

KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2023 – 2024

Môn thi: **TOÁN** Ngày thi: 11/6/2023

ĐÁP ÁN ĐỀ THI VÀO LỚP 10 THPT

CHO I	×2	Dán án
Cau	Ý	Đáp án Ta có $x = 9$ thỏa mãn điều kiện xác định của biểu thức A . Thay $x = 9$ (TMĐK) vào biểu thức
Câu I 2,0 điểm	1)	A, ta có $A = \frac{9+2}{\sqrt{9}} = \frac{11}{3}$.
	2)	Với điều kiện $x > 0, x \ne 1$, ta có $B = \frac{2\sqrt{x} - 3}{\sqrt{x} - 1} + \frac{3 - \sqrt{x}}{x - 1}$
		$= \frac{2\sqrt{x} - 3}{\sqrt{x} - 1} + \frac{3 - \sqrt{x}}{\left(\sqrt{x} - 1\right)\left(\sqrt{x} + 1\right)}$
		$=\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}$
		$=\frac{2x-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}$
		$=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}$
		$=\frac{2\sqrt{x}}{\sqrt{x}+1}.$
	3)	$\operatorname{Ta} \operatorname{co} A.B = \frac{2x+4}{\sqrt{x}+1}.$
		$AB = 4 \Rightarrow \frac{2x+4}{\sqrt{x+1}} = 4 \Rightarrow 2x - 4\sqrt{x} = 0$
		$\Leftrightarrow 2\sqrt{x}(\sqrt{x} - 2) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 4 \end{bmatrix}.$
		Kết hợp với các điều kiện, ta được $x=4$.
	1)	Gọi số sản phâm mà phân xưởng phải làm trong một ngày theo kế hoạch là x (sản phâm). Điều kiện $x > 0$.
		Thời gian dự kiến phân xưởng làm xong 900 sản phẩm là $\frac{900}{x}$ (ngày).
		Thực tế mỗi ngày phân xưởng làm được $x + 15$ (sản phẩm).
Câu II 2,0 điểm		Thời gian thực tế phân xưởng làm xong 900 sản phẩm là $\frac{900}{x+15}$ (ngày).
2,5 diem		Vì phân xưởng làm xong 900 sản phẩm sớm hơn 3 ngày so với kế hoạch nên ta có phương
		Với điều kiện $x > 0$, phương trình tương đương với $x^2 + 15x - 4500 = 0$.
		$\Delta = 15^2 - 4.1.(-4500) = 18225 \Rightarrow \sqrt{\Delta} = 135.$

Phương trình có hai nghiệm phân biệt $x_1 = \frac{-15 - 135}{2} = -75; x_2 = \frac{-15 + 135}{2}$	$\frac{35}{}$ = 60.
Đối chiếu với điều kiện ta được $x = 60$. Vậy theo kế hoạch, mỗi ngày phân xưởng phải làm 60 sản phẩm.	
Thể tích của khối gỗ là: $V = \pi R^2 h \approx 3{,}14. 30^2. 120$	
2) Vậy $V \approx 339120 (cm^3)$.	
Diều kiện: $x \neq 3$. $\begin{cases} \frac{2}{x-3} - 3y = 1 \\ \frac{3}{x-3} + 2y = 8 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} - 9y = 3 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 13 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3}$	\
Xét phương trình hoành độ giao điểm của đường thẳng (d) và parabol (P) :	
$x^{2} = (m+2)x - m \iff x^{2} - (m+2)x + m = 0 \ (*).$	
Câu III 2.5 điểm Ta có $\Delta = m^2 + 4$. Suy ra $\Delta > 0$ với mọi giá trị của m . Do đó phương trình (*) luôn có 2 nghiệm phân biệt. Vậy (d) luôn cắt (P) tại hai điểm phân biệt.	
2,5 điểm $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$x_{\rm a}$ là hai
nghiệm của phương trình (*). Theo định lý Vi-ét, ta có $\begin{cases} x_1 + x_2 = m + 2 \\ x_1.x_2 = m \end{cases}$ 2b) Từ đó $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{x_1 + x_2 - 2} \Leftrightarrow \frac{x_1 + x_2}{x_1x_2} = \frac{1}{x_1 + x_2 - 2}$ Suy ra $\frac{m+2}{m} = \frac{1}{m}$ (Điều kiện $m \neq 0$). $\Rightarrow m+2 = -1 \Leftrightarrow m = -1.$ Đối chiếu với điều kiện, ta được $m = -1$.	. 2
Câu IV 3,0 điểm Vì SA là tiếp tuyến của O nên $\widehat{SAO} = 90^{\circ}$.	
Theo giả thiết ta có $OI \perp BC \Rightarrow \widehat{SIO} = 90^{\circ}$.	

