Лабораторная работа Изучение IPv4 адресации

Задачи

Часть 1. Определение IP-адреса сети по известному IPv4-адресу и маске

Часть 2. Расчет параметров подсетей по IPv4-адресу

Общие сведения

Умение определять параметры сети, используя известный IP-адрес узла и маску подсети, важно для понимания принципов работы IPv4-сетей.

Часть 1. Определение подсетей по IPv4-адресу

В этой части необходимо определить IPv4-адрес сети, а также число узлов, зная IPv4-адрес узла и маску подсети.

Чтобы определить IPv4-адрес сети, необходимо выполнить побитовую операцию **И** над IPv4-адресом узла и маской подсети.

Примечание. Если октет маски подсети имеет десятичное значение **255**, результатом побитовой операции **И** над этим октетом маски и IPv4-адреса будет **исходное значение** октета IPv4-адреса. Если октет маски подсети имеет десятичное значение **0**, результатом побитовой операции **И** над этим октетом маски и IPv4-адреса будет **0**.

Пример.

ІР-адрес узла	192.168.21.17
Маска подсети	255.255.255.0
Ответ	192.168.21.0

Зная это, следует выполнять побитовую операцию **И** только над теми октетами, значения которых в маске подсети отличны от 0 или 255.

Пример.

IP-адрес узла 172.40.209.45 Маска подсети 255.255.128.0

Можно увидеть, что выполнять побитовую операцию **И** необходимо только над третьим октетом. При такой маске подсети в первых двух октетах будет результат 172.40, а в четвертом — 0.

IP-адрес узла172.40.209.45Маска подсети255.255.128.0Ответ172.40.?.0

Выполним побитовую операцию И над третьим октетом.

Десятичное	Двоичное
209	11010001
128	10000000
Ответ (128)	10000000

Получим следующий результат:

IP-адрес узла172.40.209.45Маска подсети255.255.128.0Ответ (IP-адрес сети)172.40.128.0

Путем анализа маски подсети можно рассчитать число узлов для каждой подсети в данном примере. Маска подсети может быть задана как в десятичном представлении с разделителем — точкой, например 255.255.128.0, так и в виде префикса сети, например /17. IPv4-адрес состоит из 32 бит. Вычитание числа бит, используемых для адресации сети, позволяет получить число бит, используемых для адресации узлов.

В рассматриваемом примере маска подсети /17. Вычитая 17 бит, используемых для адресации сети из 32 бит, получим 15 бит, которые можно использовать для адресации узлов. Следовательно:

$$2^{15}$$
 — 2 = 32 765 узла

Часть 2. Расчет подсетей по известному IPv4-адресу узла

Зная IPv4-адрес какого-либо узла, а также исходную и новую маски подсети, можно определить следующие параметры.

- IPv4-адрес этой подсети
- Число созданных подсетей
- Число адресов в подсети
- Число узлов в подсети
- Диапазон адресов узлов этой подсети
- Широковещательный IPv4-адрес этой подсети

Пример.

Известно:	
IP-адрес узла:	172.16.70.100
Маска подсети:	255.255.0.0
Новая маска подсети:	255.255.240.0
Определить:	
Число бит подсети	4
Число созданных подсетей	16
Число адресов в подсети	4 096
Число узлов в подсети	4 094
IPv4-адрес подсети	172.16.64.0
IPv4-адрес первого узла подсети	172.16.64.1
IPv4-адрес последнего узла подсети	172.16.79.254
Широковещательный IPv4-адрес подсети	172.16.79.255

Рассмотрим, как была заполнена эта таблица.

Маска подсети была 255.255.0.0 (/16). Новая маска подсети — 255.255.240.0 (/20). Т. к. для создания подсетей в узловой части маски были заимствованы 20-16=4 бита, то были созданы $2^4=16$ подсетей. В узловой части новой маски остается 32-20=12 бит для адресации узлов. Получаем: $2^{12}-2=4$ 094 узла для каждой подсети.

С помощью побитовой операции **И** определим подсеть для этого примера, в результате получим IPv4-адрес сети 172.16.64.0.

