400	C	9829	.12552-05	.10448+05
1	. 7.53a+rl#	#U+01061.	117357+01	.26/155+04	10.00002.	, 66	1355-0	10405+01
	+1. (I L Ug .	+19-11-61.	117378+01	+2253C+N4	• 40000+00	\$59379+DO	90-02166*	• [0320+n5
	. A E. 5 + 2 + 5 + 5 +	1001 ·	127 36 + 121	-17744+04	-23667.90	503 65567	2755	PC+30608*
	*******	+0-11461.	112976471	.15943+04	•14€00+AA	199602+60	•75543-06	•88758 • 04
	# U+ 6+ 8 6 E .	+U+:1461.	112997+01	*3+129t1.	10-00bba•	.59619+00	• 66313-06	8005
	PU-54749.	+C+11861.	۲.	.92762.01	10-00021.	.59440+00	.47343-06	•
	*0400000	19811-04	13366+01	.78054+03	- 800\$0-US	. 29291+00	447294-C8	-78718+CH
	47148+64	196111991	10+09861.	1575+0	.1600u-n2	779	.26575-06	*75518+0+
21877+54				!				
	Α	٠,٠	GAMMA		۵	PP R	. 514	٠
41765+63								1
	00000	+U+59661.	.11858+01	- 53 83+04		ಸವಾಧ್ಯಕ್ಷ	8950-0	102070
1	•34056+04·	0+664	973	8497+6	.10166+04	5560	7769	12938405
	オンチャン マン・	#9+000667#	. 12164+01	+0+5ZV04+	*34000+U3	α.)	· ¬
	#U+12764.	#0+71ac:	.12253+D1	*36073+n4	•18FBG+13		0 - 2 - C T	20.23361.
	*47.540.40	+19411861.	117315+01	.31,20+04	-900030*62	.	0	<i>-</i> .
	.74774	*19012+34	10+55671•	*55018+0"	.45760,+02	.69123+90	11667-05	
	. A 71. 57 e. 14	BC+11561•	10487571.	H C + C 4 - C P +	Z0+60491+	99537+00	0.787.0	103184
	FU-nlarg.	*19811+C4	•12766+91	*18517+3#	• 40000401	00+17755) • 6 E	0 4 2 4 9 4
	+0+021.5H.	*9+11±6; •	10+05971+	*1455341*	פט	00+54868	7738-0	() () () ()
	90+156 F6.	*14011+04	10+52621.	10+10,511	•18000•D1	.55925+00	0-66-8	*C+16598•
	P. 95.755.00	+9+11461.	-13246401-	-6K+15275.	*36n00+n0		C = 2 /	041140
	#3+665-b.	hu+llus1.	13347+01	•	.19ron+13	00+11460	49-49A14.	904B+0
	#6+26106"	FO: 1 10/1.	134441011	23757	19-00035-	02+66245		
.58411+CA	000 a to	- PB+1+64-	11523+01	* 50° C3 + 84	. 80000+02	-47482+00	18225-05	- +21634+05
	# C + C - C + C -	40477076	437+	*C+18174.	45709102	.44755+00	•17343-05	50+85981•
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1, 6, 4, 1, 1, 1, 1, 1	11957-01	40401)44.	20+00091	7	50-62551-	*13CR6*05

Table 3-11 (Continued)

			CA UVAD					U V a
TE SHUTTLE	SEP MOTOR HOZY						-	
	H-TOTAL			REAL TAS PROF	PROPERTIES			
n		O _Z	GAMHA	•	•	æ	2,0	•
	+0+45674	+19+11461.	.12271+61	+31728+04	10+00004.	.59459+00	.12557-00	- 70P16+05
	.75 A 37 + P.	813+C	.12342+01	+0+1+18Z*	.000	90.1965.	18=0	51 Turs7 # 115
		*19P11+C4	.12377+n1	.23536+04	. ROEGO+00	.59558+00	0-1:	11224405
	. 87727+04	+0+11861·	+12754+01	*18580+04	.26667+00	. 59870+00	.85879-04 .78508-04	* * 91 P.15 + 04
	-11-15-22-0	******	Tilebauzie	202.0		00420000		70+00778
	40 + C + C + C + C + C + C + C + C + C +		174684714	#0+740#10*	10-00041-	00+51665	016764	
	30.040.	71.41.100:	13343	000	80000-02	538:0+00	42243-5	701790
	- +0+133+04	**************************************	3541+n1	511,750	.16000-02	0	-28031-06	.75812+04
		RE	AL GAS PURPE	ليا				
3+61961					• • • • • • • • • • • • • • • • • • • •	,		
5	^	œ	GAHMA	_	A .	PR	SIA	
	On Day	.20917+04	.11798.01	.54086+04	-1 8000 + 04	53040+00	-19346-05	15475+05
	+34537+B4	25	11911+	2	7+0	4593	.18188-05	+13715+05
	.55738+94	12.70	- 2	23	.16000000	*	0-01091	67117
	40+5Cuay*	۵		.37483+84	0 +000	•59535+00	.14627-05	*11008*05
	+110017.	.19913+04	10.	916	24.000066	. 6 h 1 4 0 4 H 0	0-482	50.5hyu.1.
	. 46-10544.	40+21461.	2	.28756+04	.45000+02	•60196+00	2030-0	50+66+01+
	*43575404	hù+llu61.	237	.24304+04	000	. 59704+00	10513-05	. 10327*05
	P0+74597+	+0+11661.	64	19119+04	.600000401	00+40049+	C	. 52428+04
	46-11116.	19911+04	6.4	117799404	0.000	.60159.00	P	.90137+0#
	1.6456 1100	0+116		•14307-04	+0000	.67746+00	0 - 0	-
	5+91+26	0110	13229	132+0	ត្ត១០+១	•60738+00	1232-0	C 4
	+41+B1+6+	0+11	325	0+10,	900	00.53.00	200	, , ,
6	50+51151.	*D*11:61*	13252+01	.54014+UJ	10-000.96	00.440.44.) 	
07676	10000	20145+04	11476401	#U+C6#15	800000+02	;	0	3857+0
	+4+6534f.	157+0	÷	* 0 + # 6 1 B + 0 +	C.	00	.176-3-05	04170
	54 145 + C4	10	11861+	10+ 2 ho 1 ho.	16000	!	D	2 + 0
		+19253+04	~	+37751+D4	• 90000+u1	00.	О	23+0
	_ #5+50F12*	+19A24494	112232+01	_ +33545+E4 _	_	00	C	ព្ធ៖
	+4+17177.	*194144Q#	~	*D+5+C02*	.20000-91	9886+00	0	0 + 0
	0+25260	0+218	.12373+91	5.6	*************	. \$37708+CD	.10600-05	.10337.05

Table 3-11 (Continued)

S	HOYOR HOZZLE	CASE NO.		TARE NO.			PASE
. 63				 - -		-	
. 63	H-TOTAL	X	REAL GAS PROPERTIES	EAT1ES			
	1	БАМНА	•	a.	<u>م</u>	377	
	1991	4 .12936+91	14981-64	10-00004.	•60325+60	.71785-06	+87357+04
70+07746*	1061.		10+652010	16-000-31	-50338+00	21,501-06	** ** ** ** ** ** ** ** ** ** ** ** **
•99139+04 •19138+05	19912+04 -05	4 .13319+01	.86491+03 .57364+03	• 40000-02 • 16000-02	•60275+00	•44317-06	***********
		NO E	RUN CUTOFF" INFORMATION	WATION .			!
	UPPER ROUNDARY				LOWER	LOWER BOUNDARY	
#X #U+00001* #0	*D*000CT**	THE TAM .00	• 00000	npucu.	•	1 20000010	20 e00035 2
3056115	R40175	THISNIC SEM.	**************************************	4	ACCM. FOEFF		
	11000011	.25000+03	:	!	.00000		
2	117093401	.25973+03			00006		
_ C	11-16052.	•25003+03	501.0n.		00000		
7	137798+31	+25090+03	•0000		• 00100		
.	# 40000 b	•25000+03	60000		00000		
9	16+66-59	• 25000) • 03	00C00•		narao		
ш я	PARTICLES (CONSTITUTE 1.41 P	1.41 PERCENT BY VEIGHT FLOW OF THE GAS-PARTICLE	1647 FLOM OF	THE GAS-PAR	RIICLE MIXTURE	W
3 H	SHOT BUDITY BAY	INDIVIDUAL PESCENTAGES VRZ . 10 .26 .20 .20 .20 .20 . 10 . 10 . 10 . 10 . 1	NTAGES IRE PY TABLE ATL	. 10 . 26 . L BE READ 1'	20 . 20 . 20 . 21 . 21 . WITH ENGL!	ST UN: TS	
		31211E84	PARTICLE TEMPERATURE-ENTHALPY TABLE	EUTHALPY TAP	:: :::::::::::::::::::::::::::::::::::		+
3SAH9	CHANGE D	ATA TNILITE .4	*418853404 450L10*		.346197+98 HL10010m	0# .465207+08	

Table 3-11 (Continued)

	CASE 117.	A S E 117. 1		97.0	
STOCK SHUTTLE SEP MOTOR NOZZLE					
		PARTICLE DRAS	STABLE		
_	-	X F:	DRAG COEF		
	-	50000	. Inand+ai		
	7	10+004214	.10000+01		
	•	112555+01	1000001.		
		10+00421+	10-010-1		•
The second secon	5	10+05921+	1000001.		
	•	15820+01	10496761.		
		10+(5061*	.11419+01		!
	0	.25133+91	.1224C+01		
	-	.31500+01	.13150+01		
	1.0	10+00066	19120+01		
	-	10.00:03.	.15170+01		1
	1.2	.63139+01	16290+01		
	13	10.00562.	.17450+Gį		
	-	.163ur+02	. 10748+01		
	5 :	. 1259C+C2	. 10+04202*		
	91	15427+72	.71849+9 <u>1</u>		;
	11	19950+02	+23640+G;		
	6-	20+00125	.25550+01		į
	61	.31600+02	10+5576.		
	2.0	. 39 Aliy + 0.2	.30000+01		
	. 21	20+03105°	. 525,20+01		
	2.2	.43163+33	.32527+0;		
	2.3	. 79580+02	13240+01		
-	4.6	.13000-03	441550+01		
**************************************	25	.31600+03	10+00354		
	2.6	.100000.04	€0+0000€*		
	27	+0+11601.	.2rG>0+02		
		1000001	さい 十分 しゅついき		

Table 3-11 (Continued)

		GAS	AS-PARTICLE SE	ON SOLUTION			•	PAGE
CE SHUTTLE SEP MOTO	OR NOZZLE						-	
			GASENUE ST	ARTIN				
ac .		*	THETA		MACH ANGLE	SHOCK ANGLE	H-TOTAL	1
		-	0000	0+1+0	. 44004+02	00000	19706	
S	.12843+00	-	.45764+CD	.57068+02	. 44B91+02	00000	19707+3	
1:441-0			04+08916*	120+0	. 44B53+02	.000n	19707+08	
- 0 7	24174	1 + 1	13779461	.57205+02	20+647+4.	00000	19707+0	
10-146.6	127941	14717401	18424411	325+0	.447nn+D2	• 00000	0	
2,157-	127651	19+44511	.23126+C1	.57479+02	. 44505+02	• 00000	19707+0	:
.3 - 982 - 01		.147a1.	.27497+61	\$7670+02	.44445+02	• 00000	19708+0	
10-1874	124844	14373401	.32737+61	.57A95+02	.44279+02	00000	_	
CIENCIA.	24374	1417	747	.58157+U2	D+7×0	.0000	.19709+0	
10-67+78	12581+	7	42731+11	58457+62	C	00000	0	
	12510+	+ 1 4 4 9 4 +	6	.58795+02	43674+02	•	.19710+0	
10-11.4.	2445	474	3.76	. 59177+02	347+0		19711+08	
C-77059	12375+	6747	781	9591+0	43045340X	•0000•	19712-08	
17.795-01	12793	1473	13-135199	. ADD52+62	42724+02	·	19712+0	
10-26910	12204	[84].	10+64406.	. ABSER+32	.42349+02.		19714-08	
197496-01	12109+	2041.	14654411	.61117+02	41997+02	• noon	0-51661	
10-V82.6.	*1295P+89	-150	. A3145+01	.41715+02	.41544+02	•	9716+0	
.1015p+0n	÷	. 1524	. 92934+r1	.62654+112	4001 a+02	00000	0+á1/	
F0+36+31.	.11785+On	-	10+51166.	. 43082+02	0+469	• 00000	.19719	
r0-91031.	.11719.	. 1544	Ľ,	.6349A+02	0343+0	enoou•	20+0	
	•11572•	.1565	~	. 64441+02	703+0	• 00000	19722+0	
112003+04	•11457•	• 15	.11757*02	. A5198+02	Ю	00000	0	
PB+56751.	. 11.2A4	.161.	J + 6	.64371+02	392+0	•0000•	.19727*	
P0+72851.	•	.1634	•1385A•n2	-67459403	37458+02	00000	9730+0	
UE+166-1.	113959+89	114575401	.14943+92	. 48437+32	.34A4B+U2	•00000	19733+36	
1 .11.574-67	•10795+5n	16003+01	.16003+62	.49773-112	.34040+02	00000	.19737+0	
		4	PAPTICLE START	LINE PROPER	RTIES			
INICA	SPECIF	D	>	THET	44	ENTHALPY	-	
-	_	.43R67+04	00000	000000	00	.50821+98	1806	-
-	7	1994+0	• 00000	0000	00	.51228+08	52-0	.
ı			00000	00000	00	90+44919	-11244-0	
	7			00000	00	.5.2027.0A	91-0	۳
-	5		2000U*	000.	00	.52563+0A	226925	,
-	4	.32769+94	• 90069	.0000	00	.53218+NB	0	7
2		+0+57A+++	277114+112		.35670+00	-50819+08	0	4
2	7	.42700+04	.22702+02	•	. 30288+00	.51229+08	ç	+
		+39465+04	.16040+02		.23287+00	.51677+08		1
2	7	. 17aec.nu	+12567+02	.189	18995+00	2033+	653-	-
		2040000			0048408		EC: 35251	
•	?				,			,

Table 3-11 (Continued)

