TTK4115 Lecture 3/4

Morten D. Pedersen

This lecture

	_				_		
н	 \sim	no	nia	~III	⊏∽		2
	 הו	110	HIC:	al	Гι.) [] [115

- 2. Realizations
- 3. Discretization
- 4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

Topic

	\sim					
П	(;a	nor	nica	IΗ	٦rm	15

2 Realizations

3. Discretization

4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

Canonical Forms

Canonical Forms

- Using the change of basis $\mathbf{x} = \mathbf{T}\bar{\mathbf{x}}$ we can change a system into infinitely many similar forms.
- Some of these forms are more useful than others.
- Some of these are called canonical.

Equivalence/Similarity transform

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$

$$\dot{\bar{\mathbf{x}}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\bar{\mathbf{x}} + \mathbf{T}^{-1}\mathbf{B}\mathbf{u}$$
 $\mathbf{y} = \mathbf{C}\mathbf{T}\bar{\mathbf{x}} + \mathbf{D}\mathbf{u}$

Canonical Forms

Canonical Forms¹

- Jordan Form
- Modal Form
- Companion form
- Controllable form
- Observable form

5/62

¹This list is not exhaustive.

Canonical Forms

Jordan Form

The Jordan form is the most convenient to use when solving the system. We have seen that this form is very practical for finding solutions to LTI systems:

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}_0 + \mathbf{C}\int_0^t e^{\mathbf{A}(t- au)}\mathbf{B}\mathbf{u}(au)d au + \mathbf{D}\mathbf{u}(t)$$

Diagonal matrix

$$\mathbf{A} = \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \quad \Rightarrow \mathbf{e}^{\mathbf{A}t} = \begin{bmatrix} \mathbf{e}^{t\lambda_1} & 0 & 0 \\ 0 & \mathbf{e}^{t\lambda_2} & 0 \\ 0 & 0 & \mathbf{e}^{t\lambda_3} \end{bmatrix}$$

Jordan Block

$$\mathbf{A} = \mathbf{J} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix} \quad \Rightarrow e^{\mathbf{A}t} = \begin{bmatrix} e^{t\lambda} & e^{t\lambda}t & \frac{1}{2!}e^{t\lambda}t^2 & \frac{1}{3!}e^{t\lambda}t^3 \\ 0 & e^{t\lambda} & e^{t\lambda}t & \frac{1}{2!}e^{t\lambda}t^2 \\ 0 & 0 & e^{t\lambda} & e^{t\lambda}t \\ 0 & 0 & 0 & e^{t\lambda} \end{bmatrix}$$

Topic

			_	
1 /			Fo	

2. Realizations

3 Discretization

4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

LTI systems overview

Realizations

The final piece in the diagram

Key points

Realization

- We have seen that a transformation $\bar{\mathbf{x}} = \mathbf{T}\mathbf{x}$ can change the state equation..
- but the transfer function remains the same.
- When we realize, we start with a transfer function $\mathbf{H}(s)$..
- and generate a state-space {A, B, C, D}
- that yields $\mathbf{H}(s) = \mathbf{C}(s\mathbb{I} \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Note

There are infinitely many state-spaces we could realize to!

Note

We usually go for a canonical form.

Conditions

Proper

A transfer function must be proper to have a realization:

$$h(s) = \frac{n(s)}{d(s)} \quad \Rightarrow \deg d(s) \ge n(s)$$

$$|h_{\!p}(j\infty)|<\infty,\quad |h_{\!sp}(j\infty)|=0$$

Rational

A transfer function must be rational to have a realization.

- The degrees of the numerator and denominator must be finite.
- All lumped LTI systems are rational.

Proper transfer functions

We must have a proper transfer function for realization.

Example

$$h(s) = \frac{2 + 2s + s^2}{1 + s}$$

Question:

Is this a proper transfer function?

Signals are amplified

at infinite frequencies.. no device can do this

Proper transfer functions

Proper transfer functions behave nicely at high frequencies

Example

$$h(s) = \frac{4(2+2s+s^2)}{3+4s+s^2}$$

Question:

Is this a proper transfer function?

Answer

Yes, but not strictly proper. The transferfunction is finite at infinite frequencies:

$$\lim_{\omega\to\infty}h(j\omega)=h_\infty\neq 0$$

Quiz

Are these transfer functions realizable?

- $g_1(s) = \frac{1}{s}$
 - $g_2(s) = s$
 - $g_3(s) = \frac{1}{s+1}$
 - $g_4(s) = \frac{1}{s-1}$
 - $g_5(s) = \frac{s}{s+1}$
 - $g_6(s) = e^{-\tau s}, \quad \tau > 0$
 - $g_7(s) = \frac{1 \frac{\tau}{2}s}{1 + \frac{\tau}{2}s}, \quad \tau > 0$

Improper/Proper/Strictly proper

Improper

$$H_{i.p.}(s) = k_P + k_D s + \frac{k_I}{s} = \frac{k_D s^2 + k_P s + k_I}{s}$$
 PID regulator

Proper

$$H_p(s) = \frac{s}{T_{s+1}}$$
 Band-limited differentiator

Strictly proper

$$H_{s.p.}(s) = \frac{1}{s^2 m + ds + k}$$
 Msd.

