#### **PNP Silicon RF Transistor**

- For broadband amplifiers up to 2GHz at collector currents up to 20mA
- Complementary type: BFR 92W (NPN)



ESD: Electrostatic discharge sensitive device, observe handling precaution!

| Туре    | Marking | Ordering Code | Pin Configuration |       |       | Package |
|---------|---------|---------------|-------------------|-------|-------|---------|
| BFT 92W | W1s     | Q62702-F1681  | 1 = B             | 2 = E | 3 = C | SOT-323 |

#### **Maximum Ratings**

| Parameter                      | Symbol            | Values            | Unit |  |
|--------------------------------|-------------------|-------------------|------|--|
| Collector-emitter voltage      | V <sub>CEO</sub>  | 15                | V    |  |
| Collector-base voltage         | V <sub>CBO</sub>  | 20                |      |  |
| Emitter-base voltage           | V <sub>EBO</sub>  | 2                 |      |  |
| Collector current              | I <sub>C</sub>    | 25                | mA   |  |
| Base current                   | I <sub>B</sub>    | 3                 |      |  |
| Total power dissipation        | P <sub>tot</sub>  |                   | mW   |  |
| <i>T</i> <sub>S</sub> ≤ 105 °C |                   | 200               |      |  |
| Junction temperature           | $T_{\rm j}$       | 150               | °C   |  |
| Ambient temperature            | T <sub>A</sub>    | - 65 <b>+</b> 150 |      |  |
| Storage temperature            | T <sub>stg</sub>  | - 65 <b>+</b> 150 |      |  |
| Thermal Resistance             | · ·               |                   | -    |  |
| Junction - soldering point 1)  | R <sub>thJS</sub> | ≤ 225             | K/W  |  |

<sup>1)</sup>  $T_{\rm S}$  is measured on the collector lead at the soldering point to the pcb.

**Electrical Characteristics** at  $T_A = 25$ °C, unless otherwise specified.

| Parameter                                 | Symbol               | Values |      |      | Unit |
|-------------------------------------------|----------------------|--------|------|------|------|
|                                           |                      | min.   | typ. | max. |      |
| DC Characteristics                        |                      |        |      |      |      |
| Collector-emitter breakdown voltage       | V <sub>(BR)CEO</sub> |        |      |      | V    |
| $I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$ |                      | 15     | -    | -    |      |
| Collector-base cutoff current             | / <sub>CBO</sub>     |        |      |      | nA   |
| $V_{CB} = 10 \text{ V}, I_{E} = 0$        |                      | -      | -    | 100  |      |
| Emitter-base cutoff current               | / <sub>EBO</sub>     |        |      |      | μΑ   |
| $V_{EB} = 2 \text{ V}, I_{C} = 0$         |                      | -      | -    | 10   |      |
| DC current gain                           | h <sub>FE</sub>      |        |      |      | -    |
| $I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V   |                      | 15     | 50   | -    |      |

**Electrical Characteristics** at  $T_A = 25$ °C, unless otherwise specified.

| Parameter                                                                                      | Symbol          | Values |      |      | Unit |
|------------------------------------------------------------------------------------------------|-----------------|--------|------|------|------|
|                                                                                                |                 | min.   | typ. | max. |      |
| AC Characteristics                                                                             |                 |        |      |      |      |
| Transition frequency                                                                           | $f_T$           |        |      |      | GHz  |
| $I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V, $f$ = 500 MHz                                         |                 | 3.5    | 5    | -    |      |
| Collector-base capacitance                                                                     | $C_{cb}$        |        |      |      | pF   |
| $V_{\text{CB}} = 10 \text{ V}, f = 1 \text{ MHz}$                                              |                 | -      | 0.58 | 0.9  |      |
| Collector-emitter capacitance                                                                  | $C_{ce}$        |        |      |      |      |
| $V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}$                                                     |                 | -      | 0.3  | -    |      |
| Emitter-base capacitance                                                                       | $C_{eb}$        |        |      |      |      |
| $V_{\text{EB}} = 0.5 \text{ V}, f = 1 \text{ MHz}$                                             |                 | -      | 0.77 | -    |      |
| Noise figure                                                                                   | F               |        |      |      | dB   |
| $I_{\text{C}} = 2 \text{ mA}, \ V_{\text{CE}} = 8 \text{ V}, \ Z_{\text{S}} = Z_{\text{Sopt}}$ |                 |        |      |      |      |
| f = 900 MHz                                                                                    |                 | -      | 2    | -    |      |
| f = 1.8 GHz                                                                                    |                 | -      | 3.2  | -    |      |
| Power gain <sup>2)</sup>                                                                       | G <sub>ma</sub> |        |      |      |      |
| $I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$                          |                 |        |      |      |      |
| $Z_{L} = Z_{Lopt}$                                                                             |                 |        |      |      |      |
| f = 900 MHz                                                                                    |                 | -      | 14   | -    |      |
| f = 1.8 GHz                                                                                    |                 | -      | 8.5  | -    |      |
| Transducer gain                                                                                | $ S_{21e} ^2$   |        |      |      |      |
| $I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$               |                 |        |      |      |      |
| f = 900 MHz                                                                                    |                 | -      | 11.5 | -    |      |
| <i>f</i> = 1.8 GHz                                                                             |                 | -      | 6    | -    |      |