		5 Y D	ASE NO.			PAGE
HUTTLE SFP HOT	e C	ı				
TM 1 Cld	r SPECIE	P	^	THETA	ENTHALPY	DEWSITT
7		3471+0	725	.71435+00	C+5	.41730-54
ক পা	N F	# 2 4 1 0 2 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	-441B9+B2	00+4904	51229+08	94683-
<u> </u>	, , ,	7975+0	174+0	7 6 6 6	1 2 2 4 4 4 0 0	£0.07744 ·
	5	.35404+84	=	2 ~	2501	15214-03
3	۰	.37786.04	19+14150	.8937:-01	53277+00	þ
3	-	3921+0	*82332+02	.10739+91	+534C8+Q8	.41637-04
	2	+U+44J2+•	20+1+694+	.91217+00	.51228+08	40-59446.
	a :	*35500+D4	*483H2+C2	-	.51598+0B	_
r	.	.37937+04	•	7.23	.52071+08	
	5	*35427+C4	•22491+C2	.34374+00	.52644+00	15161-03
ru	c -	~	13+60244	.13484-00	0	PU-28924.
		2 0	1111403	14364401	.50797+08	+0-01514
ח עי	7 -	50+65UZh•	**************************************	٠	,51227+08	.94173-04
	7 3	4044466	25451746	3 H 9 S	451712+08	11154-03
: ur	· u	10+65516.	27+12/064	00+0459/	152076+08	12548113
	,	TO THE BEE	2 1 2 2 1 1 2 2	1077		15672-03
٠ •	, -	#U+0.03#	70+15858	10.422.81.4	80+07-50-	PD-61124.
9		42141494	10.625.11	1012111	80 - 70 / 05 -	1030105
•	יח	•3959n+U4	60 - 21 21 2 4 C S	11793+01	51726+08	- C-601-1
4	1 7	*38n11+04	.63R27+92	.94200+00	.52126+0A	9
4	S	+35498+04	.37714.52	.61199+07	.52748+08	.15015-03
9	9	.32477:II4	13127-62	• 22 176+hn	-53497+DA	PH=E4416.
7	-	+0+60h+6•	+167411+93	.21744+01	.50763+69	+C-1/11+•
· 	7	+0+6322++	~	13484+01	-51214+08	
,	6	.39567-04	*98557*0Z	+14235+01	.51736+08	11060-03
_ '	Ŧ	. 38767.74	_	11610+01	2149+0	.12438-03
_	5	#0.48#50.	*#5"67+0X	60+21812+60	.52791+08	.14937-03
•	9	+3-7024+D4	Survey SI.	. 37771-64	-53554±08	+0-E4804.
		117140	• 19487+93	.25523+01	.50738+08	.40.48-04
æ «	7	+0+4822+•	.16024.93	10+10/12+	. 51 200+08	.92984-04
3	n :	.39735004	11.02.03	14724+01	.51738+08	.11009-03
•	.	.38132-04	.90765.02	13635.01	2160+0	12382-03
c	<u> </u>	9.35.40 4 1 1 4	.54:11:02	•86704+nn	.52815+08	• 1 4 9 6 5 - D 3
	۰ -	· ·	NO. 50401	. 32824+Dn	853484CES	• 90393-34
6		7.446277	*7271H+03	756	C + + C	50-97/Ch+
. 6	٠, ٦		MULTIPLE.	10+28×62+	60+4/1154	4 2 5 3 5 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6
6	, 3	3041.600	50.000	111+49761•	19165	£0-094U1•
0	-		704777714	10420761	X0+56176*	EU-355210
6.	, ,	2000	2011.750	104220.14		7
<u>c</u>	: ,- -		N C 4 C + 0 U A 4	1000000		
	~~~	#13+ Volich	10.0.0.0.0		100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FO1616174
	וח	#G+6260E*		101/07/07	: -	10101001
. 01	1	_	117.00-013	10441044	80+821-54	
	•					•
	r	******	7 1 1 2 C 1 - F 7	10.00011.	5778940B	

Table 3-11 (Continued)

		i	CAS	,			3947	s-
STACE SHUTTLE S	1. 0					!		
	1:1:ja	SPECIE	Э		ł	HALL	NS111	
!	-		*44514+04	ė	99	0	275-0	
	-	2	5 + ū	555.0	778+	•	647-0	
- '	_   		)+v6u	75.	563+	0 1	, d	
	_	<b>1</b> .	.34384+04	0.152	10+39061.	-	-12756+ 	
		Z.	•	ا بت. ا ا	12403+C1	• 52681+DR	111	
	-	•0	3+161	8 42 6 5	100 + 800 0 or •	2 9	) (	
	12		661+	7 1	441537+01	64+1		
	1 2	7	.42730+D+	6377	10+9115401	C+ - 6	9	
1	1.2	6	4471414		.27334+01	98+0 98+0	# (C	
	1.5	3.	*3+16+dE*	4925+0	^	1.988+1	2755-7	
	12	5	.3507r.+nu	. R9E72+32	•14265+01	0 + 0	-/8/-	
	1.2	5	+3.789+E4	.31869+02	CO+6FUB5*	3169	-	
	13	~	+G+22044.	• 3594403	1	0.5050	Ö	
	13	2	.42887+04	.29211103	.38964+01	1983+0	+0-2+876+	
	13	C	•40312+04	.21276+03	.30204+61	51498	•10821-03	
	5	1	*3440A6.	.16518403	24499+01	3+0	262	
	1 3	r.	+0+6609€*	.99453+02	.15784+01	237	.14342-03	
	[-	9	433791+04	.35456-02	•60R36+09	2924+7	k)	
	,	-	.45P11+C4	.39623-03	.50307+01	.50430+D8	9525	
	7	2	43051+64	.32171-63	.42736+01	Ċ		
	-	ı	+U+22+U+	.23469*03	~	Ċ	•10864-03	
-	-	7	.38734+04	.18:56.03	73		.12784-03	
	7	Ç	+34229+D4	• 10°85~03	117367+01	.52166+AB	.14925-03	
	<b>7</b> -	9	+33EU#+D#	+39193-02	10207	Ċ	$\sim$	
	2	-	45214+64	349440	404	Ç I	9763	
	5	2	*41231+04	.35775+03	10+8+49+	0	PO=1300	
	5 -		さじゃいじゃしょ・	•25784-03	.36798+01	ç	2 6	1
	5	÷	<u>ت</u> +	.19725.03	10+0+266.	-	50-63571	
	ر -	s	+36176+AG	• 12C82:03	4224	,51950+DA	.15028-03	
	1.5	9	<u>+</u>	.43091+02	34C7	.52431+08	- 1	
	9	_	0+6	91.0	9782	.50250+08	~ 1	
	9 !	7	ç	*38545+03	0718+	80+56405*	*89772-04	
	4-	3	70+U58U5.	0 10 1	+ 4	151109+08	.10786-03	
	٠	7	+0+16066.	5. 4)	- 1	_	12054-03	
	٧	s	*3453A+C4	21	.7n759+N1	.51760+0R	.15136-03	
	1 6	9	-		. RAP! 1+0P	_	*D+886*6*	
	17	-	C + a	191110	4.A.35	.50144+08	- 38687-04	
	17	7	.43430+04		4968	80577408	FO-/0768	
	17		e + C	. 30, 857.193	2482	.504b3+nB	50-0//01	
	17	ŧ	<del>+</del>	.73737+03	4640	_	701715714	
	17	2	*J.07771.	.14479-03	<u>~</u> :	10015.	50-57751.	
	-	rak i	111212121	# 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12	100 C 3 H 100 C		, ;	
	a:	, -	411/2011			# 5 + 4 P / 2 C + 4		
	4.		FU. YARBE.	.76763.03	877		405	ز : .
	α_	ی .	70+19676	· ·		7 2 2	,	
		•						

Table 3-11 (Continued)

GOVER SHUTTLE SEP HOTOR NOZZLE	OTOR NOZZLE		•			
1710d	VT SPECIE	n	^	THETA	ENTHALPY	DEMSITY
		*********	. 61405+03	.75581+01	.49906+08	.37957-04
	\$ \$	+0+91155	. 495.68+U3	.64108+01	.50332+98	. 68214-04
-	•	41517+04	.36642+03	.56437+61	•50739+08	10-649011
	+	-3942C+04	.28153+03	10494940	.51132+08	12385-03
_	. 12	.37073+D4	£0+561713	.26561+01	*51998+UB.	.15217-03
2	-	.44378+04	.64238+03	.7EA59+01	*49B36+DH	-37709-04
	. ~	+0+09644	. 51839+(13	. 44 A D 2 + D 1	.50770+08	.87757-04
2	0	*41657+64	.38193+03	.52658+0!	.50716+08	-10428-03 -
2	э <b>г</b>	+3+124c.	.79525+03	.47476+01	.51185+DB	- 12345-03
2	5 6	.37175.04	18013+03	.27741-61	.52322+08	
2	_	.44733+04	.70565-03	. 85693+81	. 49685+08	.37084-64
2	2	かいきのかなない	267050F	.72A13-61	.5016C+n8	.86472+ftg
7		+J+6961h•	.42372+C3	.57651+01	.50769+08	.10463-03
2	h 1	. 40070+04	.32720+03	10+6944.	80+40515	.12174-03
2	- 1	+0+60016	.75431+03	.91398+01	449574+08	.36507-04
2	2 2	44841+04	.61697+63	.77589.61	\$50110+0B	-85149-04
~	3	.42714+84	€3+10y5h•	• 6 1 655 + U 1	50938+NB	.10272-03
2	1	. 47 117 + C4	• P3348+C3	10:05/06.	8 u+ SZ + 6 h .	43-95a5E*
2	2	+6+523++0+	. 67601+63	. 94797+01	.50120+08	.82500-04
2	-	+0+17774.	. 90564+03	.10734.02	49320+08	.34286-04

Table 3-11 (Continued)

SPACE SHUTTLE SED MOTOR	DR NOZZLE							•
THE BUILT DSCRIP & BEGINE	<b>c</b> c	×	Σ	THETA	ENTROPY	VELOCITY		178
PAPTICIE GATA SPECIE POINT DESCRIPTIÓN	MACH ANGLE	PNESSURE	DEN'S ITY	TEXA TORE	EAS CONST.	DENSITY	Manual Andrews	<b>L</b> 1
N INPUT - CONTIN	13757-50	.11/2×*60	• 1 6365 • 61 • 69525 = C2	43544+64	.19851.04	.12093+01		١
	1 1	1 11		:	.49320+08	.14286-04	45174404	
	34848+6	10.05	<del> </del>   •	P 0	**************************************	.12101+01		¢.
PARTITIE DATA	TAIC O STAT IV							
-	22		100	.16Un3 • U2	.19845+04	.12109+01		6
RE PRESCHI AT	THIS POILT					10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 8 3 5 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	•
B MAN DOTA SVT - UND	715+27	RTICLF	PASS FLOW PATE = .32 PARYTCECTFFFE	352+01	MIXTURE	L04 R	\$ 46950+02	
	• • • • • • • • • • • • • • • • • • •		.					
Tit I		1,10	.17000+01 .2000C+02					
S PA		• 750	*75000+0 *2eon0+62	705		-		
GR P		.320	.32000+020001+02	+62				
L3 8		450	.45006+0:	-0.			!	
AST		. 650	.65000+0:	1006			,	•
THE FICLE PEOCENY CHASING RELATIVE	TO THE	GAS37744+C1	1	PARTICLE PERCENT LOADING RELATIVE	THG RECATIVE	TO THE MIKTURE	-10-14695	
127		FORCEX	MOMENTUM INTEGRATION RESULTS For	RESULTS	15P		ı	
i i i i i i i i i i i i i i i i i i i		18212+05	• 56660	.00000	20474+03 DELFYP			•
	(1 t 1 d 1)	מי בי						ļ

NOTES: (1) Typical printout for the startline data surface.
(2) Some points have been omitted for demonstration purposes.

Table 3-11 (Continued)

Paket I				CA 38 NO.	-				rade 27
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CALLE SHIFFE	SEP FOTOR NOZZE	NOZ7LF						
Spec	- INTERPORT DECEMBER	3 F 1 5 5 K	R MACH ANGLE	X PRESS'IRE	DENSITY	THETA TEMPERATURE	ENTROPY GAS CONST.	VELUCITY	H-TOTAL
~	SPECIE POINT DES	DESCRIPTION	>	THETA	0	13	ENTHALPY.	DENSITY	TEMPERATURE
	27 ENTER	- CON"IN	•12 ^A 53+3U	.12060*20	16+10591.	.13627+02	.67676+02	.53263+04	19728-08
PASTICIE	200		.37703.02	. 40274+03	.67329-02	43394404	hD+05861*	10.96021.	
	25	LIMIT STREAMLINE	491253+04	10722402	02 .12820+00 01 .29403+00		070+08 791+08	• 33699-04 • 78835-04	#U+080###•
- (	7~	- CONTIN	13512+	.1912+00	.16794+01	40+397#1.	.19947.04	.54D14*D4	
PANTICLE	CLE DATA  1 24 LIMIT STREPHLINE  **HOGAND+0	STREALINE	2D+07070	0+1891+0		0	.46920+GB	.32546-0"	*4470%+04
<b>~</b>	25 INTER	- CONTIN	14294+99 -35727+92	.36379+03	.17128+91	. 42680.04	*68637*UZ	.54856+0H	
PARTI.	PRATICIES ARE PRESENT AT THIS POINT	PRESENT AT THE	THIS POINT				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
4	ZA WALL	- Court	414798+89 434971+82	.11545+00 .34499+03	•17447÷01 •59177-02	17144+07	.1984D+D4	.12120+01	Glogs cale
EC PART	C PASTICES AND PRESENT	PRESENT AT THIS P	AT THIS POINT			9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
			ORCE X	PRESSURE	10	RESULTS.	DELFY		
-		!	-16718.05	• 00000	00000	\$6+56501+-	.00000	. 20593+03	

NOTES: (1) Typical printout for a data surface inside the nozzle. (2) Some points have been omitted for demonstration purposes.

MITS PACE IS BEST QUESTET PERCETO PER

Table 3-11 (Continued)

	1		CASE NO.	יאאנו אים.			ļ ,	PAGE BO
S. LF SHE	SER 473	NOZ7LE					,	
ATENSO THING 3417	Sulban -	R WACH ANGLE	X PRESSIAF	4 15020	THETA	ENTROPY GAS CONST.	VELOCITY LOCAL-GAMMA	H-TOTAL 17
PARTICIO NATA SPECEIRITION SPECE	SCRIPTION		THETA	H Q		ENTHALPY	DENSITY	340TARPHRATUPE
KH-JAP TL DA	1) PRN-MR - CONTIN	31517440	011-6504.	.42582+01	17853+04	19811+04	.12798+01	
WANTIGE NATA NO PASTICIES APE PRESENT AT THIS POINT	T TA T1.3279	HIS POINT	1 1					**************************************
60 41 PRN-RR - COUTTN	2 - COUTTN	.31517+60	,74059+0A ,2175°+0!	19-64-49-01	493464D2	. 19911+04	12907+094	#D&45661.
PASTICLE DATA PRESENT AT THIS POINT	RESENT AT T	MIS POINT						
1			•	lueLa6B5	60-65256	460	+0+£6+6*	00+15+014-
284		1130"+92	11210+01	+41027-04	13351+04	198:1+04	.13031+01	
PARTICLE DATA NO PARTICLES ARE PRESENT AT THIS BOILT	T W THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF TH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #	3 3 4 4 7 7 8 1 8	9 1 2 2 2 2 3 5 5 5 7 7			
HILLS - EN-ING ST. DT	- C04714	.31517+33	00.4504.	111+05-95.	20-65119	20.624.6.	13157001	19737+63-
PARTICLY DATA PPESENT AT THIS POINT	PP SENT AT T	TNION SIM	011255756					
H= 12d 27 09	17 PS1=HR - (631 1)	01517.	¥0+650±1.	10+01110+01	07117.6+32	.69773+02	+D+45246*	60+6464ca
		į	.23595+Dn	. 8633-94	.72042.03	.19911+64	.13282+01	
O PART TO THE PRESENT AT THIS POINT	PPF SENT AT T	1 .	5 b a 5 c c c c c c c c c c c c c c c c c c					
2n+1,8d 07 67	1121112	.31517+33	.74059+00	- 1 80 4 + 15 1	.72773405	\$9773+02	bC+S4/6+	6 Ca2 \$ 6 6 1 5
PARTICLE DATA NO PARTICLE DATA NO PARTICLE DATA NO PARTICLE DATA	PRESENT AT T	. PPG55+91	.925.85-01	54-99500		+0+11661.	13412+01	: ! !
02+71511.• MIEHOD - WHEHE 6" 29	LO PRETHR - COULTY	02+21510	74057+00	li		50773402	78879-07 - 64773-02 - 10115-05	000000000000000000000000000000000000000
	;	10.00	7. 1					: : : : : : : : : : : : : : : : : : : :

NOTES: (1) Typical printout for a data surface containing a Prandtl-Meyer Expansion. (2) Some points have been omitted for demonstration purposes.

WITS PASE IS BROT QUALITY TELUTIONAL

*10115*06*

+0+11841.

.55140+03

.43194·H

• 10267+111 • 69037+111

FREEBO - COMPIN

-

PARTICLE DATA

NO PARTICLES ARE PRESENT AT THIS POINT

POTHT NO. 21 ON LINE ITT HAS BEEN DELETED

Table 3-11 (Concluded)

Ņ

7

SUPERSONIC FLOW ANALYSIS USING THE LOCKHEED-HUNTSVILLE MULTIPLE SHOCK COMPUTER PROGRÂM

CASE MO.

169

PAGE

	ēx*	×	Ŧ	THETA	ENTROPY	VELOCITY	H-TOTAL
**************************************	MACH ANGLE	PRESSURE	DENSITY	TEMPERATORE	GAS CONST.	LOCAL GAMMA	SHOCK ANGLE
SPECIF POINT DESCRIPTION	>	THETA	¥ 0		ENTHALPY	DENSITY	TENPERATURE
114 HALL - CONTIN	•60500 •18069•02	16758-01	.32345+n1	.25920+04	.19412+04	12365+01	600 k 49'6 Lea
PAPTICLE DATA	794475+04	.00000	.80755-n		.22432+08	.21071-05	*27624+04
	789 - 00 + 04	00000	10248+00		23066+118	-399696	
,	40+12:04	00000	•15476+GO		.25476+98	•43749-05	.31375+04
	.760955+04	000000	.21457+110		.2#232+D#	\$0-66264°	-504484Es
٠	+0+3522Z*	. 00,000	.34715+00		.33341+08	\$0-8+049.	+41061+04
	.675315+04	00000	P 4 2 3 4	55444+00	3867+08"	.45327-05	41885+04
110 12 FREEBO - CONTIN	.10128+01	•95075+00	.8319401	.690AA+02	69773+02	.10115+05	19737+08
	.69037+31	.31449-01	941442-05	155160+03	40+11 n61.	13522361	
SPARTICIE DATA SO PARTICIES ARE PRESENT AT THIS POINT	HIS POINT			# # # # # # # # # # # # # # # # # # #	6 6 6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
MES STORAHLIVE HAS REEN INSERTED ON LINE	-1	17 BETWEEN POINTS	INTS 25 AND	26			
119 I WALL + CONTIN	• 86758	10+++691	.32648+01	.00000	.66428+03	.81845+04	19653+09
	.17834+02	.17079+02	48396-03	.25651+04	104115+04	10:12367:01	-
PANTICE TO ALL	196784+04	00000	10-1444.		80+62522	-20538-05	- 4D+66#12*
	4792313+04	0000011	.11725+00	•	,22983+08	•39363-05	.28305~34
1 .	40+124+04	000000	0114444110		\$2+69£5Z*	.43166-05	•31244004
-	.7623R9+0H	B5r60*	.22484+NO	-	,28107+08	• 48977-05	*34614+04
	20000	00000	74.35	36 460 400	12192405	TANK TO THE PROPERTY OF	* ************************************
	, [. + c	00.0.1					

(2) Some points have been omitted for demonstration purposes. (1) Typical printout for a data surface in the exhaust plume. NOTES:

A "16" STREAMLINE"HAS GEENTINSEPTER" ON"LIVETTIA BEYWEEN-POINTS--51 AND-52" -ATVET STREAMLINETHAS GEENTINSEPTER ON"LINETHA BETYEEY-POINTS -53 5400 -54--

Table 3-12

# INPUT DATA REQUIRED FOR CREATION OF THE THERMODYNAMIC

H 10.3357C H 11.3337C	.85106 0	3.40424CL.85106	.8375	-60200•	S 298.15 F
H 11.3337C	7.3165 0		1601.	1200.	S 298.15 F
		140	•0500	-65000•	S 298.15 F
H 8.09750C	5.3983 N .8997	1668. 0	•0109	-21000•	S 298.15 F
AL3.7064			•02	0.0	S 298.15 F
	FE1.2523		•0055	-123000	S 298.15 F
T I WO	AL(S)	AL (L)	ALCL3(S)		ALCL3(L)
T I WO	ALN(S)	ALN	ALZCL6	•	AL202
OMIT	CCL3	CCL4	5	:	CH2
OMIT	СНЗ	CH4	27000	J	CSCLZ
OM I T	C2H6	C305	40		
OM I T	FE(S)	FE(L)	FECL2(S)		FECL2(L)
OM I T	H20(S)	H20(L)			
NAMEL ISTS	1				
\$1NPT2					
RKT=T.PS	RKT=T.PSIA=T.KASE=1.P=180080MOC2P=T.MOCTF=T.PARTHT=T.	800 80 MOC 2F	DET . MOCTF = T . PAF	2THT=T.	
QUOTP=-2(	QUOTP=-200.1-100.1-50.10.0.NQI=4.NODATA=T	0.0.NG I =4.NODA	TAET		
SEND			•		
STAPGEN		-			
IREA	IREAD=1.10=8.1N=10			•	
SEND					
SEP PROP P(	PC=1600	MKS	4 U		
PCP=5. 11	PCP=5.,10.,20.,40.,100.,300.,500.,1000.,5000.,1000.,5000.	.300500100	000010000000000000000000000000000000000	000050	.NFZ=7
SEND SEND				٠	
STOP			• .		

Example problem 4 is the same as example problem 3 except that the start line is input on cards. Table 3-13 presents a flow chart of the input data for the specified problem. Note that Card 35 has been replaced by Cards 33a and 34a. A listing of the pertinent solution is omitted as it is basically the same as for example problem 3.

Table 3-13

REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 4



The gas properties are input on tape. Therefore, Cards 9, 10 and 11 are not required.

This problem analyzes a single phase finite rate chemistry flow field with the following stipulations:

- 1. Free molecular calculations are not to be considered,
- 2. Species mole fractions on the start line are to be read from cards, and
- 3. The start line is to be input on cards.

Table 3-14 presents first a flow chart and then a listing of the input data for the specified problem. Table 3-15 presents a listing of the pertinent solution.

Table 3-14
REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 5



If species mole fractions are input on tape (ICTAPE=1) Cards 16 and 17 are not required.

3-290

Table 3-14 (Continued)

							**	
Cards	UA 1 41	- 200LUF 6	/ L CONE O	/F=2+2 + F	INLIE HATE	· invigato	· VAH UZI	
1-3	· S							
	1							
Card 4		21 ع	2 1			50 21	10 0	0 ((350))
Card 5	24 212 1	16 3	23 0	0 2	1	6 W 20.11		7.7.
Cards	6}" '	19.0			• 2679492	•0307811	6 *50=1000	•
Card 7	٠ ٠.		1 • 4				<b>0•</b> ⊒033 <b>8•</b> 0333	.737 و-037 •
Card 8	r INITE i	τ Λ.Τ.E.					0.0000	
Card la								
Card I		12.00	• J					
	•0 •	6•0	0.0	252	50.	•1975	• 105	245
	100 •	・シャラ	.210	236	150.	• 7405	•465	149
	200∙	1.202	• 720	160	250.	1.628	1 • 046	073
	٠٥٥٠	2.054	1.372	•004	400.	4.651	2.075	• 250
	500.	3.446	2.704	• 50V	600•	4.038	3.471	• 47
	70C •	4.4.0	4.126	1.570	<b>೬</b> 00•	4.740	4.734	1:031
	1000.	5.149	5.844	2.024	1200.	5.430	6.809	<b>5</b> • ∅5 3
	1400.	5.605	7.661	4.900	1600•	5.721	8.417	6 • 1 2
	:50ۥ	5.503	9.096	7.275	≥000•	5.865	9.711	H+442
	2300.	というさい	10.536	10.212	2630.	50476	11.267	16.000
	4020•	6.057	12.129	14.412	a a≎o•	6.103	12.708	16.00.00
	2600.	6.130	13.241	18.074	4 COO.	6.213	13.893	20.140
	CH4	16.043 -	17.895					
	• 0	0.0	ა•ი	- <u>c.</u> .390	50•	3.9745	17.6533	-! • 577 <b>5</b> 2
	100+	7.44	53.700	-1.601	1:0.	7.975	30.414	-:•200
	CO •	19001	41.00 20	- et.25 ·	€00.	ひ・といけ	42.80c.	0 · 11/0 /
	300∙	⊍∙もおも	44.574.	•016	400.	9.680	47.164	<ul> <li>4.2.3.3</li> </ul>
	£-30•	11.076	+7 • 453	1.400	r 03•	12.403	51.597	4.100
	706.	13.612	23.662	4 6 6 70	60J.	15.041	55.540	5.097
	1000	17.150	57.141	50 € 1 Å 12	1.35.	100:54.	62.464	12.732
Carde	13 1400.	20.150	50.431	10.0037	16000	21.101	60.191	20.772
04145	1800.	21.967	10.770	z" •0006	.000•	82.568	73.076	29.540
	2000	. Backt	1 10074	20.04169	2000.	23.75B	79.162	43.474
	9000.	:40.23	010047	20.00	3300	24.443	84.960	<b>6</b> 0•389 .
	\$600°	24.095	8/.060	67 • 768	4000•	64.401	89.673	77.690
	7.5 28	±•010 -	20.42					•
	•	6.456	39.613	-1 - 37 /	+;O •	6.456	39.613	-1.379
	100.	6 きゅういい	37.013	<b>−1•</b> 372	1.50•	6.956	42.064	-1.031
	200=	6.957	44.435	-0.653	<b>∠</b> 500•	6.961	45 • 1146	<b>~0•33</b> 5
	.4 <b>0</b> 11.€	6+905	41.62.7	0.013	4 JU •	7.013	49.200	0.711
	500-	7.161	50.641	1.417	630.	7.276	52 • 152	2.137
	700+	7.450	53.207	2.873	<b>ದಿ</b> ೦೦•	1.024	54.293	3.627
	100:-	7.031	50.023	ಬ•18೨	(200 ·	b • 168	57.496	6.794
	1400.	6.340	56 · 71.4	6.4.6	1000.	b•480	59•393	10.130
	1600•	. B.581	60.075	11.830	<000∙	11.664	6: •807	10.551
	2.5 600	8.756	63.044	16 • 175	2600 ·	<b>0.02</b> 5	64.102	18.813
	300%	ひきひろい	65.370	22 - 357	3300.	6.437	66.240	25.032
	360J ·	6.9/3	20.444	67.719	4000•	9+014	67.446	21.310
	112	010	0.			_		
	•	<b>5</b> • 5				503		
	100•	5 • 3				5.4		
	· • ·	6.5				5 · 7		
	12.2.€	6∙8				<b>ن.</b> 9		
		6.1		-		7•¢		
	1400	7.0				7.0		
	1	7.01/1				7.		
	1935.	7•t·∩	9 42.18	7 7 • 90.	. 1	7 • 94	5 900.1	7 9.445

3-291//

PROM OUR 1 (TO VICTORIA) TO MAKE

Table 3-14 (Continued)

	1800.	<b>⊎</b> •01		11.030	2000∙.	0.195	45.C04	12.01
	2300.	8•43		15+157	2000.	0.009	د 21-47	17.70
	3000•	ರ ಕಿ		10،410	3300+	9+2	49.6	23.00
	3600.	د <b>. ب</b>	.50∙8	25•00	4000	4	53.0	28.00
•			57.798	· · · · ·			A 44 . 1 .	
	•0	0.0	0.0	-2-367	50•	3.9503	18 190	-1.974
	100.	7.961	36.396	-1.581	150.	7.965	39 • 156	-1.18
	200•	7.969	41.916	- •784	250•	7•998	43•535	- •384
	300.	8.027	45.155	•015	400•	<b>0.100</b>	47•483	- 625
	500.	8.415	49.334	1.654	600.	b.676	50-691	2.509
	700.	8.954	52.249	3.390	800.	9.246	53.464	4.300
	1000	9.051	55.591	6.209	1200•	10.444	57.440	8.240
	400.	10.447	54.045	10.384	1600•	11.462	60.591	12.630
	1800.	11.069	61.965	14.964	2000•	12.214	63.634	17.373
	2000.	12.60.54	54.971	Z1 • 103	2600•	16.302	66.540	24.945
	4000	13.304	68.440	30.201	3300•	13.503	69.098	د22•4د
	3600 •	13.069	70.880	30.300	4000•	, l3.850	72•330	43.805
5			10.57					
	• 0	C.C	0.0	-2.404	50.	3.975	10.604	-5.000
	100.	7.950	3/.210	-1.609	150.	ల∙007	39 • 975	-1 - 21
	200.	€.064	42.740	-0.811	550∙	ひ・ピリン	44.412	2976
	300∙	8.526	40.005	•016	400•	9.241	48•633	• <b>→</b> U.S
	• CO c.	10.036	50.700	1.867	600•	10.808	52.679	2 • 1.07
	700.	11.538	54.400	4.047	800.	16.655	55.400	500015
	1000.	12.467	<b>5</b> 0.651	7.707	1600.	14.550	61 • 404	10.5%
ards 13	1400.	15.400	63.718 .	13.546	1600 •	10.205	<b>ი</b> 5•ოაა	15.76 .
	1000.	16.100	5/.776	20.000	2000•	17.220	69.500	23.46_
Cont'd)	2 300 •	17.025	72.015	20.763	4600 ·	70دونا	74.234	34.154
	3000•	19.000	16.408	41.601	3300 · .	19.341	78.734	دكان 47∙
	30000	19.672	80.432	53.235	4000 •	۵۰100	<b>82∙5∠7</b>	01 • 190
,	· ? ~	8.0134 C	)•i			•		
	•	6.956	30.170	-1.379	50•	6.456	38 • 170	-1.379
	00.	6.956	38.170	-1.379	150.	6.450	40 • 586	-1.031
ن	206.	6.957	42.992	-0.683	250.	6.454	44.402	-0.335
	300 ·	6.961	45.613	د ۱ 0 • 0	400•	6.440	47.618	C • 710
	.აo•	7.069	49.355	د 1 • 4 1 ه	600.	7.196	50•6•5	2-125
	700•	7.350	51.800	2.853	800.	7.512	52.798	3.596
	.000	7.815	54.507	5-127	12:00 •	b • 051	55 • 955	0.710
	1400.	ಟ•೭೪೭	212.70	お・350	1600.	ひゃづけら	500364	10.015
	1600.	8.512	54.360	11.707	<000·	<b>5.</b> 601	60.222	10.410
4	2300.	8.703	61.431	16.015	2600•	B.703	62•30 <i>3</i>	10.000
	• 0000	8.855	63.765	22.165	• ٥٥٤ د	ರ•ಟಾ	64.011	24.321
	3000.	8.939	60.307	≥7•505	4000 •	8.483	66+331	31.600
			94.054					
	•	6.931	42.758	-10043	<b>50</b> •	6.961	42.758	-1.00.
	100.	. 6.981	42.758	-1.543	150.	7.407	45.263	-1.179
	200 ·	7.734	41.769	-0.610	و ٥٠	B•315	49.443	-0.400
	300•	8.876	51.127	0.016	400•	9.877	53.830	0.956
	900•	10.600	50.122	1.987	600.	11.010	30.140	3.047
	70 <b>0•</b>	11.846	59.910	4 • 445	600.	120293	61.042	2.453
	1000.	12.980	64.344	7.984	1260•	12.496	66.756	16.0024
			64.544 64.559		1000	14.074	70.742	10.002
	1400 •	13.815		13.302		14.4.4.4		21.857
	1600.	14.209	72.391	18.987	2000		73.903	
	L300•	14.600	75.931	25.212	ಷಲ೨೦•	4.7.54	77.730	20.613
	3000.	14.073	79.848	30 60.03	1300€	1-01.6	01.70	41.010
	360 ·	15.010	820574	45 • Ot:	40.D•	15.162	04.11.	عدر، اد
	<b>⊣</b>	1.000	52.102					

TORS PAGE IS DEST QUALITY PRACTICE FOR

	100.	4.9		-		4.46		-
	£00∙	4.9	68 25.408	-0.48	B 250•	4.46	e 26.517	
	J00•	4.9	68 27.423	0.00	y 400 ·	4.46		
	-00€	4.0	68 . 24.461	1.00	3 500 •	4.46		1.45
	100.	4.0	60 . 31.0032	1.09	6 000 ·	4.40	<b>3</b> 2 <b>3</b> 2 <b>3</b> 2 <b>3</b> 2 <b>3</b> 2 <b>3</b> 2 <b>3</b> 2 <b>3</b> 2	
	1000.	4+76	8 33.404	3.4487	1.00.	4.966	0اد مهد د	4 1
	1400.	4.96	8 35.075	5.474	1600•	4 • 966	5 35 € 73 €	<b>6 • 4 € €</b>
	1800.	4.46	d 36.325	7.461	2000•	4.455	30.0940	ಆ•455
	2500.	4.96	8 37.538	9.946	2600•	4.960	ಚಿಕ್ಕಾಗಿತ	11.436
	3000.	4.96	J 38.862	13.423	• ٥٥٠ د ت	4.968		14.923
	• 000 د	4.9	68 39.926	10.42	3 4000.	4.46	8 40.636	18.410
•	VO 3	800 eg	1.58					
	• 0	0.0	0.0	-2.197	50.0	J.8605	21.143	-1.624
	100.	7.721	42.206	-1.451	150 •	7.446	44 • 556	-1.078
	400•	7.271	41.477	~0∙70ა	250.	7.202	48.734	346
	300.	7.132	50.392	د ۱٥٠	400.	7.157	52.444	•767
	500.	7.287	54.053	1.445	600.	7.456	55 • 397	c . : 00
	700.	7.655	56.562	2.942	800.	7.6.32	57.596	3.716
	1000•	8.123	54.377	5.313	1400 •	b • 336	სე•ს7ძ	5.460
	170.	8.491	62.175	. 8.644	1600•	<b>⊍•60</b> 5	63.317	10.354
	1600.	U.092	64.335	12.004	2000•	ø•7:59	65.21.0	10.023
	2200	0.037	60.404	16.409	2000•	6.695	67.071	14.169
	3000•	8.405	68.349	60.100	2204.	6.71	54.704	20.042
	3630.	9.022	70.466	28.094	4020 •	9.05E	71.440	-1.710
			3 2					
	• C	0.0	0.0	-2.107	<b>ప</b> ౧•	a• 7030	17.760	-1-774
	100.	7.01	33.0002	-1.451	15.0	7.405	36.430	-1.00
Cards 13	200.	7.309	41.021	707	220.	100215	42 - 1941	
	300.	7.134	43.902	•013	400•	1.077	46+900	• 72.4
(Cont'd)	500.	7.049	47.552	1.4.50	600•	7.053	48.00.7	ندر ( ه ع
	700.	7.097	49.950	2.841	800.	7.148	50. 100	دون . د دون • د
	1000.	7.367	52.440	5.0	1200 •	7.548	53.075	0.407
	1460.	7.704	72 • 22 b	8.018	1600	7.953	56 • 105	9.591
	1000.	8•136	57.053	11.202	5000•.	4 + 5 4 5	57.916	14.496
		0.470	59.089	15.350	2600• 2600•	ؕ621	60-137	17.723
	1160.	8.778	61.465		3300.	<b>8∙87</b> 3	62.243	24.002
				21.404			63.947	30.327
	್ರಾಲ(.(, (, ) 	ნ•755 ••0 წ	62 <b>.</b> 999 9.559	26.720	4000•	9.046	03.947	30 • 37 7
	ا • 0	0.0	U•0	-1.608	50∙	೭•೮೨೨	16.233	-1 - :1.4
	100+	5.666	32.466	-1.000	150.	5.600	34 • • € 3	751
	400•	5.434	30.340		250.	5•335	37.4.0	7
		5 • 235	38.501		400•	5.13%	39•971	• 4.6.11
	50C •	5.001	41.131	*010 1*035	600•	2.044	42 • 154	1
	00• 750•	5.023	42.031	2.048	800•	5.015	43.001	4.00
		2.999 2.022	44.619			4.990	40.000	4 • 1 1 4
	1000	4.999		3.552 5.545	1200	4.981	40.003	0.44
	1.00		46.298	5.546	1600•			
	1500.	4.479	47.550	7.540	2000•	4.475	40 • . 7 •	_B• 26
	4 € G Q •	4 • 780	48.770	10.029	2000•	4.756	40001	11.
	3003.	5.004	50.096	13.522	3300•	5•0cb	3. •	1.4.6.3
	3600.	5.050	51.012	16.537	400C •	5•091	<b>51.</b> 54€	10.01
	<i>يۇد</i> ئۆن <b>0∙</b>	0.0	0.0	-2.075	50•	3.474	20 • 701	-1.720
	100.	6•758 0•0	0 • 0 4 i • 40 ≈	-1.30l	150•	0.45A2 2.41A	45•d0d	-1.0720
		6.756		- •685	250•	6.9595	47.64	336
	£00•		40.225		400•	7.196	51.697	- *330 • 143
	305.	7.023	49.004	•013				
	5,00 <b>.</b>	7.431	52.767	1 • 4 : 4	600•	7.670	54 • 103	7.0210
	700•	7.063	20.302	20181	500 ·	8.063	50 • 307	- • 75°
	1000	<b>じ∙</b> 330	50.197	· • 14 2. 7	1600.	0 · 12 c 7	5 10 733	70:14

Table 3-14 (Continued)

	1400. 1800. 2300.		8.674 8.916 9.194	61.0 63.2 65.4	70	5.834 12.354 10.882		1000 • 2000 • 2600 •		5•d00 9•029 9•254	è	52 • 22 ° 54 • 21 ° 56 • 52 °	ن	10.55 14.14 19.664	
	3000		9.551	61.4		23.440		٠٥٥٠		9.606		38 • cy		20.331	
	3600.		9.799	64.7		24.254		4000		7.732		70.70		33.201	
	CHJ		3506	34.820	-								_		
			0.0	0.0		-4.45	7	۵0.		30441		10.5	39	-2.00	195
	100.		7.982	37•	178	-1.69		150.		<b>U</b> • 4 5		40.0		-1 - 20	
	20C•		8.518	42.		871		250.		ರ • ಚಳ		44.0		427	
	200•		9.262	46.		.017		400.		10.04	8	4100		•903	
•	300•		10.01			2.020		600.		11.54		5.4.67		30.44	
	700•	•	12.23			4.333		600.		12.00		57.0		a 6000	
	1000.		14.09	60•		0.24		ic00.		15.10		60.7		11	
	1400.		15.939			14.32		1600.		16.00		67.3		7 7 ا	
	1800.		17.12			20.95		2000•		17.34		7:01		6	
	2300.		18.02			29.70		2000 •		10.30		7:00		• د	
	3000•		18.71	-		44.64		• 00دد		10.90	1	00•≤°	,,	460.0	
	3600.		19.04			53.90		4000•		19.19		63.10		01.00	
	CHUO	30.0		-27.700				• • •							
	• 0		0.0	0.0		-2.39	5	50•		3.974	5	21.7.	<b>190</b>	-1.099	7.,
	100+		7.747	45.	479	-1.60		150.		7. 978		4006.	<b>د</b> 75.	-1 • à.C	2
Cards 13	200•		8.007	48.	<b>996</b>	604		250+		0.241		50.65	045	594	,
(Cont'd)	300.		6.475	<b>⊃</b> 2•	313	•016		400•		9 <b>3</b> 85	,	54.00	ود	• 900	
(Cont a)	530•		10.46	57.	077	1.898		٠٥٥٠		11.52	4	59.0	74	2.490	)
	700+		12.50	o 60•	931	4.20		B00.		13.38		62.6	<b>5</b> '9	5.495	:
	1000.		14.81	7 65.	50 <b>6</b>	8.322		1200•		15.89	3	65.6	<b>)</b> ປ	11.39	8
	1400.		16.09.	3 11.	121	14.00		1600.		17.29	1	7000	/1	18.00	ê
	1800.		17.746	5 /5.	455	cl.56	7.	∠000•		18.09	5	77.3	ر ب	25 - 15	ذ ٠
	2300.		16.46.	3 14.	<b>7</b> 0	30.64	. د	2600•		16.76	1	52.1	4ر	30 0 E 3	52
	3000.		19.01	9 84.	ರಚರ	43.77	1 .	3300.		19.15	, y	80.7	27	49.51	c
	3600.		19.20	886 E	79د	55.20	، و	4000+		19.37	<b>'</b> 9	90.4	1	63.01	a
	CHU	22.0	119	-2.900											
	• 0	_	0.0	0.0		-2.38	7	50.		3.474	ر.	22.4		-1 - :	
	100.		7.949	44.	93	-1.59	د	150.		7.974		4100	وزو	-1.1	11.
	200.		7.999	>0.	447	796		250.		<b>0 • 1</b> • 9		5: • 01	≠01.		٠.,
	300.		8.271	53.	734	-015		400•		b • 703		50.1	7 1	• 231 25	
	500.		9.184	>8∙	164	1.758		600•		9.06		5v • 5	5.1	٥٥	
	700.		10-10	ە 10	404	3.609		b00•		10-1	8	Ü. • 🔆	: 1	4.72	
	1000.		11.21	, 65.	206	0.090		1200 .		11.75	:		. 1	50 1 26	
	1400.		12417			11.59		1600 •		12.4		70.0		14.421	
	1300.		16.73		219	16.50		2000•		1209.		73.1		1	
	2300 e		13.13.		452	23.00		2000-		و ۽ وقا		77.0		47.30	
	3000.		13.43	18.	463	32.036		3300.		13.50	ಟ	00 · r	ر ر	ن ۱۹ و راق	) s
	J600.		13.56	9 bi.	445	40.47		4000•		13.03	1	82.0	7o	45.91	1
	6 M 1														
	1.0	1.0	1.0	1.0 3.	0 1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1 • 0	i • 0
Cards 14	J ve														
Cards 14	1.0	1.0	1.0	1.0 10.	0 1.0	1.0	3.0	1.0	1.0	2.0	1.0	1.0	1.0	1 • 0	:•0
	54.3														
	1.0	1.0	1.5	1.0 10.	0 1.0	1.0	3.0	1.0	1.0	1.0	1.0	20.0	1 • 0	1.0	1.0
	( H	+ÚH	+M1	=h20	+M1				1 22	6.10	-26	2.0	C	•0	
	ن	++4	+M1	≖UH	+M1				21	2.00	) ہے۔	O • C	0	•0	
	1	+U	+.41	=U2	+141				6.4	.ಕ∙ ಆ೦		1.0	-340	• 0	
	14	+H	+142	=H2	+M2				23	2.50	-30	1 • 0	U	•0	
Cards 15	<b>1</b> (1)	+0	+ 413	= (ان ي						2.00			-4000		
		+4		=42	++)					1.40		-	- 7000	•0	
	,	<b>+</b> U	•	=H	400					4.0				• 5	
	1 .	4 (42)		=H20	411						- ; /-,		-64.1		
									, -						

THIS PAGE LE BEST QUALITY PERCET.

Table 3-14 (Continued)

	<b>↑</b> - +co		•C∪2 +H			1 10 10 0	
	ОН +ОН		=1120 +0			1.10-19-2	
	CH4 +0H	_	CH3. +H20	,		1.00-11 0	0•0 -1100•0 -5000•0
	CH4 +H		-CH3 +H2	•		2.4 -11	-5000•0
	CH4 +0		но+ гиз	•		3.5 -11	-9100.0
<b>2</b> 1 1 1	CH3 +0		=CH2∪ +H			1.1 -10	×.00•0
Cards 15	CH20 +0H		-CHO +H20	)		9.0 -13	-•5
(Cont'd)	CHZU +H		-CHO +H2			2.2 -11	~J800•U
	CH40 +0		HC+ CHD=			1.6 -13	00000
	CH2U +M1		ECJ +H2	+m.1		3.5 -08	-35000.1
	CHU +OH	=	CO +H20	)		2-1 -10	
	CHO +H		SH+ ()=			e•3 −11	-10000.3
	CH0 +0	, <b>.</b>	CO +OH			c 1 -10	
	CHU +U2		=C∪ +H	+02		13 a 3 - 11	-1000-0
	CHO +M1	=	•СО +н	+.41	53	1.2 -10	-15000.0
	• 147b-∩1	•2078+00	• <b>6382-</b> 00	·4315+00	•8570-03·	·1257-02	•2031+0n
	en-000.:•	•0000	•0000	• 0000	•0000	•C000	
	.7910-01	• 1899+00	.6536~02	• 4386+00	•6444-02	-1184-02	. 272±00
	•1631-nd	•0000	•0005	• 0000		•0000	•2752+00
	•1051-65	*0000	*6000	• 0000	•0000	•0000	
	•5707-01	.1247+00	.0244~01	•4704+00	10-001	•೮೦೮4−03	•2061+00
	·1687-n2	•0000	•0000	•0000	•0000	•0000	
	• - 600	•5563-01	•1669+00	•4051+00	•6006-01	•3501-03	• 2575+00 • 2575
	•7411-nz	.1217-03	• < 6.4 m = 0 C	• 70@ <b>0=</b> 05	•0000	•0000	
	•0000		•1574+00	90+co15 •	•2175+pa	• £852-04	•2e35+00
	164-01	•2940-02	•1 <i>c</i> 45−00	•1151-0a	• ¿ /ou=64	•1739-04	•2000.00
					•		
	• 0000	•0000	·1235+00	<ul><li>15∠7+00</li></ul>	• 3416+00	•4509-05	•3105+00
	• 4486-01	•1010+01	-2337-02	•1141-G1	•10.54=0a	• 1664=02	
	•6000	-0000	86.00 - 01	. 6.631 - 61	- 4444/ 457	-0000	-3-20400
	•/165-61	•0000 •1270-01	•8603+01	•6501-61	• 3004+00	•0000 •1217-01	•3240+00
	• • • • • • • • • • • • • • • • • • •	•.2.0-01	.6107-02	•2910-01	•3919-02	*1217-01	•
	• 2000	•0000	.5879-01	•3492-01	•3849+00	•0000	·3285+00
	• 6-730-n1	.9610-02	.1424-01	-3916-01	·6775-02	•3373-01	
		•					
. <del></del>	• 0.00 <b>0</b>	•0000	.4197-01	·2105-01	00+00 كا25•	•0000	• 4305+00
Cards 16	• #∪ <b>८</b> ೧−0 1	·0042~02	.1814-01	•4154-01	•8028-05	•5676-01	
	•0000	•0000	•3268-01	• 1630-01	•3663+00	•0000	•3317+00
	.1024+00	• 541 5+04	.1994-01	•4005-01	• 7905-02	•7733-01	
	•0000	•0000	·2739-01	•1315-01	.3612+00	•0000	•3325+00
	-1040+00	.4200-02	·5068-01	+3914-01	.7420-02	·8879-01	
	•0000	•7000	.2528-01	1204-01	•7289+00	•0000	•3329+00
	•1 05:J+n0	•341C-05	·2104-01	-3815-01	•7717-0≥	•9473-01	
	•0000	•0000	.2462-01	•1171-01	• 3585+00	•0000	+3332+00
	7+00 دا ۱۵	•3786=02	• c 0 4 5 - 0 1	.3700-01	•7594-02	•9616-01	
	31,021100		J. G. D. O.		- · · · · · · · · · · · · · · · · · · ·		
	•0000	•0000	.2049-01	·12/2-01	• 30∠0+00	•0000	•3332+00
	+1007+n0	·4043-02	·2036-01	• 160 x=01	•7030-02	• 0002-01	
	•0000	• 0 <b>00</b> 0	•306z-c1	• 1 Table = 0 1	•3635+00	•0000	•3330+00 💉

### Table 3-14 (Concluded)

