

Sequence Listing

<110> BAADAMA Kevin P.

Botstein, David
Desnoyers, Luc
Eaton, Dan 1.
Ferrara, Napoleone
Fong, Sherman
Gao, Wei-Qiang
Goddard, Audrey
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth J.
Pan, James
Paoni, Nicholas F.

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> P2830P1C7
- <140> 10/006130
- <141> 2001-12-06
- <150> 60/098716
- <151> 1998-09-01
- <150> 60/098723
- <151> 1998-09-01
- <150> 60/098749
- <151> 1998-09-01
- <150> 60/098750
- <151> 1998-09-01
- <150> 60/098803
- <151> 1998-09-02
- <150> 60/098821
- <151> 1998-09-02
- <150> 60/098843
- <151> 1998-09-02
- <150> 60/099536
- <151> 1998-09-09
- <150> 60/099596
- <151> 1998-09-09
- <150> 60/099598
- <151> 1998-09-09
- <150> 60/099602
- <151> 1998-09-09

- <150> 60/099642
- <151> 1998-09-09
- <150> 60/099741
- <151> 1998-09-10
- <150> 60/099754
- <151> 1998-09-10
- <150> 60/099763
- <151> 1998-09-10
- <150> 60/099792
- <151> 1998-09-10
- <150> 60/099808
- <151> 1998-09-10
- <150> 60/099812
- <151> 1998-09-10
- <150> 60/099815
- <151> 1998-09-10
- <150> 60/099816
- <151> 1998-09-10
- <150> 60/100385
- <151> 1998-09-15
- <150> 60/100388
- <151> 1998-09-15
- <150> 60/100390
- <151> 1998-09-15
- <150> 60/100584
- <151> 1998-09-16
- <150> 60/100627
- <151> 1998-09-16
- <150> 60/100661
- <151> 1998-09-16
- <150> 60/100662
- <151> 1998-09-16
- <150> 60/100664
- <151> 1998-09-16
- <150> 60/100683
- <151> 1998-09-17
- <150> 60/100684
- <151> 1998-09-17

- <150> 60/100710
- <151> 1998-09-17
- <150> 60/100711
- <151> 1998-09-17
- <150> 60/100848
- <151> 1998-09-18
- <150> 60/100849
- <151> 1998-09-18
- <150> 60/100919
- <151> 1998-09-17
- <150> 60/100930
- <151> 1998-09-17
- <150> 60/101014
- <151> 1998-09-18
- <150> 60/101068
- <151> 1998-09-18
- <150> 60/101071
- <151> 1998-09-18
- <150> 60/101279
- <151> 1998-09-22
- <150> 60/101471
- <151> 1998-09-23
- <150> 60/101472
- <151> 1998-09-23
- <150> 60/101474
- <151> 1998-09-23
- <150> 60/101475
- <151> 1998-09-23
- <150> 60/101476
- <151> 1998-09-23
- <150> 60/101477
- <151> 1998-09-23
- <150> 60/101479
- <151> 1998-09-23
- <150> 60/101738
- <151> 1998-09-24
- <150> 60/101741
- <151> 1998-09-24

- <150> 60/101743
- <151> 1998-09-24
- <150> 60/101915
- <151> 1998-09-24
- <150> 60/101916
- <151> 1998-09-24
- <150> 60/102207
- <151> 1998-09-29
- <150> 60/102240
- <151> 1998-09-29
- <150> 60/102307
- <151> 1998-09-29
- <150> 60/102330
- <151> 1998-09-29
- <150> 60/102331
- <151> 1998-09-29
- <150> 60/102484
- <151> 1998-09-30
- <150> 60/102487
- <151> 1998-09-30
- <150> 60/102570
- <151> 1998-09-30
- <150> 60/102571
- <151> 1998-09-30
- <150> 60/102684
- <151> 1998-10-01
- <150> 60/102687
- <151> 1998-10-01
- <150> 60/102965
- <151> 1998-10-02
- <150> 60/103258
- <151> 1998-10-06
- <150> 60/103314
- <151> 1998-10-07
- <150> 60/103315
- <151> 1998-10-07
- <150> 60/103328
- <151> 1998-10-07

- <150> 60/103395
- <151> 1998-10-07
- <150> 60/103396
- <151> 1998-10-07
- <150> 60/103401
- <151> 1998-10-07
- <150> 60/103449
- <151> 1998-10-06
- <150> 60/103633
- <151> 1998-10-08
- <150> 60/103678
- <151> 1998-10-08
- <150> 60/103679
- <151> 1998-10**-**08
- <150> 60/103711
- <151> 1998-10-08
- <150> 60/104257
- <151> 1998-10-14
- <150> 60/104987
- <151> 1998-10-20
- <150> 60/105000
- <151> 1998-10-20
- <150> 60/105002
- <151> 1998-10-20
- <150> 60/105104
- <151> 1998-10-21
- <150> 60/105169
- <151> 1998-10-22
- <150> 60/105266
- <151> 1998-10-22
- <150> 60/105693
- <151> 1998-10-26
- <150> 60/105694
- <151> 1998-10-26
- <150> 60/105807
- <151> 1998-10-27
- <150> 60/105881
- <151> 1998-10-27

- <150> 60/105882
- <151> 1998-10-27
- <150> 60/106023
- <151> 1998-10-28
- <150> 60/106029
- <151> 1998-10-28
- <150> 60/106030
- <151> 1998-10-28
- <150> 60/106032
- <151> 1998-10-28
- <150> 60/106033
- <151> 1998-10-28
- <150> 60/106062
- <151> 1998-10-27
- <150> 60/106178
- <151> 1998-10-28
- <150> 60/106248
- <151> 1998-10-29
- <150> 60/106384
- <151> 1998-10-29
- <150> 60/108500
- <151> 1998-10-29
- <150> 60/106464
- <151> 1998-10-30
- <150> 60/106856
- <151> 1998-11-03
- <150> 60/106902
- <151> 1998-11-03
- <150> 60/106905
- <151> 1998-11-03
- <150> 60/106919
- <151> 1998-11-03
- <150> 60/106932
- <151> 1998-11-03
- <150> 60/106934
- <151> 1998-11-03
- <150> 60/107783
- <151> 1998-11-10

- <150> 60/108775
- <151> 1998-11-17
- <150> 60/108779
- <151> 1998-11-17
- <150> 60/108787
- <151> 1998-11-17
- <150> 60/108788
- <151> 1998-11-17
- <150> 60/108801
- <151> 1998-11-17
- <150> 60/108802
- <151> 1998-11-17
- <150> 60/108806
- <151> 1998-11-17
- <150> 60/108807
- <151> 1998-11-17
- <150> 60/108848
- <151> 1998-11-18
- <150> 60/108849
- <151> 1998-11-18
- <150> 60/108850
- <151> 1998-11-18
- <150> 60/108851
- <151> 1998-11-18
- <150> 60/108852
- <151> 1998-11-18
- <150> 60/108858
- <151> 1998-11-18
- <150> 60/108867
- <151> 1998-11-17
- <150> 60/108904
- <151> 1998-11-18
- <150> 60/108925
- <151> 1998-11-17
- <150> 60/113296
- <151> 1998-12-22
- <150> 60/114223
- <151> 1998-12-30

- <150> 60/129674
- <151> 1999-04-16
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/144758
- <151> 1999-07-20
- <150> 60/145698
- <151> 1999-07-26
- <150> 60/162506
- <151> 1999-10-29
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/403297
- <151> 1999-10-18
- <150> 09/872035
- <151> 2001-06-01
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/946374
- <151> 2001-09-04
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/20111
- <151> 1999-09-01
- <150> PCT/US99/21194
- <151> 1999-09-15
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US00/00219
- <151> 2000-01-05
- <150> PCT/US00/00376
- <151> 2000-01-06

- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04342
- <151> 2000-02-18
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/06884
- <151> 2000-03-15
- <150> PCT/US00/13705
- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/23522
- <151> 2000-08-23
- <150> PCT/US00/30873
- <151> 2000-11-10
- <150> PCT/US00/30952
- <151> 2000-11-08
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/06666
- <151> 2001-03-01
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29

```
<150> PCT/US01/21735
<151> 2001-07-09
<160> 477
<210> 1
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 1
 tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
<210> 2
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 2
 caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
<210> 3
<211> 1110
<212> DNA
<213> Homo sapiens
<400> 3
 ccaatcgccc ggtgcggtgg tgcagggtct cgggctagtc atggcgtccc 50
 cgtctcggag actgcagact aaaccagtca ttacttgttt caagagcgtt 100
 ctgctaatct acacttttat tttctggatc actggcgtta tccttcttgc 150
 agttggcatt tggggcaagg tgagcctgga gaattacttt tctcttttaa 200
 atgagaagge caccaatgte ceettegtge teattgetae tggtacegte 250
 attattcttt tgggcacctt tggttgtttt gctacctgcc gagcttctgc 300
 atggatgcta aaactgtatg caatgtttct gactctcgtt tttttggtcg 350
 aactggtcgc tgccatcgta ggatttgttt tcagacatga gattaagaac 400
 agctttaaga ataattatga gaaggctttg aagcagtata actctacagg 450
 agattataga agccatgcag tagacaagat ccaaaatacg ttgcattgtt 500
  gtggtgtcac cgattataga gattggacag atactaatta ttactcagaa 550
  aaaggatttc ctaagagttg ctgtaaactt gaagattgta ctccacagag 600
```

```
agatgcagac aaagtaaaca atgaaggttg ttttataaag gtgatgacca 650
ttatagagtc agaaatggga gtcgttgcag gaatttcctt tggagttgct 700
tgcttccaac tgattggaat ctttctcgcc tactgccwct ctcgtgccat 750
aacaaataac cagtatgaga tagtgtaacc caatgtatct gtgggcctat 800
teetetetae etttaaggae atttagggte eeceetgtga attagaaagt 850
tgcttggctg gagaactgac aacactactt actgatagac caaaaaacta 900
caccagtagg ttgattcaat caagatgtat gtagacctaa aactacacca 950
ataggctgat tcaatcaaga tccgtgctcg cagtgggctg attcaatcaa 1000
gatgtatgtt tgctatgttc taagtccacc ttctatccca ttcatgttag 1050
atcgttgaaa ccctgtatcc ctctgaaaca ctggaagagc tagtaaattg 1100
taaatgaagt 1110
<210> 4
<211> 245
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-42
<223> Signal Peptide
<220>
<221> TRANSMEM
<222> 19-42, 61-83, 92-114, 209-230
<223> Transmembrane Domains
<220>
<221> misc feature
<222> 69-80, 211-222
<223> Prokaryotic Membrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc feature
<222> 75-81, 78-84, 210-216, 214-220, 226-232
<223> N-Myristoylation Site.
<220>
<221> misc feature
<222> 134-138
<223> N-Glycosylation Site.
<220>
 <221> misc feature
 <222> 160-168, 160-169
 <223> Tyrosine Kinase Phosphorylation Site.
```

<220> <221> <222> <223>	uns 233		ami	no a	cid									
<400> Met 1	4 Ala	Ser	Pro	Ser .	Arg	Arg	Leu	Gln	Thr 10	Lys	Pro	Val	Ile	Thr 15
Cys	Phe	Lys	Ser	Val 20	Leu	Leu	Ile	Tyr	Thr 25	Phe	Ile	Phe	Trp	Ile 30
Thr	Gly	Val	Ile	Leu 35	Leu	Ala	Val	Gly	Ile 40	Trp	Gly	Lys	Val	Ser 45
Leu	Glu	Asn	Tyr	Phe 50	Ser	Leu	Leu	Asn	Glu 55	Lys	Ala	Thr	Asn	Val 60
Pro	Phe	Val	Leu	Ile 65	Ala	Thr	Gly	Thr	Val 70	Ile	Ile	Leu	Leu	Gly 75
Thr	Phe	Gly	Cys	Phe 80	Ala	Thr	Cys	Arg	Ala 85	Ser	Ala	Trp	Met	Leu 90
Lys	Leu	Tyr	Ala	Met 95	Phe	Leu	Thr	Leu	Val 100	Phe	Leu	Val	Glu	Leu 105
Val	Ala	Ala	Ile	Val 110	Gly	Phe	Val	Phe	Arg 115	His	Glu	Ile	Lys	Asn 120
Ser	Phe	Lys	Asn	Asn 125	Tyr	Glu	Lys	Ala	Leu 130	Lys	Gln	Tyr	Asn	Ser 135
Thr	Gly	Asp	Tyr	Arg 140	Ser	His	Ala	Val	Asp 145	Lys	Ile	Gln	Asn	Thr 150
Leu	His	: Cys	Cys	Gly 155	Val	Thr	Asp	Tyr	Arg 160	Asp	Trp	Thr	Asp	Thr 165
Asn	Туг	Tyr	Ser	Glu 170		Gly	Phe	Pro	Lys 175	Ser	Cys	s Cys	Lys	Leu 180
Glu	ı Asp	c Cys	s Thr	Pro 185		Arg	Asp	Ala	Asp 190	Lys	s Val	L Asr	Asn	Glu 195
Gly	y Cys	s Phe	e Ile	e Lys 200		. Met	Thr	: Ile	205	e Glu	ı Ser	c Glu	ı Met	Gly 210
Va]	L Vai	l Ala	a Gly	y Ile 215		Phe	e Gly	/ Val	Ala 220	a Cys	s Phe	e Glr	n Lev	1 Ile 225
Gly	y Il	e Phe	e Lei	ı Ala 230		c Cys	s Xaa	a Sei	235	g Ala 5	a Ile	e Thi	r Ası	Asn 240
Glı	n Ty	r Gl	u Il	e Val 245										

OIPE

RAW SEQUENCE LISTING DATE: 12/17/2001
PATENT APPLICATION: US/10/006,130 TIME: 11:12:13

Input Set : A:\Seq__List_for_P2830P1C7.wpd
Output Set: N:\CRF3\12172001\J006130.raw

```
3 <110> APPLICANT: Baker, Kevin P.
             Botstein, David
             Desnoyers, Luc
     5
              Eaton, Dan 1.
     6
             Ferrara, Napoleone
     7
              Fong, Sherman
     8
              Gao, Wei-Qiang
     9
                                                                  Does Not Comply
              Goddard, Audrey
     10
                                                              Corrected Diskette Needed
             Godowski, Paul J.
     11
             Grimaldi, Christopher J.
     12
              Gurney, Austin L.
     13
             Hillan, Kenneth J.
     14
              Pan, James
     15
              Paoni, Nicholas F.
    18 <120> TITLE OF INVENTION: Secreted and Transmembrane Polypeptides and Nucleic
              Acids Encoding the Same
     19
     21 <130> FILE REFERENCE: P2830P1C7
C--> 23 <140> CURRENT APPLICATION NUMBER: US/10/006,130
C--> 23 <141> CURRENT FILING DATE: 2001-12-06
     23 <150> PRIOR APPLICATION NUMBER: 60/098716
     24 <151> PRIOR FILING DATE: 1998-09-01
     26 <150> PRIOR APPLICATION NUMBER: 60/098723
     27 <151> PRIOR FILING DATE: 1998-09-01
     29 <150> PRIOR APPLICATION NUMBER: 60/098749
     30 <151> PRIOR FILING DATE: 1998-09-01
     32 <150> PRIOR APPLICATION NUMBER: 60/098750
     33 <151> PRIOR FILING DATE: 1998-09-01
     35 <150> PRIOR APPLICATION NUMBER: 60/098803
     36 <151> PRIOR FILING DATE: 1998-09-02
     38 <150> PRIOR APPLICATION NUMBER: 60/098821
     39 <151> PRIOR FILING DATE: 1998-09-02
     41 <150> PRIOR APPLICATION NUMBER: 60/098843
     42 <151> PRIOR FILING DATE: 1998-09-02
     44 <150> PRIOR APPLICATION NUMBER: 60/099536
     45 <151> PRIOR FILING DATE: 1998-09-09
     47 <150> PRIOR APPLICATION NUMBER: 60/099596
      48 <151> PRIOR FILING DATE: 1998-09-09
     50 <150> PRIOR APPLICATION NUMBER: 60/099598
      51 <151> PRIOR FILING DATE: 1998-09-09
      53 <150> PRIOR APPLICATION NUMBER: 60/099602
      54 <151> PRIOR FILING DATE: 1998-09-09
      56 <150> PRIOR APPLICATION NUMBER: 60/099642
      57 <151> PRIOR FILING DATE: 1998-09-09
      59 <150> PRIOR APPLICATION NUMBER: 60/099741
      60 <151> PRIOR FILING DATE: 1998-09-10
      62 <150> PRIOR APPLICATION NUMBER: 60/099754
      63 <151> PRIOR FILING DATE: 1998-09-10
```

DATE: 12/17/2001 TIME: 11:12:13

PATENT APPLICATION: US/10/006,130

Input Set : A:\Seq__List_for_P2830P1C7.wpd Output Set: N:\CRF3\12172001\J006130.raw

- 65 <150> PRIOR APPLICATION NUMBER: 60/099763
- 66 <151> PRIOR FILING DATE: 1998-09-10
- 68 <150> PRIOR APPLICATION NUMBER: 60/099792
- 69 <151> PRIOR FILING DATE: 1998-09-10
- 71 <150> PRIOR APPLICATION NUMBER: 60/099808
- 72 <151> PRIOR FILING DATE: 1998-09-10
- 74 <150> PRIOR APPLICATION NUMBER: 60/099812
- 75 <151> PRIOR FILING DATE: 1998-09-10
- 77 <150> PRIOR APPLICATION NUMBER: 60/099815
- 78 <151> PRIOR FILING DATE: 1998-09-10
- 80 <150> PRIOR APPLICATION NUMBER: 60/099816
- 81 <151> PRIOR FILING DATE: 1998-09-10
- 83 <150> PRIOR APPLICATION NUMBER: 60/100385
- 84 <151> PRIOR FILING DATE: 1998-09-15
- 86 <150> PRIOR APPLICATION NUMBER: 60/100388
- 87 <151> PRIOR FILING DATE: 1998-09-15
- 89 <150> PRIOR APPLICATION NUMBER: 60/100390
- 90 <151> PRIOR FILING DATE: 1998-09-15
- 92 <150> PRIOR APPLICATION NUMBER: 60/100584
- 93 <151> PRIOR FILING DATE: 1998-09-16
- 95 <150> PRIOR APPLICATION NUMBER: 60/100627
- 96 <151> PRIOR FILING DATE: 1998-09-16
- 98 <150> PRIOR APPLICATION NUMBER: 60/100661
- 99 <151> PRIOR FILING DATE: 1998-09-16
- 101 <150> PRIOR APPLICATION NUMBER: 60/100662
- 102 <151> PRIOR FILING DATE: 1998-09-16
- 104 <150> PRIOR APPLICATION NUMBER: 60/100664
- 105 <151> PRIOR FILING DATE: 1998-09-16
- 107 <150> PRIOR APPLICATION NUMBER: 60/100683
- 108 <151> PRIOR FILING DATE: 1998-09-17
- 110 <150> PRIOR APPLICATION NUMBER: 60/100684
- 111 <151> PRIOR FILING DATE: 1998-09-17
- 113 <150> PRIOR APPLICATION NUMBER: 60/100710
- 114 <151> PRIOR FILING DATE: 1998-09-17
- 116 <150> PRIOR APPLICATION NUMBER: 60/100711
- 117 <151> PRIOR FILING DATE: 1998-09-17
- 119 <150> PRIOR APPLICATION NUMBER: 60/100848
- 120 <151> PRIOR FILING DATE: 1998-09-18
- 122 <150> PRIOR APPLICATION NUMBER: 60/100849
- 123 <151> PRIOR FILING DATE: 1998-09-18
- 125 <150> PRIOR APPLICATION NUMBER: 60/100919
- 126 <151> PRIOR FILING DATE: 1998-09-17
- 128 <150> PRIOR APPLICATION NUMBER: 60/100930
- 129 <151> PRIOR FILING DATE: 1998-09-17
- 131 <150> PRIOR APPLICATION NUMBER: 60/101014
- 132 <151> PRIOR FILING DATE: 1998-09-18
- 134 <150> PRIOR APPLICATION NUMBER: 60/101068
- 135 <151> PRIOR FILING DATE: 1998-09-18
- 137 <150> PRIOR APPLICATION NUMBER: 60/101071

DATE: 12/17/2001 TIME: 11:12:13

PATENT APPLICATION: US/10/006,130

Input Set : A:\Seq__List_for_P2830P1C7.wpd Output Set: N:\CRF3\12172001\J006130.raw

138 <151> PRIOR FILING DATE: 1998-09-18 140 <150> PRIOR APPLICATION NUMBER: 60/101279 141 <151> PRIOR FILING DATE: 1998-09-22 143 <150> PRIOR APPLICATION NUMBER: 60/101471 144 <151> PRIOR FILING DATE: 1998-09-23 146 <150> PRIOR APPLICATION NUMBER: 60/101472 147 <151> PRIOR FILING DATE: 1998-09-23 149 <150> PRIOR APPLICATION NUMBER: 60/101474 150 <151> PRIOR FILING DATE: 1998-09-23 152 <150> PRIOR APPLICATION NUMBER: 60/101475 153 <151> PRIOR FILING DATE: 1998-09-23 155 <150> PRIOR APPLICATION NUMBER: 60/101476 156 <151> PRIOR FILING DATE: 1998-09-23 158 <150> PRIOR APPLICATION NUMBER: 60/101477 159 <151> PRIOR FILING DATE: 1998-09-23 161 <150> PRIOR APPLICATION NUMBER: 60/101479 162 <151> PRIOR FILING DATE: 1998-09-23 164 <150> PRIOR APPLICATION NUMBER: 60/101738 165 <151> PRIOR FILING DATE: 1998-09-24 167 <150> PRIOR APPLICATION NUMBER: 60/101741 168 <151> PRIOR FILING DATE: 1998-09-24 170 <150> PRIOR APPLICATION NUMBER: 60/101743 171 <151> PRIOR FILING DATE: 1998-09-24 173 <150> PRIOR APPLICATION NUMBER: 60/101915 174 <151> PRIOR FILING DATE: 1998-09-24 176 <150> PRIOR APPLICATION NUMBER: 60/101916 177 <151> PRIOR FILING DATE: 1998-09-24 179 <150> PRIOR APPLICATION NUMBER: 60/102207 180 <151> PRIOR FILING DATE: 1998-09-29 182 <150> PRIOR APPLICATION NUMBER: 60/102240 183 <151> PRIOR FILING DATE: 1998-09-29 185 <150> PRIOR APPLICATION NUMBER: 60/102307 186 <151> PRIOR FILING DATE: 1998-09-29 188 <150> PRIOR APPLICATION NUMBER: 60/102330 189 <151> PRIOR FILING DATE: 1998-09-29 191 <150> PRIOR APPLICATION NUMBER: 60/102331 192 <151> PRIOR FILING DATE: 1998-09-29 194 <150> PRIOR APPLICATION NUMBER: 60/102484 195 <151> PRIOR FILING DATE: 1998-09-30 197 <150> PRIOR APPLICATION NUMBER: 60/102487 198 <151> PRIOR FILING DATE: 1998-09-30 200 <150> PRIOR APPLICATION NUMBER: 60/102570 201 <151> PRIOR FILING DATE: 1998-09-30 203 <150> PRIOR APPLICATION NUMBER: 60/102571 204 <151> PRIOR FILING DATE: 1998-09-30 206 <150> PRIOR APPLICATION NUMBER: 60/102684 207 <151> PRIOR FILING DATE: 1998-10-01

209 <150> PRIOR APPLICATION NUMBER: 60/102687 210 <151> PRIOR FILING DATE: 1998-10-01

DATE: 12/17/2001

PATENT APPLICATION: US/10/006,130

TIME: 11:12:13

Input Set : A:\Seq__List_for_P2830P1C7.wpd Output Set: N:\CRF3\12172001\J006130.raw

212 <150> PRIOR APPLICATION NUMBER: 60/102965 213 <151> PRIOR FILING DATE: 1998-10-02 215 <150> PRIOR APPLICATION NUMBER: 60/103258 216 <151> PRIOR FILING DATE: 1998-10-06 218 <150> PRIOR APPLICATION NUMBER: 60/103314 219 <151> PRIOR FILING DATE: 1998-10-07 221 <150> PRIOR APPLICATION NUMBER: 60/103315 222 <151> PRIOR FILING DATE: 1998-10-07 224 <150> PRIOR APPLICATION NUMBER: 60/103328 225 <151> PRIOR FILING DATE: 1998-10-07 227 <150> PRIOR APPLICATION NUMBER: 60/103395 228 <151> PRIOR FILING DATE: 1998-10-07 230 <150> PRIOR APPLICATION NUMBER: 60/103396 231 <151> PRIOR FILING DATE: 1998-10-07 233 <150> PRIOR APPLICATION NUMBER: 60/103401 234 <151> PRIOR FILING DATE: 1998-10-07 236 <150> PRIOR APPLICATION NUMBER: 60/103449 237 <151> PRIOR FILING DATE: 1998-10-06 239 <150> PRIOR APPLICATION NUMBER: 60/103633 240 <151> PRIOR FILING DATE: 1998-10-08 242 <150> PRIOR APPLICATION NUMBER: 60/103678 243 <151> PRIOR FILING DATE: 1998-10-08 245 <150> PRIOR APPLICATION NUMBER: 60/103679 246 <151> PRIOR FILING DATE: 1998-10-08 248 <150> PRIOR APPLICATION NUMBER: 60/103711 249 <151> PRIOR FILING DATE: 1998-10-08 251 <150> PRIOR APPLICATION NUMBER: 60/104257 252 <151> PRIOR FILING DATE: 1998-10-14 254 <150> PRIOR APPLICATION NUMBER: 60/104987 255 <151> PRIOR FILING DATE: 1998-10-20 257 <150> PRIOR APPLICATION NUMBER: 60/105000 258 <151> PRIOR FILING DATE: 1998-10-20 260 <150> PRIOR APPLICATION NUMBER: 60/105002 261 <151> PRIOR FILING DATE: 1998-10-20 263 <150> PRIOR APPLICATION NUMBER: 60/105104 264 <151> PRIOR FILING DATE: 1998-10-21 266 <150> PRIOR APPLICATION NUMBER: 60/105169 267 <151> PRIOR FILING DATE: 1998-10-22 269 <150> PRIOR APPLICATION NUMBER: 60/105266 270 <151> PRIOR FILING DATE: 1998-10-22 272 <150> PRIOR APPLICATION NUMBER: 60/105693 273 <151> PRIOR FILING DATE: 1998-10-26 275 <150> PRIOR APPLICATION NUMBER: 60/105694 276 <151> PRIOR FILING DATE: 1998-10-26 278 <150> PRIOR APPLICATION NUMBER: 60/105807 279 <151> PRIOR FILING DATE: 1998-10-27 281 <150> PRIOR APPLICATION NUMBER: 60/105881 282 <151> PRIOR FILING DATE: 1998-10-27

284 <150> PRIOR APPLICATION NUMBER: 60/105882

DATE: 12/17/2001

PATENT APPLICATION: US/10/006,130

TIME: 11:12:13

Input Set : A:\Seq__List_for_P2830P1C7.wpd Output Set: N:\CRF3\12172001\J006130.raw

285 <151> PRIOR FILING DATE: 1998-10-27 287 <150> PRIOR APPLICATION NUMBER: 60/106023 288 <151> PRIOR FILING DATE: 1998-10-28 290 <150> PRIOR APPLICATION NUMBER: 60/106029 291 <151> PRIOR FILING DATE: 1998-10-28 293 <150> PRIOR APPLICATION NUMBER: 60/106030 294 <151> PRIOR FILING DATE: 1998-10-28 296 <150> PRIOR APPLICATION NUMBER: 60/106032 297 <151> PRIOR FILING DATE: 1998-10-28 299 <150> PRIOR APPLICATION NUMBER: 60/106033 300 <151> PRIOR FILING DATE: 1998-10-28 302 <150> PRIOR APPLICATION NUMBER: 60/106062 303 <151> PRIOR FILING DATE: 1998-10-27 305 <150> PRIOR APPLICATION NUMBER: 60/106178 306 <151> PRIOR FILING DATE: 1998-10-28 308 <150> PRIOR APPLICATION NUMBER: 60/106248 309 <151> PRIOR FILING DATE: 1998-10-29 311 <150> PRIOR APPLICATION NUMBER: 60/106384 312 <151> PRIOR FILING DATE: 1998-10-29 314 <150> PRIOR APPLICATION NUMBER: 60/108500 315 <151> PRIOR FILING DATE: 1998-10-29 317 <150> PRIOR APPLICATION NUMBER: 60/106464 318 <151> PRIOR FILING DATE: 1998-10-30 320 <150> PRIOR APPLICATION NUMBER: 60/106856 321 <151> PRIOR FILING DATE: 1998-11-03 323 <150> PRIOR APPLICATION NUMBER: 60/106902 324 <151> PRIOR FILING DATE: 1998-11-03 326 <150> PRIOR APPLICATION NUMBER: 60/106905 327 <151> PRIOR FILING DATE: 1998-11-03 329 <150> PRIOR APPLICATION NUMBER: 60/106919 330 <151> PRIOR FILING DATE: 1998-11-03 332 <150> PRIOR APPLICATION NUMBER: 60/106932 333 <151> PRIOR FILING DATE: 1998-11-03 335 <150> PRIOR APPLICATION NUMBER: 60/106934 336 <151> PRIOR FILING DATE: 1998-11-03 338 <150> PRIOR APPLICATION NUMBER: 60/107783 339 <151> PRIOR FILING DATE: 1998-11-10 341 <150> PRIOR APPLICATION NUMBER: 60/108775 342 <151> PRIOR FILING DATE: 1998-11-17 344 <150> PRIOR APPLICATION NUMBER: 60/108779 345 <151> PRIOR FILING DATE: 1998-11-17 347 <150> PRIOR APPLICATION NUMBER: 60/108787 348 <151> PRIOR FILING DATE: 1998-11-17 350 <150> PRIOR APPLICATION NUMBER: 60/108788 351 <151> PRIOR FILING DATE: 1998-11-17 353 <150> PRIOR APPLICATION NUMBER: 60/108801 354 <151> PRIOR FILING DATE: 1998-11-17

356 <150> PRIOR APPLICATION NUMBER: 60/108802

357 <151> PRIOR FILING DATE: 1998-11-17

<210> 375 <211> 1098 <212> DNA <213× Artificial	see tim 11 on Ever Sun	many Steet
(400) 275		

MI

Use of n and/or Xaa has been detected in the Sequence Listing. Review the Sequence Listing to insure a corresponding explanation is presented in the <220> to <223> fields of each sequence using n or Xaa.

VERIFICATION SUMMARY

PATENT APPLICATION: US/10/006,130

DATE: 12/17/2001 TIME: 11:12:14

Input Set : A:\Seq__List_for_P2830P1C7.wpd
Output Set: N:\CRF3\12172001\J006130.raw

L:23 M:270 C: Current Application Number differs, Replaced Current Application No L:23 M:271 C: Current Filing Date differs, Replaced Current Filing Date L:520 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:1 L:523 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:1 L:533 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:2 L:536 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:2 L:681 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:4 L:1342 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:13 L:1345 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:13 L:1355 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:14 L:1358 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:14 L:1368 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:15 L:1371 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:15 L:1551 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:18 L:1554 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:18 L:1564 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:19 L:1567 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:19 L:1577 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:20 L:1580 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:20 L:1911 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:25 L:1914 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:25 L:1924 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:26 L:1927 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:26 L:1937 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:27 L:1940 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:27 L:2406 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:34 L:2409 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:34 L:2419 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:35 L:2422 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:35 L:2432 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:36 L:2435 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:36 L:2445 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:37 L:2448 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:37 L:2458 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:38 L:2461 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:38 L:2471 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:39 L:2474 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:39 L:2779 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:44 L:2782 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:44 L:2792 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:45 L:2795 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:45 L:2805 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:46 L:2808 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:46 L:2818 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:47 L:2821 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:47 L:2831 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:48 L:2834 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:48 L:3957 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:59

VERIFICATION SUMMARY

PATENT APPLICATION: US/10/006,130

DATE: 12/17/2001 TIME: 11:12:14

Input Set : A:\Seq_List_for_P2830P1C7.wpd
Output Set: N:\CRF3\12172001\J006130.raw

```
L:3960 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:59
L:3970 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:60
L:3973 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:60
L:3983 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:61
L:3986 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:61
L:4030 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:62
L:4122 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:63
L:4158 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:63
L:4185 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:64
L:4188 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:64
L:4198 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:65
L:4201 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:65
L:4211 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:66
L:4214 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:66
L:4694 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:73
L:4697 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:73
L:4707 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:74
L:4710 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:74
L:4720 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:75
L:4723 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:75
L:5092 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:80
L:5095 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:80
L:5108 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:81
L:5118 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:82
L:5121 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:82
L:5881 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:89
L:5884 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:89
L:5894 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:90
L:5897 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:90
L:5907 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:91
L:5910 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:91
L:5920 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:92
L:5923 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:92
L:5933 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:93
L:5936 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:93
L:6143 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:96
L:6146 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:96
L:6156 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:97
L:6159 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:97
L:6169\ M:220\ C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:98
L:6172 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:98
L:6884 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:105
L:6887 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:105
L:6897 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:106
L:6900 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:106
L:6910 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:107
L:6913 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:107
L:6923 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:108
L:6926 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:108
```

VERIFICATION SUMMARY

PATENT APPLICATION: US/10/006,130

DATE: 12/17/2001 TIME: 11:12:14

Input Set : A:\Seq_List_for_P2830P1C7.wpd
Output Set: N:\CRF3\12172001\J006130.raw

```
L:6936 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:109
L:6939 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:109
L:7066 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:112
L:7069 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:112
L:7079 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:113
L:7082 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:113
L:7092 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:114
L:7095 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:114
L:7473 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:114
L:7473 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:119
L:14262 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:259
L:20824 M:258 W: Mandatory Feature missing, <220> FEATURE:
L:20824 M:258 W: Mandatory Feature missing, <223> OTHER INFORMATION:
L:20939 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:377
L:22554 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:422
```

15 10 Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Phe Ile Phe Trp Ile Thr Gly Val Ile Leu Leu Ala Val Gly Ile Trp Gly Lys Val Ser Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Lys Ala Thr Asn Val Pro Phe Val Leu Ile Ala Thr Gly Thr Val Ile Ile Leu Leu Gly Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Ser Ala Trp Met Leu Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Phe Leu Val Glu Leu Val Ala Ala Ile Val Gly Phe Val Phe Arg His Glu Ile Lys Asn 115 110 Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Lys Gln Tyr Asn Ser 125 Thr Gly Asp Tyr Arg Ser His Ala Val Asp Lys Ile Gln Asn Thr Leu His Cys Cys Gly Val Thr Asp Tyr Arg Asp Trp Thr Asp Thr 160 Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Ser Cys Cys Lys Leu Glu Asp Cys Thr Pro Gln Arg Asp Ala Asp Lys Val Asn Asn Glu 190 Gly Cys Phe Ile Lys Val Met Thr Ile Ile Glu Ser Glu Met Gly Val Val Ala Gly Ile Ser Phe Gly Val Ala Cys Phe Gln Leu Ile Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Ala Ile Thr Asn Asn Gln Tyr Glu Ile Val 245 <210> 5 <211> 1218 <212> DNA

eccaegegte eggegeegtg geetegegte catetttgee gttetetegg 50

<213> Homo sapiens

<400> 5

acctgtcaca aaggagtege geegeegeeg eegeeeete eeteeggtgg 100 gcccgggagg tagagaaagt cagtgccaca gcccgaccgc gctgctctga 150 gccctgggca cgcggaacgg gagggagtct gagggttggg gacgtctgtg 200 agggaggga acagccgctc gagcctgggg cgggcggacc ggactggggc 250 cggggtaggc tctggaaagg gcccgggaga gaggtggcgt tggtcagaac 300 ctgagaaaca geegagaggt tttecaeega ggeeegeget tgagggatet 350 gaagaggttc ctagaagagg gtgttccctc tttcgggggt cctcaccaga 400 agaggttett gggggtegee ettetgagga ggetgegget aacagggeee 450 agaactgcca ttggatgtcc agaatcccct gtagttgata atgttgggaa 500 taagctctgc aactttcttt ggcattcagt tgttaaaaac aaataggatg 550 caaattcctc aactccaggt tatgaaaaca gtacttggaa aactgaaaac 600 tacctaaatg atcgtctttg gttgggccgt gttcttagcg agcagaagcc 650 ttggccaggg tctgttgttg actctcgaag agcacatagc ccacttccta 700 gggactggag gtgccgctac taccatgggt aattcctgta tctgccgaga 750 tgacagtgga acagatgaca gtgttgacac ccaacagcaa caggccgaga 800 acagtgcagt acceactgct gacacaagga gccaaccacg ggaccctgtt 850 cggccaccaa ggaggggccg aggacctcat gagccaagga gaaagaaaca 900 aaatgtggat gggctagtgt tggacacact ggcagtaata cggactcttg 950 tagataagta agtatctgac tcacggtcac ctccagtgga atgaaaagtg 1000 ttctgcccgg aaccatgact ttaggactcc ttcagttcct ttaggacata 1050 ctcgccaagc cttgtgctca cagggcaaag gagaatatt taatgctccg 1100 ctgatggcag agtaaatgat aagatttgat gtttttgctt gctgtcatct 1150 actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaag 1200 ctatgatctt tattagag 1218

```
<210> 6
```

<211> 117

<212> PRT

<213> Homo sapiens

<220>

<221> sig_peptide

<222> 1-16

<223> Signal Peptide

.

10 1 15 Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Phe Ile Phe Trp Ile Thr Gly Val Ile Leu Leu Ala Val Gly Ile Trp Gly Lys Val Ser Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Lys Ala Thr Asn Val Pro Phe Val Leu Ile Ala Thr Gly Thr Val Ile Ile Leu Leu Gly Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Ser Ala Trp Met Leu Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Phe Leu Val Glu Leu Val Ala Ala Ile Val Gly Phe Val Phe Arg His Glu Ile Lys Asn Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Lys Gln Tyr Asn Ser 130 Thr Gly Asp Tyr Arg Ser His Ala Val Asp Lys Ile Gln Asn Thr 140 Leu His Cys Cys Gly Val Thr Asp Tyr Arg Asp Trp Thr Asp Thr 155 Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Ser Cys Cys Lys Leu Glu Asp Cys Thr Pro Gln Arg Asp Ala Asp Lys Val Asn Asn Glu Gly Cys Phe Ile Lys Val Met Thr Ile Ile Glu Ser Glu Met Gly Val Val Ala Gly Ile Ser Phe Gly Val Ala Cys Phe Gln Leu Ile 215 Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Ala Ile Thr Asn Asn Gln Tyr Glu Ile Val

<210> 5

<211> 1218

<212> DNA

<213> Homo sapiens

245

<400> 5

cccacgcgtc cggcgccgtg gcctcgcgtc catctttgcc gttctctcgg 50

acctgtcaca aaggagtcgc gccgccgccg ccgcccctc cctccggtgg 100 gcccggqaqq tagagaaagt cagtgccaca gcccgaccgc gctgctctga 150 gccctgggca cgcggaacgg gagggagtct gagggttggg gacgtctgtg 200 agggagggga acagccgctc gagcctgggg cgggcggacc ggactggggc 250 cggggtaggc tctggaaagg gcccgggaga gaggtggcgt tggtcagaac 300 ctgagaaaca gccgagaggt tttccaccga ggcccgcgct tgagggatct 350 gaagaggttc ctagaagagg gtgttccctc tttcgggggt cctcaccaga 400 agaggttett gggggtegee ettetgagga ggetgegget aacagggeee 450 agaactgcca ttggatgtcc agaatcccct gtagttgata atgttgggaa 500 taagctctgc aactttcttt ggcattcagt tgttaaaaac aaataggatg 550 caaattcctc aactccaggt tatgaaaaca gtacttggaa aactgaaaac 600 tacctaaatg atcgtctttg gttgggccgt gttcttagcg agcagaagcc 650 ttqqccaqqq tctqttqttq actctcqaaq agcacatagc ccacttccta 700 gggactggag gtgccgctac taccatgggt aattcctgta tctgccgaga 750 tgacagtgga acagatgaca gtgttgacac ccaacagcaa caggccgaga 800 acagtgcagt acccactgct gacacaagga gccaaccacg ggaccctgtt 850 cggccaccaa ggaggggccg aggacctcat gagccaagga gaaagaaaca 900 aaatgtggat gggctagtgt tggacacact ggcagtaata cggactcttg 950 tagataagta agtatctgac tcacggtcac ctccagtgga atgaaaagtg 1000 ttctgcccgg aaccatgact ttaggactcc ttcagttcct ttaggacata 1050 ctcgccaagc cttgtgctca cagggcaaag gagaatatt taatgctccg 1100 ctgatggcag agtaaatgat aagatttgat gtttttgctt gctgtcatct 1150 actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaag 1200 ctatgatctt tattagag 1218

```
<210> 6
<211> 117
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-16
```

<223> Signal Peptide

```
<220>
```

<221> misc feature

<222> 18-24, 32-38, 34-40, 35-41, 51-57

<223> N-Myristoylation Site.

<220>

<221> misc feature

 $\langle 222 \rangle 22 - 2\overline{6}, 50 - 54, 113 - 117$

<223> Casein Kinase II Phosphorylation Site.

<400> 6

Met Ile Val Phe Gly Trp Ala Val Phe Leu Ala Ser Arg Ser Leu 1 5 10 15

Gly Gln Gly Leu Leu Thr Leu Glu Glu His Ile Ala His Phe
20 25 30

Leu Gly Thr Gly Gly Ala Ala Thr Thr Met Gly Asn Ser Cys Ile 35 40 45

Cys Arg Asp Asp Ser Gly Thr Asp Asp Ser Val Asp Thr Gln Gln 50 55 60

Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp Thr Arg Ser . 65 70 75

Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg Gly Pro 80 85 90

His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val Leu 95 100 105

Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Lys 110 115

<210> 7

<211> 756

<212> DNA

<213> Homo sapiens

<400> 7

ggcacgaggc gctgtccacc cgggggcgtg ggagtgaggt accagattca 50 gcccatttgg ccccgacgcc tctgttctcg gaatccgggt gctgcggatt 100 gaggtcccgg ttcctaacgg actgcaagat ggaggaaggc gggaacctag 150 gaggcctgat taagatggtc catctactgg tcttgtcagg tgcctggggc 200 atgcaaatgt gggtgacctt cgtctcaggc ttcctgcttt tccgaagcct 250 tccccgacat accttcggac tagtgcagag caaactcttc cccttctact 300 tccacatctc catgggctgt gccttcatca acctctgcat cttggcttca 350 cagcatgctt gggctcagct cacattctgg gaggccagcc agctttacct 400 gctgttcctg agccttacgc tggccactgt caacgcccgc tggctggaac 450

```
cccgcaccac agctgccatg tgggccctgc aaaccgtgga gaaggagcga 500
 ggcctgggtg gggaggtacc aggcagccac cagggtcccg atccctaccg 550
 ccagctgcga gagaaggacc ccaagtacag tgctctccgc cagaatttct 600
 teegetacea tgggetgtee tetetttgea atetgggetg egteetgage 650
 aatgggctct gtctcgctgg ccttgccctg gaaataagga gcctctagca 700
 aaaaaa 756
<210> 8
<211> 189
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-24
<223> Signal Peptide
<220>
<221> misc_feature
<222> 4-10, 5-11, 47-53, 170-176, 176-182
<223> N-Myristoylation Site.
<220>
<221> misc_feature
<222> 44-85
<223> G-protein Coupled Receptors Proteins.
<220>
<221> misc_feature
<222> 54-65
<223> Prokaryotic Mmembrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc feature
<222> 82-86
<223> Casein Kinase II Phosphorylation Site.
<220>
<221> TRANSMEM
<222> 86-103, 60-75
<223> Transmembrane Domain
<220>
<221> misc feature
<222> 144-151
<223> Tyrosine Kinase Phosphorylation Site.
<400> 8
Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His
  1
```

- Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr $20 \\ 25 \\ 30$
- Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His Thr . 35 40 45
- Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile 50 55 60
- Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile Leu Ala Ser Gln 657075
- His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser Gln Leu Tyr 80 85 90
- Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$
- Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr Val 110 115 120
- Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gln $125 \hspace{1.5cm} 130 \hspace{1.5cm} 135$
- Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr 140 145 150
- Ser Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser 155 160 165
- Leu Cys Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala 170 175 180
- Gly Leu Ala Leu Glu Ile Arg Ser Leu 185
- <210> 9
- <211> 1508
- <212> DNA
- <213> Homo sapiens
- <400> 9
 aattcagatt ttaagcccat tctgcagtgg aatttcatga actagcaaga 50
 ggacaccatc ttcttgtatt atacaagaaa ggagtgtacc tatcacacc 100
 agggggaaaa atgctctttt gggtgctagg cctcctaatc ctctgtggtt 150
 ttctgtggac tcgtaaagga aaactaaaga ttgaagacat cactgataag 200
 tacattttta tcactggatg tgactcgggc tttggaaact tggcagccag 250
 aacttttgat aaaaagggat ttcatgtaat cgctgcctgt ctgactgaat 300
 caggatcaac agctttaaag gcagaaacct cagagagact tcgtactgtg 350
 cttctggatg tgaccgaccc agagaatgtc aagaggactg cccagtgggt 400

gaagaaccaa gttggggaga aaggtctctg gggtctgatc aataatgctg 450 gtgttcccgg cgtgctggct cccactgact ggctgacact agaggactac 500 agagaaccta ttgaagtgaa cctgtttgga ctcatcagtg tgacactaaa 550 tatgcttcct ttggtcaaga aagctcaagg gagagttatt aatgtctcca 600 gtgttggagg tcgccttgca atcgttggag ggggctatac tccatccaaa 650 tatgcagtgg aaggtttcaa tgacagctta agacgggaca tgaaagcttt 700 tggtgtgcac gtctcatgca ttgaaccagg attgttcaaa acaaacttgg 750 cagatccagt aaaggtaatt gaaaaaaaac tcgccatttg ggagcagctg 800 tctccagaca tcaaacaaca atatggagaa ggttacattg aaaaaagtct 850 agacaaactg aaaggcaata aatcctatgt gaacatggac ctctctccgg 900 tggtagagtg catggaccac gctctaacaa gtctcttccc taagactcat 950 tatgccgctg gaaaagatgc caaaattttc tggatacctc tgtctcacat 1000 gccagcagct ttgcaagact ttttattgtt gaaacagaaa gcagagctgg 1050 ctaatcccaa ggcagtgtga ctcagctaac cacaaatgtc tcctccaggc 1100 tatgaaattg gccgatttca agaacacatc tccttttcaa ccccattcct 1150 tatctgctcc aacctggact catttagatc gtgcttattt ggattgcaaa 1200 agggagtccc accatcgctg gtggtatccc agggtccctg ctcaagtttt 1250 ctttgaaaag gagggctgga atggtacatc acataggcaa gtcctgccct 1300 gtatttaggc tttgcctgct tggtgtgatg taagggaaat tgaaagactt 1350 gcccattcaa aatgatettt accgtggeet gccccatget tatggteece 1400 agcatttaca gtaacttgtg aatgttaagt atcatctctt atctaaatat 1450

aaaaaaaa 1508

<210> 10

<211> 319

<212> PRT

<213> Homo sapiens

<220>

<221> sig peptide

<222> 1-17

<223> Signal Peptide

<220>

<221> misc_feature

```
<222> 36-47, 108-113, 166-171, 198-203, 207-212
<223> N-myristoylation Sites.
<220>
<221> misc_feature
<222> 39-42
<223> Glycosaminoglycan Attachment Site.
<220>
<221> TRANSMEM
<222> 136-152
<223> Transmembrane Domain
<220>
<221> misc feature
<222> 161-\overline{1}63, 187-190 and 253-256
<223> N-glycosylation Sites.
<400> 10
 Met Leu Phe Trp Val Leu Gly Leu Leu Ile Leu Cys Gly Phe Leu
 Trp Thr Arg Lys Gly Lys Leu Lys Ile Glu Asp Ile Thr Asp Lys
 Tyr Ile Phe Ile Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Ala
 Ala Arg Thr Phe Asp Lys Lys Gly Phe His Val Ile Ala Ala Cys
 Leu Thr Glu Ser Gly Ser Thr Ala Leu Lys Ala Glu Thr Ser Glu
 Arg Leu Arg Thr Val Leu Leu Asp Val Thr Asp Pro Glu Asn Val
 Lys Arg Thr Ala Gln Trp Val Lys Asn Gln Val Gly Glu Lys Gly
 Leu Trp Gly Leu Ile Asn Asn Ala Gly Val Pro Gly Val Leu Ala
 Pro Thr Asp Trp Leu Thr Leu Glu Asp Tyr Arg Glu Pro Ile Glu
 Val Asn Leu Phe Gly Leu Ile Ser Val Thr Leu Asn Met Leu Pro
 Leu Val Lys Lys Ala Gln Gly Arg Val Ile Asn Val Ser Ser Val
                                     160
 Gly Gly Arg Leu Ala Ile Val Gly Gly Tyr Thr Pro Ser Lys
                                     175
 Tyr Ala Val Glu Gly Phe Asn Asp Ser Leu Arg Arg Asp Met Lys
```

190

185

Pro Lys Ala Val

<210> 11

<211> 2720

<212> DNA

<213> Homo sapines

<400> 11
gcgggctgtt gacggcgctg cgatggctgc ctgcgagggc aggagaagcg 50
gagctctcgg ttcctctcag tcggacttcc tgacgccgcc agtgggcggg 100
gccccttggg ccgtcgccac cactgtagtc atgtacccac cgccgccgcc 150
gccgcctcat cgggacttca tctcggtgac gctgagcttt ggcgagagct 200
atgacaacag caagagttgg cggcggcgt cgtgctggag gaaatggaag 250
caactgtcga gattgcagcg gaatatgatt ctctcctcc ttgcctttct 300
gctttctgt ggactcctct tctacatcaa cttggctgac cattggaaag 350
ctctggcttt caggctagag gaagagcaga agatgaggcc agaaattgct 400
gggttaaaac cagcaaatcc accegtctta ccagctcctc agaaggcgga 450
caccgaccct gagaacttac ctgagatttc gtcacagaag acacaaagac 500
acatccagcg gggaccacct cacctgcaga ttagacccc aagccaagac 550
ctgaaggatg ggacccagga ggaggccaca aaaaggcaag aagcccctgt 600
ggatccccgc ccggaaggag atccgcagag gacagtcatc agctggaggg 650

gagcggtgat cgagcctgag cagggcaccg agctcccttc aagaagagca 700 gaagtgccca ccaagcctcc cctgccaccg gccaggacac agggcacacc 750 agtgcatctg aactatcgcc agaagggcgt gattgacgtc ttcctgcatg 800 catggaaagg ataccgcaag tttgcatggg gccatgacga gctgaagcct 850 gtgtccaggt ccttcagtga gtggtttggc ctcggtctca cactgatcga 900 cgcgctggac accatgtgga tcttgggtct gaggaaagaa tttgaggaag 950 ccaggaagtg ggtgtcgaag aagttacact ttgaaaagga cgtggacgtc 1000 aacctgtttg agagcacgat ccgcatcctg ggggggctcc tgagtgccta 1050 ccacctgtct ggggacagcc tcttcctgag gaaagctgag gattttggaa 1100 atcggctaat gcctgccttc agaacaccat ccaagattcc ttactcggat 1150 gtgaacatcg gtactggagt tgcccacccg ccacggtgga cctccgacag 1200 cactgtggcc gaggtgacca gcattcagct ggagttccgg gagctctccc 1250 gtctcacagg ggataagaag tttcaggagg cagtggagaa ggtgacacag 1300 cacatccacg gcctgtctgg gaagaaggat gggctggtgc ccatgttcat 1350 caatacccac agtggcctct tcacccacct gggcgtattc acgctgggcg 1400 ccagggccga cagctactat gagtacctgc tgaagcagtg gatccagggc 1450 gggaagcagg agacacagct gctggaagac tacgtggaag ccatcgaggg 1500 tgtcagaacg cacctgctgc ggcactccga gcccagtaag ctcacctttg 1550 tgggggagct tgcccacggc cgcttcagtg ccaagatgga ccacctggtg 1600 tgcttcctgc cagggacgct ggctctgggc gtctaccacg gcctgcccgc 1650 cagccacatg gagctggccc aggagctcat ggagacttgt taccagatga 1700 accggcagat ggagacgggg ctgagtcccg agatcgtgca cttcaacctt 1750 tacccccagc cgggccgtcg ggacgtggag gtcaagccag cagacaggca 1800 caacctgctg cggccagaga ccgtggagag cctgttctac ctgtaccgcg 1850 tcacagggga ccgcaaatac caggactggg gctgggagat tctgcagagc 1900 ttcagccgat tcacacgggt cccctcgggt ggctattctt ccatcaacaa 1950 tgtccaggat cctcagaagc ccgagcctag ggacaagatg gagagcttct 2000 tcctggggga gacgctcaag tatctgttct tgctcttctc cgatgaccca 2050 aacctgctca gcctggacgc ctacgtgttc aacaccgaag cccaccctct 2100

gectatetgg accectgect agggtggatg getgetggtg tggggaette 2150 ggggtgggcag aggcaecttg etgggtetgt ggcattttee aagggeecae 2200 gtagcaecgg caacegecaa gtggeecagg etetgaactg getetggget 2250 eetectegte tetgetttaa teaggaeace gtgaggaeaa gtgaggeegt 2300 cagtettggt gtgatgeggg gtgggetggg eegetggage eteegeetg 2350 tteeteeaga agacaegaat eatgaeteae gattgetgaa geetgageag 2400 gtctetgtgg geegaeeaa gggggette gaggtggtee etggtaetgg 2450 ggtgaecgag tggaeagee agggtgeage tetgeeegg etegtgaage 2500 eteagatgte eecaateeaa gggtetggag gggetgeegt gaeteeagag 2500 eeteetggee eecagggetgg etetggag gggetgeegt gaeteeagag 2500 eeteetggee geeeegaag gggettggaag ggetggaegg eaagteegte 2600 eeteetggee geeeegaag gggettggaag ggetggaegg eaagteegte 2650 tagettaeeg geeeeteeaa 2720

<210> 12

<211> 699

<212> PRT

<213> Homo sapiens

<220>

<221> TRANSMEM

<222> 21-40 and 84-105

<223> Transmembrane Domain (type II)

<400> 12

Met Ala Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser 1 5 10

Gln Ser Asp Phe Leu Thr Pro Pro Val Gly Gly Ala Pro Trp Ala 20 25 30

Val Ala Thr Thr Val Val Met Tyr Pro Pro Pro Pro Pro Pro A5

His Arg Asp Phe Ile Ser Val Thr Leu Ser Phe Gly Glu Ser Tyr 50 55 60

Asp Asn Ser Lys Ser Trp Arg Arg Arg Ser Cys Trp Arg Lys Trp
65 70 75

Lys Gln Leu Ser Arg Leu Gln Arg Asn Met Ile Leu Phe Leu Leu 80 85 90

Ala Phe Leu Leu Phe Cys Gly Leu Leu Phe Tyr Ile Asn Leu Ala 95 100 105

Asp	His	Trp	Lys	Ala 110	Leu	Ala	Phe	Arg	Leu 115	Glu	Glu	Glu	Gln	Lys 120
Met	Arg	Pro	Glu	Ile 125	Ala	Gly	Leu	Lys	Pro 130	Ala	Asn	Pro	Pro	Val 135
Leu	Pro	Ala	Pro	Gln 140	Lys	Ala	Asp	Thr	Asp 145	Pro	Glu	Asn	Leu	Pro 150
Glu	Ile	Ser	Ser	Gln 155	Lys	Thr	Gln	Arg	His 160	Ile	Gln	Arg	Gly	Pro 165
Pro	His	Leu	Gln	Ile 170	Arg	Pro	Pro	Ser	Gln 175	Asp	Leu	Lys	Asp	Gly 180
Thr	Gln	Glu	Glu	Ala 185	Thr	Lys	Arg	Gln	Glu 190	Ala	Pro	Val	Asp	Pro 195
Arg	Pro	Glu	Gly	Asp 200	Pro	Gln	Arg	Thr	Val 205	Ile	Ser	Trp	Arg	Gly 210
Ala	Val	Ile	Glu	Pro 215	Glu	Gln	Gly	Thr	Glu 220	Leu	Pro	Ser	Arg	Arg 225
Ala	Glu	Val	Pro	Thr 230	Lys	Pro	Pro	Leu	Pro 235	Pro	Ala	Arg	Thr	Gln 240
Gly	Thr	Pro	Val	His 245	Leu	Asn	Туr	Arg	Gln 250	Lys	Gly	Val	Ile	Asp 255
Val	Phe	Leu	His	Ala 260	Trp	Lys	Gly	Tyr	Arg 265	Lys	Phe	Ala	Trp	Gly 270
His	Asp	Glu	Leu	Lys 275	Pro	Val	Ser	Arg	Ser 280	Phe	Ser	Glu	Trp	Phe 285
Gly	Leu	Gly	Leu	Thr 290	Leu	Ile	Asp	Ala	Leu 295	Asp	Thr	Met	Trp	Ile 300
Leu	Gly	Leu	Arg	Lys 305		Phe	Glu	Glu	Ala 310	Arg	Lys	Trp	Val	Ser 315
Lys	Lys	Leu	His	Phe 320	Glu	Lys	Asp	Val	Asp 325	Val	Asn	Leu	Phe	Glu 330
Ser	Thr	Ile	Arg	Ile 335		Gly	Gly	Leu	Leu 340	Ser	Ala	Tyr	His	Leu 345
Ser	Gly	Asp	Ser	Leu 350		e Leu	Arg	Lys	Ala 355	Glu	Asp	Phe	Gly	Asn 360
Arg	Leu	Met	Pro	Ala 365		e Arg	Thr	Pro	Ser 370	Lys	Ile	e Pro	Tyr	Ser 375
Asp	Val	Asn	Ile	Gly 380		Gly	v Val	. Ala	His 385	Pro	Pro	Arç	Trp	Thr 390
Ser	Asp	Ser	Thr	Val	Ala	a Glu	ı Val	. Thr	Ser	Ile	Glr	l Leu	Glu	Phe

				395					400					405
Arg	Glu	Leu	Ser	Arg 410	Leu	Thr	Gly	Asp	Lys 415	Lys	Phe	Gln	Glu	Ala 420
Val	Glu	Lys	Val	Thr 425	Gln	His	Ile	His	Gly 430	Leu	Ser	Gly	Lys	Lys 435
Asp	Gly	Leu	Val	Pro 440	Met	Phe	Ile	Asn	Thr 445	His	Ser	Gly	Leu	Phe 450
Thr	His	Leu	Gly	Val 455	Phe	Thr	Leu	Gly	Ala 460	Arg	Ala	Asp	Ser	Tyr 465
Tyr	Glu	Tyr	Leu	Leu 470	Lys	Gln	Trp	Ile	Gln 475	Gly	Gly	Lys	Gln	Glu 480
Thr	Gln	Leu	Leu	Glu 485	Asp	Tyr	Val	Glu	Ala 490	Ile	Glu	Gly	Val	Arg 495
Thr	His	Leu	Leu	Arg 500	His	Ser	Glu	Pro	Ser 505	Lys	Leu	Thr	Phe	Val 510
Gly	Glu	Leu	Ala	His 515	Gly	Arg	Phe	Ser	Ala 520	Lys	Met	Asp	His	Leu 525
Val	Cys	Phe	Leu	Pro	Gly	Thr	Leu	Ala	Leu 535	Gly	Val	Tyr	His	Gly 540
Leu	Pro	Ala	Ser	His 545	Met	Glu	Leu	Ala	Gln 550	Glu	Leu	Met	Glu	Thr 555
Cys	Туг	Gln	Met	Asn 560	Arg	g Glr	n Met	Glu	Thr 565	Gly	Leu	Ser	Pro	Glu 570
Ile	Val	His	s Phe	Asn 575	Let	туг	r Pro	Gln	Pro 580	Gly	Arg	, Arg	Asp	Val 585
Glu	val	Lys	s Pro	Ala 590	a Asp	o Arç	g His	s Asn	Lev 595	Leu 5	ı Arç	g Pro	Glu	Thr 600
Val	Glu	ı Sei	r Lei	ı Phe 60!		r Lei	туг г	a Arg	y Val 610	L Thi	Gly	y Asp	Arg	Lys 615
Туг	Glr	n Asp	o Tr	620		o Gli	u Ile	e Leu	1 Glr 625	n Sei	r Phe	e Sei	r Arç	Phe 630
Thi	c Ar	g Val	l Pr	o Se:	r Gl	y Gl	у Туз	r Sei	s Sei	r Ile	e Ası	n Ası	n Val	Gln 645
Asp	o Pro	o Gli	n Ly	s Pr	o Gl	u Pr	o Ar	g Ası	65	s Me	t Gl	u Se:	r Phe	Phe 660
Let	ı Gl	y Gl	u Th	r Le 66	u Ly 5	s Ty	r Le	u Phe	e Le	u Le	u Ph	e Se	r Ası	675
Pro	o As	n Le	u Le	u Se 68	r Le O	u As	p Al	а Ту	r Va 68	1 Ph 5	e As	n Th	r Gl	u Ala 690

```
His Pro Leu Pro Ile Trp Thr Pro Ala
                 695
<210> 13
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 13
cgccagaagg gcgtgattga cgtc 24
<210> 14
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 14
 ccatccttct tcccagacag gccg 24
<210> 15
<211> 44
<212> DNA
```

<213> Artificial

<221> Artificial Sequence

<220>

- <222> 1-44
 <223> Synthetic construct.

 <400> 15
 gaagectgtg tecaggteet teagtgagtg gtttggeete ggte 44

 <210> 16
 <211> 1524
 <212> DNA
 <213> Homo sapiens
- <400> 16
 ggcgccgcgt aggcccggga ggccgggccg gccgggctgc gagcgcctgc 50

 cccatgcgcc gccgcctctc cgcacgatgt tcccctcgcg gaggaaagcg 100

 gcgcagctgc cctgggagga cggcaggtcc gggttgctct ccggcggcct 150

 ccctcggaag tgttccgtct tccacctgtt cgtggcctgc ctctcgctgg 200

 gcttcttctc cctactctgg ctgcagctca gctgctctgg ggacgtggcc 250

cgggcagtca ggggacaagg gcaggagacc tcgggccctc cccgtgcctg 300 cccccagag ccgcccctg agcactggga agaagacgca tcctggggcc 350 cccaccgcct ggcagtgctg gtgcccttcc gcgaacgctt cgaggagctc 400 ctggtcttcg tgccccacat gcgccgcttc ctgagcagga agaagatccg 450 gcaccacatc tacgtgctca accaggtgga ccacttcagg ttcaaccggg 500 cagegeteat caacgtggge tteetggaga geageaacag caeggaetae 550 attgccatgc acgacgttga cctgctccct ctcaacgagg agctggacta 600 tggctttcct gaggctgggc ccttccacgt ggcctccccg gagctccacc 650 ctctctacca ctacaagacc tatgtcggcg gcatcctgct gctctccaag 700 cagcactacc ggctgtgcaa tgggatgtcc aaccgcttct ggggctgggg 750 ccgcgaggac gacgagttct accggcgcat taagggagct gggctccagc 800 ttttccgccc ctcgggaatc acaactgggt acaagacatt tcgccacctg 850 catgacccag cctggcggaa gagggaccag aagcgcatcg cagctcaaaa 900 acaggagcag ttcaaggtgg acagggaggg aggcctgaac actgtgaagt 950 accatgtggc ttcccgcact gccctgtctg tgggcggggc cccctgcact 1000 gtcctcaaca tcatgttgga ctgtgacaag accgccacac cctggtgcac 1050 attcagctga gctggatgga cagtgaggaa gcctgtacct acaggccata 1100 ttgctcaggc tcaggacaag gcctcaggtc gtgggcccag ctctgacagg 1150 atgtggagtg gccaggacca agacagcaag ctacgcaatt gcagccaccc 1200 ggccgccaag gcaggcttgg gctgggccag gacacgtggg gtgcctggga 1250 cgctgcttgc catgcacagt gatcagagag aggctggggt gtgtcctgtc 1300 cgggaccccc cctgccttcc tgctcaccct actctgacct ccttcacgtg 1350 cccaggcctg tgggtagtgg ggagggctga acaggacaac ctctcatcac 1400 cctactctga cctccttcac gtgcccaggc ctgtgggtag tggggagggc 1450 aaaaaaaaa aaaaaaaaaa aaaa 1524

<210> 17

<211> 327

<212> PRT

<213> Homo sapiens

<220>

```
<221> sig peptide
<222> 1-42
<223> Signal peptide.
<220>
<221> misc feature
<222> 19-25,65-71,247-253,285-291,303-310
<223> N-myristoylation site.
<220>
<221> misc_feature
<222> 27-31
<223> cAMP- and cGMP-dependent protein kinase phosphorylation site.
<220>
<221> TRANSMEM
<222> 29-49
<223> Transmembrane domain (type II).
<220>
<221> misc feature
<222> 154-158
<223> N-glycosylation site.
<220>
<221> misc feature
<222> 226-233
<223> Tyrosine kinase phosphorylation site.
<400> 17
 Met Phe Pro Ser Arg Arg Lys Ala Ala Gln Leu Pro Trp Glu Asp
 Gly Arg Ser Gly Leu Leu Ser Gly Gly Leu Pro Arg Lys Cys Ser
 Val Phe His Leu Phe Val Ala Cys Leu Ser Leu Gly Phe Phe Ser
                   35
 Leu Leu Trp Leu Gln Leu Ser Cys Ser Gly Asp Val Ala Arg Ala
                                       55 ,
 Val Arg Gly Gln Gly Gln Glu Thr Ser Gly Pro Pro Arg Ala Cys
  Pro Pro Glu Pro Pro Glu His Trp Glu Glu Asp Ala Ser Trp
  Gly Pro His Arg Leu Ala Val Leu Val Pro Phe Arg Glu Arg Phe
                                       100
  Glu Glu Leu Leu Val Phe Val Pro His Met Arg Arg Phe Leu Ser
                                       115
  Arg Lys Lys Ile Arg His His Ile Tyr Val Leu Asn Gln Val Asp
                                       130
                  125
  His Phe Arg Phe Asn Arg Ala Ala Leu Ile Asn Val Gly Phe Leu
```

	140			145			150				
Glu Ser Ser Asn	Ser Thr 155	Asp T	yr Ile	Ala Met 160	His Asp	Val	Asp 165				
Leu Leu Pro Leu	Asn Glu 170	Glu L	eu Asp	Tyr Gly 175	Phe Pro	Glu	Ala 180				
Gly Pro Phe His	Val Ala 185	Ser P	ro Glu	Leu His 190	Pro Leu	Tyr	His 195				
Tyr Lys Thr Tyr	Val Gly 200	Gly I	lle Leu	Leu Leu 205	Ser Lys	Gln	His 210				
Tyr Arg Leu Cys	Asn Gly 215	Met S	Ser Asn	Arg Phe 220	Trp Gly	Trp	Gly 225				
Arg Glu Asp Asp	Glu Phe 230	Tyr F	Arg Arg	Ile Lys 235	Gly Ala	Gly	Leu 240				
Gln Leu Phe Arg	Pro Ser 245	Gly 1	Ile Thr	Thr Gly 250	Tyr Lys	Thr	Phe 255				
Arg His Leu His	s Asp Pro 260	Ala 1	Trp Arg	Lys Arg 265	Asp Gln	Lys	Arg 270				
Ile Ala Ala Gl	Lys Gln 275	Glu (Gln Phe	Lys Val 280	Asp Arg	Glu	Gly 285				
Gly Leu Asn Th	r Val Lys 290	Tyr l	His Val	Ala Ser 295	Arg Thr	Ala	Leu 300				
Ser Val Gly Gl	y Ala Pro 305	Cys '	Thr Val	Leu Asn 310	Ile Met	Leu	Asp 315				
Cys Asp Lys Th	r Ala Thi 320	Pro '	Trp Cys	Thr Phe	Ser						
<210> 18 <211> 23 <212> DNA <213> Artificia	1			1,							
<220> <221> Artificial Sequence <222> 1-23 <223> Synthetic construct.											
<400> 18 gcgaacgctt cga	ggagtcc	tgg 23	3								
<210> 19 <211> 24 <212> DNA <213> Artificia	ıl										

<220>

<221> Artificial Sequence

```
<222> 1-24
<223> Synthetic construct
<400> 19
gcagtgcggg aagccacatg gtac 24
<210> 20
<211> 46
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.
<400> 20
 cttcctgagc aggaagaaga tccggcacca catctacgtg ctcaac 46
<210> 21
<211> 494
<212> DNA
<213> Homo sapiens
<400> 21
 caatgtttgc ctatccacct cccccaagcc cctttaccta tgctgctgct 50
 aacgctgctg ctgctgctgc tgctgcttaa aggctcatgc ttggagtggg 100
 gactggtcgg tgcccagaaa gtctcttctg ccactgacgc ccccatcagg 150
 gattgggcct tctttccccc ttcctttctg tgtctcctgc ctcatcggcc 200
 tgccatgacc tgcagccaag cccagccccg tggggaaggg gagaaagtgg 250
 gggatggcta agaaagctgg gagataggga acagaagagg gtagtgggtg 300
 ggctaggggg gctgccttat ttaaagtggt tgtttatgat tcttatacta 350
 atttatacaa agatattaag gccctgttca ttaagaaatt gttcccttcc 400
 cctgtgttca atgtttgtaa agattgttct gtgtaaaiat gtctttataa 450
  <210> 22
 <211> 73
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> sig_peptide
 <222> 1-15
 <223> Signal peptide.
 <220>
 <221> misc feature
```

<222> 3-18

<223> Growth factor and cytokines receptors family.

<400> 22
Met Leu Leu Leu Thr Leu Leu Leu Leu Leu Leu Leu Leu Lys Gly
1 5 10 15

Ser Cys Leu Glu Trp Gly Leu Val Gly Ala Gln Lys Val Ser Ser 20 25 30

Ala Thr Asp Ala Pro Ile Arg Asp Trp Ala Phe Phe Pro Pro Ser 35 40 45

Phe Leu Cys Leu Leu Pro His Arg Pro Ala Met Thr Cys Ser Gln 50 55 60

Ala Gln Pro Arg Gly Glu Gly Glu Lys Val Gly Asp Gly 65 70

<210> 23

<211> 2883

<212> DNA

<213> Homo sapiens

<400> 23 gggacccatg cggccgtgac ccccggctcc ctagaggccc agcgcagccg 50 cageggacaa aggageatgt cegegeeggg gaaggeeegt eeteeggeeg 100 ggctccgggg cggcccgcta ggccagtgcg ccgccgctcg ccccgcaggc 200 cccggcccgc agcatggagc cacccggacg ccggcggggc cgcgcgcagc 250 cgccgctgtt gctgccgctc tcgctgttag cgctgctcgc gctgctggga 300 ggcggcggcg gcggcggcgc cgcggcgctg cccgccggct gcaagcacga 350 tgggcggccc cgaggggctg gcagggcggc gggcgccgcc gagggcaagg 400 tggtgtgcag cagcctggaa ctcgcgcagg tcctgccccc agatactctg 450 cccaaccgca cggtcaccct gattctgagt aacaataaga tatccgagct 500 gaagaatggc tcattttctg ggttaagtct ccttgaaaga ttggacctcc 550 gaaacaatct tattagtagt atagatccag gtgccttctg gggactgtca 600 tctctaaaaa gattggatct gacaaacaat cgaataggat gtctgaatgc 650 agacatattt cgaggactca ccaatctggt tcggctaaac ctttcgggga 700 atttgttttc ttcattatct caaggaactt ttgattatct tgcgtcatta 750 cggtctttgg aattccagac tgagtatctt ttgtgtgact gtaacatact 800 gtggatgcat cgctgggtaa aggagaagaa catcacggta cgggatacca 850

ggtgtgttta tcctaagtca ctgcaggccc aaccagtcac aggcgtgaag 900 caggagetgt tgacatgega eceteegett gaattgeegt etttetacat 950 gactccatct catcgccaag ttgtgtttga aggagacagc cttcctttcc 1000 agtgcatggc ttcatatatt gatcaggaca tgcaagtgtt gtggtatcag 1050 gatgggagaa tagttgaaac cgatgaatcg caaggtattt ttgttgaaaa 1100 gaacatgatt cacaactgct ccttgattgc aagtgcccta accatttcta 1150 atattcaggc tggatctact ggaaattggg gctgtcatgt ccagaccaaa 1200 cgtgggaata atacgaggac tgtggatatt gtggtattag agagttctgc 1250 acagtactgt cctccagaga gggtggtaaa caacaaaggt gacttcagat 1300 ggcccagaac attggcaggc attactgcat atctgcagtg tacgcggaac 1350 acccatggca gtgggatata tcccggaaac ccacaggatg agagaaaagc 1400 ttggcgcaga tgtgatagag gtggcttttg ggcagatgat gattattctc 1450 gctgtcagta tgcaaatgat gtcactagag ttctttatat gtttaatcag 1500 atgeceetca atettaceaa tgeegtggea acagetegae agttactgge 1550 ttacactgtg gaagcagcca acttttctga caaaatggat gttatatttg 1600 tggcagaaat gattgaaaaa tttggaagat ttaccaagga ggaaaaatca 1650 aaagagctag gtgacgtgat ggttgacatt gcaagtaaca tcatgttggc 1700 tgatgaacgt gtcctgtggc tggcgcagag ggaagctaaa gcctgcagta 1750 ggattgtgca gtgtcttcag cgcattgcta cctaccggct agccggtgga 1800 gctcacgttt attcaacata ttcacccaat attgctctgg aagcttatgt 1850 catcaagtct actggcttca cggggatgac ctgtaccqtg ttccagaaag 1900 tggcagcctc tgatcgtaca ggactttcgg attatgggag gcgggatcca 1950 gagggaaacc tggataagca gctgagcttt aagtgcaatg tttcaaatac 2000 attttcgagt ctggcactaa aggtatgtta cattctgcaa tcatttaaga 2050 ctatttacag ttaaattaga atgctccaaa tgttctgctt cgcaaaataa 2100 ccttattaaa agatttttt ttgcaggaag ataggtatta ttgcttttgc 2150 tactgtttta aagaaaacta accaggaaga actgcattac gactttcaag 2200 ggccctaggc atttttgcct ttgattccct ttcttcacat aaaaatatca 2250 gaaattacat tttataactg cagtggtata aatgcaaata tactattgtt 2300 acatgtgaaa aaattttatt tgacttaaaa gtttatttat ttgtttttt 2350 gctcctgatt ttaagacaat aagatgtttt catgggcccc taaaagtatc 2400 atgageettt ggeactgege etgeeaagee tagtggagaa gteaaceetg 2450 agaccaggtg tttaatcaag caagctgtat atcaaaattt ttggcagaaa 2500 acacaaatat gtcatatatc tttttttaaa aaaagtattt cattgaagca 2550 agcaaaatga aagcattttt actgattttt aaaattggtg ctttagatat 2600 atttgactac actgtattga agcaaataga ggaggcacaa ctccagcacc 2650 ctaatggaac cacatttttt tcacttagct ttctgtgggc atgtgtaatt 2700 gtattctctg cggtttttaa tctcacagta ctttatttct gtcttgtccc 2750 tcaataatat cacaaacaat attccagtca ttttaatggc tgcataataa 2800 ctgatccaac aggtgttagg tgttctggtt tagtgtgagc actcaataaa 2850 tattgaatga atgaacgaaa aaaaaaaaaa aaa 2883

```
<210> 24
<211> 616
<212> PRT
<213> Homo sapiens
<220>
<221> sig peptide
<222> 1-33
<223> Signal peptide.
<220>
<221> TRANSMEM
```

<223> Transmembrane domain (type II).

