

ADP 19919

015-3d
4 cps w/c
12 Aug 69 gen
①

AN ATLAS OF AIR ABSORPTIONS IN THE INFRARED

by

D. J. Lovell

INTERIM REPORT

June 1969

Supported By

U. S. Office of Naval Research
Washington, D. C. 20360

Principal Investigator: John Strong

*Reproduction in whole or in part is permitted
for any purpose of the United States Government.*

DEPARTMENT OF PHYSICS AND ASTRONOMY
ASTRONOMY RESEARCH FACILITY
UNIVERSITY OF MASSACHUSETTS, AMHERST
and
THE FOUR COLLEGE OBSERVATORIES

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
Springfield, Va. 22151

Contract No. N00014-67-A-0230-0002

NR No. 015-301

Contribution # 49/243

DISTRIBUTION STATEMENT A	
Approved for public release; Distribution Unlimited	

84

AN ATLAS OF AIR ABSORPTIONS IN THE INFRARED

by D. J. Lovell

June 1969

Department of Physics and Astronomy
University of Massachusetts
Amherst, Mass. 01002

**Best
Available
Copy**

ABSTRACT

An atlas of the spectral absorption characteristic of air is presented in the spectral region from 4000 to 250 cm^{-1} . Spectra were observed over a 92 meter path under two conditions: in a near vacuum and at ambient pressure and temperature.

AN ATLAS OF AIR ABSORPTIONS IN THE INFRARED

D. J. Lovell

Introduction

Interest in the absorption characteristics of the atmosphere dates back nearly to the discovery of infrared radiation itself. It was soon found that the principal atmospheric absorber is water vapor. Because the determination of the concentration of this component is variable and difficult to assess, precise computations of atmospheric attenuations have only been undertaken in comparatively recent years.

The accurate determination of atmospheric attenuation has been attacked by three empirical methods. First, using artificial sources, the spectral transmissions of atmospheric paths have been directly measured. These generally have been made over approximately horizontal paths in which the temperature, pressure, and component concentrations are assumed not to vary appreciably. A second empirical technique has been to use the sun as a source. Here, the path through the atmosphere is nearly vertical, and some model atmosphere must be assumed if the resulting attenuation is to be compared to the constituent concentrations. A third empirical approach has been to study, under laboratory conditions, the

absorption produced by the specific constituent gases of the atmosphere.

The data developed from these techniques have permitted reasonable predictions of atmospheric attenuation to be made. However, some uncertainties still exist. The work presented here is intended to provide additional insights into the problem by providing an atlas of the relative spectral absorption characteristics of a homogeneous path of atmosphere. The atlas permits one to observe and compare the constituent features that spectrally attenuate radiation in the atmosphere. By using "normal" air, the absorbing characteristics due to all constituents of the atmosphere except ozone, of course, are properly superimposed. It is hoped that the spectral coverage (approximately 4000 to 250 cm^{-1}) and the spectral resolution (usually better than 1 cm^{-1}) will enable meteorologists, astronomers, and others interested in atmospheric attenuation to improve their ability to predict this characteristic.

Atlas Preparation

The atlas, presented here, covers the spectral region from about 4000 cm^{-1} (2.5μ) to 250 cm^{-1} (40μ). It has been prepared over a 92-meter (300 ft.) homogeneous path under both ambient pressure conditions and at a pressure of a few millimeters of mercury.

Measurements were made using the long path absorption cell described by Lovell and Strong (1). This cell is shown in the drawing (Fig. 1) and is indicated schematically in Fig. 2. Note that the distance between the two large mirrors in Fig. 2 has been foreshortened. A globar source was used, and the radiation was reflected to the spectrometer by four gold-coated mirrors. The signal was synchronously detected and amplified by a Brower Model 131 lock-in amplifier.

The spectra at ambient atmosphere and vacuum conditions were obtained under identical spectrometer settings in a specified spectral region. Experience has indicated that results obtained in this way are generally reproducible to better than 10%, but that larger errors do sometimes occur. The near-vacuum spectra were recorded to indicate the approximate envelope of the radiation source. The air at ambient pressure was at a temperature of approximately 22°C and a relative humidity of about 40%.

Although the spectrometer is flushed with dry air, the absorption due to the approximately one meter path within the spectrometer can overwhelm that in the evacuated cell under some circumstances. This is particularly true of the 15μ band of CO₂ and care must be taken not to attribute these absorptions to the partial pressure within the

cell. It is reemphasized that the vacuum spectra are obtained to provide an irradiance envelope for comparison in addition to providing better spectral resolution where bands are nearly opaque under ambient conditions.

Identification of the lines presented here has been done primarily by comparison of the results presented by various authors. The specific data used are indicated on the tables presented. Where no wavenumber identification was available, it was determined by interpolation and is indicated by the designation x. This interpolation is not more accurate than 0.5 cm^{-1} .

The wavenumbers presented are for vacuum conditions. Reported values have been rounded off to the nearest 0.1 cm^{-1} since, although values are often reported to an order of magnitude greater accuracy, disagreements among the values reported to nearly 1 cm^{-1} sometimes arise.

The spectra were all obtained with a Perkin-Elmer Model 210 grating monochromator. Four separate gratings were used to cover the spectral region. Spectra were recorded in the first order; cut-on interference filters were used to reject higher orders of shorter wavelengths. The grating, slit widths used and the calculated spectral slit widths are given in Table 1.

Acknowledgment

This work was supported by the Office of Naval Research
under Contract #N00014-67-A-0230-0002.

