Super Formulario di Probabilità e Statistica

Alessandro Finocchiaro

7 agosto 2025

1. Probabilità di Base

Spazio di Probabilità Uniforme Discreto

Formula:

$$P(A) = \frac{\#A}{\#\Omega} = \frac{\text{Casi Favorevoli}}{\text{Casi Possibili}}$$

Quando si Usa: In problemi con "estrazione casuale", "dado equo", "moneta equa", dove ogni singolo esito ha la stessa probabilità.

Esercizio Tipo: "Calcolare la probabilità che, estraendo 5 carte da un mazzo, siano tutte di cuori."

Probabilità del Complementare

Formula:

$$P(A^c) = 1 - P(A)$$

Quando si Usa: Quando la probabilità dell'evento diretto è complicata da calcolare, ma quella del suo contrario è semplice. Tipico per domande con "almeno uno".

Esercizio Tipo: "Calcolare la probabilità che esca *almeno una* testa in 10 lanci." (Si calcola 1 - P(nessuna testa)).

Probabilità Condizionata e Regola del Prodotto

Prob. Condizionata:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Regola del Prodotto:

$$P(A \cap B) = P(A|B)P(B)$$

Quando si Usa: La prima per domande con "**sapendo che**". La seconda per calcolare la probabilità di una **sequenza di eventi** dipendenti (es. estrazioni **senza reinserimento**).

Esercizio Tipo: "Calcolare la probabilità di estrarre (Bianca, Nera) da un'urna *senza reinserimento*."

Nota Strategica (per problemi complessi):

Per calcolare P(A|B), scomponi il problema:

- 1. **Analizza l'evento B:** Descrivi a parole la sequenza di risultati che lo realizza e calcola la sua probabilità P(B).
- 2. Analizza l'evento $A \cap B$: Descrivi la sequenza di risultati che realizza *entrambi* gli eventi e calcola la sua probabilità $P(A \cap B)$.
- 3. Calcola il rapporto: $P(A|B) = P(A \cap B)/P(B)$.

Formula delle Probabilità Totali

Formula:

$$P(A) = \sum_{i} P(A|E_i)P(E_i)$$

Quando si Usa: Per calcolare la probabilità totale di un evento che può avvenire in diverse "modalità" (le cause E_i). Tipico in problemi a due stadi (es. scelta dell'urna \rightarrow estrazione).

Esercizio Tipo: "Si sceglie un'urna a caso e si estrae una pallina. Calcolare la probabilità che sia bianca."

Nota Strategica (La tua sintesi):

"Moltiplico per E (eventi in sequenza nello stesso scenario, come nella Regola del Prodotto), Sommo per O (scenari alternativi che si escludono a vicenda, come nella Formula delle Probabilità Totali)."

Formula di Bayes

Formula:

$$P(E_m|A) = \frac{P(A|E_m)P(E_m)}{\sum_i P(A|E_i)P(E_i)}$$

Quando si Usa: Per trovare la probabilità di una 'causa' iniziale (es. scelta l'urna A) sapendo l"effetto' finale (es. estratta pallina bianca). Il denominatore è quasi sempre il risultato di una Formula delle Probabilità Totali.

Esercizio Tipo: "**Sapendo che la pallina estratta è bianca**, calcolare la probabilità che provenga dall'urna A."

2. Variabili Aleatorie Discrete e Combinatoria

Combinazioni Semplici

Formula:

$$C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Quando si Usa: Per contare il numero di modi per scegliere k oggetti da n, quando l'ordine **non conta**. Fondamentale per Binomiale e Ipergeometrica.

Distribuzione Binomiale: $X \sim Bin(n, p)$

Funzione di massa (pmf):

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Media e Varianza:

$$E[X] = np$$
 $Var(X) = np(1-p)$

Quando si Usa: Per il numero di successi in n prove **indipendenti**. Parola chiave: estrazione **con reinserimento** o prove ripetute nelle stesse condizioni.

Nota Strategica: Probabilità vs. Valore Medio

- Se la domanda chiede una PROBABILITÀ (es. "probabilità di avere al massimo 1 successo"): devi usare la formula della pmf $p_X(k) = \binom{n}{k}$... per calcolare la probabilità di ogni singolo caso richiesto (es. P(X=0), P(X=1)) e poi sommarli.
- Se la domanda chiede il VALORE MEDIO (o la varianza): NON calcolare le singole probabilità. Usa direttamente la formula scorciatoia E[X] = np.

Distribuzione Ipergeometrica: $X \sim Iper(N, K, n)$

Funzione di massa (pmf):

$$p_X(k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

Media:

$$E[X] = n\frac{K}{N}$$

Quando si Usa: Numero di successi in *n* estrazioni dove le prove **non sono indipendenti**. Parola chiave: estrazione **senza reinserimento** o "in blocco".