<222> 13-40 <400> 24 Met Glu Pro Pro Gly Arg Arg Gly Arg Ala Gln Pro Pro Leu Leu Leu Pro Leu Ser Leu Leu Ala Leu Leu Ala Leu Leu Gly Gly Gly Gly Gly Gly Ala Ala Ala Leu Pro Ala Gly Cys Lys His Asp Gly Arg Pro Arg Gly Ala Gly Arg Ala Ala Gly Ala Ala Glu Gly Lys Val Val Cys Ser Ser Leu Glu Leu Ala Gln Val Leu Pro Pro Asp Thr Leu Pro Asn Arg Thr Val Thr Leu Ile Leu Ser Asn

85

Asn	Lys	Ile	Ser	Glu 95	Leu	Lys	Asn	Gly	Ser 100	Phe	Ser	Gly	Leu	Ser 105
Leu	Leu	Glu	Arg	Leu 110	Asp	Leu	Arg	Asn	Asn 115	Leu	Ile	Ser	Ser	Ile 120
Asp	Pro	Gly	Ala	Phe 125	Trp	Gly	Leu	Ser	Ser 130	Leu	Lys	Arg	Leu	Asp 135
Leu	Thr	Asn	Asn	Arg 140	Ile	Gly	Cys	Leu	Asn 145	Ala	Asp	Ile	Phe	Arg 150
Gly	Leu	Thr	Asn	Leu 155	Val	Arg	Leu	Asn	Leu 160	Ser	Gly	Asn	Leu	Phe 165
Ser	Ser	Leu	Ser	Gln 170	Gly	Thr	Phe	Asp	Tyr 175	Leu	Äla	Ser	Leu	Arg 180
Ser	Leu	Glu	Phe	Gln 185	Thr	Glu	Tyr	Leu	Leu 190	Cys	Asp	Cys	Asn	Ile 195
Leu	Trp	Met	His	Arg 200	Trp	Val	Lys	Glu	Lys 205	Asn	Ile	Thr	Val	Arg 210
Asp	Thr	Arg	Cys	Val 215	Tyr	Pro	Lys	Ser	Leu 220	Gln	Ala	Gln	Pro	Val 225
Thr	Gly	Val	Lys	Gln 230	Glu	Leu	Leu	Thr	Cys 235	Asp	Pro	Pro	Leu	Glu 240
Leu	Pro	Ser	Phe	Tyr 245	Met	Thr	Pro	Ser	His 250	Arg	Gln	Val	Val	Phe 255
Glu	Gly	Asp	Ser	Leu 260	Pro	Phe	Gln	Cys	Met 265	Ala	Ser	Туr	Ile	Asp 270
Gln	Asp	Met	Gln	Val 275	Leu	Trp	Tyr	Gln	Asp 280	Gly	Arg	Ile	Val	Glu 285
Thr	Asp	Glu	Ser	Gln 290		Ile	Phe	Val	Glu 295	Lys	Asn	Met	Ile	His 300
Asn	Cys	Ser	Leu	Ile 305		Ser	Ala	Leu	Thr 310	Ile	Ser	Asn	Ile	Gln 315
Ala	Gly	Ser	Thr	Gly 320		Trp	Gly	Cys	His 325	Val	Gln	Thr	Lys	Arg 330
Gly	Asn	Asn	Thr	Arg		Val	Asp	lle	Val 340		Leu	Glu	. Ser	Ser 345
Ala	Gln	Tyr	Cys	Pro 350		Glu	Arg	val	Val 355		Asn	Lys	s Gly	7 Asp 360
Phe	Arg	Trp	Pro	Arg 365		Leu	Ala	Gly	7 Ile 370	Thr	Ala	Туг	Let	Gln 375
Cys	Thr	Arç	, Asn	Thr	His	s Gly	Ser	Gly	Ile	Tyr	Pro	Gly	/ Asr	Pro

				380					385					390
Gln	Asp	Glu	Arg	Lys 395	Ala	Trp	Arg	Arg	Cys 400	Asp	Arg	Gly	Gly	Phe 405
Trp	Ala	Asp	Asp	Asp 410	Tyr	Ser	Arg	Cys	Gln 415	Tyr	Ala	Asn	Asp	Val 420
Thr	Arg	Val	Leu	Tyr 425	Met	Phe	Asn	Gln	Met 430	Pro	Leu	Asn	Leu	Thr 435
Asn	Ala	Val	Ala	Thr 440	Ala	Arg	Gln	Leu	Leu 445	Ala	Tyr	Thr	Val	Glu 450
Ala	Ala	Asn	Phe	Ser 455	Asp	Lys	Met	Asp	Val 460	Ile	Phe	Val	Ala	Glu 465
Met	Ile	Glu	Lys	Phe 470	Gly	Arg	Phe	Thr	Lys 475	Glu	Glu	Lys	Ser	Lys 480
Glu	Leu	Gly	Asp	Val 485	Met	Val	Asp	Ile	Ala 490	Ser	Asn	Ile	Met	Leu 495
Ala	Asp	Glu	Arg	Val 500	Leu	Trp	Leu	Ala	Gln 505	Arg	Glu	Ala	Lys	Ala 510
Cys	Ser	Arg	Ile	Val 515	Gln	Cys	Leu	Gln	Arg 520	Ile	Ala	Thr	Tyr	Arg 525
Leu	Ala	Gly	Gly	Ala 530	His	Val	Tyr	Ser	Thr 535	Tyr	Ser	Pro	Asn	Ile 540
Ala	Leu	Glu	Ala	Tyr 545	Val	Ile	Lys	Ser	Thr 550	Gly	Phe	Thr	Gly	Met 555
Thr	Cys	Thr	Val	Phe 560	Gln	Lys	Val	Ala	Ala 565	Ser	Asp	Arg	Thr	Gly 570
Leu	Ser	Asp	Tyr	Gly 575	Arg	Arg	Asp	Pro	Glu 580	Gly	Asn	Leu	Asp	Lys 585
Gln	Leu	Ser	Phe	Lys 590	Cys	Asn	Val	Ser	Asn 595	Thr	Phe	Ser	Ser	Leu 600
Ala	Leu	Lys	Val	Cys 605	Tyr	Ile	Leu	Gln	Ser 610	Phe	Lys	Thr	Ile	Tyr 615
Ser														

<210> 25 <211> 24 <212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

```
<223> Synthetic construct
<400> 25
gaggactcac caatctggtt cggc 24
<210> 26
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 26
aactggaaag gaaggctgtc tccc 24
<210> 27
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 27
gtaaaggaga agaacatcac ggtacgggat accaggtgtg tttatcctaa 50
<210> 28
<211> 683
<212> DNA
<213> Homo sapiens
<400> 28
 gcgtggggat gtctaggagc tcgaaggtgg tgctgggcct ctcggtgctg 50
 ctgacggcgg ccacagtggc cggcgtacat gtgaagcagc agtgggacca 100
 gcagaggctt cgtgacggag ttatcagaga cattgagagg caaattcgga 150
 aaaaagaaaa cattcgtctt ttgggagaac agattatttt gactgagcaa 200
 cttgaagcag aaagagagaa gatgttattg gcaaaaggat ctcaaaaatc 250
 atgacttgaa tgtgaaatat ctgttggaca gacaacacga gtttgtgtgt 300
 gtgtgttgat ggagagtagc ttagtagtat cttcatcttt ttttttggtc 350
 actgtccttt taaacttgat caaataaagg acagtgggtc atataagtta 400
 ctgctttcag ggtcccttat atctgaataa aggagtgtgg gcagacactt 450
 tttggaagag tctgtctggg tgatcctggt agaagcccca ttagggtcac 500
```

tgtccagtgc ttagggttgt tactgagaag cactgccgag cttgtgagaa 550

ggaagggatg gatagtagca tccacctgag tagtctgatc agtcggcatg 600 atgacgaagc cacgagaaca tcgacctcag aaggactgga ggaaggtgaa 650 gtggagggag agacgctcct gatcgtcgaa tcc 683

<210> 29

<211> 81

<212> PRT

<213> Homo sapiens

<220>

<221> sig peptide

<222> 1-21

<223> Signal peptide.

<400> 29

Met Ser Arg Ser Ser Lys Val Val Leu Gly Leu Ser Val Leu Leu 1 5 10 15

Thr Ala Ala Thr Val Ala Gly Val His Val Lys Gln Gln Trp Asp 20 25 30

Gln Gln Arg Leu Arg Asp Gly Val Ile Arg Asp Ile Glu Arg Gln
35 40 45

Ile Arg Lys Lys Glu Asn Ile Arg Leu Leu Gly Glu Gln Ile Ile 50 55 60

Leu Thr Glu Gln Leu Glu Ala Glu Arg Glu Lys Met Leu Leu Ala 65 70 75

Lys Gly Ser Gln Lys Ser

<210> 30

<211> 2128

<212> DNA

<213> Homo sapiens

<400> 30

ctgtcgtett tgcttcagcc gcagtcgcca ctggctgcct gaggtgctct 50
tacagcctgt tccaagtgtg gcttaatccg tctccaccac cagatcttc 100
tccgtggatt cctctgctaa gaccgctgcc atgccagtga cggtaacccg 150
caccaccatc acaaccacca cgacgtcatc ttcgggcctg gggtccccca 200
tgatcgtggg gtcccctcgg gccctgacac agcccctggg tctccttcgc 250
ctgctgcagc tggtgtctac ctgcgtggcc ttctcgctgg tggctagcgt 300
gggcgcctgg acggggtcca tgggcaactg gtccatgttc acctggtgct 350
tctgcttctc cgtgaccctg atcatcctca tcgtggagct gtgcgggctc 400
caggcccgct tcccctgtc ttggcgcaac ttccccatca ccttcgcctg 450

ctatgcggcc ctcttctgcc tctcggcctc catcatctac cccaccacct 500 atgtccagtt cctgtcccac ggccgttcgc gggaccacgc catcgccgcc 550 accttcttct cctgcatcgc gtgtgtggct tacgccaccg aagtggcctg 600 gacccgggcc cggcccggcg agatcactgg ctatatggcc accgtacccg 650 ggctgctgaa ggtgctggag accttcgttg cctgcatcat cttcgcgttc 700 atcagegace ecaacetgta ecageaceag eeggeeetgg agtggtgegt 750 ggcggtgtac gccatctgct tcatcctagc ggccatcgcc atcctgctga 800 acctggggga gtgcaccaac gtgctaccca tccccttccc cagcttcctg 850 teggggetgg cettgetgte tgteeteete tatgeeaeeg eeettgttet 900 ctggcccctc taccagttcg atgagaagta tggcggccag cctcggcgct 950 cgagagatgt aagctgcagc cgcagccatg cctactacgt gtgtgcctgg 1000 gaccgccgac tggctgtggc catcctgacg gccatcaacc tactggcgta 1050 tgtggctgac ctggtgcact ctgcccacct ggtttttgtc aaggtctaag 1100 actotoccaa gaggotoccg ttocototoc aacototttg ttottottgc 1150 ccgagttttc tttatggagt acttctttcc tccgcctttc ctctgttttc 1200 ctcttcctgt ctcccctccc tcccaccttt ttctttcctt cccaattcct 1250 tgcactctaa ccagttettg gatgeatett etteetteee ttteetettg 1300 ctgtttcctt cctgtgttgt tttgttgccc acatcctgtt ttcacccctg 1350 agotytttet ettttettt tetttettt ttttttttt ttttaagaeg 1400 gatteteact etgtggeeca ggetggagtg eagtggtgeg ateteagete 1450 actgcaaccc ccgcctcctg ggttcaagcg attctcctcc cccagcctcc 1500 caagtagetg ggaggacagg tgtgagetge egcacecage etgtttetet 1550 ttttccactc ttctttttc tcatctcttt tctgggttgc ctgtcggctt 1600 tottatotgo otgittigoa agoacottoi octgigioot igggagocoi 1650 gagacttett teteteettg cetecaceca cetecaaagg tgetgagete 1700 acatecacae ecettycage egtecatgee acageceece aaggggeece 1750 attgccaaag catgcctgcc caccctcgct gtgccttagt cagtgtgtac 1800 gtgtgtgtt gtgtgttt ggggggtggg gggtgggtag ctggggattg 1850 ggccctcttt ctcccagtgg aggaaggtgt gcagtgtact tcccctttaa 1900

attaaaaac atatatat atatattgg aggtcagtaa tttccaatgg 1950 gegggaggca ttaagcaccg accetgggte cetaggeece geetggeact 2000 cageettgee agagattgge tecagaattt ttgccagget tacagaacac 2050 ceactgeeta gaggeeatet taaaggaage aggggetgga tgeetteat 2100 cecaactatt etetgtggta tgaaaaag 2128

<210> 31

<211> 322

<212> PRT

<213> Homo sapiens

<400> 31

Met Pro Val Thr Val Thr Arg Thr Thr Ile Thr Thr Thr Thr 1 5 10 15

Ser Ser Ser Gly Leu Gly Ser Pro Met Ile Val Gly Ser Pro Arg $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ala Leu Thr Gln Pro Leu Gly Leu Leu Arg Leu Leu Gln Leu Val 35 40 45

Ser Thr Cys Val Ala Phe Ser Leu Val Ala Ser Val Gly Ala Trp 50 55 60

Thr Gly Ser Met Gly Asn Trp Ser Met Phe Thr Trp Cys Phe Cys 65 70 75

Phe Ser Val Thr Leu Ile Ile Leu Ile Val Glu Leu Cys Gly Leu 80 85 90

Gln Ala Arg Phe Pro Leu Ser Trp Arg Asn Phe Pro Ile Thr Phe $95\,$ 100 $\,$ 105

Ala Cys Tyr Ala Ala Leu Phe Cys Leu Ser Ala Ser Ile Ile Tyr 110 115 120

Pro Thr Thr Tyr Val Gln Phe Leu Ser His Gly Arg Ser Arg Asp 125 130 130

His Ala Ile Ala Ala Thr Phe Phe Ser Cys Ile Ala Cys Val Ala 140 145 150

Tyr Ala Thr Glu Val Ala Trp Thr Arg Ala Arg Pro Gly Glu Ile 155 160 165

Thr Gly Tyr Met Ala Thr Val Pro Gly Leu Leu Lys Val Leu Glu 170 175 180

Thr Phe Val Ala Cys Ile Ile Phe Ala Phe Ile Ser Asp Pro Asn 185 190 195

Leu Tyr Gln His Gln Pro Ala Leu Glu Trp Cys Val Ala Val Tyr
200 205 210

Ala Ile Cys Phe Ile Leu Ala Ala Ile Ala Ile Leu Leu Asn Leu 215 Gly Glu Cys Thr Asn Val Leu Pro Ile Pro Phe Pro Ser Phe Leu 230 Ser Gly Leu Ala Leu Leu Ser Val Leu Leu Tyr Ala Thr Ala Leu 255 Val Leu Trp Pro Leu Tyr Gln Phe Asp Glu Lys Tyr Gly Gly Gln Pro Arg Arg Ser Arg Asp Val Ser Cys Ser Arg Ser His Ala Tyr Tyr Val Cys Ala Trp Asp Arg Arg Leu Ala Val Ala Ile Leu Thr Ala Ile Asn Leu Leu Ala Tyr Val Ala Asp Leu Val His Ser Ala 305 His Leu Val Phe Val Lys Val

320

<210> 32 <211> 3680 <212> DNA

<213> Homo sapiens

<400> 32 gaacgtgcca ccatgcccag ctaatttttg tatttttagt agagacgggg 50 tttcaccatg ttggccaggc tggtcttgaa ctcgtgacct catgatccgc 100 teacetegge eteceaaagt getgggatta eaggeatgag ceaetgaege 150 ctggccagcc tatgcatttt taagaaatta ttctgtatta ggtgctgtgc 200 taaacattgg gcactacagt gaccaaaaca gactgaattc cccaagagcc 250 aaagaccagt gagggagacc aacaagaaac aggaaatgca aaagagacca 300 ttattactca ctatgactaa gggtcacaaa tggggtacgt tgatggagag 350 tgatttgtta agagactaca gagggaggac agactaccaa gaggggggcc 400 aggaaagctc ctctgacgag gtggtatttc agcccaaact ggaagaatga 450 gaaagagcta gccagccatc agaatagtcc agaagagatg gggagcacta 500 cactcactac actttggcct gagaaaatag catgggattg gaggaggctg 550 ggggaacacc acttctgccg acctgggcag gaggcattga gggcttgaga 600 aagggcaatg gcagtagcag tagaaaggac agggtaggag cagggacttt 650 gcaggtggaa tcattaggtc ttatcaacag atatgggcaa gcaaagccag 700 gggagaattg atggtaatgc tgaggtttgg agccaggcta gatgggacag 750 tggtgggtga tgcaaaggaa agaggtcagg aagcagggcc agacgtgggg 800 agaaggtgtg ggggtttggt ttccatcttg ccgagtctgc cggaatgtgg 850 atgggaagac caagaggagg agcaaggggc agaggggaag ggaatcttaa 900 agaagtcctg gatgccacac tcttcttcct tcctcctctt ccctctcctc 950 agaggtetea etegtggtte tteattteet geeetgeete eateteetet 1000 gggtgctggg aaagtggagg attagctgaa gttttgcttc tcggggcctg 1050 totgaatoto cattgottto tgggaggaca taattoacot gtootagott 1100 cttatcatct tacatttccc tgtagccact gggacatatg tggtgttcct 1150 tectagetee tgteteetee teatgeettt getgggtatg ggeatgttag 1200 ggggaaggtc attgctgtca gaggggcact gactttctaa tggtgttacc 1250 caaggtgaat gttggagaca cagtcgcgat gctgcccaag tcccggcgag 1300 cectaactat ecaggagate getgegetgg ecaggteete eetgeatggt 1350 atgcagecee teccatgttt etggecaett tgteetttet eeteeegttt 1400 gcacatecet ttggaactgt tteetgtgag taeatgetgg ggteteeeet 1450 ttcttccctt gctcaggtga atctcagccc cttctcccac ccaaaggttc 1500 acatggatcc taactactgc caccetteca ecteeetgca ectgtgetee 1550 ctggcctggt cctttaccag gcttctccac cctcccctat ctccaggtat 1600 ttcccaggtg gtgaaggacc acgtgaccaa gcctaccgcc atggcccagg 1650 gccgagtggc tcacctcatt gagtggaagg gctggagcaa gccgagtgac 1700 tcacctgctg ccctggaatc agccttttcc tcctattcag acctcagcga 1750 gggcgaacaa gaggctcgct ttgcagcagg agtggctgag cagtttgcca 1800 tcgcggaagc caagctccga gcatggtctt cggtggatgg cgaggactcc 1850 actgatgact cctatgatga ggactttgct gggggaatgg acacagacat 1900 ggctgggcag ctgcccctgg ggccgcacct ccaggacctg ttcaccggcc 1950 accggttctc ccggcctgtg cgccagggct ccgtggagcc tgagagcgac 2000 tgctcacaga ccgtgtcccc agacaccctg tgctctagtc tgtgcagcct 2050 ggaggatggg ttgttgggct ccccggcccg gctggcctcc cagctgctgg 2100 gcgatgaget gettetegee aaactgeeee eeageeggga aagtgeette 2150 cgcagcctgg gcccactgga ggcccaggac tcactctaca actcgcccct 2200 cacagagtcc tgcctttccc ccgcggagga ggagccagcc ccctgcaagg 2250 actgccagcc actctgccca ccactaacgg gcagctggga acggcagcgg 2300 caageetetg acetggeete ttetggggtg gtgteettag atgaggatga 2350 ggcagagcca gaggaacagt gacccacatc atgcctggca gtggcatgca 2400 tececegget getgeeaggg geagageete tgtgeecaag tgtgggetea 2450 aggeteccag cagageteca cageetagag ggeteetggg agegeteget 2500 tctccgttgt gtgttttgca tgaaagtgtt tggagaggag gcaggggctg 2550 ggctgggggc gcatgtcctg ccccactcc cggggcttgc &gggggttgc 2600 ccggggcctc tggggcatgg ctacagctgt ggcagacagt gatgttcatg 2650 ttcttaaaat gccacacaca catttcctcc tcggataatg tgaaccacta 2700 agggggttgt gactgggctg tgtgagggtg gggtgggagg gggcccagca 2750 acceccace etecceatge etetetette tetgetttte tteteaette 2800 cgagtccatg tgcagtgctt gatagaatca ccccacctg gaggggctgg 2850 ctcctgccct cccggagcct atgggttgag ccgtccctca agggcccctg 2900 cccagctggg ctcgtgctgt gcttcattca cctctccatc gtctctaaat 2950 cttcctcttt tttcctaaag acagaaggtt tttggtctgt ttttcagtc 3000 ggatcttctc ttctctggga ggctttggaa tgatgaaagc atgtaccctc 3050 caccetttte etggeecet aatggggeet gggeeettte ecaaceeete 3100 ctaggatgtg cgggcagtgt gctggcgcct cacagccagc cgggctgccc 3150 attcacgcag agctctctga gcgggaggtg gaagaaagga tggctctggt 3200 tgccacagag ctgggacttc atgttcttct agagagggcc acaagagggc 3250 cacaggggtg gccgggagtt gtcagctgat gcctgctgag aggcaggaat 3300 tgtgccagtg agtgacagtc atgagggagt gtctcttctt ggggaggaaa 3350 gaaggtagag cctttctgtc tgaatgaaag gccaaggcta cagtacaggg 3400 ccccgcccca gccagggtgt taatgcccac gtagtggagg cctctggcag 3450 atcctgcatt ccaaggtcac tggactgtac gtttttatgg ttgtgggaag 3500 ggtgggtggc tttagaatta agggccttgt aggctttggc aggtaagagg 3550 gcccaaggta agaacgagag ccaacgggca caagcattct atatataagt 3600 ggctcattag gtgtttattt tgttctattt aagaatttgt tttattaaat 3650 taatataaaa atctttgtaa atctctaaaa 3680

<210> 33 <211> 335 <212> PRT <213> Homo sapiens <400> 33 Met Phe Leu Ala Thr Leu Ser Phe Leu Leu Pro Phe Ala His Pro Phe Gly Thr Val Ser Cys Glu Tyr Met Leu Gly Ser Pro Leu Ser Ser Leu Ala Gln Val Asn Leu Ser Pro Phe Ser His Pro Lys Val His Met Asp Pro Asn Tyr Cys His Pro Ser Thr Ser Leu His Leu Cys Ser Leu Ala Trp Ser Phe Thr Arg Leu Leu His Pro Pro Leu Ser Pro Gly Ile Ser Gln Val Val Lys Asp His Val Thr Lys Pro Thr Ala Met Ala Gln Gly Arg Val Ala His Leu Ile Glu Trp Lys Gly Trp Ser Lys Pro Ser Asp Ser Pro Ala Ala Leu Glu Ser Ala Phe Ser Ser Tyr Ser Asp Leu Ser Glu Gly Glu Gln Glu Ala Arg Phe Ala Ala Gly Val Ala Glu Gln Phe Ala Ile Ala Glu Ala Lys 145 Leu Arg Ala Trp Ser Ser Val Asp Gly Glu Asp Ser Thr Asp Asp Ser Tyr Asp Glu Asp Phe Ala Gly Gly Met Asp Thr Asp Met Ala 175 Gly Gln Leu Pro Leu Gly Pro His Leu Gln Asp Leu Phe Thr Gly His Arg Phe Ser Arg Pro Val Arg Gln Gly Ser Val Glu Pro Glu 205 Ser Asp Cys Ser Gln Thr Val Ser Pro Asp Thr Leu Cys Ser Ser 220 Leu Cys Ser Leu Glu Asp Gly Leu Leu Gly Ser Pro Ala Arg Leu 235

```
Ala Ser Gln Leu Leu Gly Asp Glu Leu Leu Leu Ala Lys Leu Pro
Pro Ser Arg Glu Ser Ala Phe Arg Ser Leu Gly Pro Leu Glu Ala
Gln Asp Ser Leu Tyr Asn Ser Pro Leu Thr Glu Ser Cys Leu Ser
Pro Ala Glu Glu Pro Ala Pro Cys Lys Asp Cys Gln Pro Leu
Cys Pro Pro Leu Thr Gly Ser Trp Glu Arg Gln Arg Gln Ala Ser
Asp Leu Ala Ser Ser Gly Val Val Ser Leu Asp Glu Asp Glu Ala
Glu Pro Glu Glu Gln
                 335
<210> 34
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct
<400> 34
 tgtcctttgt cccagacttc tgtcc 25
<210> 35
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 35
 ctggatgcta atgtgtccag taaatgatcc ccttatcccg tcgcgatgct 50
<210> 36
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
```

<400> 36

```
ttccactcaa tgaggtgagc cactc 25
<210> 37
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-23
<223> Synthetic construct.
<400> 37
ggcgagccct aactatccag gag 23
<210> 38
<211> 39
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-39
<223> Synthetic construct.
<400> 38
 ggagateget gegetggeea ggteeteeet geatggtat 39
<210> 39
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-22
<223> Synthetic construct.
<400> 39
 ctgctgcaaa gcgagcctct tg 22
<210> 40
<211> 2084
<212> DNA
 <213> Homo sapiens
 <400> 40
 ggttcctggg cgctctgtta cacaagcaag atacagccag ccccacctaa 50
  ttttgtttcc ctggcaccct cctgctcagt gcgacattgt cacacttaac 100
  ccatctgttt tctctaatgc acgacagatt cctttcagac aggacaactg 150
  tgatatttca gttcctgatt gtaaatacct cctaagcctg aagcttctgt 200
  tactagccat tgtgagcttc agtttcttca tctgcaaaat gggcataata 250
  caatctattc ttgccacatc aagggattgt tattccttta aaaaaaaacc 300
```

aataccaaag aagcctacaa tgttggcctt agccaaaatt ctgttgattt 350 caacgttgtt ttattcactt ctatcgggga gccatggaaa agaaaatcaa 400 gacataaaca caacacagaa cattgcagaa gtttttaaaa caatggaaaa 450 taaacctatt tctttggaaa gtgaagcaaa cttaaactca gataaagaaa 500 atataaccac ctcaaatctc aaggcgagtc attcccctcc tttgaatcta 550 cccaacaaca gccacggaat aacagatttc tccagtaact catcagcaga 600 gcattetttg ggcagtetaa aacceacate taccatttee acaageeete 650 ccttgatcca tagctttgtt tctaaagtgc cttggaatgc acctatagca 700 gatgaagatc ttttgcccat ctcagcacat cccaatgcta cacctgctct 750 gtcttcagaa aacttcactt ggtctttggt caatgacacc gtgaaaactc 800 ctgataacag ttccattaca gttagcatcc tctcttcaga accaacttct 850 ccatctgtga cccccttgat agtggaacca agtggatggc ttaccacaaa 900 cagtgatagc ttcactgggt ttacccctta tcaagaaaaa acaactctac 950 agcctacctt aaaattcacc aataattcaa aactctttcc aaatacgtca 1000 gatccccaaa aagaaaatag aaatacagga atagtattcg gggccatttt 1050 aggtgctatt ctgggtgtct cattgcttac tcttgtgggc tacttgttgt 1100 gtggaaaaag gaaaacggat tcattttccc atcggcgact ttatgacgac 1150 agaaatgaac cagttctgcg attagacaat gcaccggaac cttatgatgt 1200 gagttttggg aattctagct actacaatcc aactttgaat gattcagcca 1250 tgccagaaag tgaagaaaat gcacgtgatg gcattcctat ggatgacata 1300 cctccacttc gtacttctgt atagaactaa cagcaaaaag gcgttaaaca 1350 gcaagtgtca tctacatcct agccttttga caaattcatc tttcaaaagg 1400 ttacacaaaa ttactgtcac gtggattttg tcaaggagaa tcataaaagc 1450 aggagaccag tagcagaaat gtagacagga tgtatcatcc aaaggttttc 1500 tttottacaa tttttggcca tootgaggca tttactaagt agcottaatt 1550 tgtattttag tagtattttc ttagtagaaa atatttgtgg aatcagataa 1600 aactaaaaga tttcaccatt acagccctgc ctcataacta aataataaaa 1650 attattccac caaaaaattc taaaacaatg aagatgactc tttactgctc 1700 tgcctgaagc cctagtacca taattcaaga ttgcattttc ttaaatgaaa 1750 attgaaaggg tgcttttaa agaaaatttg acttaaagct aaaaagagga 1800 catagcccag agtttctgtt attgggaaat tgaggcaata gaaatgacag 1850 acctgtattc tagtacgtta taattttcta gatcagcaca cacatgatca 1900 gcccactgag ttatgaagct gacaatgact gcattcaacg gggccatggc 1950 aggaaagctg accctaccca ggaaagtaat agcttctta aaagtcttca 2000 aaggtttgg gaattttaac ttgtcttaat atatcttagg cttcaattat 2050 ttgggtgcct taaaaactca atgagaatca tggt 2084

<210> 41 <211> 334 <212> PRT <213> Homo sapien

<213> Homo sapiens <400> 41 Met Leu Ala Leu Ala Lys Ile Leu Leu Ile Ser Thr Leu Phe Tyr Ser Leu Leu Ser Gly Ser His Gly Lys Glu Asn Gln Asp Ile Asn Thr Thr Gln Asn Ile Ala Glu Val Phe Lys Thr Met Glu Asn Lys Pro Ile Ser Leu Glu Ser Glu Ala Asn Leu Asn Ser Asp Lys Glu Asn Ile Thr Thr Ser Asn Leu Lys Ala Ser His Ser Pro Pro Leu Asn Leu Pro Asn Asn Ser His Gly Ile Thr Asp Phe Ser Ser Asn 85 Ser Ser Ala Glu His Ser Leu Gly Ser Leu Lys Pro Thr Ser Thr Ile Ser Thr Ser Pro Pro Leu Ile His Ser Phe Val Ser Lys Val 115 Pro Trp Asn Ala Pro Ile Ala Asp Glu Asp Leu Leu Pro Ile Ser 130 Ala His Pro Asn Ala Thr Pro Ala Leu Ser Ser Glu Asn Phe Thr Trp Ser Leu Val Asn Asp Thr Val Lys Thr Pro Asp Asn Ser Ser 160 Ile Thr Val Ser Ile Leu Ser Ser Glu Pro Thr Ser Pro Ser Val 175 170 Thr Pro Leu Ile Val Glu Pro Ser Gly Trp Leu Thr Thr Asn Ser 190 185

AspSerPheThrGly 200PheThrProTyrGln 205Glu LysThrThrLeu 210Gln ProThrLeu Lys 215PheThrAsnAsnSer 220LysLeu PheProAsn 225ThrSerAspProGln LysGlu AsnArg Asp 235ThrGly Ile Val Phe 240Gly Ala Ile Leu Gly 245Ala Ile Leu Gly 245Ala Ile Leu Gly 255Ser Leu Leu Thr Leu 255Val Gly Tyr Leu 260Cys Gly Lys Arg 265Thr Asp Ser Phe Ser 270His Arg Arg Leu 275Asp Asp Asp Asp Asp Asp Arg Asp 280ProVal Leu Arg 285Asp Asn Ala ProGlu 275Tyr Asp Asp Asp Asp Asp 316ProAla Met ProGlu Ser Glu 315Glu Asn Ala Arg Asp 320Gly Ile ProMet Asp Asp Asp Asp Ile ProProLeu 330

Arg Thr Ser Val

<210> 42 <211> 1594 <212> DNA <213> Homo sapiens

<400> 42
aacaggatct cctcttgcag tctgcagccc aggacgctga ttccagcagc 50

gccttaccgc gcagcccgaa gattcactat ggtgaaaatc gccttcaata 100
cccctaccgc cgtgcaaaag gaggaggcgc ggcaagacgt ggaggccctc 150
ctgagccgca cggtcagaac tcagatactg accggcaagg agctccgagt 200
tgccacccag gaaaaagagg gctcctctgg gagatgtatg cttactctct 250
taggccttc attcatcttg gcaggactta ttgttggtgg agcctgcatt 300
tacaagtact tcatgccaa gagcaccatt taccgtggag agatgtct 350
ttttgattct gaggatcctg caaattccct tcgtggagga gagcctaact 400
tcctgcctgt gactgaggag gctgacattc gtgaggatga caacattgca 450
atcattgatg tgcctgtccc cagtttctct gatagtgacc ctgcagcaat 500
tattcatgac tttgaaaagg gaatgactgc ttacctggac ttgttgctgg 550

ggaactgcta tctgatgccc ctcaatactt ctattgttat gcctccaaaa 600 aatctggtag agctctttgg caaactggcg agtggcagat atctgcctca 650 aacttatgtg gttcgagaag acctagttgc tgtggaggaa attcgtgatg 700 ttagtaacct tggcatcttt atttaccaac tttgcaataa cagaaagtcc 750 ttccgccttc gtcgcagaga cctcttgctg ggtttcaaca aacgtgccat 800 tgataaatgc tggaagatta gacacttccc caacgaattt attgttgaga 850 ccaagatctg tcaagagtaa gaggcaacag atagagtgtc cttggtaata 900 agaagtcaga gatttacaat atgactttaa cattaaggtt tatgggatac 950 tcaaqatatt tactcatgca tttactctat tgcttatgct ttaaaaaaaag 1000 gaaaaaaaaa aaaactacta accactgcaa gctcttgtca aattttagtt 1050 taattggcat tgcttgtttt ttgaaactga aattacatga gtttcatttt 1100 ttctttgcat ttatagggtt tagatttctg aaagcagcat gaatatatca 1150 cctaacatcc tgacaataaa ttccatccgt tgttttttt gtttgtttgt 1200 tttttctttt cctttaagta agctctttat tcatcttatg gtggagcaat 1250 tttaaaattt qaaatatttt aaattgtttt tgaacttttt gtgtaaaata 1300 tatcagatct caacattgtt ggtttctttt gtttttcatt ttgtacaact 1350 ttcttgaatt tagaaattac atctttgcag ttctgttagg tgctctgtaa 1400 ttaacctgac ttatatgtga acaattttca tgagacagtc atttttaact 1450 aatgcagtga ttctttctca ctactatctg tattgtggaa tgcacaaaat 1500 tgtgtaggtg ctgaatgctg taaggagttt aggttgtatg aattctacaa 1550

<210> 43

<211> 263

<212> PRT

<213> Homo sapiens

<400> 43

Met Val Lys Ile Ala Phe Asn Thr Pro Thr Ala Val Gln Lys Glu 1 5 10 15

Glu Ala Arg Gln Asp Val Glu Ala Leu Leu Ser Arg Thr Val Arg
20 25 30

Thr Gln Ile Leu Thr Gly Lys Glu Leu Arg Val Ala Thr Gln Glu 35 40 45

Lys Glu Gly Ser Ser Gly Arg Cys Met Leu Thr Leu Leu Gly Leu

Ser Phe Ile Leu Ala Gly Leu Ile Val Gly Gly Ala Cys Ile Tyr 65 70 75

Lys Tyr Phe Met Pro Lys Ser Thr Ile Tyr Arg Gly Glu Met Cys 80 85 90

Phe Phe Asp Ser Glu Asp Pro Ala Asn Ser Leu Arg Gly Glu 95 100 105

Pro Asn Phe Leu Pro Val Thr Glu Glu Ala Asp Ile Arg Glu Asp 110 115 120

Asp Asn Ile Ala Ile Ile Asp Val Pro Val Pro Ser Phe Ser Asp 125 130 135

Ser Asp Pro Ala Ala Ile Ile His Asp Phe Glu Lys Gly Met Thr 140 145 150

Ala Tyr Leu Asp Leu Leu Leu Gly Asn Cys Tyr Leu Met Pro Leu 155 160 165

Asn Thr Ser Ile Val Met Pro Pro Lys Asn Leu Val Glu Leu Phe 170 175 180

Gly Lys Leu Ala Ser Gly Arg Tyr Leu Pro Gln Thr Tyr Val Val 185 190 195

Leu Gly Ile Phe Ile Tyr Gln Leu Cys Asn Asn Arg Lys Ser Phe 215 220

Arg Leu Arg Arg Arg Asp Leu Leu Leu Gly Phe Asn Lys Arg Ala 230 235 240

Ile Asp Lys Cys Trp Lys Ile Arg His Phe Pro Asn Glu Phe Ile 245 250

Val Glu Thr Lys Ile Cys Gln Glu 260

<210> 44

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial sequence

<222> 1-24

<223> Synthetic construct.

<400> 44

gaaagacacg acacagcagc ttgc 24

<210> 45

```
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-20
<223> Synthetic construct.
<400> 45
 gggaactgct atctgatgcc 20
<210> 46
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-26
<223> Synthetic construct.
<400> 46
 caggatetee tettgeagte tgeage 26
<210> 47
<211> 28
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-28
<223> Synthetic construct.
<400> 47
cttctcgaac cacataagtt tgaggcag 28
<210> 48
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
<400> 48
cacgattccc tccacagcaa ctggg 25
<210> 49
<211> 1969
<212> DNA
<213> Homo sapiens
<400> 49
```

ggaggagga gggcgggcag gcgccagccc agagcagccc cgggcaccag 50

cacggactet etettecage ecaggtgeee eccaeteteg etecattegg 100 cgggagcacc cagtcctgta cgccaaggaa ctggtcctgg gggcaccatg 150 gtttcggcgg cagcccccag cctcctcatc cttctgttgc tgctgctggg 200 gtctgtgcct gctaccgacg cccgctctgt gcccctgaag gccacgttcc 250 tggaggatgt ggcgggtagt ggggaggccg agggctcgtc ggcctcctcc 300 ccgagcctcc cgccaccctg gaccccggcc ctcagcccca catcgatggg 350 gccccagccc acaaccctgg ggggcccatc acccccacc aacttcctgg 400 atgggatagt ggacttette egceagtacg tgatgetgat tgetgtggtg 450 ggctccctgg cctttctgct gatgttcatc gtctgtgccg cggtcatcac 500 ccggcagaag cagaaggcct cggcctatta cccatcgtcc ttccccaaga 550 agaagtacgt ggaccagagt gaccgggccg ggggcccccg ggccttcagt 600 gaggtccccg acagagcccc cgacagcagg cccgaggaag ccctggattc 650 ctcccggcag ctccaggccg acatcttggc cgccacccag aacctcaagt 700 ccccaccag ggctgcactg ggcggtgggg acggagccag gatggtggag 750 ggcaggggcg cagaggaaga ggagaagggc agccaggagg gggaccagga 800 agtccaggga catggggtcc cagtggagac accagaggcg caggaggagc 850 cgtgctcagg ggtccttgag ggggctgtgg tggccggtga gggccaaggg 900 gagctggaag ggtctctctt gttagcccag gaagcccagg gaccagtggg 950 tececegaa ageceetgtg ettgeageag tgtecacece agtgtetaae 1000 agtcctcccg ggctgccagc cctgactgtc gggcccccaa gtggtcacct 1050 ccccgtgtat gaaaaggcct tcagccctga ctgcttcctg acactccctc 1100 cttggcctcc ctgtggtgcc aatcccagca tgtgctgatt ctacagcagg 1150 cagaaatgct ggtccccggt gccccggagg aatcttacca agtgccatca 1200 teetteacet cageageece aaagggetae ateetacage acageteece 1250 tgacaaagtg agggagggca cgtgtccctg tgacagccag gataaaacat 1300 cccccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcccaaac 1350 tactttttaa aacagctaca gggtaaaatc ctgcagcacc cactctggaa 1400 aatactgctc ttaattttcc tgaaggtggc cccctgtttc tagttggtcc 1450 aggattaggg atgtggggta tagggcattt aaatcctctc aagcgctctc 1500

<210> 50

<211> 283

<212> PRT

<213> Homo sapiens

<400> 50

Met Val Ser Ala Ala Ala Pro Ser Leu Leu Ile Leu Leu Leu Leu 1 5 10 15

Leu Leu Gly Ser Val Pro Ala Thr Asp Ala Arg Ser Val Pro Leu 20 25 30

Lys Ala Thr Phe Leu Glu Asp Val Ala Gly Ser Gly Glu Ala Glu 35 40 45

Gly Ser Ser Ala Ser Ser Pro Ser Leu Pro Pro Pro Trp Thr Pro 50 55 60

Ala Leu Ser Pro Thr Ser Met Gly Pro Gln Pro Thr Thr Leu Gly 65 70 75

Gly Pro Ser Pro Pro Thr Asn Phe Leu Asp Gly Ile Val Asp Phe 80 85 90

Phe Arg Gln Tyr Val Met Leu Ile Ala Val Val Gly Ser Leu Ala 95 100 105

Phe Leu Leu Met Phe Ile Val Cys Ala Ala Val Ile Thr Arg Gln
110 115 120

Lys Gln Lys Ala Ser Ala Tyr Tyr Pro Ser Ser Phe Pro Lys Lys 125 130 135

Lys Tyr Val Asp Gln Ser Asp Arg Ala Gly Gly Pro Arg Ala Phe 140 145 150

Ser Glu Val Pro Asp Arg Ala Pro Asp Ser Arg Pro Glu Glu Ala 155 160 165
 Leu
 Asp
 Ser
 Ser
 Arg 170
 Gln
 Leu
 Gln
 Ala
 Asp 175
 Ile
 Leu
 Ala
 Ala
 Thr 180

 Gln
 Asn
 Leu
 Lys
 Ser
 Pro
 Thr Arg
 Ala
 Ala
 Leu
 Gly
 Gly
 Gly
 Asp 195

 Gly
 Ala
 Arg
 Met
 Val
 Gly
 Arg
 Gly
 Ala
 Gly
 Gly
 Gly
 Fro
 Gly
 Gly
 Ala
 Gly
 Fro
 Val
 Gly
 Fro
 Gly
 Fro
 Zan
 Ala
 Ala
 Ala
 Gly
 Ala
 Gly
 Fro
 Yal
 Gly

<210> 51 <211> 1734 <212> DNA <213> Homo sapiens

<400> 51
gtggactctgagaagcccaggcagttgaggacaggagagagaaggctgca50gacccagagggagggaggacagggagtcggaaggaggaggacagaggagg100gcacagagacgcagagcaagggcggcaaggaggagagccctggtgggagga150agacactctggagagagagggggctggcagagatgaagttecaggggcc200cctggcctgcctcctgctggccetctgcctgggcagtggggaggctggcc250ccctgcagagcggagaggaaagcactgggacaaatattggggaggccctt300ggacatggcctggagagcgcctgagcgaaggggtgggaaaggccattgg350caaagaggccggaggggcagctggctctaaagtcagtgaggcccttggcc400aagggaccagatgcactggagtcaggcaggttccaggcttt450gggaaacactgggcacgagattggcagacaggcagaagatgtcattcgac500gggaaacactgggcacgagattggcagacaggcagaagatgtcattcgac550acggagcagatgctgtccgcggctcctggcagggggtgcctggccacagt600ggtgcttggaaacttctggaggccatggcatctttggctctcaaggtgg700

tccacggata ccccggaaac tcagcaggca gctttggaat gaatcctcag 750 ggagctccct ggggtcaagg aggcaatgga gggccaccaa actttgggac 800 caacactcag ggagctgtgg cccagcctgg ctatggttca gtgagagcca 850 gcaaccagaa tgaagggtgc acgaatcccc caccatctgg ctcaggtgga 900 ggctccagca actctggggg aggcagcggc tcacagtcgg gcagcagtgg 950 cagtggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000 gcagtggcag cagcagtggc agcagcagtg gcggcagcag tggcggcagc 1050 agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100 tgagtectee tggggateca geaceggete etecteegge aaceaeggtg 1150 ggagcggcgg aggaaatgga cataaacccg ggtgtgaaaa gccagggaat 1200 gaagcccgcg ggagcgggga atctgggatt cagggcttca gaggacaggg 1250 agtttccagc aacatgaggg aaataagcaa agagggcaat cgcctccttg 1300 gaggctctgg agacaattat cgggggcaag ggtcgagctg gggcagtgga 1350 ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400 tgggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450 gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500 ccgtgacctc cagacaagga gccaccagat tggatgggag cccccacact 1550 ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600 aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaa 1734

<210> 52

<211> 440

<212> PRT

<213> Homo sapiens

<400> 52

Met Lys Phe Gln Gly Pro Leu Ala Cys Leu Leu Leu Ala Leu Cys 1 5 10

Leu Gly Ser Gly Glu Ala Gly Pro Leu Gln Ser Gly Glu Glu Ser 20 25 30

Thr Gly Thr Asn Ile Gly Glu Ala Leu Gly His Gly Leu Gly Asp
35 40 45

Ala Leu Ser Glu Gly Val Gly Lys Ala Ile Gly Lys Glu Ala Gly

Ser Ser Ser Gly Asn His Gly Gly Ser Gly Gly Asn Gly His

Lys Pro Gly Cys Glu Lys Pro Gly Asn Glu Ala Arg Gly Ser Gly

340

Glu Ser Gly Ile Gln Gly Phe Arg Gly Gln Gly Val Ser Ser Asn 360

Met Arg Glu Ile Ser Lys Glu Gly Asn Arg Leu Leu Gly Gly Ser 375

Gly Asp Asn Tyr Arg Gly Gln Gly Ser Ser Trp Gly Ser Gly 390

Gly Asp Ala Val Gly 395

Pro Gly Met Phe Asn And Asp Thr Phe Trp Lys Asn Phe Lys Ser 420

Lys Leu Gly Phe Ile Asn Trp Asp Ala Ile Asn Lys Asp Gln Arg 435

Ser Ser Arg Ile Pro 440

<210> 53

<211> 3580

<212> DNA

<213> Homo sapiens

<400> 53 gaccggtccc tccggtcctg gatgtgcgga ctctgctgca gcgagggctg 50 caggcccgcc gggcggtgct caccgtgccc tggctggtgg agtttctctc 100 ctttgctgac catgttgttc ccttgctgga atattaccgg gacatcttca 150 ctctcctgct gcgcctgcac cggagcttgg tgttgtcgca ggagagtgag 200 gggaagatgt gtttcctgaa caagctgctg ctacttgctg tcctgggctg 250 gcttttccag attcccacag tccctgagga cttgttcttt ctggaagagg 300 gtccctcata tgcctttgag gtggacacag tagccccaga gcatggcttg 350 gacaatgcgc ctgtggtgga ccagcagctg ctctacacct gctgccccta 400 categgagag eteeggaaae tgetegette gtgggtgtea ggeagtagtg 450 gacggagtgg gggcttcatg aggaaaatca cccccaccac taccaccagc 500 ctgggagccc agccttccca gaccagccag gggctgcagg cacagctcgc 550 ccaggcettt ttecacaace ageegeette ettgegeegg acegtagagt 600 tcgtggcaga aagaattgga tcaaactgtg tcaaacatat caaggctaca 650 ctggtggcag atctggtgcg ccaggcagag tcacttctcc aagagcagct 700 ggtgacacag ggagaggaag ggggagaccc agcccagctg ttggagatct 750 tgtgttccca gctgtgccct cacggggccc aggcattggc cctggggcgg 800 gagttctgtc aaaggaagag ccctggggct gtgcgggcgc tgcttccaga 850 ggagaccccg gcagccgttc tgagcagtgc agagaacatt gctgtggggc 900 ttgcaacaga gaaagcctgt gcttggctgt cagccaacat cacagcactg 950 atcaggaggg aggtgaaagc agcagtgagt cgcacacttc gagcccaggg 1000 teetgaaeet getgeeeggg gggageggag gggetgetee egegeetgae 1050 gtgctctcct tggccgtggg gccacgggac cctgacgagg gagtctcccc 1100 agagcatctg gaacagctcc taggccagct gggccagacg ctgcggtgcc 1150 gccagttcct gtgcccacct gctgagcagc atctggcaaa gtgctctgtg 1200 gagttagett eceteetegt tgeagateaa atteetatee tagggeeece 1250 ggcacagtac aggctggaga gagggcaggc tcgaaggctt ctgcacatgc 1300 tgctttcctt gtggaaggaa gactttcagg ggccggttcc gctgcagctg 1350 ctgctgagcc caagaaatgt ggggcttctg gcagacacaa ggccaaggga 1400 gtgggacttg ctgctattct tgctacggga gctggtggag aagggtctga 1450 tgggacggat ggagatagag gcctgcctgg gcagcctcca ccaggcccag 1500 tggccagggg actttgctga agaattagca acactgtcta atctgtttct 1550 agccgagccc cacctgccag aaccccagct aagagcctgt gagttggtgc 1600 agccaaaccg gggcactgtg ctggcccaga gctagggctg agaagtggcc 1650 ctgccttggg cattgcacca gaaccctgga cccccgcctc acgaggaggc 1700 ccaagtgccc aatgcagacc ctcactggtt ggggtgtagc tgggtctaca 1750 gtcagacttc ctgctctaag ggtgtcactg cctggcatcc caccacgcga 1800 atcctagagg aaggagagtt ggcctgattt gggattatgg cagaaaagtc 1850 cagagatgcc agtcctggag tagaagaggt ggtgtttgtt tatctcttgg 1900 atactaaatg aaatgaggtg tgtgggcttg tcaacacaga attcaagcct 1950 catttgctat cccagcatct cttaaaactt tgtagtcttg gaattcatga 2000 cagaggcaaa tgactcctgc ttaacttatg aagaaagtta aaacatgaat 2050 cttgggagtc tacattttct tatcaccagg agctggactg ccatctcctt 2100 ataaatgcct aacacaggcc gggtctggtg gctcatgcct gtaatcccag 2150 cactttgaga ggcctgaggt cggcggactg cctgaggtca ggaattcaag 2200 accagcctgg ccaacatggc aaaaccccat ctctactaaa aataaaaaaa 2250 ttattagctg ggcatggtgg tgtgtgcctg taatcccagc tactcaggag 2300 gatgaggcag gagacctgct tgaacctgga ggtggaggtt gcagtgagcc 2350 gaggtcgcac cactgcactc cagtctgggt aacagagcga gactttctag 2400 aaaaagccta acaaacagat aaggtaggac tcaaccaact gaaacctgac 2450 tttccccctg taccttcagc ccctgtgcag gtagtaacct cttgagacct 2500 ctccctgacc agggaccaag cacagggcat ttagagcttt ttagaataaa 2550 ctggttttct ttaaaaaaaa aaaaaaaaa agggcggccg ccctttttt 2600 ttttattaaa attctcccca cacgatggct cctgcaatct gccacagctc 2700 tggggcgtgt cctgtaggga aaggccctgt tttccctgag gcggggctgg 2750 gcttgtccat gggtccgcgg agctggccgt gcttggcgcc ctggcgtgtg 2800 tctagctgct tcttgccggg cacagagctg cggggtctgg gggcaccggg 2850 agctaagagc aggctctggt gcaggggtgg aggcctgtct cttaaccgac 2900 accetgaggt geteetgaga tgetgggtee accetgagtg geaeggggag 2950 cagctgtggc cggtgctcct tcytaggcca gtcctgggga aactaagctc 3000 gggcccttct ttgcaaagac cgaggatggg gtgggtgtgg gggactcatg 3050 gggaatggcc tgaggagcta cgtgtgaaga gggcgccggt ttgttggctg 3100 cageggeetg gagegeetet etectgagee teagttteee ttteegteta 3150 atgaagaaca tgccgtctcg gtgtctcagg gctattagga cttgccctca 3200 ggaagtggcc ttggacgagc gtcatgttat tttcacaact gtcctgcgac 3250 gttggcctgg gcacgtcatg gaatggccca tgtccctctg ctgcgtggac 3300 gtcgcggtcg ggagtgcgca gccagaggcg gggccagacg tgcgcctggg 3350 ggtgagggga ggcgccccgg gagggcctca caggaagttg ggctcccgca 3400 ccaccaggca gggcgggctc ccgccgccgc cgccgccacc accgtccagg 3450 ggccggtaga caaagtggaa gtcgcgcttg ggctcgctgc gcagcaggta 3500 gcccttgatg cagtgcggca gcgccgtcgtc cgccagctgg aagcagcgcc 3550 cgtccaccag cacgaacagc cggtgcgcct 3580

<210> 54

<211> 280

<212> PRT

<213> Homo sapiens

<400> Met 1	· 54 Cys	Phe	Leu	Asn 5	Lys	Leu	Leu	Leu	Leu 10	Ala	Val	Leu	Gly	Trp 15
Leu	Phe	Gln	Ile	Pro 20	Thr	Val	Pro	Glu	Asp, 25	Leu	Phe	Phe	Leu	Glu 30
Glu	Gly	Pro	Ser	Tyr 35	Ala	Phe	Glu	Val	Asp 40	Thr	Val	Ala	Pro	Glu 45
His	Gly	Leu	Asp	Asn 50	Ala	Pro	Val	Val	Asp 55	Gln	Gln	Leu	Leu	Туг 60
Thr	Суѕ	Cys	Pro	Tyr 65	Ile	Gly	Glu	Leu	Arg 70	Lys	Leu	Leu	Ala	Ser 75
Trp	Val	Ser	Gly	Ser 80	Ser	Gly	Arg	Ser	Gly 85	Gly	Phe	Met	Arg	Lys 90
Ile	Thr	Pro	Thr	Thr 95	Thr	Thr	Ser	Leu	Gly 100	Ala	Gln	Pro	Ser	Gln 105
Thr	Ser	Gln	Gly	Leu 110	Gln	Ala	Gln	Leu	Ala 115	Gln	Ala	Phe	Phe	His 120
Asn	Gln	Pro	Pro	Ser 125	Leu	Arg	Arg	Thr	Val 130	Glu	Phe	Val	Ala	Glu 135
Arg	Ile	Gly	Ser	Asn 140	Cys	Val	Lys	His	Ile 145	Lys	Ala	Thr	Leu	Val 150
Ala	Asp	Leu	Val	Arg 155	Gln	Ala	Glu	Ser	Leu 160	Leu	Gln	Glu	Gln	Leu 165
Val	Thr	Gln	Gly	Glu 170	Glu	Gly	Gly	Asp	Pro 175	Ala	Gln	Leu	Leu	Glu 180
Ile	Leu	Cys	Ser	Gln 185	Leu	Cys	Pro	His	Gly 190	Ala	Gln	Ala	Leu	Ala 195
Leu	Gly	Arg	Glu	Phe 200	Cys	Gln	Arg	Lys	Ser 205	Pŗo	Gly	Ala	Val	Arg 210
Ala	Leu	ı Leu	Pro	Glu 215	Glu	Thr	Pro	Ala	Ala 220	val	Leu	Ser	Ser	Ala 225
Glu	Asr	ıle	Ala	Val 230		Leu	ı Ala	Thr	Glu 235	Lys	: Ala	Cys	s Ala	Trp 240
Leu	Sei	Ala	Asn	Ile 245	Thr	Ala	ı Leı	ı Ile	250	g Arg	g Glu	ı Val	Lys	255
Ala	val	l Sei	Arg	Thr 260		Arg	g Alá	a Glr	n Gly 26	y Pro	o Glu	ı Pro) Ala	Ala 270
Arg	յ Glչ	y Glu	a Arg	Arg 275		cys	s Sei	r Ar	g Ala 280	a)				

<210> 55 <211> 2401 <212> DNA <213> Homo sapiens

<400> 55 tcccttgaca ggtctggtgg ctggttcggg gtctactgaa ggctgtcttg 50 atcaggaaac tgaagactct ctgcttttgc cacagcagtt cctgcagctt 100 ccttgaggtg tgaacccaca tccctgcccc cagggccacc tgcaggacgc 150 cgacacctac ccctcagcag acgccggaga gaaatgagta gcaacaaaga 200 gcagcggtca gcagtgttcg tgatcctctt tgccctcatc accatcctca 250 tectetacag etecaacagt gecaatgagg tettecatta eggeteeetg 300 cggggccgta gccgccgacc tgtcaacctc aagaagtgga gcatcactga 350 cggctatgtc cccattctcg gcaacaagac actgccctct cggtgccacc 400 agtgtgtgat tgtcagcagc tccagccacc tgctgggcac caagctgggc 450 cctgagatcg agcgggctga gtgtacaatc cgcatgaatg atgcacccac 500 cactggctac tcagctgatg tgggcaacaa gaccacctac cgcgtcgtgg 550 cccattccag tgtgttccgc gtgctgagga ggccccagga gtttgtcaac 600 cggacccctg aaaccgtgtt catcttctgg gggcccccga gcaagatgca 650 gaagccccag ggcagcctcg tgcgtgtgat ccagcgagcg ggcctggtgt 700 tececaacat ggaageatat geegtetete eeggeegeat geggeaattt 750 gacgacctct tccggggtga gacgggcaag gacagggaga agtctcattc 800 gtggttgagc acaggctggt ttaccatggt gatcgcggtg gagttgtgtg 850 accaegtgea tgtctatgge atggteecee ceaactaetg cagecagegg 900 ccccgcctcc agcgcatgcc ctaccactac tacgagccca aggggccgga 950 cgaatgtgtc acctacatcc agaatgagca cagtcgcaag ggcaaccacc 1000 accgcttcat caccgagaaa agggtcttct catcgtgggc ccagctgtat 1050 ggcatcacct teteceacce etectggace taggecacce ageetgtggg 1100 acctcaggag ggtcagagga gaagcagcct ccgcccagcc gctaggccag 1150 ggaccatett etggecaate aaggettget ggagtgtete ecagecaate 1200 agggccttga ggaggatgta tcctccagcc aatcagggcc tggggaatct 1250 gttggcgaat cagggatttg ggagtctatg tggttaatca ggggtgtctt 1300 tettgtgcag teagggtetg egeacagtea ateagggtag agggggtatt 1350 tctgagtcaa tctgaggcta aggacatgtc ctttcccatg aggccttggt 1400 teagageece aggaatggae eccecaatea etececaete tgetgggata 1450 atggggtcct gtcccaagga gctgggaact tggtgttgcc ccctcaattt 1500 ccagcaccag aaagagagat tgtgtggggg tagaagctgt ctggaggccc 1550 ggccagagaa tttgtggggt tgtggaggtt gtgggggggg tggggaggtc 1600 ccagaggtgg gaggctggca tccaggtctt ggctctgccc tgagaccttg 1650 gacaaaccct teceeetete tgggcaeeet tetgeeeaca eeagttteea 1700 gtgcggagtc tgagaccctt tccacctccc ctacaagtgc cctcgggtct 1750 gtcctccccg tctggaccct cccagccact atcccttgct ggaaggctca 1800 gctctttggg gggtctgggg tgacctcccc acctcctgga aaactttagg 1850 gtatttttgc gcaaactcct tcagggttgg gggactctga aggaaacggg 1900 acaaaacctt aagctgtttt cttagcccct cagccagctg ccattagctt 1950 ggctcttaaa gggccaggcc tccttttctg ccctctagca gggaggtttt 2000 ccaactgttg gaggcgcctt tggggctgcc cctttgtctg gagtcactgg 2050 gggcttccga gggtctccct cgaccctctg tcgtcctggg atggctgtcg 2100 ggagctgtat cacctgggtt ctgtcccctg gctctgtatc aggcacttta 2150 ttaaagctgg gcctcagtgg ggtgttttg tctcctgctc ttctggagcc 2200 tggaaggaaa gggcttcagg aggaggctgt gaggctggag ggaccagatg 2250 gaggaggcca gcagctagcc attgcacact ggggtgatgg gtgggggggg 2300 tgactgcccc agacttggtt ttgtaatgat ttgtacagga ataaacacac 2350 a 2401

- <210> 56
- <211> 299
- <212> PRT
- <213> Homo sapiens
- <400> 56
- Met Ser Ser Asn Lys Glu Gln Arg Ser Ala Val Phe Val Ile Leu 1 5 10 15
- Phe Ala Leu Ile Thr Ile Leu Ile Leu Tyr Ser Ser Asn Ser Ala 20 25 30

Asn	Glu	Val	Phe ·	His 35	Tyr	Gly	Ser	Leu	Arg 40	Gly	Arg	Ser	Arg	Arg 45
Pro	Val	Asn	Leu	Lys 50	Lys	Trp	Ser	Ile	Thr 55	Asp	Gly	Tyr	Val	Pro 60
Ile	Leu	Gly	Asn	Lys 65	Thr	Leu	Pro	Ser	Arg 70	Cys	His	Gln	Cys	Val 75
Ile	Val	Ser	Ser	Ser 80	Ser	His	Leu	Leu	Gly 85	Thr	Lys	Leu	Gly	Pro 90
Glu	Ile	Glu	Arg	Ala 95	Glu	Cys	Thr	Ile	Arg 100	Met	Asn	Asp	Ala	Pro 105
Thr	Thr	Gly	Tyr	Ser 110	Ala	Asp	Val	Gly	Asn 115	Lys	Thr	Thr	Tyr	Arg 120
Val	Val	Ala	His	Ser 125	Ser	Val	Phe	Arg	Val 130	Leu	Arg	Arg	Pro	Gln 135
Glu	Phe	Val	Asn	Arg 140	Thr	Pro	Glu	Thr	Val 145	Phe	Ile	Phe	Trp	Gly 150
Pro	Pro	Ser	Lys	Met 155	Gln	Lys	Pro	Gln	Gly 160	Ser	Leu	Val	Arg	Val 165
Ile	Gln	Arg	Ala	Gly 170	Leu	Val	Phe	Pro	Asn 175	Met	Glu	Ala	Tyr	Ala 180
Val	Ser	Pro	Gly	Arg 185	Met	Arg	Gln	Phe	Asp 190	Asp	Leu	Phe	Arg	Gly 195
Glu	Thr	Gly	Lys	Asp 200	Arg	Glu	Lys	Ser	His 205	Ser	Trp	Leu	Ser	Thr 210
Gly	Trp	Phe	Thr	Met 215		Ile	Ala	Val	Glu 220	Leu	Cys	Asp	His	Val 225
His	Val	Tyr	Gly	Met 230		Pro	Pro	Asn	Tyr 235	Cys ''	Ser	Gln	Arg	Pro 240
Arg	Leu	Gln	Arg	Met 245		Tyr	His	Tyr	Tyr 250	Glu	Pro	Lys	Gly	Pro 255
Asp	Glu	Cys	Val	Thr 260	Tyr	lle	e Gln	Asn	Glu 265	His	s Ser	Arg	l Lys	Gly 270
Asn	His	His	: Arg	Phe 275		Thr	Glu	Lys	280	Val	. Phe	e Ser	Ser	Trp 285
Ala	Gln	Leu	туr	Gly 290		Thr	Phe	Ser	His 295	Pro	Ser	Trp	Thr	

<210> 57 <211> 4277 <212> DNA <213> Homo sapiens

<400> 57 gtttctcata gttggcgtct tctaaaggaa aaacactaaa atgaggaact 50 cageggaeeg ggagegaege agettgaggg aageateeet agetgttgge 100 gcagagggc gaggctgaag ccgagtggcc cgaggtgtct gaggggctgg 150 ggcaaaggtg aaagagtttc agaacaagct teetggaace catgacecat 200 gaagtettgt egacatttat acegtetgag ggtageaget egaaactaga 250 agaagtggag tgttgccagg gacggcagta tetetttgtg tgaccetgge 300 ggcctatggg acgttggctt cagacetttg tgatacacca tgctgcgtgg 350 gacgatgacg gcgtggagag gaatgaggcc tgaggtcaca ctggcttgcc 400 tectectage cacageagge tgetttgetg acttgaacga ggteeetcag 450 gtcaccgtcc agcctgcgtc caccgtccag aagcccggag gcactgtgat 500 cttgggctgc gtggtggaac ctccaaggat gaatgtaacc tggcgcctga 550 atggaaagga gctgaatggc tcggatgatg ctctgggtgt cctcatcacc 600 cacgggaccc tcgtcatcac tgcccttaac aaccacactg tgggacggta 650 ccagtgtgtg gcccggatgc ctgcgggggc tgtggccagc gtgccagcca 700 ctgtgacact agccaatctc caggacttca agttagatgt gcagcacgtg 750 attgaagtgg atgagggaaa cacagcagtc attgcctgcc acctgcctga 800 gagccacccc aaagcccagg tccggtacag cgtcaaacaa gagtggctgg 850 aggectecag aggtaactae etgateatge ceteagggaa eetecagatt 900 gtgaatgcca gccaggagga cgagggcatg tacaagtgtg cagcctacaa 950 cccagtgacc caggaagtga aaacctccgg ctccagcgac aggctacgtg 1000 tgcgccgctc caccgctgag gctgcccgca tcatctaccc cccagaggcc 1050 caaaccatca tcgtcaccaa aggccagagt ctcattctgg agtgtgtggc 1100 cagtggaatc ccaccccac gggtcacctg ggccaaggat gggtccagtg 1150 tcaccggcta caacaagacg cgcttcctgc tgagcaacct cctcatcgac 1200 accaccageg aggaggacte aggeacetae egetgeatgg eegacaatgg 1250 ggttgggcag cccggggcag cggtcatcct ctacaatgtc caggtgtttg 1300 aaccccctga ggtcaccatg gagctatccc agctggtcat cccctggggc 1350 cagagtgcca agcttacctg tgaggtgcgt gggaaccccc cgccctccgt 1400 getgtggetg aggaatgetg tgcccetcat etccagecag egeeteegge 1450 tctcccgcag ggccctgcgc gtgctcagca tggggcctga ggacgaaggc 1500 gtctaccagt gcatggccga gaacgaggtt gggagcgccc atgccgtagt 1550 ccagctgcgg acctccaggc caagcataac cccaaggcta tggcaggatg 1600 ctgagctggc tactggcaca cctcctgtat caccetccaa actcggcaac 1650 cctgagcaga tgctgagggg gcaaccggcg ctccccagac ccccaacgtc 1700 agtggggcct gcttccccga agtgtccagg agagaagggg cagggggctc 1750 ccgccgaggc tcccatcatc ctcagctcgc cccgcacctc caagacagac 1800 tcatatgaac tggtgtggcg gcctcggcat gagggcagtg gccgggcgcc 1850 aatcctctac tatgtggtga aacaccgcaa gcaggtcaca aattcctctg 1900 acgattggac catctctggc attccagcca accagcaccg cctgaccctc 1950 accagacttg accccgggag cttgtatgaa gtggagatgg cagcttacaa 2000 ctgtgcggga gagggccaga cagccatggt caccttccga actggacggc 2050 ggcccaaacc cgagatcatg gccagcaaag agcagcagat ccagagagac 2100 gaccetggag ceagteecea gageageage cageeagace aeggeegeet 2150 ctcccccca gaagetcccg acaggcccac catctccacg gcctccgaga 2200 cctcagtgta cgtgacctgg attccccgtg ggaatggtgg gttcccaatc 2250 cagtccttcc gtgtggagta caagaagcta aagaaagtgg gagactggat 2300 totggccacc agegecatec ecceategeg getgteegtg gagateaegg 2350 gcctagagaa aggcacctcc tacaagtttc gagtccgggc tctgaacatg 2400 ctgggggaga gcgagcccag cgcccctct cggccctacg tggtgtcggg 2450 ctacagcggt cgcgtgtacg agaggcccgt ggcaggtcct tatatcacct 2500 tcacggatgc ggtcaatgag accaccatca tgctcaagtg gatgtacatc 2550 ccagcaagta acaacaacac cccaatccat ggcttttata tctattatcg 2600 acccacagac agtgacaatg atagtgacta caagaaggat atggtggaag 2650 gggacaagta ctggcactcc atcagccacc tgcagccaga gacctcctac 2700 gacattaaga tgcagtgctt caatgaagga ggggagagcg agttcagcaa 2750 cgtgatgatc tgtgagacca aagctcggaa gtcttctggc cagcctggtc 2800 gactgccacc.cccaactctg gccccaccac agccgcccct tcctgaaacc 2850 atagagegge eggtgggeac tggggeeatg gtggeteget eeagegaeet 2900

gccctatctg attgtcgggg tcgtcctggg ctccatcgtt ctcatcatcg 2950 tcaccttcat ccccttctgc ttgtggaggg cctggtctaa gcaaaaacat 3000 acaacagacc tgggttttcc tcgaagtgcc cttccaccct cctgcccgta 3050 tactatggtg ccattgggag gactcccagg ccaccaggcc agtggacagc 3100 cctacctcag tggcatcagt ggacgggcct gtgctaatgg gatccacatg 3150 aataggggct gcccctcggc tgcagtgggc tacccgggca tgaagcccca 3200 gcagcactgc ccaggcgagc ttcagcagca gagtgacacc agcagcctgc 3250 tgaggcagac ccatcttggc aatggatatg acccccaaag tcaccagatc 3300 acgaggggtc ccaagtctag cccggacgag ggctctttct tatacacact 3350 gcccgacgac tccactcacc agctgctgca gccccatcac gactgctgcc 3400 aacgccagga gcagcctgct gctgtgggcc agtcaggggt gaggagagcc 3450 cccgacagtc ctgtcctgga agcagtgtgg gaccctccat ttcactcagg 3500 gcccccatgc tgcttgggcc ttgtgccagt tgaagaggtg gacagtcctg 3550 actcctgcca agtgagtgga ggagactggt gtccccagca ccccgtaggg 3600 gcctacgtag gacaggaacc tggaatgcag ctctccccgg ggccactggt 3650 gcgtgtgtct tttgaaacac cacctctcac aatttaggca gaagctgata 3700 tcccagaaag actatatatt gtttttttt taaaaaaaaa agaagaaaaa 3750 agagacagag aaaattggta tttattttc tattatagcc atatttatat 3800 atttatgcac ttgtaaataa atgtatatgt tttataattc tggagagaca 3850 taaggagtcc tacccgttga ggttggagag ggaaaataaa gaagctgcca 3900 cctaacagga gtcacccagg aaagcaccgc acaggctggc gcgggacaga 3950 etectaacet ggggeetetg eagtggeagg egaggetgea ggaggeeeae 4000 agataagctg gcaagaggaa ggatcccagg cacatggttc atcacgagca 4050 tgagggaaca gcaaggggca cggtatcaca gcctggagac acccacacag 4100 atggctggat ccggtgctac gggaaacatt ttcctaagat gcccatgaga 4150 acagaccaag atgtgtacag cactatgagc attaaaaaac cttccagaat 4200 caataatccg tggcaacata tctctgtaaa aacaaacact gtaacttcta 4250 aataaatgtt tagtcttccc tgtaaaa 4277

<210> 58 <211> 1115

<213> Homo sapiens

<400> 58 Met Leu Arg Gly Thr Met Thr Ala Trp Arg Gly Met Arg Pro Glu Val Thr Leu Ala Cys Leu Leu Leu Ala Thr Ala Gly Cys Phe Ala Asp Leu Asn Glu Val Pro Gln Val Thr Val Gln Pro Ala Ser Thr Val Gln Lys Pro Gly Gly Thr Val Ile Leu Gly Cys Val Val Glu Pro Pro Arg Met Asn Val Thr Trp Arg Leu Asn Gly Lys Glu Leu Asn Gly Ser Asp Asp Ala Leu Gly Val Leu Ile Thr His Gly Thr Leu Val Ile Thr Ala Leu Asn Asn His Thr Val Gly Arg Tyr Gln Cys Val Ala Arg Met Pro Ala Gly Ala Val Ala Ser Val Pro Ala 115 Thr Val Thr Leu Ala Asn Leu Gln Asp Phe Lys Leu Asp Val Gln 130 125 His Val Ile Glu Val Asp Glu Gly Asn Thr Ala Val Ile Ala Cys 145 His Leu Pro Glu Ser His Pro Lys Ala Gln Val Arg Tyr Ser Val 155 Lys Gln Glu Trp Leu Glu Ala Ser Arg Gly Asn Tyr Leu Ile Met Pro Ser Gly Asn Leu Gln Ile Val Asn Ala Şer Gln Glu Asp Glu Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gln Glu Val 205 Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser Thr 215 Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr Ile Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala Ser

265

Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser Ser

Val	Thr	Gly	Tyr	Asn 275	Lys	Thr	Arg	Phe	Leu 280	Leu	Ser	Asn	Leu	Leu 285
Ile	Asp	Thr	Thr	Ser 290	Glu	Glu	Asp	Ser	Gly 295	Thr	Tyr	Arg	Cys	Met 300
Ala	Asp	Asn	Gly	Val 305	Gly	Gln	Pro	Gly	Ala 310	Ala	Val	Ile	Leu	Tyr 315
Asn	Val	Gln	Val	Phe 320	Glu	Pro	Pro	Glu	Val 325	Thr	Met	Glu	Leu	Ser 330
Gln	Leu	Val	Ile	Pro 335	Trp	Gly	Gln	Ser	Ala 340	Lys	Leu	Thr	Суѕ	Glu 345
Val	Arg	Gly	Asn	Pro 350	Pro	Pro	Ser	Val	Leu 355	Trp	Leu	Arg	Asn	Ala 360
Val	Pro	Leu	Ile	Ser 365	Ser	Gln	Arg	Leu	Arg 370	Leu	Ser	Arg	Arg	Ala 375
Leu	Arg	Val	Leu	Ser 380	Met	Gly	Pro	Glu	Asp 385	Glu	Gly	Val	Tyr	Gln 390
Cys	Met	Ala	Glu	Asn 395	Glu	Val	Gly	Ser	Ala 400	His	Ala	Val	Val	Gln 405
Leu	Arg	Thr	Ser	Arg 410	Pro	Ser	Ile	Thr	Pro 415	Arg	Leu	Trp	Gln	Asp 420
Ala	Glu	Leu	Ala	Thr 425	Gly	Thr	Pro	Pro	Val 430	Ser	Pro	Ser	Lys	Leu 435
Gly	Asn	Pro	Glu	Gln 440	Met	Leu	Arg	Gly	Gln 445	Pro	Ala	Leu	Pro	Arg 450
Pro	Pro	Thr	Ser	Val 455	Gly	Pro	Ala	Ser	Pro 460	Lys	Cys	Pro	Gly	Glu 465
Lys	Gly	Gln	Gly	Ala 470		Ala	Glu	Ala	Pro 475	Ile	Ile	Leu	Ser	Ser 480
Pro	Arg	Thr	Ser	Lys 485	Thr	Asp	Ser	Tyr	Glu 490	Leu	Val	Trp	Arg	Pro 495
Arg	His	Glu	Gly	Ser 500		Arç	, Ala	Pro	Ile 505	Leu	Tyr	туг	· Val	Val 510
Lys	His	Arg	Lys	Gln 515		Thr	Asn	Ser	Ser 520	Asp	Asp	Trp	Thr	1le 525
Ser	Gly	Ile	Pro	Ala 530		Glr	n His	Arg	Leu 535	Thr	Lev	Thi	Arç	Leu 540
Asp	Pro	Gly	ser,	Leu 545		Glu	ı Val	. Glu	Met 550	Ala	Ala	туз	Asn	Cys 555
Ala	Gly	Glu	ı Gly	Gln	Thr	Ala	a Met	: Val	Thr	Phe	e Arç	Thi	Gly	/ Arg

				560					565					570
Arg	Pro	Lys	Pro	Glu 575		Met	Ala	Ser	Lys 580	Glu	Gln	Gln	Ile	Gln 585
Arg	Asp	Asp	Pro	Gly 590		Ser	Pro	Gln	Ser 595	Ser	Ser	Gln	Pro	Asp 600
His	Gly	Arg	Leu	Ser 605		Pro	Glu	Ala	Pro 610	Asp	Arg	Pro	Thr	Ile 615
Ser	Thr	Ala	Ser	Glu 620	Thr	Ser	Val	Tyr	Val 625	Thr	Trp	Ile	Pro	Arg 630
Gly	Asn	Gly	Gly	Phe 635	Pro	Ile	Gln	Ser	Phe 640	Arg	Val	Glu	Tyr	Lys 645
Lys	Leu	Lys	Lys	Val 650	Gly	Asp	Trp	Ile	Leu 655	Ala	Thr	Ser	Ala	Ile 660
Pro	Pro	Ser	Arg	Leu 665	Ser	Val	Glu	Ile	Thr 670	Gly	Leu	Glu	Lys	Gly 675
Thr	Ser	Tyr	Lys	Phe 680	Arg	Val	Arg	Ala	Leu 685	Asn	Met	Leu	Gly	Glu 690
Ser	Glu	Pro	Ser	Ala 695	Pro	Ser	Arg	Pro	Tyr 700	Val	Val	Ser	Gly	Tyr 705
Ser	Gly	Arg	Val	Tyr 710	Glu	Arg	Pro	Val	Ala 715	Gly	Pro	Tyr	Ile	Thr 720
Phe	Thr	Asp	Ala	Val 725	Asn	Glu	Thr	Thr	Ile 730	Met	Leu	Lys	Trp	Met 735
Tyr	Ile	Pro	Ala	Ser 740	Asn	Asn	Asn	Thr	Pro 745	Ile	His	Gly	Phe	Tyr 750
Ile	Tyr	Tyr	Arg	Pro 755	Thr	Asp	Ser	Asp	Asn 760	Asp	Ser	Asp	Tyr	Lys 765
Lys	Asp	Met	Val	Glu 770	Gly	Asp	Lys	Tyr	Trp 775	Η̈́is	Ser	Ile	Ser	His 780
Leu	Gln	Pro	Glu	Thr 785	Ser	Tyr	Asp	Ile	Lys 790	Met	Gln	Cys	Phe	Asn 795
Glu	Gly	Gly	Glu	Ser 800	Glu	Phe	Ser	Asn	Val 805	Met	Ile	Cys	Glu	Thr 810
Lys	Ala	Arg	Lys	Ser 815	Ser	Gly	Gln	Pro	Gly 820	Arg	Leu	Pro	Pro	Pro 825
Thr	Leu	Ala	Pro	Pro 830	Gln	Pro	Pro	Leu	Pro 835	Glu	Thr	Ile	Glu	Arg 840
Pro	Val	Gly	hr	Gly 845	Ala	Met	Val	Ala	Arg 850	Ser	Ser	Asp	Leu	Pro 855

Tyr Leu Ile Val Gly Val Val Leu Gly Ser Ile Val Leu Ile Ile Val Thr Phe Ile Pro Phe Cys Leu Trp Arg Ala Trp Ser Lys Gln Lys His Thr Thr Asp Leu Gly Phe Pro Arg Ser Ala Leu Pro Pro Ser Cys Pro Tyr Thr Met Val Pro Leu Gly Gly Leu Pro Gly His 905 910 Gln Ala Ser Gly Gln Pro Tyr Leu Ser Gly Ile Ser Gly Arg Ala Cys Ala Asn Gly Ile His Met Asn Arg Gly Cys Pro Ser Ala Ala 935 940 Val Gly Tyr Pro Gly Met Lys Pro Gln Gln His Cys Pro Gly Glu Leu Gln Gln Gln Ser Asp Thr Ser Ser Leu Leu Arg Gln Thr His Leu Gly Asn Gly Tyr Asp Pro Gln Ser His Gln Ile Thr Arg Gly Pro Lys Ser Ser Pro Asp Glu Gly Ser Phe Leu Tyr Thr Leu Pro Asp Asp Ser Thr His Gln Leu Leu Gln Pro His His Asp Cys Cys 1010 1015 Gln Arg Gln Glu Gln Pro Ala Ala Val Gly Gln Ser Gly Val Arg Arg Ala Pro Asp Ser Pro Val Leu Glu Ala Val Trp Asp Pro Pro 1050 1045 Phe His Ser Gly Pro Pro Cys Cys Leu Gly Leu Val Pro Val Glu 1060 Glu Val Asp Ser Pro Asp Ser Cys Gln Val Ser Gly Gly Asp Trp 1075 Cys Pro Gln His Pro Val Gly Ala Tyr Val Gly Gln Glu Pro Gly Met Gln Leu Ser Pro Gly Pro Leu Val Arg Val Ser Phe Glu Thr 1110 1100 1105 Pro Pro Leu Thr Ile 1115

<210> 59

<211> 25

<212> DNA

<213> Artificial

```
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
<400> 59
gggaaacaca gcagtcattg cctgc 25
<210> 60
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-24
<223> Synthetic construct.
<400> 60
gcacacgtag cctgtcgctg gagc 24
<210> 61
<211> 42
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-42
<223> Synthetic construct.
<400> 61
 caccccaaag cccaggtccg gtacagcgtc aaacaagagt gg 42
<210> 62
<211> 1661
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 678
<223> unknown base
<400> 62
 cgggaggctg ggtcgtcatg atccggaccc cattgtcggc ctctgcccat 50
 cgcctgctcc tcccaggctc ccgcggccga cccccgcgca acatgcagcc 100
 cacgggccgc gagggttccc gcgcgctcag ccggcggtat ctgcggcgtc 150
 tgctgctcct gctactgctg ctgctgctgc ggcagcccgt aacccgcgcg 200
 gagaccacge egggegeece cagageeete tecaegetgg geteececag 250
 cetetteace acgeegggtg tecceagege ceteactace ceaggeetea 300
```

ctacgccagg caccccaaa accctggacc ttcggggtcg cgcgcaggcc 350

ctgatgcgga gtttcccact cgtggacggc cacaatgacc tgccccaggt 400 cctgagacag cgttacaaga atgtgcttca ggatgttaac ctgcgaaatt 450 tcagccatgg tcagaccagc ctggacaggc ttagagacgg cctcgtgggt 500 gcccagttct ggtcagcctc cgtctcatgc cagtcccagg accagactgc 550 cgtgcgcctc gccctggagc agattgacct cattcaccgc atgtgtgcct 600 cctactctga actcgagctt gtgacctcag ctgaaggtct gaacagctct 650 caaaagctgg cctgcctcat tggcgtgnag ggtggtcact cactggacag 700 cagectetet gtgctgcgca gtttctatgt getgggggtg egetacetga 750 cacttacctt cacctgcagt acaccatggg cagagagttc caccaagttc 800 agacaccaca tgtacaccaa cgtcagcgga ttgacaagct ttggtgagaa 850 agtagtagag gagttgaacc gcctgggcat gatgatagat ttgtcctatg 900 catcggacac cttgataaga agggtcctgg aagtgtctca ggctcctgtg 950 atcttctccc actcagctgc cagagctgtg tgtgacaatt tgttgaatgt 1000 tcccgatgat atcctgcagc ttctgaagaa cggtggcatc gtgatggtga 1050 cactgtccat gggggtgctg cagtgcaacc tgcttgctaa cgtgtccact 1100 gtggcagatc actttgacca catcagggca gtcattggat ctgagttcat 1150 cgggattggt ggaaattatg acgggactgg ccggttccct caggggctgg 1200 aggatgtgtc cacataccca gtcctgatag aggagttgct gagtcgtasc 1250 tggagcgagg aagagcttca aggtgtcctt cgtggaaacc tgctgcgggt 1300 cttcagacaa gtggaaaagg tgagagagga gagcagggcg cagagccccg 1350 tggaggctga gtttccatat gggcaactga gcacatcctg ccactcccac 1400 ctcgtgcctc agaatggaca ccaggctact catctggagg tgaccaagca 1450 gccaaccaat cgggtcccct ggaggtcctc aaatgcctcc ccataccttg 1500 ttccaggcct tgtggctgct gccaccatcc caaccttcac ccagtggctc 1550 tgctgacaca gtcggtcccc gcagaggtca ctgtggcaaa gcctcacaaa 1600 gccccctctc ctagttcatt cacaagcata tgctgagaat aaacatgtta 1650 cacatggaaa a 1661

