UM-SJTU JOINT INSTITUTE

VV156 RC

Xu Mengjing

Lecture 1

Concepts

- 1. upper bound⇔ bounded from above
- 2. lower bound⇔ bounded from below

bounded from above and below—> bounded; else unbounded

- 3. supremum/least upper bound
- 4. infimum/greatest lower bound
- * The supremum and infimum do not necessarily belong to the set.

- 5. δ neighbourhood of x $(x \delta, x + \delta)$. 6. neighbourhood: a set that contains a δ neighbourhood of x. * A neighbourhood can be a closed interval while a delta neighbourhood cannot.
- 7. open set: a set in which every point has a δ neighbourhood in S. In other words, every point in S is an interior point.
- * The union of open sets is open. The intersection of finite open sets is open. The intersection of infinite open sets may be closed.
- 8. closed sets: complements of open sets
- * The intersection of closed sets is closed. The union of finite closed sets is closed. The union of infinite closed sets may be open.
- * \varnothing and \mathbb{R} are both open and closed sets.
- * Some sets are neither open or closed sets, like [2,3). Therefore, for a set S where there exists a point $x \in S$ that is not an interior point, S may be a closed set or neither.

Definition of various points

- 1. interior point: a point $x \in S$ s.t. $(x \delta, x + \delta) \subset S$
- 2. boundary point: a point $x \in \mathbb{R}$ s.t. $(x \delta, x + \delta)$ contains at least one point in S and at least one point out of S.
- 3. limit point: a point $x \in \mathbb{R}$ s.t. every neighbourhood $(x \delta, x + \delta)$ contains a point in S other than x itself. That is, a point in S arbitrarily close to x.
- * A limit point is either an interior point or boundary point.
- 4. isolated point: a point $x \in S$ is an isolated point if there exists δ s.t. x is the only point belonging to S in the neighbourhood $(x \delta, x + \delta)$. That is, there isn't any point in S arbitrarily close to x, which is contrary to the limit point.
- * Interior points and isolated points should belong to S, while boundary points and limit points are only required to belong to \mathbb{R} .
- 5. compact set: closed and bounded.

Lecture 2

Definition of the limit of a sequence

If for every $\epsilon > 0$, there is a corresponding integer N s.t.

if
$$n > N$$
, then $|a_n - L| \le \epsilon$

then $\lim_{n\to\infty} a_n = L$.

- * The definition is used to prove that the limit of the sequence equals a given number, not to evaluate the limit.
- * Triangle inequality may be helpful in the proof.

$$||a| - |b|| \le |a \pm b| \le |a| + |b|$$

- * Use sufficient conditions to find N.
- * converge: L exists.
- * diverge: L does not exist.

Property of limits

Limit laws

provided $\lim_{n\to\infty} a_n = L_a$ and $\lim_{n\to\infty} b_n = L_b$

$$1. \lim_{n \to \infty} a = a$$

$$2. \lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = L_a + L_b$$

3.
$$\lim_{n \to \infty} (a_n b_n) = (\lim_{n \to \infty} a_n) (\lim_{n \to \infty} b_n) = L_a L_b$$

3.
$$\lim_{n \to \infty} (a_n b_n) = (\lim_{n \to \infty} a_n) (\lim_{n \to \infty} b_n) = L_a L_b$$
4.
$$\lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} a_n} = \frac{L_a}{L_b}, when b_n \neq 0, L_b \neq 0$$

Monotonicity

- 1. increasing: $a_{n+1} \ge a_n$ for all n
- 2. decreasing: $a_{n+1} \leq a_n$ for all n

Monotonic Sequence Theorem

A monotonic sequence converges if and only if it is bounded.

- * A sequence that converges must be bounded
- * An unbounded sequence must be divergent.
- * A sequence that is bounded may be divergent.

Suppose $\{a_n\}$ and $\{b_n\}$ are convergent, and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L$$

If for some $N \in \mathbb{N}$,

$$a_n \le c_n \le b_n$$
 for all $n > N$

then the sequence $\{c_n\}$ is convergent. Moreover,

$$\lim_{n\to\infty} c_n = L$$

Squeeze Theorem

Lecture 3

Definition of limit

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. The value of L is the limit of f(x) as x approaches a,

$$\lim_{x \to a} f(x) = L$$

if for every number $\epsilon>0$ there is a number $\delta>0$ such that

$$|f(x) - L| < \epsilon$$
 if $0 < |x - a| < \delta$

- * Note that $|x-x_0| > 0$. The limit of f(x) at x = a has nothing to do with f(a).
- * If L fails to exist, the limit of f(x) when $x \to x_0$ does not exist.
- * The way to find δ corresponding to ϵ is similar to the method of finding N for the limit of sequence.
- * Sometimes, we first set $\delta=1$ to simplify calculations take the smaller value (1 and another calculated one) of δ . Likewise, in limit of sequence, we take the bigger one as N (often comparison involved).
- * We can assign special values to ϵ when we are asked to prove a statement.

