Complex Analysis: Midterm Theorems

Author: Shun (@shun4midx)

Remark

I only will include theorems that are useful for me, i.e. things that I still find useful, or whose proofs I'm shaky on, after learning this course for 7 weeks. Otherwise, there will be too many theorems. For me, my dyslexic brain is only able to memorize something if I rewrite it because I can't really read, why I have to retype this many proofs.

Power Series

Analytic Polynomial

Proposition

A polynomial P(x, y) is **analytic** $\Leftrightarrow P_y = iP_x$

Proof. " \Rightarrow ": By def, $\exists \alpha_k \in \mathbb{C}, \ N \in \mathbb{N}$, s.t. $P(x,y) = \sum_{k=0}^N \alpha_k (x+iy)^k$. Then, $P_y = \sum_{k=1}^N k\alpha_k (x+iy)^{k-1}i$, $P_x = \sum_{k=1}^N k\alpha_k (x+iy)^{k-1}$, so $P_y = iP_x$.

" \Leftarrow ": We can rewrite $P(x,y) = \sum_{k=0}^{N} Q^k(x,y)$, where we have polynomials in the form $Q^k(x,y) = c_0 x^k + c_1 x^{k-1} y + \cdots + c_k y^k$.

From assumption, $Q_y^k = iQ_x^k \ \forall \ k$. Hence, $\sum_{p=1}^k pc_p x^{k-p} y^{p-1} = \sum_{p=0}^{k-1} (k-p)c_p x^{k-p-1} y^p i$

- p = 1: $1c_1 = ikc_0 \Rightarrow c_1 = \binom{k}{0}c_0$
- p = 2: $2c_2 = (k-1)c_1i \Rightarrow c_2 = i^2 \frac{k(k-1)}{2}c_0$
- For any p>1, $pc_p=(k-p+1)c_{p-1}i\Rightarrow c_p=i^p\binom{k}{p}c_0$

Hence, $Q^k = \sum_{p=0}^k i^p {k \choose p} c_0 x^{k-p} y^p = c_0 (x+iy)^k \ \forall k$, so P is **analytic**.

Radius of Convergence

Theorem

Given the power series $\sum_{k=0}^{\infty} c_k z^k = f(z)$, define $L := \limsup_{k \to \infty} |c_k|^{\frac{1}{k}}$, then we have:

- 1. $L = 0 \Rightarrow P(z)$ converges $\forall z \in \mathbb{C}$
- 2. $L = \infty \Rightarrow P(z)$ converges only at z = 0
- 3. $0 < L < \infty \Rightarrow P(z)$ converges on $|z| < \frac{1}{L}$ and diverges on $|z| > \frac{1}{L}$

Proof. We consider the three cases separately.

- 1. Hence, given any $z \in \mathbb{C}$, $\limsup_{k \to \infty} |c_k|^{\frac{1}{k}} = 0$. By def, take $\varepsilon = \frac{1}{2}$, $\exists N$, s.t. $k > N \Rightarrow |c_k|^{\frac{1}{k}}|z| < \frac{1}{2} \Rightarrow \sum |c_k z^k| = \sum (|c_k|^{\frac{1}{k}}|z|)^k < \sum (\frac{1}{2})^k = 1$
- 2. Consider small $|z|, \forall N \in \mathbb{N}, \exists k > N, \text{ s.t. } |c_k|^{\frac{1}{k}} > \frac{1}{|z|} \Rightarrow |c_k z^k| > 1$, so P(z) only converges when z = 0
- 3. Take $R=\frac{1}{L}, \ |z|=R(1-\delta)$, i.e. $1>\delta>0$ when $|z|<\frac{1}{L}$. Then, $\forall \ \varepsilon>0, \exists N\in\mathbb{N},\ n>N,$ s.t. $|z|(L-\varepsilon)\leq |z|\sup_{k\geq n}|c_k|^{\frac{1}{k}}\leq |z|(\varepsilon+L)|<1+\varepsilon R(1-\delta)-\delta<1-\frac{\delta}{2},$ so it is **abs conv**

If |z| > R, $\limsup |c_k|^{\frac{1}{k}}|z| > 1 \Rightarrow$ for inf values of k, $|c_k z^k| > 1 \Rightarrow \sum c_k z^k$ div

Differentiation

Theorem

Given a power series $P(z) = \sum_{k=0}^{\infty} c_k z^k$ with radius of convergence R, then P'(z) exists on |z| < R, $P'(z) = \sum_{k=1}^{\infty} k c_k z^{k-1}$

Proof. For $0 < R < \infty$, let $|z| = R - \delta$, $R \ge \delta > 0$. WLOG, consider $|h| < \frac{\delta}{2}$ and consider $\frac{P(z+h) - P(z)}{h}$

$$\frac{P(z+h)-P(z)}{h} = \frac{1}{h} \sum c_k ((z+h)^k - z^k) = \sum_{k=1}^{\infty} k c_k z^{k-1} + \sum_{k=2}^{\infty} c_k b_k \text{, where } b_k = \sum_{p=2}^k \binom{k}{p} h^{p-1} z^{k-p} \sum_{k=1}^{\infty} k c_k z^{k-1} + \sum_{k=2}^{\infty} c_k b_k \text{, where } b_k = \sum_{p=2}^k \binom{k}{p} h^{p-1} z^{k-p} \sum_{k=1}^{\infty} k c_k z^{k-1} + \sum_{k=2}^{\infty} c_k b_k \text{, where } b_k = \sum_{p=2}^k \binom{k}{p} h^{p-1} z^{k-p} \sum_{k=2}^{\infty} k c_k z^{k-1} + \sum_{k=2}^{\infty} c_k b_k \text{, where } b_k = \sum_{p=2}^k \binom{k}{p} h^{p-1} z^{k-p} \sum_{k=2}^{\infty} k c_k z^{k-1} + \sum_{k=2}^{\infty} c_k b_k \text{, where } b_k = \sum_{p=2}^k \binom{k}{p} h^{p-1} z^{k-p} \sum_{k=2}^{\infty} k c_k z^{k-1} + \sum_{k=2}^{\infty} c_k b_k \text{, where } b_k = \sum_{p=2}^k \binom{k}{p} h^{p-1} z^{k-p} \sum_{k=2}^{\infty} k c_k z^{k-1} + \sum_{k=2}^{\infty} c_k b_k z^{k-1} + \sum_{k=2}^{\infty} c_$$

- If $|z|=0, b_k=h^{k-1} \Rightarrow \sum c_k h^{k-1} < \infty \Rightarrow \sum c_k h^{k-1} \to 0$ as $h \to 0$
- If $|z| \neq 0$, $\binom{k}{p} \leq \binom{k}{p-2}k^2$.

