# Отчёт по лабораторной работе №7

Математическое моделирование

Байрамгельдыев Довлетмурат

# Содержание

| 1 | Цель работы                    | 5  |
|---|--------------------------------|----|
| 2 | Задание                        | 6  |
| 3 | Теоретическое введение         | 7  |
| 4 | Выполнение лабораторной работы | 9  |
| 5 | Выводы                         | 15 |

# Список иллюстраций

| 4.1  | Программа на Julia для первого случая                       | 9  |
|------|-------------------------------------------------------------|----|
| 4.2  | График распространения рекламы на Julia для первого случая  | 10 |
| 4.3  | Программа на Julia для второго случая                       | 10 |
| 4.4  | График распространения рекламы на Julia для второго случая  | 11 |
| 4.5  | Программа на Julia для третьего случая                      | 11 |
| 4.6  | График распространения рекламы на Julia для третьего случая | 12 |
| 4.7  | Программа на OpenModelica для первого случая                | 12 |
| 4.8  | График распространения рекламы на OpenModelica для первого  |    |
|      | случая                                                      | 13 |
| 4.9  | Программа на OpenModelica для второго случая                | 13 |
| 4.10 | График распространения рекламы на OpenModelica для второго  |    |
|      | случая                                                      | 14 |
| 4.11 | Программа на OpenModelica для третьего случая               | 14 |
| 4.12 | График распространения рекламы на OpenModelica для третьего |    |
|      | случая                                                      | 14 |

### Список таблиц

# 1 Цель работы

- Познакомиться с простейшей моделью рекламной кампании
- Визуализировать модель с помощью Julia и OpenModelica

#### 2 Задание

- Построить графики распространения рекламы
- Рассмотреть три случая: где  $\alpha_1\gg\alpha_2$ , где  $\alpha_1\ll\alpha_2$  и где  $\alpha_1$  и  $\alpha_2$  периодические функции
- Для второго случая найти момент времени, в который скорость распространения рекламы принимает максимальное значение

#### 3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытится, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей, о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что  $\frac{\mathrm{d}n}{\mathrm{d}t}$  — скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить,  $\mathbf{t}$  — время, прошедшее с начала рекламной кампании,  $\mathbf{n}(\mathbf{t})$  — число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:  $\alpha_1(t)(N-n(t))$ , где N — общее число потенциальных платежеспособных покупателей,  $\alpha_1(t)>0$  характеризует интенсивность рекламной кампании (зависит

от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной  $\alpha_2(t)n(t)(N-n(t))$ , эта величина увеличивается с увеличением потребителей узнавших о товаре.

Таким образом, математическая модель распространения рекламы описывается уравнением:

$$\frac{\mathrm{d}n}{\mathrm{d}t} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

Более подробно см. в [lab-theory?].

#### 4 Выполнение лабораторной работы

Рассмотрим первый случай, где  $\alpha_1\gg\alpha_2$ , и напишем программу (рис. 4.1). В функции F1 опишем, как меняется скорость распространения рекламы.

```
|using Plots | using DifferentialEquations |
|using Different
```

Рис. 4.1: Программа на Julia для первого случая

Результаты сохраняем в виде графика (рис. 4.2). Мы видим, что количество осведомленных о товаре клиентов постепенно растет, пока не достигает максимально возможного — N.



Рис. 4.2: График распространения рекламы на Julia для первого случая

Изменим функцию, чтобы она описывала ситуацию, где  $\alpha_1 \ll \alpha_2$  (рис. 4.3). Добавим в функцию F1 нахождение момента времени, в который скорость распространения рекламы, то есть производная, максимальна. Выведем результат в консоль (рис.  $\ref{puc. 27}$ ).

```
# 2 случай (alpha1 << alpha2)

maxx = [-10000.0, 0]

function F2(du, u, p, t)
    du[1] = (0.00005 + 0.2*u[1])*(N - u[1])

    if du[1] > maxx[1]
        maxx[2] = du[1]
        maxx[2] = t
    end

end

prob2 = ODEProblem(F2, u0, T2)
    sol2 = solve(prob2, dtmax=0.001)

println("t = ", maxx[2])

plt2 = plot(sol2, color=:red, title="Распространение рекламы, 2 случай", legend=false, xlabel="t", ylabel="N(t)")

savefig(plt2, "lab7_2.png")
```

Рис. 4.3: Программа на Julia для второго случая

Получаем график распространения рекламы для второго случая (рис. 4.4). График принимает вид логистической кривой: сначала численность осведомленных о товаре клиентов растет медленно, но затем начинает увеличиваться быстрее.



Рис. 4.4: График распространения рекламы на Julia для второго случая

Наконец поменяем функцию, чтобы она описывала ситуацию, где  $\alpha_1$  и  $\alpha_2$  — периодические функции (рис. 4.5).

Рис. 4.5: Программа на Julia для третьего случая

Получаем график распространения рекламы для третьего случая (рис. 4.6). График принимает вид, схожий со вторым случаем: численность осведомленных о товаре клиентов сначала возрастает медленно, а затем начинает стремительно увеличиваться.



Рис. 4.6: График распространения рекламы на Julia для третьего случая

Теперь напишем программу, рассматривающую первый случай, на OpenModelica (рис. 4.7).

```
model Advert
parameter Real N = 500;
parameter Real N0 = 5;
Real n(start=N0);
equation
// 1 случай
der(n) = (0.55 + 0.0001*n)*(N - n);
end Advert;
```

Рис. 4.7: Программа на OpenModelica для первого случая

Получаем также график распространения рекламы (рис. 4.8). Результаты совпадают с результатами, полученными на Julia.



Рис. 4.8: График распространения рекламы на OpenModelica для первого случая

Изменим уравнение, чтобы оно описывало второй случай (рис. 4.9).

```
model Advert

parameter Real N = 500;

parameter Real N0 = 5;

Real n(start=N0);

equation

// 2 случай

der(n) = (0.00005 + 0.2*n)*(N - n);

end Advert;
```

Рис. 4.9: Программа на OpenModelica для второго случая

Получаем график распространения рекламы (рис. 4.10). Этот график идентичен графику, полученному на Julia.



Рис. 4.10: График распространения рекламы на OpenModelica для второго случая

Наконец поменяем уравнение, чтобы оно подходило под третий случай (рис. 4.11).

```
model Advert
parameter Real N = 500;
parameter Real N0 = 5;
Real n(start=N0);
equation
// 3 случай
der(n) = (0.5*sin(time) + 0.3*cos(time)*n)*(N - n);
end Advert;
```

Рис. 4.11: Программа на OpenModelica для третьего случая

Получаем график распространения рекламы (рис. 4.12). Наблюдаем те же результаты, что и на Julia.



Рис. 4.12: График распространения рекламы на OpenModelica для третьего случая

#### 5 Выводы

В ходе выполнения лабораторной работы я научился строить графики распространения рекламы, определять в какой момент времени скорость распространения рекламы будет иметь максимальное значение. # Список литературы{.unnumbered}

Кулябов Д. С. Лабораторная работа №7: https://esystem.rudn.ru/mod/resource/view.php?id=8310