从零开始手写 VIO - 作业 5

peng00bo00

August 10, 2020

1. 补全代码后程序运行截图可参见 Fig.1

Figure 1: 程序截图

2. 论文对比了 3 种不同的处理 H 矩阵方式:

- (a) gauge fixation: 固定一部分待优化参数, 令 Jacobbian 矩阵的相应部分为 0
- (b) gauge prior: 在优化目标函数中额外添加一项 $||r_0^p||_{\Sigma}^2$ 来施加约束
- (c) free gauge: 使用 Hessian 矩阵的伪逆或是 LM 算法等来求解

实验结果显示 3 种方法在精度上基本没有差别;使用 gauge prior 需要设置好先验权重 Σ ,合适的权重可以避免增加计算开销;使用合适的先验权重时 gauge prior 方法和 gauge fixation 方法有类似的计算效率和精度;free gauge 方法比另外 2 种方法要快一一点,这主要是因为这种方法的迭代次数相对小一些。

3. 给第 1 帧和第 2 帧的 Hessian 矩阵加上先验项 wI_n 作为 gauge prior,其中 w 为先验项权重。使用不同权重 w 运行程序得到结果如所示 Table.1, Fig.2, Fig.3。结果显示不同的权重会对计算迭代次数以及最后的误差产生影响:当 w 趋于 0 时 gauge prior 接近于 free guage 方法; 而当 w 比较大时效果则类似与 gauge fixation 方法;实验中当 w>1e6 时算法的迭代次数和误差基本收敛。

Table 1: 实验对比

权重 w	迭代次数	误差
1e-5	2	0.0123678
1e-4	2	0.0123862
1e-3	3	0.0136865
1e-2	4	0.0185144
1e-1	4	0.0213409
1	3	0.0172074
1e1	4	0.0124609
1e2	2	0.0072258
1e3	2	0.00791445
1e4	3	0.0075842
1e5	4	0.00643306
1e6	2	0.00222307
1e7	2	0.0019815
1e8	2	0.00197189
1e9	2	0.00197171
1e10	2	0.0019717

Figure 2: 迭代次数曲线

Figure 3: 误差曲线