Drumuri minime de sursă unică în grafuri aciclice (fără circuite)

- Ipoteze:
 - Graful <u>nu</u> contine circuite
 - Arcele pot avea şi cost negativ

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util

să ştim deja δ(s,u) pentru orice u cu uv∈E

• atunci putem calcula distanțele după relația $\delta(s,v) = \min\{\delta(s,u) + w(u,v) \mid uv \in E \}$

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util

să ştim deja δ(s,u) pentru orice u cu uv∈E ⇒

 Ar fi utilă o ordonare a vârfurilor astfel încât dacă uv∈E, atunci u se află înaintea lui v

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util

să ştim deja δ(s,u) pentru orice u cu uv∈E ⇒

 Ar fi utilă o ordonare a vârfurilor astfel încât dacă uv∈E, atunci u se află înaintea lui v

O astfel de ordonare <u>nu există</u> dacă graful conține circuite

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util

să ştim deja δ(s,u) pentru orice u cu uv∈E ⇒

 Ar fi utilă o ordonare a vârfurilor astfel încât dacă uv∈E, atunci u se află înaintea lui v

Pseudocod

- Considerăm vârfurile în ordinea dată de sortarea topologică
 - Pentru fiecare vârf u relaxăm arcele uv către vecinii săi (pentru a găsi drumuri noi către aceștia)

s - vârful de start //initializam distante - ca la Dijkstra pentru fiecare u∈V executa $d[u] = \infty$; tata[u]=0 d[s] = 0//determinăm o sortare topologică a vârfurilor //este suficient sa pastrăm vârfurile din sortare începând cu s SortTop = sortare topologica(G,s) pentru fiecare u ∈ SortTop pentru fiecare uv∈E executa daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre> d[v] = d[u] + w(u,v)tata[v] = u

s - vârful de start

//initializam distante - ca la Dijkstra

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
```

//initializam distante - ca la Dijkstra pentru fiecare u∈V executa $d[u] = \infty$; tata[u]=0 d[s] = 0//determinăm o sortare topologică a vârfurilor SortTop = sortare topologica(G) pentru fiecare u ∈ SortTop

pentru fiecare uv∈E executa

s - vârful de start

s - vârful de start

//initializam distante - ca la Dijkstra pentru fiecare u∈V executa $d[u] = \infty$; tata[u]=0 d[s] = 0//determinăm o sortare topologică a vârfurilor SortTop = sortare topologica(G) pentru fiecare u ∈ SortTop pentru fiecare uv∈E executa daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre> d[v] = d[u] + w(u,v)tata[v] = u

s - vârful de start

//initializam distante - ca la Dijkstra pentru fiecare u∈V executa $d[u] = \infty$; tata[u]=0 d[s] = 0//determinăm o sortare topologică a vârfurilor SortTop = sortare topologica(G) pentru fiecare u ∈ SortTop pentru fiecare uv∈E executa daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre> d[v] = d[u] + w(u,v)tata[v] = uscrie d, tata

Exemplu

<u>Etapa 1</u> - determinăm o ordonare topologică a vârfurilor

adauga (j, C)

returneaza SortTop

C: 1 3

C: 1 3

C: 1 3

C: 1 3 6

C: 1 3 6

C: 1 3 6

C: 1 3 6

C: 1 3 6 5

C: 1 3 6 5 4

C: 1 3 6 5 4

2

C: 1 3 6 5 4

2

C: 1 3 6 5 4 2

2

C: 1 3 6 5 4 2

C: 1 3 6 5 4 2

Sortare topologică: 1 3 6 5 4 2

Sortare topologică - Algoritm

```
coada C \leftarrow \emptyset;
adauga in C toate vârfurile v cu d [v]=0
cat timp C \neq \emptyset executa
    i \leftarrow extrage(C);
   adauga i in sortare
    pentru ij ∈ E executa
       d^{-}[i] = d^{-}[i] - 1
       daca d<sup>-</sup>[j]=0 atunci
             adauga (j, C)
return C
```

<u>Etapa 2</u> - parcurgem vârfurile în ordinea dată de sortarea topologică și relaxăm pentru fiecare vârf arcele care ies din acesta

 Inițial - determinăm o ordonare topologică a vârfurilor