Strictly proper transfer functions

Decomposition

We decompose the proper transfer function as:

strictly proper constant

$$\mathbf{G}(s) = \mathbf{G}_{sp}(s) + \mathbf{G}_{\infty}$$

Question: where is D?

$$\hat{\mathbf{y}}(s) = \mathbf{G}_{sp}(s)\hat{\mathbf{u}}(s) + \mathbf{G}_{\infty}\hat{\mathbf{u}}(s)$$

$$\hat{\mathbf{y}}(s) = \mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B}\hat{\mathbf{u}}(s) + \mathbf{D}\hat{\mathbf{u}}(s)$$

Canonical forms

Matching

The crucial next step is to select a state-space model with unknown coefficients:

$$\Sigma_r:~\{\textbf{A},\textbf{B},\textbf{C},\textbf{D}\}$$

that can represent our transfer-function.

Matching

We shall use the **Controllable Canonical Form** today. This is one of many choices.

Controllable form

Let's pick a nice A for the realization

Four states \rightarrow up to s^4 in the denominator of g(s).

$$\mathbf{A} = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$(sI - A)^{-1}$$

$$(\mathbf{s}\mathbb{I} - \mathbf{A})^{-1} = \frac{1}{\mathbf{s}^4 + \mathbf{s}^3 \alpha_1 + \mathbf{s}^2 \alpha_2 + \mathbf{s} \alpha_3 + \alpha_4} \begin{bmatrix} s^3 & -s^2 \alpha_2 - s \alpha_3 - \alpha_4 & -s^2 \alpha_3 - s \alpha_4 & -s^2 \alpha_4 \\ s^2 & s^3 + s^2 \alpha_1 & -s \alpha_3 - \alpha_4 & -s \alpha_4 \\ s & s^2 + s \alpha_1 & s^3 + s^2 \alpha_1 + s \alpha_2 & -\alpha_4 \\ 1 & s + \alpha_1 & s^2 + s \alpha_1 + \alpha_2 & s^3 + s^2 \alpha_1 + s \alpha_4 \end{bmatrix}$$

Controllable form

Let's pick a nice B for the realization too

Four states \rightarrow up to s^4 in the denominator of g(s).

$$\mathbf{A} = \left[\begin{array}{cccc} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right]$$

$$(sI - A)^{-1}B$$

$$(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = \begin{bmatrix} s^3 \\ s^2 \\ s \\ 1 \end{bmatrix} \frac{1}{s^4 + s^3\alpha_1 + s^2\alpha_2 + s\alpha_3 + \alpha_4}$$

What about C?

Four states \rightarrow up to s^4 in the denominator of g(s).

$$\mathbf{A} = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} n_1 & n_2 & n_3 & n_4 \end{bmatrix}$$

$$C(sI - A)^{-1}B$$

$$\mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = [n_1 \quad n_2 \quad n_3 \quad n_4] \begin{bmatrix} s^3 \\ s^2 \\ s \\ 1 \end{bmatrix} \frac{1}{s^4 + s^3\alpha_1 + s^2\alpha_2 + s\alpha_3 + \alpha_4}$$

$$C(sI - A)^{-1}B$$

$$\mathbf{G}_{sp}(s) = \mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = \frac{s^3 n_1 + s^2 n_2 + s n_3 + n_4}{s^4 + s^3 \alpha_1 + s^2 \alpha_2 + s \alpha_3 + \alpha_4}$$

$$\frac{x(s)}{f(s)} = \frac{y(s)}{u(s)} = \frac{1}{ms^2 + sd + k} = \frac{1/m}{s^2 + s(d/m) + (k/m)}$$

Controllable canonical form, n = 2

$$\mathbf{A} = \left[\begin{array}{cc} -\alpha_1 & -\alpha_2 \\ 1 & 0 \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \mathbf{C} = \left[\begin{array}{c} n_1 & n_2 \end{array} \right]$$

 $C(sI - A)^{-1}B$

$$\mathbf{G}_{sp}(s) = \mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = \frac{s \underbrace{n_1}^{0} + \underbrace{n_2}^{1/m}}{s^2 + s \underbrace{\alpha_1}_{d/m} + \underbrace{\alpha_2}_{k/m}}$$

Realization

The mass spring damper back on state-space form:

$$\mathbf{A} = \left[\begin{array}{cc} -d/m & -k/m \\ 1 & 0 \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \mathbf{C} = \left[\begin{array}{c} 0 & 1/m \end{array} \right]$$

