Spazi vettoriali

Andrea Canale

December 14, 2024

Contents

1	Gruppo	1
	1.1 Esempi	2
2	Campo	2
3	Spazi vettoriali	2
4	Lo spazio euclideo	3
	4.1 Somma tra vettori	3
	4.2 Prodotto scalare	3
5	Spazio dei polinomi	3
6	Sottospazio vettoriale	3

1 Gruppo

Un gruppo è un insieme G dotato di 2 operazione binaria identificate come * tale che

$$GxG \to G$$

Un gruppo deve soddisfare le seguenti proprietà:

- Esistenza di un elemento neutro per l'operazione binaria $e \in G$ tale che $e \cdot g = g$
- Vale la proprietà associativa: (a*b)*c = a*(b*c)
- Per ogni elemento di G, esiste un inverso a^{-1} tale che $a*a^{-1}=a^{-1}*a=e$

Inoltre, se vale la proprietà commutativa, il gruppo si dice abeliano o commutativo.

1.1 Esempi

```
(\mathbb{Z},+),(\mathbb{C},+) sono gruppi abeliani (\mathbb{Z},\cdot),(\mathbb{C},\cdot) non sono gruppi abeliani in quanto manca l'inverso a 0 Se togliamo 0, otteniamo gruppi abeliani (\mathbb{Z}\setminus\{0\},\cdot),(\mathbb{R}\setminus\{0\},\cdot)
```

2 Campo

Un campo è un insieme $\mathbb K$ con 2 operazioni + e · tale che

- L'addizione (\mathbb{K} , +) è un gruppo abeliano con elemento neutro 0_k (non è necessariamente 0)
- $(\mathbb{K}\setminus\{0\},\cdot)$ è un gruppo abeliano con elemento neutro 1_k (non è necessariamente 1)
- Vale la proprietà distributiva: $a \cdot (b+c) = a \cdot b + a \cdot c$

3 Spazi vettoriali

Dato un campo K, gli elementi di K sono detti scalari.

Uno spazio vettoriale di K è un insieme V di elementi, detti vettori, dotato di due operazioni:

- Somma di vettori, indicata con +
- Prodotto scalare, che associa $v \in V$ ad uno scalare $\lambda \in \mathbb{K}$ tale che $\lambda v \in V$

Gli spazi vettoriali devono soddisfare le seguenti proprietà:

- (V, +) è un gruppo abeliano
- Vale la proprietà distributiva: $\lambda (v + w) = \lambda v + \lambda w$
- Vale la proprietà associativa: $(\lambda + u) v = \lambda u + \lambda v$
- Vale la proprietà commutativa: $(\lambda u) v = \lambda (uv)$
- Esiste un elemento neutro della moltiplicazione
- Esiste un elemento neutro per l'addizione che è l'origine dello spazio

4 Lo spazio euclideo

Lo spazio euclideo di dimensione n è uno spazio che contiene tutte le n-uple dei numeri reali ed identificato dall'insieme \mathbb{R}^n .

$$\mathbb{R}^n = \mathbb{R}x\mathbb{R}x...x\mathbb{R}$$

Lo spazio euclideo è fornito di due operazioni:

- Somma tra vettori
- Prodotto scalare

4.1 Somma tra vettori

Definita come la somma riga per riga

$$x + y = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

4.2 Prodotto scalare

Dato un vettore e uno scalare $\lambda \in \mathbb{R}$, il prodotto scalare è definito come la moltiplicazione dello scalare per ogni elemento del vettore.

$$\lambda \cdot x = \begin{pmatrix} x_1 \cdot \lambda \\ \vdots \\ x_n \cdot \lambda \end{pmatrix}$$

5 Spazio dei polinomi

Lo spazio $\mathbb{K}[x]$ contiene i polinomi con coefficiente in \mathbb{K} di grado inferiore o uguale a x.

6 Sottospazio vettoriale

Sia V uno spazio vettoriale su un campo \mathbb{K} , un sottospazio W di V è un sottoinsieme di uno spazio che soddisfa 3 assiomi:

- \bullet L'origine 0_v deve essere contenuta in W, quindi un sottospazio avrà almeno sempre un elemento e avrà sempre l'elemento neutro dell'addizione
- Se $v, v' \in W$ allora $v + v' \in W$

• Se $v \in W$ e $\lambda \in \mathbb{K}$, allora $\lambda v \in W$

Ogni spazio vettoriale ha almeno 2 sottospazi:

- $\bullet\,$ Il sottospazio banale W=0, l'origine
- $\bullet\,$ Il sottospazio totale W=V, formato da tutti i vettori di V

Chiaramente ci possono anche essere altri sottospazi.