7.1

Définition et modes de génération

Spé Maths 1ère - JB Duthoit

7.1.1 Analogie avec une fonction classique

7.1.2 Définition

Définition

Soit $n_0 \in \mathbb{N}$.

Une <u>suite numérique</u> est une fonction définie pour tout entier $n \ge n_0$ et à valeurs réelles. Pour chaque $n \ge n_0$, on associe le nombre réel noté u_n .

La suite est notée u ou (u_n) .

Remarque

- u_n est un réel; on dit que c'est le **terme** de la suite (u_n) de rang n.
- (u_n) est la suite.

Remarque

C'est la faute classiques des lycéens débutants : La lettre n est à la fois utilisée comme indice des termes de la suite et comme valeur dans les formules.

Voici un exemple pour mieux comprendre : en rouge le n en indice et en vert le n utilisée comme "valeurs" :

 $u_{n+1} = n \times u_n + 11n$ Ainsi, si on remplace n par 51, on obtient $u_{52} = 51 \times u_{51} + 11 \times 51$.

7.1.3 Modes de générations d'une suite

Par une formule explicite

Ici, le terme de la suite u_n est défini directement en fonction de n, et uniquement en fonction de n.

 $lue{}$ On dit que (u_n) est définie par une formule explicite.

Exemple

la suite u_n définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 - 1$ est une suite explicite.

Savoir-Faire 7.31

SAVOIR CALCULER LES PREMIERS TERMES

Pour chaque exemple, on pourra calculer les 5 premiers termes :

- On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 1$.
- On considère la suite (v_n) définie pour tout $n \ge 6$ par $v_n = \frac{1}{n-5}$.
- On considère la suite (w_n) définie pour tout $n \ge 1$ par $w_n = \sqrt{n-1}$.
- On considère la suite (z_n) définie pour tout $n \in \mathbb{N}$ par $z_n = 2^n$.

Remarque

Comment reconnaître une suite explicite? Dans le cas d'une suite explicite, on peut calculer directement n'importe quel terme en remplaçant n par l'entier souhaité.

Par une formule récurrente

Ici, le terme u_n de la suite se définit par rapport au(x) terme(s) précédent(s). \square On parle de suite récurrente.

Exemple

La suite w_n définie par $w_0 = 1$ et $w_{n+1} = 2 \times w_n + 5$ est une suite définie par récurrence.

Savoir-Faire 7.32

SAVOIR CALCULER LES PREMIERS TERMES D'UNE SUITE DÉFINIE PAR RÉCURRENCE Pour chaque exemple, on pourra calculer les 5 premiers termes :

- Soit la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = u_n + 2$.
- Soit la suite (v_n) définie par $v_0 = 1$ et $v_1 = 1$ et pour tout $n \ge 2$, $v_{n+2} = v_{n+1} + v_n$.
- Soit la suite (w_n) définie par $w_0 = 1$ et $w_{n+1} = 2 \times w_n + 5$.
- Soit la suite (z_n) définie par $z_0 = 1$ et $z_{n+1} = 2 \times z_n + n$.

Remarque

Dans le cas d'une suite récurrente, on ne peut <u>pas</u> calculer <u>directement</u> n'importe quel terme : pour calculer u_{100} , on a besoin de u_{99} par exemple... et ainsi de suite jusqu'au premier terme.

Par un algorithme

Ici, c'est un algorithme qui va être à l'origine de la construction de la suite.

Exemple

Voici un premier programme en Python :

```
def suite1(n):
return -2*n**2-2*n+7
```

- La suite définie par ce programme est-elle explicite, récurrente? Quelle est cette suite?
- Calculer les 5 premiers termes (à la main, puis vérifier avec python).

Et voici un second programme, toujours en Python :

```
def suite1(n):
a = 5
for i in range(n):
    a = 2 * a + 5
return a
```

- La suite définie par ce programme est-elle explicite, récurrente? Quelle est cette suite?
- Calculer les 5 premiers termes (à la main, puis vérifier avec python).

Savoir-Faire 7.33

SAVOIR CALCULER LES PREMIERS TERMES D'UNE SUITE (RÉCURRENTE OU EXPLICITE) EN UTILISANT PYTHON

Utiliser les exemples faits en classe pour s'entraîner à programmer en Python des suites explicites et récurrentes (avec boucle for et/ou while).

Bien évidemment, s'entraîner davantage avec les suites récurrentes, plus difficiles à programmer.

Par une situation géométrique

On part d'un triangle rectangle en A_1 OA_1A_2 tel que $OA_1 = A_1A_2 = 1$. On pose $u_1 = A_1A_2$. Pour tout n > 1, en tournant toujours dans le sens positif, on construit le triangle OA_nA_{n+1} comme suit : il est rectangle en A_n , et $A_{n+1} = 1$.

