

Machine learning: generalization

Minimizing training loss

Hypothesis class:

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$

Training objective (loss function):

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w})$$

Optimization algorithm:

stochastic gradient descent

Is the training loss a good objective to optimize?

A strawman algorithm

Algorithm: rote learning

```
Training: just store \mathcal{D}_{\mathsf{train}}.
```

Predictor f(x):

If $(x,y) \in \mathcal{D}_{\mathsf{train}}$: return y.

Else: segfault.

Minimizes the objective perfectly (zero), but clearly bad...

Overfitting pictures

Classification

Regression

CS221 θ

Evaluation

How good is the predictor f?

Key idea: the real learning objective-

Our goal is to minimize error on unseen future examples.

Don't have unseen examples; next best thing:

Definition: test set-

Test set \mathcal{D}_{test} contains examples not used for training.

8

Generalization

When will a learning algorithm **generalize** well?

Approximation and estimation error

- Approximation error: how good is the hypothesis class?
- Estimation error: how good is the learned predictor **relative to** the potential of the hypothesis class?

$$\mathsf{Err}(\hat{f}) - \mathsf{Err}(f^*) = \underbrace{\mathsf{Err}(\hat{f}) - \mathsf{Err}(g)}_{\text{estimation}} + \underbrace{\mathsf{Err}(g) - \mathsf{Err}(f^*)}_{\text{approximation}}$$

- Here's a cartoon that can help you understand the balance between fitting and generalization. Out there somewhere, there is a magical predictor f^* that classifies everything perfectly. This predictor is unattainable; all we can hope to do is to use a combination of our domain knowledge and data to approximate that. The question is: how far are we away from f^* ?
- Recall that our learning framework consists of (i) choosing a hypothesis class \mathcal{F} (e.g., by defining the feature extractor) and then (ii) choosing a particular predictor \hat{f} from \mathcal{F} .
- Approximation error is how far the entire hypothesis class is from the target predictor f^* . Larger hypothesis classes have lower approximation error. Let $g \in \mathcal{F}$ be the best predictor in the hypothesis class in the sense of minimizing test error $g = \arg\min_{f \in \mathcal{F}} \operatorname{Err}(f)$. Here, distance is just the differences in test error: $\operatorname{Err}(g) \operatorname{Err}(f^*)$.
- **Estimation error** is how good the predictor \hat{f} returned by the learning algorithm is with respect to the best in the hypothesis class: $\operatorname{Err}(\hat{f}) \operatorname{Err}(g)$. Larger hypothesis classes have higher estimation error because it's harder to find a good predictor based on limited data.
- We'd like both approximation and estimation errors to be small, but there's a tradeoff here.

Effect of hypothesis class size

As the hypothesis class size increases...

Approximation error decreases because:

taking min over larger set

Estimation error increases because:

harder to estimate something more complex

How do we control the hypothesis class size?

Strategy 1: dimensionality

$$\mathbf{w} \in \mathbb{R}^d$$

Reduce the dimensionality d (number of features):

CS221 1

Controlling the dimensionality

Manual feature (template) selection:

- Add feature templates if they help
- Remove feature templates if they don't help

Automatic feature selection (beyond the scope of this class):

- Forward selection
- Boosting
- L_1 regularization

It's the number of features that matters

Strategy 2: norm

$$\mathbf{w} \in \mathbb{R}^d$$

Reduce the norm (length) ||w||:

CS221 20

Controlling the norm

Regularized objective:

$$\min_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Algorithm: gradient descent-

Initialize
$$\mathbf{w} = [0, \dots, 0]$$

For
$$t = 1, ..., T$$
:

Initialize
$$\mathbf{w} = [0, \dots, 0]$$
For $t = 1, \dots, T$:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta(\nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w}) + \lambda \mathbf{w})$$

Same as gradient descent, except shrink the weights towards zero by λ .

Controlling the norm: early stopping

Algorithm: gradient descent

Initialize $\mathbf{w} = [0, \dots, 0]$ For $t = 1, \dots, T$: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$

Idea: simply make T smaller

Intuition: if have fewer updates, then $\|\mathbf{w}\|$ can't get too big.

Lesson: try to minimize the training error, but don't try too hard.

Summary

Not the real objective: training loss

Real objective: loss on unseen future examples

Semi-real objective: test loss

Key idea: keep it simple-

Try to minimize training error, but keep the hypothesis class small.

CS221 2

Machine learning: best practices

Choose your own adventure

Hypothesis class:

$$f_{\mathbf{w}}(x) = \operatorname{sign}(\mathbf{w} \cdot \boldsymbol{\phi}(x))$$

Feature extractor ϕ : linear, quadratic

Architecture: number of layers, number of hidden units

Training objective:

$$\frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w}) + \mathsf{Reg}(\mathbf{w})$$

Loss function: hinge, logistic

Regularization: none, L2

Optimization algorithm:

Algorithm: stochastic gradient descent

Initialize $\mathbf{w} = [0, \dots, 0]$ For $t = 1, \dots, \mathbf{T}$: For $(x, y) \in \mathcal{D}_{\mathsf{train}}$: $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{\eta} \nabla_{\mathbf{w}} \mathsf{Loss}(x, y, \mathbf{V}, \mathbf{w})$ Number of epochs

Step size: constant, decreasing, adaptive

Initialization: amount of noise, pre-training

Batch size

Dropout

Hyperparameters

Definition: hyperparameters-

Design decisions (hypothesis class, training objective, optimization algorithm) that need to be made before running the learning algorithm.

How do we choose hyperparameters?

Choose hyperparameters to minimize \mathcal{D}_{train} error?

No - optimum would be to include all features, no regularization, train forever

Choose hyperparameters to minimize \mathcal{D}_{test} error?

No - choosing based on $\mathcal{D}_{\mathsf{test}}$ makes it an unreliable estimate of error!

Validation set

Definition: validation set-

A validation set is taken out of the training set and used to optimize hyperparameters.

$$\mathcal{D}_{\mathsf{train}} ackslash \mathcal{D}_{\mathsf{val}}$$
 $\mathcal{D}_{\mathsf{val}}$ $\mathcal{D}_{\mathsf{test}}$

For each setting of hyperparameters, train on $\mathcal{D}_{\mathsf{train}} \backslash \mathcal{D}_{\mathsf{val}}$, evaluate on $\mathcal{D}_{\mathsf{val}}$

Model development strategy

Algorithm: Model development strategy-

- Split data into train, validation, test
- Look at data to get intuition
- Repeat:
 - Implement model/feature, adjust hyperparameters
 - Run learning algorithm
 - Sanity check train and validation error rates
 - Look at weights and prediction errors
- Evaluate on test set to get final error rates

Tips

Start simple:

- Run on small subsets of your data or synthetic data
- Start with a simple baseline model
- Sanity check: can you overfit 5 examples

Log everything:

- Track training loss and validation loss over time
- Record hyperparameters, statistics of data, model, and predictions
- Organize experiments (each run goes in a separate folder)

Report your results:

- Run each experiment multiple times with different random seeds
- Compute multiple metrics (e.g., error rates for minority groups)

Summary

 $\mathcal{D}_{\mathsf{train}} ackslash \mathcal{D}_{\mathsf{val}}$

 $\mathcal{D}_{\mathsf{val}}$

 $\mathcal{D}_{\mathsf{test}}$

Don't look at the test set!

Understand the data!

Start simple!

Practice!