AULA 14 – ALGORITMOS GULOSOS

Prof. Daniel Kikuti

Universidade Estadual de Maringá

1 de outubro de 2014

Conteúdo

- Elementos de algoritmos gulosos.
- ▶ Um problema de escalonamento de tarefas.
- Definindo a escolha gulosa.
- Subestrutura ótima.
- Exercícios.

Elementos de algoritmos gulosos

Subestrutura ótima

Um subproblema exibe **subestrutura ótima** se uma solução ótima para um problema contém dentro dela soluções ótimas para subproblemas.

Escolha gulosa

Podemos construir uma solução ótima global fazendo escolhas ótimas locais (gulosas – sem considerar os resultados dos subproblemas).

O problema de escalonamento de tarefas

O problema

Dado um conjunto de n tarefas $S = \{1, 2, \dots, n\}$ que requerem o uso exclusivo de um recurso comum (processador, por exemplo). Cada tarefa i possui:

- comprimento t_i (tempo necessário para executá-la);
- **prioridade** p_i (ou peso).

Definimos o tempo de término c_i para a tarefa i como sendo a soma de todos os tempos de término das tarefas antecedentes a i, incluindo t_i .

Objetivo: Minimizar a soma ponderada dos tempos de término:

$$\min \sum_{i=1}^n p_i c_i.$$

Exemplo

Suponha que temos 3 tarefas com os seguintes comprimentos e pesos:

- $t_1 = 1$, $t_2 = 2$, $t_3 = 3$.
- $p_1 = 3, p_2 = 2, p_3 = 1.$

Pergunta 1

Se as tarefas são escalonadas na ordem $\{1,2,3\}$, quais são os tempos de término de c_1 , c_2 e c_3 ?

Pergunta 2

Qual o valor da soma ponderada?

Pergunta 3

De quantas maneiras distintas podemos escalonar *n* tarefas?

Exemplo

Suponha que temos 3 tarefas com os seguintes comprimentos e pesos:

- $t_1 = 1$, $t_2 = 2$, $t_3 = 3$.
- $p_1 = 3$, $p_2 = 2$, $p_3 = 1$.

Pergunta 1

Se as tarefas são escalonadas na ordem $\{1,2,3\}$, quais são os tempos de término de c_1 , c_2 e c_3 ? Resposta: 1, 3 e 6.

Pergunta 2

Qual o valor da soma ponderada?

Resposta: 3 * 1 + 2 * 3 + 1 * 6 = 15.

Pergunta 3

De quantas maneiras distintas podemos escalonar n tarefas? Resposta: n! maneiras.

Analisando a relação tempo vs. prioridade

$$\min \sum_{i=1}^n p_i c_i.$$

1. Se todas as tarefas possuem a mesma prioridade, qual a melhor maneira de escalonar as tarefas? Exemplo: $t_1 = 1$, $t_2 = 2$, $t_3 = 3$ e $p_i = 1$.

E se todas as tarefas possuem o mesmo comprimento, qual a melhor maneira de escalonar as tarefas?
Exemplo: p₁ = 3, p₂ = 2, p₃ = 1 e t_i = 2.

Analisando a relação tempo vs. prioridade

$$\min \sum_{i=1}^n p_i c_i.$$

1. Se todas as tarefas possuem a mesma prioridade, qual a melhor maneira de escalonar as tarefas? Exemplo: $t_1 = 1$, $t_2 = 2$, $t_3 = 3$ e $p_i = 1$. Menor tempo primeiro.

2. E se todas as tarefas possuem o mesmo comprimento, qual a melhor maneira de escalonar as tarefas? Exemplo: $p_1 = 3$, $p_2 = 2$, $p_3 = 1$ e $t_i = 2$. Maior prioridade primeiro.

Resolvendo conflito

Caso geral

E se $p_i > p_j$ e $t_i > t_j$? Qual tarefa deve ser escalonada primeiro?

Ideia

Atribuir uma pontuação para cada tarefa de modo que a tarefa com maior prioridade e menor comprimento receba uma pontuação maior.

