Linear Algebra

Table of Contents

CSE	3
2025	3
2024	4
2023	6
2022	7
2021, S-1	9
2021, S-2	10
2020	10
2019	10
2018	11
ECE	12
2025	12
2024	12
2023	13
2022	14
2021	15
2020	15
2019	16
2018	16
EEE	17
2025	17
2024	18
2023	19
2022	19
2021	20
2020	21
2019	21
2018	22
Civil	23
2025	23
2024	25
2023	
2022	
2021	
2020	31

	2019	32
	2018	32
V	lechanical	34
	2025	34
	2024	34
	2022	35
	2021	36
	2020	36
	2019	37
	2018	38
In	nstrumentation Engineering	39
	2025	39
	2024	40
	2023	41
	2022	41
	2021	42
	2020	43
	2019	43
	2018	44
	2017	44
	2016	44
D	ata Science and Artificial Intelligence	45
	2025	45
	2024	47

CSE

2025

S1

Q. Consider the given system of linear equations for variables x and y, where k is a real-valued constant. Which of the following option(s) is/are CORRECT?

$$x + ky = 1$$

$$kx + y = -1$$

- a. There is exactly one value of k for which the above system of equations has no solution.
- b. There exist an infinite number of values of k for which the system of equations has no solution.
- c. There exists exactly one value of k for which the system of equations has exactly one solution.
- d. There exists exactly one value of k for which the system of equations has an infinite number of solutions.

ANS: - a, d

Q. Let A be a 2 \times 2 matrix as given.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

What are the eigenvalues of the matrix A^{13} ?

- a. 1, −1
- b. $2\sqrt{2}$, $-2\sqrt{2}$
- c. 4 $\sqrt{2}$, $-4\sqrt{2}$
- d. 64v2, -64v2

ANS: - d

S2

Q. If $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ then which ONE of the following is A^8 ?

$$\mathsf{a.} \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix}$$

c.
$$\begin{pmatrix} 625 & 0 \\ 0 & 625 \end{pmatrix}$$

$$\mathsf{b.}\begin{pmatrix} 125 & 0 \\ 0 & 125 \end{pmatrix}$$

$$d. \begin{pmatrix} 3125 & 0 \\ 0 & 3125 \end{pmatrix}$$

ANS: - c

Q. Let L, M, and N be non-singular matrices of order 3 satisfying the equations

$$L^2 = L^{-1}, M = L^8,$$
 and $N = L^2$

Which ONE of the following is the value of the determinant of (M - N)?

- a. 0
- b. 1
- c. 2
- d. 3

ANS: - a

Q. Consider a system of linear equations PX = Q where $P \in \mathbb{R}^{3 \times 3}$ and $Q \in \mathbb{R}^{3 \times 1}$. Suppose P has an LU decomposition, P = LU, where

$$\mathsf{L} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Which of the following statement(s) is/are TRUE?

- a. The system PX = Q can be solved by first solving LY = Q and then UX = Y.
- b. If P is invertible, then both L and U are invertible
- c. If P is singular, then at least one of the diagonal elements of U is zero.
- d. If P is symmetric, then both L and U are symmetric.

ANS: - a, b, c

2024

Q.12 The product of all eigenvalues of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ is

- (A) -1
- (B) 0
- (C) 1
- (D) 2

Let A be any $n \times m$ matrix, where m > n. Which of the following statements is/are Q.49 TRUE about the system of linear equations $Ax = \mathbf{0}$? (A) There exist at least m-n linearly independent solutions to this system There exist m - n linearly independent vectors such that every solution is a linear (B) combination of these vectors (C) There exists a non-zero solution in which at least m - n variables are 0 There exists a solution in which at least n variables are non-zero (D) **S2** Let A be an $n \times n$ matrix over the set of all real numbers \mathbb{R} . Let B be a matrix Q.47 obtained from A by swapping two rows. Which of the following statements is/are TRUE? The determinant of B is the negative of the determinant of A(A) (B) If A is invertible, then B is also invertible (C) If A is symmetric, then B is also symmetric (D) If the trace of A is zero, then the trace of B is also zero

Q.18 Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{bmatrix}$$

and

$$B = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}.$$

Let det(A) and det(B) denote the determinants of the matrices A and B, respectively.

Which one of the options given below is TRUE?

- (A) $\det(A) = \det(B)$
- (B) $\det(B) = -\det(A)$
- (C) $\det(A) = 0$
- (D) $\det(AB) = \det(A) + \det(B)$

Q.30 Let A be the adjacency matrix of the graph with vertices $\{1, 2, 3, 4, 5\}$.

Let λ_1 , λ_2 , λ_3 , λ_4 , and λ_5 be the five eigenvalues of A. Note that these eigenvalues need not be distinct.

The value of $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 =$

2022

Q.20 Consider the following two statements with respect to the matrices $A_{m \times n}$, $B_{n \times m}$, $C_{n \times n}$ and $D_{n \times n}$.

Statement 1: tr(AB) = tr(BA)

Statement 1: tr(AB) = tr(BA)Statement 2: tr(CD) = tr(DC)

where tr() represents the trace of a matrix. Which one of the following holds?

- (A) Statement 1 is correct and Statement 2 is wrong.
- (B) Statement 1 is wrong and Statement 2 is correct.
- (C) Both Statement 1 and Statement 2 are correct.
- (D) Both Statement 1 and Statement 2 are wrong.

Q.37	Consider a simple undirected unweighted graph with at least three vertices. If A is the adjacency matrix of the graph, then the number of 3-cycles in the graph is given by the trace of
(A)	A^3
(B)	A^3 divided by 2
(C)	A^3 divided by 3
(D)	A^3 divided by 6

Q.45 Consider solving the following system of simultaneous equations using LU decomposition.

$$x_1 + x_2 - 2x_3 = 4$$

 $x_1 + 3x_2 - x_3 = 7$
 $2x_1 + x_2 - 5x_3 = 7$

where L and U are denoted as

$$L = \begin{pmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{pmatrix}, \quad U = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{pmatrix}$$

Which one of the following is the correct combination of values for L_{32} , U_{33} , and x_1 ?

