# 최상위 문제 Lv.2

## 중2 | 수학

## 4. 삼각형의 성질(02)



1. 다음 그림과 같이  $\overline{AB} = \overline{AC}$ 인 이등변삼각형에서  $\overline{AD} = \overline{DE} = \overline{EF} = \overline{FC} = \overline{BC}$ ,  $\overline{FH}$ 는  $\angle$  EFC의 이등분 선이고  $\angle$  FHI =  $106\,^\circ$ ,  $\angle$  GIH =  $9\,^\circ$  이다.  $x = \angle$  FGI의 크기를 구하면?



- ① 63°
- ② 65°
- $367^{\circ}$
- 4) 69°
- ⑤ 71°

**2.**  $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서  $\overline{BF} = \overline{CD}, \overline{BD} = \overline{CE}, \ \angle EDF - \angle A = 24$  일 때,  $\angle A$ 의 크기는?



- ① 40°
- ②  $44^{\circ}$
- $348^{\circ}$
- ④ 52°

**3.** 정구각형의 세 꼭짓점 A, B, I로 이루어진  $\triangle ABI$ 에서  $\angle ABI$ 의 크기는?



- ① 15°
- ②  $18^{\circ}$
- $320^{\circ}$
- 4) 25°
- ⑤ 30°

**4.**  $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 점 M은  $\overline{BC}$ 의 중점이고  $\overline{BC}$ 를 지름으로 하는 원이  $\overline{AB}$ ,  $\overline{AC}$ 와 만나는 점을 각각 D, E라 하자.  $\angle A = 50^\circ$ 이고  $\overline{BC} = 12cm$ 일 때, 부채꼴 DME의 넓이는?



- (1)  $4\pi cm^2$
- $26\pi cm^2$
- (3)  $8\pi cm^2$
- (4)  $12\pi cm^2$
- (5)  $15\pi cm^2$

**5.** △ABC의 한 꼭짓점 C에서 ∠A의 이등분선의 연장선에 내린 수선의 발을 H라 하자.

 $\overline{AB}$ = $\overline{AD}$ =9이고  $\overline{AC}$ =15일 때,  $\overline{AH}$ 의 길이는?



- ① 11
- ② 11.5
- ③ 12
- **4** 12.5
- ⑤ 13

6. 그림과 같이  $\angle C = \angle F = 90$  °인 두 직각삼각형 ABC와 DEF가 서로 합동이 될 수 있는 조건을 <보기>에서 모두 고르면?



<보기>

- $\neg. \ \overline{AB} = \overline{DE}, \ \overline{AC} = \overline{DF}$
- $\bot$ .  $\overline{AB} = \overline{DE}$ ,  $\overline{BC} = \overline{DF}$
- $\Box$ .  $\overline{AC} = \overline{DF}$ ,  $\angle B = \angle E$
- $\exists . \overline{AC} = \overline{DF}, \ \angle A = \angle D$
- $\Box$ .  $\angle A = \angle D$ ,  $\angle B = \angle E$
- ① 7, L, □
- ② 7, ∟, ≥
- ③ ∟, ⊏, ≥
- ④ ∟, ⊏, ⊇, □
- ⑤ 7, ∟, ⊏, ≥

**7.** 넓이가 240인 직사각형 모양의 종이를 그림과 같이 접었을 때, □*ABCD*의 넓이는?



- 1 40
- **②** 60
- 3 80
- 4 100
- **⑤** 120
- 8. 삼각형 ABC가 주어져 있다. 점 O는  $\triangle ABC$ 의 외심이고, 점 I는  $\triangle ABC$ 의 내심이다.  $\angle ABC = 58\,^\circ$ ,  $\angle ACB = 42\,^\circ$ ,  $\angle OCB = 10\,^\circ$ 이다. 이때,  $\angle IAO$ 의 크기를 구하면?



- ①  $2^{\circ}$
- ② 3°
- 3 8°
- 4 11°
- ⑤ 16°
- 9. 그림에서 점 O는 삼각형 ABC의 외심이다.  $\overline{AC}$ =  $14\,\mathrm{cm}$ ,  $\angle B$  =  $45\,^\circ$  일 때,  $\triangle AOC$ 의 외접원의 넓이는?