Controllable form

Controllable canonical form: *p* inputs, *q* outputs

$$\mathbf{A} = \left[\begin{array}{cccc} -\alpha_1 \mathbb{I}_{\rho} & -\alpha_2 \mathbb{I}_{\rho} & -\alpha_3 \mathbb{I}_{\rho} & -\alpha_4 \mathbb{I}_{\rho} \\ \mathbb{I}_{\rho} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{I}_{\rho} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbb{I}_{\rho} & \mathbf{0} \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} \mathbb{I}_{\rho} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right] \quad \mathbf{C} = \left[\begin{array}{c} \mathbf{N}_1 & \mathbf{N}_2 & \mathbf{N}_3 & \mathbf{N}_4 \end{array} \right]$$

$$\mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B}$$

$$\mathbf{G}_{sp}(s) = \mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} = \frac{s^3\mathbf{N}_1 + s^2\mathbf{N}_2 + s\mathbf{N}_3 + \mathbf{N}_4}{s^4 + s^3\alpha_1 + s^2\alpha_2 + s\alpha_3 + \alpha_4}$$

d(s)

We have to find the common denominator of $\mathbf{G}_{sp}(s)$: $d(s) = s^4 + s^3\alpha_1 + s^2\alpha_2 + s\alpha_3 + \alpha_4$

Example 1

Realize G(s) to controllable canonical form:

$$\mathbf{G}(s) = \begin{bmatrix} \frac{-10+4s}{1+2s} & \frac{3}{2+s} \\ \frac{1}{(2+s)(1+2s)} & \frac{1+s}{(2+s)^2} \end{bmatrix}$$

Find **G**_∞

$$\mathbf{D} = \mathbf{G}_{\infty} = \lim_{s \to \infty} \begin{bmatrix} \frac{-10+4s}{1+2s} & \frac{3}{2+s} \\ \frac{1}{(2+s)(1+2s)} & \frac{1+s}{(2+s)^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Find
$$\mathbf{G}_{sp} = \mathbf{G}(s) - \mathbf{G}_{\infty}$$

$$\mathbf{G}_{SP} = \left[\begin{array}{cc} \frac{-10+4s}{1+2s} & \frac{3}{2+s} \\ \frac{1}{(2+s)(1+2s)} & \frac{1+s}{(2+s)^2} \end{array} \right] - \left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right] = \left[\begin{array}{cc} -\frac{12}{1+2s} & \frac{3}{2+s} \\ \frac{1}{2+5s+2s^2} & \frac{1+s}{(2+s)^2} \end{array} \right]$$

Find common denominator d(s)

$$\mathbf{G}_{sp} = \frac{1}{s^3 + (9/2)s^2 + 6s + 2} \begin{bmatrix} -6(2+s)^2 & 3(1+s/2)(1+2s) \\ 1+s/2 & (1/2+s)(1+s) \end{bmatrix}$$

Example 1

Realize G(s) to controllable canonical form:

$$\mathbf{G}_{Sp} = \frac{1}{d(s)} \left(\begin{bmatrix} -24 - 24s & 3 + \frac{15s}{2} \\ 1 + \frac{s}{2} & \frac{1}{2} + \frac{3s}{2} \end{bmatrix} + s^2 \begin{bmatrix} -6 & 3 \\ 0 & 1 \end{bmatrix} \right)$$
$$d(s) = s^3 + (9/2)s^2 + 6s + 2$$

Find numerator matrices N_i

$$\mathbf{G}_{Sp} = \frac{1}{d(s)} \left(\begin{array}{c|c} \mathbf{N}_3 & \mathbf{N}_2 & \mathbf{N}_1 \\ \hline -24 & 3 \\ 1 & \frac{1}{2} \end{array} \right) + s \left[\begin{array}{c|c} -24 & \frac{15}{2} \\ \frac{1}{2} & \frac{3}{2} \end{array} \right] + s^2 \left[\begin{array}{c|c} -6 & 3 \\ 0 & 1 \end{array} \right] \right)$$
$$d(s) = s^3 + (9/2)s^2 + 6s + 2$$

Example 1

Realize G(s) to controllable canonical form:

$$\mathbf{G}_{sp} = \frac{1}{d(s)} \begin{bmatrix} \mathbf{N}_3 + s\mathbf{N}_2 + s^2\mathbf{N}_1 \end{bmatrix} \quad \mathbf{G}_{\infty} = \mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{N}_1 = \begin{bmatrix} -6 & 3 \\ 0 & 1 \end{bmatrix} \quad \mathbf{N}_2 = \begin{bmatrix} -24 & \frac{15}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix} \quad \mathbf{N}_3 = \begin{bmatrix} -24 & 3 \\ 1 & \frac{1}{2} \end{bmatrix}$$

$$d(s) = s^3 + \alpha_1 s^2 + \alpha_2 s + \alpha_3 = s^3 + (9/2)s^2 + 6s + 2$$

Realize:

$$\mathbf{A} = \left[\begin{array}{ccc} -\alpha_1 \mathbb{I}_\rho & -\alpha_2 \mathbb{I}_\rho & -\alpha_3 \mathbb{I}_\rho \\ \mathbb{I}_\rho & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{I}_\rho & \mathbf{0} \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c} \mathbb{I}_\rho \\ \mathbf{0} \\ \mathbf{0} \end{array} \right] \quad \mathbf{C} = \left[\begin{array}{ccc} \mathbf{N}_1 & \mathbf{N}_2 & \mathbf{N}_3 \end{array} \right]$$

