

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170102203

FCC REPORT

(WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: InVision 4K Media Player

Model No.: DTIV4K-G2

FCC ID: 2AB6ZDTIV4K-G2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Jan., 2017

Date of Test: 16 Jan., to 28 Feb., 2017

Date of report issued: 01 Mar., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	01 Mar., 2017	Original

Tested by: 01 Mar., 2017

Test Engineer

Date: 01 Mar., 2017

Project Engineer

Reviewed by:

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		ITENTS	
		T SUMMARY	
4			
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	17
	6.5	POWER SPECTRAL DENSITY	24
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	28
	6.6.2		
	6.7	Spurious Emission	
	6.7.1	00.00000 =00.00	
	6.7.2	Radiated Emission Method	51
7	TES	T SETUP PHOTO	58
Ω	FIIT	CONSTRUCTIONAL DETAILS	EO

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED	
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong	
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD	
Address of Manufacturer/ Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China	

5.2 General Description of E.U.T.

Product Name:	InVision 4K Media Player
Model No.:	DTIV4K-G2
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 72.2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
AC adapter:	Model: PS12F120K1000UD Input: AC100-240V 50/60Hz 0.35A Output: DC 12.0V, 1000mA

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3 2422MHz 6 2437MHz 9 2452MHz								

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCISE170102203

Project No.: CCISE1701022

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 59

Report No: CCISE170102203

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
12	Coaxial Cable	N/A	N/A	CCIS0018	04-01-2016	03-31-2017		
13	Coaxial Cable	N/A	N/A	CCIS0020	04-01-2016	03-31-2017		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

0.E 00	· · ·					
Test Requirement:	FCC Part 15 C Section 1	5.207				
Test Method:	ANSI C63.4: 2014					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz				
Limit:	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56 60	46			
	5-30	50				
	* Decreases with the logarithm of the frequency.					
Test procedure	line impedance stab 50ohm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. light interference. In order positions of equipments	plators are connected to the pilization network (L.I.S.N.) and impedance for the measures are also connected to the sea 500hm/50uH coupling it is refer to the block diagram are checked for maximum ent and all of the interface 263.4: 2014 on conducted	which provides a suring equipment. the main power through mpedance with 50ohm of the test setup and sission, the relative cables must be changed			
Test setup:		Reference Plane				
	AUX Equipment Test table/Insula Remark: E.U.T. Equipment Under LISN: Line Impedence St. Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power			
Test Instruments:	Refer to section 5.6 for d	letails				
Test mode:	Refer to section 5.3 for d	letails				
Test results:	Passed					
1 oot 1 oodito.	1 40004					

Measurement Data:

Neutral:

Trace: 19

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition EUT : InVision 4K Media Player

: DTIV4K-G2 Model Test Mode : Wifi Mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: MT

Remark

tomark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	dB	₫B	dBu₹	dBu₹	₫B	
1	0.150	20.37	0.12	10.78	31.27	56.00	-24.73	Average
1 2 3	0.170	41.79	0.13	10.77	52.69	64.94	-12.25	QP
3	0.202	37.32	0.15	10.76	48.23	63.54	-15.31	QP
4 5 6	0.449	22.75	0.24	10.74	33.73	46.89	-13.16	Average
5	0.454	37.76	0.24	10.74	48.74	56.80	-8.06	QP
6	0.994	14.56	0.26	10.87	25.69	46.00	-20.31	Average
7 8 9	1.216	14.56	0.26	10.90	25.72	46.00	-20.28	Average
8	1.276	29.45	0.26	10.90	40.61	56.00	-15.39	QP
9	8.192	17.12	0.29	10.86	28.27	50.00	-21.73	Average
10	8.412	30.77	0.28	10.87	41.92	60.00	-18.08	QP
11	11.377	35.97	0.25	10.93	47.15	60.00	-12.85	QP
12	11.683	19.80	0.25	10.92	30.97	50.00	-19.03	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : InVision 4K Media Player : DTIVAK-G2 Site Condition EUT

Model Test Mode : Wifi Mode

Power Rating : AC 120/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT Remark :