- ①  $25\pi \, \text{cm}^2$
- ②  $\frac{121}{4}\pi \text{ cm}^2$
- $36\pi \, \text{cm}^2$
- $49\pi \, \text{cm}^2$
- $98\pi \, \text{cm}^2$

10. 주어진 얼굴무늬 수막새를 이루는 원의 중심을 정하는 방법을 생각해보자. 중심의 위치를 찾으려면 어떤 작도를 사용해야 하는지 <보기>에서 찿아 이 름과 바르게 짝지은 것을 구하시오.





- ① ㄱ 외심
- ② ㄴ 외심
- ③ ㄱ 내심
- ④ ㄴ 내심
- ⑤ ㄷ 내심
- **11.** 그림에서 점 I는  $\triangle ABC$ 의 내심이다. 점 I에서 선분 AC, 선분 BC에 내린 수선의 발을 각각 D, E라고 하자.  $\overline{DI}=a$ ,  $\overline{IF}=b$ ,  $\overline{FD}=c$ 이고  $\overline{IF}//\overline{BC}$ 일 때, 사다리꼴 IECF의 넓이를 a, b, c로 나타내면?



- ①  $\frac{1}{2}a(2b+c)$  ②  $\frac{1}{2}a(b+2c)$
- $3 \frac{1}{2}a(a+b+c)$
- $(4) \ a(2b+c)$
- ⑤ a(b+2c)

**12.**  $\angle C = 90^{\circ}$ 인  $\triangle ABC$ 의 세 변 AB, BC, CA의 길 이를 각각 c,a,b 라 하자. 또,  $\triangle ABC$ 에 내접하는 원이  $\overline{BC}$ ,  $\overline{CA}$ 에 접하는 점을 각각 F, G 라 하고, 내접원의 호 FG 위에 F,G 가 아닌 점 H 에서 원 에 그은 접선이  $\overline{BC},\overline{CA}$ 와 만나는 점을 각각 D,E라 하자.  $a+b+c=\frac{1}{2}ab$ 라 할 때,  $\triangle DEC$ 의 둘레의 길이는?



1 1

2 2

- 3 4
- **4** 6

**(5)** 8

**13.** 다음 그림에서 점 I는  $\triangle ABC$ 의 내심이고, 점 I를 지나고 변 BC에 평행한 직선이  $\overline{AB}$ ,  $\overline{AC}$ 와 만 나는 점을 각각 D, E라고 한다. 원 P는  $\triangle ADE$ 의 내접원이고 두 점 F, G는 접점일 때,  $\overline{AG}$ 의 길이



- ① 10 cm
- ② 12 cm
- ③ 15 cm
- (4) 18 cm
- (5) 20 cm

# 14. 다음은 직각삼각형에 대한 설명이다. 옳은 것은?

- ① 빗변의 길이가 같은 직각삼각형은 합동이다.
- ② 직각삼각형의 외심은 삼각형의 외부에 있다.
- ③ 직각삼각형의 내심은 빗변의 중점 위에 있다.
- ④ 두 변의 길이가 같은 두 직각삼각형은 합동이다.
- ⑤ 빗변의 길이가 같고 다른 한 변의 길이가  $10 \, \mathrm{cm} \, \mathrm{O}$  두 직각삼각형은 합동이다.

**15.** 변 BC위의 점 O는  $\triangle ABC$ 의 외심이고, 점 I는  $\triangle AOB$ 의 내심이며, 점 O'은  $\triangle AOC$ 의 외심이다.  $\triangle AIO = 123\,^{\circ}$ 일 때,  $\triangle IAO'$ 의 크기는?



- ① 95°
- $\bigcirc$  96  $^{\circ}$
- $397^{\circ}$
- 4) 98°
- (5) 99°



주의 ∠EDF와 크기가 같은 각을 찾는다.

## 정답 및 해설

## 1) 정답 ③

#### 1등급 공략 Tip

이등변삼각형 외각의 성질을 고려한다.

#### 문제 분석

다음 그림과 같이  $\overline{AB} = \overline{AC}$  인 이등변삼각형에서  $\overline{AD} = \overline{DE} = \overline{EF} = \overline{FC} = \overline{BC}$ ,  $\overline{FH}$ 는  $\angle EFC$ 의 이등분선이

단서  $\triangle DAE$ ,  $\triangle EDF$ ,  $\triangle FEC$ ,  $\triangle CBF$ 는 이등변삼각형이다.