Topic

1. Canonical Forms

2 Realizations

3. Discretization

4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

Analog state space model

The continuous state space model is analog²:

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$

To simulate it as is would require an analog computer.

Discretization

Discretization is a necessary step for computer simulation. A recursive model is sought:

$$\mathbf{x}[k+1] = \mathbf{A}_d \mathbf{x}[k] + \mathbf{B}_d \mathbf{u}[k]$$

 $\mathbf{y}[k] = \mathbf{C}\mathbf{x}[k] + \mathbf{D}\mathbf{u}[k]$

Many methods are available for obtaining a discretized model. We examine the two most common methods: **Exact** and **Euler** discretization³.

Approach

$$\mathsf{TF} \xrightarrow{\mathsf{Realize}} \mathsf{CLTI} \xrightarrow{\mathsf{Discretize}} \mathsf{DLTI} \xrightarrow{\mathsf{Recursion}} \mathsf{Solution}$$

TTK4115 (MDP) Lecture 3/4 26 / 62

²Some systems are discrete by nature, such as financial systems or discrete filters. Most plants will however be continuous as they are based on a physical model.

³These are repectively the best and worst of the common methods.

LTI solution

The exact solution of the LTI system forms the theoretical basis of **exact** discretization.

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}_0 + \mathbf{C}\int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau + \mathbf{D}\mathbf{u}(t)$$

Sampling

Time is discretized into intervals of duration T: t = kT. Sample index is denoted k. The state solution from one sample to the next is:

$$\mathbf{x}((k+1)T) = e^{\mathbf{A}T}\mathbf{x}(kT) + \int_{kT}^{(k+1)T} e^{\mathbf{A}[(k+1)T - \tau]} \mathbf{B}\mathbf{u}(\tau) d\tau$$

Here $\mathbf{x}[k] \triangleq \mathbf{x}(t)|_{t=kT}$ serves as an initial condition

The resulting solution is evaluated at $\mathbf{x}[k+1] \triangleq \mathbf{x}(t)|_{t=(k+1)T}$.

Piecewise constant input

The input is assumed to stay approximately constant between samples:

$$\mathbf{u}[k] \simeq \mathbf{u}(t), \quad kT \leq t \leq (k+1)T$$

Sampled model

$$\mathbf{x}[k+1] = e^{\mathbf{A}T}\mathbf{x}[k] + \left(\int_{kT}^{(k+1)T} e^{\mathbf{A}[(k+1)T - \tau]} d\tau\right) \mathbf{B}\mathbf{u}[k]$$

Substitution rule

$$\int_{y(a)}^{y(b)} F(x) dx = \int_{a}^{b} F(y(x)) \frac{dy}{dx} dx$$

Change of variable: $\alpha(\tau) \triangleq (k+1)T - \tau$, $d\tau = -d\alpha$

Integration limits are simplified:

$$\tau_0 = kT \rightarrow \alpha_0 = T$$
, $\tau_1 = (k+1)T \rightarrow \alpha_1 = 0$

along with integrand:

$$e^{\mathbf{A}[(k+1)T-\tau]} \rightarrow e^{\mathbf{A}\alpha}$$

$$\mathbf{B}_d = \left(\int_{kT}^{(k+1)T} e^{\mathbf{A}[(k+1)T - \tau]} d\tau \right) \mathbf{B} = \left(\int_0^T e^{\mathbf{A}\alpha} d\alpha \right) \mathbf{B}$$

Discretization

Exactly discretized model

$$\mathbf{x}[k+1] = \underbrace{e^{\mathbf{A}T}}_{\mathbf{A}_d} \mathbf{x}[k] + \underbrace{\left(\int_0^T e^{\mathbf{A}\alpha} d\alpha\right)}_{\mathbf{D}_d} \mathbf{B} \mathbf{u}[k]$$

$$\mathbf{y}[k] = \underbrace{\mathbf{C}}_{\mathbf{C}_d} \mathbf{x}[k] + \underbrace{\mathbf{D}}_{\mathbf{D}_d} \mathbf{u}[k]$$

