

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Geltungsbereich	Netze BW GmbH
Dokumentennummer	TTG 1001
Version	1.1
Klassifizierungsstufe	intern
Inkrafttreten	24.02.2011
Letzte Aktualisierung	11/2016
Fachlich zuständige Stelle	NETZ TEOS
Beschlossen durch	REG TM, Christian Schorn
Beschlossen am	24.02.2011
Anlagen	keine
Ansprechpartner	NETZ TEOS, Uwe Obenland, Tel.: 0711 289-82817

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 2/41 Stand: 11/2016

Änderungshistorie

Version	Aktualisierungs- datum	FZS / Autor	Kurzbeschreibung / Anlass der Änderung
1.0	10/2010	REG PNL Uwe Obenland	Anpassung
1.1	11/2016	NETZ TEOS Uwe Obenland	Anpassung an Organisationsstruktur; Kap. 5.1 Erdung Schranktüren

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 3/41 Stand: 11/2016

Inhaltsverzeichnis

1	Allgemeiner Teil	
1.1	Geltungsbereich und Einführung	
1.2	Normen und Empfehlungen zur EMV (Auswahl)	5
2	Begriffe	7
3	Elektromagnetisch verträgliche Konstruktion von Hochspannungsschaltanlagen	8
3.1	EMV-Gesichtspunkte bei der Ausführung der Erdungsanlage	
3.2	Erdung von Tafeln, Gestellen, Schaltschränken und elektronischen Geräten	8
3.3	Stromversorgung in der Schaltanlage	8
3.4	Sekundärleitungen	
3.5	Begrenzung von Überspannungen in Sekundärkreisen	
3.6	Näherungen zu Telekommunikationsanlagen	9
4	EMV-Gesichtspunkte bei der Ausführung der Erdungsanlage	9
4.1	EMV-Gesichtspunkte bei Erdungsanlagen in Freiluftschaltanlagen	
4.2	Erdungsanlage in gasisolierten metallgekapselten Schaltanlagen (GIS) bzw.	
	hochintegrierten Schaltanlagen (HIS)	. 12
4.3	Erdungsanlage in Räumen für metallgekapselte Mittelspannungsschaltanlagen	
4.4	Erdungsanlage in Betriebsgebäuden	
4.5	Zusammenschluss von Innen- und Außenerdungsanlagen	. 18
5	Erdung von Sekundäreinrichtungen in Hochspannungsschaltanlagen	19
5.1	Erdung von Tafeln, Gestellen und Schränken	
5.2	Erdung bei separat montierten elektronischen Betriebsmitteln	
5.3	Erdung bei Einbau der Betriebsmittel in Gestellen, Schränken und auf Tafeln	
6	Auswahl und Verlegung von Sekundärleitungen	
6.1	Auswahl von Sekundärleitungen	
6.2	Verlegung der Sekundärleitungen	. 22
7	Störfestigkeit der Sekundärgeräte	. 28
7.1	Begriffe zu Sekundärtechnik	. 28
7.2	Anforderungen an die Störfestigkeit und die Störaussendung von Sekundärgeräten	. 29
7.3	Isolationskoordination für Sekundärgeräte	. 32
8	Störfestigkeit von Sekundärgeräten: Anforderungen, abhängig vom Einsatzort der Geräte und ihren Anschlüssen bzw. Verbindungen; Störfestigkeits-	32

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 4/41 Stand: 11/2016

1 Allgemeiner Teil

1.1 Geltungsbereich und Einführung

Die vorliegende Technische Richtlinie gilt für alle Mittel- und Hochspannungsschaltanlagen der Netze BW mit Nennspannungen zwischen 6 kV und 110 kV.

Durch das Anwenden dieser Richtlinie werden:

- > Störaussendungen in den Schaltanlagen begrenzt,
- > Gefahren durch ohmsche Beeinflussung von Telekommunikationsanlagen vermieden,
- > eine ausreichende Störfestigkeit elektrischer und elektronischer Sekundärgeräte gewährleistet.

Nachfolgend sind zu diesem Zweck Vorgaben für die Konstruktion einer Schaltanlage, insbesondere deren Erdungsanlage, Vorgaben für die Auswahl und die Verlegung von Sekundärleitungen und -kabel sowie Anforderungen für die Prüfung der Störfestigkeit von elektrischen oder elektronischen Geräten formuliert.

Prüfverfahren und -pegel für den Nachweis der Störfestigkeit von Geräten sind heute weitgehend in gültigen Normen festgelegt. In der vorliegenden Technischen Richtlinie werden die wichtigsten dieser Dokumente benannt.

Die Technische Richtlinie ist anzuwenden bei Neubau-, Umbau- und Ertüchtigungsmaßnahmen, also auch beim Einbau neuer Sekundäreinrichtungen in bestehende Schaltanlagen.

Die Technische Richtlinie "Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsanlagen der Netze BW" kann – zusammen mit weiteren Technischen Richtlinien – aus dem Netze BW-Intranet unter Organisation / Gesellschaften / Netze BW GmbH (NETZ) / Service / Wissen & Nachschlagen / Technikportal Netze / Mittel- und Hochspannung / Grundlagen abgerufen werden. Das Dokument in angemessenen Zeitintervallen aktualisieren und mit dem jeweiligen Revisionsdatum versehen.

Sollten Funktionsstörungen in Sekundäreinrichtungen auftreten, bei denen eine nicht ausreichende EMV als Ursache vermutet wird, ist der zuständige Fachbereich für die Aufklärung und für das Erarbeiten und Vorschlagen möglicher Abhilfemaßnahmen hinzuzuziehen.

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 5/41 Stand: 11/2016

1.2 Normen und Empfehlungen zur EMV (Auswahl)

Lfd. Nr.	Dokument	Titel
1	DIN VDE 0101-2 hier insbesondere:	Erdung von Starkstromanlagen mit Nennwechselspannungen über 1 kV; Deutsche Fassung EN 50522: 2010; Erschienen 2011-11 Abschnitt 7.2 Blitz und transiente Beanspruchungen Anhang F: Maßnahmen an Erdungsanlagen zur Reduzierung der Auswirkungen von Hochfrequenzströmen
2	DIN EN 62271-1 VDE 0671-1 hier insbesondere:	Hochspannungs-Schaltgeräte und -Schaltanlagen - Teil 1: Gemeinsame Bestimmungen (IEC 62271-1:2007); Deut- sche Fassung EN 62271-1:2008, Erschienen 2009-08 Abschnitt 6.9: Prüfung der elektromagnetischen Verträglich- keit (EMV)
3	VDEW-Empfehlung	Digitale Stationsleittechnik – Empfehlungen 1. Ausgabe 1994
4	VDEW-Empfehlung	Ergänzende Empfehlungen zur Anwendung in Verteilnetzstationen
5	Cigré Guide No. 124	Guide on EMC in Power Plants and Substations, Cigré Working Group 36.04, December 1997
6	Technical Specification IEC TS 61000-6-5	Electromagnetic Compatibility (EMC) – Part 6-5: Generic standards – Immunity for power station and substation environments; Erschienen 2001-07
7	DIN EN 60255-27 VDE 0435 Teil 327	Messrelais und Schutzeinrichtungen Teil 27: Anforderungen an die Produktsicherheit (IEC 60255-27:2013); Deutsche Fassung EN 60255-27:2014; Erschienen 2014-11
8	DIN EN 60255-26 VDE 0435-320	Messrelais und Schutzeinrichtung - Teil 26: Anforderungen an die elektromagnetische Verträglichkeit (IEC 60255-26: 2013); Deutsche Fassung EN 60255-26: 2013
9	DIN EN 61812-1 VDE 0435 Teil 2021	Zeitrelais (Relais mit festgelegtem Zeitverhalten) für industrielle Anwendungen und für den Hausgebrauch Teil 1: Anforderungen und Prüfungen (IEC 61812-1:2011, Deutsche Fassung EN 61812-1:2011
10	DIN EN 50310 VDE 0800-2-310	Anwendung von Maßnahmen für Erdung und Potentialausgleich in Gebäuden mit Einrichtungen der Informationstechnik; Deutsche Fassung EN 50310: 2010