<210> 63

<211> 487

<212> PRT

<213> Homo sapiens

<220> <221> unsure <222> 196, 386 <223> unknown amino acid <400> 63 Met Gln Pro Thr Gly Arg Glu Gly Ser Arg Ala Leu Ser Arg Arg Tyr Leu Arg Arg Leu Leu Leu Leu Leu Leu Leu Leu Leu Arg Gln Pro Val Thr Arg Ala Glu Thr Thr Pro Gly Ala Pro Arg Ala Leu Ser Thr Leu Gly Ser Pro Ser Leu Phe Thr Thr Pro Gly Val Pro Ser Ala Leu Thr Thr Pro Gly Leu Thr Thr Pro Gly Thr Pro Lys Thr Leu Asp Leu Arg Gly Arg Ala Gln Ala Leu Met Arg Ser Phe Pro Leu Val Asp Gly His Asn Asp Leu Pro Gln Val Leu Arg Gln Arg Tyr Lys Asn Val Leu Gln Asp Val Asn Leu Arg Asn Phe Ser His Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly Ala Gln Phe Trp Ser Ala Ser Val Ser Cys Gln Ser Gln Asp Gln Thr Ala Val Arg Leu Ala Leu Glu Gln Ile Asp Leu Ile His 155 Arg Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Glu Gly Leu Asn Ser Ser Gln Lys Leu Ala Cys Leu Ile Gly Val Xaa Gly Gly His Ser Leu Asp Ser Ser Leu Ser Val Leu Arg Ser 200 Phe Tyr Val Leu Gly Val Arg Tyr Leu Thr Leu Thr Phe Thr Cys Ser Thr Pro Trp Ala Glu Ser Ser Thr Lys Phe Arg His His Met 230 Tyr Thr Asn Val Ser Gly Leu Thr Ser Phe Gly Glu Lys Val Val

Glu Glu Leu Asn Arg Leu Gly Met Met Ile Asp Leu Ser Tyr Ala

				260					265					270
Ser	Asp	Thr	Leu	Ile 275	Arg	Arg	Val	Leu	Glu 280	Val	Ser	Gln	Ala	Pro 285
Val	Ile	Phe	Ser	His 290	Ser	Ala	Ala	Arg	Ala 295	Val	Cys	Asp	Asn	Leu 300
Leu	Asn	Val	Pro	Asp 305	Asp	Ile	Leu	Gln		Leu	Lys	Asn	Gly	Gly 315
Ile	Val	Met	Val	Thr 320	Leu	Ser	Met	Gly	Val 325	Leu	Gln	Cys	Asn	Leu 330
Leu	Ala	Asn	Val	Ser 335	Thr	Val	Ala	Asp	His 340	Phe	Asp	His	Ile	Arg 345
Ala	Val	Ile	Gly	Ser 350	Glu	Phe	Ile	Gly	Ile 355	Gly	Gly	Asn	Tyr	Asp 360
Gly	Thr	Gly	Arg	Phe 365	Pro	Gln	Gly	Leu	Glu 370	Asp	Val	Ser	Thr	Tyr 375
Pro	Val	Leu	Ile	Glu 380	Glu	Leu	Leu	Ser	Arg 385	Xaa	Trp	Ser	Glu	Glu 390
Glu	Leu	Gln	Gly	Val 395	Leu	Arg	Gly	Asn	Leu 400	Leu	Arg	Val	Phe	Arg 405
Gln	Val	Glu	Lys	Val 410	Arg	Glu	Glu	Ser	Arg 415	Ala	Gln	Ser	Pro	Val 420
Glu	Ala	Glu	Phe	Pro 425	Tyr	Gly	Gln	Leu	Ser 430	Thr	Ser	Cys	His	Ser 435
His	Leu	Val	Pro	Gln 440	Asn	Gly	His	Gln	Ala 445	Thr	His	Leu	Glu	Val 450
Thr	Lys	Gln	Pro	Thr 455		Arg	Val	Pro	Trp 460	Arg	Ser	Ser	Asn	Ala 465
Ser	Pro	Tyr	Leu	Val 470	Pro	Gly	Leu	Val	Ala 475	Ala	Ala	Thr	Ile	Pro 480
Thr	Phe	Thr	Gln	Trp 485		Cys	1							
<210: <211: <212: <213	> 25 > DN	A	.cial											
<220 <221 <222 <223	> Ar > 1-	25											•	

<400> 64

```
ccttcacctg cagtacacca tgggc 25
<210> 65
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
<400> 65
gtcacacaca gctctggcag ctgag 25
<210> 66
<211> 47
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-47
<223> Synthetic construct.
<400> 66
 ccaagttcag acaccacatg tacaccaacg tcagcggatt gacaagc 47
<210> 67
<211> 1564
<212> DNA
<213> Homo sapiens
<400> 67
 tgctaggctc tgtcccacaa tgcacccgag agcaggagct gaaagcctct 50
 aacacccaca gatccctcta tgactgcaat gtgaggtgtc cggctttgct 100
 ggcccagcaa gcctgataag catgaagctc ttatctttgg tggctgtggt 150
 cgggtgtttg ctggtgcccc cagctgaagc caacaagagt tctgaagata 200
 tccggtgcaa atgcatctgt ccaccttata gaaacatcag tgggcacatt 250
 tacaaccaga atgtatccca gaaggactgc aactgcctgc acgtggtgga 300
 gcccatgcca gtgcctggcc atgacgtgga ggcctactgc ctgctgtgcg 350
 agtgcaggta cgaggagcgc agcaccacca ccatcaaggt catcattgtc 400
 atctacctgt ccgtggtggg tgccctgttg ctctacatgg ccttcctgat 450
 gctggtggac cctctgatcc gaaagccgga tgcatacact gagcaactgc 500
 acaatgagga ggagaatgag gatgctcgct ctatggcagc agctgctgca 550
 tccctcgggg gaccccgagc aaacacagtc ctggagcgtg tggaaggtgc 600
```

ccagcagcgg tggaagctgc aggtgcagga gcagcggaag acagtcttcg 650 atcggcacaa gatgctcagc tagatgggct ggtgtggttg ggtcaaggcc 700 ccaacaccat ggctgccagc ttccaggctg gacaaagcag ggggctactt 750 ctcccttccc tcggttccag tcttcccttt aaaagcctgt ggcatttttc 800 ctccttctcc ctaactttag aaatgttgta cttggctatt ttgattaggg 850 aagagggatg tggtctctga tctctgttgt cttcttgggt ctttggggtt 900 gaagggaggg ggaaggcagg ccagaaggga atggagacat tcgaggcggc 950 ctcaggagtg gatgcgatct gtctctcctg gctccactct tgccgccttc 1000 cagetetgag tettgggaat gttgttacee ttggaagata aagetgggte 1050 ttcaggaact cagtgtctgg gaggaaagca tggcccagca ttcagcatgt 1100 gttcctttct gcagtggttc ttatcaccac ctccctccca gccccggcgc 1150 ctcagcccca gccccagctc cagccctgag gacagctctg atgggagagc 1200 tgggcccct gagcccactg ggtcttcagg gtgcactgga agctggtgtt 1250 cgctgtcccc tgtgcacttc tcgcactggg gcatggagtg cccatgcata 1300 ctctgctgcc ggtcccctca cctgcacttg aggggtctgg gcagtccctc 1350 ctctccccag tgtccacagt cactgagcca gacggtcggt tggaacatga 1400 gactcgaggc tgagcgtgga tctgaacacc acagcccctg tacttgggtt 1450 gcctcttgtc cctgaacttc gttgtaccag tgcatggaga gaaaattttg 1500 tcctcttgtc ttagagttgt gtgtaaatca aggaagccat cattaaattg 1550 ttttatttct ctca 1564

<210> 68 <211> 183

<212> PRT

<213> Homo sapiens

20 25 30

Cys Ile Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn 45

Gln Asn Val Ser Gln Lys Asp Cys Asn Cys Leu His Val Val Glu
50 55 60

Pro Met Pro Val Pro Gly His Asp Val Glu Ala Tyr Cys Leu Leu 75

Cys Glu Cys Arg Tyr 80 Glu Glu Arg Ser Thr Thr Thr Ile Lys Val 90

Ile Ile Val Ile Tyr Leu Ser Val Val Gly Ala Leu Leu Tyr 105

Met Ala Phe Leu Met Leu Val Asp Pro Leu Ile Arg Lys Pro Asp 120

Ala Tyr Thr Glu Gln Leu His Asn Glu Glu Glu Asn Glu Asp Ala 135

Arg Ser Met Ala Ala Ala Ala Ala Ala Ser Leu Gly Gly Pro Arg Ala 140

Asn Thr Val Leu Glu Gln Arg Val Glu Gly Ala Gln Gln Arg Trp Lys 165

Leu Gln Val Gln Glu Gln Arg Lys Thr Val Phe Asp Arg His Lys 180

Met Leu Ser

<210> 69 <211> 3170 <212> DNA

<213> Homo sapiens

<400> 69
agcgggtctc gcttgggtc cgctaatttc tgtcctgagg cgtgagactg 50
agttcatagg gtcctgggtc cccgaaccag gaagggttga gggaacacaa 100
tctgcaagcc cccgcgaccc aagtgagggg ccccgtgttg gggtcctccc 150
tccctttgca ttcccaccc tccgggcttt gcgtcttcct ggggaccccc 200
tcgccgggag atggccgcgt tgatgcggag caaggattcg tcctgctgcc 250
tgctcctact ggccgcggtg ctgatggtgg agagctcaca gatcggcagt 300
tcgcgggcca aactcaactc catcaagtcc tctctgggcg gggagacccc 350
tggtcaggcc gccaatcgat ctgcgggcat gtaccaagga ctggcattcg 400
gcggcagtaa gaagggcaaa aacctggggc aggcctaccc ttgtagcagt 450
gataaggagt gtgaagttgg gaggtattgc cacagtcccc accaaggatc 500
atcggcctgc atggtgtc ggagaaaaaa gaagcgctgc caccaggatg 550
gcatgtgctg ccccagtacc cgctgcaata atggcatctg tatcccagtt 600
actgaaagca tcttaacccc tcacatcccg gctctggatg gtactcggca 650

cagagatcga aaccacggtc attactcaaa ccatgacttg ggatggcaga 700 atctaggaag accacacat aagatgtcac atataaaagg gcatgaagga 750 gacccctgcc tacgatcatc agactgcatt gaagggtttt gctgtgctcg 800 tcatttctgg accaaaatct gcaaaccagt gctccatcag ggggaagtct 850 gtaccaaaca acgcaagaag ggttctcatg ggctggaaat tttccagcgt 900 tgcgactgtg cgaagggcct gtcttgcaaa gtatggaaag atgccaccta 950 ctcctccaaa gccagactcc atgtgtgtca gaaaatttga tcaccattga 1000 ggaacatcat caattgcaga ctgtgaagtt gtgtatttaa tgcattatag 1050 catggtggaa aataaggttc agatgcagaa gaatggctaa aataagaaac 1100 gtgataagaa tatagatgat cacaaaaagg gagaaagaaa acatgaactg 1150 aatagattag aatgggtgac aaatgcagtg cagccagtgt ttccattatg 1200 caacttgtct atgtaaataa tgtacacatt tgtggaaaat gctattatta 1250 agagaacaag cacacagtgg aaattactga tgagtagcat gtgactttcc 1300 aagagtttag gttgtgctgg aggagaggtt tccttcagat tgctgattgc 1350 ttatacaaat aacctacatg ccagatttct attcaacgtt agagtttaac 1400 aaaatactcc tagaataact tgttatacaa taggttctaa aaataaaatt 1450 gctaaacaag aaatgaaaac atggagcatt gttaatttac aacagaaaat 1500 taccttttga tttgtaacac tacttctgct gttcaatcaa gagtcttggt 1550 agataagaaa aaaatcagtc aatatttcca aataattgca aaataatggc 1600 cagttgttta ggaaggcctt taggaagaca aataaataac aaacaaacag 1650 ccacaaatac tttttttca aaattttagt tttacctgta attaataaga 1700 actgatacaa gacaaaaaca gttccttcag attctacgga atgacagtat 1750 atctctcttt atcctatgtg attcctgctc tgaatgcatt atattttcca 1800 aactataccc ataaattgtg actagtaaaa tacttacaca gagcagaatt 1850 ttcacagatg gcaaaaaaat ttaaagatgt ccaatatatg tgggaaaaga 1900 gctaacagag agatcattat ttcttaaaga ttggccataa cctatatttt 1950 gatagaatta gattggtaaa tacatgtatt catacatact ctgtggtaat 2000 agagacttaa gctggatctg tactgcactg gagtaagcaa gaaaattggg 2050 aaaacttttt cgtttgttca ggttttggca acacatagat catatgtctg 2100 aggcacaagt tggctgttca tctttgaaac caggggatgc acagtctaaa 2150 tgaatatctg catgggattt gctatcataa tatttactat gcagatgaat 2200 tcagtgtgag gtcctgtgtc cgtactatcc tcaaattatt tattttatag 2250 tgctgagatc ctcaaataat ctcaatttca ggaggtttca caaaatgtac 2300 tcctgaagta gacagagtag tgaggtttca ttgccctcta taagcttctg 2350 actagccaat ggcatcatcc aattttcttc ccaaacctct gcagcatctg 2400 ctttattgcc aaagggctag tttcggtttt ctgcagccat tgcggttaaa 2450 aaatataagt aggataactt gtaaaacctg catattgcta atctatagac 2500 accacagttt ctaaattctt tgaaaccact ttactacttt ttttaaactt 2550 aactcagttc taaatacttt gtctggagca caaaacaata aaaggttatc 2600 ttatagtcgt gactttaaac ttttgtagac cacaattcac tttttagttt 2650 tcttttactt aaatcccatc tgcagtctca aatttaagtt ctcccagtag 2700 agattgagtt tgagcctgta tatctattaa aaatttcaac ttcccacata 2750 tatttactaa gatgattaag acttacattt tctgcacagg tctgcaaaaa 2800 caaaaattat aaactagtcc atccaagaac caaagtttgt ataaacaggt 2850 tgctataagc ttgtgaaatg aaaatggaac atttcaatca aacatttcct 2900 atataacaat tattatattt acaatttggt ttctgcaata tttttcttat 2950 gtccaccctt ttaaaaatta ttatttgaag taatttattt acaggaaatg 3000 ttaatgagat gtattttctt atagagatat ttcttacaga aagctttgta 3050 gcagaatata tttgcagcta ttgactttgt aatttaggaa aaatgtataa 3100 taagataaaa totattaaat ttttctcctc taaaaactga aaaaaaaaa 3150 aaaaaaaaa aaaaaaaaa 3170

<210> 70

<211> 259

<212> PRT

<213> Homo sapiens

<400> 70

Met Ala Ala Leu Met Arg Ser Lys Asp Ser Ser Cys Cys Leu Leu 1 5 10

Leu Leu Ala Ala Val Leu Met Val Glu Ser Ser Gln Ile Gly Ser 20 25 30

Ser Arg Ala Lys Leu Asn Ser Ile Lys Ser Ser Leu Gly Glu 35 40 45

Thr Pro Gly Gln Ala Ala Asn Arg Ser Ala Gly Met Tyr Gln Gly Leu Ala Phe Gly Gly Ser Lys Lys Gly Lys Asn Leu Gly Gln Ala Tyr Pro Cys Ser Ser Asp Lys Glu Cys Glu Val Gly Arg Tyr Cys His Ser Pro His Gln Gly Ser Ser Ala Cys Met Val Cys Arg Arg Lys Lys Lys Arg Cys His Arg Asp Gly Met Cys Cys Pro Ser Thr Arg Cys Asn Asn Gly Ile Cys Ile Pro Val Thr Glu Ser Ile Leu Thr Pro His Ile Pro Ala Leu Asp Gly Thr Arg His Arg Asp Arg Asn His Gly His Tyr Ser Asn His Asp Leu Gly Trp Gln Asn Leu Gly Arg Pro His Thr Lys Met Ser His Ile Lys Gly His Glu Gly 170 Asp Pro Cys Leu Arg Ser Ser Asp Cys Ile Glu Gly Phe Cys Cys Ala Arg His Phe Trp Thr Lys Ile Cys Lys Pro Val Leu His Gln Gly Glu Val Cys Thr Lys Gln Arg Lys Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Asp Cys Ala Lys Gly Leu Ser Cys Lys Val Trp Lys Asp Ala Thr Tyr Ser Ser Lys Ala Arg Leu His Val 250

Cys Gln Lys Ile

<210> 71 <211> 1809 <212> DNA

<213> Homo sapiens

<400> 71
tctcaatctg ctgacctcgt gatccgcctg accttgtaat ccacctacct 50
tggcctccca aagtgttggg attacaggcg tgagccaccg cgcccggcca 100
acatcacgtt tttaaaaatt gatttcttca aattcatggc aaatatttcc 150
cttcccttta acttcttatg tcagaatgag gaaggatagc tgcatttatt 200

tagtcagttt tcattgcata gtaatatttt catgtagtat tttctaagtt 250 atattttagt aattcatatg ttttagatta taggttttaa catacttgtg 300 aaaatacttg atgtgtttta aagccttggg cagaaattct gtattgttga 350 ggatttgttc ttttatcccc cttttaaagt catccgtcct tggctcagga 400 tttggagagc ttgcaccacc aaaaatggca aacatcacca gctcccagat 450 tttggaccag ttgaaagctc cgagtttggg ccagtttacc accaccccaa 500 gtacacagca gaatagtaca agtcacccta caactactac ttcttgggac 550 ctcaagcccc caacatccca gtcctcagtc ctcagtcatc ttgacttcaa 600 atctcaacct gagccatccc cagttcttag ccagttgagc cagcgacaac 650 agcaccagag ccaggcagtc actgttcctc ctcctggttt ggagtccttt 700 ccttcccagg caaaacttcg agaatcaaca cctggagaca gtccctccac 750 tgtgaacaag cttttgcagc ttcccagcac gaccattgaa aatatctctg 800 tgtctgtcca ccagccacag cccaaacaca tcaaacttgc taagcggcgg 850 atacccccag cttctaagat cccagcttct gcagtggaaa tgcctggttc 900 agcagatgtc acaggattaa atgtgcagtt tggggctctg gaatttgggt 950 cagaaccttc tctctctgaa tttggatcag ctccaagcag tgaaaatagt 1000 aatcagattc ccatcagctt gtattcgaag tctttaagtg agcctttgaa 1050 tacatcttta tcaatgacca gtgcagtaca gaactccaca tatacaactt 1100 ccgtcattac ctcctgcagt ctgacaagct catcactgaa ttctgctagt 1150 ccagtagcaa tgtcttcctc ttatgaccag agttctgtgc ataacaggat 1200 cccataccaa agccctgtga gttcatcaga gtcagctçca ggaaccatca 1250 tgaatggaca tggtggtggt cgaagtcagc agacactaga cagtaagtat 1300 agcagcaagc tactcttgtc atggctggtg ccaaccaaac agaggaagag 1350 gatagctcac gtgatgtgga aaacaccagt tggtcaatgg ctcattcgtt 1400 aaaaagcagc ccttttgctt ttttgttttt ggaccaggtg ttggctgtgg 1450 tgttattaga aatgtcttaa ccacagcaag aaggaggtgg tggtctcata 1500 ttcttctgcc ctaatcagac tgcaccacaa gtgcagcata cagtatgcat 1550 tttaaagatg cttgggccag gcggggtggc tgatgcccat aatcccagtg 1600 ctttgggggg ccaaggcagg cagattgccc aagctcagga gtttgagacc 1650 accetgggca acatggtgaa actetgtete tactaaaata egaaaaacta 1700 geegggtgtg gtggeggege gtgeetgtaa teecagetae ttgggagget 1750 gaggeacaag aategettga geeagettgg getacaaagt gagaeteegt 1800 etgaaaaga 1809

<210> 72 <211> 363 <212> PRT <213> Homo sapien

<213> Homo sapiens <400> 72 Met Cys Phe Lys Ala Leu Gly Arg Asn Ser Val Leu Leu Arg Ile Cys Ser Phe Ile Pro Leu Leu Lys Ser Ser Val Leu Gly Ser Gly Phe Gly Glu Leu Ala Pro Pro Lys Met Ala Asn Ile Thr Ser Ser Gln Ile Leu Asp Gln Leu Lys Ala Pro Ser Leu Gly Gln Phe Thr Thr Thr Pro Ser Thr Gln Gln Asn Ser Thr Ser His Pro Thr Thr Thr Thr Ser Trp Asp Leu Lys Pro Pro Thr Ser Gln Ser Ser Val 80 Leu Ser His Leu Asp Phe Lys Ser Gln Pro Glu Pro Ser Pro Val Leu Ser Gln Leu Ser Gln Arg Gln Gln His Gln Ser Gln Ala Val 115 110 Thr Val Pro Pro Pro Gly Leu Glu Ser Phe Pro Ser Gln Ala Lys 130 Leu Arg Glu Ser Thr Pro Gly Asp Ser Pro Ser Thr Val Asn Lys 145 Leu Leu Gln Leu Pro Ser Thr Thr Ile Glu Asn Ile Ser Val Ser Val His Gln Pro Gln Pro Lys His Ile Lys Leu Ala Lys Arg Arg 170 Ile Pro Pro Ala Ser Lys Ile Pro Ala Ser Ala Val Glu Met Pro Gly Ser Ala Asp Val Thr Gly Leu Asn Val Gln Phe Gly Ala Leu Glu Phe Gly Ser Glu Pro Ser Leu Ser Glu Phe Gly Ser Ala Pro 220 215

Ser Ser Glu Asn Ser Asn Gln Ile Pro Ile Ser Leu Tyr Ser Lys 235 230 Ser Leu Ser Glu Pro Leu Asn Thr Ser Leu Ser Met Thr Ser Ala 250 Val Gln Asn Ser Thr Tyr Thr Thr Ser Val Ile Thr Ser Cys Ser 260 Leu Thr Ser Ser Ser Leu Asn Ser Ala Ser Pro Val Ala Met Ser Ser Ser Tyr Asp Gln Ser Ser Val His Asn Arg Ile Pro Tyr Gln Ser Pro Val Ser Ser Ser Glu Ser Ala Pro Gly Thr Ile Met Asn Gly His Gly Gly Gly Arg Ser Gln Gln Thr Leu Asp Ser Lys Tyr 320 325 Ser Ser Lys Leu Leu Ser Trp Leu Val Pro Thr Lys Gln Arg Lys Arg Ile Ala His Val Met Trp Lys Thr Pro Val Gly Gln Trp 350 Leu Ile Arg <210> 73 <211> 26 <212> DNA <213> Artificial <220> <221> Artificial sequence <222> 1-26 <223> Synthetic construct. <400> 73 aattcatggc aaatatttcc cttccc 26 <210> 74 <211> 22 <212> DNA <213> Artificial <220> <221> Artificial sequence <222> 1-22 <223> Synthetic construct. <400> 74 tggtaaactg gcccaaactc gg 22 <210> 75

<211> 50

- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial sequence
- <222> 1-50
- <223> Synthetic construct
- <400> 75

ttaaagtcat ccgtccttgg ctcaggattt ggagagcttg caccaccaaa 50

- <210> 76
- <211> 1989
- <212> DNA
- <213> Homo sapiens
- <400> 76
- gccgagtggg acaaagcctg gggctgggcg ggggccatgg cgctgccatc 50 ccgaatcctg ctttggaaac ttgtgcttct gcagagctct gctgttctcc 100 tgcactcagc ggtggaggag acggacgcgg ggctgtacac ctgcaacctg 150 caccatcact actgccacct ctacgagage ctggccgtcc gcctggaggt 200 caccgacggc cccccggcca cccccgccta ctgggacggc gagaaggagg 250 tgctggcggt ggcgcgcgc gcacccgcgc ttctgacctg cgtgaaccgc 300 gggcacgtgt ggaccgaccg gcacgtggag gaggctcaac aggtggtgca 350 ctgggaccgg cagccgccg gggtcccgca cgaccgcgcg gaccgcctgc 400 tggacctcta cgcgtcgggc gagcgccgcg cctacgggcc cctttttctg 450 cgcgaccgcg tggctgtggg cgcggatgcc tttgagcgcg gtgacttctc 500 actgcgtatc gagccgctgg aggtcgccga cgagggcacc tactcctgcc 550 acctgcacca ccattactgt ggcctgcacg aacgccgcgt cttccacctg 600 acggtcgccg aaccccacgc ggagccgccc ccccggggct ctccgggcaa 650 cggctccagc cacagcgcg ccccaggccc agaccccaca ctggcgcgcg 700 gccacaacgt catcaatgtc atcgtccccg agagccgagc ccacttcttc 750 cagcagctgg gctacgtgct ggccacgctg ctgctcttca tcctgctact 800 ggtcactgtc ctcctggccg cccgcaggcg ccgcggaggc tacgaatact 850 cggaccagaa gtcgggaaag tcaaagggga aggatgttaa cttggcggag 900 ttcgctgtgg ctgcagggga ccagatgctt tacaggagtg aggacatcca 950 gctagattac aaaaacaaca tcctgaagga gagggcggag ctggcccaca 1000 gccccctgcc tgccaagtac atcgacctag acaaagggtt ccggaaggag 1050

aactgcaaat agggaggccc tgggctcctg gctgggccag cagctgcacc 1100 tctcctgtct gtgctcctcg gggcatctcc tgatgctccg gggctcaccc 1150 cccttccagc ggctggtccc gctttcctgg aatttggcct gggcgtatgc 1200 agaggccgcc tccacacccc tcccccaggg gcttggtggc agcatagccc 1250 ccacccctgc qqcctttqct cacgggtggc cctgcccacc cctggcacaa 1300 ccaaaatccc actgatgccc atcatgccct cagacccttc tgggctctgc 1350 ccgctggggg cctgaagaca ttcctggagg acactcccat cagaacctgg 1400 cagececaaa actggggtea geeteaggge aggagteeca etecteeagg 1450 gctctgctcg tccggggctg ggagatgttc ctggaggagg acactcccat 1500 cagaacttgg cagccttgaa gttggggtca gcctcggcag gagtcccact 1550 cctcctgggg tgctgcctgc caccaagagc tccccacct gtaccaccat 1600 gtgggactcc aggcaccatc tgttctcccc agggacctgc tgacttgaat 1650 gccagccctt gctcctctgt gttgctttgg gccacctggg gctgcacccc 1700 ctgccctttc tctgccccat ccctacccta gccttgctct cagccacctt 1750 gatagtcact gggctccctg tgacttctga ccctgacacc cctcccttgg 1800 actctgcctg ggctggagtc tagggctggg gctacatttg gcttctgtac 1850 tggctgagga caggggaggg agtgaagttg gtttggggtg gcctgtgttg 1900 ccactctcag caccccacat ttgcatctgc tggtggacct gccaccatca 1950 caataaagtc cccatctgat ttttaaaaaaa aaaaaaaaa 1989

<210> 77

<211> 341

<212> PRT

<213> Homo sapiens

<400> 77

Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val Leu Leu 1 5 10 15

Gln Ser Ser Ala Val Leu Leu His Ser Ala Val Glu Glu Thr Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ala Gly Leu Tyr Thr Cys Asn Leu His His His Tyr Cys His Leu 35 40 45

Tyr Glu Ser Leu Ala Val Arg Leu Glu Val Thr Asp Gly Pro Pro 50 55 60

Ala Thr Pro Ala Tyr Trp Asp Gly Glu Lys Glu Val Leu Ala Val
65 70 75

Ala	Arg	Gly	Ala	Pro 80	Ala	Leu	Leu	Thr	Cys 85	Val	Asn	Arg	Gly	His 90
Val	Trp	Thr	Asp	Arg 95	His	Val	Glu	Glu	Ala 100	Gln	Gln	Val	Val	His 105
Trp	Asp	Arg	Gln	Pro 110	Pro	Gly	Val	Pro	His 115	Asp	Arg	Ala	Asp	Arg 120
Leu	Leu	Asp	Leu	Tyr 125	Ala	Ser	Gly	Glu	Arg 130	Arg	Ala	Tyr	Gly	Pro 135
Leu	Phe	Leu	Arg	Asp 140	Arg	Val	Ala	Val	Gly 145	Ala	Asp	Ala	Phe	Glu 150
Arg	Gly	Asp	Phe	Ser 155	Leu	Arg	Ile	Glu	Pro 160	Leu	Glu	Val	Ala	Asp 165
Glu	Gly	Thr	Tyr	Ser 170	Cys	His	Leu	His	His 175	His	Tyr	Cys	Gly	Leu 180
His	Glu	Arg	Arg	Val 185	Phe	His	Leu	Thr	Val 190	Ala	Glu	Pro	His	Ala 195
Glu	Pro	Pro	Pro	Arg 200	Gly	Ser	Pro	Gly	Asn 205	Gly	Ser	Ser	His	Ser 210
Gly	Ala	Pro	Gly	Pro 215	Asp	Pro	Thr	Leu	Ala 220	Arg	Gly	His	Asn	Val 225
Ile	Asn	Val	Ile	Val 230	Pro	Glu	Ser	Arg	Ala 235	His	Phe	Phe	Gln	Gln 240
Leu	Gly	Tyr	Val	Leu 245	Ala	Thr	Leu	Leu	Leu 250	Phe	Ile	Leu	Leu	Leu 255
Val	Thr	Val	Leu	Leu 260	Ala	Ala	Arg	Arg	Arg 265	Arg	Gly	Gly	Tyr	Glu 270
Tyr	Ser	Asp	Gln	Lys 275	Ser	Gly	Lys	Ser	Lys 280	Gly "	Lys	Asp	Val	Asn 285
Leu	Ala	Glu	Phe	Ala 290	Val	Ala	Ala	Gly	Asp 295	Gln	Met	Leu	Tyr	Arg 300
Ser	Glu	Asp	Ile	Gln 305	Leu	Asp	Tyr	Lys	Asn 310	Asn	Ile	Leu	Lys	Glu 315
Arg	Ala	Glu	Leu	Ala 320	His	Ser	Pro	Leu	Pro 325	Ala	Lys	Tyr	Ile	Asp 330
Leu	Asp	Lys	Gly	Phe 335		Lys	Glu	Asn	Cys 340	Lys				

<210> 78 <211> 2243 <212> DNA <213> Homo sapiens

<400> 78 cgccggaggc agcggcggcg tggcgcagcg gcgacatggc cgttgtctca 50 gaggacgact ttcagcacag ttcaaactcc acctacggaa ccacaagcag 100 cagtetecga getgaceagg aggeactget tgagaagetg etggacegee 150 cgcccctgg cctgcagagg cccgaggacc gcttctgtgg cacatacatc 200 atcttcttca gcctgggcat tggcagtcta ctgccatgga acttctttat 250 cactgccaag gagtactgga tgttcaaact ccgcaactcc tccagcccag 300 ccaccgggga ggaccctgag ggctcagaca tcctgaacta ctttgagagc 350 taccttgccg ttgcctccac cgtgccctcc atgctgtgcc tggtggccaa 400 cttcctgctt gtcaacaggg ttgcagtcca catccgtgtc ctggcctcac 450 tgacggtcat cctggccatc ttcatggtga taactgcact ggtgaaggtg 500 gacacttcct cctggacccg tggttttttt gcggtcacca ttgtctgcat 550 ggtgatcctc agcggtgcct ccactgtctt cagcagcagc atctacggca 600 tgaccggctc ctttcctatg aggaactccc aagcactgat atcaggagga 650 gccatgggcg ggacggtcag cgccgtggcc tcattggtgg acttggctgc 700 atccagtgat gtgaggaaca gcgccctggc cttcttcctg acggccacca 750 tetteetegt getetgeatg ggaetetace tgetgetgte eaggetggag 800 tatgccaggt actacatgag gcctgttctt gcggcccatg tgttttctgg 850 tgaagaggag cttccccagg actccctcag tgccccttcg gtggcctcca 900 gattcattga ttcccacaca ccccctctcc gccccatcct gaagaagacg 950 gccagcctgg gcttctgtgt cacctacgtc ttcttcatca ccagcctcat 1000 ctaccccgcc gtctgcacca acatcgagtc cctcaacaag ggctcgggct 1050 cactgtggac caccaagttt ttcatcccc tcactacctt cctcctgtac 1100 aactttgctg acctatgtgg ccggcagetc accgcctgga tccaggtgcc 1150 agggcccaac agcaaggcgc tcccagggtt cgtgctcctc cggacctgcc 1200 tcatcccct cttcgtgctc tgtaactacc agccccgcgt ccacctgaag 1250 actgtggtct tccagtccga tgtgtacccc gcactcctca gctccctgct 1300 ggggctcagc aacggctacc tcagcaccct ggccctcctc tacgggccta 1350 agattgtgcc cagggagctg gctgaggcca cgggagtggt gatgtccttt 1400 tatgtgtgct tgggcttaac actgggctca gcctgctcta ccctcctggt 1450

gcacctcatc tagaagggag gacacaagga cattggtgct tcagagcctt 1500 tgaagatgag aagagagtgc aggagggctg ggggccatgg aggaaaggcc 1550 taaagtttca cttggggaca gagagcagag cacactcggg cctcatccct 1600 cccaagatgc cagtgagcca cgtccatgcc cattccgtgc aaggcagata 1650 ttccagtcat attaacagaa cactcctgag acagttgaag aagaaatagc 1700 acaaatcagg ggtactccct tcacagctga tggttaacat tccaccttct 1750 ttctagccct tcaaagatgc tgccagtgtt cgccctagag ttattacaaa 1800 gccagtgcca aaacccagcc atgggctctt tgcaacctcc cagctgcgct 1850 cattccagct gacagcgaga tgcaagcaaa tgctcagctc tccttaccct 1900 gaaggggtet ceetggaatg gaagteeect ggeatggtea gteeteagge 1950 ccaagactca agtgtgcaca gacccctgtg ttctgcgggt gaacaactgc 2000 ccactaacca gactggaaaa cccagaaaga tgggccttcc atgaatgctt 2050 cattccagag ggaccagagg gcctccctgt gcaagggatc aagcatgtct 2100 ggcctgggtt ttcaaaaaaa gagggatcct catgacctgg tggtctatgg 2150 cctgggtcaa gatgagggtc tttcagtgtt cctgtttaca acatgtcaaa 2200 gccattggtt caagggcgta ataaatactt gcgtattcaa aaa 2243

<210> 79

<211> 475

<212> PRT

<213> Homo sapiens

<400> 79

Met Ala Val Val Ser Glu Asp Asp Phe Gln His Ser Ser Asn Ser 1 5 10

Thr Tyr Gly Thr Thr Ser Ser Ser Leu Arg Ala Asp Gln Glu Ala 20 25 30

Leu Leu Glu Lys Leu Leu Asp Arg Pro Pro Pro Gly Leu Gln Arg
35 40 45

Pro Glu Asp Arg Phe Cys Gly Thr Tyr Ile Ile Phe Phe Ser Leu
50 55 60

Gly Ile Gly Ser Leu Leu Pro Trp Asn Phe Phe Ile Thr Ala Lys
65 70 75

Glu Tyr Trp Met Phe Lys Leu Arg Asn Ser Ser Ser Pro Ala Thr 80 85 90

Gly Glu Asp Pro Glu Gly Ser Asp Ile Leu Asn Tyr Phe Glu Ser

Tyr	Leu	Ala	Val	Ala 110	Ser	Thr	Val	Pro	Ser 115	Met	Leu	Cys	Leu	Val 120
Ala	Asn	Phe	Leu	Leu 125	Val	Asn	Arg	Val	Ala 130	Val	His	Ile	Arg	Val 135
Leu	Ala	Ser	Leu	Thr 140	Val	Ile	Leu	Ala	Ile 145	Phe	Met	Val	Ile	Thr 150
Ala	Leu	Val	Lys	Val 155	Asp	Thr	Ser	Ser	Trp 160	Thr	Arg	Gly	Phe	Phe 165
Ala	Val	Thr	Ile	Val 170	Суѕ	Met	Val	Ile	Leu 175	Ser	Gly	Ala	Ser	Thr 180
Vạl	Phe	Ser	Ser	Ser 185	Ile	Tyr	Gly	Met	Thr 190	Gly	Ser	Phe	Pro	Met 195
Arg	Asn	Ser	Gln	Ala 200	Leu	Ile	Ser	Gly	Gly 205	Ala	Met	Gly	Gly	Thr 210
Val	Ser	Ala	Val	Ala 215	Ser	Leu	Val	Asp	Leu 220	Ala	Ala	Ser	Ser	Asp 225
Val	Arg	Asn	Ser	Ala 230	Leu	Ala	Phe	Phe	Leu 235	Thr	Ala	Thr	Ile	Phe 240
Leu	Val	Leu	Cys	Met 245		Leu	Tyr	Leu	Leu 250	Leu	Ser	Arg	Leu	Glu 255
Tyr	Ala	Arg	Tyr	Tyr 260		Arg	Pro	Val	Leu 265	Ala	Ala	His	Val	Phe 270
Ser	Gly	Glu	Glu	Glu 275		Pro	Gln	Asp	Ser 280	Leu	Ser	Ala	Pro	Ser 285
Val	Ala	Ser	Arg	Phe 290		Asp	Ser	His	Thr 295	Pro	Pro	Leu	Arg	Pro 300
Ile	Leu	Lys	Lys	Thr 305	Ala	Ser	Leu	Gly	Phe 310	Cys	Val	Thr	Туг	7 Val 315
Phe	Phe	Ile	e Thr	Ser 320		ılle	. Tyr	Pro	Ala 325	Val	Cys	Thi	: Asr	330
Glu	Ser	Let	ı Asr	1 Lys 335	Gly	/ Ser	Gly	Ser	Leu 340	Trp	Thr	Thi	Lys	345
Phe	lle	e Pro) Let	Thi 350		: Phe	e Leu	Lev	Tyr 355	Asn	Phe	e Ala	a Asp	360
Cys	Gly	/ Ar	g Glı	n Lei 365	ı Thi	c Ala	a Trp	o Il€	Glr 370	val	Pro	Gly	y Pro	375
Ser	Lys	s Ala	a Lei	a Pro 380		y Phe	e Val	Let	1 Leu 385	a Arg	Th:	c Cy:	s Lei	1 Ile 390
Pro	Leu	ı Phe	e Val	l Lei	ı Cys	s Ası	а Тул	Glr	n Pro	Arq	g Vai	l Hi	s Lei	ı Lys

<211> 1844

<400> 83 gacagtggag ggcagtggag aggaccgcgc tgtcctgctg tcaccaagag 50 ctggagacac catctcccac cgagagtcat ggccccattg gccctgcacc 100 tectegteet egteceeate etecteagee tggtggeete ecaggaetgg 150 aaggetgaac geageeaaga eeeettegag aaatgeatge aggateetga 200 ctatgagcag ctgctcaagg tggtgacctg ggggctcaat cggaccctga 250 agccccagag ggtgattgtg gttggcgctg gtgtggccgg gctggtggcc 300 gccaaggtgc tcagcgatgc tggacacaag gtcaccatcc tggaggcaga 350 taacaggatc gggggccgca tcttcaccta ccgggaccag aacacgggct 400 ggattgggga getgggagee atgegeatge ceagetetea eaggateete 450 cacaagctct gccagggcct ggggctcaac ctgaccaagt tcacccagta 500 cgacaagaac acgtggacgg aggtgcacga agtgaagctg cgcaactatg 550 tggtggagaa ggtgcccgag aagctgggct acgccttgcg tccccaggaa 600 aagggccact cgcccgaaga catctaccag atggctctca accaggccct 650 caaagacctc aaggcactgg gctgcagaaa ggcgatgaag aagtttgaaa 700 ggcacacgct cttggaatat cttctcgggg aggggaacct gagccggccg 750 gccgtgcagc ttctgggaga cgtgatgtcc gaggatggct tcttctatct 800 cagettegee gaggeeetee gggeeeacag etgeeteage gacagaetee 850 agtacageeg categtgggt ggetgggaee tgetgeegeg egegetgetg 900 agetegetgt eegggettgt getgttgaae gegeeegtgg tggegatgae 950 ccagggaccg cacgatgtgc acgtgcagat cgagacctct cccccggcgc 1000 ggaatctgaa ggtgctgaag gccgacgtgg tgctgctgac ggcgagcgga 1050 ccggcggtga agcgcatcac cttctcgccg ccgctgcccc gccacatgca 1100 ggaggcgctg cggaggctgc actacgtgcc ggccaccaag gtgttcctaa 1150 gcttccgcag gcccttctgg cgcgaggagc acattgaagg cggccactca 1200 aacaccgatc gcccgtcgcg catgattttc tacccgccgc cgcgcgaggg 1250 cgcgctgctg ctggcctcgt acacgtggtc ggacgcggcg gcagcgttcg 1300 ccggcttgag ccgggaagag gcgttgcgct tggcgctcga cgacgtggcg 1350

gcattgcacg ggcctgtcgt gcgccagctc tgggacggca ccggcgtcgt 1400 caagegttgg geggaggace ageacageea gggtggettt gtggtacage 1450 cgccggcgct ctggcaaacc gaaaaggatg actggacggt cccttatggc 1500 cgcatctact ttgccggcga gcacaccgcc tacccgcacg gctgggtgga 1550 gacggcggtc aagtcggcgc tgcgcgccgc catcaagatc aacagccgga 1600 aggggcctgc atcggacacg gccagccccg aggggcacgc atctgacatg 1650 gaggggcagg ggcatgtgca tggggtggcc agcagcccct cgcatgacct 1700 ggcaaaggaa gaaggcagcc accetecagt ccaaggccag ttatetetee 1750 aaaacacgac ccacacgagg acctcgcatt aaagtatttt cggaaaaaaa 1800

<400> 84

- Met Ala Pro Leu Ala Leu His Leu Leu Val Leu Val Pro Ile Leu 1
- Leu Ser Leu Val Ala Ser Gln Asp Trp Lys Ala Glu Arg Ser Gln
- Asp Pro Phe Glu Lys Cys Met Gln Asp Pro Asp Tyr Glu Gln Leu
- Leu Lys Val Val Thr Trp Gly Leu Asn Arg Thr Leu Lys Pro Gln 50
- Arg Val Ile Val Val Gly Ala Gly Val Ala Gly Leu Val Ala Ala
- Lys Val Leu Ser Asp Ala Gly His Lys Val Thr Ile Leu Glu Ala
- Asp Asn Arg Ile Gly Gly Arg Ile Phe Thr Tyr Arg Asp Gln Asn
- Thr Gly Trp Ile Gly Glu Leu Gly Ala Met Arg Met Pro Ser Ser 120 115
- His Arg Ile Leu His Lys Leu Cys Gln Gly Leu Gly Leu Asn Leu
- Thr Lys Phe Thr Gln Tyr Asp Lys Asn Thr Trp Thr Glu Val His 150 145
- Glu Val Lys Leu Arg Asn Tyr Val Val Glu Lys Val Pro Glu Lys 160

<210> 84

<211> 567

<212> PRT

<213> Homo sapiens

Leu	Gly	Tyr	Ala	Leu 170	Arg	Pro	Gln	Glu	Lys 175	Gly	His	Ser	Pro	Glu 180
Asp	Ile	Tyr	Gln	Met 185	Ala	Leu	Asn	Gln	Ala 190	Leu	Lys	Asp	Leu	Lys 195
Ala	Leu	Gly	Cys	Arg 200	Lys	Ala	Met	Lys	Lys 205	Phe	Glu	Arg	His	Thr 210
Leu	Leu	Glu	Tyr	Leu 215	Leu	Gly	Glu	Gly	Asn 220	Leu	Ser	Arg	Pro	Ala 225
Val	Gln	Leu	Leu	Gly 230	Asp	Val	Met	Ser	Glu 235	Asp	Gly	Phe	Phe	Tyr 240
Leu	Ser	Phe	Ala	Glu 245	Ala	Leu	Arg	Ala	His 250	Ser	Cys	Leu	Ser	Asp 255
Arg	Leu	Gln	Tyr	Ser 260	Arg	Ile	Val	Gly	Gly 265	Trp	Asp	Leu	Leu	Pro 270
Arg	Ala	Leu	Leu	Ser 275	Ser	Leu	Ser	Gly	Leu 280	Val	Leu	Leu	Asn	Ala 285
Pro	Val	Val	Ala	Met 290	Thr	Gln	Gly	Pro	His 295	Asp	Val	His	Val	Gln 300
Ile	Glu	Thr	Ser	Pro 305	Pro	Ala	Arg	Asn	Leu 310	Lys	Val	Leu	Lys	Ala 315
Asp	Val	Val	Leu	Leu 320	Thr	Ala	Ser	Gly	Pro 325	Ala	Val	Lys	Arg	Ile 330
Thr	Phe	Ser	Pro	Pro 335	Leu	Pro	Arg	His	Met 340	Gln	Glu	Ala	Leu	Arg 345
Arg	Leu	His	Tyr	Val 350		Ala	Thr	Lys	Val 355	Phe	Leu	Ser	Phe	Arg 360
Arg	Pro	Phe	Trp	Arg 365		Glu	His	Ile	Glu 370	Gly	Gly	His	Ser	Asn 375
Thr	Asp	Arg	Pro	Ser 380		Met	: Ile	Phe	Tyr 385	Pro	Pro	Pro	Arg	Glu 390
Gly	Ala	Lev	ı Leu	Leu 395		Ser	Tyr	Thr	Trp 400	Ser	Asp	Ala	Ala	Ala 405
Ala	Phe	Ala	a Gly	Leu 410		Arç	g Glu	ı Glu	Ala 415	Leu	Arg	Leu	ı Ala	Leu 420
Asp) Asp	Va]	Ala	Ala 425		ı His	s Gly	y Pro	Val 430	. Val	Arg	Glr	Leu	1 Trp 435
Asp	Gly	Thi	Gly	v Val		Lys	s Arg	g Trp	Ala 445	Glu	Asp	Glr	n His	Ser 450
Glr	ı Gly	/ Gly	y Phe	e Val	. Val	L Glr	n Pro	o Pro	Ala	ı Lev	Trp	Glr	n Thi	Glu

				455					460					465
Lys	Asp	Asp	Trp	Thr 470	Val	Pro	Tyr	Gly	Arg 475	Ile	Tyr	Phe	Ala	Gly 480
Glu	His	Thr	Ala	Tyr 485	Pro	His	Gly	Trp	Val 490	Glu	Thr	Ala	Val	Lys 495
Ser	Ala	Leu	Arg	Ala 500	Ala	Ile	Lys	Ile	Asn 505	Ser	Arg	Lys	Gly	Pro 510
Ala	Ser	Asp	Thr	Ala 515	Ser	Pro	Glu	Gly	His 520	Ala	Ser	Asp	Met	Glu 525
Gly	Gln	Gly	His	Val 530	His	Gly	Val	Ala	Ser 535	Ser	Pro	Ser	His	Asp 540
Leu	Ala	Lys	Glu	Glu 545	Gly	Ser	His	Pro	Pro 550	Val	Gln	Gly	Gln	Leu 555
Ser	Leu	Gln	Asn	Thr 560	Thr	His	Thr	Arg	Thr 565	Ser	His			

<210> 85

<211> 3316

<212> DNA

<213> Homo sapiens

<400> 85 ctgacatggc ctgactcggg acagctcaga gcagggcaga actggggaca 50 ctctgggccg gccttctgcc tgcatggacg ctctgaagcc accctgtctc 100 tggaggaacc acgagcgagg gaagaaggac agggactcgt gtggcaggaa 150 gaactcagag ccgggaagcc cccattcact agaagcactg agagatgcgg 200 ccccctcgca gggtctgaat ttcctgctgc tgttcacaaa gatgcttttt 250 atctttaact ttttgttttc cccacttccg accccggcgt tgatctgcat 300 cctgacattt ggagctgcca tcttcttgtg gctgatcacc agacctcaac 350 ccgtcttacc tcttcttgac ctgaacaatc agtctgtggg aattgaggga 400 ggagcacgga agggggtttc ccagaagaac aatgacctaa caagttgctg 450 cttctcagat gccaagacta tgtatgaggt tttccaaaga ggactcgctg 500 tgtctgacaa tgggccctgc ttgggatata gaaaaccaaa ccagccctac 550 agatggctat cttacaaaca ggtgtctgat agagcagagt acctgggttc 600 tetttgetca gaataggeca gagtggatca teteegaatt ggettgttae 700 acgtactcta tggtagctgt acctctgtat gacaccttgg gaccagaagc 750

categtacat attgtcaaca aggetgatat egecatggtg atetgtgaca 800 caccccaaaa ggcattggtg ctgataggga atgtagagaa aggcttcacc 850 ccgagcctga aggtgatcat ccttatggac ccctttgatg atgacctgaa 900 gcaaagaggg gagaagagtg gaattgagat cttatcccta tatgatgctg 950 agaacctagg caaagagcac ttcagaaaac ctgtgcctcc tagcccagaa 1000 gacctgagcg tcatctgctt caccagtggg accacaggtg accccaaagg 1050 agccatgata acccatcaaa atattgtttc aaatgctgct gcctttctca 1100 aatgtgtgga gcatgcttat gagcccactc ctgatgatgt ggccatatcc 1150 tacctccctc tggctcatat gtttgagagg attgtacagg ctgttgtgta 1200 cagctgtgga gccagagttg gattcttcca aggggatatt cggttgctgg 1250 ctgacgacat gaagactttg aagcccacat tgtttcccgc ggtgcctcga 1300 ctccttaaca ggatctacga taaggtacaa aatgaggcca agacaccctt 1350 gaagaagtte ttgttgaage tggetgttte eagtaaatte aaagagette 1400 aaaagggtat catcaggcat gatagtttct gggacaagct catctttgca 1450 aagatccagg acagcctggg cggaagggtt cgtgtaattg tcactggagc 1500 tgcccccatg tccacttcag tcatgacatt cttccgggca gcaatgggat 1550 gtcaggtgta tgaagcttat ggtcaaacag aatgcacagg tggctgtaca 1600 tttacattac ctggggactg gacatcaggt cacgttgggg tgcccctggc 1650 ttgcaattac gtgaagctgg aagatgtggc tgacatgaac tactttacag 1700 tgaataatga aggagaggtc tgcatcaagg gtacaaacgt gttcaaagga 1750 tacctgaagg accctgagaa gacacaggaa gccctggaca gtgatggctg 1800 gcttcacaca ggagacattg gtcgctggct cccgaatgga actctgaaga 1850 tcatcgaccg taaaaagaac attttcaagc tggcccaagg agaatacatt 1900 gcaccagaga agatagaaaa tatctacaac aggagtcaac cagtgttaca 1950 aatttttgta cacggggaga gcttacggtc atccttagta ggagtggtgg 2000 ttcctgacac agatgtactt ccctcatttg cagccaagct tggggtgaag 2050 ggctcctttg aggaactgtg ccaaaaccaa gttgtaaggg aagccatttt 2100 agaagacttg cagaaaattg ggaaagaaag tggccttaaa acttttgaac 2150 aggtcaaagc cattttctt catccagagc cattttccat tgaaaatggg 2200

ctcttgacac caacattgaa agcaaagcga ggagagcttt ccaaatactt 2250 teggacecaa attgacagee tgtatgagea catecaggat taggataagg 2300 tacttaagta cctgccggcc cactgtgcac tgcttgtgag aaaatggatt 2350 aaaaactatt cttacatttg ttttgccttt cctcctattt ttttttaacc 2400 tgttaaactc taaagccata gcttttgttt tatattgaga catataatgt 2450 gtaaacttag ttcccaaata aatcaatcct gtctttccca tcttcgatgt 2500 tgctaatatt aaggcttcag ggctactttt atcaacatgc ctgtcttcaa 2550 gateceagtt tatgttetgt gteetteete atgattteea acettaatae 2600 tattagtaac cacaagttca agggtcaaag ggaccctctg tgccttcttc 2650 tttgttttgt gataaacata acttgccaac agtctctatg cttatttaca 2700 tcttctactg ttcaaactaa gagattttta aattctgaaa aactgcttac 2750 aattcatgtt ttctagccac tccacaaacc actaaaattt tagttttagc 2800 ctatcactca tgtcaatcat atctatgaga caaatgtctc cgatgctctt 2850 ctgcgtaaat taaattgtgt actgaaggga aaagtttgat cataccaaac 2900 atttcctaaa ctctctagtt agatatctga cttgggagta ttaaaaattg 2950 ggtctatgac atactgtcca aaaggaatgc tgttcttaaa gcattattta 3000 cagtaggaac tggggagtaa atctgttccc tacagtttgc tgctgagctg 3050 gaagctgtgg gggaaggagt tgacaggtgg gcccagtgaa cttttccagt 3100 aaatgaagca agcactgaat aaaaacctcc tgaactggga acaaagatct 3150 acaggcaagc aagatgccca cacaacaggc ttattttctg tgaaggaacc 3200 aactgatctc ccccaccctt ggattagagt tcctgctcta ccttacccac 3250 agataacaca tgttgtttct acttgtaaat gtaaagtctt taaaataaac 3300 tattacagat aaaaaa 3316

- <210> 86
- <211> 739
- <212> PRT
- <213> Homo sapiens
- <400> 86
- Met Asp Ala Leu Lys Pro Pro Cys Leu Trp Arg Asn His Glu Arg
- Gly Lys Lys Asp Arg Asp Ser Cys Gly Arg Lys Asn Ser Glu Pro

Gly	Ser	Pro	His	Ser 35	Leu	Glu	Ala	Leu	Arg 40	Asp	Ala	Ala	Pro	Ser 45
Gln	Gly	Leu	Asn	Phe 50	Leu	Leu	Leu	Phe	Thr 55	Lys	Met	Leu	Phe	Ile 60
Phe	Asn	Phe	Leu	Phe 65	Ser	Pro	Leu	Pro	Thr 70	Pro	Ala	Leu	Ile	Cys 75
Ile	Leu	Thr	Phe	Gly 80	Ala	Ala	Ile	Phe	Leu 85	Trp	Leu	Ile	Thr	Arg 90
Pro	Gln	Pro	Val	Leu 95	Pro	Leu	Leu	Asp	Leu 100	Asn	Asn	Gln	Ser	Val 105
Gly	Ile	Glu	Gly	Gly 110	Ala	Arg	Lys	Gly	Val 115	Ser	Gln	Lys	Asn	Asn 120
Asp	Leu	Thr	Ser	Cys 125	Cys	Phe	Ser	Asp	Ala 130	Lys	Thr	Met	Tyr	Glu 135
Val	Phe	Gln	Arg	Gly 140	Leu	Ala	Val	Ser	Asp 145	Asn	Gly	Pro	Cys	Leu 150
Gly	Tyr	Arg	Lys	Pro 155	Asn	Gln	Pro	Tyr	Arg 160	Trp	Leu	Ser	Tyr	Lys 165
Gln	Val	Ser	Asp	Arg 170	Ala	Glu	Tyr	Leu	Gly 175	Ser	Cys	Leu	Leu	His 180
Lys	Gly	Tyr	Lys	Ser 185	Ser	Pro	Asp	Gln	Phe 190	Val	Gly	Ile	Phe	Ala 195
Gln	Asn	Arg	Pro	Glu 200	Trp	Ile	Ile	Ser	Glu 205	Leu	Ala	Суѕ	Tyr	Thr 210
Tyr	Ser	Met	Val	Ala 215	Val	Pro	Leu	Tyr	Asp 220		Leu	Gly	Pro	Glu 225
Ala	Ile	Val	His	Ile 230		Asn	Ļys	Ala	Asp 235		Ala	Met	Val	Ile 240
Cys	Asp	Thr	Pro	Gln 245	Lys	Ala	Leu	Val	Leu 250	Ile	Gly	Asn	Val	Glu 255
Lys	Gly	Phe	Thr	Pro 260		Leu	Lys	Val	Ile 265	Ile	Leu	Met	Asp	270
Phe	Asp	Asp	Asp	Leu 275		Gln	Arg	Gly	Glu 280		Ser	Gly	Ile	Gl: 285
Ile	Leu	Ser	Leu	Tyr 290		Ala	Glu	Asn	Leu 295	Gly	Lys	Glu	His	300
Arg	Lys	Pro	Val	Pro 305		Ser	Pro	Glu	Asp 310		ser	Val	Ile	Cys 315
Phe	Thr	Ser	Gly	Thr	Thr	Gly	Asp	Pro	Lys	Gly	, Ala	Met	Ile	Th

			320					325					330
His Gl	n Asn	Ile	Val 335	Ser	Asn	Ala	Ala	Ala 340	Phe	Leu	Lys	Cys	Val 345
Glu Hi	s Ala	Tyr	Glu 350	Pro	Thr	Pro	Asp	Asp 355	Val	Ala	Ile	Ser	Tyr 360
Leu Pr	o Leu	Ala	His 365	Met	Phe	Glu	Arg	Ile 370	Val	Gln	Ala	Val	Val 375
Tyr Se	r Cys	Gly	Ala 380	Arg	Val	Gly	Phe	Phe 385	Gln	Gly	Asp	Ile	Arg 390
Leu Le	u Ala	Asp	Asp 395	Met	Lys	Thr	Leu	Lys 400	Pro	Thr	Leu	Phe	Pro 405
Ala Va	l Pro	Arg	Leu 410	Leu	Asn	Arg	Ile	Tyr 415	Asp	Lys	Val	Gln	Asn 420
Glu Al	a Lys	Thr	Pro 425	Leu	Lys	Lys	Phe	Leu 430	Leu	Lys	Leu	Ala	Val 435
Ser Se	r Lys	Phe	Lys 440	Glu	Leu	Gln	Lys	Gly 445	Ile	Ile	Arg	His	Asp 450
Ser Ph	e Trp	Asp	Lys 455	Leu	Ile	Phe	Ala	Lys 460	Ile	Gln	Asp	Ser	Leu 465
Gly Gl	y Arg	Val	Arg 470	Val	Ile	Val	Thr	Gly 475	Ala	Ala	Pro	Met	Ser 480
Thr Se	r Val	Met	Thr 485	Phe	Phe	Arg	Ala	Ala 490	Met	Gly	Cys	Gln	Val 495
Tyr Gl	u Ala	Tyr	Gly 500	Gln	Thr	Glu	Cys	Thr 505	Gly	Gly	Cys	Thr	Phe 510
Thr Le	u Pro	Gly	Asp 515	Trp	Thr	Ser	Gly	His 520	Val	Gly	Val	Pro	Leu 525
Ala Cy	s Asn		Val 530		Leu	Glu	Asp	Val 535	Äla	Asp	Met	Asn	Tyr 540
Phe Th	r Val	Asn	Asn 545	Glu	Gly	Glu	Val	Cys 550	Ile	Lys	Gly	Thr	Asn 555
Val Ph	e Lys	Gly	Туг 560	Leu	Lys	Asp	Pro	G1u 565	Lys	Thr	Gln	Glu	Ala 570
Leu As	p Ser	Asp	Gly 575	Trp	Leu	His	Thr	Gly 580	Asp	Ile	Gly	Arg	Trp 585
Leu Pr	o Asn	Gly	Thr 590	Leu	Lys	Ile	Ile	Asp 595	Arg	Lys	Lys	Asn	Ile 600
Phe Ly	s Leu	Ala	Gln 605	Gly	Glu	Tyr	Ile	Ala 610		Glu	Lys	Ile	Glu 615

Asn Ile Tyr Asn Arg Ser Gln Pro Val Leu Gln Ile Phe Val His G30
Gly Glu Ser Leu Arg Ser Ser Leu Val Gly Val Val Val Pro Asp G45
Thr Asp Val Leu Pro Ser Phe Ala Ala Lys Leu Gly Val Lys Gly G60
Ser Phe Glu Glu Leu Cys Gln Asn Gln Val Val Arg Glu Ala Ile G75
Leu Glu Asp Leu Gln Lys Ile Gly Lys Glu Ser Gly Leu Lys Thr G90
Phe Glu Gln Val Lys Ala Ile Phe Leu His Pro Glu Pro Phe Ser 705
Ile Glu Asn Gly Leu Thr Pro Thr Leu Lys Ala Lys Arg Gly 720
Glu Leu Ser Lys Tyr Phe Arg Thr Gln Ile Asp Ser Leu Tyr Gly

His Ile Gln Asp

<210> 87

<211> 2725

<212> DNA

<213> Homo sapiens

ctgcactgtc aaggatgagg gctccttcca cctcaaggac acagccaagg 700 gacacatggg ccttcgtggg acgaaaagga ggtcctgtct tcggggagaa 800 acattetaag teacetgeee tetetteetg gggggaeeca gteetgetga 850 agacagatgt gccattgagc tcagcagaag aggcagagtg ccactgggca 900 gacacagage tgaaccgtcg cegeeggege ttetgeagea aagttgaggg 950 ctatggaagt gtatgcagct gcaaggaccc cacacccatc gagttcagcc 1000 ctgacccact cccagacaac aaggtcctca atgtgcctgt ggctgtcatt 1050 gcagggaacc gacccaatta cctgtacagg atgctgcgct ctctgctttc 1100 agcccagggg gtgtctcctc agatgataac agttttcatt gacggctact 1150 atgaggaacc catggatgtg gtggcactgt ttggtctgag gggcatccag 1200 catactccca tcagcatcaa gaatgcccgc gtgtctcagc actacaaggc 1250 cagceteact gecaetttea acetgtttee ggaggeeaag tttgetgtgg 1300 ttctggaaga ggacctggac attgctgtgg attttttcag tttcctgagc 1350 caatccatcc acctactgga ggaggatgac agcctgtact gcatctctgc 1400 ctggaatgac caggggtatg aacacacggc tgaggaccca gcactactgt 1450 accgtgtgga gaccatgcct gggctgggct gggtgctcag gaggtccttg 1500 tacaaggagg agcttgagcc caagtggcct acaccggaaa agctctggga 1550 ttgggacatg tggatgcgga tgcctgaaca acgccggggc cgagagtgca 1600 tcatccctga cgtttcccga tcctaccact ttggcatcgt cggcctcaac 1650 atgaatggct actttcacga ggcctacttc aagaagcaca agttcaacac 1700 ggttccaggt gtccagctca ggaatgtgga cagtctgaag aaagaagctt 1750 atgaagtgga agttcacagg ctgctcagtg aggctgaggt tctggaccac 1800 agcaagaacc cttgtgaaga ctctttcctg ccagacacag agggccacac 1850 ctacgtggcc tttattcgaa tggagaaaga tgatgacttc accacctgga 1900 cccagcttgc caagtgcctc catatctggg acctggatgt gcgtggcaac 1950 catcggggcc tgtggagatt gtttcggaag aagaaccact tcctggtggt 2000 gggggtcccg gcttccccct actcagtgaa gaagccaccc tcagtcaccc 2050 caatttteet ggageeacce ceaaaggagg agggageece aggageecea 2100

<400> 88

Met Asp Asp Trp Lys Pro Ser Pro Leu Ile Lys Pro Phe Gly Ala 1 5 10 15

Arg Lys Lys Arg Ser Trp Tyr Leu Thr Trp Lys Tyr Lys Leu Thr 20 25 30

Asn Gln Arg Ala Leu Arg Arg Phe Cys Gln Thr Gly Ala Val Leu
35 40 45

Phe Leu Leu Val Thr Val Ile Val Asn Ile Lys Leu Ile Leu Asp 50 55 60

Thr Arg Arg Ala Ile Ser Glu Ala Asn Glu Asp Pro Glu Pro Glu 65 70 75

Gln Asp Tyr Asp Glu Ala Leu Gly Arg Leu Glu Pro Pro Arg Arg 80 85 90

Arg Gly Ser Gly Pro Arg Arg Val Leu Asp Val Glu Val Tyr Ser 95 100

Ser Arg Ser Lys Val Tyr Val Ala Val Asp Gly Thr Thr Val Leu \$110\$ \$120\$

Glu Asp Glu Ala Arg Glu Gln Gly Arg Gly Ile His Val Ile Val 125 130 135

<210> 88

<211> 660

<212> PRT

<213> Homo sapiens

Leu	Asn	Gln	Ala	Thr 140	Gly	His	Val	Met	Ala 145	Lys	Arg	Val	Phe	Asp 150
Thr	Tyr	Ser	Pro	His 155	Glu	Asp	Glu	Ala	Met 160	Val	Leu	Phe	Leu	Asn 165
Met	Val	Ala	Pro	Gly 170	Arg	Val	Leu	Ile	Cys 175	Thr	Val	Lys	Asp	Glu 180
Gly	Ser	Phe	His	Leu 185	Lys	Asp	Thr	Ala	Lys 190	Ala	Leu	Leu	Arg	Ser 195
Leu	Gly	Ser	Gln	Ala 200	Gly	Pro	Ala	Leu	Gly 205	Trp	Arg	Asp	Thr	Trp 210
Ala	Phe	Val	Gly	Arg 215	Lys	Gly	Gly	Pro	Val 220	Phe	Gly	Glu	Lys	His 225
Ser	Lys	Ser	Pro	Ala 230	Leu	Ser	Ser	Trp	Gly 235	Asp	Pro	Val	Leu	Leu 240
Lys	Thr	Asp	Val	Pro 245	Leu	Ser	Ser	Ala	Glu 250	Glu	Ala	Glu	Cys	His 255
Trp	Ala	Asp	Thr	Glu 260	Leu	Asn	Arg	Arg	Arg 265	Arg	Arg	Phe	Cys	Ser 270
Lys	Val	Glu	Gly	Tyr 275	Gly	Ser	Val	Cys	Ser 280	Cys	Lys	Asp	Pro	Thr 285
Pro	Ile	Glu	Phe	Ser 290	Pro	Asp	Pro	Leu	Pro 295	Asp	Asn	Lys	Val	Leu 300
Asn	Val	Pro	Val	Ala 305	Val	Ile	Ala	Gly	Asn 310	Arg	Pro	Asn	Tyr	Leu 315
Tyr	Arg	Met	Leu	Arg 320	Ser	Leu	Leu	Ser	Ala 325	Gln	Gly	Val	Ser	Pro 330
Gln	Met	Ile	Thr	Val 335	Phe	Ile	Asp	Gly	Tyr 340		Glu	Glu	Pro	Met 345
Asp	Val	Val	Ala	Leu 350	Phe	Gly	Leu	Arg	Gly 355		Gln	His	Thr	Pro 360
Ile	Ser	Ile	Lys	Asn 365	Ala	Arg	Val	Ser	Gln 370		Т̀уг	Lys	Ala	Ser 375
Leu	Thr	Ala	Thr	Phe 380	Asn	Leu	Phe	Pro	Glu 385		Lys	Phe	Ala	Val 390
Val	Leu	Glu	Glu	Asp 395	Leu	Asp	Ile	Ala	Val 400		Phe	Phe	Ser	Phe 405
Leu	Ser	Gln	Ser	Ile 410	His	Leu	Leu	Glu	Glu 415		Asp	Ser	Leu	Tyr 420
Cys	Ile	Ser	Ala	Trp	Asn	Asp	Gln	Gly	Tyr	Glu	His	Thr	Ala	Glu

		425					430					435
Asp Pro A	la Leu	Leu 440	Tyr	Arg	Val	Glu	Thr 445	Met	Pro	Gly	Leu	Gly 450
Trp Val L	eu Arg	Arg 455	Ser	Leu	Tyr	Lys	Glu 460	Glu	Leu	Glu	Pro	Lys 465
Trp Pro T	hr Pro	Glu 470	Lys	Leu	Trp	Asp	Trp 475	Asp	Met	Trp	Met	Arg 480
Met Pro G	Slu Gln	Arg 485	Arg	Gly	Arg	Glu	Cys 490	Ile	Ile	Pro	Asp	Val 495
Ser Arg S	Ser Tyr	His 500	Phe	Gly	Ile	Val	Gly 505	Leu	Ásn	Met	Asn	Gly 510
Tyr Phe H	lis Glu	Ala 515	Tyr	Phe	Lys	Lys	His 520	Lys	Phe	Asn	Thr	Val 525
Pro Gly V	/al Gln	Leu 530	Arg	Asn	Val	Asp	Ser 535	Leu	Lys	Lys	Glu	Ala 540
Tyr Glu V	/al Glu	Val 545	His	Arg	Leu	Leu	Ser 550	Glu	Ala	Glu	Val	Leu 555
Asp His S	Ser Lys	Asn 560	Pro	Суз	Glu	Asp	Ser 565	Phe	Leu	Pro	Asp	Thr 570
Glu Gly H	lis Thr	Tyr 575	Val	Ala	Phe	Ile	Arg 580	Met	Glu	Lys	Asp	Asp 585
Asp Phe T	Thr Thr	Trp 590	Thr	Gln	Leu	Ala	Lys 595	Cys	Leu	His	Ile	Trp 600
Asp Leu A	Asp Val	Arg 605	Gly	Asn	His	Arg	Gly 610	Leu	Trp	Arg	Leu	Phe 615
Arg Lys I	Lys Asn	His 620	Phe	Leu	Val	Val	Gly 625	Val	Pro	Ala	Ser	Pro 630
Tyr Ser \	Val Lys	Lys 635	Pro	Pro	Ser	Val	Thr 640	Pro	Ile	Phe	Leu	Glu 645
Pro Pro I	Pro Lys	Glu 650	Glu	Gly	Ala	Pro	Gly 655		Pro	Glu	Gln	Thr 660
<210> 89												
<211> 25												
/212\ DMA												

<212> DNA <213> Artificial

<220>

<221> Artificial sequence <222> 1-25 <223> Synthetic construct.

