PENGEMBANGAN NON-INTERACTIVE ZERO KNOWLEDGE PROOF DAN SMART CONTRACT BARU BERBASIS BLOCKCHAIN PADA E-CERTIFICATE

Linda Handayani, S.T., MMSI. 99221912

PROGRAM DOKTOR TEKNOLOGI INFORMASI UNIVERSITAS GUNADARMA

2023

Daftar Isi

DA	FTAF	R PUSTAKA	
Da	ftar '	Tabel	iv
Da	ftar (Gambar	Ţ
1	Pend	dahuluan	1
	1.1	Latar Belakang	1
	1.2	Rumusan Masalah	6
	1.3	Ruang Lingkup Penelitian	7
	1.4	Tujuan Penelitian	7
	1.5	Kontribusi dan Manfaat Penelitian	7
2	Tela	ah Pustaka	9
	2.1	Blockchain	ç
		2.1.1 Properti Blockchain	13
		2.1.2 Konsensus Blockchain	14
	2.2	Ethereum	25
	2.3	Smart contract	26
	2.4	Zero Knowledge Proof (ZKP)	28
	2.5	State of the Art	29
3	Met	odologi Peneliti	42
	3.1	Motivasi	42
	3.2	Kerangka Penelitian	43
	3.3	Identifikasi Kebutuhan	45
	3.4	Perancangan Model dan Metode	48
		3.4.1 Perancangan Model Arsitektur Sistem E-certificate	48

•	٠	•
		1

3.4.2	Perancangan Metode Non-Interactive ZKP	48
3.4.3	Perancangan Metode Smart Contract berbasis Blockchain	50
3.4.4	Integrasi Metode Non-Interactive ZKP dan Smart Con-	
	tract berbasis Blockchain	51
Bibliografi		54

Daftar Tabel

2.1	Jenis blockchain [19]	9
2.2	Siaran atom properti protokol konsensus terdistribusi	15
2.3	Properti protokol konsensus terdistribusi	16
2.4	Perbandingan penelitian terkait	30
2.4	Perbandingan penelitian terkait	31
2.4	Perbandingan penelitian terkait	32
2.4	Perbandingan penelitian terkait	33
2.4	Perbandingan penelitian terkait	34
2.4	Perbandingan penelitian terkait	35
2.4	Perbandingan penelitian terkait	36
2.4	Perbandingan penelitian terkait	37
2.4	Perbandingan penelitian terkait	38
2.4	Perbandingan penelitian terkait	39
2.4	Perbandingan penelitian terkait	40
2.4	Perbandingan penelitian terkait	41

Daftar Gambar

2.1	Illustration of Blockchain Layer [22]	12
2.2	Komponen hash blok dan jaringan blockchain [23]	13
2.3	Mekanisme konsensus PoW [31]	17
2.4	Mekanisme konsensus PoS [31]	19
2.5	Mekanisme konsensus DPoS [31]	20
2.6	Mekanisme konsensus PBFT [31]	22
2.7	Mekanisme konsensus PBFT [31]	24
2.8	Mekanisme konsensus PBFT [31]	25
2.9	Penggunaan smart contract [36]	28
3.1	Kerangka penelitian	44
3.2	Use case sistem e-certificate	46
3.3	Activity diagram sistem e-certificate	47
3.4	Perancangan model arsitektur sistem e-certificate	49
3.5	Perancangan metode Non-Interactive ZKP	50
3.6	Perancangan metode Smart Contract berbasis Blockchain	52
3.7	Integrasi Non-Interactive ZKP dan Smart Contract berbasis Bloc-	
	kchain	53

Bab 1

Pendahuluan

1.1 Latar Belakang

Teknologi blockchain adalah salah satu dari beberapa inovasi dalam ilmu komputer yang telah melampaui ketenaran aplikasi awalnya yaitu mata uang kripto. Blockchain mulai digunakan pada mata uang kripto (bitcoin) yang dianggap dapat menyelesaikan masalah transparansi end-to-end. Teknologi ini secara bertahap semakin populer sebagai alat jaringan untuk mempermudah operasi bisnis dengan menerapkan jaringan peer to peer untuk verifikasi dan berbagi data [1]. Karakteristik utama yang dimiliki teknologi blockchain yaitu desentralisasi, transparansi, kekekalan, keamanan, buku besar terdistribusi, tokenisasi, mekanisme konsensus dan smart contract. Hal ini membuat teknologi blockchain terus berkembang ke beragam aplikasi dan model binis berbasis platform yang inovatif.

Teknologi blockchain mengacu pada buku besar transaksi data yang dicatat pada basis data terdistribusi dan dibagikan dengan jaringan yang terdesentralisasi [2]. Jaringan terdesentralisasi memiliki beberapa keunggulan diantaranya menyediakan lingkungan tanpa kepercayaan di mana setiap anggota memiliki salinan data yang sama persis dalam bentuk buku besar yang didistribusikan, meningkatkan rekonsiliasi data di mana setiap kali data diubah maka setiap entitas memiliki akses ke tampilan data bersama secara real-time tanpa membuka peluang kehilangan data atau data yang salah, mengurangi titik kelemahan dalam sistem yang mungkin terlalu bergantung pada aktor tertentu di mana titik lemah ini dapat menyebabkan kegagalan sistem termasuk kegagalan untuk menyediakan layanan yang dijanjikan ser-

ta mengoptimalkan distribusi sumber daya [3]. Fitur smart contract yang dimiliki blockchain memungkinkan transaksi dan pertukaran dokumen dengan menggunakan kontrak digital dan kontrak yang diotomatisasi [4]. Validasi transaksi pada protokol smart contract di antaranya pemrosesan pembayaran atau verifikasi aset yang ditanamkan [5]. Hal ini dapat mengatasi permasalah terkait penipuan atau kesalahpahaman kontrak dengan mengeksekusi kontrak secara otomatis melalui kode yang telah ditentukan untuk menghindari layanan perantara dan menyediakan otomatisasi untuk proses bisnis [6]. Konsensus mengacu kepada mekanisme atau protokol yang digunakan untuk mencapai kesepakatan di antara semua peserta (node) jaringan blockchain tentang keadaan atau urutan transaksi yang valid [7]. Konsensus blockchain digunakan untuk menjaga keandalan, keamanan dan integritas data di seluruh jaringan tanpa adanya pihak otoritas sentral.

Blok adalah catatan data yang terhubung ke dalam sebuah rantai melalui fungsi hash crypto-analytic untuk mencegah pihak yang tidak dikenal dapat membaca dan merusak informasi. Fungsi hash yang digunakan untuk memvalidasi transaksi pada blok untuk mencegah perubahan data yang tercatat [8]. Kemampuan sebuah blok untuk tetap tidak berubah dan tidak diubah disebut kekekalan. Transaksi dikumpulkan bersama dalam satu blok mempertahankan hashing dari blok sebelumnya yang dapat membantu proses validasi blok baru.

Node adalah titik koneksi individual dalam jaringan blockchain yang menjalankan fungsi vital, di antaranya membantu dalam memelihara dan memperbaharui buku besar blockchain secara terdistribusi, memvalidasi transaksi berdasarkan mekanisme konsensus blockchain dan mencegah transaksi ganda dan kecurangan serta membantu penyebaran informasi transaksi ke seluruh jaringan. Node memiliki kemampuan untuk bergabung dan keluar jaringan secara bebas, yang memungkinkan untuk mengakses dan mengubah data di blockchain publik [9].

Blockchain dapat menampilkan detail transaksi yang dapat dilihat oleh siapa saja yang terhubung ke dalam jaringan (transparan). Data sensitif seperti informasi pribadi, informasi kesehatan, data keuangan dan pajak, informasi akun dan kata sandi serta informasi pekerjaan dapat dilihat. Hal ini menjadi tantangan tersendiri pada penerapan blokchain yang memerlukan tingkat privasi yang tinggi.

Kriptografi adalah seni dan ilmu mengamankan komunikasi dan data.

Hal ini merupakan pondasi untuk berbagai aspek keamanan digital, termasuk keamanan internet dan jaringan. Kriptografi memiliki aspek utama yaitu enkripsi di mana proses mengubah informasi menjadi bentuk yang tidak dapat dibaca tanpa kunci rahasia, integritas data di mana menggunakan hash dan fungsi lainnya untuk memastikan bahwa data tidak diubah atau dirusak selama transmisi atau penyimpanan serta autentikasi di mana memastikan bahwa pesan atau transaksi benar-benar berasal dari pengirim yang diklaim. Salah satu metode dalam kriptografi adalah ZKP (Zero Knowledge Proof). ZKP metode yang memungkinkan satu pihak (prover) membuktikan kepada pihak lain (verifier) bahwa suatu pernyataan adalah benar, tanpa mengungkap informasi tambahan apa pun selain dari kenyataan bahwa pernyataan tersebut benar. Sehingga ZKP menjadi relevan dan bermanfaat dalam menyelesaikan tantangan penerapan blockchain untuk meningkatkan privasi.

Penelitian Claudia dkk pada tahun 2020 mengimplementasi prototipe berbasis blockchain untuk manajemen respons permintaan terdesentralisasi yang diperkaya dengan solusi zkp untuk menjaga privasi data produsen energi. Metode yang digunakan adalah penerapan blockchain untuk manajemen sistem respon permintaan yang terdesentralisasi, smart contract digunakan untuk memvalidasi aktivitas produsen dalam program respons permintaan dan ZKP untuk menyembunyikan data energi yang dimonitor dan profil fleksibilitas yang diminta [10]. Penelitian Swagastika dkk pada tahun 2021 mengusulkan sistem manajemen e-waste berbasis berbasis blockchain yang mencakup transparansi, pelacakan, penghematan biaya dan pemantauan otomatis dari pembuatan e-waste. Penelitian ini menghasilkan prototipe pada platform Ethereum beserta evaluasi kelayakan dan kinerja. Sistem menggunakan smart contract untuk mendaftar dan mentransfer kepemilikan. ZKP digunakan untuk proses validasi identitas yang berfokus pada privasi tanpa mengungkap informasi pribadi dari pemangku kepentingan dalam sistem [11].

Penelitian Zhuoliang Qui dkk pada tahun 2023 mengusulkan kerangka klaim asuransi mobil berbasis blockchain menggunakan teknologi ZKP untuk melindungi privasi data pelanggan. Metode yang digunakan adalah penggunaan blockchain dalam membuat sistem terdesentralisasi untuk proses klaim asuransi dan memastikan integritas data asuransi serta menambahkan teknologi ZKP di dalam sistem untuk menjaga privasi data asuransi dan identitas pelanggan. Hal ini mengatasi kekhawatiran privasi dalam skema penerapan

asuransi mobil berbasis blockchain tradisional. Hasil eksperimen menunjukkan bahwa skema ini berperforma baik dalam hal keamanan dan kinerja dan analisis perbandingan dengan skema lain membuktikan efektivitasnya dalam mencapai otorisasi rahasia dan perlindungan privasi[12].

Penggunaan ZKP pada proses verifikasi berbasis blockchain memiliki tantangan terkait skalabilitas di mana jika sistem memerlukan verifikasi berskala besar. ZKP memerlukan interaksi langsung antara prover dan verifier sehingga jika verifikasi dilakukan dengan skala besar maka verifikasi menjadi kurang efisien. Pendekatan Non-Interactive ZKP dapat mengatasi tantangan t.ersebut. Non-interactive ZKP memungkinkan verifikasi bukti tanpa interaksi langsung antara prover (orang yang memberikan bukti) dan verifier (orang yang memverifikasi bukti). Proses ini biasanya melibatkan CSR (Common Reference String) yang dikenal dan dipercaya oleh kedua belah pihak. Hal ini dapat meningkatkan efisiensi transaksi dengan tetap manjaga privasi pengguna.

