

National Aeronautics and
Space Administration

GENELAB: CURRENT AND FUTURE OMICS DATA INTEGRATION BETWEEN SPACE BIOLOGY AND HRP

Sylvain Costes, Ph.D.
GeneLab Project Manager
Chief of the Biosciences Research Branch
NASA Ames Research Center

Omics Acquisition in Space is Now a Reality

This is truly an exciting time for cellular and molecular biology, omics and biomedicine research on ISS with these amazing additions to the suite of ISS Laboratory capabilities.

Sample Preparation Module

Oxford Nanopore MinION Gene Sequencer

Reaction tube
containing
lyophilized
chemical assay
bead
(proprietary)

Cepheid Smart Cycler qRT-PCR

Mini-PCR

and unlock discoveries
not possible on Earth.

Open Science

“We define open science as a collaborative culture enabled by technology that empowers the **open sharing of data, information, and knowledge** within the scientific community and the wider public to accelerate scientific research and understanding.”

Ramachandran, R., Bugbee, K., & Murphy, K. J. Moving from Open Data to Open Science. *Earth and Space Science*, Wiley Publication
<https://doi.org/10.1029/2020EA001562>

NASA Biological Open Science Resources

Biospecimen Sharing Program (BSP)

- Dissects and preserves rodent tissues from Flight and Ground investigations
- Coordinates internal tissue sharing

NASA Biological Institutional Scientific Collection (NBISC)

- Collection of non-human specimens and space microbial culture

Ames Life Sciences Data Archive (ALSDA)

- Collects and curates phenotypic research, mission, project and imaging data

GeneLab (GL)

- Collects and curates omics data

GeneLab Omics Data Democratization

GeneLab Power Users

GeneLab Analysis Working Groups (AWGs) consist of 200+ scientists from multiple space agencies, international institutions, and industry. Scientists meet monthly with each group to analyze data in the GeneLab repository.

We invite you to join - <https://genelab.nasa.gov/awg/join!>

ANIMAL

68 members

Facilitates the use of omics in understanding basic mechanisms by which animals and constituent tissues and cells adapt to the spaceflight environment.

PLANTS

58 members

Share and discuss the latest developments in **AstroBotany** – the discipline of botany concerned with interactions between plant biology and space environment.

MULTI-OMICS

128 members

Interactions between the different omics to provide complete understanding of the entire system begin studied.

MICROBES

50 members

Focuses on analyzing microbial datasets within GeneLab that includes gene-expression, proteomic, metabolomic and environmental metagenomic datasets.

Opportunities for Students & Educators

GeneLab for High Schools (GL4HS): A four-week intensive training summer program for rising high school juniors and seniors to learn bioinformatics and computational biology methods and techniques to analyze space omics data.

Learn more and apply at: <https://www.nasa.gov/ames/genelab-for-high-schools> (Applications open!)

GeneLab for Colleges/Universities (GL4U):

For educators and students to learn how analyze omics data using GeneLab standard pipelines and space-relevant data

Access to course materials: <https://github.com/nasa/GeneLab-Training/tree/main/GL4U>

SLSTP: Provides undergraduate students entering their junior or senior years, and entering graduate students, with professional experience in space life science disciplines including:

<https://www.nasa.gov/ames/research/space-life-sciences-training-program>

NASA BPS Open Science Enterprise Solution: genelab.nasa.gov

- Open access data
- FAIR (Findable, Accessible, Interoperable, Reusable)
- Controlled access tools
- API - internal and external
- User Friendly Interface
- Tutorials
- Self-service Submission Portal

- Federated search – GEO, PRIDE, MG-RAST, **ALSDA**
- Database & Cloud – Scalable, easy access, fast
- Web apps
 - Data Access & Management
 - Security
 - Operation
 - Governance and Integration
- Open Source software – *no maintenance cost for software*

- Multiple data sources
 - Standard metadata organization
 - Open file formats

352

Studies

400

Datasets

45

Species

>10

Assays

>135TB

Data

GeneLab Data Metrics

Re-use of Data and Enabling New Discoveries

38 enabled publications (10 publications produced by the AWGs) using data available in GeneLab.

Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight

by Thomas Cahill¹, Henry Cope², Joseph J. Bass³, Eliah G. Overbey⁴, Rachel Gilbert^{5,6}, Willian Abraham da Silveira^{1,7}, Amber M. Paul^{5,8,9}, Tejaswini Mishra¹⁰, Raúl Herranz¹¹, Sigrid S. Reinsch⁵, Sylvain V. Costes⁵, Gary Hardiman^{1,12}, Nathaniel J. Szewczyk^{3,13} and Candice G. T. Tahimic^{5,14,*}

An Integrative Network Science and Artificial Intelligence Drug Repurposing Approach for Muscle Atrophy in Spaceflight Microgravity

Vidya Manian*, Jairo Orozco-Sandoval and Victor Diaz-Martinez

Cell: The biology of spaceflight package

A coordinated package of 29 scientific papers published in five Cell Press journals featuring 9 papers utilizing data or resources in GeneLab. *High impact research highlights:*

- Comparative Transcriptomics Identifies Neuronal and Metabolic Adaptations to Hypergravity and Microgravity in *Caenorhabditis elegans*, *iScience*
- Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact, *Cell*
- NASA GeneLab RNA-seq consensus pipeline: standardized processing of short-read RNA-seq data, *iScience*

Computational and Structural Biotechnology Journal
Volume 19, 2021, Pages 2223-2235

Reanalysis of the Mars500 experiment reveals common gut microbiome alterations in astronauts induced by long-duration confinement

N.J.B. Brereton^{a, 2, 1}, F.E. Pitre^{a, 1}, E. Gonzalez^{b, c, 1}

Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposures

Richard Barker, Sylvain V. Costes, Jack Miller, Samrawit G. Gebre, Jonathan Lombardino & Simon Gilroy

npj Microgravity 7, Article number: 15 (2021) | [Cite this article](#)

From multiple databases to a knowledge-based system

Increasing accessibility of complex data

Wu P, Coleman M, Wyrobek AJ. "Low dose ionizing radiation treated lymphoblastoid cells", GeneLab, Version 3, <http://doi.org/10.26030/hs0p-6w85>

Application

Visualization Platform

GeneLab radiation data: enabling AI/ML meta-analysis

6 individual radiation exposure gene expression datasets:

GLDS-71: Immediate Transcriptional Changes in Response to High Dose Radiation Exposure Version 4

0.3 Gy – Cs-137

GLDS-152: Transcription profiling of human peripheral blood to development gene expression signatures for practical radiation biodosimetry Version 2

0.5 Gy – gamma ray

GLDS-156: Identifying radiation exposure biomarkers from mouse blood transcriptome Version 1

2 Gy – Cs-137

GLDS-157: Gene expression in human peripheral blood 48 hours after exposure to ionizing radiation Version 2

0.5 Gy – gamma ray

GSE124612: Transcriptomic responses in mouse blood during the first week after *in vivo* gamma irradiation

1.5 Gy – gamma ray

GSE62623: Gene expression in mouse blood following low dose-rate or acute x-ray exposure

1.1 Gy – X ray

Data Pipeline:

Merge datasets

Gene-homologue mapping

Data normalization

Combined cross-organism radiation exposure dataset

Combined Dataset:

- ~25,000 human-mouse gene homologues
- 455 total samples
- Gamma irradiation or non-irradiated controls:
 - *ex vivo* irradiation of human blood samples
 - *in vivo* irradiated mouse whole blood

Causal inference in complex biological data

CRISP Platform Overview

Developed by FDL Astronaut Health 2020 Team

SPOKE

Scalable Precision Medicine Open Knowledge Engine

spoke.ucsf.edu/

Transcriptomic analysis of GeneLab spaceflown mouse thymus, spleen, liver

Significant Symptom nodes

> Life (Basel). 2021 Jan 12;11(1):42. doi: 10.3390/life11010042.

Knowledge Network Embedding of Transcriptomic Data from Spaceflown Mice Uncovers Signs and Symptoms Associated with Terrestrial Diseases

Charlotte A Nelson ¹, Ana Uriarte Acuna ^{2 3}, Amber M Paul ^{2 4}, Ryan T Scott ^{2 3}, Atul J Butte ^{5 6}, Egle Cekanaviciute ², Sergio E Baranzini ^{1 5 7}, Sylvain V Costes ²

spoke.ucsf.edu/

Coming soon! GeneLab Model Hub and Analysis Portal

Streamlined Data Integration of multiple datasets

Analysis Portal

Interactive analysis dashboard of modeling and analysis results

Thank you!

2017-2018

2018-2019

GeneLab is funded by the NASA Space Biology program within the NASA Science Mission Directorate's (SMD) Biological and Physical Sciences (BPS) Division