This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(11)Publication number:

02-121366

(43)Date of publication of application: 09.05.1990

(51)Int.CI.

H01L 27/088 H01L 29/784 H03F 3/343

(21)Application number : 63-275012

(71)Applicant : SEIKO EPSON CORP

(22)Date of filing:

31.10.1988

(72)Inventor: HANAOKA TOSHIKI

NAKADA AKIRA

(54) CURRENT MIRROR CIRCUIT

(57)Abstract:

PURPOSE: To make each total area of a drain and a source region constant so as to eliminate the anisotropy of an element due to asymmetry by a method wherein two active elements in a current mirror circuit are composed of two MISFETs, one has a shadow region on a source electrode side and the other has a shadow region on a drain electrode, connected with each other in parallel.

CONSTITUTION: A MISFET is used as an active element, in a current mirror. A phenomenon such as a shadow region occurs even in the MISFET, and it occurs on the same side toward channels 21 and 22. For instance, provided that the shadow regions occur on the left side of the channels, they occur on a drain electrode side in the channel 21 and a source electrode side in the channel 22, so that an active element is composed of two MISFETs, which are different from each other in electric characteristics due to anisotropy, connected in parallel. As the anisotropy is caused by the asymmetry

of the MISFETs in structure, all the anisotropies are gathered through two kinds of MISFETs, and the MISFETs are connected together in parallel, so that all the anisotropy of an active element can be canceled out.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

2004年 4月15日(木) 17:59/岩頂17:51/文唱号号4802646106 P

9-月本·唐·特 許 庁 (JP)-

19 特許出願公開

母公開特許公報(A) 平2-121366

Øint. Cl. ⁵

業別記号

庁内整理番号

❸公開 平成2年(1990)5月9日

H 01 L 27/068 29/764 H 03 E 3/343

A 6751-5 J 7735-5 F

H D1 L 27/08

102 J 301 X

春査請求 未請求 請求項の数 1 (全3頁)

❷発明の名称 カレントミラー回路

●特 顧 昭63-275012

❷出 顧 昭63(1988)10月31日

多発明者 花岡

始

長野県阪助市大和3丁目3番5号 セイコーエブソン株式

会社内

切免 明者中田

童

長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

会社内

の出 駆 人 セイコーエブソン株式

東京都新宿区西新宿2丁目4番1号

金社

图代 理 人 弁理士 上柳 雅誉 外1名

現 糖 *

1、発明の名称

カレントミラー回路

3. 免費の詳細な説明

2. 特件請求の範囲

四一の電気的特性を有する第一と第二のメースを の変気のは、第一の科ISFEと第二と、 なのでは、第一の科ISFEとでは、 なのでは、第二の科ISFEとでは、 なのでは、 なのでは、 なのでは、 なのでは、 ないでは、 な 【農衆上の利用分野】

本発明は、電子四路技術に関するもので、特に、半導体集積回路に使用して好通なものである。

【健康の技術】

従来、カレントミラー回路に用いられただ!SFSTは第2図(a)に示すようなパターンによっ作成していた。1の嫌形はイオン打込み領域であり、2の矩形はゲート電板を形成する領域である。イオン打込みは、チャネリングによって不良物議度がウェハの振器で高くなることを防ぐために、ウェハの表面に急度な結晶機に対し約7度の角度をもって行なわれる。

セルフアラインのプロセスにおいて、イオン打込みはゲート電極が形成された後に行われる。この時の状態を第2図(b)に示す。第2図(b)は第2図(a)のA-A.の新町に担当する。第2図(a)の11、12の体数電板傾はは第2図(b)の11、12、に相当する。また、第2

図 (B) 21のチャネル上部のゲート部は第2図

-371-

- 特別手2-121366 (2)

(-b-) -の-2-1-- に相当し、31はゲーート雄化-11-で-5 A

イオン打込み保険のパターンは第2回(a) 1 のように矩形であっても、ゲート電極とゲート酸 化雄がイオン選をシールドするために、第2回 (5) の1は11と12の領域、すなわち数2個 (も)の11'と12'の領域に分割される。

しかし、イオン打込みが解記のごとく角度を もっているために、第2回(b)の12′と 2g′の境界部分に41のようにシャドク領域が 生じる。その結果、パターンは無2頭(a)のご とく左右対称であっても、実際の電子構造は第2 匿(b)のごとく非対称的となり、電気的特性も 電流の方向によって異方性を示すことになる。

それゆえに、各準電波入力側MISFETと定 電災出力開MISFETの電気的特性(硝値電 圧、8)が完全に向ってなければならないカレン トミラー回路では、前記具方性により、MISF ETのパターンが同一であっても、電気的特性が 肉ーではなくなり、益均電流に対して定電流出力

は約10%の豊長を生ずる、特に、基準電限入力 明MISPETと意言液光力量MISPETの ソース領域を共通にしたものは、必然的に前記2 個のMISFETでシャドウ機能が生ずる電極が 異なるため、要異が大きくなる。

