PROGRAMACIÓN DINÁMICA

Tecnología Digital V: Diseño de Algoritmos

Universidad Torcuato Di Tella

Programación dinámica

Richard Bellman (1920–1984)

Programación dinámica

I spent the Fall quarter [of 1950] at RAND. My first task was to find a name for multistage decision processes. (...) The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named [Charles Ewan] Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word "research". (...) Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word "programming". I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.

-Richard Bellman, Eye of the Hurricane: An Autobiography (1984)

Ejemplo

Cálculo de coeficientes binomiales. Si $n \ge 0$ y $0 \le k \le n$, definimos

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

O No es buena idea computar esta definición (¿por qué?).

Teorema

Si $n \ge 0$ y $0 \le k \le n$, entonces

$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{cases} 1 & \text{si } k = 0 \text{ o } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{si } 0 < k < n \end{cases}$$

Tampoco es buena idea implementar un algoritmo recursivo directo basado en esta fórmula (¿por qué?).

```
int combinatorio(int n, int k)
    if (k==0 | k==n)
       return 1;
    ese
        int a = combinatorio(n-1, k-1);
        int b = combinatorio(n-1, k);
        return a+b;
```

- Superposición de estados: El árbol de llamadas recursivas resuelve el mismo problema varias veces.
 - 1. Alternativamente, podemos decir que se realizan muchas veces llamadas a la función recursiva con los mismos parámetros.
- Un algoritmo de programación dinámica evita estas repeticiones con alguno de estos dos esquemas:
 - Enfoque top-down. Se implementa recursivamente, pero se guarda el resultado de cada llamada recursiva en una estructura de datos (memoización). Si una llamada recursiva se repite, se toma el resultado de esta estructura.
 - Enfoque bottom-up. Resolvemos primero los subproblemas más pequeños y guardamos todos los resultados (tableau-filling).

	0	1	2	3	4		k-1	k
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
:	:					•		
k-1	1						1	
k	1							1
:								
n-1	1							
n	1							

```
int combinatorio (int n, int k)
    int **A = crearMatriz(n+1, k+1);
    for (int i=1; i \le n; ++i)
        A[i][0] = 1:
    for (int i=1; i \le k; ++i)
        A[i][i] = 1:
    for (int i=2; i \le n; ++i)
             for (int i=1; j \le i-1 \&\& j \le k; ++j)
                 A[i][j] = A[i-1][j-1] + A[i-1][j];
        return A[n][k];
```

- Función recursiva:
 - o Complejidad exponencial
- O Programación dinámica (bottom-up):
 - Complejidad O(nk).
 - o Espacio $\Theta(k)$: sólo necesitamos almacenar la fila anterior de la que estamos calculando.

Programación dinámica

Programación dinámica

 $PD = Recursión con sup. de estados + \begin{cases} memoización \\ tableau-filling \end{cases}$

Ejemplo: El problema del cambio

Ejemplo

Supongamos que queremos dar el vuelto a un cliente usando el mínimo número de monedas posibles, utilizando monedas de 1, 5, 10 y 25 centavos. Por ejemplo, si el monto es \$0,69, deberemos entregar 8 monedas: 2 monedas de 25 centavos, una de 10 centavos, una de 5 centavos y cuatro de un centavo.

Problema

Dadas las denominaciones $a_1,\ldots,a_k\in\mathbb{Z}_+$ de monedas (con $a_i>a_{i+1}$ para $i=1,\ldots,k-1$) y un objetivo $t\in\mathbb{Z}_+$, encontrar $x_1,\ldots,x_k\in\mathbb{Z}_+$ tales que

$$t = \sum_{i=1}^k x_i \ a_i$$

minimizando $x_1 + \cdots + x_k$.

Ejemplo: El problema del cambio

O Podemos plantear una función recursiva para este problema.

Definición

Para s = 0, ..., t, definimos f(s) como la cantidad mínima de monedas para entregar s centavos.

$$f(s) = \begin{cases} 0 & \text{si } s = 0 \\ \min_{i:a_i \le s} 1 + f(s - a_i) & \text{en caso contrario} \end{cases}$$

Preguntas

- ¿Podemos plantear un algoritmo recursivo directamente a partir de esta función?
- ¿Cómo conviene implementar esta recursión?