```
· 1005 +00
                       ·4703=02 . 1921-01
                                          .JUZU-01 .7504-02
                                 .3678-01
              • 0000
                        • ^0000
                                          ·1870-01
                                                    +3770+00
                                                             •0000 -
                                                                       .3326+00
                       .5793-02
                                .1762-01
                                          ·36/0-01
                                                    .7373-02
              · 1046+00
                                                             ·6264-01
                                 4717-01
                                          .2637-01
              •0000
                       •0000
                                                   ·3806+00
                                                             .0000
                                                                       .3317+00
              · > />=-01
                       · 7305-02
                                 -1492-01
                                          ·3744-01
                                                    •6056-02
                                                             ·4378-01
                                 ·6587-01
              • 0000
                       •0000
                                          ·4215-01
                                                    ·3967+00
Cards 16
              .c/51-01
                       •9510-02
                                 ·1039-01
                                          .3202-Cl
                                                    ·47/0-02
                                                             ·2009-01
(Cont'd)
              •0000
                                 ·1097+00
                       .0000
                                          .1161+00
                                                   •300J+00
                                                             • 1963-05
                                                                      ·3179+00
                                                    •1.27-0a
              • 563c-01
                       ·7686-02
                                 -2630-02
                                          · 1360-01
                                                             ·2347-07
                       .7495-07
                                 ·14C8+00
                                          ·2172+00
                                                    ·3012+05
              .0000
                                                             •3795-05
              · 301-01
                       •4530−02
                                 .1710-03
                                          ·1703-02
                                                    •3560~04
                                                             · /:120-04
                       • /495-07 • 1408+00 • 21 /z+00
                                                   - 3012300
              •0000
                                                             5295-55 · •3013+00
              ·3301-01
                       •4530-02 •171q-03
                                          •1700-0c
                                                    •3500-04
                                                             ·2126-04
Card 17
                         •041606/E-02 •1027368E+010•
                                                              •1055177E+04 •1872436E+02
             •1950003E-02 •0416667E-02 •1029127E+01 •746240EE+00 •1059310E+04 •1867169E+02
             -3912167E-02 -0410067E-02 -10437706+01 -1501006E+01 -1151956E+04 -16695765+02
             ./0243936-02 .041606(E-02 .1020300E+01 .2978300E+01 .2516396E+34 .1031260E+02
             •97804176-02 •04166075-02 •10407605.+01 •37304045-01 •20956,75+04 •15-72-5, +02
             •11736bbb-01 •841606/E-02 •1055406E+01 •44931676+01 •3109176E+64 •10591576-75
             • Profress = 01 • 041600/E-02 • 106030cF+01 • 5240/175+01 • 511344, j-c4 • 10:55, j_+1
             • F 104007E-01 •0410007E-02 •1070547E+01 •0004541E+01 •3074600€+34 •17991€35495
             10+104 / 11: 40+20-5150c. 10+21007c10. 10+30110001. 10-1/000100. 10-20/400100.
             *!! UNO 9E-01 *341600/E-02 *1100128E+01 */UDIRGEDE+01 *ZYV0401E+04 *174 E /3E+3.
Cards 19b
             ac'showlb=01.as+1000/_=0c.17147_0bb+01.ab+01.as-01-00-17147_0b+04.as-01-00-17147_0b+05.as
             +. 34/230E=01 +041000/E=0Z +1134729E+01 +402C210E+01 +2909294E+04 +100 E72E+C2
               947030-01 +44100672-02 +1154970b+01 +97706436+01 +6970565E+34 +16371358+02
              7-41-36-91 -041000/1-04 -1207/3/E+01 -11/09/20E+02 -3014760E+04 -1007/2015+02
               -27/392-01 -341656/2-02 -12396302+01 -17044062+02 -3036111E+04 -14744762+52
             +3/10 - 91-0! +0410007E-02 +1303497E+01 +1429064E+04 +04-164007E+04
              3 7330 1 20-01 .041606/E-02 1.3345
                                                  15.0
                                                              2526.1
Card 20
                      ე•::
                              0.0
                                         0.0
                                                            90.0
                     0.213
                               0.0
                                        0.00001
                                                  4.0
                                                            •375
Card 21
```



Table 3-15 EXAMPLE PROBLEM 5 PERTINENT SOLUTION

- 500L	•	:	CASE N	CASE NO. 2!	ı		:	PAGE
	CASE 21 - SOOLAF 6/1 CONE, 0/F=2.2 .		FINITE RATE, INVISCID, VAR OFF	CID, VAR OJF		•		!
				PUN CONTROL PARAMETERS	ARANFTERS			
	1008(1)	1C0N(2)	1 CON (3)	100H(4)	1,004(5)		1004177	100v(8)
	1004(9)	1004(10)	1CON(11)	1001112)	1CON(13)	1 CON ( 14 )	1CON(14) 1CON(15)	1CON(14) 3010
<u>Ceulati</u>	FLOW CALCULATIONS ARE IN ENGLISH UNITS WITH THE R,X COORDINATES IN FEET	ISH JUNITS WI	TH THE ROX CO	ORDINATES IN	6887			
# FIELD	THE FLOW FIELD DATA MILL BC WRITTEN (	RITTEN ON TAPE	L.	-		; ;		· · · · · · · · · · · · · · · · · · ·
2	22407		e	UPPER BOUNDARY	*10 A B Y		•	×
		• 000030	000000	00000		.26795+00	.36,81-01	. 83333-01
•				LOWER BOUNDARY	:		1	
74.08	ITPANS			ان		0.		XAX

Table 3-15 (Continued)

SPECIF THE MODYNAMIC AND REACTION DATA NT, 45, 44, 44, 1CTAPE, KGUP, 10100 24

PRANDIL NUMBER = 3ASE VISCOSITY = EXPONENT

-			0.00				τ,	:	,	: .	
		# •	¥.	■ H20	 E		2 - 2 1 4 + 2 2	2.0	•	o.	~
~	c	I •	I •	HO.	_ = +		7.260+15	•	•	•	~
,		0+	E .	- 02	¥		1.379+18	-	-340.0		
3	I	•	¥	- H -	¥ .		#1.410.	••	•		7
· •	00	0	+ H3	_ C03 •			7.260+14	•	0.000#-		7
æ	č	I •	,	- H2	0 +		8 - 435 + 09	0.1-	-1000.0	•	-
^	HO	0 •		z	+ 02		2-410+13	•	•		-
æ	10	+ H2		₩ H 20	I.		6.025.06	-2.0	-2900.0		-
•	10	00		# C02	I +		6.627.04	-2.0	1,600.0		_
0	10	#.O.	;	■ H20			6.025+12	•	-1100.0	•	_
	310	+ 0 +		• CH3	+ H20		2 - 837 + 13	•	-2000.0	•	
1.2	I	I +		. CH3	+ н2		1.444.13	c.	-5000.0	•	-
1.3	\$ H.O	0		• CH3	#C +		2 - 109 - 13	0.	-9100.0	•	-
+	CH3	0		02H3	I +		6.627+13	•	0.	0	
5-	CH20	10 +		OHU.	02H +		5 . 422 + 11	5.5	•	0.	-
16	04 H D	I +	;	- CH0	• H2	:	1 - 325 + 13	•	-3800.0	. <b>.</b>	-
11	CH20	0 +		_ CH0 .	HO +		01+449.6	•	0	0	-
6.	CH20			00	+ H2 + H1		2 • 10 9 • 16	•	*35000·0	•	S
~	CHO	HO +		00			1.265+14	•	•	•	
02	CHO	I.	!	00	2H →		5.001+13	0	-10000.0	•	-
12	C + 0	0		00	HO +		1.265+14	0.	0.	•	_
22	CMD	+ 02		00	<b>x</b>		5.001+13	0.	0.0091-	•	•
. 23	CHO	- F •		00	# •		7.23n+13	•	-15000.0	•	'n
	CAT	CATALYTIC SE	SPECIES BE	THG CONSTDERED	IDERED	:	•				
	Ī	- 1 - 00	-	• 00 CH4				H20 . I	4		•
	!		C02 . 1	H 00.	0N 00.1	HO 00-1 .	1.00 0	•	1.00 02	. 1.00 CH3	•
	:	1.00	CH20 . 1 1	*00 CH0				:	:	:	! :
	¥.	.00.	-	\$HO 00.	1.00 60	1,00 H2	* 00.01.	•	1.00 NH3	1.00 NZ	•
			C02 1 1		0 N 00 .		0 00.1	1 1	20 00 1	. 1.00 СИЗ	•
	Ç	1.00	בר היים ביים ביים ביים ביים ביים ביים ביים	PHU 00.	1.50 00			H20 . 1	. 1.00 NH3	. 1.00 NZ	•
		3.00	C02 1 1	1 00·	0N 00.1 .	HO 00.1	0 (0.1 .	, 26	20 00.0	. 1.00 CH3	•

Table 3-15 (Continued)

CARES
F ROM
READ
ARE
LINE
START
THE.
Z
ACTIONS
1
HOLE
rein

-4		# X J	င	2 X	HZU	SLR	~~	707	E .	}
	.74780-01	•20780•00	•63820-03	.43150+00	.85700-63	12570-02	-28310+00	.56360-05	00000	000000
_			20	. (H)	CH20	CHO		! ! !	:	
	60000	• 00000	•00000•	•00000	•00000	.0000				
. ~	79100-01	CH4	63360-02	H2	H20	NHS . 1 1840-02	.27820+00	.18310-03	. 00000°	00000 •
				, CH.	CH20	03			:	
	000000	00000	•00000	00060	000000	00000				
	.57070-01	CH4 •12470+00	00-07-29.	H2 •47040+00	H20 •16650-01	NH3	N2 • 26610+00	.16870-02	• 00000	• 00000
~	č	٥	02	643	CH 20	040				
	00000	000000	• 00000	• 00000	000000	• anopa				     
-	00000	CH4 •22630=01	.16690+00-	90+0158+•	H20 .	.35010-03	N2 .25730+00	.74110-02	.12170-03	.28450-06
*	ž	0	02	CH3	CH20	0 H O				
	\$0-09707	00060	•00000	000000	00000	• 00000				; !
ചീ	• 000000	.32460-06	.15740+00	H2	H20	NH3	.78330+00	.21240-01	.29460-02	ND •12450-03
į	но	•	0.50	CH3	CH20	010			ı	
	11510-02	.27660-64	.17390-04	000000	000000	00000				
,	•00000	•00000	.12350+00	H2	H20	NH3	.31050+00	.44860-01	.10-00101.	. 23370-02
•	H0	.0	03	CH3	CH20	CHO				٠
	10-01411.	10340-02	. 18840-02	000000	00000	000000				
1	00000	CH4 • 07500	. RA030-01	. 45810-01	H20	NH3	.32400+00	.71680-01	.12700-01	.81070-02
•	H _C	0	0.5	CH3	CH20	CHO				
į	16-09162.	.39196-02	.12170-01	000000	00000	• 00000				
	000000	•00000	.58790-01	н2 •34920-01	H20 •36490+00	NH3	N2 •32850+30	.89300-01	.96100-02	NO • 1 4 2 4 0 • 0 1
•	ī	0	02	CHS	CH20	010				
	10-0410-01	447750-02	10-06/16.	.0000	00000	00000				:

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

NOTE; Some points have been omitted for demonstration purposes.

Table 3-15 (Continued)

O.Z	17100-03			. 40000+02	.375+00
1	*45300-02		•	THE TA	.400+01 F
3	.30130+00 +33010-01		PARTICLE MIXTURE '	LOWER BOUNDARY	P. M.
00000	. 82.950-05	00000	CHAMBER PRESSURE (ATH)34014+02 CHAMBER TEMPERATURE (DEG+K)32361+04 THERE ARE D PARTICLE SPECIES PRESFUT IN THE GAS-PARTICLE MIXTURE	** CUTOFF INFORMATION .	TION WILL BE CONTROLED BY THE FOLLOWING VARIABLES
00000°	420 •30120+00	CH20 • 00000	RE (DEG+K)	TUN CUTOFF	CONTROLED B
000000	H2 .21720+00	CH3 •00000	R TEMPERATU "O PARTJCLE	RUN CUTOFF	3N WILL BE (
.21280-04	00+00	.21280-04	DI4+02 CHAMBE	a	H CONSTRUC OX AXIS#
0H 0 02 02 17030-04 .21280-04	03 20-05644.	он 0 17030-02 -33800-04 -21280-04	ATH) 34(	2	•
0H 017030-02		OH . 17030-02	PRESSURE (		A L LATERTORE
20	21	21	3.	-300	

Table 3-15 (Continued)

NOTES: (1) Typical printout for the startline data surface, (2) Some points have been omitted for demonstration purposes.

Table 3-15 (Continued)

CONTINUE FORTING THE FACTORS AND ACCURATION TO THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FORTING THE FOR
### THETA ENTROPY  ###################################
RACH ANGLE PRESSURE DENSITY TEMPERATURE  ***ACH ANGLE PRESSURE DENSITY TEMPERATURE  ***COOCCO ***29898.02 ***65120.02 ***17854.02 ***13875.04  ***2771.04 ***5384.03 ***00000  ***2771.04 ***5384.03 ***00000  ***51639.01 ***5384.03 ***00000  ***51639.01 ***5384.03 ***00000  ***51639.01 ***5384.04 ****57.05 ****00000  ***51639.01 ***5384.04 ****57.05 *****00000  ***51639.01 ****5384.03 *****00000  ***51639.01 ****5384.04 ***********************************
## ## ## ## ## ## ## ## ## ## ## ## ##
#ACH ANGLE  #ACH ANGLE  ***********************************
H A A B B B B B B B B B B B B B B B B B

NOTES; (1) Typical printout for a data surface inside the nozzle.
(2) Some points have been omitted for demonstration purposes.

Table 3-15 (Continued)

はいているいかに アウル

T

	:		CASE NO.		CASE NO. 21			:		PAGE	•
CASE 21 - SOULAF 6/1 CONE, 0/F=2.2 , FINITE	E. 0/F=2.2	FINITE	RATE, INVISCID.		VAR OFF			İ			
SMISSO THE POINT OSCAND - REGIME	SH.	۵c	×		I	THETA	ENTROPY	<b>&gt;</b>	VELOCITY	1	H-TOTAL ITR
		MACH ANGLE	PRESSURE PO+		F	EMPERATURE	GAS CONST		COCAL GAMA	SHOCK ANGLE	!
25 PRN-HR - CONTIN		.91755-01	.20517.09	·	35807+n1	.29747+02	.12437+0	. 603	.93012+£4	.361	.36189+07 5
		16222+02	. 39106+01		•10778-03 •00000	.20740+04	i i	. +0+	12938+31		
16 HOL	1 0			ì	40.		10-11-01	2	A. JOBB-DA	22	3.0180-01
3.5089-02	2.9945-03		1.7129-04	ĭ	+0-E091-1	; ; o	1.3375-06	20	1 • 6 4 1 2 - 0 6	E	
2,2873-38 CHO	1	<b>*</b>	. '							•	
114 26 PRN-HR - CONTIN		491755-01	.20517+00	ľ	.37735+ni	.33459+02	.12437+0	+03	94722+34	196.	5.38189+07
		.15372+02	.27979+01	•	83129-04	.19277+04	.25145+04	+0+	1299951.		
		.66337+04	.50267+02		00000				:		
CHEMICAL SPECIE HOLE FRACTIONS	CTIONS									,	
0.0000	5.0639-CB	ဉ (၁	1.3896-01	7 I	2,1947-01	H 20	3.0133-01	C I C	8.3088-36	~ ;	3.0180-01
3.5049-02 H	2.9945-03	NO	1.7129-04	HO	1.1603-04		1.3375-06	20	90-214901	£ #3	1.7015-08
2,2823-98 CHO	4.9038-05						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
27 PRILLIA - CONTIN		10-55116.	.20517+90	•	.39812+01	.37150+02		•03	.96366+134	.361	.36189+07 5
		14553+02	19633+01			.17837+04	*25145+04	+04	113063+131		
		.66307.04	.39331+02	•						•	
CHEMICAL SPECIE MOLE FRACTIONS											
0.0000 CH4	5.0639-0A	Ç	1.3896-01	12	2.1947-01	H20	3.0133-01	Z Z	8.3088-06	~ Z	3.0160-0:
3.5049-02 H	2.9945-03	ON	1.7129-04	HO	1.1603-04		1.3375-06	20	1 • 6 4 1 2 - 13 6	Ĩ	1.7015-08
CH20 2,2873-08 CH0	4.9038-05	: 0 4 0 0 0	. C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 1 1					
S PREIM I CON		0	20517+00		42109+01	40842+02	.12937.03	189	97943+04	1961	5 40+6819£2
:		113743+02	13481+01		47135-04	.16340+04	.25!45+04	*0•	10+56161+		
	.99.	*0*/0199*	20498206		00000						

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

NOTES: (1) Typical printout for a data surface containing a Prandtl-Meyer Expansion. (2) Some points have been omitted for demonstration purposes.

3.0180-01

SES CES

NH3 8.3088-116 02 1.6412-10

3.0133-01

H 20

2.1947-01

1.3896-01 HZ

១ខ្ព

5.0639-08 2.9945-03 4.9038-05

₹. €

3.5049-02 2.2873-04

C02 CH20

Table 3-15 (Concluded)

- 500LAF 6/1 CONE: 0/F=2.2 NT 05CRIP - REGIME								
SCRIP - REGIME		, FINITE RATE, INVISCID,	CID, VAR OFF			!		
			X	THFTA		VELOCITY	H-TOTAL	AL ITR
	MACH ANGLE	E PRESSIRE	DENSITY T	EMPERATIFIE	و	TDCAL GAMMA"	SHOCK. ANGL	919
WALL - CONTIN	06000	.22341+09	.29826+01	00000		HD+85249*	.13187+0	8 O +
	:	,	• •	.91833+03	.37993+04	.13509+01	-	
CHEMICAL SPECIE MOLE FRACTIONS	1							
. 4785-F2 CH4 2	81-01	1	H2 4.3153-01	H20	8.5705-04 NH3	1.2571-03	22	2.8312-01 1.4675-12
, O	<b> 6</b> 0	0.00.0	•	•				
600000000000000000000000000000000000000		D 2 0 6 7 9 6 6 9 8 6 9 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 B t 1 F F 6 B t 2 T 8 8 F F 8 8 8 8					; ;
34 FREEBD - CONTIN	0-26456. I	_	.58115+01	\$60194+02		10475+05		+04
			\$0-96908*	.95677+03	.25140+04	13+41501		
.04	.66307+04	458590+01	00000					
E MOLE FRACTI								
0.0000 CH4 5	5.0650-08 CO	<u>.</u>	H2 2.1951-01	C 4 C	3,01,0-01 1,3377-06 02	1.6416-04	, EHU	1.7018-08
0 H O		75.1.1						
**************************************		NO 25 ON LNIOD	NE TS DEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL TAN BEEL T	DELETED				 
						30407137	9118400	9
NILNUU - JIVA		•	10+65867	- 000000 0 - 4 - E - 5 - 5	0.10046	1361//20		;
	.23522+04	1424403	• 00000	50.67/1/				
CHEMICAL SPECIE MOLE FRACTIONS	10NS				8.5705-04 NH3	1.2571-03		2-8312-0
T S	1.2417-21 NO	0.000	ОН 5.2150-29	0		0.000	Сн3 1	1.4575-19
							20+540464	~~~
FREEBO - CONTIN		00+94407* 1	10+60186	X0+01500+	#U+01146.	10+21555		•
	*6430846		1				:	
PACT					Į			
3.5097-02 H	5.0652-08 CO	1.3874-01	H2 2,1952-01	H20 0	3.0140-01 NH3 1.3376-06 02	1.6416-06	, EX.D	.70187-01

NOTES: (1) Typical printout for a data surface in the exhaust plume. (2) Some points have been omitted for demonstration purposes.

3

LOCKHEED . HUNTSVILLE RESEARCH & ENGINEERING CENTER

# Example Problem 6

This problem analyzes a two phase finite rate chemistry flow field with the following stipulations:

- 1. Free molecular calculations are not to be considered.
- 2. Species mole fractions on the start line are to be read from cards, and
- 3. The start line is to be input on cards.

Table 3-16 presents first a flow chart and then a listing of the input data for the specified problem. Table 3-17 presents a listing of the pertinent solution.

Table 3-16
REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 6



e tractions are input on tape (ICTAPE=1) cards 16 and 17 are not re

Table 3-16 (Continued)