Hence, $|b_k| \leq \frac{|h|}{|z|^2} k^2 \sum_{p=2}^k {k \choose p-2} |h|^{p-2} |z|^{k-(p-2)} \leq \frac{|h|}{|z|^2} k^2 \sum_{j=0}^k {k \choose j} |h|^j |z|^{k-j} = \frac{|h|}{|z|^2} k^2 (|z| + |h|)^k \leq \frac{|h|}{|z|^2} k^2 (R - \frac{\delta}{2})^k$

Thus, $|\sum_{k=2}^{\infty} c_k b_k| \leq \frac{|h|}{|z|^2} k^2 |c_k| (R - \frac{\delta}{2})^k \to 0$

The remaining case is simple for $R = \infty$, we apply the case above and show it holds for any R.

Corollary

Power series are smooth in their domain of convergence

Uniqueness

Theorem

If $\exists \{z_n\}_n \to 0$, and $\sum c_k z_n^k = 0$, then $c_k = 0 \ \forall k$

Proof. As P is **conti**, thus $P(0) = \lim_{n \to \infty} P(z_n) = 0 \Rightarrow c_0 = 0$.

Consider, $g(z) = \frac{f(z)}{z}$ with the same radius of convergence as f(z). Similarly, $g(0) = \lim_{n \to \infty} \frac{f(z_n)}{z_n} = 0 \Rightarrow c_1 = 0$. Note that this can be recusrively applied.

 \therefore By induction on n, $c_n = 0 \ \forall n$.

Corollary

If $\sum a_k z^k$ and $\sum b_k z^k$ agree on $\{z_n\}_n$ as $n \to \infty$, then $a_k = b_k \ \forall k$

Analytic Functions

Proposition

If f = u + iv is differentiable at z, then f_x and f_y exist and satisfy the CR-equation $f_y = if_x$

Proof. By def, f is diff $\Rightarrow \lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$ exists. Along the **real** axis, this limit is $\lim_{\xi\to 0} \frac{f(x+\xi,y)-f(x,y)}{\xi}$

 $=f_x$. Along the **imaginary** axis, this limit is $\lim_{\xi \to 0} \frac{f(x,y+\xi)-f(x,y)}{\xi i} = \frac{f_y}{i}$. Hence, $f_x = \frac{f_y}{i} \Rightarrow f_y = if_x$

Counterexample for f_x and f_y exist at z and $f_y = if_x$, but f is not differentiable

$$f(z) = \begin{cases} \frac{xy(x+iy)}{x^2 + y^2}, & z \neq 0 \quad \text{(i.e. } xy \cdot \frac{z}{|z|})\\ 0, & z = 0 \quad (\Leftrightarrow (x,y) = 0) \end{cases}$$

We notice, both on the **x-axis and y-axis**, we have $f(z) \equiv 0$, hence $f_x(0) = f_y(0) = 0$.

However, along y = ax for $a \neq 0$, we get $f(x, ax) = \frac{a(1+ia)}{1+a^2}x \Rightarrow \lim_{x \to 0} \frac{f(x,ax) - f(0,0)}{x+axi} = \frac{a}{1+a^2} \neq 0$.

Hence, $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$ does not exist, so f is NOT differentiable.

Proposition

Suppose that f_x and f_y exist in a **nbd of z** and are **conti** at z. If f satisfies the CR-eq, then f is **differentiable**.

Proof. Say z = x + iy, $h = \xi + i\eta$, and f(z) = u(z) + iv(z).

Then,
$$\frac{f(z+h)-f(z)}{h} = \frac{[u(x+\xi,y+\eta)-u(x,y)]}{\xi+i\eta} + i\frac{[v(x+\xi,y+\eta)-v(x,y)]}{\xi+i\eta}$$

By MVT with " $-u(x+\xi,y)+u(x+\xi,y)$ " and $-v(x+\xi,y)+v(x+\xi,y)$, this equals: $\frac{\eta}{\xi+i\eta} \big[\frac{u(x+\xi,y+\eta)-u(x+\xi,y)}{\eta}+i\frac{v(x+\xi,y+\eta)-v(x+\xi,y)}{\eta}\big] + \frac{\xi}{\xi+i\eta} \big[\frac{u(x+\xi,y)-u(x,y)}{\xi}+i\frac{v(x+\xi,y)-v(x,y)}{\eta}\big]$

$$= \frac{\eta}{\xi + i\eta} [u_y(x + \xi, y + \theta_1 \eta) + iv_y(x + \xi, y + \theta_2 \eta)] + \frac{\xi}{\xi + i\eta} [u_x(x + \theta_3 \xi, y) + iv_x(x + \theta_4 \xi, y)]$$

As we know, $0 < \theta_k < 1$, and $\left| \frac{\eta}{\xi + i\eta} \right| = \left| \frac{\Re(h)}{h} \right| \le 1$, $\left| \frac{\xi}{\xi + i\eta} \right| \le 1$.

Claim: $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h} = f_x(z)$

Proof. We know, by CR-eq, $f_x(z) = \frac{\xi}{\xi + i\eta} f_x(z) + \frac{\eta}{\xi + i\eta} f_y(z)$

As
$$f_x$$
 and f_y are conti, $\frac{f(z+h)-f(z)}{h} - f_x(z) = \frac{\eta}{\xi+i\eta}[(u_y(x+\xi,y+\theta_1\eta)-u_y(x,y))+i(v_y(x+\xi,y+\theta_2\eta)-v_y(x,y))] + \frac{\xi}{\xi+i\eta}[(u_x(x+\theta_3\xi,y)-u_x(x,y))+i(v_x(x+\theta_4\xi,y)-v_x(x,y))] \to 0$ as h , i.e. ξ , $\eta \to 0$.

