

Redes Neurais Artificiais

Professora: Anita Maria da Rocha Fernandes Mestrando: Luiz Henrique A. Salazar

Agenda

Parte Teórica

- Introdução
- História das RNAs
- Conceitos Básicos

Parte Prática

- Tensores
- Datasets

Parte Teórica

Redes Neurais Artificiais se fundamentam nos estudos sobre a estrutura do **cérebro humano** para tentar emular sua forma inteligente de processar informações.

Apesar de se desconhecer a maneira pela qual o cérebro manipula informações complexas, sabe-se que a **modelagem do conhecimento** contido em um problema específico pode ser representada através de **interconexões** entre células nervosas.

Estruturalmente, a rede neural artificial, também conhecida por **modelo conexionista** de computação, se assemelha à rede neural biológica pela composição de seus **neurônios** e pela **conexão** entre eles.

Redes Neurais Artificiais são **técnicas computacionais** que apresentam um modelo matemático inspirado na estrutura neural de organismos inteligentes e que adquirem **conhecimento** através da **experiência**.

Uma grande rede neural artificial pode ter **centenas ou milhares** de unidades de processamento; já o cérebro de um mamífero pode ter **muitos bilhões** de neurônios.

Um modelo conexionista é uma estrutura de processamento de informações **distribuída** e **paralela**.

Ela é formada por unidades de processamento, comumente chamadas **neurônios**, interconectadas por arcos unidirecionais, também chamados de **conexões**.

Todo o processamento que se realiza em cada unidade deve ser completamente **local**, isto é, deve depender apenas dos valores correntes dos **sinais de entrada** que chegam dos neurônios através das conexões.

Podemos dizer que as RNAs são sistemas paralelos e distribuídos compostos por unidades de processamento que calculam determinadas funções matemáticas, normalmente não lineares, dispostas em uma ou várias camadas que estão interligadas por diversas conexões, normalmente unidirecionais.

A capacidade das RNAs está associada a capacidade de aprender através de um conjunto de exemplos, fornecendo respostas coerentes para dados desconhecidos, o que a torna uma ferramenta computacional poderosa e eficaz na solução de problemas complexos.

Um modelo de operação para as unidades de processamento pode ser resumido da seguinte maneira:

- Sinais são apresentados na entrada;
- Cada sinal é multiplicado por um peso que indica sua influência na saída;

- É realizada uma **soma** ponderada dos sinais que produz um **nível de atividade**; e
- Se este nível de atividade exceder certo limite a unidade de processamento produz uma determinada resposta.

História das Redes Neurais

 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010

 1943

Modelo computacional inspirado no **cérebro humano** de forma realista.

Warren Mcculloch Neurocientista "A logical calculus of the ideas immanent in nervous activity" (1943)

Analogia entre as células nervosas e o **processo eletrônico**.

Walter Pitts Matemático

Redes neurais são inspiradas no cérebro humano. Sua unidade básica é o **neurônio**, composto por três partes principais:

- 1. **Dendritos**: Recebem sinais de outros neurônios.
- 2. **Corpo**: Processa os sinais recebidos do próprio neurônio.
- Axônio: Transmite o sinal para outros neurônios. Sua ativação depende da força do sinal - pode ou não ativar, depende do estímulo que ele recebe.

Primeira representação artificial do neurônio (modelo *McCulloch-Pitts*):

- **Dendrito**: Recebe as entradas $x_1, x_2, ..., x_n$.
- **Corpo**: Função **g** agrega as entradas.
 - Agregação simples com somatório das entradas $x_1 + x_2 + ... + x_n$.
- Axônio: Função f decide a ativação do neurônio de acordo com a saída de g.
 - o g(x) > limiar; ativa o neurônio.

O neurônio de *McCulloch-Pitts* é binário, com poucos neurônios e sem técnica de retropropagação para ajustar os pesos.

Com o ajuste do limiar de **f**, era possível realizar diferentes funções. Considerando que todas as entradas e saída são *booleanos*, os exemplos mais comuns são as funções *booleanas*:

 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010

 1943

• **AND**: ativa se a soma $g(x) \ge 3$. Todos os inputs iguais a 1.