```
or the CI of the 12 Area of the day in a few others the contraction and acceptance in the first terms.
 Cards
  1-3
                                                                                                                                               . .
 Card 4
                                                                                  15 1 0 1
15 C C ...
                                                                                                                                                                          (ر
                                                                                                                                                                                     1 11
                                                                                                                                                                                                                                                    2011012
 Card 5
                                                                                      20.07.5784 0.0
                                                                                                                                                 -1.0
                                                                                                                                                                                -0.000070
                                                          0.0
                                                                                                                                                 Controlling to district the same of the
                                                                                                      0.1.
                                                                                        2.1
                                                                                        -- 10420 /20 -- 00 44 70 - 000 1000 1 - 046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX 2 - 1046 . VX
                                                           2.0
                                                            3.0
                                                                                        * additionary - * control for a some for a some less to a specific
                                                          0.0
                                                           J = 0
                                                                                       - 100 close , - 2. St. , Lee & F. & W. Letwan L. & Assessed
                                                                                       2.4
                                                           . • 0
                                                                                       0.0
 Cards 6
                                         ...
                                                                                        • ()// Not reported to in North and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of 
                                                          3.0
                                                           3.0
                                                                                         5.0
                                                           0.0
                                                                                                                   --- Once to the work that he want to be
                                                          0.0
                                                                                        . .
                                                                                                                                                                 5.4€
                                                          1.70+0
                                                                                                                    1.000
                                                                                                                                               ( • ∪
Card 7
Card 8
                                                                                                                                               1
Card 12
                                                                                - 16 . 41/
                                               (B.011
                                                                                                                  - . . C /c.
                                             •0 0•956
                                                                                           57.013
                                                                                                                                                        10000
                                                                                                                                                                                      5.472.0
                                                                                                                                                                                                                   .........
                                                                                                                                                                                                                                                . F.
                                                                                                                                                                                                                   .00.
                                                               40.757
                                                                                                                                                                                      7.012
                                                                                              440433
                                                                                                                       -0.000
                                                                                                                                                        400 .
                                                                                                                         . . . 7
                                                                                                                                                                                                                                                  t > •3
                                                                10070
                                                                                              20 . 1 ...
                                                                                                                                                        1000 • 1
                                                                                                                                                                                       1.00 .5
                                                                                                                                                                                       250 50
                                                                7.451
                                                                                               26.0000
                                                                                                                           • : () -:
                                                                                                                                                      1.70.
                                                                                                                                                                                                                    . .
                                                                                                                                                                                                                                                 · • / , 4
                                                                                                                                                     10 ....
                                    1000.0
                                                                2000
                                                                                              700 11 V
                                                                                                                                                                                      1 ----
                                                                                                                                                                                                                      •
                                                                                                                            ... HELL
                                                                                                                                                                                                                                               i. . . .
                                     ··· • (-: ··
                                                                                              61.00/
                                                                                                                        1 . . t. !
                                                                                                                                                                                      85 6 B
                                                                                                                                                                                                                     . .
                                   0.751
                                                                                                                        17.
                                                                                                                                                      1000
                                                                                                                                                                                                                   5. • • ; . .
150 • 75 7
                                                                                                                                                                                                                                               . . .
                                                                                              2. 20 . 1
                                                                                                                                                                                       150.00
                                                                                                                        1 100 00
                                   1 2 65 . 6
                                                                                                                                                      \mathbf{c}^{-1}(\mathbf{c},\mathbf{c},\mathbf{c}) \triangleq \mathbf{c}^{-1}
                                                               ....
                                                                                              54 . 4 . .
                                                                                                                                                                                       .....
                                                                                                                                                                                                                                              . . .
                                                                                                                                                                                                                    69 · 12
                                                                 No. 17.
                                       . . .
                                                                                              51 . 1677
                                                                                                                        6 1 . W. 1
                                                                                                                                                      301 C • 9
                                                                                                                                                                                       •
                                      \{(x_{k})^{*}, \bullet, b^{*}\}
                                                                 3. 4. 2
                                                                                              0-066
                                                                                                                        . .....
                                                                                                                                                     30 CC . C
                                                                                                                                                                                                                    C • 0.5
                                               - 11.00 12 - 14.03. A
                                                               0.
                                                                                                                                                                                                                    4...
                                                                                                                                                                                                                                               - 1 - - - 3
                                                                                           46.0 /535
                                                                                                                        -60.30
                                                                                                                                                        it/C·.
                                                                                                                                                                                      000 201
                                                                                                                                                                                      1.077
                                                                7 . 7 . . .
                                                                                                                        -0.016
                                                                                                                                                                                                                                                  ٠.٠.
                                                                                                                                                                                                                    Section Line
                                                                                                                                                        •
                                                              11-213
                                                                                             .....
                                                                                                                          1.000/
                                                                                                                                                        1606 13
                                                                                                                                                                                                                    41.
                                                                                                                                                                                                                                                  4. .
                                                                                                                                                                                                                   74.
                                                                                                                                                                                                                                               : .
                                    1965.
                                                             1.10000
                                                                                               14.
                                                                                                                           1.575
                                                                                                                                                      ALL DOC
                                                                                                                                                                                    100000
Cards 13
                                                            1 ....
                                                                                                                                                                                                                                               10.00
                                    06.
                                                                                                                        4.30.000
                                                                                                                                                     1600.00
                                                                                                                                                                                    14.074
                                                                                               120 23
                                                                                                                        + 1 + 20 × 7
                                                                                                                                                                                                                                               \rho \ll \sigma/2
                                   •
                                                                                                                                                                                    14. 47
                                                                                                                                                                                                                    1 .....
                                                                                                                                                      1.663.66
                                                                                                                                                                                                                                               5.00
                                                                670€14
                                                                                                                                                      41406 • O
                                                                                                                                                                                    1 .7.4
                                                                                                                                                      on.
                                   14.1/1
                                                                                               11 . 111
                                                                                                                         30 . Drives
                                                                                                                                                                                    . . . . . /
                                                                                                                                                                                                                    100.00.00
                                                                                                                                                                                                                                                 . . . ?
                                                                                               110044
                                                                                                                                                                                                                    11.45
                                                              1 . . . 1
                                                                                                                                                      . D.C.O
                                                                                                                                                                                    1 14 4 25 7 3
                                          . ` •
                                                                                                                        31 64 69
                                                                                                                                                                                                                                               رادو • دود
                                                             1 1 . .
                                                                                               20 • 130
                                                                                                                         30.0.4
                                                                                                                                                      14.130
                                                                                                                                                                                                                    U. . . U
                                                    1.6077
                                                                                 52.100
                                                               .....
                                                                                          230 365 1
                                                                                                                        -1.40.1
                                                                                                                                                       100.0
                                                                                                                                                                                      400
                                                                                                                                                                                                                    610101
                                                                 4.00
                                                                                                                         -0.400
                                                                                                                                                                                                                    20000
                                                                                                                                                                                                                                                0.00
                                                                                               200430
                                                                                                                                                        4.10 • C
                                                                                                                                                                                      40760
                                                                10000
                                                                                                                         1.100
                                                                                                                                                                                      40.00
                                                                                                                                                                                                                    5. • 100
                                                                                                                                                       ₹ () ( • .
                                                                                                                                                                                                                                                6 . 6 . 9 2
                                                                                                                                                                                                                    24.210
                                                                                                                                                      1200.0
                                                                 4 . . . .
                                                                                              3304134
                                                                                                                                                                                                                                                 4 - 4 2 1
                                                                                                                         4 . 150
                                                                 1. •07
                                                                                                                           · • 4 / 1
                                                                                                                                                      Troces
                                                                                                                                                                                      4 . 100
                                                                                                                                                                                                                    3 20 1 . 1
                                                                                                                                                                                                                                                . . . . . . .
                                                                ....
                                                                                                                          11.61 3
                                                                                                                                                      4 . 11,2
                                                                                                                                                                                                                     . .
                                                                                                                                                                                                                                                40000
                                                                                               10.000
                                                                                                                                                        わりじゅじ
                                                                 11.1.1
                                                                                                                                                                                       4 = 70 %
                                                                                                                                                                                                                                               11.000
                                                                                                                         10 . week
                                                                                                                                                                                                                    عدا فيد
                                                                 . . . . . .
                                                                                               20 4 4 79
                                                                                                                         11.00
                                                                                                                                                      2007.0
                                                                                                                                                                                       44 619175
                                                                                                                                                                                                                    .:: • : 40
                                                                                                                                                                                                                                               12.400
                                                                                                15,14
                                                                40 000
                                                                                                                                                         96.6
                                                                                                                                                                                       60 70,18
                                     112.00
                                                                                                                           C . 1 . .
                                                                                                                                                                                                                                               10036
                                                                                                                         1 ....
                                                               4. . .
                                                                                                * • */.
                                                                                                                                                                                      4.116.11
                                                                                                                                                        " 63 · C
                                                                                                                                                                                                                    210 1 12 1
                                                                                                                                                                                                                                               14 . . . . 7
                                                        • 516
                                                                                                                                                         100.0
                                                                                                 ..../
                                                                                                                         -. -. ..4
                                                                                                                                                                                       . 6393
                                                                                                                                                                                                                                               -: - : - : - :
```

Table 3-16 (Continued)

	6.011	20.004.0	7 • t ⊆ .	441 (C • C)	ロ・フィニ	330641	9 • 70 /
• t t • 0		36.4000	2.100	e(C) • C	7.007	١٤٦ • ت	3 · C · ·
* CC • 0	7 - 70 7	37# • 10c	4.914	1,00.0	7.390	ددر والم	ن ن ن
1000.0	1.011	47. 107	1.400	16.00 + 0	1.600	- 17	10066
\$450.40	7.00C		18.654	0.0000	ಚ•ಾಸ್ಥರ	1.0793	1.0007
∠O• Q	# • 1 12 to	45.004	17.17.2	.u.t/:•0	0.039	1 .	17.7
240043	ರ•′ಕ⊍ರ್	40.027		7.6.0 <b>₹0</b> 7.6.00 <b>₹0</b>	7:.7	7 • 7	1 10000
a.700•0	5 • 70 1	4/.240	10.00	3000 ± 0	(S. a. )	40.00	41.4210
	55. <b>•</b> + + 3.€	40.166	· O • 1/2		O • ∀Ez	4.10	60.00
1100+0	1 i	10. 7 Sec.	ce • 050	36 1, 1) • C	0		
H : 12		57 • 1979		1 " 0 0	7. 4.1	100000	-1 - 1
• 0	1. 16.1	50 6 3 He	-1.0 10/	130.0	0.100	7	2.00
. 5.6 • 5	7. 16.	• 1 • 1 U	-0.704	470.0	20 : CC	• • • •	
C. • W	2.016	2 <b>0•</b> 6≈1	2.509	#J0 <b>•</b> 0		71	
14.0.2	10000	20.00	00.00	12.00 • 0	13.444	000	1, 16, 5
1-01-1	10-657	274 € C/51	10.00	16000.0	11 • + toz		1.00.00
U a la	10001-	3.100 34	17. 37.3	21.50.0	1200,000	<i>ي</i> 4 <b>. 4.</b> €.	Line Fra
- DV • 2		50.711	mc /	4.03.0	12011	66.41	
	1 • 279.5	5/.0-4	20.240	≥ e(c) *) • C	l.s. Lut	ຍ7.•	
	1.10.72.11	57. 171	10.67	±0000 • 0	13.04	C. • 5	20 € 11 € E
)°C•1	1.1.3/0	5( • ) b		3430•C	130 001	21 100 1100	- 6 - 6 - 6
110.0	•	99•954					
	000	10.0000	-1.500	100.0	್ತ ಕಲಕುಲ	S . • 4500	-1 • 1. C
•0	5:4055	20.0000 20.0340	-0.000	430.0	٠ ٠, ١ م ر	300 - 13	
. 1 ♥ • €	1.00	-	1	500 • 0	12	43.00	
·. @ •	1.60	*= • O = 4		120100	4.970	40.00	
1 00.0	40 1972	44.619		1+ 51+3	4.00	41.0 160	44
: -∟0•0	4 6 /0.14	10 1 6° 10°	51 6 4 4 4 A		4.251	40.00	
10•4	4.113	40 * C / H	α•', ≥υ	ر د عاد • ع	4 • • •	41.00	
	4. 900	14:55 + result	10.07	2 15 ± € €	24 · Spr 944	4 3 . 7 . 1	1201.7
0.4.NO.4.C	4.710	<b>→</b> 1,8 <b>→</b> 1,9 19	1 • 0 • 3	e 63 7 • 3	5. € 2 m 5. € 2 m		130 12
Cards 13	6. 12 .	→ 2 • 1,755	13.000	30 Y 3		و لا دمون رو	140.00
(3)	* • · · · · ·	ショ・ごじひ	14.3.3	3. 00 • ∪	5.017	50 117	
	7.00/4	9 • 4				30.720	-10417
ر: •		30.720	-/ • 1 ×	100.0	7.1.10	14-يوري	~ .7
. 60 € û		40.980	-6.711	400 • 0	7.087	504:374	د د د م
⊌∂ <b>0.</b>		40.037	1.01-1	800∙€	7 • 1 90		13 <b>6</b> 14 1 1
1,200 • 3	-	76.441	5.000 € C	$1.00 \bullet 0$ .	10 ,00	538.47 - 47	90.00
1409.0		<b>ラン・0</b> 2.7	<b>∪•</b> ∪4.3	1-00-0	10103	50.577	
2009-C		57.091	14.047	< 000 • 0	6.415	20 € 1 3G	14
2453.0		59.424	10.714	ZUU0•0	ن• السط	011،16	17.00
£ 760 • 0		00.430	10.794	2000•0	<b>ც∙</b> 7ენ	60.752	10000
		51.058	20.535	3000.0	b.7c0	61.355	21.4411
6 9 0 7 6 7		61.644	22.291	340C • O	⊍•८46	61.024	23 - 174
2 1 € 2		2.0					
	'•000 	41.375	-2.075	100.0	6.958	41 . 37	-1 • 5 1
•		40.216	-0.665	400 • 0	7.190	51.071	3.764
1.34		54 • 090	2.210	800 • 0	6.063	50.361	3.700
.)•		50.19£	20447	1400.0	0.507	29.769	7.114
* •			G • 035	1600.0	ರ•ಬ೯೦	02.00.2	10 • 4 2
1		01.000	10.149	0.0043	9.1.39	60.0010	15.765
•		64 * 4 10		2600.00	40.304	60.00-0	170004
. ∴ 3•	9 - 73	5.3 <b>t</b> 10	17.504	2500 • C	9.450	67.il7	610545
•		600174	(,0,4),02 (,0,4),03	2000 • 0	90.001	07.473	23.00
		67.60	66443		9.640	60 - 92	20•3€ -
the second	C	100 · 12 /		s. (+ ? • C	y • () · · ()		
¥. ,	2.104	6 3 6 34 5		100 3	4.969	300900	-1.002
•		1 <b>4</b> 1 1 1		100.0	5.370	11.013	2 • 1 • 2
•		170-17	⊸ı • "5 f	•••	5 • 3 70 5 • 389	4.2 • 11.	2.710
•		· · · · · · · · · · · · · · · · · · ·	1.	• • •	· · · · · · · · · · · · · · · · · · ·	4 to 6 = 2 (*)	4.
•		· • · · ·	• • • *	•	• . *** /		

Table 3-16 (Continued)

```
40.440
                1965.0
                            50191
                                         47.73
                                                     10000
                                                                1600.0
                                                                              bei o
                                                                                                       0.012
                                                                                                      •464
1. •111
                2'0000∙0
                            5.101
                                         49.570
                                                     0.700
                                                                143U.0
                                                                              D • 201
                                                                                           t CoStu
                1400.0
                                         20.497
                                                    10.099
                                                                              5.0003
                                                                                           no•⊶c.
                            5.000
                                                                4000.0
                £ /00•0
                            5.048
                                         51.092
                                                    10.4.16
                                                                2500 • O
                                                                              5-043
                                                                                           51...76
                                                                                                      13.000
                                         21.453
                                                    12.574
                                                                0.coo.
                                                                              5.934
                                                                                                      14.000
                6.000.0
                            5.033
                                                                                           D1 . . . . 3
                                         21.766
                -10C • C
                            5.031
                                                    14.551
                                                                              5.327
                                                                                           21.040
                                                                 3/100.0
                                                                                                      1 . . . . .
              CLC
                      70.900
                                      0.0
                     .0
                            7.001
                                         45.150
                                                    -2.194
                                                                  100.0
                                                                              7.001
                                                                                           41.000
                                                                                                      -1.440
                            7.576
                                                    -0.772
                 ......
                                         50 - 100
                                                                  400.0
                                                                              6.4.37
                                                                                                       0.00
                 1-00+0
                            8.741
                                         59.212
                                                     c . : 07
                                                                  €00•0
                                                                              60078
                                                                                          61.7
                                                                                                       6. . . . 1
                1000.0
                                         03.73/
                                                                 1400.0
                                                                                          20 60 70
                                                                                                       7.912
                            5.900
                                                     Gally
                                                                              9.010
                                                     7. /10
                                                                                                      11000
                                         56.76/
                                                                                           010000
                1400.00
                            ソ・ロンル
                                                                1600.00
                                                                              7.0000
                                                                                                      1 ....
                . 0000.0
                            9.144
                                         70.013
                                                    1: 01/2
                                                                e = 6.3 + 6
                                                                              9 - 104
                                                                                           10 - 00
                                                                                                      ..c • /c1
                2410.0
                            70223
                                         71.6567
                                                    16.85.
                                                                24000
                                                                              Mexical Contra
                                                                                           7. . . . . . 1
                44.000
                            4.643
                                         10.0111
                                                    21.000
                                                                              9.00
                                                                                           73.16
                                                                                                      45.00
                                                                6600000
                                                                              1. 70
                7400.0
                            9.346
                                         13.443
                                                                                           100100
                                                    23.443
                                                                3300.0
                                                                                                      ......
                 1.50.0
                            9.403
                                         14.000
                                                                                                      40.00
                                                                                           74.
                                                    Attracted
                                                                Ja 00 40
                                                                              20.00
             HCL
                    30.065
                                    -22.063
                            6.075.4
                                         11.041
                    • 0
                                                    -10000
                                                                  100.0
                                                                              6.76,9
                                                                                           . 70.,41
                                                                                                      -1 - .: 7
                 . 20.0
                            6.761
                                         41.855
                                                    -0.653
                                                                  400.0
                                                                              6.473
                                                                                                      1.71
                                                                                           abot 20
                                                                 000 • ¢
                                                                                                       3.65 46
                 1.70C
                            7.069
                                         414.134
                                                     .....
                                                                              70.29
                                                                                           1000
                1.70.0
                             1.550
                                                                 1276.00
                                                                              7. . . . . .
                                                                                                      25 - 25 - 4
                                         23.250
                                                     11.000.
                                                                                           140000
  Cards 13
                1-02:0
                            Sec. 4.3
                                         20.07
                                                                100000
                                                                                                      9.7...
                                                     40.1 4
                                                                              400001
                                                                                           30 0 °C 1
  (Cont'd)
                 0.00.00
                            00000
                                         20.030
                                                    10-130
                                                                24 303 00
                                                                              0.014
                                                                                           57.01 GO
                                                                                                      1-0: 47
                            0.703
                                         50 . 514
                                                    16.00
                                                                € COO • C
                                                                              0.0778
                                                                                           61.000
                                                                                                      10.327
                . • JU•5
                                         61.431
                                                    190,07
                                                                                           11.75c
                11 6.0
                            ₩•614
                                                                4.000.00
                                                                              t . 1344
                                                                                                      5.093
                .. . . . . . 5
                            50014
                                         04.004
                                                    600 ·16
                                                                 3000+0
                                                                              6.702
                                                                                           Lan. 6 , 1944
                                                                                                      41.05.4
                 1111113
                            1000 230
                                         54.6550
                                                    12.7 20
                                                                 3 '00 • C
                                                                              0.993
                                                                                           to a rest
                                                                                                      1300 G
                    a/+•01 44
                                      3.3
                     • 0
                            6.900
                                         30-170
                                                    -6.074
                                                                  100.0
                                                                              6020
                                                                                           ...175
                                                                                                      -10.79
                                                                              6.770
                 1.75.0
                            6. 1. 1
                                         46.0972
                                                    -0.1% 3
                                                                  400.0
                                                                                           47.01c
                                                                                                      5.710
                 44.50
                            7.1.46
                                                     Seles
                                                                              1.514
                                                                                           Se . 77 18
                                                                 600.0
                                         20.037
                                                                                                       2.0716
                            7. 11.
                                                                                           .....
                 1 - 32 - 1
                                         94.007
                                                     50.12.19
                                                                 10.0000
                                                                              0.00
                                                                                           5-6-5-4
                                                                                                      10+71
                14500
                            47 · · ·
                                         27.216
                                                     40.000
                                                                16000 ...
                                                                              6 . 1 . 15
                 U100+0
                            i Crevi
                                         00 • .22 c
                                                     13.410
                                                                4400.0
                                                                              0.076
                                                                                          21.045
                                                                                                      15.4144
                . +600 • C
                            11.6 7 21
                                                                              € . 17×
                                         61.03.
                                                    10.000
                                                                2000 to 0
                                                                                           6 • . i
                                                                                                      .....
                2/11:00
                            ( ل ل ال م ال
                                                    17.517
                                                                              0.0 C
                                                                                           60.123
                                         U- +23.50
                                                                2000.00
                                                                                                      1.6 .
                                                                                           5 10 m.
                12 1 2 1 0 O
                            40000
                                         630463
                                                    21.000
                                                                 3000.0
                                                                              5.055
                                                                                                      ... . 1:
                31 . . . . .
                            noul!
                                                    2301 1
                                                                                           64. 127
                                         1940693
                                                                 31.30.0
                                                                              D. U.C.5
                             1 - 1 - 3
                                              1.0
                                                     1.0 1.0
                                                                 1.0 1.0
                                         100
                                                                              1.0
Cards 14
                       1. 1 25.7 1.0 10.0
                                              1.0
                                                     1.0
                                                           1.0
                                                                  1.0
                                                                        1.0
                                                                              1.0
                                                                                    1.0
                . .
                       ٠. ..
                            1.0
                                   1.0 10.0
                                               1.0
                                                     1.0 40.0
                                                                  1.0
                                                                        1.0 1.0 1.0
                     Safe
                              F-7.1
                                      =H20
                                               +141
                                                                           2d 6-10-66 2-0
                                                                                                    0.0
                     .. 11
                              4,41
                                       =011
                                               +M.1
                                                                          21 200 10 30 000
                                                                                                   0•.
                              + +1
                                               - M 1
                                                                          24 3 0 may 1 0
                                       =02
                                                                                                -34.00
                              + N.C
                                       ÷ H2
                                                                          201 2000-00 100
                                               +1-1/2
                                                                                                   0.0
                     + + 1
              6.0
                     ٠,
                              + ,-1.5
                                       = ( )2
                                               4.86.3
                                                                           23 2000-33 000
                                                                                               -40,000
                              * or 1
                                       41164
                                               +14.1
                                                                           Ter 1 - 10 - 51 1 - 0
                                                                                                   0 • (
              .,,
                                       =1:2
                                                                           14 1-40-14-1-9
                     -11
                                               +(_
                                                                                               -7000.0
Cards 15
                     4 . ,
                                       # 11
                                                                          11 4.00-11 0.0
                                               * () ?
                                                                                                  0.0
                     40.5
                                       =1120
                                                                           14 : - 00-17-2-0
                                                                                              -0900·0
              .
                                               ++-
                     1.0
                                       20 %
                                               411
                                                                           14 1-10-19-7-0
                                                                                               16600.0
                                                                           13 1.0 -11 0.0
              1.14
                     مادر 🔹
                                       44127
                                               4 11
                                                                                              -1100.0
                                       F1120
              ., H
                     . . . .
                                               46.
                                                                          1 - 1 - 0-14-1-0
                                                                                              -1000-
                     ....
                                       = .;
                                                                                              - 42 21 40
                                                                           1 to 1+00=12 5+0
```

, · ·

### Table 3-16 (Concluded)

```
Cards 15
                                     PHELL
                                                                                                                                    15 2005-10 000 - 10pton
15 00 1-11 000 - 1000
                                                                                   + - 1
                                    +11
(Cont'd) \(\frac{1}{2} \cdots
                                                                    FIRE
                                                                                   4 :-4
                                •04877 • (a 700

