

Proba Teoretică

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema I

Nr. item	A. Oscilator învârtit	Punctaj
a.	Pentru:	1,60p
	$OB^{2} = d^{2} + 4\ell^{2} + 4\ell \cdot d \cdot \cos \alpha$ $\begin{cases} OB^{2} \cong d^{2} + 4\ell^{2} + 4\ell \cdot d \\ OB \cong d + 2\ell \\ \text{dacă } \alpha \ll 1 \text{ radian} \end{cases}$ $0,40p$	
	teorema sinusurilor $\frac{d}{\sin \gamma} = \frac{2\ell}{\sin \beta} = \frac{OB}{\sin \alpha}$ $0,40p$ $\frac{d}{\gamma} \cong \frac{2\ell}{\beta} \cong \frac{d+2\ell}{\alpha}$, pentru unghiuri foarte mici	
	$\beta + \gamma = \alpha$ 0,20p	
	$\begin{cases} \gamma = \frac{d}{d+2\ell} \cdot \alpha \\ \beta = \frac{2\ell}{2\ell+d} \cdot \alpha \end{cases}$ 0,20p	
	expresia momentului forţei care acţionează asupra barei $\mu = F_{centrifuga} \cdot CB \cdot \sin \gamma = \left(m \cdot \Omega^2 \cdot OB\right) \cdot 2\ell \cdot \frac{d}{d+2\ell} \cdot \alpha$ 0,20p	
	$\mu = \mathbf{m} \cdot \Omega^2 \cdot 2\ell \cdot \mathbf{d} \cdot \alpha \tag{0.20p}$	
b.	Pentru:	1,00p
	expresia momentului de inerţie al corpului $j = m \cdot 4\ell^2$ 0,20p	
	ecuația de mişcare a barei $j\ddot{\alpha}+\mu=0$ 0,40p	
	$\ddot{\alpha} + \Omega^2 \cdot \frac{d}{2\ell} \cdot \alpha = 0 $ 0,20p	
	expresia pulsaţiei oscilaţiilor barei $\omega = \Omega \cdot \sqrt{\frac{d}{2\ell}}$ 0,20p	

Problema I Barem de evaluare și de notare - Clasa a XI –a Pagina 1 din 10

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

C.	Pentru:		1,00p
	expresia momentului forţei care acţionează asupra corpului i $\mu_i = F_{centrifuga, i} \cdot \frac{\ell \cdot i}{n} \cdot \sin \gamma_i$ $\mu_i = m \cdot \Omega^2 \cdot \frac{\ell \cdot i}{n} \cdot d \cdot \alpha$	0,40p	
	expresia momentului total care acţionează asupra barei $\mu_b = \sum_{i=1}^n \mu_i \qquad \qquad \mu_b = m \cdot \Omega^2 \cdot \frac{\ell}{n} \cdot d \cdot \alpha \cdot \sum_{i=-n}^{2n} i$ $\mu_b = m \cdot \Omega^2 \cdot \frac{\ell}{n} \cdot d \cdot \alpha \cdot \left(-\sum_{i=1}^n i + \sum_{i=1}^{2n} i \right)$	0,40p	
	$\mu_b = m \cdot \Omega^2 \cdot \ell \cdot \mathbf{d} \cdot \alpha \cdot \frac{3n+1}{2}$	0,20p	
d.	Pentru:		1,40p
	expresia momentului de inerţie pentru corpul i $j_i = m \cdot \frac{\ell^2}{n^2} \cdot i^2$	0,20p	
	expresia momentului de inerție al barei cu bilele prinse rigid $j_b = \sum_{i=-1}^{-n} j_i + \sum_{i=1}^{2n} j_i \qquad j_b = \frac{m \cdot \ell^2}{n^2} \cdot \left(\sum_{i=-1}^{-n} i^2 + \sum_{i=1}^{2n} i^2\right)$ $j_b = \frac{m \cdot \ell^2}{n^2} \cdot \left(\frac{n(n+1) \cdot (2n+1)}{6} + \frac{2n(2n+1) \cdot (4n+1)}{6}\right)$	0,40p	
	ecuaţia de oscilaţie a barei cu sferele ataşate $j_b\ddot{\alpha}+\mu_b=0$ $\ddot{\alpha}+\Omega^2\cdot\frac{d}{\ell}\cdot\frac{3n^2+n}{6n^2+5n+1}\alpha=0$	0,60p	
	expresia pulsaţiei oscilaţiilor barei cu sferele ataşate $\omega = \Omega \cdot \sqrt{\frac{d}{\ell}} \cdot \sqrt{\frac{3n^2 + n}{6n^2 + 5n + 1}}$	0,20p	
Nr. item	B. Supersonic		Punctaj
a.	Pentru:		0,70p
	$O'M = v \cdot t$	0,20p	, - 1
	$R = c \cdot t$	0,20p	
	$\sin \alpha = \frac{c}{v}$	0,30p	
b.	Pentru:		0,80p
	distanţa parcursă de avion până la momentul T_{0b} la care unda de şoc ajunge în O $O'M = v \cdot T_{0b}$	0,20p	

