Inner Product Spaces

Weighted Euclidean Inner Product:

Although the Euclidean inner product is the most important inner product on \mathbb{R}^n , there are various applications in which it is desirable to modify it by weighting each term differently. More precisely, if

$$w_1, w_2, \ldots, w_n$$

are *positive* real numbers, called **weights**, and if $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then it can be shown that the formula

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$$
 (2)

defines an inner product on \mathbb{R}^n that we call the weighted Euclidean inner product with weights w_1, w_2, \ldots, w_n .

EXAMPLE 1 | Weighted Euclidean Inner Product

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2 . Verify that the weighted Euclidean inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2 \tag{3}$$

satisfies the four inner product axioms.

Solution

Axiom 1: Interchanging **u** and **v** in Formula (3) does not change the sum on the right side, so $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.

Axiom 2: If $\mathbf{w} = (w_1, w_2)$, then

$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 3(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$$

$$= 3(u_1w_1 + v_1w_1) + 2(u_2w_2 + v_2w_2)$$

$$= (3u_1w_1 + 2u_2w_2) + (3v_1w_1 + 2v_2w_2)$$

$$= \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

Axiom 3:
$$\langle k\mathbf{u}, \mathbf{v} \rangle = 3(ku_1)v_1 + 2(ku_2)v_2$$

= $k(3u_1v_1 + 2u_2v_2)$
= $k\langle \mathbf{u}, \mathbf{v} \rangle$

Axiom 4: Observe that $\langle \mathbf{v}, \mathbf{v} \rangle = 3(v_1v_1) + 2(v_2v_2) = 3v_1^2 + 2v_2^2 \ge 0$ with equality if and only if $v_1 = v_2 = 0$, that is, if and only if $\mathbf{v} = \mathbf{0}$.

Question:

Let R² have the weighted Euclidean inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 3u_2v_2$$

and let $\mathbf{u} = (1, 1)$, $\mathbf{v} = (3, 2)$, $\mathbf{w} = (0, -1)$, and k = 3. Compute the stated quantities.

- a. (u, v)
- b. $\langle k\mathbf{v}, \mathbf{w} \rangle$ c. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle$
- d. |v|
- e. d(u, v)
- $\mathbf{f} \cdot \|\mathbf{u} k\mathbf{v}\|$

Solution:

(a)
$$\langle \mathbf{u}, \mathbf{v} \rangle = 2(1)(3) + 3(1)(2) = 12$$

(b)
$$\langle k\mathbf{v}, \mathbf{w} \rangle = 2((3)(3))(0) + 3((3)(2))(-1) = -18$$

(c)
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 2(1+3)(0) + 3(1+2)(-1) = -9$$

(d)
$$\|\mathbf{v}\| = \langle \mathbf{v}, \mathbf{v} \rangle^{1/2} = [2(3)(3) + 3(2)(2)]^{1/2} = \sqrt{30}$$

(e)
$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \langle (-2, -1), (-2, -1) \rangle^{1/2} = [2(-2)(-2) + 3(-1)(-1)]^{1/2} = \sqrt{11}$$

(f)
$$\|\mathbf{u} - k\mathbf{v}\| = \langle (-8, -5), (-8, -5) \rangle^{1/2} = [2(-8)(-8) + 3(-5)(-5)]^{1/2} = \sqrt{203}$$

Question:

In Exercises 3-4, compute the quantities in parts (a)-(f) of Exercise 1 using the inner product on \mathbb{R}^2 generated by A.

3.
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

Solution:

(a)
$$\langle \mathbf{u}, \mathbf{v} \rangle = \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 5 \end{bmatrix} = 34$$

(b)
$$\langle k\mathbf{v}, \mathbf{w} \rangle = \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 24 \\ 15 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} = -39$$

(c)
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 11 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} = -18$$

$$(\mathbf{d}) \qquad \|\mathbf{v}\| = \langle \mathbf{v}, \mathbf{v} \rangle^{1/2} = \left[\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{bmatrix} 3 \\ 2 \end{pmatrix} \right] \cdot \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right]^{1/2} = \begin{pmatrix} 8 \\ 5 \end{pmatrix} \cdot \begin{bmatrix} 8 \\ 5 \end{bmatrix}^{1/2} = \sqrt{89}$$

(e)
$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \left[\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{bmatrix} -2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ -1 \end{pmatrix} \right]^{1/2} = \begin{pmatrix} -5 \\ -3 \end{pmatrix} \cdot \begin{bmatrix} -5 \\ -3 \end{bmatrix}^{1/2} = \sqrt{34}$$

Question:

In Exercises 9-10, compute the standard inner product on M_{22} of the given matrices.

9.
$$U = \begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}$$
, $V = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$

Solution:

If
$$\mathbf{u} = U$$
 and $\mathbf{v} = V$ then $\langle \mathbf{u}, \mathbf{v} \rangle = \text{tr} \left(U^T V \right) = \text{tr} \left(\begin{bmatrix} 1 & 13 \\ 10 & 2 \end{bmatrix} \right) = 3$.

Question:

In Exercises 11–12, find the standard inner product on P_2 of the given polynomials.

11.
$$\mathbf{p} = -2 + x + 3x^2$$
, $\mathbf{q} = 4 - 7x^2$

Solution:

$$\langle \mathbf{p}, \mathbf{q} \rangle = (-2)(4) + (1)(0) + (3)(-7) = -29$$

Question:

In Exercises 15–16, a sequence of sample points is given. Use the evaluation inner product on P_3 at those sample points to find $\langle \mathbf{p}, \mathbf{q} \rangle$ for the polynomials

$$p = x + x^3$$
 and $q = 1 + x^2$

15.
$$x_0 = -2$$
, $x_1 = -1$, $x_2 = 0$, $x_3 = 1$

Solution:

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(-2)q(-2) + p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

$$=(-10)(5)+(-2)(2)+(0)(1)+(2)(2)=-50$$

Question:

In Exercises 5–6, find a matrix that generates the stated weighted inner product on \mathbb{R}^2 .

5.
$$\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 3u_2v_2$$
 6. $\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{2}u_1v_1 + 5u_2v_2$

Solution:

$$5. \quad \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{3} \end{bmatrix}$$

$$6. \qquad \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & \sqrt{5} \end{bmatrix}$$