Regression Introduction and Estimation Review

Dr. Yang Feng

Formal Statement of Model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- \triangleright Y_i value of the response variable in the i^{th} trial
- ▶ β_0 and β_1 are parameters
- ➤ X_i is a known constant, the value of the predictor variable in the ith trial
- ullet ϵ_i is a random error term with mean $\mathbb{E}(\epsilon_i)$ and variance $\mathsf{Var}(\epsilon_i) = \sigma^2$
- $i = 1, \ldots, n$

Least Squares Linear Regression

► Seek to minimize

$$Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2$$

▶ By careful choice of b_0 and b_1 where b_0 is a point estimator for β_0 and b_1 is the same for β_1 How?

Guess #1

Guess #2

Function maximization

- Important technique to remember!
 - ► Take derivative
 - ▶ Set result equal to zero and solve
 - ► Test second derivative at that point
- Question: does this always give you the maximum?
- ▶ Going further: multiple variables, convex optimization

Function Maximization

Find the maximum value of x that satisfies the function

$$-x^2 + ln(x) = a, x > 0$$

Least Squares Max(min)imization

▶ Function to minimize w.r.t. b_0 and $b_1 - b_0$ and b_1 are called point estimators of β_0 and β_1 respectively

$$Q = \sum_{i=1}^{n} (Y_i - (b_0 + b_1 X_i))^2$$

- ► Minimize this by maximizing -Q
- Either way, find partials and set both equal to zero

$$\frac{dQ}{db_0} = 0$$

$$\frac{dQ}{db_1} = 0$$

Normal Equations

▶ The result of this maximization step are called the normal equations.

$$\sum Y_i = nb_0 + b_1 \sum X_i$$

$$\sum X_i Y_i = b_0 \sum X_i + b_1 \sum X_i^2$$

▶ This is a system of two equations and two unknowns. The solution is given by...

Solution to Normal Equations

After a lot of algebra one arrives at

$$b_{1} = \frac{\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum (X_{i} - \bar{X})^{2}}$$

$$b_{0} = \bar{Y} - b_{1}\bar{X}$$

$$\bar{X} = \frac{\sum X_{i}}{n}$$

$$\bar{Y} = \frac{\sum Y_{i}}{n}$$