

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 March 2001 (01.03.2001)

PCT

(10) International Publication Number
WO 01/14565 A1

(51) International Patent Classification⁷: C12N 15/53,
15/63

Research Building I, 23rd Avenue at Pierce, Nashville,
TN 37232-0146 (US). VOLKOV, Alexander [US/US];
Genencor International Inc, 925 Page Mill Road, Palo
Alto, CA 94304/1013 (US).

(21) International Application Number: PCT/AU00/00966

(74) Agents: HUGHES, E., John, L. et al.; Davies Collison
Cave, Level 3, 303 Coronation Drive, Milton, QLD 4064
(AU).

(22) International Filing Date: 11 August 2000 (11.08.2000)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

— With international search report.

(30) Priority Data:
PQ 2156 11 August 1999 (11.08.1999) AU

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicants (*for all designated States except US*): THE
UNIVERSITY OF QUEENSLAND [AU/AU]; St Lucia,
QLD 4072 (AU). VANDERBILT UNIVERSITY
[US/US]; Nashville, TN 37232 (US). CALIFORNIA
INSTITUTE OF TECHNOLOGY [US/US]; Pasadena,
CA 91125 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): GILLAM, Elizabeth, J. [AU/AU]; 126 Market Street, Indooroopilly, QLD 4069 (AU). NOTLEY, Lisa, M. [AU/AU]; Unit 5, 34 Cordeaux Street, West End, QLD 4101 (AU). DEVOSS, James [AU/AU]; 23 Prospect Terrace, St Lucia, QLD 4067 (AU). GUENGERICH, F., Peter [US/US]; Department Of Biochemistry And Centre In Molecular Toxicology, Vanderbilt University School of Medicine, 638 Medical

WO 01/14565 A1

(54) Title: PIGMENT PRODUCTION BY CELLS HAVING INTRODUCED CYTOCHROME P450 SEQUENCES

(57) Abstract: The present invention relates generally to a method for producing a pigment in or by biological material including plant, animal and microbial cells. More particularly, the present invention is directed to the use of a cytochrome P450 protein or a derivative or homologue thereof together with one or more homologous or heterologous associated proteins to facilitate the conversion of a substrate, to a coloured product. The method of the present invention is predicated in part on the oxidation of indole or related molecules by the cytochrome P450 protein and a homologous or heterologous associated protein to indoxyl and oxidized indoxyl or related molecules which alone or in combination with other molecules can form a range of pigments including indigo and indirubin.

Pigment production by cells having introduced cytochrome P450 sequences.**FIELD OF THE INVENTION**

- 5 The present invention relates generally to a method for producing a pigment in or by biological material including plant, animal and microbial cells. Particularly useful biological material contemplated herein includes microbial cells, plant cells such as plant tissue and organs including petals, flowers, stems, leaves and seeds, plant fibrous material such as cotton, and non-cellular plant material. More particularly, the present invention is
- 10 directed to the use of a cytochrome P450 protein or a derivative or homologue thereof together with one or more homologous or heterologous associated proteins to facilitate the conversion of a substrate, when available to or in a cell, to a coloured product. The coloured product makes the cell in which it is produced, as well as surrounding tissue or medium to which the product leaks and tissue and plant material connected by a vascular
- 15 system to the cell in which the product is formed, change colour. The present invention is further directed to microorganisms, transgenic animal cells and transgenic plants, parts of plants including cells of plants and progeny of said plants which are capable of expressing genetic material encoding a cytochrome P450 protein or a derivative or homologue thereof and one or more homologous or heterologous associated proteins wherein microorganisms,
- 20 transgenic animal cells and plant cells expressing such genetic material or surrounding cells or cells and plant material connected at the vascular level to said first mentioned cells undergo a colour change relative to cells or plant tissue which do not express this genetic material. The present invention further provides parts of plants including cells, tissues and organs such as petals, flowers (e.g. cut or severed flowers), stems, leaves and seeds,
- 25 fibrous material such as cotton and non-cellular material which have undergone a colour change resulting from a pigment whose production is facilitated by the presence of a cytochrome P450 protein or a derivative or homologue thereof and one or more homologous or heterologous associated proteins. The method of the present invention is predicated in part on the oxidation of indole or related molecules by the cytochrome P450
- 30 protein and a homologous or heterologous associated protein to indoxyl and oxidized indoxyl or related molecules which alone or in combination with other molecules can form

- 2 -

a range of pigments including indigo and indirubin. The production of pigment in microbial cells, animal cells or plant cells is useful *inter alia* in the ornamental flower industry, as commercial tags and as sources of pigments for the dye industry. The pigment produced is also useful as a marker for transformation of microbial, plant and animal cells.

5

BACKGROUND OF THE INVENTION

Reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common 10 general knowledge in Australia or any other country.

Bibliographic details of the publications referred to by author in this specification are collected at the end of the description. Nucleotide and amino acid sequences are referred to by a sequence identifier, i.e. <400>1, <400>2, etc. A sequence listing is provided after the 15 claims.

The increasing sophistication of recombinant DNA technology is greatly facilitating research and development in the chemical, agricultural and horticultural industries. Of particular importance is the use of genetic techniques to introduce useful phenotypes in 20 plants such as disease resistance, frost resistance and altered flower colour.

The ability to alter flower colour has been a major focus of the horticultural industry. The use of genetic manipulation has the potential to vastly increase the range of flower colour which has so far been achieved using conventional breeding practices. One approach has 25 been to manipulate the flow of metabolites through the flavonoid biosynthetic pathway. This pathway results in the production of anthocyanins which are glycosylated derivatives of cyanidin, delphinidin, petunidin, peonidin, malvidin and pelargonidin. The flavonoid pathway is well established and the pattern of hydroxylation of the B-ring of anthocyanins plays a key role in determining petal colour (see International Patent Application No. 30 PCT/AU94/00265 [WO 94/28140]).

- 3 -

In order to fully exploit the potential spectrum of colour change, other approaches of manipulating plant colour need to be considered.

Cytochrome P450 proteins are a superfamily of haemoproteins which catalyze the
5 oxidation of a diverse range of chemicals in a wide variety of organisms. Cytochrome P450 proteins are involved, for example, in clearance of xenobiotic chemicals, biosynthesis of hormones and other signalling molecules and participate in homeostatic mechanisms. Cytochrome P450-dependent monooxygenases require for activity, associated proteins which catalyze the transfer of electrons from, for example, a co-
10 enzyme to a prosthetic haem group on the cytochrome P450 molecule. Generally, the associated protein is a reductase such as a co-enzyme-dependent cytochrome P450 reductase. An associated protein may also have a role in facilitating interaction between a cytochrome P450 and a reductase. An example of such a molecule is cytochrome b₅ (De Vetten *et al.*, 1999). This may be used with a cytochrome P450 protein or in addition to
15 another associated protein.

In work leading up to the present invention, the inventors observed that microorganisms engineered to express genetic material encoding a cytochrome P450 protein turned themselves and their culture medium blue. In accordance with the present invention, it is
20 proposed to exploit this phenomenon to generate pigment production in microbial cells, animal cells and in plant cells and tissue and other plant material.

SUMMARY OF THE INVENTION

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

One aspect of the present invention is directed to the use of genetic material encoding a cytochrome P450 protein or a functional derivative or homologue thereof in the generation 10 of a genetically modified cell, which cell has the capacity to produce a pigment in the presence of indole or a precursor, analogue or derivative thereof upon expression of said genetic material.

Another aspect of the present invention provides for a use of genetic material encoding a 15 cytochrome P450 protein or a derivative or homologue thereof in the generation of a genetically modified cell, which cell has the capacity to produce a pigment in the presence of indole or a precursor, analogue or derivative thereof upon expression of said genetic material wherein the genetic material, encoding the cytochrome P450 protein or its functional derivative or homologue, is co-expressed with genetic material encoding an 20 associated protein.

A further aspect of the present invention is directed to the use of genetic material encoding a mammalian or microbial cytochrome P450 monooxygenase or a functional derivative or homologue thereof in the generation of a genetically modified cell, which cell has the 25 capacity to produce a pigment in the presence of indole or a precursor, analogue or derivative thereof and upon expression of said genetic material wherein said genetic material encoding the cytochrome P450 monooxygenase or its functional derivative or homologue is co-expressed with genetic material encoding an associated protein selected from a co-enzyme-dependent cytochrome P450 reductase and/or a cytochrome b₅ or a 30 functional derivative or homologue of either molecule.

- 5 -

Still another aspect of the present invention provides a method of inducing a colour change in a plant or part of a plant said method comprising introducing into plant cells a genetic construct encoding a cytochrome P450 protein or a functional derivative or homologue thereof, regenerating a plant from said plant cells and subjecting said plant to appropriate
5 conditions sufficient to permit expression of a nucleotide sequence on said genetic construct which encodes said cytochrome P450 protein such that in the presence of indole or a precursor, analogue or derivative thereof said cytochrome P450 protein facilitates the conversion of indole or its precursor, analogue or derivative to an intermediate which is capable of oxidation to a pigment.

10

Yet another aspect of the present invention provides a genetically modified cell or multicellular animal or plant or progeny thereof or parts of said transgenic plant or animal wherein said transgenic plant or animal comprises expressible genetic material encoding a microbial or mammalian cytochrome P450 protein.

15

Even yet another aspect of the present invention provides a genetically modified cell or multicellular animal or plant or progeny or parts thereof comprising expressible genetic material encoding a microbial or mammalian cytochrome P450 monooxygenase such that upon expression of said genetic material and in the presence of an associated protein and
20 indole or a precursor, analogue or derivative thereof, the indole or its precursor, analogue or derivative is converted to an intermediate which is capable of oxidation to a pigment.

A further aspect of the present invention is directed to a transgenic plant or progeny or parts thereof comprising expressible genetic material encoding a microbial or mammalian
25 cytochrome P450 monooxygenase such that upon expression of said genetic material and in the presence of an associated protein and indole or a precursor, analogue or derivative thereof, the indole or its precursor, analogue or derivative is converted to an intermediate which is capable of oxidation to a pigment.

30 Still another aspect of the present invention provides a transfected or transformed cell, tissue, organ or non-cellular material which contains or is capable of producing

- 6 -

cytochrome P450 protein or a functional derivative or homologue thereof.

- Yet another of the present invention is further directed to flowers (e.g. cut or severed flowers), parts of plants, fibrous material from plants (e.g. cotton), non-cellular material and reproductive portions of plants (e.g. cuttings, seeds, pollen, callus) which are coloured or have the capacity to be coloured in the presence of indole or a precursor thereof due to the presence of cytochrome P450 protein (e.g. monooxygenase) and an associated protein (eg. NADPH-dependent cytochrome P450 reductase or cytochrome b₅).
- 10 Even yet another aspect of the present invention provides for the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the cytochrome P450 monooxygenase comprises the amino acid sequence (F/P/W/L/Y)(G/S/C/N/H/E)X (G/D/A/E)X(R/H/S/K/T)XCX₁(G/A) wherein X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and wherein where residues in parentheses represent alternatives at a single position.
- 20 Still a further the present invention provides for the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the cytochrome P450 monooxygenase comprises the amino acid sequence (F/L)(G/S)XGX(R/H)XCX₁(G/A) where X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and where residues in parentheses represent alternatives at a single position.

- 7 -

- Yet another the present invention is directed to the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the nucleotide sequence is selected from:
- 5 (i) a nucleotide sequence encoding the amino acid sequence defined in <400>8,
10 <400>10 or <400>12;
- (ii) a nucleotide sequence defined by <400>7, <400>9 or <400>11;
- 15 (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i)
or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence
encoding the amino acid sequence defined in <400>2, <400>4 or <400>6;
- 20 (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence
defined in <400>1, <400>3 or <400>5; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a
nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

25

Even yet another the present invention provides for the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a

- 8 -

pigment wherein the genetic sequence further comprises a nucleotide sequence encoding an NPR wherein the nucleotide sequence is selected from:-

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>14 and
5 <400>16;
- (ii) a nucleotide sequence defined by <400>13 and <400>15;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i)
10 or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence
encoding the amino acid sequence defined in <400>14 and <400>16;
- 15 (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence
defined in <400>13 and <400>15; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a
nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

20 A further aspect of the present invention provides for the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a
25 precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the nucleotide sequence is selected from:

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>21;
- 30 (ii) a nucleotide sequence defined by <400>20;

- 9 -

- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- 5 (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>21;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>20; or
- 10 (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

Still another aspect of another aspect of the present invention provides for the use of a
15 genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is
20 oxidizable to a pigment wherein the genetic sequence further comprises a nucleotide sequence encoding an bacterial flavodoxin wherein the nucleotide sequence is selected from:

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- 25 (ii) a nucleotide sequence defined by <400>22;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);

30

- 10 -

- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>23;
 - 5 (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>22; or
 - (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).
- 10 Yet another aspect of the present invention further contemplates the use of plant or plant material as a source of pigment for use, for example, in the dye or cosmetics industry or as commercial tags.
- Even yet another aspect of the present invention further provides a genetic construct
15 comprising a cistron encoding a microbial or mammalian cytochrome P450 protein for use, and more particularly, when used, in the generation of a transformed plant cell such that upon expression of said cistron, the cytochrome P450 facilitates conversion of indole or a precursor thereof to a molecule oxidizable to a pigment.
- 20 In a further aspect of the invention, the cytochrome P450 monooxygenase comprises the amino acid sequence (F/P/W/L/Y)(G/S/C/N/H/E)X (G/D/A/E)X(R/H/S/K/T)XCX₁(G/A) wherein X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and wherein where residues in parentheses represent alternatives at a single position.
- 25 In still another aspect of the invention, the cytochrome P450 monooxygenase comprises the amino acid sequence (F/L)(G/S)XGX(R/H)XCX₁(G/A) where X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and where residues in parentheses represent alternatives at a single position.
- 30 In yet another aspect of the present invention, the nucleotide sequence encoding the cytochrome P450 monooxygenase is selected from:-

- 11 -

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>8, <400>10, <400>12 or <400>21;
 - 5 (ii) a nucleotide sequence defined by <400>7, <400>9 or <400>11 or <400>20;
 - (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
 - 10 (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>2, <400>4, <400>6 or <400>21;
 - (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>1, <400>3, <400>5 or <400>20; or
 - 15 (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).
- 20 In even yet another aspect of the present invention, a particularly useful associated protein is human NPR (hNPR) encoded by:-
- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>16;
 - 25 (ii) a nucleotide sequence defined by <400> 15;
 - (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
 - 30 (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>14;

- 12 -

- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>13; or
- 5 (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

In a further aspect of the present invention, another useful associated protein is a bacterial flavodoxin encoded by:-

- 10 (i) a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- (ii) a nucleotide sequence defined by <400>22;
- 15 (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- 20 (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>22; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

- 13 -

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a diagrammatic representation of the strategy used for generation of monocistronic and bicistronic constructs for co-expression of cytochrome P450 forms and hNPR. Solid bars represent P450 coding sequences; shading represents hNPR coding sequence; hatched bars represent other inserts, for example, linkers.

Figure 2 is a photographic representation of blue pigments in P450 2A6 cultures. (A) Cultures (2 ml) were prepared with (+) and without (-) isopropyl- β -D-thiogalactoside 10 [IPTG] induction in TB media (48 hr at 29°C) with vigorous shaking. (B) Expression was induced by IPTG with (+) or without (-) the addition of 1.0 mM indole to the culture.

Figure 3 is a photographic representation of thin layer chromatography (TLC) separation of pigments formed by *E. coli* cells expressing DNA encoding cytochrome P450 2A6. The 15 pigments (1,2,3,4) were separated by thin layer chromatography TLC as described in Example 3. The band ("O") at the TLC origin was subsequently shown by visible, ¹H NMR and mass spectrometry to be indigo, identical to compound 4 but not eluted due to the insoluble nature of the material.

20 Figure 4 is a photographic representation of spectra of pigments formed by *E. coli* cells expressing DNA encoding cytochrome 450 monooxygenase 2A6. Pigments (1,2,3,4) were separated by TLC as described and spectra of pigments 2 and 4 were recorded in CHCl₃. The spectrum of pigment 2 is characteristic of indirubin whereas pigment 4 corresponds to indigo.

25

Figure 5 is a graphical representation of ¹H NMR spectra of pigment 2 (indirubin) produced by cytochrome P450 monooxygenase 2A6 (Figure 3), at 400 MHz in d₆-Me₂SO. Assignments are indicated. The connectivities and 2-D spectra are shown on the structure.

- 14 -

Figure 6 is a graphical representation of ^1H NMR spectra of pigment 4 (indigo) produced by cytochrome P450 monooxygenase 2A6 (Figure 3), at 400 MHz in d6-Me₂SO. Assignments are indicated. The connectivities and 2-D spectra are shown on the structure.

- 5 **Figure 7** is a photographic representation of TLC showing *in vitro* production of blue pigments by bacterial membranes containing human cytochrome P450 protein and human NADPH-dependent cytochrome P450 reductase (hNPR). Each cytochrome P450 form is indicated. The arrow indicates the position of indigo. In the case of incubations containing P450 2A6, the indigo produced remained largely at the origin due to insolubility, a
10 phenomenon also seen in Figure 3.

- 15 **Figure 8** is a graphical representation showing relative *in vitro* production of blue pigments by bacterial membranes containing human cytochrome P450 protein and human NADPH-dependent cytochrome P450 reductase (hNPR). Each cytochrome P450 form is indicated. For cytochrome P450 monooxygenase 2C9, the various allelic variants are indicated as “*1”, “*2”, “*3”. “HL16” is a human liver microsomal sample. In all cases, 0.8 mM indole was incubated with the membranes (0.2 μM P450) for 30 min at 37°C and dye production was analyzed by measuring absorbance at 665 nm.

- 20 **Figure 9** is a representation of a timecourse showing the production of various metabolites from indole over time in incubations with recombinant P450 2A6 and hNPR in bacterial membranes. Experiments were performed as described in Example 6. A₆₁₅ indicates total absorbance at 615 nm, indicating pigment production. tR 3.3 indicates a metabolite with retention time of 3.3 min under the HPLC conditions used. Other metabolites are indicated
25 on the figure.

Figure 10 is a representation of the postulated reactions in cytochrome P450 monooxygenase-catalyzed pigment formation in *E. coli*.

- 30 **Figure 11** is a diagrammatic representation showing postulated chemical mechanisms for cytochrome P450 monooxygenase-catalyzed pigment formation in *E. coli*.

- 15 -

Figure 12 is a diagrammatic representation showing the general strategy for subcloning cytochrome P450 and hNPR cDNAs into vectors for expression in plants. In the cases of P450 2A6 and hNPR, which contain an internal *SacI* site, the final ligation of the ribosome binding site (RBS) coding sequence and *nos* terminator into p2.5GEM-II was done in two separate steps.

A summary of the sequence identifiers used in the subject specification is shown in Table 1.

- 16 -

TABLE 1
Summary of Sequence Identifiers

SEQUENCE IDENTIFIER	DESCRIPTION
<400>1	Nucleotide sequence encoding human derived cytochrome P450 2A6 monooxygenase for expression in bacterial cells
<400>2	Amino acid sequence of P450 2A6 encoded by <400>1
<400>3	Nucleotide sequence encoding human derived cytochrome P450 2E1 monooxygenase for expression in bacterial cells
<400>4	Amino acid sequence of P450 2E1 encoded by <400>3
<400>5	Nucleotide sequence encoding human derived cytochrome P450 2C19 monooxygenase for expression in bacterial cells
<400>6	Amino acid sequence of P450 2C19 encoded by <400>5
<400>7	Nucleotide sequence encoding human derived cytochrome P450 2A6 monooxygenase for expression in eukaryotic cells
<400>8	Amino acid sequence of P450 2A6 encoded by <400>7
<400>9	Nucleotide sequence encoding human derived cytochrome P450 2E1 monooxygenase for expression in eukaryotic cells
<400>10	Amino acid sequence of P450 2E1 encoded by <400>9
<400>11	Nucleotide sequence encoding human derived cytochrome P450 2C19 monooxygenase for expression in eukaryotic cells
<400>12	Amino acid sequence of P450 2C19 encoded by <400>11
<400>13	Nucleotide sequence encoding human derived cytochrome P450 reductase (NPR) for expression in bacterial cells
<400>14	Amino acid sequence of NPR encoded by <400>13

- 17 -

SEQUENCE IDENTIFIER	DESCRIPTION
<400>15	Nucleotide sequence of human derived NPR for expression in eukaryotic cells
<400>16	Amino acid sequence of NPR encoded by <400>15
<400>17	Nucleotide sequence of genetic construct for bacterial production of P450 2A6
<400>18	Nucleotide sequence of genetic construct for bacterial production of P450 2E1
<400>19	Nucleotide sequence of genetic construct for bacterial product of P450 2C19
<400>20	Nucleotide sequence encoding P450 cin, a cytochrome P450 monooxygenase from <i>Citrobacter brakii</i>
<400>21	Amino acid sequence of P450 cin encoded by <400>20
<400>22	Nucleotide sequence encoding flavodoxin
<400>23	Amino acid sequence of flavodoxin encoded by <400>22

- 18 -

A summary of abbreviations used in the subject specification is provided in Table 2.

TABLE 2
Abbreviations

5

ABBREVIATION	DESCRIPTION
P450 A26	Cytochrome P450 2A6 monooxygenase
P450 2E1	Cytochrome P450 2E1 monooxygenase
P450 2C19	Cytochrome P450 2C19 monooxygenase
P450 cin	Cytochrome P450 cin monooxygenase from <i>Citrobacter brakii</i>
IPTG	Isopropyl- β -D-thiogalactoside
TLC	Thin layer chromatography
NPR	NADPH-cytochrome P450 reductase
hNPR	Human-derived NADPH-cytochrome P450 reductase
Associated protein	A protein which catalyzes transfer of electrons from a co-enzyme to prosthetic haem group on cytochrome P450 protein or facilitates interaction of cytochrome P450 protein and a cytochrome P450 reductase

- 19 -

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Accordingly, one aspect of the present invention is directed to the use of genetic material encoding a cytochrome P450 protein or a functional derivative or homologue thereof in the 5 generation of a genetically modified cell, which cell has the capacity to produce a pigment in the presence of indole or a precursor, analogue or derivative thereof upon expression of said genetic material.

- More particularly, the present invention provides for the use of genetic material encoding a 10 cytochrome P450 protein or a functional derivative or homologue thereof in the generation of a transgenic plant which transgenic plant has the capacity to produce a pigment in all or part of its tissue or non-cellular material in the presence of indole or a precursor, analogue or derivative thereof upon expression of said genetic material.
- 15 The cytochrome P450 protein is preferably a cytochrome P450 monooxygenase and requires one or more associated proteins for activity. The associated protein may be a reductase such as a co-enzyme-dependent cytochrome P450 reductase and/or may be cytochrome b₅ or a homologue thereof. The associated protein may be a naturally occurring molecule in the cell into which the genetic material encoding the cytochrome P450 protein 20 is introduced or it may be introduced simultaneously with, subsequently to or separately from the genetic material encoding the cytochrome P450 protein. In one embodiment, the genetic material comprises a bicistronic construct encoding both the cytochrome P450 protein and the associated protein. In another embodiment, the genetic material comprises two or more separate monocistronic constructs each encoding a cytochrome P450 protein 25 and one or more associated proteins. In still yet another embodiment, the genetic material encodes a cytochrome P450 protein and its activity is facilitated by one or more host cell associated proteins. In even yet another aspect, the genetic material is a tricistronic or multicistronic construct encoding a cytochrome P450 protein and at least two associated proteins.

- 20 -

Another aspect of the present invention provides for a use of genetic material encoding a cytochrome P450 protein or a derivative or homologue thereof in the generation of a genetically modified cell, which cell has the capacity to produce a pigment in the presence of indole or a precursor, analogue or derivative thereof upon expression of said genetic
5 material wherein the genetic material, encoding the cytochrome P450 protein or its functional derivative or homologue, is co-expressed with genetic material encoding an associated protein.

More particularly, the present invention is directed to a use of genetic material encoding a
10 cytochrome P450 protein or a derivative or homologue thereof in the generation of a transgenic plant which transgenic plant has the capacity to produce a pigment in all or part of its tissue or non-cellular material in the presence of indole or a precursor, analogue or derivative thereof upon expression of said genetic material wherein the genetic material encoding the cytochrome P450 protein or its functional derivative or homologue is co-
15 expressed with genetic material encoding an associated protein. The cell may be a microbial cell (e.g. a bacterial, yeast or fungal cell), an animal cell (e.g. an insect, fish, amphibian, avian or mammalian cell) or a plant cell.

The associated protein may be indigenous to the cell or may have been previously
20 introduced. The present invention covers both homologous and heterologous cytochrome P450 protein-associated protein combinations. A homologous combination is one which is naturally occurring. That is, the associated protein is one which is normally associated with the cytochrome P450 protein in a naturally occurring cell. A heterologous combination is one where the associated protein is not normally associated with the cytochrome P450
25 enzyme. An associated protein includes a molecule such as cytochrome b₅ or a functional homologue or derivative thereof. The term "co-expressed" includes co-expression on a single bicistronic, tricistronic or multicistronic construct, expression of separate monocistronic constructs and expression of one or more genetic construct together with expression of a nucleotide sequence contained in genomic DNA.

The preferred associated protein is a protein which can catalyze the transfer of electrons. One example of a reductase is a co-enzyme-dependent cytochrome P450 reductase. One particularly useful reductase in the practice of the present invention is an NADPH-cytochrome P450 reductase or "NPR" which catalyses the transfer of electrons from 5 NADPH via FAD and/or FMN to the prosthetic haem group on the cytochrome P450 molecule. A particularly useful NPR is a human-derived NPR which is designated herein "Hnpr". Another useful reductase is a redoxin reductase. The preferred cytochrome P450 protein is a monooxygenase and is of mammalian or microbial origin. Particularly useful cytochrome P450 monooxygenases in the practice of the present invention are of human or 10 primate origin. The present invention extends, however, to cytochrome P450 monooxygenases of bacterial or eukaryotic origin.

Another aspect of the present invention is directed to the use of genetic material encoding a mammalian or microbial cytochrome P450 monooxygenase or a functional derivative or 15 homologue thereof in the generation of a genetically modified cell, which cell has the capacity to produce a pigment in the presence of indole or a precursor, analogue or derivative thereof and upon expression of said genetic material wherein said genetic material encoding the cytochrome P450 monooxygenase or its functional derivative or homologue is co-expressed with genetic material encoding an associated protein selected 20 from a co-enzyme-dependent cytochrome P450 reductase and/or a cytochrome b₅ or a functional derivative or homologue of either molecule.

More particularly, the present invention provides for the use of genetic material encoding a mammalian or microbial cytochrome P450 monooxygenase or a functional derivative or 25 homologue thereof in the generation of a transgenic plant which transgenic plant has the capacity to produce a pigment in all or part of its tissue or non-cellular material in the presence of indole or a precursor, analogue or derivative thereof and upon expression of said genetic material wherein said genetic material encoding the cytochrome P450 monooxygenase or its functional derivative or homologue is co-expressed with genetic 30 material encoding an associated protein selected from a co-enzyme-dependent cytochrome

P450 reductase and/or a cytochrome b₅ or a functional derivative or homologue of either molecule.

A preferred reductase is an NADPH-dependent cytochrome P450 reductase.

5

As stated above, the term "co-expression" includes expression of genetic material encoding both the cytochrome P450 monooxygenase and the associated protein in a bicistronic, tricistronic or multicistronic construct as well as expression of separate genetic constructs or co-expression of the cytochrome P450 monooxygenase genetic material with

10 genetic material encoding an associated protein indigenous to the cell into which the genetic material encoding the cytochrome P450 monooxygenase is introduced.

The term "non-cellular material" in relation to plants includes vascular regions such as the phloem and xylem, fibrous material such as cotton and non-living regions of the plant.

15

Although not intending to limit the present invention to any one theory or mode of action, it is proposed that the cytochrome P450 protein and the associated protein(s) convert indole to indoxyl. This compound may then spontaneously oxidize in the presence of oxygen to oxidized indoxyl and then be spontaneously transformed to indigo. This process

20 may also be catalyzed by the cytochrome P450 protein. Alternatively, indoxyl may be further transformed by cytochrome P450 catalysis to indigo by a different mechanism (see Figure 11). Another product of cytochrome P450-dependent oxidation of indole is isatin. Another pigment, indirubin, is also generated when isatin combines with indoxyl. The pigments produced may remain in the cells, tissues or organs such as, in the case of plants,

25 cells of petals, flowers, stems, leaves or seeds, may leak to surrounding cellular or non-cellular regions or may be transported to other regions via the plant vascular system. The pigment may also be present in fibrous material such as cotton or even non-cellular material. By expressing the genetic material encoding the cytochrome P450 protein and the associated protein with a developmentally or organ specific promoter, particular parts of
30 the plant can be targeted for a colour change. The colour is generally dark, such as dark blue or black or may be a purple to red colour. Different shades of colours may be obtained

- 23 -

by providing chemically modified substrates for the cytochrome P450 monooxygenases or providing to the plant modified substrates or compounds which before or after cytochrome P450-dependent metabolism may complex with endogenous indole or a precursor, analogue, derivative or metabolites thereof. In addition, a range of colours may be obtained
5 following interactions between indigo and other related dyes or their precursors and plant molecules associated with pigmentation such as flavonoid molecules.

All plants are encompassed by the present invention, i.e. monocotyledonous plants and dicotyledonous plants. Particularly useful plants are flower crop plants including rose,
10 carnation, petunia, lisianthus, lily, iris, tulip, freesia, delphinium, limonium, pelargonium, commercial crops such as cotton and food crops (such as wheat, rice, barley and sugar cane).

Yet another aspect of the present invention provides a method of inducing a colour change
15 in a plant or part of a plant, said method comprising introducing into plant cells a genetic construct encoding a cytochrome P450 protein or a functional derivative or homologue thereof, regenerating a plant from said plant cells and subjecting said plant to appropriate conditions sufficient to permit expression of a nucleotide sequence on said genetic construct which encodes said cytochrome P450 protein such that in the presence of indole
20 or a precursor, analogue or derivative thereof said cytochrome P450 protein facilitates the conversion of indole or its precursor, analogue or derivative to an intermediate which is capable of oxidation to a pigment.

Preferably, the cytochrome P450 protein is a monooxygenase of microbial or mammalian
25 origin. The term "microbial origin" includes bacterial origin. Reference to a "cytochrome P450 protein includes and encompasses hybrid molecules from two or more cytochrome P450 proteins as well as naturally occurring and artificially created mutants and derivatives.

30 The activity of the cytochrome P450 protein requires the presence of one or more accessory proteins which may be present in and be indigenous to the plant cells or may

- 24 -

also be introduced on a separate genetic construct or on the same genetic construct which encodes the cytochrome P450 protein.

In one aspect, the indole (or its precursor) converted to indigo or its precursor is
5 endogenous indole. However, increased levels of indole or its precursor, analogue or derivative thereof may be provided to the plant *via*, for example, its root system such as in a fertilizer. Alternatively, cut flowers or other severed portions of the plant may be placed in a solution of indole or precursor, analogue or derivative thereof. The vascular system, in the case of a plant, will then transport the indole into the plant tissue cells and pigment
10 production will occur in the presence of the cytochrome P450 protein and the associated protein. In a further aspect of the invention, cells are engineered to express genetic material encoding a tryptophanase or another enzyme in order to promote and/or endogenous levels of indole or its precursors or homologues. Preferably, the genetic material encoding the tryptophanase or other enzymes would be able to be regulated at the developmental and/or
15 organ and/or tissue specific levels.

This aspect of the present invention, insofar as it relates to plants, further extends to progeny of the plants engineered to express the cytochrome P450 protein as well as vegetative, propagative and reproductive parts of the plants (including cuttings, pollen,
20 seeds and callus).

Another aspect of the present invention provides a genetically modified cell or multicellular animal or plant or progeny thereof or parts of said transgenic plant or animal wherein said transgenic plant or animal comprises expressible genetic material encoding a
25 microbial or mammalian cytochrome P450 protein.

More particularly, the present invention provides a transgenic plant or progeny thereof or parts of said transgenic plant wherein said transgenic plant comprises expressible genetic material encoding a microbial or mammalian cytochrome P450 protein.

30

Preferably, the cytochrome P450 protein is a monooxygenase.

Even more particularly, the present invention provides a genetically modified cell or multicellular animal or plant or progeny or parts thereof comprising expressible genetic material encoding a microbial or mammalian cytochrome P450 monooxygenase such that

5 upon expression of said genetic material and in the presence of an associated protein and indole or a precursor, analogue or derivative thereof, the indole or its precursor, analogue or derivative is converted to an intermediate which is capable of oxidation to a pigment.

Still more particularly, the present invention is directed to a transgenic plant or progeny or

10 parts thereof comprising expressible genetic material encoding a microbial or mammalian cytochrome P450 monooxygenase such that upon expression of said genetic material and in the presence of an associated protein and indole or a precursor, analogue or derivative thereof, the indole or its precursor, analogue or derivative is converted to an intermediate which is capable of oxidation to a pigment.

15 The term "genetically modified" is used in its broadest sense and includes introducing gene(s) into cells, mutating gene(s) in cells and altering or modulating the regulation of gene(s) in cells.

20 A "part" of a plant includes flowers (e.g. cut or severed flowers), petals, stems, leaves and fibrous material such as cotton and vegetative, propagative and reproductive material such as cuttings, pollen, seeds and callus.

