Chapter 0:

Notation & Basics

In this chapter we introduce some basic concepts and notation necessary for Machine Learning.

0.1 Notation

• Vectors $\mathbf{v} \in \mathbb{R}^d$ are denoted by bold letters whereas scalars $s \in \mathbb{R}$ are denoted by normal letters.

$$\mathbf{v} = \left(\begin{array}{c} v_1 \\ \vdots \\ v_d \end{array}\right)$$

• Denote matrices $A \in \mathbb{R}^{m \times n}$ by normal letters.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & & \ddots & \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}$$

• We define **0** (resp. **1**) as the vector full of zeros (resp. full of ones) with appropriate dimension to the context.

$$\mathbf{0} := \left(egin{array}{c} 0 \ dots \ 0 \end{array}
ight), \mathbf{1} := \left(egin{array}{c} 1 \ dots \ 1 \end{array}
ight)$$

• If $\mathbf{v} \in \mathbb{R}^d$, then we define $\mathbf{v}^T \in \mathbb{R}^{(1 \times d)}$ as its transpose

$$\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix}, \mathbf{v}^T := \begin{pmatrix} v_1, \dots, v_d \end{pmatrix}$$

and if $A \in \mathbb{R}^{m \times n}$, then we define $A^T \in \mathbb{R}^{n \times m}$ as its transpose.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & & \ddots & \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}, A^T := \begin{pmatrix} a_{1,1} & a_{2,1} & \dots & a_{m,1} \\ a_{1,2} & a_{2,2} & \dots & a_{m,2} \\ \vdots & & \ddots & \\ a_{1,n} & a_{2,n} & \dots & a_{m,n} \end{pmatrix}$$

• The scalar product of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ is defined by

$$\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^{\top} \mathbf{w} = \sum_{i=1}^{d} v_i w_i.$$

• The norm of a vector $\mathbf{v} \in \mathbb{R}^d$ is denoted by

$$\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{\mathbf{v}^T \mathbf{v}} = \sqrt{\sum_{i=1}^d v_i^2}.$$

- Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$, then denote $v \leq w : \iff \forall i = 1 \dots d : v_i \leq w_i$.
- For a set S we denote the cardinality of S by |S|.

0.2 Scalar Projection

Definition: Scalar Projection

Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ with $\mathbf{w} \neq \mathbf{0}$. The scalar projection of \mathbf{v} onto \mathbf{w} is defined as $\Pi_w(v) := \frac{\mathbf{w}^T \mathbf{v}}{\|\mathbf{w}\|}$. We observe that the scalar projection is not a vector, but a scalar. This quantity also has a nice geometric interpretation as seen below¹.

0.3 Hyperplanes

Definition: Affine Linear Function

An (affine-)linear function is a function $f : \mathbb{R}^d \to \mathbb{R}$ of the form $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$, where $\mathbf{w} \in \mathbb{R}^d (\mathbf{w} \neq \mathbf{0})$ and $b \in \mathbb{R}$.

Example:

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$(x_1, x_2) \mapsto 3x_1 + 4x_2 - 7$$

is affine linear as it is of the form $f(x) = \begin{pmatrix} 3 \\ 4 \end{pmatrix}^T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - 7$

¹If you are looking for a proof https://www.youtube.com/watch?v=LyGKycYT2v0

Definition: Hyperplane

A hyperplane is a subset $H \subset \mathbb{R}^d$ defined as $H := \{ \mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) = 0 \}$, where f is affine linear.

Let H be a hyperplane defined by the affine-linear function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$.

Prop 0.1: The vector \mathbf{w} is orthogonal to H, meaning that: $\forall \mathbf{x}_1, \mathbf{x}_2 \in H$ it holds $\mathbf{w}^{\top}(\mathbf{x}_1 - \mathbf{x}_2) = 0$.

