

Quadratic Functions

Maximum and Minimum

Week 2 Part 2

Objectives

• Determine the maximum or minimum of a quadratic function.

Maximum or minimum value

The maximum or minimum value of a quadratic function

$$f(x) = ax^2 + bx + c$$
 occurs at $x = \frac{-b}{2a}$

If a > 0 then the minimum value is f ($\frac{-b}{2a}$)

Minimum point

If a < 0 then the maximum value is f ($\frac{-b}{2a}$)

Maximum point

Example

Find the maximum or minimum value of each quadratic functions.

a)
$$f(x) = x^2 + 4x$$

Solution: a)
$$a = 1$$
, $b = 4$, $c = 0$

$$x = \frac{-b}{2a} = \frac{-4}{2 \times 1} = -2$$

$$f(-2) = (-2)^2 + 4(-2) = -4$$

Since a = 1 >0 the function has the minimum value

The minimum value is -4.

By Substituting x = -2in $f(x) = x^2 + 4x$

Example

b)
$$f(x) = -2x^2 + 4x - 5$$

Solution:
$$a = -2$$
, $b = 4$, $c = -5$
 $x = \frac{-b}{2a} = \frac{-4}{2 \times (-2)} = 1$

$$f(1) = -2(1)^2 + 4(1) - 5 = -3$$

Since a = -2 < 0, the function has the maximum value.

Maximum value is -3

By Substituting x = 1 in $f(x) = -2x^2 + 4x - 5$

Exercise:

Find the maximum or minimum value of the quadratic equations:

1)
$$f(x) = x^2 + 14x - 14$$
 2) $f(x) = x^2 - 6x + 17$

2)
$$f(x) = x^2 - 6x + 17$$

3)
$$f(x) = -x^2 + 7x + 11$$

Reference

• https://vdocuments.site/route404.html. (Full reference unavailable, due to removal of original web source).