Generally, the coding region(s) on the genetic material are operably linked to a single or

25 multiple promoters. In one embodiment, the genetic construct is a bicistronic construct under the control of (i.e. operably linked to) a single promoter where the cistrons encode both the cytochrome P450 protein and the associated protein. In another embodiment, the genetic construct is a tricistronic or multicistronic construct.

30 As used herein, the term "genetic material" refers to any single-stranded or double-stranded nucleic acid molecule which at least comprises deoxyribonucleotides and/or

- 26 -

ribonucleotides, including DNA (cDNA or genomic DNA), RNA, mRNA, or tRNA, amongst others. The combination of such molecules with non-nucleotide substituents derived from synthetic means or naturally-occurring sources is also contemplated by the present invention.

5

"Derivatives" of the genetic sequence of the invention refers to any isolated nucleic acid molecule which comprises at least 10 and preferably at least 20 contiguous nucleotides derived from the genetic sequence as described herein according to any embodiment. A derivative includes a part, fragment, portion or analogue. A derivative also includes a
10 fusion molecule between two more genetic sequences encoding cytochrome P450 molecules.

An "analogue" of a genetic sequence of the invention means any isolated nucleic acid molecule which is substantially the same as a nucleic acid molecule of the present
15 invention or its complementary nucleotide sequence as described herein according to any embodiment, notwithstanding the occurrence of any non-nucleotide constituents not normally present in said isolated nucleic acid molecule, for example carbohydrates, radiochemicals including radionucleotides, reporter molecules such as, but not limited to, alkaline phosphatase or horseradish peroxidase, amongst others. A "homologue" is a
20 functionally similar molecule from a different species or strain.

Generally, analogues or derivatives of the nucleic acid molecule of the invention are produced by synthetic means or alternatively, derived from naturally-occurring sources. For example, the nucleotide sequence of the present invention may be subjected to
25 mutagenesis to produce single or multiple nucleotide substitutions, deletions and/or insertions.

The genetic sequence of the present invention may comprise a sequence of nucleotides or be complementary to a sequence of nucleotides which comprise one or more of the
30 following: a promoter sequence, a 5' non-coding region, a *cis*-regulatory region such as a functional binding site for transcriptional regulatory protein or translational regulatory

protein, an upstream activator sequence, an enhancer element, a silencer element, a TATA box motif, a CCAAT box motif, or an upstream open reading frame, transcriptional start site, translational start site, and/or nucleotide sequence which encodes a leader sequence. The genetic sequence also encodes the cytochrome P450 enzyme and optionally an 5 associated protein (e.g. cytochrome P450 reductase and/or cytochrome b₅).

The term "5' non-coding region" is used herein in its broadest context to include all nucleotide sequences which are derived from the upstream region of an expressible gene, other than those sequences which encode amino acid residues which comprise the 10 polypeptide product of said gene, wherein 5' non-coding region confers or activates or otherwise facilitates, at least in part, expression of the gene.

The term "gene" is used in its broadest context to include both a genomic DNA region corresponding to the gene as well as a cDNA sequence corresponding to exons or a 15 recombinant molecule engineered to encode a functional form of a product.

As used herein, the term "*cis*-acting sequence" or "*cis*-regulatory region" or similar term shall be taken to mean any sequence of nucleotides which is derived from an expressible genetic sequence wherein the expression of the first genetic sequence is regulated, at least 20 in part, by said sequence of nucleotides. Those skilled in the art will be aware that a *cis*-regulatory region may be capable of activating, silencing, enhancing, repressing or otherwise altering the level of expression and/or cell-type-specificity and/or developmental specificity of any structural gene sequence.

25 Reference herein to a "promoter" is to be taken in its broadest context and includes the transcriptional regulatory sequences of a classical genomic gene, including the TATA box which is required for accurate transcription initiation, with or without a CCAAT box sequence and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or 30 environmental stimuli, or in a tissue-specific or cell-type-specific manner. A promoter is usually, but not necessarily, positioned upstream or 5', of a structural gene, the expression

of which it regulates. Furthermore, the regulatory elements comprising a promoter are usually positioned within 2kb of the start site of transcription of the gene.

In the present context, the term "promoter" is also used to describe a synthetic or fusion molecule, or derivative which confers, activates or enhances expression of a structural gene or other nucleic acid molecule, in a plant cell. Preferred promoters according to the invention may contain additional copies of one or more specific regulatory elements to further enhance expression in a cell, and/or to alter the timing of expression of a structural gene to which it is operably connected.

10

The term "operably connected" or "operably linked" in the present context means placing a structural gene (e.g. cytochrome P450 protein or associated protein) under the regulatory control of a promoter which then controls expression of the gene. Promoters and the like are generally positioned 5' (upstream) to the genes which they control. In the construction 15 of heterologous promoter/structural gene combinations, it is generally preferred to position the genetic sequence or promoter at a distance from the gene transcription start site that is approximately the same as the distance between that genetic sequence or promoter and the gene it controls in its natural setting, i.e., the gene from which the genetic sequence or promoter is derived. As is known in the art, some variation in this distance can be 20 accommodated without loss of function. Similarly, the preferred positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control is defined by the positioning of the element in its natural setting, i.e., the genes from which it is derived.

25 A further aspect of the present invention provides a transfected or transformed cell, tissue, organ or non-cellular material which contains or is capable of producing cytochrome P450 protein or a functional derivative or homologue thereof. Preferably, the cytochrome P450 protein is a cytochrome P450 monooxygenase. This material will also contain or be capable of producing an associated protein such as a co-enzyme-dependent cytochrome 30 P450 reductase or cytochrome b₅ or a functional homologue or derivative of either.

- 29 -

The genetic construct(s) of the present invention may be introduced into a cell by various techniques known to those skilled in the art. The technique used may vary depending on the known successful techniques for that particular organism.

- 5 Techniques for introducing recombinant DNA into cells include, but are not limited to, transformation using CaCl_2 and variations thereof, direct DNA uptake into protoplasts, PEG-mediated uptake to protoplasts, microparticle bombardment, electroporation, microinjection of DNA, microparticle bombardment of tissue explants or cells, vacuum-infiltration of tissue with nucleic acid, and T-DNA-mediated transfer from *Agrobacterium*
- 10 to the plant tissue.

For microparticle bombardment of cells, a microparticle is propelled into a cell to produce a transformed cell. Any suitable ballistic cell transformation methodology and apparatus can be used in performing the present invention. Exemplary apparatus and procedures are
15 disclosed by Stomp *et al.* (U.S. Patent No. 5,122,466) and Sanford and Wolf (U.S. Patent No. 4,945,050). When using ballistic transformation procedures, the genetic construct may incorporate a plasmid capable of replicating in the cell to be transformed.

Examples of microparticles suitable for use in such systems include 0.1 to 10 μm and more
20 particularly 10.5 to 5 μm tungsten or gold spheres. The DNA construct may be deposited on the microparticle by any suitable technique, such as by precipitation.

Once introduced into cells such as plant tissue, the expression of a cytochrome P450 protein and/or associated protein may be assayed in a transient expression system or it may
25 be determined after selection for stable integration within for example, the plant genome.

Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant generated therefrom. The particular tissue chosen will vary depending on the
30 clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons,

- 30 -

hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g. apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g. cotyledon meristem and hypocotyl meristem).

- 5 The regenerated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed to give homozygous second generation (or T2) transformant, and the T2 plants further propagated through classical breeding techniques.
- 10 Intended recipient plants of the cytochrome P450 protein or its derivative or homologue and/or associated protein or proteins (e.g. a cytochrome P450 reductase or cytochrome b₅) may first be modified such that the level of available indole or its precursor, analogue or derivative thereof for conversion to pigments (e.g. indigo) is altered. Generally, but not necessarily, the level is increased. A range of mutations in amino acid biosynthesis or
- 15 metabolic pathways may be induced to result in accumulation of indole or an indole precursor. Alternatively, the indole or its precursor, analogue or derivative thereof is provided exogenously such as *via* a fertilizer or *via* a solution applied to the plant or parts of the plant.
- 20 The present invention is further directed to flowers (e.g. cut or severed flowers), parts of plants, fibrous material from plants (e.g. cotton), non-cellular material and reproductive portions of plants (e.g. cuttings, seeds, pollen, callus) which are coloured or have the capacity to be coloured in the presence of indole or a precursor thereof due to the presence of cytochrome P450 protein (e.g. monooxygenase) and an associated protein (e.g.
- 25 NADPH-dependent cytochrome P450 reductase or cytochrome b₅).

Reference herein to "mammalian" in relation to a cytochrome P450 protein or associated protein includes a human, primate, livestock animal (e.g. sheep, pig, cow, horse, donkey), laboratory test animal (e.g. rabbit, mouse, guinea pig, hamster), companion animal (e.g. 30 cat, dog) or a captive wild animal. Preferred mammals are primates and humans. Particularly preferred mammals are humans. Reference to "bacterial" includes prokaryotes

- 31 -

such as *E. coli*, *Pseudomonas* sp, *Acinetobacter* sp, and *Citrobacter* sp; the term "microbial" includes bacteria but also includes eukaryotic cells such as yeast, fungi and animal cells, e.g. insect cells.

- 5 Any and all microbial and mammalian cytochrome P450 proteins and in particular cytochrome P450 monooxygenases are contemplated by the present invention provided that such monooxygenases can act on indole or its precursors, analogues or derivatives. Preferred cytochrome P450 proteins comprise the consensus amino acid sequence (F/P/W/L/Y)(G/S/C/N/H/E)X (G/D/A/E)X(R/H/S/K/T)XCX₁(G/A) wherein X is any
- 10 amino acid and X₁ is selected from V, M, A, L, I, P, F or T and wherein where residues in parentheses represent alternatives at a single position. More particularly, the cytochrome P450 monooxygenases comprise the consequence sequence (F/L)(G/S)XGX(R/H)XCX₁(G/A) where X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and where residues in parentheses represent alternatives at a single
- 15 position. The cytochrome P450 monooxygenase may also comprise a hybrid from two or more cytochrome P450 proteins. The cytochrome P450 monooxygenases according to this aspect of the present invention are capable of converting indole or a precursor, analogue or derivative to an intermediate which is capable of oxidation to a pigment. Conveniently, a suitable cytochrome P450 monooxygenase having the above consensus sequence and, in
- 20 the presence of an associated protein and indole or a precursor, analogue or derivative thereof, provides a pigment or a precursor of a pigment, may be selected from Genbank. Alternatively, a Nelson website may be selected such as:
<http://drnelson.utmem.edu/CytochromeP450.html>;
- 25 <http://drnelson.utmem.edu/p450apub192.html>; and
<http://drnelson.utmem.edu/p450bpub237.html>.

The consensus sequence is obtained by comparing the amino acid sequence of the haem binding region of P450 proteins.

- 30 Particularly preferred cytochrome P450 monooxygenases include the human-derived P450 2A6, P450 2E1 and P450 2C19 monooxygenases. The nucleotide sequences encoding

- 32 -

these monooxygenases are given in <400>1, <400>3 and <400>5, respectively (corresponding amino acid sequences are given in <400>2, <400>4 and <400>6, respectively). These sequences are specifically designed for expression in bacterial cells. The nucleotide sequence given in <400>7, <400>9 and <400>11 (with corresponding 5 amino acid sequences given in <400>8, <400>10 and <400>12, respectively) are respectively for P450 2A6, P450 2E1 and P450 2C19 when in a form suitable for expression in eukaryotic cells such as plant cells.

- Accordingly, the present invention provides for the use of a genetic sequence comprising a 10 nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a 15 pigment wherein the cytochrome P450 monooxygenase comprises the amino acid sequence (F/P/W/L/Y)(G/S/C/N/H/E)X (G/D/A/E)X(R/H/S/K/T)XCX₁(G/A) wherein X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and wherein where residues in parentheses represent alternatives at a single position.
- 20 More particularly, the present invention provides for the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a 25 precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the cytochrome P450 monooxygenase comprises the amino acid sequence (F/L)(G/S)XGX(R/H)XCX₁(G/A) where X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and where residues in parentheses represent alternatives at a single position.

Even more particularly, the present invention is directed to the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a

5 precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the nucleotide sequence is selected from:

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>8,
10 <400>10 or <400>12;
- (ii) a nucleotide sequence defined by <400>7, <400>9 or <400>11;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i)
15 or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence
encoding the amino acid sequence defined in <400>2, <400>4 or <400>6;
- 20 (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence
defined in <400>1, <400>3 or <400>5; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a
nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

25

The cytochrome P450 monooxygenase of the present invention includes modified forms of the enzyme such as those resulting from site-directed or random mutagenesis as well as naturally occurring mutant forms.

30 The cytochrome P450 monooxygenase requires an associated protein such as NADPH-dependent cytochrome P450 (NPR) or cytochrome b₅. One particularly useful associated

- 34 -

protein is NPR. The nucleotide and corresponding amino acid sequences for an NPR from human cells are given in <400>13 and <400>14 (for use in bacteria) and <400>15 and <400>16 (for use in plants).

- 5 Accordingly, the present invention provides for the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a
- 10 precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the genetic sequence further comprises a nucleotide sequence encoding an NPR wherein the nucleotide sequence is selected from:-
 - (i) a nucleotide sequence encoding the amino acid sequence defined in <400>14 and
 - 15 <400>16;
 - (ii) a nucleotide sequence defined by <400>13 and <400>15;
 - 20 (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
 - (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>14 and <400>16;
 - 25 (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>13 and <400>15; or
 - (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

- 35 -

Another useful cytochrome P450 monooxygenase is of bacterial origin such as from *Citrobacter* sp. One particularly useful cytochrome P450 monooxygenase is from *Citrobacter brakii*. The nucleotide sequence and corresponding amino acid sequence is shown in <400>20 and <400>21, respectively. Its corresponding associated protein is a 5 flavodoxin. The nucleotide sequence encoding flavodoxin and its corresponding amino acid sequence is shown in <400>22 and <400>23, respectively.

Accordingly, the present invention provides for the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 10 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the nucleotide sequence is selected from:-

- 15 (i) a nucleotide sequence encoding the amino acid sequence defined in <400>21;
- (ii) a nucleotide sequence defined by <400>20;
- 20 (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>21;
- 25 (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>20; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a 30 nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

- 36 -

- In accordance with this embodiment, the bacterial cytochrome P450 monooxygenase is preferably operable in the presence of a flavodoxin or other suitably associated protein. Accordingly, another aspect of the present invention provides for the use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a
- 5 cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the genetic sequence further comprises a nucleotide sequence
- 10 encoding an bacterial flavodoxin wherein the nucleotide sequence is selected from:-
- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- 15 (ii) a nucleotide sequence defined by <400>22;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- 20 (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>22; or
- 25 (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

The term "similarity" as used herein includes exact identity between compared sequences at the nucleotide or amino acid level. Where there is non-identity at the nucleotide level, 30 "similarity" includes differences between sequences which result in different amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or

- 37 -

conformational levels. Where there is non-identity at the amino acid level, "similarity" includes amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. In a particularly preferred embodiment, nucleotide and sequence comparisons are made at the level of identity rather than 5 similarity.

Terms used to describe sequence relationships between two or more polynucleotides or polypeptides include "reference sequence", "comparison window", "sequence similarity", "sequence identity", "percentage of sequence similarity", "percentage of sequence 10 identity", "substantially similar" and "substantial identity". A "reference sequence" is at least 12 but frequently 15 to 18 and often at least 25 or above, such as 30 monomer units, inclusive of nucleotides and amino acid residues, in length. Because two polynucleotides may each comprise (1) a sequence (i.e. only a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) a sequence that is 15 divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window" refers to a conceptual segment of typically 12 contiguous residues that is compared to a reference sequence. The comparison window 20 may comprise additions or deletions (i.e. gaps) of about 20% or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison window may be conducted by computerised implementations of algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics 25 Computer Group, 575 Science Drive Madison, WI, USA) or by inspection and the best alignment (i.e. resulting in the highest percentage homology over the comparison window) generated by any of the various methods selected. Reference also may be made to the BLAST family of programs as for example disclosed by Altschul *et al.* (1997). A detailed discussion of sequence analysis can be found in Unit 19.3 of Ausubel *et al.* (1998).

The terms "sequence similarity" and "sequence identity" as used herein refers to the extent that sequences are identical or functionally or structurally similar on a nucleotide-by-nucleotide basis or an amino acid-by-amino acid basis over a window of comparison. Thus, a "percentage of sequence identity", for example, is calculated by comparing two

- 5 optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g. A, T, C, G, I) or the identical amino acid residue (e.g. Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys and Met) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the
- 10 window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. For the purposes of the present invention, "sequence identity" will be understood to mean the "match percentage" calculated by the DNASIS computer program (Version 2.5 for windows; available from Hitachi Software engineering Co., Ltd., South San Francisco, California, USA) using standard defaults as used in the
- 15 reference manual accompanying the software. Similar comments apply in relation to sequence similarity.

- Reference herein to a low stringency includes and encompasses from at least about 0 to at least about 15% v/v formamide and from at least about 1 M to at least about 2 M salt for hybridization, and at least about 1 M to at least about 2 M salt for washing conditions. Generally, low stringency is at from about 25-30°C to about 42°C. The temperature may be altered and higher temperatures used to replace formamide and/or to give alternative stringency conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5 M to at least about 0.9 M salt for hybridization, and at least about 0.5 M to at least about 0.9 M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01 M to at least about 0.15 M salt for hybridization, and at least about 0.01 M to at least about 0.15 M salt for washing conditions. In general, washing is carried out $T_m = 69.3 + 0.41 (G+C)\%$ (Marmur and Doty, 1962). However, the T_m of a duplex DNA decreases by 1°C with every increase

- 39 -

of 1% in the number of mismatch base pairs (Bonner and Laskey, 1974). Formamide is optional in these hybridization conditions. Accordingly, particularly preferred levels of stringency are defined as follows: low stringency is 6 x SSC buffer, 0.1% w/v SDS at 25-42°C; a moderate stringency is 2 x SSC buffer, 0.1% w/v SDS at a temperature in the 5 range 20°C to 65°C; high stringency is 0.1 x SSC buffer, 0.1% w/v SDS at a temperature of at least 65°C.

The present invention further contemplates the use of plant or plant material as a source of pigment for use, for example, in the dye or cosmetics industry, as commercial tags and as 10 markers for transformation of microbial, plant and/or animal cells. The present invention further provides a genetic construct comprising a cistron encoding a microbial or mammalian cytochrome P450 protein for use, and more particularly, when used, in the generation of a transformed plant cell such that upon expression of said cistron, the cytochrome P450 facilitates conversion of indole or a precursor thereof to a molecule 15 oxidizable to a pigment. Preferably, the cytochrome P450 protein is a mammalian or bacterial cytochrome P450 monooxygenase.

Preferably, the cytochrome P450 monooxygenase comprises the amino acid sequence (F/P/W/L/Y)(G/S/C/N/H/E)X (G/D/A/E)X(R/H/S/K/T)XCX₁(G/A) wherein X is any 20 amino acid and X₁ is selected from V, M, A, L, I, P, F or T and wherein where residues in parentheses represent alternatives at a single position.

More preferably, the cytochrome P450 monooxygenase comprises the amino acid sequence (F/L)(G/S)XGX(R/H)XCX₁(G/A) where X is any amino acid and X₁ is selected 25 from V, M, A, L, I, P, F or T and where residues in parentheses represent alternatives at a single position.

Even more preferably, the nucleotide sequence encoding the cytochrome P450 monooxygenase is selected from:-

- 40 -

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>8, <400>10, <400>12 or <400>21;
- 5 (ii) a nucleotide sequence defined by <400>7, <400>9 or <400>11 or <400>20;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- 10 (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>2, <400>4, <400>6 or <400>21;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>1, <400>3, <400>5 or <400>20; or
- 15 (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

Preferably, the genetic construct comprises another cistron encoding an associated protein such as but not limited to a co-enzyme-dependent cytochrome P450 reductase (NPR) and/or cytochrome b₅ or a functional derivative or homologue thereof.

A particularly useful associated protein is human NPR (hNPR) encoded by:-

- 25 (i) a nucleotide sequence encoding the amino acid sequence defined in <400>16;
- (ii) a nucleotide sequence defined by <400> 15;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- 30

- 41 -

(iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>14;

5 (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>13; or

(vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

10 Another useful associated protein is a bacterial flavodoxin encoded by:-

(i) a nucleotide sequence encoding the amino acid sequence defined in <400>23;

15 (ii) a nucleotide sequence defined by <400>22;

(iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);

20 (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>23;

(v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>22; or

25 (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

The above nucleotide sequences may encode the amino acid sequence of the naturally occurring molecule or a modified form such as resulting from site directed mutagenesis,

30 random mutagenesis as well as naturally occurring mutant forms.

- 42 -

Another aspect of the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding or complementary to a sequence encoding a cytochrome P450 monooxygenase from *Citrobacter brakii*.

- 5 Preferably, the cytochrome P450 monooxygenase comprises an amino acid sequence substantially as set forth in <400>21 or an amino acid sequence having at least about 50% similarity thereto after optimal alignment.

Preferably, the cytochrome P450 monooxygenase is encoded by a nucleotide sequence
10 substantially as set forth in <400>20 or a nucleotide sequence having at least about 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>20 or its complementary form under low stringency conditions.

Aspects of the subject invention were made with United States Government Support under
15 grant number CA44353 awarded by the National Institutes of Health. The United States Government may have certain rights in aspects of the instant invention. A licence for foreign filing for various aspects of the present invention has been obtained under Serial Number P-101,005.

- 20 The present invention is further described by the following non-limiting Examples.

- 43 -

EXAMPLE 1

Bacterial cultures

Bicistronic plasmids for expression of P450s and NADPH-P450 reductase were
5 constructed as previously described (Parikh *et al.*, 1997). P450 2A6, P450 2C19, P450
2D6, and the wild type and allelic variants of P450 2C9, were prepared using similar
methods. P450 1B1 is described by Shimada *et al.*, 1998. General schemes for the
construction of plasmids for P450's 2A6, 2C19 and 2C9 are shown in Figures 1A, B and
C, respectively.

10

Expression was done using TB media fortified with IPTG and δ -aminolevulinic acid
(Gillam *et al.*, 1993; Gillam *et al.*, 1995). Bacterial membranes were prepared and
incubated as described (Gillam *et al.*, 1993, Parikh *et al.*, 1997, Shimada *et al.*, 1998,
Gillam *et al.*, 1997).

15

The nucleotide and corresponding amino acid sequences of P450 2A6, P450 2C19, P450
2C9 and P450 cin are provided in the sequence listing (see Table 1 for a summary)
together with the associated proteins, hNPR and flavodoxin.

20

EXAMPLE 2

Observation of blue cultures

o

Blue pigment was seen in cultures co-expressing P450s with NPR. Initial TLC and visible
spectroscopy with human, rat and mouse P450 2E1 systems yielded evidence for indigo
25 production. The production of colour by P450 2A6 cultures was IPTG induction-dependent
(Figure 2).

- 44 -

EXAMPLE 3

Isolation and characterization of pigments formed in bacterial cultures

A 1 litre culture of P450 2A6 was grown for 48 hr at 29°C. Centrifugation (at 200 x g for 1
5 min) yielded a dark blue pellet, which was collected and washed 5 times with H₂O
(suspension and recentrifugation each time). The material was suspended in 10 ml of N,N-
dimethylformamide and subjected to repeated sonication with a microprobe. CHCl₃ (100
ml) was added and the solution was washed five times with an equal volume of H₂O. The
CHCl₃ layer was dried with Na₂SO₄ and filtered through paper (A₆₀₀=0.46, volume=156
10 ml). The material was concentrated at 50°C *in vacuo* to a low volume, which was streaked
on a 1 mm x 20 cm x 20 cm silica gel G TLC plate. The plate was developed with CHCl₃-
CH₃OH/50-1 v/v (Figure 3). Individual coloured bands were excised and extracted first
with CHCl₃-CH₃OH 1-1 v/v and then with acetone, followed by centrifugation and
concentration under N₂.

15

The extracellular pigment produced in a P450 2A6 culture was separated into four
components, two blue and two pink/purple (Figure 3). Mass spectrometry yielded an
apparent MH⁺ ion at *m/z* 263 for compounds 1, 2 and 4, indicating a molecular mass of
262. The visible spectra of components 2 and 4 (Figure 4, λ_{max} 603 nm and 552 nm,
20 respectively) match the literature for indigo and indirubin, respectively (Laatsch and
Ludwig-Kühn, 1986; Friedmann *et al.*, 1950; Fearon and Boggust, 1950), which both have
molecular weights of 262. A definitive MH⁺ for compound 3 was not apparent, and the
visible spectra did not match those of compound 2 or 4.

25 ¹H NMR of compounds 2 and 4 provided further support for the assignment of these as
indirubin and indigo (Hart *et al.*, 1992), respectively, particularly the 2-D spectra (Figures
5 and 6). The symmetric indigo structure is obvious, while indirubin shows the expected
asymmetry.

30 UV-visible spectra were recorded in CHCl₃ using a Cary14/OLIS spectrophotometer (On-
Line Instrument Systems, Bogart, GA). NMR spectra were recorded in d₆-Me₂SO at 298 K

- 45 -

using Bruker AM-400 and AM-500 instruments (Bruker, Billerica, MA). Mass spectra were obtained in the positive ion mode using a Finnigan 7000 (Finnigan, Sunnyvale, CA) electrospray instrument, either by loop injection or by introduction following elution from a 2.1 x 150 mm Zorbax C8 column with a gradient of CH₃OH increasing from 4.5 to 81% v/v over 32 min in 0.1% w/v aqueous HCO₂H.

EXAMPLE 4

Assay of pigment production in vitro

10 Bacterial membranes containing recombinant human P450 (0.2 μ M except P450 2D6 (0.05 μ M)) and P450 1A1 (0.1 μ M) and NADPH-P450 reductase and human liver microsomes (0.2 μ M P450) were prepared and incubated with indole (5 mM) under conditions supporting P450 catalysis (100 mM Tris-HCl, pH 7.4; 1 mM NADPH, 2.5mM glucose-6-phosphate, 0.5 U/ml glucose-6-phosphate dehydrogenase). The P450s most efficient in the
15 production of the blue pigment co-migrating with indigo on TLC were 2A6>2C19~2E1 (Figure 7). However, lower amounts of other pigments were seen with most forms.

In order to estimate the relative production of pigments by different recombinant P450 forms expressed in bicistronic format with hNPR, bacterial membranes containing
20 recombinant P450 enzymes and human NADPH-P450 reductase (0.2 μ M P450) and human liver microsomes (0.04 μ M P450), were incubated with 0.8 mM indole in the presence of an NADPH generating system as described above. Three preparations of bacterial membranes containing recombinant P450 2C19 and hNPR were tested corresponding to different levels of apparent pigment production during bacterial culture
25 (1>2, 3). Bacterial membranes from cells transformed with the empty pCW vector or expressing recombinant hNPR alone were also included as minus-enzyme controls at protein concentrations equivalent to the mean of the protein concentrations in recombinant P450 incubations. Reactions were stopped at 0 (t=0 controls) or 30 mins by the addition of an equal volume of 1% w/v SDS and absorbance was measured at 665 nm (shown in
30 preliminary studies to be the maximal wavelength for pigments produced by recombinant P450 2A6 when dissolved in the 0.5% w/v SDS milieu of quenched incubations). Figuyre

- 46 -

8 shows that significant pigment production was seen with a range of recombinant P450 preparations.

EXAMPLE 5

5 *Further analysis of products of indole metabolism*

In order to characterize the full range of products formed from indole, bacterial membranes containing recombinant P450 enzymes and human NADPH-P450 reductase, and rat and human liver microsomes (0.2 μ M P450), were incubated with 5 mM indole under 10 conditions supporting P450 catalysis (100 mM Tris-HCl, pH 7.4; 1 mM NADPH, 2.5 mM glucose-6-phosphate, 0.5 U/ml glucose-6-phosphate dehydrogenase). Products formed were extracted with methyl-t-butyl ether, desiccated and resuspended in 15% v/v acetonitrile: 85% v/v 50 mM potassium phosphate, pH 7.4, then subjected to high performance liquid chromatography using a 150 x 3.9 mm Waters C8 Symmetry reverse 15 phase column and eluted at 1 ml/min with the following gradient: 0-15 mins 15% v/v acetonitrile, 85% v/v 50 mM potassium phosphate, pH 7.4; 15-30 mins 15% to 30% v/v acetonitrile gradient; 30-35 mins 30% v/v to 15% v/v acetonitrile; 35 to 45 mins isocratic at 15% v/v acetonitrile. Under these conditions, isatin eluted at 7 mins and indole at 35 mins. Other peaks, which were later identified by mass spectrometry as dioxindole and 20 oxindole, eluted at 4.05 and 10.13 mins, respectively. Additional metabolite peaks eluting at times indicated in Table 3 below were not identified but relative yields were compared among incubations containing different P450 enzymes.

- 47 -

TABLE 3
Comparison of metabolite production from indole in incubations with various cytochrome p450 preparations

Peak retention time	Assignment	Relative metabolite formation <i>in vitro</i> (arbitrary units of peak area) ^a											
		hNPR only	2C19	1A2	1A1	2C9	2A6	2D6	2E1	1B1	3A4	3A5	HL
3.66		0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.05	dioxindole	4.3	9.1	1.7	2.9	13.6	9.2	6.5	7.3	7.7	6.9	5.0	0.2
4.52		0.0	2.5	0.9	0.0	0.5	0.8	0.0	1.2	0.8	0.5	0.0	0.0
5.63		0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0
7.37	isatin	5.9	43.5	14.9	3.5	23.1	47.9	19.8	44.0	17.2	10.9	5.7	13.9
8.03		1.0	6.2	7.2	1.2	1.6	1.0	1.2	0.8	0.9	0.6	1.2	2.1
8.9		0.0	8.5	2.5	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
10.13	oxindole	2.4	46.5	6.8	5.1	28.9	52.1	16.8	37.8	6.9	8.1	5.4	14.9
12.56		0.0	2.1	1.2	0.0	0.9	1.4	0.9	1.4	4.8	2.3	1.9	0.6
15.77		0.0	3.6	2.7	0.4	1.5	1.0	1.4	2.2	0.6	0.2	0.7	1.7
25.89		0.4	6.1	0.0	0.0	2.8	10.8	0.9	3.8	2.8	0.9	0.9	0.6
26.71		0.3	1.3	0.0	0.0	0.8	0.0	0.0	0.0	2.4	0.5	0.4	0.0
30.23		5.4	68.9	19.2	5.9	16.8	27.9	9.2	45.6	24.9	19.2	10.5	8.0

- 48 -

Peak retention time	Assignment	Relative metabolite formation <i>in vitro</i> (arbitrary units of peak area) ^a										
		0.0	4.3.	4.3	0.0	1.3	0.0	0.7	2.1	0.0	0.4	0.0
31.27		0.0	4.3.	4.3	0.0	1.3	0.0	0.7	2.1	0.0	0.4	0.0
36.23		0.0	9.7	5.9	0.0	2.2	2.8	2.2	8.9	1.7	0.7	0.4
38.5		0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39.25		3.4	15.2	5.1	5.0	6.8	11.9	3.9	17.6	7.3	10.5	5.8
40.4		2.1	15.5	3.6	4.6	7.4	8.9	2.2	11.0	6.5	5.0	6.3

^a Relative metabolite production was compared by measuring integrated peak areas in HPLC chromatograms. Incubations contained the P450 forms indicated in bacterial membranes with co-expressed hNPR. "hNPR only" indicates incubations using bacterial membranes containing hNPR but no recombinant P450 (negative control). "HL" denotes incubations containing microsomes from a single human liver rather than recombinant enzymes. Results are the mean of two determinations.

- 49 -

EXAMPLE 6

*Characterization of the metabolic pathway:identification of products generated
in vitro by recombinant bacterial membranes containing P450 2A6
and hNPR and by human liver microsomes*

5

In order to define the primary and secondary metabolic pathways catalyzed by human P450 forms, indole (5 mM) was incubated with *E. coli* membranes containing P450 2A6 and hNPR for varying time periods (5-30 min) and the products were separated by HPLC using slight modifications (lower CH₃CN concentrations, larger size column - 10 x 250

10 mm, C₁₈ instead of C₈) of the methods described in Example 5. UV spectra were measured on-line using a Thermo-Separations UV6000 rapid scanning spectrophotometer (Thermo-Separations, Piscataway, NJ, USA). Under these conditions, the substrate indole was eluted at 29.4 min (identified by co-chromatography with an external standard and mass spectrum, MH⁺ at *m/z* 118). Five of the product peaks eluted earlier and were identified by

15 their spectral properties:

Dioxindole: *t_R* 7.5 min, UV λ_{max} 210 nm, 254 nm, 295 nm and spectrum identical to that published by Ward (1923) and Conforth *et al.* (1951). The product of Na₂S₂O₄ reduction of isatin (Sumpter, 1945) yielded the same compound as judged by HPLC *t_R* and UV

20 spectrum.

Isatin: *t_R* 12.6 min, UV λ_{max} 244 nm, 305 nm. *t_R* and spectrum identical to commercial product (Aldrich) and products reported by Julian and Printy (1953) and Ward (1923). Mass spectrometry: *m/z* 148 (MH⁺).

25

Indoxyl: *t_R* 14.7 min, UV λ_{max} 239 nm. *t_R* and UV spectra identical to material generated by reaction of commercial indoxy-3-acetate and hog liver esterase (Sigma). Mass spectrometry: *m/z* 134 (MH⁺).

