Определение

Частичной функцией $f: X \to Y$ называется подмножество $f \subseteq X \times Y$ такое, что из $\langle x, y_1 \rangle \in f$ и $\langle x, y_2 \rangle \in f$ следует $y_1 = y_2$.

Пишем f(x) = y вместо $\langle x, y \rangle \in f$;

!f(x) вместо $\exists y f(x) = y$.

Областью определения частичной функции f называется множество $dom(f) := \{x \in X : \exists y \in Y \ \langle x, y \rangle \in f\}.$

Областью значений частичной функции f называется множество $rng(f) := \{ y \in Y : \exists x \in X \ \langle x, y \rangle \in f \}.$

Частичная функция $f: X \to Y$ вычислима, если она вычисляется некоторым алгоритмом.

В частности, можно говорить о вычислимых функциях $f: \Sigma^* \to \Sigma^*, f: \mathbb{N}^k \to \mathbb{N}$

HT.A. Jabroge XEX

for Jarahrubaer pasody, earl f(x) y bouges

A Hezakan. pas. (Jaymenbeerd), ear f(x) meoup.

X & Jon A)

Тезис Чёрча-Тьюринга

Тезис

Любая вычислимая в интуитивном смысле частичная функция $f: \Sigma^* \to \Sigma^*$ вычислима на машине Тьюринга.

Замечание

Это утверждение не является математическим, но говорит об адекватности математической модели (вычислимости по Тьюрингу) реальному явлению (вычислимости).

Все попытки построения более общих вычислительных моделей неизбежно приводили к тому же самому классу вычислимых функций.

Физический тезис Чёрча-Тьюринга

Текущему уровню знаний не противоречит и более сильный

Тезис

Всякая функция $f: \Sigma^* \to \Sigma^*$, вычислимая на (идеализированном) физически реализуемом устройстве, вычислима на машине Тьюринга.

Замечание

Физический тезис предполагает возможность аналогового вычисления, квантово-механические эффекты и т.д.

Машина Тьюринга задаётся конечными

- рабочим алфавитом Σ , содержащим символ # (пробел);
- множеством состояний Q, содержащим состояния q_1 (начальное) и q_0 (конечное);
- набором команд (программой) P.
- Команды имеют вид $qa \to rb\nu$, где $q, r \in Q, a, b \in \Sigma$ и $\nu \in \{L, N, R\}$. «прочтя символ a в состоянии q перейти в состояние r, заменить содержимое ячейки на b и сместиться влево (L), остаться на месте (N) или сместиться вправо (R) на одну ячейку, в зависимости от значения ν »
- Требуется, чтобы в программе P была ровно одна команда с левой частью qa для каждого $q \in Q \setminus \{q_0\}$ и $a \in \Sigma$.

Соглашение: команды вида $qa \to qaN$, приводящие к зацикливанию, можно не указывать.

Конфигурации

Предположение: лента содержит лишь конечное число символов, отличных от #.

Конфигурация машины M определяется содержимым ленты, состоянием и положением головки. Конфигурация записывается словом вида XqaY, где

- $XaY \in \Sigma^*$ есть содержимое ленты,
- $q \in Q$ есть состояние M,
- ullet головка обозревает символ a.

Машина M из примера (почти) вычисляет функцию neg : $\{0,1\}^* \to \{0,1\}^*$, заменяющую в данном слове 0 на 1 и 1 на 0. Чтобы вернуть головку в начало модифицируем M:

$$q_1\# \mapsto q_1\#R$$

$$q_10 \mapsto q_21R$$

$$q_11 \mapsto q_20R$$

$$q_20 \mapsto q_21R$$

$$q_21 \mapsto q_20R$$

$$q_2\# \mapsto q_3\#L$$

$$q_30 \mapsto q_30L$$

$$q_31 \mapsto q_31L$$

$$q_3\# \mapsto q_0\#N$$

Функция, вычислимая машиной Тьюринга

Пусть $\Delta \subset \Sigma$ и $\# \notin \Delta$.

Mвычисляет частичную функцию $f:\Delta^*\to\Delta^*,$ если для каждого $x\in\Delta^*$

- если $x \in dom(f)$, то начав работу в конфигурации $q_1\#x$, машина M останавливается в конфигурации $q_0\#f(x)$;
- \bullet если $x \notin dom(f)$, то машина M не останавливается.

