Force, torque and pressure sensors

Industrial Control

KOVÁCS Gábor gkovacs@iit.bme.hu

Force

- What do we know about force?
 - a force is an interaction which causes an object with mass to change its velocity
 - SI base unit
 - vector quantity

Units

- Newton N
 - 1N is the force which accelerates a mass of 1kg by 1 m/s²
- Pound lb, lbf
 - 1 lb is the force which accelerates a mass of 1 slug by 1 ft/s²
 - 1 lbf is the force exerted by standard gravity on a mass of 1 lbm
 - 1 lb = 4.44822 N
- Kilogramm kg
 - 1 kg is the force exerted by standard gravity on a mass of 1 kg

Mechanical stress

Stress:

$$\bar{\sigma} = \frac{\bar{F}}{A} \left[\frac{N}{m^2}, Pa \right]$$

Normal stress:

$$\sigma_x$$
, σ_y , σ_z

• Shear stress:

$$\tau_{ij} = \tau_{ji}$$

Elastic strain caused by normal stress

Up to a limit of stress, a mass is exposed to elastic strain (Hooke's law):

$$\begin{bmatrix} \mathcal{E}_{\chi} \\ \mathcal{E}_{y} \\ \mathcal{E}_{z} \end{bmatrix} = \begin{bmatrix} 1/E & -\nu/E & -\nu/E \\ -\nu/E & 1/E & -\nu/E \\ -\nu/E & -\nu/E & 1/E \end{bmatrix} \begin{bmatrix} \sigma_{\chi} \\ \sigma_{y} \\ \sigma_{z} \end{bmatrix}$$
where

- ε_x is the relative strain in direction x
- *E* is Young's modulus (silicon: 117GPa, steel: 200GPa)
- ν is Poisson's ratio $(\nu \leq 0.5, \text{ silicon: 0.22, steel: 0.3})$

Elastic strain

Only normal stress is exerted:

$$\sigma_y = \frac{F_y}{A}$$

- Relative strain:
 - $\varepsilon_y = \frac{\sigma_y}{E}$
 - $\varepsilon_{\chi} = \varepsilon_{Z} = -\frac{\nu \sigma_{y}}{E}$
- Absolute strain:
 - $\Delta l = l_0 \varepsilon_y = l_0 \frac{\sigma_y}{E} > 0$
 - $\Delta w = w_0 \varepsilon_{\chi} = w_0 \frac{-\nu \sigma_{y}}{E} < 0$
 - $\Delta h = h_0 \varepsilon_z = h_0 \frac{-\nu \sigma_y}{F} < 0$

Problem

Give the change of the height and base area of a steel cube with 10 cm edge length if a mass of 100 kg is placed on it. Young's modulus and Poisson-ratio for steel are E = 200 GPa and v = 0.3, respectively.

•
$$\varepsilon_Z = \frac{\sigma_Z}{E} = \frac{-mg}{A} / E \approx \frac{-1000}{0.1 \cdot 0.1} / (200 \cdot 10^9) = -\frac{10^5}{2 \cdot 10^{11}} = -5 \cdot 10^{-7}$$

$$\Delta h = \varepsilon_Z h_0 = -5 \cdot 10^{-7} \cdot 0.1 \text{ m} = -0.05 \mu\text{m}$$

•
$$\varepsilon_{x} = \varepsilon_{y} = -\frac{v\sigma_{z}}{E} = 1.5 \cdot 10^{-7}$$

$$\Delta A = (l_{0} + \varepsilon_{x} l_{0}) \cdot (w_{0} + \varepsilon_{y} w_{0}) - l_{0} w_{0} = (0.1 + 0.1 \cdot 1.5 \cdot 10^{-7})^{2} - 0.1^{2} = 2 \cdot 0.1 \cdot 0.1 \cdot 1.5 \cdot 10^{-7} + 2.25 \cdot 10^{-16} \approx 0.003 \text{mm}^{2}$$

Effect of strain on electrical properties

 Resistance – resistance of a conductor depends on its resistivity, length and diameter

```
• R=
ho rac{l}{A} , where 
ho=1/\sigma \ {
m is the resistivity} \ [\Omega {
m m}], l is the length of the conductor [{
m m}], A is the cross section of the conductor [{
m m}^2]
```

