

Quantile Regression

Advanced Microeconometrics

Anders Munk-Nielsen 2022

Plan for lectures: Helicopter

Part I: Linear methods. \checkmark

Part II: High-dimensional methods. ✓

Part III: M-estimation, theory ✓

 $\textbf{Part IV:} \ \ \text{M-estimation, examples} \leftarrow$

Where are we in the course?

Part	Topic	Parameterization non-linear	Estimation non-linear	Dimension $dim(x)$	Numerical optimization	M-estimation (Part III)	Outcome (y_i)	Panel (c_i)
I	OLS	÷	÷	low	÷	✓	\mathbb{R}	✓
П	LASSO	÷	✓	high	✓	÷	R	÷
IV	Probit	√	✓	low	✓	✓	{0,1}	÷
	Logit	√	✓	low	✓	✓	$\{1, 2,, J\}$	÷
	Tobit	√	√	low	✓	✓	[0;∞)	÷
	Simulated Likelihood	✓	✓	low	✓	✓	Any	✓
	Quantile Regression	÷	✓	(low)	✓	✓	R	÷
	Non-parametric	⊬	(√)	∞	÷	-	R	÷

Discussion time!

In the example in the graph, the average treatment effect is zero.

Question

What else can we say about the impact of treatment based on this graph?

Topic for today

- Most empirical work focuses on the conditional mean...
- Today: explore conditional quantiles.

Outline

1. Empirical Questions

- 2. Intro: Quantiles
- 3. Model
- 4. Criterion Function
- Features of Interest
- Specific Issues
 - 6.1. Kinky objective function
 - 6.2. Standard errors

Earnings Example

- Bitler, Gelbach, & Hoynes (2006; AER): The effect on earnings of Connecticut's Job First waiver program.
- Finding: Behind the mean response lies a large response by a small group.

FIGURE 3. QUANTILE TREATMENT EFFECTS ON THE DISTRIBUTION OF EARNINGS, QUARTERS 1–7 Notes: Solid line is QTE; dotted lines provide bootstrapped 90-percent confidence intervals; dashed line is mean impact; all statistics computed using inverse propensity-score weighting. See text for more details.

Birth weight example

- Abrevaya & Dahl (2008): Birth weight of newborns.
- Example: No prenatal visits makes a big difference at bottom quantiles (the "at risk" babies).

Income Inequality

Source: David Leonhardt, NYTimes, nytimes.com

Outline

- 1. Empirical Questions
- 2. Intro: Quantiles
- 3. Model
- 4. Criterion Function
- Features of Interest
- Specific Issues
 - 6.1. Kinky objective function
 - 6.2 Standard errors

Introduction

Normally: we are interested in the conditional mean,

$$\mathbb{E}(y|\mathbf{x}) = \mathbf{x}\boldsymbol{\beta}_m$$

• Instead: we might consider

$$Median(y|\mathbf{x}) = \mathbf{x}\boldsymbol{\beta}_{0.5}$$

• More generally: conditional au-percentiles, $au \in (0;1)$

$$Percentile_{\tau}(y|\mathbf{x}) = \mathbf{x}\boldsymbol{\beta}_{\tau}$$

Quantiles

Definition: quantile

The au'th quantile $(au \in (0;1))$ of y is $\mu_{ au}$ such that

$$au = \Pr(y \leq \mu_{\tau}) \equiv F_y(\mu_{\tau}).$$

Hence

$$\mu_{\tau} = F_{y}^{-1}(\tau).$$

Definition: percentile

The τ 'th quantile is the 100τ 'th percentile.

E.g., the 0.23 quantile and the 23 rd percentile are the same.