Discrete time system

This model is exact under the assumption:

$$\mathbf{u}[k] = \mathbf{u}(t), \quad kT \le t \le (k+1)T$$

It is recursive, and very efficient in implementation:

$$\mathbf{x}[k+1] = \mathbf{A}_{d}\mathbf{x}[k] + \mathbf{B}_{d}\mathbf{u}[k]$$

 $\mathbf{y}[k] = \mathbf{C}_{d}\mathbf{x}[k] + \mathbf{D}_{d}\mathbf{u}[k]$

Discretization

Euler discretization

Euler's method proceeds via the definition of the derivative⁴:

$$\dot{\mathbf{x}}[k] \approx \frac{\mathbf{x}[k+1] - \mathbf{x}[k]}{T}$$

Thus:

$$\dot{\mathbf{x}}[k] = \mathbf{A}\mathbf{x}[k] + \mathbf{B}\mathbf{u}[k] \quad \Rightarrow \mathbf{x}[k+1] = \mathbb{I}\mathbf{x}[k] + T\mathbf{A}\mathbf{x} + T\mathbf{B}\mathbf{u}$$

Stability

Euler's method may be unstable although the underlying plant is stable. This problem gets worse with larger timesteps. A mathematical criterion for first order systems may be stated as:

$$|1 + T\lambda| \le 1$$

Insufficiently stable systems or large timesteps will result in a divergent solution.

TTK4115 (MDP) Lecture 3/4 31 / 62

 $^{^4}x[k] = x(kT)$

$$\mathbf{x}[k+1] = \mathbf{A}_{d}\mathbf{x}[k] + \mathbf{B}_{d}\mathbf{u}[k]$$

 $\mathbf{x}_{e}[k+1] = \mathbf{x}_{e}[k] + T\mathbf{A}\mathbf{x}_{e}[k] + T\mathbf{B}\mathbf{u}[k]$

Topic

1 /			

2. Realizations

3. Discretization

4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

Example

Consider the single input system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \quad \mathbf{A} \in \mathbb{R}^{4 \times 4}$$

4 steps forward

We step the system forward by infinitesimally small time steps $\Delta t = \epsilon$:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \epsilon \mathbf{A} \mathbf{x}_k + \epsilon \mathbf{b} u_k$$

Starting point is x₀

$$\begin{array}{rcl} \mathbf{x}_1 & = & \mathbf{x}_0 + \epsilon \mathbf{A} \mathbf{x}_0 + \epsilon \mathbf{b} u_0 \\ \mathbf{x}_2 & = & \mathbf{x}_1 + \epsilon \mathbf{A} \mathbf{x}_1 + \epsilon \mathbf{b} u_1 \\ \mathbf{x}_3 & = & \mathbf{x}_2 + \epsilon \mathbf{A} \mathbf{x}_2 + \epsilon \mathbf{b} u_2 \\ \mathbf{x}_4 & = & \mathbf{x}_3 + \epsilon \mathbf{A} \mathbf{x}_3 + \epsilon \mathbf{b} u_3 \end{array}$$

Last step may be written as:

$$\mathbf{x}_4 = (\mathbb{I} + \epsilon \mathbf{A})^4 \, \mathbf{x}_0 + \epsilon \, (\mathbb{I} + \epsilon \mathbf{A})^3 \, \mathbf{b} u_0 + \epsilon \, (\mathbb{I} + \epsilon \mathbf{A})^2 \, \mathbf{b} u_1 + \epsilon \, (\mathbb{I} + \epsilon \mathbf{A}) \, \mathbf{b} u_2 + \epsilon \mathbf{b} u_3$$

The *n*'th step is linear in the initial condition and the sequence of inputs:

$$\begin{aligned} \mathbf{x}_4 &= & \left(\mathbb{I} + \epsilon \mathbf{A} \right)^4 \mathbf{x}_0 + \epsilon \left(\mathbb{I} + \epsilon \mathbf{A} \right)^3 \mathbf{b} u_0 + \epsilon \left(\mathbb{I} + \epsilon \mathbf{A} \right)^2 \mathbf{b} u_1 + \epsilon \left(\mathbb{I} + \epsilon \mathbf{A} \right) \mathbf{b} u_2 + \epsilon \mathbf{b} u_3 \\ &= & \left(\mathbb{I} + \epsilon \mathbf{A} \right)^4 \mathbf{x}_0 + \epsilon \left[& \left(\mathbb{I} + \epsilon \mathbf{A} \right)^3 \mathbf{b} & \left(\mathbb{I} + \epsilon \mathbf{A} \right)^2 \mathbf{b} & \left(\mathbb{I} + \epsilon \mathbf{A} \right) \mathbf{b} & \mathbf{b} & \right] \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \end{bmatrix} \end{aligned}$$

Gather linearly dependent columns:

