PMATH 347: Homework #1

Due: Wednesday, May 14th at 11:59 on Crowdmark.

- 1. Let $\operatorname{Fun}(X,X)$ be the set of functions from $X\to X,$ and let \circ denote composition.
 - (a) Show that \circ is associative and that the identity function Id_X is an identity for \circ .
 - (b) Show that f is left invertible if and only if f is injective, and that f is right invertible if and only if f is surjective.
 - (c) Show that if X is infinite, then there are elements of $\operatorname{Fun}(X,X)$ which are left invertible but not invertible, and elements which are right invertible but not invertible.
 - (d) Show that if X is infinite, then left (resp. right) inverses in $\operatorname{Fun}(X,X)$ are not necessarily unique.
- 2. (a) Let M be a set, and let \boxtimes be an associative binary operation on M with identity e. Let

$$G = \{g \in M : g \text{ is invertible with respect to } \boxtimes \}.$$

Let $\widetilde{\boxtimes} = \boxtimes|_{G \times G}$ be the restriction of \boxtimes to $G \times G$. Show that $(G, \widetilde{\boxtimes})$ is a group.

(Hint: don't forget to show that $\tilde{\boxtimes}$ is a binary operation on G.)

- (b) Conclude that the set S_X from class is a group for all sets X.
- 3. Let o denote the binary operation

$$M_n\mathbb{C} \times M_n\mathbb{C} \to M_n\mathbb{C} : (A, B) \mapsto \frac{(AB + BA)}{2},$$

where $M_n\mathbb{C}$ is the vector space of $n \times n$ matrices over \mathbb{C} .

- (a) Show that \circ is commutative, and has an identity.
- (b) Show that for every $n \geq 2$, \circ is not associative.
- 4. Show that if G is a group, and $g^m = e$ for $g \in G$ and $m \ge 1$, then |g| divides m.
- 5. Find the order of all elements of S_5 .

(Make sure to completely justify your answer for this and the next question.)

6. Find the order of all elements of D_8 .