13 JNN

-1 The

 $p(x) = -1 - 3x + 2x^{2} + x^{3}$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad 0 \leq C \leq C \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad 0 \leq k \leq M \qquad (2\pi)$ $= (\omega^{k} \neq A) \qquad (2\pi)$

עבצע לאוצ עלאי

(צב מלרחי

1) FFT ((-1,-3,2,1),
$$\omega = i$$
):

1.1.1) Call FFT ((-1,2),-1)

1.1.1) Call FFT ((-1), 1)

ret (-1) -> fe,1.

1.1.2) Call FFT ((2),1)

ret (2) -> fo,1.1

1.1.3)
$$k=0$$
: -1+1.2 = 1
 $k=1$: -1+(-1).2 = -3
 ret (1,-3) — ret

1.2.2) call FFT
$$((1),-1)$$

ret $(1) \longrightarrow f_{01.2}$

1.2.3)
$$k=0$$
: $-3 \times 1 \cdot 1 = -2$
 $k=1$: $-3 + (-1) \cdot 1 = -11$

ret $(-2, +1) \rightarrow 50$

1.3) Calc:
$$k=0$$
: $1+1\cdot -2 = 1-2=-1$

$$\frac{k=1!\cdot -3+i\cdot (-1)}{k=2!} = -3-1$$

$$\frac{k=2!\cdot 1+(-1)\cdot (-2)}{1+2=3} = 1+2=3$$

$$\frac{k=3}{1+3} = -3+(-i)\cdot (-1) = -3+1$$

$$(-1, -3-4i, 3, -3-4i) \sim (-1, -3-4i, 3, -3-4i)$$

$$(-1, -3-4i, 3, -3-4i) \sim (-1) \sim (-1)$$

1.1)
$$FFT((-1, 3), -1)$$
:
1.1.1) $FFT((-1), 1)$:
 $rct(-1) \rightarrow fe_{1.1}$
1.1.2) $FFT((3), 1)$:
 $rct(3) fo_{1.1}$

1.1.3)
$$\frac{k=0}{k=4}$$
: $-1+1\cdot (3) = -1+3=2$
 $\frac{k=4}{(2,-1)}$

ret $(2,-1)$

fe

1.2) FFT
$$((-3-4i, -3+4i), -1)$$
!

1.2.1) FFT $((-3-4i), 1)$:

rut $(-3-4i) \rightarrow fe_{1.2}$

1.2.2) FF $+ ((-3+4i), 1)$!

rut $(-3+4i) \rightarrow fo_{1.2}$

1.2.3)
$$k=0$$
: $(-3-4i)+1\cdot(-3-4i)=-6$
 $k=1:(-3-4i)-1\cdot(-3+4i)=-8i$
 $(2,-4)-> fe_{q}$ ret $(-6,-8i)-> fo_{q}$

1.3)
$$k=0$$
: $2+4\cdot(-6)=2-6=-4$
 $k=1$: $-4+(-i)(-8i)=-4-8=-12$
 $k=2$: $2+(-1)\cdot(-6)=8$
 $k=3$: $-4+(-1)\cdot(-8i)=-4+8=4$

-2 7/1/2

رها الهادره:

 $\Delta = \sum_{k=1}^{j=0} \alpha^{k} \cdot 5_{j+k}$ $\sum_{k=1}^{j+1} \frac{1}{k}$ $\sum_{k=1}^{j+1} \alpha^{k} \cdot \sum_{k=1}^{j+1} \alpha^{k} \cdot \sum_{k$

CYDC : DOSC EN N END.

 $(1000)^{-1}$ $(100)^{-1}$ $(1000)^{-1}$ (

$$\mathcal{A} \cdot \beta = \left(\sum_{i=0}^{\frac{n}{k}-1} \alpha_i \cdot 2^{i \cdot k} \right) \left(\sum_{i=0}^{\frac{n}{k}-1} \beta_i 2^{i \cdot k} \right)$$

כשות נגציר זות הכולעומים (המתפתים בייצוג העורי) הכוזים:

$$P_{\alpha(x)} = \alpha_{\alpha} \cdot x^{0} + \alpha_{\alpha} \cdot x^{1} + \dots + \alpha_{\frac{n}{k}-1} \cdot x^{\frac{n}{k}-1}$$

ادر دراده الرود بار درود المرود بار المرود

Mult (a,B):
n= lal
k= lgn

11 Let Pa and P3 be the Polinomyals to maltiply:

 P_{α} - Split α to $\frac{h}{k}$ chanks of k bits and mult by $2^{\frac{1}{k}-1}$

11 Let Q be the Polynom Pa-Pis:

Q (FFT (Px, w2h-2) • FFT (P3, w2h-2)

Q (- InvFFI (Q, (w2/2)))

Divide all Q components with $\frac{2h}{k}$ -2

For ico to $\frac{2n}{k}-2$.