(A)
$$L_{32} = 2$$
, $U_{33} = -\frac{1}{2}$, $x_1 = -1$

(B)
$$L_{32} = 2$$
, $U_{33} = 2$, $x_1 = -1$

(C)
$$L_{32} = -\frac{1}{2}, U_{33} = 2, x_1 = 0$$

(D)
$$L_{32} = -\frac{1}{2}, \ U_{33} = -\frac{1}{2}, \ x_1 = 0$$

Q.53 Which of the following is/are the eigenvector(s) for the matrix given below?

$$\begin{pmatrix}
-9 & -6 & -2 & -4 \\
-8 & -6 & -3 & -1 \\
20 & 15 & 8 & 5 \\
32 & 21 & 7 & 12
\end{pmatrix}$$

 $\begin{pmatrix}
-1 \\
1 \\
0 \\
1
\end{pmatrix}$

 $\begin{pmatrix}
1 \\
0 \\
-1 \\
0
\end{pmatrix}$

 $\begin{pmatrix}
-1 \\
0 \\
2 \\
2
\end{pmatrix}$

 $\begin{pmatrix}
0 \\
1 \\
-3 \\
0
\end{pmatrix}$

2021, S-1

Q.52 Consider the following matrix.

$$\left(\begin{array}{ccccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)$$

The largest eigenvalue of the above matrix is _____

ANS: - 3

2021, S-2

Q.24 Suppose that P is a 4×5 matrix such that every solution of the equation $P\mathbf{x} = \mathbf{0}$ is a scalar multiple of $\begin{bmatrix} 2 & 5 & 4 & 3 & 1 \end{bmatrix}^T$. The rank of P is ______.

ANS: - 4

2020

Q.No. 27 Let A and B be two $n \times n$ matrices over real numbers. Let rank(M) and det(M) denote the rank and determinant of a matrix M, respectively. Consider the following statements.

- I. rank(AB) = rank(A) rank(B)
- II. det(AB) = det(A) det(B)
- III. $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$
- IV. $det(A + B) \le det(A) + det(B)$

Which of the above statements are TRUE?

- (A) I and II only
- (B) I and IV only
- (c) II and III only
- (D) III and IV only

ANS: - C

2019

- Q.9 Let X be a square matrix. Consider the following two statements on X.
 - I. X is invertible.
 - II. Determinant of X is non-zero.

Which one of the following is TRUE?

- (A) I implies II; II does not imply I.
- (B) II implies I; I does not imply II.
- (C) I does not imply II; II does not imply I.
- (D) I and II are equivalent statements.

ANS: - D

Q.44 Consider the following matrix:

$$R = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{bmatrix}$$

The absolute value of the product of Eigen values of R is _____.

ANS: - 12

2018

Q.17 Consider a matrix $A = uv^T$ where $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Note that v^T denotes the transpose of v. The largest eigenvalue of A is _____.

ANS: - 3

Q.26 Consider a matrix P whose only eigenvectors are the multiples of $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Consider the following statements.

- (I) **P** does not have an inverse
- (II) **P** has a repeated eigenvalue
- (III) P cannot be diagonalized

Which one of the following options is correct?

- (A) Only I and III are necessarily true
- (B) Only II is necessarily true
- (C) Only I and II are necessarily true
- (D) Only II and III are necessarily true

ANS: - D

ECE

2025

Q.11 Consider the matrix *A* below:

$$A = \left[\begin{array}{rrrr} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \gamma \end{array} \right]$$

For which of the following combinations of α , β , and γ , is the rank of A at least three?

- (i) $\alpha = 0$ and $\beta = \gamma \neq 0$.
- (ii) $\alpha = \beta = \gamma = 0$.
- (iii) $\beta = \gamma = 0$ and $\alpha \neq 0$.
- (iv) $\alpha = \beta = \gamma \neq 0$.
- (A) Only (i), (iii), and (iv)
- (B) Only (iv)
- (C) Only (ii)
- (D) Only (i) and (iii)

ANS: - A

2024

Q.30 Let \mathbb{R} and \mathbb{R}^3 denote the set of real numbers and the three dimensional vector space over it, respectively. The value of α for which the set of vectors

$$\{[2 \ -3 \ \alpha], \ [3 \ -1 \ 3], \ [1 \ -5 \ 7]\}$$

does not form a basis of \mathbb{R}^3 is _____.

ANS: - 5 (Check the answer)

- Q.55 Consider the matrix $\begin{bmatrix} 1 & k \\ 2 & 1 \end{bmatrix}$, where k is a positive real number. Which of the following vectors is/are eigenvector(s) of this matrix?
- (A) $\begin{bmatrix} 1 \\ -\sqrt{2/k} \end{bmatrix}$
- (C) $\left[\sqrt{2k} \right]$

ANS: - A, B (check the answer)

2023

Q.15	Let the sets of eigenvalues and eigenvectors of a matrix B be $\{\lambda_k \mid 1 \le k \le n\}$ and $\{v_k \mid 1 \le k \le n\}$, respectively. For any invertible matrix P , the sets of eigenvalues and eigenvectors of the matrix A , where $B = P^{-1}AP$, respectively, are
(A)	$\{\lambda_k \det(A) \mid 1 \le k \le n\}$ and $\{P\boldsymbol{v}_k \mid 1 \le k \le n\}$
(B)	$\{\lambda_k \mid 1 \leq k \leq n\} \text{ and } \{\boldsymbol{v}_k \mid 1 \leq k \leq n\}$
(C)	$\{\lambda_k \mid 1 \leq k \leq n\} \text{ and } \{P\boldsymbol{v}_k \mid 1 \leq k \leq n\}$
(D)	$\{\lambda_k \mid 1 \le k \le n\} \text{ and } \{P^{-1}\boldsymbol{v}_k \mid 1 \le k \le n\}$
ANS: -	

Q.38	Let x be an $n \times 1$ real column vector with length $l = \sqrt{x^T x}$. The trace of the matrix $P = xx^T$ is
(A)	l^2
(B)	$\frac{l^2}{4}$
(C)	ı
(D)	$\frac{l^2}{2}$
۸ NIS٠ -	

<u>2022</u>

Q.12	Consider a system of linear equations $Ax = b$, where
	$A = \begin{bmatrix} 1 & -\sqrt{2} & 3 \\ -1 & \sqrt{2} & -3 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$
	This system of equations admits
(A)	a unique solution for x
(B)	infinitely many solutions for x
(C)	no solutions for x
(D)	exactly two solutions for x
ANS: -	

Q.16 If the vectors (1.0, -1.0, 2.0), (7.0, 3.0, x) and (2.0, 3.0, 1.0) in \mathbb{R}^3 are linearly dependent, the value of x is _____

ANS: -

Q.36 A real 2 × 2 non-singular matrix A with repeated eigenvalue is given as

$$\mathbf{A} = \begin{bmatrix} x & -3.0 \\ 3.0 & 4.0 \end{bmatrix}$$

where x is a real positive number. The value of x (rounded off to one decimal place) is

ANS: -

2020

Q.No. 1 If $\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_6$ are six vectors in \mathbb{R}^4 , which one of the following statements is FALSE?