고  $\angle$  FHI =  $106\,^{\circ}$ ,  $\angle$  GIH =  $9\,^{\circ}$  이다.  $x = \angle$  FGI의 크기

#### 를 구하면?



#### 단계별 풀이 전략

#### ● ∠BAC 구하기

 $\angle DAE = \angle a$ 라 하자.

 $\overline{AD} = \overline{DE}$ 이므로  $\angle DEA = \angle DAE = \angle a$   $\triangle DAE$ 에서  $\angle EDF = \angle a + \angle a = 2\angle a$   $\overline{DE} = \overline{EF}$ 이므로  $\angle EFD = \angle EDF = 2\angle a$   $\triangle FAE$ 에서  $\angle FEC = 2\angle a + \angle a = 3\angle a$   $\overline{EF} = \overline{FC}$ 이므로  $\angle FCE = \angle FEC = 3\angle a$   $\triangle FAC$ 에서  $\angle CFB = 3\angle a + \angle a = 4\angle a$   $\overline{FC} = \overline{BC}$ 이므로  $\angle CBF = \angle CFB = 4\angle a$   $\triangle ABC$ 에서  $\overline{AB} = \overline{AC}$ 이므로  $\angle C = 4\angle a$ 따라서  $\angle a + 4\angle a + 4\angle a = 180^\circ$  $2\angle a = 20^\circ$ 

## **②** ∠*EIG* 구하기

 $\overline{FH}$ 의 연장선과  $\overline{EC}$ 의 교점을 점 P라 하자.  $\triangle FEC$ 는 이등변삼각형이므로  $\angle FPI$ =  $90\,^\circ$   $\triangle HPI$ 에서  $\angle IHF$ =  $106\,^\circ$ 이므로  $\angle PIH$ =  $16\,^\circ$  또한  $\angle GIH$ =  $9\,^\circ$ 이므로  $\angle PIG$ =  $7\,^\circ$ 

#### **8** *x* 구하기

따라서  $\triangle$  GEI에서  $x=\angle$   $IGF=\angle$   $GEI+\angle$   $EIG=3\angle$  a+7  $^{\circ}=67$   $^{\circ}$ 

## 2) 정답 ②

#### 1등급 공략 Tip

이등변삼각형 내부에 합동인 삼각형을 찾는다.

#### 문제 분석

단서  $\triangle B = \triangle C$ ,  $\overline{BF} = \overline{CD}$ ,  $\overline{BD} = \overline{CE}$ 이므로  $\triangle BFD = \triangle CDE$  (SAS 합동)이다.

## $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서

 $\overline{BF} = \overline{CD}, \overline{BD} = \overline{CE}, \angle EDF - \angle A = 24^{\circ}$  일 때,  $\angle A$ 

#### 의 크기는?



## ■ 단계별 풀이 전략

#### **1** ∠ EDF 구하기

 $\triangle ABC$ 가  $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로

$$\angle B = \angle C = \frac{1}{2} (180^{\circ} - \angle A)$$

 $\Delta BDF$ 와  $\Delta CED$ 에서  $\overline{BD} = \overline{CE}$ ,  $\overline{BF} = \overline{CD}$ ,  $\angle B = \angle C$ 이므로  $\Delta BDF \equiv \Delta CED(SAS$ 합동)이다.

## $\angle BFD + \angle FDB = \angle CDE + \angle FDB$

$$\angle BFD + \angle FDB = 180^{\circ} - \angle B$$

$$= 180^{\circ} - \frac{1}{2} (180^{\circ} - \angle A)$$
$$= 90^{\circ} + \frac{1}{2} \angle A$$

$$\therefore \angle EDF = 180^{\circ} - (90^{\circ} + \frac{1}{2} \angle A) = 90^{\circ} - \frac{1}{2} \angle A$$

## **②** ∠A 구하기

이때 
$$\angle EDF - \angle A = 24$$
 이므로  $90$  °  $-\frac{1}{2}$   $\angle A - \angle A = 24$  °  $-\frac{3}{2}$   $\angle A = -66$  °  $\therefore$   $\angle A = 44$  °



3) 정답 ③

## 1등급 공략 Tip

정n각형의 내각의 크기 합은  $180\,^{\circ} imes (n-2)$ 로 구할 수 있다.

