EECS240 - Spring 2010

Lecture 12: Feedback

Elad Alon Dept. of EECS

Electronic Feedback Circuit

Careful with mapping circuit feedback to generic diagram...

$$V_i$$
 V_i
 V_i
 V_i
 V_{err}
 V_{err}

EECS240 Lecture 12

Feedback

- Assume you are familiar with feedback benefits, issues
 - Review: G&M Ch. 8 & 9, Razavi Ch. 8
- · Focus here on:
 - Stability
 - Analysis and simulation
 - Settling
 - Often amplifying pulses and not sinusoids
 More next lecture

EECS240 Lecture 12

Is This Circuit "Stable"?

EECS240 Lecture 12

Generic Feedback Circuit

- Open-loop gain: a_{ν}
- Feedback factor: f
- Loop gain: $T = a_y \hat{f}$
- Closed-loop gain: A =

EECS240 Lecture 12

Stability

- Nearly all circuits are actually non-linear and time-varying
 - "Poles" only accurate for given bias, temp., etc.

- What we usually mean by stability:
 Circuit always converges to the "origin" for zero input within finite time
 - (Exponential stability)
 - · Another common definition: BIBO stability

EECS240 Lecture 12

Stability In Practice

- · Linearize the circuit and look at its poles
- · Remember: this is only an approximation!
 - Perform linear analysis over several corners, temps, supplies, etc.
 - May want to do a couple of transient sims too

EECS240 Lecture 12

Common Approach

EECS240

Linear Circuit Stability

- Stability set by T(s)
- T(s) is an open-loop parameter need to break the loop
 - Easy to do in hand analysis: break at controlled source
 - · Not as easy in simulation...

EECS240 Lecture 12

Middlebrook Method (1975)

Lecture 12

 \bullet Measure T_{ν} and $T_{i},$ then calculate actual T

EECS240 Lecture 12 11

Simulating Stability

EECS240 Lecture 12

Phase Margin

- Approximate method to evaluate stability: phase margin
- Works well for most circuits of interest
 - Sometimes have to use Nyquist stability test

EECS240 Lecture 12 12

Multi-Loop Feedback EECS240 Lecture 12 14

