

### Licenciatura em Engenharia Electrotécnica e de Computadores (LEEC)

#### ALGORITMOS E ESTRUTURAS DE DADOS AULA DE LABORATÓRIO #06 - GRAFOS

# Objectivos

Neste laboratório abordam-se os tópicos da representação e manipulação de grafos representados por listas de adjacências.

## Plano da Aula

A tabela abaixo mostra um exemplo de duas representações de um grafo. Este grafo é ponderado e não direccionado, com V=6 vértices e E=5 arestas; tem densidade 2E/V=1.666... e grau máximo 3. Os vários formatos são especificados em mais detalhe no texto das questões.

| Vector de arestas | Lista de adjacências |
|-------------------|----------------------|
| 6 5               | 6                    |
| 0 1 2             | 1:2 2:1 3:3 -1       |
| 0 2 1             | 0:2 -1               |
| 0 3 3             | 0:1 3:4 4:5 -1       |
| 2 3 4             | 0:3 2:4 -1           |
| 2 4 5             | 2:5 -1               |
|                   | -1                   |
| grafo6.edge       | grafo6.ladj          |

Neste problema pretende-se fazer uso da representação de grafos em lista de adjacências. Complete o código do programa ev2el de forma a ler de um ficheiro do tipo .edge, como especificado acima, as arestas de um grafo não direccionado, ponderado, a implementar as seguintes tarefas:

- 1. Constrói, a partir dos dados lidos, uma estrutura de dados que representa o grafo, usando a representação em lista de adjacências.
- 2. Escreve um ficheiro de saída, com a extensão ladj,

### <nome\_grafo>.ladj

com uma representação em texto da lista de adjacências. A primeira linha especifica o número de vértices do grafo; cada linha seguinte diz respeito a um vértice, por ordem, e indica a sua lista de vértices adjacentes. Para cada adjacência são dados o vértice e o peso da aresta, unidos por ':'. A linha termina com -1. Quando um vértice é isolado, a sua linha existe para manter a ordenação, mas contém apenas -1 (ver exemplo na figura acima).

- 3. Calcula, percorrendo a representação em lista de adjacências do grafo, o grau de cada nó e a densidade média do grafo, escrevendo esses valores para *stdout*.
- 4. Dado um nó de partida, lido de *stdin*, faz um varrimento em largura (BFS *Breadth First Search* do grafo imprimindo todos os nós de acordo com a sua distância (medida em número de arestas) ao nó inicial.

Nos ficheiros LinkedList.h e LinkedList.c encontram-se definidos os protótipos para manipulação de uma lista simplemente ligada de Items e as suas implementações, respectivamente, que deverá usar no seu programa. O tipo Item é definido no ficheiro defs.h. Da mesma forma nos ficheiros queue.h e queue.c encontram-se definidos os protótipos para implementação de uma fila simples (sem prioridades!) de Items e as suas implementações, respectivamente, que deverá usar no seu programa.

O programa, depois de completado, deve ser invocado com o comando

ev2el <nome\_grafo>.edge