§ 22 实对称矩阵

22.1 实对称矩阵的特征值与特征向量

若矩阵 A 满足 $A^T = A$, 则称 A 为对称矩阵.

本节主要讨论实对称矩阵的性质.这类矩阵应用广泛,理论丰富、优美.

一个实矩阵的特征值可能是虚数,如 $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. 但 定理:实对称矩阵的特征值都是实数.

证明: 设实对称矩阵 A 有 $A\mathbf{x} = \lambda \mathbf{x}, \mathbf{x} \neq \mathbf{0}$. 则

$$\bar{\mathbf{x}}^T A \mathbf{x} = \lambda \bar{\mathbf{x}}^T \mathbf{x},
\bar{\mathbf{x}}^T A \mathbf{x} = \bar{\mathbf{x}}^T \bar{A}^T \mathbf{x} = (\bar{A} \mathbf{x})^T \mathbf{x} = \bar{\lambda} \bar{\mathbf{x}}^T \mathbf{x},$$

$$\Rightarrow (\lambda - \bar{\lambda}) \bar{\mathbf{x}}^T \mathbf{x} = 0.$$

因 $\mathbf{x} \neq \mathbf{0}, \bar{\mathbf{x}}^T \mathbf{x} > 0$, 故 $\bar{\lambda} = \lambda$, 即 λ 为实数.

22.1 实对称矩阵的特征值与特征向量

属于不同特征值的特征向量线性无关,对实对称矩阵有更强的结果.

定理: 实对称矩阵的属于不同特征值的特征向量相互正交.

证明:设 λ 与 μ 是实对称矩阵 A 的两互异特征值(由前面定理 λ , μ 是实数), \mathbf{x} , \mathbf{y} 是相应特征向量, 即 $A\mathbf{x} = \lambda \mathbf{x}$, $A\mathbf{y} = \mu \mathbf{y}$.

于是

$$\mathbf{y}^{T} A \mathbf{x} = \lambda \mathbf{y}^{T} \mathbf{x}, \\ \mathbf{y}^{T} A \mathbf{x} = \mathbf{y}^{T} A^{T} \mathbf{x} = (A \mathbf{y})^{T} \mathbf{x} = \mu \mathbf{y}^{T} \mathbf{x}, \end{cases} \} \implies (\lambda - \mu) \mathbf{y}^{T} \mathbf{x} = 0.$$
而 $\lambda \neq \mu$, 故 $\mathbf{y}^{T} \mathbf{x} = 0$.

22.1 实对称矩阵的特征值与特征向量

例:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 有特征值 $\lambda_1 = 1, \lambda_2 = -1$.

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
为分别属于 $\lambda_1 = 1, \lambda_2 = -1$ 的特征向量.

易见 \mathbf{x}_1 与 \mathbf{x}_2 正交.

回忆:矩阵 A 可对角化 \iff A 有一组特征向量作为空间的基. 故若 A 是可对角化的实对称阵,则存在 A 的一组特征向量构成空间的单位正交基.

事实上,

定理: 任何实对称阵正交相似于对角阵,即对实对称阵A,存在正交阵Q,使 Q^TAQ 为对角阵.

证明:对矩阵A的阶数用数学归纳法.

n=1 时结论成立. 假设结论对 n-1 阶矩阵成立.

对 n 阶实对称阵 A, 设 $A\alpha_1 = \lambda_1\alpha_1, \lambda_1 \in \mathbb{R}, \alpha_1 \in \mathbb{R}^n, \mathbb{L} ||\alpha_1|| = 1.$

则 α_1 可扩充为 \mathbb{R}^n 的一组基, 进一步正交化,得一组标准正交基,

记为 $\alpha_1, \beta_2, \cdots, \beta_n$.

