MATH355 2017-10-23

LAST WEEK/THIS WEEK

Before we begin: I highly recommend you read the section Three.Topic.Geometry of Linear Maps from Hefferon.

Fix two vector spaces V, W. We saw a while ago that a linear map $f: V \to W$ is uniquely determined by its value on a basis $f(\vec{b}_1), \dots, f(\vec{b}_n)$. Conversely, given a choice of vectors $\vec{w}_1, \dots, \vec{w}_m \in W$ there exists a unique linear map $f: V \to W$ such that $f(\vec{b}_i) = \vec{w}_i$.

OK, this was great. But what was special about this? Well, the key point is that we fixed a basis for V.

Question: what happens if we also fix a basis on *W*?

Answer: matrices.

I. MATRICES

Let us fix for now the following data: V, W vector spaces, $\vec{b}_1, \ldots, \vec{b}_n$ an (ordered) basis for $V, \vec{d}_1, \ldots, \vec{d}_m$ an (ordered) basis for W. We call $\mathbb B$ the basis $(\vec{b}_1, \ldots, \vec{b}_n)$ and $\mathbb D$ the basis $(\vec{d}_1, \ldots, \vec{d}_m)$.

Theorem 1. Any linear map $f: V \to W$ may be represented as a matrix A with respect to the bases \mathbb{B}, \mathbb{D} . We write

$$A = \operatorname{Rep}_{\mathbb{B},\mathbb{D}} f$$
.

Conversely, given an $m \times n$ matrix A, there *exists a unique* linear map $f: V \to W$ such that $\operatorname{Rep}_{\mathbb{R} \, \mathbb{D}} f = A$.

In other words the theorem is saying that the *choice* of the bases \mathbb{B}, \mathbb{D} gives a bijection between the set of linear maps Hom(V, W) and the set of matices $M_{m \times n}$.

Let's recall how this works. Let $f: V \to W$ be linear. The vector $f(\vec{b}_j) \in W$ is a linear combination of the \vec{d}_i

$$f(\vec{b}_j) = \sum \alpha_{ij} \vec{d}_i$$

We record this data in the $m \times n$ matrix

$$A := \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & & & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

Why is this helpful? Because now we have an algorithm to compute what a matrix does to a vector. Indeed, say $\vec{v} \in V$. Then \vec{v} can be expressed in terms of \mathbb{B} : $\vec{v} = \sum_j x_j \vec{b}_j$. Then $f(\vec{v}) = \sum_j x_j \vec{b}_j$.

I

Date: John Calabrese, October 23, 2017.

^IDifferent bases will give rise to different bijections.

 $\sum_{j} x_{j} f(\vec{b}_{j})$ by linearity. But we know what $f(\vec{b}_{j})$ is. Thus,

(i)
$$f(\vec{v}) = \sum_{ij} \alpha_{ij} x_j \vec{d}_i.$$

We can go further and make this even nicer. Since we are using bases everywhere, we should really be thinking of the coordinates of \vec{v} with respect to \mathbb{B} .

(2)
$$\operatorname{Rep}_{\mathbb{B}} \vec{v} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

So the question we ask is: what are the coordinates of the vector $f(\vec{v})$ with respect to the basis \mathbb{D} ? We already know the answer, it's given by (1)!

$$\operatorname{Rep}_{\mathbb{D}} f(\vec{v}) = \begin{pmatrix} \sum_{j} \alpha_{1j} x_{j} \\ \sum_{j} \alpha_{2j} x_{j} \\ \vdots \\ \sum_{j} \alpha_{mj} x_{j} \end{pmatrix}$$

Notice how $Rep_{\mathbb{B}}\vec{v}$ has n components, while $Rep_{\mathbb{D}}f(\vec{v})$ has m components. To say it in a different way: $Rep_{\mathbb{B}}f(\vec{v})$ is obtained by applying the matrix $Rep_{\mathbb{B},\mathbb{D}}f$ to the column vector $Rep_{\mathbb{B}}v$.