<400> 89

```
gatggcaaaa cgtgtgtttg acacg 25
<210> 90
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-22
<223> Synthetic construct.
<400> 90
cctcaaccag gccacgggcc ac 22
<210> 91
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-24
<223> Synthetic construct.
<400> 91
cccaggcaga gatgcagtac aggc 24
<210> 92
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-26
<223> Synthetic construct.
<400> 92
cctccagtag gtggatggat tggctc 26
<210> 93
<211> 47
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-47
<223> Synthetic construct.
<400> 93
ctcacctcat gaggatgagg ccatggtgct attcctcaac atggtag 47
<210> 94
<211> 3037
<212> DNA
```

<213> Homo sapiens

<400> 94 cggacgcgtg ggctgctggt gggaaggcct aaagaactgg aaagcccact 50 ctcttggaac caccacact gtttaaagaa cctaagcacc atttaaagcc 100 actggaaatt tgttgtctag tggttgtggg tgaataaagg agggcagaat 150 ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 200 gttacgtggc cggaatcatt cccttggctg ttaatttctc agaggaacga 250 ctgaagctgg tgactgtttt gggtgctggc cttctctgtg gaactgctct 300 ggcagtcatc gtgcctgaag gagtacatgc cctttatgaa gatattcttg 350 agggaaaaca ccaccaagca agtgaaacac ataatgtgat tgcatcagac 400 aaagcagcag aaaaatcagt tgtccatgaa catgagcaca gccacgacca 450 cacacagetg catgeetata ttggtgttte eetegttetg ggettegttt 500 tcatgttgct ggtggaccag attggtaact cccatgtgca ttctactgac 550 gatccagaag cagcaaggtc tagcaattcc aaaatcacca ccacgctggg 600 tetggttgte catgetgeag etgatggtgt tgetttggga geageageat 650 ctacttcaca gaccagtgtc cagttaattg tgtttgtggc aatcatgcta 700 cataaggcac cagctgcttt tggactggtt tccttcttga tgcatgctgg 750 cttagagcgg aatcgaatca gaaagcactt gctggtcttt gcattggcag 800 caccagttat gtccatggtg acatacttag gactgagtaa gagcagtaaa 850 gaagcccttt cagaggtgaa cgccacggga gtggccatgc ttttctctgc 900 cgggacattt ctttatgttg ccacagtaca tgtcctccct gaggtgggcg 950 gaatagggca cagccacaag cccgatgcca cgggagggag aggcctcagc 1000 cgcctggaag tggcagccct ggttctgggt tgcctcatcc ctctcatcct 1050 gtcagtagga caccagcatt aaatgttcaa ggtccagcct tggtccaggg 1100 ccgtttgcca tccagtgaga acagccggca cgtgacagct actcacttcc 1150 tcagtctctt gtctcacctt gcgcatctct acatgtattc ctagagtcca 1200 gaggggaggt gaggttaaaa cctgagtaat ggaaaagctt ttagagtaga 1250 aacacattta cgttgcagtt agctatagac atcccattgt gttatctttt 1300 aaaaggccct tgacattttg cgttttaata tttctcttaa ccctattctc 1350 agggaagatg gaatttagtt ttaaggaaaa gaggagaact tcatactcac 1400 aatgaaatag tgattatgaa aatacagtgt tctgtaatta agctatgtct 1450 ctttcttctt agtttagagg ctctgctact ttatccattg atttttaaca 1500 tggttcccac catgtaagac tggtgcttta gcatctatgc cacatgcgtt 1550 gatggaaggt catagcaccc actcacttag atgctaaagg tgattctagt 1600 taatctggga ttagggtcag gaaaatgata gcaagacaca ttgaaagctc 1650 tctttatact caaaagagat atccattgaa aagggatgtc tagagggatt 1700 taaacagctc ctttggcacg tgcctctctg aatccagcct gccattccat 1750 caaatggagc aggagggtg ggaggagctt ctaaagaggt gactggtatt 1800 ttgtagcatt ccttgtcaag ttctcctttg cagaatacct gtctccacat 1850 tcctagagag gagccaagtt ctagtagttt cagttctagg ctttccttca 1900 agaacagtca gatcacaaag tgtctttgga aattaaggga tattaaattt 1950 taagtgattt ttggatggtt attgatatct ttgtagtagc tttttttaaa 2000 agactaccaa aatgtatggt tgtccttttt ttttgttttt tttttttta 2050 attatttctc ttagcagatc agcaatccct ctagggacct aaatactagg 2100 teagetttgg egacactgtg tetteteaca taaceacetg tageaagatg 2150 gatcataaat gagaagtgtt tgcctattga tttaaagctt attggaatca 2200 tgtctcttgt ctcttcgtct tttctttgct tttcttctaa cttttccctc 2250 tagcctctcc tcgccacaat ttgctgctta ctgctggtgt taatatttgt 2300 gtgggatgaa ttcttatcag gacaaccact tctcgaactg taataatgaa 2350 gataataata totttattot ttatoooott caaagaaatt acotttgtgt 2400 caaatgccgc tttgttgagc ccttaaaata ccacctcctc atgtgtaaat 2450 tgacacaatc actaatctgg taatttaaac aattgagața gcaaaagtgt 2500 ttaacagact aggataattt tttttcata tttgccaaaa tttttgtaaa 2550 ccctgtcttg tcaaataagt gtataatatt gtattattaa tttatttta 2600 ctttctatac catttcaaaa cacattacac taagggggaa ccaagactag 2650 tttcttcagg gcagtggacg tagtagtttg taaaaacgtt ttctatgacg 2700 cataagctag catgcctatg atttatttcc ttcatgaatt tgtcactgga 2750 tcagcagctg tggaaataaa gcttgtgagc cctctgctgg ccacagtgag 2800 gaaagtagca caaataggat acagttgtat gtagtcattg gcaacaattg 2850 catacaattt tactaccaag agaaggtata gtatggaaag tccaaatgac 2900

ttccttgatt ggatgttaac agctgactgg tgtgagactt gaggtttcat 2950 ctagtccttc aaaactatat ggttgcctag attctctctg gaaactgact 3000 ttgtcaaata aatagcagat tgtagtgtca aaaaaaa 3037

- <210> 95
- <211> 307
- <212> PRT
- <213> Homo sapiens

< Δ	Λ	0>	95
~ -	v	U/	

- Met Asp Asp Phe Ile Ser Ile Ser Leu Leu Ser Leu Ala Met Leu

 1 10 15
- Val Gly Cys Tyr Val Ala Gly Ile Ile Pro Leu Ala Val Asn Phe 20 25 30
- Ser Glu Glu Arg Leu Lys Leu Val Thr Val Leu Gly Ala Gly Leu 35 40 45
- Leu Cys Gly Thr Ala Leu Ala Val Ile Val Pro Glu Gly Val His
 50 55 60
- Ala Leu Tyr Glu Asp Ile Leu Glu Gly Lys His His Gln Ala Ser 65 70 75
- Glu Thr His Asn Val Ile Ala Ser Asp Lys Ala Ala Glu Lys Ser 80 85 90
- Val Val His Glu His Glu His Ser His Asp His Thr Gln Leu His
 95 100 105
- Ala Tyr Ile Gly Val Ser Leu Val Leu Gly Phe Val Phe Met Leu 110 115 120
- Leu Val Asp Gln Ile Gly Asn Ser His Val His Ser Thr Asp Asp 125 130 135
- Pro Glu Ala Ala Arg Ser Ser Asn Ser Lys Ile Thr Thr Thr Leu 140 145 150
- Gly Leu Val Val His Ala Ala Ala Asp Gly Val Ala Leu Gly Ala 155 160 165
- Ala Ala Ser Thr Ser Gln Thr Ser Val Gln Leu Ile Val Phe Val
- Ala Ile Met Leu His Lys Ala Pro Ala Ala Phe Gly Leu Val Ser 185 190 195
- Phe Leu Met His Ala Gly Leu Glu Arg Asn Arg Ile Arg Lys His 200 205 210
- Leu Leu Val Phe Ala Leu Ala Ala Pro Val Met Ser Met Val Thr
- Tyr Leu Gly Leu Ser Lys Ser Ser Lys Glu Ala Leu Ser Glu Val

- Asn Ala Thr Gly Val Ala Met Leu Phe Ser Ala Gly Thr Phe Leu 250 245
- Tyr Val Ala Thr Val His Val Leu Pro Glu Val Gly Gly Ile Gly 265 260
- His Ser His Lys Pro Asp Ala Thr Gly Gly Arg Gly Leu Ser Arg
- Leu Glu Val Ala Ala Leu Val Leu Gly Cys Leu Ile Pro Leu Ile 295

Leu Ser Val Gly His Gln His 305

- <210> 96
- <211> 25
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial sequence
- <222> 1-25
- <223> Synthetic construct.
- <400> 96 gttgtgggtg aataaaggag ggcag 25
- <210> 97
- <211> 25
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial sequence
- <222> 1-25
- <223> Synthetic construct.
- <400> 97
- ctgtgctcat gttcatggac aactg 25
- <210> 98
- <211> 50
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial sequence
- <222> 1-50
- <223> Synthetic construct.
- ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 50
- <210> 99
- <211> 1429

<400> 99 gctcgaggcc ggcggcggcg ggagagcgac ccgggcggcc tcgtagcggg 50 gccccggatc cccgagtggc ggccggagcc tcgaaaagag attctcagcg 100 ctgattttga gatgatgggc ttgggaaacg ggcgtcgcag catgaagtcg 150 ccgcccctcg tgctggccgc cctggtggcc tgcatcatcg tcttgggctt 200 caactactgg attgcgagct cccggagcgt ggacctccag acacggatca 250 tggagctgga aggcagggtc cgcagggcgg ctgcagagag aggcgccgtg 300 gagetgaaga agaacgagtt ceagggagag etggagaage agegggagea 350 gcttgacaaa atccagtcca gccacaactt ccagctggag agcgtcaaca 400 agctgtacca ggacgaaaag gcggttttgg tgaataacat caccacaggt 450 gagaggetea teegagtget geaagaeeag ttaaagaeee tgeagaggaa 500 ttacggcagg ctgcagcagg atgtcctcca gtttcagaag aaccagacca 550 acctggagag gaagttctcc tacgacctga gccagtgcat caatcagatg 600 aaggaggtga aggaacagtg tgaggagcga atagaagagg tcaccaaaaa 650 ggggaatgaa gctgtagctt ccagagacct gagtgaaaac aacgaccaga 700 gacagcaget ccaageeete agtgageete ageecagget geaggeagea 750 ggcctgccac acacagaggt gccacaaggg aagggaaacg tgcttggtaa 800 cagcaagtcc cagacaccag cccccagttc cgaagtggtt ttggattcaa 850 agagacaagt tgagaaagag gaaaccaatg agatccaggt ggtgaatgag 900 gageeteaga gggaeagget geegeaggag eeaggeeggg ageaggtggt 950 ggaagacaga cctgtaggtg gaagaggctt cgggggagcc ggagaactgg 1000 gccagacccc acaggtgcag gctgccctgt cagtgagcca ggaaaatcca 1050 gagatggagg gccctgagcg agaccagctt gtcatccccg acggacagga 1100 ggaggagcag gaagctgccg gggaagggag aaaccagcag aaactgagag 1150 gagaagatga ctacaacatg gatgaaaatg aagcagaatc tgagacagac 1200 aagcaagcag ccctggcagg gaatgacaga aacatagatg tttttaatgt 1250 tgaagatcag aaaagagaca ccataaattt acttgatcag cgtgaaaagc 1300 ggaatcatac actctgaatt gaactggaat cacatatttc acaacagggc 1350 cgaagagatg actataaaat gttcatgagg gactgaatac tgaaaactgt 1400 gaaatgtact aaataaaatg tacatctga 1429

<210><211><211><212><213>	401 PRT		pien	S										
<400> Met 1	100 Met	Gly	Leu	Gly 5	Asn	Gly	Arg	Arg	Ser 10	Met	Lys	Ser	Pro	Pro 15
Leu	Val	Leu	Ala	Ala 20	Leu	Val	Ala	Cys	Ile 25	Ile	Val	Leu	Gly	Phe 30
Asn	Tyr	Trp	Ile	Ala 35	Ser	Ser	Arg	Ser	val 40	Asp	Leu	Gln	Thr	Arg 45
Ile	Met	Glu	Leu	Glu 50	Gly	Arg	Val	Arg	Arg 55	Ala	Ala	Ala	Glu	Arg 60
Gly	Ala	Val	Glu	Leu 65	Lys	Lys	Asn	Glu	Phe 70	Gln	Gly	Glu	Leu	Glu 75
Lys	Gln	Arg	Glu	Gln 80	Leu	Asp	Lys	Ile	Gln 85	Ser	Ser	His	Asn	Phe 90
Gln	Leu	Glu	Ser	Val 95	Asn	Lys	Leu	Tyr	Gln 100	Asp	Glu	Lys	Ala	Val 105
Leu	Val	Asn	Asn	Ile 110	Thr	Thr	Gly	Glu	Arg 115	Leu	Ile	Arg	Val	Leu 120
Gln	Asp	Gln	Leu	Lys 125	Thr	Leu	Gln	Arg	Asn 130	Tyr	Gly	Arg	Leu	Gln 135
Gln	Asp	Val	Leu	Gln 140	Phe	Gln	Lys	Asn	Gln 145	Thr	Asn	Leu	Glu	Arg 150
Lys	Phe	Ser	Tyr	Asp 155		Ser	Gln	Cys	Ile 160	Asn	Gln	Met	Lys	Glu 165
Val	Lys	Glu	Gln	Cys 170	Glu	Glu	Arg	Ile	Glu 175	Glu	Val	Thr	Lys	Lys 180
Gly	Asn	Glu	Ala	Val 185	Ala	Ser	Arg	Asp	Leu 190	Ser	Glu	Asn	a Asn	195
Gln	Arg	Gln	Gln	Leu 200		Ala	Leu	Ser	Glu 205	Pro	Glr	Pro	Arg	Leu 210
Glr	n Ala	. Ala	Gly	Leu 215		His	Thr	Glu	Val 220	Pro	Glr	Gly	y Lys	3 Gly 225
Asr	ı Val	Leu	ı Gly	Asr 230	n Ser	Lys	s Ser	Gln	Thr 235	Pro	Ala	a Pro	Sei	Ser 240

```
        Glu
        Val
        Leu
        Asp 245
        Ser
        Lys
        Arg Glu
        Val 250
        Glu
        Lys
        Glu
        Glu
        Glu
        Glu
        Glu
        Glu
        Glu
        Clu
        C55

        Asn
        Glu
        Ile
        Glu
        Val
        Val
        Glu
        Glu
        Arg
        Arg
        Leu 270

        Pro
        Glu
        Glu
        Val
        Glu
        Val
        Glu
        Arg
        Arg
        Leu 270

        Pro
        Glu
        Glu
        Arg
        Glu
        Arg
        Glu
        Val
        Glu
        Arg
        Arg
        Arg
        Glu
        Glu
        Arg
        Arg
        Arg
        Arg
        Arg
        Glu
        Arg
        Arg
        Arg
        Arg
        Glu
        Arg
        Arg
```

<210> 101

<211> 3671

<212> DNA

<213> Homo sapiens

<400> 101
ggatgcagaa agcctcagtg ttgctcttcc tggcctgggt ctgcttcctc 50

ttctacgctg gcattgccct cttcaccagt ggcttcctgc tcaccegttt 100
ggagctcacc aaccatagca gctgccaaga gcccccaggc cctgggtccc 150
tgccatgggg gagccaaggg aaacctgggg cctgctggat ggcttcccga 200
ttttcgcggg ttgtgttggt gctgatagat gctctgcgat ttgacttcgc 250
ccagccccag cattcacacg tgcctagaag gcctcctgtc tccctaccct 300
tcctgggcaa actaagctcc ttgcagagaa tcctggagat tcagccccac 350
catgcccggc tctaccgatc tcaggttgac cctcctacca ccaccatgca 400
gcgcctcaag gccctcacca ctggctcact gcctacctt attgatgctg 450
gtagtaactt cgccagccac gccatagtgg aagacaatct cattaagcag 500

ctcaccagtg caggaaggcg tgtagtcttc atgggagatg atacctggaa 550 agacetttte cetggtgett tetecaaage tttettette ceateettea 600 atgtcagaga cctagacaca gtggacaatg gcatcctgga acacctctac 650 cccaccatgg acagtggtga atgggacgtg ctgattgctc acttcctggg 700 tgtggaccac tgtggccaca agcatggccc tcaccaccct gaaatggcca 750 agaaacttag ccagatggac caggtgatcc agggacttgt ggagcgtctg 800 gagaatgaca cactgctggt agtggctggg gaccatggga tgaccacaaa 850 tggagaccat ggaggggaca gtgagctgga ggtctcagct gctctctttc 900 tgtatagece cacageagte tteeceagea ecceaceaga ggagecagag 950 gtgattcctc aagttagcct tgtgcccacg ctggccctgc tgctgggcct 1000 gcccatccca tttgggaata tcggggaagt gatggctgag ctattctcag 1050 ggggtgagga ctcccagccc cactcctctg ctttagccca agcctcagct 1100 ctccatctca atgctcagca ggtgtcccga tttcttcata cctactcagc 1150 tgctactcag gaccttcaag ctaaggagct tcatcagctg cagaacctct 1200 tetecaagge etetgetgae taccagtgge ttetecagag eeceaagggg 1250 gctgaggcga cactgccgac tgtgattgct gagctgcagc agttcctgcg 1300 gggagetegg gecatgtgca tegagtettg ggetegttte tetetggtee 1350 gcatggcggg gggtactgct ctcttggctg cttcctgctt tatctgcctg 1400 ctggcatctc agtgggcaat atccccaggc tttccattct gccctctact 1450 cctgacacct gtggcctggg gcctggttgg ggccatagcg tatgctggac 1500 teetgggaae tattgagetg aagetagate tagtgettet aggggetgtg 1550 gctgcagtga gctcattcct cccttttctg tggaaagcct gggctggctg 1600 ggggtccaag aggccctgg caaccctgtt tcccatccct gggcccgtcc 1650 tgttactcct gctgtttcgc ttggctgtgt tcttctctga tagttttgtt 1700 gtagctgagg ccagggccac ccccttcctt ttgggctcat tcatcctgct 1750 cctggttgtc cagcttcact gggagggcca gctgcttcca cctaagctac 1800 tcacaatgcc ccgccttggc acttcagcca caacaaaccc cccacggcac 1850 aatggtgcat atgccctgag gcttggaatt gggttgcttt tatgtacaag 1900 gctagctggg ctttttcatc gttgccctga agagacacct gtttgccact 1950 cctctccctg gctgagtcct ctggcatcca tggtgggtgg tcgagccaag 2000 aatttatggt atggagcttg tgtggcggcg ctggtggccc tgttagctgc 2050 cgtgcgcttg tggcttcgcc gctatggtaa tctcaagagc cccgagccac 2100 ccatgctctt tgtgcgctgg ggactgcccc taatggcatt gggtactgct 2150 gcctactggg cattggcgtc gggggcagat gaggctcccc cccgtctccg 2200 ggtcctggtc tctggggcat ccatggtgct gcctcgggct gtagcagggc 2250 tggctgcttc agggctcgcg ctgctgctct ggaagcctgt gacagtgctg 2300 gtgaaggctg gggcaggcgc tccaaggacc aggactgtcc tcactccctt 2350 ctcaggcccc cccacttctc aagctgactt ggattatgtg gtccctcaaa 2400 tctaccgaca catgcaggag gagttccggg gccggttaga gaggaccaaa 2450 tctcagggtc ccctgactgt ggctgcttat cagttgggga gtgtctactc 2500 agctgctatg gtcacagece teacectgtt ggeetteeca ettetgetgt 2550 tgcatgcgga gcgcatcagc cttgtgttcc tgcttctgtt tctgcagagc 2600 ttccttctcc tacatctgct tgctgctggg atacccgtca ccacccctgg 2650 tccttttact gtgccatggc aggcagtctc ggcttgggcc ctcatggcca 2700 cacagacett etactecaca ggecaceage etgtetttee agecatecat 2750 tggcatgcag ccttcgtggg attcccagag ggtcatggct cctgtacttg 2800 gctgcctgct ttgctagtgg gagccaacac ctttgcctcc cacctcctct 2850 ttgcagtagg ttgcccactg ctcctgctct ggcctttcct gtgtgagagt 2900 caagggctgc ggaagagaca gcagccccca gggaatgaag ctgatgccag 2950 agtcagaccc gaggaggaag aggagccact gatggagatg cggctccggg 3000 atgcgcctca gcacttctat gcagcactgc tgcagctggg cctcaagtac 3050 ctctttatcc ttggtattca gattctggcc tgtgccttgg cagcctccat 3100 ccttcgcagg catctcatgg tctggaaagt gtttgcccct aagttcatat 3150 ttgaggetgt gggetteatt gtgageageg tgggaettet eetgggeata 3200 gctttggtga tgagagtgga tggtgctgtg agctcctggt tcaggcagct 3250 atttctggcc cagcagaggt agcctagtct gtgattactg gcacttggct 3300 acagagagtg ctggagaaca gtgtagcctg gcctgtacag gtactggatg 3350 atctgcaaga caggetcage catactetta etateatgea gecaggggee 3400 gctgacatct aggacttcat tattctataa ttcaggacca cagtggagta 3450
tgatccctaa ctcctgattt ggatgcatct gagggacaag gggggcggtc 3500
tccgaagtgg aataaaatag gccgggcgtg gtgacttgca cctataatcc 3550
cagcactttg ggaggcagag gtgggaggat tgcttggtcc caggagttca 3600
agaccagcct gtggaacata acaagacccc gtctctacta tttaaaaaaa 3650
agtgtaataa aatgataata t 3671

- <210> 102
- <211> 1089
- <212> PRT
- <213> Homo sapiens
- <400> 102
- Met Gln Lys Ala Ser Val Leu Leu Phe Leu Ala Trp Val Cys Phe 1 5 10 15
- Leu Phe Tyr Ala Gly Ile Ala Leu Phe Thr Ser Gly Phe Leu Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$
- Thr Arg Leu Glu Leu Thr Asn His Ser Ser Cys Gln Glu Pro Pro 35 40 45
- Gly Pro Gly Ser Leu Pro Trp Gly Ser Gln Gly Lys Pro Gly Ala 50 55 60
- Cys Trp Met Ala Ser Arg Phe Ser Arg Val Val Leu Val Leu Ile 65 70 75
- Asp Ala Leu Arg Phe Asp Phe Ala Gln Pro Gln His Ser His Val 80 85 90
- Pro Arg Glu Pro Pro Val Ser Leu Pro Phe Leu Gly Lys Leu Ser 95 100 105
- Ser Leu Gln Arg Ile Leu Glu Ile Gln Pro His His Ala Arg Leu
 110 115 ... 120
- Tyr Arg Ser Gln Val Asp Pro Pro Thr Thr Thr Met Gln Arg Leu 125 130 135
- Lys Ala Leu Thr Thr Gly Ser Leu Pro Thr Phe Ile Asp Ala Gly 140 145 150
- Ser Asn Phe Ala Ser His Ala Ile Val Glu Asp Asn Leu Ile Lys 155 160 165
- Gln Leu Thr Ser Ala Gly Arg Arg Val Val Phe Met Gly Asp Asp 170 175 180
- Thr Trp Lys Asp Leu Phe Pro Gly Ala Phe Ser Lys Ala Phe Phe 185 190 195
- Phe Pro Ser Phe Asn Val Arg Asp Leu Asp Thr Val Asp Asn Gly

				200					205					210
Ile	Leu	Glu	His	Leu 215	Tyr	Pro	Thr	Met	Asp 220	Ser	Gly	Glu	Trp	Asp 225
Val	Leu	Ile	Ala	His 230	Phe	Leu	Gly	Val	Asp 235	His	Cys	Gly	His	Lys 240
His	Gly	Pro	His	His 245	Pro	Glu	Met	Ala	Lys 250	Lys	Leu	Ser	Gln	Met 255
Asp	Gln	Val	Ile	Gln 260	Gly	Leu	Val	Glu	Arg 265	Leu	Glu	Asn	Asp	Thr 270
Leu	Leu	Val	Val	Ala 275	Gly	Asp	His	Gly	Met 280	Thr	Thr	Asn	Gly	Asp 285
His	Gly	Gly	Asp	Ser 290	Glu	Leu	Glu	Val	Ser 295	Ala	Ala	Leu	Phe	Leu 300
Tyr	Ser	Pro	Thr	Ala 305	Val	Phe	Pro	Ser	Thr 310	Pro	Pro	Glu	Glu	Pro 315
Glu	Val	Ile	Pro	Gln 320	Val	Ser	Leu	Val	Pro 325	Thr	Leu	Ala	Leu	Leu 330
Leu	Gly	Leu	Pro	Ile 335	Pro	Phe	Gly	Asn	Ile 340	Gly	Glu	Val	Met	Ala 345
Glu	Leu	Phe	Ser	Gly 350	Gly	Glu	Asp	Ser	Gln 355	Pro	His	Ser	Ser	Ala 360
Leu	Ala	Gln	Ala	Ser 365	Ala	Leu	His	Leu	Asn 370	Ala	Gln	Gln	Val	Ser 375
Arg	Phe	Leu	His	Thr 380	Tyr	Ser	Ala	Ala	Thr 385	Gln	Asp	Leu	Gln	Ala 390
Lys	Glu	Leu	His	Gln 395	Leu	Gln	Asn	Leu	Phe 400	Ser	Lys	Ala	Ser	Ala 405
Asp	Tyr	Gln	Trp	Leu 410	Leu	Gln	Ser	Pro	Lys 415	Ġly	Ala	Glu	Ala	Thr 420
Leu	Pro	Thr	Val	Ile 425	Ala	Glu	Leu	Gln	Gln 430	Phe	Leu	Arg	Gly	Ala 435
Arg	Ala	Met	Cys	Ile 440	Glu	Ser	Trp	Ala	Arg 445	Phe	Ser	Leu	Val	Arg 450
Met	Ala	Gly	Gly	Thr 455	Ala	Leu	Leu	Ala	Ala 460	Ser	Cys	Phe	Ile	Cys 465
Leu	Leu	Ala	Ser	Gln 470	Trp	Ala	Ile	Ser	Pro 475	Gly	Phe	Pro	Phe	Cys 480
Pro	Leu	Leu	Leu	Thr 485	Pro	Val	Ala	Trp	Gly 490	Leu	Val	Gly	Ala	Ile 495

Ala	Tyr	Ala	Gly	Leu 500	Leụ	Gly	Thr	Ile	Glu 505	Leu	Lys	Leu	Asp	Leu 510
Val	Leu	Leu	Gly	Ala 515	Val	Ala	Ala	Val	Ser 520	Ser	Phe	Leu	Pro	Phe 525
Leu	Trp	Lys	Ala	Trp 530	Ala	Gly	Trp	Gly	Ser 535	Lys	Arg	Pro	Leu	Ala 540
Thr	Leu	Phe	Pro	Ile 545	Pro	Gly	Pro	Val	Leu 550	Leu	Leu	Leu	Leu	Phe 555
Arg	Leu	Ala	Val	Phe 560	Phe	Ser	Asp	Ser	Phe 565	Val	Val	Ala	Glu	Ala 570
Arg	Ala	Thr	Pro	Phe 575	Leu	Leu	Gly	Ser	Phe 580	Ile	Leu	Leu	Leu	Val 585
Val	Gln	Leu	His	Trp 590	Glu	Gly	Gln	Leu	Leu 595	Pro	Pro	Lys	Leu	Leu 600
Thr	Met	Pro	Arg	Leu 605	Gly	Thr	Ser	Ala	Thr 610	Thr	Asn	Pro	Pro	Arg 615
His	Asn	Gly	Ala	Tyr 620	Ala	Leu	Arg	Leu	Gly 625	Ile	Gly	Leu	Leu	Leu 630
Cys	Thr	Arg	Leu	Ala 635	Gly	Leu	Phe	His	Arg 640	Cys	Pro	Glu	Glu	Thr 645
Pro	Val	Cys	His	Ser 650	Ser	Pro	Trp	Leu	Ser 655	Pro	Leu	Ala	Ser	Met 660
Val	Gly	Gly	Arg	Ala 665	Lys	Asn	Leu	Trp	Tyr 670	Gly	Ala	Cys	Val	Ala 675
Ala	Leu	Val	Ala	Leu 680	Leu	Ala	Ala	Val	Arg 685	Leu	Trp	Leu	Arg	Arg 690
Tyr	Gly	Asn	Leu	Lys 695	Ser	Pro	Glu	Pro	Pro 700	Met	Leu	Phe	Val	Arg 705
Trp	Gly	Leu	Pro	Leu 710	Met	Ala	Leu	Gly	Thr 715	Ala	Ala	Tyr	Trp	Ala 720
Leu	Ala	Ser	Gly	Ala 725	Asp	Glu	Ala	Pro	Pro 730	Arg	Leu	Arg	Val	Leu 735
Val	Ser	Gly	Ala	Ser 740	Met	Val	Leu	Pro	Arg 745	Ala	Val	Ala	Gly	Leu 750
Ala	Ala	Ser	Gly	Leu 755	Ala	Leu	Leu	Leu	Trp 760	Lys	Pro	Val	Thr	Val 765
Leu	Val	Lys	Ala	Gly 770	Ala	Gly	Ala	Pro	Arg 775	Thr	Arg	Thr	Val	Leu 780
Thr	Pro	Phe	Ser	Gly	Pro	Pro	Thr	Ser	Gln	Ala	Asp	Leu	Asp	Tyr

				785					790					795
Val V	Val	Pro	Gln	Ile 800	Tyr	Arg	His	Met	Gln 805	Glu	Glu	Phe	Arg	Gly 810
Arg l	Leu	Glu	Arg	Thr 815	Lys	Ser	Gln	Gly	Pro 820	Leu	Thr	Val	Ala	Ala 825
Tyr (Gln	Leu	Gly	Ser 830	Val	Tyr	Ser	Ala	Ala 835	Met	Val	Thr	Ala	Leu 840
Thr 1	Leu	Leu	Ala	Phe 845	Pro	Leu	Leu	Leu	Leu 850	His	Ala	Glu	Arg	Ile 855
Ser 1	Leu	Val	Phe	Leu 860	Leu	Leu	Phe	Leu	Gln 865	Ser	Phe	Leu	Leu	Leu 870
His 1	Leu	Leu	Ala	Ala 875	Gly	Ile	Pro	Val	Thr 880	Thr	Pro	Gly	Pro	Phe 885
Thr V	Val	Pro	Trp	Gln 890	Ala	Val	Ser	Ala	Trp 895	Ala	Leu	Met	Ala	Thr 900
Gln 7	Thr	Phe	Tyr	Ser 905	Thr	Gly	His	Gln	Pro 910	Val	Phe	Pro	Ala	Ile 915
His 1	rp	His	Ala	Ala 920	Phe	Val	Gly	Phe	Pro 925	Glu	Gly	His	Gly	Ser 930
Cys 1	Thr	Trp	Leu	Pro 935	Ala	Leu	Leu	Val	Gly 940	Ala	Asn	Thr	Phe	Ala 945
Ser 1	His	Leu	Leu	Phe 950	Ala	Val	Gly	Cys	Pro 955	Leu	Leu	Leu	Leu	Trp 960
Pro I	Phe	Leu	Cys	Glu 965	Ser	Gln	Gly	Leu	Arg 970	Lys	Arg	Gln	Gln	Pro 975
Pro (Gly	Asn	Glu	Ala 980	Asp	Ala	Arg	Val	Arg 985	Pro	Glu	Glu	Glu	Glu 990
Glu I	Pro	Leu	Met	Glu 995	Met	Arg	Leu		Asp 1000	Äla	Pro	Gln	-	Phe 1005
Tyr A	Ala	Ala		Leu 1010	Gln	Leu	Gly		Lys 1015	Tyr	Leu	Phe		Leu .020
Gly 1	Ile	Gln		Leu 1025	Ala	Cys	Ala		Ala 1030	Ala	Ser	Ile		Arg .035
Arg H	lis	Leu		Val L040	Trp	Lys	Val	_	Ala 1045	Pro	Lys	Phe	-	Phe 050
Glu <i>F</i>	Ala	Val	_	Phe 1055	Ile	Val	Ser		Val .060	Gly	Leu	Leu		Gly .065
Ile A	Ala	Leu		Met .070	Arg	Val	Asp		Ala .075	Val	Ser	Ser		Phe .080

Arg Gln Leu Phe Leu Ala Gln Gln Arg 1085

<210> 103

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 103

tgccqctqcc qccqctqctq ctgttqctcc tggcggcgcc ttggggacgg 50 gcagttccct gtgtctctgg tggtttgcct aaacctgcaa acatcacctt 100 cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150 ttcaaggagt taaagttact tacactgtgc agtatttcat cacaaattgg 200 cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250 tgacagetee agagaagtgg aagagaaate cagaagacet teetgtttee 300 atgcaacaaa tatactccaa tctgaagtat aacgtgtctg tgttgaatac 350 taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctggtgc 400 tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450 gtcccagggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctggt 550 atgttttgcc catatctatt accgtgtttc ttttttctgt gatgggctat 600 tccatctacc gatatatcca cgttggcaaa gagaaacacc cagcaaattt 650 gattttgatt tatggaaatg aatttgacaa aagattcttt gtgcctgctg 700 aaaaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750 atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag 800 ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag 850 aggaggtgaa acatttaggg tatgcttcgc atttgatgga aattttttgt 900 gactctgaag aaaacacgga aggtacttct ctcacccagc aagagtccct 950 cagcagaaca atacccccgg ataaaacagt cattgaatat gaatatgatg 1000 tcagaaccac tgacatttgt gcggggcctg aagagcagga gctcagtttg 1050 caggaggagg tgtccacaca aggaacatta ttggagtcgc aggcagcgtt 1100 ggcagtcttg ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150 aagacttaga ccccctggcg caggagcaca cagactcgga ggaggggccg 1200 gaggaagage categaegae eetggtegae tgggateece aaactggeag 1250 gctgtgtatt ccttcgctgt ccagcttcga ccaggattca gagggctgcg 1300 agccttctga gggggatggg ctcggagagg agggtcttct atctagactc 1350 tatgaggagc cggctccaga caggccacca ggagaaaatg aaacctatct 1400 catgcaattc atggaggaat gggggttata tgtgcagatg gaaaactgat 1450 gccaacactt ccttttgcct tttgtttcct gtgcaaacaa gtgagtcacc 1500 cctttgatcc cagccataaa gtacctggga tgaaagaagt tttttccagt 1550 ttgtcagtgt ctgtgagaat tacttatttc ttttctctat tctcatagca 1600 cgtgtgtgat tggttcatgc atgtaggtct cttaacaatg atggtgggcc 1650 tctggagtcc aggggctggc cggttgttct atgcagagaa agcagtcaat 1700 aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743

<212> PRT
<213> Homo sapiens

<213>	· Hon	no sa	pien	ıs										
<400> Met 1	· 104 Ser	l Tyr	Asn	Gly 5	Leu	His	Gln	Arg	Val 10	Phe	Lys	Glu	Leu	Lys 15
Leu	Leu	Thr	Leu	Cys 20	Ser	Ile	Ser	Ser	Gln 25	Ile	Gly	Pro	Pro	Glu 30
Val	Ala	Leu	Thr	Thr 35	Asp	Glu	Lys	Ser	Ile 40	Ser	Val	Val	Leu	Thr 45
Ala	Pro	Glu	Lys	Trp 50	Lys	Arg	Asn	Pro	Glu 55	Asp	Leu	Pro	Val	Ser 60
Met	Gln	Gln	Ile	Tyr 65	Ser	Asn	Leu	Lys	Туг 70	Asn	Val	Ser	Val	Leu 75
Asn	Thr	Lys	Ser	Asn 80	Arg	Thr	Trp	Ser	Gln 85	Ċys	Val	Thr	Asn	His 90
Thr	Leu	Val	Leu	Thr 95	Trp	Leu	Glu	Pro	Asn 100	Thr	Leu	Tyr	Cys	Val 105
His	Val	Glu	Ser	Phe 110	Val	Pro	Gly	Pro	Pro 115	Arg	Arg	Ala	Gln	Pro 120
Ser	Glu	Lys	Gln	Cys 125	Ala	Arg	Thr	Leu	Lys 130	Asp	Gln	Ser	Ser	Glu 135
Phe	Lys	Ala	Lys	Ile 140		Phe	Trp	Tyr	Val 145	Leu	Pro	Ile	Ser	Ile 150
Thr	Val	Phe	Leu	Phe		Val	Met	Gly	Tyr 160	Ser	Ile	Tyr	Arg	Tyr 165

<210> 104

<211> 442

Ile	His	Val	Gly	Lys 170	Glu	Lys	His	Pro	Ala 175	Asn	Leu	Ile	Leu	Ile 180
Tyr	Gly	Asn	Glu	Phe 185	Asp	Lys	Arg	Phe	Phe 190	Val	Pro	Ala	Glu	Lys 195
Ile	Val	Ile	Asn	Phe 200	Ile	Thr	Leu	Asn	Ile 205	Ser	Asp	Asp	Ser	Lys 210
Ile	Ser	His	Gln	Asp 215	Met	Ser	Leu	Leu	Gly 220	Lys	Ser	Ser	Asp	Val 225
Ser	Ser	Leu	Asn	Asp 230	Pro	Gln	Pro	Ser	Gly 235	Asn	Leu	Arg	Pro	Pro 240
Gln	Glu	Glu	Glu	Glu 245	Val	Lys	His	Leu	Gly 250	Tyr	Ala	Ser	His	Leu 255
Met	Glu	Ile	Phe	Cys 260	Asp	Ser	Glu	Glu	Asn 265	Thr	Glu	Gly	Thr	Ser 270
Leu	Thr	Gln	Gln	Glu 275	Ser	Leu	Ser	Arg	Thr 280	Ile	Pro	Pro	Asp	Lys 285
Thr	Val	Ile	Glu	Tyr 290	Glu	Tyr	Asp	Val	Arg 295	Thr	Thr	Asp	Ile	Cys 300
Ala	Gly	Pro	Glu	Glu 305	Gln	Glu	Leu	Ser	Leu 310	Gln	Glu	Glu	Val	Ser 315
Thr	Gln	Gly	Thr	Leu 320	Leu	Glu	Ser	Gln	Ala 325	Ala	Leu	Ala	Val	Leu 330
Gly	Pro	Gln	Thr	Leu 335	Gln	Tyr	Ser	Tyr	Thr 340	Pro	Gln	Leu	Gln	Asp 345
Leu	Asp	Pro	Leu	Ala 350		Glu	His	Thr	Asp 355	Ser	Glu	Glu	Gly	Pro 360
Glu	Glu	Glu	Pro	Ser 365		Thr	Leu	Val	Asp 370	Trp	Asp	Pro	Gln	Thr 375
Gly	Arg	Leu	Cys	Ile 380		Ser	Leu	Ser	Ser 385	Phe	Asp	Gln	Asp	Ser 390
Glu	Gly	Cys	Glu	Pro 395		Glu	Gly	Asp	Gly 400	Leu	Gly	glu	Glu	Gly 405
Leu	Leu	Ser	Arg	Leu 410		Glu	ı Glu	Pro	Ala 415	Pro	Asp	Arg	J Pro	Pro 420
Gly	Glu	Așr	Glu	Thr 425		Leu	ı Met	Gln	Phe 430	e Met	: Glu	ı Glu	ı Trp	Gly 435
Leu	туг	· Val	Gln	Met 440		ı Asr	1							

```
<211> 21
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-21
<223> Synthetic construct
<400> 105
 cgctgctgct gttgctcctg g 21
<210> 106
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 106
 cagtgtgcca ggactttg 18
<210> 107
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 107
 agtcgcaggc agcgttgg 18
<210> 108
<211> 25
<212> DNA
<213> Artificial
 <220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.
<400> 108
 ctcctccgag tctgtgtgct cctgc 25
 <210> 109
 <211> 51
 <212> DNA
 <213> Artificial
```

<220>

<221> Artificial Sequence

<222> 1-51 <223> Synthetic construct.

<400> 109 ggacgggcag ttccctgtgt ctctggtggt ttgcctaaac ctgcaaacat 50

c 51

<210> 110 <211> 1114 <212> DNA

<213> Homo sapiens

<400> 110 cggacgcgtg ggcggacgcg tgggcggacg cgtgggtctc tgcggggaga 50 cgccagcctg cgtctgccat ggggctcggg ttgaggggct ggggacgtcc 100 tctgctgact gtggccaccg ccctgatgct gcccgtgaag ccccccgcag 150 gctcctgggg ggcccagatc atcgggggcc acgaggtgac cccccactcc 200 aggccctaca tggcatccgt gcgcttcggg ggccaacatc actgcggagg 250 cttcctgctg cgagcccgct gggtggtctc ggccgcccac tgcttcagcc 300 acagagacet cegeaetgge etggtggtge tgggegeeca egteetgagt 350 actgeggage ceaeceagea ggtgtttgge ategatgete teaecaegea 400 ccccgactac caccccatga cccacgccaa cgacatctgc ctgctgcggc 450 tgaacggctc tgctgtcctg ggccctgcag tggggctgct gaggctgcca 500 gggagaaggg ccaggcccc cacagcgggg acacggtgcc gggtggctgg 550 ctggggcttc gtgtctgact ttgaggagct gccgcctgga ctgatggagg 600 ccaaggtccg agtgctggac ccggacgtct gcaacagctc ctggaagggc 650 cacctgacac ttaccatgct ctgcacccgc agtggggaca gccacagacg 700 gggcttctgc tcggccgact ccggagggcc cctggtgtgc aggaaccggg 750 ctcacggcct cgtttccttc tcgggcctct ggtgcggcga ccccaagacc 800 cccgacgtgt acacgcaggt gtccgccttt gtggcctgga tctgggacgt 850 ggttcggcgg agcagtcccc agcccggccc cctgcctggg accaccaggc 900 ccccaggaga agccgcctga gccacaacct tgcggcatgc aaatgagatg 950 geogetecag geotggaatg ttoegtgget gggeeeeacg ggaageetga 1000 tgttcagggt tggggtggga cgggcagcgg tggggcacac ccattccaca 1050 tgcaaagggc agaagcaaac ccagtaaaat gttaactgac aaaaaaaaa 1100

aaaaaaaaa gaaa 1114

<210> 111 <211> 283 <212> PRT <213> Homo sapiens <400> 111 Met Gly Leu Gly Leu Arg Gly Trp Gly Arg Pro Leu Leu Thr Val Ala Thr Ala Leu Met Leu Pro Val Lys Pro Pro Ala Gly Ser Trp Gly Ala Gln Ile Ile Gly Gly His Glu Val Thr Pro His Ser Arg Pro Tyr Met Ala Ser Val Arg Phe Gly Gly Gln His His Cys Gly Gly Phe Leu Leu Arg Ala Arg Trp Val Val Ser Ala Ala His Cys Phe Ser His Arg Asp Leu Arg Thr Gly Leu Val Val Leu Gly Ala His Val Leu Ser Thr Ala Glu Pro Thr Gln Gln Val Phe Gly Ile 105 Asp Ala Leu Thr Thr His Pro Asp Tyr His Pro Met Thr His Ala 110 Asn Asp Ile Cys Leu Leu Arg Leu Asn Gly Ser Ala Val Leu Gly 125 Pro Ala Val Gly Leu Leu Arg Leu Pro Gly Arg Arg Ala Arg Pro 145 Pro Thr Ala Gly Thr Arg Cys Arg Val Ala Gly Trp Gly Phe Val 160 Ser Asp Phe Glu Glu Leu Pro Pro Gly Leu Met Glu Ala Lys Val Arg Val Leu Asp Pro Asp Val Cys Asn Ser Ser Trp Lys Gly His Leu Thr Leu Thr Met Leu Cys Thr Arg Ser Gly Asp Ser His Arg Arg Gly Phe Cys Ser Ala Asp Ser Gly Gly Pro Leu Val Cys Arg 215 Asn Arg Ala His Gly Leu Val Ser Phe Ser Gly Leu Trp Cys Gly 235 Asp Pro Lys Thr Pro Asp Val Tyr Thr Gln Val Ser Ala Phe Val

Ala Trp Ile Trp Asp Val Val Arg Arg Ser Ser Pro Gln Pro Gly 265 260 Pro Leu Pro Gly Thr Thr Arg Pro Pro Gly Glu Ala Ala <210> 112 <211> 24 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-24 <223> Synthetic construct. <400> 112 gacgtctgca acagctcctg gaag 24 <210> 113 <211> 23 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-23 <223> Synthetic construct. <400> 113 cgagaaggaa acgaggccgt gag 23 <210> 114 <211> 44 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-44 <223> Synthetic construct. <400> 114 tgacacttac catgetetge accegeagtg gggacageca caga 44 <210> 115 <211> 1808 <212> DNA <213> Homo sapiens <400> 115 gagetaceca ggeggetggt gtgcagcaag eteegegeeg acteeggaeg 50 cctgacgcct gacgcctgtc cccggcccgg catgagccgc tacctgctgc 100 cgctgtcggc gctgggcacg gtagcaggcg ccgccgtgct gctcaaggac 150

tatgtcaccg gtggggcttg ccccagcaag gccaccatcc ctgggaagac 200

ggtcatcgtg acgggcgcca acacaggcat cgggaagcag accgccttgg 250 aactggccag gagaggaggc aacatcatcc tggcctgccg agacatggag 300 aagtgtgagg cggcagcaaa ggacatccgc ggggagaccc tcaatcacca 350 tgtcaacgcc cggcacctgg acttggcttc cctcaagtct atccgagagt 400 ttgcagcaaa gatcattgaa gaggaggagc gagtggacat tctaatcaac 450 aacgcgggtg tgatgcggtg cccccactgg accaccgagg acggcttcga 500 gatgcagttt ggcgttaacc acctgggtca ctttctcttg acaaacttgc 550 tgctggacaa gctgaaagcc tcagcccctt cgcggatcat caacctctcg 600 tccctggccc atgttgctgg gcacatagac tttgacgact tgaactggca 650 gacgaggaag tataacacca aagccgccta ctgccagagc aagctcgcca 700 tcgtcctctt caccaaggag ctgagccggc ggctgcaagg ctctggtgtg 750 actgtcaacg ccctgcaccc cggcgtggcc aggacagagc tgggcagaca 800 cacgggcatc catggctcca cettetecag caccacate gggcccatet 850 tctggctgct ggtcaagagc cccgagctgg ccgcccagcc cagcacatac 900 ctggccgtgg cggaggaact ggcggatgtt tccggaaagt acttcgatgg 950 actcaaacag aaggccccgg cccccgaggc tgaggatgag gaggtggccc 1000 ggaggetttg ggetgaaagt geeegeetgg tgggettaga ggeteeetet 1050 gtgagggagc agcccctccc cagataacct ctggagcaga tttgaaagcc 1100 aggatggcgc ctccagaccg aggacagctg tccgccatgc ccgcagcttc 1150 ctggcactac ctgagccggg agacccagga ctggcggccg ccatgcccgc 1200 agtaggttct agggggcggt gctggccgca gtggactggc ctgcaggtga 1250 gcactgcccc gggctctggc tggttccgtc tgctctgctg ccagcagggg 1300 agaggggcca tctgatgctt cccctgggaa tctaaactgg gaatggccga 1350 ggaggaaggg gctctgtgca cttgcaggcc acgtcaggag agccagcggt 1400 gcctgtcggg gagggttcca aggtgctccg tgaagagcat gggcaagttg 1450 tctgacactt ggtggattct tgggtccctg tgggaccttg tgcatgcatg 1500 gtcctctctg agccttggtt tcttcagcag tgagatgctc agaataactg 1550 ctgtctccca tgatggtgtg gtacagcgag ctgttgtctg gctatggcat 1600 ggctgtgccg ggggtgtttg ctgagggctt cctgtgccag agcccagcca 1650 gagagcaggt gcaggtgtca tcccgagttc aggctctgca cggcatggag 1700 tgggaacccc accagctgct gctacaggac ctgggattgc ctgggactcc 1750 caccttccta tcaattctca tggtagtcca aactgcagac tctcaaactt 1800 gctcattt 1808

<210> 116 <211> 331

<212> PRT <213> Homo sapiens <400> 116 Met Ser Arg Tyr Leu Leu Pro Leu Ser Ala Leu Gly Thr Val Ala Gly Ala Ala Val Leu Leu Lys Asp Tyr Val Thr Gly Gly Ala Cys Pro Ser Lys Ala Thr Ile Pro Gly Lys Thr Val Ile Val Thr Gly Ala Asn Thr Gly Ile Gly Lys Gln Thr Ala Leu Glu Leu Ala Arg Arg Gly Gly Asn Ile Ile Leu Ala Cys Arg Asp Met Glu Lys Cys Glu Ala Ala Lys Asp Ile Arg Gly Glu Thr Leu Asn His His Val Asn Ala Arg His Leu Asp Leu Ala Ser Leu Lys Ser Ile Arg Glu Phe Ala Ala Lys Ile Ile Glu Glu Glu Glu Arg Val Asp Ile 110 Leu Ile Asn Asn Ala Gly Val Met Arg Cys Pro His Trp Thr Thr 125 Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His Leu Gly His Phe Leu Leu Thr Asn Leu Leu Leu Asp Lys Leu Lys Ala Ser Ala 155 Pro Ser Arg Ile Ile Asn Leu Ser Ser Leu Ala His Val Ala Gly 175 His Ile Asp Phe Asp Asp Leu Asn Trp Gln Thr Arg Lys Tyr Asn 190 Thr Lys Ala Ala Tyr Cys Gln Ser Lys Leu Ala Ile Val Leu Phe 205

220

225

Thr Lys Glu Leu Ser Arg Arg Leu Gln Gly Ser Gly Val Thr Val

```
Asn Ala Leu His Pro Gly Val Ala Arg Thr 235 Glu Leu Gly Arg His 240

Thr Gly Ile His Gly Ser Thr Phe Ser 250 Thr Thr Leu Gly Pro 255

Ile Phe Trp Leu Leu Val Lys Ser Pro Glu Leu Ala Ala Gln Pro 270

Ser Thr Tyr Leu Ala Val Ala Glu Glu Leu 280 Val Lys Gln Lys Ala Pro Ala Pro Gly 285

Lys Tyr Phe Asp Glu Val Ala Arg Arg Leu Trp Ala Glu Ser Ala Arg 315

Leu Val Gly Leu Glu Ala 320 Ala Pro Ser Val Arg Glu Glu Gln Pro Leu Pro 330
```

Arg

<210> 117 <211> 2249 <212> DNA <213> Homo sapiens

<400> 117
 gaagttcgcg agcgctggca tgtggtcctg gggcgcggct ggcggcgctg 50

ctggcggtgc tggcgctcgg gacaggagac ccagaaaggg ctgcggcccg 100

gggcgacacg ttctcggcgc tgaccagcgt ggcgcgcgcc ctggcgcccg 150

agcgccggct gctggggctg ctgaggcggt acctgcgcgg ggaggaggcg 200

cggctgcggg acctgactag attctacgac aaggtacttt ctttgcatga 250

ggattcaaca acccctgtgg ctaaccctct gcttgcattt actctcatca 300

aacgcctgca gtctgactgg aggaatgtgg tacatagtct ggaggccagt 350

gagaacatcc gagctctgaa ggatggctat gagaaggtgg agcaagacct 400

tccagccttt gaggaccttg agggagcagc aagggccctg atgcggctgc 450

aggacgtgta catgctcaat gtgaaaggcc tggcccgagg tgtctttcag 500

agagtcactg gctctgcat cactgacctg tacagccca aacggctctt 550

ttctctcaca ggggatgact gcttccaagt tggcaaggtg gcctatgaca 600

tgggggatta ttaccatgcc attccatggc tggaggaggc tgtcagtctc 650

ttccgaggat cttacggaga gtggaagaca gaggatgagg caagtctaga 700

agatgccttg gatcacttgg cctttgctta tttccgggca ggaaatgttt 750 cgtgtgccct cagcctctct cgggagtttc ttctctacag cccagataat 800 aagaggatgg ccaggaatgt cttgaaatat gaaaggctct tggcagagag 850 ccccaaccac gtggtagctg aggctgtcat ccagaggccc aatatacccc 900 acctgcagac cagagacacc tacgaggggc tatgtcagac cctgggttcc 950 cageceacte tetaceagat ecetageete taetgtteet atgagaceaa 1000 ttccaacgcc tacctgctgc tccagcccat ccggaaggag gtcatccacc 1050 tggagcccta cattgctctc taccatgact tcgtcagtga ctcagaggct 1100 cagaaaatta gagaacttgc agaaccatgg ctacagaggt cagtggtggc 1150 atcaggggag aagcagttac aagtggagta ccgcatcagc aaaagtgcct 1200 ggctgaagga cactgttgac ccaaaactgg tgaccctcaa ccaccgcatt 1250 gctgccctca caggccttga tgtccggcct ccctatgcag agtatctgca 1300 ggtggtgaac tatggcatcg gaggacacta tgagcctcac tttgaccatg 1350 ctacgtcacc aagcagcccc ctctacagaa tgaagtcagg aaaccgagtt 1400 gcaacattta tgatctatct gagctcggtg gaagctggag gagccacagc 1450 cttcatctat gccaacctca gcgtgcctgt ggttaggaat gcagcactgt 1500 tttggtggaa cctgcacagg agtggtgaag gggacagtga cacacttcat 1550 gctggctgtc ctgtcctggt gggagataag tgggtggcca acaagtggat 1600 acatgagtat ggacaggaat teegeagace etgeagetee agecetgaag 1650 actgaactgt tggcagagag aagctggtgg agtcctgtgg ctttccagag 1700 aagccaggag ccaaaagctg gggtaggaga ggagaaagca gagcagcctc 1750 ctggaagaag gccttgtcag ctttgtctgt gcctcgcaaa tcagaggcaa 1800 gggagaggtt gttaccaggg gacactgaga atgtacattt gatctgcccc 1850 agccacggaa gtcagagtag gatgcacagt acaaaggagg ggggagtgga 1900 ggcctgagag ggaagtttct ggagttcaga tactctctgt tgggaacagg 1950 acatctcaac agtctcaggt tcgatcagtg ggtcttttgg cactttgaac 2000 cttgaccaca gggaccaaga agtggcaatg aggacacctg caggaggggc 2050 tagectgact cocagaactt taagacttte teeccaetge ettetgetge 2100 agcccaagca gggagtgtcc ccctcccaga agcatatccc agatgagtgg 2150

- <210> 118
- <211> 544
- <212> PRT
- <213> Homo sapiens
- <400> 118
- Met Gly Pro Gly Ala Arg Leu Ala Ala Leu Leu Ala Val Leu Ala 1 5 10 15
- Leu Gly Thr Gly Asp Pro Glu Arg Ala Ala Ala Arg Gly Asp Thr 20 25 30
- Phe Ser Ala Leu Thr Ser Val Ala Arg Ala Leu Ala Pro Glu Arg
- Arg Leu Leu Gly Leu Leu Arg Arg Tyr Leu Arg Gly Glu Glu Ala
 50 55 60
- Arg Leu Arg Asp Leu Thr Arg Phe Tyr Asp Lys Val Leu Ser Leu 65 70 75
- His Glu Asp Ser Thr Thr Pro Val Ala Asn Pro Leu Leu Ala Phe 80 85 90
- Thr Leu Ile Lys Arg Leu Gln Ser Asp Trp Arg Asn Val Val His
 95 100 105
- Ser Leu Glu Ala Ser Glu Asn Ile Arg Ala Leu Lys Asp Gly Tyr 110 115 120
- Glu Lys Val Glu Gln Asp Leu Pro Ala Phe Glu Asp Leu Glu Gly
 125 130 135
- Ala Ala Arg Ala Leu Met Arg Leu Gln Asp Val Tyr Met Leu Asn 140 145 150
- Val Lys Gly Leu Ala Arg Gly Val Phe Gln Arg Val Thr Gly Ser 155 160 " 165
- Ala Ile Thr Asp Leu Tyr Ser Pro Lys Arg Leu Phe Ser Leu Thr 170 175 180
- Gly Asp Asp Cys Phe Gln Val Gly Lys Val Ala Tyr Asp Met Gly 185 190 195
- Asp Tyr Tyr His Ala Ile Pro Trp Leu Glu Glu Ala Val Ser Leu 200 205 210
- Phe Arg Gly Ser Tyr Gly Glu Trp Lys Thr Glu Asp Glu Ala Ser
- Leu Glu Asp Ala Leu Asp His Leu Ala Phe Ala Tyr Phe Arg Ala 230 235 240

Gly	Asn	Val	Ser	Cys 245	Ala	Leu	Ser	Leu	Ser 250	Arg	Glu	Phe	Leu	Leu 255
Tyr	Ser	Pro	Asp	Asn 260	Lys	Arg	Met	Ala	Arg 265	Asn	Val	Leu	Lys	Tyr 270
Glu	Arg	Leu	Leu	Ala 275	Glu	Ser	Pro	Asn	His 280	Val	Val	Ala	Glu	Ala 285
Val	Ile	Gln	Arg	Pro 290	Asn	Ile	Pro	His	Leu 295	Gln	Thr	Arg	Asp	Thr 300
Tyr	Glu	Gly	Leu	Cys 305	Gln	Thr	Leu	Gly	Ser 310	Gln	Pro	Thr	Leu	Tyr 315
Gln	Ile	Pro	Ser	Leu 320	Tyr	Cys	Ser	Tyr	Glu 325	Thr	Asn	Ser	Asn	Ala 330
Tyr	Leu	Leu	Leu	Gln 335	Pro	Ile	Arg	Lys	Glu 340	Val	Ile	His	Leu	Glu 345
Pro	Tyr	Ile	Ala	Leu 350	Tyr	His	Asp	Phe	Val 355	Ser	Asp	Ser	Glu	Ala 360
Gln	Lys	Ile	Arg	Glu 365	Leu	Ala	Glu	Pro	Trp 370	Leu	Gln	Arg	Ser	Val 375
Val	Ala	Ser	Gly	Glu 380	Lys	Gln	Leu	Gln	Val 385	Glu	Tyr	Arg	Ile	Ser 390
Lys	Ser	Ala	Trp	Leu 395	Lys	Asp	Thr	Val	Asp 400	Pro	Lys	Leu	Val	Thr 405
Leu	Asn	His	Arg	Ile 410	Ala	Ala	Leu	Thr	Gly 415	Leu	Asp	Val	Arg	Pro 420
Pro	Tyr	Ala	Glu	Tyr 425	Leu	Gln	Val	Val	Asn 430	Tyr	Gly	Ile	Gly	Gly 435
His	Tyr	Glu	Pro	His 440		Asp	His	Ala	Thr 445	Ser	Pro	Ser	Ser	Pro 450
Leu	Tyr	Arg	Met	Lys 455		Gly	Asn	Arg	Val 460	Ala	Thr	Phe	Met	Ile 465
Tyr	Leu	Ser	Ser	Val 470		Ala	Gly	Gly	Ala 475	Thr	Ala	Phe	Ile	Tyr 480
Ala	Asn	Leu	Ser	Val 485		Val	Val	Arg	Asn 490		Ala	Leu	Phe	Trp 495
Trp	Asn	Leu	His	Arg 500		Gly	glu	Gly	Asp 505	Ser	Asp	Thr	Leu	His 510
Ala	Gly	Cys	Pro	Val 515		val	Gly	Asp	Lys 520	Trp	Val	. Ala	a Asn	Lys 525
Trp	Ile	His	Glu	Tyr	Gly	, Gln	ı Glu	Phe	Arg	Arg	Pro	Cys	s Ser	Ser

Ser Pro Glu Asp

- <210> 119
- <211> 23
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-23
- <223> Synthetic construct.
- <400> 119

cgggacagga gacccagaaa ggg 23

- <210> 120
- <211> 24
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-24
- <223> Synthetic construct.
- <400> 120

ggccaagtga tccaaggcat cttc 24

- <210> 121
- <211> 49
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-49
- <223> Synthetic construct.
- <400> 121

ctgcgggacc tgactagatt ctacgacaag gtactttctt tgcatgggg 49

- <210> 122
- <211> 1778
- <212> DNA
- <213> Homo sapiens
- <400> 122

gagataggga gtctgggttt aagttcctgc tccatctcag gagcccctgc 50

tcccaccct aggaagccac cagactccac ggtgtggggc caatcaggtg 100

gaatcggccc tggcaggtgg ggccacgagc gctggctgag ggaccgagcc 150

ggagagcccc ggagcccccg taacccgcgc ggggagcgcc caggatgccg 200

cgcggggact cggagcaggt gcgctactgc gcgcgcttct cctacctctg 250 gctcaagttt tcacttatca tctattccac cgtgttctgg ctgattgggg 300 ccctggtcct gtctgtgggc atctatgcag aggttgagcg gcagaaatat 350 aaaacccttg aaagtgcctt cctggctcca gccatcatcc tcatcctcct 400 gggcgtcgtc atgttcatgg tctccttcat tggtgtgctg gcgtccctcc 450 gtgacaacct gtaccttctc caagcattca tgtacatcct tgggatctgc 500 ctcatcatgg agctcattgg tggcgtggtg gccttgacct tccggaacca 550 gaccattgac ttcctgaacg acaacattcg aagaggaatt gagaactact 600 atgatgatct ggacttcaaa aacatcatgg actttgttca gaaaaagttc 650 aagtgctgtg gcggggagga ctaccgagat tggagcaaga atcagtacca 700 cgactgcagt gcccctggac ccctggcctg tggggtgccc tacacctgct 750 gcatcaggaa cacgacagaa gttgtcaaca ccatgtgtgg ctacaaaact 800 atcgacaagg agcgtttcag tgtgcaggat gtcatctacg tgcggggctg 850 caccaacgcc gtgatcatct ggttcatgga caactacacc atcatggcgt 900 gcatcctcct gggcatcctg cttccccagt tcctgggggt gctgctgacg 950 ctgctgtaca tcacccgggt ggaggacatc atcatggagc actctgtcac 1000 tgatgggctc ctggggcccg gtgccaagcc cagcgtggag gcggcaggca 1050 egggatgetg cttgtgetae eccaattagg geeeageetg ceatggeage 1100 tccaacaagg accgtctggg atagcacctc tcagtcaaca tcgtggggct 1150 ggacagggct gcggcccctc tgcccacact cagtactgac caaagccagg 1200 gctgtgtgtg cctgtgtgta ggtcccacgg cctctgcctc cccagggagc 1250 agageetggg ceteceetaa gaggetttee eegaggeage tetggaatet 1300 gtgcccacct ggggcctggg gaacaaggcc ctcctttctc caggcctggg 1350 ctacagggga gggagagcct gaggctctgc tcagggccca tttcatctct 1400 ggcagtgcct tggcggtggt attcaaggca gttttgtagc acctgtaatt 1450 ggggagaggg agtgtgcccc tcggggcagg agggaagggc atctggggaa 1500 gggcaggagg gaagagctgt ccatgcagcc acgcccatgg ccaggttggc 1550 ctcttctcag cctcccaggt gccttgagcc ctcttgcaag ggcggctgct 1600 teettgagee tagttttttt ttaegtgatt tttgtaacat teatttttt 1650

gtacagataa caggagtttc tgactaatca aagctggtat ttccccgcat 1700 gtcttattct tgcccttccc ccaaccagtt tgttaatcaa acaataaaaa 1750 catgttttgt tttgtttta aaaaaaaa 1778

- <210> 123
- <211> 294
- <212> PRT
- <213> Homo sapiens

< 4	<00	123

- Met Pro Arg Gly Asp Ser Glu Gln Val Arg Tyr Cys Ala Arg Phe
 1 5 10 15
- Ser Tyr Leu Trp Leu Lys Phe Ser Leu Ile Ile Tyr Ser Thr Val 20 25 30
- Phe Trp Leu Ile Gly Ala Leu Val Leu Ser Val Gly Ile Tyr Ala 35 40 40
- Glu Val Glu Arg Gln Lys Tyr Lys Thr Leu Glu Ser Ala Phe Leu 50 55 60
- Ala Pro Ala Ile Ile Leu Ile Leu Gly Val Val Met Phe Met 65 70 75
- Val Ser Phe Ile Gly Val Leu Ala Ser Leu Arg Asp Asn Leu Tyr 80 85 90
- Leu Leu Gln Ala Phe Met Tyr Ile Leu Gly Ile Cys Leu Ile Met 95 100 105
- Glu Leu Ile Gly Gly Val Val Ala Leu Thr Phe Arg Asn Gln Thr 110 115 120
- Ile Asp Phe Leu Asn Asp Asn Ile Arg Arg Gly Ile Glu Asn Tyr 125 130 135
- Tyr Asp Asp Leu Asp Phe Lys Asn Ile Met Asp Phe Val Gln Lys 140 145 ... 150
- Lys Phe Lys Cys Cys Gly Gly Glu Asp Tyr Arg Asp Trp Ser Lys 155 160 165
- Asn Gln Tyr His Asp Cys Ser Ala Pro Gly Pro Leu Ala Cys Gly 170 175 180
- Val Pro Tyr Thr Cys Cys Ile Arg Asn Thr Thr Glu Val Val Asn 185 190 195
- Thr Met Cys Gly Tyr Lys Thr Ile Asp Lys Glu Arg Phe Ser Val 200 205 210
- Gln Asp Val Ile Tyr Val Arg Gly Cys Thr Asn Ala Val Ile Ile 215 220 225
- Trp Phe Met Asp Asn Tyr Thr Ile Met Ala Cys Ile Leu Leu Gly

230 235 240)
Ile Leu Leu Pro Gln Phe Leu Gly Val Leu Leu Thr Leu Leu Tyr 245 250 255	
Ile Thr Arg Val Glu Asp Ile Ile Met Glu His Ser Val Thr Asp 260 . 265 270)
Gly Leu Leu Gly Pro Gly Ala Lys Pro Ser Val Glu Ala Ala Gly 275 280 285	/ 5
Thr Gly Cys Cys Leu Cys Tyr Pro Asn 290	
<210> 124 <211> 25 <212> DNA <213> Artificial	
<220> <221> Artificial Sequence <222> 1-25 <223> Synthetic construct.	
<400> 124 atcatctatt ccaccgtgtt ctggc 25	
<210> 125 <211> 25 <212> DNA <213> Artificial	
<220> <221> Artificial Sequence <222> 1-25 <223> Synthetic construct.	
<400> 125 gacagagtgc tccatgatga tgtcc 25	
<210> 126 <211> 50 <212> DNA <213> Artificial	
<220>	

<220>

<221> Artificial Sequence

<222> 1-50 <223> Synthetic construct.

<400> 126

cctgtctgtg ggcatctatg cagaggttga gcggcagaaa tataaaaccc 50

<210> 127

<211> 1636 <212> DNA

<213> Homo sapiens

<400> 127 gaggagcggg ccgaggactc cagcgtgccc aggtctggca tcctgcactt 50 gctgccctct gacacctggg aagatggccg gcccgtggac cttcaccctt 100 ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150 tgcagttctc atcctcggcc caaaagtcat caaagaaaag ctgacacagg 200 agctgaagga ccacaacgcc accagcatcc tgcagcagct gccgctgctc 250 agtgccatgc gggaaaagcc agccggaggc atccctgtgc tgggcagcct 300 ggtgaacacc gtcctgaagc acatcatctg gctgaaggtc atcacagcta 350 acatecteca getgeaggtg aageeetegg ecaatgacea ggagetgeta 400 gtcaagatcc ccctggacat ggtggctgga ttcaacacgc ccctggtcaa 450 gaccatcgtg gagttccaca tgacgactga ggcccaagcc accatccgca 500 tggacaccag tgcaagtggc cccacccgcc tggtcctcag tgactgtgcc 550 accagccatg ggagcctgcg catccaactg ctgtataagc tctccttcct 600 ggtgaacgcc ttagctaagc aggtcatgaa cctcctagtg ccatccctgc 650 ccaatctagt gaaaaaccag ctgtgtcccg tgatcgaggc ttccttcaat 700 ggcatgtatg cagacetect geagetggtg aaggtgeeca ttteeeteag 750 cattgaccgt ctggagtttg accttctgta tcctgccatc aagggtgaca 800 ccattcagct ctacctgggg gccaagttgt tggactcaca gggaaaggtg 850 accaagtggt tcaataactc tgcagcttcc ctgacaatgc ccaccctgga 900 caacatcccg ttcagcctca tcgtgagtca ggacgtggtg aaagctgcag 950 tggctgctgt gctctctcca gaagaattca tggtcctgtt ggactctgtg 1000 cttcctgaga gtgcccatcg gctgaagtca agcatcgggc tgatcaatga 1050 aaaggctgca gataagctgg gatctaccca gatcgtgaag atcctaactc 1100 aggacactcc cgagtttttt atagaccaag gccatgccaa ggtggcccaa 1150 ctgatcgtgc tggaagtgtt tccctccagt gaagccctcc gccctttgtt 1200 caccetggge ategaageca geteggaage teagttttae accaaaggtg 1250 accaacttat actcaacttg aataacatca gctctgatcg gatccagctg 1300 atgaactctg ggattggctg gttccaacct gatgttctga aaaacatcat 1350 cactgagatc atccactcca tcctgctgcc gaaccagaat ggcaaattaa 1400 gatctggggt cccagtgtca ttggtgaagg ccttgggatt cgaggcagct 1450

gaatcctcac tgaccaagga tgcccttgtg cttactccag cctccttgtg 1500
gaaacccagc tctcctgtct cccagtgaag acttggatgg cagccatcag 1550
ggaaggctgg gtcccagctg ggagtatggg tgtgagctct atagaccatc 1600
cctctctgca atcaataaac acttgcctgt gaaaaa 1636

- <210> 128
- <211> 484
- <212> PRT
- <213> Homo sapiens

<400> 128 Met Ala Gly 1	Pro	Trp 5	Thr	Phe	Thr	Leu	Leu 10	Cys	Gly	Leu	Leu	Ala 15
												_

- Ala Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile 20 25 30
- Leu Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys 35 40 45
- Asp His Asn Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser 50 55 60
- Ala Met Arg Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser
 65 70 75
- Leu Val Asn Thr Val Leu Lys His Ile Ile Trp Leu Lys Val Ile $80 \\ 0 \\ 0 \\ 0$
- Thr Ala Asn Ile Leu Gln Leu Gln Val Lys Pro Ser Ala Asn Asp 95 100 105
- Gln Glu Leu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe 110 115
- Asn Thr Pro Leu Val Lys Thr Ile Val Glu Phe His Met Thr Thr 125 130 135
- Glu Ala Gln Ala Thr Ile Arg Met Asp Thr Ser Ala Ser Gly Pro $140 \,$ $145 \,$ $150 \,$
- Thr Arg Leu Val Leu Ser Asp Cys Ala Thr Ser His Gly Ser Leu 155 160 165
- Arg Ile Gln Leu Leu Tyr Lys Leu Ser Phe Leu Val Asn Ala Leu 170 175 180
- Ala Lys Gln Val Met Asn Leu Leu Val Pro Ser Leu Pro Asn Leu 185 190 195
- Val Lys Asn Gln Leu Cys Pro Val Ile Glu Ala Ser Phe Asn Gly 200 205
- Met Tyr Ala Asp Leu Leu Gln Leu Val Lys Val Pro Ile Ser Leu 215 220 225

Ser	Ile	Asp	Arg	Leu 230	Glu	Phe	Asp	Leu	Leu 235	Tyr	Pro	Ala	Ile	Lys 240
Gly	Asp	Thr	Ile	Gln 245	Leu	Tyr	Leu	Gly	Ala 250	Lys	Leu	Leu	Asp	Ser 255
Gln	Gly	Lys	Val	Thr 260	Lys	Trp	Phe	Asn	Asn 265	Ser	Ala	Ala	Ser	Leu 270
Thr	Met	Pro	Thr	Leu 275	Asp	Asn	Ile	Pro	Phe 280	Ser	Leu	Ile	Val	Ser 285
Gln	Asp	Val	Val	Lys 290	Ala	Ala	Val	Ala	Ala 295	Val	Leu	Ser	Pro	Glu 300
Glu	Phe	Met	Val	Leu 305	Leu	Asp	Ser	Val	Leu 310	Pro	Glu	Ser	Ala	His 315
Arg	Leu	Lys	Ser	Ser 320	Ile	Gly	Leu	Ile	Asn 325	Glu	Lys	Ala	Ala	Asp 330
			Ser	335					340					343
			Phe	350					355					300
			Glu	365					370					373
			Gly	380					385					390
			Gln	395					400	l				403
			Leu	410	1				415)				420
			s Asn	425)				430) ';				433
			n Asn	440)				44.	,				
			a Leu	455	5				460)				400
Asp	Ala	a Lei	ı Val	Let 470		r Pro	Ala	a Sei	475	ı Trp	o Lys	s Pro	Ser	Ser 480

Pro Val Ser Gln

<210> 129 <211> 2213 <212> DNA <213> Homo sapiens <400> 129 gagcgaacat ggcagcgcgt tggcggtttt ggtgtgtctc tgtgaccatg 50 gtggtggcgc tgctcatcgt ttgcgacgtt ccctcagcct ctgcccaaag 100 ctaacaaaag acctgtaata agaatgaatg gagacaagtt ccgtcgcctt 200 gtgaaagccc caccgagaaa ttactccgtt atcgtcatgt tcactgctct 250 ccaactgcat agacagtgtg tcgtttgcaa gcaagctgat gaagaattcc 300 agatectgge aaacteetgg egatacteea gtgeatteae caacaggata 350 ttttttgcca tggtggattt tgatgaaggc tctgatgtat ttcagatgct 400 aaacatgaat tcagctccaa ctttcatcaa ctttcctgca aaagggaaac 450 ccaaacgggg tgatacatat gagttacagg tgcggggttt ttcagctgag 500 cagattgccc ggtggatcgc cgacagaact gatgtcaata ttagagtgat 550 tagaccccca aattatgctg gtccccttat gttgggattg cttttggctg 600 ttattggtgg acttgtgtat cttcgaagaa gtaatatgga atttctcttt 650 aataaaactg gatgggcttt tgcagctttg tgttttgtgc ttgctatgac 700 atctggtcaa atgtggaacc atataagagg accaccatat gcccataaga 750 atccccacac gggacatgtg aattatatcc atggaagcag tcaagcccag 800 tttgtagctg aaacacacat tgttcttctg tttaatggtg gagttacctt 850 aggaatggtg cttttatgtg aagctgctac ctctgacatg gatattggaa 900 agcgaaagat aatgtgtgtg gctggtattg gacttgttgt attattcttc 950 agttggatgc tctctatttt tagatctaaa tatcatggct acccatacag 1000 ctttctgatg agttaaaaag gtcccagaga tatatagaca ctggagtact 1050 ggaaattgaa aaacgaaaat cgtgtgtgtt tgaaaagaag aatgcaactt 1100 gtatattttg tattacctct ttttttcaag tgatttaaat agttaatcat 1150 ttaaccaaag aagatgtgta gtgccttaac aagcaatcct ctgtcaaaat 1200 ctgaggtatt tgaaaataat tatcctctta accttctctt cccagtgaac 1250 tttatggaac atttaattta gtacaattaa gtatattata aaaattgtaa 1300 aactactact ttgttttagt tagaacaaag ctcaaaacta ctttagttaa 1350 cttggtcatc tgattttata ttgccttatc caaagatggg gaaagtaagt 1400 cctgaccagg tgttcccaca tatgcctgtt acagataact acattaggaa 1450

ttcattctta gcttcttcat ctttgtgtgg atgtgtatac tttacgcatc 1500 tttccttttg agtagagaaa ttatgtgtgt catgtggtct tctgaaaatg 1550 gaacaccatt cttcagagca cacgtctagc cctcagcaag acagttgttt 1600 ctcctcctcc ttgcatattt cctactgcgc tccagcctga gtgatagagt 1650 gagactetgt etcaaaaaaa agtateteta aatacaggat tataatttet 1700 gcttgagtat ggtgttaact accttgtatt tagaaagatt tcagattcat 1750 tccatctcct tagttttctt ttaaggtgac ccatctgtga taaaaatata 1800 gcttagtgct aaaatcagtg taacttatac atggcctaaa atgtttctac 1850 aaattagagt ttgtcactta ttccatttgt acctaagaga aaaataggct 1900 cagttagaaa aggactccct ggccaggcgc agtgacttac gcctgtaatc 1950 tcagcacttt gggaggccaa ggcaggcaga tcacgaggtc aggagttcga 2000 gaccatcctg gccaacatgg tgaaaccccg tctctactaa aaatataaaa 2050 attagctggg tgtggtggca ggagcctgta atcccagcta cacaggaggc 2100 tgaggcacga gaatcacttg aactcaggag atggaggttt cagtgagccg 2150 agatcacgcc actgcactcc agcctggcaa cagagcgaga ctccatctca 2200 aaaaaaaaa aaa 2213

<210> 130

<211> 335

<212> PRT

<213> Homo sapiens

<400> 130

Met Ala Ala Arg Trp Arg Phe Trp Cys Val Ser Val Thr Met Val

Val Ala Leu Leu Ile Val Cys Asp Val Pro Ser Ala Ser Ala Gln

Arg Lys Lys Glu Met Val Leu Ser Glu Lys Val Ser Gln Leu Met

Glu Trp Thr Asn Lys Arg Pro Val Ile Arg Met Asn Gly Asp Lys

Phe Arg Arg Leu Val Lys Ala Pro Pro Arg Asn Tyr Ser Val Ile

Val Met Phe Thr Ala Leu Gln Leu His Arg Gln Cys Val Val Cys

Lys Gln Ala Asp Glu Glu Phe Gln Ile Leu Ala Asn Ser Trp Arg 100

Tyr	Ser	Ser	Ala	Phe 110	Thr	Asn	Arg	Ile	Phe 115	Phe	Ala	Met	Val	Asp 120
Phe	Asp	Glu	Gly	Ser 125	Asp	Val	Phe	Gln	Met 130	Leu	Asn	Met	Asn	Ser 135
Ala	Pro	Thr	Phe	Ile 140	Asn	Phe	Pro	Ala	Lys 145	Gly	Lys	Pro	Lys	Arg 150
Gly	Asp	Thr	Tyr	Glu 155	Leu	Gln	Val	Arg	Gly 160	Phe	Ser	Ala	Glu	Gln 165
Ile	Ala	Arg	Trp	Ile 170	Ala	Asp	Arg	Thr	Asp 175	Val	Asn	Ile	Arg	Val 180
Ile	Arg	Pro	Pro	Asn 185	Tyr	Ala	Gly	Pro	Leu 190	Met	Leu	Gly	Leu	Leu 195
Leu	Ala	Val	Ile	Gly 200	Gly	Leu	Val	Tyr	Leu 205	Arg	Arg	Ser	Asn	Met 210
Glu	Phe	Leu	Phe	Asn 215	Lys	Thr	Gly	Trp	Ala 220	Phe	Ala	Ala	Leu	Cys 225
Phe	Val	Leu	Ala	Met 230	Thr	Ser	Gly	Gln	Met 235	Trp	Asn	His	Ile	Arg 240
Gly	Pro	Pro	Tyr	Ala 245	His	Lys	Asn	Pro	His 250	Thr	Gly	His	Val	Asn 255
Tyr	Ile	His	Gly	Ser 260	Ser	Gln	Ala	Gln	Phe 265	Val	Ala	Glu	Thr	His 270
Ile	val	. Leu	ı Leu	Phe 275	Asr	Gly	g Gly	val	Thr 280	Leu	Gly	/ Met	. Val	Leu 285
Leu	Cys	s Glu	ı Ala	Ala 290		: Ser	Asp) Met	295	ll∈	e Gly	/ Lys	s Arg	300
Ile	e Met	. Cys	s Val	Ala 305	a Gly	, Ile	e Gly	ı Lev	val 310	Val	Le	ı Phe	e Phe	Ser 315
Trp	o Met	Le	ı Sei	320	e Phe	e Arq	g Sei	Lys	325	His	s Gl	у Ту:	r Pro	330
Sei	r Phe	e Lei	u Met	33!										
<213 <213	<210> 131 <211> 2476 <212> DNA <213> Homo sapiens													
<40	0> 1	31	acti	rcaa	act	ttaa	gagt:	ta t	tcac	tgtc	c ct	gccc	tgct	50

<400> 131
aagcaaccaa actgcaagct ttgggagttg ttcgctgtcc ctgccctgct 50
ctgctaggga gagaacgcca gagggaggcg gctggcccgg cggcaggctc 100

tcagaaccgc taccggcgat gctactgctg tgggtgtcgg tggtcgcagc 150 cttggcgctg gcggtactgg cccccggagc aggggagcag aggcggagag 200 cagccaaagc gcccaatgtg gtgctggtcg tgagcgactc cttcgatgga 250 aggttaacat ttcatccagg aagtcaggta gtgaaacttc cttttatcaa 300 ctttatgaag acacgtggga cttcctttct gaatgcctac acaaactctc 350 caatttgttg cccatcacgc gcagcaatgt ggagtggcct cttcactcac 400 ttaacagaat cttggaataa ttttaagggt ctagatccaa attatacaac 450 atggatggat gtcatggaga ggcatggcta ccgaacacag aaatttggga 500 aactggacta tacttcagga catcactcca ttagtaatcg tgtggaagcg 550 tggacaagag atgttgcttt cttactcaga caagaaggca ggcccatggt 600 taatcttatc cgtaacagga ctaaagtcag agtgatggaa agggattggc 650 agaatacaga caaagcagta aactggttaa gaaaggaagc aattaattac 700 actgaaccat ttgttattta cttgggatta aatttaccac acccttaccc 750 ttcaccatct tctggagaaa attttggatc ttcaacattt cacacatctc 800 tttattggct tgaaaaagtg tctcatgatg ccatcaaaat cccaaagtgg 850 tcacctttgt cagaaatgca ccctgtagat tattactctt cttatacaaa 900 aaactgcact ggaagattta caaaaaaaga aattaagaat attagagcat 950 tttattatgc tatgtgtgct gagacagatg ccatgcttgg tgaaattatt 1000 ttggcccttc atcaattaga tcttcttcag aaaactattg tcatatactc 1050 ctcagaccat ggagagctgg ccatggaaca tcgacagttt tataaaatga 1100 gcatgtacga ggctagtgca catgttccgc ttttgatgat gggaccagga 1150 attaaagccg gcctacaagt atcaaatgtg gtttctcttg tggatattta 1200 ccctaccatg cttgatattg ctggaattcc tctgcctcag aacctgagtg 1250 gatactcttt gttgccgtta tcatcagaaa catttaagaa tgaacataaa 1300 gtcaaaaacc tgcatccacc ctggattctg agtgaattcc atggatgtaa 1350 tgtgaatgcc tccacctaca tgcttcgaac taaccactgg aaatatatag 1400 cctattcgga tggtgcatca atattgcctc aactctttga tctttcctcg 1450 gatccagatg aattaacaaa tgttgctgta aaatttccag aaattactta 1500 ttctttggat cagaagette attecattat aaactaeeet aaagtttetg 1550 cttctgtcca ccagtataat aaagagcagt ttatcaagtg gaaacaaagt 1600 ataggacaga attattcaaa cgttatagca aatcttaggt ggcaccaaga 1650 ctggcagaag gaaccaagga agtatgaaaa tgcaattgat cagtggctta 1700 aaacccatat gaatccaaga gcagtttgaa caaaaagttt aaaaatagtg 1750 ttctagagat acatataaat atattacaag atcataatta tgtattttaa 1800 atgaaacagt tttaataatt accaagtttt ggccgggcac agtggctcac 1850 acctgtaatc ccaggacttt gggaggctga ggaaagcaga tcacaaggtc 1900 aagagattga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 1950 aaatacaaaa attagctggg cgcggtggtg cacacctata gtctcagcta 2000 ctcagaggct gaggcaggag gatcgcttga acccgggagg cagcagttgc 2050 agtgagctga gattgcgcca ctgtactcca gcctggcaac agagtgagac 2100 tgtgtcgcaa aaaaataaaa ataaaataat aataattacc aatttttcat 2150 tattttgtaa gaatgtagtg tattttaaga taaaatgcca atgattataa 2200 aatcacatat tttcaaaaat ggttattatt taggcctttg tacaatttct 2250 aacaatttag tggaagtatc aaaaggattg aagcaaatac tgtaacagtt 2300 atgttccttt aaataataga gaatataaaa tattgtaata atatgtatca 2350 aaaaaaaaa aaaaaaaaa aaaaaa 2476

<210> 132

<211> 536

<212> PRT

<213> Homo sapiens

<400> 132

Met Leu Leu Trp Val Ser Val Val Ala Ala Leu Ala Leu Ala 1 5 10 15

Val Leu Ala Pro Gly Ala Gly Glu Gln Arg Arg Arg Ala Ala Lys 20 25 30

Ala Pro Asn Val Val Leu Val Val Ser Asp Ser Phe Asp Gly Arg
35 40 45

Leu Thr Phe His Pro Gly Ser Gln Val Val Lys Leu Pro Phe Ile 50 55 60

Asn Phe Met Lys Thr Arg Gly Thr Ser Phe Leu Asn Ala Tyr Thr 65 70 75

Asn	Ser	Pro	Ile	Cys 80	Cys	Pro	Ser	Arg	Ala 85	Ala	Met	Trp	Ser	Gly 90
Leu	Phe	Thr	His	Leu 95	Thr	Glu	Ser	Trp	Asn 100	Asn	Phe	Lys	Gly	Leu 105
Asp	Pro	Asn	Tyr	Thr 110	Thr	Trp	Met	Asp	Val 115	Met	Glu	Arg	His	Gly 120
Tyr	Arg	Thr	Gln	Lys 125	Phe	Gly	Lys	Leu	Asp 130	Tyr	Thr	Ser	Gly	His 135
His	Ser	Ile	Ser	Asn 140	Arg	Val	Glu	Ala	Trp 145	Thr	Arg	Asp	Val	Ala 150
Phe	Leu	Leu	Arg	Gln 155	Glu	Gly	Arg	Pro	Met 160	Val	Asn	Leu	Ile	Arg 165
Asn	Arg	Thr	Lys	Val 170	Arg	Val	Met	Glu	Arg 175	Asp	Trp	Gln	Asn	Thr 180
Asp	Lys	Ala	Val	Asn 185	Trp	Leu	Arg	Lys	Glu 190	Ala	Ile	Asn	Tyr	Thr 195
Glu	Pro	Phe	Val	Ile 200	Tyr	Leu	Gly	Leu	Asn 205	Leu	Pro	His	Pro	Tyr 210
Pro	Ser	Pro	Ser	Ser 215	Gly	Glu	Asn	Phe	Gly 220	Ser	Ser	Thr	Phe	His 225
Thr	Ser	Leu	Tyr	Trp 230	Leu	Glu	Lys	Val	Ser 235	His	Asp	Ala	Ile	Lys 240
Ile	Pro	Lys	Trp	Ser 245	Pro	Leu	Ser	Glu	Met 250	His	Pro	Val	Asp	Tyr 255
Tyr	Ser	Ser	Tyr	Thr 260		Asn	Cys	Thr	Gly 265	Arg	Phe	Thr	Lys	Lys 270
Glu	Ile	Lys	Asn	11e 275	Arg	Ala	Phe	Tyr	Tyr 280	Ala	Met	Cys	Ala	Glu 285
Thr	Asp	Ala	Met	Leu 290	Gly	Glu	Ile	e Ile	Leu 295	Ala	Leu	His	Glr.	Leu 300
Asp	Leu	Let	ı Glr	1 Lys 305		: Ile	e Val	Ile	310	Ser	Ser	Asp) His	315
Glu	Lev	a Ala	a Met	Glu 320	n His	s Arc	g Glr	n Phe	325	Lys	Met	Sei	Met	330
Glu	ı Ala	a Sei	c Ala	a His		l Pro	Let	ı Lev	340	Met	: Gly	Pro	o Gly	7 Ile 345
Lys	s Ala	a Gly	y Let	ı Glr 350		L Sei	Ası	n Val	l Val 355	Ser 5	Leı	ı Val	l Asp	360
Туз	r Pro	Th:	r Met	t Le	ı Asp	o Ile	e Ala	a Gly	y Ile	e Pro	Leu	ı Pro	o Gli	n Asn