Pour n > 0, on pose $u_n = A_n A_{n+1}$

- Calculer les 5 premiers termes de cette suite.
- Conjecturer la formule explicite de cette suite.

♡Défi!

On considère la suite définie par :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \begin{cases} 3 \times u_n & \text{si n est pair} \\ u_n - 2 & \text{si n est impair} \end{cases}$$

- 1. Calculer les 6 premiers termes (ce n'est pas ça le défi!)
- 2. Calculer la somme des 43 premiers termes! $(u_0 \text{ compris})$

7.1.4 Calculer les termes d'une suite avec la calculatrice

- Il faut d'abord passer en mode **suite** : Mode puis choisir **suite** ou **séquence**. Ensuite, il faut quitter avec 2nde puis quitter.
- Appuyer ensuite sur la touche f(x)
- Pour les suites explicites :
 - On entre **nMin=0** si la suite est définie à partir de 0.
 - On entre ensuite l'expression de la suite en fonction de n: pour afficher n, il suffit de taper sur la touche X, T, θ, n .

- Pour afficher les termes, il suffit de faire 2nde puis table. (Il faudra peut être régler la table pour ne faire apparaître que les valeurs positives de n.
- Exemple avec $u_n = 2n + 1$: f(x), nMin=0, 2, \times , X, T, θ, n , +, 1, 2nde et table.

• Pour les suites récurrentes :

- On entre **nMin=0** si la suite est définie à partir de 0.
- On entre **u(nMin)** la valeur de la suite pour **nMin**
- Il reste ensuite à donner l'expression de la suite. Attention sur TI, il faudra rentrer u_n en fonction de u_{n-1} (et non pas u_{n+1} en fonction de u_n !) Le terme u_{n-1} se trouve en appuyant sur 2nde puis sur 7, puis $\sqrt{X,T,\theta,n}$, puis $\sqrt{1}$ et on ferme la parenthèse avec $\sqrt{1}$.
- Pour afficher les termes, il suffit de faire 2nde puis table
- Exemple avec $u_0 = 1$ et $u_{n+1} = 2u_n + 3$: f(x), nMin=0, u(nMin)=1, 2, \times , 2nde, 7, (, X, T, θ, n , -, 1,), +, 3. puis 2nde puis table.

Savoir-Faire 7.34

SAVOIR UTILISER LA CALCULATRICE POUR CALCULER DES TERMES (SUITES RÉCURRENTES ET EXPLICITES)

Substitution Selection Selectio

Utiliser les exemples déjà étudiés pour les vérifier à la calculatrice.

7.1.5 Représentation graphique de suites

Sur une droite graduée

C'est tout simple : on trace une droite graduée, et on place dessus les valeurs de $u_0,\,u_1,\,u_2...$

Suite (u_n) définie par $u_n = 2n - 1$

Dans un repère

C'est tout simple aussi : on trace place les points de coordonnées $(0, u_0), (1, u_1), (2, u_2)...$

Suite (u_n) définie par $u_n = 2n - 1$

Suite (u_n) définie par $u_n = f(n)$

Cas des suites récurrentes du type $u_{n+1} = f(u_n)$

Bien sûr, on peut représenter cette suite en utilisant l'un des deux procédés précédents. Mais dans le cas d'une suite récurrente, il y a une méthode qui se base sur la courbe représentative de la fonction f.

Attention, cette méthode fonctionne uniquement avec les suites récurrentes du type $u_{n+1} = f(u_n)$. L'idée est de construire les termes à l'aide de la courbe C_f et la droite d'équation y = x.

- On commence par placer u_0 sur l'axe des abscisses
- On construit u_1 sur l'axe des ordonnées en utilisant le courbe C_f et le fait que $u_1 = f(u_0)$.
- On construit u_1 sur l'axe des abscisses en utilisant la droite d'équation y = x.
- On a donc u_1 sur l'axe des abscisses, et on peut réitérer le procédé pour u_2 , u_3 ...autant de fois que nécessaire.

Suite (u_n) définie par $u_{n+1} = f(u_n)$

Savoir-Faire 7.35

Savoir représenter une suite définie par $u_{n+1} = f(u_n)$

Soit u_n une suite définie par $u_0 = 0$ et $u_{n+1} = \sqrt{3u_n + 4}$ et soit (v_n) une suite définie

par $v_0 = \frac{1}{2}$ et $v_{n+1} = \frac{1+v_n}{v_n}$. Déterminer la fonction f et g telles que $u_{n+1} = f(u_n)$ et $v_{n+1} = g(v_n)$. Représenter ensuite ces deux suites (deux graphiques différents) en utilisant la méthode précédente. Pour vérification, on pourra faire les calculs à la main des premiers termes (ou avec la calculatrice) et s'assurer que les valeurs trouvées graphiquement soient en cohérence avec les valeurs calculées.