Graphically, $\tau \equiv F_y(\mu_\tau)$: The CDF

Graphically, $\mu_{\tau} = F^{-1}(\tau)$: The Quantile Function

Quantiles {.05, .1, .15, ..., .95}

Conditional Quantiles

Definition: conditional quantile

The conditional τ quantile of y is

$$\mu_{\tau}(\mathbf{x}) = F_{y|\mathbf{x}}^{-1}(\tau|\mathbf{x}).$$

Conditional Quantiles: Dataset

Conditional Quantiles: Focus on x_i

Conditional Quantiles, 0, 5, 10, ..., 100

Outline

- 1. Empirical Questions
- 2. Intro: Quantiles
- 3. Model
- 4. Criterion Function
- 5 Features of Interest
- 6. Specific Issues
 - 6.1. Kinky objective function
 - 6.2 Standard errors

Model

- Will cover two specific models as examples;
 - 1. Heteroscedasticity model,

Pro: error-term form,

2. Heterogenous parameter model.

Pro: simpler to grasp what we estimate.

• **Finally:** Will cover the more general model.

Heteroscedasticity model (cf. C&T)

Model

$$y = \mathbf{x}\beta + u$$

 $u = (\mathbf{x}\alpha)\varepsilon, \quad \varepsilon \sim F_{\varepsilon},$

where we assume $\mathbf{x}\alpha > 0$.

■ Goal: Derive an expression for $\mu_{\tau}(\mathbf{x}, \boldsymbol{\beta}, \boldsymbol{\alpha})$.

$$\begin{split} \tau &=& \operatorname{Pr}\left[y \leq \mu_{\tau}(\mathbf{x}, \boldsymbol{\beta}, \boldsymbol{\alpha})\right] \\ &=& \operatorname{Pr}\left[\mathbf{x}\boldsymbol{\beta} + (\mathbf{x}\boldsymbol{\alpha})\,\varepsilon \leq \mu_{\tau}(\mathbf{x}, \boldsymbol{\beta}, \boldsymbol{\alpha})\right] \\ &=& \operatorname{Pr}\left\{\varepsilon \leq \frac{1}{\mathbf{x}\boldsymbol{\alpha}}\left[\mu_{\tau}(\mathbf{x}, \boldsymbol{\beta}, \boldsymbol{\alpha}) - \mathbf{x}\boldsymbol{\beta}\right]\right\} \\ &\equiv& F_{\varepsilon}\left\{\frac{1}{\mathbf{x}\boldsymbol{\alpha}}\left[\mu_{\tau}(\mathbf{x}, \boldsymbol{\beta}, \boldsymbol{\alpha}) - \mathbf{x}\boldsymbol{\beta}\right]\right\}. \end{split}$$

• **Qs**: Where did we need $x\alpha > 0$?

Heteroscedasticity model (cf. C&T)

We have

$$\tau = F_{\varepsilon} \left\{ \frac{1}{x\alpha} \left[\mu_{\tau}(x, \beta, \alpha) - x\beta \right] \right\}.$$

It follows,

$$F_{\varepsilon}^{-1}(\tau) = \frac{1}{\mathsf{x}\alpha} \left[\mu_{\tau}(\mathsf{x}, \beta, \alpha) - \mathsf{x}\beta \right]$$

$$\Leftrightarrow \mu_{\tau}(\mathsf{x}, \beta, \alpha) = \mathsf{x}\beta + (\mathsf{x}\alpha)F_{\varepsilon}^{-1}(\tau).$$

Discussion

$$\mu_{\tau}(\mathbf{x}, \boldsymbol{\beta}, \boldsymbol{\alpha}) = \mathbf{x}\boldsymbol{\beta} + (\mathbf{x}\boldsymbol{\alpha})F_{\varepsilon}^{-1}(\tau).$$

Suppose $\mathbf{x}_i \alpha = 1$ for all i.

Discuss

What is the difference between two quantile regression lines in this case?

Heterogenous parameter model

Model

$$y_i = \mathbf{x}_i \boldsymbol{\beta}(\tau_i), \quad \tau_i \sim \text{Uniform}(0,1),$$

where $\beta(\cdot)$ maps [0;1] into \mathbb{R}^K subject to the *no quantile crossing* restriction [next slide].

- τ_i is interpreted as the conditional **quantile draw** of *i*.
- Alternatively, we can think of the model as

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + e_i, \quad e_i \equiv \mathbf{x}_i \boldsymbol{\beta}(\tau_i) - \mathbf{x}_i \boldsymbol{\beta}.$$

• we then require $Pr(e_i \le \tau_i | \mathbf{x}_i) = 0$.

