SOFA overview

https://github.com/lnis-uofu/SOFA

https://skywater-openfpga.readthedocs.io/en/latest/

Skywater Opensource FPGAs

- SOFA (Skywater Opensource FPGAs) are a series of open-source FPGA IPs using the open-source Skywater 130nm PDK and OpenFPGA framework.
- Open-source embedded FPGA IP library, from the architecture description to production ready layouts.

HD eFPGAs

The High Density (HD) FPGAs are embedded FPGAs built with the Skywater 130nm High Density Standard Cell libi

ra	ary (Sky130_fd_SC_HD).
	Resource/Capacity
	Look Un Tables 1

Resource/Capacity	SOFA HD	QLSOFA HD	SOFA CHD
Look-Up Tables ¹	1152	1152	1152
Flip-flops	2304	2304	2304
Soft Adders ²	N/A	1152	1152
Routing Channel Width ³	40	60	60
Max. Configuration Speed ⁴	50MHz	50MHz	50MHz
Max. Operating Speed ⁴	50MHz	50 MHz	50MHz
User I/O Pins ⁵	144	144	144
Max. I/O Speed ⁴	33MHz	33MHz	33MHz
Core Voltage	1.8V	1.8V	1.8V

Layout views

SOFA HD is the base design of the SOFA high-density eFPGA IPs

QLSOFA HD is the arithmeticenhanced design

SOFA CHD is the performanceoptimized design

Commands to be run by user on cloud

- We assume that OpenFPGA is already installed and its path is exported
- Now run the following to install SOFA and make sure it is working:
 - git clone https://github.com/lnis-uofu/SOFA.git
 - cd FPGA1212_QLSOFA_HD_PNR
 - make runOpenFPGA

RVMyth

Instr memory in mythcore_test.v

```
/*SV_plus*/
// The program in an instruction memory.
wire [31:0] instrs [0:10-1];
assign instrs[0] = {7'b0000000, 5'd0, 5'd0, 3'b000, 5'd10, 7'b0110011};
assign instrs[1] = {7'b0000000, 5'd0, 5'd10, 3'b000, 5'd14, 7'b0110011};
assign instrs[2] = {12'b1010, 5'd10, 3'b000, 5'd12, 7'b0010011};
assign instrs[3] = {7'b00000000, 5'd0, 5'd10, 3'b000, 5'd13, 7'b0110011};
assign instrs[4] = {7'b00000000, 5'd14, 5'd13, 3'b000, 5'd14, 7'b0110011};
assign instrs[5] = {12'b1, 5'd13, 3'b000, 5'd13, 7'b0010011};
assign instrs[6] = {1'b1, 6'b111111, 5'd12, 5'd13, 3'b100, 4'b1100, 1'b1, 7'b1100011};
assign instrs[7] = {7'b00000000, 5'd0, 5'd14, 3'b000, 5'd10, 7'b0110011};
assign instrs[8] = {7'b00000000, 5'd0, 5'd0, 3'b010, 5'b100000, 7'b01000011};
assign instrs[9] = {12'b100000, 5'd0, 3'b010, 5'd17, 7'b000000011};
```

RVMyth Simulation output: Sum of first 9 numbers after running through Vivado

Post implementation Area

Without ILA

Resource	Utilization	Available	Utilization %
LUT	816	20800	3.92
LUTRAM	1	9600	0.01
FF	1770	41600	4.25
10	10	106	9.43

With ILA

Resource	Utilization	Available	Utilization %	
LUT	1932	20800	9.29	
LUTRAM	95	9600	0.99	
FF	3578	41600	8.60	
BRAM	0.50	50	1.00	
10	10	106	9.43	

Post implementation: Timing and Power (Without ILA)

Design Timing Summary

Setup		Hold		
Worst Negative Slack (WNS):	2.472 ns	Worst Hold Slack (WHS):	0.060 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	4786	Total Number of Endpoints:	4786	
All user specified timing cons	traints are	met.		

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.094 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 25.5°C

Thermal Margin: 59.5°C (11.8 W)

Effective θ/A: 5.0°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Medium