Geometrical effect of normal strain

$$h_0 + \Delta h \updownarrow \qquad \qquad \swarrow \qquad \qquad \swarrow \qquad \qquad w_0 + \Delta w$$

$$l_0 + \Delta l$$

$$R' = \rho \frac{l'}{A'} = \rho \frac{l_0 + \Delta l}{(w_0 + \Delta w)(h_0 + \Delta h)} = \rho \frac{l_0(1 + \varepsilon_y)}{w_0(1 + \varepsilon_x)h_0(1 + \varepsilon_z)} = \rho \frac{l_0}{A_0} \frac{1 + \varepsilon_y}{(1 + \varepsilon_x)(1 + \varepsilon_z)}$$

- $\varepsilon_x = \varepsilon_z \Rightarrow (1 + \varepsilon_x)(1 + \varepsilon_z) = 1 + \varepsilon_x + \varepsilon_z + \varepsilon_x \varepsilon_z = 1 + 2\varepsilon_x + \varepsilon_x^2 = 1 2\nu\varepsilon_y + \nu^2\varepsilon_y^2$
- $\varepsilon_y \ll 1, \nu < 1 \Rightarrow 1 2\nu\varepsilon_y + \nu^2\varepsilon_y^2 \approx 1 2\nu\varepsilon_y$
- $\frac{1}{1-2\nu\varepsilon_y} = \frac{1+2\nu\varepsilon_y}{1-(2\nu\varepsilon_y)^2} \approx 1+2\nu\varepsilon_y$

$$\Rightarrow R' \approx \rho \frac{l_0}{A_0} (1 + \varepsilon_y) (1 + 2\nu \varepsilon_y) \approx \rho \frac{l_0}{A_0} (1 + \varepsilon_y (1 + 2\nu))$$

Piezoresistive effect

- Mechanical stress modifies inter-atomic spacing which results in change of the resistivity
- For isotropic effects, the change reads

$$\frac{\Delta \rho}{\rho} = \begin{bmatrix} \pi_{11} & \pi_{12} & \pi_{12} \\ \pi_{12} & \pi_{11} & \pi_{12} \\ \pi_{12} & \pi_{12} & \pi_{11} \\ & & & \pi_{44} \end{bmatrix} \begin{bmatrix} \sigma_{\chi} \\ \sigma_{y} \\ \sigma_{y} \\ \sigma_{xy} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix}$$

 π_{ij} piezoresistive coefficients, for metals $\pi_{44}=0$

Piezoresistive effect

Simplified formula:

$$\frac{\Delta \rho}{\rho} = \pi_l \sigma_l + \pi_t \sigma_t,$$

where π_l adn π_t are the longitudinal and transversal (relative to the direction of current flow) piezoresistive coefficients:

$$\pi_{l,NiCr} \approx 10^{-3} \frac{1}{\text{GPa}}, \pi_{l,Si} \approx 10^{-1} \frac{1}{\text{GPa}}$$

• Omitting the transversal effect: $rac{\Delta
ho}{
ho} = \pi_l arepsilon_l E$

Joint effect of mechanical stress

$$R' = (\rho_0 + \Delta \rho) \frac{l_0}{A_0} \left(1 + \varepsilon_y (1 + 2\nu) \right) =$$

$$\rho_0 \left(1 + \frac{\Delta \rho}{\rho_0} \right) \frac{l_0}{A_0} \left(1 + \varepsilon_y (1 + 2\nu) \right) =$$

$$\rho_0 \frac{l_0}{A_0} \left(1 + \varepsilon_y \pi_l E \right) \left(1 + \varepsilon_y (1 + 2\nu) \right)$$

$$\varepsilon_y^2 \approx 0 \Rightarrow R' \approx R_0 (1 + \varepsilon_y (E\pi_l + 1 + 2\nu))$$

$$\Delta R = R' - R_0 = R_0 \varepsilon (E\pi_l + 1 + 2\nu)$$

Gauge factor

•
$$\Delta R = R_0 \varepsilon (E \pi_l + 1 + 2\nu)$$

•
$$g = GF = \frac{\Delta R/R}{\Delta l/l} = \frac{\Delta R/R}{\varepsilon} = E\pi_l + 1 + 2\nu$$
 [1]

