

Nội dung

- Các khái niệm
- Định lý Jackson
- KIA
- Định lý Burke

Các khái niệm (1)

- λ :Tổng tốc độ đến trung bình vào mạng
- μ_i : tốc độ phục vụ trung bình của điểm phục vụ thứ i
- r_{sj} : xác suất khách hàng đến từ nguồn sẽ được định tuyến vào hàng đợi thứ j

Các khái niệm (2)

- r_{jd} : xác suất khách hàng xuất phát từ hàng đợi j sẽ được chuyển đến đích (và rời khỏi hệ thống)
- r_{jk}: xác suất khách hàng xuất phát từ hàng đợi j sẽ được định tuyến đến hàng đợi k

5

Ví dụ

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

_

Các khái niệm (cont.)

- θ_i : thông lượng trung bình qua hàng đợi thứ i
- Ta có phương trình lưu lượng như sau:

$$\theta_i = \underbrace{\lambda r_{si}}_{from \ source} + \underbrace{\sum_{j=1}^{M} r_{ji} \theta_j}_{from \ queues}$$
, $i = 1, 2, ..., M$

Ví dụ 1 (1)

ullet Tìm thông lượng trung bình $heta_1$ và $heta_2$ đi qua hàng đợi

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ví dụ 1(2)

- $\theta_1 = \lambda + \frac{1}{4}\theta_1 + \frac{1}{2}\theta_2$ (1)
- $\bullet \ \theta_2 = \frac{3}{4} \theta_1 \ (2)$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ví dụ 1(3)

- Từ pt (1) ta có $\frac{3}{4}\theta_1 = \lambda + \frac{1}{2}\theta_2$
- Từ đó ta có θ_2 = $\lambda + \frac{1}{2}\theta_2$
- $\rightarrow \frac{1}{2}\theta_2 = \lambda$
- $\rightarrow \theta_2 = 2\lambda$
- Thay vào pt (2) ta có $\theta_1 = \frac{8}{3}\lambda$

Mạng hàng đợi Jackson

- Mạng hàng đợi Jackson (mạng hàng đợi mở)
- bao gồm các nút M (hàng đợi) :
 - Nút i là hàng đợi FIFO
 - không giới hạn số lượng vị tri chờ (hàng đợi vô hạn)
 - Thời gian phục vụ trong hàng đợi tuần theo phân phối Exp (μ_i)

11

Định lý Jackson (1)

- Số lượng trung bình của khách hàng trong hệ thống có thể được lấy được bằng cách coi mỗi hàng đợi như hàng đợi M/M/1
- Từ phân tích hàng đợi M/M/1 ta có

•
$$\Longrightarrow E(N_i) = \frac{\rho_i}{1 - \rho_i}$$

•
$$\Longrightarrow E(T_i) = \frac{1}{\theta_i} \left(\frac{\rho_i}{1 - \rho_i} \right) = \frac{1}{\mu_i - \theta_i}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Định lý Jackson(2)

•
$$\Longrightarrow E(N_{Mang}) = \sum_{i=1}^{M} \frac{\rho_i}{1-\rho_i}$$

•
$$\Longrightarrow E(T_{Mang}) = \frac{E(N_{Mang})}{\lambda}$$

•
$$\Longrightarrow E(T_{Mang}) = \frac{1}{\lambda} \sum_{i=1}^{M} \frac{\rho_i}{1 - \rho_i}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Định lý Jackson(3)

•
$$\Longrightarrow E(T_{Mang}) = \frac{1}{\lambda} \sum_{i=1}^{M} \frac{\rho_i}{1 - \rho_i}$$

•
$$\Longrightarrow E(T_{Mang}) = \sum_{i=1}^{M} \left(\frac{\theta_i}{\lambda}\right) \left(\frac{1}{\mu_i - \theta_i}\right)$$

- Tỷ lệ gói tại hàng đợi i 🖊
- Trễ tại hàng đợi I

Ví dụ 1 (4)(cont.)

- Với $\lambda=30 \frac{goi}{s} \ v \mbox{à} \ \mu_1=\mu_2=\frac{100 goi}{s}$
- Tìm số lượng trung bình gói trong mạng?
- Trễ trung bình qua mạng?