				365					370					375
Leu	Ser	Gly	Tyr	Ser 380	Leu	Leu	Pro	Leu	Ser 385	Ser	Glu	Thr	Phe	Lys 390
Asn	Glu	His	Lys	Val 395	Lys	Asn	Leu	His	Pro 400	Pro	Trp	Ile	Leu	Ser 405
Glu	Phe	His	Gly	Cys 410	Asn	Val	Asn	Ala	Ser 415	Thr	Tyr	Met	Leu	Arg 420
Thr	Asn	His	Trp	Lys 425	Tyr	Ile	Ala	Tyr	Ser 430	Asp	Gly	Ala	Ser	Ile 435
Leu	Pro	Gln	Leu	Phe 440	Asp	Leu	Ser	Ser	Asp 445	Pro	Asp	Glu	Leu	Thr 450
Asn	Val	Ala	Val	Lys 455	Phe	Pro	Glu	Ile	Thr 460	Tyr	Ser	Leu	Asp	Gln 465
Lys	Leu	His	Ser	Ile 470	Ile	Asn	Tyr	Pro	Lys 475	Val	Ser	Ala	Ser	Val 480
His	Gln	Tyr	Asn	Lys 485	Glu	Gln	Phe	Ile	Lys 490	Trp	Lys	Gln	Ser	Ile 495
Gly	Gln	Asn	Tyr	Ser 500	Asn	Val	Ile	Ala	Asn 505	Leu	Arg	Trp	His	Gln 510
Asp	Trp	Gln	Lys	Glu 515		Arg	Lys	Tyr	Glu 520	Asn	Ala	Ile	Asp	Gln 525
Trp	Leu	Lys	Thr	His 530		Asn	Pro	Arg	Ala 535	Val				

<210> 133

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 133
gagagaagtc agacettgcag agagactetg aaatgaggga ttagaggtgt 50

tcaaggagca agagettcag cetgaagaca agggagcagt eeetgaagac 100

gettetactg agaggtetge catggeetet ettggeetee aaettgtggg 150

ctacatecta ggeettetgg ggettttggg cacaetggtt gecatgetge 200

teeccagetg gaaaacaagt tettatgteg gtgeeageat tgtgacagea 250

gttggettet eeaagggeet etggatggaa tgtgeeacae acageacagg 300

cateacecag tgtgacatet atageaceet tetgggeetg eeegetgaca 350

teeaggetge eeaggeeatg atggtgacat eeegetgaa eteeeteetg 400

geetgeatta tetetgtggt gggeatgaga tgeacagtet tetgeeaga 450

atcccgagcc aaagacagag tggcggtagc aggtggagtc tttttcatcc 500 ttggaggcct cctgggattc attcctgttg cctggaatct tcatgggatc 550 ctacgggact tctactcacc actggtgcct gacagcatga aatttgagat 600 tggagaggct ctttacttgg gcattatttc ttccctgttc tccctgatag 650 ctggaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700 tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750 gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800 cagggtatgt gtgaagaacc aggggccaga gctgggggt ggctgggtct 850 gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900 actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950 ggattgagca aaggcagaaa tgggggctag tgtaacagca tgcaggttga 1000 attgccaagg atgctcgcca tgccagcctt tctgttttcc tcaccttgct 1050 gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100 agccaggact cagaggatcc ctttgccctc tggtttacct gggactccat 1150 ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200 ccctctctct ggctgaggtt ggctcttagc tcattgctgg ggatgggaag 1250 gagaagcagt ggcttttgtg ggcattgctc taacctactt ctcaagcttc 1300 cctccaaaga aactgattgg ccctggaacc tccatcccac tcttgttatg 1350 actccacagt gtccagacta atttgtgcat gaactgaaat aaaaccatcc 1400 tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450 gcagcctggg acatttaaaa aaata 1475

<210> 134

<211> 230

<212> PRT

<213> Homo sapiens

<400> 134

Met Ala Ser Leu Gly Leu Gln Leu Val Gly Tyr Ile Leu Gly Leu
1 5 10 15

Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp 20 25 30

Lys Thr Ser Ser Tyr Val Gly Ala Ser Ile Val Thr Ala Val Gly 35 40 45

Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly

50 55 60

Ile Thr Gln Cys Asp Ile Tyr Ser Thr Leu Leu Gly Leu Pro Ala 65 70 75

Asp Ile Gln Ala Ala Gln Ala Met Met Val Thr Ser Ser Ala Ile $80 \hspace{1cm} 85 \hspace{1cm} 90$

Ser Ser Leu Ala Cys Ile Ile Ser Val Val Gly Met Arg Cys Thr $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Val Phe Cys Gln Glu Ser Arg Ala Lys Asp Arg Val Ala Val Ala 110 115 120

Gly Gly Val Phe Phe Ile Leu Gly Gly Leu Leu Gly Phe Ile Pro 125 130 135

Leu Val Pro Asp Ser Met Lys Phe Glu Ile Gly Glu Ala Leu Tyr 155 160 165

Leu Gly Ile Ile Ser Ser Leu Phe Ser Leu Ile Ala Gly Ile Ile 170 175 180

Leu Cys Phe Ser Cys Ser Ser Gln Arg Asn Arg Ser Asn Tyr Tyr 185 190 195

Asp Ala Tyr Gln Ala Gln Pro Leu Ala Thr Arg Ser Ser Pro Arg 200 205 210

Pro Gly Gln Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser 215 220 225

Leu Thr Gly Tyr Val 230

<210> 135

<211> 610

<212> DNA

<213> Homo sapiens

<400> 135

gcactgctgc tgtcccatca gctgctctga agctccatgg tgcccagaat 50 cttcgctcct gcttatgtgt cagtctgtct cctcctcttg tgtccaaggg 100 aagtcatcgc tcccgctggc tcagaaccat ggctgtgcca gccggcaccc 150 aggtgtggag acaagatcta caaccccttg gagcagtgct gttacaatga 200 cgccatcgtg tccctgagcg agacccgcca atgtggtccc ccctgcacct 250 tctggccctg ctttgagctc tgctgtcttg attcctttgg cctcacaaac 300 gattttgttg tgaagctgaa ggttcagggt gtgaattccc agtgccactc 350

atctcccatc tccagtaaat gtgaaagcag aagacgttt ccctgagaag 400 acatagaaag aaaatcaact ttcactaagg catctcagaa acataggcta 450 aggtaatatg tgtaccagta gagaagcctg aggaatttac aaaatgatgc 500 agctccaagc cattgtatgg cccatgtggg agactgatgg gacatggaga 550 atgacagtag attatcagga aataaataaa gtggttttc caatgtacac 600 acctgtaaaa 610

- <210> 136
- <211> 119
- <212> PRT
- <213> Homo sapiens
- <400> 136

Met Val Pro Arg Ile Phe Ala Pro Ala Tyr Val Ser Val Cys Leu 1 5 10 15

Leu Leu Cys Pro Arg Glu Val Ile Ala Pro Ala Gly Ser Glu 20 25 30

Pro Trp Leu Cys Gln Pro Ala Pro Arg Cys Gly Asp Lys Ile Tyr 35 40 45

Asn Pro Leu Glu Gln Cys Cys Tyr Asn Asp Ala Ile Val Ser Leu 50 55 60

Ser Glu Thr Arg Gln Cys Gly Pro Pro Cys Thr Phe Trp Pro Cys
65 70 75

Phe Glu Leu Cys Cys Leu Asp Ser Phe Gly Leu Thr Asn Asp Phe 80 85 90

Val Val Lys Leu Lys Val Gln Gly Val Asn Ser Gln Cys His Ser 95 100 105

Ser Pro Ile Ser Ser Lys Cys Glu Ser Arg Arg Phe Pro 110 115

- <210> 137
- <211> 771
- <212> DNA
- <213> Homo sapiens
- <400> 137

ctccactgca accacccaga gccatggctc cccgaggctg catcgtagct 50 gtctttgcca ttttctgcat ctccaggctc ctctgctcac acggagcccc 100 agtgggcccc atgactcctt acctgatgct gtgccagcca cacaagagat 150 gtggggacaa gttctacgac cccctgcagc actgttgcta tgatgatgcc 200 gtcgtgccct tggccaggac ccagacgtgt ggaaactgca ccttcagagt 250

ctgctttgag cagtgctgcc cctggacctt catggtgaag ctgataaacc 300 agaactgcga ctcagcccgg acctcggatg acaggctttg tcgcagtgtc 350 agctaatgga acatcagggg aacgatgact cctggattct ccttcctggg 400 tgggcctgga gaaagaggct ggtgttacct gagatctggg atgctgagtg 450 gctgtttggg ggccagagaa acacacactc aactgcccac ttcattctgt 500 gacctgtctg aggcccaccc tgcagctgcc ctgaggaggc ccacaggtcc 550 ccttctagaa ttctggacag catgagatgc gtgtgctgat gggggcccag 600 ggactctgaa ccctcctgat gacccctatg gccaacatca acccggcacc 650 accccaaggc tggctggga acccttcacc cttctgtgag attttccatc 700 atctcaagtt ctcttctatc caggagcaaa gcacaggatc ataataaatt 750 tatgtactt ataaatgaaa a 771

<210> 138

<211> 110

<212> PRT

<213> Homo sapiens

<400> 138

Met Ala Pro Arg Gly Cys Ile Val Ala Val Phe Ala Ile Phe Cys 1 10 15

Ile Ser Arg Leu Leu Cys Ser His Gly Ala Pro Val Ala Pro Met $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Thr Pro Tyr Leu Met Leu Cys Gln Pro His Lys Arg Cys Gly Asp 35 40 45

Lys Phe Tyr Asp Pro Leu Gln His Cys Cys Tyr Asp Asp Ala Val
50 55 60

Val Pro Leu Ala Arg Thr Gln Thr Cys Gly Asn Cys Thr Phe Arg
65 70 75

Val Cys Phe Glu Gln Cys Cys Pro Trp Thr Phe Met Val Lys Leu $\cdot 80$ 85 90

Ile Asn Gln Asn Cys Asp Ser Ala Arg Thr Ser Asp Asp Arg Leu 95 100 105

Cys Arg Ser Val Ser 110

<210> 139

<211> 2044

<212> DNA

<213> Homo sapiens

<400> 139

gggggcgggt gcctggagca cggcgctggg gccgcccgca gcgctcactc 50 gctcgcactc agtcgcggga ggcttccccg cgccggccgc gtcccgcccg 100 $\verb|ctccccggca| ccagaagttc| ctctgcgcgt| ccgacggcga| catgggcgtc| 150$ cccacggccc tggaggccgg cagctggcgc tggggatccc tgctcttcgc 200 tetetteetg getgegteee taggteeggt ggeageette aaggtegeea 250 cgccgtattc cctgtatgtc tgtcccgagg ggcagaacgt caccctcacc 300 tgcaggctct tgggccctgt ggacaaaggg cacgatgtga ccttctacaa 350 gacgtggtac cgcagctcga ggggcgaggt gcagacctgc tcagagcgcc 400 ggcccatccg caacctcacg ttccaggacc ttcacctgca ccatggaggc 450 caccaggetg ccaacaccag ccacgacctg getcagegee aegggetgga 500 gtcggcctcc gaccaccatg gcaacttctc catcaccatg cgcaacctga 550 ccctgctgga tagcggcctc tactgctgcc tggtggtgga gatcaggcac 600 caccactegg ageacagggt ceatggtgee atggagetge aggtgeagae 650 aggcaaagat gcaccatcca actgtgtggt gtacccatcc tcctcccagg 700 atagtgaaaa catcacggct gcagccctgg ctacgggtgc ctgcatcgta 750 ggaatcetet geeteeeet cateetgete etggtetaca agcaaaggea 800 ggcagcctcc aaccgccgtg cccaggagct ggtgcggatg gacagcaaca 850 ttcaagggat tgaaaacccc ggctttgaag cctcaccacc tgcccagggg 900 atacccgagg ccaaagtcag gcaccccctg tcctatgtgg cccagcggca 950 gccttctgag tctgggcgc atctgctttc ggagcccagc accccctgt 1000 ctcctccagg ccccggagac gtcttcttcc catccctgga ccctgtccct 1050 gactetecaa aetttgaggt catetageee agetggggga cagtgggetg 1100 ttgtggctgg gtctggggca ggtgcatttg agccagggct ggctctgtga 1150 gtggcctcct tggcctcggc cctggttccc tccctcctgc tctgggctca 1200 gatactgtga catcccagaa gcccagcccc tcaacccctc tggatgctac 1250 atggggatgc tggacggctc agcccctgtt ccaaggattt tggggtgctg 1300 agattctccc ctagagacct gaaattcacc agctacagat gccaaatgac 1350 ttacatctta agaagtctca gaacgtccag cccttcagca gctctcgttc 1400 tgagacatga gccttgggat gtggcagcat cagtgggaca agatggacac 1450

tgggccaccc tcccaggcac cagacacagg gcacggtgga gagacttctc 1500 ccccgtggcc gccttggctc ccccgttttg cccgaggctg ctcttctgtc 1550 agacttcctc tttgtaccac agtggctctg gggccaggcc tgcctgccca 1600 ctggccatcg ccaccttccc cagctgcctc ctaccagcag tttctctgaa 1650 gatctgtcaa caggttaagt caatctgggg cttccactgc ctgcattcca 1700 gtccccagag cttggtggtc ccgaaacggg aagtacatat tggggcatgg 1750 tggcctccgt gagcaaatgg tgtcttgggc aatctgaggc caggacagat 1800 gttgccccac ccactggaga tggtgctgag ggaggtgggt ggggccttct 1850 gggaaggtga gtggagaggg gcacctgccc cccqccctcc ccatccccta 1900 ctcccactgc tcagcgcggg ccattgcaag ggtgccacac aatgtcttgt 1950 ccaccctggg acacttctga gtatgaagcg ggatgctatt aaaaactaca 2000

<400> 140

Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp Gly

Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val

Ala Ala Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro

Glu Gly Gln Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val

Asp Lys Gly His Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser

Ser Arg Gly Glu Val Gln Thr Cys Ser Glu Arg Arg Pro Ile Arg 85

Asn Leu Thr Phe Gln Asp Leu His Leu His His Gly Gly His Gln 100 105

Ala Ala Asn Thr Ser His Asp Leu Ala Gln Arg His Gly Leu Glu 115 120

Ser Ala Ser Asp His His Gly Asn Phe Ser Ile Thr Met Arg Asn 125 135

Leu Thr Leu Leu Asp Ser Gly Leu Tyr Cys Cys Leu Val Val Glu

<210> 140

<211> 311 <212> PRT

<213> Homo sapiens

Tyr Pro Ser Ser Ser Gln Asp Ser Glu Asn Ile Thr Ala Ala Ala 185 190 195

Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys Leu Pro Leu 200 205

Ile Leu Leu Val Tyr Lys Gln Arg Gln Ala Ala Ser Asn Arg 215 220 225

Arg Ala Gln Glu Leu Val Arg Met Asp Ser Asn Ile Gln Gly Ile 230 235 240

Glu Ala Lys Val Arg His Pro Leu Ser Tyr Val Ala Gln Arg Gln 260 265 270

Pro Ser Glu Ser Gly Arg His Leu Leu Ser Glu Pro Ser Thr Pro 275 280 285

Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Phe Pro Ser Leu Asp 290 295 300

Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile 305

<210> 141

<211> 1732

<212> DNA

<213> Homo sapiens

<400> 141
cccacgcgtc cgcgcctctc ccttctgctg gaccttcctt cgtctctca 50

tctctccctc ctttcccgc gttctctttc cacctttctc ttcttccac 100

cttagacctc ccttcctgcc ctcctttcct gcccaccgct gcttcctgc 150

ccttctccga ccccgctcta gcagcagacc tcctggggtc tgtgggttga 200

tctgtggccc ctgtgcctcc gtgtcctttt cgtctcctt cctccgact 250

ccgctcccgg accagcggcc tgaccctggg gaaaggatgg ttcccgaggt 300

gagggtcctc tcctccttgc tgggactcgc gctgctctgg ttcccctgg 350

actcccacgc tcgagcccgc ccagacatgt tctgccttt ccataggaag 400

agatactccc ccggcgagag ctggcacccc tacttggagc cacaaggcct 450

gatgtactgc ctgcgctgta cctgctcaga gggcgcccat gtgagttgtt 500 accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550 cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600 ggccccacca aagtcctgcc agcacaacgg gaccatgtac caacacggag 650 agatetteag tgeceatgag etgtteeeet eeegeetgee eaaceagtgt 700 gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750 ccccgaacca ggctgcccag cacccctccc actgccagac tcctgctgcc 800 aagcctgcaa agatgaggca agtgagcaat cggatgaaga ggacagtgtg 850 cagtcgctcc atggggtgag acatcctcag gatccatgtt ccagtgatgc 900 tgggagaaag agaggeeegg geaeceeage eeceaetgge eteagegeee 950 ctctgagctt catccctcgc cacttcagac ccaagggagc aggcagcaca 1000 actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050 cgggaagacg tactcccacg gggaggtgtg gcacccggcc ttccgtgcct 1100 teggeceett geeetgeate etatgeacet gtgaggatgg eegeeaggae 1150 tgccagcgtg tgacctgtcc caccgagtac ccctgccgtc accccgagaa 1200 agtggctggg aagtgctgca agatttgccc agaggacaaa gcagaccctg 1250 gccacagtga gatcagttct accaggtgtc ccaaggcacc gggccgggtc 1300 ctcgtccaca catcggtatc cccaagccca gacaacctgc gtcgctttgc 1350 cctggaacac gaggcctcgg acttggtgga gatctacctc tggaagctgg 1400 taaaagatga ggaaactgag gctcagagag gtgaagtacc tggcccaagg 1450 ccacacagcc agaatcttcc acttgactca gatcaagaaa gtcaggaagc 1500 aagacttcca gaaagaggca cagcacttcc gactgctcgc tggcccccac 1550 gaaggtcact ggaacgtctt cctagcccag accetggage tgaaggtcac 1600 ggccagtcca gacaaagtga ccaagacata acaaagacct aacagttgca 1650 gatatgagct gtataattgt tgttattata tattaataaa taagaagttg 1700 cattaccctc aaaaaaaaaa aaaaaaaaaa aa 1732

<210> 142

<211> 451

<212> PRT

<213> Homo sapiens

<400> 142

Met 1	Val	Pro	Glu	Val 5	Arg	Val	Leu	Ser	Ser 10	Leu	Leu	GTÀ	Leu .	15
Leu	Leu	Trp	Phe	Pro 20	Leu	Asp	Ser	His	Ala 25	Arg	Ala	Arg	Pro	Asp 30
Met	Phe	Суѕ	Leu	Phe 35	His	Gly	Lys	Arg	Tyr 40	Ser	Pro	Gly	Glu	Ser 45
Trp	His	Pro	Tyr	Leu 50	Glu	Pro	Gln	Gly	Leu 55	Met	Tyr	Cys	Leu	Arg 60
Cys	Thr	Cys	Ser	Glu 65	Gly	Ala	His	Val	Ser 70	Cys	Tyr	Arg	Leu	His 75
Cys	Pro	Pro	Val	His 80	Cys	Pro	Gln	Pro	Val 85	Thr	Glu	Pro	Gln	Gln 90
Cys	Cys	Pro	Lys	Cys 95	Val	Glu	Pro	His	Thr 100	Pro	Ser	Gly	Leu	Arg 105
Ala	Pro	Pro	Lys	Ser 110	Cys	Gln	His	Asn	Gly 115	Thr	Met	Tyr	Gln	His 120
Gly	Glu	Ile	Phe	Ser 125	Ala	His	Glu	Leu	Phe 130	Pro	Ser	Arg	Leu	Pro 135
Asn	Gln	Cys	Val	Leu 140	Cys	Ser	Cys	Thr	Glu 145	Gly	Gln	Ile	Tyr	Cys 150
Gly	Leu	Thr	Thr	Cys 155		Glu	Pro	Gly	Cys 160	Pro	Ala	Pro	Leu	Pro 165
Leu	Pro	Asp	Ser	Cys 170	Cys	Gln	Ala	Cys	Lys 175	Asp	Glu	Ala	Ser	Glu 180
Gln	Ser	: Asp	Glu	Glu 185	Asp	Ser	: Val	Gln	Ser 190	Leu	His	s Gly	val	Arg 195
His	Pro	Glr	n Asp	Pro 200	Cys	Ser	Sei	Asp	205	Gly	/ Arg	g Lys	arg	Gly 210
Pro	Gly	Thi	r Pro	Ala 215	Pro	Thr	Gly	y Leu	1 Ser 220	Ala	a Pro	o Lev	ı Ser	Phe 225
Ile	e Pro) Ar	g His	230	e Arç	g Pro	b Lys	s Gly	y Ala 235	a Gly	y Se:	r Thi	r Thr	Val 240
Lys	s Ile	e Vai	l Leu	1 Lys 245	s Glu	ı Lys	s Hi:	s Lys	s Lys 250	s Ala	а Су	s Vai	l His	Gly 255
Gl	y Lys	s Th	т Туі	Sei 260	c His	s Gl	y Gl	u Va	l Trp 26	o Hi: 5	s Pr	o Ala	a Phe	270
Ala	a Pho	e Gl	y Pro	275	ı Pro	э Су:	s Il	e Le	u Cy: 28	s Th	r Cy	s Gl	u Asp	Gly 285
Ar	g Gl	n As	p Cys	s Glı	n Ar	g Va.	l Th	r Cy	s Pr	o Th	r Gl	и Ту	r Pro	o Cys

				290					295					300
Arg	His	Pro	Glu	Lys 305	Val	Ala	Gly	Lys	Cys 310	Cys	Lys	Ile	Cys	Pro 315
Glu	Asp	Lys	Ala	Asp 320	Pro	Gly	His	Ser	Glu 325	Ile	Ser	Ser	Thr	Arg 330
Cys	Pro	Lys	Ala	Pro 335	Gly	Arg	Val	Leu	Val 340	His	Thr	Ser	Val	Ser 345
Pro	Ser	Pro	Asp	Asn 350	Leu	Arg	Arg	Phe	Ala 355	Leu	Glu	His	Glu	Ala 360
Ser	Asp	Leu	Val	Glu 365	Ile	Tyr	Leu	Trp	Lys 370	Leu	Val	Lys	Asp	Glu 375
Glu	Thr	Glu	Ala	Gln 380	Arg	Gly	Glu	Val	Pro 385	Gly	Pro	Arg	Pro	His 390
Ser	Gln	Asn	Leu	Pro 395	Leu	Asp	Ser	Asp	Gln 400	Glu	Ser	Gln	Glu	Ala 405
Arg	Leu	Pro	Glu	Arg 410	Gly	Thr	Ala	Leu	Pro 415	Thr	Ala	Arg	Trp	Pro 420
Pro	Arg	Arg	Ser	Leu 425	Glu	Arg	Leu	Pro	Ser 430	Pro	Asp	Pro	Gly	Ala 435
Glu	Gly	His	Gly	Gln 440	Ser	Arg	Gln	Ser	Asp 445	Gln	Asp	Ile	Thr	Lys 450
Thr														

<210> 143 <211> 693

<212> DNA

<213> Homo sapiens

<400> 143
ctagcctgcg ccaagggta gtgagaccgc gcggcaacag cttgcggctg 50

cggggagctc ccgtgggcgc tccgctggct gtgcaggcgg ccatggattc 100

cttgcggaaa atgctgatct cagtcgcaat gctgggcgca ggggctggcg 150

tgggctacgc gctcctcgtt atcgtgaccc cgggagagcg gcggaagcag 200

gaaatgctaa aggagatgcc actgcaggac ccaaggagca gggaggaggc 250

ggccaggacc cagcagctat tgctggccac tctgcaggag gcagcgaagca 300

cgcaggagaa cgtggcctgg aggaagaact ggatggttgg cggcgaaggc 350

ggcgccagcg ggaggtcacc gtgagaccgg acttgcctc gtgggcgca 400

gaccttggct tgggcgcagg aatccgaggc agcctttctc cttcgtgggc 450

<210> 144

<211> 93

<212> PRT

<213> Homo sapiens

<400> 144

Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly
1 5 10 15

Ala Gly Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gly Glu Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu Gln 35 40 45

Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu
50 55 60

Leu Ala Thr Leu Gl
n Glu Ala Ala Thr Thr Gl
n Glu As
n Val Ala $$ $$ $$ $$ $$ 75

Trp Arg Lys Asn Trp Met Val Gly Gly Glu Gly Gly Ala Ser Gly 80 85 90

Arg Ser Pro

<210> 145

<211> 1883

<212> DNA

<213> Homo sapiens

<400> 145

caggagagaa ggcaccgccc ccacccgcc tccaaagcta accctcggcc 50
ttgaggggaa gaggctgact gtacgttcct tctactctgg caccactctc 100
caggctgcca tgggggcccag cacccctctc ctcatcttgt tccttttgtc 150
atggtcggga cccctccaag gacagcagca ccaccttgtg gagtacatgg 200
aacgccgact agctgcttta gaggaacggc tggcccagtg ccaggaccag 250
agtagtcggc atgctgctga gctgcgggac ttcaagaaca agatgctgcc 300
actgctggag gtggcagaga aggagcggga ggcactcaga actgaggccg 350
acaccatctc cgggagagtg gatcgtctgg agcgggaggt agactatctg 400

gagacccaga acccagctct gccctgtgta gagtttgatg agaaggtgac 450 tggaggccct gggaccaaag gcaagggaag aaggaatgag aagtacgata 500 tggtgacaga ctgtggctac acaatctctc aagtgagatc aatgaagatt 550 ctgaagcgat ttggtggccc agctggtcta tggaccaagg atccactggg 600 gcaaacagag aagatctacg tgttagatgg gacacagaat gacacagcct 650 ttgtcttccc aaggctgcgt gacttcaccc ttgccatggc tgcccggaaa 700 gcttcccgag tccgggtgcc cttcccctgg gtaggcacag ggcagctggt 750 atatggtggc tttctttatt ttgctcggag gcctcctgga agacctggtg 800 gaggtggtga gatggagaac actttgcagc taatcaaatt ccacctggca 850 aaccgaacag tggtggacag ctcagtattc ccagcagagg ggctgatccc 900 cccctacggc ttgacagcag acacctacat cgacctggta gctgatgagg 950 aaggtetttg ggetgtetat gecaeeeggg aggatgaeag geaettgtgt 1000 ctggccaagt tagatccaca gacactggac acagagcagc agtgggacac 1050 accatgtccc agagagaatg ctgaggctgc ctttgtcatc tgtgggaccc 1100 tctatgtcgt ctataacacc cgtcctgcca gtcgggcccg catccagtgc 1150 teetttgatg ecageggeac ectgaeeett gaaegggeag eacteeetta 1200 ttttccccgc agatatggtg cccatgccag cctccgctat aacccccgag 1250 aacgccagct ctatgcctgg gatgatggct accagattgt ctataagctg 1300 gagatgagga agaaagagga ggaggtttga ggagctagcc ttgttttttg 1350 catctttctc actcccatac atttatatta tatccccact aaatttcttg 1400 ttcctcattc ttcaaatgtg ggccagttgt ggctcaaatc ctctatattt 1450 ttagccaatg gcaatcaaat totttcagct cotttgtttc atacggaact 1500 ccagatcctg agtaatcctt ttagagcccg aagagtcaaa accctcaatg 1550 ttccctcctg ctctcctgcc ccatgtcaac aaatttcagg ctaaggatgc 1600 cccagaccca gggctctaac cttgtatgcg ggcaggccca gggagcaggc 1650 agcagtgttc ttcccctcag agtgacttgg ggagggagaa ataggaggag 1700 acgtecaget etgteetete tteeteacte etceetteag tgteetgagg 1750 aacaggactt tctccacatt gttttgtatt gcaacatttt gcattaaaag 1800

aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaa 1883

<210> <211> <212> <213>	406 PRT		piens	S										
<400> Met	146 Gly	Pro	Ser '	Thr 5	Pro	Leu	Leu	Ile	Leu 10	Phe	Leu	Leu	Ser	Trp 15
Ser	Gly	Pro	Leu	Gln 20	Gly	Gln	Gln	His	His 25	Leu	Val	Glu	Tyr	Met 30
Glu	Arg	Arg	Leu	Ala 35	Ala	Leu	Glu	Glu	Arg 40	Leu	Ala	Gln	Cys	Gln 45
Asp	Gln	Ser	Ser	Arg 50	His	Ala	Ala	Glu	Leu 55	Arg	Asp	Phe	Lys	Asn 60
Lys	Met	Leu	Pro	Leu 65	Leu	Glu	Val	Ala	Glu 70	Lys	Glu	Arg	Glu	Ala 75
Leu	Arg	Thr	Glu	Ala 80	Asp	Thr	Ile	Ser	Gly 85	Arg	Val	Asp	Arg	Leu 90
Glu	Arg	Glu	Val	Asp 95	Tyr	Leu	Glu	Thr	Gln 100	Asn	Pro	Ala	Leu	Pro 105
Cys	Val	Glu	Phe	Asp 110	Glu	Lys	Val	Thr	Gly 115	Gly	Pro	Gly	Thr	Lys 120
Gly	Lys	Gly	Arg	Arg 125	Asn	Glu	Lys	Tyr	Asp 130	Met	Val	Thr	Asp	Cys 135
Gly	Туr	Thr	Ile	Ser 140	Gln	Val	Arg	Ser	Met 145	Lys	Ile	Leu	Lys	Arg 150
Phe	Gly	Gly	Pro	Ala 155	Gly	Leu	Trp	Thr	Lys 160	Asp	Pro	Leu	Gly	Gln 165
Thr	Glu	Lys	Ile	Tyr 170	Val	Leu	Asp	Gly	Thr 175	Ġln	Asn	Asp	Thr	Ala 180
Phe	Val	Phe	Pro	Arg 185	Leu	Arg	, Asp	Phe	Thr 190	Leu	Ala	Met	Ala	Ala 195
Arg	Lys	: Ala	Ser	Arg 200		. Arg	g Val	Pro	205	Pro	Trp	Val	. Gly	7 Thr 210
Gly	Glr	Leu	Val	Tyr 215		/ Gly	y Phe	e Lev	туз 220	Phe	e Ala	Arg	y Aro	225
Pro	Gly	/ Arg	, Pro	Gl _y 230	gly	/ Gl	y Gly	/ Glu	1 Met 235	Glu S	Asr	Thi	: Lei	a Glr 240
Leu	ı Ile	e Lys	s Phe	His 245	s Leu	ı Ala	a Asr	n Arg	g Thi 250	c Val	. Val	L Asp	Se:	r Sei 25!

```
ValPheProAlaGlu<br/>260LeuIle<br/>260ProPro<br/>265TyrGly<br/>260Leu<br/>260Thr<br/>Ala<br/>270AspThrTyrIle<br/>275Asp<br/>290Leu<br/>290Asp<br/>290Asp<br/>290Asp<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>295Arg<br/>295Arg<br/>295Leu<br/>290Cys<br/>295Leu<br/>290Leu<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290Arg<br/>290</
```

Val

<210> 147 <211> 2052 <212> DNA <213> Homo sapiens

<400> 147
gacagctgtg tctcgatgga gtagactctc agaacagcgc agtttgccct 50

ccgctcacgc agagcctctc cgtggcttcc gcaccttgag cattaggcca 100

gttctcctct tctctctaat ccatccgtca cctctcctgt catccgttc 150

catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 200

ttggttctga gtctcctcaa gctgggatca gggcagtggc aggtgtttgg 250

gccagacaag cctgtccagg ccttggtggg ggaggacgca gcattctcct 300

gtttcctgtc tcctaagacc aatgcagagg ccatggaagt gcggttcttc 350

aggggccagt tctctagcgt ggtccacctc tacagggacg ggaaggacca 400

gccatttatg cagatgccac agtatcaagg caggacaaaa ctggtgaagg 450

attctattgc ggaggggcgc atctctctga ggctggaaaa cattactgtg 500

ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttactacca 550 gaaggccatc tgggagctac aggtgtcagc actgggctca gttcctctca 600 tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650 tcgggctggt tcccccggcc cacagcgaag tggaaaggtc cacaaggaca 700 ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgtttg 750 atgtggagat ctctctgacc gtccaagaga acgccgggag catatcctgt 800 tccatgcggc atgctcatct gagccgagag gtggaatcca gggtacagat 850 aggagatacc tttttcgagc ctatatcgtg gcacctggct accaaagtac 900 tgggaatact ctgctgtggc ctattttttg gcattgttgg actgaagatt 950 ttcttctcca aattccagtg gaaaatccag gcggaactgg actggagaag 1000 aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050 tgactctgga tccagagacg gctcacccga agctctgcgt ttctgatctg 1100 aaaactgtaa cccatagaaa agctccccag gaggtgcctc actctgagaa 1150 gagatttaca aggaagagtg tggtggcttc tcagagtttc caagcaggga 1200 aacattactg ggaggtggac ggaggacaca ataaaaggtg gcgcgtggga 1250 gtgtgccggg atgatgtgga caggaggaag gagtacgtga ctttgtctcc 1300 cgatcatggg tactgggtcc tcagactgaa tggagaacat ttgtatttca 1350 cattaaatcc ccgttttatc agcgtcttcc ccaggacccc acctacaaaa 1400 ataggggtct tcctggacta tgagtgtggg accatctcct tcttcaacat 1450 aaatgaccag teeettattt ataeeetgae atgteggttt gaaggettat 1500 tgaggcccta cattgagtat ccgtcctata atgagcaaaa tggaactccc 1550 atagtcatct gcccagtcac ccaggaatca gagaaagagg cctcttggca 1600 aagggcctct gcaatcccag agacaagcaa cagtgagtcc tcctcacagg 1650 caaccacgcc cttcctcccc aggggtgaaa tgtaggatga atcacatccc 1700 acattettet ttagggatat taaggtetet eteccagate caaagteeeg 1750 cagcagccgg ccaaggtggc ttccagatga agggggactg gcctgtccac 1800 atgggagtca ggtgtcatgg ctgccctgag ctgggaggga agaaggctga 1850 cattacattt agtttgctct cactccatct ggctaagtga tcttgaaata 1900 ccacctctca ggtgaagaac cgtcaggaat tcccatctca caggctgtgg 1950

tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2000 acagagtgta tcctaatggt ttgttcatta tattacactt tcagtaaaaa 2050 aa 2052

<210> 148

<211> 500

<212> PRT

<213> Homo sapiens

<400> 148

Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Leu Lys Leu Gly

1 5 10 15

Ser Gly Gln Trp Gln Val Phe Gly Pro Asp Lys Pro Val Gln Ala 20 25 30

Leu Val Gly Glu Asp Ala Ala Phe Ser Cys Phe Leu Ser Pro Lys
35 40 45

Thr Asn Ala Glu Ala Met Glu Val Arg Phe Phe Arg Gly Gln Phe $50 \hspace{1cm} 55 \hspace{1cm} 60$

Ser Ser Val Val His Leu Tyr Arg Asp Gly Lys Asp Gln Pro Phe 65 70 75

Met Gln Met Pro Gln Tyr Gln Gly Arg Thr Lys Leu Val Lys Asp 80 85 90

Ser Ile Ala Glu Gly Arg Ile Ser Leu Arg Leu Glu Asn Ile Thr $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105 \hspace{1.5cm}$

Val Leu Asp Ala Gly Leu Tyr Gly Cys Arg Ile Ser Ser Gln Ser 110 115 120

Tyr Tyr Gln Lys Ala Ile Trp Glu Leu Gln Val Ser Ala Leu Gly
125 130 135

Ser Val Pro Leu Ile Ser Ile Thr Gly Tyr Val Asp Arg Asp Ile 140 $$ 145 $$ 150

Gln Leu Leu Cys Gln Ser Ser Gly Trp Phe Pro Arg Pro Thr Ala 155 160 165

Lys Trp Lys Gly Pro Gln Gly Gln Asp Leu Ser Thr Asp Ser Arg 170 175

Thr Asn Arg Asp Met His Gly Leu Phe Asp Val Glu Ile Ser Leu 185 190 195

Thr Val Gln Glu Asn Ala Gly Ser Ile Ser Cys Ser Met Arg His 200 205 210

Ala His Leu Ser Arg Glu Val Glu Ser Arg Val Gln Ile Gly Asp 215 220 225

Thr Phe Phe Glu Pro Ile Ser Trp His Leu Ala Thr Lys Val Leu

				230					235					240
Gly 1	Ile	Leu	Cys	Cys 245	Gly	Leu	Phe	Phe	Gly 250	Ile	Val	Gly	Leu	Lys 255
Ile E	?he	Phe	Ser	Lys 260	Phe	Gln	Trp	Lys	Ile 265	Gln	Ala	Glu	Leu	Asp 270
Trp A	Arg	Arg	Lys	His 275	Gly	Gln	Ala	Glu	Leu 280	Arg	Asp	Ala	Arg	Lys 285
His A	Ala	Val	Glu	Val 290	Thr	Leu	Asp	Pro	Glu 295	Thr	Ala	His	Pro	Lys 300
Leu (Cys	Val	Ser	Asp 305	Leu	Lys	Thr	Val	Thr 310	His	Arg	Lys	Ala	Pro 315
Gln	Glu	Val	Pro	His 320	Ser	Glu	Lys	Arg	Phe 325	Thr	Arg	Lys	Ser	Val 330
Val 2	Ala	Ser	Gln	Ser 335	Phe	Gln	Ala	Gly	Lys 340	His	Tyr	Trp	Glu	Val 345
Asp	Gly	Gly	His	Asn 350	Lys	Arg	Trp	Arg	Val 355	Gly	Val	Суѕ	Arg	Asp 360
Asp	Val	Asp	Arg	Arg 365	Lys	Glu	Tyr	Val	Thr 370	Leu	Ser	Pro	Asp	His 375
Gly	Tyr	Trp	Val	Leu 380	Arg	Leu	Asn	Gly	Glu 385	His	Leu	Tyr	Phe	Thr 390
Leu	Asn	Pro	Arg	Phe 395		Ser	Val	Phe	Pro 400	Arg	Thr	Pro	Pro	Thr 405
Lys	Ile	Gly	Val	Phe 410		Asp	Tyr	Glu	Cys 415	Gly	Thr	Ile	Ser	Phe 420
Phe	Asn	Ile	Asn	Asp 425	Gln	Ser	Leu	Ile	Tyr 430	Thr	Leu	Thr	Cys	Arg 435
Phe	Glu	Gly	Leu	Leu 440	Arg	Pro	Tyr	Ile	Glu 445	Тyr	Pro	Ser	Tyr	Asn 450
Glu	Gln	Asn	Gly	Thr 455	Pro	lle	Val	Ile	Cys 460	Pro	o Val	Thr	Gln	Glu 465
Ser	Glu	Lys	Glu	Ala 470		Trp	Gln	Arg	Ala 475	Ser	: Ala	a Ile	Pro	Glu 480
Thr	Ser	Asn	ser	Glu 485		Ser	Ser	Glr	Ala 490		Thi	r Pro) Phe	Leu 495
Pro	Arg	g Gly	/ Glu	Met 500										
<210 <211														

```
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 149
 gcgtggtcca cctctacagg gacg 24
<210> 150
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 150
 ggaactgacc cagtgctgac acc 23
<210> 151
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 151
 gcagatgcca cagtatcaag gcaggacaaa actggtgaag gattc 45
<210> 152
<211> 2294
<212> DNA
<213> Homo sapiens
<400> 152
 gcgatggtgc gcccggtggc ggtggcggcg gcggttgcgg aggcttcctt 50
 ggtcggattg caacgaggag aagatgactg accaaccgac tggctgaatg 100
 aatgaatggc ggagccgagc gcgccatgag gagcctgccg agcctgggcg 150
 gcctcgccct gttgtgctgc gccgccgccg ccgccgccgt cgcctcagcc 200
 gcctcggcgg ggaatgtcac cggtggcggc ggggccgcgg ggcaggtgga 250
 cgcgtcgccg ggccccgggt tgcggggcga gcccagccac cccttcccta 300
 gggcgacggc tcccacggcc caggccccga ggaccgggcc cccgcgcgcc 350
```

acceptcace gaccectage taggacttet ceageceagt ecceggagae 400

cacccctctt tgggcgactg ctggaccctc ttccaccacc tttcaggcgc 450 cgctcggccc ctcgccgacc acccctccgg cggcggaacg cacttcgacc 500 acctctcagg cgccgaccag acccgcgccg accacccttt cgacgaccac 550 tggcccggcg ccgaccaccc ctgtagcgac caccgtaccg gcgcccacga 600 ctccccggac cccgaccccc gatctcccca gcagcagcaa cagcagcgtc 650 ctccccaccc cacctgccac cgaggccccc tcttcgcctc ctccagagta 700 tgtatgtaac tgctctgtgg ttggaagcct gaatgtgaat cgctgcaacc 750 agaccacagg gcagtgtgag tgtcggccag gttatcaggg gcttcactgt 800 gaaacctgca aagagggctt ttacctaaat tacacttctg ggctctgtca 850 gccatgtgac tgtagtccac atggagctct cagcataccg tgcaacaggt 900 aagcaacaga gggtggaact gaagtttatt ttattttagc aagggaaaaa 950 aaaaggctgc tactctcaag gaccatactg gtttaaacaa aggaggatga 1000 gggtcataga tttacaaaat attttatata cttttattct cttactttat 1050 atgttatatt taatgtcagg atttaaaaac atctaattta ctgatttagt 1100 tcttcaaaag cactagagtc gccaattttt ctctgggata atttctgtaa 1150 atttcatggg aaaaaattat tgaagaataa atctgctttc tggaagggct 1200 ttcaggcatg aaacctgcta ggaggtttag aaatgttctt atgtttatta 1250 atataccatt ggagtttgag gaaatttgtt gtttggttta tttttctctc 1300 taatcaaaat totacatttg tttotttgga catctaaagc ttaacctggg 1350 ggtaccctaa tttatttaac tagtggtaag tagactggtt ttactctatt 1400 taccagtaca tttttgagac caaaagtaga ttaagcagga attatcttta 1450 aactattatg ttatttggag gtaatttaat ctagtggaat aatgtactgt 1500 tatctaagca tttgccttgt actgcactga aagtaattat tctttgacct 1550 tatgtgaggc acttggcttt ttgtggaccc caagtcaaaa aactgaagag 1600 acagtattaa ataatgaaaa aaataatgac aggttatact cagtgtaacc 1650 tgggtataac ccaagatctg ctgccactta cgagctgtgt tccttgggca 1700 agtaatttcc tttcactgag cttgtttctt ctcaaggttg ttgtgaagat 1750 taaatgagtt gatatatata aaatgcctag cacatgtcac tcaataaatt 1800 ctggtttgtt ttaatttcaa aggaatatta tggactgaaa tgagagaaca 1850 <213> Homo sapiens

<400>	153
\4 UU/	エンノ

(400) 100			
Met Ara Ser	Leu Pro Ser	Leu Gly Gly Leu	Ala Leu Leu Cys Cys
1	5	10	15

Ala Ala Ala Ala Ala Val Ala Ser Ala Ala Ser Ala Gly Asn
$$20$$
 25 30

Val Thr Gly Gly Gly Ala Ala Gly Gln Val Asp Ala Ser Pro
$$35$$
 40 45

Asp Leu Pro Ser Ser Ser Asn Ser Ser Val Leu Pro Thr Pro Pro

<210> 153

<211> 258

<212> PRT

- Ala Thr Glu Ala Pro Ser Ser Pro Pro Pro Glu Tyr Val Cys Asn 190
- Cys Ser Val Val Gly Ser Leu Asn Val Asn Arg Cys Asn Gln Thr 205
- Thr Gly Gln Cys Glu Cys Arg Pro Gly Tyr Gln Gly Leu His Cys
- Glu Thr Cys Lys Glu Gly Phe Tyr Leu Asn Tyr Thr Ser Gly Leu
- Cys Gln Pro Cys Asp Cys Ser Pro His Gly Ala Leu Ser Ile Pro

Cys Asn Arg

- <210> 154
- <211> 24
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-24
- <223> Synthetic construct.
- <400> 154

aactgctctg tggttggaag cctg 24

- <210> 155
- <211> 24
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-24
- <223> Synthetic construct.
- <400> 155

cagtcacatg gctgacagac ccac 24

- <210> 156
- <211> 38
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-38
- <223> Synthetic construct.
- <400> 156

aggttatcag gggcttcact gtgaaacctg caaagagg 38

```
<210> 157
```

<211> 689

<212> DNA

<213> Homo sapiens

<400> 157
tgcggcgcag tgtagacctg ggaggatggg cggcctgctg ctggctgctt 50

ttctggcttt ggtctcggtg cccagggccc aggccgtgtg gttgggaaga 100
ctggaccctg agcagcttct tgggccctgg tacgtgcttg cggtggcctc 150
ccgggaaaag ggctttgcca tggagaagga catgaagaac gtcgtggggg 200
tggtggtgac cctcactcca gaaaacaacc tgcggacgct gtcctctcag 250
cacgggctgg gagggtgtga ccagagtgtc atggacctga taaagcgaaa 300
ctccggatgg gtgttgaga atccctcaat aggcgtgctg gagctctggg 350
tgctggccac caacttcaga gactatgcca tcatcttcac tcagctggag 400
ttcggggacg agcccttcaa caccgtggag ctgtacagtc tgaccggagac 450
agccagccag gaggccatgg ggctcttcac caagtggagc aggagcctgg 500
gcttcctgtc acagtagcag gcccagctgc agaaggacct cacctgtgct 550
cacaagatcc ttctgtgagt gctgcdccc cagtagggat ggcgcccaca 600
gggtcctgtg acctcggca ataaagcgat tccacagca 689

<210> 158

<211> 163

<212> PRT

<213> Homo sapiens

<400> 158

Met Gly Gly Leu Leu Leu Ala Ala Phe Leu Ala Leu Val Ser Val 1 5 10 15

Pro Arg Ala Gln Ala Val Trp Leu Gly Arg Leu Asp Pro Glu Gln 20 25 30

Leu Leu Gly Pro Trp Tyr Val Leu Ala Val Ala Ser Arg Glu Lys 35 40 45

Gly Phe Ala Met Glu Lys Asp Met Lys Asn Val Val Gly Val Val
50 55 60

Val Thr Leu Thr Pro Glu Asn Asn Leu Arg Thr Leu Ser Ser Gln
65 70 75

His Gly Leu Gly Gly Cys Asp Gln Ser Val Met Asp Leu Ile Lys 80 85 90 Arg Asn Ser Gly Trp Val Phe Glu Asn Pro Ser Ile Gly Val Leu 105

Glu Leu Trp Val Leu Ala Thr Asn Phe Arg Asp Tyr Ala Ile Ile 120

Phe Thr Gln Leu Glu Phe Gly Asp Glu Pro Phe Asn Thr Val Glu 135

Leu Tyr Ser Leu Thr Glu Thr Ala Ser Gln Glu Ala Met Gly Leu 150

Phe Thr Lys Trp Ser Arg Ser Leu Gly Phe Leu Ser Gln

<210> 159

<211> 1665

<212> DNA

<213> Homo sapiens

<400> 159 aacagacgtt ccctcgcggc cctggcacct ctaaccccag acatgctgct 50 gctgctgctg cccctgctct gggggaggga gagggcggaa ggacagacaa 100 gtaaactgct gacgatgcag agttccgtga cggtgcagga aggcctgtgt 150 gtccatgtgc cctgctcctt ctcctacccc tcgcatggct ggatttaccc 200 tggcccagta gttcatggct actggttccg ggaaggggcc aatacagacc 250 aggatgetee agtggeeaca aacaaceeag etegggeagt gtgggaggag 300 actcgggacc gattccacct ccttggggac ccacatacca agaattgcac 350 cctgagcatc agagatgcca gaagaagtga tgcggggaga tacttctttc 400 gtatggagaa aggaagtata aaatggaatt ataaacatca ccggctctct 450 gtgaatgtga cagcettgae ceacaggece aacateetea teecaggeae 500 cetggagtee ggetgeece agaatetgae etgetetgtg eeetgggeet 550 gtgagcaggg gacaccccct atgatctcct ggatagggac ctccgtgtcc 600 cccctggacc cctccaccac ccgctcctcg gtgctcaccc tcatcccaca 650 geoccaggae catggeacca geoteacctg teaggtgace tteeetgggg 700 ccagcgtgac cacgaacaag accgtccatc tcaacgtgtc ctacccgcct 750 cagaacttga ccatgactgt cttccaagga gacggcacag tatccacagt 800 cttgggaaat ggctcatctc tgtcactccc agagggccag tctctgcgcc 850 tggtctgtgc agttgatgca gttgacagca atccccctgc caggctgagc 900 ctgagctgga gaggcctgac cctgtgcccc tcacagccct caaacccggg 950

ggtgctggag ctgccttggg tgcacctgag ggatgcagct gaattcacct 1000 gcagagctca gaaccctctc ggctctcagc aggtctacct gaacgtctcc 1050 ctgcagagca aagccacatc aggagtgact cagggggtgg tcgggggagc 1100 tggagccaca gccctggtct tcctgtcctt ctgcgtcatc ttcgttgtag 1150 tgaggtcctg caggaagaaa tcggcaaggc cagcagcggg cgtgggagaat 1200 acgggcatag aggatgcaaa cgctgtcagg ggttcagcct ctcaggggcc 1250 cctgactgaa ccttgggcag aagacagtcc cccagaccag cctccccag 1300 cttctgcccg ctcctcagtg ggggaaggag agctccagta tgcatccct 1350 agcttccaga tgggaagcc ttgggaagcc ggggaagga aggcactga 1400 caccgagtac tcggagatca agatcacaa gccctccaag gcaagggaga agtcagagcc 1450 accctgattg aggatcaca gccctccaag gcaagggaga agtcagagc 1500 tgattcttg agaattaaca gccctcaacg tgatgagcta tgataacact 1550 atgaattatg tgcagagtga aaagcacaca ggctttagag tcaaaggatc 1600 tcaaacctga atccacag tgccctccct tttatttt taactaaaag 1650 acaggacaat tccta 1665

<400> 160

Met Leu Leu Leu Leu Pro Leu Leu Trp Gly Arg Glu Arg Ala 1 5 10 15

Glu Gly Gln Thr Ser Lys Leu Leu Thr Met Gln Ser Ser Val Thr $20 \ 25 \ ... \ 30$

Val Gln Glu Gly Leu Cys Val His Val Pro Cys Ser Phe Ser Tyr 35 40 45

Pro Ser His Gly Trp Ile Tyr Pro Gly Pro Val Val His Gly Tyr 50 55 60

Trp Phe Arg Glu Gly Ala Asn Thr Asp Gln Asp Ala Pro Val Ala 65 70 75

Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg Asp Arg

Phe His Leu Leu Gly Asp Pro His Thr Lys Asn Cys Thr Leu Ser

Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg

<210> 160

<211> 463

<212> PRT

<213> Homo sapiens

				110					115					120
Met	Glu	Lys	Gly	Ser 125	Ile	Lys	Trp	Asn	Tyr 130	Lys	His	His	Arg	Leu 135
Ser	Val	Asn	Val	Thr 140	Ala	Leu	Thr	His	Arg 145	Pro	Asn	Ile	Leu	Ile 150
Pro	Gly	Thr	Leu	Glu 155	Ser	Gly	Cys	Pro	Gln 160	Asn	Leu	Thr	Cys	Ser 165
Val	Pro	Trp	Ala	Cys 170	Glu	Gln	Gly	Thr	Pro 175	Pro	Met	Ile	Ser	Trp 180
Ile	Gly	Thr	Ser	Val 185	Ser	Pro	Leu	Asp	Pro 190	Ser	Thr	Thr	Arg	Ser 195
Ser	Val	Leu	Thr	Leu 200	Ile	Pro	Gln	Pro	Gln 205	Asp	His	Gly	Thr	Ser 210
Leu	Thr	Cys	Gln	Val 215	Thr	Phe	Pro	Gly	Ala 220	Ser	Val	Thr	Thr	Asn 225
Lys	Thr	Val	His	Leu 230	Asn	Val	Ser	Tyr	Pro 235	Pro	Gln	Asn	Leu	Thr 240
Met	Thr	Val	Phe	Gln 245	Gly	Asp	Gly	Thr	Val 250	Ser	Thr	Val	Leu	Gly 255
Asn	Gly	Ser	Ser	Leu 260	Ser	Leu	Pro	Glu	Gly 265	Gln	Ser	Leu	Arg	Leu 270
Val	Cys	Ala	Val	Asp 275	Ala	Val	Asp	Ser	Asn 280	Pro	Pro	Ala	Arg	Leu 285
Ser	Leu	Ser	Trp	Arg 290	Gly	Leu	Thr	Leu	Cys 295	Pro	Ser	Gln	Pro	Ser 300
Asn	Pro	Gly	Val	Leu 305	Glu	Leu	Pro	Trp	Val 310	His	Leu	Arg	Asp	Ala 315
Ala	Glu	Phe	Thr	Cys 320			Gln		Pro 325		Gly	Ser	Gln	Gln 330
Val	Tyr	Leu	Asn	Val 335	Ser	Leu	Gln	Ser	Lys 340	Ala	Thr	Ser	Gly	Val 345
Thr	Gln	Gly	Val	Val 350	Gly	Gly	Ala	Gly	Ala 355		Ala	Leu	Val	Phe 360
Leu	Ser	Phe	Cys	Val 365	Ile	Phe	Val	Val	Val 370		Ser	Суѕ	Arg	Lys 375
Lys	Ser	Ala	Arg	Pro 380	Ala	Ala	Gly	Val	Gly 385		Thr	Gly	Ile	Glu 390
Asp	Ala	Asn	Ala	Val 395	Arg	Gly	Ser	Ala	Ser 400		Gly	Pro	Leu	Thr 405

```
Glu Pro Trp Ala Glu Asp Ser Pro Pro Asp Gln Pro Pro Pro Ala 410 415 420
```

Ser Ala Arg Ser Ser Val Gly Glu Gly Glu Leu Gln Tyr Ala Ser
$$425 \hspace{1.5cm} 430 \hspace{1.5cm} 435 \hspace{1.5cm}$$

Leu Ser Phe Gln Met Val Lys Pro Trp Asp Ser Arg Gly Gln Glu
$$440$$
 445 450

Ala Thr Asp Thr Glu Tyr Ser Glu Ile Lys Ile His Arg 455 460

- <210> 161
- <211> 739
- <212> DNA
- <213> Homo sapiens
- <400> 161

- <210> 162
- <211> 170
- <212> PRT
- <213> Homo sapiens
- <400> 162

Met Lys Thr Leu Phe Leu Gly Val Thr Leu Gly Leu Ala Ala Ala 1 5 10 15

Leu Ser Phe Thr Leu Glu Glu Glu Asp Ile Thr Gly Thr Trp Tyr

Val Lys Ala Met Val Val Asp Lys Asp Phe Pro Glu Asp Arg Arg 35 40 45

Pro Arg Lys Val Ser Pro Val Lys Val Thr Ala Leu Gly Gly 50 55 60

Lys Leu Glu Ala Thr Phe Thr Phe Met Arg Glu Asp Arg Cys Ile
65 70 75

Gln Lys Lys Ile Leu Met Arg Lys Thr Glu Glu Pro Gly Lys Tyr 80 85 90

Ser Ala Tyr Gly Gly Arg Lys Leu Met Tyr Leu Gln Glu Leu Pro 95 100 105

Arg Arg Asp His Tyr Ile Phe Tyr Cys Lys Asp Gln His His Gly 110 115

Gly Leu Leu His Met Gly Lys Leu Val Gly Arg Asn Ser Asp Thr 125 130 135

Asn Arg Glu Ala Leu Glu Glu Phe Lys Lys Leu Val Gln Arg Lys 140 145 150

Gly Leu Ser Glu Glu Asp Ile Phe Thr Pro Leu Gln Thr Gly Ser 155 160

Cys Val Pro Glu His 170

<210> 163

<211> 22

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-22

<223> Synthetic construct.

<400> 163

ggagatgaag accetgttee tg 22

<210> 164

<211> 26

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-26

<223> Synthetic construct.

<400> 164

ggagatgaag accetgttee tgggtg 26

```
<210> 165
<211> 21
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-21
<223> Synthetic construct.
<400> 165
gtcctccgga aagtccttat c 21
<210> 166
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.
<400> 166
 gcctagtgtt cgggaacgca gcttc 25
<210> 167
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 167
 cagggacctg gtacgtgaag gccatggtgg tcgataagga ctttccggag 50
<210> 168
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 168
 ctgtccttca ccctggagga ggaggatatc acagggacct ggtac 45
<210> 169
<211> 1204
<212> DNA
<213> Homo sapiens
```

<400> 169

```
gttccgcaga tgcagaggtt gaggtggctg cgggactgga agtcatcggg 50
cagaggtete acageageea aggaacetgg ggeeegetee teeeceetee 100
aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 150
gtagggggag agaccaggat catcaagggg ttcgagtgca agcctcactc 200
ccagecetgg caggeagece tgttegagaa gaegeggeta etetgtgggg 250
cgacgctcat cgcccccaga tggctcctga cagcagccca ctgcctcaag 300
ccccgctaca tagttcacct ggggcagcac aacctccaga aggaggaggg 350
ctgtgagcag acccggacag ccactgagtc cttcccccac cccggcttca 400
acaacageet ecceaacaaa gaceacegea atgacateat getggtgaag 450
atggcatcgc cagtetecat cacetggget gtgcgacccc teaccetete 500
ctcacgctgt gtcactgctg gcaccagctg cctcatttcc ggctggggca 550
gcacgtccag cccccagtta cgcctgcctc acaccttgcg atgcgccaac 600
atcaccatca ttgagcacca gaagtgtgag aacgcctacc ccggcaacat 650
cacagacacc atggtgtgtg ccagcgtgca ggaagggggc aaggactcct 700
gccagggtga ctccgggggc cctctggtct gtaaccagtc tcttcaaggc 750
attatctcct ggggccagga tccgtgtgcg atcacccgaa agcctggtgt 800
ctacacgaaa gtctgcaaat atgtggactg gatccaggag acgatgaaga 850
acaattagac tggacccacc caccacagcc catcaccctc catttccact 900
tggtgtttgg ttcctgttca ctctgttaat aagaaaccct aagccaagac 950
cctctacgaa cattctttgg gcctcctgga ctacaggaga tgctgtcact 1000
taataatcaa cctggggttc gaaatcagtg agacctggat tcaaattctg 1050
ccttgaaata ttgtgactct gggaatgaca acacctggtt tgttctctgt 1100
tgtatcccca gccccaaaga cagctcctgg ccatatatca aggtttcaat 1150
aaaa 1204
<210> 170
```

<211> 250

<212> PRT

<213> Homo sapiens

<400> 170

Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu 10

```
Val Gly Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro
His Ser Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu
Leu Cys Gly Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala
Ala His Cys Leu Lys Pro Arg Tyr Ile Val His Leu Gly Gln His
Asn Leu Gln Lys Glu Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr
Glu Ser Phe Pro His Pro Gly Phe Asn Asn Ser Leu Pro Asn Lys
                                    100
Asp His Arg Asn Asp Ile Met Leu Val Lys Met Ala Ser Pro Val
Ser Ile Thr Trp Ala Val Arg Pro Leu Thr Leu Ser Ser Arg Cys
                                     130
Val Thr Ala Gly Thr Ser Cys Leu Ile Ser Gly Trp Gly Ser Thr
Ser Ser Pro Gln Leu Arg Leu Pro His Thr Leu Arg Cys Ala Asn
Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn Ala Tyr Pro Gly
Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln Glu Gly Gly
                                     190
Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asn
                 200
Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys Ala
                                     220
                 215
Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val
                 230
Asp Trp Ile Gln Glu Thr Met Lys Asn Asn
                 245
<210> 171
<211> 25
<212> DNA
<213> Artificial
<220>
```

<221> Artificial Sequence

<223> Synthetic construct.

<222> 1-25

```
<400> 171
ggctgcggga ctggaagtca tcggg 25
<210> 172
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 172
ctccaggcca tgaggattct gcag 24
<210> 173
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 173
 cctctggtct gtaaccag 18
<210> 174
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 174
 tctgtgatgt tgccggggta ggcg 24
<210> 175
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.
<400> 175
 cgtgtagaca ccaggctttc gggtg 25
<210> 176
<211> 18
<212> DNA
```

```
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 176
cccttgatga tcctggtc 18
<210> 177
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 177
 aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 50
<210> 178
<211> 43
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-43
<223> Synthetic construct.
<400> 178
 gagagaccag gatcatcaag gggttcgagt gcaagcctca ctc 43
<210> 179
<211> 907
<212> DNA
<213> Homo sapiens
<400> 179
 gagcagtgtt ctgctggagc cgatgccaaa aaccatgcat ttcttattca 50
 gattcattgt tttcttttat ctgtggggcc tttttactgc tcagagacaa 100
 aagaaagagg agagcaccga agaagtgaaa atagaagttt tgcatcgtcc 150
 agaaaactgc tctaagacaa gcaagaaggg agacctacta aatgcccatt 200
 atgacggcta cctggctaaa gacggctcga aattctactg cagccggaca 250
 caaaatgaag gccaccccaa atggtttgtt cttggtgttg ggcaagtcat 300
 aaaaggccta gacattgcta tgacagatat gtgccctgga gaaaagcgaa 350
 aagtagttat acccccttca tttgcatacg gaaaggaagg ctatgcagaa 400
```

ggcaagattc caccggatgc tacattgatt tttgagattg aactttatgc 450 tgtgaccaaa ggaccacgga gcattgagac atttaaacaa atagacatgg 500 acaatgacag gcagctctct aaagccgaga taaacctcta cttgcaaagg 550 gaatttgaaa aagatgagaa gccacgtgac aagtcatatc aggatgcagt 600 tttagaagat atttttaaga agaatgacca tgatggtgat ggcttcattt 650 ctcccaagga atacaatgta taccaacacg atgaactata gcatatttgt 700 atttctactt ttttttttta gctatttact gtactttatg tataaaacaa 750 agtcactttt ctccaagttg tatttgctat ttttccccta tgagaagata 800 ttttgatctc cccaatacat tgattttggt ataataaatg tgaggctgtt 850 aaaaaaa 907

<210> 180

<211> 222

<212> PRT

<213> Homo sapiens

<400> 180

Met Pro Lys Thr Met His Phe Leu Phe Arg Phe Ile Val Phe Phe

Tyr Leu Trp Gly Leu Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu

Ser Thr Glu Glu Val Lys Ile Glu Val Leu His Arg Pro Glu Asn

Cys Ser Lys Thr Ser Lys Lys Gly Asp Leu Leu Asn Ala His Tyr

Asp Gly Tyr Leu Ala Lys Asp Gly Ser Lys Phe Tyr Cys Ser Arg

Thr Gln Asn Glu Gly His Pro Lys Trp Phe Val Leu Gly Val Gly

Gln Val Ile Lys Gly Leu Asp Ile Ala Met Thr Asp Met Cys Pro

Gly Glu Lys Arg Lys Val Val Ile Pro Pro Ser Phe Ala Tyr Gly

Lys Glu Gly Tyr Ala Glu Gly Lys Ile Pro Pro Asp Ala Thr Leu 135

Ile Phe Glu Ile Glu Leu Tyr Ala Val Thr Lys Gly Pro Arg Ser 150 145 140

```
Ile Glu Thr Phe Lys Gln Ile Asp Met Asp Asn Asp Arg Gln Leu
                                     160
                 155
Ser Lys Ala Glu Ile Asn Leu Tyr Leu Gln Arg Glu Phe Glu Lys
                 170
Asp Glu Lys Pro Arg Asp Lys Ser Tyr Gln Asp Ala Val Leu Glu
                 185
Asp Ile Phe Lys Lys Asn Asp His Asp Gly Asp Gly Phe Ile Ser
                 200
Pro Lys Glu Tyr Asn Val Tyr Gln His Asp Glu Leu
                 215
<210> 181
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-22
<223> Synthetic construct.
<400> 181
gtgttctgct ggagccgatg cc 22
<210> 182
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 182
 gacatggaca atgacagg 18
<210> 183
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 183
 cctttcagga tgtaggag 18
<210> 184
<211> 18
<212> DNA
```

<213> Artificial

```
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 184
gatgtctgcc accccaag 18
<210> 185
<211> 27
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-27
<223> Synthetic construct.
<400> 185
 gcatcctgat atgacttgtc acgtggc 27
<210> 186
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 186
 tacaagaggg aagaggagtt gcac 24
<210> 187
<211> 52
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-52
<223> Synthetic construct.
 gcccattatg acggctacct ggctaaagac ggctcgaaat tctactgcag 50
 cc 52
<210> 188
<211> 573
<212> DNA
<213> Homo sapiens
<400> 188
 cagaaatgca gggaccattg cttcttccag gcctctgctt tctgctgagc 50
 ctctttggag ctgtgactca gaaaaccaaa acttcctgtg ctaagtgccc 100
```

cccaaatgct tcctgtgtca ataacactca ctgcacctgc aaccatggat 150 atacttctgg atctgggcag aaactattca cattcccctt ggagacatgt 200 aacgccaggc atggtggctc gcgcctgtaa tcccagttct ttgggaagcc 250 aaggcaggtg gatcacctga ggtcaggagt ttgagaccag cctggccaac 300 atagtgaaac cccgtgtcta ctaaaaatac aaaaatcagc cgggcgtggt 350 ggtgcatgcc tgcaatccca gttactcggg aggctgaggc aggagaatcg 400 cttgaactca ggaggcagaa gttgcagtga acccagatcc tgccattgca 450 ctccagcatg gatgacagag caagactccg tctcaaaaag aaaagatagt 500 ttcttgtttc atttcgcgac tgccctctca gtgtttcctg ggatcccctc 550 ccaaataaag tacttatatt ctc 573 <211> 74

<210> 189

<212> PRT

<213> Homo sapiens

<400> 189

Met Gln Gly Pro Leu Leu Pro Gly Leu Cys Phe Leu Leu Ser 1

Leu Phe Gly Ala Val Thr Gln Lys Thr Lys Thr Ser Cys Ala Lys

Cys Pro Pro Asn Ala Ser Cys Val Asn Asn Thr His Cys Thr Cys

Asn His Gly Tyr Thr Ser Gly Ser Gly Gln Lys Leu Phe Thr Phe 55

Pro Leu Glu Thr Cys Asn Ala Arg His Gly Gly Ser Arg Leu 70

<210> 190

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 190

agggaccatt gcttcttcca ggcc 24

<210> 191

<211> 24

<212> DNA

<213> Artificial

```
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 191
cqttacatgt ctccaagggg aatg 24
<210> 192
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 192
 cctgtgctaa gtgcccccca aatgcttcct gtgtcaataa cactcactgc 50
<210> 193
<211> 1091
<212> DNA
<213> Homo sapiens
<400> 193
 caagcaggtc atccccttgg tgaccttcaa agagaagcag agagggcaga 50
 ggtgggggc acagggaaag ggtgacctct gagattcccc ttttccccca 100
 gactttggaa gtgacccacc atggggctca gcatcttttt gctcctgtgt 150
 gttcttgggc tcagccaggc agccacaccg aagattttca atggcactga 200
 gtgtgggcgt aactcacagc cgtggcaggt ggggctgttt gagggcacca 250
 gcctgcgctg cgggggtgtc cttattgacc acaggtgggt cctcacagcg 300
 gctcactgca gcggcagcag gtactgggtg cgcctggggg aacacagcct 350
 cagccagete gaetggaeeg ageagateeg geacagegge ttetetgtga 400
 cccatcccgg ctacctggga gcctcgacga gccacgagca cgacctccgg 450
 ctgctgcggc tgcgcctgcc cgtccgcgta accagcagcg ttcaacccct 500
 gcccctgccc aatgactgtg caaccgctgg caccgagtgc cacgtctcag 550
 gctggggcat caccaaccac ccacggaacc cattcccgga tctgctccag 600
 tgcctcaacc tctccatcgt ctcccatgcc acctgccatg gtgtgtatcc 650
 cgggagaatc acgagcaaca tggtgtgtgc aggcggcgtc ccggggcagg 700
```

atgcctgcca gggtgattct gggggccccc tggtgtgtgg gggagtcctt 750

caaggtctgg tgtcctgggg gtctgtgggg ccctgtggac aagatggcat 800

- <210> 194
- <211> 248
- <212> PRT
- <213> Homo sapiens
- <400> 194
- Met Gly Leu Ser Ile Phe Leu Leu Cys Val Leu Gly Leu Ser
 1 5 10 15
- Gln Ala Ala Thr Pro Lys Ile Phe Asn Gly Thr Glu Cys Gly Arg $20 \ 25 \ 30$
- Asn Ser Gln Pro Trp Gln Val Gly Leu Phe Glu Gly Thr Ser Leu 35 40 45
- Arg Cys Gly Gly Val Leu Ile Asp His Arg Trp Val Leu Thr Ala 50 55 60
- Ala His Cys Ser Gly Ser Arg Tyr Trp Val Arg Leu Gly Glu His 65 70 75
- Ser Leu Ser Gln Leu Asp Trp Thr Glu Gln Ile Arg His Ser Gly 80 85 90
- Phe Ser Val Thr His Pro Gly Tyr Leu Gly Ala Ser Thr Ser His 95 100 105
- Glu His Asp Leu Arg Leu Leu Arg Leu Arg Leu Pro Val Arg Val 110 115 120
- Thr Ser Ser Val Gln Pro Leu Pro Leu Pro Asn Asp Cys Ala Thr 125 130 135
- Ala Gly Thr Glu Cys His Val Ser Gly Trp Gly Ile Thr Asn His
- Pro Arg Asn Pro Phe Pro Asp Leu Leu Gln Cys Leu Asn Leu Ser
- Ile Val Ser His Ala Thr Cys His Gly Val Tyr Pro Gly Arg Ile $170 \,$ $175 \,$ $180 \,$
- Thr Ser Asn Met Val Cys Ala Gly Gly Val Pro Gly Gln Asp Ala 185 190 195
- Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Gly Gly Val Leu

200 205 210

Gln Gly Leu Val Ser Trp Gly Ser Val Gly Pro Cys Gly Gln Asp 215 220 225

Gly Ile Pro Gly Val Tyr Thr Tyr Ile Cys Lys Tyr Val Asp Trp 230 235 240

Ile Arg Met Ile Met Arg Asn Asn 245

<210> 195

<211> 1485

<212> DNA

<213> Homo sapiens

<400> 195 geggecacae geagetagee ggagecegga ceaggegeet gtgeeteete 50 ctcgtccctc gccgcgtccg cgaagcctgg agccggcggg agccccgcgc 100 tcgccatgtc gggcgagctc agcaacaggt tccaaggagg gaaggcgttc 150 ggcttgctca aagcccggca ggagaggagg ctggccgaga tcaaccggga 200 gtttctgtgt gaccagaagt acagtgatga agagaacctt ccagaaaagc 250 tcacagcctt caaagagaag tacatggagt ttgacctgaa caatgaaggc 300 gagattgacc tgatgtcttt aaagaggatg atggagaagc ttggtgtccc 350 caagacccac ctggagatga agaagatgat ctcagaggtg acaggagggg 400 tcagtgacac tatatcctac cgagactttg tgaacatgat gctggggaaa 450 cggtcggctg tcctcaagtt agtcatgatg tttgaaggaa aagccaacga 500 gagcagcccc aagccagttg gcccccctcc agagagagac attgctagcc 550 tgccctgagg accccgcctg gactccccag ccttcccacc ccatacctcc 600 ctcccgatct tgctgccctt cttgacacac tgtgatctct ctctctctca 650 tttgtttggt cattgagggt ttgtttgtgt tttcatcaat gtctttgtaa 700 agcacaaatt atctgcctta aaggggctct gggtcgggga atcctgagcc 750 ttgggtcccc tccctctt cttccctcct tccccgctcc ctgtgcagaa 800 gggctgatat caaaccaaaa actagagggg gcagggccag ggcagggagg 850 cttccagcct gtgttcccct cacttggagg aaccagcact ctccatcctt 900 tcagaaagtc tccaagccaa gttcaggctc actgacctgg ctctgacgag 950 gaccccaggc cactctgaga agaccttgga gtagggacaa ggctgcaggg 1000 cctctttcgg gtttccttgg acagtgccat ggttccagtg ctctggtgtc 1050

```
<210> 196
```

<400> 196

Met Ser Gly Glu Leu Ser Asn Arg Phe Gln Gly Gly Lys Ala Phe
1 5 10 15

Gly Leu Leu Lys Ala Arg Gln Glu Arg Arg Leu Ala Glu Ile Asn 20 25 30

Arg Glu Phe Leu Cys Asp Gln Lys Tyr Ser Asp Glu Glu Asn Leu 35 40 45

Pro Glu Lys Leu Thr Ala Phe Lys Glu Lys Tyr Met Glu Phe Asp
50 55 60

Leu Asn Asn Glu Gly Glu Ile Asp Leu Met Ser Leu Lys Arg Met
65 70 75

Met Glu Lys Leu Gly Val Pro Lys Thr His Leu Glu Met Lys Lys 80 85 ,

Met Ile Ser Glu Val Thr Gly Gly Val Ser Asp Thr Ile Ser Tyr 95 100 105

Arg Asp Phe Val Asn Met Met Leu Gly Lys Arg Ser Ala Val Leu 110 115 120

Lys Leu Val Met Met Phe Glu Gly Lys Ala Asn Glu Ser Ser Pro 125 130 135

Lys Pro Val Gly Pro Pro Pro Glu Arg Asp Ile Ala Ser Leu Pro 140 145 150

<211> 150

<212> PRT

<213> Homo sapiens

<210> 197

<211> 4842

<212> DNA

<213> Homo sapiens

<400> 197 cgcgctcccc gcgcgcctcc tcgggctcca cgcgtcttgc cccgcagagg 50 cagcetecte caggageggg geeetgeaca ceatggeeec egggtgggea 100 ggggtcggcg ccgccgtgcg cgcccgcctg gcgctggcct tggcgctggc 150 gagegteetg agtgggeete eageegtege etgeeceace aagtgtacet 200 gctccgctgc cagcgtggac tgccacgggc tgggcctccg cgcggttcct 250 cggggcatcc cccgcaacgc tgagcgcctt gacctggaca gaaataatat 300 caccaggate accaagatgg acttegetgg geteaagaac eteegagtet 350 tgcatctgga agacaaccag gtcagcgtca tcgagagagg cgccttccag 400 gacctgaagc agctagagcg actgcgcctg aacaagaata agctgcaagt 450 ccttccagaa ttgcttttcc agagcacgcc gaagctcacc agactagatt 500 tgagtgaaaa ccagatccag gggatcccga ggaaggcgtt ccgcggcatc 550 accgatgtga agaacctgca actggacaac aaccacatca gctgcattga 600 agatggagcc ttccgagcgc tgcgcgattt ggagatcctt accctcaaca 650 acaacaacat cagtegeate etggteacea getteaacea catgeegaag 700 atccgaactc tgcgcctcca ctccaaccac ctctactgcg actgccacct 750 ggcctggctc tcggattggc tgcgacagcg acggacagtt ggccagttca 800 cactetgeat ggeteetgtg catttgaggg getteaacgt ggeggatgtg 850 cagaagaagg agtacgtgtg cccagccccc cactcggagc ccccatcctg 900 caatgccaac tecateteet geeettegee etgeaegtge ageaataaca 950 tcgtggactg tcgaggaaag ggcttgatgg agattcctgc caacttgccg 1000 gagggcatcg tegaaatacg ectagaacag aactecatca aagecatece 1050 tgcaggagcc ttcacccagt acaagaaact gaagcgaata gacatcagca 1100 agaatcagat atcggatatt gctccagatg ccttccaggg cctgaaatca 1150 ctcacatcgc tggtcctgta tgggaacaag atcaccgaga ttgccaaggg 1200 actgtttgat gggctggtgt ccctacagct gctcctcctc aatgccaaca 1250 agatcaactg cctgcgggtg aacacgtttc aggacctgca gaacctcaac 1300 ttgctctccc tgtatgacaa caagctgcag accatcagca aggggctctt 1350 cgcccctctg cagtccatcc agacactcca cttagcccaa aacccatttg 1400 tgtgcgactg ccacttgaag tggctggccg actacctcca ggacaacccc 1450

atcgagacaa gcggggcccg ctgcagcagc ccgcgccgac tcgccaacaa 1500 gcgcatcagc cagatcaaga gcaagaagtt ccgctgctca ggctccgagg 1550 attaccgcag caggttcagc agcgagtgct tcatggacct cgtgtgcccc 1600 gagaagtgtc gctgtgaggg cacgattgtg gactgctcca accagaagct 1650 ggtccgcatc ccaagccacc tccctgaata tgtcaccgac ctgcgactga 1700 atgacaatga ggtatctgtt ctggaggcca ctggcatctt caagaagttg 1750 cccaacctgc ggaaaataaa tctgagtaac aataagatca aggaggtgcg 1800 agagggaget ttegatggag cagecagegt geaggagetg atgetgaeag 1850 ggaaccagct ggagaccgtg cacgggcgcg tgttccgtgg cctcagtggc 1900 ctcaaaacct tgatgctgag gagtaacttg atcagctgtg tgagtaatga 1950 cacctttgcc ggcctgagtt cggtgagact gctgtccctc tatgacaatc 2000 ggatcaccac catcacccct ggggccttca ccacgcttgt ctccctgtcc 2050 accataaacc tcctgtccaa ccccttcaac tgcaactgcc acctggcctg 2100 gctcggcaag tggttgagga agaggcggat cgtcagtggg aaccctaggt 2150 gccagaagcc atttttcctc aaggagattc ccatccagga tgtggccatc 2200 caggacttca cctgtgatgg caacgaggag agtagctgcc agctgagccc 2250 gcgctgcccg gagcagtgca cctgtatgga gacagtggtg cgatgcagca 2300 acaaggggct ccgcgccctc cccagaggca tgcccaagga tgtgaccgag 2350 ctgtacctgg aaggaaacca cctaacagcc gtgcccagag agctgtccgc 2400 cctccgacac ctgacgctta ttgacctgag caacaacagc atcagcatgc 2450 tgaccaatta caccttcagt aacatgtctc acctctccac tctgatcctg 2500 agctacaacc ggctgaggtg catccccgtc cacgccttca acgggctgcg 2550 gtccctgcga gtgctaaccc tccatggcaa tgacatttcc agcgttcctg 2600 aaggeteett caacgaeete acatetettt eecatetgge getgggaace 2650 aacccactcc actgtgactg cagtcttcgg tggctgtcgg agtgggtgaa 2700 ggcggggtac aaggagcctg gcatcgcccg ctgcagtagc cctgagccca 2750 tggctgacag gctcctgctc accaccccaa cccaccgctt ccagtgcaaa 2800 gggccagtgg acatcaacat tgtggccaaa tgcaatgcct gcctctccag 2850 cccgtgcaag aataacggga catgcaccca ggaccctgtg gagctgtacc 2900 gctgtgcctg cccctacagc tacaagggca aggactgcac tgtgcccatc 2950 aacacctgca tccagaaccc ctgtcagcat ggaggcacct gccacctgag 3000 tgacagccac aaggatgggt tcagctgctc ctgccctctg ggctttgagg 3050 ggcagcggtg tgagatcaac ccagatgact gtgaggacaa cgactgcgaa 3100 aacaatgcca cctgcgtgga cgggatcaac aactacgtgt gtatctgtcc 3150 gcctaactac acaggtgagc tatgcgacga ggtgattgac cactgtgtgc 3200 ctgagctgaa cctctgtcag catgaggcca agtgcatccc cctggacaaa 3250 ggattcagct gcgagtgtgt ccctggctac agcgggaagc tctgtgagac 3300 agacaatgat gactgtgtgg cccacaagtg ccgccacggg gcccagtgcg 3350 tggacacaat caatggctac acatgcacct gcccccaggg cttcagtgga 3400 cccttctgtg aacaccccc acccatggtc ctactgcaga ccagcccatg 3450 cgaccagtac gagtgccaga acggggccca gtgcatcgtg gtgcagcagg 3500 ageceacetg eegetgeeca ecaggetteg eeggeeceag atgegagaag 3550 ctcatcactg tcaacttcgt gggcaaagac tcctacgtgg aactggcctc 3600 cgccaaggtc cgaccccagg ccaacatctc cctgcaggtg gccactgaca 3650 aggacaacgg catcettete tacaaaggag acaatgaeee eetggeaetg 3700 gagetgtace agggecacgt geggetggte tatgacagee tgagtteece 3750 tccaaccaca gtgtacagtg tggagacagt gaatgatggg cagtttcaca 3800 gtgtggagct ggtgacgcta aaccagaccc tgaacctagt agtggacaaa 3850 ggaactccaa agagcctggg gaagctccag aagcagccag cagtgggcat 3900 caacageece etetacettg gaggeateee caeeteeace ggeeteteeg 3950 ccttgcgcca gggcacggac cggcctctag gcggcttcca cggatgcatc 4000 catgaggtgc gcatcaacaa cgagctgcag gacttcaagg ccctcccacc 4050 acagtecetg ggggtgteac caggetgeaa gteetgeace gtgtgeaage 4100 acggcctgtg ccgctccgtg gagaaggaca gcgtggtgtg cgagtgccgc 4150 ccaggctgga ccggcccact ctgcgaccag gaggcccggg acccctgcct 4200 cggccacaga tgccaccatg gaaaatgtgt ggcaactggg acctcataca 4250 tgtgcaagtg tgccgagggc tatggagggg acttgtgtga caacaagaat 4300 gactetgeca atgeetgete ageetteaag tgteaceatg ggeagtgeea 4350 catctcagac caaggggagc cctactgcct gtgccagccc ggctttagcg 4400 gcgagcactg ccaacaagag aatccgtgcc tgggacaagt agtccgagag 4450 gtgatccgcc gccagaaagg ttatgcatca tgtgccacag cctccaaggt 4500 gcccatcatg gaatgtcgtg ggggctgtgg gccccagtgc tgccagccca 4550 cccgcagcaa gcggcggaaa tacgtcttcc agtgcacgga cggctcctcg 4600 tttgtagaag aggtggagag acacttagag tgcggctgcc tcgcgtgttc 4650 ctaagcccct gcccgcctgc ctgccacctc tcggactcca gcttgatgga 4700 gttgggacag ccatgtggga ccccctggtg attcagcatg aaggaaatga 4750 agctggagag gaaggtaaag aagaagagaa tattaagtat attgtaaaat 4800 aaacaaaaaa tagaacttaa aaaaaaaaaa aaaaaaaaa aa 4842