#### 문제 분석

단서  $\overline{AB}$ ,  $\overline{AI}$ 는 정구각형의 변이므로  $\overline{AB} = \overline{AI}$ 이다.

정구각형의 세 꼭짓점 A, B, I로 이루어진  $\triangle ABI$ 에서  $\angle ABI$ 의 크기는?



#### 풀이과정

정구각형의 내각의 크기의 합은  $180^{\circ}(9-2)=1260^{\circ}$ 이므로

한 내각 
$$\angle BAI = \frac{1260\,^{\circ}}{9} = 140\,^{\circ}$$

 $\Delta ABI$ 에서  $\overline{AB} = \overline{AI}$ 인 이등변삼각형이므로

$$\angle ABI = \frac{1}{2} \times (180^{\circ} - 140^{\circ}) = 20^{\circ}$$

4) 정답 ③

## 1등급 공략 Tip

부채꼴 DME의 넓이를 구하기 위해서는  $\angle DME$ 를 알아야 한다.

## 문제 분석

 $\overline{AB}$ = $\overline{AC}$ 인 이등변삼각형 ABC에서 점 M은  $\overline{BC}$ 의 중점이고  $\overline{BC}$ 를 지름으로 하는 원이  $\overline{AB}$ ,  $\overline{AC}$ 와 만나는 점을 각각 D, E라 하자.  $\angle A$  =  $50\,^\circ$  이고  $\overline{BC}$ = 12cm일 때,

단서  $\overline{BM} = \overline{DM} = \overline{EM} = \overline{CM}$ 

부채꼴 *DME*의 넓이는?



## THE 깊은 해설

 $\angle ABC = \angle ACB = 65^{\circ}$ 

 $\triangle MDB$ 는  $\overline{MD} = \overline{MB}$ 인 이등변삼각형이므로

 $\angle MDB = \angle MBD = 65^{\circ}$ ,  $\angle DMB = 50^{\circ}$ 

 $\Delta EMC$ 는  $\overline{MC}=\overline{ME}$ 인 이등변삼각형이므로  $\angle MCE=\angle MEC=65$  이다.

또한 ∠*EMC*=50°이므로 ∠*DME*=80°

∴(부채꼴 *DME*의 넓이)

 $=\pi \times 6^2 \times \frac{80}{360} = 8\pi (cm^2)$ 



5) 정답 ③

## 1등급 공략 Tip

 $\overline{BD}$ 와 길이가 같게 연장선 DH 위에 점을 잡는다.

#### 그림 분석



 $ightharpoonup \overline{BD} = \overline{DP}$ 가 되도록 점 P를 잡으면  $\angle ABD = \angle ADB = \angle CDP = \angle CPD$ 이다.

#### 풀이과정



 $\overline{DH} = \overline{PH}$ 가 되도록  $\overline{AH}$ 의 연장선에 점 P를 잡으면  $\Delta \mathit{CPH}$ 에서  $\overline{CH}$ 는 공통,  $\overline{DH} = \overline{PH}$ ,  $\Delta \mathit{CDH}$ 와 ∠ *CHD* = ∠ *CHP* = 90 ° 이므로

 $\triangle CDH \equiv \triangle CPH(SAS$ 합동)

 $\therefore \overline{DH} = \overline{PH}$ 

이때  $\triangle ABD$ 와  $\triangle APC$ 에서

 $\angle ADB = \angle CDP = \angle CPD$ ,  $\angle BAD = \angle PAC$ 이므로  $\angle B = \angle ACP$ 이고  $\triangle ABD$ 가  $\angle ADB = \angle B$ 인 이동변 삼각형이므로  $\triangle APC$ 도  $\angle APC = \angle ACP$ 인 이등변삼각 형이다.

즉  $\overline{AC} = \overline{AP} = 15$ 이고

 $\overline{AP} = \overline{AD} + \overline{DP}$ 이므로  $15 = 9 + \overline{DP}$ 

 $\therefore \overline{DP} = 6$ 

 $\overline{DH} = \overline{PH} = \frac{1}{2}\overline{DP} = 3$ 

 $\therefore \overline{AH} = \overline{AD} + \overline{DH} = 12$ 

## 6) 정답 (5)

#### 1등급 공략 Tip

직각삼각형의 합동 조건을 고려한다.

