6.6 Urejenost racionalnih števil

Za ulomka $\frac{x}{y}$ in $\frac{z}{w}$ $(y, w \notin \{0\})$ velja natanko ena izmed treh možnosti:

- 1. prvi ulomek je večji od drugega $\frac{x}{y} \geqslant \frac{z}{w}$ natanko tedaj, ko je $xw \geqslant yz$;
 2. drugi ulomek je večji od prvega $\frac{x}{y} \leqslant \frac{z}{w}$ natanko tedaj, ko je $xw \leqslant yz$;
- 3. ulomka sta enaka $\frac{x}{y} = \frac{z}{w}$ natanko tedaj, ko je xw = yz oziroma $\frac{x}{y} \leqslant \frac{z}{w} \wedge \frac{x}{y} \geqslant \frac{z}{w}$. Enaka ulomka predstavljata isto racionalno število.

Slika večjega racionalnega števila $\frac{x}{u}$ je na številski premici desno od slike manjšega racionalnega števila $\frac{z}{w}$.

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\frac{\mathbb{Q}^{-}}{negativna\ števila\ pozitivna\ števila} \mathbb{Q}^{+}$$

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

Množica racionalnih števil je **linearno urejena** z relacijo biti manjši ali enak (\leq) oziroma biti $ve\check{c}ji \ ali \ enak \ (\geqslant).$

Za to relacijo linearne urejenosti veljajo naslednje lastnosti:

• refleksivnost: $\forall \frac{x}{y} \in \mathbb{Q} : \frac{x}{y} \leqslant \frac{x}{y};$ • antisimetričnost: $\forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \leqslant \frac{z}{w} \wedge \frac{z}{w} \leqslant \frac{x}{y} \Rightarrow \frac{x}{y} = \frac{z}{w};$ • tranzitivnost: $\forall \frac{x}{y}, \frac{z}{w}, \frac{r}{q} \in \mathbb{Q} : \frac{x}{y} \leqslant \frac{z}{w} \wedge \frac{z}{w} \leqslant \frac{r}{q} \Rightarrow \frac{x}{y} \leqslant \frac{r}{q} \text{ in}$ • stroga sovisnost: $\forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q} : \frac{x}{y} \leqslant \frac{z}{w} \vee \frac{z}{w} \leqslant \frac{x}{y}.$ Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši* (<) oziroma biti $ve\check{c}ii$ (>).

Tedaj veljajo le lastnosti: refleksivnost, antisimetričnost in tranzitivnost.

Ce na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{x}{y} < \frac{z}{w} \implies \frac{x}{y} + \frac{r}{a} < \frac{z}{w} + \frac{r}{a}$$

Pri množenju neenakosti s pozitivnim številom se znak neenakosti ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \land \quad \frac{r}{q} > 0 \quad \Rightarrow \quad \frac{x}{y} \cdot \frac{r}{q} < \frac{z}{w} \cdot \frac{r}{q}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{x}{y} < \frac{z}{w} \quad \land \quad \frac{r}{q} < 0 \quad \Rightarrow \quad \frac{x}{y} \cdot \frac{r}{q} > \frac{z}{w} \cdot \frac{r}{q}$$

Naloga 6.23. Kateri od ulomkov je večji?

Naloga 6.24. Katero število je za $\frac{3}{5}$ večje od $\frac{2}{3}$?

Naloga 6.25. Katero število je za $\frac{1}{3}$ manjše od $\frac{7}{9}$?

Naloga 6.26. Ulomke uredite po velikosti od večjega k manjšemu.

• $\frac{2}{5}$, $\frac{3}{10}$, $\frac{8}{9}$ in $\frac{7}{8}$ • $-\frac{1}{2}$, $\frac{-1}{3}$, $\frac{-3}{4}$ in $\frac{2}{-5}$

Naloga 6.27. Ali obstajajo ulomki z imenovalcem 25, ki so med $\frac{4}{9}$ in $\frac{5}{9}$? Če obstajajo, jih zapišite.

Naloga 6.28. Ali obstajajo ulomki z imenovalcem 100, ki so med $\frac{13}{53}$ in $\frac{14}{53}$? Če obstajajo, jih