A propos d'une curieuse famille de fonctions récursives imbriquées dues à Hofstadter

Pierre Letouzey

9 octobre 2023

La loi d'Hofstadter : il faut toujours plus longtemps que prévu, même en tenant compte de la loi d'Hofstadter.

Code Coq + cet exposé + ancien rapport technique

```
https://github.com/letouzey/hofstadter_g
(branche: generalized)
```

La fonction G d'Hofstadter (OEIS A5206)

Douglas Hofstadter, "Gödel, Escher, Bach", chapitre 5 (p.135)

$$G(0) = 0$$

 $G(n) = n - G(G(n-1))$ pour tout entier $n > 0$

Etude préliminaire de G

$$G(n) = n - G(G(n-1))$$

- **E**xistence et premier encadrement: $0 \le G(n) \le n$
- ► G(0) = 0, G(1) = 1 puis $1 \le G(n) < n$
- ightharpoonup G "monte" par pas de +0 ou +1
- ▶ Jamais deux +0 de suite
- ▶ Jamais trois +1 de suite

Etude préliminaire de G

$$G(n) = n - G(G(n-1))$$

- Existence et premier encadrement: $0 \le G(n) \le n$
- ► G(0) = 0, G(1) = 1 puis $1 \le G(n) < n$
- ightharpoonup G "monte" par pas de +0 ou +1
- ▶ Jamais deux +0 de suite
- ▶ Jamais trois +1 de suite

lci en fait : $G(n) = \lfloor (n+1)/\phi \rfloor$ où ϕ est le nombre d'or

Etude préliminaire de G

Graphes de $\mathit{G}(\mathit{n})$ et $(\mathit{n}+1)/\phi$:

Généralisons : la fonction H (OEIS A5374)

Comme Hofstadter, varions le nombre d'appels imbriqués:

$$H(0) = 0$$

 $H(n) = n - H(H(H(n-1)))$ pour tout entier $n > 0$

Mêmes propriétés de base que G, sauf que:

- ► Au plus trois +1 successifs
- ▶ Pas d'équation simple et exacte à base de []
- Par contre: $H(n) = \lfloor \tau n \rfloor + 0$ ou 1 avec τ racine réelle de $X^3 + X - 1$ ($\tau = 0.6823$)

Genéralisons encore : une famille f_k de fonctions

Notons k + 1 le nombre d'appels récursifs:

$$f_k(0)=0$$

$$f_k(n)=n-f_k^{(k+1)}(n-1)) \qquad \text{ pour tout entier } n>0$$

où
$$f_k^{(p)}$$
 note p itérations de f_k : $f_k^{(0)} = id$ et $f_k^{(p+1)} = f_k \circ f_k^{(p)}$

On retrouve en particulier $G = f_1$ et $H = f_2$

NB: ce k est choisi pour éviter le cas "0 appel récursif" (sans intérêt et non uniforme avec le reste)

Le cas initial f_0 : un seul appel récursif

$$f_0(n) = n - f_0(n-1)$$

On alterne +0 et +1, c'est en fait une fonction moitié :

$$f_0(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$$

Graphes

Premières propriétés de f_k

$$f_k(n) = n - f_k^{(k+1)}(n-1)$$

- Existence et premier encadrement: $0 \le f_k(n) \le n$
- $ightharpoonup f_k(0) = 0, \ f_k(1) = 1 \ \text{puis} \ 1 \le f_k(n) < n$
- $ightharpoonup f_k$ "monte" par pas de +0 ou +1
- ▶ Jamais deux +0 de suite
- ▶ Au plus k + 1 pas de +1 de suite

NB: Pour k>1, $f_k(n)$ n'a pas d'expression simple via $\lfloor \rfloor$.

Deux équations intéressantes pour G puis f_k

Surjectivité "explicite"

- ightharpoonup G(n+G(n))=n
- $f_k(n+f_k^{(k)}(n))=n$

Deux équations intéressantes pour G puis f_k

Surjectivité "explicite"

$$ightharpoonup G(n+G(n))=n$$

$$f_k(n+f_k^{(k)}(n))=n$$

Equation "renversée"

$$ightharpoonup G(n) + G(G(n+1) - 1) = n$$

$$ightharpoonup f_k(n) + f_k^{(k)}(f_k(n+1) - 1) = n$$

Et en Coq?