30 *Oxindole*: *t_R* 18.2 min, UV λ_{max} 203 nm, 248 nm, both the same as commercial material (Cornforth *et al.*, 1951; Barth *et al.*, 1972). Mass spectrometry: *m/z* 134 (MH⁺). NMR

- 50 -

(CDCl₃) δ 3.56 (s, 2H, H-1), 6.88 (d, 1H, H-4 or H-7), 7.04(t, 1H, H-5 or H-6), 7.24(t, 1H, H-5 or H-6), 7.27 (d, 1H, H-4 or H-7), 7.53 (bs, 1H, NH).

6-Hydroxyindole: *t_R* 20.3 min, UV λ_{max} 218 nm, 293 nm. Spectrum identical to literature
5 (Armerego, 1971; Stoll *et al.*, 1955). Mass spectrometry: *m/z* 134 (MH⁺).

No peaks produced by recombinant P450 2A6 or human liver microsomes corresponded to
4- or 5-hydroxyindole (commercial samples; Sigma), as judged by *t_R* and UV spectra.

10 The time course for production of the major products from indole is presented in Figure 9. At each indicated time point, a reaction aliquot was withdrawn and extracted into CH₂Cl₂ to stop the reaction. Products (CH₂Cl₂ phase) were concentrated and analyzed by HPLC, with the amount of product expressed on the basis of A₂₂₀ units. Indoxyl was detected only in the early portion of the experiment. The production of indigo, as estimated by the A₆₁₅
15 in the combined CH₂Cl₂ extract and a fraction prepared from the residual aqueous phase by adding two volumes of dimethylformamide, showed a lag but began within 2 min. The time courses of indoxyl and indigo appear to be related.

Oxindole appears to be the major primary oxidation product of indole formed by P450
20 2A6. The concentration of indole was varied in 2 min incubations with membranes containing P450 2A6 and hNPR. The parameters *k_{cat}* = 6.9 (± 0.6) min⁻¹ and Km 122 (± 30) μM were determined.

When isatin was used as the substrate in similar incubations, it was rapidly reduced to
25 dioxindole in the P450 2A6 system (only product). Subsequent experiments with purified hNPR showed that this enzyme catalyzed the reduction efficiently itself and the P450 2A6 did not seem to play a major role. The rate of reduction measured (with 1 mM isatin) was 290 min⁻¹.

30 Oxindole (1 mM) was stable when added to the typical P450 2A6/hNPR membrane system; no significant product formation was observed.

These results support the scheme of indole metabolism in P450 2A6/hNPR/NADPH systems and in NADPH-fortified human and rat liver microsomes follows the general features shown in Figure 10.

5

EXAMPLE 7***Bacterial P450 monooxygenase***

Similar experiments as those described above were conducted using a cytochrome P450 10 monooxygenase from *Citrobacter brakii*, designated P450 cin. The nucleotide and corresponding amino acid sequences are shown in <400>20 and <400>21, respectively. Bicistronic constructs were prepared with the associated protein being flavodoxin (<400>22 and <400>23). Again, bacterial culture medium turned blue and data indicated the presence of indigo.

15

EXAMPLE 8***Characterization of the potential of P450 forms to catalyze indoxyl oxidation***

Whereas the preceding experiments had provided evidence that various P450 forms could 20 catalyse the monooxygenation of indole to indoxyl and that this could lead to the formation of indigo and related compounds, it was of interest to determine whether multiple steps along the pathway leading to indigo could be catalysed by the cytochrome P450 system. In previous systems characterized in regard to indigo generation, the oxidation of indoxyl was considered to occur spontaneously in aerobic conditions. However, the experiments 25 outlined above were undertaken in a reducing environment (e.g. 1 mM NADPH in the *in vitro* experiments), raising the possibility that spontaneous oxidation may not be the sole mechanism by which two indoxyl monomers were transformed into one molecule of indigo. The object of the following experiments was to determine whether the P450 enzyme system could catalyse steps in the pathway leading to indigo subsequent to the 30 initial oxidation of indole.

- 52 -

- Bacterial membranes containing 0.1 µM P450 recombinant P450 2E1 and human NADPH-P450 reductase were incubated with an indoxyl generating system (0.5 mM indoxyl acetate and 50 Units porcine liver esterase [Sigma Chemical Company, Castle Hill, Australia] under conditions supporting P450 catalysis (100 mM Tris-HCl, pH 7.4; 1 mM NADPH, 5 2.5 mM glucose-6-phosphate, 0.5 U/ml glucose-6-phosphate dehydrogenase). Reactions were started by the addition of the NADPH generating system and esterase and incubated at 37°C in a thermostatically controlled cell compartment of a Beckman DU640 UV-Vis spectrophotometer. Indigo production was monitored by absorbance at 602 nm.
- 10 Two different preparations of membranes containing recombinant P450 2E1 and hNPR were tested, differing in the ratio of P450 to reductase (1:1.5 in preparation 1 and 1:0.95 in Preparation 2 in Table 4 below). Three different negative controls were used: incubations carried out in the absence of bacterial membranes; incubations carried out with bacterial membranes containing neither P450 nor hNPR, matched for protein concentration to the 15 full incubations; and incubations containing bacterial membranes containing only hNPR (no P450), matched to the hNPR concentration in full incubations. Table 4 shows that incubations containing P450 2E1 showed elevated indigo production compared to all three controls. While the mean rate of indigo production in the first negative control (no bacterial membranes) was constant between the two sets of assays and rates for the other 20 negative controls were similar. Incubations containing Preparation 2 showed a markedly higher rate of catalysis of indigo formation compared to Preparation 1, a difference that may be due to the different P450 2E1:hNPR ratios in the two preparations.

- 53 -

TABLE 4
**Indigo production in incubation with recombinant P450 2E1 using
an indoxyl generating system**

Incubation	Rate of Indigo production (Absorbance units/min) ^a	Fold increase over highest control
P450 2E1/hNPR – Preparation 1	0.028 +/-0.002	1.8
No membranes	0.006 +/-0.001	
Bacterial membranes containing no P450 2E1 or hNPR	0.013 +/-0.002	
Bacterial membranes containing hNPR only	0.016 +/-0.001	
P450 2E1/hNPR – Preparation 2	0.040 +/-0.007	3.1
No membranes	0.006 +/-0.001	
Bacterial membranes containing no P450 2E1 or hNPR	0.013 +/-0.001	
Bacterial membranes containing hNPR only	0.013 +/-0.001	

5

^a Values represent the mean +/- standard deviation of three independent measurements.

These results support the scheme of indigo and indirubin production catalyzed by P450
10 2A6/hNPR/NADPH systems in NADPH-fortified human and rat liver microsomes as
shown in Figure 11.

- 54 -

EXAMPLE 9

Construction of vectors for transient expression of recombinant human cytochrome P450 and reductase in plant tissue

5 Plant vectors containing the recombinant human cDNAs were prepared by subcloning the cDNAs for cytochrome P450 forms and hNPR into the vectors pGTVa (containing the 35S promoter) and p2.5GEM-11 (containing the AIM-1 promoter) using the strategies outlined in Figure 12. Briefly, cDNA sequences for human cytochrome P450 forms and hNPR, which had been modified at the 5' end of the coding sequences to enhance expression in
10 bacteria, were further modified to enhance expression in the eukaryotic (plant) system. This was effected by PCR-based oligonucleotide-directed mutagenesis of a short segment of the 5' coding sequence of the cDNA. Mutagenic primers were also designed to incorporate a restriction site to enable subcloning into the cognate vector and a ribosomal binding site sequence upstream of the translation start site (initial ATG codon). The
15 resultant PCR-amplified DNA fragments were digested with appropriate restriction endonucleases and ligated into pGTVa or p2.5GEM-11 together with fragments encoding the remainder of the respective human cDNAs.

Table 5 shows alignments of approximately the first thirty nucleotides encoding
20 cytochrome P450 2AE6, P450 2C19 and P450 2E1 monooxygenases, which highlight the differences required for expression in bacterial relative to the native eukaryotic sequence for use in plant cells.

TABLE 5
5' nucleotide sequence alignments of P450 and hNPR cDNAs: Comparison of sequences used for expression of bacterial and plant cells compared to native sequences

P450 2C19 cDNA	
native	ATGGATCCCTTTGGTCCCTGTGCTCTGTCATGTTTCAATCTGGAGACAGAGCTCTGGAGAGGGAAAACTCCCTC
E. coli	atggctcgacaatttctggacgagaaaaactccctc
plant	atggcttagacagacttggagagggaaaactccctc

continued:

naive	CTGGCCCCACTCCTCCAGTGTATTGAAATACAGATAGATAATCAA
E. coli	ctggccctactcctccaggatggaaatatccatagatgatattaa
plant	ctggccctactcctccaggatggaaatatccatacaatgatattaa

P450 2E1 cDNA

native	ATGTCCTCGGAGTACCGTGGCCCTGTGTGTGGCCCTCCTGCTGCTGGAGGCAGGTGCCACAGCAGCTGG
E. coli	atggctcgtaaggatccatttttgcataatctgtcccccaaggccctttcccccacatcgaaaaccctttcccaatgtggaaatttgaag
plant	atgttgtccctcgaggatcaccgtagggccctgtgtggcccttcctgtgtggccatgtgtgtccatgtggaggcagggtgcacagcaggctgg

hNPR cDNA

native	atgggagactccacacgtggacacccaggctccacccgtgtccggaaaggccgtggccgaagaagtatctttttagcatgacggacatgtttctgt
E. coli	atggctgactccacacgtggacacccaggctccacccgtgtccggaaaggccgtggccgaagaagtatctttttagcatgacggacatgtttctgt
plant	atgggagactccacacgtggacacccaggctccacccgtgtccggaaaggccgtggccgaagaagtatctttttagcatgacggacatgtttctgt

EXAMPLE 10***Bombardment of plant tissue with genetic material encoding a human P450 enzyme and/or human reductase to effect transient expression of a functional recombinant cytochrome P450 system***

5

The aim of these experiments is to transiently express a human P450 enzyme with or without human NADPH-P450 reductase (hNPR) in a white flower petal, namely petunia and to determine whether expression could be detected by the visible production of a blue pigment in plant tissue, namely indigo. A secondary aim is to determine whether indigo 10 production might be enhanced by supplementation with low concentrations of indole.

The gene bombardment protocol is initially optimised using the reporter vector pGTVa-GUS. GUS expression is assayed using the method described by Jefferson *et al.*, (1992). Efficiency of the transformation is measured by the mean number of blue spots per petal 15 bombardment. The parameters examined during these initial optimisation experiments are target distance, bombardment pressure and petal developmental stage.

Plasmid DNA is obtained from *E.coli* using a standard alkaline lysis procedure with and without additional procedures for purification of the resultant DNA (Sambrook *et al.*, 20 1989). The DNA is prepared for bombardment by combining various amounts of tungsten particle solution with DNA. After vortexing, the particles are precipitated with CaCl₂ and spermidine. After removing a portion of the supernatant, the tungsten suspension was vortexed and an aliquot removed for bombardment.

25 In this experiment, white petunia flowers are used for bombardment. Petunia plants having other colours may also be used. The device used for bombardment is the particle inflow gun developed by Finer *et al.*, (1992) which propels tungsten particles directly in a stream of helium towards the target. The petal is placed in a petri dish containing filterpaper moistened with either sterile water or a solution of indole or osmotic medium (with or 30 without indole). Each petal preparation is bombarded with one of:-

- (a) vector containing a P450 cDNA alone; or

- 58 -

- (b) vector containing a P450 cDNA plus vector containing the hNPR cDNA; or
 - (c) vector containing the GUS control cDNA.
- 5 In some cases the vector containing the GUS control cDNA is bombarded simultaneously with either or both types of vector containing human-derived sequences.
- 10 The petal distance and helium pressure are as found optimal in the initial optimization experiments. A negative control containing tungsten particles only is included for both the water and indole petal samples.

The success of the bombardment is analyzed by the presence of blue spots after overnight incubation of the bombarded petal in either water or indole solution or osmotic medium (indicating *in situ* production of indigo).

15

EXAMPLE 11

Introduction of genetic mutant encoding P450 monooxygenase to cells of non-white plant

- 20 Different shades of colours are proposed to be obtainable using different coloured recipient plants for the genetic material encoding the cytochrome P450 monooxygenase/associated protein of the present invention. Accordingly, plants having coloured flowers such as red, blue, yellow, orange, purple, pink, spotted and/or mottled are selected as recipients of the subject genetic material. Various colour combinations are expected which greatly enhances
- 25 the variety of colour phenotypes resulting from the use of the instant genetic constructs.

EXAMPLE 12

Transformation procedures

- 30 Yeast strains are transformed with genetic material according to Ito *et al.*, (1990). Genetic material is introduced into the *Agrobacterium tumefaciens* strain AGL0 by adding 5 µg of plasmid DNA to 100 µl of competent AGL0 cells prepared by inoculating a 50 ml culture

of MG/L (Garfinkel and Nester, 1980). These are cultured and grown for 16 hours with shaking at 28°C. The cells are then pelleted and resuspended in 0.5 ml of 85% v/v 100 mM CaCl₂/15% v/v glycerol. The DNA-*Agrobacterium* mixture is frozen by incubation in liquid N₂ for 2 minutes and then allowed to thaw by incubation at 37°C for 5 minutes. The 5 DNA/bacterial mix is then placed on ice for a further 10 minutes. The cells are then mixed with 1 ml of LB (Sambrook *et al.*, 1989) media and incubated with shaking for 16 hours at 28°C. Cells of *A. tumefaciens* carrying genetic material are selected on LB agar plates containing 10 µg/ml gentamycin or other suitable selection such as another antibiotic or a herbicide. The presence of genetic material is confirmed by Southern analysis of DNA 10 isolated from the gentamycin-resistant transformants or any other selectable molecule such as another antibiotic or a herbicide.

Petunia transformations

15 (a) *Plant Material*

Leaf tissue from mature plants is treated in 1.25% w/v sodium hypochlorite for 2 minutes and then rinsed three times in sterile water. The leaf tissue is then cut into 25 mm² squares and precultured on MS media (Murashige and Skoog, 1962) supplemented with 0.05 mg/l 20 kinetin and 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) for 24 hr.

(b) *Co-cultivation of Agrobacterium Tissue*

Agrobacterium tumefaciens strain AGL0 containing genetic material is maintained at 4°C 25 on MG/L agar plates with 100 mg/L gentamycin. A single colony is grown overnight in liquid medium containing 1% w/v Bacto-peptone, 0.5% w/v Bacto-yeast extract and 1% w/v NaCl. final concentration of 5 x 10⁸ cells/ml is prepared the next day by dilution in liquid MS medium containing B5 vitamins (Gamborg *et al.*, 1968) and 3% w/v sucrose (BPM). The leaf discs were dipped for 2 minutes into BPM containing AGL0/genetic 30 material. The leaf discs are then blotted dry and placed on co-cultivation media for 4 days. The co-cultivation medium consists of SH medium (Schenk and Hildebrandt, 1972) supplemented with 0.05 mg/l kinetin and 1.0 mg/l 2,4-D and included a feeder layer of

- 60 -

tobacco cell suspension spread over the co-cultivation medium with a filter paper placed on top of the tobacco cell suspension.

(c) *Recovery of transgenic plants*

5

After co-cultivation, the leaf discs are transferred to a selection medium (MS medium supplemented with 3% w/v sucrose, α -benzylaminopurine (BAP) 2 mg/l, 0.5 mg/l α -naphthalene acetic acid (NAA), kanamycin 300 mg/l, 350 mg/L cefotaxime and 0.3% w/v Gelrite Gellan Gum (Schweizerhall)). Regenerating explants are transferred to fresh 10 selection medium after 4 weeks. Adventitious shoots which survive the kanamycin selection are isolated and transferred to BPM containing 100 mg/l kanamycin and 200 mg/l cefotaxime for root induction. All cultures are maintained under a 16 hour photoperiod ($60 \mu\text{mol. m}^{-2}, \text{s}^{-1}$ cool white fluorescent light) at $23 \pm 2^\circ\text{C}$. When roots reach 2-3 cm in length 15 the transgenic petunia plantlets are transferred to autoclaved Debco 51410/2 potting mix in 8 cm tubes. After 4 weeks, plants are replanted into 15 cm pots, using the same potting mix, and maintained at 23°C under a 14 hour photoperiod ($300 \mu\text{mol. m}^{-2}, \text{s}^{-1}$ mercury halide light).

EXAMPLE 13

20

Transformation of Dianthus caryophyllus

(a) *Plant material*

Dianthus caryophyllus, (cv. Crowley Sim, Red Sim, Laguna) cuttings are used in this 25 experiment. The outer leaves are removed and the cuttings are sterilized briefly in 70% v/v ethanol followed by 1.25% w/v sodium hypochlorite (with Tween 20) for 6 minutes and rinsed three times with sterile water. All the visible leaves and axillary buds are removed under the dissecting microscope before co-cultivation.

(b) *Co-cultivation of Agrobacterium and Dianthus Tissue*

Agrobacterium tumefaciens strain AGL0 containing a genetic construct encoding a cytochrome P450 monooxygenase and optionally an associated protein as herein described
5 is maintained at 4 on MG/l (Garfinkel and Nester, 1980) agar plates with 100 mg/l gentamycin. A single colony is grown overnight in liquid MG/L broth and diluted to 5 x 10⁸ cells/ml the next day before inoculation. *Dianthus* tissue is co-cultivated with Agrobacterium on MS medium (Murashige and Skoog, 1962) supplemented with 3% w/v sucrose, 5 mg/l α-naphthalene acetic acid (NAA), 20 µM acetosyringone and 0.8% w/v
10 Difco Bacto Agar (pH 5.7).

(c) *Recovery of Transgenic Dianthus Plants*

Co-cultivated tissue is transferred to MS medium supplemented with 1 mg/l benzylaminopurine (BAP), 0.1 mg/l NAA, 150 mg/l kanamycin, 500 mg/l ticarcillin and 0.8% w/v Difco Bacto Agar (selection medium). After three weeks, explants are transferred to fresh selection medium and care is taken at this stage to remove axillary shoots from stem explants. After 6-8 weeks on selection medium, healthy adventitious shoots are transferred to hormone free MS medium containing 3% w/v sucrose, 150 mg/l
15 kanamycin, 500 mg/l ticarcillin, 0.8% w/v Difco Bacto Agar. At this stage, GUS histochemical assay (Jefferson, 1987) and/or NPT II dot-blot assay (McDonnell *et al.*, 1987) are used to identify transgenic shoots. Transgenic shoots are transferred to MS medium supplemented with 3% w/v sucrose, 500 mg/l ticarcillin and 0.4% w/v Gelrite
20 Gellan Gum (Schweizerhall) for root induction. All cultures are maintained under a 16 hour photoperiod (120 µE cool white fluorescent light) at 23 ± 2°C. When plants are rooted and reached 4-6 cm tall they are acclimatised under mist. A mix containing a high ratio of perlite (75% or greater) soaked in hydroponic mix (Kandreck and Black, 1984) is used for acclimation, which typically lasts 4-5 weeks. Plants are acclimatised at 23°C
25 under a 14 hour photoperiod (200 µE mercury halide light).

EXAMPLE 14*Transformation of Rosa hybrida*1. *Rosa hybrida* cv Royalty

5

Plant tissues of the rose cultivar Royalty are transformed according to the method disclosed in PCT/AU91/04412, having publication number WO92/00371.

2. *Rosa hybrida* cv Kardinal10 (a) *Plant Material*

Kardinal shoots are used. Leaves are removed and the remaining shoots (5-6 cm) are sterilized in 1.25 % w/v sodium hypochlorite (with Tween 20) for 5 minutes followed by three rinses with sterile water. Isolated shoot tips are soaked in sterile water for 1 hr and 15 precultured for 2 days on MS medium containing 3% w/v sucrose, 0.1 mg/L BAP, 0.1 mg/l kinetin, 0.2 mg/l Gibberellic acid, 0.5% w/v polyvinyl pyrrolidone and 0.25% w/v Gelrite Gellan Gum, before co-cultivation.

(b) *Co-cultivation of Agrobacterium and Rosa shoot Tissue*

20

Agrobacterium tumefaciens strains ICMP 8317 (Janssen and Gardner, 1989) and AGL0, containing genetic constructs encoding a cytochrome P450 monooxygenase and optionally an NPR are maintained at 4°C on MG/L agar plates with 100 mg/L gentamycin. A single colony from each *Agrobacterium* strain is grown overnight in liquid MG/L broth. A final 25 concentration of 5×10^8 cells/ml is prepared the next day by dilution in liquid MG/L. Before inoculation, the two *Agrobacterium* cultures are mixed in a ratio of 10:1. A longitudinal cut is made through the shoot tip and an aliquot of 2 µl of the mixed *Agrobacterium* cultures is placed as a drop on the shoot tip. The shoot tips are co-cultivated for 5 days on the same medium used for preculture.

30

Agrobacterium tumefaciens strain AGL0 is maintained at 4°C on MG/L agar plates with 100 mg/L kanamycin. A single colony from each *Agrobacterium* strain is grown overnight

- 63 -

in liquid MG/L broth. A final concentration of 5×10^8 cells/ml is prepared the next day by dilution in liquid MG/L.

(c) *Recovery of Transgenic Rosa Plants*

5

After co-cultivation, the shoot tips are transferred to selection medium. Shoot tips are transferred to fresh selection medium every 3-4 weeks. Galls observed on the shoot tips are excised when they reached 6-8 mm in diameter. Isolated galls are transferred to MS medium containing 3% w/v sucrose, 25 mg/l kanamycin, 250 mg/l cefotaxime and 0.25% w/v Gelrite Gellan Gum for shoot formation. Shoots regenerated from gall tissue are isolated and transferred to selection medium. GUS histochemical assay and callus assay are used to identify transgenic shoots. Transgenic shoots are transferred to MS medium containing 3% w/v sucrose, 200 mg/l cefotaxime and 0.25% w/v Gelrite Gellan Gum for root induction. All cultures are maintained under 16 hour photoperiod (60 μ E cool white fluorescent light) at $23 \pm 2^\circ\text{C}$. When the root system is well developed and the shoot reached 5-7 cm in length the transgenic rose plants are transferred to autoclaved Debco 514110/2 potting mix in 8 cm tubes. After 2-3 weeks plants are replanted into 15 cm pots using the same potting mix and maintained at 23°C under a 14 hour photoperiod (300 μ E mercury halide light). After 1-2 weeks potted plants are moved to glasshouse (Day/Night 10 temperature : $25-28^\circ\text{C}/14^\circ\text{C}$) and grown to flowering.

15

10

15

20

EXAMPLE 15

Transformation of *Chrysanthemum morifolium*

25 (a) *Plant Material*

Chrysanthemum morifolium (cv. Blue Ridge, Pennine Chorus) cuttings are obtained. Leaves are removed from the cuttings, which were then sterilized briefly in 70% v/v ethanol followed by 1.25% w/v sodium hypochlorite (with Tween 20) for 3 minutes and 30 rinsed three times with sterile water. Internodal stem sections are used for co-cultivation.

- 64 -

(b) *Co-cultivation of Agrobacterium and Chrysanthemum Tissue*

- Agrobacterium tumefaciens strain LBA4404 (Hoekema *et al.*, 1983), containing is grown on MG/l agar plates containing 50 mg/l rifampicin and 10 mg/l gentamycin. A single colony from each *Agrobacterium* is grown overnight in the same liquid medium. These liquid cultures are made 10% v/v with glycerol and 1 ml aliquots transferred to the freezer (-80°C). A 100-200 µl aliquot of each frozen *Agrobacterium* is grown overnight in liquid MG/l containing 50 mg/l rifampicin and 10 mg/l gentamycin. A final concentration of 5 x 10⁸ cells/ml is prepared the next day by dilution in liquid MS containing 3% w/v sucrose.
- 10 Stem sections are co-cultivated with *Agrobacterium* in co-cultivation medium for 4 days.

(c) *Recovery of Transgenic Chrysanthemum Plants*

- After co-cultivation, the stem sections were transferred to selection medium. After 3-4 weeks, regenerating explants are transferred to fresh medium. Adventitious shoots which survive the kanamycin selection are isolated and transferred to MS medium containing kanamycin and cefotaxime for shoot elongation and root induction. All cultures are maintained under a 16 hour photoperiod (80 µE cool white fluorescent light) at 23 ± 2°C. Leaf samples are collected from plants which rooted on kanamycin and Southern blot analysis is used to identify transgenic plants. When transgenic chrysanthemum plants reach 4-5 cm in length, they are transferred to autoclaved Debco 51410/2 potting mix in 8 cm tubes. After 2 weeks, plants are replanted into 15 cm pots using the same potting mix and maintained at 23°C under a 14 hour photoperiod (300 µE mercury halide light). After 2 weeks potted plants are moved to glasshouse (Day/Night temperature : 25-28°C/14°C) and 25 grown to flowering.

EXAMPLE 16

Transgenic plant phenotype analysis

- 30 The analysis of transgenic plant phenotypes in relation to changes in flower or plant tissue colour is dependent on the recipient plants. For example, where genetic material is introduced into plants having white flowers, plant flower colour is determined using colour

codes taken from the Royal Horticultural Society's Colour Chart (RHSCC). This provides one means by which to describe the colour phenotypes observed. The determination of designated numbers, however, should be taken only as a guide to the perceived colours and should not be regarded as limiting the possible colours which may be obtained.

5

Where a recipient plant comprises non-white flowers, a colour change may be assessed *inter alia* with respect to colour *per se*, uniformity of colour, colour distribution as well as chemically such as by analysing possible combinations of indigo or its derivatives or precursors and endogenous pigment molecules (e.g. flavonoid compounds).

10

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in 15 this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

BIBLIOGRAPHY

Armerego. Ultraviolet spectra of heterocycles. In: *Physical Methods in Heterocyclic Chemistry*, edited by Katritzky, A.R., Academic Press, New York, p. 95, 1971.

Barth *et al.*, *Helvetica Chimica Acta*, 55: 2168-2178, 1972.

Bonner and Laskey. *European Journal of Biochemistry* 46: 83, 1974.

Cornforth,*et al.*, *Biochemical Journal*, 48: 598-603, 1951.

De Vetten *et al.*, *Proceedings of the National Academy of Science USA* 96: 778-783, 1999.

Fearon and Boggust, *Biochemical Journal* 46: 62-67, 1950

Finer *et al.*, *Plant Cell Reports* 11: 323-328, 1992.

Friedmann *et al.*, *Biochimica et Biophysica Acta* 5: 45-52.

Gamborg *et al.*, *Experimental Cell Research* 50: 151-158, 1968.

Gerfinkel and Nester. *Journal of Bacteriology* 144: 732-743, 1980.

Gillam *et al.*, *Archives of Biochemistry and Biophysics* 305: 123-131, 1993.

Gillam *et al.*, *Archives of Biochemistry and Biophysics* 319: 540-550, 1995.

Gillam *et al.*, *Archives of Biochemistry and Biophysics* 346: 81-90, 1997.

Hart *et al.*, *Journal of General Microbiology* 138: 211-216, 1992.

Hoekema *et al.*, *Nature* 303: 179-180, 1983.

- 67 -

Ito *et al.*, *Journal of Bacteriology* 153: 163-168, 1983.

Jannsen and Gerdner, *Plant Molecular Biology* 14: 61-72, 1989.

Jefferson *et al.*, *EMBO Journal* 6(13): 3901-3907, 1987.

Julian and Printy, *Journal of the American Chemical Society*, 75: 5301-5305, 1953.

Laatsch and Ludwig-Kühn, *Liebigs Annals of Chemistry* 1847-1853, 1986.

Lazo *et al.*, *Biotechnology* 9: 963-967, 1991.

Marmur and Doty, *Journal of Molecular Biology* 5: 109, 1962.

McDonnell *et al.*, *Plant Molecular Biology Reports* 4: 380-386, 1987.

Murashige and Skoog, *Plant Physiology* 15: 73-97, 1962.

Needleman and Wunsch, *Journal Molecular Biology* 48: 443-453, 1970.

Parikh *et al.*, *Nature Biotechnology* 15: 784-788, 1997.

Sambrook *et al.*, (eds) *Molecular Cloning: A Laboratory Manual* (2nd ed). Cold Spring Harbor Laboratory Press, USA, 1989.

Schenk and Hilderbrandt, *Canadian Journal of Botany* 50: 199-204, 1972.

Shimada *et al.*, *Archives of Biochemistry and Biophysics* 357: 111-120, 1998.

Stoll *et al.*, *Helvetica Chimica Acta* 38: 1452-1472, 1955.

- 68 -

Sumpter, *Journal of the American Chemical Society* 67: 1140-1141, 1945.

Ward *et al.*, *Biochemical Journal*, 17: 891-897, 1923.

CLAIMS

1. Use of genetic material encoding a cytochrome P450 protein or a functional derivative or homologue thereof in the generation of a genetically modified cell, which cell has the capacity to produce a pigment in the presence of indole or a precursor, analogue or derivative thereof upon expression of said genetic material.
2. Use according to Claim 1 wherein the genetic material, encoding the cytochrome P450 protein or its functional derivative or homologue, is co-expressed with genetic material encoding an associated protein.
3. Use according to Claim 2 wherein the genetic material encoding an associated protein is introduced into the cell.
4. Use according to Claim 2 wherein the genetic material encoding an associated protein is indigenous to the cell.
5. Use according to Claim 2 or 3 or 4 wherein the associated protein selected from a co-enzyme-dependent cytochrome P450 reductase and/or a cytochrome b_5 and/or a flavodoxin or a functional derivative or homologue of either molecule.
6. Use according to Claim 1 wherein the cytochrome P450 protein is of mammalian origin.
7. Use according to Claim 1 wherein the cytochrome P450 protein is of microbial origin.
8. Use according to Claim 6 wherein the cytochrome P450 protein is a co-enzyme-dependent cytochrome P450 monooxygenase.
9. Use according to Claim 8 wherein the cytochrome P450 protein is P450 2A6 encoded by a nucleotide sequence substantially as set forth in <400>17 or a nucleotide

sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>17 or its complementary form under low stringency conditions.

10. Use according to Claim 8 wherein the cytochrome P450 protein is P450 2E1 encoded by a nucleotide sequence substantially as set forth in <400>18 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>18 or its complementary form under low stringency conditions.

11. Use according to Claim 8 wherein the cytochrome P450 protein is P450 2C19 encoded by a nucleotide sequence substantially as set forth in <400>19 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>19 or its complementary form under low stringency conditions.

12. Use according to Claim 8 wherein the cytochrome P450 protein is P450 c1n encoded by a nucleotide sequence substantially as set forth in <400>20 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>20 or its complementary form under low stringency conditions.

13. Use according to any one of the preceding claims wherein the genetically modified cell is of plant origin.

14. Use according to any one of Claims 1 to 12 wherein the genetically modified cell is of microbial origin.

15. A method of inducing a colour change in a plant or part of a plant, said method comprising introducing into plant cells a genetic construct encoding a cytochrome P450 protein or a functional derivative or homologue thereof, regenerating a plant from said plant cells and subjecting said plant to appropriate conditions sufficient to permit

expression of a nucleotide sequence on said genetic construct which encodes said cytochrome P450 protein such that in the presence of indole or a precursor, analogue or derivative thereof said cytochrome P450 protein facilitates the conversion of indole or its precursor, analogue or derivative to an intermediate which is capable of oxidation to a pigment.

16. A method according to Claim 15 wherein the genetic construct encoding the cytochrome P450 protein is co-expressed with genetic material encoding an associated protein.

17. A method according to Claim 16 wherein the associated protein is selected from a co-enzyme-dependent cytochrome P450 reductase and/or a cytochrome b₅ or a functional derivative or homologue of either molecule.

18. A method according to Claim 15 wherein the cytochrome P450 protein is of mammalian origin.

19. A method according to Claim 15 wherein the cytochrome P450 protein is of microbial origin.

20. A method according to Claim 15 wherein the cytochrome P450 protein is a co-enzyme-dependent cytochrome P450 monooxygenase.

21. A method according to Claim 20 wherein the cytochrome P450 protein is P450 2A6 encoded by a nucleotide sequence substantially as set forth in <400>17 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>17 or its complementary form under low stringency conditions.

22. A method according to Claim 20 wherein the cytochrome P450 protein is P450 2E1 encoded by a nucleotide sequence substantially as set forth in <400>18 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide

sequence capable of hybridizing to <400>18 or its complementary form under low stringency conditions.

23. A method according to Claim 20 wherein the cytochrome P450 protein is P450 2C19 encoded by a nucleotide sequence substantially as set forth in <400>19 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>19 or its complementary form under low stringency conditions.

24. A method according to Claim 20 wherein the cytochrome P450 protein is P450 cin encoded by a nucleotide sequence substantially as set forth in <400>20 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>20 or its complementary form under low stringency conditions.

25. A genetically modified cell or multicellular animal or plant or progeny thereof or parts of said transgenic plant or animal wherein said transgenic plant or animal comprises expressible genetic material encoding a microbial or mammalian cytochrome P450 protein.

26. A genetically modified cell or multicellular animal or plant or progeny or parts thereof according to Claim 25 wherein upon expression of said genetic material and in the presence of an associated protein and indole or a precursor, analogue or derivative thereof, the indole or its precursor, analogue or derivative is converted to an intermediate which is capable of oxidation to a pigment.