(3)
$$\operatorname{Rep}_{\mathbb{D}} f(\vec{v}) = \left(\operatorname{Rep}_{\mathbb{B}, \mathbb{D}} f \right) \operatorname{Rep}_{\mathbb{B}} \vec{v}$$

So, if $A = \operatorname{Rep}_{\mathbb{B},\mathbb{D}}$ and $\operatorname{Rep}_{\mathbb{B}} \vec{v} = (x_1, \dots, x_n)$ we write²

$$\operatorname{Rep}_{\mathbb{D}} f(\vec{v}) = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Let's see an example. Let $V = \mathbb{R}^3$ and $W = \mathbb{R}^3$ and let $\mathbb{B} = \mathbb{D}$ be the standard basis.³ Since we fixed a basis for V and a basis for W, matrices now give rise to linear maps. For example, consider

$$A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

What is the corresponding linear map $f_A: \mathbb{R}^3 \to \mathbb{R}^3$? Well, we know that

$$f_A\begin{pmatrix} x\\y\\z \end{pmatrix} = A\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1\\0 & 1 & 0\\1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0x + 0y - z\\0x + y + 0z\\x + 0y + 0z \end{pmatrix} = \begin{pmatrix} -z\\y\\x \end{pmatrix}.$$

Notice that the y-axis is fixed under f_A : i.e. $f_A \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}$. You should convince yourselves that

f_A is a rotation of ninety degrees about the y-axis (clockwise or counterclockwise, depending on how you look at it).

²Consult section Three.IV.3 for how this works mechanically.

 $^{^{3}}$ It is standard to use the standard basis for \mathbb{R}^{n} . *However*, this may not always be the case.

3

2. Rank

Fix now a linear map $f: V \to W$. Writing f as a matrix depends on the choice of bases for V and W. Let's see why. Take for example $f: \mathbb{R}^2 \to \mathbb{R}^2$ which sends $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$. In the standard bases, this is represented by

Rep f =
$$\begin{pmatrix} -1 & 0 \\ -1 & 3 \end{pmatrix}$$

Take now $\mathbb{B} = (\vec{e}_1, \vec{e}_2)$ and $\mathbb{D} = (\begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix})$. Then

$$\operatorname{Rep}_{\mathbb{B},\mathbb{D}} f = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

So, if f is a linear map and $A = (\alpha_{ij})_{ij}$ is a matrix representing it, So the actual numbers α_{ij} are not *intrinsic* to f.

Question: what can we read off a matrix for f, independently of the choice of bases?

Answer: the rank.

Theorem 2. Let $f: V \to W$ be linear. Let $\mathbb{B}, \mathbb{B}', \mathbb{D}, \mathbb{D}'$ be bases. Then

$$\operatorname{rk}\left(\operatorname{Rep}_{\mathbb{B},\mathbb{D}}f\right) = \dim\operatorname{Im} f = \operatorname{rk}\left(\operatorname{Rep}_{\mathbb{B}',\mathbb{D}'}f\right)$$

Corollary 3. If $A \in M_{m \times n}$, the *nullity* of A is n - rk A. The nullity is also independent of the choice of bases.

OK, suppose $\operatorname{Rep}_{\mathbb{B},\mathbb{D}} = A$. Recall that $\operatorname{rk} A$ was defined as the dimension of the column space of A. But what are the columns of A? The j-th column is nothing but $\operatorname{Rep}_{\mathbb{D}} f(\vec{b}_j)$ where \vec{b}_j is the j-th basis vector in \mathbb{B} . Therefore, $\operatorname{rk} A = \dim \operatorname{Im} f$, which does not depend on the bases \mathbb{B}, \mathbb{D} .

Similarly, the nullity of A is $n - rk A = \dim \ker f$, by the sacred formula: $\dim V = \dim f - \dim \ker f$. Boom goes the dynamite.

3. Composition

Here's another natural question. Let $f: V \to W$ and let $g: W \to Z$ be two linear maps. We know the composition $g \circ f: V \to Z$ is also linear. Pick bases $\mathbb B$ for $V, \mathbb D$ for W and $\mathbb E$ for Z. What's the relationship between $\operatorname{Rep}_{\mathbb B,\mathbb D} f$, $\operatorname{Rep}_{\mathbb D,\mathbb E} g$ and $\operatorname{Rep}_{\mathbb B,\mathbb E} g \circ f$?

Answer: composition is given by matrix multiplication.

