(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 March 2001 (08.03.2001)

(10) International Publication Number WO 01/16103 A1

- C07D 209/42, (51) International Patent Classification⁷: 209/52, 405/12, 401/12, 403/12, 401/14, 471/04, 417/14, A61K 31/40
- (21) International Application Number: PCT/US00/23862
- (22) International Filing Date: 30 August 2000 (30.08.2000)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

60/151.789 31 August 1999 (31.08.1999) US 09/387,311 31 August 1999 (31.08.1999) US

- (71) Applicant (for all designated States except US): NEURO-GEN CORPORATION [US/US]; 35 Northeast Industrial Road, Branford, CT 06405 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ALBAUGH, Pamela [US/US]; 81 Long Hill Road, Clinton, CT 06413 (US). SHAW, Kenneth [US/US]; 83 Steephill Road, Weston, CT 06883 (US). HUTCHISON, Alan [US/US]; 29 Kimberly Lane, Madison, CT 06443 (US).

- (74) Agent: SARUSSI, Steven, J.; McDonnell Boehnen Hulbert & Berghoff, Suite 3200, 300 South Wacker Drive, Chicago, IL 60606 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: FUSED PYRROLECARBOXAMIDES: GABA BRAIN RECEPTOR LIGANDS

(57) Abstract: Substituted pyrrolecarboxamide compounds are disclosed. These compounds are highly selective agonists, antagonists or inverse agonists for GABAA brain receptors or prodrugs of agonists, antagonists or inverse agonists for GABAA brain receptors and are therefore useful in the diagnosis and treatment of anxiety, depression, Alzheimer's dementia, sleep and seizure disorders, overdose with benzodiazepine drugs and for enhancement of memory. Pharmaceutical compositions, including packaged pharmaceutical compositions, are further provided. Compounds of the invention are also useful as probes for the localization of GABA_A receptors in tissue samples.

FUSED PYRROLECARBOXAMIDES: GABA BRAIN RECEPTOR LIGANDS

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

15

This invention relates to fused pyrrolecarboxamides. This invention also relates to pharmaceutical compositions comprising such compounds and to the use of such compounds in treatment of certain central nervous system (CNS) diseases. This invention also relates to the use of these fused pyrrolecarboxamide compounds in combination with one or more other CNS agents to potentiate the effects of the other CNS agents. Additionally this invention relates to the use such compounds as probes for the localization of GABAA receptors in tissue sections.

Description of the related art

The GABA $_{\rm A}$ receptor superfamily represents one of the classes of receptors through which the major inhibitory neurotransmitter, γ -aminobutyric acid, or GABA, acts. Widely, although unequally, distributed through the mammalian brain, GABA mediates many of its actions through a complex of proteins called the GABA $_{\rm A}$ receptor, which causes alteration in chloride conductance and membrane polarization.

A number of cDNAs for GABA, receptor subunits have been characterized. To date at least 6α , 3β , 3γ , 1ϵ , 1δ and 2ρ

subunits have been identified. It is generally accepted that native GABA_A receptors are typically composed of 2α , 2β , and 1γ subunits (Pritchett & Seeburg *Science* 1989; 245:1389-1392 and Knight et. al., *Recept. Channels* 1998; 6:1-18). Evidence such as message distribution, genome localization and biochemical study results suggest that the major naturally occurring receptor combinations are $\alpha_1\beta_2\gamma_2$, $\alpha_2\beta_3\gamma_2$, $\alpha_3\beta_3\gamma_2$, and $\alpha_5\beta_3\gamma_2$ (Mohler et. al. Neuroch. Res. 1995; 20(5): 631 - 636).

5

Benzodiazepines exert their pharmacological actions by 10 interacting with the benzodiazepine binding sites associated with the GABA receptor. In addition to the benzodiazepine site, the GABAA receptor contains sites of interaction for several other classes of drugs. These include a steroid binding site, a picrotoxin site, and the barbiturate site. The benzodiazepine site of the $GABA_A$ receptor is a distinct site on 15 the receptor complex that does not overlap with the site of interaction for GABA or for other classes of drugs that bind to the receptor (see, e.g., Cooper, et al., The Biochemical Basis of Neuropharmacology, 6th ed., 1991, pp. 145-148, Oxford University Press, New York). Early electrophysiological 20 studies indicated that a major action of the benzodiazepines was enhancement of GABAergic inhibition. Compounds that selectively bind to the benzodiazepine site and enhance the ability of GABA to open GABA receptor channels are agonists of 25 GABA receptors. Other compounds that interact with the same site but negatively modulate the action of GABA are called

inverse agonists. Compounds belonging to a third class bind selectively to the benzodiazepine site and yet have little or no effect on GABA activity, but can block the action of $GABA_A$ receptor agonists or inverse agonists that act at this site. These compounds are referred to as antagonists.

5

10

15

20

25

important allosteric modulatory effects of drugs acting at the benzodiazepine site were recognized early and the distribution of activities at different receptor subtypes has been an area of intense pharmacological discovery. Agonists that act at the benzodiazepine site are known to exhibit anxiolytic, sedative, and hypnotic effects, while compounds that act as inverse agonists at this site elicit anxiogenic, cognition enhancing, and proconvulsant effects. While benzodiazepines have a long history of pharmaceutical use as anxiolytics, these compounds often exhibit a number of unwanted side effects. may include cognitive impairment, These sedation, ataxia, potentiation of ethanol effects, and a tendency for tolerance and drug dependence.

GABA_A selective ligands may also act to potentiate the effects of certain other CNS active compounds. For example, there is evidence that selective serotonin reuptake inhibitors (SSRIs) may show greater antidepressant activity when used in combination with $GABA_A$ selective ligands than when used alone.

Various compounds have been prepared as benzodiazepine agonists and antagonists. For Example, U.S. Patents Nos. 3,455,943, 4,435,403, 4,596,808, 4,623,649, and 4,719,210,

-3-

German Patent No. DE 3,246,932, and Liebigs Ann. Chem. 1986, 1749 teach assorted benzodiazepine agonists and antagonists and related anti-depressant and central nervous system active compounds.

5 U.S. Patent No. 3,455,943 discloses indole derivatives.

Other references, such as U.S. Patent No. 4,435,403 and German patent DE 3,246,932 disclose pyrimidino[5,4-b]indoles and beta-carboline derivatives.

A variety of indole-3-carboxamides is described in the literature. See, for example, J. Org. Chem., 42: 1883-1885 (1977); J. Heterocylic Chem., 14: 519-520 (1977). Also, U.S. Patent Nos. 5,804,686 and 6,080,873 and PCT International Publication WO 97/26243, all of which are assigned to Neurogen Corporation, disclose fused pyrrolecarboxamides.

SUMMARY OF THE INVENTION

In a preferred aspect, this invention provides pyrrolecarboxamides that bind with high affinity and high selectivity to the benzodiazepine site of the $GABA_A$ receptor, including human $GABA_A$ receptors.

Thus, the invention provides compounds of Formula I (shown below), and pharmaceutical compositions comprising compounds of Formula I.

The invention further comprises methods of treating patients suffering from CNS disorders with an effective amount of a compound of the invention. The patient may be a human or other mammal. Treatment of humans, domesticated companion animals (pet) or livestock animals suffering from CNS disorders with an effective amount of a compound of the invention is encompassed by the invention.

10

15

20

In a separate aspect, the invention provides a method of potentiating the actions of other CNS active compounds. This method comprises administering an effective amount of a compound of the invention with another CNS active compound.

Additionally this invention relates to the use of the compounds of the invention as probes for the localization of $GABA_A$ receptors in tissue sections.

Accordingly, a broad aspect of the invention is directed to compounds of the formula

-5-

$$R_4$$
 R_5
 R_6
 R_6

Ι

and the pharmaceutically acceptable salts thereof wherein:
T is halogen, hydrogen, hydroxyl, amino, alkyl or alkoxy;
X is hydrogen, hydroxy, amino, benzyl, t-butoxycarbonyl, benzyloxycarbonyl, alkyl, or alkoxy;

G represents

5

where

- 10 Q is an optionally substituted aryl or optionally substituted heteroaryl group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;
- W is chosen from hydrogen, -O-, -NH-, $-NR_{7}-$, $-S(O)_{0-2}-$, -C(=O)-, -OC(=O)-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, $-NR_{7}C(=O)-$, $-NHS(O)_{0-2}-$, $-NR_{7}S(O)_{0-2}-$, $-S(O)_{0-2}NH-$, $-S(O)_{0-2}NR_{7}-$, and $CR_{7}R_{8}$ where R_{7} and R_{8} are the same or different and represent hydrogen, alkyl, or $CR_{7}R_{8}$ represents a cyclic moiety having 3-7 carbon atoms, wherein W may not be hydrogen when Q is phenyl, 2- or

3-thienyl, or 2-, 3-, or 4 pyridyl, indolyl, imidazolyl, or pyridazinyl;

- Z is hydrogen, hydroxy, cycloalkyl(alkoxy), amino, monoor di(alkyl₁) amino, azacycloalkyl, $-O(alkyl_1)$, $-S(O)_{0-2}(alkyl_1)$, $-C(=O)(alkyl_1)$, $-OC(=O)(alkyl_1)$, -OC(=O)H, $-C(=O)O(alkyl_1)$, -C(=O)OH, $-C(=O)NH(alkyl_1)$, $-C(=O)NH(alkyl_1)$, $-C(=O)NH_2$, $-NHC(=O)(alkyl_1)$, -NHC(=O)H, $-N(alkyl_1)C(=O)(alkyl_1)$, $-NHS(O)_{0-2}(alkyl_1)$, $-S(O)_{0-2}(alkyl_1)$, $-S(O)_{0-2}(alkyl_1)$,
 - wherein each alkyl₁ is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds or combinations thereof, and is unsubstituted or substituted with one or more substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, or

Z is $-N(R_N)_2S(O)_{0-2}(R_S)$ where

5

10

15

25

each R_N is independently hydrogen or alkyl where the alkyl is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy,

R_s is hydroxy, alkoxy, heteroaryl, aryl, or alkyl where

each aryl and heteroaryl is optionally substituted with one or two of alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or dialkylamino; and

each alkyl is optionally substituted with hydroxy, alkoxy, triflouromethyl, halogen, amino, mono- or di- alkylamino, aryl, or heteroaryl; or

- Z is phenyl or phenylalkyl where the phenyl portion is optionally substituted with alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or dialkylamino, or
- Z is 2-, 3-, or 4-pyridyl, 1- or 2-imidazolyl, 1-, 2-, or 3-pyrrolyl, azeditinyl, norborn-2-yl, or adamantan-2-yl; each of which may be substituted on a tertiary carbon or a secondary nitrogen with C_1 - C_6 alkyl, or
- Z is NR_9COR_{10} where R_9 and R_{10} are the same or different and represent hydrogen or alkyl or cycloalkyl, or
- Z is connected, optionally through W, to Q to from a 1-6 membered ring; or
- Z represents a group of the formula:

where

5

10

15

20

p is 1, 2, or 3;

D and D' independently represent oxygen, NR_y or CHR_y provided that only one of D and D' may be NR_y , and only one of D and D' may be oxygen, where each R_y is hydrogen or alkyl; and

 $\mathtt{R}_{\mathtt{z}}$ is hydrogen or alkyl, or

Z represents a group of the formula:

$$R_z$$
 $N-R_z$
 N_q
where

p is 1, 2, or 3;

q is 0, 1, or 2;

each R_z is independently hydrogen or alkyl; or Z represents a group of the formula:

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

 $R_{\rm o}$ is hydroxy, $C_1\text{-}C_6$ alkoxy, amino, mono- or dialkylamino where each alkyl is independently optionally substituted with amino, or mono- or dialkylamino, or

Ro is a group of the formula

20

5

10

15

where p, D, D', and R_z are as defined above;

and independently represent a carbon chain optionally substituted with halogen, oxo, cyano, nitro, amino, mono or dialkylamino, alkyl, alkenyl, alkynyl, trifluoromethyl, trifluoromethoxy, or cycloalkyl;

wherein

5

10

15

k is 0, 1, 2, or 3; m is 0, 1, 2, or 3; and

represents a carbon chain optionally substituted with R_5 and R_6 and n is 0, 1, 2, or 3; and

- R3, R4, R5, and R6 are the same or different and are independently selected at each occurrence from hydrogen, alkyl, -COR11 or -CO2R11 where R11 is alkyl or cycloalkyl having 3-7 carbon atoms; or -CONR12R13 where R12 and R13 are selected independently from hydrogen, alkyl, cycloalkyl having 3-7 carbon atoms, phenyl, 2-, 3-, or 4-pyridyl, or NR12R13 forms a heterocyclic group which is morpholinyl, piperidinyl, pyrrolidinyl, or N-alkyl piperazinyl; or
- R3 and R4 together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms; or

R5 and R6 together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms;

where each alkyl group forming an R₃, R₄, R₅, or R₆ substituent or portion thereof may be substituted independently with hydroxy or monoor dialkylamino where each alkyl is independently alkyl or cycloalkyl.

In another aspect, the invention provides intermediates useful for preparing compounds of Formula I.

5

-11-

DETAILED DESCRIPTION OF THE INVENTION

In addition to compounds of Formula I described above, the invention also encompasses compounds of the same general formula and the pharmaceutically acceptable salts thereof, wherein:

T is halogen, hydrogen, hydroxyl, C_1 - C_6 amino, alkyl or C_1 - C_6 alkoxy;

X is hydrogen, hydroxy, amino, C_1 - C_6 alkyl, or C_1 - C_6 alkoxy;

10 G represents

where

Q is phenyl, 2- or 3-thienyl, or 2-, 3-, or 4 pyridyl, 2-, 4-, or 5-pyrimidinyl, indolyl, imidazolyl, pyridazinyl, 1,4-benzodioxazinyl, 1,3-benzodioxolyl or imidazo[1,2-a]pyridinyl, all of which may be substituted by one or more of hydroxy, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, cyano, nitro, amino, and monoor dialkyl(C₁-C₆) amino;

W is chosen from hydrogen, -O-, -NH-, -NR₇-, -S(O)₀₋₂-, $-C(=O)-, \quad -OC(=O), \quad -C(=O)O-, \quad -C(=O)NH-, \quad -NHC(=O)-,$ $-NR₇C(=O)-, \quad -NHS(O)₀₋₂-, \quad -NR₇S(O)₀₋₂-, \quad -S(O)₀₋₂NH-,$ -S(O)₀₋₂R₇H-, and CR₇R₈ where R₇ and R₈ are the same or different and represent hydrogen, alkyl, or R₇-R₈

taken together represents a cyclic moiety having 3-7 carbon atoms, wherein W may not be hydrogen when Q is phenyl, 2- or 3-thienyl, or 2-, 3-, or 4 pyridyl, indolyl, imidazolyl, or pyridazinyl;

Z is hydrogen, hydroxy, C₃-C₇ cycloalkyl(C₁-C₆ alkoxy),
 amino, mono- or di(C₁-C₆ alkyl₁) amino, or C₃-C₇
 azacycloalkyl, -O(C₁-C₆ alkyl₁), -S(O)₀₋₂(C₁-C₆ alkyl₁),
 -C(=O) (C₁-C₆ alkyl₁), -OC(=O) (C₁-C₆ alkyl₁), -OC(=O)H,
 -C(=O)O(C₁-C₆ alkyl₁), -C(=O)OH, -C(=O)NH(C₁-C₆
 alkyl₁), -C(=O)NH₂, -NHC(=O) (C₁-C₆ alkyl₁),
 -NHC(=O)H, -N(C₁-C₆ alkyl₁)C(=O) (C₁-C₆ alkyl₁),
 -NHS(O)₀₋₂(C₁-C₆ alkyl₁), -N(C₁-C₆ alkyl₁)S(O)₀₋₂(C₁-C₆
 alkyl₁), -S(O)₀₋₂NH(C₁-C₆ alkyl₁), or
 -S(O)₀₋₂(C₁-C₆ alkyl₁)N(C₁-C₆ alkyl₁),

wherein C_1 - C_6 alkyl₁ is independently chosen at each occurrence and is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, or

Z is $-N(R_N)_2S(O)_{0-2}(R_S)$ where

15

20

25

each R_N is independently hydrogen or alkyl where the alkyl is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more

substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy,

- R_S is hydroxy, alkoxy, or alkyl where the alkyl is optionally substituted with hydroxy, alkoxy, triflouromethyl, halogen, amino, mono- or dialkylamino, aryl or heteroaryl,
- Z is phenyl or phenyl (C_1-C_6) alkyl where the phenyl portion is optionally substituted with C_1-C_6 alkyl, hydroxy, C_1-C_6 alkoxy, trifluoromethyl, trifluoromethoxy, halogen, amino, or mono- or diC₁-C₆ alkylamino, or
- Z is 2-, 3-, or 4-pyridyl, 1- or 2-imidazolyl, 1-, 2-, or 3-pyrrolyl, or adamantane-2-yl; each of which may be substituted on a tertiary carbon or a secondary nitrogen with C_1 - C_6 alkyl, or
- Is Z is NR9COR $_{10}$ where R9 and R $_{10}$ are the same or different and represent hydrogen or C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl, or
 - Z is connected, optionally through W, to Q to from a 1-6 membered ring; or
- Z represents a group of the formula:

where

5

10

p is 1, 2, or 3;

D and D' independently represent oxygen, NR_y or CHR_y

provided that only one of D and D' may be NR_y where each R_y is hydrogen or C_1 - C_6 alkyl; or and R_z is hydrogen or C_1 - C_6 alkyl, or

Z represents a group of the formula:

5 whe

p is 1, 2, or 3;

q is 0, 1, or 2;

 R_z is hydrogen or C_1 - C_6 alkyl; or

a group of the formula:

10

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

15

 R_o is hydroxy, C_1 - C_6 alkoxy, amino, mono- or diC_1 - C_6 alkylamino where each alkyl is independently optionally substituted with amino, mono- or diC_1 - C_6 alkylamino, or

 R_{o} is a group of the formula

where p, D, D', and $R_{\rm z}$ are as defined above;

and independently represent a carbon chain optionally substituted with hydrogen, halogen, oxo, cyano, nitro, amino, mono or di(C₁-C₆)alkylamino, straight or branched chain C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, trifluoromethyl, trifluoromethoxy, or cycloC₁-C₆ alkyl;

wherein

5

15

20

k is 0, 1, 2, or 3; m is 0, 1, 2, or 3; and

10 represents a carbon chain optionally substituted with R_5 and R_6 and n is 0, 1, 2, or 3;

R3, R4, R5, and R6 are the same or different and are independently selected at each occurrence from hydrogen, C_1 - C_6 alkyl, $-COR_{11}$ or $-CO_2R_{11}$ where R₁₁ is C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl; or

-CONR₁₂R₁₃ where R₁₂ and R₁₃ are selected independently from hydrogen, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, 2-, 3-, or 4-pyridyl, or NR₁₂R₁₃ forms a heterocyclic group which is morpholinyl, piperidinyl, pyrrolidinyl, or N-alkyl piperazinyl; or R₃ and R₄ together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon

atoms; or

R5 and R6 together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms; and

where each alkyl group forming an R_3 , R_4 , R_5 , or R_6 substituent or portion thereof may be substituted independently with hydroxy or mono- or dialkylamino where each alkyl is independently C_3 - C_7 alkyl or cycloalkyl having 3-7 carbon atoms.

Such compounds will be referred to as compounds of Formula

10 Ia. Particular compounds of the invention also include compounds of Formula I where Q is phenyl or pyridyl (compounds of Formula Ib) and compounds of Formula I wherein Q is phenyl or pyridyl; and either the group or the group is substituted by oxo (compounds of Formula Ic).

15

5

When W is hydrogen, m is 0 and Z is absent resulting in Q groups that are optionally substituted with alkyl where the alkyl is optionally substituted as defined above.

In addition, the present invention encompasses compounds 20 of Formula II:

$$R_4$$
 R_5
 R_6
 R_6

Formula II

and the pharmaceutically acceptable salts thereof: wherein

n, k, m, R_3-R_6 , X, T, W, and Z are defined as for Formula I; Q is phenyl or pyridyl substituted by up to 4 groups Y, where Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, cyano, nitro, amino, and mono- or dialkyl (C_1-C_6) amino. Compounds of Formula II, include compounds of Formula IIa, Formula IIb, Formula IIc,

10 and Formula IId shown below

$$R_4$$
 R_5
 R_6
 R_6

Formula IIa

$$R_4$$
 R_5
 R_6
 R_6

Formula IIb

$$R_4$$
 R_5
 R_6
 R_6

$$R_4$$
 R_5
 R_6
 R_6

5

The present invention also encompasses compounds of Formula III

$$R_4$$
 R_5
 R_6
 R_6

Formula III

and the pharmaceutically acceptable salts thereof: wherein

10 n, k, m, R₃-R₆, X, T, W, and Z are defined as for Formula I;

Q is phenyl or pyridyl substituted by up to 4 groups Y, where Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, cyano, nitro, amino, and mono- or dialkyl(C₁-C₆)amino. Particular compounds of Formula III include compounds of Formula IIIa and Formula IIIb shown below.

The present invention also encompasses compounds of Formula IV

Formula IV

and the pharmaceutically acceptable salts thereof: wherein

5

n, m, R₃-R₆, X, T, W, and Z are defined as for Formula I;

Q is phenyl or pyridyl substituted by up to 4 groups Y, where Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, cyano, nitro, amino, and mono- or dialkyl(C₁-C₆) amino. Particularly included as compounds of Formula IV are compounds of Formula IV-1, Formula IV-2, and Formula IV-3, shown below.

Formula IV-1

$$R_4$$
 R_5
 R_6
 R_6

Formula IV-2

Formula IV-3

5

10

15

Preferred compounds of Formula IV, IV-1, IV-2, and IV-3 are those compounds where Z is a group -OR and R is hydrogen or alkyl wherein the alkyl is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy.

Other preferred compounds of Formula IV, IV-1, IV-2, and IV-3 are those compounds where Z is a group $-NR_aR_b$ wherein R_a and R_b are independently hydrogen or alkyl wherein each alkyl is independently straight, branched, or cyclic, may

-21-

contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; or

5 R_a and R_b may be joined to form a heterocycloalkyl ring.

Further included as compounds of Formula IV are compounds of Formula IVa and IVb:

10

The present invention also encompasses compounds of Formula ${\tt V}.$

Formula V

15 wherein

n, m, R_3 - R_6 , X, T, W, and Z are defined as for Formula I; Q is phenyl or pyridyl substituted by up to 4 groups Y, where Y is independently selected at each occurrence from hydrogen,

hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino. Particularly included as compounds of Formula V are compounds of Formula Va, Formula Vb

$$R_4$$
 R_5
 R_6
 R_6

Formula Va

$$R_4$$
 R_5
 R_6
 R_6

Formula Vb

10 Formula Vc

5

15

Especially preferred compounds of Formula V, Va, Vb, and Vc are compounds of wherein Z is a groups $-NR_aR_b$ wherein R_a and R_b are independently hydrogen or alkyl wherein each alkyl is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or

substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; or R_a and R_b may be joined to form a heterocycloalkyl ring.

5 The present invention also encompasses compounds of Formula VI.

$$R_4$$
 R_5
 R_6
 R_6

Formula VI

and the pharmaceutically acceptable salts thereof:

10 wherein

15·

n, m, R_3 - R_6 , X, T, and Z are defined as for Formula I; Q is phenyl or pyridyl substituted by up to 4 Y groups, where Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino. Particularly included as compounds of Formula VI are compounds of Formula VIa and Formula VIb (shown below).