The *n*'th step is linear in the initial condition and the sequence of inputs

$$\mathbf{x}_{4} = \overbrace{\left(\mathbb{I} + \epsilon \mathbf{A}\right)^{4} \mathbf{x}_{0}}^{\text{zir}} + \underbrace{\left(\left[\begin{array}{ccc} \epsilon^{4} \mathbf{A}^{3} \mathbf{b} & \epsilon^{3} \mathbf{A}^{2} \mathbf{b} & \epsilon^{2} \mathbf{A} \mathbf{b} & \epsilon \mathbf{b} \end{array}\right] + LDC\right) \left[\begin{array}{c} u_{0} \\ u_{1} \\ u_{2} \\ u_{3} \end{array}\right]}_{l}$$

Key idea

Iff $[\epsilon^4 \mathbf{A}^3 \mathbf{b} \quad \epsilon^3 \mathbf{A}^2 \mathbf{b} \quad \epsilon^2 \mathbf{A} \mathbf{b} \quad \epsilon \mathbf{b}]$ has *full rank*, we can choose \mathbf{x}_4 as we like with our inputs.

Controllability matrix

Iff the controllability matrix has full rank: rank(C) = n

$$C \triangleq [B AB \dots A^{(n-1)}b]$$

the state can be placed anywhere with the right sequence of inputs.

-This is controllability.

Topic

- 1. Canonical Forms
- 2. Realizations
- 3. Discretization
- 4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

Controllability Gramian

Given an LTI system:

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 + \int_0^t e^{\mathbf{A}(t- au)}\mathbf{B}\mathbf{u}(au)d au$$

Attempt to place the system at \mathbf{x}_1 at $t = t_1$:

$$\mathbf{x}_1 = \mathbf{x}(t_1) = e^{\mathbf{A}t_1}\mathbf{x}_0 + \int_0^{t_1} e^{\mathbf{A}(t_1- au)}\mathbf{B}\mathbf{u}(au)d au$$

We clearly need the proper input signal $\mathbf{u}(t)$ to do this.

If we can find such an input, the system is controllable.

Controllability Gramian: definition

$$\mathbf{W}_{\mathcal{C}}(t) = \int_{0}^{t} e^{\mathbf{A}(t- au)} \mathbf{B} \mathbf{B}^{\mathsf{T}} e^{\mathbf{A}^{\mathsf{T}}(t- au)} d au$$

The existence of a nonsingular Controllability Gramian is important because it guarantees that a sufficient $\mathbf{u}(t)$ exists.

Place the system at \mathbf{x}_1 at $t = t_1$

$$\mathbf{x}_1 = \mathbf{x}(t_1) = e^{\mathbf{A}t_1}\mathbf{x}_0 + \int_0^{t_1} e^{\mathbf{A}(t_1-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

We need an input $\mathbf{u}(t)$ to do this.

Educated guess:

$$\mathbf{u}(t) = -\mathbf{B}^{\mathsf{T}} e^{\mathbf{A}^{\mathsf{T}}(t_1 - t)} \mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A}t_1} \mathbf{x}_0 - \mathbf{x}_1 \right]$$

Result

$$\begin{split} \mathbf{x}_1 &= e^{\mathbf{A}t_1}\mathbf{x}_0 - \int_0^{t_1} e^{\mathbf{A}(t_1-\tau)}\mathbf{B} \left(\mathbf{B}^\mathsf{T} e^{\mathbf{A}^\mathsf{T}(t_1-\tau)}\mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A}t_1}\mathbf{x}_0 - \mathbf{x}_1\right]\right) d\tau \\ &= e^{\mathbf{A}t_1}\mathbf{x}_0 - \overbrace{\left(\int_0^{t_1} e^{\mathbf{A}(t_1-\tau)}\mathbf{B}\mathbf{B}^\mathsf{T} e^{\mathbf{A}^\mathsf{T}(t_1-\tau)} d\tau\right)}^{\mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A}t_1}\mathbf{x}_0 - \mathbf{x}_1\right]} \\ &= e^{\mathbf{A}t_1}\mathbf{x}_0 - \left[e^{\mathbf{A}t_1}\mathbf{x}_0 - \mathbf{x}_1\right] = \underline{\mathbf{x}_1} \end{split}$$

Iff $\mathbf{W}_c(t)$ is invertible, the system is controllable.

$$\mathbf{W}_{\mathcal{C}}(t) = \int_{0}^{t} e^{\mathbf{A}(t- au)} \mathbf{B} \mathbf{B}^{\mathsf{T}} e^{\mathbf{A}^{\mathsf{T}}(t- au)} d au$$

When is $\mathbf{W}_c(t)$ invertible?

