

Consistent Subtyping for All

Ningning Xie Xuan Bi Bruno C. d. S. Oliveira 16 April, 2018

The University of Hong Kong ESOP 2018, Thessaloniki, Greece

Gradual Typing 101

 The key external feature of every gradual type system is the unknown type *.

```
f (x : Int) = x + 2 \frac{--\text{ static checking}}{--\text{ dynamic checking}}
h f
```

- Central to gradual typing is type consistency ~, which relaxes type equality: * ~ Int, * → Int ~ Int → *,...
- Dynamic semantics is defined by type-directed translation to an internal language with runtime casts:

$$(\langle \star \hookrightarrow \star \to \star \rangle g) (\langle \star \hookrightarrow \mathsf{Int} \rangle 1)$$

Many Successes

Gradual typing has seen great popularity both in academia and industry. Over the years, there emerge many gradual type disciplines:

- Subtyping
- Parametric Polymorphism
- Type inference
- Security Typing
- Effects
- . . .

Many Successes, But...

Gradual typing has seen great popularity both in academia and industry. Over the years, there emerge many gradual type disciplines:

- Subtyping
- Parametric Polymorphism
- Type inference
- Security Typing
- Effects
- . . .
 - As type systems get more complex, it becomes more difficult to adapt notions of gradual typing.

 [Garcia et al., 2016]

Problem

• Can we design a gradual type system with *implicit higher-rank* polymorphism?

Problem

- Can we design a gradual type system with *implicit higher-rank* polymorphism?
- State-of-art techniques are inadequate.

Why It Is interesting

 Haskell supports implicit higher-rank polymorphism, but some "safe" programs are rejected:

Why It Is interesting

 Haskell supports implicit higher-rank polymorphism, but some "safe" programs are rejected:

• If we had gradual typing...

```
let f(x : \star) = (x [1, 2], x ['a', 'b'])
in f reverse
```

Why It Is interesting

 Haskell supports implicit higher-rank polymorphism, but some "safe" programs are rejected:

• If we had gradual typing...

```
let f(x : \star) = (x [1, 2], x ['a', 'b'])
in f reverse
```

 Moving to more precised version still type checks, but with more static safety guarantee:

```
let f (x : \forall a. [a] \rightarrow [a]) = ... in f reverse
```

Contributions

- A new specification of consistent subtyping that works for implicit higher-rank polymorphism
- An easy-to-follow recipe for turning subtyping into consistent subtyping
- A gradually typed calculus with implicit higher-rank polymorphism
 - Satisfies correctness criteria (formalized in Coq)
 - A sound and complete algorithm

 \bullet Consistent subtyping (\lesssim) is the extension of subtyping to gradual types. [Siek and Taha, 2007]

- \bullet Consistent subtyping (\lesssim) is the extension of subtyping to gradual types. [Siek and Taha, 2007]
- A static subtyping relation (<:) over gradual types, with the key insight that * is neutral to subtyping (* <: *)

- \bullet Consistent subtyping (\lesssim) is the extension of subtyping to gradual types. [Siek and Taha, 2007]
- A static subtyping relation (<:) over gradual types, with the key insight that * is neutral to subtyping (* <: *)
- ullet An algorithm for consistent subtyping in terms of masking $A|_{B}$

- \bullet Consistent subtyping (\lesssim) is the extension of subtyping to gradual types. [Siek and Taha, 2007]
- A static subtyping relation (<:) over gradual types, with the key insight that * is neutral to subtyping (* <: *)
- ullet An algorithm for consistent subtyping in terms of masking $A|_B$

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C.
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C.

Design Principle

Gradual typing and subtyping are orthogonal and can be combined in a principled fashion.

Challenge

- Polymorphic types induce a subtyping relation: $\forall a. \ a \rightarrow a <: \mathsf{Int} \rightarrow \mathsf{Int}$
- Design consistent subtyping that combines 1) consistency 2) subtyping 3) polymorphism.