References

1. D. J. Lovell, and John Strong, "Long-Path Study of Infrared Absorption and Emission," *Appl. Opt.*, to be published.
2. Orren C. Mohler, A. Keith Pierce, Robert R. McMath, and Leo Goldberg, Photometric Atlas of the Near Infra-Red Solar Spectrum. (Univ. of Michigan Press, Ann Arbor, 1950).
3. International Union of Pure and Applied Chemistry Commission on Molecular Structure and Spectroscopy, Tables of Wavenumbers for the Calibration of Infra-Red Spectrometers. (Bitterworths, Washington, 1961).
 - 3a. H_2O , $3400-4000 \text{ cm}^{-1}$, pp. 596-597.
 - 3b. H_2O , $3900-4000 \text{ cm}^{-1}$, pp. 608-609.
 - 3c. H_2O , $3800-3900 \text{ cm}^{-1}$, pp. 610-611.
 - 3d. H_2O , CO_2 ; $3700-3800 \text{ cm}^{-1}$, pp. 612-613.
 - 3e. CO_2 , $2300-2400 \text{ cm}^{-1}$, pp. 576-577.
 - 3f. $^{13}\text{CO}_2$, $2250-2700 \text{ cm}^{-1}$, pp. 578-579.
 - 3g. CO_2 , CO ; $2200-2300 \text{ cm}^{-1}$, pp. 642-643.
 - 3h. CO , $2040-2240 \text{ cm}^{-1}$, pp. 580-581.
 - 3i. H_2O , $1350-1900 \text{ cm}^{-1}$, pp. 598-599.
 - 3j. H_2O , $1800-1900 \text{ cm}^{-1}$, pp. 650-651.
 - 3k. H_2O , $1700-1800 \text{ cm}^{-1}$, pp. 652-653.
 - 3m. H_2O , $1600-1700 \text{ cm}^{-1}$, pp. 654-655.
 - 3n. H_2O , $1500-1600 \text{ cm}^{-1}$, pp. 656-657.
 - 3p. H_2O , $1400-1500 \text{ cm}^{-1}$, pp. 658-659.
 - 3q. H_2O , $1300-1400 \text{ cm}^{-1}$, pp. 660-661.
 - 3r. CO_2 , $630-710 \text{ cm}^{-1}$, pp. 592-593.
4. M. Migeotte, L. Neven, and J. Swensson, "The Solar Spectrum from 2.8 to 23.7 Microns," *Mémoires de la Société Royale des Sciences de Liège*. Special Volume No. 1, (1956).

5. S. R. Drayson, and C. Young, The Frequencies and Intensities of Carbon Dioxide Absorption Lines Between 12 and 18 Microns. (Univ. of Michigan Report ORA 08183-1-T, Nov. 1967).
6. C. B. Farmer, and P. J. Key, "A Study of the Solar Spectrum from 7 mu to 400 mu," Appl. Opt. 4, 1051, (1956).
7. W. S. Benedict, H. H. Claassen, and J. H. Shaw, "Absorption Spectrum of Water Vapor Between 4.5 and 13 Microns," J. of Res. N.B.S. 49, 91, (Aug. 1952).

NOT REPRODUCIBLE

Fig. 1. The experimental set-up used in the preparation of the atlas.

Best Available Copy

FIG. 2. A schematic drawing of the optical path used.

TABLE 1

Plate	Grating (1/mm)	Spectral Region (cm ⁻¹)		Slit Width (mm)	Spectral Slit Width (cm ⁻¹)
1	240	4100	3700	0.06	1.35
2	240	3700	3300	0.06	1.1
3	240	3300	2900	0.065	0.9
4	240	2900	2550	0.065	0.65
5	240	2550	2200	0.078	0.55
6	240	2200	1800	0.09	0.45
7	240	1800	1550	0.125	0.4
8a	101	1575	1460	0.120	0.95
8b	101	1460	1425	0.100	0.75
9	101	1425	1300	0.100	0.7
10a	101	1300	1175	0.115	0.6
10b	101	1175	1150	0.150	0.7
11a	101	1150	1070	0.150	0.6
11b	101	1070	1025	0.200	0.7
12a	101	1025	925	0.240	0.7
12b	101	925	875	0.275	0.7
13a	101	875	780	0.300	0.6
13b	101	785	730	0.440	0.7
14	101	730	600	0.475	0.55

Plate	Grating (l/mm)	Spectral Region (cm ⁻¹)		Slit Width (mm)	Spectral Slit Width (cm ⁻¹)
15	40	670	600	0.225	0.8
16	40	600	540	0.285	0.8
17a	40	520	490	0.330	0.7
17b	40	500	470	0.425	0.8
18	40	470	400	0.540	0.9
19	30	450	390	0.500	1.0
20a	30	390	350	0.610	0.95
20b	30	360	330	0.850	1.0
21a	30	330	300	1.00	1.1
21b	30	305	290	1.35	1.2
22	30	290	240	1.8	1.8

PLATE 1

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	4085.8	H ₂ O	2
2	4076	H ₂ O	x
3	4071	H ₂ O (?)	x
4	4058.8	H ₂ O	2
5	4050	H ₂ O (?)	x
6	4044	H ₂ O	x
7	4030	H ₂ O	x
8	4024	H ₂ O (?)	x
9	4019	H ₂ O	x
10	4011	H ₂ O (?)	x
11	4008	H ₂ O	x
12	3995	H ₂ O	x
13	3991	H ₂ O	x
14	3986	H ₂ O	2
15	3981.8	H ₂ O	2
16	3980.8	H ₂ O	2
17	3976	H ₂ O	2
18	3975	H ₂ O	2
19	3973	H ₂ O	2
20	3968.5	H ₂ O	2

PLATE 1

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
21	3964	H ₂ O	x
22	3961.7	H ₂ O	2
23	3957	H ₂ O (?)	x
24	3952	H ₂ O (?)	x
25	3950	H ₂ O	3a
26	3947	H ₂ O	x
27	3942.9	H ₂ O	3a
28	3938	H ₂ O	x
29	3932.5	H ₂ O	x
30	3930	H ₂ O	x
31	3925.2	H ₂ O	3a
32	3920.1	H ₂ O	3a
33	3918	H ₂ O	x
34	3904.2	H ₂ O	3b
35	3903.5	H ₂ O	x
36	3899.4	H ₂ O	3a
37	3894.5	H ₂ O	x
38	3891.3	H ₂ O	3b
39	3885.9	H ₂ O	3c
40	3883.3	H ₂ O	3a

