GLASS CEILING EFFECT IN SOCIAL NETWORKS

Fangchen Li, Huilin Xu Jordie Chisam, Danielle Larson, Xiangyu Liu

AGENDA

Paper: Homophily and the Glass Ceiling Effect in Social Networks Gender Differences in Computer Science Collaboration Networks

(Fangchen & Huilin)

Investigating the Glass Ceiling Effect in Social Networks

(Danielle, Jordie, & Xiangyu)

Current Progress and Anticipated Results

Homophily and the Glass Ceiling Effect in Social Networks (Avin et al)

MOTIVATION/BACKGROUND

- Many large organizations and societies exhibit a glass ceiling effect
 - A barrier that prevent minorities from moving up in professional settings regardless of qualifications or experience
- Introduce findings that suggest ways to deal with the effect and promote equal opportunity

Homophily and the Glass Ceiling Effect in Social Networks (Avin et al)

MODEL

- Network is composed of two types of vertices and supports three social phenomena:
 - "the rich get richer"
 - o minority-majority partition (social groups exhibit unequal proportions of men & women)
 - homophily (people associate with those who are similar to themselves)

APPROACH

- Analyze the glass ceiling effect in social networks using the biased preferential attachment model
- Examine the model as a possible mechanism for the emergence of a glass ceiling effect

Homophily and the Glass Ceiling Effect in Social Networks (Avin et al)

APPLICATION (Biased Preferential Attachment Model)

- Propose a bi-populated preferential attachment model
 - Combination of classic preferential model to a bi-populated minority majority network with homophily
 - Resulting in the biased model
- After application, they found that the model produces a power inequality
 - Meaning that the average dress of the minority is lower than the majority, even though all members possess the same skillset.

RESULTS

 Under the three social phenomena on human behavior, the glass ceiling effect naturally occurs in social networks with a biased preferential attachment model

Gender Differences in Computer Science Collaboration Networks

GENDER DISPARITY IN ACADEMIA

- Author-Reviewer Homophily in Peer Review
- Gender Barriers on Stack Overflow
- Citation Frequency based on leading authors' gender
- Glass Ceiling Effect and Homophily in CS networks

Gender Disparity in Academia

- Author-Reviewer Homophily in Peer Review
- Gender Barriers on Stack Overflow
- Citation Frequency based on leading authors' gender
- Glass Ceiling Effect and Homophily in CS networks

Investigating the Glass Ceiling Effect in Social Networks

MOTIVATION/BACKGROUND

- Same as the Avin et al paper
- Goal: replicate the results

APPROACH

- Analyze homophily, the rich get richer phenomenon, and fairness in the social network model
- In doing so, we will measure the nodes similarity in our network in order to visualize the barriers that minorities encounter in social networks.
 - Leveraging DBLP database (co-authorship network)
 - NetworkX
 - Genderize API
 - Gephi
 - PA Model

DBLP Dataset

Figure from DBLP

Investigating the Glass Ceiling Effect in Social Networks

Coauthor relationships (colored by outdegree)

Gender in DBLP (colored by gender)

Data: Pre-processing & Gender Labeling

Pre-processing

- Single author with multiple names
- Multi-authors with the same name

Gender Labeling

- API (based on first name)
- Google Search (#he vs. #she)
 - via web scraping

Data: Pre-processing & Gender Labeling

Pre-processing

- Single author with multiple names
- Multi-authors with the same name

Gender Labeling

- API (based on first name)
- Google Search (#he vs. #she)
 - via web scraping

Network Characteristics

- All articles (without single-author) from 1938 ~ 2019
- Initial # authors: 1,459,843
- Dropped out authors with uncertain gender (possibility < 0.8 based on API)
- Labeled # authors: 1,040,189
 - # female: 220,435
 - o # male: 819,754
- # edges: 4,092,204

Network Characteristics

- All articles (without single-author) from 1938 ~ 2019
- Initial # authors: 1,459,843
- Dropped out authors with uncertain gender (possibility < 0.8 based on API)
- Labeled # authors: 1,040,189
 - o # female: 220,435
 - o # male: 819,754
- # edges: 4,092,204

Avin et al (2015):

- spans over 30 years
- 434,232 authors
- 389,296 edges

Snapshot of 2019 Data

Snapshot of 2019 Data

Power law distribution for female and male authors

Power law distribution for female and male authors

Figure from Avin et al

Female Fraction over Year

expected:

= # female / # total

Female Fraction over Year

expected:

= # female / # total

% Female among All Authors with Degree at least x

% Female among All Authors with Degree at least x

Figure from Avin et al

Recall: Homophily

- People associate with those who are similar to themselves.
- Mixed edge: edge between female and male
- Homophily Test:
 - Fraction of mixed edges < 2 * (f) * (1 f)
- Normalized Homophily Test:
 - Fraction of mixed edges < 2 * (d(F) / 2m) * (1 d(F) / 2m)
 - where f : percentage of female
 - o d(f): sum of degrees of female nodes
 - o m: num of total edges

Homophily?

Conclusion

- Female are still minority in CS community
- Some evidence for glass ceiling effect
- Some degree of homophily

Future Directions

- Better processed data
 - alias
 - o gender
 - o student vs. mentor
- Divide by fields, countries...

Questions?

SOURCES

Avin, Chen, et al. "Homophily and the glass ceiling effect in social networks." *Proceedings of the 2015 conference on innovations in theoretical computer science*. ACM, 2015. (Paper)

Stoica, Ana-Andreea, Christopher Riederer, and Augustin Chaintreau. "Algorithmic Glass Ceiling in Social Networks: The effects of social recommendations on network diversity." *Proceedings of the 2018 World Wide Web Conference*. International World Wide Web Conferences Steering Committee, 2018. (Paper)