Mécanique quantique – L3

Emmanuel Baudin – Tom Bienaimé – Sylvain Nascimbène

TD 8 : Spectroscopie de la molécule HBr

On modélise une molécule HBr par un atome d'hydrogène de masse m évoluant dans le potentiel V créé par un atome de brome supposé infiniment lourd. On suppose par ailleurs que le potentiel V est du type Lénard-Jones, à savoir :

$$V(r) = \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right],$$

où r désigne la distance brome-hydrogène.

- 1. On s'intéresse dans un premier temps au potentiel de Lénard-Jones.
 - (a) Donner les dimensions de σ et ϵ .
 - (b) Montrer que le potentiel V possède un minimum en $r=r_e$ que l'on calculera en fonction de σ .
 - (c) En déduire qu'au voisinage de r_e , on peut écrire :

$$V(r) \simeq V(r_e) + \frac{m\omega^2}{2}(r - r_e)^2.$$

où l'on exprimera $V(r_e)$ et ω en fonction de σ et ϵ .

- (d) Quelles sont les interprétations physiques de r_e et $V(r_e)$. En déduire leur ordre de grandeur, ainsi que celui de ω . À quel domaine du spectre électromagnétique cette fréquence correspond-elle?
- 2. Écrire le hamiltonien de l'atome d'hydrogène placé dans le potentiel V(r). On rappelle qu'en coordonnées sphériques, on a :

$$\Delta \psi = \frac{1}{r} \, \partial_r^2 \left(r \psi \right) - \frac{\widehat{L}^2}{\hbar^2 r^2} \psi,$$

où $\widehat{\mathbf{L}}$ désigne l'opérateur moment cinétique. Pour quoi le hamitonien commute-t-il avec le moment cinétique? En déduire la forme générale d'un état station naire ψ .

- 3. Écrire l'équation de Schrödinger satisfaite par la fonction $u = r\psi(r)$. La linéariser au voisinage de r_e . À quelle condition ce développement est-il valable? Indication: On pourra évaluer $\hbar/m\omega r_e^2$.
- 4. Déduire de la question précédente que les énergies propres sont de la forme :

$$E_{nl} = V(r_e) + \hbar\omega (n + 1/2) + \frac{\hbar^2 l(l+1)}{2mr_e^2}.$$

où n et l sont deux entiers. Quelle est la dégénérescence de ces états?

- 5. On admet que par absorption d'un photon, la transition suit la "règle de sélection" $\Delta l = \pm 1$.
 - (a) Donner l'allure des spectres d'absorption pour $\Delta n=0$ puis $\Delta n=1$. Préciser en particulier dans quel domaine du spectre électromagnétique ces transitions se produisent.
 - (b) Comparer le résultat de la question précédente au spectre expérimental de la figure ci-dessous. En déduire en particulier les valeurs de ω et r_e .

