MATH 552 Homework 5*

Problem 26.7 Let a function f be analytic everywhere in domain D. Prove that if f(z) is real-valued for all z in D, then f(z) must be constant throughout D.

Solution.

We write z = x + iy and f(z) = u(x, y) + iv(x, y). If f is real-valued for all z in D, then it does not have an imaginary component, so v(x, y) = 0. Since f is analytic, the Cauchy-Riemann equations tell us

$$u_x = v_y, u_y = -v_x.$$

Since $v(x,y)=0 \implies v_x=v_y=0$, we also know by the Cauchy-Riemann equations that $u_x=u_y=0$.

Because $f'(z) = u_x + iu_y$, f'(z) = 0. We know that a function is constant throughout its domain if and only if its derivative is 0 everywhere, so f must be constant throughout D.

Problem 29.1 Use the theorem in Sec. 28 to show that if f(z) is analytic and not constant throughout a domain D, then it cannot be constant throughout any neighborhood lying in D.

Suggestion: Suppose that f(z) does have a constant value w_0 throughout some neighborhood in D.

Solution.

Suppose that f(z) does has a constant value throughout some neighborhood in D. According to the theorem, a function that is analytic in a domain D is uniquely determined over D by its values in a domain contained in D. Since a neighborhood in D would be a domain contained in D, and f(z) is analytic, f(z) must be constant throughout D.

Since the contrapositive is true, the claim must also be true.

Problem 30.11 Describe the behavior of $e^z = e^x e^{iy}$ as (a) x tends to $-\infty$; (b) y tends to ∞ .

Solution.

Since $e^z = e^x e^{iy}$, the function will map to a complex number w such that $|w| = e^x$ and arg(w) = y by Euler's formula. Thus, the magnitude of w depends on x while changing y causes w to move around a circle with radius e^x .

(a) Since

$$\lim_{x \to -\infty} e^x = 0,$$

the magnitude of w will tend toward 0 and thus w approaches 0.

(b) Since a change in y causes a periodic change in w, w does not approach any particular value as y tends toward ∞ .