- $e^{\mathbf{A}t}$ may be expressed as a linear combination of $\{\mathbb{I}, \mathbf{A}, \dots, \mathbf{A}^{n-1}\}$
- $e^{\mathbf{A}t}\mathbf{B}$ may be expressed as a linear combination of $\{\mathbf{B}, \mathbf{AB}, \dots, \mathbf{A}^{n-1}\mathbf{B}\}$

Consider the effect of the vector v

$$\mathbf{v}^{\mathsf{T}}\mathbf{W}_{c}(t)\mathbf{v} = \int_{0}^{t} \overbrace{\mathbf{v}^{\mathsf{T}}e^{\mathbf{A}\tau}\mathbf{B}}^{\mathbf{0}} \mathbf{B}^{\mathsf{T}}e^{\mathbf{A}^{\mathsf{T}}\tau}\mathbf{v} d\tau$$

Key point:

$$\overbrace{v^{T}e^{A\tau}B}^{0} \Rightarrow \overbrace{v^{T} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}}^{0}$$

The Gramian is invertible iff the controllability matrix has full rank!

Equivalent Statements on Controllability

Controllability Gramian

$$\mathbf{W}_c(t) = \int_0^t e^{\mathbf{A}(t- au)} \mathbf{B} \mathbf{B}^\mathsf{T} e^{\mathbf{A}^\mathsf{T}(t- au)} d au$$

Iff $\mathbf{W}_c(t)$ is invertible, the system is controllable.

Controllability Matrix

$$C = \overbrace{\begin{bmatrix} \mathbf{B} & \mathbf{AB} & \cdots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}}^{np} n$$

Iff the controllability matrix has full rank: rank(C) = n, the system is controllable.

Example

Example

Linearized EOM

$$\begin{bmatrix} \dot{x} \\ \dot{\theta} \\ \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -\frac{gm}{M} & 0 & 0 \\ 0 & \frac{g(m+M)}{M} & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{M} \\ -\frac{1}{M} \end{bmatrix} u$$

Linearized EOM

$$\begin{bmatrix} \dot{x} \\ \dot{\theta} \\ \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -\frac{gm}{M} & 0 & 0 \\ 0 & \frac{g(m+M)}{M} & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{M} \\ -\frac{1}{M} \end{bmatrix} u$$

Linearized EOM:
$$M = 2kg$$
, $m = 1kg$, $l = 1m$, $g = 10\frac{m}{s^2}$

$$\begin{bmatrix} \dot{x} \\ \dot{\theta} \\ \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -5 & 0 & 0 \\ 0 & 15 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} u$$

Controllability Matrix: Full row rank

Controllability Gramian: Invertible

$$\mathbf{W}_c(t) = \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{B}^\mathsf{T} e^{\mathbf{A}^\mathsf{T}(t-\tau)} d\tau$$

Linearized EOM:
$$M = 2kg$$
, $m = 1kg$, $l = 1m$, $g = 10\frac{m}{s^2}$

$$\begin{bmatrix} \dot{x} \\ \dot{\theta} \\ \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -5 & 0 & 0 \\ 0 & 15 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} u$$

Move the cart from $\mathbf{x}_0 = \mathbf{0}$ to $\mathbf{x}_1 = [1, 0, 0, 0]^T$, $t_1 = 3s$

Let's use the Gramian:

$$\mathbf{u}(t) = -\mathbf{B}^\mathsf{T} e^{\mathbf{A}^\mathsf{T} (t_1 - t)} \mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A} t_1} \mathbf{x}_0 - \mathbf{x}_1 \right]$$

Controllability Gramian

$$\mathbf{W}_{c}(t) = \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{B}^{\mathsf{T}} e^{\mathbf{A}^{\mathsf{T}}(t-\tau)} d\tau$$

Move the cart from
$$\mathbf{x}_0 = \mathbf{0}$$
 to $\mathbf{x}_1 = [1, 0, 0, 0]^T$, $t_1 = 3s$

Let's use the Gramian:

$$\mathbf{u}(t) = -\mathbf{B}^{\mathsf{T}} e^{\mathbf{A}^{\mathsf{T}}(t_1 - t)} \mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A}t_1} \mathbf{x}_0 - \mathbf{x}_1 \right]$$

Move the cart from
$$\mathbf{x}_0 = \mathbf{0}$$
 to $\mathbf{x}_1 = [1, 0, 0, 0]^T$, $t_1 = 3s$

Let's use the Gramian:

$$\mathbf{u}(t) = -\mathbf{B}^{\mathsf{T}} e^{\mathbf{A}^{\mathsf{T}}(t_1 - t)} \mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A}t_1} \mathbf{x}_0 - \mathbf{x}_1 \right]$$

Topic

- 1. Canonical Forms
- 2. Realizations
- 3. Discretization
- 4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

Eigenvector test

Basic idea

If the Controllability matrix has full rank, there is no vector **v** such that:

$$\mathcal{C}^{T}\boldsymbol{v} = \left[\begin{array}{c} \boldsymbol{B}^{T} \\ \boldsymbol{B}^{T}\boldsymbol{A}^{T} \\ \dots \\ \boldsymbol{B}^{T}(\boldsymbol{A}^{T})^{(n-1)} \end{array} \right] \boldsymbol{v} = \boldsymbol{0}, \quad \forall \boldsymbol{v} \neq \boldsymbol{0}$$