Вычислимые функции $\mathbb{N}^k \to \mathbb{N}$

Андреи

Замечание

На множестве Σ^* определить «умножение», как конкатенацию слов. Получится моноид с пустым словом ε в качестве единицы. Степень определяется естественным образом.

Для $f: \mathbb{N}^k \to \mathbb{N}$ определим $\bar{f}: \{0,1\}^* \to \{0,1\}^*$:

 $\bar{f}(x) = y$, если $x = 1^{n_1}0\dots 01^{n_k}$ и $y = 1^m$ для некоторых $n_1,\dots,n_k, m \in \mathbb{N}$ и $f(n_1,\dots,n_k) = m$.

 $f: \mathbb{N}^k \to \mathbb{N}$ вычислима по Тьюрингу, если вычислима $\bar{f}: \{0,1\}^* \to \{0,1\}^*$.

Обратные функции

Из биективности c однозначно определены функции l, r такие что c(l(x), r(x)) = xдля всех $x \in \mathbb{N}$.

Также имеем l(c(x, y)) = x, r(c(x, y)) = y.

Почему функции l и r вычислимы?

Кортежи произвольной длины

Кортежи произвольной длины тоже можно закодировать:

$$c_3(x_1, x_2, x_3) = c(c(x_1, x_2), x_3)$$
...
$$c_{n+1}(x_1, \dots, x_{n+1}) = c(c_n(x_1, \dots, x_n), x_{n+1})$$

Разрешимые множества

Множество $A\subseteq \mathbb{N}^k$ разрешимо, если вычислима характеристическая функция $\chi_A:\mathbb{N}^k\to\{0,1\},$ где

$$\chi_A(x) = \begin{cases} 1, & \text{если } x \in A \\ 0, & \text{иначе.} \end{cases}$$

Разрешимы:

- множества Ø, N;
- конечные множества;
- множество чётных чисел;
- множество простых чисел;
- $\{\langle m, n \rangle : m$ и n взаимно просты $\}$;

Свойства замкнутости

Anb

 $\chi_{A \setminus X}(x) = 1 - \chi_{X}(x)$ $\chi_{A \setminus X}(x) - Governor$ $\chi_{A \cap B}(x) = \chi_{A}(x) \cdot \chi_{B}(x)$

Утверждение

Класс разрешимых подмножеств $\mathbb N$ замкнут относительно булевых операций \cap , \cup , \setminus .

Разрешимые подмножества № образуют булеву алгебру.

Множество A, удовлетворяющее любому из пунктов следующей теоремы, называется перечислимым.

Теорема 23.1

Для любого $A \subseteq \mathbb{N}$ следующие утверждения равносильны:

- \bullet функция χ_A^* вычислима;
- \bigcirc A = dom(f) для некоторой вычислимой f;
- \bullet $A = \operatorname{rng}(f)$ для некоторой вычислимой f;
- \bigcirc $A = \emptyset$ или $A = \operatorname{rng}(f)$ для некоторой вычислимой f такой что $\operatorname{dom}(f) = \mathbb{N}$;
- \bullet $A = \{x \mid \exists y \ \langle x, y \rangle \in B\}$ для некоторого разрешимого $B \subseteq \mathbb{N} \times \mathbb{N}$ (A - проекция разрешимого множества).

Утверждения $1 \Rightarrow 2$ и $4 \Rightarrow 3$ очевидны.

 $2 \Rightarrow 5$:

Пусть машина M_f вычисляет f. Рассмотрим

//х/// $\supseteq B := \{\langle x, y \rangle : M_f \text{ на входе } x \text{ ост. за } y \text{ шагов} \}.$

Тогда $x \in \text{dom}(f) \iff \exists y \ \langle x, y \rangle \in B$ и B разрешимо.

Havin fi range (f) - A

 $5 \Rightarrow 4$:

Допустим $A \neq \emptyset$, выберем $a_0 \in A$.

