Appendix A Sea Water Density According to UNESCO Formula

Density of sea water for a given temperature T in the range 0 < T < 40 °C, salinity S in the range 0 < S < 42 PSU and pressure p is determined from the equation of state (UNESCO 1981):

$$\rho = \frac{\rho(S, T, 0)}{1 - \frac{p}{K(S, T, p)}} \tag{A.1}$$

where K(T, S, p) is module of sea water compressibility. Sea water density is determined using the following algorithm:

• calculation of the SMOW density (Standard Mean Ocean Water):

$$\rho_{SMOW} = a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^4 + a_5T^5$$
 (A.2)

where:

$$\begin{array}{lll}
 a_0 &=& 999.842594 \\
 a_1 &=& 6.793953 \times 10^{-2} \\
 a_2 &=& -9.095290 \times 10^{-3} \\
 a_3 &=& 1.001685 \times 10^{-4} \\
 a_4 &=& -1.120083 \times 10^{-6} \\
 a_5 &=& 6.536332 \times 10^{-9}
 \end{array}$$
(A.3)

• calculation of sea water density at the normal atmospheric pressure (normal atmosphere) (p = 0):

$$\rho(S, T, 0) = \rho_{SMOW} + B_1 S + C_1 S^{1.5} + d_0 S^2$$
(A.4)

with:

$$B_1 = b_0 + b_1 T + b_2 T^2 + b_3 T^3 + b_4 T^4$$
 (A.5)

[©] Springer International Publishing Switzerland 2015 S.R. Massel, *Internal Gravity Waves in the Shallow Seas*, GeoPlanet: Earth and Planetary Sciences, DOI 10.1007/978-3-319-18908-6

$$C_1 = c_0 + c_1 T + c_2 T^2 (A.6)$$

where:

$$b_0 = 8.2449 \times 10^{-1} b_1 = -4.0899 \times 10^{-3} b_2 = 7.6438 \times 10^{-5} b_3 = -8.2467 \times 10^{-7} b_4 = 5.3875 \times 10^{-9}$$
(A.7)

$$c_0 = -5.7246 \times 10^{-3} c_1 = 1.0227 \times 10^{-4} c_2 = -1.6546 \times 10^{-6} d_0 = 4.8314 \times 10^{-4}$$
(A.8)

• determination of the compressibility module at pressure p = 0:

$$K(S, T, 0) = K_w + F_1 S + G_1 S^{1.5}$$
 (A.9)

coefficients K_w , F_1 and G_1 are given by:

$$K_w = e_0 + e_1 T + e_2 T^2 + e_3 T^3 + e_4 T^4$$
 (A.10)

where:

$$\left. \begin{array}{ll}
 e_0 &= 19\,652.210\,000 \\
 e_1 &= 148.420\,600 \\
 e_2 &= -2.327\,105 \\
 e_3 &= 1.360\,477 \times 10^{-2} \\
 e_4 &= -5.155\,288 \times 10^{-5}
 \end{array} \right\}$$
(A.11)

$$F_1 = f_0 + f_1 T + f_2 T^2 + f_3 T^3 \tag{A.12}$$

where:

$$\begin{cases}
 f_0 = 54.674600 \\
 f_1 = -0.603459 \\
 f_2 = 1.099870 \times 10^{-2} \\
 f_3 = -6.167000 \times 10^{-5}
 \end{cases}$$
(A.13)

and

$$G_1 = g_0 + g_1 T + g_2 T^2 (A.14)$$

where:

$$g_0 = 7.9440 \times 10^{-2} g_1 = 1.6483 \times 10^{-2} g_2 = -5.3009 \times 10^{-4}$$
(A.15)

• determination of final compressibility module of the sea water:

$$K(S, T, p) = K(S, T, 0) + A_1 p + B_2 p^2$$
 (A.16)

with:

$$A_1 = A_w + (i_0 + i_1 T + i_2 T^2) S + j_0 S^{1.5}$$
(A.17)

$$A_w = h_0 + h_1 T + h_2 T^2 + h_3 T^3 (A.18)$$

where:

$$h_0 = 3.23990$$

$$h_1 = 1.43713 \times 10^{-3}$$

$$h_2 = 1.16092 \times 10^{-4}$$

$$h_3 = -5.77905 \times 10^{-7}$$
(A.19)

$$i_0 = 2.28380 \times 10^{-3}
i_1 = -1.09810 \times 10^{-5}
i_2 = -1.60780 \times 10^{-6}
j_0 = 1.91075 \times 10^{-4}$$
(A.20)

and

$$B_2 = B_w + (m_0 + m_1 T + m_2 T^2) S (A.21)$$

where:

$$B_w = k_0 + k_1 T + k_2 T^2 (A.22)$$

with:

$$k_0 = 8.50935 \times 10^{-5} k_1 = -6.12293 \times 10^{-6} k_2 = 5.27870 \times 10^{-8}$$
(A.23)

$$m_0 = -9.9348 \times 10^{-7}
 m_1 = 2.0816 \times 10^{-8}
 m_2 = 9.1697 \times 10^{-10}$$
(A.24)