X Netze BW

Technische Richtlinie

TTG 1001 Nr.: Version: 1.1 Seite: 6/41 Stand: 11/2016

Strom

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

11	DIN V VDE 0800-2-548 VDE V 0800 Teil 2-548	Vornorm: Elektrische Anlagen von Gebäuden Teil 5: Auswahl und Errichtung elektrischer Betriebsmittel Hauptabschnitt 548: Erdung und Potentialausgleich für Anla- gen der Informationstechnik (IEC 60364-5-548:1996), Erschie- nen 1999-10, zurückgezogen 2010-08
12	DIN EN 50174-2 VDE 0800-174-2	Informationstechnik -Installation von Kommunikationsverkabelung -Teil 2: Installationsplanung und -praktiken in Gebäuden; Deutsche Fassung EN 50174-2:2009 + A1:2011 + A1:2011/AC:2011 + A2:2014; Erschienen 2015-02
13	DIN EN 50174-3 VDE 0800-174-3	Informationstechnik - Installation von Kommunikationsverkabelung -Teil 3: Installationsplanung und -praktiken im Freien; Deutsche Fassung EN 50174-3: 2013; Erschienen 2014-05
14	DIN EN 50130-4 VDE 0830 Teil 1-4	Alarmanlagen Teil 4: Elektromagnetische Verträglichkeit – Produktfamilien- norm: Anforderungen an die Störfestigkeit von Anlagenteilen für Brand- und Einbruch- und Überfallmeldeanlagen, Video- Überwachungsanlagen, Zutrittskontrollanlagen sowie Perso- nen-Hilferufanlagen; Deutsche Fassung EN 50130-4:2011 + A1:2014, Erschienen 2015-04
15	DIN EN 61000-6-2 VDE 0839-6-2	Elektromagnetische Verträglichkeit (EMV) -Teil 6-2: Fachgrundnormen - Störfestigkeit für Industriebereiche (IEC 61000-6-2:2005); Deutsche Fassung EN 61000-6-2:2005; Erschienen 2006-03
16	DIN EN 61000-6-4 VDE 0839-6-4	Elektromagnetische Verträglichkeit (EMV) -Teil 6-4: Fachgrundnormen - Störaussendung für Industriebereiche (IEC 61000-6-4: 2006 + A1:2010); Deutsche Fassung EN 61000-6-4: 2007 + A1:2011; Erschienen 2011-09
17	DIN EN 55024 VDE 0878 Teil 24	Einrichtungen der Informationstechnik - Störfestigkeitseigenschaften - Grenzwerte und Prüfverfahren (CISPR 24:2010 + Cor.:2011 + A1:2015); Deutsche Fassung EN 55024:2010 + A1:2015, Er- schienen 2016-05
18	Technische Empfehlung Nr. 3 der Schiedsstelle für Beeinflussungsfragen (SfB) (DB AG, DTAG, BDEW)	Richtlinie für Schutzmaßnahmen an Tk-Anlagen gegen Beeinflussung durch Netze der elektrischen Energieübertragung, -verteilung sowie Wechselstrombahnen (April 2005)
19	Technische Richtlinie Nr. TTG 3001 der Netze BW	Erdung in Anlagen des 110-kV-Netzes

Tabelle 1: Normen und Empfehlungen zur EMV

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 7/41 Stand: 11/2016

2 Begriffe

Elektromagnetische Verträglichkeit (EMV)

ist die Fähigkeit einer elektrischen Einrichtung, in ihrer elektromagnetischen Umgebung zufriedenstellend zu funktionieren, ohne diese Umgebung, zu der auch andere Einrichtungen gehören, unzulässig zu beeinflussen.

(Elektromagnetischer) Verträglichkeitspegel

ist der festgelegte größte elektromagnetische Störpegel, der an einer, unter bestimmten Bedingungen betriebenen Einrichtung, einem Gerät oder einem System erwartet werden kann.

ANMERKUNG: In der Praxis ist der Elektromagnetische Verträglichkeitspegel kein absoluter höchster Pegel, sondern kann mit einer geringen Wahrscheinlichkeit überschritten werden.

Elektromagnetische Störgröße

ist eine elektromagnetische Größe, die in einem Gerät, einer Einrichtung oder einem System eine Funktionsstörung herbeiführen kann.

Elektromagnetische Funktionsstörung

ist die Funktionsstörung einer Einrichtung, eines Übertragungskanals oder Systems, die durch eine elektromagnetische Störgröße verursacht wird.

Störfestigkeit (gegenüber einer Störgröße)

ist die Fähigkeit einer Einrichtung, in Gegenwart einer elektromagnetische Störgröße ohne Fehlfunktion oder Funktionsausfall zu funktionieren.

Störfestigkeitspegel

ist der größte Pegel einer gegebenen elektromagnetische Störgröße, die auf eine bestimmte Einrichtung, Gerät oder System trifft und bei dem die Funktion mit dem geforderten Grad der Funktionsfähigkeit aufrecht erhalten bleibt.

Betriebsmittel, Apparat, Gerät

ist ein Endprodukt mit einer eigenständigen Funktion; besitzt ein eigenes Gehäuse und für den Endbenutzer gebräuchliche Anschlüsse bzw. Verbindungen; im engeren, hier gebräuchlichen Sinn: Betriebsmittel, Apparate, Geräte, die elektrische oder elektronische Bauelemente enthalten.

Allgemeine auf die EMV bezogenen Definitionen sind in IEC 60050-161 (Internationales Elektrotechnisches Wörterbuch "IEV") und in Publikationen der CISPR (Comité Internationale Spécial des Perturbations Radioélectrotechniques) zu finden.

Für die Anwendung der einzelnen Produkt- oder Produktfamilien- und Fachgrundnormen gelten besondere Definitionen, die in den jeweiligen Dokumenten angegeben sind.

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 8/41 Stand: 11/2016

3 Elektromagnetisch verträgliche Konstruktion von Hochspannungsschaltanlagen

3.1 EMV-Gesichtspunkte bei der Ausführung der Erdungsanlage

Vor allem Schaltvorgänge und Blitze verursachen in Hochspannungsschaltanlagen hochfrequente Ströme und Spannungen. Um die dadurch entstehenden Störgrößen so gering wie möglich zu halten, sind bei der Konstruktion einer Erdungsanlage die Regeln nach Abschnitt 4 zu beachten. Diese haben zum Ziel, dass

- > die Induktivität der Stromwege möglichst klein,
- > die Beeinflussungen (Kopplungsimpedanzen) innerhalb der Anlage möglichst gering,
- > Abschirmwirkungen an Störquellen möglichst groß werden.

3.2 Erdung von Tafeln, Gestellen, Schaltschränken und elektronischen Geräten

Die Erdung von Tafeln, Gestellen, Schaltschränken und elektronischen Geräten hat erheblichen Einfluss auf die Höhe der Störgrößen, die auf die Sekundäreinrichtungen in diesem Bereich (einschließlich der Geräte selbst) einwirken. Es sind daher die in Abschnitt 5 beschriebenen Maßnahmen zu beachten.

3.3 Stromversorgung in der Schaltanlage

Das anlageninterne Drehstromnetz (Eigenbedarf) ist als TN-S-Netz nach DIN VDE 0100-410 aufzubauen. Der Neutralleiter der gesicherten Wechselspannung ist mit dem Neutralleiter des Drehstromnetzes verbunden und darf daher nicht zusammen mit dem Schutzleiter an das Erdermaschennetz angeschlossen werden.

3.4 Sekundärleitungen

Die Einkopplung von Störgrößen in die Sekundärleitungen muss auf ein verträgliches Maß begrenzt werden. Die hierzu erforderlichen Maßnahmen sind in Abschnitt 6 (Auswahl und Verlegung von Sekundärleitungen) angegeben.

3.5 Begrenzung von Überspannungen in Sekundärkreisen

Zur Begrenzung von inneren und äußeren Überspannungen in Sekundärkreisen sind ggf. geeignete Bauelemente zusätzlich zum geräteeigenen Schutz in die Anlage einzubauen. Zum Beispiel sollen mit Gleichspannung versorgte Melde- und Steuerrelais mit Freilaufdioden oder Varistoren beschaltet werden.

Eine solche Beschaltung darf die Funktion der angeschlossenen Geräte nicht beeinträchtigen. Schäden an einem Beschaltungselement sollen ohne Einfluss auf die Funktion der Geräte bleiben. Auf eine ausreichende Spannungsfestigkeit der Beschaltungselemente ist zu achten.

In Zweifelsfällen mit möglichen Rückwirkungen auf die Funktion von Geräten sind Abschirmmaßnahmen an den relevanten Störquellen einer zusätzlichen Beschaltung von Sekundärstromkreisen vorzuziehen.

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 9/41 Stand: 11/2016

3.6 Näherungen zu Telekommunikationsanlagen

Für Näherungen von Telekommunikationsanlagen (TK-Anlagen) an Hochspannungsanlagen ist [28] zu beachten. Grenzabstände von TK-Anlagen zu Starkstromanlagen hinsichtlich einer Gefährdung durch ohmsche Beeinflussung sind der nachfolgenden Tabelle zu entnehmen.