Определим $f: \mathbb{N} \to \mathbb{N}$ так:

$$f(x) := \begin{cases} l(x), & \text{если } \langle l(x), r(x) \rangle \in B \\ a_0, & \text{иначе.} \end{cases}$$

 $A = \emptyset \iff B = \emptyset$ A = rrg(A)

 $3 \Rightarrow 1$:

Пусть M_f вычисляет f. Вычисляем $\chi_A^*(x)$ для данного x:

Для каждого $n = 0, 1, 2, \dots$ выполним:

- сопоставим n пару l = l(n) и r = r(n);
- проделаем r шагов вычисления M_f на входе l;
- \bullet если получен результат y=x, то выдаем ответ 1 и останавливаемся (иначе рассматриваем следующее n).

Свойства перечислимых множеств

- Всякое разрешимое множество перечислимо.
- Класс перечислимых подмножеств № замкнут относительно операций ∩, ∪.

Множество вида $\{m \in \mathbb{N} \mid P(m, x_1, \dots, x_n) = 0 \text{ имеет решение в } \mathbb{N} \}$ называется диофантовым.

Утверждение

Всякое диофантово множество перечислимо.

Теорема Матиясевича

Теорема 23.2

Всякое перечислимое множество диофантово.

Из этой теоремы вытекает решение 10-й проблемы Гильберта:

Следствие

Множество всех диофантовых уравнений $P(x_1, ..., x_n) = 0$, которые имеют решение в N, неразрешимо.

Доказательство: возьмем диофантово представление перечислимого неразрешимого множества.

K- hepez. where

Теорема Поста

Теорема 24.1 (Пост)

 $A \subseteq \mathbb{N}$ разрешимо $\iff A$ и $\mathbb{N} \setminus A$ перечислимы.

- (⇒) Очевидно.
- (⇐) Случай, когда A или $\mathbb{N} \setminus A$ пусты очевиден.

Пусть определённые всюду функции f и g перечисляют A и $\mathbb{N}\setminus A$, соответственно. Т.е. $\operatorname{rng}(f) = A$ и $\operatorname{rng}(g) = \mathbb{N} \setminus A$. Тогда χ_A можно вычислить так:

Вычисляем $f(0), g(0), f(1), g(1), f(2), g(2), \ldots$ до тех пор, пока не встретим данный нам х и выводим 0 или 1, в зависимости от того на какой функции остановились.

Теорема о графике

Теорема 24.2

 $f: \mathbb{N} \to \mathbb{N}$ вычислима \iff множество $G_f := \{\langle x, y \rangle : f(x) = y\}$ перечислимо.

- (\Rightarrow) Проверяем $\langle x,y\rangle \in G_f$ вычисляя f(x).
- (\Leftarrow) Вычисляем f(x) перебирая «параллельно» все возможные пары $\langle x,y\rangle$ и f(x) - oup. - poyece (x,0)1(x,2)1 f(x) - recorp (x,0)2 (x,1)2 (x,0)3 (x,1)2 проверяя их на принадлежность G_f .

Теория T (в конечной сигнатуре) эффективно аксиоматизируема \iff множество аксиом Т разрешимо.

Tеория *T* разрешима, если множество теорем *T* разрешимо.

Теорема 24.3

Теория T эфф. аксиоматизируема \iff множество теорем T перечислимо.

- (\Rightarrow) Порождаем все возможные выводы из аксиом T.
- (\Leftarrow) Пусть $A_0, A_1, \ldots, A_n, \ldots$ перечисление теорем T. Тогда множество формул A_0 , $A_0 \wedge A_1$, $A_0 \wedge A_1 \wedge A_2$, ... разрешимо и задаёт эквивалентную теорию.

$$C = A_0$$
 $C = A_0 A_1$

Теорема 24.4

Полная эфф. аксиоматизируемая теория разрешима.

Полные эфф. аксиоматизируемые теории:

- Элементарная геометрия. $Th(\mathbb{R}^2;=,\cong,B)$
- Теория алгебраически замкнутых полей характеристики 0. $Th(\mathbb{C};=,+,\cdot,0,1)$
- Теория плотных линейных порядков без первого и последнего элементов. $Th(\mathbb{Q};=,<)$

Подробнее про элементарную геометрию: http://www.mathnet.ru/php/presentation.phtml?presentid=9380 Универсальная машина Тьюринга это МТ, которая умеет «моделировать» любую другую МТ.

Теорема 24.5

Универсальная МТ существует.

