MAT135H1S Calculus I(A)

Solution to even-numbered problem in Section 4.1 and 4.3

(Section 4.1, Q34)

Given that g(t) = |3t - 4|. In other words, we have

$$g(t) = \begin{cases} 3t - 4 & \text{if } t \ge 4/3, \\ 4 - 3t & \text{if } t < 4/3. \end{cases}$$

Therefore,

$$g'(t) = \begin{cases} 3 & \text{if } t > 4/3, \\ -3 & \text{if } t < 4/3. \end{cases}$$

and g'(t) does not exist at t = 4/3. Hence the critical number is t = 4/3.

(Section 4.1, Q44)

Given that $f(x) = x^{-2} \ln x$. Then we have

$$f'(x) = \frac{x^2(\frac{1}{x}) - \ln x(2x)}{x^4} = \frac{x - 2x \ln x}{x^4} = \frac{1 - 2\ln x}{x^3}$$

Solving f'(x) = 0, we obtain $1 - 2 \ln x = 0$ which implies that $\ln x = 1/2$, or $x = e^{1/2}$.

On the other hand, f'(x) is not defined for x < 0. However, the domain of f does not contain these points. Therefore, the only critical number is $x = e^{1/2}$.

(Section 4.3, Q12)

Given that $f(x) = \frac{x}{x^2 + 1}$. Differentiating, we obtain

$$f'(x) = \frac{(x^2+1) - x(2x)}{(x^2+1)^2} = \frac{1-x^2}{(x^2+1)^2}.$$

(a) Rewriting, we have $f'(x) = \frac{(1+x)(1-x)}{(x^2+1)^2}$.

Interval	1+x	1-x	$(x^2+1)^2$	f'(x)
x < -1	_	+	+	_
-1 < x < 1	+	+	+	+
x > 1	+	_	+	_

Therefore, from the above chart, we have that f(x) is increasing in the interval (-1,1), and decreasing in the intervals $(-\infty, -1)$ and $(1, \infty)$.

(b) Since f'(x) changes from negative to positive at x = -1, there is a local minimum at x = -1, and the local minimum value is

$$f(-1) = \frac{-1}{(-1)^2 + 1} = -\frac{1}{2}.$$

Since f'(x) changes from positive to negative at x = -1, there is a local maximum at x = 1, and the local maximum value is

$$f(1) = \frac{1}{(1)^2 + 1} = \frac{1}{2}.$$

(c) Differentiating, we obtain

$$f''(x) = \frac{(x^2+1)^2(-2x) - (1-x^2) \cdot 2(x^2+1)(2x)}{(x^2+1)^4} = \frac{2x(x^2+1)(x^2-3)}{(x^2+1)^4} = \frac{2x(x^2-3)}{(x^2+1)^3}.$$

Rewriting, we have

$$f''(x) = \frac{2x(x+\sqrt{3})(x-\sqrt{3})}{(x^2+1)^3}.$$

Interval	2x	$x+\sqrt{3}$	$x-\sqrt{3}$	$(x^2+1)^3$	f''(x)
$x < -\sqrt{3}$	_	_	_	+	_
$-\sqrt{3} < x < 0$	_	+	_	+	+
$0 < x < \sqrt{3}$	+	+	_	+	_
$x > \sqrt{3}$	+	+	+	+	+

Therefore, f(x) is concave up in the intervals $(-\sqrt{3},0)$ and $(\sqrt{3},\infty)$, and concave down in the intervals $(-\infty, -\sqrt{3})$ and $(0,\sqrt{3})$.

The points of inflection are $(-\sqrt{3}, -\sqrt{3}/4)$, (0,0) and $(\sqrt{3}, \sqrt{3}/4)$.