USAGE OF MACHINE LEARNING (ML)

OBJECTIVES:

- 1. PREDICTING MEDIAN HOUSE PRICE USING ML REGRESSION ALGORITHM
- 2. PREDICTING THE OCCURRENCE OF STROKE USING ML CLASSIFICATION ALGORITHMS

• Problem statements:

- Are you interested in purchasing property or planning to invest in real estate? Both requires property
 value appraisal. In locations like Singapore, where land value has a significant impact on the market,
 making informed decisions becomes crucial.
- The market price of a house can be determined using Machine Learning techniques, such as regression models, that analyze various factors like location, size, amenities, and historical sales data to predict a property's value accurately.
- In this study, California Housing dataset (from 1990 California census data) was obtained from Kaggle.
 - 10 key info was obtained from nearly 21,000 houses
 - i.e. location, ocean proximity, house age, median income, median house value.

Notes:

Kaggle is a platform for data science and machine learning enthusiasts, researchers, and professionals to collaborate, compete, and share insights. It provides a community-driven environment where users can find and publish datasets, explore and visualize data, and participate in machine learning competitions.

Prepared by Emma T. (28 Aug 2023)

INSIGHTS ON THE CALIFORNIA HOUSING DATA (Y1990)

- Median house price range from \$15k to \$500k, with the highest density lies between \$120k to \$180k.
- Presence of approx. 5% outliers which shows house value on the pricier side up to \$500k.

INSIGHTS ON THE CALIFORNIA HOUSING DATA (Y1990) - CONT.

- The top 3 info beside ocean proximity that have the highest correlation to house value in descending orders are:
 - Income
 - Number of rooms
 - House age

INSIGHTS ON THE CALIFORNIA HOUSING DATA (Y1990) - CONT.

Majority house age between 20 to 30+ years

Majority median income of the household is between \$20k -\$50k yearly.

 At a hindsight, a family earning \$35k yearly is likely to be able to afford a \$120k house of approx. 30 years old. 1. PREDICTING MEDIAN HOUSE PRICE USING ML – CONT.

INSIGHTS ON THE CALIFORNIA HOUSING DATA (Y1990) – CONT.

So, does an ocean view means pricier house?

- From data, house on island fetch highest value (\$300k - \$450k).
- Followed closely by house near bay, near ocean and
 1 hour drive from ocean respectively.
- In general, inland house is cheapest in general, from \$90k, with some unique cases of reaching \$500k.
 - These outliers could be properties with exceptionally large sizes or unique features that justify their higher prices.

MACHINE LEARNING RESULT – LINEAR REGRESSION MODEL

- Model was trained using Linear Regression (LR) Algorithm using forward feature selection of all info except house value and cross-validated.
- Model accuracy of a LR can be checked using the evaluation metrics. MSE value show that a large error is to be expected.
- From MAE & RMSE, the model's **predictions are off by \$50-\$70k** in terms of median house value.

MACHINE LEARNING RESULT – LINEAR REGRESSION MODEL

	Training R2	Test R2	Training RMSE	Test RMSE
1	0.635251	0.638116	69530.642205	70043.796111
2	0.640800	0.613917	69178.226996	71616.559595
3	0.641102	0.613560	69376.904635	70674.581745
4	0.631952	0.651167	70009.771739	68134.530496
5	0.630981	0.654823	69981.333296	68242.216508

- Similar R2 training and testing results indicate
 the model's consistent and effective
 generalization to new data without overfitting
 or underfitting.
- R2 value suggests that the model explains about 63% of the variability in the target variable which is good.
- Model prediction may be further improved with more data on house size & amenities etc

2. PREDICTING THE OCCURRENCE OF STROKE

Problem Statements:

- In our community, a vital concern is identifying individuals at risk of strokes before it's too late, as strokes can lead to severe outcomes.
- For doctors, this can help to set priority on which patients to focus on based on likelihood of stroke occurrence.
- This is where machine learning steps in a proactive approach that analyzes comprehensive medical and lifestyle data. By uncovering hidden patterns and connections, machine learning enhances the accuracy of identifying risks, offering a promising way to save lives within our community.
- Health care dataset was obtained from Kaggle, provided by Fedesoriano in 2020.
 - 11 key info was obtained from over 5,000 patients
 - i.e. age, history of hypertension, heart disease and smoking status are among the key info.

INSIGHTS ON THE HEALTH CARE DATA (Y2020)

Notes:

- While experimenting with class weight balancing, the model frequently exhibited a bias towards predicting no strokes, rendering it ineffective.
- The utilization of oversampling techniques like SMOTE was avoided to prevent the introduction of synthetic patterns that could potentially distort the natural distribution of data.
- The original dataset was severely skewed towards no stroke patient (95%). In stroke prediction through
 machine learning, having a balanced dataset is indeed essential to prevent bias and ensure accurate model
 performance and real-world applicability.
- Undersampling method is applied to balance the dataset. While 90% of data was sacrificed, the trade-off is
 justified to effectively addresses the under-represented class.