27. A genetically modified cell according to Claim 25 or 26 wherein the cell is a microbial cell.

28. A transgenic plant or progeny or parts thereof comprising expressible genetic material encoding a microbial or mammalian cytochrome P450 monooxygenase such that upon expression of said genetic material and in the presence of an associated protein and indole or a precursor, analogue or derivative thereof, the indole or its precursor, analogue

or derivative is converted to an intermediate which is capable of oxidation to a pigment.

29. A transfected or transformed cell, tissue, organ or non-cellular material which contains or is capable of producing cytochrome P450 protein or a functional derivative or homologue thereof.

30. A transfected or transformed cell, tissue, organ or non-cellular material according to Claim 29 wherein the cytochrome P450 protein is P450 2A6 encoded by a nucleotide sequence substantially as set forth in <400>17 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>17 or its complementary form under low stringency conditions.

31. A transfected or transformed cell, tissue, organ or non-cellular material according to Claim 29 wherein the cytochrome P450 protein is P450 2E1 encoded by a nucleotide sequence substantially as set forth in <400>18 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>18 or its complementary form under low stringency conditions.

32. A transfected or transformed cell, tissue, organ or non-cellular material according to Claim 29 wherein the cytochrome P450 protein is P450 2C19 encoded by a nucleotide sequence substantially as set forth in <400>19 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>19 or its complementary form under low stringency conditions.

33. A transfected or transformed cell, tissue, organ or non-cellular material according to Claim 29 wherein the cytochrome P450 protein is P450 c11 encoded by a nucleotide sequence substantially as set forth in <400>20 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>20 or its complementary form under low stringency conditions.

34. Flowers, parts of plants, fibrous material from plants, non-cellular material and reproductive portions of plants which are coloured or have the capacity to be coloured in

the presence of indole or a precursor thereof due to the presence of cytochrome P450 protein and an associated protein.

35. Flowers, parts of plants, fibrous material from plants, non-cellular material and reproductive portions of plants according to Claim 34 wherein the colour produced in the presence of indole requires an introduced or indigenous associated protein.

36. Use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the cytochrome P450 monooxygenase comprises the amino acid sequence (F/P/W/L/Y)(G/S/C/N/H/E)X(G/D/A/E)X(R/H/S/K/T)XCX₁(G/A) wherein X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and wherein where residues in parentheses represent alternatives at a single position.

37. Use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the cytochrome P450 monooxygenase comprises the amino acid sequence (F/L)(G/S)XGX(R/H)XCX₁(G/A) where X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and where residues in parentheses represent alternatives at a single position.

38. Use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the

capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the nucleotide sequence is selected from:-

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>8, <400>10 or <400>12;
- (ii) a nucleotide sequence defined by <400>7, <400>9 or <400>11;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>2, <400>4 or <400>6;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>1, <400>3 or <400>5; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

39. Use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the genetic sequence further comprises a nucleotide sequence encoding an NPR wherein the nucleotide sequence is selected from:-

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>14 and <400>16;

- 76 -

- (ii) a nucleotide sequence defined by <400>13 and <400>15;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>14 and <400>16;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>13 and <400>15; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

40. Use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the nucleotide sequence is selected from:

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>21;
- (ii) a nucleotide sequence defined by <400>20;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);

- 77 -

- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>21;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>20; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

41. Use of a genetic sequence comprising a nucleotide sequence expressible in plant cells which encodes a cytochrome P450 monooxygenase in the generation of a transgenic plant or transformed cells of a plant which, upon expression of said nucleotide sequence, and in the presence of indole or a precursor, analogue and/or derivative thereof, have the capacity to convert indole or a precursor, analogue or derivative thereof to an intermediate which is oxidizable to a pigment wherein the genetic sequence further comprises a nucleotide sequence encoding an bacterial flavodoxin wherein the nucleotide sequence is selected from:

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- (ii) a nucleotide sequence defined by <400>22;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>22; or

(vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

42. Use of plant or plant material as a source of pigment for use, for example, in the dye or cosmetics industry or as commercial tags or as markers for transformation of microbial, plant or animal cells.

43. A genetic construct comprising a cistron encoding a microbial or mammalian cytochrome P450 protein for use in the generation of a transformed plant cell such that upon expression of said cistron, the cytochrome P450 facilitates conversion of indole or a precursor thereof to a molecule oxidizable to a pigment.

44. A genetic construct according to Claim 43 wherein the cytochrome P450 monooxygenase comprises the amino acid sequence (F/P/W/L/Y)(G/S/C/N/H/E)X(G/D/A/E)X(R/H/S/K/T)XCX₁(G/A) wherein X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and wherein where residues in parentheses represent alternatives at a single position.

45. A genetic construct according to Claim 43 wherein the cytochrome P450 monooxygenase comprises the amino acid sequence (F/L)(G/S)XGX(R/H)XCX₁(G/A) where X is any amino acid and X₁ is selected from V, M, A, L, I, P, F or T and where residues in parentheses represent alternatives at a single position.

46. A genetic construct according to Claim 43 or 44 or 45 comprising a nucleotide sequence selected from:-

(i) a nucleotide sequence encoding the amino acid sequence defined in <400>8, <400>10, <400>12 or <400>21;

- (ii) a nucleotide sequence defined by <400>7, <400>9 or <400>11 or <400>20;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>2, <400>4, <400>6 or <400>21;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>1, <400>3, <400>5 or <400>20; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

47. A genetic construct according to Claim 43 or 44 or 45 or 46 further comprising a nucleotide sequence encoding an associated protein human NPR (hNPR) wherein the nucleotide sequence is selected from:-

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>16;
- (ii) a nucleotide sequence defined by <400> 15;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>14;

- 80 -

- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>13; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

48. A genetic construct according to Claim 43 or 44 or 45 or 46 further comprising a nucleotide sequence encoding bacterial flavodoxin wherein the nucleotide sequence is selected from:-

- (i) a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- (ii) a nucleotide sequence defined by <400>22;
- (iii) a nucleotide sequence having at least 50% similarity to a nucleotide sequence in (i) or (ii);
- (iv) a nucleotide sequence having at least 50% similarity to a nucleotide sequence encoding the amino acid sequence defined in <400>23;
- (v) a nucleotide sequence having at least 50% similarity to a nucleotide sequence defined in <400>22; or
- (vi) a nucleotide sequence capable of hybridizing under low stringency conditions to a nucleotide sequence in one or more of (i), (ii), (iii), (iv) or (v).

49. An isolated nucleic acid molecule comprising a nucleotide sequence encoding or complementary to a sequence encoding a cytochrome P450 cin monooxygenase from *Citrobacter brakii*.

50. An isolated nucleic acid molecule according to Claim 49 wherein the cytochrome P450 monooxygenase comprises an amino acid sequence substantially as set forth in <400>21 or an amino acid sequence having at least about 50% similarity thereto after optimal alignment.

51. An isolated nucleic acid molecule according to Claim 50 comprising a nucleotide sequence substantially as set forth in <400>20 or a nucleotide sequence having at least about 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>20 or its complementary form under low stringency conditions.

52. A method of inducing a colour change in or by a microbial cell, said method comprising introducing into microbial cells a genetic construct encoding a cytochrome P450 protein or a functional derivative or homologue thereof, and subjecting said cells to appropriate conditions sufficient to permit expression of a nucleotide sequence on said genetic construct which encodes said cytochrome P450 protein such that in the presence of indole or a precursor, analogue or derivative thereof said cytochrome P450 protein facilitates the conversion of indole or its precursor, analogue or derivative to an intermediate which is capable of oxidation to a pigment.

53. A method according to Claim 52 wherein the genetic construct encoding the cytochrome P450 protein is co-expressed with genetic material encoding an associated protein.

54. A method according to Claim 53 wherein the associated protein is selected from a co-enzyme-dependent cytochrome P450 reductase and/or a cytochrome b₅ and/or a flavodoxin or a functional derivative or homologue of either molecule.

55. A method according to Claim 52 wherein the cytochrome P450 protein is of mammalian origin.

56. A method according to Claim 52 wherein the cytochrome P450 protein is of microbial origin.

57. A method according to Claim 55 wherein the cytochrome P450 protein is a co-enzyme-dependent cytochrome P450 monooxygenase.

58. A method according to Claim 57 wherein the cytochrome P450 protein is P450 2A6 encoded by a nucleotide sequence substantially as set forth in <400>17 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>17 or its complementary form under low stringency conditions.

59. A method according to Claim 57 wherein the cytochrome P450 protein is P450 2E1 encoded by a nucleotide sequence substantially as set forth in <400>18 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>18 or its complementary form under low stringency conditions.

60. A method according to Claim 57 wherein the cytochrome P450 protein is P450 2C19 encoded by a nucleotide sequence substantially as set forth in <400>19 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>19 or its complementary form under low stringency conditions.

61. A method according to Claim 57 wherein the cytochrome P450 protein is P450 c11 encoded by a nucleotide sequence substantially as set forth in <400>20 or a nucleotide sequence having at least 50% similarity thereto after optimal alignment or a nucleotide sequence capable of hybridizing to <400>20 or its complementary form under low stringency conditions.

1/20

Figure 1a

Substitute Sheet
(Rule 26) RO/AU

Figure 1a(i)

Figure 1a(ii)

Figure 1b

6/20

7/20

Figure 3

Substitute Sheet
(Rule 26) RO/AU

8/20

Figure 4

9/20

Figure 5

10/20

Figure 6

11/20

2C19/hNPR
1A1/hNPR
1A2/hNPR
2C9/hNPR
2A6/hNPR
2D6/hNPR
2E1/hNPR
1B1/hNPR
3A4/hNPR
3A5/hNPR
HL μ s

Figure 7

12/20

Figure 8

13/20

Figure 9

14/20

Figure 10

15/20

Figure 11

Figure 11(i)

17/20

Figure 11(ii)

18/20

Figure 12

Figure 12(i)

20/20

Figure 12(ii)

- 1 -

SEQUENCE LISTING

<110> The University of Queensland, Vanderbilt University

<120> Pigment production

<130> 2302839/EJH

<140> International

<141> 2000-08-11

<150> PQ2156

<151> 1999-08-11

<160> 22

<170> PatentIn Ver. 2.1

<210> 1

<211> 1485

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)..(1482)

<400> 1

atg gct gct tca gga atg tta tta gtg gcc ttg ctg gtc tgc ctg act 48

Met Ala Ala Ser Gly Met Leu Leu Val Ala Leu Leu Val Cys Leu Thr

1

5

10

15

gtg atg gtc ttg atg tct gtt tgg cag cag agg aag agc aag ggg aag 96

Val Met Val Leu Met Ser Val Trp Gln Gln Arg Lys Ser Lys Gly Lys

20

25

30

ctg cct ccg gga ccc acc cca ttg ccc ttc att gga aac tac ctg cag 144

Leu Pro Pro Gly Pro Thr Pro Leu Pro Phe Ile Gly Asn Tyr Leu Gln

35

40

45

- 2 -

ctg aac aca gag cag atg tac aac tcc ctc atg aag atc agt gag cgc			192
Leu Asn Thr Glu Gln Met Tyr Asn Ser Leu Met Lys Ile Ser Glu Arg			
50	55	60	
tat ggc ccc gtg ttc acc att cac ttg ggg ccc cgg cgg gtc gtg gtg			240
Tyr Gly Pro Val Phe Thr Ile His Leu Gly Pro Arg Arg Val Val Val			
65	70	75	80
ctg tgt gga cat gat gcc gtc agg gag gct ctg gtg gac cag gct gag			288
Leu Cys Gly His Asp Ala Val Arg Glu Ala Leu Val Asp Gln Ala Glu			
85	90	95	
gag ttc agc ggg cga ggc gag caa gcc acc ttc gac tgg gtc ttc aaa			336
Glu Phe Ser Gly Arg Gly Glu Gln Ala Thr Phe Asp Trp Val Phe Lys			
100	105	110	
ggc tat ggc gtg gta ttc agc aac ggg gag cgc gcc aag cag ctc cgg			384
Gly Tyr Gly Val Val Phe Ser Asn Gly Glu Arg Ala Lys Gln Leu Arg			
115	120	125	
cgc ttc tcc atc gcc acc ctg cgg gac ttc ggg gtg ggc aag cga ggc			432
Arg Phe Ser Ile Ala Thr Leu Arg Asp Phe Gly Val Gly Lys Arg Gly			
130	135	140	
atc gag gag cgc atc cag gag gag gcg ggc ttc ctc atc gac gcc ctc			480
Ile Glu Glu Arg Ile Gln Glu Glu Ala Gly Phe Leu Ile Asp Ala Leu			
145	150	155	160
cgg ggc act ggc ggc gcc aat atc gat ccc acc ttc ttc ctg agc cgc			528
Arg Gly Thr Gly Gly Ala Asn Ile Asp Pro Thr Phe Phe Leu Ser Arg			
165	170	175	
aca gtc tcc aat gtc atc agc tcc att gtc ttt ggg gac cgc ttt gac			576
Thr Val Ser Asn Val Ile Ser Ser Ile Val Phe Gly Asp Arg Phe Asp			
180	185	190	
tat aag gac aaa gag ttc ctg tca ctg ttg cgc atg atg cta gga atc			624
Tyr Lys Asp Lys Glu Phe Leu Ser Leu Leu Arg Met Met Leu Gly Ile			

- 3 -

195	200	205	
ttc cag ttc acg tca acc tcc acg ggg cag ctc tat gag atg ttc tct 672			
Phe Gln Phe Thr Ser Thr Ser Thr Gly Gln Leu Tyr Glu Met Phe Ser			
210	215	220	
tcg gtg atg aaa cac ctg cca gga cca cag caa cag gcc ttt cag ttg 720			
Ser Val Met Lys His Leu Pro Gly Pro Gln Gln Gln Ala Phe Gln Leu			
225	230	235	240
ctg caa ggg ctg gag gac ttc ata gcc aag aag gtg gag cac aac cag 768			
Leu Gln Gly Leu Glu Asp Phe Ile Ala Lys Lys Val Glu His Asn Gln			
245	250	255	
cgc acg ctg gat ccc aat tcc cca cgg gac ttc att gac tcc ttt ctc 816			
Arg Thr Leu Asp Pro Asn Ser Pro Arg Asp Phe Ile Asp Ser Phe Leu			
260	265	270	
atc cgc atg cag gag gag aag aac ccc aac acg gag ttc tac ttg 864			
Ile Arg Met Gln Glu Glu Lys Asn Pro Asn Thr Glu Phe Tyr Leu			
275	280	285	
aaa aac ctg gtg atg acc acg ttg aac ctc ttc att ggg ggc acc gag 912			
Lys Asn Leu Val Met Thr Thr Leu Asn Leu Phe Ile Gly Gly Thr Glu			
290	295	300	
acc gtc agc acc acc ctg cgc tat ggc ttc ttg ctg ctc atg aag cac 960			
Thr Val Ser Thr Thr Leu Arg Tyr Gly Phe Leu Leu Leu Met Lys His			
305	310	315	320
cca gag gtg gag gcc aag gtc cat gag gag att gac aga gtg atc ggc 1008			
Pro Glu Val Glu Ala Lys Val His Glu Glu Ile Asp Arg Val Ile Gly			
325	330	335	
aag aac cgg cag ccc aag ttt gag gac cgg gcc aag atg ccc tac atg 1056			
Lys Asn Arg Gln Pro Lys Phe Glu Asp Arg Ala Lys Met Pro Tyr Met			
340	345	350	
gag gca gtg atc cac gag atc caa aga ttt gga gac gtg atc ccc atg 1104			

- 4 -

Glu Ala Val Ile His Glu Ile Gln Arg Phe Gly Asp Val Ile Pro Met			
355	360	365	
agt ttg gcc cgc aga gtc aaa aag gac acc aag ttt cgg gat ttc ttc 1152			
Ser Leu Ala Arg Arg Val Lys Lys Asp Thr Lys Phe Arg Asp Phe Phe			
370	375	380	
ctc cct aag ggc acc gaa gtg tac cct atg ctg ggc tct gtg ctg aga 1200			
Leu Pro Lys Gly Thr Glu Val Tyr Pro Met Leu Gly Ser Val Leu Arg			
385	390	395	400
gac ccc agt ttc ttc tcc aac ccc cag gac ttc aat ccc cag cac ttc 1248			
Asp Pro Ser Phe Phe Ser Asn Pro Gln Asp Phe Asn Pro Gln His Phe			
405	410	415	
ctg aat gag aag ggg cag ttt aag aag agt gat gct ttt gtg ccc ttt 1296			
Leu Asn Glu Lys Gly Gln Phe Lys Lys Ser Asp Ala Phe Val Pro Phe			
420	425	430	
tcc atc gga aag cgg aac tgt ttc gga gaa ggc ctg gcc aga atg gag 1344			
Ser Ile Gly Lys Arg Asn Cys Phe Gly Glu Gly Leu Ala Arg Met Glu			
435	440	445	
ctc ttt ctc ttc acc acc gtc atg cag aac ttc cgc ctc aag tcc 1392			
Leu Phe Leu Phe Phe Thr Thr Val Met Gln Asn Phe Arg Leu Lys Ser			
450	455	460	
tcc cag tca cct aag gac att gac gtg tcc ccc aaa cac gtg ggc ttt 1440			
Ser Gln Ser Pro Lys Asp Ile Asp Val Ser Pro Lys His Val Gly Phe			
465	470	475	480
gcc acg atc cca cga aac tac acc atg agc ttc ctg ccc cgc tga 1485			
Ala Thr Ile Pro Arg Asn Tyr Thr Met Ser Phe Leu Pro Arg			
485	490		

<210> 2

<211> 494

<212> PRT

- 5 -

<213> Human cells

<400> 2

Met Ala Ala Ser Gly Met Leu Leu Val Ala Leu Leu Val Cys Leu Thr
1 5 10 15

Val Met Val Leu Met Ser Val Trp Gln Gln Arg Lys Ser Lys Gly Lys
20 25 30

Leu Pro Pro Gly Pro Thr Pro Leu Pro Phe Ile Gly Asn Tyr Leu Gln
35 40 45

Leu Asn Thr Glu Gln Met Tyr Asn Ser Leu Met Lys Ile Ser Glu Arg
50 55 60

Tyr Gly Pro Val Phe Thr Ile His Leu Gly Pro Arg Arg Val Val Val
65 70 75 80

Leu Cys Gly His Asp Ala Val Arg Glu Ala Leu Val Asp Gln Ala Glu
85 90 95

Glu Phe Ser Gly Arg Gly Glu Gln Ala Thr Phe Asp Trp Val Phe Lys
100 105 110

Gly Tyr Gly Val Val Phe Ser Asn Gly Glu Arg Ala Lys Gln Leu Arg
115 120 125

Arg Phe Ser Ile Ala Thr Leu Arg Asp Phe Gly Val Gly Lys Arg Gly
130 135 140

Ile Glu Glu Arg Ile Gln Glu Glu Ala Gly Phe Leu Ile Asp Ala Leu
145 150 155 160

Arg Gly Thr Gly Gly Ala Asn Ile Asp Pro Thr Phe Phe Leu Ser Arg
165 170 175

Thr Val Ser Asn Val Ile Ser Ser Ile Val Phe Gly Asp Arg Phe Asp
180 185 190

- 6 -

Tyr Lys Asp Lys Glu Phe Leu Ser Leu Leu Arg Met Met Leu Gly Ile
195 200 205

Phe Gln Phe Thr Ser Thr Ser Thr Gly Gln Leu Tyr Glu Met Phe Ser
210 215 220

Ser Val Met Lys His Leu Pro Gly Pro Gln Gln Gln Ala Phe Gln Leu
225 230 235 240

Leu Gln Gly Leu Glu Asp Phe Ile Ala Lys Lys Val Glu His Asn Gln
245 250 255

Arg Thr Leu Asp Pro Asn Ser Pro Arg Asp Phe Ile Asp Ser Phe Leu
260 265 270

Ile Arg Met Gln Glu Glu Glu Lys Asn Pro Asn Thr Glu Phe Tyr Leu
275 280 285

Lys Asn Leu Val Met Thr Thr Leu Asn Leu Phe Ile Gly Gly Thr Glu
290 295 300

Thr Val Ser Thr Thr Leu Arg Tyr Gly Phe Leu Leu Met Lys His
305 310 315 320

Pro Glu Val Glu Ala Lys Val His Glu Glu Ile Asp Arg Val Ile Gly
325 330 335

Lys Asn Arg Gln Pro Lys Phe Glu Asp Arg Ala Lys Met Pro Tyr Met
340 345 350

Glu Ala Val Ile His Glu Ile Gln Arg Phe Gly Asp Val Ile Pro Met
355 360 365

Ser Leu Ala Arg Arg Val Lys Lys Asp Thr Lys Phe Arg Asp Phe Phe
370 375 380

Leu Pro Lys Gly Thr Glu Val Tyr Pro Met Leu Gly Ser Val Leu Arg
385 390 395 400

- 7 -

Asp Pro Ser Phe Phe Ser Asn Pro Gln Asp Phe Asn Pro Gln His Phe
405 410 415

Leu Asn Glu Lys Gly Gln Phe Lys Lys Ser Asp Ala Phe Val Pro Phe
420 425 430

Ser Ile Gly Lys Arg Asn Cys Phe Gly Glu Gly Leu Ala Arg Met Glu
435 440 445

Leu Phe Leu Phe Phe Thr Thr Val Met Gln Asn Phe Arg Leu Lys Ser
450 455 460

Ser Gln Ser Pro Lys Asp Ile Asp Val Ser Pro Lys His Val Gly Phe
465 470 475 480

Ala Thr Ile Pro Arg Asn Tyr Thr Met Ser Phe Leu Pro Arg
485 490

<210> 3

<211> 1419

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)..(1416)

<400> 3

atg gct cgt caa gtt cat tct tct tgg aat ctg ccc cca ggc cct ttc 48

Met Ala Arg Gln Val His Ser Ser Trp Asn Leu Pro Pro Gly Pro Phe

1 5 10 15

ccg ctt ccc atc atc ggg aac ctc ttc cag ttg gaa ttg aag aat att 96

Pro Leu Pro Ile Ile Gly Asn Leu Phe Gln Leu Glu Leu Lys Asn Ile

20 25 30

ccc aag tcc ttc acc cgg ttg gcc cag cgc ttc ggg ccg gtg ttc acg 144

- 8 -

Pro Lys Ser Phe Thr Arg Leu Ala Gln Arg Phe Gly Pro Val Phe Thr			
35	40	45	
ctg tac gtg ggc tcg cag cgc atg gtg gtg atg cac ggc tac aag gcg	192		
Leu Tyr Val Gly Ser Gln Arg Met Val Val Met His Gly Tyr Lys Ala			
50	55	60	
gtg aag gaa gcg ctg ctg gac tac aag gac gag ttc tcg ggc aga ggc	240		
Val Lys Glu Ala Leu Leu Asp Tyr Lys Asp Glu Phe Ser Gly Arg Gly			
65	70	75	80
gac ctc ccc gcg ttc cat gcg cac agg gac agg gga atc att ttt aat	288		
Asp Leu Pro Ala Phe His Ala His Arg Asp Arg Gly Ile Ile Phe Asn			
85	90	95	
aat gga cct acc tgg aag gac atc cgg cgg ttt tcc ctg acc acc ctc	336		
Asn Gly Pro Thr Trp Lys Asp Ile Arg Arg Phe Ser Leu Thr Thr Leu			
100	105	110	
cgg aac tat ggg atg ggg aaa cag ggc aat gag agc cgg atc cag agg	384		
Arg Asn Tyr Gly Met Gly Lys Gln Gly Asn Glu Ser Arg Ile Gln Arg			
115	120	125	
gag gcc cac ttc ctg ctg gaa gca ctc agg aag acc caa ggc cag cct	432		
Glu Ala His Phe Leu Leu Glu Ala Leu Arg Lys Thr Gln Gly Gln Pro			
130	135	140	
ttc gac ccc acc ttc ctc atc ggc tgc gcg ccc tgc aac gtc ata gcc	480		
Phe Asp Pro Thr Phe Leu Ile Gly Cys Ala Pro Cys Asn Val Ile Ala			
145	150	155	160
gac atc ctc ttc cgc aag cat ttt gac tac aat gat gag aag ttt cta	528		
Asp Ile Leu Phe Arg Lys His Phe Asp Tyr Asn Asp Glu Lys Phe Leu			
165	170	175	
agg ctg atg tat ttg ttt aat gag aac ttc cac cta ctc agc act ccc	576		
Arg Leu Met Tyr Leu Phe Asn Glu Asn Phe His Leu Leu Ser Thr Pro			
180	185	190	

- 9 -

tgg ctc cag ctt tac aat aat ttt ccc agc ttt cta cac tac ttg cct			624
Trp Leu Gln Leu Tyr Asn Asn Phe Pro Ser Phe Leu His Tyr Leu Pro			
195	200	205	
gga agc cac aga aaa gtc ata aaa aat gtg gct gaa gta aaa gag tat			672
Gly Ser His Arg Lys Val Ile Lys Asn Val Ala Glu Val Lys Glu Tyr			
210	215	220	
gtg tct gaa agg gtg aag gag cac cat caa tct ctg gac ccc aac tgt			720
Val Ser Glu Arg Val Lys Glu His His Gln Ser Leu Asp Pro Asn Cys			
225	230	235	240
ccc cg _g gac ctc acc gac tgc ctg ctc gtg gaa atg gag aag gaa aag			768
Pro Arg Asp Leu Thr Asp Cys Leu Leu Val Glu Met Glu Lys Glu Lys			
245	250	255	
cac agt gca gag cgc ttg tac aca atg gac ggt atc acc gtg act gtg			816
His Ser Ala Glu Arg Leu Tyr Thr Met Asp Gly Ile Thr Val Thr Val			
260	265	270	
gcc gac ctg ttc ttt gc _g ggg aca gag acc acc agc aca act ctg aga			864
Ala Asp Leu Phe Phe Ala Gly Thr Glu Thr Thr Ser Thr Thr Leu Arg			
275	280	285	
tat ggg ctc ctg att ctc atg aaa tac cct gag atc gaa gag aag ctc			912
Tyr Gly Leu Leu Ile Leu Met Lys Tyr Pro Glu Ile Glu Glu Lys Leu			
290	295	300	
cat gaa gaa att gac agg gtg att ggg cca agc cga atc cct gcc atc			960
His Glu Glu Ile Asp Arg Val Ile Gly Pro Ser Arg Ile Pro Ala Ile			
305	310	315	320
aag gat agg caa gag atg ccc tac atg gat gct gtg gtg cat gag att			1008
Lys Asp Arg Gln Glu Met Pro Tyr Met Asp Ala Val Val His Glu Ile			
325	330	335	
cag cg _g ttc atc acc ctc gtg ccc tcc aac ctg ccc cat gaa gca acc			1056
Gln Arg Phe Ile Thr Leu Val Pro Ser Asn Leu Pro His Glu Ala Thr			
340	345	350	

- 10 -

cga gac acc att ttc aga gga tac ctc atc ccc aag ggc aca gtc gta 1104
Arg Asp Thr Ile Phe Arg Gly Tyr Leu Ile Pro Lys Gly Thr Val Val
355 360 365

gtg cca act ctg gac tct gtt ttg tat gac aac caa gaa ttt cct gat 1152
Val Pro Thr Leu Asp Ser Val Leu Tyr Asp Asn Gln Glu Phe Pro Asp
370 375 380

cca gaa aag ttt aag cca gaa cac ttc ctg aat gaa aat gga aag ttc 1200
Pro Glu Lys Phe Lys Pro Glu His Phe Leu Asn Glu Asn Gly Lys Phe
385 390 395 400

aag tac agt gac tat ttc aag cca ttt tcc aca gga aaa cga gtg tgt 1248
Lys Tyr Ser Asp Tyr Phe Lys Pro Phe Ser Thr Gly Lys Arg Val Cys
405 410 415

gct gga gaa ggc ctg gct cgc atg gag ttg ttt ctt ttg ttg tgt gcc 1296
Ala Gly Glu Gly Leu Ala Arg Met Glu Leu Phe Leu Leu Cys Ala
420 425 430

att ttg cag cat ttt aat ttg aag cct ctc gtt gac cca aag gat atc 1344
Ile Leu Gln His Phe Asn Leu Lys Pro Leu Val Asp Pro Lys Asp Ile
435 440 445

gac ctc agc cct ata cat att ggg ttt ggc tgt atc cca cca cgt tac 1392
Asp Leu Ser Pro Ile His Ile Gly Phe Gly Cys Ile Pro Pro Arg Tyr
450 455 460

aaa ctc tgt gtc att ccc cgc tca tga 1419
Lys Leu Cys Val Ile Pro Arg Ser
465 470

<210> 4

<211> 472

<212> PRT

<213> Human cells

- 11 -

<400> 4

Met Ala Arg Gln Val His Ser Ser Trp Asn Leu Pro Pro Gly Pro Phe

1

5

10

15

Pro Leu Pro Ile Ile Gly Asn Leu Phe Gln Leu Glu Leu Lys Asn Ile

20

25

30

Pro Lys Ser Phe Thr Arg Leu Ala Gln Arg Phe Gly Pro Val Phe Thr

35

40

45

Leu Tyr Val Gly Ser Gln Arg Met Val Val Met His Gly Tyr Lys Ala

50

55

60

Val Lys Glu Ala Leu Leu Asp Tyr Lys Asp Glu Phe Ser Gly Arg Gly

65

70

75

80

Asp Leu Pro Ala Phe His Ala His Arg Asp Arg Gly Ile Ile Phe Asn

85

90

95

Asn Gly Pro Thr Trp Lys Asp Ile Arg Arg Phe Ser Leu Thr Thr Leu

100

105

110

Arg Asn Tyr Gly Met Gly Lys Gln Gly Asn Glu Ser Arg Ile Gln Arg

115

120

125

Glu Ala His Phe Leu Leu Glu Ala Leu Arg Lys Thr Gln Gly Gln Pro

130

135

140

Phe Asp Pro Thr Phe Leu Ile Gly Cys Ala Pro Cys Asn Val Ile Ala

145

150

155

160

Asp Ile Leu Phe Arg Lys His Phe Asp Tyr Asn Asp Glu Lys Phe Leu

165

170

175

Arg Leu Met Tyr Leu Phe Asn Glu Asn Phe His Leu Leu Ser Thr Pro

180

185

190

Trp Leu Gln Leu Tyr Asn Asn Phe Pro Ser Phe Leu His Tyr Leu Pro

195

200

205

- 12 -

Gly Ser His Arg Lys Val Ile Lys Asn Val Ala Glu Val Lys Glu Tyr

210 215 220

Val Ser Glu Arg Val Lys Glu His His Gln Ser Leu Asp Pro Asn Cys

225 230 235 240

Pro Arg Asp Leu Thr Asp Cys Leu Leu Val Glu Met Glu Lys Glu Lys

245 250 255

His Ser Ala Glu Arg Leu Tyr Thr Met Asp Gly Ile Thr Val Thr Val

260 265 270

Ala Asp Leu Phe Phe Ala Gly Thr Glu Thr Thr Ser Thr Thr Leu Arg

275 280 285

Tyr Gly Leu Leu Ile Leu Met Lys Tyr Pro Glu Ile Glu Glu Lys Leu

290 295 300

His Glu Glu Ile Asp Arg Val Ile Gly Pro Ser Arg Ile Pro Ala Ile

305 310 315 320

Lys Asp Arg Gln Glu Met Pro Tyr Met Asp Ala Val Val His Glu Ile

325 330 335

Gln Arg Phe Ile Thr Leu Val Pro Ser Asn Leu Pro His Glu Ala Thr

340 345 350

Arg Asp Thr Ile Phe Arg Gly Tyr Leu Ile Pro Lys Gly Thr Val Val

355 360 365

Val Pro Thr Leu Asp Ser Val Leu Tyr Asp Asn Gln Glu Phe Pro Asp

370 375 380

Pro Glu Lys Phe Lys Pro Glu His Phe Leu Asn Glu Asn Gly Lys Phe

385 390 395 400

Lys Tyr Ser Asp Tyr Phe Lys Pro Phe Ser Thr Gly Lys Arg Val Cys

405 410 415

- 13 -

Ala Gly Glu Gly Leu Ala Arg Met Glu Leu Phe Leu Leu Cys Ala

420

425

430

Ile Leu Gln His Phe Asn Leu Lys Pro Leu Val Asp Pro Lys Asp Ile

435

440

445

Asp Leu Ser Pro Ile His Ile Gly Phe Gly Cys Ile Pro Pro Arg Tyr

450

455

460

Lys Leu Cys Val Ile Pro Arg Ser

465

470

<210> 5

<211> 1438

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)..(1416)

