Варианты 2-й контрольной работы по математической логике

Задача 1. (**3 балла**) Ввести необходимые предикаты и построить формулу алгебры предикатов, выражающую следующее утверждение:

- 1. «Каков бы ни был черный квадрат, не лежащий под некоторым черным шаром, ниже его находятся все белые шары».
- 2. «Найдется черный шар, лежащий под всеми черными квадратами, ниже которого не находятся белые квадраты».
- 3. «Каков бы ни был белый квадрат, не лежащий над некоторыми черными шарами, ниже его найдется белый шар».
- 4. «Найдется черный шар, лежащий над некоторыми черными квадратами, ниже которого не находятся белые шары».
- 5. «Каков бы ни был белый квадрат, лежащий под всеми черными квадратами, ниже его не находится белых шаров».
- 6. «Каков бы ни был черный квадрат, лежащий под всеми черными шарами, ниже его находятся все белые квадраты».
- 7. «Найдется белый шар, лежащий под некоторым черным квадратом, ниже которого находятся все белые квадраты».
- 8. «Каков бы ни был белый квадрат, не лежащий под некоторым черным шаром, ниже его находятся все черные квадраты».
- 9. «Найдется черный шар, лежащий над всеми белыми шарами, ниже которого лежит белый квадрат».
- 10. «Каков бы ни был черный квадрат, не лежащий над некоторыми белыми шарами, ниже его лежат все черные шары».

Задача 2. (**4 балла**) На множестве вещественных чисел R найти множества истинности предикатов $P \wedge Q, \ P \Rightarrow Q, \ P \Leftrightarrow Q$, где

- 1) $P(x,y) = (x y \le 2) \text{ if } Q(x,y) = (|x + y| \ge 1);$
- 2) $P(x,y) = (|x-2y| \le 1) \text{ M } Q(x,y) = (x+y \ge 2);$
- 3) $P(x,y) = (x + 2y \le 1) \text{ if } Q(x,y) = (|x y| \ge 2);$
- 4) $P(x,y) = (|2x-2y| \le 4)$ и $Q(x,y) = (x+2y \ge 1)$;

5)
$$P(x,y) = (x + y \le 2) \text{ if } Q(x,y) = (|x - 2y| \ge 1);$$

6)
$$P(x,y) = (|x+2y| \le 1) \text{ if } Q(x,y) = (x-y \ge 2);$$

7)
$$P(x,y) = (x-2y \le 1) \text{ if } Q(x,y) = (|x+y| \ge 2);$$

8)
$$P(x,y) = (|2x + 2y| \le 4) \text{ M } Q(x,y) = (x - 2y \ge 1);$$

9)
$$P(x,y) = (2x - y \le 1) \text{ if } Q(x,y) = (|x+y| \ge 2);$$

10)
$$P(x,y) = (|2x + y| \le 1)$$
 и $Q(x,y) = (x - y \ge 1)$.

Задача 3 (4 балла). Для следующих формул найти ПНФ и ССФ:

1)
$$(\forall x)(P(x) \Rightarrow (\forall z)(Q(x, y) \Rightarrow \neg(\forall y)R(y, z)));$$

2)
$$(\exists y)R(x,y) \Rightarrow (\forall y) (P(y) \Rightarrow ((\exists x)P(x) \Rightarrow Q(y)));$$

3)
$$(\forall x)(\exists y)(\exists z)(\forall u)P(x,y,z,u) \lor (\forall x)(\exists y)(\exists z)(\forall u)R(x,y,z,u);$$

4)
$$(\forall x)P(x,y) \Rightarrow (\exists y) (Q(y) \Rightarrow ((\exists x)P(x,y) \Rightarrow R(y)));$$

5)
$$(\exists z)P(z) \Rightarrow (\forall y)(R(x,y) \Rightarrow (\exists z)Q(y,z));$$

6)
$$(\exists x)(\forall y)(\exists z)(\forall u)P(x,y,z,u) \land (\exists x)(\forall y)(\exists z)(\forall u)R(x,y,z,u);$$