- (A) It is not necessary that these vectors span \mathbb{R}^4 .
- (B) These vectors are not linearly independent.
- (c) Any four of these vectors form a basis for \mathbb{R}^4 .
- (D) If $\{\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_5, \mathbf{v}_6\}$ spans \mathbb{R}^4 , then it forms a basis for \mathbb{R}^4 .

ANS: - C

Q.No. 26 Consider the following system of linear equations.

$$x_1 + 2x_2 = b_1$$
; $2x_1 + 4x_2 = b_2$; $3x_1 + 7x_2 = b_3$; $3x_1 + 9x_2 = b_4$

Which one of the following conditions ensures that a solution exists for the above system?

(A)
$$b_2 = 2b_1$$
 and $6b_1 - 3b_3 + b_4 = 0$

(B)
$$b_3 = 2b_1$$
 and $6b_1 - 3b_3 + b_4 = 0$

(c)
$$b_2 = 2b_1$$
 and $3b_1 - 6b_3 + b_4 = 0$

(D)
$$b_3 = 2b_1$$
 and $3b_1 - 6b_3 + b_4 = 0$

ANS: - A

Q.17 The number of distinct eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

is equal to .

ANS: - 3

2018

- Q.11 Let **M** be a real 4×4 matrix. Consider the following statements:
 - S1: M has 4 linearly independent eigenvectors.
 - S2: M has 4 distinct eigenvalues.
 - S3: M is non-singular (invertible).

Which one among the following is TRUE?

(A) S1 implies S2

(B) S1 implies S3

(C) S2 implies S1

(D) S3 implies S2

ANS: - C

Q.22 Consider matrix $\mathbf{A} = \begin{bmatrix} k & 2k \\ k^2 - k & k^2 \end{bmatrix}$ and vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. The number of distinct real values of k for which the equation $\mathbf{A}\mathbf{x} = \mathbf{0}$ has infinitely many solutions is _____.

ANS: - 2

EEE

2025

Q.12	Let v_1 and v_2 be the two eigenvectors corresponding to distinct eigenvalues of a
	3 × 3 real symmetric matrix. Which one of the following statements is true?

$$(A) v_1^T v_2 \neq 0$$

(B)
$$v_1^T v_2 = 0$$

(C)
$$v_1 + v_2 = 0$$

(D)
$$v_1 - v_2 = 0$$

ANS: - B

Q.13 Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$
, and $\mathbf{b} = \begin{bmatrix} 1/3 \\ -1/3 \\ 0 \end{bmatrix}$. Then, the system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ has

- (A) a unique solution.
- (B) infinitely many solutions.
- (C) a finite number of solutions.
- (D) no solution.

ANS: - B

Q.14	Let $P = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and let I be the identity matrix. Then P^2 is equal to
(A)	2P-I
(B)	
(C)	IGAIL 4U45
(D)	P+I

ANS: - A

<u>2024</u>

Q.11	Which one of the following matrices has an in	verse?
(A)	$\begin{bmatrix} 1 & 4 & 8 \\ 0 & 4 & 2 \\ 0.5 & 2 & 4 \end{bmatrix}$	
(B)	$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 2 & 9 \end{bmatrix}$	
(C)	$\begin{bmatrix} 1 & 4 & 8 \\ 0 & 4 & 2 \\ 1 & 2 & 4 \end{bmatrix}$	
(D)	$\begin{bmatrix} 1 & 4 & 8 \\ 0 & 4 & 2 \\ 3 & 12 & 24 \end{bmatrix}$	
ANS: -		

Q.32	The sum of the eigenvalues of the matrix $A = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ nearest integer).	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}^2$ is (rounded off to the
------	---	---

ANS: -

<u>2023</u>

- Q.11 For a given vector $\mathbf{w} = [1 \ 2 \ 3]^{\mathrm{T}}$, the vector normal to the plane defined by $\mathbf{w}^{\mathrm{T}}\mathbf{x} = 1$ is
- (A) $\begin{bmatrix} -2 & -2 & 2 \end{bmatrix}^T$
- (B) $\begin{bmatrix} 3 & 0 & -1 \end{bmatrix}^T$
- (C) $[3 \ 2 \ 1]^T$
- (D) $[1 \ 2 \ 3]^T$

ANS: -

2022

- Q.20 Consider a 3 x 3 matrix A whose (i, j)-th element, $a_{i,j} = (i j)^3$. Then the matrix A will be
- (A) symmetric.
- (B) skew-symmetric.
- (C) unitary.
- (D) null.

ANS: -

Q.42 Consider a matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -2 \\ 0 & 1 & 1 \end{bmatrix}$.

The matrix A satisfies the equation $6A^{-1} = A^2 + cA + dI$, where c and d are scalars and I is the identity matrix.

Then (c + d) is equal to

- (A) 5
- (B) 17
- (C) -6
- (D) 11

ANS: -

<u>2021</u>

- Q.1 Let p and q be real numbers such that $p^2 + q^2 = 1$. The eigenvalues of the matrix $\begin{bmatrix} p & q \\ q & -p \end{bmatrix}$ are
 - (A) 1 and 1
 - (B) 1 and -1
 - (C) j and -j
 - (D) pq and -pq

ANS: - B

Q.38 Let A be a 10×10 matrix such that A^5 is a null matrix, and let 1 be the 10×10 identity matrix. The determinant of A + I is ______.

