Set Equality

Set Equality

- As we mentioned on Monday, two sets *A* and *B* are equal when they have exactly the same elements.
- Here's a little theorem that's very useful for showing that two sets are equal:

Theorem: If A and B are sets where $A \subseteq B$ and $B \subseteq A$, then A = B.

• We've included a proof of this result as an appendix to this slide deck. You should read over it on your own time.

A Trickier Theorem

• Our last theorem for today is this one, which comes to us from the annals of set theory:

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

• Unlike our previous theorem, this one is a lot harder to see using Venn diagrams alone.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

 Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.

• We're going to pick arbitrary sets *A* and *B*.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

- Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.
 - We're going to pick arbitrary sets *A* and *B*.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.

We're going to pick arbitrary sets A and B.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.

We're going to pick arbitrary sets A and B.

• We're going to assume $A \cup B \subseteq A \cap B$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

- Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.
 - We're going to pick arbitrary sets *A* and *B*.
 - We're going to assume $A \cup B \subseteq A \cap B$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.

We're going to pick arbitrary sets A and B. We're going to assume $A \cup B \subseteq A \cap B$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.

We're going to pick arbitrary sets A and B. We're going to assume $A \cup B \subseteq A \cap B$.

• We're going to prove that A = B.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

- Before we Flail and Panic, let's see if we can tease out some info about what this proof might look like.
 - We're going to pick arbitrary sets *A* and *B*.
 - We're going to assume $A \cup B \subseteq A \cap B$.
 - We're going to prove that A = B.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Before we Flail and Panic, let's see if we

Reasonable guess: let's try

proving that $A \subseteq B$ and

that $B \subseteq A$.

can tease out son proof might look

We're going to pi

We're going to as sume A O D S A II D

• We're going to prove that A = B.

A lemma is a smaller proof that's designed to build into a larger one. Think of it like program decomposition, except for proofs!

Proof:

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$.

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$. We will prove that $S \subseteq T$.

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$. We will prove that $S \subseteq T$. To do so, consider any $x \in S$. We will prove that $x \in T$.

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$. We will prove that $S \subseteq T$. To do so, consider any $x \in S$. We will prove that $x \in T$.

Since $x \in S$, we know that $x \in S \cup T$ because x belongs to at least one of S and T.

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$. We will prove that $S \subseteq T$. To do so, consider any $x \in S$. We will prove that $x \in T$.

Since $x \in S$, we know that $x \in S \cup T$ because x belongs to at least one of S and T. We then see that $x \in S \cap T$ because $x \in S \cup T$ and $S \cup T \subseteq S \cap T$.

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$. We will prove that $S \subseteq T$. To do so, consider any $x \in S$. We will prove that $x \in T$.

Since $x \in S$, we know that $x \in S \cup T$ because x belongs to at least one of S and T. We then see that $x \in S \cap T$ because $x \in S \cup T$ and $S \cup T \subseteq S \cap T$. Finally, since $x \in S \cap T$, we learn that $x \in T$, since x belongs to both S and T.

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$. We will prove that $S \subseteq T$. To do so, consider any $x \in S$. We will prove that $x \in T$.

Since $x \in S$, we know that $x \in S \cup T$ because x belongs to at least one of S and T. We then see that $x \in S \cap T$ because $x \in S \cup T$ and $S \cup T \subseteq S \cap T$. Finally, since $x \in S \cap T$, we learn that $x \in T$, since x belongs to both S and T.

Overall, we've started with an arbitrary choice of $x \in S$ and concluded that $x \in T$.

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$. We will prove that $S \subseteq T$. To do so, consider any $x \in S$. We will prove that $x \in T$.

Since $x \in S$, we know that $x \in S \cup T$ because x belongs to at least one of S and T. We then see that $x \in S \cap T$ because $x \in S \cup T$ and $S \cup T \subseteq S \cap T$. Finally, since $x \in S \cap T$, we learn that $x \in T$, since x belongs to both S and T.

Overall, we've started with an arbitrary choice of $x \in S$ and concluded that $x \in T$. Therefore, we see that $S \subseteq T$ holds, which is what we needed to prove.

Proof: Let S and T be any sets where $S \cup T \subseteq S \cap T$. We will prove that $S \subseteq T$. To do so, consider any $x \in S$. We will prove that $x \in T$.

Since $x \in S$, we know that $x \in S \cup T$ because x belongs to at least one of S and T. We then see that $x \in S \cap T$ because $x \in S \cup T$ and $S \cup T \subseteq S \cap T$. Finally, since $x \in S \cap T$, we learn that $x \in T$, since x belongs to both S and T.