Неформальный аргумент: существуют компиляторы и интерпретаторы полных по Тьюрингу языков программирования.

Идея: Каждой МТ M сопоставляется код Code(M) в некотором алфавите Π . Универсальная МТ (обозначим ее U_{Δ}) работает так, что если ей на вход подать слово Code(M)\$x, где $x\in\Delta^*$, а \$ — специальный символ, выдает то же что Mна входе x.

Условное равенство

Пусть f, g — частичные функции.

 $f(x) \simeq g(x)$ означает, что либо $x \in \text{dom}(f) \cap \text{dom}(g)$ и f(x) = g(x), либо $x \notin \text{dom}(f)$ и $x \notin \text{dom}(g)$.

$$f \simeq g \iff \forall x (f(x) \simeq g(x))$$

$$x \cdot \frac{1}{x} \simeq \frac{1}{x} \cdot x$$
 Для МТ M и универсальной МТ U_{Δ} можно записать:

$$\forall x \in \Delta^* \left(U_{\Delta}(Code(M)\$x) \simeq M_{\Delta}(x), \right)$$

 $\mathcal{F} = \text{Com}(\mathbb{N}, \mathbb{N}).$ Универсальной функцией для \mathcal{F} называем такую функцию $F: \mathbb{N} \times X \to Y$, что

• Для любого $e \in \mathbb{N}$ функция $F_e(x) := F(e, x)$ принадлежит \mathcal{F} .

Пусть \mathcal{F} — счётное семейство част. функций $f: X \to Y$, например

- $\forall f \in \mathcal{F} \exists e \in \mathbb{N} \ \forall x \in X \ f(x) \simeq F(e, x)$.
- Последнее условие можно записать так

$$\forall f \in \mathcal{F} \; \exists e \in \mathbb{N} \; f(x) \simeq F_e(x).$$

Замечание

- Универсальная функция F существует для любого счётного семейства \mathcal{F} . • F определяет некоторую нумерацию \mathcal{F} : $\mathcal{F} = \{F_0(x), F_1(x), \dots\}$.

функции F.

Число i называется индексом функции F_i относительно данной универсальной

Теорема 24.6

Семейство Com(N, N) обладает вычислимой универсальной функцией $F \in \text{Com}(\mathbb{N} \times \mathbb{N}, \mathbb{N}).$ Пусть $\Delta = \{1\}$. Обозначим $\overline{n} := 11 \dots 1$ (*n* раз). Заметим, что $|\overline{n}| = n$.

 $f:\mathbb{N}\to\mathbb{N}$ вычислима \iff вычислима функция $\overline{f}:\Delta^*\to\Delta^*$, определяемая по

формуле $f(\overline{n}) := f(n)$. Пусть M вычисляет \overline{f} , то есть

 $\forall x \in \Delta^* \ \underline{M_{\Delta}(x) \simeq \overline{f}(x)}.$

Рассмотрим выч. биекцию
$$\phi: \mathbb{N} \to \Pi^*$$
. Где Π это рабочий алфавит

универсальной МТ. Для некоторого $i \in \mathbb{N}$ имеем $Code(M) = \phi(i)$. Значит, для всех $x \in \Delta^*$ $\overline{f}(x) \simeq M_{\Delta}(x) \simeq U_{\Delta}(\phi(i)\$x).$

В качестве универсальной функции
$$F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 возьмём

 $F(i,n) := U_{\Delta}(\phi(i)\$\overline{n})$.

Аналогично, для каждого k строятся вычислимые универсальные функции для

Замечание 24.7

классов $Com(\mathbb{N}^k, \mathbb{N})$, обозначаемые F^k . Вычислимая функция, не продолжаемая до вычислимой

тотальной

g продолжает f, если $f \subseteq g$, то есть $dom(f) \subseteq dom(g)$ и $\forall x \in dom(f)$ f(x) = g(x).

Пусть $f, g: X \to Y$ — частичные функции.

Найдётся такая $f \in \text{Com}(\mathbb{N}, \mathbb{N})$, что никакая $g \in \text{TCom}(\mathbb{N}, \mathbb{N})$ не продолжает f.

Доказательство

Пусть $f(x) \simeq F(x,x) + 1$, где F — универсальная функция.

Диагональный метод Кантора.

