Maths – 2^e partie

Consignes

- Cette épreuve de **2h** comporte **4** questions équipondérées.
- Calculatrice et documentation interdites.
- 1. On munit l'espace euclidien \mathbf{E} d'un repère orthonormé (O, i, j, k).
 - a) Déterminer l'axe et l'angle de la rotation $R: \mathbf{E} \to \mathbf{E}$ définie en coordonnées par

$$R(x,y,z) = \left(\frac{2x+2y+z}{3}, \, \frac{-x+2y-2z}{3}, \, \frac{-2x+y+2z}{3}\right).$$

b) On applique la rotation R au plan \mathcal{P} qui est tangent en A(0,0,1) à la surface \mathcal{S} d'équation

$$z = y^2 + e^{-x}\cos y.$$

Donner une équation cartésienne pour le plan $\mathcal{P}' = R(\mathcal{P})$ ainsi obtenu.

2. a) Étudier les points critiques (nature et position) de la fonction

$$f(x,y) = \exp\left(-\frac{x^3}{3} + x - y^2\right).$$

- b) Quelles sont les valeurs maximale et minimale de f sur le disque de rayon 2 centré à l'origine?
- 3. Soit $T: (\mathbf{F}_7)^4 \to (\mathbf{F}_7)^3$ la transformation linéaire définie par

$$T(x, y, z, t) = (x - 3y + 2z + 2t, 2x - 6y + 5z + 3t, x - 3y + z + 3t),$$

- où \mathbf{F}_7 désigne le corps à 7 éléments.
- a) Combien existe-t-il de quadruplets $(x, y, z, t) \in (\mathbf{F}_7)^4$ tels que

$$T(x, y, z, t) = (3, 1, 1)$$
?

- b) Calculer des bases \mathcal{B} et \mathcal{C} telles que $_{\mathcal{B}}[T]_{\mathcal{C}}$ soit sous forme canonique.
- c) En déduire des bases du noyau et de l'image de T.
- 4. Déterminer la nature (convergence absolue, conditionnelle ou divergence) des séries suivantes.

- a) $\sum_{n=0}^{\infty} \frac{(-2)^n}{n!}$ b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\cos n}$ c) $\sum_{n=1}^{\infty} \frac{\operatorname{Arctan} n}{n^3}$ d) $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$