

ياد آورى:

سیگنال و ماتریس

شماره درس: ۲۵۶۳۰ یکشنبه و سهشنبه ۱۵–۳:۳۰ نیمسال اول۱-۱۶–۱۶۰

مقدماتی راجع به سیکنال

۰ سیگنال:

- هر کمیت فیزیکی که به عنوان تابعی از یک متغیر مستقل تغییر یابد.
 - x(t) متغیر مستقل معمولاً زمان است: \circ
 - انواع سیگنال از نظر آماری:
 - یقینی: طبق یک قاعده کاملاً مشخص تولید میشود.
- تصادفی: یک تابع نمونه از یک فر آیند تصادفی است. مقدارش را توسط یک تابع احتمال می توان بیان کرد.
 - آشوبی: سیگنالی که توسط یک سیستم آشوبی تولید میشود.

انواع سیگنال از نظر آماری

مقدماتی راجع به سیکنال

- انواع سیگنال از نظر نحوه نمایش و پردازش:
- پیوسته زمان یا آنالوگ: سیگنالی است که در یک بازه زمانی به طور پیوسته در x(t) پیوسته باشد و دامنه آن نیز پیوسته باشد:
- کسسته یا گسسته زمان: سیگنالی که در لحظات خاصی برایش مقدار تعریف شده است. لحظاتی که به طور منظم یا نامنظم انتخاب شدهاند. مقدار سیگنال پیوسته $x[n] = x(nT_s)$ (هر عدد حقیقی) است: $x[n] = x(nT_s)$
- کوانتیزهشده: در همه زمانها تعریفشده ولی مقدار سیگنال کوانتیزه شده
 است. مثل خروجی D/A یا عملگر گردکردن
- دیجیتال: هم در زمان نمونهبرداری شده و هم مقادیرش با چند رقم کد شده (کوانتیزه) است.
 - عمدتاً با سیگنالهای گسسته (Discrete) کار داریم.

تبديل فوريه

تبدیل فوریه: در هر فرکانسی، سیگنال به چه ترتیبی توزیع شده و هر فرکانس در ساخت x[n] یا x(t)

x(t) سیگنال پیوسته \circ

$$X(f) = \int_{-\infty}^{+\infty} x(t) \, e^{-j2\pi f t} \, dt$$
رابطه آنالیز $X(j\Omega) = \int_{-\infty}^{+\infty} x(t) \, e^{-j\Omega t} \, dt$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\Omega) \ e^{j\Omega t} \ d\Omega = \int_{-\infty}^{+\infty} X(f) \ e^{j2\pi f t} \ df = \hat{x}(t)$$
 رابطه سنتز

$$(\int_{-\infty}^{+\infty}|\widehat{x}(t)-x(t)|^2dt=0$$
 شرط کافی برای تبدیل فوریه: (به مفہوم \circ

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$$

تبديل فوريه

x[n] سیگنال گسسته α

 \circ شرط کافی برای داشتن تبدیل فوریه:

$$\sum_{-\infty}^{+\infty} |x[n]|^2 < \infty$$

انرزی و توان

$$E_x = \int_{-\infty}^{+\infty} |x(t)|^2 dt \qquad E_x = \sum_{m=0}^{+\infty} |x[n]|^2$$

$$E_{x} = \sum_{-\infty}^{+\infty} |x[n]|^{2}$$

توان سیگنال:

انرژی سیگنال:

$$P_{av} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} |x(t)|^2 dt$$

انواع سیگنال:

$$E_x < \infty$$
 , $P_{av} = 0$ سیگنال انرژی \circ

$$E_x = \infty$$
 , $P_{av} < \infty$ سیگنال توان \circ

$$E_x=\infty$$
 , $P_{av}=\infty$ نه توان و نه انرژی \circ

قضيه يارسوال

- اگر سیگنال انرژی باشد، قضیه پارسوال وجود دارد و میتوان انرژی را از تبدیل فرکانسی هم به دست آورد.
 - قضیه پارسوال برای سیگنالهای انرژی:
 - x(t) سیگنال پیوسته α

$$E_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\Omega)|^{2} d\Omega = \int_{-\infty}^{+\infty} |X(f)|^{2} df$$

$$S_{x}(f) = |X(f)|^{2}$$
 چگالی طیف انرژی: \circ

x[n] سیگنال گسسته α

$$E_x = \sum_{-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

$$S_{\chi}(\omega)=\left|X\!\left(e^{j\omega}
ight)
ight|^{2}$$
 و چگالی طیف انرژی: $\left|X\!\left(e^{j\omega}
ight)
ight|^{2}$