Функция f вычислима, т.к. F — вычислима. Допустим $f \subseteq g$ и $g \in TCom(\mathbb{N}, \mathbb{N})$. Тогда найдётся $i \in \mathbb{N}$

$$F(i,i) = g(i) = F(i,i) + 1,$$

 $\forall x \in \mathbb{N} \ g(x) \simeq F(i,x).$

T.к. !g(i), получаем

противоречие.

Положим K := dom(f), где f из предыдущей теоремы, т.е. $K = \{x \in \mathbb{N} : !F(x,x)\}.$

Теорема 24.9

 $K \subseteq \mathbb{N}$ перечислимо, но не разрешимо.

Допустим K разрешимо. Тогда функция

$$g(x) := \begin{cases} f(x), & \text{если } x \in K; \\ 0, & \text{иначе.} \end{cases}$$

вычислима и является продолжением f на всё \mathbb{N} .

Проблема остановки

Проблема = массовая проблема

Пусть фиксирован алфавит Δ и # $\notin \Delta$.

Задача: (проблема остановки) по данной программе (коду машины Тьюринга) M и исходным данным $x \in \Delta^*$ узнать, завершает ли работу M на входе x.

Теорема 24.10

Проблема остановки алгоритмически неразрешима.

Доказательство.

В случае разрешимости проблемы остановки мы могли бы построить разрешающий алг. для K:

- По данному x вычислить $y = \phi(x)$.
- Проверить, является ли y кодом МТ с алфавитом, содержащим Δ . Если нет, то $x \notin K$.
- Иначе проверить, завершает ли работу машина M с кодом y на входе \overline{x} . Если да, то $x \in K$, иначе $x \notin K$.

Пара множеств $X,Y\subseteq\mathbb{N}$ неотделима, если

- $\bullet X \cap Y = \emptyset$
- не существует разрешимого множества $C\subseteq \mathbb{N}$ такого,что $X\subseteq C$ и $Y\cap C=\varnothing$.

Теорема 25.1

Существует неотделимая пара перечислимых множеств.

Доказательство.

Пусть $f: \mathbb{N} \to \{0,1\}$ — вычислимая функция без тотального вычислимого продолжения. Положим $X := \{x \in \mathbb{N} : f(x) = 0\}$ и $Y := \{x \in \mathbb{N} : f(x) = 1\}$.

По теореме о графике X, Y перечислимы.

Если разрешимое C отделяет X и Y, то функция

$$g(x) := \begin{cases} 0, & \text{если } x \in C; \\ 1, & \text{иначе.} \end{cases} = 1 - \chi_{\mathcal{C}}(x)$$

продолжает f на всё \mathbb{N} .

Установленные факты

- Универсальная вычислимая функция F(e, x).
- Частичная вычислимая $f: \mathbb{N} \to \{0,1\}$, не продолжаемая до тотальной вычислимой:

$$f(x) := egin{cases} 1, & ext{если } F(x,x) = 0; \ 0, & ext{если } !F(x,x)
et 0; \ ext{неопр.}, & ext{иначе.} \end{cases}$$

• $K := \{x \in \mathbb{N} : !F(x,x)\}$ перечислимое, неразрешимое.

Главные универсальные функции

Вычислимая универсальная функция $F:\mathbb{N}^2\to\mathbb{N}$ называется главной, если для любой вычислимой $g:\mathbb{N}^2\to\mathbb{N}$ найдётся тотальная вычислимая функция $s:\mathbb{N}\to\mathbb{N}$ такая, что

$$\forall e, x \ g(e, x) \simeq F(\underline{s(e)}, x).$$

Теорема 25.3

Главная вычислимая универсальная функция $F: \mathbb{N}^2 \to \mathbb{N}$ существует.

На самом деле, универсальная МТ задает главную унив. функцию.

Замечание

Вычислимую функцию g(e,x) можно понимать как (возможно, не универсальный) язык программирования, где e — программа вычисления функции $x \mapsto g(e,x)$.

Функция s есть интерпретатор, сопоставляющий программе e языка g машину Тьюринга s(e), вычисляющую ту же функцию.

Теорема Райса-Успенского

Какие свойства вычислимых функций распознаваемы по программе?

