

Effective atomic radius (covalent radius)

effective atomic radius = $1/2(d_{AA}$ in the molecule A_2)

Example:

H₂: d=0.74 Å → r_H=0.37 Å

Estimating bond distance (covalent):

R----C-H:
$$d_{C-H} = r_C + r_H = 0.77 + 0.37 = 1.14 \text{ Å}$$

Na
$$1s^2 2s^2 2p^6 3s^1$$

$$Z_{eff} = 11 - 8 \times 0.85 - 2 = 2.2$$

$$\mathbf{K} \qquad 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

$$\mathbf{Rb}$$
 $\mathbf{Z}_{\text{eff}}=2.2$

Ionization energy:

Energy required to remove an electron from a gaseous atom or ion.

$$A(g) \rightarrow A^{+}(g) + e^{-}$$
 $\Delta E = IE_{1}$
 $A^{+}(g) \rightarrow A^{2+}(g) + e^{-}$ $\Delta E = IE_{2}$

Trend 1: IE_1 decrease down a group(n, r increase while $Z_{\rm eff}$ constant).

Trend 2: IE_1 increases across a period (Z_{eff} increase, r decrease)

Exception: B, O ionization energy lower than Be, N: empty or half filled orbitals contribute to the stability.

Similarly: Al, S

ammeter

Electron affinity= energy required to remove an electron from the gaseous negative ion (ionization energy of anion).

$$A^{-}(g) \rightarrow A (g) + e^{-}$$

 $\Delta E = EA$

- maximum for halogens
- with usually positive, difficult to measure, but can be negative.

Total energies of an ion in various charge states:

 $E=\alpha q + \beta q^2 (q = ionic charge)$

The slope of this curve near the origin gives us an idea of how readily the atom accepts and gives up electrons.

Chem 104A, UC, Berkeley

Electronegativity (EN)

The power of an atom in a molecule to attract electrons to itself

Mulliken definition: $EN = 1/2(IE_1 + EA)$

Pauling definition:

$$EN_A - EN_B = 0.208 \sqrt{DE_{AB} - \sqrt{DE_{A^2}DE_{B^2}}}$$

EN(F)=3.98

DE =bond dissociation energy in kcal/mol

EN(A) –EN(B) small \rightarrow A-B bonding mostly covalent EN(A)-EN(B) large \rightarrow A-B bonding has ionic component

Example:

HF

DE (H₂) =103 kcal/mol DE(F₂) =37 kcal/mol DE(HF)=135 kcal/mol

$$\sqrt{DE_{H2}DE_{F2}} = 62kcal/mol$$

$$EN(F)-EN(H) = 0.208\sqrt{135-62} = 1.78$$

$$EN(H) = 2.2$$

