When N = 32

- If we use the two's complement method
 - 0000 0000 0000 0000 0000 0000 0000 = 0
 - 0000 0000 0000 0000 0000 0000 0001 = +1

 - •
 - 0111 1111 1111 1111 1111 1111 1110 = +2,147,483,646

 - 1000 0000 0000 0000 0000 0000 0000 = -2,147,483,648
 - 1000 0000 0000 0000 0000 0000 0001 = -2,147,483,647
 - 1000 0000 0000 0000 0000 0000 0010 = -2,147,483,646
 - •

 - 1111 1111 1111 1111 1111 1111 1110 = -2

Addition

- We are quite familiar with adding two numbers in decimal
 - What about adding two binary numbers?
- If we use the two's complement method to represent binary numbers, addition can be done in a straightforward way

Suppose:

N=8

a = 20

b = 30

What is result and carry out?

Addition

- N=8, a=20, b=30
- Do binary addition to get result and carryout
- Convert A and B to binary? How?
 - $a=20=4+16=2^2+2^4=> a is 0001 0100b$
 - $b=30=16+8+4+2=2^4+2^3+2^2+2^1 = b$ is 0001 1110b

NOTE: N=8 in this example

0001 0100b + 0001 1110b -----0 0011 0010b

Addition

- N=8, a=80, b=50
- Do binary addition to get result and carryout
- Convert A and B to binary? How?
 - $A=80=64+16=2^6+2^4=> a is 0101 0000b$
 - $b=50=32+16+2=2^5+4^3+2^1 => b$ is 0011 0010b

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Overflow

- Because we use a limited number of digits to represent a number, the result of an operation may not fit
- No overflow when result remains in expected range
 - We add two numbers with different signs
 - We subtract a number from another number with the same sign
- When can overflow happen?

<u>a</u>	<u>b</u>	<u>overflow possible?</u>
+	+	yes
+	-	no
-	+	no
-	-	yes

Overflow

- What is special about the cases where overflow happened?
 - The input values signs are the same; so, can go outside range
- Overflow detection
 - Adding two positive numbers yields a negative number
 - Adding two negative numbers yields a positive number

Overflow

- Can detect by inspecting sign bits of inputs and output
- Alternatively, can also detect by watching "carries"

```
1110 000x (carries from previous bit add)
0101 0000 a
+ 0011 0010 b
------
0 1000 0010
```

Notice the carry into sign bit is different than the final carryout When carry into sign bit doesn't equal carryout implies overflow

What happens on overflow?

- The CPU can
 - Generate an exception (what is an exception?)
 - Set a flag in the status register (what is the status register?)
 - Do nothing
- Languages may have different notions about overflow
- Do we have overflows in the case of unsigned, always positive numbers?
 - Example: addu, addiu, subu

MIPS example

- I looked at the MIPS32 instruction set manual
- ADD, ADDI instructions generate an exception on overflow
- ADDU, ADDIU are silent

```
li $t0,0x40000000 MARS give error
add $t1,$t0,$t0

li $t0,0x40000000 MARS doesn't give error
$t1=0x80000000
addu $t1,$t0,$t0
```

Subtraction

- We know how to add
- We know how to negate a number
- We will use the above two known operations to perform subtraction
- A B = A + (-B)
- The hardware used for addition can be extended to handle subtraction!

Subtraction

- N=8, a=90, b=20
- Do binary subtraction (A+(-B)) to get result and carryout
- Convert A and B to binary? How?
 - a=90 is 0101 1010b
 - b=20 is 0001 0100b

Now, add a 0101 1010b + 1110 1100b -----1 0100 0110b

CS/CoE0447: Computer Organization and Assembly Language

- We will look at a single-bit adder
 - Will build on this adder to design a 32-bit adder
- 3 inputs
 - A: 1st input
 - B: 2nd input
 - C_{in}: carry input
- 2 outputs
 - S: sum
 - C_{out}: carry out

• What are the binary addition rules?

•
$$0 + 0 = 0$$
, Cout = 0

•
$$0 + 1 = 1$$
, Cout = 0

•
$$1 + 0 = 1$$
, Cout = 0

• 1 + 1 = 0, Cout = 1

Output Values

A	В	S	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

What about Cin?

A	В	Cin	S	Cout
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

What about Cin?

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- An N-bit adder can be constructed with N single-bit adders
 - A carry out generated in a stage is propagated to the next ("ripple-carry adder"
- 3 inputs
 - A: N-bit, 1st input
 - B: N-bit, 2nd input
 - C_{in}: carry input
- 2 outputs
 - S: N-bit sum
 - C_{out}: carry out

N-bit ripple-carry adder

