Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 3021 CALIBRATION DATE: 03-Dec-14

SBE 4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g =	-9.93397296e+000	CPcor =	-9.5700e-008	(nominal)
h =	1.38842335e+000	CTcor =	3.2500e-006	(nominal)
	2 04002000 004			

i = 3.94803722e-004j = 4.51829341e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.67353	0.00000	0.00000
-1.0000	34.7276	2.79810	5.21950	2.79809	-0.00001
1.0000	34.7276	2.96910	5.33574	2.96911	0.00001
15.0000	34.7266	4.26177	6.14322	4.26178	0.00001
18.5000	34.7261	4.60769	6.34177	4.60768	-0.00001
29.0000	34.7235	5.68883	6.92551	5.68883	0.00001
32.5001	34.7148	6.06030	7.11494	6.06030	-0.00000

f = INST FREQ / 1000.0

Conductivity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter

 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