Ejemplo: El problema del cambio

```
int cambio (int s)
    if (s == 0)
        return 0;
    int ret = infinito;
    for (int i=0; i < k; ++i)
        if (a[i] \ll s)
            ret = min(ret, 1 + cambio(s-a[i]));
    return ret;
```

Ejemplo: El problema del cambio (top-down + memoization)

```
int cambio (int s, int* M)
{
    if (s == 0)
        return 0;
    if (M[s] >= 0) // Inicializado con -1's
        return M[s];
    int ret = infinito;
    for (int i=0; i < k; ++i)
         if (a[i] \ll s)
             ret = min(ret, 1 + cambio(s-a[i], M));
    M[s] = ret;
    return ret;
```

Ejemplo: El problema del cambio (bottom-up)

```
int cambio(int t)
{
    int *M = new int[t+1];
    M[0] = 0;
    for (int s=1; s \le t; ++s)
        int ret = infinito;
        for (int i=0; i < k; ++i)
             if (a[i] \ll s)
                 ret = min(ret, 1 + M[s-a[i]]);
        M[s] = ret;
    return M[t];
```

El problema de la mochila

Knapsack-01 (KP-01)

Debemos llenar una mochila eligiendo entre varios objetos posibles. Cada producto tiene un peso, una medida de comfort (beneficio) y la mochila tolera un peso máximo de carga. Los objetos no pueden ser fraccionados, y solo se puede elegir una unidad de cada objeto.

Una instancia del KP-01 está dada por

- \cap $N = \{1, \dots, n\}$ el conjunto de objetos (o productos).
- \bigcirc $p_i \in \mathbb{Z}_+$ el peso del objeto i, para $i=1,\ldots,n$.
- \bigcirc $b_i \in \mathbb{Z}_+$ el beneficio del objeto i, para $i = 1, \ldots, n$.
- \bigcirc Capacidad $C \in \mathbb{Z}_+$ de la mochila (peso máximo).

Problema

Determinar qué objetos debemos incluir en la mochila sin excedernos del peso máximo C, de modo tal de maximizar el beneficio total entre los objetos seleccionados.

El problema de la mochila: algoritmo recursivo

```
\begin{array}{ll} \mathsf{Mochila}(k:\mathbb{Z},\,c:\mathbb{Z}) \\ \\ \mathsf{if}\,\,k == 0 \mid\mid c == 0 \,\,\mathsf{then} \qquad \qquad \triangleright \,\,\mathsf{Estamos}\,\,\mathsf{en}\,\,\mathsf{una}\,\,\mathsf{hoja} \\ \\ \mathsf{return}\,\,0 \\ \\ \mathsf{else} \qquad \qquad \triangleright \,\,\mathsf{Falta}\,\,\mathsf{considerar}\,\,\mathsf{más}\,\,\mathsf{elementos} \\ \\ v_{\mathsf{without}} = \,\,\mathsf{Mochila}(k-1,\,c) \\ v_{\mathsf{with}} = -\infty \\ \\ \mathsf{if}\,\,\,p_k \leq c \,\,\mathsf{then} \\ \\ v_{\mathsf{with}} = \,\,b_k + \,\,\mathsf{Mochila}(k-1,\,c-p_k); \\ \\ \mathsf{end}\,\,\mathsf{if} \\ \\ \mathsf{return}\,\,\,\mathit{max}\{v_{\mathsf{with}},v_{\mathsf{without}}\} \\ \\ \mathsf{end}\,\,\mathsf{if} \\ \\ \\ \mathsf{end}\,\,\mathsf{if} \\ \end{array}
```

- O Adaptamos el código para que retorne la función objetivo óptima.
- O Podemos ir calculando el costo como parte de la recursión.
- Iniciamos la recursión con Mochila (N, C).

El problema de la mochila: algoritmo recursivo

Instancia

$$\bigcirc$$
 $n=8$

$$\bigcirc$$
 $b = (b_i) = (15, 100, 90, 60, 40, 15, 10, 1)$

$$\bigcirc$$
 $p = (p_i) = (2, 20, 20, 30, 40, 30, 30, 10)$

$$C = 102$$

Solución óptima

$$S = \{1, 2, 3, 4, 6\}$$

$$z^* = 280$$

O Capacidad usada: 102

Preguntas

Analizando el árbol de enumeración:

- O Si definimos $f(i) = \max$ imo beneficio considerando el subconjunto de ítems $\{1, \ldots, i\}$, qué podemos decir respecto a la definición recusiva en términos de f(i-1)?
- Tenemos superposición de estados?
- En un determinado nivel del árbol, que nos importa en relación a la solución óptima del subproblema correspondiente?

