A New Journey to Machine Learning in Quantitative Finance

Hao Ni University College London The Alan Turing Institute

Hao Ni (UCL and ATI)

End of Course

August, 2022
1/6

Summary of the Course

Outline of the Course

- Week 1: Overview of ML in Quantitative Finance;
- Week 2: Supervised learning framework. Linear regression and regularization methods.
- Week 3: Deep neural network (DNN) and an application of DNN to derivative pricing;
- Week 4: Recurrent neural network (RNN) and an application of RNN to predict limit order book.

2/6

Hao Ni (UCL and ATI) End of Course August, 2022

Supervised Learning Framework

Hao Ni (UCL and ATI)

	Regression	Classification
Dataset:	$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N, (x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$	
	$\mathcal{Y}=\mathbb{R}^d$	${\cal Y}$ is a finite set.
Model:	$f_{\theta}(x) (\approx \mathbb{E}[y x])$	$f_{\theta}(x) (\approx \mathbb{P}[y x])$
Empirical Loss:	$L(heta \mathcal{D}) o$ Minimize	
	(e.g. MSE)	(e.g. Cross entropy)
Optimization:	$ heta^* = argmin_{ heta}(\mathit{L}(heta \mathcal{D}))$	
Prediction:	$\hat{y}_* = f_{\theta^*}(x_*).$	$\hat{y}_* = \operatorname{argmax}_{i \in \mathcal{Y}} f^i_{\theta^*}(x_*).$
Validation:	Compute the test metrics	
	e.g. MSE.	e.g. Accuracy.

Table: Summary of the framework of regression and classification. The difference between them is highlighted in blue.

End of Course

August, 2022

3/6

Method	Linear regression (with regularization)	Neural Networks
Model	$f_{\theta}(x) := \theta x$	ANN, RNN, etc
Empirical Loss	MSE $(+$ penalty term of $ heta)$	MSE, etc
Optimization	Analytic formula for $ heta^*$	Stochastic/Mini-batch Gradient descent
Prediction	$\hat{y}_* = heta^* x$	$\hat{y}_* = f_{\theta^*}(x_*).$
Validation	Compute test metrics (e.g., MSE, R ²)	Compute test metrics (e.g., MSE, R ²)

Table: Summary of linear models (with regularization) and neural networks for regression tasks.

4/6

Hao Ni (UCL and ATI) End of Course August, 2022

ML pipeline to tackle financial data problems

Thanks for your attention!

6/6

Hao Ni (UCL and ATI) End of Course August, 2022