CAS 701 Logic and Discrete Mathematics Fall 2017

4 First-Order Logic

William M. Farmer

Department of Computing and Software McMaster University

October 27, 2017

What is First-Order Logic?

- First-order logic is the study of statements about individuals constructed using functions, predicates, propositional connectives, and quantifiers.
 - ► First-order logic is also called first-order predicate logic and first-order quantificational logic.
- First-order logic is propositional logic plus:
 - Terms that denote individuals
 - Predicates that are applied to terms.
 - Quantifiers applied to individual variables.
- First-order logic is "first-order" because quantification is over individuals but not over higher-order objects such as functions and predicates.
- There are many versions of first-order logic.
- We will develop first-order logic following Chapter 5 of J. H. Gallier, Logic for Computer Science, Dover, 2015.

Outline

- Syntax.
- Semantics.
- Metatheorems.
- Theories.
- Hilbert-style proof systems.
- Gentzen-style sequent systems.

Syntax [1/3]

- Let $V = \{x_0, x_1, ...\}$ be a countably infinite set of symbols called variables.
- A first-order language is a triple L = {CS, FS, PS} where:
 - 1. $CS = \{c_0, c_1, ...\}$ is a countable set of symbols called constants.
 - 2. **FS** = $\{f_0, f_1, \ldots\}$ is a countable set of symbols called function symbols with a rank function r that assigns each member $f \in \mathbf{FS}$ a positive integer r(f).
 - 3. $\mathbf{PS} = \{P_0, P_1, \ldots\}$ is a countable set of symbols called predicate symbols with a rank function r that assigns each member $P \in \mathbf{PS}$ a nonnegative integer r(P).
 - 4. V, CS, FS, and PS are pairwise disjoint.

Syntax [2/3]

- Let $L = \{CS, FS, PS\}$ be a first-order language.
- The set TERM_L of L-terms is the set of strings defined inductively by:
 - 1. Each variable in \boldsymbol{V} and constant in \boldsymbol{CS} is in TERM_L.
 - 2. If t_1, \ldots, t_n are in TERM_L and f is a function symbol in **FS** with r(f) = n > 0, then $f t_1 \cdots t_n$ is in TERM_L.
- The set ATOM_L of L-atomic formulas is the set of strings defined by:
 - 1. \perp and \top are in ATOM_L.
 - 2. Each P in **PS** with r(P) = 0 is in ATOM_L.
 - 3. If t_1, \ldots, t_n are in TERM_L and P is a predicate symbol in **PS** with r(P) = n > 0, then $P t_1 \cdots t_n$ is in ATOM_L.
 - 4. If t_1 and t_2 are in TERM_L, then $(t_1 \doteq t_2)$ is in ATOM_L.

Syntax [3/3]

- The set FORM_L of L-formulas is the set of strings inductively defined by:
 - 1. Each A in ATOM_L is in FORM_L.
 - 2. If A and B are in FORM_L, then $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \supset B)$, and $(A \equiv B)$ are in FORM_L.
 - 3. If x in V and A is FORM_L, then $\forall x A$ and $\exists x A$ are in FORM_L.

Free and Bound Variables [1/2]

- Given a term t, the set FV(t) of free variables of t is inductively defined by:
 - 1. $FV(x) = \{x\}$ for a variable x.
 - 2. $FV(c) = \emptyset$ for a constant c.
 - 3. $FV(f t_1 \cdots t_n) = FV(t_1) \cup \cdots \cup FV(t_n)$ for a function symbol f with r(f) = n > 0.
- Given a formula A, the set FV(A) of free variables of A is inductively defined by:
 - 1. $FV(\bot) = FV(\top) = \emptyset$.
 - 2. $FV(P) = \emptyset$ for a predicate symbol P with r(P) = 0.
 - 3. $FV(P t_1 \cdots t_n) = FV(t_1) \cup \cdots \cup FV(t_1)$ for a predicate symbol P with r(P) = n > 0.
 - 4. $FV(t_1 \doteq t_2) = FV(t_1) \cup FV(t_2)$.
 - 5. $FV(\neg A) = FV(A)$.
 - 6. $FV(A \square B) = FV(A) \cup FV(B)$ where $\square \in \{\land, \lor, \supset, \equiv\}$.
 - 7. $FV(\Box x A) = FV(A) \setminus \{x\}$ where $\Box \in \{\forall, \exists\}$.

