MATH 323: Study Sheet

Ryan Ordille

Exam date: 17 April, 2012

1 Before random variables

1.1 Basic axioms and theorems

Principle axioms:

- 1. $P(E) \ge 0$
- 2. P(S) = 1
- 3. For disjoint events E_1, E_2 : $P(E_1 \cup E_2) = P(E_1) + P(E_2)$.

Principle theorems:

- 1. $P(\emptyset) = 0$
- 2. $P(E^c) = 1 P(E)$
- 3. $P(E \cap F^c) = P(E) P(E \cap F)$
- 4. $E \subseteq F \Rightarrow P(E) \le P(F)$
- 5. For any events $E, F: P(E \cup F) = P(E) + P(F) P(E \cap F)$.

If all outcomes are equally likely, i.e. $P(E_i) = P(E_j)$ for $i \neq j$, then:

$$P(E) = \frac{\text{Number of ways } E \text{ can occur}}{\text{total number of possible outcomes}}$$

1.1.1 Conditional probability

Definition:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Law of Total Probability: if B_1, B_2, \ldots, B_m form a partition of S and $B_i \cap B_j = \emptyset$ for $i \neq j$, then:

$$P(A) = \sum_{i=1}^{m} P(A \mid B_i) P(B_i)$$

Bayes' Theorem: (assuming same premises as above)

$$P(B_k \mid A) = \frac{P(A \mid B_k)P(B_k)}{P(A)}$$

Conditional expectation:

$$P(A \cap B) = P(B \mid A)P(A) = P(A \mid B)P(B)$$

1.1.2 Independence

$$A \perp B \Leftrightarrow P(B \mid A) = P(B) \text{ or } P(A \mid B) = P(A)$$

 $A \perp B \Leftrightarrow P(A \cap B) = P(A)P(B)$

2 Random variable distributions

2.1 C.d.f. and p.f.

Cumulative distribution function: (c.d.f.) $F_X(x) = P(X \le x)$

Probability function (p.f.) $P_X(x) = P(X = x)$ for discrete r.v.s

2.2 Named distribution p.f.s

Bernoulli $X \sim Bern(p)$: where P(X = 1) = p "success" and P(X = 0) = 1 - p "failure" **Binomial** $X \sim Bin(n, p)$: "number of successes in n trials" (for x = 0, 1, ..., n)

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Poisson $X \sim Po(\lambda)$: "large n and small p binomial" where $np = \lambda$ (for x = 1, 2, ...)

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Hypergeometric $X \sim HG(N, a, n)$: "number a of successes in n draws of N objects"

$$P(X = x) = \frac{\binom{a}{x} \binom{N-a}{n-x}}{\binom{N}{n}}$$

Geometric $X \sim Geom(p)$: "trial number of first success" (for x = 1, 2, ...)

$$P(X = x) = (1 - p)^{x-1}p$$

3 Expected values and variances

3.1 Definitions

Expected Value: "centre" of distribution, mean

$$E(X) = \mu = \sum_{x} x P_X(x)$$

$$E(cX) = cE(X), E(X^2) = \sum x^2 P(X = x), E(XY) \neq E(X)E(Y), E(\sum X_i) = \sum E(X_i)$$

Variance: "spread" of the distribution

$$Var(X) = \sigma^2 = E((X - \mu_X)^2) = E(X^2) - \mu^2$$

$$Var(cX) = c^2 Var(X)$$

Standard deviation: $\sqrt{Var(X)} = \sqrt{\sigma^2} = \sigma$

3.2 Named distribution expected values and variances

Binomial $X \sim Bin(n, p)$: E(X) = np, Var(X) = np(1 - p)

Bernoulli $X \sim Bernoulli(p)$: equivalent to Binom(1, p)

Poisson $X \sim Po(\lambda)$: $E(X) = Var(X) = \lambda$

Geometric $X \sim Geom(p)$: $E(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$

4 Probability density function p.d.f

4.1 Definitions

As P(X = x) = 0 for all x in a continuous distribution, our definition of the probability function is not enough for continuous distributions.

