Heuristic methods for the single-machine scheduling problem with periodical resource constraints

Mateus Filipe Moreira Silva - 21.1.4156 Guilherme Salim Monteiro de Castro Paes - 21.1.4109 PROBLEMA 01

IMPLEMENTAÇÃO 02

ÍNDICE

03 ENTRADA 1

04 ENTRADA 2

05 conclusão

Problema Abordado

Versão do problema de Programação de Máquinas

Uma única maquina para processar as tarefas

Minimização de Makespan

Fazer todas as tarefas o mais rápido possível.

Respeitando as restrições

Dados

Cada Tarefa tem uma quantidade de recurso necessário para ser processada.

Cada Período tem uma quantidade de recurso disponível e um tempo máximo.

Índices

l

Índices para os períodos $\{1, 2, ..., t\}$

 \int_{\cdot}^{\cdot}

Índices para as tarefas

2,..., n

Parâmetros

p_j

Tempo de processamento da tarefa j

rj

Quantidade de Recurso necessário para a tarefa j.

T

Duração máxima do período

R

Máximo de recurso para cada período

M

Número Inteiro suficientemente Grande

Índices e Parâmetros

```
1 set I;  # INDICE PARA OS PERIODOS
2 set J;  # INDICE PARA AS TAREFAS

8 param p{J};  # TEMPO DE PROCESSAMENTO DE CADA TAREFA
9 param r{J};  # TEMPO DE PROCESSAMENTO DE CADA TAREFA
10 param T;  # DURACAO TOTAL DE CADA PERIODO
11 param R;  # MAXIMO DE RECURSOS DISPONIVEIS POR PERIODO
12 param M;  # NUMERO POSITIVO GRANDE
```



```
60
   data;
61
62
   set J := 1 2 3 4 5;
63
   set I := 1 2 3;
64
65
   param p :=
66
   1 2
67
   2 1
68
   3 5
69
   4 4
70
   5 3;
```

```
72
   param r :=
73
   1 3
74
   2 3
75
   3 4
76
   4 1
77
   5 1:
78
79
   param T := 6;
80
   param R := 4;
81
   param M := 1000000;
82
83
    end;
```


Variáveis de decisão

x_{ij}

1 Se a tarefa j é processado no período i

O Caso Contrário

y_i

1 Se o período i é usado na solução

O Caso Contrário

W_i

1 Se esse é o período com maior tempo ocioso

O Caso Contrário

Z

Computa tempo ocioso no último período

Domínio das Variáveis

$$y_i \ge 0 \quad \forall i$$

Foi Mudada para Binária

$$x_{ij} \in \{0, 1\}, \quad \forall i, j \quad w_i \in \{0, 1\} \quad \forall i$$

$$w_i \in \{0, 1\} \quad \forall$$

$$z \ge 0$$
.

Variáveis de decisão E Restrições de domínio


```
var X{I, J} binary; #1SE A TAREFA J E PROCESSADA NO PERIODO I, 0 CASO CONTRAIO
var y{I} binary; #1SE O PERIODO I E USADO NA SOLUCAO, 0 CASO CONTRARIO
var w{I} binary; #1SE O PERIODO I E O MAIOR TEMPO OCIOSO, 0 CASO CONTRARIO
var z >= 0 ; #COMPUTA O TEMPO OCIOSO (SLACK) DO PERIODO COM MAIOR
```


Função Objetivo

Minimizar Makespan

Função Objetivo

```
27  minimize obj:
28  T * sum{i in I} y[i] - z;
```


$$\sum_{i=1}^{l} x_{ij} = 1, \quad \forall j$$

Garante que um trabalho seja processado apenas no período i

$$\sum_{j=1}^{n} p_j x_{ij} \le T, \quad \forall i$$

Impõe a restrição de tempo de cada período

Para todo período a soma das tarefas vezes sua respectiva duração deve ser menor ou igual à duração máxima do período.

$$\sum_{j=1}^{n} r_j x_{ij} \le R, \quad \forall i$$

Determina que as tarefas produzidos em um determinado período de produção não exceda o recurso disponível do período.

