COM120 – SISTEMAS OPERACIONAIS EXERCÍCIO PRÁTICO 09 – EP09

Data da aula: 10/11/2021

Data de entrega: 16/11/2021 -23:59

1) Considere a tabela de páginas mostrada na tabela abaixo para um sistema com endereços virtuais e físicos de 12 bits e páginas de 256 bytes. A lista de quadros de páginas livres é D, E e F (isto é, D é a cabeça da lista, E é o segundo quadro e F é o último).

Página	Quadro da página
0	С
1	5
2	-
3	A
4	-
5	2
6	7
7	-
8	0
9	3

Converta os endereços virtuais, a seguir, nos endereços físicos equivalentes em hexadecimais. Todos os números são dados em **hexadecimal**. (Um travessão para um quadro de página indica que a página não está em memória.). Mostre os cálculos que o MMU fará para encontrar o endereço físico.

- a) 9EF
- b) 111
- c) 700
- d) 0FF
- e) 275
- f) 532
- 2) Considere a sequência de referências de página a seguir:

Quantas faltas de página ocorreriam para os algoritmos de substituição abaixo, supondo a existência de um, dois, três, quatro, cinco, seis e sete quadros? Lembre-se de que todos os quadros estão inicialmente vazios e, portanto, as primeiras páginas apresentarão uma falta de página cada. Discuta os algoritmos.

- a) Substituição LRU
- b) Substituição FIFO
- c) Substituição ótima
- 3) A tabela de páginas mostrada na tabela abaixo é para um sistema com endereços virtuais e físicos de 16 bits e páginas de 4.096 bytes. O bit de referência é posicionado em 1 quando a página é referenciada. Periodicamente, um thread zera todos os valores do bit de referência. Um travessão para um quadro de página indica que a página não está em memória. O algoritmo de substituição de páginas é o LRU localizado, e todos os números são fornecidos em decimais.

Página	Quadro de Página	Bit de Referência
0	14	0
1	10	0
2	9	0
3	-	0
4	1	0

5	8	0
6	13	0
7	-	0
8	15	0
9	0	0
10	3	0
11	-	0
12	2	0
13	-	0
14	4	0
15	5	0

- a) Converta os endereços virtuais a seguir (em hexadecimais) para os endereços físicos equivalentes. Você pode fornecer respostas em hexadecimal ou decimal. Posicione também o bit de referência da entrada apropriada na tabela de páginas.
 - 1. 0xE12C
 - 2. 0x3A9D
 - 3. 0xA9D9
 - 4. 0x7001
 - 5. 0xACA1
- b) Usando os endereços acima como ponto de partida, forneça um exemplo de endereço lógico (em hexadecimal) que resulte em falta de página.
- c) Em que conjunto de quadros de página o algoritmo de substituição LRU fará uma seleção para resolver um falta de página?