Cf FunG.v FunG_prog.v GenG.v:

- Décroissance non structurelle : pas de Fixpoint Coq ainsi
- Spécification via un prédicat inductif
- recf : une définition remaniée avec un compteur p
- ▶ Possibilité d'utiliser Program Fixpoint (mais lourd)
- ▶ Plus rapide : fopt fonctionnant par table

Conjecture: $\forall k, \forall n, f_k(n) \leq f_{k+1}(n)$

Conjecture: $\forall k, \forall n, f_k(n) \leq f_{k+1}(n)$

Ici, on comparera toujours les fonctions via l'ordre produit.

Donc formulation alternative : (f_k) est une suite croissante.

Conjecture: $\forall k, \forall n, f_k(n) \leq f_{k+1}(n)$

lci, on comparera toujours les fonctions via l'ordre produit.

Donc formulation alternative : (f_k) est une suite croissante.

Preuve générale ??

Quelques éléments préliminaires:

▶ Facile: $\forall k, f_0 \leq f_k$

Quelques éléments préliminaires:

- ▶ Facile: $\forall k, f_0 \leq f_k$
- Preuves ad-hoc (et dures) : pour $k \le 9$, $f_k \le f_{k+1}$.

 Utilise une forme de quasi-additivité (et des calculs!)

Quelques éléments préliminaires:

- ► Facile: $\forall k, f_0 \leq f_k$
- Preuves ad-hoc (et dures) : pour $k \le 9$, $f_k \le f_{k+1}$. Utilise une forme de quasi-additivité (et des calculs!)
- ▶ "Petits" n : $\forall k, \forall n \leq (k+4)(k+5)/2 3, f_k(n) \leq f_{k+1}(n)$. Cf le "bas" des arbres à venir juste après

Quelques éléments préliminaires:

- ▶ Facile: $\forall k, f_0 \leq f_k$
- Preuves ad-hoc (et dures) : pour $k \le 9$, $f_k \le f_{k+1}$.

 Utilise une forme de quasi-additivité (et des calculs!)
- ▶ "Petits" n : $\forall k, \forall n \leq (k+4)(k+5)/2 3, f_k(n) \leq f_{k+1}(n)$. Cf le "bas" des arbres à venir juste après
- ▶ "Grands" $n: \forall k, \exists N, \forall n \geq N, f_k(n) \leq f_{k+1}(n)$ Lorsque $n \to \infty$ on a l'équivalent $f_k(n) \sim n.\tau_k$ où τ_k est la racine réelle positive de $X^{k+1} + X - 1$

Arbres rationnels

Combien de noeuds par niveau ?

Numérotons!

Parcours en largeur, de gauche à droite

Numérotons!

Parcours en largeur, de gauche à droite

Départ à 3 ? Pour expliciter les nombres de Fibonacci...

Et ainsi, le noeud n a G(n) comme parent.

Ajout d'une racine ad-hoc : l'arbre de G

Aparté : arbre de fonction, fonction d'arbre

Soit un arbre:

- infini
- dont les noeuds ont des arités finies non nulles
- numéroté via un parcours en largeur

Que peut-on dire de sa fonction parent ?

Aparté : arbre de fonction, fonction d'arbre

Soit un arbre:

- infini
- dont les noeuds ont des arités finies non nulles
- numéroté via un parcours en largeur

Que peut-on dire de sa fonction parent ?

Recip. que faut-il sur une fonction $\mathbb{N}\to\mathbb{N}$ pour qu'elle soit la fonction parent d'un et un seul tel arbre ?

Aparté : arbre de fonction, fonction d'arbre

- ▶ f croissante
- ► f(n)<n hormis à la racine
- ► f surjective
- f ne stationne pas (i.e. tend vers $+\infty$)

Hofstadter: A problem for curious readers is. . .

Suppose you flip diagram G around as if in a mirror, and label the nodes of the new tree so that they increase from left to right. Can you find a recursive *algebraic* definition for this "flip-tree"?

Arbre miroir \overline{G}

Solution?

