RSSB Data Scientist Assessment

Name: Isaac Komezusenge

Role: Data Scientist

Email: isaackomeza@gmail.com

Importing Libraries

```
In [1]: import warnings
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
    from sklearn.preprocessing import PolynomialFeatures
In [2]: warnings.simplefilter(action='ignore', category=FutureWarning)
```

Looding the incurrence detect

Loading the insurance dataset

insurance_df = pd.read_csv('insurance.csv')

```
children
                                                           region
Out[3]:
                age
                        sex
                                bmi
                                               smoker
                                                                        charges
             0
                              27.900
                                                                   16884.92400
                  19
                     female
                                            0
                                                   yes
                                                        southwest
                  18
                       male
                              33.770
                                                         southeast
                                                                     1725.55230
                                                    no
             2
                                            3
                 28
                       male
                             33.000
                                                    no
                                                         southeast
                                                                    4449.46200
             3
                 33
                       male
                             22,705
                                            0
                                                         northwest
                                                                    21984.47061
                                                    no
             4
                       male 28.880
                                            0
                 32
                                                         northwest
                                                                    3866.85520
                                                    no
         1333
                 50
                       male
                             30.970
                                            3
                                                         northwest
                                                                   10600.54830
                                                    no
         1334
                  18 female
                              31.920
                                            0
                                                         northeast
                                                                    2205.98080
                                                    no
         1335
                 18 female
                             36.850
                                            0
                                                         southeast
                                                                     1629.83350
                                                    nο
         1336
                  21 female
                             25.800
                                                        southwest
                                                                     2007.94500
          1337
                  61 female 29.070
                                            0
                                                                    29141.36030
                                                        northwest
```

In [4]: insurance_df.info()

In [3]:

insurance df

1338 rows × 7 columns

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column Non-Null Count Dtype
            1338 non-null int64
1338 non-null object
    age
0
1
   sex
2 bmi
             1338 non-null float64
3 children 1338 non-null int64
    smoker 1338 non-null object
5
    region 1338 non-null object
    charges 1338 non-null float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

a. Summary statistics of the variable charges

```
In [5]: charges summary = insurance df['charges'].describe()
        charges_summary
                  1338.000000
Out[5]: count
                 13270.422265
        mean
                12110.011237
        std
        min
                  1121.873900
        25%
                  4740.287150
        50%
                  9382.033000
        75%
                 16639.912515
                 63770.428010
        max
        Name: charges, dtype: float64
```

b. Number of people in each region

c. Scatterplot matrix

```
In [7]: sns.pairplot(insurance_df)
   plt.tight_layout()
   plt.savefig('scatterplot_matrix.png')
```


Display the first few rows of the dataset

In [8]:	<pre>insurance_df.head()</pre>							
Out[8]:		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520

Split the data into features (X) and target variable (y)

```
In [9]: X = insurance_df[['age', 'sex', 'bmi', 'children', 'smoker', 'region']]
y = insurance_df['charges']
```

Convert categorical variables into dummy/indicator variables

```
In [10]: X = pd.get_dummies(X, drop_first=True)
```

Split the data into training and testing sets

```
In [11]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
```

Train a linear regression model

```
In [12]: model = LinearRegression()
model.fit(X_train, y_train)

Out[12]: v LinearRegression
LinearRegression()
```

Evaluate the model performance

```
In [13]: train_score = model.score(X_train, y_train)
train_score

Out[13]: 0.7417255854683333

In [14]: test_score = model.score(X_test, y_test)
test_score

Out[14]: 0.7835929767120723
```

The model performance metrics are as follows:

• Training R-squared score: 0.742

Testing R-squared score: 0.784

These scores indicate that the model explains approximately 74.2% of the variance in the training data and 78.4% of the variance in the testing data. The model seems to perform well, but we can further enhance its performance by adding a nonlinear relationship with age as the input.

Next, I will proceed with adding a nonlinear relationship with age as the input to improve the model performance. Let's continue with the analysis.

