Formal Methods and Specification (SS 2021) Lecture 12: Operational Program Semantics

Stefan Ratschan

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Motivation

Definition of "program correctness" in Lecture 4 depended on the notion of "program execution", which we did not define precisely.

Instead:

tiny imperative programming language, for which we all agree on its behavior

Now: precise definition of programming language behavior

still for a very small language

Example Program

```
    i ← 0
    input k
    if a[i] = k then
    stop
    i ← i + 1
    goto 2
```

Example execution for random initial values, and user input 0

рс	İ	k	a
1	7	2	[9, 9, 9,]
2	0	2	[9, 9, 9,]
3	0	0	[9, 9, 9,]
5	0	0	[9, 9, 9,]
6	1	0	[9, 9, 9,]

Program State

Program counter + values of all program variables

We assume a program that has

- L lines, and
- \triangleright variables from a set V s.t. every variable v has type T_v .

A program state is a function that assigns

- ▶ to the special variable pc an element from $\{1, ..., L\}$, and
- ▶ to each variable $v \in V$ an element from the set T_v .

Example: $\{pc \mapsto 2, i \mapsto 1, a \mapsto [6, 2, 3, 4], k \mapsto 3\}$

Set of all states: S

State Evolution

Each step of the program

- ▶ takes a certain state $s \in S$, and
- ▶ computes another state $s' \in S$.

In this case we write $s \rightarrow_P s'$.

The relation $\rightarrow_P \subseteq S \times S$ is called *transition relation* of the program P

Why a relation, not a function?

Side Effects

- program may be influenced by environment (e.g., read from disk, ask for user input)
- program may influence environment (e.g., write to disk, display etc.)

Hence:

- more than one possible next state,
- more than one possible final output for one input

How to Define the Transition Relation?

First for individual commands (e.g., assignment, **goto**), then for whole programs.

Based on logical formulas (to allow usage of tools, demo)

We assume the necessary logical theories (and will not write them explicitely).

Transition Relation: Assignments (Example)

P is a program that has at line 5 command $i \leftarrow i + 1$.

$$s = \{pc \mapsto 5, a \mapsto [4, 5, 6, 7, 8], i \mapsto 2, k \mapsto 7\}$$
$$s' = \{pc \mapsto 6, a \mapsto [4, 5, 6, 7, 8], i \mapsto 3, k \mapsto 4\}$$

$$s \rightarrow_P s'$$
?

What does
$$i \leftarrow i + 1$$
 mean? $i = i + 1$?

Different variable!
$$i' = i + 1$$

the other variables? they do not change: a' = a, k' = k

$$pc' = pc + 1 \wedge i' = i + 1 \wedge a' = a \wedge k' = k$$

Transition Relation: Assignments (Example)

$$s = \{pc \mapsto 5, a \mapsto [4, 5, 6, 7, 8], i \mapsto 2, k \mapsto 7\}$$

$$s' = \{pc \mapsto 6, a \mapsto [4, 5, 6, 7, 8], i \mapsto 3, k \mapsto 4\}$$

$$pc' = pc + 1 \wedge i' = i + 1 \wedge a' = a \wedge k' = k$$

s, s' should satisfy this, renaming of variables

$$\pi(s') = \{ pc' \mapsto 6, a' \mapsto [4, 5, 6, 7, 8], i' \mapsto 3, k' \mapsto 4 \}$$

$$s \sqcup \pi(s') = \left\{ \begin{array}{l} pc \mapsto 5, a \mapsto [4, 5, 6, 7, 8], i \mapsto 2, k \mapsto 7, \\ pc' \mapsto 6, a' \mapsto [4, 5, 6, 7, 8], i' \mapsto 3, k' \mapsto 4 \end{array} \right\}$$

$$s \sqcup \pi(s') \not\models pc' = pc + 1 \land i' = i + 1 \land a' = a \land k' = k$$

But for

Stefan Ratschan (FIT ČVUT)

$$s' = \{pc \mapsto 6, a \mapsto [4, 5, 6, 7, 8], i \mapsto 3, k \mapsto 7\}$$

$$s \sqcup \pi(s') \models pc' = pc + 1 \land i' = i + 1 \land a' = a \land k' = k$$

Transition Relation: Assignments

If s(pc) points to a line with an assignment $v \leftarrow t$:

$$s \rightarrow_P s'$$
 iff

$$s \sqcup \pi(s') \models pc' = pc + 1 \land v' = t \land \bigwedge_{u \in V, u \neq v} u' = u$$

where

▶ $\pi: S \to S'$, where S' is as S, but assigns values to primed variables,

for all
$$r \in S$$
, $v \in \{pc\} \cup V$, $\pi(r)(v') := r(v)$

▶ for functions r, r' with disjoint domains R and R', $r \sqcup r'$ is a function with domain $R \cup R'$ for all $v \in R \cup R'$,

$$(r \sqcup r')(v) = \begin{cases} r(v), & \text{if } v \in R, \text{ and} \\ r'(v), & \text{if } v \in R'. \end{cases}$$

Transition Relation: Control Structures

▶ If s(pc) points to a line **goto** r:

$$s \to_P s'$$
 iff
$$s \sqcup \pi(s') \models pc' = r \land \bigwedge_{u \in V} u' = u$$

▶ If s(pc) points to a line if P then:

$$s \rightarrow_P s'$$
 iff

$$s \sqcup \pi(s') \models [P \Rightarrow pc' = pc + 1] \land [\neg P \Rightarrow pc' = I] \land \bigwedge_{u \in V} u' = u$$

where *I* is the number of the program line after the end of the **if-then** block. (if_then.cvc)

► Further control structures: combination of **if-then** and **goto** see also structured programming theorem [Böhm and Jacopini, 1966]

Transition Relation: Assertions

Two kinds of assertions:

- ▶ @
- assume

Same run-time behavior:

If
$$s(pc)$$
 points to a line **assume** ϕ or @ ϕ , $s \to_P s'$ iff

$$s \sqcup \pi(s') \models pc' = pc + 1 \land \phi \land \bigwedge_{s \in S'} u' = u$$

Transition Relation: Side Effects

```
input v ??? v' = input() ???
```

input x; input y

$$x' = \operatorname{input}() \land y' = \operatorname{input}()$$
 ???

