1 Differentiation

1.1 Derivatives of Measures

Theorem 1. Suppose μ is a complex Borel measure on \mathbb{R}^1 and

$$f(x) = \mu((-\infty, x)) \text{ for } x \in \mathbb{R}^1$$
 (1)

If $x \in \mathbb{R}^1$ and A is a complex number, TFAE

- (a) f is differentiable at x and f'(x) = A.
- (b) For all $\epsilon > 0$, there exists $\delta > 0$ such that

$$\left|\frac{\mu(I)}{m(I)} - A\right| < \epsilon \tag{2}$$

for every open segment I that contains x and whose length is less than δ . Note m is the Lebesgue measure on \mathbb{R}^1 .

Definition 1.1. Let us fix a dimension k, denote the open ball with center $x \in \mathbb{R}^k$ and radius r > 0 by

$$B(x,r) = \{ y \in \mathbb{R}^k : |y - x| < r \}$$

We associate to any Borel measure μ on \mathbb{R}^k the quotients:

$$(Q_r\mu)(x) = \frac{\mu(B(x,r))}{m(B(x,r))}$$

Where m is the Lebesgue measure on \mathbb{R}^k .

We define the **symmetric derivative** to be

$$(D\mu)(x) = \lim_{r \to 0} (Q_r\mu)(x)$$

Definition 1.2. Using the same notation as above we define the **maximal function** $M\mu$, for $\mu \geq 0$, to be defined by

$$(M\mu)(x) = \sup_{0 < r < \infty} (Q_r\mu)(x)$$

Remark. The maximal function of a complex Borel measure μ is, by definition, its total variation $|\mu|$.

Proposition 1. The functions $M\mu: \mathbb{R}^k \to [0,\infty]$ are lower semicontinuous, hence measurable.

Proof. Assume $\mu \geq 0$, and let $\lambda > 0$ and $E = \{M\mu > \lambda\}$. Fix $x \in E$. Then there is an r > 0 such that:

$$\mu(B(x,r)) = tm(B(x,r))$$
 for some $t > \lambda$

Indeed since $\sup_{0 < r < \infty} \frac{\mu(B(x,r))}{m(B(x,r))} > \lambda$. So for some r, we have $\frac{\mu(B(x,r))}{m(B(x,r))} > \lambda$. Letting $t = \frac{\mu(B(x,r))}{m(B(x,r))}$ gives us the desired result.

Furthermore there is a $\delta > 0$ such that:

$$(r+\delta)^k < \frac{r^k t}{\lambda}$$

If $|y-x| < \delta$, then $B(y,r+\delta) \supseteq B(x,r)$. Therefore

$$\mu(B(y,r+\delta)) \ge \mu(B(x,r)) = tm(B(x,r)) = t\left[\frac{r}{(r+\delta)^k}m(B(y,r+\delta)) > \lambda m(B(y,r+\delta))\right]$$

Thus $B(x, \delta) \subseteq E$. So E is open.

Lemma 2. If W is the union of a finite collection of balls $B(x_i, r_i)$, with $i \le i \le N$. Then there is a set $S \subseteq \{1, ..., N\}$ so that:

(a) the balls $B(x_i, r_i)$ with $i \in S$ are disjoint,

(b)

$$W \subseteq \bigcup_{i \in S} B(x_i, 3r_i),$$

$$m(W) \le 3^k \sum_{i \in S} m(B(x_i, r)i).$$

Proof. Order the balls $B_i = B(x_i, r_i)$ such that $r_1 \ge r_2 \ge \cdots \ge r_N$. Put $i_1 = 1$, discard all the B_j that intersect with B_{i_1} . Let B_{i_2} the first of our remaining balls, and discard all B_j with $j > i_2$ that intersect B_{i_2} , and let B_{i_3} be the first of the remaining ones, etc...

This process stops after a finite number of steps, since we only have a finite collection of balls, and we let $S = \{i_1, i_2, \ldots\}$. (a) holds by definition and (c) follows from (b) since $m(B(x_i, 3r_i)) = 3^k m(B(x_i, r_i))$.

So we just need to show (b). But notice for every discarded B_j , $B_j \cap B_i \neq \emptyset$ for some $i \in S$, where $r_i > r_j$. Assume that $X \in B_j \cap B_i$. We see that for all $x \in B_j$ we have:

$$|x - x_i| \le |x - X| + |X - x_i|$$

$$\le |x - x_j| + |x_j - X| + |X - x_i|$$

$$< r_j + r_j + r_i \text{ since } x, X \in B_j \text{ and } X \in B_i$$

$$< 3r_i \text{ since } r_j \le r_i$$

So we see that $B_j \subseteq B(x_i, 3r_i)$. This gives us (b).