Sugestões de funções de pontuação

Resolvendo conflito

Caso geral

E se $p_i > p_j$ e $t_i > t_j$? Qual tarefa deve ser escalonada primeiro?

Ideia

Atribuir uma pontuação para cada tarefa de modo que a tarefa com maior prioridade e menor comprimento receba uma pontuação maior.

Sugestões de funções de pontuação

- 1. Colocar as tarefas em ordem decrescente conforme a pontuação $p_i t_i$.
- 2. Colocar as tarefas em ordem decrescente conforme a pontuação p_i/t_i .
- 3. ???

Analisando funções de pontuação

Suponha $t_1 = 5$, $p_1 = 3$ e $t_2 = 2$, $p_2 = 1$.

A soma ponderada dos tempos de conclusão produzidos pelas funções de pontuação são:

Analisando funções de pontuação

Suponha $t_1 = 5$, $p_1 = 3$ e $t_2 = 2$, $p_2 = 1$.

A soma ponderada dos tempos de conclusão produzidos pelas funções de pontuação são:

- 1. Função $p_i t_i$
 - ▶ pontuação da tarefa 1: 3-5=-2.
 - ▶ pontuação da tarefa 2: 1-2=-1.

Portanto, executar tarefa 2 antes da tarefa 1. Custo total será 2*1+7*3=23.

Analisando funções de pontuação

Suponha $t_1 = 5$, $p_1 = 3$ e $t_2 = 2$, $p_2 = 1$.

A soma ponderada dos tempos de conclusão produzidos pelas funções de pontuação são:

- 1. Função $p_i t_i$
 - ▶ pontuação da tarefa 1: 3-5=-2.
 - ▶ pontuação da tarefa 2: 1-2=-1.

Portanto, executar tarefa 2 antes da tarefa 1. Custo total será 2*1+7*3=23.

- 2. Função p_i/t_i
 - pontuação da tarefa 1: 3/5 = 0.6.
 - ▶ pontuação da tarefa 2: 1/2 = 0.5.

Portanto, executar tarefa 1 antes da tarefa 2. Custo total será 5*3+7*1=22.

Escolha gulosa

Teorema

A escolha de tarefas ordenadas em ordem decrescente conforme a razão p_i/t_i está sempre correta.

Demonstração

- ▶ Seja δ o escalonamento guloso e δ^* um escalonamento ótimo.
- Assumiremos que todos p_i/t_i são distintos e renomearemos as tarefas de forma que:

$$p_1/t_1 > p_2/t_2 > \cdots > p_{n-1}/t_{n-1} > p_n/t_n$$
.

▶ Então o escalonamento guloso será: $\delta = \{1, 2, ..., n\}$.

Escolha gulosa

Demonstração - continuação

Suponha que $\delta \neq \delta^*$, então existem tarefas consecutivas i e j com i > j com posições invertidas. Se trocarmos a ordem de i e j em δ^* (mantendo as outras tarefas inalteradas), percebemos que:

- ▶ o tempo de conclusão de qualquer outra tarefa k permanece inalterado;
- ▶ o tempo de conclusão da tarefa i aumenta t_j unidades;
- ▶ o tempo de conclusão da tarefa j diminui t_i unidades;

Então o tempo de conclusão ponderado seria:

$$\sum_{k=1}^{i-1} p_k c_k + p_i(c_i + t_j) + p_j(c_j - t_i) + \sum_{k=j+1}^{n} p_k c_k.$$

Mas $i>j\Rightarrow \frac{p_i}{t_i}<\frac{p_j}{t_j}\Rightarrow p_it_j< p_jt_i$, ou seja, o benefício é maior que o custo e portanto é possível melhorar δ^* , o que contradiz a otimalidade de δ^* .

Concluindo

Subestrutura ótima

Se a tarefa com maior p_i/t_i for removida da solução ótima, então a solução restante para n-1 tarefas é ótima.

Exercícios

- Mostre que o problema possui subestrutura ótima.
- Escrever o algoritmo para este problema e analisar sua complexidade.