Formula VIa

Formula VIb

The present invention also encompasses compounds of Formula .
VII.

VII

wherein W, Z, m, n, R3, R4, R5, and R6 are defined as for Formula I.

The present invention also encompasses compounds of 10 Formula VIII.

$$R_4$$
 R_5
 R_6
 R_6

VIII

wherein W, Z, m, n, R3, R4, R5, and R6 are defined for Formula I.

15

5

The present invention also encompasses compounds of Formula IX.

IX

wherein W, Z, k, m, n, R3, R4, R5, and R6 are defined as for Formula I.

5

The present invention also encompasses compounds of Formula \mathbf{X} .

Χ

wherein W, Z, k, m, n, R3, R4, R5, and R6 are defined as for Formula I.

Preferred compounds of the invention are those where n is 1 or 2. Particularly preferred are those where X and T are both hydrogen. Thus, preferred compounds of the invention have formulas A1 or B1.

$$R_4$$
 R_5
 R_6
 R_6

A1 B1

Preferred compounds of Formulas A1 and B1 are those where R_3 , R_4 , R_5 and R_6 are independently hydrogen or alkyl. More preferably, R_3 , R_4 , R_5 and R_6 are independently hydrogen, methyl, or ethyl. Even more preferably, R_3 , R_4 , R_5 and R_6 are hydrogen or methyl, where not more than 2 of R_3 - R_6 are methyl. Particularly preferred are compounds where R_3 and R_4 are C_1 - C_3 alkyl, most preferably methyl, when R_5 and R_6 are hydrogen or where R_5 and R_6 are C_1 - C_3 alkyl, most preferably methyl, when R_3 and R_4 are hydrogen. Other particularly preferred compounds are those where R_3 is methyl and R_4 - R_6 are hydrogen or R_6 is methyl and R_3 - R_5 are hydrogen.

Preferred G substituents of the invention include the 15 following:

Α

where R_{a} represents hydrogen or alkyl where the alkyl is optionally halogenated; and

20 e is an integer of 1-3.

5

10

More preferred G substituents of formula A include those where e is 1, 2, or 3, and R_a is hydrogen, methyl, ethyl, isopropyl, or cyclopropyl. Particularly preferred G substituents of formula A include those where e is 1, 2, or 3, and R_a is hydrogen or methyl.

Another preferred G substituent is the following formula:

В

where R_a represents hydrogen or alkyl where the alkyl is optionally halogenated; and e is an integer of 1-3.

More preferred G substituents of formula B include those where e is 1, 2, or 3; and $R_{\rm a}$ is hydrogen, methyl or ethyl. Particularly preferred G substituents of formula B include those where e is 1 or 2, and $R_{\rm a}$ is hydrogen or methyl.

Another preferred G substituent is the following formula:

C

20 where

5

15

Hal represents a halogen, preferably fluoro, bromo, or chloro;

 R_a and R_b independently represent hydrogen, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkyl C_1 - C_6 alkyl where the cycloalkyl group may be substituted with halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, or mono- or diC_1 - C_6 alkylamino; and

e is an integer of 2-3.

Preferred compounds having formula C as the G group include those where Hal is fluoro and e is 2, 3, or 4.

More preferred G substituents of formula C include those where R_{a} is hydrogen, methyl or ethyl; and R_{b} is hydrogen. Particularly preferred G substituents of formula C include those where e is 2; R_{a} is hydrogen or methyl; and R_{b} is hydrogen.

Another preferred G substituent is the following formula:

C-1

where

5

20

Hal represents a halogen, preferably fluoro, bromo, or chloro;

 R_a and R_b independently represent hydrogen, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkyl where the cycloalkyl group may be substituted with

halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, or mono- or diC_1 - C_6 alkylamino; and

e is an integer of 2-3.

Preferred compounds having formula C-1 as the G group include those where Hal is fluoro and e is 2, 3, or 4.

Another preferred G substituent is the following formula:

$$Y = (CH_2)_e \cdot N^{-R_a}$$

$$Y = R_b$$

Γ

where R_a represents hydrogen, alkyl, or C_{3-7} cycloalkyl, or a group of the formula:

where

20

p is 1, 2, or 3;

Rb represents hydrogen, alkyl, or acyl;

D and D' independently represent oxygen, NR_y or CHR_y , provided that only one of D and D' may be NR_y , where each R_y is hydrogen or C_1 - C_6 alkyl; and

 R_z is hydrogen or $C_1\text{-}C_6$ alkyl; and

Y and Y' independently represent hydrogen or halogen; and e is an integer of 1-3.

More preferred G substituents of formula D are those where Y is hydrogen or fluorine; and e is 1 or 2. Particularly preferred G substituents of formula D are those where Y is hydrogen or fluorine; e is 1 or 2; Ra is hydrogen, C1-3 alkyl, or cyclopropyl, and Rb is hydrogen, methyl, or acyl. Other particularly preferred G substituents of formula D are those where Y is hydrogen and Y' is fluorine. Still other particularly preferred G groups of Formula D are those where e is 1 or 2; Ra is hydrogen, C1-3 alkyl, cyclopropyl or cyclopropylmethyl, and Rb is hydrogen, methyl, or acyl.

Another preferred G substituent is the following formula:

D-1

where R_a represents hydrogen, alkyl, or C_{3-7} cycloalkyl; and

Rb represents hydrogen, alkyl, or acyl; or

10

20

 R_{a} and R_{b} independently represent hydrogen, $C_1\text{-}C_6$ alkyl, $C_3\text{-}7\text{cycloalkyl}C_1\text{-}C_6\text{alkyl}; \text{ and }$

Y and Y' independently represent hydrogen or halogen; and e is an integer of 1-3.

More preferred G substituents of formula D are those where Y is hydrogen or fluorine; and e is 1 or 2. Particularly preferred G substituents of formula D are those where Y is

hydrogen or fluorine; e is 1 or 2; R_a is hydrogen, C_{1-3} alkyl, or cyclopropyl, and R_b is hydrogen, methyl, or acyl. Other particularly preferred G substituents of formula D are those where Y is hydrogen and Y' is fluorine. Still other particularly preferred G groups of Formula D are those where e is 1 or 2; R_a is hydrogen, C_{1-3} alkyl, cyclopropyl or cyclopropylmethyl, and R_b is hydrogen, methyl, or acyl.

Another preferred G substituent is the following formula:

E

where Z is oxygen, nitrogen, or methylene; and m is 1 or 2.

Particularly preferred G substituents of formula E are those where Z is oxygen, and m is 1 or 2. Other particularly preferred G substituents of formula E are those where Z is nitrogen, and m is 1 or 2.

Another preferred G substituent is the following formula:

F

where Z is oxygen or nitrogen; and m is 1 or 2.

20

Particularly preferred G substituents of formula F are those where Z is nitrogen, and m is 1 or 2.

Another preferred G substituent is the following formula:

5

20

where Z is oxygen, nitrogen, or methylene; and m is 1 or 2.

Particularly preferred G substituents of formula H are those where Z is nitrogen, and m is 1 or 2.

10 Another preferred G substituent is the following formula:

$$Y \underbrace{\qquad \qquad (CH_2)_{e}}_{Y'} R_b R_a$$

Ū

where R_a represents hydrogen, alkyl, or C_{3-7} cycloalkyl; R_b represents hydrogen, alkyl, or acyl;

Y and Y' independently represent hydrogen or halogen; and e is an integer of 1-3.

More preferred G substituents of formula J are those where Y and Y' are independently hydrogen or fluorine; and e is 1 or 2. Particularly preferred G substituents of formula J are those where and Y' are independently hydrogen or fluorine; e is 1 or 2; Ra is hydrogen, C₁₋₃ alkyl, or cyclopropyl, and Rb is hydrogen, methyl, or acyl.

Another preferred G substituent is the following formula:

$$\text{CH}_2)_e^{\bullet} \text{NR}_a \text{R}_b$$

K

where

 R_a and R_b independently represent hydrogen, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkyl C_1 - C_6 alkyl where the cycloalkyl group may be substituted with halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, or mono- or di C_1 - C_6 alkylamino; and

e is an integer of 2-3.

Another preferred G substituent is represented by the following formula:

$$R_h$$
 R_c

15 M

20

where

 R_h is hydrogen, halogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}$ C_6 alkoxy, or trifluoromethyl;

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

 R_o is hydroxy, $C_1\text{-}C_6$ alkoxy, amino, mono- or $\label{eq:condition} \text{di} C_1\text{-}C_6 \text{alkylamino} \quad \text{where} \quad \text{each} \quad \text{alkyl} \quad \text{is}$

independently optionally substituted with amino, mono- or $diC_1\text{-}C_6alkylamino$, or R_{\circ} is a group of the formula

p is 1, 2, or 3;

D and D' independently represent oxygen, NR_y or CHR_y provided that only one of D and D' may be NR_y where each R_y is hydrogen or C_1 - C_6 alkyl; or and

 R_z is hydrogen or C_1 - C_6 alkyl.

Preferred M groups are those where $R_{\rm h}$ is hydrogen or halogen, most preferably fluoro, and $R_{\rm o}$ is a group of the formula:

15 where

10

R₁₄ is hydrogen or C₁-C₆alkyl;

R₁₅ is hydrogen or C₁-C₆alkyl;

R₁₆ is hydrogen, ethyl, or methyl;

 R_{17} is C_1 - C_6 alkyl; and

J is a C_1 - C_4 alkylene group, preferably methylene, ethylene, or propylene.

Particularly preferred groups of Formula M include those where s is 1 and $R_{\rm o}$ is ethoxy, hydroxy, ethylamino, diethylamino, morpholinyl, piperazinyl, 4-methylpiperazinyl,

Other preferred compounds of the invention are those of Formula N-1.

$$R_4$$
 R_3 O O K_5 N N X

10 N-I

wherein:

5

n is 1 or 2;

X is hydrogen, or alkyl;

R3, R4, R5, and R6 are the same or different and are independently selected at each occurrence from hydrogen or alkyl; and

G represents phenyl or pyridyl, each of which is substituted with a group A-K-W-M-Z and optionally with halogen, alkyl, alkoxy, hydroxy, amino, or mono- or dialkylamino; where

- K and M independently represent a bond or C_1 - C_6 alkylene;
 - W represents -O-, -NH-, $-NR_7$ where R_7 represents hydrogen or alkyl, or C_1 - C_3 alkylene; and
 - Z is hydrogen, hydroxy, cycloalkyl(alkoxy), amino,
 mono- or di(alkyl1) amino, or azacycloalkyl,
 -O(alkyl1), -S(O)0-2(alkyl1), -C(=O) (alkyl1),
 -OC(=O)(alkyl1), -OC(=O)H, -C(=O)O(alkyl1),
 -C(=O)OH, -C(=O)NH(alkyl1), -C(=O)N(alkyl1)2,
 -C(=O)NH2, -NHC(=O) (alkyl1), -NHC(=O)H,
 -N(alkyl1)C(=O)(alkyl1), -NHS(O)0-2(alkyl1),
 -N(alkyl1)S(O)0-2(alkyl1), -S(O)0-2NH(alkyl1),
 -S(O)0-2(alkyl1)N(alkyl1),

wherein each alkyl₁ is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, or

Z is $-N(R_N)_2S(O)_{0-2}(R_S)$ where

25

5

10

15

20

5

10

15

20

25

each R_N is independently hydrogen or alkyl where the alkyl is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, and

- $R_{\rm S}$ is hydroxy, alkoxy, alkyl where the alkyl is optionally substituted with hydroxy, alkoxy, triflouromethyl, halogen, amino, mono- or di-alkylamino, or
- R_s is heteroaryl unsubstituted or substituted with alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or dialkylamino;
- Z is phenyl or phenylalkyl where the phenyl portion is optionally substituted with alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or di- alkylamino, or
- Z is 2-, 3-, or 4-pyridyl, 1- or 2-imidazolyl, 1-, 2-, or 3-pyrrolyl, azeditinyl, norborn-2-yl, or adamantan-2-yl; each of which may be substituted on a tertiary carbon or a secondary nitrogen with C₁-C₆alkyl, or
- Z represents a group of the formula:

where

p is 1, 2, or 3;

D and D' independently represent oxygen, NR_y or CHR_y provided that only one of D and D' may be NR_y where each R_y is hydrogen or alkyl; and

Rz is hydrogen or alkyl, or

Z represents a group of the formula:

10

5

p is 1, 2, or 3; and

q is 0, 1, or 2; or

Z represents a group of the formula:

15

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

 R_o is hydroxy, C_1 - C_6 alkoxy, amino, mono- or dialkylamino where each alkyl is independently optionally substituted with amino, mono- or dialkylamino, or

20

 R_o is a group of the formula

where p, D, D', and R_z are as defined above.

Preferred compounds of formula N-I include those where X is hydrogen. Other preferred compounds of formula N-I are those where X is C_1 - C_6 alkyl, most preferably, methyl.

More preferred compounds of N-I are those where K is a bond and W is oxygen. In other more preferred compounds of formula N-I, K is a bond and W is a bond or methylene.

Still more preferred compounds of N-I are those where M is C_2 or C_3 alkylene. In other more preferred compounds of formula N-I, M is C_2 or C_3 alkylene. In these more preferred compounds of formula N-I, G is phenyl. Alternatively, G is pyridyl in more preferred compounds of formula N-I.

15

In preferred compounds of formula N-I,

Z is amino, mono- or di(alkyl)amino, or azacycloalkyl, -O(alkyl), -S(O)₀₋₂(alkyl), -C(=O)(alkyl), -OC(=O)(alkyl), -OC(=O)H, -C(=O)O(alkyl), -C(=O)NH(alkyl), -C(=O)N(C₁-C₆ alkyl₁)₂, -C(=O)NH₂, -NHC(=O)(alkyl), -NHC(=O)H, -N(alkyl)C(=O)(alkyl), -NHS(O)₀₋₂(alkyl),

 $-N(alkyl)S(O)_{0-2}(alkyl), \qquad -S(O)_{0-2}NH(alkyl), \\ -S(O)_{0-2}(alkyl)N(alkyl), or$

Z is $-N(R_N)_2S(O)_{-2}(R_S)$ where

each R_N is independently hydrogen or alkyl, and R_S is hydroxy, alkoxy, or alkyl where the alkyl is optionally substituted with hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or di- alkylamino, or

R_s is phenyl, imidazolyl, pyridyl, pyrimidinyl, pyrrolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, or isothiazolyl, each of which is optionally substituted with alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or dialkylamino.

15

20

10

5

Preferred compounds of Formula I - X above (including all subformulae such as IIb, IIC etc), exhibit K_i values of less than 100 nM at the GABAA receptor as determined by an assay of GABAA receptor binding, especially preferred compounds of Formula I - X exhibit K_i values of less than 10 nM at the GABAA receptor as determined by an assay of GABAA receptor binding.

Representative compounds of the invention are shown below 25 in Table 1.

Table 1

Compound 1

Compound 3

Compound 5

Compound 7

Compound 9

Compound 2

Compound 4

Compound 6

Compound 8

Compound 10

Compound 11

Compound 13

Compound 15

Compound 86

Compound 115

Compound 12

Compound 14

Compound 47

Compound 95

Compound 145

Compound 229

The following numbering conventions are used to identify positions on the ring systems in the compounds of the invention:

Compound 235

5

Representative compounds of the present invention, which are encompassed by Formula I, include, but are not limited to the compounds in Table I and their pharmaceutically acceptable salts. Non-toxic pharmaceutically acceptable salts include salts of acids such as hydrochloric, phosphoric, hydrobromic, sulfuric, sulfinic, formic, toluenesulfonic, methanesulfonic, nitric, benzoic, citric, tartaric, maleic, hydroiodic, alkanoic such as acetic, $HOOC-(CH_2)_{\, n}-COOH$ where n is 0-4, and the like. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically acceptable addition salts.

5

10

15

20

25

Representative compounds of the present invention, which are encompassed by Formula I, include, but are not limited to the compounds in Table 1 and their pharmaceutically acceptable salts. The present invention also encompasses the acylated prodrugs of the compounds of Formula I. Those skilled in the art will recognize various synthetic methodologies which may be employed to prepare non-toxic pharmaceutically acceptable addition salts and acylated prodrugs of the compounds encompassed by Formula I.

This invention relates to fused pyrrolecarboxamide compounds that bind with high affinity to the benzodiazepine site of GABAA receptors, including human GABAA receptors. This invention also includes such compounds that bind with high selectivity to the benzodiazepine site of GABAA receptors, including human GABAA receptors. Without wishing to be bound to any particular theory, it is believed that the interaction of

5

10

15

20

the compounds of Formula I with the benzodiazepine site results in the pharmaceutical utility of these compounds.

The invention further comprises methods of treating patients in need of such treatment with an amount of a compound of the invention sufficient to alter the symptoms of a CNS disorder. Compounds of the inventions that act as agonists at $\alpha_2\beta_3\gamma_2$ and $\alpha_3\beta_3\gamma_2$ receptor subtypes are useful in treating anxiety disorders such as panic disorder, obsessive compulsive disorder and generalized anxiety disorder; stress disorders including post-traumatic stress, and acute stress disorders. Compounds of the inventions that act as agonists at $\alpha_2\beta_3\gamma_2$ and $\alpha_3\beta_3\gamma_2$ receptor subtypes are also useful in treating depressive or bipolar disorders and in treating sleep disorders. Compounds of the invention that act as inverse agonists at the $\alpha_5\beta_3\gamma_2$ receptor subtype or $\alpha_1\beta_2\gamma_2$ and $\alpha_5\beta_3\gamma_2$ receptor subtypes are useful in treating cognitive disorders including those resulting from Down Syndrome, neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, and stroke related dementia. Compounds of the invention that act as agonists at the $\alpha_1\beta_2\gamma_2$ receptor subtype are useful in treating convulsive disorders such as epilepsy. Compounds that act as antagonists at the benzodiazepine site are useful in reversing the effect of benzodiazepine overdose and in treating drug and alcohol addiction.

The diseases and/ or disorders that can also be treated using compounds and compositions according to the invention include:

<u>Depression</u>, e.g. depression, atypical depression, bipolar disorder, depressed phase of bipolar disorder.

5

10

15

20

25

Anxiety, e.g. general anxiety disorder (GAD), agoraphobia, panic disorder +/- agoraphobia, social phobia, specific phobia, Post traumatic stress disorder, obsessive compulsive disorder (OCD), dysthymia, adjustment disorders with disturbance of mood and anxiety, separation anxiety disorder, anticipatory anxiety acute stress disorder, adjustment disorders, cyclothymia.

Sleep disorders, e.g. sleep disorders including primary insomnia, circadian rhythm sleep disorder, dyssomnia NOS, parasomnias, including nightmare disorder, sleep terror disorder, sleep disorders secondary to depression and/or anxiety or other mental disorders, substance induced sleep disorder.

Cognition Impairment, e.g. cognition impairment, Alzheimer's disease, Parkinson's disease, mild cognitive impairment (MCI), age-related cognitive decline (ARCD), stroke, traumatic brain injury, AIDS associated dementia, and dementia associated with depression, anxiety or psychosis.

<u>Attention Deficit Disorders</u>, e.g. Attention Deficit Disorder (ADD), Attention Deficit and Hyperactivity Disorder (ADHD).

The invention also provides pharmaceutical compositions comprising compounds of the invention, including packaged

pharmaceutical compositions for treating disorders responsive to $GABA_A$ receptor modulation, e.g., treatment of anxiety, depression, sleep disorders or cognitive impairment by $GABA_A$ receptor modulation. The packaged pharmaceutical compositions include a container holding a therapeutically effective amount of at least one $GABA_A$ receptor modulator as described supra and instructions (e.g., labeling) indicating the contained $GABA_A$ receptor ligand is to be used for treating a disorder responsive to $GABA_A$ receptor modulation in the patient.

10

15

20

25

In a separate aspect, the invention provides a method of potentiating the actions of other CNS active compounds, which comprises administering an effective amount of a compound of the invention in combination with another CNS active compound. Such CNS active compounds include, but are not limited to the following: for anxiety, serotonin receptor (e.g. and antagonists; for anxiety and depression, agonists neurokinin receptor antagonists or corticotropin releasing factor receptor (CRF₁) antagonists; for sleep disorders, receptor agonists; and for neurodegenerative disorders, such as Alzheimer's dementia, nicotinic agonists, muscarinic agents, acetylcholinesterase inhibitors dopamine receptor agonists. Particularly the invention provides a method of potentiating the antidepressant activity selective serotonin reuptake inhibitors (SSRIs) administering an effective amount of a GABA agonist compound of the invention in combination with an SSRI.

Combination administration can be carried out in a fashion analogous to that disclosed in Da-Rocha, et al., J. Psychopharmacology (1997) 11(3) 211-218; Smith, et al., Am. J. Psychiatry (1998) 155(10) 1339-45; or Le, et al., Alcohol and Alcoholism (1996) 31 Suppl. 127-132. Also see, the discussion of the use of the GABA_A receptor ligand 3-(5-methylisoxazol-3-yl)-6-(1-methyl-1,2,3-triazol-4-yl) methyloxy-1,2,4-triazolo [3,4-a]phthalzine in combination with nicotinic agonists, muscarinic agonists, and acetylcholinesterase inhibitors, in PCT International publications Nos. WO 99/47142, WO 99/47171, and WO 99/47131, respectively. Also see in this regard PCT International publication No. WO 99/37303 for its discussion of the use of a class of GABA_A receptor ligands, 1,2,4-triazolo[4,3-b]pyridazines, in combination with SSRIs.

10

15

20

25

The present invention also pertains to methods of inhibiting the binding of benzodiazepine compounds, such as Ro15-1788, to the $GABA_A$ receptors which methods involve contacting a compound of the invention with cells expressing GABA_A receptors, wherein the compound is present concentration sufficient to inhibit benzodiazepine binding to GABA, receptors in vitro. This method includes inhibiting the binding of benzodiazepine compounds to GABA, receptors in vivo, e.g., in a patient given an amount of a compound of Formula I sufficient to inhibit the would be benzodiazepine compounds to GABAA receptors in vitro. In one embodiment, such methods are useful in treating benzodiazepine

drug overdose. The amount of a compound that would be sufficient to inhibit the binding of a benzodiazepine compound to the GABAA receptor may be readily determined via an GABAA receptor binding assay, such as the assay described in Example 8. The GABAA receptors used to determine in vitro binding may be obtained from a variety of sources, for example from preparations of rat cortex or from cells expressing cloned human GABAA receptors.

5

10

15

20

25

The present invention also pertains to methods for signal-transducing activity, particulary altering the chloride ion conductanc of GABA_A receptors, said method comprising exposing cells expressing such receptors to an effective amount of a compound of the invention. This method includes altering the signal-transducing activity of $GABA_A$ receptors in vivo, e.g., in a patient given an amount of a compound of Formula I that would be sufficient to alter the signal-transducing activity of GABAA receptors in vitro. amount of a compound that would be sufficient to alter the signal-transducing activity of $GABA_A$ receptors determined via a $GABA_A$ receptor signal transduction assay, such as the assay described in Example 9.

