

PHYSICS

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Modern Physics-I

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

Build Up Your Understanding

Physics: Modern Physics-I

PHOTO ELECTRIC EFFECT

- $\begin{tabular}{ll} \textbf{1.} & The energy of photon of visible light with } \\ & maximum wavelength in eV is: \\ \end{tabular}$
 - (1) 1

- (2) 1.6
- (3) 3.2
- (4) 7

MP0001

- **2.** What is the momentum of a photon having frequency 1.5×10^{13} Hz:
 - (1) 3.3×10^{-29} kg m/s
 - (2) $3.3 \times 10^{-34} \text{ kg m/s}$
 - (3) $6.6 \times 10^{-34} \text{ kg m/s}$
 - (4) $6.6 \times 10^{-30} \text{ kg m/s}$

MP0002

- **3.** The strength of photoelectric current is directly proportional to:
 - (1) Frequency of incident radiation
 - (2) Intensity of incident radiation
 - (3) Angle of incidence of radiation
 - (4) Distance between anode and cathode

MP0003

- **4.** When light is incident on surface, photo electrons are emitted. For photoelectrons :
 - (1) The value of kinetic energy is same for all
 - (2) Maximum kinetic energy do not depend on the wave length of incident light
 - (3) The value of kinetic energy is equal to or less than a maximum kinetic energy
 - (4) None of the above.

MP0004

- **5.** When light falls on a photosensitive surface, electrons are emitted from the surface. The kinetic energy of these electrons does not depend on the:
 - (1) Wavelength of light
 - (2) Frequency of light
 - (3) Type of material used for the surface
 - (4) Intensity of light

MP0005

- **6.** The work-function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectron emission from this substance is approximately:
 - (1) 540 nm
- (2) 400 nm
- (3) 310 nm
- (4) 220 nm

MP0006

- 7. Photoelectric effect takes place in element A. Its work function is 2.5 eV and threshold wavelength is λ . An other element B is having work function of 5 eV. Then find out the maximum wavelength that can produce photoelectric effect in B:
 - $(1) \lambda/2$
- $(2) 2\lambda$
- $(3) \lambda$
- $(4) 3\lambda$

MP0007

- **8.** When light of wavelength lesser than 6000 Å is incident on a metal, electrons are emitted. The approximate work-function of the metal is:
 - (1) 1 eV
- (2) 2 eV
- (3) 4 eV
- (4) 6 eV

MP0008

- **9.** Surface of sodium is illuminated by a light of 6000 Å wavelength. Work function of sodium is 1.6 eV. Then minimum K.E. of emitted electrons is:
 - (1) 0 eV
- (2) 1.53 eV
- (3) 2.46 eV
- (4) 4.14 eV

- 10. The maximum kinetic energy of photoelectrons emitted from a surface when photons of energy 6 eV fall on it is 4 eV. The stopping potential in volt is:
 - (1) 4
- (2)6
- (3) 8
- (4) 10

- **11.** When a point source of monochromatic light is at a distance of 0.2 m from a photoelectric cell, the cut off voltage and the saturation current are 0.6 volt and 18 mA respectively. If the same source is placed 0.6 m away from the photoelectric cell, then:
 - (1) The stopping potential will be 0.2 V
 - (2) The stopping potential will be $0.6\,\mathrm{V}$
 - (3) The saturation current will be 6 mA
 - (4) The saturation current will be 18 mA

MP0011

- **12.** The maximum wavelength of light for photoelectric effect from a metal is 200 nm. The maximum kinetic energy of electron which is emitted by the radiation of wavelength 100 nm will be:
 - (1) 12.4 eV
- (2) 6.2 eV
- (3) 100 eV
- (4) 200 eV

MP0012

13. The stopping potential as a function of frequency of incident radiation is plotted for two different surfaces A and B. The graphs show that the work function of A is

- (1) Greater than that of B
- (2) Smaller than that of B
- (3) Same as that of B
- (4) No comparison can be done from given graphs

MP0013

- **14.** The slope of graph drawn between stopping potential and frequency of incident light for a given surface will be :-
 - (1) h
- (2) h/e
- (3) eh
- (4) e

MP0014

- 15. By photo electric effect, Einstein proved :-
 - (1) E = hv
- (2) KE = $\frac{1}{2}$ mv²
- (3) $E = mc^2$
- $(4) E = \frac{-Rhc^2}{n^2}$

MP0015

- **16.** Which one among shows particle nature of light
 - (1) P.E.E.
- (2) Interference
- (3) Refraction
- (4) Polarization

MP0016

- **17**. A photo-cell is illuminated by a source of light, which is placed at a distance d from the cell, If the distance become d/2, then number of electrons emitted per second will be :-
 - (1) Remain same
- (2) Four times
- (3) Two times
- (4) One-fourth

MP0017

18. Graph is plotted between maximum kinetic energy of electron with frequency of incident photon in Photo electric effect. The slope of curve will be:

- (1) Charge of electron
- (2) Work function of metal
- (3) Planck's constant
- (4) Ratio of Planck constant and charge of electron

Pre-Medica

- **19.** Photon of energy 6 eV is incident on a metal surface of work function 4 eV. Maximum KE of emitted photo electrons will be :-
 - (1) 0 eV
- (2) 1 eV
- (3) 2 eV
- (4) 10 eV

MP0019

- **20.** Light of frequency ν is incident on a metal of threshold frequency ν_0 . Then work function of metal will be:-
 - (1) $h\nu$
- (2) $h v_0$
- (3) $h(v v_0)$
- (4) h ($\nu + \nu_0$)

MP0020

- **21.** The work function of a photo electric material is 3.3 eV. Its threshold frequency will be:
 - (1) 4×10^{23} Hz
- (2) $8 \times 10^{12} \text{ Hz}$
- (3) $4 \times 10^{11} \text{ Hz}$
- (4) $8 \times 10^{14} \text{ Hz}$

