

Schletter, Inc.		35° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 14.43 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s =$$
 1.00
$$C_s =$$
 0.64
$$C_e =$$
 0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.2 (Pressure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	2 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.4 -1.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.2 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>39</u>	in
$\Phi F_{ty STRONG-AXIS} =$	30.12	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _v =	-0.296	k-ft
$M_z =$	-0.022	
M _{y allowable} =	1.281	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>26%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type =	1.5x0.25
Aluminum Type =	6061-T6
$F_{ty} =$	35 ksi
Φ =	0.90
$S_y =$	0.02 in^3
E =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
$M_y =$	0.001 k-ft
$P_n =$	0.160 k
$M_{y \text{ allowable}} =$	0.046 k-ft
$P_{n \text{ allowable}} =$	11.813 k
Utilization =	<u>4%</u>

A cross brace kit is required every 56 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear
Tensile Load =	<u>16.73</u>	<u>1724.78</u> k
Compressive Load =	745.85	<u>1099.01</u> k
Lateral Load =	<u>1.42</u>	<u>1136.90</u> k
Moment (Weak Axis) =	0.00	0.00 k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24951.9 in-lbs Resisting Force Required = 831.73 lbs A minimum 60in long x 20in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1386.22 lbs to resist overturning. Minimum Width = <u>20 in</u> in Weight Provided = Sliding Force = 262.29 lbs Use a 60in long x 20in wide x 18in tall Friction = 0.4 Weight Required = 655.73 lbs ballast foundation to resist sliding. Resisting Weight = 1812.50 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 262.29 lbs Cohesion = 130 psf Use a 60in long x 20in wide x 18in tall 8.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 906.25 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

 Ballast Width

 20 in
 21 in
 22 in
 23 in

 P_{ftg} = (145 pcf)(5 ft)(1.5 ft)(1.67 ft) =
 1813 lbs
 1903 lbs
 1994 lbs
 2084 lbs

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in
FA	240 lbs	240 lbs	240 lbs	240 lbs	302 lbs	302 lbs	302 lbs	302 lbs	381 lbs	381 lbs	381 lbs	381 lbs	29 lbs	29 lbs	29 lbs	29 lbs
FB	149 lbs	149 lbs	149 lbs	149 lbs	481 lbs	481 lbs	481 lbs	481 lbs	457 lbs	457 lbs	457 lbs	457 lbs	-795 lbs	-795 lbs	-795 lbs	-795 lbs
F _V	18 lbs	18 lbs	18 lbs	18 lbs	470 lbs	470 lbs	470 lbs	470 lbs	364 lbs	364 lbs	364 lbs	364 lbs	-525 lbs	-525 lbs	-525 lbs	-525 lbs
P _{total}	2202 lbs	2293 lbs	2384 lbs	2474 lbs	2595 lbs	2686 lbs	2777 lbs	2867 lbs	2650 lbs	2741 lbs	2832 lbs	2922 lbs	321 lbs	376 lbs	430 lbs	484 lbs
M	207 lbs-ft	207 lbs-ft	207 lbs-ft	207 lbs-ft	411 lbs-ft	411 lbs-ft	411 lbs-ft	411 lbs-ft	444 lbs-ft	444 lbs-ft	444 lbs-ft	444 lbs-ft	669 lbs-ft	669 lbs-ft	669 lbs-ft	669 lbs-ft
е	0.09 ft	0.09 ft	0.09 ft	0.08 ft	0.16 ft	0.15 ft	0.15 ft	0.14 ft	0.17 ft	0.16 ft	0.16 ft	0.15 ft	2.08 ft	1.78 ft	1.56 ft	1.38 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	234.5 psf	233.7 psf	233.0 psf	232.3 psf	252.3 psf	250.6 psf	249.1 psf	247.8 psf	254.2 psf	252.4 psf	250.8 psf	249.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	294.0 psf	290.4 psf	287.1 psf	284.1 psf	370.6 psf	363.3 psf	356.7 psf	350.6 psf	381.9 psf	374.1 psf	367.0 psf	360.5 psf	308.4 psf	199.2 psf	165.7 psf	150.6 psf

Maximum Bearing Pressure = 382 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_O = 0.0 \text{ ft-lbs}$

Resisting Force Required = 0.00 lbsS.F. = 1.67

Weight Required = 0.00 lbs Minimum Width = 20 in in Weight Provided = 1812.50 lbs A minimum 60in long x 20in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		20 in			20 in		20 in			
Support	Outer	Inner	Outer	Outer	Outer Inner Outer		Outer	Inner	Outer	
F _Y	46 lbs	104 lbs	43 lbs	125 lbs	328 lbs	123 lbs	13 lbs	30 lbs	13 lbs	
F _V	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2290 lbs	2347 lbs	2287 lbs	2261 lbs	2464 lbs	2259 lbs	670 lbs	686 lbs	669 lbs	
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.28 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	
f _{min}	274.7 sqft	281.7 sqft	274.4 sqft	271.1 sqft	295.7 sqft	270.9 sqft	80.3 sqft	82.4 sqft	80.2 sqft	
f _{max}	274.8 psf	281.7 psf	274.5 psf	271.6 psf	295.8 psf	271.2 psf	80.4 psf	82.4 psf	80.3 psf	

Maximum Bearing Pressure = 296 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 20in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut	
0.574 k	Maximum Axial Load =	1.008 k
5.692 k	M8 Bolt Capacity =	5.692 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>10%</u>	Utilization =	<u>18%</u>
	Bracing	
0.690 k	Maximum Axial Load =	0.160 k
5.692 k	M10 Bolt Capacity =	8.894 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>12%</u>	Utilization =	<u>2%</u>
	5.692 k 7.952 k 10% 0.690 k 5.692 k 7.952 k	0.574 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 33.11 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.662 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.003 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14 $L_b =$ 39.00 in J = 0.255 101.554

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.1 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

L14
$$L_b = 39.00 \text{ in}$$

$$J = 0.255$$

$$105.457$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2})}]$$

$$\phi F_I = 30.1$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1Bbr}{Db}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F_C \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.1 \text{ ksi}$$

$$Ix = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.281 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

3.4.9

b/t = 7.4 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F_C y$

$$\phi F_L = \phi F_S = 33.3 \text{ ksi}$$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 23.9 \text{ s} = 12.21 \text{ s} = 32.70$

 $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.5 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11 $\begin{array}{ccc} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.25 \\ 21.9891 \\ S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \end{array}$

$$S1 = \frac{O_b}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.7 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$L_{b} = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.25$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_{c}$$

$$S2 = 79.2$$

$$\phi F_{L} = \phi b[Bc-Dc^{*}Lb/(1.2^{*}ry^{*}\sqrt{(Cb)})]$$

$$\phi F_{I} = 29.7 \text{ ksi}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Weak Direction

3.4.16

N/A for Strong Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.7 \text{ ksi}$$

$$k = 364470 \text{ mm}^4$$

3.4.18

h/t = 4.29

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$W = 217168 \text{ mm}$$

0.876 in⁴ 37.77 mm y = Sx= 0.589 in³

 $M_{max}St =$ 1.455 k-ft

$ly = 217168 \text{ mm}^4$ 0.522 in⁴ 29 mm x =Sy = 0.457 in³ $M_{max}Wk =$

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 14.29 \text{ ksi}$
 $A = 576.21 \text{ mm}^2$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 31.2 \text{ ksi}$$

$$\varphi F_L St = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$\varphi = 15 \text{ mm}$$

0.163 in³

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ C_0 = & 15 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L \text{Wk} = & 31.2 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ M_{\text{max}} \text{Wk} = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

Sx=

 $M_{max}St = 0.423 \text{ k-ft}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$\phi F_L = \phi cc(Bc-Dc^*\lambda)$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi \varphi F c \varphi$$

 $\varphi F_L = 33.3 \text{ ksi}$

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi F_C y \\ \phi F_L = & 33.3 \text{ ksi} \end{array}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2
 $P_{max} = 12.31 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

$$x = 39956.2 \text{ mm}$$

 0.096 in^4
 $y = 15 \text{ mm}$

$$0.096 \text{ in}^4$$

 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.404 \text{ k-ft}$$

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

 $Sy = 0.163 \text{ in}^3$

$$M_{\text{max}}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^3$$
S1 = 6.87

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_b = 42.32 \text{ in}$$
 $J = 0.16$
 111.025

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 42.32 \text{ in}$$
 $J = 0.16$
 111.025

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_L &= 30.0 \end{split}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_1 = \varphi V F c V$$

3.4.16.1 Not Used Rb/t = 0.0

 $\phi F_1 = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = Ct$$

 $S2 = 141.0$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$1.6Dp$$
 S1 = 12.2

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

Cc =

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.0 \text{ ksi}$$

$$1x = 39958.2 \text{ mm}^4$$

 0.096 in^4
 0.096 mm^4

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.406 \text{ k-ft}$$

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7 1.81475 λ = 0.437 in r = $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ S1* = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ 1.23671 S2* = $\phi cc = 0.83406$ $\phi F_L = (\phi ccFcy)/(\lambda^2)$ $\phi F_{L} = 8.86409 \text{ ksi}$ 3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 8.86 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 4.45 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

		Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	1	M13	Υ	-4.45	-4.45	0	0
2	2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-40.249	-40.249	0	0
2	M16	Υ	-40.249	-40.249	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-134.509	-134.509	0	0
2	M16	V	-224,182	-224.182	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

		Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	V	269.018	269.018	0	0
2	2	M16	V	134.509	134.509	0	0

Load Combinations

	Description	S	P	S	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	6.					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	274.694	2	290.402	2	.006	10	0	10	0	1	0	1
2		min	-314.445	3	-442.431	3	16	3	0	3	0	1	0	1
3	N7	max	.026	3	205.445	1	.08	10	0	10	0	1	0	1
4		min	115	2	8.321	15	541	3	0	3	0	1	0	1
5	N15	max	.103	3	573.732	1	.055	9	0	9	0	1	0	1
6		min	-1.09	2	18.148	15	854	3	001	3	0	1	0	1
7	N16	max	789.218	2	845.389	2	0	2	0	9	0	1	0	1
8		min	-874.538	3	-1326.754	3	-106.359	3	0	3	0	1	0	1
9	N23	max	.027	3	205.845	1	.436	3	0	3	0	1	0	1
10		min	115	2	8.438	15	08	10	0	10	0	1	0	1
11	N24	max	274.695	2	292.595	2	107.478	3	0	9	0	1	0	1
12		min	-315.622	3	-442.677	3	007	10	0	3	0	1	0	1
13	Totals:	max	1337.289	2	2358.549	2	0	3	·				·	
14		min	-1504.448	3	-2054.079	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	186.099	2	.679	4	.047	1	0	10	0	10	0	1
2			min	-361.62	3	.16	15	065	3	0	3	0	3	0	1
3		2	max	186.234	2	.621	4	.047	1	0	10	0	10	0	15
4			min	-361.519	3	.146	15	065	3	0	3	0	3	0	4
5		3	max	186.369	2	.564	4	.047	1	0	10	0	10	0	15
6			min	-361.417	3	.133	15	065	3	0	3	0	3	0	4
7		4	max	186.504	2	.506	4	.047	1	0	10	0	10	0	15
8			min	-361.316	3	.119	15	065	3	0	3	0	3	0	4
9		5	max	186.639	2	.449	4	.047	1	0	10	0	15	0	15
10			min	-361.215	3	.106	15	065	3	0	3	0	3	0	4
11		6	max	186.774	2	.391	4	.047	1	0	10	0	9	0	15
12			min	-361.114	3	.092	15	065	3	0	3	0	3	0	4
13		7	max	186.908	2	.334	4	.047	1	0	10	0	9	0	15
14			min	-361.013	3	.079	15	065	3	0	3	0	3	0	4
15		8	max	187.043	2	.276	4	.047	1	0	10	0	9	0	15
16			min	-360.912	3	.065	15	065	3	0	3	0	3	0	4
17		9	max	187.178	2	.219	4	.047	1	0	10	0	9	0	15
18			min	-360.81	3	.052	15	065	3	0	3	0	3	0	4
19		10	max	187.313	2	.161	4	.047	1	0	10	0	9	0	15
20			min	-360.709	3	.038	15	065	3	0	3	0	3	0	4
21		11	max	187.448	2	.111	2	.047	1	0	10	0	9	0	15
22			min	-360.608	3	.016	12	065	3	0	3	0	3	0	4
23		12	max	187.583	2	.067	2	.047	1	0	10	0	9	0	15
24			min	-360.507	3	014	3	065	3	0	3	0	3	0	4
25		13	max	187.718	2	.022	2	.047	1	0	10	0	9	0	15
26			min	-360.406	3	048	3	065	3	0	3	0	3	0	4
27		14	max	187.853	2	016	15	.047	1	0	10	0	9	0	15
28			min	-360.305	3	081	3	065	3	0	3	0	3	0	4
29		15	max	187.987	2	03	15	.047	1	0	10	0	9	0	15
30			min	-360.204	3	126	4	065	3	0	3	0	3	0	4
31		16	max	188.122	2	043	15	.047	1	0	10	0	9	0	15
32			min	-360.102	3	183	4	065	3	0	3	0	3	0	4
33		17	max		2	057	15	.047	1	0	10	0	9	0	15
34			min	-360.001	3	241	4	065	3	0	3	0	3	0	4
35		18	max	188.392	2	07	15	.047	1	0	10	0	9	0	15
36			min	-359.9	3	298	4	065	3	0	3	0	3	0	4
37		19			2	084	15	.047	1	0	10	0	9	0	15

Schletter, Inc.HCV

Job Number : Standar

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]		y-y Mome		z-z Mome	
38			min		3	356	4	065	3	0	3	0	3	0	4
39	<u>M3</u>	1		242.628	2	1.736	4	.015	10	0	10	0	1	0	4
40			min	-224.724	3	.408	15	072	1	0	1	0	10	0	15
41		2	max		2	1.56	4	.015	10	0	10	0	1	0	2
42				-224.776	3	.367	15	072	1	0	1	0	10	0	3
43		3	max	242.488	2	1.383	4	.015	10	0	10	0	1	0	2
44			min	-224.829	3	.325	15	072	1	0	1	0	10	0	3
45		4	max	242.418	2	1.207	4	.015	10	0	10	0	1	0	15
46			min	-224.881	3	.284	15	072	1	0	1	0	10	0	4
47		5	max	242.348	2	1.031	4	.015	10	0	10	0	1	0	15
48			min	-224.934	3	.242	15	072	1	0	1	0	10	0	4
49		6	max	242.278	2	.854	4	.015	10	0	10	0	1	0	15
50				-224.986	3	.201	15	072	1	0	1	0	10	0	4
51		7	max		2	.678	4	.015	10	0	10	0	1	0	15
52				-225.039	3	.159	15	072	1	0	1	0	10	0	4
53		8		242.138	2	.502	4	.015	10	0	10	0	1	0	15
54				-225.091	3	.118	15	072	1	0	1	0	10	001	4
55		9		242.068	2	.325	4	.015	10	0	10	0	1	0	15
56		Ť		-225.144	3	.076	15	072	1	0	1	0	10	001	4
57		10		241.998	2	.149	4	.015	10	0	10	0	1	0	15
58		10		-225.196	3	.035	15	072	1	0	1	0	10	001	4
59		11		241.928	2	.007	2	.015	10	0	10	0	1	0	15
60		- ' '		-225.249	3	054	3	072	1	0	1	0	10	001	4
		12			2	034	15	.015	10	0	10	0	1	<u>001</u> 0	15
61		12	max	-225.301		204			1	0	1		10	001	
62		13			3		4	072				0		<u>001</u> 0	4
63		13		241.788	2	089	15	.015	10	0	10	0	1		15
64		4.4		-225.354	3_	38	4	072	1	0	1	0	10	001	4
65		14		241.718	2	131	15	.015	10	0	10	0	1	0	15
66		4.5		-225.406	3	557	4	072	1	0	1	0	10	001	4
67		15		241.648	2	172	15	.015	10	0	10	0	9	0	15
68		40		-225.459	3	733	4	072	1	0	1	0	10	0	4
69		16		241.578	2	214	15	.015	10	0	10	0	9	0	15
70				-225.511	3_	909	4	072	1	0	1	0	10	0	4
71		17	max		2	255	15	.015	10	0	10	0	10	0	15
72				-225.564	3	-1.086	4	072	1	0	1	0	1	0	4
73		18		241.438	2	297	15	.015	10	0	10	0	10	0	15
74				-225.616	3	-1.262	4	072	1	0	1	0	1	0	4
75		19		241.368	2	338	15	.015	10	0	10	0	10	0	1
76			min	-225.669	3	-1.439	4	072	1	0	1	0	1	0	1
77	M4	1	max	204.28	_1_	0	1_	.081	10	0	1	0	3	0	1
78			min	7.97	15	0	1	545	3	0	1	0	2	0	1
79		2	max	204.345	1	0	1	.081	10	0	1	0	10	0	1
80			min	7.989	15	0	1	545	3	0	1	0	3	0	1
81		3	max	204.409	1	0	1	.081	10	0	1	0	10	0	1
82			min	8.009	15	0	1	545	3	0	1	0	3	0	1
83		4	max	204.474	1	0	1	.081	10	0	1	0	10	0	1
84			min	8.028	15	0	1	545	3	0	1	0	3	0	1
85		5	max		1	0	1	.081	10	0	1	0	10	0	1
86		ľ	min	8.048	15	0	1	545	3	0	1	0	3	0	1
87		6	max		1	0	1	.081	10	0	1	0	10	0	1
88			min	8.068	15	0	1	545	3	0	1	0	3	0	1
89		7		204.668	1	0	1	.081	10	0	1	0	10	0	1
90			min	8.087	15	0	1	545	3	0	1	0	3	0	1
		0					1				1				
91		8	max	204.733	1	0	1	.081	10	0	1	0	10	0	1
92		^	min	8.107	<u>15</u>	0		545	3	0		0	3	0	-
93		9	max	204.797	1_	0	1	.081	10	0	1	0	10	0	1
94			min	8.126	15	0	1	545	3	0	1	0	3	0	1