Gauge factor is a unitless quantity describing the ratio of relative elastic strain and relative change of resistance

- $R = R_0(1 + g\varepsilon)$
- Value of gauge factor
 - for metals: 2 ... 5
 - for semiconductors: 125 ... 200 (depends on doping)

Components of the gauge factor

Effect of shear strain

- Piezoresistive effect might change the resistivity if shear strain is exerted
- No effect of shear strain for metals ($\pi_{44} = 0$)
- For semiconductors the effect of shear strain can be significant

Strain gauges

(strain gages)

Dynamical transducer up to a few kHz frequency

Magnitude of change in resistance

- Metal strain gauges
 - maximal strain: $\varepsilon_{max} \approx \pm 0.2\% \dots \pm 2\%$
 - gauge factor: $g \approx 2 5$
 - $\Delta R = g\varepsilon < 10\%$, typically $\Delta R \approx 1 \dots 5\%$
- Semiconductor strain gauges
 - maximal strain: $\varepsilon_{max} \approx \pm 0.5\%$
 - gauge factor: $g \approx 125 200$
 - $\Delta R = g \varepsilon > 50\%$, up to 100%
- Change of resistance limited by the maximal strain of the test specimen!
 - steel: ca. 0.12%
 - aluminum: ca. 0.35%

Attachment of strain gauges

- Bond between the strain gauge and the test specimen is of paramount importance: strains of the gauge and the test specimen should be the same
- Strain gauge: resistance layer (metal or semiconductor) on insulated backing
- Attachment by gluing
- Principle cause of error: crawling due to different thermal expansion properties of the test specimen, the strain gauge and the glue
- Use of a special glue is strongly recommended

Metal foil strain gauges

- Goal: high resistance with small footprint
- Solution: zig-zag pattern
- Great sensitivity for strain in the principal direction
- Non-zero transversal sensitivity:

$$g_t = K_t g$$
, where typically $K_t < 1\%$

Metal foil strain gauges

Backing insulation attachment (by glue) typical material: epoxy Metal foil resistance pattern Lead or solder pad Optional external enclosure (rare)

Strain gauge alloys

- Constantan (Cu-Ni) $g \approx 2$
 - low cost
 - thermal expansion can be set by alloying
 - wide linear range
 - ideal for generic use
 - Irreversible change in properties at high temperature
- Karma (K-alloy, Ni-Cr, Nichrome) $g \approx 2 2.4$
 - exceptional linerarity
 - high accuracy and sensitivity
 - high stability
 - wide temperature range: $-269 ... + 260 \,^{\circ}$ C

Strain gauge alloys

- Platinum alloys $g \approx 4 5$
 - wide temperature range
 - exceptional stability
 - high piezoresistive effect
 - high cost
- Isoelastic $g \approx 3.5$
 - for measurement of dynamic strain
 - high thermal expansion, sensitive for temperature change

Parameters of metal foil strain gauges

- Base resistance: $90 120 350 600 1000 \Omega$
- Size (length): 1.5 ... 50 mm
- Thickness: few microns
- Gauge factor: 2 ... 5
- Elasticity (bending radius): ca. 1/10 of the length
- Accuracy
 - base resistance: $\pm 0.1 1\%$
 - gauge factor: varies with batch

Biaxial (Tee) strain gauges

- Two zig-zag patterns in orthogonal configuration
- For measurement of stress if principal directions are known and no shear stress is present

Rosette strain gauges

- Suitable for stress measurement on a plane
 - 3 strains
 - 3 components (normal strains and shear strain)
- Zig-zag configurations
 - beside or over each other (in different layers)
 - Angles of 45° or 60°