    15900

                                                                                                    Cards 16
                                . 1855 F
                                                      •3307
                                                                           . • dring !
                                                                                                    . 1449 h
                                                                                                                           * ( " / 1 4
Card 17
                            · · · /
                                                                    1.0
Card 20
                                               -1.00·
                                                                                          G \bullet G
                                                                                                                                        0.010
Card 21
Card 23
                                                                                          .00.
Card 24
Card 25
Card 26
Card 27
                      . 1 • •
                                                                     250.
                                                                                           c30.
                                                                                                                 250.
                                                                                                                                        • 0 تا ہے
Card 28
Card 29
                                                                                   LENG
Card 30
                                                                    1014.1
                                                                                           0.03390
                                                         • • 740205+00
                                                                                    . 16.101. 740.
                                                                                    €11000 /0+01
                                                                                                                  - 435 LOSM + 1 + 1 + 154 (412 + 5
                                                          •4740, 20+CO
                                                        --- 74025 +00 - 1100044+01 - 403021 03470
                                                                                                                                              2-17-19-65
                                                                                                                                                · Sugar of a
                                                                                                                                              • 505 a r
                                                          ***/* 202+00 *1193; ***01
                                                                                                                  Commence State Commence
                                                          **/ * 1. 5 . fed . * 110 ** /0+// [
                                                                                                                   • 3000
                                    - 21.001 . 2.020 . 20 . 100 more
Cards 33b
                                                          ** /*Wearton ***** * ** **
                                                                                                                   * $15-4. * ** ...
                                                                                                                                                                . . . .
                                                          ** / * // das+15
                                                                                    •1.000 •31
                                                                                                                  . 24 / 10 . 20 . 2
                                                                                                                                                • 116 7
                              --- 70 > 201 +C↑
                                                                                     *1131 J H1:31
                                                                                                                    · 17 / 10
                                                                                    *1100 % ***!
                                                                                                                   *****
                                                        .....
                                                         . 11 . . . . . . 61
                                                         **** 12 *00
                                                                                      •110 - H-+d+
                                                          • • • • •
                                                         •* - * /. • * ) - • 100 - 50 ••
                                                             .765 41 ++00 -- 1027797+01
                                                         10714-08 •1076:05<del>-</del>0k
                                                         10+61+1641-- 00+010-001-00 --10-001- 56+61-00
                                                         10 71 +533 . . 10/000 -08 . . Vend417+00 -. to/6190+01
Cards 34b
                                                          So 714+31 - 10/3 for +00 - *Yesef41 (+00 --1160425401
                                                    ** 11714+34 *10.000 -CE
                                                                                                             . /USSA 1400 - NAME 40 +405
                                                        Control of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta
                                                                                                             * 1000041 2400 - * Chiucha 1+6"
                                                                                                             * 160 6 10 17+1 3 - + + 1160 2 150 + 17+ 12 3
                                                          1. Jan.
                                                                                . 1000 C -C.
                                                                                                             * 115 ( 1) * 50, * * + 1156 * * 50
                                                          3 97.4 103
                                                                              يل⊸د يو∙ دييه ال•
                                                                                                             7.9-33 - 1000 Buch
                                                               1. 13.
                                                                                                             . 10 . 31 14 5 . . 11 . 10 5 - LE
```

Table 3-17 EXAMPLE PROBLEM 6 PERTINENT SOLUTION

	SUPERSON								
		SUPERSONIC FLOW ANALYSIS	SIS USING THE L	USING THE LOCKHEED-HUNTSVILLE HULTIPLE GAS-PARTICLE PLOW SOLUTION CASE NO.	SOLUTION	JLTIPLE SHOCK	COMPUTER	PROGRAH	-
PARTICLE!!	PARTICLE HEMICRONISKY N	NOZZLE (RC/KT=2);	1. NON-EQUILIBRIUM	KIUM CHEMISTRY	- <del>-</del>			; ; ; ;	
	10:401	1 CON (2)	1CON (3.)	RUN CONTROL PAF ICON(4),	PAKAMETERS ICON(S)	0 (9)NO31	1 CON(*)	ICONTB)	
	169N031	(SOROS)	100N(11)	1CON(12)	CON(13)	1 CON ( 1 4 )	I CON (15)	1004(14)	
O# CALCULST!	FLOW CALCULATIONS ARE IN ENGLISH	ST 140	METH THE REM COOKDINATES IN FEET	RDINATES IN F	E E T	<b>b</b>		11010	
E FLOA FIFLE	TME FLOA FIELD DATA AILL NOT ARITTEN ON	ARITTEN ON TAPE							
TYFE	LTRANS	•	æ	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		0		414	
<b></b>	ď	13-3-5-1	. 25574+72			10000013	68637+01-	10+29961+	1
~	. 67	1 0 0 0 0 0	00000	.0000.		45784+00	10+15181.	10+46277	
~		100000	42878-E2	179361			+ 18041+01-		•
~	6	020120	18072-02	21431-42		.47816+00	117556+01	10.24142.	
	•	10000	-61-91-91-9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			104258914		
• •	; ;						1000001	10.0.0.0.0.0	
w ~			EU-52 [ B# •	2272:		63-1-63/69	17653+01	10+57566	
~	5		Su 5814.	14-14416		54827+63	17248+01	76373+01	
~	٠.		.329463	1931		.53131+00	17697+01	· Routhand	
-	-	- Chainean	-654-19	Tale Balling Comments		00+6+6+4	19053461	- 200 to 10 Te	
~	ပ	1.6	.72569-r3	16245-61	•	03+5-175+	.18696+01	111216.02	
	<b>(5)</b>	3	67-87578 - F3	15559		49318+03	- 10+7991+ -	-14965-92	
~	-	6.0		RC1332	•	46098+63	.22751+01	112667+62	
	•	- 63404645 · · ·	10-15041-	12561	!	00000		+0+00001+	:
					***				
344	TRANS	•	a			۵		M W K	
			•	•			,		

Table 3-17 (Continued)

SPE 138 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		THE RECOVERED AND AND AND AND AND AND AND AND AND AN	IC REACTION DAT	<	12 15	h	۵	0	+			:	:			
	ATTENDATION OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE			:		:		i 1	!		1 1 1 1 1					
	EXPORERT	• •				,				,				(		
		3		- 1	SIDERED		KRBAGEXP	(8/RT H	N • • 1 / 1	•	z	6		<b>4</b>	j	17.
10   10   10   10   10   10   10   10	-	ı		_	DZH •	•								7 7 1 0 0		• - •
1	~ ~	<b>9</b>	: : : :		1	•			!	1:379+1		240	P	2 0		<b>,</b> ~
1	3	: : : :	) **	+ H2		* *				7.26C+1		-4000				٠,
0	<b>.</b> •	S .	ร ป	) <u>-</u>						3.993+1		- 7000		}		-
1	,	H 0	E 6		• • • ±	0 0				2.410+1						:
10			¥ . H.3.		# H20	1					!	1600		-		
1	1	500	) 0 (8 • ,•		C02	- 1				6.025+1		1100,		0		m s
19		5 6			# HZ0	+				0.02540	7	0001-				ا.
14		0	1		HO .	•				1.205+1		-2400	•	-		<b>.</b>
H1 * 1.00 CO : 2-00 CO 2 : 1-00 H : 1-00 HZ : 100 HZ : 1-00 HZ : 1-00 HZ : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 OH : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 OH : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 HZ : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1-00 OH : 1		. J	+ CL2		HCC.	ラ ト ト				4.820+1		-5260		0.	•	~
### 1.50 CO		- K			,											1
## 1.50 02 1.100 CL 1.00 CL 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.100 ME 1.		1	60.	<u> </u>	ء	, 2		~		3.09		1.00	-	- 1		:
### ### ##############################			0.0001		ø		ויפפ כרי	-	'O' MCL	00:1:1	2 N			į		
E HOLE-PRACTIONS ON THE START LINE ARE READ FROM CAKDS  CO CO ON ON ON THE START LINE ARE READ FROM CAKDS  CO CO ON ON THE START LINE ARE READ FROM CAKDS  CO CO ON ON ON THE START LINE ARE READ FROM CAKDS  CO CO ON ON ON THE START LINE ARE READ FROM CAKDS  CO CO ON ON ON ON THE START LINE ARE READ FROM CAKDS  CO CO ON ON ON THE START LINE ARE READ FROM CAKDS  CO CO ON ON ON ON THE START LINE ARE THE READ FROM CO ON ON ON ON ON ON ON ON ON ON ON ON ON		#2	11.33	ĺ	3.00.00	1	# U	-		-			• •	Ha - 90		
E MOLE-PRACTIONS ON THE START LINE ARE READ FROM CARDS		E H	25.1			~	# 66.1		1	_		00	-			•
CO			7 HE	- :		READ #	ROM-CAKD	;	,	i i						}
HCL NZ  -14952-00 -18930-01 -276CC-C1 -28554+00 -12700-00 -33000-03 -12000-03  -14952-00 -9714C-C1  -14952-00 -9714C-C1  -14952-00 -9714C-C1  -14952-00 -9714C-C1  -14952-00 -9714C-C1  -14952-00 -9714C-C1  -14952-00 -9714C-C1  -14666 ANE -1-PARTICLE SPECIES PHESENI IN THE GAS-PARTICLE MIKTURE  -1400-00-00-00-00-00-00-00-00-00-00-00-00-			.03	=		1 :		20			0.4	•	•	97500-02	- tt?	00
PRESSURE -(ATH) = .37647.02 CHAMBER TEMPERATURE (BEG=K) = .33910+D4  THERE ARE -1-PARTICLE SPECIES PRESENT IN THE GAS-PARTICLE MIKTURE  AUN CUTOFF INFORMATION  LONER BOUNDARY  THETAE	.2533		18930-51	-2765	19-0	£6	9		0000					1 1 1		
THERE ARE -1-PARTICLE SPECIES PRESENT IN THE GAS-PARTICLE MIXTURE  RUN CUTOR INFORMATION  LONER BUUNDARY  UPPER BUUNDARY  THETAE		. 00+25	31 4E-1	697.02	CHAMBER	15#9	ì		1	10+04	:	:		1	! :	:
UPPER BUUNDARY  LOWER BUUNDARY  LOWER BUUNDARY  SE SOCOG+02 THETA				************************************	E ARE	1-PAR	HELF: SPE	CIES PHE	SENT IN		S-PARTE					
				PFER 90	1 4		¥ *	- 1	<del>                                      </del>	***	1	ONER BOUNE	} .			20

Table 3-17 (Continued)

TRO PHASE CHECK CASE USING NON-EQUILIBRIUH PROGRAM	KAM	ă	DATE 100475	PAGE	-
	PARTICLE PHYSICAL DATA	YSICAL DATA			
SPECIE RADIUS HASS-					
1 -1660-62 -2533	0+03	00000.			
THE PARTICLES CONSTITUTE	E 45.28 PERCENT BY	CONSTITUTE 40.28 PERCENT BY MEIGHT FLOW OF THE GAS-PARTICLE MIXTURE	E MIXTURE		
NUTANDERS TENDERS THE SELECT OF SELECTION	TAKE TROIVIDORE PERCENTAGES ARE 1.00	TEMPERATURE-ENTHALPY TABLE ALL BE READ IN #ITH ENGLISH	UNITS		

Table 3-17 (Continued)

TAN PHASE CHECK CASE USING NON-EQUILIBRIUM PROGRAM	D475 PAGE	) [	اسم
7 × 7	GRAH	1	
GAS-PARTICLE FLOW SOLUTION CASE NO. 1	PAGE	~	
PARTICLE (ICMICRON) SRM NO22LE (RC/RTa2), NON-EWILLIBRIUM CHEHISTRY			
PARTICLE TEMPERATURE-ENTHALPY TABLE	:		
PHASE CHANGE DATA *** THELTS .417005+04 HSOLIDS .278514+08 HLIQUIDS .403481+08	80+		

Table 3-17 (Continued)

1   PARTICLETIONICEON) 284 + holise   18   18   18   18   18   18   18   1	TWO PHASE CHECK CASE USING NON-ELUILIBRIUH PROGRAH			DATE 100475	PAGE	•
PARTICLE   PARTICLE   DRIG TABLE	SUPERSONIC FLOM ANALYSIS USING	THE LOCKHEED-H	R SOLUTION SOLUTION	CK COMPUTER PROGHAN		
		F NO.	> A		394	_
1		PARTICLE OR	AG TABLE			İ
1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED   1   COURGED						
1   1   1   1   1   1   1   1   1   1		I RE	DHAG COEF			
2 .12550+01 .100000-01  4 .1250+01 .10010-1  5 .1555+01 .10010-1  6 .1552+01 .10010-1  1 .1552+01 .10010-1  1 .1552+01 .10010-1  1 .1552+01 .11010-1  1 .1552+01 .11010-1  1 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .1010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552+01 .11010-1  2 .1552		1 • 00000	.10000+01			
4   172657+01   100004-31     5   12657+01   100326-11     6   12657+01   100326-11     7   112657+01   100326-11     8   25507+01   112607-11     9   25507+01   112607-11     10   25507+01   112607-11     11   25507+02   23607-11     12   25507+02   23607-11     13   25507+02   23607-11     14   25507-02   23607-11     15   25507-11     16   25507-12   236507-11     17   25507-12   236507-11     18   25107-02   236507-11     19   25107-02   236507-11     19   25107-02   236507-11     19   25107-03   236507-11     25   25107-04   25107-11     26   150304   250306-14     27   27   27   27     28   27   27     29   27   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27     20   27		10+00211* 2	.100000.			
4   12600001   10010001     5   1262001   10030001     6   2152001   11410001     7   19000001     8   2150001   13150001     9   1260001   1412001     1   170000001   1412001     1   1700000000000000000000000000000000		10+05521.	16+00001.			
1982.01   10020.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   1005.01   100		4 .12600+01	1001001.			
1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995;   1995	A CALL THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE O	10+04921	.10020+n1			
11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01   11416.01		6 .1582c+01	.10636+01		•	
1	A COMMISSION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O	13+5561	-1141C+91			
1			.12240+91	/		
1		10+10016. 4	13150+11			
1			•1412G+n1			
12		1 50100+01-	15170+01			1
13			.16250+91			
10000000000000000000000000000000000000		į	.17450+91			:
12820+02 15820+02 25100+02 39800+02 59100+02 63100+02 17020+03 11000+03 11000+03			.18746+31			
15820+02 21550+02 31650+02 39800+02 63100+02 63100+02 79509+03 31650+03 11550+03 11550+03		ZO+DOQZI S	. 20250+31			
. 19959+02 . 25100+02 . 39800+02 . 59100+02 . 63100+02 . 79509+03 . 1500+03 . 1500+03 . 1500+04	-	•	.21860+01			
.25100+02 .31600+02 .39800+02 .50100+02 .79500+02 .1000+03 .1000+03 .1000+04		•	.23640+01			
.39809-02 .39800-02 .501004-02 .631000+02 .79509-03 .10009-03 .10009-04	_	•	.25550+n1			
.39800+02 .52150+02 .63100+02 .79509+02 .1500+03 .1500+04			-27626+91			
. 63100+02 . 63100+02 . 79500+02 . 17020+03 . 110510+04 . 17020+04	2		.36073+41			
. 63100+02 . 79509+03 . 1702+03 . 31460+03 . 16030+04 . 17020+04	· Commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of	1 -50100100	.32520.01			
. 79509-02 -10009-03 -10009-03 -10009-04 -10009-04	2		.32520+91			
.31509+03 .31509+03 .10030+04	Z		. 38256+51			1
. 31560+03 .16600+04 .16610+04	~	•	*4155G+F1			
*0*00031* *0*01031*	2		.79000+n1			:
• 1000010-	2		.20030+42			
• 10000+00	<u> </u>	10010010	.20020+hZ			
	~	_	.20000+14			

Table 3-17 (Continued)

308.		# GE			**************************************
DATE 100475	PROGRAF				+ 10+00+•
	THE LOCKHEED-HUNTSVILLE MULTIPLE SHOCK COMPI	GAS-PARTICLE TLOW SOLUTION	CASE NO. 1	I PASTICLE (I DMICROW) SAW MOZZLE (RC/HT#Z), NON-FWUILIBHIUM CHEMISTRY	PL INTERIOR 200-11 DE AXIS 200-00 DL LIM 300+00 DL OELETE 200-02 DEG P.H.

Table 3-17 (Continued)

SUPERSONIC FL  I PARTICLE LICHICRON) SHM hOZZLE  LINE POINT DSCRIP - REGIME  MAC  FARTICLE CATA  SPECIL POINT DESCRIPTION  FARTICLE DATA  CHEMICAL SPECIF HOLE FRACTIONS  CS 2-533-51  OZ 2-533-51  OZ 2-533-51	9 -	00 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1 S 1 N 1	HEFT-LON SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOL	TION THETA THETA THETA	SHOCK COMPUTER	PROGRAM	S & S & S & S & S & S & S & S & S & S &
- 2 4V 4 W 1		**************************************	CHEHISTRY H DENSITY	THE TA HPERATURE			ļ
PARTICLE DATA SPECIL POINT DESCRIPTION FARTICLE DATA PARTICLE DATA CHEMICAL SPECIF HOLE FRACTIONS CS 2-5-35-51 CO 1-893-50 CS 2-5-35-51 CS 2-5-35-51	- 1	4 5 50 3	1	THE TA MPERATURE			
FARTICLE DATA SPECIL POINT DESCRIPTION:  SPECIL POINT DESCRIPTION:  SPARTICLE DATA  CHEMICAL SPECIF HOLE FRACTIONS  CO. 2-5335-01  OS. 7-0000-05  CO. 7-0000-05  CO. 7-0000-05	-	3000			ENTROPY GAS CONST.	VELOCITY LOCAL GAMMA	H-TOTAL ITR
PARTICLE DATA CHEMICAL SPECIF HOLE FRACTIONS CO 2-5-35-51 O2 7-0000-05 CL 9-750-51	-	903	X.	•1	ENTHALPY	DENSITY	TEMPERATURE
PARTICLE DATA  L		303	•11001ent •24693-n2	•25446-06 •55195•04	•6660€ •25078+04	.12618*D1	
CHEMICAL SPECIF HOLE FRACTIONS CO 1-8933-0 OZ 1-8933-0 OZ 1-8933-0 OZ 1-8933-0			.25980+00	•	52657+38	.10284-02	*561A0+0#
	67+69	36+	2.4	H20 1	0	3+3000-64	он 5•7000-03
	67+69	.47463+36	•		1 1 1 1 1 1		
12 1 2 INPUT - CONTIN .12367+CQ	20+69	.23736+13	•11001+01 •24693=n2	.31613+05 .55195+54	.25078+04	.45975+04 .12618+01	.20963+08
Z 1	-3211773E+	00+115577+00	1 .25980*:DC		•52657*D	20-482010	
CHETTCAL SPECIE MOLE FRACTIONS CO	H CL2	2*76E5-52 H2	2-8554-01	H20 - 1	1.5906-21 0	3+3000-04	0+0502+5 HO
Cu-Scarce without a town to a contract to the second	35.53	- #2463+6H-				45975404	
50.69639.	69.02	.23736+73	.24693-62	+0+54155+	.25078+04	.12618+01	
	.351177+04	33155+EQ	*3865Z*	•	52657+08	.10284-52	.56186+04
MOLE FRACTIONS COZ 1.8930-62					.5906-91 0	3.3000-04	OH 5.7000-03
71)	:	1.0003=05 HCL	10-2544-1	N 2 N			8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
1 4	69+112	•47463+00 •23736+13	•11001+01 •24693-02	•94838+00 •55;•5+04	.25078+04	.45975+04	.20483.08
PARTICLE DATA							
PICAL SPECIE HOLE FRACTIONS	. 3+1/1166 •	?				70-1-0701	0
CO 2+5335471	# CL2	1.0000-05 HCL	1,4952-01	H20 1	1.5906-01 9.01 ⁴ 0-02		

NOTES: (1) Typical printout for the startline data surface.
(2) Some points have been omitted for demonstration purposes.

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Table 3-17 (Continued)

EDITORIOR PROPERTO STATE CONTRACTORIORI								
	1	SUPERSONIC FLOW ANALYSI	NISO S	G THE LOCKHEED-HUNTSVILLE GAS-PARTICLE FLOW SOLUTION	ILLE MULTIPLE	E SHOCK COMPUTER	R PROGRAM	
I PARTICLE (19MICRONI SRW hozzle (RC/RT=2).	0NISRM 1:02Z	LE (RC/RT=2);	CASE NO.	I UM CHEMISTRY			:	PAGE 17
LINE POINT DSCRIP	USCAIP - REGIME	R MACH ANGLE	X PRESSURE	DENSIT	THETA TEMPERATURE	ENTROPY GAS CONST.	VELOCITY LOCAL GAMMA	H-TOTAL 17E SHOCK ANGLE
	DESCRIPTION	· ·	THETA	<b>x</b>		ENTHALPY	-DENSITY-	TEHPERATURE
	CONTIN	•65703+02	•75656+30 •23215+13	.24191-02	*0+14155*	.25039+04	.12613*01	-50,163+88-
THATICLE DETA	!	.377147+04	00046.		19381+00	.52442+08	.96507-03	+0++645.
CO 2-5347-01 CO2 1-9247-02 H	LE FRACTIONS CO2 1+9245-62 CL 9+2317-63	-0.2 H -0.3 CL2	2.5783-32	H2 2.8655-01 HCL 1.9029-01	01 H20	1.5974-01 0 9.0283-02	2.7828-04	OH 5.0653-03
SE 12 2 INTER - CONTIN-	1	•12214+00 •65710+02	.756	.16971+	9146+00	.35481+02	. 45804+04	.20483+08
CHEMICAL SPECIE MOLE FRACTIONS CO 2.5347-51 - CO2 - 1.924-72 - H	JLE FRACTIONS CO2 1.92472 CL 9.2328-63	-77 -H	-2-5786-52 M2- 1-1625-35 HCL	1 - 5	H20 N2	H20		HD - 5 - 0 6 6 1 - 0 3
PARTICL MAYA	CONT1N	.45729+02	.232214	• 10970+n1 • 24196-n2	•	39.		\$0484±08
CHEMICAL SPECIE HOLE FRACTIONS CO 2-5347-51 CO2 1-9247 02 6-57447-55 CL 9-2138	. E FRACTIONS	-377657+64 -02 H -53 CL2	÷ -	2.8. 1.5	00+	.52443+08 1.5974-01 0.0262-02	2.7844-04	.55935+04 OH 5-0670°63
12 4 INTER - CUNTIN .36639+C3 - 65736-C2	- CONTIN	. 16649 . 16649 . 16649 . 16649 . 16649	.7538	-13969+01	+0+5¢155.	6.	.45796+04	• 20486+08
CHEMICAL SPECIE MOLI	HOLE FRACTIONS - CO2 1.9239-72 - CL 9.2357-53	13 (FZ H Zu-	2.5795-12 1.1033-35	H\$2*8654-01 H\$2*8654-01	- H20 ···	1.5973-01 ·· 0 9.0282-02	2.7859-94	60-6840-63

NOTES: (1) Typical printout for a data surface inside the nozzle. (2) Some points have been omitted for demonstration purposes.

-

 $\prod$ 

Table 3-17 (Continued)

NISVILLE MULTIPLE SMOCK CCHPUTER PROGRAM SOLUTION PAGE 21		THETA ENTROPY VELUCITY H-TUTAL ITR	U P CEMPALPY DENSITY TEMPERATURE	33782*04 • 24579*04 • 12793*01	614-01 H20 1-5858-01 U 8-1234-07 OH 1-1580-04	0) 10873+02 .000000 .90945+04 .21686+08 4	598-01 H20 1-6875-01 0 8-2101-67 0H 1-1629-04	11198±02 .000000 .2451409 53 .34164+04 .24578+04 .12785+01	141-01 H20 1-5865-01 0 8-1384-07 0H 1-1678-04	01 .14518+02 .00000 .92668+04 .21595+U8 4	н20
PAGE		OHS		1	0 H	•	но		0	•	ž
TAT DECEMBE		VELOCITY LUCAL GANNA	DENSITY	• 91246±34 • 12793+01	8-1234-07	10-8912-04 -12788-01		• 90661•09 • 12785•01	8	10-21921+	70-18E1.8
SHOCK COMPUTE		ENTRUPY GAS CORST.	IHALHY	.24579+04		00000.	0	+0+92547*		.24574424	
		THETA	<b>2</b> .	.33782.04	H20	.10873+02 .34611+04	# 20 7.2	.34164+U+	074	.14518+02 +32520+04	н20
# 0 Tu	CHEMISTRY	N N N N N N N N N N N N N N N N N N N		.24475-03	3.0614-01	•27815+01 •25115*©3	10-850.6	*27&20*#1 *2569µ=03	19-1650-6	.28952+01 .21397+03	10=16=0=6
G THE LOCKHEE GAS-PARTICLE ASE NO. 1	E O I Ma		7		H2		#2 #CL		± ± 5	1	17
N 180 8	. NON-LAUILIBRIUM	PRESSURE	THEFA	12493402	2.8394-03	,12652+Û2 .14580+Û2	2.8188-63 1.2263-07	12867302 .14980+02	2.7838-03	.12667+02	2.7638-63
ANALYS	/eT=2)	3764	>	7.02	- I	4+01 (+64	# CL2	5401	# CL3 -	0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	1
* 0 T * U	777F 18C	TACH ANGLE		.20927-02	4 PO E PO E PO E PO E PO E PO E PO E PO	.210/g.02	110NS 2-95025-12 1-1375-12	- 4804-5401 - 21186+02	15 PC 15 27 - 12 24 - 13	. 50000000 . 20010000	110as 200727-02
SUPENSONIC PLOY ANALYSI	77	7: Ing.	DESCRIPTION	— <u> </u>	AULE PRACTIONS	- 604111	JLE FRACTIONS CO2 2-90 CL 1-13	T can till	C F RACTIONS CO2 2-09	- CONTIN	OLE FRA, 11045
	1 PAMTICLE(10M1CM64) 47 No.ZZLE (8C/8Tm2).	The Polist Dockip - Realist		11 18_ INTERCORITA	TATICLES ARE FRESHAT AT THIS POINT  TIME STACK MULE FRACTIONS  2.41A6-02 H  12	Lotter Cottle Shares 12 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 1210/2012 12	nc 1CAL Secote Hube FRACTIONS 2.4-00-01 Co. 2-9055-02 H 2.1-05/3-07 CL 1-1375-07 CL2		10 PARTICLE ARE PRESENT AT THIS POINT INFIGAL SIEGLE HOLE FRACTIONS  2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		HETTCAL SPECIE MOLE FRA, 11045
	PART	The Polist of	31 0 A 12	11 LE LATA	7471	2   2   15   15   15   15   15   15   15	7 V V V V V V V V V V V V V V V V V V V	PANTICLE NATA	20 FARTION 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 10 FA TO 1		1471.36 0

NOTES: (1) Typical printout for a data surface containing a Prandtl-Meyer Expansion, (2) Some points have been omitted for demonstration purposes.

Table 3-17 (Concluded)

3	211 S.			7.00.0	11.0.000	
SOFENSONIC FLOW ANALIS		LUCAMEED-HUT	POTITION POTITION	E SHUCK CURPULEN		PAGE
PARTICLEILONICHON) SRM NOZZLEIRC/RT#2)	NON-EGUIL	RIUM CHENISTRY	:			
DECKIP - REGIME AACH ANGLE	PRESSURE	DENSITY	THETA	ENTROPY GAS CONST.	VELOCITY	H-TOTAL 116 SHOCK ANGLE
DESCRIPTION - V	THE TA			ENTHALPX	-DE(.SITY	TEMPERATURE:
OCCOO. NITHOL	20+817114	125946+01	00000	11737+03	**************************************	*1202** 08
	10+62999*	.11434-03	.34107+04	.24622+04	.12791+01	
D+689+77.	• • • • • • • • • • • • • • • • • • • •	:	•23124+00	.39259+08	•62302-04	*41700+04
CO 2.4797-01 CO2 2.9378-02 H	5,2823-03	H2 3,0515-01	H20	1.5793_01 0	2,8732.06	PD-88512 HO
FREEHD - CONTIN .62554+01	.13077+02	10+20201+01	.24502+02 .27619*04	.61533+00 .24578+04	.98356+04 12924+01	* \$1584+08
0 Z-94-77-01 LOZ Z-9037-02 H  0 Z-94-77-01 LOZ Z-9037-02 H  1.5170-07 CL 1.1952-03 CL2	2.7775=03	H2 3.0402-01 HCL 1.6134-01	#20 N.2	1.5881=01-0 9.1980-02	3.5230-07	\$0=\$215** HO
-8ALL - CONTIL - AD1525	.13770+02 .66557+ul	.11414-03	+040000 +0+04105+04	.12100+03	*#5038*04	*17022*08
	30000*		.23029+00	.39237+08	.62024-04	41700+04
2.4790-01 CO2 2.9391-02 H	5.28un-us	H2 3.0517-01	H20	1.5792-01 0	2.8694-06	OH 2.1980-04
FREERD - CONTIN .62775+61	•13110+02 •55270+01	.33214+01	.24445+02	,92792+00 ,24578+04	• 98364+04 • 12924+01	1588+08
1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.7769-03	H2 3.0483-01-HCL 1.6134-01	H20	9.1940-02	3.5164-07	\$0-2605.4 MO

NOTES: (1) Typical printout for a data surface in the exhaust plume. (2) Some points have been omitted for demonstration purposes.

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

## Example Problem 7

Example problem 7 is the same as example problem 6 except that the start line is calculated internal to the program. Table 3-18 presents a flow chart of the input data for the specified problem. Note that Card 35 replaces Cards 33b and 34b of example problem 6. A listing of the pertinent solution is omitted as it is basically the same as for example problem 6.

Table 3-18
REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 7



^{*}If species mole fractions are input on tape (ICTAPE=1) cards 16 and 17 are not required.

# Example Problem 8

This problem analyzes a two-phase ideal gas flow field with the following stipulations:

- 1. Free molecular flow calculations are not to be considered.
- 2. The gas properties are to be read from cards, and
- 3. The start line is to be calculated internal to the program.

Table 3-19 presents first a flow chart and then a listing of the required input data for the specified problem. Table 3-20 presents a listing of the pertinent solution.

Table 3-19
REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 8



If gas properties are input on tape (ICON(1)=2) Cards 9, 10 and 11 are not required.

Table 3-19 (Concluded)