• **OR**: ativa se a soma $g(x) \ge 1$, ou seja, $x_1 = 1$ **ou** $x_2 = 1$ **ou** $x_3 = 1$.

Perceptron

1940 1950 1960 1970 1980 1990 2000 2010

1958

Frank Rosenblatt propõe uma versão melhorada do modelo neural, em que associa-se um peso \mathbf{w}_i a cada entrada \mathbf{x}_i . De acordo com o problema em questão, os pesos são **otimizados**.

Introduz o **aprendizado** nos modelos neurais através do **Perceptron**!

"It's the first machine which is capable of having an original idea"

Frank RosenblattEspecialista em Psicologia Cognitiva

Perceptron

1940 1950 1960 1970 1980 1990 2000 2010

1958

Na prática, o modelo era um *hardware* que implementava uma rede de *perceptrons* para realizar a classificação de **padrões** visuais.

Cada conexão do neurônio era um **potenciômetro**, que permitia determinada tensão passar. Então, se o potenciômetro estivesse **mais solto** (passava mais tensão), ele dava um **peso maior** para aquela conexão.

Perceptron

Mark I Perceptron em exposição no Smithsonian museum, Estados Unidos.

Limitação do Perceptron

Para o perceptron funcionar adequadamente, as duas classes devem ser *linearmente separáveis*, ou seja:

Perceptrons só aprendem funções lineares - retas!

Logo, funções mais complexas (**não lineares**) não podem ser resolvidas com um perceptron.

(a) Par de padrões linearmente separáveis.(b) Par de padrões não linearmente separáveis.

Limitação do Perceptron

1940 1950 1960 1970 1980 1990 2000 2010

1969

Marvin Minsky Cientista Cognitivo

Seymour Papert Cientista da Computação

Limitação do Perceptron

Escreveram o **livro** "Perceptron" em que são destacadas as já conhecidas limitações dos perceptron e das redes neurais.

Problemas de classificação linear:

Problemas de regressão linear:

Problema do XOR

Operação lógica do **ou exclusivo (XOR)** representa a categoria de problemas que um perceptron não consegue resolver.

É verdadeiro quando os eventos diferem e são falsos quando os eventos são iguais.

Não existe reta que separa as duas classes. **Função não-linear!**

Problema do XOR

Inverno da IA

Desde a popularização do livro do Minsky e do Papert, se iniciou o "**Inverno da IA**" que durou até 1986..

- Era de poucas novidades;
- Cortes nos investimentos e
- Baixa atenção à área.

Multi-Layer Perceptron e Backpropagation

1940 1950 1960 1970 1980 1990 2000 2010

1986

Novo método de aprendizado: o Backpropagation.

Permite que rede com **múltiplas camadas** de perceptron (Multi-Layer Perceptron) aprendam funções mais complexas, como as <u>não lineares</u>.

Aprendizado **profundo** com múltiplas camadas.

Geoffrey Hinton Cientista da Computação

Multi-Layer Perceptron e Backpropagation

Novo método de aprendizado: o **Backpropagation**.

Permite que rede com **múltiplas camadas** de perceptron (Multi-Layer Perceptron) aprendam funções mais complexas, como as <u>não lineares</u>.

Aprendizado **profundo** com múltiplas camadas.

Solução do problema do XOR com MLP

Teorema da Aproximação Universal

Na mesma época foi postulado o **Teorema da Aproximação Universal.**

"Uma rede neural feed forward* com apenas uma camada (escondida) é suficiente para **representar qualquer função**, mas a camada pode ser inviavelmente grande e pode falhar em aprender e generalizar corretamente."

Logo, **teoricamente**, se existe uma função também existe uma rede que a resolve.