TOT	AL Problema a I-a		10p
Ofici	u		1,00p
	Exemplu de răspuns: $\Delta T << \Delta t$ Timpul "de recepţie" fiind mult mai scurt decât timpul "de emisie", intensitatea sonoră percepută de observator este mult mai mare decât aceea percepută în puncte pentru care derivata $\Delta T/\Delta t$ nu mai este aproape nulă.	0,50p	
d.	Pentru:		0,50p
	$T_0 = \frac{h}{v} \sqrt{\frac{v^2}{c^2} - 1}$	0,50p	
	$t_0 = \frac{-h}{v\sqrt{\frac{v^2}{c^2} - 1}}$	0,50p	
	$\begin{cases} \frac{dT}{dt} = 0 \\ \frac{dT}{dt} = 1 + \frac{v^2 \cdot t}{c\sqrt{h^2 + v^2 \cdot t^2}} \end{cases}$	0,50p	
	$T = t + \frac{\sqrt{h^2 + v^2 \cdot t^2}}{c}$	0,50p	
C.	Pentru:		2,00p
	$T_{0b} = \frac{h}{v} \cdot tg\alpha$	0,40p	
	$O'M = h \cdot tg\alpha$	0,20p	

Problema I Pagina 3 din 10

Proba Teoretică

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema a II-a Baloane sondă

Nr. item	A. Balon umplut cu aer - Sarcina de lucru nr. 1		Punctaj
1.a.	Pentru:		1,40p
	$(M+m)\cdot\vec{a} = (M+m)\cdot\vec{g} - V\cdot\rho_z\cdot\vec{g}$	0,20p	-
	$V\cdot ho_{ m z}\cong M+m$, în situația în care nu mai există accelerație și balonul urcă lent	0,20p	
	$V \cdot \rho_z \ge M + m$	0,20p	
	ecuația de stare pentru aerul din balon $p \cdot V = \frac{m}{\mu} \cdot R \cdot T$	0,20p	
	ecuația de stare pentru aerul din exterior $p_z = \frac{\rho_z}{\mu} \cdot R \cdot T_z$	0,20p	
	$\rho_z \cdot V = m \cdot \frac{T}{T_z}$	0,20p	
	condiţia de ascensiune a balonului $\frac{T}{T_z} \ge \frac{M+m}{m}$	0,20p	
1.b.	Pentru:		1,00p
	variaţia energiei interne a aerului din balon $\Delta U = 0$	0,20p	
	expresia lucrului mecanic de deformare a balonului $L_1 = -p \cdot \Delta V$	0,20p	
	expresia lucrului mecanic al forței arhimedice $L_2 = \rho_z \cdot g \cdot V \cdot \Delta z$ expresia lucrului mecanic al forței de greutate $L_3 = -(M+m) \cdot g \cdot \Delta z$	0,20p	
	$L_3 = -L_2$	0,20p	
	expresia pentru principiul I al termodinamicii $-p\Delta V + Q = 0$	0,20p	
1.c.	Pentru:		0,60p
	$\boldsymbol{p} \cdot \Delta \boldsymbol{V} + \boldsymbol{V} \cdot \Delta \boldsymbol{p} = 0$	0,20p	
	expresia energiei electrice elementare transformată în căldură $Q = (M + m) \cdot g \cdot \Delta z$	0,20p	