No quantile crossing

The mapping, $\tau_i \mapsto \mathbf{x}_i \beta(\tau_i)$ must be monotonic for all $\tau_i \in (0;1)$ where \mathbf{x}_i has support (almost surely).

Discussion

Discuss

Why do we need the no quantile crossing property?

[hint, consider the "constant only," example where $\mathbf{x}_i=1$, so

Heteroscedasticity DGP in Python

```
1 def sim_data(theta, N, alpha):
      K = theta.size
2
      assert alpha.size == K, f'alpha must be same size as beta'
3
4
      # 1. regressors
5
      oo = np.ones((N.1))
6
      xx = np.random.uniform(size=(N,K-1)) # uniform => ensures posit
7
      x = np.hstack([oo, xx])
8
9
10
      # 2. error term
      epsilon = np.random.normal(size=(N,))
11
      sigma_i = x@alpha # individual variance (function of x)
12
      u = sigma i * epsilon # heteroskedastic error
13
14
      # 3. outcome
15
      y = x@theta + u
16
      return y,x
17
```

• Note: we estimate $\hat{\beta}(\tau)$, but the DGP requires θ_o (K-vector) and α_o (K-vector)

```
1 def sim_data(theta, N, icdf):
      K = theta.size
2
      assert K == 2 # for simplicity
3
      assert callable(icdf)
5
      oo = np.ones((N,1))
6
      xx = np.random.uniform(size=(N,1)) + theta[0]
7
      x = np.hstack([oo, xx]) # (N,K)
8
9
      tau = np.random.uniform(size=(N,1))
10
      beta2 = icdf(tau) * theta[1]
11
      beta1 = np.ones((N,1)) # first coefficient constant across quar
12
      beta = np.hstack([beta1, beta2]) # (N,K)
13
14
      y = np.sum(x * beta, axis=1)
15
      return y,x
16
```

• Note: we estimate $\hat{\beta}(\tau)$, but the DGP requires θ_o (*K*-vector) and $F^{-1}(\cdot)$ (function)

Outline

- 1. Empirical Questions
- 2. Intro: Quantiles
- 3. Model
- 4. Criterion Function
- Features of Interest
- Specific Issues
 - 6.1. Kinky objective function
 - 6.2. Standard errors

Overview

- **Recall:** We minimize $\mathbb{E}[(y-\mu)^2]$ by setting $\mu=\mathbb{E}(y)$.
- Similarly: We minimize $\mathbb{E}|y-\mu|$ by setting $\mu=\mathrm{Median}(y)$.
- Regression: We minimize $\mathbb{E}[(y \mu(x))^2 | x]$ by setting $\mu(x) = \mathbb{E}(y | x)$.
 - Typically, we then further assume $\mathbb{E}(y|x) = \mathbf{x}\beta$.
- Median regression: minimize $\mathbb{E}(|y \mu(x)|x)$ by setting $\mu(x) = \text{Median}(y|x)$.
 - Similarly, we might assume $Median(y|x) = x\beta$.

Criterion function: rewriting the C&T form

In C&T: They write

$$Q(\beta_{\tau}) = \sum_{i: y_i \geq \mathbf{x}_i \beta_{\tau}} \tau |y_i - \mathbf{x}_i \beta_{\tau}| + \sum_{i: y_i < \mathbf{x}_i \beta_{\tau}} (1 - \tau) |y_i - \mathbf{x}_i \beta_{\tau}|.$$

• Equivalently, we can write this as

$$Q(\beta_{\tau}) = \sum_{i=1}^{N} \left[\mathbf{1}_{\{y_i \geq \mathbf{x}_i \beta_{\tau}\}} \tau | y_i - \mathbf{x}_i \beta_{\tau}| + \mathbf{1}_{\{y_i < \mathbf{x}_i \beta_{\tau}\}} (1 - \tau) | y_i - \mathbf{x}_i \beta_{\tau}| \right]$$