Let **v** be an eigenvector of \mathbf{A}^{T} : $\mathbf{A}^{\mathsf{T}}\mathbf{q} = \lambda \mathbf{v}$

$$\begin{bmatrix} \mathbf{B}^T \\ \mathbf{B}^T \mathbf{A}^T \\ \dots \\ \mathbf{B}^T (\mathbf{A}^T)^{(n-1)} \end{bmatrix} \mathbf{q} = \begin{bmatrix} \mathbf{B}^T \\ \lambda \mathbf{B}^T \\ \vdots \\ \lambda^{n-1} \mathbf{B}^T \end{bmatrix} \mathbf{q}$$

Warning

Controllability is only possible if every eigenvector of \mathbf{A}^T is not in the null-space of \mathbf{B}^T .

Eigenvector test

Warning

Controllability is only possible if every eigenvector of \mathbf{A}^T is not in the null-space of \mathbf{B}^T .

Popov-Belevitch-Hautus - test

The PBH test gives an elegant test based on this insight. An LTI system is controllable iff:

$$rank[\mathbf{A} - \lambda \mathbb{I} \ \mathbf{B}] = n, \quad \forall \lambda \in \mathbb{C}$$

Topic

2. Realizations

3. Discretization

4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

Controllable systems

Three important points

- If the pair $\{A, B\}$ is controllable, so is $\{A BK, B\}$.
- If the system is controllable we can place the eigenvalues of the system exactly as desired.
- A controllable system can always be transformed to the controllable canonical form.

Controllability in practice

Caveats

Even if the controllability matrix has full rank, this does not mean that the system is easy to control in practice.

- The controller may require too large inputs.
- The closed loop response may be highly sensitive to modeling errors in $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$.
- The closed loop eigenvalues may have been chosen unrealistically fast.
- Fast response requires powerful actuators and an accurate model.
- The system may be "almost uncontrollable" in practice.

Controllable?

Dynamic positioning

State equation

$$\left[\begin{array}{c} \dot{V} \\ \dot{V}_{s} \\ \dot{\omega} \end{array} \right] = \left[\begin{array}{ccc} -\frac{d}{m} & 0 & 0 \\ 0 & -\frac{d_{s}}{m} & 0 \\ 0 & 0 & -\frac{d_{\omega}}{J} \end{array} \right] \left[\begin{array}{c} V \\ V_{s} \\ \omega \end{array} \right] + \left[\begin{array}{ccc} 1/m & -\sin(\theta)/m \\ 0 & \cos(\theta)/m \\ 0 & \cos(\theta)r/J \end{array} \right] \left[\begin{array}{c} u_{1} \\ u_{2} \end{array} \right]$$

Controllable?

Dynamic positioning

Controllability matrix

$$\mathcal{C} = \left[\begin{array}{cccc} \frac{1}{m} & -\frac{\sin(\theta)}{m} & -\frac{d}{m^2} & \frac{d\sin(\theta)}{m^2} & \frac{d^2}{m^3} & -\frac{d^2\sin(\theta)}{m^3} \\ 0 & \frac{\cos(\theta)}{m} & 0 & -\frac{\cos(\theta)d_s}{m^2} & 0 & \frac{\cos(\theta)d_s^2}{m^3} \\ 0 & \frac{r\cos(\theta)}{J} & 0 & -\frac{r\cos(\theta)d_\omega}{J^2} & 0 & \frac{r\cos(\theta)d_\omega^2}{J^3} \end{array} \right]$$

Controllable?

Dynamic positioning

Condition number of $\mathcal C$

Topic

2. Realizations

3. Discretization

4. Controllability

Controllability Gramians

Eigenvector tests

Controllability in practice

Controllability indices

Controllability Controllability indices

What's wrong with this **B**?

$$\mathbf{B} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right]$$

Answer

Linear dependency in the columns. We disregard redundant inputs.

We have *p* inputs. Let:

Controllability matrix

Controllability index

The controllability indices of \mathbf{b}_{ρ} : μ_{ρ} , are the number of linearly independent columns associated with \mathbf{b}_{ρ} . These indices sum to:

$$\mu_1 + \mu_2 + \cdots + \mu_p = n$$

The largest μ_i is the controllability index.

Multi-input controllability

Using these indices, we can show that it is sufficient to check the rank of:

$$C = [\mathbf{B} \mid \mathbf{AB} \mid \dots \mid \mathbf{A}^{n-p}\mathbf{B}]$$

Final notes

Property 1

Controllability is not affected by an equivalence transformation.

Property 2

Controllability is not affected by reordering the columns of B.