		Xét tứ giác $SAOI$ có $\widehat{SAO} + \widehat{SIO} = 180^{\circ}$, mà hai góc \widehat{SAO} và \widehat{SIO} là hai góc đối nhau
		nên tứ giác SAOI là tứ giác nội tiếp.
		Ta có $\triangle OAH$ vuông tại H nên $OAH = 90^{\circ} - HOA$.
2	2)	Ta có $\triangle IAD$ vuông tại D nên $IAD = 90^{\circ} - DIA$.
	1	Vì $\widehat{HOA} = \widehat{DIA}$ (hai góc nội tiếp cùng chắn cung SA của đường tròn ngoại tiếp tứ giác
	_	$SAOI$ nên $OAH = IAD$. Ta có Q,I lần lượt là trung điểm các đoạn thẳng $BE,BC \Rightarrow QI$ là đường trung bình của
		The co Q,I that the trung them can down than $BE,BC \Rightarrow QI$ the duoting than C $ABEC \Rightarrow QI //EC$.
		Vì $EC \perp AB$ và $QI \parallel EC$ nên $QI \perp AB$, do đó $\widehat{BQI} = 90^{\circ}$.
		Xét ΔBDA và ΔBQI cùng có chung \widehat{ABC} , mặt khác $\widehat{BDA} = \widehat{BQI} = 90^\circ$. Suy ra $\Delta BDA \backsim \Delta BQI$ (g.g).
		$\Rightarrow \frac{BA}{BI} = \frac{BD}{BQ} \Rightarrow BQ. \ BA = BD. \ BI.$
		Ta có $\widehat{AQI} = \widehat{ADI} = 90^{\circ}$ nên tứ giác $AQDI$ là tứ giác nội tiếp.
		Suy ra $\widehat{KDC} = \widehat{BAI}$. (1)
		Xét ΔBAD vuông tại đỉnh D có $\widehat{BAD} = 90^{\circ} - \widehat{ABC}$. $(2a)$
		Xét $\triangle OAC$ có $OA = OC(=R)$. Suy ra $\triangle OAC$ cân tại đinh O .
	3)	Suy ra $\widehat{OAC} = 90^{\circ} - \frac{1}{2} \widehat{AOC}$.(2b)
		Trong đường tròn (O) , ta có $\widehat{ABC} = \frac{1}{2} \widehat{AOC}(2c)$ (tính chất góc nội tiếp và góc ở tâm cùng
		chắn cung AC).
		Từ $(2a),(2b)$ và $(2c)$ suy ra $BAD = OAC$.
		Theo chứng minh ở ý 2, có $\widehat{IAD} = \widehat{OAH}$.
		Suy ra $\widehat{BAD} + \widehat{IAD} = \widehat{OAC} + \widehat{OAH} \Rightarrow \widehat{BAI} = \widehat{KAC}$.(2)
		Từ (1) và (2) suy ra $\widehat{KDC} = \widehat{KAC}$.
		Xét tứ giác $ADKC$ có $\widehat{KDC} = \widehat{KAC}$, mà hai đỉnh A,D kề nhau, suy ra tứ giác $ADKC$ là
		tứ giác nội tiếp.
		Suy ra $\widehat{AKC} = \widehat{ADC} \Rightarrow \widehat{AKC} = 90^{\circ} \Rightarrow CK \perp AH$.
		Ta có $SO \perp AH$ và $CK \perp AH$ nên $CK \parallel SO$. Do $a > 0, b > 0$ nên bất đẳng thức cần chứng minh tương đương với
		$a^{2}(b^{2} + a) + b^{2}(a^{2} + b) \le (b^{2} + a)(a^{2} + b)$
Câu V		$\Leftrightarrow a^{2}b^{2} + a^{3} + a^{2}b^{2} + b^{3} \le a^{2}b^{2} + b^{3} + a^{3} + ab$
0,5 điểm		$\Leftrightarrow a^2b^2 \le ab \Leftrightarrow ab(ab-1) \le 0 \Leftrightarrow ab \le 1 \text{ (vì } ab > 0 \text{)}.$
		Do $a > 0, b > 0$ và $a + b \le 2$ nên $2\sqrt{ab} \le 2$. Suy ra $ab \le 1$ (đpcm).

.....HÉT.....

LƯU Ý

Trong trường hợp, vì một số lí do nào đó, thí sinh hiểu đề bài câu III.1 là $\begin{cases} -\frac{2}{x-3} - 3y = 1\\ \frac{3}{x-3} + 2y = 8 \end{cases}$, các bước giải của

ý III. 1 được thể hiện như sau:

Câu	Đáp án
	Diều kiện: $x \neq 3$.
Câu III.1	$\begin{cases} -\frac{2}{x-3} - 3y = 1 \\ \frac{3}{x-3} + 2y = 8 \end{cases} \Leftrightarrow \begin{cases} -\frac{6}{x-3} - 9y = 3 \\ \frac{6}{x-3} + 4y = 16 \end{cases} \Leftrightarrow \begin{cases} \frac{6}{x-3} + 4y = 16 \\ -5y = 19 \end{cases} \Leftrightarrow \begin{cases} \frac{3}{x-3} = \frac{160}{5} \\ y = -\frac{19}{5} \end{cases} \Leftrightarrow \begin{cases} x = \frac{36}{26} \\ y = -\frac{19}{5} \end{cases}$
	Đối chiếu với điều kiện, ta được hệ phương trình có nghiệm là $(x; y) = \left(\frac{83}{26}; -\frac{19}{5}\right)$.

.....HÉT.....