Programación dinámica: otro concepto fundamental

Prinicipio de optimalidad

Decimos que un problema exhibe una *subestructura óptima* si la solución óptima puede ser formulada a partir de las soluciones óptimas de los subproblemas. Cuando se cumple esta característica, puede ser un buen indicio para utilizar programación dinámica.

- \bigcirc En coeficientes binomiales, Comb(n, k) se define en función de Comb(n-1, k-1) y Comb(n-1, k).
- \bigcirc En el problema del cambio, CMP(s) se define en función de CMP($s-a_j$) para ciertos valores de a_j . A lo sumo, tantos como denominaciones.

Para KP01, definimos m(k,c)= valor óptimo del problema con los primeros $\{1,\ldots,k\}$ y capacidad remanente c y tenemos la siguiente recursión:

$$m(k,c) = \max \left\{ \underbrace{m(k-1,c)}_{\text{no selec},k}, \underbrace{b_k + m(k-1,c-p_k)}_{\text{selec},k} \right\}, \quad k = 1, \dots, n, c > 0$$

KP01: DP top-down + memoization

Definimos m(k,c) como una tabla de doble entrada que contiene el valor óptimo del problema con los primeros $\{1,\ldots,k\}$ y capacidad remanente c. Sea $S^*\subseteq\{1,\ldots,k\}$ una solución óptima para la instancia (k,c)

m	0	1	2	3	4	 С
0	0	0	0	0	0	 0
	0					
2	0					
3	0					
1 2 3 4	0				m(k,c)	
	:					
•						
n	0					m(n, C)

donde

$$m(k,c) = \begin{cases} 0 & \text{si } k = 0 \\ 0 & \text{si } c = 0 \\ m(k-1,c) & \text{si } k \notin S^* \\ b_k + m(k-1,c-p_k) & \text{si } k \in S^* \end{cases}$$

KP01: DP top-down + memoization

- \bigcirc Asumimos m(k,c) = null.
- \bigcirc La función es invocada inicialmente con Mochila(n, C).

```
Mochila (k : \mathbb{Z}, c : \mathbb{Z}, m)
if k == 0 \mid c == 0 then

    Casos base

    m(k,c)=0
    return ()
else

⊳ Falta considerar más elementos
    if m(k,c) \neq null then
         return m(k,c)
    else
         v_{\text{without}} = \text{Mochila}(k-1, c, m)
         v_{\rm with} = -\infty
        if p_k < c then
             v_{\text{with}} = b_k + \text{Mochila}(k-1, c-p_k, m);
         end if
         m(k, c) = máx\{v_{with}, v_{without}\}
         return m(k,c)
    end if
end if
```

 \bigcirc Sea $S^*\subseteq\{1,\ldots,k\}$ una solución óptima para la instancia (k,c).

$$\bigcirc m(k,c) = \begin{cases} 0 & \text{si } k = 0 \\ 0 & \text{si } c = 0 \\ m(k-1,c) & \text{si } k \notin S^* \\ b_k + m(k-1,c-p_k) & \text{si } k \in S^* \end{cases}$$

- O Definimos entonces:
 - 1 m(k,c) := 0, si k = 0 o c = 0
 - 2. m(k,c) := m(k-1,c), si k > 0 y $p_k > c$.
 - 3. $m(k,c) := max\{m(k-1,c), b_k + m(k-1,c-p_k)\}$, en caso contrario

Teorema

m(n, C) es el valor óptimo para esta instancia del KP01.

Analizamos qué valores necesitamos para obtener una determinada entrada de la tabla m(k, c).

Pregunta

En qué orden tendriamos que llenar la tabla?

```
int knapsack(int n, int C, int* p, int* b)
    int **m = crearMatriz(n+1, C+1);
    for (int i=0; i <= n; ++i)
        m[i][0] = 0:
    for (int c=0; c <= C; ++c)
        m[0][c] = 0;
    for (int k=1; k \le n; ++k)
        for (int c=1; c <= C; ++c)
            if (p[k] > c)
                m[k][c] = m[k-1][c];
            else
                m[k][c] = max(m[k-1][c], b[k] + m[k-1][c - p[k]]);
    return m[n][C];
```

Cuál es la complejidad computacional de este algoritmo?