Penelitian Ya-Che Tsai dkk pada tahun 2019 memperkenalkan Non-Interactive ZKP untuk aplikasi terdesentralisasi. ZKP (Zero Knowledge Rang Proof) memungkinkan pengguna untuk membuktikan bahwa nilai rahasi berada dalam rentang tertentu tanpa harus mengungkapkan nilai sebenarnya. Pada proses interaksi transaksi tidak diperlukan komunikasi antara pengguna dan verifikator selama pembuktian. Hal ini meningkatkan efisiensi yang membuatnya cocok untuk berbagai aplikasi yang diimplementasikan pada Ethereum [13]. Penelitian Gyeongjin Ra dkk pada tahun 2021 mengusulkan manajemen identitas anonim yang dapat diverifikasi (VAIM) yang menghubungkan saluran privasi antar pengguna dengan membangun verifikasi identitas dan penyedia kontrol akses melalui keputusan yang berpusat pada pengguna dan sistem manajemen identitas anoninim. Peningkatkan model identitas klaim blockchain tradisional dengan menggunakan algoritma ZKP untuk mencapai ketidakterhubungan identitas dan mencegah pengungkapan kepemilikan atribut. Evaluasi kinerja lingkungan dan analisis keamanan menunjukkan bahwa skema penelitian mencapai perlindungan privasi yang efisien [14].

Kepercayaan terhadap dokumen akademik seperti e-certificate sangat penting dalam dunia pendidikan. Namun berbagai masalah seperti pemalsuan, kesalahan administrasi dan transparansi sering menyertai sistem konvensional. Penerapan teknologi Zero-Knowledge Proof (ZKP) dan Blockchain sangat penting untuk mengubah cara kita mengelola e-certificate. Penerapan

ZKP digunakan untuk membuktikan keaslian dan kepemilikan e-certificate tanpa perlu mengungkapkan informasi pribadi atau detail e-certificate sehingga berguna dalam menjaga privasi dan keamanan. Penerapan blockchain pada e-certificate digunakan untuk menyimpan transaksi secara aman di dalam buku besar sertamenciptakan sistem yang andal terhadap pemalsuan karena catatan transaksi disimpan di seluruh rantai. Ketika kedua teknologi ini digabungkan dalam sistem e-certificate maka keamanan sistem akan ditingkatkan karena setiap e-certificate dienkripsi dan dilindungi melalui blockchain dengan menjaga privasi, efisiensi dan integritas data.

Penelitian terkini di bidang pendidikan yang berkaitan dengan sertifikat di antaranya pengembangan sistem berbasis blockchain untuk manajemen sertifikat elektronik. metode yang digunakan adalah Analisis kebutuhan sistem, desain sistem berbasis blockchian, pengembangan smart contract dan integrasi blockchain ke dalam sistem manajemen sertifikat. Teknik pengujian yang dilakukan adalah pengujian sistem, pengujian kecepatan dan efisiensi, pengujian keamanan sehingga hasil yang di dapat bahwa evaluasi sistem manajemen sertifikat elektronik menggunakan smart contract berbasis blockchain adalah efektif dan aman [14]. Implementasi latform untuk melacak pencapaian pembelajaran di luar transkrip dan sertifikat dengan mempertahankan hash digital dan mengelola akses peran melalui penggunaan smart contract di blockchain, tetapi waktu yang dibutuhkan untuk menulis catatan pembelajaran pembelajaran ke blockchain tidak didasarkan pada akses waktu nyata [15].

Penelitian Seong-Kyu pada tahun 2022 mengimplementasikan model empiris untuk aplikasi sertifikat diploma menggunakan pendekatan Mask CNN untuk mengelompokkan node dan konsensus berbasis blockchain untuk mencegah pemalsuan sertifikat akademik dan memastikan keamanan dan keandalan yang tinggi [16]. Penelitian Manjula dkk pada tahun 2022 membahas analisis kinerja pembuatan e-certificate dan verifikasi menggunakan teknologi blockchain dan IPFS. Pengembangan algoritma untuk generasi dan validasi sertifikat, serta pembuatan antarmuka aplikasi untuk otoritas perguruan tinggi dan perusahaan. Hasil yang didapatkan adalah Penggunaan IPFS mengurangi waktu yang dibutuhkan untuk menghasilkan hash transaksi, dan sistem ini dapat meningkatkan keandalan e-certificate [17].

Berdasarkan penelitian di atas, fokus dari penelitian ini adalah tentang pengembangan Non-Interactive ZKP dan smart contract berbasis blockchain.

Obyek yang diteliti adalah sistem manajemen e-certificate. Analisis identifikasi pengguna atau pemangku kepentingan adalah pihak yang terlibat di dalam jaringan terdesentralisasi. Pengguna dan pemangku kepentingan meliputi lembaga pembuat sertifikat, pihak penerima sertifikat dan pihak verifikator. Lembaga pembuat sertifikat akan membuat e-certificate dengan data yang telah divalidasi dan ditanda tangani secara digital serta merekam e-certificate pada blockchain. Lembaga pembuat sertifikat akan menghasilkan pasangan kunci publik/privat yang unik untuk setiap e-certificate. Kunci privat akan diberikan kepada penerima e-certificate secara aman untuk digunakan dalam proses Non-Interactive ZKP. Kunci publik disimpan atau dibagikan dengan cara yang aman dan dapat diakses oleh verifikator untuk memverifikasi klaim tanpa mengungkapkan detail informasi dari pemilik e-certificate. Smart contract digunakan untuk mengeksekusi tindakan secara otomatis seperti penerbitan, verifikasi, pembaruan serta pencabutan e-certificate. Smart contract baru dilakukan ketika memverifikasi dan merekam bukti Non-Interactive ZKP serta memperbarui status e-certificate. Smart contract akan ditempatkan ke dalam jaringan blockchain dan semua data dan transaksi akan disimpan di dalam buku besar terdistribusi.

1.2 Rumusan Masalah

Rumusan masalah yang dibahas dalam penelitian ini adalah:

- Bagaimana alur proses manajemen e-certificate diterapkan pada teknologi blockchain ?
- 2. Bagaimana mengintegrasikan Non-Interactive ZKP ke dalam jaringan terdesentralisasi dari sistem blockchain ?
- 3. Bagaimana penerapan Non-Interactive ZKP dan smart contract berbasis blockchain dapat meningkatkan efisiensi transaksi dengan tetap menjaga privasi pengguna?
- 4. Bagaimana evaluasi kinerja dari penerapan Non-Interactive dan smart contract berbasis blockchain dapat meningkatkan keamanan transaksi di dalam sistem manajemen e-certificate ?

1.3 Ruang Lingkup Penelitian

Ruang lingkup yang dibahas pada penelitian ini adalah:

- 1. Identifikasi pengguna atau pemangku kepentingan dan alur proses bisnis diperoleh dari observasi dan penelitian terkait.
- Penerapan Non-Interactive ZKP digunakan untuk membuktikan kebenaran klaim e-certificate tanpa mengungkapkan informasi rahasia atau detail informasi dari sertifikat yang berjalan pada jaringan terdesentralisasi.
- 3. Penerapan smart contract digunakan untuk otomatisasi penerbitan e-certificate kepada enttitas yang berhak, otomatisasi perbaruan atau pembatalan e-certificate dan meningkatkan transparansi dan keamanan karena setiap transaksi atau perubahan yang tercatat dalam blockchain tidak dapat diubah.
- 4. Simulasi dan pengujian sistem dilakukan pada mesin lokal (docker).

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah mengembangkan sistem manajemen ecertificate dengan menerapkan Non-Interactive ZKP dan smart contract berbasis blockchain yang dapat meningkatkan efisiensi dan keamanan transaksi dengan tetap menjaga privasi pengguna.

1.5 Kontribusi dan Manfaat Penelitian

Kontribusi dan manfaat yang dapat diperoleh dari penelitian inicadalah sebagai berikut:

- Penelitian dapat digunakan untuk mengembangkan sistem manajemen e-certificate berbasis blockchain dengan mengintegrasikan Non-interactive ZKP untuk menjaga privasi yang efisien.
- Penelitian ini dapat dijadikan referensi di bidang sains dan praktik dalam menerapkan teknologi blockchain di bidang pendidikan atau pelatihan.

3. Penelitian akan mengukur kinerja dari penerapan gabungan teknologi yaitu kriptografi (Non-Interactive ZKP) dengan blockchain.

Bab 2

Telaah Pustaka

2.1 Blockchain

Setiap peserta blockchain terhubung melalui jaringan P2P (peer to peer). Node klien blockchain membantu peserta bergabung ke jaringan. Setiap node memiliki salinan lokal dari keseluruhan daftar yang terhubung. Saat mengambil daftar untuk pertama kalinya, node menghitung semua hash dan kemudian memverifikasi setiap blok baru untuk memastikan integritas blok. Pasangan kunci asimetri kriptografi digunakan untuk mengidentifikasi identitas peserta. Kunci publik berfungsi untuk identitas publik sedangkan kunci pribadi digunakan untuk menandatangani transaksi dan memastikan keaslian. Peserta lain dapat memverifikasi tanda tangan dengan menggunakan kunci publik yang sesuai. Setelah menambah data ke blockchain, sebuah node mengirimkan permintaan transaksi melalui sebagian besar data seperti alamat pengirim dan penerima, transaksi data dan tanda tangan pengirim. Permintaan transaksi ini kemudian akan diproses oleh setiap node atau validator [18].

Strategi penerapan blockchain tergantung pada domain aplikasinya. Tabel 2.1menjelaskan tiga jenis blockchain berdasakan domain aplikasi.

Tabel 2.1: Jenis blockchain [19]

Properti	Otoritas Blockchain			
Froperti	Publik	Konsorsium	Pribadi	

Duonouti	Otoritas Blockchain			
Properti	Publik	Konsorsium	Pribadi	
Tipe kewenangan	Konsensus bersifat publik	Konsensus dikelola oleh kelompok peserta yang berpartisipasi	Konsensus dikelola oleh pemilik tunggal	
Validasi	Siapa saja	Daftar node	yang diizinkan	
transaksi	(penambang)	(val	idator)	
Algoritma konsensus	Tanpa izin (PoW, PoS, PoET)	Dengan izin (PBFT, Tendermint, PoA, etc.)		
Proses interpretasi transaksi	Setiap simpul	Setiap simpul (tanpa izin) atau Daftar simpul yang tela ditentukan sebelumnya (dengan izin)		
Kekekalan data	Ya	Ya		
Jumlah transaksi	Rendah	Tinggi		
Skalabilitas jaringan	Tinggi	Rendah ke sedang		
Infrastruktur	Sangat terde- sentralisasi	Desentralisasi Distribusi		
Fitur	Resistensi terhadap sensor tidak diatur, dukungan lintas-batas aset asli adalah identitas anonim	Diterapkan untuk bisnis yan sangat teregulasi (identitas yang diketahui, standar hukum, dll.) Hasil transaks yang efisien, transaksi tanp biaya, aturan infrastruktur lebih mudah dikelola, perlindungan yang lebih bai terhadap gangguan eksterna		

Properti	Otoritas Blockchain			
Properti	Publik	Konsorsium	Pribadi	
Contoh	Contoh Bitcoin, MultiChain, Quo		in, Quorum,	
teknologi	Ethereum,	m, HyperLedger, Ethermint,		
aplikasi	Ripple, dll	Tendermint, dll		

