识别注释的DFA

习题3.1:

设某程序设计语言规定,其程序中的注释是由"/*"和"*/"括起来的字符串,注释中不能出现"*/",除非它们出现在双引号中(假设双引号必须配对使用),请给出识别该语言注释结构的DFA D。

Wensheng Li

BUP

解答:

。识别形如/*....."...*/....*/的注释的DFA

- ullet 自动机 M 的状态转换矩阵如下所示,其中初态是S,终态是 C。
 - (1) 画出相应的状态转换图;
 - (2) 写出与之等价的右线性文法。
- 解答:

$$\begin{array}{ccc}
a & b \\
S & A & S \\
A & C & B \\
B & C & C \\
C & C & C
\end{array}$$

S
$$\rightarrow$$
aA | bS
A \rightarrow aC | bB
B \rightarrow aB | bC
C \rightarrow aC | bC | ϵ

- 自动机 M 的状态转换图如下所示。
 - (1) 该自动机识别的语言是什么?
 - (2) 给出与之等价的右线性文法。

解答:

- (1) 根据自动机知其产生的语言是: L={a^mbⁿcⁱ| m, n, i≥1}
- (2) 与之等价的右线性文法是:

S
$$\rightarrow$$
aA
A \rightarrow aA | bB
B \rightarrow bB | cF
F \rightarrow cF | ϵ

或者:
$$S\rightarrow aA$$

$$A\rightarrow aA \mid bB$$

$$B\rightarrow bB \mid cF \mid c$$

$$F\rightarrow cF \mid c$$

- 已知正则表达式: (a*|b)*(c|d), 判断下面哪几个正则表达式与 其等价,请简述理由。
 - $(1) a^*(c|d)|b(c|d)$
 - (2) $a^*(c|d)^*|b(c|d)^*$
 - (3) $a^*(c|d)|b^*(c|d)$
 - $(4) (a|b)^*c|(a|b)^*d$
 - $(5) (a^*|b)^*c|(a^*|b)^*d$
- 解答:

- (1)、(2)、(3)与所给正则表达式不等价;
- (4)和(5)与所给正则表达式等价。

ensheng

课堂练习4

■ 有限自动机M:

 $M=(\{a,b\},\{S_0,S_1,S_2,S_3,S_4,S_5\},S_0,\{S_1,S_4,S_5\},\delta)$ δ 由如右的状态转移矩阵给出。 b a (1) 试画出该自动机的状态转换图; S_1 S_2 (2) 试找出一个长度最小的输入串, S_3 S_1 S_1 使得在识别此输入串的过程中, S_2 So **S**4 每一状态至少经历一次: So S_3 S_3 **S**5 **S4** (3) 试找出一个长度最小的输入串, **S**4 So 使得每一状态转换至少经历一次。

课堂练习4参考答案

baaaba

aaabbaaab bbabab

Vensheng L

BUP

练习4.1

```
有如下文法:
```

```
bexpr→bexpr or bterm | bterm
bterm→bterm and bfactor | bfactor
bfactor→not bfactor | (bexpr) | true | false
请构造一个可以用来分析该文法所产生的句子的递归
调用分析程序。
```

Step 1: 消除左递归

```
bexpr\rightarrowbterm E'

E' \rightarrowor bterm E' \mid \varepsilon

bterm\rightarrowbfactor T'

T' \rightarrowand bfactor T' \mid \varepsilon

bfactor\rightarrownot bfactor \mid (bexpr) \mid true \mid false
```

Wensheng Li

BUP1

Step 2: 文法G'的预测分析程序状态转换图

Wensheng Li

BUP1

Step 3: 化简后的预测分析程序状态转换图

Step4:根据状态转换图进行程序设计

- bexpr的函数
- bterm的过程
- bfactor的过程

```
void proc_expr(void) {
    proc_term();
    if (char=='or') {
        forward pointer;
        proc_expr();
    }
}
```

```
void proc_term(void) {
    proc_factor();
    if (char=='and') {
        forward pointer;
        proc_term();
    }
}
```

```
void proc factor(void) {
  if (char=='not'){
     forward pointer;
     proc factor();
  else if (char=='(') {
     forward pointer;
     proc expr();
     if (char==')')
       forward pointer;
     else error();
  else if (char=='true')||(char=='false')
          forward pointer;
  else error();
                           bexpr
                          true / false
```

练习:

判断下面的文法是否为LL(1)文法?

