输入/输出延迟单元 (IODELAY) 简介

每个 I/O 模块包含一个可编程绝对延迟单元,称为 IODELAY。IODELAY 可以连接到 ILOGIC/ISERDES 或 OLOGIC/OSERDES 模块,也可同时连接到这两个模块。IODELAY 是 具有 64 个 tap 的环绕延迟单元,具有标定的 tap 分辨率(见附图 1)。IODELAY 可用于组合输入通路、寄存输入通路、组合输出通路或寄存输出通路,还可以在内部资源中直接使用。IODELAY 允许各输入信号有独立的延迟。通过在《Virtex-5 数据手册》中规定的范围内选择 IDELAYCTRL 参考时钟,可以改变 tap 延迟分辨率。IODELAY 资源可用作 IDELAY、ODELAY 或组合延迟。

1、当用作 IDELAY 时,数据从 IBUF 或内部资源输入,然后输出到 ILOGIC/ISERDES。 有三种可用操作模式:

• 零保持时间延迟模式 (IDELAY_TYPE = DEFAULT)

这种操作模式允许向后兼容,以使用 Virtex-II、Virtex-II Pro 和 Virtex-4 器件中的零保持时间延迟功能的设计。当在没有 DCM 的情况下使用全局时钟采集数据(引脚到引脚参数)时,用这种延迟单元提供"非正保持时间"。在这种模式下使用时,不需要例化 IDELAYCTRL 基元。有关更多详情,请见"IDELAYCTRL 用法及设计指导原则"。

• 固定延迟模式 (IDELAY_TYPE = FIXED)

在固定延迟模式下,配置时将延迟值预设置成由属性 IDELAY_VALUE 确定的 tap 数。此值配置后不可更改。在这种模式下使用时,必须例化 IDELAYCTRL 基元。有关更多详情,请见"IDELAYCTRL 用法及设计指导原则"。

• 可变延迟模式 (IDELAY_TYPE = VARIABLE)

在可变延迟模式下,可以在配置后通过操控控制信号 CE 和 INC 来改变延迟值。在这种模式下使用时,必须例化 IDELAYCTRL 基元。有关更多详情,请见"IDELAYCTRL 用法及设计指导原则"。

2、当用作 ODELAY 时,数据从 OLOGIC/OSERDES 输入,然后输出到 OBUF。有一种可用操作模式:

• 固定延迟输出模式

在固定延迟输出模式下,配置时将延迟值预设置成由属性 ODELAY_VALUE 确定的 tap 数。此值配置后不可更改。在这种模式下使用时,必须例化 IDELAYCTRL 基元。有关更多详情,请见"IDELAYCTRL 用法及设计指导原则"。

3、当用作双向延迟时,将 IOB 配置成双向模式。IODELAY 交替延迟输入通路和输出通路上的数据。有两种可用操作模式:

・ 固定 IDELAY (IDELAY_TYPE = FIXED) 和固定 ODELAY 模式

在这种模式下,IDELAY 和 ODELAY 的值都是在配置时预设置,分别由IDELAY_VALUE 和 ODELAY_VALUE 属性确定。此值配置后不可更改。在这种模式下使用时,必须例化 IDELAYCTRL 基元。有关更多详情,请见"IDELAYCTRL 用法及设

计指导原则"。

• 可变 IDELAY (IDELAY_TYPE = VARIABLE) 和固定 ODELAY 模式

在这种模式下,只有 IDELAY 值可以在配置后通过操控控制信号 CE 和 INC 来动态更改。IODELAY 基元中 T 引脚的逻辑级别动态确定模块是 IDELAY 模式还是 ODELAY 模式。在这种模式下使用时,必须例化 IDELAYCTRL 基元。有关更多详情,请见"IDELAYCTRL 用法及设计指导原则"。

表 1-1 列出了 IODELAY 支持的配置。

表 1-1: IODELAY 支持的配置

IODELAY 模式	IODELAY 的方向	IODELAY 单元中使用 的输入引脚	信号源	目标	支持的延迟模式
IDELAY	I.	IDATAIN	IBUF	ILOGIC/ISERDES/ 内部资源	默认/固定/可变
		DATAIN	内部资源		固定/可变
ODELAY	0	ODATAIN	OLOGIC/OSERDES	OBUF	固定
m 4-25 vo	I (T=1时)	IDATAIN	IBUF	ILOGIC/ISERDES/ 内部资源	固定/可变
双向延迟	O (T=0时)	ODATAIN	OLOGIC/OSERDES	OBUF	固定

