# **Task: Task: Customer Preference Analysis**

Level 3: Task 2

#### Task:

Analyze the relationship between the type of

cuisine and the restaurant's rating.

• Identify the most popular cuisines among

customers based on the number of votes.

• Determine if there are any specific cuisines

that tend to receive higher ratings.

## 1. Analyze the relationship between the type of cuisine and the restaurant's rating.

```
In [3]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.simplefilter("ignore")
In [4]: data=pd.read_csv("Dataset1.csv")
data.head(3)
```

Out[4]:

|                     | Restaurant<br>ID | Restaurant<br>Name        | Country<br>Code | City                | Address                                                           | Locality                                             | Locality<br>Verbose                                        | ι  |
|---------------------|------------------|---------------------------|-----------------|---------------------|-------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|----|
| 0                   | 6317637          | Le Petit<br>Souffle       | 162             | Makati City         | Third<br>Floor,<br>Century<br>City<br>Mall,<br>Kalayaan<br>Avenu  | Century City<br>Mall,<br>Poblacion,<br>Makati City   | Century City<br>Mall,<br>Poblacion,<br>Makati City,<br>Mak | 1; |
| 1                   | 6304287          | Izakaya<br>Kikufuji       | 162             | Makati City         | Little<br>Tokyo,<br>2277<br>Chino<br>Roces<br>Avenue,<br>Legaspi  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City,<br>Ma | 17 |
| 2                   | 6300002          | Heat - Edsa<br>Shangri-La | 162             | Mandaluyong<br>City | Edsa<br>Shangri-<br>La, 1<br>Garden<br>Way,<br>Ortigas,<br>Mandal | Edsa Shangri-<br>La, Ortigas,<br>Mandaluyong<br>City | Edsa Shangri-<br>La, Ortigas,<br>Mandaluyong<br>City, Ma   | 1; |
| 3 rows × 21 columns |                  |                           |                 |                     |                                                                   |                                                      |                                                            |    |
| 4                   |                  |                           |                 |                     |                                                                   |                                                      |                                                            | •  |
| df=data.copy()      |                  |                           |                 |                     |                                                                   |                                                      |                                                            |    |

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

| #    | Column                       | Non-Null Count | Dtype   |
|------|------------------------------|----------------|---------|
|      |                              |                |         |
| 0    | Restaurant ID                | 9551 non-null  | int64   |
| 1    | Restaurant Name              | 9551 non-null  | object  |
| 2    | Country Code                 | 9551 non-null  | int64   |
| 3    | City                         | 9551 non-null  | object  |
| 4    | Address                      | 9551 non-null  | object  |
| 5    | Locality                     | 9551 non-null  | object  |
| 6    | Locality Verbose             | 9551 non-null  | object  |
| 7    | Longitude                    | 9551 non-null  | float64 |
| 8    | Latitude                     | 9551 non-null  | float64 |
| 9    | Cuisines                     | 9542 non-null  | object  |
| 10   | Average Cost for two         | 9551 non-null  | int64   |
| 11   | Currency                     | 9551 non-null  | object  |
| 12   | Has Table booking            | 9551 non-null  | object  |
| 13   | Has Online delivery          | 9551 non-null  | object  |
| 14   | Is delivering now            | 9551 non-null  | object  |
| 15   | Switch to order menu         | 9551 non-null  | object  |
| 16   | Price range                  | 9551 non-null  | int64   |
| 17   | Aggregate rating             | 9551 non-null  | float64 |
| 18   | Rating color                 | 9551 non-null  | object  |
| 19   | Rating text                  | 9551 non-null  | object  |
| 20   | Votes                        | 9551 non-null  | int64   |
| d+vn | $as \cdot float64(3) int64($ | 5) object(13)  |         |

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

In [11]: df.describe()

| _   |    | F - |   | 7 |
|-----|----|-----|---|---|
| Λı  | 11 | Γ1  | 1 | 0 |
| IJι |    |     |   |   |

|             | Restaurant<br>ID | Country<br>Code | Longitude   | Latitude    | Average Cost for two | Price range |   |
|-------------|------------------|-----------------|-------------|-------------|----------------------|-------------|---|
| count       | 9.551000e+03     | 9551.000000     | 9551.000000 | 9551.000000 | 9551.000000          | 9551.000000 | 9 |
| mean        | 9.051128e+06     | 18.365616       | 64.126574   | 25.854381   | 1199.210763          | 1.804837    |   |
| std         | 8.791521e+06     | 56.750546       | 41.467058   | 11.007935   | 16121.183073         | 0.905609    |   |
| min         | 5.300000e+01     | 1.000000        | -157.948486 | -41.330428  | 0.000000             | 1.000000    |   |
| 25%         | 3.019625e+05     | 1.000000        | 77.081343   | 28.478713   | 250.000000           | 1.000000    |   |
| 50%         | 6.004089e+06     | 1.000000        | 77.191964   | 28.570469   | 400.000000           | 2.000000    |   |
| <b>75</b> % | 1.835229e+07     | 1.000000        | 77.282006   | 28.642758   | 700.000000           | 2.000000    |   |
| max         | 1.850065e+07     | 216.000000      | 174.832089  | 55.976980   | 800000.000000        | 4.000000    |   |
| 4           |                  |                 |             |             |                      | <b>&gt;</b> | • |