Special strain gauges

Semiconductor strain gauges

- Doped single crystal or polycrystalline (Si, Ge)
- Base resistance can be set by doping
- No need for complex zig-zag patterns
- High gauge factor
 - single crystal: $q \approx -100 +200$
 - polycrystalline: $g \approx 30 45$
- No need for backing
- Sensitive for multiple normal strains and shear strain
- High temperature sensitivity
- Rigid
- High cost

Semiconductor strain gauges

Semiconductor strain gauges

Measurement circuitry for strain gauges

Simple bridge circuit

$$U_{OUT} = \frac{U_S}{2} - U_S \frac{R_0}{R_0 + (R_0 + \Delta R)} = U_S \frac{(2R_0 + \Delta R) - 2R_0}{2(2R_0 + \Delta R)} = U_S \frac{\Delta R}{2(2R_0 + \Delta R)} \approx$$

$$\approx U_S \frac{\Delta R}{4R_0} = \frac{U_S}{4} g \varepsilon$$

Thermal effect

• As for metal RTDs, resistance depends on the temperature by $R \approx R_0(1+\alpha(\vartheta-\vartheta_0))$, where R_0 is the base resistance at temperature ϑ_0 , α is the temperature coefficient of resistance, ϑ is the actual temperature:

$$\frac{\Delta R}{R_0} = \alpha(\vartheta - \vartheta_0) = \alpha \Delta \vartheta$$

Thermal effect is considered as a virtual strain:

$$\varepsilon = \frac{1}{g} \frac{\Delta R}{R_0} = \frac{\alpha}{g} (\vartheta - \vartheta_0) = \frac{\alpha}{g} \Delta \vartheta$$

Thermal effect - problem

Temperature of a constantan strain gauge is increased by 10° C. How much is the virtual strain caused by the thermal effect?

For a constantan strain gauge $\alpha = 3 \cdot 10^{-5} \text{ 1/°C}$, g = 2

Virtual strain:

$$\varepsilon = \frac{\alpha}{g}(\vartheta - \vartheta_0) = \frac{3 \cdot 10^{-5}}{2} \cdot 10 = 0.015\%$$

Full scale error if the maximal strain is $\varepsilon_{max} = 1\% = 10^{-2}$:

$$\frac{0.015}{1} = 0.015 = \mathbf{1.5}\%_{FS}$$

Compensation of thermal effect

- What kind of device shall we use for compensation?
 - a resistor with same base resistance
 - a resistor with same temperature coefficient

- Use an identical strain gauge!
 - no stress should be exerted
 - if not applicable, the stress should be transversal

Compensation of thermal effect

• If only transversal effect is exerted on the compensating gauge: $R_C = R_0(1 + gK_t\varepsilon)(1 + \alpha\Delta\theta)$

•
$$U_{OUT} = \frac{U_T}{2} \frac{R_A - R_C}{R_A + R_C} = \frac{U_T}{2} \frac{R_0 (1 + g\varepsilon)(1 + \alpha\Delta\vartheta) - R_0 (1 + gK_t\varepsilon)(1 + \alpha\Delta\vartheta)}{R_0 (1 + g\varepsilon)(1 + \alpha\Delta\vartheta) + R_0 (1 + gK_t\varepsilon)(1 + \alpha\Delta\vartheta)}$$

Compensation of thermal effect

•
$$U_{OUT} = \frac{U_S}{2} \frac{R_0(1+g\varepsilon)(1+\alpha\Delta\vartheta) - R_0(1+gK_t\varepsilon)(1+\alpha\Delta\vartheta)}{R_0(1+g\varepsilon)(1+\alpha\Delta\vartheta) + R_0(1+gK_t\varepsilon)(1+\alpha\Delta\vartheta)} = \frac{U_S}{2} \frac{(1+g\varepsilon) - (1+gK_t\varepsilon)}{(1+g\varepsilon) + (1+gK_t\varepsilon)} = \frac{U_S}{2} \frac{g\varepsilon - gK_t\varepsilon}{2 + g\varepsilon + gK_t\varepsilon} = \frac{U_S}{2} \frac{g\varepsilon(1-K_t)}{2 + g\varepsilon(1+K_t)}$$

