preprocessing

Jennifer Ci, Thu Vu, Lily Hanyi Wang

merge the datasets

Compare the data from July 2021 and September 2021. Keep the most updated ones.

There are 6 rows from LTF July data missing in September dataset. And also 6 missing from the PROC dataset.

Variables that exists in both LTF and PROC datasets are: PATIENTID, PRIMPROCID, DEAD, PROC_SURVIVALDAYS, IDE_OTHER. Merge by these variables.

data cleaning based on inclusion, exclusion criteria

Exclusion criteria:

- PRESENTATION exclude rupture patients
- PATHOLOGY exclude groups with pathology: 4=trauma, 8 = Aortic Thrombus,9 = Other (Retired) (retired since 09/30/2014),10 = Aorto-esophageal Fistula (Retired) (retired since 09/30/2014),11 = Aorto-bronchial Fistula (Retired) (retired since 09/30/2014)
- URGENCY: exclude rupture. (elective is same to asymptomatic)
- PROXZONE_DISEASE: exclude 0 and 1

After excluding some data points, there are in total 17214 objectives in the final overall dataset.

population of interest: the asymptomatic and symptomatics groups.

	Overall
	(N=17214)
PRESENTATION	
Asymptomatic	10232~(59.4%)
Symptomatic	6982 (40.6%)

Demographic history

Under procedure tab, history and demographic variables

R_PREOP_AMBUL: Preop ambulatory status; 1 = Amb, 2 = Amb w/ Assistance, 3 = Wheelchair, 4 = BedriddenTRANSFER: Transferred From?; 0 = No, 1 = Hospital, 2 = Rehab Unit PRIMARYINSURER: Primary Insurer; 1 = Medicare, 2 = Medicaid, 3 = Commercial, 4 = Military/VA, 5 = Non US Insurance, 6 = Self Pay

HTCM: Min/max range: 137 to 203 cm. WTKG: Min/max range: 18.1 to 227 kgs.

Preference, inch/cm, lb/kg?

 ${\tt LIVINGSTATUS: Living \ Status; \ 1 = Home, 2 = Nursing \ home, 3 = Homeless}$

 $\label{eq:preop_funcstatus:} \mbox{ Functional Status; } 0 = \mbox{Full}, 1 = \mbox{Light work}, 2 = \mbox{Self care}, 3 = \mbox{Assisted care}, 4 = \mbox{Bed bound}$

 $PREOP_DIALYSIS$: Dialysis status; 0 = No, 1 = Functioning Transplant, 2 = On Dialysis

	Asymptomatic	Symptomatic	Overall
	(N=10232)	(N=6982)	(N=17214)
GENDER	,	,	,
male	7134 (69.7%)	4207 (60.3%)	11341 (65.9%)
female	3098 (30.3%)	2775 (39.7%)	5873 (34.1%)
ETHNICITY	,	, ,	,
None Hispanic or Latino	9777 (95.6%)	6452 (92.4%)	16229 (94.3%)
Hispanic or Latino	440 (4.3%)	520 (7.4%)	960 (5.6%)
Missing	15 (0.1%)	10 (0.1%)	25 (0.1%)
RACE	, ,	, ,	, ,
White	8011 (78.3%)	4241 (60.7%)	12252 $(71.2%)$
Black or African American	1310 (12.8%)	1945 (27.9%)	3255 (18.9%)
Asian	244 (2.4%)	180 (2.6%)	424 (2.5%)
American Indian or Alaskan Native	22 (0.2%)	17 (0.2%)	39 (0.2%)
Native Hawaiian or other Pacific Islander	20 (0.2%)	23 (0.3%)	43 (0.2%)
More than 1 race	27 (0.3%)	11~(0.2%)	38~(0.2%)
Unknown/Other	597 (5.8%)	562 (8.0%)	1159~(6.7%)
Missing	1 (0.0%)	3(0.0%)	4~(0.0%)
HTCM			
Mean (SD)	172 (10.7)	172 (11.6)	172 (11.1)
Median [Min, Max]	173 [0, 419]	172 [0, 213]	173 [0, 419]
Missing	1 (0.0%)	29 (0.4%)	$30 \ (0.2\%)$
WTKG			
Mean (SD)	83.5 (22.1)	84.9 (23.1)	$84.1\ (22.5)$
Median [Min, Max]	81.2 [24.0,	82.0 [23.0,	81.7 [23.0,
Missing	962]	205]	962]
Missing	0 (0%)	4 (0.1%)	4 (0.0%)

patient condition variables, pathway demographic:

Prior diseases history all changed to 0/1 scale.