2. PREDICTING THE OCCURRENCE OF STROKE USING ML – CONT.

INSIGHTS ON THE HEALTH CARE DATA (Y2020) – CONT.

	Correlation Heatmap with Target Variable (Stroke)
200	0.57
age	
avg_glucose_level	0.24
hypertension	0.22
ever_married_Yes	0.22
heart_disease	0.21
work_type_Self-employed	0.13
bmi	0.1
smoking_known	0.083
Residence_type_Urban	0.028
work_type_Private	0.016
gender_Male	0.012
work_type_Govt_job	-0.012
gender_Female	-0.012
Residence_type_Rural	-0.028
work_type_Never_worked	-0.045
smoking_unknown	-0.1
ever_married_No	-0.22
work_type_children	-0.23
	0

- The top 6 info that have the highest correlation to stroke in descending orders are:
 - Age
 - Average glucose level
 - Hypertension & Being married
 - Heart disease
 - Being self employed

2. PREDICTING THE OCCURRENCE OF STROKE USING ML – CONT. INSIGHTS ON THE HEALTH CARE DATA (Y2020) – CONT.

A closer look at Top 5 info with highest correlation

 Upon closer examination, individuals over the age of 55 and average glucose level >180 are notably more prone to experiencing a stroke (wider spread observed from violin plot). 2. PREDICTING THE OCCURRENCE OF STROKE USING ML – CONT. INSIGHTS ON THE HEALTH CARE DATA (Y2020) – CONT.

A closer look at Top 5 info with highest correlation

• While being married and having a history of hypertension and heart disease does not guarantee a stroke, data shows that these does elevate the chances.

2. PREDICTING THE OCCURRENCE OF STROKE USING ML — CONT.

MACHINE LEARNING RESULT

Quick study on metrics used:

- Accuracy provides an overall gauge of stroke prediction model's performance
- Precision helps avoid false positive predictions
- Recall helps avoid missing actual stroke cases
- F1 score offers a way to strike a balance between precision and recall based on study specific priorities.

- Model was trained using 3 commonly used algorithms; Support Vector Machine (SVM), Logistic Regression and Naïve Bayes.
 - The best performing model is SVM (scaled) with highest score across all 4 metrics tested with 78% accuracy on test data.

End of Presentation. Thank you. Q&As Session

Dataset, codes & models are available in GitHub Link: https://github.com/EmmaT0611/mp2 supervisedmachinelearning

APPENDIX 1.

Key Info from California Housing Dataset Explained:

- 1. Longitude: A measure of how far west a house is; a higher value is farther west
- 2. Latitude: A measure of how far north a house is; a higher value is farther north
- 3. Housing Median Age: Median age of a house within a district; a lower number is a newer building
- 4. Total Rooms: Total number of rooms within a district
- 5. Total Bedrooms: Total number of bedrooms within a district
- 6. Population: Total number of people residing within a district
- 7. Households: Total number of households, a group of people residing within a home unit, for a district
- 8. Median Income: Median income for households within a district of houses (measured in tens of thousands of US Dollars)
- 9. Median House Value: Median house value for households within a district (measured in US Dollars)
- 10. Ocean Proximity: Location of the house with respect to ocean/sea

APPENDIX 2.

Key Info from Health Care Dataset Explained:

- Gender: "Male", "Female" or "Other"
- Age: age of the patient
- Hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
- Heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- Ever_married: "No" or "Yes"
- Work_type: "children", "Govt_job", "Never_worked", "Private" or "Self-employed"
- Residence_type: "Rural" or "Urban"
- Avg_glucose_level: average glucose level in blood
- Bmi: body mass index
- Smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
- Stroke: 1 if the patient had a stroke or 0 if not
- *Note: "Unknown" in smoking_status means that the information is unavailable for this patient

REFERENCES

- House Price Prediction Using Linear Regression (2021) by Simran Kaur Link: https://linuxhint.com/house-price-prediction-linear-regression/
- Predicting House Prices with Linear Regression | Machine Learning from Scratch (2019) by Venelin Valkov Link: https://towardsdatascience.com/predicting-house-prices-with-linear-regression-machine-learning-from-scratch-part-ii-47a0238aeac1
- Analyzing the Performance of Stroke Prediction using ML Classification Algorithms (2021) by Gangavarapu Sailasya & Gorli L Aruna Kumari.
 Link:https://thesai.org/Downloads/Volume12No6/Paper 62Analyzing the Performance of Stroke Prediction.pdf
- Stroke Disease Detection and Prediction Using Robust Learning Approaches (2021) by Tahia Tazin and team. Link: https://www.hindawi.com/journals/jhe/2021/7633381/
- Stroke Risk Prediction with Machine Learning Techniques (2022) by Elias Dritsas* and Maria Trigka. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268898/