Schletter, Inc. HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
95		10	max	204.862	1	0	1	.081	10	0	1	0	10	0	1
96			min	8.146	15	0	1	545	3	0	1	0	3	0	1
97		11	max		1	0	1	.081	10	0	1	0	10	0	1
98			min	8.165	15	0	1	545	3	0	1	0	3	0	1
99		12	max	204.992	1	0	1	.081	10	0	_1_	0	10	0	1
100			min	8.185	15	0	1	545	3	0	1	0	3	0	1
101		13	max	205.056	1	0	1	.081	10	0	_1_	0	10	0	1
102			min	8.204	15	0	1	545	3	0	1	0	3	0	1
103		14	max	205.121	_1_	0	1_	.081	10	0	1	0	10	0	1
104			min	8.224	15	0	1	545	3	0	1	0	3	0	1
105		15	max	205.186	1	0	1	.081	10	0	_1_	0	10	0	1
106			min	8.243	15	0	1	545	3	0	1_	0	3	0	1
107		16	max	205.25	1	0	1	.081	10	0	_1_	0	10	0	1
108			min	8.263	15	0	1	545	3	0	1	0	3	0	1
109		17	max	205.315	1	0	1	.081	10	0	1	0	10	0	1
110			min	8.282	15	0	1	545	3	0	1	0	3	0	1
111		18	max	205.38	1	0	1	.081	10	0	1	0	10	0	1
112			min	8.302	15	0	1	545	3	0	1_	0	3	0	1
113		19	max	205.445	1	0	1	.081	10	0	1	0	10	0	1
114			min	8.321	15	0	1	545	3	0	1	0	3	0	1
115	<u>M6</u>	1	max	555.046	2	.679	4	.005	9	0	3	0	3	0	1
116			min	-1008.426	3	.159	15	309	3	0	1	0	1	0	1
117		2	max	555.181	2	.621	4	.005	9	0	3	0	3	0	15
118			min	-1008.325	3	.146	15	309	3	0	1	0	1	0	4
119		3	max		2	.564	4	.005	9	0	3	0	3	0	15
120			min	-1008.224	3	.132	15	309	3	0	1	0	1	0	4
121		4	max	555.45	2	.506	4	.005	9	0	3	0	3	0	15
122		_	min	-1008.123	3	.119	15	309	3	0	1	0	1	0	4
123		5	max	555.585	2	.449	4	.005	9	0	3	0	3	0	15
124			min	-1008.022	3	.104	12	309	3	0	1	0	1	0	4
125		6	max	555.72	2	.391	4	.005	9	0	3	0	3	0	15
126		_		-1007.92	3	.082	12	309	3	0	1	0	1	0	4
127		7	max	555.855	2	.346	2	.005	9	0	3	0	3	0	15
128			min	-1007.819	3	.059	12	309	3	0	1_	0	1	0	4
129		8	max	555.99	2	.301	2	.005	9	0	3	0	9	0	15
130			min	-1007.718	3	.037	12	309	3	0	1	0	3	0	4
131		9	max	556.125 -1007.617	2	.256	2	.005	9	0	3	0	9	0	12
132		40	min	556.26	3	.01 .212	3	309		0	1	0	3	0	12
133 134		10	max	-1007.516	2	024	3	.005	9	0	1	0	3	0	4
		11			3			309		_	_				_
135 136		11	min	556.395 -1007.415	3	.167 057	3	.005 309	9	0	<u>3</u> 1	0	3	0	12
137		12		556.529	2	.122	2	.005	9	0	3	0	9	0	12
138		14		-1007.313	3	091	3	309	3	0	<u> </u>	0	3	0	2
139		13			2	.077	2	.005	9	0	3	0	9	0	12
140		13	min	-1007.212	3	124	3	309	3	0	<u> </u>	0	3	0	2
141		14		556.799	2	.032	2	.005	9	0	3	0	9	0	12
142		14		-1007.111	3	158	3	309	3	0	1	0	3	0	2
143		15	_	556.934	2	012	2	.005	9	0	3	0	9	0	12
144		13		-1007.01	3	192	3	309	3	0	1	0	3	0	2
145		16		557.069	2	043	15	.005	9	0	3	0	9	0	12
146		10	min		3	225	3	309	3	0	1	0	3	0	2
147		17		557.204	2	057	15	.005	9	0	3	0	9	0	3
148		17		-1006.808	3	259	3	309	3	0	1	0	3	0	2
149		18	max		2	259	15	.005	9	0	3	0	9	0	3
150		10	min	-1006.707	3	298	4	309	3	0	1	0	3	0	2
151		19	_	557.473	2	084	15	.005	9	0	3	0	9	0	3
IUI		ו ו	παν	001.710		.004	IJ	.000	J	U	J				

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
152			min	-1006.605	3	356	4	309	3	0	1	0	3	0	2
153	M7	1	max	690.085	2	1.738	4	.058	3	0	9	0	9	0	2
154			min	-582.902	3	.409	15	002	9	0	3	0	3	0	3
155		2	max	690.015	2	1.562	4	.058	3	0	9	0	9	0	2
156			min	-582.954	3	.367	15	002	9	0	3	0	3	0	3
157		3	max	689.945	2	1.386	4	.058	3	0	9	0	9	0	2
158			min	-583.007	3	.326	15	002	9	0	3	0	3	0	3
159		4	max	689.875	2	1.209	4	.058	3	0	9	0	9	0	2
160			min	-583.059	3	.284	15	002	9	0	3	0	3	0	3
161		5	max		2	1.033	4	.058	3	0	9	0	9	0	15
162			min		3	.243	15	002	9	0	3	0	3	0	3
163		6	max		2	.857	4	.058	3	0	9	0	9	0	15
164				-583.164	3	.201	15	002	9	0	3	0	3	0	4
165		7	max	689.665	2	.68	4	.058	3	0	9	0	9	0	15
166				-583.217	3	.16	15	002	9	0	3	0	3	0	4
167		8	max		2	.504	4	.058	3	0	9	0	9	0	15
168				-583.269	3	.118	15	002	9	0	3	0	3	001	4
169		9	max		2	.332	2	.058	3	0	9	0	9	0	15
170		9	min	-583.322	3	.07	12	002	9	0	3	0	3	001	4
171		10			2	.195	2	.058	3	0	9	0	9	0	15
172		10	max	-583.374	3	008	3	002	9	0	3	0	3	001	4
		11	min						3						
173		11	max		2	.058	2	.058		0	9	0	9	0	15
174		40		-583.427	3_	111	3	002	9	0		0	3	001	4
175		12	max	689.315	2	047	15	.058	3	0	9	0	9	0	15
176		40		-583.479	3	214	3	002	9	0	3	0	3	001	4
177		13		689.245	2	089	15	.058	3	0	9	0	9	0	15
178				-583.532	3_	378	4	002	9	0	3	0	3	001	4
179		14		689.175	2	13	15	.058	3	0	9	0	9	0	15
180			min	-583.584	3	554	4	002	9	0	3	0	3	001	4
181		15	max		2	172	15	.058	3	0	9	0	9	0	15
182			min		3	731	4	002	9	0	3	0	3	0	4
183		16	max		2	213	15	.058	3	0	9	0	9	0	15
184			min	-583.689	3	907	4	002	9	0	3	0	3	0	4
185		17	max	688.965	2	255	15	.058	3	0	9	0	9	0	15
186			min	-583.742	3	-1.083	4	002	9	0	3	0	3	0	4
187		18	max	688.895	2	296	15	.058	3	0	9	0	9	0	15
188			min	-583.794	3	-1.26	4	002	9	0	3	0	3	0	4
189		19	max	688.825	2	338	15	.058	3	0	9	0	9	0	1
190			min	-583.847	3	-1.436	4	002	9	0	3	0	3	0	1
191	M8	1	max	572.567	1	0	1	.057	9	0	1	0	1	0	1
192			min	17.796	15	0	1	863	3	0	1	0	3	0	1
193		2		572.632	1	0	1	.057	9	0	1	0	9	0	1
194				17.816	15	0	1	863	3	0	1	0	3	0	1
195		3	max	572.697	1	0	1	.057	9	0	1	0	9	0	1
196			min	17.835	15	0	1	863	3	0	1	0	3	0	1
197		4	max		1	0	1	.057	9	0	1	0	9	0	1
198			min		15	0	1	863	3	0	1	0	3	0	1
199		5	max		1	0	1	.057	9	0	1	0	9	0	1
200			min	17.874	15	0	1	863	3	0	1	0	3	0	1
		6					1		_	-	1	_			1
201		6	max	572.891	<u>1</u> 15	0	1	.057	9	0	1	0	9	0	1
202		7	min	17.894		_	•	863			•		3	_	
203		7	max		1_	0	1	.057	9	0	1	0	9	0	1
204			min	17.913	<u>15</u>	0	1	863	3	0	1_	0	3	0	1
205		8	max	573.02	1_	0	1	.057	9	0	1	0	9	0	1
206			min	17.933	15	0	1	863	3	0	1_	0	3	0	1
207		9	max	573.085	_1_	0	1	.057	9	0	_1_	0	9	0	1
208			min	17.952	15	0	1	863	3	0	1	0	3	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	573.15	1	0	1	.057	9	0	1_	0	9	0	1
210			min	17.972	15	0	1	863	3	0	1	0	3	0	1
211		11	max	573.215	1	0	1	.057	9	0	1	0	9	0	1
212			min	17.991	15	0	1	863	3	0	1	0	3	0	1
213		12	max	573.279	1	0	1	.057	9	0	1_	0	9	0	1
214			min	18.011	15	0	1	863	3	0	1	0	3	0	1
215		13	max	573.344	1	0	1	.057	9	0	1	0	9	0	1
216			min	18.03	15	0	1	863	3	0	1	0	3	0	1
217		14	max	573.409	1	0	1	.057	9	0	1	0	9	0	1
218			min	18.05	15	0	1	863	3	0	1	001	3	0	1
219		15	max	573.473	1	0	1	.057	9	0	1	0	9	0	1
220			min	18.069	15	0	1	863	3	0	1	001	3	0	1
221		16	max	573.538	1	0	1	.057	9	0	1	0	9	0	1
222			min	18.089	15	0	1	863	3	0	1	001	3	0	1
223		17	max	573.603	1	0	1	.057	9	0	1	0	9	0	1
224			min	18.109	15	0	1	863	3	0	1	001	3	0	1
225		18	max	573.667	1	0	1	.057	9	0	1	0	9	0	1
226			min	18.128	15	0	1	863	3	0	1	001	3	0	1
227		19	max	573.732	1	0	1	.057	9	0	1	0	9	0	1
228			min	18.148	15	0	1	863	3	0	1	001	3	0	1
229	M10	1	max	187.236	2	.679	4	.008	10	0	1	0	9	0	1
230			min	-245.321	3	.16	15	047	1	0	3	0	3	0	1
231		2	max	187.371	2	.621	4	.008	10	0	1	0	9	0	15
232		_	min	-245.22	3	.146	15	047	1	0	3	0	3	0	4
233		3	max	187.506	2	.564	4	.008	10	0	1	0	9	0	15
234			min	-245.119	3	.133	15	047	1	0	3	Ö	3	0	4
235		4	max	187.641	2	.506	4	.008	10	0	1	0	9	0	15
236		•	min	-245.018	3	.119	15	047	1	0	3	0	3	0	4
237		5	max	187.776	2	.449	4	.008	10	0	1	0	9	0	15
238			min	-244.916	3	.106	15	047	1	0	3	0	3	0	4
239		6	max	187.91	2	.391	4	.008	10	0	1	0	9	0	15
240			min	-244.815	3	.092	15	047	1	0	3	0	3	0	4
241		7	max	188.045	2	.334	4	.008	10	0	1	0	9	0	15
242			min	-244.714	3	.079	15	047	1	0	3	0	3	0	4
243		8	max	188.18	2	.276	4	.008	10	0	1	0	10	0	15
244			min	-244.613	3	.065	15	047	1	0	3	0	3	0	4
245		9	max	188.315	2	.219	4	.008	10	0	1	0	10	0	15
246		<u> </u>	min	-244.512	3	.052	15	047	1	0	3	0	3	0	4
247		10	max	188.45	2	.161	4	.008	10	0	1	0	10	0	15
248		10	min	-244.411	3	.038	15	047	1	0	3	0	3	0	4
249		11	max		2	.111	2	.008	10	0	1	0	10		15
250			min	-244.31	3	.018	12	047	1	0	3	0	3	0	4
251		12	max	188.72	2	.067	2	.008	10	0	<u> </u>	0	10	0	15
252		14	min	-244.208	3	01	3	047	1	0	3	0	3	0	4
253		13			2	.022	2	.008	10	0	<u> </u>	0	10	0	15
254		13	min	-244.107	3	044	3	047	1	0	3	0	3	0	4
255		14	max		2	016	15	.008	10	0	1	0	10	0	15
256		14	min	-244.006	3	077	3	047	1	0	3	0	3	0	4
257		15	max		2	077	<u></u>	.008	10	0	<u> </u>	0	10	0	15
258		10		-243.905		03 126	4	047	1	0	3	0	3	0	4
258		16	min		2	126 043	15	.008	10	0	<u>3</u> 1	0	10	0	15
		10	max								3		3		
260		17	min	<u>-243.804</u>	3	183	4	047	10	0		0		0	15
261		17	max		2	057	15	.008	10	0	1	0	10	0	15
262		4.0	min	-243.703	3	241	4	047	10	0	3		_	0	4
263		18			2	07	15	.008	10	0	1	0	10	0	15
264		40	min	-243.602	3	298	4	047	1	0	3	0	3	0	4
265		19	max	189.664	2	084	15	.008	10	0	_1_	0	10	0	15

Model Name

Schletter, Inc.HCV

: HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
266			min	-243.5	3	356	4	047	1	0	3	0	3	0	4
267	M11	1	max	242.227	2	1.736	4	.072	1	0	3	0	3	0	4
268			min	-225.91	3	.408	15	072	3	0	10	0	1	0	15
269		2	max	242.157	2	1.56	4	.072	1	0	3	0	3	0	2
270			min	-225.963	3	.367	15	072	3	0	10	0	1	0	3
271		3	max		2	1.383	4	.072	1	0	3	0	3	0	2
272			min	-226.015	3	.325	15	072	3	0	10	0	1	0	3
273		4	max		2	1.207	4	.072	1	0	3	0	3	0	15
274			min	-226.068	3	.284	15	072	3	0	10	0	1	0	4
275		5	max	241.947	2	1.031	4	.072	1	0	3	0	3	0	15
276		5		-226.12	3	.242	15	072	3	0	10	0	1	0	4
			min									•			
277		6	max		2	.854	4	.072	1	0	3	0	3	0	15
278		_	min	-226.173	3	.201	15	072	3	0	10	0	1	0	4
279		7	max	241.807	2	.678	4	.072	1	0	3	0	3	0	15
280			min	-226.225	3	.159	15	072	3	0	10	0	1	0	4
281		8	max		2	.502	4	.072	1	0	3	0	3	0	15
282			min	-226.278	3	.118	15	072	3	0	10	0	1	001	4
283		9	max	241.667	2	.325	4	.072	1	0	3	0	3	0	15
284			min	-226.33	3	.076	15	072	3	0	10	0	1	001	4
285		10	max	241.597	2	.149	4	.072	1	0	3	0	3	0	15
286			min	-226.383	3	.035	15	072	3	0	10	0	1	001	4
287		11	max		2	.007	2	.072	1	0	3	0	3	0	15
288			min	-226.435	3	048	3	072	3	0	10	0	1	001	4
289		12	max	241.457	2	048	15	.072	1	0	3	0	3	0	15
290		12	min	-226.488	3	204	4	072	3	0	10	0	1	001	4
291		13		241.387	2	089	15	.072	1	0	3	0	3	0	15
		13	max	-226.54					3						
292		4.4	min		3	38	4	072		0	10	0	1	001	4
293		14	max		2	131	15	.072	1	0	3	0	3	0	15
294		4.5	min	-226.593	3	557	4	072	3	0	10	0	1	001	4
295		15	max	241.247	2	172	15	.072	1	0	3	0	3	0	15
296			min	-226.645	3	733	4	072	3	0	10	0	1_	0	4
297		16	max		2	214	15	.072	1	0	3	0	3	0	15
298			min	-226.698	3	909	4	072	3	0	10	0	1	0	4
299		17	max	241.107	2	255	15	.072	1	0	3	0	3	0	15
300			min	-226.75	3	-1.086	4	072	3	0	10	0	10	0	4
301		18	max	241.037	2	297	15	.072	1	0	3	0	3	0	15
302			min	-226.803	3	-1.262	4	072	3	0	10	0	10	0	4
303		19	max	240.967	2	338	15	.072	1	0	3	0	3	0	1
304			min	-226.855	3	-1.439	4	072	3	0	10	0	10	0	1
305	M12	1	max	204.68	1	0	1	.439	3	0	1	0	2	0	1
306	2		min		15	0	1	081	10	0	1	0	3	0	1
307		2		204.745	1	0	1	.439	3	0	1	0	1	0	1
308			min	8.106	15	0	1	081	10	0	1	0	10	0	1
309		3		204.809	1		1	.439	3		1		3	0	1
310		3	max min	8.125	15	0	1	081	10	0	1	0	10	0	1
		4					_								-
311		4	max		1	0	1	.439	3	0	1	0	3	0	1
312		_	min	8.145	15	0	1	081	10	0	1	0	10	0	1
313		5	max		1	0	1	.439	3	0	1	0	3	0	1
314			min	8.164	15	0	1	081	10	0	1	0	10	0	1
315		6	max		1	0	1	.439	3	0	1	0	3	0	1
316			min	8.184	15	0	1	081	10	0	1	0	10	0	1
317		7	max	205.068	1	0	1	.439	3	0	1	0	3	0	1
318			min	8.203	15	0	1	081	10	0	1	0	10	0	1
319		8	max	205.133	1	0	1	.439	3	0	1	0	3	0	1
320			min	8.223	15	0	1	081	10	0	1	0	10	0	1
321		9	max		1	0	1	.439	3	0	1	0	3	0	1
322			min	8.242	15	0	1	081	10	0	1	0	10	0	1
ULL			1111111	U.ZTZ	10	U		.001	IU			U	10	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