<213>	Hom	no sa	pien	ıs										
<400> Met 1	→ 198 Ala	Pro	Gly	Trp 5	Ala	Gly	Val	Gly	Ala 10	Ala	Val	Arg	Ala	Arg 15
Leu	Ala	Leu	Ala	Leu 20	Ala	Leu	Ala	Ser	Val [*] 25	Leu	Ser	Gly	Pro	Pro 30
Ala	Val	Ala	Cys	Pro 35	Thr	Lys	Cys	Thr	Cys 40	Ser	Ala	Ala	Ser	Val 45
Asp	Cys	His	Gly	Leu 50	Gly	Leu	Arg	Ala	Val 55	Pro	Arg	Gly	Ile	Pro 60
Arg	Asn	Ala	Glu	Arg 65	Leu	Asp	Leu	Asp	Arg 70	Asn	Asn	Ile	Thr	Arg 75
Ile	Thr	Lys	Met	Asp 80	Phe	Ala	Gly	Leu	Lys 85	Äsn	Leu	Arg	Val	Leu 90
His	Leu	Glu	Asp	Asn 95	Gln	Val	Ser	Val	Ile 100	Glu	Arg	Gly	Ala	Phe 105
Gln	Asp	Leu	Lys	Gln 110	Leu	Glu	Arg	Leu	Arg 115	Leu	Asn	Lys	Asn	Lys 120
Leu	Gln	Val	Leu	Pro 125	Glu	Leu	Leu	Phe	Gln 130	Ser	Thr	Pro	Lys	Leu 135
Thr	Arg	Leu	Asp	Leu 140	Ser	Glu	Asn	Gln	Ile 145	Gln	Gly	Ile	Pro	Arg 150
Lys	Ala	Phe	Arg	Gly		Thr	Asp	Val	Lys 160	: Asn	Leu	Gln	Leu	Asp 165

<210> 198

<211> 1523

<212> PRT

Asn	Asn	His	Ile	Ser 170	Суѕ	Ile	Glu	Asp	Gly 175	Ala	Phe	Arg	Ala	Leu 180
Arg	Asp	Leu	Glu	Ile 185	Leu	Thr	Leu	Asn	Asn 190	Asn	Asn	Ile	Ser	Arg 195
Ile	Leu	Val	Thr	Ser 200	Phe	Asn	His	Met	Pro 205	Lys	Ile	Arg	Thr	Leu 210
Arg	Leu	His	Ser	Asn 215	His	Leu	Tyr	Суз	Asp 220	Cys	His	Leu	Ala	Trp 225
Leu	Ser	Asp	Trp	Leu 230	Arg	Gln	Arg	Arg	Thr 235	Val	Gly	Gln	Phe	Thr 240
Leu	Cys	Met	Ala	Pro 245	Val	His	Leu	Arg	Gly 250	Phe	Asn	Val	Ala	Asp 255
Val	Gln	Lys	Lys	Glu 260	Tyr	Val	Cys	Pro	Ala 265	Pro	His	Ser	Glu	Pro 270
Pro	Ser	Cys	Asn	Ala 275	Asn	Ser	Ile	Ser	Cys 280	Pro	Ser	Pro	Cys	Thr 285
Cys	Ser	Asn	Asn	Ile 290	Val	Asp	Cys	Arg	Gly 295	Lys	Gly	Leu	Met	Glu 300
Ile	Pro	Ala	Asn	Leu 305	Pro	Glu	Gly	Ile	Val 310	Glu	Ile	Arg	Leu	Glu 315
Gln	Asn	Ser	Ile	Lys 320	Ala	Ile	Pro	Ala	Gly 325	Ala	Phe	Thr	Gln	Tyr 330
Lys	Lys	Leu	Lys	Arg 335	Ile	Asp	Ile	Ser	Lys 340	Asn	Gln	Ile	Ser	Asp 345
Ile	Ala	Pro	Asp	Ala 350		Gln	Gly	Leu	Lys 355	Ser	Leu	Thr	Ser	Leu 360
Val	Leu	Tyr	Gly	Asn 365		Ile	Thr	Glu	Ile 370	Ala	Lys	Gly	Leu	Phe 375
Asp	Gly	Leu	Val	Ser 380	Leu	Gln	Leu	Leu	Leu 385	Leu	Asn	Ala	Asn	Lys 390
Ile	Asn	Cys	Leu	Arg 395	Val	Asn	Thr	Phe	Gln 400	Asp	Leu	ı Gln	Asn	Leu 405
Asn	Leu	Leu	Ser	Leu 410		Asp	Asn	Lys	Leu 415	Glr.	Thr	: Ile	e Ser	Lys 420
Gly	Leu	Phe	. Ala	Pro 425		ı Gln	ser	lle	430	Thr	Leu	ı His	. Leu	Ala 435
Gln	a Asr	Prc	Phe	Val		asp	Cys	His	445	Lys	Trp	Leu	ı Ala	Asp 450
Tyr	Leu	Gln	a Asp	Asn	Pro) Ile	e Glu	Thr	Sei	Gly	/ Ala	a Arg	g Cys	Ser

				455					460					465
Ser	Pro	Arg	Arg	Leu 470	Ala	Asn	Lys	Arg	Ile 475	Ser	Gln	Ile	Lys	Ser 480
Lys	Lys	Phe	Arg	Cys 485	Ser	Gly	Ser	Glu	Asp 490	Tyr	Arg	Ser	Arg	Phe 495
Ser	Ser	Glu	Cys	Phe 500	Met	Asp	Leu	Val	Cys 505	Pro	Glu	Lys	Cys	Arg 510
Cys	Glu	Gly	Thr	Ile 515	Val	Asp	Cys	Ser	Asn 520	Gln	Lys	Leu	Val	Arg 525
Ile	Pro	Ser	His	Leu 530	Pro	Glu	Tyr	Val	Thr 535	Asp	Leu	Arg	Leu	Asn 540
Asp	Asn	Glu	Val	Ser 545	Val	Leu	Glu	Ala	Thr 550	Gly	Ile	Phe	Lys	Lys 555
Leu	Pro	Asn	Leu	Arg 560	Lys	Ile	Asn	Leu	Ser 565	Asn	Asn	Lys	Ile	Lys 570
Glu	Val	Arg	Glu	Gly 575	Ala	Phe	Asp	Gly	Ala 580	Ala	Ser	Val	Gln	Glu 585
Leu	Met	Leu	Thr	Gly 590	Asn	Gln	Leu	Glu	Thr 595	Val	His	Gly	Arg	Val 600
Phe	Arg	Gly	Leu	Ser 605	Gly	Leu	Lys	Thr	Leu 610	Met	Leu	Arg	Ser	Asn 615
Leu	Ile	Ser	Суз	Val 620	Ser	Asn	Asp	Thr	Phe 625	Ala	Gly	Leu	Ser	Ser 630
Val	Arg	Leu	Leu	Ser 635		Tyr	Asp	Asn	Arg 640	Ile	Thr	Thr	Ile	Thr 645
Pro	Gly	Ala	Phe	Thr 650		Leu	Val	Ser	Leu 655	Ser	Thr	Ile	Asn	Leu 660
Leu	Ser	Asn	Pro	Phe 665	Asn	Cys	Asn	Cys	His 670	Leu	Ala	Trp	Leu	Gly 675
Lys	Trp	Leu	Arg	Lys 680		Arg	Ile	Val	Ser 685	Gly	Asn	Pro	Arg	Cys 690
Gln	Lys	Pro	Phe	Phe 695		Lys	Glu	Ile	700	lle	Gln	Asp	val	Ala 705
Ile	Gln	Asp	Phe	Thr 710		Asp	Gly	Asn	Glu 715	Glu S	Ser	Ser	Cys	Gln 720
Leu	Ser	Pro	Arg	Cys 725		Glu	Gln	суз	Thr 730	Cys	Met	Glu	ı Thr	Val 735
Val	Arg	Cys	Ser	740		Gly	Leu	Arg	745	Leu 5	n Pro	Arg	g Gly	Met 750

Pro	Lys	Asp	Val	Thr 755	Glu	Leu	Tyr	Leu	Glu 760	Gly	Asn	His	Leu	Thr 765
Ala	Val.	Pro	Arg	Glu 770	Leu	Ser	Ala	Leu	Arg 775	His	Leu	Thr	Leu	Ile 780
Asp	Leu	Ser	Asn	Asn 785	Ser	Ile	Ser	Met	Leu 790	Thr	Asn	Tyr	Thr	Phe 795
Ser	Asn	Met	Ser	His 800	Leu	Ser	Thr	Leu	Ile 805	Leu	Ser	Tyr	Asn	Arg 810
Leu	Arg	Cys	Ile	Pro 815	Val	His	Ala	Phe	Asn 820	Gly	Leu	Arg	Ser	Leu 825
Arg	Val	Leu	Thr	Leu 830	His	Gly	Asn	Asp	Ile 835	Ser	Ser	Val	Pro	Glu 840
Gly	Ser	Phe	Asn	Asp 845	Leu	Thr	Ser	Leu	Ser 850	His	Leu	Ala	Leu	Gly 855
Thr	Asn	Pro	Leu	His 860	Cys	Asp	Cys	Ser	Leu 865	Arg	Trp	Leu	Ser	Glu 870
Trp	Val	Lys	Ala	Gly 875	Tyr	Lys	Glu	Pro	Gly 880	Ile	Ala	Arg	Cys	Ser 885
Ser	Pro	Glu	Pro	Met 890	Ala	Asp	Arg	Leu	Leu 895	Leu	Thr	Thr	Pro	Thr 900
His	Arg	Phe	Gln	Cys 905		Gly	Pro	Val	Asp 910	Ile	Asn	Ile	Val	Ala 915
Lys	Cys	Asn	Ala	Cys 920	Leu	Ser	Ser	Pro	Cys 925	Lys	Asn	Asn	Gly	Thr 930
Cys	Thr	Gln	Asp	Pro 935	Val	Glu	Leu	туг	Arg 940	Cys	Ala	Cys	Pro	945
Ser	Tyr	Lys	Gly	Lys 950	Asp	Cys	Thr	Val	Pro 955	Ile	Asn	Thr	Суз	960
Gln	Asn	Pro	Cys	Glr 965	His	s Gly	/ Gly	7 Thr	970	His	Leu	Ser	: Asp	975
His	Lys	Asp	o Gly	Phe 980		c Cys	s Sei	c Cys	985	Leu	Gly	Phe	e Glu	990
Gln	Arç	g Cys	s Glu	11e 995		n Pro	Asp	p Asp	Cys 1000	s Glu	a Asp	Ası	n Asp	Cys 1005
Glu	ı Asr	n Asr	n Ala	1010		s Val	l Ası	o Gly	7 Ile 1015	e Asr	a Asr	ту:	· Vai	l Cys 1020
Ile	e Cys	s Pro	o Pro	Ası 102		r Thi	r Gl	y Glı	ı Let 1030	ı Cys	s Asp	Gl:	ı Va	l Ile 1035
Asp	His	s Су:	s Val	l Pro	o Gl	u Lei	u Ası	n Le	u Cys	s Glr	n His	s Gl	ı Al	a Lys

			1	040				1	.045				10)50
Cys	Ile	Pro		Asp .055	Lys	Gly	Phe	Ser 1	Cys 1060	Glu	Cys	Val	Pro (51y 065
Tyr	Ser	Gly		Leu .070	Cys	Glu	Thr	Asp]	Asn 1075	Asp	Asp	Cys	Val A	Ala 080
His	Lys	Cys		His 085	Gly	Ala	Gln	Cys	Val 1090	Asp	Thr	Ile	Asn (Gly 095
Tyr	Thr	Cys		Cys 1100	Pro	Gln	Gly	Phe	Ser 1105	Gly	Pro	Phe	Cys (Glu 110
His	Pro	Pro		Met L115	Val	Leu	Leu	Gln	Thr 1120	Ser	Pro	Cys	Asp 1	Gln 125
Tyr	Glu	Cys		Asn 1130	Gly	Ala	Gln	Cys	Ile 1135	Val	Val	Gln	Gln 1	Glu 140
Pro	Thr	Cys		Cys 1145	Pro	Pro	Gly	Phe	Ala 1150	Gly	Pro	Arg	Cys 1	Glu 155
Lys	Leu	Ile	Thr	Val 1160	Asn	Phe	Val	Gly	Lys 1165	Asp	Ser	Tyr	Val 1	Glu 170
Leu	Ala	Ser		Lys 1175	Val	Arg	Pro	Gln	Ala 1180	Asn	Ile	Ser	Leu 1	Gln 185
Val	Ala	Thr		Lys 1190		Asn	Gly	Ile	Leu 1195	Leu	Tyr	Lys	Gly 1	Asp 200
Asn	Asp	Pro		Ala 1205		Glu	Leu	Tyr	Gln 1210	Gly	His	Val	Arg 1	Leu 215
Val	Tyr	Asp		Leu 1220		Ser	Pro	Pro	Thr 1225	Thr	Val	Tyr	Ser 1	Val .230
Glu	Thr	Val	Asn	Asp 1235	Gly	Gln	Phe	His	Ser 1240	Val	Glu	Leu	Val 1	Thr .245
Leu	Asn	Gln	Thr	Leu 1250	Asn	Leu	Val	Val	Asp 1255	Lys	Gly	Thr	Pro 1	Lys 1260
Ser	Leu	Gly	Lys	Leu 1265	Gln	Lys	Gln	Pro	Ala 1270	Val	Gly	, Ile	Asn 1	Ser 1275
Pro	Leu	Tyr	Leu	Gly 1280		, Ile	Pro	Thr	Ser 1285	Thr	Gly	Lev	Ser	Ala L290
Leu	Arg	Gln	Gly	Thr 1295		Arg	Pro	Leu	1 Gly 1300	Gly	Phe	e His	Gly	Cys 1305
Ile	His	Glu	ı Val	Arç 1310		e Asn	a Asn	Glı	1315	Glr	n Asp	Phe	Lys	Ala 1320
Leu	ı Pro	Pro	Gln	Ser	Leu	ı Gly	v Val	. Sei	2 Pro	Gly	у Суз	s Lys	Ser	Cys 1335

Thr Val Cys Lys His Gly Leu Cys Arg Ser Val Glu Lys Asp Ser 1340 1345 1350

Val Val Cys Glu Cys Arg Pro Gly Trp Thr Gly Pro Leu Cys Asp 1355 1360 1365

Gln Glu Ala Arg Asp Pro Cys Leu Gly His Arg Cys His His Gly 1370 1375 1380

Lys Cys Val Ala Thr Gly Thr Ser Tyr Met Cys Lys Cys Ala Glu 1385 1390 1395

Gly Tyr Gly Gly Asp Leu Cys Asp Asn Lys Asn Asp Ser Ala Asn 1400 1405 1410

Ala Cys Ser Ala Phe Lys Cys His His Gly Gln Cys His Ile Ser 1415 1420 1425

Asp Gln Gly Glu Pro Tyr Cys Leu Cys Gln Pro Gly Phe Ser Gly 1430 1435 1440

Glu His Cys Gln Gln Glu Asn Pro Cys Leu Gly Gln Val Val Arg 1445 1450 1455

Glu Val Ile Arg Arg Gln Lys Gly Tyr Ala Ser Cys Ala Thr Ala 1460 1465 1470

Ser Lys Val Pro Ile Met Glu Cys Arg Gly Gly Cys Gly Pro Gln 1475 1480 1485

Cys Cys Gln Pro Thr Arg Ser Lys Arg Arg Lys Tyr Val Phe Gln 1490 1495 1500

Cys Thr Asp Gly Ser Ser Phe Val Glu Glu Val Glu Arg His Leu 1505 1510 1515

Glu Cys Gly Cys Leu Ala Cys Ser 1520

<210> 199

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 199

atggagattc ctgccaactt gccg 24

<210> 200

<211> 24

<212> DNA

<213> Artificial

<220>

```
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 200
ttgttggcat tgaggaggag cagc 24
<210> 201
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 201
 gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 50
<210> 202
<211> 753
<212> DNA
<213> Homo sapiens
<400> 202
 ggatgcagga cgctcccctg agctgcctgt caccgactag gtggagcagt 50
 gtttcttccg cagactcaac tgagaagtca gcctctgggg caggcaccag 100
 gaatctgcct tttcagttct gtctccggca ggctttgagg atgaaggctg 150
 cgggcattct gaccctcatt ggctgcctgg tcacaggcgc cgagtccaaa 200
 atctacactc gttgcaaact ggcaaaaata ttctcgaggg ctggcctgga 250
 caattactgg ggcttcagcc ttggaaactg gatctgcatg gcatattatg 300
 agageggeta caacaccaca geecegaegg teetggatga eggeageate 350
 gactatggca tcttccagat caacagcttc gcgtggtgca gacgcggaaa 400
 gctgaaggag aacaaccact gccatgtcgc ctgctcagcc ttgatcactg 450
 atgacctcac agatgcaatt atctgtgcca ggaaaattgt taaagagaca 500
 caaggaatga actattggca aggctggaag aaacattgtg agggcagaga 550
 cctgtccgag tggaaaaaag gctgtgaggt ttcctaaact ggaactggac 600
 ccaggatgct ttgcagcaac gccctaggat ttgcagtgaa tgtccaaatg 650
 cctgtgtcat cttgtcccgt ttcctcccaa tattccttct caaacttgga 700
 gagggaaaat taagctatac ttttaagaaa ataaatattt ccatttaaat 750
```

gtc 753

```
<210> 203
<211> 148
<212> PRT
<213> Homo sapiens
<400> 203
Met Lys Ala Ala Gly Ile Leu Thr Leu Ile Gly Cys Leu Val Thr
 Gly Ala Glu Ser Lys Ile Tyr Thr Arg Cys Lys Leu Ala Lys Ile
 Phe Ser Arg Ala Gly Leu Asp Asn Tyr Trp Gly Phe Ser Leu Gly
 Asn Trp Ile Cys Met Ala Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr
 Ala Pro Thr Val Leu Asp Asp Gly Ser Ile Asp Tyr Gly Ile Phe
 Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg Gly Lys Leu Lys Glu
 Asn Asn His Cys His Val Ala Cys Ser Ala Leu Ile Thr Asp Asp
 Leu Thr Asp Ala Ile Ile Cys Ala Arg Lys Ile Val Lys Glu Thr
 Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys Lys His Cys Glu Gly
 Arg Asp Leu Ser Glu Trp Lys Lys Gly Cys Glu Val Ser
                 140
<210> 204
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 204
 gcaggctttg aggatgaagg ctgc 24
<210> 205
<211> 24
<212> DNA
<213> Artificial
```

<220>

<222> 1-24

<221> Artificial Sequence

<223> Synthetic construct.

```
<400> 205
ctcattggct gcctggtcac aggc 24
<210> 206
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 206
ccagtcggac aggtctctcc cctc 24
<210> 207
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 207
 tcagtgacca aggctgagca ggcg 24
<210> 208
<211> 47
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-47
<223> Synthetic construct.
<400> 208
 ctacactcgt tgcaaactgg caaaaatatt ctcgagggct ggcctgg 47
<210> 209
<211> 1648
<212> DNA
<213> Homo sapiens
<400> 209
 caggccattt gcatcccact gtccttgtgt tcggagccag gccacaccgt 50
 cctcagcagt gtcatgtgtt aaaaacgcca agctgaatat atcatgcccc 100
 tattaaaact tgtacatggc tccccattgg tttttggaga aaagttcaag 150
 ctttttacct tggtgtctgc ctgtatccca gtgttcaggc tggctagacg 200
 gcggaagaag atcctatttt actgtcactt cccagatctg cttctcacca 250
```

agagagatto ttttcttaaa cgactataca gggccccaat tgactggata 300 gaggaataca ccacaggcat ggcagactgc atcttagtca acagccagtt 350 cacagetget gtttttaagg aaacattcaa gteeetgtet cacatagace 400 ctgatgtcct ctatccatct ctaaatgtca ccagctttga ctcagttgtt 450 cctgaaaagc tggatgacct agtccccaag gggaaaaaat tcctgctgct 500 ctccatcaac agatacgaaa ggaagaaaaa tctgactttg gcactggaag 550 ccctagtaca gctgcgtgga agattgacat cccaagattg ggagagggtt 600 catctgatcg tggcaggtgg ttatgacgag agagtcctgg agaatgtgga 650 acattatcag gaattgaaga aaatggtcca acagtccgac cttggccagt 700 atgtgacctt cttgaggtct ttctcagaca aacagaaaat ctccctcctc 750 cacagotgoa ogtgtgtgot ttacacacca agcaatgago actttggoat 800 tgtccctctg gaagccatgt acatgcagtg cccagtcatt gctgttaatt 850 cgggtggacc cttggagtcc attgaccaca gtgtcacagg gtttctgtgt 900 gagectgace eggtgeactt eteagaagea atagaaaagt teateegtga 950 accttcctta aaagccacca tgggcctggc tggaagagcc agagtgaagg 1000 aaaaattttc ccctgaagca tttacagaac agctctaccg atatgttacc 1050 aaactgctgg tataatcaga ttgtttttaa gatctccatt aatgtcattt 1100 ttatggattg tagacccagt tttgaaacca aaaaagaaac ctagaatcta 1150 atgcagaaga gatcttttaa aaaataaact tgagtcttga atgtgagcca 1200 ctttcctata taccacacct ccctgtccac ttttcagaaa aaccatgtct 1250 tttatgctat aatcattcca aattttgcca gtgttaagtt acaaatgtgg 1300 tgtcattcca tgttcagcag agtattttaa ttatattttc tcgggattat 1350 tgctcttctg tctataaatt ttgaatgata ctgtgcctta attggttttc 1400 atagtttaag tgtgtatcat tatcaaagtt gattaatttg gcttcatagt 1450 ataatgagag cagggctatt gtagttccca gattcaatcc accgaagtgt 1500 tcactgtcat ctgttaggga atttttgttt gtcctgtctt tgcctggatc 1550 catagogaga gtgctctgta ttttttttaa gataatttgt atttttgcac 1600 actgagatat aataaaaggt gtttatcata aaaaaaaaa aaaaaaaa 1648

<210> 210 <211> 323

<400> Met 1	> 210 Pro) Leu	Leu	Lys 5	Leu	Val	His	Gly	Ser 10	Pro	Leu	Val	Phe	Gly 15
Glu	Lys	Phe	Lys	Leu 20	Phe	Thr	Leu	Val	Ser 25	Ala	Cys	Ile	Pro	Val 30
Phe	Arg	Leu	Ala	Arg 35	Arg	Arg	Lys	Lys	Ile 40	Leu	Phe	Tyr	Cys	His 45
Phe	Pro	Asp	Leu	Leu 50	Leu	Thr	Lys	Arg	Asp 55	Ser	Phe	Leu	Lys	Arg 60
Leu	Tyr	Arg	Ala	Pro 65	Ile	Asp	Trp	Ile	Glu 70	Glu	Tyr	Thr	Thr	Gly 75
Met	Ala	Asp	Cys	Ile 80	Leu	Val	Asn	Ser	Gln 85	Phe	Thr	Ala	Ala	Val 90
Phe	Lys	Glu	Thr	Phe 95	Lys	Ser	Leu	Ser	His 100	Ile	Asp	Pro	Asp	Val 105
Leu	Tyr	Pro	Ser	Leu 110	Asn	Val	Thr	Ser	Phe 115	Asp	Ser	Val	Val	Pro 120
Glu	Lys	Leu	Asp	Asp 125	Leu	Val	Pro	Lys	Gly 130	Lys	Lys	Phe	Leu	Leu 135
Leu	Ser	Ile	Asn	Arg 140	Tyr	Glu	Arg	Lys	Lys 145	Asn	Leu	Thr	Leu	Ala 150
Leu	Glu	Ala	Leu	Val 155	Gln	Leu	Arg	Gly	Arg 160	Leu	Thr	Ser	Gln	Asp 165
Trp	Glu	Arg	Val	His 170	Leu	Ile	Val	Ala	Gly 175	Gly	Tyr	Asp	Glu	Arg 180
Val	Leu	Glu	Asn	Val 185	Glu	His	Tyr	Gln	Glu 190	Leu	Lys	Lys	Met	Val 195
Gln	Gln	Ser	Asp	Leu 200	Gly	Gln	Tyr	Val	Thr 205	Phe	Leu	Arg	Ser	Phe 210
Ser	Asp	Lys	Gln	Lys 215		Ser	Leu	Leu	His 220	Ser	Cys	Thr	Cys	Val 225
Leu	Tyr	Thr	Pro	Ser 230		Glu	His	Phe	Gly 235	Ile	Val	Pro	Leu	Glu 240
Ala	Met	Tyr	Met	Gln 245		Pro	Val	Ile	Ala 250	Val	Asn	Ser	Gly	Gly 255
Pro	Leu	Glu	Ser	1le 260		His	Ser	Val	Thr 265	Gly	Phe	Leu	Cys	Glu 270

Pro Asp Pro Val His Phe Ser Glu Ala Ile Glu Lys Phe Ile Arg 275 280 285

Glu Pro Ser Leu Lys Ala Thr Met Gly Leu Ala Gly Arg Ala Arg 290 295 300

Val Lys Glu Lys Phe Ser Pro Glu Ala Phe Thr Glu Gln Leu Tyr 305 310 315

<210> 211

<211> 1554

<212> DNA

<213> Homo sapiens

<400> 211 gactacgccg atccgagacg tggctccctg ggcggcagaa ccatgttgga 50 cttcgcgatc ttcgccgtta ccttcttgct ggcgttggtg ggagccgtgc 100 tctacctcta tccggcttcc agacaagctg caggaattcc agggattact 150 ccaactgaag aaaaagatgg taatcttcca gatattgtga atagtggaag 200 tttgcatgag ttcctggtta atttgcatga gagatatggg cctgtggtct 250 ccttctggtt tggcaggcgc ctcgtggtta gtttgggcac tgttgatgta 300 ctgaagcagc atatcaatcc caataagaca tcggaccctt ttgaaaccat 350 gctgaagtca ttattaaggt atcaatctgg tggtggcagt gtgagtgaaa 400 accacatgag gaaaaaattg tatgaaaatg gtgtgactga ttctctgaag 450 agtaactttg ccctcctcct aaagctttca gaagaattat tagataaatg 500 gctctcctac ccagagaccc agcacgtgcc cctcagccag catatgcttg 550 gttttgctat gaagtctgtt acacagatgg taatgggtag tacatttgaa 600 gatgatcagg aagtcattcg cttccagaag aatcatggca cagtttggtc 650 tgagattgga aaaggctttc tagatgggtc acttgataaa aacatgactc 700 ggaaaaaaca atatgaagat gccctcatgc aactggagtc tgttttaagg 750 aacatcataa aagaacgaaa aggaaggaac ttcagtcaac atattttcat 800 tgactcctta gtacaaggga accttaatga ccaacagatc ctagaagaca 850 gtatgatatt ttctctggcc agttgcataa taactgcaaa attgtgtacc 900 tgggcaatct gttttttaac cacctctgaa gaagttcaaa aaaaattata 950 tgaagagata aaccaagttt ttggaaatgg tcctgttact ccagagaaaa 1000 ttgagcagct cagatattgt cagcatgtgc tttgtgaaac tgttcgaact 1050 gccaaactga ctccagtttc tgcccagctt caagatattg aaggaaaaat 1100 tgaccgattt attattccta gagagaccct cgtcctttat gcccttggtg 1150 tggtacttca ggatcctaat acttggccat ctccacacaa gtttgatcca 1200 gatcggtttg atgatgaatt agtaatgaaa acttttcct cacttggatt 1250 ctcaggcaca caggagtgtc cagagttgag gtttgcatat atggtgacca 1300 cagtacttct tagtgtattg gtgaagagac tgcacctact ttctgtggag 1350 ggacaggtta ttgaaacaaa gtatgaactg gtaacatcat caagggaaga 1400 agcttggatc actgtctcaa agagatatta aaattttata catttaaaat 1450 cattgttaaa ttgattgagg aaaacaacca tttaaaaaaa atctatgttg 1500 aatcctttta taaaccagta tcactttgta atataaacac ctattgtac 1550 ttaa 1554

<400> 212

Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu Ala Leu
1 5 10 15

Val Gly Ala Val Leu Tyr Leu Tyr Pro Ala Ser Arg Gln Ala Ala 20 25 30

Gly Ile Pro Gly Ile Thr Pro Thr Glu Glu Lys Asp Gly Asn Leu
35 40 45

Leu His Glu Arg Tyr Gly Pro Val Val Ser Phe Trp Phe Gly Arg
65 70 75

Arg Leu Val Val Ser Leu Gly Thr Val Asp Val Leu Lys Gln His 80 85 90

Ile Asn Pro Asn Lys Thr Ser Asp Pro Phe Glu Thr Met Leu Lys 95 100 105

Ser Leu Leu Arg Tyr Gln Ser Gly Gly Gly Ser Val Ser Glu Asn 110 115

His Met Arg Lys Lys Leu Tyr Glu Asn Gly Val Thr Asp Ser Leu 125 130 135

Lys Ser Asn Phe Ala Leu Leu Leu Lys Leu Ser Glu Glu Leu Leu

<210> 212

<211> 462

<212> PRT

<213> Homo sapiens

				140					145					150
Asp	Lys	Trp	Leu	Ser 155	Tyr	Pro	Glu	Thr	Gln 160	His	Val	Pro	Leu	Ser 165
Gln	His	Met	Leu	Gly 170	Phe	Ala	Met	Lys	Ser 175	Val	Thr	Gln	Met	Val 180
Met	Gly	Ser	Thr	Phe 185	Glu	Asp	Asp	Gln	Glu 190	Val	Ile	Arg	Phe	Gln 195
Lys	Asn	His	Gly	Thr 200	Val	Trp	Ser	Glu	Ile 205	Gly	Lys	Gly	Phe	Leu 210
Asp	Gly	Ser	Leu	Asp 215	Lys	Asn	Met	Thr	Arg 220	Lys	Lys	Gln	Tyr	Glu 225
Asp	Ala	Leu	Met	Gln 230	Leu	Glu	Ser	Val	Leu 235	Arg	Asn	Ile	ΙĻe	Lys 240
Glu	Arg	Lys	Gly	Arg 245	Asn	Phe	Ser	Gln	His 250	Ile	Phe	Ile	Asp	Ser 255
Leu	Val	Gln	Gly	Asn 260	Leu	Asn	Asp	Gln	Gln 265	Ile	Leu	Glu	Asp	Ser 270
Met	Ile	Phe	Ser	Leu 275	Ala	Ser	Cys	Ile	Ile 280	Thr	Ala	Lys	Leu	Cys 285
Thr	Trp	Ala	Ile	Cys 290		Leu	Thr	Thr	Ser 295	Glu	Glu	Val	Gln	Lys 300
Lys	Leu	Tyr	Glu	Glu 305	Ile	Asn	Gln	Val	Phe 310	Gly	Asn	Gly	Pro	Val 315
Thr	Pro	Glu	Lys	Ile 320		Gln	Leu	Arg	Tyr 325	Суѕ	Gln	His	Val	Leu 330
Cys	Glu	Thr	Val	Arg 335		Ala	Lys	Leu	Thr 340	Pro	Val	Ser	Ala	Gln 345
Leu	Gln	Asp	lle	Glu 350	ı Gly	Lys	: Ile	Asp	355	Phe	e Ile	e Il∈	e Pro	Arg 360
Glu	Thr	Leu	ı Val	Leu 365		Ala	l Leu	Gly	7 Val 370	. Val	L Leu	ı Glr	n Asp	Pro 375
Asn	Thr	Trp	Pro	Ser 380	r Pro	His	s Lys	Ph∈	e Asp 385	Pro	o Asp	Arq	g Phe	390
Asp	Glu	ı Leı	ı Val	. Met 395	Lys	s Thi	c Ph∈	e Sei	Ser 400	Lei	ı Gly	y Ph∈	e Ser	Gly 405
Thr	Glr	ı Glı	ı Cys	s Pro 410		ı Let	ı Arç	g Phe	e Ala 415	a Ty:	r Met	t Vai	l Thi	Thr 420
Val	l Lev	ı Leı	ı Sei	c Val	l Let	ı Va.	l Lys	s Arq	g Lei 430	ı Hi: O	s Lei	ı Lei	ı Sei	val 435

Glu Gly Gln Val Ile Glu Thr Lys Tyr Glu Leu Val Thr Ser Ser

Arg Glu Glu Ala Trp Ile Thr Val Ser Lys Arg Tyr

<210> 213

<211> 759

<212> DNA

<213> Homo sapiens

<400> 213 ctagatttgt cggcttgcgg ggagacttca ggagtcgctg tctctgaact 50 tecageetca gagacegeeg ceettgteee egagggeeat gggeegggte 100 tcagggcttg tgccctctcg cttcctgacg ctcctggcgc atctggtggt 150 cgtcatcacc ttattctggt cccgggacag caacatacag gcctgcctgc 200 ctctcacgtt cacccccgag gagtatgaca agcaggacat tcagctggtg 250 gccgcgctct ctgtcaccct gggcctcttt gcagtggagc tggccggttt 300 cctctcagga gtctccatgt tcaacagcac ccagagcetc atctccattg 350 gggctcactg tagtgcatcc gtggccctgt ccttcttcat attcgagcgt 400 tgggagtgca ctacgtattg gtacattttt gtcttctgca gtgcccttcc 450 agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaga 500 aaccettetg attacettea tgacgggaac etaaggacga ageetacagg 550 ggcaagggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcggtt 600 ttcccctcgg aaactgcttc tgctggagga tatgtgttgg aataattacg 650 tcttgagtct gggattatcc gcattgtatt tagtgctttg taataaaata 700 tgttttgtag taacattaag acttatatac agttttaggg gacaattaaa 750 aaaaaaaaa 759

<210> 214

<211> 140

<212> PRT

<213> Homo sapiens

<400> 214

Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu

Leu Ala His Leu Val Val Val Ile Thr Leu Phe Trp Ser Arg Asp

Ser Asn Ile Gln Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu

Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala Ala Leu Ser Val Thr
50 55 60

Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val 6570

Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu 110 115 120

Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu 125 130 135

Lys Lys Pro Phe 140

<210> 215

<211> 697

<212> DNA

<213> Homo sapiens

<400> 215

teceggacee tgeegeetg ceactatgte eegeegete atgetget 50
cetgggetet ceccageete ettegacteg gageggetea ggaagacagaa 100
gacceggeet getgeageee catagtgeee eggaacgagt ggaaggeeet 150
ggcateagag tgeegeeage acetgageet geeettaege tatgtggtgg 200
tategeacae ggegggeage agetgeaaca eeceegeete gtgeeageag 250
caggeeegga atgtgeagea etaceacatg aagacaetgg getggtgeag 300
cgtgggetae aactteetga ttggagaaga egggetegta taegagggee 350
gtggetggaa etteacgggt geeeacteag gteacttätg gaacceeatg 400
tecattggea teagetteat gggeaactae atggategg tgeeeacaee 450
ceaggeeate egggeageee agggtetaet ggeetgegg tgtgeeage 500
gageeetgag gteeaactat gtgeteaaag gacaeegga tgtgeageg 550
acactetete eaggeaacea getetaeeae eteateeaga attggeeaca 600
ctaeeggeea aeceeatg teteettee eaataaagat gtagete 697

<210> 216

<211> 196

<212> PRT

<213> Homo sapiens

	01/	_												
<400> Met 1			Arg	Ser 5	Met	Leu	Leu	Ala	Trp 10	Ala	Leu	Pro	Ser	Leu 15
Leu	Arg	Leu	Gly	Ala 20	Ala	Gln	Glu	Thr	Glu 25	Asp	Pro	Ala	Cys	Cys 30
Ser	Pro	Ile	Val	Pro 35	Arg	Asn	Glu	Trp	Lys 40	Ala	Ļeu	Ala	Ser	Glu 45
Cys	Ala	Gln	His	Leu 50	Ser	Leu	Pro	Leu	Arg 55	Tyr	Val	Val	Val	Ser 60
His	Thr	Ala	Gly	Ser 65	Ser	Cys	Asn	Thr	Pro 70	Ala	Ser	Cys	Gln	Gln 75
Gln	Ala	Arg	Asn	Val 80	Gln	His	Tyr	His	Met 85	Lys	Thr	Leu	Gly	Trp 90
Cys	Asp	Val	Gly	Tyr 95	Asn	Phe	Leu	Ile	Gly 100	Glu	Asp	Gly	Leu	Val 105
Tyr	Glu	Gly	Arg	Gly 110	Trp	Asn	Phe	Thr	Gly 115	Ala	His	Ser	Gly	His 120
Leu	Trp	Asn	Pro	Met 125	Ser	Ile	Gly	Ile	Ser 130	Phe	Met	Gly	Asn	Tyr 135
Met	Asp	Arg	Val	Pro 140	Thr	Pro	Gln	Ala	Ile 145	Arg	Ala	Ala	Gln	Gly 150
Leu	Leu	Ala	Cys	Gly 155	Val	Ala	Gln	Gly	Ala 160	Leu	Arg	Ser	Asn	Tyr 165
Val	Leu	Lys	Gly	His 170	Arg	Asp	Val	Gln	Arg 175	Thr	Leu	Ser	Pro	Gly 180
Asn	Gln	Leu	Tyr	His 185	Leu	Ile	Gln	Asn	Trp 190	Pro	His	Tyr	Arg	Ser 195

Pro

<210> 217 <211> 1871 <212> DNA <213> Homo sapiens

<400> 217
 ctgggacccc gaaaagagaa ggggagagcg aggggacgag agcggaggag 50
 gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg cagggtagcc 100
 tctatctggt catctgtggc caggatgatg gtcctcccgg ctcagaggac 150
 cctgagcgtg atgaccacga gggccagccc cggccccggg tgcctcggaa 200

geggggccac ateteaceta agtecegece catggecaat tecaetetee 250 tagggctgct ggccccgcct ggggaggctt ggggcattct tgggcagccc 300 cccaaccgcc cgaaccacag ccccccaccc tcagccaagg tgaagaaaat 350 ctttggctgg ggcgacttct actccaacat caagacggtg gccctgaacc 400 tgctcgtcac agggaagatt gtggaccatg gcaatgggac cttcagcgtc 450 cacttccaac acaatgccac aggccaggga aacatctcca tcagcctcgt 500 gcccccagt aaagctgtag agttccacca ggaacagcag atcttcatcg 550 aagccaaggc ctccaaaatc ttcaactgcc ggatggagtg ggagaaggta 600 gaacggggcc gccggacctc gctttgcacc cacgacccag ccaagatctg 650 ctcccgagac cacgctcaga gctcagccac ctggagctgc tcccagccct 700 tcaaagtcgt ctgtgtctac atcgccttct acagcacgga ctatcggctg 750 gtccagaagg tgtgcccaga ttacaactac catagtgata ccccctacta 800 ggacaggcct gcccatgcag gagaccatct ggacaccggg cagggaaggg 900 gttgggcctc aggcagggag gggggtggag acgaggagat gccaagtggg 950 gccagggcca agtctcaagt ggcagagaaa gggtcccaag tgctggtccc 1000 aacctgaagc tgtggagtga ctagatcaca ggagcactgg aggaggagtg 1050 ggctctctgt gcagcctcac agggctttgc cacggagcca cagagagatg 1100 ctgggtcccc gaggcctgtg ggcaggccga tcagtgtggc cccagatcaa 1150 gtcatgggag gaagctaagc ccttggttct tgccatcctg aggaaagata 1200 gcaacaggga gggggagatt tcatcagtgt ggacagcctg tcaacttagg 1250 gccagaggag ctctccagcc ctgcctagtg ggcgccctga gccccttgtc 1350 gtgtgctgag catggcatga ggctgaagtg gcaaccctgg ggtctttgat 1400 gtcttgacag attgaccatc tgtctccagc caggccaccc ctttccaaaa 1450 ttecetette tgecagtaet ecceetgtae eacceattge tgatggeaea 1500 cccatcctta agctaagaca ggacgattgt ggtcctccca cactaaggcc 1550 acageceate egegtgetgt gtgtecetet tecaceceaa eccetgetgg 1600 ctcctctggg agcatccatg tcccggagag gggtccctca acagtcagcc 1650

tcacctgtca gaccggggtt ctcccggatc tggatggcgc cgccctctca 1700 gcagcgggca cgggtggggc ggggccgggc cgcagagcat gtgctggatc 1750 tgttctgtgt gtctgtctgt gggtggggg aggggaggga agtcttgtga 1800 aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850 aataaagctt gcccggggc a 1871

- <210> 218
- <211> 252
- <212> PRT
- <213> Homo sapiens
- <400> 218
- Met Gln Leu Thr Arg Cys Cys Phe Val Phe Leu Val Gln Gly Ser
 1 5 10 15
- Leu Tyr Leu Val Ile Cys Gly Gln Asp Asp Gly Pro Pro Gly Ser $20 \hspace{1cm} 25 \hspace{1cm} 30$
- Glu Asp Pro Glu Arg Asp Asp His Glu Gly Gln Pro Arg Pro Arg 35 40 45
- Val Pro Arg Lys Arg Gly His Ile Ser Pro Lys Ser Arg Pro Met 50 55 60
- Ala Asn Ser Thr Leu Leu Gly Leu Leu Ala Pro Pro Gly Glu Ala 65 70 75
- Trp Gly Ile Leu Gly Gln Pro Pro Asn Arg Pro Asn His Ser Pro 80 85 90
- Pro Pro Ser Ala Lys Val Lys Lys Ile Phe Gly Trp Gly Asp Phe 95 100 105
- Tyr Ser Asn Ile Lys Thr Val Ala Leu Asn Leu Leu Val Thr Gly
 110 115 120
- Lys Ile Val Asp His Gly Asn Gly Thr Phe Ser Val His Phe Gln 125 $130\ ^{\circ}$ 135
- His Asn Ala Thr Gly Gln Gly Asn Ile Ser Ile Ser Leu Val Pro $140\,$
- Pro Ser Lys Ala Val Glu Phe His Gln Glu Gln Gln Ile Phe Ile 155 160 165
- Glu Ala Lys Ala Ser Lys Ile Phe Asn Cys Arg Met Glu Trp Glu 170 175 180
- Lys Val Glu Arg Gly Arg Arg Thr Ser Leu Cys Thr His Asp Pro 185 190 195
- Ala Lys Ile Cys Ser Arg Asp His Ala Gln Ser Ser Ala Thr Trp 200 205 210

Ser Cys Ser Gln Pro Phe Lys Val Val Cys Val Tyr Ile Ala Phe 215 220 225

Tyr Ser Thr Asp Tyr Arg Leu Val Gln Lys Val Cys Pro Asp Tyr 230 235 240

Asn Tyr His Ser Asp Thr Pro Tyr Tyr Pro Ser Gly 245 250

<210> 219

<211> 2065

<212> DNA

<213> Homo sapiens

gtgaatgtg

<400> 219 gtgaatgtga gggtttgatg actttcagat gtctaggaac cagagtgggt 50

gcaggggccc caggcagggc tgattcttgg gcggaggaga gtagggtaaa 100

gggttctgca tgagctcctt aaaggacaaa ggtaacagag ccagcgagag 150

agetegaggg gagaetttga etteaageea eagaattggt ggaagtgtge 200 gegeegeege egeegteget eetgeagege tgtegaeeta geegetagea 250

tetteeegag cacegggate eeggggtagg aggegaegeg ggegageace 300

agegecagee ggetgegget geceaeaegg eteaceatgg geteegggeg 350

cegggegetg teegeggtge eggeegtget getggteete aegetgeegg 400

ggctgcccgt ctgggcacag aacgacacgg agcccatcgt gctggagggc 450

aagtgtctgg tggtgtgcga ctcgaacccg gccacggact ccaagggctc 500

ctcttcctcc ccgctgggga tatcggtccg ggcggccaac tccaaggtcg 550

cettetegge ggtgeggage accaaccacg agecatecga gatgageaac 600

aagacgcgca tcatttactt cgatcagatc ctggtgaatg tgggtaattt 650 tttcacattg gagtctgtct ttgtagcacc aagaaaaäga atttacagtt 700

targettttan agtgattann gtataccaga gccanactat ccaggttanc 750

tcagttttca cgtgattaaa gtctaccaga gccaaactat ccaggttaac 750

ttgatgttaa atggaaaacc agtaatatct gcctttgcgg gggacaaaga 800

tgttactcgt gaagctgcca cgaatggtgt cctgctctac ctagataaag 850

aggataaggt ttacctaaaa ctggagaaag gtaatttggt tggaggctgg 900

cagtattcca cgttttctgg ctttctggtg ttccccctat aggattcaat 950

ttctccatga tgttcatcca ggtgagggat gacccactcc tgagttattg 1000

gaagatcatt ttttcatcat tggattgatg tcttttattg gtttctcatg 1050

ggtggatatg gattctaagg attctagcct gtctgaacca atacaaaatt 1100

tcacagatta tttgtgtgtg tctgtttcag tatatttgga ttgggactct 1150 aagcagataa tacctatgct taaatgtaac agtcaaaagc tgtctgcaag 1200 acttattctg aatttcattt cctgggatta ctgaattagt tacagatgtg 1250 gaattttatt tgtttagttt taaaagactg gcaaccaggt ctaaggatta 1300 gaaaactcta aagttctgac ttcaatcaac ggttagtgtg atactgccaa 1350 agaactgtat actgtgttaa tatattgatt atatttgttt ttattccttt 1400 ggaattagtt tgtttggttc ttgtaaaaaa cttggatttt ttttttcagt 1450 aactggtatt atgttttctc ttaaaataag gtaatgaatg gcttgcccac 1500 aaatttacct tgactacgat atcatcgaca tgacttctct caaaaaaaaa 1550 gaatgcttca tagttgtatt ttaattgtat atgtgaaaga gtcatatttt 1600 ccaagttata ttttctaaga agaagaatag atcataaatc tgacaaggaa 1650 aaagttgctt acccaaaatc taagtgctca atccctgagc ctcagcaaaa 1700 cagctcccct ccgagggaaa tcttatactt tattgctcaa ctttaattaa 1750 aatgattgat aataaccact ttattaaaaa cctaaggttt ttttttttc 1800 cgtagacatg accactttat taactggtgg tgggatgctg ttgtttctaa 1850 ttatacctat ttttcaaggc ttctgttgta tttgaagtat catctggttt 1900 tgccttaact ctttaaattg tatatattta tctgtttagc taatattaaa 1950 ttcaaatatc ccatatctaa atttagtgca atatcttgtc ttttgtatag 2000 gtcatatgaa ttcataaaat tatttatgtc tgttatagaa taaagattaa 2050 tatatgttaa aaaaa 2065

<210> 220

<211> 201

<212> PRT

<213> Homo sapiens

<400> 220

Met Gly Ser Gly Arg Arg Ala Leu Ser Ala Val Pro Ala Val Leu
1 5 10 15

Leu Val Leu Thr Leu Pro Gly Leu Pro Val Trp Ala Gln Asn Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Thr Glu Pro Ile Val Leu Glu Gly Lys Cys Leu Val Val Cys Asp 35 40 45

Ser Asn Pro Ala Thr Asp Ser Lys Gly Ser Ser Ser Ser Pro Leu
50 55 60

```
Gly Ile Ser Val Arg Ala Ala Asn Ser Lys Val Ala Phe Ser Ala
Val Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Lys Thr
Arg Ile Ile Tyr Phe Asp Gln Ile Leu Val Asn Val Gly Asn Phe
Phe Thr Leu Glu Ser Val Phe Val Ala Pro Arg Lys Gly Ile Tyr
                                     115
Ser Phe Ser Phe His Val Ile Lys Val Tyr Gln Ser Gln Thr Ile
Gln Val Asn Leu Met Leu Asn Gly Lys Pro Val Ile Ser Ala Phe
Ala Gly Asp Lys Asp Val Thr Arg Glu Ala Ala Thr Asn Gly Val
Leu Leu Tyr Leu Asp Lys Glu Asp Lys Val Tyr Leu Lys Leu Glu
Lys Gly Asn Leu Val Gly Gly Trp Gln Tyr Ser Thr Phe Ser Gly
                                     190
Phe Leu Val Phe Pro Leu
                 200
<210> 221
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.
<400> 221
 acggctcacc atgggctccg 20
<210> 222
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 222
 aggaagagga gcccttggag tccg 24
<210> 223
<211> 40
```

```
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-40
<223> Synthetic construct.
<400> 223
  cgtgctggag ggcaagtgtc tggtggtgtg cgactcgaac 40
<210> 224
<211> 902
<212> DNA
<213> Homo sapiens
<400> 224
  cggtggcat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc 50
```

gggcctgcgc tcgcccttta tgtcttcacc atcgccatcg agccgttgcg 100 tatcatcttc ctcatcgccg gagctttctt ctggttggtg tctctactga 150 tttcgtccct tgtttggttc atggcaagag tcattattga caacaaagat 200 ggaccaacac agaaatatct gctgatcttt ggagcgtttg tctctgtcta 250 tatccaagaa atgttccgat ttgcatatta taaactctta aaaaaagcca 300 gtgaaggttt gaagagtata aacccaggtg agacagcacc ctctatgcga 350 ctgctggcct atgtttctgg cttgggcttt ggaatcatga gtggagtatt 400 ttcctttgtg aataccctat ctgactcctt ggggccaggc acagtgggca 450 ttcatggaga ttctcctcaa ttcttccttt attcagcttt catgacgctg 500 gtcattatct tgctgcatgt attctggggc attgtatttt ttgatggctg 550 tgagaagaaa aagtggggca tcctccttat cgttctcctg acccacctgc 600 tggtgtcagc ccagaccttc ataagttctt attatggaat aaacctggcg 650 tcagcattta taatcctggt gctcatgggc acctgggcat tcttagctgc 700 actttcttct ttacaaccag cgctccagat aacctcaggg aaccagcact 800 teccaaaceg cagactacat etttagagga ageacaactg tgeetttte 850 tgaaaatccc tttttctggt ggaattgaga aagaaataaa actatgcaga 900

ta 902

<210> 225

<211> 257

<212> PRT

<213> Homo sapiens

<400	> 225	5											D 1	G 3
Met 1	Thr	Ala	Ala	Val 5	Phe	Phe	Gly	Cys	A1a 10	Phe	TTE	Ala	Pne	15
Pro	Ala	Leu	Ala	Leu 20	Tyr	Val	Phe	Thr	Ile 25	Ala	Ile	Glu	Pro	Leu 30
Arg	Ile	Ile	Phe	Leu 35	Ile	Ala	Gly	Ala	Phe 40	Phe	Trp	Leu	Val	Ser 45
Leu	Leu	Ile	Ser	Ser 50	Leu	Val	Trp	Phe	Met 55	Ala	Arg	Val	Ile	Ile 60
Asp	Asn	Lys	Asp	Gly 65	Pro	Thr	Gln	Lys	Tyr 70	Leu	Leu	Ile	Phe	Gly 75
Ala	Phe	Val	Ser	Val 80	Tyr	Ile	Gln	Glu	Met 85	Phe	Arg	Phe	Ala	Tyr 90
Tyr	Lys	Leu	Leu	Lys 95	Lys	Ala	Ser	Glu	Gly 100	Leu	Lys	Ser	Ile	Asn 105
Pro	Gly	Glu	Thr	Ala 110	Pro	Ser	Met	Arg	Leu 115	Leu	Ala	Tyr	Val	Ser 120
Gly	Leu	Gly	Phe	Gly 125	Ile	Met	Ser	Gly	Val 130	Phe	Ser	Phe	Val	Asn 135
Thr	Leu	Ser	Asp	Ser 140	Leu	Gly	Pro	Gly	Thr 145	Val	Gly	Ile	His	Gly 150
Asp	Ser	Pro	Gln	Phe 155	Phe	Leu	Tyr	Ser	Ala 160	Phe	Met	Thr	Leu	Val 165
Ile	Ile	Leu	Leu	His 170	Val	Phe	Trp	Gly	Ile 175	Val	Phe	Phe	Asp	Gly 180
Cys	Glu	Lys	Lys	Lys 185	Trp	Gly	Ile	Leu	Leu 190		Val	Leu	Leu	Thr 195
His	Leu	Leu	Val	Ser 200	Ala	Gln	Thr	Phe	Ile 205	Ser	Ser	Tyr	Tyr	Gly 210
Ile	Asn	Leu	Ala	Ser 215		Phe	Ile	Ile	Leu 220		Leu	Met	Gly	Thr 225
Trp	Ala	Phe	Leu	Ala 230		Gly	Gly	Ser	Cys 235	Arg	Ser	Leu	Lys	Leu 240
Cys	Leu	Leu	Cys	Gln 245		Lys	Asn	Phe	Leu 250	Leu	Tyr	Asn	Gln	Arg 255
Ser	Arg	ſ												

<210> 226

<211> 3939 <212> DNA

<213> Homo sapiens

<400> 226 cggcaaccag ccgccgccac caccgctgcc actgccgccc tgccggggcc 50 atgttcgctc tgggcttgcc cttcttggtg ctcttggtgg cctcggtcga 100 gagccatctg ggggttctgg ggcccaagaa cgtctcgcag aaagacgccg 150 agtttgagcg cacctacgtg gacgaggtca acagcgagct ggtcaacatc 200 tacaccttca accatactgt gacccgcaac aggacagagg gcgtgcgtgt 250 gtctgtgaac gtcctgaaca agcagaaggg ggcgccgttg ctgtttgtgg 300 tccgccagaa ggaggctgtg gtgtccttcc aggtgcccct aatcctgcga 350 gggatgtttc agcgcaagta cctctaccaa aaagtggaac gaaccctgtg 400 tcagccccc accaagaatg agtcggagat tcagttcttc tacgtggatg 450 tgtccaccct gtcaccagtc aacaccacat accagctccg ggtcagccgc 500 atggacgatt ttgtgctcag gactggggag cagttcagct tcaataccac 550 agcagcacag ccccagtact tcaagtatga gttccctgaa ggcgtggact 600 cggtaattgt caaggtgacc tccaacaagg ccttcccctg ctcagtcatc 650 tccattcagg atgtgctgtg tcctgtctat gacctggaca acaacgtagc 700 cttcatcggc atgtaccaga cgatgaccaa gaaggcggcc atcaccgtac 750 agcgcaaaga cttccccagc aacagctttt atgtggtggt ggtggtgaag 800 accgaagacc aagcctgcgg gggctccctg cctttctacc ccttcgcaga 850 agatgaaccg gtcgatcaag ggcaccgcca gaaaaccctg tcagtgctgg 900 tgtctcaagc agtcacgtct gaggcatacg tcagtgggat gctcttttgc 950 ctgggtatat ttctctctt ttacctgctg accgtcctcc tggcctgctg 1000 ggagaactgg aggcagaaga agaagaccct gctggtggcc attgaccgag 1050 cctgcccaga aagcggtcac cctcgagtcc tggctgattc ttttcctggc 1100 agttcccctt atgagggtta caactatggc tcctttgaga atgtttctgg 1150 atctaccgat ggtctggttg acagcgctgg cactggggac ctctcttacg 1200 gttaccaggg ccgctccttt gaacctgtag gtactcggcc ccgagtggac 1250 tccatgagct ctgtggagga ggatgactac gacacattga ccgacatcga 1300 ttccgacaag aatgtcattc gcaccaagca atacctctat gtggctgacc 1350

tggcacggaa ggacaagcgt gttctgcgga aaaagtacca gatctacttc 1400 tggaacattg ccaccattgc tgtcttctat gcccttcctg tggtgcagct 1450 ggtgatcacc taccagacgg tggtgaatgt cacagggaat caggacatct 1500 gctactacaa cttcctctgc gcccacccac tgggcaatct cagcgccttc 1550 aacaacatcc tcagcaacct ggggtacatc ctgctggggc tgcttttcct 1600 geteateate etgeaaeggg agateaaeea eaaeegggee etgetgegea 1650 atgacetetg tgeeetggaa tgtgggatee eeaaacaett tgggetttte 1700 tacgccatgg gcacagccct gatgatggag gggctgctca gtgcttgcta 1750 tcatgtgtgc cccaactata ccaatttcca gtttgacaca tcgttcatgt 1800 acatgatcgc cggactctgc atgctgaagc tctaccagaa gcggcacccg 1850 gacatcaacg ccagcgccta cagtgcctac gcctgcctgg ccattgtcat 1900 cttcttctct gtgctgggcg tggtctttgg caaagggaac acggcgttct 1950 ggatcgtctt ctccatcatt cacatcatcg ccaccctgct cctcagcacg 2000 cagetetatt acatgggeeg gtggaaaetg gaetegggga tetteegeeg 2050 catectecae gtgetetaca cagaetgeat eeggeagtge agegggeege 2100 tctacgtgga ccgcatggtg ctgctggtca tgggcaacgt catcaactgg 2150 tegetggetg cetatggget tateatgege eccaatgatt tegetteeta 2200 cttgttggcc attggcatct gcaacctgct cctttacttc gccttctaca 2250 tcatcatgaa gctccggagt ggggagagga tcaagctcat ccccctgctc 2300 tgcatcgttt gcacctccgt ggtctggggc ttcgcgctct tcttcttctt 2350 ccagggacte agcacctggc agaaaacccc tgcagagtcg agggagcaca 2400 accgggactg catcctcctc gacttctttg acgaccacga catctggcac 2450 ttcctctcct ccatcgccat gttcgggtcc ttcctggtgt tgctgacact 2500 ggatgacgac ctggatactg tgcagcggga caagatctat gtcttctagc 2550 aggagetggg ceettegett caceteaagg ggeeetgage teetttgtgt 2600 catagaccgg tcactctgtc gtgctgtggg gatgagtccc agcaccgctg 2650 cccagcactg gatggcagca ggacagccag gtctagctta ggcttggcct 2700 gggacagcca tggggtggca tggaaccttg cagctgccct ctgccgagga 2750 gcaggcctgc tcccctggaa cccccagatg ttggccaaat tgctgctttc 2800

ttctcagtgt tggggccttc catgggcccc tgtcctttgg ctctccattt 2850 gtccctttgc aagaggaagg atggaaggga caccctcccc atttcatgcc 2900 ttgcattttg cccgtcctcc tccccacaat gccccagcct gggacctaag 2950 gcctcttttt cctcccatac tcccactcca gggcctagtc tggggcctga 3000 atctctgtcc tgtatcaggg ccccagttct ctttgggctg tccctggctg 3050 ccatcactgc ccattccagt cagccaggat ggatgggggt atgagatttt 3100 gggggttggc cagctggtgc cagacttttg gtgctaaggc ctgcaagggg 3150 cctggggcag tgcgtattct cttccctctg acctgtgctc agggctggct 3200 ctttagcaat gcgctcagcc caatttgaga accgccttct gattcaagag 3250 getgaattea gaggteacet etteateeea teageteeea gaetgatgee 3300 agcaccagga ctggagggag aagcgcctca ccccttccct tccttcttc 3350 caggecetta gtettgecaa acceeagetg gtggeettte agtgeeattg 3400 acactgccca agaatgtcca ggggcaaagg agggatgata cagagttcag 3450 cccgttctgc ctccacagct gtgggcaccc cagtgcctac cttagaaagg 3500 ggcttcagga agggatgtgc tgtttccctc tacgtgccca gtcctagcct 3550 cgctctagga cccagggctg gcttctaagt ttccgtccag tcttcaggca 3600 agttctgtgt tagtcatgca cacacatacc tatgaaacct tggagtttac 3650 aaagaattgc cccagctctg ggcaccctgg ccaccctggt ccttggatcc 3700 cettegteec acetggteea ecceagatge tgaggatggg ggageteagg 3750 cggggcctct gctttgggga tgggaatgtg tttttctccc aaacttgttt 3800 ttatagctct gcttgaaggg ctgggagatg aggtgggtct ggatcttttc 3850 tcagagcgtc tccatgctat ggttgcattt ccgttttcta tgaatgaatt 3900 tgcattcaat aaacaaccag actcaaaaaa aaaaaaaaa 3939

```
<210> 227
```

<400> 227

Val Glu Ser His Leu Gly Val Leu Gly Pro Lys Asn Val Ser Gln 20 25 30

<211> 832

<212> PRT

<213> Homo sapiens

Met Phe Ala Leu Gly Leu Pro Phe Leu Val Leu Leu Val Ala Ser

Lys	Asp	Ala	Glu	Phe 35	Glu	Arg	Thr	Tyr	Val 40	Asp	Glu	Val	Asn	Ser 45
Glu	Leu	Val	Asn	Ile 50	Tyr	Thr	Phe	Asn	His 55	Thr	Val	Thr	Arg	Asn 60
Arg	Thr	Glu	Gly	Val 65	Arg	Val	Ser	Val	Asn 70	Val	Leu	Asn	Lys	Gln 75
Lys	Gly	Ala	Pro	Leu 80	Leu	Phe	Val	Val	Arg 85	Gln	Lys	Glu	Ala	Val 90
Val	Ser	Phe	Gln	Val 95	Pro	Leu	Ile	Leu	Arg 100	Gly	Met	Phe	Gln	Arg 105
Lys	Tyr	Leu	Tyr	Gln 110	Lys	Val	Glu	Arg	Thr 115	Leu	Cys	Gln	Pro	Pro 120
Thr	Lys	Asn	Glu	Ser 125	Glu	Ile	Gln	Phe	Phe 130	Tyr	Val	Asp	Val	Ser 135
Thr	Leu	Ser	Pro	Val 140	Asn	Thr	Thr	Tyr	Gln 145	Leu	Arg	Val	Ser	Arg 150
Met	Asp	Asp	Phe	Val 155	Leu	Arg	Thr	Gly	Glu 160	Gln	Phe	Ser	Phe	Asn 165
Thr	Thr	Ala	Ala	Gln 170	Pro	Gln	Tyr	Phe	Lys 175	Tyr	Glu	Phe	Pro	Glu 180
Gly	Val	Asp	Ser	Val 185		Val	Lys	Val	Thr 190	Ser	Asn	Lys	Ala	Phe 195
Pro	Cys	Ser	Val	Ile 200	Ser	Ile	Gln	Asp	Val 205	Leu	Cys	Pro	Val	Tyr 210
Asp	Leu	Asp	Asn	Asn 215	Val	Ala	Phe	lle	Gly 220	Met	Tyr	Gln	Thr	Met 225
Thr	Lys	Lys	. Ala	Ala 230		Thr	Val	Gln	Arg 235	J Lys	a Asp) Phe	Pro	Ser 240
Asr	n Ser	Phe	e Tyr	Val 245	Val	. Val	Val	Val	Lys 250	s Thr	Glu	a Asp	Gln	Ala 255
Cys	s Gly	/ Gly	y Ser	Let 260	ı Pro) Phe	е Туг	Pro	265	e Ala 5	a Glu	ı Asp	o Glu	270
Val	l Asp	o Gli	n Gly	His 275		g Glr	n Lys	s Thr	280	u Sei O	c Val	L Let	ı.Val	Ser 285
Glı	n Ala	a Vai	l Thr	Ser 290		ı Ala	а Туз	r Val	L Se:	r Gly 5	y Met	t Lev	ı Phe	200 300
Lei	u Gly	y Il	e Phe	e Let 305		r Phe	э Туг	r Lei	1 Le	u Thi	r Vai	l Lei	ı Lev	a Ala 315
Cy:	s Tr	o Gl	u Asr	ı Trp	o Ar	g Glr	n Ly:	s Lys	з Гу	s Th	r Le	u Le	ı Val	Ala

				320					325					330
Ile	Asp	Arg	Ala	Cys 335	Pro	Glu	Ser	Gly	His 340	Pro	Arg	Val	Leu	Ala 345
Asp	Ser	Phe	Pro	Gly 350	Ser	Ser	Pro	Tyr	Glu 355	Gly	Tyr	Asn	Tyr	Gly 360
Ser	Phe	Glu	Asn	Val 365	Ser	Gly	Ser	Thr	Asp 370	Gly	Leu	Val	Asp	Ser 375
Ala	Gly	Thr	Gly	Asp 380	Leu	Ser	Tyr	Gly	Tyr 385	Gln	Gly	Arg	Ser	Phe 390
Glu	Pro	Val	Gly	Thr 395	Arg	Pro	Arg	Val	Asp 400	Sér	Met	Ser	Ser	Val 405
Glu	Glu	Asp	Asp	Tyr 410	Asp	Thr	Leu	Thr	Asp 415	Ile	Asp	Ser	Asp	Lys 420
Asn	Val	Ile	Arg	Thr 425	Lys	Gln	Tyr	Leu	Tyr 430	Val	Ala	Asp	Leu	Ala 435
Arg	Lys	Asp	Lys	Arg 440	Val	Leu	Arg	Lys	Lys 445	Tyr	Gln	Ile	Tyr	Phe 450
Trp	Asn	Ile	Ala	Thr 455	Ile	Ala	Val	Phe	Tyr 460	Ala	Leu	Pro	Val	Val 465
Gln	Leu	Val	Ile	Thr 470	Tyr	Gln	Thr	Val	Val 475	Asn	Val	Thr	Gly	Asn 480
Gln	Asp	Ile	Cys	Tyr 485	Tyr	Asn	Phe	Leu	Cys 490	Ala	His	Pro	Leu	Gly 495
Asn	Leu	Ser	Ala	Phe 500	Asn	Asn	Ile	Leu	Ser 505	Asn	Let	Gly	Tyr	1le 510
Leu	Leu	Gly	Let	Leu 515	Phe	Leu	Leu	Ile	1le 520	Leu	Glr	n Arç	g Glü	1le 525
Asn	His	s Asr	n Arg	Ala 530	Leu	Leu	Arg	Asn	Asp 535	Lev	ı Cys	s Ala	a Leu	540
Cys	Gly	/ Ile	e Pro	Lys 545	His	Phe	Gly	Leu	Phe 550	э Туг)	: Ala	a Met	Gly	7 Thr 555
Ala	Leu	ı Met	. Met	t Glu 560	Gly	. Leu	Leu	Ser	Ala 565	a Cys	з Ту:	r His	s Val	Cys 570
Pro	Asr	ту:	c Th	r Asn 575	Ph∈	e Gln	Phe	a Asp	580	r Sei	r Ph	e Me	ту:	r Met 585
Ile	e Ala	a Gl	y Le	u Cys 590		Leu	ı Lys	s Lei	ту: 59!	r Gli 5	n Ly	s Ar	g Hi:	s Pro 600
Asp	ılı	e As:	n Al	a Ser 605	Ala	а Туг	Sea	c Ala	а Ту: 61	r Ala	а Су	s Le	u Al	a Ile 615

```
Val Ile Phe Phe Ser Val Leu Gly Val Val Phe Gly Lys Gly Asn
                620
Thr Ala Phe Trp Ile Val Phe Ser Ile Ile His Ile Ile Ala Thr
                635
Leu Leu Ser Thr Gln Leu Tyr Tyr Met Gly Arg Trp Lys Leu
                650
Asp Ser Gly Ile Phe Arg Arg Ile Leu His Val Leu Tyr Thr Asp
                665
Cys Ile Arg Gln Cys Ser Gly Pro Leu Tyr Val Asp Arg Met Val
                680
Leu Leu Val Met Gly Asn Val Ile Asn Trp Ser Leu Ala Ala Tyr
Gly Leu Ile Met Arg Pro Asn Asp Phe Ala Ser Tyr Leu Leu Ala
Ile Gly Ile Cys Asn Leu Leu Leu Tyr Phe Ala Phe Tyr Ile Ile
Met Lys Leu Arg Ser Gly Glu Arg Ile Lys Leu Ile Pro Leu Leu
Cys Ile Val Cys Thr Ser Val Val Trp Gly Phe Ala Leu Phe Phe
Phe Phe Gln Gly Leu Ser Thr Trp Gln Lys Thr Pro Ala Glu Ser
Arg Glu His Asn Arg Asp Cys Ile Leu Leu Asp Phe Phe Asp Asp
                                     790
His Asp Ile Trp His Phe Leu Ser Ser Ile Ala Met Phe Gly Ser
                                     805
Phe Leu Val Leu Leu Thr Leu Asp Asp Leu Asp Thr Val Gln
                                     820
Arg Asp Lys Ile Tyr Val Phe
                 830
```

<210> 228

<211> 2848

<212> DNA

<213> Homo sapiens

<400> 228
gctcaagtgc cctgccttgc cccacccagc ccagcctggc cagagcccc 50

tggagaagga gctctcttct tgcttggcag ctggaccaag ggagccagtc 100

ttgggcgctg gagggcctgt cctgaccatg gtccctgcct ggctgtggct 150

gctttgtgtc tccgtcccc aggctctcc caaggcccag cctgcagagc 200

tgtctgtgga agttccagaa aactatggtg gaaatttccc tttatacctg 250 accaagttgc cgctgccccg tgagggggct gaaggccaga tcgtgctgtc 300 aggggactca ggcaaggcaa ctgagggccc atttgctatg gatccagatt 350 ctggcttcct gctggtgacc agggccctgg accgagagga gcaggcagag 400 taccagetae aggteaceet ggagatgeag gatggaeatg tettgtgggg 450 tccacagcct gtgcttgtgc acgtgaagga tgagaatgac caggtgcccc 500 atttctctca agccatctac agagctcggc tgagccgggg taccaggcct 550 ggcatecect teetetteet tgaggettea gaeegggatg ageeaggeae 600 cttccccaga catgttccag ctggagcctc ggctgggggc tctggccctc 700 agccccaagg ggagcaccag ccttgaccac gccctggaga ggacctacca 750 gctgttggta caggtcaagg acatgggtga ccaggcctca ggccaccagg 800 ccactgccac cgtggaagtc tccatcatag agagcacctg ggtgtcccta 850 gagectatee acetggeaga gaateteaaa gteetataee egeaceaeat 900 ggcccaggta cactggagtg ggggtgatgt gcactatcac ctggagagcc 950 atccccggg accetttgaa gtgaatgcag agggaaacet ctacgtgace 1000 agagagctgg acagagaagc ccaggctgag tacctgctcc aggtgcgggc 1050 tcagaattcc catggcgagg actatgcggc ccctctggag ctgcacgtgc 1100 tggtgatgga tgagaatgac aacgtgccta tctgccctcc ccgtgacccc 1150 acagtcagca tccctgagct cagtccacca ggtactgaag tgactagact 1200 gtcagcagag gatgcagatg cccccggctc ccccaattcc cacgttgtgt 1250 atcagctcct gagccctgag cctgaggatg gggtagaggg gagagccttc 1300 caggtggacc ccacttcagg cagtgtgacg ctgggggtgc tcccactccg 1350 agcaggccag aacatcctgc ttctggtgct ggccatggac ctggcaggcg 1400 cagagggtgg cttcagcagc acgtgtgaag tcgaagtcgc agtcacagat 1450 atcaatgatc acgcccctga gttcatcact tcccagattg ggcctataag 1500 cctccctgag gatgtggagc ccgggactct ggtggccatg ctaacagcca 1550 ttgatgctga cctcgagccc gccttccgcc tcatggattt tgccattgag 1600 aggggagaca cagaagggac ttttggcctg gattgggagc cagactctgg 1650 gcatgttaga ctcagactct gcaagaacct cagttatgag gcagctccaa 1700 gtcatgaggt ggtggtggtg gtgcagagtg tggcgaagct ggtggggcca 1750 ggcccaggcc ctggagccac cgccacggtg actgtgctag tggagagagt 1800 gatgccaccc cccaagttgg accaggagag ctacgaggcc agtgtcccca 1850 tcagtgcccc agccggctct ttcctgctga ccatccagcc ctccgacccc 1900 atcageegaa eeetcaggtt eteectagte aatgaeteag agggetgget 1950 ctgcattgag aaattctccg gggaggtgca caccgcccag tccctgcagg 2000 gcgcccagcc tggggacacc tacacggtgc ttgtggaggc ccaggataca 2050 gecetgaete ttgeecetgt geceteceaa tacetetgea caceeegeca 2100 agaccatggc ttgatcgtga gtggacccag caaggacccc gatctggcca 2150 gtgggcacgg tccctacagc ttcacccttg gtcccaaccc cacggtgcaa 2200 cgggattggc gcctccagac tctcaatggt tcccatgcct acctcacctt 2250 ggccctgcat tgggtggagc cacgtgaaca cataatcccc gtggtggtca 2300 gccacaatgc ccagatgtgg cagctcctgg ttcgagtgat cgtgtgtcgc 2350 tgcaacgtgg aggggcagtg catgcgcaag gtgggccgca tgaagggcat 2400 geceaegaag etgteggeag tgggeateet tgtaggeace etggtageaa 2450 taggaatett eeteateete atttteaeee aetggaeeat gteaaggaag 2500 aaggacccgg atcaaccagc agacagcgtg cccctgaagg cgactgtctg 2550 aatggcccag gcagctctag ctgggagctt ggcctctggc tccatctgag 2600 tcccctggga gagagcccag cacccaagat ccagcagggg acaggacaga 2650 gtagaagccc ctccatctgc cctggggtgg aggcaccatc accatcacca 2700 ggcatgtctg cagagcctgg acaccaactt tatggactgc ccatgggagt 2750 gctccaaatg tcagggtgtt tgcccaataa taaagcccca gagaactggg 2800 ctgggcccta tgggaaaaaa aaaaaaaaaa aaaaaaaaa 2848

