WBFMM

Generated by Doxygen 1.8.9.1

Wed Oct 30 2019 11:38:22

Contents

1	WBF	-ММ: А	Wide Ban	d Fast Multipole Method library	1
	1.1	Getting	started .		1
	1.2	What V	VBFMM do	pes	1
	1.3	Refere	nces		1
2	Mod	ule Inde	ex		3
	2.1	Module	es		3
3	Data	Struct	ure Index		5
	3.1	Data S	tructures		5
4	File	Index			7
	4.1	File Lis	st		7
5	Mod	ule Doc	umentatio	on	9
	5.1	Boxes	and octree	PS	9
		5.1.1	Detailed	Description	10
		5.1.2	Enumera	tion Type Documentation	10
			5.1.2.1	wbfmm_problem_t	10
		5.1.3	Function	Documentation	11
			5.1.3.1	wbfmm_point_index_3d	11
			5.1.3.2	$wbfmm_point_index_3d_f \ \dots $	12
			5.1.3.3	wbfmm_tree_add_level	12
			5.1.3.4	wbfmm_tree_add_points	12
			5.1.3.5	wbfmm_tree_add_points_f	13
			5.1.3.6	wbfmm_tree_box_field	13
			5.1.3.7	wbfmm_tree_box_field_f	13
			5.1.3.8	wbfmm_tree_box_local_field	14
			5.1.3.9	wbfmm_tree_box_local_field_f	15
			5.1.3.10	wbfmm_tree_coefficient_init	15
			5.1.3.11	wbfmm_tree_coefficient_init_f	15
			5.1.3.12	wbfmm_tree_laplace_box_local_field	16
			5.1.3.13	wbfmm_tree_laplace_box_local_field_f	16

iv CONTENTS

		5.1.3.14	wbfmm_tree_laplace_leaf_expansions	17
		5.1.3.15	wbfmm_tree_laplace_leaf_expansions_f	17
		5.1.3.16	wbfmm_tree_leaf_expansions	18
		5.1.3.17	wbfmm_tree_leaf_expansions_f	19
		5.1.3.18	wbfmm_tree_new	19
		5.1.3.19	wbfmm_tree_new_f	20
		5.1.3.20	wbfmm_tree_refine	20
		5.1.3.21	wbfmm_tree_refine_f	20
5.2	Shift o	perations		21
	5.2.1	Detailed	Description	21
	5.2.2	Function	Documentation	22
		5.2.2.1	wbfmm_child_parent_shift	22
		5.2.2.2	wbfmm_child_parent_shift_f	22
		5.2.2.3	wbfmm_parent_child_shift	22
		5.2.2.4	wbfmm_parent_child_shift_f	23
		5.2.2.5	wbfmm_shift_angle_table_init	23
		5.2.2.6	wbfmm_shift_angle_table_init_f	24
		5.2.2.7	wbfmm_shift_angles_list4	24
		5.2.2.8	wbfmm_shift_angles_list4_f	24
		5.2.2.9	wbfmm_shift_operators_coaxial_SR_init	25
		5.2.2.10	wbfmm_shift_operators_coaxial_SR_init	26
		5.2.2.11	wbfmm_shift_operators_coaxial_SS_init	26
		5.2.2.12	wbfmm_shift_operators_coaxial_SS_init	26
		5.2.2.13	wbfmm_shift_operators_new	27
		5.2.2.14	wbfmm_shift_operators_new_f	27
5.3	Genera	ation and e	evaluation of expansions	28
	5.3.1	Detailed	Description	28
	5.3.2	Function	Documentation	28
		5.3.2.1	wbfmm_expansion_dipole_h_cfft	28
		5.3.2.2	wbfmm_expansion_dipole_h_cfft_f	29
		5.3.2.3	wbfmm_expansion_h_cfft	29
		5.3.2.4	wbfmm_expansion_h_cfft_f	30
		5.3.2.5	wbfmm_expansion_h_evaluate	30
		5.3.2.6	wbfmm_expansion_h_evaluate_f	30
		5.3.2.7	wbfmm_expansion_j_evaluate	31
		5.3.2.8	wbfmm_expansion_j_evaluate_f	31
5.4	Upward	d and dow	nward passes	32
	5.4.1	Detailed	Description	32
	5.4.2	Function	Documentation	32
		5.4.2.1	wbfmm_downward_pass	32

CONTENTS

		5.4.2.2	wbfmm_downward_pass_f	33
		5.4.2.3	wbfmm_laplace_downward_pass	33
		5.4.2.4	wbfmm_laplace_downward_pass_f	33
		5.4.2.5	wbfmm_laplace_upward_pass	34
		5.4.2.6	wbfmm_laplace_upward_pass_f	34
		5.4.2.7	wbfmm_upward_pass	34
		5.4.2.8	wbfmm_upward_pass_f	35
5.5	Rotatio	n coefficie	ents and operations	36
	5.5.1	Detailed	Description	36
	5.5.2	Function	Documentation	36
		5.5.2.1	wbfmm_coefficients_H_rotation	36
		5.5.2.2	wbfmm_coefficients_H_rotation_f	37
		5.5.2.3	wbfmm_laplace_rotate_H	37
		5.5.2.4	wbfmm_laplace_rotate_H_f	37
		5.5.2.5	wbfmm_rotate_H	38
		5.5.2.6	wbfmm_rotate_H_f	38
		5.5.2.7	wbfmm_rotation_angles	39
		5.5.2.8	wbfmm_rotation_angles_f	39
5.6	Transla	ation opera	ators	41
	5.6.1	Detailed	Description	41
	5.6.2	Function	Documentation	41
		5.6.2.1	wbfmm_coaxial_translate	41
		5.6.2.2	wbfmm_coaxial_translate_f	42
		5.6.2.3	wbfmm_coefficients_RR_coaxial	42
		5.6.2.4	wbfmm_coefficients_RR_coaxial_f	42
		5.6.2.5	wbfmm_coefficients_SR_coaxial	43
		5.6.2.6	wbfmm_coefficients_SR_coaxial_f	43
5.7	Utility a	and conver	nience functions	44
	5.7.1	Detailed	Description	45
	5.7.2	Function	Documentation	45
		5.7.2.1	wbfmm_bessel_h_init	45
		5.7.2.2	wbfmm_bessel_h_init_f	45
		5.7.2.3	wbfmm_bessel_h_recursion	46
		5.7.2.4	wbfmm_bessel_h_recursion_f	46
		5.7.2.5	wbfmm_bessel_j_init	46
		5.7.2.6	wbfmm_bessel_j_init_f	47
		5.7.2.7	wbfmm_bessel_j_recursion	47
		5.7.2.8	wbfmm_bessel_j_recursion_f	47
		5.7.2.9	wbfmm_box_location_from_index	48
		5.7.2.10	wbfmm_box_location_from_index_f	48

vi CONTENTS

		5.7.2.11	wbfmm_cartesian_to_spherical	48
		5.7.2.12	wbfmm_cartesian_to_spherical_f	49
		5.7.2.13	wbfmm_coordinate_transform	49
		5.7.2.14	wbfmm_coordinate_transform_f	49
		5.7.2.15	wbfmm_legendre_init	50
		5.7.2.16	wbfmm_legendre_init_f	50
		5.7.2.17	wbfmm_legendre_recursion_array	50
		5.7.2.18	wbfmm_legendre_recursion_array_f	51
		5.7.2.19	wbfmm_points_origin_width	51
		5.7.2.20	wbfmm_points_origin_width_f	51
		5.7.2.21	wbfmm_shift_angles	52
		5.7.2.22	wbfmm_shift_angles_f	52
		5.7.2.23	wbfmm_shift_coordinates	52
		5.7.2.24	wbfmm_shift_coordinates_f	53
		5.7.2.25	wbfmm_total_dipole_field	53
		5.7.2.26	wbfmm_total_dipole_field_f	53
		5.7.2.27	wbfmm_total_field	54
		5.7.2.28	wbfmm_total_field_f	54
		5.7.2.29	wbfmm_tree_box_centre	55
		5.7.2.30	wbfmm_tree_box_centre_f	55
		5.7.2.31	wbfmm_tree_write_sources	55
		5.7.2.32	wbfmm_tree_write_sources_f	56
5.8	Evalua	tion of the	Laplace potential	57
	5.8.1	Detailed	Description	58
	5.8.2	Function	Documentation	58
		5.8.2.1	wbfmm_box_fields_laplace	58
		5.8.2.2	wbfmm_box_fields_laplace_f	59
		5.8.2.3	wbfmm_expansion_laplace_evaluate	59
		5.8.2.4	wbfmm_expansion_laplace_evaluate_f	59
		5.8.2.5	wbfmm_laplace_child_parent_shift	60
		5.8.2.6	wbfmm_laplace_child_parent_shift_f	60
		5.8.2.7	wbfmm_laplace_coaxial_translate_init	61
		5.8.2.8	wbfmm_laplace_coaxial_translate_init_f	61
		5.8.2.9	wbfmm_laplace_coaxial_translate_RR	61
		5.8.2.10	wbfmm_laplace_coaxial_translate_RR_f	62
		5.8.2.11	wbfmm_laplace_coaxial_translate_SR	62
		5.8.2.12	wbfmm_laplace_coaxial_translate_SR_f	63
		5.8.2.13	wbfmm_laplace_coaxial_translate_SS	63
		5.8.2.14	wbfmm_laplace_coaxial_translate_SS_f	64
		5.8.2.15	wbfmm_laplace_expansion_apply	64

CONTENTS vii

			5.8.2.16	wbfmm_laplace_expansion_apply_f	64
			5.8.2.17	wbfmm_laplace_expansion_cfft	65
			5.8.2.18	wbfmm_laplace_expansion_cfft_f	65
			5.8.2.19	wbfmm_laplace_expansion_local_evaluate	65
			5.8.2.20	wbfmm_laplace_expansion_local_evaluate_f	66
			5.8.2.21	wbfmm_laplace_field	66
			5.8.2.22	wbfmm_laplace_field_coefficients	66
			5.8.2.23	wbfmm_laplace_field_coefficients_f	66
			5.8.2.24	wbfmm_laplace_field_f	66
			5.8.2.25	wbfmm_laplace_local_coefficients	67
			5.8.2.26	wbfmm_laplace_local_coefficients_f	67
			5.8.2.27	wbfmm_laplace_parent_child_shift	67
			5.8.2.28	wbfmm_laplace_parent_child_shift_f	68
	5.9	Indexir	ng and look	kup operations	69
		5.9.1	Detailed	Description	69
		5.9.2	Function	Documentation	69
			5.9.2.1	wbfmm_box_index	69
			5.9.2.2	wbfmm_box_location	69
6	Data	Structi	ure Docun	nentation	71
	6.1	wbfmm	n_box_t St	ruct Reference	71
		6.1.1	Detailed	Description	71
		6.1.2	Field Doo	cumentation	71
			6.1.2.1	1	71
			6.1.2.2	mpr	71
			6.1.2.3	mps	71
			6.1.2.4	n	71
	6.2	wbfmm	n_shift_ope	erators_t Struct Reference	71
		6.2.1	Detailed	Description	72
		6.2.2	Field Doo	cumentation	72
			6.2.2.1	$L_{1,2,3,4,5,5,5,5,5,5,5,5$	72
			6.2.2.2	nerot	72
			6.2.2.3	nlevels	72
			6.2.2.4	rotations	72
			6.2.2.5	size	72
			6.2.2.6	SR	72
			6.2.2.6 6.2.2.7	SR	72 72
	6.3	wbfmm	6.2.2.7		
	6.3	wbfmm 6.3.1	6.2.2.7 n_target_lis	SS	72

viii CONTENTS

			6.3.2.2	cfft	73
			6.3.2.3	grad	73
			6.3.2.4	ip	73
			6.3.2.5	maxpoints	73
			6.3.2.6	nc	73
			6.3.2.7	npoints	73
			6.3.2.8	points	73
			6.3.2.9	size	74
			6.3.2.10	$t \ \dots $	74
	6.4	wbfmm	_tree_t St	ruct Reference	74
		6.4.1	Detailed	Description	74
		6.4.2	Field Doo	cumentation	74
			6.4.2.1	boxes	74
			6.4.2.2	$D \ldots $	74
			6.4.2.3	depth	74
			6.4.2.4	ip	75
			6.4.2.5	maxpoints	75
			6.4.2.6	mpr	75
			6.4.2.7	mps	75
			6.4.2.8	npoints	75
			6.4.2.9	nq	75
			6.4.2.10	$order_r\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	75
			6.4.2.11	order_s	75
			6.4.2.12	points	75
			6.4.2.13	pstr	75
			6.4.2.14	size	75
			6.4.2.15	$x \ \dots $	75
7	File	Docume	entation		77
	7.1			nce	77
		7.1.1		Description	77
	7.2			ference	77
		7.2.1		Description	83
Inc	dex				85

Chapter 1

WBFMM: A Wide Band Fast Multipole Method library

WBFMM is a library and collection of associated tools for the efficient solution of the Helmholtz equation and in particular the summation of fields generated by large numbers of acoustic sources.

- 1.1 Getting started
- 1.2 What WBFMM does

1.3 References

The following papers and links have been used in some way in developing WBFMM:

- Nail A. Gumerov and Ramani Duraiswami, Recursions for the Computation of Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation, SIAM J. Sci. Comput., 25(4), 1344-1381, http://dx.
 doi.org/10.1137/S1064827501399705
- 2. Gumerov, Duraiswami, and Borovikov, Data Structures, Optimal Choice of Parameters, and Complexity Results for Generalized Multilevel Fast Multipole Methods in d Dimensions, 2003, http://users.

 umiacs.umd.edu/~gumerov/PDFs/cs-tr-4458.pdf
- 3. Nail A. Gumerov and Ramani Duraiswami, A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation, J. Acoust. Soc. Am., 125(1), http://dx.doi.org/10. ← 1121/1.3021297
- 4. Nail A. Gumerov and Ramani Duraiswami, Comparison of the efficiency of translation operators used in the fast multipole method for the 3D Laplace equation, 2005, http://www.umiacs.umd.←edu/~ramani/pubs/comparisontranslationmethods_041205.pdf

2	WBFMM: A Wide Band Fast Multipole Method library
-	TO MIN. A VIGE Build I ast multipole method library

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

es and octrees	9
toperations	21
eration and evaluation of expansions	28
rard and downward passes	32
ation coefficients and operations	36
slation operators	41
y and convenience functions	44
uation of the Laplace potential	57
xing and lookup operations	69

Module Index

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

wbfmm_box_t	71
wbfmm_shift_operators_t	71
wbfmm_target_list_t	72
wbfmm tree t	74

6 Data Structure Index

Chapter 4

File Index

41	File	List

Here is a list of all documented files with brief descriptions:	
tree.c	77
wbfmm.h	
Header for Wide Band FMM library	77

8 File Index

Chapter 5

Module Documentation

5.1 Boxes and octrees

Operations on octree boxes and trees.

Data Structures

- struct wbfmm_box_t
- struct wbfmm_tree_t
- struct wbfmm_target_list_t
- struct wbfmm_shift_operators_t

Enumerations

enum wbfmm_problem_t { WBFMM_PROBLEM_LAPLACE = 1, WBFMM_PROBLEM_HELMHOLTZ = 2 }

Functions

• gint wbfmm tree add points (wbfmm tree t *t, gpointer pts, guint npts, gsize pstr)

Add points to an octree.

• wbfmm_tree_t * wbfmm_tree_new (gdouble *x, gdouble D, guint maxpoints)

Allocate a new octree.

• gint wbfmm_tree_leaf_expansions (wbfmm_tree_t *t, gdouble k, gdouble *src, gint sstr, gdouble *normals, gint nstr, gdouble *dipoles, gint dstr, gboolean zero_expansions, gdouble *work)

Generate leaf expansions for a tree.

• gint wbfmm_tree_box_field (wbfmm_tree_t *t, guint level, guint b, gdouble k, gdouble *x, gdouble *f, gdouble *work)

Evaluate singular expansion about a box centre.

• gint wbfmm_tree_box_local_field (wbfmm_tree_t *t, guint level, guint b, gdouble k, gdouble *x, gdouble *f, gdouble *src, gint sstr, gboolean eval_neighbours, gdouble *work)

Evaluate local field from regular expansion in box.

• guint64 wbfmm_point_index_3d (gdouble *x, gdouble *c, gdouble D)

Find Morton index for point in a cubic domain.

• gint wbfmm_tree_coefficient_init (wbfmm_tree_t *t, guint I, guint nr, guint ns)

Initialize expansion coefficient data in an octree.

gint wbfmm_tree_refine (wbfmm_tree_t *t)

Refine an existing octree by adding a level and redistributing points attached to the tree to the boxes at the new level.

gint wbfmm_tree_laplace_box_local_field (wbfmm_tree_t *t, guint level, guint b, gdouble *x, gdouble *f, gdouble *src, gint sstr, gdouble *normals, gint nstr, gdouble *d, gint dstr, gboolean eval_neighbours, gdouble *work)

Evaluate local Laplace field from regular expansion in box.

• gint wbfmm_tree_laplace_leaf_expansions (wbfmm_tree_t *t, gdouble *src, gint sstr, gdouble *normals, gint nstr, gdouble *dipoles, gint dstr, gboolean zero_expansions, gdouble *work)

Generate leaf expansions for a tree in the Laplace problem.

• gint wbfmm_tree_add_points_f (wbfmm_tree_t *t, gpointer pts, guint npts, gsize pstr)

Add points to an octree.

wbfmm_tree_t * wbfmm_tree_new_f (gfloat *x, gfloat D, guint maxpoints)

Allocate a new octree.

• gint wbfmm_tree_leaf_expansions_f (wbfmm_tree_t *t, gfloat k, gfloat *src, gint sstr, gfloat *normals, gint nstr, gfloat *dipoles, gint dstr, gboolean zero expansions, gfloat *work)

Generate leaf expansions for a tree.

gint wbfmm_tree_box_field_f (wbfmm_tree_t *t, guint level, guint b, gfloat k, gfloat *x, gfloat *f, gfloat *work)

Evaluate singular expansion about a box centre.

gint wbfmm_tree_box_local_field_f (wbfmm_tree_t *t, guint level, guint b, gfloat k, gfloat *x, gfloat *f, gfloat *src, gint sstr, gboolean eval neighbours, gfloat *work)

Evaluate local field from regular expansion in box.

• guint64 wbfmm_point_index_3d_f (gfloat *x, gfloat *c, gfloat D)

Find Morton index for point in a cubic domain.

• gint wbfmm_tree_coefficient_init_f (wbfmm_tree_t *t, guint I, guint nr, guint ns)

Initialize expansion coefficient data in an octree.

gint wbfmm_tree_refine_f (wbfmm_tree_t *t)

Refine an existing octree by adding a level and redistributing points attached to the tree to the boxes at the new level.

• gint wbfmm_tree_laplace_box_local_field_f (wbfmm_tree_t *t, guint level, guint b, gfloat *x, gfloat *f, gfloat *src, gint sstr, gfloat *normals, gint nstr, gfloat *d, gint dstr, gboolean eval_neighbours, gfloat *work)

Evaluate local Laplace field from regular expansion in box.

• gint wbfmm_tree_laplace_leaf_expansions_f (wbfmm_tree_t *t, gfloat *src, gint sstr, gfloat *normals, gint nstr, gfloat *dipoles, gint dstr, gboolean zero_expansions, gfloat *work)

Generate leaf expansions for a tree in the Laplace problem.

• gint wbfmm tree add level (wbfmm tree t *t)

5.1.1 Detailed Description

Operations on octree boxes and trees.

5.1.2 Enumeration Type Documentation

5.1.2.1 enum wbfmm_problem_t

Selection of physical problem to be handled by a $wbfmm_tree_t$ (p. 74)

Enumerator

WBFMM_PROBLEM_LAPLACE Laplace equation
WBFMM_PROBLEM_HELMHOLTZ Helmholtz equation

5.1 Boxes and octrees 11

5.1.3 Function Documentation

5.1.3.1 guint64 wbfmm_point_index_3d (gdouble * x, gdouble * c, gdouble D)

Find Morton index for point in a cubic domain.

Parameters

	X	point in space (three components, densely packed);
ĺ	С	location of bottom left corner of domain;
Ì	D	width of domain.

Returns

0 on success

5.1.3.2 guint64 wbfmm_point_index_3d_f (gfloat * x, gfloat * c, gfloat D)

Find Morton index for point in a cubic domain.

Parameters

X	point in space (three components, densely packed);
С	location of bottom left corner of domain;
D	width of domain.

Returns

0 on success

5.1.3.3 gint wbfmm_tree_add_level (wbfmm_tree_t *t)

Add a new level to an existing octree. The function assigns memory for, and initializes, a new layer of boxes of type **wbfmm_box_t** (p. 71)

Parameters

t	an existing wbfmm_tree_t (p. 74)

Returns

0 on success.

References wbfmm_tree_t::boxes, and wbfmm_tree_t::depth.

5.1.3.4 gint wbfmm_tree_add_points (wbfmm_tree_t *t, gpointer pts, guint npts, gsize pstr)

Add points to an octree.

Add a set of source points to an octree. The points are assumed to be in an array of real values with components in a packed triple, indexed using a stride of pstr bytes (this allows for quite general handling of different source formats).

Parameters

t	an existing wbfmm_tree_t (p. 74);
pts	an array containing point coordinates;
npts	the number of points in <i>pts</i> ;
pstr	stride between points in bytes.

