Algèbre 2

 $Hugo \ SALOU$

Table des matières

1	Anneaux.															3					
	1.1	Généralités.																			3
	1.2	Divisibilité.																			7

1 Anneaux.

Généralités. 1.1

Définition 1.1. Un anneau est un ensemble A contenant 0,1 et munis de deux lois internes notées + et · telles que

- $\triangleright (A, +)$ est un groupe abélien de neutre 0;
- $\forall a, b, c \in A, \quad a(bc) = (ab)c;$
- $\forall a \in A, \quad a \cdot 1 = 1 \cdot a = a;$
- $\forall a, b, c \in A$, a(b+c) = ab + ac et (b+c)a = ba + ca.

Remarque 1.1. De cette définition, on peut en déduire certaines règles de calculs :

- $\forall a \in A, \quad 0 \cdot a = 0;$
- $\forall a, b \in A, \quad (-a)b = -ab;$ $\forall a, b \in A, \quad (-a)(-b) = ab;$ $\forall a, b \in A, \quad (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \text{ quand } A \text{ est } com$ mutatif.

Définition 1.2. On dit que A est commutatif si pour tous $a, b \in$ A, on a ab = ba.

Exemple 1.1. Les ensembles $\mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathbb{Q}$ sont des anneaux commutatifs. L'ensemble

$$\mathbb{Z}[\sqrt{3}] := \left\{ \left. n + m\sqrt{3} \; \right| \; n, m \in \mathbb{Z} \; \right\} \subseteq \mathbb{R}$$

est un anneau : en effet,

$$(n+m\sqrt{3})(n'+m'\sqrt{3}) = nn' + (nm'+n'm)\sqrt{3} + 3mm' \in \mathbb{Z}[\sqrt{3}].$$

Mais, $\mathbb{Z}[\sqrt[3]{3}]$ **n'est pas** un anneau.

De même, l'ensemble $\mathbb{Q}[\sqrt{3}] \subseteq \mathbb{R}$ est un anneau, c'est même un corps car il est stable par passage à l'inverse.

Définition 1.3. Soit A un anneau. Une partie $B \subseteq A$ est appelée un sous-anneau si B contient 1 et si la restriction des lois de A à B lui confère une structure d'anneau.

Autrement dit, si B contient 1 et est stable par somme et produit, c'est un sous-anneau de A.

Exemple 1.2. L'ensemble $\mathbb{Z}[i] \subseteq \mathbb{C}$ est un sous-anneau de \mathbb{C} . De même que pour $\mathbb{Z}[\sqrt{3}]$, on vérifie facilement qu'il est stable par produit.

Définition 1.4. Soient $A \subseteq B$ des anneaux et E une partie de B. On note A[E] l'anneau engendré par E sur A le plus petit sousanneau de B contenant A et E. C'est l'intersection des sousanneaux de B contenant A et E.

Remarque 1.2. Si B est commutatif, alors A[E] est l'ensemble des sommes finis de monômes de la forme $ae_1^{n_1} \cdots e_s^{n_s}$ avec $a \in A$, $e_i \in E$ et $n_i \in \mathbb{N}$.

Exemple 1.3. Soit G un groupe.

On note $\mathbb{C}[G]:=\mathbb{C}^{|G|}=\bigoplus_{g\in G}\mathbb{C}\cdot\langle g\rangle$. Ses éléments sont de la forme $\sum_{g\in G}a_g\langle g\rangle$ avec $a_g\in\mathbb{C}$. On définit $\langle g\rangle\cdot\langle h\rangle=\langle gh\rangle$ et puis $\langle g\rangle a=a\langle g\rangle$, pour tout $a\in\mathbb{C}$. On définit alors le produit

sur $\mathbb{C}[G]$ par :

$$\left(\sum_{g \in G} a_g \langle g \rangle\right) \cdot \left(\sum_{h \in G} b_h \langle g \rangle\right) = \sum_{g \in G} \sum_{h \in H} a_g b_h \langle g h \rangle$$

$$= \sum_{\ell \in G} \left(\sum_{gh=\ell} a_g b_h\right) \langle \ell \rangle$$

$$= \sum_{\ell \in G} \left(\sum_{g \in G} a_g b_{g^{-1}\ell}\right) \langle \ell \rangle$$

Définition 1.5. Soit A un anneau. On appelle A-module un ensemble M muni d'une loi interne + et d'une loi externe $A \times M \to M, (a,m) \mapsto am$ telle que (M,+) est un groupe abélien et que, pour tous $a,b \in A$ et $m,n \in M$, on a :

- $\triangleright \ a(bm) = (ab)m;$
- $\triangleright 1_A m = m;$
- $\triangleright 0_A m = m$;
- $\triangleright (a+b)m = am + bm;$
- $\triangleright (-b)m = -(bm);$
- $\triangleright a(m+n) = am + an.$

Remarque 1.3. Les groupes abéliens correspondent exactement aux \mathbb{Z} -modules. On peut ainsi définir généralement les A-modules comme une donné d'un morphisme

$$f: A \to \operatorname{End}(M)$$
.