IODELAY 基元

图 1-1 所示为 IODELAY 基元。

图 1-1: IODELAY 基元

表 1-2 列出了 IODELAY 基元中的可用端口。所有端口均为 1 位宽。

表 1-2: IODELAY 基元端口

端口 名称	方向	功能
DATAOUT	输出	来自三个数据输入端口 (IDATAIN、ODATAIN、DATAIN) 之一的延迟数据
IDATAIN	输入	来自 IOB 的 IODELAY 的数据输入
ODATAIN	输入	来自 OSERDES/OLOGIC 的 IODELAY 的数据输入
DATAIN	输入	来自 FPGA 内部资源的 IODELAY 的数据输入
Т	输入	三态输入控制端口。此端口动态确定 IODELAY 是用作 IDELAY 还是用作 ODELAY
CE	输入	启用递增 / 递减功能
INC	输入	Tap 延迟的递增/递减数
RST	输入	将 IODELAY 单元复位到预设定值
С	输入	可变模式下使用的时钟输入

IODELAY 端口

来自 IOB 的数据输入-IDATAIN

IDATAIN 输入由相应的 IOB 驱动。在 IDELAY 模式下,可以将数据驱动到 ILOGIC/ISERDES 模块或直接驱动到 FPGA 内部资源中,也可以通过 DATAOUT 端口按照由 IDELAY_VALUE 设置的延迟将数据同时驱动到这二者。

来自 FPGA 内部资源的数据输入-ODATAIN

ODATAIN 输入由 OLOGIC/OSERDES 驱动。在 ODELAY 模式下,ODATAIN 按照由 ODELAY_VALUE 设置的延迟驱动连接到 IOB 的 DATAOUT 端口。

来自 FPGA 内部资源的 IODELAY 的数据输入-DATAIN

DATAIN 输入直接由 FPGA 内部资源驱动,以提供一条可访问内部资源逻辑的延迟线。数据按照由 IDELAY_VALUE 设置的延迟通过 DATAOUT 端口返回到内部资源中。DATAIN 可以在芯片内反转。数据不能驱动到 IOB。

数据输出-DATAOUT

来自三个数据输入端口的延迟数据。DATAOUT 连接到内部资源(IDELAY 模式)或 IOB(ODELAY 模式),或同时连接到这二者(双向延迟模式)。如果在双向延迟模式下使用,则T端口在 IDATAIN 和 ODATAIN 通路之间动态切换,根据来自 OLOGIC 模块的三态信号 T 所指示的方向交替提供输入/输入延迟。

三态输入-T

这是三态输入控制端口。对于双向操作,T引脚信号还控制 OBUFT 的T引脚。

时钟输入-C

对 IODELAY 基元的所有控制输入(RST、CE 和 INC)均与时钟输入(C)同步。当 I ODELAY 配置成可变模式时,必须将一个时钟连接到此端口。C 可以在芯片内反转。

模块复位-RST

IODELAY 复位信号 RST 将延迟单元复位到由 IDELAY_VALUE 或 ODELAY_VALUE 属性设置的值。如果未指定这些属性,则假定该值为零。RST 信号是高有效复位,与输入时钟信号(C)同步。

表 1-3 概述了控制引脚的功能。

表 1-3: 控制引脚描述

引脚	类型	值	描述	
INC	输入	1	Tap 延迟的递增/递减数	
CE	输入	1	启用递增/递减功能	
RST	输入	1	将延迟单元复位到预设定的值。如果没有预设定值则复位到 0	

递增/递减信号-CE、INC

递增/递减由使能信号(CE)控制。当 IDELAY_TYPE = VARIABLE 时,此接口只可用于 IDELAY 模式。

只要 CE 保持为 High, IDELAY 就会每时钟(C) 周期按 IDELAYRESOLUTION 递增或递减。INC 的状态确定 IDELAY 是递增还是递减: INC = 1 为递增, INC = 0 为递减,与时钟(C) 同步。如果 CE 为 Low,则通过 IDELAY 的延迟不变,与 INC 的状态无关。