PLATE 1

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
41	3879	H ₂ O	x
42	3874	H ₂ O	x
43	3869.5	H ₂ O	x
44	3865.2	H ₂ O	3a
45	3861.5	H ₂ O	x
46	3858	H ₂ O	x
47	3854	H ₂ O	x
48	3852.1	H ₂ O	3a
49	3842.8	H ₂ O	3c
50	3840	H ₂ O	x
51	3837.9	H ₂ O	3c
52	3835.1	H ₂ O	3e
53	3831.7	H ₂ O	3c
54	3826	H ₂ O	x
55	3819.5	H ₂ O	x
56	3816.1	H ₂ O	3a
57	3807	H ₂ O	3a
58	3801.4	H ₂ O	3c
59	3796	H ₂ O	x
60	3790	H ₂ O	x

PLATE 1

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
61	3785	H ₂ O	x
62	3779.4	H ₂ O	3a
63	3769.8	H ₂ O	3d
64	3765.8	H ₂ O	3d
65	3759.8	H ₂ O	3a
66	3756	H ₂ O	x
67	3752.2	H ₂ O	3a
68	3749.3	H ₂ O	3d
69	3744.5	H ₂ O	3d
70	3741	H ₂ O	3d
71	3736	H ₂ O	x
72	3732	H ₂ O	x
73	3737	H ₂ O	x
74	3733	H ₂ O	x
75	3730	H ₂ O	x
76	3714.8	H ₂ O	3a
77	3713	H ₂ O	x
78	3710	H ₂ O	x
79	3701.9	H ₂ O	3a
80	3691	H ₂ O	x
81	3688	H ₂ O	x

15

PLATE 2

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	3713	H ₂ O	x
2	3710	H ₂ O	x
3	3701.9	H ₂ O	3a
4	3691	H ₂ O	x
5	3688	H ₂ O	x
6	3680	H ₂ O	x
7	3676	H ₂ O	x
8	3671	H ₂ O	x
9	3659.9	H ₂ O	3a
10	3656.3	H ₂ O	3a
11	3652	H ₂ O	x
12	3651	H ₂ O	x
13	3648	H ₂ O	x
14	3642.5	H ₂ O	x
15	3638.2	H ₂ O	3a
16	3634	H ₂ O	x
17	3629	H ₂ O	x
18	3626	H ₂ O	x
19	3619	H ₂ O	x
20	3617.5	H ₂ O	x

PLATE 2

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
21	3615	H ₂ O	x
22	3613	H ₂ O	x
23	3609	H ₂ O	x
24	3607	H ₂ O	x
25	3601	H ₂ O	x
26	3598	H ₂ O	x
27	3596	H ₂ O	x
28	3593	H ₂ O	x
29	3589	H ₂ O	x
30	3586	H ₂ O	x
31	3581	H ₂ O	x
32	3577	H ₂ O	x
33	3575	H ₂ O	x
34	3572.5	H ₂ O	x
35	3570.5	H ₂ O	3a
36	3568	(?)	x
37	3566	(?)	x
38	3557.0	H ₂ O	4
39	3554.7	CO ₂	4
40	3552.4	H ₂ O	3a

PLATE 2

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
41	3544.6	H ₂ O	4
42	3543.0	H ₂ O	4
43	3540	¹³ CO ₂ (?)	4
44	3536.4	H ₂ O	3a
45	3530.7	H ₂ O	4
46	3518	H ₂ O	4
47	3528.0	H ₂ O	4
48	3518.9	H ₂ O	4
49	3509.5	H ₂ O	3a
50	3504.7/3503.0	H ₂ O	4
51	3496.6	H ₂ O	3a
52	3490.8	H ₂ O	4
53	3488.1	H ₂ O	3a
54	3485	H ₂ O	x
55	3482.3	H ₂ O	3a
56	3474.8	H ₂ O	4
57	3470.5	H ₂ O	4
58	3467.2	H ₂ O	4
59	3462.7/3461.4	H ₂ O	4
60	3458.6/3457.5	H ₂ O	4

14

PLATE 2

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
61	3455.7	H ₂ O	4
62	3447.2	H ₂ O	3a
63	3442.2	H ₂ O	4
64	3438.1	H ₂ O	4
65	3430.9	H ₂ O	4
66	3420.4	H ₂ O	4
67	3413.0	H ₂ O	4
68	3408.8	H ₂ O	4
69	3406.6	H ₂ O	4
70	3403.6	H ₂ O	4
71	3403.5	H ₂ O	4
72	3402.1	H ₂ O	4
73	3397.2	H ₂ O	4
74	3392.6	H ₂ O	4
75	3385.6/3384.2	H ₂ O	4
76	3380.4	H ₂ O	4
77	3374.7	H ₂ O	4
78	3371.8	H ₂ O	4
79	3367.5	H ₂ O	4
80	3365.7	H ₂ O	4

PLATE 2

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
81	3361.6	H ₂ O	4
82	3360	H ₂ O	x
83	3355.6	H ₂ O	4
84	3351.2	H ₂ O	4
85	3348.4	H ₂ O	4
86	3346.0	H ₂ O	4
87	3342.3	H ₂ O	4
88	3340.1	H ₂ O	4
89	3336.7	H ₂ O	4
90	3334.5	H ₂ O	4
91	3329.5	H ₂ O	4
92	3327.4/3326.4	H ₂ O	4
93	3324.6	H ₂ O	4
94	3323	H ₂ O	4
95	3318.5/3317.3	H ₂ O	4
96	3213.0	H ₂ O	4
97	3211	H ₂ O	x
98	3308.5	H ₂ O	4