• Getting rid of the " $|\cdot|$ ",

$$Q(\beta_{\tau}) = \sum_{i=1}^{N} \left[\mathbf{1}_{\{y_{i} \geq \mathbf{x}_{i}\beta_{\tau}\}} \tau(y_{i} - \mathbf{x}_{i}\beta_{\tau}) + \mathbf{1}_{\{y_{i} < \mathbf{x}_{i}\beta_{\tau}\}} (\tau - 1)(y_{i} - \mathbf{x}_{i}\beta_{\tau}) \right]$$

In my slides and everywhere else,

$$Q(\beta_{\tau}) = \sum_{i=1}^{N} (\tau - \mathbf{1}_{\{y_{i} < \mathbf{x}_{i}\beta_{\tau}\}}) (y_{i} - \mathbf{x}_{i}\beta_{\tau})$$
$$\equiv \sum_{i=1}^{N} \rho_{\tau}(y_{i} - \mathbf{x}_{i}\beta_{\tau}).$$

More generally

Definition: Check function

$$\rho_{\tau}(u) \equiv \left(\tau - \mathbf{1}_{\{u < 0\}}\right) u.$$

From Koenker (2000).

Criterion function

Criterion function

$$q(y_i, \mathbf{x}_i, \boldsymbol{\beta}_{\tau}) = \rho_{\tau}(y_i - \mathbf{x}_i \boldsymbol{\beta}_{\tau}),$$

where ρ_{τ} is the *check function*.

- Claim: $\beta_{\tau} = \arg \min_{\beta} \mathbb{E}[q(y_i, \mathbf{x}_i, \beta) | \mathbf{x}_i].$
- ... we will show this for the intercept-only model.
 - [not the full proof]

Minimizer

- To show: $\beta_{0\tau} = \arg\min_{\beta_0} \mathbb{E}[\rho_{\tau}(y-\beta_0)|x].$
- Idea: Split up $(-\infty, \infty)$ into $(-\infty, \beta_0] \cup [\beta_0, \infty)$ to get rid of $1\{\cdot\}$.
- Re-write

$$\mathbb{E}[\rho_{\tau}(y - \beta_{0})|x] \equiv \int_{-\infty}^{\infty} [\tau - \mathbf{1}\{y - \beta_{0} < 0\}] (y - \beta_{0}) \, dF(y)$$

$$= \int_{-\infty}^{\beta_{0}} [\tau - \mathbf{1}\{y < \beta_{0}\}] (y - \beta_{0}) \, dF(y)$$

$$+ \int_{\beta_{0}}^{\infty} [\tau - \mathbf{1}\{y < \beta_{0}\}] (y - \beta_{0}) \, dF(y)$$

$$= (\tau - 1) \int_{-\infty}^{\beta_{0}} (y - \beta_{0}) \, dF(y)$$

$$+ \tau \int_{\beta_{0}}^{\infty} (y - \beta_{0}) \, dF(y).$$

Step 2: FOC

We have

$$\mathbb{E}[\rho_{\tau}(y-\beta_{0})|x] = (\tau-1) \int_{-\infty}^{\beta_{0}} (y-\beta_{0}) dF(y) + \tau \int_{\beta_{0}}^{\infty} (y-\beta_{0}) dF(y).$$

FOCs imply

$$\frac{\partial \mathbb{E}[\rho_{\tau}(y - \beta_0)|x]}{\partial \beta_0} = 0$$

$$[...]$$

$$\Leftrightarrow F(\beta_0) = \tau.$$

- Intuition: Choose β_0 so that τ of the mass is to the left.
 - $[cdf(x) \equiv % \text{ of mass to the left of } x]$

Identification

- Intuitively: similar to OLS.
- Further details get much more complicated.

Question

Why can I not identify a model with two intercepts?

Discussion

Model

$$y_i = \mathbf{x}_i \boldsymbol{\beta}(\tau_i), \quad \tau_i \sim \text{Uniform}(0, 1),$$

where $\beta_0(\tau) = 1 \forall \tau$ and $\beta_1(\tau) = F^{-1}(\tau)$, and F is the χ^2 cdf.