Sistem blockchain terdiri dari beberapa bagian dan melakukan berbagai hal seperti mengumpulkan transaksi, menyebarkan blok, menambah, mencapai konsensus dan menjaga buku besar mata uang kripto utama [20]. Komponen-komponen ini dapat dikelompokkan berdasarkan fungsinya menggunakan lapisan berbeda. Merancang sistem blockchain menggunakan pendekatan berlapis akan jauh lebih modular dan mudah perawatannya. Misalnya, jika bug ditemukan pada salah satu komponen dalam salah satu lapisan sistem blockchain, maka hanya akan mempengaruhi fungsionalitas lapisan tersebut, sementara lapisan lainnya tidak akan terpengaruh. Penelitian Md. Sadek dkk tahun 2020 medefinisikan empat lapisan blockchain yaitu meta aplikasi, aplikasi, konsensus dan jaringan (Gambar 2.1). Di bawah ini adalah fungsi singkat dari lapisan blockchain:

- Lapisan meta aplikasi: lapisan ini digunakan untuk menyediakan overlay di atas lapisan aplikasi untuk mengeksploitasi interpretasi semantik sistem blockchain untuk tujuan lain pada domain aplikasi lain. Misalnya, Bitcoin telah diujicobakan untuk diadopsi di beberapa domain aplikasi seperti DNS yaitu sistem penamaan terdesentralisasi (Namecoin [21]), catatan hash dengan stempel waktu yang tidak dapat diubah dan terdesentralisasi (Proof of Existence), dan PKI yaitu infrastruktur kunci publik (Certcoin).
- Lapisan aplikasi: lapisan ini mendefiniskan interpretasi semantik dari sistem blockchain. Contoh interpretasi semantik adalah mendefinisikan mata uang kripto dan kemudian menyiapkan protokol bagaimana mata uang tersebut dapat dipertukarkan antar entitas yang berbeda. Contoh lainnya adalah membuat protokol untuk memelihara mesin negara yang mewujudkan kemampuan pemrograman dalam blockchain, yang dapat dieksploitasi untuk membuat dan menyebarkan kode yang tidak dapat diubah (yang disebut smart contract). Aplikasi ini juga mendefinisikan mekanisme pemberian penghargaan dalam sistem blockchain.

- Lapisan konsensus: lapisan ini bertanggung jawab untuk menyediakan mekanisme konsensus terdistribusi di blockchain yang pada dasarnya mengatur urutan blok. Komponen penting dari lapisan ini adalah protokol pembuktian (misalnya, bukti kerja dan bukti kepemilikan) yang digunakan untuk memverifikasi setiap blok, yang pada akhirnya digunakan untuk mencapai konsensus yang diperlukan dalam sistem.
- Lapisan jaringan: lapisan ini bertanggung jawab atas semua operasi jaringan termasuk bergabung dalam jaringan P2P yang mendasarinya, mengikuti jaringan yang mendasarinya dan menerima transaksi dan blok.

Gambar 2.1: Ilustration of Blockchain Layer [22]

Algoritma hashing SHA-1, SHA-2 dan SHA-256 adalah algoritma paling aman dari teknologi blockchain karena konsistensi yang khas dan pengiriman keluaran unik sesuai data masukan. Untuk mengidentifikasi sebuah transaksi, hash adalah kunci unik yang memiliki potensi untuk secara bersamaan menggambarkan seseorang dalam rantai pasokan. SHA adalah badan keamanan nasional yang awanya diproyeksikan untuk federal standar pemrosesan informasi Amerika Serikat. Algoritma memastikan integritas file dan pesan selama transfer, verifikasi kata sandi dan pengenalan data. Panjang pesan SHA-1 kurang dari 264 bit, ukuran data 32 bit dan blok 512 dengan

160 teks yang dapat diproses. Teknologi blockchain terdiri dari campuran elektronik dari blok-blok, setiap blok terdiri dari hash dan data dari blok sebelumnya. Gambar 2.3 menunjukkan komponen hash blok dan jaringan blockchain.

Gambar 2.2: Komponen hash blok dan jaringan blockchain [23]

2.1.1 Properti Blockchain

Sebuah blockchain menunjukkan beberapa properti yang menjadikannya kandidat yang cocok untuk beberapa domain [24]. Berikut ini adalah properti blockchain:

- Konsensus terdistribusi pada rantai (chain state): salah satu sifat penting dari setiap blockchain adalah kemampuannya unruk mencapai konsensus terdistribusi mengenai keadaan rantai tanpa bergantung pada pihak ketiga yang terpercaya. Hal ini membuka peluang untuk membangun dan memanfaatkan sistem di mana status dan interaksi dapat diverifikasi oleh penambang di sistem blockchain publik atau entitas resmi di sistem blockchain hibrid atau pribadi.
- Kekekalan dan ireversibilitas keadaan rantai: konsesus terdistribusi yang melibatkan banyak node memastikan bahwa status rantai menjadi tidak dapat diubah setelah jangka waktu tertentu. Hal ini juga berlaku untuk smart contract yang memungkinkan pengembangan dan pengoperasian program komputer yang tidak dapat diubah.
- Persistensi data (transaksi): data dalam blockchain disimpan secara terdistribusi, memastikan persistensi data selama ada node yang berpartisipasi dalam jaringan P2P.

- Asal data: transaksi adalah mekanisme yang memungkinkan proses penyimpanan data di blockchain manapun. Setiap transaksi harus ditandatangani secara digital dengan menggunakan kriptografi kunci publik yang memastikan bahwa sumber data adalah asli. Dengan mennggabungkannya dengan kekekalan dan ireversibilitas blockcahin, akan memberikan instrumen non-penyangkalan yang kuat untuk data apa pun di dalam blockchain.
- Kontrol data terdistribusi: blockchain memastikan bahwa data yang disimpan dalam rantai atau diambil dari rantai dapat dilakukan secara terdistribusi dan tidak menunjukkan satu titik kegagalan pun.
- Akuntabilitas dan transparansi: ketika keadaan rantai dan interaksi antar entitas dapat diverifikasi oleh entitas resmi mana pun, blockchain mendorong akuntabilitas dan transparansi.

2.1.2 Konsensus Blockchain

Sistem blockchain adalah sistem terdistribusi yang mengandalkan algoritma konsensus untuk memastikan kesepakatan tentang status data tertentu di antara node yang didistribusikan. Algoritma konsensus adalah komponen utama yang secara langsung menentukan kinerja dan perilaku sistem. Merancang dan menerapkan protokol konsensus adalah tugas yang menantang karena perlu mempertimbangkan masalah penting seperti ketahanan terhadap kegagalan node, perilaku node, partisi jaringan, latensi jaringan dan input yang rusak [25]. Node yang terdistribusi harus memenuhi dua persyaratan penting untuk mencapai dan mempertahankan konsensus yaitu keadaan mesin (state machine) deterministik dan protokol konsensus untuk menyebarkan masukan secara tepat waktu dan memastikan siaran atom diantara node yang berpartisipasi. Tabel 2.2menunjukkan sifat-sifat siaran atom dalam konsesus terdistribusi.[26] Tabel 2.3 menunjukkan properti protokol konsensus terdistribusi.

Mekanisme konsensus umum dalam sistem blockchain mencakup PoW (Proof of Work), PoS (Proof of Stake), DPoS (Delegated Proof of Stake), PBFT (Practical Byzantine Fault Tolerance) dan RAFT. Beberapa mekanisme konsensus tidak semua cocok untuk diterapkan pada semua skenario aplikasi [27].

Tabel 2.2: Siaran atom properti protokol konsensus terdistribusi

Properti	Catatan
Validitas	Hal ini menjamin bahwa jika sebuah pesan
	disiarkan oleh node yang valid, maka pesan
	terssebut akan disertakan dengan benar
	dalam protokol konsensus.
Perjanjian	Hal ini untuk menjamin bahwa jika sebuah
	pesan dikirimkan ke node yang valid, pesan
	tersebut pada akhirnya akan terkirim ke
	semua node yang valid.
Integritas	Hal ini untuk memastikan bahwa pesan
	disiarkan hanya sekali oleh node yang valid.
Total Order Hal ini untuk memastikan bahwa sem	
	node menyetujui urutan semua order yang
	dikirimkan.

1. Konsensus Proof of Work (PoW)

PoW adalah salah satu mekanisme konsensus paling umum dalam blockchain dan digunakan oleh sebagian besar blockchain publik. PoW diterapkan pada bitcoin, di mana penambang menerima imbalan atas kerja mereka berdasarkan komputasinya. Algoritma hash yang ada di blockchain biasanya digunakan untuk menghitung nilai hash [28]. Nilai hash tidak dihitung secara terpisah untuk setiap transaksi, dihitung secara konsisten setelah pembuatan blok. Algoritma hash SHA-256 membutuhkan banyak sumber daya komputasi. Penambang yang memiliki kekuatan komputasi yang lebih besar dapat mengemas transaksi untuk menghasilkan blok lebih cepat. Namun, blok yang dihasilkan hanya oleh satu penambang teridentifikasi, hal ini mengakibatkan pemborosan sumber daya yang sangat besar. Gambar 2.3 menunjukkan proses dari konsensus PoW. Blok akan dibuat jika nilai hash penambang sama dengan nilai target. Jika tidak, penambang akan menyesuaikan nonce untuk menghitung ulang. Fitur mekanisme konsensus PoW dapat menjamin keamanan penambang.

- Kelebihan dari mekanisme konsensus PoW adalah sebagai berikut:
 - (a) Desentralisasi yang menyeluruh.

Tabel 2.3: Properti protokol konsensus terdistribusi

Properti	Catatan
Keamanan /	Protokol konsensus dianggap aman (atau
Konsistensi	konsisten) hanya ketika semua node
	menghasilkan keluaran valid yang sama
	sesuai dengan aturan protokol untuk siaran
	atom yang sama.
Ketersediaan	Jika semua node yang berpartisipasi dan
	tidak mengalami kesalahan menghasilkan
	keluaran (menunjukkan penghentian
	protokol), maka protokol tersebut dianggap
	aktif.
Toleransi	Hal ini menunjukkan kemampuan jaringan
Kesalahan	untuk bekerja sebagaimana mestinya di
	tengah kegagalan node

- (b) Untuk menjamin keamanannya, biaya serangan lebih tinggi daripada penambang asli.
- (c) Proses konsensus dapat menerima banyak node.
- (d) Semakin besar daya komputasi yang digunakan suatu node, semakin besar kemungkinan node tersebut mendapat hadiah blok baru.
- Kekurangan dari mekanisme konsensus PoW adalah sebagai berikut:
 - (a) Banyak tenaga komputasi dan energi yang diperlukan untuk penambangan.
 - (b) Konsensus dicapai dalam waktu yang lama dan waktu konfirmasi blok sulit dipersingkat untuk menjamin desentralisasi.
 - (c) Untuk membuat blockchain baru harus menemukan algoritma hash baru atau menghadapi serangan kekuatan komputasi bitcoin.

Untuk mengatasi permasalahan yang ada di dalam konsensus PoW, beberapa solusi seperti . The Greedy Heaviest-Observed Sub-Tree (GHOST) [29] mengeksploitasi strategi sub-pohon untuk menghasilkan rantai

utama untuk penambang egois. Ethereum [28] menggunakan pohon awalan merkel dan bukan pohon merkel, dan memperkenalkan struktur blok paman yang secara signifikan mengurangi waktu pembuatan blok, sehingga meningkatkan throughput hingga 15 TPS. Bitcoin-NG [30] memperbaiki struktur blok dengan membaginya menjadiblok kunciuntuk pemilihan pemimpin dan mikroblok karena memuat entri buku besar, memberikan ide baru untuk perluasan blockchain.

