Meiosis

Chromosomes

- Genes are parts of your DNA
- Traits are things that show (like hair color) from your Genes
- The number of Chromosomes are the same throughout your entire body
 - Humans always have 46 chromosomes, with the exact same sequence throughout your entire body
- Diploid is when you have two complete sets of chromosomes
 - The majority of the DNA in you is diploid
 - Only sex cells (gametes) are not diploid
 - Each complete set comes half from your mom and half from your dad
- Haploid is when you have only one complete set of chromosomes
 - An example is Gametes
- Homologous chromosomes are chromosomes that have the same
 - Length
 - Centromere position
- Sexual vs Asexual reproduction
 - Sexual reproduction
 - Takes two parents
 - Child will not be identical to the parents
 - DNA is unique to themself
 - Asexual reproduction
 - Takes one parent
 - Child will be identical to the parent in DNA
 - Why?
 - Sexual reproduction allows for favorable DNA to be reproduces quicker
- In humans, two of the chromosomes will be your gender chromosome
 - XX for Female
 - XY for Male
- In order to get sex cells (haploids) we need to undergo meiosis
 - Sex cells come precursor cells (diploids) to produce haploids
 - Each precursor produces 4 haploids
 - For girls, you are born with a certain amount of precursors
 - For guys, you are constantly making precursor cells
 - The egg will always contain an X chromosome, however, the sperm may contain an X or Y chromosome

Production of haploid cells

- Meiosis goes through two rounds of PMAT
- Goes through Interphase like normal

PMAT

Round 1

 Important because it creates new DNA recombinant from the mom and dad's DNA.

1. Prophase 1

- 1. Nucleus is still there
- 2. Chromosomes are condensing from the DNA
- 3. DNA gets shorter and thicker
- 4. The Homologous pairs of chromosomes get close to each other and switch portions of DNA
 - 1. This is called **Synapsis**
 - 2. This process does not need to be symmetrical across both daughter chromatids
 - 3. Synapsis is why we have 4 distinct and different gametes in the end

2. Prometaphase 1 (sometimes considered part of the metaphase)

- 1. Nucleus membrance disappears
- 2. Formation of microtubules
 - 1. Attach to the chromosomes (centrometer of it)

3. Metaphase 1 (Middle)

- 1. Chromosomes line up to the middle of the cell
- 2. They line up next to each other in homologous pairs down the middle of the cell
- 3. They will not all line up in the same order, so the random assortment creates a new combination of genes

4. Anaphase 1 (Away)

- 1. The homologous chromosomes get separated
- 2. The sister chromatids do not get separated like normal mitosis
- 3. The chromosomes move away from the center to the edges of the cell

4. The spindles (microtubules) help pull them to the edges

5. Telophase 1 (Two)

- 1. Chromosomes reach the poles
- 2. Two new neuclei are formed
- 3. Microtubules disappears

Round 2

- Round 2 happens similar to normal mitosis, except for the cells are already Haploids
- This results in 4 haploid cells from the original single precursor before meiosis

Fertilization

- Fertilization requires two cells, one from the mom and one from the dad
- Each cell will be haploids
- · After fertilization, the resulting cell will be diploid

Index

Word	Meaning
Genes	A part of your DNA
Traits	Something that physically shows from your DNA
Gamete	A sex cell that does not one set of chromosomes, they are haploids
Diploid	Contains a pair of all chromosomes
Haploid	Contains one of all chromosomes (half of a diploid)
Meiosis	The process of getting from a precursor cell to gametes
Precursor Cells	Cells that are capable of making sex cells through meiosis
Homologous	Matching chromosomes