<400> 5

atg gct cga caa tct tct gga cga gga aaa ctc cct cct ggc cct act 48

Met Ala Arg Gln Ser Ser Gly Arg Gly Lys Leu Pro Pro Gly Pro Thr

1

5

10

15

cct ctc cca gtg att gga aat atc cta cag ata gat att aag gat gtc 96

Pro Leu Pro Val Ile Gly Asn Ile Leu Gln Ile Asp Ile Lys Asp Val

20

25

30

agc aaa tcc tta acc aat ctc tca aaa atc tat ggc cct gtg ttc act 144

Ser Lys Ser Leu Thr Asn Leu Ser Lys Ile Tyr Gly Pro Val Phe Thr

35

40

45

ctg tat ttt ggc ctg gaa cgc atg gtg gtg ctg cat gga tat gaa gtg 192

Leu Tyr Phe Gly Leu Glu Arg Met Val Val Leu His Gly Tyr Glu Val

- 14 -

50

55

60

gtg aag gaa gcc ctg att gat ctt gga gag gag ttt tct gga aga ggc 240
 Val Lys Glu Ala Leu Ile Asp Leu Gly Glu Glu Phe Ser Gly Arg Gly
 65 70 75 80

cat ttc cca ctg gct gaa aga gct aac aga gga ttt gga atc gtt ttc 288
 His Phe Pro Leu Ala Glu Arg Ala Asn Arg Gly Phe Gly Ile Val Phe
 85 90 95

agc aat gga aag aga tgg aag gag atc cgg cgt ttc tcc ctc atg acg 336
 Ser Asn Gly Lys Arg Trp Lys Glu Ile Arg Arg Phe Ser Leu Met Thr
 100 105 110

ctg cgg aat ttt ggg atg ggg aag agg agc att gag gac cgt gtt caa 384
 Leu Arg Asn Phe Gly Met Gly Lys Arg Ser Ile Glu Asp Arg Val Gln
 115 120 125

gag gaa gcc cgc tgc ctt gtg gag gag ttg aga aaa acc aag gct tca 432
 Glu Glu Ala Arg Cys Leu Val Glu Glu Leu Arg Lys Thr Lys Ala Ser
 130 135 140

ccc tgt gat ccc act ttc atc ctg ggc tgt gct ccc tgc aat gtg atc 480
 Pro Cys Asp Pro Thr Phe Ile Leu Gly Cys Ala Pro Cys Asn Val Ile
 145 150 155 160

tgc tcc att att ttc cag aaa cgt ttc gat tat aaa gat cag caa ttt 528
 Cys Ser Ile Ile Phe Gln Lys Arg Phe Asp Tyr Lys Asp Gln Gln Phe
 165 170 175

ctt aac ttg atg gaa aaa ttg aat gaa aac atc agg att gta agc acc 576
 Leu Asn Leu Met Glu Lys Leu Asn Glu Asn Ile Arg Ile Val Ser Thr
 180 185 190

ccc tgg atc cag ata tgc aat aat ttt ccc act atc att gat tat ttc 624
 Pro Trp Ile Gln Ile Cys Asn Asn Phe Pro Thr Ile Ile Asp Tyr Phe
 195 200 205

ccg gga acc cat aac aaa tta ctt aaa aac ctt gct ttt atg gaa agt 672

- 15 -

Pro	Gly	Thr	His	Asn	Lys	Leu	Leu	Lys	Asn	Leu	Ala	Phe	Met	Glu	Ser	
210																
															720	
Asp	Ile	Leu	Glu	Lys	Val	Lys	Glu	His	Gln	Glu	Ser	Met	Asp	Ile	Asn	
225																
															240	
aac	cct	cgg	gac	ttt	att	gat	tgc	ttc	ctg	atc	aaa	atg	gag	aag	gaa	768
Asn	Pro	Arg	Asp	Phe	Ile	Asp	Cys	Phe	Leu	Ile	Lys	Met	Glu	Lys	Glu	
245																
															255	
aag	caa	aac	caa	cag	tct	gaa	ttc	act	att	gaa	aac	ttg	gta	atc	act	816
Lys	Gln	Asn	Gln	Gln	Ser	Glu	Phe	Thr	Ile	Glu	Asn	Leu	Val	Ile	Thr	
260																
															270	
gca	gct	gac	tta	ctt	gga	gct	ggg	aca	gag	aca	aca	agc	aca	acc	ctg	864
Ala	Ala	Asp	Leu	Leu	Gly	Ala	Gly	Thr	Glu	Thr	Thr	Ser	Thr	Thr	Leu	
275																
															285	
aga	tat	gct	ctc	ctt	ctc	ctg	ctg	aag	cac	cca	gag	gtc	aca	gct	aaa	912
Arg	Tyr	Ala	Leu	Leu	Leu	Leu	Leu	Lys	His	Pro	Glu	Val	Thr	Ala	Lys	
290																
															300	
gtc	cag	gaa	gag	att	gaa	cgt	gtc	gtt	ggc	aga	aac	cgg	agc	ccc	tgc	960
Val	Gln	Glu	Glu	Ile	Glu	Arg	Val	Val	Gly	Arg	Asn	Arg	Ser	Pro	Cys	
305																
															320	
atg	cag	gac	agg	ggc	cac	atg	ccc	tac	aca	gat	gct	gtg	gtg	cac	gag	1008
Met	Gln	Asp	Arg	Gly	His	Met	Pro	Tyr	Thr	Asp	Ala	Val	Val	His	Glu	
325																
															335	
gtc	cag	aga	tac	atc	gac	ctc	atc	ccc	acc	agc	ctg	ccc	cat	gca	gtg	1056
Val	Gln	Arg	Tyr	Ile	Asp	Leu	Ile	Pro	Thr	Ser	Leu	Pro	His	Ala	Val	
340																
															350	
acc	tgt	gac	gtt	aaa	ttc	aga	aac	tac	ctc	att	ccc	aag	ggc	aca	acc	1104
Thr	Cys	Asp	Val	Lys	Phe	Arg	Asn	Tyr	Leu	Ile	Pro	Lys	Gly	Thr	Thr	
355																
															365	

- 16 -

ata tta act tcc ctc act tct gtg cta cat gac aac aaa gaa ttt ccc 1152
 Ile Leu Thr Ser Leu Thr Ser Val Leu His Asp Asn Lys Glu Phe Pro
 370 375 380

aac cca gag atg ttt gac cct cgt cac ttt ctg gat gaa ggt gga aat 1200
 Asn Pro Glu Met Phe Asp Pro Arg His Phe Leu Asp Glu Gly Gly Asn
 385 390 395 400

ttt aag aaa agt aac tac ttc atg cct ttc tca gca gga aaa cgg att 1248
 Phe Lys Lys Ser Asn Tyr Phe Met Pro Phe Ser Ala Gly Lys Arg Ile
 405 410 415

tgt gtg gga gag ggc ctg gcc cgc atg gag ctg ttt tta ttc ctg acc 1296
 Cys Val Gly Glu Gly Leu Ala Arg Met Glu Leu Phe Leu Phe Leu Thr
 420 425 430

ttc att tta cag aac ttt aac ctg aaa tct ctg att gac cca aag gac 1344
 Phe Ile Leu Gln Asn Phe Asn Leu Lys Ser Leu Ile Asp Pro Lys Asp
 435 440 445

ctt gac aca act cct gtt gtc aat gga ttt gct tct gtc ccg ccc ttc 1392
 Leu Asp Thr Thr Pro Val Val Asn Gly Phe Ala Ser Val Pro Pro Phe
 450 455 460

tat cag ctg tgc ttc att cct gtc tgaagaagca cagatggct gg 1438
 Tyr Gln Leu Cys Phe Ile Pro Val
 465 470

<210> 6

<211> 472

<212> PRT

<213> Human cells

<400> 6

Met Ala Arg Gln Ser Ser Gly Arg Gly Lys Leu Pro Pro Gly Pro Thr
 1 5 10 15

Pro Leu Pro Val Ile Gly Asn Ile Leu Gln Ile Asp Ile Lys Asp Val

- 17 -

20

25

30

Ser Lys Ser Leu Thr Asn Leu Ser Lys Ile Tyr Gly Pro Val Phe Thr
35 40 45

Leu Tyr Phe Gly Leu Glu Arg Met Val Val Leu His Gly Tyr Glu Val
50 55 60

Val Lys Glu Ala Leu Ile Asp Leu Gly Glu Glu Phe Ser Gly Arg Gly
65 70 75 80

His Phe Pro Leu Ala Glu Arg Ala Asn Arg Gly Phe Gly Ile Val Phe
85 90 95

Ser Asn Gly Lys Arg Trp Lys Glu Ile Arg Arg Phe Ser Leu Met Thr
100 105 110

Leu Arg Asn Phe Gly Met Gly Lys Arg Ser Ile Glu Asp Arg Val Gln
115 120 125

Glu Glu Ala Arg Cys Leu Val Glu Glu Leu Arg Lys Thr Lys Ala Ser
130 135 140

Pro Cys Asp Pro Thr Phe Ile Leu Gly Cys Ala Pro Cys Asn Val Ile
145 150 155 160

Cys Ser Ile Ile Phe Gln Lys Arg Phe Asp Tyr Lys Asp Gln Gln Phe
165 170 175

Leu Asn Leu Met Glu Lys Leu Asn Glu Asn Ile Arg Ile Val Ser Thr
180 185 190

Pro Trp Ile Gln Ile Cys Asn Asn Phe Pro Thr Ile Ile Asp Tyr Phe
195 200 205

Pro Gly Thr His Asn Lys Leu Leu Lys Asn Leu Ala Phe Met Glu Ser
210 215 220

Asp Ile Leu Glu Lys Val Lys Glu His Gln Glu Ser Met Asp Ile Asn

- 18 -

225	230	235	240
Asn Pro Arg Asp Phe Ile Asp Cys Phe Leu Ile Lys Met Glu Lys Glu			
245	250	255	
Lys Gln Asn Gln Gln Ser Glu Phe Thr Ile Glu Asn Leu Val Ile Thr			
260	265	270	
Ala Ala Asp Leu Leu Gly Ala Gly Thr Glu Thr Thr Ser Thr Thr Leu			
275	280	285	
Arg Tyr Ala Leu Leu Leu Leu Lys His Pro Glu Val Thr Ala Lys			
290	295	300	
Val Gln Glu Glu Ile Glu Arg Val Val Gly Arg Asn Arg Ser Pro Cys			
305	310	315	320
Met Gln Asp Arg Gly His Met Pro Tyr Thr Asp Ala Val Val His Glu			
325	330	335	
Val Gln Arg Tyr Ile Asp Leu Ile Pro Thr Ser Leu Pro His Ala Val			
340	345	350	
Thr Cys Asp Val Lys Phe Arg Asn Tyr Leu Ile Pro Lys Gly Thr Thr			
355	360	365	
Ile Leu Thr Ser Leu Thr Ser Val Leu His Asp Asn Lys Glu Phe Pro			
370	375	380	
Asn Pro Glu Met Phe Asp Pro Arg His Phe Leu Asp Glu Gly Gly Asn			
385	390	395	400
Phe Lys Lys Ser Asn Tyr Phe Met Pro Phe Ser Ala Gly Lys Arg Ile			
405	410	415	
Cys Val Gly Glu Gly Leu Ala Arg Met Glu Leu Phe Leu Phe Leu Thr			
420	425	430	
Phe Ile Leu Gln Asn Phe Asn Leu Lys Ser Leu Ile Asp Pro Lys Asp			

- 19 -

435

440

445

Leu Asp Thr Thr Pro Val Val Asn Gly Phe Ala Ser Val Pro Pro Phe

450

455

460

Tyr Gln Leu Cys Phe Ile Pro Val

465

470

<210> 7

<211> 1485

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)...(1482)

<400> 7

atg ctg gcc tca ggg atg ctt ctg gtg gcc ttg ctg gtc tgc ctg act 48

Met Leu Ala Ser Gly Met Leu Leu Val Ala Leu Leu Val Cys Leu Thr

1

5

10

15

gtg atg gtc ttg atg tct gtt tgg cag cag agg aag agc aag ggg aag 96

Val Met Val Leu Met Ser Val Trp Gln Gln Arg Lys Ser Lys Gly Lys

20

25

30

ctg cct ccg gga ccc acc cca ttg ccc ttc att gga aac tac ctg cag 144

Leu Pro Pro Gly Pro Thr Pro Leu Pro Phe Ile Gly Asn Tyr Leu Gln

35

40

45

ctg aac aca gag cag atg tac aac tcc ctc atg aag atc agt gag cgc 192

Leu Asn Thr Glu Gln Met Tyr Asn Ser Leu Met Lys Ile Ser Glu Arg

50

55

60

tat ggc ccc gtg ttc acc att cac ttg ggg ccc cgg cgg gtc gtg gtg 240

Tyr Gly Pro Val Phe Thr Ile His Leu Gly Pro Arg Arg Val Val Val

65

70

75

80

- 20 -

ctg tgt gga cat gat gcc gtc agg gag gct ctg gtg gac cag cgt gag	288		
Leu Cys Gly His Asp Ala Val Arg Glu Ala Leu Val Asp Gln Ala Glu			
85	90	95	
gag ttc agc ggg cga ggc gag caa gcc acc ttc gac tgg gtc ttc aaa	336		
Glu Phe Ser Gly Arg Gly Glu Gln Ala Thr Phe Asp Trp Val Phe Lys			
100	105	110	
ggc tat ggc gtg gta ttc agc aac ggg gag cgc gcc aag cag ctc cgg	384		
Gly Tyr Gly Val Val Phe Ser Asn Gly Glu Arg Ala Lys Gln Leu Arg			
115	120	125	
cgc ttc tcc atc gcc acc ctg cgg gac ttc ggg gtg ggc aag cga ggc	432		
Arg Phe Ser Ile Ala Thr Leu Arg Asp Phe Gly Val Gly Lys Arg Gly			
130	135	140	
atc gag gag cgc atc cag gag gag gcg ggc ttc ctc atc gac gcc ctc	480		
Ile Glu Glu Arg Ile Gln Glu Glu Ala Gly Phe Leu Ile Asp Ala Leu			
145	150	155	160
cgg ggc act ggc ggc gcc aat atc gat ccc acc ttc ttc ctg agc cgc	528		
Arg Gly Thr Gly Gly Ala Asn Ile Asp Pro Thr Phe Phe Leu Ser Arg			
165	170	175	
aca gtc tcc aat gtc atc agc tcc att gtc ttt ggg gac cgc ttt gac	576		
Thr Val Ser Asn Val Ile Ser Ser Ile Val Phe Gly Asp Arg Phe Asp			
180	185	190	
tat aag gac aaa gag ttc ctg tca ctg ttg cgc atg atg cta gga atc	624		
Tyr Lys Asp Lys Glu Phe Leu Ser Leu Leu Arg Met Met Leu Gly Ile			
195	200	205	
ttc cag ttc acg tca acc tcc acg ggg cag ctc tat gag atg ttc tct	672		
Phe Gln Phe Thr Ser Thr Ser Thr Gly Gln Leu Tyr Glu Met Phe Ser			
210	215	220	
tcg gtg atg aaa cac ctg cca gga cca cag caa cag gcc ttt cag ttg	720		
Ser Val Met Lys His Leu Pro Gly Pro Gln Gln Gln Ala Phe Gln Leu			

- 21 -

225	230	235	240
ctg caa ggg ctg gag gac ttc ata gcc aag aag gtg gag cac aac cag 768			
Leu Gln Gly Leu Glu Asp Phe Ile Ala Lys Lys Val Glu His Asn Gln			
245	250	255	
cgc acg ctg gat ccc aat tcc cca cg ^g gac ttc att gac tcc ttt ctc 816			
Arg Thr Leu Asp Pro Asn Ser Pro Arg Asp Phe Ile Asp Ser Phe Leu			
260	265	270	
atc cgc atg cag gag gag aag aac ccc aac acg gag ttc tac ttg 864			
Ile Arg Met Gln Glu Glu Glu Lys Asn Pro Asn Thr Glu Phe Tyr Leu			
275	280	285	
aaa aac ctg gtg atg acc acg ttg aac ctc ttc att ggg ggc acc gag 912			
Lys Asn Leu Val Met Thr Thr Leu Asn Leu Phe Ile Gly Gly Thr Glu			
290	295	300	
acc gtc agc acc acc ctg cgc tat ggc ttc ttg ctg ctc atg aag cac 960			
Thr Val Ser Thr Thr Leu Arg Tyr Gly Phe Leu Leu Leu Met Lys His			
305	310	315	320
cca gag gtg gag gcc aag gtc cat gag gag att gac aga gtg atc ggc 1008			
Pro Glu Val Glu Ala Lys Val His Glu Glu Ile Asp Arg Val Ile Gly			
325	330	335	
aag aac cgg cag ccc aag ttt gag gac cgg gcc aag atg ccc tac atg 1056			
Lys Asn Arg Gln Pro Lys Phe Glu Asp Arg Ala Lys Met Pro Tyr Met			
340	345	350	
gag gca gtg atc cac gag atc caa aga ttt gga gac gtg atc ccc atg 1104			
Glu Ala Val Ile His Glu Ile Gln Arg Phe Gly Asp Val Ile Pro Met			
355	360	365	
agt ttg gcc cgc aga gtc aaa aag gac acc aag ttt cgg gat ttc ttc 1152			
Ser Leu Ala Arg Arg Val Lys Lys Asp Thr Lys Phe Arg Asp Phe Phe			
370	375	380	
ctc cct aag ggc acc gaa gtg tac cct atg ctg ggc tct gtg ctg aga 1200			

- 22 -

Leu Pro Lys Gly Thr Glu Val Tyr Pro Met Leu Gly Ser Val Leu Arg			
385	390	395	400
gac ccc agt ttc ttc tcc aac ccc cag gac ttc aat ccc cag cac ttc	1248		
Asp Pro Ser Phe Phe Ser Asn Pro Gln Asp Phe Asn Pro Gln His Phe			
405	410	415	
ctg aat gag aag ggg cag ttt aag aag agt gat gct ttt gtg ccc ttt	1296		
Leu Asn Glu Lys Gly Gln Phe Lys Lys Ser Asp Ala Phe Val Pro Phe			
420	425	430	
tcc atc gga aag cgg aac tgt ttc gga gaa ggc ctg gcc aga atg gag	1344		
Ser Ile Gly Lys Arg Asn Cys Phe Gly Glu Gly Leu Ala Arg Met Glu			
435	440	445	
ctc ttt ctc ttc acc acc gtc atg cag aac ttc cgc ctc aag tcc	1392		
Leu Phe Leu Phe Phe Thr Thr Val Met Gln Asn Phe Arg Leu Lys Ser			
450	455	460	
tcc cag tca cct aag gac att gac gtg tcc ccc aaa cac gtg ggc ttt	1440		
Ser Gln Ser Pro Lys Asp Ile Asp Val Ser Pro Lys His Val Gly Phe			
465	470	475	480
gcc acg atc cca cga aac tac acc atg agc ttc ctg ccc cgc tga	1485		
Ala Thr Ile Pro Arg Asn Tyr Thr Met Ser Phe Leu Pro Arg			
485	490		
<210> 8			
<211> 494			
<212> PRT			
<213> Human cells			
<400> 8			
Met Leu Ala Ser Gly Met Leu Leu Val Ala Leu Leu Val Cys Leu Thr			
1	5	10	15
Val Met Val Leu Met Ser Val Trp Gln Gln Arg Lys Ser Lys Gly Lys			
20	25	30	

- 23 -

Leu Pro Pro Gly Pro Thr Pro Leu Pro Phe Ile Gly Asn Tyr Leu Gln

35

40

45

Leu Asn Thr Glu Gln Met Tyr Asn Ser Leu Met Lys Ile Ser Glu Arg

50

55

60

Tyr Gly Pro Val Phe Thr Ile His Leu Gly Pro Arg Arg Val Val Val

65

70

75

80

Leu Cys Gly His Asp Ala Val Arg Glu Ala Leu Val Asp Gln Ala Glu

85

90

95

Glu Phe Ser Gly Arg Gly Glu Gln Ala Thr Phe Asp Trp Val Phe Lys

100

105

110

Gly Tyr Gly Val Val Phe Ser Asn Gly Glu Arg Ala Lys Gln Leu Arg

115

120

125

Arg Phe Ser Ile Ala Thr Leu Arg Asp Phe Gly Val Gly Lys Arg Gly

130

135

140

Ile Glu Glu Arg Ile Gln Glu Glu Ala Gly Phe Leu Ile Asp Ala Leu

145

150

155

160

Arg Gly Thr Gly Gly Ala Asn Ile Asp Pro Thr Phe Phe Leu Ser Arg

165

170

175

Thr Val Ser Asn Val Ile Ser Ser Ile Val Phe Gly Asp Arg Phe Asp

180

185

190

Tyr Lys Asp Lys Glu Phe Leu Ser Leu Leu Arg Met Met Leu Gly Ile

195

200

205

Phe Gln Phe Thr Ser Thr Ser Thr Gly Gln Leu Tyr Glu Met Phe Ser

210

215

220

Ser Val Met Lys His Leu Pro Gly Pro Gln Gln Gln Ala Phe Gln Leu

225

230

235

240

- 24 -

Leu Gln Gly Leu Glu Asp Phe Ile Ala Lys Lys Val Glu His Asn Gln
245 250 255

Arg Thr Leu Asp Pro Asn Ser Pro Arg Asp Phe Ile Asp Ser Phe Leu
260 265 270

Ile Arg Met Gln Glu Glu Glu Lys Asn Pro Asn Thr Glu Phe Tyr Leu
275 280 285

Lys Asn Leu Val Met Thr Thr Leu Asn Leu Phe Ile Gly Gly Thr Glu
290 295 300

Thr Val Ser Thr Thr Leu Arg Tyr Gly Phe Leu Leu Leu Met Lys His
305 310 315 320

Pro Glu Val Glu Ala Lys Val His Glu Glu Ile Asp Arg Val Ile Gly
325 330 335

Lys Asn Arg Gln Pro Lys Phe Glu Asp Arg Ala Lys Met Pro Tyr Met
340 345 350

Glu Ala Val Ile His Glu Ile Gln Arg Phe Gly Asp Val Ile Pro Met
355 360 365

Ser Leu Ala Arg Arg Val Lys Lys Asp Thr Lys Phe Arg Asp Phe Phe
370 375 380

Leu Pro Lys Gly Thr Glu Val Tyr Pro Met Leu Gly Ser Val Leu Arg
385 390 395 400

Asp Pro Ser Phe Phe Ser Asn Pro Gln Asp Phe Asn Pro Gln His Phe
405 410 415

Leu Asn Glu Lys Gly Gln Phe Lys Lys Ser Asp Ala Phe Val Pro Phe
420 425 430

Ser Ile Gly Lys Arg Asn Cys Phe Gly Glu Gly Leu Ala Arg Met Glu
435 440 445

- 25 -

Leu Phe Leu Phe Phe Thr Thr Val Met Gln Asn Phe Arg Leu Lys Ser

450

455

460

Ser Gln Ser Pro Lys Asp Ile Asp Val Ser Pro Lys His Val Gly Phe

465

470

475

480

Ala Thr Ile Pro Arg Asn Tyr Thr Met Ser Phe Leu Pro Arg

485

490

<210> 9

<211> 1479

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)..(1479)

<400> 9

atg tct gcc ctc gga gtc acc gtg gcc ctg ctg gtg tgg gcg gcc ttc 48

Met Ser Ala Leu Gly Val Thr Val Ala Leu Leu Val Trp Ala Ala Phe

1

5

10

15

ctc ctg ctg gtg tcc atg tgg agg cag gtg cac agc agc tgg aat ctg 96

Leu Leu Leu Val Ser Met Trp Arg Gln Val His Ser Ser Trp Asn Leu

20

25

30

ccc cca ggc cct ttc ccg ctt ccc atc atc ggg aac ctc ttc cag ttg 144

Pro Pro Gly Pro Phe Pro Leu Pro Ile Ile Gly Asn Leu Phe Gln Leu

35

40

45

gaa ttg aag aat att ccc aag tcc ttc acc cgg ttg gcc cag cgc ttc 192

Glu Leu Lys Asn Ile Pro Lys Ser Phe Thr Arg Leu Ala Gln Arg Phe

50

55

60

ggg ccg gtg ttc acg ctg tac gtg ggc tcg cag cgc atg gtg gtg atg 240

- 26 -

Gly Pro Val Phe Thr Leu Tyr Val Gly Ser Gln Arg Met Val Val Met				
65	70	75	80	
cac ggc tac aag gcg gtg aag gaa gcg ctg ctg gac tac aag gac gag				288
His Gly Tyr Lys Ala Val Lys Glu Ala Leu Leu Asp Tyr Lys Asp Glu				
85	90	95		
ttc tcg ggc aga ggc gac ctc ccc gcg ttc cat gcg cac agg gac agg				336
Phe Ser Gly Arg Gly Asp Leu Pro Ala Phe His Ala His Arg Asp Arg				
100	105	110		
gga atc att ttt aat aat gga cct acc tgg aag gac atc cg ^g cg ^g ttt				384
Gly Ile Ile Phe Asn Asn Gly Pro Thr Trp Lys Asp Ile Arg Arg Phe				
115	120	125		
tcc ctg acc acc ctc cg ^g aac tat ggg atg ggg aaa cag ggc aat gag				432
Ser Leu Thr Thr Leu Arg Asn Tyr Gly Met Gly Lys Gln Gly Asn Glu				
130	135	140		
agc cg ^g atc cag agg gag gcc cac ttc ctg ctg gaa gca ctc agg aag				480
Ser Arg Ile Gln Arg Glu Ala His Phe Leu Leu Glu Ala Leu Arg Lys				
145	150	155	160	
acc caa ggc cag cct ttc gac ccc acc ttc ctc atc gg ^c tgc gg ^c ccc				528
Thr Gln Gly Gln Pro Phe Asp Pro Thr Phe Leu Ile Gly Cys Ala Pro				
165	170	175		
tgc aac gtc ata gcc gac atc ctc ttc cg ^c aag cat ttt gac tac aat				576
Cys Asn Val Ile Ala Asp Ile Leu Phe Arg Lys His Phe Asp Tyr Asn				
180	185	190		
gat gag aag ttt cta agg ctg atg tat ttg ttt aat gag aac ttc cac				624
Asp Glu Lys Phe Leu Arg Leu Met Tyr Leu Phe Asn Glu Asn Phe His				
195	200	205		
cta ctc agc act ccc tgg ctc cag ctt tac aat aat ttt ccc agc ttt				672
Leu Leu Ser Thr Pro Trp Leu Gln Leu Tyr Asn Asn Phe Pro Ser Phe				
210	215	220		

- 27 -

cta cac tac ttg cct gga agc cac aga aaa gtc ata aaa aat gtg gct			720
Leu His Tyr Leu Pro Gly Ser His Arg Lys Val Ile Lys Asn Val Ala			
225	230	235	240
gaa gta aaa gag tat gtg tct gaa agg gtg aag gag cac cat caa tct			768
Glu Val Lys Glu Tyr Val Ser Glu Arg Val Lys Glu His His Gln Ser			
245	250	255	
ctg gac ccc aac tgt ccc cg ^g gac ctc acc gac tgc ctg ctc gtg gaa			816
Leu Asp Pro Asn Cys Pro Arg Asp Leu Thr Asp Cys Leu Leu Val Glu			
260	265	270	
atg gag aag gaa aag cac agt gca gag cgc ttg tac aca atg gac ggt			864
Met Glu Lys Glu Lys His Ser Ala Glu Arg Leu Tyr Thr Met Asp Gly			
275	280	285	
atc acc gtg act gtg gcc gac ctg ttc ttt gcg ggg aca gag acc acc			912
Ile Thr Val Thr Val Ala Asp Leu Phe Phe Ala Gly Thr Glu Thr Thr			
290	295	300	
agc aca act ctg aga tat ggg ctc ctg att ctc atg aaa tac cct gag			960
Ser Thr Thr Leu Arg Tyr Gly Leu Leu Ile Leu Met Lys Tyr Pro Glu			
305	310	315	320
atc gaa gag aag ctc cat gaa gaa att gac agg gtg att ggg cca agc			1008
Ile Glu Glu Lys Leu His Glu Glu Ile Asp Arg Val Ile Gly Pro Ser			
325	330	335	
cga atc cct gcc atc aag gat agg caa gag atg ccc tac atg gat gct			1056
Arg Ile Pro Ala Ile Lys Asp Arg Gln Glu Met Pro Tyr Met Asp Ala			
340	345	350	
gtg gtg cat gag att cag cg ^g ttc atc acc ctc gtg ccc tcc aac ctg			1104
Val Val His Glu Ile Gln Arg Phe Ile Thr Leu Val Pro Ser Asn Leu			
355	360	365	
ccc cat gaa gca acc cga gac acc att ttc aga gga tac ctc atc ccc			1152
Pro His Glu Ala Thr Arg Asp Thr Ile Phe Arg Gly Tyr Leu Ile Pro			
370	375	380	

- 28 -

aag ggc aca gtc gta gtg cca act ctg gac tct gtt ttg tat gac aac	1200
Lys Gly Thr Val Val Val Pro Thr Leu Asp Ser Val Leu Tyr Asp Asn	
385	390
395	400

caa gaa ttt cct gat cca gaa aag ttt aag cca gaa cac ttc ctg aat	1248
Gln Glu Phe Pro Asp Pro Glu Lys Phe Lys Pro Glu His Phe Leu Asn	
405	410
415	

gaa aat gga aag ttc aag tac agt gac tat ttc aag cca ttt tcc aca	1296
Glu Asn Gly Lys Phe Lys Tyr Ser Asp Tyr Phe Lys Pro Phe Ser Thr	
420	425
430	

gga aaa cga gtg tgt gct gga gaa ggc ctg gct cgc atg gag ttg ttt	1344
Gly Lys Arg Val Cys Ala Gly Glu Gly Leu Ala Arg Met Glu Leu Phe	
435	440
445	

ctt ttg ttg tgt gcc att ttg cag cat ttt aat ttg aag cct ctc gtt	1392
Leu Leu Leu Cys Ala Ile Leu Gln His Phe Asn Leu Lys Pro Leu Val	
450	455
460	

gac cca aag gat atc gac ctc agc cct ata cat att ggg ttt ggc tgt	1440
Asp Pro Lys Asp Ile Asp Leu Ser Pro Ile His Ile Gly Phe Gly Cys	
465	470
475	480

atc cca cca cgt tac aaa ctc tgt gtc att ccc cgc tca	1479
Ile Pro Pro Arg Tyr Lys Leu Cys Val Ile Pro Arg Ser	
485	490

<210> 10

<211> 493

<212> PRT

<213> Human cells

<400> 10

Met Ser Ala Leu Gly Val Thr Val Ala Leu Leu Val Trp Ala Ala Phe

- 29 -

Leu Leu Leu Val Ser Met Trp Arg Gln Val His Ser Ser Trp Asn Leu
20 25 30

Pro Pro Gly Pro Phe Pro Leu Pro Ile Ile Gly Asn Leu Phe Gln Leu
35 40 45

Glu Leu Lys Asn Ile Pro Lys Ser Phe Thr Arg Leu Ala Gln Arg Phe
50 55 60

Gly Pro Val Phe Thr Leu Tyr Val Gly Ser Gln Arg Met Val Val Met
65 70 75 80

His Gly Tyr Lys Ala Val Lys Glu Ala Leu Leu Asp Tyr Lys Asp Glu
85 90 95

Phe Ser Gly Arg Gly Asp Leu Pro Ala Phe His Ala His Arg Asp Arg
100 105 110

Gly Ile Ile Phe Asn Asn Gly Pro Thr Trp Lys Asp Ile Arg Arg Phe
115 120 125

Ser Leu Thr Thr Leu Arg Asn Tyr Gly Met Gly Lys Gln Gly Asn Glu
130 135 140

Ser Arg Ile Gln Arg Glu Ala His Phe Leu Leu Glu Ala Leu Arg Lys
145 150 155 160

Thr Gln Gln Pro Phe Asp Pro Thr Phe Leu Ile Gly Cys Ala Pro
165 170 175

Cys Asn Val Ile Ala Asp Ile Leu Phe Arg Lys His Phe Asp Tyr Asn
180 185 190

Asp Glu Lys Phe Leu Arg Leu Met Tyr Leu Phe Asn Glu Asn Phe His
195 200 205

Leu Leu Ser Thr Pro Trp Leu Gln Leu Tyr Asn Asn Phe Pro Ser Phe
210 215 220

- 30 -

Leu His Tyr Leu Pro Gly Ser His Arg Lys Val Ile Lys Asn Val Ala
225 230 235 240

Glu Val Lys Glu Tyr Val Ser Glu Arg Val Lys Glu His His Gln Ser
245 250 255

Leu Asp Pro Asn Cys Pro Arg Asp Leu Thr Asp Cys Leu Leu Val Glu
260 265 270

Met Glu Lys Glu Lys His Ser Ala Glu Arg Leu Tyr Thr Met Asp Gly
275 280 285

Ile Thr Val Thr Val Ala Asp Leu Phe Phe Ala Gly Thr Glu Thr Thr
290 295 300

Ser Thr Thr Leu Arg Tyr Gly Leu Leu Ile Leu Met Lys Tyr Pro Glu
305 310 315 320

Ile Glu Glu Lys Leu His Glu Glu Ile Asp Arg Val Ile Gly Pro Ser
325 330 335

Arg Ile Pro Ala Ile Lys Asp Arg Gln Glu Met Pro Tyr Met Asp Ala
340 345 350

Val Val His Glu Ile Gln Arg Phe Ile Thr Leu Val Pro Ser Asn Leu
355 360 365

Pro His Glu Ala Thr Arg Asp Thr Ile Phe Arg Gly Tyr Leu Ile Pro
370 375 380

Lys Gly Thr Val Val Val Pro Thr Leu Asp Ser Val Leu Tyr Asp Asn
385 390 395 400

Gln Glu Phe Pro Asp Pro Glu Lys Phe Lys Pro Glu His Phe Leu Asn
405 410 415

Glu Asn Gly Lys Phe Lys Tyr Ser Asp Tyr Phe Lys Pro Phe Ser Thr
420 425 430

- 31 -

Gly Lys Arg Val Cys Ala Gly Glu Gly Leu Ala Arg Met Glu Leu Phe
435 440 445

Leu Leu Leu Cys Ala Ile Leu Gln His Phe Asn Leu Lys Pro Leu Val
450 455 460

Asp Pro Lys Asp Ile Asp Leu Ser Pro Ile His Ile Gly Phe Gly Cys
465 470 475 480

Ile Pro Pro Arg Tyr Lys Leu Cys Val Ile Pro Arg Ser
485 490

<210> 11

<211> 1419

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)..(1416)