```
■ Amintim algoritm Sort Top ← Ø:
                coada C ← Ø;
                adauga in C toate vârfurile v cu d [v]=0
                cat timp C \neq \emptyset executa
                     i \leftarrow extrage(C);
                     adauga i in SortTop
                     pentru ij ∈ E executa
                          d^{-}[i] = d^{-}[i] - 1
                          daca d<sup>-</sup>[j]=0 atunci
                               adauga (j, C)
```

returneaza SortTop

Sortare topologifă, 3, 6, 5, 4, 2

Sortare topologifă, 3, 6, 5, 4, 2 s=3 - vârf de start

Ordine de calcul distanțe 1, 3, 6, 5, 4, 2

1 nu este accesibil din s, puteam să nu îl considerăm (să ignorăm vârfurile din ordonare topologică aflate înaintea lui s)

d/ tat a	$[\infty]^{1}/0,$	2 ∞/0,	ổ /o,	4 ∞/0,	5 ∞/0,	6 ∞/0]
u = 1:	[∞/o,	∞/o,	0/0,	∞/ 0,	∞/o,	∞/ 0]
u = 3:						
				d[v] = m	in{d[v],d	[u]+w(u,v)}

d /tat a	$[\infty]^{1}$	² ∞/0,	3 /0,	4 ∞/0,	5 ∞/0,	6 ∞ /0]
u = 1:	[∞/o,	∞/o,	0/0,	∞/o,	∞/o,	∞/o]
u = 3:						
				d[v] = m	in{d[v],d	[u]+w(u,v)}

d/ tat a	$[\infty]{0}$	2 ∞/0,	3 /0,	4 ∞/0,	$\frac{5}{\infty}/0$,	6 ∞ /0]
u = 1:	[∞/o,	∞/o,	0/0,	∞/o,	∞/o,	∞/ 0]
u = 3:	[∞/o,	8/ 3,	0/0,	∞ /0,	4/ 3,	∞/ 0]
				d[v] = m	in{d[v],d	[u]+w(u,v)}

 $d[v] = \min\{d[v], d[u]+w(u,v)\}$

<pre>d/tat a u = 1:</pre>	$[\infty]{0}$	² ∞/0, ∞/0,	3 /0, 0 /0,	4 ∞/0, ∞/0,	5 ∞/0, ∞/0,	
u = 3: u = 6:	[∞/o,	8/ 3,	0/0,	∞ /0,		∞/o]

 $d[v] = \min\{d[v], d[u] + w(u, v)\}$

d /tat a	$[\infty]^{1}/0,$	2 ∞/0,	ð /o,	4 ∞/0,	5 ∞/0,	6 ∞/0]
u = 1:	[∞/o,	∞/o,	0/0,	∞ /0,	∞/o,	∞/ 0]
u = 3:	[∞ /0,	8/ 3,	0/0,	∞/o,	4/ 3,	∞/ 0]
u = 6:	[∞/o,	8/ 3,	0/ 0,	∞/o,	4/ 3,	∞/ 0]

d /tat a	$[\infty]^{1}/0,$	$\frac{2}{\infty}/0$,	3 /0,	4 ∞/0,	5 ∞/0,	6 /₀]
u = 1:	[∞/o,	∞/o,	0/0,	∞/o,	∞/o,	∞/o]
u = 3:	[∞/o,	8/ 3,	0/ 0,	∞/o,	4/ 3,	∞/ 0]
u = 6:	[∞/o,	8/ 3,	0/ 0,	∞/o,	4/ 3,	∞/ 0]
u = 5:						
				d[v] = mi	.n{d[v],d	[u]+w(u,v)}

d/ tat a	$[\infty]^{1}$	$\frac{2}{\infty}/0$,	ð /o,	4 ∞/0,	5 ∞/0,	6 ∞/0]
u = 1:	[∞/o,	∞/ 0,	0/0,	∞/ 0,	∞/ 0,	∞/o]
u = 3:	[∞/o,	8/ 3,	0/0,	∞/ 0,	4/ 3,	∞/ 0]
u = 6:	[∞/o,	8/ 3,	0/ 0,	∞/o ,	4/ 3,	∞/o]
u = 5:	[∞/o,	8/ 3,	0/ 0,	6/ 5,	4/ 3,	∞/o]
				d[v] = mi	.n{d[v],d	[u]+w(u,v)}

d /tat a	$[\infty]^{1}$	$\frac{2}{\infty}/0$,	ổ /o,	4 ∞/0,	5 ∞/0,	∞ /0]