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(y) \ dy$$

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$Var(X) = \int_{-\infty}^{\infty} x^2 f_X(x) dx - \left(\int_{-\infty}^{\infty} x f_X(x) dx \right)^2$$

4.2 P.d.f.s of named distributions

4.2.1 Uniform $X \sim U(a, b)$:

$$f_X(x) = \frac{1}{b-a}$$

for $a \le x \le b$, and $f_X(x) = 0$ elsewhere. The c.d.f grows linearly, with $F_X(x) = \int_a^x \frac{1}{b-a} \ dx = \frac{x-a}{b-a}$ where $a \le x \le b$.

4.2.2 Exponential $X \sim Exp(\beta)$:

$$f_X(x) = \frac{1}{\beta}e^{-x/\beta} = \lambda e^{-\lambda x}$$

for $x \geq 0$, with $f_X(x) = 0$ elsewhere.

$$F_X(x) = 1 - e^{-x/\beta}$$

$$E(X) = \mu = \beta$$
, $Var(X) = \sigma^2 = \beta^2$.

Memoryless property: if $X \sim Exp(\beta)$, then $P(x \le X < x + h \mid X \ge x) = P(0 \le x < h)$.

4.2.3 Gamma $X \sim Gamma(\alpha, \beta)$:

Gamma function: let $\alpha > 0$:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

where $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ and $\Gamma(\alpha + 1) = \alpha\Gamma(\alpha)$.

Gamma distribution:

$$f_X(x) = \frac{1}{\Gamma(\alpha)} \frac{1}{\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} \text{ for } x \ge 0$$

with $f_X(x) = 0$ elsewhere.

$$E(X) = \alpha \beta, Var(X) = \alpha \beta^2.$$

$$F_X(x) = \int_0^x \frac{1}{\Gamma(\alpha)\beta^{\alpha}} y^{\alpha - 1} e^{-y/\beta} dy \text{ for } x > 0$$

4.2.4 Chi-Square $X \sim \chi^2_{\nu}$:

$$f_X(x) = \frac{1}{\Gamma(\nu/2)2^{\nu/2}} x^{\nu/2-1} e^{-y/2} \text{ for } x \ge 0$$

with $f_X(x) = 0$ elsewhere.

4.2.5 Gaussian/Normal $X \sim N(\mu, \sigma^2)$:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \,\forall x$$

 $E(X) = \mu$ and $Var(X) = \sigma^2$.

4.3 Standardizing distributions

4.3.1 Any r.v.:

To standardize any r.v. X with mean μ and standard deviation σ :

$$Y = \frac{X - \mu}{\sigma}$$

where E(Y) = 0 and Var(Y) = 1.

4.3.2 For $X \sim N(\mu, \sigma^2)$:

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

where $Z \sim N(0,1)$ is a standard normal random variable.

5 Moment generating functions and transformations

5.1 Moment generating function m.g.f.

$$M_X(t) = E(e^{tx}) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx = \sum_{x} e^{tx} P(X = x)$$

$$E(X^k) = M_X^{(k)}(0)$$

5.2 Transformations

5.2.1 Transforming p.d.f.s

Let y = g(x) be either strictly decreasing or strictly increasing, X be continuous with p.d.f. f_X , and Y = g(X). Then, the p.d.f. of Y is:

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

5.2.2 Probability integral transformation

Let X be a continuous random variable with a strictly increasing cumulative distribution function F_X , and $Y = F_X(X)$. Then, $Y \sim U(0,1)$.