1975 1975		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
326	323		10	max	205.262	1	0	1	.439	3	0	1	0	3	0	1
326	324			min		15	0	1	081	10	0	1	0	10	0	1
127	325		11	max	205.327	1	0	1	.439	3	0	1	0	3	0	1
328	326			min	8.282	15	0	1	081	10	0	1	0	10	0	1
329	327		12	max	205.392	1	0	1	.439	3	0	1	0	3	0	1
330	328			min	8.301	15	0	1	081	10	0	1	0	10	0	1
331	329		13	max	205.457	1	0	1	.439	3	0	1	0	3	0	1
332	330			min	8.321	15	0	1	081	10	0	1	0	10	0	1
333	331		14	max	205.521	1	0	1	.439	3	0	1	0	3	0	1
334	332			min	8.34	15	0	1	081	10	0	1	0	10	0	1
336	333		15	max	205.586	1	0	1	.439	3	0	1	0	3	0	1
336	334			min	8.36	15	0	1	081	10	0	1	0	10	0	1
338	335		16	max	205.651	1	0	1	.439	3	0	1	0	3	0	1
18	336			min	8.379	15	0	1	081	10	0	1	0	10	0	1
339	337		17	max	205.715	1	0	1	.439	3	0	1	0	3	0	1
340	338			min	8.399	15	0	1	081	10	0	1	0	10	0	1
341	339		18	max	205.78	1	0	1	.439	3	0	1	0	3	0	1
342	340			min	8.418	15	0	1	081	10	0	1	0	10	0	1
343	341		19	max	205.845	1	0	1	.439	3	0	1	0	3	0	1
344	342			min	8.438	15	0	1	081	10	0	1	0	10	0	1
345	343	M1	1	max	60.126	1	339.475	3	2.009	10	0	2	.019	1	0	2
346	344			min	2.899	15	-208.707	2	-9.695	1	0	3	004	10	0	3
347	345		2	max	60.287	1	339.304	3	2.009	10	0	2	.017	1	.046	2
348	346			min	2.947	15	-208.936	2	-9.695	1	0	3	004	10	074	3
349	347		3	max	120.144	3	3.483	9	2.001	10	0	10	.015	1	.09	2
350	348			min	-33.879	2		2	-9.668	1	0	1	003	10	146	3
351	349		4	max	120.264	3	3.293	9	2.001	10	0	10	.013	1	.097	2
352	350			min	-33.719	2	-30.863	2	-9.668	1	0	1	003	10	145	3
353	351		5	max	120.384	3	3.102	9	2.001	10	0	10	.011	1	.104	2
354	352			min	-33.559	2	-31.091	2	-9.668	1	0	1	002	10	143	
355	353		6	max	120.504	3	2.912	9	2.001	10	0	10	.008	1	.11	
356	354			min	-33.399	2	-31.32	2	-9.668	1	0	1	002	10	141	3
357	355		7	max	120.624	3	2.721	9	2.001	10	0	10	.007	3	.117	2
358	356			min	-33.239	2	-31.549	2	-9.668	1	0	1	001	10	14	3
359			8	max	120.744	3			2.001	10	0	10	.005			
360				min	-33.078	2			-9.668	1	0	1		10	138	
361 10 max 120.984 3 2.149 9 2.001 10 0 10 .002 3 .138 2 362 min -32.758 2 -32.235 2 -9.668 1 0 1 0 2 134 3 363 11 max 121.105 3 1.958 9 2.001 10 0 10 0 3 .145 2 364 min -32.598 2 -32.464 2 -9.668 1 0 1 002 1 132 3 365 12 max 121.2225 3 1.768 9 2.001 10 0 10 .152 2 366 min -32.438 2 -32.692 2 -9.668 1 0 1 004 1 132 3 368 min -32.278 2 -32.921 2 -9.66	359		9	max		3			2.001	10	0	10	.004	3	.131	
362 min -32.758 2 -32.235 2 -9.668 1 0 1 0 2 134 3 363 11 max 121.105 3 1.958 9 2.001 10 0 10 0 3 .145 2 364 min -32.598 2 -32.464 2 -9.668 1 0 1 002 1 132 3 365 12 max 121.225 3 1.768 9 2.001 10 0 10 0 10 .152 2 366 min -32.438 2 -32.692 2 -9.668 1 0 1 004 1 133 3 367 13 max 121.345 3 1.577 9 2.001 10 0 10 .001 .159 2 368 min -32.278 2 -32.921 2 <td>360</td> <td></td> <td></td> <td>min</td> <td></td> <td>2</td> <td>-32.006</td> <td>2</td> <td>-9.668</td> <td>1</td> <td>0</td> <td>1</td> <td></td> <td>10</td> <td>136</td> <td>3</td>	360			min		2	-32.006	2	-9.668	1	0	1		10	136	3
363 11 max 121.105 3 1.958 9 2.001 10 0 10 0 3 .145 2 364 min -32.598 2 -32.464 2 -9.668 1 0 1 002 1 132 3 365 12 max 121.225 3 1.768 9 2.001 10 0 10 0 10 .152 2 366 min -32.438 2 -32.692 2 -9.668 1 0 1 004 1 13 3 367 13 max 121.345 3 1.577 9 2.001 10 0 10 .001 10 .159 2 368 min -32.278 2 -32.921 2 -9.668 1 0 1 006 1 128 3 370 min -32.117 2 -33.15<			10	max	120.984	3		9	2.001	10	0	10	.002	3	.138	2
364 min -32.598 2 -32.464 2 -9.668 1 0 1 002 1 132 3 365 12 max 121.225 3 1.768 9 2.001 10 0 10 .152 2 366 min -32.438 2 -32.692 2 -9.668 1 0 1 004 1 13 3 367 13 max 121.345 3 1.577 9 2.001 10 0 10 .001 10 .159 2 368 min -32.278 2 -32.921 2 -9.668 1 0 1 006 1 128 3 369 14 max 121.465 3 1.387 9 2.001 10 0 10 .002 10 .166 2 370 min -32.117 2 -33.15 2 <td< td=""><td>362</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></td<>	362															3
365 12 max 121.225 3 1.768 9 2.001 10 0 10 .152 2 366 min -32.438 2 -32.692 2 -9.668 1 0 1 004 1 13 3 367 13 max 121.345 3 1.577 9 2.001 10 0 10 .001 10 .159 2 368 min -32.278 2 -32.921 2 -9.668 1 0 1 006 1 128 3 369 14 max 121.465 3 1.387 9 2.001 10 0 10 .002 10 .166 2 370 min -32.117 2 -33.15 2 -9.668 1 0 1 008 1 126 3 371 15 max 121.585 3 1.196 9 2.001 10 0			11	max					2.001	10	0	10		3		
366 min -32.438 2 -32.692 2 -9.668 1 0 1 004 1 13 3 367 13 max 121.345 3 1.577 9 2.001 10 0 10 .001 10 .159 2 368 min -32.278 2 -32.921 2 -9.668 1 0 1 006 1 128 3 369 14 max 121.465 3 1.387 9 2.001 10 0 10 .002 10 .166 2 370 min -32.117 2 -33.15 2 -9.668 1 0 1 008 1 126 3 371 15 max 121.585 3 1.196 9 2.001 10 0 10 .002 10 .174 2 372 min -31.957 2 -						2		2		1	0	1	002	1		
367 13 max 121.345 3 1.577 9 2.001 10 0 10 .001 10 .159 2 368 min -32.278 2 -32.921 2 -9.668 1 0 1 006 1 128 3 369 14 max 121.465 3 1.387 9 2.001 10 0 10 .002 10 .166 2 370 min -32.117 2 -33.15 2 -9.668 1 0 1 008 1 126 3 371 15 max 121.585 3 1.196 9 2.001 10 0 10 .002 10 .174 2 372 min -31.957 2 -33.379 2 -9.668 1 0 1 001 1 124 3 373 16 max 82.473 2 179.29 2 2.014 10 0 1 .003 10 .179 <td></td> <td></td> <td>12</td> <td>max</td> <td></td> <td>3</td> <td></td> <td>9</td> <td></td> <td>10</td> <td>0</td> <td>10</td> <td></td> <td>10</td> <td>.152</td> <td></td>			12	max		3		9		10	0	10		10	.152	
368 min -32.278 2 -32.921 2 -9.668 1 0 1 006 1 128 3 369 14 max 121.465 3 1.387 9 2.001 10 0 10 .002 10 .166 2 370 min -32.117 2 -33.15 2 -9.668 1 0 1 008 1 126 3 371 15 max 121.585 3 1.196 9 2.001 10 0 10 .002 10 .174 2 372 min -31.957 2 -33.379 2 -9.668 1 0 1 01 1 124 3 373 16 max 82.473 2 179.29 2 2.014 10 0 1 .003 10 .179 2 374 min 1.529 15 -20				min							0	1		1		3
369 14 max 121.465 3 1.387 9 2.001 10 0 10 .002 10 .166 2 370 min -32.117 2 -33.15 2 -9.668 1 0 1 008 1 126 3 371 15 max 121.585 3 1.196 9 2.001 10 0 10 .002 10 .174 2 372 min -31.957 2 -33.379 2 -9.668 1 0 1 001 1 124 3 373 16 max 82.473 2 179.29 2 2.014 10 0 1 .003 10 .179 2 374 min 1.529 15 -209.264 3 -9.731 1 0 3 013 1 121 3 375 17 max 82.633 2 179.061 2 2.014 10 0 1 .003 10 .14 2 376			13	max		3						10		10		
370 min -32.117 2 -33.15 2 -9.668 1 0 1 008 1 126 3 371 15 max 121.585 3 1.196 9 2.001 10 0 10 .002 10 .174 2 372 min -31.957 2 -33.379 2 -9.668 1 0 1 01 1 124 3 373 16 max 82.473 2 179.29 2 2.014 10 0 1 .003 10 .179 2 374 min 1.529 15 -209.264 3 -9.731 1 0 3 013 1 121 3 375 17 max 82.633 2 179.061 2 2.014 10 0 1 .003 10 .14 2 376 min 1.577 15 -209																
371 15 max 121.585 3 1.196 9 2.001 10 0 10 .002 10 .174 2 372 min -31.957 2 -33.379 2 -9.668 1 0 1 01 1 124 3 373 16 max 82.473 2 179.29 2 2.014 10 0 1 .003 10 .179 2 374 min 1.529 15 -209.264 3 -9.731 1 0 3 013 1 121 3 375 17 max 82.633 2 179.061 2 2.014 10 0 1 .003 10 .14 2 376 min 1.577 15 -209.436 3 -9.731 1 0 3 015 1 075 3 377 18 max -2.946 15 323.287 2 2.095 10 0 3 .003 10 .071 <td></td> <td></td> <td>14</td> <td>max</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>10</td> <td>.002</td> <td>10</td> <td></td> <td></td>			14	max		3					0	10	.002	10		
372 min -31.957 2 -33.379 2 -9.668 1 0 1 01 1 124 3 373 16 max 82.473 2 179.29 2 2.014 10 0 1 .003 10 .179 2 374 min 1.529 15 -209.264 3 -9.731 1 0 3 013 1 121 3 375 17 max 82.633 2 179.061 2 2.014 10 0 1 .003 10 .14 2 376 min 1.577 15 -209.436 3 -9.731 1 0 3 015 1 075 3 377 18 max -2.946 15 323.287 2 2.095 10 0 3 .003 10 .071 2 378 min -60.284 1 -						2		2		_	0	1		1		
373 16 max 82.473 2 179.29 2 2.014 10 0 1 .003 10 .179 2 374 min 1.529 15 -209.264 3 -9.731 1 0 3 013 1 121 3 375 17 max 82.633 2 179.061 2 2.014 10 0 1 .003 10 .14 2 376 min 1.577 15 -209.436 3 -9.731 1 0 3 015 1 075 3 377 18 max -2.946 15 323.287 2 2.095 10 0 3 .003 10 .071 2 378 min -60.284 1 -172.366 3 -10.098 1 0 2 017 1 038 3			15	max		3		9		10	0	10	.002	10	.174	
374 min 1.529 15 -209.264 3 -9.731 1 0 3 013 1 121 3 375 17 max 82.633 2 179.061 2 2.014 10 0 1 .003 10 .14 2 376 min 1.577 15 -209.436 3 -9.731 1 0 3 015 1 075 3 377 18 max -2.946 15 323.287 2 2.095 10 0 3 .003 10 .071 2 378 min -60.284 1 -172.366 3 -10.098 1 0 2 017 1 038 3	372			min	-31.957	2		2	-9.668	1	0	1		1	124	
375 17 max 82.633 2 179.061 2 2.014 10 0 1 .003 10 .14 2 376 min 1.577 15 -209.436 3 -9.731 1 0 3 015 1 075 3 377 18 max -2.946 15 323.287 2 2.095 10 0 3 .003 10 .071 2 378 min -60.284 1 -172.366 3 -10.098 1 0 2 017 1 038 3			16	max												
376 min 1.577 15 -209.436 3 -9.731 1 0 3 015 1 075 3 377 18 max -2.946 15 323.287 2 2.095 10 0 3 .003 10 .071 2 378 min -60.284 1 -172.366 3 -10.098 1 0 2 017 1 038 3				min							0	3		1	121	
377			17	max		2		2		10	0			10		
378 min -60.284 1 -172.366 3 -10.098 1 0 2017 1038 3	376			min		15		3		1	0			1	075	3
378 min -60.284 1 -172.366 3 -10.098 1 0 2017 1038 3	377		18	max		15	323.287	2	2.095	10				10	.071	
379 19 max -2.898 15 323.058 2 2.095 10 0 3 .004 10 0 2						1		3	-10.098	1	0		017	1	038	
	379		19	max	-2.898	15	323.058	2	2.095	10	0	3	.004	10	0	2