Distribuzione di Poisson: $X \sim Po(\lambda)$

Funzione di massa (pmf):

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Media e Varianza:

$$E[X] = \lambda$$
 $Var(X) = \lambda$

Quando si Usa: Modella il numero di eventi in un intervallo di tempo/spazio, dato un tasso medio λ .

3. Variabili Aleatorie Continue

Funzione di Ripartizione (CDF) e Densità (pdf)

Definizione:

$$F_X(t) = P(X \le t) = \int_{-\infty}^t f_X(x) dx$$

Probabilità in un intervallo:

lo:
$$P(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

Distribuzione Uniforme Continua: $X \sim U(a, b)$

Funzione di densità (pdf):

$$f_X(x) = \frac{1}{b-a}$$
 per $x \in [a, b]$

(par):
$$f_X(x)=\frac{1}{b-a}\quad \text{per }x\in[a,b]$$

$$E[X]=\frac{a+b}{2}\qquad Var(X)=\frac{(b-a)^2}{12}$$

Quando si Usa: Problema che parla di un punto scelto "**a caso in un intervallo** [a,b]".

Distribuzione Esponenziale: $X \sim Exp(\lambda)$

Funzione di densità (pdf):

$$f_X(x) = \lambda e^{-\lambda x}$$
 per $x \ge 0$

$$E[X] = \frac{1}{\lambda}$$
 $Var(X) = \frac{1}{\lambda^2}$

Quando si Usa: Modella **tempi di attesa** o **durate di vita**. Ha la proprietà di **assenza di

Distribuzione Normale (Gaussiana): $X \sim N(\mu, \sigma^2)$

Funzione di densità (pdf):

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$E[X] = \mu$$
 $Var(X) = \sigma^2$

Quando si Usa: Principalmente come risultato del Teorema del Limite Centrale.

4. Teoremi Limite e Indicatori

Disuguaglianza di Chebyshev

Formula:

$$P(|X - E[X]| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$$

Quando si Usa: Fornisce un limite superiore (una stima "larga") alla probabilità che una v.a. si discosti dalla sua media

Teorema del Limite Centrale (TLC)

Definizione: Se $S_n = \sum_{i=1}^n X_i$, con le X_i i.i.d., allora per n grande:

$$S_n \approx N(n\mu, n\sigma^2)$$

Standardizzazione:

$$Z = \frac{S_n - n\mu}{\sigma\sqrt{n}} \approx N(0, 1)$$

Quando si Usa: Quando si ha una **somma o media di un numero elevato** (n > 30) di variabili aleatorie. **Esercizio Tipo:** "Si sommano i risultati di 100 lanci di un dado. Calcolare la probabilità che la somma sia maggiore di 370."

Approssimazione della Binomiale alla Normale

Formula:

$$Bin(n,p) \approx N(np, np(1-p))$$

Quando si Usa: Quando si ha una Binomiale con n molto grande (np > 5 e n(1-p) > 5). **Esercizio Tipo:** "Si lancia una moneta 400 volte. Calcolare la probabilità che il numero di teste sia compreso tra 190 e 210 "

Correzione di Continuità

 ${\bf Regole:}$

$$P(X \le k) \to P(X \le k + 0.5)$$
 $P(X < k) \to P(X \le k - 0.5)$ $P(X = k) \to P(k - 0.5 \le X \le k + 0.5)$

Quando si Usa: **Sempre** quando si approssima una distribuzione discreta (come la Binomiale) con una continua (la Normale).

Appendice: Richiami di Analisi Matematica

Derivate Fondamentali

• Regola della Potenza: $D[x^n] = nx^{n-1}$

• Esponenziale: $D[e^{ax}] = ae^{ax}$

• Logaritmo Naturale: $D[\ln(x)] = \frac{1}{x}$

- Regola della Catena: $D[f(g(x))] = f'(g(x)) \cdot g'(x)$ Nota: Fondamentale per trovare la densità di una variabile trasformata Y = g(X).

• Derivate Trigonometriche: $D[\sin(x)] = \cos(x)$, $D[\cos(x)] = -\sin(x)$, $D[\arctan(x)] = \frac{1}{1+x^2}$

Integrali Notevoli

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
•
$$\int \frac{1}{x} dx = \ln|x| + C$$
•
$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

•
$$\int \frac{1}{x} dx = \ln|x| + C$$

• Integrazione per parti: $\int u \, dv = uv - \int v \, du$ Nota: Essenziale per calcolare il valore atteso di distribuzioni come l'Esponenziale.

Serie Notevoli

• Serie Geometrica (per |r| < 1):

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

• Serie Esponenziale (Sviluppo di Taylor di e^x):

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$

Nota: Questo è il motivo per cui la somma delle probabilità della distribuzione di Poisson è 1.