• Simplification: $0 \le K_t \le 0.1$, hence

$$(1 + K_t) \approx (1 - K_t) \approx 1, g\varepsilon \ll 1$$

$$\Rightarrow \mathbf{U}_{OUT} = \frac{U_S}{2} \frac{g\varepsilon}{2 + g\varepsilon} \approx \frac{U_S}{2} \frac{g\varepsilon}{2} = \frac{\mathbf{U}_S}{4} g\varepsilon$$

- Output voltage is
 - temperature-independent
 - nearly linear function of the strain

Self-compensating gauges

- Problem: thermal extension of the test specimen causes strain, which is considered as effect of an external force
- Self temperature-compensation: temperature dependent resistivity of specific alloys compensate thermal expansion in the most frequently used temperature range
- Various alloys for test specimens of different materials

Self-heating

- Strain gauges are resistors, hence self-heating effect is present
- Like metal RTDs the current used for measurement shall be the lowest possible (magnitude: mA)

Two active gauge configuration (half bridge)

Two active gauge configuration (half bridge)

$$\boldsymbol{U_{OUT}} = \frac{U_S}{2} \frac{R_1 - R_2}{R_1 + R_2} = \frac{U_S}{2} \frac{R_0 (1 + \alpha \Delta \vartheta)(1 + g\varepsilon) - R_0 (1 + \alpha \Delta \vartheta)(1 - g\varepsilon)}{R_0 (1 + \alpha \Delta \vartheta)(1 + g\varepsilon) + R_0 (1 + \alpha \Delta \vartheta)(1 - g\varepsilon)} = \frac{U_S}{2} \frac{2g\varepsilon}{2} = \frac{\boldsymbol{U_S}}{2} \boldsymbol{g\varepsilon}$$

By using two active gauges the sensitivity is doubled, output voltage is temperature-independent and is a linear function of the strain.

Two active gauge configuration (half bridge)

•
$$U_{OUT} = \frac{U_S}{2} \frac{R_1 - R_2}{R_1 + R_2} = 0$$

- Configuration is sensitive to bending force only (not to tension force)
- Tension force can be measured by using one of the gauges

Four active gauge configuration (full bridge)

- Four identical strain gauges
- R_2 and R_3 in compression, R_1 and R_4 in tension
- Relative strains of the four gauges are identical

Four active gauge configuration (full bridge)

 R_1, R_4 : in tension

 R_2 , R_3 : in compression

$$U_{OUT} = U_S \frac{R_1}{R_1 + R_2} - U_S \frac{R_3}{R_3 + R_4} = U_S \frac{R_1 - R_2}{R_1 + R_2} =$$

$$=U_{S}\frac{R_{0}(1+\alpha\Delta\vartheta)(1+g\varepsilon)-R_{0}(1+\alpha\Delta\vartheta)(1-g\varepsilon)}{R_{0}(1+\alpha\Delta\vartheta)(1+g\varepsilon)+R_{0}(1+\alpha\Delta\vartheta)(1-g\varepsilon)}=U_{S}g\varepsilon$$

By using four active gauges the sensitivity is increased by a factor or four, output voltage is temperature-independent and is a linear function of the strain.

Fine tuning of bridge cicruits

- Bridge circuits suffer from various problems:
 - thermal offset error caused by thermal expansion and manufacturing variance of gauges
 - unbalanced bridge due to manufacturing variance of gauges
 - thermal effect on sensitivity caused by temperaturedependence of Young's modulus and gauge-factor
- Output span (cell factor) should be set to a prescribed value

Fine tuning of bridge circuits

- Bridges are tuned by resistors with high and low temperature coefficient ("high-TC" and "low-TC" resistors)
- Special resistors similar to strain gauges
- Resistor value can be trimmed by the user (trimmable ladder pattern)

Fine tuning of bridge circuits

- Test specimen, strain gauges and bridge circuit integrated to a single device
- Most important features of the test specimen
 - strain can be related unambiguously (preferably in a linear way) to mechanical stress
 - strain is elastic in the desired measurement range
 - high stability

Median tensile loads are present

C – in compression

T – in tension

MEMS load cells

- In silico micro-manufactured load cell
- Small size
- Narrow measurement range
- Sensitive to overload

