RELATIONAL ALGEBRA

CS121: Introduction to Relational Database Systems Fall 2014 – Lecture 2

Administrivia

- □ First assignment will be available today
 - Due next Thursday, October 9, 2:00 AM
- We have TAs:
 - Solomon Chang
 - Daniel Kong
 - Ryan Langman
 - Eric Pelz
 - Daniel Wang
- See Moodle for contact info and office hours
 - Can send questions to cs121tas@caltech.edu (Donnie + TAs)

Query Languages

- A <u>query language</u> specifies how to access the data in the database
- Different kinds of query languages:
 - Declarative languages specify what data to retrieve, but not how to retrieve it
 - Procedural languages specify what to retrieve, as well as the process for retrieving it
- Query languages often include updating and deleting data as well
- Also called <u>data manipulation language</u> (DML)

The Relational Algebra

- A procedural query language
- Comprised of relational algebra operations
- Relational operations:
 - Take one or two relations as input
 - Produce a relation as output
- Relational operations can be composed together
 - Each operation produces a relation
 - A query is simply a relational algebra expression
- Six "fundamental" relational operations
- Other useful operations can be composed from these fundamental operations

"Why is this useful?"

- SQL is only loosely based on relational algebra
- SQL is much more on the "declarative" end of the spectrum
- Many relational database implementations use relational algebra operations as basis for representing execution plans
 - Simple, clean, effective abstraction for representing how results will be generated
 - Relatively easy to manipulate for query optimization

Fundamental Relational Algebra Operations

Six fundamental operations:

```
σ select operation
```

 Π project operation

U set-union operation

set-difference operation

× Cartesian product operation

 ρ rename operation

- Each operation takes one or two relations as input
- Produces another relation as output
- Important details:
 - What tuples are included in the result relation?
 - Any constraints on input schemas? What is schema of result?

Select Operation

- □ Written as: $\sigma_{P}(r)$
- P is the predicate for selection
 - \square P can refer to attributes in r (but no other relation!), as well as literal values
 - \square Can use comparison operators: =, \neq , \leq , \geq , \geq
 - □ Can combine multiple predicates using:∧ (and), ∨ (or), ¬ (not)
- \Box r is the input relation
- Result relation contains all tuples in r for which P is true
- Result schema is identical to schema for r

Select Examples

Using the account relation:

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

"Retrieve all tuples for accounts in the Los Angeles branch."

"Retrieve all tuples for accounts in the Los Angeles branch, with a balance under \$300."

acct_id	branch_name	balance
A-318	Los Angeles	550
A-322	Los Angeles	275

acct_id	branch_name	balance
A-322	Los Angeles	275

Project Operation

- \square Written as: $\Pi_{a,b,...}(r)$
- \square Result relation contains only specified attributes of r
 - Specified attributes must actually be in schema of r
 - Result's schema only contains the specified attributes
 - Domains are same as source attributes' domains
- Important note:
 - Result relation may have fewer rows than input relation!
 - Why?
 - Relations are sets of tuples, not multisets

Project Example

Using the account relation:

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

"Retrieve all branch names that have at least one account."

 $\Pi_{branch_name}(account)$

branch_name
New York
Seattle
Los Angeles

- Result only has three tuples, even though input has five
- Result schema is just (branch_name)

Composing Operations

- Input can also be an expression that evaluates to a relation, instead of just a relation
- \square $\Pi_{\text{acct id}}(\sigma_{\text{balance} \geq 300}(\text{account}))$
 - Selects the account IDs of all accounts with a balance of \$300 or more
 - Input relation's schema is:
 Account_schema = (acct_id, branch_name, balance)
 - □ Final result relation's schema?
 - Just one attribute: (acct_id)
- Distinguish between <u>base</u> and <u>derived</u> relations
 - account is a base relation
 - \square $\sigma_{balance>300}$ (account) is a derived relation

Set-Union Operation

- \square Written as: $r \cup s$
- \square Result contains all tuples from r and s
 - \blacksquare Each tuple is unique, even if it's in both r and s
- Constraints on schemas for r and s?
- \Box r and s must have <u>compatible</u> schemas:
 - r and s must have same arity
 - (same number of attributes)
 - For each attribute i in r and s, r[i] must have the same domain as s[i]
 - (Our examples also generally have same attribute names, but not required! Arity and domains are what matter.)

