3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 CONTROL THEORY SEMESTER - 5

A	1,	,	
Time: 3 Hours]			Full Marks: 70

		ROUP - A	
	(Multiple Ch	noice Type Questions)	
. Ch	coose the correct alternatives for a	any ten of the following:	$10\times1=10$
1)	The characteristic equation o	of a second order system is s " + 6s	s + 25 = 0. The
	a) underdamped	b) overdamped	
	c) undamped	d) critically damped.	
ii)	Addition of a zero to the closed	i loop transfer function	
	a) increase rise time	b) decrease rise time	
	c) increase overshort	d) no effect.	
iti)	For a Type - I system, the stea	ady state error due to step input is	
	a) $\frac{1}{1+K_p}$	b) $\frac{1}{K_v}$	
•	c) 0	d) α.	
iv)	The root loci of a system have t	three asymptotes. The system can l	nave
	a) five poles and two zeros	b) three poles and one ze	ro
	c) four poles and two zeros	d) six poles and two zeros	s

55408 (11/12)

S/B.Tech(EIE-NEW)/SEM-5/EE-511(EI)/08/(09)

v) The lag compensator

- a) decreases the bandwidth
- b) increases the bandwidth
- c) does not affect the bandwidth d)

increases steady state error.

vi) Gain margin is a measure of

- a) relative stability
- b) controllability

c) observability

d) absolute stability.

vii) The open loop transfer function of a unity feedback system in given below:

$$G(S) = \frac{SK}{(0.5 S + 1)}$$

The initial slope of Bode plot intersecting 0 db axis at

a) w = k

b) $w = \frac{1}{k}$

c) $w = \sqrt{k}$

d) $w = \frac{1}{\sqrt{k}}$.

viii) A system has a single pole of origin. Its impulse response will be

a) constant

- b) ramp
- c) decaying exponentially
- d) oscillatory.

ix) In force-voltage analogy, mass is analogous to

a) change

b) current

c) inductance

d) resistance.

CS/B.Tech(EIE-NEW)/SEM-5/EE-511(EI)/OS/(09)

5

- x) A is an $n \times n$ matrix. For the system to be controllable, the rank of the controllability matrix should be
 - a) n

b) > n

c) ≥ n

- d) $\leq n$.
- xi) The settling time of a second order system on 2% basis is given by
 - a) $\frac{4}{\xi w_n}$

b) $\frac{3}{\xi w}$

c) $\frac{4\xi}{w_n}$

- d) $\frac{2}{\xi w_n}$
- xii) In a signal flow graph, loops are said to be non-touching, if they
 - a) do not touch alternate nodes
 - b) do not touch any node
 - c) do not posses any common node
 - d) posses at least one common node.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Obtain the transfer function of the circuit shown:

CS/B.Tech(EIE-NEW)/SEM-5/EE-511(EI)/08/(09)

3. Find the steady state error for a unity feedback system having transer function

$$\frac{20}{S(S+2)(S^{\nu}+2S+2)}$$
 subjected to

- a) Unit step,
- b) Unit ramp and
- c) Parabolic input $\frac{t^2}{2}$.
- 4. Using block diagram reduction techniques, find the closed loop transfer function of the system whose block diagram is given below:

5. Construct the state model for the system characterised by the differential equation

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = u.$$

6. Consider the following characteristic equation $S^4 + KS^3 + S^2 + S + 1 = 0$.

Using Routh's stability criterion, determine the range of K for stability.

CS/B.Tech(EIE-NEW)/SEM-5/EE-511(EI)/08/(09)

7

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. The open loop transfer function of a unity feedback system is given by

$$G(S) = \frac{K(20+S)}{(S+1)(S+2)(S+10)}$$
. Construct Bode plot for $K = 10$.

Determine:

- a) Gain crossover frequency
- b) Phase crossover frequency
- c) Gain margin
- d) Phase margin.

Determine whether the closed loop system is stable.

15

8. A unity feedback control system has an open loop transfer function

$$G(S) = \frac{K}{S(S+4)(S^{v}+4S+20)}$$

Sketch the root locus of the system by determining the following:

- a) Centroid, number and angle of asymptotes.
- b) Angle of departure of root locus from poles
- c) Breakaway point
- d) The value of K and the frequency at which the root locus crosses the JW axes.

Hence find the value of K so that the system has a damping factor of 0.707.

55408 (11/12)

CS/B.Tech(EIE-NEW)/SEM-5/EE-511(EI)/08/(09)

- 9. a) State and explain Nyquist criterion.
 - b) A unity feedback control system has open loop transfer function

$$G(S)H(S) = \frac{4S+1}{S^{v}(S+1)(2S+1)}$$

Draw the Nyauist plot and determine closed loop stability. Calculate gain margin also. 5 + 10

10. a) The state model of the following system is given below:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u, Y = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Test the controllability and observability for the system.

- b) Prove that the polar plot of the high-pass RC circuit is a semi-circle.
- 8 + 7

11. Write short notes on any three of the following:

 $3 \times 5 = 15$

- a) DC tacho-generators
- b) Minimum phase and non-minimum phase systems
- c) Basic compensators
- d) Performance indices.

END