Lecture 0: Introduction to the course

Andreas Wichert

Department of Computer Science and Engineering

Técnico Lisboa

Corpo docente –Tagus

Andreas (Andrzej) Wichert – Teóricas

• andreas.wichert@tecnico.ulisboa.pt

• tel: 214233231

• room: N2 5-7 (Taguspark)

• http://web.tecnico.ulisboa.pt/andreas.wichert/

- Practical (Tagus)
 - Andreas (Andrzej) Wichert

Corpo docente –Tagus

- Practical (Tagus)
 - Maria Urze Osório
 - maria.osorio@tecnico.ulisboa.pt

- Practical (Tagus)
 - José Miguel Penedo Ramos
 - jose.miguel.ramos@tecnico.ulisboa.pt

Horário de dúvidas, Andreas Wichert

Tagus, room: N2 5-7

Monday, Tuesday, Wednesday: 15h-17h

(Seg, Ter, Qua, Qui: 15h-17h)

Organização das aulas

- Teóricas:
 - Matéria: slides (baseados no livros) + livros!
- Práticas
 - Exercícios Teoretical Exercises -> Exam
 - (Python: NumPy, Scikit-Learn)
 - Ínicio: 11th September
 - Grupos: número de alunos 2
 - Inscription: 11 September 14h...

Timetable - Rooms

	Seg 9/9	Ter 9/10	Qua 9/11	Qui 9/12	
07:00					
08:00					
09:00		09:00 - 10:30 L	09:00 - 10:30 L	09:00 - 11:00 T	
		0 - 17	0-9	A1	
10:00	10:00 - 11:30	L04	L03		
	1 - 4	10:30 - 12:00	10:30 - 12:00		
11:00	L03	0 - 16	1 - 3	11:00 - 12:30	
	11:30 - 13:30	L05	L06	L 1 - 4	
12:00	A4	12:00 - 13:30		L04	
		1 - 15		12:30 - 14:00	
13:00		L06		L 0 - 25	
				L05	
14:00					

Avaliação/Evaluation

- Regular period
 - Exam 50% (minimum 8)
 - 4 Home works 4 x 12.5%=50% (overall minimum 8)
- Special evaluation period
 - Exam 100% (minimum 8)

Homeworks

- H1: Decision Trees and Evaluation
 - statement release: September 18
 - odeadline: Friday, September 25
- H2: Bayesian and Lazy Learning
 - statement release: September 25
 - deadline: Monday, October 7
- **H3**: Neural Networks and Regression
 - statement release: October 7
 - deadline: Friday, October 18
- **H4:** Clustering and PCA
 - statement release: October 18
 - deadline: Monday, October 28

Avaliação

Testes/Exames	Dia	Início	Fim	Período de inscrição	Salas	Cursos
Exame: 1ª Época	04/11/2024	13:00	15:00			LEIC-T
Exame: 2ª Época	06/02/2025	10:30	12:30			LEIC-T
Exame: Época Especial	24/07/2025	15:30	17:30			LEIC-T

Labs / Practical Classes

- Registration
 - Groups with 2 students (from the same campus)
 - Registration from 11th September 14h on Fénix
- First practical class 16th September
 - Pen and paper, we will use some examples on the computer as well
- We will use Python: NumPy, Matplotlib, Seaborn, Scikit-Learn, Pandas
 - Anaconda-Navigator or Conda
 - Install different Python libraries
 - Editor: Visual Studio Code
 - https://code.visualstudio.com/doc

- We will use *Python: NumPy, Scikit-Learn* with *Jupyter* notebooks
 - https://scikit-learn.org/stable/index.html
 - http://www.numpy.org
- Anaconda-Navigator or Miniconda
 - Install different Python libraries, like NumPy, Scikit-Learn

- Editor:
 - For example Visual Studio Code or another Editor that supports Jupyter notebooks
 - https://code.visualstudio.com/

• CO Google Colab (Cloud Service, NO NEED TO INSTALL ANYTHING ©)

Additional Libraries

- Matplotlib: Visualization with Python
- https://matplotlib.org
 - Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible.
- **seaborn**: statistical data visualization
- https://seaborn.pydata.org
 - Seaborn is a Python data visualization library based on <u>matplotlib</u>. It provides a high-level interface for drawing attractive and informative statistical graphics.

- Numpy and Matplotlib are (nearly) compatible to MATLAB
- Operatin with matrices and Vectors and Ploting results
- You can find many examples and descriptions at
 - https://www.mathworks.com/products/matlab.html
- Search with Google for Matlab etc
 - For example search for: matlab matrices
 - https://www.mathworks.com/help/matlab/learn_matlab/matrices-and-arrays.html?s_tid=srchtitle_site_search_2_MATLAB%20MATRICES

- Python and all the librarys run as an interpreter (slow)
- However some NumPy routines are precompiled for your processor and run much faster
- Use matrix operationusing NumPy are much faster than the matrix operation using standart Python

- The task of the class is not to learn how to program Scikit-Learn
- Rather to understand the basic mathematical framework of the algorithms!
- There are many other frameworks
 - R, Weka, Shogun, Tensorflow, Keras, PyTorch, MatLab, Mathematica, etc...
- Software changes, you have constantly to adapt, what is most popular today will be out in comming years

Serge Gainsbourg (1928-1991)

Qui est in? Qui est out? Qui est in? Qui est out?

Tu aimes la nitroglycérine (in) C'est au Bus Palladium que ça s'écoute (out) Rue Fontaine, il y a foule Pour les petits gars de Liverpool Barbarella garde tes bottines (in) Et viens me dire une fois pour toutes (out) Que tu m'aimes ou sinon Je te renvoie à ta science fiction

 You have to understand what is happening, do not use the algorithms as a blackbox..

- The mathematical models do not change fast, most algorithms were developed 30 or 40 years ago (or even more), the corresponding knowlede stayes for ever!
 - Known algorithms are adapted and improved over the time, see backpropagation algorithm developed around 1984 that is the basis of deep learning
- A lot of progress was mostly made by faster and more powerful computers (see deep learning revolution)

Main literature

Machine Learning: A Journey to Deep Learning
 Andreas Wichert and Luis Sá Couto, World Scientific, 2021
 https://www.worldscientific.com/worldscibooks/10.1142/12201

Machine Learning
 Tom Mitchell, McGraw Hill, 1997
 http://www.cs.cmu.edu/~tom/mlbook.html

Secondery literature (Data Science)

 Data Mining and Machine Learning: Fundamental Concepts and Algorithms

Mohammed J. Zaki and Wagner Meira Jr, Cambridge Univ. Press, 2nd Ed., 2020

https://dataminingbook.info/

ML - the **Theoretical** Minimum:

- Lecture 1: Learning and Univariate Data Analysis
- Lecture 2: Decision Trees
- Lecture 3: Model Evaluation
- Lecture 4: Probability and Bayesian Classifier
- Lecture 5: K Nearest Neighbour
- Lecture 6: Linear Regression
- Lecture 7: Perceptron
- Lecture 8: Logistic Regression
- Lecture 9: Multilayer Perceptrons
- Lecture 10: Clustering
- Lecture 11: PCA
- Lecture 12: Deep Learning