

AP20 Rec'd PCT/PTO 22 JUN 2006

X-16757.ST25.txt
SEQUENCE LISTING

<110> Applied Molecular Evolution

<120> FC Region Variants

<130> X-16757

<150> 60/535,764

<151> 2004-01-12

<160> 56

<170> PatentIn version 3.3

<210> 1

<211> 218

<212> PRT

<213> Human

<400> 1

Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
1 5 10 15Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
20 25 30Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
35 40 45Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
50 55 60Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
65 70 75 80His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
85 90 95Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
100 105 110Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu
115 120 125Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
130 135 140Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
145 150 155 160Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
165 170 175

X-16757.ST25.txt

Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
180 185 190

Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
195 200 205

Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
210 215

<210> 2
<211> 217
<212> PRT
<213> Human

<400> 2

Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30

Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr
35 40 45

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
50 55 60

Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His
65 70 75 80

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
85 90 95

Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln
100 105 110

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
130 135 140

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
145 150 155 160

Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175

X-16757.ST25.txt

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
195 200 205

Lys Ser Leu Ser Leu Ser Pro Gly Lys
210 215

<210> 3
<211> 218
<212> PRT
<213> Human

<400> 3

Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
1 5 10 15

Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
20 25 30

Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Lys Trp
35 40 45

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
50 55 60

Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Leu
65 70 75 80

His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
85 90 95

Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly
100 105 110

Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu
115 120 125

Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
130 135 140

Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn
145 150 155 160

Asn Tyr Asn Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe
165 170 175

x-16757.ST25.txt

Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
180 185 190

Ile Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn Arg Phe Thr
195 200 205

Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
210 215

<210> 4
<211> 218
<212> PRT
<213> Human

<400> 4

Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
1 5 10 15

Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
20 25 30

Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp
35 40 45

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
50 55 60

Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
65 70 75 80

His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
85 90 95

Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
100 105 110

Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu
115 120 125

Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
130 135 140

Pro Ser Asp Ile Ala Val Glu Trp Glx Ser Asn Gly Gln Pro Glu Asn
145 150 155 160

Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
165 170 175

Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn
Page 4

x-16757.ST25.txt

180

185

190

val Phe Ser Cys Ser val Met His Glu Ala Leu His Asn His Tyr Thr
 195 200 205

Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
 210 215

<210> 5
 <211> 215
 <212> PRT
 <213> Murine

<400> 5

Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys
 1 5 10 15

Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Val
 20 25 30

Asp Ile Ser Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp
 35 40 45

Asp Val Glu Val His Thr Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe
 50 55 60

Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp
 65 70 75 80

Cys Leu Asn Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe
 85 90 95

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys
 100 105 110

Ala Pro Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln Met Ala Lys
 115 120 125

Asp Lys Val Ser Leu Thr Cys Met Ile Thr Asp Phe Phe Pro Glu Asp
 130 135 140

Ile Thr Val Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys
 145 150 155 160

Asn Thr Gln Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser
 165 170 175

Lys Leu Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr
 180 185 190

X-16757.ST25.txt

Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser
195 200 205

Leu Ser His Ser Pro Gly Lys
210 215

<210> 6
<211> 218
<212> PRT
<213> Murine

<400> 6

Pro Ala Pro Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro
1 5 10 15

Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys
20 25 30

Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp
35 40 45

Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg
50 55 60

Glu Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln
65 70 75 80

His Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn
85 90 95

Lys Asp Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly
100 105 110

Ser Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu
115 120 125

Met Thr Lys Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met
130 135 140

Pro Glu Asp Ile Tyr Val Glu Trp Thr Asn Asn Gly Lys Thr Glu Leu
145 150 155 160

Asn Tyr Lys Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe
165 170 175

Met Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn
180 185 190

x-16757.ST25.txt

Ser Tyr Ser Cys Ser Val Val His Glu Gly Leu His Asn His His Thr
195 200 205

Thr Lys Ser Phe Ser Arg Thr Pro Gly Lys
210 215

<210> 7
<211> 218
<212> PRT
<213> Murine

<400> 7

Pro Ala Pro Asn Leu Glu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro
1 5 10 15

Asn Ile Lys Asp Val Leu Met Ile Ser Leu Thr Pro Lys Val Thr Cys
20 25 30

Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp
35 40 45

Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg
50 55 60

Glu Asp Tyr Asn Ser Thr Ile Arg Val Val Ser His Leu Pro Ile Gln
65 70 75 80

His Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn
85 90 95

Lys Asp Leu Pro Ser Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly
100 105 110