The $GABA_A$ receptor ligands provided by this invention and labeled derivatives thereof are also useful as standards and reagents in determining the ability of a potential pharmaceutical to bind to the $GABA_A$ receptor.

-50-

Labeled derivatives the $GABA_A$ receptor ligands provided by this invention are also useful as radiotracers for positron emission tomography (PET) imaging or for single photon emission computerized tomography (SPECT).

5

Definitions

If the compounds of the present invention have asymmetric centers, then this invention includes all of the optical isomers and mixtures thereof.

10

In addition, compounds with carbon-carbon double bonds may occur in cis, trans, Z- and E- forms, with all isomeric forms of the compounds being included in the present invention.

A dashed line (---) in a Formula indicates an optional bond. Thus the Formula

$$R_4$$
 R_5
 R_6
 R_6

15

represents either

$$R_4$$
 R_5
 R_6
 R_6

When any variable (e.g. C_1 - C_6 alkyl, alkyl, R_3 , R_4 , R_5 , R_6 , X, T, G, W, Z, k, or m) occurs more than one time in Formula I,

its definition on each occurrence is independent of its definition at every other occurrence.

By "alkyl" or "lower alkyl" in the present invention is meant straight or branched chain alkyl groups having 1-6 carbon atoms, such as, for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl.

By "alkoxy" or "lower alkoxy" in the present invention is meant straight or branched chain alkyl group having 1-6 carbon atoms, attached to the parent molecular moiety through an oxygen atom. Examples of alkoxy groups include, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, pentoxy, 2-pentyl, isopentoxy, neopentoxy, hexoxy, 2-hexoxy, 3-hexoxy, and 3-methylpentoxy.

10

25

The term "alkenyl" is intended to include either straight or branched hydrocarbon chains containing at least one carbon-carbon double bond which may occur in any stable point along the chain. Examples of alkenyl groups include ethenyl and propenyl.

20 The term "alkynyl" is intended to include either a straight or branched hydrocarbon chain containing at least one carbon-carbon triple bond which may occur in any stable point along the chain, such as ethynyl and propynyl.

By "diC1-C6alkylamino" is meant an amino group carrying two C1-C6alkyl groups that are the same or different.

-52-

By "benzoxazinyl" as used herein is meant a moiety of the formula:

5

10

15

20

A benzoxazin-6-yl group is depicted.

By "halogen" in the present invention is meant fluorine, bromine, chlorine, and iodine.

By "2-hydroxyethoxy" is meant a group of the formula: -OCH2CH2OH.

The term "aryl" refers to an aromatic hydrocarbon ring system containing at least one aromatic ring. The aromatic ring may optionally be fused or otherwise attached to other aromatic hydrocarbon rings or non-aromatic hydrocarbon rings. Examples of aryl groups include, for example, phenyl, naphthyl, 1,2,3,4-tetrahydronaphthalene and biphenyl. Preferred examples of aryl groups include phenyl and naphthyl. The aryl groups of the invention are unsubstituted or may be substituted as provided herein. Examples of suitable substituents include hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, mono- or dialkyl(C_1 - C_6) amino, carboxamide, and N-mono- or N,N-disubstituted carboxamide.

The term "heteroaryl" refers to an aromatic ring system containing at least one heteroatom selected from nitrogen, oxygen, and sulfur. The heteroaryl ring may be fused or otherwise attached to one or more heteroaryl rings, aromatic or

non-aromatic hydrocarbon rings or heterocycloalkyl rings. Examples of heteroaryl groups include, for example, pyridine, thiophene, 5,6,7,8-tetrahydroisoquinoline Preferred examples of heteroaryl groups include pyrimidine. thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, benzimidazolyl, furanyl, benzofuranyl, thiazolyl, thiadiazolyl, benzothiazolyl, imidazo[1,2oxadiazolyl, isothiazolyl, a]pyridinyl, isoxazolyl, benzisothiazolyl, triazolyl, tetrazolyl, pyrrolyl, indolyl, pyrazolyl, and benzopyrazolyl. These heteroaryl groups can be unsubstituted or may be substituted as provided herein. Examples of suitable substituents include hydroxy, halogen, C1-C₆ alkyl, C₁-C₆ alkoxy, cyano, nitro, amino, mono- or dialkyl(C₁-C₆)amino, carboxamide, and N-mono- or N,Ndisubstituted carboxamide.

5

10

15

20

By a 2-, 3-, or 4-pyridyl, 1- or 2-imidazolyl, 1-, 2-, or 3-pyrrolyl, or adamantane-2-yl group that is substituted on a tertiary carbon or a secondary nitrogen with C_1 - C_6 alkyl is meant any such group in which a hydrogen atom is replaced with an appropriate alkyl group. By way of example, such groups include the following:

By "heterocycloalkyl" is meant a non-aromatic ring system comprising one or two rings of 4-, 5-, 6-, or 7- atoms per ring

wherein at least one ring contains at least one and up to 4 heteroatoms selected from nitrogen, oxygen, or sulfur. groups include, for example, heterocycloalkyl tetrahydropyridyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, piperazinyl, and tetrahydrofuryl. The heterocycloalkyl group can be attached to the parent molecular moiety through the heteroatom or through a carbon atom. These groups may be substituted with from one to four groups independently selected from alkyl, alkoxy, halogen, hydroxy, amino and mono- or dialkylamino groups. Preferred substituents are hydroxy, methoxy, ethoxy, chloro, fluoro, bromo, methyl and ethyl. More are those that preferred heterocycloalkyl groups are independently substituted with two of hydroxy, methoxy, ethoxy, chloro, fluoro, bromo, methyl or ethyl. Particularly preferred heterocycloalkyl groups are those that are substituted with one of hydroxy, methoxy, ethoxy, chloro, fluoro, bromo, methyl or ethyl.

By "N-alkylpiperazyl" in the invention is meant radicals of the formula:

$$-N$$
 $N-R$

20

10

15

where R is a straight or branched chain lower alkyl as defined above.

By "acyclic moiety having 3-7 carbon atoms" is meant a cytobutyl, cyclopentyl, cyclohexyl or cycloheptyl. Each of

these groups may be substituted with alkyl, alkoxy, hydroxy, halogen, amino or mono- or dialkylamino. Preferred substituents are alkyl and alkoxy. Particularly preferred are alkyl with methyl and ethyl being most preferred.

Non-toxic pharmaceutically acceptable salts include, but salts of inorganic acids such limited to not are hydrochloric, sulfuric, phosphoric, diphosphoric, hydrobromic, and nitric or salts of organic acids such as formic, citric, malic, maleic, fumaric, tartaric, succinic, acetic, lactic, methanesulfonic, p-toluenesulfonic, 2-hydroxyethylsulfonic, salicylic and stearic. Similarly, pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium and ammonium. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically The present invention also acceptable addition salts. encompasses prodrugs of the compounds of Formula I.

The present invention also encompasses the acylated prodrugs of the compounds of Formula I. Those skilled in the art will recognize various synthetic methodologies, which may be employed to prepare non-toxic pharmaceutically acceptable addition salts and acylated prodrugs of the compounds encompassed by Formula I.

Pharmaceutical Compositions

5

10

15

20

25

Those skilled in the art will recognize various synthetic methodologies that may be employed to prepare non-toxic

pharmaceutically acceptable prodrugs of the compounds encompassed by Formula I. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically acceptable solvents that may be used to prepare solvates of the compounds of the invention, such as water, ethanol, mineral oil, vegetable oil, and dimethylsulfoxide.

The compounds of general Formula I may be administered orally, topically, parenterally, by inhalation or spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. Oral administration in the form of a pill, capsule, elixir, syrup, lozenge, troche, or the like is particularly preferred. The term parenteral as used herein includes subcutaneous injections, intradermal, intravascular (e.g., intravenous), intramuscular, spinal, intrathecal injection or like injection or infusion techniques. In addition, there is provided a pharmaceutical formulation comprising a compound of general Formula I and a pharmaceutically acceptable carrier. One or more compounds of general Formula I may be present in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents and/or adjuvants and if ingredients. The pharmaceutical active desired other compositions containing compounds of general Formula I may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible

10

15

20

25

-57-

powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.

Compositions intended for oral use may according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents preserving agents in order to provide pharmaceutically elegant Tablets contain the active and palatable preparations. in admixture with non-toxic pharmaceutically ingredient acceptable excipients that are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the qastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monosterate or glyceryl distearate may be employed.

10

15

20

25

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the

-58-

5

10

15

20

25

active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, qum tragacanth and qum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.

Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a

-59-

thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.

10

15

20

25

Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monoleate. The emulsions may also contain sweetening and flavoring agents.

-60-

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a flavoring and coloring agents. preservative and pharmaceutical compositions may be in the form of a sterile 5 injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable 10 preparation may also be sterile injectable solution suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as 15 a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic monodiglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

20 The compounds of general Formula I may also be administered in the form of suppositories, e.g., for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release

-61-

the drug. Such materials are cocoa butter and polyethylene glycols.

Compounds of general Formula I may be administered parenterally in a sterile medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.

For administration to non-human animals, the composition may also be added to the animal feed or drinking water. It will be convenient to formulate these animal feed and drinking water compositions so that the animal takes in an appropriate quantity of the composition along with its diet. It will also be convenient to present the composition as a premix for addition to the feed or drinking water.

10

15

20

25

Dosage levels of the order of from about 0.1 mg to about 140 mg per kilogram of body weight per day are useful in the treatment of the above-indicated conditions (about 0.5 mg to about 7 g per patient per day). The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. Dosage unit forms will generally contain between from about 1 mg to about 500 mg of an active ingredient.

Frequency of dosage may also vary depending on the compound used and the particular disease treated. However, for

-62-

treatment of most disorders, a dosage regimen of 4 times daily or less is preferred. For the treatment of anxiety, depression, or cognitive impairment a dosage regimen of 1 or 2 times daily is particularly preferred. For the treatment of sleep disorders a single dose that rapidly reaches effective concentrations is desirable.

It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.

10

15

20

25

Preferred compounds of the invention will have desirable pharmacological properties. Such properties include, but are not limited to oral bioavailability, low toxicity, low serum protein binding and desirable in vitro and in vivo half-lifes. Penetration of the blood brain barrier for compounds used to treat CNS disorders is necessary, while low brain levels of compounds used to treat periphereal disorders are often preferred.

Assays may be used to predict these desirable pharmacological properties. Assays used to predict bioavailability include transport across human intestinal cell monolayers, including Caco-2 cell monolayers. Toxicity to cultured hepatocyctes may be used to predict compound toxicity.

-63-

Penetration of the blood brain barrier of a compound in humans may be predicted from the brain levels of the compound in laboratory animals given the compound intravenously.

Serum protein binding may be predicted from albumin binding assays. Such assays are described in a review by Oravcová, et al. (Journal of Chromatography B (1996) volume 677, pages 1-27).

Compound half-life is inversely proportional to the frequency of dosage of a compound. In vitro half-lifes of compounds may be predicted from assays of microsomal half-life as described by Kuhnz and Gieschen (Drug Metabolism and Disposition, (1998) volume 26, pages 1120-1127).

Preparation of compounds

10

A general illustration of the preparation of compounds of Formula I in the present invention is given in Scheme I.

-64-

Scheme I

$$\begin{array}{c} R_4 \\ R_5 \\ R_6 \\ \end{array} \begin{array}{c} 1) \text{ KOH, MeOH} \\ 2) \text{ BrCH}_2\text{COCO}_2\text{Et} \\ 3) \text{ NaOH} \end{array} \begin{array}{c} R_4 \\ R_5 \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CO_2\text{Et} \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CO_2\text{Et} \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CO_2\text{Et} \\ \end{array} \begin{array}{c} CO_2\text{Et} \\ R_5 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CONHAr \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CONHAr \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CONHAr \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CONHAr \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CONHAr \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CONHAr \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} CONHAr \\ R_6 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ R_6 \\ \end{array} \begin{array}{c} CONHAr \\ R_6 \\ \end{array} \begin{array}{c} CONHAr \\ R_7 \\ R_8 \\ \end{array} \begin{array}{c} CONHAr \\ R_8 \\ R_9 \\ \end{array} \begin{array}{c} CONHAr \\ R_9 \\ R_9 \\ R_9 \\ \end{array} \begin{array}{c} CONHAr \\ R_9 \\ R_9 \\ R_9 \\ \end{array} \begin{array}{c} CONHAr \\ R_9 \\ R_9 \\ \end{array} \begin{array}{c} CONHAr \\ R_9 \\ R_9 \\ R_9 \\ R_9 \\ R_9 \\ \end{array} \begin{array}{c} CONHAr \\ R_9 \\ R_$$

where:

Ar is

$$Q \longrightarrow W \longrightarrow_{m} Z$$

where Q, W, k, m, n, Z, R $_3$, R $_4$, R $_5$, and R $_6$ are as defined 5 above.

Those having skill in the art will recognize that the starting materials may be varied and additional steps employed to produce compounds encompassed by the present invention, as demonstrated by the following examples.

In some cases protection of reactive functionalities may be necessary to achieve some of the above transformations. In general the need for such protecting groups will be apparent to those skilled in the art of organic synthesis as well as the conditions necessary to attach and remove such groups.

Representative examples of the preparation of various protected aniline derivatives are shown in Schemes II (1), (2) and (3).

Scheme II

O₂N
$$R_9NH_2$$
, R_9NH_2 , R_9

(2)

5

10

O₂N O₂N O₂N O₂N O₂N O₁₄

$$CiCH2CH2OR, K2CO3, NaI O2N O2N OR14$$

$$Cs2CO3, DMF, 75°$$

$$I0% Pd/C, H2$$

$$EtOH$$

$$O2N OR14$$

(3)
$$O_{2}N \longrightarrow O \longrightarrow OH$$

$$O_{2}N \longrightarrow O \longrightarrow CI$$

$$R_{9}R_{10}NH, \text{ i-PrOH}$$

$$\text{sealed tube, } 100^{\circ}$$

$$R_{10} = H$$

$$R_{10} = H$$

$$R_{10} = COCF3$$

$$R_{10} = H$$

$$CH_{2}Cl_{2}, 0^{\circ}$$

$$(\text{for } R_{10} = H)$$

Compounds of Formula I where G is a group of, for example, formulas C, C-1, D, D-1, K or M can be made using the above outlined methods and, e.g., additional ester and amide coupling reactions. It may also be necessary to protect the indole ring

nitrogen during the preparation of the compounds of the invention.

For example, compounds where R_{o} is a dialkylamino group can be prepared from a 2-(4-nitrophenoxy)ethan-1-ol made as described above and oxidation of the hydroxy group, and subsequent formation of an acid chloride or active ester. The active ester or acid chloride may then be coupled to an appropriate amine and the resulting nitrophenyl compound used as shown in the above schemes.

10 Scheme III

5

15

Preparation of Substituted Aniline Intermediates

Scheme IV

Preparation of Substituted Aniline Intermediates

TBDMSO

R

$$nBu_4NF$$
 N
 R
 $2.H_2$; 10%Pd-C

 NH_2

Those skilled in the art will recognize that in certain instances it will be necessary to utilize different solvents or

-69-

reagents to achieve some of the above transformations. Unless otherwise specified all reagents and solvent are of standard commercial grade and are used without further purification.

5

10

15

The invention is illustrated further by the following examples, which are not to be construed as limiting the invention in scope or spirit to the specific procedures described in them. Those having skill in the art will recognize that the starting materials may be varied and additional steps employed to produce compounds encompassed by the present inventions, as demonstrated by the following examples. In some cases, protection of certain reactive functionalities may be necessary to achieve some of the above transformations. In general, such need for protecting groups, as well as the conditions necessary to attach and remove such groups, will be apparent to those skilled in the art of organic synthesis.

EXAMPLES

Example 1

Preparation of starting materials and intermediates

The starting materials and various intermediates may be obtained from commercial sources, prepared from commercially available organic compounds, or prepared using well known synthetic methods.

Representative examples of methods for preparing intermediates of the invention are set forth below.

1. 4-oxo-4,5,6,7-tetrahydrobenzofuran-3-carboxylic acid

-70-

5

10

15

20

4-0xo-4,5,6,7-tetrahydrobenzofuran-3-carboxylic acid is prepared according to the following procedure. Potassium hydroxide (345 g, 6.15 mol) is dissolved in methyl alcohol (1.2 then cooled in an ice water bath. A solution of cyclohexanedione (714 g, 6.15 mol) in methyl alcohol (1.2 L), dissolved using gentle heat, is added dropwise to the cold, stirred KOH solution over 2 h. A solution of ethyl bromopyruvate (1200 g, 6.15 mol) in methyl alcohol (1.5 L) is then added dropwise over 3 h. The reaction mixture is allowed to reach ambient temperature and stirred an additional 14.5 h. While cooling the reaction mixture via a water bath, a solution of sodium hydroxide (492 g, 12.4 mol) in water (984 mL) is added dropwise over 2.5 h. After stirring at ambient temperature for 15.5 h, the reaction mixture is cooled in an ice water bath, 500 q of ice added, and the resulting mixture is then acidified with concentrated hydrochloric acid (ca 1L) to pH 1. The reaction mixture is concentrated in vacuo, 1L of ice is added, and the precipitate filtered, washed with ice water (3 X 200 mL), and then dried in a vacuum oven at $75^{\rm O}$ C to afford 4-oxo-4,5,6,7-tetrahydrobenzofuran-3-carboxylic (560 g). m.p. 137-138° C.

2. 4-oxo-4,5,6,7-tetrahydroindole-3-carboxylate

4-oxo-4,5,6,7mixture of stirred Τo а tetrahydrobenzofuran-3-carboxylic acid (640 g, 3.55 mol), potassium carbonate (1.7 kg, 10.65 mol) and cesium carbonate (100 g, 0.32 mol) in N,N-dimethylformamide (9.0 L) is added iodoethane (1250 g, 8.01 mol). The mixture is heated at 600 C for 2 h. After cooling to ambient temperature, the mixture is filtered, the solid is rinsed with ethyl acetate, and the filtrate concentrated in vacuo. Water (2 L) is added then extracted with ethyl acetate (2 X 2L); the combined organic extracts are washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo to give ethyl 4-oxo-4,5,6,7-tetrahydrobenzofuran-3-carboxylic acid (642 g). A mixture of this ester (640 g, 3.07 mol) and ammonium acetate (426 g, 5.53 mol) in N,N-dimethylformamide (320 mL) is heated to 100° C for 2 h. The reaction mixture is concentrated in ice water (2.5L) is added, and extracted with vacuo. dichloromethane (2 X 3L); the combined organic extracts are washed with brine, dried over magnesium sulfate, filtered, and give ethyl 4-oxo-4,5,6,7into concentrated vacuo tetrahydroindole-3-carboxylate (357 g). A mixture of this

10

15

ester (170 g, 0.82 mol) in ethyl alcohol (250 mL) and a solution of sodium hydroxide (165 g, 4.1 mol) in water (1 L) is heated at reflux for 1 h, then cooled in an ice water bath. Concentrated hydrochloric acid (350 mL) is added dropwise, the precipitate collected by filtration, rinsed with ice water (3 X), and dried in a vacuum oven at 75° C to afford 125 g of 4-oxo-4,5,6,7-tetrahydroindole-3-carboxylate. m.p. 269-270 C.

3. 4-[N-trifluoroacetyl-(methylaminomethyl)aniline

$$H_2N$$

$$NMe$$

$$COCF_3$$

10

15

A solution of p-nitrobenzylbromide (5.40 g, 25 mmol) in acetonitrile (60 ml) is added dropwise to a stirred solution of aqueous methylamine (65 mL, 40 wt.%, 0.75 mol) in acetonitrile (50 mL) at 0°. After stirring an additional 15 minutes, the solution is poured into brine and extracted 2X with dichloromethane. The combined organic layers are washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo to give 4-(methylaminomethyl)nitrobenzene (4.04g).

A solution of trifluoroacetic anhydride (4.46 mL, 31.6 mmol) in dichloromethane (10 mL) is added dropwise to a stirred solution of 4-(methylaminomethyl)nitrobenzene (4.04g, 24.3 mmol) and pyridine (2.16 mL, 26.7 mmol) in dichloromethane (25 mL) at 0°. After stirring an additional 30 minutes, the

solution is poured into aqueous 3.6N hydrochloric acid and extracted with dichloromethane. The organic layer is washed with brine, dried over sodium sulfate, filtered, and concentrated *in vacuo* to give 4-[N-trifluoroacetyl-(methylaminomethyl)]nitrobenzene (6.55 g).

Crude 4-[N-trifluoroacetyl-(methylaminomethyl)]nitrobenzene (6.55 g) is dissolved in ethyl alcohol (75 mL), added to10% Pd/C (655 mg) in a Parr bottle and shaken under Hydrogen (50 PSI) for 4 hours. The mixture is filtered through Celite and concentrated *in vacuo* to give 4-[N-trifluoroacetyl-(methylaminomethyl)aniline (5.75 g).

The 3-aminoalkylanilines are prepared in a similar fashion according to the procedure generally set forth in part (1) of Scheme II above.

4. 4-amino-(N-trifluoroacetyl-2methylaminoethoxy)benzene

5

10

15

$$H_2N$$
O
NMe
COCF3

A mixture of p-nitrophenol (1.39 g, 10 mmol), 2-chloroethoxytrimethylsilane (3.2 ml, 20 mmol), potassium carbonate (4.15 g, 30 mmol), cesium carbonate (163 mg, 0.5 mmol), and sodium iodide (149 mg, 1 mmol) in N,N-dimethylformamide (10 ml) is heated at 75° for 19.5 hours.

After cooling to ambient temperature, the mixture is diluted

with ethyl acetate and filtered. The filtrate is washed with saturated aqueous sodium bicarbonate, then washed 2X with water, dried over magnesium sulfate, filtered, concentrated in vacuo, and purified on Silica gel (1:1 ethyl acetate / hexanes) to give 4-nitro-(2-Hydroxyethoxy)benzene (1.25 g).

5

10

15

4-Nitro-(2-Hydroxyethoxy) benzene (1.13 g, 6.2 mmol) in thionyl chloride (10 mL) is heated at reflux for 3 hours then concentrated in vacuo. After cooling the residue in an ice water bath, saturated aqueous sodium bicarbonate is added and the precipitate collected, rinsed with water, and dried to give 4-nitro-(2-chloroethoxy) benzene (909 mg).

A mixture of 4-nitro-(2-chloroethoxy) benzene (781 mg, 3.9 mmol) and aqueous methylamine (15 mL, 40 wt. %) in isopropyl alcohol (15 mL) is heated in a sealed tube at 100° for 4 hours. After cooling in an ice water bath, the mixture is poured into brine and extracted 2X with dichloromethane, dried over sodium sulfate, filtered, and concentrated *in vacuo* to give 4-nitro-(2-methylaminoethoxy) benzene (697 mg).

To a solution of 4-nitro-(2-methylaminoethoxy)benzene (766 4.29 mmol) in mmol) and pyridine (0.35 mL, 20 mg, 3.9 added (5 mL) at 00 C is dropwise dichloromethane trifluoroacetic anhydride (0.72 mL, 5.08 mmol). After stirring at 0° C for 3.5 hours, the mixture is poured into aqueous 1.2 N hydrochloric acid and extracted with dichloromethane. The with saturated aqueous sodium 25 organic layer is washed

-75-

bicarbonate then brine, dried over sodium sulfate, filtered, and concentrated in vacuo to give 4-nitro-(N-trifluoroacetyl-2-methylaminoethoxy)benzene (1.06 g). Treatment of this nitro compound with 10% Palladium on carbon in ethyl alcohol (18 mL) in a Parr bottle under Hydrogen (55 PSI) for 2.25 hours affords 4-amino-(N-trifluoroacetyl-2-methylaminoethoxy)benzene (709 mg).

