IMPORTING THE DEPENDENCIES

In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

DATA COLLECTION AND PROCESSING

In [3]: #LOAD THE DATA FROM CSV FILE TO PANDAS DATAFRAME
titanic_data=pd.read_csv('tested.csv')

In [9]: #printing the 5 rows of data frame
 titanic_data.head()

Out[9]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN

In [11]: #number of rows and column
titanic_data.shape

Out[11]: (418, 12)

In [12]: #getting some information about the data
titanic_data.info()

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 418 entries, 0 to 417
        Data columns (total 12 columns):
             Column
                         Non-Null Count Dtype
                         -----
                                        ----
         0
            PassengerId 418 non-null
                                        int64
         1
             Survived
                         418 non-null
                                        int64
         2
            Pclass
                         418 non-null
                                        int64
         3 Name
                       418 non-null
                                        object
         4 Sex
                       418 non-null
                                        object
         5
                        332 non-null
                                        float64
            Age
                       418 non-null
                                        int64
         6 SibSp
            Parch
                         418 non-null
                                        int64
            Ticket
                         418 non-null
                                        object
         9 Fare
                         417 non-null
                                        float64
         10 Cabin
                         91 non-null
                                        object
         11 Embarked
                         418 non-null
                                        object
         dtypes: float64(2), int64(5), object(5)
        memory usage: 39.3+ KB
In [13]: #check the number of missing values in each column
        titanic_data.isnull().sum()
Out[13]: PassengerId
        Survived
                        0
        Pclass
                        0
        Name
                        0
        Sex
                        0
                       86
        Age
        SibSp
                        0
        Parch
        Ticket
                        0
        Fare
                        1
        Cabin
                      327
        Embarked
        dtype: int64
```

HANDLING THE MISSING VALUES

```
In [17]: #DROP THE "CABIN" COLUMN FROM THE DATASET
    titanic_data=titanic_data.drop(columns='Cabin',axis=1)

In [20]: #replacing the missing values in 'age 'column with mean
    titanic_data['Age'].fillna(titanic_data['Age'].mean(),inplace=True)

In [21]: #finding the mode value of 'fare'
    print(titanic_data['Fare'].mode())

0     7.75
    Name: Fare, dtype: float64

In [23]: print(titanic_data['Fare'].mode()[0])

7.75
```

```
In [28]: #replacing the missing value in 'Fare' column with mode value
         titanic_data['Fare'].fillna(titanic_data['Fare'].mode()[0],inplace=True)
In [30]: titanic_data.isnull().sum()
Out[30]: PassengerId
         Survived
         Pclass
         Name
                        0
         Sex
                        0
         Age
         SibSp
         Parch
         Ticket
                        0
         Fare
                        0
         Embarked
         dtype: int64
```

DATA ANALYSIS

In [31]: #getting some statistocal measures about the data
titanic_data.describe()

Out[31]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	418.000000	418.000000	418.000000	418.000000	418.000000	418.000000	418.000000
	mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.560497
	std	120.810458	0.481622	0.841838	12.634534	0.896760	0.981429	55.857145
	min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
	25%	996.250000	0.000000	1.000000	23.000000	0.000000	0.000000	7.895800
	50%	1100.500000	0.000000	3.000000	30.272590	0.000000	0.000000	14.454200
	75%	1204.750000	1.000000	3.000000	35.750000	1.000000	0.000000	31.471875
	max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

In [33]: #finding the number of peaple survived or not survived
 titanic_data['Survived'].value_counts()

Out[33]: 0 266 1 152

Name: Survived, dtype: int64

DATA VISUALIZATION

In [55]: #MAKING A COUNT PLOT FOR 'SURVIVED' COLUMN
sns.countplot(x="Survived",data=titanic_data)

Out[55]: <Axes: xlabel='Survived', ylabel='count'>


```
In [72]: #number of survivers genderwise
sns.countplot(x='Sex',hue='Survived',data=titanic_data)
```

Out[72]: <Axes: xlabel='Sex', ylabel='count'>

In [75]: #number of survivers genderwise
sns.countplot(x='Pclass',hue='Survived',data=titanic_data)

Out[75]: <Axes: xlabel='Pclass', ylabel='count'>

encoding the categorical column

