IMPLEMETASI SISTEM KENDALI MOTOR DC PADA KURSI RODA OTOMATIS BERBASIS ARDUINO

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

SHENDY SETIAWAN 6705184023

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Teknologi alat kesehatan berkembang sangat pesat seiring dengan perkembangan teknologi informasi (Kementerian Kesehatan, 2015). Pemerintah juga terus berupaya mendorong untuk berkembangnya industri alat kesehatan untuk memacu daya saing nasional (Kementerian Perindustrian, 2015). Saat ini sebanyak 65 produsen di dalam negeri telah mampu memproduksi alat kesehatan, salah satu yang mampu di produksi adalah kursi roda (Kementerian Perindustrian, 2015). Kursi roda merupakan salah satu perangkat medis yang digunakan untuk membantu pasien yang mempunyai permasalahan dalam berjalan, khusus nya digunakan untuk membantu penyandang disabilitas dan orang tua yang sudah tidak kuat untuk berjalan.

Information and Autonomous Control System (INACOS) laboratory adalah sebuah wadah riset terpadu antara dosen dengan mahasiswa Universitas Telkom yang didirikan pada tahun 2014. Laboratorium ini berada di bawah Kelompok Keahlian (KK) Sistem Elektronik (SE) dan bertempat di gedung N ruang N315. Tidak seperti lab lain yang berbasis praktikum serta riset yang hanya sekedar mencari "how to" serta desain produk, INACOS memiliki target untuk membuat produk riset yang diharapkan dapat bersaing dengan industri lokal maupun internasional. Pada awal dibentuk lab ini hanya beranggotakan mahasiswa prodi S1 Teknik Elektro. Kemudian pada tahun 2018 INACOS mulai membuka kesempatan pada mahasiswa dari seluruh fakultas di Universitas Telkom, kecuali Fakultas Ilmu Terapan, untuk bergabung menjadi asisten lab INACOS.

Penelitian yang dilakukan di INACOS Lab. Dibagi menjadi 3 bagian utama yaitu :

- 1. Robotic, Information and Autonomous Control System (Industrial Robotic)
- 2. Renewable Energy
- 3. Electric Car

Pada Penelitian ini penulis membuat implementasi kendali motor DC pada kursi roda otomatis atas permintaan dari penelitian di lab riset INACOS dengan tujuan agar memudahkan pengguna untuk bergerak dengan leluasa tanpa ada orang yang mendorong dari belakang. Agar bisa bergerak kesemua arah dibutuhkan dc motor sebagai penggerak serta kontrol kecepatan dc motor menggunakan motor driver H-Bridge dan joystick untuk mengontrol pergerakan kursi roda.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	usulan kerangka standar kursi roda manual sebagai acuan penyusunan standar nasional indonesia (sni) [1]	2018	Dalam penelitian ini penulis membuat penyusunan untuk standarisasi kursi roda manual
2.	Kendali Kecepatan Motor DC Penguat Terpisah Berbeban Berbasis Arduino [2]	2020	Dalam Penelitian ini penulis membuat kendali kecepatan Motor DC dengan menggunakan metode pwm
3.	DESAIN DAN IMPLEMENTASI PENGENDALI KURSI RODA MENGGUNAKAN SINYAL EEG BERBASIS MIKROKONTROLLER(DESIGN AND IMPLEMENTATION WHEELCHAIR CONTROLER	2014	Dalam Penelitian ini penulis membuat pengendali kursi roda menggunakan sinyal EEG berbasis mikro kontroler

	USING EEG SIGNAL BASED ON		
	MICROCONTROLLER) [3]		
4.	PENGONTROL KIPAS ANGIN	2017	Dalam Penelitian ini penulis membuat pengendali kipas angina
	MENGGUNAKAN METODA PWM		menggunakan metoda pwm
	[4]		
5.	Sistem kendali joystick dan	2019	Dalam Penelitian ini penulis membuat system kendali kursi roda listrik
	pengereman otomatis pada kursi roda		dengan mengunakan neurosky mind wave mobile
	listrik kendali neurosky mindwave		
	mobile [5]		
6.	A Study on Smart Wheelchair Systems	2015	Dalam Penelitian ini penulis membahas tentang berbagai macam teknologi
	[6]		pintar untuk kursi roda.