Примеры практически интересных свойств частичных функций f:

- $\forall x \ ! f(x)$ (тотальность);
- $f(x_0) = y_0$, где x_0, y_0 фиксированы; —
- $f = g_0$, где функция g_0 фиксирована; +
- «вычисление f(x) на некотором x приводит к стиранию всех данных на HD компьютера». \bot

Пусть фиксирована универсальная вычислимая функция F. Обозначим через F_e частичную функцию с индексом e, т.е. $F_e(x) \simeq F(e,x)$.

Нетривиальным свойством вычислимых функций называем любое подмножество $\mathcal{C} \subset \mathrm{Com}(\mathbb{N}, \mathbb{N})$ такое, что $\mathcal{C} \neq \emptyset$ и $\mathcal{C} \neq \mathrm{Com}(\mathbb{N}, \mathbb{N})$.

$$I_c = \phi$$
 $I_c = N$

С каждым свойством C вычислимых функций связывается множество всех программ, вычисляющих функции со свойством C, то есть множество $I_C := \{e \in \mathbb{N} : F_e \in C\}.$

Теорема 25.4

Если \mathcal{C} — нетривиальное свойство вычислимых функций, то множество $\{e\in\mathbb{N}:F_e\in\mathcal{C}\}$ неразрешимо.

Доказательство.

- Можно считать, что нигде не определённая функция ζ не обладает свойством \mathcal{C} иначе заменим \mathcal{C} на его дополнение.
- Т.к. $\mathcal{C} \neq \emptyset$, фиксируем вычислимую функцию $f_0 \in \mathcal{C}$.
- Построим тотальную вычислимую функцию $s:\mathbb{N}\to\mathbb{N}$ такую, что для всех $x\in\mathbb{N}$

$$x \in K \iff s(x) \in I_{\mathcal{C}}.$$

• Если бы $I_{\mathcal{C}} := \{e \in \mathbb{N} : F_e \in \mathcal{C}\}$ было разрешимо, то мы получили бы следующий разрешающий алгоритм для K: для данного x вычислить y = s(x) и проверить $y \in I_{\mathcal{C}}$.

Вычисляем g(e,x) в соответствии со следующим алгоритмом:

- вычислить $F_e(e)$; \checkmark
- если $!F_e(e)$, очистить ленту, а затем вычислить $f_0(x)$. \subset

По свойству главности получаем тотальную вычислимую функцию s такую, что

$$\forall e, x \ F_{s(e)}(x) \simeq g(e, x).$$

Тогда имеем:

- Если $e \in K$, то $F_{s(e)}(x) \simeq f_0(x)$;
- Если $e \notin K$, то $F_{s(e)} = \zeta$

Отсюда $e \in K \iff F_{s(e)} \in \mathcal{C} \iff s(e) \in I_{\mathcal{C}}.$

т-сводимость

Говорят, что множество A натуральных чисел m-сводится к другому множеству B натуральных чисел, если существует всюду определённая вычислимая функция $f: \mathbb{N} \to \mathbb{N}$ с таким свойством:

$$x \in A \iff f(x) \in B$$

для всех $x \in \mathbb{N}$. Обозначение: $A \leq_m B$.

Свойства:

- \leq_m рефлексивно и транзитивно;
- B разрешима (перечислима) и $A \leq_m B \Rightarrow A$ разрешима (перечислима);
- <u>В</u>—неразреш. (неперечис.) и $A \leq_m B \leftarrow A$ —неразреш. (неперечис.);
- $A \leq_m B \iff \mathbb{N} \setminus A \leq_m \mathbb{N} \setminus B;$
- A разрешима и $B \neq \emptyset$, $\mathbb{N} \Rightarrow A \leqslant_m B$.

Пусть F— главная универсальная вычислима функция.

 $A = \{e \mid F_e(0) \neq 0\}$. Что можно сказать про множество A?

т-полные множества

Множество A называется m-полным (в классе перечислимых множеств), если для любого перечислимого множества B верно, что $B \leq_m A$.

Теорема 26.2

Для главной УВФ F(e,x) множество $K = \{ \#e \mid F(e,x) \text{ определено} \}$ является m-полным.

K — перечислимо.