^{*} uma rede neural simples, da entrada para a saída

Teorema da Aproximação Universal

Entretanto.. naquela época **não era possível** validar o teorema na prática, devido a alguns problemas:

- Grande modelos neurais são computacionalmente custosos.
 - Não havia hardwares suficientes para processar.
- Um grande volume de dados é necessário para treinar os modelos.
 - Não haviam dados em abundância para treinar os modelos.

Deep Learning

1940 1950 1960 1970 1980 1990 2000 2010

2006

Em 2006, surge o *deep learning* como algo **popular**, e já existia não só a **teoria** das redes neurais como também:

• **Hardware** robusto (GPUs)

1940 1950 1960 1970 1980 1990 2000 2010 2006

Em 2006, surge o *deep learning* como algo **popular**, e já existia não só a **teoria** das redes neurais como também:

- **Hardware** robusto (GPUs)
- Abundância de dados

 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010

 2006

Proporcionou o desenvolvimento de soluções que até poucas décadas atrás eram altamente complexas de serem solucionadas.

Classificação de Imagens

Proporcionou o desenvolvimento de soluções que até poucas décadas atrás eram altamente complexas de serem solucionadas.

Transferência de Estilo

Proporcionou o desenvolvimento de soluções que até poucas décadas atrás eram altamente complexas de serem solucionadas.

Modelos de Linguagem

https://openai.com/blog/summarizing-books/

https://gpt3demo.com/

Usualmente as camadas são classificadas em três grupos:

- Camada de Entrada: onde os padrões são apresentados à rede;
- Camadas Intermediárias (Escondidas): onde é feita a maior parte do processamento, através das conexões ponderadas; podem ser consideradas como extratoras de características;

 Camada de Saída: onde o resultado final é concluído e apresentado.

A propriedade mais importante das redes neurais é a habilidade de **aprender** de seu **ambiente** e com isso **melhorar** seu desempenho.

O aprendizado da rede é feito através de um **processo iterativo** de ajustes aplicados a seus pesos: o **treinamento**.

O aprendizado ocorre quando a rede neural atinge uma solução generalizada para uma classe de problemas.

Denomina-se **algoritmo de aprendizado** a um conjunto de regras bem definidas para a solução de um problema de aprendizado.

Existem **muitos** tipos de algoritmos de aprendizado **específicos** para determinados modelos de RNAs

• Diferem entre si principalmente pelo modo como os **pesos são modificados**.

Outro fator importante é a maneira pela qual uma rede neural se relaciona com o ambiente.

Aprendizado Supervisionado: quando é utilizado um agente externo que indica à rede a resposta desejada para o padrão de entrada.

Aprendizado Não Supervisionado (auto-organização): quando não existe uma agente externo indicando a resposta desejada para os padrões de entrada.

Reforço (semi-supervisionado): quando um crítico externo avalia a resposta fornecida pela rede. Aplicado em robótica, por exemplo.

Multi-Layer Perceptron (MLP)

O PERCEPTRON Multicamadas é uma **extensão do PERCEPTRON** de camada única.

Esta arquitetura apresenta uma camada com unidades de **entrada**, conectada a uma ou mais unidades **intermediárias**, chamadas camadas ocultas, e uma camada de **saída**.

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

Utiliza o processo de **Aprendizagem Supervisionado**, sendo mais comum a utilização do algoritmo **Backpropagation**.

A rede possui **alto grau de conectividade**, o que permite interação entre as unidades.

Multi-Layer Perceptron (MLP) - Modelagem

A modelagem da arquitetura de uma MLP envolve a escolha da **quantidade de camadas** e o **número de unidades** em cada camada.

- Escolha do número de unidades de **entrada**;
- Definição da **função de ativação** que irá ditar o comportamento da rede.

Multi-Layer Perceptron (MLP) - Treinamento

Outros parâmetros devem ser escolhidos referentes ao treinamento:

taxa de aprendizado

 Indica a que **ritmo** os pesos são atualizados. Pode ser fixado ou alterado de modo adaptativo. O método atual mais popular é chamado Adam, o qual é um método que adapta a taxa de aprendizado.

