

Amplifier Noise

All resistors have the same thermal noise

Amplifiers have different noise levels

Noise depends on details of amplifier design

- Shot noise of input bias current
- Use of bias current cancellation
- Size of input transistor (flicker noise)
- Type of input transistor
 - Bipolar (low e_n)
 - MOS (low i_n)
 - JFET (lowish e_n , i_n)
- Input stage quiescent current / Resistor values

Input current noise and Input voltage noise. (Can't fix both!)

Voltage Amplifier Noise Model

Need to compare amplifiers: Use a simplified model

Amplifier Noise Model (2)

Equivalent input noise:

- Combine <u>all</u> noise sources into a single source at input (Add squares)
- Calculate output noise due to noise source
- Divide by system gain from source to O/P

System gain
$$K = A_V \frac{z_{in}}{R_S + z_{in}}$$
 (Just like 1st year)

From
$$v_{Th}$$
: $V_{OUT(Th)}^2 = |A_V|^2 \left| \frac{z_{in}}{R_S + z_{in}} \right|^2 v_{Th}^2$

From
$$v_n$$
: $V_{OUT(n)}^2 = |A_V|^2 \left| \frac{z_{in}}{R_S + z_{in}} \right|^2 v_n^2$

From
$$i_n$$
: $V_{OUT(i_n)}^2 = |A_V|^2 |z_{in} // R_S|^2 i_n^2$

Amplifier Noise Model (3)

$$V_{OUT}^{2}(Total) = |A_{V}|^{2} \left| \frac{z_{in}}{R_{S} + z_{in}} \right|^{2} (v_{Th}^{2} + v_{n}^{2}) + |A_{V}|^{2} |z_{in} / R_{S}|^{2} i_{n}^{2}$$

Divide by system gain

$$\frac{V_{OUT}^{2}(Total)}{K^{2}} = v_{Th}^{2} + v_{n}^{2} + \frac{\left|A_{V}\right|^{2} \frac{\left|z_{in}\right|^{2} \left|R_{S}\right|^{2}}{\left|z_{in} + R_{S}\right|^{2}}}{\left|z_{in} + R_{S}\right|^{2}} i_{n}^{2} = v_{ni}^{2}$$

$$\Rightarrow v_{ni}^2 = v_{Th}^2 + v_n^2 + i_n^2 |R_S|^2$$

Interesting observation: Independent of Z_{in}

Amplifier Noise Model (4)

All noise sources replaced by single noise generator

- Independent of amplifier gain
- Independent of amplifier input resistance

Makes comparison of amplifiers easier

Graphical Noise Calculations

Effect of source resistance on noise

At $R_S = R_{OPT}$ amplifier adds minimum noise to (irreducible) thermal noise

Let's look at a real amplifier...

VOLTAGE NOISE vs SOURCE RESISTANCE