Cell factor

- Consider linear output voltage, i.e. $U_{OUT}=U_S a F$, where a is a device-specific constant
- Cell factor:

$$C = \frac{U_{OUT}}{U_S} \bigg|_{F = F_{max}} = \frac{U_{FS}}{U_S} \text{ [mV/V]}$$

Output voltage corresponding to a force F:

$$U_{OUT} = C \cdot U_S \cdot \frac{F}{F_{max}}$$

• Force corresponding to output voltage U_{OUT} :

$$F = F_{max} \frac{1}{C} \frac{U_{OUT}}{U_S}$$

Cell factor - problem

A load cell contains four constantan strain gauges (g=2), its maximal load is $10 \, \mathrm{kg}$, causing a strain of $\varepsilon_{max} = 0.1\%$ for each gauge. Give the cell factor of the load cell. Give the output voltage for a load of $2.5 \, \mathrm{kg}$ if the supply voltage is $U_S=24 \, \mathrm{V}$.

- Output voltage of the bridge: $U_{OUT} = U_S g \varepsilon$
- Output voltage corresponding to maximal load:

$$U_{FS} = U_S g \varepsilon_{max} = 0.002 U_S$$

• Cell factor:

$$C = \frac{U_{FS}}{U_S} = 2\text{mV/V}$$

Output voltage for 2.5 kg load with 24V supply voltage:

$$U_{OUT} = C \cdot U_S \cdot \frac{F}{F_{max}} = 0.002 \cdot 24 \cdot 0.25 = 12 \text{mV}$$

Cell factor - problem

Maximal load of a load cell is 5kg, its cell factor is $C=1\,\text{mV/V}$, the supply voltage is $U_S=2.5\text{V}$. Give the actual force applied if the output voltage of the cell is $U_{OUT}=0.25\text{mV}$?

- Output voltage of the cell: $U_{OUT} = U_S C \frac{F}{F_{max}}$
- Actual force:

$$F = F_{max} \frac{1}{C} \frac{U_{OUT}}{U_S} = 5 \text{ [kg]} \cdot \frac{1}{0.001 \text{[V/V]}} \cdot \frac{0.00025 \text{ [V]}}{2.5 \text{ [V]}} = 0.5 \text{ kg}$$

Values above are actual parameters of a low-cost load cell with 5 kg maximal load; force exerted corresponds to the weight of an 500 ml plastic bottle filled with water

Piezoelectric strain gauges

- Piezoelectric materials produce electrical voltage when exposed to mechanical stress (and vice versa)
- Problem: voltage vanishes quickly
- Applicable for measurement of dynamic stress only

Torque measurement with strain gauges

- Elastic torsion of the shaft exerts shear stress in 45° direction
- Strain due to stress can be measured by 2×2 strain gauges
- Problem: need of slip ring connection to the rotating shaft

Optical torque sensors

- Torsion of shaft is related directly to the torque
- No active (electrically powered) elements located on the shaft, phase shift can be measured easily

6-DOF force and torque sensors

Quantities measured:

- force along three axis
- torques around three axis

Pressure - Units

- Pascal Pa
 - 1 Pa = 1 N/m^2
- Bar bar
 - 10^6 dyn/cm^2 , azaz $10^6 \cdot 10^{-5} \text{N}/10^{-4} \text{m}^2$
 - $1 \text{ bar} = 10^5 \text{Pa} = 100 \text{kPa}$
- Pounds per square inch psi
 - $1 \text{ psi} = 1 \text{ lb/inch}^2$
 - 1 bar \approx 14.5 psi
- Other units
 - 1 atm $\approx 1.013 \cdot 10^5 Pa$
 - 1 Hgmm (torr) ≈ 133.3224 Pa

Types of pressure scale

- Differential pressure, [psid]
 - referenced to another arbitrary pressure
- Gauge pressure, [psig]
 - referenced to atmospheric pressure
 - atmospheric pressure in Hungary ca.