```
Cards
         TWU PHASE IDEAL GAS CHECK CASE
 1-3
                   0 2540051
                                                            15 52
                                                                                       02505
Card 4
                     1.278071402.4517025 16.366
                                                             1.3261493 2.466111 17.
                     1.401649582.4899160818.
                                                              1.476722832.5150353 19.
                                                       0
                     1.551346332.5414608320.
                                                              1.6254973 2.5691848 21.
                                                       ٥
                     1.699153 2.5981983322.
                                                              1.7722913 2.6284933323.
                                                       0
                     1.844889582.66006 24.
                                                              1.8881803 2.6796065 24.6
                                                       0
                     1.904525 2.6855416724.6
                                                                       2.7345666724.6
                                                              2.0116
                                                       0
                     2.118666672.7835833324.6
                                                              2.225733332.8326083324.6
                                                       0
                     2.332808332.801625 24.6
                                                       0
                                                              2.449708332.935
                                                                                  24.4824
                     2.590833332.9989583324.2765
                                                              2.749408333.07005
                                                                                  24.0146
                                                       0
                     2.922458333.1466
                                        23.7123
                                                              J.108J08333.2275833J2J.5785
                     3-305833333-3122416723-0204
                                                       0
                                                              3-514091673-399925 22-6438
                     3.732425 3.4901333322.2526
                                                              3.960241663.582425 21.8503
                                                       0
Cards 6
                     4.19/15
                              3.6764563321.4390
                                                              4.44285
                                                                        3.7718833321.0217
                                                       ٥
                     4.696775 3.8683916720.5999
                                                              4.9587
                                                                        3.9657416720.1754
                                                       ٥
                    5.220366614.0636916719.7495
                                                              5.5056
                                                                        4.1660666719.3
                                                       Ω
                                                             6.081658334.3592333318.4715
                    5.7900416/4.2606166718.8967
                                                       0
                     6.380191674.4577333318.0482
                                                       0
                                                              6.6854
                                                                       4.55595
                                                                                 17.6279
                    6.997325 4.6538166717.2099
                                                       0
                                                              7.315733334.7511833316.7952
                     7.640516674.8479416716.3840
                                                              7.971566674.944
                                                                                  15.9706
                     6.308783335.0392583315.5732
                                                              9.001341675.2270916714.7792
                                                             9.717558335.410825 14.0030
                     9+3265J3335+3195
                                        14.3666
                     10.08418335.5009666713.6222
                                                              10.45669175.58995
                                                                                  13.2450
                                                       0
                     10.834975 5.6776916712.8733
                                                              11.21874175.7641083312.5063
                                                       o
                     11.608175 5.8492
                                        16.1434
                                                              12.0031
                                                                       5.9346833311.7854
                                                       0
                    12-40336676-0151166711-4326
                                                              12.67025836.068552 11.2024
          1.3
              0
                     10.
                                                                        1000.
                                                                                  2.26791667
 Card 7
          2
              ٥
                                                                        1000.
 Card 8
          SHUTTLE 700 PC
                                        MKS
           • 0
 Card 9
 Card 10
           • 0
                    20.245
                               1.25
 Card 11
           • 0
                                         3411.
                                                   47.632
                                                              +4810
                                                                        .000934
 Card 20
          100.
                    -100.
                               0.0
                                         0.0
                                                              90.
                                                   50.
 Card 21
                                                              • 75
          2.0
                    . 2
                               • 2
                                         .002
 Card 23
 Card 24
          .40123
 Card 25
          1.0
 Card 26
          6.0
 Card 27
          250.
 Card 28
 Card 29
 Card 30
          AL203 EU. OF STATE
                                     LENG
 Card 31
            1
                                         0.3395
 Card 32
          4170.0
                    1112.8
                              1612.1
                                                   0.2676
 Cards 35 SUATA THID=30..THFD=7..THJD=10..THIW=10.366.RRT=2..CAPN=.67.ZAX#.672
         SEND
```

Table 3-20

# EXAMPLE PROBLEM 8 PERTINENT SOLUTION

	1 CONCID	110412)	1CUM(3)	1004180L 1004(4)	PARAMETERS ICUN(5)	0 (*)NO31	1 ( £1 NO ) 1	ICON(6)
	(6,3 HO.)	1CON(12)	ICON(11)	1004(12)	1C0N(13)	1CON(14)	1CON(15)	1COH(16)
ניור און	CALCULATIONS ARE IN ENGLISH	-	3. X. X. BHI- HI	[334 W; 83[8][03000 X-8 34]-H17- 8[[W	4 FEET	•		
+ 1 E L O	TOW THE COATA WILL WOTH	Ξ	و ا					
				- UFPER - BUUNDARK	AKY #011.75			
44.1	THARS	·*	<b>x</b>					
٠·		•12781+±1	24517491	1	4+66			1
• •	: : •	110/07	10-10017.	;	90.49			;
. ~	يە ق	1.4767+11	15-75167		) o +			
		1.451541	16+51+c2+		7.00			
~		1:+95291.	.25692+01		2+30			
<b>~</b>		10992011	25982+0H		7+60			
۰ ۲	, د	•17723+21	.20285+01		3+00 3+00			
<b>v</b> ~			2074491	042735+70	0			
			2007400		42935466			
. ~1	<b>)</b> යා	13.91172.	.27346+GI	•	42735+CE			
~	<b>d</b>	12+78162+			9.446			
. <b>4</b> (	) ون	• 22257*21	•24326+C	•	) ( + C + C + C + C + C + C + C + C + C +			
<b>,</b> ~	; ; ;	12.42/57.	2735 140	•	1274.05 4274.400		1	
		-144946634		**	06.43			
~	• • •	1:+646/7.	3-7-1+6	•	011477616			
~	• · · · • • • · · · • • · · · · · · · ·	14.5224Ze	3:466*D	•	· 96.+ a	:		
7	٠.	.31,63011	.3/276+2	· _	400000000000000000000000000000000000000			
~	:	13405266.	• 3 3 1 2 2 + m		On+p			
~1	c>	12+14192+	13+66427	36+12646 1	<b>3</b> €+1			
-			13+154-61					
~	:,	1.45:44.	15+42056.	•	97+6			
~	<b>f</b>	•	36765+61	: : : :	Jü+a		: : : : : : : : : : : : : : : : : : : :	: : :
<b>~</b> .	<b>•3</b>		-3//1/6	·	2 ·			
<b>`</b>	(3)		()+TE057*		00+1			1
,	. 7	н						

Table 3-20 (Continued)

CASE NO.  CASE NO.  No.  No.  No.  No.  No.  No.  No.	52 FAGE	UPPER BOUNDARY POINTS	THETA	• <b>13</b> 085+60	0.00 € 3.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5.00 € 5	.32234+00	13+56+56	•3€766+5€	03+2E08+	.29313+30	2949454C	•278u4+1C	32183	. 25795+50		•2444°+00	£3375+00	.23118+66	122468+00	• 21 to 24 + CO	35+54120	04+6932*		11.75c414		LORLY BUCKERAT	1 000001	# 4 - 4 P - 4 W	THE GAS FRUPERTIES IN ENGLISH UNITS ARE FOR SHUTTLE FOO PC	
6 5 7 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CASE NO.	440	r	.41621+01	16+92074.	10+26554*	134645454	10+6555+•	-+4538+C1	13+215/+*	13+61484	13+26464	13464655	.52271-61		10+83165	1C+31045•	43+33655*	13.44485	10+1+925.	- 5849Z+CI	10+52545+	12+15129*	77,080,8	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ນ ການ ພ	Ī	GRS FRUPERTIES IN	
			×	1-495364.	4 1	~	•	134.58994	1-467940.	13.157*21	# # GUBOK	1,401646	1000000	$\sim$	•	•			Ì.			· (m	r, ,	/97			* ************************************		Forter	

Table 3-20 (Continued)

THE PARTICLE THE PRINCIP THE PRINCIP TO THE GAS-PARTICLE HANDING AND SCHOOL THE PARTICLE THE PRINCIP THE PARTICLE THE PRINCIP THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE TABLE THE PARTICLE THE PARTICLE THE TABLE THE PARTICLE THE THE PARTICLE THE TABLE THE PARTICLE THE TABLE THE PARTICLE THE PARTICLE THE TABLE THE PARTICLE THE TABLE THE PARTICLE THE TABLE THE PARTICLE THE TABLE THE PARTICLE THE TABLE THE PARTICLE THE PARTICLE THE TABLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTICLE THE PARTI	13/108	SUPERSUNIC FLO	L FLON AUALYS	15 USING 1	HE LOCKHE	D-HUNTSVI	LLE MULTIF	LE SHOCK	IN AMALYSIS USING THE LOCKHEED-HUNTSVILLE MULTIPLE SHOCK COMPUTER PROGRAM	OGRAM		
RUN CUTOFF INFORMATION  LOWER BOUNDARY  ICCCC+63 THETA* .000LC 4* .00000 X* .50000+02 THETA* .90000+  ICCCC+63 THETA* .000LC 4* .00000 X* .50000+02 THETA* .90000+  ICCCC+C1				6AS	-PARTICLE	FLU*-50LU	*01				PAGE 3	
RUN CUTOFF INFORMATION  LOWER BOUNDARY  ICCCC+63  THETA* .050LC 4* .050GG X* .500GG+02  THETA* .900GG  HASS DENSITY  LDISSIVITY  *- COCCC  THE GAS-PARTICLE HIXTURE  CCCC+7:  CCCC+7:  CCCCC+7:  CCCCC  THE GAS-PARTICLE HIXTURE  IN INDIVIDUAL PERCENT BY WEIGHT FLOW OF THE GAS-PARTICLE HIXTURE  IN INDIVIDUAL PERCENTAGES ARE 1.00  IANIICLE IEMPERATURE-ENTHALPY TABLE  PARTICLE TEPPLATURE-ENTHALPY TABLE  CHANGE DATA *** THELT* .417.250-34 HSCLID* .278514-68 HLIQUIO* .403481-08  CHANGE DATA *** TRELT* .4472.50-34 HSCLID* .278514-68 HLIQUIO* .403481-08	PRANE JULAL GAS CHECK	CASE		,		:	· · · · · · · · · · · · · · · · · · ·			, , , , , , , , , , , , , , , , , , ,		- 1
UPPER BOUNDARY  **13550*33 A= -*16552*63 THETA* **500C;  **PARTICLE PHYSICAL DATA  **COCCO  **COCCO  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCC  **COCCOCC  **COCCOCC  **COCCOCC  **COCCCC  **COCCOCC  **COCCCC  **COCCCC  **COCCCC  **COCCCC  **COCCCCC  **COCCCC  **COCCCCC   **COCCCCCC  **COCCCCCC  **COCCCCCC  **COCCCCCC  **COCCCCCC  **COCCCCCC  **COCCCCCCCC					RUN CUTOF	INFORMAT	NO I	-	Tarumur 43.		;	
PARTICLE PHYSICAL DATA		)			ניים פים •	•	• 00000	*	.50000+02	:	.90000+02	
HE MANION MASS DENSITY EMISSIVITY ACCREMENTS COCCCC  ***CECC+21 **25UCC+C3 ***COUCC ***COCCCC  IN INDIVIDUAL PERCENTAGES ARE 1.00  INE INDIVIDUAL PERCENTAGES ARE 1.00  INE INDIVIDUAL PERCENTAGES ARE 1.00  INE INDIVIDUAL PERCENTAGES ARE 1.00  PARTICLE TEPPERATURE—ENTHALPY TABLE  PARTICLE TEPPERATURE—ENTHALPY TABLE  ***COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		:	1		PARTICL	E PHYSICAL	DATA	l l				ľ
THE PARTICLES CUNSTITUTE 42-12 PERCENT BY WEIGHT FLOW OF THE GAS-PARTICLE MIXTURE INDIVIDUAL PFRCENTAGES ARE 1.000  THE LANTICLE THIPPERATURE—ENTHALPY TABLE ALL UL READ IN WITH ENGLISH  PARTICLE TEPPERATURE—ENTHALPY TABLE  PARTICLE TEPPERATURE—ENTHALPY TABLE  PARTICLE TEPPERATURE—ENTHALPY TABLE  CARELT - 417250+34 HSCLID - 278514+68 HLIQUID - 403481+08		# -	1242Jann	**************************************		**************************************	- XCCH-	0000				
INE INDIVIDUAL PERCENTAGES ARE 1.000 INE IANTICLE TEMPERATURE—ENTHALPY TABLE ALL UL READ IN ATTH ENGLISH UNITS PARTICLE TEMPERATURE—ENTHALPY TABLE  NAME CHANGE DATA *** TRELT *** *** ****************************		. E	SHILLES CUNS		.12 PEKCEN	T ST KEIGH	1 FLOW OF	THE GAS	-PARTICLE MI	XTURE	:	- 1
PARTICLE TEPPERATURE-ENTHALPY TABLE  NAME CHANGE DATA Theltm .417680+34 HSGLIDm .278514+68 HEIGUIOM  CPHELTM .44971+04 CPSGLIUM .66976+604		H.	INE 11	BIVIDOAL FERNIUME-LI	PFHCENTAGE	S AKE 1.0 BLE AILL U	C KEAU IN	#ITH EN	GL 15H U	NITS		- 1
HASE CLANGE DATA *** THELTS .417000+14 HSGLIDS .278514+08 HLIQUIOS		Ì		PART	ICLE TEPPE	KATURE-ENT	HALPY TAB	LE		1		
	1	PhASE	CHANGE DATA	IPELT	417550 CPHEL1=	+34 HSGLID	27851	4+00 HL I		81+08		:

Table 3-20 (Continued)

SUFLADURIC FLOW ANALYSTS USING THE LUCKHEED-AUNTSVILLE NULTIPLE SHOCK COMPUTER PROGRAM WAS-PARTICLE FLOW SOLUTION CALE NO. 52		ì	
SUPERSOURCE FLOW ANALYSIS USING THE LUCRHEED-HUNDSVILLE HULTIPLE SHOCK COMPUTER WASHELD FLOW SOLUTION CASE FLOW SOLUTION	PROGRAM		
SUPERBURIC FLOW ANALTSIS USING THE LUCKHEED-HUNTSVILLE HULTIPLE SHOCK WAS-PARTICLE FLOW SOLUTION CASE FOR SAL	COMPUTER		
SUPERBURIC FLOW ANALTSIS USING THE LUCKHEED-HUNTSVILLE HULTIPLE GAS-PARTICLE FLOW SOLUTION CAJE NO. 52	SHOCK		
	AGALTS 15 USING THE LUCKHEED-HUNTSVILLE HULTIPLE	GAS-PARTICLE FLOW SOLUTION	ር ሕ ጋ ይ ፣ ፣ ፡፡ 5.2

1			FAKTICLE DRAG TABLE	GTABLE	
1255000 1255000 1255000 1255000 1255000 1255000 1255000 1255000 1255000 1255000 1255000 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125500 125		-	ند <u>۲</u>	DAME COEF	
12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 12555401 125554			000000	10.00001.	1
20000000000000000000000000000000000000		7	10+75521+	.1000010	
- 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		+	19456514	164909014	
12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 12496464 124964		7	12622+01	10+01031*	
100-100-100-100-100-100-100-100-100-100		٠.	115456+31	. 1002001.	
100-00-00-00-00-00-00-00-00-00-00-00-00-		J	15+32951•	10030401	
20101111111111111111111111111111111111		^	10+15461.	19+31+11.	
10000000000000000000000000000000000000		æ	15+17152+	.12240+31	
- 20		+	1316 2.00	113156101	
- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20		2	13900.	14125+11	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		=	13+1134	1517.1431	
1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 1001001 100		1.2	194231694	10+05291*	
10000000000000000000000000000000000000		~	15.73547.	17.50.01	
20-00001. 20-0001. 20-00001. 20-000001. 20-000001. 20-0000001. 20-000001. 20-000001. 20-000001. 20-000001. 20-0000001. 20-0000001. 20-0000001. 20-0000001. 20-0000001. 20-000000001. 20-00000000001. 20-00000000000000000000000000000000000		<i>5</i>	17.62.462	10-146-01	
20.000 mm mm mm mm mm mm mm mm mm mm mm mm	A STATE OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE P	15	-20+000Z12-	2t2ot+21-	
70-100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT - 100 FT -		9-	15822+32	12+39912.	
201000 200000 200000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000		. 17	70+755610	- 13+34620 -	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.		.0	*25120+07	10+15445.	
20000000000000000000000000000000000000	•	<u>ۍ</u>	-31050+02	- 10.230ff.	
20-01-01-01-01-01-01-01-01-01-01-01-01-01		22	. 34822+u2	13+33736+	
20,000000000000000000000000000000000000		12	-15:15C+CZ-		
29+05040 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050 10+050		2.2	.63155+62	13+72576.	
77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 77774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 7774 777		5.5	•79053+92	.38256+61	A COLOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE
* 1000000000000000000000000000000000000		5.4	*1111 + 0 + 0 P	44100040	
*100001		25	.316' 6+53	10+30062*	* + 4 T
		36	*8*00001*	• 25 - 55 + 62	
	A STATE OF THE PERSON AS A STATE OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERS	-27		-22022+62	

Table 3-20 (Continued)

			CASE	NO. 52		1			PAGE
PRASE TUEAL	JAS CHECK CASE	يہ							
				S.	STARTING LINE	11150		, , , , , , , , , , , , , , , , , , ,	
	×	×	π	THETA	Jn (	TACH ATELE	SHOCK ANGLE-	1410141 1410141	
	31331.	13+3+2+11	10078.	41000	60+1454+	20.27890.	00000		
	4.	15.36+31	13418914	. 34752+60	50-579A+=	70-00/004			
	-19614+62	.1522511	.15492+21	.70118+C0		.66654+62	• 00:00	104C3C7F	
	23432420	10450254	たったっちゃー	1437457	- n - n - n - n - n - n - n - n - n - n	20-6			
	.39227+55	1:+24151.	12.433.11	13.96141.	.50063+03	.66155+62	00000	90+449+/•	
	374463640	.15142+51	-12469421.	13+636210	.59332*63	. 65785+02	500:00•	9D+7A9*/*	
	* 5 + 8 + 1 + 1 C	12.66.51.	17+62711	12:52:12:	.52665+03	.65338+62	• 00000	*14692+38	
:	· CR644+10	10+26-014	10.05011.	13+64952	.51004+23	.6+410+62	• 06:30•	80+C84FC*	!
	•76454+15	15+68kb1.	11155411	.29832*51	65+26-3146	.64222+02	03000	.74661+00	
			111000	-134156+E1-	-62500+43-	4435544F			
		. 14047+11	112+11-61	.34715+C1	.52705+13	•62028+02	00200•	•74666+38	
	13+207-1	17.449/710	11322+21	.43527+61	.53417+63	- 62033+62	200	• 74657+Ge	ı
	1 1 5 8 4	-	1741411	15+5494.	.54223+23	•61174+52		.74647+39	
	*	-	11514+11	12+66/15	.55131+63	- 69255+02	1	- 14636+08	:
	* . 5 / 6		11033+11	17.8645.	.56154+23	.59275+02	00000.	.74623+35	
	****	12488414	152+	12+4-2794	-6544784		30,900	- 1100400 TA	
	, -	.14233+11	17+574110	.72948+£1	.5459e+23	.57136+02	00200	.74593+08	
1	.16672+11	141.3+01	174693710	13+81258°		- +55477+62	00006	40-9/5/6	
	17652+11	134694610	13+4+2719	13+69009.	\$61688+£3	.54757+02		•74556+JB	
i	1 1 4 1 7 4 1 1	1303441	ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-1445544	- 463536+63-	-53476+02	00000	14533+08	
	****	100	.12667+_1	.10573+02	624+5	.52132+02		**********	
		-	1.4184.		683024 B3-	45.07 £ 3 ± 0.2 +		3 44 6 C + UK	1
	, ₃ ,	13252+51	17474661	.13173+22	.72141+23	ຸກ	00000	.74431.08	
		-	10.135261.	1379. + 22	.73826+63	. 47762+02	- 00000	90+11+14	!
	+ 7 - E	.12774+11	136.2*:1	+ 1	.774C3+C3	.46386+02	.00000	.74364408	
	•	-	12+442419	.10368+22	·61545+33	204046464	00000	74322+08	!
				particle:51aht <u>-Line-Properti</u> c	- LINE-PROPE	R7165-			
	F0109	5+ E.c. J.E.	>	>	THETA	٧,	ENTHALPY	UEI.SITT	
•	-	-	*3+63+6*	000000	<b>0</b> 000n•	00	. 50438+04	20-A9041+	:
	.7		.3441846.	70+8681°		.23776+30	•53936 <b>•</b> 08	15057-02	
			**********	23+E968Z*		.41677*00	* 50832+C# ·	70-61051	
	· <del>-</del>	-	+2+37896.	.43751+52		•62840+00	•50423 <b>•</b> 09	14459-02	
			39453154	SBR70+CZ		GC+32++91			
	.0		*********	.74514+62		. 15662+31	•59743+11d	パコーテロヘテー・	
:	<b>.</b>		+3+6+13+0	. 42657+62		.12965+91	. 53768+09	20-69941.	į
	20		43+1/234°	616213463		•153a1•31	•53736•09	.14572-02	
	•	-	P[ + 11 Y + ] 4	.12662+03		10+7+661	. 50454965+	20-/91414	
	2	-	FC+ 14536+	2+hooh! •	•256	.2C67C+01	. 53643+08	70-0/561.	
				FD+95091.		.2302 F*G		3D-/3213	

Table 3-20 (Continued)

			< <b>∀</b> .	CASE NO. 52.			Jok -
TANK THE ST. ST. ST. ST. ST. ST. ST. ST. ST. ST.	CHECK CAS			-			<b>1</b>
	40.4	4				ENTHALPY	
		,	*3+3c214°	£6+18612.	.35502+01	•50395+08	14175-32
	*		41522+64	• 250 34+93	- 10+19++6.	50281+08	70-61111
	5	-	.41821+34	.28393+63	.38840+01	450153+68	20-04141.
	9.4	_	40+64124	.32186+63	. 43670+91	•50052+09	14142-02
	17		•4252C+C+	6345546.	19+75784.	.49337+38	.14145-32
	81	-	*C+4/ACh	+41534+33	16+010+0+		
	<u>~</u>	-	+3+8A3+8+	. 4 0 1 4 5 + C 3	10-62720.	.49472+3B	20-06:41.
	2.5	-	*437154	.51357+63	.66448401	*49243+04	70-40461.
	7		+ - + 2017++•	.56613+63	.73541+01	.49132+04	•130C2-∪2
	2.2		#D+019##*	.61559+03	16.01042.	*48742*94	20-08481
	73	-	FO+F165F*	.67176+23	10+22550.	*48795+00	.12730-02

Table 3-20 (Continued)

THE			CASE NO.	52		CASE NU 52		PAGE 12
### ##################################	THU PLASE TERME GAS CHECK CA	ASE	· ·	•				
### ##################################	LINE PUINT ESCRIF - REGINE		X A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DENSITY	THETA	ENTHUPT 6AS - CORST •	VELOCITY LOCAL GAMMA	
### CONTIN ### ### ###########################			:	<b>4</b>		:	DEN5   + f	- TENFERATURE
(E FRESENT AT THIS POINT)  (E FRESENT AT THIS POINT)  (A FRESENT AT THIS POINT)  (A FRESENT AT THIS POINT)  (B FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT)  (C FRESENT AT THIS POINT AT THE ATT THIS POINT AT THE ATT THIS POINT AT THE ATT THIS POINT AT THIS POINT AT THE ATT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THIS POINT AT THI			•12874481 •1623; •63	-13884-01 -19498-C2	-15333402 -48818+04	.24554.04	.1250C+01	902296#2
### ##################################	Frhille Lvia no fahijeles ame freseni Al	THIS POINT	1 1					
THESCHI AT THIS POINT  A NATE73752+14 PARTICLE HASS FLOW HATE29617+04 HIXTURE HASS FLOW NATE29617+04 HIXTURE HASS FLOW NATE29617+04 HIXTURE HASS FLOW NATE40104 LCALING LCALING2010000 .00000000000000000000000000000	-N!!ND}	- 44517 - 24 - 44370 - 2	- 1	• 1 4294+£1	• 48223+04	+0+545+0+	12555401 12555401	74122408
PARTICLE MASS FLOW MATE = .2%17+04 MIXTURE MASS FLOW MATE 4  MABLUS LCALING .000200+01 .10000+03  The bas = .40158+02 Particle Percent Loading-Relative-TO-THE-MIXTURA-  FORCE FORCE FORCE .00000  10842  10842P  10842P  10842P	26 PPHTICLE UNIA NO PARTICLES AND PRESCRI AT		•					
rabius LCalino  ***********************************	CAD TEUT THE NAME of		AKTICLE M	CON KATE *	.29017+04	MIXTURE MASS	FLOW KATE #	.16337+05
PARTICLE PERCENT LOADING RELATIVE TO THE MIATURE. **  FORCE FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE **  FORCE				TE PERCENT LOADING LOADING LOADING LOADING	10 1 10 5 No 0+13			
FUNCER FONCEY 10R42 15P 15P 15P 15P 15P 15P 15P 15P 15P 15P		NELATIVE IG THE	. V . B	BOOK PARTICL	E PERCENT LOA!	JING-RELATIVE -T	O-THE-MIATURE	
		•	FUNCER	FORCEY		15.9		
UELFYG TOELFY AF DELFY AF			(::)	27332.	•60400	20111+03		
		) ( I I V C	01110	9 7 3 X 0 1	DELFAF	71.77	) P K O C C C	

NOTES: (1) Typical printout for the startline data surface.
(2) Some points have been omitted for demonstration purposes.

Table 3-20 (Continued)

•

70.

SUPLASSING FLOW ANALISTY USING THE LOCKHEFO-HUMISVILLE MULTIPLE SHUCK COMPUTER PROCKAM GAS-PARTICLE FLUM SOLUTION CASE NO.

FALE

. S £- --- 801 xef 5/4 <u>*</u> TEAPLANTURE --- HOWALACE A042444 *7************* 140/5/04/ .74342+68 SHUCK ANDLE H-TUTAL -2+81-184-a -. 30052-01 2 RELATIVE TO THE STARL LINE -26121403 20.00222 LUCAL GAMMA .44254+64 +0+10545+ 15+00481* **** .12503+31 -.26113-31 10+00521+ 10+70421+ P Carlotte a VELOCITY .12500+01 ----MIXTURE ... MIXIURE . SAS CURST. £3+49915• .53956+03 +3+88+2+ .81545+03 *5+554+0+ 43+45542• .24554+34 +2+55+2+ +0+9+9+H+-47483434+ •00000• ENTRUPY -.56777-01 ENTHALPY PERNEUT CHAUSE IN HASS, MORENTUM AND EMERGY NUMERICAL INTEGRATION FOR LINE. .31157+00 --13653+0+ 15374403 .5286G.u4 .52767+04 TEMPEKATURE .16833+C2 •40045+04 \$6.480.90++ +0+4510+0 +47993+64 THETA .30,333 .00000 PRESSURE THIENNATIUM MESULTS PAKTICLE . PARTICLE = 12-707-21-.2955/-02 · 29-1-62 12+10441. *17938-62 10.45511. .18153-52 +19223-34 12403941. 10K42 ULRS111 000000 --19320-21 P.R. ([11] CHANGE IN ENERGY - GAD # -. 34322-21 france .... -+-++++++ INCIA 15+28701. CO+++671+ 4-54-4-4-4 1. +6Eacl. .2.40,402. 15+38181+ 61+654+13 .20593+03 .14923+03 PRESSURE FURCEY -- 20194467 - - - - 13000 A CAG TINDS AND SECTION OF COMME - C 4 5 5 7 5 4 5 -- 4375.127. . 67524+52 JACK MIGHE +45552+12 72.74/10. 2. +1.21. --1.4629424 +1+2 +5+4 ******* FORCEX LEES AND PRESENT AT IMES POINT was ceed and forestal at 1015 rother TAY PRADE LICHE GAS CRECT CASE 111111 1. (Sp.) (11E0) . 本中江 南中 一日中中十十一百日二十十十 tion of the abouter with item. PERSONAL CONTRACTOR -1,41,1 ----7190 40.00 4 [ 4 ] ---4 .. . . . . . . . TALLE CALA PARTILLE DATA FARITIES OFIN ... ...

NOTES: (1) Typical printout for a data surface inside the nozzle. (2) Some points have been omitted for demonstration purposes.

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Table 3-20 (Continued)

THU PPASE TORAL WAS CHECK CASE		CASE NO.	<b>7</b> <b>5</b>		:	:	PAGE 60	
LINE COLLI DOCRIP - REGINE PARTICLE CATA OFFICE FOINT DESCRIPTION	HALH AIGLE	PRESSUME - THETA	DENSITY D R	THE TA	ENTROPY GAS CUNST.	VELOCITY LUCAL GAMMA DENSITY	SHOCK ANGLE	2 3 3 2 3 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5
PARTICLE DATA  14653+22  PARTICLE DATA  1465-22	1408355 1408355 1410 - 5141	.21198-71	101 DE FDO .	48179-92 • 25573-54	9154693	.1250g+01	74322a9	
PARTICLE DATA RESENT AT THIS POINT	.13×27+22 .13×27+22	1475245	+0-0355+•	.19178-04	. 24554-64	10324665	7 x 12 2 s g B	
PARTICLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA No FACILLE DATA	.13147-22 .13147-22	10203-91	*3388c-C+	17799-04	.24554.04	12500+01	7.322408	
Parfille Defe	12477+12 12477+12 1415 POLLE	- 14679462 - 67613+20	.24748-54	. 16463+04	. 24554-04	.12500+01	24.7220gB	
PARTICLE DATA  2.2 PARTICLE DATA  2.2 PARTICLES ARE PRESENT AT THIS POINT	.11795+22 1115 FULK	- 40179-02	10-85871	.15166+U4	. 24554+04	10555405	71.22106	
PARTICLE DATA NO PARTICLES AND PARESENT AT THIS POINT	11131-12 HIS POINT	.2.9.8.50	12615-04	*13964+34	, 2458414 , 24554+04	.12506+05	14322108	
	8-10-40-00-00-00-00-00-00-00-00-00-00-00-00	-1473492 -14757-14	10+45449* 50-46478*	.12685+04	*24546403 *24554604	.12503+31	24.72.240A	

NOTES: (1) Typical printout for a data surface containing a Prandtl-Meyer Expansion. (2) Some points have been omitted for demonstration purposes.

LOCKHEED HUNTSVILLE RESEARCH & ENGINEERING CENTER

71

		SASEPART	SAS-PAMITCLE FLUM SOLUTION	SAS-PARTICLE FLUM SOLUTION CASE NO. 52			PAGE 78
the Prince Liche and Cheen Choe							
į K	HACH ANGLE	X Fre Soure	DENSITY	TEMPENATUNE	ENTROPY GAS CONST.	VELOCITY LOCAL GAMMA	SHUCK AMELE
DEFECT FOLS DESCRIPTION	>	THETA	a a	f t	ENIMALPY	- DENSITF	TEMPENATURE
Parlice dala so range all Pubbiel	72567-51 -72567-51 -72567-51 -72567-51	20.462512	.39220-65	.16363*04	•245403 •24554+04	12502:01	
	.24351+52	1242454	.137543t************************************	•69326 •35687•54	*24554404	.00420-04 .12562+31	
··+156,92.	.784351+*4	09752*	19-18665	1	.25652+08	10110111	+0+10696+
THE CHOSOLD STREAMLINE CHOSOLING INE		FUIN 29 HAS BEEN KEPLACED	EE: REPLACED				
3.11.2 4.4 1.4.5 2.4.10	• 754274 1 • 72565+51	+1315,+22 +c7445-21	.62100+61	.10363+04	.81545+03	+11697+65	.74322+08
CONTRACTOR OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE							

LOCKHEED - HUNTSVILLE RESEARCH

NOTES: (1) Typical printout for a data surface in the exhaust plume.
(2) Some points have been omitted for demonstration purposes. NO FAMÍSCES AR PRESENT AT TAIS MOTOT

ENGINEERING CENTER

Frailit CATA

NO PARIFOLES ARE PRESENT AT THIS POINT

.74322+04

111097+05

.81545+03 .24554+04

.7649+02 .16383-64

.6210n+21 .39220-05

•13225°22 •67445°21

1:+05:91.

AT FAREBU + CONTIN

12+43524.

.12550+01

+0+98198 .

*0-99E64:

.25542+08

.55813-C1

.76167+98

.66371+04

.42267+04

124554+04

.35734+04

30000.

12+697421 113752-03

10307+12

15+24/58+

22+46647.

H11W05 -

114:

-

-

UAFA

PANTILLE

.785227*g4

-- 12500+01

.25441+36

13-46915.

.07500

#105: 414.4

guis fo gassemanfitztesgraptmantmassingstopps forston 20 supported the

.76184+3B

. 40317+3+ +12500+01

+45335+04 *24554+64

*35763+64

• 2000

.24230+21 13/55-63

> .1-541.22 13+526590

******

- 600111

1 AALL

1.1

FARTICLE UATA

*37 486 *04

.02401-04

80+7-547.

11097+05

12500+01

.24554404

.15383+64

.39226-55

5: - 657:10 1J=5544.0.

1 .+ 4566 1. 1. +1 +521.

AN PARKISH I CONTIN

-

PARTICL DATA

.76451.02

### Example Problem 9

Example problem 9 is the same as example problem 8 except that a single phase ideal gas flow field will be analyzed.

Table 3-21 presents first a flow chart and then a listing of the input data for the specified problem. Table 3-22 presents a listing of the pertinent solution.

Table 3-21
REQUIRED INPUT FORMAT FOR EXAMPLE PROBLEM 9



^{*}If gas properties are input on tape (ICON(1)=2) Cards 9, 10 and 11 are not required.

Table 3-21 (Concluded)



Table 3-22 EXAMPLE PROBLEM 9 PERTINENT SOLUTION

E	1
HPUTER PROGRAM	
&   &   &   &   &   &   &   &   &   &	1
PUT	
O	t t
LE SHOCK COM	1
Š	1
116	
JOH	1
<u>u</u>	
I s v I	!
N I	
TEE0	<u>.</u>
ÖÇK	1
H	N Q
٠	ASE
us I è	,
LLYSIS USING THE LOCKHEED-HUNTSVILLE MULTIPLE SHOCK COM	CASE NO.
VALY	
C FLOW ANA	
7.	
ONIC	
PERS	
20.2	

GASEOUS	GASEONS CHECK CASE							
				RUN CONTRO	4			
	100011	0	100 x 3 2	( * ) ( 0 ) ( 1 )	I CON (5)	1000T	1 (L) NU ) 1	ICONCAL
	160N(9)	1001110)	100N(11)	1CON(12)	ICUNUI3)	1CON(14)	151)NO31	1CON ( 16)
1	<b>3</b>	<u>.</u>		-	<b>5</b>	CI .	0	2002
V CALLULATI	FLOW CALLULATIONS ARE IN ENGLISH	STINO	ALTE THE ASX	COORDINATES IN FEET	IN FEET			•
FLOR FIFLD	THE FLOR FIELD DATA AILL NOT WR	ITTEN ON	TAPE					