// Q[i] is mult of x. 13.2' Where x and B are

Sum (- sum + Q[i]

return sum

עונטע רכוהעי.

אבן מהזיר זו כ נומסב ב ברוצמה (ב"רציון הוון אוריתם") החלוב שבון:

$$\frac{1}{2} \sum_{i=0}^{n} \alpha_{i} \cdot 2^{i \cdot h} \left(\sum_{i=0}^{n} \beta_{i} 2^{i \cdot h} \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h} \right) \right) = \left(P_{\alpha} \left(2^{h} \right) \cdot P_{\beta} \left(2^{h}$$

 $= (P_{\alpha} P_{\beta}) (2^{k})$

דיאפונים אבן ביון צונים לפכל הנין צרייעם אפן בעון

שריב את הירטא

continuous vieting.

Chiece of necestral side has a sign of core is the side of the cold of the cold

בחלק השישי זונו ממשבים זות הער (אב) (אך אם) לי פרימה ולנסוף מחנירים

מר נבבל נדבונום ח

0.0 KIL

 $\frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} =$

$$T(\alpha) = 2 \cdot T(\frac{\alpha}{2}) \rightarrow k^2 \cdot \alpha$$

תאבוצה הנאטית אחרי הנכיוות הרקוסיבות. כל באות ככל שנאטית אל (ש) לתחוברם אורכת (ג') של באות כל באות אל דיאם.

 $T(\alpha) = \frac{\log(\alpha) \cdot (\kappa^2 \cdot \alpha)}{\log(n) \cdot (\kappa^2 \cdot \alpha)} = \frac{\log(\frac{\kappa}{\kappa}) \cdot (\kappa^2 \cdot \frac{\kappa}{\kappa})}{\log(\frac{\kappa}{\kappa}) \cdot (\kappa^2 \cdot \frac{\kappa}{\kappa})} = \frac{\log(n)}{\log(n)} \cdot \frac{\log(n)}{\log(n)} \cdot \frac{\log(n)}{\log(n)} \cdot \frac{\log(n)}{\log(n)} = \frac{\log(n)}{\log(n)}$

 $= \log \left(\frac{n}{k}\right) \cdot (n \cdot k) = \log \left(\frac{n}{\log n}\right) \cdot (n \log n) = (\log n - \log(\log n)) n \log n = \log n$

אדול ולא טטא O מדול ולא טטא

$$A = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left$$

Green District (Paps) le InvFET @ 1377

בהתן השיטי זונ מחשבים זות הצרך (מן (מן מן און), שאו למשה סכימה של כל ול המולבה בפולינוב לה יש ב א ביים וכן הכלה בחורה בני א ביים וכן הכלה בחורה של שתים בני א ביים וכן הכלה בחורה של שתים הכל למשה ישיני של הביים בה מולה בחורה אבן ניתן כאב ב להתייחב לכל האורה של בה מולה:

$$O\left(2\cdot\frac{n}{\kappa}\cdot k^{2}\right) = O\left(2n\cdot k\right) = O(nk) = \left[\frac{\alpha n |q n|}{\alpha n |q n|}\right]$$

$$\int_{C} \int_{C} \int$$

לא יודע אם שמת לב אבל ביקשו תשובה בעלת 4-5 שורות בלבד...אבל אני לא אוריד לך על זה

-3 alke

いろかんり、 ロミメニア いっち かいから からり からり

الم وفود داادا الاحمان

$$f^{(k)} = \sum_{j=k}^{n} \frac{j!}{(j-k)!} \cdot a_j x^{j-k} = \sum_{\substack{130\\ j=k}}^{n} j! a_j \cdot \frac{x^{j-k}}{(j-k)!}$$

. f (x0) 200 mr 05 k=n Cl 2001 11.88

באיון הולצוריתם:

נגביר שני וקארים, שיל און שהקינבולוציה שהם היא היותאור הבאו:

$$P * Q = (f_{(X_0)}^{(N)}, f_{(X_0)}^{(N-4)}, f_{(X_0)}^{(4)}, f_{(X_0)}^{(0)})$$