• final determination of the sea water density $\rho(S, T, p)$ from Eq. (A.1):

```
Example 1: salinity S=8 PSU, temperature T=10 °C, pressure p=0 bar. As the pressure p=0, the density \rho(S,T,0) is given by Eq. (A.4). Thus we have:
```

- $-\rho_{SMOW} = 999.70209$ from Eq. (A.2),
- $-\rho_w(8, 10, 0) = 1005.94659$ from Eq. (A.4).

Example 2: salinity S=8 PSU, temperature T=10 °C, pressure p=10 bar. Similarly to example above we obtain:

```
-\rho_{SMOW} = 999.70209 from Eq. (A.2),
```

- $-\rho(S, T, 0) = 1005.94659$ from Eq. (A.4),
- $-K_w = 20\,916.794\,90$ from Eq. (A.10),
- $-A_1 = 3.28574$ from Eq. (A.17),
- $-B_2 = 0.00020$ from Eq. (A.21),
- -K = 21351.40820 from Eq. (A.16),
- $-\rho(8, 10, 10) = 1006.41797$ from Eq. (A.1).

Reference

UNESCO (1981) Tenth report of the joint panel on oceanographic tables and standards. UNESCO Technical Papers in Marine Science, Paris, 25 p

Appendix B

Determination of Isopycnal Displacements by Moving CTD Sensors

The method of up and down movement of the towed CTD sensor has been applied for transects in the Southern Baltic waters for many years. When a ship r/v *Oceania* moves with velocity C_s , the CTD sensor falls from the sea surface to the sea bottom and rises from bottom to surface, and again moves down to the sea bottom in the repeated cycles (see Fig. B.1). At each station, when CTD sensor was on the sea surface (or on the sea bottom), the latitude φ and longitude λ , as well as the time t were known. Between two following stations, the ship velocity was only approximately constant. To find the local ship velocity, let us transform the geographic coordinates (φ, λ) into local Cartesian coordinates (x, y), where x is coordinate along east-west direction and y is coordinate along south-north direction.

As the Earth is not a perfect sphere, the radius of the main circle inclined at $\varphi=55.25^\circ$ becomes:

$$R(\varphi) = \sqrt{\frac{(a^2 \cos \varphi)^2 + (b^2 \sin \varphi)^2}{(a \cos \varphi)^2 + (b \sin \varphi)^2}}$$
(B.1)

where $a=6378.1370\,\mathrm{km}$ is an equator radius and $b=6356.7523\,\mathrm{km}$ is a polar radius. For $\varphi=55.25^\circ$ from Eq. (B.1) we obtain $R(55.25^\circ)=6363.7398\,\mathrm{km}$. Using the $R(55.25^\circ)$ value we obtain the following relationships between geographical and local Cartesian coordinates:

$$\Delta \lambda = 1^{\circ} = \frac{\pi \cdot R(55.25^{\circ}) \cdot \cos(55.25^{\circ})}{180} = 63.309 \,\mathrm{km}$$

or

$$\Delta \lambda = 1' = \frac{\pi \cdot R(55.25^\circ) \cdot \cos(55.25^\circ)}{60 \cdot 180} = 1.055 \,\mathrm{km}$$

Fig. B.1 CTD sensor zig-zag movement through the water column

and

$$\Delta \varphi = 1^{\circ} = \frac{\pi b}{180} = 110.946 \,\mathrm{km}$$

or

$$\Delta \varphi = 1' = \frac{\pi b}{60 \cdot 180} = 1.849 \,\mathrm{km}$$

The ship moved approximately along latitude $\varphi=55.25^\circ$ and the deviation from this line was around $\pm 3'$ during the whole transect. Therefore for simplicity we neglect this deviation and assume that the transect coincides with the latitude $\varphi=55.25^\circ$.

The mean local ship velocity between stations i and i + 1 is:

$$C_{i,i+1} = \frac{\Delta \lambda}{\Delta t} = \frac{1055 \cdot (\lambda_{i+1} - \lambda_i)}{60 \cdot (t_{i+1} - t_i)}$$
(B.2)

where longitude λ_i is expressed in geographical minutes, time t_i is in minutes, and ship velocity is in m s⁻¹.