MP0021

- **22.** The value of planck's constant is :-
 - (1) 6.63×10^{-34} J/s
 - (2) $6.63 \times 10^{-34} \text{ kg-m}^2/\text{s}$
 - (3) $6.63 \times 10^{-34} \text{ kg-m}^2$
 - (4) $6.63 \times 10^{-34} \text{ J-s}^{-1}$

MP0022

- **23.** When ultraviolet rays incident on metal plate then photoelectric effect does not occur, it occurs by incidence of :-
 - (1) Infrared rays
- (2) X-rays
- (3) Radio wave
- (4) Light wave

MP0023

- **24.** A photoelectric cell is illuminated by a point source of light 1 m away. When the source is shifted to 2m then
 - (1) each emitted electron carries one quarter of the initial energy
 - (2) number of electrons emitted is half the initial number
 - (3) each emitted electron carries half the initial energy
 - (4) number of electrons emitted is a quarter of the initial number

MP0024

25. The graphs show the variation of current I (y-axis) in two photocell A & B as a function of the applied voltage V(x-axis) when light of same frequency is incident on the cell. Which of the following is the correct conclusion drawn from the data?

Physics: Modern Physics-I

- (1) Cathodes of the two cells are made from the same substance, the intensity of light used are different
- (2) Cathodes are made from different substances and the intensity of light is the same
- (3) Cathode substances as well as intensity of light are different
- (4) no conclusion can be drawn

MP0025

26. According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is

MP0026

- **27.** According to Einstein's photoelectric equation, the plot of the kinetic energy of the emitted photoelectrons from a metal v/s the frequency of the incident radiation gives a straight line whose slope:
 - (1) depends on the intensity of the radiation
 - (2) depends of the nature of the metal used
 - (3) depends both on the intensity of the radiation and the metal used.
 - (4) is the same for all metals and independent of the intensity of the radiation.

- A photon of energy 4 eV is incident on a metal surface whose work function is 2eV. The minimum reverse potential to be applied for stopping the current is :-
 - (1) 2V
- (2) 4V
- (3) 6V
- (4) 8V

MATTER WAVES

- **29**. If E and P are the energy and the momentum of a photon respectively then on reducing the wavelength of photon -
 - (1) P and E both will decrease
 - (2) P and E both will increase
 - (3) P will increase and E will decrease
 - (4) P will decrease and E will increase

MP0029

- If the kinetic energy of a moving particle is E, then the De Broglie wavelength is:
 - (1) $h\sqrt{2mE}$
- (2) $\sqrt{\frac{2mE}{h}}$
- (3) $\frac{h}{\sqrt{2mF}}$
- (4) $\frac{hE}{\sqrt{2mE}}$

MP0030

- Electron has energy of 100 eV what will be its wavelength:
 - (1) 1.2 Å
- (2) 10 Å
- (3) 100 Å
- (4) 1 Å

MP0031

- **32**. The ratio of wavelength of deutron and proton accelerated through the same potential difference will be -
 - (1) $\frac{1}{\sqrt{2}}$ (2) $\sqrt{\frac{2}{1}}$ (3) $\frac{1}{2}$ (4) $\frac{2}{1}$

MP0032

- An electron is accelerated from rest, between 33. two points A and B at which the potentials are 20V and 40 V respectively. The De Broglie wavelength associated with the electron at B will be -
 - (1) 0.75 Å
- (2) 7.5 Å
- (3) 2.75 Å
- (4) 2.75 m

MP0033

34. An electron is moving with velocity 6.6×10^3 m/s. The De-Broglie wavelength associated with electron is (mass of electron = 9×10^{-31} Kg,

Plank's Constant = $6.62 \times 10^{34} \text{ J-S}$

- (1) 1×10^{-19} m
- (2) 1×10^{-5} m
- (3) 1×10^{-7} m
- (4) 1×10^{-10} m

MP0034

- **35**. The energy that should be added to an electron to reduce its De-Broglie wavelength from 10^{-10} m to 0.5×10^{-10} m will be:
 - (1) Four times the initial energy
 - (2) Equal to initial energy
 - (3) Twice the initial energy
 - (4) Thrice the initial energy

MP0035

- **36**. The magnitude of De broglie wavelength (λ) of electron (e), proton (p), neutron (n) and α - particle (α) all having the same kinetic energy of 1MeV, in the increasing order will follow the sequence:
 - (1) λ_e , λ_n , λ_n , λ_n
- (2) λ_e , λ_n , λ_n , λ_n
- (3) λ_{α} , λ_{n} , λ_{n} , λ_{n}
- (4) λ_p , λ_e , λ_α , λ_n

- The accelerating voltage of an electron gun is **37**. 50,000 volt. De-Broglie wavelength of the electron will be:
 - (1) 0.55 Å
- (2) 0.055 Å
- (3) 0.077Å
- (4) 0.095 Å

Physics: Modern Physics-I

- If the mass of neutron = 1.7×10^{-27} kg. then the **38**. De broglie wavelength of neutron of energy 3eV is:
 - (1) 1.6×10^{-10} m
- (2) 1.6×10^{-11} m
- (3) 1.4×10^{-10} m
- (4) 1.4×10^{-11} m

MP0038

- **39.** A proton and an α particle accelerated through same voltage. The ratio of their De-broglie wavelength will be:
 - (1) 1 : 2
- (2) $2\sqrt{2}:1$ (3) $\sqrt{2}:1$
- (4) 2 : 1

MP0039

- **40**. The De Broglie wavelength of an atom at absolute temperature T K will be -
 - (1) $\frac{h}{mKT}$
- (2) $\frac{h}{\sqrt{3mKT}}$
- (3) $\frac{\sqrt{3mKT}}{h}$
- (4) $\sqrt{3mKT}$

