Biol5705 Module: Gene Sequence Analysis

Lecture 2 Homology Searching

Dr. Morgan Langille

Outline

- PSSMs/PSI-BLAST
- HMMs/HMMer
- RNA alignments
- Genome Alignments
- Assemblers
- Mappers

Different tools for homology searching

- Searching for protein families
- Aligning genomes
- Looking for RNA genes
- Combining overlapping sequences (assemblers)
- Finding the position of a sequence in a genome

One tool does not do it all

Blast may give you an answer

 BUT you could find the answer much quicker or with more precision by using the right tool!

PSI-BLAST

- Position Specific Iterated BLAST
- A cycling/iterative method
 - Gives increased sensitivity for detecting distantly related proteins
 - Can give insight into functional relationships
 - Very refined statistical methods
- Fast still based on BLAST methods
- Simple to use

PSI-BLAST

 Essentially we are using intermediate sequences to infer similarity between two sequences that are too dissimilar to link directly.

Profiles & PSSMs Need Multi-sequence Alignment

```
50
P43871-1
        YGIDYDDWDI LHSNTNSALG
S18997-1 LMSKIYOMDA VDWLKTLENC SVDLFITDPP
                                       YESL.EKYRO IGTTTRLKES
P23192-1 EINKIHOMNC FDFLDOVENK SVOLAVIDPP
                                       YNL...... .....
                             SIDLIITDPP
P29538-1 MDORLICSNA IKALKNLEEN
                                       YNLG.KDY.. ......
P14751-1 TRHVYDVCDC LDTLAKLPDD
                             SVOLIICDPP YNI...........
P34721-1 KNFNIYOGNC IDFMSHFODN
                            SIDMIFADPP
                                       YFLS.NDG.L TFKNSIIQ..
P50178-1 ENAILVHADS FKLLEKIKPE
                             SMDMIFADPP
                                       YFLS.NGG.M SNSGGOIV..
P20590-1 FLNTILKGDC IEKLKTIPNE
                             SIDLIFADPP
                                       YFMQ.TEGKL LRTNGDEF..
S43876-1 GPETIIHGDC IEOMNALPEK
                             SVDLIFADPP
                                       YNLO.LGGDL LRPDNSKV..
P28638-1 EAKTIIHGDA LAELKKIPAE
                             SVDLIFADPP
                                       YNIG.KNF.. ......
P23941-1 DLGKLYNGDC LELFKOVPDE
                             NVDTIFADPP
                                       FNLD.KEY.. ......
P14230-1 RSCKIIVGDA REAVOGLDSE
                                       YWGL.RDY.. ......
                             IFDCVVTSPP
P14243-1 NGATLFEGDA LSVLRRLPSG
                             SVRCTVTSPP
                                       YWGL.RDY.. ......
004845-1 LNNMLLOGNC AETLKKLPDE
                             SVNLVFTSPP
                                       YY......
S53866-1 WVNDIHEGDA EEVLAELPES
                             SVHMVMTSPP
                                       YFGI, RDY...
P29568-1 ......... ...MNELKDK SINLVVTSPP YPMV.EIWDR LFSELNPKIE
Signature Sequence:
```

How does PSI-BLAST work?

- 1) First, a standard blastp is performed
- 2) The highest scoring hits are used to generate a multiple alignment
- 3) A Position Specific Scoring Matrix (PSSM) is generated from the multiple alignment.
 - Highly conserved residues get high scores
 - Less conserved residues get lower scores
- The PSSM describes the sequence similarity between your query and all significant blastp hits
- 4) Another similarity search is performed, this time using the new PSSM as the query sequence.
- This PSSM (scoring matrix) is now customized to find sequences that are related to your original query
 - Steps 2-4 can be repeated until convergence
 - Convergence occurs when no new sequences appear after iteration

PSI-BLAST Example

HMMs & HMMer

The more powerful way to search for protein families than PSSMs

Hidden Markov Models

Hidden Markov Models in Bioinformatics

Used extensively in gene prediction

 Used to create Sequence Profiles and to classify sequences into families

Used in Multiple Sequence Alignment

Hmmer

 Suite of sequence analysis programs based on HMMs

Used to build the Pfam database

- Available for free download at
 - http: hmmer.wustl.edu/

HMMER 3

- HMMER 2 was used for many years
 - Biggest draw back was always speed
- HMMER 3 released in 2011
 - Very fast with comparable speeds to BLAST
 - 100X faster than v2

HMMER Programs

- hmmbuild build a HMM from multiple sequence alignment
- hmmscan searches a query sequence(s) against a database of HMMs (used by PFAM)
- hmmsearch
 — searches a query HMM against a database of sequences (e.g. like psi-blast)
- phmmer search a protein sequence vs a sequence database (e.g. like blastp)

HMMER Search & Software

http://hmmer.janelia.org/search

- PFAM
 - http://pfam.sanger.ac.uk/

RNA Alignments

- RNA alignments are "special"
- RNA genes often have secondary structures that allow improved searching
- Improved searching is needed since
 - Must search in DNA space (less complex then protein sequences)
 - Often shorter length then proteins

Infernal (RNA Search)

- Infernal is like HMMER
 - Includes use of secondary structure information
 - Uses profile "stochastic context-free grammar"
 - SCFGs vs HMMs
 - "consensus RNA secondary structure profiles"
- Infernal is slow!
- Infernal can be used to search RFAM

Genome Alignment

- Genome alignment useful for
 - Visualizing genome
 - Rearrangements
 - Insertions/deletions
 - Inversions
 - Annotating genomes
 - Comparing gene annotations across species

Mauve

Mauve (zoomed in)

Assemblers

- Assemblers job is to make longer sequences from shorter ones.
- Nothing like homology searching
- Must efficiently compare and join billions of sequences
- Soap-Denovo: http://soap.genomics.org.cn/soapdenovo.html
- Amos: http://sourceforge.net/apps/mediawiki/amos/index.php?title=AMOS
- Many, many, more

Mappers

- These map a read to a reference genome.
- Useful for assembly when a reference genome is already known
 - (think assembly of personal human genomes)
- Identifying SNPs within the same species
- Very Fast!
- Bowtie: http://bowtie-bio.sourceforge.net/index.shtml
- Stampy: http://www.well.ox.ac.uk/project-stampy
- Many Others