6 Joint distributions

6.1 Definitions

Joint c.d.f: $F_{X,Y}(x,y) = P(X \le x \cap Y \le y) = P(X \le x, Y \le y)$

Marginal c.d.f.:

$$F_X = \lim_{y \to +\infty} F_{X,Y}(x,y)$$

Joint p.d.f.: (continuous)

$$F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) \ du \ dv$$

(discrete)

$$F_{X,Y}(x,y) = \sum_{v \le y} \sum_{u \le x} P_{X,Y}(u,v)$$

Use the Fundamental Theorem of Calculus to extract $f_{X,Y}(x,y)$.

Joint probability function: $P_{X,Y}(x,y) = P(X=x,Y=y)$

Marginal p.d.f.: integrate out the variable you wish to get rid of:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dx$$

6.2 Conditional distributions

6.2.1 Conditional probability function

Definition: given the joint probability function of (X,Y), $P_{X,Y}(x,y) = P(X=x,Y=y)$:

$$P(Y = y \mid X = x) = \frac{P_{X,Y}(x,y)}{P_{X}(x)} = F_{Y \mid X \le x}(y \mid X \le x)$$

6.2.2 Conditional p.d.f.

$$f_{Y \mid X=x}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

$$F_{Y \mid X=x}(y \mid x) = \int_{-\infty}^{y} f_{Y \mid X=x}(u \mid x) du$$

$$E(Y \mid X=x) = \int_{-\infty}^{\infty} y f_{Y \mid X=x}(y \mid x) dy$$

6.2.3 Law of Total Probability for Random Variables

Discrete:

$$P(Y = y) = \sum_{x} P(Y = y \mid X = x) P(X = x) = \sum_{x} P_{Y \mid X = x} P_{X}(x)$$

Continuous:

$$f_Y(y) = \int_{-\infty}^{\infty} f_{Y \mid X = x}(y \mid x) \ f_X(x) \ dx$$

7 Covariance and correlation

7.1 Covariance

Continuous:

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \ dx \ dy$$

Discrete:

$$E(g(X,Y)) = \sum_{y} \sum_{x} g(x,y) P_{X,Y}(x,y)$$

Covariance: when $g(X,Y) = (X - \mu_X)(Y - \mu_Y)$, the *covariance* between X and Y is E(g(X,Y)), denoted Cov(X,Y) or $\sigma_{X,Y}$.

The covariance is a measure about the means of X and Y – if Cov(X,Y) > 0, then as X increases, Y also increases (same for decreasing), while if Cov(X,Y) < 0, then as X increases, Y decreases (and vice versa).

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

Cov(X,Y)'s magnitude depends on the scale of measurement (i.e. $Cov(aX,bY) \neq Cov(X,Y)$).

7.2 Correlation

Correlation:

$$|Corr(X,Y)| = |\rho(X,Y)| = \left|\frac{\sigma_{XY}}{\sigma_X \sigma_Y}\right| = \left|\frac{Cov(aX,bY)}{\sqrt{Var(aX)Var(bY)}}\right| = \frac{|ab|Cov(X,Y)}{|ab|\sqrt{Var(X)Var(Y)}}$$

Corr(X,Y) has the same sign as Cov(X,Y). The correlation between X and Y is a measure of the linear dependence between them, not the general dependence between them.

7.3 Covariance and correlation

$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2Cov(X, Y)$$

If Cov(X, Y) = 0, then Var(X + Y) = Var(X) + Var(Y), and, in general:

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i)$$

if X_i, X_j are uncorrelated for $i \neq j$.

8 Independence between random variables

The random variables X_1, X_2, \ldots, X_n are said to be independent if and only if

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)...F_{X_n}(x_n)$$

If X and Y are independent, then Cov(X,Y) = 0 and E(XY) = E(X)E(Y). The converse is not always true, however.

9 Central Limit Theorem

Let X_1, X_2, \ldots, X_n be independent and identically distributed with mean μ and variance σ^2 . Then,

$$P\left(\left(\frac{S_n - n\mu}{\sqrt{n}\sigma}\right) \le x\right) \to P(Z \le x) \ \forall x \text{ as } n \to \infty$$