Leu Val Arg Ala Pro Gln Val Tyr Thr Leu Pro Pro Pro Ala Glu Gln
115 120 125

Leu Ser Arg Lys Asp Val Ser Leu Thr Cys Leu Val Val Gly Phe Asn
130 135 140

Pro Gly Asp Ile Ser Val Glu Trp Thr Ser Asn Gly His Thr Glu Glu
145 150 155 160

Asn Tyr Lys Asp Thr Ala Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe
165 170 175

Ile Tyr Ser Lys Leu Asn Met Lys Thr Ser Lys Trp Glu Lys Thr Asp
180 185 190

x-16757.ST25.txt

Ser Phe Ser Cys Asn Val Arg His Glu Gly Leu Lys Asn Tyr Tyr Leu
195 200 205

Lys Lys Thr Ile Ser Arg Ser Pro Gly Lys
210 215

<210> 8
<211> 218
<212> PRT
<213> Murine

<400> 8

Pro Pro Gly Asn Ile Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro
1 5 10 15

Lys Pro Lys Asp Ala Leu Met Ile Ser Leu Thr Pro Lys Val Thr Cys
20 25 30

Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val His Val Ser Trp
35 40 45

Phe Val Asp Asn Lys Glu Val His Thr Ala Trp Thr Gln Pro Arg Glu
50 55 60

Ala Gln Tyr Asn Ser Thr Phe Arg Val Val Ser Ala Leu Pro Ile Gln
65 70 75 80

His Gln Asp Trp Met Arg Gly Lys Glu Phe Lys Cys Lys Val Asn Asn
85 90 95

Lys Ala Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly
100 105 110

Arg Ala Gln Thr Pro Gln Val Tyr Thr Ile Pro Pro Pro Arg Glu Gln
115 120 125

Met Ser Lys Lys Lys Val Ser Leu Thr Cys Leu Val Thr Asn Phe Phe
130 135 140

Ser Glu Ala Ile Ser Val Glu Trp Glu Arg Asn Gly Glu Leu Glu Gln
145 150 155 160

Asp Tyr Lys Asn Thr Pro Pro Ile Leu Asp Ser Asp Gly Thr Tyr Phe
165 170 175

Leu Tyr Ser Lys Leu Thr Val Asp Thr Asp Ser Trp Leu Gln Gly Glu
180 185 190

Ile Phe Thr Cys Ser Val Val His Glu Ala Leu His Asn His His Thr
Page 8

x-16757.ST25.txt

195

200

205

Gln Lys Asn Leu Ser Arg Ser Pro Gly Lys
 210 215

<210> 9
 <211> 110
 <212> PRT
 <213> Human

<400> 9

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
 1 5 10 15

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
 20 25 30

Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
 35 40 45

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
 50 55 60

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
 65 70 75 80

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
 85 90 95

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys
 100 105 110

<210> 10
 <211> 107
 <212> PRT
 <213> Human

<400> 10

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu
 1 5 10 15

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
 20 25 30

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
 35 40 45

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
 50 55 60

x-16757.ST25.txt

Phe Leu Tyr Ser Lys Leu Thr val Asp Lys Ser Arg Trp Gln Gln Gly
65 70 75 80

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
85 90 95

Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
100 105

<210> 11
<211> 330
<212> PRT
<213> Human

<400> 11

Ala Ser Thr Lys Gly Pro Ser val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu val Lys Asp Tyr
20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
65 70 75 80

Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95

Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
100 105 110

Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
115 120 125

Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
130 135 140

Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
145 150 155 160

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
165 170 175

x-16757.ST25.txt

Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
180 185 190

His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
195 200 205

Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
210 215 220

Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu
225 230 235 240

Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
245 250 255

Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
260 265 270

Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
275 280 285

Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
290 295 300

Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
305 310 315 320

Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
325 330

<210> 12
<211> 330
<212> PRT
<213> Human

<400> 12

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
Page 11

X-16757.ST25.txt

65

70

75

80

Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
 85 90 95

Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
 100 105 110

Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
 115 120 125

Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
 130 135 140

Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
 145 150 155 160

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
 165 170 175

Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
 180 185 190

His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
 195 200 205

Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
 210 215 220

Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu
 225 230 235 240

Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
 245 250 255

Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
 260 265 270

Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
 275 280 285

Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
 290 295 300

Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
 305 310 315 320

Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

<210> 13
<211> 31
<212> PRT
<213> Human

<400> 13

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15

His Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
20 25 30

<210> 14
<211> 31
<212> PRT
<213> Human

<400> 14

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15

Ile Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
20 25 30

<210> 15
<211> 31
<212> PRT
<213> Human

<400> 15

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15

Leu Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
20 25 30

<210> 16
<211> 31
<212> PRT
<213> Human

<400> 16

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15

Pro Lys Asp Thr Phe Met Ile Ser Arg Thr Pro Glu Val Thr Cys
20 25 30

<210> 17

x-16757.ST25.txt

<211> 31
<212> PRT
<213> Human

<400> 17

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15

Pro Lys Asp Thr Leu Met Ile Ser Arg Met Pro Glu Val Thr Cys
20 25 30

<210> 18
<211> 31
<212> PRT
<213> Human

<400> 18

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15

Pro Lys Asp Thr Leu Met Ile Ser Arg Pro Pro Glu Val Thr Cys
20 25 30

<210> 19
<211> 29
<212> PRT
<213> Human

<400> 19

Val Val Val Asp Val Ser Asp Glu Asp Pro Glu Val Lys Phe Asn Trp
1 5 10 15

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
20 25

<210> 20
<211> 29
<212> PRT
<213> Human

<400> 20

Val Val Val Asp Val Ser Glu Glu Asp Pro Glu Val Lys Phe Asn Trp
1 5 10 15

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
20 25

<210> 21
<211> 29
<212> PRT
<213> Human

x-16757.ST25.txt

<400> 21

val val val Asp val Ser His Glu Asp Pro Glu val Lys Phe Asn Trp
1 5 10 15

Tyr Val Ala Gly val Glu val His Asn Ala Lys Thr Lys
20 25

<210> 22

<211> 29

<212> PRT

<213> Human

<400> 22

val val val Asp val Ser His Glu Asp Pro Glu val Lys Phe Asn Trp
1 5 10 15

Tyr Val Lys Gly val Glu val His Asn Ala Lys Thr Lys
20 25

<210> 23

<211> 30

<212> PRT

<213> Human

<400> 23

Cys Lys val Ser Asn Lys Ala Leu Pro Lys Pro Ile Glu Lys Thr Ile
1 5 10 15

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln val Tyr Thr
20 25 30

<210> 24

<211> 30

<212> PRT

<213> Human

<400> 24

Cys Lys val Ser Asn Lys Ala Leu Pro Arg Pro Ile Glu Lys Thr Ile
1 5 10 15

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln val Tyr Thr
20 25 30

<210> 25

<211> 30

<212> PRT

<213> Human

<400> 25

Cys Lys val Ser Asn Lys Ala Leu Pro Ala Pro Asp Glu Lys Thr Ile
1 5 10 15

X-16757.ST25.txt

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
20 25 30

<210> 26
<211> 30
<212> PRT
<213> Human

<400> 26

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Glu Glu Lys Thr Ile
1 5 10 15

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
20 25 30

<210> 27
<211> 30
<212> PRT
<213> Human

<400> 27

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Lys Glu Lys Thr Ile
1 5 10 15

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
20 25 30

<210> 28
<211> 30
<212> PRT
<213> Human

<400> 28

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Arg Glu Lys Thr Ile
1 5 10 15

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
20 25 30

<210> 29
<211> 30
<212> PRT
<213> Human

<400> 29

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile
1 5 10 15

Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
20 25 30

x-16757.ST25.txt

<210> 30
<211> 22
<212> PRT
<213> Human

<400> 30

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Asp Val Glu Trp Glu
1 5 10 15

