Handling Data in Pandas

Handling Inconsistent Data Types in Pandas

Inconsistent data types in a DataFrame can lead to various issues, such as errors during computations, incorrect data analysis results, or failure in machine learning model training.

Inconsistent data types occur when a column contains different types of data, which can lead to errors in data processing and analysis. Addressing these inconsistencies involves identifying the mixed types and converting them into a uniform format.

Identification and Conversion:

To identify columns with inconsistent data types, you can use the 'df.dtypes' attribute to review the data type of each column. If a column is supposed to be numerical but is identified as an object (typically a string in pandas), this might indicate mixed data types.

To convert data types in pandas, you can use the following methods:

• 'pd.to_numeric()': Converts a column to numeric types. It's useful for converting numerical values that are read as strings into numeric types. The 'errors' parameter can be set to 'coerce' to convert non-numeric values to NaN (useful for cleaning the column)

```
df['column_name'] = pd.to_numeric(df['column_name'], errors='coerce')
```

• astype()': Converts the data type of a DataFrame column to a type you specify.

```
df['column_name'] = df['column_name'].astype('int')
```

• **pd.to_datetime()'**: Converts a column to datetime. This is particularly useful for date columns that are read as strings.

```
df['date_column'] = pd.to_datetime(df['date_column'])
```

Example Scenario:

Suppose you have a DataFrame 'df' with a column 'Age' that contains both strings and numeric values:

```
import pandas as pd

# Sample DataFrame
df = pd.DataFrame({
    'Age': ['25', 'Thirty', '45', 'Fifty', 35]
})

# Convert 'Age' to numeric, setting non-convertible values to NaN
df['Age'] = pd.to_numeric(df['Age'], errors='coerce')
```

Managing Missing Values in Pandas

Missing values can significantly impact the performance of machine learning models. There are several strategies to handle missing data, including imputation, removal, and leveraging algorithms that support missing values.

Removing Missing Values:

- 'dropna()': Drops rows or columns that contain missing values. You can specify 'axis' to choose rows or columns and 'how' to determine if rows/columns with any or all NaNs are removed.

df.dropna(axis=0, how='any') # Drops rows with any NaN values

Filling Missing Values:

- 'fillna()': Fills missing values with a specified value, or a value derived from the DataFrame, such as mean, median, or mode.

df['column_name'].fillna(value=df['column_name'].median(), inplace=True)

Imputation:

For a more sophisticated approach, you can use the 'SimpleImputer' class from 'sklearn.impute' to fill missing values using the mean, median, mode, etc.

Example Scenario:

Assuming a DataFrame 'df' with missing values in 'Salary' column:

```
# Sample DataFrame with missing values
df = pd.DataFrame({
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Salary': [50000, np.nan, 54000, np.nan]
})
# Filling missing values with the mean salary
df['Salary'].fillna(value=df['Salary'].mean(), inplace=True)
```