20

PLATE 3

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	3327.4/3326.4	H ₂ O	4
2	3324.6	H ₂ O	4
3	3323.0	H ₂ O	4
4	3318.3/3317.3	H ₂ O	4
5	3313.0	H ₂ O	4
6	3308.5	H ₂ O	4
7	3303.2	H ₂ O	4
8	3297.4	H ₂ O	4
9	3292.6	H ₂ O	4
10	3288.5	H ₂ O	4
11	3282.9	H ₂ O	4
12	3280.0	H ₂ O	4
13	3276.3	H ₂ O	4
14	3273.6	H ₂ O	4
15	3265.0	H ₂ O	4
16	3260.4	H ₂ O	4
17	3257.1	H ₂ O	4
18	3254.0	H ₂ O	4
19	3245.1	H ₂ O	4
20	3240.0	H ₂ O	4

21

PLATE 3

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
21	3236.6	H ₂ O	4
22	3232.9	H ₂ O	4
23	3230.0	H ₂ O	4
24	3227.5	H ₂ O	4
25	3219.3	H ₂ O	4
26	3214.1	H ₂ O	4
27	3209.8	H ₂ O	4
28	3199.8	H ₂ O	4
29	3197.9	H ₂ O	4
30	3196.2	H ₂ O	4
31	3185.2	H ₂ O	4
32	3178.2	H ₂ O	4
33	3169.7	H ₂ O	4
34	3167.9	H ₂ O	4
35	3151.4	H ₂ O	4
36	3142.8	H ₂ O	4
37	3133.1	H ₂ O	4
38	3126.8	H ₂ O	4
39	3122.3	H ₂ O	4
40	3119.1	H ₂ O	4

22

PLATE 3

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
41	3115.9	H ₂ O	4
42	3112.1	H ₂ O	4
43	3110.2	H ₂ O	4
44	3107.3	H ₂ O	4
45	3103.1	H ₂ O	4
46	3101.2	H ₂ O	4
47	3099.6	H ₂ O	4
48	3095.8	H ₂ O	4
49	3087.2	H ₂ O	4
50	3081.3	H ₂ O	4
51	3079.6	H ₂ O	4
52	3077.9	H ₂ O	4
53	3067.2	H ₂ O	4
54	3064.3	H ₂ O	4
55	3059.9	H ₂ O	4
56	3056.4	H ₂ O	4
57	3049.0	H ₂ O	4
58	3034.4	H ₂ O	4
59	3031.9/3030.8	H ₂ O	4
60	3025.8	H ₂ O	4

23

PLATE 3

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
61	3022.4	H ₂ O	4
62	3017.3	CH ₄	4
63	3015.5	H ₂ O	4
64	3010.3	H ₂ O	4
65	3003.7	H ₂ O	4
66	2994.4	H ₂ O	4
67	2991.8	H ₂ O	4
68	2987.5	H ₂ O	4
69	2984.2	H ₂ O	4
70	2980.3	H ₂ O	4
71	2978.0	H ₂ O	4
72	2975.2	H ₂ O	4
73	2973.2	H ₂ O	4
74	2967.9	H ₂ O	4
75	2965	H ₂ O	4
76	2958.3	CH ₄	4
77	2955.7	H ₂ O	4
78	2953	CH ₄ (?)	4
79	2947.9	CH ₄	4
80	2920.8	CH ₄	4

24

PLATE 5

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	2371.5	CO ₂	3e
2	2370.3	CO ₂	3e
3	2369.1	CO ₂	3e
4	2367.9	CO ₂	3e
5	2365.7	CO ₂	3e
6	2365.4	CO ₂	3e
7	2364.2	CO ₂	3e
8	2362.8	CO ₂	3e
9	2361.5	CO ₂	3e
10	2360.2	CO ₂	3e
11	2358.8	CO ₂	3e
12	2357.4	CO ₂	3e
13	2355.9	CO ₂	3e
14	2354.5	CO ₂	3e
15	2353.0	CO ₂	3e
16	2351.5	CO ₂	3e
17	2350.0	CO ₂	3e
18	2347.6	CO ₂	3e
19	2346.0	CO ₂	3e
20	2344.4	CO ₂	3e

25

PLATE 5

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
21	2342.8	CO ₂	3e
22	2341.1	CO ₂	3e
23	2339.4	CO ₂	3e
24	2337.7	CO ₂	3e
25	2336.0	CO ₂	3e
26	2334.2	CO ₂	3e
27	2332.4	CO ₂	3e
28	2330.6	CO ₂	3e
29	2328.8	CO ₂	3e
30	2326.9	CO ₂	3e
31	2325.0	CO ₂	3e
32	2323.1	CO ₂	3e
33	2321.2	CO ₂	3e
34	2319.2	CO ₂	3e
35	2317.2	CO ₂	3e
36	2315.2	CO ₂	3e
37	2313.2	CO ₂	3e
38	2311.1	CO ₂	3e
39	2309.0	CO ₂	3e
40	2307.0	CO ₂	3e

-26

PLATE 5

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
41	2304.8	CO ₂	3e
42	2302.7	CO ₂	3e
43	2300.5	CO ₂	3e
44	2294.4	¹³ CO ₂	3f
45	2293.1	¹³ CO ₂	3f
46	2291.6	¹³ CO ₂	3f
47	2290.2	¹³ CO ₂	3f
48	2288.8	¹³ CO ₂	3f
49	2287.3	¹³ CO ₂	3f
50	2285.8	¹³ CO ₂	3f
51	2283.9	¹³ CO ₂	3f
52	2281.9	¹³ CO ₂	3f
53	2280.3	¹³ CO ₂	3f
54	2278.7	¹³ CO ₂	3f
55	2271.1	¹³ CO ₂	3f
56	2275.4	¹³ CO ₂	3f
57	2273.7	¹³ CO ₂	3f
58	2272.0	¹³ CO ₂	3f
59	2270.3	¹³ CO ₂	3f
60	2268.6	¹³ CO ₂	3f