Цо	chenonnungconlogo	Grenzabstand A zu einer TK-Anlage			
ПО	chspannungsanlage	Geerdete TK-Anlage	Isoliertes TK-Kabel		
Umspann-	Niederohmiger Sternpunkt	A > 150 m	A > 2 m		
anlage	Erdschlusskompensiertes Netz	A > 2 m	A > 0,5 m		
Masta	Niederohmiger Sternpunkt	A > 20 m	A > 2 m		
Maste	Erdschlusskompensiertes Netz	A > 2 m	A > 0,5 m		

Tabelle 2: Grenzabstände von Telekommunikations- zu Hochspannungsanlagen

Können die Grenzabstände auf Grund der räumlichen Gegebenheiten nicht eingehalten werden, sind kleinere Abstände möglich, wenn folgende Ersatzmaßnahmen angewendet werden:

- > Standortisolierung
- > Prüfung, ob max. zulässige Berührungsspannung eingehalten wird
- > Verwendung eines Schutzrohres für TK-Kabel
- > Potenzialsteuerring um TK-Anlage

Erforderliche Ersatzmaßnahmen sind im Einzelfall mit der zuständigen Fachabteilung abzusprechen.

Zwischen Stromversorgungskabeln und parallel verlegten Leitungen der Informationstechnik sollte als mechanischer Schutz ein Mindestabstand von 30 cm eingehalten werden ([23]). Wird der Abstand unterschritten muss wenigstens eine der beiden Kabelarten über einen angemessenen Schutz verfügen z. B. Kabelschutzhauben.

4 EMV-Gesichtspunkte bei der Ausführung der Erdungsanlage

Eine nach [1] und [29] errichtete Erdungsanlage erfüllt zum Teil automatisch auch EMV-Gesichtspunkte. Das Hauptaugenmerk dieser "allgemeinen" Spezifikationen liegt jedoch auf den klassischen Kriterien betriebsfrequenter Ströme.

Die nachfolgenden Hinweise für die Ausführung von Erdungsanlagen betreffen speziell EMV-Gesichtspunkte, bei denen die Eigenschaften und Auswirkungen transienter bzw. hochfrequenter elektromagnetischer Vorgänge im Vordergrund stehen.

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 10/41 Stand: 11/2016

Strom

4.1 EMV-Gesichtspunkte bei Erdungsanlagen in Freiluftschaltanlagen

Tiefenerder zur Verringerung des 50-Hz-Ausbreitungswiderstandes verringern hochfrequente Störgrößen nur in geringem Maß.

Für die Ausführung des **Erdermaschennetzes** sind folgende Regeln zu beachten:

> An sämtlichen Kreuzungspunkten des Erdermaschennetzes sollen alle Erder leitend miteinander verbunden werden (z. B. mit Pressverbinder, Bild 1).

Bild 1: Verbindung von Erdern

> Erder zum Anschluss der Erdungsleitungen von Betriebsmitteln, Relaishäusern und Steuerschränken sollen Bestandteil einer Masche sein.

Bild 2: Erder zum Anschluss von Betriebsmitteln

Für die Verlegung der **Erdungsleitungen** sollte Folgendes beachtet werden:

> Erdungsleitungen von Betriebsmitteln sollen so kurz wie möglich sein (Bild 3).

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 11/41 Stand: 11/2016

Bild 3: Beispiele für Erdungsleitungen

> Ausgedehntere zu erdende Teile wie Relaishäuser, größere Stützen, Grundrahmen von gasisolierten Schaltanlagen sind mit 2 oder mehr parallelen Erdungsleitern an einander gegenüberliegenden Punkten an die Erdungsanlage anzuschließen (Bild 4). Ebenso sind alle metallischen Teile, die zum Anschluss oder zur Befestigung der einzelnen Betriebsmittel dienen, auf kurzem Weg an die Erdungsleiter anzuschließen. (z. B. Erdungsschienen für Kabeleinführungen, Blechtafeln für Relais).

Auf dem Boden des Relaishauses ist eine geschlossene Masche auszulegen.

In Steuerschränken ist mindestens eine Erdungsschiene im Bereich der Kabeleinführung zu montieren. Diese Erdungsschiene sowie elektrisch leitende Konstruktionsteile des Steuerschranks sind auf kurzem Weg mit dem Erdermaschennetz zu verbinden.

Bild 4: Erdungsleitungen bei Relaishäusern und Steuerschränken

> Bilden die Erdungsleitungen Schleifen oder ergeben sich bei Erdern oder Erdungsleitern Schlaufen durch überschüssige Längen, so sind diese in der Verlegungsebene des Erdermaschennetzes bzw. am Betriebsmittel oder zu erdenden Gegenstand kurzzuschließen (Bild 6 und 5).

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 12/41 Stand: 11/2016

Bild 5: Beispiele für die Verlegung von Erdungsleitungen

Bild 6: Kurzschließen von Schlaufen

4.2 Erdungsanlage in gasisolierten metallgekapselten Schaltanlagen (GIS) bzw. hochintegrierten Schaltanlagen (HIS)

Die folgenden Ausführungen gelten sowohl für in Gebäuden installierte GIS der Hochspannung als auch für HIS, bei denen luft- und gasisolierte Betriebsmittel oder Betriebsmittelgruppen kombiniert im Freien aufgestellt sind.

🔆 Netze BW

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 13/41 Stand: 11/2016

Strom

Bild 7: Beispiel für das Erdermaschennetz in einer GIS

Die Maschenweite der Erdungsanlage im Gebäude einer GIS oder auf der Fläche einer HIS soll im Bereich der Anlage nicht größer als 5 m sein. Eine Masche sollte in unmittelbarer Nähe der zentralen Erdungspunkte verlaufen. Außerhalb des Bereichs der Schaltanlage kann die Maschenweite vergrößert werden.

Im Bereich von in der Nähe einer GIS oder einer HIS aufgestellten Steuerschränken sollte die Maschenweite mindestens derjenigen im Bereich der Schaltanlage entsprechen (Bild 7).

Sind Maschennetze in verschiedenen Ebenen vorhanden, so sollten diese mindestens im Abstand der 6-fachen Feldteilung – jedoch 5 m nicht wesentlich überschreiten – miteinander verbunden werden. Die vertikalen Verbindungsleitungen sind entsprechend den baulichen Gegebenheiten zu

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 14/41 Stand: 11/2016

Strom

verlegen und können gleichzeitig als Ableitung für die Blitzschutzanlage sowie zur Erdung von Ausleitungen benutzt werden.

Werden die Verbindungen zwischen verschiedenen Maschennetzen innerhalb des Gebäudes geführt und ist eine äußere Blitzschutzanlage vorhanden, so sollten in den einzelnen Ebenen Verbindungen zwischen den Ableitungen und der Blitzschutzanlage hergestellt werden.

Die Armierung von Stahlbeton und metallische Konstruktionsteile können – außer ihrem Beitrag zu Potentialsteuerung und Erdung – eine Schirmwirkung zwischen Störsenken und Störquellen haben und die Induktivität des Stromwegs reduzieren. Deshalb sollten metallische Konstruktionsteile sowie in Beton eingebetteter Stahl vor allem in GIS in die Erdungsanlage integriert und vielfach mit dem Erdermaschennetz verbunden werden.

An den Anschlussstellen eines Hochspannungskabels an eine GIS entsteht eine Schirmwirkung durch möglichst kurze, konzentrisch angeordnete Verbindungen zwischen der Anlagenkapselung und dem Kabelmantel, Kabelschirm bzw. der Endverschlussarmatur. Können Kabelschirm und GIS-Kapselung wegen zu hoher netzfrequenter Schirmströme oder wegen einer kathodischen Korrosionsschutzeinrichtung für das Hochspannungskabel nicht direkt verbunden werden, sind Überspannungsableiter bzw. eine Abgrenzeinheit einzubauen. Diese müssen für hohe Frequenzen und steile Spannungen ausgelegt sein.

Stahlrohre von Hochspannungskabeln sollen auf kürzestem Weg mit dem Maschennetz der Anlagen verbunden werden.

An Rohrausleitungen aus dem Gebäude ist die Kapselung der GIS rundum flächig leitend mit der Gebäudewand oder den dort angebrachten metallischen Verkleidungen zu verbinden. Stahlarmierung, Rahmen- und sonstige metallische Konstruktionsteile am Gebäudedurchbruch sind elektrisch mit anzuschließen. Längere Rohrleitungen (> 3 m) sind u. U. mehrmals auf kurzem Weg untereinander und mit dem Erdermaschennetz zu verbinden. Schließlich sollte der Flansch der Gas-Freiluft-Durchführung mit dem Erdanschluss des Überspannungsableiters direkt verbunden werden (Bild 8).

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 15/41 Stand: 11/2016

Betonwand
Gebäudedurchführungsrohr
Dichtungskompensator
Spannschellen
SF₆-Rohrleitung

a) Abdichtung am Gebäude

b) Erdung außerhalb des Gebäudes

Bild 8: Beispiel für Rohrausleitungen in gasisolierten Anlagen

4.3 Erdungsanlage in Räumen für metallgekapselte Mittelspannungsschaltanlagen

In Räumen für metallgekapselte Mittelspannungsschaltanlagen ist ein geschlossener Ring als Erdungsleitung zu verlegen, der an mindestens zwei Stellen mit der äußeren Erdungsanlage und/oder dem Fundament verbunden wird. Für nicht in der Nähe der Wand aufgestellte Betriebsmittel ist eine zusätzliche Erdungsmasche so zu verlegen, dass die Erdungsanschlüsse der Betriebsmittel kurz bleiben. In größeren Anlagenräumen bzw. bei einer größeren Anzahl von Schaltfeldern sind zusätzliche Querverbindungen (Maschenweite 5 -10 m) einzubringen.

