Using Zoom for Lectures

Sign in using:

your name

Please mute both:

- your video cameras for the entire lecture
- your audio/mics unless asking or answering a question

Asking/answering a question, option 1:

- click on Participants
- use the hand icon to raise your hand
- I will call on you and ask you to unmute yourself

Asking/answering a question, option 2:

- click on Chat
- type your question, and I will answer it

Today: Outline

Semi-supervised Learning

Reminders: Class Challenge is posted, due Apr 24
 (3-week challenge)

Midterm Exam, Apr 15 during class time

(covering material up to and including Apr 3)

Practice Problems are posted
Trial Exam Submission in class today

Semi-Supervised Learning

Slides credit: Jerry Zhu, Aarti Singh

Supervised Learning

Feature Space \mathcal{X}

Label Space \mathcal{Y}

Goal: Construct a **predictor** $f: \mathcal{X} \to \mathcal{Y}$ to minimize

loss(Y, f(X))

Labeled and Unlabeled data

Unlabeled data, X_i

Cheap and abundant!

Human expert/
Special equipment/
Experiment

"Crystal" "Needle" "Empty"

"0" "1" "2" ..

"Sports"

"News"

"Science"

. .

Labeled data, Y_i

Expensive and scarce!

Semi-Supervised learning

Training data
$$\square$$
 Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$ $\{X_i\}_{i=1}^m$

Supervised learning (SL)

Labeled data $\{X_i, Y_i\}_{i=1}^n$

"Crystal"

 X_i

 Y_i

Semi-Supervised learning (SSL)

Labeled data $\{X_i, Y_i\}_{i=1}^n$ and Unlabeled data $\{X_i\}_{i=1}^m$

Goal: Learn a better prediction rule than based on labeled data alone.

Semi-Supervised learning in Humans

Cognitive science

Computational model of how humans learn from labeled and unlabeled data.

- concept learning in children: x=animal, y=concept (e.g., dog)
- Daddy points to a brown animal and says "dog!"
- Children also observe animals by themselves

Can unlabeled data help?

- Positive labeled data
- Negative labeled data
- Unlabeled data

Assume each class is a coherent group (e.g. Gaussian)

Then unlabeled data can help identify the boundary more accurately.

Can unlabeled data help?

Unlabeled Images

Labels "0" "1" "2" ...

This embedding can be done by manifold learning algorithms, e.g. t-SNE

"Similar" data points have "similar" labels

Algorithms

Semi-Supervised Learning

Slides credit: Jerry Zhu, Aarti Singh

Some SSL Algorithms

- Self-Training
- Generative methods, mixture models
- Graph-based methods
- Co-Training
- Semi-supervised SVM
- Many others

Notation

- instance \mathbf{x} , label y
- learner $f: \mathcal{X} \mapsto \mathcal{Y}$
- labeled data $(X_l, Y_l) = \{(x_{1:l}, y_{1:l})\}$
- unlabeled data $X_u = \{\mathbf{x}_{l+1:l+u}\}$, available during training. Usually $l \ll u$. Let n = l + u
- test data $\{(x_{n+1...}, y_{n+1...})\}$, not available during training

Self-training

Our first SSL algorithm:

```
Input: labeled data \{(\mathbf{x}_i, y_i)\}_{i=1}^l, unlabeled data \{\mathbf{x}_j\}_{j=l+1}^{l+u}.
```

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
- 2. Repeat:
- 3. Train f from L using supervised learning.
- 4. Apply f to the unlabeled instances in U.
- 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L.

Self-training is a wrapper method

- ullet the choice of learner for f in step 3 is left completely open
- good for many real world tasks like natural language processing
- but mistake by f can reinforce itself

Self-training Example

Propagating 1-NN

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, distance function d().

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
- 2. Repeat until U is empty:
- 3. Select $\mathbf{x} = \operatorname{argmin}_{\mathbf{x} \in U} \min_{\mathbf{x}' \in L} d(\mathbf{x}, \mathbf{x}')$.
- 4. Set $f(\mathbf{x})$ to the label of \mathbf{x} 's nearest instance in L. Break ties randomly.
- 5. Remove \mathbf{x} from U; add $(\mathbf{x}, f(\mathbf{x}))$ to L.

Propagating 1-Nearest-Neighbor: now it works

Propagating 1-Nearest-Neighbor: now it doesn't

But with a single outlier...

Co-training

Assumptions

- feature split $x = [x^{(1)}; x^{(2)}]$ exists
- ullet $x^{(1)}$ or $x^{(2)}$ alone is sufficient to train a good classifier

Co-training Algorithm

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that

- (i) features can be split into two sets;
- (ii) each sub-feature set is sufficient to train a good classifier.
- Initially two separate classifiers are trained with the labeled data, on the two sub-feature sets respectively.
- Each classifier then classifies the unlabeled data, and 'teaches' the other classifier with the few unlabeled examples (and the predicted labels) they feel most confident.
- Each classifier is retrained with the additional training examples given by the other classifier, and the process repeats.

Co-training Algorithm

Blum & Mitchell'98

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k.

- 1. let $L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$
- 2. Repeat until unlabeled data is used up:
- 3. Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 .
- 4. Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately.
- Add $f^{(1)}$'s top k most-confident predictions $(\mathbf{x}, f^{(1)}(\mathbf{x}))$ to L_2 . Add $f^{(2)}$'s top k most-confident predictions $(\mathbf{x}, f^{(2)}(\mathbf{x}))$ to L_1 . Remove these from the unlabeled data.

Trial Exam Submission

Submission Link