物理实验报告

学号: 114514 姓名: SUSTech 日期: 2025/03/08 时间: 周二下午

- 1 实验名称:切变模量的测量
- 2 实验目的

利用扭摆法测量钢丝的切变模量。

3 实验仪器

扭摆(已装待测钢丝)、圆环、千分尺、游标卡尺、卷尺、电子天平、电子计时器

- 4 实验原理
- 4.1 剪切形变与切变模量

当材料受到平行于其表面的力作用时,会发生剪切形变。切变模量 (G) 是衡量材料抵抗剪切形变能力的物理量,定义为剪切应力 (τ) 与剪切应变 (γ) 的比值。

$$G = \frac{\tau}{\gamma} \tag{1}$$

其中,剪切应力 $\tau = \frac{F}{A}$,剪切应变 $\gamma = \frac{\Delta l}{l}$

4.2 扭摆的形成与运动

将金属丝一端固定,另一端悬挂物体,构成扭摆。扭转金属丝一定角度后释放,金属丝会恢复到原来的位置,从而对悬挂的物体产生一个力矩作用,使物体来回转动.

4.3 恢复力矩与扭转角的关系

当扭转角度足够小,且金属丝形变处于弹性限度内时,内部力矩与角度成正比。考虑金属丝横截面上的剪切形变。在距离轴线 ρ 处的剪切应变为:

$$\gamma = \frac{\rho \theta}{I} \tag{2}$$

其中 θ 是扭转角,l 是金属丝的长度。由于在弹性限度内,剪切应力与应变成正比: $\tau = G\gamma$ 。因此,相对轴线的单位面积的力矩为: $\tau\rho$ 。考虑整个横截面,金属丝内部的总力矩为:

$$M = \iint \tau \rho \times dS = \int_0^R G \frac{\rho \theta}{l} \rho \times 2\pi \rho d\rho = \frac{\pi R^4 G}{2l} \theta \tag{3}$$

其中 R 是金属丝的半径。

引入矢量符号,上述方程可写为:

$$M = -\frac{\pi R^4 G}{2I}\theta = -D\theta \tag{4}$$

其中 D 被称为扭转常数。负号表示力矩的方向与角位移的方向相反。

$$D = \frac{\pi R^4 G}{2l} \tag{5}$$

4.4 扭摆的周期与切变模量

恢复力矩作用于悬挂的物体时,在忽略阻力的情况下,根据牛顿第二定律有:

$$I_0 \frac{d^2 \theta}{dt^2} + D\theta = 0 \tag{6}$$

这是一个简谐运动的方程。因此物体在恢复力矩作用下将会来回转动,周期为:

$$T_0 = 2\pi \sqrt{\frac{I_0}{D}} \tag{7}$$

 I_0 为悬挂物体的转动惯量。

为了消除悬挂物转动惯量 I_0 的影响,实验中通过增加一个圆环来改变扭摆的转动惯量。加入圆环后的周期变为:

$$T_1 = 2\pi \sqrt{\frac{I_0 + I_1}{D}} \tag{8}$$

 $I_1 = \frac{1}{2}m(r_{in}^2 + r_{out}^2)$ 为圆环的转动惯量,m 为圆环的质量, r_{in} 和 r_{out} 分别为圆环的内外 半径。

联立上述两个周期公式,可以计算出扭转常数 D:

$$D = 4\pi^2 \frac{I_1}{T_1^2 - T_0^2} = \frac{2\pi^2 m (r_{in}^2 + r_{out}^2)}{T_1^2 - T_0^2}$$
(9)

由公式 (5) 可得, 切变模量 G:

$$G = \frac{2l}{\pi R^4} D = \frac{4\pi l m (r_{in}^2 + r_{out}^2)}{R^4 (T_1^2 - T_0^2)}$$
(10)

5 实验内容

- 1. 测量几何参数:
 - 卷尺测量钢丝有效长度 L, 各测 3 次取平均:
 - 千分尺测量钢丝直径 2r, 各测 3 次取平均;
 - 游标卡尺测量圆环内外直径, 各测 3 次取平均;
 - 电子天平测量圆环质量:
- 2. 测量扭摆周期:记录未装环和装环状态下的振动周期 T_1 、 T_2 ,每次计 10 周。
- 3. 计算扭转常数 D 和切变模量 G: 采用国际单位制,计算钢丝的扭转常数与切变模量。以 N.m/rad 为单位,根据实验精度,保留 4 位有效数字。以 GPa (1 GPa=10⁹ Pa) 为单位,保留 3 位有效数字。
- 4. 不确定度分析: 根据公式

$$\frac{\Delta G}{G} = \frac{\Delta l}{l} + \frac{\Delta m}{m} + \frac{2r_{\rm in}\Delta r_{\rm in}}{r_{\rm in}^2 + r_{\rm out}^2} + \frac{2r_{\rm out}\Delta r_{\rm out}}{r_{\rm in}^2 + r_{\rm out}^2} + \frac{4\Delta R}{R} + \frac{2T_1\Delta T_1}{T_1^2 - T_0^2} + \frac{2T_0\Delta T_0}{T_1^2 - T_0^2}.$$
 (11)