27

PLATE 5

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
61	2266.8	¹³ CO ₂	3t
62	2265.0	¹³ CO ₂	3t
63	2263.1	¹³ CO ₂	3t
64	2261.3	¹³ CO ₂	3t
65	2259.4	¹³ CO ₂	3t
66	2257.5	¹³ CO ₂	3t
67	2255.6	¹³ CO ₂	3t
68	2253.7	¹³ CO ₂	3t
69	2251.7	¹³ CO ₂	3t
70	2249.7	¹³ CO ₂	3t
71	2247.7	¹³ CO ₂	3t
72	2245.6	¹³ CO ₂	3g
73	2243.6	¹³ CO ₂	3g
74	2241.4	¹³ CO ₂	3g
75	2239.4	¹³ CO ₂	3g
76	2237.2	¹³ CO ₂	3g
77	2235	¹³ CO ₂	x
78	2203.2	CO	3h
79	2199.9	CO	3h
80	2196.7	CO	3h

24

PLATE 5

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
81	2193.4	CO	3h
82	2190.0	CO	3h
83	2186.6	CO	3h
84	2183.2	CO	3h
85	2179.8	CO	3h
86	2176.3	CO	3h
87	2172.8	CO	3h
88	2169.2	CO	3h
89	2165.6	CO	3h
90	2162.0	CO	3h

PLATE 6

1	2193.4	CO	3h
2	2190.0	CO	3h
3	2186.6	CO	3h
4	2183.2	CO	3h
5	2179.8	CO	3h
6	2176.3	CO	3h
7	2172.8	CO	3h
8	2169.2	CO	3h
9	2165.6	CO	3h
10	2162.0	CO	3h

29

PLATE 6

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
11	2158.3	CO	3h
12	2154.6	CO	3h
13	2150.9	CO	3h
14	2147.1	CO	3h
15	2139.4	CO	3h
16	2135.6	CO	3h
17	2131.6	CO	3h
18	2127.7	CO	3h
19	2123.7	CO	3h
20	2119.7	CO	3h
21	2115.6	CO	3h
22	2111.6	CO	3h
23	2107.4	CO	3h
24	2103.3	CO	3h
25	2094.9	CO	3h
26	2090.6	CO	3h
27	2086.3	CO	3h
28	2082.0	CO	3h
29	2077.7	CO	3h
30	2073.3	CO	3h

PLATE 6

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
31	2068.8	CO	3h
32	2064.4	CO/H ₂ O	4
33	2059.9	CO	3h
34	2050.9	CO	3h
35	2046.3	CO	3h
36	2043.9	H ₂ O	4
37	2041.3	H ₂ O	4
38	2037.4	H ₂ O	4
39	2034.0	H ₂ O	4
40	2032.4	CO	3h
41	2026.6	H ₂ O	4
42	2023.0	H ₂ O	4
43	2018.2	H ₂ O	4
44	2016.8	H ₂ O	4
45	2013.4	CO	3h
46	2009.3	H ₂ O	4
47	2007.5	H ₂ O	4
48	2004	?	x
49	1998.9	H ₂ O	4
50	1993.2	H ₂ O	4

31

PLATE 6

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
51	1992.2	H ₂ O	4
52	1988.6	H ₂ O	4
53	1976.2	H ₂ O	4
54	1967.4	H ₂ O	4
55	1966.2	H ₂ O	4
56	1960.7	H ₂ O	4
57	1955.0	H ₂ O	4
58	1946.4/1945.4	H ₂ O	4
59	1942.6/1941.8	H ₂ O	4
60	1933.2	H ₂ O	4
61	1923.4/1922.4	H ₂ O	4
62	1917.9	H ₂ O	4
63	1916.3	H ₂ O	4
64	1908.4	H ₂ O	4
65	1904.4	H ₂ O	4
66	1901.8	H ₂ O	4
67	1897.4	H ₂ O	4
68	1895.4	H ₂ O	4
69	1889.5	H ₂ O	4
70	1884.6	H ₂ O	4

K 21

PLATE 6

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
71	1879.3	Σ_2^0	4
72	1876.5	Σ_2^0	4
73	1870.8	Σ_2^0	4
74	1863.5	Σ_2^0	4
75	1865.4	Σ_2^0	4
76	1861.5	Σ_2^0	4
77	1851.5	Σ_2^0	4
78	1856.3	Σ_2^0	4
79	1852.5	Σ_2^0	4
80	1847.7	Σ_2^0	4
81	1842.2	Σ_2^0	4
82	1837.2	Σ_2^0	4
83	1829.9	Σ_2^0	4
84	1825.2	Σ_2^0	31
85	1817.5	Σ_2^0	4
86	1810.6	Σ_2^0	31
87	1807.7	Σ_2^0	4
88	1805.2	Σ_2^0	4
89	1799.6	Σ_2^0	31

21-23

PLATE 7

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	1825.4	H ₂ O	31
2	1817.5	H ₂ O	?
3	1810.6	H ₂ O	31
4	1808.6	H ₂ O	?
5	1805.2	H ₂ O	?
6	1802.4	H ₂ O	?
7	1799.6	H ₂ O	31
8	1796.9	H ₂ O	?
9	1792.6	H ₂ O	31
10	1791.0	H ₂ O	31
11	1785.0	H ₂ O	31
12	1782.0	H ₂ O	?
13	1775.6	H ₂ O	?
14	1772.6	H ₂ O	3k
15	1771.4	H ₂ O	?
16	1768.2	H ₂ O	31
17	1761.9	H ₂ O	3k
18	1756.8	H ₂ O	31
19	1751.4	H ₂ O	3k
20	1748	H ₂ O	x

39

PLATE 7

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
21	1746	H ₂ O	x
22	1744	H ₂ O	x
23	1742	H ₂ O	x
24	1739.8	H ₂ O	3k
25	1734.6	H ₂ O	3k
26	1733.4	H ₂ O	3k
27	1731	H ₂ O	x
28	1723.5	H ₂ O	31
29	1718.6	H ₂ O	31
30	1717.4	H ₂ O	31
31	1715.2	H ₂ O	3k
32	1710.2	H ₂ O	31
33	1706.4	H ₂ O	3k
34	1704.5	H ₂ O	3k
35	1700	H ₂ O	x
36	1696	H ₂ O	3k
37	1690.5	H ₂ O	x
38	1688	H ₂ O	x
39	1684.9	H ₂ O	3m
40	1680	H ₂ O	x