若不是,可否改写为LL(1)文法? 若可以,请构造其LL(1)分析表。

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

解答:

- 文法含有左递归,故不是LL(1)文法
- 改写文法: 消除左递归

$$S \rightarrow (L) \mid a$$

$$L \rightarrow SL'$$

$$L' \rightarrow SL' \mid \epsilon$$

$$\overline{FIRST((L))} \cap \overline{FIRST(a)} = \phi$$

$$FIRST(,SL') \cap FOLLOW(L') = \phi$$

	FIRST	FOLLOW
S	(a	\$,)
L	(a)
$\mathbf{L'}$, ε)

	a	()	,	\$
S	S→a	S→(L)			
L	L→SL′	L→SL′			
L'			L′ → ε	L'→,SL'	

- 1) $S \rightarrow aAcBe$
- 2) A→b
- 3) $A \rightarrow Ab$
- 4) $B \rightarrow d$

构造LL(1)分析表,分析 abbcde。

解答:

S \rightarrow aAcBe A \rightarrow bA' A' \rightarrow bA' | ϵ B \rightarrow d

	First	follow
S	a	\$
A	b	c
A'	b, ε	c
В	d	e

	a	b	c	d	e	\$
S	S→aAcBe					
A		A→bA'				
A'		A'→bA'	Α'→ε			
В				B→d		

有如下文法:

```
E \rightarrow E \lor T \mid T
T \rightarrow T \land F \mid F
F \rightarrow \neg F \mid (E) \mid t \mid f
```

- (1) 该文法是LL(1)文法吗?说明理由。 若是,做(3),若不是,做(2)
- (2) 请改写该文法为LL(1)文法,继续做(3)。
- (3) 构造每个非终结符号的FIRST和FOLLOW函数, 继续做(4)。

参考答案

$$E \rightarrow E \lor T \mid T$$
 $T \rightarrow T \land F \mid F$
 $F \rightarrow \neg F \mid (E) \mid t \mid f$

- (1) 由于该文法存在左递归,所以不是LL(1)文法。
- (2) 改写文法。消除其中的左递归,得到文法G':

E
$$\rightarrow$$
TE'
E' \rightarrow \vee TE' | ϵ
T \rightarrow FT'
T' \rightarrow \wedge FT' | ϵ
F \rightarrow ¬F | (E) | t | f

- (3) 每个非终结符号的FIRST和 FOLLOW集合如右:
- (4) 文法的LL(1)分析表如下:

	FIRST	FOLLOW		
E	¬, (, t, f	\$,)		
E'	ν, ε	\$,)		
T	¬, (, t, f	v, \$,)		
T'	Λ, ε	v, \$,)		
F	¬, (, t, f	^, v, \$,)		

	7	^	V	t	f	()	\$
E	E→TE'			E→TE'	E→TE'	E→TE'		
E'			E'→∨TE'				E '→ε	Ε'→ε
T	T→FT'			T→FT'	T→FT'	T→FT'		
T'		T'→∧FT'	Τ'→ε				Τ'→ε	T'→ε
F	$F \rightarrow \neg F$			F→t	F→f	F →(E)		

Wensheng Li

课堂练习2

证明下面的文法是LL(1)的,但不是SLR(1)的。

$$S \rightarrow (X \mid E] \mid F)$$

$$X \rightarrow E) \mid F|$$

$$E \rightarrow A$$

$$F \rightarrow A$$

$$A \rightarrow \epsilon$$

解答: 证明该文法是LL(1)文法

■ 该文法每个非终结符号的FIRST集和FOLLOW集合如下:

	FIRST	FOLLOW
S	(,],)	\$
X],)	\$
E	3],)
F	3],)
A	3],)

■ 该文法的LL(1)分析表如右:

S→(X	E]	Ī	F)
X → E)	F]		
E→A			
F→A			
Α→ε			

	()	1	\$
S	S→(X	S→F)	S→E]	
X		X→E)	X→F]	
E		E→A	E→A	
F		F→A	F→A	
A		Α→ ε	$A \rightarrow \epsilon$	

