Econometria I Lista 3

Profa. Lorena Hakak Entrega: 17/10/2022

1.

(a)

Todos os outros fatores que influenciam a fecundidade - renda, idade, contexto familiar etc. Como é um modelo de regressão simples, é muito provável que haja correlação entre o termo de erro e a variável independente *educação*.

(b)

Como os outros fatores que influenciam a fecundidade - como renda e idade - estão em u e possuem correlação com educ, a análise $ceteris\ paribus\ estará\ comprometida.$

2.

(Exercício 3)

(i)

Estudante	GPA (Y)	ACT (X)
1	2,8	21
2	3,4	24
3	3,0	26
4	3,5	27
5	3,6	29
6	3,0	25
7	2,7	25
8	3,7	30

Estudante	$Y_i - \overline{Y}$	$X_i - \overline{X}$	$(Y_i - \overline{Y})(X_i - \overline{X})$	$(X_i - \overline{X})^2$
1	-0,4	-4,9	2,0	23,8
2	0,2	-1,9	-0,4	3,5
3	-0,2	0,1	0,0	0,0
4	0,3	1,1	0,3	1,3
5	0,4	3,1	1,2	9,8
6	-0,2	-0,9	0,2	0,8
7	-0,5	-0,9	0,4	0,8
8	0,5	4,1	2,0	17,0

Sendo $\overline{Y} = 3, 2$ e $\overline{X} = 25, 9$:

$$\beta_1 = \frac{\sum_{i=1}^{8} (Y_i - \overline{Y})(X_i - \overline{X})}{\sum_{i=1}^{8} (X_i - \overline{X})^2}$$

$$\beta_1 \approx 0, 1$$

$$\beta_0 = \overline{Y} - \beta_1 \overline{X}$$

$$\beta_0 \approx 0.6$$

$$\widehat{GPA} = 0, 6 + 0, 1ACT$$

A relação induz que o aumento da nota do ACT está correlacionado com o aumento do GPA. O $\hat{\beta}_0$ ser 0,6 significa que mesmo que a nota do estudante no ACT seja zero, é esperado uma nota 0,6 no GPA. Além disso, caso o ACT aumentasse em 5 pontos, seu GPA aumentaria em aproximadamente 0,5.

(ii)

$$\widehat{GPA} = 0, 6 + 0, 1ACT$$

Sendo os resíduos contidos na segunda tabela, com $(Y_i - \overline{Y})$ os resíduos de Y_i e $(Z_i - \overline{Z})$ os resíduos de X_i . A soma de $(Y_i - \overline{Y})$ dá $0,1^1$ e \overline{X} dá 0,0.

(iii)

O valor previsto para o GPA quando o ACT = 20 é aproximadamente 2,6.

(iv)

A nota do ACT explica, nessa amostra de 8 estudantes, 57,72%. É possível saber isso pelo parâmetro R^2 :

$$R^{2} = 1 - \frac{SQR}{SQT}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{8} \hat{u}_{i}^{2}}{\sum_{i=1}^{8} (Y_{i} - \overline{Y})^{2}}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{8} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}}{\sum_{i=1}^{8} (Y_{i} - \overline{Y})^{2}}$$

$$R^{2} = 1 - \frac{0,434937}{1,02875}$$

$$R^2 = 0,5772.$$

 $^{^1}$ Isso é arredondando a média \overline{Y} para 3,2. Se utilizar o valor 3,2125 a soma dos resíduos dará 8,882E-16, um valor científico para 8,882.10 16 .

(Exercício 4)

(i)

O peso de nascimento previsto quando cigs é igual a zero é de 119,77. Já quando cigs é igual a 20 o peso dos recém-nascidos esperado é de 109,49 onças. O que isso quer dizer é que quanto maior o número de cigarros a mãe fuma, menor o peso esperado dos recém-nascidos.

(ii)

Um modelo de regressão simples não implica uma relação causal, implicando apenas correlação entre as variáveis.

(iii)

$$125 = 119,77 - 0,514 cigs$$

$$125 = 119,77 - 0,514 cigs$$

$$cigs = -10, 1751$$

Segundo o modelo de regressão, a mãe deveria fumar aproximadamente -10 cigarros. O resultado não faz sentido, já que é impossível fumar uma quantidade negativas de cigarros. Para ser possível, a relação entre peso dos recém-nascidos e cigarros fumados deveria ser positiva.

(iv)

Não. No limite, essa relação poderia não ser estatisticamente significante, o que não é o caso.

3.

4.

β_0	0,583773
β_1	0,082744
R^2	0,1858
SQR	120,7691

β_0	0,284360
β_1	0,092029
β_2	0,004121
β_3	0,022067
R^2	0,316
SQR	101,4556

(a)

O β_1 representa o efeito de um ano de educação na variação percentual da renda, e β_2 representa o efeito de um ano de experiência profissional. Os valores de β_1 são diferentes.

(b)

O \mathbb{R}^2 aumentou e o SQR diminuiu. Como a versão longa da regressão possui mais variáveis explicativas, ela é mais tem poder explicativo, logo, um \mathbb{R}^2 maior. Além disso, o resíduo da regressão será menor, causando um SQR menor por consequência.