PRIOR_CVD, PRIOR_CAD, PRIOR_CHF, COPD, PRIOR_CABG, PRIOR_PCI, R_PRIOR_CABGPTCA, PRIOR_CEACAS, R_PRIOR_CEA, PRIOR_ANEURREP, PRIOR_BYPASS, PRIOR_PVI.

only use one variable for past heart disease? but forgot which to use

DIABETES, PREOP_DIALYSIS, HTN, PREOP_SMOKING, STRESS, HEMO (Pre op Hemoglobin: range 4-20(g/dl)), Which to include? PREOP_CREAT, PREOP_ASA, PREOP_P2Y, PREOP_STATIN, PREOP_BETABLOCKER, PREOP_ACE, PREOP_ANTICOAG, Retired variables? Are the info transferred to new variables?

	Asymptomatic	Symptomatic	Overall
	(N=10232)	(N=6982)	(N=17214)
R_PREOP_AMBUL			
Amb	$171 \ (1.7\%)$	149 (2.1%)	320 (1.9%)
Amb w/ Assistance	10 (0.1%)	3 (0.0%)	13 (0.1%)
Wheelchair	0 (0%)	0 (0%)	0 (0%)
Bedridden	0 (0%)	6 (0.1%)	6 (0.0%)
Missing	10051 (98.2%)	6824 (97.7%)	16875 (98.0%)
TRANSFER			
No	9849~(96.3%)	3117~(44.6%)	12966~(75.3%)
Hospital	360 (3.5%)	3848 (55.1%)	4208 (24.4%)
Rehab Unit	18~(0.2%)	16 (0.2%)	34~(0.2%)
Missing	5~(0.0%)	1~(0.0%)	6(0.0%)
PRIMARYINSURER			
Medicare	5559 (54.3%)	2698 (38.6%)	8257 (48.0%)
Medicaid	411 (4.0%)	767 (11.0%)	1178 (6.8%)
Commercial	$3054\ (29.8\%)$	$2520 \ (36.1\%)$	5574 (32.4%)
Military/VA	$263 \ (2.6\%)$	135 (1.9%)	398~(2.3%)
Non US Insurance	$406 \ (4.0\%)$	$94 \ (1.3\%)$	500 (2.9%)
Self Pay	109 (1.1%)	523~(7.5%)	632 (3.7%)
Missing	$430 \ (4.2\%)$	245 (3.5%)	675 (3.9%)
LIVINGSTATUS			
Home	10117~(98.9%)	6879~(98.5%)	16996 (98.7%)
Nursing home	99~(1.0%)	72 (1.0%)	$171 \ (1.0\%)$
Homeless	14 (0.1%)	29 (0.4%)	43~(0.2%)
Missing	2(0.0%)	2~(0.0%)	4~(0.0%)
PREOP_FUNCSTATUS			
Full	6619~(64.7%)	4874~(69.8%)	11493~(66.8%)
Light work	2095~(20.5%)	1157~(16.6%)	$3252\ (18.9\%)$
Self care	1255~(12.3%)	739 (10.6%)	1994~(11.6%)
Assisted care	205 (2.0%)	158 (2.3%)	363~(2.1%)
Bed bound	12 (0.1%)	23~(0.3%)	35~(0.2%)
Missing	46 (0.4%)	31 (0.4%)	77~(0.4%)
PREOP_DIALYSIS			
No	9988~(97.6%)	6699~(95.9%)	16687 (96.9%)
Yes	241 (2.4%)	282 (4.0%)	523 (3.0%)
Missing	3~(0.0%)	1~(0.0%)	4~(0.0%)
PRIOR_CVD			
No	9079~(88.7%)	6316 (90.5%)	15395~(89.4%)
Yes	$1150 \ (11.2\%)$	665~(9.5%)	1815~(10.5%)
Missing	3~(0.0%)	1~(0.0%)	4 (0.0%)
DIABETES			
No	8467~(82.8%)	5949~(85.2%)	$14416 \ (83.7\%)$
Yes	$1765\ (17.2\%)$	1032 (14.8%)	2797 (16.2%)
Missing	0 (0%)	1 (0.0%)	1 (0.0%)
HTN		•	•
No	1077 (10.5%)	713 (10.2%)	1790 (10.4%)

