目录

1	实数	实数轴上的连续函数															1							
	1.1	实直线																						1
	1.2	附着点	与极限点																					2
		1.2.1	附着点.																					2
		1.2.2	极限点.																					4
		1.2.3	有界集.																					5
	1.3	函数的	松陽																					5

1 实数轴上的连续函数

1.1 实直线

区间的定义省略. 下面是关于区间的一些术语及概念:

- 半无限区间: 一个端点是 $-\infty$ 或 $+\infty$ 的区间
- 双无限区间: 两个端点都是 $-\infty$ 或 $+\infty$ 的区间
- 有界区间: 不是无限区间. 意味着存在正实数 M 使得该区间是 [-M, M] 的子集.

退化区间:

- 若 a > b: (a,b), (a,b], [a,b) 和 [a,b] 都是空集
- 若 a = b: (a,b), (a,b], [a,b) 是空集, 而 [a,b] 为单点集 $\{a\}$
- 一个好用的记号 本文档中定义整数区间如下:

$$[a..b] := [a,b] \cap \mathbb{Z}$$
.

即 [a,b] 区间内的整数. 同理可以定义以.. 分隔的开区间和半开半闭区间. 该记号借自计算机科学界, 可以方便地表示一个范围内的整数. 如:

$$[0..3] = \{0, 1, 2, 3\},$$

$$[-2..2] = \{-2, -1, 0, 1, 2\},$$

$$[0..5) = \{0, 1, 2, 3, 4\},$$

$$(1..3) = \{2\},$$

$$(2..4] = \{3, 4\}.$$

注意按照我们交集的的定义方式,区间的端点不是必须为整数.比如下面的记号也是良定义的:

$$[1.2..3.9] = [1.2, 4.9] \cap \mathbb{Z} = \{2, 3, 4\},$$
$$(0.5..2.5) = [0.5, 2.5) \cap \mathbb{Z} = \{1, 2\}.$$

只是一般不会也没有必要这样使用,并且小数点混在其中太过难看.

1.2 附着点与极限点

1.2.1 附着点

Definition 1.1 (附着点 (Adherent point)). 对于 $X \subseteq \mathbb{R}$, 称 x 为 X 的附着点, 当且仅当对任意实数 $\epsilon > 0$, 存在 $y \in X$, 使得 $|x - y| \le \epsilon$.

绝对值 |x-y| 的集合意义为 x 与 y 的距离, 既 d(x,y), 而 d(x,y) 小于任意给定正实数. 直观地说, 若 x 是 X 的附着点, 那么 x 无限靠近集合 X. 此外, 若 x 本就是 X 中的元素, 那么 x 显然也是附着点.

例 对于集合 $(1,2] \cup \{3\}$, 1, 2, 3 都是其附着点, 1.5 也是.

例 对于集合 (1,2], 0.5 不是附着点. 因为对于 $\epsilon=0.1$, 所有 (1,2] 中的元素 y 与 0.5 的距离 |y-0.5| 都大于 0.1.

集合的所有附着点,构成了这个集合的闭包. 直观地说: 就是扩大集合,使其包含所有无限靠近原集合的点.

Proposition 1.1 (附着点的性质). 设 $X \subseteq \mathbb{R}$:

- 1. 若 x 为 X 的附着点, Y 为任意集合, 则 x 为 $X \cup Y$ 的附着点
- 2. 若x为 $X \cap Y$ 的附着点, x同时为X和Y的附着点

证明. 按照定义即可.

Definition 1.2 (闭包 (Closure)). X 的所有附着点的集合称为 X 的闭包,记作 $\operatorname{cl}(X)$ 或 \overline{X} .

Proposition 1.2 (闭包算子的性质). 设 $X,Y \subseteq \mathbb{R}$:

- 1. $X \subseteq \operatorname{cl}(X)$
- 2. $\operatorname{cl}(X \cup Y) = \operatorname{cl}(X) \cup \operatorname{cl}(Y)$

- 3. $\operatorname{cl}(X \cap Y) \subseteq \operatorname{cl}(X) \cap \operatorname{cl}(Y)$
- 4. $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$
- 5. $X \subseteq Y$, \emptyset $\operatorname{cl}(X) \subseteq \operatorname{cl}(Y)$

 $Remark.\ \operatorname{cl}(X \cap Y) \subseteq \operatorname{cl}(X) \cap \operatorname{cl}(Y)$,这个式子不能像并 \cup 情形的式子一样取等于. 因为可以找到反例: $\operatorname{cl}\left((0,1) \cap (1,2)\right) = \emptyset \neq \{1\} = \operatorname{cl}(0,1) \cap \operatorname{cl}(1,2)$.