				UPPER B	BOUNDARY			
TYPE	IFFANS	⋖	; •		i : :	0	<b>4</b>	MAN
-	6	10000+01	.50002+00	00000.	• 1	100001	10407+01	18659+00
^		• 00000	Ü000.	000.		.27357.00	.32757+00	*24580+N1
	0	* C+000+1 •	•00000	0000.		00000	00000	+10000·U+
		1		HOWER B	BOUNDARY			
1 Y P E	ITRANS	∢	<b>60</b>			_	l.	X
7	6	.0000	00000	C0000.		.00000	000001	+0+00C01*-
		THERE AS	ARE O PARTICLE	SPECIES	PRESENT IN THE	GAS-PARTICLE	E MIXTURE	
	F .	THE FOLLOWING	5 V 9	PROPERTIES IN ENGLISH UNITS ARE	H UNITS ARE	FOR IDFAL GAS	SI	
				IDEAL GAS F	FROPERTIES			
	>	ox.	GAMA	10	ď			: 
	00000	*16252+04	11443+01	*0+86+09*	• 6000000			
				ST	STARTING LINE	INFO		
	or.	×	£	THETA	•	MACH ANGLE	SHOCK ANGLE	9/0
	.0000	00000	10.00101	00000	. 00000	: 0.1931±02	*0200°	60000
	13-12-11	accoa.	10.00101.	00000	,0000°	.81931+02	• 55556	•000¢•
	195758-01	60003	10.001014	00000	00000	181931+02	10000	00000
	19-21-61	20000	10.00101.	00000	6,000.	.81931+02	0,000	• 20000
	10-0:202.	00000	10.00101.	.0000	• 60000	.91931-02	,00000	• 60000•
	10-56133.	00000+	10.00101.	• 20000	000000	.81931+52	. , , , , , , , , , , , , , , , , , , ,	.0000
	*10477401	• 00000	.10100+01	00000	00000	. A 1931+02	.00000	* 000u3
	12375-60	•00000	10+00101+	00000	.00000	+81931+02	.03000	00000
							•	

Table 3-22 (Continued)

THETA STARTING LINE (NFO THETA STARTING LINE (NFO THETA STARTING LINE (NFO THETA STARTING LINE (NFO THETA STARTING LINE (NFO THETA STARTING LINE (NFO THETA STARTING LINE (NFO THETA STARTING LINE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHO	:			CAS	CASE NO. 1					: ! !	PAGE
THETA STARTING LINE [NFO	ASEOU	S CHECK CASE									
## THETA S MACH ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK ANGLE SHOCK SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHOOLD SHO			ı			STARTING	LINE INFO	 	•		•
.14143+00 .00000 .10100+01 .00000 .00000 .81931+02 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000		œ	*	r	<	*	MACH AND		JOCK AMGLE	9/0	
1541 -00   00000   10100+01   00000   00000   01931+02   00000   0174740   00000   010000   00000   01931+02   00000   0174740   00000   010000   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   00000   01931+02   000000   01931+02   000000   01931+02   000000   01931+02   000000   01931+02   000000   01931+02   000000   019		.14143400	00000	10100+01	00000	.00000	.81931		•00000	.00000	
.1747900 .00000 .10100+01 .00000 .00000 .81931+02 .00000 .81947+00 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .81941+02 .00000 .90000 .81941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000 .91941+02 .00000		.15911-00	. 30000	10100+01	00000	00000	.81931	+05	00000	.0000	
.19447-50 .00000 .10100-01 .00000 .00000 .81931-02 .00000 .22×83+30 .00000 .00000 .00000 .81931-02 .00000 .22×83+30 .00000 .00000 .00000 .81931-02 .00000 .22×83+30 .00000 .00000 .81931-02 .00000 .24751-00 .00000 .00000 .81931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .00000 .91931-02 .000000 .91931-02 .000000 .91931-02 .00000 .91931	 	.17679.50	.0000	.10100+01	00000	.00000	•	*05	000000	.0000	
.22983-37 .00000 .10100+01 .00000 .00000 .81931+02 .00000 .22983-37 .00000 .00000 .81931+02 .00000 .22983-37 .00000 .00000 .81931+02 .00000 .24751+00 .00000 .81931+02 .00000 .24751+00 .00000 .81931+02 .00000 .24751+00 .81931+02 .00000 .24751+00 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .31875+07 .00000 .91931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000		.19447+00	60000	10100101	00000	.00000	•	+05	00000	.0000.	
.22943+37 .00000 .10100+01 .00000 .00000 .81931+02 .02000 .24751+00 .00000 .00000 .00000 .81931+02 .02000 .00000 .81931+02 .02000 .24751+00 .00000 .00000 .81931+02 .02000 .25518+02 .02000 .00000 .81931+02 .02000 .28286+00 .00000 .10100+01 .00000 .91931+02 .02000 .91931+02 .02000 .33590+07 .00000 .10100+01 .00000 .81931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .00000 .91931+02 .00000 .00000 .91931+02 .00000 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .00000 .91931+02 .000000 .91		.21215+0g	00000	.10100+01	00000	.00000	•	+05	.0000	.0000	
.24751400 .00000 .10100401 .00000 .00000 .81931402 .00000 .24751400 .00000 .00000 .81931402 .00000 .00000 .81931402 .00000 .00000 .00000 .81931402 .00000 .00000 .91931402 .00000 .00000 .81931402 .00000 .00000 .81931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .00000 .91931402 .900000 .91931402 .000000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .91931402 .900000 .900000 .91931402 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .91931402 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .91931402 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .9000000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .9000000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .900000 .9000000 .9000000 .900000 .900000 .9000		.229A3+39	•00000	.10100+01	.00000	.00000	.81931	+05	•0000	•0000•	•
. 28286.90 . 00000 . 10100.01 . 00000 . 00000 . 81931.02 . 00000 . 28286.90 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 81931.02 . 00000 . 00000 . 00000 . 00000 . 000000		.24751+00	00000.	.10100+01	00000	00000	.81931	*05	• 00000	.0000	-
. 20254-90 . 202523 . 10100-01 . 00000 . 00000 . 81931-02 . 00200 . 31854-92 . 00200 10100-01 . 00000 . 00000 . 81931-02 . 002000 . 31874-90 . 002000 10100-01 . 00000 00000 81931-02 . 00000 32592-00 . 00200 10100-01 . 00000 00000 81931-02 . 00000 00000 10100-01 . 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 000000		. 26518+00	66000.	10100101	00000	.00000	.81931	+05	10000	• 0000	
.30554+32 ;00002 ;00000 ;00000 .01931+02 .00000 .31872+03 ;00000 .00000 .00000 .81931+02 .00000 .31872+03 ;00000 .00000 .81931+02 .00000 .33593+03 .00000 .10100+01 .00000 .81931+02 .00000 .35959+03 .00000 .10100+01 .00000 .00000 .81931+02 .00000 .35958+03 .00000 .10100+01 .00000 .91931+02 .00000 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .000000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .00000 .81931+02 .000000 .81931+02 .000000 .81931+02 .000000 .81931+02 .00000 .81931+02 .000000 .81931+02 .000000 .81931+02 .000000 .81931+02 .000000		.28286+90	00000	10.00101.	000000	.00000	.81931	*05	.00000	00000	
.31872400 .00000 .10100401 .00000 .00000 .81931402 .00000 .33593400 .00000 .10100401 .00000 .00000 .81931402 .00000 .00000 .35358400 .00000 .10100401 .00000 .00000 .01931402 .00000 .00000 .01931402 .00000 .00000 .01931402 .00000 .000000 .0000000 .00000000 .000000		+ 30054+30	.0000	.10100+01	.00000	00000	•	<b>•</b> 05	6-650.	.0000	4
*35358+30 .03700 .10100+01 .00000 .03000 .01931+02 .02030 .35358+30 .03700 .10100+01 .00000 .03700 .01931+02 .00000 .03700 .039000 .01931+02 .00000 .000000 .01931+02 .000000 .0000000 .000000000 .00000000		.31872+09	. 00000	10100101.	00000	00000	•	*05	.0000	.0000	3
*35358+30 .03700 .10100+01 .00000 .03000 .81931+02 .00030		.33590+00	00000	.10100+01	00000	00000.	.81931	<b>*0</b>	00000	.0000	٠
TOUNDARY LOCKHATION CUTOFF INFORMATION LOKE PROUNDARY		• 35358+39	00000	10.00101.	00000	00000	.81931.	+02	• 00000	•0000	
LOSE ROUNDARY LOSDON X					RUN CUTOFF	INFORMATI	NO				
			UPPER ROUNDAR			-		# 0 J	EP POUNDARY	i	
	÷		£0+02001*-	- 4 - 4 - 4	90000	ı Y	00000	•	10+00000+	- 12	0+0r0±++

Table 3-22 (Continued)

SUPERSONIC FLOW ANALYSIS USING THE LOCKHEED-HUNTSVILLE MULTIPLE SHOCK COMPUTER PROGRAM

CASE NO.

PAGE

RIP - REGIME MACH ANGLE PRESSURE	R MACH ANGLE	
UI - CONTIN .22983+00 .000000	- CONTIN .22983+00	.22983+00
	.81931+92	.81931+92
U1 - CONTIN .24751+00 +00009	- CONTIN .24751+00	.24751+00
•81931+02 •34164+03	.81931+02	.81931+02
- CONTIN .26518+90	- CONTIN .26518+90	.26518+90
	.81931+72	.81931+72
UT - CONTIN .28286+30 .00000	.28206+30	
.81931+0234164+03	.81931+02	.81931+02
UT - CONTIN .3C954+00 .00000	.30554+00	
.81931+02 .34164+03	.81931+02	.81931+02
U1 - CONTIN .31822+30 .00000	.31822+30	1
. P1931+02 .34164+03	. 81931+02	. 81931+02
UI - CONTIN .33590+00 .00000	.33590+00	
. A 1 9 3 1 + 0 Z	. A   931+02	. A   931+02
- CONTIN .35358+30	- CONTIN .35358+30	.35358+30
•		
	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	

(1) Typical printout for the start line data surface.
(2) Some points have been omitted for demonstration purporses. NOTES:

.19995.03

10892

MOMENTUM INTEGRATION RESULTS

FORCEY .00000

FORCEX

Table 3-22 (Continued)

SUPERSONIC FLOW ANALYSIS USING THE LOCKHEED-HUNTSVILLE MULTIPLE SHOCK COMPUTER PROGRAM

PRESSURE DENSITY
.u=/reda
:
.52849+02 .93628-0
•
.33552+02 .62945-03
.97543+0022757+0
.48396+0286695-0
.11168+01 .25052+0
.31031+02 .58792-03
.10422+01 -23231+01
•44213+02 •8n110-03
•
.29517+02 .54277-0
.11111101 .23705+0
**0370+02 *73990+0
.12544+01 .25383+01
.11808+D, .24165+D
+36923+02 +68439+03
10+01 . 25300+01
.29547+02
.12496+01
•33895+02    •63508-03
.30365+02 .57689-03

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

NOTES: (1) Typical printout for a data surface inside the nozzle. (2) Some points have been omitted for demonstration purposes.

Table 3-22 (Continued)

COMPUTER PROGRAM
· 👱
TLLE MULTIPLE SHOCK
Ē
•
184
<u> </u>
=
-
7
Ĩ
, T
SVILLE
Ψ.
>
~
Ţ.
·5
Ţ
Ä
LOCKHEED
س
ī
ũ
Ó
J
ш
Ŧ
•
(J
ž
_
ALTSIS USING
-
S
S
>
ب
7
₹
_
5
ت
•
w
=
Z
20
œ
w
٩
š

THETA ENTROPY VELOCITY  **PREATURE GAS CONST.* LOCAL GAMA **98245+01 **00000 **R2822+04 **36215+01 **18752+04 **11443+01 **10463+02 **00000 **82980+04 **36211+04 **18752+04 **11443+01 **36636+04 **18752+04 **11443+01 **36636+04 **18752+04 **11443+01 **36636+04 **18752+04 **11443+01 **36636+04 **18752+04 **11443+01		×	
6AS CONST. LOC. 18757-04			
. 18752+04 . 00000 . 18752+04 . 00000 . 18752+04	H DENSITY	JRE	X PRESSURE
. 18752+04 . 00000 . 18752+04 . 00000	.29873+01	3+01	.25093+0
. 18752+04 . 447700 . 18752+04	.24973-03	.11649+02	1 - 6
.00.00 .18752+04	.29967+01	.25002+01	25
18752+04 • 18752+04	24551-03	.11424+02	- 1
1 .18752+04 2 .00000	.30945+01	.24905+91	249
.00000	.24205-03	.11249+02	112
40.020	30104+01	10+00	.24800+3
- Ena/67016	.23949-03	11124+02	1113
.12729+02 .00mgg .83277+04	.30145+01	10+2	.24687+0
10-11-04 -18252-04 -11443-01	.23770-03	9+92	.11009+92
.13572+02 .00000 .H3322+04	.30172+01	10.4	.24567+0
+36515+D4 +18752+D411443+D1	.23654-03	.10948+02	109
•0000	.30187+31	.24439+01	244
.36502+04 .18757+04 .11443+01	.23590-03	+10914+02	10
.15300+02 .00nngg .P3514+04	.30237+91	.24580+01	245
10+6404 . 18757-04 . 19443+01	.23162-03	.10688+32	106
.16769+02 .0000c .84240+04	.30741+01	.24589+01	24
.35972+04 .18257+04 pli443+01	.21321-03	.97213+01	61

NOTES: (1) Typical printout for a data surface containing a Prandtl-Meyer expansion. (2) Some points have been omitted for demonstration purposes.

Table 3-22 (Concluded)

SUPERSONIC FLOW ANALYSIS USING THE LOCKHEED-HUNTSVILLE MULTIPLE SHOCK COMPUTER PROGRAM

CASE NO.

3.5

PAGE

İ
×
PRESSURE
.27461+01
11157+02
.26000.01
.97272+01
.27883+31
10921+02
15+5494.
10.62279.
10-81882.
119494-32
.26419.31
10+22274.
.28751+01
10174.02
.27241+91
.97222+01
.29390+01
.97331+01
.27862.01
.97222+01
.3004 - +01
.93015+01
.28503+01
.97227+01
. 30717.91
10+18886.

NOTES: (1) Typical printout for a data surface in the exhaust plume. (2) Some points have been omitted for demonstration purposes.

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

# Section 4 CONCLUSIONS

A versatile computer program has been described in the preceding sections. The code has numerous options which have necessitated a somewhat generalized set of input data. These options include:

- Gas-Particle Flows
- Chemistry

Equilibrium

Kinetics

Chemically Frozen

Constant Thermodynamics

• Single-Phase Solution

Non-Isoenergetic Flow

- Non-Continuum Flow
- Performance Calculations
- Shock Waves

In its present form, the code has the capability of producing data for the following applications:

- Gas/Gas-Particle Impingement (Heat Transfer Loads)
- Rocket Nozzle Performance (Thrust, I sp)
- IR Signatures (Radiating Species)
- RF Attenuation (Electron Densities)
- Plume Radiation (Radiative Heat Transfer Gas/Particles)
- Vehicle Base Pressure
- Base Heating (Convection-Recirculation)

A primary consequence of this work is the extension of gas-particle solutions to treat chemical kinetics for nozzle-exhaust plume flow fields. Since the code has the option of treating single-phase flow, chemical kinetics can also be included in liquid propellant motor analyses as well as solid propellant calculations. The method by which the kinetic equations are modeled also permits thermal nonequilibrium to be treated.

The RAMP code is an advance in the state of the art in the area of two-phase flowfield numerical solutions. Future development of the code may be done in the area of imbedded subsonic regions (Mach disks) and subsonic-supersonic mixing.

#### Section 5

#### REFERENCES

- 1. Svehla, Roger A., and Bonnie J. McBride, "FORTRAN IV Computer Program for Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems," NASA TN D-7056, January 1973.
- 2. Gordon, Sanford, and Bonnie J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouget Detonations," NASA SP-273, Lewis Research Center, Cleveland, Ohio, 1968.
- 3. Ruo. S. R.. "Development of a Multiple Shock Computer Program Using a Streamline-Normal Technique," LMSC-HREC A791047. Lockheed Missiles & Space Company. Huntsville. Ala., January 1968.
- 4. Prozan. R. J.. "Development of a Method of Characteristics Solution for Supersonic Flow of an Ideal Frozen or Equilibrium Reacting Gas Mixture," LMSC-HREC A782535. Lockheed Missiles & Space Company, Huntsville, Ala.. April 1966.
- 5. Penny, Morris M., S. D. Smith, L. R. Baker and R. J. Prozan, "Two Phase Flow Development Final Report," LMSC-HREC TR D390040, Lockheed Missiles & Space Company, Huntsville, Ala., January 1974.
- 6. Smith, S. D., and A. W. Ratliff, "Rocket Exhaust Plume Computer Program Improvement Vol IV." LMSC-HREC D162220-IV-A, Lockheed Missiles & Space Company, Huntsville, Ala., January 1972.
- 7. Kliegel, J. R., and G. R. Nickerson, "Axisymmetric Two-Phase Perfect Gas Performance Program Vol. I," NASA CR 92069, April 1967.
- 8. Prozan. R.J., "Solution of Non-Isoenergetic Supersonic Flows by Method of Characteristics Vol. III." LMSC-HREC D162220-III. Lockheed Missiles & Space Company. Huntsville. Ala., July 1971.
- 9. Penny, M. M., and C. J. Wojciechowski, "User's Manual and Description of a Computer Program for Calculating Heating Rates, Forces and Moments Acting on Bodies Immersed in Rocket Exhaust Plumes," LMSC-HREC D162867-II. Lockheed Missiles & Space Company, Huntsville, Ala., March 1971.
- 10. JANAF Thermochemical Tables, Second Edition. U.S. Dept. of Commerce, National Bureau of Standards, NSRDS-NBS 37, Washington, D. C., June 1971.

- 11. Crowe, C. J., "Drag Coefficient of Particles in a Rocket Nozzle," AIAA J., Vol. 5, No. 5, May 1967.
- 12. Radke, H. H., L. J. Delany and Lt. Palmer Smith, "Exhaust Particle Size Data from Small and Large Solid Rocket Motors," TDE-1001 (52951-18)-3 Air Force Rocket Propulsion Laboratory, Edwards, Calif., July 1967.
- 13. Laderman. A. J. et al., "Study of Thermal Radiation. Particle Impingement Heating and Flowfield Analysis of Solid Propellant Rocket Exhausts," WO 2386. Philco-Ford, Aeronutronic Division, Newport Beach, Calif., April 1967.

Appendix A
USER'S INPUT GUIDE FOR THE RAMP
RADIAL LOOKUP PROGRAM

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

# Appendix A

CARD 1 - Run control card

Format: 16I5

Column	Parameter	<b>Val</b> ue	Description
5	IOR DR	0	Will not call data ordering routines but will execute lookup routines. Ordered flowfield tape must be input.
		1	Will order flowfield data and generate Radiance tape.
		2	Will order flowfield data but will not generate Radiance tape.
10	IWRITE	0	No intermediate printout in property lookup routines.
		1	Use a one only if problems are encountered with program and intermediate printout is necessary to determine problem.
14-15	ISP	0	Species and species concentrations will come from flowfield tapes or finite-rate chemistry case.
		N	Number of species and species concentrations to be read from cards (Assumes species and species concentrations constant throughout plume.) (25 max).
20	IDUM I	0	If two entropy tables are present on the RAMP tape both tables will be used to determine local flow properties and species concentrations.
		1	Only first entropy table will be used to determine flow properties.
			Ignore for finite rate chemistry case.
			A-1

# CARD 1 (Continued)

Column	Parameter	<u>Value</u>	Description
23-25	IXCUT	N	Number of axial cuts to be written on flowfield tape. The values of the cuts will be read from Card 10 (100 max)
26-30	KASE	N	Case number to be written on Radiance tape.
35	INUNI'T	0	Output pressure and temperature in English units. Temperature, OR; pressure, lb/ft ²
		1	Output pressure and temperature in metric units. Temperature, OK; pressure, atm.
40	LSOLID	0	Do not perform 2-phase flow energy calculations for heating analysis.
		1	Perform 2-phase flow energy calculations.
45	LSOLGS	0	MOC input tape on Unit 8.
		1	RAMP input tape on Unit 8.
50	INRS	0	No radiation data on input tape.
		N	Number of radiating species on input tape.
54-55	NS	0	Equilibrium or frozen chemistry.
		N	Number of species on input tape for finite rate chemistry case (RAMP only) (25 max).
60	IPSTR	0	Pitot pressure data not on input tape.
		1	Pitot pressure data on input tape.
65	KUNIT	1	English units used internally.
		2	MKS units used internally (Required only if NS>0).

#### CARD 2

Reference Card for Property Lookup. These data are used to nondimensionalize the axial and radial coordinates which are to be looked up in the ordered flow field.

Format: 3E10.6

Column	Parameter	Description
1-10	XREFF	Axial coordinate to which each input axial station is referenced (ft or m).
11-20	ST	Reference length by which all input axial stations and radial coordinates are multiplied (ft or m).
21-30	RREFF	Radial coordinate to which each radial coordinate is referenced (ft or m).
NOTE:	RREFF, XREFF an	nd ST are used as follows (in main routine only):
	X = X*ST-XRE R = R*ST-RRE	- <del>-</del>

#### CARD 3

This card contains the necessary information to limit the calculations to those areas of interest. Units are consistent with the ordered flow field.

Format: 8E10.6

Column	Parameter	Description
1-10	CUTDAT(1)	Radial coordinate defining upper cut off (ft or m).
11-20	CUTDAT(2)	Axial coordinate defining upper cut off (ft or m).
21 - 30	CUTDAT(3)	Angle cutoff line makes with horizontal (deg).

# CARD 3 (Continued)

Column	Parameter	Description
31-40	CUTDAT(4)	Radial coordinate defining downstream cut off (ft or m).
41-50	CUTDAT(5)	Axial coordinate defining downstream cut off (ft or m).
51-60	CUTDAT(6)	Angle cut off line makes with horizontal (deg).

#### CARD 4

This card inputs radiation data only when INRS (Card 1) is greater than zero.

Format: 5(A6, 6X)

Column	Parameter	Description
1 - 6	AIDR(1)	Name of first initial radiating species.
13-18	AIDR(2)	Name of second initial radiating species.
•	•	•
•	•	•
•	•	•
	AIDR(K)	Name of last initial radiating species, where K=INRS.

#### CARD 5

This card inputs radiation data only when INRS (Card 1) is greater than zero.

Format: 5(A6, 6X)

Column	Parameter	Description
1-6	AIDR T(1)	Name of species that AIDR(1) transforms to during radiation process.
13-18	AIDRT(2)	Name of species that AIDR(2) transforms to during radiation process.
•	•	•
•	•	•
•	•	•
	AIDRT(K)	Name of species that AIDR(K) transforms to during radiation process.

#### CARD 6

Control card for the ordering section. Cards 6 and 7 are used only when IORDR (Card 1) is greater than zero.

Format: 16I5

Column	<u>Parameter</u>	Value	Description
5	ISTART		Ordering the flowfield data will begin with this characteristic line number.
10	ISIGN	- 1	If the flow field was generated with a reflected shock from the nozzle axis, otherwise leave blank.
15	NUMBER		Number of flowfield data points desired per data record (max. of 300).
20	IDEL	>0	If any points are to be deleted from the flow field.

Column	Parameter	Value	Description
25	IPRINT	>0	If intermediate data are to be printed as the flow field is ordered by distance from the engine exit plane.
30	ITERM		Characteristic line number, where ordering of flowfield data is to be terminated. (This line is not used by program).
35	ISEND	1	If plume boundary is to be curve-fitted for use in the interpolation scheme.
		2	If only the cutoff limits read as input data are to be used to see if a point is within a prescribed boundary.
40	ISKIP		If ISEND = 1 every ISKIP line will be examined for a free boundary point.
CARD 7			
Column	Parameter		Description
1-10	RREF*		Radial coordinate to which each flowfield data point will be referenced (ft or m).
11-20	XREF*		Axial coordinate to which each flowfield data point will be referenced (ft or m).
21-30	DELETE		One of two points with a distance between them less than DELETE will be deleted from the flowfield data. Will not delete shock point.
31-40	DIAM		Reference factor, units consistent with plume dimensions. Can be used to scale, etc., the local plume coordinates.

^{*}The coordinates XREF and RREF are used to accomplish any desired coordinate system translation.

NOTE: RREF, XREF and DIAM are used as follows:

R = (R-RREF)/DIAMX = (X-XREF)/DIAM

#### CARD 8

This card inputs particulate heat transfer data and is used only if LSOLID (Card 1) is greater than zero and when IORDR is greater than zero.

Format: 6E10.6

Column	Parameter	Description
1-10	ACOMCF	Accommodation coefficient.
11-20	TWALL	Wall temperature (OR or OK).
21 - 30	CPS	Particulate phase heat capacity.

#### CARD 9

Species concentration cards (Input only if ISP >0 and NS = 0) these cards contain the species names and mole fractions if the species concentrations are constant throughout the plume. There are four species per card up to a maximum of 25 species. Overrides species on flowfield tape.

Format 4(A6, 4X, E10.6)

Column	Parameter	Description
1 - 6	SONAME(I, 1)	Species name - left adjusted, consistent with RAMP species names.
11-20	AMO(I)	Mole fraction of species.
NOTE:	Repeat SONAME and AMO, are read in.	4 pairs to a card until all ISP species

#### CARD 10

This card(s) reads in the axial stations and the radial increment to be used in constructing the radiance tape. There are 2 stations per card up to 100 stations.

Format: 6E10.6

Column	Parameter	Description
1-10	X(1)	First axial station at which radial distribution of flowfield properties are desired (ft or m).
11-20	DR(1)	Radial increment between data points along radial for station 1 (ft or m)
21-30	RMAX(1)	Maximum value of radial distance desired for station 1. If zero, program determines maximum (ft or m).
31-40	X(2)	Second axial station at which radial distribution of flowfield properties are desired.
41-50	DR(2)	Radial increment between data points along radial for station 2.
51-60	RMAX(2)	Maximum value of radial distance desired for station 2. If zero, program determines maximum.

Repeat until IXCUT (Card 1) number of stations have been input.

Table A-1

MAGNETIC TAPE ASSIGNMENTS FOR THE RAMP RADIAL LOOKUP PROGRAM

Where Required	Tape Units U-1108	Tape Unit Function
Section 1		
SORTCT Subroutine SORTCT is the	10	Flowfield tape generated by RAMP program-input.
controlling routine for this section which arranges the RAMP output in the form	8	Flowfield data ordered for use in property lookup-output.
used by the data acquisition routines. This section is	2	Flowfield limits data-output.
used once per flowfield calculation.	3	Scratch tape.
carculation,	4	Scratch tape for species concentrations & radiation data.
Section 2		
GENERATE RADIANCE TAPE	4	Radiance tape—output
This section performs the local property lookup and generates the radiance tape.	8	Ordered flowfield data generated by Section 1-input.
	2	Flowfield limits data generated by Section 1-input.

# Appendix B ON THE ACCURACY OF PREDICTED EXHAUST PLUME FLOWFIELD VARIABLES

#### Appendix B

#### ON THE ACCURACY OF PREDICTED EXHAUST PLUME FLOWFIELD VARIABLES X

by

A.W. Ratliff J.W. Benefield

Lockheed Missiles & Space Company Huntsville, Alabama

#### ABSTRACT

Various assumptions are used by many organizations to compute rocket motor plumes. In applying plume data, the question of accuracy invariably arises. Some guidelines are therefore needed to estimate the accuracy of the plume data based upon the assumptions that are employed. This paper is intended to serve as a guide for estimating plume accuracy and to alert the plume analyst to the magnitude of error which might be expected if certain assumptions are used. Much of the information contained in this paper, however, is based upon somewhat subjective data and/or certain cases from which some experience has been gained. The data presented should, therefore, be used judiciously, the problem at hand should be carefully considered, and the fact that the error bands have been somewhat grossly estimated should be kept in mind.

This work was supported by NASA-Marshall Space Flight Center, Contract NAS8-20082. The test data and theoretical analyses cited in this report were sponsored by the Aero-Astrodynamics Laboratory of Marshall Space Flight Center as a continuing effort in rocket plume technology in support of NASA programs.

Aerodynamics Engineer, Senior; Aeromechanics Department

Supervisor, Fluid Mechanics Section; Aeromechanics Department

#### INTRODUCTION

During the past several years sophisticated techniques for computing racket motor exhaust plumes have been developed. The prediction methods can take into account such influencing parameters as combustion chamber losses, flow striations, reaction kinetics and non-continuum effects. When a plume flow field is to be computed, the degree of analytical sophistication that will be used should be based on an assessment of such factors as: (1) ultimate purpose of the data; (2) time available to accomplish the calculations; and (3) degree of accuracy required. In most cases, all effects that can be calculated should be included in the calculations. To include all effects may, of course, be time-consuming; this is not always practical if schedules are to be met. Flume data are therefore sometimes generated which circumvent the various effects that are felt to be small. Since much plume data are generated by using various assumptions, some guidelines are needed to estimate the accuracy of the resulting plumes based upon the assumptions that are employed.

Although an absolute accuracy cannot at this time be assigned to the final numbers generated for any given plume calculation, at least a reasonable estimate can be made of the anticipated accuracy, depending upon the various assumptions. Some of the assumptions influence specific regions of the flow field, and the accuracy of the calculations varies with position in the plume.

This document is intended to serve as a guide for estimating the accuracy of axisymmetric plume flowfield calculations. Much of the information, however, is based upon somewhat subjective data and/or certain cases (perhaps even unique cases) from which some experience has been gained. Also, only steady state rocket motor operation is considered. Ignition and shutdown transient influences are omitted.

#### DISCUSSION

The effects which are considered important in plume calculations are categorized and discussed in this section. Tables I and II summarize the important flowfield parameters and the estimated percentage of error that may be introduced by each item. The error that is discussed is the error which could exist if an accurate evaluation of the influence of the item is not included in the plume flowfield analysis. The error bands in Table I are considered to correspond to worst-on-worst or three-sigma cases for a 95 percent confidence interval. The error bands are rather large since they reflect the maximum values which have been observed. Most rocket motors will not encounter these effects to the extent shown in Table I. A set of data corresponding to an estimated one-sigma deviation for a 95 percent confidence interval is presented in Table II. The items which contribute to the accuracy bands shown in Tables I and II are discussed in the following paragraphs.

Motor Operating Conditions: Motor operating conditions refers to the fact that rocket motors are generally specified to operate at a nominal set of conditions (chamber pressure, mass flow rate, and oxidizer-to-fuel ratio (O/F)). Variations from nominal conditions frequently occur during actual operation. A band of  $\pm$  10 percent was arbitrarily assigned for chamber conditions (pressure, O/F ratio, mass flow). Influences of this  $\pm$  10 percent band on other motor and plume environmental conditions are shown in Table I and Table II.

Combustion Chamber Momentum Loss and Efficiency: Combustion chamber momentum loss and efficiency is included because combustion in a rocket motor does not take place at zero velocity as implied by an equilibrium, infinite area ratio calculation. The situation actually is analogous to heat addition in a finite area duct which results in a decrement in total pressure. The maximum momentum loss that can occur is a function of the propellant system and motor geometry and it can be as high as 20 percent of the actual pressure immediately downstream of the injector face. Most motors, however, fall in the range of 2 to 15 percent momentum loss (Ref. 1).