Hence, f is **diffable** and $f'(z) = f_x(z)$

Applications of CR Equation

Regions

Region Implies Connecting Vertical and Horizontal Line Segments

If D is a **region**, then $\forall x, y \in D, \exists$ a curve consisting of horizontal and vertical line segments that connect x and y

Proof. For any $x \in D$, say $U_x := \{y \in D \mid x \text{ connects to } y \text{ via vertical/horizontal line segments that connect}\}$

- 1. " U_x is open": For all $y \in U_x \subseteq D$, as D is open, \exists open disk $B_\delta(y) \subseteq D$. As $\forall a \in B_\delta(y)$, a can be connected to y by vertical/horizontal line segments, thus $x \to y \to a$ can be connected via these line segments, so $B_\delta(y) \subseteq U_x$.
- 2. " $D \setminus U_x$ is open": For $y \in D \setminus U_x$, D is open $\Rightarrow \exists$ open disk $B_{\delta}(y) \subseteq D \Rightarrow B_{\delta}(y) \cap U_x = \emptyset \Rightarrow B_{\delta}(y) \subseteq D \setminus U_x$

Combining (1), (2), and that D is connected, hence we get $D = U_x$.

u is constant implies f is constant

If f = u + iv is **analytic** on a region D and u is constant, then f is constant

Proof. u is constant $\Rightarrow u_x = u_y = 0$. By **CR-eq**, $v_x = v_y = 0$.

As D is a region, thus $\forall a,b \in D$, \exists a horizontal/vertical connected path connecting a and b. Hence, f(a) = f(b) (for all $a, b \in D$), so f is **constant**.

Line Integrals

Smoothly Equivalent Integrals are Equivalent

If
$$C_1 \sim_{sim} C_2$$
, then $\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$.

Proof. We set f(z) = u(z) + iv(z) and z = x(t) + iy(t).

Then, we know $\int_{C_1} f(z)dz = \int_a^b f(z(t))z'(t)dt$ = $\int_a^b [u(z(t))x'(t) - v(z(t))y'(t)]dt + i \int_a^b [u(z(t))y'(t) + v(z(t))x'(t)]dt$

With $\int_c^d u(z(\lambda(t)))x'(\lambda(t))\lambda'(t)dt = \int_a^b u(z(t))x'(t)dt$, substitute it back in and going in the opposite direction, we prove the equation.

Lemma on Modulus of Integral

Let $t \in \mathbb{R}$, G(t) be a continuous complex-valued function. Then, $\left| \int_a^b G(t)dt \right| \leq \int_a^b |G(t)|dt$

Proof. Set $R(t)e^{i\theta}:=\int_a^b G(t)dt$, for some fixed $\theta\in\mathbb{R},\,R\in\mathbb{R}_{\geq 0}$.

Then, $R = |\int_a^b G(t)dt| = \int_a^b e^{-i\theta}G(t)dt = \int_a^b A(t)dt + i\int_a^b B(t)dt$. By comparing like terms, we deduce $R = \int_a^b A(t)dt$. Hence, $R = \int_a^b A(t)dt \le \int_a^b |A(t)|dt \le \int_a^b |e^{-i\theta}G(t)|dt = \int_a^b |G(t)|dt$

ML-Formula

Let C be a **smooth** curve of length L, and f be conti on C and f << M throughout C. Then, $\int_C f(z)dz << ML$

Proof. Let C be z(t)=x(t)+iy(t) for some $t\in [a,b]$. Then, $\int_C f(z)dz=\int_a^b f(z(t))z'(t)dt$.

By the previous lemma, $\int_C f(z)dz << \int_a^b |f(z(t))||z'(t)|dt \le M \int_a^b |z'(t)|dt = ML$ (integrating |z'(t)| was the formula for arc-length)

ML is the Tight Bound

For
$$f(z) = \frac{1}{z}$$
, $C : \cos \theta + i \sin \theta$, then $\int_C f(z) dz = 2\pi i \Rightarrow |\int_C f(z) dz| = 2\pi = ML$

Proposition (Limits)

Suppose $\{f_n\}$ is a sequence of continuous functions and $f_n \to f$ unif on a smooth curve C. Then, $\lim_{n\to\infty} \int_C f_n(z) = \int_C f(z) dz$

Proof. By def, $f_n \to f$ unif on C means "Given $\varepsilon > 0$, $\exists N$, s.t. $\forall n \geq N, |f_n(z) - f(z)| < \varepsilon \ \forall z \in C$ "

Hence,
$$|\int_C f_n(z)dz - \int_C f(z)dz| = |\int_C (f_n - f)(z)dz| < \varepsilon \cdot \text{len}(C) \ \forall n \ge N.$$
 (By ML-formula)

FTC Variant

Let F be an analytic function, f = F'(z) and a smooth curve C: z(t) = x(t) + iy(t), $t \in [a, b]$. Then, $\int_C f(z)dz = F(z(b)) - F(z(a))$

Proof. Let $\gamma(t) := F(z(t)) = A(t) + iB(t)$. As F is analytic, by the chain rule, $\gamma'(t) = F'(z(t))z'(t)$.

Then,
$$\int_C f(z)dz = \int_a^b F'(z(t))z'(t)dt = \int_a^b \gamma'(t)dt = \boxed{\gamma(b) - \gamma(a)}$$

Rectangle Theorem

Lemma

If f is a linear function, i.e. f=a+zb, for $a,b\in\mathbb{C}$, and Γ is the boundary of a rectangle, then $\int_{\Gamma} f(z)dz=0$

Proof. Say $\Gamma: z(t), a=a_0 \le t \le b=a_3$, and $f=F'(z) \Rightarrow F:=\frac{a}{2}z^2+bz$ (since f is an on $\mathbb C$). Hence, we deduce $\int_{\Gamma} f(z)dz = \int_{\Gamma} F'(z)dz = F(z(b)) - F(z(a)) = 0$ (because z(b) = z(a)).

Rectangle Theorem

Let f be an **entire function**, and Γ as above. Then, $\int_{\Gamma} f(z)dz = 0$

Proof. Let $I = \int_{\Gamma} f(z)dz$. Assume $f \neq 0$, otherwise $f = 0 \Rightarrow I = 0$. In this case, we divide R as follows:

Then, $\exists R_i$, s.t. $|\int_{\Gamma_i} f(z)dz| \ge \frac{|I|}{4}$, where Γ_i is the boundary of R_i . Define $R^{(1)}$ to be said R_i . Continuing this process, we get $R^{(1)} \supseteq R^{(2)} \supseteq \dots$ Let $z_0 \in \bigcap_{i=1}^{\infty} R^{(i)}$.

As f is entire, thus f is **analytic** at z_0 . By def, $\forall \varepsilon > 0$, $\exists \delta > 0$, s.t. $|h| < \delta \Rightarrow \left| \frac{f(z_0 + h) - f(z_0)}{h} - f'(z_0) \right| < \varepsilon$. Hence, for some $|\varepsilon(z)| \le \varepsilon$, we can have $|f(z)| = f(z_0) + f'(z_0)(z - z_0) + \varepsilon(z)(z - z_0)$.

