

MOTORES TÉRMICOS

Práctica 2: Ensayo de motores de combustión interna alternativos en banco de pruebas

Álvaro Morales Sánchez 18240

Contenido

1.	Resi	umen de la práctica	3
2.	Prod	redimiento de ensayo	4
3.	Tab	a de datos y parámetros medidos	5
4.	Expl	icación de cálculos a realizar	7
5.	Resi	ultados	8
	5.1	Grado de carga constante	8
	5.2	Régimen constante	11
6.	Grá	icas	12
		ado de carga constante	
	6.2	Régimen constante	
7.		nentarios y conclusiones	
			20
Τá	ablas		
		Recopilación de medidas (carga constante)	
		Recopilación de medidas (régimen constante)	
		Recopilación de datos auxiliares	
		Resultados de los cálculos mencionados en el apartado 4 (Carga constante)	
		Resultados Par y Potencia (Carga constante) Resultados Dosado relativo y Temperatura de escape (Carga constante)	
		Resultados Gasto de combustible y Consumo específico de combustible (Carga	
со	nstant	e)	9
Та	bla 8 -	Resultados Gasto de aire y Rendimiento volumétrico (Carga constante)	10
Ta	bla 9 -	Resultados del Balance energético (Carga constante)	10
Ta	bla 10	- Resultados de los cálculos mencionados en el apartado 4 (Régimen constante)	11
Ta	bla 11	- Resultados Par y Potencia (Régimen constante)	11
		- Resultados Dosado relativo y Temperatura de escape (Régimen constante)	
		- Resultados Gasto de combustible y Consumo específico de combustible (Régim	
		e)	
		- Resultados Gasto de aire y Rendimiento volumétrico (Régimen constante)	
Ta	bla 15	- Resultados del Balance energético (Régimen constante)	12

1. Resumen de la práctica

La práctica comienza identificando el tipo de ensayo que se va a llevar a cabo en el motor, en este caso, se trata de un ensayo docente. No corresponde con ninguno de los tipos especificados en el guion, pero comparte similitudes con ensayos de control de calidad, homologación o recepción, de investigación y desarrollo. En resumen, con dicho ensayo se busca comprobar características del motor Nissan del laboratorio, y medir muchos parámetros relacionados con su funcionamiento.

Continuando, con una breve explicación por parte del profesor correspondiente acerca de los instrumentos para la medición de los parámetros correspondientes. Seguido por la identificación de los distintos componentes del banco de pruebas, entendiendo la seguridad de dichas instalaciones y otras precauciones.

En concreto, en esta práctica se emplea la celda número 5 del laboratorio de Motores Térmicos. Brevemente, el banco está compuesto por: un sistema de refrigeración que bombea agua desde una alberca de la escuela, sistema de ventilación a través de dos ventiladores de impulsión y extracción, correspondiente insonorización y seguridad, bancada de masa sísmica sustentada sobre muelles que conecta el motor y el freno dinamométrico con la cimentación de la escuela. Como se acaba de mencionar, en nuestros ensayos se emplea un freno dinamométrico conectado al motor a través de una transmisión elástica especial. Además, tras la seguridad correspondiente hay una sala de control e instrumentación, insonorizada, donde observaremos resultados y parametrizaremos los distintos ensayos a estudiar.

Ilustración 1 - Esquema del banco de pruebas empleado

Únicamente se resumirán las prestaciones de motor y freno, el resto de los instrumentos vienen especificados detalladamente en el guion de la práctica. Como bien se menciona en el título de la práctica el objetivo del ensayo se basa en un motor de combustión

interna alternativo. El motor empleado es un motor Nissan modelo YD diésel de cuatro cilindros turbo-sobrealimentado con post-enfriamiento, con:

Número de cilindros: 4Diámetro: 89 mmCarrera: 100 mm

- Relación de compresión: 15

Potencia máxima: 175 CV a 4000 rev/minPar máximo: 400 Nm a 2100 rev/min

Como se menciona previamente en el guión, la medición de nuestro ensayo es indirecta, el motor acciona un elemento que impone resistencia, freno. A dicho freno se le denomina freno dinamométrico, mide el par resistente. Dicho par se halla a través del medidor de la fuerza, F y la longitud del brazo de palanca del freno, b. En las instalaciones empleadas b es 0,955 m. Por tanto, el par resistente de freno viene del producto F x b.