Discuss

What are the parameter estimates? A vector? A function?

Outline

- 1. Empirical Questions
- 2. Intro: Quantiles
- 3. Model
- 4. Criterion Function
- 5. Features of Interest
- Specific Issues
 - 6.1. Kinky objective function
 - 6.2. Standard errors

Features of Interest

- If we are interested in how x_{ik} affects conditional quantiles...
 - ... it is linear!
- That is,

$$\frac{\partial \mu_{\tau}(\mathbf{x}_{i}, \boldsymbol{\beta}_{\tau})}{\partial \mathbf{x}_{ik}} = \beta_{\tau k}.$$

- Often we will plot all the estimates together, comparing with OLS.
 - [see examples earlier]

Outline

- 1. Empirical Questions
- 2. Intro: Quantiles
- 3. Model
- 4. Criterion Function
- Features of Interest
- 6. Specific Issues
 - 6.1. Kinky objective function
 - 6.2. Standard errors

Definition: Check function

$$\rho_{\tau}(u) \equiv [\tau - \mathbf{1}\{u < 0\}] u.$$

From Koenker (2000).

Criterion function

Criterion function

$$q(y_i, \mathbf{x}_i, \boldsymbol{\beta}_{\tau}) = \rho_{\tau}(y_i - \mathbf{x}_i \boldsymbol{\beta}_{\tau}),$$

where
$$\rho_{\tau}(u) \equiv [\tau - \mathbf{1}\{u < 0\}] u$$
.

- Two problems;
 - 1. Non-differentiable at $y_i = \mathbf{x}_i \boldsymbol{\beta}_{\tau}$,
 - 2. Hessian is zero everywhere.
- Implications:
 - 1. Optimization may be hard.
 - 2. Theorem 12.3 doesn't guarantee asymptotic normality,

Figure 1: N=4

Criterion for various *N*

Figure 2: N = 8

Criterion for various *N*

Figure 3: N = 20

Criterion for various N

Figure 4: N = 1000

Discuss

Discuss

Which problems do we face here:

- 1. The gradients may point the wrong way,
- 2. We cannot divide by the Hessian,
- 3. There are local optima.

Also: Does the primary problem get better or worse as $N \to \infty$? Why?

Standard errors

- Note: Criterion is not smooth,
 - Non-differentiable at $y_i = \mathbf{x}_i \boldsymbol{\beta}_{\tau}$,
 - Hessian is zero everywhere else.
- Fortunately: Normality still comes about...

$$\sqrt{N}(\hat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}_{\tau}^{o}) \stackrel{d}{\to} \mathcal{N}(0, \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}).$$

- $\bullet \mathbf{A}_o = \operatorname{plim} \frac{1}{N} \sum_{i=1}^{N} f_{u_{\tau}|x}(0|\mathbf{x}_i) \mathbf{x}_i \mathbf{x}_i',$
- $\bullet \quad \mathbf{B}_o = \operatorname{plim} \frac{1}{N} \sum_{i=1}^{N} \tau (1-\tau) \mathbf{x}_i \mathbf{x}_i',$
- $u_{\tau} \equiv y \mathbf{x} \beta_{\tau}, f_{u_{\tau}|_{X}}$ is the conditional pdf of u_{τ} given \mathbf{x}_{i} .

Variance estimation in practice

- Bootstrap: Use when in doubt.
- Many variants exist (non-parametric, parametric, block, ...).

Bootstrap

- 1. Draw a new dataset with replacement from the original dataset,
- 2. Estimate parameters, $\hat{\beta}_{\tau}^{b}$,
- 3. Repeat 1–2 for b = 1, ..., B.
- 4. The distribution of $\{\hat{\beta}_{\tau}^b\}_{b=1}^B$ is the approximation of the asymptotic distribution of $\hat{\beta}_{\tau}$.

Intuition

- Original dataset was an IID draw from the population.
- Thus, IID draws from this sub-population will match the original distribution closely.
- Panel data: Do the bootstrap sampling over i (not i, t);
 - i.e. take entire T-paths for individual i when he is drawn.