Homework #8

Winter 2020, STATS 509 Dino Bektesevic

Problem 1: Properties of Estimators and Confidence Intervals

Goldberger Qu. 11.2

Hints: For (a) use common sense / the analogy principle; for (b) read Goldberger §10.1, p.107; for part (c) use the analogy principle and p.108; for (d) recall that the standard error of T is simply an estimate of the standard deviation of T.

a. We can pick $T = \bar{X} - \bar{Y}$ since:

$$E[T] = E[\bar{X}] - E[\bar{Y}] = \mu_X - \mu_Y = \theta$$

b.

$$\begin{split} V(T) &= Cov(T,T) = Cov(\bar{X} - \bar{Y}, \bar{X} - \bar{Y}) \\ &= V(\bar{X}) + V(\bar{Y}) - 2Cov(\bar{Y}, \bar{X}) \\ &= V(\bar{X}) + V(\bar{Y}) - 2Cov\left(\frac{1}{n}\sum_{i}^{n}y_{i}, \frac{1}{n}\sum_{i}^{n}x_{i}\right) \\ &= V(\bar{X}) + V(\bar{Y}) - \frac{2}{n^{2}}\sum_{i,j=1}^{n}Cov(y_{i}, x_{j}) \\ &= V(\bar{X}) + V(\bar{Y}) - \frac{2}{n^{2}}\sum_{i,j=1}^{n}\sigma_{XY} \\ &= \frac{\sigma_{X}^{2}}{n} + \frac{\sigma_{Y}^{2}}{n} - \frac{2}{n^{2}}n\sigma_{XY} \\ &= \frac{\sigma_{X}^{2} + \sigma_{Y}^{2} - 2\sigma_{XY}}{n} \end{split}$$

c. By analogy with b) we can just say:

$$V(T) = \frac{S_X^2 + S_Y^2 - 2S_{XY}}{n}$$

d. For standard error of T I would report $\sqrt{V(T)}$

¹This usage of the term 'standard error' follows Goldberger (p.123) who defines the 'standard error' of \bar{Y} to be s/\sqrt{n} which is an **estimate** of σ/\sqrt{n} , the standard deviation of \bar{Y} . (Here assuming σ is unknown.

However, other authors use 'standard error of \bar{Y} ' to refer to σ/\sqrt{n} ; such authors will then refer to s/\sqrt{n} as an **estimated** standard error. (For Goldberger, adding the word 'estimated' to 'standard error' would be redundant.)

Goldberger Qu. 11.3 Hints: see p.119. For part (a), express the estimator as $T = a_1\bar{Y}_1 + a_2\bar{Y}_2$; find a constraint on a_1 and a_2 in order for T to be unbiased for μ ; use this to solve for a_2 in terms of a_1 ; find the variance of T; substitute for a_2 , and then differentiate the variance with respect to a_1 .

a. We are asked to consider $T = c_1 \bar{Y}_1 + c_2 \bar{Y}_2$. We want it to be unbiased so:

$$\mu = E[T] = c_1 E[\bar{Y}_1] + c_2 E[\bar{Y}_2] = c_1 \mu + c_2 \mu = (c_1 + c_2)\mu$$

we must conclude that $c_1 + c_2 = 1 \implies c_2 = 1 - c_1$ if unbiased-ness is to hold true. We are asked to find the minimum variance unbiased estimator so:

$$V(T) = V(c_1\bar{Y}_1 + c_2\bar{Y}_2)$$

$$= V(c_1\bar{Y}_1) + V(c_2\bar{Y}_2)$$

$$= c_1^2V(\bar{Y}_1) + c_2^2V(\bar{Y}_2)$$

$$= c_1^2V(\bar{Y}_1) + (1 - c_1)^2V(\bar{Y}_2)$$

where we, in line 2, used the fact that the problem tells us that the two samples are independent so $Cov(\bar{Y}_1, \bar{Y}_2) = 0$. We minimize the variance as a function of the constants:

$$0 = \frac{\partial}{\partial c_1} V(T)$$

$$0 = \frac{\partial}{\partial c_1} \left(c_1^2 V(\bar{Y}_1) + (1 - c_1)^2 V(\bar{Y}_2) \right)$$

$$0 = 2c_1 V(\bar{Y}_1) - 2(1 - c_1) V(\bar{Y}_2)$$

$$0 = 2c_1 (V(\bar{Y}_1) + V(\bar{Y}_2)) - 2V(\bar{Y}_2)$$

$$c_1 = \frac{V(\bar{Y}_2)}{V(\bar{Y}_1) + V(\bar{Y}_2)}$$

$$\rightarrow c_2 = 1 - c_1 = \frac{V(\bar{Y}_1)}{V(\bar{Y}_1) + V(\bar{Y}_2)}$$

b. to verify that $V(T) < V(\bar{Y}_1), V(\bar{Y}_2)$ we can write:

$$\begin{split} V(T) &= c_1 \bar{Y}_1 + c_2 \bar{Y}_2 \\ &= \left(\frac{V(\bar{Y}_2)}{V(\bar{Y}_1) + V(\bar{Y}_2)}\right)^2 V(\bar{Y}_1) + \left(\frac{V(\bar{Y}_1)}{V(\bar{Y}_1) + V(\bar{Y}_2)}\right)^2 V(\bar{Y}_2) \\ &= \frac{V(\bar{Y}_2)^2 V(\bar{Y}_1) + V(\bar{Y}_1)^2 V(\bar{Y}_2)}{\left(V(\bar{Y}_1) + V(\bar{Y}_2)\right)^2} \\ &= \frac{V(\bar{Y}_1) V(\bar{Y}_2) \left(V(\bar{Y}_2) + V(\bar{Y}_1)\right)}{\left(V(\bar{Y}_1) + V(\bar{Y}_2)\right)^2} \\ &= \frac{V(\bar{Y}_1) V(\bar{Y}_2)}{V(\bar{Y}_1) + V(\bar{Y}_2)} \end{split}$$

To show the inequality we can write

$$\begin{split} \frac{V(T)}{V(\bar{Y}_1)} &= \frac{V(\bar{Y}_2)}{V(\bar{Y}_1) + V(\bar{Y}_2)} \leq 1 \\ \frac{V(T)}{V(\bar{Y}_2)} &= \frac{V(\bar{Y}_1)}{V(\bar{Y}_1) + V(\bar{Y}_2)} \leq 1 \end{split}$$

since variance is always positive or zero.

Goldberger Qu. 11.4. Assume that Y_1 and Y_2 are independent.

We are told that we have N=100 samples where n_1 comes from $Y_1 \sim N(\mu_1, 50)$ and n_2 comes from $Y_2 \sim N(\mu_2, 100)$ so that $N=n_1+n_2$.

We are estimating $T = \mu_1 - \mu_2$ just like in question 1 so we can use $T = \bar{Y}_1 - \bar{Y}_2$ as an unbiased estimator of θ . To get the best estimation of θ we want to minimize the variance of T. So we can write:

$$\begin{split} V(T) &= V(\bar{Y}_1) + V(\bar{Y}_2) \\ &= \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \\ &= \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{N - n_1} \end{split}$$

Where we used the fact Y_1 and Y_2 are independent. Minimizing this expression with respect to number of samples n_1 will tell us how many samples of Y_1 we want to get the best estimate of θ :

$$\begin{split} \frac{\partial}{\partial n_1}V(T) &= \frac{\partial}{\partial n_1}\left[\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{N-n_1}\right] = 0\\ &-\frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{(N-n_1)^2} = 0\\ &\sigma_1^2(N-n_1)^2 = \sigma_2^2n_1^2\\ &\sigma_2^2n_1^2 - \sigma_1^2(N^2 - 2Nn_1 + n_1^2) = 0\\ &\sigma_2^2n_1^2 - \sigma_1^2N^2 + 2\sigma_1^2Nn_1 - \sigma_1^2n_1^2 = 0\\ &(\sigma_2^2 - \sigma_1^2)n_1^2 + 2\sigma_1^2Nn_1 - \sigma_1^2N^2 = 0\\ &\left(\frac{\sigma_2^2}{\sigma_1^2} - 1\right)n_1^2 + 2Nn_1 - N^2 = 0\\ &\left(\frac{100}{50} - 1\right)n_1^2 + 200n_1 - 10000 = 0\\ &n_1^2 + 200n_1 - 10000 = 0\\ &\rightarrow n_{1,1} = 41.42\\ &n_{1,2} = -241.42 \end{split}$$

So we would want to draw 41 sample from Y_1 and 59 from Y_2 .

Problem 4: Maximum Likelihood / ZES Estimation / GLRTs

Suppose that X_1, \ldots, X_n are i.i.d. observations from the following pmf:

$$f(x \mid \theta) = \begin{cases} e^{\theta x} / (1 + e^{\theta}) & x \in \{0, 1\} \\ 0 & \text{otherwise} \end{cases}$$

where $\theta \in \mathbb{R}$.

a. Confirm that for any value of θ , this is a probability mass function.

$$\begin{split} \sum_{x} f(x|\theta) &= 1 \\ f(0|\theta) + f(1|\theta) &= 1 \\ \frac{1}{1+e^{\theta}} + \frac{e^{\theta}}{1+e^{\theta}} &= 1 \\ \frac{1}{1+e^{\theta}} &= 1 \ \forall \theta \in \mathbb{R} \end{split}$$

- b. Write down the likelihood for one observation $f(x \mid \theta)$. Find the log-likelihood, $\ell = \log f(x \mid \theta)$.
- c. Find the score variable $Z = (\partial \ell / \partial \theta)$. Using the fact that E[Z] = 0, find E(X) (see Goldberger p.128).
- d. Find the maximum likelihood estimator $\hat{\theta}$ of θ based on the random sample X_1, \ldots, X_n .
- e. Derive the ZES estimator for θ . Confirm that this leads to the same estimator for θ that you obtained in (d).
- f. Find the asymptotic variance of $\hat{\theta}$ (this will be a function of θ).
- g. By plugging in $\hat{\theta}$ for θ in your answer to (f), find the standard error of $\hat{\theta}$. In other words, find an estimate of the standard deviation of the estimator $\hat{\theta}$.
- h. Use your answer to (g) to construct an approximate 95% confidence interval for θ . Hint: make sure that your interval is a function of $\hat{\theta}$, NOT the true value of θ , which is unknown.