	Asymptomatic	Symptomatic	Overall
Yes	9097 (88.9%)	6170 (88.4%)	15267 (88.7%)
Missing	58 (0.6%)	99 (1.4%)	157 (0.9%)
PREOP_SMOKING	,	, ,	,
No	1959 (19.1%)	2261 (32.4%)	4220~(24.5%)
Yes	8272 (80.8%)	4709 (67.4%)	12981 (75.4%)
Missing	1 (0.0%)	12 (0.2%)	13 (0.1%)
factor(STRESS)			
0	6148 (60.1%)	5920 (84.8%)	12068 (70.1%)
1	3366 (32.9%)	900 (12.9%)	4266 (24.8%)
2	$356 \ (3.5\%)$	80 (1.1%)	436 (2.5%)
3	247(2.4%)	62 (0.9%)	309 (1.8%)
4	107 (1.0%)	16 (0.2%)	123~(0.7%)
Missing	8 (0.1%)	4 (0.1%)	12 (0.1%)
HEMO	,	,	` ,
Mean (SD)	12.8 (2.26)	11.7(2.12)	12.4(2.27)
Median [Min, Max]	13.0 [0.700, 116]	11.8 [1.20, 19.6]	$12.5 \ [0.700, \ 116]$
Missing	69 (0.7%)	11 (0.2%)	80 (0.5%)
PREOP_CREAT	,	, ,	,
Mean (SD)	$1.16 \ (0.726)$	1.21 (0.811)	1.18 (0.762)
Median [Min, Max]	$1.03 \ [0, 32.0]$	1.01 [0.290, 19.8]	$1.03 \ [0, \ 32.0]$
Missing	268 (2.6%)	266 (3.8%)	534 (3.1%)

patient condition variables, pathway history:

7 variables related to details about PRIOR_AORSURG. include?

 $PREOP_EF: Ejection Fraction; 1 = <30\%, 2 = 30-50\%, 3 = >50\%, 4 = Not Done, 5 = Unknown$

PREOP_MAXAAADIA: Maximum Aortic Diameter; include?

 $\label{eq:leg_motor_function} \mbox{Leg Motor Function; 1 = Normal, 2 = Mild weakness, 3 = Moderate weakness, 4 = Severe weakness, 5 = Paralysis include?} \mbox{ And the moderate weakness}$

 ${\tt DISTZONE_DISEASE:\ Distal\ Zone\ of\ Disease}\ include?$

many variables related to details about PATHOLOGY. include?

	Asymptomatic	Symptomatic	Overall
		_ v _ 1	
	(N=10232)	(N=6982)	(N=17214)
factor(PREOP_EF)			
1	183 (1.8%)	$104 \ (1.5\%)$	287 (1.7%)
2	$1227 \ (12.0\%)$	$536 \ (7.7\%)$	$1763 \ (10.2\%)$
3	5967 (58.3%)	4125 (59.1%)	10092 (58.6%)
4	2145 (21.0%)	1600 (22.9%)	3745 (21.8%)
5	705~(6.9%)	610 (8.7%)	$1315 \ (7.6\%)$
Missing	5(0.0%)	7 (0.1%)	12 (0.1%)
PATHOLOGY			
Aneurysm	$7722 \ (75.5\%)$	1707 (24.4%)	9429 (54.8%)
Dissection	$1230 \ (12.0\%)$	3717 (53.2%)	4947 (28.7%)
Aneurysm from dissection	784 (7.7%)	478 (6.8%)	$1262 \ (7.3\%)$
PAU	379(3.7%)	499 (7.1%)	878 (5.1%)
IMH	58 (0.6%)	284 (4.1%)	342 (2.0%)
PAU with IMH	59 (0.6%)	$297 \ (4.3\%)$	356 (2.1%)