Limit Laws

* Actually, law 5 can be extended. As long as f(x) is basic elementary function, the limit at every point x_0 in its domain always exists and is equal to $f(x_0)$. *

$$\lim[f(x)]^{g(x)} = K^L$$

Assume that $\lim_{x \to a} f(x) = K$ and $\lim_{x \to a} g(x) = L$, and that c is constant,

1 The limit of a constant is the constant itself.

$$\lim_{x \to a} c = \epsilon$$

2 The limit of a sum/difference is the sum/difference of the limits.

$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = K \pm L$$

3 The limit of a product is the product of the limits.

$$\lim_{x \to a} \left[f(x)g(x) \right] = \left[\lim_{x \to a} f(x) \right] \left[\lim_{x \to a} g(x) \right] = KL$$

4 The limit of a quotient is the quotient of the limits.

$$\lim_{x\to a} \left[\frac{f(x)}{g(x)}\right] = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} = \frac{K}{L}, \qquad \text{provided } \lim_{x\to a} g(x) \neq 0$$

5 If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

6 If f(x) = g(x) for all x near a, possibly except at x = a, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x),$$
 provided the limits exist

If $g(x) \le f(x) \le h(x)$ when x is near a, except possibly at a, and if

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L, \quad \text{then } \lim_{x \to a} f(x) = L$$

The Squeeze Theorem

One-sided limit

1. right-hand limit

$$\lim_{x \to a^+} f(x)$$

The range of f(x) is $a < x < \delta + a$.

2. left-hand limit

$$\lim_{x \to a^{-}} f(x)$$

The range of f(x) is $a - \delta < x < a$.

* The limit of f(x) when $x \to a$ exists only when the right-hand limit and the left-hand limit both exist and are equal.

Lecture 4

Definition of limit at infinity and infinite limit

1. The limit of f(x) approaches infinity

$$\lim_{x \to a} f(x) = \infty$$

if for every number M>0 there exists a number $\delta>0$ such that f(x)>M if $0<|x-a|<\delta$.

* If the limit exists, then f(x) has a vertical asymptote x = a. 2.

$$\lim_{x \to \infty} f(x) = L$$

if for every number $\epsilon > 0$ there exists a number $Min(a, \infty)$ such that $|f(x) - L| < \epsilon$ if x > M. * Here M is similar to N in the limit of sequence.

- * Difference: M can be real numbers, while N should be a positive integer.
- * If the limit exists, then f(x) has a horizontal asymptote y = L.

Special cases in limit laws

Suppose f and g are functions such that $\lim_{x\to a}f(x)=\infty$ and $\lim_{x\to a}g(x)=L.$

1. The limit of the sum/difference is infinity

$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \infty$$

2. The limit of the product is infinity if L>0 and negative infinity if L<0

$$\lim_{x \to a} [f(x)g(x)] = \pm \infty$$

3. The limit of the quotient is infinity if L>0 and negative infinity if L<0

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \pm \infty \qquad \text{and} \qquad \lim_{x \to a} \frac{g(x)}{f(x)} = 0$$

* Still hold when a is replaced by ∞ .

Three Theorems

1. If r is a positive rational number, then

$$\lim_{x \to \infty} \frac{1}{x^r} = 0$$

5

2. If $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ is a polynomial of degree n, then

$$\lim_{x \to \infty} p(x) = \lim_{x \to \infty} a_n x^n$$

- 3. The limit of a rational function as $x \to \infty$ is the limit of the quotient of the terms of highest degree in the numerator and the denominator as $x \to \infty$.
- * This is the extension of the theorem we learnt in high school to functions (where x are real numbers instead of only positive integers).
- * Only when $x \to \infty$ the theorem holds true.

Some techniques

- * Convert tanx to the quotient of sinx and cosx.
- * Substitute sinx with 1.
- * Double angle formula
- * Product to sum formula, sum to product formula
- * u-substitution

Two important limits

$$\lim_{n\to\infty} n^{\frac{1}{n}} = 1$$

n is an integer.

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

Both can be proved using squeeze theorem.

Continuity

Definition of continuity

$$\lim_{x \to c} f(x) = f(c)$$

* The judgement of continuity is actually identifying the value of the limit.