Model Name

: Schletter, Inc. : HCV

: Ctondord DV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
380			min	-60.124	1	-172.538	3	-10.098	1	0	2	019	1	0	3
381	M5	1	max	162.09	1	1043.292	3	0	1	0	9	.015	3	0	3
382			min	-12.624	3	-625.274	2	-96.842	3	0	3	0	11	0	2
383		2	max	162.25	1	1043.121	3	0	1	0	9	0	9	.135	2
384			min	-12.504	3	-625.503	2	-96.842	3	0	3	006	3	226	3
385		3	max	309.829	3	4.209	9	10.235	3	0	3	0	9	.269	2
386			min	-77.412	2	-94.084	2	066	9	0	1	026	3	447	3
387		4	max	309.949	3	4.018	9	10.235	3	0	3	0	9	.289	2
388			min	-77.252	2	-94.313	2	066	9	0	1	023	3	439	3
389		5	max	310.069	3	3.828	9	10.235	3	0	3	0	9	.309	2
390			min	-77.091	2	-94.541	2	066	9	0	1	021	3	431	3
391		6	max	310.189	3	3.637	9	10.235	3	0	3	0	9	.33	2
392			min	-76.931	2	-94.77	2	066	9	0	1	019	3	423	3
393		7	max	310.31	3	3.446	9	10.235	3	0	3	0	9	.351	2
394			min	-76.771	2	-94.999	2	066	9	0	1	017	3	415	3
395		8	max	310.43	3	3.256	9	10.235	3	0	3	0	9	.371	2
396			min	-76.611	2	-95.227	2	066	9	0	1	015	3	407	3
397		9	max	310.55	3	3.065	9	10.235	3	0	3	0	9	.392	2
398			min	-76.451	2	-95.456	2	066	9	0	1	012	3	399	3
399		10	max	310.67	3	2.875	9	10.235	3	0	3	0	1	.413	2
400			min	-76.291	2	-95.685	2	066	9	0	1	01	3	391	3
401		11	max	310.79	3	2.684	9	10.235	3	0	3	0	1	.433	2
402			min	-76.13	2	-95.914	2	066	9	0	1	008	3	383	3
403		12	max	310.91	3	2.493	9	10.235	3	0	3	0	1	.454	2
404			min	-75.97	2	-96.142	2	066	9	0	1	006	3	375	3
405		13	max	311.03	3	2.303	9	10.235	3	0	3	0	1	.475	2
406			min	-75.81	2	-96.371	2	066	9	0	1	003	3	367	3
407		14	max	311.15	3	2.112	9	10.235	3	0	3	0	1	.496	2
408			min	-75.65	2	-96.6	2	066	9	0	1	001	3	359	3
409		15	max	311.271	3	1.921	9	10.235	3	0	3	0	3	.517	2
410			min	-75.49	2	-96.829	2	066	9	0	1	0	9	351	3
411		16	max	248.701	2	513.413	2	10.222	3	0	3	.003	3	.533	2
412			min	3.11	15	-554.477	3	068	9	0	1	0	9	338	3
413		17	max	248.861	2	513.184	2	10.222	3	0	3	.005	3	.421	2
414			min	3.158	15	-554.648	3	068	9	0	1	0	9	218	3
415		18	max	1.725	3	977.61	2	9.355	3	0	3	.007	3	.211	2
416			min	-162.254	1	-502.539	3	012	9	0	9	0	9	108	3
417		19	max	1.845	3	977.381	2	9.355	3	0	3	.009	3	0	3
418		1	min	-162.094	1	-502.71	3	012	9	0	9	0	9	0	2
419	M9	1	max	60.126	1	339.338	3	103.15	3	0	3	.004	10	0	2
420				2.896		-208.707		-2.008	10		2	027	3	0	3
421		2	max		1	339.166	3	103.15	3	0	3	.004	10	.046	2
422			min	2.944	15	-208.936		-2.008	10	0	2	017	1	074	3
423		3		119.267	3	3.486	9	9.668	1	0	1	.017	3	.09	2
424			min	-33.461	2	-30.607	2	-2.726	3	0	10	015	1	146	3
425		4			3	3.296	9	9.668	1	0	1	.016	3	.097	2
426			min	-33.301	2	-30.836	2	-2.726	3	0	10	013	1	144	3
427		5		119.507	3	3.105	9	9.668	1	0	1	.016	3	.104	2
428			min		2	-31.065	2	-2.726	3	0	10	011	1	143	3
429		6	max		3	2.914	9	9.668	1	0	1	.015	3	.11	2
430			min	-32.981	2	-31.293	2	-2.726	3	0	10	008	1	141	3
431		7		119.747	3	2.724	9	9.668	1	0	1	.015	3	.117	2
432		,	min	-32.821	2	-31.522	2	-2.726	3	0	10	006	1	139	3
433		8		119.867	3	2.533	9	9.668	1	0	1	.014	3	.124	2
434			min	-32.66	2	-31.751	2	-2.726	3	0	10	004	1	138	3
435		9	max		3	2.343	9	9.668	1	0	1	.014	3	.131	2
436		9	min	-32.5	2	-31.98	2	-2.726	3	0	10	002	1	136	3
430			1111111	-02.0		-31.30		-2.720	J	U	IU	002		130	J

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	120.108	3	2.152	9	9.668	1	0	1	.013	3	.138	2
438			min	-32.34	2	-32.208	2	-2.726	3	0	10	0	1	134	3
439		11	max	120.228	3	1.961	9	9.668	1	0	1	.012	3	.145	2
440			min	-32.18	2	-32.437	2	-2.726	3	0	10	0	10	132	3
441		12	max	120.348	3	1.771	9	9.668	1	0	1	.012	3	.152	2
442			min	-32.02	2	-32.666	2	-2.726	3	0	10	0	10	13	3
443		13	max	120.468	3	1.58	9	9.668	1	0	1	.011	3	.159	2
444			min	-31.86	2	-32.895	2	-2.726	3	0	10	001	10	129	3
445		14	max	120.588	3	1.389	9	9.668	1	0	1	.011	3	.166	2
446			min	-31.699	2	-33.123	2	-2.726	3	0	10	002	10	127	3
447		15	max	120.708	3	1.199	9	9.668	1_	0	1	.01	1_	.173	2
448			min	-31.539	2	-33.352	2	-2.726	3	0	10	002	10	125	3
449		16	max	82.702	2	178.963	2	9.731	1	0	10	.013	1	.179	2
450			min	1.598	15	-210.148	3	-2.804	3	0	3	003	10	121	3
451		17	max	82.862	2	178.734	2	9.731	1	0	10	.015	1	.14	2
452		40	min	1.647	15	-210.319	3	-2.804	3	0	3	003	10	075	3
453		18	max	-2.943	15	323.287	2	10.098	1	0	2	.017	1	.071	2
454		40	min	-60.284	1	-172.348	3	-2.357	3	0	3	003	10	038	3
455		19	max	-2.895	15	323.058	2	10.098	1	0	2	.019	1	0	2
456	MAO	4	min	-60.124	1	-172.52	3	-2.357	3	0	3	004	10	0	3
457	M13	1	max	103.14	3	208.647	2	-2.896	15	0	2	.027	3	0	2
458		2	min	-2.009	10	-339.42	3	-60.123	10	0	3	004	10	105	3
459 460			max	103.14 -2.009	3	150.769 -243.746	2	-1.196 -44.438	10	0	3	.021	3	.105	3
461		3	min	103.14	<u>10</u> 3	92.891	2	.76	10	0	2	007 .017	3	065 .176	3
462		3	max min	-2.009	10	-148.073	3	-28.752	1	0	3	013	1	109	2
463		4	max	103.14	3	35.013	2	2.716	10	0	2	.012	3	.212	3
464			min	-2.009	10	-52.399	3	-13.066	1	0	3	021	1	132	2
465		5	max	103.14	3	43.275	3	7.5	2	0	2	.008	3	.214	3
466			min	-2.009	10	-22.865	2	-10.917	3	0	3	022	1	134	2
467		6	max	103.14	3	138.949	3	18.305	1	0	2	.004	3	.181	3
468			min	-2.009	10	-80.742	2	-9.886	3	0	3	019	1	115	2
469		7	max	103.14	3	234.623	3	33.991	1	0	2	.002	10	.114	3
470			min	-2.009	10	-138.62	2	-8.856	3	0	3	009	1	076	2
471		8	max	103.14	3	330.296	3	49.677	1	0	2	.009	2	.012	3
472			min	-2.009	10	-196.498	2	-7.826	3	0	3	002	3	015	2
473		9	max	103.14	3	425.97	3	65.362	1	0	2	.027	1	.066	2
474			min	-2.009	10	-254.376	2	-6.795	3	0	3	005	3	125	3
475		10	max	103.14	3	-5.511	15	81.048	1	0	2	.053	1	.168	2
476			min	-2.009	10	-521.644	3	3.477	15	0	3	022	3	296	3
477		11	max		1	254.376		7.938	3	0	3	.027	1	.066	2
478			min	-2.009	10	-425.97	3	-65.362	1	0	2	02	3	125	3
479		12	max	9.71	1	196.498	2	8.969	3	0	3	.009	2	.012	3
480			min	-2.009	10	-330.296		-49.676	1	0	2	017	3	015	2
481		13		9.71	1	138.62	2	9.999	3	0	3	.002	10	.114	3
482			min	-2.009	10	-234.622	3	-33.991	1	0	2	013	3	076	2
483		14	max	9.71	1	80.742	2	11.029	3	0	3	0	10	.181	3
484			min	-2.009	10	-138.949	3	-18.305	1	0	2	019	1	115	2
485		15	max	9.71	1	22.865	2	12.06	3	0	3	001	15	.214	3
486			min	-2.009	10	-43.275	3	-7.5	2	0	2	022	1	134	2
487		16	max	9.71	1	52.399	3	13.09	3	0	3	0	12	.212	3
488		4-	min	-2.009	10	-35.013	2	-2.716	10	0	2	021	1	132	2
489		17	max	9.71	1	148.073	3	28.752	1	0	3	.004	3	.176	3
490		4.0	min	-2.009	10	-92.891	2	76	10	0	2	013	1	109	2
491		18		9.71	1	243.746	3	44.438	1	0	3	.009	3	.105	3
492		40	min	-2.009	10	-150.769	2	1.196	10	0	2	007	2	065	2
493		19	max	9.71	_ 1	339.42	3	60.124	_ 1	0	3	.019	1	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
494			min	-2.009	10	-208.647	2	2.899	15	0	2	004	10	0	3
495	M16	1	max	2.362	3	323.139	2	-2.895	15	0	3	.019	1	0	2
496			min	-10.084	1	-172.56	3	-60.127	1	0	2	004	10	0	3
497		2	max	2.362	3	232.879	2	-1.22	10	0	3	.004	3	.054	3
498			min	-10.084	1	-125.459	3	-44.442	1	0	2	007	2	1	2
499		3	max	2.362	3	142.62	2	.736	10	0	3	0	3	.091	3
500			min	-10.084	1	-78.358	3	-28.756	1	0	2	013	1	168	2
501		4	max	2.362	3	52.36	2	2.692	10	0	3	0	15	.11	3
502			min	-10.084	1	-31.257	3	-13.07	1	0	2	021	1	203	2
503		5	max	2.362	3	15.844	3	7.464	2	0	3	001	15	.113	3
504			min	-10.084	1	-37.9	2	-7.11	3	0	2	022	1	206	2
505		6	max	2.362	3	62.945	3	18.301	1	0	3	0	10	.099	3
506			min	-10.084	1	-128.16	2	-6.079	3	0	2	019	1	176	2
507		7	max	2.362	3	110.046	3	33.987	1	0	3	.002	10	.068	3
508			min	-10.084	1	-218.419	2	-5.049	3	0	2	009	3	113	2
509		8	max	2.362	3	157.147	3	49.673	1	0	3	.009	2	.019	3
510			min	-10.084	1	-308.679	2	-4.018	3	0	2	011	3	018	2
511		9	max	2.362	3	204.248	3	65.359	1	0	3	.027	1	.109	2
512			min	-10.084	1	-398.939	2	-2.988	3	0	2	012	3	046	3
513		10	max	2.095	10	251.349	3	81.044	1	0	15	.053	1	.27	2
514			min	-10.084	1	-489.198	2	-1.958	3	0	2	013	3	128	3
515		11	max	2.095	10	398.939	2	.916	3	0	2	.027	1	.109	2
516			min	-10.084	1	-204.248	3	-65.358	1	0	3	004	3	046	3
517		12	max	2.095	10	308.679	2	1.947	3	0	2	.009	2	.019	3
518			min	-10.084	1	-157.147	3	-49.673	1	0	3	004	3	018	2
519		13	max	2.095	10	218.419	2	2.977	3	0	2	.002	10	.068	3
520			min	-10.084	1	-110.046	3	-33.987	1	0	3	009	1	113	2
521		14	max	2.095	10	128.16	2	4.007	3	0	2	0	10	.099	3
522			min	-10.084	1	-62.945	3	-18.301	1	0	3	019	1	176	2
523		15	max	2.095	10	37.9	2	5.038	3	0	2	0	3	.113	3
524			min	-10.084	1	-15.844	3	-7.464	2	0	3	022	1	206	2
525		16	max	2.095	10	31.257	3	13.07	1	0	2	.002	3	.11	3
526			min	-10.084	1	-52.36	2	-2.691	10	0	3	021	1	203	2
527		17	max	2.095	10	78.358	3	28.756	1	0	2	.005	3	.091	3
528			min	-10.084	1	-142.62	2	735	10	0	3	013	1	168	2
529		18	max	2.095	10	125.46	3	44.442	1	0	2	.007	3	.054	3
530			min	-10.084	1	-232.879	2	1.221	10	0	3	007	2	1	2
531		19	max	2.095	10	172.561	3	60.127	1	0	2	.019	1	0	2
532			min	-10.084	1	-323.139	2	2.898	15	0	3	004	10	0	3
533	M15	1	max	0	1	.696	3	.173	3	0	1	0	1	0	1
534			min	-158.227	3	0	1	0	1	0	3	0	3	0	1
535		2	max	_	1	.618	3	.173	3	0	1	0	1	0	1
536			min	-158.303	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.541	3	.173	3	0	1	0	1	0	1
538			min	-158.378	3	0	1	0	1	0	3	0	3	0	3
539		4	max		1	.464	3	.173	3	0	1	0	1	0	1
540			min	-158.454	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.387	3	.173	3	0	1	0	1	0	1
542					3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.309	3	.173	3	0	1	0	1	0	1
544					3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	1	.232	3	.173	3	0	1	0	3	0	1
546				-158.68	3	0	1	0	1	0	3	0	1	0	3
547		8	max	0	1	.155	3	.173	3	0	1	0	3	0	1
548			min	-158.756	3	0	1	0	1	0	3	0	1	0	3
549		9	max	0	1	.077	3	.173	3	0	1	0	3	0	1
550				-158.831	3	0	1	0	1	0	3	0	1	0	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
551		10	max	0	1	0	1	.173	3	0	1	0	3	0	1
552			min	-158.907	3	0	1	0	1	0	3	0	1_	0	3
553		11	max	0	1	0	1	.173	3	0	1	0	3	0	1
554			min	-158.982	3	077	3	0	1	0	3	0	1_	0	3
555		12	max	0	1	0	1	.173	3	0	1	0	3	0	1
556		10	min	-159.058	3	155	3	0	1	0	3	0	1_	0	3
557		13	max	0	1	0	1	.173	3	0	1	0	3	0	1
558		4.	min	_	3	232	3	0	1	0	3	0	1_	0	3
559		14	max	0	1	0	1	.173	3	0	1	0	3	0	1
560		4.5	min	-159.209	3	309	3	0	1	0	3	0	1_	0	3
561		15	max	0	1	0	1	.173	3	0	1	0	3	0	1
562		4.0	min	-159.284	3	387	3	0	1	0	3	0	1	0	3
563		16	max	-159.36	3	0	3	.173	3	0	1	0	3	0	3
564 565		17	min		<u> </u>	464 0	1	.173	3	0	1	0	3	0	1
566		17	max min	0 -159.435	3	541	3	0	1	0	3	0	<u> </u>	0	3
567		18	max	0	1	0	1	.173	3	0	1	0	3	0	1
568		10	min	_	3	618	3	0	1	0	3	0	1	0	3
569		19	max	0	1	0	1	.173	3	0	1	0	3	0	1
570		13	min	-159.587	3	696	3	0	1	0	3	0	1	0	1
571	M16A	1	max	0	1	1.191	4	.009	9	0	3	0	3	0	1
572	1011071		min	-157.131	3	0	1	073	3	0	9	0	9	0	1
573		2	max	0	1	1.058	4	.009	9	0	3	0	3	0	1
574			min		3	0	1	073	3	0	9	0	9	0	4
575		3	max	0	1	.926	4	.009	9	0	3	0	3	0	1
576			min	-156.98	3	0	1	073	3	0	9	0	9	0	4
577		4	max	0	1	.794	4	.009	9	0	3	0	3	0	1
578			min	-156.904	3	0	1	073	3	0	9	0	9	0	4
579		5	max	0	1	.661	4	.009	9	0	3	0	3	0	1
580			min	-156.829	3	0	1	073	3	0	9	0	9	0	4
581		6	max	0	1	.529	4	.009	9	0	3	0	3	0	1
582			min	-156.753	3	0	1	073	3	0	9	0	9	001	4
583		7	max	0	1	.397	4	.009	9	0	3	0	3_	0	1
584			min	-156.678	3	0	1	073	3	0	9	0	9	001	4
585		8	max	0	1	.265	4	.009	9	0	3	0	3	0	1
586			min	-156.602	3	0	1	073	3	0	9	0	9	001	4
587		9	max	0	1	.132	4	.009	9	0	3	0	3	0	1
588		40	min		3	0	1	073	3	0	9	0	9	001	4
589		10	max	0	1	0	1	.009	9	0	3	0	3	0	1
590		4.4	min	-156.451	3	0	1	073	3	0	9	0	9	001	4
591		11		.071	13	0	1	.009	9	0	3	0	3	0	1
592		12	min		3	132	4	073	3	0	9	0	9	001	4
593		12	1		13	265	1	.009	9	0	9	0	<u>3</u>	0	1
594		12	min	-156.3 .298	<u>3</u> 4	265 0	1	073 .009	9	0	3	0	<u>4</u> 1	001 0	1
595 596		13	max min		3	397	4	073	3	0	9	0	3	001	4
597		1/	max		4	397 0	1	.009	9	0	3	0	<u>ာ</u> 1	0	1
598		14	min		3	529	4	073	3	0	9	0	3	001	4
599		15	max		4	0	1	.009	9	0	3	0	9	0	1
600		13	min	-156.073	3	661	4	073	3	0	9	0	3	0	4
601		16	max		4	0	1	.009	9	0	3	0	9	0	1
602		10	min		3	794	4	073	3	0	9	0	3	0	4
603		17	max		4	0	1	.009	9	0	3	0	9	0	1
604				-155.922	3	926	4	073	3	0	9	0	3	0	4
605		18	max	.944	4	0	1	.009	9	0	3	0	9	0	1
606			min		3	-1.058	4	073	3	0	9	0	3	0	4
607		19	max		4	0	1	.009	9	0	3	0	9	0	1
						_	<u> </u>					-			

Model Name

Schletter, Inc.HCV

110 V

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec	Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608	3		min -155 771	3	-1 191	4	- 073	3	0	9	0	3	0	1