El freno empleado es un freno electromagnético con célula de carga para medir la fuerza ejercida. La alimentación y control de las bobinas se lleva a cabo desde la sala de control para controlar los ensayos. Mediante un potenciómetro se controla el régimen deseado del conjunto motor-freno.

2. Procedimiento de ensayo

El control del grado de carga se realiza desde la sala de control, accionando el pedal de acelerador. El control del potenciómetro mencionado anteriormente se realiza desde un programa llamado Labview, controlando régimen o carga. La práctica se dividirá en dos ensayos:

Ensayos a grado de carga constante

Con esta constante se intenta simular un motor con el pedal de aceleración en posición fija, controlado con Labview como se acababa de mencionar. Una vez fija dicha posición o carga, en nuestro caso 30%, se irá modificando el régimen de giro del freno, y por tanto del motor, de nuevo a través de Labview. En nuestro caso se tomarán datos, cuasiestacionarios (ya que habría que dejar un mayo tiempo para que se estabilizasen), para: 1500, 1750, 2000, 2250, 2500, 3000 rev/min. Para cada uno de dichos puntos de funcionamiento se tomarán los datos de la tabla que se adjuntará en el siguiente apartado.

Ensayos a régimen de giro constante

Al contrario del anterior, se intenta simular una situación a régimen constante donde varia la carga. De nuevo todo controlado por Labview. En nuestro caso se fijó el régimen a 2250 rev/min, y se varió la carga en: 100, 75, 50 (51) y 25 (21,8) %. Los números en paréntesis son los que se usaron en la práctica en Labview para aproximarse al régimen anterior, estando lo más cercano posibles a los que tiene al

lado. De nuevo, para cada uno de los puntos anteriores se rellena la tabla correspondiente.

3. Tabla de datos y parámetros medidos

Previo a la medición de los parámetros del anexo se toman las condiciones de los ensayos:

Presión atmosférica: 0,94 bar.
Temperatura atmosférica: 23 º C.

A continuación, se adjuntan las mediciones de ambas partes de la práctica. Debido a la extensión de ambas tablas se adjuntan en la siguiente página.

Como se puede observar, en la primera tabla habrá que realizar unos breves cálculos para completar la columna de grado de carga. Mientras que en la segunda tabla no haría falta calcular la proporción de acelerador, ya que es un parámetro secundario en el segundo caso de ensayos.

■ Ensayos a grado de carga constante

Número	Grado de Carga	Régimen	Acelerador	Par	Gasto Comb.	Gasto Aire	Gasto Agua	T agua ent.	T agua salida	T aceite	T comb.	T desp. Comp.	T desp. Post.	T antes turb.	T desp. Turb.	p sal comp.	p ent motor	p antes turb.	p desp. Turb.	p desp. DPF	Régimen Turbo
Unidades	%	rev/min	%	Nm	l/h	g/s	g/s	ōС	ōС	ōC	ōС	ōС	ōС	ōС	ōС	bar	bar	bar	bar	bar	rev/min
1		1500	30	273	11,3	55	90	26	91	94	37	110	31	580	448	1,8	1,8	1,92	1,02		133000
2		1750	30	260	12,5	65	190	55	91	102	45	109	36	590	478	1,77	1,76	1,8	1,05		135000
3		2000	30	230	12,5	72	228	59	90	105	50	100	37	555	464	1,67	1,65	1,7	1,05		125000
4		2250	30	196	12,1	77	215	57	89	105	55	94	37	515	437	1,6	1,59	1,69	1,07		126000
5		2500	30	177	12,4	85	225	58	89	104	61	96	40	480	402	1,65	1,62	1,79	1,08		132000
6		3000	30	142	12,9	100	260	59	88	104	65	107	49	437	354	1,78	1,74	2,09	1,12		143000

Tabla 1 - Recopilación de medidas (carga constante)

