动态规划

Orange

CQ No.11 High

2018年1月28日

写在前面

虽然说是讲动态规划,但是可能会涉及到很多其它东西,甚至讲得 比动态规划还深。所以你们看着办好啦。

大家一定要踊跃一点。

写在前面

虽然说是讲动态规划,但是可能会涉及到很多其它东西,甚至讲得 比动态规划还深。所以你们看着办好啦。

大家一定要踊跃一点。

另外不要看《信息学奥赛一本通》,谢谢,不然你的动态规划只会学 得一塌糊涂。

写在前面

虽然说是讲动态规划,但是可能会涉及到很多其它东西,甚至讲得 比动态规划还深。所以你们看着办好啦。

大家一定要踊跃一点。

另外不要看《信息学奥赛一本通》,谢谢,不然你的动态规划只会学得一塌糊涂。

希望大家在最后能够感慨: 啊动态规划就是这么个简单东西。

有一个由非负整数组成的三角形,形状与杨辉三角类似:第一行只有一个数,除了最下面的一行,每个数的左下方和右下方各有一个数。 从第一行的数开始,每次可以往左下或右下走一格,直到走到最下行。把沿途经过的数全部加起来,如何走才能使得这个和尽量大?

n < 1000

方法〇 —— 一个很好写的方法

对任意一个位置,哪一边的数字大,我们就走哪边。

方法〇 —— 一个很好写的方法

对任意一个位置,哪一边的数字大,我们就走哪边。 然而很明显这是错的。

方法〇 —— 一个很好写的方法

对任意一个位置,哪一边的数字大,我们就走哪边。 然而很明显这是错的。

我们把这种方法叫做 乱贪心。对于任何一个贪心的方法,在时间等 条件允许时都要仔细证明。

大家都会搜索吧?毫无疑问,搜索出来的答案一定是对的。但是时间复杂度如何呢?

大家都会搜索吧?毫无疑问,搜索出来的答案一定是对的。但是时间复杂度如何呢?

总共有 2^{n-1} 条路径。

 $O(2^{n})$

当然是动态规划啦!

从这个问题来看,我们使用动态规划的理由之一是解决某些爆搜难以解决的问题。

所以我们应当思考,为什么爆搜这么慢。

我们来想想搜索是怎么搜的。

常见方法是记录从上往下的和,走到底时更新一下答案。但我们试试 反着思考,从下往上走。

假设我们正在第i行第j列。我们想的是,左边或者右边,哪边走出来的路径的和最大,我们就走哪边,或者是,从哪边来。因为我们在递归求解,所以我们每调用一次函数,就得到一次子问题的答案。

我们来想想搜索是怎么搜的。

常见方法是记录从上往下的和,走到底时更新一下答案。但我们试 试 反着思考,从下往上走。

假设我们正在第i行第j列。我们想的是,左边或者右边,哪边走出来的路径的和最大,我们就走哪边,或者是,从哪边来。因为我们在递归求解,所以我们每调用一次函数,就得到一次子问题的答案。

然后我们就得到了第i行第j列的答案,于是我们就高高兴兴地回到了第i-1行。

然后你就惊讶地发现:你会不止一次来到第 *i* 行第 *j* 列,因为从第 1 行第 1 列到它的路径不是唯一的。 然后你就又进行了许多次相同的运算······

我们为什么不保存这个答案呢? 设 $f_{i,j}$ 表示第 i 行第 j 列的答案。如果我们已经运算出来了,我们就直接用保存的值。如果没有,那只好老老实实地来算了……

我们为什么不保存这个答案呢? 设 $f_{i,j}$ 表示第 i 行第 j 列的答案。如果我们已经运算出来了,我们就直接用保存的值。如果没有,那只好老老实实地来算了…… 看上去很诱人,但是效率如何呢?

当一个位置已经计算出来后,我们不会再往下面走;而计算底层位置的答案只需要常数时间。

可以看作每次用最底层去更新倒数第二层,然后删去最底层。每次操作的时间复杂度为 O(n),总共有 n 层,所以时间复杂度为 $O(n^2)$ 。

以上方法的核心思想是: 把已经算过的东西保存下来,不要重复计算: 用已经算过的东西去计算没有算过的东西。

以上方法的核心思想是:把已经算过的东西保存下来,不要重复计算;用已经算过的东西去计算没有算过的东西。 这就是动态规划的通俗描述。

于是我们就有了这么个写法:在递归函数的开头检查是否已经算过。

于是我们就有了这么个写法:在递归函数的开头检查是否已经算过。由于这种写法很像搜索,我们称这种写法为记忆化搜索,简称记搜。

不难发现,我们可以直接从下往上推算,用两层循环就能搞定。 我们称这种写法为递推法。

不难发现,我们可以直接从下往上推算,用两层循环就能搞定。 我们称这种写法为递推法。

递推时,我们从倒数第二层开始推算,用下一层的答案来更新当前层。这种用别人的答案来更新自己的答案的做法叫做填表法。有一个好记的名字,叫做"人人为我"。

不难发现,我们可以直接从下往上推算,用两层循环就能搞定。 我们称这种写法为递推法。

递推时,我们从倒数第二层开始推算,用下一层的答案来更新当前层。这种用别人的答案来更新自己的答案的做法叫做填表法。有一个好记的名字,叫做"人人为我"。

不难发现,这种方法的时间复杂度和记忆化搜索一致。之前我们计算时间复杂度时其实就是用的这种方法。一般而言,递推法比记忆化搜索要快,因为它避免了递归的时间开销。

不难发现,我们可以直接从下往上推算,用两层循环就能搞定。 我们称这种写法为递推法。

递推时,我们从倒数第二层开始推算,用下一层的答案来更新当前层。这种用别人的答案来更新自己的答案的做法叫做填表法。有一个好记的名字,叫做"人人为我"。

不难发现,这种方法的时间复杂度和记忆化搜索一致。之前我们计算时间复杂度时其实就是用的这种方法。一般而言,递推法比记忆化搜索要快,因为它避免了递归的时间开销。

但有时,有的问题难以用递推法解决;有的问题受题目性质影响,记忆化搜索不会遍历到所有状态,这种问题使用记搜反而快。

memset 函数的使用?