则 $P = (\alpha_1, \beta_2, \cdots, \beta_n)$ 为正交阵,且

$$P^T A P = \begin{pmatrix} \lambda_1 & * \\ 0 & A_1 \end{pmatrix}.$$

由
$$A^T = A$$
 得 $P^T A P = \begin{pmatrix} \lambda_1 & 0 \\ 0 & A_1 \end{pmatrix}$ 且 $A_1^T = A_1$.

由归纳假设知,对n-1阶实对称矩阵 A_1 ,存在正交阵 U_1 ,使

$$U_1^T A_1 U_1 = \begin{pmatrix} \lambda_2 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.$$

令
$$U = \begin{pmatrix} 1 & 0 \\ 0 & U_1 \end{pmatrix}$$
,则 $Q = PU$ 为正交阵,且
$$Q^T A Q = U^T P^T A P U = \begin{pmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{pmatrix}.$$

例: 设
$$A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{pmatrix}$$
. 求正交阵 Q , 使 Q^TAQ 为对角阵.

解:
$$det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 & 1 & -1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 1 & 1 & -1 \\ 1 - \lambda & -\lambda & -1 & 1 \\ 1 - \lambda & -1 & -\lambda & 1 \\ 1 - \lambda & 1 & 1 & -\lambda \end{vmatrix}$$

$$= (1 - \lambda) \begin{vmatrix} 1 & 1 & 1 & -1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ 1 & 1 & 1 & -\lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 1 & 1 & 1 & -1 \\ 0 & -\lambda - 1 & -2 & 2 \\ 0 & -2 & -\lambda - 1 & 2 \\ 0 & 0 & 0 & -\lambda + 1 \end{vmatrix}$$

$$= (1 - \lambda)^{2}(\lambda^{2} + 2\lambda - 3) = (1 - \lambda)^{2}(\lambda - 1)(\lambda + 3).$$

因此 A 的特征值是 $\lambda_1 = \lambda_2 = \lambda_3 = 1, \lambda_4 = -3.$

对 $\lambda_1 = \lambda_2 = \lambda_3 = 1$,可求出齐次线性方程组 $(A - I)\mathbf{x} = \mathbf{0}$ 的一个基础解系:

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

对 $\lambda_4 = -3$, 可求出齐次线性方程组 $(A + 3I)\mathbf{x} = \mathbf{0}$ 的一个基础解系:

$$\mathbf{x}_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}.$$

作正交化(只需对 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ 进行),

$$\xi_1 = \mathbf{x}_1,$$

$$\xi_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2^T \xi_1}{\xi_1^T \xi_1} \xi_1 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix},$$

$$\xi_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3^T \xi_1}{\xi_1^T \xi_1} \xi_1 - \frac{\mathbf{x}_3^T \xi_2}{\xi_2^T \xi_2} \xi_2 = \frac{1}{3} \begin{pmatrix} -1\\1\\1\\3 \end{pmatrix},$$

$$\xi_4 = \mathbf{x}_4$$
.

再作单位化,得

$$\mathbf{q}_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \quad \mathbf{q}_{2} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-1\\2\\0 \end{pmatrix}, \quad \mathbf{q}_{3} = \frac{1}{\sqrt{12}} \begin{pmatrix} -1\\1\\1\\3 \end{pmatrix}, \quad \mathbf{q}_{4} = \frac{1}{2} \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}.$$

则 $Q = (\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{q}_4)$ 为正交阵,且

$$Q^T A Q = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -3 \end{pmatrix}$$

由前面定理知, 对任何实对称阵 $A, Q^TAQ = \Lambda$, 其中 $Q = (\mathbf{q}_1, \dots, \mathbf{q}_n)$ 为正交阵, $\Lambda = diag(\lambda_1, \dots, \lambda_n), A\mathbf{q}_i = \lambda_i \mathbf{q}_i$.