- Absolute pressure, [psia]
 - referenced to full vacuum

Non-electric pressure sensors

- Tube membrane
- Bourdon-tube
 - high accuracy
 - still used as near-field gauge

Principle of pressure sensing

- Pressure: force / surface
- Therefore, we shall measure force (if surface is known)
- Atmospheric pressure is ca. $10^5 Pa = 10 N/cm^2$
- We shall either use a sensor of large surface or one with elastic sensing element

Principle of pressure sensing

- Test specimen: diaphragm (membrane)
- Circle or square shaped, partially elastic disc clamped at its circumference
- Diaphragm deflects when exposed to pressure

Principle of pressure sensing

$$Y \propto P_m$$

$$Y \propto P_m - P_{atm}$$

Gauge pressure (referenced to atmospheric pressure)

$$Y \propto P_{m1} - P_{m2}$$

Differential pressure (referenced to medium 2)

Deflection of the diaphragm

Radial

•
$$\varepsilon_{RC} = \frac{3PR_0^2(1-\nu^2)}{8t^2E}$$

• $\varepsilon_{R0} = \frac{3PR_0^2(1-\nu^2)}{4t^2E}$

•
$$\varepsilon_{R0} = \frac{3PR_0^2(1-v^2)}{4t^2E}$$

Tangential

•
$$\varepsilon_{TC} = \frac{3PR_0^2(1-\nu^2)}{8t^2E}$$

• $\varepsilon_{T0} = 0$

•
$$\varepsilon_{T0} = 0$$

Displacement of the center

•
$$Y_C = \frac{3PR_0^4(1-\nu^2)}{16t^3E^2}$$

- *RC/TC*: at center
- R0/T0: around circumference
- P: pressure (Pa)
- R_0 : diaphragm radius (mm)
- ν : Poisson ration
- t: diaphragm thickness (mm)
- E: Young's modulus (Pa)

Deflection of the diaphragm

Deflection of the diaphragm

- For small deflections pressure is proportional to the deflection of the elastic diaphragm (deflection is a linear function of pressure)
- What is considered as small deflection?
 - rule of thumb: not greater than the thickness of the diaphragm
 - to ensure linearity error of 0.3%: quarter of diaphragm thickness
- When the diaphragm can be considered as elastic?
 - rule of thumb: if radius is at least 200 times the thickness.
 - elasticity of diaphragm decreases linearity error
- If strain gauges are used for the measurement, maximal strain of the diaphragm must not be greater than the maximal strain of the gauge
- For strain gauge pressure sensors, the magnitude of maximal deflection is $1\mu m$

Strain-based measurement of diaphragm deflection

- Bonded strain gauge
- Thin-film strain gauge
- Thick-film strain gauge
- Integrated (piezoresistive, semiconductor) strain gauge

Bonded strain gauge sensors

- Significant drift
- High mechanical wear of strain gauge
- Low reliability

Metal thin-film diaphragms

- Backing
 - stainless steel
 - tantal, special alloys (Hastelloy, Inconel)
 - silver (for chloride and fluoride media)
- Layer deposition
 - insulation layer
 - resistor layer
- Zig-zag pattern on side not exposed to medium formed by photolithography
- Not suitable for small pressures
- Can withstand large pressures
- Stable, insensitive for mechanical vibration

Ceramic thick-film sensors

- Backing: Al₂O₃
- Zig-zag pattern applied by screen printing on the side not exposed to the medium
- Corrosion-resistant
- Good long-term stabilty
- Sensitive to burst pressure due to fragility of ceramic

Strain gauge pressure sensors

- For measurement of both absolute, gauge and differential pressure
- Measurement range up to 1400 MPa (14 000 bar)
- Accuracy: 0.25%FS
- Long time drift: 0.25%FS / 6 months

Piezoresistive pressure sensors

- In-silico diaphragm and strain gauge
- Base structure manufactured by etching
- Strain gauges manufactured by diffusion
- Longitudinal (R_1, R_3) and transversal (R_2, R_4) piezoresistive coefficients are of different signs
- In-silico leads and compensation

circuitry

Piezoresistive pressure sensors

- Fragile devices
 - protection by additional diaphragm
 - isolation from environment
 - silica oil pressure transmission
- Significant thermal effects
- In-silico compensating electronics