Returns

0 on success.

5.1 Boxes and octrees 13

5.1.3.5 gint wbfmm_tree_add_points_f (wbfmm_tree_t * t, gpointer pts, guint npts, gsize pstr)

Add points to an octree.

Add a set of source points to an octree. The points are assumed to be in an array of real values with components in a packed triple, indexed using a stride of pstr bytes (this allows for quite general handling of different source formats).

Parameters

t	an existing wbfmm_tree_t (p. 74);
pts	an array containing point coordinates;
npts	the number of points in <i>pts</i> ;
pstr	stride between points in bytes.

Returns

0 on success.

5.1.3.6 gint wbfmm_tree_box_field (wbfmm_tree_t * t, guint level, guint b, gdouble * x, gdouble * x, gdouble * f, gdouble * x, gdouble

Evaluate singular expansion about a box centre.

Parameters

t	octree for problem;
level	level in t;
b	index of box at level <i>level</i> of <i>t</i> ;
k	wavenumber;
X	field evaluation point;
f	on output field at x (not zeroed before evaluation);
work	workspace

Returns

0 on success

5.1.3.7 gint wbfmm_tree_box_field_f (wbfmm_tree_t * t, guint level, guint b, gfloat * x, gfloat * x, gfloat * t, g

Evaluate singular expansion about a box centre.

Parameters

t	octree for problem;
level	level in t;
b	index of box at level <i>level</i> of <i>t</i> ;
k	wavenumber;
X	field evaluation point;
f	on output field at x (not zeroed before evaluation);
work	workspace

Returns

0 on success

5.1.3.8 gint wbfmm_tree_box_local_field (wbfmm_tree_t * t, guint level, guint b, gdouble * x, gdouble * x, gdouble * t, gdouble

Evaluate local field from regular expansion in box.

5.1 Boxes and octrees 15

Parameters

t	octree for domain;
level	level of t;
b	box index at level level of t;
k	wavenumber;
X	location of evaluation point;
f	on output, field value (not zeroed before evaluation);
src	source strengths;
sstr	stride of data in <i>src</i> ;
eval_neighbours	if TRUE compute contributions from sources in box b and neighbours;
work	workspace.

Returns

0 on success

5.1.3.9 gint wbfmm_tree_box_local_field_f (wbfmm_tree_t * t, guint level, guint b, gfloat k, gfloat * x, gfloat *

Evaluate local field from regular expansion in box.

Parameters

t	octree for domain;
level	level of t;
b	box index at level <i>level</i> of <i>t</i> ;
k	wavenumber;
X	location of evaluation point;
f	on output, field value (not zeroed before evaluation);
src	source strengths;
sstr	stride of data in <i>src</i> ;
eval_neighbours	if TRUE compute contributions from sources in box b and neighbours;
work	workspace.

Returns

0 on success

5.1.3.10 gint wbfmm_tree_coefficient_init (wbfmm_tree_t * t, guint l, guint nr, guint ns)

Initialize expansion coefficient data in an octree.

Parameters

t	octree for problem;
1	level to initialize data for;
nr	order of regular expansions at level <i>I</i> ;
ns	order of singular expansions at level <i>I</i> .

Returns

0 on success

5.1.3.11 gint wbfmm_tree_coefficient_init_f (wbfmm_tree_t * t, guint I, guint I, guint I guin

Initialize expansion coefficient data in an octree.

Parameters

t	octree for problem;
1	level to initialize data for;
nr	order of regular expansions at level I;
ns	order of singular expansions at level /.

Returns

0 on success

5.1.3.12 gint wbfmm_tree_laplace_box_local_field (wbfmm_tree_t * t, guint level, guint b, gdouble * x, gdouble * f, gdouble * src, gint sstr, gdouble * normals, gint nstr, gdouble * d, gint dstr, gboolean eval_neighbours, gdouble * work)

Evaluate local Laplace field from regular expansion in box.

Parameters

t	octree for domain;
level	level of t;
b	box index at level <i>level</i> of <i>t</i> ;
X	location of evaluation point;
f	on output, field value (not zeroed before evaluation);
src	source strengths;
sstr	stride of data in <i>src</i> ;
normals	normals for dipole sources;
nstr	stride in normals;
d	dipole source strengths, or dipole vectors;
dstr	stride in d;
eval_neighbours	if TRUE compute contributions from sources in box b and neighbours;
work	workspace.

Returns

0 on success

5.1.3.13 gint wbfmm_tree_laplace_box_local_field_f (wbfmm_tree_t * t, guint level, guint b, gfloat * x, gfloat * src, gint sstr, gfloat * normals, gint nstr, gfloat * d, gint dstr, gboolean $eval_neighbours$, gfloat * mormals

Evaluate local Laplace field from regular expansion in box.

Parameters

t	octree for domain;
level	level of t;
b	box index at level level of t;
X	location of evaluation point;
f	on output, field value (not zeroed before evaluation);
src	source strengths;
sstr	stride of data in <i>src</i> ;

5.1 Boxes and octrees 17

normals	normals for dipole sources;
nstr	stride in <i>normals</i> ;
d	dipole source strengths, or dipole vectors;
dstr	stride in d;
eval_neighbours	if TRUE compute contributions from sources in box b and neighbours;
work	workspace.

Returns

0 on success

5.1.3.14 gint wbfmm_tree_laplace_leaf_expansions (wbfmm_tree_t * t, gdouble * src, gint sstr, gdouble * normals, gint nstr, gdouble * dipoles, gint dstr, gboolean zero_expansions, gdouble * work)

Generate leaf expansions for a tree in the Laplace problem.

Generate leaf expansions for a tree for the Laplace problem given some combination of monopole and dipole sources. Source positions are those in the point list attached to the tree using **wbfmm_tree_add_points** (p. 12)(...) and indexing in the array must correspond to that in the point list. Input arrays may be NULL: if *src* is not NULL, it is interpreted as a list of complex monopole strengths; if *normals* is not NULL, *dipoles* may not be NULL and they are interpreted respectively as a vector ('normal') at each source position and a scalar complex amplitude (this corresponds to surface normal and a normal velocity amplitude in a boundary element method calculation); if *normals* is NULL and *dipoles* is not NULL, *dipoles* is interpreted as a three-element complex vector specifying the dipole strength. The strides *sstr*, *nstr*, and *dstr* are the number of scalar elements between successive entries in the arrays, with the elements of each entry densely packed. For example, a list of normals might read:

$$[n_{x1} \quad n_{y1} \quad n_{z1} \quad a_1 \quad b_1 \quad n_{x2} \ldots]$$

where (n_{x1}, n_{y1}, n_{z1}) is the first normal vector and a_1 and b_1 are arbitrary entries in the array. In this case, the stride *nstr* would be 5, the number of elements between successive values of n_{xi} .

Parameters

t	octree for problem;
src	monopole source strengths;
sstr	stride of data in <i>src</i> ;
normals	dipole normals;
nstr	stride of data in <i>normals</i> ;
dipoles	dipole source strengths (if normals is not NULL), or moment vectors (if normals is NULL);
dstr	stride of data in <i>dipoles</i> ;
zero_expansions	if TRUE, set expansion coefficients to zero before adding source terms;
work	workspace.

Returns

0 on success

5.1.3.15 gint wbfmm_tree_laplace_leaf_expansions_f (wbfmm_tree_t * t, gfloat * src, gint sstr, gfloat * normals, gint nstr, gfloat * dipoles, gint dstr, gboolean zero_expansions, gfloat * work)

Generate leaf expansions for a tree in the Laplace problem.

Generate leaf expansions for a tree for the Laplace problem given some combination of monopole and dipole sources. Source positions are those in the point list attached to the tree using **wbfmm_tree_add_points_** \leftarrow **f** (p. 13)(...) and indexing in the array must correspond to that in the point list. Input arrays may be NULL: if *src* is not NULL, it is interpreted as a list of complex monopole strengths; if *normals* is not NULL, *dipoles* may not be NULL and they are interpreted respectively as a vector ('normal') at each source position and a scalar complex

amplitude (this corresponds to surface normal and a normal velocity amplitude in a boundary element method calculation); if *normals* is NULL and *dipoles* is not NULL, *dipoles* is interpreted as a three-element complex vector specifying the dipole strength. The strides *sstr*, *nstr*, and *dstr* are the number of scalar elements between successive entries in the arrays, with the elements of each entry densely packed. For example, a list of normals might read:

$$[n_{x1} \quad n_{y1} \quad n_{z1} \quad a_1 \quad b_1 \quad n_{x2} \ldots]$$

where (n_{x1}, n_{y1}, n_{z1}) is the first normal vector and a_1 and b_1 are arbitrary entries in the array. In this case, the stride *nstr* would be 5, the number of elements between successive values of n_{xi} .

Parameters

t	octree for problem;
src	monopole source strengths;
sstr	stride of data in <i>src</i> ;
normals	dipole normals;
nstr	stride of data in <i>normals</i> ;
dipoles	dipole source strengths (if normals is not NULL), or moment vectors (if normals is NULL);
dstr	stride of data in <i>dipoles</i> ;
zero_expansions	if TRUE, set expansion coefficients to zero before adding source terms;
work	workspace.

Returns

0 on success

5.1.3.16 gint wbfmm_tree_leaf_expansions (wbfmm_tree_t * t, gdouble * src, gint sstr, gdouble * normals, gint nstr, gdouble * dipoles, gint dstr, gboolean zero_expansions, gdouble * work)

Generate leaf expansions for a tree.

Generate leaf expansions for a tree given some combination of monopole and dipole sources. Source positions are those in the point list attached to the tree using **wbfmm_tree_add_points** (p. 12)(...) and indexing in the array must correspond to that in the point list. Input arrays may be NULL: if *src* is not NULL, it is interpreted as a list of complex monopole strengths; if *normals* is not NULL, *dipoles* may not be NULL and they are interpreted respectively as a vector ('normal') at each source position and a scalar complex amplitude (this corresponds to surface normal and a normal velocity amplitude in a boundary element method calculation); if *normals* is NULL and *dipoles* is not NULL, *dipoles* is interpreted as a three-element complex vector specifying the dipole strength. The strides *sstr*, *nstr*, and *dstr* are the number of scalar elements between successive entries in the arrays, with the elements of each entry densely packed. For example, a list of normals might read:

$$[n_{x1} \quad n_{y1} \quad n_{z1} \quad a_1 \quad b_1 \quad n_{x2} \ldots]$$

where (n_{x1}, n_{y1}, n_{z1}) is the first normal vector and a_1 and b_1 are arbitrary entries in the array. In this case, the stride *nstr* would be 5, the number of elements between successive values of n_{xi} .

Parameters

t	octree for problem;
k	wavenumber;
src	monopole source strengths;
sstr	stride of data in <i>src</i> ;
normals	dipole normals;
nstr	stride of data in <i>normals</i> ;
dipoles	dipole source strengths (if normals is not NULL), or moment vectors (if normals is NULL);

5.1 Boxes and octrees 19

	dstr	stride of data in <i>dipoles</i> ;
ze	ero_expansions	if TRUE, set expansion coefficients to zero before adding source terms;
	work	workspace.

Returns

0 on success

5.1.3.17 gint wbfmm_tree_leaf_expansions_f (wbfmm_tree_t * t, gfloat *, gfloat * src, gint sstr, gfloat * normals, gint nstr, gfloat * dipoles, gint dstr, gboolean zero_expansions, gfloat * work)

Generate leaf expansions for a tree.

Generate leaf expansions for a tree given some combination of monopole and dipole sources. Source positions are those in the point list attached to the tree using **wbfmm_tree_add_points_f** (p. 13)(...) and indexing in the array must correspond to that in the point list. Input arrays may be NULL: if *src* is not NULL, it is interpreted as a list of complex monopole strengths; if *normals* is not NULL, *dipoles* may not be NULL and they are interpreted respectively as a vector ('normal') at each source position and a scalar complex amplitude (this corresponds to surface normal and a normal velocity amplitude in a boundary element method calculation); if *normals* is NULL and *dipoles* is not NULL, *dipoles* is interpreted as a three-element complex vector specifying the dipole strength. The strides *sstr*, *nstr*, and *dstr* are the number of scalar elements between successive entries in the arrays, with the elements of each entry densely packed. For example, a list of normals might read:

$$[n_{x1} \quad n_{y1} \quad n_{z1} \quad a_1 \quad b_1 \quad n_{x2} \ldots]$$

where (n_{x1}, n_{y1}, n_{z1}) is the first normal vector and a_1 and b_1 are arbitrary entries in the array. In this case, the stride *nstr* would be 5, the number of elements between successive values of n_{xi} .

Parameters

t	octree for problem;
k	wavenumber;
src	monopole source strengths;
sstr	stride of data in <i>src</i> ;
normals	dipole normals;
nstr	stride of data in <i>normals</i> ;
dipoles	dipole source strengths (if normals is not NULL), or moment vectors (if normals is NULL);
dstr	stride of data in <i>dipoles</i> ;
zero_expansions	if TRUE, set expansion coefficients to zero before adding source terms;
work	workspace.

Returns

0 on success

5.1.3.18 wbfmm tree t* wbfmm_tree_new (gdouble * x, gdouble D, guint maxpoints)

Allocate a new octree.

Parameters

X	location of origin of tree;
D	width of domain;

maxpoints	maximum number of source points in tree.
-----------	--

Returns

pointer to newly allocated tree.

5.1.3.19 wbfmm_tree_t* wbfmm_tree_new_f (gfloat * x, gfloat D, guint maxpoints)

Allocate a new octree.

Parameters

X	location of origin of tree;
D	width of domain;
maxpoints	maximum number of source points in tree.

Returns

pointer to newly allocated tree.

5.1.3.20 gint wbfmm_tree_refine (wbfmm_tree_t * t)

Refine an existing octree by adding a level and redistributing points attached to the tree to the boxes at the new level.

Parameters

t	an existing wbfmm_tree_t (p. 74).

Returns

0 on success.

5.1.3.21 gint wbfmm_tree_refine_f (wbfmm_tree_t * t)

Refine an existing octree by adding a level and redistributing points attached to the tree to the boxes at the new level

Parameters

t	an existing wbfmm_tree_t (p. 74).

Returns

0 on success.

5.2 Shift operations 21

5.2 Shift operations

Shift operations (combined rotation and translation) for upward and downward passes, and same-level interactions.

Functions

• gint wbfmm_child_parent_shift (gdouble *Cp, gint Np, gdouble *Cc, gint Nc, gdouble *H03, gdouble *H47, gint Lh, gdouble *trans, gint Ls, gdouble *work)

Upward shift of singular expansion from eight children to common parent.

• gint wbfmm_parent_child_shift (gdouble *Cc, gint Nc, gdouble *Cp, gint Np, gdouble *H03, gdouble *H47, gint Lh, gdouble *trans, gint Ls, gdouble *work)

Downward shift of parent expansion to child box centres.

 $\bullet \ \ gint \ \textbf{wbfmm_shift_angles_list4} \ (gint \ i, \ gint \ j, \ gint \ k, \ gdouble \ *th, \ gdouble \ *ph, \ gdouble \ *ch, \ gdouble \ *rs)$

Extract the rotation angles for boxes on interaction list 4.

gint wbfmm_shift_angle_table_init (void)

Initialize table of angles for shift operations.

wbfmm_shift_operators_t * wbfmm_shift_operators_new (guint L, gdouble *work)

Allocate shift operators and initialize rotations.

• gint wbfmm_shift_operators_coaxial_SR_init (wbfmm_shift_operators_t *w, gdouble D, guint level, guint L, gdouble k, gdouble *work)

Initialize singular-to-regular translation operators.

 gint wbfmm_shift_operators_coaxial_SS_init (wbfmm_shift_operators_t *w, gdouble D, guint level, guint L, gdouble k, gdouble *work)

Initialize singular-to-singular (regular-to-regular) translation operators.

• gint wbfmm_child_parent_shift_f (gfloat *Cp, gint Np, gfloat *Cc, gint Nc, gfloat *H03, gfloat *H47, gint Lh, gfloat *trans, gint Ls, gfloat *work)

Upward shift of singular expansion from eight children to common parent.

• gint wbfmm_parent_child_shift_f (gfloat *Cc, gint Nc, gfloat *Cp, gint Np, gfloat *H03, gfloat *H47, gint Lh, gfloat *trans, gint Ls, gfloat *work)

Downward shift of parent expansion to child box centres.

• gint wbfmm shift angles list4 f (gint i, gint i, gint k, gfloat *th, gfloat *ph, gfloat *ch, gfloat *rs)

Extract the rotation angles for boxes on interaction list 4.

gint wbfmm_shift_angle_table_init_f (void)

Initialize table of angles for shift operations.

• wbfmm_shift_operators_t * wbfmm_shift_operators_new_f (guint L, gfloat *work)

Allocate shift operators and initialize rotations.

• gint wbfmm_shift_operators_coaxial_SR_init (wbfmm_shift_operators_t *w, gfloat D, guint level, guint L, gfloat k, gfloat *work)

Initialize singular-to-regular translation operators.

• gint wbfmm_shift_operators_coaxial_SS_init (wbfmm_shift_operators_t *w, gfloat D, guint level, guint L, gfloat k, gfloat *work)

Initialize singular-to-singular (regular-to-regular) translation operators.

5.2.1 Detailed Description

Shift operations (combined rotation and translation) for upward and downward passes, and same-level interactions.

5.2.2 Function Documentation

5.2.2.1 gint wbfmm_child_parent_shift (gdouble * *Cp*, gint *Np*, gdouble * *Cc*, gint *Nc*, gdouble * *H03*, gdouble * *H47*, gint *Lh*, gdouble * *trans*, gint *Ls*, gdouble * *work*)

Upward shift of singular expansion from eight children to common parent.

Shift the expansion of eight child boxes to their parent and sum into the parent expansion. This function assumes data are packed with a stride of eight elements so that all expansion coefficients of a given order are contiguous in memory, ordered by Morton index.

Parameters

Ср	parent expansion array;
Np	order of parent expansion;
Сс	child expansion array;
Nc	order of child expansions;
H03	rotation coefficients for 'lower' children (Morton index 0-3);
H47	rotation coefficients for 'upper' children (Morton index 4-7);
Lh	maximum order of rotation coefficients;
trans	coaxial translation operator for distance between child and parent box centres;
Ls	order of trans;
work	workspace

Returns

0 on success

5.2.2.2 gint wbfmm_child_parent_shift_f (gfloat * Cp, gint Np, gfloat * Cc, gint Nc, gfloat * H03, gfloat * H47, gint Lh, gfloat * trans, gint Ls, gfloat * work)

Upward shift of singular expansion from eight children to common parent.

Shift the expansion of eight child boxes to their parent and sum into the parent expansion. This function assumes data are packed with a stride of eight elements so that all expansion coefficients of a given order are contiguous in memory, ordered by Morton index.

Parameters

Ср	parent expansion array;
Np	order of parent expansion;
Cc	child expansion array;
Nc	order of child expansions;
H03	rotation coefficients for 'lower' children (Morton index 0-3);
H47	rotation coefficients for 'upper' children (Morton index 4-7);
Lh	maximum order of rotation coefficients;
trans	coaxial translation operator for distance between child and parent box centres;
Ls	order of trans;
work	workspace

Returns

0 on success

5.2.2.3 gint wbfmm_parent_child_shift (gdouble * Cc, gint Nc, gdouble * Cp, gint Np, gdouble * H03, gdouble * H47, gint Lh, gdouble * trans, gint Ls, gdouble * work)

Downward shift of parent expansion to child box centres.

5.2 Shift operations 23

Shift the (regular) expansion data from a parent box to each of its child boxes, assuming the same packing as in **wbfmm_child_parent_shift** (p. 22)(...). Note that the rotation matrices for this function are switched relative to the rotations of the same name in **wbfmm_child_parent_shift** (p. 22)(...), because the 'upper' children rotate 'down' to be shifted to the parent centre but the rotation is 'up' to shift from the parent to those children, and similarly for the 'lower' children.

Parameters

Сс	child expansion array;
Nc	order of child expansions;
Ср	parent expansion array;
Np	order of parent expansion;
H03	rotation coefficients for 'lower' children (Morton index 0-3);
H47	rotation coefficients for 'upper' children (Morton index 4-7);
Lh	maximum order of rotation coefficients;
trans	coaxial translation operator for distance between child and parent box centres;
Ls	order of trans;
work	workspace

Returns

0 on success

5.2.2.4 gint wbfmm_parent_child_shift_f (gfloat * Cc, gint Nc, gfloat * Cp, gint Np, gfloat * H03, gfloat * H47, gint Lh, gfloat * trans, gint Ls, gfloat * work)

Downward shift of parent expansion to child box centres.

Shift the (regular) expansion data from a parent box to each of its child boxes, assuming the same packing as in **wbfmm_child_parent_shift_f** (p. 22)(...). Note that the rotation matrices for this function are switched relative to the rotations of the same name in **wbfmm_child_parent_shift_f** (p. 22)(...), because the 'upper' children rotate 'down' to be shifted to the parent centre but the rotation is 'up' to shift from the parent to those children, and similarly for the 'lower' children.