To assess the position of the given isopycnal displacements in the water column, values of temperature T, salinity S or density ρ at a given point $P_{i,i+1}$, located between stations i and i+1, are required. Let us first determine distance $x_{P_{i,i+1}}$ and time $t_{P_{i,i+1}}$, corresponding to the situation when CTD sensor reaches a selected point $P_{i,i+1}$ with required density ρ , moving down from the sea surface. From geometrical relationships (see Fig. B.2) we have:

Fig. B.2 CTD sensor crossing the required isopycnal

$$x_{P_{i,i+1}} = \frac{h_{P_{i,i+1}}}{h_{i+1}} (x_{i+1} - x_i) + x_i$$
(B.3)

The corresponding time $t_{P_{i,i+1}}$ is given by:

$$t_{P_{i,i+1}} = \frac{h_{P_{i,i+1}}}{h_{i+1}} (t_{i+1} - t_i) + t_i$$
(B.4)

Similarly for CTD sensor moving up we obtain:

$$x_{P_{i,i+1}} = x_{i+1} - \frac{h_{P_{i,i+1}}}{h_i} (x_{i+1} - x_i)$$
(B.5)

and for time $t_{P_{i,i+1}}$ we have:

$$t_{P_{i,i+1}} = t_{i+1} - \frac{h_{P_{i,i+1}}}{h_i} (t_{i+1} - t_i)$$
(B.6)

Using formulae given in the Eqs. (B.3)–(B.6) we can determine functions T(x, z, t) and S(x, z, t), as well as isopycnals $\rho(x, z, t)$ along the experimental transect.

In general, the depth of submergence of a given isopycnal of density ρ is a function of x and t, i.e. $h_{\rho} = h_{\rho}(x, t)$. However, when CTD sensor is moving with approximately constant speed C_s , both variables x and t are related as $x = C_s t$. Let us consider the case of a ship moving westward from some point P_0 towards the Słupsk Sill (see Fig. 7.1). The information on the isopycnal displacements can

Fig. B.3 Changing of isopycnal displacements along the transect in the two dimensional space (x, t)

be obtained along the cross-section where $x = C_s t$. This is schematically illustrated in Fig. B.3. At distance x_1 and corresponding time t_1 the ship is at point P_1 where the given isopycnal ρ is located at water depth $h_{1, \rho}$. Similarly, at point P_2 we have isopycnal submergence $h_{2, \rho}$. To keep uniform dimensions on both axes, we define the distance l along the cross-section in the two-dimensional space h = f(x, t) as follows:

$$l = \sqrt{[x^2 + (C_s t)^2]}$$
 (B.7)

It should be noted that dependence of the isopycnal submergence h_{ρ} on time t is validated by the assumption that internal waves profile in the form:

$$\zeta \approx \exp[i(kx \pm \omega t)] = \exp[ik(x \pm C_0 t)]$$
 (B.8)

where C_0 is the wave phase speed and sign (\pm) reflects the possible different wave directions. Using fact that $x = C_s t$, we obtain:

$$\zeta \sim \exp[ik(C_s \pm C_0)t] \tag{B.9}$$

For long waves reproduced by solitary waves or by cnoidal waves, the isopycnal displacements are functions of $\cosh(x_1)$ or $cn(x_1)$, where the arguments $x_1 \sim \alpha(x-Ut)$. When the sensor is moving with speed C_s , the arguments become $x_1 \sim \alpha(\pm C_s - U)t$, where parameter α depends on wave amplitude and water depth.

Index

A	E
Arkona Basin, 132, 142, 143, 150	Energy flux, 19, 47, 99, 113
Aspect ratio, 48	Equations
Australian North West Shelf, 4, 6, 87, 88,	available potential energy, 80, 85
111, 120	continuity, 11, 12, 56
	determinant, 54, 63
	diffusion, 83
В	extended Korteweg-de Vries (eKdV), 36,
Baltic Proper, 142, 150	74
Baltic seiches, 134, 135	generalised Korteweg-de Vries, 102
Beddies, 133	Hamilton, 96
Bornholm Basin, 132	hydrostatics, 13
Bornholm Deep, 143	kinetic energy, 77, 79
Boussinesq approximation, 13	Korteweg-de Vries (KdV), 37, 69
	momentum, 11, 81
	potential energy, 77–79, 81, 83
C	rotated extended Korteweg-de Vries
Coefficient	(reKdV), 104
dispersion, 36, 69, 134	Taylor-Goldstein, 21
nonlinear, 36, 69, 134	UNESCO formula, 7
Complete elliptic integrals, 39, 100	
Critical angle, 93, 111	
Critical aligic, 93, 111	F
	Fluid element states
D.	neutral, 10
D	stable, 9
Danish Straits, 131	unstable, 10
Density structure	Frequency
exponential density profile, 46, 51, 65,	angular frequency of Earth rotation, 13
122	extrinsic, 96
other specific densities, 59	inertial, 13, 16
three-layer sea, 53, 58	intrinsic, 96
two pycnoclines, 64	Väisälä-Brunt frequency, 8, 10, 16, 46,
two-layer sea, 26	51, 54, 55, 66, 102
Diapycnal mixing, 83, 84, 133	Froude number, 82, 83, 110
Dispersion relation, 17, 19, 27, 30, 34, 46,	Functions
60, 97, 129	autocorrelation, 121
© Springer International Publishing Switzerland	2015 161
S.R. Massel. Internal Gravity Waves in the Shall	

