Grounded Language-Image Pre-training

CVPR 2022

报告人:徐静远

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
5	总结	

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
_		
5	总结	

作者介绍

Liunian Harold Li*^{1†}, Pengchuan Zhang*^{2♠}, Haotian Zhang*^{3†}, Jianwei Yang², Chunyuan Li², Yiwu Zhong^{4†}, Lijuan Wang⁵, Lu Yuan⁵, Lei Zhang⁶, Jenq-Neng Hwang³, Kai-Wei Chang¹, Jianfeng Gao²

¹UCLA, ²Microsoft Research, ³University of Washington,

⁴University of Wisconsin-Madison, ⁵Microsoft Cloud and AI, ⁶International Digital Economy Academy

Pengchuan Zhang Meta Al Verified email at fb.com - Homepage Machine learning Deep learning

ations?view on=view citation&hl=en&user=3V7_F64AAAAT&citation_for_view=3V7_F64AAAAT:dhFu7R050200

TITLE	CITED BY	YEAR
Attngan: Fine-grained text to image generation with attentional generative adversarial networks T Xu, P Zhang, Q Huang, H Zhang, Z Gan, X Huang, X He Proceedings of the IEEE conference on computer vision and pattern	1436	2018
Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks X Li, X Yin, C Li, P Zhang, X Hu, L Zhang, L Wang, H Hu, L Dong, F Wei, Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23	1263	2020
Scaling vision transformers X Zhai, A Kolesnikov, N Houlsby, L Beyer Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern	809 *	2022
Vinvl: Revisiting visual representations in vision-language models P Zhang, X Li, X Hu, J Yang, L Zhang, L Wang, Y Choi, J Gao Proceedings of the IEEE/CVF conference on computer vision and pattern	530	2021
Provably robust deep learning via adversarially trained smoothed classifiers H Salman, J Li, I Razenshteyn, P Zhang, H Zhang, S Bubeck, G Yang Advances in Neural Information Processing Systems 32	415	2019
Florence: A new foundation model for computer vision L Yuan, D Chen, YL Chen, N Codella, X Dai, J Gao, H Hu, X Huang, B Li, arXiv preprint arXiv:2111.11432	362	2021

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
5	总结	
	/U\-H	

6

□ 数据集

> COCO: 200k图, 80类

> OpenImage: 1.9M图, 600类

➤ Ojbect365: 2M图, 365类

□ 方法:

- > Faster-RCNN系列
- Swin-Transformer系列
- Dyhead

研究背景二: 开放词汇检测

- □ 路线一: 从跨模态模型蒸馏知识
 - ViLd, DetPro, F-VLM, Baron

- □ 路线二: 预训练跨模态模型
 - MDETR

作者介绍	
研究背景	
研究方法	
实验效果	
总结	
	研究方法

Motivation

- ➤ 统一Object Detection和Phrase Grounding的任务
- » 获得更细粒度的类CLIP模型
- ▶ 用27M图文对训练(3M有标注+Cap24M)

Prompt : person. bicycle. car. motorcycle...

Prompt: aerosol can... lollipop... pendulum...

Prompt: raccoon

Prompt: pistol

Prompt: there are some holes on the road

Prompt: person. dog.

Figure 1. GLIP zero-shot transfers to various detection tasks, by writing the categories of interest into a text prompt.

研究方法

□ 训练流程

- > 文本编码器使用Bert,图像编码器采用Swin,Head采用dyhead
- > 设计了文本和视觉特征的融合模块, X-MHA
- > 对齐损失(识别)和定位损失

研究方法

□ 具体方法流程

- 全Dyhead-T基础上增加Bert的语言编码器,将分类器改为文本视觉对齐;得到GLIP-T(A) 掉点0.7
- > 增加了视觉文本fusion模块;得到 GLIP-T(B)提点2
- > 合并Grounding任务,使用Grounding数据集丰富语义内容;得到GLIP-T(C)提点1.8
- ▶ 增加Caption数据集,用NLP parser定位名词,以GLIP-T为老师提供bbox份标签,训练GLIP-L;得到GLIP-L提点2.1。

Model	Daalshana	Deep Fusion	Pre-Train Data				
Model	Backbone	Deep Fusion	Detection	Grounding	Caption		
GLIP-T (A)	Swin-T	×	Objects365	-	-		
GLIP-T (B)	Swin-T	✓	Objects365	-	-		
GLIP-T (C)	Swin-T	✓	Objects365	GoldG	-		
GLIP-T	Swin-T	/	Objects365	GoldG	Cap4M		
GLIP-L	Swin-L	/	FourODs	GoldG	Cap24M		

Table 1. A detailed list of GLIP model variants.

Model	Backbone	Pre-Train Data	Zero-Shot 2017val	Fine-Tune 2017val / test-dev
Faster RCNN	RN50-FPN	_	-	40.2 / -
Faster RCNN	RN101-FPN	-	-	42.0 / -
DyHead-T [10]	Swin-T	-	_	49.7 / -
DyHead-L [10]	Swin-L	-	_	58.4 / 58.7
DyHead-L [10]	Swin-L	O365,ImageNet21K	-	60.3 / 60.6
SoftTeacher [65]	Swin-L	O365,SS-COCO	-	60.7 / 61.3
DyHead-T	Swin-T	O365	43.6	53.3 / -
GLIP-T (A)	Swin-T	O365	42.9	52.9 / -
GLIP-T (B)	Swin-T	O365	44.9	53.8 / -
GLIP-T (C)	Swin-T	O365,GoldG	46.7	55.1 / -
GLIP-T	Swin-T	O365,GoldG,Cap4M	46.3	54.9 / -
GLIP-T	Swin-T	O365,GoldG,CC3M,SBU	46.6	55.2 / -
GLIP-L	Swin-L	FourODs,GoldG,Cap24M	49.8	60.8 / 61.0
GLIP-L	Swin-L	FourODs,GoldG+,COCO	-	- / 61.5