MP0040

- The De-Broglie wavelength associated with 41. electrons revolving round the nucleus in a hydrogen atom in ground state, will be-
 - (1) 0.3 Å
- (2) 3.3 Å
- (3) 6.62 Å (4) 10 Å

MP0041

- The wavelength of very fast moving electron (v **42**. \approx c) is :
 - (1) $\lambda = \frac{h}{m_0 v}$
- (2) $\lambda = \frac{h}{\sqrt{2mF}}$
- (3) $\lambda^2 = \frac{h^2}{\sqrt{2mF}}$
- $(4) \lambda = \frac{h\sqrt{1-\frac{v^2}{c^2}}}{2}$

MP0042

- **43**. Which experiment explains the wave nature of electron:-
 - (1) Michelson's experiment
 - (2) Davisson Germer experiment
 - (3) Roentgen experiment
 - (4) Rutherford experiment

MP0043

- 44. In davisson-Germer experiment, the filament emits:-
 - (1) Photons
- (2) Protons
- (3) X rays
- (4) Electrons

MP0044

The correct curve between intensity of scattering (I) and the angle of diffraction ϕ in Davisson -Germer experiment is:

MP0045

- In Davisson Germer experiment, Nickel crystal acts as :-
 - (1) Perfect reflector
 - (2) Three dimensional diffraction grating
 - (3) Ideal absorber
 - (4) Two dimensional diffraction grating

- **47.** The diffracted waves in the Davisson-Germer experiment are :-
 - (1) Electrons
- (2) X Rays
- (3) Photons
- (4) Protons

- **48.** An electron and a proton have the same De-Broglie wavelength. Then the kinetic energy of the electron is:
 - (1) zero
 - (2) Infinity
 - (3) Equal to kinetic energy of proton
 - (4) Greater than the kinetic energy of proton

MP0048

- **49.** De Broglie equation for an electron shows is :
 - (1) Particle nature
- (2) Wave nature
- (3) Dual nature
- (4) None of these

MP0049

- **50.** What will happen to De Broglie's wavelength if the velocity of electron is increased:
 - (1) It will increase
 - (2) It will decrease
 - (3) It will remain same
 - (4) It will become twice

MP0050

- **51.** A photon of wavelength 4400Å is passing through vaccum. The effective mass and momentum of the photon are respectively
 - (1) $5 \times 10^{-36} \text{ kg}$, $1.5 \times 10^{-27} \text{ kg} \text{m/s}$
 - (2) 5×10^{-35} kg, 1.5×10^{-26} kg m/s
 - (3) zero, 1.5×10^{-26} kg m/s
 - (4) 5×10^{-36} kg, 1.67×10^{-43} kg m/s

MP0051

- **52.** Which of the following is true for photon:
 - (1) $E = \frac{hc}{\lambda}$
 - (2) $E = \frac{1}{2}mv^2$
 - (3) $P = \frac{E}{2V}$
 - (4) $E = \frac{1}{2}mc^2$

MP0052

- **53.** For a moving particle having kinetic energy E, the correct de Broglie wavelength is :
 - (1) It is not applicable for a particle
 - $(2) \ \frac{h}{\sqrt{2mE}}$
 - (3) $E\sqrt{\frac{h}{2m}}$
 - $(4) \frac{h}{2mE}$

MP0053

- **54.** The De Broglie wavelength of an electron in the first bohr orbit is:
 - (1) Equal to the circumference of the first orbit
 - (2) Equal to twice the circumference of the first orbit
 - (3) Equal to half the circumference of the first orbit
 - (4) Equal to one fourth the circumference of first orbit

MP0054

- **55.** If given particles are moving with same velocity, then maximum de-Broglie wavelength for :
 - (1) Proton
 - (2) α particle
 - (3) Neutron
 - (4) β particle

- **56.** A proton is about 1840 times heavier than an electron. When it is accelerated by a potential difference of 1 kV, its kinetic energy will be :-
 - (1) 1840 keV.
- (2) 1/1840 keV.
- (3) 1 keV.
- (4) 920 keV.

- **57.** If an electron and a photon propagate with same wavelength, it implies that they can have the same:-
 - (1) Energy
 - (2) Momentum
 - (3) Velocity
 - (4)Angular momentum

MP0057

- **58.** According to De Broglie, wavelength of electron in second orbit is 10^{-9} metre. Then the circumference of orbit is :-
 - $(1) 10^{-9} \text{ m}$
- (2) 2×10^{-9} m
- (3) 3×10^{-9} m
- $(4) 4 \times 10^{-9} \text{m}$

MP0058

- If the mass of a microscopic particle as well as its **59**. speed are halved, the de Broglie wavelength associated with the particle will
 - (1) increased by a factor more than 2
 - (2) increase by a factor of 2
 - (3) decrease by a factor of 2
 - (4) decrease by a factor more than 2

MP0059

- An electron and proton are accelerated through same potential, then λ_e/λ_p will be
 - (1) 1

- $(2) \, m_e / m_p$
- $(3) m_n/m_g$
- (4) $\sqrt{m_p/m_e}$

Physics: Modern Physics-I

MP0060

- 61. An electron, proton and alpha particle have same kinetic energy. The corresponding de-Broglie wavelength would have the following relationship
- $(1) \ \lambda_{e} > \lambda_{p} > \lambda_{\alpha}$ $(2) \ \lambda_{p} > \lambda_{e} > \lambda_{\alpha}$ $(3) \ \lambda_{\alpha} > \lambda_{e} > \lambda_{p}$ $(4) \ \lambda_{\alpha} > \lambda_{p} > \lambda_{e}$

MP0061

62. What is the de Broglie wavelength of an electron with a kinetic energy of 120 eV?

> (Given : $h = 6.63 \times 10^{-34} \text{ J s}, m_e = 9.11 \times 10^{-34} \text{ J}$ 31 kg and $e = 1.6 \times 10^{-19}$ coulomb)

