Problemas de descomposición en valores singulares.

- (1) Haz un programa que, dada un matriz \mathbf{A} de dimensiones $m \times n$, halle la descomposición SVD o en valores singulares de la matriz y aplicarlo a la matriz $\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$.
- (2) Sea **A** una matriz $m \times n$. Demostrar que el rango de la matriz **A** es el mismo que el rango de la matriz \mathbf{A}^{\top} .
- (3) Demostrar que $\dim(\operatorname{Ker}(\mathbf{A})) = \dim(\operatorname{Ker}(\mathbf{A}^{\top}))$ si, y sólo si, la matriz \mathbf{A} es cuadrada.
- (4) Sea $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ la descomposición en valores singulares de una matriz \mathbf{A} . Hallar justificadamente la descomposición en valores singulares de \mathbf{A}^{\top} .
- (5) Sea **A** una matriz $m \times n$ con descomposición en valores singulares $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$. Demostrar que los rangos de las matrices **A** y **D** son el mismo.
- (6) Sea **A** una matriz cuadrada $n \times n$ con descomposición en valores singulares $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
 - a) Demostrar que la matriz ${\bf A}$ tiene inversa ${\bf A}^{-1}$ si, y sólo si, existe ${\bf D}^{-1}.$
 - b) Hallar la descomposición en valores singulares de A^{-1} si estamos en el caso del apartado anterior.