Spazio vettoriale dei sottoinsiemi

Gabriel Antonio Videtta

16 dicembre 2022

Indice

1	Il campo \mathbb{F}_2 e verifica degli assiomi	1
2	Costruzione dello spazio vettoriale	1
3	Note ed esercizi	9

1 Il campo \mathbb{F}_2 e verifica degli assiomi

Dato un qualsiasi insieme X^1 è possibile estrarne uno spazio vettoriale.

Per costruire l'insieme di vettori considereremo gli elementi di X, mentre il campo su cui verrà costruito lo spazio sarà $\mathbb{F}_2 = \{0,1\} \cong \mathbb{Z}/2\mathbb{Z}$. Prima di costruire lo spazio, assicuriamoci che \mathbb{F}_2 sia effettivamente un campo² e definiamolo.

Le operazioni + e · di questo campo sono esattamente le stesse impiegate in $\mathbb{Z}/2\mathbb{Z}$ (i.e. in modulo 2, dove $2 \equiv 0$), o equivalentemente vengono definite in questo modo:

- $+: \mathbb{F}_2 \to \mathbb{F}_2 \text{ t.c. } 0+0=0, \ 1+0=1, \ 0+1=1, \ 1+1=0 \text{ (addizione)}$
- $\bullet \ \cdot : \mathbb{F}_2 \to \mathbb{F}_2 \text{ t.c. } 0 \cdot 0 = 0, \ 1 \cdot 0 = 0, \ 0 \cdot 1 = 0, \ 1 \cdot 1 = 1 \text{ (moltiplicazione)}$

Gli assiomi di campo sono effettivamente soddisfatti: gli inversi additivi di 0 e 1 sono 0 e 1 stessi, e 1 è inverso moltiplicativo di sé stesso. Valgono chiaramente le proprietà associative e distributive, mentre gli elementi neutri sono 0 per l'addizione e 1 per la moltiplicazione. Adesso è possibile costruirci sopra uno spazio vettoriale, che d'ora in poi chiameremo $\Delta(X)$.

2 Costruzione dello spazio vettoriale

Ricordiamo una delle operazioni elementari degli insiemi, la cosiddetta differenza simmetrica $A\Delta B$. Essa altro non è che l'unione dei due insiemi tolta la loro

¹Non ci soffermiamo sulla definizione di insieme, sebbene da tale scelta possano scaturire vari paradossi. Rimandiamo per la risoluzione di tali problemi a varie teorie assiomatiche, come quella di Zermelo–Fraenkel.

²Non solo è un campo, ma è il più piccolo campo non banale, ossia con più di un elemento.

intersezione:

$$A\Delta B = (A \cup B) \setminus (A \cap B).$$

Adesso definiamo $\Delta(X) = \{\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n \mid n \in \mathbb{N} \land x_i \in X, \alpha_i \in \mathbb{F}_2 \ \forall i \in \mathbb{N} \mid 1 \leq i \leq n\}.$

Esempio 2.1. Se $X = \{a, b\}, \ \Delta(X) = \{0, a, b, a + b\}.$

Esempio 2.2. Se $X = \{a, b, c\}, \Delta(X) = \{0, a, b, c, a+b, a+c, b+c, a+b+c\}.$

Dotiamo lo spazio di due operazioni, dette somma (+) e prodotto esterno (·):

- $+: \Delta(X) \to \Delta(X)$ t.c. $\forall a, b \in \Delta(X), a + b$ sia il risultato della somma coefficiente a coefficiente³.
- $\cdot: \Delta(X) \to \Delta(X)$ t.c. $\forall a \in \Delta(X), \delta \in \mathbb{F}_2, \delta a$ sia il risultato del prodotto di δ con ogni coefficiente di a^4 .

Esempio 2.3. Se $X = \{a, b\}$, a + a = (1 + 1)a = 0 in $\Delta(X)$, mentre a + b "rimane" a + b.

Esemplo 2.4. Se $X = \{a, b\}$, $1 \cdot a = a$ in $\Delta(X)$, mentre $0 \cdot a = 0$.

Queste operazioni verificano facilmente gli assiomi dello spazio vettoriale, pertanto $\Delta(X)$ è uno spazio vettoriale, la cui base è X stesso⁵.

Pertanto dim $\Delta(X) = |X|$, se $|X| < \infty$, altrimenti dim $\Delta(X) = \infty$.

L'interpretazione (e l'utilità) di questo spazio è facilmente spiegata: ogni elemento di $\Delta(X)$ definisce in modo univoco un sottoinsieme di X e l'operazione definita altro non è che la differenza simmetrica $A\Delta B$ ricordata all'inizio della sezione.