<400> 11

atg gct aga cag agc tct ggg aga gga aaa ctc cct cct ggc cct act 48
Met Ala Arg Gln Ser Ser Gly Arg Gly Lys Leu Pro Pro Gly Pro Thr
1 5 10 15

cct ctc cca gtg att gga aat atc cta cag ata gat att aag gat gtc 96
Pro Leu Pro Val Ile Gly Asn Ile Leu Gln Ile Asp Ile Lys Asp Val
20 25 30

agc aaa tcc tta acc aat ctc tca aaa atc tat ggc cct gtg ttc act 144
Ser Lys Ser Leu Thr Asn Leu Ser Lys Ile Tyr Gly Pro Val Phe Thr
35 40 45

ctg tat ttt ggc ctg gaa cgc atg gtg gtg ctg cat gga tat gaa gtg 192
Leu Tyr Phe Gly Leu Glu Arg Met Val Val Leu His Gly Tyr Glu Val
50 55 60

- 32 -

gtg aag gaa gcc ctg att gat ctt gga gag gag ttt tct gga aga ggc			240
Val Lys Glu Ala Leu Ile Asp Leu Gly Glu Glu Phe Ser Gly Arg Gly			
65	70	75	80
cat ttc cca ctg gct gaa aga gct aac aga gga ttt gga atc gtt ttc			288
His Phe Pro Leu Ala Glu Arg Ala Asn Arg Gly Phe Gly Ile Val Phe			
85	90	95	
agc aat gga aag aga tgg aag gag atc cg ^g cgt ttc tcc ctc atg acg			336
Ser Asn Gly Lys Arg Trp Lys Glu Ile Arg Arg Phe Ser Leu Met Thr			
100	105	110	
ctg cgg aat ttt ggg atg ggg aag agg agc att gag gac cgt gtt caa			384
Leu Arg Asn Phe Gly Met Gly Lys Arg Ser Ile Glu Asp Arg Val Gln			
115	120	125	
gag gaa gcc cgc tgc ctt gtg gag gag ttg aga aaa acc aag gct tca			432
Glu Glu Ala Arg Cys Leu Val Glu Glu Leu Arg Lys Thr Lys Ala Ser			
130	135	140	
ccc tgt gat ccc act ttc atc ctg ggc tgt gct ccc tgc aat gtg atc			480
Pro Cys Asp Pro Thr Phe Ile Leu Gly Cys Ala Pro Cys Asn Val Ile			
145	150	155	160
tgc tcc att att ttc cag aaa cgt ttc gat tat aaa gat cag caa ttt			528
Cys Ser Ile Ile Phe Gln Lys Arg Phe Asp Tyr Lys Asp Gln Gln Phe			
165	170	175	
ctt aac ttg atg gaa aaa ttg aat gaa aac atc agg att gta agc acc			576
Leu Asn Leu Met Glu Lys Leu Asn Glu Asn Ile Arg Ile Val Ser Thr			
180	185	190	
ccc tgg atc cag ata tgc aat aat ttt ccc act atc att gat tat ttc			624
Pro Trp Ile Gln Ile Cys Asn Asn Phe Pro Thr Ile Ile Asp Tyr Phe			
195	200	205	
ccg gga acc cat aac aaa tta ctt aaa aac ctt gct ttt atg gaa agt			672
Pro Gly Thr His Asn Lys Leu Leu Lys Asn Leu Ala Phe Met Glu Ser			

- 33 -

210	215	220	
gat att ttg gag aaa gta aaa gaa cac caa gaa tcg atg gac atc aac			720
Asp Ile Leu Glu Lys Val Lys Glu His Gln Glu Ser Met Asp Ile Asn			
225	230	235	240
aac cct cgg gac ttt att gat tgc ttc ctg atc aaa atg gag aag gaa			768
Asn Pro Arg Asp Phe Ile Asp Cys Phe Leu Ile Lys Met Glu Lys Glu			
245	250	255	
aag caa aac caa cag tct gaa ttc act att gaa aac ttg gta atc act			816
Lys Gln Asn Gln Gln Ser Glu Phe Thr Ile Glu Asn Leu Val Ile Thr			
260	265	270	
gca gct gac tta ctt gga gct ggg aca gag aca aca agc aca acc ctg			864
Ala Ala Asp Leu Leu Gly Ala Gly Thr Glu Thr Thr Ser Thr Thr Leu			
275	280	285	
aga tat gct ctc ctt ctc ctg ctg aag cac cca gag gtc aca gct aaa			912
Arg Tyr Ala Leu Leu Leu Leu Lys His Pro Glu Val Thr Ala Lys			
290	295	300	
gtc cag gaa gag att gaa cgt gtc gtt ggc aga aac cgg agc ccc tgc			960
Val Gln Glu Glu Ile Glu Arg Val Val Gly Arg Asn Arg Ser Pro Cys			
305	310	315	320
atg cag gac agg ggc cac atg ccc tac aca gat gct gtg gtg cac gag			1008
Met Gln Asp Arg Gly His Met Pro Tyr Thr Asp Ala Val Val His Glu			
325	330	335	
gtc cag aga tac atc gac ctc atc ccc acc agc ctg ccc cat gca gtg			1056
Val Gln Arg Tyr Ile Asp Leu Ile Pro Thr Ser Leu Pro His Ala Val			
340	345	350	
acc tgt gac gtt aaa ttc aga aac tac ctc att ccc aag ggc aca acc			1104
Thr Cys Asp Val Lys Phe Arg Asn Tyr Leu Ile Pro Lys Gly Thr Thr			
355	360	365	
ata tta act tcc ctc act tct gtg cta cat gac aac aaa gaa ttt ccc			1152

- 34 -

Ile Leu Thr Ser Leu Thr Ser Val Leu His Asp Asn Lys Glu Phe Pro			
370	375	380	
aac cca gag atg ttt gac cct cgt cac ttt ctg gat gaa ggt gga aat			1200
Asn Pro Glu Met Phe Asp Pro Arg His Phe Leu Asp Glu Gly Gly Asn			
385	390	395	400
ttt aag aaa agt aac tac ttc atg cct ttc tca gca gga aaa cgg att			1248
Phe Lys Lys Ser Asn Tyr Phe Met Pro Phe Ser Ala Gly Lys Arg Ile			
405	410	415	
tgt gtg gga gag ggc ctg gcc cgc atg gag ctg ttt tta ttc ctg acc			1296
Cys Val Gly Glu Gly Leu Ala Arg Met Glu Leu Phe Leu Phe Leu Thr			
420	425	430	
ttc att tta cag aac ttt aac ctg aaa tct ctg att gac cca aag gac			1344
Phe Ile Leu Gln Asn Phe Asn Leu Lys Ser Leu Ile Asp Pro Lys Asp			
435	440	445	
ctt gac aca act cct gtt gtc aat gga ttt gct tct gtc ccg ccc ttc			1392
Leu Asp Thr Thr Pro Val Val Asn Gly Phe Ala Ser Val Pro Pro Phe			
450	455	460	
tat cag ctg tgc ttc att cct gtc tga			1419
Tyr Gln Leu Cys Phe Ile Pro Val			
465	470		
<210> 12			
<211> 472			
<212> PRT			
<213> Human cells			
<400> 12			
Met Ala Arg Gln Ser Ser Gly Arg Gly Lys Leu Pro Pro Gly Pro Thr			
1	5	10	15
Pro Leu Pro Val Ile Gly Asn Ile Leu Gln Ile Asp Ile Lys Asp Val			
20	25	30	

- 35 -

Ser Lys Ser Leu Thr Asn Leu Ser Lys Ile Tyr Gly Pro Val Phe Thr

35

40

45

Leu Tyr Phe Gly Leu Glu Arg Met Val Val Leu His Gly Tyr Glu Val

50

55

60

Val Lys Glu Ala Leu Ile Asp Leu Gly Glu Glu Phe Ser Gly Arg Gly

65

70

75

80

His Phe Pro Leu Ala Glu Arg Ala Asn Arg Gly Phe Gly Ile Val Phe

85

90

95

Ser Asn Gly Lys Arg Trp Lys Glu Ile Arg Arg Phe Ser Leu Met Thr

100

105

110

Leu Arg Asn Phe Gly Met Gly Lys Arg Ser Ile Glu Asp Arg Val Gln

115

120

125

Glu Glu Ala Arg Cys Leu Val Glu Glu Leu Arg Lys Thr Lys Ala Ser

130

135

140

Pro Cys Asp Pro Thr Phe Ile Leu Gly Cys Ala Pro Cys Asn Val Ile

145

150

155

160

Cys Ser Ile Ile Phe Gln Lys Arg Phe Asp Tyr Lys Asp Gln Gln Phe

165

170

175

Leu Asn Leu Met Glu Lys Leu Asn Glu Asn Ile Arg Ile Val Ser Thr

180

185

190

Pro Trp Ile Gln Ile Cys Asn Asn Phe Pro Thr Ile Ile Asp Tyr Phe

195

200

205

Pro Gly Thr His Asn Lys Leu Leu Lys Asn Leu Ala Phe Met Glu Ser

210

215

220

Asp Ile Leu Glu Lys Val Lys Glu His Gln Glu Ser Met Asp Ile Asn

225

230

235

240

- 36 -

Asn Pro Arg Asp Phe Ile Asp Cys Phe Leu Ile Lys Met Glu Lys Glu

245

250

255

Lys Gln Asn Gln Gln Ser Glu Phe Thr Ile Glu Asn Leu Val Ile Thr

260

265

270

Ala Ala Asp Leu Leu Gly Ala Gly Thr Glu Thr Thr Ser Thr Thr Leu

275

280

285

Arg Tyr Ala Leu Leu Leu Leu Lys His Pro Glu Val Thr Ala Lys

290

295

300

Val Gln Glu Glu Ile Glu Arg Val Val Gly Arg Asn Arg Ser Pro Cys

305

310

315

320

Met Gln Asp Arg Gly His Met Pro Tyr Thr Asp Ala Val Val His Glu

325

330

335

Val Gln Arg Tyr Ile Asp Leu Ile Pro Thr Ser Leu Pro His Ala Val

340

345

350

Thr Cys Asp Val Lys Phe Arg Asn Tyr Leu Ile Pro Lys Gly Thr Thr

355

360

365

Ile Leu Thr Ser Leu Thr Ser Val Leu His Asp Asn Lys Glu Phe Pro

370

375

380

Asn Pro Glu Met Phe Asp Pro Arg His Phe Leu Asp Glu Gly Gly Asn

385

390

395

400

Phe Lys Lys Ser Asn Tyr Phe Met Pro Phe Ser Ala Gly Lys Arg Ile

405

410

415

Cys Val Gly Glu Gly Leu Ala Arg Met Glu Leu Phe Leu Phe Leu Thr

420

425

430

Phe Ile Leu Gln Asn Phe Asn Leu Lys Ser Leu Ile Asp Pro Lys Asp

435

440

445

- 37 -

Leu Asp Thr Thr Pro Val Val Asn Gly Phe Ala Ser Val Pro Pro Phe

450

455

460

Tyr Gln Leu Cys Phe Ile Pro Val

465

470

<210> 13

<211> 2034

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)..(2031)

<400> 13

atg gct gac tcc cac gtg gac acc agc tcc acc gtg tcc gag gcg gtg 48

Met Ala Asp Ser His Val Asp Thr Ser Ser Thr Val Ser Glu Ala Val

1

5

10

15

gcc gaa gaa gta tct ctt ttc agc atg acg gac atg att ctg ttt tcg 96

Ala Glu Glu Val Ser Leu Phe Ser Met Thr Asp Met Ile Leu Phe Ser

20

25

30

ctc atc gtg ggt ctc cta acc tac tgg ttc ctc ttc aga aag aaa aaa 144

Leu Ile Val Gly Leu Leu Thr Tyr Trp Phe Leu Phe Arg Lys Lys

35

40

45

gaa gaa gtc ccc gag ttc acc aaa att cag aca ttg acc tcc tct gtc 192

Glu Glu Val Pro Glu Phe Thr Lys Ile Gln Thr Leu Thr Ser Ser Val

50

55

60

aga gag agc agc ttt gtg gaa aag atg aag aaa acg ggg agg aac atc 240

Arg Glu Ser Ser Phe Val Glu Lys Met Lys Lys Thr Gly Arg Asn Ile

65

70

75

80

- 38 -

atc gtg ttc tac ggc tcc cag acg ggg act gca gag gag ttt gcc aac	288		
Ile Val Phe Tyr Gly Ser Gln Thr Gly Thr Ala Glu Glu Phe Ala Asn			
85	90	95	
cgc ctg tcc aag gac gcc cac cgc tac ggg atg cga ggc atg tca gcg	336		
Arg Leu Ser Lys Asp Ala His Arg Tyr Gly Met Arg Gly Met Ser Ala			
100	105	110	
gac cct gag gag tat gac ctg gcc gac ctg agc agc ctg cca gag atc	384		
Asp Pro Glu Glu Tyr Asp Leu Ala Asp Leu Ser Ser Leu Pro Glu Ile			
115	120	125	
gac aac gcc ctg gtg gtt ttc tgc atg gcc acc tac ggt gag gga gac	432		
Asp Asn Ala Leu Val Val Phe Cys Met Ala Thr Tyr Gly Glu Gly Asp			
130	135	140	
ccc acc gac aat gcc cag gac ttc tac gac tgg ctg cag gag aca gac	480		
Pro Thr Asp Asn Ala Gln Asp Phe Tyr Asp Trp Leu Gln Glu Thr Asp			
145	150	155	160
gtg gat ctc tct ggg gtc aag ttc gcg gtg ttt ggt ctt ggg aac aag	528		
Val Asp Leu Ser Gly Val Lys Phe Ala Val Phe Gly Leu Gly Asn Lys			
165	170	175	
acc tac gag cac ttc aat gcc atg ggc aag tac gtg gac aag cgg ctg	576		
Thr Tyr Glu His Phe Asn Ala Met Gly Lys Tyr Val Asp Lys Arg Leu			
180	185	190	
gag cag ctc ggc gcc cag cgc atc ttt gag ctg ggg ttg ggc gac gac	624		
Glu Gln Leu Gly Ala Gln Arg Ile Phe Glu Leu Gly Leu Gly Asp Asp			
195	200	205	
gat ggg aac ttg gag gag gac ttc atc acc tgg cga gag cag ttc tgg	672		
Asp Gly Asn Leu Glu Glu Asp Phe Ile Thr Trp Arg Glu Gln Phe Trp			
210	215	220	
ccg gcc gtg tgt gaa cac ttt ggg gtg gaa gcc act ggc gag gag tcc	720		
Pro Ala Val Cys Glu His Phe Gly Val Glu Ala Thr Gly Glu Glu Ser			
225	230	235	240

- 39 -

agc att cgc cag tac gag ctt gtg gtc cac acc gac ata gat gcg gcc			768
Ser Ile Arg Gln Tyr Glu Leu Val Val His Thr Asp Ile Asp Ala Ala			
245	250	255	
aag gtg tac atg ggg gag atg ggc cgg ctg aag agc tac gag aac cag			816
Lys Val Tyr Met Gly Glu Met Gly Arg Leu Lys Ser Tyr Glu Asn Gln			
260	265	270	
aag ccc ccc ttt gat gcc aag aat ccg ttc ctg gct gca gtc acc acc			864
Lys Pro Pro Phe Asp Ala Lys Asn Pro Phe Leu Ala Ala Val Thr Thr			
275	280	285	
aac cgg aag ctg aac cag gga acc gag cgc cac ctc atg cac ctg gaa			912
Asn Arg Lys Leu Asn Gln Gly Thr Glu Arg His Leu Met His Leu Glu			
290	295	300	
ttg gac atc tcg gac tcc aaa atc agg tat gaa tct ggg gac cac gtg			960
Leu Asp Ile Ser Asp Ser Lys Ile Arg Tyr Glu Ser Gly Asp His Val			
305	310	315	320
gct gtg tac cca gcc aac gac tct gct ctc gtc aac cag ctg ggc aaa			1008
Ala Val Tyr Pro Ala Asn Asp Ser Ala Leu Val Asn Gln Leu Gly Lys			
325	330	335	
atc ctg ggt gcc gac ctg gac gtc gtc atg tcc ctg aac aac ctg gat			1056
Ile Leu Gly Ala Asp Leu Asp Val Val Met Ser Leu Asn Asn Leu Asp			
340	345	350	
gag gag tcc aac aag aag cac cca ttc ccg tgc cct acg tcc tac cgc			1104
Glu Glu Ser Asn Lys Lys His Pro Phe Pro Cys Pro Thr Ser Tyr Arg			
355	360	365	
acg gcc ctc acc tac tac ctg gac atc acc aac ccg ccg cgt acc aac			1152
Thr Ala Leu Thr Tyr Tyr Leu Asp Ile Thr Asn Pro Pro Arg Thr Asn			
370	375	380	
gtg ctg tac gag ctg gcg cag tac gcc tcg gag ccc tcg gag cag gag			1200
Val Leu Tyr Glu Leu Ala Gln Tyr Ala Ser Glu Pro Ser Glu Gln Glu			

- 40 -

385	390	395	400
ctg ctg cgc aag atg gcc tcc tcc tcc ggc gag ggc aag gag ctg tac 1248			
Leu Leu Arg Lys Met Ala Ser Ser Ser Gly Glu Gly Lys Glu Leu Tyr			
405		410	415
ctg agc tgg gtg gtg gag gcc cgg agg cac atc ctg gcc atc ctg cag 1296			
Leu Ser Trp Val Val Glu Ala Arg Arg His Ile Leu Ala Ile Leu Gln			
420		425	430
gac tgc ccg tcc ctg cgg ccc ccc atc gac cac ctg tgt gag ctg ctg 1344			
Asp Cys Pro Ser Leu Arg Pro Pro Ile Asp His Leu Cys Glu Leu Leu			
435		440	445
ccg cgc ctg cag gcc cgc tac tac tcc atc gcc tca tcc tcc aag gtc 1392			
Pro Arg Leu Gln Ala Arg Tyr Tyr Ser Ile Ala Ser Ser Ser Lys Val			
450		455	460
cac ccc aac tct gtg cac atc tgt gcg gtg gtt gtg gag tac gag acc 1440			
His Pro Asn Ser Val His Ile Cys Ala Val Val Val Glu Tyr Glu Thr			
465		470	475
480			
aag gcc ggc cgc atc aac aag ggc gtg gcc acc aac tgg ctg cgg gcc 1488			
Lys Ala Gly Arg Ile Asn Lys Gly Val Ala Thr Asn Trp Leu Arg Ala			
485		490	495
aag gag cct gcc ggg gag aac ggc ggc cgt gcg ctg gtg ccc atg ttc 1536			
Lys Glu Pro Ala Gly Glu Asn Gly Gly Arg Ala Leu Val Pro Met Phe			
500		505	510
gtg cgc aag tcc cag ttc cgc ctg ccc ttc aag gcc acc acg cct gtc 1584			
Val Arg Lys Ser Gln Phe Arg Leu Pro Phe Lys Ala Thr Thr Pro Val			
515		520	525
atc atg gtg ggc ccc ggc acc ggg gtg gca ccc ttc ata ggc ttc atc 1632			
Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Ile Gly Phe Ile			
530		535	540
cag gag cgg gcc tgg ctg cga cag cag ggc aag gag gtg ggg gag acg 1680			

- 41 -

<210> 14

<211> 677

2123 PRT

- 42 -

<213> Human cells

<400> 14

Met Ala Asp Ser His Val Asp Thr Ser Ser Thr Val Ser Glu Ala Val

1

5

10

15

Ala Glu Glu Val Ser Leu Phe Ser Met Thr Asp Met Ile Leu Phe Ser

20

25

30

Leu Ile Val Gly Leu Leu Thr Tyr Trp Phe Leu Phe Arg Lys Lys Lys

35

40

45

Glu Glu Val Pro Glu Phe Thr Lys Ile Gln Thr Leu Thr Ser Ser Val

50

55

60

Arg Glu Ser Ser Phe Val Glu Lys Met Lys Lys Thr Gly Arg Asn Ile

65

70

75

80

Ile Val Phe Tyr Gly Ser Gln Thr Gly Thr Ala Glu Glu Phe Ala Asn

85

90

95

Arg Leu Ser Lys Asp Ala His Arg Tyr Gly Met Arg Gly Met Ser Ala

100

105

110

Asp Pro Glu Glu Tyr Asp Leu Ala Asp Leu Ser Ser Leu Pro Glu Ile

115

120

125

Asp Asn Ala Leu Val Val Phe Cys Met Ala Thr Tyr Gly Glu Gly Asp

130

135

140

Pro Thr Asp Asn Ala Gln Asp Phe Tyr Asp Trp Leu Gln Glu Thr Asp

145

150

155

160

Val Asp Leu Ser Gly Val Lys Phe Ala Val Phe Gly Leu Gly Asn Lys

165

170

175

Thr Tyr Glu His Phe Asn Ala Met Gly Lys Tyr Val Asp Lys Arg Leu

180

185

190

- 43 -

Glu Gln Leu Gly Ala Gln Arg Ile Phe Glu Leu Gly Leu Gly Asp Asp
195 200 205

Asp Gly Asn Leu Glu Glu Asp Phe Ile Thr Trp Arg Glu Gln Phe Trp
210 215 220

Pro Ala Val Cys Glu His Phe Gly Val Glu Ala Thr Gly Glu Glu Ser
225 230 235 240

Ser Ile Arg Gln Tyr Glu Leu Val Val His Thr Asp Ile Asp Ala Ala
245 250 255

Lys Val Tyr Met Gly Glu Met Gly Arg Leu Lys Ser Tyr Glu Asn Gln
260 265 270

Lys Pro Pro Phe Asp Ala Lys Asn Pro Phe Leu Ala Ala Val Thr Thr
275 280 285

Asn Arg Lys Leu Asn Gln Gly Thr Glu Arg His Leu Met His Leu Glu
290 295 300

Leu Asp Ile Ser Asp Ser Lys Ile Arg Tyr Glu Ser Gly Asp His Val
305 310 315 320

Ala Val Tyr Pro Ala Asn Asp Ser Ala Leu Val Asn Gln Leu Gly Lys
325 330 335

Ile Leu Gly Ala Asp Leu Asp Val Val Met Ser Leu Asn Asn Leu Asp
340 345 350

Glu Glu Ser Asn Lys Lys His Pro Phe Pro Cys Pro Thr Ser Tyr Arg
355 360 365

Thr Ala Leu Thr Tyr Tyr Leu Asp Ile Thr Asn Pro Pro Arg Thr Asn
370 375 380

Val Leu Tyr Glu Leu Ala Gln Tyr Ala Ser Glu Pro Ser Glu Gln Glu
385 390 395 400

- 44 -

Leu Leu Arg Lys Met Ala Ser Ser Ser Gly Glu Gly Lys Glu Leu Tyr
405 410 415

Leu Ser Trp Val Val Glu Ala Arg Arg His Ile Leu Ala Ile Leu Gln
420 425 430

Asp Cys Pro Ser Leu Arg Pro Pro Ile Asp His Leu Cys Glu Leu Leu
435 440 445

Pro Arg Leu Gln Ala Arg Tyr Tyr Ser Ile Ala Ser Ser Ser Lys Val
450 455 460

His Pro Asn Ser Val His Ile Cys Ala Val Val Val Glu Tyr Glu Thr
465 470 475 480

Lys Ala Gly Arg Ile Asn Lys Gly Val Ala Thr Asn Trp Leu Arg Ala
485 490 495

Lys Glu Pro Ala Gly Glu Asn Gly Gly Arg Ala Leu Val Pro Met Phe
500 505 510

Val Arg Lys Ser Gln Phe Arg Leu Pro Phe Lys Ala Thr Thr Pro Val
515 520 525

Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Ile Gly Phe Ile
530 535 540

Gln Glu Arg Ala Trp Leu Arg Gln Gln Gly Lys Glu Val Gly Glu Thr
545 550 555 560

Leu Leu Tyr Tyr Gly Cys Arg Arg Ser Asp Glu Asp Tyr Leu Tyr Arg
565 570 575

Glu Asp Val Ala Gln Phe His Arg Asp Gly Ala Leu Thr Gln Leu Asn
580 585 590

Val Ala Phe Ser Arg Glu Gln Ser His Lys Val Tyr Val Gln His Leu
595 600 605

- 45 -

Leu Lys Gln Asp Arg Glu His Leu Trp Lys Leu Ile Glu Gly Gly Ala
610 615 620

His Ile Tyr Val Cys Gly Asp Ala Arg Asn Met Ala Arg Asp Val Gln
625 630 635 640

Asn Thr Phe Tyr Asp Ile Val Ala Glu Leu Gly Ala Met Glu His Ala
645 650 655

Gln Ala Val Asp Tyr Ile Lys Lys Leu Met Thr Lys Gly Arg Tyr Ser
660 665 670

Leu Asp Val Trp Ser
675

<210> 15

<211> 2034

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)..(2031)

<400> 15

atg gga gac tcc cac gtg gac acc agc tcc acc gtg tcc gag gcg gtg 48
Met Gly Asp Ser His Val Asp Thr Ser Ser Thr Val Ser Glu Ala Val
1 5 10 15

gcc gaa gaa gta tct ctt ttc agc atg acg gac atg att ctg ttt tcg 96
Ala Glu Glu Val Ser Leu Phe Ser Met Thr Asp Met Ile Leu Phe Ser
20 25 30

ctc atc gtg ggt ctc cta acc tac tgg ttc ctc ttc aga aag aaa aaa 144
Leu Ile Val Gly Leu Leu Thr Tyr Trp Phe Leu Phe Arg Lys Lys
35 40 45

- 46 -

gaa gaa gtc ccc gag ttc acc aaa att cag aca ttg acc tcc tct gtc			192
Glu Glu Val Pro Glu Phe Thr Lys Ile Gln Thr Leu Thr Ser Ser Val			
50	55	60	
aga gag agc agc ttt gtg gaa aag atg aag aaa acg ggg agg aac atc			240
Arg Glu Ser Ser Phe Val Glu Lys Met Lys Lys Thr Gly Arg Asn Ile			
65	70	75	80
atc gtg ttc tac ggc tcc cag acg ggg act gca gag gag ttt gcc aac			288
Ile Val Phe Tyr Gly Ser Gln Thr Gly Thr Ala Glu Glu Phe Ala Asn			
85	90	95	
cgc ctg tcc aag gac gcc cac cgc tac ggg atg cga ggc atg tca gcg			336
Arg Leu Ser Lys Asp Ala His Arg Tyr Gly Met Arg Gly Met Ser Ala			
100	105	110	
gac cct gag gag tat gac ctg gcc gac ctg agc agc ctg cca gag atc			384
Asp Pro Glu Glu Tyr Asp Leu Ala Asp Leu Ser Ser Leu Pro Glu Ile			
115	120	125	
gac aac gcc ctg gtg gtt ttc tgc atg gcc acc tac ggt gag gga gac			432
Asp Asn Ala Leu Val Val Phe Cys Met Ala Thr Tyr Gly Glu Gly Asp			
130	135	140	
ccc acc gac aat gcc cag gac ttc tac gac tgg ctg cag gag aca gac			480
Pro Thr Asp Asn Ala Gln Asp Phe Tyr Asp Trp Leu Gln Glu Thr Asp			
145	150	155	160
gtg gat ctc tct ggg gtc aag ttc gcg gtg ttt ggt ctt ggg aac aag			528
Val Asp Leu Ser Gly Val Lys Phe Ala Val Phe Gly Leu Gly Asn Lys			
165	170	175	
acc tac gag cac ttc aat gcc atg ggc aag tac gtc gac aag cgg ctg			576
Thr Tyr Glu His Phe Asn Ala Met Gly Lys Tyr Val Asp Lys Arg Leu			
180	185	190	
gag cag ctc ggc gcc cag cgc atc ttt gag ctg ggg ttg ggc gac gac			624
Glu Gln Leu Gly Ala Gln Arg Ile Phe Glu Leu Gly Leu Gly Asp Asp			
195	200	205	

- 47 -

gat	ggg	aac	ttg	gag	gag	gac	ttc	atc	acc	tgg	cga	gag	cag	ttc	tgg	672
Asp	Gly	Asn	Leu	Glu	Glu	Asp	Phe	Ile	Thr	Trp	Arg	Glu	Gln	Phe	Trp	
210			215							220						
ccg	gcc	gtg	tgt	gaa	cac	ttt	ggg	gtg	gaa	gcc	act	ggc	gag	gag	tcc	720
Pro	Ala	Val	Cys	Glu	His	Phe	Gly	Val	Glu	Ala	Thr	Gly	Glu	Glu	Ser	
225			230							235					240	
agc	att	cgc	cag	tac	gag	ctt	gtg	gtc	cac	acc	gac	ata	gat	gcg	gcc	768
Ser	Ile	Arg	Gln	Tyr	Glu	Leu	Val	Val	His	Thr	Asp	Ile	Asp	Ala	Ala	
245			250							255						
aag	gtg	tac	atg	ggg	gag	atg	ggc	cgg	ctg	aag	agc	tac	gag	aac	cag	816
Lys	Val	Tyr	Met	Gly	Glu	Met	Gly	Arg	Leu	Lys	Ser	Tyr	Glu	Asn	Gln	
260			265							270						
aag	ccc	ccc	ttt	gat	gcc	aag	aat	ccg	ttc	ctg	gct	gca	gtc	acc	acc	864
Lys	Pro	Pro	Phe	Asp	Ala	Lys	Asn	Pro	Phe	Leu	Ala	Ala	Val	Thr	Thr	
275			280							285						
aac	cgg	aag	ctg	aac	cag	gga	acc	gag	cgc	cac	ctc	atg	cac	ctg	gaa	912
Asn	Arg	Lys	Leu	Asn	Gln	Gly	Thr	Glu	Arg	His	Leu	Met	His	Leu	Glu	
290			295							300						
ttg	gac	atc	tcg	gac	tcc	aaa	atc	agg	tat	gaa	tct	ggg	gac	cac	gtg	960
Leu	Asp	Ile	Ser	Asp	Ser	Lys	Ile	Arg	Tyr	Glu	Ser	Gly	Asp	His	Val	
305			310							315					320	
gct	gtg	tac	cca	gcc	aac	gac	tct	gct	ctc	gtc	aac	cag	ctg	ggc	aaa	1008
Ala	Val	Tyr	Pro	Ala	Asn	Asp	Ser	Ala	Leu	Val	Asn	Gln	Leu	Gly	Lys	
325			330							335						
atc	ctg	ggt	gcc	gac	ctg	gac	gtc	gtc	atg	tcc	ctg	aac	aac	ctg	gat	1056
Ile	Leu	Gly	Ala	Asp	Leu	Asp	Val	Val	Met	Ser	Leu	Asn	Asn	Leu	Asp	
340			345							350						
gag	gag	tcc	aac	aag	aag	cac	cca	ttc	ccg	tgc	cct	acg	tcc	tac	cgc	1104
Glu	Glu	Ser	Asn	Lys	Lys	His	Pro	Phe	Pro	Cys	Pro	Thr	Ser	Tyr	Arg	

- 48 -

355	360	365	
acg gcc ctc acc tac tac ctg gac atc acc aac ccg ccg cgt acc aac			1152
Thr Ala Leu Thr Tyr Tyr Leu Asp Ile Thr Asn Pro Pro Arg Thr Asn			
370	375	380	
gtg ctg tac gag ctg gcg cag tac gcc tcg gag ccc tcg gag cag gag			1200
Val Leu Tyr Glu Leu Ala Gln Tyr Ala Ser Glu Pro Ser Glu Gln Glu			
385	390	395	400
ctg ctg cgc aag atg gcc tcc tcc ggc gag ggc aag gag ctg tac			1248
Leu Leu Arg Lys Met Ala Ser Ser Ser Gly Glu Gly Lys Glu Leu Tyr			
405	410	415	
ctg agc tgg gtg gtg gag gcc cgg agg cac atc ctg gcc atc ctg cag			1296
Leu Ser Trp Val Val Glu Ala Arg Arg His Ile Leu Ala Ile Leu Gln			
420	425	430	
gac tgc ccg tcc ctg cgg ccc ccc atc gac cac ctg tgt gag ctg ctg			1344
Asp Cys Pro Ser Leu Arg Pro Pro Ile Asp His Leu Cys Glu Leu Leu			
435	440	445	
ccg cgc ctg cag gcc cgc tac tac tcc atc gcc tca tcc tcc aag gtc			1392
Pro Arg Leu Gln Ala Arg Tyr Tyr Ser Ile Ala Ser Ser Ser Lys Val			
450	455	460	
cac ccc aac tct gtg cac atc tgt gcg gtg gtt gtg gag tac gag acc			1440
His Pro Asn Ser Val His Ile Cys Ala Val Val Val Glu Tyr Glu Thr			
465	470	475	480
aag gcc ggc cgc atc aac aag ggc gtg gcc acc aac tgg ctg cgg gcc			1488
Lys Ala Gly Arg Ile Asn Lys Gly Val Ala Thr Asn Trp Leu Arg Ala			
485	490	495	
aag gag cct gcc ggg gag aac ggc ggc cgt gcg ctg gtg ccc atg ttc			1536
Lys Glu Pro Ala Gly Glu Asn Gly Gly Arg Ala Leu Val Pro Met Phe			
500	505	510	
gtg cgc aag tcc cag ttc cgc ctg ccc ttc aag gcc acc acg cct gtc			1584