	<u> </u>		O 11
	Asymptomatic	Symptomatic	Overall
PREOP_MAXAAADIA			
Mean (SD)	58.1 (13.3)	48.5 (16.6)	54.3 (15.4)
Median [Min, Max]	58.0 [0, 410]	45.0 [0, 160]	55.0 [0, 410]
Missing	110 (1.1%)	392 (5.6%)	502 (2.9%)
URGENCY	, ,	, ,	` ,
Elective	9964 (97.4%)	3228 (46.2%)	$13192 \ (76.6\%)$
Urgent	239(2.3%)	2708 (38.8%)	2947 (17.1%)
Emergent	29 (0.3%)	1046 (15.0%)	1075~(6.2%)
factor(LEG_MOTOR_FUNCTION)	, ,	, ,	` ,
1	9760 (95.4%)	6071 (87.0%)	$15831 \ (92.0\%)$
2	320 (3.1%)	490 (7.0%)	810 (4.7%)
3	71 (0.7%)	154(2.2%)	$225\ (1.3\%)$
4	16(0.2%)	108 (1.5%)	124~(0.7%)
5	24~(0.2%)	129 (1.8%)	153 (0.9%)
Missing	41 (0.4%)	30 (0.4%)	71 (0.4%)
factor(DISTZONE_DISEASE)	, ,	,	,
0	5(0.0%)	0 (0%)	5 (0.0%)
1	2(0.0%)	1(0.0%)	3 (0.0%)
2	21(0.2%)	26(0.4%)	47(0.3%)
3	222~(2.2%)	171(2.4%)	393~(2.3%)
4	887 (8.7%)	834 (11.9%)	1721 (10.0%)
5	2129(20.8%)	2038~(29.2%)	4167 (24.2%)
6	$259 \ (2.5\%)$	$312 \ (4.5\%)$	571 (3.3%)
7	171 (1.7%)	218 (3.1%)	389~(2.3%)
8	378 (3.7%)	$338 \ (4.8\%)$	$716 \ (4.2\%)$
9	3705 (36.2%)	1089 (15.6%)	4794~(27.8%)
10	442 (4.3%)	302 (4.3%)	$744 \ (4.3\%)$
11	$353\ (3.5\%)$	362 (5.2%)	715 (4.2%)
12	1148 (11.2%)	573 (8.2%)	1721 (10.0%)
13	151 (1.5%)	$233\ (3.3\%)$	$384 \ (2.2\%)$
14	130 (1.3%)	$195\ (2.8\%)$	$325\ (1.9\%)$
15	184 (1.8%)	266~(3.8%)	450~(2.6%)
Missing	45 (0.4%)	24 (0.3%)	69 (0.4%)

other variables

Surgery year would affect outcome, since surgeons got more familiar with the surgery.

Outcome variables

Primary outcomes: ${\tt DEAD}$ and ${\tt PROC_SURVIVALDAYS}.$

Secondary outcomes: POSTOP_LOS

 $other\ outcomes?$

	Asymptomatic	Symptomatic	Overall
	(N=10232)	(N=6982)	(N=17214)
DEAD	,	,	,
0	8934 (87.3%)	5868 (84.0%)	14802 (86.0%)
1	$1295\ (12.7\%)$	1113 (15.9%)	2408 (14.0%)
Missing	3(0.0%)	1 (0.0%)	4 (0.0%)
PROC_SURVIVALDAYS	,	, ,	,
Mean (SD)	829 (777)	930 (865)	870 (815)
Median [Min, Max]	545 [-355, 3450]	613 [0, 3290]	571 [-355, 3450]
Missing	2(0.0%)	0 (0%)	2 (0.0%)
POSTOP_LOS	,	,	` '
Mean (SD)	5.90 (23.7)	8.73 (17.8)	7.05 (21.6)
Median [Min, Max]	3.00 [0, 1100]	6.00 [0, 1100]	$4.00 \ [0, 1100]$
Missing	2 (0.0%)	0 (0%)	2 (0.0%)

Clustering variables:

19 regions, 189 centers, 1094 physicians.

Most physicians only performed 1 or 2 procedures. Several performed over 100 procedures. Since the more surgeries a surgeon did, the more familiar he or she is. So we need to cluster on this.

 $how\ to\ do\ clustering\ on\ centers\ and\ physicians$

mean and median: based on outliners?