Die Schirme der Mittelspannungskabel müssen auf kurzem Weg an das Erdungssystem angeschlossen werden können.

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 16/41 Stand: 11/2016

Strom

In die Erdungsanlage im Schaltanlagenraum sind zu integrieren, sofern angemessen:

- > Armierungen der Stahlbetonteile von Wänden, Böden und Decken
- > metallische Rahmenkonstruktion von Doppelböden
- > alle sonstigen Stahl-Konstruktionsteile
- (s. a. [1], Abschnitt 7.3 und Anhang G sowie Netze BW-Erdungsrichtlinie, [29]).

Bild 9: Erdungsanlage in metallgekapselten Mittelspannungsschaltanlagen

4.4 Erdungsanlage in Betriebsgebäuden

In den verschiedenen Räumen eines Betriebsgebäudes müssen Maschennetze so verlegt werden, dass elektronische Betriebsmittel auf kurzem Weg geerdet werden können (Bild 10).

Das Maschennetz, Armierungen der Stahlbetonteile von Wänden, Böden und Decken sowie größere Stahl-Konstruktionsteile sind in die Erdungsanlage in Betriebsgebäuden zu integrieren, sofern angemessen.

Das Maschenerdungsnetz kann:

- > auf die Armierung aufgelegt, elektrisch mit ihr verbunden und mit eingegossen,
- > in Räumen mit Doppelboden auf dem Rohbetonboden ausgelegt,
- > im Untergeschoss an die Decke angehängt werden.

In jedem Fall ist das Maschennetz in unmittelbarer Nähe der zu erdenden Betriebsmittel zu verlegen. Die Maschenweite soll 5 m nicht wesentlich überschreiten. Erdungsleitungen im Stich sind zu vermeiden (Bild 10, 11).

Werden Kabel über den Schrank- bzw. Gestellreihen geführt, so sollte ein oben liegendes Maschennetz installiert werden. Für dieses Maschennetz gelten die gleichen Anforderungen wie für ein unten liegendes. Metallische Kabelpritschen oder Kabelkanäle sind mit dem Maschennetz an mehreren Stellen zu verbinden.

X Netze BW

Strom

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 17/41 Stand: 11/2016

Bild 10: Innenerder in Betriebs- und Wartengebäuden – Maschennetz und Verbindungen zum Außenerdernetz.

Bild 11: Vertikale Verbindung der Maschennetze

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 18/41 Stand: 11/2016

4.5 Zusammenschluss von Innen- und Außenerdungsanlagen

Bild 12: Vertikale Verbindung der Maschennetze

Innen- und Außenerdungsanlagen sind mehrfach und an mehreren Stellen miteinander zu verbinden, z. B. an einem um das Betriebsgebäude verlegten Potenzialsteuerring (Bild 12).

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 19/41 Stand: 11/2016

5 Erdung von Sekundäreinrichtungen in Hochspannungsschaltanlagen

5.1 Erdung von Tafeln, Gestellen und Schränken

Bei Tafeln, Gestellen und Schränken sind im Bereich der Kabeleinführungen Erdungsschienen zum Anschluss der Kabelschirme zu installieren, die mit der Tafel, dem Gestell oder dem Schrank und entsprechend Bild 13 mit dem Erdermaschennetz elektrisch leitend verbunden sind. Für die Verbindung mit der Erdungsanlage soll ein Leiterquerschnitt von mindestens 16 mm² (Cu) verwendet werden.

Bild 13: Montage der Erdungsschiene

Bei Gestellreihen und Blechtafeln ist eine durchgehende Erdungsschiene vorzusehen. Im Abstand der Teilung soll die Erdungsschiene auf kürzestem Weg mit dem Maschennetz verbunden werden (Bild 13).

Bei Schränken müssen alle metallischen Teile (z. B. Seitenwände, Decken- und Bodenbleche) dauerhaft elektrisch leitfähig geerdet werden. Die Schranktüren sind ebenfalls elektrisch mit dem Schrankgehäuse zu verbinden; hierfür eignet sich Cu-Litze mit 4 mm². Für elektrische Verbindungen bei lackierten Kontaktflächen eignen sich Innenzahnscheiben.

Bei Schränken mit Schwenkrahmen sollte der Schwenkrahmen unten und oben mit dem Schrank verbunden werden. Die Verbindung sollte möglichst kurz sein und daher in der Nähe des Drehpunktes liegen. Für diese Verbindung sollte ein flexibles Kupferband mit einem Mindestquerschnitt von 10 mm² verwendet werden.

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 20/41 Stand: 11/2016

5.2 Erdung bei separat montierten elektronischen Betriebsmitteln

Separat montierte elektronische Betriebsmittel sind auf möglichst kurzem Weg mit dem nächstgelegenen Erdungspunkt zu verbinden. Der Leiterquerschnitt richtet sich nach den Anschlussmöglichkeiten am Betriebsmittel, soll jedoch nicht kleiner als 4 mm² sein. Falls diese Verbindung länger als ca. 2 m ist:

- > sollte die Erdungsleitung Teil einer Masche sein,
- > sollten zusätzlich metallische Konstruktionsteile, die sich in der Nähe befinden, miteinbezogen werden. Dies gilt auch für die in der Nähe zugänglichen Stahl-Konstruktionsteile.

Der PE-Leiter für einen evtl. vorhandenen Netzanschluss des Geräts ist an der Potentialausgleichsschiene anzuschließen.

5.3 Erdung bei Einbau der Betriebsmittel in Gestellen, Schränken und auf Tafeln

Die metallischen Gehäuse der elektronischen Betriebsmittel bzw. die Baugruppenträger sind mit dem Gestell, Rahmen oder der Tafel möglichst großflächig und elektrisch leitend zu verbinden. Ist dies nicht möglich, müssen die Gehäuse der Betriebsmittel bzw. Baugruppenträger über eine möglichst kurze Leitung mit dem Gestell, dem Rahmen oder der Tafel verbunden werden. Bei Baugruppenträgern bzw. Einzelgeräten kann diese Bedingung z. B. durch die Montage einer vertikalen Erdungsschiene nach Bild 14 a erreicht werden. Diese Schiene soll an mindestens zwei Stellen mit dem Schwenkrahmen leitfähig verbunden werden.

Bild 14: Beispiel für die Erdung elektronischer Betriebsmittel in Schränken

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 21/41 Stand: 11/2016

Elektrisch gleichwertig ist die zusätzliche Montage von blanken Erdungsschienen zwischen Baugruppenträger und lackiertem Rahmen. Die Erdungsschienen sollten auf kürzestem Weg mit dem Schrank bzw. dem Schwenkrahmen an mindestens 2 Stellen mit dem Rahmen verbunden werden (Bild 14 b).

Für die Montage der Erdungsschienen in Bild 14 eignen sich Innenzahnscheiben, insbesondere wenn die Kontaktstellen nicht metallisch blank sind. Die Innengewinde in Blechtafeln stellen eine ausreichende Erdverbindung dar.

Ähnliche Erdungsmaßnahmen sind bei der Montage von Lötleisten, Übertragern, Endverschlüssen usw. in Verteilergestellen vorzusehen.

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 22/41 Stand: 11/2016

6 Auswahl und Verlegung von Sekundärleitungen

6.1 Auswahl von Sekundärleitungen

In 20- und 110-kV-Anlagen sind, bis auf die unten angegebenen Ausnahmen, geschirmte Kabel (zum Beispiel NYCY, NYCWY oder Signalkabel X-AYCY) zu verlegen. Darüber hinaus gehende Anforderungen der Geräte- oder Anlagenhersteller an Sekundärleitungen für besondere Anwendungen (z. B. HF-Dämpfungskabel, Doppelschirm, Verdrillung der Adern) sind zu beachten.

Für folgende Verbindungen können Kabel ohne Schirme verlegt werden:

- > Kabel der Stromversorgung (Hausinstallation) für Beleuchtung, Heizung, Lüftung usw., die ein Gebäude nicht verlassen
- > Verbindungen zwischen Eigenbedarfstransformator, Haupt- oder Unterverteilungen

6.2 Verlegung der Sekundärleitungen

Sekundärleitungen sollen auf dem kürzesten Weg bis in die Ebene des Erdermaschennetzes der Freiluftanlage bzw. Maschennetzes des Betriebsgebäudes geführt werden (Bild 15). Sind Schleifen wegen Überlängen der Kabel nicht zu vermeiden, so sind diese in der Ebene des Erdermaschennetzes zu verlegen.