Proof:

Let
$$\mathbf{x}_1, \mathbf{x}_2 \in H = \left\{ \mathbf{x} \in \mathbb{R}^d : \mathbf{w}^\top \mathbf{x} + b = 0 \right\}.$$

Then $\mathbf{w}^T \mathbf{x}_1 + b = 0$ and $\mathbf{w}^T \mathbf{x}_2 + b = 0.$
Thus $\mathbf{w}^T \mathbf{x}_1 + b = \mathbf{w}^T \mathbf{x}_2 + b$, or equivalently $\mathbf{w}^T (\mathbf{x}_1 - \mathbf{x}_2) = 0.$

Prop 0.2: The signed distance of a point \mathbf{x} to H is given by $d(\mathbf{x}, H) \stackrel{def.}{:=} \operatorname{sign} \left(\mathbf{w}^{\top} \mathbf{x} + b \right) \min_{\tilde{x} \in H} \|x - \tilde{x}\| \stackrel{!}{=} \frac{1}{\|\mathbf{w}\|} \left(\mathbf{w}^{\top} \mathbf{x} + b \right)$

Proof:

Let $\tilde{\mathbf{x}}$ be an arbitrary element of H. By our previous proof, we know that \mathbf{w} is orthogonal to our hyperplane. First we notice from the picture below that

$$\forall \tilde{\mathbf{x}} \in H: \Pi_{\mathbf{w}}(\mathbf{x} - \tilde{\mathbf{x}}) = \mathrm{sign}\left(\mathbf{w}^{\top}\mathbf{x} + b\right) \min_{\tilde{\mathbf{x}} \in H} \|\mathbf{x} - \tilde{\mathbf{x}}\|$$

where sign $(\mathbf{w}^{\top}\mathbf{x} + b)$ shows on which side of the hyperplane \mathbf{x} lies.

So
$$d(\mathbf{x}, H) = \Pi_w(\mathbf{x} - \tilde{\mathbf{x}}) \stackrel{\text{def.}}{=} \frac{\mathbf{w}^T(\mathbf{x} - \tilde{\mathbf{x}})}{\|\mathbf{w}\|} = \frac{\mathbf{w}^T\mathbf{x} - \mathbf{w}^T\tilde{\mathbf{x}}}{\|\mathbf{w}\|} \stackrel{(\star)}{=} \frac{\mathbf{w}^T\mathbf{x} + b}{\|\mathbf{w}\|}.$$

Where in (\star) we use: $\tilde{\mathbf{x}} \in H \Rightarrow \mathbf{w}^T\tilde{\mathbf{x}} + b = 0 \Longleftrightarrow -\mathbf{w}^T\tilde{\mathbf{x}} = +b$. \square

0.4 Eigenvalues

Definition: Eigenvalue

Let $A \in \mathbb{R}^{d \times d}$. $\lambda \in \mathbb{R}$ is called an eigenvalue of A if there is a vector $\mathbf{x} \in \mathbb{R}^d \setminus \{0\}$ such that $A\mathbf{x} = \lambda \mathbf{x}$. In that case \mathbf{x} is an eigenvector corresponding to the eigenvalue λ . The set

$$\operatorname{Eig}(A,\lambda) := \left\{ \mathbf{x} \in \mathbb{R}^d : A\mathbf{x} = \lambda \mathbf{x} \right\}$$

is called the eigenspace corresponding to the eigenvalue λ .

Intuitively an eigenvector preserves its direction under the linear transformation A but not necessarily its magnitude.

Example: Eigenvalue Calculation

$$B = \left(\begin{array}{cc} -6 & 3\\ 4 & 5 \end{array}\right)$$

Let us try to find the eigenvalues of the matrix B. Let I denote the Identity matrix.

