ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова Шембель Даниил Альбертович, группа БИТ213

Модульная работа №2

по дисциплине «Первичная обработка и представление статистических данных»

Тема: «Двумерные данные»

Дата сдачи отчета: 7.12.22

Содержание

Оглавление

Содержание	2
Тема исследования	3
Актуальность темы исследования	3
Исследуемые показатели	3
Корреляционный анализ	3
Регрессионный анализ	3
Линейная модель	4
Степенная модель	4
Гиперболическая модель	5
Сравнение моделей	5
Заключение	6
Приложения	6
Таблица исходных данных	6
Рис. 1 Корреляционное облако	8
Рис. 3 Степенная линия тренда MS Excel	9
Рис. 5 Полученная гиперболическая линия тренда	10
Литература	10
Интернет Источники	10

Тема исследования

В качестве темы было выбрано нахождение зависимости между отношением заработной платы (отношение заработной платы в регионе к среднероссийской) в субъектах и миграционным приростом Субъекта в 2020 году.

Актуальность темы исследования

В экономически развитых странах внутренняя миграция населения оказывает существенное влияние на формирование и функционирование внутренних рынков труда и является основной силой перераспределения населения между регионами в ответ на экономические изменения. Поэтому в развитых странах внутренняя миграция населения способствует более полному использованию национальных и региональных трудовых ресурсов, сглаживает региональные уровне развития, способствует устойчивому социальноэкономическому развитию. Исследования, проведенные на основе российских данных, показывают, что региональные различия в доходах и уровне безработицы со временем не только не уменьшаются, но даже увеличиваются. Современная Россия характеризуется очень неравномерным территориальным размещением производительных сил. Наличие региональной замкнутости региональных рынков труда приводят к устойчивым карманам длительно безработных, хотя многие регионы уже сталкиваются с нехваткой рабочей силы в определенных отраслях и профессиях. Об остроте проблемы увеличения внутри территориальной миграции населения в России можно судить, в том числе, по большим межрегиональным колебаниям заработной платы между регионами.

Исследуемые показатели

Отношение заработной платы по субъектам- отношение средней заработной платы субъекта к среднероссийской заработной плате. (Безразмерная величина)

Миграционный прирост населения в субъекте. (Кол-во человек)

Корреляционный анализ

По корреляционному облаку (Рис. 1 Приложения) можно сказать, что наблюдается слабая прямая корреляция. При проведении расчётов со значимостью α =0,05, найденный коэффициент R-квадрат это подтверждает (Лист Регрессионный анализ MS Excel, R-квадрат=0,06). Рассчитаем, коэффициент корреляции на основе исходных данных (Лист линейная регрессия, коэффициент корреляции= 0,25), по полученному числу можно судить о том, что слабая взаимосвязь всё-таки имеет место быть.

Линейная модель

Построим линейную модель регрессии по исходным данным. Для этого рассчитаем x^*y и x^2 , после чего рассчитаем коэффициент S_x :

$$S_x = \sqrt{\overline{x^2} - \overline{x}^2}$$

, а затем коэффициент b_1 :

$$b_1 = \frac{\overline{xy} - \overline{x} * \overline{y}}{S_x}$$

и коэффициент b₀:

$$b_0 = \overline{y} - b_1 \overline{x}$$

Запишем получившееся уравнение:

$$y = -2418,18 + 5083,811x$$

Сравним полученную модель с линией тренда линейной модели в MS Excel (Рис. 2 Приложения). Как видно уравнения полностью совпадают. Рассчитаем МНК для данной модели, чтобы впоследствии сравнить с МНК нелинейных моделей, чтобы понять какая из них наиболее точная. Получим МНК= 1000593366.

Проверим гипотезу о значимости уравнения регрессии, для этого рассчитаем F-критерий Фишера:

 $F = \frac{R^2}{1-R^2} * (n-k-1)$ =2,1132, что меньше табличного значения при значимости γ =0,05, следовательно, модель значима, теперь проверим коэффициенты:

$$t = \frac{b_1}{S_{b_1}}$$
 и $t = \frac{b_0}{S_{b_0}}$, где S_{b_1} и S_{b_0} :

$$S_{b_1}=rac{S_9}{\sum (x_i-\overline{x})^2}$$
 и $S_{b_0}=S_9\sqrt{rac{\sum x}{n*\sum (x_i-\overline{x})^2}}$, где S_9 -стандартная ошибка оценки:

$$S_{\mathfrak{I}} = \sqrt{\frac{\sum (y_i - \hat{y})^2}{n - k - 1}}$$
, получим:

 $t_{b_1}=2,361561392,\ t_{b_0}=0,763218126,\$ что меньше табличного значения при значимости γ =0,05, следовательно, практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

Степенная модель

Построим степенную модель, для этого рассчитаем следующие коэффициенты: $\lg x$, $\lg y$, $\lg x^* \lg y$, $\lg^2 x$, в свою очередь с их помощью

рассчитаем:

$$S_{\lg x}^{2} = \overline{\lg^{2} x} - (\overline{\lg x})^{2}$$

$$b_{1} = \frac{\overline{\lg x * \lg y} - \overline{\lg x} * \overline{\lg y}}{S_{\lg x}^{2}}$$

$$lgb_{0} = \overline{\lg y} - b_{1} * \overline{\lg x}$$

После чего можем записать уравнение модели в виде:

$$\hat{y} = b_0 * x^{b_1}$$

 $\hat{y} = 1495,874 * x^{1,458008}$, сравним полученную модель с версией MS Excel. (Рис. 3 Приложения)

Уравнения не совпадают. Рассчитаем МНК модели: МНК=1034044074.

