07. Maximum Flow Formulations and Bipartite Matching

Kevin A. Wortman

This work is licensed under a Creative Commons Attribution 4.0 International License.

Big Idea: Problem Reduction

problem A reduces to problem B = can use an algorithm for B to do all the hard work of solving problem A = A is easier than B (or tied)

Sometimes A, B are closely related e.g. A = sorting bounded integers, B = general sorting

More interesting: problems seem completely unrelated (e.g. SAT, CLIQUE; max-flow, bipartite matching)

Reduction Algorithm Pseudocode

problem A reduces to problem $B=\operatorname{can}$ use an algorithm for B to do all the hard work of solving problem A

- 1: function SOLVE-A(input-for-A)
- 2: input-for-B = pre-process input-for-A
- 3: solution-for-B = solve-B(input-for-B)
- 4: solution-for-A = post-process solution-for-B
- 5: return solution-for-A
- 6: end function

In spirit

- ▶ the solve-B part is complex and the bottleneck
- ▶ the **overhead** (pre-process and post-process parts) is simple and fast

Reducing to Max-Flow

maximum flow problem

```
input: a flow network G output: a flow f of maximum value |f|
```

- 1: function SOLVE-A(input-for-A)
- 2: G' = flow network based on input-for-A
- 3: f = SOLVE-MAX-FLOW(G')
- 4: solution-for-A = post-process f
- 5: return solution-for-A
- 6. end function

(use G' because sometimes input-for-A is already a graph G)

The fastest max-flow alg. in CLRS takes $O(|V|^3)$ time; overhead usually takes linear time; so SOLVE-MAX-FLOW is usually the bottleneck; $O(n^3)$ time

Formulation in General

To formulate A as a B instance, need to explain

- Input mapping: how to map input-for-A to input-for-B
- Output mapping: how to map solution-for-B to solution-for-A
- Correctness: how
 - ▶ all the "rules" of A are enforced...
 -by the B problem itself, and/or our input mapping
- "rules:" constraints on the output
- Overhead: analyze whether the input/output mapping becomes the bottleneck

This is a valuable problem-solving skill!

Max-Flow Formulation

Max-Flow Formulation: details of how an algorithm for problem A

- ightharpoonup maps an input into a flow network G'
- recovers a solution from the flow f

Also: analyze these steps to determine whether

- lacktriangle overhead is $O(|V|^3) \implies \mathsf{SOLVE}\mathsf{-MAX}\mathsf{-FLOW}$ is the bottleneck in SOLVE-A (usually yes)
- ightharpoonup or, overhead is $\Omega(|V|^3)$ and is the bottleneck

Usually we only discuss these parts, and don't write out the SOLVE-A pseudocode explicitly.

Max-Flow Formulation

"Rules" of problem A must be implemented by the "rules" built into the max-flow problem and/or the edges and weights we introduce

- ▶ directed graph G = (V, E), source $s \in V$, sink $t \in V$
- none of: self-loop, antiparallel edge, unreachable vertex
- non-negative capacity on every edge
- ▶ flow is function f(u, v) over vertices u, v
- ▶ nonexistent edges: if $(u, v) \notin E$ then f(u, v) = 0
- **capacity constraint**: $0 \le f(u, v) \le c(u, v)$
- **flow conservation**: (flow-in) = (flow-out), except for source and sink; formally, $\forall u \in V \{s, t\}$,

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

ightharpoonup value |f| = net flow into sink

A Straightforward Formulation: Evacuation

Suppose we are working with safety authorities to determine how quickly CSUF could be evacuated in a natural disaster such as a wildfire.

evacuation rate problem

input: directed graph G representing a road map of Fullerton, each edge weighted with the number of autos/hour that may travel on that road

output: the maximum number of autos/hour that could travel from CSUF to a 57 or 91 freeway onramp

(Straightforward because this is clearly about flow in a directed graph.)