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai implementasi sistem kontrol kecepatan de motor pada kursi roda berbasis Arduino.

Gambar 1. Model Sistem kendali de motor pada kursi roda berbasis Arduino

Gambar 2. Ouput Dari Perancangan

Berdasarkan Gambar 1 Pengguna menggerakan joystick sebagai kontrol kursi roda dimana joystick memberikan inputan ke Arduino untuk mengontrol driver motor sehingga motor DC bergerak sesuai dengan input joystick. Pada perancangan ini menggunakan catu daya 12v untuk de motor melalui driver motor dan sebagai catu daya Arduino melalui converter DC-to-DC 5v.

Referensi

- [1] Badan Standarisasi Nasional, "Usulan Kerangka Standar Kursi Roda Manual Sebagai Acuan Penyusun Standar Nasional Indonesia," 2020.
- [2] A. M. Dio Taufiq Arif, "Kendali Kecepatan Motor DC Penguat Terpisah Berbeban Berbasis Arduino," *Kendali Kecepatan Motor DC Penguat Terpisah Berbeban Berbasis Arduino*, 2020.
- [3] A. Rahman, "PERANCANGAN DAN IMPLEMENTASI KURSI RODA CERDAS BERBASIS MIKROKONTROLER DENGAN SINYAL MASUKAN ELECTROOCULOGRAM (EOG) DAN PENGENDALI PROPORTIONAL INTEGRAL DERIVATIVE (PID)," PERANCANGAN DAN IMPLEMENTASI KURSI RODA CERDAS BERBASIS MIKROKONTROLER DENGAN SINYAL MASUKAN ELECTROOCULOGRAM (EOG) DAN PENGENDALI PROPORTIONAL INTEGRAL DERIVATIVE (PID), 2014.
- [4] G. L. WICAKSONO, "PENGONTROL KIPAS ANGIN MENGGUNAKAN METODA PWM (Bagian perangkat keras)," *PENGONTROL KIPAS ANGIN MENGGUNAKAN METODA PWM (Bagian perangkat keras)*, 2017.
- [5] D. H. D. I. H. Budi Suhendro, "SISTEM KENDALI JOYSTICK DAN PENGEREMAN OTOMATIS PADA KURSI RODA," *SISTEM KENDALI JOYSTICK DAN PENGEREMAN OTOMATIS PADA KURSI RODA*, 2019.
- [6] S. A. M. Mohammed Hayyan Al Sibai, "A Study on Smart Wheelchair Systems," *A Study on Smart Wheelchair Systems*, 2015.

Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 20 November 2020

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : DYD

Nama : Denny Darlis S.Si., M.T.

CALON PEMBIMBING 2

Kode : AGR

Nama : Angga Rusdinar Ph.D.

Menyatakan bersedia menjadi dosen p embimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705184023

Nama : Shendy Setiawan

Prodi / Peminatan : D3 Teknologi Telekomunikasi / Mikrokontroller (contoh: MI / SDV)

Calon Judul PA : Implementasi Sistem Kendali Motor DC Pada Kursi Roda otomatis berbasis Arduino

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Denny Darlis S.Si., M.T.

Calon Pembimbing 2

Angga Rusdinar, Ph.D.

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

)

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705184023

Dosen Wali

: TAR / TENGKU AHMAD RIZA

Nama

: SHENDY SETIAWAN

Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	AB
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	AB
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	ВС
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	В
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	С
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	С
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	В
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	ВС
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	АВ
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	В
2	DMH1A2	OLAH RAGA	SPORT	2	А
	81	3.2			

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	А
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	А
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	ВС
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	В
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	АВ
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	В
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	В
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
	81	3.2			

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	2	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	

Jumlah SKS	17	

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
5	UWI3E1	HEI	HEI	1	
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	
	Jumla	17			

Tingkat I	: 41 SKS	Belum Lulus	IPK : 3
Tingkat II	: 81 SKS	Belum Lulus	IPK: 3.2
Tingkat III	: 81 SKS	Belum Lulus	IPK: 3.2
Jumlah SKS	: 81 SKS		IPK : 3.2

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 07 Desember 2020 05:35:45 oleh SHENDY SETIAWAN