Module 2

The Coloumbic Force:

$$F_C = \frac{-k_0(Z_1 q)(Z_2 q)}{a^2}$$

Where:

 $\begin{array}{ll} 1. & Z \text{ is the valence of the charge ion} \\ 2. & q \text{ is electron charge } (0.16 \times 10^{-18} C) \\ 3. & k_0 \text{ is proportionality } (9 \times 10^9 V \cdot m \cdot C^{-1}) \\ 4. & a \text{ is the distance between ion centres} \end{array}$

The Repulsive Force:

$$F_R = \lambda e^{\frac{-a}{p}}$$

Where:

1. $\lambda \& p$ are given constants

2. a is the distance between ion centres

Coordination Number (CN):

$_{\rm CN}$	$\frac{r}{R}$ min	$\frac{r}{R}$ max
2	0	0.155
$\bar{3}$	0.155	0.225
4	0.225	0.414
$\bar{6}$	0.414	$0.7\bar{3}\bar{2}$
Š	0.732	$0.99\overline{9}$
Ĭ2	1	1

Bonding Energy:

$$E = \int_{-\infty}^{a} F da = \int_{-\infty}^{a} F_C da + \int_{-\infty}^{a} F_R da$$

Percent Ionic Character:

$$\%IC = (1 - e^{-\frac{(X_A - X_B)^2}{4}}) \cdot 100\%$$

Reaction Enthalpy:

$$\Delta H_{rxn} = \sum BE_{reactants} + \sum BE_{products}$$

Thermal Expansion:

$$\frac{\Delta L}{L_0} = \alpha (T_2 - T_1)$$

Note: Temperature is in Kelvin

$\mathbf{2}$ Module 3

Atomic Packing:

Atomic Packing Factor:

$$APF = \frac{V_{Atoms\ in\ unit\ cell}}{V_{Unit\ cell}}$$

Table of Common Packings:

Structure	CN	APV	APF
SC	6	1	$\frac{(1)(\frac{4}{3}\pi(\frac{a}{2})^3)}{a^3}; R = \frac{a}{2}$
BCC	8	2	$\frac{(2)(\frac{4}{3}\pi(\frac{\sqrt{3}a}{4})^3)}{a^3}; R = \frac{\sqrt{3}}{4}a; l = \sqrt{3}a$
FCC	12	4	$\frac{(4)(\frac{4}{3}\pi(\frac{\sqrt{2}a}{4})^3)}{a^3}; R = \frac{\sqrt{2}}{4}a$
HCP	12	2	$\frac{(2)(\frac{4}{3}\pi(\frac{a}{2})^3)}{Ac}; A = \frac{\sqrt{3}}{2}a^2; R = \frac{a}{2}; c = \sqrt{\frac{8}{3}}a$

Theoretical Density:

$$\rho = \frac{m_{Atoms~in~unit~cell}}{V_{Unit~cell}} = \frac{nA}{V_C N_A}$$

Where:

1. n is # atoms in unit cell

2. A is atomic weight

3. V_C is volume of unit cell 4. N_A is Avocado's number (6.022×10^{23})

Ionic Packing:

Ionic Packing Factor:

$$IPF = \frac{V_{ions}}{V_{Unit\ cell}}$$

Table of Common Packings:

Theoretical Density:

$$\rho = \frac{m_{cell}}{V_{cell}} = \frac{\sum m_{Ci} + \sum m_{Aj}}{V_{cell}} = \frac{\sum n_{Ci} A_{Ci} + \sum n_{Aj} A_{Aj}}{V_{cell} N_A}$$

Where:

 $\begin{array}{l} 1. \;\; n \; \text{is} \; \# \; \text{of species in unit cell} \\ 2. \;\; A \; \text{is atomic weight} \\ 3. \;\; V_C \; \text{is volume of unit cell} \\ 4. \;\; N_A \; \text{is Avocado's number} \; (6.022 \times 10^{23}) \\ \end{array}$

Semiconductors:
Table of Common Packings:

Structure	CN	Ions Per Cell
Diamond Cubic	4	8
Zinc Blende	4	4/4

Describing Crystal Structures:

Angle between Lattice Directions:

$$|\vec{u}| \cdot |\vec{v}| \cos(\theta) = \vec{u} \cdot \vec{v}$$

Determining Lattice Planes:

1. Read intercepts of plane in a, b, c

2. Take reciprocals, Reduce to integers

Bragg's Law:

$$n\lambda = 2d\sin\theta_{hkl}$$

Where:

1. θ Bragg's Angle = $\frac{1}{2} \times$ Diffraction Angle 2. d Interplanar Spacing 3. λ Radiation Wavelength

4. n order of reflection $n \in \mathbb{Z}$

D-Spacing (Cubic):

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Prediction of XRD patterns:

Table of Common pattern prediction:

Peak Order	h	k	1	$h^2 + k^2 + l^2$	SC	BCC	FCC
1	1	0	0	1	\checkmark	×	×
2	1	1	0	2	\checkmark	\checkmark	×
3	1	1	1	3	1	×	\checkmark
$\check{4}$	$\bar{2}$	Ō	Ō	4	1	1	1
5	$\bar{2}$	ĭ	Ŏ	$\bar{5}$	1	×	×
Ĭ.	$\bar{2}$	ī	Ĭ	Š.	/	7	×
7	$\bar{2}$	$\overline{2}$	Ō	š	•	×	7

SC: (100), (110), (111) BCC: (110), (200), (211) FCC: (111), (200), (220)