Предположим, что A — перечислимо. Рассмотрим функцию

$$g(n,x) =$$
 { неопред., если $n \in A$; если $n \notin A$;

По главность F найдется тотальная функция $f: \mathbb{N} \to \mathbb{N}$, т.ч.

$$g(n,x) \simeq F(f(n),x).$$

$$g(n,x) = \begin{cases} \text{неопред., если } n \not\in A; \\ 1, & \text{если } n \not\in A; \end{cases}$$

$$g(n,x) \simeq F(f(n),x).$$

Покажем, что

Теорема Клини о неподвижной точке

Теорема 26.3 (Клини)

Пусть F—главная УВФ для класса $\mathrm{Com}(\mathbb{N},\mathbb{N})$, а h—всюду определённая вычислимая функция одного аргумента. Тогда существует такое число p, что $F_{\mathbb{N}} \cong F_{h(n)}$, то есть n и h(n)—номера одной функции.

h=m (=)
$$f_n \sim f_m$$

lemma $f_n \sim f_m$
 $f_$

Теорема 26.3 (Клини)

Пусть F—главная УВФ для класса $\mathrm{Com}(\mathbb{N},\mathbb{N})$, а h—всюду определённая вычислимая функция одного аргумента. Тогда существует такое число m, что $F_n = F_{h(n)}$ то есть n и h(n)—номера одной функции.

The hon have unex seenogle. To use the court see and the surest benogy one fin =
$$f(n) = f(n,n)$$
 Samerum, or of the number becopy one improgramment or or or the surest of the least to use the point of the least to the the season of the ten o

Программа печатающая свой номер (текст)

my so

Следствие 26.4

Существует n, такой что F(n, x) = n при любом x.

$$g(n,x) = n - lander (n,x) = g(n,x)$$

$$\exists s = ton land + n \cdot \forall x (f(s(n),x) = g(n,x))$$

$$\exists k + n \cdot \forall x (f(s,k),x) = f(k,x)$$

$$F(k,x) = F(s(k),x) = g(k,x) = k$$

$$F(k,x) = F(s(k),x) = g(k,x) = k$$

Арифметика Пеано РА

Сигнатура: $0, S, +, \cdot, \text{Exp}, \leq, =$

Стандартная модель: $(\mathbb{N}; 0, S, +, \cdot, \text{Exp}, \leq, =)$, где S(x) = x + 1 и $\text{Exp}(x) = 2^x$.

Аксиомы РА

- $a + 0 = a, \quad a + S(b) = S(a + b),$

- $m{O}$ (Схема аксиом индукции) $A[a/0] \wedge \forall x \, (A[a/x] \to A[a/S(x)]) \to \forall x \, A[a/x],$

для любой формулы A.

Арифметика Робинсона

Теория Q получается из PA заменой схемы индукции единственной аксиомой:

$$a \leq b \lor b \leq a$$
.

Упражнение 26.1

Показать, что $PA \vdash Q$.

Решение

- (1) Сначала покажем индукцией по x, что $\forall x (a \leq x \leftrightarrow a = x \lor S(a) \leq x)$.
- (2) Затем покажем индукцией по x, что $\forall x (a \le x \lor x \le a)$.

Заметим, что из (1) следует $a \le a$ и $a \le S(a)$.

Вывод (1)

Базис: $a \le 0 \leftrightarrow a = 0 \lor S(a) \le 0$. Поскольку $S(a) \le 0 \to S(a) = 0$, имеем $\neg S(a) \le 0$.

Шаг: эквивалентно преобразуем

- $a \leq S(x)$
- $a \le x \lor a = S(x)$ (аксиома)
- $(a = x \lor S(a) \le x) \lor a = S(x)$ (пр. инд.)
- $S(a) = S(x) \lor S(a) \le x \lor a = S(x)$ (аксиома)
- $S(a) \leq S(x) \lor a = S(x)$

Вывод (2)

Базис: $a \le 0 \lor 0 \le a$ поскольку $0 \le a$.