35

PLATE 7

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
41	1675	H ₂ O	x
42	1672	H ₂ O	x
43	1669.4	H ₂ O	3m
44	1662.8	H ₂ O	3m
45	1655	H ₂ O	x
46	1653.4/1652.4	H ₂ O	3m
47	1648	H ₂ O	x
48	1646.0	H ₂ O	3m
49	1637.6	H ₂ O	3m
50	1635.6	H ₂ O	3m
51	1627.8	H ₂ O	3m
52	1624	H ₂ O	x
53	1616.7	H ₂ O	3n
54	1576.2	H ₂ O	3n
55	1569.8	H ₂ O	3n
56	1564.8	H ₂ O	3n
57	1560.5	H ₂ O	x
58	1558.6	H ₂ O	3n
59	1557.6	H ₂ O	3n
60	1554.4	H ₂ O	3n

36

PLATE 7

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
61	1550	H ₂ O	x
62	1545.2	H ₂ O	3n
63	1542	H ₂ O	x
64	1540.3	H ₂ O	3n
65	1539.0	H ₂ O	3n

PLATE 8

1	1576.2	H ₂ O	3n
2	1569.8	H ₂ O	3n
3	1564.8	H ₂ O	3n
4	1560.5	H ₂ O	x
5	1558.6	H ₂ O	3n
6	1557.5	H ₂ O	3n
7	1554.4	H ₂ O	3n
8	1550	H ₂ O	x
9	1545.2	H ₂ O	3n
10	1542	H ₂ O	x
11	1540.3	H ₂ O	3n
12	1539.0	H ₂ O	3n
13	1534	H ₂ O	x
14	1531.7	H ₂ O	?
15	1528.7	H ₂ O	?

37

PLATE 8

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
16	1527.4	H ₂ O	7
17	1525.5	H ₂ O	3n
18	1522.7	H ₂ O	7
19	1521.4	H ₂ O	3n
20	1520.4	H ₂ O	7
21	1517.5	H ₂ O	3n
22	1515.0	H ₂ O	3n
23	1512.3	H ₂ O	3n
24	1509.8	H ₂ O	7
25	1508.6	H ₂ O	3n
26	1507.1	H ₂ O	3n
27	1505.6	H ₂ O	3n
28	1507.1	H ₂ O	7
29	1498.8	H ₂ O	3n
30	1496.2	H ₂ O	3n
31	1490.8	H ₂ O	3n
32	1489.8	H ₂ O	3p
33	1487.3	H ₂ O	3p
34	1480.4	H ₂ O	7
35	1476.3	H ₂ O	?

38

PLATE 8

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
36	1473.5	H ₂ O	3p
37	1472.0	H ₂ O	3p
38	1464.9	H ₂ O	3p
39	1459.3	H ₂ O	3p
40	1458.2	H ₂ O	3p
41	1456.8	H ₂ O	3p
42	1455.3	H ₂ O	?
43	1452.0	H ₂ O	?
44	1447.9	H ₂ O	3p
45	1436.7	H ₂ O	3p
46	1430.0	H ₂ O	3p

PLATE 9

1	1436.7	H ₂ O	3p
2	1430.0	H ₂ O	3p
3	1423.9	H ₂ O	?
4	1419.3	H ₂ O	3p
5	1417.4	H ₂ O	3p

37

PLATE 9

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
6	1416.1	H ₂ O	?
7	1411.8	H ₂ O	4
8	1410.0	H ₂ O	4
9	1408.5	H ₂ O	4
10	1405.0	H ₂ O	3p
11	1399.2	H ₂ O	3p
12	1397.7	H ₂ O	?
13	1395.8	H ₂ O	3p
14	1394.4	H ₂ O	3p
15	1390.6/1391.0	H ₂ O	4
16	1387.5	H ₂ O	3q
17	1384	HDO	4
18	1382.2	H ₂ O	4
19	1380.2/1380	H ₂ O	4
20	1378/1378.4	H ₂ O	4
21	1375.1	H ₂ O	3q
22	1373.7	H ₂ O	3q
23	1368.6	H ₂ O	3q
24	1362.5	H ₂ O	4
25	1361.1	H ₂ O	31

40

PLATE 9

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
26	1358.2/1358.7	H ₂ O	4
27	1354.9	H ₂ O	4
28	1352.4	H ₂ O	4
29	1349.4	H ₂ O	4
30	1341.1	H ₂ O	4
31	1339.0	H ₂ O	4
32	1336.6	H ₂ O	31
33	1332.5	H ₂ O	4
34	1329.9	H ₂ O	4
35	1323.4	H ₂ O	4
36	1318.7	H ₂ O	4
37	1316.3	H ₂ O	4
38	1314.9	H ₂ O	4
39	1313.5	H ₂ O	4
40	1312.5	H ₂ O	4
41	1308.3	H ₂ O	4
42	1305.4	H ₂ O	4
43	1296.6	H ₂ O	4

-71-

PLATE 10

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	1308.3	H ₂ O	4
2	1305.4	H ₂ O	4
3	1296.6	H ₂ O	4
4	1290.5	H ₂ O	4
5	1288.2	H ₂ O	4
6	1287.4	H ₂ O	4
7	1284.3	H ₂ O	4
8	1280.0	H ₂ O	4
9	1271.9	H ₂ O	4
10	1270.0	H ₂ O	4
11	1268.3	H ₂ O	4
12	1266.1	H ₂ O	4
13	1264.0	H ₂ O	4
14	1260.7	H ₂ O	4
15	1258.6	H ₂ O	4
16	1244.2	H ₂ O	4
17	1225.6/1225.2	H ₂ O	4
18	1218.5	H ₂ O	4
19	1212.4	H ₂ O	4
20	1211.3	H ₂ O	4

462

PLATE 10

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
21	1198.2	H ₂ O	4
22	1187.1	H ₂ O	4
23	1180.9	H ₂ O	4
24	1174.5	H ₂ O	4
25	1165.5	H ₂ O	4