Envelope Member Section Deflections

	siope ivicini			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					LC
1	M2	1	max	.002	2	.011	2	.001	9	3.389e-5	10	NC	3	NC	1
2			min	004	3	011	3	003	3	-2.483e-4	3	3911.628	2	NC	1
3		2	max	.002	2	.01	2	.001	9	3.226e-5	10	NC	3	NC	1
4			min	004	3	011	3	003	3	-2.347e-4	3	4277.787	2	NC	1
5		3	max	.002	2	.009	2	.001	9	3.064e-5	10	NC	3	NC	1
6			min	003	3	01	3	002	3	-2.212e-4	3	4714.838	2	NC	1
7		4	max	.002	2	.008	2	.002	9	2.901e-5	10	NC	1	NC	1
		-		003	3		3	002	3	-2.077e-4	3	5240.088		NC	1
8		_	min			01							2		
9		5_	max	.002	2	.007	2	0	9	2.739e-5	10	NC	1	NC	1
10			min	003	3	009	3	002	3	-1.941e-4	3	5876.657	2	NC	1
11		6	max	.001	2	.006	2	0	9	2.577e-5	<u>10</u>	NC	1	NC	1
12			min	003	3	009	3	002	3	-1.806e-4	3	6655.927	2	NC	1
13		7	max	.001	2	.006	2	0	9	2.414e-5	10	NC	_1_	NC	1
14			min	003	3	008	3	001	3	-1.671e-4	3	7621.306	2	NC	1
15		8	max	.001	2	.005	2	0	9	2.252e-5	10	NC	1_	NC	1
16			min	002	3	008	3	001	3	-1.535e-4	3	8834.153	2	NC	1
17		9	max	.001	2	.004	2	0	9	2.089e-5	10	NC	1	NC	1
18			min	002	3	007	3	001	3	-1.4e-4	3	NC	1	NC	1
19		10	max	0	2	.003	2	0	9	1.927e-5	10	NC	1	NC	1
20			min	002	3	007	3	0	3	-1.264e-4	3	NC	1	NC	1
21		11	max	0	2	.003	2	0	9	1.765e-5	10	NC	1	NC	1
22			min	002	3	006	3	0	3	-1.129e-4	3	NC	1	NC	1
23		12	max	0	2	.002	2	0	9	1.602e-5	10	NC	1	NC	1
24		12	min	001	3	005	3	0	3	-9.937e-5	3	NC	1	NC	1
		12									_	NC NC	1		1
25		13	max	0	2	.002	2	0	9	1.44e-5	10			NC NC	_
26		4.4	min	001	3	005	3	0	3	-8.583e-5	3	NC NC	1_	NC NC	1
27		14	max	0	2	.001	2	0	9	1.277e-5	10	NC	1	NC	1
28			min	001	3	004	3	0	3	-7.229e-5	3	NC	1	NC	1
29		15	max	0	2	0	2	0	9	1.115e-5	<u>10</u>	NC	_1_	NC	1
30			min	0	3	003	3	0	3	-5.875e-5	3	NC	1_	NC	1
31		16	max	0	2	0	2	0	9	9.524e-6	<u> 10</u>	NC	<u>1</u>	NC	1
32			min	0	3	002	3	0	3	-4.522e-5	3	NC	1_	NC	1
33		17	max	0	2	0	2	0	9	7.9e-6	10	NC	1	NC	1
34			min	0	3	002	3	0	3	-3.728e-5	1	NC	1	NC	1
35		18	max	0	2	0	2	0	9	6.276e-6	10	NC	1	NC	1
36			min	0	3	0	3	0	3	-3.013e-5	9	NC	1	NC	1
37		19	max	0	1	0	1	0	1	4.652e-6	10	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.379e-5	9	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.142e-5	9	NC	1	NC	1
40	1410		min	0	1	0	1	0	1	-2.24e-6	10	NC	1	NC	1
41		2	max	0	3	0	2	0	10		1	NC	1	NC	1
42			min	0	2	0	3	0	9	-3.103e-6		NC	1	NC	1
43		3		0	3	0	2	0	3	1.931e-5	1	NC	1	NC	1
		<u> </u>	max		2	002	3					NC NC		NC NC	
44		A	min	0				0	9	-3.965e-6	<u>10</u>		1		1
45		4	max	0	3	0	2	0	3	2.368e-5	1 40	NC	1	NC NC	1
46			min	0	2	003	3	0	9	-4.828e-6	10	NC	1_	NC	1
47		5	max	0	3	0	2	0	3	2.806e-5	_1_	NC	_1_	NC	1
48			min	0	2	004	3	0	9	-5.691e-6	10	NC	1_	NC	1
49		6	max	0	3	0	2	0	3	3.243e-5	_1_	NC	1	NC	1
50			min	0	2	005	3	0	9	-6.553e-6	10	NC	1_	NC	1
51		7	max	0	3	0	2	0	3	3.68e-5	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r			LC) LC
52			min	0	2	005	3	0		10	NC	1_	NC	1
53		8	max	0	3	.001	2	0	3 4.118e-5	1_	NC	_1_	NC	1
54			min	001	2	006	3	0		10	NC	1_	NC	1
55		9	max	.001	3	.001	2	0	3 4.555e-5	1_	NC	1_	NC	1
<u>56</u>		4.0	min	001	2	007	3	0		<u>10</u>	NC	1_	NC	1
57		10	max	.001	3	.002	2	0	3 4.992e-5	1	NC	1_	NC	1
58		44	min	001	2	007	3	0		10	NC NC	1_	NC NC	1
59		11	max	.001	3	.002	2	0	3 5.43e-5	1_	NC NC	1_	NC	1
60		40	min	002	2	008	3	0		<u>10</u>	NC NC	1_	NC NC	1
61		12	max	.002	3	.003 008	3	<u>0</u> 	3 5.867e-5	1	NC NC	<u>1</u> 1	NC NC	1
63		13	min	002 .002			2			10	NC NC	1	NC NC	1
64		13	max	002	3	.004 008	3	<u> </u>		<u>1</u> 10	NC NC	1	NC NC	1
65		14	min max	.002	3	.005	2	.001	3 6.742e-5	1	NC NC	1	NC NC	1
66		14	min	002	2	009	3	0		10	NC NC	1	NC	1
67		15	max	.002	3	.005	2	.001	3 7.179e-5	1	NC	1	NC	1
68		10	min	002	2	009	3	0			8497.803	2	NC	1
69		16	max	.002	3	.006	2	.001	3 7.616e-5	1	NC	1	NC	1
70		10	min	002	2	009	3	0			7218.294	2	NC	1
71		17	max	.002	3	.007	2	.002	3 8.054e-5	1	NC	1	NC	1
72		<u> </u>	min	002	2	009	3	0			6225.012	2	NC	1
73		18	max	.002	3	.008	2	.002	3 8.491e-5	1	NC	1	NC	1
74			min	003	2	009	3	0		10	5445.404	2	NC	1
75		19	max	.003	3	.01	2	.002	3 8.928e-5	1	NC	3	NC	1
76			min	003	2	009	3	0		10	4828.204	2	NC	1
77	M4	1	max	0	1	.012	2	0		10	NC	1	NC	1
78			min	0	15	011	3	002	3 -1.097e-4	1	NC	1	NC	1
79		2	max	0	1	.012	2	0		10	NC	1	NC	1
80			min	0	15	011	3	002	3 -1.097e-4	1	NC	1	NC	1
81		3	max	0	1	.011	2	0		10	NC	1_	NC	1
82			min	0	15	01	3	001	3 -1.097e-4	1	NC	1_	NC	1
83		4	max	0	1	.01	2	0		<u>10</u>	NC	_1_	NC	1
84		_	min	0	15	009	3	001	3 -1.097e-4	1_	NC	_1_	NC	1
85		5	max	0	1	.01	2	0		10	NC	1_	NC	1
86			min	0	15	009	3	001	3 -1.097e-4	1_	NC	1_	NC	1
87		6	max	0	1	.009	2	0		<u>10</u>	NC	1_	NC	1
88		-	min	0	15	008	3	<u>001</u>	3 -1.097e-4	1_	NC	1_	NC	1
89		7	max	0	1	.008	2	0		<u>10</u>	NC		NC	1
90			min	0	15	007	3	0	3 -1.097e-4	1_	NC NC	1_	NC NC	1
91		8	max	<u> </u>	15	.008	3	<u> </u>	10 2.247e-5 3 -1.097e-4	10	NC NC	1	NC NC	1
			min			007	2					1		
93		9	max min	0	15	.007 006	3	0 0		<u>10</u> 1	NC NC	1	NC NC	1
95		10		0	1	.006	2	0		10	NC NC	1	NC NC	1
96		10	max min	0	15	006	3	0	3 -1.097e-4	1	NC	1	NC	1
97		11	max	0	1	.006	2	0		10	NC	1	NC	1
98			min	0	15	005	3	0		1	NC	1	NC	1
99		12	max	0	1	.005	2	0		10	NC	1	NC	1
100		12	min	0	15	004	3	0	3 -1.097e-4	1	NC	1	NC	1
101		13	max	0	1	.004	2	0		10	NC	1	NC	1
102		10	min	0	15	004	3	0	3 -1.097e-4	1	NC	1	NC	1
103		14	max	0	1	.003	2	0		10	NC	1	NC	1
104			min	0	15	003	3	0		1	NC	1	NC	1
105		15	max	0	1	.003	2	0		10	NC	1	NC	1
106			min	0	15	002	3	0		1	NC	1	NC	1
107		16	max	0	1	.002	2	0		10	NC	1	NC	1
108			min	0	15	002	3	0		1	NC	1	NC	1
										_		_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

