

End Term (Odd) Semester Examination December 2024

Roll r	10
Name of the Course and semester: B.Tech. III semester Name of the Paper: Discrete Structure and Combinatorics Paper Code: TMA-316	
Time: 3 hour	Iaximum Marks: 100
Note: (i) All the questions are compulsory. (ii) Answer any two sub questions from a, b and c in each main question. (iii) Total marks for each question is 20 (twenty). (iv) Each sub-question carries 10 marks.	
Q1.	(2X10=20 Marks)
a. Draw the Hasse diagram of Poset $(P(A), \subseteq)$, where $A = \{a, b, c\}$. Find grelement, minimal element and maximal element.	
b. Prove that if R is an equivalence relation on set A then R^{-1} is also an equivalence	ence relation on set A.
	CO1
c . Define the following with examples: (i) Bijective function (ii) Many one function (iv) Identity function.	e function (iii) Invertib CO1
Q2. a. A die is thrown 8 times and it is required to find the probability that 3 v times (ii) At least six times (iii) At most three times.	(2X10=20 Marks) will show (i) Exactly 2 CO2
b. Define the following: (i) Normal distribution (ii) Random variables (iii) Exponential distribution (iv) Bayes theorem.	CO2
c. If mean and variance of a binomial distribution are 4 and 2 respectively, (i) exactly 2 successes (ii) less than 3 successes (iii) at least 4 successes.	find the probability of CO2
Q3.	(2X10=20 Marks)
a. Define the following with suitable examples:(i) Quantifiers	
(ii) Tautologies (iii) Logical equivalence	CO3
b. Show that (i) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ (ii) $\neg (p \leftrightarrow q) \equiv (p \lor q) \land \neg (p \land q)$.	. CO3
b. Using Principle of Mathematical induction proves that $(n^5 - n)$ is divisible by	. CO3

(2X10=20 Marks)

End Term (Odd) Semester Examination December 2024

Q4.

a. Prove that the fourth root of unity $\{1,-1,i,-i\}$ form an abelian group with respect to multiplication. b. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girls? (ii) at least one boy and one girl? (iii) at least 3 girls? CO₄ c. Define the following (i) Abelian group (ii) Pigeonhole principle (iii) Isomorphism. CO4 Q5. (2X10=20 Marks) a. (i) State and prove Handshaking theorem. CO5 (ii) Explain Adjacency matrix. b. Define the following: (i) Directed graph (ii) Connected graph (iii) Complete graph (iv) Hamilton path. CO5 c. Draw the following graphs: (i) $K_{3,4}$ (ii) W_6 (iii) K_5 (iv) C_6 . CO₅