Answer Key

1. Multiple solutions, but here are some examples:

a. Example:

b. Example:

Transforming

Transforming

2.

- a. Vertex Map: $\begin{array}{c|ccccc} G & a & b & c & d \\ \hline H & 4 & 3 & 1 & 2 \end{array}$
- 3. a. Write out all edges for both graphs.

$$G: \{2, 5\} \ \{\ 2, 3\ \} \quad \{\ 3, 4\ \} \quad \{\ 4, 5\ \} \quad \{\ 2, 5\ \} \quad \{\ 5, 6\ \}$$

$$H: \{d, c\} \ \{\ y, x\ \} \quad \{\ x, w\ \} \quad \{\ w, v\ \} \quad \{\ y, v\ \} \quad \{\ v, u\ \}$$

b. For each edge from G, write out what edge in H corresponds to it. Example: $\{2,5\} \rightarrow \{d,c\}$

Let's split up G into two subgraphs to see it more clearly...

4. a. Finish the adjacency matrix:

		a	b	c	d	e
•	a	0	1	0	0	1
•	b	1	0	1	0	0
	С	0	1	0	1	1
	d	0	0	1	0	1
	е	1	0	1	1	0

b. Fill out the degrees of each:

	a	b	\mathbf{c}	d	e
-	2	2	3	2	3

Example:

6. a.

5.

1, 2, 4, 1

5

- 1, 3, 5, 1
- 2, 3, 4, 2

- 1, 3, 4, 1
- 1, 2, 3, 5, 1 (unbounded).

- b.
 - a, b, e, a
 - a, e, d, a a, b, c, d, a (unbounded)
- d, e, c, d b, c, e, b