Capacitive pressure sensors

- Membrane and baseplate are plates of a capacitor
- Measurement based not on the deflection of the membrane but on the displacement of its center

Mechanical deflection barrier: protects the diaphragm in case of overpressure

Capacitive pressure sensors

- Capacitance: $C = \varepsilon \frac{A}{d} = \varepsilon_0 \varepsilon_r \frac{A}{d}$
- Displacement is proportional to the pressure
- Measurement range up to 25%
- Reference capacitor
 - at the circumference of the diaphragm (no displacement)
 - distance of plates is constant: $C_{ref} = \frac{\varepsilon A_{ref}}{d_{ref}} = \text{constant}$

Capacitance measurement

$$U_{OUT} = -U_S \frac{Z}{Z_{ref}} = -U_S \frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C_{ref}}} = -U_S \frac{C_{ref}}{C} = -U_S \frac{C_{ref}}{\epsilon \frac{A}{d}} = -U_S \frac{C_{ref}}{\epsilon A} d$$

- Output is directly proportional to the displacement of the diaphragm center
- Also directly proportional to pressure if displacement is small
- If area of reference capacitor plates is identical to the area of the moving plates (relative permittivities are the same as the dielectric material is the same):

$$U_{\text{OUT}} = -U_S \frac{c_{ref}}{c} = -U_S \frac{\varepsilon A/d_{ref}}{\varepsilon A/d} = -U_S \frac{d}{d_{ref}}$$

Differential-capacitive pressure sensors

- Membrane is a moving plate between two fixed ones
- Ration C_1/C_2 changes nearly directly proportional to the displacement of diaphragm center
- Displacement can be measured easily (see capacitive displacement sensors)

Capacitive pressure sensors

- Larger strain allows wider measurement range
- From vacuum up to 700 bars
- Used especially in low-pressure or vacuum applications
- No need for temperature compensation
- Accuracy up to 0.01%FS

MEMS resonant pressure sensors (Yokogawa DPharp)

- If excited by alternating current in stationary magnetic field, the H-shaped element resonates (Lorentz force)
- Sinusoidal voltage is induced in the other side of the resonator (Faraday's law)

Resonating frequency

- The resonator is resonated at its natural frequency by a PLL
- $f^2=c\varepsilon$, where ε is the tensile force, c is a device-specific constant
- $\varepsilon = \varepsilon_0 + \varepsilon_S \pm \varepsilon_{DP}$
 - ε_0 : initial tensile force (originates from the structure of the resonator)
 - ε_S : tensile force due to static pressure (applied to both sides of the resonator)
 - ε_{DP} : tensile force due to differential pressure (difference of pressure between the two sides)

Location of resonators

Pressure components

- $P_1 = P$
- $P_2 = P + \Delta P$
- *P*: static pressure (common component of pressure)
- $\Delta P = P_2 P_1 = P_2 P$: differential pressure

Static pressure

- Pressure increases the tensile force inside the silicon structure
- P increases $\Rightarrow \varepsilon$ increases $\Rightarrow f$ increases

Differential pressure

Relationship between pressure and frequency

•
$$f_1 = f_0 + f_P + \Delta f$$

•
$$f_2 = f_0 + f_P - \Delta f$$

•
$$f_P \propto P \Rightarrow f_1 + f_2 = 2f_0 + 2f_P \propto P$$

•
$$\Delta f \propto \Delta P \Rightarrow f_1 - f_2 = 2\Delta f \propto \Delta P$$

Relationship between pressure and frequency

Differential pressure:

$$\Delta P \propto f_1 - f_2$$

Static pressure:

$$P \propto f_1 + f_2$$

Frequency measurement

- Frequency can be measured by two counters
- No need for ADC (source of significant error)
- Calculations carried out by the microprocessor based on the two measured frequencies

MEMS resonator pressure sensors

- Measurement range (depending on physical characteristics):
 0.1 20 000 kPa
- Wide span $(P_{max}/P_{min} \approx 100)$
- Accuracy up to 0.025%
- Long-term stability: 0.1% / 10 év
- Simultaneous measurement of static and differential pressure (necessary for flow and level measurement)
- Direct digital output