Bild 15: Verlegung von Sekundärleitungen

Entsprechend den örtlichen Gegebenheiten sollen die Sekundärleitungen auf metallischen Trägern oder parallel und räumlich möglichst dicht zu Erdern, Erdungsleitern oder zu sonstigen geerdeten Leitern, z. B. Metallrohren, Blechplatten, Stahlkonstruktionsteilen usw. verlaufen. Ggf. müssen Kabelführungssysteme oder entsprechend wirkende andere metallische Leiter stets an beiden Enden mit der örtlichen Erde verbunden sein. Entlang der Sekundärleitungsstrecke dürfen sie nicht unterbrochen oder ihre einzelnen Teile müssen elektrisch mit geringer Impedanz miteinander verbunden sein (vgl. [22]).

Verlaufen keine Erder, Erdungsleiter oder andere geeignete metallische Leiter in unmittelbarer Nähe und ununterbrochen entlang der gesamten Sekundärleitungsstrecke innerhalb von Gebäuden, so ist dort ein separates Erdseil parallel zu verlegen, dessen Enden jeweils – wiederum auf kurzem Weg – mit dem Erdungsnetz verbunden sind. Der Leiterquerschnitt sollte mindestens 50 mm² (Cu) betragen, übliche Standardquerschnitte (z. B. 120 mm²) werden empfohlen.

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 23/41 Stand: 11/2016

Behandlung von Sekundärkabelschirmen

Im Bereich von Hochspannungsanlagen können Blitz- oder Fehlerströme auf Sekundärkabelschirme eingekoppelt werden. Für die entsprechenden Stromstärken reicht die Dimensionierung üblicher Schirmquerschnitte häufig nicht aus. Auch aus diesem Grund müssen insbesondere längere Sekundärleitungsverbindungen außerhalb von Gebäuden mit einem parallelen Erdungsleiter mit ausreichendem Querschnitt versehen sein. Sowohl der Kabelschirm als auch der parallele Erdungsleiter sind an allen Kabelenden mit dem örtlichen Erdungspotenzial zu verbinden.

Bild 16 zeigt beispielhaft die Verlegung eines parallelen Erdseils in Sekundärkabeltrassen innerhalb von Hochspannungsanlagen, in denen die Kabel in Kunststoffrohren geführt werden.

Bild 16: Erdungsleiter bei längeren Sekundärleitungstrassen in Freiluftanlagen

In Ausnahmefällen können Sekundärkabel ohne tragfähigen Schirm einseitig geerdet werden, zum Beispiel für den Anschluss von Rauchmeldern einer Brandmeldeanlage.

Schirme von Sekundärleitungen zwischen Anlagen, deren Erdungsanlagen nicht oder nur unzureichend verbunden sind, dürfen nur dann beidseitig geerdet werden, wenn Schäden durch Fehlerströme ausgeschlossen werden können. Im Zweifelsfall ist NETZ TEOS zu Rate zu ziehen.

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 24/41 Stand: 11/2016

Die Schirme der Sekundärleitungen sind – bis auf die genannten Ausnahmen – jeweils beidseitig mit der Erdungsanlage zu verbinden.

Anschlusstechnik für die Schirmerdung

Die Erdverbindung des Kabelschirms ist mittels kurzer Leitung (Bild 17, Drahtverbindung möglichst <= 5 cm) oder über geeignete Schellen (Bild 18) herzustellen. Das Bild 17 zeigt rechts auch einen ungünstigen, weil zu langen Schirmanschluss, der die Wirkung des Schirms verschlechtert.

Die Erdverbindung des Kabelschirms muss korrosionsbeständig sein.

Bild 17: Anschluss des Kabelschirms

Bügelschellen, die für die Schirmerdung verwendet werden, müssen so konstruiert sein, dass sie das Kabel nicht quetschen. Die Schellen müssen daher eine an den Kabeldurchmesser angepasste Krümmung haben, damit sie auf dem Schirm rundum möglichst flächig und mit dauerhaftem elektrischen Kontakt anliegen. Besteht der Kabelschirm aus Einzeldrähten, so ist auf gute Kontaktierung an der Klemmstelle zu achten (z. B. Kupferband um den Kabelschirm legen). Für einen dauerhaft ausreichenden Kontaktdruck kann außerdem – je nach Mantelwerkstoff – eine zusätzliche, mechanisch widerstandsfähige Unterlage (Metallfolie oder Hülse) zwischen zurückgeschlagenem Schirm und Mantel notwendig sein, damit die Schirmdrähte nicht mit der Zeit in den Kunststoffmantel eindringen.

Wird eine solche Kontaktierung z. B. mit einer Schelle über dem widerstandsfähigen Mantel eines NYCY-Kabels realisiert, so ergibt sich eine elektrisch gut leitende und mechanisch stabile Schirmerdung.

Die Schirme von Sekundärleitungen sind grundsätzlich beim Eintritt in einen Schrank und nicht erst im Schrankinneren mit Erde zu verbinden. Von diesem Prinzip kann dann abgewichen werden, wenn in einem Schrank ausschließlich Geräte angeschlossen werden, die bereits als solche gegen die äußere elektromagnetische Umgebung an ihrem Einbauort hinreichend geschützt und die separat für einen Schirm-/Funktionserdeanschluss vorgesehen sind.

X Netze BW

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 25/41

11/2016

Stand:

Strom

Werden geschirmte Kabel miteinander verbunden, sind die Schirme der beiden Kabelenden auf kurzen Weg miteinander und ggf. mit einem in der Nähe vorhandenen Erdungspunkt (z. B. metallische Kabelpritsche, Erdermaschennetz, Erdungsschiene) zu verbinden.

Einfachschellen

Doppelschelle

Bild 18: Beispiele für die Schirmerdung

Die Erdungsklemme darf nicht als Zugentlastung verwendet werden.

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 26/41 Stand: 11/2016

Verwendung der Adern innerhalb eines Kabels

Hin- und Rückleiter von Melde, Steuer- und Messstromkreisen sind in der Regel in ein und demselben Kabel zu führen.

Vorzugsweise in getrennten Kabeln sind zu führen: Stromkreise verschiedener Hilfsspannungen, Stromkreise redundanter Systeme und Sekundärleitungen von Anlagen unterschiedlicher Hochspannungsebenen.

Nicht benötigte Adern in geschirmten Kabeln sollen grundsätzlich nicht geerdet werden. Das Erden von freien Adern bei ungeschirmten Kabeln führt nicht zwangsläufig zu einer besseren EMV.

Das Bild 19 zeigt an einem Beispiel die in diesem Abschnitt angesprochenen Maßnahmen zur Störpegelreduzierung bei der Verlegung von Sekundärkabeln.

Bild 19: Beispielschema für die Verlegung von Sekundärleitungen in Freiluftanlagen

Bei Funkanlagen innerhalb von Hochspannungsschaltanlagen sollten Antennenleitungen beim Verlassen der Mastkonstruktion und vor Eintritt in das Gebäude auf kürzestem Weg mit der Erdungsanlage verbunden werden (Bild 20). Metallische Konstruktionselemente oder/und die Armierung sind in die Erdung miteinzubeziehen.

X Netze BW

Strom

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 27/41 Stand: 11/2016

Bild 20: Beispiel für die Verlegung von Sekundärleitungen in einer Funkanlage

Soll ein Sekundärkabel nicht geschnitten, aber an einer oder mehreren Stellen in seinem Verlauf der Kabelschirm geerdet werden (z. B. HF-Kabel von einem Funkturm), so ist diese zusätzliche Erdung ggf. nach den Angaben des Herstellers des angeschlossenen Geräts durchzuführen. In jedem Fall ist der Kabelschirm mittels passender Rohrschellen (ohne Gefahr einer Quetschung oder anderweitigen Beschädigung des Kabels) auf kürzestem Weg mit der Erdungsanlage zu verbinden.

Bild 21: Beispiel für die Zwischenerdung von Sekundärleitungen

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 28/41 Stand: 11/2016

7 Störfestigkeit der Sekundärgeräte

7.1 Begriffe zu Sekundärtechnik

Betriebsmittel, Apparat, Gerät

ist ein Endprodukt mit einer eigenständigen Funktion; besitzt ein eigenes Gehäuse und für den Endbenutzer gebräuchliche Anschlüsse bzw. Verbindungen; im engeren, hier gebräuchlichen Sinn: Betriebsmittel, Apparate, Geräte, die elektrische oder elektronische Bauelemente enthalten.

Sekundäreinrichtungen (im Sinn dieser Technischen Richtlinie)

sind alle Geräte mit elektrischen oder elektronischen Bauelementen, die in der elektromagnetischen Umgebung einer Hochspannungsschaltanlage betrieben werden bzw. für den Betrieb in dieser Umgebung vorgesehen sind.

