Foundations of representation theory 3. exercise sheet

Jendik Stelzner

October 30, 2013

Exercise 9:

Exercise 10:

Exercise 11:

Exercise 12:

Let K be a field with $\mathrm{char}(K)=0$ and (V,ϕ_1,ϕ_2) is a 2-module such that $V\neq 0$ and $[\phi_1,\phi_2]=1$. Assume that V is finite-dimensional. Because $V\neq 0$ we know that $n:=\dim V\geq 1$. Let v_1,\ldots,v_n be a Basis von V and Φ_1 and Φ_2 the coordinate matrix of ϕ_1,ϕ_2 with respect to the basis v_1,\ldots,v_n respectively. Because $[\phi_1,\phi_2]=1$ we find that $\Phi_1\Phi_2-\Phi_2\Phi_1=I_n$. It follows, that

$$0=\operatorname{tr}\Phi_1\operatorname{tr}\Phi_2-\operatorname{tr}\Phi_2\operatorname{tr}\Phi_1=\operatorname{tr}(\Phi_1\Phi_2-\Phi_2\Phi_1)=\operatorname{tr}I_n=n\cdot 1\neq 0.$$

This shows that (V, ϕ_1, ϕ_2) must be finite dimensional. (We know that such a module exists, because $(K[T], T\cdot, \frac{d}{dT})$ is one.)