Ser Asn Gly Gln Pro Glu
20

<210> 31
<211> 23
<212> PRT
<213> Human

<400> 31

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Tyr
1 5 10 15

Leu Ser Leu Ser Pro Gly Lys
20

<210> 32
<211> 990
<212> DNA
<213> HUMAN

<400> 32

gcctccacca	aggccccatc	ggtttcccc	ctggcaccc	cctccaagag	cacctctggg	60
ggcacagcg	ccctgggctg	cctggtcaag	gactacttcc	ccgaaccggt	gacggtgtcg	120
tggaaactca	gcgcctgac	cagcggcgtg	cacaccttcc	cggctgtcct	acagtccctca	180
ggactctact	ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	240
tacatctgca	acgtgaatca	caagcccagc	aacaccaagg	tggacaagaa	ggttgagccc	300
aaatcttgt	acaaaactca	cacatgccc	ccgtgcccag	cacctgaact	cctgggggga	360
ccgtcagtct	tcctcttccc	cccaaaaccc	aaggacaccc	tcatgatctc	ccggaccct	420
gaggtcacat	gcgtggtggt	ggacgtgagc	cacgaagacc	ctgaggtcaa	gttcaactgg	480
tacgtggacg	gcgtggaggt	gcataatgcc	aagacaaagc	cgcgggagga	gcagtacaac	540
agcacgtacc	gtgtggtcag	cgtcctcacc	gtcctgcacc	aggactggct	aatggcaag	600
gagtacaagt	gcaaggtctc	caacaaagcc	ctcccagccc	ccatcgagaa	aaccatctcc	660
aaagccaaag	ggcagccccg	agaaccacag	gtgtacaccc	tgccccatc	ccgggacgag	720
ctgaccaaga	accaggtcag	cctgacctgc	ctggtaaaag	gcttctatcc	cagcgacatc	780

x-16757.ST25.txt

gccgtggagt gggagagcaa tggcagccg gagaacaact acaagaccac gcctcccgta	840
ctggactccg acggctcctt cttcctctat agcaagctca ccgtggacaa gagcaggtgg	900
cagcagggga acgtcttctc atgctccgtg atgcattgagg ctctgcacaa ccactacacg	960
cagaagagcc tctccctgtc tccgggtaaa	990
<210> 33	
<211> 93	
<212> DNA	
<213> HUMAN	
<400> 33	
gcacctgaac tcctgggggg accgtcagtc ttccctttcc cccaaaacc caaggacacc	60
ctcatgatct cccggacccc tgaggtcaca tgc	93
<210> 34	
<211> 87	
<212> DNA	
<213> HUMAN	
<400> 34	
tggtgggtgg acgtgagcca cgaagaccct gaggtcaagt tcaactggta cgtggacggc	60
gtggaggtgc ataatgccaa gacaaag	87
<210> 35	
<211> 90	
<212> DNA	
<213> HUMAN	
<400> 35	
tgcaaggtct ccaacaaagc cctcccgcc cccatcgaga aaaccatctc caaagccaaa	60
ggcagcccc gagaaccaca ggtgtacacc	90
<210> 36	
<211> 69	
<212> DNA	
<213> HUMAN	
<400> 36	
tgctccgtga tgcattgaggc tctgcacaac cactacacgc agaagagcct ctccctgtct	60
ccgggtaaa	69
<210> 37	
<211> 66	
<212> DNA	
<213> HUMAN	
<400> 37	
tgcctggta aaggcttcta tcccgacatcgccgtgg agtggagag caatggcag	60
ccggag	66

x-16757.ST25.txt

<210>	38		
<211>	93		
<212>	DNA		
<213>	HUMAN		
<400>	38		
gcacacctgaac	tcctgggggg	accgtcagtc	ttcctttcc
ctcatatct	cccggacccc	tgaggtcaca	tgc
			60
			93
<210>	39		
<211>	93		
<212>	DNA		
<213>	HUMAN		
<400>	39		
gcacacctgaac	tcctgggggg	accgtcagtc	ttcctttcc
ctcatatct	cccggacccc	tgaggtcaca	tgc
			60
			93
<210>	40		
<211>	93		
<212>	DNA		
<213>	HUMAN		
<400>	40		
gcacacctgaac	tcctgggggg	accgtcagtc	ttcctttcc
ctcatatct	cccggacccc	tgaggtcaca	tgc
			60
			93
<210>	41		
<211>	93		
<212>	DNA		
<213>	HUMAN		
<400>	41		
gcacacctgaac	tcctgggggg	accgtcagtc	ttcctttcc
ttcatatct	cccggacccc	tgaggtcaca	tgc
			60
			93
<210>	42		
<211>	93		
<212>	DNA		
<213>	HUMAN		
<400>	42		
gcacacctgaac	tcctgggggg	accgtcagtc	ttcctttcc
ctcatatct	cccggatgcc	tgaggtcaca	tgc
			60
			93
<210>	43		
<211>	93		
<212>	DNA		
<213>	HUMAN		
<400>	43		
gcacacctgaac	tcctgggggg	accgtcagtc	ttcctttcc
ctcatatct	cccggccacc	tgaggtcaca	tgc
			60
			93