Equality is transitive, hence: x' = y'!

User input does not only depend on the program state.

Side-effect: influence of something, or on something not part of the program state.

A mathematical model of the user is too complicated.

Transition Relation: Side Effects

If s(pc) points to a line of the form **input** v:

$$s \rightarrow_P s'$$
 iff

$$s \sqcup \pi(s') \models pc' = pc + 1 \land \bigwedge_{u \in V, u \neq v} u' = u$$

if
$$u = v$$
?

Non-determinism, demo: input.cvc (program variables x,y,z, command input y)

output v?

$$s \rightarrow_P s'$$
 iff

$$s \sqcup \pi(s') \models pc' = pc + 1 \land \bigwedge_{u \in V} u' = u$$

We will usually not model the monitor, harddisk etc., still, it is possible to model them.

Non-determinism

Further examples:

- We do not know the value of sensor inputs
- We do not know the speed of program threads
- We do not want to model a random number generator
- ▶ We do not want to model the rounding of floating-point arithmetic
- ▶ We do not have or want to ignore the source code of a library

In general: The result of the fact that the program behavior

- is not precisely known to us, or
- we do not want to model it precisely.

see also "abstraction" (does the user behave deterministically?)

Program Termination

Command stop

$$s \rightarrow_P s'$$
 iff \bot

Summary: Example

For whole program?

demo (program.cvc)

Transition Relation: Summary

$$s \rightarrow_P s'$$
 iff

$$s \sqcup \pi(s') \models \Phi_P$$

where Φ_P (transition constraint) is a formula of the form

$$\bigvee_{I \in \{1, \dots, I^{\mathsf{max}}\}} pc = I \land \Phi_{P, I}$$

where $\Phi_{P,I}$ is the formula corresponding to line I of the program P.

Hence: We have a predicate-logical formula that describes single program steps.

In addition:

transition relation \rightarrow_P + set of initial states: transition system.

So we can use tools from MI-TES (temporal logic, invariant etc.)

Program Execution

```
A program can do an arbitrary number of steps according to \rightarrow_P:
  r \rightarrow_{P}^{*} r' iff
    there is a sequence s_1, \ldots, s_n s.t. r = s_1 \rightarrow_P \cdots \rightarrow_P s_n = r'
Example
For an arbitrary relation \rightarrow,
  we call \rightarrow^* the reflexive-transitive closure of the relation \rightarrow
If we want to exclude zero steps (i.e., n = 1):
    transitive closure \rightarrow^+
r \rightarrow_{P}^{*} r' does not mean that r' is the final program state
```

Operational Program Semantics

Semantics of program P:

relation
$$\llbracket P \rrbracket \subseteq S \times S$$
 s.t. $\llbracket P \rrbracket (s,s')$ iff

- \triangleright $s \rightarrow_P^* s'$,
- ▶ there is no s'', s.t. $s' \rightarrow_P s''$

Intuition: [P](s, s') iff

for an initial state s, the state s' is a corresponding final state

Usually, for the initial state s, s(pc) = 1.

But: [P] is defined for arbitrary initial states

Why operational? constraint-based variant

Usage of Semantics

A program with the specification

- ▶ Input: source code of program *P*,
- Output: executable machine code X such that s' s.t. $[\![P]\!](s,s')$ for every state $s \in S$, the execution of X with initial state s results in s' with

$$[\![P]\!](s,s')$$

is called compiler.

A program with the specification

- ▶ Input: program P, state $s \in S$
- ▶ Output: s' such that $\llbracket P \rrbracket (s, s')$

is called interpreter.

An interpreter can internally use a compiler!

Stefan Ratschan (FIT ČVUT)

Usage of Semantics

Using the definition of transition relation we precisely defined, what an interpreter, compiler has to do.

Therefore, for an arbitrary program, on an arbitrary computer,

- ▶ a compiler writer knows exactly how to compile the program, and
- ▶ a programmer knows exactly, how the program will behave

For some programming languages this works like this (e.g., Standard ML)

Usage of Semantics

Unfortunately, for many programming languages

- there is only an informal description of their behavior, and
- ► the only precise definition of their behavior is a certain interpreter/compiler:

[P](s, s') iff s' is the result of executing P for the input s using the given interpreter/compiler.

Problem: that many different possible behaviors as different compilers.

Sometimes a certain compiler is designated as the compiler defining the standard behavior (reference compiler).

Very often only a subset of the language has a formal semantics

Alternatives

Semantics of programming language: an area of computer science on its own.

Alternatives to our approach:

- Different variants of operational semantics
- Denotational semantics
- ► Axiomatic semantics (e.g., Hoare calculus)
- Algebraic semantics

Advantages of our approach:

- ▶ Operational semantics fits programming in imperative languages
- Constraints can be directly used by tools.

Literature I

Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines and languages with only two formation rules. *Communications of the ACM*, 9(5):366–371, 1966.