PLATE 11

1	1165.5	H ₂ O	4
2	1152.4	H ₂ O	4
3	1149.5	H ₂ O	4
4	1137.4	H ₂ O	4
5	1135.8	H ₂ O	4
6	1121.2	H ₂ O	4
7	1111.5	H ₂ O	4
8	1106.7	H ₂ O	4

PLATE 12

1	948.3	H ₂ O	4
---	-------	------------------	---

43

PLATE 13

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	854.6	H ₂ O	4
2	852.5	H ₂ O	4
3	849.6	H ₂ O	4
4	814.6/813.9	H ₂ O	4
5	803.6	H ₂ O	4
6	798.7	H ₂ O	4
7	796.0	H ₂ O	4
8	784.5	H ₂ O	4
9	777.0	H ₂ O	4
10	775.7	H ₂ O	4
11	754.5	H ₂ O	4
12	748.3	CO ₂	4
13	746.8	CO ₂	4
14	745.3	CO ₂	4
15	744.8	H ₂ O	4
16	741.5	CO ₂	4
17	740.8	CO ₂ /H ₂ O	4
18	739.3	CO ₂	5
19	737.8	CO ₂	5
20	736.2	CO ₂	5
21	734.7	CO ₂	5
22	733.0	CO ₂	5

44

PLATE 14

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	740.8	H ₂ O/CO ₂	4
2	739.3	CO ₂	5
3	737.8	CO ₂	5
4	736.2	CO ₂	5
5	734.7	CO ₂	5
6	733.0	CO ₂	5
7	731.4	CO ₂	5
8	729.7	CO ₂	5
9	728.0	CO ₂	5
10	727.0	CO ₂	5
11	725.5	CO ₂	5
12	724.0	CO ₂	5
13	720.0	CO ₂	5
14	714.8	CO ₂	5
15	713.2	CO ₂	5
16	712.2	CO ₂	5
17	711.5	CO ₂	5
18	710.6	CO ₂	5
19	709.9	CO ₂	5
20	709.0	CO ₂	4

2157

PLATE 14

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
21	708.2	CO ₂	5
22	706.6	CO ₂	5
23	705.0	CO ₂	5
24	703.3	CO ₂	5
25	701.7	CO ₂	3r
26	700.1	CO ₂	3r
27	698.4	CO ₂	3r
28	696.8	CO ₂	3r
29	695.2	CO ₂	3r
30	693.6	CO ₂	3r
31	692.0	CO ₂	3r
32	690.4	CO ₂	3r
33	688.8	CO ₂	3r
34	687.2	CO ₂	3r
35	685.6	CO ₂	3r
36	684	CO ₂	3r
37	682.4	CO ₂	3r
38	680.8	CO ₂	3r
39	679.2	CO ₂	3r
40	677.6	CO ₂	3r

46

PLATE 14

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
41	676.0	CO ₂	3r
42	674.4	CO ₂	3r
43	672.9	CO ₂	3r
44	667.4	CO ₂	5
45	665.8	CO ₂	3r
46	664.3	CO ₂	3r
47	662.7	CO ₂	3r
48	661.2	CO ₂	3r
49	659.6	CO ₂	3r
50	658.1	CO ₂	3r
51	656.5	CO ₂	3r
52	655.0	CO ₂	3r
53	653.5	CO ₂	3r
54	651.9	CO ₂	3r
55	650.4	CO ₂	3r
56	648.9	CO ₂	3r
57	647.4	CO ₂	3r
58	645.9	CO ₂	3r
59	644.4	CO ₂	3r
60	642.9	CO ₂	3r

47

PLATE 14

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
61	641.4	CO ₂	3r
62	639.8	CO ₂	3r
63	638.3	CO ₂	3r
64	636.9	CO ₂	3r
65	635.4	CO ₂	3r
66	633.9	CO ₂	3r
67	632.4	CO ₂	3r
68	630.9	CO ₂	3r
69	629.5	CO ₂	3r
70	625.6	¹³ CO ₂ /H ₂ O	4
71	620.8	¹³ CO ₂ /CO ₂	4
72	617.7	CO ₂	6
73	616.0	H ₂ O	4
74	612.8	CO ₂	4
75	611.0	CO ₂	4
76	609.4	CO ₂	4
77	607.8	CO ₂	4
78	606.3	CO ₂	4
79	604.6	CO ₂	4
80	603.2	CO ₂	4

48

PLATE 14

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
81	601.5	CO ₂	4
82	600.1	CO ₂	4
83	595.0	CO ₂ /H ₂ O	4
84	591.9	H ₂ O	4
85	584.7	H ₂ O	4
86	580.9	H ₂ O	4

PLATE 15

1	667.4	CO ₂	5
2	664.3	CO ₂	3r
3	662.7	CO ₂	3r
4	661.2	CO ₂	3r
5	659.6	CO ₂	3r
6	658.1	CO ₂	3r
7	656.5	CO ₂	3r
8	655.0	CO ₂	3r
9	653.5	CO ₂	3r
10	651.9	CO ₂	3r

49

PLATE 15

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
11	650.4	CO ₂	3r
12	648.9	CO ₂	3r
13	647.4	CO ₂	3r
14	645.9	CO ₂	3r
15	644.4	CO ₂	3r
16	642.9	CO ₂	3r
17	641.4	CO ₂	3r
18	639.8	CO ₂	3r
19	638.3	CO ₂	3r
20	636.9	CO ₂	3r
21	635.4	CO ₂	3r
22	633.9/632.4	CO ₂	3r
23	630.9	CO ₂	3r
24	629.5	CO ₂	3r
25	626.9	CO ₂	3r
26	625.6	¹³ CO ₂ /H ₂ O	4
27	622.5	¹³ CO ₂ /CO ₂	4
28	620.8	¹³ CO ₂ /CO ₂	4
29	617.7	CO ₂	5
30	616.0	H ₂ O	4