Determina que os trabalhos sejam produzidos apenas nos períodos selecionados.

$$\sum_{i=1}^{t} w_i = 1$$

Afirma que apenas um determinado período fornece a folga máxima

Afirma que, se um período não for utilizado, ele não fornece a folga máxima

Restrição 7 Apenas um período vai ser diferente de $z \leq M$ $z \leq M(1 - w_i)$ Período com maior tempo ocioso

Período com maior tempo ocioso
Existe apenas 1
O resto não está na solução ou não é o Período com maior tempo ocioso

Se y_i for 0 esse somatório também será 0

Restrições

```
34
    subject to designicaoTarefas{j in J}:
35
     sum\{i in I\} X[i, j] = 1;
36
37
    subject to limiteDeTempo{i in I}:
38
        sum\{j in J\} p[j] * X[i, j] \leftarrow T;
39
40
    subject to limiteDeRecurso{i in I}:
41
     sum\{j in J\} r[j] * X[i, j] \leftarrow R;
42
43
    subject to limitaTarefasParaPeriodoUsados{i in I, j in J}:
44
    X[i, j] \leftarrow y[i];
```

Restrições

```
subject to apenasUmPeriodoComMaiorTempoOcioso:
sum{i in I} w[i] = 1;

subject to limitaPeriodoComMaiorTempoOciosoParaPeriodosUsados{i in I}:
    w[i] <= y[i];

subject to calculaMaiorTempoOcioso{i in I}:
    z <= (M * (1 - w[i])) + (T * (y[i])) - (sum{j in J} (p[j] * X[i, j]));

48</pre>
```


Entrada

TAREFA	RECURSO NECESSÁRIO	TEMPO DE PROCESSAMENTO
1	3	2
2	3	1
3	4	5
4	1	4
5	1	3

Duração de cada período ightarrow 6 Unidades Número Máximo de recurso por período ightarrow 4 Unidades

TAREFAS

1 2 3 4 5
1 0 1 0 0 1
2 0 0 1
3 1 0 0 0

	1	2	3	
W	1	0	0	
Υ	1	1	1	

Z = 2

Função objetivo = 16 Escalonamento das tarefas antes do pós-processamento

Escalonamento das tarefas após ordenas do período com menor tempo ocioso para o maior

Entrada

TAREFA	RECURSO NECESSÁRIO	TEMPO DE PROCESSAMENTO
1	91	140
2	95	45
3	60	132
4	60	145
5	170	150
6	102	30
7	36	136
8	33	80
9	160	3
10	165	144

Duração de cada período 188 Unidades

Número Máximo de recurso por período 170 Unidades

Entrada

		1	2	3	4	5	6	7	8	9	10	
	1	0	0	0	0	0	0	1	0	0	0	
	2	0	0	0	0	0	0	0	0	0	1	
	3	1	0	0	0	0	0	0	0	0	0	
	4	0	1	0	0	0	0	0	1	0	0	
	5	0	0	0	0	0	0	0	0	1	0	
	6	0	0	1	0	0	0	0	0	0	0	
_	7	0	0	0	1	0	1	0	0	0	0	
	8	0	0	0	0	1	0	0	0	0	0	

PERÍODO

TAREFAS

	1	2	3	4	5	6	7	8
W	0	0	0	0	1	0	0	0
Υ	1	1	1	1	1	1	1	1

Função objetivo = 1319 Escalonamento das tarefas antes do pós-processamento

Escalonamento das tarefas após ordenas do período com menor tempo ocioso para o maior

Conclusão

- Script em python para fazer pós-otimização dada sequência das tarefas.
- Ordenando as tarefas do período com menor tempo ocioso para o maior.
- Plotar o gráfico usando esses dados e a biblioteca Matplotlib.
- Com restrição de ≥ 0 para o Y_i
 - Não executa em tempo hábil para instâncias maiores que 10 tarefas
 - Foi trocada para Binária
 - Mesmo trocando n\u00e3o executa para inst\u00e1ncias maiores que 15