Note that $f(z_0) + f'(z_0)(z - z_0)$ is **linear**. Thus, we can choose N s.t. $\forall n \geq N$, we have $|z - z_0| < \delta \Rightarrow \int_{\Gamma^{(n)}} f(z) dz = \int_{\Gamma^{(n)}} \epsilon(z)(z - z_0) dz$.

Let s be the length of the longest side of R. We know $|\Gamma^{(n)}| \leq \frac{4s}{2^n}$ and $|\varepsilon(z)(z-z_0)| < \varepsilon \cdot \frac{\sqrt{2}s}{2^n}$. Thus, by ML formula, $\int_{\Gamma^{(n)}} f(z)dz << \varepsilon \frac{4\sqrt{2}s^2}{4^n}$.

By our assumption, $|\int_{\Gamma^{(n)}} f(z)dz| \geq \frac{|I|}{4^n}$, hence $|I| \leq \varepsilon \cdot 4\sqrt{2}s^2 \ \forall \varepsilon > 0$, hence I=0.

Integral Theorem

If f is entire, then f is everywhere the **derivative of an analytic function**. That is, \exists an entire F s.t. $F'(z) = f(z) \ \forall z$.

Proof. Consider $F(z) = \int_C f(\eta) d\eta$, where $C: 0 \to \Re(z) \to z$.

Now, for $h \in \mathbb{C}$, we have $F(z+h) = \int_{C_1} f(z)dz$ and $F(z) = \int_{C_2} f(z)dz$.

This means, $F(z+h)-F(z)=\int_{C_1}f(\eta)d\eta+\int_{-C_2}f(\eta)d\eta=\int_{C_3}f(\eta)d\eta=\int_{C_4}f(\eta)d\eta$.

As
$$\frac{1}{h}\int_{C_4}dz=1$$
 , thus $(\frac{1}{h}\int_{C_4}f(\eta)d\eta)-f(z)=\left|\frac{1}{h}\int_{C_4}(f(\eta)-f(z))d\eta=\frac{F(z+h)-F(z)}{h}-f(z)\right|$

In other words, by ML-formula, $\frac{F(z+h)-F(z)}{h} << \frac{1}{|h|} \varepsilon \cdot 2|h| \Rightarrow \lim_{h\to 0} \frac{F(z+h)-F(z)}{h} = f(z)$

Corollary

If f is entire and C is a smooth closed curve, then $\int_C f(z)dz = 0$

Rectangle Theorem II

Let f be entire, and

$$g(z) := \begin{cases} \frac{f(z) - f(a)}{z - a}, & z \neq a, \\ f'(a), & z = a, \end{cases}$$
 which is continuous (since f entire $\Rightarrow g$ continuous).

Then, $\int_{\Gamma} g(z)dz = 0$, where Γ is a boundary of a closed rectangle $R \subseteq \mathbb{C}$

Proof. As g is conti, by def, $\exists M \in \mathbb{R}$, s.t. $|g(z)| < M \ \forall z \in \mathbb{R}$

- 1. If $a \in \mathbb{C} \setminus R$, then g(z) is **analytic for all z** $\in \mathbb{R}$. Hence, by the argument of the Rectangle Thm, $\int_{\Gamma} g(z)dz = 0$
- 2. If $a \in \Gamma$, where $\Gamma_i := \text{boundary of } R_i$

0-	24	P.
	L	R ₂
	R6	R3

Then, by case 1, $\int_{\Gamma} g(z)dz = \int_{\Gamma_s} g(z)dz << M \cdot 4\varepsilon$ by the ML-formula, with M indep of ε , where we define ε to be the length of the **longest side** of Γ_s . Hence, as $\varepsilon \to 0$, $\int_{\Gamma} g(z)dz = 0$

3. Otherwise, $a \in \text{interior of } R$. Then we have:

R	P4	Ri
R2	PS	RT
P3	26	Ra

Then, by case 1, $\int_{\Gamma}g(z)dz=\int_{\Gamma_s}g(z)dz<< M\cdot 4\varepsilon\to 0$ as $\varepsilon\to 0$

Cauchy Integral Formula

Lemma

Define $C_{\rho}(\alpha) :=$ circle centered at α with radius ρ , where α may be omitted if there is no amibiguity.

Then,
$$I := \int_{C_{\rho}(\alpha)} \frac{dz}{z-a} = 2\pi i \quad \forall |a-\alpha| < \rho$$

Proof. If $a = \alpha$, then it's clear, since $C_{\rho}(\alpha) = \alpha + \rho e^{i\theta}$, $0 \le \theta 2\pi$.

For
$$a \neq \alpha$$
, we know
$$I = \int_{C_{\rho}(\alpha)} \frac{dz}{(z-\alpha) - (a-\alpha)} = \int_{C_{\rho}(\alpha)} \frac{1}{z-a} \cdot \frac{1}{1 - \frac{a-\alpha}{z-\alpha}} dz$$

Notice, $\forall z \in C_{\rho}(\alpha), \left|\frac{a-\alpha}{z-\alpha}\right| < 1$. Hence, we have unif conv: $(1 - \frac{a-\alpha}{z-\alpha})^{-1} = 1 + (\frac{a-\alpha}{z-\alpha}) + (\frac{a-\alpha}{z-\alpha})^2 + \dots$

Hence, $I = \int_{C_{\rho}\alpha} \frac{1}{z-\alpha} \left(\sum_{k=0}^{\infty} \left(\frac{a-\alpha}{z-\alpha} \right)^k \right) dz = \sum_{k=0}^{\infty} \int_{C_{\rho}(\alpha)} \frac{1}{z-\alpha} \left(\frac{a-\alpha}{z-\alpha} \right)^k dz$.

We now consider $J_k := \int_{C_{\rho}(\alpha)} \frac{1}{(z-\alpha)^k} dz$. When k=1, thus $J_1=2\pi i$. When k>1, $J_k=\int_0^{2\pi} \frac{ie^{i\theta}}{\rho^k e^{ik\theta}} d\theta = \int_0^{2\pi} \frac{i}{\rho^k} e^{i\theta(k-1)} d\theta = 0$. Hence, $I=2\pi i$.