使用闭包的记号, 就可以将 x 附着于 X 记作: $x \in cl(X)$, 其满足的性质也可以记作:

- $x \in \operatorname{cl}(X) \implies x \in \operatorname{cl}(X \cup Y)$
- $x \in \operatorname{cl}(X \cap Y) \implies x \in \operatorname{cl}(X) \land x \in \operatorname{cl}(Y)$

Proposition 1.3 (区间的闭包). 若 I 为 (a,b), (a,b], [a,b), [a,b] 中的一个, 那么 $\operatorname{cl}(I) = [a,b]$.

下面以 (a,b) 为例, 其余证明同理.

证明. 首先, 证明 [a,b] 中的任意点 x 都是 (a,b) 的附着点. 有三种情况: (1) $x \in (a,b)$, 则 x 自然为 (a,b) 的附着点; (2) x = a, 则 x 按照定义是附着于 (a,b) 的; (3) x = b, x 也是附着于 (a,b) 的.

接着证明 (a,b) 的所有附着点都位于 [a,b] 中. 设 x 为 (a,b) 的附着点,但 $x \notin [a,b]$. 于是有两种情况: (1) x < a: $\forall \epsilon > 0$, $\exists y \in (a,b)$, 使得 $|x-y| \le \epsilon$. 由于 a-x>0,取 $\epsilon = a-x$, $|x-y| \le a-x$. 所以有 $x-a \le x-y$,即 $y \le a$,这与 $y \in (a,b)$ 矛盾. (2) x > b 同理,取 $\epsilon = b-x$ 可以得到矛盾.

上面两方面结合起来说明了所有 (a,b) 附着点构成的集合恰好是 [a,b].

Definition 1.3 (闭集合). $X \subseteq \mathbb{R}$, 若 $X = \operatorname{cl}(X)$ 则称集合 X 是闭的.

Proposition 1.4. \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{R} 的闭包为自身, \mathbb{Q} 的闭包为 \mathbb{R} . 所以 \mathbb{Q} 不是闭集合, 而 \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{R} 是闭集合.

下面引理表明, 附着点可以由集合内的序列来逼近. 其证明用到选择公理.

Lemma 1.1. $X \subseteq \mathbb{R}$, 则 x 为 X 的附着点, 当且仅当存在一个收敛到 x 的序列 $(x_n)_{n=1}^{\infty}$, 且序列的每一项都是 X 中的值 $(\forall n \geq 1, x_n \in X)$.

证明. 考虑集合 $X_n := \{e \in X : x - 1/n \le e \le x + 1/n\}$. 由于 $x \in X$ 的附着点, $\forall \epsilon > 0$, $\exists y \in X$, $|x - y| \le \epsilon$. 于是 $x - \epsilon \le y \le x + \epsilon$ 对于任意正实数 ϵ 均成立. 那么对任意 $n \ge 1$, 只需取 $\epsilon = 1/n$, 此时能够找到 $e \in X$, 满足 $x - 1/n \le e \le x + 1/n$, 这说明所有 X_n , $n \ge 1$ 都是非空的. 根据选择公理, 我们可以依次从中选出一个元素,

构成 $(x_1, x_2,...)$. 所以序列 $(x_i)_{i=1}^{\infty}$ 的每一项 $x - 1/n \leqslant x_i \leqslant x + 1/n$,根据夹逼定理,序列 $(x_i)_{i=1}^{\infty}$ 收敛于 x.

通过此条引理,可以将闭包用序列的语言来定义.

Corollary 1.1. $X \subseteq \mathbb{R}$ 且 X 是闭的 $(\operatorname{cl}(X) = X)$. 收敛序列 $(x_n)_{n=1}^{\infty}$ 的每一项 x_n 都是 X 中的元素,则 $(x_n)_{n=1}^{\infty}$ 收敛到 X 中的一点. 反过来,若 X 中的任意收敛序列的极限都是 X 中的元素,则 X 是闭的.

1.2.2 极限点

下面是一个和附着点 (adherent point) 非常相似但又有着细微差别的概念—极限点 (limit point).

Definition 1.4 (极限点(limit point)). $X \subseteq \mathbb{R}$, $x \in X$ 的极限点, 当且仅当 $x \in X \setminus \{x\}$ 的附着点. 若 $x \in X$, 但 x 不是 $X \setminus \{x\}$ 的附着点, 即存在 $\epsilon > 0$, 对任意 $y \in X \setminus \{x\}$ 都有 $|x - y| > \epsilon$. 此时称 $x \in X$ 的孤立点, 简称孤点.

也就是说, x 是 X 的附着点, 则 x 能被 X 中元素的序列 (包括 x 本身) 逼近. 而 x 是 极限点, 则 x 能被 X 中不同于 x 的元素组成的序列 (即 $X \setminus \{x\}$ 中的序列) 逼近.