```
In [96]: #converting categorical columns
    titanic_data['Sex'].replace('female',0,inplace=True)
    titanic_data['Sex'].replace('male',1,inplace=True)
    titanic_data['Embarked'].replace('S',0,inplace=True)
    titanic_data['Embarked'].replace('C',1,inplace=True)

In [97]: titanic_data.sample(5)
```

Out[97]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Er
	416	1308	0	3	Ware, Mr. Frederick	1	30.27259	0	0	359309	8.0500	
	272	1164	1	1	Clark, Mrs. Walter Miller (Virginia McDowell)	0	26.00000	1	0	13508	136.7792	
	370	1262	0	2	Giles, Mr. Edgar	1	21.00000	1	0	28133	11.5000	
	186	1078	1	2	Phillips, Miss. Alice Frances Louisa	0	21.00000	0	1	S.O./P.P. 2	21.0000	
	180	1072	0	2	McCrie, Mr. James Matthew	1	30.00000	0	0	233478	13.0000	

SEPERATING FEATURES AND TARGET

In [101... x=titanic_data.drop(columns=['Survived','PassengerId','Name','Ticket'],axis=1)
 y=titanic_data['Survived']

In [103...

Out[103]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	1	34.50000	0	0	7.8292	2
1	3	0	47.00000	1	0	7.0000	0
2	2	1	62.00000	0	0	9.6875	2
3	3	1	27.00000	0	0	8.6625	0
4	3	0	22.00000	1	1	12.2875	0
•••							
413	3	1	30.27259	0	0	8.0500	0
414	1	0	39.00000	0	0	108.9000	1
415	3	1	38.50000	0	0	7.2500	0
416	3	1	30.27259	0	0	8.0500	0
417	3	1	30.27259	1	1	22.3583	1

418 rows × 7 columns

```
In [104...
                  0
Out[104]: 0
                  1
           2
                  0
           3
                  0
                  1
                 . .
           413
                  0
           414
                 1
           415
               0
           416
                  0
           417
           Name: Survived, Length: 418, dtype: int64
```

SPLTING DATA INTO TRAINING DATA AND TEST DATA

MODEL TRAINING

```
In [112...
          #Logistic Regression
          model=LogisticRegression()
          #training the logistic regression model with training data
In [113...
          model.fit(x_tarin,y_train)
          C:\Users\pcc\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\lin
          ear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=
          1):
          STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max_iter) or scale the data as shown in:
              https://scikit-learn.org/stable/modules/preprocessing.html
          Please also refer to the documentation for alternative solver options:
              https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
            n_iter_i = _check_optimize_result(
Out[113]: ▼ LogisticRegression
          LogisticRegression()
In [115...
          #model evaluation
          #Accuracy score
```

```
#accuracy and training data
     x_train_prediction=model.predict(x_train)
 In [ ]:
In [116...
     print(x_train_prediction)
     1010000010001100011010000010000100001
      0\;1\;1\;1\;1\;0\;0\;0\;1\;1\;0\;0\;1\;0\;1\;0\;0\;0\;1\;0\;0\;0\;0\;1\;0\;0\;1\;1\;0\;1\;1\;0\;0\;0
      1]
In [119...
     training_data_accuracy=accuracy_score(y_train,x_train_prediction)
     print('accuracy score of training data:',training data accuracy)
     accuracy score of training data: 1.0
In [120...
     #accuracy and test data
     x_test_prediction=model.predict(x_test)
In [121...
     print(x_test_prediction)
     0 1 1 0 1 0 0 0 0 0]
In [123...
     test_data_accuracy=accuracy_score(y_test,x_test_prediction)
     print('accuracy score of test data:',test_data_accuracy)
     accuracy score of test data: 1.0
```

localhost:8888/nbconvert/html/TITANIC SURVIVAL PREDICTION.ipynb?download=false