Gambar 2.3: Mekanisme konsensus PoW [31]

2. Konsensus Proof of Stake (PoS)

Mekanisme konsensus PoS menghemat waktu dan daya komputasi dibandingkan dengan mekanisme konsensus PoW. Blackcoin dan Ethereum adalah contoh proyek berbasi blockchain yang secara bertahap beralih dari PoW ke PoS. Dalam konsensus PoS semua rencana harus disetujui oleh penambang dengan mayoritas saham. Gambar 2.4 menunjukkan proses dari konsensus PoS yang dijabarkan sebagai berikut:

(a) Blokir pemilihan produsen. Penambang menjamin koin mereka untuk dijadikan mata uang. Semakin panjang mata uang, semakin besar kemungkinan penambang menjadi produsen blok, yang memenuhi kesenjangan di mana hash (block_header) adalah nilai hash dan coinage adalah jumlah dikalikan dengan sisa waktu penggunaan koin yang dimiliki seseorang penambang. Koin mempengaruhi kemampuan menghitung nilai hash daripada daya komputasi. Oleh karena itu, masalah pemborosan sumber daya dalam jumlah besar diselesaikan melalui mekanisme konsensus

PoS.

- (b) Blokir ususlan. Produsen blok mengumpulkan transaksi di blockchain. Kemudian transaksi yang sah tersebut dikemas ke dalam blok baru yang akan disiarkan di sistem blockchain.
- (c) Validasi blok. Node verifikasi memverifikasi blok baru. Jika verifikasi berhasil, blok ditambahkan untuk memperbarui blockchain. Kemudian putaran konsensus berikutnya dimulai. Jika tidak, blok yang diusulkan akan dibuang dan produsen blok baru dipilih di blockchain.

Kelebihan dari konsensus PoS adalah sebagai berikut:

- (a) Menghemat banyak daya komputasi dan energi karena node tidak mengonsumsi daya komputasi ekstra untuk penambang.
- (b) Menghemat waktu dalam menghasilkan blok dan mencapai konsensus, sehingga meningkatkan efisiensi konsensus.

Kekurangan dari konsesnsus PoS adalah sebagai berikut:

- (a) Algoritma rumit dan sulit diimplementasikan.
- (b) Penambang menyimpan token untuk mendapatkan keuntungan dibandingkan menjualnya, sehingga membuat penambang yang memiliki lebih banyak token rentan.
- (c) Penambang berbiaya rendah dan mudah disrang, sehingga keamanannya buruk.

Untuk mengatasi permasalahan yang ada di konsensus PoS, beberapa solusi seperti: Blackcoin [?] telah meningkatkan ketimpangan yang harus dipenuhi untuk penambangan sebagai proofhash < target * koin. Node harus tetap online untuk akumulasi taruhan guna menyelesaikan serangan koin. Ouroboros [32] menambahkan konsep periode. Jika node untuk menghasilkan blok tidak online pada setiap periode, putaran tidak menghasilkan blok. Verifikator memverifikasi legalitas transaksi dan mengemas transaksi yang sah ke node. Oleh karena itu, serangan jarak jauh teratasi.

3. Konsensus Delegated Proof of Stake (DPoS)

Gambar 2.4: Mekanisme konsensus PoS [31]

Konsensus DPoS adalah evolusi dari konsensus PoS. Setiap pemegang saham memiliki pengaruh sesuai dengan jumlah saham mereka, dan suara 51% pemegang saham tidak dapat diubaj dan mengikat. Setiap pemegang saham juga dapat memberikan hak suaranya kepada delegasi untuk mencapai persetujuan 51%. Setiap delegasi diberi waktu untuk menghasilkan blok. Blok baru dapat dibuat setiap 30 detik di DPoS. Delegasi akan menerima pembayaran sebesar 10% dari biaya transaksi yang terdapat dalam satu blok. Jika seorang delegasi tidak memenuhi tanggung jawabnya, seperti tidak menghasilkan blok, hak suaranya akan dicabut. Selanjutnya, delegasi baru akan dipilih untuk menggantikannya di jaringan blockchain. Gambar 2.5 menunjukkan proses dari konsensus DPoS.

Kelebihan dari konsensus DPoS adalah sebagai berikut:

- (a) Menghemat energi dan daya komputasi karena mirip dengan konsensus PoS.
- (b) Menghemat waktu dalam menghasilkan blok baru dan meningkatkna efisiensi pencapaian konsensus.
- (c) Konsensus efektif dapat dicapai melalui verifikasi delegasi terpilih.

Kekurangan dari konsensus DPoS adalah sebagai berikut:

- (a) Kurang terdesentralisasi
- (b) Masih memerlukan koin dalam mekanisme konsensus DPoS.
- (c) Node dengan hak tinggi dapat memilih dirinya sendiri dan menyuap node lain untuk memilihnya dalam proses pemilihan delegasi

yang menyebabkan kecurangan.

Mekanisme konsensus DPoS dapat memverifikasi transaksi pada tingkat kedua dan memberikan keamanan yang lebih tinggi dibandingkan PoS yang ada dalam waktu singkat, menahan serangan dengan kepemilikan kurang dari 51%. Setiap perubahan pada sistem (termasuk pembaruan versi, penambahan fungsi, modifikasi taruhan, dll.) harus disetujui oleh lebih dari 51% pemegang saham. Blok-blok tersebut dihasilkan secara berurutan, artinya probabilitas transaksi dari awal siaran hingga lebih dari 1/2 blok yang dikonfirmasi adalah 99,9%. Dalam keadaan normal, pemblokiran baru dianggap tidak dapat diubah jika lebih dari separuh saksi memberikan konfirmasi. Throughput EOS bisa mencapai jutaan, namun pemilihan saksi menghabiskan banyak sumber daya sehingga menghasilkan throughput yang tidak memuaskan. Dan pembuatan blok tersebut sangat bergantung pada 21 saksi sehingga menimbulkan masalah sentralisasi.

Gambar 2.5: Mekanisme konsensus DPoS [31]

4. Konsensus PBFT

PBFT adalah protokol replikasi mesin status seminalis, yang mengharuskan status dipertahankan olrh semua node sistem. PBFT mengizinkan tidak lebih dari sepertiga jumlah total node dalam jaringan sebagai node Bizantium. Ini terutama terdiri dari tiga protokol dasar, di antaranya protokol konsistensi adalah intinya [33]. Konsensus PBFT, klien dan node konsensus (termasuk node utama dan cadangan) bekerja sama untuk menyelesaikan proses konsensus. Spesifik, seluruh node

jaringan memilih blok penghasil node utama. Node utama akan menerima permintaan klien. Setelah pihak utama dan cadangan menyetujui permintaan, akan diputuskan apakah permintaan tersebut dapat dilaksanakan atau tidak. Gambar 2.6 menunjukkan proses dari konsensus PBFT yang dijabarkan sebagai berikut:

- (a) Permintaan (request): Klien mengirimkan permintaan ke node utama.
- (b) Pra-persiapan (pre-prepare): Node utama menetapkan nomor urut yang sesuai dengan permintaan. Kemudian pesan pra-persiapan dibuat dan disiarkan ke node cadangan.
- (c) Persiapan (prepare): Setelah menerima pesan pra-persiapan, setiap node cadangan menyiarkan sebuah pesan persiapan ke node cadangan lainnya. Semua node cadangan menyiarkan pesan satu sama lain.
- (d) Commit: Semua node memvalidasi pesan dan menyiarkan pesan commit. Permintaan akan dieksekusi jika verifikasi berhasil.
- (e) Reply: Klien menunggu tanggapan dari node yang berbeda, Jika klien menerima respon yang benar f+1 pesan balasan yang identik (f adalah jumlah bizantium), ini mengindikasikan bahwa node-node dalam jaringan telah mencapai konsensus.

Kelebihan dari konsensus PBFT adalah sebagai berikut:

- (a) Konsistensi dan kebenaran hasil konsensus yang tinggi.
- (b) Waktu konfirmasi konsensus cepat.

Kekurangan dari konsensus PBFT adalah sebagai berikut:

- (a) Kompleksitas algoritma yang tinggi.
- (b) Efidiensi konsensus menjadi rendah jika terlalu banyak node yang bergabung. Node dapat mengakses sistem dan menyiarkan node komunikasi hanya setelah diotentikasi, sehingga menghasilkan skalabilitas mekanisme konsensus PBFT yang buruk. Node utama mengurutkan pesan permintaan dan mengusulkan blok dan

mengirimkan pesan pra-persiapan ke semua node konsensus dengan waktu kompleksitas O(n). Karena penerapan mode komunikasi banyak ke banyak, setiap cadangan harus menyiarkan pesan persiapan dan commit dengan kompleksitas waktu O(2n). Kemudian, kompleksitas waktu dari semua pencadangan adalah O(2n) x $O(n) = O(2n^2)$. Oleh karena itu, kompleksitas waktu dari protokol konsistensi adalah $O(n^2)$. Selain itu, kinerja protokol konsistensi menurun secara signifikan seiring dengan bertambahnya jumlah node.

Gambar 2.6: Mekanisme konsensus PBFT [31]

5. Konsensus RAFT

RAFT adalah protokol konsistensi yang kuat untuk mencapai konsensus di bawah kegagalan non-bizantium [34]. Ini menjamin bahwa dalam kasus kegagalan node-bizantium, sistem masih dapat menangani permintaan klien. Klaster RAFT biasanya memiliki lima node, sehingga sistem kehilangan dua node. Setiap node mempunyai tiga keadaan, yaitu pemimpin, pengikut dan kandidat. Pemimpin bertanggung jawab untuk menyinkronkan log, mengatasi permintaan klien dan memantau node tetap berhubungan dengan pengikut. Pengikut, saat memulai, semua node berada dalam status pengikut. Jika node tidak menerima pesan pemimpin, maka node akan menjadi kandidat. Kandidat bertanggung jawab untuk memilih. Setelah mengubah pengikut menjadi kandidat, semua node memulai pemilihan. Setelah pemimpin terpilih

maka calon tersebut mengubah statusnya menjadi pemimpin. Gambar 2.7 menunjukkan proses dari konsensus RAFT dan terdiri dari dua tahap yaitu sebagai berikut:

(a) Pemilihan pemimpin

- i. Semua node dimulai sebagai pengikut dan pemilihan dimuali.
- ii. Jika pengikut tidak menerima permintaan utama dari pemimpin, node tersebut menjadi node kandidat dan tetap demikian sampai seorang pemimpin terpilih atau sampai putaran pemilihan baru dimulai.
- iii. Jika lebih dari separuh node setuju makan kandidat tersebut akan mengirimkan permintaan suaranya ke node lain dan menjadi pemimpin. Jika pemilihan berakhir tanpa pemenang maka pemilihan baru dimuali.
- iv. Setelah pemilihan berakhir, pemimpin secara berkala mengirimkan inti ke node lain untuk menunjukkan bahwa pemimpin masih berjalan. Kemudian waktu pemilihan untuk node ini direset.

(b) Replikasi log

- i. Klien menyampaikan perintah kepada pemimpin. Setelah menerima perintah, pemimpin menambahkan perintah ke log lokal. Jika status perintah tidak di commit maka mesin replikasi tidak akan menjalankan perintah.
- ii. Pemimpin kemudian menyalin perintah ke node lain dan menunggu mereka menulis perintah ke log. Jika node yang ada gagal, pemimpin akan mencoba lagi hingga semua node telah menyimpan perintah ke log. Kemudian pemimpin menyampaikan perintah dan mengembalikan hasilnya kepada klien.

