

DETERMINING METRICS FOR RECONSTRUCTION OF CORNEA USING IMAGE PROCESSING AND NEURAL NETWORK MODELLING

Dr. C JAGADESH REDDY, Prof. P.K.THIRUVIKRAMAN, ABISHEK KRISHNAN L V Prasad Eye Institute, Hyderabad & BITS-Pilani Hyderabad Campus

Introduction

- To predict the thickness of cornea of a patient who will undergo corneal reconstructive surgery by
 - a) Measuring the thickness of a cornea in the pre-surgery & post-surgery stage and those of the donor from images of cornea obtained using OCT using image processing techniques and use the results
 - b) To Predict the thickness of cornea of a reconstructed eye using neural network modelling implemented in MATLAB environment.

Methods

A) To measure the thickness of cornea

Fig-1.Sample Image of a Cornea obtained using OCT

Image Processing Algorithm involved

- a) Converting into binary image
- b) Remove Noises using filters
- c) Detect edges using Sobel filter
- d) Filling gaps and dilation
- e) Polynomial Fitting

Fig-2.Image obtained after the application of algorithm

B) Neural Network modelling for predicting the thickness of cornea

Fig-3. Simple Model for a Neural Network

Neural Network Model involves
a) Input Neurons – Thickness of cornea of pre-surgery (damaged eye).
Output Neurons – Thickness of cornea of post surgery eye.

- b) No. of neurons in the hidden layer (1-10)
- c) Training the network using Levenberg-Marquardt back-propagation algorithm
- d) Deploy the solution to predict the thickness of cornea post-surgery given the pre-surgery.

Results

Patient	Actual thickness Post	Predicted Thickness Post	Percentage Change
No.	Surgery (µm)	Surgery (µm)	(%)
1	461.22	477.27	+3.48
2	487.99	531.68	+8.95
3	494.16	528.79	+7.01
4	547.70	527.35	-3.71
5	560.05	490.81	-12.34
6	485.93	521.52	+7.32
7	490.05	512.30	+4.54
8	537.40	521.52	-2.95
9	535.40	520.02	-2.87
10	520.93	528.37	+1.43

Prediction Error (%) = +1.09 (Increase from the Actual Thickness)

Conclusions

This poster discusses the development of an image processing algorithm whose results where used in a neural network model to predict the thickness of cornea post-surgery from the thickness of cornea obtained in the pre-surgery stage.

Since the neural network is a learning based approach for function approximation, more instances of training data will improve the ability of the model to predict results accurately.

Literature Cited

- Digital Image Processing Using MATLAB, 2e, Gonzalez and Woods
- Kenneth Levenberg (1944). "A Method for the Solution of Certain Non-Linear Problems in Least Squares". *Quarterly of Applied Mathematics* **2**: 164–168.
- Donald Marquardt (1963). "An Algorithm for Least-Square Estimation of Non-linear parameters". *SIAM Journal on Applied Mathematics* **11** (2): 431–441.

Acknowledgments

I am grateful to Department of Physics, BITS-Pilani Hyderabad Campus for offering a First Degree Thesis as a course in the curriculum.

I would like to express my sincere gratitude to Professor P.K.Thiruvikraman and Dr. C Jagadesh Reddy for suggesting the project and for providing valuable guidance throughout the course of work.