For $\lambda \in \mathbb{R}$ and $A \in \mathbb{R}^{d \times d}$ it holds:

$$\begin{array}{l} \lambda \ \mathrm{Eigenvalue} \ \mathrm{of} \ A \Leftrightarrow \exists \ \mathbf{x} \neq 0 \in \mathbb{R}^d \ \mathrm{with}: \ A\mathbf{x} = \lambda \mathbf{x} \\ \Leftrightarrow \exists \ \mathbf{x} \neq 0 \in \mathbb{R}^d \ \mathrm{with}: \ A\mathbf{x} = \lambda I\mathbf{x} \\ \Leftrightarrow \exists \ \mathbf{x} \neq 0 \in \mathbb{R}^d \ \mathrm{with}: \ \lambda I\mathbf{x} - A\mathbf{x} = 0 \\ \Leftrightarrow \dim \mathrm{Ker}(\lambda I - A) > 0 \\ \Leftrightarrow \dim \mathrm{Im}(\lambda I - A) < d \\ \Leftrightarrow \lambda I - A \ \mathrm{not} \ \mathrm{invertible} \\ \Leftrightarrow \det(\lambda I - A) = 0 \end{array}$$

Let's use this insight to calculate the eigenvalues of B.

$$\det \left(\begin{array}{cc} \lambda+6 & 3 \\ 4 & \lambda-5 \end{array} \right) = 0 \iff (\lambda+6)(\lambda-5)-12 = 0 \iff \lambda^2+\lambda-42 = 0 \iff (\lambda+7)(\lambda-6) = 0$$

Apparently the eigenvalues of A are -7 and 6. We can also find the corresponding eigenvectors by resubstituting these values back into $A\mathbf{x} = \lambda \mathbf{x}$.

0.5 Positive definite matrices

Definition: Positive definite matrix

Let $A \in \mathbb{R}^{d \times d}$ be a symmetric matrix $(A^T = A)$. We call A positive definite : $\iff \forall \mathbf{x} \neq 0 \in \mathbb{R}^d : \mathbf{x}^T A \mathbf{x} > 0$. A positive semi definite : $\iff \forall \mathbf{x} \neq 0 \in \mathbb{R}^d : \mathbf{x}^T A \mathbf{x} \geq 0$.

0.6 Gradient

Definition: Gradient

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable. We define the gradient by:

$$\nabla f = \operatorname{grad} f =: \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)^T$$

We observe that ∇f is again a function. Each component of the gradient tells us how fast our function is changing in each direction.

To see how fast the change is at a point p at direction v, we would multiply $\nabla f(p) \cdot \mathbf{v}$.

Observe that this scalar product is maximized if \mathbf{v} is parallel to $\nabla f(p)$ which shows that ∇f shows in the direction of the steepest ascent.

0.7 Hessian Matrix

Definition: Hessian Matrix Let $f : \mathbb{R}^d \to \mathbb{R}$. If all second partial derivatives of f exist and are continuous over the domain of the function, then the Hessian matrix H is defined by:

$$\mathbf{H}_{f}(x) := \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)\right)_{i,j=1,\dots,d} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(x) \end{pmatrix}$$

Example: Hessian Matrix

Let $f : \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x^3 + y^3 - 3xy$.

Let us try to calculate the Hessian Matrix. First we need to find the partial derivatives.

We have:

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 - 3y$$
$$\frac{\partial f}{\partial y}(x,y) = 3y^2 - 3x$$

We know that

$$\frac{\partial^2 f}{\partial x \partial x} = \frac{\partial^2 f}{\partial x \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 6x$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -3$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = -3$$

$$\frac{\partial^2 f}{\partial y \partial y} = \frac{\partial^2 f}{\partial y \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 6y$$

So
$$H = \begin{pmatrix} 6x & -3 \\ -3 & 6y \end{pmatrix}$$
.

Properties of Hessian Matrix

- The Hessian Matrix of a convex function is positive semi definite.
- ullet If the Hessian is positive-definite at ${f x}$, then f attains an isolated local minimum at ${f x}$.
- \bullet If the Hessian is negative-definite at x, then f attains an isolated local maximum at ${\bf x}$.