Data processing

This Lecture

Data Cleaning

Data Quality: Problems, Sources, and Continuum

Data Gathering, Delivery, Storage, Retrieval, Mining/Analysis

Data Quality Constraints and Metrics

Data Integration

Data Cleaning

- Helps deal with:
 - » Missing data (ex: one dataset has humidity and other does not)
 - » Entity resolution (ex: IBM vs. International Business Machines)
 - » Unit mismatch (ex: \$ versus £)

» ...

Dealing with Dirty Data - Statistics View

- There is a process that produces data
 - » Want to model ideal samples, but in practice have non-ideal samples
 - Distortion some samples are corrupted by a process
 - Selection Bias likelihood of a sample depends on its value
 - Left and Right Censorship users come and go from our scrutiny
 - Dependence samples are supposed to be independent, but are not (ex: social networks)
- Add new models for each type of imperfection
 - » Cannot model everything.
 - » What's the best trade-off between accuracy and simplicity?

Dirty Data - Database View

- •I got my hands on this data set
- Some of the values are missing, corrupted, wrong, duplicated
- Results are absolute (relational model)
- You get a better answer by improving quality of values in dataset

Dirty Data - Domain Expert's View

- This data doesn't look right
- This answer doesn't look right
- What happened?
- Domain experts have implicit model of the data that they can test against...

Dirty Data - Data Scientist's View

Some Combination of all of the above

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

Data Quality Problems

- (Source) Data is dirty on its own
- Transformations corrupt data (complexity of software pipelines)
- Clean datasets screwed up by integration (i.e., combining them)
- "Rare" errors can become frequent after transformation/integration
- Clean datasets can suffer "bit rot": data loses value/accuracy over time
- Any combination of the above

Where does Dirty Data Come from?

Ages of Students in a online course

Numeric Outliers

Numeric Outliers

109 students≤ 5

26 students > 100

Data Cleaning Makes Everything Okay?

https://www.ucar.edu/learn/1_6_1.htm

Data Cleaning Makes Everything Okay?

"The appearance of a hole in the earth's ozone layer over Antarctica, first detected in 1976, was so unexpected that scientists didn't pay attention to what their instruments were telling them; they thought their instruments were malfunctioning."

National Center for Atmospheric Research

Data Cleaning Makes Everything Okay?

"The appearance of a hole in the earth's ozone layer over Antarctica, first detected in 1976, was so unexpected that scientists didn't pay attention to what their instruments were telling them; they thought their instruments were malfunctioning."

National Center for Atmospheric Research

In fact, the data were rejected as unreasonable by data quality control algorithms

Dirty Data Problems

- Parsing text into fields (separator issues)
- Naming conventions (Entity Recognition: NYC vs. New York)
- Missing required field (e.g., key field)
- 4. Primary key violation (from un- to structured or during integration
- 5. Licensing/Privacy issues prevent use of the data as you would like
- 6. Different representations (2 vs. Two)
- 7. Fields too long (get truncated)
- 8. Redundant Records (exact match or other)
- 9. Formatting issues especially dates

The Meaning of Data Quality

- There are many uses of data
 - » Operations, Aggregate analysis, Customer relations, ...
- Data Interpretation:
 - » Data is useless if we don't know all of the rules behind the data
- Data Suitability: Can you get answer from available data
 - » Use of proxy data
 - » Relevant data is missing

The Data Quality Continuum

- Data and information are not static
- Flows in a data collection and usage process
 - » Data gathering
 - » Data delivery
 - » Data storage
 - » Data integration
 - » Data retrieval
 - » Data mining/analysis

Data Gathering

- How does the data enter the system?
 - » Experimentation, Observation, Collection
- Sources of problems:
 - » Manual entry
 - » Approximations, surrogates SW/HW constraints
 - » No uniform standards for content and formats
 - » Parallel data entry (duplicates)
 - » Measurement or sensor errors

Data Gathering - Potential Solutions

Preemptive:

- » Process architecture (build in integrity checks)
- » Process management (reward accurate data entry, sharing, stewards)

Retrospective:

- » Cleaning focus (duplicate removal, merge/purge, name/addr matching, field value standardization)
- » Diagnostic focus (automated detection of glitches)

Data Delivery

- Destroying/mutilating information by bad pre-processing
 - » Inappropriate aggregation
 - » NULLs converted to default values
- Loss of data:
 - » Buffer overflows
 - » Transmission problems
 - » No checks

Data Delivery - Potential Solutions

- Build reliable transmission protocols: use a relay server
- Verification: checksums, verification parser
 - » Do the uploaded files fit an expected pattern?
- Relationships
 - » Dependencies between data streams and processing steps?
- Interface agreements
 - » Data quality commitment from data supplier

Data Storage

- You get a data set what do you do with it?
- Problems in physical storage
 Potential issue but storage is cheap

Data Storage

- Problems in logical storage
 - » Poor metadata:
 - Data feeds derived from programs or legacy sources what does it mean?
 - » Inappropriate data models
 - Missing timestamps, incorrect normalization, etc.
 - » Ad-hoc modifications.
 - Structure the data to fit the GUI.
 - » Hardware / software constraints.
 - Data transmission via Excel spreadsheets, Y2K

Data Storage - Potential Solutions

- Metadata: document and publish data specifications
- Planning: assume that everything bad will happen
 Can be very difficult to anticipate all problems
- Data exploration
 - » Use data browsing and data mining tools to examine the data
 - Does it meet the specifications you assumed?
 - Has something changed?