109	LC
111	1
112	1
113	1
114	1
115 M6	1
115	1
116	1
117	3
118	1
119	3
120	1
121	
122	1
123	3
124	1
125	
126	
127	1
128	
129	1
130	3
131	1
132	3
133	1
134	1
135 11 max .003 2 .012 2 0 9 3.896e-4 3 NC 3 NC 136 min 005 3 014 3 003 3 -4.589e-6 9 3616.868 2 NC 137 12 max .002 2 .01 2 0 9 3.713e-4 3 NC 3 NC 138 min 004 3 013 3 002 3 -5.012e-6 9 4234.767 2 NC 139 13 max .002 2 .008 2 0 9 3.531e-4 3 NC 1 NC 140 min 004 3 011 3 002 3 -5.435e-6 9 5065.455 2 NC 141 14 max .002 2 .007 2 0 9 3.348e-4 3	1
136 min 005 3 014 3 003 3 -4.589e-6 9 3616.868 2 NC 137 12 max .002 2 .01 2 0 9 3.713e-4 3 NC 3 NC 138 min 004 3 013 3 002 3 -5.012e-6 9 4234.767 2 NC 139 13 max .002 2 .008 2 0 9 3.531e-4 3 NC 1 NC 140 min 004 3 011 3 002 3 -5.435e-6 9 5065.455 2 NC 141 14 max .002 2 .007 2 0 9 3.348e-4 3 NC 1 NC 142 min 003 3 009 3 026 9 6.285e-6 9 62	1
137 12 max .002 2 .01 2 0 9 3.713e-4 3 NC 3 NC 138 min 004 3 013 3 002 3 -5.012e-6 9 4234.767 2 NC 139 13 max .002 2 .008 2 0 9 3.531e-4 3 NC 1 NC 140 min 004 3 011 3002 3 -5.435e-6 9 5065.455 2 NC 141 14 max .002 2 .007 2 0 9 3.348e-4 3 NC 1 NC 1 NC 142 min 003 3009 3002 3 -5.858e-6 9 6236.452 2 NC NC 1 NC	1
138 min 004 3 013 3 002 3 -5.012e-6 9 4234.767 2 NC 139 13 max .002 2 .008 2 0 9 3.531e-4 3 NC 1 NC 140 min 004 3 011 3 002 3 -5.435e-6 9 5065.455 2 NC 141 14 max .002 2 .007 2 0 9 3.348e-4 3 NC 1 NC 142 min 003 3 009 3 002 3 -5.858e-6 9 6236.452 2 NC 143 15 max .001 2 .005 2 0 9 3.165e-4 3 NC 1 NC 144 min 002 3 007 3 001 3 -6.282e-6 9	1
139 13 max .002 2 .008 2 0 9 3.531e-4 3 NC 1 NC 140 min 004 3 011 3 002 3 -5.435e-6 9 9 5065.455 2 NC 141 14 max .002 2 .007 2 0 9 3.348e-4 3 NC 1 NC 142 min 003 3 009 3 002 3 -5.858e-6 9 6236.452 2 NC 143 15 max .001 2 .005 2 0 9 3.165e-4 3 NC 1 NC 144 min 002 3 007 3 001 3 -6.282e-6 9 8002.676 2 NC 145 16 max 0 2 .004 2 0 9 2.983e-4 3 NC 1 NC 146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC 147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min	1
140 min 004 3 011 3 002 3 -5.435e-6 9 5065.455 2 NC 141 14 max .002 2 .007 2 0 9 3.348e-4 3 NC 1 NC 142 min 003 3 009 3 002 3 -5.858e-6 9 6236.452 2 NC 143 15 max .001 2 .005 2 0 9 3.165e-4 3 NC 1 NC 144 min 002 3 001 3 -6.282e-6 9 8002.676 2 NC 145 16 max 0 2 .004 2 0 9 2.983e-4 3 NC 1 NC 146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC	1
141 14 max .002 2 .007 2 0 9 3.348e-4 3 NC 1 NC 142 min 003 3 009 3 002 3 -5.858e-6 9 6236.452 2 NC 143 15 max .001 2 .005 2 0 9 3.165e-4 3 NC 1 NC 144 min 002 3 007 3 001 3 -6.282e-6 9 8002.676 2 NC 145 16 max 0 2 .004 2 0 9 2.983e-4 3 NC 1 NC 146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC 147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min 001 3 004 3 0 3 -7.128e-6	1
141 14 max .002 2 .007 2 0 9 3.348e-4 3 NC 1 NC 142 min 003 3 009 3 002 3 -5.858e-6 9 6236.452 2 NC 143 15 max .001 2 .005 2 0 9 3.165e-4 3 NC 1 NC 144 min 002 3 007 3 001 3 -6.282e-6 9 8002.676 2 NC 145 16 max 0 2 .004 2 0 9 2.983e-4 3 NC 1 NC 146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC 147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min 001 3 004 3 0 3 -7.128e-6	1
142 min 003 3 009 3 002 3 -5.858e-6 9 6236.452 2 NC 143 15 max .001 2 .005 2 0 9 3.165e-4 3 NC 1 NC 144 min 002 3 007 3 001 3 -6.282e-6 9 8002.676 2 NC 145 16 max 0 2 .004 2 0 9 2.983e-4 3 NC 1 NC 146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC 147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min 001 3 004 3 0 3 -7.128e-6 9 NC 1<	1
143 15 max .001 2 .005 2 0 9 3.165e-4 3 NC 1 NC 144 min 002 3 007 3 001 3 -6.282e-6 9 8002.676 2 NC 145 16 max 0 2 .004 2 0 9 2.983e-4 3 NC 1 NC 146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC 147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min 001 3 004 3 0 3 -7.128e-6 9 NC 1 NC 149 18 max 0 2 .001 2 0 9 2.617e-4 3 NC <t< td=""><td>1</td></t<>	1
144 min 002 3 007 3 001 3 -6.282e-6 9 8002.676 2 NC 145 16 max 0 2 .004 2 0 9 2.983e-4 3 NC 1 NC 146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC 147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min 001 3 004 3 0 3 -7.128e-6 9 NC 1 NC 149 18 max 0 2 .001 2 0 9 2.617e-4 3 NC 1 NC 150 min 0 3 002 3 0 3 -7.551e-6 9 NC 1	1
145 16 max 0 2 .004 2 0 9 2.983e-4 3 NC 1 NC 146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC 147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min 001 3 004 3 0 3 -7.128e-6 9 NC 1 NC 149 18 max 0 2 .001 2 0 9 2.617e-4 3 NC 1 NC 150 min 0 3 002 3 0 3 -7.551e-6 9 NC 1 NC 151 19 max 0 1 0 1 0 1 2.434e-4 3 NC 1 NC	1
146 min 002 3 005 3 0 3 -6.705e-6 9 NC 1 NC 147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min 001 3 004 3 0 3 -7.128e-6 9 NC 1 NC 149 18 max 0 2 .001 2 0 9 2.617e-4 3 NC 1 NC 150 min 0 3 002 3 0 3 -7.551e-6 9 NC 1 NC 151 19 max 0 1 0 1 2.434e-4 3 NC 1 NC	1
147 17 max 0 2 .003 2 0 9 2.8e-4 3 NC 1 NC 148 min 001 3 004 3 0 3 -7.128e-6 9 NC 1 NC 149 18 max 0 2 .001 2 0 9 2.617e-4 3 NC 1 NC 150 min 0 3 002 3 0 3 -7.551e-6 9 NC 1 NC 151 19 max 0 1 0 1 2.434e-4 3 NC 1 NC	1
148 min 001 3 004 3 0 3 -7.128e-6 9 NC 1 NC 149 18 max 0 2 .001 2 0 9 2.617e-4 3 NC 1 NC 150 min 0 3 002 3 0 3 -7.551e-6 9 NC 1 NC 151 19 max 0 1 0 1 0 1 2.434e-4 3 NC 1 NC	1
149 18 max 0 2 .001 2 0 9 2.617e-4 3 NC 1 NC 150 min 0 3 002 3 0 3 -7.551e-6 9 NC 1 NC 151 19 max 0 1 0 1 0 1 2.434e-4 3 NC 1 NC	1
150 min 0 3 002 3 0 3 -7.551e-6 9 NC 1 NC 151 19 max 0 1 0 1 0 1 2.434e-4 3 NC 1 NC	1
151 19 max 0 1 0 1 0 1 2.434e-4 3 NC 1 NC	1
	1
$\frac{1}{2}$	1
102	1
	1
155 2 max 0 3 .001 2 0 3 3.367e-6 9 NC 1 NC	1
156 min 0 2002 3 0 9 -8.731e-5 3 NC 1 NC	1
157 3 max 0 3 .002 2 .001 3 2.935e-6 9 NC 1 NC	1
158 min 0 2004 3 0 9 -5.871e-5 3 NC 1 NC	1
159 4 max .001 3 .004 2 .002 3 2.504e-6 9 NC 1 NC	1
160 min001 2006 3 0 9 -3.011e-5 3 NC 1 NC	1
161 5 max .001 3 .005 2 .002 3 2.073e-6 9 NC 1 NC	1
162 min002 2008 3 0 9 -1.511e-6 3 9487.656 2 NC	1
163 6 max .002 3 .006 2 .002 3 2.709e-5 3 NC 1 NC	1
164 min002 201 3 0 9 0 5 7584.262 2 NC	1
165 7 max .002 3 .007 2 .003 3 5.569e-5 3 NC 1 NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
166			min	003	2	011	3	0	9	0	5	6281.136	2	NC	1
167		8	max	.003	3	.009	2	.003	3	8.428e-5	3	NC	1	NC	1
168			min	003	2	013	3	0	9	-5.411e-8	13	5325.304	2	NC	1
169		9	max	.003	3	.01	2	.003	3	1.129e-4	3	NC	3	NC	1
170			min	003	2	014	3	0	9	-9.325e-8		4590.675	2	NC	1
171		10	max	.003	3	.011	2	.003	3	1.415e-4	3	NC	3	NC	1
172		1	min	004	2	016	3	0	9	-1.61e-7	4	4007.275	2	NC	1
173		11	max	.004	3	.013	2	.004	3	1.701e-4	3	NC	3	NC	1
174		+ ' '	min	004	2	017	3	0	9	-5.153e-7	9	3532.989	2	NC	1
175		12	max	.004	3	.015	2	.004	3	1.987e-4	3	NC	3	NC	1
176		12	min	005	2	019	3	0	9	-9.466e-7	9	3140.77	2	NC	1
		40							_		_				_
177		13	max	.004	3	.016	2	.004	3	2.273e-4	3_	NC	3	NC	1
178			min	005	2	02	3	0	9	-1.378e-6	9	2812.296	2	NC	1
179		14	max	.005	3	.018	2	.004	3	2.559e-4	3	NC	3_	NC	1
180			min	006	2	021	3	0	9	-1.809e-6	9	2534.592	2	NC	1
181		15	max	.005	3	.02	2	.004	3	2.845e-4	3	NC	3	NC	1
182			min	006	2	022	3	0	9	-2.241e-6	9	2298.125	2	NC	1
183		16	max	.006	3	.022	2	.004	3	3.131e-4	3	NC	3	NC	1
184			min	007	2	023	3	0	9	-2.672e-6	9	2095.683	2	NC	1
185		17	max	.006	3	.024	2	.004	3	3.417e-4	3	NC	3	NC	1
186			min	007	2	024	3	0	9	-3.103e-6	9	1921.675	2	NC	1
187		18	max	.006	3	.026	2	.004	3	3.703e-4	3	NC	3	NC	1
188		1	min	007	2	025	3	0	9	-3.535e-6	9	1771.69	2	NC	1
189		19	max	.007	3	.028	2	.004	3	3.989e-4	3	NC	3	NC	1
190		13	min	008	2	026	3	0	9	-3.966e-6	9	1642.201	2	NC	1
191	M8	1	max	.003	1	.037	2	0	9	-1.378e-7	10	NC	1	NC	1
	IVIO	+-					3					NC	_		
192		-	min	0	15	031		003	3	-2.782e-4	3		1_	7089.845	3
193		2	max	.003	1	.035	2	0	9	-1.378e-7	10	NC	1	NC	
194			min	0	15	029	3	003	3	-2.782e-4	3	NC	1_	7730.184	
195		3	max	.002	1	.033	2	0	9	-1.378e-7	10	NC	1	NC	1
196			min	0	15	028	3	002	3	-2.782e-4	3	NC	1_	8492.491	3
197		4	max	.002	1	.031	2	0	9	-1.378e-7	10	NC	_1_	NC	1
198			min	0	15	026	3	002	3	-2.782e-4	3	NC	1_	9408.899	3
199		5	max	.002	1	.029	2	0	9	-1.378e-7	10	NC	_1_	NC	1
200			min	0	15	024	3	002	3	-2.782e-4	3	NC	1_	NC	1
201		6	max	.002	1	.027	2	0	9	-1.378e-7	10	NC	1	NC	1
202			min	0	15	022	3	002	3	-2.782e-4	3	NC	1	NC	1
203		7	max	.002	1	.024	2	0	9	-1.378e-7	10	NC	1	NC	1
204			min	0	15	021	3	001	3	-2.782e-4	3	NC	1	NC	1
205		8	max	.002	1	.022	2	0	9	-1.378e-7	10	NC	1	NC	1
206			min	0	15	019	3	001	3	-2.782e-4	3	NC	1	NC	1
207		9	max	.002	1	.02	2	0	9	-1.378e-7	10	NC	1	NC	1
208			min	0	15	017	3	001	3	-2.782e-4	3	NC	1	NC	1
209		10		.001	1	.018	2	0	9	-1.378e-7	10	NC	1	NC	1
		10	max		15			0					1		1
210		4.4	min	0		016	3		3	-2.782e-4	3	NC NC		NC NC	
211		11	max	.001	1	.016	2	0	9	-1.378e-7	10	NC	1	NC	1
212		10	min	0	15	<u>014</u>	3	0	3	-2.782e-4	3	NC	_1_	NC	1
213		12	max	.001	1	.014	2	00	9	-1.378e-7	<u>10</u>	NC	_1_	NC	1
214			min	0	15	012	3	0	3	-2.782e-4	3	NC	1_	NC	1
215		13	max	0	1	.012	2	0	9	-1.378e-7	10	NC	_1_	NC	1
216			min	0	15	01	3	0	3	-2.782e-4	3	NC	1	NC	1
217		14	max	0	1	.01	2	0	9	-1.378e-7	10	NC	1	NC	1
218			min	0	15	009	3	0	3	-2.782e-4	3	NC	1	NC	1
219		15	max	0	1	.008	2	0	9	-1.378e-7	10	NC	1	NC	1
220			min	0	15	007	3	0	3	-2.782e-4	3	NC	1	NC	1
221		16	max	0	1	.006	2	0	9	-1.378e-7	10	NC	1	NC	1
222		10	min	0	15	005	3	0	3	-2.782e-4	3	NC	1	NC	1
			,		10	.000		•		2.1 UZU T		110			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.004	2	0	9	-1.378e-7	10	NC	1	NC	1
224			min	0	15	003	3	0	3	-2.782e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	9	-1.378e-7	10	NC	1	NC	1
226			min	0	15	002	3	0	3	-2.782e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-1.378e-7	10	NC	1	NC	1
228		10	min	0	1	0	1	0	1	-2.782e-4	3	NC	1	NC	1
229	M10	1	max	.002	2	.011	2	0	10	1.598e-4	1	NC	3	NC	1
230	IVITO		min	003	3	011	3	001	1	-6.495e-4	3	3914.594	2	NC	1
		1													
231		2	max	.002	2	.01	2	0	10	1.522e-4	1_	NC	3_	NC	1
232			min	002	3	011	3	001	1	-6.258e-4	3	4281.136	2	NC	1
233		3	max	.002	2	.009	2	0	10	1.445e-4	1_	NC	3	NC	1
234			min	002	3	01	3	001	1	-6.021e-4	3	4718.666	2	NC	1
235		4	max	.002	2	.008	2	0	10	1.369e-4	<u>1</u>	NC	<u>1</u>	NC	1
236			min	002	3	01	3	0	1	-5.784e-4	3	5244.518	2	NC	1
237		5	max	.002	2	.007	2	0	10	1.292e-4	1	NC	1	NC	1
238			min	002	3	009	3	0	1	-5.547e-4	3	5881.853	2	NC	1
239		6	max	.001	2	.006	2	0	3	1.215e-4	1	NC	1	NC	1
240			min	002	3	009	3	0	1	-5.31e-4	3	6662.112	2	NC	1
241		7	max	.001	2	.006	2	0	3	1.139e-4	1	NC	1	NC	1
242			min	002	3	008	3	0	1	-5.073e-4	3	7628.785	2	NC	1
243		8		.002	2	.005	2	0	3	1.062e-4	<u> </u>	NC	1	NC	1
		0	max												
244			min	002	3	008	3	0	1	-4.836e-4	3_	8843.358	2	NC	1
245		9	max	.001	2	.004	2	0	3	9.855e-5	_1_	NC	_1_	NC	1
246			min	001	3	007	3	0	1	-4.599e-4	3	NC	1_	NC	1
247		10	max	0	2	.003	2	0	3	9.089e-5	<u>1</u>	NC	_1_	NC	1
248			min	001	3	007	3	0	1	-4.362e-4	3	NC	1_	NC	1
249		11	max	0	2	.003	2	0	3	8.323e-5	1	NC	1	NC	1
250			min	001	3	006	3	0	1	-4.125e-4	3	NC	1	NC	1
251		12	max	0	2	.002	2	0	3	7.557e-5	1	NC	1	NC	1
252			min	0	3	005	3	0	1	-3.888e-4	3	NC	1	NC	1
253		13	max	0	2	.002	2	0	3	6.791e-5	1	NC	1	NC	1
254			min	0	3	005	3	0	1	-3.651e-4	3	NC	1	NC	1
255		14		0	2	.001	2	0	3	6.025e-5	1	NC	1	NC	1
256		14	max	0	3	004	3	0	1		3	NC	1	NC	1
		4.5	min							-3.414e-4			•		-
257		15	max	0	2	0	2	0	3	5.259e-5	1_	NC	1_	NC	1
258		1.0	min	0	3	003	3	0	1	-3.177e-4	3	NC	1_	NC	1
259		16	max	0	2	0	2	0	3	4.493e-5	_1_	NC	_1_	NC	1
260			min	0	3	002	3	0	1	-2.94e-4	3	NC	1_	NC	1
261		17	max	0	2	0	2	0	3	3.727e-5	1	NC	1	NC	1
262			min	0	3	002	3	0	1	-2.703e-4	3	NC	1	NC	1
263		18	max	0	2	0	2	0	3	2.96e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-2.466e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.194e-5	1	NC	1	NC	1
266		1.0	min	0	1	0	1	0	1	-2.229e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	1.068e-4	3	NC	1	NC	1
268	IVI I			0	1	0	1	0	1	-1.057e-5	1	NC NC	1	NC NC	1
		2	min								•		•		
269		2	max	0	3	0	2	0	1	7.996e-5	3	NC	1_	NC NC	1
270		-	min	0	2	0	3	0	3	-1.492e-5	1_	NC	1_	NC	1
271		3	max	0	3	0	2	0	1	5.315e-5	3	NC	1_	NC	1
272			min	0	2	002	3	0	3	-1.928e-5	1	NC	1	NC	1
273		4	max	0	3	0	2	0	1	2.635e-5	3	NC	_1_	NC	1
274			min	0	2	003	3	001	3	-2.364e-5	1	NC	1	NC	1
275		5	max	0	3	0	2	0	1	5.737e-6	10	NC	1	NC	1
276			min	0	2	004	3	002	3	-2.8e-5	1	NC	1	NC	1
277		6	max	0	3	0	2	0	10	6.611e-6	10	NC	1	NC	1
278			min	0	2	005	3	002	3	-3.236e-5	1	NC	1	NC	1
279		7		0	3	<u>005</u> 0	2	<u>002</u> 0	10		10	NC	1	NC	1
219		<u> </u>	max	U	_⊥ ວ	U	L Z	U	ΙŪ	0-9cop. 1	ΙU	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r I	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
280			min	0	2	005	3	002	3 -5.407e-5	3	NC	1	NC	1
281		8	max	0	3	.001	2	0	10 8.36e-6	10	NC	1	NC	1
282			min	001	2	006	3	003	3 -8.088e-5	3	NC	1	NC	1
283		9	max	.001	3	.001	2	0		10	NC	1	NC	1
284			min	001	2	007	3	003		3	NC	1	NC	1
285		10	max	.001	3	.002	2	0		10	NC	1	NC	1
286		1	min	001	2	007	3	003		3	NC	1	NC	1
287		11	max	.001	3	.002	2	0		10	NC	1	NC	1
288		+ ' '	min	002	2	008	3	003		3	NC	1	NC	1
289		12	max	.002	3	.003	2	<u>.003</u>		ر 10	NC	1	NC	1
290		12	min	002	2	008	3	003		3	NC	1	NC	1
		40										•		
291		13	max	.002	3	.004	2	0		10	NC NC	1	NC	1
292			min	002	2	008	3	003		3	NC	1_	NC	1
293		14	max	.002	3	.005	2	0		10	NC	1_	NC	1
294			min	002	2	009	3	003		3	NC	1_	NC	1
295		15	max	.002	3	.005	2	0		10	NC	_1_	NC	1
296			min	002	2	009	3	003			8508.311	2	NC	1
297		16	max	.002	3	.006	2	0	10 1.535e-5	10	NC	1	NC	1
298			min	002	2	009	3	003	3 -2.953e-4	3	7226.41	2	NC	1
299		17	max	.002	3	.007	2	0		10	NC	1	NC	1
300			min	002	2	009	3	003		3	6231.445	2	NC	1
301		18	max	.002	3	.008	2	0		10	NC	1	NC	1
302		1	min	003	2	009	3	003		3	5450.63	2	NC	1
303		19	max	.003	3	.01	2	0		10	NC	3	NC	1
304		13	min	003	2	009	3	002		3	4832.552	2	NC	1
305	M12	1	max	<u>003</u> 0	1	.012	2	.002		3	NC	1	NC	1
	IVIIZ	+-					3				NC	1		
306			min	0	15	011		0		10			NC NC	1
307		2	max	0	1	.012	2	.001		3	NC	1	NC	1
308			min	0	15	011	3	0		10	NC	1_	NC	1
309		3	max	0	1	.011	2	.001	3 4.447e-4	3	NC	1	NC	1
310			min	0	15	01	3	0		10	NC	1_	NC	1
311		4_	max	00	1	.01	2	.001		3	NC	_1_	NC	1
312			min	0	15	009	3	0		10	NC	1_	NC	1
313		5	max	0	1	.01	2	0		3	NC	_1_	NC	1
314			min	0	15	009	3	0	10 -2.275e-5	10	NC	1_	NC	1
315		6	max	0	1	.009	2	0	3 4.447e-4	3	NC	1	NC	1
316			min	0	15	008	3	0	10 -2.275e-5	10	NC	1	NC	1
317		7	max	0	1	.008	2	0		3	NC	1	NC	1
318			min	0	15	008	3	0		10	NC	1	NC	1
319		8	max	0	1	.008	2	0		3	NC	1	NC	1
320			min	0	15	007	3	0	10 -2.275e-5		NC	1	NC	1
321		9	max	0	1	.007	2	0		3	NC	1	NC	1
322			min	0	15	006	3	0		10	NC	1	NC	1
323		10		0	1	.006	2	0		3	NC	1	NC	1
324		10	max	0	15		3	0			NC NC	1	NC NC	1
		11	min			006				10				
325		11	max	0	1	.006	2	0		3	NC NC	1	NC NC	1
326		40	min	0	15	00 <u>5</u>	3	0		10	NC NC	1_	NC NC	1
327		12	max	0	1	.005	2	0		3	NC NC	1	NC	1
328			min	0	15	004	3	0		10	NC	1_	NC	1
329		13	max	0	1	.004	2	0		3	NC	1	NC	1
330			min	0	15	004	3	0		10	NC	1	NC	1
331		14	max	0	1	.003	2	0		3	NC	_1_	NC	1
332			min	0	15	003	3	0	10 -2.275e-5	10	NC	1	NC	1
333		15	max	0	1	.003	2	0	3 4.447e-4	3	NC	1	NC	1
334			min	0	15	003	3	0		10	NC	1	NC	1
335		16	max	0	1	.002	2	0		3	NC	1	NC	1
336			min	0	15	002	3	0		10	NC	1	NC	1
						1002			.0 2.2.000					

