MCA/M.Sc. 11 Semester Practical Examination 2023-24 Computer Science, CS341P: Image Processing

Note: Answer any two of the following questions:

- 1. Take an image as input data and perform the following steps:
 - Resize your image (gray scale) into a square matrix (if no. of rows and columns are unequal)
 - 11. Divide the image into 4 blocks. Show each block into a subplot.
 - III. Apply Median, Average, Laplacian and Sobel filters on each block respectively.
 - Display all the processed blocks in a subplot.
- Take an image, divide it into 16*16 blocks, apply Discrete Cosine Transformation (DCT), quantize
 data and apply Huffman coding. Apply Huffman decoding and inverse DCT to obtain a reconstructed
 image. Calculate CR and PSNR.
- 3. Perform image sharpening on an image in frequency domain using
 - Butterworth High pass filter of order 2 and order 4 (Use different cut off frequency D0= 15, 30, 80)
 - 11. Gaussian High pass filter (same cut-off frequency)
- Obtain a sharpened image.

M.Sc. II/MCA II Semester Mid Term Examination, 2024 Department of Computer Science, BHU

Paper code: 341: Image Processing

Max. Marks: 20; Time allotted: 1:00 hr

Answer all questions

1. (haracteristics in an image are better solved using	[1*4=4]
	i. ii.	Image Negative Power-law Transformation	
	iii.	Averaging	
	iv.	None of the above	
(b)	What are	the two types of photoreceptor cells found in the retina?	
	i.	Rods and cones	
	ii.	Bipolar cells and ganglion cells	
	iii.	Cornea and lens	
	iv.	Sclera and choroid	
(c) outp	In binary out image	image processing, which logic operation is used to combine two binary image where a pixel is set to 1 if either of the corresponding pixels in the input image.	iges to produce ar ges is 1?
	i.	AND	
	ii.	OR	
	iii.	NOT	
	iv.	XOR	
(d)	A graysca	ale image with dimensions 1024 × 1024 pixels is quantized with a bit depth	of 5 bits per pixel
Cal	culate the	total size of the image file in kilobytes (KB), assuming no compression is a	oplied. How many
		levels can be represented in this image?	
2	Evolain ti	ne significance of image sampling and quantization with suitable example.	[4]
		atial resolution in the context of digital images. How does it differ from gray-	level resolution?
3.	Define sp	atial resolution in the context of digital images. Now does it differ them gray	[4]
			[4]
4.		ne following terms:	נייו
(i)	Conn	ectivity (ii) City-Block distance (iii) Chess Board distance.	
5.	(a) Discus	s the basic intensity transformation functions. Explain the effect of choosing γ<1	, $\gamma > 1$ and $\gamma = 1$ in
	power law	transformation.	[2+2=4]
	(b) Perform	m image negative on the 3-bit image segment $\begin{bmatrix} 423\\211\\135 \end{bmatrix}$.	