- 结论: LL(1)分析表中不含有多重定义的入口,所以该文法 是LL(1)文法
- 也可以分析产生式,根据候选式的first集合互不相交来说明。

证明该文法不是SLR(1)文法

■ 构造该文法的LR(0)项目集规范族及识别所有活前缀的DFA

说明下面的文法是LR(1)文法,但不是SLR(1)文法。
X→Ma | bMc | dc | bda
M→d

20

其次,构造文法的LR(1)项目集规范族及识别其所有活前缀的DFA。 判断该文法是LR(1)文法:集合I0、I3中没有归约项目,所以,不存在冲突; 集合I1、I2、I5、I6、I8、I9、I10各只有一个归约项目, 所以这些集合中没有冲突: 集合I4和I7中既有移进项目又有归约项目,但是归约符号和移进符号不同,所以也没有冲突。 结论: 是LR(1)

然后,构造文法的LR(0)项目集规范族及识别其所有活前缀的DFA。

```
FOLLOW(S)={ $ }
FOLLOW(X)={ $ }
FOLLOW(M) = \{ a, c \}
```

 I_4 、 I_7 中存在移进-归约冲突, $FOLLOW(M)=\{a,c\}$ 这种冲突用SLR(1)方法无法解决, 所以该文法不是SLR(1)文法。

已知文法G[A]为:

A→aABe|a

 $B \rightarrow Bb|d$

A→aA'
A'→ABe ε
B→dB'
B' → bB' ε

	First	Follow
A	a	\$, d
A'	а, ε	\$, d
В	d	e
B'	b, ε	e

- (1) 试给出与G[A]等价的LL(1)文法G'[A]
- (2) 构造G'[A]的预测分析表
- (3) 给出输入串aade的分析过程。

		a	b	d	e	\$
	A	A→aA'				
	A'	A'→ABe		Α'→ε		A'→ε
,	В			B→dB'		
	B'		B'→bB'		B'→ε	

Wensheng Li

Wensheng L

aade的分析过程

	a	b	d	e	\$
A	A→aA'				
A'	A'→ABe		Α'→ε		A'→ε
В			B→dB'		
B'		B'→bB'		B'→ε	

步骤	栈	输入	分析动作
(1)	\$A	aade\$	A→aA'
(2)	\$A'a	aade\$	
(3)	\$A'	ade\$	A'→ABe
(4)	\$eBA	ade\$	A→aA'
(5)	\$eBA'a	ade\$	
(6)	\$eBA'	de\$	Α'→ε
(7)	\$eB	de\$	B→dB'
(8)	\$eB'd	de\$	
(9)	\$eB'	e\$	B'→ε
(10)	\$e	e\$	
(11)	\$	\$	分析成功

有如下文法G[A]:

 $A \rightarrow BA \mid a$

 $B \rightarrow aB \mid b$

(1) 判断该文法是以下哪些类型的文法,要求给出判 断过程。

LL(1), LR(0), SLR(1)

- (2) 构造该文法的LR(1)项目集规范族及识别其所有活 前缀的DFA。
- (3) 构造该文法的LR(1)分析表
- (3) 构造该又法的LK(1)加加及 (4) 给出对输入符号串abb的分析过程。

LR(0)文法,项目集中:

- (1) 要么所有元素都是移进-待约项目
- (2) 要么只含有唯一的归约项目

LR(0)项目集规范族及识别其所有活前缀的DFA:

- $\begin{array}{ccc} (0) & S \rightarrow A \\ (1) & A \rightarrow BA \end{array}$
- $\begin{array}{c} (1) & A \rightarrow BA \\ (2) & A \rightarrow a \end{array}$
- $(3) B \rightarrow aB$
- $(4) B \rightarrow b$

参考答案(续)

LR(1)项目集规范族及识别其所有活前缀的DFA:

S
7
Ø
2
œ
_
<u>~</u> .

状态	Action			goto	
	a	ь	\$	A	В
0	S3	S4		1	2
1			ACC		
2	S3	S4		5	2
3	S7	S4			6
4	R4	R4			
5			R1		
6	R3	R3			
7	S7	S4			6

文法的LR(1)分析表

Wensheng L

BUP1

abb的分析过程

步骤	栈	输入	分析动作
(1)	0	abb\$	S3
(2)	0 3 - A	bb\$	S4
(3)	0 3 4 - a b	b\$	R4 B→b
(4)	0 3 6 - a B	b\$	R3 B→aB
(5)	0 2 - B	b\$	S4
(6)	0 2 4 - B b	\$	error 弹出栈顶状态4
(7)	0 2 - B	\$	goto(2, A)=5 将状态5压入栈顶
(8)	0 2 5 - B A	\$	R1 A→BA
(9)	0 1 - A	\$	accept