Parameters

Сс	child expansion array;
Nc	order of child expansions;
Ср	parent expansion array;
Np	order of parent expansion;
H03	rotation coefficients for 'lower' children (Morton index 0-3);
H47	rotation coefficients for 'upper' children (Morton index 4-7);
Lh	maximum order of rotation coefficients;
trans	coaxial translation operator for distance between child and parent box centres;
Ls	order of trans;
work	workspace

Returns

0 on success

5.2.2.5 gint wbfmm_shift_angle_table_init (void)

Initialize table of angles for shift operations.

This function must be called before any interaction calculations are performed, in particular before any call to **wbfmm_shift_operators_new** (p. 27)(...), in order to initialize the look-up table of orientations between boxes in interaction lists.

Returns

0 on success

5.2.2.6 gint wbfmm_shift_angle_table_init_f (void)

Initialize table of angles for shift operations.

This function must be called before any interaction calculations are performed, in particular before any call to **wbfmm_shift_operators_new_f** (p. 27)(...), in order to initialize the look-up table of orientations between boxes in interaction lists.

Returns

0 on success

5.2.2.7 gint wbfmm_shift_angles_list4 (gint i, gint j, gint k, gdouble * th, gdouble * ph, gdouble * ch, gdouble * rs)

Extract the rotation angles for boxes on interaction list 4.

Find the rotation angles $(\theta, \phi \chi)$ between a box at integer coordinates (i, j, k), using a look-up table which should be initialized with **wbfmm_shift_angle_table_init** (p. 23)(...)

Parameters

i	integer x coordinate of box on interaction list;
j	integer y coordinate of box on interaction list;
k	integer z coordinate of box on interaction list;
th	heta for rotation between boxes;
ph	ϕ for rotation between boxes;
ch	χ for rotation between boxes;
rs	scaling factor for distance between box centres, distance is rs multiplied by box width.

Returns

0 on success

5.2.2.8 gint wbfmm_shift_angles_list4_f (gint i, gint j, gint k, gfloat * th, gfloat * ph, gfloat * ch, gfloat * rs)

Extract the rotation angles for boxes on interaction list 4.

Find the rotation angles $(\theta, \phi \chi)$ between a box at integer coordinates (i, j, k), using a look-up table which should be initialized with **wbfmm_shift_angle_table_init_f** (p. 24)(...)

Parameters

i	integer x coordinate of box on interaction list;
j	integer y coordinate of box on interaction list;
k	integer z coordinate of box on interaction list;
th	heta for rotation between boxes;
ph	ϕ for rotation between boxes;
ch	χ for rotation between boxes;
rs	scaling factor for distance between box centres, distance is rs multiplied by box width.

Returns

0 on success

5.2 Shift operations 25

5.2.2.9 gint wbfmm_shift_operators_coaxial_SR_init (wbfmm_shift_operators_t * w, gdouble D, guint level, guint L, gdouble * work)

Initialize singular-to-regular translation operators.

Parameters

W	a wbfmm_shift_operators_t (p. 71) allocated with wbfmm_shift_operators_new();
D	width of the problem domain;
level	level for which to generate translations;
L	order of translations;
k	wavenumber;
work	workspace

Returns

0 on success

5.2.2.10 gint wbfmm_shift_operators_coaxial_SR_init (wbfmm_shift_operators_t * w, gfloat D, guint level, guint L, gfloat * w, gfloat * work)

Initialize singular-to-regular translation operators.

Parameters

W	a wbfmm_shift_operators_t (p. 71) allocated with wbfmm_shift_operators_new_f();
D	width of the problem domain;
level	level for which to generate translations;
L	order of translations;
k	wavenumber;
work	workspace

Returns

0 on success

5.2.2.11 gint wbfmm_shift_operators_coaxial_SS_init (wbfmm_shift_operators_t * w, gdouble D, guint level, guint L, gdouble k, gdouble * work)

Initialize singular-to-singular (regular-to-regular) translation operators.

Parameters

W	a wbfmm_shift_operators_t (p. 71) allocated with wbfmm_shift_operators_new();
D	width of the problem domain;
level	level for which to generate translations;
L	order of translations;
k	wavenumber;
work	workspace

Returns

0 on success

5.2.2.12 gint wbfmm_shift_operators_coaxial_SS_init (wbfmm_shift_operators_t * w, gfloat D, guint level, guint L, gfloat * w gflo

Initialize singular-to-singular (regular-to-regular) translation operators.

5.2 Shift operations 27

Parameters

W	a wbfmm_shift_operators_t (p. 71) allocated with wbfmm_shift_operators_new_f();
D	width of the problem domain;
level	level for which to generate translations;
L	order of translations;
k	wavenumber;
work	workspace

Returns

0 on success

5.2.2.13 wbfmm_shift_operators_t* wbfmm_shift_operators_new (guint L, gdouble * work)

Allocate shift operators and initialize rotations.

Allocate a new **wbfmm_shift_operators_t** (p. 71) of given maximum order and initialize the rotation coefficients needed for same-level interaction calculations and upward and downward passes.

Parameters

L	maximum order of expansions;
work	workspace.

Returns

0 on success

5.2.2.14 wbfmm_shift_operators_t* wbfmm_shift_operators_new_f (guint L, gfloat * work)

Allocate shift operators and initialize rotations.

Allocate a new **wbfmm_shift_operators_t** (p. 71) of given maximum order and initialize the rotation coefficients needed for same-level interaction calculations and upward and downward passes.

Parameters

L	maximum order of expansions;
work	workspace.

Returns

0 on success

5.3 Generation and evaluation of expansions

Generation of regular and singular expansions and evaluation of them at field points.

Functions

• gint **wbfmm_expansion_h_cfft** (gdouble k, gint N, gdouble *x0, gdouble *xs, gdouble *q, gdouble *cfft, gint cstr, gdouble *work)

Generation of singular expansion coefficients for point source.

• gint **wbfmm_expansion_dipole_h_cfft** (gdouble k, gint N, gdouble *x0, gdouble *xs, gdouble *fx, gdouble *fx, gdouble *fx, gdouble *fx, gdouble *fx, gdouble *fx, gdouble *work)

Generation of singular expansion coefficients for point dipole source.

• gint **wbfmm_expansion_h_evaluate** (gdouble k, gdouble *x0, gdouble *cfft, gint cstr, gint N, gdouble *xf, gdouble *field, gdouble *work)

Evaluate a singular expansion.

• gint **wbfmm_expansion_j_evaluate** (gdouble k, gdouble *x0, gdouble *cfft, gint cstr, gint N, gdouble *xf, gdouble *field, gdouble *work)

Evaluate a regular expansion.

• gint wbfmm_expansion_h_cfft_f (gfloat k, gint N, gfloat *x0, gfloat *xs, gfloat *q, gfloat *cfft, gint cstr, gfloat *work)

Generation of singular expansion coefficients for point source.

• gint **wbfmm_expansion_dipole_h_cfft_f** (gfloat k, gint N, gfloat *x0, gfloat *xs, gfloat *fx, gfloat *fy, gfloat *fx, gfloat *stx, gfloat *fx, gfloat *stx, gfloat *fx, gfloat *stx, gflo

Generation of singular expansion coefficients for point dipole source.

gint wbfmm_expansion_h_evaluate_f (gfloat k, gfloat *x0, gfloat *cfft, gint cstr, gint N, gfloat *xf, gfloat *field, gfloat *work)

Evaluate a singular expansion.

• gint wbfmm_expansion_j_evaluate_f (gfloat k, gfloat *x0, gfloat *cfft, gint cstr, gint N, gfloat *xf, gfloat *field, gfloat *work)

Evaluate a regular expansion.

5.3.1 Detailed Description

Generation of regular and singular expansions and evaluation of them at field points.

The functions described here handle spherical harmonic expansions of complex variables, solutions of the Helmholtz equations. Expansions of real variables are dealt with in a separate set of functions, for the Laplace equation (**Evaluation of the Laplace potential** (p. 57)). The expansion coefficients are packed in single- or double-precision arrays with the index of coefficient C_n^m , $-n \le m \le n$ given by i = n(n+1) + m. Coefficients are represented as real and imaginary parts, so that the coefficient is given by array entries $C_{si+0} + jC_{si+1}$ where i is the index, s is a stride allowing interleaved packing of data, and C_n is an array entry.

5.3.2 Function Documentation

5.3.2.1 gint wbfmm_expansion_dipole_h_cfft (gdouble k, gint N, gdouble * x0, gdouble * xs, gdouble * tx, gdouble * tx

Generation of singular expansion coefficients for point dipole source.

Parameters

k	wavenumber;
N	order of expansion;
x0	centre of expansion;
XS	source position;
fx	component of complex source strength;
fy	component of complex source strength;
fz	component of complex source strength;
cfft	incremented with expansion coefficients;
cstr	stride in cfft, in number of complex elements;
work	workspace

Returns

0 on success

5.3.2.2 gint wbfmm_expansion_dipole_h_cfft_f (gfloat k, gint N, gfloat *x0, gfloat *xs, gf

Generation of singular expansion coefficients for point dipole source.

Parameters

k	wavenumber;
N	order of expansion;
x0	centre of expansion;
XS	source position;
fx	component of complex source strength;
fy	component of complex source strength;
fz	component of complex source strength;
cfft	incremented with expansion coefficients;
cstr	stride in cfft, in number of complex elements;
work	workspace

Returns

0 on success

5.3.2.3 gint wbfmm_expansion_h_cfft (gdouble k, gint N, gdouble * x0, gdouble * xs, gdouble * q, gdouble *

Generation of singular expansion coefficients for point source.

k	wavenumber;
N	order of expansion;
x0	centre of expansion;
XS	source position;
q	complex source strength;
cfft	incremented with expansion coefficients;

cstr	stride in cfft, in number of complex elements;
work	workspace

Returns

0 on success

5.3.2.4 gint wbfmm_expansion_h_cfft_f (gfloat k, gint N, gfloat * x0, gfloat * xs, gfloat * q, gfloat * cfft, gint cstr, gfloat * work)

Generation of singular expansion coefficients for point source.

Parameters

k	wavenumber;
N	order of expansion;
x0	centre of expansion;
XS	source position;
q	complex source strength;
cfft	incremented with expansion coefficients;
cstr	stride in cfft, in number of complex elements;
work	workspace

Returns

0 on success

5.3.2.5 gint wbfmm_expansion_h_evaluate (gdouble * x0, gdouble * x0, gdouble * cfft, gint cstr, gint N, gdouble * xf, gdouble *

Evaluate a singular expansion.

Parameters

k	wavenumber;
x0	centre of expansion;
cfft	expansion coefficients;
cstr	stride in cfft, in number of complex elements;
N	order of expansion;
xf	field point;
field	incremented with computed field;
work	workspace

Returns

0 on success

5.3.2.6 gint wbfmm_expansion_h_evaluate_f (gfloat k, gfloat *x0, g

Evaluate a singular expansion.

Parameters

k	wavenumber;
x0	centre of expansion;
cfft	expansion coefficients;
cstr	stride in cfft, in number of complex elements;
N	order of expansion;
xf	field point;
field	incremented with computed field;
work	workspace

Returns

0 on success

5.3.2.7 gint wbfmm_expansion_j_evaluate (gdouble * x0, gdouble * x0, gdouble * cfft, gint cstr, gint N, gdouble * xf, gdouble *

Evaluate a regular expansion.

Parameters

k	wavenumber;
x0	centre of expansion;
cfft	expansion coefficients;
cstr	stride in cfft, in number of complex elements;
N	order of expansion;
xf	field point;
field	incremented with computed field;
work	workspace

Returns

0 on success

5.3.2.8 gint wbfmm_expansion_j_evaluate_f (gfloat k, gfloat *x0, gfloat *xf, gint cstr, gint N, gfloat *xf, gfloat

Evaluate a regular expansion.

Parameters

k	wavenumber;
x0	centre of expansion;
cfft	expansion coefficients;
cstr	stride in cfft, in number of complex elements;
N	order of expansion;
xf	field point;
field	incremented with computed field;
work	workspace

Returns

5.4 Upward and downward passes

Upward and downward pass operations in octrees.

Functions

gint wbfmm_downward_pass (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gdouble *work)

Perform downward pass at one level of an octree.

- gint wbfmm_upward_pass (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gdouble *work)

 Perform upward pass at one level of an octree.
- gint wbfmm_laplace_downward_pass (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gdouble *work)

Perform downward pass at one level of an octree for the Laplace problem.

gint wbfmm_laplace_upward_pass (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gdouble *work)

Perform upward pass at one level of an octree for the Laplace problem.

• gint wbfmm_downward_pass_f (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gfloat *work)

Perform downward pass at one level of an octree.

- gint wbfmm_upward_pass_f (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gfloat *work)

 Perform upward pass at one level of an octree.
- gint wbfmm_laplace_downward_pass_f (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gfloat *work)

Perform downward pass at one level of an octree for the Laplace problem.

gint wbfmm_laplace_upward_pass_f (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gfloat *work)

Perform upward pass at one level of an octree for the Laplace problem.

5.4.1 Detailed Description

Upward and downward pass operations in octrees.

5.4.2 Function Documentation

5.4.2.1 gint wbfmm_downward_pass (wbfmm_tree_t * t, wbfmm_shift_operators_t * op, guint level, gdouble * work)

Perform downward pass at one level of an octree.

Perform one stage of a downward pass for tree levels greater than or equal to two. The actions performed are the evaluation of the list 4 contribution to the regular expansion and, for non-leaf boxes, a downward shift of the regular expansions to the child boxes at the next level.

t	an initialized octree which has had the upward pass performed;
ор	shift operators allocated for <i>t</i> ;
level	level at which to perform downward pass;

work	workspace
------	-----------

0 on success

5.4.2.2 gint wbfmm_downward_pass_f (wbfmm_tree_t * t, wbfmm_shift_operators_t * op, guint level, gfloat * work)

Perform downward pass at one level of an octree.

Perform one stage of a downward pass for tree levels greater than or equal to two. The actions performed are the evaluation of the list 4 contribution to the regular expansion and, for non-leaf boxes, a downward shift of the regular expansions to the child boxes at the next level.

Parameters

t	an initialized octree which has had the upward pass performed;
ор	shift operators allocated for <i>t</i> ;
level	level at which to perform downward pass;
work	workspace

Returns

0 on success

5.4.2.3 gint wbfmm_laplace_downward_pass (wbfmm_tree_t * t, wbfmm_shift_operators_t * op, guint level, gdouble * work)

Perform downward pass at one level of an octree for the Laplace problem.

Perform one stage of a downward pass for tree levels greater than or equal to two. The actions performed are the evaluation of the list 4 contribution to the regular expansion and, for non-leaf boxes, a downward shift of the regular expansions to the child boxes at the next level.

Parameters

t	an initialized octree which has had the upward pass performed;
ор	shift operators allocated for t;
level	level at which to perform downward pass;
work	workspace

Returns

0 on success

5.4.2.4 gint wbfmm_laplace_downward_pass_f (wbfmm_tree_t * t, wbfmm_shift_operators_t * op, guint level, gfloat * work)

Perform downward pass at one level of an octree for the Laplace problem.

Perform one stage of a downward pass for tree levels greater than or equal to two. The actions performed are the evaluation of the list 4 contribution to the regular expansion and, for non-leaf boxes, a downward shift of the regular expansions to the child boxes at the next level.

Parameters

t	an initialized octree which has had the upward pass performed;
ор	shift operators allocated for <i>t</i> ;
level	level at which to perform downward pass;
work	workspace

Returns

0 on success

5.4.2.5 gint wbfmm_laplace_upward_pass (wbfmm_tree_t * t, wbfmm_shift_operators_t * op, guint level, gdouble * work)

Perform upward pass at one level of an octree for the Laplace problem.

Perform one stage of the upward pass in an octree. The action performed is the upward shift of the singular expansions from boxes at level *level* to their parents.

Parameters

t	an initialized octree;
ор	shift operators allocated for <i>t</i> ;
level	level at which to perform upward pass;
work	workspace

Returns

0 on success

5.4.2.6 gint wbfmm_laplace_upward_pass_f (wbfmm_tree_t * t, wbfmm_shift_operators_t * op, guint level, gfloat * work)

Perform upward pass at one level of an octree for the Laplace problem.

Perform one stage of the upward pass in an octree. The action performed is the upward shift of the singular expansions from boxes at level *level* to their parents.

Parameters

t	an initialized octree;
ор	shift operators allocated for <i>t</i> ;
level	level at which to perform upward pass;
work	workspace

Returns

0 on success

5.4.2.7 gint wbfmm_upward_pass (wbfmm_tree_t * t, wbfmm_shift_operators_t * op, guint level, gdouble * work)

Perform upward pass at one level of an octree.

Perform one stage of the upward pass in an octree. The action performed is the upward shift of the singular expansions from boxes at level *level* to their parents.

Parameters

t	an initialized octree;
ор	shift operators allocated for <i>t</i> ;
level	level at which to perform upward pass;
work	workspace

Returns

0 on success

5.4.2.8 gint wbfmm_upward_pass_f (wbfmm_tree_t * t, wbfmm_shift_operators_t * op, guint level, gfloat * work)

Perform upward pass at one level of an octree.

Perform one stage of the upward pass in an octree. The action performed is the upward shift of the singular expansions from boxes at level *level* to their parents.

Parameters

t	an initialized octree;
ор	shift operators allocated for <i>t</i> ;
level	level at which to perform upward pass;
work	workspace

Returns

5.5 Rotation coefficients and operations

Computation and application of rotation operators.

Functions

• gint **wbfmm_rotation_angles** (gdouble *ix, gdouble *iy, gdouble *iz, gdouble *jx, gdouble *jy, gdouble *jx, gdouble *jx, gdouble *jx, gdouble *th, gdouble *ch)

Compute the rotation angles (θ, ϕ, χ) between axes.

gint wbfmm_coefficients_H_rotation (gdouble *H, gint N, gdouble th, gdouble *work)

Compute rotation coefficients for angle θ .

• gint **wbfmm_rotate_H** (gdouble *Co, gint cstro, gdouble *Ci, gint cstri, gint N, gdouble *H, gdouble ph, gdouble ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients.

• gint **wbfmm_laplace_rotate_H** (gdouble *Co, gint cstro, gdouble *Ci, gint cstri, gint N, gint nq, gdouble *H, gdouble ph, gdouble ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients for the Laplace problem.

• gint **wbfmm_rotation_angles_f** (gfloat *ix, gfloat *iy, gfloat *jx, gfloat *jx, gfloat *jy, gfloat *jx, gfloat *th, gfloat *ph, gfloat *ch)

Compute the rotation angles (θ, ϕ, χ) between axes.

• gint wbfmm_coefficients_H_rotation_f (gfloat *H, gint N, gfloat th, gfloat *work)

Compute rotation coefficients for angle θ .

- gint wbfmm_rotate_H_f (gfloat *Co, gint cstro, gfloat *Ci, gint cstri, gint N, gfloat *H, gfloat ph, gfloat ch)
 Apply rotation (θ, φ χ) to multipole coefficients.
- gint wbfmm_laplace_rotate_H_f (gfloat *Co, gint cstro, gfloat *Ci, gint cstri, gint N, gint nq, gfloat *H, gfloat ph, gfloat ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients for the Laplace problem.

5.5.1 Detailed Description

Computation and application of rotation operators.

Recursive computation of rotation coefficients using the methods of Gumerov and Duraiswami, $http://dx. \leftarrow doi.org/10.1137/S1064827501399705$

5.5.2 Function Documentation

5.5.2.1 gint wbfmm_coefficients_H_rotation (gdouble * H, gint N, gdouble th, gdouble * work)

Compute rotation coefficients for angle θ .

Generate the coefficients required to rotate one multipole expansion to a new orientation, using Gumerov and Duraiswami, Section 5, equation (5.48) and recursion (5.55). Coefficients H are real and densely packed on output.

Parameters

Н	on output rotation coefficients;
N	maximum order of coefficients to compute;
th	rotation angle θ , from wbfmm_rotation_angles (p. 39)();
work	workspace

Returns

5.5.2.2 gint wbfmm_coefficients_H_rotation_f (gfloat * H, gint N, gfloat th, gfloat * work)

Compute rotation coefficients for angle θ .

Generate the coefficients required to rotate one multipole expansion to a new orientation, using Gumerov and Duraiswami, Section 5, equation (5.48) and recursion (5.55). Coefficients *H* are real and densely packed on output.

Parameters

Н	on output rotation coefficients;
N	maximum order of coefficients to compute;
th	rotation angle θ , from wbfmm_rotation_angles_f (p. 39)();
work	workspace

Returns

0 on success

5.5.2.3 gint wbfmm_laplace_rotate_H (gdouble * Co, gint cstro, gdouble * Ci, gint cstri, gint N, gint nq, gdouble * H, gdouble ph, gdouble ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients for the Laplace problem.

Given the rotation coefficients H for angle θ from **wbfmm_coefficients_H_rotation** (p. 36)(...), rotate input coefficients to new system of axes, using H and angles ϕ and χ . Input and output are strided arrays of dense complex data with spacing between adjacent complex values given as cstri and cstro elements respectively. Thus, Co for example is packed as:

$$[\Re(C_{00}) \quad \Im(C_{00}) \dots (2 \times \mathsf{cstro}) \dots \Re(C_{0,-1}) \quad \Im(C_{0,-1})]$$

This stride system allows for packing data more conveniently for upward and downward passes in the FMM proper.

Parameters

Со	on output contains rotated coefficients;
cstro	stride in Co, in number of complex elements;
Ci	input coefficients, to be rotated;
cstri	stride in Ci, in number of complex elements;
N	maximum order of coefficients;
nq	number of source terms;
Н	rotation coefficients for angle θ , from wbfmm_coefficients_H_rotation (p. 36)();
ph	angle ϕ for rotation;
ch	angle χ for rotation.