Определим IPv4-адрес первого узла, последнего узла и широковещательный IPv4-адрес для каждой подсети. Один из способов определения диапазона узлов — использовать двоичные значения части адреса, используемой для адресации узлов. В нашем примере — это последние 12 бит IPv4-адреса (часть третьего и четвертый октеты). IPv4-адрес первого узла во всех старших битах будет содержать значение 0, а в самом младшем бите — значение 1. IPv4-адрес последнего узла во всех старших битах будет содержать значение 1, а в самого младшем бите — значение 0.

Описание	1-й октет	2-й октет	3-й октет	4-й октет	Описание
Сеть/узел	ccccccc	ccccccc	ссссуууу	ууууууу	Маска подсети
Двоичное	10101100	00010000	01000000	0000001	IPv4-адрес первого узла
Десятичное	172	16	64	1	IPv4-адрес первого узла
Двоичное	10101100	00010000	01001111	11111110	IPv4-адрес последнего узла
Десятичное	172	16	79	254	IPv4-адрес последнего узла
Двоичное	10101100	00010000	01001111	11111111	Широковещательный адрес
Десятичное	172	16	79	255	Широковещательный адрес

Шаг 1. Заполните приведенные ниже таблицы, по известному IPv4-адресу, исходной и новой маскам подсети.

Проблема 1:

Известно:	
IP-адрес узла:	192.168.12.139
Маска подсети:	255.255.255.0
Новая маска подсети:	255.255.255.240

Определить:	
Число бит подсети	
Число созданных подсетей	
Число адресов в подсети	
Число узлов в подсети	
IPv4-адрес подсети	
IPv4-адрес первого узла подсети	
IPv4-адрес последнего узла подсети	
Широковещательный IPv4-адрес подсети	

Проблема 2:

Известно:	
IP-адрес узла:	10.2.87.139
Маска подсети:	255.0.0.0
Новая маска подсети:	255.255.128.0

Определить:		
Число бит подсети		
Число созданных подсетей		
Число адресов в подсети		
Число узлов в подсети		
IPv4-адрес подсети		
IPv4-адрес первого узла подсети		
IPv4-адрес последнего узла подсети		
Широковещательный IPv4-адрес подсети		

Проблема 3:

Известно:	
IP-адрес узла:	172.32.32.7
Маска подсети:	255.255.0.0
Новая маска подсети:	255.255.224.0

Определить:	
Число бит подсети	
Число созданных подсетей	
Число адресов в подсети	
Число узлов в подсети	
IPv4-адрес подсети	
IPv4-адрес первого узла подсети	
IPv4-адрес последнего узла подсети	
Широковещательный IPv4-адрес подсети	

Проблема 4:

Известно:	
IP-адрес узла:	192.168.1.245
Маска подсети:	255.255.255.0
Новая маска подсети:	255.255.255.252

Определить:	
Число бит подсети	
Число созданных подсетей	
Число адресов в подсети	
Число узлов в подсети	
IPv4-адрес подсети	
IPv4-адрес первого узла подсети	
IPv4-адрес последнего узла подсети	
Широковещательный IPv4-адрес подсети	

Проблема 5:

Известно:	
IP-адрес узла:	128.127.0.35
Маска подсети:	255.255.0.0
Новая маска подсети:	255.255.255.0

Определить:	
Число бит подсети	
Число созданных подсетей	
Число адресов в подсети	
Число узлов в подсети	
IPv4-адрес подсети	
IPv4-адрес первого узла подсети	
IPv4-адрес последнего узла подсети	
Широковещательный IPv4-адрес подсети	

Проблема 6:

Известно:	
IP-адрес узла:	192.168.139.190
Маска подсети:	255.255.255.0
Новая маска подсети:	255.255.255.248

Определить:	
Число бит подсети	
Число созданных подсетей	
Число адресов в подсети	
Число узлов в подсети	
IPv4-адрес подсети	
IPv4-адрес первого узла подсети	
IPv4-адрес последнего узла подсети	
Широковещательный IPv4-адрес подсети	

Вопрос для повторения

Почему маска подсети необходима при анализе IPv4-адреса?