Set-Union Example

■ More complicated schema:

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

cust_name	acct_id	
Johnson	A-318	
Smith	A-322	
Reynolds	A-319	
Lewis	A-307	
Reynolds	A-301	

depositor

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

loan borrower

Set-Union Example (2)

 Find names of all customers that have either a bank account or a loan at the bank

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

cust_name	acct_id	
Johnson	A-318	
Smith	A-322	
Reynolds	A-319	
Lewis	A-307	
Reynolds	A-301	

depositor

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

loan borrower

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

Set-Union Example (3)

- Find names of all customers that have either a bank account or a loan at the bank
 - Easy to find the customers with an account:

 $\Pi_{\text{cust_name}}(\text{depositor})$

Also easy to find customers with a loan:

 $\Pi_{\text{cust_name}}(\text{borrower})$

Johnson
Smith
Reynolds
Lewis

 $\Pi_{\textit{cust_name}}(\textit{depositor})$

Anderson
Jackson
Lewis
Smith

 $\Pi_{cust\ name}(borrower)$

Result is set-union of these expressions:

 $\Pi_{\text{cust_name}}(\text{depositor}) \cup \Pi_{\text{cust_name}}(\text{borrower})$

Note that inputs have 8 tuples, but result has 6 tuples. Johnson
Smith
Reynolds
Lewis
Anderson
Jackson

Set-Difference Operation

- \square Written as: r-s
- \square Result contains tuples that are only in r, but not in s
 - \blacksquare Tuples in both r and s are excluded
 - Tuples only in s do not affect the result
- Constraints on schemas of r and s?
 - Schemas must be compatible
 - (Exactly like set-union.)

Set-Difference Example

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

loan

cust_name	acct_id
Johnson	A-318
Smith	A-322
Reynolds	A-319
Lewis	A-307
Reynolds	A-301

depositor

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

borrower

"Find all customers that have an account but not a loan."

Set-Difference Example (2)

- □ Again, each component is easy
 - All customers that have an account:

$$\Pi_{\text{cust_name}}(\text{depositor})$$

All customers that have a loan:

$$\Pi_{\text{cust name}}(\text{borrower})$$

 $\Pi_{cust_name}(borrower)$

Result is set-difference of these expressions

$$\Pi_{\text{cust_name}}(\text{depositor}) - \Pi_{\text{cust_name}}(\text{borrower})$$

cust_name
Johnson
Reynolds

Cartesian Product Operation

- \sqcap Written as: $r \times s$
 - Read as "r cross s"
- \square No constraints on schemas of r and s
- Schema of result is concatenation of schemas for r and s
- \square If r and s have overlapping attribute names:
 - All overlapping attributes are included; none are eliminated
 - Distinguish overlapping attribute names by prepending the source relation's name
- Example:
 - Input relations: r(a, b) and s(b, c)
 - \square Schema of $r \times s$ is (a, r.b, s.b, c)

Cartesian Product Operation (2)

- \square Result of $r \times s$
 - Contains every tuple in r, combined with every tuple in s
 - If r contains N_r tuples, and s contains N_s tuples, result contains $N_r \times N_s$ tuples
- Allows two relations to be compared and/or combined
 - \blacksquare If we want to correlate tuples in relation r with tuples in relation s...
 - □ Compute $r \times s$, then select out desired results with an appropriate predicate

Cartesian Product Example

□ Compute result of borrower × loan

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

borrower

loan

 \square Result will contain $4 \times 4 = 16$ tuples

Cartesian Product Example (2)

Schema for borrower is:

```
Borrower_schema = (cust_name, loan_id)
```

□ Schema for loan is:

```
Loan_schema = (<u>loan_id</u>, branch_name, amount)
```

Schema for result of borrower × loan is:

```
(cust_name, borrower.loan_id, loan.loan_id, branch_name, amount)
```

 Overlapping attribute names are distinguished by including name of source relation

Cartesian Product Example (3)

Result:

	borrower.	loan.		
cust_name	loan_id	loan_id	branch_name	amount
Anderson	L-437	L-421	San Francisco	7500
Anderson	L-437	L-445	Los Angeles	2000
Anderson	L-437	L-437	Las Vegas	4300
Anderson	L-437	L-419	Seattle	2900
Jackson	L-419	L-421	San Francisco	7500
Jackson	L-419	L-445	Los Angeles	2000
Jackson	L-419	L-437	Las Vegas	4300
Jackson	L-419	L-419	Seattle	2900
Lewis	L-421	L-421	San Francisco	7500
Lewis	L-421	L-445	Los Angeles	2000
Lewis	L-421	L-437	Las Vegas	4300
Lewis	L-421	L-419	Seattle	2900
Smith	L-445	L-421	San Francisco	7500
Smith	L-445	L-445	Los Angeles	2000
Smith	L-445	L-437	Las Vegas	4300
Smith	L-445	L-419	Seattle	2900