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ví dụ 1 (5)

- Với $\lambda=30\frac{goi}{s}$ và $\mu_1=\mu_2=\frac{100goi}{s}$
- $\rightarrow \theta_2 = 2\lambda = \frac{60gois}{s}$
- $\rightarrow \theta_1 = \frac{8}{3}\lambda = \frac{80\text{goi}}{\text{s}}$
- $\rightarrow \rho_1 = \frac{\theta_1}{\mu_1} = \frac{80}{100} = 0.8$
- $\bullet \to \rho_2 = \frac{\theta_2}{\mu_2} = \frac{60}{100} = 0.6$

Ví dụ 1 (6)

•
$$N_1 = \frac{\rho_1}{1 - \rho_1} = \frac{0.8}{1 - 0.8} = 4$$

•
$$N_2 = \frac{\rho_2}{1 - \rho_2} = \frac{0.6}{1 - 0.6} = 1.5$$

- Số lượng trung bình gói trong mạng
 - $N_{mang} = N_1 + N_2 = 5.5 (g \acute{o}i)$
- Trễ trung bình qua mạng

•
$$\rightarrow T_{mang} = \frac{Nmang}{\lambda} = \frac{5.5}{30} = 0.18s$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ví dụ 2(1)

- $\lambda_S = 50 \frac{g6i}{s}$ và $\mu_i = \mu \ với \ \forall \ hàng đợi$
- ullet Tìm điều kiện μ để mạng hàng đợi ổn định
- Với μ =100 tìm xác suất để không có khách hàng nào trong mạng

Ví dụ 2(2)

- $\theta_5 = 40\% \lambda = 20 \left(\frac{g \delta i}{s}\right)$
- $\theta_4 = \frac{1}{2}\theta_5 = 10 \left(\frac{g \delta i}{s}\right)$
- θ_1 = 0.6 λ + $\frac{1}{2}\theta_5$ + $\frac{1}{4}\theta_2$ = 40+ $\frac{1}{4}\theta_2$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

19

Ví dụ 2(3)

- $\theta_1 = 0.6\lambda + \frac{1}{2}\theta_5 + \frac{1}{4}\theta_2 = 40 + \frac{1}{4}\theta_2$ (1)
- $\theta_2 = \theta_1 + \theta_4 = \theta_1 + 10$ thay vào (1)

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ví dụ 2(4)

- $\frac{3}{4}\theta_2 = 50$
- $\theta_3 = \frac{3}{4}\theta_2 = 50 \ g\acute{o}i/s$

24

Ví dụ 2(5)

- ullet Tìm điều kiện μ để mạng hàng đợi ổn định
 - $\rho_i < 1$ với \forall hàng đợi
 - $\theta_i < \mu_i$ với \forall hàng đợi
 - $\rightarrow \mu$ $> \frac{200}{3}$
- Với μ =100 tìm xác suất để không có khách hàng nào trong mạng
- $P_{o\ c\'ua\ mang} = P_{o1}$. P_{o2} . P_{o3} . P_{o4} . P_{o5}
- $P_{o\ c\dot{u}a\ mang}$ = $(1-\rho_1)$. $(1-\rho_2)$. $(1-\rho_3)$. $(1-\rho_4)$. $(1-\rho_5) = \frac{13}{30}$. $\frac{1}{3}$. $0.5x\ 0.9x0.8 = 0.052$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ví dụ 3 (1)

• S_1 và S_2 với tốc độ tương ứng là 40 và 50 yêu cầu/giây. Thời gian phục vụ có giá trị trung bình là 5ms tại Q_1 , 6ms tại Q_2 , 4ms tại Q_3 , 7ms tại Q_4 , và 6ms giây tại Q_5 .

2

Ví dụ 3(2)

- Xác định giá trị x để tốc độ đến D_1 gấp đôi tốc độ đến D_2 . Tính tốc độ đến $\mathsf{D}1,\mathsf{D}2.$
- Với giá trị x nói trên, hãy tính chiều dài hàng đợi và tính trễ trung bình của gói qua mạng

Ví dụ 3 (4)

- $\theta_4 = \theta_2 + x\%(80\%\lambda_{S2} + \theta_3) = 40 + x\%50$ $\theta_5 = (100 - x)\%(80\%\lambda_{S2} + \theta_3) = (100 - x)\%50$
 - Vì $\lambda_{D1}=2$ x λ_{D2} nên ta có θ_4 =2. θ_5
 - 40 + x%50 = 2 (100-x)%50
 - 3x%50=1.5x=100-40=60
 - X=40

2

Ví dụ 4

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ví dụ 4 (1)

- Tính số chương trình trung bình nằm tại từng khối
- Tính thời gian đợi trung bình tại từng khối
- Tính xác suất để hệ thống ở trạng thái rỗi
- Tính xác suất để có 01 task ở khối bộ nhớ, 0 task ở khối CPU và 02 task ở khối I/O

2

Xấp xỉ độc lập Kleinrock

- Xấp xỉ độc lập Kleinrock (KIA: Kleinrock independence approximation)
 - Cung cấp giải pháp phân tích trễ trong mạng mang nhiều luồng gói.

