4.1 ROCKET SCIENCE

Letzte Woche haben wir gezeigt, dass die mit der Galileitransformation kompatible Lagrangefunktion $L(q, v, t) = mv^2/2$ ist. Unter Lorentztransformationen (in allen Bezugssystemen gibt es eine Maximalgeschwindigkeit) kommt man auf

$$L(q, v, t) = -mc^{2} \sqrt{1 - \frac{v^{2}}{c^{2}}}, \tag{4.1}$$

mit $c \in \mathbb{R}$ und $-c \leqslant v \leqslant c$. Um nun bei der nächsten Party sagen zu können dass Sie Raketenwissenschaften studieren (und die Wartezeit bis dahin zu verkürzen):

a) Berechnen Sie den kanonischen Impuls p.

$$H(q, p, t) = \sqrt{p^2c^2 + m^2c^4}.$$
 (4.2)

Hinweis: Rechnen Sie auch rückwärts vom gegeben H *weg.* Entwickeln Sie H für großes c (oder kleines 1/c) und finden Sie so die relativistische Energiekorrektur $\propto p^4$ zur kinetischen Energie.

c) Berechnen Sie die Poisson Klammer {H, L_z}. Hinweis: Die Wurzel sollte Ihnen nun Sorgen machen. Wie bekommen Sie die Wurzel weg? Schauen Sie noch einmal über das Beispiel.

4.2 3-ATOMIGES MOLEKÜL

Betrachten Sie Oszillationen eines 3 atomigen Moleküls in einer Dimension (fig. 4.1). Modellieren Sie das System mit durch Federn (Federkonstante k) verbundenen Massen (m_1 , m_2) (siehe Skizze) und benutzen Sie die Auslenkungen aus der Ruhelage x_1 , x_2 und x_3 als generalisierte Koordinaten.

- a) Schreiben Sie die Hamiltonfunktion $H(x_i, p_i)$ des Systems (hier einfach T+V) an und bestimmen Sie die Hamilton'schen Bewegungsgleichungen.
- b) Berechnen Sie die Fundamentalschwingungen und Eigenfrequenzen des Systems: Sie drücken zuerst die Impulse $p_i = m\dot{x}_i$ durch die Koordinaten aus und erhalten mit dem Ansatz $x_i = c_i e^{i\omega t}$ (Plenum/Folien) ein lineares Gleichungssystem mit einer 3×3 Koeffizienten Matrix (Durch $p_i = m\dot{x}_i$ reduziert sich das 6×6 System der Hamilton'schen Bewegungsgleichungen auf 3×3). Welche der Eigenmoden (Eigenvektoren berechnen!) stellt eine Translation (oder ruhende Lösung) dar, welche eine gegenphasige Schwingung der äußeren Atome und wo schwingt das mittleres Atom gegenphasig zu den äußeren Atomen?

4

FIGURE 4.1: Mechanisches Model eines 3 atomigen Molekäls in 1D

4.3 PHASENRAUMPORTRAIT DES TEILCHENS AUF EINER HÜGELLAND-SCHAFT

Wir erinnern uns an das Teilchen in einer Hügellandschaft 1.3), mit Masse m, $x \in \mathbb{R}$ und

$$y = \cos(\alpha x), \qquad F_G = -mg\hat{e}_y.$$
 (4.3)

- *a*) Stellen Sie die Lagrangefunktion $L(x, \dot{x}) = T V$ auf, berechnen den kanonischen Impuls p und führen eine Legendretransformation durch um den Hamiltonian H(x, p) zu erhalten.
- b) Entwickeln Sie die Hamiltonfunktion als $x_0 + x$ für kleine x an den Stellen $\alpha x_0 = 0$, $\alpha x_0 = \pi$, sowie $\alpha x_0 = -\pi/2$ und $\alpha x_0 = \pi/2$ (bis zur ersten nicht-trivialen Ordnung in x und p) und betrachten Sie auch den Grenzfall $p \to \infty$. Berechnen Sie für alle diese Fälle die Hamilton'schen Bewegungsgleichungen; Sie können nun $m \equiv \alpha \equiv q \equiv 1$ setzen.
- c) Zeichnen Sie mit den erhaltenen Lösungen ein Phasenraumportrait. Nahe der Stellen $ax_0 = 0$, $ax_0 = \pi$, sowie $ax_0 = -\pi/2$ und $ax_0 = \pi/2$ sollten Sie den Zusammenhang zwischen der Trajektorie im Phasenraum, der Trajektorie im Ortsraum, und den Hamiltonschen Bewegungsgleichungen erklären können. Hinweis: Sollten Sie hier Schwierigkeiten haben, finden Sie in vielen Lehrbüchern oder dem Internet diese Aufgabe für das Pendel gelöst.

4.4 SPASS MIT POISSON KLAMMERN

- a) Zeigen Sie dass Poisson Klammern die Jacobi-Identität erfüllen.
- b) Berechnen Sie $\{L_x, y\}$ und $\{L_y, p_z\}$. Hinweis: Nicht zwingend notwendig, aber für ihr weiteres Studium hilfreich ist es, sich hier mit dem Levi-Civita-Symbol oder Epsilon-Tensor vertraut zu machen.
- c) Zeigen Sie $\{L_z, L_x\} = L_y$. Wenn zwei Komponenten des Drehimpulses L erhalten sind, ist es dann auch die dritte Komponente? *Hinweis: Vielleicht hilft Ihnen hier die Jacobi-Identität*.
- *d)* Erinnern Sie sich an das Teilchen im Yukawa-Potential vom 2. Tutorium (2.4). Die Hamiltonfunktion dieses Systems in Kugelkoordinaten lautet:

$$H(r,\theta,\varphi,p_r,p_\theta,p_\varphi) = \frac{1}{2m} \Big(p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\varphi^2}{r^2 \sin^2(\theta)} \Big) - \alpha Q^2 \frac{e^{-\beta \, mr}}{r}$$

Zeigen Sie explizit dass sowohl die z-Komponente des Drehimpulses $L_z=mr^2\sin^2(\theta)\dot{\varphi}=p_{\varphi}$ als auch $L^2=p_{\theta}^2+p_{\varphi}^2/\sin^2(\theta)$ erhalten sind, sprich { L_z , H}=0 und { L^2 , H}=0.

Zu kreuzen (online im TUWEL-Kurs zur LVA): 4.1 / 4.2 / 4.3 a) b) / 4.3 c) / 4.4 a) / 4.4 b) c) d)

FIGURE 4.2: Nicht das Phasenraumportraits eines Teilchens auf einer Hügellandschaft, sondern Der Wanderer über dem Nebelmeer (Caspar David Friedrich)