指数・対数関数の公式

関連分野:複素数、微積分

カッコは正しく 使いましょう $(2^3)^4 = 2^{12}$

対数の定義・公式

底指数 = 真数 log底真数 = 指数

: 対数 = 指数

対数の定義

 $a^b = c \iff \log_a c = b$ ただし、底a>0, 真数条件c>0

対数の指数

 $a^{\log_a b} = b$

(頻出パターン) $\log_{a^m} b^n = \frac{n}{m} \log_a b$ $\log_a b =$ $log_b a$

 $\log_a b = \frac{\log_c b}{\log_c a}$

底の変換公式

「aを累乗したときにbになる指数」でaを累乗するとbになる

関数のグラフ (i)底a>1のとき $a^{\uparrow} < a^{\uparrow}$ $(y=a^x)$ $y = \log_a x \iff x = a^y$ 指数関数 対数関数 $y = a^x$ $y = \log_a x$ (ii) 底 0 < a < 1のとき x > 0実数全体 定義域 $a^{\dagger} > a^{\dagger}$ (真数条件) 值域 y > 0実数全体 x軸 ν軸 漸近線 直線y = xに関して対称 (x,yが逆になる · · · 逆関数)

指数・累乗根の計算

指数・累乗根を含む 計算・方程式・不等式は、 どれもこの手順で解決できる!

 $\sqrt[3]{2^3 \cdot 2^1} = 2\sqrt[3]{2}$

_					1					
	xがa の n 乗根		\Leftrightarrow $n^n - \tilde{n}$	累乗根	複素数範囲					
			$\Leftrightarrow x^n = a$		実数範囲		根号で表される累乗根 $\sqrt[n]{a}=a^{rac{1}{n}}$			
	偶数乗 指数nが偶数の場合		(±2)2 = +4より	+4の平方根は	±2	×	$\sqrt{+4} = +2$		正の累乗根の値	
			<u> ±</u> 2) = +4より	-4の平方根は	×	±2 <i>i</i>	$\sqrt{-4}$	=なし	便宜的に平方根のみ $\sqrt{-1}=i$ とする	
i	奇数乗	((+2)3 = +8より	+8の平方根は	+2	$-1 \pm \sqrt{3}$			実数範囲の累乗根の値 (2つ以上の実数を累乗根にもつことはない)	
	指数πが奇数の場合	合 ($(-2)^3 = -8 \sharp \mathcal{V}$	-8の平方根は	-2	$1 \pm \sqrt{3}$				
	指数・対数 の計算 м		対数〔導出〕 $= a^m(m = \log_a M), N = a^n(n = \log_a N)$ とおく		指 数			備 考 (指数法則でのaの数え方)		
i	指数の和		$\log_a M + \log_a N = \log_a MN$		$a^m \cdot a^n = a^{m+n}$		(a×c		$a \times a \times \cdots \times a \cdot (a \times a \times a \times \cdots \times a)$	
į	真数の積	導出 $MN = a^{m+n}$ $m + n = \log_{10} MN$								

1			·			
11111	指数・対数 の計算	対数〔 M = a ^m (m = log _a M), N = a	•	指 数		
11111	指数の和真数の積	$\log_a M + \log_a N$ 導出 $MN = a^n$ $m + n = \log_a N$	ı+n	$a^m \cdot a^n$	$=a^{m+n}$	(
	指数の差真数の商	$\log_a M - \log_a N$	$= \log_a \frac{M}{N}$	$a^m \div a^n =$	$\frac{a^m}{a^n} = a^{m-n}$	<u>a</u> ×
		導出 $\frac{M}{N} = a^{m-n}$ $m - n = \log_a \frac{M}{N}$		$=a^n$	$a \times (a^n$ の逆数) $a \times a^{-n}$ $a \times (a^n)$ 積と同じ	<u>a</u> ×
	指数の積真数の累乗	$\log_a M^n = n$ 導出 $M^n = a^{mn}$ $\log_a M^n = mn$ 累	$\log_a M$ $\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$ $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$	$(a^m)^n$	$=a^{mn}$	(
	積の累乗 累乗の積	乗 根	$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$	$(ab)^n$:	$=a^nb^n$	(另
J	商の累乗 累乗の商		$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\left(\frac{a}{b}\right)^n$	$=\frac{a^n}{b^n}$	
	0乗	$\log_a 1 =$	0	$a^0 = 1$		
	負の指数 逆数	$\log_a \frac{1}{M} = -1$	og _a M	$a^{-n} = \frac{1}{a^n}$		
	累乗根 の指数	$\log_a \sqrt[n]{M} = \frac{1}{n}$	log _a M	$a^{\frac{1}{n}} = \sqrt[n]{a}$		
		314			$\sqrt[n]{a^n} = a$	

略記法	常用対数 log ₁₀ x	自然対数 $\log_e x$
高校数学	$\log_{10} x$	$\log x$
科学分野	$\log x$	ln x

どちらも同じ

nセット

分数でも積と同じ

法

常用対数と桁数

実数M 指数表示 常用対数表示 (例) n = 3 のとき $10^{n-1} \le M < 10^n$ n桁の数 $\log_{10} 10^{n-1} \le \log_{10} M < \log_{10} 10^n$ 小数第n位に $10^{-n} \le M < 10^{-n+1}$ はじめて 0でない $\log_{10} 10^{-n} \le \log_{10} M < \log_{10} 10^{-n+1}$ 数字が表れる

自然対数の底^(オイラー数、ネイピア数) e [数Ⅲ]

(Bernoulli) $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = \lim_{h \to 0} (1 + h)^{\frac{1}{h}}$ 「1足すチョットの+∞乗」

(Euler)
$$\lim_{h\to 0} \frac{e^{h}-1}{h} = \lim_{x\to 0} \frac{\log(1+x)}{x} = 1$$

$$e = a \quad s.t. \quad \frac{d}{dx} a^{x} = a^{x}$$

加個

 $a \times a \times a \times \cdots \times a$

m個 $\overrightarrow{a \times a \times a \times \cdots \times a}$

 $\times a \times a \times a \times a \times \cdots \times a$

 $(a^m)^n = \overbrace{a \times a \times a \times \cdots \times a} \times$

 $a \times a \times a \times \cdots \times a \times$

 $a \times a \times a \times \cdots \times a$

 $\left(\frac{a}{b}\right)^n = (a \cdot b^{-1})^n = a^n b^{-n} = \frac{a^n}{b^n}$

 $\overrightarrow{a \times a \times a \times a \times \cdots \times a}$

 $e = 2.71828182845904(5 \cdots)$ (語呂) 鮒一鉢二鉢一鉢二鉢至極美味しい