A Straightforward Formulation: Evacuation

For a clear formulation, need to specify

- ▶ how to convert road map into flow network G'; needs
 - to be a directed graph
 - source s and sink t
 - non-negative capacity on each edge
 - no self-loops, antiparallel edges, or disconnected vertices
- \triangleright how to decode flow f into a solution for our problem (# autos/hour evacuated)
- overhead time efficiency

A Straightforward Formulation: Evacuation

- ▶ suppose for sake of discussion, road map *G* has none of the taboo components (self-loops etc.)
- ightharpoonup start with G' = G
- \blacktriangleright define source s in G' as the Gymnasium-Campus intersection on campus
- reate new sink t in G' that represents "on either freeway;" create edges from highway onramps to t, each with capacity ∞
- \triangleright after finding max-flow in G', examine flow function f to compute evacuation rate as

$$\sum_{\text{onramp vertex } o} f(o, t)$$

ightharpoonup overhead is O(|V| + |E|), not bottleneck

Robust Max-Flow

Goal: eliminate some of the pesky constraints of the classical max-flow problem

robust maximum flow problem

input: a flow network G = (V, E), which may contain unreachable vertices, antiparallel edges, a set $S \subseteq V$ of sources, and a set $T \subseteq V$ of sinks output: a flow f of maximum value |f|

- unreachable vertices are allowed
- antiparallel edges are allowed
- ▶ set of sources/sinks instead of just one vertex each

Reformulating to Eliminate Unreachable Vertices

given flow network G that may contain unreachable vertices,

- ▶ use BFS (or DFS) to mark every vertex that is reachable from s
- \triangleright use BFS again, following edges backwards, to mark every vertex that is reachable from t
- if a vertex was not marked both times, it is redundant
- ightharpoonup G' = induced subgraph of G with all redundant vertices removed
- ▶ compute flow f' in G'
- \blacktriangleright to convert f' to flow f in G, set flow along all redundant edges to 0
- overhead is $2 \times BFS = O(|V| + |E|)$, not bottleneck

Reformulating to Eliminate Unreachable Vertices

Reformulating to Eliminate Antiparallel Edges

given a flow network G that may contain antiparallel edges,

- ightharpoonup initially G'=G
- identify all antiparallel edges
- ▶ when \exists antiparallel edges between vertices $v_1, v_2,$
 - reate new vertex v' in G' between v_1, v_2
 - replace edge (v_1, v_2) with edges (v_1, v') and (v', v_2)
 - ightharpoonup set $c(v_1, v') = c(v', v_2) = c(v_1, v_2)$
- \triangleright observe that flow between v_1, v_2 is identical but antiparallel edge is eliminated
- ▶ to convert flow f' in G' to equiv. flow in G: for each v' introduced above, set $f(v_1, v_2) = f'(v_1, v')$
- ▶ overhead is O(|E|), $|E'| < 2|E| \in \Theta(|E|)$, not bottleneck

Reformulating to Eliminate Antiparallel Edges

Reformulating to Accommodate Multiple Sinks or Sources

- ▶ initially G' = G
- create in G' a super-source vertex s and super-sink t
- ▶ for each source $s_i \in G$, create an edge (s, s_i) in G' with capacity $c(s, s_i) = \infty$
- ▶ for each sink $t_i \in G$, create an edge (t_i, t) in G' with capacity $c(t_i, t) = \infty$
- \blacktriangleright to convert flow f' in G' to equiv. flow f in G: delete flow info. along any of the new edges
- ightharpoonup overhead is $O(|V|), |V'| = |V| + 2 \in \Theta(|V|), |E'| \le |V| + |E|$, not bottleneck

Reformulating to Accommodate Multiple Sinks or Sources

Formulations for Robust Max-Flow

From now on, we have the option of formulating problems as instances of the more robust max-flow problem:

robust maximum flow problem

input: a flow network G = (V, E), which may contain unreachable vertices, antiparallel edges, a set $S \subseteq V$ of sources, and a set $T \subseteq V$ of sinks output: a flow f of maximum value |f|

So far, all our reductions to max-flow have been either straightforward flow simulations, or variations on max-flow.