1			4	F	F者	-1	 也已
			ı				

- 研究背景
- 研究方法
- 实验效果
- 总结

M - 1-1	MiniVal [23]					Val v1.0			
Model	Backbone	APr	APc	APf	AP	APr	APc	APf	AP
MDETR [23]	RN101	20.9	24.9	24.3	24.2	-	-	-	-
MaskRCNN [23]	RN101	26.3	34.0	33.9	33.3	-	-	-	-
Supervised-RFS [15]	RN50	-	-	-	-	12.3	24.3	32.4	25.4
GLIP-T (A)	Swin-T	14.2	13.9	23.4	18.5	6.0	8.0	19.4	12.3
GLIP-T (B)	Swin-T	13.5	12.8	22.2	17.8	4.2	7.6	18.6	11.3
GLIP-T (C)	Swin-T	17.7	19.5	31.0	24.9	7.5	11.6	26.1	16.5
GLIP-T	Swin-T	20.8	21.4	31.0	26.0	10.1	12.5	25.5	17.2
GLIP-L	Swin-L	28.2	34.3	41.5	37.3	17.1	23.3	35.4	26.9

Table 3. Zero-shot domain transfer to LVIS. While using no LVIS data, GLIP-T/L outperforms strong supervised baselines (shown in gray). Grounding data (both gold and self-supervised) bring large improvements on APr.

Darri	Model	Doto		Val			Test	
Row	Model	Data	R@1	R@5	R@10	R@1	R@5	R@10
1	MDETR-RN101	GoldG+	82.5	92.9	94.9	83.4	93.5	95.3
2	MDETR-ENB5	GoldG+	83.6	93.4	95.1	84.3	93.9	95.8
3		GoldG	84.0	95.1	96.8	84.4	95.3	97.0
4	GLIP-T	O365,GoldG	84.8	94.9	96.3	85.5	95.4	96.6
5		O365,GoldG,Cap4M	85.7	95.4	96.9	85.7	95.8	97.2
6	GLIP-L	FourODs,GoldG,Cap24M	86.7	96.4	97.9	87.1	96.9	98.1

Table 4. Phrase grounding performance on Flickr30K entities. GLIP-L outperforms previous SoTA by 2.8 points on test R@1.

□ COCO数据集

Method	Training source	Novel AP	AP
WSDDN (Bilen & Vedaldi, 2016) Cap2Det (Ye et al., 2019)	image-level labels in $C_B \cup C_N$	19.7 20.3	19.6 20.1
ZSD (Bansal et al., 2018) DELO (Zhu et al., 2020) PL (Rahman et al., 2020)	instance-level labels in C_B	0.31 3.41 4.12	24.9 13.0 27.9
OVR-CNN (Zareian et al., 2021)	image captions in $C_B \cup C_N$ instance-level labels in C_B	22.8	39.9
CLIP-RPN (Gu et al., 2022) ViLD (Gu et al., 2022) Detic* (Zhou et al., 2022c) RegionCLIP [‡] (Zhong et al., 2022) RegionCLIP [†] (Zhong et al., 2022) RegionCLIP* (Zhong et al., 2022) F-VLM (Ours)	CLIP image-text pairs instance-level labels in C_B	26.3 27.6 27.8 31.4 26.8 14.2 28.0	27.8 51.3 45.0 50.4 47.5 42.7 39.6

□训练需求

Model	Model Fusion		e (P100)	Train (V100)		
Wiodei			Memory	Speed	Memory	
GLIP-T	X	4.84 FPS	1.0 GB	2.79 FPS	11.5 GB	
	✓	2.52 FPS	2.4 GB	1.62 FPS	16.0 GB	
GLIP-L	X	0.54 FPS	4.8 GB	1.27 FPS	19.7 GB	
	✓	0.32 FPS	7.7 GB	0.88 FPS	23.4 GB	

1.62*84K*8卡 =1M数据/天

Table 7. Computational cost of language-aware deep fusion. For speed, we report FPS, which is the number of images processed per second per GPU (higher is better). For memory consumption, we report the GPU memory used in GB (lower is better). Deep fusion brings less than 1x additional computational cost.

sketch illustration - female hands write with a pen. arm, art, background, black, care, concept, counting, design, drawing, finger, fingers, five, gesture royalty free illustration

dwarf fruit tress are perfect for small spaces. here are 10 dwarf fruit trees which you can easily grow on your porch, or in containers or on the terrace. banana plants, fruit plants, fruit garden, garden trees, fruit and veg, fruits and vegetables, fresh fruit, apple plant, guava tree

hard times teach us valuable lessons. handwriting on a napkin with a cup of coffee stock photos

person battles with person in the production sedans

save the straws classic t-shirt

this week i'm going to share 20 ideas with you. 20 different lunchbox ideas. packing school lunch is about nourishment.

1	作者介绍	
2	研究背景	
	ツルラス	
3	研究方法	
4	实验效果	
5	总结	

总结

□总结

- > 本文训练大模型思路,从sota的小模型开始, incremental成长
 - ▶ 修改V-L融合模块
 - > 增加grounding数据集
 - ▶ 增加Caption数据集
 - ▶ 通过蒸馏形成大模型
- ▶ 在COCO上的zeroshot表现不足, finetune效果较好