- (1) 725 pm
- (2) 500 pm
- (3) 322 pm
- (4) 112 pm

MP0062

- If λ_{p} and λ_{∞} be the wavelengths of protons and α -particles of equal kinetic energies, then
 - (1) $\lambda_{p} = \frac{\lambda_{\alpha}}{4}$
- (2) $\lambda_p = \frac{\lambda_\alpha}{2}$
- (3) $\lambda_p = \lambda_q$
- (4) $\lambda_p = 2\lambda_\alpha$

MP0063

EXERCISE-I (Conceptual Questions)

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	1	2	3	4	3	1	2	1	1	2	2	2	2	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	3	3	2	4	2	2	4	1	3	4	1	2	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	1	3	3	4	3	2	2	2	2	2	4	2	4	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	1	4	3	2	1	1	2	1	4	3	2	2	1	4
Que.	61	62	63												
Ans.	1	4	4												

EXERCISE-II (Previous Year Questions)

AIPMT 2006

- 1. A photo-cell employs photoelectric effect to convert
 - (1) Change in the frequency of light into a change in electric voltage
 - (2) Change in the intensity of illumination into a change in photoelectric current
 - (3) Change in the intensity of illumination into a change in the work function of the photocathode
 - (4) Change in the frequency of light into a change in the electric current

MP0064

- 2. When photons of energy hv fall on an aluminium plate (of work function E_0), photoelectrons on maximum kinetic energy K are ejected. If the frequency of the radiation is doubled, the maximum kinetic energy of the ejected photoelectrons will be:-
 - (1) $K + E_0$
- (2) 2K

(3) K

(4) K + hv

MP0065

- 3. The momentum of a photon of energy 1MeV in kg m/s, will be:-
 - (1) 0.33×10^6
- (2) 7×10^{-24}
- (3) 10⁻²²
- $(4)\ 5\times 10^{-22}$

MP0066

AIPMT 2007

- 4. A 5 watt source emits monochromatic light of wavelength 5000 Å. When placed 0.5 m away, it liberates photoelectrons from a photosensitive metallic surface. When the source is moved to a distance of 1.0 m, the number of photo electrons liberated will:
 - (1) be reduced by a factor of 2
 - (2) be reduced by a factor of 4
 - (3) be reduced by a factor of 8
 - (4) be reduced by a factor of 16

MP0068

- **5.** Monochromatic light of frequency 6.0×10^{14} Hz is produced by a laser. The power emitted is 2×10^{-3} W. The number of photons emitted, on the average, by the source per second is :
 - $(1)\ 5\times10^{14}$
- (2) 5×10^{15}
- (3) 5×10^{16}
- $(4)\ 5\times10^{17}$

MP0069

AIPMT/NEET

AIPMT 2008

- **6.** The work function of a surface of a photosensitive material is 6.2 eV. The wavelength of the incident radiation for which the stopping potential is 5V lies in the :-
 - (1) Infrared region
 - (2) X-ray region
 - (3) Ultraviolet region
 - (4) Visible region

MP0070

AIPMT 2009

- 7. The number of photo electrons emitted for light of a frequency ν (higher than the threshold frequency ν_0) is proportional to :-
 - (1) Frequency of light (v)
 - (2) $v v_0$
 - (3) Threshold frequency (v_0)
 - (4) Intensity of light

MP0071

- **8.** Monochromatic light of wavelength 667 nm is produced by a helium neon laser. The power emitted is 9 mW. The number of photons arriving per sec. on the average at a target irradiated by this beam is:-
 - $(1) 3 \times 10^{19}$
- (2) 9×10^{17}
- (3) 3×10^{16}
- $(4) 9 \times 10^{15}$

MP0072

9. The figure shows a plot of photo current versus anode potential for a photo sensitive surface for three different radiations. Which one of the following is a correct statement?

- (1) curves (b) and (c) represent incident radiations of same frequency having same intensity
- (2) curves (a) and (b) represent incident radiations of different frequencies and different intensities
- (3) curves (a) and (b) represent incident radiations of same frequency but of different intensities
- (4) curves (b) and (c) represent incident radiations of different frequencies and different intensities

Pre-Medical

AIPMT (Pre) 2010

10. A source S_1 is producing, 10^{15} photons per second of wavelength 5000 Å. Another source S_{2} is producing 1.02×10^{15} photons per second of wavelength 5100 Å.

Then, (power of S_2)/(power of S_1) is equal to :-

- (1) 0.98
- (2) 1.00
- (3) 1.02
- (4) 1.04

MP0074

- The potential difference that must be applied to 11. stop the fastest photo electrons emitted by a nickel surface, having work function 5.01 eV, when ultraviolet light of 200 nm falls on it, must be -
 - (1) 1.2 V
- (2) 2.4 V
- (3) -1.2 V
 - (4) -2.4V

MP0075

AIPMT (Mains) 2010

- **12**. The electron in the hydrogen atom jumps from excited state (n = 3) to its ground state (n = 1)and the photons thus emitted irradiate a photosensitive material. If the work function of the material is 5.1 eV, the stopping potential is estimated to be (the energy of the electron in nth state):-

 - (1) 12.1 V (2) 17.2 V (3) 7 V
- (4) 5.1 V

MP0076

AIPMT (Pre) 2011

- Photoelectric emission occurs only when the **13**. incident light has more than a certain minimum:-
 - (1) Power
- (2) Wavelength
- (3) Intensity
- (4) Frequency

MP0077

- **14.** Light of two different frequencies whose photons have energies 1 eV and 2.5 eV respectively illuminate a metallic surface whose work function is 0.5 eV successively. Ratio of maximum speed of emitted electrons will be:
 - (1) 1 : 4
- (2) 1 : 2
- (3) 1 : 1
- (4) 1 : 5

