

EKF State Estimation

By: Ethan Kou

Mentor: Acshi Haggenmiller

Introduction

- What is the Extended Kalman Filter?
- Robot/simulation overview
- Metric and procedure for localization experiments
- Data and analysis
- Next Steps

Kalman Filter Intuition - Kitchen Analogy

Kalman Filter Intuition - Localizing

EKF Assumptions

IMPORTANT: noise has a mean of 0

Gaussian (normal) Distribution

Basic EKF Flowchart

State Estimation Visualization

Drivetrain

Robot Overview

State and Localization Types

State Components:

- x position
- y position
- angle
- body x velocity
- body y velocity
- angular velocity

Localization Types:

- Odometry velocity
- Physics Model velocity
- Camera Landmark detection position

Accuracy Metric: RMSE

RMSE Types:

- (x, y) RMSE
- x RMSE
- y RMSE
- angle RMSE
- x velocity RMSE
- y velocity RMSE
- angular velocity RMSE

Testing Procedure

- 1) Choose which localization sources to use.
- 1) Run 100 simulations of the robot following the test path
- For each trial, find the RMSE and then find the average RMSE of all trials

Velocity Accuracy

Not lower position RMSE

	model	odo model + odo	
(x, y) RMSE θ RMSE	2.2432 0.1179	2.9770 0.1903 2.8704 0.1864	
х RMSE	0.6692	0.4578 0.3589	\
у́ RMSE	0.6717	0.4120 0.3271	
θ RMSE	0.6698	0.2286 / 0.1996	/

Lower velocity RMSE when an EKF is used to fuse both data sources

Position Accuracy

	Model + odo	model + odo + camera		
(x, y) RMSE x RMSE y RMSE θ RMSE	2.8704 6.4336 8.0909 0.1864	1.2140 1.6400 1.8259 0.0956		

Position RMSE with a camera is lower

EKF Drawbacks

- High Δt
- Very nonlinear systems

Conclusion

Results:

- Successfully fused multiple data sources
- Generally improves accuracy

Next Steps:

- Particle Filter
- Trained physics model

Questions?