Шаг:

- \bullet $a \leq x \vee x \leq a$ (пр. инд.)
- ② $x < a \to (a = x \lor S(x) < a)$ (1)
- $a \le x \lor a = x \lor S(x) \le a$
- $a \le x \to a \le S(x)$ (аксиома)
- $a = x \to a \le S(x)$ (из (1))
- $a \leq S(x) \vee S(x) \leq a$

Определение 1.1. Арифметика Пеано РА задаётся следующими нелогическими аксиомами:

- 1. аксиомы равенства для сигнатуры $0, S, +, \cdot, \exp, \leq, =;$
- 2. $\neg S(a) = 0$, $S(a) = S(b) \rightarrow a = b$,
- 3. a + 0 = a, a + S(b) = S(a + b),
- 4. $a \cdot 0 = 0$, $a \cdot S(b) = a \cdot b + a$,
- 6. $a \le 0 \leftrightarrow a = 0$

5. $\exp(0) = S(0)$, $\exp(S(a)) = \exp(a) + \exp(a)$

- 7. $a \leq S(b) \leftrightarrow (a \leq b \lor a = S(b))$
- 8. (Схема аксиом индукции)
- $A[a/0] \wedge \forall x (A[a/x] \rightarrow A[a/S(x)]) \rightarrow \forall x A[a/x],$
- для любой формулы A.

Следующие лемма и следствие очевидны. Лемма 1.2. \mathbb{N} ⊨ PA.

Определение 1.4. Арифметика Робинсона Q получается из РА заме-

 $a \leq b \vee b \leq a$.

Замечание 1.5. Заметим, что из этой аксиомы следует $a \le a$ (положим

b=a) и $a \le b \lor b < a$ (поскольку $\neg a \le b \to \neg a = b$ в силу предыдущего).

 $(\mathbb{N}; 0, S, +, \cdot, \exp, \leq, =).$

Стандартной моделью арифметики Пеано называем модель

ной схемы индукции единственной аксиомой:

Решение. Последовательно докажем индукцией по x:

Упражнение 1.7. Показать, что $PA \vdash Q$.

(ii) $\forall x (a \leq x \lor x \leq a)$. Заметим, что из (i) следует $a \le a$ и $a \le S(a)$.

(i) $\forall x (a \leq x \leftrightarrow a = x \lor S(a) \leq x);$

Вывод утверждения (і): Базис индукции: $a \le 0 \leftrightarrow a = 0 \lor S(a) \le 0$.

Импликации $a \le 0 \to a = 0$ и $a = 0 \to a \le 0$ получаем по аксиоме 6. Поэтому достаточно вывести $\neg S(a) \leq 0$. По аксиоме 6 формула $S(a) \leq 0$

влечет S(a) = 0, что противоречит аксиоме 2.

мул, каждая из которых эквивалентна предыдущей:

2. $a \le x \lor a = S(x)$ (по аксиоме 7)

1. $a \leq S(x)$

Вывод утверждения (ii):

Шаг индукции:

4. $(S(a) = S(x) \lor S(a) \le x) \lor a = S(x)$ (по аксиоме 2)

3. $(a = x \lor S(a) \le x) \lor a = S(x)$ (по предположению индукции)

Шаг индукции: надо показать $a \leq S(x) \leftrightarrow S(a) \leq S(x) \lor a = S(x)$.

Пользуясь предположением индукции строим следующую цепочку фор-

Базис индукции: $a \le 0 \lor 0 \le a$. Мы получаем $0 \le a$ очевидной индукцией по a.

2. $a \leq S(x) \vee x \leq a$ (по аксиоме 7)

5. $S(a) \le S(x) \lor a = S(x)$ (по аксиоме 7).

3. $a \leq S(x) \vee (S(x) \leq a \vee x = a)$ (по утверждению (i))

1. $a \le x \lor x \le a$ (предположение индукции)

- 4. $a \leq S(x) \vee (S(x) \leq a \vee a \leq S(x))$ (из $a \leq S(a)$) 5. $a \leq S(x) \vee S(x) \leq a$.
- Таким образом, теория Q представляет собой конечную подтеорию арифметики РА.

ции, поэтому она не позволяет вывести сколько-нибудь содержательные свойства арифметических операций (см. упражнение ниже). Другими словами, Q является очень слабой подтеорией арифметики РА. Она играет роль минимально достаточной теории, для которой справедливы

Замечание 1.8. В теории Q не возможны доказательства по индук-

теоремы Гёделя о неполноте. Выбор такой теории, в отличие от РА, в значительной степени произволен. В частности, сам Р. Робинсон обозначал через Q несколько иную теорию (отличия, в основном, связаны с выбранным здесь вариантом языка арифметики).