

Modelarea Unei Funcții Necunoscute

Studenți: PILUG Elisei

BOTA Horia

CRUCERU Claudiu

N: 17

GRUPA: 30135

Îndrumător de proiect: Ing. Vicu-Mihalis MAER

Îndrumător: Prof. Dr. Ing.Lucian BUȘONIU

PROIECT - PARTEA I

CUPRINS

Descrierea Problemei

Structura
Aproximatorului

Caracteristici
Esențiale ale Soluției

Cordare

In prima parte a proiectului se dorește modelarea unei funcții necunoscute ce reprezintă un sistem cu o intrare și o ieșire. Astfel, ne vom folosi de metoda regresiei liniare pentru a crea un aproximator polinomial de grad configurabil și pentru a studia comportamentul acestuia. Acest aproximator este antrenat pe baza setului de date de identificare și validat pe cel de validare.

Structura Aproximatorului

Regresia Liniară

Regresia liniară (sau metoda celor mai mici pătrate) este un algoritm de predicție care studiază relația dintre două variabile continue (în cazul nostru, intrarea și ieșirea sistemului) pentru a prezice valorile variabilei dependente (ieșirea) în funcție de variabila independentă (intrarea).

În cazul nostru, vom antrena un aproximator cu un polinom de grad configurabil de următoarea formă:

$$m=2, \quad \hat{g}(x)=[1,x_1,x_2,x_1^2,x_2^2,x_1x_2]\cdot\theta=\theta_1+\theta_2x_1+\theta_3x_2+\theta_4x_1^2+\theta_5x_2^2+\theta_6x_1x_2$$

, unde \mathbf{m} este gradul polinomului iar $\mathbf{\Theta}_{1}$... reprezintă coeficienții polinomului.

Pentru a obține o soluție validă a aproximatorului, trebuie să construim un sistem de ecuații pe baza variabilelor de intrare și ieșire și să-l rezolvăm pentru a obține vectorul de parametrii $\boldsymbol{\Theta}$ al sistemului. Fiecare variabilă de intrare poate fi scrisă ca rezultat al ecuației polinomiale descrise anterior. Astfel:

$$y(1) = \varphi_1(1)\theta_1 + \varphi_2(1)\theta_2 + \dots + \varphi_n(1)\theta_n$$

$$y(2) = \varphi_1(2)\theta_1 + \varphi_2(2)\theta_2 + \dots + \varphi_n(2)\theta_n$$

$$\dots$$

$$y(N) = \varphi_1(N)\theta_1 + \varphi_2(N)\theta_2 + \dots + \varphi_n(N)\theta_n$$

,unde φ1... reprezintă termenii polinomului ales

Obținerea soluției*

Acest sistem poate fi rescris sub formă matriceală astfel:

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} \varphi_1(1) & \varphi_2(1) & \dots & \varphi_n(1) \\ \varphi_1(2) & \varphi_2(2) & \dots & \varphi_n(2) \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \varphi_1(N) & \varphi_2(N) & \dots & \varphi_n(N) \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \vdots \\ \theta_n \end{bmatrix}$$

Caracteristici Esențiale Ale Soluției

Reprezentarea Datelor Inițiale

Am reprezentat setul de date primit, atât semnalul de identificare, cât și cel de validare.

Determinarea matricei THETA (Matricea de Parametri)

Pentru obținerea matricei de parametri am urmat următorii

- Am creat matricea PHI pe baza formei matriceale a sistemului de ecuații;
- Pentru a calcula toate valorile din PHI, am creat o funcție calcul_regresori care calculează câte o linie a matricei PHI
- Am transformat datele de ieșire date, Y_id, dintr-o matrice de 41x41, într-un vector coloană de 1681x1 Y, folosind funcția custom coloana
- Am calculat matricea THETA din formula PHI\Y (notăm faptul că operatorul "\" rezolvă ecuația înmulțind cu inversa lui PHI la dreapta)

Calculul modelului aproximat polinomial

Pentru a creea matricea de ieșire aproximată, am înmulțit vectorul PHI cu vectorul THETA obținând astfel noul vector Y_aprox. Acest vector l-am trecut apoi prin funcția *matrice* pentru a-l aduce la forma dorită, și anume o matrice de 41x41

Rezultate de Acordare

Determinarea erorii minime

Pentru a determina gradul optim aproximatorului polinomial, am rulat toți pașii menționați anterior de mai multe ori pe de validare, setul incrementând valoarea gradului polinomului de la 1 la 40. Am obținut astfel următorul grafic:

Determinarea Polinomului Optim de Aproximare

Având eroarea minimă calculată la pasul anterior, ne-am folosit de index-ul acestei valori pentru a calcula polinomul optim, acesta având gradul 4.

Am calculat apoi ieșirile optime aproximate, atât pentru identificare, cât și pentru validare.

File Edit View Insert Tools Desktop Window Help

Concluzii

Din graficele prezentate, putem observa că aproximarea se îmbunătățește odată cu creșterea gradului polinomului, dar la un moment dat devine supra-antrenat. Așadar, observăm că gradul la care polinomul are eroarea minimă este 4.

Mulțumim pentru la atenție

