MATH-338 Midterm 2 Cheat Sheet

THEORY

Day 14: probability density function is represented an integral with function f(x). Our probability lies within the curve and is always 1. Density curve \rightarrow bell curve. Z-Score allows us to have a universal standard for density curves with different scales. They are directly proportional to the standard deviation and the delta from the mean of the graph.

Day 15: unimodal: one hump, bimodal: two humps. Mean is resistant whereas the mean is subject to change. Density curves decay to histograms (integral → to Reimann Sum). Whisker plots are an effective method to determine if a data set contains outliers (data points not belonging to the sample set). Left skew: long left tail. Sloping \rightarrow . Right skew: long right tail. Sloping \leftarrow

Day 16: error: since there is some error while taking sample data, we do allow for some buffer. We also do not measure exact but to a tolerance which is influenced by the buffer above. Central Limit Theorem: when population size is "large enough" \bar{x} is an approximation. Higher skew and outliers suggest a larger

Day 18: As $n \uparrow$, $SEM \downarrow$.

Day 19: H₁: $\mu < \mu_0 \leftarrow$ left side. H₁: $\mu \neq \mu_0 \leftarrow$ n σ on both side but no middle. H₁: $\mu > \mu_0 \leftarrow$ lower.tail = TRUE. Population distribution normality \Longrightarrow sample population distribution normality. Matched pairs design:

Day 20: Two Independent Samples t-Test: two unrelated treatments into one numerical response variable measured in two independent groups. Two different μ_1 and μ_2 . NHST approach; identify μ_i

FORMULAS

• $\sqcap = width \times \frac{1}{width}$ (finite curve)

• $Z = \frac{x-\mu}{\sigma}$ (z-score) • $X \sim N(\mu, \sigma)$

• $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$

• $SEM = \frac{s}{\sqrt{n}}$

• $t = \frac{\bar{X} - \mu}{\frac{\bar{S}}{\sqrt{n}}}$

 $\frac{\frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}} \sim t(K) \text{ [NHST]}$

• df = n - 1

• $IQR = Q_3 - Q_1$

• K = 1.5

• Lower fence: $Q_1 - K \times IQR$

• Upper fence: $Q_3 + K \times IQR$

• $t = \frac{\Delta \bar{x} - \Delta \mu}{\Lambda}$

FRAMEWORK FLOW CHART

NPHT

Parameter is μ [population mean]. $\mu_0 = \mu_1$

• \bar{X} is sample mean. Under CLT, normal distribution at μ_0 for H_0 and μ_1 for H_1 .

• We accept H_0 if \underline{not} in CR.

N-P Power Analysis

• Define parameter and its value under H_0 and H_1

Define a test statistic and its sampling distribution under both hypothe-

• Use α to compute critical region

Compute power and compare to 80

One-Sample T-Statistic [NP]

• If $t_{observed}$ in CR, then accept H_1 : $\mu = \mu_1$. Else accept H_0 : $\mu = \mu_0$

Two-Tailed Test

· Take the upper and lower limit of the curve and the significance level (α) is the cut off point of being $statistically \ significant.$ Treat as critical region. If in CR, then accept \bar{H}_1 . Else accept H_0 .

NHST

Define a parameter and it's value under H_0 .

Define an interval representing an inequality

Define a test statistic and its sampling distrubution under H₀

Compute p-value. P-Value \leq sig level \implies reject H_0 & accept H_1 . P-Value > sig level \implies reject H_0 & acceptable > sig level \implies fail to reject H_0 . Can only be >, $< \neq$. Two-Sided Test

· Neyman-Pearson

Critical region is $\frac{1}{2}$ left tail and $\frac{1}{2}$ right tail of sampling distribution under H_0 . Power will \downarrow .

• NHST

• Find the "one-sided" p-value and double it.

Matched Pairs t-Test

· Paired subjects receives their respective treatment or an individual gets two treatments. Also a subset of block design.

• H_0 : $\mu_d = 0$ (no difference) and H_a : $\mu_d \neq 0$ (difference).

Requirements: large population, normal distribution, σ is unknown.