Définition 1.6. Un morphisme d'anneau $f:A\to B$ est une application telle que, pour tous $a,b\in A$, on a :

- f(a+b) = f(a) + f(b);
- $\triangleright f(ab) = f(a) f(b);$
- $\triangleright f(1_A) = 1_B.$

Exemple 1.4. On considère

$$\varphi: G \longrightarrow \mathbb{C}[G]$$
$$g \longmapsto \langle g \rangle.$$

Alors, $\varphi(G)$ est un sous-groupe de $(\mathbb{C}[G], \cdot)$ isomorphe à G. Les représentations de G correspondent exactement aux $\mathbb{C}[G]$ -modules. En effet, la donnée d'un morphisme de groupes $G \to \operatorname{Aut}_{\mathbb{C}}(V)$ est équivalente à la donnée d'un morphisme d'anneau $\mathbb{C}[G] \to \operatorname{End}_{\mathbb{C}}(V)$.

À partir de maintenant, tous les anneaux considérés sont commutatifs.

Définition 1.7. Soit A un anneau et $a \in A$.

- 1. On dit que a est nilpotent s'il existe $n \in \mathbb{N}^*$ tel que $a^n = 0$.
- 2. On dit que a est une racine de l'unité s'il existe $n \in \mathbb{N}^*$ tel que $a^n = 1$.
- 3. On dit que a est idempotent si $a^2 = a$.
- 4. On dit que $a \neq 0$ est un diviseur de zéro s'il existe $b \neq 0$ tel que ab = 0.
- 5. On dit que a est *inversible* s'il existe $b \in A$ tel que ab = 1. On notera A^{\times} l'ensemble des éléments inversibles. L'ensemble (A^{\times}, \cdot) forme un groupe.
- 6. On dit que A est un corps si $A^{\times} = A \setminus \{0\}$.
- 7. On dit que A est intègre si A ne contient pas de diviseurs de zéro.

Remarque 1.4. \triangleright On verra que A est intègre si et seulement si A est un sous-anneau d'un corps.

▷ Un sous-anneau d'un anneau intègre est intègre.

Lemme 1.1. Soit A un anneau intègre. Soient $a, b, c \in A$ avec $a \neq 0$. Alors, si ab = ac on a b = c, *i.e.* on peut simplifier par a.

Preuve. On a ab - ac = 0 donc a(b - c) = 0. Alors b - c = 0 car A est intègre et $a \neq 0$. D'où, b = c.

1.2 Divisibilité.

Définition 1.8. Soit A un anneau. On dit que a divise b et on note $a \mid b$ s'il existe $c \in A$ tel que b = ac.

Remarque 1.5. Cette relation dépend de A. En effet, on peut avoir $A \subseteq B$ et $a, b \in A$ tels que $a \mid b$ dans B mais $a \nmid b$ dans A. Par contre, si $a \mid b$ dans A alors $a \mid b$ dans B.

Proposition 1.1. Soient A un anneau et $a, b, c \in A$.

- 1. On a $a \mid a$.
- 2. Si $a \mid b$ et $b \mid c$ alors $a \mid c$.
- 3. Si $a \mid b$ et $a \mid c$ alors $a \mid \alpha b + \beta c$ pour $\alpha, \beta \in A$.
- 4. Si $ca \mid cb$ avec $c \neq 0$ et A intègre alors $a \mid b$. Autrement dit, on peut simplifier par c.
- 5. Si $c \in A^{\times}$ alors $c \mid a \text{ (car } a = ac^{-1}c)$.
- 6. On a $a \mid 0$ (car $0 = a \cdot 0$).
- 7. Si $a \mid b$ et $b \mid a$ et a n'est pas un diviseur de zéro, alors a = xb avec $x \in A^{\times}$.
- 8. Pour tout $x \in A^{\times}$ on a équivalence :

$$a\mid b\iff a\mid xb\iff xa\mid b.$$

Remarque 1.6. La divisibilité se comporte mieux dans les *modules inversibles*.

Remarque 1.7. On a la chaîne d'inclusions :

Anneaux

 $|\bigcup$

Anneaux commutatifs

 $|\bigcup$

Anneaux commutatifs intègres

 $|\bigcup$

Anneaux intègres noethériens

 $|\bigcup$

Anneaux factoriels

 $| \bigcup$

Anneaux principaux

 $|\bigcup$

Anneaux euclidiens

 $|\bigcup$

Corps