Example 2

10

15

20

stirred solution of 4-oxo-4,5,6,7-tetrahydro-1H-To a indole-3-carboxylic acid (100 mg, 0.6 mmol) and triethylamine (0.15 mL, 1.1 mmol) in N,N-dimethylformamide (5 mL) at 0° C is added ethyl chloroformate (0.1 mL, 1.1 mmol). After stirring 3-(N-trifluoroacetyl-1 hour, additional an (methylaminomethyl)aniline (0.3 g, 1.3 mmol) is added. reaction mixture is stirred for 4 hours, then poured into saturated aqueous ammonium chloride and extracted 2X with ethyl The combined organic layers are washed sequentially acetate. with brine, aqueous 2N hydrochloric acid, then brine, dried over sodium sulfate, filtered, and concentrated in vacuo . To the residue is added 15% aqueous potassium bicarbonate (5 mL) and methyl alcohol (3 mL), then heated at reflux for 3 hours.

After cooling, the reaction mixture is extracted with ethyl acetate, the organic layer dried over sodium sulfate, filtered, and concentrated *in vacuo* to give N-[3-(methylaminomethyl)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide; (Compound 1) m.p. 130-132°C.

Example 3

The following compounds are prepared essentially according to the procedures described in Schemes I-IV and further illustrated in Examples 1-2:

- (a) N-[3-(Methylaminomethyl)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 1); mp 130-132° C.
- (b) N-[4-(Hydroxyethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 16); mp 245-247° C.
- 15 (c) N-[4-(Methoxyethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 2).

5

- (d) N-[-4-(3-Methylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 17); mp 233-236°C.
- 20 (e) N-[4-(Methoxymethyl)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 18); mp 164-165° C.
 - (f) N-[4-(Aminomethyl)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 6); mp $>200^{\circ}$ C (d).

(g) N-[4-(Methylaminomethyl)phenyl]-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide (Compound 19); mp 217-219°
C.

- (h) N-[2-Fluoro-4-(methylaminomethyl)phenyl]-4-oxo-5 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 3); mp 186-188°C.
 - (i) N- $\{4-[N-acetyl-(methylaminomethyl)phenyl]\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 20); mp 204-206° C.$
- (j) N-[4-(Ethylaminomethyl)phenyl]-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide (Compound 21); mp 194-195°
 C.
 - (k) N-[4-(Isopropylaminomethyl)phenyl]-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide (Compound 22); mp 164-166°
 C.

- (1) N-[4-(Cyclopropylaminomethyl)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 5); mp 171-173^O C.
- (m) N-[4-(Dimethylaminomethyl)phenyl]-4-oxo- 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 23); mp 216-218°C.
- 20 (n) N-[4-(2-Aminoethyl)phenyl]-4-oxo- 4,5,6,7-tetrahydro-1H-ndole-3-carboxamide (Compound 24); mp 85-90° C.
 - (o) N-[4-(2-Methylaminoethyl)phenyl]-4-oxo- 4,5,6,7tetrahydro-1H-indole-3-carboxamide (Compound 4); mp 197-200° C.
- (p) N-[4-(Methoxymethyl)phenyl]-4-oxo-5,5-dimethyl25 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 25).

(q) N-[4-(Methylaminomethyl)phenyl-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 7); mp 173-175° C.

- (r) N-{4-[N-acetyl-(methylaminomethyl)phenyl]}-4-oxo-65 methyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound
 26); mp 159-161° C.
 - (s) N-[4-(Methylaminomethyl)phenyl]-4-oxo-6-methyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 27); mp 217-219° C.
- 10 (t) N-[4-(Hydroxymethyl)phenyl]-4-oxo-6-methyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 28); mp 260-262° C.
 - (u) N-[4-(2-Hydroxyethoxy)phenyl]-4-oxo-6-methyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 9); mp 245-2470 C.
- 15 (v) N-[3-(Methylaminomethyl)phenyl]-4-oxo-6-methyl-4,5,6,7-tetraydro-1H-indole-3-carboxamide (Compound 29); mp
 172-174° C.

- (w) N-[4-(2-Hydroxyethoxy)phenyl]-4-oxo-6,6-dimethyl4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 30); mp
 268-270° C.
- (x) N-[3-(Hydroxymethyl)phenyl]-4-oxo-6,6-dimethyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 8); mp 233-235°C.

(y) N-[4-(Hydroxymethyl)phenyl]-4-oxo-6,6-dimethyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 31); mp 245-247°C.

- (z) N-[4-(Methylaminomethyl)phenyl]-4-oxo-6,6-dimethyl-5 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 32); mp 230-232°C.
 - (aa) N-(1,3-Benzodioxol-5-yl)-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide (Compound 10); mp 248-249°
 C.
- 10 (bb) N-(2,3-Dihydro-1,4-benzodioxin-6-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 11); mp 254-256°C.
 - (cc) N-(3,4-Dihydro-2H-1,4-benzoxazin-6-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 33); mp 216°C.
- 15 (dd) N-(2,2-Dimethyl-1,3-benzodioxol-5-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 34).
 - (ee) N-(2,3-Dihydro-1H-indol-5-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 35); mp 283-286°C.

(ff) N-(2,3-Dihydro-1H-indol-6-yl)-4-oxo-4,5,6,7-

- 20 tetrahydro-1H-indole-3-carboxamide (Compound 13); mp 322-323°C.
 - (gg) N-(1,3-Benzodioxol-5-yl)-4-oxo-5,5-dimethyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 36).

(hh) N-(2,3-Dihydro-1,4-benzodioxin-6-yl)-4-oxo-5,5-dimethyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 37); mp 241-243°C.

- (ii) N-(4H-1,3-Benzodioxin-7-yl)-4-oxo-5,5-dimethyl5 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 38); mp
 251-252°C.
 - (jj) N-(1,3-Benzodioxol-5-yl)-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 39); mp 210-212° C.
- 10 (kk) N-(2,3-Dihydro-1,4-benzodioxin-6-yl)-4-oxo1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
 (Compound 12); mp 222-223° C.

15

- (11) N-(2,2-Dimethyl-1,3-benzodioxol-5-yl)-4-oxo-6-methyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 40); mp 155-157°C.
- (mm) N-(1,3-Benzodioxol-5-yl)-4-oxo-6-methyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 41); mp 297-299°C.
- (nn) N-(2,3-Dihydro-1,4-benzodioxin-6-yl)-4-oxo-6-methyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 42); mp 290-292°C.
- (00) N-(1,3-Benzodioxol-5-yl)-4-oxo-6,6-dimethyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 43); mp 245-246° C.

(pp) N-(2,3-Dihydro-1,4-benzodioxin-6-yl)-4-oxo-6,6-dimethyl-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 44).

- (qq) N-(4H-1,3-Benzodioxin-7-yl)-4-oxo-6,6-dimethyl4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 45); mp

 234-236° C.
 - (rr) N-[(2-Hydroxyethoxy)pyrid-5-yl]-4-oxo-6-methyl4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 15); mp
 221-223° C.
- 10 (ss) N-(3,4-Dihydro-2H-1,4-benzoxazin-7-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 46).
 - (tt) N-[4-(2-Pyrrolidinylethoxy)phenyl]-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide; [alternate name: (4oxo(5,6,7-trihydroindol-3-yl))-N-[4-(2-
- 15 pyrrolidinylethoxy)phenyl]carboxamide] (Compound 47);
 - (uu) N-[3-(2-Dimethylaminoethoxy)phenyl]-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide [alternate name: (4oxo(5,6,7-trihydroindol-3-yl))-N-[4-(2Dimethylaminoethoxy)phenyl]carboxamide] (Compound 48);
- 20 (vv) N-[3-(2-n-Propylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 49).
 - (ww) N-[3-(2-n-Butylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 50).
- (xx) N-[3-(2-Isobutylaminoethoxy)phenyl]-4-oxo-4,5,6,7-25 tetrahydro-1H-indole-3-carboxamide (Compound 51) (syrup).

(yy) N-[3-(2-Cyclobutylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 52).

- (zz) N-[3-(2-t-Butylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 53).
- 5 (aaa) N-[3-(2-Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 54).
 - (bbb) $N-\{3-[2-(4-Methylcyclohexyl) aminoethoxy] phenyl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 55). (ccc) <math>N-\{3-[2-(3-Methylcyclohexyl) aminoethoxy] phenyl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 55).$
- Trifluoromethylbenzylamino)ethoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 56).
 - (ddd) $N \{3 [3 (3 -$

Trifluoromethylbenzylamino)propoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 57).

- 15 (eee) N-[4-(2-Dimethylaminoethyl)phenyl]-4-oxo4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 58).

 (fff) N-[4-(2-Pyrrolidin-1-ylethyl)phenyl]-4-oxo-
 - 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 59); mp 184-186°C.
- 20 (ggg) N-[4-(2-Diisopropylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 60).
 - (hhh) N-[4-(2-Methylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 61).
- (iii) N-[4-(2-Ethylaminoethoxy)phenyl]-4-oxo-4,5,6,7
 25 tetrahydro-1H-indole-3-carboxamide (Compound 62); mp 140-141°C.

(jjj) N-[2-Fluoro-4-(2-ethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 63).

- (kkk) N-[4-(2-n-Propylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 64); mp 130-133°C.
 - (111) N-[2-Fluoro-4-(2-n-propylaminoethoxy)phenyl]-4oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 65).
 - (mmm) N-[3-Fluoro-4-(2-n-propylaminoethoxy)phenyl]-4- ∞ 0x0-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 66).
- 10 (mmm-a) N-[3-Fluoro-4-(2-n-propylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 67); mp 373°C.
 - (nnn) N-[4-(2-Cyclopropylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 68).
- 15 (000) N-[4-(2-Isopropylaminoethoxy)phenyl]-4-0x0-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 69); mp 284-286°C.
 - (ppp) N-[4-(2-Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 70).
- 20 (ppp-a) N-[4-(2-Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hemifumarate (Compound 71); mp234-
 - (qqq) N-[2-Fluoro-4-(2-

234°C.

25 Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 72); mp 247-250°C.

(rrr) N-[3-Fluoro-4-(2-

Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 73).

(rrr-a) N-[3-Fluoro-4-(2-

- 5 Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide tosylate (Compound 74); mp 222°C.
 - (sss) N-[4-(2-Isobutylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 75); dust.

N-[2-Fluoro-4-(2-Isobutylaminoethoxy)phenyl]-4-

- oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 76);
 mp 152-155°C.
 - (uuu) N-[3-Fluoro-4-(2-Isobutylaminoethoxy)phenyl]-4oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 77);
 mp 147-149°C.
- 15 (vvv) N-[4-(2-n-Butylaminoethoxy)phenyl]-4-oxo4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 78).

 (vvv-a) N-[4-(2-n-Butylaminoethoxy)phenyl]-4-oxo-

4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 79); mp 187-190°C.

- 20 (www) N-[3-Fluoro-4-(2-n-butylaminoethoxy)phenyl]-4- 0x0-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 80).
 - (xxx) N-[4-(2-t-Butylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 81); mp 290-292°C.
- 25 (yyy) N-[3-Fluoro-4-(2-t-butylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 82).

(aaaa) N-[4-(2-adamant-2-ylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 83); mp 144-149°C.

- (bbbb) N-{4-[(R)-Pyrrolidin-2-ylmethoxy]phenyl}-4-oxo5 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 84); mp
 164-167-170°C.
 - (CCCC) N-{4-[(S)-Pyrrolidin-2-ylmethoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 85); mp 165-167°C.
- (dddd) N-[4-(Piperidin-3-ylmethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 86).

 (dddd-a) N-[4-(Piperidin-3-ylmethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 87); mp 196-199°C.
- 15 (eeee) N-[4-(2-Dimethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 88); mp 201°C.

- (ffff) N-[3-Fluoro-4-(2-dimethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 89); mp 203°C.
- (gggg) N-[4-(2-Pyrrolidin-1-ylethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 90); mp 164-168°C.
- (hhhh) N-[4-(2-Imidaz-1-ylethoxy)phenyl]-4-oxo-4,5,6,7-25 tetrahydro-1H-indole-3-carboxamide (Compound 91); mp 226-230°C.

(iiii) N-[3-Fluoro-4-(2-moropholin-1-ylethoxy)phenyl]4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 92);
mp 200°C.

(1111) $N-\{4-[3-(2,2,2,-$

15

20

Trifluoroethyl)aminopropoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 95).

(mmmm) N-[4-(3-Isopropylaminopropoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 96).

(nnnn) N- $\{4-[3-(2-Methylpropyl) aminopropoxy] phenyl<math>\}-4-$

oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 97).

(0000) N-[4-(3-Isobutylaminopropoxy)phenyl]-4-0x0-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 98).

(pppp) N-[4-(3-Cyclopropylmethylaminopropoxy)phenyl]-4- ∞ 0x0-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 99).

(qqqq) $N-\{4-[3-(3-Ethylpropyl) aminopropoxy] phenyl\}-4-$ 0x0-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 100).

(rrrr) N-[4-(3-Cyclopentylaminopropoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 101).

(ssss) $N-\{4-[3-(N-Cyclopropylmethyl,N-$

propyl)aminopropoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 102).

```
(tttt) N-[4-(2-Methylaminoethoxy)pyrid-3-yl]-4-oxo-
```

- 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 103).
 - (uuuu) N-[4-(2-Ethylaminoethoxy)pyrid-3-yl]-4-oxo-
- 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 104).

- (uuuu-a) N-[4-(2-Ethylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 105); mp 178-180°C.
- (vvvv) N-[4-(2-n-Propylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 106).
- 10 (vvvv-a) N-[4-(2-n-Propylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 107); mp 177-178°C.
 - (wwww) N-[4-(2-Isopropylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 108).
- (wwww-a) N-[4-(2-Isopropylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 109); mp 167-169°C.
 - (xxxx) N-[4-(2-n-Butylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 110).
- 20 (xxxx-a) N-[4-(2-n-Butylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 111); mp 157-159°C.
- (yyyy) N-[4-(2-t-Butylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 112); mp 25 274-278°C.

N-[4-(2-Benzylaminoethoxy)pyrid-3-yl]-4-oxo-(zzzz) 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 113) (zzzz-a) N-[4-(2-Benzylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 114); mp 143-145°C. 5 (aaaaa-a) N-[4-(Pyrid-3-ylmethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 115). (aaaaa) N-[4-(Pyrid-3-ylmethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 116); mp 276-277°C. 10 N-[4-(Pyrid-4-ylmethoxy)pyrid-3-yl]-4-oxo-(bbbbb) 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 117). (bbbbb-a) N-[4-(Pyrid-4-ylmethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 118); mp 293°C. 15 $N-\{4-[(R)-Pyrrolidn-2-ylmethoxy]pyrid-3-yl\}-4-$ (ccccc) oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 119); mp 195-198°C..

(cccc-a) N-{4-[(R)-Pyrrolidn-2-ylmethoxy]pyrid-3-yl}-420 oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride
 (Compound 120); mp 289-291°C.

(ddddd) N-{4-[(S)-Pyrrolidn-2-ylmethoxy]pyrid-3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 121); mp 138-141°C.

(eeeee) N-[4-(2-Dimethylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 122); mp 163-166°C.

(fffff) N-[4-(3-Dimethylaminopropoxy)pyrid-3-yl]-4-oxo-

- 5 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 123); mp 247°C.
 - (ggggg) N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-
 - 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 124)
 - (ggggg-a) N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-
- 10 4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride (Compound 125); mp 188-245°C (d).
 - (hhhhh) N-[4-(2-Dimethylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 126).
 - (iiiii) $N-\{4-[2-(4-Methyl-piperazin-1-yl)ethoxy]pyrid-3-$
- 15 yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 127).
 - (jjjjj) $N-\{4-[2-Morpholin-1-ylethoxy]pyrid-3-yl\}-4-oxo-$
 - 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 128).
 - (kkkkk) N- $\{4-[2-Piperidin-1-ylethoxy]pyrid-3-yl\}-4-oxo-$
- 20 4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 129).
 - (kkkkk-a) N-{4-[2-Piperidin-1-ylethoxy]pyrid-3-yl}-4-oxo-
 - 4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride
 - (Compound 130); mp 208-211°C.
 - (lllll) $N-\{4-[(1-Methyl-pyrrolidin-3-yl) methoxy] pyrid-3-$
- 25 yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 131); mp 209-211°C.

```
(mmmmm) N-\{4-[(1-Ethyl-pyrrolidin-3-yl)methoxy]pyrid-3-yl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 132).
```

- (nnnnnn) N-{4-[2-(1-Methyl-pyrrolidin-2-yl)ethoxy]pyrid-5 3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 133).
 - (00000) $N-\{4-[2-(1-Methyl-pyrrolidin-2-yl)ethoxy]$ pyrid-3-yl $\}-4-0x0-4$,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrate (Compound 134).
- 10 (ppppp) N-[4-(3-n-Propylaminopropoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 135).
 - $(qqqqq) \qquad N-[4-(3-Cyclopropylmethylaminopropoxy) \ pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide \ (Compound 136).$
- 15 (rrrr) N- $\{4-[3-(2-Ethylbutyl) aminopropoxy] pyrid-3-yl<math>\}$ -4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 137).
 - (sssss) N-[4-(3-Cyclohexylaminopropoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 138).
- 20 (ttttt) N-[4-(3-Cyclohexylmethylaminopropoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 139).
- (uuuuu) N- $\{4-[3-(Pyrid-4-ylmethyl)aminopropoxy]pyrid-3-yl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 140).$

(vvvvv) N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 141); mp 148-150°C.

(wwww) N-[4-(3-Di-n-propylaminopropoxy)pyrid-3-yl]-4-

5 oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 142).

(xxxxx) N- $\{4-[3-Di(c-propylmethyl) aminopropoxy]$ pyrid-3-yl $\}$ -4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 143).

(yyyyy) N- $\{4-[3-Di(2-ethylbutyl)]$ aminopropoxy]pyrid-3-10 yl $\}$ -4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 144).

(zzzzz) N- $\{4-[3-Di(pyrid-4-ylmethyl)aminopropoxy]$ pyrid-3-yl $\}$ -4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 145).

(aaaaaa) $N-\{4-[2-(2-Pyrrolidin-1-ylethoxy)ethoxy]pyrid-3-yl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 146).$

(bbbbbb) $N-\{4-[2-(2,2-Dimethylaminoethylamino)-2-oxoethyl]$ phenyl $\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 147).$

20

(ccccc) N-{4-[2-(4-Methylaminopiperizin-1yl)-2-oxoethyl]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 148); oil.

(eeeeee) N-[3-(2-Diethylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 150).

(ffffff) N-[3-(2-Pyrrolidin-1-ylethoxy)phenyl]-4-oxo-

- 5 1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 151).
 - (gggggg) N-[3-(2-Di-Isopropylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 152).
- 10 (hhhhh) N-[3-(2-n-Propylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 153).
 - (iiiiii) N-[3-(2-n-Butylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 154).

- (jjjjjj) N-[3-(Methylaminopropoxy)phenyl]-4-oxo1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
 (Compound 155).
- (kkkkk) N-{3-[3-(N-Ethyl,N-Methyl)aminopropoxy]phenyl}4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
 (Compound 156).
 - (111111) $N-\{3-[3-(N-Cyclopropylmethyl,N-n-propyl)aminopropoxy]phenyl\}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 157).$

(mmmmmm) N-[3-(Azeditinylpropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 158).

(nnnnnn) N-[3-(3-Ethylaminopropoxy)phenyl]-4-oxo5 1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 159).

(000000) N- ${3-{3-(2,2,2-)}}$

15

Trifluoroethyl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 160).

(compound 161). N-[3-(3-n-Propylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(rrrrr) N-[3-(3-Isopropylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 163).

(ssssss) N-[3-(3-Cyclopropylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 164).

(tttttt) N-[3-(3-Cyclopropylmethylaminopropoxy)phenyl]-420 oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(Compound 165).

(uuuuuu) N-[3-(3-Cyclobutylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 166).

(vvvvv) N-[3-(3-Cyclohexylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 167).

(wwwww) N-{3-[3-(3-Ethylpropyl)aminopropoxy]phenyl}-45 oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 168).

(xxxxxx) N-{3-[3-(2-Methylpropyl)aminopropoxy]phenyl}-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 169).

10 (yyyyyy) N-[3-(3-Isobutylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 170).

(zzzzz) N-[3-(3-t-Butylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 171).

15

(aaaaaaa) N-{3-[3-(2-Methylbutyl)aminopropoxy]phenyl}-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 172).

(bbbbbb) N-[3-(3-Isoamylaminopropoxy)phenyl]-4-oxo1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 173).

(cccccc) N-{3-[3-(4-Methylpentyl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 174).

 $(ddddddd) N - {3 - [3 - (1, 1 -$

Dimethylpropyl) aminopropoxy] phenyl } -4-oxo-1,4,5,6,7,8-

hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 175).

(eeeeee) $N-\{3-[3-(3,3,-$

5 Dimethylbutyl) aminopropoxy] phenyl \}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b] pyrrole-3-carboxamide (Compound 176).

(fffffff) $N-\{3-[3-(2,4-Dimethylpent-3-$

yl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 177).

10 (gggggg) N-{3-[3-(4-

Methylcyclohexyl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 178).

(hhhhhhh) $N-{3-[3-(4-t-$

Butylcyclohexyl) aminopropoxy] phenyl \}-4-oxo-1,4,5,6,7,8-

15 hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 179).

(iiiiiii) $N-\{3-[3-(2,6-$

Dimethylcyclohexyl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-

hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 180).

(jjjjjjj) $N-{3-[3-(1-Phenylethyl) aminopropoxy] phenyl}-4-$

20 oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 181).

(kkkkkk) N-[3-(3-Norborn-2-ylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 182).

(1111111) N-[3-(3-Adamant-1-ylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 183); mp 175-176°C.

(mmmmmmm) N-[3-(3-Norborn-2-ylmethylaminopropoxy)phenyl]5 4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 184).

(nnnnnn) N-[3-(3-Adamant-2-ylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 185).

10 (0000000) N-[4-(2-Ethylaminoethoxy)phenyl]-4-0x01,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 186).

15

(0000000-a) N-[4-(2-Ethylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide hydrochloride (Compound 187); mp 227-228°C.

(ppppppp) N-[2-Fluoro-4-(2-Ethylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 188).

(rrrrrr) N-[4-(2-Cyclopropylaminoethoxy)phenyl]-4-oxo1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 190).

(ssssss) N-4-(2-n-Butylaminoethoxy)phenyl]-4-oxo1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 191).

(tttttt) N-[4-(3-Ethylaminopropoxy)phenyl]-4-oxo5 1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 192).

(uuuuuuu) $N-\{4-[3-(1-Phenyl-1-$

15

methylethyl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 193).

10 (vvvvvv) N-[4-(Pyrid-3-ylmethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 194); mp 241-243°C.

