Cristiano Coutinho Costa

22-11-2022

Controladores Digitais

Relembrando

Estrutura direta não-canônica

Exemplo:

Atenção que o 'n' total tem que ser ímpar

Pode representar somente em duas equações... jamais em 3 equações ou mais... exemplo: tenho uma de 5ª ordem e vou poder representar em uma de segunda e a outra de terceira, mas jamais em duas equações de segunda ordem e uma de primeira.

Estrutura direta Canônica

Estrutura em Cascata ou em série

Ps.
Representando o a0, a1 e b1 de P(z)

a0= 1

a1= 1

b0= 0,1

Organizando em estrutura direta Canônica

Substituindo o a0, a1 e b1 na equação canônica P(z)

Montando a0, a1 e b1 de Q(z) na equação canônica Q(z)

Montando o diagrama de blocos de Q(z)

Cascateando os dois circuitos

Outro exemplo de uma função de transferência de ordem maior

Representando o P(z) com a0, a1 e b1. Além disso, representado em diagrama de blocos

Representando o Q(z) com a0, a1 e b1. Além disso, representado em diagrama de blocos

Cascateando os dois diagramas de P(z) e Q(z)

Pegando um multiplo de 12, consideramos 4. Chamaremos (z+4)

Então, efetuando a divisão

Agora representando a função de transferência (FT), em:

Representando o P(z) com a0, a1 e b1. Além disso, representado em diagrama de blocos

Representando o Q(z) com a0, a1 e b1. Além disso, representado em diagrama de blocos

Cascateando P(z) e Q(z)

Recomendação usar a expansão por frações parciais Quando o numerador for de mesma ordem do denominador, sempre haverá um termo residual,

Exemplo

Resolvendo

I) dividindo por $1+3z^{-1}$ e $z^{-1} = -\frac{1}{3}$ para encontrar o termo A

II) dividindo por $1+4z^{-1}$ e z^{-1} para encontrar o termo B

III) Encontrando o termo C, substituir no valor de A e B e adotar $z^{-1} = 0$

IV) Agora representando D(z) encontrado e representando em diagrama de blocos

Próxima terça concluí