#### 문제 분석



주의 점A는 점D, 점B는 점E, 점C 는 점F와 대응한다.

그림과 같이  $\angle C = \angle F = 90$   $^{\circ}$ 인 두 직각삼각형 ABC와 DEF가 서로 합동이 될 수 있는 조건을 <보기>에서 모두 고르면?



#### 풀이과정

ㄱ,  $\angle C = \angle F = 90$ °,  $\overline{AB} = \overline{DE}$ ,  $\overline{AC} = \overline{DF}$ 인 경우에는 두 직각삼각형의 한 빗변의 길이와 다른 한 변의 길이가 각 각 같으므로 *RHS*합동이다.

L.  $\angle C = \angle F = 90^{\circ}$ ,  $\overline{AB} = \overline{DE}$ ,  $\overline{BC} = \overline{DF}$ 인 경우에는 두 직각삼각형의 한 빗변의 길이와 다른 한 변의 길이가 각 각 같으므로 *RHS*합동이다.

ㄷ.  $\angle C = \angle F = 90$ °,  $\overline{AC} = \overline{DF}$ ,  $\angle B = \angle E$  인 경우에 는 한 변과 양 끝각의 크기가 같음을 확인할 수 있으므로 ASA합동이다.

ㄹ.  $\angle C = \angle F = 90$ °,  $\overline{AC} = \overline{DF}$ ,  $\angle A = \angle D$ 인 경우에 는 한 변과 양 끝각의 크기가 같음을 확인할 수 있으므로 ASA합동이다.

ㅁ.  $\angle C = \angle F = 90$ °,  $\angle A = \angle D$ ,  $\angle B = \angle E$ 인 경우에 는 삼각형의 세 내각의 크기가 같은 경우로 합동조건에 맞 지 않으므로 두 직각삼각형이 합동이라고 할 수 없다.



## 7) 정답 ④

#### 1등급 공략 Tip

접은 종이를 폈을 때, 합동인 삼각형을 찾는다.

#### 그림 분석



 $\mbox{$ \downarrow$}$  접은 종이를 폈을 때,  $\triangle AH'D = \triangle AHD$  ( RHA 합동),  $\triangle ADB = \triangle AD'B$  ( RHA 합동)이다.

#### THE 깊은 해설



 $\Delta AH'D$ 와  $\Delta AHD$ 에서  $\overline{AD}$ 는 공통,  $\angle H' = \angle AHD = 90 ^\circ , \ \angle H'AD = \angle HAD ($ 접은각) 이므로  $\Delta AH'D \equiv \Delta AHD (RHA$ 합동)이다.  $\Delta DBC$ 와  $\Delta DBH$ 에서

 $\angle C = \angle DHB = 90^{\circ} \cdots \bigcirc$ 

 $\angle D = \angle ADH + \angle HDB = 90^\circ$ 

*DB*는 공통… ⓒ, ∠*ADH*+∠*HDB*=90°

 $\angle ADH' + \angle CDB = 90^{\circ}$ 

이때  $\angle ADH = \angle ADH'$  이므로

 $\angle HDB = \angle CDB \cdots \bigcirc$ 

③, ②, ©에서  $\triangle DBC \equiv \triangle DBH(RHA$ 합동)이다.

 $\triangle AH'D \equiv \triangle AHD$ 에서  $\overline{H'D} = \overline{HD}$ ,

 $\Delta DBC \equiv \Delta DBH$ 에서  $\overline{HD} = \overline{CD}$ 이므로

 $\overline{H'D} = \overline{CD}$ 

즉 점 D는  $\overline{H'C}$ 의 중점이므로

$$\triangle AH'D = \triangle ADC = \frac{1}{2} \triangle AH'C$$
$$= \frac{1}{4} \Box AD'CH' = 60$$

 $\c \downarrow$  직사각형 모양의 종이 넓이가 240이므로  $\square AD'CH' = 240$ 이다

 $\Delta DBC = \Delta DBH = a$ 라 하면

 $\triangle ADB = \triangle AD'B = \triangle AHD + \triangle DBH$ 

=60 + a

직사각형 모양의 종이의 넓이가 240이므로

 $240 = \triangle AH'D + \triangle ADB + \triangle AD'B + \triangle DBC$ 

=60+(60+a)+(60+a)+a

=180+3a

즉 240 = 180 + 3a이므로 a = 20

따라서  $\square ABCD = \triangle ADB + \triangle DBC$ 

=(60+20)+20

=100

## 8) 정답 ③

## 1등급 공략 Tip

삼각형의 내심과 외심의 성질을 이용하여 주어진 각을 구할 수 있다.