ANS: - 1

Q.No. 42 The number of purely real elements in a lower triangular representation of the given 3 × 3 matrix, obtained through the given decomposition is ______.

$$\begin{bmatrix} 2 & 3 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 7 \end{bmatrix} = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{12} & a_{22} & 0 \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \begin{bmatrix} a_{11} & 0 & 0 \\ a_{12} & a_{22} & 0 \\ a_{13} & a_{23} & a_{33} \end{bmatrix}^{\mathsf{T}}$$

- (A) 5
- (B) 6
- (c) 8
- (D) 9

ANS: - MTA

2019

- Q.2 M is a 2×2 matrix with eigenvalues 4 and 9. The eigenvalues of M^2 are
 - (A) 4 and 9
- (B) 2 and 3
- (C) -2 and -3
- (D) 16 and 81

ANS: - D

Q.24 The rank of the matrix, $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, is _____.

ANS: - 3

Q.26 Consider a 2×2 matrix $\mathbf{M} = [\mathbf{v_1} \quad \mathbf{v_2}]$, where, $\mathbf{v_1}$ and $\mathbf{v_2}$ are the column vectors. Suppose $\mathbf{M}^{-1} = \begin{bmatrix} \mathbf{u_1}^T \\ \mathbf{u_2}^T \end{bmatrix}$, where $\mathbf{u_1}^T$ and $\mathbf{u_2}^T$ are the row vectors. Consider the following statements:

Statement 1: $u_1^T v_1 = 1$ and $u_2^T v_2 = 1$ Statement 2: $u_1^T v_2 = 0$ and $u_2^T v_1 = 0$

Which of the following options is correct?

- (A) Statement 1 is true and statement 2 is false
- (B) Statement 2 is true and statement 1 is false
- (C) Both the statements are true
- (D) Both the statements are false

<u>2018</u>

Q.17 Consider a non-singular 2×2 square matrix **A**. If $trace(\mathbf{A}) = 4$ and $trace(\mathbf{A}^2) = 5$, the determinant of the matrix **A** is _____(up to 1 decimal place).

ANS: - 5.5

Q.44 Let $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ and $B = A^3 - A^2 - 4A + 5I$, where I is the 3×3 identity matrix. The determinant of B is _____ (up to 1 decimal place).

ANS: - 0.9 - 1.1

<u>Civil</u>

2025

CE 1

- Q.11 Suppose λ is an eigenvalue of matrix A and x is the corresponding eigenvector. Let x also be an eigenvector of the matrix B = A 2I, where I is the identity matrix. Then, the eigenvalue of B corresponding to the eigenvector x is equal to
- (A) λ
- (B) $\lambda + 2$
- (C) 2λ
- (D) $\lambda 2$

ANS: - D

- Q.12 Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \\ -2 & -3 \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. For Ax = b to be solvable, which one of the following options is the *correct* condition on b_1 , b_2 , and b_3 :
- (A) $b_1 + b_2 + b_3 = 1$
- (B) $3b_1 + b_2 + 2b_3 = 0$
- (C) $b_1 + 3b_2 + b_3 = 2$
- (D) $b_1 + b_2 + b_3 = 2$

ANS: - B

CE – 2

Q.11 For the matrix [A] given below, the transpose is _____.

	[2	3	4]
[A] =	1	4	4] 5 2
	4	3	2

- $\begin{array}{c|cccc}
 (A) & \begin{bmatrix} 2 & 1 & 4 \\ 3 & 4 & 3 \\ 4 & 5 & 2 \end{bmatrix}
 \end{array}$
- (B) $\begin{bmatrix} 4 & 3 & 2 \\ 5 & 4 & 1 \\ 2 & 3 & 4 \end{bmatrix}$
- (C) $\begin{bmatrix} 4 & 2 & 3 \\ 5 & 1 & 4 \\ 2 & 4 & 3 \end{bmatrix}$
- (D) $\begin{bmatrix} 2 & 3 & 4 \\ 1 & 4 & 5 \\ 4 & 3 & 2 \end{bmatrix}$

ANS: - A

Q.45 Pick the **CORREC**T eigen value(s) of the matrix [A] from the following choices.

Roorkee

$$[A] = \begin{bmatrix} 6 & 8 \\ 4 & 2 \end{bmatrix}$$

- (A) 10
- (B) 4
- (C) -2
- (D) -10

ANS: - A, C

S1

- Q.36 What are the eigenvalues of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 2 \end{bmatrix}$?
- (A) 1, 2, 5
- (B) 1, 3, 4
- (C) -5, 1, 2
- (D) -5, -1, 2

ANS: -

S2

Q.12 The statements P and Q are related to matrices A and B, which are conformable for both addition and multiplication.

P:
$$(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$$

Q:
$$(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}$$

Which one of the following options is CORRECT?

- (A) P is TRUE and Q is FALSE
- (B) Both P and Q are TRUE
- (C) P is FALSE and Q is TRUE
- (D) Both P and Q are FALSE

ANS: -

Q.48 Consider two matrices $\mathbf{A} = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 0 & 3 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} -1 & 0 \\ 2 & 3 \\ 1 & 4 \end{bmatrix}$

The determinant of the matrix **AB** is _____(in integer).

ANS: -

S1

Q.24	If M is an arbitrary real $n \times n$ matrix, then which of the following matrices will
	have non-negative eigenvalues?

- M^2 (A)
- MM^{T} (B)
- $\mathbf{M}^T \mathbf{M}$ (C)
- $(\mathbf{M}^T)^2$ (D)

ANS: - B, C

For the matrix

Q.47
$$[A] = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$
which of the following statements is/are TRUE?

(A) The eigenvalues of $[A]^T$ are same as the eigenvalues of $[A]$

(B) The eigenvalues of $[A]^{-1}$ are the reciprocals of the eigenvalues of $[A]$

(C) The eigenvectors of $[A]^T$ are same as the eigenvectors of $[A]$

ANS: - A, B, D

(D)

Q.25	For the matrix $[A] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ which of the following statements is/are TRUE?		
(A)	$[A]{x} = {b}$ has a unique solution		
(B)	$[A]{x} = {b}$ does not have a unique solution		
(C)	[A] has three linearly independent eigenvectors		
(D)	[A] is a positive definite matrix		

ANS: - B,C

Q.37	Two vectors $\begin{bmatrix} 2 & 1 & 0 & 3 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 0 & 1 & 2 \end{bmatrix}^T$ belong to the null space of a 4×4 matrix of rank 2. Which one of the following vectors also belongs to the null space?