(wwwwww) N-[4-(Pyrid-4-ylmethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 195).

(wwwwww-a) N-[4-(Pyrid-4-ylmethoxy)pyrid-3-yl]-4-oxo1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
hydrochloride (Compound 196); mp 235-240°C (d).

(xxxxxxx) N-[4-(2-Dimethylaminoethoxy)pyrid-3-yl]-4-oxo1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 197).

(yyyyyyy) N-[4-(2-Diethylaminoethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 198).

(zzzzzz) N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 199).

(zzzzzzz-a) N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-

5 4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide hydrochloride (Compound 200); mp 160-162°C.

(aaaaaaaa) N-[4-(2-Piperidin-1-ylethoxy)pyrid-3-yl]-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(Compound 201).

10 (bbbbbbb) N-{4-[2-(1-Methyl-pyrrolidin-2-yl)ethoxy]pyrid-3-yl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 202).

15

(cccccc) N-{4-[(1-Ethyl-pyrrolidin-3-yl)methoxy]pyrid-3-yl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 203); oil.

(ddddddd) N-[4-(2-Morpholin-1-ylethoxy)pyrid-3-yl]-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(Compound 204).

(eeeeeee) N-[4-(2-Diethylaminoethoxy)pyrid-3-yl]-420 oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(Compound 205).

(fffffff) N-[4-(2-n-Propylaminoethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 206).

(ffffffff-a) N-[4-(2-n-Propylaminoethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide hydrochloride (Compound 207); mp 210°C.

(ggggggg) N-[4-(2-Isopropylaminoethoxy)phenyl]-4-oxo5 1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(Compound 208).

(hhhhhhh) N-[4-(3-Isopropylaminopropoxy)phenyl]-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 209).

10 (iiiiiii) N-[4-(3-Cyclopropylaminopropoxy)phenyl]-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 210).

(jjjjjjj) N-[4-(3-Cyclobutylaminopropoxy)phenyl]-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide
(Compound 211).

(kkkkkkk) N-[4-(3-

15

20

(Compound 213).

Cyclopropylmethylaminopropoxy) phenyl] -4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 212).

(11111111) N-[4-(3-Isobutylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(mmmmmmm) $N - {4 - [3 - (2, 2 - 2)]}$

Dimethylpropyl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 214).

(nnnnnnn) N- $\{4-[3-(3-$

Ethylpropyl) aminopropoxy] phenyl \} -4 - 0x0 - 1, 4, 5, 6, 7, 8 - hexahydro-cyclohepta[b] pyrrole - 3 - carboxamide (Compound 215).

(00000000) N- $\{4-[3-(2-$

5 Methylbutyl) aminopropoxy] phenyl \} -4-oxo-1, 4, 5, 6, 7, 8-hexahydro-cyclohepta[b] pyrrole-3-carboxamide (Compound 216).

(pppppppp) $N-\{4-[3-(2-$

15

Methylpropyl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 217).

10 (qqqqqqq) N-[4-(3-i-Pentylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 218).

(rrrrrrr) N-[4-(3-Cyclohexylaminopropoxy)phenyl]-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(Compound 219).

 $(sssssss) \qquad N-\{4-[3-(N-Cyclopropylmethyl,N-n-propyl) aminopropoxy] phenyl\}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide (Compound 220).$

(ttttttt) N-[4-(3-Indan-2-ylaminopropoxy)phenyl]-4
20 oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide

(Compound 221).

(uuuuuuu) N-[3-Fluoro-4-(2-ethoxy-2-oxoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 222); mp 192-196°C.

(vvvvvvv) N-[3-Fluoro-4-(2-hydroxy-2-oxoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 223); mp 246-248°C.

(wwwwwww) N-[3-Fluoro-4-(2-ethylamino-2-

oxoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 224).

(xxxxxxxx) N-[3-Fluoro-4-(2-diethylamino-2-oxoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 225); mp 193-196°c.

10 (yyyyyyy) N-{3-Fluoro-4-[2-(4-methylpiperizin-1-yl)-2-oxoethoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide (Compound 226).

(zzzzzzzz) N-ethyl-N-[2-(ethylamino)ethyl]-2- $\{4-[(4-x)^2-(4,5,6,7-tetrahydroindol-3-x)^2-(4,$

15 yl))carbonylamino]phenoxy}acetamide (Compound 227).

(aaaaaaaaa) N-[2-(dipropylamino)ethyl]-2- $\{4-[(4-oxo-(4,5,6,7-tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide (Compound 228); mp 148-150°C.$

(bbbbbbbbb) N-[2-(diethylamino)ethyl]-N-methyl-2-{420 [(4-oxo-(4,5,6,7-tetrahydroindol-3 yl))carbonylamino]phenoxy}acetamide (Compound 229); mp 220228°C.

(ccccccc) N-[2-(diethylamino)ethyl]-N-ethyl-2- $\{4-[(4-\cos(4,5,6,7-\text{tetrahydroindol-3-})$

yl))carbonylamino]phenoxy}acetamide (Compound 230); mp 165-

```
167°C.
                        N-[4-(2-morpholin-4-yl-2-
         (ddddddddd)
    oxoethoxy) phenyl] (4-oxo-(4,5,6,7-tetrahydroindol-3-
    yl))carboxamide (Compound 231).
                        N-[3-fluoro-4-(2-morpholin-4-yl-2-
          (eeeeeeee)
    oxoethoxy)phenyl](4-oxo-(4,5,6,7-tetrahydroindol-3-
    yl))carboxamide (Compound 232); mp 110°C.
                         (4-oxo-(4,5,6,7-trihydroindol-3-yl))-N-[4-
          (fffffffff)
    (2-oxo-2-piperazinylethoxy)phenyl]carboxamide (Compound 233)
10
                        N-[3-(diethylamino)propyl]-2-\{4-[(4-oxo-
          (ggggggggg)
    (4,5,6,7-tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide
    (Compound 234)
                        N-[3-(diethylamino)propyl]-2-{2-fluoro-4-
          (hhhhhhhhh)
    [(4-oxo-(4,5,6,7-tetrahydroindol-3-
15
    yl))carbonylamino]phenoxy}acetamide (Compound 235).
                        N-[4-(diethylamino)-1-methylbutyl]-2-{4-
          (iiiiiiiii)
     [(4-oxo-(4,5,6,7-tetrahydroindol-3-
    yl))carbonylamino]phenoxy}acetamide (Compound 236).
                        N-[4-(diethylamino)-1-methylbutyl]-2-{2-
20
          (;;;;;;;;)
    fluoro-4-[(4-oxo-(4,5,6,7-tetrahydroindol-3-
    yl))carbonylamino]phenoxy}acetamide (Compound 237).
```

Example 4

The compounds shown in Tables I and II were prepared using methods similar to those given in Schemes I- IV and further illustrated by Examples 1 and 2.

	<u>Table I</u>					
	O N G					
Cmd	Name	G	Spectral Data			
238	N-{4-[2-(ethyl-methanesulfonyl-amino)-ethoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	N-S=0	LRMS calcd 419 found [M+1]			
239	N-[4-(3-methanesulfonyl- propoxy)phenyl]-4-oxo- 4,5,6,7-tetrahydro-1H- indole-3-carboxamide	\$=0 \$=0	LRMS calcd 390 found [M+1] 391			
240	N-4-{4-[2- (ethanesulfonyl-ethyl- amino)ethoxy]-phenyl}- oxo-4,5,6,7-tetrahydro- 1H-indole-3-carboxamide	N-S=0	LRMS calcd 433 found [M+1] 434			
241	N-(4-{2-[ethyl-(propane- 1- sulfonyl)amino]ethoxy}ph enyl)-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	N-S=0	LRMS calcd 447 found [M+1] 448			
242	N-(4-{2-[ethyl- (thiophene-3- sulfonyl)amino]ethoxy}ph enyl)-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	N S S	LRMS calcd 504 found [M+1] 505			

	- (c to / 11 7		LRMS
243	N-{6-[2-(ethyl-	[,	calcd 420
	methanesulfonyl-	N-S=0	found
	amino)ethoxy]pyridin-3-		[M+1] 421
	y1}-4-oxo-4,5,6,7-	{—< >-0	[M+1] 421
	tetrahydro-1H-indole-3-	, <u> </u>	
	carboxamide	~	LRMS
244	N-[6-(1-benzyl-1H-	w.	calcd 441
	imidazol-2-ylmethoxy)-	N	found
	pyridin-3-yl]-4-oxo-		[M+1] 442
	4,5,6,7-tetrahydro-1H-		[M+I] 442
	indole-3-carboxamide)N	
		N N	
245	N-[2-(2-	sc. 0-	LRMS
	aminoethoxy)pyridin-3-	NH ₂	calcd 314
ļ	y1]-4-0x0-4,5,6,7-		found
	tetrahydro-1H-indole-3-		[M+1] 315
	carboxamide		
246	N-[6-(2-	200	LRMS
	ethanesulfonylamino-		calcd 406
	ethoxy)pyridin-3-yl]-4-		found
	oxo-4,5,6,7-tetrahydro-	H	[M+1] 407
	1H-indole-3-carboxamide	O N	
		o is	
		0 0	TRNG
247	N-[6-(2-	HN-S=0	LRMS calcd 392
	methanesulfonylamino-		found
	ethoxy)-pyridin-3-yl]-4-	}	[M+1] 393
	oxo-4,5,6,7-tetrahydro- 1H-indole-3-carboxamide	,	[H+T] JJJ
	TH-INGOIE-3-Carboxamide		
248	N-[4-(2-	254	LRMS
	methanesulfonylamino-		calcd 391
	ethoxy) phenyl] -4-oxo-		found
	4,5,6,7-tetrahydro-1H-		[M+1] 392
	indole-3-carboxamide) O N	
		is-	
		0,0	
249	N-4-0xo-4,5,6,7-	~ 0 \ H	LRMS
	tetrahydro-1H-indole-3-	l " l	calcd 392
	carboxylic acid [2-(2-		found
	methanesulfonylamino-		[M+1] 393
	ethoxy)-pyridin-3-yl]-		Ì
	amide		TRMC
250	N-{2-[2-(thiophene-2-	350 O N S	LRMS
	sulfonylamino) ethoxy] pyr		calcd 460
	idin-3-yl}-4-oxo-	('N 0=11 \	found
	4,5,6,7-tetrahydro-1H-		[M+1] 461
	indole-3-carboxamide		
L		<u> </u>	L

251	N-{6-[(pyridin-2- ylmethyl)-amino] - pyridin-3-yl}-4-oxo- 4,5,6,7-tetrahydro-1H-	§ NH NH	LRMS calcd 361 found [M+1] 362
	indole-3-carboxamide		
252	N-{6-[(pyridin-3-ylmethyl)-amino]-pyridin-3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	§ NH	LRMS calcd 361 found [M+1] 362
253	N-(4-ethoxy-3-fluoro- phenyl)-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	}—————————————————————————————————————	LRMS calcd 316 found [M+1] 317
254	N- acid [3-(2-ethoxy- ethoxy)-phenyl]-4-0xo- 4,5,6,7-tetrahydro-1H- indole-3-carboxamide	\$	LRMS calcd 342 found [M+1] 343
255	N-(4-[1,2,4]triazol-1-ylmethyl-phenyl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	N-N	LRMS calcd 335 found [M+1] 336
256	N-{4-[2- (methanesulfonyl-methyl- amino)-ethyl]-phenyl}-4- Oxo-4,5,6,7-tetrahydro- 1H-indole-3-carboxamide	O = N	LRMS calcd 389 found [M+1] 390
257	N-[4-(2-methanesulfonylamino-ethyl)-phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	O NH	LRMS calcd 375 found [M+1] 378
258	N-(4-methanesulfonylmethyl-phenyl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	\$	LRMS calcd 346 found [M+1] 347
259	N-[4-(4-hydroxymethyl- imidazol-1-yl)-phenyl]- 4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	₩ HO	LRMS calcd 350 found [M+1] 351

260	N-[4-(2-methanesulfonyl- ethyl)-phenyl]-4-oxo- 4,5,6,7-tetrahydro-1H- indole-3-carboxamide	\$	LRMS calcd 360 found [M+1] 361
261	(2-{4-[(4-0xo-4,5,6,7-tetrahydro-1H-indole-3-carbonyl)-amino]-phenyl}-ethyl)-carbamicacid tert-butyl ester	NH NH	LRMS calcd 397 found [M+1] 398
262	N-[4-(2-imidazol-1-yl-ethyl)-phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid amide	N N N N N N N N N N N N N N N N N N N	LRMS calcd 348 found [M+1] 349
263	N-{4-[2-(thiophene-2-sulfonylamino)-ethyl]-phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	0= S - NH S	LRMS calcd 443 found [M+1] 444
264	N-[4-(2- ethanesulfonylamino- ethyl)-phenyl]-4-oxo- 4,5,6,7-tetrahydro-1H- indole-3-carboxamide	O NH	LRMS calcd 389 found [M+1] 390
265	N-{4-[2-(propane-1-sulfonylamino)ethyl]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	O NH	LRMS calcd 403 found [M+1] 404
266	N-(5-ethoxy-pyridin-2-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	₽	LRMS calcd 378 found [M+1] 379
267	N-[4-(3-methanesulfonylamino-propoxy)-phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	0 0 S NH	LRMS calcd 405 found [M+1] 406
268	N-[4-(3-amino-propoxy)-phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	NH ₂	LRMS calcd 327 found [M+1] 328

269	N-(5-propoxy-pyridin-2-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	N= O	LRMS calcd 299 found [M+1] 300
270	N-(5-propoxy-pyridin-2-yl)-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	0 0	LRMS calcd 313 found [M+1] 314
271	N-imidazo[1,2-a]pyridin- 6-yl-4-0xo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	N N	LRMS calcd 294 found [M+1] 295
272	N-(6-(3-(4-pyridinyl)propoxy)-3-pyridinyl)-4,5,6,7-tetrahydro-4-oxo-1H-indole-3-carboxamide	§——N	electrosp ray mass spectrum: m/z 391 [M+1]
273	N-(6-(3-(3- pyridinyl)propoxy)-3- pyridinyl)-4,5,6,7- tetrahydro-4-oxo-1H- indole-3-carboxamide	₹ N	electrosp ray mass spectrum: m/z 391 [M+1]
274	N-(6-(3-(2-pyridinyl)propoxy)-3-pyridinyl)-4,5,6,7-tetrahydro-4-oxo-1H-indole-3-carboxamide	Ş—(N=) N=) N=)	electrosp ray mass spectrum: m/z 391 [M+1]
275	N-(6-(2-(2- pyridinyl)ethoxy)-3- pyridinyl)-4,5,6,7- tetrahydro-4-oxo-1H- indole-3-carboxamide	3 PT NON NON NON NON NON NON NON NON NON NO	electrosp ray mass spectrum: m/z 375 [M-1]
276	N-[2-(ethylamino)pyrid- 5-yl]-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	₹ NH	M.W. 298.348; MS (M + 1) 299
277	N-[2-(methylamino)pyrid- 5-yl]-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	ξ—NH NH	M.W. 284.321; MS (M + 1) 285.

278	N-{2-[2-(pyrrolidin-1-yl)ethylamino]pyrid-5-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	N H N N	M.W. 298.348; MS (M + 1) 299.
279	N-[2-(propylamino)pyrid- 5-yl]-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	N H	M.W. 312.375; MS (M + 1) 313
280	N-{2-[(2-methoxyethyl)amino]pyrid -5-yl}-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	N H N O	M.W. 328.375; MS (M + 1) 329
281	N-[2-(butylamino)pyrid- 5-yl]-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	Z N H	M.W. 326.402; MS (M + 1) 327.
282	N-(6-ethoxypyridazin-3-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	}—N=N →O	M.W. 300.321; MS (M + 1) 301
283	N-(6-methoxypyridazin-3-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	}——N=N——O	M.W. 286.294; MS (M + 1) 287.
284	N-[6- (propylamino)pyridazin- 3-yl]-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	ξ—N=N N=N NH	M.W. 313.363; MS (M + 1) 314.
285	N-[2-ethoxy-6- (ethylamino)pyrid-3-yl]- 4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	O NH NH	M.W. 300.321; MS (M + 1) 301.
286	N-{2-[N-methyl(ethylamino)]pyrid -5-yl}-1-methyl-4-oxo- 4,5,6,7-tetrahydro-1H- indole-3-carboxamide	}————————————————————————————————————	M.W. 286.294; MS (M + 1) 287.

287	N-{2-[(2-methylpropyl)amino]pyrid-5-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	Y-N-N-	M.W. 326.402; MS (M + 1) 327
200	yl]-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide	N N N N N N N N N N N N N N N N N N N	312.332; MS (M + 1) 313.
289	N-[2-(N- ethylacetamido)pyrid-5- yl]-4-oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxamide		M.W. 340.386; MS (M + 1) 341
290	N-{2-[2-(morpholin-4-yl)ethylamino]pyrid-5-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide		M.W. 383.450; MS (M + 1) 384
291	N-(2-{[2-(N-methylacetamido)ethyl]amino}pyrid-5-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	N N N N N N N N N N N N N N N N N N N	M.W. 369.428; MS (M + 1) 370.
292	N-(2-ethoxy-4-methylpyrid-5-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide	}	M.W. 313.360; MS (M + 1) 314.
304	4-0xo-4,5,6,7- tetrahydro-1H-indole-3- carboxylic acid {4-[2- (thiophene-2- sulfonylamino)-ethoxy]- phenyl}-amide	0=S=0 N-H	
305	4-0xo-4,5,6,7- tetrahydro-1H-indole-3- carboxylic acid (4- [1,2,4]-triazol-1-yl- phenyl)-amide	N N N N N N N N N N N N N N N N N N N	LRMS calcd 321; found [M + 1] 322

306	4-Oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxylic acid {4-[3- (1-methyl-1H-imidazole- 4-sulfonylamino)- propoxy]-phenyl}-amide		LRMS calcd 471; found [M + 1] 472
307	4-Oxo-4,5,6,7- tetrahydro-1H-indole-3- carboxylic acid imidazo[1,2-a]pyridin-5- ylamide		LRMS calcd 294; found [M + 1] 295
308	4-Oxo-3a,4,5,6,7,7a- hexahydro-1H-indole-3- carboxylic acid[6-(3- propyl-[1,2,4]thidazol- 5-ylamino)-pyridin-2- yl]amide	S-N N H	1H NMR (CD ₃ OD) 0.75-0.95 (m, 3H), 1.62-1.81 (m, 5H), 2.60-2.75 (m, 5H), 6.07 (d, 1H) 8.6 (s, 1H) LCMS found [M + H] 305.2

	TABLE II				
Cmd.	Name	G	Spectral Data		
293	N-[6-(2-pyridin-3-yl-ethylamino)-pyridin-2-yl]-4-oxo-3a,4,5,6,7,7a-hexahydro-1H-indole-3-carboxylic acidamide	N N N N N N N N N N N N N N N N N N N	LCMS found (M+H) 299.3		
294	N-[6-(3-imidazol-1-yl-propylamino)-pyridin-2-yl]-4-oxo-3a,4,5,6,7,7a-hexahydro-1H-indole-3-carboxamide	N N N N N N N N N N N N N N N N N N N	LCMS found (M+H) 379.3		

295	N-[6-(3-propyl- [1,2,4]thiadiazol-5y- lamino)-pyridin-2-yl]- 4-oxo-3a,4,5,6,7,7a- hexahydro-1H-indole-3- carboxamide	S-N N N N	LCMS found (M+H) 305.2
296	N-(6-ethylamino- pyridin-2-yl)-4-oxo- 3a,4,5,6,7,7a- hexahydro-1H-indole-3- carboxylic acid	ZZ N N N	LCMS found (M+H) 299.3
297	4-oxo-3a,4,5,6,7,7a- hexahydro-1H-indole-3- carboxylic acid{6-(2- ethyl-imidazol-1yl)- ethoxy)-pyridin-3-yl}- amide	Ş—(N) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	LCMS found (M+H) 394.4
298	4-oxo-3a,4,5,6,7,7a- hexahydro-1H-indole-3- carboxylic acid[6-(2- imidazol-1-yl-ethoxy)- pyridin-3-yl]-amide		LCMS found (M+H) 366.4

Example 5

Intermediate compounds

The intermediate compounds shown in TABLE III are prepared using the methods given in Schemes III and IV.

	TABLE III					
Cmp#	Scheme	<u>Name</u>	Structure	<u>Data</u>		
299	3	N-Ethyl-pyridine- 2,6-diamine	H ₂ N N N	LCMS found (M+H) 125		
300	3	N-(3-Imidazol-1- yl-propyl)- pyridine-2,6- diamine	H_2N N N N N N N N N N	LCMS found (M+H) 218		
301	3	N-(2-Pyridin-2- yl-ethyl)- pyridine-2,6- diamine	H_2N N N N N N N N N N	LCMS found (M+H) 215		

302	4	4-(2-Imidazol-1- yl-ethoxy)- phenylamine	N N NH ₂	LCMS found (M+H) 204
303	4	4-[2-(2-Ethyl- imidazol-1-yl)- ethoxy]- phenylamine	N N N NH ₂	LCMS found (M+H) 232

Example 5

Water solubility for various compounds within the invention was determined and compared with that for compounds outside the scope of the invention. The compounds evaluated are encompassed by Formula II:

TABLE IV						
R_x R_y						
Water Solubility	Rx	Ry	n	R		
(ug/ml)	(ug/ml)					
23	Н	Н	1	ў ^О ОН		

203	Н	Н	1	
				רלי האר CH₃
143	Н	Н	2	N-CH ₃
15	н	Н	1	CH ₃ CH ₃
1.0	Н	Н	1	F
0.58	Н	Н	1	CH ₃
0.34	Н	Н	1	O_CH ₃
0.26	CH3	СН3	1	F_OCH ₃

Example 6

5 Preparation of radiolabeled probe compounds of the invention

The compounds of the invention are prepared as radiolabeled probes by carrying out their synthesis using precursors comprising at least one atom that is a radioisotope. The radioisotope is preferably selected from of at least one of

carbon (preferably ¹⁴C), hydrogen (preferably ³H), sulfur (preferably ³⁵S), or iodine (preferably ¹²⁵I). Such radiolabeled probes are conveniently synthesized by a radioisotope supplier specializing in custom synthesis of radiolabeled probe compounds. Such suppliers include Amersham Corporation, Arlington Heights, IL; Cambridge Isotope Laboratories, Inc. Andover, MA; SRI International, Menlo Park, CA; Wizard Laboratories, West Sacramento, CA; ChemSyn Laboratories, Lexena, KS; American Radiolabeled Chemicals, Inc., St. Louis, MO; and Moravek Biochemicals Inc., Brea, CA.

Tritium labeled probe compounds are also conveniently prepared catalytically via platinum-catalyzed exchange in tritiated acetic acid, acid-catalyzed exchange in tritiated trifluoroacetic acid, or heterogeneous-catalyzed exchange with tritium gas. Tritium labeled probe compounds can also be prepared, when appropriate, by sodium borotritide reduction. Such preparations are also conveniently carried out as a custom radiolabeling by any of the suppliers listed in the preceding paragraph using the compound of the invention as substrate.

20

25

10

15

Example 7

Receptor autoradiography

Receptor autoradiography (receptor mapping) is carried out in vitro as described by Kuhar in sections 8.1.1 to 8.1.9 of Current Protocols in Pharmacology (1998) John Wiley & Sons, New

York, using radiolabeled compounds of the invention prepared as described in the preceding Example.