The maximal theorem

Theorem 3. If μ is a complex Borel measure on \mathbb{R}^k and λ is a positive number, then

$$m\{M\mu > \lambda\} \le 3^k \lambda^{-1} ||\mu|| \tag{i}$$

Here $||\mu|| = |\mu|(\mathbb{R}^k)$ and $m\{M\mu > \lambda\}$ is an abbreviation of $m(\{x \in \mathbb{R}^k : (M\mu)(x) > \lambda\})$

Proof. Fix μ and λ . Let K be a compact subset of the open set $\{M\mu > \lambda\}$. Each $x \in K$ is the center of an open ball B for which

$$|\mu|(B) > \lambda m(B)$$

Some finite collection of these B's covers K and Lemma 2 tells us there is a disjoint subcollection $\{B_1, \ldots, B_n\}$ such that:

$$m(K) \le 3^k \sum_{i=1}^n m(B_i) \le 3^k \lambda^{-1} \sum_{i=1}^n |\mu|(B_i) \le 3^l \lambda^{-1} ||\mu||$$

The disjointess of the B_i 's was used in the last inequality. So (i) follows by taking the supremum over all compact $K \subseteq \{M\mu > \lambda\}$.

Weak L^1 If $f \in L^1(\mathbb{R}^k)$ and $\lambda > 0$, then

$$m\{|f| > \lambda\} \le \lambda^{-1}||f||_1$$

because, if we let $E = \{|f| > \lambda\}$, we have:

$$\lambda m(E) \le \int_{R} |f| dm \le \int_{\mathbb{R}^k} |f| dm = ||f||_1$$

Definition 1.3. Any measurable function f for which:

$$\lambda m\{|f| > \lambda\}$$

is a bounded funtion of λ on $(0,\infty)$ is said to belong to **weak** L^1

So from above we see that the weak L^1 contains L^1 . But it is also larger since for example if we let $f = \frac{1}{x}$ on (0,1), then for any $\lambda > 0$, we have

$$\frac{1}{x} > \lambda \iff x < \frac{1}{\lambda}$$

So we have $\lambda \cdot m\{|f| > \lambda\} \le \lambda \cdot m(0, \frac{1}{\lambda}) = 1 < \infty$. So $\frac{1}{x}$ is weak L^1 .

Definition 1.4. We associate to each $f \in L^1(\mathbb{R}^k)$ its maximal function $Mf \colon \mathbb{R}^k \to [0, \infty]$ by setting

$$(Mf)(x) = \sup_{0 < r < \infty} \frac{1}{m(B_r)} \int_{B(x,r)} |f| \ dm$$

If we identify f with the measure μ given by $d\mu = f \ dm$, we see that this defintion agrees with the previously defined $M\mu$. So theorem 3 states that the "maximal operator" M sends L^1 to weak L^1 , with abound (namely 3^k) that depends only on the space \mathbb{R}^k , i.e. For every $f \in L^1(\mathbb{R}^k)$ and every $\lambda > 0$

$$m\{Mf > \lambda\} \le 3^k \lambda^{-1} ||f||_1$$

Lebesgue points

Definition 1.5. If $f \in L^1(\mathbb{R}^k)$, any $x \in \mathbb{R}^k$ for which it is true that

$$\lim_{r \to 0} \frac{1}{m(B_r)} \int_{B(x,r)} |f(y) - f(x)| \ dm(y) = 0$$

is called a **Lebesgue point** of f.

For example this equation holds if f is continuous at the point x. More generally this equation holds, if the averages of |f - f(x)| are not too small on the balls centered at x, i.e. The Lebesgue points of f are the points where f doesn't oscillate too much.

Theorem 4. If $f \in L^1(\mathbb{R}^k)$, then almost every $x \in \mathbb{R}^k$ is a Lebesgue point of f.