Challenge

- Polymorphic types induce a subtyping relation: $\forall a, a \rightarrow a <: Int \rightarrow Int$
- Design consistent subtyping that combines 1) consistency 2) subtyping 3) polymorphism.
- Gradual typing and polymorphism are orthogonal and can be combined in a principled fashion.¹

¹Note that here we are mostly concerned with static semantics.

Problem with Existing Definition

Odersky-Läufer Type System

 The underlying static language is the well-established type system for higher-rank types. [Odersky and Läufer, 1996]

Types	A, B	::=	Int $\mid a \mid A ightarrow B \mid orall a.$ A
Monotypes	τ, σ	::=	Int $\mid a \mid au ightarrow \sigma$
Terms	е	::=	$x \mid n \mid \lambda x : A.\ e \mid \lambda x.\ e \mid e_1\ e_2$
Contexts	Ψ	::=	$\bullet \mid \Psi, x : A \mid \Psi, a$

Subtyping

$$\Psi \vdash A <: B$$

(Subtyping)

$$\frac{a \in \Psi}{\Psi \vdash a <: a} \qquad \frac{\Psi \vdash B_1 <: A_1 \qquad \Psi \vdash A_2 <: B_2}{\Psi \vdash A_1 \to A_2 <: B_1 \to B_2}$$

$$\frac{\Psi \vdash \tau \qquad \Psi \vdash A[a \mapsto \tau] <: B}{\Psi \vdash \forall a. A <: B} \qquad \frac{\Psi, a \vdash A <: B}{\Psi \vdash A <: \forall a. B}$$

$$\frac{\Psi, a \vdash A <: B}{\Psi \vdash A <: \forall a, B}$$

Subtyping with Unknown Types

$$\Psi \vdash A <: B$$

(Subtyping)

$$\frac{a \in \Psi}{\Psi \vdash a <: a} \qquad \frac{\Psi \vdash B_1 <: A_1 \qquad \Psi \vdash A_2 <:}{\Psi \vdash A_1 \to A_2 <: B_1 \to B_2}$$

$$\overline{\hspace{1em}\psi\vdash}$$

$$\frac{\Psi \vdash B_1 <: A_1 \qquad \Psi \vdash A_2 <: B_2}{\Psi \vdash A_1 + A_2 <: B_2 + B_2}$$

$$\frac{\Psi \vdash \tau \qquad \Psi \vdash A[a \mapsto \tau] <: B}{\Psi \vdash \forall a. \ A <: B}$$

$$\overline{\Psi \vdash A <: \forall a. B}$$

Type Consistency

 $A \sim B$

(Type Consistency)

$$\frac{}{A \sim A} \qquad \frac{}{A \sim \star} \qquad \frac{A_1 \sim B_1}{} \qquad \frac{A_2 \sim B_2}{} \qquad \frac{}{A_1 \rightarrow A_2 \sim B_1 \rightarrow B_2}$$

Type Consistency with Polymorphic Types

 $A \sim B$

(Type Consistency)

$$\frac{}{A \sim A} \qquad \frac{}{A \sim \star} \qquad \frac{}{\star \sim A} \qquad \frac{A_1 \sim B_1}{A_1 \rightarrow A_2 \sim B_1 \rightarrow B_2}$$

$$\frac{A \sim B}{\forall a. A \sim \forall a. B}$$

Type Consistency with Polymorphic Types

$$A \sim B$$

(Type Consistency)

$$\overline{A \sim A}$$

 $\overline{A} \sim \star \qquad \qquad \star \sim A$

$$\frac{A_1 \sim B_1}{A_1 \rightarrow A_2 \sim B_1 \rightarrow B_2}$$

$$\frac{A \sim B}{\forall a. \ A \sim \forall a. \ B}$$

The simplicity comes from the orthogonality between consistency and subtyping!

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C.
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C.