Returns

0 on success

5.5.2.4 gint wbfmm_laplace_rotate_H_f (gfloat * Co, gint cstro, gfloat * Ci, gint cstri, gint N, gint nq, gfloat * H, gfloat ph, gfloat ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients for the Laplace problem.

Given the rotation coefficients H for angle θ from **wbfmm_coefficients_H_rotation_f** (p. 37)(...), rotate input coefficients to new system of axes, using H and angles ϕ and χ . Input and output are strided arrays of dense complex data with spacing between adjacent complex values given as cstri and cstro elements respectively. Thus, Co for example is packed as:

$$[\Re(C_{00}) \quad \Im(C_{00}) \dots (2 \times \mathsf{cstro}) \dots \Re(C_{0,-1}) \quad \Im(C_{0,-1})]$$

This stride system allows for packing data more conveniently for upward and downward passes in the FMM proper.

Parameters

Со	on output contains rotated coefficients;
cstro	stride in <i>Co</i> , in number of complex elements;
Ci	input coefficients, to be rotated;
cstri	stride in Ci, in number of complex elements;
N	maximum order of coefficients;
nq	number of source terms;
Н	rotation coefficients for angle θ , from wbfmm_coefficients_H_rotation_f (p. 37)();
ph	angle ϕ for rotation;
ch	angle χ for rotation.

Returns

0 on success

5.5.2.5 gint wbfmm_rotate_H (gdouble * Co, gint cstro, gdouble * Ci, gint cstri, gint N, gdouble * H, gdouble ph, gdouble ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients.

Given the rotation coefficients H for angle θ from **wbfmm_coefficients_H_rotation** (p. 36)(...), rotate input coefficients to new system of axes, using H and angles ϕ and χ . Input and output are strided arrays of dense complex data with spacing between adjacent complex values given as cstri and cstro elements respectively. Thus, Co for example is packed as:

$$[\Re(C_{00}) \ \Im(C_{00}) \dots (2 \times \mathsf{cstro}) \dots \Re(C_{0,-1}) \ \Im(C_{0,-1})]$$

This stride system allows for packing data more conveniently for upward and downward passes in the FMM proper.

The function is available as a reference version wbfmm_rotate_H_ref(...) and an optimized version wbfmm_rotate ← _H_avx(...) which uses AVX optimizations if available. The compile time switch -DWBFMM_USE_AVX selects the AVX version.

Parameters

Со	on output contains rotated coefficients;
cstro	stride in Co, in number of complex elements;
Ci	input coefficients, to be rotated;
cstri	stride in Ci, in number of complex elements;
N	maximum order of coefficients;
Н	rotation coefficients for angle θ , from wbfmm_coefficients_H_rotation (p. 36)();
ph	angle ϕ for rotation;
ch	angle χ for rotation.

Returns

0 on success

5.5.2.6 gint wbfmm_rotate_H_f (gfloat * Co, gint cstro, gfloat * Ci, gint cstri, gint N, gfloat * H, gfloat ph, gfloat ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients.

Given the rotation coefficients H for angle θ from **wbfmm_coefficients_H_rotation_f** (p. 37)(...), rotate input coefficients to new system of axes, using H and angles ϕ and χ . Input and output are strided arrays of dense complex data with spacing between adjacent complex values given as cstri and cstro elements respectively. Thus, Co for example is packed as:

$$[\Re(C_{00}) \quad \Im(C_{00}) \dots (2 \times \mathsf{cstro}) \dots \Re(C_{0,-1}) \quad \Im(C_{0,-1})]$$

This stride system allows for packing data more conveniently for upward and downward passes in the FMM proper.

The function is available as a reference version wbfmm_rotate_H_ref_f(...) and an optimized version wbfmm← _rotate_H_avx_f(...) which uses AVX optimizations if available. The compile time switch -DWBFMM_USE_AVX selects the AVX version.

Parameters

Со	on output contains rotated coefficients;
cstro	stride in Co, in number of complex elements;
Ci	input coefficients, to be rotated;
cstri	stride in Ci, in number of complex elements;
N	maximum order of coefficients;
Н	rotation coefficients for angle θ , from wbfmm_coefficients_H_rotation_f (p. 37)();
ph	angle ϕ for rotation;
ch	angle χ for rotation.

Returns

0 on success

5.5.2.7 gint wbfmm_rotation_angles (gdouble * ix, gdouble * iy, gdouble * ix, gdouble *

Compute the rotation angles (θ, ϕ, χ) between axes.

Compute the angles for rotation between two systems of axes $(\mathbf{i}_x, \mathbf{i}_y, \mathbf{i}_z)$ and $(\mathbf{j}_x, \mathbf{j}_y, \mathbf{j}_z)$, as defined in Section 5 of Gumerov and Duraiswami. All vectors should be unit length and form a right-handed coordinate system (no check is performed).

Parameters

ix	initial coordinate system x axis;
iy	initial coordinate system y axis;
iz	initial coordinate system z axis;
jx	rotated coordinate system x axis;
jу	rotated coordinate system y axis;
jz	rotated coordinate system z axis;
th	on exit, θ for rotation;
ph	on exit, ϕ for rotation;
ch	on exit, χ for rotation.

Returns

0 on success

5.5.2.8 gint wbfmm_rotation_angles_f (gfloat * ix, gfloat * iy, gfloat * iz, gfloat * jx, gfloa

Compute the rotation angles (θ, ϕ, χ) between axes.

Compute the angles for rotation between two systems of axes $(\mathbf{i}_x, \mathbf{i}_y, \mathbf{i}_z)$ and $(\mathbf{j}_x, \mathbf{j}_y, \mathbf{j}_z)$, as defined in Section 5 of Gumerov and Duraiswami. All vectors should be unit length and form a right-handed coordinate system (no check is performed).

Parameters

ix	initial coordinate system x axis;
iy	initial coordinate system y axis;
iz	initial coordinate system z axis;
jx	rotated coordinate system x axis;
jу	rotated coordinate system y axis;
jz	rotated coordinate system z axis;
th	on exit, θ for rotation;
ph	on exit, ϕ for rotation;
ch	on exit, χ for rotation.

Returns

5.6 Translation operators

Translation of expansions.

Functions

• gint wbfmm_coefficients_SR_coaxial (gdouble *cfftSR, gint L, gdouble kr, gdouble *work)

Generate coefficients for coaxial singular-to-regular translation.

• gint wbfmm_coaxial_translate (gdouble *Co, gint cstro, gint No, gdouble *Ci, gint cstri, gint Ni, gdouble *cfft, gint L, gboolean complex)

Perform coaxial translation of multipole expansion.

• gint wbfmm_coefficients_SR_coaxial_f (gfloat *cfftSR, gint L, gfloat kr, gfloat *work)

Generate coefficients for coaxial singular-to-regular translation.

• gint wbfmm_coaxial_translate_f (gfloat *Co, gint cstro, gint No, gfloat *Ci, gint cstri, gint Ni, gfloat *cfft, gint L, gboolean complex)

Perform coaxial translation of multipole expansion.

• gint wbfmm_coefficients_RR_coaxial (gdouble *cfftRR, gint L, gdouble kr, gdouble *work)

Generate coefficients for coaxial regular-to-regular translation.

• gint wbfmm_coefficients_RR_coaxial_f (gfloat *cfftRR, gint L, gfloat kr, gfloat *work)

Generate coefficients for coaxial regular-to-regular translation.

5.6.1 Detailed Description

Translation of expansions.

5.6.2 Function Documentation

5.6.2.1 gint wbfmm_coaxial_translate (gdouble * Co, gint cstro, gint No, gdouble * Ci, gint cstri, gint Ni, gdouble * cfft, gint L, gboolean complex)

Perform coaxial translation of multipole expansion.

Compute the coaxial translation of a multipole expansion along its z axis, using coefficients from **wbfmm** $_{\leftarrow}$ **coefficients_SR_coaxial** (p. 43)(...) (complex) or **wbfmm_coefficients_RR_coaxial** (p. 42)(...) (real). Input and output coefficients are strided data as described for **wbfmm_rotate** \mathbf{H} (p. 38)(...).

Parameters

Со	on output contains translated multipole expansion;
cstro	stride for output data in number of complex elements;
No	order of output expansion;
Ci	input multipole expansion;
cstri	stride for input data in number of complex elements;
Ni	order of input expansion;
cfft	translation coefficients;
L	maximum order of translation coefficients;
complex	if TRUE treat cfft as complex (e.g. for singular-to-regular translation); if FALSE treat as real
	(e.g. regular-to-regular or singular-to-singular).

Returns

5.6.2.2 gint wbfmm_coaxial_translate_f (gfloat * Co, gint cstro, gint No, gfloat * Ci, gint cstri, gint Ni, gfloat * cfft, gint L, gboolean complex)

Perform coaxial translation of multipole expansion.

Compute the coaxial translation of a multipole expansion along its z axis, using coefficients from **wbfmm** $_{\leftarrow}$ **coefficients_SR_coaxial_f** (p. 43)(...) (complex) or **wbfmm_coefficients_RR_coaxial_f** (p. 42)(...) (real). Input and output coefficients are strided data as described for **wbfmm_rotate_H_f** (p. 38)(...).

Parameters

Со	on output contains translated multipole expansion;
cstro	stride for output data in number of complex elements;
No	order of output expansion;
Ci	input multipole expansion;
cstri	stride for input data in number of complex elements;
Ni	order of input expansion;
cfft	translation coefficients;
L	maximum order of translation coefficients;
complex	if TRUE treat cfft as complex (e.g. for singular-to-regular translation); if FALSE treat as real
	(e.g. regular-to-regular or singular-to-singular).

Returns

0 on success

5.6.2.3 gint wbfmm_coefficients_RR_coaxial (gdouble * cfftRR, gint L, gdouble kr, gdouble * work)

Generate coefficients for coaxial regular-to-regular translation.

Generate translation coefficients for a regular-to-regular coaxial shift along the z axis of the local coordinate system, by distance r for wavenumber k, using the methods of Section 4.8 of Gumerov and Duraiswami. The regular-to-regular translation coefficients are identical to the singular-to-singular coefficients and are real.

Parameters

cfftRR	on output contains (real) translation coefficients;
L	maximum order of multipole expansion to be translated;
kr	coaxial translation parameter (wavenumber times distance);
work	workspace

Returns

0 on success

5.6.2.4 gint wbfmm_coefficients_RR_coaxial_f (gfloat * cfftRR, gint L, gfloat *r, gfloat * work)

Generate coefficients for coaxial regular-to-regular translation.

Generate translation coefficients for a regular-to-regular coaxial shift along the z axis of the local coordinate system, by distance r for wavenumber k, using the methods of Section 4.8 of Gumerov and Duraiswami. The regular-to-regular translation coefficients are identical to the singular-to-singular coefficients and are real.

cfftRR	on output contains (real) translation coefficients;
L	maximum order of multipole expansion to be translated;
kr	coaxial translation parameter (wavenumber times distance);
work	workspace

0 on success

5.6.2.5 gint wbfmm_coefficients_SR_coaxial (gdouble * cfftSR, gint L, gdouble *kr, gdouble * work)

Generate coefficients for coaxial singular-to-regular translation.

Generate translation coefficients for a singular-to-regular coaxial shift along the z axis of the local coordinate system, by distance r for wavenumber k, using the methods of Section 4.8 of Gumerov and Duraiswami. The output coefficients are complex.

Parameters

	cfftSR	on output contains (complex) translation coefficients;
ĺ	L	maximum order of multipole expansion to be translated;
ſ	kr	coaxial translation parameter (wavenumber times distance);
ĺ	work	workspace

Returns

0 on success

5.6.2.6 gint wbfmm_coefficients_SR_coaxial_f (gfloat * cfftSR, gint L, gfloat * w ork)

Generate coefficients for coaxial singular-to-regular translation.

Generate translation coefficients for a singular-to-regular coaxial shift along the z axis of the local coordinate system, by distance r for wavenumber k, using the methods of Section 4.8 of Gumerov and Duraiswami. The output coefficients are complex.

Parameters

cfftSR	on output contains (complex) translation coefficients;
L	maximum order of multipole expansion to be translated;
kr	coaxial translation parameter (wavenumber times distance);
work	workspace

Returns

5.7 Utility and convenience functions

Various functions of use in debugging or underlying utilities.

Functions

• gint **wbfmm_cartesian_to_spherical** (gdouble *x0, gdouble *x, gdouble *r, gdouble *th, gdouble *ph) Convert Cartesian to spherical coordinates (r, θ, ϕ) .

• gint wbfmm_legendre_recursion_array (gdouble **Pnm1, gdouble **Pn, gint n, gdouble C, gdouble S)

Perform recursion on normalized associated Legendre functions.

• gint wbfmm_legendre_init (gdouble C, gdouble S, gdouble *P0, gdouble *P10, gdouble *P11)

Initialize normalized associated Legendre functions.

• gint wbfmm_bessel_j_recursion (gdouble *jnm1, gdouble *jn, gdouble x, gint n)

Perform recursion on spherical Bessel function $j_n(x)$.

gint wbfmm_bessel_j_init (gdouble x, gdouble *j0, gdouble *j1)

Initialize the spherical Bessel function recursion.

• gint **wbfmm bessel h init** (gdouble x, gdouble *h0, gdouble *h1)

Initialize spherical Hankel function recursion.

• gint wbfmm bessel h recursion (gdouble *hnm1, gdouble *hn, gdouble x, gint n)

Perform one step of spherical Hankel recursion.

gint wbfmm_total_dipole_field (gdouble k, gdouble *xs, gint xstride, gdouble *src, gint sstride, gint nsrc, gdouble *xf, gdouble *field)

Compute total field from dipole sources by direct evaluation.

• gint **wbfmm_total_field** (gdouble k, gdouble *xs, gint xstride, gdouble *src, gint sstride, gint nsrc, gdouble *xf, gdouble *field)

Compute total field by direct evaluation.

• gint wbfmm_coordinate_transform (gdouble *x, gdouble *ix, gdouble *iy, gdouble *iz, gdouble *y)

Transform coordinates to rotated axes.

- gint **wbfmm_shift_coordinates** (gdouble *x, gdouble *y, gdouble *ix, gdouble *iy, gdouble *iz, gdouble *r) Find system of axes for coordinate shift.
- gint wbfmm_box_location_from_index (guint64 idx, guint32 level, gdouble *x0, gdouble D, gdouble *x, gdouble *wb)

Find the coordinates of a box from its Morton index.

- gint wbfmm_tree_box_centre (wbfmm_tree_t *t, guint32 level, guint64 b, gdouble *xb, gdouble *wb)

 Find centre and width of box in an octree.
- gint **wbfmm_points_origin_width** (gdouble *x, gint str, gint n, gdouble *xmin, gdouble *D, gboolean init_← limits)

Find limits of a cube containing a set of points.

- gint **wbfmm_shift_angles** (gdouble *xi, gdouble *xj, gdouble *th, gdouble *ph, gdouble *ch, gdouble *r)

 Compute angles and distance to shift expansion between two points.
- gint wbfmm_tree_write_sources (wbfmm_tree_t *t, gdouble *q, gint stride, FILE *f)

Write a tree source list to file.

gint wbfmm_cartesian_to_spherical_f (gfloat *x0, gfloat *x, gfloat *r, gfloat *th, gfloat *ph)

Convert Cartesian to spherical coordinates (r, θ, ϕ) .

• gint wbfmm legendre recursion array f (gfloat **Pnm1, gfloat **Pn, gint n, gfloat C, gfloat S)

Perform recursion on normalized associated Legendre functions.

• gint wbfmm_legendre_init_f (gfloat C, gfloat S, gfloat *P0, gfloat *P10, gfloat *P11)

Initialize normalized associated Legendre functions.

• gint wbfmm bessel j recursion f (gfloat *jnm1, gfloat *jn, gfloat x, gint n)

Perform recursion on spherical Bessel function $j_n(x)$.

• gint **wbfmm_bessel_j_init_f** (gfloat x, gfloat *j0, gfloat *j1)

Initialize the spherical Bessel function recursion.

• gint wbfmm_bessel_h_init_f (gfloat x, gfloat *h0, gfloat *h1)

Initialize spherical Hankel function recursion.

• gint wbfmm_bessel_h_recursion_f (gfloat *hnm1, gfloat *hn, gfloat x, gint n)

Perform one step of spherical Hankel recursion.

• gint **wbfmm_total_dipole_field_f** (gfloat k, gfloat *xs, gint xstride, gfloat *src, gint sstride, gint nsrc, gfloat *xf, gfloat *field)

Compute total field from dipole sources by direct evaluation.

• gint wbfmm_total_field_f (gfloat k, gfloat *xs, gint xstride, gfloat *src, gint sstride, gint nsrc, gfloat *xf, gfloat *field)

Compute total field by direct evaluation.

• gint wbfmm_coordinate_transform_f (gfloat *x, gfloat *ix, gfloat *iy, gfloat *iz, gfloat *y)

Transform coordinates to rotated axes.

• gint wbfmm_shift_coordinates_f (gfloat *x, gfloat *y, gfloat *ix, gfloat *ix, gfloat *ix, gfloat *r)

Find system of axes for coordinate shift.

• gint wbfmm_box_location_from_index_f (guint64 idx, guint32 level, gfloat *x0, gfloat D, gfloat *x, gfloat *wb)

Find the coordinates of a box from its Morton index.

• gint wbfmm_tree_box_centre_f (wbfmm_tree_t *t, guint32 level, guint64 b, gfloat *xb, gfloat *wb)

Find centre and width of box in an octree.

- gint wbfmm_points_origin_width_f (gfloat *x, gint str, gint n, gfloat *xmin, gfloat *D, gboolean init_limits)

 Find limits of a cube containing a set of points.
- gint wbfmm_shift_angles_f (gfloat *xi, gfloat *xj, gfloat *th, gfloat *ph, gfloat *ch, gfloat *r)

Compute angles and distance to shift expansion between two points.

gint wbfmm_tree_write_sources_f (wbfmm_tree_t *t, gfloat *q, gint stride, FILE *f)

Write a tree source list to file.

5.7.1 Detailed Description

Various functions of use in debugging or underlying utilities.

5.7.2 Function Documentation

5.7.2.1 gint wbfmm_bessel_h_init (gdouble x, gdouble *h0, gdouble *h1)

Initialize spherical Hankel function recursion.

Parameters

X	argument of $h_n(x)$;
h0	on exit $h_0(x)$;
h1	on exit $h_1(x)$

Returns

0 on success

5.7.2.2 gint wbfmm_bessel_h_init_f (gfloat x, gfloat * h0, gfloat * h1)

Initialize spherical Hankel function recursion.

Parameters

X	argument of $h_n(x)$;
h0	on exit $h_0(x)$;
h1	on exit $h_1(x)$

Returns

0 on success

5.7.2.3 gint wbfmm_bessel_h_recursion (gdouble *hnm1, gdouble *hn, gdouble x, gint n)

Perform one step of spherical Hankel recursion.

Perform one step of the spherical Hankel function recursion. On entry hnm1 and hnm contain $h_{n-1}(x)$ and $h_n(x)$ respectively. On exit they contain equivalent values but for n incremented by one. When x falls below a small order-dependent cutoff, where the recursion is unreliable, $h_n(x)$ is computed directly using a power series.

Parameters

hnm1	$h_{n-1}(x)$;
hn	$h_n(x)$;
X	argument of spherical Hankel function;
n	order of spherical Hankel function

Returns

0 on success

5.7.2.4 gint wbfmm_bessel_h_recursion_f (gfloat * hnm1, gfloat * hn, gfloat x, gint n)

Perform one step of spherical Hankel recursion.

Perform one step of the spherical Hankel function recursion. On entry hnm1 and hnm contain $h_{n-1}(x)$ and $h_n(x)$ respectively. On exit they contain equivalent values but for n incremented by one. When x falls below a small order-dependent cutoff, where the recursion is unreliable, $h_n(x)$ is computed directly using a power series.

Parameters

hnm1	$h_{n-1}(x);$
hn	$h_n(x)$;
X	argument of spherical Hankel function;
n	order of spherical Hankel function

Returns

0 on success

5.7.2.5 gint wbfmm_bessel_j_init (gdouble x, gdouble *j0, gdouble *j1)

Initialize the spherical Bessel function recursion.

Parameters

Χ	argument of $j_n(x)$;
j0	on exit $j_0(x)$;
j1	on exit $j_1(x)$

Returns

0 on success

5.7.2.6 gint wbfmm_bessel_j_init_f (gfloat x, gfloat *j0, gfloat *j1)

Initialize the spherical Bessel function recursion.

Parameters

X	argument of $j_n(x)$;
j0	on exit $j_0(x)$;
j1	on exit $j_1(x)$

Returns

0 on success

5.7.2.7 gint wbfmm_bessel_j_recursion (gdouble * jnm1, gdouble * jn, gdouble x, gint n)

Perform recursion on spherical Bessel function $j_n(x)$.

Perform one step of the spherical Bessel function recursion. On entry jnm1 and jnm contain $j_{n-1}(x)$ and $j_n(x)$ respectively. On exit they contain equivalent values but for n incremented by one. When x falls below a small order-dependent cutoff, where the recursion is unreliable, $j_n(x)$ is computed directly using a power series.