当 CE 转为 High 时,在下一个时钟上升沿上开始递增/递减操作。当 CE 转为 Low 时,在下一个时钟上升沿上停止递增/递减操作。

IODELAY 是环绕可编程延迟单元。当达到延迟单元的末尾(tap 63)时,随后的递增功能就会返回到 tap0。同样的规则也适用于递减功能,即低于零的递减会转到 tap 63。表 1-4 概述了递增/递减操作。

表 1-4: 递增/递减操作

操作	RST	CE	INC
复位到 IDELAY_VALUE	1	×	×
递增 tap 数	0	1	1
递减 tap 数	0	1	0
无变化	0	0	Х

注:

1. RST 优先于 CE 和 INC。

IODELAY 属性

表 1-5 列出了 IODELAY 的属性。

表 1-5: IODELAY 属性概述

属性	值	默认值	描述
IDELAY_TYPE	字符串: DEFAULT、 FIXED 或 VARIABLE	DEFAULT	设置 tap 延迟线的类型。默认延迟用于保证零保持时间,固定延迟用于设置静态延迟值,可变延迟用于动态调整延迟值。
IDELAY_VALUE	整数:0到63	0	指定固定模式下的固定延迟 tap 数或可变模式下的初始 tap 数(输入通路)。
ODELAY_VALUE	整数: 0到63	0	指定固定延迟 tap 数 (输出通路)。
HIGH_PERFORMANCE_MODE	布尔值: FALSE、TRUE	FALSE	当设置为 TRUE 时,此属性减少输出抖动。
SIGNAL_PATTERN	字符串: DATA、CLOCK	DATA	时钟和数据信号具有不同的电气特征曲线,因此在 IODELAY 链中累计的抖动量不同。通过设置 此属性,用户可以令时序分析器在计算时序时计入相应的抖动。时钟信号具有周期性,没有 1 或 0 的连续长序列;而数据具有随机性,可以有 1 和 0 的长短序列。

属性	值	默认值	描述
REFCLK_FREQUENCY	实数: 190.0 到 210.0	200	IDELAYCTRL 参考时钟频率 (MHz)。
DELAY_SRC	字符串: I、O、 IO 或 DATAIN	DATAIN	I: IODELAY 链输入是 IDATAIN O: IODELAY 链输入是 ODATAIN IO: IODELAY 链输入是 IDATAIN 和 ODATAIN (由 T 控制) DATAIN: IODELAY 链输入是 DATAIN

IDELAY TYPE 属性

IDELAY_TYPE 属性设置所用延迟的类型。此属性的值是 DEFAULT、FIXED 和 VARIABLE。当设置成 DEFAULT 时,选择零保持时间延迟单元。当在没有 DCM 的情况下使用全局时钟采集数据(引脚到引脚参数)时,用这种延迟单元提供非正保持时间。

当设置成 FIXED 时,tap 延迟值固定为由 IDELAY_VALUE 属性设置确定的 tap 数。此值是预设置的,配置后不可更改。

当设置成 VARIABLE 时,选择可变 tap 延迟单元。Tap 延迟可以通过设置 CE=1 和 INC =1 递增,或通过设置 CE=1 和 INC = 0 递减。递增/递减操作与输入时钟信号 C 同步。

IDELAY_VALUE 属性

IDELAY_VALUE 属性指定初始 tap 延迟数。可能的值是 0 到 63 之间的任意整数。默认值是零。当 tap 延迟复位时,tap 延迟值恢复到 IDELAY_VALUE。在可变模式下,此属性确定延迟线的初始设置。

ODELAY_VALUE 属性

ODELAY_VALUE 指定 tap 延迟数。可能的值是 0 到 63 之间的任意整数。默认值是零。当 tap 延迟复位时, tap 延迟值恢复到 ODELAY_VALUE。

HIGH_PERFORMANCE_MODE 属性

当设置为 TRUE 时,此属性减少输出抖动。输出抖动减少导致 IODELAY 单元的功率 耗散略有上升。

SIGNAL_PATTERN 属性

SIGNAL_PATTERN 属性致使时序分析器计入数据或时钟通路中的相应延迟链抖动量。 IODELAY 时序

表 1-6 为 IODELAY 开关特性。

表 1-6: IODELAY 开关特性

符号	描述		
TIDELAYRESOLUTION	IDELAY 的 tap 分辨率		
T _{ICECK} /T _{ICKCE}	相对于 C 的 CE 引脚建立 / 保持		
T _{IINCCK} /T _{ICKINC}	相对于 C 的 INC 引脚建立 / 保持		
T _{IRSTCK} /T _{ICKRST}	相对于 C 的 RST 引脚建立 / 保持		