S.R. Massel, *Internal Gravity Waves in the Shallow Seas*, GeoPlanet: Earth and Planetary Sciences, DOI 10.1007/978-3-319-18908-6

162 Index

complex analytical signal, 127 cosine-elliptic, 40	O Orthogonality condition, 62
Dirac's delta, 121	,
eigenfunction, 63	
instantaneous amplitude, 127	R
instantaneous frequency, 127	Ray method, 95
instantaneous phase, 127	Research vessel Oceania, 143, 147, 157
Jacobian elliptic, 39, 70, 72	Richardson number, 21
Kronecker delta, 121	Rossby radius, 116, 149, 150
stream function, 14, 20, 90, 92	•
velocity potential function, 14, 26, 27	
	S
	Seas
G	Andaman, 4, 6, 87, 110
Gdańsk Basin, 143	Baltic, 131, 132, 134, 135
Gdańsk Deep, 143	Black, 6
Gotland Basin, 132, 134	Japan, 6
Gotland Deep, 55, 57, 64, 89, 132, 149	Kaspiyan, 6
Gulf of Bothnia, 132	North, 132
Gulf of Finland, 132	South China, 5, 105
Gulf of Gdańsk, 132	Sulu, 4, 87
	White, 6
	Seawater properties
н	density, 7, 58, 153
High gradient zones	potential density, 7, 51
halocline, 8	pressure, 7
pycnocline, 8	salinity, 7
thermocline, 8	temperature, 7
thermoenic, 8	Spectra, 119
	frequency, 121, 122, 136
*	Garrett-Munk, 119, 128
I	wavenumber, 122
Indonesian Throughflow, 5	Station Hel, 135
Inner product, 115	Strait of Gibraltar, 1, 4
Iribarren number, 94	Słupsk Furrow, 132, 134, 135, 143
Isolines	Słupsk Sill, 132, 134, 143
isohalines, 8	
isopycnals, 8	
isotherms, 8	T
Isopycnal displacements, 50, 72, 76, 122, 141, 157	Thermistor chain, 135
	Transforms
Isopycnal submergence, 143, 160	Fourier, 119, 123
Isotherm displacements, 136, 137	Fourier-Stjeltjes, 119, 120
	Hilbert, 119, 126, 139
	Wavelet, 123, 124, 138
L	dilation parameter, 124
Landsort Deep, 131	global energy spectrum, 126
Local-scale energy density, 138	local-scale energy density, 126
	Morlet wavelet, 124
	mother wavelet, 124
M	time-scale energy density, 126
Middle Atlantic Bight, 5	total energy, 126
Moving CTD sensors, 142	translation parameter, 124

Index 163

U	Wave action, 98
UNESCO formula, 139, 153	Wave amplitude, 100, 101
U.S.S. Thresher tragedy, 32	Wave breaking, 95, 105
	Wave generation
	by local disturbances, 109
V	wind action, 112
Variational approach, 61, 70	Wave induced mixing, 81
Velocities	Wave vector, 18, 19, 90, 91
group velocity, 18, 53	Waves
phase velocity, 27, 30, 38, 40, 48, 53, 55,	cnoidal, 36, 39, 40, 70
63, 149	diurnal tides, 6
wave velocity components, 27, 31, 38,	inertial, 7
46, 49, 55, 71, 74, 93, 100, 139	interfacial, 27, 33, 35, 36
	internal tides, 4
	reflected, 90
\mathbf{W}	semi-diurnal tides, 6
Water state	short-period, 6
baroclinic, 8	solitary, 3, 5, 36, 38, 71
barotropic, 8	Wind stress, 112, 114, 115