一、(本题满分 9 分) 有两箱同种类的零件,第一箱装 20 只,其中 10 只为一等品;第二箱装 15 只,其中 12 只为一等品。今从两箱中任挑一箱,然后从该箱中依次不返回地取件两次,每次任取零件一只,记 A_i = "第 i 次从箱中取到的零件是一等品"(i = 1,2)。求:(1) $P(A_i)$; (2) $P(A_2 \mid A_1)$.

 \mathbf{M} : 设 \mathbf{H} = "从第一箱中取零件",则 $\overline{\mathbf{H}}$ = "从第二箱中取零件",且

$$P(H) = P(\overline{H}) = \frac{1}{2}, \quad P(A_1 \mid H) = \frac{1}{2}, P(A_1 \mid \overline{H}) = \frac{4}{5}$$

(1) 根据全概公式,可知

$$P(A_1) = P(H)P(A_1 \mid H) + P(\overline{H})P(A_1 \mid \overline{H}) = \frac{13}{20} = 0.65$$
 -----4 $\%$

$$(2) P(A_2 | A_1) = \frac{P(A_1 A_2)}{P(A_1)} = \frac{20}{13} \left[P(H)P(A_1 A_2 | H) + P(\overline{H})P(A_1 A_2 | \overline{H}) \right]$$
$$= \frac{20}{13} \left(\frac{1}{2} \times \frac{10}{20} \times \frac{9}{19} + \frac{1}{2} \times \frac{12}{15} \times \frac{11}{14} \right) = \frac{1151}{1729} \approx 0.6657 \qquad ----5 \text{ }$$

二、(本题满分 5 分)设随机变量 X 都服从参数 λ 的指数分布,问 λ 为何值时,能使得概率 $P\{1 < X \le 2\}$ 达到最大.

解:
$$X$$
的分布函数为 $F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0 & 其他 \end{cases}$, 则

$$P\{1 < X \le 2\} (= \int_{1}^{2} \lambda e^{-\lambda x} dx) = (1 - e^{-2\lambda}) - (1 - e^{-\lambda}) = e^{-\lambda} - e^{-2\lambda} \qquad --3 \text{ }\%$$

令 $f(\lambda) = P\{1 < X < 2\}$,则 $f'(\lambda) = 2e^{-2\lambda} - e^{-\lambda}$,解得驻点 $\lambda = \ln 2$

根据问题的实际意义,因为驻点唯一,所以 $\lambda = \ln 2 = 0.6931$

-----2 分

三、(本题满分8分)设随机变量(X,Y)的联合概率密度为

$$p(x,y) = \begin{cases} e^{-x}, & 0 < y < x \\ 0, & 其他 \end{cases}$$

求: (1) X 的边际密度函数; (2) 条件概率密度 $p_{Y|X}(y|x)$;

(3) 判断 X 与 Y 是否互相独立.

解: (1) 当
$$x \le 0$$
 时, $p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$;

$$\stackrel{\text{def}}{=} x > 0 \text{ iff}, \quad p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_0^x e^{-x} dy = xe^{-x} > 0.$$

(2) 条件概率密度 $p_{Y|X}(y|x)$ 为:

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)} = \begin{cases} \frac{1}{x}, & 0 < y < x \\ 0, & \text{其他} \end{cases}$$

(3) Y 的边际密度函数 $p_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & 其他 \end{cases}$, 因为 $p_{Y|X}(y|x) \neq p_Y(y)$, 或者因

四、(本题满分 11 分)设随机变量(X,Y) 的联合概率密度为 $p(x,y) = \begin{cases} 1, & (x,y) \in D \\ 0, & \text{其他} \end{cases}$

其中联合密度非零的区域为三角形区域 $D = \{(x, y) | 0 < y < 1, 0 < x < 2 - 2y\}.$

求: (1) Cov(X,Y); (2)

(2) 随机变量 Z = X + 2Y 的概率密度函数 $p_z(z)$.

$$EY = \iint_{D} yp(x, y) dx dy = \int_{0}^{1} dy \int_{0}^{2-2y} y dx = \left(\int_{0}^{2} dx \int_{0}^{1-x/2} y dy\right) = \frac{1}{3}$$
 -----1 \(\frac{1}{2}\)

$$E(XY) = \iint_D xyp(x, y)dxdy = \int_0^1 dy \int_0^{2-2y} xydx = (\int_0^2 dx \int_0^{1-x/2} xydy) = \frac{1}{6} \quad ----1 \, \text{fi}$$

故
$$Cov(X,Y) = E(XY) - EX \cdot EY = -\frac{1}{18}$$
 -----2 分(只写对公式得 1 分)

(2) 设Z = X + 2Y 的分布函数为 $F_z(z)$,则

$$F_Z(z) = P\{Z \le z\} = P\{X + 2Y \le z\} = \iint_{x+2y \le z} p(x, y) dxdy.$$

当
$$z < 0$$
时, $F_z(z) = P(\emptyset) = 0$;当 $z \ge 2$ 时, $F_z(z) = P(\Omega) = 1$; -----2分