Ensayos a régimen de giro constante

Número	Grado de Carga	Régimen	Acelerador	Par	Gasto Comb.	Gasto Aire	Gasto Agua	T agua ent.	T agua salida	T aceite	T comb.	T desp. Comp	T desp. Post.	T antes turb.	T desp. Turb.	p sal comp.	p ent motor	p antes turb.	p desp. Turb.	p desp. DPF	Régimen Turbo
Unidades	%	rev/min	%	Nm	l/h	g/s	g/s	ōС	ōС	ōС	ōС	ōС	ōС	ōС	ōС	bar	bar	bar	bar	bar	rev/min
1	100	2250		375	24	102	400	67	95	108	70	160	66	724	566	2,42	2,39	2,49	1,2		175000
2	75	2250		280	17	88	385	64	92	110	72	133	54	612	509	1,99	1,96	2,07	1,12		151000
3	50	2250		190	11,8	75	260	58	90	104	71	100	40	519	449	1,6	1,57	1,66	1,06		125000
4	25	2250		93	6,2	63	149	54	87	95	69	72	31	359	313	1,3	1,29	1,42	1,01		97000

Tabla 2 - Recopilación de medidas (régimen constante)

4. Explicación de cálculos a realizar

Recopilando datos previos del motor o del ambiente, todos ellos mencionados con anterioridad o dados en el guion, para emplearlos en los próximos cálculos:

Nº Cilindros		4	
Diámetro		89	mm
Carrera		100	mm
Relación de compresión		15	
Potencia Máx	(a 4000 rev/min)	175	CV
Par Máx	(a 2100 rev/min)	400	Nm
Presión Atmosférica		0,94	bar
Temperatura Atmosférica		23	ōC
	(Brazo de		
b	palanca)	0,995	m
Densidad del combustible		0,83	kg/dm³
Poder calorífico inferior, Hc (gasóleo)		43200	kJ/kg
Dosado estequiométrico (gasóleo)		1/14.6	0,06849315

Tabla 3 - Recopilación de datos auxiliares

Potencia Efectiva

Necesario conocer el par efectivo, obtenido con la toma de datos; y el régimen, parámetro conocido fijo o variado pero impuesto.

$$\dot{W}_{e} (kW) = M_{e} \times w = M_{e} (Nm) \times \frac{2\pi N(min^{-1})}{60} \times \frac{1}{1000}$$

Caudal Másico de combustible

Empleando la densidad del combustible, recopilada en la tabla de datos anterior.

$$\dot{m_f} \Big(\frac{kg}{s}\Big) = \rho_f \, \left(\frac{kg}{m^3}\right) x \, \dot{v_f} \, \left(\frac{m^3}{s}\right) = \, \rho_f \, \left(\frac{kg}{dm^3}\right) x \, \dot{v_f} \, \left(\frac{l}{h}\right) x \frac{1}{3600} \left(\frac{h}{s}\right)$$

Consumo específico

Inversamente proporcional al rendimiento, se obtiene dividiendo gasto entre potencia efectiva.

$$g_{ef}\left(\frac{g}{kWh}\right) = \frac{\dot{m}_f\left(\frac{kg}{s}\right) \times 1000 \left(\frac{g}{kg}\right)}{\dot{W}_e (kW)} \times 3600 \left(\frac{s}{h}\right)$$

Rendimiento efectivo

Relación entre la potencia efectiva, y la que cederá la combustión en forma de potencia térmica. Empleando el poder calorífico de la tabla anterior, para el gasóleo.

$$\eta_{e} = \frac{\dot{W_{e}} (kW)}{\dot{m}_{f} \left(\frac{kg}{s}\right) x H_{C} \left(\frac{kJ}{kg}\right)}$$

Dosado absoluto

A partir del gasto de combustible y aire.

$$F = \frac{\dot{m}_f}{\dot{m}_a}$$

Dosado relativo

Empleando el dosado estequiométrico del gasóleo recopilado en la anterior tabla.

$$F_R = \frac{F}{F_e}$$

Rendimiento volumétrico

Relación entre la masa real de aire introducida en un cilindro y la que se podría introducir en un proceso cuasi-estacionario sin pérdidas de carga. Evalúa la capacidad de llenado del motor, el aprovechamiento de su cilindrada. En nuestro caso, al ser un momento de cuatro tiempos i = 0,5.