50

PLATE 15

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
31	612.8	CO ₂	4
32	610.9	CO ₂	4
33	609.4	CO ₂	4
34	607.8	CO ₂	4
35	606.2	CO ₂	4
36	604.6	CO ₂	4
37	603.2	CO ₂	4
38	601.5	CO ₂	4
39	600.1	CO ₂	4

PLATE 16

1	604.6	CO ₂	4
2	600.1	CO ₂	4
3	596.9	CO ₂	4
4	595.1	CO ₂ /H ₂ O	4
5	591.9	H ₂ O	4

51

PLATE 16

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
6	584.7	H ₂ O	4
7	580.9	H ₂ O	4
8	576.1	H ₂ O	4
9	571.2	H ₂ O	4
10	569.2	H ₂ O	4
11	567.2	H ₂ O	4
12	563.2	H ₂ O	4
13	557.2	H ₂ O	4
14	554.7	H ₂ O	4
15	552.3	H ₂ O	4
16	550.1	H ₂ O	4
17	547.8	H ₂ O	4
18	546.3	H ₂ O	4
19	545.3	H ₂ O	4
20	541.0	H ₂ O	4
21	539.6	H ₂ O	4
22	536.3	H ₂ O	4
23	534.3	H ₂ O	4

52

PLATE 17

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	536.3	H ₂ O	4
2	534.3	H ₂ O	4
3	526.6	H ₂ O	4
4	519.7	H ₂ O	4
5	517.7/516.9	H ₂ O	4
6	515.1	H ₂ O	4
7	512.0	H ₂ O	4
8	510.5	H ₂ O	4
9	507.0	H ₂ O	4
10	504.4	H ₂ O	4
11	502.2	H ₂ O	4
12	494.2	H ₂ O	4
13	492.0	H ₂ O	4
14	489.5	H ₂ O	4
15	486.1	H ₂ O	4
16	484.0	H ₂ O	4
17	481.0	H ₂ O	4
18	476.4	H ₂ O	4
19	472.6	H ₂ O	4

537

PLATE 15

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	472.6	H ₂ O	4
2	469.8/467.9	H ₂ O	4
3	461.5	H ₂ O	4
4	457.7	H ₂ O	4
5	452.8	H ₂ O	4
6	446.9	H ₂ O	4
7	443.7	H ₂ O	4
8	452.0	H ₂ O	4
9	436.4	H ₂ O	4
10	435.8	H ₂ O	4
11	431.2	H ₂ O	4
12	428.8	H ₂ O	4
13	426.3/425.3	H ₂ O	4
14	423.1	H ₂ O	4
15	419	H ₂ O	6
16	415	H ₂ O	6
17	406	H ₂ O	6

54

PLATE 19

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	447	H ₂ O	6
2	444	H ₂ O	6
3	442.5	H ₂ O	6
4	437	H ₂ O	6
5	435	H ₂ O	6
6	432	H ₂ O	6
7	429	H ₂ O	6
8	426	H ₂ O	6
9	423	H ₂ O	6
10	419	H ₂ O	6
11	415	H ₂ O	6
12	406	H ₂ O	6
13	400	H ₂ O	x
14	399	H ₂ O	x
15	397	H ₂ O	x
16	393	H ₂ O	x
17	390	H ₂ O	6

55

PLATE 20

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	390	H ₂ O	6
2	385	H ₂ O	6
3	381	H ₂ O	6
4	378	H ₂ O	6
5	376	H ₂ O	6
6	374	H ₂ O	6
7	370	H ₂ O	6
8	362	H ₂ O	6
9	359	H ₂ O	6
10	358	H ₂ O	6
11	355	H ₂ O	x
12	352.5	H ₂ O	x
13	350	H ₂ O	x
14	344	H ₂ O	x
15	341	H ₂ O	x
16	336	H ₂ O	x
17	328	H ₂ O	x

56

PLATE 21

Line	Wavenumber (cm ⁻¹)	Molecule	Reference
1	328	H ₂ O	6
2	324	H ₂ O	6
3	315	H ₂ O	6
4	302	H ₂ O	5
5	298	H ₂ O	6
6	289	H ₂ O	6

PLATE 22

1	289	H ₂ O	6
2	282	H ₂ O	6
3	280	H ₂ O	6
4	278	H ₂ O	6
5	276	H ₂ O	6
6	267	H ₂ O	6
7	255	H ₂ O	x
8	249	H ₂ O	x
9	247	H ₂ O	x

57

561

3

3000

3100

3200

3300

60

6/1

5
200
2300
2400
2500

64

7

1600

1700

1800

(65)

8

1450

1500

1550

66

1050

1100

1150

(S)

(2)

70

850

800

13

750

14

600

650

700

72

600 | 5
620
640
660

13.

18

420

440

460

71

20
340
360
380

21

300

320

78

5

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing and cataloging must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate Author) University of Massachusetts Department of Physics and Astronomy Amherst, Massachusetts 01002		2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
2b. GROUP		
3. REPORT TITLE AN ATLAS OF AIR ABSORPTIONS IN THE INFRARED		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific. ----- Interim.		
5. AUTHOR(S) (First name, middle initial, last name) D. J. Lovell		
6. REPORT DATE June 1969	7a. TOTAL NO. OF PAGES 82	7b. NO. OF REFS. 7
8a. CONTRACT OR GRANT NO N00014-67-A-0230-0002	9a. ORIGINATOR'S REPORT NUMBER(S) 243	
b. PROJECT NO. NR 015-301	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) Four-College Contribution No. 49	
10. DISTRIBUTION STATEMENT Distribution of this document is unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY Office of Naval Research Washington, D.C. 20360	
13. ABSTRACT An atlas of the spectral absorption characteristic of air is presented in the spectral region from 4000 to 250/cm⁴. Spectra were observed over a 92-meter path under two conditions: in a near vacuum and at ambient pressure and temperature.		

DD FORM NOV 1968 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Absorption						
Air						
Atlas						
Infrared						

Best Available Copy

UNCLASSIFIED

Security Classification