Problema a II-a Barem de evaluare și de notare - Clasa a XI –a Pagina 4 din 10

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

	Exemplu de răspuns:	
	Conform enunţului, temperatura atmosferei rămâne constantă numai pentru $z>11\ km$. Prin urmare nu este posibilă mişcarea descrisă la sarcina de lucru 1.c. $0,20p$	
	pentru înălţimi z < 11 km.	
Nr. item	B. Balon umplut cu heliu - Sarcina de lucru nr. 2	Punctaj
2.a.	Pentru:	2,00p
	expresia variației presiunii hidrostatice cu înălțimea $ dp = -\rho \cdot g \cdot dz $ 0,40p	
	$\rho_A = \frac{p_A \cdot \mu_A}{R \cdot T_A} $ 0,40p	
	$p_A^{1-\gamma_A} \cdot T_A^{\gamma_A} = const$ 0,40p	
	$\begin{cases} \frac{(1-\gamma_A)}{p_A} \cdot dp_A + \frac{\gamma_A}{T_A} \cdot dT_A = 0\\ \frac{dp_A}{p_A} = -\frac{\gamma_A}{(1-\gamma_A)} \cdot \frac{dT_A}{T_A} \end{cases}$ $0,40p$	
	$T_A(z) = T_0 - \frac{\mu_A \cdot g}{R\gamma_A} \cdot (\gamma_A - 1)z$	
2.b.	Pentru:	1,60p
	$\rho_A = \frac{p \cdot \mu_A}{R \cdot T_A} \qquad \rho_B = \frac{p \cdot \mu_B}{R \cdot T_B} \qquad 0.40p$	
	$\frac{T_B}{T_A} = \frac{\mu_B}{\mu_A} $ 0,40p	
	$\frac{T_B}{T_A} = \left(1 + \frac{\Gamma_A}{T_0} \cdot \mathbf{z}_E\right)^{\eta - 1} = \frac{\mu_B}{\mu_A} $ 0,40p	
	$\mathbf{z}_{E} = \frac{T_{0}}{\Gamma_{A}} \left[\left(\frac{\mu_{B}}{\mu_{A}} \right)^{\frac{1}{\eta - 1}} - 1 \right] $ 0,40p	
2.c.	Pentru:	2,00p
	$\begin{cases} \frac{G_{aparent}}{m_B} = \frac{V \cdot g \cdot (\rho_B - \rho_A)}{V \cdot \rho_B} \\ \frac{G_{aparent}}{m_B} = g \cdot \left(1 - \frac{\rho_A}{\rho_B}\right) \\ \frac{G_{aparent}}{m_B} = g \cdot \left(1 - \frac{\mu_A}{\mu_B} \cdot \frac{T_B}{T_A}\right) \end{cases}$ 0,20p	
	$\begin{cases} \frac{G_{aparent}}{m_B} = g \cdot \left(1 - \frac{\mu_A}{\mu_B} \cdot \left(1 + \frac{\Gamma_A}{T_0} \cdot z \right)^{\eta - 1} \right) \\ \frac{G_{aparent}}{m_B} = g \cdot \left(1 - \frac{\mu_A}{\mu_B} \cdot \left(1 + \frac{\Gamma_A}{T_0} \cdot (z_E + x) \right)^{\eta - 1} \right) \end{cases}$ $0,20p$	