Ala Leu Pro Lys Ala Gln Pro Ala Glu Leu Ser Val Glu Val Pro

<210> 229

<211> 807

<212> PRT

<213> Homo sapiens

<400> 229

Met Val Pro Ala Trp Leu Trp Leu Cys Val Ser Val Pro Gln

				20					25					30
Glu	Asn	Tyr	Gly	Gly 35	Asn	Phe	Pro	Leu	Tyr 40	Leu	Thr	Lys	Leu	Pro 45
Leu	Pro	Arg	Glu	Gly 50	Ala	Glu	Gly	Gln	Ile 55	Val	Leu	Ser	Gly	Asp 60
Ser	Gly	Lys	Ala	Thr 65	Glu	Gly	Pro	Phe	Ala 70	Met	Asp	Pro	Asp	Ser 75
Gly	Phe	Leu	Leu	Val 80	Thr	Arg	Ala	Leu	Asp 85	Arg	Glu	Glu	Gln	Ala 90
Glu	Tyr	Gln	Leu	Gln 95	Val	Thr	Leu	Glu	Met 100	Gln	Asp	Gly	His	Val 105
Leu	Trp	Gly	Pro	Gln 110	Pro	Val	Leu	Val	His 115	Val	Lys	Asp	Glu	Asn 120
Asp	Gln	Val	Pro	His 125	Phe	Ser	Gln	Ala	Ile 130	Tyr	Arg	Ala	Arg	Leu 135
Ser	Arg	Gly	Thr	Arg 140	Pro	Gly	Ile	Pro	Phe 145	Leu	Phe	Leu	Glu	Ala 150
Ser	Asp	Arg	Asp	Glu 155	Pro	Gly	Thr	Ala	Asn 160	Ser	Asp	Leu	Arg	Phe 165
His	Ile	Leu	Ser	Gln 170		Pro	Ala	Gln	Pro 175	Ser	Pro	Asp	Met	Phe 180
Gln	Leu	Glu	Pro	Arg 185		Gly	Ala	Leu	Ala 190	Leu	Ser	Pro	Lys	Gly 195
Ser	Thr	Ser	Leu	Asp 200		Ala	Leu	Glu	Arg 205	Thr	Tyr	Gln	Leu	Leu 210
Val	Gln	Val	Lys	Asp 215		Gly	Asp	Gln	Ala 220	Ser	Gly	His	Gln	Ala 225
Thr	Ala	Thr	Val	Glu 230	Val	Ser	Ile	Ile	Glu 235	Ser	Thr	Trp	Val	Ser 240
Leu	Glu	Pro) Ile	His 245		Ala	Glu	Asn	Leu 250	Lys	Val	Leu	Туг	Pro 255
His	His	Met	Ala	Glr 260		His	Trp	Ser	Gl _y 265	g Gly	Asp	val	. His	Tyr 270
His	Leu	Glu	ı Ser	His 275		Pro	Gly	Pro	280	e Glu	val	. Asr	a Ala	Glu 285
Gly	Asn	Let	1 Туі	val 290		Arg	Glu	ı Lev	295	Arc	g Glu	n Alá	Glr	Ala 300
Glu	Туг	Leu	ı Leı	305		Arg	, Ala	a Glr	1 Asr 310	n Ser)	His	s Gly	/ Glu	315

Tyr	Ala	Ala	Pro	Leu 320	Glu	Leu	His	Val	Leu 325	Val	Met	Asp	Glu	Asn 330
Asp	Asn	Val	Pro	Ile 335	Суѕ	Pro	Pro	Arg	Asp 340	Pro	Thr	Val	Ser	Ile 345
Pro	Glu	Leu	Ser	Pro 350	Pro	Gly	Thr	Glu	Val 355	Thr	Arg	Leu	Ser	Ala 360
Glu	Asp	Ala	Asp	Ala 365	Pro	Gly	Ser	Pro	Asn 370	Ser	His	Val	Val	Tyr 375
Gln	Leu	Leu	Ser	Pro 380	Glu	Pro	Glu	Asp	Gly 385	Val	Glu	Gly	Arg	Ala 390
Phe	Gln	Val	Asp	Pro 395	Thr	Ser	Gly	Ser	Val 400	Thr	Leu	Gly	Val	Leu 405
Pro	Leu	Arg	Ala	Gly 410	Gln	Asn	Ile	Leu	Leu 415	Leu	Val	Leu	Ala	Met 420
Asp	Leu	Ala	Gly	Ala 425	Glu	Gly	Gly	Phe	Ser 430	Ser	Thr	Cys	Glu	Val 435
Glu	Val	Ala	Val	Thr 440	Asp	Ile	Asn	Asp	His 445	Ala	Pro	Glu	Phe	Ile 450
Thr	Ser	Gln	Ile	Gly 455	Pro	Ile	Ser	Leu	Pro 460	Glu	Asp	Val	Glu	Pro 465
Gly	Thr	Leu	Val	Ala 470	Met	Leu	Thr	Ala	Ile 475	Asp	Ala	Asp	Leu	Glu 480
Pro	Ala	Phe	Arg	Leu 485	Met	Asp	Phe	Ala	Ile 490	Glu	Arg	Gly	Asp	Thr 495
Glu	Gly	Thr	Phe	Gly 500	Leu	Asp	Trp	Glu	Pro 505	Asp	Ser	Gly	His	Val 510
Arg	Leu	Arg	Leu	Cys 515	Lys	Asn	Leu	Ser	Tyr 520	Glu	Ala	Ala	Pro	Ser 525
His	Glu	Val	Val	Val 530		Val	Gln	Ser	Val 535	Ala	Lys	Leu	Val	Gly 540
Pro	Gly	Pro	Gly	Pro 545		Ala	Thr	Ala	Thr 550	Val	Thr	Val	Leu	Val 555
Glu	Arg	Val	Met	Pro 560		Pro	Lys	Leu	Asp 565		Glu	Ser	Tyr	Glu 570
Ala	Ser	Val	Pro	Ile 575		Ala	Pro	Ala	Gly 580	Ser	Phe	Leu	Leu	Thr 585
Ile	Gln	Pro	Ser	Asp 590		Ile	Ser	Arg	Thr 595	Leu	Arg	Phe	Ser	Leu 600
Val	Asn	Asp	Ser	Glu	Gly	Trp	Leu	Cys	Ile	Glu	Lys	Phe	Ser	Gly

605 610 615 Glu Val His Thr Ala Gln Ser Leu Gln Gly Ala Gln Pro Gly Asp 625 Thr Tyr Thr Val Leu Val Glu Ala Gln Asp Thr Ala Leu Thr Leu 640 Ala Pro Val Pro Ser Gln Tyr Leu Cys Thr Pro Arg Gln Asp His 655 Gly Leu Ile Val Ser Gly Pro Ser Lys Asp Pro Asp Leu Ala Ser 665 670 Gly His Gly Pro Tyr Ser Phe Thr Leu Gly Pro Asn Pro Thr Val 680 685 Gln Arg Asp Trp Arg Leu Gln Thr Leu Asn Gly Ser His Ala Tyr 695 700 Leu Thr Leu Ala Leu His Trp Val Glu Pro Arg Glu His Ile Ile 710 Pro Val Val Val Ser His Asn Ala Gln Met Trp Gln Leu Leu Val 730 Arg Val Ile Val Cys Arg Cys Asn Val Glu Gly Gln Cys Met Arg Lys Val Gly Arg Met Lys Gly Met Pro Thr Lys Leu Ser Ala Val Gly Ile Leu Val Gly Thr Leu Val Ala Ile Gly Ile Phe Leu Ile Leu Ile Phe Thr His Trp Thr Met Ser Arg Lys Lys Asp Pro Asp Gln Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val <210> 230 <211> 50 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-50 <223> Synthetic construct. <400> 230 cgccttaccg cgcagcccga agattcacta tggtgaaaat cgccttcaat 50 <210> 231

<211> 24 <212> DNA

<213> Artificial Segeunce

```
<220>
<221> Artificial Sequence
<222> full
<223> Synthetic oligonucleotide probe
<400> 231
cctgagctgt aaccccactc cagg 24
<210> 232
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 232
agagtctgtc ccagctatct tgt 23
<210> 233
<211> 2786
<212> DNA
<213> Homo sapiens
<400> 233
ccggggacat gaggtggata ctgttcattg gggcccttat tgggtccagc 50
atctgtggcc aagaaaaatt ttttggggac caagttttga ggattaatgt 100
 cagaaatgga gacgagatca gcaaattgag tcaactagtg aattcaaaca 150
 acttgaaget caatttetgg aaateteeet eeteetteaa teggeetgtg 200
 gatgtcctgg tcccatctgt cagtctgcag gcatttaaat ccttcctgag 250
atcccagggc ttagagtacg cagtgacaat tgaggacctg caggcccttt 300
 tagacaatga agatgatgaa atgcaacaca atgaagggca agaacggagc 350
agtaataact tcaactacgg ggcttaccat tccctggaag ctatttacca 400
cgagatggac aacattgccg cagactttcc tgacctggcg aggagggtga 450
agattggaca ttcgtttgaa aaccggccga tgtatgtact gaagttcagc 500
actgggaaag gcgtgaggcg gccggccgtt tggctgaatg caggcatcca 550
ttcccgagag tggatctccc aggccactgc aatctggacg gcaaggaaga 600
ttgtatctga ttaccagagg gatccagcta tcacctccat cttggagaaa 650
atggatattt tcttgttgcc tgtggccaat cctgatggat atgtgtatac 700
tcaaactcaa aaccgattat ggaggaagac gcggtcccga aatcctggaa 750
gctcctgcat tggtgctgac ccaaatagaa actggaacgc tagttttgca 800
ggaaagggag ccagcgacaa cccttgctcc gaagtgtacc atggacccca 850
```

cgccaattcg gaagtggagg tgaaatcagt ggtagatttc atccaaaaac 900 atgggaattt caagggette ategacetge acagetaete geagetgetg 950 atgtatccat atgggtactc agtcaaaaag gccccagatg ccgaggaact 1000 cgacaaggtg gcgaggcttg cggccaaagc tctggcttct gtgtcgggca 1050 ctgagtacca agtgggtccc acctgcacca ctgtctatcc agctagcggg 1100 agcagcatcg actgggcgta tgacaacggc atcaaatttg cattcacatt 1150 tgagttgaga gataccggga cctatggctt cctcctgcca gctaaccaga 1200 tcatccccac tgcagaggag acgtggctgg ggctgaagac catcatggag 1250 atttgtaccc acacgtgcac gcactgaggc cattgttaaa ggagctcttt 1350 cctacctgtg tgagtcagag ccctctgggt ttgtggagca cacaggcctg 1400 cccctctcca gccagctccc tggagtcgtg tgtcctggcg gtgtccctgc 1450 aagaactggt tctgccagcc tgctcaattt tggtcctgct gtttttgatg 1500 agcettttgt etgtttetee ttecaccetg etggetggge ggetgeacte 1550 agcatcaccc cttcctgggt ggcatgtctc tctctacctc atttttagaa 1600 ccaaagaaca totgagatga ttototacco toatocacat otagocaago 1650 cagtgacctt gctctggtgg cactgtggga gacaccactt gtctttaggt 1700 gggtctcaaa gatgatgtag aatttccttt aatttctcgc agtcttcctg 1750' gaaaatattt tootttgago agcaaatott gtagggatat cagtgaaggt 1800 ctctcctcc ctcctctct gtttttttt tttttgagac agagttttgc 1850 tettgttgcc caggetggag tgtgatggct cgatettggc tcaccacaac 1900 ctctgcctcc tgggttcaag caattctcct gcctcagcct cttgagtagc 1950 ttggtttata ggcgcatgcc accatgcctg gctaattttg tgtttttagt 2000 agagacaggg tttctccatg ttggtcaggc tggtctcaaa ctcccaacct 2050 caggtgatct gccctccttg gcctcccaga gtgctgggat tacaggtgtg 2100 agccactgtg ccgggcccgt cccctccttt tttaggcctg aatacaaagt 2150 agaagatcac tttccttcac tgtgctgaga atttctagat actacagttc 2200 ttactcctct cttccctttg ttattcagtg tgaccaggat ggcgggaggg 2250 gatctgtgtc actgtaggta ctgtgcccag gaaggctggg tgaagtgacc 2300

<210> 234

<211> 421

<212> PRT

<213> Homo sapiens

<400> 234

Met Arg Trp Ile Leu Phe Ile Gly Ala Leu Ile Gly Ser Ser Ile 1 5 10 15

Cys Gly Gln Glu Lys Phe Phe Gly Asp Gln Val Leu Arg Ile Asn 20 25 30

Val Arg Asn Gly Asp Glu Ile Ser Lys Leu Ser Gln Leu Val Asn 35 40 45

Ser Asn Asn Leu Lys Leu Asn Phe Trp Lys Ser Pro Ser Ser Phe .50 60

Asn Arg Pro Val Asp Val Leu Val Pro Ser Val Ser Leu Gln Ala 65 70 75

Phe Lys Ser Phe Leu Arg Ser Gln Gly Leu Glu Tyr Ala Val Thr 80 85 90

Ile Glu Asp Leu Gln Ala Leu Leu Asp Asn Glu Asp Asp Glu Met 95 100

Gln His Asn Glu Gly Gln Glu Arg Ser Ser Asn Asn Phe Asn Tyr 110 115 120

Gly Ala Tyr His Ser Leu Glu Ala Ile Tyr His Glu Met Asp Asn 125 130 135

Ile Ala Ala Asp Phe Pro Asp Leu Ala Arg Arg Val Lys Ile Gly
140 145 150

His Ser Phe Glu Asn Arg Pro Met Tyr Val Leu Lys Phe Ser Thr 155 160 165

Gly	Lys	Gly	Val	Arg 170	Arg	Pro	Ala	Val	Trp 175	Leu	Asn	Ala	Gly	Ile 180
His	Ser	Arg	Glu	Trp 185	Ile	Ser	Gln	Ala	Thr 190	Ala	Ile	Trp	Thr	Ala 195
Arg	Lys	Ile	Val	Ser 200	Asp	Tyr	Gln	Arg	Asp 205	Pro	Ala	Ile	Thr	Ser 210
Ile	Leu	Glu	Lys	Met 215	Asp	Ile	Phe	Leu	Leu 220	Pro	Val	Ala	Asn	Pro 225
Asp	Gly	Tyr	Val	Tyr 230	Thr	Gln	Thr	Gln	Asn 235	Arg	Leu	Trp	Arg	Lys 240
Thr	Arg	Ser	Arg	Asn 245	Pro	Gly	Ser	Ser	Cys 250	Ile	Gly	Ala	Asp	Pro 255
Asn	Arg	Asn	Trp	Asn 260	Ala	Ser	Phe	Ala	Gly 265	Lys	Gly	Ala	Ser	Asp 270
Asn	Pro	Cys	Ser	Glu 275	Val	Tyr	His	Gly	Pro 280	His	Ala	Asn	Ser	Glu 285
Val	Glu	Val	Lys	Ser 290	Val	Val	Asp	Phe	Ile 295	Gln	Lys	His	Gly	Asn 300
Phe	Lys	Gly	Phe	Ile 305	Asp	Leu	His	Ser	Tyr 310	Ser	Gln	Léu	Leu	Met 315
Tyr	Pro	Tyr	Gly	Tyr 320	Ser	Val	Lys	Lys	Ala 325	Pro	Asp	Ala	Glu	Glu 330
Leu	Asp	Lys	Val	Ala 335	Arg	Leu	Ala	Ala	Lys 340	Ala	Leu	Ala	Ser	Val 345
Ser	Gly	Thr	Glu	Tyr 350	Gln	Val	Gly	Pro	Thr 355	Cys	Thr	Thr	Val	Tyr 360
Pro	Ala	Ser	Gly	Ser 365	Ser	Ile	Asp	Trp	Ala 370		Asp	Asn	Gly	Ile 375
Lys	Phe	Ala	Phe	Thr 380	Phe	Glu	Leu	Arg	Asp 385	Thr	Gly	Thr	Tyr	Gly 390
Phe	Leu	Leu	Pro	Ala 395	Asn	Gln	Ile	Ile	Pro 400	Thr	Ala	Glu	Glu	Thr 405
Trp	Leu	Gly	Leu	Lys 410	Thr	Ile	Met	Glu	His 415	Val	Arg	Asp	Asn	Leu 420

Tyr

<210> 235 <211> 1743 <212> DNA <213> Homo sapiens

<400> 235 caaccatgca aggacagggc aggagaagag gaacctgcaa agacatattt 50 tgttccaaaa tggcatctta cctttatgga gtactctttg ctgttggcct 100 ctgtgctcca atctactgtg tgtccccggc caatgccccc agtgcatacc 150 cccgcccttc ctccacaaag agcacccctg cctcacaggt gtattccctc 200 aacaccgact ttgccttccg cctataccgc aggctggttt tggagacccc 250 gagtcagaac atcttcttct cccctgtgag tgtctccact tccctggcca 300 tgctctccct tggggcccac tcagtcacca agacccagat tctccagggc 350 ctgggcttca acctcacaca cacaccagag tctgccatcc accagggctt 400 ccagcacctg gttcactcac tgactgttcc cagcaaagac ctgaccttga 450 agatgggaag tgccctcttc gtcaagaagg agctgcagct gcaggcaaat 500 ttcttgggca atgtcaagag gctgtatgaa gcagaagtct tttctacaga 550 tttctccaac ccctccattg cccaggcgag gatcaacagc catgtgaaaa 600 agaagaccca agggaaggtt gtagacataa tccaaggcct tgaccttctg 650 acggccatgg ttctggtgaa tcacattttc tttaaagcca agtgggagaa 700 gccctttcac cttgaatata caagaaagaa cttcccattc ctggtgggcg 750 agcaggtcac tgtgcaagtc cccatgatgc accagaaaga gcagttcgct 800 tttggggtgg atacagagct gaactgcttt gtgctgcaga tggattacaa 850 gggagatgcc gtggccttct ttgtcctccc tagcaagggc aagatgaggc 900 aactggaaca ggccttgtca gccagaacac tgataaagtg gagccactca 950 ctccagaaaa ggtggataga ggtgttcatc cccagatttt ccatttctgc 1000 ctcctacaat ctggaaacca tcctcccgaa gatgggcatc caaaatgcct 1050 ttgacaaaaa tgctgatttt tctggaattg caaagagaga ctccctgcag 1100 gtttctaaag caacccacaa ggctgtgctg gatgtcagtg aagagggcac 1150 tgaggccaca gcagctacca ccaccaagtt catagtccga tcgaaggatg 1200 gtccctctta cttcactgtc tccttcaata ggaccttcct gatgatgatt 1250 acaaataaag ccacagacgg tattctcttt ctagggaaag tggaaaatcc 1300 cactaaatcc taggtgggaa atggcctgtt aactgatggc acattgctaa 1350 tgaccccagt ggagctggat tcgctggcag ggatgccact tccaaggctc 1450 aatcaccaaa ccatcaacag ggaccccagt cacaagccaa cacccattaa 1500 ccccagtcag tgcccttttc cacaaattct cccaggtaac tagcttcatg 1550 ggatgttgct gggttaccat atttccattc cttggggctc ccaggaatgg 1600 aaatacgcca acccaggtta ggcacctcta ttgcagaatt acaataacac 1650 aaaaaaaaa aaaaaaaaa aaaaaaaaaa aaa 1743

<210> 236

<211> 417

<212> PRT

<213> Homo sapiens

<400> 236

Met Ala Ser Tyr Leu Tyr Gly Val Leu Phe Ala Val Gly Leu Cys

Ala Pro Ile Tyr Cys Val Ser Pro Ala Asn Ala Pro Ser Ala Tyr

Pro Arg Pro Ser Ser Thr Lys Ser Thr Pro Ala Ser Gln Val Tyr

Ser Leu Asn Thr Asp Phe Ala Phe Arg Leu Tyr Arg Arg Leu Val

Leu Glu Thr Pro Ser Gln Asn Ile Phe Phe Ser Pro Val Ser Val

Ser Thr Ser Leu Ala Met Leu Ser Leu Gly Ala His Ser Val Thr

Lys Thr Gln Ile Leu Gln Gly Leu Gly Phe Asn Leu Thr His Thr 100

Pro Glu Ser Ala Ile His Gln Gly Phe Gln His Leu Val His Ser 115 110

Leu Thr Val Pro Ser Lys Asp Leu Thr Leu Lys Met Gly Ser Ala 130 125

Leu Phe Val Lys Lys Glu Leu Gln Leu Gln Ala Asn Phe Leu Gly

Asn Val Lys Arg Leu Tyr Glu Ala Glu Val Phe Ser Thr Asp Phe 155

Ser Asn Pro Ser Ile Ala Gln Ala Arg Ile Asn Ser His Val Lys 175 170

Lys Lys Thr Gln Gly Lys Val Val Asp Ile Ile Gln Gly Leu Asp 185

Leu Leu Thr Ala Met Val Leu Val Asn His Ile Phe Phe Lys Ala

<222> 1-23

<223> Synthetic construct.

<400> 237

caaccatgca aggacagggc agg 23

<210> 238

```
<211> 47
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-47
<223> Synthetic construct.
<400> 238
ctttgctgtt ggcctctgtg ctcccaacca tgcaaggaca gggcagg 47
<210> 239
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 239
tgactcgggg tctccaaaac cagc 24
<210> 240
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 240
ggtataggcg gaaggcaaag tcgg 24
<210> 241
<211> 48
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-48
<223> Synthetic construct.
<400> 241
ggcatcttac ctttatggag tactctttgc tgttggcctc tgtgctcc 48
<210> 242
<211> 2436
<212> DNA
<213> Homo sapiens
<400> 242
```

ggctgaccgt gctacattgc ctggaggaag cctaaggaac ccaggcatcc 50

agctgcccac gcctgagtcc aagattcttc ccaggaacac aaacgtagga 100 gacccacget cetggaagea ceageettta tetetteace tteaagteee 150 ctttctcaag aatcctctgt tctttgccct ctaaagtctt ggtacatcta 200 ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgcag 250 aaaggaaatg ttctccttat gtttggtcta ctattgcatt tagaagctgc 300 aacaaattcc aatgagacta gcacctctgc caacactgga tccagtgtga 350 tctccagtgg agccagcaca gccaccaact ctgggtccag tgtgacctcc 400 agtggggtca gcacagccac catctcaggg tccagcgtga cctccaatgg 450 ggtcagcata gtcaccaact ctgagttcca tacaacctcc agtgggatca 500 gcacagccac caactctgag ttcagcacag cgtccagtgg gatcagcata 550 gccaccaact ctgagtccag cacaacctcc agtggggcca gcacagccac 600 caactctgag tccagcacac cctccagtgg ggccagcaca gtcaccaact 650 ctgggtccag tgtgacctcc agtggagcca gcactgccac caactctgag 700 tccagcacag tgtccagtag ggccagcact gccaccaact ctgagtctag 750 cacactetee agtggggeea geacageeac caactetgae teeageacaa 800 cctccagtgg ggctagcaca gccaccaact ctgagtccag cacaacctcc 850 agtggggcca gcacagccac caactctgag tccagcacag tgtccagtag 900 ggccagcact gccaccaact ctgagtccag cacaacctcc agtggggcca 950 gcacagccac caactctgag tccagaacga cctccaatgg ggctggcaca 1000 gccaccaact ctgagtccag cacgacctcc agtggggcca gcacagccac 1050 caactetgae tecageacag tgtecagtgg ggecageact gecaecaact 1100 ctgagtccag cacgacetee agtggggeea geacageeae caactetgag 1150 tccagcacga cctccagtgg ggctagcaca gccaccaact ctgactccag 1200 cacaacctcc agtggggccg gcacagccac caactctgag tccagcacag 1250 tgtccagtgg gatcagcaca gtcaccaatt ctgagtccag cacaccctcc 1300 agtggggcca acacagccac caactctgag tccagtacga cctccagtgg 1350 ggccaacaca gccaccaact ctgagtccag cacagtgtcc agtggggcca 1400 gcactgccac caactctgag tccagcacaa cctccagtgg ggtcagcaca 1450 gccaccaact ctgagtccag cacaacctcc agtggggcta gcacagccac 1500

caactctgac tccagcacaa cctccagtga ggccagcaca gccaccaact 1550 ctgagtctag cacagtgtcc agtgggatca gcacagtcac caattctgag 1600 tccagcacaa cctccagtgg ggccaacaca gccaccaact ctgggtccag 1650 tgtgacctct gcaggctctg gaacagcagc tctgactgga atgcacacaa 1700 cttcccatag tgcatctact gcagtgagtg aggcaaagcc tggtgggtcc 1750 ctggtgccgt gggaaatctt cctcatcacc ctggtctcgg ttgtggcggc 1800 cgtggggctc tttgctgggc tcttcttctg tgtgagaaac agcctgtccc 1850 tgagaaacac ctttaacaca gctgtctacc accctcatgg cctcaaccat 1900 ggccttggtc caggccctgg agggaatcat ggagcccccc acaggcccag 1950 gtggagtcct aactggttct ggaggagacc agtatcatcg atagccatgg 2000 agatgagcgg gaggaacagc gggccctgag cagccccgga agcaagtgcc 2050 gcattettea ggaaggaaga gacetgggea eccaagacet ggttteettt 2100 cattcatccc aggagacccc tcccagcttt gtttgagatc ctgaaaatct 2150 tgaagaaggt attoctoaco tttottgoot ttaccagaca ctggaaagag 2200 aatactatat tgctcattta gctaagaaat aaatacatct catctaacac 2250 acacgacaaa gagaagctgt gcttgccccg gggtgggtat ctagctctga 2300 gatgaactca gttataggag aaaacctcca tgctggactc catctggcat 2350 tcaaaatctc cacagtaaaa tccaaagacc tcaaaaaaaa aaaaaaaaa 2400 aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaaaa 2436

<210> 243

<211> 596

<212> PRT

<213> Homo sapiens

<400> 243

Met Lys Met Gln Lys Gly Asn Val Leu Leu Met Phe Gly Leu Leu

1 5 10 15

Leu His Leu Glu Ala Ala Thr Asn Ser Asn Glu Thr Ser Thr Ser 20 25 30

Ala Asn Thr Gly Ser Ser Val Ile Ser Ser Gly Ala Ser Thr Ala 35 40 45

Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Val Ser Thr Ala 50 55 60

Thr Ile Ser Gly Ser Ser Val Thr Ser Asn Gly Val Ser Ile Val 65 70 75

Thr	Asn	Ser	Glu	Phe 80	His	Thr	Thr	Ser	Ser 85	Gly	Ile	Ser	Thr	Ala 90
Thr	Asn	Ser	Glu	Phe 95	Ser	Thr	Ala	Ser	Ser 100	Gly	Ile	Ser	Ile	Ala 105
Thr	Asn	Ser	Glu	Ser 110	Ser	Thr	Thr	Ser	Ser 115	Gly	Ala	Ser	Thr	Ala 120
Thr	Asn	Ser	Glu	Ser 125	Ser	Thr	Pro	Ser	Ser 130	Gly	Ala	Ser	Thr	Val 135
Thr	Asn	Ser	Gly	Ser 140	Ser	Val	Thr	Ser	Ser 145	Gly	Ala	Ser	Thr	Ala 150
Thr	Asn	Ser	Glu	Ser 155	Ser	Thr	Val	Ser	Ser 160	Arg	Ala	Ser	Thr	Ala 165
Thr	Asn	Ser	Glu	Ser 170	Ser	Thr	Leu	Ser	Ser 175	Gly	Ala	Ser	Thr	Ala 180
Thr	Asn	Ser	Asp	Ser 185	Ser	Thr	Thr	Ser	Ser 190	Gly	Ala	Ser	Thr	Ala 195
Thr	Asn	Ser	Glu	Ser 200	Ser	Thr	Thr	Ser	Ser 205	Gly	Ala	Ser	Thr	Ala 210
Thr	Asn	Ser	Glu	Ser 215	Ser	Thr	Val	Ser	Ser 220	Arg	Ala	Ser	Thr	Ala 225
Thr	Asn	Ser	Glu	Ser 230	Ser	Thr	Thr	Ser	Ser 235	Gly	Ala	Ser	Thr	Ala 240
Thr	Asn	Ser	Glu	Ser 245	Arg	Thr	Thr	Ser	Asn 250	Gly	Ala	Gly	Thr	Ala 255
Thr	Asn	Ser	Glu	Ser 260	Ser	Thr	Thr	Ser	Ser 265	Gly	Ala	Ser	Thr	Ala 270
Thr	Asn	Ser	Asp	Ser 275	Ser	Thr	Val	Ser	Ser 280	Gly	Ala	Ser	Thr	Ala 285
Thr	Asn	Ser	Glu	Ser 290	Ser	Thr	Thr	Ser	Ser 295	Gly	Ala	Ser	Thr	Ala 300
Thr	Asn	Ser	Glu	Ser 305	Ser	Thr	Thr	Ser	Ser 310	Gly	Ala	Ser	Thr	Ala 315
Thr	Asn	Ser	Asp	Ser 320	Ser	Thr	Thr	Ser	Ser 325	Gly	Ala	Gly	Thr	Ala 330
Thr	Asn	Ser	Glu	Ser 335	Ser	Thr	Val	Ser	Ser 340	Gly	Ile	Ser	Thr	Val 345
Thr	Asn	Ser	Glu	Ser 350	Ser	Thr	Pro	Ser	Ser 355	Gly	Ala	Asn	Thr	Ala 360
Thr	Asn	Ser	Glu	Ser	Ser	Thr	Thr	Ser	Ser	Gly	Ala	Asn	Thr	Ala

				365					370					375
Thr	Asn	Ser	Glu	Ser 380	Ser	Thr	Val	Ser	Ser 385	Gly	Ala	Ser	Thr	Ala 390
Thr	Asn	Ser	Glu	Ser 395	Ser	Thr	Thr	Ser	Ser 400	Gly	Val	Ser	Thr	Ala 405
Thr	Asn	Ser	Glu	Ser 410	Ser	Thr	Thr	Ser	Ser 415	Gly	Ala	Ser	Thr	Ala 420
Thr	Asn	Ser	Asp	Ser 425	Ser	Thr	Thr	Ser	Ser 430	Glu	Ala	Ser	Thr	Ala 435
Thr	Asn	Ser	Glu	Ser 440	Ser	Thr	Val	Ser	Ser 445	Gly	Ile	Ser	Thr	Val 450
Thr	Asn	Ser	Glu	Ser 455	Ser	Thr	Thr	Ser	Ser 460	Gly	Ala	Asn	Thr	Ala 465
Thr	Asn	Ser	Gly	Ser 470	Ser	Val	Thr	Ser	Ala 475	Gly	Ser	Gly	Thr	Ala 480
Ala	Leu	Thr	Gly	Met 485	His	Thr	Thr	Ser	His 490	Ser	Ala	Ser	Thr	Ala 495
Val	Ser	Glu	Ala	Lys 500	Pro	Gly	Gly	Ser	Leu 505	Val	Pro	Trp	Glu	Ile 510
Phe	Leu	Ile	Thr	Leu 515	Val	Ser	Val	Val	Ala 520	Ala	Val	Gly	Leu	Phe 525
Ala	Gly	Leu	Phe	Phe 530	Cys	Val	Arg	Asn	Ser 535	Leu	Ser	Leu	Arg	Asn 540
Thr	Phe	Asn	Thr	Ala 545	Val	Tyr	His	Pro	His 550	Gly	Leu	Asn	His	Gly 555
Leu	Gly	Pro	Gly	Pro 560	Gly	Gly	Asn	His	Gly 565	Ala	Pro	His	Arg	Pro 570
Arg	Trp	Ser	Pro	Asn 575	Trp	Phe	Trp	Arg	Arg 580	Pro	Val	Ser	Ser	Ile 585
Ala	Met	Glu	Met	Ser 590	Gly	Arg	Asn	Ser	Gly 595	Pro				
<2103 <2113 <2123 <2133	> 26 > DNA	A	cial											
<2203 <2213 <2223 <2233	> Art	26		_										

<400> 244

```
gaagcaccag cctttatctc ttcacc 26
<210> 245
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic sequence.
<400> 245
gtcagagttg gtggctgtgc tagc 24
<210> 246
<211> 48
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-48
<223> Synthetic construct.
<400> 246
ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgc 48
<210> 247
<211> 957
<212> DNA
<213> Homo sapiens
<400> 247
gggagagag ataaatagca gcgtggcttc cctggctcct ctctgcatcc 50
ttcccgacct tcccagcaat atgcatcttg cacgtctggt cggctcctgc 100
 teceteette tgetaetggg ggeeetgtet ggatgggegg ceagegatga 150
 ccccattgag aaggtcattg aagggatcaa ccgagggctg agcaatgcag 200
 agagagaggt gggcaaggcc ctggatggca tcaacagtgg aatcacgcat 250
gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag 300
 ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca 350
 tggacaaggt tgcccatgag atcaaccatg gtattggaca agcaggaaag 400
gaagcagaga agcttggcca tggggtcaac aacgctgctg gacaggccgg 450
```

gaaggaagca gacaaagcgg tccaagggtt ccacactggg gtccaccagg 500

ctgggaagga agcagagaaa cttggccaag gggtcaacca tgctgctgac 550

caggetggaa aggaagtgga gaagettgge caaggtgeee accatgetge 600

tggccaggcc gggaaggagc tgcagaatgc tcataatggg gtcaaccaag 650 ccagcaagga ggccaaccag ctgctgaatg gcaaccatca aagcggatct 700 tccagccatc aaggagggc cacaaccacg ccgttagcct ctggggcctc 750 agtcaacacg cctttcatca accttcccgc cctgtggagg agcgtcgcca 800 acatcatgcc ctaaactggc atccggcctt gctgggagaa taatgtcgcc 850 gttgtcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900 tttctgaaat ccctgaaggg ggttgtactg ggatttgtga ataaacttga 950 tacacca 957

<210> 248 <211> 247 <212> PRT <213> Homo sapiens

<400> 248

Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu Leu Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu Lys Val Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg Glu Val Gly Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His Ala Gly Arg Glu Val Glu Lys Val Phe Asn Gly Leu Ser Asn Met Gly Ser His Thr Gly Lys Glu Leu Asp Lys Gly Val Gln Gly Leu Asn His Gly Met Asp Lys Val Ala His Glu Ile Asn His Gly Ile Gly Gln Ala Gly Lys Glu Ala Glu Lys Leu Gly His Gly Val Asn Asn Ala Ala Gly Gln Ala Gly Lys Glu Ala Asp Lys Ala Val Gln Gly Phe His Thr Gly Val His Gln Ala Gly Lys Glu Ala Glu Lys Leu Gly Gln Gly Val Asn His Ala Ala Asp Gln Ala Gly Lys Glu Val Glu Lys Leu Gly Gln Gly Ala His His Ala Ala Gly Gln Ala 175

```
Gly Lys Glu Leu Gln Asn Ala His Asn Gly Val Asn Gln Ala Ser
                 185
                                     190
Lys Glu Ala Asn Gln Leu Leu Asn Gly Asn His Gln Ser Gly Ser
                 200
Ser Ser His Gln Gly Gly Ala Thr Thr Pro Leu Ala Ser Gly
Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg
                                     235
Ser Val Ala Asn Ile Met Pro
                 245
<210> 249
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 249
caatatgcat cttgcacgtc tgg 23
<210> 250
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 250
aagcttctct gcttcctttc ctgc 24
<210> 251
<211> 43
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-43
<223> Synthetic construct.
<400> 251
tgaccccatt gagaaggtca ttgaagggat caaccgaggg ctg 43
```

<210> 252 <211> 3781 <212> DNA

<213> Homo sapiens

<400> 252 ctccgggtcc ccaggggctg cgccgggccg gcctggcaag ggggacgagt 50 cagtggacac tccaggaaga gcggccccgc ggggggcgat gaccgtgcgc 100 tgaccctgac tcactccagg tccggaggcg ggggcccccg gggcgactcg 150 ggggcggacc gcggggcgga gctgccgccc gtgagtccgg ccgagccacc 200 tgagcccgag ccgcgggaca ccgtcgctcc tgctctccga atgctgcgca 250 ccgcgatggg cctgaggagc tggctcgccg ccccatgggg cgcgctgccg 300 cctcggccac cgctgctgct gctcctgctg ctgctgctcc tgctgcagcc 350 geogeeteeg acetgggege teageeeeg gateageetg cetetggget 400 ctgaagagcg gccattcctc agattcgaag ctgaacacat ctccaactac 450 acagecette tgetgageag ggatggeagg accetgtaeg tgggtgeteg 500 agaggccctc tttgcactca gtagcaacct cagcttcctg ccaggcgggg 550 agtaccagga gctgctttgg ggtgcagacg cagagaagaa acagcagtgc 600 agcttcaagg gcaaggaccc acagcgcgac tgtcaaaact acatcaagat 650 cctcctgccg ctcagcggca gtcacctgtt cacctgtggc acagcagcct 700 tcagccccat gtgtacctac atcaacatgg agaacttcac cctggcaagg 750 gacgagaagg ggaatgtcct cctggaagat ggcaagggcc gttgtccctt 800 cgacccgaat ttcaagtcca ctgccctggt ggttgatggc gagctctaca 850 ctggaacagt cagcagcttc caagggaatg acccggccat ctcgcggagc 900 caaageette geeceaceaa gaeegagage teeeteaaet ggetgeaaga 950 cccagctttt gtggcctcag cctacattcc tgagagcctg ggcagcttgc 1000 aaggcgatga tgacaagatc tactttttct tcagcgagac tggccaggaa 1050 tttgagttct ttgagaacac cattgtgtcc cgcattgccc gcatctgcaa 1100 gggcgatgag ggtggagagc gggtgctaca gcagcgctgg acctccttcc 1150 tcaaggccca gctgctgtgc tcacggcccg acgatggctt ccccttcaac 1200 gtgctgcagg atgtcttcac gctgagcccc agcccccagg actggcgtga 1250 caccetttte tatggggtet teactteeca gtggcacagg ggaactacag 1300 aaggetetge egtetgtgte tteacaatga aggatgtgea gagagtette 1350 agcggcctct acaaggaggt gaaccgtgag acacagcagt ggtacaccgt 1400 gacccacccg gtgcccacac cccggcctgg agcgtgcatc accaacagtg 1450 cccgggaaag gaagatcaac tcatccctgc agctcccaga ccgcgtgctg 1500 aactteetea aggaeeaett eetgatggae gggeaggtee gaageegeat 1550 gctgctgctg cagccccagg ctcgctacca gcgcgtggct gtacaccgcg 1600 teeetggeet geaceace tacgatgtee tetteetggg caetggtgae 1650 ggccggctcc acaaggcagt gagcgtgggc ccccgggtgc acatcattga 1700 ggagctgcag atcttctcat cgggacagcc cgtgcagaat ctgctcctgg 1750 acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtccag 1800 gtgcccatgg ccaactgcag cctgtaccgg agctgtgggg actgcctcct 1850 cgcccgggac ccctactgtg cttggagcgg ctccagctgc aagcacgtca 1900 gcctctacca gcctcagctg gccaccaggc cgtggatcca ggacatcgag 1950 ggagccagcg ccaaggacct ttgcagcgcg tcttcggttg tgtccccgtc 2000 ttttgtacca acaggggaga agccatgtga gcaagtccag ttccagccca 2050 acacagtgaa cactttggcc tgcccgctcc tctccaacct ggcgacccga 2100 ctctggctac gcaacggggc ccccgtcaat gcctcggcct cctgccacgt 2150 gctacccact ggggacctgc tgctggtggg cacccaacag ctgggggagt 2200 tccagtgctg gtcactagag gagggcttcc agcagctggt agccagctac 2250 tgcccagagg tggtggagga cggggtggca gaccaaacag atgagggtgg 2300 cagtgtaccc gtcattatca gcacatcgcg tgtgagtgca ccagctggtg 2350 gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2400 atgtgcacgc tetttgtget ggccgtgetg eteccagttt tattettget 2450 ctaccggcac cggaacagca tgaaagtctt cctgaagcag ggggaatgtg 2500 ccagegtgea ecceaagace tgeeetgtgg tgetgeeece tgagaeeege 2550 ccactcaacg gcctagggcc ccctagcacc ccgctcgatc accgagggta 2600 ccagtccctg tcagacagcc ccccgggggc ccgagtcttc actgagtcag 2650 agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2700 tgcccccggc cccgggtccg ccttggctcg gagatccgtg actctgtggt 2750 gtgagagctg acttccagag gacgctgccc tggcttcagg ggctgtgaat 2800 gctcggagag ggtcaactgg acctcccctc cgctctgctc ttcgtggaac 2850 acgaccgtgg tgcccggccc ttgggagcct tggagccagc tggcctgctg 2900 ctctccagtc aagtagcgaa gctcctacca cccagacacc caaacagccg 2950 tggccccaga ggtcctggcc aaatatgggg gcctgcctag gttggtggaa 3000 cagtgctcct tatgtaaact gagccctttg tttaaaaaac aattccaaat 3050 gtgaaactag aatgagaggg aagagatagc atggcatgca gcacacacgg 3100 ctgctccagt tcatggcctc ccaggggtgc tggggatgca tccaaagtgg 3150 ttgtctgaga cagagttgga aaccetcace aactggcete ttcacettce 3200 acattatece getgecaceg getgecetgt eteaetgeag atteaggace 3250 agcttgggct gcgtgcgttc tgccttgcca gtcagccgag gatgtagttg 3300 ttgctgccgt cgtcccacca cctcagggac cagagggcta ggttggcact 3350 geggeeetea ecaggteetg ggeteggace caacteetgg acetttecag 3400 cctgtatcag gctgtggcca cacgagagga cagcgcgagc tcaggagaga 3450 tttcgtgaca atgtacgcct ttccctcaga attcagggaa gagactgtcg 3500 cetgeettee teegttgttg egtgagaace egtgtgeece tteecaccat 3550 atccaccete getecatett tgaactcaaa cacgaggaac taactgcace 3600 etggtcctct ccccagtccc cagttcaccc tccatccctc accttcctcc 3650 actctaaggg atatcaacac tgcccagcac aggggccctg aatttatgtg 3700 gtttttatac atttttaat aagatgcact ttatgtcatt ttttaataaa 3750 gtctgaagaa ttactgttta aaaaaaaaaa a 3781

<400> 253

Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro

Trp Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu

Leu Leu Leu Leu Gln Pro Pro Pro Pro Thr Trp Ala Leu Ser

Pro Arg Ile Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu

Arg Phe Glu Ala Glu His Ile Ser Asn Tyr Thr Ala Leu Leu

Ser Arg Asp Gly Arg Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu

<210> 253

<211> 837

<212> PRT

<213> Homo sapiens

				80					85					90
Phe	Ala	Leu	Ser	Ser 95	Asn	Leu	Ser	Phe	Leu 100	Pro	Gly	Gly	Glu	Tyr 105
Gln	Glu	Leu	Leu	Trp 110	Gly	Ala	Asp	Ala	Glu 115	Lys	Lys	Gln	Gln	Cys 120
Ser	Phe	Lys	Gly	Lys 125	Asp	Pro	Gln	Arg	Asp 130	Cys	Gln	Asn	Tyr	Ile 135
Lys	Ile	Leu	Leu	Pro 140	Leu	Ser	Gly	Ser	His 145	Leu	Phe	Thr	Cys	Gly 150
Thr	Ala	Ala	Phe	Ser 155	Pro	Met	Суѕ	Thr	Tyr 160	Ile	Asn	Met	Glu	Asn 165
Phe	Thr	Leu	Ala	Arg 170	Asp	Glu	Lys	Gly	Asn 175	Val	Leu	Leu	Glu	Asp 180
Gly	Lys	Gly	Arg	Cys 185	Pro	Phe	Asp	Pro	Asn 190	Phe	Lys	Ser	Thr	Ala 195
Leu	Val	Val	Asp	Gly 200	Glu	Leu	Tyr	Thr	Gly 205	Thr	Val	Ser	Ser	Phe 210
Gln	Gly	Asn	Asp	Pro 215	Ala	Ile	Ser	Arg	Ser 220	Gln	Ser	Leu	Arg	Pro 225
Thr	Lys	Thr	Glu	Ser 230	Ser	Leu	Asn	Trp	Leu 235	Gln	Asp	Pro	Ala	Phe 240
Val	Ala	Ser	Ala	Tyr 245		Pro	Glu	Ser	Leu 250	Gly	Ser	Leu	Gln	Gly 255
Asp	Asp	Asp	Lys	Ile 260	Tyr	Phe	Phe	Phe	Ser 265	Glu	Thr	Gly	Gln	Glu 270
Phe	Glu	Phe	Phe	Glu 275		Thr	lle	· Val	Ser 280	Arg	Ile	Ala	Arg	Ile 285
Cys	Lys	Gly	Asp	Glu 290	Gly	gly	, Glu	Arç	Val 295	Ľeu	Gln	Gln	Arg	Trp 300
Thr	Ser	Phe	e Leu	Lys 305		Glr	leu	ı Lev	Cys 310	Ser	Arg	Pro	Asp	315
Gly	Phe	Pro) Phe	Asr 320		Leu	ı Glr	n Asp	Val 325	Phe	Thr	Let	ı Ser	Pro 330
Ser	Pro	Glr	n Asp	335		g Asp	o Thr	Leu	2 Phe 340	Tyr	: Gly	/ Val	L Phe	Thr 345
Ser	Glr	Trp	His	350		y Thi	c Thi	c Glu	3 Gly 355	Ser	: Ala	a Val	L Cys	360
Ph∈	e Thr	Met	t Lys	36!		l Glı	n Arq	g Vai	1 Phe 370	e Ser	Gly	/ Let	д Туг	Lys 375

Gl.u	Val	Asn	Arg	Glu 380	Thr	Gln	Gln	Trp	Tyr 385	Thr	Val	Thr	His	Pro 390
Val	Pro	Thr	Pro	Arg 395	Pro	Gly	Ala	Cys	Ile 400	Thr	Asn	Ser	Ala	Arg 405
Glu	Arg	Lys	Ile	Asn 410	Ser	Ser	Leu	Gln	Leu 415	Pro	Asp	Arg	Val	Leu 420
Asn	Phe	Leu	Lys	Asp 425	His	Phe	Leu	Met	Asp 430	Gly	Gln	Val	Arg	Ser 435
Arg	Met	Leu	Leu	Leu 440	Gln	Pro	Gln	Ala	Arg 445	Туr	Gln	Arg	Val	Ala 450
Val	His	Arg	Val	Pro 455	Gly	Leu	His	His	Thr 460	Tyr	Asp	Val	Leu	Phe 465
Leu	Gly	Thr	Gly	Asp 470	Gly	Arg	Leu	His	Lys 475	Ala	Val	Ser	Val	Gly 480
Pro	Arg	Val	His	Ile 485	Ile	Glu	Glu	Leu	Glr 490	ı Ile	Phe	Ser	Ser	Gly 495
Gln	Pro	Val	. Gln	Asn 500	Leu	Leu	Leu	Asp	505	c His	arç	Gly	Leu	Leu 510
Tyr	Ala	a Alá	a Ser	His 515	Ser	Gly	Val	. Val	Gl: 52	n Val	Pro	Met	Ala	Asn 525
Cys	Sei	: Le	ı Tyr	Arg	Ser	Cys	Gly	, Asp	53	s Lei 5	ı Leı	ı Ala	Arç	Asp 540
Pro	туз	с Су:	s Ala	Trp 545	Ser	Gly	sei	c Sei	r Cy 55	s Ly: O	s His	s Val	l Sei	Leu 555
Туг	Glı	n Pr	o Glr	Leu 560	ı Ala	a Thr	Ar	g Pr	o Tr 56	p Il 5	e Gli	n Asp	, Ile	9 Glu 570
Gly	y Ala	a Se	r Ala	a Lys 575	s Asp	p Let	1 Су	s Se	r Al 58	a Se	r Se	r Vai	l Vai	1 Ser 585
Pro	o Se	r Ph	e Va	1 Pro	o Thi	r Gly	y Gl	u Ly	s Pr 59	o Cy 5	s Gl	u Gl	n Va	1 Gln 600
Ph	e Gl	n Pr	o As	n Th	r Va 5	l Ası	n Th	r Le	u Al 61	a Cy 10	s Pr	o Le	u Le	u Ser 615
As	n Le	u Al	a Th	r Ar 62	g Le 0	u Tr	p Le	u Ar	g As 62	sn Gl 25	y Al	a Pr	o Va	1 Asn 630
Al	a Se	r Al	.a Se	r Cy 63	s Hi 5	s Va	l Le	eu Pr	:o Ti	nr Gl 40	y As	p Le	u Le	u Leu 645
Va	l Gl	y Th	nr Gl	n Gl 65	n Le	u Gl	y Gl	.u Ph	ne G	ln Cy 55	/s Tr	p Se	er Le	u Glu 660
Gl	u Gl	Ly Pł	ne Gl	n Gl	n L∈	u Va	1 A]	La Se	er T	yr Cy	ys Pi	co Gl	u Va	ıl Val

	665					670					675
Glu Asp Gly V	665 Val Ala	Asp (Gln	Thr	Asp	Glu	Gly	Gly	Ser	Val	
Val Ile Ile S	680 Ser Thr	Ser.	Arg	Val	Ser	685 Ala	Pro	Ala	Gly	Gly	Lys
	695					700					103
Ala Ser Trp (Gly Ala 710	Asp	Arg	Ser	Tyr	Trp 715	Lys	Glu	Phe	Leu	Val 720
Met Cys Thr 1	Leu Phe 725	Val	Leu	Ala	Val	Leu 730	Leu	Pro	Val	Leu	Phe 735
Leu Leu Tyr A	Arg His 740	Arg	Asn	Ser	Met	Lys 745	Val	Phe	Leu	Lys	Gln 750
Gly Glu Cys	Ala Ser 755	Val	His	Pro	Lys	Thr 760	Cys	Pro	Val	Val	Leu 765
Pro Pro Glu	Thr Arg 770	Pro	Leu	Asn	Gly	Leu 775	Gly	Pro	Pro	Ser	Thr 780
Pro Leu Asp	His Arg 785	Gly	Tyr	Gln	Ser	Leu 790	Ser	Asp	Ser	Pro	Pro 795
Gly Ala Arg	Val Phe 800	Thr	Glu	Ser	Glu	Lys 805	Arg	Pro	Leu	Ser	Ile 810
Gln Asp Ser	Phe Val 815	Glu	Val	Ser	Pro	Val 820	Cys	Pro	Arg	Pro	Arg 825
Val Arg Leu	Gly Ser 830	Glu	Ile	Arg	Asp	Ser 835	Val	. Val			
<210> 254 <211> 24 <212> DNA <213> Artific	cial										
<220> <221> Artific <222> 1-24 <223> Synthet							*1				
<400> 254 agcccgtgca (gaatctgo	etc c	tgg:	24							
<210> 255 <211> 24 <212> DNA <213> Artific	cial										
<220> <221> Artification (222) 1-24 <223> Synthe											

```
<400> 255
tgaagccagg gcagcgtcct ctgg 24
<210> 256
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 256
 gtacaggctg cagttggc 18
<210> 257
<211> 41
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-41
<223> Synthetic construct.
<400> 257
 agaagccatg tgagcaagtc cagttccagc ccaacacagt g 41
<210> 258
<211> 45
<212> DNA
 <213> Artificial
<220>
 <221> Artificial Sequence
 <222> 1-45
 <223> Synthetic construct.
 <400> 258
 gagetgeaga tetteteate gggacagece gtgeagaate tgete 45
 <210> 259
 <211> 4563
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> 3635
 <223> unknown base
 <400> 259
  ctaagccgga ggatgtgcag ctgcggcggc ggcgccggct acgaagagga 50
  cggggacagg cgccgtgcga accgagccca gccagccgga ggacgcgggc 100
  agggcgggac gggagcccgg actcgtctgc cgccgccgtc gtcgccgtcg 150
```

tgccggcccc gcgtccccgc gcgcgagcgg gaggagccgc cgccacctcg 200 cgcccgagcc gccgctagcg cgcgccgggc atggtcccct cttaaaggcg 250 caggeegegg eggegggge gggtgtgegg aacaaagege eggegegggg 300 cctgcgggcg gctcgggggc cgcgatgggc gcggcgggcc cgcggcggcg 350 geggegetge eegggeeggg eetegeggeg etaggeeggg etggeeteeg 400 tgggeggggg cagegggetg agggegegeg gageetgegg eggeggegge 450 ggcggcggcg gcggcccggc gggcggagcg gcgcgggcat ggccgcgcgc 500 ggccggcgcg cctggctcag cgtgctgctc gggctcgtcc tgggcttcgt 550 gctggcctcg cggctcgtcc tgccccgggc ttccgagctg aagcgagcgg 600 gcccacggcg ccgcgccagc cccgagggct gccggtccgg gcaggcggcg 650 gcttcccagg ccggcgggc gcgcggcgat gcgcggggg cgcagctctg 700 geegeeegge teggaeeeag atggeggeee gegegaeagg aactttetet 750 tegtgggagt catgaeegee cagaaataee tgeagaeteg ggeegtggee 800 gcctacagaa catggtccaa gacaattcct gggaaagttc agttcttctc 850 aagtgagggt tetgacacat etgtaceaat teeagtagtg ecaetaeggg 900 gtgtggacga ctcctacccg ccccagaaga agtccttcat gatgctcaag 950 tacatgcacg accactactt ggacaagtat gaatggttta tgagagcaga 1000 tgatgacgtg tacatcaaag gagaccgtct ggagaacttc ctgaggagtt 1050 tgaacagcag cgagcccctc tttcttgggc agacaggcct gggcaccacg 1100 gaagaaatgg gaaaactggc cctggagcct ggtgagaact tctgcatggg 1150 ggggcctggc gtgatcatga gccgggaggt gcttcggaga atggtgccgc 1200 acattggcaa gtgtctccgg gagatgtaca ccacccatga ggacgtggag 1250 gtgggaaggt gtgtccggag gtttgcaggg gtgcagtgtg tctggtctta 1300 tgagatgcgg cagctttttt atgagaatta cgagcagaac aaaaaggggt 1350 acattagaga tetecataae agtaaaatte accaagetat cacattacae 1400 cccaacaaaa acccacccta ccagtacagg ctccacagct acatgctgag 1450 ccgcaagata tccgagctcc gccatcgcac aatacagctg caccgcgaaa 1500 ttgtcctgat gagcaaatac agcaacacag aaattcataa agaggacctc 1550 cagctgggaa teceteeete etteatgagg ttteageece geeagegaga 1600 ggagattetg gaatgggagt ttetgaetgg aaaataettg tatteggeag 1650 ttgacggcca gccccctcga agaggaatgg actccgccca gagggaagcc 1700 ttggacgaca ttgtcatgca ggtcatggag atgatcaatg ccaacgccaa 1750 gaccagaggg cgcatcattg acttcaaaga gatccagtac ggctaccgcc 1800 gggtgaaccc catgtatggg gctgagtaca tcctggacct gctgcttctg 1850 tacaaaaagc acaaagggaa gaaaatgacg gtccctgtga ggaggcacgc 1900 gtatttacag cagactttca gcaaaatcca gtttgtggag catgaggagc 1950 tggatgcaca agagttggcc aagagaatca atcaggaatc tggatccttg 2000 teetttetet caaacteeet gaagaagete gteeeettte ageteeetgg 2050 gtcgaagagt gagcacaaag aacccaaaga taaaaagata aacatactga 2100 ttcctttgtc tgggcgtttc gacatgtttg tgagatttat gggaaacttt 2150 gagaagacgt gtcttatccc caatcagaac gtcaagctcg tggttctgct 2200 tttcaattct gactccaacc ctgacaaggc caaacaagtt gaactgatga 2250 gagattaccg cattaagtac cctaaagccg acatgcagat tttgcctgtg 2300 tctggagagt tttcaagagc cctggccctg gaagtaggat cctcccagtt 2350 taacaatgaa tetttgetet tettetgega egtegaeete gtgtttaeta 2400 cagaatteet teagegatgt egageaaata eagttetggg eeaacaaata 2450 tattttccaa tcatcttcag ccagtatgac ccaaagattg tttatagtgg 2500 gaaagttccc agtgacaacc attttgcctt tactcagaaa actggcttct 2550 ggagaaacta tgggtttggc atcacgtgta tttataaggg agatcttgtc 2600 cgagtgggtg gctttgatgt ttccatccaa ggctgggggc tggaggatgt 2650 ggaccttttc aacaaggttg tccaggcagg tttgaagacg tttaggagcc 2700 aggaagtagg agtagtccac gtccaccatc ctgtcttttg tgatcccaat 2750 cttgacccca aacagtacaa aatgtgcttg gggtccaaag catcgaccta 2800 tgggtccacc cagcagctgg ctgagatgtg gctggaaaaa aatgatccaa 2850 gttacagtaa aagcagcaat aataatggct cagtgaggac agcctaatgt 2900 ccagctttgc tggaaaagac gtttttaatt atctaattta tttttcaaaa 2950 attttttgta tgatcagttt ttgaagtccg tatacaagga tatattttac 3000 aagtggtttt cttacatagg actcctttaa gattgagctt tctgaacaag 3050 aaggtgatca gtgtttgcct ttgaacacat cttcttgctg aacattatgt 3100 agcagacctg cttaactttg acttgaaatg tacctgatga acaaaacttt 3150 tttaaaaaaa tgttttcttt tgagaccett tgctccagtc ctatggcaga 3200 aaacgtgaac attcctgcaa agtattattg taacaaaaca ctgtaactct 3250 ggtaaatgtt ctgttgtgat tgttaacatt ccacagattc taccttttgt 3300 gttttgtttt tttttttac aattgtttta aagccatttc atgttccagt 3350 tgtaagataa ggaaatgtga taatagctgt ttcatcattg tcttcaggag 3400 agetttecag agttgateat tteeteteat ggtaetetge teageatgge 3450 cacgtaggtt ttttgtttgt tttgttttgt tctttttttg agacggagtc 3500 tcactctgtt acccaggctg gaatgcagtg gcgcaatctt ggctcacttt 3550 aacctccact teectggtte aageaattee eetgeetttg eeteeegagt 3600 agctgggatt acaggcacac accaccacgc ccagntagtt tttttgtatt 3650 tttagtagag acggggtttc accatgcaag cccagctggc cacgtaggtt 3700 ttaaagcaag gggcgtgaag aaggcacagt gaggtatgtg gctgttctcg 3750 tggtagttca ttcggcctaa atagacctgg cattaaattt caagaaggat 3800 ttggcatttt ctcttcttga cccttctctt taaagggtaa aatattaatg 3850 tttagaatga caaagatgaa ttattacaat aaatctgatg tacacagact 3900 gaaacataca cacatacacc ctaatcaaaa cgttggggaa aaatgtattt 3950 ggttttgttc ctttcatcct gtctgtgtta tgtgggtgga gatggttttc 4000 attotttoat tactgttttg ttttatoott tgtatotgaa atacotttaa 4050 tttatttaat atctgttgtt cagagetetg ecatttettg agtacetgtt 4100 agttagtatt atttatgtgt atcgggagtg tgtttagtct gttttatttg 4150 cagtaaaccg atctccaaag atttcctttt ggaaacgctt tttcccctcc 4200 ttaattttta tattoottao tgttttaota aatattaagt gttotttgao 4250 aattttggtg ctcatgtgtt ttggggacaa aagtgaaatg aatctgtcat 4300 tataccagaa agttaaattc tcagatcaaa tgtgccttaa taaatttgtt 4350 ttcatttaga tttcaaacag tgatagactt gccattttaa tacacgtcat 4400 tggagggctg cgtatttgta aatagcctga tgctcatttg gaaaaataaa 4450 ccagtgaaca atattttct attgtacttt tcgaaccatt ttgtctcatt 4500

attcctgttt tagctgaaga attgtattac atttggagag taaaaaactt 4550 aaacacgaaa aaa 4563

<210> 260 <211> 802 <212> PRT <213> Homo sapiens

<400> 260 Met Ala Ala Arg Gly Arg Arg Ala Trp Leu Ser Val Leu Leu Gly Leu Val Leu Gly Phe Val Leu Ala Ser Arg Leu Val Leu Pro Arg Ala Ser Glu Leu Lys Arg Ala Gly Pro Arg Arg Arg Ala Ser Pro Glu Gly Cys Arg Ser Gly Gln Ala Ala Ala Ser Gln Ala Gly Gly Ala Arg Gly Asp Ala Arg Gly Ala Gln Leu Trp Pro Pro Gly Ser Asp Pro Asp Gly Gly Pro Arg Asp Arg Asn Phe Leu Phe Val Gly Val Met Thr Ala Gln Lys Tyr Leu Gln Thr Arg Ala Val Ala Ala Tyr Arg Thr Trp Ser Lys Thr Ile Pro Gly Lys Val Gln Phe Phe Ser Ser Glu Gly Ser Asp Thr Ser Val Pro Ile Pro Val Val Pro Leu Arg Gly Val Asp Asp Ser Tyr Pro Pro Gln Lys Lys Ser Phe 145 Met Met Leu Lys Tyr Met His Asp His Tyr Leu Asp Lys Tyr Glu 155 Trp Phe Met Arg Ala Asp Asp Asp Val Tyr Ile Lys Gly Asp Arg 175 170 Leu Glu Asn Phe Leu Arg Ser Leu Asn Ser Ser Glu Pro Leu Phe 185 Leu Gly Gln Thr Gly Leu Gly Thr Thr Glu Glu Met Gly Lys Leu Ala Leu Glu Pro Gly Glu Asn Phe Cys Met Gly Gly Pro Gly Val Ile Met Ser Arg Glu Val Leu Arg Arg Met Val Pro His Ile Gly 240 235 230

Lys	Cys	Leu	Arg	Glu 245	Met	Tyr	Thr	Thr	His 250	Glu	Asp	Val	Glu	vai 255
Gly	Arg	Cys	Val	Arg 260	Arg	Phe	Ala	Gly	Val 265	Gln	Cys	Val	Trp	Ser 270
Tyr	Glu	Met	Arg	Gln 275	Leu	Phe	Tyr	Glu	Asn 280	Tyr	Glu	Gln	Asn	Lys 285
Lys	Gly	Tyr	Ile	Arg 290	Asp	Leu	His	Asn	Ser 295	Lys	Ile	His	Gln	Ala 300
Ile	Thr	Leu	His	Pro 305	Asn	Lys	Asn	Pro	Pro 310	Tyr	Gln	Tyr	Arg	Leu 315
His	Ser	Tyr	Met	Leu 320	Ser	Arg	Lys	Ile	Ser 325	Glu	Leu	Arg	His	Arg 330
Thr	Ile	Gln	Leu	His 335	Arg	Glu	Ile	Val	Leu 340	Met	Ser	Lys	Tyr	Ser 345
Asn	Thr	Glu	Ile	His 350	Lys	Glu	Asp	Leu	Gln 355	Leu	Gly	Ile	Pro	Pro 360
Ser	Phe	Met	Arg	Phe 365	Gln	Pro	Arg	Gln	Arg 370	Glu	Glu	Ile	Leu	Glu 375
Trp	Glu	Phe	Leu	Thr 380	Gly	Lys	Tyr	Leu	Tyr 385	Ser	Ala	Val	Asp	Gly 390
Gln	Pro	Pro	Arg	Arg 395	Gly	Met	Asp	Ser	Ala 400	Gln	Arg	Glu	Ala	Leu 405
Asp	Asp	Ile	Val	Met 410		Val	Met	Glu	Met 415	Ile	Asn	Ala	Asn	Ala 420
Lys	Thr	Arg	Gly	Arg 425		Ile	Asp	Phe	Lys 430	Glu	Ile	Gln	Tyr	Gly 435
Tyr	Arg	Arg	val	Asn 440		Met	Tyr	Gly	Ala 445	Glu	Tyr	Ile	Leu	Asp 450
Leu	Leu	ı Leu	ı Leu	Tyr 455	Lys	Lys	His	Lys	Gly 460	Lys	. Lys	: Met	Thr	Val 465
Pro	Val	Arg	, Arg	His 470		туг	Leu	Gln	Glr 475	Thr	Phe	e Ser	Lys	Ile 480
Gln	Phe	e Val	Glu	His 485		ı Glu	ı Lev	ı Asp	Ala 490	Glr	n Glu	ı Leu	ı Ala	Lys 495
Arg	ı Ile	e Asr	n Gln	Glu 500		Gly	/ Sei	Leu	Ser 505	Phe	e Lev	ı Sei	Asn	Ser 510
Leu	ı Lys	s Lys	s Leu	Val) Phe	e Glr	ı Lev	Pro 520	Gly	y Sei	c Lys	s Ser	525
His	s Lys	s Glu	ı Pro	Lys	s Asp	Lys	s Lys	s Ile	e Ası	ı Ile	e Lei	ı Ile	e Pro	Leu

				530					535					540
Ser	Gly	Arg	Phe	Asp 545	Met	Phe	Val	Arg	Phe 550	Met	Gly	Asn	Phe	Glu 555
Lys	Thr	Cys	Leu	Ile 560	Pro	Asn	Gln	Asn	Val 565	Lys	Leu	Val	Val	Leu 570
Leu	Phe	Asn	Ser	Asp 575	Ser	Asn	Pro	Asp	Lys 580	Ala	Lys	Gln	Val	Glu 585
Leu	Met	Arg	Asp	Tyr 590	Arg	Ile	Lys	Tyr	Pro 595	Lys	Ala	Asp	Met	Gln 600
Ile	Leu	Pro	Val	Ser 605	Gly	Glu	Phe	Ser	Arg 610	Ala	Leu	Ala	Leu	Glu 615
Val	Gly	Ser	Ser	Gln 620	Phe	Asn	Asn	Glu	Ser 625	Leu	Leu	Phe	Phe	Cys 630
Asp	Val	Asp	Leu	Val 635	Phe	Thr	Thr	Glu	Phe 640	Leu	Gln	Arg	Cys	Arg 645
Ala	Asn	Thr	Val	Leu 650	Gly	Gln	Gln	Ile	Tyr 655	Phe	Pro	Ile	Ile	Phe 660
Ser	Gln	Tyr	Asp	Pro 665	Lys	Ile	Val	Tyr	Ser 670	Gly	Lys	Val	Pro	Ser 675
Asp	Asn	His	Phe	Ala 680	Phe	Thr	Gln	Lys	Thr 685	Gly	Phe	Trp	Arg	Asn 690
Tyr	Gly	Phe	Gly	Ile 695	Thr	Cys	Ile	Tyr	Lys 700	Gly	Asp	Leu	Val	Arg 705
Val	Gly	Gly	Phe	Asp 710	Val	Ser	Ile	Gln	Gly 715	Trp	Gly	Leu	Glu	Asp 720
Val	Asp	Leu	Phe	Asn 725	Lys	Val	Val	Gln	Ala 730		Leu	Lys	Thr	Phe 735
Arg	Ser	Gln	Glu		Gly				Val 745		His	Pro	Val	Phe 750
Cys	Asp	Pro	Asn	Leu 755		Pro	Lys	Gln	Tyr 760		Met	Cys	Leu	Gly 765
Ser	Lys	Ala	Ser	Thr 770		Gly	Ser	Thr	Gln 775		Leu	Ala	Glu	Met 780
Trp	Leu	Glu	Lys	Asn 785		Pro	Ser	Tyr	Ser 790		Ser	Ser	Asn	Asn 795
Asn	Gly	Ser	Val	Arg 800		Ala								
<210 <211		1												

```
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 261
gtgccactac ggggtgtgga cgac 24
<210> 262
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 262
 tcccatttct tccgtggtgc ccag 24
<210> 263
<211> 46
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.
<400> 263
 ccagaagaag tccttcatga tgctcaagta catgcacgac cactac 46
<210> 264
<211> 1419
<212> DNA
<213> Homo sapiens
<400> 264
 ggacaaccgt tgctgggtgt cccagggcct gaggcaggac ggtactccgc 50
 tgacaccttc cctttcggcc ttgaggttcc cagcctggtg gccccaggac 100
 gttccggtcg catggcagag tgctacggac gacgcctatg aagcccttag 150
 teettetagt tgegettttg etatggeett egtetgtgee ggettateeg 200
 agcataactg tgacacctga tgaagagcaa aacttgaatc attatataca 250
 agttttagag aacctagtac gaagtgttcc ctctggggag ccaggtcgtg 300
 agaaaaaatc taactctcca aaacatgttt attctatagc atcaaaggga 350
 tcaaaattta aggagctagt tacacatgga gacgcttcaa ctgagaatga 400
```

tgttttaacc aatcctatca gtgaagaaac tacaactttc cctacaggag 450 gcttcacacc ggaaatagga aagaaaaaac acacggaaag taccccattc 500 tggtcgatca aaccaaacaa tgtttccatt gttttgcatg cagaggaacc 550 ttatattgaa aatgaagagc cagagccaga gccggagcca gctgcaaaac 600 aaactgaggc accaagaatg ttgccagttg ttactgaatc atctacaagt 650 ccatatgtta cctcatacaa gtcacctgtc accactttag ataagagcac 700 tggcattgag atctctacag aatcagaaga tgttcctcag ctctcaggtg 750 aaactgcgat agaaaaaccc gaagagtttg gaaagcaccc agagagttgg 800 aataatgatg acattttgaa aaaaatttta gatattaatt cacaagtgca 850 acaggcactt cttagtgaca ccagcaaccc agcatataga gaagatattg 900 aagcctctaa agatcaccta aaacgaagcc ttgctctagc agcagcagca 950 gaacataaat taaaaacaat gtataagtcc cagttattgc cagtaggacg 1000 aacaagtaat aaaattgatg acatcgaaac tgttattaac atgctgtgta 1050 attctagatc taaactctat gaatatttag atattaaatg tgttccacca 1100 gagatgagag aaaaagctgc tacagtattc aatacattaa aaaatatgtg 1150 tagatcaagg agagtcacag ccttattaaa agtttattaa acaataatat 1200 aaaaatttta aacctacttg atattccata acaaagctga tttaagcaaa 1250 ctgcattttt tcacaggaga aataatcata ttcgtaattt caaaagttgt 1300 ataaaaatat tttctattgt agttcaaatg tgccaacatc tttatgtgtc 1350 atgtgttatg aacaattttc atatgcacta aaaacctaat ttaaaataaa 1400 attttggttc aggaaaaaa 1419

<210> 265

<211> 350

<212> PRT

<213> Homo sapiens

<400> 265

Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Trp Pro Ser

Ser Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu

Gln Asn Leu Asn His Tyr Ile Gln Val Leu Glu Asn Leu Val Arg

Ser Val Pro Ser Gly Glu Pro Gly Årg Glu Lys Lys Ser Asn Ser

<210> 266

<211> 2403

<212> DNA

<213> Homo sapiens

<400> 266 cggctcgagc ggctcgagtg aagagcctct ccacggctcc tgcgcctgag 50 acagetggce tgacetecaa atcatecate cacecetget gteatetgtt 100 ttcatagtgt gagatcaacc cacaggaata tccatggctt ttgtgctcat 150 tttggttctc agtttctacg agctggtgtc aggacagtgg caagtcactg 200 gaccgggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250 tgctccctct ttcctgagac cagtgcagag gctatggaag tgcggttctt 300 caggaatcag ttccatgctg tggtccacct ctacagagat ggggaagact 350 gggaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtgaag 400 gactccattg caggggggcg tgtctctcta aggctaaaaa acatcactcc 450 ctcggacatc ggcctgtatg ggtgctggtt cagttcccag atttacgatg 500 aggaggccac ctgggagctg cgggtggcag cactgggctc acttcctctc 550 atttccatcg tgggatatgt tgacggaggt atccagttac tctgcctgtc 600 ctcaggctgg ttcccccagc ccacagccaa gtggaaaggt ccacaaggac 650 aggatttgtc ttcagactcc agagcaaatg cagatgggta cagcctgtat 700 gatgtggaga tctccattat agtccaggaa aatgctggga gcatattgtg 750 ttccatccac cttgctgagc agagtcatga ggtggaatcc aaggtattga 800 taggagagac gtttttccag ccctcacctt ggcgcctggc ttctatttta 850 ctcgggttac tctgtggtgc cctgtgtggt gttgtcatgg ggatgataat 900 tgttttcttc aaatccaaag ggaaaatcca ggcggaactg gactggagaa 950 gaaagcacgg acaggcagaa ttgagagacg cccggaaaca cgcagtggag 1000 gtgactctgg atccagagac ggctcacccg aagctctgcg tttctgatct 1050 gaaaactgta acccatagaa aagctcccca ggaggtgcct cactctgaga 1100 agagatttac aaggaagagt gtggtggctt ctcagggttt ccaagcaggg 1150 agacattact gggaggtgga cgtgggacaa aatgtagggt ggtatgtggg 1200 agtgtgtcgg gatgacgtag acagggggaa gaacaatgtg actttgtctc 1250 ccaacaatgg gtattgggtc ctcagactga caacagaaca tttgtatttc 1300 acattcaatc cccattttat cagcctcccc cccagcaccc ctcctacacg 1350 agtaggggtc ttcctggact atgagggtgg gaccatctcc ttcttcaata 1400 caaatgacca gtcccttatt tataccctgc tgacatgtca gtttgaaggc 1450 ttgttgagac cctatatcca gcatgcgatg tatgacgagg aaaaggggac 1500 teceatatte atatgteeag tgteetgggg atgagacaga gaagaceetg 1550 cttaaagggc cccacaccac agacccagac acagccaagg gagagtgctc 1600 ccgacaggtg gccccagctt cctctccgga gcctgcgcac agagagtcac 1650 gececeact etectttagg gagetgaggt tettetgece tgagecetge 1700 agcagcggca gtcacagctt ccagatgagg ggggattggc ctgaccctgt 1750 gggagtcaga agccatggct gccctgaagt ggggacggaa tagactcaca 1800 ttaggtttag tttgtgaaaa ctccatccag ctaagcgatc ttgaacaagt 1850 cacaacetee caggeteete atttgetagt caeggacagt gatteetgee 1900 tcacaggtga agattaaaga gacaacgaat gtgaatcatg cttgcaggtt 1950 tgagggcaca gtgtttgcta atgatgtgtt tttatattat acattttccc 2000 accataaact ctgtttgctt attccacatt aatttacttt tctctatacc 2050 aaatcaccca tggaatagtt attgaacacc tgctttgtga ggctcaaaga 2100 ataaagagga ggtaggattt ttcactgatt ctataagccc agcattacct 2150 gataccaaaa ccaggcaaag aaaacagaag aagaggaagg aaaactacag 2200 gtccatatcc ctcattaaca cagacacaaa aattctaaat aaaattttaa 2250 caaattaaac taaacaatat atttaaagat gatatataac tactcagtgt 2300 ggtttgtccc acaaatgcag agttggttta atatttaaat atcaaccagt 2350 aaa 2403

<210> 267

<211> 466

<212> PRT

<213> Homo sapiens

<400> 267

Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val

Ser Gly Gln Trp Gln Val Thr Gly Pro Gly Lys Phe Val Gln Ala

25

30

```
GlnGluValProHis 320SerGluLysArgPhe 325ThrArgLysSerVal 330ValAlaSerGlnGlyPheGlnAlaGlyArgHisTyrTrpGluVal 345AspValGlyGlnAsnValGlyTrpTyrValGlyValCysArgAsp 360AspValAspArgGlyLysAsnAsnValThrLeuSerProAsnAsn 375GlyTyrTrpValLeuArgLeuThrThrGluHisLeuTyrPheThrArgValGlyValPheAspLeuAspTyrGluGlyThrIleSerPheAspThrAspGlyLeuAspTyrGluGlyThrLeuThrCysAspGluGlyGlyLeuArgProTyrIleGlyThrLeuHisAlaMetTyrAspGluGlyGlyThrLeuArgProTyrIleCysProValSerTrpAspGluGlyGlyThrProTyrIleCysProValSerTrpAspGluGlyThrProTyrIleCysProValSerTrp<td
```

Gly

<210> 268 <211> 2103 <212> DNA

<213> Homo sapiens

<400> 268
ccttcacagg actcttcatt gctggttggc aatgatgtat cggccagatg 50

tggtgagggc taggaaaaga gtttgttggg aaccctgggt tatcggcctc 100

gtcatcttca tatccctgat tgtcctggca gtgtgcattg gactcactgt 150

tcattatgtg agatataatc aaaagaagac ctacaattac tatagcacat 200

tgtcatttac aactgacaaa ctatatgctg agtttggcag agaggcttct 250

aacaatttta cagaaatgag ccagagactt gaatcaatgg tgaaaaatgc 300

attttataaa tctccattaa gggaagaatt tgtcaagtct caggttatca 350

agttcagtca acagaagcat ggagtgttgg ctcatatgct gttgatttgt 400

agatttcact ctactgagga tcctgaaact gtagataaaa ttgttcaact 450

tgttttacat gaaaagctgc aagatgctgt aggacccct aaagtagatc 500

ctcactcagt taaaattaaa aaaatcaaca agacagaaac agacagctat 550 ctaaaccatt gctgcggaac acgaagaagt aaaactctag gtcagagtct 600 caggatcgtt ggtgggacag aagtagaaga gggtgaatgg ccctggcagg 650 ctagcctgca gtgggatggg agtcatcgct gtggagcaac cttaattaat 700 gccacatggc ttgtgagtgc tgctcactgt tttacaacat ataagaaccc 750 tgccagatgg actgcttcct ttggagtaac aataaaacct tcgaaaatga 800 aacggggtct ccggagaata attgtccatg aaaaatacaa acacccatca 850 catgactatg atatttetet tgcagagett tetagecetg tteeetacae 900 aaatgcagta catagagttt gtctccctga tgcatcctat gagtttcaac 950 caggtgatgt gatgtttgtg acaggatttg gagcactgaa aaatgatggt 1000 tacagtcaaa atcatcttcg acaagcacag gtgactctca tagacgctac 1050 aacttgcaat gaacctcaag cttacaatga cgccataact cctagaatgt 1100 tatgtgctgg ctccttagaa ggaaaaacag atgcatgcca gggtgactct 1150 ggaggaccac tggttagttc agatgctaga gatatctggt accttgctgg 1200 aatagtgagc tggggagatg aatgtgcgaa acccaacaag cctggtgttt 1250 atactagagt tacggccttg cgggactgga ttacttcaaa aactggtatc 1300 taagagacaa aagcctcatg gaacagataa cattttttt tgttttttgg 1350 gtgtggaggc catttttaga gatacagaat tggagaagac ttgcaaaaca 1400 gctagatttg actgatctca ataaactgtt tgcttgatgc atgtattttc 1450 ttcccagctc tgttccgcac gtaagcatcc tgcttctgcc agatcaactc 1500 tgtcatctgt gagcaatagt tgaaacttta tgtacataga gaaatagata 1550 atacaatatt acattacagc ctgtattcat ttgttctcta gaagttttgt 1600 cagaattttg acttgttgac ataaatttgt aatgcatata tacaatttga 1650 agcactcctt ttcttcagtt cctcagctcc tctcatttca gcaaatatcc 1700 attttcaagg tgcagaacaa ggagtgaaag aaaatataag aagaaaaaaa 1750 tcccctacat tttattggca cagaaaagta ttaggtgttt ttcttagtgg 1800 aatattagaa atgatcatat tcattatgaa aggtcaagca aagacagcag 1850 aataccaatc acttcatcat ttaggaagta tgggaactaa gttaaggaag 1900 tccagaaaga agccaagata tatccttatt ttcatttcca aacaactact 1950 atgataaatg tgaagaagat tctgttttt tgtgacctat aataattata 2000 caaacttcat gcaatgtact tgttctaagc aaattaaagc aaatatttat 2050 ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaatcac 2100 cca 2103