$$\eta_{v} = \frac{m_{a} \left(\frac{kg}{s}\right)}{V_{T} \left(m^{3}\right) \times \rho_{aREF} \left(\frac{kg}{m^{3}}\right) \times \frac{N \left(min^{-1}\right)}{2 \times 60}}$$

La densidad de referencia del aire se calculará a partir de la ley de los gases ideales, tomando presión y temperatura después de pasar por el conjunto compresor+postenfriador, lo que equivale a presión y temperatura de entrada a los cilindros. Dicha referencia no tendría en cuenta las pérdidas de carga hasta dicho punto, pero tomando una compresión isentrópica sería complicar demasiado el ensayo, y habría que tomar al turbocompresor como ideal, pasando toda la energía a los gases de escape.

Al introducir los valores mencionados en la ley de gases ideales se emplean las siguientes unidades y constante: Pa para la presión, K para la temperatura y la constante del gas será R_{aire} = 287 $\frac{J}{kg~K}$.

5. Resultados

En cada parte, primero se adjuntarán los resultados de los cálculos mencionados en el apartado anterior y posteriormente las tablas según el guion.

5.1 Grado de carga constante

Potencia Efectiva	Caudal Másico f	Consumo específico	Rendimiento efectivo	Dosado Absoluto	Dosado relativo	Densidad aire REF	Rendimiento volumétrico
kW	kg/s	g/kW h				kg/m3	
42,88273972	0,002605278	218,7127049	0,381017341	0,047368687	0,691582828	2,062067073	0,214368027
47,64748858	0,002881944	217,7449496	0,382710752	0,044337607	0,64732906	1,983633893	0,225738251
48,17108736	0,002881944	215,3781567	0,386916364	0,040027006	0,58439429	1,853660783	0,234133527
46,18141201	0,002789722	217,4684481	0,383197351	0,036230159	0,528960317	1,786254937	0,230970297
46,33849164	0,002858889	222,1047694	0,375198306	0,033633987	0,491056209	1,80252253	0,227399541
44,61061568	0,002974167	240,0101374	0,347207556	0,029741667	0,434228333	1,881954919	0,213530982

Tabla 4 - Resultados de los cálculos mencionados en el apartado 4 (Carga constante)

Par y potencia

Número	Régimen	Acelerador	Par	Potencia Efectiva
Unidades	rev/min	%	Nm	kW
1	1500	30	273	42,88273972
2	1750	30	260	47,64748858
3	2000	30	230	48,17108736
4	2250	30	196	46,18141201
5	2500	30	177	46,33849164
6	3000	30	142	44,61061568

Tabla 5 - Resultados Par y Potencia (Carga constante)

Dosado relativo y temperatura de escape

La temperatura de escape del motor será la temperatura anterior a la entrada de la turbina.

Número	Régimen	Acelerador	Dosado relativo	T antes turb.
Unidades	rev/min	%		ōС
1	1500	30	0,691582828	580
2	1750	30	0,64732906	590
3	2000	30	0,58439429	555
4	2250	30	0,528960317	515
5	2500	30	0,491056209	480
6	3000	30	0,434228333	437

Tabla 6 - Resultados Dosado relativo y Temperatura de escape (Carga constante)

Gasto de combustible y consumo específico de combustible

Número	Régimen	Acelerador	Gasto Comb.	Gasto Másico f	Consumo específico
Unidades	rev/min	%	l/h	kg/s	g/kW h
1	1500	30	11,3	0,002605278	218,7127049
2	1750	30	12,5	0,002881944	217,7449496
3	2000	30	12,5	0,002881944	215,3781567
4	2250	30	12,1	0,002789722	217,4684481
5	2500	30	12,4	0,002858889	222,1047694
6	3000	30	12,9	0,002974167	240,0101374

Tabla 7 - Resultados Gasto de combustible y Consumo específico de combustible (Carga constante)

Gasto de aire y rendimiento volumétrico

Número	Régimen	Acelerador	Gasto Aire	Rendimiento volumétrico
Unidades	rev/min	%	g/s	
1	1500	30	55	0,85747211
2	1750	30	65	0,902953005
3	2000	30	72	0,936534108
4	2250	30	77	0,92388119
5	2500	30	85	0,909598165
6	3000	30	100	0,85412393