また、電気的特性の異方性はリソグラフィーに よるバターニングの筋のパターンずれによっても 生じる。この場合の異方性はソース領域とドレイ ン領域の蓄積増による。

【見明が解決しようとする課題】

しかし、世来技術はMISPET精造の異方性 により、期待する正確なカレントミラー効果が得 舞いという欠点を有する。

本乗明は、従来技術にみられるような欠点を解 決しようとするもので、MISPETの電気的特 性の異方性がイオン打込み角とパターンせれに紀 因することに無目し、MISFETの形状を改良 することによって、MISFETの電気的特性の 具方性をなくし、正確なカレントミラー効果を得 ることを目的とする。

【暴狂を解決するための手段】

何一の電気的特性を有する第一と第二のMIS FETから成り、第一のMISFETはソース包 後を共通電線指子に接続し、ゲート電腦とドレイ ンな道を基準電波入力端子に接続し、第二のMI SFETはソース電腦を共通電源地子に接続し、 ・ゲート電腦を前記書準電波入力端子に接続し、ド レイン電優を定電級出力菓子に複様したカレント ミラー回路の各々のMISFETにおいて、中央 にドレイン領域を記録し、放ドレイン領域をはさ み同電位のゲート電視を設け、この構造をはさむ ように同性位のソース領域を設けたことを修設と する.

(作用)

本発明の上記の構成によれば、カレントミラー 国路内の2個の能数電子はシャドク領域をソース 電便駅にもつMISFETとドレイン会権側にも つHLSFETの並列接続により構成されるた め、電気的特性が前記2種のMISFETの和と、

値様が不変となって、カレントミラー回路内の 2 個の能動学子の特性から素子の非対称性による具 方性が消失する。

【美胞質】

第1例は本機能の一事終録である。1はイオン 打込み領域のパクーンであり、2はゲート電板を 形成するための伝播仏会社(以下、ゲート常編社 という)を残す部分を示すパターンである。ゲー と電腦材にポリシリコンを用い、イオン打込みを 行うと、11、11、12が拡数電優となる。 電圧の高低、あるいは電波の方向によって、1 1、11、12のどれがドレイン質様になるか が決まるが、12がドレイン電板になるように配 独した方が浮遊容量が小さくなる。本例では12 モドレイン電極とし、11と11′を開着位の ソース電板とする。したがって、21と22が チャネルとなり、2爵のMISFETから成る。 以下、カレントミラー回路を構成する基準電波入 力偏と定量液出力酸の3個のMISFETも各 49. また、ドレイン領域及びソース領域の名詞<u> 7、</u> 範疇素子と<u>係し、前記2)と22のテェネル</u>

<u>からなるMISFETを単にMISFETと称し、</u>

て、区別して呼称することにする。

カレントミラー堕路の疑動兼子にお記がゴSF ETを用いる、前記MISFETにおいてもシャ ドク領域が生じる現象はあるが、21と22の チャキルに対し国一の側に生じる。たとえば、第 1回において、チャネルの左断に生じたとする と、21ではドレイン電磁刷であり、22では ソース電極観であり、1個の能動業子は異方性に よる異なった電気的特性を持つ2種のMISFE Tの並列級級により構成されることになる。具方 性はMISFET構造の非対称性によるものであ ろため、何妃2後のMISFETによりすべての 異方性が何麗され、かつ、誰2種が並列に初級さ れるため、すべての経動素子の具方性が損失する ことになる。したがって、すべての能効素子が同 ーの電気的特性となり、正確なカレントミラー効・ 単を呈する.

また、雪1回のパターンは、1が左右にパター ンずれを生じても、13のドレイン領域の質費と 11と11:のソース領域の配面模は変化しない ため、パクーンずれを起しても電気的特性に与える影響はきわめで小さい。

[発明の効果]

以上の契明のように、上記の作用により、カレントミラー回路を構成する電子の特性に於て、イオン打込み角とパターンずれによる異方性を開失せしめることができ、きわめて正確なカレントミラー効果を得ることができる。

4. 国面の簡単な説明

第1回は、本発明の一実務例を示す以ISFE でのパターンを示す間である。

第2句(a)~(b)は従来技術によるパターン的とはパターンによるMISPETのA-A・における断面回である。

1・・・イオン打込み領域を示す矩形

2・ゲート電優を形成するためのパター

1.1・・・ソース領域

11 ・・11と向電位のソース領域

12・・・ドレイン領域

12. ・・ドレイン領域

21・・・チャネル領域

21~・・ゲート電街

22・・、チャネル領収

31・・・ケート催化粧

41・・・シャドク収域

第 1 図

EL L

出離人 セイコーエブソン株式会社 代理人 弁理士 上 柳 稚 書(他)名)

第 2 図 (6)

第 2 図(b)