Cauchy Integral Formula

Given an entire $f, a \in \mathbb{C}, C = Re^{i\theta}, 0 \le \theta \le 2\pi$ with a within the unit disc of radius R, then we have $f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz$

Proof. By rectangle thm 2, we know $\int_C g(z)dz = \int_C \frac{f(z)}{z-a} - \frac{f(a)}{z-a}dz = 0$. Thus, $\int_C \frac{f(z)}{z-a}dz = \int_C \frac{f(a)}{z-a}dz = \int_C \frac{f(a)}{z-a$

Taylor Expansion

Taylor Expansion for Entire Function

Given f is an entire function, then $f^{(k)}(0)$ exists $\forall k \in \mathbb{Z}_{>0}$ and $f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^k \ \forall z \in \mathbb{C}$

Proof. Choose $a \in \mathbb{C}$, |a| > |z|, R := |a| + 1. By Cauchy Integral Formula, $f(z) = \frac{1}{2\pi i} \int_{C_R} \frac{1}{1 - \frac{z}{w}} \frac{f(\omega)}{\omega} d\omega$.

As
$$|\frac{z}{\omega}| < \frac{|a|}{1+|a|}$$
, then $f(z) = \sum_{k=0}^{\infty} \int_{C_R} \frac{f(\omega)}{\omega} (\frac{z}{\omega})^k d\omega = \sum_{k=0}^{\infty} z^k \int_{C_R} \frac{f(\omega)}{\omega^{k+1}} d\omega = \sum_{k=0}^{\infty} z^k C_k$.

Notice, as |z|<|a|, then $f'(z)=\sum_{i=1}^\infty iz^{i-1}C_i\Rightarrow f'(0)=C_1$. If we continue this process, thus $f^{(k)}(0)$ exists $\forall k\in\mathbb{N}_{>0}$ and $f(z)=\sum_{k=0}^\infty \frac{f^{(k)}(0)}{k!}z^k$

Corollary

Let f be an entire function with zeros at a_1, \ldots, a_N . Define $g(z) = \frac{f(z)}{(z-a_1)\cdots(z-a_N)}$ for $z \notin \{a_1, \ldots, a_N\}$. Then, $\lim_{z\to a_i} g(z)$ exists $\forall i$. If we define $g(a_i) := \lim_{z\to a_i} g(z)$, then g is **entire**.

Proof. Set $f_0 = f$, and $f_k := \frac{f_{k-1}(z) - f_{k-1}(a_k)}{z - a_k}$. Hence, f_1 is entire. By recurrence, g is entire.

Liouville's Theorem

Liouville's Theorem

Entire bounded functions on \mathbb{C} are **constants**.

Proof. Let $a \in \mathbb{C} \setminus \{0\}$ and consider R > |a|.

Then, by Cauchy Integral Formula, $f(a) - f(0) = \frac{1}{2\pi i} \int_{C_R} \frac{f(z)}{z-a} - \frac{f(z)}{z} dz = \frac{1}{2\pi i} \int_{C_R} \frac{af(z)}{z(z-a)} dz$.

As f is **bounded**, $\exists M \in \mathbb{R}_{>0}$, s.t. $|f(z)| < M \ \forall z \in \mathbb{C}$.

By ML-formula, $|f(a)-f(0)|<\frac{1}{2\pi i}(\frac{M\cdot |a|}{R(R-|a|)}\cdot 2\pi R)\to 0$ as $R\to\infty$. Hence, f(a)=f(0) $\forall a\in\mathbb{C}$.

Extended Liouville's Theorem

Given f is entire. Suppose $|f(z)| < A + B|z|^k$ for some constants $A, B \in \mathbb{R}_0$. Then, f is a polynomial with **degree at most k**

Proof. We consider induction on k. By Louville's Thm, we already know k=0 is true.

For k > 0, define the **entire** function

$$g(z) := \begin{cases} \boxed{\frac{f(z) - f(0)}{z}}, & z \neq 0, \\ f'(0), & z = 0, \end{cases}$$

As $|f(z)| < A + B|z|^k$ is **bounded**, define $M_0 := \max_{z \in C_R} g(z)$ for some $R \ge 1$. Thus, we have for $z \in \mathbb{C} \setminus C_R$, $|g(z)| < A + B|z|^{k-1}$ and for $z \in C_R$, $|g(z)| < M_0$. This means, $\exists D, E \in \mathbb{R}_{>0}$, s.t. $|g(z)| < D + E|z|^{k-1}$

Hence, g is a poly of degree at most k - 1, i.e. f is a poly of degree at most k.

Fundamental Theorem of Algebra

Nonconstant polynomials have roots in $\mathbb C$

Proof. Consider a polynomial p(x). Suppose p has **no roots** in \mathbb{C} .

Then, $f(z) := \frac{1}{p(z)}$ is **entire**. Moreover, as $z \to \infty$, $|f(z)| \to 0$, so |f(z)| is **bounded**.

Hence, by Louville's Thm, f(z) is const $\Rightarrow p(z)$ is constant, which is a contradiction.

Gauss-Lucas Theorem

The zeros of the derivative of a polynomial lie within the convex hull of the zeros of the polynomial.

Proof. Let p(x) be a nonconstant polynomial in $\mathbb{C}[x]$, and $\alpha_1, \ldots, \alpha_n$ be the **roots** of p counted by multiplicity. Then, $p(x) = c \prod_{i=1}^n (x - \alpha_i)$. Moreover, $\frac{p'(x)}{p(x)} = \sum_{i=1}^n \frac{1}{x - \alpha_i}$.

Let a be a root of p'(x) and $a \notin \{\alpha_1, \dots \alpha_n\}$. Then, $\frac{p'(a)}{p(a)} = \sum_{i=1}^n \frac{1}{a-\alpha_i} = \sum_{i=1}^n \frac{\bar{a}-\bar{\alpha_i}}{|a-\alpha_i|^2}$, so $\bar{a} = \sum_{i=1}^n c_i \bar{\alpha_i}$, where $c_i = \frac{1}{|a-\alpha_i|^2} / \sum_i \frac{1}{|a-\alpha_i|^2} \in \mathbb{R}_{\geq 0}$.

Hence, $a = \sum_{i=1}^n c_i \alpha_i$, $c_i \in \mathbb{R}_{\geq 0}$, $\sum c_i = 1$, so by def, this concludes the proof.

Uniqueness, Mean Modulus, Max/Min Modulus Theorems

Uniqueness Theorem

Remark: We can only apply the following theorems below, including max/min modulus thm, only when its acc points are in **D**.

Uniqueness Theorem

Say D is a **region** and f is an **analytic region** on D. Suppose that \exists seq of distinct **zeros** of D $\{z_n\}$, s.t. $\lim_{n\to\infty} z_n = z_0 \in D$, where we say the seq $\{z_n\}$ has an **acc pt** in D. Then, $f \equiv 0$ on D.