memset 函数的使用? 动态规划与"递推"的关系?

memset 函数的使用? 动态规划与"递推"的关系? 是不是动态规划都像解决这个问题一样能够大幅降低时间复杂度?

memset 函数的使用? 动态规划与"递推"的关系? 是不是动态规划都像解决这个问题一样能够大幅降低时间复杂度? 做很有可能是动态规划的题目的正确思考顺序?

动态规划的一些基本概念

对于任意一个非底层位置,

我们有两个选择:从左边来,或者从右边来,

选择答案最大的路径来更新当前位置的答案。

有一个由非负整数组成的三角形,形状与杨辉三角类似:第一行只有一个数,除了最下面的一行,每个数的左下方和右下方各有一个数。 从第一行的数开始,每次可以往左下或右下走一格,直到走到最下行。把沿途经过的数全部加起来,如何走才能使得这个和<u>的个位</u>尽量大?

 $n \le 1000$

继续套用第一个问题的状态设计,发现会有一些问题。

继续套用第一个问题的状态设计,发现会有一些问题。 两个个位数最大的数加起来得到的数的个位不一定大。

继续套用第一个问题的状态设计,发现会有一些问题。 两个个位数最大的数加起来得到的数的个位不一定大。 我们称这种情况为不满足最优子结构性质。 动态规划的状态转移必须满足最优子结构性质。

设 $f_{i,j,k}$ 表示第 i 行第 j 列的数个位是否可能为 k。

设 $f_{i,j,k}$ 表示第 i 行第 j 列的数个位是否可能为 k。 转移显然,但是答案是什么?最底下的那一行的 f 又应是如何的?

设 $f_{i,j,k}$ 表示第 i 行第 j 列的数个位是否可能为 k。 转移显然,但是答案是什么?最底下的那一行的 f 又应是如何的?

这道题给我们的启发: 动态规划必须做好三件事:

明确状态

知道边界的状态

能用状态算出我们需要的答案

这个算法的时间复杂度是多少?

这个算法的时间复杂度是多少?

 $O(100n^2)$

这个算法的时间复杂度是多少?

 $O(100n^2)$

一般来说, 动态规划的时间复杂度为:

状态总数 × 决策个数 × 决策时间。

如果要求输出路径,该怎么做呢?

如果要求输出路径,该怎么做呢?

用 $pre_{i,j}$ 记录 $f_{i,j}$ 由哪个状态转移而来。因为我们的决策是选择左边或者选择右边,所以从哪儿转移而来就肯定选了哪个的。

如果要求输出路径,该怎么做呢?

用 $pre_{i,j}$ 记录 $f_{i,j}$ 由哪个状态转移而来。因为我们的决策是选择左边或者选择右边,所以从哪儿转移而来就肯定选了哪个的。

如果要求输出从下到上的路径,只能用栈保存路径。当然这也意味 着你可以递归输出,因为递归的数据结构基础就是栈。

如果要求输出路径,该怎么做呢?

用 $pre_{i,j}$ 记录 $f_{i,j}$ 由哪个状态转移而来。因为我们的决策是选择左边或者选择右边,所以从哪儿转移而来就肯定选了哪个的。

如果要求输出从下到上的路径,只能用栈保存路径。当然这也意味 着你可以递归输出,因为递归的数据结构基础就是栈。

绝大多数要输出一种具体方案的动态规划都是这么干的。

图论基础 (初步)

所以最基础的动态规划就这样啦!是不是很简单? 要进行接下来的学习,得先了解一点点图论的内容。

图的逻辑概念为 G = (V, E)。 指的是图 G 由(顶)点集合 V 和边的集合 E 组成。

图的逻辑概念为 G = (V, E)。 指的是图 G 由(顶)点集合 V 和边的集合 E 组成。

说大白话,让我给你们画一下就知道了。

图大概可以分为两类:

- 有向图
- 无向图

图大概可以分为两类:

- 有向图
- 无向图

其中有一种特殊的图,叫做有向无环图(Directed Acyclic Graph, DAG).

无后效性

什么叫做无后效性呢? 让我们回到数字三角形问题 1。

左边或者右边 选一条答案最大的。

如果某个状态的答案一旦计算出来就不会再改变,就称这个状态是 无后效性的。

无后效性

什么叫做无后效性呢?让我们回到数字三角形问题 1。

左边或者右边 选一条答案最大的。

如果某个状态的答案一旦计算出来就不会再改变,就称这个状态是 无后效性的。

DAG 是一种典型的无后效性的图,换句话说,从 DAG 上的任一点 出发都不能回到出发点。

无后效性

什么叫做无后效性呢?让我们回到数字三角形问题 1。

左边或者右边 选一条答案最大的。

如果某个状态的答案一旦计算出来就不会再改变, 就称这个状态是 无后效性的。

DAG 是一种典型的无后效性的图,换句话说,从 DAG 上的任一点 出发都不能回到出发点。

而 动态规划要求满足两个性质:最优子结构性质和无后效性,所 以 DAG 和动态规划是息息相关的。

我太懒了,所以剩下的都没有做了…… 凑合看看上课的笔记吧。