(A)
$$\begin{bmatrix} 1 & 1 & -1 & 1 \end{bmatrix}^T$$

(B)
$$[2 \ 0 \ 1 \ 2]^T$$

(C)
$$\begin{bmatrix} 0 & -2 & 1 & -1 \end{bmatrix}^T$$

(D)
$$[3 \ 1 \ 1 \ 2]^T$$

ANS: - A

Q.38	Cholesky decomposition is carried out on the following square matrix $[A]$. $[A] = \begin{bmatrix} 8 & -5 \\ -5 & a_{22} \end{bmatrix}$ Let l_{ij} and a_{ij} be the $(i,j)^{th}$ elements of matrices $[L]$ and $[A]$, respectively. If the element l_{22} of the decomposed lower triangular matrix $[L]$ is 1.968, what is the value (rounded off to the nearest integer) of the element a_{22} ?
(A)	5
(B)	7
(C)	9
(D)	11
ANS: - B	
2022 S1	
Q.25	The matrix M is defined as
	$\mathbf{M} = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$
	and has eigenvalues 5 and -2 . The matrix Q is formed as
	$\boldsymbol{Q} = \boldsymbol{M}^3 - 4\boldsymbol{M}^2 - 2\boldsymbol{M}$
	Which of the following is/are the eigenvalue(s) of matrix Q ?
(A)	15
(B)	25
(C)	-20
(D)	-30
ANS: - A	, C

S2

Q.25	P and Q are two square matrices of the same order. Which of the following statement(s) is/are correct?
(A)	If P and Q are invertible, then $[\mathbf{PQ}]^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$.
(B)	If P and Q are invertible, then $[\mathbf{QP}]^{-1} = \mathbf{P}^{-1}\mathbf{Q}^{-1}$.
(C)	If P and Q are invertible, then $[\mathbf{PQ}]^{-1} = \mathbf{P}^{-1}\mathbf{Q}^{-1}$.
(D)	If P and Q are not invertible, then $[\mathbf{PQ}]^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$.

ANS: - A, B

Q.45	Let y be a non-zero vector of size 2022×1 . Which of the following statement(s) is/are TRUE ?
(A)	yy^T is a symmetric matrix.
(B)	$y^T y$ is an eigenvalue of $y y^T$.
(C)	yy^T has a rank of 2022.
(D)	yy^T is invertible.

ANS: - A, B

2021

S1

Q.1		1	2 4 6	2	3	
	The rank of matrix	3	4	2	5	is
	The rank of matrix	5	6	2	7	1.0
		7	8	2	9	
(A)	1	1				-0.
(B)	2				Ä,	Á
(C)	3			ì	1	
(D)	4					

ANS: - B

Q.2	If $P = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then $Q^T P^T$ is
(A)	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
(B)	$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
(C)	$\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$
(D)	$\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$

ANS: - D

S2

Q.2		5	0	-5	0	
	The week of the west-in-	0	2	0	1	
	The rank of the matrix	-5	0	5	0	is
		0	1	0	2	
(A)	1					
(B)	2			y		
(C)	3					
(D)	4					

ANS: - C

Q.4	If A is a square matrix then orthogonality property mandates
(A)	$AA^{T} = I$
(B)	$AA^{\mathrm{T}} = 0$
(C)	$AA^{\mathrm{T}} = A^{-1}$
(D)	$AA^{\mathrm{T}} = A^2$

ANS: - A

Q.27	The smallest eigenvalue and the corresponding eigenvector of the matrix $\begin{bmatrix} 2 & -2 \\ -1 & 6 \end{bmatrix}$, respectively, are
(A)	1.55 and ${2.00 \atop 0.45}$
(B)	2.00 and
(C)	1.55 and $\begin{cases} -2.55 \\ -0.45 \end{cases}$
(D)	1.55 and $\begin{cases} 2.00 \\ -0.45 \end{cases}$

ANS: - A

2020

S1

40 Consider the system of equations

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 2 & -3 \\ 4 & 4 & -6 \\ 2 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

The value of x_3 (round off to the nearest integer), is

ANS: - 3

S2

Q. 27 A 4×4 matrix [P] is given below

$$[P] = \begin{bmatrix} 0 & 1 & 3 & 0 \\ -2 & 3 & 0 & 4 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 1 & 6 \end{bmatrix}$$

The eigenvalues of [P] are

- (A) 0, 3, 6, 6
- (B) 1, 2, 3, 4
- (c) 3, 4, 5, 7
- (D) 1, 2, 5, 7

ANS: -

S2

- Euclidean norm (length) of the vector $\begin{bmatrix} 4 & -2 & -6 \end{bmatrix}^T$ is
 - $(A)\sqrt{12}$
- (B) √24
- (C) √48
- (D) $\sqrt{56}$

ANS: - D

- Q.35 The inverse of the matrix $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ is

- (C) $\begin{bmatrix} -2 & \frac{4}{5} & \frac{9}{5} \\ 3 & -\frac{4}{5} & -\frac{14}{5} \\ -1 & \frac{1}{5} & \frac{6}{5} \end{bmatrix}$ (D) $\begin{bmatrix} 2 & -\frac{4}{5} & -\frac{9}{5} \\ -3 & \frac{4}{5} & \frac{14}{5} \\ 1 & -\frac{1}{5} & -\frac{6}{5} \end{bmatrix}$

ANS: - C

2018

S1

- Q.1 Which one of the following matrices is singular?