于是

$$A = Q\Lambda Q^T = (\mathbf{q}_1, \cdots, \mathbf{q}_n) \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \begin{pmatrix} \mathbf{q}_1^T \\ \vdots \\ \mathbf{q}_n^T \end{pmatrix},$$

即

$$A = \lambda_1 \mathbf{q}_1 \mathbf{q}_1^T + \dots + \lambda_n \mathbf{q}_n \mathbf{q}_n^T.$$

注记: $P_j := \mathbf{q}_j \mathbf{q}_i^T$ 为到由特征向量 \mathbf{q}_j 张成的一维空间的投影矩阵.

⇒ 任意实对称阵可表示为秩1投影矩阵的和.

可类似证明:

Schur定理: 任意一个复方阵 A 均酉相似于上三角阵,即对任何复方阵 A, 存在酉矩阵 $U(\bar{U}^TU=U\bar{U}^T=I)$ 使 $\bar{U}^TAU=T$ 为上三角阵.

例:设 $A \in \mathbb{R}^n$ 阶实对称阵, $\lambda_1, \dots, \lambda_n$ 为 A 的全部特征值,则存在实数 c > 0 满足对任意 $\mathbf{x} \in \mathbb{R}^n, |\mathbf{x}^T A \mathbf{x}| \leq c \mathbf{x}^T \mathbf{x}$.

证明:因 A 为实对称阵,故存在正交阵 Q,使

$$Q^T A Q = diag(\lambda_1, \cdots, \lambda_n) = \Lambda.$$

则对任意 $\mathbf{x} \in \mathbb{R}^n$, 记 $Q^T \mathbf{x} = \mathbf{y} = (y_1, \dots, y_n)^T$, 有

$$\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T (Q \Lambda Q^T) \mathbf{x} = \mathbf{y}^T \Lambda \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$

$$|\mathbf{x}^T A \mathbf{x}| = |\mathbf{y}^T \Lambda \mathbf{y}| \le c \mathbf{y}^T \mathbf{y} = c \mathbf{x}^T Q Q^T \mathbf{x} = c \mathbf{x}^T \mathbf{x}.$$

例:设 λ_{max} 是实对称阵 A 的最大特征值.

求证: A 的对角线元素 $a_{ii} \leq \lambda_{max}$.

证明:因A实对称,故存在正交阵Q,使

$$Q^T A Q = diag(\lambda_1, \cdots, \lambda_n) = \Lambda.$$

注意到 $a_{ii} = \mathbf{e}_i^T A \mathbf{e}_i$, 其中 $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^n$.

$$\diamondsuit Q^T \mathbf{e}_i = \beta = (\beta_1, \cdots, \beta_n)^T, \, \mathbb{M}$$

$$a_{ii} = \mathbf{e}_{i}^{T} Q \Lambda Q^{T} \mathbf{e}_{i} = \beta^{T} \Lambda \beta = \lambda_{1} \beta_{1}^{2} + \dots + \lambda_{n} \beta_{n}^{2}$$

$$\leq \lambda_{max} (\beta_{1}^{2} + \dots + \beta_{n}^{2}) = \lambda_{max} \beta^{T} \beta = \lambda_{max} \mathbf{e}_{i}^{T} \mathbf{e}_{i} = \lambda_{max}.$$

矩阵特征值的符号与主元的符号一般无关,如

$$A = \begin{pmatrix} 1 & 6 \\ -1 & -4 \end{pmatrix}$$
 特征值为 $-1, -2$ (两负) 主元为 $1, 2$ (两正)

但对实对称阵而言, 二者符号一致, 如

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$
 特征值为 $4, -2$ (一正一负) 主元为 $1, -8$ (一正一负)

定理: 实对称阵的正特征值数与正主元数相同.