Add a nonlinear relationship with age as input

```
In [15]: X_train['age_squared'] = X_train['age'] ** 2
X_test['age_squared'] = X_test['age'] ** 2
```

Train a new linear regression model with the added nonlinear relationship

```
In [16]: model_nonlinear = LinearRegression()
model_nonlinear.fit(X_train, y_train)

Out[16]: v LinearRegression
LinearRegression()
```

Evaluate the performance of the new model

```
In [17]: train_score_nonlinear = model_nonlinear.score(X_train, y_train)
    train_score_nonlinear
Out[17]: 0.7445057270114904
```

Evaluate the performance of the new model

```
In [18]: test_score_nonlinear = model_nonlinear.score(X_test, y_test)
test_score_nonlinear
Out[18]: 0.7864278464749717
```

The updated model with a nonlinear relationship using age as an input has the following performance metrics:

Training R-squared score: 0.745Testing R-squared score: 0.786

The addition of the nonlinear relationship has slightly improved the model's performance. The model now explains approximately 74.5% of the variance in the training data and 78.6% of the variance in the testing data.

Next, I will proceed with building a model that incorporates the interaction effects of smokers and obesity to further enhance the regression model.

Create a new feature for the interaction effects of smokers and obesity

```
In [19]: X_train['smoker_obese_interaction'] = X_train['smoker_yes'] * (X_train['b
X_test['smoker_obese_interaction'] = X_test['smoker_yes'] * (X_test['bmi'])
```

Train a model with the interaction effects

```
In [20]: model_interaction = LinearRegression()
model_interaction.fit(X_train, y_train)

Out[20]: v LinearRegression
LinearRegression()
```

Evaluate the performance of the model with interaction effects

```
In [21]: train_score_interaction = model_interaction.score(X_train, y_train)
    train_score_interaction

Out[21]: 0.8628634536994455

In [22]: test_score_interaction = model_interaction.score(X_test, y_test)
    test_score_interaction

Out[22]: 0.8835423146330178
```

The model with the interaction effects of smokers and obesity has shown improved performance:

Training R-squared score: 0.863Testing R-squared score: 0.884

The addition of the interaction effects has significantly enhanced the model's performance, explaining approximately 86.3% of the variance in the training data and 88.4% of the variance in the testing data.

Retrieve the coefficients of the model with interaction effects

Out[24]: 1226.0302093878126

The coefficients of the model after incorporating the interaction effects of smokers and obesity are as follows:

- Coefficient for age: 6.58629291e+00
- Coefficient for bmi: 5.05017164e+01
- Coefficient for children: 6.03128421e+02
- Coefficient for smoker_yes: -5.02139441e+02
- Coefficient for region_northeast: 1.33194195e+04
- Coefficient for region_northwest: -3.34117306e+02
- Coefficient for region_southeast: -6.76732615e+02
- Coefficient for region_southwest: -1.32648606e+03
- Coefficient for age_squared: 3.22167559e+00
- Coefficient for smoker_obese_interaction: 1.97858010e+04

The intercept of the model is: 1226.0302093878454

These coefficients represent the change in the insurance charges for a unit change in each feature, holding all other features constant. The interaction term coefficient indicates the additional effect on charges when both smoking and obesity are present.

Visualization of the interaction effect between smoking status and obesity on insurance charges

```
In [25]: # Creating a temporary DataFrame to visualize the interaction effect
    temp_df = X_train.copy()
    temp_df['charges'] = y_train

# Creating a categorical variable for obesity
    temp_df['obese'] = temp_df['bmi'] > 30

# Plotting
    plt.figure(figsize=(10, 6))
    sns.scatterplot(data=temp_df, x='bmi', y='charges', hue='smoker_yes', sty
    plt.title('Interaction Effect of Smoking and Obesity on Insurance Charges
    plt.xlabel('BMI')
    plt.ylabel('Insurance Charges')
    plt.legend(title='Smoker / Obese', labels=['Non-Smoker, Not Obese', 'Smok
    plt.grid(True)
    plt.show()
```


<Figure size 640x480 with 0 Axes>

This scatter plot shows the insurance charges in relation to BMI, with different markers and colors indicating whether the individual is a smoker and/or obese. This visualization helps in understanding how the combination of being a smoker and being obese can significantly impact insurance charges.