Parameters

jnm1	$j_{n-1}(x);$
jn	$j_n(x)$;
X	argument of spherical Bessel function;
n	order of spherical Bessel function

Returns

0 on success

5.7.2.8 gint wbfmm_bessel_j_recursion_f (gfloat * jnm1, gfloat * jn, gfloat x, gint n)

Perform recursion on spherical Bessel function $j_n(x)$.

Perform one step of the spherical Bessel function recursion. On entry jnm1 and jnm contain $j_{n-1}(x)$ and $j_n(x)$ respectively. On exit they contain equivalent values but for n incremented by one. When x falls below a small order-dependent cutoff, where the recursion is unreliable, $j_n(x)$ is computed directly using a power series.

jnm1	$j_{n-1}(x);$
jn	$j_n(x)$;
X	argument of spherical Bessel function;
n	order of spherical Bessel function

Returns

0 on success

5.7.2.9 gint wbfmm_box_location_from_index (guint64 idx, guint32 level, gdouble * x0, gdouble * x0, gdouble * x, gdouble * wb)

Find the coordinates of a box from its Morton index.

Parameters

idx	Morton index of box;
level	level in octree of box;
x0	origin of top-level box;
D	width of top-level box;
X	coordinates of box idx at level level;
wb	width of box at level level

Returns

0 on success

5.7.2.10 gint wbfmm_box_location_from_index_f (guint64 idx, guint32 level, gfloat * x0, gfloat * x, g

Find the coordinates of a box from its Morton index.

Parameters

idx	Morton index of box;
level	level in octree of box;
х0	origin of top-level box;
D	width of top-level box;
X	coordinates of box idx at level level;
wb	width of box at level level

Returns

0 on success

5.7.2.11 gint wbfmm_cartesian_to_spherical (gdouble * x0, gdouble * x, gdouble * y, gdou

Convert Cartesian to spherical coordinates (r, θ, ϕ) .

х0	centre of coordinate system;

X	point whose coordinates are to be found;
r	$\mid r;$
th	θ ;
ph	ϕ

0 on success

5.7.2.12 gint wbfmm_cartesian_to_spherical_f (gfloat * x0, gfloat * x, gfloat * r, gfloat * th, gfloat * ph)

Convert Cartesian to spherical coordinates (r,θ,ϕ) .

Parameters

х0	centre of coordinate system;
X	point whose coordinates are to be found;
r	r;
th	θ ;
ph	ϕ

Returns

0 on success

5.7.2.13 gint wbfmm_coordinate_transform (gdouble * x, gdouble * ix, gdouble * iy, gdouble * iz, gdouble * y)

Transform coordinates to rotated axes.

Parameters

	point coordinates in original axes;	
i	unit vector in new axes;	
iy	unit vector in new axes;	
iz	unit vector in new axes;	
J	point coordinates in new axes	

Returns

0 on success

5.7.2.14 gint wbfmm_coordinate_transform_f (gfloat * x, gfloat * ix, gfloat * iy, gfloat * iz, gfloat * y)

Transform coordinates to rotated axes.

X	point coordinates in original axes;
ix	unit vector in new axes;
iy	unit vector in new axes;
iz	unit vector in new axes;

y point coordinates in new axes

Returns

0 on success

5.7.2.15 gint wbfmm_legendre_init (gdouble C, gdouble S, gdouble P0, gdouble P10, gdouble P11)

Initialize normalized associated Legendre functions.

Parameters

С	$\cos \theta$;
S	$\sin \theta$;
	on output $P_1^0(\cos \theta)$;
P11	on output $P_1^1(\cos\theta)$;

Returns

0 on success

5.7.2.16 gint wbfmm_legendre_init_f (gfloat C, gfloat S, gfloat P0, gfloat P10, gfloat P11)

Initialize normalized associated Legendre functions.

Parameters

С	$\cos \theta$;
S	$\sin \theta$;
	on output $P_0^0(\cos heta)$;
	on output $P_1^0(\cos heta)$;
P11	on output $P_1^1(\cos\theta)$;

Returns

0 on success

5.7.2.17 gint wbfmm_legendre_recursion_array (gdouble ** Pnm1, gdouble ** Pn, gint n, gdouble C, gdouble S)

Perform recursion on normalized associated Legendre functions.

Perform recursion on normalized associated Legendre functions with input $P_{n-1}^m(\cos\theta),\ 0\le m\le n-1$, and $P_n^m(\cos\theta),\ 0\le m\le n$, generating equivalent outputs with n incremented by one. Note that the arrays of associated Legendre functions are switched internally to ensure that the ordering remains correct after the recursion step.

Pnm1	pointer to array of normalized associated Legendre functions for $n-1$;
Pn	pointer to array of normalized associated Legendre functions for n ;
n	order of <i>Pn</i> ;

С	$\cos \theta$;
S	$\sin \theta$;

0 on success

5.7.2.18 gint wbfmm_legendre_recursion_array_f (gfloat ** Pnm1, gfloat ** Pn, gint n, gfloat C, gfloat S)

Perform recursion on normalized associated Legendre functions.

Perform recursion on normalized associated Legendre functions with input $P_{n-1}^m(\cos\theta),\ 0\le m\le n-1$, and $P_n^m(\cos\theta),\ 0\le m\le n$, generating equivalent outputs with n incremented by one. Note that the arrays of associated Legendre functions are switched internally to ensure that the ordering remains correct after the recursion step.

Parameters

Pnm1	pointer to array of normalized associated Legendre functions for $n-1$;
Pn	pointer to array of normalized associated Legendre functions for n ;
n	order of <i>Pn</i> ;
С	$\cos \theta$;
S	$\sin \theta$;

Returns

0 on success

5.7.2.19 gint wbfmm_points_origin_width (gdouble * x, gint str, gint n, gdouble * xmin, gdouble * D, gboolean init_limits)

Find limits of a cube containing a set of points.

Parameters

X	array of points coordinates;
str	stride of points in x;
n	number of points in x;
xmin	origin of cube containing all points in x;
D	width of cube containing all points in x;
init_limits	if TRUE initialize limits overwriting any data in xmin

Returns

0 on success

5.7.2.20 gint wbfmm_points_origin_width_f (gfloat * x, gint str, gint n, gfloat * xmin, gfloat * D, gboolean init_limits)

Find limits of a cube containing a set of points.

X	array of points coordinates;

str	stride of points in x;
n	number of points in <i>x</i> ;
xmin	origin of cube containing all points in x;
D	width of cube containing all points in x;
init_limits	if TRUE initialize limits overwriting any data in xmin

Returns

0 on success

5.7.2.21 gint wbfmm_shift_angles (gdouble *xi, gdouble *xi, gdouble *th, gdouble *th,

Compute angles and distance to shift expansion between two points.

This is a combination of a call to **wbfmm_shift_coordinates** (p. 52)(...) and **wbfmm_rotation_angles** (p. 39)(...)

Parameters

xi	origin of shift;
xj	destination of shift;
th	heta for shift;
ph	ϕ for shift;
ch	χ for shift;
r	distance between source and destination points

Returns

0 on success

5.7.2.22 gint wbfmm_shift_angles_f (gfloat * xi, gfloat * xj, gfloat * th, gfloat * ph, gfloat * ch, gfloat * r)

Compute angles and distance to shift expansion between two points.

This is a combination of a call to $wbfmm_shift_coordinates_f$ (p. 53)(...) and $wbfmm_rotation_angles_ \leftarrow f$ (p. 39)(...)

Parameters

xi	origin of shift;
xj	destination of shift;
th	heta for shift;
ph	ϕ for shift;
ch	χ for shift;
r	distance between source and destination points

Returns

0 on success

5.7.2.23 gint wbfmm_shift_coordinates (gdouble * x, gdouble * y, gdouble * ix, gdouble

Find system of axes for coordinate shift.

Parameters

X	origin of shift;
У	point to shift to;
ix	on output unit vector of shift axes;
iy	on output unit vector of shift axes;
iz	on output unit vector of shift axes in direction of shift;
r	distance between two input points

Returns

0 on success

5.7.2.24 gint wbfmm_shift_coordinates_f (gfloat * x, gfloat * y, gfloat * ix, gfloat * iy, gfloat * iv, gfloat *

Find system of axes for coordinate shift.

Parameters

X	origin of shift;
у	point to shift to;
ix	on output unit vector of shift axes;
iy	on output unit vector of shift axes;
iz	on output unit vector of shift axes in direction of shift;
r	distance between two input points

Returns

0 on success

5.7.2.25 gint wbfmm_total_dipole_field (gdouble * xs, gint xstride, gdouble * src, gint sstride, gint nsrc, gdouble * xf, gdouble * field)

Compute total field from dipole sources by direct evaluation.

Evaluate the field at some point \mathbf{x} by direct evaluation of the sum over sources at $\mathbf{x}_n \sum_{n=1}^N \mathbf{f}_n \cdot \nabla h_0(\mathbf{x} - \mathbf{x}_n) / 4\pi$.

Parameters

k	wavenumber;
XS	array of source positions;
xstride	stride in xs between source positions;
src	array of complex vector source strengths;
sstride	stride in <i>src</i> ;
nsrc	number of sources;
xf	point for field evaluation;
field	incremented with computed field

Returns

0 on success

5.7.2.26 gint wbfmm_total_dipole_field_f (gfloat k, gfloat * xs, gint xstride, gfloat * src, gint sstride, gint nsrc, gfloat * xf, gfloat * field)

Compute total field from dipole sources by direct evaluation.

Evaluate the field at some point \mathbf{x} by direct evaluation of the sum over sources at $\mathbf{x}_n \sum_{n=1}^N \mathbf{f}_n \cdot \nabla h_0(\mathbf{x} - \mathbf{x}_n) / 4\pi$.

Parameters

k	wavenumber;
XS	array of source positions;
xstride	stride in xs between source positions;
src	array of complex vector source strengths;
sstride	stride in <i>src</i> ;
nsrc	number of sources;
xf	point for field evaluation;
field	incremented with computed field

Returns

0 on success

5.7.2.27 gint wbfmm_total_field (gdouble * xs, gint xstride, gdouble * src, gint sstride, gint nsrc, gdouble * xf, gdouble * field)

Compute total field by direct evaluation.

Evaluate the field at some point \mathbf{x} by direct evaluation of the sum over sources at $\mathbf{x}_n \sum_{n=1}^N s_n h_0(\mathbf{x} - \mathbf{x}_n)/4\pi$.

Parameters

k	wavenumber;
XS	array of source positions;
xstride	stride in xs between source positions;
src	array of complex scalar source strengths;
sstride	stride in <i>src</i> ;
nsrc	number of sources;
xf	point for field evaluation;
field	incremented with computed field

Returns

0 on success

5.7.2.28 gint wbfmm_total_field_f (gfloat k, gfloat * xs, gint xstride, gfloat * src, gint sstride, gint nsrc, gfloat * field)

Compute total field by direct evaluation.

Evaluate the field at some point \mathbf{x} by direct evaluation of the sum over sources at $\mathbf{x}_n \sum_{n=1}^N s_n h_0(\mathbf{x} - \mathbf{x}_n)/4\pi$.

k	wavenumber;
XS	array of source positions;
xstride	stride in xs between source positions;
src	array of complex scalar source strengths;
sstride	stride in <i>src</i> ;
nsrc	number of sources;
xf	point for field evaluation;

field	incremented with computed field

0 on success

5.7.2.29 gint wbfmm_tree_box_centre (wbfmm_tree_t * t, guint32 level, guint64 b, gdouble * xb, gdouble * wb)

Find centre and width of box in an octree.

Parameters

t	an octree;
level	level inside <i>t</i> ;
b	Morton index of box at level <i>level</i> ;
xb	centre of box with index b at level level;
wb	width of box at level <i>level</i> ;

Returns

0 on success

5.7.2.30 gint wbfmm_tree_box_centre_f (wbfmm_tree_t * t, guint32 level, guint64 b, gfloat * xb, gfloat * xb, gfloat * xb)

Find centre and width of box in an octree.

Parameters

t	an octree;
level	level inside t;
b	Morton index of box at level <i>level</i> ;
xb	centre of box with index b at level level;
wb	width of box at level level;

Returns

0 on success

5.7.2.31 gint wbfmm_tree_write_sources (wbfmm_tree_t * t, gdouble * q, gint stride, FILE * f)

Write a tree source list to file.

Write to file a list of source positions attached to an octree, in order of Morton index by which they are attached to leaf boxes. If source strengths are supplied (*q* not NULL) these are also written to file.

Parameters

t	an octree with a list of sources attached;
q	source strengths (if NULL, source strengths are not written);
stride	source strength stride in q;
f	output file to write to

Returns

5.7.2.32 gint wbfmm_tree_write_sources_f (wbfmm_tree_t * t, gfloat * q, gint stride, FILE * f)

Write a tree source list to file.

Write to file a list of source positions attached to an octree, in order of Morton index by which they are attached to leaf boxes. If source strengths are supplied (q not NULL) these are also written to file.

Parameters

t	an octree with a list of sources attached;
q	source strengths (if NULL, source strengths are not written);
stride	source strength stride in q;
f	output file to write to

Returns

5.8 Evaluation of the Laplace potential

Variants on standard functions to allow WBFMM to be used for the Laplace equation.

Functions

• gint **wbfmm_laplace_expansion_cfft** (gint N, gdouble *x0, gdouble *xs, gdouble *q, gint nq, gdouble *cfft, gint cstr, gdouble *work)

Generation of singular expansion coefficients for point source in Laplace problem.

• gint wbfmm_expansion_laplace_evaluate (gdouble *x0, gdouble *cfft, gint cstr, gint N, gint nq, gdouble *xf, gdouble *field, gdouble *work)

Evaluate a singular expansion for Laplace problem.

• gint wbfmm_laplace_coaxial_translate_SS (gdouble *Co, gint cstro, gint No, gdouble *Ci, gint cstri, gint Ni, gint nq, gdouble t)

Singular to singular translation for Laplace expansion.

• gint wbfmm_laplace_child_parent_shift (gdouble *Cp, gint Np, gdouble *Cc, gint Nc, gint nq, gdouble *H03, gdouble *H47, gint Lh, gdouble wb, gdouble *work)

Upward shift of singular expansion from eight children to common parent in Laplace problem.

• gint wbfmm_laplace_parent_child_shift (gdouble *Cc, gint Nc, gdouble *Cp, gint Np, gint nq, gdouble *H03, gdouble *H47, gint Lh, gdouble wb, gdouble *work)

Downward shift of regular expansion from parent to eight children in Laplace problem.

- gint wbfmm_laplace_field_coefficients (gdouble *x, gint N, gboolean grad, gdouble *cfft, gdouble *work)

 Generate coefficients for evaluation of field from (singular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using wbfmm_laplace_expansion_apply (p. 64)(...)
- gint wbfmm_laplace_expansion_apply (gdouble *C, gint cstr, gint nq, gdouble *ec, gint N, gdouble *f)

Apply evaluation coefficients to coefficients of an expansion to evaluate the Laplace potential. Evaluation coefficients can be evaluated using wbfmm_laplace_field_coefficients) or wbfmm_laplace_local_coefficients) for the field (singular) or local (regular) expansions respectively.

- gint wbfmm_laplace_local_coefficients (gdouble *x, gint N, gboolean grad, gdouble *cfft, gdouble *work)
 - Generate coefficients for evaluation of local field from (regular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply** (p. 64)(...)
- gint wbfmm_box_fields_laplace (wbfmm_tree_t *t, gint level, gdouble *xf, gdouble *field, gdouble *work)

 Evaluate the Laplace field generated by all boxes on a given level of an octree.
- gint wbfmm_laplace_coaxial_translate_init (gint N)

Initialize lookup tables of Laplace translation coefficients.

• gint wbfmm_laplace_coaxial_translate_SR (gdouble *Co, gint cstro, gint No, gdouble *Ci, gint cstri, gint Ni, gint nq, gdouble t)

Singular to regular translation for Laplace expansion.

• gint wbfmm_laplace_coaxial_translate_RR (gdouble *Co, gint cstro, gint No, gdouble *Ci, gint cstri, gint Ni, gint nq, gdouble t)

Regular to regular translation for Laplace expansion.

- gint **wbfmm_laplace_field** (gdouble *xs, gint xstride, gdouble *src, gint sstride, gint nq, gdouble *normals, gint nstr, gdouble *dipoles, gint dstr, gint nsrc, gdouble *xf, gdouble *field)
- gint **wbfmm_laplace_expansion_local_evaluate** (gdouble *x0, gdouble *cfft, gint cstr, gint N, gint nq, gdouble *xf, gdouble *field, gdouble *work)
- gint wbfmm_laplace_expansion_cfft_f (gint N, gfloat *x0, gfloat *xs, gfloat *q, gint nq, gfloat *cfft, gint cstr, gfloat *work)

Generation of singular expansion coefficients for point source in Laplace problem.

• gint wbfmm_expansion_laplace_evaluate_f (gfloat *x0, gfloat *cfft, gint cstr, gint N, gint nq, gfloat *xf, gfloat *field, gfloat *work)

Evaluate a singular expansion for Laplace problem.

• gint wbfmm_laplace_coaxial_translate_SS_f (gfloat *Co, gint cstro, gint No, gfloat *Ci, gint cstri, gint Ni, gint nq, gfloat t)

Singular to singular translation for Laplace expansion.

• gint wbfmm_laplace_child_parent_shift_f (gfloat *Cp, gint Np, gfloat *Cc, gint Nc, gint nq, gfloat *H03, gfloat *H47, gint Lh, gfloat wb, gfloat *work)

Upward shift of singular expansion from eight children to common parent in Laplace problem.

• gint wbfmm_laplace_parent_child_shift_f (gfloat *Cc, gint Nc, gfloat *Cp, gint Np, gint nq, gfloat *H03, gfloat *H47, gint Lh, gfloat wb, gfloat *work)

Downward shift of regular expansion from parent to eight children in Laplace problem.

• gint wbfmm_laplace_field_coefficients_f (gfloat *x, gint N, gboolean grad, gfloat *cfft, gfloat *work)

Generate coefficients for evaluation of field from (singular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply_f** (p. 64)(...)

gint wbfmm_laplace_expansion_apply_f (gfloat *C, gint cstr, gint nq, gfloat *ec, gint N, gfloat *f)

Apply evaluation coefficients to coefficients of an expansion to evaluate the Laplace potential. Evaluation coefficients can be evaluated using wbfmm_laplace_field_coefficients) or wbfmm_laplace_local_coefficients) for the field (singular) or local (regular) expansions respectively.

• gint wbfmm_laplace_local_coefficients_f (gfloat *x, gint N, gboolean grad, gfloat *cfft, gfloat *work)

Generate coefficients for evaluation of local field from (regular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply_f** (p. 64)(...)

• gint wbfmm_box_fields_laplace_f (wbfmm_tree_t *t, gint level, gfloat *xf, gfloat *field, gfloat *work)

Evaluate the Laplace field generated by all boxes on a given level of an octree.

• gint wbfmm laplace coaxial translate init f (gint N)

Initialize lookup tables of Laplace translation coefficients.

• gint wbfmm_laplace_coaxial_translate_SR_f (gfloat *Co, gint cstro, gint No, gfloat *Ci, gint cstri, gint Ni, gint nq, gfloat t)

Singular to regular translation for Laplace expansion.

• gint wbfmm_laplace_coaxial_translate_RR_f (gfloat *Co, gint cstro, gint No, gfloat *Ci, gint cstri, gint Ni, gint nq, gfloat t)

Regular to regular translation for Laplace expansion.

- gint wbfmm_laplace_field_f (gfloat *xs, gint xstride, gfloat *src, gint sstride, gint nq, gfloat *normals, gint nstr, gfloat *dipoles, gint dstr, gint nsrc, gfloat *xf, gfloat *field)
- gint wbfmm_laplace_expansion_local_evaluate_f (gfloat *x0, gfloat *cfft, gint cstr, gint N, gint nq, gfloat *xf, gfloat *field, gfloat *work)

5.8.1 Detailed Description

Variants on standard functions to allow WBFMM to be used for the Laplace equation.

5.8.2 Function Documentation

5.8.2.1 gint wbfmm box fields laplace (wbfmm tree t * t, gint level, gdouble * xf, gdouble * field, gdouble * work)

Evaluate the Laplace field generated by all boxes on a given level of an octree.

	t	octree;
ĺ	level	level at which to use expansions;
Ì	xf	field evaluation point;
ĺ	field	on output contains the sum of singular expansions from each box on level level evaluated at
		xf,

,	
work	workspace.
WOIN	WOINSPACE.

0 on success

5.8.2.2 gint wbfmm_box_fields_laplace_f (wbfmm_tree_t * t, gint level, gfloat * xf, gfloat * field, gfloat * work)

Evaluate the Laplace field generated by all boxes on a given level of an octree.

Parameters

t	octree;
level	level at which to use expansions;
xf	field evaluation point;
field	on output contains the sum of singular expansions from each box on level level evaluated at
	xf;
work	workspace.

Returns

0 on success

5.8.2.3 gint wbfmm_expansion_laplace_evaluate (gdouble * x0, gdouble * cft, gint cst, gint N, gint nq, gdouble * xt, gdouble * tield, gdouble * work)

Evaluate a singular expansion for Laplace problem.

Parameters

х0	origin of expansion;
cfft	on output, incremented with coefficients of expansion;
cstr	stride in cfft (must be at least equal to nq);
N	order of expansion;
nq	number of components in q ;
xf	field point;
field	computed potential for each of the <i>nq</i> components;
work	workspace.