MP0078

- **15.** In photoelectric emission process from a metal of work function 1.8eV, the kinetic energy of most energetic electrons is 0.5 eV. The corresponding stopping potential is:
 - (1) 1.8 V
- (2) 1.3V
- (3) 0.5V
- (4) 2.3V

MP0079

- A radioactive nucleus of mass M emits a photon of frequency v and the nucleus recoils. The recoil energy will be :-
 - (1) $Mc^2 hv$
- (2) $h^2v^2 / 2Mc^2$

Physics: Modern Physics-I

- (3) Zero
- (4) hv

MP0080

- In the Davisson and Germer experiment, the velocity of electrons emitted from the electron gun can be increased by:
 - (1) increasing the potential difference between the anode and filament
 - (2) increasing the filament current
 - (3) decreasing the filament current
 - (4) decreasing the potential difference between the anode and filament

MP0081

- **18**. Electrons used in an electron microscope are accelerated by a voltage of 25 kV. If the voltage is increased to 100 kV then the de-Broglie wavelength associated with the electrons would:
 - (1) increase by 2 times
- (2) decrease by 2 times
- (3) decrease by 4 times
- (4) increase by 4 times

MP0082

AIPMT (Mains) 2011

- 19. The threshold frequency for a photosensitive metal is 3.3×10^{14} Hz. If light of frequency 8.2×10^{14} Hz is incident on this metal, the cut-off voltage for the photoelectric emission is nearly:-
 - (1) 1 V
- (2) 2 V
- (3) 3 V
- (4) 5 V

MP0083

An electron in the hydrogen atom jumps from excited state n to the ground state. wavelength so emitted illuminates photosensitive material having work function 2.75 eV. If the stopping potential of the photoelectron is 10 V, then the value of n is :-(1) 2(2) 3(3)4(4)5

MP0084

AIPMT (Pre) 2012

- Monochromatic radiation emitted when electron 21. on hydrogen atom jumps from first excited to the grounds state irradiates a photosensitive material. The stopping potential is measured to be 3.57V. The threshold frequency of the material is :
 - (1) 1.6×10^{15} Hz
- (2) 2.5×10^{15} Hz
- (3) 4×10^{15} Hz
- (4) $5 \times 10^{15} \, \text{Hz}$

- **22**. A 200W sodium street lamp emits yellow light of wavelength 0.6 µm. Assuming it to be 25% efficient converting electrical energy to light, the number of photons of yellow light it emits per second is :-
 - $(1) 62 \times 10^{20}$
- (2) 3×10^{19}
- (3) 1.5×10^{20}
- (4) 6×10^{18}

- An α -particle moves in a circular path of radius **23**. 0.83 cm in the presence of a magnetic field of 0.25 Wb/m². The de Broglie wavelength associated with the particle will be:
 - (1) 10Å
- (2) 0.1Å
- (3) 1Å
- (4) 0.01Å

MP0087

- **24**. An electron of stationary hydrogen atom passes from the fifth energy level to the ground level. The velocity that the atom acquired a result of photon emission will be:
- (1) $\frac{25m}{24hR}$ (2) $\frac{24m}{25hR}$ (3) $\frac{24hR}{25m}$ (4) $\frac{25hR}{24m}$

(m is the mass of the atom, R, Rydberg constant and h Planck's constant)

MP0088

AIPMT (Mains) 2012

- **25**. If the momentum of an electron is changed by P, then the de Broglie wavelength associated with it changes by 0.5%. The initial momentum of electron will be :-
 - (1) $\frac{P}{200}$ (2) 100 P (3) 200 P
- (4) 400 P

MP0089

NEET-UG 2013

- For photoelectric emission from certain metal the **26**. cutoff frequency is v. If radiation of frequency 2v impinges on the metal plate, the maximum possible velocity of the emitted electron will be (m is the electron mass):-
 - (1) $2\sqrt{hv/m}$
- (2) $\sqrt{hv/(2m)}$
- (3) $\sqrt{hv / m}$
- (4) $\sqrt{2hv/m}$

MP0091

- The wavelength λ_e of an electron and λ_P of a photon of same energy E are related by:
 - (1) $\lambda_{\rm P} \propto \frac{1}{\sqrt{\lambda_{\rm e}}}$
- (3) $\lambda_{\rm p} \propto \lambda_{\rm e}$
- (4) $\lambda_{\rm p} \propto \sqrt{\lambda_{\rm e}}$

MP0092

AIPMT 2014

- Light with an energy flux of 25×10⁴ Wm⁻² falls **28**. on a perfectly reflecting surface at normal incidence. If the surface area is 15 cm², the average force exerted on the surface is :-
 - (1) $1.25 \times 10^{-6} \text{ N}$
- $(2) 2.50 \times 10^{-6} \text{ N}$
- (3) 1.20×10^{-6} N
- $(4) 3.0 \times 10^{-6} \text{ N}$

MP0094

- **29**. When the energy of the incident radiation is increased by 20%, the kinetic energy of the photoelectrons emitted from a metal surface increased from 0.5 eV to 0.8 eV. The work function of the metal is :-
 - (1) 0.65 eV
- (2) 1.0 eV
- (3) 1.3 eV
- (4) 1.5 eV

MP0095

- **30**. If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is :-
 - (1)25
- (2)75
- (3)60
- (4)50

MP0096

AIPMT 2015

- 31. A certain metallic surface is illuminated with monochromatic light of wavelength, λ . The stopping potential for photo-electric current for this light is $3V_0$. if the same surface is illuminated with light of wavelength 2λ , the stopping potential is V_0 . The threshold wavelength for this surface for photoelectric effect is :-
- (1) 4λ (2) $\frac{\lambda}{4}$ (3) $\frac{\lambda}{6}$ (4) 6λ

MP0097

- A radiation of energy 'E' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is (C=Velocity of light):-
 - (1) $\frac{2E}{C}$ (2) $\frac{2E}{C^2}$ (3) $\frac{E}{C^2}$ (4) $\frac{E}{C}$

TG: @Chalnaayaaar

Physics: Modern Physics-I

Which of the following figures represent the **33**. variation of particle momentum and the associated de-Broglie wavelength?