Example 8

5 Binding Assay

10

15

20

This assay is a standard assay for GABA_A binding affinity. The high affinity and high selectivity of compounds of this invention for the benzodiazepine site of the GABA_A receptor is confirmed using the binding assay described in Thomas and Tallman (*J. Bio. Chem.* 1981; 156:9838-9842, and *J. Neurosci.* 1983; 3:433-440).

Rat cortical tissue is dissected and homogenized in 25 volumes (w/v) of Buffer A (0.05 M Tris HCl buffer, pH 7.4 at 4 °C). The tissue homogenate is centrifuged in the cold (4 °C) at 20,000 x g for 20 minutes. The supernatant is decanted, the pellet rehomogenized in the same volume of buffer, and centrifuged again at 20,000 x g. The supernatant of this centrifugation step is decanted and the pellet stored at -20 °C overnight. The pellet is then thawed and resuspended in 25 volumes of Buffer A (original wt/vol), centrifuged at 20,000 x g and the supernatant decanted. This wash step is repeated once. The pellet is finally resuspended in 50 volumes of Buffer A.

Incubations containing 100 μ l of tissue homogenate, 100 μ l of radioligand, (0.5 nM 3 H-Ro15-1788 [3 H-Flumazenil], specific activity 80 Ci/mmol), and test compound or control (see below),

and are brought to a total volume of 500 μ l with Buffer A. Incubations are carried for 30 min at 4°C and then rapidly filtered through Whatman GFB filters to separate free and bound ligand. Filters are washed twice with fresh Buffer A and counted in a liquid scintillation counter. Nonspecific binding (control) is determined by displacement of 3H Ro15-1788 with 10 μ M Diazepam (Research Biochemicals International, Natick, MA). Data were collected in triplicate, averaged, and percent inhibition of total specific binding (Total Specific Binding = Total - Nonspecific) was calculated for each compound.

10

15

20

A competition binding curve is obtained with up to 11 points spanning the compound concentration range from $10^{-12} M$ to $10^{-5} M$ obtained per curve by the method described above for determining percent inhibition. K_i values are calculated according the Cheng-Prussof equation. When tested in this assay preferred compounds of the invention exihibit K_i values of less than 1 uM, more preferred compounds of the invention have K_i values of less than 500 nM, still more preferred compounds of the invention have K_i values of less than 100 nM, and even more preferred compounds have K_i values of less than 100 nM,

Results for several compounds of this invention are listed in Table $\ensuremath{\text{V}}.$

<u>Table V</u>					
<u>Compound</u> <u>Number</u>	<u>K_i (nM)</u>				
1	90				
2	29				
3	49				
4	0.24				
5	9				
6	9				
7	30				
8	27				
9	1.3				
10	37				
11	7				
12	5				
13	24				
14	3				
15	12				

Example 9

5

10

Electrophysiology

The following assay is used to determine if a compound of the invention act as an agonist, an antagonist, or an inverse agonist at the benzodiazepine site of the $GABA_A$ receptor.

Assays are carried out as described in White and Gurley (NeuroReport 6: 1313-1316, 1995) and White, Gurley, Hartnett, Stirling, and Gregory (Receptors and Channels 3: 1-5, 1995) with modifications. Electrophysiological recordings are carried out using the two electrode voltage-clamp technique at a membrane holding potential of -70 mV. Xenopus Laevis oocytes are enzymatically isolated and injected with non-polyadenylated

cRNA mixed in a ratio of 4:1:4 for α , β and γ subunits, respectively. Of the nine combinations of α , β and γ subunits described in the White et al. publications, preferred combinations are $\alpha_1\beta_2\gamma_2$, $\alpha_2\beta_3\gamma_2$, $\alpha_3\beta_3\gamma_2$, and $\alpha_5\beta_3\gamma_2$. Preferably all of the subunit cRNAs in each combination are human clones or all are rat clones. The sequence of each of these cloned subunits is available from GENBANK, e.g., human α_1 , GENBANK accession no. X14766, human α_2 , GENBANK accession no. A28100; human α_3 , GENBANK accession no. A28102; human α_5 , GENBANK accession no. A28104; human β_2 , GENBANK accession no. M82919; 10 human β_3 , GENBANK accession no. Z20136; human β_2 , GENBANK accession no. X15376; rat α_1 , GENBANK accession no. L08490, rat α_2 , GENBANK accession no. L08491; rat α_3 , GENBANK accession no. L08492; rat α_5 , GENBANK accession no. L08494; rat β_2 , GENBANK accession no. X15467; rat β_3 , GENBANK accession no. X15468; and 15 rat γ_2 , GENBANK accession no. L08497. For each subunit combination, sufficient message for each constituent subunit is injected to provide current amplitudes of >10 nA when 1 μM GABA is applied.

Compounds are evaluated against a GABA concentration that evokes <10% of the maximal evokable GABA current (e.g. 1 μ M - 9 μ M). Each oocyte is exposed to increasing concentrations of compound in order to evaluate a concentration/effect relationship. Compound efficacy is calculated as a percent-

20

change in current amplitude: 100*((Ic/I)-1), where Ic is the GABA evoked current amplitude observed in the presence of test compound and I is the GABA evoked current amplitude observed in the absence of the test compound.

5

10

15

20

25

Specificity of a compound for the benzodiazepine site is determined following completion of a concentration/effect curve. After washing the oocyte sufficiently to previously applied compound, the oocyte is exposed to GABA + 1 μM RO15-1788, followed by exposure to GABA + 1 μM RO15-1788 + test compound. Percent change due to addition of compound is calculated as described above. Any percent change observed in the presence of RO15-1788 is subtracted from the percent changes in current amplitude observed in the absence of 1 μM RO15-1788. These net values are used for the calculation of average efficacy and EC_{50} values by standard methods. To evaluate average efficacy and EC_{50} values, concentration/effect data are averaged across cells and fit to the logistic equation.

The invention and the manner and process of making and using it, are now described in such full, clear, concise and exact terms as to enable any person skilled in the art to which it pertains, to make and use the same. It is to be understood that the foregoing describes preferred embodiments of the present invention and that modifications may be made therein without departing from the spirit or scope of the present

invention as set forth in the claims. To particularly point out and distinctly claim the subject matter regarded as invention, the following claims conclude this specification.

What is claimed is:

1. A compound of the formula:

$$R_4$$
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

or a pharmaceutically acceptable salt thereof wherein:

5 T is halogen, hydrogen, hydroxyl, amino, alkyl or alkoxy;

X is hydrogen, hydroxy, amino, benzyl, t-butoxycarbonyl,
 benzyloxycarbonyl, alkyl, or alkoxy;

G represents

10 where

- Q is an optionally substituted aryl or optionally substituted heteroaryl group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;
- 15 W is chosen from hydrogen, -O-, -NH-, $-NR_7-$, $-S(O)_{0-2}-$, -C(=O)-, -OC(=O)-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, $-NR_7C(=O)-$, $-NHS(O)_{0-2}-$, $-NR_7S(O)_{0-2}-$, $-S(O)_{0-2}NH-$, $-S(O)_{0-2}NR_7-$, and CR_7R_8 where R_7 and R_8 are the same or different and represent hydrogen, alkyl, or CR_7R_8 represents a cyclic moiety having 3-7 carbon atoms, wherein W may not be hydrogen when Q is phenyl, 2- or

3-thienyl, or 2-, 3-, or 4 pyridyl, indolyl, imidazolyl, or pyridazinyl;

- Z is hydrogen, hydroxy, cycloalkyl(alkoxy), amino, monoor or di(alkyl₁) amino, azacycloalkyl, $-O(alkyl_1)$, $-S(O)_{0-2}(alkyl_1)$, $-C(=O)(alkyl_1)$, $-OC(=O)(alkyl_1)$, -OC(=O)H, $-C(=O)O(alkyl_1)$, -C(=O)OH, $-C(=O)NH(alkyl_1)$, $-C(=O)NH(alkyl_1)$, -NHC(=O)H, $-N(alkyl_1)C(=O)(alkyl_1)$, $-NHS(O)_{0-2}(alkyl_1)$, $-N(alkyl_1)S(O)_{0-2}(alkyl_1)$, $-S(O)_{0-2}(alkyl_1)N(alkyl_1)$,
 - wherein each alkyl $_1$ is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds or combinations thereof, and is unsubstituted or substituted with one or more substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, or

Z is $-N(R_N)_2S(O)_{0-2}(R_S)$ where

5

10

15

25

each R_N is independently hydrogen or alkyl where the alkyl is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy,

 $\mathtt{R}_\mathtt{S}$ is hydroxy, alkoxy, heteroaryl, aryl, or alkyl where

each aryl and heteroaryl is optionally substituted with one or two of alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or dialkylamino; and

each alkyl is optionally substituted with hydroxy,
 alkoxy, triflouromethyl, halogen, amino,
 mono- or di- alkylamino, aryl, or heteroaryl;
 or

- Z is phenyl or phenylalkyl where the phenyl portion is optionally substituted with alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or dialkylamino, or
- Z is 2-, 3-, or 4-pyridyl, 1- or 2-imidazolyl, 1-, 2-, or 3-pyrrolyl, azeditinyl, norborn-2-yl, or adamantan-2-yl; each of which may be substituted on a tertiary carbon or a secondary nitrogen with C₁-C₆alkyl, or
- Z is NR_9COR_{10} where R_9 and R_{10} are the same or different and represent hydrogen or alkyl or cycloalkyl, or
- Z is connected, optionally through W, to Q to from a 1-6 membered ring; or
- Z represents a group of the formula:

where

5

10

15

20

p is 1, 2, or 3;

D and D' independently represent oxygen, NR_y or CHR_y provided that only one of D and D' may be NR_y , and only one of D and D' may be oxygen, where each R_y is hydrogen or alkyl; and

 $\mathtt{R_z}$ is hydrogen or alkyl, or

Z represents a group of the formula:

$$R_z$$
 $N-R_z$
 N_q
where

p is 1, 2, or 3;

q is 0, 1, or 2;

each R_z is independently hydrogen or alkyl; or Z represents a group of the formula:

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

 R_{o} is hydroxy, $C_{1}\text{-}C_{6}$ alkoxy, amino, mono- or di- alkylamino where each alkyl is independently optionally substituted with amino, or mono- or dialkylamino, or

Ro is a group of the formula

where p, D, D', and R_z are as defined above;

20

5

10

15

and independently represent a carbon chain optionally substituted with halogen, oxo, cyano, nitro, amino, mono or dialkylamino, alkyl, alkenyl, alkynyl, trifluoromethyl, trifluoromethoxy, or cycloalkyl;

wherein

5

10

15

k is 0, 1, 2, or 3; m is 0, 1, 2, or 3; and

represents a carbon chain optionally substituted with R_5 and R_6 and n is 0, 1, 2, or 3; and

- R3, R4, R5, and R6 are the same or different and are independently selected at each occurrence from hydrogen, alkyl, -COR11 or -CO2R11 where R11 is alkyl or cycloalkyl having 3-7 carbon atoms; or -CONR12R13 where R12 and R13 are selected independently from hydrogen, alkyl, cycloalkyl having 3-7 carbon atoms, phenyl, 2-, 3-, or 4-pyridyl, or NR12R13 forms a heterocyclic group which is morpholinyl, piperidinyl, pyrrolidinyl, or N-alkyl piperazinyl; or
- 20 R₃ and R₄ together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms; or

R5 and R6 together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms;

where each alkyl group forming an R3, R4, R5, or R6 substituent or portion thereof may be substituted independently with hydroxy or monoor dialkylamino where each alkyl is independently alkyl or cycloalkyl.

10 2. A compound of the formula:

$$R_4$$
 R_5
 R_6
 R_6

or a pharmaceutically acceptable salt thereof wherein:

T is halogen, hydrogen, hydroxyl, C_1 - C_6 amino, alkyl or C_1 - C_6 alkoxy;

15 X is hydrogen, hydroxy, amino, C_1 - C_6 alkyl, or C_1 - C_6 alkoxy; G represents

where

5

Q is phenyl, 2- or 3-thienyl, or 2-, 3-, or 4 pyridyl, 2-,

4-, or 5-pyrimidinyl, indolyl, imidazolyl,

pyridazinyl, 1,4-benzodioxazinyl, 1,3-benzodioxolyl

or imidazo[1,2-a]pyridinyl, all of which may be substituted by one or more of hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and monoor dialkyl(C_1 - C_6) amino;

W is chosen from hydrogen, -O-, -NH-, -NR₇-, -S(O)₀₋₂-, -C(=O)-, -OC(=O), -C(=O)O-, -C(=O)NH-, -NHC(=O)-, -NR₇C(=O)-, -NHS(O)₀₋₂-, -NR₇S(O)₀₋₂-, -S(O)₀₋₂NH-, -S(O)₀₋₂NR₇, and CR₇R₈ where R₇ and R₈ are the same or different and represent hydrogen, alkyl, or CR₇R₈ represents a cyclic moiety having 3-7 carbon atoms, wherein W may not be hydrogen when Q is phenyl, 2- or 3-thienyl, or 2-, 3-, or 4 pyridyl, indolyl, imidazolyl, or pyridazinyl;

Z is hydrogen, hydroxy, C_3-C_7 cycloalkyl(C_1-C_6 alkoxy),

- wherein $C_1\text{-}C_6$ alkyl $_1$ is independently chosen at each occurrence and is straight, branched, or -128-

cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, or

- Z is phenyl or phenyl (C_1-C_6) alkyl where the phenyl portion is optionally substituted with C_1-C_6 alkyl, hydroxy, C_1-C_6 alkoxy, trifluoromethyl, trifluoromethoxy, halogen, amino, or mono- or diC_1-C_6 alkylamino, or
- Z is 2-, 3-, or 4-pyridyl, 1- or 2-imidazolyl, 1-, 2-, or 3-pyrrolyl, or adamantan-2-yl; each of which may be substituted on a tertiary carbon or a secondary nitrogen with C_1 - C_6 alkyl, or
 - Z is NR_9COR_{10} where R_9 and R_{10} are the same or different and represent hydrogen or $C_1\text{-}C_6$ alkyl or $C_3\text{-}C_7$ cycloalkyl, or
 - Z is connected, optionally through W, to Q to form a 1-6 membered ring; or
 - Z represents a group of the formula:

20

15

5

where

p is 1, 2, or 3;

D and D' independently represent oxygen, NR_y or CHR_y provided that only one of D and D' may be NR_y

where each R_y is hydrogen or $C_1\text{-}C_6$ alkyl; or and R_z is hydrogen or $C_1\text{-}C_6$ alkyl, or

Z represents a group of the formula:

$$N-R_z$$
where

5 p is 1, 2, or 3;

15

q is 0, 1, or 2;

 R_z is hydrogen or C_1 - C_6 alkyl; or

a group of the formula:

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

 R_o is hydroxy, C_1 - C_6 alkoxy, amino, mono- or diC_1 - C_6 alkylamino where each alkyl is independently optionally substituted with amino, mono- or diC_1 - C_6 alkylamino, or

Ro is a group of the formula

where p, D, D', and R_z are as defined above;

and independently represent a carbon chain optionally substituted with hydrogen, halogen, oxo,

cyano, nitro, amino, mono or di (C_1-C_6) alkylamino, straight or branched chain C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, trifluoromethyl, trifluoromethoxy, or cyclo C_1-C_6 alkyl;

5 wherein

10

15

20

25

k is 0, 1, 2, or 3; m is 0, 1, 2, or 3; and

represents a carbon chain optionally substituted with R_5 and R_6 and n is 0, 1, 2, or 3;

R3, R4, R5, and R6 are the same or different and are independently selected at each occurrence from hydrogen, C_1 - C_6 alkyl, $-COR_{11}$ or $-CO_2R_{11}$ where R₁₁ is C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl; or

-CONR₁₂R₁₃ where R₁₂ and R₁₃ are selected independently from hydrogen, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl, 2-, 3-, or 4-pyridyl, or NR₁₂R₁₃ forms a heterocyclic group which is morpholinyl, piperidinyl, pyrrolidinyl, or N-alkyl piperazinyl; or R₃-R₄ may be taken together to form a cyclic moiety having

 R_5 - R_6 may be taken together to form a cyclic moiety having 3-7 carbon atoms; and

3-7 carbon atoms; or

where each alkyl group forming an R3, R4, R5, or R6 substituent or portion thereof may be substituted independently with hydroxy or mono-

-131-

or dialkylamino where each alkyl is independently C_3 - C_7 alkyl or cycloalkyl having 3-7 carbon atoms.

- 3. A compound according to Claim 1, wherein Q is phenyl or pyridyl.
 - 4. A compound according to Claim 1, wherein Q is phenyl or pyridyl; and
- 10 either the group or the group is substituted by oxo.
 - 5. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8

- wherein each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino.
 - 6. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino.

5

7. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

8. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein:

one of A and B is nitrogen and the other is carbon;

when A is nitrogen, Y' is an electron pair;

when B is nitrogen, Y" is an electron pair;

Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino, with the proviso that

when A is carbon, Y' is hydrogen, hydroxy, halogen, C_1 - C_6 10 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino; and

when B is carbon, Y'' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino.

15

9. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

10. A compound according to claim 1, of the formula:

11. A compound according to claim 1, of the formula:

5

wherein each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

10

12. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino.

13. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

10

5

14. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino.

15. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino.

5

16. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein:

one of A and B is nitrogen and the other is carbon;

- 10 when A is nitrogen, Y' is an electron pair;
 - when B is nitrogen, Y'' is an electron pair;
 - Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino; provided that
- 15 when A is carbon, Y' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino; and

when B is carbon, Y'' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino.

5 17. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

18. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_7
 R_8
 R_8

- wherein each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.
 - 19. A compound according to claim 1, of the formula:

15

wherein Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

5 20. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino.

10

21. A compound according to claim 1, of the formula:

wherein:

one of A and B is nitrogen and the other is carbon;

when B is nitrogen, Y' is an electron pair; when B is nitrogen, Y'' is an electron pair;

Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino; provided that

- when A is carbon, Y' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino; and
- when B is carbon, Y'' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino.

10

15

5

22. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

wherein each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino.

23. A compound according to claim 1, which is:

$$R_4$$
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8

wherein each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl $(C_1$ - $C_6)$ amino.

5

24. A compound according to claim 1, which is:

wherein each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

25. A compound according to claim 1, which is:

$$R_4$$
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8

wherein Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

5 26. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

27. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

28. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

29. A compound according to claim 1, of the formula:

10

$$R_4$$
 R_5
 R_6
 R_6

30. A compound according to claim 1, of the formula:

5

wherein:

- R is hydrogen or alkyl wherein the alkyl is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; and
- each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

15

10

31. A compound according to claim 1, of the formula:

$$R_{5}$$
 R_{6}
 R_{7}
 R_{7

where

5

 R_3 , R_5 , and R_6 independently represent hydrogen or alkyl; $R_a \quad \text{represents hydrogen or alkyl where the alkyl is}$ optionally halogenated; and

e is an integer of 1-3.

32. A compound according to claim 1, of the formula:

10 wherein

one of A and B is nitrogen and the other is carbon; when A is nitrogen, Y' is an electron pair; when B is nitrogen, Y'' is an electron pair;

R is hydrogen or alkyl wherein the alkyl is straight, branched,
or cyclic, may contain one or two double and/or triple
bonds, and is unsubstituted or substituted with one or

more substituents selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy;

- Y is independently selected at each occurrence from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino; provided that
- when A is carbon, Y' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino; and
- when B is carbon, Y'' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino.

33. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

15 wherein

20

5

R is hydrogen or alkyl wherein the alkyl is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; and

each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

5 34. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein:

Ra and Rb are independently hydrogen or alkyl wherein each alkyl is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; or

 NR_aR_b represent a heterocycloalkyl ring; and

- 15 each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.
 - 35. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein:

5

 R_a and R_b are independently hydrogen or alkyl wherein each alkyl is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; or

NR_aR_b represents a heterocycloalkyl ring; and

- 10 Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.
 - 36. A compound according to Claim 1, of the formula:

$$R_3$$
 R_5
 R_6
 R_6

where

15

 R_3 , R_5 , and R_6 independently represent hydrogen, or alkyl; R_a and R_b independently represent hydrogen or alkyl; and

-147-

e is an integer of 2-3.

37. A compound according to claim 1, of the formula:

5 wherein:

20

one of A and B is nitrogen and the other is carbon; when A is nitrogen, Y' is an electron pair; when B is nitrogen; Y'' is an electron pair;

- R_a and R_b are independently hydrogen or alkyl wherein each alkyl is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy;
- 15 each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino; provided that
 - when A is carbon, Y' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino; and

when B is carbon , Y'' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl $(C_1$ - $C_6)$ amino.

5 38. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein:

Ra and Rb are independently hydrogen or alkyl wherein each alkyl is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; or

 R_a and R_b may be joined to form a heterocycloalkyl ring; and 15 each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.

39. A compound according to claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

wherein:

5

 R_a and R_b are independently hydrogen or alkyl wherein each alkyl is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; or

NR_aR_b together form a heterocycloalkyl ring; and

- 10 Y is selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino.
 - 40. A compound according to Claim 1, of the formula:

$$R_3$$
 R_5
 R_6
 R_6

15

where

R3, R5, and R6 independently represent hydrogen, or alkyl;

 $\ensuremath{\mathtt{R}}_{\ensuremath{\mathtt{a}}}$ represents hydrogen or alkyl where the alkyl is optionally halogenated; and

e is an integer of 1-3.

5 41. A compound according to claim 1, of the formula:

wherein:

15

20

one of A and B is nitrogen and the other is carbon;

when A is nitrogen, Y' is an electron pair;

10 when B is nitrogen, Y'' is an electron pair;

 R_a and R_b are independently hydrogen or alkyl wherein each alkyl is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy; or

NR_aR_b forms a heterocycloalkyl ring;

each Y is independently selected from hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, and mono- or dialkyl(C_1 - C_6) amino; provided that

when A is carbon, Y' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino; and

when B is carbon, Y'' is hydrogen, hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, cyano, nitro, amino, or mono- or dialkyl(C_1 - C_6) amino.

42. A compound according to Claim 1, of the formula:

$$R_{5}$$
 R_{6}
 R_{6}

10 where G represents:

5

where V is oxygen, nitrogen, or methylene; and m is 1 or 2.

