Automatized Segmentation of Cracks in Solar Cells

1st Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address 2nd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address 3rd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

4th Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address 5th Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address 6th Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

Abstract—
Index Terms—Crack detection,

I. Introduction

- Some basics and marketing
- State-of-the-art methods
- Many algorithms have been proposed for crack detection in Si-PV, but no standard or reference algorithm has been established so far
- The computer science standard to publish the code (use for comparison) is often not followed
- Aim of this work: establish a reference algorithm for scientific community which may be used as benchmark

II. MATERIALS & METHODS

• Samples

EL

Polycrystalline because more difficult for automatized segmentation

Number of images

Preprocessing

Fourier Filtering ROI of the solar cell Noise-reduction filters

A. Crack Detection

- BP description (as one of the computer vision techniques used in industry)
- Vesselness
- Adapted Vesselness

III. RESULTS AND DISCUSSION

- · detection of ROI
- labeling in order to obtain performance result
- BP kernel size-threshold VS performance results
- Vesselness at different scales & threshold
- Adapted Vesselness results at various degree of asymmetries
- Final results of AV with a denoising filter

IV. ConclusionV. References