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C.
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C. X

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C. X
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C. \checkmark

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C. X
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C. X

Revisiting Consistent Subtyping

Consistent Subtyping vs. Subtyping

• Subtyping validates the *subsumption principle*

$$\frac{\Psi \vdash e : A \qquad A <: B}{\Psi \vdash e : B}$$

Consistent Subtyping vs. Subtyping

 Subtyping validates the subsumption principle, so should consistent subtyping

$$\frac{\Psi \vdash e : A \qquad A \lesssim B}{\Psi \vdash e : B}$$

Consistent Subtyping vs. Subtyping

 Subtyping validates the subsumption principle, so should consistent subtyping

$$\frac{\Psi \vdash e : A \qquad A \lesssim B}{\Psi \vdash e : B}$$

Subtyping is transitive, but consistent subtyping is not

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (II)

If $C \lesssim B$ and B <: A, then $C \lesssim A$.

Observations

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (II)

If $C \lesssim B$ and B <: A, then $C \lesssim A$.

Consistent Subtyping, the Specification

Definition (Generalized Consistent Subtyping)

 $\Psi \vdash A \lesssim B \stackrel{def}{=} \Psi \vdash A <: A'$, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B'.

Consistent Subtyping, the Specification

Definition (Generalized Consistent Subtyping)

$$\Psi \vdash A \lesssim B \stackrel{\text{def}}{=} \Psi \vdash A <: A'$$
, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B' .

$$(((\star \to \mathsf{Int}) \to \mathsf{Int}) \to \mathsf{Bool}) \to (\mathsf{Int} \to \star)$$

$$<: \qquad \qquad \qquad \qquad \\ <: \qquad \qquad \qquad \\ \\ <: \qquad \qquad \\ \\ (((\forall a.a \to \mathsf{Int}) \to \mathsf{Int}) \to \mathsf{Bool}) \to (\forall a.a)$$

$$A = ((\forall a.a \to \mathsf{Int}) \to \mathsf{Int}) \to \mathsf{Bool}) \to (\mathsf{Int} \to \mathsf{Int})$$

$$B = ((\forall a.\star \to \mathsf{Int}) \to \mathsf{Int}) \to \mathsf{Bool}) \to (\mathsf{Int} \to \star)$$

Non-Determinism

Definition (Generalized Consistent Subtyping)

$$\Psi \vdash A \lesssim B \stackrel{def}{=} \Psi \vdash A <: A'$$
, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B' .

Two sources of non-determinism:

1. Two intermediate types A' and B'

Non-Determinism

Definition (Generalized Consistent Subtyping)

$$\Psi \vdash A \lesssim B \stackrel{\text{def}}{=} \Psi \vdash A <: A'$$
, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B' .

Two sources of non-determinism:

1. Two intermediate types A' and B'

2. Guessing monotypes
$$\frac{\Psi \vdash \tau \qquad \Psi \vdash A[a \mapsto \tau] <: B}{\Psi \vdash \forall a. \ A <: B}$$

$$\Psi \vdash \forall a. A <: B$$

Non-Determinism

Definition (Generalized Consistent Subtyping)

 $\Psi \vdash A \lesssim B \stackrel{def}{=} \Psi \vdash A <: A'$, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B'.

Two sources of non-determinism:

- 1. Two intermediate types A' and B'
 - We can derive a syntax-directed inductive definition without resorting to subtyping or consistency at all!

Consistent Subtyping Without Existentials

Notice $\Psi \vdash \star \lesssim A$ always holds $(\star <: \star \sim A <: A)$, and vise versa $(\Psi \vdash A \lesssim \star)$

Consistent Subtyping Without Existentials: First Step

1. Replace <: with \lesssim

$$\Psi \vdash \star <: \star$$

Consistent Subtyping Without Existentials: First Step

1. Replace <: with ≤

$$\Psi \vdash \star \lesssim \star$$

Consistent Subtyping Without Existentials: Second Step

- 1. Replace <: with \lesssim
- 2. Replace $\Psi \vdash \star \lesssim \star$ with $\Psi \vdash \star \lesssim A$ and $\Psi \vdash A \lesssim \star$

$$\begin{array}{c|c} \underline{\Psi \vdash A \lesssim B} \\ \hline \hline a \in \Psi \\ \overline{\Psi \vdash a \lesssim a} \\ \hline \hline \hline \Psi \vdash Int \lesssim Int \\ \hline \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2 \\ \hline \Psi \vdash A_1 \to A_2 \to B_1 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_2 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_2 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \to A_2 \\ \hline \Psi \vdash A_1 \to A_2 \to A_2 \to A_2 \\ \hline \Psi \vdash A_2 \to A_$$