Cartesian Product Example (4)

- Can use Cartesian product to associate related rows between two tables
 - ...but, a lot of extra rows are included!

cust_name	borrower. loan_id	loan. loan_id	branch_name	amount
Jackson	L-419	L-437	Las Vegas	4300
Jackson	L-419	L-419	Seattle	2900
Lewis	L-421	L-421	San Francisco	7500
Lewis	L-421	L-445	Los Angeles	2000
	•••	•••		

Combine Cartesian product with a select operation

 $\sigma_{borrower.loan_id=loan.loan_id}(borrower \times loan)$

Cartesian Product Example (5)

"Retrieve the names of all customers with loans at the Seattle branch."

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

borrower

loan

- Need both borrower and loan relations
- Correlate tuples in the relations using loan_id
- Then, computing result is easy.

Cartesian Product Example (6)

 Associate customer names with loan details, using Cartesian product and a select:

 $\sigma_{borrower.loan_id=loan.loan_id}(borrower \times loan)$

Select out loans at Seattle branch:

 $\sigma_{branch_name="Seattle"}(\sigma_{borrower.loan_id=loan.loan_id}(borrower \times loan))$

Simplify:

 $\sigma_{borrower.loan_id=loan.loan_id \land branch_name="Seattle"}(borrower \times loan)$

Project results down to customer name:

 $\Pi_{\text{cust_name}}(\sigma_{\text{borrower.loan_id=loan.loan_id} \land \text{branch_name="Seattle"}}(\text{borrower} \times \text{loan}))$

Final result:

cust_name
Jackson

Rename Operation

- Results of relational operations are unnamed
 - Result has a schema, but the relation itself is unnamed
- Can give result a name using the rename operator
- \square Written as: $\rho_{x}(E)$
 - \Box E is an expression that produces a relation
 - □ E can also be a named relation or a relation-variable
 - x is new name of relation
- \square More general form is: $\rho_{x(A_1, A_2, ..., A_n)}(E)$
 - Allows renaming of relation's attributes
 - Requirement: E has arity n

Scope of Renamed Relations

- $\ \square$ Rename operation ρ only applies within a specific relational algebra expression
 - □ This <u>does not</u> create a new relation-variable!
 - The new name is only visible to enclosing relational-algebra expressions
- Rename operator is used for two main purposes:
 - Allow a derived relation and its attributes to be referred to by enclosing relational-algebra operations
 - Allow a base relation to be used multiple ways in one query $\mathbf{r} \times \rho_s(\mathbf{r})$
- \square In other words, rename operation ρ is used to resolve ambiguities within a specific relational algebra expression

Rename Example

"Find the ID of the loan with the largest amount."

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

loan

- Hard to find the loan with the largest amount!
 - (At least, with the tools we have so far...)
- Much easier to find all loans that have an amount smaller than some other loan
- Then, use set-difference to find the largest loan

Rename Example (2)

- How to find all loans with an amount smaller than some other loan?
 - Use Cartesian Product of loan with itself:
 loan × loan
 - Compare each loan's amount to all other loans
- Problem: Can't distinguish between attributes of left and right loan relations!
- □ Solution: Use rename operation $loan \times \rho_{test}(loan)$
 - Now, right relation is named test

Rename Example (3)

Find IDs of all loans with an amount smaller than some other loan:

$$\Pi_{loan.loan\ id}(\sigma_{loan.amount < test.amount}(loan \times \rho_{test}(loan)))$$

□ Finally, we can get our result:

```
\begin{split} &\Pi_{loan\_id}(loan) - \\ &\Pi_{loan.loan\_id}(\sigma_{loan.amount < test.amount}(loan \times \rho_{test}(loan))) \end{split}
```

loan_id

- What if multiple loans have max value?
 - All loans with max value appear in result.

