教师签名	批改日期			
	教师签名			

深圳大学实验报告

课程名称:	大学!	物理实	<u>捡(</u>	<u></u> —)		
实验名称:	偏振;	光的观	察与	<u>研究</u>		
学 院:	计算	机与软	(件学	<u> </u>		
指导教师 <u>:</u>		郭树	青			
报告人:	_叶茂林	组号 :	·		20	
学号 <u>2021</u>	155015	实验均	也点_		家中	
实验时间:	2022	年_	4	_月_	14	_日
提 交时间:	2022	年	4	月	19	Ħ

1

一、实验目的

- 1. 了解光的横波性。
- 2. 了解光的几种偏振态。
- 3. 掌握起偏检偏的方法,验证马吕斯定律。
- 4. 研究 1/4 和 1/2 波片对偏振光的影响。

二、实验原理

3.1 光的偏振性

光是电磁波,电磁波是横波,横波具有一个纵波没有的特性-偏振。

3.2 光的偏振状态

1、自然光:

在与光传播方向垂直的平面内,光矢量沿各个方向的平均值相等。

普通光源发的是自然光。

自然光可以分解成没有恒定相位差的互相垂直的两个光振动的传播。

2、偏振光:

自然光经过反射、吸收、折射后,可能会只保留某一方向的光振动或振动在某一方向较强,即偏振 光。

- (1) 线偏振光:振动只在某一方向上。
- (2) 部分偏振光:振动在某一方向上比其他方向较强。

部分偏振光可分解为两束振动方向相互垂直的、不等幅的、不相干的线偏振光。

3.3 偏振片 起偏与检偏

1、偏振片:

有些有机晶体,如硫酸碘奎宁、电气石或聚乙烯醇薄膜在碘溶液中浸泡后,在高温下拉伸、烘干,然后粘在两个玻璃片之间就形成了偏振片。

偏振片有一个特定的方向(偏振化方向),只让平行与该方向的振动通过。

2、起偏:

光通过偏振片后变成偏振光。

自然光经过偏振片后光强变为原来的一半,振动方向和偏振片的偏振化方向无关。

3、检偏:

完全偏振光经过偏振片后,光强随偏振化方向不同而变化。

部分偏振光经过偏振片后,光强随偏振化方向不同而变化,但不会有全暗。

马吕斯定律:

$$E_1 = E_0 \cos \alpha \cdots (1)$$

$$I_1 = I_0 \cos^2 \alpha \cdots (2)$$

布儒斯特定律:自然光在电介质界面上反射和折射时,一般情况下反射光和折射光都是部分偏振光, 当入射角为某特定角时,反射光是线偏振光,其振动方向与入射面垂直,此特定角称为布儒斯特角 或起偏角,用 ib 表示。

光以布儒斯特角入射时, 反射光与折射光互相垂直。

$$tgi_b = \frac{n_2}{n_1} \cdot \dots \cdot (3)$$

3.4 波片

将一束平面偏振光垂直入射到具有双折射的晶片上,光波被分成两束振动方向互相垂直的平面偏振 光,其中一束比另一束较快地通过晶体,当射出晶片时,两束光波产生一个相位差。

波片: 能使相互垂直的两振动分量间产生附加光程差(相位差)的光学元件。

相位差是利用不同偏振方向的光在晶体中的传播速度不同来实现的。

传播速度较大(vvee)的振动方向成为快轴,传播速度较小(vvoo)的振动方向称为慢轴(o 光和 e 光取 决于晶体类型)。

设快轴和慢轴对应的折射率分别为nnee和nnoo,波片的厚度为dd,则光束通过波片后的光程差为:

$$s = (n_o - n_o)d \cdots (4)$$

相位差为:

$$\Delta = \frac{2\pi}{\lambda} \cdot s \cdot \dots (5)$$

- 若 $s = m\lambda \pm \lambda/4$,即 $\Delta = 2m\pi \pm \pi/2$,该波片称为 $\lambda/4$ 波片。
- 若 $s = m\lambda \pm \lambda/2$, 即 $\Delta = 2m\pi \pm \pi$, 该波片称为 $\lambda/2$ 波片。

3.5 光学元件简介

产生偏振光的常用方式:

- 1. 光在界面的反射和透射:根据布儒斯特定律,入射角为一特定值时,反射光为完全线偏振光,折射光为部分偏振光。
 - 2. 光学棱镜: 利于晶体的双折射原理得到的 o 光和 e 光是完全偏振光。
 - 3. 采用偏振片作为起偏器产生偏振光。本实验中采用偏振片作为起偏器和检偏器。

三、实验仪器:

光源、偏振片、1/4波片、1/2波片、光屏。

四、实验内容:

4.1 马吕斯定律的验证

- 1. 移去实验台上的波片,保留两个偏振片,并使两偏振片的角度都设为0:
- 2. 打开光源,选择自然光;双击屏幕,记下此时的光强的值;
- 3. 改变偏振片 B 的角度 ϕ ,每间隔 15 度读取一次光强的值,记入表 1。同时换算角度 ϕ 对应的 $\cos(\phi)$ 、 $\cos(\phi)^2$ 。

4.2 研究 $\lambda/4$ 波片对偏振光的影响

- 1. 实验内容选"研究**λ/4**波片对偏振光的影响",试验台上从左至右依次为光源、偏振片、**λ/4**波片、偏振片和光屏。使偏振片和波片的角度都调节至 0:
 - 2. 打开光源,选择自然光;
 - 3. 使 $\lambda/4$ 波片的角度 $\theta_{1/4}$ 分别设为 0、15 和 30 度,测量光强随偏振片 B 的角度,记入表 2。

4.3 研究 λ/2波片对偏振光的影响

实验内容选"研究 λ/2 波片对偏振光的影响",重复"研究 λ/4 波片对偏振光的影响"的步骤,记入表 3。

```
五、数据记录:
    组号: 20 ; 姓名 叶茂林
1. 马吕斯定律的验证
表 1:
          0
                15
                       30
                             45
                                    60
                                          75
                                                 90
                                                       105
                                                             120
                                                                    135
                                                                           150
                                                                                 165
                                                                                        180
   Φ
 cos(\phi)
 \cos(\omega)^2
 光强 I 49.98 46.64 37.49 24.99
                                   12.5
                                          3.35
                                                       3.35
                                                             12.5
                                                                   24.99 37.49 46.64 49.98
                                                 ()
         195
                210
                      225
                             240
                                   255
                                          270
                                                285
                                                       300
                                                             315
                                                                    330
                                                                           345
                                                                                 360
   Φ
 cos(\phi)
 \cos(\omega)^2
 光强 I 46.64 37.49 24.99 12.5
                                   3.35
                                                3.35
                                                       12.5
                                                            24.99 37.49 46.64 49.98
                                           0
2. 研究 1/4 波片对偏振光的影响
表 2:
 偏振片B 0
                 15
                        30
                              45
                                    60
                                           75
                                                 90
                                                       105
                                                             120
                                                                   135
                                                                          150
                                                                                165
                                                                                       180
  \theta_{1/4}=0 49.98 46.64 37.49 24.99 12.5
                                          3.35
                                                 0
                                                       3.35
                                                             12.5 24.99 37.49 46.64 49.98
  \theta_{1/4}=15 43.74 46.64 43.74 35.81 24.99 14.17 6.25
                                                       3.35
                                                             6.25 14.17 24.99 35.81 43.74
  \theta_{1/4}=30 31.24 35.81 37.49 35.81 31.24 24.99 18.74 14.17 12.5 14.17 18.74 24.99 31.24
 偏振片B 195
                210
                      225
                             240
                                    255
                                          270
                                                 285
                                                       300
                                                             315
                                                                   330
                                                                          345
                                                                                360
  \theta_{1/4}=0 46.64 37.49 24.99 12.5
                                   3.35
                                           0
                                                3.35
                                                       12.5 24.99 37.49 46.64 49.98
  \theta_{1/4}=15 46.64 43.74 35.81 24.99 14.17 6.25
                                                3.35
                                                       6.25 14.17 24.99 35.81 43.74
  \theta_{1/4}=30 35.81 37.49 35.81 31.24 24.99 18.74 14.17 12.5 14.17 18.74 24.99 31.24
3. 研究 λ/2 波片对偏振光的影响
表 3:
 偏振片B
          0
                 15
                       30
                              45
                                    60
                                          75
                                                 90
                                                       105
                                                             120
                                                                    135
                                                                          150
                                                                                 165
                                                                                       180
 \theta_{1/2}=0 49.98 46.64 37.49 24.99
                                  12.5
                                          3.35
                                                 0
                                                       3.35
                                                             12.5
                                                                   24.99
                                                                          37.49 46.64 49.98
 \theta_{1/2}=15 37.49 46.64 49.98 46.64 37.49 24.99
                                               12.5
                                                       3.35
                                                              0
                                                                    3.35
                                                                          12.5
                                                                                24.99 37.49
 \theta_{1/2}=30 12.5 24.99 37.49 46.64 49.98 46.64 37.49
                                                      24.99
                                                             12.5
                                                                    3.35
                                                                           0
                                                                                 3.35
                                                                                       125
                       225
 偏振片B 195
                210
                             240
                                   255
                                          270
                                                285
                                                       300
                                                             315
                                                                    330
                                                                          345
                                                                                 360
 \theta_{1/2}=0 46.64 37.49 24.99 12.5
                                   3.35
                                                3.35
                                                       12.5
                                                             24.99 37.49 46.64 49.98
                                          0
 \theta_{1/2}=15 46.64 49.98 46.64 37.49 24.99
                                         12.5
                                                3.35
                                                             3.35
                                                                    12.5
                                                                          24.99 37.49
                                                        0
 \theta_{1/2}=30 24.99 37.49 46.64 49.98 46.64 37.49 24.99
                                                       12.5
                                                             3.35
                                                                     0
                                                                          3.35
                                                                                 12.5
六、数据处理
1. 马吕斯定律的验证
表 4:
                          30
                                 45
                                       60
                                              75
                                                    90
                                                          105
                                                                 120
                                                                       135
                                                                              150
                                                                                     165
              0
                    15
      φ
    \cos(\varphi) 1.00 0.966 0.866 0.707
                                      0.50
                                            0.259
                                                   0.00
                                                         -0.26 -0.50 -0.71 -0.87 -0.97
    \cos(\omega)^2
            1.00 0.933 0.75
                                0.50
                                      0.25
                                            0.067
                                                   0.00 0.067
                                                                0.25
                                                                       0.50
                                                                              0.75 0.933
    光强I 49.98 46.64 37.49
                               24.99
                                      12.5
                                             3.35
                                                    0
                                                          3.35
                                                                 12.5
                                                                       24.99 37.49 46.64
            195
                   210
                          225
                                240
                                       255
                                             270
                                                    285
                                                          300
                                                                 315
                                                                       330
                                                                              345
                                                                                     360
    cos(\phi) -0.97 -0.87 -0.71 -0.50 -0.26
                                            0.00
                                                   0.259
                                                          0.50
                                                                0.707 0.866 0.966
                                                                                    1.00
                                0.25
                                                          0.25
    \cos(\omega)^2 = 0.933 = 0.75
                         0.50
                                      0.067
                                            0.00
                                                   0.067
                                                                 0.50
                                                                       0.75 0.933
                                                                                    1.00
     光强 I 46.64 37.49 24.99 12.5
                                      3.35
                                                    3.35
                                                          12.5
                                                                24.99 37.49 46.64 49.98
                                              0
```


