浙江工业大学

《概率论与数理统计BI》期末试卷

(2012/2013 学年第一学期)

任课教师		学院		班级	
学号		姓名 _		得分	
一 填空(共 30 分, 每	空 3 分)			
1. 向单位圆;	$x^2 + y^2 \le 1$ 内随机	地投三个点,	则3个点中恰为	有两个落在第一象	限内的概率
为	o				
2. 设事件 A, B 相互独立,且 $P(A) = 0.8, P(A-B) = 0.6$,则 $P(B) =$ 。					
3. 设随机变量 $X \sim N(\mu, \sigma^2)$, 且二次方程 $y^2 + 4y + X = 0$ 有实根的概率为 0.5,则					
μ =	o				
4. 设二维随机变量 (X,Y) 的概率分布如下表所示					
	Y				
	X	1	2	3	
	1	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$	

若 X 与 Y 相互独立,则 a=_____,b=____。

5. 设连续型随机变量X的概率密度函数为

$$\begin{cases} x^2, & 0 \le x < 1 \\ 1, & 1 \le x < a \\ 0, & \sharp$$

6. 设 $X_1, X_2, X_3, X_4, X_5, X_6$ 是来自于正态总体N(0,1)的一个简单样本,统计量

 $Y = c_1 (X_1 + X_2)^2 + c_2 (X_3 + X_4 + X_5 + X_6)^2$ 服 从 自 由 度 为 2 的 χ^2 分 布 ,则

- 7. 设 X_1, \dots, X_9 来自总体 $X \sim N(\mu, 0.9^2)$ 的一个简单样本,测得样本均值为 $\overline{x} = 5$,则参 数 μ 的置信度为 0.95 的置信区间是______。 $(Z_{0.05} = 1.65, Z_{0.025} = 1.96)$
- 二选择 (共10分,每题2分)
- 1. 设A, B为两个随机事件,0 < P(A), P(B) < 1,且P(A|B) = P(A),则(
 - A. *A*, *B* 相互独立 B. *A*, *B* 互斥
 - C. A, B 对立
- D. A, B 既不独立也不互斥
- 2. 设X为随机变量, $E(X) = \mu, Var(X) = \sigma^2 (\mu, \sigma > 0$ 为常数),则对任意常数c,必 有()

 - A. $E\left[\left(X-c\right)^2\right] = E\left(X^2\right) c^2$ B. $E\left[\left(X-c\right)^2\right] = E\left[\left(X-\mu\right)^2\right]$

 - C. Var(X+c) > Var(X) D. Var(X+c) = Var(X)
- 3. 设X为随机变量, $E(X) = \mu, Var(X) = 0.009$,若要求 $P\{|X \mu| < \varepsilon\} > 0.9$,则由切 比雪夫不等式必有 ()
 - A. $\varepsilon \leq 0.6$

- B. $\varepsilon < 0.3$ C. $\varepsilon \ge 0.3$ D. $\varepsilon \ge 0.6$
- 4. 设 X_1, X_2, X_3 为总体X的样本, $E(X) = \mu$, $D(X) = \sigma^2$ 均存在,下列统计量中哪个不 是参数 a 的无偏估计量(
 - A $\hat{\mu}_1 = \frac{2}{5}X_1 + \frac{1}{5}X_2 + \frac{2}{5}X_3$ B $\hat{\mu}_2 = \frac{1}{6}X_1 + \frac{1}{3}X_2 + \frac{1}{2}X_3$

 - C $\hat{\mu}_3 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{4}X_3$ D $\hat{\mu}_4 = \frac{1}{7}X_1 + \frac{3}{14}X_2 + \frac{9}{14}X_3$
- 5. 设 X_1, X_2, X_3, X_4 是来自于正态总体 $N(\mu, \sigma^2)$ 的一个简单样本,其中 μ 已知, σ^2 未知,

则下列表达式不是统计量的是()

A
$$\frac{1}{4}(X_1 + X_2 + X_3 + X_4)$$

$$B X_1 + 2\mu$$

C
$$\max(X_1, X_2, X_3, X_4)$$

C
$$\max(X_1, X_2, X_3, X_4)$$
 D $\frac{1}{\sigma^2}(X_1^2 + X_2^2 + X_3^2 + X_4^2)$

三 计算 (共60分,共6题)

1. $(8\,
m eta)$ 设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是 $\frac{3}{10}\,,\,\,\frac{1}{5}\,,\,\,\frac{1}{10}\,\,\pi\,\frac{2}{5}\,,\,\, \text{如果他乘飞机来,不会迟到; 而乘火车、轮船或汽车来,迟到的概 }$ 率分别是 $\frac{1}{4}\,,\,\frac{1}{3}\,,\,\frac{1}{2}\,$ 。现此人迟到,求他乘火车参加会议的概率.

2. (10分)设随机变量 X 具有密度函数

$$f(x) = \begin{cases} 2x, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}$$

- 1) 求常数 a, 使得 $P\{X \ge a\} = P\{X < a\}$;
- 2) 求 $Y = X^2$ 的概率密度函数。

3. (12 分) 设二维随机变量(X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} Axe^{-(x+y)}, & x > 0, y > 0 \\ 0 & \text{ } \sharp \dot{\Xi} \end{cases}$$

1) 证明常数 A=1; 2)求随机变量 X,Y 的边缘密度函数 $f_X(x),f_Y(y)$,并判断 X 和 Y 的独立性; 3) 求概率 P(X+Y<1)。

4(10 分)设随机变量 $X \sim P(2)$, $Y \sim U(0,6)$,且它们的相关系数 $\rho_{XY} = \frac{1}{\sqrt{6}}$,记 Z = 3X - 2Y,求E(Z)和Var(Z)。

5. (10 分) 设总体 *X* 具有密度函数

$$f(x,\theta) = \begin{cases} \theta x^{-\theta-1} & x > 1 \\ 0 & 其他 \end{cases}$$

其中未知参数 $\theta > 1$, (X_1, X_2, \cdots, X_n) 是从该总体中抽出的简单样本,求 1)参数 θ 的矩估计量; 2)参数 θ 的极大似然估计量。

6. (10 分) 假设正常人的脉搏服从正态分布,正常人的脉搏 平均为 72 次/分钟,现测得 16 例慢性铅中毒患者的脉搏数据(单位:次/分钟)如下:

问在显著水平 $\alpha = 0.05$ 下,慢性铅中毒患者和正常人的脉搏有无显著性差异?

$$(t_{15}(0.05) = 1.7531, t_{15}(0.025) = 2.1315, t_{16}(0.05) = 1.7459, t_{16}(0.025) = 2.11199)$$