#### 문제 분석

삼각형 ABC가 주어져 있다. 점 O는  $\triangle ABC$ 의 외심이고

단서  $\triangle AOC$ ,  $\triangle AOB$ ,  $\triangle BOC$ 는 이등변삼각형이다.

점 I는  $\triangle ABC$ 의 내심이다.

다서 각 꼭짓점에서 내심에 이은 선분에 의해 각 꼭짓점은 이등분된다.

 $\angle ABC = 58$ °,  $\angle ACB = 42$ °,  $\angle OCB = 10$ °이다.

이때, ∠IAO의 크기를 구하면?



#### 풀이과정

 $\angle BAC = 180^{\circ} - (58^{\circ} + 42^{\circ}) = 80^{\circ}$ 

$$\angle IAC = \frac{1}{2} \angle BAC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

 $\angle ACO = 42\degree - 10\degree = 32\degree$ 

 $\overline{OA} = \overline{OC}$ 이므로  $\angle OAC = \angle OCA = 32\,^\circ$ 

 $\therefore$   $\angle$  IAO=40  $^{\circ}$  -32  $^{\circ}$  =8  $^{\circ}$ 

## 9) 정답 ④

## 1등급 공략 Tip

삼각형 외심의 중심각은 꼭지각의 두 배라는 성질을 활용한다.

#### 문제 분석

그림에서 점 O는 삼각형 ABC의 외심이다.  $\overline{AC}$ =  $14\,\mathrm{cm}$ ,  $\triangle B = 45\,^{\circ}$ 일 때,  $\triangle AOC$ 의 외접원의 넓이는?

다시 ∠AOC=2∠B=90°

단서

 $\Delta AOC$ 는  $\overline{AO}=\overline{CO}$ 인 직각이등 변삼각형이다.



## 풀이과정

 $\angle AOC = 2 \angle B = 2 \times 45^{\circ} = 90^{\circ}$ 

 $\triangle AOC$ 는 직각삼각형이고

외접원의 중심은 빗변의 중점이므로

외접원의 반지름의 길이는  $\frac{1}{2} \times 14 = 7 \text{ (cm)}$ 

따라서 외접원의 넓이는  $\pi \times 7^2 = 49\pi \, (\text{cm}^2)$ 





10) 정답 ①

#### 1등급 공략 Tip

삼각형의 외심은 삼각형 세 변 수직이등분선의 교점이다.

↳ 수막새가 원의 일부일 때, 수막새 위에 세 점으로 만든 삼각형의 외심이 수막새를 이루는 원의 중심과 같다.

주어진 얼굴무늬 수막새를 이루는 원의 중심을 정하는 방법 을 생각해보자. 중심의 위치를 찾으려면 어떤 작도를 사용해 야 하는지 <보기>에서 찾아 이름과 바르게 짝지은 것을 구 하시오.



## 풀이과정

얼굴 속에 남아 있는 원의 둘레 위에 세 점을 잡고 삼각형을 만든다. 이때 삼각형의 외심을 이용하여 원의 중심을 정하고 삼각형의 외심은 세 변의 수직이등분선의 교점이므로 보기의 (ㄱ)과 같다.

## 11) 정답 ①

## 1등급 공략 Tip

내심의 성질을 고려해 합동인 삼각형을 찾는다.

#### 문제 분석



단서 점 I가  $\triangle ABC$ 의 내심이므로  $\overline{IE} = \overline{ID}$ 이다.

그림에서 점 I는  $\triangle ABC$ 의 내심이다. 점 I에서 선분 AC, 선분 BC에 내린 수선의 발을 각각 D, E라고 하자.  $\overline{DI}=a$ ,  $\overline{IF}=b$ ,  $\overline{FD}=c$ 이고  $\overline{IF}//\overline{BC}$ 일 때, 사다리꼴

단서  $\angle FCI = \angle ECI = \angle FIC$ 

 $I\!ECF$ 의 넓이를 a, b, c로 나타내면?