Pemimpin mengirimkan perintah ke node lain melalui inti berikutnya. Node lain kemudian menerapkan perintah dari pemimpin ke status mesin. Kemudian setiap node tetap konsisten.

Kelebihan dari konsensus RAFT adalah sebagai berikut:

(a) Menawarkan efisiensi transmisi jaringan dan konsensus yang tinggi.

- (b) Menghemat energi karena tidak ada penambangan.
- (c) Algoritma lebih sederhana karena tidak mempertimbangkan nodebizantium.

Kekurangan dari konsensus RAFT adalah sebagai berikut:

- (a) Desentralisasi tidak tuntas karena terlalu bergantung pada pemimpin.
- (b) Terdapat percabangan singkat dalam jaringan karena sejumlah fluktuasi atau persaingan jaringan yang menyebabkan konfirmasi berulang.
- (c) Performa buruk dalam skenario konkurensi tinggi karena pemungutan suara berurutan.

Gambar 2.7: Mekanisme konsensus PBFT [31]

Gambar 2.8 menunjukkan hasil perbandingan mekanisme konsesus.

	PoW	PoS	DPoS	PBFT	RAFT
Decentralization Numbers of nodes Energy consumption Block generation Transaction confirmation Scalability Throughput Consistency Fault tolerance Permission Example	Complete Unlimited High Long Long High Low Probability 50% No Bitcoin	Complete Unlimited Low Short Short High Low Probability 50% No Peercoin	Complete Unlimited Low Short Short High High Probability 50% No EOS	Incomplete Limited Low Short Immediate Low High Finality 33% Yes Tendermint	Incomplete Unlimited Low Short Immediate Low High Finality 50% Yes Etcd

Gambar 2.8: Mekanisme konsensus PBFT [31]

2.2 Ethereum

Ethereum adalah platform terbuka dan terdesentralisasi yang menampilkan kelengkapan turing dan mendukung berbagai aplikasi turunan. Sebagian besar smart contract dan jaringan terdesentralisasi dibuat dengan menggunakan ethereum [35]. Jika blockchain bitcoin dianggap sebagai jaringan pembayaran global, maka ethereum akan menjadi sistem komputasi global. Ethereum adalah sebuah platform terbuka yang mirip dengan Android (dikembangkan Google). Ini menyediakan infrastruktur yang memungkinkan pengembang untuk membuat aplikasi. infrastruktur dikembangkan dan dikelola oleh pengembang ethereum. Karakteristik utama ethereum adalah sebagai berikut:

- 1. Tidak dapat dirusak, pihak ketiga tidak dapat memodifikais data apapun.
- 2. Aman, kesalahan yang berasal dari faktor personil dapat dihindari.
- 3. Permanen, blockchain tidak berhenti beroperasi meskipun sebuah komputer atau server individu mengalami kerusakan.

EVM (Ethereum Virtual Machine) adalah blockchain yang dapat diprogram. EVM memungkinkan pengembang untuk menjalankan program apa pun dengan cara yang mereka inginkan. Pengembang menginstruksikan EVM untuk menjalankan aplikasi dengan menggunakan bahasa tingkat tinggi yang

disebut solidity . Solidity adalah bahasa pemrograman yang digunakan untuk mrngimplementasikan smart contract dan mirip seperti JavaScript. Setelah smart contract yang diprogram dengan solidity selesai, sebuah kompiler yang disebut solc diperlukan untuk mengubah kode solidity menjadi bytecode kontrak yang kemudian ditafsirkan oleh EVM, Selanjutnya instruksi yang telah dikompilasi digunakan dalam ethereum.

2.3 Smart contract

Smart contract adalah logika dan kode khusus yang disebarkan dan dijalankan dalam lingkungan virtual platform blockchain yang mengatur transaksi yang didigitalkan dan dikodifikasikan antar akun. Smart contract membantu dalam mentransfer aset digital antar akun sebagai transaksi atom. Smart contract sangat mirip dengan kelas berorientasi objek karena dapat membuat dan menggunakan objek dari kelas lain. Keunggulan dari smart contract dapat membuat instance dari kontrak dan menjalankan fungsi untuk melihat dan memperbaharui data kontrak bersama dengan eksekusi beberapa logika [18].

Tujuan dari smart contract dalam blockchain adalah mendukung pengelolaan siklus lengkap dari kontrak legal yang cerdas termasuk pembuatan template dokumen legal dan perjanjian oleh pihak-pihak yang terkait yang bersifat transparan dan menjadikan efisiensi komersial, menurunkan biaya transaksi serta memungkinkan transaksi anonim.Smart contract dapat menambah atau membaca data, tetapi memperbaharui data sebenarnya merupakan fungsi penambahan data yang mengubah keadaan saat ini. Smart contract paling baik digunakan untuk membaca status saat ini, menjalankan logika pada status tersebut dan memperbarui (menambahkan)status. Klien smart contract biasanya melakukan logika tingkat tinggi aplikasi dan menyakinan UX. Klien tidak hanya bertindak sebagai antarmuka ke smart contract, namun dalam banyak hal, mewakili aplikasi kepada pengguna.

Cara kerja smart contract pada blockchain, di antaranya sebagai berikut:

- 1. Pembuat kontrak : Seorang pengembang menulis kode smart contract yang mencakup aturan dan ketentuan transaksi atau perjanjian.
- 2. Penyebaran di blockchain : Smart contract tersebut kemudian diterbitkan ke blockchain. Setelah diterbitkan, kontrak tersebut menjadi

tidak dapat diubah dan dapat diakses oleh siapa saja di jaringan.

- 3. Pemicu eksekusi : Smart contract dieksekusi secara otomatis ketika kondisi yang ditentukan dalam kontrak terpenuhi. Ini bisa berupa penerimaan pembayaran, pencapaian tanggal tertentu atau memenuhi syarat lain yang telah ditentukan dalam kode.
- 4. Verifikasi dan eksekusi: Transaksi yang dihasilkan oleh eksekusi smart contract diverifikasi oleh jaringan blockchain dan kemudian ditambahkan ke dalam blockchain sebagai blok baru. Ini menjamin keamanan dan ketidakberubahan catatan transaksi.
- 5. Otomatisasi dan efisiensi : Smart contract menghilangkan kebutuhan untuk perantara, mengurangi biaya transaksi dan meningkatkan efisiensi dengan menjalankan proses secara otomatis.

Smart contract yang digunakan dalam blockchain disalin ke setiap node untuk mencegah perusakan kontrak. Dengan operasi terkait dijalankan komputer dan layanan yang disediakan oleh Ethereum, kesalahan manusia dapat dikurangi untuk menghindari perselisihan mengenai kontrak tersebut. Gambar 2.9 menunjukkan contoh bagaimana pengembang dapat dengan mudah menggunakan smart contract untuk transaksi mata uang kripto. Bahasa pemrograman tingkat tinggi yang digunakan adalah solidity, serpent dan LLL. Saat ini sebagaian pengembang menggunakan solidity untuk menulis smart contract dan mengkompilasi instruksi ke dalam bytecode untukdieksekusi oleh EVM.

Gambar 2.9: Penggunaan smart contract [36]

2.4 Zero Knowledge Proof (ZKP)

Konsep dasar ZKP adalah pembuktian pernyataan melalui protokol interaktif[37]. Dalam proses ini, pembuktian memberikan sejumlah informasi kepada verifikato sehingga dapat memverifikasi bahwa informasi tersebut akurat dan yakin akan kebenarannya tanpa mengetahui bagaimana pembukti mendapatkan informasi tersebut. Informasi ini mungkin berkaitan dengam pembuktian tentang gambar hash asli atau kesadaran anggota dalam pohon merkle dengan diketahui akar merkle. Struktur praktis untuk NIZK (Non-Interactive Zero Knowledge) telah didemonstrasikan di Ethernet.

ZKP sering digunakan dalam penerapan kriptografi, seperti konstruksi skema enkripsi kunci publik, tanda tangan digital, sistem pemungutan suara, sistem lelang, e-cash, komputasi multiparty yang aman dan komputasi yang dialihdayakan yang dapat diverifikasi. Parameter yang dapat digunakan untuk mengukur kinerja ZKP seperti waktu pembuktian, waktu pemeriksaan, ukuran pesan yang dipertukarkan, jumlah putaran di mana prover dan verifier berinteraksi. Interaksi dari sebuah sistem pembuktian diukur dengan jumlah pesan yang dikirimkan oleh prover kepada verify. Sebuah pergerakan

terdiri dari satu pesan dari satu pihak ke pihak lainnya, sementara sepasang gerakan berurutan membuat sebuah putaran

Definisi formal NIZK dijelaskan di bawah ini:

- KeyGen (1^{λ}) -> crs: input adalah parameter keamanan λ ; output adalah string referensi umum crs.
- Prov(crs, u, w) -> Π : input adalah misal udari beberapan NP-language L_R dan para saksi w; keluaran adalah ZKP Π
- Verify $(crs, u, \Pi) \rightarrow \frac{1}{0}$: input adalah bukti Π ; keluaran adalah 1 untuk penerimaan atau 0 untuk penolakan.

ZKP memiliki tiga sifat utama yang harus dipenuhi, di antaranya sebagai berikut [38]:

- 1. Kelengkapan: menyatakan bahwa jika pembukti (prover) dan pemeriksa (verifier) mengikuti protokol maka pemeriksa menerima validitas dari sebuah pernyataan yang benar.
- 2. Soundness: menjamin bahwa pembukti tidak dapat menipu pemeriksa untuk menerima validitas pernyataan yang salah, bahkan jika pembukti menyimpang dari spesifikasi protokol.
- 3. Zero-knowledge: mencegah verifier untuk mempelajari apa pun dari protokol selain dari validitas pernyataan.