/emark								
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	−−dBuV	<u>dB</u>		dBu₹	−−dBuV	āB	
1	0.154	44.15	0.14	10.78	55.07	65.78	-10.71	QP
2	0.154	18.51	0.14	10.78	29.43	55.78	-26.35	Average
3	0.174	41.96	0.15	10.77	52.88	64.77	-11.89	QP
4	0.459	34.24	0.24	10.75	45.23	56.71	-11.48	QP
2 3 4 5 6 7 8 9	0.459	18.59	0.24	10.75	29.58	46.71	-17.13	Average
6	0.683	29.31	0.31	10.77	40.39	56.00	-15.61	QP
7	0.890	12.34	0.28	10.84	23.46	46.00	-22.54	Average
8	1.269	11.91	0.28	10.90	23.09	46.00	-22.91	Average
9	1.552	29.10	0.30	10.93	40.33	56.00	-15.67	QP
10	2.809	9.30	0.33	10.93	20.56	46.00	-25.44	Average
11	11.621	34.66	0.28	10.92	45.86	60.00	-14.14	QP
12	11.621	18.07	0.28	10.92	29.27	50.00	-20.73	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Maximum	Maximum Conducted Output Power (dBm)				
1631 011	802.11b	802.11b 802.11g 802.11n(H20)				
Lowest	13.33	13.87	13.59			
Middle	12.94	13.66	13.35	30.00	Pass	
Highest	12.73	13.39	13.06			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

measurement Data.								
Test CH	6dB	Emission Bandwidth (N	MHz)	Limit(kHz)	Result			
1631 011	802.11b	802.11g	802.11n(H20)	- Limit(Kriz)	Nesuit			
Lowest	8.72	16.48	17.76					
Middle	8.72	16.48	17.76	>500	Pass			
Highest	9.28	9.28 16.48 17.76						
Test CH	99%	Limit(kHz)	Result					
1031 011	802.11b	802.11g	802.11n(H20)	- Limit(Kriz)	Nosuit			
Lowest	12.08	16.56	17.68					
Middle	12.08	16.56	17.68	N/A	N/A			
Highest	12.16	16.48	17.76					

Test plot as follows:

6dB EBW

Date: 14.FEB.2017 23:26:20

Lowest channel

Date: 14.FEB.2017 23:37:40

Middle channel

Date: 14.FEB.2017 23:39:00

Highest channel

Date: 14.FEB.2017 23:40:01

Lowest channel

Date: 14.FEB.2017 23:41:05

Middle channel

Date: 14.FEB.2017 23:42:00

Highest channel

Date: 14.FEB.2017 23:43:04

Lowest channel

Date: 14.FEB.2017 23:43:58

Middle channel

Date: 14.FEB.2017 23:45:05

Highest channel

Date: 14.FEB.2017 23:46:04

Lowest channel

Date: 14.FEB.2017 23:46:42

Middle channel

Date: 14.FEB.2017 23:47:14

Highest channel

Date: 14.FEB.2017 23:47:40

Lowest channel

Date: 14.FEB.2017 23:48:36

Middle channel

Date: 14.FEB.2017 23:49:03

Highest channel

Date: 14.FEB.2017 23:49:35

Lowest channel

Date: 14.FEB.2017 23:50:03

Middle channel

Date: 14.FEB.2017 23:50:25

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Pow	er Spectral Density (c	lBm)	Limit(dBm) Resu			
1631 011	802.11b	802.11g	802.11n(H20)	Limit(abin)	Nesuit		
Lowest	4.23	0.62	0.53				
Middle	3.93	0.16	0.29	8.00	Pass		
Highest	3.78	0.09	0.15				

Test plot as follows:

Date: 14.FEB.2017 23:51:14

Lowest channel

Date: 14.FEB.2017 23:51:36

Middle channel

Date: 14.FEB.2017 23:51:59

Highest channel

Date: 14.FEB.2017 23:52:43

Lowest channel

Date: 14.FEB.2017 23:53:03

Middle channel

Date: 14.FEB.2017 23:53:38

Highest channel

Date: 14.FEB.2017 23:54:06

Lowest channel

Date: 14.FEB.2017 23:54:36

Middle channel

Date: 14.FEB.2017 23:54:58

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement: FCC Part 15 C Section 15.209 and 15.205							
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Rem. Above 1GHz Peak 1MHz 3MHz Peak NBMS 1MHZ 3MHz Average Limit: Frequency Limit (dBuV/m@3m) Remark 54.00 Average Val 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height are tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are seemake the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rota table was turned from 0 degrees to 360 de to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a desheet.							
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Rem.							
Frequency Detector RBW VBW Rem.							
Above 1GHz Peak IMHz AMHz AMHz Average Limit: Frequency Above 1GHz Frequency Above 1GHz Above 1GHz Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receivin antenna, which was mounted on the top of a variable-height ar tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strengt Both horizontal and vertical polarizations of the antenna are se make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rotatable was turned from 0 degrees to 360 de to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a desheet.	ark						
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Val 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height are tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are seen make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rota table was turned from 0 degrees to 360 deto find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a dasheet.							
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height are tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are seen make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was turned to heights from 1 meters and the rotatable was turned from 0 degrees to 360 deto find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a dasheet.	Value						
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receivin antenna, which was mounted on the top of a variable-height ar tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strengt Both horizontal and vertical polarizations of the antenna are semake the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rotatable was turned from 0 degrees to 360 deto find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be re-tested one by one using peak, on the peak of a variable and then reported in a dasheet.							
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters a the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height are tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strengt Both horizontal and vertical polarizations of the antenna are seemake the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rota table was turned from 0 degrees to 360 de to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be re-tested one by one using peak, a peak or average method as specified and then reported in a dasheet.							
Test setup:	bove grees g tenna ove h. to st o 4 grees than values I not quasi-						
Horn Antenna Tower Test Receiver Test Receiver Test Receiver							
Test Instruments: Refer to section 5.6 for details							
Test mode: Refer to section 5.3 for details							
Test results: Passed	Refer to section 5.3 for details						

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : InVision 4K Media Player Condition

EUT

Model : DTIV4K-G2 Test mode : B-L Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∜			<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>d</u> B	
1 2 3 4	2390.000	29.36 8.23 19.30 7.21	23.67 23.68	4.63 4.63 4.69 4.69	0.00	36.53 47.67	54.00 74.00	-26.33	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: InVision 4K Media Player : DTIV4K-G2 EUT

Model Test mode : B-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

CHEAT		Read.	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu₹	<u>dB</u> /m	dB	<u>ab</u>	dBu√/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: InVision 4K Media Player : DTIV4K-G2 EIIT

Model Test mode : B-H Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor							
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
	2483.500 2483.500									

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: InVision 4K Media Player : DTIV4K-G2 EUT

: DIIV4K-G2
Test mode : B-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

			Antenna Factor						
2	MHz	dBu₹	$\overline{-dB}/\overline{m}$	ā	<u>d</u> B	$\overline{dB}\overline{uV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : InVision 4K Media Player : DTIV4K-G2 Condition

EUT

Model Test mode : G-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

α_0										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	—dBu∇			<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000	25.88	23.68	4.69	0.00	54.25	74.00	-19.75	Peak	
	2390.000	7.65	23.68	4.69	0.00	36.02	54.00	-17.98	Average	

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: InVision 4K Media Player EUT

Model : DTIV4K-G2 Test mode : G-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

u	ur .								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2390.000	34.93	23.68	4.69	0.00	63.30	74.00	-10.70	Peak
	2390.000	12.90	23.68	4.69	0.00	41.27	54.00	-12.73	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : InVision 4K Media Player : DTIV4K-G2 Condition

EUT

Model Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

הזטוונים	· .	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
-	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	<u>d</u> B	
1	2483.500	22.02	23.70	4.81	0.00	50.53	74.00	-23.47	Peak
2	2483 500	8 52	23 70	4 81	0.00	37 03	54 00	-1697	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 38 of 59

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: InVision 4K Media Player : DTIV4K-G2 EUT

. D11V4K-G2
Test mode : G-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

.iicii d		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : InVision 4K Media Player Condition

EUT

: DTIV4K-G2 : N20-L Mode Model Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

			Antenna Factor				Limit Line		Remark
3	MHz	dBuV	$-\overline{dB}/\overline{m}$	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2336.398	26.51	23.67	4.64		54.82			
2	2336.398	7.47	23.67	4.64	0.00	35.78	54.00	-18.22	Average
3	2390.000	22.60	23.68	4.69				-23.03	
4	2390.000	7.72	23.68	4.69	0.00	36.09	54.00	-17.91	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : InVision 4K Media Player

Model : DTIV4K-G2 Test mode : N20-L Mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: MT REMARK:

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
	2390.000 2390.000									

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: InVision 4K Media Player EUT

Model : DTIV4K-G2 Test mode : N20-H Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

הדמווני	5000		Antenna Factor						Remark
-	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Invision 4K Media Player Condition

EUT

: DTIV4K-G2 : N20-H Mode Model Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: MT

REMARK

$\alpha $	n .									
			Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹		<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>		
	2483.500	31.93	23.70	4.81	0.00	60.44	74.00	-13.56	Peak	
	2483 500	10 27	23 70	4 81	0.00	38 78	54 00	-15 22	Amerage	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
•							
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b

Date: 15.FEB.2017 00:10:15

30MHz~25GHz

Middle channel

Date: 15.FEB.2017 00:10:59

30MHz~25GHz

Date: 15.FEB.2017 00:11:32

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 15.FEB.2017 00:15:22

30MHz~25GHz

Date: 15.FEB.2017 00:16:09

30MHz~25GHz

Date: 15.FEB.2017 00:16:58

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 15.FEB.2017 00:17:36

30MHz~25GHz

Date: 15.FEB.2017 00:18:14

30MHz~25GHz

Date: 15.FEB.2017 00:19:17

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:201	13						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Dis	stance: 3	3m					
Receiver setup:	Frequency	Detec	ctor	RBW	V	BW	Remark	
·	30MHz-1GHz	Quasi-	peak	120KHz	300)KHz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MHz		Peak Value	
		RM		1MHz		ИHz	Average Value	
Limit:	Frequency		Limit	t (dBuV/m @3	m)	_	Remark	
	30MHz-88MH			40.0			uasi-peak Value	
	88MHz-216MH		43.5			uasi-peak Value		
	216MHz-960M			46.0			uasi-peak Value	
	960MHz-1GH	Z		54.0			uasi-peak Value	
	Above 1GHz	<u>.</u>		54.0 74.0		,	Average Value	
Test Procedure:	1. The EUT wa	e place	d on th	e top of a rot	otina	table (Peak Value	
	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the med. 4. For each suscase and the meters and the meters and the meters and the find the meters. Specified Base 6. If the emission the limit specifies the EUT whave 10dB meters and the meters and the limit specifies are limited and the limit specifies and the limited and the l	as rotate ation. It is set 3 reich was a height is o determinatal and reasuremental and reasurementhe rotal aximum eiver systandwidth on level cified, the vould be margin w	ed 360 meters mount is varie nine the vertica nent. emissi ntenna table v readir stem w with N of the nen tes report vould b	away from the don the top ed from one remaximum of the EUT was turned from the EUT was turned from the EUT in peak ting could be ted. Otherwise re-tested of the ed on the EUT in peak ting could be ted. Otherwise re-tested of the ed on the EUT in peak ting could be ted. Otherwise re-tested of the ed on the	ne into of a neter value s of the was a being om 0 of a mode stopped the ne by	erferer variable to four of the ante arrange that frodegree tect Fude. See was a cone union on the arrange tect for the arrange tect fo	meter chamber. e position of the nce-receiving le-height antenna r meters above field strength. enna are set to ed to its worst em 1 meter to 4 es to 360 degrees unction and 10dB lower than d the peak values ions that did not sing peak, quasi- orted in a data	

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT InVision 4K Media Player

Model DTIV4K-G2 Test mode : Wifi Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

Tillicitat									
			Antenna Factor					Over Limit	Remark
-	MHz	dBu∇	— <u>d</u> B/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	49.881	41.55	15.30	1.26	29.82	28.29	40.00	-11.71	QP
2	73.103	49.93	6.50	1.59	29.69	28.33	40.00	-11.67	QP
2	113.316	49.54	10.85	2.09	29.43	33.05	43.50	-10.45	QP
4	191.745	50.97	9.79	2.81	28.89	34.68	43.50	-8.82	QP
4 5	530.101	42.05	17.60	3.78	29.04	34.39	46.00	-11.61	QP
6	824.597	39.65	20.82	4.27	28.10	36.64	46.00	-9.36	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : InVision 4K Media Player : DT14K-G2 Condition

EUT

Model Test mode : Wifi Mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: MT

