DIS7

1 Derivatives of simple functions

Compute the derivatives of the following simple functions used as non-linearities in neural networks.

- 1. $\sigma(x) = \frac{1}{1+e^{-x}}$
- 2. ReLu(x) = max(x, 0)
- 3. $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x e^{-x}}{e^x + e^{-x}}$

2 Backpropagation Practice (self-study)

- 1. Chain rule of multiple variables: Assume that you have a function given by $f(x_1, x_2, ..., x_n)$, and that $g_i(w) = x_i$ for a scalar variable w. How would you compute $\frac{d}{dw} f(g_1(w), g_2(w), ..., g_n(w))$? What is its computation graph?(also sometimes referred to as a pictorial representation of the network). This is a directed graph of decomposed function computations, with the function at one end, and the variables W, b, x, y at the other end, where $b = [b_1, \cdots, b_n]$
- 2. Let $w_1, w_2, \dots, w_n \in \mathbb{R}^d$, and we refer to these variables together as $W \in \mathbb{R}^{n \times d}$. We also have $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Consider the function

$$f(W, x, y) = \left(y - \sum_{i=1}^{n} \phi(w_i^{\mathsf{T}} x + b_i)\right)^2.$$

Write out the function computation graph.

- 3. Suppose $\phi(x) = \sigma(x)$ (from problem 1a). Compute the partial derivatives $\frac{\partial f}{\partial w_i}$ and $\frac{\partial f}{\partial b_i}$. Use the computational graph you drew in the previous part to guide you.
- 4. Write down a single gradient descent update for $w_i^{(t+1)}$ and $b_i^{(t+1)}$, assuming step size η . You answer should be in terms of $w_i^{(t)}$, $b_i^{(t)}$, x, and y.
- 5. (optional) Define the cost function

$$\ell(x) = \frac{1}{2} \|W^{(2)} \Phi \left(W^{(1)} x + b \right) - y\|_2^2, \tag{1}$$

where $W^{(1)} \in \mathbb{R}^{d \times d}$, $W^{(2)} \in \mathbb{R}^{d \times d}$, and $\Phi : \mathbb{R}^d \to \mathbb{R}^d$ is some nonlinear transformation. Compute the partial derivatives $\frac{\partial \ell}{\partial x}, \frac{\partial \ell}{\partial W^{(1)}}, \frac{\partial \ell}{\partial W^{(2)}}$, and $\frac{\partial \ell}{\partial b}$.

6	6. (optional) Suppose Φ is the identity map. Write $W_{t+1}^{(1)}$ and $W_{t+1}^{(2)}$ assuming step size η . Your answer	e down a single gradient descent update for r should be in terms of $W_t^{(1)}$, $W_t^{(2)}$, b_t and x, y .