Free and Bound Variables [2/2]

- A term or formula is open [closed] if its set of free variables is nonempty [empty].
- A sentence is a closed formula.
- Given a formula A, the set BV(A) of bound variables of A is inductively defined by:
 - 1. $BV(\bot) = BV(\top) = \emptyset$.
 - 2. $BV(P) = \emptyset$ for a predicate symbol P with r(P) = 0.
 - 3. BV($P t_1 \cdots t_n$) = \emptyset for a predicate symbol P with r(P) = n > 0.
 - 4. $BV(t_1 \doteq t_2) = \emptyset$.
 - 5. $BV(\neg A) = BV(A)$.
 - 6. $BV(A \square B) = BV(A) \cup BV(B)$ where $\square \in \{\land, \lor, \supset, \equiv\}$.
 - 7. $BV(\Box x A) = BV(A) \cup \{x\}$ where $\Box \in \{\forall, \exists\}$.

Substitutions [1/2]

The result of substituting a term t for the variable x in a term s, written s[t/x], is recursively defined by:

- 1. x[t/x] = t when s is x.
- 2. y[t/x] = y when s is a variable $y \neq x$.
- 3. c[t/x] = c when s is a constant c.
- 4. $f t_1 \cdots t_n[t/x] = f t_1[t/x] \cdots t_n[t/x]$ when s is $f t_1 \cdots t_n$.

Substitutions [2/2]

The result of substituting a term t for the free occurrences of a variable x in a formula A, written A[t/x], is recursively defined by:

- 1. $\perp [t/x] = \perp$ when A is \perp .
- 2. $\top [t/x] = \top$ when A is \top .
- 3. P[t/x] = P when *A* is *P*.
- 4. $P t_1 \cdots t_n[t/x] = P t_1[t/x] \cdots t_n[t/x]$ when A is $P t_1 \cdots t_n$.
- 5. $(t_1 \doteq t_2)[t/x] = (t_1[t/x] \doteq t_2[t/x])$ when A is $(t_1 \doteq t_2)$.
- 6. $(\neg B)[t/x] = \neg B[t/x]$ when A is $(\neg B)$.
- 7. $(B \square C)[t/x] = (B[t/x] \square C[t/x])$ when A is $(B \square C)$ where $\square \in \{\land, \lor, \supset, \equiv\}$.
- 8. $(\square \times B)[t/x] = (\square \times B)$ when A is $(\square \times B)$ where $\square \in \{ \forall, \exists \}$.
- 9. $(\Box y B)[t/x] = (\Box y B[t/x])$ when A is $(\Box y B)$ and $y \neq x$ where $\Box \in \{ \forall, \exists \}$.

Semantics [1/4]

- An L-structure is a pair M = (M, I) where M is a nonempty set of values (called the domain of M) and I is a function on CS ∪ FS ∪ PS (called the interpretation function of M) such that:
 - 1. For $c \in \mathbf{CS}$, $I(c) \in M$.
 - 2. For $f \in \mathbf{FS}$ with r(f) = n > 0, $I(f) : M^n \to M$ is an n-ary function.
 - 3. For $P \in \mathbf{PS}$ with r(f) = 0, $I(P) \in BOOL$.
 - 4. For $P \in \mathbf{PS}$ with r(f) = n > 0, $I(P) : M^n \to \mathsf{BOOL}$ is an n-ary predicate.
- I(c), I(f), I(P) are denoted by c_{M}, f_{M}, P_{M} , respectively.
- An L-structure is a mathematical structure of the form

$$(M; (c_0)_{\mathsf{M}}, (c_1)_{\mathsf{M}}, \ldots; (f_0)_{\mathsf{M}}, (f_1)_{\mathsf{M}}, \ldots; (P_0)_{\mathsf{M}}, (P_1)_{\mathsf{M}}, \ldots).$$