Returns

0 on success

5.8.2.4 gint wbfmm_expansion_laplace_evaluate_f (gfloat *x0, gfloat *cfft, gint cstr, gint N, gint nq, gfloat *xf, gfloat $*title{field}$, gfloat $*title{work}$)

Evaluate a singular expansion for Laplace problem.

х0	origin of expansion;

cfft	on output, incremented with coefficients of expansion;
cstr	stride in <i>cfft</i> (must be at least equal to <i>nq</i>);
N	order of expansion;
nq	number of components in q ;
xf	field point;
field	computed potential for each of the <i>nq</i> components;
work	workspace.

Returns

0 on success

5.8.2.5 gint wbfmm_laplace_child_parent_shift (gdouble * Cp, gint Np, gdouble * Cc, gint Nc, gint nq, gdouble * H03, gdouble * H47, gint Lh, gdouble * b, gdouble * work)

Upward shift of singular expansion from eight children to common parent in Laplace problem.

Shift the expansion of eight child boxes to their parent and sum into the parent expansion. This function assumes data are packed with a stride of eight elements so that all expansion coefficients of a given order are contiguous in memory, ordered by Morton index.

Parameters

Ср	parent expansion array;
Np	order of parent expansion;
Сс	child expansion array;
Nc	order of child expansions;
nq	number of elements in source;
H03	rotation coefficients for 'lower' children (Morton index 0-3);
H47	rotation coefficients for 'upper' children (Morton index 4-7);
Lh	maximum order of rotation coefficients;
wb	child box width;
work	workspace

Returns

0 on success

5.8.2.6 gint wbfmm_laplace_child_parent_shift_f (gfloat * Cp, gint Np, gfloat * Cc, gint Nc, gint nq, gfloat * H03, gfloat * H47, gint Lh, gfloat wb, gfloat * work)

Upward shift of singular expansion from eight children to common parent in Laplace problem.

Shift the expansion of eight child boxes to their parent and sum into the parent expansion. This function assumes data are packed with a stride of eight elements so that all expansion coefficients of a given order are contiguous in memory, ordered by Morton index.

Ср	parent expansion array;
Np	order of parent expansion;
Сс	child expansion array;
Nc	order of child expansions;

nq	number of elements in source;
H03	rotation coefficients for 'lower' children (Morton index 0-3);
H47	rotation coefficients for 'upper' children (Morton index 4-7);
Lh	maximum order of rotation coefficients;
wb	child box width;
work	workspace

0 on success

5.8.2.7 gint wbfmm_laplace_coaxial_translate_init (gint N)

Initialize lookup tables of Laplace translation coefficients.

Initialize lookup tables of Laplace translation coefficients for use in coaxial translation of Laplace expansions. This function must be called before any coaxial translation is performed in a Laplace problem.

Parameters

-		
	Ν	maximum order of expansion to be translated.

Returns

0 on success

5.8.2.8 gint wbfmm_laplace_coaxial_translate_init_f (gint N)

Initialize lookup tables of Laplace translation coefficients.

Initialize lookup tables of Laplace translation coefficients for use in coaxial translation of Laplace expansions. This function must be called before any coaxial translation is performed in a Laplace problem.

Parameters

N	maximum order of expansion to be translated.
	·

Returns

0 on success

5.8.2.9 gint wbfmm_laplace_coaxial_translate_RR (gdouble * Co, gint cstro, gint No, gdouble * Ci, gint cstri, gint Ni, gint nq, gdouble t)

Regular to regular translation for Laplace expansion.

Translate a regular expansion for the Laplace problem along the z axis to a regular expansion about a new centre. Before any Laplace translation function is called, the translation coefficients must be initialized with a call to ${\bf wbfmm_laplace_coaxial_translate_init}$ (p. 61)(...)

Со	on output, expansion about new centre;
----	--

cstro	stride in <i>Co</i> ;
No	order of expansion in <i>Co</i> ;
Ci	input expansion coefficients;
cstri	stride in <i>Ci</i> ;
Ni	order of expansion in <i>Ci</i> ;
nq	number of source terms in expansion;
t	distance to translate expansion.

Returns

0 on success

5.8.2.10 gint wbfmm_laplace_coaxial_translate_RR_f (gfloat * Co, gint cstro, gint No, gfloat * Ci, gint cstri, gint Ni, gint nq, gfloat t)

Regular to regular translation for Laplace expansion.

Translate a regular expansion for the Laplace problem along the z axis to a regular expansion about a new centre. Before any Laplace translation function is called, the translation coefficients must be initialized with a call to **wbfmm_laplace_coaxial_translate_init_f** (p. 61)(...)

Parameters

Со	on output, expansion about new centre;
cstro	stride in <i>Co</i> ;
No	order of expansion in <i>Co</i> ;
Ci	input expansion coefficients;
cstri	stride in <i>Ci</i> ;
Ni	order of expansion in <i>Ci</i> ;
nq	number of source terms in expansion;
t	distance to translate expansion.

Returns

0 on success

5.8.2.11 gint wbfmm_laplace_coaxial_translate_SR (gdouble * Co, gint cstro, gint No, gdouble * Ci, gint cstri, gint Ni, gint nq, gdouble t)

Singular to regular translation for Laplace expansion.

Translate a singular expansion for the Laplace problem along the z axis to a regular expansion about a new centre. Before any Laplace translation function is called, the translation coefficients must be initialized with a call to ${\bf wbfmm_laplace_coaxial_translate_init}$ (p. 61)(...)

Со	on output, expansion about new centre;
cstro	stride in Co;
No	order of expansion in <i>Co</i> ;
Ci	input expansion coefficients;
cstri	stride in Ci;

Ni	order of expansion in <i>Ci</i> ;
nq	number of source terms in expansion;
t	distance to translate expansion.

0 on success

5.8.2.12 gint wbfmm_laplace_coaxial_translate_SR_f (gfloat * Co, gint cstro, gint No, gfloat * Ci, gint cstri, gint Ni, gint nq, gfloat t)

Singular to regular translation for Laplace expansion.

Translate a singular expansion for the Laplace problem along the z axis to a regular expansion about a new centre. Before any Laplace translation function is called, the translation coefficients must be initialized with a call to **wbfmm_laplace_coaxial_translate_init_f** (p. 61)(...)

Parameters

Со	on output, expansion about new centre;
cstro	stride in Co;
No	order of expansion in <i>Co</i> ;
Ci	input expansion coefficients;
cstri	stride in <i>Ci</i> ;
Ni	order of expansion in <i>Ci</i> ;
nq	number of source terms in expansion;
t	distance to translate expansion.

Returns

0 on success

5.8.2.13 gint wbfmm_laplace_coaxial_translate_SS (gdouble * Co, gint cstro, gint No, gdouble * Ci, gint cstri, gint Ni, gint nq, gdouble t)

Singular to singular translation for Laplace expansion.

Translate a singular expansion for the Laplace problem along the z axis to a singular expansion about a new centre. Before any Laplace translation function is called, the translation coefficients must be initialized with a call to **wbfmm_laplace_coaxial_translate_init** (p. 61)(...)

Parameters

Со	on output, expansion about new centre;
cstro	stride in Co;
No	order of expansion in Co;
Ci	input expansion coefficients;
cstri	stride in Ci;
Ni	order of expansion in <i>Ci</i> ;
nq	number of source terms in expansion;
t	distance to translate expansion.

Returns

5.8.2.14 gint wbfmm_laplace_coaxial_translate_SS_f (gfloat * Co, gint cstro, gint No, gfloat * Ci, gint cstri, gint Ni, gint nq, gfloat t)

Singular to singular translation for Laplace expansion.

Translate a singular expansion for the Laplace problem along the z axis to a singular expansion about a new centre. Before any Laplace translation function is called, the translation coefficients must be initialized with a call to $\mathbf{wbfmm_laplace_coaxial_translate_init_f}$ (p. 61)(...)

Parameters

Со	on output, expansion about new centre;
cstro	stride in <i>Co</i> ;
No	order of expansion in <i>Co</i> ;
Ci	input expansion coefficients;
cstri	stride in <i>Ci</i> ;
Ni	order of expansion in <i>Ci</i> ;
nq	number of source terms in expansion;
t	distance to translate expansion.

Returns

0 on success

5.8.2.15 gint wbfmm_laplace_expansion_apply (gdouble * C, gint cstr, gint nq, gdouble * ec, gint N, gdouble * f)

Apply evaluation coefficients to coefficients of an expansion to evaluate the Laplace potential. Evaluation coefficients can be evaluated using wbfmm_laplace_field_coefficients) or wbfmm_laplace_local_coefficients) for the field (singular) or local (regular) expansions respectively.

Parameters

С	coefficients of expansion;
cstr	stride in C;
nq	number of source terms in C;
ec	evaluation coefficients;
N	order of expansion;
f	on exit contains evaluated field.

Returns

0 on success

5.8.2.16 gint wbfmm_laplace_expansion_apply_f (gfloat * C, gint cstr, gint nq, gfloat * ec, gint N, gfloat * f)

Apply evaluation coefficients to coefficients of an expansion to evaluate the Laplace potential. Evaluation coefficients can be evaluated using wbfmm_laplace_field_coefficients) or wbfmm_laplace_local_coefficients) for the field (singular) or local (regular) expansions respectively.

С	coefficients of expansion;
cstr	stride in C;

nq	number of source terms in C;
ec	evaluation coefficients;
N	order of expansion;
f	on exit contains evaluated field.

Returns

0 on success

5.8.2.17 gint wbfmm_laplace_expansion_cfft (gint N, gdouble * x0, gdouble * xs, gdouble * q, gint nq, gdouble * cfft, gint cstr, gdouble * work)

Generation of singular expansion coefficients for point source in Laplace problem.

Parameters

N	order of expansion;
x0	origin of expansion;
XS	source position;
q	source strength(s);
nq	number of components in q ;
cfft	on output, incremented with coefficients of expansion;
cstr	stride in cfft (must be at least equal to nq);
work	workspace.

Returns

0 on success

5.8.2.18 gint wbfmm_laplace_expansion_cfft_f (gint N, gfloat * x0, gfloat * xs, gfloat * q, gint nq, gfloat * cfft, gint cstr, gfloat * work)

Generation of singular expansion coefficients for point source in Laplace problem.

Parameters

N	order of expansion;
x0	origin of expansion;
XS	source position;
q	source strength(s);
nq	number of components in q;
cfft	on output, incremented with coefficients of expansion;
cstr	stride in cfft (must be at least equal to nq);
work	workspace.

Returns

0 on success

5.8.2.19 gint wbfmm_laplace_expansion_local_evaluate (gdouble * x0, gdouble * cfft, gint cstr, gint N, gint nq, gdouble * xf, gdouble * field, gdouble * work)

66 Module Documentation

Parameters

5.8.2.20 gint wbfmm_laplace_expansion_local_evaluate_f (gfloat * x0, gfloat * cfft, gint cstr, gint N, gint nq, gfloat * xf, gfloat * field, gfloat * work)

Parameters

5.8.2.21 gint wbfmm_laplace_field (gdouble * xs, gint xstride, gdouble * src, gint sstride, gint nq, gdouble * normals, gint nstr, gdouble * dipoles, gint dstr, gint nsrc, gdouble * xf, gdouble * field)

Parameters

5.8.2.22 gint wbfmm_laplace_field_coefficients (gdouble * x, gint N, gboolean grad, gdouble * cfft, gdouble * work)

Generate coefficients for evaluation of field from (singular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply** (p. 64)(...)

Parameters

X	location of evaluation point relative to centre of expansion;
N	order of expansion;
grad	if TRUE generate coefficients for gradient of field;
cfft	on exit contains evaluation coefficients;
work	workspace.

Returns

0 on success

5.8.2.23 gint wbfmm_laplace_field_coefficients_f (gfloat *x, gint N, gboolean grad, gfloat *x gf

Generate coefficients for evaluation of field from (singular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply_f** (p. 64)(...)

Parameters

X	location of evaluation point relative to centre of expansion;
N	order of expansion;
grad	if TRUE generate coefficients for gradient of field;
cfft	on exit contains evaluation coefficients;
work	workspace.

Returns

0 on success

5.8.2.24 gint wbfmm_laplace_field_f (gfloat * xs, gint xstride, gfloat * src, gint sstride, gint nq, gfloat * normals, gint nstr, gfloat * dipoles, gint dstr, gint nsrc, gfloat * xf, gfloat * field)

Parameters

5.8.2.25 gint wbfmm_laplace_local_coefficients (gdouble * x, gint N, gboolean grad, gdouble * cfft, gdouble * work)

Generate coefficients for evaluation of local field from (regular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm laplace expansion apply** (p. 64)(...)

Parameters

X	location of evaluation point relative to centre of expansion;
N	order of expansion;
grad	if TRUE generate coefficients for gradient of field;
cfft	on exit contains evaluation coefficients;
work	workspace.

Returns

0 on success

5.8.2.26 gint wbfmm_laplace_local_coefficients_f (gfloat *x, gint N, gboolean grad, gfloat *cfft, gfloat *work)

Generate coefficients for evaluation of local field from (regular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply_f** (p. 64)(...)

Parameters

X	location of evaluation point relative to centre of expansion;
N	order of expansion;
grad	if TRUE generate coefficients for gradient of field;
cfft	on exit contains evaluation coefficients;
work	workspace.

Returns

0 on success

5.8.2.27 gint wbfmm_laplace_parent_child_shift (gdouble * Cc, gint Nc, gdouble * Cp, gint Np, gint nq, gdouble * H03, gdouble * H47, gint Lh, gdouble * b, gdouble * work)

Downward shift of regular expansion from parent to eight children in Laplace problem.

Shift the expansion of a parent box to its eight child boxes. This function assumes data are packed with a stride of eight elements so that all expansion coefficients of a given order are contiguous in memory, ordered by Morton index. Note that rotation coefficients *H03* and *H47* are the same as for the upward pass but switched (because the rotations are performed in the opposite direction).

Parameters

Сс	child expansion array;
Nc	order of child expansions;

68 Module Documentation

Ср	parent expansion array;
Np	order of parent expansion;
nq	number of elements in source;
H03	rotation coefficients for 'lower' children (Morton index 0-3);
H47	rotation coefficients for 'upper' children (Morton index 4-7);
Lh	maximum order of rotation coefficients;
wb	parent box width;
work	workspace

Returns

0 on success

5.8.2.28 gint wbfmm_laplace_parent_child_shift_f (gfloat * Cc, gint Nc, gfloat * Cp, gint Np, gint nq, gfloat * H03, gfloat * H47, gint Lh, gfloat wb, gfloat * work)

Downward shift of regular expansion from parent to eight children in Laplace problem.

Shift the expansion of a parent box to its eight child boxes. This function assumes data are packed with a stride of eight elements so that all expansion coefficients of a given order are contiguous in memory, ordered by Morton index. Note that rotation coefficients *H03* and *H47* are the same as for the upward pass but switched (because the rotations are performed in the opposite direction).

Parameters

Сс	child expansion array;
Nc	order of child expansions;
Ср	parent expansion array;
Np	order of parent expansion;
nq	number of elements in source;
H03	rotation coefficients for 'lower' children (Morton index 0-3);
H47	rotation coefficients for 'upper' children (Morton index 4-7);
Lh	maximum order of rotation coefficients;
wb	parent box width;
work	workspace

Returns

0 on success

5.9 Indexing and lookup operations

Indexing functions for accessing tree data structures.

Functions

- guint64 wbfmm_box_index (guint32 i, guint32 j, guint32 k)
- gint wbfmm_box_location (guint64 idx, guint32 *i, guint32 *j, guint32 *k)

5.9.1 Detailed Description

Indexing functions for accessing tree data structures.

Functions for indexing and lookup in tree data structures, including finding neighbours and interaction lists, based on the methods of Gumerov, Duraiswami, and Borovikov, Data Structures, Optimal Choice of Parameters, and Complexity Results for Generalized Multilevel Fast Multipole Methods in d Dimensions, 2003

http://users.umiacs.umd.edu/~gumerov/PDFs/cs-tr-4458.pdf

Code for Morton indexing operations is taken from: https://www.forceflow.be/2013/10/07/morton-encodingdecomes.

5.9.2 Function Documentation

5.9.2.1 guint64 wbfmm_box_index (guint32 i, guint32 j, guint32 k)

Generate a Morton index for a box with corner at integer coordinates (i,j,k).

Parameters

i	x index of bottom left hand corner;
j	y index of bottom left hand corner;
k	z index of bottom left hand corner.

Returns

Morton index for (i, j, k).

5.9.2.2 gint wbfmm_box_location (guint64 idx, guint32 * i, guint32 * j, guint32 * k)

Compute indices for bottom left hand corner of box defined by its Morton index, as generated by **wbfmm_box_index** (p. 69)

Parameters

idx	index of box corner;
i	on output, x index of bottom left hand corner of box;
j	on output, y index of bottom left hand corner of box;
k	on output, z index of bottom left hand corner of box.

Returns

0 on success.

70 **Module Documentation**

Chapter 6

Data Structure Documentation

6.1 wbfmm_box_t Struct Reference

Data Fields

- guint32 i
- guint32 **n**
- gpointer mps
- gpointer mpr

6.1.1 Detailed Description

Data type for octree boxes

6.1.2 Field Documentation

6.1.2.1 guint32 wbfmm_box_t::i

index of first source point in box

6.1.2.2 gpointer wbfmm_box_t::mpr

pointer to regular multipole expansion data

6.1.2.3 gpointer wbfmm_box_t::mps

pointer to singular multipole expansion data

6.1.2.4 guint32 wbfmm_box_t::n

number of points in box

6.2 wbfmm_shift_operators_t Struct Reference

Data Fields

- gsize size
- guint nlevels
- guint L [WBFMM_TREE_MAX_DEPTH+1]
- guint nerot
- gpointer **SR** [WBFMM_TREE_MAX_DEPTH+1]
- gpointer SS [WBFMM_TREE_MAX_DEPTH+1]
- · gpointer rotations

6.2.1 Detailed Description

Data type holding operators for upward and downward passes and interaction calculations at each level

6.2.2 Field Documentation

```
6.2.2.1 guint wbfmm_shift_operators_t::L[WBFMM_TREE_MAX_DEPTH+1]
```

- < number of levels in tree
- 6.2.2.2 guint wbfmm_shift_operators_t::nerot
- < maximum order of expansion per level
- 6.2.2.3 guint wbfmm_shift_operators_t::nlevels
- < maximum order of expansions
- 6.2.2.4 gpointer wbfmm_shift_operators_t::rotations
- < singular-to-singular (regular-to-regular) coaxial translations
- 6.2.2.5 gsize wbfmm_shift_operators_t::size

size of data type, i.e. float or double

- 6.2.2.6 gpointer wbfmm_shift_operators_t::SR[WBFMM_TREE_MAX_DEPTH+1]
- < number of elements in rotation operators
- $6.2.2.7 \quad gpointer \ wbfmm_shift_operators_t::SS[WBFMM_TREE_MAX_DEPTH+1]$
- < singular-to-regular coaxial translations

6.3 wbfmm_target_list_t Struct Reference

Data Fields

 $\bullet \ \ wbfmm_tree_t*t$

- · guint maxpoints
- guint **npoints**
- guint * **ip**
- guint nc
- guint32 * boxes
- gchar * points
- gsize size
- gpointer cfft
- gboolean grad

6.3.1 Detailed Description

Data type for target point lists

6.3.2 Field Documentation

6.3.2.1 guint32* wbfmm_target_list_t::boxes

box indices of points

6.3.2.2 gpointer wbfmm_target_list_t::cfft

coefficients of regular expansions in boxes

6.3.2.3 gboolean wbfmm_target_list_t::grad

gradient computations included

6.3.2.4 guint * wbfmm_target_list_t::ip

indices of points, sorted by Morton index

6.3.2.5 guint wbfmm_target_list_t::maxpoints

maximum number of points in tree

6.3.2.6 guint wbfmm_target_list_t::nc

number of coefficients (size of blocks of coefficients)

6.3.2.7 guint wbfmm_target_list_t::npoints

number of points in tree

6.3.2.8 gchar* wbfmm_target_list_t::points

point coordinates

```
6.3.2.9 gsize wbfmm_target_list_t::sizesize of floating point type in data (float, double, etc)6.3.2.10 wbfmm_tree_t* wbfmm_target_list_t::t
```

6.4 wbfmm_tree_t Struct Reference

Data Fields

- wbfmm_box_t * boxes [WBFMM_TREE_MAX_DEPTH+1]
- · guint maxpoints

tree containing source data

- · guint npoints
- guint * ip
- guint **nq**
- guint depth
- guint order_s [WBFMM_TREE_MAX_DEPTH+1]
- guint order_r [WBFMM_TREE_MAX_DEPTH+1]
- gchar x [24]
- gchar * points
- gpointer * mps [WBFMM_TREE_MAX_DEPTH+1]
- gpointer * mpr [WBFMM_TREE_MAX_DEPTH+1]
- gsize size
- gsize pstr
- · gdouble D

6.4.1 Detailed Description

Data type for octrees

6.4.2 Field Documentation

6.4.2.1 wbfmm_box_t* wbfmm_tree_t::boxes[WBFMM_TREE_MAX_DEPTH+1]

arrays of boxes at each level

Referenced by wbfmm_tree_add_level().