图 1-2 所示为 IDELAY 时序图。假设 IDELAY_VALUE = 0。

图 1-2: IDELAY 时序图

时钟事件1

在 C 的上升沿上检测到复位,致使输出 O 选择 tap 0 为 64 tap 链的输出(假设 IDELAY_VALUE = 0)。

时钟事件 2

在 C 的上升沿上检测到 CE 和 INC 的脉冲。这说明是递增操作。输出从 tap 0 到 tap 1 无毛刺变化。请见"**递增/递减操作后的稳定性**"。

时钟事件3

至此,输出已经稳定在 tap 1,因而完成了递增操作。输出无限期地保持在 tap 1,直到 RST、CE 或 INC 引脚上有进一步活动。

递增/递减操作后的稳定性

图 1-2 显示了输出从一个 tap 向另一个变化时的不稳定时段。显然,当 tap 0 处的数据值与 tap 1 处的数据值不同时,输出必须改变状态。然而,如果 tap 0 和 tap 1 处的数据值相同 (例如两者都是 0 或 1),则从 tap 0 到 tap 1 的过渡就不会在输出上造成毛刺或混乱。这一

概念可以通过设想 IODELAY 的 tap 链中的接收器数据信号来理解。如果 tap 0 和 tap1 都靠近接收器数据眼的中心,则在 tap 0 处采样的数据应与在 tap 1 处采样的数据没有区别。在这种情况下,从 tap 0 到 tap 1 的过渡不会引起输出变化。为了确保这种情况,IODELAY 的递增/递减操作设计成了无毛刺操作。

在活动用户数据通过 IODELAY 单元时,用户可以实时动态调整 IODELAY 的 tap 设置,不会扰乱活动用户数据。

当在时钟信号通路中使用 IODELAY 单元时,也适用无毛刺行为。调整 tap 设置不会在输出上引起毛刺或混乱。可以调整时钟通路中 IODELAY 单元的 tap 设置,不会扰乱可能正在该时钟上运行的状态机。

IDELAYCTRL 概述

如果用设置为 FIXED 或 VARIABLE 的 IOBDELAY_TYPE 属性例化 IODELAY 或 ISERDES 基元,则必须在代码中例化 IDELAYCTRL 模块。IDELAYCTRL 模块在其区域内 连续标定各延迟单元(IODELAY)(见图 1-5),以减少随工艺、电压和温度变化的影响。IDELAYCTRL 模块使用用户提供的 REFCLK 标定 IODELAY。

IDELAYCTRL 基元

图 1-3 所示为 IDELAYCTRL 基元。

图 1-3: IDELYACTRL 基元

IDELAYCTRL 端口

RST-复位

复位输入引脚(RST)是 High 有效异步复位。IDELAYCTRL 在配置(以及 REFCLK 信号稳定)之后必须复位,以确保 IODELAY 操作正常。要求复位脉冲宽度为 TIDELAYCTRL RPW(详见附图 1)。IDELAYCTRL 在配置后必须复位。

REFCLK-参考时钟

参考时钟(REFCLK)提供对 IDELAYCTRL 的时间参考,以标定同区域中的所有 IODELAY 模块。此时钟必须由全局时钟缓冲器(BUFGCTRL)驱动。REFCLK 必须是 FIDELAYCTRL_REF ±指定的 ppm 容差(IDELAYCTRL_REF_PRECISION),以保证指定的 IODELAY 分辨率 (TIDELAYRESOLUTION)。REFCLK 可以由用户提供的信号源、PLL

或 DCM 直接提供,必须在全局时钟缓冲器上传输。

RDY-就绪

就绪(RDY)信号指示特定区域内的 IODELAY 模块标定完毕。如果 REFCLK 在一个或几个时钟周期内保持为 High 或 Low,则 RDY 信号置为无效。如果 RDY 置为 Low 无效,则 IDELAYCTRL 模块必须复位。实现工具允许不连接/忽略 RDY。图 1-4 所示为 RDY 与 RST 之间的时序关系。