Je nach Zweck und Einsatzort der Geräte und ihrer Anschlüsse innerhalb einer Station (Umspannwerk, Schaltanlage) ergeben sich unterschiedlich große Expositionen gegenüber elektromagnetischen Störgrößen (Bild 24). Die daraus resultierenden Verträglichkeits- und Prüfpegel sind in den Tabellen 3 bis 8 dargestellt.

Sekundäreinrichtungen von Hochspannungs-Schaltgeräten (nach [2])

Sekundäreinrichtungen (speziell im Sinne von [2]) bestehen aus:

- > Hilfsstromkreisen einschließlich der Stromkreise von zentralen Steuereinheiten, die an Schaltgeräten oder in deren Nähe installiert sind;
- > Einrichtungen für die Überwachung, die Fehlererkennung usw., die Teil der Schaltanlage sind;
- > mit den Ausgangsklemmen von Messwandlern verbundenen Kreisen, die Teil der Schaltanlage sind.

Anschluss

ist eine Schnittstelle des betrachteten Betriebsmittels, Geräts oder Systems mit der äußeren elektromagnetischen Umgebung (siehe Bild 22).

Bild 22: Anschlüsse

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) i

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 29/41 Stand: 11/2016

Gehäuse

ist die physikalische Grenze des Betriebsmittels (Apparates, Gerätes), durch die elektromagnetische Felder abstrahlen oder eintreten können.

Leitungsanschluss

ist ein Anschluss, an dem ein Leiter oder ein Kabel an das Betriebsmittel (Apparat, Gerät) angeschlossen wird, z.B. Stromversorgungs-, Funktionserde- und Signalanschluss.

Funktionserdeanschluss

ist ein Anschluss für die Verbindung mit Erde (Masse), der zu anderen Zwecken als der elektrischen Sicherheit vorgesehen ist.

Signalanschluss

ist ein Anschluss, an dem ein Leiter oder ein Kabel zur Übertragung von Daten angeschlossen wird. Die verschiedenen Verbindungen lassen sich in Bezug auf Exposition gegenüber elektromagnetischen Störgrößen einteilen in:

- > Lokale Verbindungen (①, siehe Bilder 22, 24, 25 und Tabelle 4) in elektromagnetisch schwach gestörten Bereichen, mit mindestens einem der folgenden Merkmale:
 - > dienen der Datenübertragung innerhalb eines Gebäudes
 - > sind nicht direkt mit dem Prozess verbunden
 - > sind relativ kurz (< 30 m)
- > Verbindungen im Feldbereich (f), siehe Bilder 22, 24, 25 und Tabelle 4) also zum Beispiel:
 - > vom Betriebsgebäude oder der Warte zum Relaishaus
 - > zu Betriebsmitteln der Niederspannungsversorgung
 - > innerhalb des Relaishauses
 - > Feldbusverbindungen
- > Verbindung zu HS-Betriebsmitteln (h) siehe Bilder 22, 24, 25 und Tabelle 4), also zwischen Sekundärgeräten und zum Beispiel Leistungsschalter, Stromwandler, Spannungswandler
- > Telekommunikationsverbindungen (t) gemäß Bilder 22, 24, 25 und Tabelle 4), die über das Erdungsnetz der Station oder der Schaltanlage hinaus ohne Trennstelle zu einem Telekommunikationsnetz oder zu Betriebsmitteln an einem entfernten Standort führen.

7.2 Anforderungen an die Störfestigkeit und die Störaussendung von Sekundärgeräten

Alle Sekundäreinrichtungen von Hochspannungsschaltgeräten und –anlagen müssen elektromagnetischen Störgrößen ohne Beschädigung und ohne wesentliche Funktionsstörung widerstehen können. Dies gilt für übliche Betriebsbedingungen wie auch bei Schaltbedingungen, einschließlich der Unterbrechung von Fehlerströmen in Hauptstrombahnen.

Je nach Art der Gerätefunktion und der Art bzw. Auftrittswahrscheinlichkeit der Störgrößen können jedoch bestimmte Fehlfunktionen akzeptiert werden. Eine Übersicht der Leistungsmerkmale bei Störfestigkeitsprüfungen im Hinblick auf verschiedene Gerätefunktionen ist in Tabelle 8 dargestellt.

Die Anforderungen für Prüfungen der Störfestigkeit von Sekundärgeräten sind so zu wählen, dass eine angemessene Störfestigkeit am jeweils vorgesehenen Einsatzort der Geräte gewährleistet ist.

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 30/41 Stand: 11/2016

Strom

Dabei sind alle Anschlüsse bzw. Verbindungen nach Bild 24 und 25 aus Abschnitt 8 der Richtlinie in Bezug auf ihre unterschiedliche Exposition gegenüber elektromagnetischen Störgrößen einzeln zu betrachten.

Die Prüfanforderungen sind entsprechend den Prioritäten nach Bild 23, geltenden Normen oder den Tabellen aus Abschnitt 8 zu entnehmen, nämlich entweder

- a) einer für das spezielle Betriebsmittel (Gerät) geltenden Produkt- (1. Priorität) oder Produkt- familiennorm (2. Priorität), z. B.
 - [10]: Produktnorm Messrelais und Schutzeinrichtungen,
 - [27]: Einrichtungen der Informationstechnik Störfestigkeitseigenschaften,
 - [2]: Gemeinsame Bestimmungen Hochspannungs-Schaltgeräte-Normen, falls die zulässigen Umgebungsbedingungen des Produkts im Anwendungsbereich der jeweiligen Norm eindeutig beschrieben sind und diese mit den Umgebungsbedingungen am vorgesehenen Einsatzort des Sekundärgeräts übereinstimmen,

oder

b) einer für das Betriebsmittel (Gerät) anwendbaren Fachgrundnorm, z. B.

[25]: Störfestigkeit Industriebereich,

falls für diese Betriebsmittel (Geräte) keine spezifischen Produkt- oder Produktfamiliennormen bestehen, und die von diesen Normen erfasste Umgebung für das Betriebsmittel (Gerät) mit der elektromagnetischen Umgebung am Einsatzort des Sekundärgeräts übereinstimmt oder vergleichbar ist,

oder

c) in allen anderen Fällen den Tabellen in Abschnitt 8, die sich auf die Technische Spezifikation [6] stützen. Hiernach sind die Prüfpegel – abhängig vom Einsatzort der Geräte und der Art ihrer Anschlüsse bzw. Verbindungen – gemäß den Bildern 24 und 25 zu wählen.

Prüf- und Messverfahren für die verschiedenen Störfestigkeitsprüfungen sind in der Normenreihe DIN EN 61000-4 (VDE 0847 Teil 4) beschrieben. In den o. g. Dokumenten nach a) bis c) wird darauf jeweils verwiesen

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 31/41 Stand: 11/2016

Bild 23: Flussdiagramm Störfestigkeitsanforderungen für Sekundärgeräte

Grenzwerte der **Störaussendung** sind ggf. entsprechend den zutreffenden Produkt-, Produktfamilien- oder Fachgrundnormen nach a) und b) einzuhalten und zu prüfen.

Für Sekundärgeräte, in denen verschiedene Funktionen in einer Geräteeinheit integriert sind (z. B. Steuerung, Schutz, Fernwirken), gelten die EMV-Anforderungen und Leistungsmerkmale bzw. Annahmekriterien entsprechend der höchsten Bedeutung (siehe Tabelle 8).

Insbesondere bei erstmalig eingesetzten Sekundärgerätetypen oder -generationen empfiehlt sich, eine EMV-Abnahmeprüfung beim Hersteller oder/und eine geeignete Prüfung vor Ort durchzuführen.

Für alle spezifizierten EMV-Anforderungen müssen die jeweils zutreffenden und angewandten Normen bzw. Empfehlungen in der technischen Dokumentation der Geräte angegeben sein.

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 32/41 Stand: 11/2016

7.3 Isolationskoordination für Sekundärgeräte

Anforderungen an die Isolation von Sekundärgeräten sind den jeweiligen Produkt- oder Produktfamiliennormen zu entnehmen, insbesondere

- > [7]: Elektrische Relais, Isolationskoordination für Messrelais und Schutzeinrichtungen Anforderungen und Prüfungen
- > [2]: Gemeinsame Bestimmungen für Hochspannungs-Schaltgeräte-Normen, Abschnitt 6.2.10: Dielektrische Prüfungen an Hilfs- und Steuerstromkreisen

Prüf- und Messverfahren für die verschiedenen Isolationsprüfungen sind in den Normen DIN EN 61180-1 und DIN EN 61180-2 (VDE 0432 Teile 10 und 11) beschrieben. In den o. g. Produkt- oder Produktfamiliennormen wird darauf jeweils verwiesen.