Proof. As we know, f is ana, so it is conti, i.e. $f(z_0) = \lim_{n \to \infty} f(z_n) = 0$.

Define $A := \{z \in D \mid z \text{ is an acc point of zeros of } f \text{ in } D\}$

- "A is open": By uniqueness of power series, $f \equiv 0$ in some disk $D(z, \delta_z) \subseteq D \ \forall z \in A$, i.e. $D(z, \delta_z) \subseteq A \ \forall z \in A$.
- " $D \setminus A$ is open": z is **NOT** an acc point of zeros $\Rightarrow \exists$ open nbd U of z in D s.t. f(z) has **NO** zeros in $U \setminus \{z\}$. As f is conti, $\forall y \in U \setminus \{z\}$, \exists open nbd $V_y \subseteq D$ of y', s.t. $f \neq 0$ on $V_y \Rightarrow y \in D \setminus A$

Hence, $z_0 \in A$ and D is a region, with D = A

Polynomials

If f is **entire** and $f \to \infty$ as $z \to \infty$, then f is a **polynomial**.

Proof. By def, $\forall M \in \mathbb{R}_{>0}, \exists \delta, \text{ s.t. } \forall |z| > \delta, |f(z)| > M$.

Let M=1. Thus, $\exists \delta$, s.t. $\forall |z|>\delta$, |f(z)|>1. By assumption, f is **NOT constant**.

Claim: f has finitely many zeros

Proof. By δ , all zeros in f are in $\overline{D(0,\delta)}$, otherwise, $|f(z)| \neq 0$. As $\overline{D(0,\delta)}$ is cpt, \exists acc pt of zeros in $\overline{D}(0,\delta) \Rightarrow f \equiv 0$ on $D(0,\delta')$ for all $\delta' > \delta$, which is a contradiction.

Now consider within $\bar{D}(0, \delta)$. Let $\alpha_1, \ldots, \alpha_N$ be the zeros of f. Then, $g(z) = f(z)/\prod_{i=1}^n (z - \alpha_i)$ is **entire** and has **no zeros** in $\mathbb C$.

Set $h(z) := \frac{1}{q(z)}$, then h is **entire** and is **bounded** in the disk.

By Extended Liouville's Thm, thus $|h| < A + B|z|^n$ for all $|z| > \delta$ (By $|f(z)| > 1 \Rightarrow |h(z)| < \prod_{i=1}^n (z - \alpha i)$) and $|z| \le \delta \Rightarrow h$ is a poly.

However, h has **no zeros** in \mathbb{C} . Thus, h is **const**.

$$\therefore \exists c \in \mathbb{C}^{\times}, \text{ s.t. } f(z) = c \prod_{i=1}^{n} (z - \alpha_i)$$

Mean Modulus Theorem

Mean Value Theorem

Let D be a region, f and on D, $\alpha \in D$. Then, $f(\alpha)$ = mean value of f taken around the **boundary** of **any disk centered at** α **and contained at** D

Proof. By Cauchy-Integral Formula, $f(\alpha) = \frac{1}{2\pi i} \int_{C_{\delta}(\alpha)} \frac{f(z)}{z-\alpha} dz$. Say $z = \alpha + \delta e^{i\theta}$ for $\theta \in [0, 2\pi]$, we get

$$f(\alpha) = \frac{1}{2\pi} \int_0^{2\pi} f(\alpha + \delta e^{i\theta}) d\theta$$

Max/Min Modulus Theorem

Maximum Modulus Theorem

Say f is **nonconst**, and on a region D. Then, $\forall z \in D$ and $\delta \in \mathbb{R}_{\geq 0}$, \exists some $\omega \in D(z, \delta) \cap D$, s.t. $|f(\omega)| > |f(z)|$

Proof. By MVT, $f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(z + \delta e^{i\theta}) d\theta$ for small enough δ s.t. $D(z, \delta) \subseteq D$.

Then, by ML-formula $|f(z)| \leq \frac{1}{2\pi} \max_{\theta \in [0,2\pi]} |f(z+\delta e^{i\theta})| \cdot 2\pi = \max |f(z+\delta e^{i\theta})|$

When \leq has equality, then $|f(z + \delta e^{i\theta})| = \max |f(z + \delta e^{i\theta})| \Rightarrow f$ is **const** on $C_{\delta}(z) \subseteq D$. As f agrees with $g \equiv \text{const}$ on a set of points with acc point, f is const on D.

However, f is nonconst. Hence, $|f(z)| < \max_{\theta \in [0,2\pi]} |f(z+\delta e^{i\theta})|$

Minimum Modulus Theorem

Say f is nonconst and ana on a region D, $\forall z \in D, f(z) \neq 0$. Then, f has **no interior min points**.

Proof. Let $g(z) := \frac{1}{f(z)}$. Observe, g is an and nonconst on D. By max modulus thm, we proved it.

Saddle Points

Theorem on Maxima

Say \bar{D} is a **closed disk** (**circle**) and f is analytic and nonconst on \bar{D} . f assumes its **max value** at a boundary point z_0 , then $f'(z_0) \neq 0$

Proof. Suppose $f'(z_0) = 0$.

Then, $f(z_0 + \delta) \approx f(z_0) + \frac{1}{2}f''(z_0)\xi^2 \Rightarrow |f(z_0 + \delta)|^2 = |f(z_0)|^2 + \frac{2}{k!}\Re(\bar{f}(z_0)f^{(k)}(z_0)x^k) + \dots$ for some $k \ge 2$.

Let $e^{i\theta} = \frac{\xi}{|\xi|}$. Then, $\bar{f}(z_0)f^{(k)}(z_0) = Ae^{i\alpha} \Rightarrow |f(z_0 + \xi)|^2 - |f(z_0)|^2 = \frac{2}{k!}A|\xi|^k\cos(\alpha + k\theta) + \dots$

As $|f(z_0)|$ is \max , hence $|f(z_0+\xi)|^2-|f(z_0)|^2\leq 0\ \forall z_0+\xi\in D$, in other words, for small enough ξ ,

$$\cos(k\theta + \alpha) \le 0 \Rightarrow \frac{\frac{\pi}{2} - \alpha}{k} + \frac{2\pi j}{k} \le \theta \le \frac{\frac{3}{2}\pi - \alpha}{k} + \frac{2\pi j}{k} \text{ for } 0 \le j \le k - 1.$$

However, for a disc, $\exists \xi$, s.t. $z_0 + \xi$ is NOT in any one of the cones, since $\frac{\pi}{k} \leq \frac{\pi}{2}$. Thus, there is a contradiction.

