Ejemplo de que el algoritmo de Ford y Fulkerson puede no terminar nunca.

Sea N el siguiente network:

vertices: $s, x_1, x_2, x_3, y_1, y_2y_3, t$

lados:
$$\overrightarrow{st}$$
, $\overrightarrow{sx_i}$, $\overrightarrow{x_iy_i}$, $\overrightarrow{y_it}$, $i = 1, 2, 3$,

Todos los lados entre los x_i :

$$\overrightarrow{x_1x_2}$$
, $\overrightarrow{x_2x_3}$, $\overrightarrow{x_3x_1}$, etc

Todos los lados entre los y_i :

$$\overrightarrow{y_1y_2}, \overrightarrow{y_2y_3}, \overrightarrow{y_3y_1}, \text{ etc}$$

(solo mostramos los lados x_1x_2 , x_2x_3 ,

y similar para y, pero imaginen a todos)

Las capacidades son todas 3, excepto los lados $x_i y_i$, con capacidades $1, r, r^2$, respectivamente, donde r es la raiz positiva de la ecuación $r^2 = 1 - r$ (es decir, $r = \frac{-1 + \sqrt{5}}{2} \simeq 0,618...$

- (1) De la ecuación $r^2 = 1 r$ se deduce facilmente que $r^{j+2} = r^j r^{j+1}$ para todo j.
- (2) Ademas, como 1 > r, tenemos que $1 > r > r^2 > ... > 0$
- (3) Corramos F-F con los siguientes caminos:
 - (a) En la primera iteración, hacemos $sx_1y_1t:1$. En los tres lados x_iy_i las capacidades residuales quedan $0, r, r^2$. (la capacidad residual es la diferencia entre la capacidad real y el flujo mandado por el lado)
 - (b) En la segunda iteración de F-F hacemos $sx_3y_3y_1x_1x_2y_2t:r^2$, dejando capacidades residuales de los lados $x_i y_i$ iguales a $r^2, r^3, 0$. (la capacidad residual del lado $x_2 y_2$ es igual a $r - r^2 = r^3$ por (1). El camino no tiene problemas, porque por (2), r^2 es la menor capacidad de entre todas las encontradas)
 - (c) En general, supongamos que las capacidades residuales de los lados $x_i y_i$ son $0, r^j, r^{j+1}$ (en algun orden), entonces se puede mandar r^{j+1} unidades de flujo, comenzando en s, llendo hacia el x_i tal que x_iy_i tiene capacidad residual r^{j+1} , llendo hacia el y_k tal que el $x_k y_k$ este saturado, devolviendo flujo por el, y luego llegando a t por el lado que queda. Luego de hacer esto las capacidades residuales son:
 - (i) En el lado que tenia 0, queda r^{j+1} , porque devolvimos ese flujo.
 - (ii) En el lado que tenia r^{j+1} , queda 0.
 - (iii) En el lado que tenia r^j , queda $r^j r^{j+1} = r^{j+2}$. (por (1))

Por lo tanto, las capacidades residuales son $0, r^{j+1}, r^{j+2}$ (en algun orden), y entonces es claro que podemos seguir esa secuencia de pasos infinitamente.

- (4) Mas aun, los valores parciales del flujo NO convergen al valor del flujo maximal:
 - (a) La sucesion de valores parciales del flujo converge a 2:

1

- (i) Al ser r < 1, la serie $\sum_{j=0}^{\infty} r^j$ es convergente y su valor es $\frac{1}{1-r}$. (ii) Pero $(r+2)(1-r) = r+2-r^2-2r = -r^2-r+1+1=0+1=1$, por lo tanto $\frac{1}{1-r} = r+2$.
- (iii) Usando (i) y (ii), obtenemos que la sucesion de valores parciales del flujo converge a $1+r^2+r^3+\ldots=\sum_{j=0}^\infty r^j-r=r+2-r=2$
- (b) Sin embargo, el valor del flujo maximal es 5, pues:
 - (i) El corte $S = \{s, x_1, x_2, x_3\}$ tiene capacidad igual a:

$$c(\overrightarrow{st}) + c(\overrightarrow{x_1y_1}) + c(\overrightarrow{x_2y_2}) + c(\overrightarrow{x_3y_3}) = 3 + 1 + r + r^2 = 3 + 1 + 1 = 5$$
 (la penultima igualdad pues $r + r^2 = 1$).

- (ii) Cualquier otro corte tiene capacidad al menos 6, pues:
 - (A) Si alguno de los x_i no esta, la capacidad es al menos $c(\overrightarrow{st}) + c(\overrightarrow{sx_i}) = 3 + 3 = 6$
 - (B) Si estan los x_i pero hay algun y_j , la capacidad es al menos $c(\overrightarrow{st}) + c(\overrightarrow{y_jt}) = 3 + 3 = 6$.
- (iii) Concluimos que S es corte minimal, y por el MaxFlowMinCut theorem, el flujo maximal tiene valor 5.
- (c) (a) y(b) prueban nuestra afirmación.