Гиперболическая модель

Построим гиперболическую модель, для этого рассчитаем коэффициенты, с учётом того, что произведена замена $z=\frac{1}{z}$

$$S_z^2 = \overline{z^2} - \overline{z}^2$$

$$b_1 = \frac{\overline{zy} - \overline{z} * \overline{y}}{S_z^2}$$

$$b_0 = \overline{y} - b_1 \overline{z}$$

В конечном итоге получим уравнение вида:

$$\hat{y} = b_0 + b_1 * \frac{1}{x}$$

$$\hat{y} = 8577,881 - 5185,04 * \frac{1}{x}$$

Сравним полученную модель с полиномиальной линией тренда MS Excel, так как MS Excel не предлагает нам гиперболическую линию тренда. (<u>Рис. 4 и Рис.</u> 5 Приложения)

Несмотря на разные типы линий, они достаточно близки, что может служить подтверждением правильности гиперболической модели. Рассчитаем МНК модели:

MHK=988313406,2

Сравнение моделей

Сравним модели по МНК:

 $MHK_{MH} = 1\ 000\ 593\ 366$

МНК_{степ}=1 034 044 074

 $MHK_{FMII} = 988 313 406.2$

Наименьшая МНК-оценка у гиперболической модели, следовательно, её можно признать наиболее оптимальной, второй по малости оказалась МНК-оценка линейной модели, но при этом стоит выделить, что у всех трёх моделей очень близкая МНК.

Заключение

В результате исследования была выявлена слабая корреляция между отношением средней зарплаты в Субъекте РФ к среднероссийской заработной плате и миграционным приростом данного Субъекта, тем не менее была исключена вероятность воздействия случайных величин, следовательно, можно сделать вывод, что относительная зарплата в Субъекте РФ может служить одним из факторов его миграционного прироста, скорее всего подобными факторами могут служить географическое положение Субъекта и климат, но это лишь гипотеза. Также в ходе работы были построены 3 регрессионные модели 1 линейная и 2 нелинейных (степенная и гиперболическая), по МНК-оценке гиперболическая модель оказалась наиболее оптимальной из всех 3-ёх.

Приложения

Таблица исходных данных

	X	V
Белгородская область	0,729238	802
Брянская область	0,622195	-285
Владимирская область	0,686351	-3024
Воронежская область	0,707327	348
Ивановская область	0,566434	-868
Калужская область	0,856848	1599
Костромская область	0,627532	1382
Курская область	0,697355	1052
Липецкая область	0,716539	-778
Московская область	1,130921	14365
Орловская область	0,620559	-1880
Рязанская область	0,710093	337
Смоленская область	0,645431	-1237
Тамбовская область	0,604998	395

Тверская область	0,702653	-177
Тульская область	0,796373	-982
Ярославская область	0,7366	-1961
г. Москва	1,949011	9076
Республика Карелия	0,905675	626
Республика Коми	1,113197	-3614
Архангельская область	1,08856	0
Вологодская область	0,833106	-1579
Калининградская область	0,713754	7708
Ленинградская область	0,940441	21166
Мурманская область	1,346506	-3619
Новгородская область	0,665492	685
Псковская область	0,613431	725
г.Санкт- Петербург	1,337391	1026
Республика Адыгея	0,626383	-99
Республика Калмыкия	0,6235	160
Республика Крым	0,665725	1429
Краснодарский край	0,749825	17553
Астраханская область	0,757343	-2427

Рис. 1 Корреляционное облако

Исходные данные с линией тренда MS Excel

Рис. 2 Линейная линия тренда MS Excel

Степенная линия тренда MS Excel

Рис. 3 Степенная линия тренда MS Excel

Рис. 4 Полиномиальная линия тренда MS Excel

Рис. 5 Полученная гиперболическая линия тренда

Литература

Анализ данных: учебник для академического бакалавриата / В. С. Мхитарян [и др.]; под ред. В. С. Мхитаряна. — М.: Издательство Юрайт, 2016. — 490 с. — (Серия: Бакалавр. Академический курс). — ISBN 978-5-9916-5591-0. — Режим доступа: www.biblio-online.ru/book/AF1D197F-1759-422E-9593-8B43E2D1093B

Интернет Источники

https://www.rbc.ru https://stats.hh.ru/

https://rosstat.gov.ru/folder/10705