Calculus Concepts

Continuous functions

and to $N = x \in \mathbb{R}^n$ if $X = x \in \mathbb{R}^n$ if for any $X = x \in \mathbb{R}^n$ if for any $X = x \in \mathbb{R}^n$ if $X = x \in \mathbb{R}^n$ if X

 $||y-x||_2 \le S \implies ||f(y)-f(x)||_2 \le C$

for all yE don't.

Criven & Sequence $x_{1,3}x_{2}$, -
Let $\lim_{n\to\infty} x_{n} = x$

A 2 is Continuous est x if end only if $\lim_{n\to\infty} f(x_n) = f(|x_n|) = f(x)$ $\lim_{n\to\infty} |x_n| = \frac{1}{n} \int_{-\infty}^{\infty} f(x_n) = \frac{1}{n} \int_{-\infty}^{\infty} f(x_n) dx$

fris a Continuous function ; frit is Continuous at all & Edenf

Derivotive of a function f: R = R

	Suppose f: R - Rm and x & int (dont)
	The function f is differentiable at $x \in \mathbb{R}^n$ if f and f are f and f and f are f are f and f are f and f are f are f are f and f are f are f and f are f are f are f and f are f and f are f and f are f are f are f are f are f are f and f are
X 1	
	De(x) is called desirative of & ch x Subserved (= 1 < m reduce)
	Special case: $N = 1$, $M = 1$ $ S(z) - S(x) - S'(x) (Z-x) = 0$ $ Z = dont, Z \neq x$ $ Z - x $ $ Z - x $
	The function of is differentiable if down is open and I is differentiable at every a classification.
	Derivatives provide first-order (or linear) approximation of $\frac{1}{2}$ at $\frac{1}{2}$ = $\frac{1}{2}(x) + \frac{1}{2}(x)(x-x)$ Affine function $\frac{1}{2}(x) + \frac{1}{2}(x)(x-x)$
	Df(a) is unique.

first-order approximation of a function + different inble of x=0 2(x) = 3x +2 ξ'(x) ~ 3 → $\left[D^{2}(x)\right]_{i,j} = \frac{\partial^{2}i(x)}{\partial x_{i}}, \quad i \geq 1, \ldots, m$ £(x): R → R ; f(x) = x1 + x22 $Df(x): Bx: [Df(x)]' = \frac{9x!}{9f(x)} = 5x!$ $\left(Df(x) \right)^{12} = \frac{3f(x)}{3x^2} = 2x^2$ $Df(x) = \left| 2x, \quad 2x_2 \right|$ when m= 1 => Df(x) is a row restor of length n

 $Df(x) = \nabla f(x) \Rightarrow Consider of the function at X$ $\{\nabla f(x)\}_{i} = \frac{\partial f(x)}{\partial x_{i}}, \ t=1,..., n \qquad f(x)=x^{2}$ $\frac{\partial f(x)}{\partial x_{i}} \Rightarrow \frac{\partial f(x)}{\partial x_{i}} + \nabla f(x)(x-x)$ $\frac{\partial f(x)}{\partial x_{i}} \Rightarrow \frac{\partial f(x$