	VideoMAE reading notes
1.	Method
	(1) temporal downsampling
	original video V randomly sample one video clip temporal sampling with t consecutive frames
	T frames, each $H \times W \times 3$, $T = \frac{t}{\tau}$, stride $\tau = 2$ or 4
	(2) cube embedding
	(2) cube embedding joint space-time cube embedding
	$2 \times 16 \times 16 \times 3$ size = one token embedding $\longrightarrow \frac{7}{2} \times \frac{H}{16} \times \frac{W}{16}$ 3D tokens
	each token \xrightarrow{map} \rightarrow channel dimension P
	(3) tube masking with high ratios $90\% \sim 95\%$ masking map is the same for all frames
	masking map is the same for all frames
	(4) backbone:
	vanilla ViT backbone with joint space-time attention
2	Datasets
	HMDB5 3.5k/1.5k train/val videas
	HMDB51. Our VideoMAE is pre-trained with a masking ratio of 75% for 4800 epochs. The batch size and base learning rate are set to 192 and 3e-4, respectively. Here, 16 frames with a temporal stride of 2 are sampled. For fine-tuning, the model is trained with repeated augmentation [32] and a batch size of 128 for 50 epochs. The base learning rate, layer decay and drop path are set to 1e-3, 0.7 and 0.2, respectively. For evaluation, we adopt the inference protocol of 10 clips × 3 crops.