- ► II y avait une conjecture sur https://oeis.org/A123070
- Mais pas de preuve. . .
- Hofstadter devait probablement avoir au moins cette formule

$$\overline{G}(n) = n + 1 - \overline{G}(\overline{G}(n-1) + 1) \qquad (n > 3)$$

$$\overline{G}(n) = n \qquad (n = 0, 1)$$

$$\overline{G}(n) = n - 1 \qquad (n = 2, 3)$$

Preuve papier pénible, multiples cas (vive Coq! cf fichier FlipG.v)

Arbre généralisé

On allonge la branche de droite (k + 1 segments)

Arbre généralisé

On allonge la branche de droite (k + 1 segments)

Et toujours une racine ad-hoc (1 puis k + 1 segments)

Arbre pour f_2 (H de Hofstadter)

Arbre pour f_0

Equation de l'arbre miroir \overline{f}_k ?

Quasiment comme pour \overline{G} :

$$\overline{f}_{k}(n) = n + 1 - \overline{f}_{k}^{(k)}(\overline{f}_{k}(n-1) + 1) \qquad (n > k+2)$$

$$\overline{f}_{k}(n) = n \qquad (n = 0, 1)$$

$$\overline{k}_{k}(n) = n - 1 \qquad (2 \le n \le k+2)$$

Fibonacci généralisé et numération

Fibonacci

$$F_0 = 1$$

$$F_1 = 2$$

$$F_{n+2} = F_n + F_{n+1}$$

Fibonacci

$$F_0 = 1$$

$$F_1 = 2$$

$$F_{n+2} = F_n + F_{n+1}$$

NB: indices décalés pour éviter 0 et un double 1

Théorème de Zeckendorf

Une décomposition $n = \sum F_i$ est *canonique* si elle est :

- (1) sans doublons
- (2) sans termes consécutifs

Décomposition relachée : (1) mais pas forcément (2)

Théorème de Zeckendorf

Une décomposition $n = \sum F_i$ est *canonique* si elle est :

- (1) sans doublons
- (2) sans termes consécutifs

Décomposition relachée : (1) mais pas forcément (2)

Thm: tout entier naturel a une unique décomposition canonique.

Zeckendorf, variante

Def: le rang d'une décomposition est l'indice du plus petit terme.

Algo: canonisation d'une décomposition relachée de n

- le nombre de termes décroît ou stagne
- le rang augmente (par pas de 2) ou stagne

Tableau de Wythoff / Zeckendorf (k=1)

Colonne c: les nombres de rang c par ordre croissant

1	2	3	5	8	13	21	
4	7	11	18	29	47	76	
6	10	16	26	42	68	110	
9	15	24	39	63	102		
12	20	32	52	84			
14	23	37	60	97			
17	28	45	73	118			

G et Fibonacci

▶ $G(F_i) = F_{i-1}$ (avec la convention $F_{0-1} = F_0 = 1$)

G et Fibonacci

- $ightharpoonup G(F_i) = F_{i-1}$ (avec la convention $F_{0-1} = F_0 = 1$)
- ▶ Plus généralement: $G(\Sigma F_i) = \Sigma F_{i-1}$

G et Fibonacci

- ▶ $G(F_i) = F_{i-1}$ (avec la convention $F_{0-1} = F_0 = 1$)
- ▶ Plus généralement: $G(\Sigma F_i) = \Sigma F_{i-1}$
- Cela marche même pour des décompositions relachées
- Preuve selon le rang de la décomposition (0, pair>0, impair).
- Nombreuses conséquences concernant G et le rang.

Au passage, différences entre \overline{G} et G

Def: n est de rang 1-impair si sa décomposition canonique commence par $F_1 + F_{2p+1} + ...$

Thm: $\overline{G}(n) = 1 + G(n)$ si n est de rang 1-impair, sinon $\overline{G}(n) = G(n)$.

Au passage, différences entre \overline{G} et G

Def: n est de rang 1-impair si sa décomposition canonique commence par $F_1 + F_{2p+1} + ...$

Thm:
$$\overline{G}(n) = 1 + G(n)$$
 si n est de rang 1-impair, sinon $\overline{G}(n) = G(n)$.

Preuve: encore pire que pour l'équation de \overline{G} , pléthore de cas.

Cor: \overline{G} et G diffèrent pour $F_1 + F_3$, puis tous les 5 ou 8 entiers.