2.5 State of the Art

Tabel 2.4 menjelaskan terkait penelitian terkini yang membahas terkait penerapan kriptografi yaitu Zero Knowledge Proof dengan blockchain serta pengembangan sistem manajemen e-certificate. Potensi yang bisa didapatkan dari kesenjangan literatur penelitian adalah optimalisasi kinerja yang dihasilkan, skalabilitas dan perbandingan metode yang digunakan dari sisi protokol ZKP dan smart contract pada teknologi blockchain.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama Peneliti	Judul	Metode	Hasil
1	Ya-Che Tsai,	An Improved	Skema Non-Interactive ZKRP	Skema memiliki fitur non-interaktif dan
	Raylin	Non-	dengan	efisiensi yang
	Tso,	Interactive	memanfaatkan smart	membuat cocok
	Zi-Yuan	Zero-	contract di Ethereum	untuk diterapkan
	Liu dan	Knowledge	untuk memastikan	diberbagai aplikasi.
	Kung		keamanan dan	Solusi yang
	Chen		fleksibilitas.	didapatkan lebih
	(2019)		Melakukan	efisien dari penelitian
			perbandingan	sebelumnya.
			efisiensi dan	
			keamanan ZKRP	
			yang diusulkan	
			dengan skema yang	
			sudah ada	
2	Harikrishna	n Secure	Penggunaan ZKP	Penggunaan ZKP
	M dan	Digital	seperti zkSNARKS	seperti zkSNARKS
	Lakshmy	Service	dan zkSTARK untuk	dan zkSTARK untuk
	KV (2019)	Payments	meningkatkan	meningkatkan
		using Zero	keamanan dan	keamanan dan
		Knowle-	privasi dalam	privasi dalam
		dge Proof	pembayaran layanan	pembayaran layanan
		in Distri-	digital di lingkungan	digital dilingkungan
		buted	jaringan terdistribusi	jaringan terdistribusi
		Network		memiliki protensi
				yang besar dalam
				melindungi privasi
				pengguna.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama Peneliti	Judul	Metode	Hasil
3	Andreas Cerulli dan Jens Groth (2019)	Efficient zero- knowledge proofs and their ap- plication	Pendekatan penelitian kualitatif dan deskriptif naratif untuk mengumpulkan dan menganalisis data dengan berfokus pada teknologi kriptografi yaitu ZKP	Kontribusi pada struktur ZKP yang efisien secara komputasi untuk pemenuhan sirkuit aritmatik dan eksekusi RAM yang benar dan mengatasi hambatan efisiensi protokol kriptografi
4	Claudia Daniela Pop , Marcel Antal, Tudor Cioara, Ionut Anghel dan Ioan Salomie (2020)	Blockchain and Demand Response: Zero-Knowledge Proofs for Energy Transactions Privacy	Implementasi manajemen respons permintaan terdesentralisasi berbasis blockchain yang diperkaya dengan solusi ZKP unruk menjaga privasi data produsen energi. Smart contract digunakan untuk memvalidasi aktivitas produsen dalam program respons permintaan	Implementasi prototipe berbasis blockchain untuk manajemen response permintaan terdesentralisasi yang diperkaya dengan solusi ZKP untuk menjaga privasi data produsen energi. Evaluasi menunjukan bahwa solusi dapat memastikan privasi data energi produsen yang disimpan di blockchain dan mendeteksi inkonsistensi data yang menunjukkan adanya manipulasi data.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama	Judul	Metode	Hasil
	Peneliti			
5	Ling Cao	Anonymous	Pemasalahan	Implementasi
	dan Zheyi	scheme for	logaritma diskrit	zkSNARKS , skema
	Wan	blockchain	pada kurva eliptik	komitmen pedersedn
	(2020)	atomic	dan skema komitmen	dan ZKP sangat
		swap	pedersedn dan	relevan dengan
		based on	zkSNARKS untuk	konteks pertukaran
		zero-	memnfaatkan	aset anonim dan
		knowledge	teknologi kriptografi	aman . Penggunaan
		proof	untuk menciptakan	smart contract dalam
			sistem transaksi yang	blockchain
			aman, andal dan	menciptakan
			anonim.	pertukaran aset
				secara otomatis.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama	Judul	Metode	Hasil
	Peneliti			
6	Swagatika	A unified	Implementasi	Proposal sistem
	Sahoo,	blockchain-	blockchain pada	manajemen e-waste
	Arnab	based	platform Ethereum	berbasis blockchain
	Mukherjee	platform	pada manajemen	yang mencakup
	dan Raju	for global	e-waste. Evaluasi	transparansi,
	Halder	e-waste	eksperimental	pelacakan,
	(2021)	manage-	menunjukan	penghematan biaya
		ment	kelayakan dan	dan pemantauan
			kinerja sistem yang	otomatis dari
			diusulkan.	pembuat e-waste
				menggunakan
				ethereum. Validasi
				identitas yang
				berfokus pada
				privasi, tokenisasi
				untuk pengalihan
				produk, bak sampah
				pintar berbasis IoT,
				dan mekanisme
				pembayaran.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama Peneliti	Judul	Metode	Hasil
7	Wanxin Li,	Location-	Teknologi ZKP dan	Protokol verifikasi
	Collin	aware	blockchain berizin.	berbasis blockchain
	Meese,	Verifica-	Prototipe dilakukan	dan privacy
	Zijia Gary	tion for	menggunakan	menggunakan ZKP
	Zhong,	Autono-	platform Hyperledger	dan teknologi
	Hao Guo	mous	dan diuji	blockchain berizin
	dan Mark	Truck	menggunakan alat	dapat meningkatkan
	Nejad	Platooning	benchmark	efisiensi dan
	(2021)	Based on	Hyperledger Caliper.	keamanan platooning
		Blockcha-	Sistem blockchain	truk otonom di dunia
		in and	berizin juga	nyata. Eksperimen
		Zero-	digunakan sebagai	yang dilakukan
		knowledge	pengendali arsitektur	menunjukkan bahwa
		Proof	dan sebagai buku	sistem yang
			besar transaksi yang	diusulkan dapat
			tidak dapat	diterapkan dalam
			dimanipulasi untuk	platooning truk
			merekam kunci	otonom dengan
			verifikator, skor	kinerja yang sesuai
			reputasi, dan catatan	untuk kebutuhan
			platoon.	dunia nyata.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama	Judul	Metode	Hasil
	Peneliti			
8	Lang Qin,	A Distribu-	Integrasi AI, ZKP dan	Pengembangan
	Feng Ma,	ted	blockchain di mana:	skema otentikasi
	Hao Geng	Authenti-	AI digunakan untuk	identitas yang
	Xie dan	cation	pengenalan wajah	didistribusikan
	Sheng Li	Scheme	untuk memastikan	berbasis ZKP pada
	Zhang	Based on	keunikan dan	sistem blockchain.
	(2021)	Zero-	keabsahan identitas	Skema ini
		knowledge	pengguna, ZKP	menggunakan teknik
		Proof	digunakan untuk	pengenalan wajah
			mengenkripsi dan	untuk memastikan
			mendukung data	keabsahan identitas
			wajah guna	serta mengendalikan
			mencegah informasi	node-node jahat.
			identitas pengguna	
			bocor dan blockchain	
			digunakan untuk	
			infrastruktur utama	
			untuk menyimpan	
			dan memproses data	
			identitas pengguna.	

Tabel 2.4: Perbandingan penelitian terkait

No	Nama	Judul	Metode	Hasil
	Peneliti			
9	Lei Liu,	Computer	Analisis kebutuhan	Pengembangan
	Jiahua	Assisted	sistem, desain sistem	sistem berbasis
	Wan dan	Design of	berbasis blockchian,	blockchain untuk
	Yue W	Intelligent	pengembangan smart	manajemen sertifikat
	(2022)	E-	contract dan	elektronik. Teknik
		Certificate	integrasi blockchain	pengujian yang
		System	ke dalam sistem	dilakukan adalah
		Based on	manajemen sertifikat.	pengujian sistem,
		Blockcha-		pengujian kecepatan
		in		dan efisiensi,
		Technolo-		pengujian keamanan
		gy		sehingga di dapat
				bahwa evaluasi
				sistem adalah efektif
				dan aman.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama Peneliti	Judul	Metode	Hasil
10	Seong-Kyu	Blockchain	Manajemen node	Implementasi Mask
	Kim	Smart	blockchain, AI	CNN dan konsensusu
	(2022)	Contract	menggunakan Mask	Pow dan PoS serta
		to Prevent	CNN dan	penerapan model
		Forgery of	pengelompokkan	empiris untuk
		Degree	node. Penelitian ini	aplikasi sertifikasi
		Certifica-	menggunakan	diploma. Hasil
		tes:	algoritma konsensus	menunjukkan
		Artificial	dan model empiris	blockchain dapat
		Intelligen-	untuk aplikasi	digunakan untuk
		ce	sertifikat diploma	mencegah pemalsuan
		Consensus		sertifikat akademik
		Algorithm		dan memastikan
				keamanan serta
				otentikasi sertifikat
				secara efisien dan
				memiliki tingkat
				keandalan yang
				tinggi.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama	Judul	Metode	Hasil
	Peneliti			
11	Manjula K	Performance	Analisis kinerja	Penggunaan IPFS
	Pawar, dkk	Analysis of	pembuatan	mengurangi waktu
	(2022)	E-	e-sertifikat dan	yang dibutuhkan
		Certificate	verifikasi	untuk menghasilkan
		Genera-	menggunakan	hash transaksi, dan
		tion and	teknologi blockchain	sistem ini dapat
		Verifica-	dan IPFS,	meningkatkan
		tion using	pengembangan	keandalan sertifikat
		Blockcha-	algoritma untuk	elektronik.
		in and	generasi dan validasi	
		IPFS	sertifikat, serta	
			pembuatan	
			antarmuka aplikasi	
			untuk otoritas	
			perguruan tinggi dan	
			perusahaan	

Tabel 2.4: Perbandingan penelitian terkait

No	Nama Peneliti	Judul	Metode	Hasil
12	Peneliti Zhuoliang Qiu, Zhijun Xie, Xianliang Jiang, Chuan Ran dan Kewei Chen (2023)	Novel Blockchain and Zero- Knowledge Proof Technology- Driven Car Insurance	Penggunaan blockchain, smart contract dan ZKP untuk memastikan integritas data asuransi. pelaksanaan terdesentralisasi dari proses klaim asuransi, dan menjaga privasi data asuransi dan identitas pengguna. Analisis keamanan yang mendalam dan evaluasi kinerja dari	Kerangka klaim asuransi mobil berbasis ZKP yang terdesentralisasi untuk mengatasi kekhawatiran privasi dalam skema asuransi mobil berbasis blockchain tradisional. Skema ini mencapai perlindungan privasi dengan menambahkan teknologi ZKP di atas jaringan
13	Aleksander Berentsen, Jeremias Lenzi, and Remo Nyffeneg- ger (2023)	An Introduction to Zero-Knowledge Proofs in Blockchains and economics	diusulkan Penggunaan ZKP dalan teknologi blockchain serta memberikan contoh bagaimana ZKP digunakan pada proses pembayaran yang melindungi privasi dan skalabilitas melalui rollups serta meningkatkan efisiensi dalam aplikasi blockchain.	Membandigkan protokol zkSNARK dan zkSTARK dan membahas aplikasi dalam blockchain. Menjelaskan konsep komitmen dalam Zcah dan bagaimana ZKP digunakan untuk membuktikan validitas transaksi tanpa mengungkapkan informasi sensitif.

Tabel 2.4: Perbandingan penelitian terkait

No	Nama	Judul	Metode	Hasil
	Peneliti			
14	Zhipeng	On How	Analisis empiris	Penggunaan mixer
	Wang,	Zero-	terhadap	ZKP dalam ekosistem
	Stefanos	Knowledge	penggunaan mixer	blockchain sangat
	Chaliaso,	Proof	ZKP yang	terkait dengan
	Kaihua	Blockcha-	memberikan	serangan di sektor
	Qin, Liyi	in Mixers	pemahaman	DeFi dan ekstraksi
	Zhou, dkk	Improve,	terhadap privasi	nilai blockchain
	(2023)	and	pengguna).	(BEV). Klaim ukuran
		Worsen	Menggunakan	set anonimitas yang
		User	pelacakan aliran koin	dijalankan oleh mixer
		Privacy	untuk menyelidiki	ZKP sebagian besar
			keterkaitan antara	tidak akurat. ZKP
			penggunaan mixer	mixers menarik
			ZKP dengan serangan	pengguna yang tidak
			di sektor DeFi dan	peduli privasi, yang
			ekstraksi nilai	pada akhirnya tidak
			blockchain.	berkontribusi pada
			Pengukuran empiris	meningkatkan privasi
			terhadap klaim	pengguna mixer
			ukuran set	lainnya
			anonimitas yang	
			dijalankan oleh mixer	
			ZKP untuk	
			mengevaluasi tingkat	
			akurasi	

Tabel 2.4: Perbandingan penelitian terkait

No	Nama Peneliti	Judul	Metode	Hasil
15		zk- AuthFeed: Protecting Data Feed to Smart Contracts With Authenticated Zero Knowledge Proof	Merancang zk-AuthFeed, sebuah skema data feed off-chain yang terotentikasi dengan zero knowledge untuk mencapai privasi dan otentisitas data untuk smart contract. Skema ini memanfaatkan ZKP untuk memastikan bahwa smart contract dapat berjalan tanpa mengakses input pribadi, sehingga mempertahankan privasi dari input data feed tersebut. Penggunaan zk-DASNARK dalam zk-AuthFeed, bertujuan untuk mengatasi tantangan pemberian data yang terotentikasi ke dalam smart contract sambil mempertahankan	Rancangan zk-AuthFeed, sebuah skema data feed off-chain yang terotentikasi dengan zero knowledge berbasis zk-DASNARK, yang bertujuan untuk memastikan privasi dan autentikasi data untuk smart contract. Solusi untuk tantangan pemberian data yang terotentikasi ke dalam smart contract sambil mempertahankan privasi dan otentisitas data.
			privasi dan otentisitas data.	