6.4.2.2 gdouble wbfmm_tree_t::D

width of domain cube

6.4.2.3 guint wbfmm_tree_t::depth

depth of tree

Referenced by wbfmm_tree_add_level().

```
6.4.2.4 guint * wbfmm_tree_t::ip
indices of points, sorted by Morton index
6.4.2.5 guint wbfmm_tree_t::maxpoints
maximum number of points in tree
6.4.2.6 gpointer * wbfmm_tree_t::mpr[WBFMM_TREE_MAX_DEPTH+1]
regular expansion data at each level
6.4.2.7 gpointer* wbfmm_tree_t::mps[WBFMM_TREE_MAX_DEPTH+1]
singular expansion data at each level
6.4.2.8 guint wbfmm_tree_t::npoints
number of points in tree
6.4.2.9 guint wbfmm_tree_t::nq
number of source components
6.4.2.10 guint wbfmm_tree_t::order_r[WBFMM_TREE_MAX_DEPTH+1]
order of regular expansions at each level
6.4.2.11 guint wbfmm_tree_t::order_s[WBFMM_TREE_MAX_DEPTH+1]
order of singular expansions at each level
6.4.2.12 gchar * wbfmm_tree_t::points
point coordinates
6.4.2.13 gsize wbfmm_tree_t::pstr
stride in point data
6.4.2.14 gsize wbfmm_tree_t::size
size of floating point type in data (float, double, etc)
6.4.2.15 gchar wbfmm_tree_t::x[24]
origin of tree domain cube
```


Chapter 7

File Documentation

7.1 tree.c File Reference

Functions

• gint wbfmm_tree_add_level (wbfmm_tree_t *t)

7.1.1 Detailed Description

Author

Michael Carley ensmjc@rpc-ensmjc.bath.ac.uk

Date

Mon Jun 24 14:51:21 2019

7.2 wbfmm.h File Reference

Header for Wide Band FMM library.

Data Structures

- struct wbfmm_box_t
- struct wbfmm tree t
- struct wbfmm_target_list_t
- struct wbfmm_shift_operators_t

Enumerations

enum wbfmm_problem_t { WBFMM_PROBLEM_LAPLACE = 1, WBFMM_PROBLEM_HELMHOLTZ = 2 }

Functions

• gint **wbfmm_cartesian_to_spherical** (gdouble *x0, gdouble *x, gdouble *r, gdouble *th, gdouble *ph) Convert Cartesian to spherical coordinates (r, θ, ϕ) .

78 File Documentation

• gint **wbfmm_shift_coordinates** (gdouble *x, gdouble *y, gdouble *ix, gdouble *iy, gdouble *iz, gdouble *r)

Find system of axes for coordinate shift.

• gint wbfmm_legendre_recursion_array (gdouble **Pnm1, gdouble **Pn, gint n, gdouble C, gdouble S)

Perform recursion on normalized associated Legendre functions.

• gint wbfmm_bessel_j_recursion (gdouble *jnm1, gdouble *jn, gdouble x, gint n)

Perform recursion on spherical Bessel function $j_n(x)$.

• gint wbfmm_bessel_h_recursion (gdouble *hnm1, gdouble *hn, gdouble x, gint n)

Perform one step of spherical Hankel recursion.

• gint wbfmm_bessel_j_init (gdouble x, gdouble *j0, gdouble *j1)

Initialize the spherical Bessel function recursion.

• gint wbfmm bessel_h init (gdouble x, gdouble *h0, gdouble *h1)

Initialize spherical Hankel function recursion.

• gint wbfmm_legendre_init (gdouble C, gdouble S, gdouble *P0, gdouble *P10, gdouble *P11)

Initialize normalized associated Legendre functions.

gint wbfmm_expansion_h_cfft (gdouble k, gint N, gdouble *x0, gdouble *xs, gdouble *q, gdouble *cfft, gint cstr, gdouble *work)

Generation of singular expansion coefficients for point source.

• gint **wbfmm_expansion_dipole_h_cfft** (gdouble k, gint N, gdouble *x0, gdouble *xs, gdouble *fx, gdouble *fx, gdouble *fx, gdouble *fx, gdouble *sty, gdouble *fx, gdouble *work)

Generation of singular expansion coefficients for point dipole source.

• gint **wbfmm_expansion_h_evaluate** (gdouble k, gdouble *x0, gdouble *cfft, gint cstr, gint N, gdouble *xf, gdouble *field, gdouble *work)

Evaluate a singular expansion.

• gint **wbfmm_expansion_j_evaluate** (gdouble k, gdouble *x0, gdouble *cfft, gint cstr, gint N, gdouble *xf, gdouble *field, gdouble *work)

Evaluate a regular expansion.

• gint **wbfmm_total_dipole_field** (gdouble k, gdouble *xs, gint xstride, gdouble *src, gint sstride, gint nsrc, gdouble *xf, gdouble *field)

Compute total field from dipole sources by direct evaluation.

gint wbfmm_coordinate_transform (gdouble *x, gdouble *ix, gdouble *iy, gdouble *iz, gdouble *y)

Transform coordinates to rotated axes.

• gint wbfmm_coefficients_RR_coaxial (gdouble *cfftRR, gint L, gdouble kr, gdouble *work)

Generate coefficients for coaxial regular-to-regular translation.

• gint wbfmm_coefficients_SR_coaxial (gdouble *cfftSR, gint L, gdouble kr, gdouble *work)

Generate coefficients for coaxial singular-to-regular translation.

• gint **wbfmm_rotation_angles** (gdouble *ix, gdouble *iy, gdouble *iz, gdouble *jx, gdouble *jy, gdouble *jy, gdouble *jy, gdouble *jy, gdouble *jy, gdouble *ch)

Compute the rotation angles (θ, ϕ, χ) between axes.

gint wbfmm_coefficients_H_rotation (gdouble *H, gint N, gdouble th, gdouble *work)

Compute rotation coefficients for angle θ .

• gint **wbfmm_laplace_expansion_cfft** (gint N, gdouble *x0, gdouble *xs, gdouble *q, gint nq, gdouble *cfft, gint cstr, gdouble *work)

Generation of singular expansion coefficients for point source in Laplace problem.

- gint wbfmm_laplace_field (gdouble *xs, gint xstride, gdouble *src, gint sstride, gint nq, gdouble *normals, gint nstr, gdouble *dipoles, gint dstr, gint nsrc, gdouble *xf, gdouble *field)
- gint **wbfmm_laplace_expansion_local_evaluate** (gdouble *x0, gdouble *cfft, gint cstr, gint N, gint nq, gdouble *xf, gdouble *field, gdouble *work)
- gint wbfmm_laplace_expansion_local_evaluate_f (gfloat *x0, gfloat *cfft, gint cstr, gint N, gint nq, gfloat *xf, gfloat *field, gfloat *work)
- gint wbfmm_laplace_coaxial_translate_init (gint N)

Initialize lookup tables of Laplace translation coefficients.

gint wbfmm_laplace_coaxial_translate_init_f (gint N)

Initialize lookup tables of Laplace translation coefficients.

gint wbfmm_laplace_expansion_cfft_f (gint N, gfloat *x0, gfloat *xs, gfloat *q, gint nq, gfloat *cfft, gint cstr, gfloat *work)

Generation of singular expansion coefficients for point source in Laplace problem.

- gint wbfmm_laplace_field_f (gfloat *xs, gint xstride, gfloat *src, gint sstride, gint nq, gfloat *normals, gint nstr, gfloat *dipoles, gint dstr, gint nsrc, gfloat *xf, gfloat *field)
- gint wbfmm_laplace_coaxial_translate_SS (gdouble *Co, gint cstro, gint No, gdouble *Ci, gint cstri, gint Ni, gint nq, gdouble t)

Singular to singular translation for Laplace expansion.

• gint wbfmm_laplace_coaxial_translate_SS_f (gfloat *Co, gint cstro, gint No, gfloat *Ci, gint cstri, gint Ni, gint nq, gfloat t)

Singular to singular translation for Laplace expansion.

• gint wbfmm_laplace_coaxial_translate_RR (gdouble *Co, gint cstro, gint No, gdouble *Ci, gint cstri, gint Ni, gint nq, gdouble t)

Regular to regular translation for Laplace expansion.

gint wbfmm_laplace_coaxial_translate_RR_f (gfloat *Co, gint cstro, gint No, gfloat *Ci, gint cstri, gint Ni, gint nq, gfloat t)

Regular to regular translation for Laplace expansion.

• gint wbfmm_laplace_coaxial_translate_SR (gdouble *Co, gint cstro, gint No, gdouble *Ci, gint cstri, gint Ni, gint nq, gdouble t)

Singular to regular translation for Laplace expansion.

• gint wbfmm_laplace_coaxial_translate_SR_f (gfloat *Co, gint cstro, gint No, gfloat *Ci, gint cstri, gint Ni, gint nq, gfloat t)

Singular to regular translation for Laplace expansion.

• gint **wbfmm_laplace_rotate_H** (gdouble *Co, gint cstro, gdouble *Ci, gint cstri, gint N, gint nq, gdouble *H, gdouble ph, gdouble ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients for the Laplace problem.

• gint wbfmm_laplace_rotate_H_f (gfloat *Co, gint cstro, gfloat *Ci, gint cstri, gint N, gint nq, gfloat *H, gfloat ph, gfloat ch)

Apply rotation $(\theta, \phi \chi)$ to multipole coefficients for the Laplace problem.

• gint wbfmm_laplace_child_parent_shift (gdouble *Cp, gint Np, gdouble *Cc, gint Nc, gint nq, gdouble *H03, gdouble *H47, gint Lh, gdouble t, gdouble *work)

Upward shift of singular expansion from eight children to common parent in Laplace problem.

• gint wbfmm_laplace_child_parent_shift_f (gfloat *Cp, gint Np, gfloat *Cc, gint Nc, gint nq, gfloat *H03, gfloat *H47, gint Lh, gfloat t, gfloat *work)

Upward shift of singular expansion from eight children to common parent in Laplace problem.

• gint wbfmm_laplace_parent_child_shift (gdouble *Cc, gint Nc, gdouble *Cp, gint Np, gint nq, gdouble *H03, gdouble *H47, gint Lh, gdouble t, gdouble *work)

Downward shift of regular expansion from parent to eight children in Laplace problem.

• gint wbfmm_laplace_parent_child_shift_f (gfloat *Cc, gint Nc, gfloat *Cp, gint Np, gint nq, gfloat *H03, gfloat *H47, gint Lh, gfloat t, gfloat *work)

Downward shift of regular expansion from parent to eight children in Laplace problem.

• gint wbfmm_tree_laplace_leaf_expansions (wbfmm_tree_t *t, gdouble *src, gint sstr, gdouble *normals, gint nstr, gdouble *dipoles, gint dstr, gboolean zero expansions, gdouble *work)

Generate leaf expansions for a tree in the Laplace problem.

• gint wbfmm_tree_laplace_leaf_expansions_f (wbfmm_tree_t *t, gfloat *src, gint sstr, gfloat *normals, gint nstr, gfloat *dipoles, gint dstr, gboolean zero expansions, gfloat *work)

Generate leaf expansions for a tree in the Laplace problem.

• gint wbfmm_laplace_downward_pass (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gdouble *work)

Perform downward pass at one level of an octree for the Laplace problem.

gint wbfmm_laplace_downward_pass_f (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gfloat *work)

80 File Documentation

Perform downward pass at one level of an octree for the Laplace problem.

gint wbfmm_laplace_upward_pass (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gdouble *work)

Perform upward pass at one level of an octree for the Laplace problem.

gint wbfmm_laplace_upward_pass_f (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gfloat *work)

Perform upward pass at one level of an octree for the Laplace problem.

• gint wbfmm_tree_laplace_box_local_field (wbfmm_tree_t *t, guint level, guint b, gdouble *x, gdouble *f, gdouble *src, gint sstr, gdouble *normals, gint nstr, gdouble *d, gint dstr, gboolean eval_neighbours, gdouble *work)

Evaluate local Laplace field from regular expansion in box.

• gint wbfmm_tree_laplace_box_local_field_f (wbfmm_tree_t *t, guint level, guint b, gfloat *x, gfloat *f, gfloat *src, gint sstr, gfloat *normals, gint nstr, gfloat *d, gint dstr, gboolean eval_neighbours, gfloat *work)

Evaluate local Laplace field from regular expansion in box.

• gint wbfmm_laplace_local_coefficients (gdouble *x, gint N, gboolean grad, gdouble *cfft, gdouble *work)

Generate coefficients for evaluation of local field from (regular) expansion coefficients in the Laplace problem. The

• gint wbfmm laplace local coefficients f (gfloat *x, gint N, gboolean grad, gfloat *cfft, gfloat *work)

Generate coefficients for evaluation of local field from (regular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply_f** (p. 64)(...)

coefficients from this function can be applied to an expansion using wbfmm_laplace_expansion_apply (p. 64)(...)

• gint wbfmm_laplace_field_coefficients (gdouble *x, gint N, gboolean grad, gdouble *cfft, gdouble *work)

Generate coefficients for evaluation of field from (singular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply** (p. 64)(...)

• gint wbfmm_laplace_field_coefficients_f (gfloat *x, gint N, gboolean grad, gfloat *cfft, gfloat *work)

Generate coefficients for evaluation of field from (singular) expansion coefficients in the Laplace problem. The coefficients from this function can be applied to an expansion using **wbfmm_laplace_expansion_apply_f** (p. 64)(...)

• gint wbfmm_laplace_expansion_apply (gdouble *C, gint cstr, gint nq, gdouble *ec, gint N, gdouble *f)

Apply evaluation coefficients to coefficients of an expansion to evaluate the Laplace potential. Evaluation coefficients can be evaluated using wbfmm_laplace_field_coefficients) or wbfmm_laplace_local_coefficients) for the field (singular) or local (regular) expansions respectively.

• gint wbfmm_laplace_expansion_apply_f (gfloat *C, gint cstr, gint nq, gfloat *ec, gint N, gfloat *f)

Apply evaluation coefficients to coefficients of an expansion to evaluate the Laplace potential. Evaluation coefficients can be evaluated using wbfmm_laplace_field_coefficients) or wbfmm_laplace_local_coefficients) for the field (singular) or local (regular) expansions respectively.

• gint **wbfmm_child_parent_shift** (gdouble *Cp, gint Np, gdouble *Cc, gint Nc, gdouble *H03, gdouble *H47, gint Lh, gdouble *shift, gint Ls, gdouble *work)

Upward shift of singular expansion from eight children to common parent.

• gint **wbfmm_parent_child_shift** (gdouble *Cc, gint Nc, gdouble *Cp, gint Np, gdouble *H03, gdouble *H47, gint Lh, gdouble *shift, gint Ls, gdouble *work)

Downward shift of parent expansion to child box centres.

• gint wbfmm_shift_angles_list4 (gint i, gint j, gint k, gdouble *th, gdouble *ph, gdouble *ch, gdouble *rs)

Extract the rotation angles for boxes on interaction list 4.

• gint wbfmm shift angle table init (void)

Initialize table of angles for shift operations.

• wbfmm_shift_operators_t * wbfmm_shift_operators_new (guint L, gdouble *work)

Allocate shift operators and initialize rotations.

• gint wbfmm_shift_operators_coaxial_SR_init (wbfmm_shift_operators_t *w, gdouble D, guint level, guint L, gdouble k, gdouble *work)

Initialize singular-to-regular translation operators.

• gint wbfmm_shift_operators_coaxial_SS_init (wbfmm_shift_operators_t *w, gdouble D, guint level, guint L, gdouble k, gdouble *work)

Initialize singular-to-singular (regular-to-regular) translation operators.

• gint wbfmm_upward_pass (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gdouble *work)

Perform upward pass at one level of an octree.

 gint wbfmm_downward_pass (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gdouble *work)

Perform downward pass at one level of an octree.

• gint wbfmm_tree_box_field (wbfmm_tree_t *t, guint level, guint b, gdouble k, gdouble *x, gdouble *f, gdouble *work)

Evaluate singular expansion about a box centre.

gint wbfmm_tree_refine (wbfmm_tree_t *t)

Refine an existing octree by adding a level and redistributing points attached to the tree to the boxes at the new level.

- gint wbfmm_tree add level (wbfmm_tree_t *tree)
- gint wbfmm tree add points (wbfmm tree t *t, gpointer pts, guint npts, gsize stride)

Add points to an octree.

• guint64 **wbfmm_point_index_3d** (gdouble *x, gdouble *c, gdouble D)

Find Morton index for point in a cubic domain.

wbfmm_tree_t * wbfmm_tree_new (gdouble *x, gdouble D, guint maxpoints)

Allocate a new octree.

• gint wbfmm_tree_coefficient_init (wbfmm_tree_t *t, guint I, guint nr, guint ns)

Initialize expansion coefficient data in an octree.

• gint wbfmm_tree_leaf_expansions (wbfmm_tree_t *t, gdouble k, gdouble *src, gint sstr, gdouble *normals, gint nstr, gdouble *dipoles, gint dstr, gboolean zero_expansions, gdouble *work)

Generate leaf expansions for a tree.

• gint wbfmm_box_location_from_index (guint64 i, guint32 level, gdouble *x0, gdouble D, gdouble *x, gdouble *wb)

Find the coordinates of a box from its Morton index.

• gint **wbfmm_shift_angles** (gdouble *xi, gdouble *xj, gdouble *th, gdouble *ph, gdouble *ch, gdouble *r)

Compute angles and distance to shift expansion between two points.

• gint wbfmm_tree_write_sources (wbfmm_tree_t *t, gdouble *q, gint stride, FILE *f)

Write a tree source list to file.

• gint wbfmm_cartesian_to_spherical_f (gfloat *x0, gfloat *x, gfloat *r, gfloat *th, gfloat *ph)

Convert Cartesian to spherical coordinates (r, θ, ϕ) .

gint wbfmm_shift_coordinates_f (gfloat *x, gfloat *y, gfloat *ix, gfloat *iy, gfloat *iz, gfloat *r)

Find system of axes for coordinate shift.

• gint wbfmm legendre recursion array f (gfloat **Pnm1, gfloat **Pn, gint n, gfloat C, gfloat S)

Perform recursion on normalized associated Legendre functions.

gint wbfmm_bessel_j_recursion_f (gfloat *jnm1, gfloat *jn, gfloat x, gint n)

Perform recursion on spherical Bessel function $j_n(x)$.

• gint wbfmm bessel h recursion f (gfloat *hnm1, gfloat *hn, gfloat x, gint n)

Perform one step of spherical Hankel recursion.

gint wbfmm_bessel_j_init_f (gfloat x, gfloat *j0, gfloat *j1)

Initialize the spherical Bessel function recursion.

gint wbfmm_bessel_h_init_f (gfloat x, gfloat *h0, gfloat *h1)

Initialize spherical Hankel function recursion.

• gint $wbfmm_legendre_init_f$ (gfloat C, gfloat S, gfloat *P0, gfloat *P10, gfloat *P11)

Initialize normalized associated Legendre functions.

gint wbfmm_expansion_h_cfft_f (gfloat k, gint N, gfloat *x0, gfloat *xs, gfloat *q, gfloat *cfft, gint cstr, gfloat *work)

Generation of singular expansion coefficients for point source.

• gint **wbfmm_expansion_dipole_h_cfft_f** (gfloat k, gint N, gfloat *x0, gfloat *xs, gfloat *fx, gfloat *fy, gfloat *fx, gfloat *stx, gfloat *fx, gfloa

Generation of singular expansion coefficients for point dipole source.

• gint wbfmm_expansion_h_evaluate_f (gfloat k, gfloat *x0, gfloat *cfft, gint cstr, gint N, gfloat *xf, gfloat *field, gfloat *work)

82 File Documentation

Evaluate a singular expansion.

• gint wbfmm_expansion_j_evaluate_f (gfloat k, gfloat *x0, gfloat *cfft, gint cstr, gint N, gfloat *xf, gfloat *field, gfloat *work)

Evaluate a regular expansion.

• gint **wbfmm_total_dipole_field_f** (gfloat k, gfloat *xs, gint xstride, gfloat *src, gint sstride, gint nsrc, gfloat *xf, gfloat *field)

Compute total field from dipole sources by direct evaluation.

• gint wbfmm_coordinate_transform_f (gfloat *x, gfloat *ix, gfloat *iy, gfloat *iz, gfloat *y)

Transform coordinates to rotated axes.

gint wbfmm coefficients RR coaxial f (gfloat *cfftRR, gint L, gfloat kr, gfloat *work)

Generate coefficients for coaxial regular-to-regular translation.

gint wbfmm_coefficients_SR_coaxial_f (gfloat *cfftSR, gint L, gfloat kr, gfloat *work)

Generate coefficients for coaxial singular-to-regular translation.

• gint **wbfmm_rotation_angles_f** (gfloat *ix, gfloat *ix, gfloat *ix, gfloat *jx, gfloat *jx, gfloat *jx, gfloat *jx, gfloat *th, gfloat *ph, gfloat *ch)

Compute the rotation angles (θ, ϕ, χ) between axes.

• gint wbfmm_coefficients_H_rotation_f (gfloat *H, gint N, gfloat th, gfloat *work)

Compute rotation coefficients for angle θ .

• guint64 wbfmm_point_index_3d_f (gfloat *x, gfloat *c, gfloat D)

Find Morton index for point in a cubic domain.