- (A) $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ (B) $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ (D) $\begin{bmatrix} 4 & 3 \\ 6 & 2 \end{bmatrix}$

ANS: - C

Q.2 For the given orthogonal matrix Q,

$$Q = \begin{bmatrix} 3/7 & 2/7 & 6/7 \\ -6/7 & 3/7 & 2/7 \\ 2/7 & 6/7 & -3/7 \end{bmatrix}$$

The inverse is

(A)
$$\begin{bmatrix} 3/7 & 2/7 & 6/7 \\ -6/7 & 3/7 & 2/7 \\ 2/7 & 6/7 & -3/7 \end{bmatrix}$$

(B)
$$\begin{bmatrix} -3/7 & -2/7 & -6/7 \\ 6/7 & -3/7 & -2/7 \\ -2/7 & -6/7 & 3/7 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 3/7 & -6/7 & 2/7 \\ 2/7 & 3/7 & 6/7 \\ 6/7 & 2/7 & -3/7 \end{bmatrix}$$

(D)
$$\begin{bmatrix} -3/7 & 6/7 & -2/7 \\ -2/7 & -3/7 & -6/7 \\ -6/7 & -2/7 & 3/7 \end{bmatrix}$$

ANS: - C

S2

Q.26 The matrix
$$\begin{pmatrix} 2 & -4 \\ 4 & -2 \end{pmatrix}$$
 has

- (A) real eigenvalues and eigenvectors
- (B) real eigenvalues but complex eigenvectors
- (C) complex eigenvalues but real eigenvectors
- (D) complex eigenvalues and eigenvectors

ANS: - D

Q.28 The rank of the following matrix is

$$\begin{pmatrix} 1 & 1 & 0 & -2 \\ 2 & 0 & 2 & 2 \\ 4 & 1 & 3 & 1 \end{pmatrix}$$

- (A) 1
- (B)2
- (C)3
- (D) 4

ANS: - B

Mechanical

2025

- Q.11 Let **A** and **B** be real symmetric matrices of same size. Which one of the following options is correct?
- (A) A^T = A⁻¹
- (B) AB = BA
- $(C) \qquad (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$
- (D) $A = A^{-1}$

ANS: - C

2024

Q.14 Consider the system of linear equations

$$x + 2y + z = 5$$

$$2x + ay + 4z = 12$$

$$2x + 4y + 6z = b$$

The values of a and b such that there exists a non-trivial null space and the system admits infinite solutions are

- (A) a = 8, b = 14
- (B) a = 4, b = 12
- (C) a = 8, b = 12
- (D) a = 4, b = 14

Q.36 The matrix $\begin{bmatrix} 1 & a \\ 8 & 3 \end{bmatrix}$ (where a > 0) has a negative eigenvalue if a is greater than

(A)
$$\frac{3}{8}$$

(C)
$$\frac{1}{2}$$

(B)
$$\frac{1}{8}$$

(D)
$$\frac{1}{5}$$

ANS: -

2022

SET - 1

Q.15 If $A = \begin{bmatrix} 10 & 2k+5 \\ 3k-3 & k+5 \end{bmatrix}$ is a symmetric matrix, the value of k is ______.

- (A) 8
- (B) **5**
- (C) **-0.4**
- (D) $\frac{1+\sqrt{1561}}{12}$

ANS: -

Q.46 The system of linear equations in real (x, y) given by

$$(x \quad y) \begin{bmatrix} 2 & 5-2a \\ a & 1 \end{bmatrix} = (0 \quad 0)$$

involves a real parameter α and has infinitely many non-trivial solutions for special value(s) of α . Which one or more among the following options is/are non-trivial solution(s) of (x, y) for such special value(s) of α ?

- (A) x = 2, y = -2
- (B) x = -1, y = 4
- (C) x = 1, y = 1
- (D) x = 4, y = -2

SET - 2

Q.46 A is a 3×5 real matrix of rank 2. For the set of homogeneous equations $\mathbf{A}\mathbf{x} = \mathbf{0}$, where $\mathbf{0}$ is a zero vector and \mathbf{x} is a vector of unknown variables, which of the following is/are true?

- (A) The given set of equations will have a unique solution.
- (B) The given set of equations will be satisfied by a zero vector of appropriate size.
- (C) The given set of equations will have infinitely many solutions.
- (D) The given set of equations will have many but a finite number of solutions.

Q.48 If the sum and product of eigenvalues of a 2 × 2 real matrix $\begin{bmatrix} 3 & p \\ p & q \end{bmatrix}$ are 4 and -1 respectively, then |p| is _____ (in integer).

ANS: -

2021

SET - 2

Q.1 Consider an $n \times n$ matrix A and a non-zero n \times 1 vector p. Their product Ap = a^2 p, where a \in R and a \in {-1, 0, 1}. Based on the given information, the eigen value of A2 is:

- (A) α
- (B) a²
- (C) \sqrt{a}
- (D) a⁴ (D) is the correct answer

2020

SET - 1

Q. 1 Multiplication of real valued squared matrices of same dimension is

(A) Associative

(B) Commutative

(C) always positive definite

(D) not always possible to compute

ANS: - A

SET - 2

Q. 2 A matrix P is decomposed into its symmetric part S and skew-symmetric part V.

If

$$S = \begin{bmatrix} -4 & 4 & 2 \\ 4 & 3 & 7/2 \\ 2 & 7/2 & 2 \end{bmatrix}, and V = \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & 7/2 \\ -3 & -7/2 & 0 \end{bmatrix}$$

Then Matrix P is:

(A)
$$\begin{pmatrix} -4 & 6 & -1 \\ 2 & 3 & 0 \\ 5 & 7 & 2 \end{pmatrix}$$

(B)
$$\begin{pmatrix} -4 & 2 & 5 \\ 6 & 3 & 7 \\ -1 & 0 & 2 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 4 & -6 & 1 \\ -2 & -3 & 0 \\ -5 & -7 & -2 \end{pmatrix}$$

(D)
$$\begin{pmatrix} -2 & 9/2 & -1 \\ -1 & 81/4 & 11 \\ -2 & 45/2 & 73/4 \end{pmatrix}$$

ANS: - B

Q. 19 Let I be a 100-dimensional identity matrix and E be set of distinct (no value appears more than once in E) real Eigen Values. The number of elements in E _______.