Code Appendix

```
knitr::opts_chunk$set(echo = FALSE,message = FALSE,warning = FALSE)
library(tidyverse)
library(table1)
## ----- working directories for Lily -----
\#wd\_lily = '/Users/hanyiwang/Desktop/Comparative-analysis-of-treatments-of-CAA'
#path_lily = c(
# "../data/TEVAR_International_20210712/TEVAR_International_LTF_r12_2_14_20210701.csv",
# "../data/TEVAR_International_20210712/TEVAR_International_PROC_r12_2_14_20210701.csv",
# "../data/TEVAR_International_20210901/TEVAR_International_LTF_r12_2_14_20210901.csv",
# "../data/TEVAR International 20210901/TEVAR International PROC r12 2 14 20210901.csv")
## ----- working directories for Jenn -----
wd_jenn = '/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA'
path_jenn = c(
 "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210712/TEV
 "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210712/TEV
 "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210901/TEV
 "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210901/TEV
## ----- read data -----
#setwd(wd_lily)
\#TEVAR\_LTF\_07 = read.csv(path\_lily[1])
\#TEVAR\_PROC\_07 = read.csv(path\_lily[2])
\#TEVAR\ LTF\ O9 = read.csv(path\ lily[3])
\#TEVAR\_PROC\_09 = read.csv(path\_lily[4])
setwd(wd_jenn)
TEVAR_LTF_07 = read.csv(path_jenn[1])
TEVAR_PROC_07 = read.csv(path_jenn[2])
TEVAR_LTF_09 = read.csv(path_jenn[3])
TEVAR_PROC_09 = read.csv(path_jenn[4])
## ----- merge July and September data -----
# find data in LTF July data but not in LTF September data by `PATIENTID`
# add these data points to the September data
TEVAR_LTF <- rbind(TEVAR_LTF_07[! TEVAR_LTF_07$PATIENTID %in% TEVAR_LTF_09$PATIENTID,],
                  TEVAR_LTF_09)
# Similar for PROC data
TEVAR_PROC <-rbind(TEVAR_PROC_07[! TEVAR_PROC_07$PATIENTID %in% TEVAR_PROC_09$PATIENTID,],
                  TEVAR PROC 09)
## ----- merge LTF and PROC data-----
# same variables in LTF and PROC data
#colnames(TEVAR_PROC) [colnames(TEVAR_PROC) %in% colnames(TEVAR_LTF)]
TEVAR <- merge(TEVAR LTF, TEVAR PROC, all = TRUE,
              by=c("PATIENTID", "PRIMPROCID", "DEAD", "PROC_SURVIVALDAYS", "IDE_OTHER"))
```

```
# FBVAR
# 0"0.None" 1"1.Scallop/Fen/Branch" 2"2.Occluded/Covered" 3"3.Chimney"
TEVAR <-TEVAR %>% mutate(lrenal = ifelse(BRANCH LRENAL TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH LRENAL TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH_LRENAL_TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_LRENAL_TRT == 8, 3,NA)))),
                              rrenal = ifelse(BRANCH_RRENAL_TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH LRENAL TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH LRENAL TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_LRENAL_TRT == 8, 3,NA)))),
                              sma = ifelse(BRANCH_SMA_TRT \%in\% c(0,6,7), 0,
                                  ifelse(BRANCH_SMA_TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH_SMA_TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_SMA_TRT == 8,3,NA)))),
                              celiac = ifelse(BRANCH_CELIAC_TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH_CELIAC_TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH_CELIAC_TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_CELIAC_TRT == 8,3,NA)))),
                              lsub = ifelse(BRANCH_LSUB_TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH_LSUB_TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH LSUB TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_LSUB_TRT == 8,3,NA)))),
                              )
# diagnosing duplicate id, decide which record to keep?
n_occur <- data.frame(table(TEVAR$PATIENTID))</pre>
\#n\_occur[n\_occur\$Freq > 1,]
#TEVAR[TEVAR$PATIENTID %in% n_occur$Var1[n_occur$Freq > 1],]%>%select(PATIENTID, lrenal, rrenal, celiac,
## ----- inclusion and exclusion-----
TEVAR = TEVAR %>%
  filter(PRESENTATION !=2) %>%
  filter(PATHOLOGY %in% c(1,2,3,5,6,7)) %>%