$$\Psi \vdash \star \lesssim \star$$

Consistent Subtyping Without Existentials: Second Step

- 1. Replace <: with \lesssim
- 2. Replace $\Psi \vdash \star \lesssim \star$ with $\Psi \vdash \star \lesssim A$ and $\Psi \vdash A \lesssim \star$

$$\Psi \vdash A \lesssim B$$

(Consistent Subtyping)

$$\sim$$
 0 $\forall \vdash \tau$ $\forall \vdash A[a \mapsto \tau] \lesssim B$

$$\frac{a \in \Psi}{\Psi \vdash a \lesssim a} \qquad \frac{\Psi \vdash B_1 \lesssim A_1 \qquad \Psi \vdash A_2 \lesssim B_2}{\Psi \vdash A_1 \to A_2 \lesssim B_1 \to B_2}$$

$$\frac{\Psi, a \vdash A \lesssim B}{\Psi \vdash A \lesssim \forall a. B}$$

$$\overline{\Psi \vdash \star \lesssim A}$$

 $\Psi \vdash \forall a. A \leq B$

$$\overline{\Psi \vdash A \lesssim \star}$$

Definition Meets Specification

Theorem

 $\Psi \vdash A \lesssim B \text{ iff } \Psi \vdash A <: A', A' \sim B' \text{ and } \Psi \vdash B' <: B \text{ for some } A' \text{ and } B'.$

Declarative Type System

Type System

Ψ ⊢ e : A

$$\frac{\Psi, a \vdash e : A}{\Psi \vdash e : \forall a. A} \text{ U-GEN}$$

$$\frac{\Psi, x : \tau \vdash e : B}{\Psi \vdash \lambda x. \, e : \tau \to B} \stackrel{\text{\tiny{U-LAM}}}{}$$

(Typing, selected rules)

$$\frac{\Psi, x: A \vdash e: B}{\Psi \vdash \lambda x: A. \ e: A \rightarrow B} \ ^{\text{\tiny U-LAMANN}}$$

$$\begin{array}{ccc} \Psi \vdash e_1 : A & \Psi \vdash A \triangleright A_1 \rightarrow A_2 \\ \underline{\Psi \vdash e_2 : A_3} & \Psi \vdash A_3 \lesssim A_1 \\ \hline & \Psi \vdash e_1 \ e_2 : A_2 \end{array} \quad \text{U-APP}$$

Type System

$$\begin{array}{c|c} \Psi \vdash A \triangleright A_1 \to A_2 \end{array} \qquad \qquad \begin{array}{c} (\textit{Matching}) \\ \hline \\ \Psi \vdash \tau \qquad \Psi \vdash A[a \mapsto \tau] \triangleright A_1 \to A_2 \\ \hline \\ \Psi \vdash \forall a. \ A \triangleright A_1 \to A_2 \end{array} \qquad \begin{array}{c} \text{\tiny M-FORALL} \\ \hline \\ \Psi \vdash A_1 \to A_2 \triangleright A_1 \to A_2 \end{array} \qquad \begin{array}{c} \text{\tiny M-ARR} \\ \hline \\ \Psi \vdash \star \triangleright \star \to \star \end{array} \qquad \begin{array}{c} \text{\tiny M-UNKNOWN} \end{array}$$

Dynamic Semantics

- Type-directed translation into an intermediate language with runtime casts $(\Psi \vdash e : A \leadsto s)$
- We translate to the Polymorphic Blame Calculus (PBC)
 [Ahmed et al., 2011]

PBC terms²
$$s ::= x \mid n \mid \lambda x : A. s \mid \Lambda a. s \mid s_1 s_2 \mid \langle A \hookrightarrow B \rangle s$$

