Foundations of Deep Learning

Fall 2024

Exercise 9: Neural Network Architectures

Lecturer: Aurelien Lucchi

Problem 1 (Convolutions as Dense Operations):

The goal of this exercise is to better understand the term "parameter-sharing" in the context of convolutional neural networks.

a) Consider the 1-d convolution of an input $\mathbf{x} \in \mathbb{R}^D$ with a kernel $\mathbf{h} \in \mathbb{R}^K$:

$$(\mathbf{x} * \mathbf{h})_k = \sum_{i=1}^K x_{K+k-i} h_i \text{ for } k \in \{1, \dots, D - K + 1\}$$

For fixed \mathbf{h} we can thus view $\mathbf{x} * \mathbf{h}$ as a 1-d convolutional layer in a neural network

$$f_{\mathbf{h}}: \mathbb{R}^D \to \mathbb{R}^{D-K+1}, \ \mathbf{x} \mapsto \mathbf{x} * \mathbf{h}$$

Rewrite this operation as a dense layer, namely find a matrix $\mathbf{W_h} \in \mathbb{R}^{(D-K+1) \times D}$ such that you can write

$$f(\mathbf{x}) = \mathbf{W_h} \mathbf{x} \ \forall \mathbf{x}$$

Hint: Use Toeplitz matrix.

b) Compare the layer $f_{\mathbf{h}} : \mathbb{R}^D \to \mathbb{R}^{D-K+1}$, $\mathbf{x} \mapsto \mathbf{W_h} \mathbf{x}$ with a general dense layer $f : \mathbb{R}^D \to \mathbb{R}^{D-K+1}$, $\mathbf{x} \mapsto \mathbf{W} \mathbf{x}$ for some matrix $\mathbf{W} \in \mathbb{R}^{(D-K+1) \times D}$.

What are the number of free parameters in f and in f_h ? Why does f_h have less free parameters? Think about "parameter-sharing".

Problem 2 (Batch Normalization):

Assume we have a fully connected neural network f with input $\mathbf{x} \in \mathbb{R}^d$ described by the recursive system

- $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x} \in \mathbb{R}^d$
- $\mathbf{h}^{(l+1)}(\mathbf{x}) = \mathbf{W}^{(l+1)}\tilde{\mathbf{h}}^{(l)}(\mathbf{x}) \in \mathbb{R}^{d_{l+1}}$ where $\mathbf{W}^{(l+1)} \in \mathbb{R}^{d_{l+1} \times d_l}$
- $\tilde{\mathbf{h}}^{(l+1)}(\mathbf{x}) = \phi\left(\mathbf{h}^{(l+1)}(\mathbf{x})\right) \in \mathbb{R}^{d_{l+1}}$ where $\phi: \mathbb{R} \to \mathbb{R}$ is a non-linearity applied component-wise
- $f(\mathbf{x}) = (\mathbf{W}^{(L+1)})^T \tilde{\mathbf{h}}^{(L)}(\mathbf{x}) \in \mathbb{R}$ where $\mathbf{W}^{(L)} \in \mathbb{R}^{d_L}$

We can describe the batch norm operation at layer l+1 as follows. Fix a dataset $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}\subset\mathbb{R}^d$ and take a mini batch $\mathcal{B}=\{\mathbf{x}_1,\ldots,\mathbf{x}_B\}$ which we assume for simplicity is just the first B examples.

During the forward-pass for one step of SGD we calculate the pre-activations $\mathbf{h}^{(l+1)}(\mathbf{x}_1), \dots, \mathbf{h}^{(l+1)}(\mathbf{x}_B)$. Given those values, we calculate mean and variance statistics as

•
$$\boldsymbol{\mu}^{(l+1)}(\mathcal{B}) = \frac{1}{B} \sum_{i=1}^{B} \mathbf{h}^{(l+1)}(\mathbf{x}_i) \in \mathbb{R}^{d_{l+1}}$$

•
$$\sigma^{(l+1)}(\mathcal{B}) \in \mathbb{R}^{d_{l+1}}$$
 such that $\sigma_j^{(l+1)} = \sqrt{\frac{1}{B-1} \sum_{i=1}^B \left(h_j^{(l+1)}(\mathbf{x}_i) - \mu_j^{(l+1)} \right)^2}$

Instead of propagating $h^{(l+1)}(\mathbf{x}_i)$ through the non-linearity ϕ for $i = 1, \ldots, B$, we pass

$$\mathbf{z}_{j}^{(l+1)}(\mathbf{x}) = \gamma_{j}^{(l+1)} \frac{h_{j}^{(l+1)}(\mathbf{x}) - \mu_{j}^{(l+1)}}{\sigma_{j}^{(l)}} + \beta_{j}^{(l+1)} \quad \text{for } j = 1, \dots, d_{l+1}$$

where $\boldsymbol{\gamma}^{(l+1)}, \boldsymbol{\theta}^{(l+1)} \in \mathbb{R}^{d_{l+1}}$ are learnable parameters. The equations for a layer thus become:

•
$$\mathbf{h}^{(l+1)}(\mathbf{x}) = \mathbf{W}^{(l+1)}\tilde{\mathbf{h}}^{(l)}(\mathbf{x}) \in \mathbb{R}^{d_{l+1}}$$

•
$$\mathbf{z}^{(l+1)}(\mathbf{x}) = \boldsymbol{\gamma}^{(l+1)} \odot \frac{\mathbf{h}^{(l+1)}(\mathbf{x}) - \boldsymbol{\mu}^{(l+1)}(\mathcal{B})}{\boldsymbol{\sigma}^{(l+1)}(\mathcal{B})} + \boldsymbol{\theta}^{(l+1)} \in \mathbb{R}^{d_{l+1}}$$

•
$$\tilde{\mathbf{h}}^{(l+1)}(\mathbf{x}) = \phi\left(\mathbf{z}^{(l+1)}(\mathbf{x})\right) \in \mathbb{R}^{d_{l+1}}$$

It is very important to realize that $\boldsymbol{\mu}^{(l)}(\mathcal{B})$ and $\boldsymbol{\sigma}^{(l)}(\mathcal{B})$ are a function of the batch \mathcal{B} and thus vary in different forward passes, while $\boldsymbol{\gamma}^{(l)}$ and $\boldsymbol{\theta}^{(l)}$ do not.

In this exercise we want to understand the role of the rescaling operation through $\gamma^{(l)}$ better.

- a) Where lies the difference between
 - Standardizing the layer and rescaling it with learnable parameters (batch normalization).
 - Not modifying the layer at all.

You can argue very informally.

b) Why do we even rescale again with $\gamma^{(l)}$? To that end, consider a very simple neural network

$$f(x) = w^{(2)}\phi(w^{(1)}x)$$

where $x \in \mathbb{R}$, $w^{(1)} \in \mathbb{R}$ and $w^{(2)} \in \mathbb{R}$. What happens to the representation power of f if we apply batch norm on the first layer without applying the rescale operation?