قضيه يارسوال

سیگنال توان تبدیل فوریه ندارد و یا تبدیل فوریه ضربه دارد. با این وجود
 باز هم میتوان برای آن چگالی طیف توان تعریف کرد.

$$P_{av} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x_T(t)|^2 dt$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{+\infty} |x_T(t)|^2 dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{+\infty} |X_T(f)|^2 df$$

$$= \int_{-\infty}^{+\infty} \lim_{T \to \infty} \frac{1}{2T} |X_T(f)|^2 df$$

چگالی طیف توان

- چگالی طیف توان برای سیگنال توان:
 - سيگنال پيوسته:

$$S_{x}(f) = \lim_{T \to \infty} \frac{1}{2T} |X_{T}(f)|^{2}$$

o سیگنال گسسته:

$$S_{x}(\omega) = \lim_{N\to\infty} \frac{1}{2N+1} |X_{N}(e^{j\omega})|^{2}$$

تابع همیستگی متقابل

- تابع همبستگی متقابل بین دو سیگنال (در مورد سیگنالهای یقینی): مقدار همبستگی دو سیگنال را بهازای شیفتهای متفاوت نشان میدهد.
 - سیگنالهای پیوسته:
 - سیگنالهای انرژی:

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t)y^*(t-\tau)dt$$

سیگنالهای توان:

$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} x(t) y^*(t - \tau) dt$$

تابع همیستگی متقابل

- تابع همبستگی متقابل بین دو سیگنال (در مورد سیگنالهای یقینی): مقدار همبستگی دو سیگنال را بهازای شیفتهای متفاوت نشان میدهد.
 - سیگنالهای گسسته:
 - سیگنالهای انرژی:

$$R_{xy}[n] = \sum_{-\infty}^{+\infty} x[n]y^*[n-m]$$

سیگنالهای توان:

$$R_{xy}[n] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{-N}^{+N} x[n] y^*[n-m]$$

تابع همبستگی متقابل

در مورد سیگنالهای یقینی میتوان نشان داد: (روابط برای هر دو نوع سیگنال توان و انرژی برقرار است)

if
$$x(t) = y(t) \rightarrow R_x(\tau) = \int_{-\infty}^{+\infty} x(t)x^*(t-\tau)dt$$

$$R_{\chi}(\tau) \xrightarrow{Fourier} S_{\chi}(f) = \int_{-\infty}^{+\infty} R_{\chi}(\tau) e^{-j2\pi f \tau} d\tau$$

$$R_{\chi}(\tau) \stackrel{\mathcal{F}}{\leftrightarrow} S_{\chi}(f)$$

$$R_{x}[m] \xrightarrow{Fourier} S_{x}(\omega) = \sum_{-\infty}^{+\infty} R_{x}[m] e^{-j\omega m}$$

$$R_{x}[m] \stackrel{\mathcal{F}}{\leftrightarrow} S_{x}(\omega)$$

DSP/Oppenheim: ch4

$$x[n] = x_c(nT), \quad -\infty < n < \infty.$$

$$f_s = 1/T$$
 $\Omega_s = 2\pi/T$

$$x[n] = x_c(nT), \quad -\infty < n < \infty.$$

$$f_s = 1/T$$
 $\Omega_s = 2\pi/T$

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$x_s(t) = x_c(t)s(t)$$

$$=x_c(t)\sum_{n=-\infty}^{\infty}\delta(t-nT)=\sum_{n=-\infty}^{\infty}x_c(t)\delta(t-nT).$$

$$x_s(t) = \sum_{n = -\infty}^{\infty} x_c(nT) \delta(t - nT)$$

$$x(t)\delta(t) = x(0)\delta(t)$$

$$S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k \Omega_s) \qquad \Omega_s = 2\pi/T$$

$$X_s(j\Omega) = \frac{1}{2\pi} X_c(j\Omega) * S(j\Omega)$$

$$X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$$

 $\omega=\Omega\,T_{\scriptscriptstyle S}$ در تبدیل پیوسته به گسسته تغییر مقیاس فر کانسی داریم: \circ

برای اینکه طیف سیگنال پیوسته از روی طیف سیگنال گسسته قابل بازیابی باشد:

$$\Omega_s - \Omega_N \ge \Omega_N$$
, or $\Omega_s \ge 2\Omega_N$

اگر سیگنال در فرکانس باند محدود داشته باشد و $\Omega_{\rm S}>2$ (نرخ نایکوییست)، میتوان سیگنال پیوسته را با استفاده از فیلتر پایین گذر ایده آل بازسازی کرد.