Now we'll see a quite-different problem that also reduces to max-flow.

Partition of a Set

Intuitively: if $X = L \cup R$ is a *partition*, then every element of X is placed in L or R (but not both).

Formally: L and R partition X if

- \triangleright $X = L \cup R$,
- $ightharpoonup L \cap R = \emptyset$, and
- $\blacktriangleright L \neq \emptyset, R \neq \emptyset.$

bipartite maximum matching problem

input: an undirected bipartite graph G = (V, E) with parts $V = L \cup R$ output: a matching $M \subseteq E$ where the number of matched vertices is maximum

- bipartite: L, R are disjoint and edges only go between L, R
- matching: pick edges that "pair off" two vertices; goal is to maximize #paired-off
- ▶ intuitively, L is one kind of thing and R is another kind of thing

matching
$$M = \{\text{included edges}\} = \{\{l_1, r_1\}, \{l_3, r_3\}, \{l_4, r_3\}, \{l_5, r_4\}\}$$

$$|M| = 4$$
(other optimal matchings exist)

Bipartite Matching Applications

- any scenario where there are two kinds of things that can be paired
- goal is simply maximum number of pairings
- ▶ casting for a play: L = set of actors; R = set of roles; edge $\{I, r\}$ exists when I could play role I
- packing leftover food (one item/container): L = set of food items; R = available containers; edge $\{I, r\}$ exists when food I could fit in container r
- ightharpoonup scheduling appointments: L= set of clients; R= set of time slots; edge $\{I,r\}$ exists when client I could meet appointment r
- ▶ might feel NP-hard, but actually in P

Formulating Bipartite Matching as Flow

- ightharpoonup let G = (V, E) be bipartite matching instance
- lacktriangle create G'=(V',E') with $V'=V\cup\{s,t\}$ where s,t are new source/sink
- ightharpoonup create edges in G':
 - $(I,r) \ \forall I \in L, r \in R, \{I,r\} \in E$
 - \triangleright $(s, l) \forall l \in L$
 - $ightharpoonup (r,t) \ \forall r \in R$
- every edge (v, w) has capacity c(v, w) = 1
- ▶ post-processing: edge $(I, r) \in M$ iff f(I, r) = 1
- ▶ observe $|V'| \in O(|V|), |E'| \in O(|E|)$, overhead is O(|V| + |E|)
- ightharpoonup if this is correct, can solve bipartite matching in $O(|V|^3)$ time

Formulating Bipartite Matching as Flow

(other max flows ⇔ matchings exist)

Correctness of this Formulation

Technical details:

- ▶ integrality theorem: if every capacity $c(u, v) \in \mathbb{Z}$ then every $f(u, v) \in \mathbb{Z}$ and $|f| \in \mathbb{Z}$
- ▶ \exists matching M with cardinality k = |M| iff \exists some flow f with value k = |f|
 - \blacktriangleright key idea: pairing two vertices in the matching adds exactly one flow from $s \rightsquigarrow t$
 - there are no opportunities for flow aside from matched vertices
- $ightharpoonup \Longrightarrow$ a maximum flow in G' corresponds to a maximum matching in G

Summary

- ightharpoonup classical max-flow problem can be solved in $O(|V|^3)$ time, in P
- robust max-flow problem (supports unreachable vertices, antiparallel edges, multiple sinks/sources) also in $O(|V|^3)$ time w/ worse constant factors, in P
- bipartite matching reduces to max-flow, so bipartite matching can be solved in $O(|V|^3)$ time, in P
- other practical, distinct problems reduce to max-flow or bipartite matching so take $O(|V|^3)$ time and are in P