- 43. A compound according to claim 1, which is
- N-[4-(2-Pyrrolidinylethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[3-(2-Dimethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[3-(2-n-Propylaminoethoxy)phenyl]-4-oxo-4,5,6,7-

20 tetrahydro-1H-indole-3-carboxamide;

```
N-[3-(2-n-Butylaminoethoxy)] phenyl] -4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[3-(2-Isobutylaminoethoxy)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
 5
         N-[3-(2-Cyclobutylaminoethoxy)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[3-(2-t-Butylaminoethoxy)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[3-(2-Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-
    4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
10
         N-{3-[2-(4-Methylcyclohexyl)aminoethoxy]phenyl}-4-oxo-
    4,5,6,7-tetrahydro-1H-indole-3-carboxamide; or
         N-{3-[2-(3-Trifluoromethylbenzylamino)ethoxy]phenyl}-4-
    oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide.
15
              A compound according to claim 1, which is
         N-{3-[3-(3-Trifluoromethylbenzylamino)propoxy]phenyl}-4-
    oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
         N-[4-(2-Dimethylaminoethyl)phenyl]-4-oxo-4,5,6,7-
20
    tetrahydro-1H-indole-3-carboxamide;
         N-[4-(2-Pyrrolidin-1-ylethyl)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[4-(2-Diisopropylaminoethoxy)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
25
         N-[4-(2-Methylaminoethoxy) phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
```

```
N-[4-(2-Ethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-
1H-indole-3-carboxamide;
```

- N-[2-Fluoro-4-(2-ethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole carboxamide;
- N-[4-(2-n-Propylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
 - N-[2-Fluoro-4-(2-n-propylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide; or

N-[3-Fluoro-4-(2-n-propylaminoethoxy)phenyl]-4-oxo-

- 10 4,5,6,7-tetrahydro-1H-indole-3-carboxamide.
 - 45. A compound according to claim 1 which is
 - N-[3-Fluoro-4-(2-n-propylaminoethoxy)phenyl]-4-oxo-
 - 4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride;
- N-[4-(2-Cyclopropylaminoethoxy)phenyl]-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide;
 - N-[4-(2-Isopropylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
- N-[4-(2-Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-
- 20 4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
 - N-[4-(2-Cyclopropylmethylaminoethoxy)phenyl]-4-oxo-
 - 4,5,6,7-tetrahydro-1H-indole-3-carboxamide hemifumarate;
 - N-[2-Fluoro-4-(2-Cyclopropylmethylaminoethoxy)phenyl]-4-
 - oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
- N-[3-Fluoro-4-(2-Cyclopropylmethylaminoethoxy)phenyl]-4oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

```
N-[3-Fluoro-4-(2-Cyclopropylmethylaminoethoxy)phenyl]-4-
    oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide tosylate;
         N-[4-(2-Isobutylaminoethoxy)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide; or
 5
         N-[2-Fluoro-4-(2-Isobutylaminoethoxy)phenyl]-4-oxo-
    4,5,6,7-tetrahydro-1H-indole-3-carboxamide.
              A compound according to claim 1, which is
         N-[3-Fluoro-4-(2-Isobutylaminoethoxy)phenyl]-4-oxo-
    4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
10
         N-[4-(2-n-Butylaminoethoxy)] phenyl] -4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[4-(2-n-Butylaminoethoxy) phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide hydrochloride;
15
         N-[3-Fluoro-4-(2-n-butylaminoethoxy)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[4-(2-t-Butylaminoethoxy) phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[3-Fluoro-4-(2-t-butylaminoethoxy)phenyl]-4-oxo-4,5,6,7-
20
    tetrahydro-1H-indole-3-carboxamide;
         N-[4-(2-adamant-2-ylaminoethoxy)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-\{4-[(R)-Pyrrolidin-2-ylmethoxy]phenyl\}-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
```

N-{4-[(S)-Pyrrolidin-2-ylmethoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide; or

N-[4-(Piperidin-3-ylmethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide.

47. A compound according to claim 1, which is

N-[4-(Piperidin-3-ylmethoxy)phenyl]-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide hydrochloride;

N-[4-(2-Dimethylaminoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[3-Fluoro-4-(2-dimethylaminoethoxy)phenyl]-4-oxo-

10 4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[4-(2-Pyrrolidin-1-ylethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[4-(2-Imidaz-1-ylethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[3-Fluoro-4-(2-moropholin-1-ylethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[3-Fluoro-4-(2-pyrrolidin-1-ylethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[4-(2-Piperidin-2-ylethoxy)phenyl]-4-oxo-4,5,6,7-

20 tetrahydro-1H-indole-3-carboxamide;

25

 $N-\{4-[3-(2,2,2,-Trifluorethyl) aminopropoxy] phenyl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide; or$

N-[4-(3-Isopropylaminopropoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide.

48. A compound according to claim 1, which is

```
N-\{4-[3-(2-Methylpropyl) aminopropoxy] phenyl\}-4-oxo-
    4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
         N-[4-(3-Isobutylaminopropoxy)phenyl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
 5
         N-[4-(3-Cyclopropylmethylaminopropoxy)phenyl]-4-oxo-
    4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
         N-\{4-[3-(3-Ethylpropyl)aminopropoxy]phenyl\}-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[4-(3-Cyclopentylaminopropoxy)phenyl]-4-oxo-4,5,6,7-
10
    tetrahydro-1H-indole-3-carboxamide;
         N-{4-[3-(N-Cyclopropylmethyl,N-
    propyl)aminopropoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-
    3-carboxamide;
         N-[4-(2-Methylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
15
         N-[4-(2-Ethylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide;
         N-[4-(2-Ethylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide hydrochloride; or
20
         N-[4-(2-n-Propylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-
    tetrahydro-1H-indole-3-carboxamide.
```

49. A compound according to claim 1, which is

N-[4-(2-n-Propylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7
25 tetrahydro-1H-indole-3-carboxamide hydrochloride;

```
N-[4-(2-Isopropylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
```

- N-[4-(2-Isopropylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride;
- N-[4-(2-n-Butylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
 - N-[4-(2-n-Butylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride;
- N-[4-(2-t-Butylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7
 tetrahydro-1H-indole-3-carboxamide;
 - N-[4-(2-Benzylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
 - N-[4-(2-Benzylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride;
- N-[4-(Pyrid-3-ylmethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide; or
 - N-[4-(Pyrid-3-ylmethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride.
- 50. A compound according to claim 1, which is

 N-[4-(Pyrid-4-ylmethoxy)pyrid-3-yl]-4-oxo-4,5,6,7
 tetrahydro-1H-indole-3-carboxamide;
 - N-[4-(Pyrid-4-ylmethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride;
- N-{4-[(R)-Pyrrolidn-2-ylmethoxy]pyrid-3-yl}-4-oxo-4,5,6,7tetrahydro-1H-indole-3-carboxamide;

 $N-\left\{4-\left[\begin{array}{c} (R)-Pyrrolidn-2-ylmethoxy\right]pyrid-3-yl\right\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride;$

 $N-\{4-[(S)-Pyrrolidn-2-ylmethoxy]pyrid-3-yl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;$

N-[4-(2-Dimethylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[4-(3-Dimethylaminopropoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride; or

N-[4-(2-Dimethylaminoethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide.

15

20

10

51. A compound according to claim 1, which is

 $N-\{4-[2-(4-Methyl-piperazin-1-yl)ethoxy]pyrid-3-yl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;$

N-{4-[2-Morpholin-1-ylethoxy]pyrid-3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-{4-[2-Piperidin-1-ylethoxy]pyrid-3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-{4-[2-Piperidin-1-ylethoxy]pyrid-3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrochloride;

N-{4-[(1-Methyl-pyrrolidin-3-yl)methoxy]pyrid-3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

```
N-{4-[(1-Ethyl-pyrrolidin-3-yl)methoxy]pyrid-3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
```

- $N-\{4-[2-(1-Methyl-pyrrolidin-2-yl)ethoxy]pyrid-3-yl\}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;$
- 5 N-{4-[2-(1-Methyl-pyrrolidin-2-yl)ethoxy]pyrid-3-yl}-4oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide hydrate;
 - N-[4-(3-n-Propylaminopropoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide; or
- N-[4-(3-Cyclopropylmethylaminopropoxy)pyrid-3-yl]-4-oxo-10 4,5,6,7-tetrahydro-1H-indole-3-carboxamide.
 - 52. A compound according to claim 1, which is N-{4-[3-(2-Ethylbutyl)aminopropoxy]pyrid-3-yl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
- N-[4-(3-Cyclohexylaminopropoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
 - N-[4-(3-Cyclohexylmethylaminopropoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
- $N-{4-[3-(Pyrid-4-ylmethyl) aminopropoxy] pyrid-3-yl}-4-oxo-$
- N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-4,5,6,7-

4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

tetrahydro-1H-indole-3-carboxamide;

- N-[4-(3-Di-n-propylaminopropoxy)pyrid-3-yl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
- N-{4-[3-Di(cyclopropylmethyl)aminopropoxy]pyrid-3-yl}-4oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

```
N-{4-[3-Di(2-ethylbutyl)aminopropoxy]pyrid-3-yl}-4-oxo-
    4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
         N-\{4-[3-Di(pyrid-4-ylmethyl) aminopropoxy] pyrid-3-yl\}-4-
    oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide; or
         N-\{4-[2-(2-Pyrrolidin-1-ylethoxy) ethoxy] pyrid-3-yl\}-4-oxo-
 5
    4,5,6,7-tetrahydro-1H-indole-3-carboxamide.
              A compound according to claim 1, which is
         N-\{4-[2-(2,2-Dimethylaminoethylamino)-2-oxoethyl]phenyl\}-
    4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
10
         N-\{4-[2-(4-Methylaminopiperizin-1yl)-2-oxoethyl]phenyl\}-4-
    oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
         N-\{4-[7-azabicyclo(2.2.1) hept-2-yloxy] phenyl\}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
15
         N-[3-(2-Diethylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(2-Pyrrolidin-1-ylethoxy)phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(2-Di-i-propylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-
20
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(2-n-Propylaminoethoxy)] phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(2-n-Butylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(Methylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-
25
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide; or
```

N-{3-[3-(N-Ethyl, N-Methyl) aminopropoxy] phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b] pyrrole-3-carboxamide.

- 54. A compound according to claim 1, which is
- 5 $N-\{3-[3-(N-Cyclopropylmethyl,N-n-$

10

20

25

propyl) aminopropoxy] phenyl } -4-oxo-1,4,5,6,7,8-hexahydrocyclohepta[b] pyrrole-3-carboxamide;

N-[3-(Azeditinylpropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[3-(3-Ethylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-{3-{3-(2,2,2-Trifluoroethyl)aminopropoxy]phenyl}-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[3-(3-n-Propylaminopropoxy) phenyl]-4-oxo-1,4,5,6,7,8-

15 hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[3-(3-Isopropylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[3-(3-Cyclopropylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[3-(3-Cyclopropylmethylaminopropoxy)phenyl]-4-oxo1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide; or
N-[3-(3-Cyclobutylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8hexahydro-cyclohepta[b]pyrrole-3-carboxamide.

55. A compound according to claim 1, which is

```
N-[3-(3-Cyclohexylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-\{3-[3-(3-Ethylpropyl) aminopropoxy] phenyl\}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-{3-[3-(2-Methylpropyl)aminopropoxy]phenyl}-4-oxo-
5
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(3-Isobutylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(3-t-Butylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-
10
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-{3-[3-(2-Methylbutyl)aminopropoxy]phenyl}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(3-Isoamylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-{3-[3-(4-Methylpentyl)aminopropoxy]phenyl}-4-oxo-
15
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-\{3-[3-(1,1-Dimethylpropyl) aminopropoxy] phenyl\}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide; or
         N-\{3-[3-(3,3,-Dimethylbutyl) aminopropoxy] phenyl\}-4-oxo-
20
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide.
              A compound according to claim 1, which is
         N-\{3-[3-(2,4-Dimethylpent-3-yl) aminopropoxy] phenyl\}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-{3-[3-(4-Methylcyclohexyl)aminopropoxy]phenyl}-4-oxo-
25
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
```

```
N-{3-[3-(4-t-Butylcyclohexyl)aminopropoxy]phenyl}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-{3-[3-(2,6-Dimethylcyclohexyl)aminopropoxy]phenyl}-4-
    oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-\{3-[3-(1-Phenylethyl) aminopropoxy] phenyl\}-4-oxo-
5
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(3-Norborn-2-ylaminopropoxy)phenyl]-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(3-Adamant-1-ylaminopropoxy)phenyl]-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
10
         N-[3-(3-Norborn-2-ylmethylaminopropoxy)phenyl]-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[3-(3-Adamant-2-ylaminopropoxy)phenyl]-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide; or
15
         N-[4-(2-Ethylaminoethoxy) phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide.
```

57. A compound according to claim 1, which is

N-[4-(2-Ethylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8
20 hexahydro-cyclohepta[b]pyrrole-3-carboxamide hydrochloride;

N-[2-Fluoro-4-(2-Ethylaminoethoxy)phenyl]-4-oxo
1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(2-n-Propylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8
hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(2-Cyclopropylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8
hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-4-(2-n-Butylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(3-Ethylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-{4-[3-(1-Phenyl-1-methylethyl)aminopropoxy]phenyl}-4oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(Pyrid-3-ylmethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(Pyrid-4-ylmethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-

10 hexahydro-cyclohepta[b]pyrrole-3-carboxamide; or

5

20

N-[4-(Pyrid-4-ylmethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide hydrochloride.

58. A compound according to claim 1, which is

N-[4-(2-Dimethylaminoethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(2-Diethylaminoethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-

1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(2-Pyrrolidin-1-ylethoxy)pyrid-3-yl]-4-oxo-

1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide hydrochloride;

N-[4-(2-Piperidin-1-ylethoxy)pyrid-3-yl]-4-oxo-

25 1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

```
N-{4-[2-(1-Methyl-pyrrolidin-2-yl)ethoxy]pyrid-3-yl}-4-
oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
N-{4-[(1-Ethyl-pyrrolidin-3-yl)methoxy]pyrid-3-yl}-4-oxo-
1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
N-[4-(2-Morpholin-1-ylethoxy)pyrid-3-yl]-4-oxo-
1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
N-[4-(2-Diethylaminoethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-
hexahydro-cyclohepta[b]pyrrole-3-carboxamide; or
N-[4-(2-n-Propylaminoethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-
hexahydro-cyclohepta[b]pyrrole-3-carboxamide.
```

- 59. A compound according to claim 1, which is
- N-[4-(2-n-Propylaminoethoxy)pyrid-3-yl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide hydrochloride;
- N-[4-(2-Isopropylaminoethoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
- N-[4-(3-Isopropylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
- N-[4-(3-Cyclopropylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-
- 20 hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

- N-[4-(3-Cyclobutylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
- N-[4-(3-Cyclopropylmethylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
- N-[4-(3-Isobutylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

```
N-\{4-[3-(2,2-Dimethylpropyl) aminopropoxy] phenyl\}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-{4-[3-(3-Ethylpropyl)aminopropoxy]phenyl}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide; or
 5
         N-\{4-[3-(2-Methylbutyl)] aminopropoxy] phenyl\}-4-oxo-
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide.
              A compound according to claim 1, which is
         N-{4-[3-(2-Methylpropyl)aminopropoxy]phenyl}-4-oxo-
10
    1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[4-(3-i-Pentylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-[4-(3-Cyclohexylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-
    hexahydro-cyclohepta[b]pyrrole-3-carboxamide;
         N-{4-[3-(N-Cyclopropylmethyl,N-n-
15
    propyl)aminopropoxylphenyl}-4-oxo-1,4,5,6,7,8-hexahydro-
```

cyclohepta[b]pyrrole-3-carboxamide;

N-[4-(3-Indan-2-ylaminopropoxy)phenyl]-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxamide;

N-[3-Fluoro-4-(2-ethoxy-2-oxoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

N-[3-Fluoro-4-(2-hydroxy-2-oxoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide;
N-[3-Fluoro-4-(2-ethylamino-2-oxoethoxy)phenyl]-4-oxo-

4,5,6,7-tetrahydro-1H-indole-3-carboxamide;

```
N-[3-Fluoro-4-(2-diethylamino-2-oxoethoxy)phenyl]-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide; or
N-{3-Fluoro-4-[2-(4-methylpiperizin-1-yl)-2-oxoethoxy]phenyl}-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide.
```

5

25

A compound according to claim 1, which is 61. $N-ethyl-N-[2-(ethylamino)ethyl]-2-{4-[(4-oxo-(4,5,6,7-)ethyl-n-[2-(ethylamino)ethyl]-2-{4-[(4-oxo-(4,5,6,7-)ethyl-n-[2-(ethylamino)ethyl]-2-{4-[(4-oxo-(4,5,6,7-)ethyl-n-[2-(ethylamino)ethyl]-2-{4-[(4-oxo-(4,5,6,7-)ethyl-n-[2-(ethylamino)ethyl]-2-{4-[(4-oxo-(4,5,6,7-)ethyl-n-[2-(ethylamino)ethyl]-2-{4-[(4-oxo-(4,5,6,7-)ethyl-n-[2-(ethylamino)ethyl]-2-(ethylamino)ethyl-n-[2-(ethylamino)e$ tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide; $N-[2-(dipropylamino)] -2-{4-[(4-oxo-(4,5,6,7-)]}$ 10 tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide; $N-[2-(diethylamino)ethyl]-N-methyl-2-{4-[(4-oxo-(4,5,6,7$ tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide; $N-[2-(diethylamino)ethyl]-N-ethyl-2-\{4-[(4-oxo-(4,5,6,7$ tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide; 15 N-[4-(2-morpholin-4-yl-2-oxoethoxy)] (4-oxo-(4,5,6,7tetrahydroindol-3-yl))carboxamide; N-[3-fluoro-4-(2-morpholin-4-yl-2-oxoethoxy)phenyl](4-oxo-(4,5,6,7-tetrahydroindol-3-yl))carboxamide; 20 (4-oxo-(4,5,6,7-trihydroindol-3-yl))-N-[4-(2-oxo-2-yl)]piperazinylethoxy)phenyl]carboxamide; $N-[3-(diethylamino)propyl]-2-\{4-[(4-oxo-(4,5,6,7$ tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide; $N-[3-(diethylamino)propyl]-2-\{2-fluoro-4-[(4-oxo-(4,5,6,7-$

tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide;

N- $[4-(diethylamino)-1-methylbutyl]-2-\{4-[(4-oxo-(4,5,6,7-tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide;$

N-[4-(diethylamino)-1-methylbutyl]-2-{2-fluoro-4-[(4-oxo-(4,5,6,7-tetrahydroindol-3-yl))carbonylamino]phenoxy}acetamide;

N-(2-{[2-(N-methylacetamido)ethyl]amino}pyrid-5-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide

N-(2-ethoxy-4-methylpyrid-5-yl)-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamide

4-Oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid {4-10 [2-(thiophene-2-sulfonylamino)-ethoxy]-phenyl}-amide;

4-0xo-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid (4-[1,2,4]-triazol-1-yl-phenyl)-amide;

4-0xo-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid {4[3-(1-methyl-1H-imidazole-4-sulfonylamino)-propoxy]-phenyl}amide;

4-0xo-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid imidazo[1,2-a]pyridin-5-ylamide; or

4-Oxo-3a,4,5,6,7,7a-hexahydro-1H-indole-3-carboxylic acid[6-(3-propyl-[1,2,4]thidazol-5-ylamino)-pyridin-2-yl]amide.

20

15

5

62. A compound according to Claim 1, of the formula:

$$R_4$$
 R_5
 R_6
 R_6

or the pharmaceutically acceptable non-toxic salts thereof wherein:

- Q is phenyl or 3-pyridyl, each of which may be mono or disubstituted with hydroxy or halogen;
- 5 W is oxygen or nitrogen;
- Z is hydrogen, hydroxy, C_3-C_7 cycloalkyl(C_1-C_6 alkoxy), amino, mono- or di(C_1-C_6 alkyl₁) amino, or C_3-C_7 azacycloalkyl, $-(C_1-C_6 \text{ alkyl}_1), \quad -S(O)_{0-2}(C_1-C_6 \text{ alkyl}_1), \quad -C(=O) \quad (C_1-C_6 \text{ alkyl}_1), \quad -NHC(=O) \quad (C_1-C_6 \text{ alkyl}_1), \quad -NHC(=O) \quad (C_1-C_6 \text{ alkyl}_1), \quad -NHC(=O) \quad (C_1-C_6 \text{ alkyl}_1), \quad -NHS(O)_{0-2}(C_1-C_6 \text{ alkyl}_1), \quad -S(O)_{0-2}(C_1-C_6 \text{ alkyl}_1), \quad -S(O)_{0-2}(C_1-C_6$
- wherein C₁-C₆ alkyl₁ is independently chosen at each occurrence and is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents selected from: hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, or
 - Z is phenyl or phenyl (C_1-C_6) alkyl where the phenyl portion is optionally substituted with C_1-C_6 alkyl, hydroxy, C_1-C_6 alkoxy, trifluoromethyl, trifluoromethoxy, halogen, amino, or mono- or diC_1-C_6 alkylamino, or
- 25 Z is 2-, 3-, or 4-pyridyl, 1- or 2-imidazolyl, 1-, 2-, or 3-pyrrolyl, or adamantane-2-yl; each of which may be

substituted on a tertiary carbon or a secondary nitrogen with $C_1\text{-}C_6\text{alkyl}$, or

- Z is NR_9COR_{10} where R_9 and R_{10} are the same or different and represent hydrogen or C_1-C_6 alkyl or C_3-C_7 cycloalkyl, or
- 5 Z is connected, optionally through W, to Q to from a 1-6 membered ring; or

Z represents a group of the formula:

where

10 p is 1, 2, or 3;

D and D' independently represent oxygen, NR_y or CHR_y provided that only one of D and D' may be NR_y where each R_y is hydrogen or C_1 - C_6 alkyl; or and R_z is hydrogen or C_1 - C_6 alkyl, or

15 Z represents a group of the formula:

p is 1, 2, or 3;

q is 0, 1, or 2; and

R_z is hydrogen or C₁-C₆ alkyl; or

20 Z is a group of the formula:

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

 R_o is hydroxy, C_1 - C_6 alkoxy, amino, mono- or di C_1 - C_6 alkylamino where each alkyl is independently optionally substituted with amino, mono- or di C_1 - C_6 alkylamino, or

 R_{o} is a group of the formula

5

20

where p, D, D', and R_z are as defined above;

and independently represent a carbon chain optionally substituted with halogen, oxo, cyano, nitro, amino, mono or di(C₁-C₆)alkylamino, straight or branched chain C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, trifluoromethyl, trifluoromethoxy, or cycloC₁-C₆ alkyl;

wherein

k is 0, 1, 2, or 3; m is 0, 1, 2, or 3; and

represents a carbon chain optionally substituted with R_5 and R_6 and n is 0, 1, 2, or 3;

 R_3 , R_4 , R_5 , and R_6 are the same or different and are independently selected at each occurrence from

hydrogen, C_1 - C_6 alkyl, -COR₁₁ or -CO₂R₁₁ where R₁₁ is C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl; or

-CONR₁₂R₁₃ where R₁₂ and R₁₃ are selected independently from hydrogen, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, 2-, 3-, or 4-pyridyl, or NR₁₂R₁₃ forms a heterocyclic group which is morpholinyl, piperidinyl, pyrrolidinyl, or N-alkyl piperazinyl; or R₃ and R₄ together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms; or

R5 and R6 together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms; and

where each alkyl group forming an R₃, R₄, R₅, or R₆ substituent or portion thereof may be substituted independently with hydroxy or monoor dialkylamino where each alkyl is independently C₃-C₇ alkyl or cycloalkyl having 3-7 carbon atoms.