Problema a II-a Barem de evaluare și de notare - Clasa a XI–a

	$\boxed{ \frac{G_{aparent}}{m_B} = g \cdot \left(1 - \frac{\mu_A}{\mu_B} \cdot \left(1 + \frac{\Gamma_A}{T_0} \cdot \mathbf{z}_E \right)^{\eta - 1} \cdot \left(1 + \frac{\frac{\Gamma_A}{T_0} \cdot \mathbf{x}}{1 + \frac{\Gamma_A}{T_0} \cdot \mathbf{z}_E} \right)^{\eta - 1} \right)}$	0,20p	
	$\boxed{ \frac{G_{aparent}}{m_B} = g \cdot \left(1 - \frac{\mu_A}{\mu_B} \cdot \left(1 + \frac{\Gamma_A}{T_0} \cdot \mathbf{z}_E \right)^{\eta - 1} \cdot \left(1 + \frac{\frac{\Gamma_A}{T_0} \cdot \mathbf{x} \cdot (\eta - 1)}{1 + \frac{\Gamma_A}{T_0} \cdot \mathbf{z}_E} \right) \right), \text{ decarece } \mathbf{x} << \mathbf{z}_E}$	0,20p	
	$\frac{G_{aparent}}{m_B} = -g^2 \cdot \frac{\mu_A}{T_0 \cdot C_{p,A}} \cdot x \cdot (\eta - 1) \cdot \left(\frac{\mu_A}{\mu_B}\right)^{\frac{1}{\eta - 1}}$	0,20p	
	$\ddot{X} = \frac{G_{aparent}}{m_B}$	0,20p	
	$\ddot{X} + g^2 \cdot \frac{\mu_A}{T_0 \cdot C_{p,A}} \cdot (\eta - 1) \cdot \left(\frac{\mu_A}{\mu_B}\right)^{\frac{1}{\eta - 1}} \cdot X = 0$	0,40p	
	$\eta - 1 > 0$, adică $C_{p,A} > C_{p,B}$	0,40p	
2.d.	Pentru:		0,40p
	$\Omega = g \cdot \sqrt{\frac{\mu_A}{T_0 \cdot C_{p,A}} \cdot (\eta - 1) \cdot \left(\frac{\mu_A}{\mu_B}\right)^{\frac{1}{\eta - 1}}}$	0,40p	
Ofici	iu		1,00p
TOI	AL Problema a II-a		10p

Problema a II-a

Pagina 6 din 10

Proba Teoretică

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema a III-a

Rezistență...și magnetorezistență

Nr. item	Rezistență		Punctaj
	Pentru:		3,00p
	situaţia în care întrerupătorul K este pe poziţia 1		•
	$I_1 = \frac{E}{r + R_A} \qquad U_1 = \frac{E}{1 + r/R_V}$	0,20p	
	$r = R_V \frac{-I_1 R_A + U_1}{I_1 \cdot R_V - U_1} \qquad r = 5\Omega$	0,60p	
	E = 9V	0,20p	
	situaţia în care întrerupătorul K este pe poziţia 2 şi la bornele de măsurare este montat voltmetrul $ V = E - I_{R_1} \cdot (R_1 + r) $		
	$\begin{cases} V = I_{R_2} \cdot R_2 \\ V = I_V \cdot R_V \end{cases}$	0,20p	
	V - căderea de tensiune de la bornele rezistenței 2 I_{R_1} - intensitatea curentului electric prin rezistența R_1		
	I_{R_2} - intensitatea curentului electric prin rezistenţa R_2		
	I_V - intensitatea curentului electric prin voltmetru		
	$ I_{V} = I_{R_{1}} - I_{R_{2}} U_{2} = I_{V} \cdot R_{V} = R_{V} \cdot (I_{R_{1}} - I_{R_{2}}) $	0,20p	
	$U_2 \cdot \left(\frac{1}{R_V} + \frac{1}{R_1 + r} - \frac{1}{R_2}\right) = \frac{E}{R_1 + r}$	0,20p	