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	3	4.447e-4	3	NC	1_	NC	1
338			min	0	15	001	3	0	10	-2.275e-5	10	NC	1	NC	1
339		18	max	0	1	0	2	0	3	4.447e-4	3	NC	1	NC	1
340			min	0	15	0	3	0	10	-2.275e-5	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	4.447e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	-2.275e-5	10	NC	1	NC	1
343	M1	1	max	.01	3	.027	3	.005	3	4.364e-3	2	NC	1	NC	1
344	141.1		min	01	2	022	2	0	9	-6.513e-3	3	NC	1	NC	1
345		2	max	.01	3	.016	3	.004	3	2.166e-3	2	NC	4	NC	1
346			min	01	2	013	2	0	9	-3.205e-3	3	5474.269	2	NC	1
347		3		.01	3	.007	3	.003	3	4.249e-5	3	NC	4	NC	1
		- 3	max												
348		-	min	01	2	005	2	001	9	-7.465e-5	9	2805.878	3	NC NC	1
349		4	max	.01	3	.002	2	.002	3	4.543e-5	3	NC	4_	NC NC	1
350			min	01	2	002	3	002	9	-6.366e-5	9	1876.675	3	NC	1
351		5	max	.01	3	.009	2	.002	3	4.837e-5	3	NC	_4_	NC	1_
352			min	01	2	009	3	002	9	-5.267e-5	9	1468.498	3	NC	1
353		6	max	.01	3	.014	2	.002	3	5.13e-5	3	NC	4	NC	1
354			min	01	2	014	3	002	9	-4.168e-5	9	1248.419	3	NC	1
355		7	max	.01	3	.018	2	.001	3	5.424e-5	3	NC	4	NC	1
356			min	01	2	018	3	001	9	-3.069e-5	9	1119.368	3	NC	1
357		8	max	.01	3	.022	2	.001	3	5.718e-5	3	NC	4	NC	1
358			min	01	2	022	3	001	9	-1.97e-5	9	1043.462	3	NC	1
359		9	max	.01	3	.024	2	.001	3	6.012e-5	3	NC	4	NC	1
360		Ť	min	01	2	023	3	0	9	-8.705e-6	9	1003.695	3	NC	1
361		10	max	.009	3	.025	2	.001	3	6.305e-5	3	NC	4	NC	1
362		10	min	01	2	024	3	0	9	-1.72e-6	10	992.434	3	NC	1
		11							_						
363		11	max	.009	3	.025	2	.002	3	6.599e-5	3	NC	4_	NC NC	1
364		10	min	01	2	023	3	0	10	-4.331e-6	10	1007.432	3	NC NC	1
365		12	max	.009	3	.023	2	.002	3	6.893e-5	3	NC	4	NC	1
366		10	min	01	2	021	3	0	10	-6.942e-6		1050.771	3	NC	1
367		13	max	.009	3	.02	2	.002	3	7.187e-5	3	NC	4	NC	1
368			min	01	2	018	3	0	10	-9.553e-6	10	1129.72	3	NC	1
369		14	max	.009	3	.015	2	.002	3	7.48e-5	3	NC	4	NC	1
370			min	01	2	014	3	0	10	-1.216e-5	10	1260.267	3	NC	1
371		15	max	.009	3	.009	2	.002	3	7.774e-5	3	NC	4	NC	1
372			min	01	2	008	3	0	10	-1.478e-5	10	1477.121	3	NC	1
373		16	max	.009	3	.002	2	.002	3	8.244e-5	1	NC	4	NC	1
374			min	01	2	002	3	0	10	-1.668e-5	10	1865.611	3	NC	1
375		17	max	.009	3	.006	3	.002	3	1.065e-4	3	NC	4	NC	1
376			min	01	2	008	2	0	10	-5.336e-6	9	2707.012	3	NC	1
377		18	max	.009	3	.015	3	.001		3.233e-3	2	NC	1	NC	1
378		10	min	01	2	018	2	0		-1.878e-3	3	5307.93	3	NC	1
379		19		.009	3	.023	3	.001	3	6.526e-3	2	NC	1	NC	1
		19	max		2		2	.001	9				2	NC NC	1
380	NAC.	4	min	01		03		•		-3.899e-3	3	5693.919			
381	<u>M5</u>	1	max	.027	3	.079	3	.005	3	1.842e-5	3	NC	1	NC NC	1
382			min	029	2	064	2	0	9	0	<u>15</u>	4054.867	3	NC NC	1
383		2	max	.027	3	.048	3	.006	3	1.739e-4	3_	NC 1000 001	4_	NC NC	1
384			min	029	2	039	2	0	9	-4.981e-6	9	1833.931	2	NC	1
385		3	max	.027	3	.019	3	.008	3	3.263e-4	3_	NC	_4_	NC	1
386			min	029	2	014	2	0	9	-9.963e-6	9	939.979	2	NC	1
387		4	max	.027	3	.007	2	.009	3	3.128e-4	3	NC	5	NC	1
388			min	029	2	006	3	0	9	-9.45e-6	9	641.724	3	9693.742	3
389		5	max	.027	3	.026	2	.01	3	2.993e-4	3	NC	5	NC	_1
390			min	029	2	026	3	0	9	-8.938e-6	9	501.555	3	8120.187	3
391		6	max	.027	3	.042	2	.01	3	2.858e-4	3	NC	5	NC	1
392			min	029	2	043	3	0	9	-8.425e-6	9	426.507	3	7345.555	
393		7	max	.026	3	.055	2	.01	3	2.723e-4	3	NC	5	NC	1
UJU			παλ	.020	J	.000		.01		2.1205-4	<u> </u>	INC	<u> </u>	INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
394			min	029	2	055	3	0	9	-7.913e-6	9	382.784	3	6999.833	3
395		8	max	.026	3	.065	2	.01	3	2.588e-4	3_	NC	5_	NC	1
396			min	029	2	064	3	0	9	-7.401e-6	9	357.297	3	6941.948	3
397		9	max	.026	3	.072	2	.01	3	2.453e-4	3	NC	5	NC	1
398			min	029	2	069	3	0	9	-6.888e-6	9	344.205	3	7120.433	3
399		10	max	.026	3	.075	2	.009	3	2.318e-4	3_	NC	5_	NC	1
400			min	029	2	07	3	0	9	-6.376e-6	9	337.914	2	7532.48	3
401		11	max	.026	3	.074	2	.008	3	2.183e-4	3	NC	5	NC	1
402			min	029	2	068	3	0	9	-5.863e-6	9	340.273	2	8214.582	3
403		12	max	.026	3	.069	2	.008	3	2.048e-4	3	NC	5	NC	1
404			min	029	2	062	3	0	9	-5.351e-6	9	352.944	2	9250.66	3
405		13	max	.026	3	.06	2	.007	3	1.914e-4	3	NC	5	NC	1
406			min	029	2	053	3	0	9	-4.838e-6	9	378.973	2	NC	1
407		14	max	.026	3	.046	2	.006	3	1.779e-4	3	NC	5	NC	1
408			min	028	2	04	3	0	9	-4.326e-6	9	425.361	2	NC	1
409		15	max	.026	3	.028	2	.005	3	1.644e-4	3	NC	5	NC	1
410			min	028	2	024	3	0	9	-3.813e-6	9	508.675	2	NC	1
411		16	max	.026	3	.005	2	.004	3	1.461e-4	3	NC	5	NC	1
412			min	028	2	005	3	0	9	-3.784e-6	9	646.925	3	NC	1
413		17	max	.026	3	.017	3	.003	3	1.457e-5	3	NC	4	NC	1
414			min	029	2	023	2	0	9	-1.524e-5	9	938.331	3	NC	1
415		18	max	.026	3	.042	3	.002	3	4.498e-6	3	NC	4	NC	1
416			min	028	2	055	2	0	9	-7.856e-6	9	1839.987	3	NC	1
417		19	max	.026	3	.067	3	.001	3	-4.804e-8	15	NC	3	NC	1
418			min	028	2	089	2	0	9	-3.281e-6	3	1895.181	2	NC	1
419	M9	1	max	.01	3	.025	3	.004	3	6.55e-3	3	NC	1	NC	1
420			min	01	2	022	2	0	9	-4.364e-3	2	NC	1	NC	1
421		2	max	.01	3	.015	3	.003	3	3.203e-3	3	NC	4	NC	1
422			min	01	2	013	2	0	10	-2.165e-3	2	5474.764	2	NC	1
423		3	max	.01	3	.005	3	.001	1	7.45e-5	1	NC	4	NC	1
424			min	01	2	005	2	0	10	-8.197e-5	3	2575.369	3	NC	1
425		4	max	.01	3	.002	2	.001	1	6.218e-5	1	NC	4	NC	1
426			min	01	2	003	3	0	3	-8.455e-5		1777.198	3	NC	1
427		5	max	.01	3	.009	2	.002	1	4.986e-5	1	NC	4	NC	1
428			min	01	2	01	3	002	3	-8.713e-5	3	1410.914	3	8084.42	3
429		6	max	.01	3	.014	2	.001	1	3.753e-5	1	NC	4	NC	1
430			min	01	2	015	3	003	3	-8.971e-5		1209.474	3	7014.685	3
431		7	max	.01	3	.018	2	.001	1	2.521e-5	1	NC	4	NC	1
432			min	01	2	019	3	004	3	-9.23e-5	3	1090.298	3	6394.24	3
433		8	max	.01	3	.022	2	0	1	1.289e-5	1	NC	4	NC	1
434			min	01	2	022	3	005	3	-9.488e-5		1020.185			
435		9	max	.01	3	.024	2	0	1	5.694e-7	1	NC	4	NC	1
436		<u> </u>	min	01	2	024	3	005	3	-9.746e-5		984.014	3	5891.286	
437		10	max	.01	3	.025	2	0	1	1.851e-6	10	NC	4	NC	1
438		10	min	01	2	024	3	005	3	-1.e-4	3	975.021	3	5894.483	3
439		11	max	.01	3	.025	2	<u>005</u>	10	4.453e-6	10	NC	4	NC	1
440			min	01	2	024	3	005	3	-1.026e-4		991.387	3	6049.4	3
441		12	max	.01	3	.023	2	<u>005</u>	10	7.055e-6	10	NC	4	NC	1
442		12	min	01	2	022	3	005	3	-1.052e-4	3	1035.4	3	6373.354	3
443		13	max	.009	3	.022	2	005 0	10	9.657e-6	10	NC	<u>3</u> 4	NC	1
444		13		01	2	018	3	005	3	-1.078e-4			3	6913.834	3
		11	min		3		2					1114.387 NC		NC	
445		14	max	<u>.009</u>		<u>.015</u>		004	10	1.226e-5	<u>10</u>		4		1
446		4.5	min	01	2	014	3	004	3	-1.104e-4		1244.254	3	7769.821	3
447		15	max	.009	3	.009	2	0	10	1.486e-5	10	NC	4	NC 04.40.500	1
448		40	min	<u>01</u>	2	008	3	003	3	-1.13e-4	3	1459.404	3	9149.596	3
449		16	max	.009	3	.002	2	0	10	1.675e-5	10	NC 4044 204	4	NC	1
450			min	01	2	002	3	002	3	-1.046e-4	3	1844.301	3	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio I	LC	(n) L/z Ratio	LC
451		17	max	.009	3	.006	3	0	10	1.642e-4	3	NC	4	NC	1
452			min	01	2	008	2	001	3	-2.514e-5	9	2677.139	3	NC	1
453		18	max	.009	3	.015	3	0	10	2.014e-3	3	NC	1	NC	1
454			min	01	2	018	2	0	9	-3.233e-3	2	5250.51	3	NC	1
455		19	max	.009	3	.024	3	.001	3	3.893e-3	3		1	NC	1
456			min	01	2	03	2	0	9	-6.527e-3	2		2	NC	1
457	M13	1	max	0	9	.025	3	.01	3	3.92e-3	3		1	NC	1
458	IVITO		min	004	3	022	2	01	2	-3.253e-3	2		1	NC	1
459		2	max	0	9	.053	3	.008	3	4.793e-3	3		4	NC	1
460			min	004	3	04	2	01	2	-3.971e-3	2		3	NC NC	1
461		3		004 0	9	.077	3	.008	3	5.666e-3	3		<u>3</u> 4	NC NC	1
		3	max												_
462		-	min	004	3	056	2	011	2	-4.688e-3	2		3	NC NC	1
463		4	max	0	9	.094	3	.01	3	6.538e-3	3		4_	NC	1
464			min	004	3	068	2	012	2	-5.405e-3	2		3	NC	1
465		5	max	0	9	.104	3	.012	3	7.411e-3	3		4_	NC	1_
466			min	005	3	075	2	015	2	-6.122e-3	2		3	NC	1
467		6	max	0	9	.106	3	.015	3	8.284e-3	3		4	NC	1
468			min	005	3	078	2	018	2	-6.84e-3	2	976.805	3	9653.977	2
469		7	max	0	9	.101	3	.018	3	9.157e-3	3	NC	4	NC	1
470			min	005	3	076	2	021	2	-7.557e-3	2	1039.238	3	6731.445	2
471		8	max	0	9	.092	3	.021	3	1.003e-2	3		4	NC	1
472			min	005	3	072	2	025	2	-8.274e-3	2		3	5190.966	2
473		9	max	0	9	.083	3	.024	3	1.09e-2	3		4	NC	4
474			min	005	3	067	2	028	2	-8.991e-3	2		3	4398.705	2
475		10	max	<u>.005</u>	9	.079	3	.027	3	1.178e-2	3		4	NC	4
476		10	min	005	3	064	2	029	2	-9.709e-3	2		3	4135.351	2
		11					3		_					NC	
477		11	max	0	9	.083		.028	3	1.091e-2	3		4		4
478		40	min	005	3	067	2	028	2	-8.992e-3	2		3	4176.838	3
479		12	max	0	9	.092	3	.029	3	1.004e-2	3		4_	NC 4450.000	1
480		10	min	005	3	072	2	025	2	-8.274e-3	2		3	4159.886	3
481		13	max	0	9	.101	3	.027	3	9.169e-3	3		4	NC	1
482			min	005	3	076	2	021	2	-7.557e-3	2		3	4447.65	3
483		14	max	0	9	.106	3	.025	3	8.301e-3	3		4	NC	1
484			min	005	3	078	2	018	2	-6.84e-3	2	976.804	3	5098.27	3
485		15	max	0	9	.105	3	.022	3	7.432e-3	3	NC	4	NC	1
486			min	005	3	075	2	015	2	-6.123e-3	2	999.089	3	6326.295	3
487		16	max	0	9	.095	3	.019	3	6.564e-3	3		4	NC	1
488			min	005	3	068	2	012	2	-5.405e-3	2		3	8715.343	3
489		17	max	0	9	.078	3	.015	3	5.695e-3	3		4	NC	1
490		1	min	005	3	056	2	011	2	-4.688e-3	2		3	NC	1
491		18	max	<u>.005</u>	9	.054	3	.012	3	4.827e-3	3		4	NC	1
492		10	min	005	3	04	2	01	2	-3.971e-3			3	NC	1
493		19		003	9	.027	3	.01	3	3.958e-3			<u>3</u>	NC	1
		19	max								3		1		_
494	1440	4	min	005	3	022	2	01	2	-3.254e-3	2		•	NC NC	1
495	M16	1	max	0	9	.024	3	.009	3	4.315e-3	2		1_	NC	1
496			min	001	3	03	2	01	2	-3.4e-3	3		1_	NC	1
497		2	max	0	9	.04	3	.012	3	5.268e-3	2		4	NC	1
498			min	001	3	057	2	01	2	-4.1e-3	3		2	NC	1
499		3	max	0	9	.055	3	.015	3	6.222e-3	2		4	NC	1
500			min	001	3	081	2	011	2	-4.799e-3	3		2	NC	1
501		4	max	0	9	.066	3	.018	3	7.176e-3	2	NC	4	NC	1
502			min	001	3	099	2	012	2	-5.499e-3	3	1127.203	2	9219.757	3
503		5	max	0	9	.073	3	.021	3	8.129e-3	2		4	NC	1
504			min	001	3	109	2	015	2	-6.199e-3	3		2	6919.252	3
505		6	max	0	9	.076	3	.023	3	9.083e-3	2		4	NC	1
506			min	001	3	112	2	018	2		3		2		_
507		7	max	0	9	.076	3	.025	3	1.004e-2	2		4	NC	1
JUI			παλ	U	J	.070	J	.020	_ J	1.0046-2		INO	<u> </u>	INC	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

