Seat No

King Mongkut's University of Technology Thonburi

Final Examination Semester 2 Academic Year 2014

CVE 341: Steel and Timber Design

Date: 18th May 2015 Time 9:00 – 12:00

Instructions:

- 1. The exam has 5 questions in 14 pages. Total points are 50 points with each question not of equal points.
- 2. Read the questions carefully and strictly follow instruction.
- 3. Textbooks and written materials are allowed in the examination room.
- 4. A calculator is allowed.
- 5. Write your name on every page.
- 6. Perform your work in the examination paper.

Examiner: Associate Professor Sutat Leelataviwat

Assistant Professor Aphinat Ashakul

Tel. 02-470-9148

This examination paper has been approved by the Department of Civil Engineering

Associate Professor Dr. Sutat Leelataviwat Head of the Civil Engineering Department

1. Investigate beam H500x200x89.6 kg/m SM520 ($F_y = 3,700$ kg/cm²) shown to determine how much a concentrated load P the beam can carry. Self-weight can be neglected. The beam has stiffeners at all locations where concentrated loads are applied; therefore, all local failure can be neglected. There is no need to consider serviceability. Use ASD (10 Points)

H500x200x89.6 kg/m: $b_f = 200$ mm, $t_f = 16$ mm, d = 500 mm, $t_w = 10$ mm, k = 36 mm, $S_x = 1,910$ cm³, Zx = 2,180 cm³

Location of Bracing

2. Check the tensile strength of the bolted connection connecting T150x150x16.0 kg/m SM400 to the gusset plate as shown. Bolts used are 8-M16 A325N. Assume that the gusset plate is adequate. Use ASD method (10 Points)

T150x150x16.0 kg/m: $b_f = 149$ mm, $t_f = 8$ mm, d = 149 mm, $t_s = 5.5$ mm, $\overline{y} = 3.26$ cm, $A_g = 20.4$ cm²

Student Name & I.D.			

3. According to Feng-shui, a 8-bolted connection is required for a lucky-charm gusset to carry the load as shown. Design the bolt size for A325N bolts to carry the load as illustrated. Use LRFD (10 Points)

Student Name & I.D.		

- 4) A steel column (H350x350x12x19 137 kg/m) carries the loads as shown below. The member is a part of a braced system, and has supports in the weak direction at supports and mid-height. Use LRFD method (10 Points);
 - (a) Find the available flexural strength $(\phi_b M_n)$ of the member.
 - (b) Find the available axial compressive strength $(\phi_c P_n)$ of the member.
 - (c) Find the required strength (P_r and M_r) including the second order effect.
 - (d) Check the adequacy of the member as a beam-column member.

Student Name & I.D		

- 5) A timber floor framing around a stairway opening is shown below. The left ends of the short joists are supported by a header. The floor self-weight is assumed to be equal to 40 kg/m² for design purpose and the live load is 100 kg/m². Assume dense timber with a specific gravity of 0.90. Deflection limit is set at L/240. (10 Points)
 - a) Design the size of the header to support the given load. Check all the limit states.
 - b) If the header is connected at its ends to the joist (header-to-joist connection) using 2-4" nails. Determine if this is sufficient. If not, find the required number and size of the nails.

Figure 2

Student Name & I.D.

BEAM FORMULAS