Problema a III-a Barem de evaluare și de notare - Clasa a X –a Pagina 7 din 10

1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

	situaţia în care întrerupătorul K este pe poziţia 2 şi la bornele de măsurare este montat ampermetrul $\begin{cases} V'' = E - I''_{R_1} \cdot (R_1 + r) \\ V'' = I''_{R_2} \cdot R_2 \\ V''' = I_2 \cdot R_A \end{cases}$ $V''' - căderea de tensiune de la bornele rezistenţei 2$ $I''_{R_1} - \text{intensitatea curentului electric prin rezistenţa } R_1$ $I'''_{R_2} - \text{intensitatea curentului electric prin rezistenţa } R_2$ $I_A - \text{intensitatea curentului electric prin ampermetru}$	0,20p	
	$I_A = I''_{R_1} - I''_{R_2}$ $I_A = V'' \left(\frac{1}{R_2} + \frac{1}{R_1 + r} \right) - \frac{E}{R_1 + r}$	0,20p	
	$I_2 \left(\frac{1}{R_2} + \frac{1}{R_1 + r} - \frac{1}{R_A} \right) = \frac{E}{(R_1 + r)R_A}$	0,20p	
	$R_1 = \frac{\left(\frac{E}{I_2 R_A} - \frac{E}{U_2}\right)}{\frac{1}{R_A} - \frac{1}{R_V}} - r \qquad R_1 \cong 802\Omega$	0,40p	
	$R_2 = \frac{1}{\frac{E}{U_2} - 1} \qquad R_2 \cong 380\Omega$ $R_1 = \frac{1}{\frac{R_1}{R_1} - \frac{1}{R_V}}$	0,40p	
	$R_1 R_V$		
Nr.	Magnetorezistență - Sarcina de lucru nr. 1		Punctaj
	Magnetorezistență - Sarcina de lucru nr. 1 Pentru:		Punctaj 1,00p
item	Magnetorezistență - Sarcina de lucru nr. 1 $\vec{a} = -\frac{e \cdot \vec{E}}{m}$	0,40p	_
item	Magnetorezistență - Sarcina de lucru nr. 1 Pentru: $\vec{a} = -\frac{e \cdot \vec{E}}{r^2}$	0,40p 0,20p	_
item			_
item		0,20p	_
item 1.a.	Pentru: $\vec{a} = -\frac{e \cdot \vec{E}}{m}$ expresia distanței parcurse de electronul care pleacă din repaus în timpul τ $S = \frac{e \cdot E}{m} \cdot \frac{\tau^2}{2}$ expresia vitezei medii a electronului (vitezei de drift) $\vec{v} = \frac{\tau \cdot e}{2m} \cdot \vec{E}$ Pentru: $U = I \cdot \frac{c}{a \cdot b} \cdot \frac{1}{\sigma}$	0,20p	1,00p
item 1.a.	Magnetorezistență - Sarcina de lucru nr. 1Pentru: $\vec{a} = -\frac{e \cdot \vec{E}}{m}$ expresia distanței parcurse de electronul care pleacă din repaus în timpul τ $S = \frac{e \cdot E}{m} \cdot \frac{\tau^2}{2}$ expresia vitezei medii a electronului (vitezei de drift) $\vec{v} = \frac{\tau \cdot e}{2m} \cdot \vec{E}$ Pentru:	0,20p 0,40p	1,00p
item 1.a.	Pentru: $\vec{a} = -\frac{e \cdot \vec{E}}{m}$ expresia distanței parcurse de electronul care pleacă din repaus în timpul τ $S = \frac{e \cdot E}{m} \cdot \frac{\tau^2}{2}$ expresia vitezei medii a electronului (vitezei de drift) $\vec{v} = \frac{\tau \cdot e}{2m} \cdot \vec{E}$ Pentru: $U = I \cdot \frac{c}{a \cdot b} \cdot \frac{1}{\sigma}$	0,20p 0,40p 0,20p	1,00p
item 1.a.		0,20p 0,40p 0,20p 0,20p	1,00p