- O Supongamos que la tabla se representa con una matriz en memoria, de modo tal que cada acceso y modificación es O(1).
- O Si debemos completar (n+1)(C+1) entradas de la matriz, y cada entrada se completa en O(1), entonces la complejidad del procedimiento completo es O(nC) (?).

Algoritmo pseudopolinomial

Su tiempo de ejecución está acotado por un polinomio en los valores numéricos del input, en lugar de un polinomio en la longitud del input.

KP01: reconstrucción de la solución

- \bigcirc El cálculo de m(k,c) proporciona el valor óptimo, pero no la solución óptima.
- Si necesitamos el conjunto de objetos que realiza el valor óptimo, debemos reconstruir la solución.

Preguntas

- O Cuál es el punto de inicio?
- O Qué decidimos en cada paso?
- O Cuántos pasos debemos ejecutar?
- Cuál es el criterio de corte?

- Dada una secuencia A, una subsecuencia se obtiene eliminando cero o más símbolos de A
 - 1. Por ejemplo, [4,7,2,3] y [7,5] son subsecuencias de A=[4,7,8,2,5,3], pero [2,7] no lo es.
- Problema. Encontrar la subsecuencia común mas larga (scml) de dos secuencias dadas.
- Es decir, dadas dos secuencias A y B, queremos encontrar la mayor secuencia que es tanto subsecuencia de A como de B.
- O Por ejemplo, si A = [9, 5, 2, 8, 7, 3, 1, 6, 4] y B = [2, 9, 3, 5, 8, 7, 4, 1, 6] las scml es [9, 5, 8, 7, 1, 6].
- >Cómo es un algoritmo de fuerza bruta para este problema?

Dadas las dos secuencias $A = [a_1, \dots, a_r]$ y $B = [b_1, \dots, b_s]$, consideremos dos casos:

- $oldsymbol{a_r} = b_s$: La scml entre A y B se obtiene colocando al final de la scml entre $[a_1, \ldots, a_{r-1}]$ y $[b_1, \ldots, b_{s-1}]$ al elemento a_r $(= b_s)$.
- \bigcirc $a_r \neq b_s$: La scml entre A y B será la más larga entre estas dos opciones:
 - 1. la scml entre $[a_1, \ldots, a_{r-1}]$ y $[b_1, \ldots, b_s]$,
 - 2. la scml entre $[a_1,\ldots,a_r]$ y $[b_1,\ldots,b_{s-1}]$.

Es decir, calculamos el problema aplicado a $[a_1,\ldots,a_{r-1}]$ y $[b_1,\ldots,b_s]$ y, por otro lado, el problema aplicado a $[a_1,\ldots,a_r]$ y $[b_1,\ldots,b_{s-1}]$, y nos quedamos con la más larga de ambas.

Esta forma recursiva de resolver el problema ya nos conduce al algoritmo.

Si llamamos I[i][j] a la longitud de la scml entre $[a_1, \ldots, a_i]$ y $[b_1, \ldots, b_j]$, entonces:

- 0/[0][0] = 0
- \bigcirc Para j = 1, ..., s, I[0][j] = 0
- \bigcirc Para i = 1, ..., r, I[i][0] = 0
- O Para i = 1, ..., r, j = 1, ..., so si $a_i = b_i$: I[i][i] = I[i-1][i-1] + 1
 - o si $a_i = b_j$ $[I_j][J_j] = I[I 1][J 1] + 1$ o si $a_i \neq b_i$ $[I_j][J_j] = max\{I[I - 1][J_j], I[J_j][J_j - 1]\}$

Y la solución del problema será I[r][s].

```
scml(A, B)
    entrada: A, B secuencias
    salida: longitud de a scml entre A y B
    /[0][0] \leftarrow 0
    para i = 1 hasta r hacer /[i][0] \leftarrow 0
    para j = 1 hasta s hacer /[0][j] \leftarrow 0
    para i=1 hasta r hacer
             para i = 1 hasta s hacer
                      \mathbf{si} \ A[i] = B[i]
                               I[i][j] \leftarrow I[i-1][j-1] + 1
                      sino
                               I[i][j] \leftarrow \max\{I[i-1][j], I[i][j-1]\}
                      fin si
             fin para
    fin para
    retornar I[r][s]
```