Suppose Y_1, \ldots, Y_n are an i.i.d. sample from a population with pmf given by:

$$p(y \mid \theta) = (y!)^{-1} \theta^y e^{-\theta} \tag{1}$$

where $\theta > 0, y_i \in \{0, 1, \ldots\}.$

(a) Write down the log-likelihood for a single observation:

$$l(\theta|y) = -\ln(y!) + y\ln(\theta) - \theta$$

(b) Using your answer to (a) find the score variable for θ : As per Goldbergers definition in chapter 12.1, p 128:

$$Z = \frac{\partial}{\partial \theta} l(\theta | x) = \frac{\partial}{\partial \theta} \left[-\ln(y!) + y \ln(\theta) - \theta \right] = \frac{y}{\theta} - 1$$

(c) Find the information variable for θ , and find its expectation: Information variable as defined in Goldberger 12.2, p 131:

$$W = -\frac{\partial}{\partial \theta}Z = -\frac{\partial}{\partial \theta}\left(\frac{y}{\theta} - 1\right) = -\frac{y}{\theta^2}$$

Expectation of which:

$$E[W] = \frac{E[y]}{\theta^2}$$

(d) Find the maximum likelihood estimator $\hat{\theta}_{MLE}$ for θ given the sample Y_1, \ldots, Y_n :

$$0 = \frac{\partial}{\partial \theta} \ln(l(\theta|y_1, \dots, y_n))$$

$$0 = \frac{\partial}{\partial \theta} \ln\left(\prod_{i=1}^n l(\theta|y_i)\right)$$

$$0 = \frac{\partial}{\partial \theta} \sum_{i=1}^n \ln(l(\theta|y_i))$$

$$0 = \sum_{i=1}^n \frac{\partial}{\partial \theta} \ln(l(\theta|y_i))$$

$$0 = \sum_{i=1}^n \frac{y_i}{\theta} - 1$$

$$0 = \frac{1}{\theta} \sum_{i=1}^n y_i - n$$

$$n\theta = \sum_{i=1}^n y_i$$

$$\theta_{MLE} = \frac{1}{n} \sum_{i=1}^n y_i = \bar{y}$$

(e) Using your answers to (c) and (d) give an approximate 90% confidence interval for θ : Hint: your answer should be a function of $\hat{\theta}_{MLE}$ and n.

$$P\left(\bar{Y} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{Y} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.90$$

$$P\left(\theta_{MLE} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \theta_{MLE} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.90$$

Let X_1, \ldots, X_n be i.i.d. observations from a $N(\mu, 1)$ population so that $f(x \mid \mu) = (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu)^2}$. Hint: See quiz section notes from 12/4/20

(a) Find the MLE $\hat{\mu}_{MLE}$ for μ .

Suppose that we wish to perform a likelihood ratio test of the hypothesis $H_0: \mu = 0$ against $H_1: \mu \neq 0$.

- (b) Using your answer to (a) write down the generalized likelihood ratio test statistic (LRT).
- (c) Re-express your answer to (b) as a function of \bar{X} , and draw the LRT as a function of \bar{X} . Hint: $\sum_{i=1}^{n} (X_i - \bar{X})^2 = \left(\sum_{i=1}^{n} X_i^2\right) - n(\bar{X})^2$.
- (d) If we wish to perform a hypothesis test with significance level $\alpha = 0.05$, use your answer to (c) to find the values of \bar{X} for which we reject H_0 . Hint: your answer should be a function of n.

Suppose that n = 100 and $\bar{x} = 0.16$.

- (e) Using your answer to (d), would we reject H_0 in favor of H_1 using significance level $\alpha = 0.05$?
- (f) Find the p-value for this hypothesis test.

A set of times T_1, \ldots, T_n are sampled independently from a population with the following density:

$$f(t \mid \theta) = \begin{cases} e^{-(t-\theta)} & t \ge \theta \\ 0 & \text{otherwise} \end{cases}$$

where $\theta > 0$.

- (a) Find the maximum likelihood estimate for θ .

 Hint: do some plots, examining the values of θ for which $f(t_1, \ldots, t_n | \theta) > 0$. It may help you first to think about the cases where n = 1 and n = 2. Do not rush into differentiating anything!
- (b) Is there a ZES estimator for θ ? Briefly explain your answer.

[Motivation: (not necessary to answer the problem, but may help with intuition). For example, the observations T_1, \ldots, T_n might be the observed times taken for n messages to be transmitted across a network. In this case, θ represents the (non-random) minimum time for a message to be transmitted across the network if there were no delays; the additional random component of the time $(T - \theta)$ is due to bottlenecks and queues encountered by the message.]