Proof. Let

$$(T, f)(x) = \frac{1}{m(B_r)} \int_{B(x,r)} |f - f(x)| dm \text{ for } x \in \mathbb{R}^k, r > 0$$

Put

$$(Tf)(x) = \lim_{r \to 0} \sup_{x \to 0} (T_r f)(x)$$

Pick y > 0, let $n \in \mathbb{N}^*$. By a theorem from chap 3, there exists $g \in C(\mathbb{R}^k)$ so that $||f - g||_1 < \frac{1}{n}$. Let h = f - g. Since g is continuous, Tg = 0, and since:

$$(T_r h)(x) = \frac{1}{B_r} \int_{B(x,r)} |h - h(x)| dm$$

$$\leq \frac{1}{B_r} \int_{B(x,r)} (|h| + |h(x)|) dm$$

$$= (\frac{1}{B_r} \int_{B(x,r)} |h| dm) + |h(x)|$$

So we have:

$$Th \le Mh + |h|$$

But since $T_r f \leq T_r g + T_r h$ it follows that

$$Tf \leq Mh + |h|$$

Therefore

$$\{Tf>2y\}\subseteq\underbrace{\{Mh>y\}\cup\{|h|>y\}}_{E(y,n)}$$

Since $||h||_1 < \frac{1}{n}$, by theorem 3 we can see that

$$m(E(y,n)) \le \frac{3^k + 1}{yn}$$

Note $\{Tf > 2y\}$ is independent of n. Hence

$$\{Tf > 2y\} \subseteq \bigcap_{n=1}^{\infty} E(y,n)$$

This intersection has measure zero, so $\{Tf > 2y\}$ is a subset of a set of measure zero. So since Lebesgue measure is complete $\{Tf > 2y\}$ is measurable and has measure zero. This is true for all y > 0 so Tf = 0 a.e.

So note if $(Tf)(x) = \limsup_{r\to 0} (T_r f)(x) = 0$, then since $(T_r f)(x) \ge 0$ we see that this means that $0 \le \liminf (T_r f)(x) \le \limsup (T_r f)(x) = 0$.

So we have $\lim_{r\to 0} (T_r f)$ exists and is equal to zero, so x is a Lebesgue point. So almost every point $x\in\mathbb{R}^k$ is a Lebesgue point of f.

Definition 1.6. Recall that by the Radon-Nikodym theorem if μ is a positive σ -finite measure on a σ -algebra \mathcal{M} in a set X, and λ is a complex measure on \mathcal{M} such that $\lambda \ll \mu$:

$$\lambda(E) = \int_{E} f d\mu$$

For some $f \in L^1(\mu)$

f is called the Radon-Nikodym derivative of μ with respect to m and is denoted

$$f = \frac{d\lambda}{d\mu}$$

Theorem 5. Suppose μ is a complex Borel measure on \mathbb{R}^k , and $\mu \ll m$. Let f be the Radon-Nikodym derivative of μ with respect to m. Then $D\mu = f$ a.e. [m], and

$$\mu(E) = \int_{E} (D\mu) \ dm$$

for all Borel sets $E \subseteq \mathbb{R}^k$.

Proof.

$$\mu(E) = \int_{E} f \ dm$$

For all Borel sets $E \subseteq \mathbb{R}^k$.

Let x be a Lebesgue point and $\Gamma_r = \frac{1}{B_r} \int_{B(x,r)} f \ dm$. Then we have:

$$0 \le |\Gamma_r - f(x)| = \left| \frac{1}{B_r} \int_{B(x,r)} (f - f(x)) \, dm \right| \le \frac{1}{B_r} \int_{B(x,r)} |f - f(x)| \, dm$$

Taking limits we see that

$$f(x) = \lim_{r \to 0} \frac{1}{m(B_r)} \underbrace{\int_{B(x,r)} f \, dm}_{\mu(B(x,r))} = \lim_{r \to 0} \frac{\mu(B(x,r))}{m(B_r)} = (D\mu)(x)$$

Thus $(D\mu)(x)$ exists and equals to f(x) at every Lebesgue point of f, so a.e.

Nicely shirinking sets

Definition 1.7. Suppose $x \in \mathbb{R}^k$. A sequence $\{E_i\}$ of Borel sets in \mathbb{R}^k is said to **shrink to** x **nicely** if there is a number $\alpha > 0$ with the following property:

There is a sequence of balls $B(x, r_i)$ with $\lim r_i = 0$, such that $E_i \subseteq B(x, r_i)$ and:

$$m(E_i) \ge \alpha m(B(x, r_i))$$
 for $i = 1, 2, 3, ...$

Theorem 6. Associate to each $x \in \mathbb{R}^k$ a sequence $\{E_i(x)\}$ that shrinks to x nicely, and let $f \in L^1(\mathbb{R}^k)$. Then

$$f(x) = \lim_{i \to \infty} \frac{1}{m(E_i(x))} \int_{E_i(x)} f \ dm$$

At every Lebesgue point of f.