图 3: 光强I与 $\cos(\varphi)^2$ 的关系

2. 研究 λ/4 波片对偏振光的影响

以偏振片 B 的角度为横坐标,光强为纵坐标,画图如图 4 所示:

图 4: 线偏振光经 λ/4 波片后的影响

3. 研究 λ/2 波片对偏振光的影响

以偏振片 B 的角度为横坐标,光强为纵坐标,画图如图 5 所示:

图 5: 线偏振光经 2/2 波片后的影响

七、结果陈述:

1. 马吕斯定律的验证

由图 2 和图 3 可知,以 $\cos(\varphi)$ 和 $\cos(\varphi)^2$ 为横轴,以光强为纵轴所作出的图,分别呈现出抛物线和直 线关系。因此,进一步验证了线偏振光经过检偏器后的光强遵循的关系(2)式,即验证了马吕斯定律。

2. 研究λ/4 波片和λ/2波片对偏振光的影响

由图 4 可知,线偏振光经过 $\lambda/4$ 波片后的情况与波片的角度有关。如果波片的角度为 0,则通过 $\lambda/4$ 波片的光为线偏振光;如果 $\lambda/4$ 波片的角度不为0,经过波片后的光不再是线偏振光,因为经检偏器旋转 一周过程中的光强最小值不为0。

由图 5 可知,线偏振光经过 $\lambda/2$ 波片后还是线偏振光。当 $\lambda/2$ 波片转动 θ 角时,线偏振光的偏振方向 转动 2θ 。

如图 6 所示, 坐标轴表示波片的 o 轴和 e 轴, 红色箭头表示入射线偏振光的振动方向, 实验中起偏 器的设置不变。

如图 7 和图 8 所示,绿色箭头表示偏振光经过波片后的偏振状态。当波片的快轴平行于偏振方向时(如图 5 所示),由于偏振方向在 e 轴的投影为零,光没有分量被延迟,因此经过检偏器后的光强分布保持不变,此情况与不放波片结果一样。波片旋转 θ 角后,入射光的光矢量方向在 o 轴和 e 轴的投影的大小