REMARK

	Frea		Antenna Factor						Remark
_	MHz	dBu∀				dBuV/m			
1	49.881	47.60	15.30	1.26	29.82	34.34	40.00	-5.66	QP
2	114.114	48.35	10.93	2.10	29.43	31.95	43.50	-11.55	QP
2 3	158.668	45.22	9.96	2.57	29.14	28.61	43.50	-14.89	QP
4	191.745	43.48	9.79	2.81	28.89	27.19	43.50	-16.31	QP
5	530.101	42.48	17.60	3.78	29.04	34.82	46.00	-11.18	QP
6	663.473	46.03	18.90	3.95	28.75	40.13	46.00	-5.87	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.60	36.06	6.81	41.82	49.65	74.00	-24.35	Vertical	
4824.00	49.87	36.06	6.81	41.82	50.92	74.00	-23.08	Horizontal	
Test	mode: 802.	11b	Test channel: Lowest			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.03	36.06	6.81	41.82	40.08	54.00	-13.92	Vertical	
4824.00	38.14	36.06	6.81	41.82	39.19	54.00	-14.81	Horizontal	

Test mode: 802.11b		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.25	36.32	6.85	41.84	50.58	74.00	-23.42	Vertical
4874.00	49.83	36.32	6.85	41.84	51.16	74.00	-22.84	Horizontal
Test	mode: 802.	11b	Test channel: Middle		1iddle	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	40.03	36.32	6.85	41.84	41.36	54.00	-12.64	Vertical
4874.00	39.68	36.32	6.85	41.84	41.01	54.00	-12.99	Horizontal

Test mode: 802.11b		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.37	36.58	6.89	41.86	49.98	74.00	-24.02	Vertical
4924.00	47.75	36.58	6.89	41.86	49.36	74.00	-24.64	Horizontal
Test	mode: 802.	11b	Test channel: Highest			Rem	nark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.01	36.58	6.89	41.86	40.62	54.00	-13.38	Vertical
4924.00	38.84	36.58	6.89	41.86	40.45	54.00	-13.55	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.73	36.06	6.81	41.82	49.78	74.00	-24.22	Vertical
4824.00	49.58	36.06	6.81	41.82	50.63	74.00	-23.37	Horizontal
Tes	t mode: 802.	11g	Test channel: Lov		west	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	40.01	36.06	6.81	41.82	41.06	54.00	-12.94	Vertical
4824.00	39.12	36.06	6.81	41.82	40.17	54.00	-13.83	Horizontal

Test mode: 802.11g		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.38	36.32	6.85	41.84	50.71	74.00	-23.29	Vertical
4874.00	49.71	36.32	6.85	41.84	51.04	74.00	-22.96	Horizontal
Test	t mode: 802.	11g	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	40.12	36.32	6.85	41.84	41.45	54.00	-12.55	Vertical
4874.00	40.36	36.32	6.85	41.84	41.69	54.00	-12.31	Horizontal

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.52	36.58	6.89	41.86	50.13	74.00	-23.87	Vertical
4924.00	48.03	36.58	6.89	41.86	49.64	74.00	-24.36	Horizontal
Tes	t mode: 802.	11g	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.71	36.58	6.89	41.86	40.32	54.00	-13.68	Vertical
4924.00	39.06	36.58	6.89	41.86	40.67	54.00	-13.33	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	47.06	36.06	6.81	41.82	48.11	74.00	-25.89	Vertical
4824.00	48.59	36.06	6.81	41.82	49.64	74.00	-24.36	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Lowest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	39.24	36.06	6.81	41.82	40.29	54.00	-13.71	Vertical
4824.00	39.58	36.06	6.81	41.82	40.63	54.00	-13.37	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	48.71	36.32	6.85	41.84	50.04	74.00	-23.96	Vertical
4874.00	49.03	36.32	6.85	41.84	50.36	74.00	-23.64	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	40.03	36.32	6.85	41.84	41.36	54.00	-12.64	Vertical
4874.00	40.18	36.32	6.85	41.84	41.51	54.00	-12.49	Horizontal

Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.28	36.58	6.89	41.86	49.89	74.00	-24.11	Vertical
4924.00	48.01	36.58	6.89	41.86	49.62	74.00	-24.38	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.62	36.58	6.89	41.86	40.23	54.00	-13.77	Vertical
4924.00	39.11	36.58	6.89	41.86	40.72	54.00	-13.28	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.