Bab 3

Metodologi Peneliti

Penelitian ini menggunakan metode penelitian kuantitatif pada pengembangan non-interactive zero knowledge proof dan smart contract berbasis blockchain pada e-certificate. Metode ini berfokus pada penerapan untuk memastikan sistem yang efisien, aman dan dapat diandalkan. Non-interactive zero knowledge proof digunakan untuk meningkatkan privasi yang efisien terkait data atau informasi kepemilikan dan keaslian tanpa mengungkapkan detail informasi dari sertifikat. Smart contract digunakan untuk otomatisasi proses penerbitan e-certificate dan mengeluarkan e-certificate kepada entitas yang berhak. Smart contract dapat mengatur pembaruan, pembatalan atau pengakhiran e-certificate dan setiap catatan atau perubahan yang tercatat dalam blockchain adalah permanen dan tidak dapat diubah. Semua data dan transaksi disimpan di dalam buku besar terdistribusi dan di jaringan terdesentralisasi.

3.1 Motivasi

Kriptograsi adalah seni dan ilmu mengamankan komunikasi dan data. Ini adalah pondasi untuk berbagai aspek keamanan digital. Zero Knowledge Proof adalah metode dalam kriptografi yang memungkinkan satu pihak untuk membuktikan kepada pihak lain bahwa pernyataan tertentu benar tanpa mengungkapkan detail informasi sehingga dapat meningkatkan privasi. ZKP digunakan dalam berbagai aplikasi, seperti autentikasi, protokol blockchain dan lain sebagainya di mana privasi dan keamanan adalah perhatian utama. Karakteristik utama yang dimiliki teknologi blockchain yaitu desentralisa-

si, transparansi, kekekalan, keamanan, buku besar terdistribusi, tokenisasi, mekanisme konsensus dan smart contract. Hal ini membuat teknologi blockchain terus berkembang ke beragam aplikasi dan model binis berbasis platform yang inovatif. Pada penerapan e-certificate integrasi ZKP dan smart contract berbasis blockchain berhubungan erat dalam meningkatkan privasi, keamanan, keandalan dan efisiensi dalam transaksi dan aplikasi blockchain.

3.2 Kerangka Penelitian

Tahapan penelitian yang dilakukan dapat dilihat pada Gambar 3.1. Penelitian ini dibagi menjadi empat tahap. Tahap pertama adalah pengumpulan data yang berisi kajian literatur dan identifikasi kebutuhan terkait alur bisnis e-certificate, pemangku kepetingan dan kesenjangan penelitian dan peluang pengembangan metode non-interactive ZKP dan smart contract berbasis blockchain pada e-certificate. Tahap kedua adalah Pengembangan model dan metode yang berisi perancangan arsitektur sistem e-certificate, perancangan model non-interactive ZKP dan smart contract berbasis blockchain dan membangun model prototipe non-interactive ZKP dan smart contract berbasis blockchain. Tahap ketiga adalah hasil pengembangan model dan metode yang berisi simulasi dan pengujian serta analisis hasil. Simulasi dan pengujian dilakukan pada jaringan testnet untuk mengumpulkan data kinerja dan pengujian ketahanan berupa pengujian beban dan serangan simulasi untuk menilai seberapa baik sistem bertahan terhadap upaya eksploitasi. Analisis yang dilakukan terdiri dari analisis statistik dan analisis keamanan. Analisis statistik dilakukan dengan membandingkan kinerja berbagai implementasi atau konfigurasi serta menentukan yang paling efisien dedangkan analisis keamanan dilakukan untuk menilai risiko keamanan, sepertin probabilitas kegagalan atau kerentanan. Tahap keempat adalah optimalisasi dan skalabilitas. Optimalisasi sumber daya dengan menganalisis penggunaan sumber daya komputasi untuk mengidentifikasi area yang dapat dioptimalkan dan evaluasi skalabilitas digunakan untuk mengukur bagaimana kinerja sistem saat transaksi meningkat.

Gambar 3.1: Kerangka penelitian

3.3 Identifikasi Kebutuhan

Berdasarkan kajian literatur yang sudah dilakukan, identifikasi pengguna atau pemangku kepentingan adalah pihak yang terlibat di dalam jaringan terdesentralisasi. Pengguna dan pemangku kepentingan meliputi lembaga pembuat sertifikat, pihak penerima sertifikat dan pihak verifikator. Lembaga pembuat sertifikat akan membuat e-certificate dengan data yang telah divalidasi dan ditanda tangani secara digital serta merekam e-certificate pada blockchain. Lembaga pembuat sertifikat akan menghasilkan pasangan kunci publik/privat yang unik untuk setiap e-certificate. Kunci privat akan diberikan kepada penerima e-certificate secara aman untuk digunakan dalam proses Non-Interactive ZKP. Kunci publik disimpan atau dibagikan dengan cara yang aman dan dapat diakses oleh verifikator untuk memverifikasi klaim tanpa mengungkapkan detail informasi dari pemilik e-certificate. Smart contract digunakan untuk mengeksekusi tindakan secara otomatis seperti penerbitan, verifikasi, memperbarui status e-certificate dan memperbarui informasi. Smart contract baru dilakukan ketika memverifikasi dan merekam bukti Non-Interactive ZKP serta memperbarui status e-certificate. Smart contract akan ditempatkan ke dalam jaringan blockchain dan semua data dan transaksi akan disimpan di dalam buku besar terdistribusi.

Gambar 3.2 menunjukkan interaksi para pemangku kepentingan di dalam sistem e-certificate dengan mengembangkan metode non-interactive ZKP dan smart contract berbasis blockchain. Aktor lembaga pembuat sertifikat bertanggung jawab terkait pembuatan dan pengelolaan e-certificate, penerima e-certificate adalah individu atau entitas yang e-certificate dikelola dalam sistem dan verifikator adalah pihak yang bertugas memverifikasi informasi e-certificate. Lembaga pembuat sertifikat dapat menerbitkan e-certificate, memperbarui status e-certificate seperti validasi, pembaruan atau pencabutan serta memperbarui informasi e-certificate. Penerima e-certificate dapat melihat e-certificate dan memverifikasi klaim bukti kepemilikan atau status e-certificate. Verifikator dapat memverifikasi bukti tanpa melihat data aktual e-certificate.

Gambar 3.3 menunjukkan alur kerja atau aktivitas dari suatu proses atau sistem. Alur kerja di mulai saat pengguna memulai permintaan untuk melihat data e-certificate. Sistem akan memverifikasi identitas pengguna untuk memastikan bahwa pengguna berwenang untuk mengakses data. Sistem

Gambar 3.2: Use case sistem e-certificate

atau pengguna membangun permintaan menggunakan Non-Interactive ZKP untuk membuktikan bahwa pengguna memiliki hak untuk melihat data tanpa mengungkapkan informasi identitas atau detail informasi yang sebenarnya. Kemudian permintaan Non-Interactive ZKP dikirim ke smart contract yang berjalan di blockchain. Smart contract melakukan verifikasi bukti Non-interactive tanpa memerlukan interaksi tambahan dengan pengguna, memastikan privasi dan keamanan. Jika verifikasi berhasil, smart contract akan memproses permintaan dan memilih data e-certificate yang relevan. Data e-certificate yang dipilih dienkripsi dan dikirim kembali ke pengguna untuk menjaga keamanan saat transmisi. Pengguna menerima data, mendekripsinya, dan akhirnya dapat melihat informasi e-certificate.

Gambar 3.3: Activity diagram sistem e-certificate

3.4 Perancangan Model dan Metode

Pada tahap ini terdiri dari perancangan model arsitektur sistem e-certificate, perancangan metode non-interactive ZKP, perancangan metode smart contract berbasis blockchain dan integrasi metode Non-Interactive ZKP dan smart contract berbasis blockchain.

3.4.1 Perancangan Model Arsitektur Sistem E-certificate

Gambar 3.4 menunjukkan perancangan model arsitektur sistem e-certificate dengan mengembangkan non-interactive ZKP dan smart contract berbasis blockchain. Proses di mulai dengan antarmuka pengguna, tempat pengguna berinteraksi dengan sistem. Hal ini berupa aplikasi web atau mobile yang digunakan oleh pengguna yang terlibat di dalam sistem e-certificate. Setelah pengguna melakukan interaksi, permintaan diteruskan ke lapisan aplikasi. Lapisan ini bertindak sebagai penghubung antara pengguna dan sistem, mengelola logika aplikasi dan mengarahkan alur kerja ke layanan yang sesuai. Sebelum pengguna dapat mengakses informasi atau melakukan operasi kritis maka harus melalui autentikasi/otorisasi. Identitas pengguna akan diverifikasi dan sistem memastikan bahwa pengguna memiliki izin yang tepat untuk melanjutkan. Layanan Non-Interactive ZKP digunakan untuk memverifikasi hak akses pengguna atas data e-certificate tanpa mengungkap detail informasi. Hal ini membantu dalam menjaga privasi pengguna dambil memastikan keamanan dan integrasi transaksi. Blockchain dan smart contract bekerja bersama untuk merekam, memverifikasi, dan mengamankan setiap transaksi atau perubahan data. Smart contract secara otomatis mengeksekusi aturan bisnis yang telah ditetapkan, blockchain dapat menjamin transaksi dijalankan di jaringan terdesentralisasi. Penyimpanan data e-certificate dapat dilakukan di buku besar terdistribusi. Lapisan keamanan dan privasi memastikan bahwa semua data dan transaksi dilindungi.

3.4.2 Perancangan Metode Non-Interactive ZKP

Gambar 3.5 menunjukkan perancangan metode non-interactive ZKP. Penerima meminta e-certificate kepada lembaga pembuat sertifikat. Lembaga pembuat sertifikat menerbitkan e-certificate. Untuk menjaga keamanan dan

Gambar 3.4: Perancangan model arsitektur sistem e-certificate

privasi, e-certificate dienkripsi. Ini memastikan bahwa hanya pihak yang berwenang yang dapat mengakses dan membaca. Untuk memungkinkan verifikasi tanpa mengungkapkan detail pribadi atau isi e-Certificate, sistem menghasilkan bukti Non-Interactive ZKP. E-Certificate dan bukti Non-Interactive ZKP kemudian disimpan di blockchain. Ini menjamin bahwa data tidak dapat diubah dan keasliannya dapat diverifikasi. E-certificate dibagikan dengan penerima, yang kemudian dapat menyimpannya secara pribadi atau membagikannya dengan pihak ketiga untuk verifikasi. Penerima menyimpan e-Certificate di tempat yang aman, siap untuk digunakan kapan saja diperlukan. pihak verifikator, seperti calon pemberi kerja atau institusi pendidikan, meminta verifikasi keaslian e-certificate. Penerima kemudian menyediakan e-certificate dan bukti Non-Interactive ZKP kepada pihak verifikator. Ini memungkinkan pihak verifikator untuk melakukan verifikasi tanpa melihat data sensitif. Pihak verifikator menggunakan bukti Non-Interactive ZKP untuk memverifikasi keaslian e-Certificate. Mereka melakukan ini dengan membandingkan bukti dengan data yang tersimpan di blockchain. Pihak verifikator menilai apakah e-certificate asli dan valid. Ya: Jika verifikasi berhasil, pihak verifikator mengakui keaslian e-certificate dan proses verifikasi selesai. Tidak: Jika terdapat ketidakcocokan atau masalah, pihak verifikator akan menginformasikan kebutuhan untuk perbaikan atau revisi.