Tabla 8 - Resultados Gasto de aire y Rendimiento volumétrico (Carga constante)

Balance energético del motor

Dividiremos el balance en:

- Energía aportada, calculada a partir del caudal másico de combustible y el poder calorífico inferior del gasóleo (adjunto en la tabla de datos auxiliares).
- Energía pérdida por el refrigerante: $m_{agua}^{\cdot} \left(\frac{kg}{s}\right) x c_p \left(\frac{kJ}{kg^{\circ}C}\right) x \Delta T \left(^{\circ}C\right)$

Con c_p (Agua) = 4,186 $\frac{kJ}{kg\,^oC}$. Y el incremento de temperatura será igual al agua de salida menos el de entrada.

- Energía pérdida por el escape: $(\dot{m}_a + \dot{m}_f) \left(\frac{kg}{s}\right) x c_p \left(\frac{kJ}{kg \, ^{\circ}C}\right) x \Delta T \left(^{\circ}C\right)$

Con c_p (Aire) = 1,012 $\frac{kJ}{kg^{\,9}C}$, aunque dicho calor específico es para el aire en condiciones normales y los gases de escape saldrán en distintas condiciones. El incremento de temperatura será la temperatura de los gases de salida menos los de entrada. En nuestra práctica dichas temperaturas corresponden con la temperatura antes de la turbina menos la temperatura después del postenfriador.

Número	Régimen	Acelerador	Energía Aportada	Pérdidas refri	Pérdidas escape
Unidades	rev/min	%	kW	kW	kW
1	1500	30	112,548	24,4881	32,00480107
2	1750	30	124,5	28,63224	38,05787639
3	2000	30	124,5	29,586648	39,25431339
4	2250	30	120,516	28,79968	38,59716107
5	2500	30	123,504	29,19735	39,12180604
6	3000	30	128,484	31,56244	40,43342439

Tabla 9 - Resultados del Balance energético (Carga constante)

5.2 Régimen constante

Potencia Efectiva	Caudal Másico f	Consumo específico	Rendimiento efectivo	Dosado Absoluto	Dosado relativo	Densidad aire REF	Rendimiento volumétrico
kW	kg/s	g/kW h				kg/m3	
88,35729338	0,005533333	225,4482821	0,369633925	0,054248366	0,792026144	2,455410919	0,222579335
65,97344573	0,003919444	213,8739283	0,389637643	0,044539141	0,650271465	2,087503681	0,225872975
44,76769531	0,002720556	218,7738263	0,380910892	0,036274074	0,529601481	1,746889119	0,23004075
21,91260876	0,001429444	234,8419605	0,354848568	0,022689594	0,331268078	1,477814736	0,228417518

Tabla 10 - Resultados de los cálculos mencionados en el apartado 4 (Régimen constante)

Par y potencia

Número	Grado de Carga	Régimen	Par	Potencia Efectiva
Unidades	%	rev/min	Nm	kW
1	100	2250	375	88,35729338
2	75	2250	280	65,97344573
3	50	2250	190	44,76769531
4	25	2250	93	21,91260876

Tabla 11 - Resultados Par y Potencia (Régimen constante)

Dosado relativo y temperatura de escape

Número	Grado de Carga	Régimen	Dosado relativo	T antes turb.
Unidades	%	rev/min		ōС
1	100	2250	0,792026144	724
2	75	2250	0,650271465	612
3	50	2250	0,529601481	519
4	25	2250	0,331268078	359

Tabla 12 - Resultados Dosado relativo y Temperatura de escape (Régimen constante)

Gasto de combustible y consumo específico de combustible

Número	Grado de Carga	Régimen	Gasto Comb.	Gasto Másico f	Consumo específico
Unidades	%	rev/min	l/h	kg/s	g/kW h
1	100	2250	24	0,005533333	225,4482821
2	75	2250	17	0,003919444	213,8739283
3	50	2250	11,8	0,002720556	218,7738263
4	25	2250	6,2	0,001429444	234,8419605

Tabla 13 - Resultados Gasto de combustible y Consumo específico de combustible (Régimen constante)