In [17]: df.isnull().sum()

```
Out[17]: Restaurant ID
         Restaurant Name
                                  0
         Country Code
         City
                                  0
         Address
                                  0
          Locality
          Locality Verbose
         Longitude
                                  0
         Latitude
                                  0
         Cuisines
                                  9
         Average Cost for two
                                  0
         Currency
                                  0
         Has Table booking
         Has Online delivery
         Is delivering now
                                  0
         Switch to order menu
                                  0
         Price range
                                  0
         Aggregate rating
                                  0
          Rating color
          Rating text
                                  0
         Votes
         dtype: int64
In [21]: df.duplicated().sum()
Out[21]: 0
In [23]: # Standardize cuisines (if needed)
         df['Cuisines'] = df['Cuisines'].str.split(', ').str[0] # Consider only the primary
```

## Group the data by the type of cuisine and compute metrics like the average rating and count of restaurants.

```
In [26]: # Group by cuisines
    cuisine_rating = df.groupby('Cuisines')['Aggregate rating'].agg(['mean', 'count']).
    # Sort by average rating
    cuisine_rating = cuisine_rating.sort_values(by='mean', ascending=False)
    print(cuisine_rating)
```

```
Cuisines
                         mean count
106
              Sunda 4.900000
                                   3
96
           Scottish 4.700000
                                   1
24
              Cajun 4.700000
                                   1
108
          Taiwanese 4.650000
                                   2
37
           Filipino 4.616667
                                   6
                . . .
. .
                          . . .
110
                Tea 1.541176
                                  17
76
           Nepalese 1.000000
                                   4
10
             Awadhi 0.760000
                                   5
            Afghani 0.414286
                                   7
0
32
     Cuisine Varies 0.000000
                                   1
```

[119 rows x 3 columns]

#### Visualisation

```
In [33]: # Show top 10 cuisines by average rating
top_cuisines = cuisine_rating.nlargest(10, 'mean')

# Show bottom 10 cuisines by average rating
bottom_cuisines = cuisine_rating.nsmallest(10, 'mean')

# Plot top cuisines
plt.figure(figsize=(8, 5))
sns.barplot(x='mean', y='Cuisines', data=top_cuisines, palette='viridis')
plt.title('Top 10 Cuisines by Average Rating')
plt.xlabel('Average Rating')
plt.ylabel('Cuisine')
plt.show()
```



Based on the Average rating Sunda is the top Cuisine.

### 2.Identify the most popular cuisines among customers based on the number of votes.

```
In [41]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Group by 'Cuisines' and sum the votes
         popular_cuisines = df.groupby('Cuisines')['Votes'].sum().reset_index()
         # Sort the cuisines by the total votes in descending order
         popular_cuisines = popular_cuisines.sort_values(by='Votes', ascending=False)
         # Display the top 10 cuisines with the highest votes
         top_cuisines = popular_cuisines.head(10)
         print(top_cuisines)
               Cuisines Votes
       79 North Indian 356684
       23
                   Cafe 116576
       2
               American 105447
       54
                Italian 95153
       30 Continental 94569
       27
               Chinese 84918
       35
              European 45842
       36
              Fast Food 42617
                 Bakery 42008
       12
       87
                  Pizza 36415
In [43]: # Plot the top 10 cuisines based on votes
         plt.figure(figsize=(10, 6))
         sns.barplot(data=top_cuisines, x='Votes', y='Cuisines', palette='viridis')
         plt.title('Top 10 Most Popular Cuisines by Number of Votes')
         plt.xlabel('Number of Votes')
         plt.ylabel('Cuisines')
         plt.show()
```



Based on the number of votes North Indian Cuisines is the best.

## 3. Determine if there are any specific cuisines that tend to receive higher ratings.

```
In [50]: # Group by 'Cuisines' and calculate the average rating
         cuisine ratings = df.groupby('Cuisines')['Aggregate rating'].mean().reset index()
         # Sort cuisines by average rating in descending order
         cuisine_ratings = cuisine_ratings.sort_values(by='Aggregate rating', ascending=Fals
         # Display the top 10 cuisines with the highest average ratings
         top_rated_cuisines = cuisine_ratings.head(10)
         # Plot the top 10 cuisines by average rating
         plt.figure(figsize=(10, 6))
         sns.barplot(data=top_rated_cuisines, x='Aggregate rating', y='Cuisines', palette='v
         plt.title('Top 10 Cuisines by Average Rating')
         plt.xlabel('Average Rating')
         plt.ylabel('Cuisines')
         plt.show()
         # Display the bottom 10 cuisines with the lowest average ratings
         low_rated_cuisines = cuisine_ratings.tail(10)
         # Plot the bottom 10 cuisines by average rating
         plt.figure(figsize=(10, 6))
         sns.barplot(data=low_rated_cuisines, x='Aggregate rating', y='Cuisines', palette='c
         plt.title('Bottom 10 Cuisines by Average Rating')
         plt.xlabel('Average Rating')
         plt.ylabel('Cuisines')
         plt.show()
```



#### Insights to Look For

Top-Rated Cuisines: Cuisines with the highest average ratings indicate customer satisfaction or premium quality.

Low-Rated Cuisines: Cuisines with consistently low ratings may highlight areas for improvement in quality or service.

Comparison with Popularity: Compare the average ratings with the number of votes to determine if high-rated cuisines are also the most popular.

Tn [ ]