Semantics [2/4]

- Let $\mathbf{M} = (M, I)$ be an **L**-structure.
- An assignment into M is any function $s : V \to M$. Let $[V \to M]$ be the set of all assignments into M.
- If $s \in [\mathbf{V} \to M]$, $x \in \mathbf{V}$, and $a \in M$, s[x := a] is the assignment $s' : \mathbf{V} \to M$ such that s'(x) = a and s'(y) = s(y) for all $y \neq x$.
- The value of a term $t \in \mathsf{TERM}_{\mathsf{L}}$ in M with assignment $s \in [\mathsf{V} \to M]$, written $t_{\mathsf{M}}[s]$, is a member of M recursively defined by:
 - 1. $x_{\mathbf{M}}[s] = s(x)$ for $x \in \mathbf{V}$.
 - 2. $c_{\mathsf{M}}[s] = c_{\mathsf{M}}$ for $c \in \mathsf{CS}$.
 - 3. $(f t_1 \cdots t_n)_{\mathbf{M}}[s] = f_{\mathbf{M}}((t_1)_{\mathbf{M}}[s], \dots, (t_1)_{\mathbf{M}}[s])$ for $f t_1 \cdots t_n \in \mathsf{TERM}_{\mathbf{L}}$.

Semantics [3/4]

The value of a formula $A \in FORM_L$ in M with assignment $s \in [V \to M]$, written $A_M[s]$, is a member of BOOL recursively defined by:

- 1. $\perp_{\mathsf{M}}[s] = \mathsf{F}$.
- 2. $\top_{M}[s] = T$.
- 3. $P_{\mathbf{M}}[s] = P_{\mathbf{M}}$ for $P \in \mathsf{FORM}_{\mathbf{L}}$.
- 4. $(P t_1 \cdots t_n)_{M}[s] = P_{M}((t_1)_{M}[s], \dots, (t_1)_{M}[s])$ for $P t_1 \cdots t_n \in FORM_L$.
- 5. $(t_1 \doteq t_2)_{\mathsf{M}}[s] = \mathsf{T}$ if $(t_1)_{\mathsf{M}}[s] = (t_2)_{\mathsf{M}}[s]$ for $(t_1 \doteq t_2) \in \mathsf{FORM}_{\mathsf{L}}$. Otherwise, $(t_1 \doteq t_2)_{\mathsf{M}}[s] = \mathsf{F}$.
- 6. $(\neg A)_{\mathbf{M}}[s] = H_{\neg}(A_{\mathbf{M}}[s])$ for $\neg A \in \mathsf{FORM}_{\mathbf{L}}$.
- 7. $(A \square B)_{\mathbf{M}}[s] = H_{\square}(A_{\mathbf{M}}[s], B_{\mathbf{M}}[s])$ for $(A \square B) \in \mathsf{FORM}_{\mathbf{L}}$ where $\square \in \{\land, \lor, \supset, \equiv\}$.
- 8. $(\forall x A)_{\mathbf{M}}[s] = \mathbf{T}$ if $A_{\mathbf{M}}[s[x := a]] = \mathbf{T}$ for all $a \in M$ for $\forall x A \in \mathsf{FORM}_{\mathsf{L}}$. Otherwise, $(\forall x A)_{\mathbf{M}}[s] = \mathbf{F}$.
- 9. $(\exists x A)_{\mathbf{M}}[s] = \mathbf{T}$ if $A_{\mathbf{M}}[s[x := a]] = \mathbf{T}$ for some $a \in M$ for $\exists x A \in \mathsf{FORM}_{\mathsf{L}}$. Otherwise, $(\exists x A)_{\mathbf{M}}[s] = \mathbf{F}$.