(1)

(2)

MP0099

RE-AIPMT 2015

- 34. Light of wavelength 500 nm is incident on a metal with work function 2.28 eV. The de Broglie wavelength of the emitted electron is :-
 - (1) $\leq 2.8 \times 10^{-12} \text{m}$
- $(2) < 2.8 \times 10^{-10} \text{m}$
- (3) $< 2.8 \times 10^{-9} \,\mathrm{m}$
- $(4) \ge 2.8 \times 10^{-9} \text{ m}$

MP0100

A photoelectric surface is illuminated successively **35**. by monochromatic light of wavelength λ and $\lambda/2$. If the maximum kinetic energy of the emitted photoelectrons in the second case is 3 times that in the first case, the work function of the surface of the material is:

(h = Plank's constant, c = speed of light)

- (1) $\frac{hc}{3\lambda}$ (2) $\frac{hc}{2\lambda}$ (3) $\frac{hc}{\lambda}$ (4) $\frac{2hc}{\lambda}$

MP0101

NEET-I 2016

- **36**. An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is:
 - (1) $\frac{1}{c} \left(\frac{E}{2m} \right)^{\frac{1}{2}}$
- $(2) \left(\frac{E}{2m}\right)^{\frac{1}{2}}$
- (3) $c(2mE)^{\frac{1}{2}}$
- $(4) \quad \frac{1}{xc} \left(\frac{2m}{E}\right)^{\frac{1}{2}}$

MP0103

- When a metallic surface is illuminated with **37**. radiation of wavelength λ , the stopping potential is V. If the same surface is illuminated with radiation of wavelength 2λ , the stopping potential is $\frac{V}{4}$. The threshold wavelength for the metallic surface is :-
 - (1) 4λ
- (2) 5λ (3) $\frac{5}{2} \lambda$ (4) 3λ

MP0104

NEET-II 2016

- 38. Photons with energy 5 eV are incident on a cathode C in a photoelectric cell. The maximum energy of emitted photoelectrons is 2 eV. When photons of energy 6 eV are incident on C, no photoelectrons will reach the anode A, if the stopping potential of A relative to C is :-
 - (1) 1 V
- (2) 3 V
- (3) + 3 V
- (4) + 4 V

MP0105

NEET(UG) 2017

- **39**. The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (Kelvin) and mass m, is :-
- $(3) \frac{2h}{\sqrt{m^k T}}$
- (4) $\frac{2h}{\sqrt{mkT}}$

MP0107

40. The photoelectric threshold wavelength of silver is 3250×10^{-10} m. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength 2536×10^{-10} m is :-

(Given $h = 4.14 \times 10^{-15} \text{ eVs}$ and $c = 3 \times 10^8 \text{ ms}^{-1}$)

- $(1) \approx 0.6 \times 10^4 \text{ ms}^{-1}$
- $(2) \approx 61 \times 10^3 \text{ ms}^{-1}$
- (3) $\approx 0.3 \times 10^6 \text{ ms}^{-1}$
- $(4) \approx 6 \times 10^5 \text{ ms}^{-1}$

NEET(UG) 2018

41. An electron of mass m with an initial velocity $\vec{V} = V_0 \hat{i}(V_0 > 0)$ enters an electric field $\vec{E} = -E_0 \hat{i}$ ($E_0 = \text{constant} > 0$) at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is :-

$$(1) \frac{\lambda_0}{\left(1 + \frac{eE_0}{mV_0}t\right)}$$

$$(2) \lambda_0 \left(1 + \frac{eE_0}{mV_0} y \right)$$

(3)
$$\lambda_0 t$$

(4) λ_0

MP0109

- **42.** When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is :-
 - (1) 1 : 2
- (2) 1 : 4
- (3) 4 : 1
- (4) 2 : 1

MP0110

NEET(UG) 2019

- **43.** An electron is accelerated through a potential difference of 10,000 V. Its de Broglie wavelength is, (nearly): $(m_e = 9 \times 10^{-31} \text{ kg})$
 - (1) 12.2×10^{-13} m
- (2) 12.2×10^{-12} m
- (3) 12.2×10^{-14} m
- (4) 12.2 nm

MP0149

NEET(UG) 2019 (Odisha)

- **44.** The work function of a photosensitive material is 4.0 eV. The longest wavelength of light that can cause photon emission from the substance is (approximately)
 - (1) 3100 nm
- (2) 966 nm
- (3) 31 nm
- (4) 310 nm

MP0150

- **45.** A proton and an α -particle are accelerated from rest to the same energy. The de Broglie wavelengths λ_p and λ_α are in the ratio,
 - (1) 2 : 1
- (2) 1 : 1
- (3) $\sqrt{2}:1$
- $(4) \ 4 : 1$

MP0151

NEET(UG) 2020

- **46.** Light with an average flux of 20 W/cm² falls on a non-reflecting surface at normal incidence having surface area 20 cm². The energy received by the surface during time span of 1 minute is:
 - $(1) 48 \times 10^3 \text{ J}$
- (2) 10×10^3 J
- (3) $12 \times 10^3 \text{ J}$
- $(4) 24 \times 10^3 \text{ J}$

MP0471

- **47.** The energy required to break one bond in DNA is 10^{-20} J. This value in eV is nearly :
 - (1) 0.006
- (2)6
- (3) 0.6
- (4) 0.06

MP0472

- **48.** An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is :
 - $(1) 10^4 \text{ V}$
- (2) 10 V
- $(3) 10^2 V$
- (4) 10³ V

MP0473

- **49.** Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?
 - (1) zero
- (2) doubled
- (3) four times
- (4) one-fourth