7)
$$(\exists x)(\forall y)P(x,y) \Rightarrow (\exists x)(\forall y)R(x,y);$$

8)
$$(\forall x)(\exists y)(\exists z)(\forall u)P(x,y,z,u) \lor (\forall x)(\exists y)(\exists z)(\forall u)R(x,y,z,u);$$

9)
$$(\exists y)(\forall x)P(x,y) \Rightarrow (\exists y)(\forall x)Q(x,y);$$

10)
$$(\exists x)(\forall y)(\exists z)(\forall u)P(x,y,z,u) \land (\exists x)(\forall y)(\exists z)(\forall u)R(x,y,z,u).$$

Задача 4 (4 балла). Методом резолюций доказать противоречивость следующего множества дизъюнктов:

1)
$$S = \{D_1, D_2, D_3, D_4, D_5, \}$$
, где
$$D_1 = P(x, f(x)), D_2 = R(y, z) \lor \neg P(y, f(a)), D_3 = \neg R(c, x),$$

$$D_4 = R(x, y) \lor R(z, f(z)) \lor \neg P(z, y), D_5 = P(x, x).$$

2)
$$S = \{D_1, D_2, D_3, D_4, D_5, D_6, D_7\}_{, \Gamma Д e}$$

$$\begin{split} D_1 &= \neg E(c), \quad D_2 = P(c), \quad D_3 = P(h(x)) \vee \neg S(y,x), \quad D_4 = E(x) \vee S(x,h(x)) \\ D_5 &= \neg P(x) \vee \neg V(g(x)) \vee \neg V(y), \quad D_6 = E(x) \vee V(y) \vee C(h(x)) \\ D_7 &= \neg P(x) \vee \neg C(y). \end{split}$$

3)
$$S = \{D_1, D_2, D_3, D_4\}$$
, где
$$D_1 = \neg R(a), \qquad D_2 = P(y, g(x)), D_3 = \neg R(x) \lor \neg R(y) \lor \neg P(x, g(y)) \lor R(z),$$
$$D_4 = R(b).$$

4)
$$S = \{D_1, D_2, D_3, D_4, D_5, \}$$
, где
$$D_1 = H(z, f(z)), D_2 = E(y, z) \lor \neg H(y, f(a)), D_3 = \neg E(c, x),$$

$$D_4 = E(x, y) \lor E(z, f(z)) \lor \neg H(z, y), D_5 = H(x, x).$$

$$S = \{D_1, D_2, D_3, D_4, D_5\}, \text{ где}$$

$$D_1 = \neg P(x) \lor \neg T(y) \lor \neg S(x, y), \quad D_2 = \neg Q(y) \lor S(c, y), \quad D_3 = Q(b), \quad D_4 = T(b),.$$

$$D_5 = P(c).$$

7)
$$S = \{D_1, D_2, D_3, D_4, D_5, \}$$
, где
$$D_1 = Q(x, h(x)), D_2 = P(y, z) \lor \neg Q(y, h(a)), D_3 = \neg P(c, x),$$

$$D_4 = P(x, y) \lor P(z, h(z)) \lor \neg Q(z, y), D_5 = Q(y, y).$$

8)
$$S = \{D_1, D_2, D_3, D_4, D_5\}$$
, где
$$D_1 = \neg P(x) \lor \neg T(y) \lor \neg S(x, y), \quad D_2 = \neg Q(y) \lor S(c, y), \quad D_3 = Q(b), \quad D_4 = T(b),$$
 $D_5 = P(c).$