当 0 ≤ z < 2 时,
$$F_z(z) = \int_0^z dx \int_0^{(z-x)/2} dy = (\int_0^{z/2} dy \int_0^{z-2y} dx) = \frac{z^2}{4}$$
 -----2 分

(或利用几何概型,面积比求解)

故
$$p_z(z) = \frac{d}{dz} F_z(z) =$$

$$\begin{cases} \frac{z}{2} & 0 \le z < 2 \\ 0 & 其他 \end{cases}$$

五、(本题满分 8 分) 设切割机切割所得金属棒的长度 $X \sim N(\mu, \sigma^2)$,随机抽取 10 根,算得样本均值 $\overline{X} = 10.4$,样本方差 $S_{n-1}^2 = 0.029$. 在显著水平 $\alpha = 0.05$ 下,

- (1) 是否可以认为切割机切出的金属棒长度的平均值 $\mu = 10.5$?
- (2) 是否可以认为切割机切出的金属棒长度的标准差 $\sigma = 0.15$?

 \mathbf{M} : (1) 零假设为 H_0 : $\mu = 10.5$,备择假设为 H_1 : $\mu \neq 10.5$

总体方差未知,故取t统计量为 $T = \frac{\overline{X} - 10.5}{S_{n-1}} \sqrt{n}$,

算得观测值为
$$\hat{T} = \frac{10.4 - 10.5}{\sqrt{0.029}} \sqrt{10} = -1.857$$
 -----2 分

(2) 零假设为 H_0 : $\sigma^2 = 0.15^2$,备择假设为 H_1 : $\sigma^2 \neq 0.15^2$

 $\chi^2_{0.025}(9) = 2.700$, $\chi^2_{0.975}(9) = 19.023$,显然 $\chi^2_{0.025}(9) < \hat{\chi}^2 < \chi^2_{0.975}(9)$,不拒绝(或接受)零假设,即不能认为金属棒长度的标准差不是0.15

----2 分

六、(本题满分 10 分)设随机变量 $X \sim N(\mu, \sigma^2)$, $Y \sim N(-\mu, 2\sigma^2)$,且 X, Y 互相独立,其中 $\sigma > 0$ 为未知参数,令 Z = X + Y.设 Z_1, Z_2, \cdots, Z_n 是来自总体 Z 的简单随机样本.

(1) 写出 Z 的分布;

(2) 求 σ^2 的矩法估计:

- (3) 求 σ^2 的极大似然估计量 $\hat{\sigma}^2$; (4) 证明 σ^2 的极大似然估计是无偏的.
- 解: (1) 因为 X,Y 互相独立,所以 $Z = X + Y \sim N(0,3\sigma^2)$. -----2 分
- (2) 因为 $E(Z^2) = DZ + (EZ)^2 = 3\sigma^2$,由 $E(Z^2) = \overline{Z^2}$,得 $3\sigma^2 = \overline{Z^2}$,故 σ^2 的矩法估计为

$$\tilde{\sigma}^2 = \frac{1}{3} \overline{Z^2} = (\frac{1}{3n} \sum_{i=1}^n Z_i^2)$$
 -----2 \(\frac{1}{2}\)

(3) 设 z_1, z_2, \dots, z_n 为 Z_1, Z_2, \dots, Z_n 的一组样本观测值,因为Z的概率密度为

$$p(z) = \frac{1}{\sqrt{6\pi}\sigma} e^{-\frac{z^2}{6\sigma^2}} \quad ,$$

故极大似然函数为

$$L(\sigma^{2}) = \prod_{i=1}^{n} p(z_{i}) = \frac{1}{(\sqrt{6\pi}\sigma)^{n}} e^{-\frac{1}{6\sigma^{2}} \sum_{i=1}^{n} z_{i}^{2}} \qquad -----2$$

取对数, 得对数似然函数

$$\ln L(\sigma^{2}) = -\frac{1}{6\sigma^{2}} \sum_{i=1}^{n} z_{i}^{2} - n \ln \frac{1}{\sqrt{6\pi}} - \frac{n}{2} \ln \sigma^{2}$$

两边对 σ^2 求导,得 $\frac{d}{d\sigma^2}\ln L(\sigma^2) = \frac{1}{6\sigma^4}\sum_{i=1}^n z_i^2 - \frac{n}{2\sigma^2}$,解得驻点为 $\sigma^2 = \frac{1}{3n}\sum_{i=1}^n z_i^2$,

以
$$Z_i$$
换 z_i ,即得极大似然估计量 $\hat{\sigma}^2 = \frac{1}{3n} \sum_{i=1}^n Z_i^2 = (\frac{1}{3} \overline{Z^2})$. -----2分

(4) 因为 $EZ_i = EZ = 0$, $DZ_i = DZ = 3\sigma^2$,所以

$$E\hat{\sigma}^2 = \frac{1}{3n} \sum_{i=1}^n EZ_i^2 = \frac{1}{3n} \sum_{i=1}^n [DZ_i + (EZ_i)^2] = \frac{1}{3n} \cdot 3n\sigma^2 = \sigma^2. \quad ----2 \text{ fr}$$