引理:设矩阵 $C=(c_{ij})_{n\times n}$ 可逆,且

$$\begin{pmatrix} I_p \\ -I_{n-p} \end{pmatrix} = C^T \begin{pmatrix} I_q \\ -I_{n-q} \end{pmatrix} C,$$

$$\begin{pmatrix} c_{11}x_1 + \cdots \end{pmatrix}$$

则 p = q. 证明: 假设 p > q,则齐次线性方程组 $\begin{cases} c_{11}x_1 + \dots + c_{1p}x_p = 0 \\ \dots \\ c_{q1}x_1 + \dots + c_{qp}x_p = 0 \end{cases}$

有非零解
$$(x_1, \dots, x_p)^T$$
.
令 $\mathbf{x} = (x_1, \dots, x_p, 0, \dots, 0)^T \in \mathbb{R}^n, \mathbf{y} = C\mathbf{x}, \mathbf{y}$
 $\mathbf{y} = (0, \dots, 0, y_{a+1}, \dots, y_n)^T$.

于是

$$\mathbf{x}^{T} \begin{pmatrix} I_{p} \\ -I_{n-p} \end{pmatrix} \mathbf{x} = \mathbf{x}^{T} C^{T} \begin{pmatrix} I_{q} \\ -I_{n-q} \end{pmatrix} C \mathbf{x} = \mathbf{y}^{T} \begin{pmatrix} I_{q} \\ -I_{n-q} \end{pmatrix} \mathbf{y}.$$

上式左边 = $x_{1}^{2} + \dots + x_{p}^{2} > 0 (\mathbf{x} \neq \mathbf{0}),$
右边 = $-y_{q+1}^{2} - \dots - y_{n}^{2} \leq 0.$

矛盾! 故 $p \leq q$.

同理可证 $p \ge q$. 故 p = q.

定理的证明:

由于实对称阵的主元数等于其非零特征值数,故不失一般性,可对可逆实对称阵讨论.

设 A 的正主元数为 p, 正特征值数为 q, 则

 $A = LDL^T$, 其中L 是对角元为1 的下三角阵, $D = diag(d_1, \dots, d_n)$, d_i 为主元.

又 $A = Q^T \Lambda Q$, 其中 Q 是正交阵, $\Lambda = diag(\lambda_1, \dots, \lambda_n)$, λ_i 为特征值.

于是

$$A = L \begin{pmatrix} \sqrt{|d_1|} & & \\ & \ddots & \\ & \sqrt{|d_n|} \end{pmatrix} \begin{pmatrix} I_p & & \\ & -I_{n-p} \end{pmatrix} \begin{pmatrix} \sqrt{|d_1|} & & \\ & \ddots & \\ & & \sqrt{|d_n|} \end{pmatrix} L^T$$

$$= Q^T \begin{pmatrix} \sqrt{|\lambda_1|} & & \\ & \ddots & \\ & \sqrt{|\lambda_n|} \end{pmatrix} \begin{pmatrix} I_q & & \\ & -I_{n-q} \end{pmatrix} \begin{pmatrix} \sqrt{|\lambda_1|} & & \\ & \ddots & \\ & \sqrt{|\lambda_n|} \end{pmatrix} Q$$

$$\Leftrightarrow U = \begin{pmatrix} \sqrt{|d_1|} & & \\ & \ddots & \\ & & \sqrt{|d_n|} \end{pmatrix} L^T, V = \begin{pmatrix} \sqrt{|\lambda_1|} & & \\ & \ddots & \\ & & \sqrt{|\lambda_n|} \end{pmatrix} Q,$$

则 U, V 可逆,且

$$U, V$$
 可逆,且
$$\begin{pmatrix} I_p \\ -I_{n-p} \end{pmatrix} = (U^T)^{-1}V^T \begin{pmatrix} I_q \\ -I_{n-q} \end{pmatrix} VU^{-1}.$$

由引理知 p = q. 定理得证.

注记:事实上,我们证明了惯性定理.

小结:

- 1.实对称阵的特征值都是实数.
- 2.实对称阵属于不同特征值的特征向量相互正交.
- 3.实对称阵正交相似于对角阵.
- 4.实对称阵的正特征值数与正主元数相同.