MP0474

NEET(UG) 2020 (COVID-19)

- **50.** The de Broglie wavelength of an electron moving with kinetic energy of 144 eV is nearly
 - (1) 102×10^{-3} nm
- (2) 102×10^{-4} nm
- (3) 102×10^{-5} nm
- (4) 102×10^{-2} nm

MP0475

- **51.** The wave nature of electrons was experimentally verified by,
 - (1) de Broglie
- (2) Hertz
- (3) Einstein
- (4) Davisson & Germer

Pre-Medical

NEET(UG) 2021

52. The number of photons per second on an average emitted by the source of monochromatic light of wavelength 600 nm, when it delivers the power of 3.3×10^{-3} watt will be :

 $(h = 6.6 \times 10^{-34} \text{ Js})$

(1) 10^{18} (2) 10^{17}

 $(3)\ 10^{16}$

 $(4)\ 10^{15}$

MP0477

An electromagnetic wave of wavelength λ' is **53**. incident on a photosensitive surface of negligible work function. If 'm' mass is of photoelectron emitted from the surface has de-Broglie wavelength λ_d , then :

(1)
$$\lambda = \left(\frac{2m}{hc}\right)\lambda_d^2$$
 (2) $\lambda_d = \left(\frac{2mc}{h}\right)\lambda^2$

(3) $\lambda = \left(\frac{2mc}{h}\right)\lambda_d^2$ (4) $\lambda = \left(\frac{2h}{mc}\right)\lambda_d^2$

MP0478

NEET(UG) 2021 (Paper-2)

- **54**. In photoelectric effect experiment, the incident wavelength λ is decreases to $\lambda/4$, then ratio of final maximum kinetic energy to initial maximum kinetic energy of emitted electron will be $(\lambda > \lambda_0)$ where λ_0 is threshold wavelength.
 - (1) Equal to 4
- (2) More than 4
- (3) Less than 4
- (4) Equal to 2

MP0486

A particle of mass m is moving with velocity v **55**. and its de-Broglie wavelength is λ . If mass is increased by 20% and velocity is decreased by 50% then new de-Broglie wavelength will be

 $(2) \frac{3\lambda}{5} \qquad (3) \frac{4\lambda}{3}$

NEET(UG) 2022

Let T_1 and T_2 be the energy of an electron in the **56**. first and second excited states of hydrogen atom, respectively. According to the Bohr's model of an atom, the ratio T_1 : T_2 is :

(1) 4 : 1

(2) 4 : 9 (3) 9 : 4

(4) 1 : 4

MP0488

The graph which shows the variation of the de **57**. Broglie wavelength (λ) of a particle and its associated momentum (p) is:

(1)

Physics: Modern Physics-I

MP0489

58. When two monochromatic lights of frequency, v and $\frac{\upsilon}{2}$ are incident on a photoelectric metal, their stopping potential becomes $\frac{V_s}{2}$ and V_s respectively. The threshold frequency for this metal is:

(1) 3v

(2) $\frac{2}{3}v$

(3) $\frac{3}{2}v$

(4) 2v

MP0490

NEET(UG) 2022 (Overseas)

59. The de Broglie wavelength of a thermal electron at 27° C is λ . When the temperature is increased to 927°C, its de-Broglie wavelength will become:

 $(1) 4\lambda$

(2) $\frac{\lambda}{2}$

(3) $\frac{\lambda}{4}$

 $(4) 2\lambda$

MP0491

- **60**. In a photoelectric experiment, blue light is capable of ejecting a photoelectron from a specific metal while green light is not able to eject a photoelectron. Ejection of photoelectrons is also possible using light of the colour:
 - (1) Red

(2) Violet

(3) Orange

(4) Yellow

Re-NEET(UG) 2022

- **61.** The light rays having photons of energy 4.2 eV are falling on a metal surface having a work function of 2.2 eV. The stopping potential of the surface is:
 - (1) 2 eV
- (2) 2 V
- (3) 1.1 V
- (4) 6.4 V

MP0493

- **62.** The threshold frequency of a photoelectric metal is ν_0 . If light of frequency 4 ν_0 is incident on this metal, then the maximum kinetic energy of emitted electrons will be :
 - (1) hv_0
- (2) $2 hv_0$
- (3) $3 hv_0$
- (4) 4 hv_0

EXERCISE-II (Previous Year Questions)								ANSWER KEY								
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Ans.	2	4	4	2	2	3	4	3	3	2	3	3	4	2	3	
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Ans.	2	1	2	2	3	1	3	4	3	3	4	2	2	2	2	
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	
Ans.	1	1	1	4	2	1	4	2	1	4	1	1	2	4	1	
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	
Ans.	4	4	1	1	1	4	3	3	2	4	3	3	В	2	2	
Que.	61	62														
Ans.	2	3														

EXERCISE-III (Analytical Questions)

- A laser beam ($\lambda = 633$ nm) has an power of 3 mW. What will be the pressure exerted on a surface by this beam if the cross sectional area is 3 mm². (Assume perfect reflection and normal incidence)
 - (1) $6.6 \times 10^{-3} \text{ N/m}^2$
- $(2) 6.6 \times 10^{-6} \text{ N/m}^2$
- $(3) 6.6 \times 10^{-9} \text{ N/m}^2$
- (4) 6.6 N/m²

MP0112

- 2. The frequency of the incident light falling on a photosensitive metal plate is doubled, the kinetic energy of the emitted photoelectrons is
 - (1) Double of the earlier value
 - (2) Unchanged
 - (3) More than double
 - (4) Less than double

MP0113

- 3. The threshold wavelength of tungsten is 2300 Å. If ultra violet light of wavelength 1800 Å is incident on it, then the maximum kinetic energy of photoelectrons would be.