<sup>2)</sup>  $G_{\text{ma}} = |S_{21}/S_{12}| (k-(k^2-1)^{1/2})$ 



#### SPICE Parameters (Gummel-Poon Model, Berkeley-SPICE 2G.6 Syntax):

#### **Transistor Chip Data**

| IS =  | 4.5354   | fA | BF =  | 98.533   | -   | NF =   | 0.90551  | -  |
|-------|----------|----|-------|----------|-----|--------|----------|----|
| VAF = | 10.983   | V  | IKF = | 0.016123 | Α   | ISE =  | 12.196   | fA |
| NE =  | 1.1172   | -  | BR =  | 10.297   | -   | NR =   | 1.2703   | -  |
| VAR = | 47.577   | V  | IKR = | 0.019729 | Α   | ISC =  | 0.024709 | fA |
| NC =  | 1.206    | -  | RB =  | 7.9562   | Ω   | IRB =  | 0.79584  | mA |
| RBM = | 1.5939   | Ω  | RE =  | 1.5119   | Ω   | RC =   | 0.66749  | Ω  |
| CJE = | 1.7785   | fF | VJE = | 0.79082  | V   | MJE =  | 0.32167  | -  |
| TF =  | 32.171   | ps | XTF = | 0.30227  | -   | VTF =  | 0.21451  | V  |
| ITF = | 0.013277 | mA | PTF = | 0        | deg | CJC =  | 922.07   | fF |
| VJC = | 1.2      | V  | MJC = | 0.3      | -   | XCJC = | 0.3      | -  |
| TR =  | 2.0779   | ns | CJS = | 0        | fF  | VJS =  | 0.75     | V  |
| MJS = | 0        | -  | XTB = | 0        | -   | EG =   | 1.11     | eV |
| XTI = | 3        | -  | FC =  | 0.75167  | -   | TNOM   | 300      | K  |

All parameters are ready to use, no scalling is necessary.

Extracted on behalf of SIEMENS Small Signal Semiconductors by:

Institut für Mobil-und Satellitenfunktechnik (IMST)

© 1996 SIEMENS AG

#### **Package Equivalent Circuit:**



For examples and ready to use parameters please contact your local Siemens distributor or sales office to obtain a Siemens CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm

### Total power dissipation $P_{\text{tot}} = f(T_A^*, T_S)$

\* Package mounted on epoxy



### Permissible Pulse Load $R_{thJS} = f(t_p)$

## **Permissible Pulse Load** $P_{\text{totmax}}/P_{\text{totDC}} = f(t_p)$





## Collector-base capacitance $C_{CD} = f(V_{CB})$

 $V_{\text{BE}} = v_{\text{be}} = 0$ , f = 1 MHz



### Power Gain $G_{ma}$ , $G_{ms} = f(I_C)$

f = 0.9 GHz

 $V_{CE}$  = Parameter



### Transition frequency $f_T = f(I_C)$

 $V_{CE}$  = Parameter



### Power Gain $G_{ma}$ , $G_{ms} = f(I_C)$

f = 1.8GHz

 $V_{CE}$  = Parameter



### 

f = Parameter



**Power Gain**  $G_{\text{ma}}$ ,  $G_{\text{ms}} = f(t)$ 

 $V_{CE}$  = Parameter



### Intermodulation Intercept Point $IP_3=f(I_C)$

(3rd order, Output,  $Z_S = Z_L = 50\Omega$ )  $V_{CE}$  = Parameter, f = 900 MHz



**Power Gain**  $|S_{21}|^2 = f(f)$ 

 $V_{CE}$  = Parameter