Lemma 1.2. $X \subseteq \mathbb{R}$, 则 x 为 X 的极限点, 当且仅当存在一个收敛到 x 的序列 $(x_n)_{n=1}^{\infty}$, 且序列的每一项都是 $X \setminus \{x\}$ 中的值 $(\forall n \geq 1, x_n \in X \setminus \{x\})$.

下面的命题说明了, 集合的附着点可以分为极限点和孤点互斥的两部分. 称集合 X 的所有极限点的集合为 X 的导集, 记作 X'. 于是使用闭包和导集的语言, 则

$$x \in \operatorname{cl}(X) \Rightarrow \begin{cases} x \in X' \\ x \notin X' \end{cases}$$
.

Proposition 1.5. x 是 X 的附着点. 则 x 要么是 X 的极限点, 要么是 X 的孤点, 且不可同时成立.

证明. 设x为X的附着点. 若x还是 $X\setminus\{x\}$ 的附着点,则x为极限点. 反之,x为孤点.

另一方面, 假设 x 为 X 的极限点. x 是 $X \setminus \{x\}$ 的附着点, 那么 x 也是 $X \setminus \{x\} \cup \{x\} = X$ 的附着点. 假设 x 为 X 的孤点, 按照定义 $x \in X$, 于是 x 为 X 的附着点.

Proposition 1.6 (区间与极限点). 若 I 为下面区间的任意一个: (a,b), (a,b], [a,b], [a,b], $(a,+\infty)$, $[a,+\infty)$, $(-\infty,b)$, $(-\infty,b]$; 那么 I 中每一个点都是 I 的极限点.

下面以 [a,b] 为例证明, 其余同理.

证明. 考虑 $x \in [a,b] = I$. (1) x = a: 考虑序列 $(x+1/n)_{n=N}^{\infty}$, 当 N 充分大时,序列落入区间 $I \setminus \{a\}$ 中,且这个序列收敛到 x,说明 x 为极限点. (2) x = b 同理,将序列换为 $(x-1/n)_{n=N}^{\infty}$ 即可. (3) $x \in (a,b)$: 上面的论述仍然有效,如 $(x+1/n)_{n=N}^{\infty}$ 在 N 充分大时落入 $(x,b) \subseteq I \setminus \{a\}$ 且收敛到 x.

1.2.3 有界集

Definition 1.5 (有界). 实直线的子集 X 是有界的, 当且仅当 $\exists M > 0, X \subseteq [-M, M]$.

例 半无限区间和双无限区间都是无界的. 以 $(a, +\infty)$ 为例: 假设其为有界的,则存在正的 $M \in \mathbb{R}, (a, +\infty) \subseteq [-M, M]$. 也就是说对于任意 $x \in (a, +\infty), x \in [-M, M]$. 若 M <= a, M <= a < x, 所以 x 不在 [-M, M] 中; 若 M > a, 取 x = M + 1 > M > a, $x \in (a, +\infty)$ 而 $x \notin [-M, M]$. 所以产生了矛盾, $(a, +\infty)$ 不是有界的.

Theorem 1.1 (实直线上的 Heine-Borel 定理). 设 $X \subseteq \mathbb{R}$, 则下面两个命题等价:

- X 是闭的且有界
- $(a_n)_{n=0}^{\infty}$ $\in X$ 中的序列,则存在子列 $(a_{n_i})_{i=0}^{\infty}$,该子列收敛到 X 中的某个数.

Remark. ℝ 中有界的闭集合称为紧致集 (compact set), 简称紧集.

换句话说,紧致集中的任意序列都有收敛到该集合中的子列.

要证明 Heine-Borel 定理, 要用到 Bolzano-Weirestrass 定理.

证明. 设 X 是紧致集, $(a_n)_{n=0}^{\infty}$ 是 X 中的序列, 即 $\forall n \in \mathbb{N}, a_n \in X$. 由 Bolzano-Weirestrass 定理, 该序列一定存在收敛子列, 且收敛到 X 中的某个数.

设 $(a_n)_{n=0}^{\infty}$ 是 X 中的任意序列, 且存在子列 $(a_{n_j})_{j=0}^{\infty}$ 收敛到 X 中的某个数 L.

1.3 函数的极限

Definition 1.6 (函数极限-I). 设 $E \subseteq X \subseteq \mathbb{R}$, x_0 附着于 E. 定义函数 $f: X \to \mathbb{R}$ 在 x_0 处沿着 E 收敛到 L, 当且仅当对任意实数 $\epsilon > 0$, 都存在 $\delta > 0$, 对于一切满足 $|x - x_0| \le \delta$ 的 $x \in E$, 都有:

$$|f(x) - L| \leq \delta$$
.

记作:

$$\lim_{x \to x_0; x \in E} f(x) = L.$$

注意这里和一般极限定义的区别.