In altri termini, dotando dell'insieme delle parti (i.e. dei sottoinsiemi) di X, detto $\wp(X)$, dell'operazione differenza simmetrica per l'addizione e dell'operazione esistenza⁶ per il prodotto esterno, si può verificare che questo costituisce uno spazio vettoriale su \mathbb{F}_2 isomorfo a $\Delta(X)$ nel caso in cui X sia un insieme finito⁷.

Teorema 2.1.
$$|X| < \infty \Rightarrow \wp(X) \cong \Delta(X)$$

Dimostrazione. Per dimostrare che i due spazi sono isomorfi si costruisce un'applicazione lineare bigettiva. Definiamo pertanto $\phi: \wp(X) \to \Delta(X)$ in modo tale che:

³Esattamente come accade nei polinomi, dove la somma di due polinomi è effettuata sommando i coefficienti dei monomi dello stesso grado. L'unica differenza risiede nel ricordarsi che la somma dei coefficienti in $\Delta(X)$ è quella di \mathbb{F}_2 , dove il caso 1+1=0 ha particolare rilevanza.

 $^{^4 \}mathrm{Sussiste}$ ancora l'analogia con i polinomi.

 $^{^5}$ Ogni elemento di $\Delta(X)$ è infatti combinazione lineare univoca degli elementi di X – ancora una volta, come accade nei polinomi.

 $^{^{6}1 \}cdot X = X, \, 0 \cdot X = \varnothing.$

 $^{^7}$ L'isomorfismo impiegato nella dimostrazione difatti non è definito per i sottoinsiemi infiniti – dopotutto, se $|X| = \infty$, $\Delta(X)$ è un insieme numerabile, mentre $\wp(X)$ non può esserlo.

$$\phi(\{a_1, \ldots, a_n\}) = a_1 + \ldots + a_n$$

Dimostriamo che ϕ è un'applicazione lineare, dimostrandone prima la linearità e poi l'omogeneità.

Verifichiamo la linearità:

$$\phi(\{a_1, \ldots, a_n, b_{n+1}, \ldots, b_m\} \Delta \{a_1, \ldots, a_n, c_{n+1}, \ldots, c_k\}) =$$

$$= \phi(\{b_{n+1}, \ldots, b_m, c_{n+1}, \ldots, c_k\}) =$$

$$= b_{n+1} + \ldots + b_m + \ldots + c_{n+1} + \ldots + c_k =$$

$$= (a_1 + \ldots + b_{n+1} + \ldots + b_m) + (a_1 + \ldots + c_{n+1} + \ldots + c_k) =$$

$$= \phi(\{a_1, \ldots, a_n, b_{n+1}, \ldots, b_m\}) + \phi(\{a_1, \ldots, a_n, c_{n+1}, \ldots, c_k\}).$$

E l'omogeneità con 1:

$$\phi(1 \cdot \{a_1, \ldots, a_n\}) = \phi(\{a_1, \ldots, a_n\}) = 1 \cdot \phi(\{a_1, \ldots, a_n\}).$$

Ed infine con 0:

$$\phi(0 \cdot \{a_1, \dots, a_n\}) = \phi(\emptyset) = 0 = 0 \cdot \phi(\{a_1, \dots, a_n\}).$$

Questa applicazione è iniettiva, dal momento che Ker $\phi = \{\emptyset\}$. Inoltre ϕ è surgettiva, dal momento che una controimmagine di un elemento d di $\Delta(X)$ è l'insieme delle parti letterali di d.

Poiché bigettiva, tale applicazione è un isomorfismo.

3 Note ed esercizi

In realtà, è possibile costruire un'infinità di spazi su X mantenendo le stesse operazioni, ma variando il campo su cui esso è costruito. Un caso speciale, che merita una menzione onorevole, è proprio $X = \{1, x, x^2, ...\}$ costruito su \mathbb{R} (o un qualsiasi \mathbb{K} campo), che dà vita allo spazio dei polinomi, detto $\mathbb{R}[x]$ (o $\mathbb{K}[x]$).

Esercizio 3.1. Si esibisca un controesempio per la dimostrazione dell'isomorfismo nel caso infinito.

Esercizio 3.2. Si dimostri che, se X è finito, anche $\{x_1, x_1 + x_2, \ldots, \sum_{i=1}^{|X|} x_i\}$ con x_i elementi distinti di X è una base di $\Delta(X)$.

Esercizio 3.3. Dopo aver mostrato che $\{1, x, x^2, \ldots\}$ è una base di $\mathbb{R}[x]^8$, si dimostri che anche $\{\sum_{i=0}^j x^i \mid j \in \mathbb{N}, j \geq 0\}$, con $x^0 = 1$, lo è.

⁸Questa particolare base è detta base standard di $\mathbb{R}[x]$.