分别为 $E_o = Ecos(\theta)$, $E_e = Esin(\theta)$ 。

图 7: $\lambda/4$ 波片旋转 θ 角

图 8: $\lambda/2$ 波片旋转 θ 角

 $\lambda/4$ 波片: E_o 和 E_e 的相位差等于 $\frac{\pi}{2}$,则经波片光矢量端点描出的是一个椭圆,透过波片后为椭圆偏振光。 当 $\theta<\frac{\pi}{4}$ 时,椭圆的长轴和短轴分别为 E_o 和 E_e 。当 $\theta=\frac{\pi}{4}$ 时, $E_o=E_e$,此时为圆偏振光。

 $\pmb{\lambda/2}$ 波片: $\pmb{E_o}$ 和 $\pmb{E_e}$ 的相位差等于 $\pmb{\pi}$,光矢量端点方向始终在一条直线上,透过波片后仍然是线偏振光。

由于相位差 π 的存在(相当于 E_o 的方向不变, E_e 的方向反向),偏振方向相当于原偏振方向旋转 2θ 角。

八、实验总结与思考题

思考题

1、什么是左旋光和右旋光?

电矢量绕着传输方向匀速旋转,且电矢量大小保持不变,矢量端点轨迹为圆,就是圆偏振光,如果相位差为 $-\pi/2$,即电矢量作逆时针转动,则称为左旋光,若相位差为 $\pi/2$,即电矢量作顺时针转动,则称为右旋光。

2、查阅资料,简述正晶体波片和负晶体波片的区别。

光在晶体中传播时,再不平行于光轴方向上,由于 e 光和 o 光传播速度不同,而出现两个不同折射率的光的像,这种现象叫做双折射现象。

以石英为代表, ve<vo,即 e 光的波面是长椭球,这类晶体波片叫做正晶体波片; 以冰洲石为代表, ve>vo,即 e 光的波面是扁椭球,这类晶体波片叫做负晶体波片。

指导教师批阅意见:

成绩评定:

预习 (20分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	思考题 10 分	报告整体 印 象	总分

原始数据

组号: 20

学号: 2021155015

姓名:叶茂林

姓名: 叶茄	支林 组-	号: 20	日期: 2	2022.4.1	4								
表1 线偏光	스 6년 기간 같은	游伯 振	μρ岳 府	主的亦儿	/ 子 玄								
	ンロリノし7生 O	15	л ¤ д В	45	スポ 60	75	90	105	120	135	150	165	180
φ cos(φ)	U	13	30	43	00	13	30	103	120	133	130	103	100
$\cos(\varphi)^2$													
COS(Φ) 光强I	49.98	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	24.99	37.49	46.64	49.98
φ	195	210	225	240	255	270	285	300	315	330	345	360	45.50
cos(φ)	155	210	220	240	200	210	200	300	313	330	343	300	
$\cos(\varphi)^2$													
光强I	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	24.99	37.49	46.64	49.98	
7034	10.01	01.10	2 1.00	12.0	0.00		0.00	12.0	21.00	07.10	10.01	10.00	
表2 线偏振		片λ/4层	5随偏振	片B角	度的变化	化关系							
偏振片B	0	15	30	45	60	75	90	105	120	135	150	165	180
$\theta_{1/4} = 0$	49.98	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	24.99	37.49	46.64	49.98
$\theta_{1/4} = 15$	43.74	46.64	43.74	35.81	24.99	14.17	6.25	3.35	6.25	14.17	24.99	35.81	43.74
$\theta_{1/4} = 30$	31.24	35.81	37.49	35.81	31.24	24.99	18.74	14.17	12.5	14.17	18.74	24.99	31.24
偏振片B	195	210	225	240	255	270	285	300	315	330	345	360	
θ _{1/4} =0	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	24.99	37.49	46.64	49.98	
$\theta_{1/4} = 15$	46.64	43.74	35.81	24.99	14.17	6.25	3.35	6.25	14.17	24.99	35.81	43.74	
$\theta_{1/4} = 30$	35.81	37.49	35.81	31.24	24.99	18.74	14.17	12.5	14.17	18.74	24.99	31.24	
表3 线偏振		片λ/2层	- 随偏振	片B角质	度的变化	化关系							
偏振片B	0	15	30	45	60	75	90	105	120	135	150	165	180
θ _{1/2} =0	49.98	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	24.99	37.49	46.64	49.98
$\theta_{1/2} = 15$	37.49	46.64	49.98	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	24.99	37.49
$\theta_{1/2} = 30$	12.5	24.99	37.49	46.64	49.98	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5
偏振片B	195	210	225	240	255	270	285	300	315	330	345	360	
θ _{1/2} =0	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	24.99	37.49	46.64	49.98	
$\theta_{1/2} = 15$	46.64	49.98	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	24.99	37.49	
$\theta_{1/2} = 30$	24.99	37.49	46.64	49.98	46.64	37.49	24.99	12.5	3.35	0	3.35	12.5	