Gasto de aire y rendimiento volumétrico

Número	Grado de Carga	Régimen	Gasto Aire	Rendimiento volumétrico
Unidades	%	rev/min	g/s	
1	100	2250	102	0,890317338
2	75	2250	88	0,903491902
3	50	2250	75	0,920162999
4	25	2250	63	0,91367007

Tabla 14 - Resultados Gasto de aire y Rendimiento volumétrico (Régimen constante)

Balance energético

Número	Grado de Carga	Régimen	Energía Aportada	Pérdidas refri	Pérdidas escape
Unidades	%	rev/min	kW	kW	kW
1	100	2250	239,04	46,8832	71,60601653
2	75	2250	169,32	45,12508	51,9065426
3	50	2250	117,528	34,82752	37,67488386
4	25	2250	61,752	20,582562	21,38645207

Tabla 15 - Resultados del Balance energético (Régimen constante)

6. Gráficas

En este apartado se adjuntarán las gráficas de las tablas anteriores.

6.1 Grado de carga constante

Par y potencia

Dosado relativo y temperatura de escape

Gasto de combustible y consumo específico de combustible

Gasto de aire y rendimiento volumétrico

■ Balance energético del motor

6.2 Régimen constante

Par y potencia

Dosado relativo y temperatura de escape

Gasto de combustible y consumo específico de combustible

Gasto de aire y rendimiento volumétrico

■ Balance energético del motor

7. Comentarios y conclusiones

Para terminar, se añaden pequeños comentarios o conclusiones sacadas tras el estudio de gráficas y tablas.

En el apartado anterior se podría optar por gráficos de dispersión no lineales, pero en la mayoría de los casos no se ve tanta diferencia por el pequeño número de muestras o su tendencia lineal. Algunas gráficas puede que no tomen la forma deseada para un correcto estudio por una incorrecta escala empleada.

Teóricamente el par máximo se da a 2100 rev/min, pero si observamos la gráfica de carga constante, entorno a ese régimen en la gráfica no se observa un máximo. No solo eso, en la gráfica del par a carga constante se observa una tendencia lineal decreciente. En esta misma gráfica, pero observando la curva de potencia, observamos una forma no lineal. Esto se da ya que la potencia efectiva es proporcional tanto al régimen como al par, y en este caso uno aumenta y el otro disminuye según el eje de abscisas. Y dependiendo de la variación de uno y otro dato la potencia aumentará o no.

No habría mucho que mencionar en la gráfica de régimen constante, al aumentar la carga aumentaría el par. Nada fuera de lo común. Y al mantener constante el régimen, la potencia efectiva sigue una proporcionalidad lineal con el par, que a su vez es lineal con la carga.

En el caso de la gráfica del dosado, podemos observar que si queremos una carga constante la cantidad de combustible a emplear es inversamente proporcional al régimen. Para mantener dicha condición constante, al realizarse menos combustiones en las cámaras (menor régimen) se debe compensar con una mezcla más rica en combustible. En la misma gráfica observamos como la curva de temperatura de gases de escape sigue una forma casi idéntica a la del dosado, tanto a carga como a régimen constante, situación normal ya que al aumentar la proporción de combustible la combustión alcanzará mayores temperaturas.

El gasto másico de combustible no tiene una forma específica (a carga constante), ejemplo de que el proceso de medición no es cuasi-estático, ya que este puede variar por el número de combustiones y por tanto más o menos inyección de este, o aumento del dosado. Por otro lado, el consumo específico al depender tanto del gasto como de la potencia efectiva, parámetros que oscilan, es bastante difícil que tome una forma lineal, como observamos en ambos casos.

Al ser un motor de encendido por compresión, es normal que tenga rendimientos volumétricos altos, y por eso pese a que su gráfica varie mucho lo hace en valores muy muy próximos. Y en este caso, es normal que la potencia se regule a través del dosado, por eso al comparar la gráfica del gasto de aire con la del dosado se ve que son inversamente proporcional. Cuando una esta en valores altos la otra disminuye, y viceversa.

Del balance energético poco hay que mencionar, las pérdidas son inferiores a la energía aportada, y cuanto menos lo sean mejor para el funcionamiento del motor.