

N-WAYS GPU BOOTCAMP

OUT OF SCOPE

 This session should not be considered as extensive guide covering all the API of respective parallel programming model

This session is focused on the introduction and no detail optimization will covered

INTRODUCTION TO GPU COMPUTING

What to expect?

- Broad view on GPU Stack
- Fundamentals of GPU Architecture
- Good starting point

HPC SYSTEM EVOLUTION

Sequential

HPC SYSTEM EVOLUTION

Sequential

Multithreaded P-Thread/OpenMP

HPC SYSTEM EVOLUTION

Sequential

Multithreaded P-Thread/OpenMP Distributed MPI

GPU ARCHITECTURE CONTINUES TO DELIVER PERFORMANCE

ACCELERATED COMPUTING PILLARS

HIERARCHY OF SCALES

Multi-System Rack
Unlimited Scale

Multi-GPU System 8 GPUs Multi-SM GPU
108 Multiprocessors

Multi-Core SM 2048 threads

CUDA PLATFORM: TARGETS EACH LEVEL OF THE HIERARCHY

The CUDA Platform Advances State Of The Art From Data Center To The GPU

System Scope

FABRIC MANAGEMENT
DATA CENTER OPERATIONS
DEPLOYMENT
MONITORING
COMPATIBILITY
SECURITY

Node Scope

GPU-DIRECT NVLINK LIBRARIES UNIFIED MEMORY ARM

Program Scope

CUDA C++
OPENACC
STANDARD LANGUAGES
SYNCHRONIZATION
PRECISION

O INVIDIA

ACCELERATED PLATFORM

HOW GPU ACCELERATION WORKS

ACCELERATED COMPUTING

CPU

Optimized for Serial Tasks

GPU Accelerator

Optimized for Parallel Tasks

SILICON BUDGET

The three components of any processor

CPU IS A LATENCY REDUCING ARCHITECTURE

CPU

Optimized for Serial Tasks

CPU Strengths

- Very large main memory
- Very fast clock speeds
- Latency optimized via large caches
- Small number of threads can run very quickly

CPU Weaknesses

- Relatively low memory bandwidth
- Cache misses very costly
- Low performance/watt

GPU IS ALL ABOUT HIDING LATENCY

GPU Strengths

- High bandwidth main memory
- Significantly more compute resources
- Latency tolerant via parallelism
- High throughput
- High performance/watt

GPU Weaknesses

- Relatively low memory capacity
- · Low per-thread performance

GPU Accelerator

Optimized for Parallel Tasks

LOW LATENCY VS HIGH THROUGHPUT

- CPU architecture must minimize latency within each thread
- GPU architecture hides latency with computation (data-parallelism, to 30k threads!)

SPEED V. THROUGHPUT

Speed

Throughput

Which is better depends on your needs...

HUGE BREADTH OF PLATFORMS, SYSTEMS, LANGUAGES

NVIDIA HPC SDK

Download at developer.nvidia.com/hpc-sdk

NVIDIA HPC SDK

Develop for the NVIDIA HPC Platform: GPU, CPU and Interconnect HPC Libraries | GPU Accelerated C++ and Fortran | Directives | CUDA

N-WAYS TO GPU PROGRAMMING

Math Libraries | Standard Languages | Directives | CUDA

```
std::transform(par, x, x+n, y, y,
        [=](float x, float y) {
        return y + a*x;
});
```

```
do concurrent (i = 1:n)
  y(i) = y(i) + a*x(i)
enddo
```

GPU Accelerated C++ and Fortran

```
#pragma acc data copy(x,y)
{
    ...
std::transform(par, x, x+n, y, y,
        [=](float x, float y) {
        return y + a*x;
});
    ...
}
```