- 49 -

Val Arg Lys Ser Gln Phe Arg Leu Pro Phe Lys Ala Thr Thr Pro Val			
515	520	525	
atc atg gtg ggc ccc ggc acc ggg gtg gca ccc ttc ata ggc ttc atc			1632
Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Ile Gly Phe Ile			
530	535	540	
cag gag cgg gcc tgg ctg cga cag cag ggc aag gag gtg ggg gag acg			1680
Gln Glu Arg Ala Trp Leu Arg Gln Gln Gly Lys Glu Val Gly Glu Thr			
545	550	555	560
ctg ctg tac tac ggc tgc cgc cgc tcg gat gag gac tac ctg tac cgg			1728
Leu Leu Tyr Tyr Gly Cys Arg Arg Ser Asp Glu Asp Tyr Leu Tyr Arg			
565	570	575	
gag gac gtg gcg cag ttc cac agg gac ggt gcg ctc acc cag ctc aac			1776
Glu Asp Val Ala Gln Phe His Arg Asp Gly Ala Leu Thr Gln Leu Asn			
580	585	590	
gtg gcc ttc tcc cgg gag cag tcc cac aag gtc tac gtc cag cac ctg			1824
Val Ala Phe Ser Arg Glu Gln Ser His Lys Val Tyr Val Gln His Leu			
595	600	605	
cta aag caa gac cga gag cac ctg tgg aag ttg atc gaa ggc ggt gcc			1872
Leu Lys Gln Asp Arg Glu His Leu Trp Lys Leu Ile Glu Gly Gly Ala			
610	615	620	
cac atc tac gtc tgt ggg gat gca cgg aac atg gcc agg gat gtg cag			1920
His Ile Tyr Val Cys Gly Asp Ala Arg Asn Met Ala Arg Asp Val Gln			
625	630	635	640
aac acc ttc tac gac atc gtg gct gag ctc ggg gcc atg gag cac gcg			1968
Asn Thr Phe Tyr Asp Ile Val Ala Glu Leu Gly Ala Met Glu His Ala			
645	650	655	
cag gcg gtg gac tac atc aag aaa ctg atg acc aag ggc cgc tac tcc			2016
Gln Ala Val Asp Tyr Ile Lys Lys Leu Met Thr Lys Gly Arg Tyr Ser			
660	665	670	

- 50 -

ctg gac gtg tgg agc tag 2034
Leu Asp Val Trp Ser
675

<210> 16
<211> 677
<212> PRT
<213> Human cells

<400> 16
Met Gly Asp Ser His Val Asp Thr Ser Ser Thr Val Ser Glu Ala Val
1 5 10 15

Ala Glu Glu Val Ser Leu Phe Ser Met Thr Asp Met Ile Leu Phe Ser
20 25 30

Leu Ile Val Gly Leu Leu Thr Tyr Trp Phe Leu Phe Arg Lys Lys Lys
35 40 45

Glu Glu Val Pro Glu Phe Thr Lys Ile Gln Thr Leu Thr Ser Ser Val
50 55 60

Arg Glu Ser Ser Phe Val Glu Lys Met Lys Lys Thr Gly Arg Asn Ile
65 70 75 80

Ile Val Phe Tyr Gly Ser Gln Thr Gly Thr Ala Glu Glu Phe Ala Asn
85 90 95

Arg Leu Ser Lys Asp Ala His Arg Tyr Gly Met Arg Gly Met Ser Ala
100 • 105 110

Asp Pro Glu Glu Tyr Asp Leu Ala Asp Leu Ser Ser Leu Pro Glu Ile
115 120 125

Asp Asn Ala Leu Val Val Phe Cys Met Ala Thr Tyr Gly Glu Gly Asp
130 135 140

Pro Thr Asp Asn Ala Gln Asp Phe Tyr Asp Trp Leu Gln Glu Thr Asp

- 51 -

145	150	155	160
Val Asp Leu Ser Gly Val Lys Phe Ala Val Phe Gly Leu Gly Asn Lys			
165	170	175	
Thr Tyr Glu His Phe Asn Ala Met Gly Lys Tyr Val Asp Lys Arg Leu			
180	185	190	
Glu Gln Leu Gly Ala Gln Arg Ile Phe Glu Leu Gly Leu Gly Asp Asp			
195	200	205	
Asp Gly Asn Leu Glu Glu Asp Phe Ile Thr Trp Arg Glu Gln Phe Trp			
210	215	220	
Pro Ala Val Cys Glu His Phe Gly Val Glu Ala Thr Gly Glu Glu Ser			
225	230	235	240
Ser Ile Arg Gln Tyr Glu Leu Val Val His Thr Asp Ile Asp Ala Ala			
245	250	255	
Lys Val Tyr Met Gly Glu Met Gly Arg Leu Lys Ser Tyr Glu Asn Gln			
260	265	270	
Lys Pro Pro Phe Asp Ala Lys Asn Pro Phe Leu Ala Ala Val Thr Thr			
275	280	285	
Asn Arg Lys Leu Asn Gln Gly Thr Glu Arg His Leu Met His Leu Glu			
290	295	300	
Leu Asp Ile Ser Asp Ser Lys Ile Arg Tyr Glu Ser Gly Asp His Val			
305	310	315	320
Ala Val Tyr Pro Ala Asn Asp Ser Ala Leu Val Asn Gln Leu Gly Lys			
325	330	335	
Ile Leu Gly Ala Asp Leu Asp Val Val Met Ser Leu Asn Asn Leu Asp			
340	345	350	
Glu Glu Ser Asn Lys Lys His Pro Phe Pro Cys Pro Thr Ser Tyr Arg			

- 52 -

355 360 365

Thr Ala Leu Thr Tyr Tyr Leu Asp Ile Thr Asn Pro Pro Arg Thr Asn
370 375 380

Val Leu Tyr Glu Leu Ala Gln Tyr Ala Ser Glu Pro Ser Glu Gln Glu
385 390 395 400

Leu Leu Arg Lys Met Ala Ser Ser Ser Gly Glu Gly Lys Glu Leu Tyr
405 410 415

Leu Ser Trp Val Val Glu Ala Arg Arg His Ile Leu Ala Ile Leu Gln
420 425 430

Asp Cys Pro Ser Leu Arg Pro Pro Ile Asp His Leu Cys Glu Leu Leu
435 440 445

Pro Arg Leu Gln Ala Arg Tyr Tyr Ser Ile Ala Ser Ser Ser Lys Val
450 455 460

His Pro Asn Ser Val His Ile Cys Ala Val Val Val Glu Tyr Glu Thr
465 470 475 480

Lys Ala Gly Arg Ile Asn Lys Gly Val Ala Thr Asn Trp Leu Arg Ala
485 490 495

Lys Glu Pro Ala Gly Glu Asn Gly Gly Arg Ala Leu Val Pro Met Phe
500 505 510

Val Arg Lys Ser Gln Phe Arg Leu Pro Phe Lys Ala Thr Thr Pro Val
515 520 525

Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Ile Gly Phe Ile
530 535 540

Gln Glu Arg Ala Trp Leu Arg Gln Gln Gly Lys Glu Val Gly Glu Thr
545 550 555 560

Leu Leu Tyr Tyr Gly Cys Arg Arg Ser Asp Glu Asp Tyr Leu Tyr Arg

- 53 -

565

570

575

Glu Asp Val Ala Gln Phe His Arg Asp Gly Ala Leu Thr Gln Leu Asn

580

585

590

Val Ala Phe Ser Arg Glu Gln Ser His Lys Val Tyr Val Gln His Leu

595

600

605

Leu Lys Gln Asp Arg Glu His Leu Trp Lys Leu Ile Glu Gly Gly Ala

610

615

620

His Ile Tyr Val Cys Gly Asp Ala Arg Asn Met Ala Arg Asp Val Gln

625

630

635

640

Asn Thr Phe Tyr Asp Ile Val Ala Glu Leu Gly Ala Met Glu His Ala

645

650

655

Gln Ala Val Asp Tyr Ile Lys Lys Leu Met Thr Lys Gly Arg Tyr Ser

660

665

670

Leu Asp Val Trp Ser

675

<210> 17

<211> 8537

<212> DNA

<213> Human cells

<400> 17

atggctgctt caggaatgtt attagtggcc ttgctggct gcctgactgt gatggctttg 60
 atgtctgttt ggcagcagag gaagagcaag gggaaagctgc ctccgggacc caccccatgg 120
 cccttcattt gaaactaccc tgcagctgaac acagagcaga tgtacaactc cctcatgaag 180
 atcagtgagc gctatggccc cgtgttcacc attcaattgg ggccccggcg ggtcgtggtg 240
 ctgtgtggac atgatgccgt caggaggct ctggtgacc aggctgagga gttcagcggg 300
 cgaggcgagc aagccaccc tgcactgggtc ttcaaaggct atggcgtggt attcagcaac 360
 ggggagcgcg ccaagcagct ccggcgcttc tccatcgcca ccctgcggga cttcgggtg 420
 ggcaagcgcg gcatcgagga ggcgcattccag gaggaggcgg gcttcctcat cgacgcctc 480

- 54 -

cggggcactg gcggcgccaa tatcgatccc acttcttcc ttagccgcac agtctccaaat 540
gtcatcagct ccattgtctt tggggaccgc tttgactata aggacaaaaga gttcctgtca 600
ctgttgcgca tgatgttagg aatcttccag ttcacgtcaa cctccacggg gcagctctat 660
gagatgttct ctgcgtgtat gaaacacacccg ccaggaccac agcaacacaggc ctttcagttg 720
ctgcaagggc tggaggactt catagccaag aaggtggagc acaaccagcg cacgctggat 780
cccaattccc cacgggactt cattgactcc tttctcatcc gcatgcagga ggaggagaag 840
aaccctaaca cgaggttcta ctgaaaaac ctgggtatga ccacgttcaa ccttcttatt 900
gggggcaccc agaccgtcag caccacccctg cgctatggct tcttgctgct catgaagcac 960
ccagaggtgg aggccaaggt coatgaggag attgacagag tgatcgccaa gaaccggcag 1020
cccaagtttg aggaccggc caagatgccc tacatggagg cagtgtatcca cgagatccaa 1080
agatttggag acgtatccc catgagtttgc gcccgcagag tcaaaaagga caccaagttt 1140
cgggattttct tcctccctaa gggcaccgaa gtgtacccta tgctgggctc tgtgctgaga 1200
gaccctcaggat tcttctccaa ccccccaggac ttcaatcccc agcacttccct gaatgagaag 1260
ggcagttta agaagagtga tgctttgtg ccctttccaa tcggaaagcg gaactgttcc 1320
ggagaaggcc tggccagaat ggagctctt ctcttcttca ccaccgtcat gcagaacttc 1380
cgccctcaagt cctcccaagtcc acctaaggac attgacgtgt cccccaacaa cgtgggctt 1440
gccacgatcc cacgaaacta caccatgagc ttccctcccc gctgagtcga cctgcagccc 1500
aagcttccgg tctagaataa attttgttta actttaagaa ggagatataa atatggctga 1560
ctcccacgtg gacaccagct ccaccgtgtc cgaggccgtg gccgaagaag tatctctttt 1620
cagcatgacg gacatgattc tggtttcgct catcggtggt ctcctaacct actggttccct 1680
cttcagaaag aaaaaagaag aagtccccga gttcacccaa attcagacat tgaccccttc 1740
tgtcagagag agcagcttgc tgaaaaagat gaagaaaacg gggaggaaca tcacgtgtt 1800
ctacggctcc cagacgggaa ctgcagagga gtttgcacac cgcctgtccaa aggacccca 1860
ccgctacggg atgcgaggca tgtcagcgga ccctgaggag tatgacctgg ccgacctgag 1920
cagcctgcca gagatcgaca acgcctggt ggtttctgc atggccacct acggtgagg 1980
agacccacc gacaatgccc aggacttcta cgactggctg caggagacag acgtggatct 2040
ctctgggtc aagttcgccg tggttggctc tggaaacaag acctacgagc acttcaatgc 2100
catgggcag aacgtggaca agcggctggc gcacgtcgcc gcccagcgca tctttgagct 2160
gggttgggc gacgacgtg ggaacttggc ggaggacttc atcacctggc gagagcagtt 2220
ctggccggcc gtgtgtgaac actttgggtt ggaagccact ggcgaggagt ccagcattcg 2280
ccagtgacg cttgtgtcc acaccgacat agatcgccaa aaggtgtaca tggggagat 2340
ggcccggtg aagagctacg agaaccagaa gcccccttt gatgccaaga atccgttccct 2400
ggctgcagtc accaccaacc ggaagctgaa ccagggaaacc gagcgcacc tcatgcaccc 2460
ggaattggac atctcgact cccaaatcag gtatgaatct ggggaccacg tggctgtgt 2520
cccagccaaac gactctgctc tcgtcaacca gctggccaa atccctgggtc ccgacctgg 2580
cgctgcgtatg tccctgaaca acctggatga ggagtccaaac aagaagcacc cattccctgt 2640
ccctacgtcc taccgcacgg ccctcaccta ctacctggac atcaccaacc cgccgcgtac 2700
caacgtgtc tacgagctgg cgcaagtacgc ctcggagccc tcggagcagg agctgctg 2760
caagatggcc tccctccctcg gcgaggccaa ggagctgtac ctgagctggg tgggtggaggc 2820

- 55 -

ccggaggcac atcctggcca tcctgcagga ctgcccgtcc ctgcggcccc ccatcgacca 2880
cctgtgtgag ctgctgccgc gcctgcaggg ccgctactac tccatcgctt catcctccaa 2940
gttccacccc aactctgtgc acatctgtgc ggtgggttg gagtacgaga ccaaggccgg 3000
ccgcatcaac aaggcgtgg ccaccaaactg gctgcgggccc aaggagcctg ccggggagaa 3060
cgccggccgt gcgctgtgc .ccatgttcgt ggcgaagtcc cagttccgccc tgcccttcaa 3120
gcccaccacg cctgtcatca tggtgggccc cggcaccggg gtggcaccct tcataaggctt 3180
catccaggag cgggcctggc tgcgacagca gggcaaggag gtgggggaga cgctgctgt 3240
ctacggctgc cgccgctcggt atgaggacta cctgtaccgg gaggacgtgg cgcaagttcca 3300
cagggacgggt ggcgtcaccc agctcaacgt ggccttctcc cgggagcagt cccacaaggt 3360
ctacgtccag cacctgctaa agcaagaccc agagcacctg tggaaagtga tcgaaggcgg 3420
tgcccacatc tacgtctgtg gggatgcacg gaacatggcc agggatgtgc agaacacctt 3480
ctacgacatc gtggctgagc tcggggccat ggagcacgccc caggcgggtgg actacatcaa 3540
gaaactgatg accaaggccc gctactccct ggacgtgtgg agctagaagc ttatcgatga 3600
taagctgtca aacatgagca gatctgagcc cgcctaattga gccccctttt ttttcagatc 3660
tgcttgaaga cgaaaggccc tcgtgatacg cctattttta taggttaatg tcatacgataat 3720
aatggttct tagcgtcaaa gcaaccatag tacgcgcctt gtagcggcgc attaagcgcg 3780
gcgggtgtgg tggtaacgccc cagcgtgacc gctacacttgc ccagcgcctt agcgcggcgt 3840
ccttcgctt tttcccttc ctttcgcgc acgttcgcgc gctttccccg tcaagctcta 3900
aatcgggggc tccctttagg gttccgattt agtgcatttac ggcacctcga cccccaaaaaaa 3960
cttgcatttgg gtgtatggttc acgtatgtggg ccatcgccct gatagacggt ttttcgcctt 4020
ttgacgttgg agtccacgtt cttaatagt ggactcttgc tccaaactgg aacaacactc 4080
aaccctatct cgggttatttcc ttttgcattt taaggatattt tgccgatttgc ggcctattgg 4140
ttaaaaaatg agctgcattt aaaaaattt aacgcgaatt ttaacaaaaat attaacgttt 4200
acaatttcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttgc tttattttc 4260
taaatacatt caaatatgtt tccgctcatg agacaataac cctgataaaat gcttcaataa 4320
tattgaaaaa ggaagagttt gaggatttca catttcgttgc tcgccttat tccctttttt 4380
gcggcatttt gccttcgtt ttttgcatttcc ccagaaacgc tggtaatggt aaaagatgt 4440
gaagatcagt tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc 4500
cttgcattttt ttcgcggcga agaacgtttt ccaatgttgc gcaactttaa agttctgtt 4560
tgtggcgcgg tattatccccg tggtaacgccc gggcaagagc aactcggtcg ccgcatacac 4620
tatttcgcattt atgacttgcgtt tgacttgcatttcc ccagtcacag aaaagcatct tacggatggc 4680
atgacagtaa gagaattatg cagtgcgttgc ataaccatgtt gtcataacac tgcggccaac 4740
ttacttcgttca caacgcatttttcc agggaccgttgc gagcttgcatttgc caacatgggg 4800
gatcatgttca ctcgcatttgc tcgttggaa ccggagcttgc atgaaaggccat accaaacgcac 4860
gagcgttgcatttcc ccacgttgc tgcgttgcatttgc gcaacaaactt gtcgcggccat attaactggc 4920
gaactacttca ctcttagtgc cccggcaacaa ttaatagact ggatggaggc ggataaagtt 4980
gcaggaccac ttctgcgttgc ggcccttccg gctgggttgc ttattgttgc taaatcttgc 5040
gccgggttgc gttgggttgc cgggttgcatttgc gtcgttgc ggcggatggc taagccctcc 5100
cgtatcgatc ttatcttgc gacggggatggc caggcaacttgc tggatgttgc aaatagacac 5160

- 56 -

atcgctgaga taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca 5220
tatatacttt agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc 5280
cttttgata atctcatgac caaaatccct taacgtgagt ttgcgttcca ctgagcgtca 5340
gaccggtagt aaaagatcaa aggatcttct tgagatcctt ttttctgct cgtaatctgc 5400
tgcttgcaaa caaaaaaaaaacc accgctacca gcgggtggttt gtttgcggaa tcaagagcta 5460
ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcctt 5520
ctagtgttagc cgttagttagg ccaccacttc aagaactctg tagcaccgc tacataacctc 5580
gctctgctaa tcctgttacc agtggctgct gccagtgccgataaagtcgtg tcttaccggg 5640
ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg 5700
tgcacacagc ccagcttggaa gcgaacgcacc tacaccgaac tgagataacct acagcgttag 5760
ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc 5820
agggtcggaa caggagagcg cacgaggggag cttccagggg gaaacgcctg gtatctttat 5880
agtctgtcg ggttcgcca cctctgactt gagcgtcgat ttttgtatcg tctgtcagg 5940
ggcggagcc tatggaaaaa cgccagcaac gcggcccttt tacggttcctt ggctttgc 6000
tggccttttgc ttcacatgtt ctttcctgctt tttccctg attctgtggta taaccgtatt 6060
accgccttttgc agttagtgcg taccgctcgcc cgccagccaa cgaccgagcg cagcgagtca 6120
gtgagcgagg aagcggaaaga gcgcctgtatcg cggtattttc tccttacgca tctgtgcgg 6180
atttcacacc gcatatatgg tgcactctca gtacaatctg ctctgatgcc gcatagttaa 6240
gccagtatac actccgctat cgctacgtga ctgggtcatg gctgcgcggc gacacccgccc 6300
aacacccgct gacgcgcctt gacgggcttgc tctgctcccg gcatccgcattt acagacaagc 6360
tgtgaccgtc tccggagact gcatgtgtca gaggtttca cctgtatcac cgaaacgcgc 6420
gaggcagaac gccatcaaaa ataattcgct tctggccttc ctgtagccag ctttcatcaa 6480
cattaaatgt gagcgagtaa caacccgtcg gattctccgtt gggAACAAAC ggccggattga 6540
ccgtaatggg ataggtaacg ttgggtgtaga tgggcgcattt gtaaccgtgc atctgccagt 6600
ttgaggggac gacgacagta tcggcctcgaa gaaatcgca ctccagccag cttccggca 6660
ccgcttctgg tgccggaaac caggcaaaagc gccattcgcc attcaggctg cgcaactgtt 6720
gggaaggcg atcggtgcgg gccttctcg tattacgca gctggcgaaa gggggatgtg 6780
ctgcaaggcg attaagttgg gtaacgccttgg ggtttccca gtcacgcgt tgtaaaacga 6840
cgccaggtgtatcg atccgtatc atggtcatag ctgtttctg tggaaatttgc ttatccgctc 6900
acaattccac acaacatacg agccggaaagc ataaagtgtaa aagcctgggg tgcctaatga 6960
gtgagctaac tcacattaat tgcgttgcgc tcactgcctt cttccagtc gggaaacctg 7020
tcgtgccagc tgcattaaatg aatcgccaa cgcgcgggaa gaggtgggttt gcttattttgg 7080
cgccaggggtt gttttctt tcaccagtgtatcg gacgggcaac agctgattgc ctttcaccgc 7140
ctggccctgtatcg gaggttgca gcaagcggtc cacgctggtt tgccccagca ggcggaaatc 7200
ctgtttgtatcg gtggtaacg gcgggatata acatgagctg tcttcggatcg tctgtatcc 7260
caactaccgag atatccgac caacgcgcag cccggactcg gtaatggcgc gcattgcgc 7320
cagcgccatc tgatcggttgg caaccagcat cgcagtgggaa acgatgcctt cattcagcat 7380
ttgcgtatggatcg tggtaaaac cggacatggc actccagtcg cttcccggtt ccgtatcg 7440
ctgaatttgc tgcgtatcg gatatttgcg ccagccagcc agacgcagac ggcggagac 7500

- 57 -

agaacttaat gggcccgcta acagcgcgat ttgctggta cccaatgcga ccagatgctc 7560
cacgcccagt cgcttaccgt ctcatggga gaaaataata ctgttcatgg gtgtctggtc 7620
agagacatca agaaataacg ccggAACATT agtgcaggca gcttccacag caatggcatc 7680
ctggcatcc agcggatagt taatgtacg cccactgacg cgttgcgcga gaagattgt 7740
caccggcgct ttacaggctt cgacgcccgt tcgttctacc atcgacacca ccacgctggc 7800
acccagttga tcggcgcgag attaatcgc cgcgacaatt tgcgacggcg cgtgcagggc 7860
cagactggag gtggcaacgc caatcagcaa cgactgttg cccggcagtt gttgtgccac 7920
gcgggtggga atgtaattca gtcggccat cgccgcttcc actttttccc gcgttttcgc 7980
agaaacgtgg ctggccttgtt tcaccacgcg ggaaacggtc tgataagaga caccggcata 8040
ctctgcgaca tcgtataacg ttactggttt cacattcacc accctgaatt gactctcttc 8100
cgggcgctat catgccatac cgcgaaagggt tttgcgccat tcgatggtgt cctggcacga 8160
cagggttccc gactgaaaag cgcccagtga ggcacacgcg attaatgtga gttagctcac 8220
tcattaggca cccccaggctt tacactttat gcttccggct cgtataatgt gtggaaattgt 8280
gagcggataa caatttcaca caggaaacag gatcgatcca tcgatgagct tactccccat 8340
ccccctgttg acaattaatc atcggctcgat ataatgtgtg gaattgttag cgataacaa 8400
tttacacacag gaaacaggat cagttactc cccatcccc tggacaat taatcatcg 8460
ctcgatataat gtgtgaaatt gtgagcggat aacaatttca cacaggaaac aggtccatc 8520
gatgcttagg aggtcat 8537

<210> 18
<211> 8492
<212> DNA
<213> Human cells

<400> 18
atggctcgtc aagttcattt ttcttggaaat ctggcccgag gccctttccc gcttccatc 60
atcgggaacc tcttcagggtt ggaatttgaag aatattccca agtccttcac ccgggttggcc 120
cagcgcttcg ggccgggttt cacgctgtac gtgggctcgc agcgcatggt ggtatgcac 180
ggctacaagg cggtgaagga agcgctgctg gactacaagg acgagttctc gggcagaggc 240
gaccccccg cggtccatgc gcacaggggac aggggaatca ttttaataa tggacctacc 300
tggaggaca tccggcggtt ttccctgacc accctccgga actatggat gggaaacag 360
ggcaatgaga gcccggatcca gagggaggcc cacttcctgc tggaaagcact caggaagacc 420
caaggccagc ctttcgaccc caccttcctc atcggctgctg cggccctgcaa cgtcatagcc 480
gacatcctct tccgcaagca ttttgcactac aatgtatgaga agtttctaag gctgtatgtat 540
ttgtttatg agaacttcca cctactcagc actccctggc tccagcttta caataatttt 600
cccagcttcc tacactactt gcctggaaagc cacagaaaag tcataaaaaaa tgtggctgaa 660
gtaaaagagt atgtgtctga aagggtgaag gagcaccatc aatctctgga ccccaactgt 720
ccccgggacc tcaccgactg cctgctcggt gaaatggaga agggaaagca cagtgcagag 780

cgcttgtaca caatggacgg tatkaccgtg actgtggccg acctgttctt tgccccggaca 840
gagaccacca gcacaactct gagatatggg ctcctgattc tcataaaaaa ccctgagatc 900
gaagagaagc tccatgaaga aattgacagg gtgattggc caagccaat ccctgccatc 960
aaggataggc aagagatgcc ctacatggat gctgtgtgc atgagattca gcggttcatc 1020
accctcgatc cctccaacct gccccatgaa gcaaccggag acaccatcc cagaggatac 1080
ctcatccccca agggcacagt cgttagtgcca actctggact ctgtttgtt tgacaaccaa 1140
gaatttcctg atccagaaaa gtttaagcca gaacacttcc tgaatgaaaa tggaaagtcc 1200
aagtacagtg actattcaa gccatccc acaggaaaac gagtgtgtc tggagaaggc 1260
ctggctcgca tggagttgtt tctttgtt tgcgcattt tgacgcattt taatttgaag 1320
cctctcgatc acccaaagga tatcgaccc agccctatac atattgggtt tggctgtatc 1380
ccaccacgtt acaaactctg tgcattccc cgctcatgag tgtgtggagg acaccctgaa 1440
ccccccgctt caaacaagct tccggcttag aaataattt gtttaacttt aagaaggaga 1500
tataaatatg gctgactccc acgtggacac cagctccacc gtgtccgagg cgggtggccga 1560
agaagtatct ctttcagca tgacggacat gattctgtt tgcgcattt tggtctccct 1620
aacctactgg ttccctttca gaaagaaaaa agaagaagtc cccgagttca ccaaaattca 1680
gacattgacc tcctctgtca gagagagcag ctgtggaa aagatgaaga aaacggggag 1740
gaacatcatc gtgttctacg gtcctccagac ggggactgca gaggagttt ccaaccgcct 1800
gtccaaggac gcccaccgct acgggatgcg aggcatgtca ggggaccctg aggagtatga 1860
cctggccgac ctgagcagcc tgccagagat cgacaacgccc ctgggtgtt tctgcattgc 1920
cacctacggt gaggagacc ccaccgacaa tgcccaggac ttctacgact ggctgcagga 1980
gacagacgtg gatctctctg gggtaagtt cgcgggttt ggtcttggaa acaagaccta 2040
cgagcacttc aatgccatgg gcaagtacgt ggacaacggg ctggagcagc tggcgccca 2100
gcfgatctt gagctgggt tggcgacga cgatggaaac ttggaggagg acttcatcac 2160
ctggcgagag cagttctggc cggccgtgt tgaacactt ggggtggaa ccaactggcga 2220
ggagtccagc attcgcctact acgagctt ggtccacacc gacatagatg cggccaagg 2280
gtacatgggg gagatggcc ggctgaagag ctacgagaac cagaagcccc cctttatgc 2340
caagaatccg ttccctggctg cagtcaccac caaccggaaat ctgaaccagg gaaccgagcg 2400
ccacctcatg cacctgaaat tggacatctc ggactccaaa atcaggtatg aatctgggg 2460
ccacgtggct gtgtacccag ccaacgactc tgcctcgatc aaccagctgg gcaaaatccct 2520
gggtgcccac ctggacgtcg tcatgtccct gaacaacctg gatgaggagt ccaacaagaa 2580
gcacccattc ccgtccctta cgtccctaccg cacggccctc acctactacc tggacatcac 2640
caacccggcc cgtaccaacg tgctgtacga gctggcgac tacgcctcg gggccctcg 2700
cgaggagctg ctgcgcaga tggccctctc ctccggcgag ggcaggagc tgcacccat 2760
ctgggtgggt gaggcccgaa ggcacatctc ggcacatctg caggactgcc cgtccctcg 2820
gccccccatc gaccacctgt gtgagctgt ggcgcgcctg caggcccgatc actactccat 2880
cgccctcatcc tccaaggatcc acggccactc tgcacatcc tgcgtgggtt ttgtggagta 2940
cgagaccaag gcccggccca tcaacaagggg cgtggccacc aactggctgc gggccaaagg 3000
gcctgcgggg gagaacggcg ggcgtgcgt ggtgcacatg ttcgtgcgc agtcccagtt 3060
ccgcctgcggcc ttcaaggcca ccacgcctgt catcatggt gggccggca cgggggtggc 3120

- 59 -

acccttcata ggcttcatcc aggagcgggc ctggctgcga cagcaggca aggaggtggg 3180
ggagacgctg ctgtactacg gctgccgccc ctcggatgag gactacctgt accgggagga 3240
cgtggcgcaag ttccacaggg acggtgcgct cacccagctc aacgtggcct tctccggga 3300
gcagtcccac aaggcttacg tccagcacct gctaaagcaa gaccgagagc acctgtggaa 3360
gttcatcgaa ggccgtgccc acatctacgt ctgtgggat gcacggaaca tggccaggga 3420
tgtcagaac accttctacg acatcgtggc tgagctcggg gccatggagc acgcgcaggc 3480
ggtggactac atcaagaaac ttagtgcacca gggccgctac tccctggacg tgtggagcta 3540
gaagcttatac gatgataagc tgtcaaacat gagcagatct gagcccgctt aatgagcggg 3600
ctttttttc agatctgctt gaagacgaaa gggcctcgtg atacgcctat ttttataaggt 3660
taatgtcatg ataataatgg tttcttagcg tcaaagcaac catag tacgc gccctgttagc 3720
ggcgcattaa gcgcggcggg tgggtgggtt acgcgcagcg tgaccgctac acttgcacgc 3780
gccctagcgc ccgcctcctt cgcttcttc ccttcctt tcgccccgtt cgccggctt 3840
ccccgtcaag ctctaaatcg ggggctccc tttagggtcc gatttagtgc tttacggcac 3900
ctcgacccca aaaaacttga tttgggtgat ggttcacgta gtggccatc gccctgatag 3960
acggttttc gcccttgcac gttggagtc acgttctta atagtgact cttgtccaa 4020
actggaacaa cactcaaccc tatctcgggc tattctttt atttataagg gattttgccc 4080
atttcggcctt attggtaaaa aaatgagctg atttaacaaa aatttaacgc gaattttAAC 4140
aaaatattaa cgtttacaat ttccaggtggc actttcggg gaaatgtgcg cggAACCCCT 4200
atttggttat ttttctaaat acattcaaattt atgtatccgc tcatgagaca ataaccctga 4260
taaatgcttc aataatattt aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc 4320
cttattccct ttttgcggc attttgcctt cctgttttg ctcacccaga aacgctggtg 4380
aaagtaaaag atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc 4440
aacagcggta agatccttga gagtttgcgc cccgaagaac gtttccaat gatgagact 4500
tttaaagttc tgctatgtgg cgccgttatta tcccgtgtt acgcccggca agagcaactc 4560
ggtcgcccga tacactattt tcagaatgac ttgggtgagt actcaccagt cacagaaaag 4620
catcttacgg atggcatgac agtaagagaa ttatgcagtgc tgccataac catgagtgtat 4680
aacactgcgg ccaacttact tctgacaacgc atcggaggac cgaaggagct aaccgctttt 4740
ttgcacaaca tggggatca tgtaactcgc cttgatcggtt gggAACCGGA gctgaatgaa 4800
gccataccaa acgacgagcg tgacaccacg atgcctgcag caatggcaac aacgctgcgc 4860
aaactattaa ctggcgaact acttactcta gcttccggc aacaattaat agactggatg 4920
gaggcggata aagttcagg accacttctg cgctcgcccc ttccggctgg ctggtttatt 4980
gctgataaat ctggagccgg tgagcgtggg tctcgccgtt tcattgcagc actggggcca 5040
gatggtaagc cctcccgat cgtatgttac tacacgacgg ggagtgcaggc aactatggat 5100
gaacgaaata gacagatcgc tgagataggt gcctcactga ttaagcattt gtaactgtca 5160
gaccaagttt actcatatat acttttagatt gattttaaac ttcattttta attttaaaagg 5220
atcttaggtga agatcctttt tgataatctc atgacaaaaa tcccttaacg tgagtttgc 5280
ttccactgag cgtcagaccc cgtagaaaaag atcaaaggat cttcttgaga tccctttttt 5340
ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc taccagcggc gttttgtttt 5400
ccggatcaag agctaccaac tcttttccg aaggtaactg gtttcagcagc agcgcagata 5460