9)
$$S = \{D_1, D_2, D_3, D_4, D_5, D_6, D_7\}$$
, где
$$D_1 = \neg E(c), D_2 = P(c), D_3 = P(h(x)) \lor \neg S(y, x), D_4 = E(x) \lor S(x, h(x))$$

$$D_5 = \neg P(x) \lor \neg V(g(x)) \lor \neg V(y), D_6 = E(x) \lor V(y) \lor C(h(x))$$

$$D_7 = \neg P(x) \lor \neg C(y).$$

10)
$$S = \{D_1, D_2, D_3, D_4\}$$
, где
$$D_1 = P(y, f(x)), \ D_2 = \neg Q(y) \lor \neg Q(z) \lor \neg P(y, f(x)) \lor Q(x),$$

$$D_3 = \neg Q(a), \ D_4 = Q(b).$$

Задача 5 (5 баллов). Методом резолюций обосновать тождественную истинность формулы:

1)
$$((\exists x)P(x)\lor(\exists x)R(x)) \Rightarrow (\exists x)(P(x)\lor R(x)),$$

2)
$$(\exists x)(P(x) \Rightarrow R(y)) \Rightarrow ((\forall x)P(x) \Rightarrow R(y)),$$

3)
$$(\exists x)(P(x)\lor R(x)) \Rightarrow ((\exists x)P(x)\lor (\exists x)R(x)),$$

4)
$$((\forall x)P(x) \land (\forall x)R(x)) \Rightarrow (\forall x)(P(x) \land R(x)),$$

5)
$$(\forall x)(P(x) \Rightarrow R(y)) \Rightarrow ((\exists x)P(x) \Rightarrow R(y)),$$

6)
$$(\forall x)(P(x) \land R(x)) \Rightarrow ((\forall x)P(x) \land (\forall x)R(x)),$$

7)
$$(\exists x)(P(x) \land R(y)) \Rightarrow (\exists x)P(x) \land R(y)$$
,

8)
$$(\exists x)(P(y) \Rightarrow R(x)) \Rightarrow (P(y) \Rightarrow (\exists x)R(x)),$$

9)
$$(\forall x)P(x)\lor R(y) \Rightarrow (\forall x)(P(x)\lor R(y)),$$

$$10) (\forall x) (P(y) \Rightarrow R(x)) \Rightarrow (P(y) \Rightarrow (\forall x) R(x)).$$

Списки групп

для распределения вариантов контрольной работы

	Матем.логика 111 гр		Матем.логика 151 гр
1	Абу Саиф Мария	1	Бровко Роман

2	Аношкин Андрей	2	Вавилов Андрей
3	Архипов Кирилл	3	Гадиев Рамазан
4	Бабаев Никита	4	Демин Егор
5	Байрамов Шамистан	5	Драгомирецкий Майкл
			Екатеринушкин
6	Бей Елизавета	6	Константин
7	Блохина Анастасия	7	Еремеев Тимур
8	Бузин Илья	8	Иванов Максим
9	Буйкевич Ярослав	9	Игнатова Мария
10	Быкова Мария	10	Кашкин Владислав
11	Дербин Даниил	11	Кондрашов Даниил
12	Дергачев Анатолий	12	Кошкарева Вероника
13	Ефимов Андрей	13	Ланкин Илья
14	Иванов Артём	14	Лобецкий Илья
15	Кирносов Кирилл	15	Локута Ольга
16	Китаев Дмитрий	16	Макаров Фёдор
17	Клементьев Кирилл	17	Мангасарян Евгений
18	Кляулина Светлана	18	Михайлин Дмитрий
19	Кожевников Егор	19	Моор Алиса
20	Марьянков Дмитрий	20	Найденов Дмитрий
21	Минеев Рем	21	Новиков Александр
22	Прытков Дмитрий	22	Петрищев Никита
23	Соловьев Антон	23	Пичугина Дарья
24	Соломонов Анатолий	24	Саллам Фади Саллам
25	Тульцов Александр	25	Сахнов Максим
26	Фатюшкин Денис	26	Свинарев Егор
27	Чекмарев Александр	27	Трофимов Дмитрий
28	Чернышевский Егор	28	Чауенов Камиль
	·	29	Шамонин Денис
		30	Шнирельман Алексей
		31	Эль-Ани Ахмед
		32	Янущик Илья
		33	Скворцов Артемий