بازسازی سیگنال:

DSP/Oppenheim: ch8

در عمل از تمام نمونههای سیگنال $x_d[n]$ (از ∞ تا ∞ +) استفاده نمیکنیم و از یک پنجره از سیگنال با تعداد نمونههای محدود استفاده میکنیم.

$$x_d[n] \xrightarrow{} x_d[n] \xrightarrow{} x[n]$$
 سیگنال M نقطهای $w[n] = 0, n < 0 \ \& \ n \ge M$

- مطرح می شود. DFT برای سیگنال M نقطه ای بحث \circ
 - نمونهبرداری در فرکانس

o ایده کلی DFT:

یاد آوری:

N سیگنال گسسته متناوب با دوره تناوب OFS \circ

$$\tilde{x}[n] \stackrel{\mathcal{DFS}}{\longleftrightarrow} \tilde{X}[k]$$

Analysis equation:
$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]W_N^{kn}$$
.

Synthesis equation:
$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn}$$
.

$$W_N = e^{-j(2\pi/N)}$$

 $x(e^{j\omega})$ سیگنال غیرپریودیک x[n] با تبدیل فوریه lpha

$$X(e^{j\omega}) = \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega m}$$

دنباله $ilde{X}[k]$ از نمونهبردا*ر*ی $X(e^{j\omega})$ در فرکانسهای X(k) به دست آمده است:

$$\tilde{X}[k] = X(e^{j\omega})|_{\omega = (2\pi/N)k} = X(e^{j(2\pi/N)k})$$

دنباله $\widetilde{X}[k]$ با دوره تناوب N متناوب است، در نتیجه میتوان آن را به صورت ضرایب OFS یک دنباله متناوب $\widetilde{x}[n]$ در نظر گرفت:

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn}$$

با ترکیب روابط خواهیم داشت:

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \left[\sum_{m=-\infty}^{\infty} x[m] e^{-j(2\pi/N)km} \right] W_N^{-kn}$$

$$\tilde{x}[n] = \sum_{m = -\infty}^{\infty} x[m] \left[\frac{1}{N} \sum_{k=0}^{N-1} W_N^{-k(n-m)} \right] = \sum_{m = -\infty}^{\infty} x[m] \tilde{p}[n-m]$$

$$\tilde{p}[n-m] = \frac{1}{N} \sum_{k=0}^{N-1} W_N^{-k(n-m)} = \sum_{r=-\infty}^{\infty} \delta[n-m-rN]$$

$$\tilde{x}[n] = x[n] * \sum_{r=-\infty}^{\infty} \delta[n - rN] = \sum_{r=-\infty}^{\infty} x[n - rN].$$

یعنی $\widetilde{x}[n]$ یک دنباله متناوب است که از متناوبسازی x[n] (غیرمتناوب) با دوره تناوب x[n] به دست آمده است. یعنی از x[n] میتوان x[n] را ساخت.

، $\widetilde{x}[n]$ محدود باشد M نقطه) و $M \geq M$ باشد، میتوان از x[n] محدود باشد x[n] را ساخت (یک دوره تناوب):

$$x[n] = \begin{cases} \tilde{x}[n], & 0 \le n \le N - 1, \\ 0, & \text{otherwise.} \end{cases}$$

- را تولید کرد. $X(e^{j\omega})$ پس از روی $ilde{X}[k]$ میتوان X[n] را ساخت و درنتیجه $X(e^{j\omega})$
 - . يعنى $X(e^{j\omega})$ افزونگى اطلاعات دارد. \circ
- درنتیجه با استفاده از نمونههای $X(e^{j\omega})$ میتوانیم خودش را بسازیم. در واقع میتوانیم $X(e^{j\omega})$ اطلاعات حوزه فرکانس را با نمونههای کمتر نمایش دهیم.
 - $X(e^{j\omega})$ یک تناوب از نمونههای (Discrete Fourier Transform) DFT \circ
 - N=M یکتا نیست و باید تعداد نقاط داده شود: کمترین افزونگی DFT \circ