Let us spell things out. Let $\mathbb{B}=(\vec{b}_1,\ldots,\vec{b}_n), \mathbb{D}=(\vec{d}_1,\ldots,\vec{d}_m), \mathbb{E}=(\vec{e}_1,\ldots,\vec{e}_l).$ We write $f(\vec{b}_j)=\sum_i\alpha_{ij}\vec{d}_i,$ also $g(\vec{d}_i)=\sum_k\beta_{ki}\vec{e}_k$ and finally $g\circ f(\vec{b}_j)=\sum_k\gamma_{kj}\vec{e}_k.$ We have $A=(\alpha_{ij})=\text{Rep}_{\mathbb{B},\mathbb{D}}$ f, $B=(\beta_{ki})=\text{Rep}_{\mathbb{D},\mathbb{E}}$ g, $C=(\gamma_{kj})=\text{Rep}_{\mathbb{B},\mathbb{E}}$ g \circ f. On the other hand,

$$g \circ f(\vec{b}_j) = g(\sum_i \alpha_{ij} \vec{d}_i) = \sum_i \alpha_{ij} g(\vec{d}_i) = \sum_i \alpha_{ij} \sum_k \beta_{ki} \vec{e}_k = \sum_k \left(\alpha_{ij} \beta_{ki}\right) \vec{e}_k$$

Hence,

$$\gamma_{kj} = \sum_{i} \alpha_{ij} \beta_{ki}$$

And this is precisely how we define matrix multiplication. If $A = \operatorname{Rep}_{\mathbb{B},\mathbb{D}} f$, $B = \operatorname{Rep}_{\mathbb{D},\mathbb{E}} g$, $C = \operatorname{Rep}_{\mathbb{B},\mathbb{E}} g \circ f$ then

$$C = \operatorname{Rep}_{\mathbb{B},\mathbb{E}} g \circ f = BA = \operatorname{Rep}_{\mathbb{D},\mathbb{E}} g \operatorname{Rep}_{\mathbb{B},\mathbb{D}} f$$
.

In other words, the kj entry of BA is obtained by running through the j-th row of A and the k-th column of B.

However, this discussion with indices is incredibly unhelpful. The best way to understand this is to work through a bunch of examples. See Chapter Three.IV.3.

4. The vector space of matrices

Fix once again vector spaces V, W. Recall that by $\operatorname{Hom}(V, W)$ we mean the set of all linear maps from V to W. We will now show that $\operatorname{Hom}(V, W)$ is in fact a vector space. Fixing bases \mathbb{B}, \mathbb{D} will then give a vector space isomorphism between $\operatorname{Hom}(V, W)$ and the vector space of matrices $M_{m \times n}$.

Indeed, define $\vec{0}: V \to W$ to be the map $\vec{0}\vec{v} = \vec{0}$ for all $\vec{v} \in V$. The zero map.

If f, $g \in \text{Hom}(V, W)$, define $f + g: V \to W$ by

$$f + g(\vec{v}) = f(\vec{v}) + g(\vec{v}).$$

Show that f + g is linear.

If $f \in Hom(V, W)$ and $\alpha \in \mathbf{R}$ define αf by

$$(\alpha f)(\vec{v}) = \alpha f(\vec{v}).$$

Show that αf is linear. Show that indeed the two operations just defined on Hom(V, W) do make up a vector space.

So, how does this translate in turn of matrices? Recall that $M_{m\times n}$ is also a vector space. How? We have the zero matrix $0 \in M_{m\times n}$, the matrix whose all entries are zero.

If A, B \in M_{m×n} are matrices, we have A + B the matrix given by adding entry by entry.

If $A \in M_{m \times n}$ and $\alpha \in \mathbf{R}$, then αA is the matrix obtained by multiplying each entry of A by α .

Now, fix bases \mathbb{B} , \mathbb{D} for V and W. Then $f \in Hom(V, W)$ turns into a matrix $Rep_{\mathbb{B}, \mathbb{D}} f$.

Proposition 4. We have the following:

$$\begin{split} \operatorname{Rep}_{\mathbb{B},\mathbb{D}}\vec{0} &= 0 \\ \operatorname{Rep}_{\mathbb{B},\mathbb{D}} f + g &= \operatorname{Rep}_{\mathbb{B},\mathbb{D}} f + \operatorname{Rep}_{\mathbb{B},\mathbb{D}} g \\ \operatorname{Rep}_{\mathbb{B},\mathbb{D}} \alpha f &= \alpha \operatorname{Rep}_{\mathbb{B},\mathbb{D}} f. \end{split}$$