²Only a subst of PBC terms are used

Correctness Criteria

- Conservative extension: for all static Ψ , e, and A,
 - if $\Psi \vdash^{OL} e : A$, then there exists B, such that $\Psi \vdash e : B$, and $\Psi \vdash B <: A$.
 - if $\Psi \vdash e : A$, then $\Psi \vdash^{OL} e : A$
- Monotonicity w.r.t. precision: for all Ψ, e, e', A , if $\Psi \vdash e : A$, and $e' \sqsubseteq e$, then $\Psi \vdash e' : B$, and $B \sqsubseteq A$ for some B.
- Type Preservation of cast insertion: for all Ψ , e, A, if $\Psi \vdash e : A$, then $\Psi \vdash e : A \leadsto s$, and $\Psi \vdash^B s : A$ for some s.
- Monotonicity of cast insertion: for all Ψ , e_1 , e_2 , s_1 , s_2 , A, if $\Psi \vdash e_1 : A \leadsto s_1$, and $\Psi \vdash e_2 : A \leadsto s_2$, and $e_1 \sqsubseteq e_2$, then $\Psi \vdash \Psi \vdash s_1 \sqsubseteq^B s_2$.

Correctness Criteria

- Conservative extension: for all static Ψ , e, and A,
 - if $\Psi \vdash^{OL} e : A$, then there exists B, such that $\Psi \vdash e : B$, and $\Psi \vdash B <: A$.
 - if $\Psi \vdash e : A$, then $\Psi \vdash^{OL} e : A$
- Monotonicity w.r.t. precision: for all Ψ, e, e', A, if
 Ψ ⊢ e : A, and e' ⊑ e, then Ψ ⊢ e' : B, and B ⊑ A for some
 B.
- Type Preservation of cast insertion: for all Ψ , e, A, if $\Psi \vdash e : A$, then $\Psi \vdash e : A \leadsto s$, and $\Psi \vdash^B s : A$ for some s.
- Monotonicity of cast insertion: for all Ψ , e_1 , e_2 , s_1 , s_2 , A, if $\Psi \vdash e_1 : A \leadsto s_1$, and $\Psi \vdash e_2 : A \leadsto s_2$, and $e_1 \sqsubseteq e_2$, then $\Psi \vdash \Psi \vdash s_1 \sqsubseteq^B s_2$.

Proved in Coq!

Recap

More in the Paper

- A bidirectional account of the algorithmic type system (inspired by [Dunfield and Krishnaswami, 2013])
- Extension to top types
- Discussion and comparison with other approaches (AGT [Garcia et al., 2016], Directed Consistency [Jafery and Dunfield, 2017])
- Discussion of dynamic guarantee

Future Work

- Fix the issue with dynamic guarantee (partially)
- More features: mutable state, fancy types, etc.

References

- A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In *POPL*, 2011.
- J. Dunfield and N. R. Krishnaswami. Complete and easy bidirectional typechecking for higher-rank polymorphism. In *ICFP*, 2013.
- R. Garcia, A. M. Clark, and É. Tanter. Abstracting gradual typing. In POPL, 2016.
- K. A. Jafery and J. Dunfield. Sums of uncertainty: Refinements go gradual. In POPL, 2017.
- M. Odersky and K. Läufer. Putting type annotations to work. In POPL, 1996.
- J. G. Siek and W. Taha. Gradual typing for objects. In ECOOP, 2007.

Consistent Subtyping for All

Ningning Xie Xuan Bi Bruno C. d. S. Oliveira 16 April, 2018

The University of Hong Kong ESOP 2018, Thessaloniki, Greece

Backup Slides

Dynamic Guarantee

- Changes to the annotations of a gradually typed program should not change the dynamic behaviour of the program.
- The declarative system breaks it...

$$(\lambda f: \forall a. a \to \mathsf{Int}. \, \lambda x: \mathsf{Int}. \, f \, x) \, (\lambda x. \, 1) \, 3 \, \Downarrow \, 3$$
$$(\lambda f: \forall a. \, a \to \mathsf{Int}. \, \lambda x: \star. \, f \, x) \, (\lambda x. \, 1) \, 3 \, \Downarrow \, ?$$

- A common problem in gradual type inference, see [Garcia and Cimini 2015]. Static and gradual type parameters may help.
- A more sophisticated term precision is needed in PBC.
 [Igarashi et al. 2017]