IDELAYCTRL 时序

表 1-7 所示为 IDELAYCTRL 开关特性。

表 1-7: IDELAYCTRL 开关特性

符号	描述
FIDELAYCTRL_REF	REFCLK 频率
IDELAYCTRL_REF_PRECISION	REFCLK 精度
T _{IDELAYCTRLCO_RDY}	IDELAYCTRL 从复位 / 启动到就绪的时间

如下图 1-4 所示, Virtex-5 RST 是边沿触发信号。

图 1-4: RDY 与 RST 之间的时序关系

IDELAYCTRL 位置

每个时钟区域的每个 I/O 列中都有 IDELAYCTRL 模块。一个 IDELAYCTRL 模块标定 其时钟区域内的所有 IDELAY 模块。图 1-5 所示为各 IDELAYCTRL 模块的相对位置。

图 1-5: 各 IDELAYCTRL 模块相对位置

IDELAYCTRL 用法及设计指导原则

本部分讲述 Virtex-5 IDELAYCTRL 模块的使用、设计指导原则和推荐用法。

例化无 LOC 约束的 IDELAYCTRL

当例化无 LOC 约束的 IDELAYCTRL 时,用户在 HDL 设计代码中必须只例化一个 IDELAYCTRL 实例。实现工具将 IDELAYCTRL 实例自动复制到整个器件,甚至复制到未使用延迟单元的时钟区域中。这样做资源占用率较高,在每个时钟区域内都要使用一个全局时钟资源,并且使用布线资源较多,因此功耗较大。(注:在简单工程中对 IDELAYCTRL 基元是否制定 LOC 约束,通过用 XPOWER 工具对功耗进行估算对比发现,是否制定 LOC 对功耗影响不大或者几乎无影响,但在大规模工程中,会由于 LOC 约束的指定带来功耗的额外增加)已例化 IDELAYCTRL 实例的 RST 和 REFCLK 输入端口和所复制 IDELAYCTRL 实例的对应输入端口相连接。

有两个特例:

1、当忽略 RDY 端口时,所有被复制的 IDELAYCTRL 实例的 RDY 信号均不连接。 对于例化无 LOC 约束的 IDELAYCTRL 基元并且不连接 RDY 输出端口的情况,《库指南》 中提供了 VHDL 和 Verilog 使用模型。

图 1-6 所示为例化 IDELAYCTRL 组件后形成的电路。

图 1-6: 例化无 LOC 约束的 IDELAYCTRL-不连接 RDY

2、当连接 RDY 端口时,例化一个宽度等于时钟区域数的与门,并且将例化和复制的 IDELAYCTRL 实例的 RDY 输出端口连接到与门的输入。工具将连接到已例化 IDELAYCTRL 实例的 RDY 端口的信号名称赋予与门的输出。

对于例化无 LOC 约束的 IDELAYCTRL 基元并且连接 RDY 端口的情况,《库指南》中提供了 VHDL 和 Verilog 使用模型。图 1-7 所示为例化 IDELAYCTRL 组件后形成的电路。

图 1-7: 例化无 LOC 约束的 IDELAYCTRL-连接 RDY

例化有位置(LOC)约束的IDELAYCTRL

使用 IDELAYCTRL 模块的最有效方法是定义并锁定设计中所用每个 IDELAYCTRL 实例的位置。具体做法是例化有位置(LOC)约束的 IDELAYCTRL 实例。用户必须在用延迟单元时定义并锁定所有 ISERDES 和 IDELAY 组件的位置。(IOBDELAY_TYPE 属性设置

为 FIXED 或 VARIABLE。)完成后,可以选择 IDELAYCTRL 的位置并指定 LOC 约束。 Xilinx 强烈建议使用有 LOC 约束的 IDELAYCTRL。

(注:如图 1-5 所示,一个 IDELAYCTRL 基元可同时覆盖一个 clock region,而一个 clock region 包含不止一个 IOB,在约束 IDELAYCTRL 基元 LOC 时,需要仔细定位该 IOB 属于哪个 LOC 的 IDELAYCTRL。)

位置约束

每个 IDELAYCTRL 模块都有 XY 位置坐标(X: 行, Y: 列)。为了约束位置,IDELAYCTRL 实例可以附带 LOC 属性。IDELAYCTRL 位置坐标的命名规则与用来命名 CLB 位置的规则不同。这样做便于在各阵列之间传递 LOC 属性。