- 确定主要误差项:公式右边的每一项表示某个待测量对不确定度的贡献,分别计算每一项,进而确定主要误差项;
- 估算不确定度: 本实验中,主要误差项相对于其他项大得多,因此取主要误差项。 计算 $\Delta G = \frac{\Delta G}{C} \times G$ 求出切变模量的不确定度 ΔG 。
- B 类不确定度: $\Delta l = 1 \,\text{mm}$, $\Delta m = 0.1 \,\text{g}$, $\Delta r_{\text{in}} = \Delta r_{\text{out}} = 0.01 \,\text{mm}$, $\Delta R = 0.002 \,\text{mm}$, $\Delta T_0 = \Delta T_1 = \frac{\Delta t}{r}$, $\Delta t = 1 \,\text{ms}$, n = 10.

6 数据记录

根据实验原理及实验内容进行实验,并输入 excel 进行统计计算。

7 数据处理

d0	D0		1	2	3	avg	
-0.004	0	d测	0.478	0.48	0.478	0.4786667	
		d真	0.482	0.484	0.482	0.4826667	
		I测	576.3	576.5	576.7	576.5	l m
		I真	576.3	576.5	576.7	576.5	0.5765
		Din	80.1	80	79.9	80	
		Dout	109.96	109.98	110.06	110	m kg
		m	415.15			415.15	0.41515
		t0	5.426			5.426	
		t1	9.277			9.277	
		R mm	rin mm	rout mm	T0	T1	
		0.241333333	40	55	5.426	9.277	
		R m	rin m	rout m			
		0.000241333	0.04	0.055			
结果	D						
	6.694E-04						
	G pa	G Gpa		std G	error		
	72423120477	72.42312048		75	3.436%		
不确定度计算	Α	В					
	0.004625	56.621253					
	dm	dl	drin	drout	dR	dT1	dT0
	1.00E-04	1.00E-03	1.00E-05	1.00E-05	2.00E-06	0.0001	0.0001
	dG/G						
	3.5587%						
误差源	m	I	rin	rout	R	T1	T0
	0.024088%	0.173461%	0.017297%	0.023784%	3.314917%	0.003277%	0.001917%

Figure 1: 实验数据

7.1 计算平均值

根据 excel 计算,各个数据均值如下:

 $l = 576.5\,\mathrm{mm}, R = 0.2413\,\mathrm{mm}, r_{\mathrm{in}} = 40.00\,\mathrm{mm}, r_{\mathrm{out}} = 55.00\,\mathrm{mm}, m = 415.15\,\mathrm{g}, T_0 = 5.426\,\mathrm{s}, T_1 = 9.277\,\mathrm{s}.$

7.2 计算扭转常数 D

根据公式 (9), 代入数据计算可得 $D = 6.694 \times 10^{-4} \,\mathrm{N \cdot m/rad}$

7.3 计算切变模量 G

根据公式 (10), 代入数据计算可得 G = 72.4 GPa

7.4 估算不确定度

根据实验内容要求, 计算各项不确定度, 可得如下:

- $\frac{\Delta l}{l} \approx 0.173\%$
- $\frac{\Delta m}{m} \approx 0.024\%$
- $\frac{2r_{\rm in}\Delta r_{\rm in}}{r_{\rm in}^2} \approx 0.017\%$
- $\frac{2r_{\rm out}\Delta r_{\rm out}}{r_{\rm in}^2} \approx 0.024\%$
- $\frac{4\Delta R}{R} \approx 3.315\%$
- $\frac{2T_1\Delta T_1}{T_1^2 T_0^2} \approx 0.003\%$

• $\frac{2T_0\Delta T_0}{T_1^2-T_0^2}\approx 0.002\%$

可知,主要误差项源于 R,再取主要误差项根据公式 $\Delta G=\frac{\Delta G}{G}\times G$ 计算可得 $\Delta G=\frac{\Delta G}{G}\times G\approx 2.4GPa$

8 实验结论

本实验利用扭摆法测量了钢丝的切变模量。通过测量钢丝的长度、直径,圆环的内外直径和质量,以及扭摆的周期,计算得到了钢丝的扭转常数和切变模量。 扭转常数 $D=6.694\times 10^{-4}\,\mathrm{N\cdot m/rad}$ 切变模量 $G=(G\pm\Delta G)\approx (72.4\pm2.4)\,\mathrm{GPa}$ 实验用 304 不锈钢切变模量的参考值为 74—77 GPa 且 72.4+2.4=74.8 GPa,故实验结果位于参考值区间,实验结果合理。实验误差来源:

- 测量过程中存在读数误差: 例如测量钢丝长度时测量的是装好的仪器,不便读数导致误差较大
- 扭摆转动时不可避免存在上下振动,有非切向力,影响旋转周期
- 加圆环前后钢丝有一定形变,并非一直为定值
- 测量扭摆周期时时间计数器不一定位于平衡位置导致总时长有误差