20

5

10

15

63. A compound of formula A or formula B:

$$R_4$$
 R_5
 R_6
 R_6

or a pharmaceutically acceptable salt thereof wherein

R3, R4, R5, and R6 are the same or different and are selected from hydrogen, alkyl , -COR11 or -CO2R11 where R11 is alkyl or cycloalkyl having 3-7 carbon atoms; or -CONR12R13 where R12 and R13 are selected independently from hydrogen, alkyl, cycloalkyl having 3-7 carbon atoms, phenyl, 2-, 3-, or 4-pyridyl, or NR12R13 forms a heterocyclic group which is morpholinyl, piperidinyl, pyrrolidinyl, or N-alkyl piperazinyl; or

R3 and R4 together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms; or

R5 and R6 together with the carbon atom to which they are attached form a cyclic moiety having 3-7 carbon atoms; and

where each alkyl group forming an R₃, R₄, R₅, or R₆ substituent or portion thereof may be substituted independently with hydroxy or mono- or dialkylamino where each alkyl is independently alkyl or cycloalkyl having 3-7 carbon atoms.; and

G represents

5

10

15

20

$$-\frac{1}{2} \left(\begin{array}{c} R_h \\ O \end{array} \right) \left(\begin{array}{c} R_o \\ O \end{array} \right)$$

where

 R_h is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, or trifluoromethyl;

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

 R_o is hydroxy, C_1 - C_6 alkoxy, amino, mono- or diC_1 - C_6 alkylamino where each alkyl is independently optionally substituted with amino, mono- or diC_1 - C_6 alkylamino, or

 R_{o} is a group of the formula

p is 1, 2, or 3;

D and D' independently represent oxygen, $NR_y \text{ or } CHR_y \text{ provided that only one of D}$ and D' may be NR_y where each R_y is hydrogen or $C_1\text{-}C_6$ alkyl; and

 R_z is hydrogen or C_1 - C_6 alkyl.

64. A compound according to claim 63, wherein $R_{\rm h}$ is hydrogen or halogen, and $R_{\rm o}$ is a group of the formula:

$$R_{14}$$
 N
 N
 R_{16}
 R_{17}

where

R₁₄ is hydrogen or C₁-C₆alkyl;

20

5

10

 R_{15} is hydrogen or C_1 - C_6 alkyl;

R₁₆ is hydrogen, ethyl, or methyl;

 R_{17} is C_1-C_6 alkyl; and

J is a C_1-C_4 alkylene group.

5

65. A compound according to claim 63, wherein s is 1 and R_{o} is ethoxy, hydroxy, ethylamino, diethylamino, morpholinyl, piperazinyl, 4-methylpiperazinyl,

10

- 66. A compound according to Claim 1 for use in therapeutic treatment of a disease or disorder associated with pathogenic agonism, inverse agonism or antagonism of the $GABA_A$ receptor.
- 67. A pharmaceutical composition comprising a compound according to Claim 1 combined with at least one 20 pharmaceutically acceptable carrier or excipient.

68. A method for the treatment of a disease or disorder associated with pathogenic agonism, inverse agonism or antagonism of the $GABA_A$ receptor, said method comprising administering to a patient in need of such treatment an effective amount of a compound of claim 1.

69. A method according to Claim 68 wherein the disease or disorder associated with pathogenic agonism, inverse agonism or antagonism of the $GABA_A$ receptor is anxiety, depression, a sleep disorder, or cognitive impairment.

10

15

20

- 70. The use of a compound according to Claim 1 for the manufacture of a medicament for the treatment of a disease or disorder associated with pathogenic agonism, inverse agonism or antagonism of the GABAA receptor.
- 71. The use of a compound according to Claim 1 for the manufacture of a medicament for the treatment of anxiety, depression, sleep disorders, cognitive impairment, Alzheimer's dementia.
- 72. A method for localizing $GABA_A$ receptors in a tissue sample comprising contacting with the sample a detectably-labeled compound of claim 1 under conditions that permit binding of the compound to $GABA_A$ receptors, washing the sample to remove unbound compound, and detecting the bound compound.

73. A method of inhibiting the binding of a benzodiazepine compound to a GABA $_A$ receptor, said method comprising contacting a compound of claim 1 with cells expressing such a receptor in the presence of the benzodiazepine, wherein the compound is present at a concentration sufficient to inhibit the binding a benzodiazepine compound to a GABA $_A$ receptor in vitro.

- 73. A method for altering the signal-transducing activity of GABA_A receptors, said method comprising exposing cells expressing such receptors to a compound according to claim 1 at a concentration sufficient to inhibit RO15-1788 binding to cells expressing a cloned human GABA_A receptor in vitro.
- 74. A packaged pharmaceutical composition comprising the pharmaceutical composition of Claim 66 in a container and instructions for using the composition to treat a patient suffering from a disorder responsive to agonism, inverse agonism or antagonism of the GABA_A receptor.

20

75. The packaged pharmaceutical composition of claim 74, wherein said patient is suffering from anxiety, depression, a sleep disorder, cognitive impairment, or Alzheimer's dementia.

76. A compound according to claim 1 wherein in a assay of $GABA_A \quad \text{receptor binding the compound exhibits a} \quad K_i \quad \text{of} \quad 1$ micromolar or less.

- $\,$ 77. A compound according to claim 1 wherein in a assay of $\,$ GABA_A receptor binding the compound exhibits an $K_{\rm i}$ of 100 nanomolar or less.
- 78. A compound according to claim 1 wherein in a assay of $10 \quad \text{GABA}_{\mathtt{A}} \quad \text{receptor binding the compound exhibits an } K_{\mathtt{i}} \quad \text{of} \quad 10$ nanomolar or less.
 - 79. A compound of the formula:

or a pharmaceutically acceptable salt thereof wherein:

n is 1 or 2;

X is hydrogen, or alkyl;

R3, R4, R5, and R6 are the same or different and are independently selected at each occurrence from hydrogen or alkyl; and

G represents phenyl or pyridyl, each of which is substituted

with a group

-K-W-M-Z and optionally with halogen,

alkyl, alkoxy, hydroxy, amino, or mono- or dialkylamino;

where

- 5 K and M independently represent a bond or C_1 - C_6 alkylene;
 - W represents -O-, -NH-, $-NR_7$ where R_7 represents hydrogen or alkyl, or C_1 - C_3 alkylene; and
 - Z is hydrogen, hydroxy, cycloalkyl(alkoxy), amino,
 mono- or di(alkyl1) amino, or azacycloalkyl,
 -O(alkyl1), -S(O)0-2(alkyl1), -C(=O) (alkyl1),
 -OC(=O)(alkyl1), -OC(=O)H, -C(=O)O(alkyl1),
 -C(=O)OH, -C(=O)NH(alkyl1), -C(=O)N(alkyl1)2,
 -C(=O)NH2, -NHC(=O) (alkyl1), -NHC(=O)H,
 -N(alkyl1)C(=O)(alkyl1), -NHS(O)0-2(alkyl1),
 -N(alkyl1)S(O)0-2(alkyl1), -S(O)0-2NH(alkyl1),
 -S(O)0-2(alkyl1)N(alkyl1),

wherein each alkyl₁ is independently straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, or

Z is $-N(R_N)_2S(O)_{0-2}(R_S)$ where

25

10

15

20

5

10

15

20

each R_N is independently hydrogen or alkyl where the alkyl is straight, branched, or cyclic, may contain one or two double and/or triple bonds, and is unsubstituted or substituted with one or more substituents independently selected from hydroxy, oxo, halogen, amino, cyano, nitro, and alkoxy, and

- R_s is hydroxy, alkoxy, alkyl where the alkyl is optionally substituted with hydroxy, alkoxy, triflouromethyl, halogen, amino, mono- or di- alkylamino, or
- R_s is heteroaryl unsubstituted or substituted
 with alkyl, hydroxy, alkoxy,
 triflouromethyl, halogen, amino, or mono- or
 dialkylamino;
- Z is phenyl or phenylalkyl where the phenyl portion is optionally substituted with alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or di- alkylamino, or
- Z is 2-, 3-, or 4-pyridyl, 1- or 2-imidazolyl, 1-, 2-, or 3-pyrrolyl, azeditinyl, norborn-2-yl, or adamantan-2-yl; each of which may be substituted on a tertiary carbon or a secondary nitrogen with C_1 - C_6 alkyl, or
- Z represents a group of the formula:

where

p is 1, 2, or 3;

D and D' independently represent oxygen, NR_y or CHR_y provided that only one of D and D' may be NR_y where each R_y is hydrogen or alkyl; and

 R_z is hydrogen or alkyl, or

Z represents a group of the formula:

10

5

p is 1, 2, or 3; and

q is 0, 1, or 2; or

Z represents a group of the formula:

15

s is 0, 1, 2 or 3, and the sum of s and m is not less than 1;

 R_{o} is hydroxy, $C_{1}\text{-}C_{6}$ alkoxy, amino, mono- or dialkylamino where each alkyl is independently optionally substituted with amino, mono- or dialkylamino, or

20

Ro is a group of the formula

where p, D, D', and $R_{\rm z}$ are as defined above.

80. A compound according to claim 79, where X is 5 hydrogen.

- 81. A compound according to claim 80, where K is a bond and W is oxygen.
- 10 82. A compound according to claim 81, wherein M is C_2 or C_3 alkylene.
 - 83. A compound according to claim 82, wherein G is phenyl.

15

84. A compound according to claim 83, wherein

Z is amino, mono- or di(alkyl)amino, or azacycloalkyl, -O(alkyl), $-S(O)_{0-2}(alkyl)$, -C(=O)(alkyl), -OC(=O)(alkyl), -OC(=O)H, -C(=O)O(alkyl), -C(=O)OH, -C(=O)NH(alkyl), $-C(=O)N(C_1-C_6)$ alkyl₁)₂, $-C(=O)NH_2$, -NHC(=O)(alkyl), -NHC(=O)H, -N(alkyl)C(=O)(alkyl), $-NHS(O)_{0-2}(alkyl)$,

 $-N(alkyl)S(O)_{0-2}(alkyl), -S(O)_{0-2}NH(alkyl),$ $-S(O)_{0-2}(alkyl)N(alkyl), or$

Z is $-N(R_N)_2SO_2(R_S)$ where

each R_N is independently hydrogen or alkyl, and R_S is hydroxy, alkoxy, or alkyl where the alkyl is optionally substituted with hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or di- alkylamino, or

R_s is phenyl, imidazolyl, pyridyl, pyrimidinyl, pyrrolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, or isothiazolyl, each of which is optionally substituted with alkyl, hydroxy, alkoxy, triflouromethyl, halogen, amino, or mono- or dialkylamino.

15

10

5

- 85. A compound according to claim 80, where K is a bond and W is a bond or methylene.
- $$86.\ A$ compound according to claim 85, wherein M is C_2 or $$20\ C_3$$ alkylene.
 - 87. A compound according to claim 86, wherein G is phenyl.
- 25 88. A compound according to claim 87, wherein

```
\mathbf{Z}
                   is
                        amino, mono- or
                                                 di(alkyl)amino, or
                    azacycloalkyl,
                                       -O(alkyl), -S(O)_{0-2}(alkyl),
                    -C(=0)(alkyl),
                                        -OC(=O)(alkyl), -OC(=O)H,
                    -C(=0)O(alkyl), -C(=0)OH, -C(=0)NH(alkyl),
                    -C(=0) N (C_1-C_6 \quad alkyl_1)_2, \quad -C(=0) NH_2, \quad -NHC(=0)
 5
                    (alkyl), -NHC(=O)H, -N(alkyl)C(=O)(alkyl),
                    -NHS(O)_{0-2}(alkyl), -N(alkyl)S(O)_{0-2}(alkyl),
                    -S(O)_{0-2}NH(alkyl), -S(O)_{0-2}(alkyl)N(alkyl), or
               Z is -N(R_N)_2SO_2(R_S) where
10
                   each R_N is independently hydrogen or alkyl, and
                   R_{\text{\tiny S}} is hydroxy, alkoxy, or alkyl where the alkyl
                        is optionally substituted with hydroxy,
                        alkoxy, triflouromethyl, halogen, amino, or
                        mono- or di- alkylamino, or
                   R<sub>s</sub> is phenyl, imidazolyl, pyridyl, pyrimidinyl,
15
                        pyrrolyl, pyrazolyl, oxazolyl, isoxazolyl,
                        thiazolyl, or isothiazolyl, each of which is
                        optionally substituted with alkyl, hydroxy,
                        alkoxy, triflouromethyl, halogen, amino, or
20
                        mono- or dialkylamino.
```

- 89. A compound according to claim 82, wherein G is pyridyl.
- 25 90. A compound according to claim 89, wherein

```
\mathbf{Z}
                   is
                      amino, mono- or di(alkyl)amino, or
                    azacycloalkyl,
                                       -O(alkyl),
                                                      -S(0)_{0-2}(alkyl),
                    -C(=0)(alkyl),
                                       -OC(=O) (alkyl), -OC(=O)H,
                    -C(=0)O(alkyl), -C(=0)OH, -C(=0)NH(alkyl),
 5
                    -C(=O)N(C_1-C_6 \quad alkyl_1)_2, \quad -C(=O)NH_2, \quad -NHC(=O)
                    (alkyl), -NHC(=O)H, -N(alkyl)C(=O)(alkyl),
                    -NHS(O)<sub>0-2</sub>(alkyl), -N(alkyl)S(O)<sub>0-2</sub>(alkyl),
                    -S(O)_{0-2}NH(alkyl), -S(O)_{0-2}(alkyl)N(alkyl), or
               Z is -N(R_N)_2SO_2(R_S) where
10
                   each R_N is independently hydrogen or alkyl, and
                   R_S is hydroxy, alkoxy, or alkyl where the alkyl
                            optionally substituted with hydroxy,
                        is
                        alkoxy, triflouromethyl, halogen, amino, or
                        mono- or di- alkylamino, or
15
                   R<sub>s</sub> is phenyl, imidazolyl, pyridyl, pyrimidinyl,
                        pyrrolyl, pyrazolyl, oxazolyl, isoxazolyl,
                        thiazolyl, or isothiazolyl, each of which is
                        optionally substituted with alkyl, hydroxy,
                        alkoxy, triflouromethyl, halogen, amino, or
20
                        mono- or dialkylamino.
```

- 91. A compound according to claim 86, wherein G is pyridyl.
- 92. A compound according to claim 91, wherein

```
Z
                      amino, mono- or di(alkyl)amino, or
                   is
                    azacycloalkyl,
                                       -O(alkyl),
                                                      -S(0)_{0-2}(alkyl),
                    -C(=0)(alkyl),
                                      -OC(=0) (alkyl), -OC(=0)H,
                    -(=0)O(alkyl), -C(=0)OH, -C(=0)NH(alkyl),
                    -C(=0)N(C_1-C_6 \quad alkyl_1)_2, \quad -C(=0)NH_2, \quad -NHC(=0)
 5
                    (alkyl), -NHC(=O)H, -(alkyl)C(=O)(alkyl),
                    -NHS(O)_{0-2}(alkyl), -N(alkyl)S(O)_{0-2}(alkyl),
                    -S(O)_{0-2}NH(alkyl), -S(O)_{0-2}(alkyl)N(alkyl), or
               Z is -N(R_N)_2SO_2(R_S) where
                   each R_{\mbox{\scriptsize N}} is independently hydrogen or alkyl, and
10
                  Rs is hydroxy, alkoxy, or alkyl where the alkyl
                            optionally substituted with hydroxy,
                        alkoxy, triflouromethyl, halogen, amino, or
                        mono- or di- alkylamino, or
                  R<sub>s</sub> is phenyl, imidazolyl, pyridyl, pyrimidinyl,
15
                        pyrrolyl, pyrazolyl, oxazolyl, isoxazolyl,
                        thiazolyl, or isothiazolyl, each of which is
                        optionally substituted with alkyl, hydroxy,
                        alkoxy, triflouromethyl, halogen, amino, or
20
                        mono- or dialkylamino.
```

Interi II Application No PCT/US 00/23862

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D209/42 C07D209/52 C07D405/12 C07D401/12 C07D403/12
C07D401/14 C07D471/04 C07D417/14 A61K31/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 CO7D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Х	WO 95 11885 A (NEUROGEN CORP ;ALBAUGH PAMELA (US); HUTCHISON ALAN (US)) 4 May 1995 (1995-05-04) example 8	1,66,67, 79	
X	WO 97 26243 A (NEUROGEN CORP ;ALBAUGH PAMELA (US); LIU GANG (US); SHAW KENNETH (U) 24 July 1997 (1997-07-24) example 3	1,66,67, 79	
x	WO 97 34870 A (NEUROGEN CORP ;ALBAUGH PAMELA (US); HUTCHISON ALAN (US); LIU GANG) 25 September 1997 (1997-09-25) page 22; example 3	1,66,67, 79	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 22 November 2000	Date of mailing of the international search report 29/11/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Frelon, D

Inte Application No
PCT/US 00/23862

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Delevent to claim No
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 02420 A (NEUROGEN CORP ;ALBAUGH PAMELA (US); HUTCHISON ALAN (US); LIU GANG) 22 January 1998 (1998-01-22) pages 28,30; examples 4-6	1,66,67, 79
X	US 5 723 462 A (ALBAUGH PAMELA ET AL) 3 March 1998 (1998-03-03) examples 3,5; table 1	1,66,67, 79
X	WO 99 25684 A (AM ENDE DAVID JON ;CONRAD ALYSON KAY (US); EISENBEIS SHANE ALLEN () 27 May 1999 (1999-05-27) examples	1,66,67, 79
X	US 5 608 079 A (ALBAUGH PAMELA ET AL) 4 March 1997 (1997-03-04) example 8	1,66,67, 79
A	EP 0 054 507 A (SCHERING AG) 23 June 1982 (1982-06-23) cited in the application abstract; claims	1-92

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claims 68 and 69 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Although claims 72 and 73 are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on

the alleged effects of the compound/composition.

miormation on patent family members

Interr al Application No PCT/US 00/23862

	atent document d in search repor	t	Publication date		ratent family member(s)	Publication date
MП	9511885	Α	04-05-1995	US	5484944 A	16-01-1996
WO	9311003	Α	04 05 1555	AT	168673 T	15-08-1998
				AU	701151 B	21-01-1999
				AU	8126594 A	22-05-1995
						11-05-1995
				CA	2175204 A	
				CN	1143953 A	26-02-1997
				CZ	9601129 A	16-04-1997
				DE	69411939 D	27-08-1998
				DE	69411939 T	25-03-1999
				DK	725775 T	26-04-1999
				EP	0725775 A	14-08-1996
				EP	0825193 A	25-02-1998
				ES	2122504 T	16-12-1998
				FΙ	961776 A	14-06-1996
				ΗŪ	76064 A	30-06-1997
				JP	9506082 T	17-06-1997
				KR	181383 B	20-03-1999
				NO	961655 A	10-06-1996
				NZ	275968 A	27-05-1998
				PL	314136 A	19-08-1996
				RU	2125989 C	10-02-1999
				SE	9601563 A	22-05-1996
				SE	9902648 A	09-07-1999
				SK	52496 A	09-07-1997
				US	5925770 A	20-07-1999
				ÜS	5608079 A	04-03-1997
				ÜS	5750702 A	12-05-1998
	 9726243		 24-07-1997	 US	5804686 A	08-09-1998
WU	9/20243	А	24-0/-199/	AU	1746697 A	11-08-1997
						31-08-1999
				BG	102634 A	20-07-1999
				BR CA	9707051 A	
				CA	2243317 A	24-07-1997
				CN	1209805 A	03-03-1999
				CZ	9802154 A	15-09-1999
				EP	1019372 A	19-07-2000
				HU	9901018 A	28-07-1999
					000503321 T	21-03-2000
				NO	983315 A	03-09-1998
				PL	327936 A	04-01-1999
				SK	94398 A	11-02-1999
				US	6080873 A	27-06-2000
	0724070					
WO	9734870	Α	25-09-1997	AU	2218997 A	10-10-1997
				CA	2249562 A	25-09-1997
				EP 	0888300 A	07-01-1999
WO	9802420	Α	22-01-1998	US	5750702 A	12-05-1998
				AU	2832897 A	09-02-1998
				AU	3660497 A	09-02-1998
				HR	970385 A	31-08-1998
				ÜS	5925770 A	20-07-1999
				WO	9802433 A	22-01-1998
				ZA	9706244 A	21-01-1999
115	5723462	Α	03-03-1998	US	6096887 A	01-08-2000

Information on patent family members

Interr al Application No
PCT/US 00/23862

			Dublication		Data at family	101/03	OU/ 23802
	atent document in search report		Publication date		Patent family member(s)		Publication date
WO	9925684	Α		BR	98141		26-09-2000
				EP N O	10308 200022		30-08-2000 12-05-2000
US	5608079	Α	04-03-1997	US	54849		16-01-1996
				US US	59257 57507		20-07-1999 12-05-1998
				AT	1686		15-08-1998
				AU	7011		21-01-1999
				AU	812659		22-05-1995
				CA CN	217520 11439!		11-05-1995 26-02-1997
				CZ	96011		16-04-1997
				DE	694119	39 D	27-08-1998
				DE	694119		25-03-1999
				DK EP	7257 07257		26-04-1999 14-08-1996
				EP	082519		25-02-1998
				ES	21225		16-12-1998
				FI HU	9617	76 A 64 A	14-06-1996 30-06-1997
				JP	95060		17-06-1997
				KR	1813	83 B	20-03-1999
				NO	9616		10-06-1996
				NZ PL	27590 3141		27-05-1998 19-08-1996
				RU	21259		10-02-1999
				SE	96015		22-05-1996
				SE SK	99026	48 A 96 A	09-07-1999 09-07-1997
				WO	95118		04-05-1995
 FP	 0054507	 А	23-06-1982	 DE	30483	 18 A	22-07-1982
				DE	31368	57 A	31-03-1983
				AT	325° 5584!	13 T	15-03-1988 29-01-1987
				AU AU	78592		24-06-1982
				CA	11883	00 A	04-06-1985
				DD	1612		12-06-1985
				DE DK	31766 5542		24-03-1988 18-06-1982
				EG		59 A	30-12-1990
				ES	5080		01-02-1983
				ES FI	83019	84 A 43 A,B,	01-04-1983 18-06-1982
				GR		43 A,B, 11 A	13-12-1984
				HU	1873	95 B	28-12-1985
				IE		31 B	26-04-1989
				IL JP	6450 18487	60 A 09 C	31-05-1988 07-06-1994
ii.				JP	571231		31-07-1982
				JP	50572	74 B	23-08-1993
				NO NZ	8142 1993	59 A,Β,	18-06-1982 29-08-1989
				PT		12 A 43 A,B	01-01-1982
				RO	821	64 A	07-07-1983
				SE	4467		06-10-1986 18-06-1982
				SE	81074	33 H	10-00-1902

Information on patent family members

Interr. Application No
PCT/US 00/23862

Patent document cited in search report	Publication date		atent family member(s)	Publication date
EP 0054507 A		SU	1318166 A	15-06-1987
		US	4435403 A	06-03-1984
		US	4596808 A	24-06-1986
		ZA	8108739 A	24-11-1982
		DK	554181 A	28-08-1982
		ES	516976 D	16-10-1983
		ES	8308876 A	16-12-1983
		FI	814044 A,B,	28-08-1982
		FI	853073 A Ó	12-08-1985
		NO	814260 A,B,	30-08-1982
		SE	447573 B	24-11-1986
		SE	8107494 A	28-08-1982