KIA: Mô hình mạng (1)

- Các gói của mỗi luồng đi vào mạng tại nút nguồn đi theo đường đi cố định và duy nhất và đi ra tại điểm đích
- X_S là tốc độ gói đến của luồng S
- Tốc độ đến trên liên kết (I,j)

$$\lambda_{ij} = \sum_{\{s | (i,j) \in path(s)\}} x_s$$

31

KIA: Mô hình mạng (2)

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

KIA: Mô hình mạng (3)

- Có thể thay đổi để phù hợp với mạng dữ liệu.
- Các gói của cùng một luồng có thể đi những đường khác nhau.
- f_{ii}(s) là tỷ lệ gói của luồng s trên liên kết (I,j)
- Tốc độ đến trên liên kết (I,j)

$$\lambda_{ij} = \sum_{(i,j)} f_{ij}(s) x_s$$

33

KIA(2)

- Xấp xỉ độc lập Kleinrock (KIA: Kleinrock independence approximation)
 - Ghép nhiều luồng Poissons trên một đường truyền thì giữ nguyên được tính độc lập giữa các tốc độ đến và thời gian giữa các khoảng đến

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

KIA (3)

- $\frac{1}{\mu_{ij}}$ là thời gian truyền trung bình trên liên kết (I,j)
- Số gói trung bình trên liên kết (i.j)

$$N_{ij} = \frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}}$$

35

KIA(4)

• Số gói trung bình trong hệ thống

$$N = \sum_{(i,j)} N_{ij} = \sum_{(i,j)} \frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}}$$

KIA(5)

• Gọi γ là tốc độ đến tổng của hệ thống trong đó $\mathbf{x_S}$ là tốc độ gói đến của luồng s

37

KIA(6)

• Sử dụng định luật Little ta có trễ gói trung bình trong hệ thống là

$$T = \frac{1}{\gamma}N = \frac{1}{\gamma}\sum_{(i,j)}\frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

KIA(7)

• Công thức trên có thể được viết lại phư cau

$$T = \frac{1}{\gamma}N = \frac{1}{\gamma}\sum_{(i,j)}\frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}}$$

$$T = \sum_{(i,j)} \left(\frac{\lambda_{ij}}{\gamma}\right) \left(\frac{1}{\mu_{ij} - \lambda_{ij}}\right) = \sum_{(i,j)} \alpha_{ij} T_{ij}$$

• Trong đó T_{ij} là trễ tại liên kết (i,j) và α_{ij} là tỷ lệ của lưu lượng hệ thống đi qua liên kết (i,j)

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

20

KIA(8)

- Trễ gói trung bình sẽ thay đổi nếu như ta tính thêm trễ lan truyền d_{ij} trên liên kết (i,j)
- Từ $T = \sum_{(i,j)} \, \alpha_{ij} \, T_{ij}$
- $\rightarrow T = \sum_{(i,j)} \alpha_{ij} (T_{ij} + d_{ij})$

$$T = \frac{1}{\gamma} \sum_{(i,j)} \left(\frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}} + \lambda_{ij} d_{ij} \right)$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

KIA(9)

• Trễ gói trung bình của luồng theo đường p

$$T_{p} = \sum_{(i,j)\in p} \left(W_{ij} + \frac{1}{\mu_{ij}} + d_{ij} \right)$$
$$= \sum_{(i,j)\in p} \left(\frac{\rho_{ij}}{\mu_{ij} - \lambda_{ij}} + \frac{1}{\mu_{ij}} + d_{ij} \right)$$

- W_{ij} là thời gian đợi tại liên kết (i,j)
- ho_{ij} là độ sử dụng của liên kết (i,j), $ho_{ij}=rac{\lambda_{ij}}{\mu_{ij}}$

41

Ví dụ KIA(1)

Stream	Xs	S	$ \mathbf{D} $
1	1	A	C
2	2	A	D
3	1	В	A
4	3	В	D
5	3	C	A
6	1	C	D
7	1	C	D
8	2	D	A
9	2	D	A
10	3	D	C

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Định lý Burke

- Xem xét hàng đợi M/M/1, M/M/m hay M/M/∞ ở trạng thái ổn định với tốc độ đến λ thì ta có
 - Tiến trình đi là Poisson với tốc độ λ
 - Tại mỗi thời điểm t, số lượng khách hàng trong hệ thống là độc lập với các thời gian rời khỏi hệ thống trước thời điểm t.

45

TRÂN TRỌNG CẢM ƠN!

..