Fibonacci généralisé

Soit *k* un entier naturel.

$$A_0^k = 1$$

$$A_1^k = 2$$
...
$$A_k^k = k + 1$$

$$A_{n+1}^k = A_n^k + A_{n-k}^k$$

pour $n \ge k$

Fibonacci généralisé

- ► A⁰ : 1 2 4 8 16 32 64 128 256 512
- $ightharpoonup A^1: 1 2 3 5 8 13 21 34 55 89$
- $ightharpoonup A^2: 1 2 3 4 6 9 13 19 28 41$
- $ightharpoonup A^3: 1 2 3 4 5 7 10 14 19 26$

NB: A² est nommé Narayana's Cows, cf. OEIS A930

Zeckendorf généralisé

Soit k fixé.

k-décomposition $n = \sum A_i^k$ est canonique : indices distants $\geq (k+1)$

k-décomposition relachée : indices distants d'au moins k

Zeckendorf généralisé

Soit k fixé.

k-décomposition $n = \sum A_i^k$ est canonique : indices distants $\geq (k+1)$ k-décomposition relachée : indices distants d'au moins k

Thm: tout entier naturel a une unique *k*-décomposition canonique.

Algo: on peut "renormaliser" une k-décomposition relachée.

Un peu d'arithmétique avec ces décompositions

La décomposition de n+1 et n-1 peut s'obtenir raisonnablement bien à partir de celle de n.

Par contre pas d'addition, multiplication, etc.

 f_k et Fibonacci généralisé

•
$$f_k(A_i^k) = A_{i-1}^k$$
 (avec la convention $A_{0-1}^k = A_0^k = 1$)

f_k et Fibonacci généralisé

- ▶ $f_k(A_i^k) = A_{i-1}^k$ (avec la convention $A_{0-1}^k = A_0^k = 1$)
 ▶ Plus généralement: $f_k(\Sigma A_i^k) = \Sigma A_{i-1}^k$

f_k et Fibonacci généralisé

- $f_k(A_i^k) = A_{i-1}^k$ (avec la convention $A_{0-1}^k = A_0^k = 1$)
- ▶ Plus généralement: $f_k(\Sigma A_i^k) = \Sigma A_{i-1}^k$
- ► Cela marche pour des décompositions canoniques ou relachées
- Important : f_k "stagne" en n lorsque le rang de n est 0 (i.e. lorsque n a 1 dans sa décomposition)

Quasi-additivité de f_k ?

Un exemple d'utilisation des décompositions:

```
Lemma additivity_bounded k p : k<>0 ->
forall n, exists m,
  m < add_bound k p /\
  f k (p+n) - f k n = f k (p+m) - f k m.</pre>
```

```
Lemma decide_additivity k p a b : k<>0 ->
calc_additivity k p (add_bound k p) = (a,b) ->
forall n, a + f k n <= f k (p+n) <= b + f k n.</pre>
```

Quasi-additivité de f_k ?

Un exemple d'utilisation des décompositions:

```
Lemma additivity_bounded k p : k<>0 ->
forall n, exists m,
  m < add_bound k p /\
  f k (p+n) - f k n = f k (p+m) - f k m.</pre>
```

Lemma decide_additivity k p a b : k<>0 -> calc_additivity k p (add_bound k p) = (a,b) -> forall n, a + f k n <= f k (p+n) <= b + f k n.

Ceci a permis de prouver $f_1 \le f_2$ jusqu'à $f_9 \le f_{10}$ (en Coq: seulement jusqu'à $f_5 \le f_6$).

Lien avec des mots morphiques

Une substitution de lettres

Soit k un entier naturel. On utilise A = [0..k] comme alphabet.

$$\mathcal{A} o \mathcal{A}^*$$
 $\sigma_k(n) = (n+1)$ pour $n < k$ $\sigma_k(k) = k.0$

Ceci engendre un mot infini m_k à partir de la lettre k (on parle de mot morphique)

Par exemple $m_2 = 20122020120122012202...$

Equation récursive

 m_k est la limite de $\sigma_k^n(k)$ quand $n \to \infty$

Mais aussi la limite de préfixes finis $M_{k,n}$ définis ainsi:

- ► $M_{k,n} = k.0...(n-1)$ pour $n \le k$
- $M_{k,n+1} = M_{k,n}.M_{k,n-k} \text{ pour } k \leq n$

Equation récursive

 m_k est la limite de $\sigma_k^n(k)$ quand $n \to \infty$

Mais aussi la limite de préfixes finis $M_{k,n}$ définis ainsi:

- ► $M_{k,n} = k.0...(n-1)$ pour $n \le k$
- $M_{k,n+1} = M_{k,n}.M_{k,n-k} \text{ pour } k \leq n$

Remarque : $|M_{k,n}| = A_n^k$

Lien avec f_k

La *n*-ième lettre $(m_k)_n$ du mot infini m_k est le rang de la k-decomposition de n (ou k si ce rang est plus de k).

En particulier cette lettre est 0 si $f_k(n) = f_k(n+1)$

En cumulant : le nombre de 0 dans m_k entre 0 et n est $n - f_k(n)$.

Plus généralement, compter les lettres au dessus de p donne $f_k^{(p)}$.

En particulier le nombre de k est $f_k^{(k)}$.

Fréquences?

Quelle limite pour $f_k(n)/n$ lorsque $n \to \infty$?

- Si elle existe, facile à déterminer, racine positive de $X^{k+1} + X 1$.
- Preuve d'existence non triviale

Cf. K. Saari, On the Frequency of Letters in Morphic Sequences.

En Coq, il fallait déjà parler de racines, et d'équivalent infini de suites linéaires comme A^k .

De fil en aiguille, preuve de la formule de Leibniz du determinant et determinant des matrices de Vandermonde. . .

Assure la croissance des f_k pour n suffisemment grand.

Cas k=2 (i.e. H)

Surprise il y a quelques années

Affichage des points $(\delta(i), \delta(H(i)))$ avec i=0..10000 et $\delta(n) = H(n) - n.\tau_2$

Fractale de Rauzy et variante

Apparemment, la factale précédente est nommée Jacobi-Perron, proche de la fractale de Rauzy.

- G. Rauzy, Nombres algébriques et substitutions, 1982
 - Dans son cas, suites de Tribonacci additionnant les trois derniers termes
 - ▶ Ici on additionne dernier et avant-avant-dernier termes

L'étude est très similaire.

Application ici

On obtient finalement:

- $|H(n) n.\tau_2| < 0.996 < 1$
- ightharpoonup Et donc $H(n) = |n.\tau_2| + 0$ ou 1
- ► Et quasi-additivité de *H* :

$$\forall nm, -2 \leq H(n+m) - H(n) - H(m) \leq 2$$

Nombres de Pisot

Dixit Wikipédia: En mathématiques, un nombre de Pisot-Vijayaraghavan est un entier algébrique réel strictement supérieur à 1, dont tous les éléments conjugués ont un module strictement inférieur à 1.

Ici la limite τ_2 de H(n)/n est la racine positive de X^3+X-1 mais aussi l'inverse de la racine positive de X^3-X^2-1 qui est le nombre de Pisot P_3 .

Cas k=3, Pisot sans jolie fractale...

Résultat principal pour k=3

En suivant le même cheminement (pas encore formalisé en Coq)

- $|f_3(n) n.\tau_3| < 1.998$
- ▶ Et donc $-1 \le f_3(n) \lfloor n.\tau_3 \rfloor \le 2$
- ► Et quasi-additivité de f₃ :

$$\forall nm, -5 \leq H(n+m) - H(n) - H(m) \leq 5$$

Cas k>3, $f_k(n) - n.\tau_k$ diverge

Conclusions & Perspectives

- ▶ On trouve encore des conjectures "abordables" sur OEIS
- ▶ Et aussi parfois des petites choses fausses. . .

Conclusions & Perspectives

- ▶ On trouve encore des conjectures "abordables" sur OEIS
- Et aussi parfois des petites choses fausses...
- ▶ Des preuves étonnemment délicates pour de "simples" entiers.
- Merci Coq !
- ▶ Peut-on éviter ces "détours" via \mathbb{R} et \mathbb{C} ?
- Quid de la conjecture ?
- Des questions restantes concernant l'irréductibilité des polynômes rencontrés