Theorem on Saddle Points

 z_0 is a **saddle point** of an analytic function f iff $f'(z_0) = 0$ and $f(z_0) \neq 0$

Proof. We have z=x+iy, f(z)=u(x,y)+iv(x,y), and $g(z)=\sqrt{u^2+v^2}\geq 0$

• " \Rightarrow ": As $g(z_0)$ is not a local minimum, hence $g(z_0) \neq 0$, so $u(z_0) \neq 0$ or $v(z_0) \neq 0$

We know
$$|g_x(z_0) = g_y(z_0) = 0 \Rightarrow \frac{uu_x + vv_x}{g}|_{z_0} = \frac{uu_y + vv_y}{g}|_{z_0} = 0$$
, i.e. $\begin{bmatrix} u_x(z_0) & v_x(z_0) \\ u_y(z_0) & v_y(z_0) \end{bmatrix} \begin{bmatrix} u(z_0) \\ v(z_0) \end{bmatrix} = 0$

However, by CR-eq,
$$\det \begin{bmatrix} u_x(z_0) & v_x(z_0) \\ u_y(z_0) & v_y(z_0) \end{bmatrix} = u_x^2(z_0) + v_x^2(z_0)$$
. Hence, $u_x(z_0) = v_x(z_0) = 0$

As f is ana, hence $f'(z_0) = 0$. From above with $g(z_0) \neq 0$, we also know $f(z_0) \neq 0$.

• " \Leftarrow ": As $f'(z_0) = 0$, thus $u_x(z_0) = v_x(z_0) = u_y(z_0) = v_y(z_0) = 0$, i.e. $g_x(z_0) = g_y(z_0) = 0$. However, by the **max and min modulus thms**, $|f(z_0)|$ is NOT a local extremum.

Oppen Mapping Theorem and Schwarz Lemma

Open Mapping Theorem

Open Mapping Theorem

 \forall open set $U \subseteq D$, f(U) is also open in \mathbb{C} for any nonconst ana f.

Proof. It suffices to show $\forall \beta = f(\alpha') \in f(D(\alpha, \varepsilon)), \exists D(\beta, \varepsilon') \subseteq f(D(\alpha, \beta))$.

WLOG, we can assume $f(\alpha) = 0$, so we choose ε s.t. $\overline{D(\alpha, \varepsilon)} \subseteq D$. By uniqueness thm, $\exists s$, s.t. f has no zeros in $\overline{D(\alpha, \varepsilon)} \setminus \{\alpha\}$ or else $f \equiv 0$.

Let
$$2\delta = \min_{z \in C_{\varepsilon}(\alpha)} |f(z)| > 0$$

Claim: $D(f(\alpha) = 0, \delta) \subseteq Im(f)$

Proof. $\forall w \in D(0, \delta)$, consider f(z) - w.

If $w \notin f(D(\alpha, \varepsilon))$, then f(z) - w has no zeros on $D(\alpha, \varepsilon)$.

Hence, $|f(z) - w| \ge |f(z)| - |w| \ge \delta$ $\forall z \in C_{\varepsilon}(\alpha)$. However, we know $|f(\alpha) - w| < \delta$, which is a contradiction.

Thus,
$$w \in f(D(\alpha, \varepsilon)) \Rightarrow D(0, \delta) \subseteq Im(f)$$

Schwarz Lemma

Schwarz Lemma

Suppose that f is analytic in an open unit disc D with $|f| \le 1$ and f(0) = 0. Then,

- 1. $|f(z)| \leq |z|$
- 2. $|f'(0)| \leq 1$

with equality in either of the above iff $f(z) = e^{i\theta}z$

Proof. Define $g(z) = \begin{cases} \frac{f(z)}{z}, & z \neq 0 \\ f'(z), & z = 0 \end{cases}$ g(z) is ana on D since f(z) is ana on D.

Consider $z \in C_r(0)$ for 0 < r < 1, then $|g(z)| = \frac{|f(z)|}{|z|} \le \frac{1}{r}$

By max modulus thm, $\forall z \in \overline{D(0,r)}, |g(z)| \leq \frac{1}{r}.$ As $r \to 1$, then $|g(z)| \leq 1 \ \forall z \in D$.

By def of g(z), $|f(z)| \le |z|$ and $|f'(0)| \le 1$ has either equality hold, when g is const and |g| = 1 on D. Hence, $g = e^{i\theta}$.

Proposition

Say f is **entire**. If $|f(z)| < \frac{1}{|\Im(z)|}$ for all z, then $f \equiv 0$

Proof. Define $g(z)=(z^2-R^2)f(z)$, for some $R\in\mathbb{R}_{>0}$ (sufficiently large, e.g. $R\geq 1, R\to\infty$).

When $z\in C_R(0), \ |z-R||z+R|\leq 2R|\Im(z)|$. Hence, $|g(z)|\leq \frac{2R}{|\Im(z)|^2}\leq 2R$ when $z\in C_R(0)$

By max modulus thm, $|g(z)| \le 2R \ \forall z \in D(0,R)$. Hence, $\forall z \in D(0,R), |f(z)| \le \frac{2R}{|z^2 - R^2|} \to 0$ as $R \to \infty$. Thus, |f(z)| = 0

Morera's Theorem

Morera's Theorem

Morera's Theorem

Let f be **continuous** on an open set $D \subseteq \mathbb{C}$ and Γ be the boundary of a **closed rectangle** $R \subseteq D$. If $\int_{\Gamma} f dz = 0 \ \forall \ \Gamma \in R \subseteq D$, then f is **analytic** in D.

Proof. Say $z_0 \in D$, where D is open. Then, $\exists \varepsilon > 0$, s.t. $D(z_0, \varepsilon) \subseteq D$.

Define $F(z) := \int_C f(z)dz$ $\forall z \in D(z_0, \varepsilon)$, where $C: z_0 \to z_0 + \Re(z - z_0) \to z$.

For $z \in D(z_0, \varepsilon)$ and k small enough s.t. $z + h \in D(z_0, \varepsilon)$, then:

$$\lim_{h\to 0} \frac{F(z+h)-F(z)}{h} = \lim_{h\to 0} \int_{C_1} f(\omega) d\omega = f(z)$$

Corollary

Let D be an open set in \mathbb{C} and $\{f_n\}$ be a sequence of ana functions s.t. $f_n \to f$ unif on cpta. Then, f is also **ana in D**.

