CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course Mathematics	Number 205	Section CA
Examination	Date	Pages
Final	August 2011	2
Instructor:		Course Examiners
A. Atoyan		A. Atoyan & H. Proppe
Special Instructions:	Only Sharp EL 531 or Casio FX-300MS calculators are allowed	

MARKS

(a) Sketch a graph of the function $f(x) = 4 - x^2$, write the formula in Σ -notation for its right Riemann sum R(n) on the interval [0,2] with partitioning on n subintervals of equal length, and calculate the area enclosed by the graph of f and x- axis on that interval as the limit of R(n) at $n \to \infty$.

NOTE: you may need the formula $\sum\limits_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$

- (b) Use the Fundamental Theorem of Calculus to calculate the derivative of the function $F(x) = \int_{x^2}^{1} \arctan(t) \sqrt{1+t} dt$ at x = 1
- [20] 2. Calculate the following indefinite integrals:

(a)
$$\int \frac{(1+\sqrt{x})^2}{x} \, \mathrm{d}x$$

$$\mathbf{(b)} \quad \int x^2 \, e^{-2x} \, \mathrm{d}x$$

$$(\mathbf{c}) \quad \int \frac{x^2 - 1}{x^2 - 4} \, \mathrm{d}x$$

$$(\mathbf{d}) \quad \int \frac{\cos^3 x}{\sin^3 x} \, \mathrm{d}x$$

[12] 3. Evaluate the following definite integrals (give the exact answers):

(a)
$$\int_{0}^{2} \frac{\arctan(\frac{x}{2})}{x^2 + 4} dx$$

$$\mathbf{(b)} \quad \int\limits_0^3 \ln(1+x) \, \mathrm{d}x$$

[10] 4.\Evaluate the given improper integral or show that it diverges:

(a)
$$\int_{c}^{\infty} \frac{\mathrm{d}x}{x \ln^{2} x}$$
 (b)
$$\int_{0}^{\pi/2} \tan(x) \, \mathrm{d}x$$

- [16] 5. (a) Sketch the curves $y = \sqrt{2x}$ and y = x and find the area enclosed.
 - (b) Sketch the region bounded by $f(x) = \sec(x)$ and the lines y = 0, x = 0and $x = \frac{\pi}{4}$, and find the volume of the solid of revolution of this region about the x-axis.
 - (c) Find the average value of the function $f(x) = \sqrt{25 x^2}$ on the interval [-5,5].
 - 6. Find the limit of the sequence $\{a_n\}$ when $n \to \infty$ or prove that it does not exist:

(a)
$$a_n = \frac{(2^n + 3)^2}{3^n}$$
 (b) $a_n = \frac{\sqrt{9 + 2n + n^4} - 3n^2}{10 + 3n^2}$

7. Determine whether the series is divergent or convergent, and if convergent, 12 then absolutely or conditionally:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{1+n^2}}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n+1}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

(b)
$$\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n + 1}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

Find the radius of convergence and the interval of convergence of the series

(a)
$$\sum_{1}^{\infty} \frac{2^n}{n+1} (x+2)^n$$
 (b) $\sum_{n=1}^{\infty} \frac{(4x-1)^{2n}}{n^2}$

(b)
$$\sum_{n=1}^{\infty} \frac{(4x-1)^{2n}}{n^2}$$

(a) Find the radius of convergence of the power series $F(x) = \sum_{n=0}^{\infty} 9^n x^{2n+1}$. 6 9.

- (b) Express the function F(x) as an elementary function (i.e. sum the series within its conversion radius).
- [5] Bonus Question. Calculate the definite integral

$$\int_{0}^{\pi} \sin t \, \sin^{9}(\cos t) \, \mathrm{d}t$$