Gambar 3.5: Perancangan metode Non-Interactive ZKP

3.4.3 Perancangan Metode Smart Contract berbasis Blockchain

Gambar 3.6 menunjukkan perancangan metode smart contract berbasis blockchain. Di mulai dengan inisialisasi blockchain dan smart contract. Definisi aturan dan kebijakan e-certificate yaitu terkait penerbitan, pembaruan

dan pembatalan e-certificate. Menerbitkan e-certificate. Data e-certificate dan commitment yang terkait disimpan di blockchain, memastikan keaslian dan integritas sertifikat serta memudahkan verifikasi di masa depan. Penerima diberitahu bahwa e-certificate telah diterbitkan dan tersedia. Mereka mungkin juga diberikan instruksi tentang cara mengakses atau menggunakan sertifikat. Penerima mengakses e-certificate, yang mungkin diperlukan untuk tujuan verifikasi, aplikasi pekerjaan, atau pendidikan lanjutan. Apakah ada kebutuhan untuk memperbarui atau membatalkan e-certificate, mungkin karena perubahan informasi atau status penerima. Jika ada maka inisiasi permintaan pembaruan atau pembatalan. Smart contract memverifikasi dan memproses permintaan pembaruan atau pembatalan. Ini memastikan bahwa permintaan tersebut sah dan sesuai dengan kebijakan yang telah ditetapkan. Jika permintaan disetujui maka e-certificate diperbarui atau dibatalkan di blockchain. Jika tidak pemohon diberitahu tentang penolakan dan alasannya.

3.4.4 Integrasi Metode Non-Interactive ZKP dan Smart Contract berbasis Blockchain

Gambar 3.7 menunjukkan integrasi metode Non-Interactive ZKP dan smart contract berbasis blockchain. Di mulai dengan inisialisasi jaringan blockchain terdesentralisasi. Smart contract dijalankan di jaringan blockchain untuk otomatisasi proses, penanganan e-certificate dan logika verifikasi. Kunci dan parameter untuk Non-Interactive Zero-Knowledge Proof disiapkan untuk memastikan bahwa proses verifikasi dapat dilakukan tanpa mengungkapkan detail informasi. E-certificate diterbitkan kepada penerima setifikat setelah verifikasi kredensial. Generate commitment dari e-Certificate dihasilkan dan disimpan di blockchain. Ini bertindak sebagai bukti yang tidak dapat diubah dari e-Certificate dan memudahkan verifikasi di masa depan. Penerima e-Certificate dapat mengaksesnya setelah berhasil direkam di blockchain. Permintaan verifikasi e-certificate dapat dilakukan oleh penerima sertifikat atau verifikator. Bukti Non-Interactive ZKP dibangun untuk menanggapi permintaan verifikasi, memungkinkan verifikasi keaslian tanpa mengungkapkan informasi pribadi atau rahasia. Kemudian dilakukan pemeriksaan terkait bukti NIZKP apakah telah lengkap dan akurat, Jika ya, maka proses dilanjutkan dengan menyimpan bukti di blockchain. Jika tidak, proses bukti akan diu-

Gambar 3.6: Perancangan metode Smart Contract berbasis
Blockchain

langi. Bukti yang lengkap dan akurat disimpan di blockchain, memastikan integritas dan kemudahan akses di masa depan. Verifikator mengakses bukti yang tersimpan di blockchain untuk memulai proses validasi. Verifikator memvalidasi bukti dengan membandingkannya dengan data commitment yang tersimpan di blockchain. Kemudian dilakukan pemeriksaan terkait validasi. Jika ya, maka velidasi berhasil dan verifikasi akan dicatat di blockchain. Jika validasi gagal, kegagalan verifikasi dicatat di blockchain. Penerima diberitahu tentang hasil verifikasi, apakah e-Certificate mereka telah berhasil diverifikasi atau ada masalah yang perlu ditangani.

Gambar 3.7: Integrasi Non-Interactive ZKP dan Smart Contract berbasis Blockchain

Bibliografi

- [1] A. Moutaz, A. Salah, W. Albara, and B. Ayman. Blockchain technology in supply chain management: an empirical study of the factors affecting user adoption/acceptance. *Cluster Computing*, 2020.
- [2] A. Perdana, A. Robb, V. Balachandran, and F Rohde. Distributed ledger technology: its evolutionary path and the road ahead. *Information and Management*, 58(3), 2021.
- [3] AWS. Blockchain on aws, 2023. URL https://aws.amazon.com/blockchain/.
- [4] B. Scott, J. Loonam, and Kumar V. Exploring the rise of blockchain technology: Towards distributed collaborative organizations. *Strategic Change*, 26:423–428, 2017.
- [5] N. Upadhyay. Demystifying blockchain: a critical analysis of challenges, applications and opportunities. *International Journal of Information Management*, Oktober 2020.
- [6] SE. Chang, Y-C. Chen, and Lu M-F. Supply chain re-engineering using blockchain technology: a case of smart contract-based tracking process. *Technol Forecast Soc Change 144*, 2019.
- [7] C. Natalia and M.Y. Muhammad. Consensus algorithms in blockchain: Comparative analysis, challenges and opportunities. *International Conference on Open Source Systems and Technologies (ICOSST)*, 2018.
- [8] Y. Wang, J. Han, and P. Beynon. Understanding the blockchain technology for future supply chains: a systematic literature review and research agenda. *Supply Chain Management: An International Journal*, 24(1):62–84, 2019.

- [9] K. Lei, M.Y. Du, J.Y. Huang, and T. Jin. Groupchain: towards a scalable public blockchain in fog computing of iot services computing. *IEEE Transactions on Services Computing*, 13(2):pp. 252–262, 2020.
- [10] D.P. Claudia, A. Marcel, C. Tudor, A. Ionut, and S. Ioan. Blockchain and demand response: Zero-knowledge proofs for energy transactions privacy. *MDPI Sensors 2020, 20, 5678*, 2020.
- [11] S. Swagatika, M. Arnab, and Halder. Raju. A unified blockchain-based platform for global e-waste management. *International Journal of Web Information Systems*, 17(5):pp. 449–479, 2021.
- [12] Qiu. Zhuoliang, Xie. Zhijun, Jiang. Xianliang, Ran. Chuan, and Chen. Kewei. Novel blockchain and zero-knowledge proof technology-driven car insurance. *MDPI Electronics* 2023, 12, 3869, 2023.
- [13] Tsai. Ya-Che, Tso. Raylin, Liu. Zi-Yuan, and Chen. Kung. An improved non-interactive zero-knowledg. *IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON)*, 2019.
- [14] Ra. etc. Gyeongjin. Vaim: Verifiable anonymous identity management for human-centric security and privacy in the internet of things. *IEEE Access*, 2021.
- [15] O. Patric, F. Brendan, U. Hiroshi, and O Hiroaki. Managing lifelong learning records through blockchain. *Research and Practice in Technology Enhanced Learning*, 14(4):1–19, 2019.
- [16] Kim. Seong-Kyu. Blockchain smart contract to prevent forgery of degree certificates: Artificial intelligence consensus algorithm. *MDPI Electronics* 2023, 11, 2112, 2022.
- [17] K.P. etc. Manjula. Performance analysis of e-certificate generation and verification using blockchain and ipfs. *International Conference on Inventive Computation Technologies (ICICT)*, 2022.
- [18] Dib. Omar, B. Kei-Leo, and D. Antoine. Consortium blockchains: Overview, applications and challenges. *International Journal on Advances in Telecommunications*, 11, 2018.

- [19] Baliga. Arati. Performance characterization of hyperledger fabric. *In the First Crypto Valley Conference on Blockchain Technology (CVCBT 2018)*, 2018.
- [20] K. Ioannis, P. Maria, and A.B. Nedaa. Design of the blockchain smart contract: A use case for real estate. *Journal of Information Security*, pages 177–190, 2018.
- [21] Namecoin. Namecoin, 2018.
- [22] F. Md-Sadek, J. Mohammad, A.H. Mohammad, and C. Alan. Blockchain consensus algorithm: A survey. *Distributed, Parallel, and Cluster Computer (cs.DC) arXiv:2001.07091*, 2020.
- [23] K. Rukshanda and K. Nasreen. Blockchain technology development and implementation for global logistics operations: a reference model perspective. *Journal of Global Operations and Strategic Sourcing*, 2021.
- [24] M.J.M. Chowdhury, M.S. Ferdous, K. Biswas, and P Waters. A comparative analysis of distributed ledger technology platforms. *IEEE Access*, 7:167930–167943, 2019.
- [25] A. Baliga. Understanding blockchain consensus models, 2017.
- [26] C. Cachin and M. Vukoli. Blockchains consensus protocols in the wild. *arXiv preprint arXiv:1707.01873*, 2017.
- [27] S. Kudva, S. Badsha, S. Sengupta, I. Khalil, and A. Zomaya. Towards secure and practical consensus for blockchain based vanet. *Information Sciences*, 545:pp. 170–187, 2021.
- [28] H.Y. Song, N.F. Zhu, R.X. Xue, J.S. He, K. Zhang, and J.Y. Wang. Proof-of-contribution consensus mechanism for blockchain and its application in intellectual property protection. *Information Processing and Management*, 58(3), 2021.
- [29] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoi. *Financial Cryptography and Data Security. FC 2015. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg*, 8975, 2015.

- [30] I. Eyal, A.E. Gencer, E.G. Sirer, and Renesse R. Bitcoin-ng: a scalable blockchain protocol. *Proceedings of the 13th USENIX Conference on Networked Systems Design and Implementation*, pages pp. 45–59, 2016.
- [31] Xie Mingyue and Liu. Jun. A survey on blockchain consensus mechanism: research overview, current advances and future directions. *International Journal of Intelligent Computing and Cybernetics*, 16(2):pp. 314–340, 2022.
- [32] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: an adaptively-secure, semisynchronous proof-of-stake blockchain. *Proceedings of International Association for Cryptologic Research*, pages pp. 66–98, 2018.
- [33] C.L. Li, J. Zhang, and X.M. Yang. Scalable blockchain storage mechanism based on two-layer structure and improved distributed consensus. *The Journal of Supercomputing*, 78(4):pp. 4850–4881., 2022.
- [34] L. Wang, Y. Bai, Q. Jiang, V.C.M. Leung, W. Cai, and Li X.X. Beh-raft-chain: a behaviorbased fast blockchain protocol for complex networks. *IEEE Transactions on Network Science and Engineering*, 8(2):pp. 1154–1166, 2021.
- [35] He. Benyuan. An empirical study of online shopping using blockchain technology. *Department of Distribution Management, Takming University of Science and Technology, Taiwan, R.O.C*, 2017.
- [36] Chen. Jiin-Chiou, Lee. Narn-Yih, and Chen. Chien, Chi.and Yi-Hua. Blockchain and smart contract for digital certificate. *IEEE International Conference on Applied System Invention (ICASI)*, 2018.
- [37] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. in providing sound foundations for cryptography: On the work of shafi goldwasser and silvio micali. *ACM: New York*, pages pp. 203–225., 2019.
- [38] C. Andrea and G. Jeans. Efficient zero-knowledge proofs and their applications. *CORE UCL Discovery*, 2019.