- 60 -

ccaaatactg tccttctagt gtagccgtag ttaggccacc acttcaagaa ctctgttagca 5520
ccgcctacat acctcgctct gctaattcctg ttaccagtgg ctgctgccag tggcgataag 5580
tcgtgtctta ccgggttggc ctcagaacgca tagttaccgg ataaggcgca gcggtcgggc 5640
tgaacggggg gttcgtgcac acagcccagc ttggagcgaa cgacacctacac cgaactgaga 5700
tacctacagc gtgagctatg agaaagcgcc acgcttcccg aaggggagaaa ggcggacagg 5760
tatccggtaa gcggcagggt cggAACAGGA gagcgcacga gggagcttcc agggggaaac 5820
gcctggatc tttatagtcc tgccgggtt cggccacctct gacttgagcg tcgattttg 5880
tgatgctcgt cagggggcg gaggctatgg aaaaacgcca gcaacgcggc ctttttacgg 5940
ttcctggcct tttgctggcc ttttgcac atgttcttcc ctgcgttattc ccctgattct 6000
gtggataacc gtattaccgc ctttgagtga gctgataccg ctcgcccagc ccgaacgacc 6060
gagcgcagcg agtcagttag cggagaaagcg gaagagcgcc tgatgcggta ttttctcctt 6120
acgcacatctgt gcggatttc acaccgcata tatggtcac tctcagtaca atctgctctg 6180
atgcccgcata gttaaagccag tatacactcc gctatcgta cgtgactggg tcatggctgc 6240
gccccgcacac ccccaacac cccgtgacgc gcccgtacgg gcttgcgtc tcccgccatc 6300
cgcttacaga caagctgtga cccgtctccgg gagctgcatt tgtagcggat tttcacccgtc 6360
atcaccgaaa cgcgcgaggc agaacgcacat caaaaataat tcgcgtctgg ctttcctgtt 6420
gccagctttc atcaacatta aatgtgagcg agtaacaacc cgtcggttcc tccgtgggaa 6480
caaacggcgg attgaccgtt atgggatagg ttacgttggt gtagatgggc gcatcgtaac 6540
cgtgcacatctg ccagttttag gggacgacga cagtatcgcc ctcaggaaga tcgcactcca 6600
gccagctttc cggcacccgt tctgggtccg gaaaccaggc aaacgcacat tcgcccattca 6660
ggctgcgcaa ctgtgggaa gggcgatcg tgcgggcctc ttgcgttattt cggccagctgg 6720
cgaaagggggg atgtgtgcac aggcgattaa gttggtaac gccagggtt tcccgacttac 6780
gacgttgtaa aacgcacggcc agtgaatccg taatcatggt catagctgtt tcctgtgtga 6840
aattgttattc cgctcacaat tccacacaaac atacgagccg gaagcataaa gtgtaaagcc 6900
tgggtgcctt aatgtgagtg ctaactcaca ttaattgcgt tgctgcactt ccccgctttc 6960
cagtcgggaa acctgtcgat ccagctgcatt taatgaatcg gccaacgcgc ggggagaggc 7020
gtttgcgtt ttggcgcca ggggtgggtt tcttttccacc agtggagacgg gcaacagctg 7080
attgccttc accgcctggc cctgagagag ttgcagcaag cggccacgc tgggttgcctt 7140
cagcaggcga aaatccgtt tgatgggtt taacggcggg atataacatg agctgtcttc 7200
ggtagctcg tatccacta ccgagatatac cgcaccaac cgcagccgg actcggtaat 7260
ggcgcgcatt gcccacgcg ccatctgatc gttggcaacc agcatcgac tgggaacgat 7320
gccctcattt agcatttgcata tgggttgggtt aaaacccggac atggcactcc agtgccttc 7380
ccgttccgtt atccgtgaa ttgttgcgt agtggatata ttagccgc cagccagacg 7440
cagacgcgc gggacagaac ttaatgggcg cgttaacacgc gggatggctt ggtgacccaa 7500
tgcgaccaga tgctccacgc ccagtcgcgt accgtcttca tggggagaaaa taatactgtt 7560
gatgggtgtc tggcagaga catcaagaaa taacgcggc acattagtgc aggccagcttc 7620
cacagcaatg gcatccgtt catccagcg atagttatg atcagccac tgcgcgttg 7680
cgccgagaaga ttgtgcaccg ccgttttaca ggcttcgacg ccgttgcgtt ctaccatcga 7740
caccaccacg ctggcaccca gttgatcgcc gcgagattta atcgccgcga caatttgcga 7800

- 61 -

cggcgcgtgc agggccagac tggaggtggc aacgccaatc agcaacgact gtttgcggc 7860
cagttgtgt gccacgcgt tggaaatgtt attcagctcc gccatcgccg cttccactt 7920
ttcccgcgtt ttgcagaaa cgtggctggc ctggttcacc acgcggaaa cggctgtata 7980
agagacaccc gcataactctg cgacatcgta taacgttact ggtttcacat tcaccaccc 8040
gaattgactc tcttcgggc gctatcatgc cataccgcga aaggtttgc gccattcgat 8100
ggtgtcctgg cacgacaggt ttcccgaactg gaaagcgggc agtgagcgca acgcaattaa 8160
tgtgagttag ctcactcatt aggcacccca ggcttacac tttatgcttc cggctcgat 8220
aatgtgtgga attgtgagcg gataacaatt tcacacagga aacaggatcg atccatcgat 8280
gagtttactc cccatcccc tggtaataat taatcatcggt ctgtataat gtgtggaatt 8340
gtgagcggat aacaatttca cacaggaaac aggatcagct tactccccat cccctgttg 8400
acaattaatc atcggtcgat ataatgtgtg gaattgtgag cggataacaa tttcacacag 8460
gaaacaggat ccatcgatgc ttaggaggatc at 8492

<210> 19
<211> 8475
<212> DNA
<213> Human cells

<400> 19
atggctcgac aatcttctgg acgaggaaaaa ctccctcctg gccctactcc tctcccaagt 60
attggaaata tcctacagat agatattaag gatgtcagca aatcctaacc caatctctca 120
aaaatctatg gccctgtgtt cactctgtat tttggctgg aacgcattgtt ggtgctgcatt 180
ggatatgaag tggtaagga agccctgattt gatcttggag aggagtttc tggaaagaggc 240
catttccac tggctgaaag agctaacaga ggatttggaa tcgtttcag caatggaaag 300
agatggaagg agatccggcg tttctccctc atgacgtcgat ggaattttgg gatggggaaag 360
aggagcatttgg accaccgtgt tcaagaggaa gcccgtgcc ttgtggagga gttgagaaaa 420
accaaggctt caccctgtga tcccacttcc atcctggctt gtgtccctg caatgtgatc 480
tgctccattt tttccagaa acgtttcgat tataaaatgc agcaatttct taacttgatc 540
gaaaaatttga atgaaaacat caggattgtt agcaccctt ggttccagat atgcaataat 600
tttccacta tcattgatta tttcccgaaa acccataaca aattactttaa aaaccttgc 660
tttatggaaa gtgatattttt ggagaaaagta aaagaacacc aagaatcgat ggacatcaac 720
aacccctcgaaa actttattgtt ttgtccctg atcaaaaatgg agaaggaaaaa gcaaaaaccaa 780
cagtctgaat tcactattgtt aaacttggta atcactgcag ctgacttact tggagctggg 840
acagagacaa caagcacaac cctgagatattt gctctccctc tcctgtgaa gcacccagag 900
gtcacagcta aagtccagga agagattgaa cgtgtcggtt gcaaaaacccg gagccctgc 960
atgcaggaca gggccacat gccctacaca gatgtcggtt tgacgtcgat ccagagatac 1020
atcgacccatca tccccaccat cctgccccat gcagtgcacctt gtgacgtttaa attcagaaac 1080
tacctcatttcccaaggccac aaccatatta acttccctca cttctgtgtt acatgacaac 1140

aaagaatttc ccaacccaga gatgttgac cctcgtaact ttctggatga aggtggaaat 1200
tttaagaaaa gtaactactt catgccttc tcagcaggaa aacggatttgc tgtggagag 1260
ggcctggccc gcatggagct gttttatcc ctgaccttca ttttacagaa cttaaacctg 1320
aaatctctga ttgaccaaa ggaccttgc acaactcctg ttgtcaatgg atttgcttct 1380
gtccccccct tctatcagct gtgcatttca cctgtctgaa gaagcacaga tggctggaa 1440
gcttccggc tagaaaataat tttgttaac tttttaagg agatataaat atggctgact 1500
cccacgtgga caccagctcc accgtgtccg aggccgtggc cgaagaagta tctctttca 1560
gcatgacgga catgattctg ttttcgtca tcgtgggtct cctaacctac tggttcctct 1620
tcagaaagaa aaaagaagaa gtccccgagt tcaccaaaat tcagacatttgc accttccttg 1680
tcagagagag cagctttgtg gaaaagatga agaaaacggg gaggaacatc atcgtgttct 1740
acggctccca gacggggact gcagaggagt ttgccaacctg cctgtccaag gacggccacc 1800
gctacggat gcgaggcatg tcagcggacc ctgaggagta tgacctggcc gacctgagca 1860
gcctgccaga gatcgacaac gcccctgggg ttttctgtcat ggcacccatc ggtgagggag 1920
accccacccga caatgcccag gacttctacg actggctgca ggagacagac gtggatctct 1980
ctggggtcaa gttcggttg tttggcttg ggaacaagac ctacgagcac ttcaatgcca 2040
tgggcaagta cgtggacaag cggctggagc agctcggcgc ccagcgcacatc tttgagctgg 2100
ggttgggcga cgacgatggg aacttggagg aggacttcat cacctggcga gagcagttct 2160
ggccggccgt gtgtgaacac tttggggtgg aagccactgg cgaggagatcc agcattcgcc 2220
agtacgagct tttgggtccac accgacatag atgcggccaa ggtgtacatg ggggagatgg 2280
gcccggctgaa gagctacgag aaccagaagc ccccccggta tgccaaagat ccgttccctgg 2340
ctgcagtcac caccaacccg aagctgaacc agggaaaccga gcgccacccctc atgcacccctgg 2400
aattggacat ctggactcc aaaatcaggt atgaatctgg ggaccacgtg gctgtgtacc 2460
cagccaacga ctctgcttc gtcaaccaggc tggggcaaaat cctgggtgccc gacctggacg 2520
tcgtcatgtc cctgaacaac ctggatgagg agtccaacaa gaagcacccttca ttccctgtgccc 2580
ctacgtccta cccacccggc ctcacccactt acctggacat caccaaccccg cccgcgtacca 2640
acgtgctgta cgagctggcg cagttacgcctt cggagccctc ggagcaggag ctgctgcgc 2700
agatggcctc ctcctccggc gagggcaagg agtctgtacccctt gagctgggtg gtggaggccc 2760
ggaggcacat cctggccatc ctgcaggact gcccgtccctt gggggcccccc atcgaccacc 2820
tgtgtgagct gctggccgc ctcacccactt acctggacat caccaaccccg cccgcgtacca 2880
tccaccccaa ctctgtgcac atctgtgcgg tgggtgtggaa gtacgagacc aaggccggcc 2940
gcatcaacaa gggcggtggcc accaacttgc tgccggccaa ggagcctgccc ggggagaacg 3000
gcggccgtgc gctgggtgccc atgttgcgtc gcaagttccca gttccgccttcc ataggcttca 3060
ccaccacccgc ttttttttttgc gtcacccatc gtcacccatc gtcacccatc ataggcttca 3120
tccaggagcg ggcctggctg cgacagcagg gcaaggaggt gggggagacg ctgctgtact 3180
acggctggccg cccgtccggat gaggactacc ttttttttttgc gtcacccatc gtcacccatc 3240
gggacgggtgc gtcacccatc gtcacccatc gtcacccatc gtcacccatc ataggcttca 3300
acgtcccgat ctcacccatc gtcacccatc gtcacccatc gtcacccatc ataggcttca 3360
cccacatcta cgtctgtggg gatgcacccggat gtcacccatc gtcacccatc gtcacccatc 3420
acgacatctgt gtcacccatc gggggccatgg gtcacccatc gtcacccatc gtcacccatc 3480

- 63 -

aactgatgac caagggccgc tactccctgg acgtgtggag ctagaagctt atcgatgata 3540
agctgtcaaa catgagcaga tctgagcccg cctaattgagc gggctttttt ttcagatctg 3600
cttgaagacg aaagggcctc gtgatacgcc tattttata ggttaatgtc atgataataa 3660
tggtttctta gcgtcaaagc aaccatagta cgccgcctgt agcggcgcat taagcgcggc 3720
gggtgtggtg gttacgcgca gcgtgaccgc tacacttgcc agcgccttag cgcccgcctcc 3780
tttcgccttc ttcccttcct ttctcgccac gttcgcggc tttccccgtc aagctctaaa 3840
tcgggggctc cctttaggt tccgatttag tgcttacgg cacctcgacc ccaaaaaact 3900
tgatttgggt gatggttcac gtagtgggcc atcgccctga tagacggttt ttcgccttt 3960
gacgttggag tccacgttct ttaatagtgg acttttgttc caaactggaa caacactcaa 4020
ccctatctcg ggctattctt ttgatttata agggatttg ccgatttcgg cctattggtt 4080
aaaaaatgag ctgatttaac aaaaatttaa cgcaatttt aacaaaatat taacgtttac 4140
aatttcaggt ggcactttc gggaaatgt gcgcggaaacc cctatttgc tatttttcta 4200
aatacattca aatatgtatc cgctcatgag acaataaccc tgataaaatgc ttcaataata 4260
ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc gcccttattc cctttttgc 4320
ggcattttgc cttccgtttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga 4380
agatcagttg ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct 4440
tgagagtttt cgccccgaag aacgtttcc aatgatgagc acttttaaag ttctgctatg 4500
tggcgcggta ttatcccgta ttgacgcggc gcaagagcaa ctcggcgcgc gcatacacta 4560
ttctcagaat gacttggttt agtactcacc agtcacagaa aagcatctta cggatggcat 4620
gacagtaaga gaattatgca gtgctgccc aaccatgagt gataacactg cggccaactt 4680
acttctgaca acgatcgag gaccgaagga gctaaccgct ttttgcaca acatggggga 4740
tcatgttaact cgccttgatc gttgggaacc ggagctgaat gaagccatac caaacgacga 4800
gcgtgacacc acgatgcctg cagcaatggc aacaacgtt cgc当地actat taactggcga 4860
actacttact ctagcttccc ggcaacaatt aatagactgg atggaggcgg ataaagttgc 4920
aggaccactt ctgcgtcgg ccctccggc tggctggttt attgctgata aatctggagc 4980
cggtgagcgt gggctcgcg gtatcattgc agcaactggg ccagatggta agccctcccg 5040
tatctgtagtt atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat 5100
cgctgagata ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata 5160
tatacttttag attgatttaa aaccttattt ttaatttaaa aggtatctagg tgaagatcct 5220
ttttgataat ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga 5280
ccccgtagaa aagatcaaag gatcttcttg agatccctttt tttctgcgcg taatctgctg 5340
cttgc当地aca aaaaaaccac cgctaccagc ggtggtttgc ttgcggatc aagagctacc 5400
aactttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct 5460
agtgttagccg tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc 5520
tctgctaattc ctgttaccag tggctgctgc cagtgccat aagtcgtgtc ttaccgggtt 5580
ggactcaaga cgatagttac cggataaggc gcagcggcgt ggctgaacgg ggggttcgtg 5640
cacacagccc agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagct 5700
atgagaaagc gccacgccttc ccgaagggag aaaggcggac aggtatccgg taagcggcag 5760
ggtcggaaaca ggagagcgcga cgagggagct tccaggggaa aacgcctgggt atctttatag 5820

- 64 -

tcctgtcgccgg tttcgccacc tctgacttga gcgtcgattt ttgtgtatgc cgtcagggggg 5880
gcggagccta tgaaaaaaacg ccagcaacgc ggcctttta cggttccctgg cctttgctg 5940
gccttttgct cacatgttct ttcttgcgtt atcccctgat tctgtggata accgtattac 6000
cgcccttgag ttagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtca 6060
gagcgaggaa gcggaagagc gcctgatgcg gtatcccctc cttacgcata tgtgcggat 6120
ttcacaccgc atatatggt cactctca 6180
cagttacac tccgctatcg ctacgtgact gggtcatggc tgccccccga caccgc 6240
caccgcgtga cgcgcctga cgggcttgc tgctccggc atccgc 6300
tgaccgtctc cggagactgc atgtgtcaga gttttcacc gtcatcaccg aaacgcgc 6360
ggcagaacgc cataaaaat aattcgcgtc tggccttcct gtagccagct ttcatcaaca 6420
ttaaatgtga gcgagtaaca acccgctgga ttctccgtgg gaacaaacgg cggattgacc 6480
gtaatggat aggttacgtt ggttagatg ggcgc 6540
gaggggacga cgacagtatc ggctcagga agatcgact ccagccagct ttccggcacc 6600
gcttctggc cggaaaacca ggcaaagcgc cattcgccat tcaggctgcg caactgttgg 6660
gaagggc 6720
gcaaggc 6780
gccagtgaat ccgtaatcat ggtcatagct gtttctgtg taaaattgtt atccgc 6840
aattccacac aacatacgag cggaaagcat aaagtgtaaa gcctgggtg cctaattgagt 6900
gagctaactc acattaattt cgttgcgtc actgcccgtt ttccagtgcg gaaacctgtc 6960
gtgccagctg catatgaa tcggccaacg cgcggggaga ggccgttgc gtattggcg 7020
ccagggttgt tttctttc accagtgaga cggcaacag ctgattgccc ttccggc 7080
ggccctgaga gagttgcagc aagcggtcca cgctggtttgc ccccagcagg cgaaaatcct 7140
gtttgatggt ggttaacggc gggatataac atgagctgtc ttccgtatcg tcgtatccca 7200
ctaccgagat atccgcacca acgcgcagcc cggactcggt aatggcgcgc attgc 7260
gcccgc 7320
gcatggtttgc ttggaaaacccg gacatggcac tccagtcg 7380
gaatttgatt gcgagtgaga tattatgccc agccagccag acgcagacgc gcccggac 7440
aacttaatgg gcccgc 7500
cgcccagtcg cgtaccgtct tcattggaga aaataatact gttgatgggt gtctggc 7560
agacatcaag aaataacgc ggaacattag tgcaggc 7620
ggtcattccag cggatagttt atgatcagcc cactgacgcg ttgcgcgaga agattgtc 7680
ccggcgc 7740
ccaggcttcg acggcgttc gttctaccat cgacaccacc acgctggc 7800
ccagggtatc ggcgc 7860
gactggaggt ggcaacgc 7920
ggttggaaat gtaattcagc tccgccc 7980
aaacgtggct ggcctgg 8040
ctgcgc 8100
ggcgctatca tgcataccg cgaaagg 8160

- 65 -

attaggcacc ccaggctta cacttatgc ttccggctcg tataatgtgt ggaattgtga 8220
gcggataaca atttcacaca ggaaacagga tcgatccatc gatgagctta ctccccatcc 8280
ccctgttgcac aattaatcat cggtcgat aatgtgttga attgtgagcg gataacaatt 8340
tcacacagga aacaggatca gcttactccc catccccctg ttgacaattt atcatcgct 8400
cgatataatgt gtggatttgt gagcggataa caatttcaca cagggaaacag gatccatcga 8460
tgcttaggag gtcat 8475

<210> 20

<211> 1215

<212> DNA

<213> Human cells

<220>

<221> CDS

<222> (1)...(1212)

<400> 20

atg act gcg aca gtc gct tcg aca agt ctg ttc acc acc gcc gac cac 48
Met Thr Ala Thr Val Ala Ser Thr Ser Leu Phe Thr Thr Ala Asp His
1 5 10 15

tac cac act ccg ttg ggt ccc gac ggc acg cca cac gca ttc ttc gag 96
Tyr His Thr Pro Leu Gly Pro Asp Gly Thr Pro His Ala Phe Phe Glu
20 25 30

gcg ttg cgc gac gag gcg gag acc acc cct att gga tgg agt gag gcc 144
Ala Leu Arg Asp Glu Ala Glu Thr Thr Pro Ile Gly Trp Ser Glu Ala
35 40 45

tac ggt ggc cac tgg gta gtt gcc gga tac aag gag att cag gct gtc 192
Tyr Gly Gly His Trp Val Val Ala Gly Tyr Lys Glu Ile Gln Ala Val
50 55 60

atc cag aac acc aag gcc ttc tcg aac aag ggc gtg acc ttc cct cgc 240
Ile Gln Asn Thr Lys Ala Phe Ser Asn Lys Gly Val Thr Phe Pro Arg
65 70 75 80

tac gaa acc ggc gag ttc gag ctc atg atg gca ggg cag gac gac ccc 288

- 66 -

Tyr Glu Thr Gly Glu Phe Glu Leu Met Met Ala Gly Gln Asp Asp Pro			
85	90	95	
gtc cac aag aag tac cgc cag ctc gtg gcg aaa ccg ttc tcg ccg gag	336		
Val His Lys Lys Tyr Arg Gln Leu Val Ala Lys Pro Phe Ser Pro Glu			
100	105	110	
gcg acc gac ctg ttc acc gaa cag ttg cgc cag tcc acc aac gac ctg	384		
Ala Thr Asp Leu Phe Thr Glu Gln Leu Arg Gln Ser Thr Asn Asp Leu			
115	120	125	
atc gac gcg cgg atc gaa ctc gga gag ggt gac gct gcc acc tgg tta	432		
Ile Asp Ala Arg Ile Glu Leu Gly Glu Gly Asp Ala Ala Thr Trp Leu			
130	135	140	
gcc aac gag att cct gct cgg cta acg gcc atc ctc ctc ggc ctt ccg	480		
Ala Asn Glu Ile Pro Ala Arg Leu Thr Ala Ile Leu Leu Gly Leu Pro			
145	150	155	160
ccc gaa gac gga gac acc tac cgc cgg tgg gtg tgg gcc atc acg cac	528		
Pro Glu Asp Gly Asp Thr Tyr Arg Arg Trp Val Trp Ala Ile Thr His			
165	170	175	
gta gag aac ccg gag gaa ggc gcc gaa att ttc gcc gaa ctt gtg gcg	576		
Val Glu Asn Pro Glu Glu Gly Ala Glu Ile Phe Ala Glu Leu Val Ala			
180	185	190	
cac gcg cgc act ctg atc gcc gag cgc cgc act aac cca ggc aac gac	624		
His Ala Arg Thr Leu Ile Ala Glu Arg Arg Thr Asn Pro Gly Asn Asp			
195	200	205	
atc atg tct cgg gtc atc atg tcc aag atc gac ggt gaa agc ctc tcc	672		
Ile Met Ser Arg Val Ile Met Ser Lys Ile Asp Gly Glu Ser Leu Ser			
210	215	220	
gag gac gac ctg atc gga ttc ttc acc atc ctg ctt ctc ggc ggc atc	720		
Glu Asp Asp Leu Ile Gly Phe Phe Thr Ile Leu Leu Gly Gly Ile			
225	230	235	240

- 67 -

gac aac acc gca cgc ttc ctc agc tcg gtg ttc tgg cgc ttg gcg tgg 768
 Asp Asn Thr Ala Arg Phe Leu Ser Ser Val Phe Trp Arg Leu Ala Trp
 245 250 255

gac atc gag ctc cgc cgc cga ctc atc gcc cac ccc gag ctt atc ccc 816
 Asp Ile Glu Leu Arg Arg Arg Leu Ile Ala His Pro Glu Leu Ile Pro
 260 265 270

aac gcc gta gac gaa ctg ctc cgc ttc tac ggc ccc gcc atg gtc ggc 864
 Asn Ala Val Asp Glu Leu Leu Arg Phe Tyr Gly Pro Ala Met Val Gly
 275 280 285

cgc ctc gtc acc caa gag gtc acc gtg ggc gac atc aca atg aag cca 912
 Arg Leu Val Thr Gln Glu Val Thr Val Gly Asp Ile Thr Met Lys Pro
 290 295 300

ggc caa acg gcc atg ctg tgg ttc ccg atc gcc agc cgg gat cgt tcg 960
 Gly Gln Thr Ala Met Leu Trp Phe Pro Ile Ala Ser Arg Asp Arg Ser
 305 310 315 320

gca ttc gat tca ccc gac aac atc gtg atc gaa cgc acg ccc aac cgg 1008
 Ala Phe Asp Ser Pro Asp Asn Ile Val Ile Glu Arg Thr Pro Asn Arg
 325 330 335

cac ctg tct ctc ggc cac ggc atc cac cgc tgc ctc gga gcc cac ctg 1056
 His Leu Ser Leu Gly His Gly Ile His Arg Cys Leu Gly Ala His Leu
 340 345 350

atc cgc gtc gag gcc cgc gtg gcg atc acc gag ttc ctc aag cgc att 1104
 Ile Arg Val Glu Ala Arg Val Ala Ile Thr Glu Phe Leu Lys Arg Ile
 355 360 365

ccg gag ttc tcc ctc gac ccg aac aag gaa tgt gag tgg tta atg ggc 1152
 Pro Glu Phe Ser Leu Asp Pro Asn Lys Glu Cys Glu Trp Leu Met Gly
 370 375 380

cag gtg gcc ggc atg ctg cac gtg ccg atc atc ttc cct aag ggc aag 1200
 Gln Val Ala Gly Met Leu His Val Pro Ile Ile Phe Pro Lys Gly Lys
 385 390 395 400

- 68 -

cga ctg tcg gaa tga 1215

Arg Leu Ser Glu

<210> 21

<211> 404

<212> PRT

<213> Human cells

<400> 21

Met Thr Ala Thr Val Ala Ser Thr Ser Leu Phe Thr Thr Ala Asp His

1

5

10

15

Tyr His Thr Pro Leu Gly Pro Asp Gly Thr Pro His Ala Phe Phe Glu

20

25

30

Ala Leu Arg Asp Glu Ala Glu Thr Thr Pro Ile Gly Trp Ser Glu Ala

35

40

45

Tyr Gly Gly His Trp Val Val Ala Gly Tyr Lys Glu Ile Gln Ala Val

50

55

60

Ile Gln Asn Thr Lys Ala Phe Ser Asn Lys Gly Val Thr Phe Pro Arg

65

70

75

80

Tyr Glu Thr Gly Glu Phe Glu Leu Met Met Ala Gly Gln Asp Asp Pro

85

90

95

Val His Lys Lys Tyr Arg Gln Leu Val Ala Lys Pro Phe Ser Pro Glu

100

105

110

Ala Thr Asp Leu Phe Thr Glu Gln Leu Arg Gln Ser Thr Asn Asp Leu

115

120

125

Ile Asp Ala Arg Ile Glu Leu Gly Glu Gly Asp Ala Ala Thr Trp Leu

130

135

140

Ala Asn Glu Ile Pro Ala Arg Leu Thr Ala Ile Leu Leu Gly Leu Pro

- 69 -

145	150	155	160
Pro Glu Asp Gly Asp Thr Tyr Arg Arg Trp Val Trp Ala Ile Thr His			
165	170	175	
Val Glu Asn Pro Glu Glu Gly Ala Glu Ile Phe Ala Glu Leu Val Ala			
180	185	190	
His Ala Arg Thr Leu Ile Ala Glu Arg Arg Thr Asn Pro Gly Asn Asp			
195	200	205	
Ile Met Ser Arg Val Ile Met Ser Lys Ile Asp Gly Glu Ser Leu Ser			
210	215	220	
Glu Asp Asp Leu Ile Gly Phe Phe Thr Ile Leu Leu Leu Gly Gly Ile			
225	230	235	240
Asp Asn Thr Ala Arg Phe Leu Ser Ser Val Phe Trp Arg Leu Ala Trp			
245	250	255	
Asp Ile Glu Leu Arg Arg Leu Ile Ala His Pro Glu Leu Ile Pro			
260	265	270	
Asn Ala Val Asp Glu Leu Leu Arg Phe Tyr Gly Pro Ala Met Val Gly			
275	280	285	
Arg Leu Val Thr Gln Glu Val Thr Val Gly Asp Ile Thr Met Lys Pro			
290	295	300	
Gly Gln Thr Ala Met Leu Trp Phe Pro Ile Ala Ser Arg Asp Arg Ser			
305	310	315	320
Ala Phe Asp Ser Pro Asp Asn Ile Val Ile Glu Arg Thr Pro Asn Arg			
325	330	335	
His Leu Ser Leu Gly His Gly Ile His Arg Cys Leu Gly Ala His Leu			
340	345	350	
Ile Arg Val Glu Ala Arg Val Ala Ile Thr Glu Phe Leu Lys Arg Ile			

- 70 -

355

360

365

Pro Glu Phe Ser Leu Asp Pro Asn Lys Glu Cys Glu Trp Leu Met Gly
370 375 380

Gln Val Ala Gly Met Leu His Val Pro Ile Ile Phe Pro Lys Gly Lys
385 390 395 400

Arg Leu Ser Glu

<210> 23

<211> 154

<212> PRT

<213> Human cells

<400> 23

Met Asn Ala Leu Ile Leu Tyr Gly Thr Glu Thr Gly Asn Ala Glu Ala
1 5 10 15

Cys Ala Thr Thr Ile Ser Gln Val Leu Ala Asp Thr Val Asp Thr Lys
20 25 30

Val His Asp Leu Ala Asp Met Thr Pro Arg Ala Met Leu Asp Ser Gly
35 40 45

Ala Asp Leu Ile Val Phe Ala Thr Ala Thr Tyr Gly Glu Gly Glu Phe
50 55 60

Ala Gly Gly Gly Ala Ala Phe Phe Glu Thr Leu Arg Glu Thr Lys Pro
65 70 75 80

Asp Leu Ser Gly Leu Arg Phe Ala Val Phe Gly Leu Gly Asp Ser Tyr
85 90 95

Tyr Thr Thr Phe Asn Gln Ala Gly Ala Thr Ala Ala Thr Ile Leu Ala
100 105 110

- 71 -

Ser Leu Gly Gly Thr Gln Val Gly Asp Thr Ala Arg His Asp Thr Ser

115

120

125

Ser Gly Asp Asp Pro Glu Glu Thr Ala Glu Glu Trp Ala Arg Glu Ile

130

135

140

Leu Thr Ala Leu Ala Thr Pro Ala Val Ser

145

150

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU00/00966

A. CLASSIFICATION OF SUBJECT MATTER		
Int. Cl. ?: C12N 15/53, 15/63		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) IPC (WPID) AND CHEMICAL ABSTRACTS. KEYWORDS BELOW		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched MEDLINE. KEYWORDS BELOW		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPID, Medline, Chemical Abstracts. Keywords: cytochrome p450 p-450 p4502a6 p4502e1 p4502c19 cyp2a6 cyp2e1 cyp2c19 colour color dye pigment stain indole		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	AU 29560/92 (KYOWA HAKKO KOGYO CO., LTD.) 5 October 1993	15-24
X	Eur. J. Biochem., 1996, vol. 239, Munro et al., "Probing electron transfer in flavocytochrome P-450 BM3 and its component domains", pages 403-9	52-61
P,X	FEBS Letters, 1999, vol. 461, Shimada et al., "Expression of chimeric P450 genes encoding flavonoid-3',5'-hydroxylase in transgenic tobacco and petunia plants", pages 241-245	15-24
<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C		<input checked="" type="checkbox"/> See patent family annex
<p>* Special categories of cited documents:</p> <p>"A" document defining the general state of the art which is not considered to be of particular relevance</p> <p>"E" earlier application or patent but published on or after the international filing date</p> <p>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</p> <p>"O" document referring to an oral disclosure, use, exhibition or other means</p> <p>"P" document published prior to the international filing date but later than the priority date claimed</p> <p>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</p> <p>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</p> <p>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</p> <p>"&" document member of the same patent family</p>		
Date of the actual completion of the international search 5 October 2000	Date of mailing of the international search report 10 OCT 2000	
Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA E-mail address: pct@ipaaustralia.gov.au Facsimile No. (02) 6285 3929	Authorized officer CHRISTOPHER LUTON Telephone No : (02) 6283 2256	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU00/00966

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Drug Metabolism and Drug Interactions, 1995, vol. 12, no. 3-4, Holton, "Modification of flower colour via manipulation of P450 gene expression in transgenic plants", pages 359-368	15-24
X	Nature, 1993, vol. 366, Holton <i>et al.</i> , "Cloning and expression of cytochrome P450 genes controlling flower colour", pages 276-9	15-24
X	EP 0522880 (INTERNATIONAL FLOWER DEVELOPMENTS PTY. LTD.) 13 January 1993	15-24
X	Proc. Natl. Acad. Sci. USA, January 1999, vol. 96, Vetten <i>et al.</i> , "A cytochrome b5 is required for full activity of flavonoid 3',5'-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors", pages 778-83	15-24

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU00/00966

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos : because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos : 1-14, 25-48 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
These claims do not define the matter for which protection is sought in terms limited by the technical features of the invention.

3. Claims Nos : because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/AU00/00966

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report		Patent Family Member	
AU	29560/92	EP	632128
		US	6114601
		WO	93/18155
EP	522880	AU	19530/92
		AU	22733/92
		AU	67895/94
		CA	2112373
		CA	2163220
		EP	703982
		JP	6500239
		JP	8511683
		JP	2000023686
		US	5349125
		US	5569832
		US	5861487
		US	5948955
		WO	93/01290
		WO	94/28140

END OF ANNEX