Incremental Performance
Optimization with Directives

Maximize GPU Performance with CUDA C++/Fortran

GPU Accelerated Math Libraries

GPU ACCELERATED MATH LIBRARIES

cuBLAS

BF16, TF32 and FP64 **Tensor Cores**

nvJPEG

Hardware Decoder

cuSPARSE

Increased memory BW, Shared Memory & L2

cuTENSOR

BF16, TF32 and FP64 **Tensor Cores**

cuSOLVER

BF16, TF32 and **FP64 Tensor Cores**

cuFFT

BF16, TF32 and FP64 Tensor Cores

CUDA Math API

Increased memory BW, Shared Memory & L2

CUTLASS

BF16 & TF32 Support

APPLICATION

Molecular Simulation

RDF

The radial distribution function (RDF) denoted in equations by g(r) defines the probability of finding a particle at a distance r from another tagged particle.

https://en.wikipedia.org/wiki/Radial_distribution_function

RDF

Pseudo Code - C

```
for (int frame=0;frame<nconf;frame++){</pre>
      for(int id1=0;id1<numatm;id1++)</pre>
            for(int id2=0;id2<numatm;id2++)</pre>
                  dx=d_x[]-d_x[];
                  dy=d_y[]-d_y[];
                  dz=d_z[]-d_z[];
                  r=sqrtf(dx*dx+dy*dy+dz*dz);
                  if (r<cut) {</pre>
                        ig2=(int)(r/del);
                        d_g2[ig2] = d_g2[ig2] +1;
```

Across Frames

Find Distance

Reduction

RDF

Pseudo Code - Fortran

```
do iconf=1,nframes
  if (mod(iconf,1).eq.0) print*,iconf
  do i=1,natoms
     do j=1,natoms
           dx=x(iconf,i)-x(iconf,j)
           dy=y(iconf,i)-y(iconf,j)
           dz=z(iconf,i)-z(iconf,j)
           r=dsqrt(dx**2+dy**2+dz**2)
           if(r<cut)then
                g(ind)=g(ind)+1.0d0
           endif
     enddo
  enddo
enddo
```

Across Frames

Find Distance

Reduction

SINGLE PRECISION ALPHA X PLUS Y (SAXPY)

GPU SAXPY in multiple languages and libraries

Part of Basic Linear Algebra Subroutines (BLAS) Library

$$z = \alpha x + y$$

x, y, z: vector

 α : scalar

SAXPY: OPENACC COMPILER DIRECTIVES

Parallel C Code

```
void saxpy(int n,
           float a,
           float *x,
           float *y)
#pragma acc kernels
  for (int i = 0; i < 0
    y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy(1 << 20, 2.0, x, y);
```

Parallel Fortran Code

```
subroutine saxpy(n, a, x, y)
  real :: x(:), y(:), a
 integer :: n, i
!$acc kernels
 do i=1,n
   y(i) = a*x(i)+y(i)
 enddo
!$acc end kernels
end subroutine saxpy
! Perform SAXPY on 1M elements
```

SAXPY: CUBLAS LIBRARY

Serial BLAS Code

```
int N = 1<<20;
....
// Use your choice of blas library
// Perform SAXPY on 1M elements
blas_saxpy(N, 2.0, x, 1, y, 1);</pre>
```

Parallel cuBLAS Code

```
int N = 1 << 20;
cublasInit();
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);
// Perform SAXPY on 1M elements
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);
cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);
cublasShutdown();
```

You can also call cuBLAS from Fortran, C++, Python, and other languages:

http://developer.nvidia.com/cublas

SAXPY: CUDA C

Standard C

Parallel C

```
__global__
void saxpy(int n, float a,
      float *x, float *y)
  int i = blockIdx.x*blockDim.x + threadIdx
           ) y[i] = a*x[i] + y[i];
int N = 1 << 20:
cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);
// Perform SAXPY on 1M elements
saxpy <<< 4096, 256>>> (N, 2.0, d_x, d_y);
cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);
```