Nr. item	Magnetorezistență - Sarcina de lucru nr. 2		Punctaj
2.a.	Pentru:		2,50p
	expresia forței Lorentz $\vec{F}_L = -\mathbf{e} \cdot \vec{E} - \mathbf{e} \cdot \vec{\mathbf{v}}_m \times \vec{B}$	0,20p	
	expresia acceleraţiei electronului $\vec{a}_L = \frac{e}{m} [(E + v_{my} \cdot B) \cdot \vec{i} - v_{mx} \cdot B \cdot \vec{j}]$	0,20p	
	$\frac{dv_{m_X}}{dt} = \dot{v}_{m_X} = \frac{e}{m} \cdot \left(E + v_{m_Y} \cdot B \right)$ $\frac{dv_{m_Y}}{dt} = \dot{v}_{m_Y} = -\frac{e}{m} \cdot v_{m_X} \cdot B$	0,20p	
	$\begin{cases} \ddot{V}_{m_X} + \frac{\mathbf{e}^2 \cdot \mathbf{B}^2}{m^2} V_{m_X} = 0 \\ \ddot{V}_{m_Y} + \frac{\mathbf{e}^2 \cdot \mathbf{B}^2}{m^2} V_{m_Y} = -\mathbf{B} \cdot \mathbf{E} \cdot \frac{\mathbf{e}^2}{m^2} \end{cases}$	0,40p	
	soluţia ecuaţiei "de mişcare" de tip oscilator cu întreţinere independentă de timp $ \ddot{\mathcal{E}} + \omega^2 \cdot \mathcal{E} = \mathcal{G} \text{ , cu } \mathcal{G} \text{ constant în timp} $ $ \mathcal{E}(t) = A \cdot \sin(\omega \cdot t + \varphi) + \frac{\mathcal{G}}{\omega^2} \text{ , unde } A \text{ şi } \varphi \text{ sunt constante care se determină din condiţiile iniţiale} $	0,30p	
	componentele vitezei de drift a electronului $v_{m_X}(t) = A \cdot \sin\left(\frac{e \cdot B}{m} \cdot t + \varphi\right) \qquad v_{m_Y}(t) = D \cdot \sin\left(\frac{e \cdot B}{m} \cdot t + \psi\right) - \frac{E}{B}$	0,20p	
	condiţiile iniţiale $v_{m_X}(0) = A \cdot \sin(\varphi) = 0 \qquad v_{m_Y}(0) = D \cdot \sin(\psi) - \frac{E}{B} = 0$ $a_{m_X}(0) = A \cdot \frac{e \cdot B}{m} \cdot \cos(\varphi) = \frac{eE}{m} \qquad a_{m_Y}(0) = D \cdot \frac{e \cdot B}{m} \cdot \cos(\psi) = 0$	0,20p	
	$\begin{cases} \varphi = 0 \\ A = \frac{E}{B} \end{cases} \qquad \begin{cases} \psi = \frac{\pi}{2} \\ D = \frac{E}{B} \end{cases}$	0,20p	
	$v_{mx}(t) = \frac{E}{B} \cdot \sin\left(\frac{e \cdot B}{m} \cdot t\right)$	0,30p	
	$v_{my}(t) = -\frac{E}{B} \cdot \left[1 - \cos\left(\frac{e \cdot B}{m} \cdot t\right) \right]$	0,30p	
2.b.	Pentru:		1,50p
	expresia vitezei pe direcţia Ox cazul câmpurilor magnetice slabe $v_{m_X}(t) \cong \frac{e \cdot E}{m} \cdot t - \frac{e^3 \cdot B^2 \cdot E}{6m^3} \cdot t^3$	0,40p	

Problema a III-a Barem de evaluare și de notare - Clasa a XI –a

TOTAL Problema a III-a		10p
Oficiu		1,00p
$\begin{cases} \alpha = -\frac{e^2 \cdot \tau^2}{12m} \\ \beta = 2 \end{cases}$	0,20p	
$\Delta \sigma = e^2 \tau^2 B^2$	0,20p	
expresia variaţiei relative a conductivităţii $\frac{\Delta\sigma}{\sigma} = \frac{\sigma(B) - \sigma(0)}{\sigma(0)}$ $\frac{\Delta\sigma}{\sigma} = \frac{v_m - v}{v}$	0,20p	
expresia vitezei medii de deplasare a electronului (viteza de drift în câmp magnetic) $ v_m = \frac{s}{\tau} = \frac{e \cdot E}{2m} \cdot \tau - \frac{e^3 \cdot B^2 \cdot E}{24m^3} \cdot \tau^3 $	0,20p	
expresia distanței s pe care se deplasează electronul între două ciocniri, în intervalul de timp τ $s = \frac{e \cdot E}{2m} \cdot \tau^2 - \frac{e^3 \cdot B^2 \cdot E}{24m^3} \cdot \tau^4$	0,30p	

© Barem de evaluare şi de notare propus de

Conf. dr. Adrian DAFINEI – Facultatea de fizică, Universitatea București

Profesor Ioan POP - Colegiul Naţional "Mihai Eminescu", Satu Mare

Profesor Ion TOMA - Colegiul Naţional "Mihai Viteazul", Bucureşti

Problema a III-a Barem de evaluare și de notare - Clasa a XI –a