# **Title**

### D. Zack Garza

## Tuesday 13<sup>th</sup> October, 2020

## **Contents**

| 1 | Wednesday, October 07 |                              |
|---|-----------------------|------------------------------|
|   | 1.1                   | Schur Algebras               |
|   | 1.2                   | Simplicity of $H^0(\lambda)$ |
|   | 1.3                   | Bott-Borel-Weil Theorem      |
|   |                       | 1.3.1 Dot Action on Weights  |

# 1 | Wednesday, October 07

## 1.1 Schur Algebras

Let G = GL(n, k), then polynomial representations of G are equivalent to S(n, d) modules for all  $d \ge 0$ , where we can note that  $S(n, d) = \operatorname{End}_{\Sigma_d}(V^{\otimes d})$ . We'll have a correspondence

 $\{L(\lambda) \text{ simple modules for } S(n,d)\} \iff \Lambda^+(n,d), \text{ partitions of } d \text{ with at most } n \text{ parts},$ 

#### Example 1.1.1.

Good example, can see all filtrations at work, tilting modules, etc.

Consider S(3,3) for p=3, we then have the partitions  $\Lambda^+(3,3)=\{(3),(2,1),(1,1,1)\}$ . We can think of these in the  $\varepsilon$  basis as (3)=(3,0,0),(2,1)=(2,1,0). Since  $\mathrm{SL}(3,k)\subset\mathrm{GL}(3,k)$ , we can find the SL(3,k) weights by taking successive differences to yield (3,0),(1,1),(0,0) with the corresponding picture



Figure 1: Image

We can compute

- $L(1,1,1) = H^0(1,1,1)$   $L(2,1) = H^0(2,1)$   $L(3) = H^0(3)$



Figure 2: Image

We have a form of Brauer reciprocity:

$$[I(\lambda): H^0(\mu)] = [H^0(\mu): L(\lambda)].$$

We can now compute the injective hulls:



Figure 3: Image

What are the tilting modules? We can use the fact that  $L(1^3) = V(1^3)$ . It has a good filtration and a Weyl filtration and thus must be the tilting module for  $L(1^3)$ .

Using the following fact:



Figure 4: Image

We can compute the following:



Figure 5: Image

# 1.2 Simplicity of $H^0(\lambda)$

- 1.  $k = \mathbb{C}$  implies  $L(\lambda) = H^0(\lambda)$  for all  $\lambda \in X(T)_+$
- 2.  $k = \overline{\mathbb{F}}_p$  implies  $L(\lambda) = H^0(\lambda)$  if  $\langle \lambda, \alpha_0^{\vee} \rangle \leq 1$  where  $\alpha_0$  is the highest short root.

Such  $\lambda$  are referred to as minuscule weights.

#### Example 1.2.1.

For type  $A_n$ , we have  $\alpha_0 = \sum_{i=1}^n \alpha_i$ . For type  $G_2$ , we have  $\alpha_0^{\vee} = 2\alpha_1^{\vee} + 3\alpha_2^{\vee}$ .

#### Example 1.2.2.

In type  $A_n$ , set  $\lambda = \sum_{j=1}^n c_j w_j$  where  $c_j \geq 0$ . Then  $\langle \lambda, \alpha_0^{\vee} \rangle = \sum_{j=1}^n c_j c_j \leq 1$ , so  $\lambda$  is minuscule iff  $\lambda = 0$ 

or  $\lambda = w_j$  for some j.

#### Remark 1.2.1.

Quick timeline:

- 2015, Cantrell lectures by Dick Gross at UGA
- Fall 2015: email to Dan Nakano from Skip Garibaldi, conjecture from Gross without a proof

#### Proposition 1.2.1(Gross).

The simple module is equal to the induced module, so  $L(\lambda) = H^0(\lambda)$ , for all p iff  $\lambda$  is minuscule, or if  $L(\lambda) = \mathfrak{g}$  for  $\Phi = E_8$ .

• Proved by Garibaldi-Nakano-Guralnick, appeared in Journal of Algebra

#### 1.3 Bott-Borel-Weil Theorem

We can consider the higher right-derived functors of  $\lambda$ , given by  $H^i(\lambda) = R^i \operatorname{Ind}_B^G \lambda$  for  $\lambda \in X(T)$ . You can think of this as the higher sheaf cohomology of the flag variety,  $\mathcal{H}^i(G/B, \mathcal{L}(\lambda))$ .

We have **Kempf Vanishing**:  $H^i(\lambda) = 0$  for all i > 0 when  $\lambda \in X(T)_+$  is dominant (although other things may happen for non-dominant weights). There is a correspondence  $(G,T) \iff (W,\Phi)$ , and since W is generated by simple reflections, we can write any  $w \in W$  as  $w = \prod s_{\alpha_i}$ . A reduced expression is one in which the length can not be shortened, and any two reduced expressions necessarily have the same length (number of simple reflections).

#### Example 1.3.1.

For  $\Phi = A_2$ , we have  $w_0 = s_{\alpha_1} s_{\alpha_2} s_{\alpha_1} = s_{\alpha_2} s_{\alpha_1} s_{\alpha_2}$ .

#### 1.3.1 Dot Action on Weights

We can let W act on X(T) by reflections by the formula  $s_{\alpha}\lambda = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$ . We then shift the action by setting  $s_{\alpha} \cdot \lambda = w(\lambda + \rho) - \rho$  where  $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha = \sum_{j=1}^{n} w_{j}$ .



Figure 6: Image

## Theorem 1.3.1 (Bott-Borel-Weil).

Let G be a reductive algebraic group and  $k = \mathbb{C}$ . For  $\lambda \in X(T)_+$ , we can describe the sheaf cohomology:

$$\mathcal{H}^{i}(w \cdot \lambda) = \begin{cases} H^{0}(\lambda) & i = \ell(w) \\ 0 & \text{otherwise} \end{cases}.$$

Moreover, if  $\lambda \not\in X(T)_+$  and  $\langle \lambda + \rho, \ \alpha^{\vee} \rangle \geq 0$  for all  $\alpha \in \Delta$ , then  $\mathcal{H}^i(w \cdot \lambda) = 0$  for all  $w \in W$ .



Wide open in characteristic p, can say some things. We'll prove this in characteristic zero.

Recall that  $k = \mathbb{C}$  and  $H^0(\lambda) = L(\lambda)$ . We'll want to reduce to  $SL(2,\mathbb{C})$  parabolics. For  $\alpha \in \Delta$ , let  $P_{\alpha}$  be the associated parabolic  $P_{\alpha} = L_{\alpha} \rtimes U_{\alpha}$ , which is parabolic of type  $A_1$ .

Idea:  $\alpha$  generates an  $SL_2$  subgroup (the Levi factor), like the Borel but sticks out in one dimension:



Figure 8: Image

Then

$$s_{\alpha} \cdot \lambda = s_{\alpha}(\lambda + \rho) - \rho$$
$$= \lambda + \rho - \langle \lambda + \rho, \ \alpha^{\vee} \rangle \alpha - \rho$$
$$= \lambda - \langle \lambda + \rho, \ \alpha^{\vee} \rangle \alpha.$$

Next time: proof of Bott-Borel-Weil and its generalization to  $k = \overline{\mathbb{F}}_p$ . For  $B \subset P_\alpha \subset G$ , we'll have a spectral sequence

$$E_2^{i,j} = R^i \operatorname{Ind}_{P_{\alpha}}^G R^j \operatorname{Ind}_B^{P_{\alpha}} \Rightarrow R^{i+j} \operatorname{Ind}_B^G \lambda = H^{i+j}(\lambda).$$