SAXPY: CUDA FORTRAN

Standard Fortran

```
module mymodule contains
  subroutine saxpy(n, a, x, y)
    real :: x(:), y(:), a
    integer :: n, i
    do i=1,n
     y(i) = a*x(i)+y(i)
    enddo
  end subroutine saxpy
end module mymodule
program main
  use mymodule
  real :: x(2**20), y(2**20)
  x = 1.0, y = 2.0
  ! Perform SAXPY on 1M elements
  call saxpy(2**20, 2.0, x, y)
end program main
```

Parallel Fortran

```
module mymodule contains
  attributes(global) subroutine saxpy(n, a, x, y)
    real :: x(:), y(:), a
    integer :: n, i
    attributes(value) :: a, n
    i = threadIdx%x+(blockIdx%x-1)*blockDim%x
    if (i \le n) y(i) = a \times x(i) + y(i)
  end subroutine saxpy
end module mymodule
program main
  use cudafor; use mymodule
  real, device :: x_d(2**20), y_d(2**20)
  x_d = 1.0, y_d = 2.0
  ! Perform SAXPY on 1M elements
  call saxpy <<<4096,256>>>(2**20, 2.0, x_d, y_d)
end program main
```

SAXPY: PYTHON

Standard Python

```
import numpy as np
def saxpy(a, x, y):
  return [a * xi + yi
          for xi, yi in zip(x, y)]
x = np.arange(2**20, dtype=np.float32)
y = np.arange(2**20, dtype=np.float32)
cpu_result = saxpy(2.0)
```

Numba: Parallel Python

```
import numpy as np
from numba import vectorize
@vectorize(['float32(float32, float32,
float32)'], target='cuda')
def saxpy(a, x, y):
    return a * x + y
N = 1048576
# Initialize arrays
A = np.ones(N, dtype=np.float32)
B = np.ones(A.shape, dtype=A.dtype)
C = np.empty_like(A, dtype=A.dtype)
# Add arrays onGPU
C = saxpy(2.0, X, Y)
```

SAXPY: PYTHON

Standard Python

```
import numpy as np

x = np.ones(2**20, dtype=np.float32)
y = np.ones(2**20, dtype=np.float32)

def saxpy(a, x, y):
    return a * x + y

cpu_result = saxpy(2.0, x, y )
```

CUPY: GPU accelerated NumPy Python

```
import cupy as cp
# Initialize arrays
x = cp.ones(2**20, dtype=cp.float32)
y = cp.ones(2**20, dtype=cp.float32)
def saxpy(a, x, y):
  return a * x + y
qpu_result = saxpy(2.0, x, y)
```

SAXPY: MATLAB

Parallel C Code

```
void saxpy(int n,
           float a,
           float *x,
           float *y)
#pragma acc kernels
  for (int i = 0; i <
   y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy(1 << 20, 2.0, x, y);
```

Parallel C++ Code

```
<<initialize>>
p = parpool
parfor i = 1:numel(N)
   y(i) = 2.0 * x(i) + y(i)
end
<<pre><<post process>
delete(p)
```

SAXPY: MATLAB

500+ GPU-enabled MATLAB functions

Transfer Data To GPU From

- Additional GPU-enabled Toolboxes
 - Neural Networks
 - Image Processing and Computer Vision
 - Communications
 - Signal Processing
 - Stats Toolbox

Perform Calculation on GPU

X = saxpy(N, 2.0, x, 0, 1, y, 0, 1);

Gather Data or Plot

y=gather(y)

MATLAB GPU computing

SAXPY: PSTL

Serial C++ Code (with STL and Boost)

```
int N = 1 << 20;
std::vector<float> x(N), y(N);
// Perform SAXPY on 1M elements
std::transform(x.begin(), x.end(),
               y.begin(), y.end(),
          2.0f * _1 + _2):
```

Parallel C++ Code

```
int N = 1 << 20;
std::vector<float> x(N), y(N);
// Perform SAXPY on 1M elements
std::transform(std::execution::par
, x.begin(), x.end(),
               y.begin(), y.end(),
          2.0f * _1 + _2);
```


BACKUP