#### 단계별 풀이 전략



## **○** CF 를 문자로 표현하기

내심의 성질에 의해  $\angle BCI = \angle ACI$  $\overline{IF}//\overline{BC}$ 이므로  $\angle FIC = \angle BCI()$  연각) 즉,  $\angle FIC = \angle FCI$ 이므로  $\overline{IF} = \overline{CF} = b$ 

❷ 사다리꼴 IECF 넓이를 a, b, c로 표현하기

또, 내심의 정의에 의해  $\overline{CD} = \overline{CE} = b + c$ ,  $\overline{ID} = \overline{IE} = a$ 따라서 사다리꼴 IECF의 넓이는  $\frac{1}{2} \times (b+b+c) \times a = \frac{1}{2}a(2b+c)$ 





12) 정답 ③

## 1등급 공략 Tip

원과 접선의 성질을 고려한다.

#### 문제 분석

 $\angle$  C =  $90\,^{\circ}$  인  $\triangle ABC$ 의 세 변 AB,BC,CA의 길이를

단서 원과 접선의 성질에 의해  $\overline{CF} = \overline{CG}$ 이다.

각각 c,a,b 라 하자. 또,  $\triangle ABC$ 에 내접하는 원이  $\overline{BC},\overline{CA}$ 에 접하는 점을 각각 F,G 라 하고, 내접원의 호 FG 위에 F,G 가 아닌 점 H 에서 원에 그은 접선이  $\overline{BC},\overline{CA}$ 와 만나는 점을 각각 D,E라 하자.

단서 원과 접선의 성질에 의해  $\overline{FD} = \overline{DH}$ ,  $\overline{EH} = \overline{GE}$ 이다.

 $a+b+c=rac{1}{2}ab$ 라 할 때,  $\Delta DEC$ 의 둘레의 길이는?



## 풀이과정

 $\overline{\mathit{IF}} = \overline{\mathit{IG}} = r$ 라 하면

$$\Delta ABC \!=\! \frac{1}{2}ab \!=\! \frac{1}{2}r(a\!+\!b\!+\!c) \quad \therefore r \!=\! 2$$

한편.  $\overline{DF} = \overline{DH}$ .  $\overline{EH} = \overline{EG}$ 이므로

 $\Delta DEC$ 의 둘레의 길이는

 $\overline{CD}$ +  $\overline{DH}$ +  $\overline{EH}$ +  $\overline{CE}$ =  $\overline{CD}$ +  $\overline{DF}$ +  $\overline{EG}$ +  $\overline{CE}$ =  $\overline{CF}$ +  $\overline{CG}$ = 2 + 2 = 4 13) 정답 ④

## 1등급 공략 Tip

보조선  $\overline{BI}$ ,  $\overline{CI}$ 를 그려 길이가 같은 선분을 찾는다.

## 그림 분석



삼각형 내심의 성질,  $\overline{DE}/|\overline{BC}$ 에 의해  $\angle DBI = \angle CBI = \angle DIB$ ,  $\angle ECI = \angle BCI = \angle EIC$ 이다.

## 단계별 풀이 전략

#### $\mathbf{0}$ $\overline{DE}$ 구하기

 $\angle BCI = \angle ACI$ (내심의 성질)

 $\overline{DE}//\overline{BC}$ 이므로  $\angle BCI = \angle EIC$ (엇각)

 $\therefore \angle ECI = \angle EIC$ 

 $\stackrel{\triangle}{=}$ ,  $\overline{EI} = \overline{EC} = 10 \text{cm}$ 

같은 이유로  $\overline{DI} = \overline{DB} = 8$ cm

 $\therefore \overline{DE} = \overline{DI} + \overline{IE} = 18$ cm

## $\mathbf{2}$ $\overline{AG}$ 구하기

원 P와  $\overline{DE}$ 의 접점을 H라 하자.

 $\overline{AG} = x_{\text{cm}}$ 라 하면  $\overline{AF} = \overline{AG} = x_{\text{cm}}$ ,

 $\overline{DH} = \overline{DF} = (24 - x)_{\text{cm}}$ ,  $\overline{EH} = \overline{EG} = (30 - x)_{\text{cm}}$ 

 $\overline{DE} = \overline{DH} + \overline{EH} = (24 - x) + (30 - x) = 18, \ 2x = 36$ 

 $\therefore x = 18 \text{ (cm)}$ 

14) 정답 ⑤

## 1등급 공략 Tip

직각삼각형 외심, 내심, 합동 성질을 고려한다.