Additional Relational Operations

- The fundamental operations are sufficient to query a relational database...
- Can produce some large expressions for common operations!
- Several additional operations, defined in terms of fundamental operations:
 - ∩ set-intersection
 - ⋈ natural join
 - ÷ division
 - ← assignment

Set-Intersection Operation

- \square Written as: $r \cap s$
- $r \cap s = r (r s)$ r s = the rows in r, but not in s r (r s) = the rows in both r and s
- Relations must have compatible schemas
- Example: find all customers with both a loan and a bank account

$$\Pi_{\text{cust_name}}(\text{borrower}) \cap \Pi_{\text{cust_name}}(\text{depositor})$$

Natural Join Operation

- Most common use of Cartesian product is to correlate tuples with same key-values
 - Called a join operation
- The <u>natural join</u> is a shorthand for this operation
- \square Written as: $r \bowtie s$
 - r and s must have common attributes
 - The common attributes are usually a key for r and/or s, but certainly don't have to be

Natural Join Definition

- \square For two relations r(R) and s(S)
- Attributes used to perform natural join:

$$R \cap S = \{A_1, A_2, ..., A_n\}$$

Formal definition:

$$r \bowtie s = \prod_{R \cup S} (\sigma_{r,A_1=s,A_1 \wedge r,A_2=s,A_2 \wedge \dots \wedge r,A_n=s,A_n} (r \times s))$$

- \square r and s are joined on their common attributes
- Result is projected so that common attributes only appear once

Natural Join Example

- □ Simple example:
 - "Find the names of all customers with loans."
- Result:

$$\Pi_{\text{cust_name}}(\sigma_{\text{borrower.loan_id}=\text{loan.loan_id}}(\text{borrower} \times \text{loan}))$$

□ Rewritten with natural join:

$$\Pi_{cust\ name}$$
(borrower \bowtie loan)

Natural Join Characteristics

- Very common to compute joins across multiple tables
- \square Example: customer \bowtie borrower \bowtie loan
- Natural join operation is associative:
 - □ (customer ⋈ borrower) ⋈ loan is equivalent to customer ⋈ (borrower ⋈ loan)

□ Note:

- Even though these expressions are equivalent, order of join operations can dramatically affect query cost!
- (Keep this in mind for later...)

Division Operation

- \square Binary operator: $r \div s$
- Implements a "for each" type of query
 - "Find all rows in r that have one row corresponding to each row in s."
 - Relation r divided by relation s
- Easiest to illustrate with an example:
- Puzzle Database

```
puzzle_list(puzzle_name)
```

Simple list of puzzles by name

```
completed(person_name, puzzle_name)
```

Records which puzzles have been completed by each person

Puzzle Database

"Who has solved every puzzle?"

- Need to find every person in completed that has an entry for every puzzle in puzzle_list
- Divide completed by puzzle_list to get answer:

person_name
Alex
Carl

 Only Alex and Carl have completed every puzzle in puzzle_list.

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

Puzzle Database (2)

"Who has solved every puzzle?"

person_	name
Alex	
Carl	

- Very reminiscent of integer division
 - Result relation contains tuples from completed that are evenly divided by puzzle_name
- Several other kinds of relational division operators
 - e.g. some can compute "remainder" of the division operation

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

Division Operation

```
For r(R) \div s(S)
```

- \square Required: $S \subseteq R$
 - All attributes in S must also be in R
- □ Result has schema R − S
 - Result has attributes that are in R but not also in S
 - \square (Probably best if $S \subseteq R...$)
- Every tuple t in result satisfies these conditions:

$$t \in \Pi_{R-S}(r)$$

 $\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \cap t_r[R-S] = t \rangle$

Every tuple in the result has a row in r corresponding to every row in s

Puzzle Database

For completed + puzzle_list

- Schemas are compatible
- Result has schema (person_name)
 - Attributes in completed schema, but not also in puzzle_list schema

person_name
Alex
Carl

completed + puzzle_list

Every tuple t in result satisfies these conditions:

$$t \in \Pi_{R-S}(r)$$

 $\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \cap t_r[R-S] = t \rangle$

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed = r

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list = s

Division Operation

- Not provided natively in most SQL databases
 - Rarely needed!
 - Easy enough to implement in SQL, if needed

- □ Will see it in the homework assignments, and on the midterm... ©
 - Often a very nice shortcut for more involved queries

Relation-Variables

- Recall: relation variables refer to a specific relation
 - A specific set of tuples, with a particular schema
- Example: account relation

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

 account is actually technically a relation-variable, as are all our named relations so far

Assignment Operation

- Can assign a relation-value to a relation-variable
- □ Written as: relvar ← E
 - \blacksquare E is an expression that evaluates to a relation
- \square Unlike ρ , the name relvar persists in the database
- Often used for temporary relation-variables:

```
temp1 \leftarrow \Pi_{R-S}(r)

temp2 \leftarrow \Pi_{R-S}((temp1 \times s) - \Pi_{R-S,S}(r))

result \leftarrow temp1 - temp2
```

- Query evaluation becomes a sequence of steps
- \square (This is an implementation of the \div operator)
- Can also use to represent data updates
 - More about updates next time...