Proof. Let x be a Lebesgue point of f and let $\alpha(x)$ and $B(x, r_i)$ be the positive number and the balls associate with $\{E_i(x)\}$. Since $E_i(x) \subseteq B(x, r_i)$ we have:

$$\int_{E_i(x)} |f - f(x)| \ dm \le \int_{B(x,r_i)} |f - f(x)| \ dm$$

Furthermore, $\alpha m(B(x, r_i)) \leq m(E_i) \iff \frac{\alpha}{m(E_i)} \leq \frac{1}{m(B(x, r_i))}$. Putting this all together we get:

$$\frac{\alpha}{m(E_i)} \int_{E_i(x)} |f - f(x)| \ dm \le \frac{1}{m(B(x, r_i))} \int_{B(x, r_i)} |f - f(x)| \ dm$$

Since x is a Lebesgue point RHS converges to 0, so the LHS also converges to zero by squeeze.

Corollary 6.1. If $f \in L^1(\mathbb{R}^1)$ and

$$F(x) = \int_{-\infty}^{x} f \ dm, \ for \ x \in \mathbb{R}$$

then F'(x) = f(x) at every Lebesgue point of f.

Proof. Let x be a Lebesgue point, and $\{\delta_i\}$ be a sequence of positive numbers that converges to 0. Letting $E_i(x) = [x, x + \delta_i]$, the previous theorem tells us that

$$f(x) = \lim_{i \to \infty} \frac{1}{\delta_i} \int_x^{x+\delta_i} f \ dm = \lim_{i \to \infty} \frac{1}{\delta_i} \left(\int_{-\infty}^{x+\delta_i} f \ dm - \int_{-\infty}^x f \ dm \right) = \lim_{i \to \infty} \frac{F(x+\delta_i) - F(x)}{\delta_i}$$

Since $\{\delta_i\}$ is any sequence of positive numbers converging to zero we have:

$$f(x) = \lim_{h \to 0^+} \frac{F(x+h) - F(x)}{h}$$

Likewise letting $G_i(x) = [x - \delta_i, x]$ we get

$$f(x) = \lim_{i \to \infty} \frac{F(x - \delta_i) - F(x)}{\delta_i} = \lim_{h \to 0^-} \frac{F(x + h) - F(x)}{h}$$

So we have:

$$f(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = F'(x)$$
 at every Lebesgue point of f

Metric density

Definition 1.8. Let E be a Lebesgue measurable subset of \mathbb{R}^k . The **metric density** of E at a point $x \in \mathbb{R}^k$ is defined to be

$$\lim_{r\to 0}\frac{m(E\cap B(x,r))}{m(B(x,r))} \text{ if this limit exists.}$$

If we let f be the characteristic function of E, and apply Theorem 5, we see that the metric density of E is 1 at almost every point of E and is 0 at almost every point of E^c .

Indeed let x be a Lebesgue point if $\mu(B(x,r)) = \int_{B(x,r)} f \ dm = m(E \cap B(x,r))$, it is clear that $\mu \ll m$ and so we have:

$$\lim_{r \to 0} \frac{m(E \cap B(x,r))}{m(B(x,r))} = \lim_{r \to 0} \frac{\mu(B(x,r))}{m(B(x,r))} = (D\mu)(x) = f(x) = \begin{cases} 1 \text{ if } x \in E \\ 0 \text{ if } x \not \in E \end{cases}$$

Corollary 6.2. If $\epsilon > 0$, there is no set $E \subseteq \mathbb{R}^1$ such that

$$\epsilon < \frac{m(E \cap I)}{m(I)} < 1 - \epsilon$$

For every segment I.

Proof. Let $\epsilon > 0$ assume that that such a $E \subseteq \mathbb{R}^1$ exists. Let x be a Lebesgue point, from what we have seen in the definition of metric density we know that there is a R such that:

$$|\frac{m(E\cap(x-R,x+R))}{m(x-R,x+R)}-0|<\epsilon \text{ if } x\not\in E$$

$$|\frac{m(E\cap(x-R,x+R))}{m(x-R,x+R)}-1|<\epsilon \text{ if } x\in E$$

I.e.

$$\frac{m(E\cap(x-R,x+R))}{m(x-R,x+R)}<\epsilon \text{ or } 1-\epsilon<\frac{m(E\cap(x-R,x+R))}{m(x-R,x+R)}$$

\mathbf{Index}

Lebesgue point, 3 $\begin{array}{l} \text{maximal function, 1, 2} \\ \text{metric density, 5} \\ \text{Radon-Nikodym derivative, 3} \\ \text{shrink to } x \text{ nicely, 4} \\ \text{symmetric derivative, 1} \\ \text{weak, 2} \\ \text{weak } L^1, 2 \\ \end{array}$