روابط محاسبه DFT:

$$x[n] \stackrel{\mathcal{DFJ}}{\longleftrightarrow} X[k].$$

Analysis equation:
$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}, \quad 0 \le k \le N-1$$

Synthesis equation:
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad 0 \le n \le N-1.$$

$$W_N = e^{-j(2\pi/N)}$$

FFT یک الگوریتم برای محاسبه سریع DFT است.

28

- ارتباط بین طیف فرکانسی و N DFT نقطهای سیگنال: \circ
 - f_k ام: امناظر با نمونه kام: \circ

$$f_k = \frac{k}{N} f_S$$
 ; $0 \le k \le \left[\frac{N-1}{2} \right]$

$$f_k = -\frac{N-k}{N} f_S$$
 ; $\left[\frac{N-1}{2}\right] < k \le N-1$

$$X[k] = X^*[N-k]$$

DFT تقارن هرمیتی دارد:

نمایش توأم زمان-فرکانس

نمایش توأم زمان-فرکانس

تبدیل فوریه:

$$X(j\Omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\Omega t} dt$$

- صیگنالهایی که در طول زمان، محتوای فرکانسیشان تغییر میکند، تبدیل فوریه برایشان مناسب نیست.
 - استفاده از تبدیل زمان-فرکانس:
- به جای اینکه یک بار تبدیل فوریه بگیریم، در هر بازه پنجره گذاشته و پنجره را میلغزانیم و تبدیل فوریه می گیریم:
 - (Short Time Fourier Transform) STFT o
 - تابعی که به دست می آید هم تابع زمان است هم فرکانس

نمایش توأم زمان-فرکانس

$$STFT_x(t,f)=\int_{-\infty}^{+\infty}x(s)\stackrel{h(s-t)}{=}e^{-j\Omega s}\stackrel{ds}{=}:x(t)$$
 تعریف STFT برای سیگنال پیوسته بنجره لغزان

$$SPEC_{x}(t,f) = |STFT_{x}(t,f)|^{2}$$

o اسپکتروگرام (Spectrogram):

$$STFT_x[n,\omega) = \sum_m x[m]h[m-n]e^{-j\omega m}$$
پنجره گسسته
لغزان

x[n] برای سیگنال گسسته STFT برای میگنال عریف

اگر تعداد نقاط پنجره محدود باشد، میتوان DFT گرفت:

$$STFT_{x}[n,k] = \sum x[m]h[m-n]e^{-jk\frac{2\pi}{M}m}$$
 طول پنجره M

مفاهیم و تعاریف ماتریسی

- $A_{m \times n}$ ماتریس \circ
- A^T :ترانهاده \circ
- A^* : مزدوج
- A^H :(Hermitian): ترانهاده مزدوج
- (برای ماتریس مربعی وارونپذیر) A^{-1}
 - $A_{n \times n}$ ماتریس مربعی \circ
 - اگر $A^T=A$ باشد: متقارن \circ
 - اگر $A^H=A$ باشد: هرمیتی \circ
 - اگر $A^{-1} = A^H$ باشد: متعامد \circ
 - $Trace(A) = \sum_{i=1}^{n} a_{ii} \circ$

تجزیه مفادیر ویژه

EigenValue Decomposition (EVD) o

$$Ax = \lambda x, A \in \mathbb{R}^{n \times n} \quad x \in \mathbb{R}^n$$

$$\det(A-\lambda I)=0$$
 \vdots \vdots $(A-\lambda_i I)x=\mathbf{0}$ o $x=u_i$ $\lambda_n o$ u_n $\lambda_n o$ u_n $\lambda_n o$ u_n

$$A[u_1 \ u_2 \ \dots u_n] = [u_1 \ u_2 \ \dots u_n] \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

$$AU = U\Lambda$$

تجزیه مفادیر ویژه

EigenValue Decomposition (EVD) o

$$\det(A) = \prod_{i=1}^{n} \lambda_{i}$$

$$trace(A) = \sum_{i=1}^{n} \lambda_{i}$$

اگر A ماتریس حقیقی متقارن باشد، مقادیر ویژه حقیقی دارد. میتوان بردارهای ویژه را به گونهای انتخاب کرد که نسبت به هم عمود باشند:

$$U^{-1} = U^T \quad \to \quad \begin{cases} A = U\Lambda U^T \\ U^T A U = \Lambda \end{cases}$$

