

TEORIA DOS GRAFOS

Prof^a Laura Pacifico

2025 | AGOSTO

Algoritmo de Dijkstra

Encontrar o menor caminho de a até f

Algoritmo de Dijkstra

Encontrar o menor caminho de a até f

(b) \longrightarrow $(c$	
2	9.e.s.a.a sch∝l
	sch∞l
$\stackrel{\frown}{a}$ 1	3 (f)
4	1
$\frac{1}{c}$	
30.5	

	PASSO 1	PASSO 2	PASSO 3	PASSO 4	PASSO 5
А	(0,A)	*	*	*	*
В	(2,A)	(2,A)	*	*	*
С	(4,A)	(3,B)	(3,B)	*	*
D	1	(6,B)	(6,B)	(6,B)	(6,B)
Е	1	(5,B)	(4,C)	(4,C)	*
F	-	-	-	(5,E)	(5,E)

Algoritmo de Dijkstra — Observações Finais

Para calcular todas as distâncias:

- |V| passadas (uma por vértice).
- Se você para no destino: o número de passadas é o de vértices fixados até alcançar o destino (≤|V|).
- Se houver vértices inacessíveis e você interrompe quando o mínimo da fila é ∞ , o número de passadas é igual ao nº de vértices alcançáveis.

Dirigido x Não-dirigido: não muda o nº de passadas. Um grafo não-dirigido pode ser visto como duas arestas dirigidas por aresta; o laço principal ainda fixa um vértice por iteração.

Quantidade de relaxamentos (só para ter noção de custo):

- Dirigido: cada aresta (u,v) pode ser relaxada quando u é fixado \Rightarrow até E relaxamentos.
- Não-dirigido: cada aresta é considerada nos dois sentidos ⇒ até 2E relaxamentos (ou, se você contar "arestas dirigidas", continua sendo E).

- O algoritmo foi inicialmente proposto por Alfonso Shimbel em 1955.
 Posteriormente, Richard Bellman e Lester R. Ford Jr. publicaram versões independentes do algoritmo em 1958 e 1956, respectivamente. Em 1959, Edward F. Moore também publicou uma variação do algoritmo, razão pela qual ele é, por vezes, denominado Algoritmo de Bellman-Ford-Moore.
- Leva em consideração grafos dirigidos e com pesos negativos.
- Se os pesos forem todos positivos, o algoritmo de Dijkstra normalmente resolve o problema num tempo menor.

 Utilizando o algoritmo de Bellman-Ford, calcule a menor distância entre os vértices A e F (determine o caminho)

	PASSO 1	PASSO 2	PASSO 3
А	(0, A)		
В	(5, A)		
С	(-2, A)		
D	-		
E	-		
F	-		

	PASSO 1	PASSO 2	PASSO 3
А	(0, A)	(0, A)	
В	(5, A)	(0,C)	
С	(-2, A)	(-2, A)	
D	-	(1,B)	
E	-	(1,C)	
F	-	-	

	PASSO 1	PASSO 2	PASSO 3
А	(0, A)	(0, A)	(0, A)
В	(5, A)	(0,C)	(0,C)
С	(-2, A)	(-2, A)	(-2, A)
D	-	(1,B)	(1,B)
E	-	(1,C)	(1,C)
F	-	-	(4,D)

	PASSO 1	PASSO 2	PASSO 3
А	(0, A)	(0, A)	(0, A)
В	(5, A)	(0,C)	(0,C)
С	(-2, A)	(-2, A)	(-2, A)
D	-	(1,B)	(1,B)
E	-	(1,C)	(1,C)
F	-	-	(4,D)

Utilizando o algoritmo de Bellman-Ford, calcule a menor distância entre os vértices 1 e 6 (determine o caminho)

Dúvidas?

Laura Alves Pacifico
laps@cesar.school
Slack: Laura Pacifico