u = 1:	[∞/o,	∞/ 0,	0/0,	∞/ 0,	∞/o,	∞/o]
u = 3:	[∞/o,	8/ 3,	0/0,	∞/ 0,	4/ 3,	∞/ 0]
u = 6:	[∞/o,	8/ 3,	0/0,	∞/ 0,	4/ 3,	∞/o]
u = 5:	[∞/o,	8/ 3,	0/ 0,	6/ 5,	4/ 3,	∞/o]
u = 4:						
				d[v] = mi	n{d[v],d	[u]+w(u,v)}

d/ tat a	[∞/o,	² ∞/0,	ổ /o,	4 ∞/0,	5 ∞/0,	6 ∞/0]
u = 1:	[∞/o,	∞/o,	0/ 0,	∞/o,	∞/ 0,	∞/o]
u = 3:	[∞/o,	8/ 3,	0/0,	∞/o,	4/ 3,	∞/ 0]
u = 6:	[∞/o,	8/ 3,	0/0,	∞/o,	4/ 3,	∞/ 0]
u = 5:	[∞/o,	8/ 3,	0/0,	6/ 5,	4/ 3,	∞/o]
u = 4:	[∞/o,	7/4,	0/0,	6/ 5,	4/ 3,	∞/o]
				d[v] = mi	n{d[v],d	[u]+w(u,v)}

d/ tat a	$[\infty]{0}$	$\frac{2}{\infty}/0$,	3 /0,	4 ∞/0,	5 ∞/0,	6 ∞/0]
u = 1:	[∞/o,	∞/ 0,	0/0,	∞/o,	∞/o,	∞/o]
u = 3:	[∞/o,	8/ 3,	0/0,	∞/o,	4/ 3,	∞/ 0]
u = 6:	[∞/o,	8/ 3,	0/0,	∞/o,	4/ 3,	∞/ 0]
u = 5:	[∞/o,	8/ 3,	0/0,	6/ 5,	4/ 3,	∞/o]
u = 4:	[∞/o,	7/4,	0/0,	6/ 5,	4/ 3,	∞/o]
u = 2:						
				d[v] = mi	n{d[v],d	[u]+w(u,v)}

d/ tat a	$[\infty]^{1}/0,$	$\frac{2}{\infty}/0$,	₫/0,	4 ∞/0,	5 ∞/0,	6 ∞/0]
u = 1:	[∞/o,	∞/o,	0/0,	∞/o,	∞/o,	∞/ 0]
u = 3:	[∞/o,	8/ 3,	0/0,	∞/ 0,	4/ 3,	∞/ 0]
u = 6:	[∞/o,	8/ 3,	0/0,	∞/ 0,	4/ 3,	∞/ 0]
u = 5:	[∞/o,	8/ 3,	0/0,	6/ 5,	4/ 3,	∞/o]
u = 4:	[∞/o,	7/4,	0/0,	6/ 5,	4/ 3,	∞/ 0]
u = 2:	[∞/o,	7/4,	0/0,	6/ 5,	4/ 3,	∞/ 0]

Un drum minim de la 3 la 2?

- Observație
 - Este suficient să considerăm în ordonarea topologică doar vârfurile accesibile din s
 - În exemplu fără 1 și 6

Complexitate

```
s - vârful de start
void df(int i) {
     viz[i]=1;
     for ij ∈ E
          if(viz[j]==0) df(j);
     //i este finalizat
     push(S, i)
for (i=1;i<=n;i++)
     if(viz[i]==0) df(i);
while( not S.empty()){
   u = S.pop();
   adauga u in sortare
```

s - vârful de start

//initializam distante - ca la Dijkstra pentru fiecare u∈V executa $d[u] = \infty$; tata[u]=0 d[s] = 0//determinăm o sortare topologică a vârfurilor SortTop = sortare topologica(G) pentru fiecare u ∈ SortTop pentru fiecare uv∈E executa daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre> d[v] = d[u] + w(u,v)tata[v] = uscrie d, tata

Complexitate

- Inițializare -> O(n)
- Sortare topologică -> O(m+n)
- m * relaxare uv -> O(m)

O(m + n)

Corectitudine

 Algoritmul funcționează corect și dacă există arce cu cost negativ

Când algoritmul ajunge la vârful u avem