  filter(URGENCY %in% c(1,2,3)) %>%
  filter(PROXZONE_DISEASE %in% c(2,3,4,5,6,7,8,9))
## ----- data cleaning-----
TEVAR = TEVAR %>%
  mutate(DEAD=factor(DEAD)) %>%
  mutate(PRESENTATION = factor(PRESENTATION,levels = c(0,1),
                               labels = c('Asymptomatic','Symptomatic'))) %>%
  mutate(AGECAT = factor(AGECAT, levels = c(1,2,3,4,5,6,7),
                         labels = c('<40','40-49','50-59','60-69','70-79','80-89','>89'))) %>%
  mutate(GENDER=factor(GENDER,levels=c(1,2),
                       labels=c('male','female'))) %>%
  mutate(SURGYEAR=factor(SURGYEAR)) %>%
  mutate(PROXZONE_DISEASE=factor(PROXZONE_DISEASE)) %>%
  mutate(URGENCY=factor(URGENCY,levels = c(1,2,3),labels = c('Elective','Urgent','Emergent'))) %%
  mutate(PATHOLOGY=factor(PATHOLOGY,levels=c(1,2,3,5,6,7),
                          labels = c('Aneurysm','Dissection','Aneurysm from dissection','PAU',
                                     'IMH', 'PAU with IMH'))) %>%
  mutate(R_PREOP_AMBUL = factor(R_PREOP_AMBUL,levels = c(1,2,3,4),
```

```
labels=c("Amb","Amb w/ Assistance","Wheelchair","Bedridden"))) %>%
 mutate(ETHNICITY = factor(ETHNICITY,levels=c(0,1),
                           labels = c('None Hispanic or Latino', 'Hispanic or Latino'))) %>%
 mutate(RACE=factor(RACE, levels = c(5,3,2,1,4,6,7),
                    labels = c('White','Black or African American','Asian',
                               'American Indian or Alaskan Native','
                               Native Hawaiian or other Pacific Islander', 'More than 1 race',
                               'Unknown/Other'))) %>%
 mutate(TRANSFER=factor(TRANSFER, levels = c(0,1,2),
                        labels = c('No', 'Hospital', 'Rehab Unit'))) %>%
 mutate(PRIMARYINSURER=factor(PRIMARYINSURER,levels=c(1,2,3,4,5,6),
                              labels = c('Medicare','Medicaid','Commercial', 'Military/VA',
                                         'Non US Insurance', 'Self Pay'))) %>%
 mutate(PRIOR_CVD = factor(PRIOR_CVD,levels =c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %%
 mutate(LIVINGSTATUS=factor(LIVINGSTATUS,levels=c(1,2,3),labels=c('Home',
                                                                 'Nursing home', 'Homeless')))%>%
 mutate(PREOP_FUNCSTATUS=factor(PREOP_FUNCSTATUS,levels = c(0,1,2,3,4),
                                labels = c('Full','Light work','Self care','Assisted care',
                                           'Bed bound'))) %>%
 mutate(DIABETES=factor(DIABETES,levels = c(0,1,2,3),labels = c('No','Yes','Yes'))) %%
 mutate(PREOP_DIALYSIS=factor(PREOP_DIALYSIS,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %%
 mutate(HTN=factor(HTN,levels = c(0,1,2,3),labels = c('No','Yes','Yes'))) %%
 mutate(PREOP_SMOKING=factor(PREOP_SMOKING,levels=c(0,1,2),labels=c('No','Yes','Yes')))
## ----- population of interest -----
table1(~ PRESENTATION, data = TEVAR)
## ----- table: demographic-----
table1(~ GENDER+ETHNICITY+RACE+HTCM+WTKG
        | PRESENTATION, data = TEVAR, caption = 'Table 1- demographic')
## ----- table: patient condition (pathway demographics) -----
table1(~ R_PREOP_AMBUL+TRANSFER+PRIMARYINSURER+LIVINGSTATUS+PREOP_FUNCSTATUS+PREOP_DIALYSIS+
        PRIOR_CVD+DIABETES+PREOP_DIALYSIS+HTN+PREOP_SMOKING+factor(STRESS)+HEMO+PREOP_CREAT
        | PRESENTATION, data = TEVAR)
## ----- table: patient condition anatomy -----
table1(~ factor(PREOP_EF)+PATHOLOGY+PREOP_MAXAAADIA+URGENCY+
        factor(LEG MOTOR FUNCTION)+factor(DISTZONE DISEASE)
        | PRESENTATION, data = TEVAR, caption = 'Table 2- Anatomy detail ')
plot(DEAD~SURGYEAR, data=TEVAR)
## ----- table3: outcomes-----
table1(~ DEAD+PROC_SURVIVALDAYS+POSTOP_LOS | PRESENTATION, data = TEVAR, caption='Table 3- outcomes ')
## ----- Survival curves-----
## ----- clustering variables-----
#TEVAR %>% select(REGIONID) %>% table()
#TEVAR %>% select(CENTERID) %>% table()
#TEVAR %>% select(PHYSICIANID) %>% table()
```