Khôlles de Mathématiques - Semaine 15

Hugo Vangilluwen

20 Janvier 2024

1 Inégalité de Jensen

Soit $f: I \to \mathbb{R}$ convexe sur I.

Soit $n \in \mathbb{N}^*$. Soient $x \in I^n$, $\lambda \in [0,1]^n$ telle que $\sum_{k=1}^n \lambda_k = 1$.

$$\sum_{k=1}^{n} \lambda_k x_k \in I \wedge f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \leqslant \sum_{k=1}^{n} \lambda_k f\left(x_k\right) \tag{1}$$

Démonstration. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}^*$ par :

$$\mathcal{P}(n): \text{``}\forall x \in I^n, \forall \lambda \in [0;1]^n, \sum_{k=1}^n \lambda_k = 1 \implies \sum_{k=1}^n \lambda_k x_k \in I \land f\left(\sum_{k=1}^n \lambda_k x_k\right) \leqslant \sum_{k=1}^n \lambda_k f\left(x_k\right) \text{''}$$

- * Soient $x \in I^1$ et $\lambda \in [0;1]^1$ tel que $\sum_{k=1}^1 \lambda_k = 1$. Alors $\lambda_1 = 1$. Trivialement, $\sum_{k=1}^1 \lambda_k x_k = \lambda_1 x_1 = x_1 \in I$. De plus, $f\left(\sum_{k=1}^1 \lambda_k x_k\right) = f\left(\lambda_1 x_1\right) = f\left(x_1\right) = \lambda_1 f\left(x_1\right) = \sum_{k=1}^1 \lambda_k f\left(x_k\right)$. Donc $\mathcal{P}(1)$ vrai.
- * Soit $n \in \mathbb{N}^*$ tel que $\mathcal{P}(n)$ vrai. Soient $x \in I^{n+1}$ et $\lambda \in [0;1]^{n+1}$ tel que $\sum_{k=1}^{n+1} \lambda_k = 1$. $\{x_k \mid k \in [1;n+1]\}$ est une partie de \mathbb{N} non vide $(n \ge 1)$. Posons $a = \min\{x_k \mid k \in [1;n+1]\}$ et $b = \max\{x_k \mid k \in [1;n+1]\}$. D'où

$$a \underbrace{\sum_{k=1}^{n+1} \lambda_k a}_{k=1} \underbrace{\sum_{a \leqslant x_k}^{n+1} \lambda_k x_k}_{a \leqslant x_k} \underbrace{\leqslant \sum_{x_k \leqslant b}^{n+1} \lambda_k b}_{k=1} \underbrace{\sum_{k=1}^{n+1} \lambda_k b}_{k=1} \underbrace{b}$$

Or $\{x_k \mid k \in [1; n]\} \subset I \text{ (car } x \in I^n) \text{ donc } a \in I \land b \in I. \text{ Donc}$

$$\sum_{k=1}^{n+1} \lambda_k x_k \in [a;b] \qquad \qquad \bigcup \qquad \qquad I$$
 par convexité de l'intervalle I

 $\textstyle \sum_{k=1}^{n+1} \lambda_k = 1 \text{ donc } \exists i_0 \in [\![1;n+1]\!] : \lambda_{i_0} \neq 1 \text{ (sinon } \textstyle \sum_{k=1}^{n+1} \lambda_k = n+1 \neq 1 \text{ car } n \neq 0).$

Fixons un tel i_0 .

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) = f\left(\sum_{k=1}^{n+1} \lambda_k x_k + \lambda_{i_0} x_{i_0}\right)$$

$$= f\left(\lambda_{i_0} x_{i_0} + (1 - \lambda_{i_0}) \sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} x_k\right)$$

$$\stackrel{\leqslant}{\underset{\text{de } f}{=}} \lambda_{i_0} f(x_{i_0}) + (1 - \lambda_{i_0}) f\left(\sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} x_k\right)$$

Or
$$\forall i \in [1; n+1] \lambda_i \leqslant \sum_{\substack{k=1 \ k \neq i_0}}^{n+1} \lambda_k = 1 - \lambda_{i_0} \text{ Donc } \frac{\lambda_i}{1 - \lambda_{i_0}} \in [0; 1] \text{ et } \sum_{\substack{k=1 \ k \neq i_0}}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} = 1. \text{ Nous } \frac{\lambda_i}{1 - \lambda_{i_0}} = 1.$$

pouvons appliquer $\mathcal{P}(n)$ pour $\lambda_i \to \frac{\lambda_i}{1-\lambda_{i_0}}$:

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) \leqslant \lambda_{i_0} f(x_{i_0}) + (1 - \lambda_{i_0}) \sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} f(x_k)$$

$$\leqslant \lambda_{i_0} f(x_{i_0}) + \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

$$\leqslant \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

Donc $\mathcal{P}(n+1)$ vrai.

2 Inégalité arithmético-géométrique

Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}^{*n}_+$.

$$\left(\prod_{k=1}^{n} x_k\right)^{1/n} \leqslant \frac{1}{n} \sum_{k=1}^{n} x_k \tag{2}$$

Démonstration. Soit de tels objets. Posons $\forall k \in [1; n], \lambda_k = 1/n$. Sachant que l'exponentielle est convexe, appliquons l'inégalité de Jensen pour $x_k \leftarrow ln(x_k)$ (autorisé car $x_k \in \mathbb{R}_+^*$):

$$\exp\left(\sum_{k=1}^{n} \frac{1}{n} \ln\left(x_{k}\right)\right) \leqslant \sum_{k=1}^{n} \frac{1}{n} \exp\left(\ln\left(x_{k}\right)\right)$$

L'exponentielle est la bijection réciproque du logarithme népérien et est un morphisme additif. Nous obtenons ainsi l'inégalité recherchée. \Box