

Gradiance Online Accelerated Learning

Homework Assignment Submitted Successfully.

Zayd

• Assignments Due

· Home Page

- · Progress Report
- · Handouts
- Tutorials
- · Homeworks
- · Lab Projects
- Log Out

You obtained a score of 18.0 points, out of a possible 18.0 points. You have answered all the questions correctly.

Congratulations, you have achieved the maximum possible score.

Submission number: 58448 **Submission certificate:** AG740568

Submission time: 2014-02-01 15:12:45 PST (GMT - 8:00)

Help

Number of questions:6Positive points per question:3.0Negative points per question:1.0Your score:18

Based on Ch. 1 of HMU.

- 1. What is the concatenation of abc and cda?
 - a) cdaabc
 - b) abc.cda
 - c) abccda
 - d) acbdca

Answer submitted: c)

You have answered the question correctly.

- 2. Find in the list below the expression that is the contrapositive of A AND (NOT B)
 - \rightarrow C OR (NOT D). Note: the hypothesis and conclusion of the choices in the list below may have some simple logical rules applied to them, in order to simplify the expressions.
 - a) $(NOT C) AND D \rightarrow (NOT A) OR B$
 - b) $(NOT C) OR D \rightarrow B AND (NOT A)$
 - c) $A OR (NOT B) \rightarrow D AND (NOT C)$
 - d) B AND (NOT A) \rightarrow C OR (NOT D)

Answer submitted: a)

- rou have answered the question correctly.
- **3.** The binary string 01011111 is a member of which of the following problems? Remember, a "problem" is a language whose strings represent the cases of a problem that have the answer "yes." In this question, you should assume that all languages are sets of binary strings interpreted as base-2 integers. The exception is the problem of finding *palindromes*, which are strings that are identical when reversed, like 0110110, regardless of their numerical value.
 - a) Is the given string a prime?
 - b) Is the given string a multiple of 3?
 - c) Is the given string a perfect cube?
 - d) Is the given string greater than 50?

Answer submitted: a)

You have answered the question correctly.

4. Suppose we want to prove the statement S(n): "If $n \ge 2$, the sum of the integers 2 through n is (n+2)(n-1)/2" by induction on n. To prove the inductive step, we can make use of the fact that

$$2+3+4+...+(n+1) = (2+3+4+...+n) + (n+1)$$

Find, in the list below an equality that we may prove to conclude the inductive part.

- a) If $n \ge 2$ then (n+2)(n-1)/2 + n = (n+1)(n+3)/2
- b) If $n \ge 2$ then n + 1 + (n+2)(n-1)/2 = (n+3)(n)/2
- c) If $n \ge 3$ then (n+2)(n-1)/2 + n + 1 = (n+3)(n)/2
- d) If $n \ge 1$ then n + 1 + (n+2)(n-1)/2 = (n+3)(n)/2

Answer submitted: b)

You have answered the question correctly.

- 5. The length of the string cbccaba is:
 - a) 6
 - b) 8
 - c) 3
 - d) 7

Answer submitted: d)

You have answered the question correctly.

6. To prove A AND (NOT B) → C OR (NOT D) by contradiction, which of the statements below would we prove? Note: each of the choices is simplified by pushing NOT's down until they apply only to atomic statements A through D.

- a) $(A \text{ AND (NOT B) AND (NOT C) AND D}) \rightarrow \text{false}$
- b) $(A AND (NOT B) AND C AND (NOT D)) \rightarrow false$
- c) $(B \text{ AND (NOT A) AND (NOT D) AND C}) \rightarrow \text{false}$
- d) (B AND (NOT A) AND D AND (NOT C)) \rightarrow false

Answer submitted: a)

You have answered the question correctly.

Copyright © 2007-2013 Gradiance Corporation.