

TECNIFICHA SEDIMA: TF-106 INDICADOR DE PRESIÓN

1. OBJETO.

Consolidar de manera práctica, un resumen general de las especificaciones técnicas, aspectos claves y características más relevantes de los equipos y elementos utilizados en los proyectos de infraestructura de gas natural.

2. DOCUMENTOS DE REFERENCIA.

- Brochure, data sheet, ficha técnica, y/o manuales del fabricante.
- Manual GPSA / Recomendaciones ASME / AGA / API u otro aplicable.
- Buenas prácticas de ingeniería adoptadas en el sector Oil&Gas.
- Criterios y recomendaciones internas SEDIMA CORP.

3. DATOS DEL EQUIPO / ELEMENTO / COMPONENTE.

Nombre: Indicador de Presión.

VISTA 400 500 600 300 700 800 100 Fizsa Process Gauge 1000 316 85 shot. 1878 316 85 shot. 1878 316 85 shot. 1878 316 85 shot. 1878

CARACTERÍSTICAS

Tipo: Manómetro Bourdon Tamaño Dial: de 4-1/2" Precisión: 0.5% del Span

Grado ASME: 2A

Escala: Dual Psig / Bar

Carcaza: Fenólica

Conexión: ½" MNPT

Posición de Toma: Por Debajo Opcional: Relleno de glicerina.

DESCRIPCIÓN FUNCIONAL.

Un indicador de presión o manómetro es un instrumento que sirve para medir la presión de un fluido en un sistema cerrado y resulta esencial para:

Medir la presión: Permite conocer la fuerza por unidad de área ejercida por un fluido. Controlar sistemas: Ayuda a mantener la presión dentro de los límites deseados en diversos procesos.

Detectar problemas: Permite identificar fugas o aumentos de presión que puedan indicar un mal funcionamiento del sistema.

Un manómetro se rellena con glicerina para amortiguar las vibraciones y los picos de presión, lo que aumenta la vida útil del dispositivo y mejora la legibilidad de la medición. La glicerina actúa como un amortiguador, protegiendo los componentes internos del manómetro y evitando que la aguja vibre excesivamente, lo que podría dificultar la lectura.

Amortiguación de vibraciones: La glicerina ayuda a absorber las vibraciones y los golpes que pueden afectar al manómetro, especialmente en entornos industriales con maquinaria vibratoria o procesos con pulsaciones de presión.

SEDIMA CORP NIT. 901.193.540.-3 Tel. +57 3507268200 e-mail: info@sedima.com.co

Protección del mecanismo: Al amortiguar las vibraciones, la glicerina protege los componentes internos del manómetro, como el tubo de Bourdon y el mecanismo de la aguja, de daños y desgaste prematuro.

Mejora la legibilidad: La glicerina estabiliza la aguja del manómetro, evitando que vibre excesivamente y haciendo que la lectura de la presión sea más fácil y precisa, incluso en condiciones de vibración.

Prevención del empañamiento: En aplicaciones con bajas temperaturas, la glicerina puede evitar que se forme condensación o hielo en el interior del manómetro, lo que podría dificultar la lectura.

Mayor vida útil: Al proteger el mecanismo del manómetro de vibraciones y golpes, la glicerina contribuye a prolongar la vida útil del dispositivo.

TIPO DE TOMAS DE CONEXIÓN.

=== FIN DEL DOCUMENTO ===