Coupled with the momentum loss is combustion efficiency; i.e., incomplete mixing and/or reaction of the incoming propellants. This anomally first appeared when experimental performance data were compared with computed data. Even when all known performance losses were included in the analytical prediction, some descrepancy still existed. This discrepancy has been termed combustion efficiency and several theories have been proffered as possible explanations. The JANNAF Performance Standardization Committee has recommended an arbitrary reduction in the initial propellant energy to account for this loss (Ref. 2). Recently, however, this committee has been working on a droplet varporization model which will be recommended as the explanation for combustion efficiency. Whatever its source, combustion efficiency must be properly estimated to increase the accuracy of the exhaust plume calculation. The most striking result of combustion efficiency is a temperature prediction considerably below that predicted by the usual adiabatic flame calculation. In this paper, the momentum loss and combustion efficiency problems are combined and assigned a maximum error, which corresponds to the deviations that have been observed between motor performance test data and theoretical results for no-momentum loss and for complete equilibrium chemistry combustion at a nominal motor operating value of O/F.

Flow Striations (O/F Ratio Gradient): The flow striation problem is a result of non-uniform distribution of propellant mixture ratio within the combustion chamber. Flow striations may be deliberately induced in the nozzle flow, as in the case of film cooling, or it may result from incomplete mixing and/or combustion in the combustion chamber. The effects that are introduced are variations of the thermochemical data due to combustion at a local O/F ratio which is different from the nominal O/F value (Ref. 3). Tables I and II show error bands relative to the nominal O/F value.

The flow striation effect may be closely related to the combustion efficiency problem; however, these effects are considered independently in this paper.

Peaction Kinetics: Reaction kinetics, as used here, involves the problem of appropriately defining the location in the flow field where the chemical reactions deviate from equilibrium enough that the flow can be considered chemically frozen. From this point on, the species concentrations are constant and the thermodynamic properties vary only with temperature. The problem thus is one of correctly assessing a representative freeze point. The error bands shown in the charts relate the error magnitudes resulting from comparison of results for a finite rate chemistry analysis (Ref. 4) and results obtained by an assumed freeze point based on an equilibrium/frozen chemistry analysis. The errors presented are the range of values which can be expected in the highly expanded plume. The errors in the field nearer the freeze point are not nearly as large. The major source of the errors is related to differences in the values of the thermodynamic properties used to calculate the flow field.

Non-Continuum Effects: The error caused by non-continuum effects is due to the lack of rigorous flow models which can consider the gradual deviation in thermodynamic properties which result as the rate of intermolecular collisions is reduced below a value corresponding to thermodynamic equilibrium. The error bands which are listed in Tables I and II for this item refer to variations which occur between a rigorous non-continuum solution (Refs. 5 and 6) and a sudden-freeze solution which uses continuum flow equations until a "free-molecular" condition is reached (Ref. 7). When this freeze point is reached, the flow calculation is handled as a free molecular calculation. In the transition flow region (Knudsen number greater than 0.1) the error increases until the sudden freeze condition is reached. The maximum error occurs near the freeze point and is the error shown in Tables I and II. Beyond the freeze point, the rigorous solution and the sudden freeze solution tend to converge toward common values (Knudson number greater than 1.0). The sudden freeze colution yields results which show significant deviation in static temperature. Density and velocity calculations, however, are not greatly affected.

The error bands shown in Tables I and II are based upon the differences found between cases analyzed with: (1) a sudden freeze analysis; and (2) with a rigorous theoretical solution. An additional large error, not shown in the charts, would appear if the rigorous analysis were compared with an all continuum analysis. This would result from the fact that the temperature in a continuum analysis approaches a zero limit while the rigorous solution indicates that the temperature approaches a low but finite value.

Calculational Accuracy: This item is an arbitrary estimate of the maximum error conceivable for the numerical computational procedures used.

Viscous Effects (Poundary Layer): The viscous (boundary layer) effects of the nozzle flow have been shown to be of minor consequence on the inviscid flow in the nozzle. (That is, if the boundary layer is considered in terms of displacement thickness to alter the nozzle contour, the effect on the nozzle flow is generally negligible.) The effect considered here is that the boundary layer will influence the plume flow field to some degree and will cause the maximum expansion angle at the nozzle lip to be significantly different. Basically, the boundary layer will tend to: (1) permit the flow to expand well beyond the limiting inviscid expansion angle at the nozzle lip; and (2) alter the temperature, pressure and density in the portion of the theoretically inviscid plume which is influenced by the boundary layer.

The boundary layer affects the entire plume to some extent but the most pronounced effect is in the outer 40 percent of the mass flow within the plume (Refs. 8 and 9).

Condensation: For a rocket motor, the influence of gases condensing in low temperature flow fields has been numerically evaluated only to a limited extent. The condensation will usually occur at low temperatures, at low pressures, and at velocities near the limiting velocity of the gas (Ref. 10). The influences will occur in the highly expanded regions of a flow field corresponding to temperatures below the condensation temperature of the gas. (The flow upstream of the condensation point is not influenced.) Normally the condensation will occur at points in the flow field where the temperature is some 10 to 50°K below the equilibrium condensation point. After initial condensation takes place, the temperature/pressure relations of the flowing system will tend initially to be parallel to and then to converge toward the temperature/pressure variation of a static system in equilibrium. Condensation will cause local static pressures to be different than they would otherwise be by factors of 0 to -100 (condensation causes lower static pressures). Static temperatures will be influenced (with respect to the no-condensation case) by factors of zero to +5 (condensation increases static temperatures). The influence of condensation on some of the other parameters has not currently been defined to a sufficient degree but consequential effects can be expected.

Start line: The influence of the starting flow conditions has been observed to have significant effects for regions close to the start line (Refs. 9, 11, 12, 13, 14) but these effects tend to weaken farther downstream (2 to 4 start line diameters downstream of the nozzle exit). Near the start line some parameters may be locally in error by almost a factor of 10 (between an estimated and an accurate start line). Downstream the errors will tend to be smaller (on the centerline, less than 25 percent; in the expansion region, as much as 50 to 100 percent). Plume calculations that are begun at the nozzle throat tend to be relatively free from start line effects. Plume calculations initiated at the nozzle exit tend to permit errors in local properties that correspond to a position error in the flow field of plus or minus one startline diameter.

Shock Waves: If shock waves in the nozzle and flow field are not considered, and a plume is computed as an isentropic flow, the errors in the plume flow field are similar in magnitude to those associated with start line effects (Item 9), (Refs. 8 and 9) except that in the immediate vicinity of the shock wave, variations in flow properties can be extremely different from the "no-shock" case. The greatest influence tends to occur along the centerline of the plume where the shock wave is strongest. In the highly expanded portion of a high-altitude (near vacuum) plume calculation the influence of the shock waves diminishes as the shock waves become weaker and weaker. Tables I and II present the maximum error band values anticipated along the centerline of a plume.

Error Band Application: Tables I and II list plume flowfield parameters and the estimated maximum percentage error imposed upon them by the various items (1 through 10) listed in the preceding discussion. Their application is restricted to locations in the plume specified in Table III and in the preceding discussion of each item. Application of the error bands should be

made considering that each error contribution may only vartially exist for a particular plume, and the rms values of the sum should normally be used. In the application of error bands to design data, often a simple means of expressing the error band is needed. As a result, a nominal accuracy (or error band) representation has been devised for use on a general basis. This nominal accuracy should be based upon and reflect, for any particular plume, an rms summation of various error contributions cited in this paper. The rms errors should be resolved into a maximum percent error of combined spatial position and flow parameter value. The spatial accuracy band is arbitrarily assigned as being equal in percentage magnitude to the quantitative accuracy band. Results of numerous plume calculations and experimental calculations indicate that the flowfield structure (shock wave locations, etc.) can be in error as a result of the various factors. Some of the effects which produce flowfield parameter quantitative errors, also produce flowfield structure positional errors. Conversely, a highly accurate plume calculation will necessarily reflect accurate flowfield positional accuracies. Consequently, combining the spatial and quantitative accuracy bands is logical. For example, a plume nominal accuracy band might, by the inspection process, be assessed at +20 percent, which means that the calculated location of a particular flow feature (a shock wave for instance) may be in error by +20 percent in both the axial and radial position; also, the magnitude of the flowfield parameters may additionally be in error by +20 percent.

In summary, the process of defining a nominal plume accuracy should be accomplished by:

- 1. Assessing the applicability of the various items which contribute errors to the computed plume flow field at various plume locations
- 2. Determining the rms error band for each flowfield parameter for numerous points in the plume
- 3. Obtaining a "nominal plume accuracy band" rms value by averaging the rms error bands of the various points in the flow field.

### CONCLUSIONS

Factors that affect the accuracy of plume calculations have been categorized, and anticipated ranges of errors associated with each plume parameter have been estimated. This information is provided for reference and is intended to serve as a guide in estimating the overall accuracy of any given plume analysis based upon the assumptions employed for the plume calculation. Absolute values of accuracy are almost impossible to assign to plume calculations. Therefore, the data presented should be used judiciously, and the problem at hand carefully considered, including the fact that the error bands have been somewhat grossly estimated.

# SYMBOLS AND NOTATION

Force M m O/F force
Mach number
mass flow rate
oxidizer/fuel ratio

B-6

P static pressure  $P_{\mathbf{T}}$ total pressure pitot total pressure T static temperature  $T_{T}$ total temperature V velocity ith species o_i γ isentropic exponent ρ density

### REFERENCES

- ·1. Prozan, R.J., "Striated Combustion Solution," LMSC-HREC A791356, Lock-heed Missiles & Space Company, Huntsville, Ala., May 1968.
- ·2. "ICRPG Liquid Propellant Thrust Chamber Performance Evaluation Manual," CPIA No. 178 Performance Standardization Working Group, September 1968.
- 3. Ratliff, A.W., "The Effect of Nozzle Flow Striations on Engine Performance," IMSC-HREC A784646-A, Lockheed Missiles & Space Company, Hunts-ville, Ala., August 1967.
- 4. Komianos, S.A., G.D. Bleich and H.S. Pergament, "AeroChem Non-Equilibrium Streamline Program," AeroChem Til 103, AeroChem Research Laboratories, Inc., May 1967.
- -5. Hamel, B.B., and D.R. Willis, "Kinetic Theory of Source Flow Expansion with Application to the Free Jet," Phys. Fluids, Vol. 9, 1966, p. 829.
- -6. Robertson, S.J., "Method of Characteristics Solution of Rarefied Monatomic Gaseous Jet Flow into a Vacuum," LMSC-HREC D148961, Lockheed Missiles & Space Company, Huntsville, Ala., August 1969.
- -7. Ratliff, A.W., et al., "Analysis of Heating Rates and Forces on Bodies Subject to Rocket Exhaust Plume Impingement," LMSC-HREC A791230, Lockheed Missiles & Space Company, Huntsville, Ala., March 1968.
- 8. Smith, S.D., and A.W. Ratliff, "A Study of the Effect of a Boundary Layer Along a Mozzle Wall on the Plume Flowfield," IMSC-HREC D149477, Lockheed Missiles & Space Company, Huntsville, Ala., January 1970.
- *9. Ratliff, A.W., and J.T. Stephens, "A Detailed Flume Flowfield Definition of the R-1E Motor for the Saturn S-IVB Auxiliary Propulsion System," IMSC-HREC P148776-A. Lockheed Missiles & Space Company, Huntsville, Ala., August 1969.
- Haukohl, J., and L.W. Spradley, "Multi-Specie Condensation in Expanding Flows," IMGG-FRES DE 2239, Lockheed Missiles & Space Company, Hunts-ville, Ala., June 1970.

- 11. Ratliff, A.W., "An Investigation of Method-of-Characteristics Starting Line Effects for Rocket Nozzles," LNEC-HREC A782289, Lockheed Missiles & Space Company, Huntsville, Ala., February 1966.
- 12. Baker, L.R., "Preliminary Data for Plume Definition of the R-lE Engine for the Saturn S-IVB/Auxiliary Propulsion System," IMSC-HREC A791426, Lockheed Missiles & Space Company, Huntsville, Ala., May 1968.
- 13. Jackson, J.E., "Preliminary Data for Plume Definition of the R-4D Engine for the Command Service Module Reaction Control System, LMSC-HREC A791774, Lockheed Missiles & Space Company, Huntsville, Ala., September 1968.
- 14. Ratliff, A.W., B.J. Audeh and D.D. Thornhill, "Analysis of Exhaust Plumes from Skylab-Configuration R-4D Attitude Control Motors, LMSC-HREC D162171, Lockheed Missiles & Space Company, Huntsville, Ala., March 1970.

TABLE 1. ESTIMATED RANGE OF PERCENTAGE OF ERROR FOR VARIOUS PARAMETERS IN PLUME FLOW FIELD FOR A 3-SIGMA DEVIATION AT 95% CONFIDENCE INTERVAL

Item	1	2	3	4	5	6	7	8	9	10
Hem Introducing Error Band in Plume Flow- field Parameters	Engine Operating Condition (Pc, O/F, m), ±10% Variation	Chamber Combustion Efficiency and Momentum Loss not Included in Plume Analysis	Fuel Striations (Oxidizer/Fuel Gradients) not Included in Plume Analysis	Reaction Kinetics (Finite Rate Effects) not Included in Plume Analysis	Non-Continuum Flow Effects not Included in Plume Analysis	Computational Accuracy	Viscous Effects (Boundary Layer) Not Included in Plume Analysis	Flow Condensation Not In- cluded In Plume Analysis	Approximate Start Line Used in the Analysis	Shock Waves Not Included in the Analysis
P _{T2}	± 10	+ 0	± 10	0	*	± 5	**	Δ	0	
T _T	± 3	+ 0 - 20	+ 0	+ 0 - 25	*	± 5	**	Δ	0	± 25 ± 25
P	± 10	+ 0	± 5	± 100	± 10	± 5	**	+1000 - 0	+100	<u>+</u> 100
Т	± 3	+ 0 - 20	+ 0 - 50	± 100	+ 100	± 5	<b>*</b> *	+ 0	+100	<u>+</u> 100
P	± 10	+ 0 - 20	+ 100	± 100	- 0 ± 5	± 5	**	<u>+</u> 50	+100	<u>+</u> 103
v	± 5	+ 0 - 10	- 40 + 0	± 5	± 3	± 5	<b>*</b> *	± 5	<u>+</u> 10	+ 10
y	± 3	± 3	± 50	± 25	± 40	± 5	<b>* *</b>	Δ	- <u>+</u> 0	<u>+</u> 10
α _i	± 1	± 25	± 100	± 100	± 1	± 5	**	ſ	1	<u>+</u> 5
F (impingement force) & P _{T2}	<u>+</u> 10	+ 0 - 20	<u>+</u> 10	<u>+</u> 5	<u>+</u> 20	<u>+</u> 10	**		<u>+</u> 10	<u>+</u> 10
М	<u>+</u> 2	<u>+</u> 5	+ 5 - 10	<u>+</u> 15	- 0 + 50	<u>+</u> 5	**	<u>+</u> 20	<u>+</u> 10	<u>+</u> i5

Not meaningful

△ Not defined

^{**} Affects mainly the outer 40% of the mass flow (see Discussion)

TABLE II. FUTIMATED RANGE OF PERCENTAGE OF ERROR FOR VARIOUS PARAMETERS IN CALCULATED PLUME FLOW FIELDS FOR 1-SIGMA DEVIATIONS AT 95% CONFIDENCE INTERVALS

Item	i	2	3	4	5	6	7	8	9	10
Item Introducing Error Band in Plume Flowfield Parameters	Engine Operating Condition $(P_c, O/F, m), \pm 10\%$ Variation	Chamber Combustion Efficiency and Momentum Loss Not Included in Plume Analysis	Fuel Striations (Oxidizer/Fuel Gradients) Not Included in Plume Analysis	Reaction Kinetics (Finite Rate Effects) Not Included in Plume Analysis	Non-Continuum Flow Effects Not Included in Plume Analysis	Computational Accuracy	Viscous Effects (Boundary Layer) Not Included in Plume Analysis	Flow Condensation Not Included in Plume Analysis	Approximate Start Line Used in the Analysis	shock Waves Not Included in the Analysis
P _T	<u>+</u> 2	+ 0	<u>+</u> 2	0	*	<u>+</u> 2	**	Δ	0	<u>+</u> 25
T _T	<u>+</u> 1	+ 0 - 3	+ 0	+ 0	*	<u>+</u> 2	**	Δ	0	<u>+</u> 25
P	<u>+</u> 2	+ 0	<u>+</u> 2	<u>+</u> 15	<u>+</u> 10	<u>+</u> 2	**	+ 50 - 0	<u>+</u> 25	<u>+</u> 100
т	<u>+</u> 1	+ 0	+ 5 - 10	± 15	+100	<u>+</u> 2	**	+ 0 - 20	<u>+</u> 25	<u>+</u> 100
ρ	<u>+</u> 2	+ 0	- 20 - 5	<u>+</u> 15	<u>+</u> 5	<u>+</u> 2	**	± 10	<u>+</u> 25	<u>+</u> 100
v	<u>+</u> 1	+ 0	- 10 + 5	<u>+</u> 2	<u>+</u> 3	<u>+</u> 2	   **	<u>+</u> 2	<u>+</u> 2	<u>+</u> 10
γ	<u>+</u> 1	<u>+</u> 1	<u>+</u> 5	<u>+</u> 5	<u>+</u> 40	<u>+</u> 2	**	Δ	0	<u>+</u> 10
α _i	<u>+</u> 0.5	± 4	± 10	<u>+</u> 15	<u>+</u> 1	± 2	**	Δ	0	<u>+</u> 5
F (impingement force) & P _T	<u>+</u> 2	+ 0	<u>+</u> 2	<u>+</u> 2	<u>+</u> 20	<u>+</u> 4	**	<u>+</u> 5	<u>+</u> 2	<u>+</u> 10
force) & PT2	<u>+</u> 2	<u>+</u> 2	+ 2	± 10	- 0 + 50	<u>+</u> 2	**	<u>+</u> 10	<u>+</u> 10	<u>+</u> 50

^{*}Not meaningful

^{**}Affects mainly the outer 40% of the mass flow (see Discussion)

[△] Not defined

Item	Region of Plume Where Error Bands Apply if the Item is Not Included in the Analysis
I. Engine Operating Conditions	Entire Flow Field
Chamber Combustion Efficiency     and Momentum Loss	Entire Flow Field
3. Flow Striations	Entire Flow Field
4. Reaction Kinetics	Small errors near nozzle exit, progressively larger errors in the far plume.
5. Non-Continuum Effects	Error applies in the transition flow regime. The error is zero at the onset of transition flow, maximum at the sudden freeze point, and decreases as free molecular flow occurs.
6. Calculational Accuracy	Entire Flow Field
7. Viscous Effects	Error increases in the region of the plume outside of approximately the 60% mass flow streamline (where minor errors exists). Major errors occur outside the inviscid plume region.
8. Condensation	Error is zero upstream of the point in the flow field where the equilibrium condensation temperature exists. Downstream, the error can grow with increasing distances from the equilibrium point.
9. Start Line	Error is maximum near the startline, decreases to smaller values 2 to 5 startline diameters (nozzle throat or exit) downstream.
10. Shock Waves	Error is maximum near the centerline and in the regions where the shock should be; decreases away from the centerline.

Appendix C
EMPIRICAL INPUT DATA AND INPUT DATA SUGGESTIONS

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

# Appendix C

The results obtained from the Reacting and Multiphase Computer Program (RAMP) are very sensitive to data which are input. For two-phase cases the mean particle size, distribution of sizes, specific heats, mass density, particle melting temperature, chemistry assumptions and boundary equations are the primary input variables which determine the results. Each of these variables will be discussed in some detail and suggestions will be made as to what values can be used for aluminized propellants. It should be noted, however, that the data presented is not necessarily the best available.

# Mean Particle Size

Several different methods have been employed for obtaining mean particle size. Included are techniques which correlate mean size to throat diameter (Ref. C-1), mean motor L* (Ref. C-2) (chamber volume/throat area), chamber pressure, residence time, particle loading, maximum stable droplet size as well as combinations of each of these parameters. As a simple estimate of mean particle size the correlation of Delaney (Ref. C-1) based on throat diameter can be used:

$$D_{m} = 4 D_{t}^{3}$$
 (C.1)

where  $D_{m}$  is the mean particle diameter in microns and  $D_{t}$  is the throat diameter in inches.

# Particle Size Distribution

For nozzle calculations in which no particle impingement on the wall is anticipated, one particle size at the mean size can be used. However, for plume calculations a knowledge of the particle size distribution is necessary.

Delaney in Ref. C-1 showed that the distribution of particles for smaller motors ( $D_t \leq 3.5$  in.) followed a log normal distribution (Fig. C-1). For the large motors ( $D_t > 3.5$  in.) the data indicate that the size distribution follows a normal distribution (Fig. C-2). To use these distributions: move the curves up or down to the mean size at the 50% coordinate, then divide the curve into 5 or 6 sections and determine the mean size that goes with each of these sections. Table C-1 gives an example of the size distribution (for 6 discrete sizes) which was determined from the curve in Fig. C-1.

# Particle Specific Heats, Enthalpies and Melting Temperature

The values for particle specific heats, enthalpies and melting temperature which the authors use are shown in Table C-2. The specific heats shown are used for the ideal approximation of particle enthalpy verses temperature (i.e., the specific heat for liquid and solid phases of the aluminum oxide are constant). The user may find the tables of temperature verses enthalpy in the JANAF Thermochemical Tables (Ref. C-3).

## Particle Mass Density

The mass density for aluminum oxide is different for the solid and liquid phases. Reference C-4 shows the mass density of liquid aluminum oxide  $(Al_2O_3)$  to be 188 lbm/ft³. The mass density of solid  $Al_2O_3$  is 250 lbm/ft³. For cases where the particle temperatures will be higher than the melting temperature for most of the flow field, the liquid mass density should be used. In cases where the particle temperature will be below the melting temperature (i.e., plumes) the solid mass density should be used.

### Chemistry Assumptions

There are numerous chemistry assumptions which can be employed by the RAMP code. The various assumptions are: (1) ideal gas (constant specific heat ratio and molecular weight); (2) equilibrium; (3) frozen (constant molecular weight, varying specific heat ratio); (4) equilibrium/frozen (equilibrium with the molecular weight constant below a specified pressure) or (5) finite-rate chemistry.



C - 3



C - 4

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

Fig. C-2 - Normal Particle Size Distribution from AGC 260-2 Motor (Ref. C-1)

Table C-1
LOG NORMAL PARTICLE SIZE DISTRIBUTION
FOR HI 5 PC MOTOR

Particle Diameter	Percent Total Particle Mass Flow
1.2	10
1.9	20
2.65	20
3.5	20
5.0	20
8.0	10

 $\label{eq:c-2} \textbf{Table C-2} \\ \textbf{A} \textbf{\ell}_{\textbf{2}} \textbf{O}_{\textbf{3}} \ \textbf{THERMODYNAMIC DATA}$ 

Liquid $Al_2O_3$ Specific Heat $(C_p)$	_	.34 Btu/lbm ^o R
Solid $Al_2O_3$ Specific Heat $(C_{p_s})$	-	.32 Btu/1bm ⁰ R
Enthalpy of Solid Phase of $Al_2^{O_3}$ at Melting Temperature	-	1358.9 Btu/lbm
Enthalpy of Liquid Phase of Al ₂ O ₃ at Melting Temperature	_	1858.7 Btu/lbm
Melting Temperature		4188 ⁰ R

The type of chemistry assumption is very case dependent and also depends on the use of the flow field. Table C-3 presents various cases and applications, along with suggestions as to the type of chemistry assumptions to be used.

Finite rate cases can generally be started at the nozzle throat assuming the species distribution is in chemical equilibrium since this is valid for most propellant systems. Tables C-4 through C-6 present some reaction mechanisms which may be used for applicable propellant systems. These reaction mechanisms were obtained from data presented in Ref. C-5.

# Boundary Equations

The boundary equations which are input to the code should be smooth and not contain discontinuities in either the slopes or coordinates where no discontinuities are physically present. Fictitious discontinuities can result in undesirable mass flow errors showing up during a solution. In Fig.C-3 a description of the boundary equations for the nozzle throat and free boundary are presented.

More complex nozzle contours may be input with discrete points which define the wall as a function of radial position and flow angle versus axial position.

Table C-3
SUGGESTED CHEMISTRY ASSUMPTIONS
FOR VARIOUS APPLICATIONS

	/	/ \$ /	La La La La La La La La La La La La La L	Fig.	Age of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o
Application			Fig.	dillin,	inite Rate
Nozzle Performance		X			
Plume Radiation				х	
Plume Impingement			×		
Base Pressure (Initial Plume Expansion)	*				
Electron Density				х	
Contamination				x	

^{*}Use specific heat ratio which exists at lip.

Table C-4
REACTION MECHANISM FOR SPACE SHUTTLE SRM PROPELLANT

0	0 0	-340.0	0.0	-7000-0	0.0	-2900•0	-1100.0	-4000+0	1600.0	1250.0	0.0	-10001-	-4500.0	-2400+0	-5260.0
22 6-10-26 2-0		24 3.60-30 1.0	22 2.40-30 1.0	14 1040-14-100	11 4.00-11 0.0	14 1.00-17-2.0	13 1.00-11 0.0	-	14 1-10-19-2-0	24 4.30-31 1.0	22 3.00-30 1.0	14 1.00-14-1.0		13 2-00-10 0-0	13 8-00-11 0-0
- ¥ + ₩	1 W+	- ω + ω +	+M2	o	+05	Į	<b>•</b>	+M3	Į	 Ε +	+W+	+CL	<b>↓</b>	+¢-	Ŧ
•	18+ エフョ	·	,		•	•	•	•	•	·	•	•	•	•	•
=H20	·	=02	=H2		•	•	•	•	•	-(13	•	•	•	•	•
+M1 =H20	・エフ=	+M1 =02	+M2 =H2	- 2u=	I II	=H20	- H20	+M3 =C02	- CO2	+M1 =CL2	+M4 =HCL	=H20		- HCL	-HCL

Catalytic Species $M_1 = 3 H_2O, 2 CO_2; \text{ All others: } 1.0$ $M_2 = 20 H, 10 H_2O, 3 CO_2, 2.5 H_2; \text{ All others: } 1.0$ $M_3 = 20 O_2, 10 H_2O, 3 CO_2, 1.5 CO; \text{ All others: } 1.0$ $M_4 = 10 H_2O, 5 HCl, 5 Cl, 5 H, 3 Cl_2, 3 CO_2; \text{ All others: } 1.0$

 $\label{eq:table_c-s} \textbf{Table} \ \textbf{C--5} \\ \textbf{REACTION} \ \ \textbf{MECHANISM} \ \ \textbf{FOR} \ \ \textbf{H}_2 \cdot \textbf{O}_2 \ \ \textbf{PROPELLANT} \ \ \textbf{SYSTEM} \\$ 

I)+	+141	C7H=	1 ×+	22 6-10-26 2-0	0.0
_	+141	E)	+× 1	21 2.00-32 0.0	0
2	1 w+	50=		24 3.80-30 1.0	-340.0
_	+:42	=H2	+M2	22 2.80-30 1.0	0.0
I +		7H=	0+	14 1.40-14-1.0	-7000
_		ï,	+05	11 4.00-11 0.0	
4		=H20	Ŧ	14 1.00-17-2.0	
H		=H20	0+	13 1.00-11 0.0	-1100•0

 $M_1 = 3 H_2O; All others: 1.0$   $M_2 = 20 H, 10 H_2O, 2.5 H_2; All others: 1.0$ 

Table C-6
REACTION MECHANISM FOR LOX-RP1 PROPELLANT SYSTEM

I	10+	+W 1	=H20	1 W +	22 6•10-26 2•0	
၁	I +	+w 1	15 10 11	+W1	21 2.00-32 0.0	
<b>.</b>	<del>,</del>	1 W+	20≈	+W1	24 3.80-30 1.0	
I	Į,	+M2	2H=	+M2	ZZ 2.80-30 1.0	
Ö	ŗ +		74=	<b>•</b>	14 1.40-14-1.0	-7000.0
S	<b>?</b>		I H	+05	11 4.00-11 0.0	
5	442		=H20	Į	14 1.00-17-2.0	•
Ö	+ TO+		=H20	Ŷ	13 1.00-11 0.0	•
0	9	MX+	±C02	+M3		•
ĭ	0)+		=C02	I +	14 1.10-19-2.0	



RC = radius of curvature of the circular arc of the throat

RT = throat radius

XO = axial distance from the origin of the coordinate system to the throat

θ = throat divergence angle corresponding to the maximum value for which the throat conic equation applies

The conic equation for this case would have the following form:

A = -1 for an upper equation, +1 for a lower equation (-1 for this case)

 $B = RC^2 - XO^2$ 

C = 2XO

D = -1

E = -(RC + RT)

 $Xmax = RC sin\theta + XO$ 

An example of a free boundary is shown in the sketch below.



The freestream approach flow is inclined at 15 deg to the plume with a gamma (Y) of 1.4, a Mach number of 10, and a static pressure of 0.1 psfa.

PINF = 0.1 (psia)

E = 0 (No pressure variation with axial distance)

GAMMAINF = 1.4

MINF = 10

THETAINF = -15°

Fig. C-3 - Sample of Boundary Equations

# REFERENCES

- C-1. Delaney, L. J., "Particle Characteristics in Two-Phase Plumes," Rocket Plume Phenomena Specialists Meeting, Aerospace Corp., San Bernadino, Calif., July 1968.
- C-2. Coats, D.E. et al, "A Computer Program for the Prediction of Solid Propellant Rocket Motor Performance," Vol.I, AFRPL-TR-75-36, July 1975.
- C-3. JANAF Thermochemical Tables, Second Edition, H.S. Dept. of Commerce, National Bureau of Standards, NSRDS-NBS37, Washington, D.C., June 1971.
- C-4. Rasmussen, J. J., and R. P. Nelson, "Surface Tension of Molten Al₂O₃," Vol. 54, No. 8, <u>J. American Ceramic Soc.</u>
- C-5. Ring, L.R., "Analysis and Correlation of the Gasdynamic and Radiative Exhaust Plume Properties Obtained in the Emitted Radiation from Special Engines Test Program," LMSC-HREC L511027, Lockheed Missiles & Space Company, Huntsville, Ala., December 1975.

#