ANS: - 1

2019

SET - 1

Q.1 Consider the matrix

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

The number of distinct eigenvalues of P is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

ANS: - B

Q.26 The set of equations

$$x+y+z=1$$

$$ax-ay+3z=5$$

$$5x-3y+az=6$$

has infinite solutions, if a =

- (A) 3
- (B)3
- (C)4
- (D) -4

ANS: - C

SET - 2

Q.1 In matrix equation $[A]{X}={R}$,

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 4 & 8 & 4 \\ 8 & 16 & -4 \\ 4 & -4 & 15 \end{bmatrix}, \ \{X\} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \text{ and } \{R\} = \begin{bmatrix} 32 \\ 16 \\ 64 \end{bmatrix}.$$

One of the eigenvalues of matrix [A] is

- (A) 4
- (B) 8
- (C) 15
- (D) 16

ANS: - C

SET - 1

- Q.2 The rank of the matrix $\begin{bmatrix} -4 & 1 & -1 \\ -1 & -1 & -1 \\ 7 & -3 & 1 \end{bmatrix}$ is
 - (A) 1 (B) 2 (C) 3 (D) 4

ANS: - B

SET – 2

Q.19 If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 1 \end{bmatrix}$ then $det(A^{-1})$ is _____ (correct to two decimal places).

ANS: - 0.25

Instrumentation Engineering

2025

Q.11 A $2n \times 2n$ matrix $A = [a_{ij}]$ has its elements as

$$a_{ij} = \begin{cases} \beta & \text{if } (i+j) \text{ is odd,} \\ -\beta & \text{if } (i+j) \text{ is even,} \end{cases}$$

where n is any integer greater than 2 and β is any non-zero real number. The rank of A is

- (A) 1
- (B) 2
- (C) n
- (D) 2n

ANS: - A

If one of the eigenvectors of the matrix $A = \begin{bmatrix} -1 & -1 \\ x & -4 \end{bmatrix}$ is along the direction of $\begin{bmatrix} \alpha \\ 2\alpha \end{bmatrix}$, where α is any non-zero real number, then the value of x is _____ (in integer).

Q.19 A matrix M is constructed by stacking three column vectors v_1, v_2, v_3 as

 $M = [v_1 \quad v_2 \quad v_3].$

Choose the set of vectors from the following options such that rank(M) = 3.

- (A) $v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
- (B) $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- (C) $v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
- (D) $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$

ANS: -

Q.26 A 3×3 matrix P with all real elements has eigenvalues $\frac{1}{4}$, 1, and -2. The value of $|P^{-1}|$ is _____ (rounded off to nearest integer).

Q.11 Choose solution set *S* corresponding to the systems of two equations

$$\begin{aligned}
x - 2y + z &= 0 \\
x - z &= 0
\end{aligned}$$

Note: \mathcal{R} denotes the set of real numbers

(A)
$$S = \left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \middle| \alpha \in \mathcal{R} \right\}$$

(B)
$$S = \left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \middle| \alpha, \beta \in \mathcal{R} \right\}$$

(C)
$$S = \left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \middle| \alpha, \beta \in \mathcal{R} \right\}$$

(D)
$$S = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \middle| \alpha \in \mathcal{R} \right\}$$

ANS: - A

2022

Q.24 Given $M = \begin{bmatrix} 2 & 3 & 7 \\ 6 & 4 & 7 \\ 4 & 6 & 14 \end{bmatrix}$, which of the following statement(s) is/are correct?

- (A) The rank of M is 2
- (B) The rank of M is 3
- (C) The rows of M are linearly independent
- (D) The determinant of M is 0

ANS: - A, D

Q.49	The matrix $A = \begin{bmatrix} 4 & 3 \\ 9 & -2 \end{bmatrix}$ has eigenvalues -5 and 7.
	The eigenvector(s) is/are

- (A) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- (B) $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$
- (C) $\begin{bmatrix} 2 \\ -6 \end{bmatrix}$
- (D) $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$

ANS: - A, C

2021

Q.1	Consider the row vectors $v = (1,0)$ and $w = (2,0)$. The rank of the matrix $M = 2v^Tv + 3w^Tw$, where the superscript T denotes the transpose, is
(A)	1 SUSTAN INSTRU
(B)	2

(D) 4

ANS: - A

Q.25 The determinant of the matrix M shown below is _____.

 $\mathbf{M} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 2 & 1 \end{bmatrix}$

43 | Page

Given
$$A = \begin{pmatrix} 2 & 5 \\ 0 & 3 \end{pmatrix}$$
. The value of the determinant $\begin{vmatrix} A^4 - 5A^3 + 6A^2 + 2I \end{vmatrix} =$

ANS: - 4

2020

- A set of linear equations is given in the form Ax = b, where A is a 2×4 matrix with real number entries and $b \neq 0$. Will it be possible to solve for x and obtain a **unique solution** by multiplying both left and right sides of the equation by A^T (the super script T denotes the transpose) and inverting the matrix A^TA ? Answer is
- (A) Yes, it is always possible to get a unique solution for any 2×4 matrix A.
- (B) No, it is not possible to get a unique solution for any 2×4 matrix A.
- Yes, can obtain a unique solution provided the matrix $A^T A$ is well conditioned
- (D) Yes, can obtain a unique solution provided the matrix A is well conditioned

ANS: - B

- Consider the matrix $M = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 & -1 & 1 \end{bmatrix}$. One of the eigenvectors of M is
- $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
- (C) $\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$
- (D) [1]

ANS: - D

2019

Q.16 A 3 × 3 matrix has eigenvalues 1, 2 and 5. The determinant of the matrix is _____.

Q.1 Let N be a 3 by 3 matrix with real number entries. The matrix N is such that $N^2 = 0$. The eigen values of N are

- (A) 0, 0, 0
- (B) 0,0,1
- (C) 0,1,1
- (D) 1,1,1

ANS: - A

Q.28 Consider the following system of linear equations:

$$3x + 2ky = -2$$
$$kx + 6y = 2$$

Here x and y are the unknowns and k is a real constant. The value of k for which there are infinite number of solutions is

- (A) 3
- (B) 1
- (C) -3
- (D) -6

ANS: - C

2017

Question Number: 1

Correct: 1 Wrong: 0

If v is a non-zero vector of dimension 3×1 , then the matrix $\mathbf{A} = \mathbf{v}\mathbf{v}^{\mathrm{T}}$ has a rank =

ANS: - 1

Question Number: 4

Correct: 1 Wrong: -0.33

The eigenvalues of the matrix $\mathbf{A} = \begin{bmatrix} 1 & -1 & 5 \\ 0 & 5 & 6 \end{bmatrix}$ are