אומני עולאינ שמעול ב, בכאשע עלותון ציע ניור אימשי בעתושי איוה הייפסושי 2Q-1, P sk 272) 11/6

$$\sum_{j=k}^{n} j! a_{j} \cdot \frac{x^{j-k}}{(j-k)!} : (*) \text{ or}$$

וכבתין כי ישנם שני אראים במ מחובר. לכן נגביר את הוקארים באונין הלא

$$P = (p_0, p_1, \dots p_n)$$

$$P_t (n-t)! \cdot a_{n-t}$$

$$0 \le t \le n$$

$$Q = (q_0, q_1, \dots, q_r) \qquad | q_t = \frac{\chi^2}{t!}$$

הפבר (נכיח כי D*d נוא הוקאר הגנותם (שהריבים שלו הם חיטובי

10. u_2y_50 . (Let u_2y_5) u_3y_5 : u_3y_5 : u_3y_5 :

$$(\overline{p}*\overline{Q})_{k} = \sum_{S+t=k} p_{S} \cdot q_{t} = \sum_{S+t=k} ((n-s)|\cdot q_{s}) \cdot (\frac{x^{t}}{t!}) = \sum_{S+t=k} ((n-s)|\cdot q$$

$$\sum_{t=0}^{k} (n-(k-t))| \cdot a_{n-(k-t)} \cdot x_{t}^{t} = \sum_{t=0}^{k} (n-k+t)| a_{n+t-k} \cdot x_{t}^{t} = 1$$

$$= \sum_{t=0}^{k} (n-(k-t))| a_{n+t-k} \cdot x_{t}^{t} = 1$$

$$= \sum_{t=0}^{k} (n-k+t)| a_{n+t-k} \cdot x_{t}^{t} = 1$$

$$= \sum_{t=0}^{k} (n-k+t)| a_{n+t-k} \cdot x_{t}^{t} = 1$$

$$= \sum_{t=0}^{k} (n-k+t)| a_{n+t-k} \cdot x_{t}^{t} = 1$$

$$\sum_{k=1}^{\infty} w_{k} = w_{k}$$

$$\sum_{k=1}^{\infty} w_{k} = w_{k} = w_{k}$$

$$\sum_{k=1}^{\infty} w_{k} = w_{k} = w_{k} = w_{k}$$

$$\sum_{k=1}^{\infty} w_{k} = w$$

(250 ((May (1974))

حة ٢

: fin) (4.1 (4

(w, 9) 777 -> 9 DFTp FF7 (P, w)

" " " DFTQ - FFT (Q, w)

result (- DFTp. DFTa : 4.5) (4.5

result (- Inv-FFT (result, wi) : fin) [A.3
result ple .20-2 plas john soll
.result ple .result ple sisoll

ساده سر دوالاس:

במו כן , ברור שהותאר שומצשה הנא אכן קונפולוציה שכן להו מיצאת הכלות הפילונומים שמת אימים לותארים D 1-7 שהלצדנו , וכם מקצמי הכללינום אה מקרה פראי של קינפולוציה.

(יתים סיפוכיות:

- 2n 771112 resalt (8 InvFFT 2007) (4.2 26)

صورد (ملهام) - حدر (ملهام) - مادر (ماهام) - مادر درد، دردراها مارد (ماهام) - مادر دردر دردروا

- H Alie

(NIC 21 CIPSICINA B) MISSON BILL BEER DAISSIN ELM.

CARCI: (CIPSICINA HEG) IN CADISIN A !- El HORE UXU INDIC

NO CIPSICINA HEG) IN CADISINA A !- El HORE UXU INDIC

NO CIPSICINA HEG) NO EC UXU:

Strassen (A,B):

- 1. if |A|=1B1=1:
- 2. return 1A1*1B1

3. Spit A and B into four quarters:

- n. a.b.c.d & A
- 5. C.f.g.h 4 B

G. Pro- strassen (a, q-h)

- 7. P. of strassen (a+b, h)
- 8. Pat strassen (C+d, e)
- 9. Py + strassen (d, fe)
- 10. Ps4 Strassen (a+d, e+h)
- 11. Put strassen (bd, fth)
- 12. Pt Strassen (a-c, C+g)
- 13. SA PAP2
- 11. to P3 + P4
- 15. re P4+P5+P6-P2
- 16. up Pa+Ps-P3-P7
- 17. C <- (r s)

18. return c

دوراد :

O'CIC O'CIC & UC NOCIC A 1-61 horr or ord # O'CIC O'CIC 10^{2} N'GC'A A 1-61 horr ord 10^{2} N'GC'A ACI HOCC.

ל אומנא השיבה מתכלת שתי משריצות בגוק חדמ ואך נתיים לגוקל התלש כית . כלומר למן הריצה הינו כפונקציה של ח.

: Strasson(A,B) החציבה לפת הריצה של החציבה לא הריצה של החציבה לא הריצה של של ביחול ביחול

子·丁(号) つらる (でいかん になれを (でいた) こう (三) ー・ナ・丁(号) こうな (でいか) できない になれを (できない) こう () こう ()

T(n)

$$\mathcal{L}_{(n)} = |\delta n^2 = \Theta(n^2)$$

$$n = \frac{2.8 - 0.4}{\sqrt{10000}} = \frac{2.5}{10000}$$

בלותר:

$$f(n) = 18 \cdot h^2 = O(h^2) = O(h^{2.7}) = O(h^{10} + 2^{7-0.1}) = O(h^{1/3} + b^{-2})$$