#### 문제 분석

다음은 직각삼각형에 대한 설명이다. 옳은 것은?

- ① 빗변의 길이가 같은 직각삼각형은 합동이다.
  - ↑ 삼각형 외심은 삼각형 세 변의 수직이등분선의 교점이다.
- ② 직각삼각형의 외심은 삼각형의 외부에 있다.

↑ 삼각형 내심은 삼각형 세 각의 이동분선의 교점이다.

- ③ 직각삼각형의 내심은 빗변의 중점 위에 있다.
- ④ 두 변의 길이가 같은 두 직각삼각형은 합동이다.
- ⑤ 빗변의 길이가 같고 다른 한 변의 길이가  $10\,\mathrm{cm}\,\mathrm{O}$  두 직각삼 각형은 합동이다.

#### 풀이과정

- ① 빗변의 길이가 같고 다른 한 변의 길이가 같거나 한 예각의 크기가 같은 직각삼각형은 합동이다.
- ② 직각삼각형의 외심은 빗변의 중점에 있다.
- ③ 직각삼각형의 내심은 삼각형의 내부에 있다.
- ④ 빗변의 길이와 다른 한 변, 직각을 끼고 있는 두 변의 길이가 같은 두 직각삼각형은 합동이다.

15) 정답 ⑤

## 1등급 공략 Tip

삼각형 외심과 내심 성질을 고려한다.

#### 문제 분석

단서 직각삼각형의 외심만 삼각형 변(빗변) 위에 있다.

변 BC위의 점 O는  $\triangle ABC$ 의 외심이고, 점 I는  $\triangle AOB$ 의 내심이며, 점 O'은  $\triangle AOC$ 의 외심이다.

단서  $\angle BAO + \angle BOA = 2 \times (\angle IAO + \angle IOA)$ 

 $\angle AIO = 123$  °일 때,  $\angle IAO$ '의 크기는?



#### 단계별 풀이 전략

## **①** ∠*ABO* 구하기

 $\triangle ABO$ 에서 점 I는 내심이므로

$$\angle AIO = 90^{\circ} + \frac{1}{2} \angle ABO$$

 $\stackrel{\sim}{\neg}$ ,  $\angle ABO = (123^{\circ} - 90^{\circ}) \times 2 = 66^{\circ}$ 

## **2** ∠ OAI, ∠ OAC, ∠ O'AC 구하기

점 O는  $\triangle ABC$ 의 외심이고  $\overline{BC}$  위에 있으므로  $\triangle ABC$ 는  $\angle BAC$ =  $90\,^{\circ}$ 인 직각삼각형이다.

삼각형 세 꼭짓점에서 외심까지 거리는 같으므로  $\overline{AO} = \overline{BO} = \overline{CO}$ 이다.

 $\overline{AO} = \overline{BO}$ 이므로  $\angle OAB = \angle ABO = 66^{\circ}$ 

$$\angle OAI = \angle BAI = \frac{1}{2} \angle OAB = \frac{1}{2} \times 66^{\circ} = 33^{\circ}$$

 $\angle AOC = 2 \angle ABO = 2 \times 66^{\circ} = 132^{\circ}$ 

$$\overline{OA} = \overline{OC}$$
이므로  $\angle OAC = \frac{180\ ^{\circ} - 132\ ^{\circ}}{2} = 24\ ^{\circ}$ 

또, O은  $\triangle AOC$ 의 외심이므로  $\angle AOC$ 의 각 중 큰 각의 크기는  $2\angle AOC$ = $2\times132\,^{\circ}=264\,^{\circ}$ 

작은 각의 크기는  $360\,^{\circ}-264\,^{\circ}=96\,^{\circ}$ 

$$\overline{\textit{OA}} = \overline{\textit{OC}}$$
이므로  $\angle \textit{OAC} = \frac{180\,^{\circ} - 96\,^{\circ}}{2} = 42\,^{\circ}$ 

#### **❸** ∠*IAO*′ 구하기

$$\therefore \angle IAO' = \angle OAI + \angle OAC + \angle O'AC$$
$$= 33^{\circ} + 24^{\circ} + 42^{\circ} = 99^{\circ}$$