Multi-Layer Perceptron (MLP) - Treinamento

Outros parâmetros devem ser escolhidos referentes ao treinamento:

- conjunto de treinamento
 - Dados relevantes que destaquem as características que devem realmente ser aprendidas pela rede.

Multi-Layer Perceptron (MLP) - Camadas

O processamento de cada unidade é influenciado pelo processamento efetuado pelas unidades das **camadas anteriores**.

Cada camada desempenha um papel específico dentro da rede.

Multi-Layer Perceptron (MLP) - Camadas

Camada de Entrada:

• Receptora de estímulos

Camada de Saída:

 Combina as regiões formadas pelas camada anteriores, definindo o espaço de saída da rede.

Multi-Layer Perceptron (MLP) - Camadas

Camadas Intermediárias (Ocultas):

- Atuam como detectores de características, que são representadas, internamente, através dos de pesos sinápticos.
- Número ideal de camadas intermediárias:
 - Uma camada é suficiente para aproximar qualquer função contínua e duas camadas para aproximar qualquer função matemática.

Escolha do **número de unidades** em cada camada:

- O número de **exemplos** de treinamento
- A complexidade da função a ser aprendida pela rede;
- A **distribuição estatística** dos dados de treinamento.

Cuidados com o número de unidades por camada:

- Número alto de unidades pode fazer com que a rede memorize os dados do treinamento!
 - Torna-se incapaz de generalizar e, portanto, reconhecer padrões não vistos durante o treinamento.
 - OVERFITTING!

Cuidados com o número de unidades por camada:

- Número de unidades muito pequeno
 - A rede pode gastar muito tempo para aprender, podendo não alcançar os pesos adequados, ou seja, generalizar demais os padrões de entrada.
 - O UNDERFITTING!

De forma abstrata, um neurônio interpreta as suas entradas e libera uma **ativação** com determinada força.

Neurônio ativa quando ouvimos uma boa música

De forma abstrata, um neurônio interpreta as suas entradas e libera uma **ativação** com determinada força.

 Neurônio (provavelmente) não ativa quando batemos o dedão na quina da mesa :(

Em termos práticos, um neurônio deve **ativar** quando suas **entradas** apresentam o **padrão** para o qual ele foi **treinado.**

O papel da **função de ativação** é definir se o neurônio vai **ativar** e qual a sua **força** de ativação.

Funções de Ativação - Função Limiar (Degrau)

Utilizada no modelo de McCulloch e Pitts, a função limiar modela a característica "tudo-ou-nada" deste neurônio.

$$f(\mathbf{v}) = \begin{cases} 1, & \text{se } \mathbf{v} \ge 0; \\ 0, & \text{se } \mathbf{v} \le 0; \end{cases}$$

Funções de Ativação - Função Limiar (Degrau)

É uma transformação **não linear** que limita a saída do perceptron ao **intervalo {0, 1}**, como um interruptor.

$$f(\mathbf{v}) = \begin{cases} 1, & \text{se } \mathbf{v} \ge 0; \\ 0, & \text{se } \mathbf{v} \le 0; \end{cases}$$

Funções de Ativação - Função Sigmóide

Para que o neurônio possa ativar com diferentes forças, existem funções como a **sigmóide**. Ela define um **intervalo [0, 1]**, mas pode assumir qualquer valor dentro desse intervalo.

Funções de Ativação - Função Sigmóide

Funções como a sigmóide permitem que se saiba o grau de "certeza" do perceptron.

Funções de Ativação - Funções mais populares

Funções de Ativação - Funções mais populares

Função Tangente Hiperbólica:

Como a sigmóide, também possui forma de "s", porém assume valores entre **1 e -1**.

Função ReLu:

É **linear** para valores **positivos** e simplesmente corta valores negativos os transformando em 0.

Função Softmax:

É um tipo de função sigmóide, mas é útil quando tentamos lidar com problemas de **classificação** com mais de uma classe.

Função Softmax:

Transforma as saídas para cada classe para valores entre 0 e 1 e também **divide pela soma** das saídas.

Essencialmente, a função softmax dá a **probabilidade** de a entrada estar em uma determinada classe.