509		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
510	508			min	001	3	109	2	021	2	-7.598e-3	3	988.478	2	5009.886	
511			8													
512												_				
513			9		-											
Section			40													
			10													
516			1.													
STOCK STOC			11													
State			40													
Signature Sign			12													
Secondary Seco			40													
S21			13													
S22			4.4									_				
523			14		-											
S24			15													
S25			15													
S26			16													
527			10													
S28			17													
18 max			11/													
S30			10													•
531			10													
S32			10													-
534			19													
534		M15	1													
536		IVITO														
S36			2			-								•		
537 3 max 0 3 0 15 .002 2 1.085e-3 3 NC 1 NC 1 538 min 0 2 .004 4 003 3 -6.918e-4 2 NC 1 8522.43 3 339 4 max 0 3 001 15 .005 2 1.422e-3 3 NC 1 NC 4 540 min 0 2 005 4 007 3 -1.02e-3 2 NC 1 4719.57 3 541 5 max 0 3 002 15 .009 2 1.76e-3 3 NC 1 NC 4 542 min 0 2 007 4 011 3 -1.347e-3 2 8501.781 4 3105.45 3 343 6 max 0 3 002 15 .013 2 2.098e-3 3 NC 2 NC 4 4 544 min 001 2 008 4 016 3 -1.675e-3 2 7155.147 4 2265.111 3 545 7 max 0 3 002 15 .017 2 2.436e-3 3 NC 2 NC 4 546 min 001 2 008 4 016 3 -1.675e-3 2 7155.147 4 2265.111 3 547 8 max 0 3 002 15 .017 2 2.436e-3 3 NC 2 NC 4 548 min 001 2 009 4 021 3 -2.003e-3 2 6345.325 4 1772.961 3 549 9 max .001 3 002 15 .024 2 2.773e-3 3 NC 2 NC 4 548 min 002 2 01 4 026 3 -2.33e-3 2 5859.309 4 1463.25 3 549 9 max .001 3 002 15 .024 2 3.111e-3 3 NC 2 NC 4 549 9 max .001 3 002 15 .024 2 3.111e-3 3 NC 2 NC 4 550 min 002 2 01 4 031 3 -2.658e-3 2 5597.707 4 1260.438 3 551 10 max .001 3 002 15 .026 2 .3149e-3 3 NC 2 NC 4 554 min 002 2 011 4 034 3 -2.986e-3 2 5514.949 4 1126.542 3 555 11 max .001 3 002 2 .028 2 3.786e-3 3 NC 2 NC 4 556 min 003 2 001 4 037 3 -3.641e-3 2 5859.309 4 995.755 3 557 13 max .002 3 .001 2 .028 2 4.124e-3 3 NC 2 NC 4 556 min 003 2 008 4 036 3 -3.969e-3 2 5859.309 4 995.755 3 557 13 max .002 3 .001 2 .024 2 4.862e																
538			2											•		
S39			-													
540			1											•		
541 5 max 0 3 002 15 .009 2 1.76e-3 3 NC 1 NC 4 542 min 0 2 007 4 011 3 -1.347e-3 2 8501.781 4 3105.455 3 543 6 max 0 3 002 15 .013 2 2.098e-3 3 NC 2 NC 4 544 min 001 2 008 4 016 3 -1.675e-3 2 7155.147 4 2265.111 3 545 7 max 0 3 002 15 .017 2 2.436e-3 3 NC 2 NC 4 546 min 001 2 001 4 021 3 -2.03e-3 2 6345.325 4 1772.961 3 547 8 max 0 3 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-1 02e-3</td> <td></td> <td></td> <td></td> <td></td> <td></td>			_								-1 02e-3					
542 min 0 2 007 4 011 3 -1.347e-3 2 8501.781 4 3105.45 3 543 6 max 0 3 002 15 .013 2 2.098e-3 3 NC 2 NC 4 544 min 001 2 008 4 016 3 -1.675e-3 2 7155.147 4 2265.111 3 545 7 max 0 3 002 15 .017 2 2.436e-3 3 NC 2 NC 4 546 min 001 2 002 15 .02 2 2.773e-3 3 NC 2 NC 4 548 min 002 2 011 4 026 3 -2.33e-3 2 5859.309 4 1463.25 3 549 9 max .001 3			5		· · · · · · · · · · · · · · · · · · ·									_		
543 6 max 0 3 002 15 .013 2 2.098e-3 3 NC 2 NC 4 544 min 001 2 008 4 016 3 -1.675e-3 2 7155.147 4 2265.111 3 545 7 max 0 3 002 15 .017 2 2.436e-3 3 NC 2 NC 4 546 min 001 2 009 4 021 3 -2.003e-3 2 6345.325 4 1772.961 3 547 8 max 0 3 002 15 .02 2 2.773e-3 3 NC 2 NC 4 548 min 002 2 01 4 026 3 -2.33e-3 2 5859.309 4 1463.25 3 549 9 max .001																
544 min 001 2 008 4 016 3 -1.675e-3 2 7155.147 4 2265.111 3 545 7 max 0 3 002 15 .017 2 2.436e-3 3 NC 2 NC 4 546 min 001 2 009 4 021 3 -2.003e-3 2 6345.325 4 1772.961 3 547 8 max 0 3 002 15 .02 2 2.773e-3 3 NC 2 NC 4 548 min 002 2 01 4 026 3 -2.33e-3 2 5859.309 4 1463.25 3 549 9 max .001 3 002 15 .024 2 3.111e-3 3 NC 2 NC 4 550 min 002 2			6											•		
545 7 max 0 3 002 15 .017 2 2.436e-3 3 NC 2 NC 4 546 min 001 2 009 4 021 3 -2.003e-3 2 6345.325 4 1772.961 3 547 8 max 0 3 002 15 .02 2 2.773e-3 3 NC 2 NC 4 548 min 002 2 01 4 026 3 -2.33e-3 2 5859.309 4 1463.25 3 549 9 max .001 3 002 15 .024 2 3.111e-3 3 NC 2 NC 4 550 min 002 2 011 4 031 3 -2.658e-3 2 5597.707 4 1260.438 3 551 10 min 002																
546 min 001 2 009 4 021 3 -2.003e-3 2 6345.325 4 1772.961 3 547 8 max 0 3 002 15 .02 2 2.773e-3 3 NC 2 NC 4 548 min 002 2 01 4 026 3 -2.33e-3 2 5859.309 4 1463.25 3 549 9 max .001 3 002 15 .024 2 3.111e-3 3 NC 2 NC 4 550 min 002 2 01 4 031 3 -2.658e-3 2 5597.707 4 1260.438 3 551 10 max .001 3 002 15 .026 2 3.449e-3 3 NC 2 NC 4 553 11 max .001			7													
547 8 max 0 3 002 15 .02 2 2.773e-3 3 NC 2 NC 4 548 min 002 2 01 4 026 3 -2.33e-3 2 5859.309 4 1463.25 3 549 9 max .001 3 002 15 .024 2 3.111e-3 3 NC 2 NC 4 550 min 002 2 01 4 031 3 -2.658e-3 2 5597.707 4 1260.438 3 551 10 max .001 3 002 15 .026 2 3.449e-3 3 NC 2 NC 4 552 min 002 2 011 4 034 3 -2.986e-3 2 5514.949 4 1126.542 3 553 11 max .001 3 002 2			Ľ													_
548 min 002 2 01 4 026 3 -2.33e-3 2 5859.309 4 1463.25 3 549 9 max .001 3 002 15 .024 2 3.111e-3 3 NC 2 NC 4 550 min 002 2 01 4 031 3 -2.658e-3 2 5597.707 4 1260.438 3 551 10 max .001 3 002 15 .026 2 3.449e-3 3 NC 2 NC 4 552 min 002 2 011 4 034 3 -2.986e-3 2 5514.949 4 1126.542 3 553 11 max .001 3 002 2 .028 2 3.786e-3 3 NC 2 NC 4 554 min 002 2			8											•		
549 9 max .001 3 002 15 .024 2 3.111e-3 3 NC 2 NC 4 550 min 002 2 01 4 031 3 -2.658e-3 2 5597.707 4 1260.438 3 551 10 max .001 3 002 15 .026 2 3.449e-3 3 NC 2 NC 4 552 min 002 2 011 4 034 3 -2.986e-3 2 5514.949 4 1126.542 3 553 11 max .001 3 002 2 .028 2 3.786e-3 3 NC 2 NC 4 554 min 002 2 01 4 037 3 -3.314e-3 2 5597.707 4 1041.61 3 555 12 max .001																
550 min 002 2 01 4 031 3 -2.658e-3 2 5597.707 4 1260.438 3 551 10 max .001 3 002 15 .026 2 3.449e-3 3 NC 2 NC 4 552 min 002 2 011 4 034 3 -2.986e-3 2 5514.949 4 1126.542 3 553 11 max .001 3 002 2 .028 2 3.786e-3 3 NC 2 NC 4 554 min 002 2 01 4 037 3 -3.314e-3 2 5597.707 4 1041.61 3 555 12 max .001 3 001 2 .028 2 4.124e-3 3 NC 2 NC 4 556 min 003 2			9													
551 10 max .001 3 002 15 .026 2 3.449e-3 3 NC 2 NC 4 552 min 002 2 011 4 034 3 -2.986e-3 2 5514.949 4 1126.542 3 553 11 max .001 3 002 2 .028 2 3.786e-3 3 NC 2 NC 4 554 min 002 2 01 4 037 3 -3.314e-3 2 5597.707 4 1041.61 3 555 12 max .001 3 001 2 .028 2 4.124e-3 3 NC 2 NC 4 556 min 003 2 01 4 037 3 -3.641e-3 2 5859.309 4 995.755 3 557 13 max .002																3
552 min 002 2 011 4 034 3 -2.986e-3 2 5514.949 4 1126.542 3 553 11 max .001 3 002 2 .028 2 3.786e-3 3 NC 2 NC 4 554 min 002 2 01 4 037 3 -3.314e-3 2 5597.707 4 1041.61 3 555 12 max .001 3 001 2 .028 2 4.124e-3 3 NC 2 NC 4 556 min 003 2 01 4 037 3 -3.641e-3 2 5859.309 4 995.755 3 557 13 max .002 3 0 2 .027 2 4.462e-3 3 NC 2 NC 4 558 min 003 2			10					15		2				2		
553 11 max .001 3 002 2 .028 2 3.786e-3 3 NC 2 NC 4 554 min 002 2 01 4 037 3 -3.314e-3 2 5597.707 4 1041.61 3 555 12 max .001 3 001 2 .028 2 4.124e-3 3 NC 2 NC 4 556 min 003 2 01 4 037 3 -3.641e-3 2 5859.309 4 995.755 3 557 13 max .002 3 0 2 .027 2 4.462e-3 3 NC 2 NC 4 558 min 003 2 009 4 036 3 -3.969e-3 2 6345.325 4 986.138 3 559 14 max .002																3
554 min 002 2 01 4 037 3 -3.314e-3 2 5597.707 4 1041.61 3 555 12 max .001 3 001 2 .028 2 4.124e-3 3 NC 2 NC 4 556 min 003 2 01 4 037 3 -3.641e-3 2 5859.309 4 995.755 3 557 13 max .002 3 0 2 .027 2 4.462e-3 3 NC 2 NC 4 558 min 003 2 009 4 036 3 -3.969e-3 2 6345.325 4 986.138 3 559 14 max .002 3 .001 2 .024 2 4.8e-3 3 NC 2 NC 4 560 min 003 2 <t< td=""><td></td><td></td><td>11</td><td></td><td></td><td>3</td><td></td><td>2</td><td></td><td>2</td><td></td><td>3</td><td></td><td>2</td><td></td><td></td></t<>			11			3		2		2		3		2		
555 12 max .001 3 001 2 .028 2 4.124e-3 3 NC 2 NC 4 556 min 003 2 01 4 037 3 -3.641e-3 2 5859.309 4 995.755 3 557 13 max .002 3 0 2 .027 2 4.462e-3 3 NC 2 NC 4 558 min 003 2 009 4 036 3 -3.969e-3 2 6345.325 4 986.138 3 559 14 max .002 3 .001 2 .024 2 4.8e-3 3 NC 2 NC 4 560 min 003 2 008 4 032 3 -4.297e-3 2 7155.147 4 1017.108 3 561 15 max .002										3						3
556 min 003 2 01 4 037 3 -3.641e-3 2 589.309 4 995.755 3 557 13 max .002 3 0 2 .027 2 4.462e-3 3 NC 2 NC 4 558 min 003 2 009 4 036 3 -3.969e-3 2 6345.325 4 986.138 3 559 14 max .002 3 .001 2 .024 2 4.8e-3 3 NC 2 NC 4 560 min 003 2 008 4 032 3 -4.297e-3 2 7155.147 4 1017.108 3 561 15 max .002 3 .003 2 .018 2 5.137e-3 3 NC 1 NC 4 562 min 003 2 <t< td=""><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td></t<>			12											2		
557 13 max .002 3 0 2 .027 2 4.462e-3 3 NC 2 NC 4 558 min 003 2 009 4 036 3 -3.969e-3 2 6345.325 4 986.138 3 559 14 max .002 3 .001 2 .024 2 4.8e-3 3 NC 2 NC 4 560 min 003 2 008 4 032 3 -4.297e-3 2 7155.147 4 1017.108 3 561 15 max .002 3 .003 2 .018 2 5.137e-3 3 NC 1 NC 4 562 min 003 2 007 4 026 3 -4.625e-3 2 8501.781 4 1104.503 3 563 16 max .002										3		2		4		3
558 min 003 2 009 4 036 3 -3.969e-3 2 6345.325 4 986.138 3 559 14 max .002 3 .001 2 .024 2 4.8e-3 3 NC 2 NC 4 560 min 003 2 008 4 032 3 -4.297e-3 2 7155.147 4 1017.108 3 561 15 max .002 3 .003 2 .018 2 5.137e-3 3 NC 1 NC 4 562 min 003 2 007 4 026 3 -4.625e-3 2 8501.781 4 1104.503 3 563 16 max .002 3 .005 2 .011 1 5.475e-3 3 NC 1 NC 4			13											2		4
559 14 max .002 3 .001 2 .024 2 4.8e-3 3 NC 2 NC 4 560 min 003 2 008 4 032 3 -4.297e-3 2 7155.147 4 1017.108 3 561 15 max .002 3 .003 2 .018 2 5.137e-3 3 NC 1 NC 4 562 min 003 2 007 4 026 3 -4.625e-3 2 8501.781 4 1104.503 3 563 16 max .002 3 .005 2 .011 1 5.475e-3 3 NC 1 NC 4							009	4		3				4		3
560 min 003 2 008 4 032 3 -4.297e-3 2 7155.147 4 1017.108 3 561 15 max .002 3 .003 2 .018 2 5.137e-3 3 NC 1 NC 4 562 min 003 2 007 4 026 3 -4.625e-3 2 8501.781 4 1104.503 3 563 16 max .002 3 .005 2 .011 1 5.475e-3 3 NC 1 NC 4			14					2			4.8e-3			2		
561 15 max .002 3 .003 2 .018 2 5.137e-3 3 NC 1 NC 4 562 min 003 2 007 4 026 3 -4.625e-3 2 8501.781 4 1104.503 3 563 16 max .002 3 .005 2 .011 1 5.475e-3 3 NC 1 NC 4											-4.297e-3					3
562 min 003 2 007 4 026 3 -4.625e-3 2 8501.781 4 1104.503 3 563 16 max .002 3 .005 2 .011 1 5.475e-3 3 NC 1 NC 4			15						.018	2				1		
563 16 max .002 3 .005 2 .011 1 5.475e-3 3 NC 1 NC 4														4		3
			16					2		1		3		1		
564 min004 2005 4017 3 -4.952e-3 2 NC 1 1291.291 3	564				004	2	005	4	017	3		2	NC	1	1291.291	3

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.002	3	.006	2	.004	1	5.813e-3	3	NC	1	NC	4
566			min	004	2	004	3	004	3	-5.28e-3	2	8926.787	2	1712.231	3
567		18	max	.002	3	.008	2	.013	3	6.15e-3	3	NC	1	NC	4
568			min	004	2	003	3	013	2	-5.608e-3	2	6840.493	2	3048.992	3
569		19	max	.002	3	.01	2	.034	3	6.488e-3	3	NC	1	NC	1
570			min	004	2	002	3	03	2	-5.936e-3	2	5518.026	2	NC	1
571	M16A	1	max	.002	2	.004	2	.01	3	1.827e-3	3	NC	1	NC	1
572			min	002	3	004	3	01	2	-1.997e-3	2	NC	1	NC	1
573		2	max	.001	2	.002	2	.003	3	1.765e-3	3	NC	1	NC	1
574			min	002	3	005	3	005	2	-1.905e-3	2	NC	1	8374.276	3
575		3	max	.001	2	0	2	.002	1	1.702e-3	3	NC	1	NC	4
576			min	002	3	005	3	003	3	-1.813e-3	2	NC	1	4746.157	3
577		4	max	.001	2	001	2	.004	1	1.64e-3	3	NC	1	NC	4
578			min	002	3	006	3	007	3	-1.721e-3	2	NC	1	3616.758	3
579		5	max	.001	2	002	15	.006	1	1.577e-3	3	NC	1	NC	4
580			min	002	3	007	4	01	3	-1.629e-3	2	8501.781	4	3130.525	3
581		6	max	.001	2	002	15	.007	1	1.515e-3	3	NC	3	NC	4
582			min	002	3	008	4	012	3	-1.537e-3	2	7155.147	4	2922.518	3
583		7	max	.001	2	002	15	.008	1	1.453e-3	3	NC	3	NC	4
584			min	002	3	009	4	013	3	-1.445e-3	2	6345.325	4	2879.047	3
585		8	max	0	2	002	15	.008	1	1.39e-3	3	NC	3	NC	4
586			min	001	3	01	4	013	3	-1.353e-3	2	5859.309	4	2962.305	3
587		9	max	0	2	002	15	.007	1	1.328e-3	3	NC	5	NC	4
588			min	001	3	011	4	012	3	-1.261e-3	2	5597.707	4	3169.328	3
589		10	max	0	2	002	15	.007	1	1.265e-3	3	NC	5	NC	4
590			min	001	3	011	4	011	3	-1.169e-3	2	5514.949	4	3523.294	3
591		11	max	0	2	002	15	.006	1	1.203e-3	3	NC	5	NC	4
592			min	001	3	01	4	01	3	-1.077e-3	2	5597.707	4	4079.662	3
593		12	max	0	2	002	15	.005	1	1.14e-3	3	NC	3	NC	4
594			min	0	3	01	4	008	3	-9.851e-4	2	5859.309	4	4949.427	3
595		13	max	0	2	002	15	.004	1	1.078e-3	3	NC	3	NC	1
596			min	0	3	009	4	006	3	-8.932e-4	2	6345.325	4	6359.656	3
597		14	max	0	2	002	15	.002	1	1.016e-3	3	NC	3	NC	1
598			min	0	3	008	4	004	3	-8.012e-4	2	7155.147	4	8822.117	3
599		15	max	0	2	002	15	.001	4	9.532e-4	3	NC	1	NC	1
600			min	0	3	007	4	002	3	-7.092e-4	2	8501.781	4	NC	1
601		16	max	0	2	001	15	.001	4	8.908e-4	3	NC	1	NC	1
602			min	0	3	005	4	0	3	-6.172e-4	2	NC	1	NC	1
603		17	max	0	2	0	15	0	4	8.284e-4	3	NC	1	NC	1
604			min	0	3	004	4	0	2	-5.252e-4	2	NC	1	NC	1
605		18	max	0	2	0	15	0	3	7.66e-4	3	NC	1	NC	1
606			min	0	3	002	4	0	2	-4.332e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	7.036e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-3.413e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.