Data Retrieval

- Exported data sets are often a view of the actual data
 - » Problems occur because:
 - Source data or need for derived data not properly understood
 - Just plain mistakes: inner join vs. outer join, not understanding NULL values
- Computational constraints: Full history too expensive
 - » Supply limited snapshot instead
- Incompatibility: ASCII? Unicode? UTF-8?

Data Mining and Analysis

- What are you doing with all this data anyway?
- Problems in the analysis
 - » Scale and performance
 - » Confidence bounds?
 - » Black boxes and dart boards
 - » Attachment to models
 - » Insufficient domain expertise
 - » Casual empiricism (use arbitrary number to support a pre-conception)

Retrieval and Mining - Potential Solutions

- Data exploration
 - » Determine which models and techniques are appropriate
 - » Find data bugs
 - » Develop domain expertise
- Continuous analysis
 - » Are the results stable? How do they change?
- Accountability
 - » Make the analysis part of the feedback loop

Data Quality Constraints

- Capture many data quality problems using schema's static constraints
 - » Nulls not allowed, field domains, foreign key constraints, etc.
- Many others quality problems are due to problems in workflow
 - » Can be captured by *dynamic* constraints
 - » E.g., orders above \$200 are processed by Biller 2
- The constraints follow an 80-20 rule
 - » A few constraints capture most cases,
 - » Thousands of constraints to capture the last few cases
- Constraints are measurable data quality metrics?

Data Quality Metrics

- We want a measurable quantity
 - » Indicates what is wrong and how to improve
 - » Realize that DQ is a messy problem, no set of numbers will be perfect
- Metrics should be directionally correct with improvement in data use
- Types of metrics
 - » Static vs. dynamic constraints
 - » Operational vs. diagnostic
- A very large number metrics are possible
 - » Choose the most important ones

Examples of Data Quality Metrics

- Conformance to schema: evaluate constraints on a snapshot
- Conformance to business rules: evaluate constraints on DB changes
- Accuracy: perform expensive inventory or track complaints (proxy)
 Audit samples?
- Accessibility
- Interpretability
- Glitches in analysis
- Successful completion of end-to-end process

Technical Approaches

- Use multi-disciplinary approach to attack data quality problems
 » No one approach solves all problems
- Process Management: ensure proper procedures
- Statistics: focus on analysis find and repair anomalies in data
- Database: focus on relationships ensure consistency
- Metadata / Domain Expertise
 - » What does data mean? How to interpret?

Data Integration

- Combine data sets (acquisitions, across departments)
- Common source of problems
 - » Heterogeneous data: no common key, different field formats
 - Approximate matching
 - » Different definitions: what is a customer acct, individual, family?
 - » Time synchronization
 - Does the data relate to the same time periods?
 - Are the time windows compatible?
 - » Legacy data: spreadsheets, ad-hoc structures

Duplicate Record Detection (DeDup)

- Resolve multiple different entries:
 - » Entity resolution, reference reconciliation, object ID/consolidation
- * Remove Duplicates: Merge/Purge
- Record Linking (across data sources)
- Approximate Match (accept fuzziness)
- Householding (special case)
 - » Different people in same house?

• . . .

Example: Entity Resolution

- Web scrape Google Shopping and Amazon product listings
- Google listing:
 - » clickart 950000 premier image pack (dvd-rom) massive collection of images & fonts for all your design needs ondvd-rom!product informationinspire your creativity and perfect any creative project with thousands ofworld-class images in virtually every style. plus clickart 950000 makes iteasy for ...
- Amazon listing:
 - » clickart 950 000 premier image pack (dvd-rom)
- Are they these two listings the same product?

https://code.google.com/p/metric-learning/

Example: DeDup/Cleaning

Preprocessing/Standardization

• Simple idea:

Convert to canonical form

Example: mailing addresses

More Sophisticated Techniques

- Use evidence from multiple fields
 - » Positive and Negative instances are possible
- Use evidence from linkage pattern with other records
- Clustering-based approaches

• . . .

Lots of Additional Problems

- Address vs. Number, Street, City, ...
- Units
- Differing Constraints
- Multiple versions and schema evolution
- Other Metadata

Data Integration - Solutions

- Commercial Tools
 - » Significant body of research in data integration
 - » Many tools for address matching, schema mapping are available.
- Data browsing and exploration
 - » Many hidden problems and meanings: must extract metadata
 - » View before and after results:
 - Did the integration go the way you thought?