Função Softmax:

Class	Probability
apple	0.001
bear	0.04
candy	0.008
dog	0.95
egg	0.001

Funções de Ativação

No geral, as redes neurais (com mais de uma camada) são capazes de **solucionar problemas** tão **complexos** como geração de imagens artificiais ou modelos de linguagem graças às **funções de ativação**.

Backpropagation

É o **algoritmo** para treinamento de Redes Multi-Camadas mais difundido.

Baseia-se no Aprendizado **Supervisionado** por Correção de Erros, constituído de:

- Propagação e
- Retropropagação.

Backpropagation - Propagação

Depois de apresentado o padrão de entrada, a resposta de uma unidade é **propagada** como entrada para as unidades na **camada seguinte**, até a camada de saída, onde é obtida a **resposta** da rede

e o **erro** é calculado.

Backpropagation - Retropropagação

Desde a camada de saída até a camada de entrada, são feitas alterações nos pesos sinápticos.

Backpropagation

Durante a fase treinamento deve-se apresentar um conjunto formado pelo par: **entrada** para a rede e **valor desejado** para resposta a entrada.

A **saída** será comparada ao **valor desejado** e será computado o **erro** global da rede, que influenciará na **correção dos pesos** no passo de retropropagação.

Backpropagation

Apesar de não haver garantias que a rede forneça uma solução ótima para o problema, este processo é muito utilizado por apresentar uma boa solução para o treinamento de Perceptrons Multi-Camadas.

Parte Prática

Frameworks

Os **frameworks** especializados em deep learning facilitam muito a **implementação** de uma rede neural.

Frameworks

A estrutura de dados utilizada por esses frameworks é o tensor. As entradas, saídas e transformações de uma rede neural são representadas através dessa estrutura de dedos.

Tensores podem ser interpretados como uma generalização de estruturas já conhecidas.

• Estrutura com 3 dimensões

Tensores podem ser interpretados como uma generalização de estruturas já conhecidas.

Na programação, quando a quantidade de dimensões é maior que 2, consideramos um **nd-array**, ou seja, um array de n dimensões

```
# Escalar
escalar = 15
# Vetor / Array
array = [15, 16, 17]
# Matriz / Array 2D (2 x 3)
matriz = [[1, 2, 3],
       [4, 5, 6]]
# Array 3D (3 x 2 x 2)
array_3d = [[1, 2], [3, 4]],
        [[5, 6], [7, 8]],
        [[9, 10], [11, 12]]]
```

Na matemática, os *nd-arrays* são chamados de **tensores** ou *nd-tensores*.

Logo, um tensor nada mais é do que um **array** *n*-**dimensional**.

Computer Science	Mathematics
(0D)number	Scalar
(1D) Array	Vector
(2D) Array	Matrix
(n D) Array	Tensor

Por convenção, nos frameworks as estruturas são chamadas de **tensor** independente da dimensão.

Dimensões	Computação	Frameworks
0	número	tensor 0d
1	array	tensor 1d
2	array 2d	tensor 2d
3	array 3d	tensor 3d
n	array nd	tensor nd

Em deep learning, é comum trabalhar com informação em alta dimensionalidade. Assim, o tensor é a **estrela do** deep learning, inclusive nomeando um dos frameworks mais famosos da atualidade.

PyTorch

Desenvolvido pelo grupo de pesquisa de IA do Facebook e de código aberto no GitHub em 2017. Pytorch tem uma reputação de simplicidade, facilidade de uso, flexibilidade, uso eficiente de memória e gráficos computacionais dinâmicos.

Datasets

Datasets

- Titanic: passageiro sobreviveu ao desastre?
 https://www.kaggle.com/jamesleslie/titanic-neural-network-for-b
 eginners
- Classificador de câncer de mama (duas classes binário):
 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
- Classificador de flores (múltiplas classes):
 https://archive.ics.uci.edu/ml/datasets/Iris
- Classificador de região dos vinhos:
 https://archive.ics.uci.edu/ml/datasets/Wine