تجزیه مفادیر تکین

- Singular Value Decomposition (SVD) o
 - $A_{m imes n}$ ماتریس حقیقی \circ

$$A = U\Lambda V^T$$
, $U \in \mathbb{R}^{m \times m}$, $\Lambda \in \mathbb{R}^{m \times n}$, $V \in \mathbb{R}^{n \times n}$

ماتریسهای U و V متعامدند: \circ

$$\begin{cases} UU^T = U^T U = I_{m \times m} \\ VV^T = V^T V = I_{n \times n} \end{cases}$$

ماتریس Λ شبه قطری است: \circ

$$\Lambda = diag(\lambda_1, ..., \lambda_p) \in \mathbb{R}^{m \times n} \ , \quad \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0 \quad , \ p = \min(m, n)$$

ماتريس مثبت معين

- $A_{n \times n}$ ماتریس حقیقی متقاC
- o مثبت معین (positive definite):

$$\forall x \neq \mathbf{0}$$
, $x^T A x > 0$

o مثبت نیمهمعین (positive semidefinite):

$$\forall x \neq \mathbf{0}$$
, $x^T A x \geq 0$

o نامعین (indefinite):

$$\exists x, y \neq \mathbf{0}$$
 , $x^T A x > 0$, $y^T A y < 0$

- اگر A ماتریس حقیقی مثبت نیمه معین باشد، آنگاه مقادیر ویژه آن نامنفی بوده و بردارهای ویژه متمایز متعامد دارد.
 - در مورد ماتریس هرمیتی A ترانهاده (T) به ترانهاده مزدوج (H) تبدیل میشود. \circ

حل معادلات خطی

حل دستگاه معادلات:

$$A_{m\times n}\boldsymbol{x}_{n\times 1}=\boldsymbol{b}_{m\times 1}$$

- حالت ۱: $A_{n \times n}$ مربعی
- تعداد معادلات و مجهولات برابر است.
 - باشد: $\det(A) \neq 0$ باشد: \circ

$$\boldsymbol{x} = A^{-1}\boldsymbol{b}$$

- باشد: $\det(A) = 0$ باشد:
- معادلات مستقل نیستند و میتوانیم معادلات وابسته را حذف کنیم.
 - تعداد معادلات کمتر از مجهولات میشود.
 - ٥ مشابه حالت ٢.

حل معادلات خطی

حل دستگاه معادلات:

$$A_{m\times n}\boldsymbol{x}_{n\times 1}=\boldsymbol{b}_{m\times 1}$$

- $A_{m imes n}$, m < n حالت \circ
 - بینہایت جواب
- $\mathbf{x} = A^H (AA^H)^{-1} \mathbf{b} \leftarrow \min \|\mathbf{x}\|_2 \circ$
 - $A_{m imes n}$, m>n :۳ حالت \circ
 - حواب ندارد
- $\mathbf{x} = (A^H A)^{-1} A^H \mathbf{b} = A^{\dagger} \mathbf{b} \leftarrow min ||A\mathbf{x} \mathbf{b}||_2 \circ$
- $A^{\dagger}A = I$ (Moore-Penrose Pseudoinverse) (شبهمعکوس (از چپ A^{\dagger} \circ

مشتق نسیت به بردار

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = \sum_{k=1}^n a_k x_k \quad \rightarrow \quad \frac{\partial f}{\partial \mathbf{x}} = \mathbf{a}$$

$$\begin{cases} \frac{\partial f}{\partial x_1} = a_1 \\ \vdots \\ \frac{\partial f}{\partial x_n} = a_n \end{cases}$$

$$f(x) = x^T A x = \sum_{i=1}^n \sum_{j=1}^n x_i x_j a_{ij}$$
 $\rightarrow \frac{\partial f}{\partial x} = 2Ax$

A: Symmetric matrix