Proof. As f_n is conti $\forall K \subseteq D$ that is a cpt set, we have $f_n \to f$ unif on K. Thus, f is conti on K for all K, i.e. f is conti on D.

Notice, $\int_{\Gamma} f dz = \int_{\Gamma} \lim_{n \to \infty} f_n dz = \lim_{n \to \infty} (\int_{\Gamma} f_n dz) = 0$. Thus, by Morera's Thm, f is conti.

Schwarz Reflection Principle

Analytic Except on a Line Segment

f is continuous on an open set $D \subseteq \mathbb{C}$ and analytic except on a line segment in D. Then, f is analytic throughout \mathbf{D} .

Proof. (Note the image has a small typo, it should be "by cases (1) and (2)", not "by cases (1) and (3)", but I find it way easier to use that photo than to retype a mainly visual proof.) \Box

Schwarz Reflection Principle

Suppose f is C-analytic on a region D that is contained in either the upper or lower half plane and whose boundary contains a segment L on the real axis, and suppose f is real for real z.

Then, we can define an analytic "extension" g of f to the region $D \cup L \cup D*$ that is **symmetric** w.r.t. the real axis by:

$$g(z) = \begin{cases} f(z), & z \in D \cup L \\ \overline{f(\overline{z})}, & z \in D \end{cases}, \text{ where } D * = \{ z \mid \overline{z} \in D \}$$

Proof. We consider the proof for two main cases:

- 1. For any $z \in D$, then $f|_D = g|_D$, so f and implies g is and
- 2. For any $z \in D*$ and $z + h \in D*$, we have

$$\lim_{h\to 0} \frac{g(z+h)-g(z)}{h} = \lim_{h\to 0} \overline{(\frac{f(\overline{z+h})-f(\overline{z})}{\overline{h}})} = \overline{f'(\overline{z})}$$
, so g is ana

As f is conti on the \mathbb{R} -axis, so is g, so we can apply the theorem of "analytic except for a line segment", to determine g is an throughout $D \cup L \cup D* = U$

Simply Connected Domain

Although there are other theorems, I won't spend time proving them here because they all derive from this key lemma anyway.

Key Lemma for Polygonal Curves

Let Γ be a simple closed polygonal curve bounding D (simply connected).

Then any **horizontal segment** joining two consecutive "top-level" intersection points of Γ lies entirely inside D.

Proof. Here is a very rough proof that won't get you marks, I just don't have the time to summarize this proof, and I don't think it's tested (?).

Induct on the **level** of Γ :

Base: Γ a rectangle, trivial.

Inductive step: split Γ into lower-level subcurves, show that the horizontal strip between consecutive top levels stays inside D (using path-connectedness and openness arguments).

Analytic Branch

Analytic Branch for log

Set $f(z) := \int_{z_0}^{z} \frac{1}{\xi} d\xi + \log z_0$ on a s.c. region $D \subseteq \mathbb{C} \setminus \{0\}$, we fix a $z_0 \in D$ and choose $\log z_0$. Then, f is an **analytic branch** of $\log z$ in D.

Proof. As D is s.c., choose a closed curve $C_1 - C_2$ (i.e. choose the endpoints and have two different paths).

By closed curve thm, $\int_{C_1-C_2} \frac{1}{\xi} d\xi = 0 \Rightarrow \int_{C_1} \frac{1}{\xi} d\xi = \int_{C_2} \frac{1}{\xi} d\xi$, thus f is **analytic**.

Moreover, we want " $e^{f(z)}=z$ " \Leftrightarrow " $ze^{-f(z)}=1$ ". TL;DR, set $g(z):=ze^{-f(z)}$, then we get g'(z)=0, so $g\equiv 1$.

Singularity

Riemann's Principle of Removable Singularities

(I don't want to waste time here, so let's just say it's the same as the poles of order k thing below, except k=0.)

Poles of Order k

Say f has an **isolated singularity** at z_0 . If $\exists k \in \mathbb{Z}_{>0}$, s.t. $\lim_{z\to z_0} (z-z_0)^k f(z) \neq 0$ but $\lim_{z\to z_0} (z-z_0)^{k+1} f(z) = 0$, then f has a pole of order k at z_0 .

Proof. Set
$$g(z) = \begin{cases} (z - z_0)^{k+1} f(z), & z \in D'(z_0, \delta) = D(z_0, \delta) \setminus \{z_0\} \\ 0, & z = z_0 \end{cases}$$

As $\lim_{z\to z_0}(z-z_0)^{k+1}=0$, thus g is conti at $\mathbf{z_0}$.

As f is an on $D'(z_0, \delta)$, g is also an on $D'(z_0, \delta)$.

Hence, using the "analytic except for a line" theorem, we get g is an on $D(z_0, \delta)$

Thus, set
$$h(z) := \begin{cases} \frac{g(z) - g(z_0)}{z - z_0} = (z - z_0)^k f(z), & z \in D'(z_0, \delta), \\ g'(z), & z = z_0 \end{cases}$$
, hence h is an on $D(z_0, \delta)$.

As we know, $\lim_{z\to z_0}h(z)=h(z_0)\neq 0$. Thus, $f(z)=\frac{h(z)}{(z-z_0)^k}$ has a pole of order k at z_0 .

Casorati-Weierstrass Theorem

If f has an essential singularity at z_0 and D is a deleted neighborhood of z_0 , whre f is analytic, then the range $R := \{f(z) \mid z \in D\}$ is dense in \mathbb{C} .

Proof. Suppose not, then $\exists \omega \in \mathbb{C}$ and $\delta > 0$, s.t. open $D(\omega, \delta) \cap R = \emptyset$.

I.e., $\forall z \in D, |f(z) - \omega| \ge \delta \Rightarrow |\frac{1}{f(z) - \omega}| \le \frac{1}{\delta} \forall z \in D$. Thus, $\frac{1}{f(z) - \omega}$ has a **removable singularity** at z_0 .

Hence, \exists ana g on $D' \cup \{z_0\}$, s.t. $g(z) = \frac{1}{f(z) - \omega} \Rightarrow f(z) = \omega + \frac{1}{g(z)} \ \forall \ z \in D'$.

Hence, z_0 is a zero of g(z) of finite order n or $g(z_0) \neq 0$. Thus, f(z) has a pole of order $\geq n$ at z_0 , so it is not an **essential singularity**.