#### COMP 375: Lecture 36



#### News & Notes:

- Project #5 due Wednesday
- Quiz #9 in class Friday
- Reading (Wed, May 2)
  - Sections 6.4.{0-2}

#### Chapter 6

#### THE LINK LAYER

#### The Link Layer provides three basic functions.

1. **Framing**: Dividing data into pieces that are sized for the network to handle.

#### The Link Layer provides three basic functions.

 Framing: Dividing data into pieces that are sized for the network to handle.

Data pieces:

Transport: <u>Segments</u>

Network: <u>Datagrams</u> (or packets)

Link: <u>Frames</u>

Physical: <u>B</u>its

#### Why do we put a limit on the size of a frame?

- A) To keep one user from hogging the physical channel.
- **B.** To make it easier to determine when a frame ends.
- **C.** Smaller frames have less overhead, so they have higher performance.
- D. Some other reason.

#### The Link Layer also needs to mediate link access.

- 1. **Framing**: Dividing data into pieces that are sized for the network to handle.
- 2. **Link access:** Determining how to share the medium, who gets to send, and for how long.

# Some links may not require much in terms of coordinating access...



- **Example 1:** Single copper wire, only one of them can send at a time.
- Example 2: Two copper wires in cable, each can send on one simultaneously.

### ... but for some links this is a huge challenge!



# ... but for some links this is a huge challenge!

#### Collision!









# How should we handle collisions in general?

Consider WiFi and other link media.

- A. Enforce at the end hosts that only one sender transmit at a time.
- **B.** Enforce in the network that only one sender transmit at a time.
- C. Detect collisions and retransmit later.
- D. Something else.

### The Link Layer also provides error detection/correction.

- 1. **Framing**: Dividing data into pieces that are sized for the network to handle.
- 2. Link access: Determining how to share the medium, who gets to send, and for how long.
- 3. Error detection/correction and reliability.

Section 6.3

#### MEDIA ACCESS

# Both Point-to-Point (P2P) and Broadcast links/channels are common today.



### Broadcast channels require a multiple access protocol to manage collisions.

Our multiple access protocol should...

- Determine how nodes share the channel
- Dictate when nodes can send data over the channel
- 3. Coordinate using the the channel itself

# Given a broadcast channel of rate *R* bps, an ideal protocol has 4 properties.

- If only one node wants to transmit, it can send at rate R.
- 2. When M nodes want to transmit, each can send at average rate R/M (fairness)
- 3. Fully decentralized:
  - no synchronization of clocks, slots
  - no special node to coordinate transmissions
- 4. Simple

# What protocols do we use for conversation?



### Media access control protocols use one of three general strategies.

1. Channel partitioning

2. Random access

3. Taking turns

### TDMA\* gives each node a fixed amount of time, then does round-robin.

- Example: Channel with 6 nodes
  - > Nodes 1, 3, and 4 have frames to send
  - > Nodes 2, 5, and 6 are idle



### FDMA divides channel into several frequency bands, each node gets one.

- Example: Channel with 6 nodes
  - Nodes 1, 3, and 4 have frames to send
  - Nodes 2, 5, and 6 are idle



FDMA\*: Frequency Division Multiple Access

# How many of our desired properties does channel partitioning give us?

- 1. If only one node wants to transmit, it can send at rate R.
- 2. When M nodes want to transmit, each can send at average rate R/M (fairness)
- 3. Fully decentralized:
  - no synchronization of clocks, slots
  - no special node to coordinate transmissions
- 4. Simple

| A.        | 0 |
|-----------|---|
| <b>B.</b> | 1 |
| C.        | 2 |
| D.        | 3 |
| E.        | 4 |

#### Channel partitioning is widely used, in both wired and wireless channels.

- 1. Terrestrial radio (frequency division)
- 2. Satellite (frequency division)
- 3. Fiber optic links (wavelength division)
- 4. Cell phones
  - > 2G (time division)
  - 3G (code division)
  - > 4G (frequency division)

### In Random Access Protocols there is no a priori coordination among nodes.

- Random access MAC protocol specifies:
  - How to minimize collisions
  - How to detect collisions
  - How to recover from collisions

# ALOHAnet created a network between islands using radio communication.



# If user gives you data, send it all immediately!



# If the hub received everything, it sends an ACK.



#### If senders collides, hub doesn't ACK...



If sender doesn't receive an ACK, it waits a random time and tries to send again.



#### ALOHAnet is decentralized, but poor transmission rate because of collisions.



Any other transmissions starting between  $t_0$ -1 and  $t_0$ +1 will result in a collision. Only 18% efficiency!