Exercise 1. If A, B are two local subrings of a given field, with respective maximal ideals \mathfrak{m}_A and \mathfrak{m}_B , we say that B dominates A if $A \subset B$ and $\mathfrak{m}_A \subset \mathfrak{m}_B$.

Let R be a local domain with fraction field K, and X a scheme. Show that to give a morphism Spec $R \to X$ is equivalent to giving:

- a pair of points z, y such that y is in the (reduced) closure Z of $\{z\}$,
- and an inclusion $k(z) \subset K$ such that R dominates $\mathcal{O}_{Z,y}$ (as subrings of K).

Exercise 2. Show that a morphism $X \to S$ of schemes is separated if and only if the subset $\Delta_{X/S}(X)$ is closed in $X \times_S X$.

- **Exercise 3.** (i) Let $R \to S$ be an injective ring morphism. Show that every minimal prime of R is in the image of Spec $S \to \operatorname{Spec} R$.
 - (ii) Let $f: X \to Y$ be a quasi-compact morphism of schemes. Assume that the closure of every point of f(X) is contained in f(X). Show that f(X) is closed in Y.

Exercise 4. Prove the valuative criterion of separatedness. You may use without proof the following result:

Let A be a local domain with fraction field K. Then there is a valuation ring R of K which dominates A.