 - (1) 1.5 eV (2) 2.2 eV (3) 3.0 eV
- (4) 5.0 eV

MP0114

- 4. The kinetic energy of most energetic electrons emitted from a metallic surface is doubled when the wavelength of the incident radiation is changed from 400 nm to 310 nm the workfunction of the metal is:
 - (1) 0.9 eV
- (2) 1.7 eV
- (3) 2.2 eV
- (4) 3.1 eV

MP0115

- 5. If the light of wavelength λ is incident on metal surface, the ejected fastest electron has speed v.
 - If the wavelength is changed to $\frac{3\lambda}{4}$, the speed of the fastest emitted electron will be
 - (1) Smaller than $\sqrt{\frac{4}{3}} v$
 - (2) Greater than $\sqrt{\frac{4}{3}}$ v
 - (3) 2 v
 - (4) Zero

Master Your Understanding

Physics: Modern Physics-I

- When a certain metallic surface is illuminated with mono-chromatic light of wave length λ , the stopping potential for photo electric current is 6 V₀. When the same surface is illuminated with light of wave length 2λ , the stopping potential is 2V₀. The threshold wavelength of this surface for photoelectric effect is:
 - $(1) 6 \lambda$
- (2) $4\lambda/3$
- (3) 4λ
- $(4) 8\lambda$
- **MP0117**
- 7. Two separate monochromatic light beams A and B of the same intensity are falling normally on a unit area of a metallic surface. Their wavelength are $\lambda_{_{\! A}}$ and $\lambda_{_{\! B}}$ respectively. Assuming that all the incident light is used in ejecting the photoelectrons, the ratio of the number of photoelectrons from the beam A to that from B
 - $(1) (\lambda_A/\lambda_B)^2$
- (2) λ_A/λ_B
- (3) $\lambda_{\rm B}/\lambda_{\rm A}$
- (4) 1

MP0118

- 8. Threshold wavelength for photoelectric emission from a metal surface is 5200 Å. Photoelectrons will be emitted when this surface is illuminated with monochromatic radiation from.
 - (1) 1 W IR lamp
 - (2) 50 W UV lamp
 - (3) 50 W IR lamp
 - (4) 10 W IR lamp

MP0119

- 9. The work functions for metals A, B and C are respectively 1.92 eV, 2.0 eV and 5eV. According to Einstein's equation, the metals which will emit photo electrons for a radiation of wavelength 4100Å is/are:-
 - (1) None
 - (2) A only
 - (3) A and B only
 - (4) All the three metals

- A photosensitive metallic surface has work function, hv_0 . If photons of energy $2hv_0$ fall on this surface, the electrons come out with a maximum velocity of 4×10^6 m/s. When the photon energy is increased to $5hv_0$, then maximum velocity of photo electrons will be :-
 - $(1) 2 \times 10^7 \text{ m/s}$
- (2) 2×10^6 m/s
- (3) 8×10^5 m/s
- $(4) 8 \times 10^6 \text{ m/s}$

- 11. A 500 watt bulb is placed at the centre of a perfectly black sphere of radius R = 1 metre. The approximate pressure experienced by the walls of the sphere as it absorbs all the photon emited by the bulb is (take $4\pi = 12.6$)

 - (1) $1.3 \times 10^{-7} \text{ N/m}^2$ (2) $2.5 \times 10^{-7} \text{ N/m}^2$
 - (3) $6.3 \times 10^{-7} \text{ N/m}^2$ (4) $3.14 \times 10^{-7} \text{ N/m}^2$

MP0122

In a photoelectric experiment the graph of **12**. frequency v of incident light (in Hz) and stopping potential V (in volt) is shown below. From figure the value of the Planck's constant is (e is the elementary charge)

- (1) $e^{\frac{ab}{cb}}$
- (2) $e^{\frac{cb}{ab}}$
- (3) $e^{\frac{ac}{bc}}$

MP0123

- 13. Light of frequency 10¹⁵ Hz falls on a metal surface of work function 2.5 eV. The stopping potential of photoelectrons in volts is :-
 - (1) 1.6
- (2) 2.5
- (3) 4.1
- (4) 6.6

MP0124

- Work function of potassium metal is 2.30 eV. When light of frequency 8×10^{14} Hz is incident on the metal surface, photoemission of electrons occurs. The stopping potential of the electrons will be equal to
 - (1) 0.1 V
- (2) 1.0 V
- (3) 2.3 V
- (4) 3.3 V

MP0125

- The **15**. threshold frequency for a certain photosensitive metal is v_0 . When it is illuminated by light of frequency $v = 2v_0$, the maximum velocity of photoelectrons is v₀. What will be the maximum velocity of the photoelectrons when the same metal is illuminated by light of frequency $v = 5v_0$?
 - (1) $\sqrt{2}v_0$
- (2) $2v_0$
- (3) $2\sqrt{2}v_0$
- $(4) 4v_0$

MP0126

- **16**. A proton moves on a circular path of radius 6.6×10^{-3} m in a perpendicular magnetic field of 0.625 tesla. The De broglie wavelength associated with the proton will be:
 - (1) 1Å
- (2) 0.1 Å
- (3) 0.01Å
- (4) 0.001Å

MP0127

- The velocity at which the mass of a particle becomes twice of its rest mass, will be -
 - (1) $\frac{2c}{3}$
- (3) $\frac{c\sqrt{3}}{2}$

MP0128

- An electron with (rest mass m_o) moves with a speed of 0.8C. Its mass when it moves with this speed is:
 - $(1) m_0$

- (3) $\frac{5m_0}{3}$
- (4) $\frac{3m_0}{5}$

Physics: Modern Physics-I

19. We wish to see inside an atom. Assuming the atom to have a diameter of 10 pm, this means that one must be able to resolve a width of say 10 pm. If an electron microscope is used, the minimum electron energy required is about

(1) 15 keV

(2) 1.5 keV

(3) 150 keV

(4) 1.5 Mev

MP0130

Que.

Ans.

Que.

Ans.