Chapter 12.2 notes

Donovan McCarthy U of M Dearborn

September 7, 2019

Intro to Vectors

A **vector** is a quanity that has both magnitude and direction. The *magnitude* is denoted by the length of the arrow and the *direction* of the arrow indicated the vectors direction. This is denoted as such: \vec{v} , below is an example of an basic vector.

Combining vectors

Definition of vector addition if \mathbf{u} and \mathbf{v} are vectors positioned so the inital point of \mathbf{v} is at the terminal point of \mathbf{u} , then the sum $\mathbf{u} + \mathbf{v}$ is the vector from the inital point of \mathbf{u} to the terminal point of \mathbf{v} .

Definition of scalar Multiplication if c is a scalar and \mathbf{v} is a vector, then the scalar multiple of $\mathbf{c}\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose directions is the same as \mathbf{v} if c > 0 and is opposite to \mathbf{v} if c < 0. If c = 0 or v = 0, then cv = 0.

Example:

The next part of the section is when we are given points and have to find the vector of the points. The following is a way to do that.

How to find the vector between two points Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ the vector **a** with representation \vec{AB} is

$$\vec{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_2 \rangle$$

The length of the two-dimensional vector $\vec{a} = \langle a_1, b_1 \rangle$ is $|\vec{a}| = \sqrt{a_1^2 + a_2^2}$
The length of the three-dimensional vector $\vec{a} = \langle a_1, a_2, a_3 \rangle$ is $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

To add, subtract, and multiply vectors you do the following (just add 'z' for 3d vectors):

$$\vec{a} + \vec{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$

 $\vec{a} - \vec{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$
 $c * \vec{a} = \langle ca_1, ca_2 \rangle$

Properties of Vectors if $\vec{a}, \vec{b}, and \vec{c}$ are vectors in V_n and c and d are scalars, then:

1.)
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 2.) $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

3.)
$$\vec{a} + 0 = \vec{a}$$
 4.) $\vec{a} + (-\vec{a}) = 0$

5.)
$$c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$$
 6.) $(c+d)\vec{a} = c\vec{a} + d\vec{a}$

7.)
$$(cd)\vec{a} = c(d\vec{a})$$
 8.) $1\vec{a} = \vec{a}$