七、填空题(每小题 4 分,满分 28 分,请将正确答案添入表格中对应位置)

1	2	3		4	5		6	7
$\frac{1}{3}$	0.25	-1	20	$\frac{3}{80}$ =0.0375	2	大数定理 或中心极限定理	1-α	0.88

1、袋中共有30个乒乓球,其中黄球20个,白球10个,小红、小黑和小明三

人依次从袋	9中无放回地	2各取一球,	则小明取到	白球的概率	是	•						
2、已知	$P(\overline{A}) = 0.3,$	P(B) = 0.4	$P(A\overline{B}) = 0$).5,则 <i>P(B</i>	$ A \bigcup \overline{B}) = $	•						
3、抛一	个均匀的骰	子 36 次,出	现点数1的	次数为 X ,是	出现点数大	于1的次数						
为 Y ,则 X 与 Y 的相关系数为; $X-Y$ 的方差 $D(X-Y)=$												
4、设随机变量 $X \sim E(3)$, $Y = e^{-X}$,则 $DY =$.												
5、设 $(X_1, X_2,, X_n)$ 为取自二项分布 $B(10, 0.2)$ 的样本,如果样本容量充分大,												
进行大量的	的重复抽样,	并把得到的	样本均值分	别标在坐标:	轴上,会发现	观样本均值						
在附近波动,其理论依据是												
6. 在显著性水平 α 下对参数 θ 的检验,原假设和备择假设分别是 $H_0: \theta = \theta_0$												
和 $H_1: \theta \neq \theta$	θ_{0} ,则在原假	设为真情况	上下,原假设	$H_0: \theta = \theta_0$ 被	接受的概率	为						
7. 用线性回归模型拟和一组给定的数据,经计算得残差平方和 SSE 为 12,总												
离差平方和	I SST 为 100	,则该回归	的判定系数	为	·							
八、选择题	5 (每小题 3	分,满分2	1 分,请将ī	E确答案添 <i>)</i>	\表格中对应	位置)						
1	2	3	4	5	6	7						
В	D	С	В	D	D	С						
1、设随机	变量 X ~ P(λ), $\coprod P\{X$	$\leq 1\} = 4P\{X$	= 2},则参	数 <i>λ</i> =【 E	3]						
(A) 0.5	(B) 1	(C) 2	(D) 3									
2、抛一枚	均匀硬币 20	0次,根据均	切比雪夫不等		出现正面次数	女在 80~120						
	医 p 满足【 I											
$(A) p \le 0$	0.125 (B	$p \ge 0.125$	(C) $p \le$	(10.875 (I	$p \ge 0.875$	5						
3、设随机变	乏量 $X_i \sim \begin{pmatrix} -1\\ 0.25 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 0.5 & 0.25 \end{pmatrix} (i)$	=1,2),且 <i>P</i> {	$X_1 X_2 = 0\} = 1$,则 $P\{X_1+X_2$	=1}=【 C 】						
(A) 0	(B) 0.25	(C) 0.5	(D) 1									
4、设随机	变量 <i>X</i> , <i>Y</i> 都	服从正态分	π ,且 X 与	5Y 不相关,	则【B】							
(A) X =	方Y 一定独立	<u> </u>	(B) X	与 Y 未必独	1 में							
(C) (X, X)	Y) 服从二维	正态分布	(D) X	+ Y 服从一约	维正态分布							
5、设 <i>X</i> ₁ ,2	X_2, \dots, X_n, \dots	·是独立 同	分布的随机	变量序列,	且均服从 <i>E</i> ((え), 其中						

参数 $\lambda > 0$, 记 $Y = \sum_{i=1}^n X_i$, 则【 D 】

- (A) $\lim_{n \to \infty} P\{\frac{Y n\lambda}{\lambda \sqrt{n}} \le x\} = \Phi(x)$ (B) $\lim_{n \to \infty} P\{\frac{Y n\lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$
- (C) $\lim_{n\to\infty} P\{\frac{Y-\lambda}{\sqrt{n\lambda}} \le x\} = \mathcal{O}(x)$ (D) $\lim_{n\to\infty} P\{\frac{\lambda Y-n}{\sqrt{n}} \le x\} = \mathcal{O}(x)$
- 6、设随机变量 $X \sim t(n)$, 其中自由度 n > 1 , 若 $Y = \frac{1}{X^2}$, 则【 D 】
- (A) $Y \sim \chi^2(n-1)$ (B) $Y \sim \chi^2(n)$ (C) $Y \sim F(1,n)$ (D) $Y \sim F(n,1)$
- 7、某次《概率论与数理统计》课程考试后,全体考生的标准差为 12 分,随机抽取 49 名学生,算得他们的平均成绩为 70 分,则该次考试中,学生平均成绩置信度为 95%的置信区间为【 C 】
- (A) 70 ± 0.48 (B) 70 ± 1.96 (C) 70 ± 3.36 (D) 70 ± 4.52