x-16757.ST25.txt

<210>	44	
<211>	87	
<212>	DNA	
<213>	HUMAN	
<400>	44	
gtggtgtgg	acgtgagcga cgaagaccct gaggtcaagt tcaactggta cgtggacggc	60
gtggaggtgc	ataatgccaa gacaaag	87
<210>	45	
<211>	87	
<212>	DNA	
<213>	HUMAN	
<400>	45	
gtggtgtgg	acgtgagcga ggaagaccct gaggtcaagt tcaactggta cgtggacggc	60
gtggaggtgc	ataatgccaa gacaaag	87
<210>	46	
<211>	87	
<212>	DNA	
<213>	HUMAN	
<400>	46	
gtggtgtgg	acgtgagcca cgaagaccct gaggtcaagt tcaactggta cgtggccggc	60
gtggaggtgc	ataatgccaa gacaaag	87
<210>	47	
<211>	87	
<212>	DNA	
<213>	HUMAN	
<400>	47	
gtggtgtgg	acgtgagcca cgaagaccct gaggtcaagt tcaactggta cgtgaaaggc	60
gtggaggtgc	ataatgccaa gacaaag	87
<210>	48	
<211>	90	
<212>	DNA	
<213>	HUMAN	
<400>	48	
tgcaaggtct	ccaacaaagc cctccaaaaa cccatcgaga aaaccatctc caaagccaaa	60
gggcagcccc	gagaaccaca ggtgtacacc	90
<210>	49	
<211>	90	
<212>	DNA	
<213>	HUMAN	
<400>	49	
tgcaaggtct	ccaacaaagc cctcccacgc cccatcgaga aaaccatctc caaagccaaa	60

x-16757.ST25.txt

gggcagcccc	gagaaccaca	ggtgtacacc	90			
<210>	50					
<211>	90					
<212>	DNA					
<213>	HUMAN					
<400>	50					
tgcaaggct	ccaacaaagc	cctcccgagcc	cccgacgaga	aaaccatctc	caaagccaaa	60
gggcagcccc	gagaaccaca	ggtgtacacc	90			
<210>	51					
<211>	90					
<212>	DNA					
<213>	HUMAN					
<400>	51					
tgcaaggct	ccaacaaagc	cctcccgagcc	cccggaggaga	aaaccatctc	caaagccaaa	60
gggcagcccc	gagaaccaca	ggtgtacacc	90			
<210>	52					
<211>	90					
<212>	DNA					
<213>	HUMAN					
<400>	52					
tgcaaggct	ccaacaaagc	cctcccgagcc	cccaaagaga	aaaccatctc	caaagccaaa	60
gggcagcccc	gagaaccaca	ggtgtacacc	90			
<210>	53					
<211>	90					
<212>	DNA					
<213>	HUMAN					
<400>	53					
tgcaaggct	ccaacaaagc	cctcccgagcc	ccccgcgaga	aaaccatctc	caaagccaaa	60
gggcagcccc	gagaaccaca	ggtgtacacc	90			
<210>	54					
<211>	90					
<212>	DNA					
<213>	HUMAN					
<400>	54					
tgcaaggct	ccaacaaagc	cctcccgagcc	cccatcgaga	aaaccatctc	caaaacccaaa	60
gggcagcccc	gagaaccaca	ggtgtacacc	90			
<210>	55					
<211>	66					
<212>	DNA					
<213>	HUMAN					

x-16757.ST25.txt

<400>	55					
tgcctggtca	aaggcttcta	tcccagcgac	atcgacgtgg	agtgggagag	aatggcag	60
ccggag						66
<210>	56					
<211>	69					
<212>	DNA					
<213>	HUMAN					
<400>	56					
tgctccgtga	tgcatgaggc	tctgcacaac	cactacacgc	agaagtacct	ctccctgtct	60
ccgggtaaa						69