- (A) -1, 5, 6 (B) 1, $-5 \pm j6$ (C) 1, $5 \pm j6$ (D) 1, 5, 5

ANS: - C

2016

Q.28 Consider the matrix $\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{pmatrix}$ whose eigenvalues are 1,-1 and 3. Then Trace of $(A^3 - 3A^2)$ is ______

ANS: - (-6)

Data Science and Artificial Intelligence

2025

- Q. 13 The sum of the elements in each row of $A \in \mathbb{R}^{n \times n}$ is 1. If $B = A^3 2A^2 + A$, which one of the following statements is correct (for $x \in \mathbb{R}^n$)?
 - (A) The equation Bx = 0 has no solution
 - (B) The equation Bx = 0 has exactly two solutions
 - (C) The equation Bx = 0 has infinitely many solutions
 - (D) The equation Bx = 0 has a unique solution

ANS: - C

- Q. 25 Which of the following statements is/are correct?
 - (A) \mathbb{R}^n has a unique set of orthonormal basis vectors
 - (B) \mathbb{R}^n does not have a unique set of orthonormal basis vectors
 - (C) Linearly independent vectors in \mathbb{R}^n are orthonormal
 - (D) Orthonormal vectors \mathbb{R}^n are linearly independent

ANS: - B, D

- Q. 28 Let $A = I_n + xx^{\top}$, where I_n is the $n \times n$ identity matrix and $x \in \mathbb{R}^n$, $x^{\top}x = 1$. Which of the following options is/are correct?
 - (A) Rank of A is n
 - (B) A is invertible
 - (C) 0 is an eigenvalue of A
 - (D) A^{-1} has a negative eigenvalue

- Q. 37 Let $A \in \mathbb{R}^{n \times n}$ be such that $A^3 = A$. Which one of the following statements is ALWAYS correct?
 - (A) A is invertible
 - (B) Determinant of A is 0
 - (C) The sum of the diagonal elements of A is 1
 - (D) A and A^2 have the same rank

ANS: - D

- Q. 38 Let $\{x_1, x_2, \dots, x_n\}$ be a set of linearly independent vectors in \mathbb{R}^n . Let the (i, j)-th element of matrix $A \in \mathbb{R}^{n \times n}$ be given by $A_{ij} = x_i^{\mathsf{T}} x_j$, $1 \le i, j \le n$. Which one of the following statements is correct?
 - (A) A is invertible
 - (B) 0 is a singular value of A
 - (C) Determinant of A is 0
 - (D) $z^{\mathsf{T}}Az = 0$ for some non-zero $z \in \mathbb{R}^n$

ANS: - A

- Q. 50 Let x_1, x_2, x_3, x_4, x_5 be a system of orthonormal vectors in \mathbb{R}^{10} . Consider the matrix $A = x_1 x_1^\top + \ldots + x_5 x_5^\top$. Which of the following statements is/are correct?
 - (A) Singular values of A are also its eigenvalues
 - (B) Singular values of A are either 0 or 1
 - (C) Determinant of A is 1
 - (D) A is invertible

ANS: - A, B

- An $n \times n$ matrix A with real entries satisfies the property: $\|Ax\|^2 = \|x\|^2$, for all Q. 52 $x \in \mathbb{R}^n$, where $\|\cdot\|$ denotes the Euclidean norm. Which of the following statements is/are ALWAYS correct?
 - (A) A must be orthogonal
 - (B) A = I, where I denotes the identity matrix, is the only solution
 - (C) The eigenvalues of A are either +1 or -1
 - (D) A has full rank

ANS: - A, D

2024

Consider the matrix $\mathbf{M} = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$.

Which ONE of the following statements is TRUE?

- The eigenvalues of M are non-negative and real. (A)
- (B) The eigenvalues of M are complex conjugate pairs.
- (C) One eigenvalue of M is positive and real, and another eigenvalue of M is zero.
- One eigenvalue of M is non-negative and real, and another eigenvalue of M is (D) negative and real.

ANS: -

Consider the 3×3 matrix $\mathbf{M} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 3 \\ 4 & 3 & 6 \end{bmatrix}$. The determinant of $(\mathbf{M}^2 + 12\mathbf{M})$ is _____.

Q.47 Select all choices that are subspaces of \mathbb{R}^3 .

Note: \mathbb{R} denotes the set of real numbers.

(A)
$$\left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \colon \mathbf{x} = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \alpha, \beta \in \mathbb{R} \right\}$$

(B)
$$\left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \colon \mathbf{x} = \alpha^2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \beta^2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \alpha, \beta \in \mathbb{R} \right\}$$

(C)
$$\left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \colon 5x_1 + 2x_3 = 0, 4x_1 - 2x_2 + 3x_3 = 0 \right\}$$

(D)
$$\left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \colon 5x_1 + 2x_3 + 4 = 0 \right\}$$

Q.48	Which of the following statements is/are TRUE? Note: \mathbb{R} denotes the set of real numbers.
(A)	There exist $M \in \mathbb{R}^{3\times 3}$, $p \in \mathbb{R}^3$, and $q \in \mathbb{R}^3$ such that $Mx = p$ has a unique solution and $Mx = q$ has infinite solutions.
(B)	There exist $M \in \mathbb{R}^{3\times 3}$, $p \in \mathbb{R}^3$, and $q \in \mathbb{R}^3$ such that $Mx = p$ has no solutions and $Mx = q$ has infinite solutions.
(C)	There exist $M \in \mathbb{R}^{2\times 3}$, $p \in \mathbb{R}^2$, and $q \in \mathbb{R}^2$ such that $Mx = p$ has a unique solution and $Mx = q$ has infinite solutions.
(D)	There exist $M \in \mathbb{R}^{3 \times 2}$, $p \in \mathbb{R}^3$, and $q \in \mathbb{R}^3$ such that $Mx = p$ has a unique solution and $Mx = q$ has no solutions.

Q.61 Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$
, and let $\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5$ be the singular values of the matrix $\mathbf{M} = \mathbf{u}\mathbf{u}^T$ (where \mathbf{u}^T is the transpose of \mathbf{u}). The value of $\sum_{i=1}^5 \sigma_i$ is _____.