为 IDELAYCTRL 实例附加 LOC 属性有两种方法。

- 1、在 UCF 文件中插入 LOC 约束
- 2、在 HDL 设计文件中直接嵌入 LOC 约束

在 UCF 文件中插入 LOC 约束

下列语法用于在 UCF 文件中插入 LOC 约束。

INST "instance_name" LOC=IDELAYCTRL_X#Y#;

在 HDL 设计文件中直接嵌入 LOC 约束

下列语法用于在 HDL 设计文件中嵌入 LOC 约束。

// synthesis attribute loc of instance_name is "IDELAYCTRL_X#Y#";

在 VHDL 代码中,用 VHDL 属性描述 LOC 约束。约束必须用下列语法声明后才能使用:

attribute loc: string;

声明之后, LOC 约束可以指定为:

attribute loc of instance_name:label is "IDELAYCTRL_X#Y0#";

《库指南》包括用于例化有 LOC 约束的 IDELAYCTRL 基元的 VHDL 和 Verilog 使用模型模板。

图 1-8 所示为例化 IDELAYCTRL 组件后形成的电路。

图 1-8: 例化有 LOC 约束的 IDELAYCTRL

例化有 LOC 约束和无 LOC 约束的 IDELAYCTRL

在有些情况下,用户例化有 LOC 约束的 IDELAYCTRL 模块,但还例化无 LOC 约束的 IDELAYCTRL 模块。如果用无位置约束的 IDELAYCTRL 模块例化 IP 核,但还需要为设计的另一部分例化无 LOC 约束的 IDELAYCTRL 模块,则实现工具会执行以下各项:

- 按"例化有位置(LOC)约束的 IDELAYCTRL"部分所述例化 LOC IDELAYCTRL 实例。
- 复制无位置约束的 IDELAYCTRL 实例,以便用一个 IDELAYCTRL 实例填充每个不具备有位置约束 IDELAYCTRL 实例的时钟区域。
- 将无位置约束 IDELAYCTRL 实例的 RST 和 REFCLK 输入端口和所复制 IDELAYCTRL 实例的对应输入端口相连接。
- 如果忽略无位置约束 IDELAYCTRL 实例的 RDY 端口,则同时忽略所复制 IDELAYCTRL 实例的所有 RDY 信号。
- 如果连接无位置约束 IDELAYCTRL 实例的 RDY 端口,则将无位置约束实例的 RDY 端口和所复制实例的 RDY 端口连接到一个自动生成的与门。实现工具将连接到无位置约束实例的 RDY 端口的信号之名称赋予与门的输出。
- 有位置约束实例的所有端口 (RST、REFCLK 和 RDY) 均相互独立并且独立于复制的实例。

图 1-9 所示为例化 IDELAYCTRL 件后形成的电路。

图 1-9: IDELAYCTRL 单元的混合例化例化

例化多个无 LOC 约束的 IDELAYCTRL

禁止例化多个无 LOC 属性的 IDELAYCTRL。如果发生这种情况,实现工具就会报错。(注: 若在一个工程中同时例化多个不同 DELAY_SRC 属性,且无 LOC 约束的 IODELAY 时,只需例化一个 IDELAYCTRL 模块,否则 map 会报错。举例在同一个工程中需要例化一个固定 IDELAY_VALUE 的 IODELAY_INSTO 的 DELAY_SRC 属性设置为"I",表示其输入为 IDATAIN,而同时需要例化另外一个固定 ODELAY_VALUE 的 IODELAY_INST1 的 DELAY_SRC 属性设置为"O",其输入为 ODATAIN,但是 IODELAY_INST0 和 IODELAY_INST1 使用时均无 LOC 约束,在例化 IDELAYCTRL 基元时,只需例化一个 IDELAYCTRL 基元,无需因为例化两个不同属性的 IODELAY 基元而分别例化两个 IDELAYCTRL 基元,否则 map 会报错。)

参考文献:

【1】: ug190-Virtex-5 用户指南

[2]: ds202- Virtex-5 Data Sheet: DC and Switching Characteristics

[3]: v5ldl-Virtex-5 Libraries Guide for HDL Designs

		Speed Grade			
Symbol	Description	-3	-2	-1	Units
TIDELAYRESOLUTION	IDELAY Chain Delay Resolution	1/(64 x F _{REF} x 1e ⁶)		ps	
T _{IDELAYCTRLCO_RDY}	Reset to Ready for IDELAYCTRL	3.00	3.00	3.00	μs
FIDELAYCTRL_REF	REFCLK frequency	200.00	200.00	200.00	MHz
IDELAYCTRL_REF_PRECISION	REFCLK precision	±10	±10	±10	MHz
T _{IDELAYCTRL_RPW}	Minimum Reset pulse width	50.00	50.00	50.00	ns
TIDELAYRESOLUTION_ERR	Tap resolution error				%
T _{IODCCK_CE} / T _{IODCKC_CE}	CE pin Setup/Hold with respect to CK	0.29 -0.06	0.34 -0.06	0.42 -0.06	ns
TIODCK_INC/ TIODCKC_INC	INC pin Setup/Hold with respect to CK	0.18 0.02	0.20 0.04	0.24 0.06	ns
Tiodck_rst/Tiodckc_rst	RST pin Setup/Hold with respect to CK	0.25 -0.12	0.28 -0.12	0.33 -0.12	ns

附图 1: tap 延迟精度及相关时序参数

Verilog Instantiation Template

```
// IODELAY: Input and Output Fixed/variable Delay Element
// Virtex-5
// Xilinx HDL Libraries Guide, version 9.1i
IODELAY # (
  .DELAY SRC
                   ( "I"
                               ), // Specify which input port to be used
                                 // "I"=IDATAIN, "O"=ODATAIN, "DATAIN"=DATAIN
  .IDELAY_TYPE
                    ( "DEFAULT" ), // "DEFAULT", "FIXED" or "VARIABLE"
  .IDELAY VALUE
                    ( 0
                                ),
                                     // 0 to 63 tap values
  .ODELAY VALUE
                    ( 0
                                     // 0 to 63 tap values
                                ),
  .REFCLK_FREQUENCY ( 200.0
                               )
                                     // Frequency used for IDELAYCTRL
                                      // 175.0 to 225.0
) IODELAY INST (
  .DATAOUT ( DATAOUT ), // 1-bit delayed data output
                    ), // 1-bit clock input
  .C
           ( C
                     ), // 1-bit clock enable input
           ( CE
  .CE
  .DATAIN ( DATAIN ), // 1-bit internal data input
  .IDATAIN ( IDATAIN ), // 1-bit input data input (connect to port)
  .INC
            ( INC
                    ), // 1-bit increment/decrement input
  .ODATAIN ( ODATAIN ), // 1-bit output data input
                    ), // 1-bit active high, synch reset input
           ( RST
  .RST
```

```
.T ( T ) // 1-bit 3-state control input
);
// End of IODELAY inst instantiation
工程实例:
IODELAY # (
 .DELAY_SRC ( "O" ), //IODELAY源是ODATAIN
 .IDELAY TYPE
               ( "FIXED" ), //静态延迟
 .ODELAY VALUE (16 ), //固定延迟数为16个tap
 .REFCLK_FREQUENCY (200.0 ) //IDELAYCTRL参考时钟频率: 200MHz
) IODELAY INST (
  .C (1'b0), //可变模式下使用的时钟输入
                   ), // 是否启动递增/递减功能
         ( 1'b0
  .CE
  .DATAIN (1'b0 ), //
.IDATAIN (1'b0 ), //
  .INC (1'b0
                   ), //tap延迟的递增/递减选择
  .ODATAIN ( qLED ), //来自OLOGIC/OSERDES的信号
                   ), //将延迟单元次坏皆と瓒ti闹,若没有预设定值则复位到0
  .RST (1'b0
  .T (1'b0 ), //用作ODELAY
  .DATAOUT ( qLED_cld )
);
IDELAYCTRL IDELAYCTRL inst (
  .RDY ( RDY ), // 1-bit ready output
  .REFCLK ( System_Clk ), // 1-bit reference clock input
 .RST ( 1'b0 ) // 1-bit reset input
);
#INST "IDELAYCTRL inst" LOC = IDELAYCTRL X1Y2; (ucf 文件添加)
OBUF obuf_qLED (
             .I (qLED_cld ),
             .O ( qLED )
             );
```