Assessment Schedule – 2014

Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

Evidence Statement

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE (a)	3 -chlorobutanone $CH_3 - CH_2 - CO - NH_2$ methylbutanoate	TWO correct.		
(b)(i)	H $CH_2 - CH_3$ H CH_3 H CH_3 H CH_3 H CH_3 In lowest concentration	• Two isomers.	All three isomers. OR Two isomers and correct choice with partial explanation.	All three isomers. AND Correct choice with explanation.
(ii)	The minor product is but-1-ene.			
	Saytzeff's rule: the minor product will have the least substituted double bond OR			
	Saytzeff's rule is explained.			
	Eg: the minor product is formed by the removal of the OH group and a hydrogen atom is removed from the carbon adjacent to the C-OH that has the most hydrogens.			

(c)(i	Ester group: O II -O-C-	Correct functional group circled AND named.		
(ii)	H H H H - C - C - C - H + 3CH ₃ (CH ₂) ₁₆ COONa OH OH OH H H H H - C - C - C - H + 3CH ₃ (CH ₂) ₁₆ COOH H H H H OH OH OH Both acidic and basic hydrolysis produce the same alcohol propan-1,2,3-triol. In addition, they both require heat / reflux In contrast, acidic hydrolysis requires H ₂ O / H ⁺ or HCl(aq) and produces the carboxylic acid, whereas basic hydrolysis requires H ₂ O / OH ⁻ or NaOH(aq) and produces the carboxylate ion/salt.	One correct structure. OR Partial discussion.	Two unique products linked to the type of hydrolysis. OR Products of one reaction correctly linked to the type of hydrolysis and reagent or conditions.	Comparison and contrast of hydrolysis to give salt / acid and alcohol. Reagents with conditions and structures correct.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	1a	2a	3a	4a	1m & 3a	2m	2e with minor error or omission, or have not compared and contrasted.	2e

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
TWO (a)(i) (ii)	Damp red litmus. Propanamine will change the colour of red litmus blue. Propanamide will not change the colour of red litmus. Tollens' reagent (Fehling's or Benedict's or Cr ₂ O ₇ ²⁻ / H ⁺ or MnO ₄ ⁻ / H ⁺). Propanal will form a silver mirror when warmed with Tollens' reagent. Propanone will not react with Tollens' reagent.	Two correct reagents. Correct observation for ONE compound.	TWO pairs of compounds distinguished with reagents and observations linked to the relevant species.	ALL pairs of compounds distinguished with reagents, conditions and observations linked to species.
(b)(i)	Water. Propanoyl chloride will react violently with water. Propyl propanoate with not react with water / it will form layers. Gas = Carbon dioxide / CO ₂	(i) OB (ii)	All account Count (i) (iii)	
(ii) (iii)	NaHCO ₃ is used to remove any remaining acid <i>mixed with the liquid product</i> . Na ₂ SO ₄ is added to remove any remaining water <i>mixed with the liquid product</i> . Fractional Distillation.	• (i) OR (ii) correct.	• All correct from (i) – (iii).	
(iv)	Equipment 1. The purpose of the process is to purify the chemical / remove impurities / separate product This is achieved by separating liquids according to their boiling	(iii) is correct.Correct purpose.	Correct purpose.	Comprehensive discussion.
	 points. Chemicals are boiled then condensed / liquid-gas then gas-liquid. The fraction at the desired boiling point is kept / other fractions are discarded. 	OR Partial explanation.	AND Partially explained.	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	1a	2a	3a	4a	2m	3m	2e with minor error or omission, such as a missing condition.	2e

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
THREE (a)	A = Propan-2-ol OH CH ₃ CH CH ₃	FIVE correct structures.	ELEVEN structures or names correct.	FOURTEEN structures or names correct.
	B = Propan-1-ol CH ₃ CH ₂ CH ₂ OH			(Penalise once for $-HO/-H_2N$.)
	C = Propanone O CH ₃ C CH ₃	FIVE correct names.		
	D = Propanoic acid CH ₃ CH ₂ COOH			
	E = Propanoyl chloride O II CH ₃ CH ₂ C CI			
	F = Propanamide O CH ₃ CH ₂ C NH ₂			
	$G = Propyl propanoate$ O $CH_3CH_2COCH_2CH_2CH_3$			
	$\mathbf{H} = \mathbf{Methyl}$ ethyl propanoate (not required)			

(b)	CH ₃ CH COOH I NH ₂	Monomer structure contains amine or carboxylic acid or acyl chloride.	Correct monomer structure.	
	Acid hydrolysis conditions: H_2O/H^+ or $HCl(aq)$ and heat or reflux $CH_3 O + I II II II III III III III III III $	Acidic hydrolysis conditions. OR Basic hydrolysis conditions. OR ONE Structure correct.	One product of hydrolysis linked to type of hydrolysis and condition. OR Two structures.	Both hydrolysis products and conditions.
	Basic hydrolysis conditions: H_2O/OH or $NaOH(aq)$ and heat or reflux CH_3 O I II $H_2N-CH-C-ONa$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	Part statement for Achievement (three boxes from (a))	la	2a	3a	2m	3m	2e with minor error or omission. Eg: omitting H ₂ O and heat	2e

Cut Scores

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
Score range	0 – 7	8 – 13	14 – 18	19 – 24	