Overall, we've started with an arbitrary choice of $x \in S$ and concluded that $x \in T$. Therefore, we see that $S \subseteq T$ holds, which is what we needed to prove. \blacksquare

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof:

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

- **Theorem:** If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.
- **Proof:** Let A and B be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

Next, since $A \cup B = B \cup A$ and $A \cap B = B \cap A$, from $A \cup B \subseteq A \cap B$ we learn that $B \cup A \subseteq B \cap A$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

Next, since $A \cup B = B \cup A$ and $A \cap B = B \cap A$, from $A \cup B \subseteq A \cap B$ we learn that $B \cup A \subseteq B \cap A$. Applying our lemma again in this case tells us that $B \subseteq A$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let A and B be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

Next, since $A \cup B = B \cup A$ and $A \cap B = B \cap A$, from $A \cup B \subseteq A \cap B$ we learn that $B \cup A \subseteq B \cap A$. Applying our lemma again in this case tells us that $B \subseteq A$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

Next, since $A \cup B = B \cup A$ and $A \cap B = B \cap A$, from $A \cup B \subseteq A \cap B$ we learn that $B \cup A \subseteq B \cap A$. Applying our lemma again in this case tells us that $B \subseteq A$.

Lemma: If S and T are sets and $S \cup T \subseteq S \cap T$, then $S \subseteq T$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

Next, since $A \cup B = B \cup A$ and $A \cap B = B \cap A$, from $A \cup B \subseteq A \cap B$ we learn that $B \cup A \subseteq B \cap A$. Applying our lemma again in this case tells us that $B \subseteq A$.

Since both $A \subseteq B$ and $B \subseteq A$, we conclude that A = B, which is what we needed to show.

Lemma: If S and T are sets and $S \cup T \subseteq S \cap T$, then $S \subseteq T$.

Theorem: If A and B are sets and $A \cup B \subseteq A \cap B$, then A = B.

Proof: Let *A* and *B* be any sets where $A \cup B \subseteq A \cap B$. We will prove that A = B by showing $A \subseteq B$ and $B \subseteq A$.

First, notice that by our lemma, since $A \cup B \subseteq A \cap B$, we know that $A \subseteq B$.

Next, since $A \cup B = B \cup A$ and $A \cap B = B \cap A$, from $A \cup B \subseteq A \cap B$ we learn that $B \cup A \subseteq B \cap A$. Applying our lemma again in this case tells us that $B \subseteq A$.

Since both $A \subseteq B$ and $B \subseteq A$, we conclude that A = B, which is what we needed to show.

What We've Covered

What is a mathematical proof?

• An argument – mostly written in English – outlining a mathematical argument.

What is a direct proof?

• It's a proof where you begin from some initial assumptions and reason your way to the conclusion.

• What are universal and existential statements?

• Universal statements make a claim about all objects of one type. Existential statements make claims about at least one object of some type.

How do we write proofs about set theory?

• By calling back to definitions! Definitions are key.

Appendix: Set Equality

Set Equality

• If A and B are sets, we say that A = B precisely when the following statement is true:

For any object x, $x \in A$ if and only if $x \in B$.

- (This is called the *axiom of extensionality*.)
- In practice, this definition is tricky to work with.
- It's often easier to use the following result to show that two sets are equal:

For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.

Theorem: For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.

Theorem: For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.

Proof:

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$. First, we'll prove that if $x \in A$, then $x \in B$.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$.

First, we'll prove that if $x \in A$, then $x \in B$. To do so, take any $x \in A$.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$.

Next, we'll prove that if $x \in B$, then $x \in A$.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$.

Next, we'll prove that if $x \in B$, then $x \in A$. Consider an arbitrary $x \in B$.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$.

Next, we'll prove that if $x \in B$, then $x \in A$. Consider an arbitrary $x \in B$. Since $B \subseteq A$ and $x \in B$, we see that $x \in A$, which is what we needed to show.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$.

Next, we'll prove that if $x \in B$, then $x \in A$. Consider an arbitrary $x \in B$. Since $B \subseteq A$ and $x \in B$, we see that $x \in A$, which is what we needed to show.

Since we've proven both directions of implication, we see that A = B.

- **Theorem:** For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B.
- **Proof:** Let A and B be arbitrary sets where $A \subseteq B$ and $B \subseteq A$. We need to prove A = B. To do so, we will prove for all x that $x \in A$ if and only if $x \in B$.

Next, we'll prove that if $x \in B$, then $x \in A$. Consider an arbitrary $x \in B$. Since $B \subseteq A$ and $x \in B$, we see that $x \in A$, which is what we needed to show.

Since we've proven both directions of implication, we see that A = B.