• wbfmm_tree_t * wbfmm_tree_new_f (gfloat *x, gfloat D, guint maxpoints)

Allocate a new octree.

• gint wbfmm tree coefficient init f (wbfmm tree t *t, guint I, guint nr, guint ns)

Initialize expansion coefficient data in an octree.

• gint wbfmm_tree_leaf_expansions_f (wbfmm_tree_t *t, gfloat k, gfloat *src, gint sstr, gfloat *normals, gint nstr, gfloat *dipoles, gint dstr, gboolean zero_expansions, gfloat *work)

Generate leaf expansions for a tree.

gint wbfmm_tree_refine_f (wbfmm_tree_t *t)

Refine an existing octree by adding a level and redistributing points attached to the tree to the boxes at the new level.

• gint wbfmm_tree_add_points_f (wbfmm_tree_t *t, gpointer pts, guint npts, gsize stride)

Add points to an octree.

- gint wbfmm_box_location_from_index_f (guint64 i, guint32 level, gfloat *x0, gfloat D, gfloat *x, gfloat *wb)

 Find the coordinates of a box from its Morton index.
- gint wbfmm_child_parent_shift_f (gfloat *Cp, gint Np, gfloat *Cc, gint Nc, gfloat *H03, gfloat *H47, gint Lh, gfloat *shift, gint Ls, gfloat *work)

Upward shift of singular expansion from eight children to common parent.

• gint wbfmm_parent_child_shift_f (gfloat *Cc, gint Nc, gfloat *Cp, gint Np, gfloat *H03, gfloat *H47, gint Lh, gfloat *shift, gint Ls, gfloat *work)

Downward shift of parent expansion to child box centres.

gint wbfmm_shift_angles_list4_f (gint i, gint j, gint k, gfloat *th, gfloat *ph, gfloat *ch, gfloat *rs)

Extract the rotation angles for boxes on interaction list 4.

• gint wbfmm_shift_angles_f (gfloat *xi, gfloat *xj, gfloat *th, gfloat *ph, gfloat *ch, gfloat *r)

Compute angles and distance to shift expansion between two points.

gint wbfmm_tree_write_sources_f (wbfmm_tree_t *t, gfloat *q, gint stride, FILE *f)

Write a tree source list to file.

• gint wbfmm shift angle table init f (void)

Initialize table of angles for shift operations.

wbfmm_shift_operators_t * wbfmm_shift_operators_new_f (guint L, gfloat *work)

Allocate shift operators and initialize rotations.

• gint wbfmm_upward_pass_f (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gfloat *work)

Perform upward pass at one level of an octree.

gint wbfmm_downward_pass_f (wbfmm_tree_t *t, wbfmm_shift_operators_t *op, guint level, gfloat *work)

Perform downward pass at one level of an octree.

• gint wbfmm_tree_box_field_f (wbfmm_tree_t *t, guint level, guint b, gfloat k, gfloat *x, gfloat *f, gfloat *work)

Evaluate singular expansion about a box centre.

- guint64 wbfmm_box_index (guint32 i, guint32 j, guint32 k)
- gint wbfmm_box_location (guint64 idx, guint32 *i, guint32 *j, guint32 *k)

7.2.1 Detailed Description

Header for Wide Band FMM library.

Author

Michael Carley ensmjc@rpc-ensmjc.bath.ac.uk

Date

Mon Jun 24 10:28:46 2019

84 File Documentation

Index

```
hoxes
                                                          wbfmm laplace coaxial translate init, 60
    wbfmm target list t, 71
                                                          wbfmm laplace coaxial translate init f, 60
    wbfmm tree t, 72
                                                          wbfmm laplace expansion apply, 63
Boxes and octrees, 9
                                                          wbfmm laplace expansion apply f, 63
    WBFMM_PROBLEM_HELMHOLTZ, 10
                                                          wbfmm_laplace_expansion_cfft, 64
    WBFMM_PROBLEM_LAPLACE, 10
                                                          wbfmm_laplace_expansion_cfft_f, 64
    wbfmm point index 3d, 11
                                                          wbfmm laplace expansion local evaluate, 64
    wbfmm_point_index_3d_f, 12
                                                          wbfmm_laplace_expansion_local_evaluate_f, 65
    wbfmm_problem_t, 10
                                                          wbfmm_laplace_field, 65
    wbfmm tree add level, 12
                                                          wbfmm laplace field coefficients, 65
    wbfmm tree add points, 12
                                                          wbfmm laplace field coefficients f, 65
    wbfmm tree add points f, 13
                                                          wbfmm laplace field f, 65
    wbfmm tree box field, 13
                                                          wbfmm laplace local coefficients, 66
    wbfmm tree box field f, 13
                                                          wbfmm laplace local coefficients f, 66
    wbfmm tree box local field, 14
                                                          wbfmm_laplace_parent_child_shift, 66
    wbfmm_tree_box_local_field_f, 14
                                                          wbfmm laplace parent child shift f, 67
    wbfmm_tree_coefficient_init, 14
    wbfmm tree coefficient init f, 15
                                                      Generation and evaluation of expansions, 27
    wbfmm_tree_laplace_box_local_field, 15
                                                          wbfmm expansion dipole h cfft, 27
                                                          wbfmm_expansion_dipole_h_cfft_f, 28
    wbfmm tree laplace box local field f, 15
    wbfmm tree laplace leaf expansions, 16
                                                          wbfmm expansion h cfft, 28
                                                          wbfmm expansion h cfft f, 29
    wbfmm tree laplace leaf expansions f, 16
                                                          wbfmm expansion h evaluate, 29
    wbfmm_tree_leaf_expansions, 17
                                                          wbfmm_expansion_h_evaluate_f, 29
    wbfmm tree leaf expansions f, 18
                                                          wbfmm_expansion_j_evaluate, 30
    wbfmm tree new, 18
    wbfmm_tree_new_f, 19
                                                          wbfmm expansion j evaluate f, 30
                                                      grad
    wbfmm_tree_refine, 19
                                                          wbfmm_target_list_t, 71
    wbfmm_tree_refine_f, 19
                                                      i
cfft
                                                          wbfmm box t, 69
    wbfmm target list t, 71
                                                      Indexing and lookup operations, 68
D
                                                          wbfmm box index, 68
    wbfmm_tree_t, 72
                                                          wbfmm box location, 68
depth
                                                      ip
    wbfmm tree t, 72
                                                          wbfmm_target_list_t, 71
                                                          wbfmm_tree_t, 72
Evaluation of the Laplace potential, 56
    wbfmm box fields laplace, 57
                                                      L
    wbfmm box fields laplace f, 58
                                                          wbfmm shift operators t, 70
    wbfmm expansion laplace evaluate, 58
    wbfmm_expansion_laplace_evaluate_f, 58
                                                      maxpoints
                                                          wbfmm target list t, 71
    wbfmm laplace child parent shift, 59
    wbfmm laplace child parent shift f, 59
                                                          wbfmm tree t, 73
                                                      mpr
    wbfmm laplace coaxial translate RR, 60
    wbfmm laplace coaxial translate RR f, 61
                                                          wbfmm box t, 69
    wbfmm laplace coaxial translate SR, 61
                                                          wbfmm tree t, 73
    wbfmm laplace coaxial translate SR f, 62
                                                      mps
    wbfmm_laplace_coaxial_translate_SS, 62
                                                          wbfmm_box_t, 69
    wbfmm_laplace_coaxial_translate_SS_f, 62
                                                          wbfmm_tree_t, 73
```

n	wbfmm_target_list_t, 72
wbfmm_box_t, 69	Translation operators, 40
nc	wbfmm_coaxial_translate, 40
wbfmm_target_list_t, 71	wbfmm_coaxial_translate_f, 41
nerot	wbfmm coefficients RR coaxial, 41
wbfmm_shift_operators_t, 70	wbfmm coefficients RR coaxial f, 41
nlevels	wbfmm_coefficients_SR_coaxial, 42
wbfmm_shift_operators_t, 70	wbfmm_coefficients_SR_coaxial_f, 42
npoints	tree.c, 75
wbfmm target list t, 71	1100.0, 70
wbfmm_target_ist_t, 71 wbfmm_tree_t, 73	Upward and downward passes, 31
	wbfmm_downward_pass, 31
nq	wbfmm_downward_pass_f, 32
wbfmm_tree_t, 73	wbfmm_laplace_downward_pass, 32
order_r	_ ·
	wbfmm_laplace_downward_pass_f, 32
wbfmm_tree_t, 73	wbfmm_laplace_upward_pass, 33
order_s	wbfmm_laplace_upward_pass_f, 33
wbfmm_tree_t, 73	wbfmm_upward_pass, 33
points	wbfmm_upward_pass_f, 34
wbfmm_target_list_t, 71	Utility and convenience functions, 43
_ ·	wbfmm_bessel_h_init, 44
wbfmm_tree_t, 73	wbfmm_bessel_h_init_f, 44
pstr	wbfmm_bessel_h_recursion, 45
wbfmm_tree_t, 73	wbfmm_bessel_h_recursion_f, 45
Detaking an efficients and according OF	wbfmm bessel j init, 45
Rotation coefficients and operations, 35	wbfmm bessel j init f, 46
wbfmm_coefficients_H_rotation, 35	wbfmm bessel j recursion, 46
wbfmm_coefficients_H_rotation_f, 36	wbfmm_bessel_j_recursion_f, 46
wbfmm_laplace_rotate_H, 36	wbfmm_box_location_from_index, 47
wbfmm_laplace_rotate_H_f, 36	wbfmm_box_location_from_index_f, 47
wbfmm_rotate_H, 37	wbimin_box_location_from_fridex_1, 47 wbfmm_cartesian_to_spherical, 47
wbfmm_rotate_H_f, 37	
wbfmm_rotation_angles, 38	wbfmm_cartesian_to_spherical_f, 48
wbfmm_rotation_angles_f, 38	wbfmm_coordinate_transform, 48
rotations	wbfmm_coordinate_transform_f, 48
wbfmm_shift_operators_t, 70	wbfmm_legendre_init, 49
,	wbfmm_legendre_init_f, 49
SR	wbfmm_legendre_recursion_array, 49
wbfmm_shift_operators_t, 70	wbfmm_legendre_recursion_array_f, 50
SS	wbfmm_points_origin_width, 50
wbfmm_shift_operators_t, 70	wbfmm_points_origin_width_f, 50
Shift operations, 20	wbfmm_shift_angles, 51
wbfmm_child_parent_shift, 21	wbfmm_shift_angles_f, 51
wbfmm_child_parent_shift_f, 21	wbfmm shift coordinates, 51
wbfmm parent child shift, 21	wbfmm shift coordinates f, 52
wbfmm parent child shift f, 22	wbfmm total dipole field, 52
wbfmm_shift_angle_table_init, 22	wbfmm_total_dipole_field_f, 52
wbfmm_shift_angle_table_init_f, 23	wbfmm total field, 53
	wbfmm_total_field_f, 53
wbfmm_shift_angles_list4, 23	wbfmm tree box centre, 54
wbfmm_shift_angles_list4_f, 23	:
wbfmm_shift_operators_coaxial_SR_init, 2	
wbfmm_shift_operators_coaxial_SS_init, 2	
wbfmm_shift_operators_new, 25	wbfmm_tree_write_sources_f, 54
wbfmm_shift_operators_new_f, 25	WDEMM DDODLEM HELMHOLTZ
size	WBFMM_PROBLEM_HELMHOLTZ
wbfmm_shift_operators_t, 70	Boxes and octrees, 10
wbfmm_target_list_t, 71	WBFMM_PROBLEM_LAPLACE
wbfmm_tree_t, 73	Boxes and octrees, 10
	wbfmm.h, 75
t	wbfmm_bessel_h_init

Utility and convenience functions, 44	wbfmm_coordinate_transform_f
wbfmm_bessel_h_init_f	Utility and convenience functions, 48
Utility and convenience functions, 44	wbfmm_downward_pass
wbfmm_bessel_h_recursion	Upward and downward passes, 31
Utility and convenience functions, 45	wbfmm_downward_pass_f
wbfmm_bessel_h_recursion_f	Upward and downward passes, 32
Utility and convenience functions, 45	wbfmm_expansion_dipole_h_cfft
wbfmm_bessel_j_init	Generation and evaluation of expansions, 27
Utility and convenience functions, 45	wbfmm_expansion_dipole_h_cfft_f
wbfmm_bessel_j_init_f	Generation and evaluation of expansions, 28
Utility and convenience functions, 46	wbfmm_expansion_h_cfft
wbfmm_bessel_j_recursion	Generation and evaluation of expansions, 28
Utility and convenience functions, 46	wbfmm_expansion_h_cfft_f
wbfmm_bessel_j_recursion_f	Generation and evaluation of expansions, 29
Utility and convenience functions, 46	wbfmm_expansion_h_evaluate
wbfmm_box_fields_laplace	Generation and evaluation of expansions, 29
Evaluation of the Laplace potential, 57	wbfmm_expansion_h_evaluate_f
wbfmm_box_fields_laplace_f	Generation and evaluation of expansions, 29
Evaluation of the Laplace potential, 58	wbfmm_expansion_j_evaluate
wbfmm_box_index	Generation and evaluation of expansions, 30
Indexing and lookup operations, 68	wbfmm_expansion_j_evaluate_f
wbfmm_box_location	Generation and evaluation of expansions, 30
Indexing and lookup operations, 68	wbfmm_expansion_laplace_evaluate
wbfmm_box_location_from_index	Evaluation of the Laplace potential, 58
Utility and convenience functions, 47	wbfmm_expansion_laplace_evaluate_f
wbfmm_box_location_from_index_f	Evaluation of the Laplace potential, 58
Utility and convenience functions, 47	wbfmm_laplace_child_parent_shift
wbfmm_box_t, 69	Evaluation of the Laplace potential, 59
i, 69	wbfmm_laplace_child_parent_shift_f
mpr, 69	Evaluation of the Laplace potential, 59
mps, 69	wbfmm_laplace_coaxial_translate_RR
n, 69	Evaluation of the Laplace potential, 60
wbfmm_cartesian_to_spherical	wbfmm_laplace_coaxial_translate_RR_f
Utility and convenience functions, 47	Evaluation of the Laplace potential, 61
wbfmm_cartesian_to_spherical_f	wbfmm_laplace_coaxial_translate_SR
Utility and convenience functions, 48	Evaluation of the Laplace potential, 61
wbfmm child parent shift	wbfmm_laplace_coaxial_translate_SR_f
Shift operations, 21	Evaluation of the Laplace potential, 62
wbfmm_child_parent_shift_f	wbfmm_laplace_coaxial_translate_SS
Shift operations, 21	Evaluation of the Laplace potential, 62
wbfmm_coaxial_translate	wbfmm laplace coaxial translate SS f
Translation operators, 40	Evaluation of the Laplace potential, 62
•	·
wbfmm_coaxial_translate_f Translation operators, 41	wbfmm_laplace_coaxial_translate_init
•	Evaluation of the Laplace potential, 60
wbfmm_coefficients_H_rotation	wbfmm_laplace_coaxial_translate_init_f
Rotation coefficients and operations, 35	Evaluation of the Laplace potential, 60
wbfmm_coefficients_H_rotation_f	wbfmm_laplace_downward_pass
Rotation coefficients and operations, 36	Upward and downward passes, 32
wbfmm_coefficients_RR_coaxial	wbfmm_laplace_downward_pass_f
Translation operators, 41	Upward and downward passes, 32
wbfmm_coefficients_RR_coaxial_f	wbfmm_laplace_expansion_apply
Translation operators, 41	Evaluation of the Laplace potential, 63
wbfmm_coefficients_SR_coaxial	wbfmm_laplace_expansion_apply_f
Translation operators, 42	Evaluation of the Laplace potential, 63
wbfmm_coefficients_SR_coaxial_f	wbfmm_laplace_expansion_cfft
Translation operators, 42	Evaluation of the Laplace potential, 64
wbfmm_coordinate_transform	wbfmm_laplace_expansion_cfft_f
Utility and convenience functions, 48	Evaluation of the Laplace potential, 64

wbfmm_laplace_expansion_local_evaluate	wbfmm_shift_angle_table_init
Evaluation of the Laplace potential, 64	Shift operations, 22
wbfmm_laplace_expansion_local_evaluate_f	wbfmm_shift_angle_table_init_f
Evaluation of the Laplace potential, 65	Shift operations, 23
wbfmm_laplace_field	wbfmm_shift_angles
Evaluation of the Laplace potential, 65	Utility and convenience functions, 51
wbfmm_laplace_field_coefficients	wbfmm_shift_angles_f
Evaluation of the Laplace potential, 65	Utility and convenience functions, 51
wbfmm_laplace_field_coefficients_f	wbfmm_shift_angles_list4
Evaluation of the Laplace potential, 65	Shift operations, 23
wbfmm_laplace_field_f	wbfmm_shift_angles_list4_f
Evaluation of the Laplace potential, 65	Shift operations, 23
wbfmm_laplace_local_coefficients	wbfmm_shift_coordinates
Evaluation of the Laplace potential, 66	Utility and convenience functions, 51
wbfmm_laplace_local_coefficients_f	wbfmm_shift_coordinates_f
Evaluation of the Laplace potential, 66	Utility and convenience functions, 52
wbfmm_laplace_parent_child_shift	wbfmm_shift_operators_coaxial_SR_init
Evaluation of the Laplace potential, 66	Shift operations, 24
wbfmm_laplace_parent_child_shift_f	wbfmm_shift_operators_coaxial_SS_init
Evaluation of the Laplace potential, 67	Shift operations, 24, 25
wbfmm_laplace_rotate_H	wbfmm_shift_operators_new
Rotation coefficients and operations, 36	Shift operations, 25
wbfmm_laplace_rotate_H_f	wbfmm_shift_operators_new_f
Rotation coefficients and operations, 36	Shift operations, 25
wbfmm_laplace_upward_pass	wbfmm_shift_operators_t, 69
Upward and downward passes, 33	L, 70
wbfmm_laplace_upward_pass_f	
	nerot, 70
Upward and downward passes, 33	nlevels, 70
wbfmm_legendre_init	rotations, 70
Utility and convenience functions, 49	SR, 70
wbfmm_legendre_init_f	SS, 70
Utility and convenience functions, 49	size, 70
wbfmm_legendre_recursion_array	wbfmm_target_list_t, 70
Utility and convenience functions, 49	boxes, 71
wbfmm_legendre_recursion_array_f	cfft, 71
Utility and convenience functions, 50	grad, 71
wbfmm_parent_child_shift	ip, 71
Shift operations, 21	maxpoints, 71
wbfmm_parent_child_shift_f	nc, 71
Shift operations, 22	npoints, 71
wbfmm_point_index_3d	points, 71
Boxes and octrees, 11	size, 71
wbfmm_point_index_3d_f	t, 72
Boxes and octrees, 12	wbfmm_total_dipole_field
wbfmm_points_origin_width	Utility and convenience functions, 52
Utility and convenience functions, 50	wbfmm_total_dipole_field_f
wbfmm_points_origin_width_f	Utility and convenience functions, 52
Utility and convenience functions, 50	wbfmm_total_field
wbfmm_problem_t	Utility and convenience functions, 53
Boxes and octrees, 10	wbfmm_total_field_f
wbfmm_rotate_H	
	Utility and convenience functions, 53
Rotation coefficients and operations, 37	wbfmm_tree_add_level
wbfmm_rotate_H_f	Boxes and octrees, 12
Rotation coefficients and operations, 37	wbfmm_tree_add_points
wbfmm_rotation_angles	Boxes and octrees, 12
Rotation coefficients and operations, 38	wbfmm_tree_add_points_f
wbfmm_rotation_angles_f	Boxes and octrees, 13
Rotation coefficients and operations, 38	wbfmm tree box centre

Х

Utility and convenience functions, 54 wbfmm tree box centre f Utility and convenience functions, 54 wbfmm_tree_box_field Boxes and octrees, 13 wbfmm_tree_box_field_f Boxes and octrees, 13 wbfmm tree box local field Boxes and octrees, 14 wbfmm_tree_box_local_field_f Boxes and octrees, 14 wbfmm_tree_coefficient_init Boxes and octrees, 14 wbfmm_tree_coefficient_init_f Boxes and octrees, 15 wbfmm_tree_laplace_box_local_field Boxes and octrees, 15 wbfmm tree laplace box local field f Boxes and octrees, 15 wbfmm_tree_laplace_leaf_expansions Boxes and octrees, 16 wbfmm_tree_laplace_leaf_expansions_f Boxes and octrees, 16 wbfmm tree leaf expansions Boxes and octrees, 17 wbfmm_tree_leaf_expansions_f Boxes and octrees, 18 wbfmm_tree_new Boxes and octrees, 18 wbfmm_tree_new_f Boxes and octrees, 19 wbfmm_tree_refine Boxes and octrees, 19 wbfmm tree refine f Boxes and octrees, 19 wbfmm_tree_t, 72 boxes, 72 D, 72 depth, 72 ip, 72 maxpoints, 73 mpr, 73 mps, 73 npoints, 73 nq, 73 order r, 73 order_s, 73 points, 73 pstr, 73 size, 73 x, 73 wbfmm tree write sources Utility and convenience functions, 54 wbfmm_tree_write_sources_f Utility and convenience functions, 54 wbfmm_upward_pass Upward and downward passes, 33

Upward and downward passes, 34

wbfmm_tree_t, 73

wbfmm_upward_pass_f