8 Störfestigkeit von Sekundärgeräten: Anforderungen, abhängig vom Einsatzort der Geräte und ihren Anschlüssen bzw. Verbindungen; Störfestigkeits-Leistungsmerkmale für verschiedene Gerätefunktionen

Technische Richtlinie

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 33/41 Stand: 11/2016

Bild 24: Auswahl der Störfestigkeitsanforderungen für verschiedene Einsatzorte von Geräten und deren Anschlüsse bzw. Verbindungen - Beispiel: Freiluftschaltanlagen (AIS)

In gasisolierten Schaltanlagen (GIS) können die Einrichtungen für Schutz, Vor-Ort-Steuerung und die Hochspannungsbetriebsmittel zusammen in einem Raum, einem Gebäude oder getrennt an verschiedenen Orten untergebracht sein (siehe Bild 25).

(*) Wo spezielle Vorsorgemaßnahmen (z. B. Schirmung) getroffen werden, ist 🕕 anzuwenden.

$\label{thm:constraints} \mbox{Typ des Einsatzortes für Gehäuse, Stromversorgungs- und Funktionserdeanschluss}$

H Normaler Einsatzort in Hochspannungsschaltanlagen - Beispiel: Betriebsgebäude, Relaishaus und Schaltfeld P ggf. geschützter Einsatzort, Beispiel: geschirmter Bereich innerhalb des Betriebsgebäudes

Typ der Signalverbindungen (siehe 8.1 "Begriffe zu Sekundärgeräten")

- (l) lokal Beispiel: Verbindungen innerhalb des Betriebsgebäudes
- f Feldbereich Beispiele: Verbindung innerhalb des Feldes und innerhalb des Relaishauses
- $ar{(h)}$ Hochspannungsbetriebsmittel Beispiele: Verbindungen zu Leistungsschaltern,Spannungs-/Stromwandler etc.
- $\overline{(t)}$ Telekommunikationsverbindungen Beispiele: Verbindungen zu PLC und entfernten Einheiten
- pggf. geschützter Bereich Beispiel: Verbindungen innerhalb eines geschirmten Raumes

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 34/41 Stand: 11/2016

Bild 25: Auswahl der Störfestigkeitsanforderungen für verschiedene Einsatzorte von Geräten und deren Anschlüsse bzw. Verbindungen – Beispiel: Innenraumschaltanlagen (z. B. GIS)

(*) Wo spezielle Vorsorgemaßnahmen (z. B. Schirmung) getroffen werden, is(1) anzuwenden.

Typ des Einsatzortes für Gehäuse, Stromversorgungs- und Funktionserdeanschluss

- | Mormaler Einsatzort in Hochspannungsschaltanlagen Beispiel: Betriebs- und Schaltanlagengebäude | Pggf. geschützter Einsatzort, Beispiel: geschirmter Bereich innerhalb des Betriebsgebäudes
- Typ der Signalverbindungen (siehe 8.1 "Begriffe zu Sekundärgeräten")
 - (l) lokal Beispiel: Verbindungen innerhalb desBetriebsgebäudeteils
 - (f) Feldbereich Beispiele: Verbindung zwischen Betriebs- undAnlagengebäudeteil, Verbindungen innerhalb des Sekundärteils der Schaltanlage
 - (h) Hochspannungsbetriebsmittel Beispiele: Verbindungen zu Spannungs-/Stromwandler
 - Telekommunikationsverbindungen Beispiele: Verbindungen zu PLC und entfernten Einheiten
 - ggf. geschützter Bereich Beispiel: Verbindungen innerhalb eines geschirmten Raumes

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

TTG 1001 Nr.: Version: 1.1 Seite: 35/41

11/2016 Stand:

Tabelle 3: Störfestigkeitsanforderungen - Gehäuse

				Gerät einge	esetzt in		
Prüfung	Umgebungsbedingung	Grundnorm		Kraftwerken G	HS- u	nd MS-Schaltanlagen H	Bemerkungen
			Pegel	Prüfwert	Pegel	Prüfwert	
1.1	Magnetfeld mit energie-	e- DIN	2	3 A/m dauernd	2	3 A/m dauernd	Anzuwenden nur für Monitore mit Katho- denstrahlröhre, gemäß CISPR 24, Anhang B2
1.1		EN 61000-4-8	5	100 A/m dauernd 1000 A/m während 1 s	5	100 A/m dauernd 1000 A/m während 1 s	Anzuwenden nur für Geräte, die gegen Magnetfelder empfindlich sind, z.B. Hall- Elemente, magnetische Feldsensoren.
1.2	Gestrahltes elektromagneti- sches HF-Feld 80 MHz – 3000 MHz (2)	DIN EN 61000-4-3	3	10 V/m (3)	3	10 V/m (3)	Für diesen Prüfpegel kann normalerweise eine mobile Sendeeinrichtung in 1 bis 2 m Abstand vom eingebauten Gerät verwendet werden (siehe Einzelheiten in der Grund- norm)
1.3	Elektrostatische Entladung	DIN EN 61000-4-2	3	6 kV Kontakt 8 kV Luft	3	6 kV Kontakt 8 kV Luft (4)	-

Hinweise:

- (1) [G], [H]: siehe Bild 4. Geräte in "geschützten" Bereichen [P] müssen den Anforderungen der entsprechenden Fachgrundnorm oder Produktnorm entsprechen.
 (2) Über 1 GHz soll die Prüfung in dem in der Grundnorm spezifizierten Frequenzbereich durchgeführt werden.
- (3) Höhere Anforderungen können an Geräte in besonderer Umgebung gestellt werden (z.B. in der Nähe von Sendeanlagen).
- (4) Höhere Prüfwerte sollen für Geräte unter härteren elektrostatischen Umgebungsbedingungen außerhalb von Gebäuden angewendet werden.

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1

Seite: 36/41 Stand: 11/2016

Tabelle 4: Störfestigkeitsanforderungen – Signalanschlüsse

Prüfung	Umgebungsbedingung	Grundnorm		lokal	im	n Feldbereich f	zu H	S-Betriebsmitteln	Tele	kommunikation t	Bemerkungen
			Pegel	Prüfwert	Pegel	Prüfwert	Pegel	Prüfwert	Pegel	Prüfwert	
2.1	Netzfrequente Stör- spannung	DIN EN 61000-4-16	-	-	4	30 V dauernd 300 V während 1 s	4	30 V dauernd 300 V während 1 s	4	30 V dauernd 300 V während 1 s	-
2.2	Stoßspannung 1,2/50 µs Leiter - Erde Leiter - Leiter	DIN EN 61000-4-5	2	1 kV 0,5 kV	3 2	2 kV 1 kV	4 3	4 kV 2 kV	4 3	4 kV (2) 2 kV (2)	Für symmetrische Leitungen und kurze Datenbusverbindungen siehe Tabelle A1 in DIN EN 61000-4-5
2.3	Gedämpfte Schwingun- gen Leiter - Erde Leiter - Leiter	DIN EN 61000-4-12	-	-	2	1 kV 0,5 kV	3	2,5 kV 1 kV	3	2,5 kV (3) 1 kV	Die Prüfung wird mit 1 MHz durchgeführt (höhere Frequenzen sind in Beratung, um GIS zu berücksichti- gen)
2.4	Schnelle transiente Störgrößen/ Burst	DIN EN 61000-4-4	3	1 kV	4	2 kV	х	4 kV	х	4 kV	Wiederholungsrate von 2,5 kHz bei 4 kV
2.5	Leitungsgeführte Stör- größen, induziert durch hochfrequente Felder	DIN EN 61000-4-6	3	10 V	3	10 V	3	10 V	3	10 V	10 V = 140 dB(μV)

Hinweise:

- (1) : siehe Bild 4. Geräte in "geschützten" Bereichen P müssen den Anforderungen der entsprechenden Fachgrundnorm oder Produktnorm entsprechen.
- (2) Stoßwellenform 10/700 µs wird für Prüfungen an Signalanschlüssen empfohlen, die für eine Verbindung mit Telekommunikationsnetzen oder zu Betriebsmitteln an einem entfernten Standort vorgesehen sind.
- (3) Nur anzuwenden für Verbindungen zu Power Line Carrier.

Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Technische Richtlinie

TTG 1001 Nr.: Version: 1.1 Seite: 37/41

11/2016 Stand:

Tabelle 5: Störfestigkeitsanforderungen – Wechselspannungs-(Niederspannungs-)Netzanschluss, Ein- und Ausgänge

				Gerät einges			
Prüfung	Umgebungsbedingung	Grundnorm	ndnorm Kraftwerken G		HS- uı	nd MS-Schaltanlagen H	Bemerkungen
			Pegel	Prüfwert	Pegel	Prüfwert	
3.1	Spannungseinbrüche (voltage dips)	DIN	-	ΔU 30% v ΔU 60% wäh			nicht anzuwenden bei Wechselspan-
3.2	Spannungsunterbrechungen	EN 61000-4-11	-	ΔU 100% während 5 Perioden ΔU 100% während 50 Perioden (3)			nungsausgängen
3.3	Stoßspannung 1,2/50µs Leiter - Erde Leiter - Leiter	DIN EN 61000-4-5	3 2	2 kV 1 kV	4 3	4 kV 2 kV	-
3.4	Schnelle transiente Störgrößen/ Burst	DIN EN 61000-4-4	3	2 kV	4	4 kV	-
3.5	Gedämpfte Schwingungen Leiter - Erde Leiter - Leiter	DIN EN 61000-4-12	2	1 kV 0,5 kV	3	2,5 kV 1 kV	Die Prüfung wird mit 1 MHz durchge- führt (höhere Frequenzen sind in Bera- tung, um GIS zu berücksichtigen)
3.6	Leitungsgeführte Störgrößen, induziert durch hochfrequente Felder	DIN EN 61000-4-6	3	10 V	3	10 V	10 V = 140 dB(μV)

Hinweise:

^{[1] [}G], [H]: siehe Bild 4. Geräte in "geschützten" Bereichen [P] müssen den Anforderungen der entsprechenden Fachgrundnorm oder Produktnorm entsprechen.
[2] Für Geräte mit einem Eingangsstrom von > 16 A sollten die Prüfungen auf die Stromversorgungsanschlüsse der elektronischen Geräte/Module etc. beschränkt werden

⁽³⁾ Nur anzuwenden auf Stromversorgungsanschlüsse, die direkt mit dem öffentlichen Niederspannungsnetz verbunden sind

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

TTG 1001 Nr.: Version: 1.1 Seite: 38/41

11/2016 Stand:

Tabelle 6: Störfestigkeitsanforderungen – Gleichspannungs-(Niederspannungs-)Netzanschluss, Ein- und Ausgänge

				Gerät einges			
Prüfung	Umgebungsbedingung	Grundnorm		Kraftwerken G	HS- u	nd MS-Schaltanlagen H	Bemerkungen
			Pegel	Prüfwert	Pegel	Prüfwert	
4.1	Spannungseinbrüche (voltage dips)	DIN	-	ΔU 30% während 0 ΔU 60% während		The state of the s	nicht anzuwenden bei Gleichspannungs- ausgängen
4.2	Spannungsunterbrechungen	EN 61000-4-29	-	ΔU 1009	ΔU 100% während 0,05 s		
4.3	Wechselanteile in der Gleich- spannungsversorgung	DIN EN 61000-4-17	3		10% U _n	- uusgungen	
4.4	Störspannung mit energietechni- scher Frequenz	DIN EN 61000-4-16	3	10 V dauernd 100 V während 1 s	4	30 V dauernd 300 V während 1 s	-
4.5	Stoßspannung 1,2/50µs Leiter - Erde Leiter - Leiter	DIN EN 61000-4-5	3 2	2 kV 1 kV	3 2	2 kV 1 kV	-
4.6	Schnelle transiente Störgrößen/ Burst	DIN EN 61000-4-4	3	2 kV	4	4 kV	-
4.7	Gedämpfte Schwingungen Leiter - Erde Leiter - Leiter	DIN EN 61000-4-12	2	1 kV 0,5 kV	3	2,5 kV 1 kV	Die Prüfung wird mit 1 MHz durchge- führt (höhere Frequenzen sind in Bera- tung, um GIS zu berücksichtigen)
4.8	Leitungsgeführte Störgrößen, induziert durch hochfrequente Felder	DIN EN 61000-4-6	3	10 V	3	10 V	10 V = 140 dB(μV)

Hinweise:

[4] G, H: siehe Bild 4. Geräte in "geschützten" Bereichen P müssen den Anforderungen der entsprechenden Fachgrundnorm oder Produktnorm entsprechen.

⁽⁵⁾ Für Geräte mit einem Eingangsstrom von > 16 A sollten die Prüfungen auf die Stromversorgungsanschlüsse der elektronischen Geräte/Module etc. beschränkt werden.

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

TTG 1001 Nr.: Version: 1.1 Seite: 39/41

11/2016 Stand:

Tabelle 7: Störfestigkeitsanforderungen – Funktionserdeanschluss

	Gerät eingesetzt in (1)				(1)		
Prüfung	Umgebungsbedingung	Grundnorm	ı	Kraftwerken G		nd MS-Schaltanlagen H	Bemerkungen
			Pegel	Prüfwert	Pegel	Prüfwert	
5.1	Schnelle transiente Störgrößen/ Burst (kapazitive Koppelzange) (2)	DIN EN 61000-4-4	3	2 kV	4	4 kV	Anzuwenden auf spezielle, vom Schutz- leiteranschluss getrennte Funktionserd-
5.2	Leitungsgeführte Störgrößen, induziert durch hochfrequente Felder	DIN EN 61000-4-6	3	10 V	3	10 V	verbindungen 10 V = 140dB(μV)

Hinweise:

[1] G, H: siehe Bild 4. Geräte in "geschützten" Bereichen P müssen den Anforderungen der entsprechenden Fachgrundnorm oder Produktnorm entsprechen.
[2] Nur anzuwenden auf Anschlüsse, die gemäß Betriebsanweisung des Herstellers mit Kabeln von evtl. über 3 m Gesamtlänge verbunden sind

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 40/41 Stand: 11/2016

Tabelle 8: Störfestigkeits-Leistungsmerkmale für die wesentlichsten Gerätefunktionen (mit in der Reihenfolge nach unten abnehmender Bedeutung)

Funktionen (*)	Annahmekriterien								
i unktionen ()	Kontinuierliche Vorgänge	Transiente Vorgänge mit hoher Auftrittshäufigkeit	Transiente Vorgänge mit niedriger Auftrittshäufigkeit						
Schutz und Schutzsignalüber- tragung (**)	siehe Pr	oduktnorm DIN EN 50263 / VDE	0435 Teil 320						
Online-Funktionen und Regelung									
Zählung									
Befehl und Steuerung			kurze Verzögerung (1)						
Überwachung		Betriebsverhalten festgelegten Grenzen	Vorübergehender Verlust, selbsttätige Wiederherstellung (2)						
Mensch-Maschine- Schnittstelle			Unterbrechung und Systemrücksetzung (3)						
Warnung		kurze Verzögerung (4), Vorü	bergehende Falschanzeige						
Datenübermittlung und Tele- kommunikation (***)		kein Verlust, Erhöhung der möglichen Bitfehlerrate (5)	Vorübergehender Verlust (5)						
Datenerfassung und Speiche- rung		Vorübergehende Funk	tionsminderung (2) (6)						
Messung		Vorübergehende Funktionsminderun	g, selbsttätige Wiederherstellung (7)						
Offline-Funktionen		Vorübergehende Funktionsminderung (6)	Vorübergehender Verlust und Zurücksetzung (6)						
Passives Monitoring		Vorübergehende Funktionsminderung	Vorübergehender Verlust (5)						
Selbstdiagnose		Vorübergehender Verlust, selbsttätige Wiederherstellung (8)							

Technische Richtlinie Elektromagnetische Verträglichkeit (EMV) in Mittel- und Hochspannungsschaltanlagen der Netze BW

Nr.: TTG 1001 Version: 1.1 Seite: 41/41 Stand: 11/2016

Anmerkungen zu Tabelle 8:

- (*) Für die Anwendung der Annahmekriterien für Geräte mit mehreren oder gleichzeitigen Funktionen (z. B. Überwachung und Monitoring) ist die kritischste Funktion zu betrachten.
- (**) Für eine Schutzübertragung mittels PLC kann für das "normales Betriebsverhalten" im Fall der Betätigung von Hochspannungstrennschaltern ein geeignetes Nachweisverfahren erforderlich sein.
- (***) In Automations- und Steuerungssystemen als Hilfsfunktion neben anderen Funktionen verwendet, z. B. als Koordinierungsfunktion.
- [1] Annehmbar ist eine Verzögerung, deren Dauer gegenüber der Zeitkonstante des gesteuerten Prozesses unerheblich ist.
- (2) Vorübergehender Verlust der Datenerfassung und Abweichungen bei der Ereignisprotokollierung sind annehmbar, die richtige Reihenfolge der Ereignisse jedoch soll erhalten bleiben.
- (3) Manuelle Wiederherstellung durch Bediener ist erlaubt.
- (4) Entsprechend der Dringlichkeit (nicht am Prozess orientiert)
- (5) Vorübergehend erhöhte Bitfehlerrate kann die Kommunikation beeinträchtigen; nach jeglicher Unterbrechung muss die Kommunikation automatisch wiederhergestellt werden.
- (6) Keine Beeinträchtigung der gespeicherten Daten oder der Prozessgenauigkeit.
- (7) Ohne Beeinträchtigung der Messgenauigkeit der analogen oder digitalen Anzeigen
- (8) Innerhalb des System-Diagnosezyklus