## Auction Fraud Detection

"Human or Robot"

Springboard School of Data

by Gabrielle Wald





## Introduction

## Background

#### Overview of the project

On an auction website, human bidders are becoming increasingly frustrated with their inability to win auctions vs. their software-controlled counterparts.

As a result, usage from the site's core customer base is plummeting. In order to rebuild customer happiness, the site owners need to eliminate computer generated bidding from their auctions.



## The Problem



What we want to solve

- Customer churn
- Customer satisfaction



Assumption

 Problem can be improved by eliminating robots from the website.

## Goal

Identify users that are "robots", so they can be removed from the auction site.

# Significance of the Project

#### For customers

• Customer satisfaction and experience improves.



#### For website owners

- Customer churn decreases.
- Clients stay on website, improves profitability.

## Data Understanding





## Data Source

This project is part of an Engineering competition created by Facebook and Kaggle in 2015.

- 1. The data was retrieved from the Kaggle website in csv format.
- 2. One of the richest data of its kind, a world class machine learning problem.
- 3. Great potential for feature engineering.



#### About the Data

There are two datasets:

- bidder dataset (train and test)
  - bid dataset
- Over 3 million bids (data points)



#### Challenge

- Obfuscated fields for privacy
  - Unique identifiers



#### Data Wrangling

- Merge on bidder\_id
- EDA was performed to identify patterns and inform feature engineering.
- Data was later on rearranged at bidders level (1984 rows).



#### Data Cleaning

- The data came relatively clean.
- 29 missing data points were dropped (mapped to human data).



#### DATA FIELDS

#### For bidder dataset:

- bidder\_id
- payment\_account
- address
- outcome

#### For the bid dataset:

- bid\_id
- bidder\_id
- auction
- merchandise
- device
- time
- country
- ip
- url

## Exploratory Data Analysis

## Initial Hypotheses

- 1. Total number of bids
- 2. Number of bids per auction
- 3. Number of distinct IP addresses
- 4. Favorite Merchandise
- 5. Number of devices









## First Impressions

- The data is highly unbalanced.
- 12,740 auctions
- 5,729 devices
- 199 countries
- 663,873 unique URLs
- 1,030,950 unique IP addresses

## EDA FINDINGS



## Initial hypotheses held true.

The mean and median number of occurrences between human and robots differ significantly for several variables.

#### Highlight 1

- Average number of bids per robot = 4,004, median = 716.
- Average number of bids per human = 1443,
   median = 14

#### Highlight 2

- Average number of IP addresses per robot = 2,388, median = 290.
- Average number of IP addresses per human =
   581, median = 11

#### HUMAN VS. ROBOT DESCRIPTIVE STATISTICS

Mean of bids per robot: 4004.04 Median of bids per robot: 716.0 Mode of bids per robot: 1 Robot user with more bids: 161935 Robot user with less bids: 1

Mean of auctions per robot: 145.04 Median of auctions per robot: 74.0 Mode of auctions per robot: 1 Robot user with more auctions: 1018 Robot user with less auctions: 1

-----

\_\_\_\_\_

Mean of countries per robot: 26.48 Median of countries per robot: 13.0 Mode of countries per robot: 1 Robot user with more countries: 179 Robot user with less countries: 1

Mean of IPs per robot: 2387.80 Median of IPs per robot: 290.0 Mode of IPs per robot: 1 Robot user with more IPs: 111918

-----

Robot user with less IPs: 1

Mean of devices per robot: 163.61 Median of devices per robot: 78.0 Mode of devices per robot: 1 Robot user with more devices: 1144 Robot user with less devices: 1

-----

Mean of urls per robot: 544.58
Median of urls per robot: 88.0
Mode of urls per robot: 1
Robot user with more urls: 8551
Robot user with less urls: 1



Mean of bids per human: 1413.51 Median of bids per human: 14.0 Mode of bids per human: 1 Human user with more bids: 515033 Human user with less bids: 1

-----

Mean of auctions per human: 58.07 Median of auctions per human: 9.0 Mode of auctions per human: 1 Human user with more auctions: 1623 Human user with less auctions: 1

\_\_\_\_\_

Mean of countries per human: 12.68
Median of countries per human: 3.0
Mode of countries per human: 1
Human user with more countries: 164
Human user with less countries: 1

-----

Mean of IPs per human: 581.26 Median of IPs per human: 11.0 Mode of IPs per human: 1 Human user with more IPs: 109159 Human user with less IPs: 1

-----

Mean of devices per human: 73.95
Median of devices per human: 8.0
Mode of devices per human: 1
Human user with more devices: 2618
Human user with less devices: 1

-----

Mean of urls per human: 335.19
Median of urls per human: 4.0
Mode of urls per human: 1
Human user with more urls: 81376
Human user with less urls: 1

## Feature Engineering



# 23 Features were created summarizing information at the bidder\_id level

The major differences between robots and humans are in the number of occurrences.

Features were created to highlight the differences in behaviors.

#### Some of the Features:

- Number of bids per auction by bidder\_id
- Number of countries per bidder\_id
- Number of IP addresses per bidder\_id
- Number of URLs per bidder\_id
- Number of same IP addresses per auction for bidder\_id
- Mean number of bids per bidder\_id
- Median number of bids per bidder\_id
- Mean number of countries per bidder\_id
- Median number of countries per bidder\_id
- Mean number of IP per device per bidder\_id



# Advanced Analytics & Insights

Machine Learning



## Binary Classification

Predicting a class: "human" or "robot"

#### **Evaluation Metrics**

- Accuracy
- Precision
- Recall
- F1 score

#### **Models applied**

- Logistic Regression
- Random Forest Classifier
- Decision Tree Classifier

## Models Summary

Accuracy is 0.937;

• True Negatives: 371

• False Positives: 3

• False Negatives: 22

• True Positives: 1

LOGISTIC REGRESSION

Accuracy is 0.953;

• True Negatives: 374

• False Positives: 0

• False Negatives: 20

• True Positives: 3

RANDOM FOREST CLASSIFIER



Accuracy is 0.945;

• True Negatives: 367

• False Positives: 7

• False Negatives: 15

• True Positives: 8

DECISION TREE CLASSIFIER

### Evaluation

ROC - AUC Curve

 Random Forest has the highest AUC value. The best performance at distinguishing between the classes.



## What are the best metrics to evaluate our model?

**Precision**: ability of the model to return only relevant instances. In this case, we want to minimize false negative, and don't want 'robots' to be classified as 'humans'.

**Recall**: ability of the model to identify all relevant instances, that is True Positive Rate, aka Sensitivity. We want the least false positive, minimize 'humans' classified as 'robots'.

**F1 Score**: returns a harmonic mean of precision and recall, indicating a balance between Precision & Recall. Therefore, a model that has a high F1 score can be a good model for us too.

## Conclusion &

Suggestions for future improvement





#### Conclusion

- 1. Highest value of true positives and a low value for false positives.
- 2. High recall model: keep false positive low, but in case we misclassify a human for a robot, it isn't as damaging as keeping 'robot' bidders on the website.
- 3. Decision tree classifier has the highest true positives.
- 4. Add authentication steps to avoid banning misclassified human bidders.

## Questions?

Thank you!