<210> 269

<211> 423

<212> PRT

<213> Homo sapiens

<400> 269

Met Met Tyr Arg Pro Asp Val Val Arg Ala Arg Lys Arg Val Cys
1 10 15

Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile 20 25 30

Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr 35 40 45

Asn Gln Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr 50 55 60

Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn 75

Phe Thr Glu Met Ser Gln Arg Leu Glu Ser Met Val Lys Asn Ala 80 85 90

Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gln Val 95 100 105

Ile Lys Phe Ser Gln Gln Lys His Gly Val Leu Ala His Met Leu 110 115 120

Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp 125 130 135

Lys Ile Val Gln Leu Val Leu His Glu Lys Leu Gln Asp Ala Val 140 145 150

Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile 155 160 165

Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr 170 175 180

Arg Arg Ser Lys Thr Leu Gly Gln Ser Leu Arg Ile Val Gly Gly 185 190 195

Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu Gln 200 205 210

Trp Asp Gly Ser His Arg Cys Gly Ala Thr Leu Ile Asn Ala Thr 215 220 225

Trp Leu Val Ser Ala Ala His Cys Phe Thr Thr Tyr Lys Asn Pro 230 Ala Arg Trp Thr Ala Ser Phe Gly Val Thr Ile Lys Pro Ser Lys 250 Met Lys Arg Gly Leu Arg Arg Ile Ile Val His Glu Lys Tyr Lys His Pro Ser His Asp Tyr Asp Ile Ser Leu Ala Glu Leu Ser Ser Pro Val Pro Tyr Thr Asn Ala Val His Arg Val Cys Leu Pro Asp 300 Ala Ser Tyr Glu Phe Gln Pro Gly Asp Val Met Phe Val Thr Gly 315 Phe Gly Ala Leu Lys Asn Asp Gly Tyr Ser Gln Asn His Leu Arg 330 320 Gln Ala Gln Val Thr Leu Ile Asp Ala Thr Thr Cys Asn Glu Pro Gln Ala Tyr Asn Asp Ala Ile Thr Pro Arg Met Leu Cys Ala Gly 350 Ser Leu Glu Gly Lys Thr Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Ser Ser Asp Ala Arg Asp Ile Trp Tyr Leu Ala Gly 385 Ile Val Ser Trp Gly Asp Glu Cys Ala Lys Pro Asn Lys Pro Gly Val Tyr Thr Arg Val Thr Ala Leu Arg Asp Trp Ile Thr Ser Lys 410

Thr Gly Ile

<210> 270 <211> 1170 <212> DNA

<213> Homo sapiens

<400> 270
gtcgaaggtt ataaaagctt ccagccaaac ggcattgaag ttgaagatac 50

aacctgacag cacagcctga gatcttgggg atccctcagc ctaacaccca 100

cagacgtcag ctggtggatt cccgctgcat caaggcctac ccactgtctc 150

catgctgggc tctccctgcc ttctgtggct cctggccgtg accttcttgg 200

ttcccagagc tcagcccttg gcccctcaag actttgaaga agaggaggca 250

gatgagactg agacggcgtg gccgcctttg ccggctgtcc cctgcgacta 300 cgaccactgc cgacacctgc aggtgccctg caaggagcta cagagggtcg 350 ggccggcggc ctgcctgtgc ccaggactct ccagccccgc ccagccgccc 400 gacccgccgc gcatgggaga agtgcgcatt gcggccgaag agggccgcgc 450 agtggtccac tggtgtgccc cettctcccc ggtcctccac tactggctgc 500 tgctttggga cggcagcgag gctgcgcaga aggggccccc gctgaacgct 550 acggtccgca gagccgaact gaaggggctg aagccagggg gcatttatgt 600 cgtttgcgta gtggccgcta acgaggccgg ggcaagccgc gtgccccagg 650 ctggaggaga gggcctcgag ggggccgaca tccctgcctt cgggccttgc 700 agecgeettg eggtgeegee caaceceege actetggtee aegeggeegt 750 cggggtgggc acggccctgg ccctgctaag ctgtgccgcc ctggtgtggc 800 acttctgcct gcgcgatcgc tggggctgcc cgcgccgagc cgccgcccga 850 gccgcagggg cgctctgaaa ggggcctggg ggcatctcgg gcacagacag 900 ccccacctgg ggcgctcagc ctggcccccg ggaaagagga aaacccgctg 950 cctccaggga gggctggacg gcgagctggg agccagcccc aggctccagg 1000 gccacggcgg agtcatggtt ctcaggactg agcgcttgtt taggtccggt 1050 acttggcgct ttgtttcctg gctgaggtct gggaaggaat agaaaggggc 1100 ccccaatttt tttttaagcg gccagataat aaataatgta acctttgcgg 1150 ttaaaaaaaa aaaaaaaaaa 1170

<210> 271

<211> 238

<212> PRT

<213> Homo sapiens

<400> 271

Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe
1 5 10 15

Leu Val Pro Arg Ala Gln Pro Leu Ala Pro Gln Asp Phe Glu Glu 20 25 30

Glu Glu Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala 35 40 45

Val Pro Cys Asp Tyr Asp His Cys Arg His Leu Gln Val Pro Cys
50 55 60

Lys Glu Leu Gln Arg Val Gly Pro Ala Ala Cys Leu Cys Pro Gly 65 70 75

- Leu Ser Ser Pro Ala Gln Pro Pro Asp Pro Pro Arg Met Gly Glu 80 85 90
- Val Arg Ile Ala Ala Glu Glu Gly Arg Ala Val Val His Trp Cys . 95 100 105
- Ala Pro Phe Ser Pro Val Leu His Tyr Trp Leu Leu Trp Asp 110 115 120
- Gly Ser Glu Ala Ala Gln Lys Gly Pro Pro Leu Asn Ala Thr Val 125 130 135
- Arg Arg Ala Glu Leu Lys Gly Leu Lys Pro Gly Gly Ile Tyr Val
- Val Cys Val Val Ala Ala Asn Glu Ala Gly Ala Ser Arg Val Pro 155 160 165
- Gln Ala Gly Gly Glu Gly Leu Glu Gly Ala Asp Ile Pro Ala Phe 170 175 180
- Gly Pro Cys Ser Arg Leu Ala Val Pro Pro Asn Pro Arg Thr Leu 185 190 195
- Val His Ala Ala Val Gly Val Gly Thr Ala Leu Ala Leu Leu Ser 200 205 210
- Cys Ala Ala Leu Val Trp His Phe Cys Leu Arg Asp Arg Trp Gly 215 220 225
- Cys Pro Arg Arg Ala Ala Ala Arg Ala Ala Gly Ala Leu 230 235

<210> 272

<211> 2397

<212> DNA

<213> Homo sapiens

<400> 272

agagaaagaa gegteteeag etgaageeaa tgeageette eggeteteeg 50
cgaagaagtt eeetgeeeeg atgageeee geegteggte eeegaegate 100
ceeaggeggg egtggggeae egggeeeage geegaegate getgeegtt 150
tgeeettggg agtaggatgt ggtgaaagga tggggettet eeettaeeggg 200
geteacaatg geeagaaggaag atteegtgaa gtgtetgege tgeetgetet 250
acgeeeteaa tetgetett tggttaatgt eeateagtgt gttggeagtt 300
tetgettgga tgaggaeta eetaaataat gtteteaett taaetgeaga 350
aacgagggta gaggaageag teattttgae ttaettteet gtggtteate 400
eggteatgat tgetgttge tgttteetta teattgtggg gatgttagga 450
tattgtggaa eggtgaaaag aaatetgttg ettettgeat ggtaetttgg 500

aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550 atgaacagga acttatggtt ccagtacaat ggtcagatat ggtcactttg 600 aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650 tgcttggaat ttttttcaga gagagtttaa gtgctgtgga gtagtatatt 700 tcactgactg gttggaaatg acagagatgg actggccccc agattcctgc 750 tgtgttagag aattcccagg atgttccaaa caggcccacc aggaagatct 800 cagtgacctt tatcaagagg gttgtgggaa gaaaatgtat tcctttttga 850 gaggaaccaa acaactgcag gtgctgaggt ttctgggaat ctccattggg 900 gtgacacaaa teetggeeat gatteteace attactetge tetgggetet 950 gtattatgat agaagggagc ctgggacaga ccaaatgatg tccttgaaga 1000 atgacaactc tcagcacctg tcatgtccct cagtagaact gttgaaacca 1050 agcctgtcaa gaatctttga acacacatcc atggcaaaca gctttaatac 1100 acactttgag atggaggagt tataaaaaga aatgtcacag aagaaaacca 1150 caaacttgtt ttattggact tgtgaatttt tgagtacata ctatgtgttt 1200 cagaaatatg tagaaataaa aatgttgcca taaaataaca cctaagcata 1250 tactattcta tgctttaaaa tgaggatgga aaagtttcat gtcataagtc 1300 accacctgga caataattga tgcccttaaa atgctgaaga cagatgtcat 1350 acceactgtg tagectgtgt atgaetttta etgaacaeag ttatgttttg 1400 aggcagcatg gtttgattag catttccgca tccatgcaaa cgagtcacat 1450 atggtgggac tggagccata gtaaaggttg atttacttct accaactagt 1500 atataaagta ctaattaaat gctaacatag gaagttagaa aatactaata 1550 acttttatta ctcagcgatc tattcttctg atgctaaata aattatatat 1600 cagaaaactt tcaatattgg tgactaccta aatgtgattt ttgctggtta 1650 ctaaaatatt cttaccactt aaaagagcaa gctaacacat tgtcttaagc 1700 tgatcaggga ttttttgtat ataagtctgt gttaaatctg tataattcag 1750 tcgatttcag ttctgataat gttaagaata accattatga aaaggaaaat 1800 ttgtcctgta tagcatcatt atttttagcc tttcctgtta ataaagcttt 1850 actattctgt cctgggctta tattacacat ataactgtta tttaaatact 1900 taaccactaa ttttgaaaat taccagtgtg atacatagga atcattattc 1950

agaatgtagt ctggtcttta ggaagtatta ataagaaaat ttgcacataa 2000 cttagttgat tcagaaagga cttgtatgct gttttctcc caaatgaaga 2050 ctctttttga cactaaacac tttttaaaaa gcttatcttt gccttctcca 2100 aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150 ttcttttct ccagaaaaat gcttgtgaga atcattaaaa catgtgacaa 2200 tttagagat ctttgttta tttcactgat taatatactg tggcaaatta 2250 cacagattat taaattttt tacaagagta tagtatattt atttgaaatg 2300 ggaaaagtgc attttactgt attttgtgta ttttgtttat ttctcagaat 2350 atggaaagaa aattaaaatg tgtcaataaa tatttctag agagtaa 2397

<210> 273

<211> 305

<212> PRT

<213> Homo sapiens

<400> 273

Met Ala Arg Glu Asp Ser Val Lys Cys Leu Arg Cys Leu Leu Tyr 10 15

Ala Leu Asn Leu Leu Phe Trp Leu Met Ser Ile Ser Val Leu Ala 25 30

Val Ser Ala Trp Met Arg Asp Tyr Leu Asn Asn Val Leu Thr Leu 45

Thr Ala Glu Thr Arg Val Glu Glu Ala Val Ile Leu Thr Tyr Phe
50 55 60

Pro Val Val His Pro Val Met Ile Ala Val Cys Cys Phe Leu Ile 65 70 75

Ile Val Gly Met Leu Gly Tyr Cys Gly Thr Val Lys Arg Asn Leu 80 85 90

Leu Leu Leu Ala Trp Tyr Phe Gly Ser Leu Leu Val Ile Phe Cys 95 100 105

Val Glu Leu Ala Cys Gly Val Trp Thr Tyr Glu Gln Glu Leu Met 110 115 120

Val Pro Val Gln Trp Ser Asp Met Val Thr Leu Lys Ala Arg Met 125 130 135

Thr Asn Tyr Gly Leu Pro Arg Tyr Arg Trp Leu Thr His Ala Trp 140 145 150

Asn Phe Phe Gln Arg Glu Phe Lys Cys Cys Gly Val Val Tyr Phe \$155\$ 160 165

Thr Asp Trp Leu Glu Met Thr Glu Met Asp Trp Pro Pro Asp Ser

	170	175		180
Cys Cys Val Arg	Glu Phe Pro 185	Gly Cys Ser 190	Lys Gln Ala	His Gln 195
Glu Asp Leu Ser	Asp Leu Tyr 200	Gln Glu Gly 205	Cys Gly Lys	Lys Met 210
Tyr Ser Phe Leu	Arg Gly Thr 215	Lys Gln Leu 220	Gln Val Leu	Arg Phe 225
Leu Gly Ile Ser	Ile Gly Val 230	Thr Gln Ile 235	Leu Ala Met	Ile Leu 240
Thr Ile Thr Leu	Leu Trp Ala 245	Leu Tyr Tyr 250	Asp Arg Arg	Glu Pro 255
Gly Thr Asp Gln	Met Met Ser 260	Leu Lys Asn 265	Asp Asn Ser	Gln His 270
Leu Ser Cys Pro	Ser Val Glu 275	Leu Leu Lys 280	Pro Ser Leu	Ser Arg 285
Ile Phe Glu His	Thr Ser Met 290	Ala Asn Ser 295	Phe Asn Thr	His Phe 300
Glu Met Glu Glu	Leu 305			

<210> 274

<211> 2063

<212> DNA

<213> Homo sapiens

<400> 274

caaggactga geagettget cageggacaa ggatgetggg egtgagggac 50
caaggactga cetgaacteg ggacteetee ageagtget gaccagggac 100
ttetgacetg etggccagee aggacetgtg tggggaggee etectgee 150
cttggggtga caateteage tecaggetae agggagaeeg ggaggateae 200
agagecagea tgttacagga teetgacagt gateaacete tgaacageet 250
cgatgteaaa eccetgegea aacceegtat eeceatggag acetteagaa 300
aggtggggat ecceateate atageactae tgageetgge gagtateate 350
attgtggttg teeteateaa ggtgattetg gataaataet aetteetetg 400
egggeageet etecaettea teeegaggaa geagetgtgt gaeeggagge 450
tggactgtee ettgggggag gaeegaggage aetgtgteaa gagetteee 500
gaagggeetg cagtggeagt eegeetetee aaggaeegat eeacaetgea 550
ggtgetggae teeggeeaca ggaactggtt etetgeetgt ttegaeaaet 600

tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650 gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 700 aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750 gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800 ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850 ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900 acceccactg ggtcctcacg gcageccact gettcaggaa acatacegat 950 gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000 atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050 ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100 tcaggcacag tcaggcccat ctgtctgccc ttctttgatg aggagctcac 1150 tccagccacc ccactctgga tcattggatg gggctttacg aagcagaatg 1200 gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250 agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1300 gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350 acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400 atcgttagct ggggctatgg ctgcgggggc ccgagcaccc caggagtata 1450 caccaaggte teagectate teaactggat etacaatgte tggaaggetg 1500 agetgtaatg etgetgeece tttgeagtge tgggageege tteetteetg 1550 ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600 ttgggtacac ccctctgccc acagcctcag catttcttgg agcagcaaag 1650 ggcctcaatt cctgtaagag accctcgcag cccagaggcg cccagaggaa 1700 gtcagcagcc ctagctcggc cacacttggt gctcccagca tcccagggag 1750 agacacagee cactgaacaa ggteteaggg gtattgetaa geeaagaagg 1800 aactttccca cactactgaa tggaagcagg ctgtcttgta aaagcccaga 1850 tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1900 tottoaccca tocccaagoo tactagagoa agaaaccagt tgtaatataa 1950 aatgcactgc cctactgttg gtatgactac cgttacctac tgttgtcatt 2000 gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050

caaaaaaaa aaa 2063

<210><211><211><212><213>	• 432 • PRI	? [npien	ıs										
<400> Met 1	275 Leu	Gln	Asp	Pro 5	Asp	Ser	Asp	Gln	Pro 10	Leu	Asn	Ser	Leu	Asp 15
Val	Lys	Pro	Leu	Arg 20	Lys	Pro	Arg	Ile	Pro 25	Met	Glu	Thr	Phe	Arg 30
Lys	Val	Gly	Ile	Pro 35	Ile	Ile	Ile	Ala	Leu 40	Leu	Ser	Leu	Ala	Ser 45
Ile	Ile	Ile	Val	Val 50	Val	Leu	Ile	Lys	Val 55	Ile	Leu	Asp	Lys	Tyr 60
Tyr	Phe	Leu	Суѕ	Gly 65	Gln	Pro	Leu	His	Phe 70	Ile	Pro	Arg	Lys	Gln 75
Leu	Cys	Asp	Gly	Glu 80	Leu	Asp	Cys	Pro	Leu 85	Gly	Glu	Asp	Glu	Glu 90
His	Cys	Val	Lys	Ser 95	Phe	Pro	Glu	Gly	Pro 100	Ala	Val	Ala	Val	Arg 105
Leu	Ser	Lys	Asp	Arg 110	Ser	Thr	Leu	Gln	Val 115	Leu	Asp	Ser	Ala	Thr 120
Gly	Asn	Trp	Phe	Ser 125	Ala	Cys	Phe	Asp	Asn 130	Phe	Thr	Glu	Ala	Leu 135
Ala	Glu	Thr	Ala	Cys 140	Arg	Gln	Met	Gly	Tyr 145	Ser	Arg	Ala	Val	Glu 150
Ile	Gly	Pro	Asp	Gln 155	Asp	Leu	Asp	Val	Val 160	Glu	Ile	Thr	Glu	Asn 165
Ser	Gln	Glu	Leu	Arg 170	Met	Arg	Asn	Ser	Ser 175	Gly	Pro	Cys	Leu	Ser 180
Gly	Ser	Leu	Val	Ser 185	Leu	His	Суз	Leu	Ala 190		Gly	Lys	Ser	Leu 195
Lys	Thr	Pro	Arg	Val 200	Val	Gly	Gly	Glu	Glu 205		Ser	Val	Asp	Ser 210
Trp	Pro	Trp	Gln	Val 215	Ser	Ile	Gln	Tyr	Asp 220		Gln	His	Val	Cys 225
Gly	Gly	Ser	Ile	Leu 230		Pro	His	Trp	Val 235		Thr	Ala	Ala	His 240
Cys	Phe	Arg	Lys	His 245		Asp	Val	Phe	Asn 250		Lys	Val	Arg	Ala 255

Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala Lys 265 Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp 280 Ile Ala Leu Met Lys Leu Gln Phe Pro Leu Thr Phe Ser Gly Thr 295 Val Arg Pro Ile Cys Leu Pro Phe Phe Asp Glu Glu Leu Thr Pro 310 Ala Thr Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gln Asn Gly Gly Lys Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val 340 Ile Asp Ser Thr Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu 350 Val Thr Glu Lys Met Met Cys Ala Gly Ile Pro Glu Gly Gly Val 365 Asp Thr Cys Gln Gly Asp Ser Gly Gly Pro Leu Met Tyr Gln Ser 380 Asp Gln Trp His Val Val Gly Ile Val Ser Trp Gly Tyr Gly Cys 395 Gly Gly Pro Ser Thr Pro Gly Val Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys Ala Glu Leu

<210> 276

<211> 3143

<212> DNA

<213> Homo sapiens

<400> 276
gggctgaggc actgagagac cggaaagcct ggcattccag agggagggaa 50
acgcagcggc atccccaggc tccagagctc cctggtgaca gtctgtggct 100
gagcatggcc ctcccagccc tgggcctgga cccctggagc ctcctgggcc 150
ttttcctctt ccaactgctt cagctgctgc tgccgacgac gaccgcgggg 200
ggaggcgggc aggggcccat gcccagggtc agatactatg caggggatga 250
acgtagggca cttagcttct tccaccagaa gggcctccag gattttgaca 300
ctctgctcct gagtggtgat ggaaatactc tctacgtggg ggctcgagaa 350
gccattctgg ccttggatat ccaggatcca ggggtcccca gggctaaagaa 400

catgataccg tggccagcca gtgacagaaa aaagagtgaa tgtgccttta 450 agaagaagag caatgagaca cagtgtttca acttcatccg tgtcctggtt 500 tottacaatg toaccoatot ctacacotgo ggcacottog cottoagooc 550 tgcttgtacc ttcattgaac ttcaagattc ctacctgttg cccatctcgg 600 aggacaaggt catggaggga aaaggccaaa gcccctttga ccccgctcac 650 aagcatacgg ctgtcttggt ggatgggatg ctctattctg gtactatgaa 700 caactteetg ggeagtgage ceateetgat gegeaeactg ggateeeage 750 ctgtcctcaa gaccgacaac ttcctccgct ggctgcatca tgacgcctcc 800 tttgtggcag ccatcccttc gacccaggtc gtctacttct tcttcgagga 850 gacagecage gagtttgaet tetttgagag getecaeaca tegegggtgg 900 ctagagtctg caagaatgac gtgggcggcg aaaagctgct gcagaagaag 950 tggaccacct tcctgaaggc ccagctgctc tgcacccagc cggggcagct 1000 gcccttcaac gtcatccgcc acgcggtcct gctccccgcc gattctccca 1050 cagetececa catetaegea gtetteaeet eecagtggea ggttggeggg 1100 accaggaget etgeggtttg tgeettetet etettggaca ttgaacgtgt 1150 ctttaagggg aaatacaaag agttgaacaa agaaacttca cgctggacta 1200 cttatagggg ccctgagacc aacccccggc caggcagttg ctcagtgggc 1250 ccctcctctg ataaggccct gaccttcatg aaggaccatt tcctgatgga 1300 tgagcaagtg gtggggacgc ccctgctggt gaaatctggc gtggagtata 1350 cacggcttgc agtggagaca gcccagggcc ttgatgggca cagccatctt 1400 gtcatgtacc tgggaaccac cacagggtcg ctccacaagg ctgtggtaag 1450 tggggacagc agtgctcatc tggtggaaga gattcagctg ttccctgacc 1500 ctgaacctgt tegcaacctg cagetggeee ecaeceaggg tgeagtgttt 1550 gtaggettet caggaggtgt etggagggtg eccegageca actgtagtgt 1600 ctatgagage tgtgtggaet gtgteettge eegggaeeee eactgtgeet 1650 gggaccetga gteecgaace tgttgeetee tgtetgeece caacetgaae 1700 teetggaage aggaeatgga gegggggaae eeagagtggg eatgtgeeag 1750 tggccccatg agcaggagcc ttcggcctca gagccgcccg caaatcatta 1800 aagaagteet ggetgteece aactecatee tggageteee etgeeeceae 1850

ctgtcagcct tggcctctta ttattggagt catggcccag cagcagtccc 1900 agaagcetet tecaetgtet acaatggete eetettgetg atagtgeagg 1950 atggagttgg gggtctctac cagtgctggg caactgagaa tggcttttca 2000 taccctgtga tetectactg ggtggacage caggaccaga ccctggccct 2050 ggatcctgaa ctggcaggca tcccccggga gcatgtgaag gtcccgttga 2100 ccagggtcag tggtggggcc gccctggctg cccagcagtc ctactggccc 2150 cactttgtca ctgtcactgt cctctttgcc ttagtgcttt caggagccct 2200 catcatecte gtggeeteec cattgagage acteeggget eggggeaagg 2250 ttcagggctg tgagaccctg cgccctgggg agaaggcccc gttaagcaga 2300 gagcaacacc tccagtctcc caaggaatgc aggacctctg ccagtgatgt 2350 ggacgctgac aacaactgcc taggcactga ggtagcttaa actctaggca 2400 caggeegggg etgeggtgea ggeacetgge catgetgget gggeggeeca 2450 agcacagccc tgactaggat gacagcagca caaaagacca cctttctccc 2500 ctgagaggag cttctgctac tctgcatcac tgatgacact cagcagggtg 2550 atgcacagca gtctgcctcc cctatgggac tcccttctac caagcacatg 2600 agetetetaa cagggtgggg getaeceeca gaeetgetee tacaetgata 2650 ttgaagaacc tggagaggat ccttcagttc tggccattcc agggaccctc 2700 cagaaacaca gtgtttcaag agaccctaaa aaacctgcct gtcccaggac 2750 cctatggtaa tgaacaccaa acatctaaac aatcatatgc taacatgcca 2800 ctcctggaaa ctccactctg aagctgccgc tttggacacc aacactccct 2850 teteccaggg teatgeaggg atetgeteec teetgettee ettaccagte 2900 gtgcaccgct gactcccagg aagtctttcc tgaagtctga ccacctttct 2950 tettgettea gttggggeag actetgatee ettetgeeet ggeagaatgg 3000 caggggtaat ctgagccttc ttcactcctt taccctagct gaccccttca 3050 cctctccccc tcccttttcc tttgttttgg gattcagaaa actgcttgtc 3100 agagactgtt tatttttat taaaaatata aggcttaaaa aaa 3143

<210> 277

<211> 761

<212> PRT

<213> Homo sapiens

<400> 277

Met 1	Ala	Leu	Pro	Ala 5	Leu	Gly	Leu	Asp	Pro 10	Trp	Ser	Leu	Leu	15
Leu	Phe	Leu	Phe	Gln 20	Leu	Leu	Gln	Leu	Leu 25	Leu	Pro	Thr	Thr	Thr 30
Ala	Gly	Gly	Gly	Gly 35	Gln	Gly	Pro	Met	Pro 40	Arg	Val	Arg	Tyr	Tyr 45
Ala	Gly	Asp	Glu	Arg 50	Arg	Ala	Leu	Ser	Phe 55	Phe	His	Gln	Lys	Gly 60
Leu	Gln	Asp	Phe	Asp 65	Thr	Leu	Leu	Leu	Ser 70	Gly	Asp	Gly	Asn	Thr 75
Leu	Tyr	Val	Gly	Ala 80	Arg	Glu	Ala	Ile	Leu 85	Ala	Leu	Asp	Ile	Gln 90
Asp	Pro	Gly	Val	Pro 95	Arg	Leu	Lys	Asn	Met 100	Ile	Pro	Trp	Pro	Ala 105
Ser	Asp	Arg	Lys	Lys 110	Ser	Glu	Cys	Ala	Phe 115	Lys	Lys	Lys	Ser	Asn 120
Glu	Thr	Gln	Cys	Phe 125	Asn	Phe	Ile	Arg	Val 130	Leu	Val	Ser	Tyr	Asn 135
Val	Thr	His	Leu	Туг 140	Thr	Суз	Gly	Thr	Phe 145	Ala	Phe	Ser	Pro	Ala 150
Cys	Thr	Phe	Ile	Glu 155	Leu	Gln	Asp	Ser	Туг 160	Leu	Leu	Pro	Ile	Ser 165
Glu	Asp	Lys	Val	Met 170	Glu	Gly	Lys	Gly	Gln 175	Ser	Pro	Phe	Asp	Pro 180
Ala	His	Lys	His	Thr 185	Ala	Val	Leu	Val	Asp 190	Gly	Met	Leu	Tyr	Ser 195
Gly	Thr	Met	Asn	Asn 200		. Leu	Gly	Ser	Glu 205	Pro	ıle	e Leu	Met	Arg 210
Thr	Leu	Gly	Ser	Gln 215	Pro	Val	. Leu	Lys	Thr 220	Asp	Asr	n Phe	e Leu	Arg 225
Trp	Leu	His	His	230	Ala	a Ser	Phe	val	Ala 235	a Ala	ı Ile	e Pro	Ser	Thr 240
Glr	ı Val	. Val	. Туг	245		e Phe	e Glu	ı Glü	Thi 250	c Ala	a Sei	c Glu	ı Phe	255
Phe	e Phe	e Glu	ı Arç	g Lei 260	ı His	s Thi	s Ser	Arç	y Val 269	l Ala 5	a Aro	g Val	L Cys	270
Asr	n Asp	o Val	Gly	Gly 275	y Glu 5	ı Lys	s Leu	ı Lev	1 Gl1 280	n Lys	s Lys	s Trp	Thi	Thr 285
Ph€	e Leu	ı Lys	s Ala	a Glr	ı Lei	ג Leı	ı Cys	s Thi	c Gli	n Pro	o G1	y Glr	ı Lei	ı Pro

				290					295					300
Phe	Asn	Val	Ile	Arg 305	His	Ala	Val	Leu	Leu 310	Pro	Ala	Asp	Ser	Pro 315
Thr	Ala	Pro	His	Ile 320	Tyr	Ala	Val	Phe	Thr 325	Ser	Gln	Trp	Gln	Val 330
Gly	Gly	Thr	Arg	Ser 335	Ser	Ala	Val	Cys	Ala 340	Phe	Ser	Leu	Leu	Asp 345
Ile	Glu	Arg	Val	Phe 350	Lys	Gly	Lys	Tyr	Lys 355	Glu	Leu	Asn	Lys	Glu 360
Thr	Ser	Arg	Trp	Thr 365	Thr	Tyr	Arg	Gly	Pro 370	Glu	Thr	Asn	Pro	Arg 375
Pro	Gly	Ser	Cys	Ser 380	Val	Gly	Pro	Ser	Ser 385	Asp	Lys	Ala	Leu	Thr 390
Phe	Met	Lys	Asp	His 395	Phe	Leu	Met	Asp	Glu 400	Gln	Val	Val	Gly	Thr 405
Pro	Leu	Leu	Val	Lys 410	Ser	Gly	Val	Glu	Tyr 415	Thr	Arg	Leu	Ala	Val 420
Glu	Thr	Ala	Gln	Gly 425		Asp	Gly	His	Ser 430	His	Leu	Val	Met	Tyr 435
Leu	Gly	Thr	Thr	Thr 440		Ser	Leu	His	Lys 445	Ala	Val	Val	Ser	Gly 450
Asp	Ser	Ser	Ala	His 455	Leu	Val	Glu	Glu	Ile 460	Gln	Leu	Phe	Pro	Asp 465
Pro	Glu	Pro	Val	Arg 470	Asn	Leu	Gln	Leu	Ala 475	Pro	Thr	Gln	Gly	Ala 480
Val	Phe	Val	Gly	Phe 485		Gly	Gly	Val	Trp 490	Arg	Val	. Pro	Arg	Ala 495
Asn	Cys	Ser	Val	Tyr 500		ı Ser	Cys	Val	Asp 505	Cys	: Val	. Leu	ı Ala	Arg 510
Asp	Pro	His	Суз	515		Asp	Pro	Glu	Ser 520	Arç	Thr	Cys	з Суз	Leu 525
Lev	ser	Ala	Pro	530		ı Asn	Ser	Trp	535	Glr	n Asp	o Met	: Glu	Arg 540
Gly	/ Asn	Pro	Glu	Trp 545		a Cys	a Ala	Ser	550	y Pro) Met	sei	r Arg	555 555
Leu	a Arg	Pro	Glr	Sei 560		g Pro	Glr.	ıle	11e 565	e Lys	s Glu	ı Val	l Lei	1 Ala 570
Va]	Pro	Asr	ı Sei	575		u Glu	ı Lev	Pro	580	s Pro	o His	s Lei	ı Sei	Ala 585

```
Leu Ala Ser Tyr Tyr Trp Ser His Gly Pro Ala Ala Val Pro Glu
                590
Ala Ser Ser Thr Val Tyr Asn Gly Ser Leu Leu Leu Ile Val Gln
Asp Gly Val Gly Gly Leu Tyr Gln Cys Trp Ala Thr Glu Asn Gly
                620
Phe Ser Tyr Pro Val Ile Ser Tyr Trp Val Asp Ser Gln Asp Gln
                635
Thr Leu Ala Leu Asp Pro Glu Leu Ala Gly Ile Pro Arg Glu His
                650
Val Lys Val Pro Leu Thr Arg Val Ser Gly Gly Ala Ala Leu Ala
                665
Ala Gln Gln Ser Tyr Trp Pro His Phe Val Thr Val Thr Val Leu
                680
Phe Ala Leu Val Leu Ser Gly Ala Leu Ile Ile Leu Val Ala Ser
Pro Leu Arg Ala Leu Arg Ala Arg Gly Lys Val Gln Gly Cys Glu
Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gln His
Leu Gln Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp
                                      745
Ala Asp Asn Asn Cys Leu Gly Thr Glu Val Ala
<210> 278
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 278
 ctgctggtga aatctggcgt ggag 24
<210> 279
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
```

```
<400> 279
gtctggtcct ggctgtccac ccag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 280
 catcttgtca tgtacctggg aaccaccaca gggtcgctcc acaag 45
<210> 281
<211> 2320
<212> DNA
<213> Homo sapiens
<400> 281
 agggtccctt agccgggcgc agggcgcgca gcccaggctg agatccgcgg 50
 cttccgtaga agtgagcatg gctgggcagc gagtgcttct tctagtgggc 100
 ttccttctcc ctggggtcct gctctcagag gctgccaaaa tcctgacaat 150
 atctacagta ggtggaagcc attatctact gatggaccgg gtttctcaga 200
 ttcttcaaga tcacggtcat aatgtcacca tgcttaacca caaaagaggt 250
 ccttttatgc cagattttaa aaaggaagaa aaatcatatc aagttatcag 300
 ttggcttgca cctgaagatc atcaaagaga atttaaaaag agttttgatt 350
 tctttctgga agaaacttta ggtggcagag gaaaatttga aaacttatta 400
 aatgttctag aatacttggc gttgcagtgc agtcattttt taaatagaaa 450
 ggatatcatg gattccttaa agaatgagaa cttcgacatg gtgatagttg 500
 aaacttttga ctactgtcct ttcctgattg ctgagaagct tgggaagcca 550
 tttgtggcca ttctttccac ttcattcggc tctttggaat ttgggctacc 600
 aatccccttg tcttatgttc cagtattccg ttccttgctg actgatcaca 650
  tggacttctg gggccgagtg aagaattttc tgatgttctt tagtttctgc 700
  aggaggcaac agcacatgca gtctacattt gacaacacca tcaaggaaca 750
  tttcacagaa ggctctaggc cagttttgtc tcatcttcta ctgaaagcag 800
  agttgtggtt cattaactct gactttgcct ttgattttgc tcgacctctg 850
```

cttcccaaca ctgtttatgt tggaggcttg atggaaaaac ctattaaacc 900

agtaccacaa gacttggaga acttcattgc caagtttggg gactctggtt 950 ttgtccttgt gaccttgggc tccatggtga acacctgtca gaatccggaa 1000 atcttcaagg agatgaacaa tgcctttgct cacctacccc aaggggtgat 1050 atggaagtgt cagtgttctc attggcccaa agatgtccac ctggctgcaa 1100 atgtgaaaat tgtggactgg cttcctcaga gtgacctcct ggctcaccca 1150 agcatccgtc tgtttgtcac ccacggcggg cagaatagca taatggaggc 1200 catccagcat ggtgtgccca tggtggggat ccctctcttt ggagaccagc 1250 ctgaaaacat ggtccgagta gaagccaaaa agtttggtgt ttctattcag 1300 ttaaagaagc tcaaggcaga gacattggct cťtaagatga aacaaatcat 1350 ggaagacaag agatacaagt ccgcggcagt ggctgccagt gtcatcctgc 1400 gctcccaccc gctcagcccc acacagcggc tggtgggctg gattgaccac 1450 gtcctccaga cagggggcgc gacgcacctc aagccctatg tctttcagca 1500 gccctggcat gagcagtacc tgttcgacgt ttttgtgttt ctgctggggc 1550 tcactctggg gactctatgg ctttgtggga agctgctggg catggctgtc 1600 tggtggctgc gtggggccag aaaggtgaag gagacataag gccaggtgca 1650 gccttggcgg ggtctgtttg gtgggcgatg tcaccatttc tagggagctt 1700 cccactagtt ctggcagccc cattetetag teettetagt tateteetgt 1750 tttcttgaag aacaggaaaa atggccaaaa atcatccttt ccacttgcta 1800 attttgctac aaattcatcc ttactagctc ctgcctgcta gcagaaatct 1850 ttccagtcct cttgtcctcc tttgtttgcc atcagcaagg gctatgctgt 1900 gattetgtet etgagtgaet tggaceaetg acceteagat ttecageett 1950 aaaatccacc ttccttctca tgcgcctctc cgaatcacac cctgactctt 2000 ccagcctcca tgtccagacc tagtcagcct ctctcactcc tgcccctact 2050 atctatcatg gaataacatc caagaaagac accttgcata ttctttcagt 2100 ttctgttttg ttctcccaca tattctcttc aatgctcagg aagcctgccc 2150 tgtgcttgag agttcagggc cggacacagg ctcacaggtc tccacattgg 2200 gtccctgtct ctggtgccca cagtgagctc cttcttggct gagcaggcat 2250 ggagactgta ggtttccaga tttcctgaaa aataaaagtt tacagcgtta 2300 tctctcccca acctcactaa 2320

<210> 282 <211> 523 <212> PRT <213> Homo sapiens <400> 282 Met Ala Gly Gln Arg Val Leu Leu Val Gly Phe Leu Leu Pro Gly Val Leu Leu Ser Glu Ala Ala Lys Ile Leu Thr Ile Ser Thr Val Gly Gly Ser His Tyr Leu Leu Met Asp Arg Val Ser Gln Ile Leu Gln Asp His Gly His Asn Val Thr Met Leu Asn His Lys Arg Gly Pro Phe Met Pro Asp Phe Lys Lys Glu Glu Lys Ser Tyr Gln Val Ile Ser Trp Leu Ala Pro Glu Asp His Gln Arg Glu Phe Lys Lys Ser Phe Asp Phe Phe Leu Glu Glu Thr Leu Gly Gly Arg Gly Lys Phe Glu Asn Leu Leu Asn Val Leu Glu Tyr Leu Ala Leu Gln 115 Cys Ser His Phe Leu Asn Arg Lys Asp Ile Met Asp Ser Leu Lys Asn Glu Asn Phe Asp Met Val Ile Val Glu Thr Phe Asp Tyr Cys Pro Phe Leu Ile Ala Glu Lys Leu Gly Lys Pro Phe Val Ala Ile 155 Leu Ser Thr Ser Phe Gly Ser Leu Glu Phe Gly Leu Pro Ile Pro 175 170 Leu Ser Tyr Val Pro Val Phe Arg Ser Leu Leu Thr Asp His Met 190 Asp Phe Trp Gly Arg Val Lys Asn Phe Leu Met Phe Phe Ser Phe 205 Cys Arg Arg Gln Gln His Met Gln Ser Thr Phe Asp Asn Thr Ile 220 Lys Glu His Phe Thr Glu Gly Ser Arg Pro Val Leu Ser His Leu Leu Leu Lys Ala Glu Leu Trp Phe Ile Asn Ser Asp Phe Ala Phe Asp Phe Ala Arg Pro Leu Leu Pro Asn Thr Val Tyr Val Gly Gly

		260					265		•			270
Leu Met Glu	Lys	Pro 275	Ile	Lys	Pro	Val	Pro 280	Gln :	Asp	Leu	Glu	Asn 285
Phe Ile Ala	Lys	Phe 290	Gly	Asp	Ser	Gly	Phe 295	Val	Leu	Val	Thr	Leu 300
Gly Ser Met	Val	Asn 305	Thr	Суѕ	Gln	Asn	Pro 310	Glu	Ile	Phe	Lys	Glu 315
Met Asn Asn	Ala	Phe 320	Ala	His	Leu	Pro	Gln 325	Gly	Val	Ile	Trp	Lys 330
Cys Gln Cys	Ser	His 335	Trp	Pro	Lys	Asp	Val 340	His	Leu	Ala	Ala	Asn 345
Val Lys Ile	val	Asp 350	Trp	Leu	Pro	Gln	Ser 355	Asp	Leu	Leu	Ala	His 360
Pro Ser Ile	e Arg	Leu 365	Phe	Val	Thr	His	Gly 370	Gly	Gln	Asn	Ser	Ile 375
Met Glu Ala	ıle	Gln 380	His	Gly	Val	Pro	Met 385	Val	Gly	Ile	Pro	Leu 390
Phe Gly Asp	o Gln	Pro 395	Glu	Asn	Met	Val	Arg 400	Val	Glu	Ala	Lys	Lys 405
Phe Gly Va	l Ser	Ile 410		Leu	Lys	Lys	Leu 415	Lys	Ala	Glu	Thr	Leu 420
Ala Leu Ly	s Met	Lys 425	Gln	Ile	Met	Glu	Asp 430	Lys	Arg	Tyr	Lys	Ser 435
Ala Ala Va	l Ala	Ala 440		Val	Ile	Leu	Arg 445	Ser	His	Pro	Leu	Ser 450
Pro Thr Gl	n Arg	J Leu 455	Val	Gly	Trp	Ile	Asp 460	His	Val	Leu	Gln	Thr 465
Gly Gly Al	a Thi	His 470	Leu)	Lys	Pro	Tyr	Val 475	Ϋhe	Gln	Gln	Pro	Trp 480
His Glu Gl	n Ty	r Leu 485		e Asp	Val	Ph∈	val 490	Phe	Leu	Leu	Gly	Leu 495
Thr Leu Gl	y Th:	r Lei 500		Leu	ı Cys	Gly	Lys 505	Leu	Leu	Gly	Met	510
Val Trp Tr	p Le	u Arç 515		y Ala	a Arg	J Lys	s Val 520	Lys	Glu	Thi	-	
<210> 283 <211> 24 <212> DNA <213> Artif	icia	1										

```
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 283
tgcctttgct cacctacccc aagg 24
<210> 284
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 284
tcaggctggt ctccaaagag aggg 24
<210> 285
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 285
 cccaaagatg tccacctggc tgcaaatgtg aaaattgtgg actgg 45
<210> 286
<211> 2340
<212> DNA
<213> Homo sapiens
<400> 286
 gggctgttga tttgtggggg attttgaaga gaggaggaat aggaggaagg 50
 ggttgagggg ctgcctctgg catatgcaca cactcacaca ttctgtcaca 100
 cccgtcacac acacatacca tgttctccat ccccccaggt ccagccctca 150
 gtgctgtccc atccagcagg gctaccctga agctctggct gcagccctcc 200
 cgtccagtgg gcaggcggct tcatccctcc tttctctccc aaagcccaac 250
 tgctgtcact gcatgctctg ccaaggagga gggaactgca gtgacagcag 300
 gagtaagagt gggaggcagg acagagctgg gacacaggta tggagagggg 350
 gttcagcgag cctagagagg gcagactatc agggtgccgg cggtgagaat 400
 ccagggagag gagcggaaac agaagaggg cagaagaccg gggcacttgt 450
```

gggttgcaga gcccctcagc catgttggga gccaagccac actggctacc 500 aggtccccta cacagtcccg ggctgccctt ggttctggtg cttctggccc 550 tgggggccgg gtgggcccag gaggggtcag agcccgtcct gctggagggg 600 gagtgcctgg tggtctgtga gcctggccga gctgctgcag ggggggcccgg 650 gggagcagcc ctgggagagg caccccctgg gcgagtggca tttgctgcgg 700 tecgaageea ecaceatgag ecageagggg aaaceggeaa tggeaceagt 750 ggggccatct acttcgacca ggtcctggtg aacgagggcg gtggctttga 800 ccgggcctct ggctccttcg tagcccctgt ccggggtgtc tacagcttcc 850 ggttccatgt ggtgaaggtg tacaaccgcc aaactgtcca ggtgagcctg 900 atgctgaaca cgtggcctgt catctcagcc tttgccaatg atcctgacgt 950 gaccegggag gcagccacca gctctgtgct actgcccttg gaccetgggg 1000 accgagtgtc tctgcgcctg cgtcggggga atctactggg tggttggaaa 1050 tactcaagtt tototggott cotcatotto cotototgag gacccaagto 1100 tttcaagcac aagaatccag cccctgacaa ctttcttctg ccctctcttg 1150 ccccagaaac agcagaggca ggagagagac tccctctggc tcctatccca 1200 cctctttgca tgggaccctg tgccaaacac ccaagtttaa gagaagagta 1250 gagetgtgge atetecagae caggeettte caeceaceca eccecagtta 1300 ccctcccagc cacctgctgc atctgttcct gcctgcagcc ctaggatcag 1350 ggcaaggttt ggcaagaagg aagatctgca ctactttgcg gcctctgctc 1400 ctccggttcc cccacccag cttcctgctc aatgctgatc agggacaggt 1450 ggcgcaggtg agcctgacag gccccacag gagcccagat ggacaagcct 1500 cagogtacco tgcaggotto ttootgtgag gaaagccago atcacggato 1550 tcagccagca ccgtcagaag ctgagccagc accgtatggg ctagggtggg 1600 aggeteagee acaggeagaa gggtgggaag ggeetggagt etgtggetgg 1650 tgaggaagga aggagggtgt attgtctaga ctgaacatgg tacacattct 1700 gcatgtatag cagagcagcc agcaggtagc aatcctggct gtccttctat 1750 gctggatccc agatggactc tggcccttac ctccccacct gagattaggg 1800 tgagtgtgtt tgctctggct gagagcagag ctgagagcag gtatacagag 1850 ctggaagtgg accatggaaa acatcgataa ccatgcatcc tcttgcttgg 1900

ccacctcctg aaactgctcc acctttgaag tttgaacttt agtccctcca 1950 cactctgact getgeeteet tecteceage teteteactg agttatette 2000 actgtacctg ttccagcata tccccactat ctctctttct cctgatctgt 2050 gctgtcttat tctcctcctt aggcttccta ttacctggga ttccatgatt 2100 catteettea gaccetetee tgccagtatg ctaaaccete cetetetet 2150 tcttatcccg ctgtcccatt ggcccagcct ggatgaatct atcaataaaa 2200 caactagaga atggtggtca gtgagacact atagaattac taaggagaag 2250 atgcctctgg agtttggatc gggtgttaca ggtacaagta ggtatgttgc 2300 agaggaaaat aaatatcaaa ctgtatacta aaattaaaaa 2340

<210> 287

<211> 205

<212> PRT

<213> Homo sapiens <400> 287 Met Leu Gly Ala Lys Pro His Trp Leu Pro Gly Pro Leu His Ser Pro Gly Leu Pro Leu Val Leu Val Leu Ala Leu Gly Ala Gly Trp Ala Gln Glu Gly Ser Glu Pro Val Leu Leu Glu Gly Glu Cys Leu Val Val Cys Glu Pro Gly Arg Ala Ala Gly Gly Pro Gly Gly Ala Ala Leu Gly Glu Ala Pro Pro Gly Arg Val Ala Phe Ala Ala Val Arg Ser His His His Glu Pro Ala Gly Glu Thr Gly Asn Gly Thr Ser Gly Ala Ile Tyr Phe Asp Gln Val Leu Val Asn Glu Gly Gly Gly Phe Asp Arg Ala Ser Gly Ser Phe Val Ala Pro Val Arg Gly Val Tyr Ser Phe Arg Phe His Val Val Lys Val Tyr Asn 130 Arg Gln Thr Val Gln Val Ser Leu Met Leu Asn Thr Trp Pro Val 145 Ile Ser Ala Phe Ala Asn Asp Pro Asp Val Thr Arg Glu Ala Ala 160

Thr Ser Ser Val Leu Leu Pro Leu Asp Pro Gly Asp Arg Val Ser

170 175 180

Leu Arg Leu Arg Gly Asn Leu Leu Gly Gly Trp Lys Tyr Ser 185 190 195

Ser Phe Ser Gly Phe Leu Ile Phe Pro Leu 200 205

- <210> 288
- <211> 24
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-24
- <223> Synthetic construct.
- <400> 288

aggcagccac cagctctgtg ctac 24

- <210> 289
- <211> 27
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-27
- <223> Synthetic construct.
- <400> 289

cagagagga agatgaggaa gccagag 27

- <210> 290
- <211> 42
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-42
- <223> Synthetic construct.
- <400> 290

ctgtgctact gcccttggac cctggggacc gagtgtctct gc 42

- <210> 291
- <211> 1570
- <212> DNA
- <213> Homo sapiens
- <400> 291

gctgtttctc tcgcgccacc actggccgcc ggccgcagct ccaggtgtcc 50

tagccgccca gcctcgacgc cgtcccggga cccctgtgct ctgcgcgaag 100

ccctggcccc gggggccggg gcatgggcca ggggcgcggg gtgaagcggc 150

ttcccqcggg gccgtgactg ggcgggcttc agccatgaag accctcatag 200 ccgcctactc cggggtcctg cgcggcgagc gtcaggccga ggctgaccgg 250 agccagcgct ctcacggagg acctgcgctg tcgcgcgagg ggtctgggag 300 atggggcact ggatccagca tecteteege ecteeaggae etettetetg 350 tcacctggct caataggtcc aaggtggaaa agcagctaca ggtcatctca 400 gtgctccagt gggtcctgtc cttccttgta ctgggagtgg cctgcagtgc 450 catectcatg tacatattet geactgattg etggeteate getgtgetet 500 acttcacttg gctggtgttt gactggaaca cacccaagaa aggtggcagg 550 aggtcacagt gggtccgaaa ctgggctgtg tggcgctact ttcgagacta 600 ctttcccatc cagctggtga agacacacaa cctgctgacc accaggaact 650 atatctttgg ataccacccc catggtatca tgggcctggg tgccttctgc 700 aacttcagca cagaggccac agaagtgagc aagaagttcc caggcatacg 750 gccttacctg gctacactgg caggcaactt ccgaatgcct gtgttgaggg 800 agtacctgat gtctggaggt atctgccctg tcagccggga caccatagac 850 tatttgcttt caaagaatgg gagtggcaat gctatcatca tcgtggtcgg 900 gggtgcggct gagtctctga gctccatgcc tggcaagaat gcagtcaccc 950 tgcggaaccg caagggcttt gtgaaactgg ccctgcgtca tggagctgac 1000 ctggttccca tctactcctt tggagagaat gaagtgtaca agcaggtgat 1050 cttcgaggag ggctcctggg gccgatgggt ccagaagaag ttccagaaat 1100 acattggttt cgccccatgc atcttccatg gtcgaggcct cttctcctcc 1150 gacacctggg ggctggtgcc ctactccaag cccatcacca ctgttgtggg 1200 agageceate accatececa agetggagea eccaacecag caagacateg 1250 acctgtacca caccatgtac atggaggeee tggtgaaget ettegacaag 1300 cacaagacca agttcggcct cccggagact gaggtcctgg aggtgaactg 1350 agccagcctt cggggccaat tccctggagg aaccagctgc aaatcacttt 1400 tttgctctgt aaatttggaa gtgtcatggg tgtctgtggg ttatttaaaa 1450 aaaaaaaaaa aaaaaaaaaa 1570

```
<210> 292
<211> 388
<212> PRT
<213> Homo sapiens
<400> 292
Met Lys Thr Leu Ile Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu
 Arg Gln Ala Glu Ala Asp Arg Ser Gln Arg Ser His Gly Gly Pro
 Ala Leu Ser Arg Glu Gly Ser Gly Arg Trp Gly Thr Gly Ser Ser
 Ile Leu Ser Ala Leu Gln Asp Leu Phe Ser Val Thr Trp Leu Asn
 Arg Ser Lys Val Glu Lys Gln Leu Gln Val Ile Ser Val Leu Gln
 Trp Val Leu Ser Phe Leu Val Leu Gly Val Ala Cys Ser Ala Ile
 Leu Met Tyr Ile Phe Cys Thr Asp Cys Trp Leu Ile Ala Val Leu
 Tyr Phe Thr Trp Leu Val Phe Asp Trp Asn Thr Pro Lys Lys Gly
 Gly Arg Arg Ser Gln Trp Val Arg Asn Trp Ala Val Trp Arg Tyr
 Phe Arg Asp Tyr Phe Pro Ile Gln Leu Val Lys Thr His Asn Leu
 Leu Thr Thr Arg Asn Tyr Ile Phe Gly Tyr His Pro His Gly Ile
 Met Gly Leu Gly Ala Phe Cys Asn Phe Ser Thr Glu Ala Thr Glu
                                     175
 Val Ser Lys Lys Phe Pro Gly Ile Arg Pro Tyr Leu Ala Thr Leu
                                      190
 Ala Gly Asn Phe Arg Met Pro Val Leu Arg Glu Tyr Leu Met Ser
                                      205
 Gly Gly Ile Cys Pro Val Ser Arg Asp Thr Ile Asp Tyr Leu Leu
 Ser Lys Asn Gly Ser Gly Asn Ala Ile Ile Ile Val Val Gly Gly
                 230
 Ala Ala Glu Ser Leu Ser Ser Met Pro Gly Lys Asn Ala Val Thr
```

Leu Arg Asn Arg Lys Gly Phe Val Lys Leu Ala Leu Arg His Gly

Ala Asp Leu Val Pro Ile Tyr Ser Phe Gly Glu Asn Glu Val Tyr 275 280 285

Lys Gln Val Ile Phe Glu Glu Gly Ser Trp Gly Arg Trp Val Gln 290 295 300

Lys Lys Phe Gln Lys Tyr Ile Gly Phe Ala Pro Cys Ile Phe His 305 310 315

Gly Arg Gly Leu Phe Ser Ser Asp Thr Trp Gly Leu Val Pro Tyr 320 325 330

Ser Lys Pro Ile Thr Thr Val Val Gly Glu Pro Ile Thr Ile Pro 335 340

Lys Leu Glu His Pro Thr Gln Gln Asp Ile Asp Leu Tyr His Thr 350 355 360

Met Tyr Met Glu Ala Leu Val Lys Leu Phe Asp Lys His Lys Thr 365 370 375

Lys Phe Gly Leu Pro Glu Thr Glu Val Leu Glu Val Asn $380 \hspace{1cm} 385$

<210> 293

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 293

gctgacctgg ttcccatcta ctcc 24

<210> 294

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 294

cccacagaca cccatgacac ttcc 24

<210> 295

<211> 50

<212> DNA

<213> Artificial

<220>

- <221> Artificial Sequence
- <222> 1-50
- <223> Synthetic construct.
- <400> 295
- aagaatgaat tgtacaaagc aggtgatctt cgaggagggc tcctggggcc 50
- <210> 296
- <211> 3060
- <212> DNA
- <213> Homo sapiens
- <400> 296
 - gggcggcggg atggggccg ggggcggcgg gcgccgcact cgctgaggcc 50 ccgacgcagg gccgggccgg gcccagggcc gaggagcgcg gcggccagag 100 cggggccgcg gaggcgacgc cggggacgcc cgcgcgacga gcaggtggcg 150 gcggctgcag gcttgtccag ccggaagccc tgagggcagc tgttcccact 200 ggctctgctg accttgtgcc ttggacggct gtcctcagcg aggggccgtg 250 caccegetee tgageagege catgggeetg etggeettee tgaagaeeea 300 gttcgtgctg cacctgctgg tcggctttgt cttcgtggtg agtggtctgg 350 tcatcaactt cgtccagctg tgcacgctgg cgctctggcc ggtcagcaag 400 cagetetace geogeeteaa etgeegeete geetaeteae tetggageea 450 actggtcatg ctgctggagt ggtggtcctg cacggagtgt acactgttca 500 cggaccaggc cacggtagag cgctttggga aggagcacgc agtcatcatc 550 ctcaaccaca acttcgagat cgacttcctc tgtgggtgga ccatgtgtga 600 gcgcttcgga gtgctgggga gctccaaggt cctcgctaag aaggagctgc 650 tctacgtgcc cctcatcggc tggacgtggt actttctgga gattgtgttc 700 tgcaagcgga agtgggagga ggaccgggac accgtggt'cg aagggctgag 750 gcgcctgtcg gactaccccg agtacatgtg gtttctcctg tactgcgagg 800 ggacgcgctt cacggagacc aagcaccgcg ttagcatgga ggtggcggct 850 gctaaggggc ttcctgtcct caagtaccac ctgctgccgc ggaccaaggg 900 cttcaccacc gcagtcaagt gcctccgggg gacagtcgca gctgtctatg 950 atgtaaccct gaacttcaga ggaaacaaga acccgtccct gctggggatc 1000 ctctacggga agaagtacga ggcggacatg tgcgtgagga gatttcctct 1050 ggaagacatc ccgctggatg aaaaggaagc agctcagtgg cttcataaac 1100 tgtaccagga gaaggacgcg ctccaggaga tatataatca gaagggcatg 1150

tttccagggg agcagtttaa gcctgcccgg aggccgtgga ccctcctgaa 1200 cttcctgtcc tgggccacca ttctcctgtc tcccctcttc agttttgtct 1250 tgggcgtctt tgccagcgga tcacctctcc tgatcctgac tttcttgggg 1300 tttgtgggag cagcttcctt tggagttcgc agactgatag gagaatcgct 1350 tgaacctggg aggtggagat tgcagtgagc tgagatggca tcactgtact 1400 ccagcctagg caacagagca agactcagtc tcaaaaaaaa aaaaaaacaa 1450 aaaaacccca gaaattctgg agttgaactg tgtagttact gacatgaaaa 1500 attcactaga ggctgaacag cagatttgag caggcagaaa aaaatcagca 1550 agcttgaaga tggtaccttg agatttttca ggctaatgaa aaaagaatga 1600 aggaaaatta acagcctcag agacccatgg tgcaccgtca cacaaatcaa 1650 catatgcatg atgagagtcc cagaaggaga ggagagaaag ggtcagaaag 1700 aatggccaca agctgatgaa aaacagtaac ctacccactc aggaagctca 1750 gtgaactcca atgaggatga atatcagaga tccacaccta gatatttcat 1800 aatcaaagtg tcaaatgaca aagaatcttg aaagcagcaa gagatgagca 1850 acttatcttg ttcaaaggat ctttgatcag attaacaget catttctcct 1900 cagaaatcat gggagccagg agatagtggg atgaacactg ttgaaggcaa 1950 aaccttcaac tgtaattatt ggacttttga gtcttagatg gtcctgacct 2000 ctttgtcttc agggacagtt tttcaattta atccctaata acaattagtc 2050 aagetteett gaeetgtagg aaggeetgte tttaggeegg geacagtgge 2100 ttacacctgt aatcccagca ctttgggagg cccagacggg tggatcattt 2150 ggggtcaggc tgatctcaaa ctcctgagtt caggtgatct gcccgcctca 2200 gcctcccaaa gtgttgtgat tgcaggcgtg agccactgcg cctggccgga 2250 atttcttttt aaggctgaat gatgggggcc aggcacgatg gctcacgcct 2300 gtgatcccaa gtagcttgga ttgtaaacat gcaccaccat gcctggctaa 2350 tttttgtatt tttagtagag acgtgttagc caggctggtc tcgatctcct 2400 gacctcaagt gaccacctgc ctcagcctcc caaagtactg ggattacagg 2450 cgtgagccac tgtgcctggc cttgagcatc ttgtgatgtg cttattggcc 2500 atttgtatat cttctatctt ctttggggaa atgtctgttc aagtcctttg 2550 agcetcgace teetgggetg cagtgatect cecaceteag cetecettgt 2700 agctgtattt ttttgtattt tgtattttgt agctgtagtt ttttgtatttt 2750 ttgtggagac agcattteac catgatgeec aggetggtet tgaacteetg 2800 agetcaagtg atetgeecg tteageetee caaagtgetg ggattacaga 2850 catgageeac tgeacetgge aaacteecaa aatteaacac acacacaca 2900 aaaaccacet gatteaaaat gggeagaggg geegggtgtg geeceaacta 2950 ceagggagac tgaagtgga ggategettg ggeatgagaa gtegaggetg 3000 cagtgagteg aggttgteg actgeattee ageetggaca acagagtgag 3050 accetgtete 3060

<210> 297

<211> 368

<212> PRT

<213> Homo sapiens

<400> 297

Met Gly Leu Leu Ala Phe Leu Lys Thr Gln Phe Val Leu His Leu 1 10 15

Leu Val Gly Phe Val Phe Val Val Ser Gly Leu Val Ile Asn Phe 20 25 30

Val Gln Leu Cys Thr Leu Ala Leu Trp Pro Val Ser Lys Gln Leu 35 40 45

Tyr Arg Arg Leu Asn Cys Arg Leu Ala Tyr Ser Leu Trp Ser Gln
50 55 60

Leu Val Met Leu Leu Glu Trp Trp Ser Cys Thr Glu Cys Thr Leu 65 70 75

Phe Thr Asp Gln Ala Thr Val Glu Arg Phe Gly Lys Glu His Ala 80 85 90

Val Ile Ile Leu Asn His Asn Phe Glu Ile Asp Phe Leu Cys Gly
95 100 105

Trp Thr Met Cys Glu Arg Phe Gly Val Leu Gly Ser Ser Lys Val

Leu Ala Lys Lys Glu Leu Leu Tyr Val Pro Leu Ile Gly Trp Thr

Trp Tyr Phe Leu Glu Ile Val Phe Cys Lys Arg Lys Trp Glu Glu

Asp Arg Asp Thr Val Val Glu Gly Leu Arg Arg Leu Ser Asp Tyr 155 160 165

Pro Glu Tyr Met Trp Phe Leu Leu Tyr Cys Glu Gly Thr Arg Phe 170 Thr Glu Thr Lys His Arg Val Ser Met Glu Val Ala Ala Ala Lys Gly Leu Pro Val Leu Lys Tyr His Leu Leu Pro Arg Thr Lys Gly Phe Thr Thr Ala Val Lys Cys Leu Arg Gly Thr Val Ala Ala Val Tyr Asp Val Thr Leu Asn Phe Arg Gly Asn Lys Asn Pro Ser Leu Leu Gly Ile Leu Tyr Gly Lys Lys Tyr Glu Ala Asp Met Cys Val Arg Arg Phe Pro Leu Glu Asp Ile Pro Leu Asp Glu Lys Glu Ala Ala Gln Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Leu Gln Glu Ile Tyr Asn Gln Lys Gly Met Phe Pro Gly Glu Gln Phe Lys 295 Pro Ala Arg Arg Pro Trp Thr Leu Leu Asn Phe Leu Ser Trp Ala 310 Thr Ile Leu Leu Ser Pro Leu Phe Ser Phe Val Leu Gly Val Phe 320 Ala Ser Gly Ser Pro Leu Leu Ile Leu Thr Phe Leu Gly Phe Val 335 Gly Ala Ala Ser Phe Gly Val Arg Arg Leu Ile Gly Glu Ser Leu 355 350 Glu Pro Gly Arg Trp Arg Leu Gln <210> 298 <211> 24 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-24 <223> Synthetic construct. <400> 298 cttcctctgt gggtggacca tgtg 24 <210> 299 <211> 21

<212> DNA

```
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-21
<223> Synthetic construct.
<400> 299
gccacctcca tgctaacgcg g 21
<210> 300
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 300
 ccaaggtcct cgctaagaag gagctgctct acgtgcccct catcg 45
<210> 301
<211> 1334
<212> DNA
<213> Homo sapiens
<400> 301
 gatattettt atttttaaga atetgaagta etatgeatea eteeeteeaa 50
 tgtcctgggg cagccaccag gcatattcat ctttgtgtgt gtttttcttt 100
 tgctttagca ctggggcact tcttgcttat ttctttggta ggaaaggggc 150
 tcagtttgtc ttgtggggtt ggtggcaggc aggccggctt acgcctgata 200
 cggccctggg ttagaaggga agggaagata aacttttata caaatgggga 250
 tagctggggt ctgagacctg cttcctcagt aaaattcctg ggatctgcct 300
 atacettett ttetetaace tggcatacee tgettaa age eteteaggge 350
  ttctctctgt tcttaggatc aaagtattta gagctacaag agccctcatg 400
 gtctggcccc tgccccctg gccagcttca ttgtacatgt ggtgttctct 450
  tgtcgttcct gtaatgtggt atgccatggg gtctttgcac aagcctttcc 500
  tetttggetg gacactgtte cetgeceece ceatactett cetaettaat 550
  atgtagtcat cctgcagatt tcaattctaa catcattttc tccagggatc 600
  ctggcctgac agaatctcat cttgtttaat gctctcataa gaccacttgt 650
  ttcccttttg cagcacttgc cactcagttg tatctttatg tgcgtttgtg 700
  gttgtatggg ttgtgtctgt tccccagaat gcccagctct gagctgcgtg 750
```

<400> 302

V4007	7 502	_						_			em 1		112 -	Tla
Met	ui o	Uic	Sar	Len	Gln	CVS	Pro	Glv	Ala	Ala	Thr	Arg	HIS	$_{\rm LIE}$
мес	птр	u_{T2}	Ser	пец	CLII	Cyc		O-1				_		1 5
1				5					10					10
				J										

Gly Leu Arg Pro Ala Ser Ser Val Lys Phe Leu Gly Ser Ala Tyr
$$80$$
 85 90

Cys Gly Val Leu Leu Ser Phe Leu

<210> 302

<211> 143

<212> PRT

<213> Homo sapiens

<210> 303 <211> 1768 <212> DNA <213> Homo sapiens

<400> 303 ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc 50 aaggtgctgt gattataggt gtaagccacc gtgtctggcc tctgaacaac 100 tttttcagca actaaaaaag ccacaggagt tgaactgcta ggattctgac 150 tatgctgtgg tggctagtgc tcctactcct acctacatta aaatctgttt 200 tttgttctct tgtaactagc ctttaccttc ctaacacaga ggatctgtca 250 ctgtggctct ggcccaaacc tgaccttcac tctggaacga gaacagaggt 300 ttctacccac accgtcccct cgaagccggg gacagcctca ccttgctggc 350 ctctcgctgg agcagtgccc tcaccaactg tctcacgtct ggaggcactg 400 actegggeag tgeaggtage tgageetett ggtagetgeg gettteaagg 450 tgggccttgc cctggccgta gaagggattg acaagcccga agatttcata 500 ggcgatggct cccactgccc aggcatcagc cttgctgtag tcaatcactg 550 ccctggggcc aggacggcc gtggacacct gctcagaagc agtgggtgag 600 acatcacgct geoegeceat etaacetttt catgteetge acateacetg 650 atccatgggc taatctgaac tctgtcccaa ggaacccaga gcttgagtga 700 gctgtggctc agacccagaa ggggtctgct tagaccacct ggtttatgtg 750 acaggacttg cattctcctg gaacatgagg gaacgccgga ggaaagcaaa 800 gtggcaggga aggaacttgt gccaaattat gggtcagaaa agatggaggt 850 gttgggttat cacaaggcat cgagtctcct gcattcagtg gacatgtggg 900 ggaagggctg ccgatggcgc atgacacact cgggactcac ctctggggcc 950 atcagacage egttteegee eegateeaeg taceagetge tgaagggeaa 1000 ctgcaggccg atgctctcat cagccaggca gcagccaaaa tctgcgatca 1050 ccagccaggg gcagccgtct gggaaggagc aagcaaagtg accatttctc 1100 ctccctcct tccctctgag aggccctcct atgtccctac taaagccacc 1150 agcaagacat agctgacagg ggctaatggc tcagtgttgg cccaggaggt 1200 cagcaaggcc tgagagctga tcagaagggc ctgctgtgcg aacacggaaa 1250 tgcctccagt aagcacaggc tgcaaaatcc ccaggcaaag gactgtgtg 1300 ctcaatttaa atcatgttct agtaattgga gctgtccca agaccaaagg 1350 agctagagct tggttcaaat gatctccaag ggcccttata ccccaggaga 1400 ctttgatttg aatttgaaac cccaaatcca aacctaagaa ccaggtgcat 1450 taagaatcag ttattgccgg gtgtggtgc ctgtaatgcc aacatttgg 1500 gaggccgagg cgggtagatc acctgaggtc aggagttcaa gaccagcctg 1550 gccaacatgg tgaaacccct gtctctacta aaaatacaaa aaaactagcc 1600 aggcatggtg gtgtgcct gtatcccagc tactcgggag gctgagacag 1650 gagaattact tgaacctgg aggtgaagga ggctgagaca ggagaatcac 1700 ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaaag 1750 aattatggtt atttgtaa 1768

<210> 304

<211> 109

<212> PRT

<213> Homo sapiens

<400> 304

Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser

Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu 20 25 30

Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly

Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly 50 60

Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro 65 70 75

Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala $80 \hspace{1cm} 85 \hspace{1cm} 90$

Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly 95 100 105

Arg Arg Arg Asp

<210> 305

<211> 989

<212> DNA

<213> Homo sapiens

<400> 305

gegggeeege gagteegaga eetgteeeag gageteeage teaegtgace 50 tgtcactgcc tcccgccgcc tcctgcccgc gccatgaccc agccggtgcc 100 ceggetetee gtgeeegeeg egetggeeet gggeteagee geaetgggeg 150 ccgccttcgc cactggcctc ttcctgggga ggcggtgccc cccatggcga 200 ggccggcgag agcagtgcct gcttcccccc gaggacagcc gcctgtggca 250 gtatcttctg agccgctcca tgcgggagca cccggcgctg cgaagcctga 300 ggctgctgac cctggagcag ccgcaggggg attctatgat gacctgcgag 350 caggeceage tettggecaa eetggegegg etcateeagg eeaagaagge 400 gctggacctg ggcaccttca cgggctactc cgccctggcc ctggccctgg 450 cgctgcccgc ggacggcgc gtggtgacct gcgaggtgga cgcgcagccc 500 ccggagctgg gacggcccct gtggaggcag gccgaggcgg agcacaagat 550 cgacctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcgg 600 cgggcgaggc cggcaccttc gacgtggccg tggtggatgc ggacaaggag 650 aactgctccg cctactacga gcgctgcctg cagctgctgc gacccggagg 700 catcctcgcc gtcctcagag tcctgtggcg cgggaaggtg ctgcaacctc 750 cgaaagggga cgtggcggcc gagtgtgtgc gaaacctaaa cgaacgcatc 800 cggcgggacg tcagggtcta catcagcctc ctgcccctgg gcgatggact 850 caccttggcc ttcaagatct agggctggcc cctagtgagt gggctcgagg 900 gagggttgcc tgggaacccc aggaattgac cctgagtttt aaattcgaaa 950 ataaagtggg gctgggacac aaaaaaaaaa aaaaaaaaa 989

<210> 306

<211> 262

<212> PRT

<213> Homo sapiens

<400> 306

Met Thr Gln Pro Val Pro Arg Leu Ser Val Pro Ala Ala Leu Ala

Leu Gly Ser Ala Ala Leu Gly Ala Ala Phe Ala Thr Gly Leu Phe

Leu Gly Arg Arg Cys Pro Pro Trp Arg Gly Arg Arg Glu Gln Cys

Leu Leu Pro Pro Glu Asp Ser Arg Leu Trp Gln Tyr Leu Leu Ser

Arg Ser Met Arg Glu His Pro Ala Leu Arg Ser Leu Arg Leu Leu Thr Leu Glu Gln Pro Gln Gly Asp Ser Met Met Thr Cys Glu Gln Ala Gln Leu Leu Ala Asn Leu Ala Arg Leu Ile Gln Ala Lys Lys Ala Leu Asp Leu Gly Thr Phe Thr Gly Tyr Ser Ala Leu Ala Leu Ala Leu Ala Leu Pro Ala Asp Gly Arg Val Val Thr Cys Glu Val Asp Ala Gln Pro Pro Glu Leu Gly Arg Pro Leu Trp Arg Gln Ala Glu Ala Glu His Lys Ile Asp Leu Arg Leu Lys Pro Ala Leu Glu Thr Leu Asp Glu Leu Leu Ala Ala Gly Glu Ala Gly Thr Phe Asp Val Ala Val Val Asp Ala Asp Lys Glu Asn Cys Ser Ala Tyr Tyr 185 Glu Arg Cys Leu Gln Leu Leu Arg Pro Gly Gly Ile Leu Ala Val Leu Arg Val Leu Trp Arg Gly Lys Val Leu Gln Pro Pro Lys Gly 220 215 Asp Val Ala Ala Glu Cys Val Arg Asn Leu Asn Glu Arg Ile Arg Arg Asp Val Arg Val Tyr Ile Ser Leu Leu Pro Leu Gly Asp Gly 245 Leu Thr Leu Ala Phe Lys Ile 260

<210> 307

<211> 2272

<212> DNA

<213> Homo sapiens

<400> 307
 ccgccgccgc agccgctacc gccgctgcag ccgctttccg cggcctgggc 50

ctctcgccgt cagcatgcca cacgccttca agcccgggga cttggtttc 100

gctaagatga agggctaccc tcactggcct gccaggatcg acgacatcgc 150

ggatggcgcc gtgaagcccc cacccaacaa gtaccccatc ttttctttg 200

gcacacacga aacagccttc ctgggaccca aggacctgtt cccctacgac 250

aaatgtaaag acaagtacgg gaagcccaac aagaggaaag gcttcaatga 300 agggctgtgg gagatccaga acaaccccca cgccagctac agcgcccctc 350 cgccagtgag ctcctccgac agcgaggccc ccgaggccaa ccccgccgac 400 ggcagtgacg ctgacgagga cgatgaggac cggggggtca tggccgtcac 450 agcggtaacc gccacagctg ccagcgacag gatggagagc gactcagact 500 cagacaagag tagcgacaac agtggcctga agaggaagac gcctgcgcta 550 aagatgtcgg tctcgaaacg agcccgaaag gcctccagcg acctggatca 600 ggccagcgtg tccccatccg aagaggagaa ctcggaaagc tcatctgagt 650 cggagaagac cagcgaccag gacttcacac ctgagaagaa agcagcggtc 700 cgggcgccac ggaggggccc tctgggggga cggaaaaaa agaaggcgcc 750 gtcagcctcc gactccgact ccaaggccga ttcggacggg gccaagcctg 800 agccggtggc catggcgcgg tcggcgtcct cctcctcctc ttcctcctcc 850 tecteegact ecgatgtgte tgtgaagaag ceteegaggg geaggaagee 900 ageggagaag ceteteeega ageegegagg geggaaaceg aageetgaae 950 ggcctccgtc cagctccagc agtgacagtg acagcgacga ggtggaccgc 1000 atcagtgagt ggaagcggcg ggacgaggcg cggaggcgcg agctggaggc 1050 ccggcggcgg cgagagcagg aggaggagct gcggcgcctg cgggagcagg 1100 agaaggagga gaaggagcgg aggcggagc gggccgaccg cggggaggct 1150 gagcggggca gcggcggcag cagcggggac gagctcaggg aggacgatga 1200 gcccgtcaag aagcggggac gcaagggccg gggccggggt cccccgtcct 1250 cctctgactc cgagcccgag gccgagctgg agagagaggc caagaaatca 1300 gcgaagaagc cgcagtcctc aagcacagag cccgccagga aacctggcca 1350 gaaggagaag agagtgcggc ccgaggagaa gcaacaagcc aagcccgtga 1400 aggtggagcg gacccggaag cggtccgagg gcttctcgat ggacaggaag 1450 gtagagaaga agaaagagcc ctccgtggag gagaagctgc agaagctgca 1500 cagtgagatc aagtttgccc taaaggtcga cagcccggac gtgaagaggt 1550 gcctgaatgc cctagaggag ctgggaaccc tgcaggtgac ctctcagatc 1600 ctccagaaga acacagacgt ggtggccacc ttgaagaaga ttcgccgtta 1650 caaagcgaac aaggacgtaa tggagaaggc agcagaagtc tatacccggc 1700

tcaagtcgcg ggtcctcggc ccaaagatcg aggcggtgca gaaagtgaac 1750 aaggctggga tggagaagga gaaggccgag gagaagctgg ccggggagga 1800 gctggccggg gaggaggccc cccaggagaa ggcggaggac aagcccagca 1850 ccgatctctc agccccagtg aatggcgagg ccacatcaca gaagggggag 1900 agcgcagagg acaaggagca cgaggagggt cgggactcgg aggaggggcc 1950 aaggtgtggc teetetgaag aeetgeaega eagegtaegg gagggteeeg 2000 acctggacag gcctgggagc gaccggcagg agcgcgagag ggcacggggg 2050 gactcggagg ccctggacga ggagagctga gccgcgggca gccaggccca 2100 gccccgccc gagctcaggc tgcccctctc cttccccggc tcgcaggaga 2150 gcagagcaga gaactgtggg gaacgctgtg ctgtttgtat ttgttccctt 2200 gggttttttt ttcctgccta atttctgtga tttccaacca acatgaaatg 2250 actataaacg gttttttaat ga 2272

<210> 308

<211> 671

<212> PRT

<213> Homo sapiens

<400> 308

Met Pro His Ala Phe Lys Pro Gly Asp Leu Val Phe Ala Lys Met

Lys Gly Tyr Pro His Trp Pro Ala Arg Ile Asp Asp Ile Ala Asp

Gly Ala Val Lys Pro Pro Pro Asn Lys Tyr Pro Ile Phe Phe

Gly Thr His Glu Thr Ala Phe Leu Gly Pro Lys Asp Leu Phe Pro

Tyr Asp Lys Cys Lys Asp Lys Tyr Gly Lys Pro Asn Lys Arg Lys

Gly Phe Asn Glu Gly Leu Trp Glu Ile Gln Asn Asn Pro His Ala

Ser Tyr Ser Ala Pro Pro Pro Val Ser Ser Ser Asp Ser Glu Ala

Pro Glu Ala Asn Pro Ala Asp Gly Ser Asp Ala Asp Glu Asp Asp

Glu Asp Arg Gly Val Met Ala Val Thr Ala Val Thr Ala Thr Ala 135 125

Ala Ser Asp Arg Met Glu Ser Asp Ser Asp Ser Asp Lys Ser Ser

				140					145					150
Asp	Asn	Ser	Gly	Leu 155	Lys	Arg	Lys	Thr	Pro 160	Ala	Leu	Lys	Met	Ser 165
Val	Ser	Lys	Arg	Ala 170	Arg	Lys	Ala	Ser	Ser 175	Asp	Leu	Asp	Gln	Ala 180
Ser	Val	Ser	Pro	Ser 185	Glu	Glu	Glu	Asn	Ser 190	Glu	Ser	Ser	Ser	Glu 195
Ser	Glu	Lys	Thr	Ser 200	Asp	Gln	Asp	Phe	Thr 205	Pro	Glu	Lys	Lys	Ala 210
Ala	Val	Arg	Ala	Pro 215	Arg	Arg	Gly	Pro	Leu 220	Gly	Gly	Arg	Lys	Lys 225
Lys	Lys	Ala	Pro	Ser 230	Ala	Ser	Asp	Ser	Asp 235	Ser	Lys	Ala	Asp	Ser 240
Asp	Gly	Ala	Lys	Pro 245	Glu	Pro	Val	Ala	Met 250	Ala	Arg	Ser	Ala	Ser 255
Ser	Ser	Ser	Ser	Ser 260	Ser	Ser	Ser	Ser	Asp 265	Ser	Asp	Val	Ser	Val 270
Lys	Lys	Pro	Pro	Arg 275	Gly	Arg	Lys	Pro	Ala 280	Glu	Lys	Pro	Leu	Pro 285
Lys	Pro	Arg	Gly	Arg 290	Lys	Pro	Lys	Pro	Glu 295	Arg	Pro	Pro	Ser	Ser 300
Ser	Ser	Ser	Asp	Ser 305	Asp	Ser	Asp	Glu	Val 310	Asp	Arg	Ile	Ser	Glu 315
Trp	Lys	Arg	Arg	Asp 320	Glu	Ala	Arg	Arg	Arg 325	Glu	Leu	Glu	Ala	Arg 330
Arg	Arg	Arg	Glu	Gln 335	Glu	Glu	Glu	Leu	Arg 340	Arg	Leu	Arg	Glu	Gln 345
Glu	Lys	Glu	Glu	Lys 350		Arg	Arg	Arg	Glu 355	Arg	Ala	Asp	Arg	Gly 360
Glu	Ala	Glu	Arg	Gly 365		Gly	Gly	Ser	Ser 370	Gly	Asp	Glu	ı Leu	Arg 375
Glu	Asp	Asp	Glü	380		. Lys	Lys	Arg	Gly 385	Arg	Lys	Gly	Arg	Gly 390
Arg	Gly	Pro	Pro	Ser 395	Ser	Ser	Asp	Ser	Glu 400	Pro	Glu	ı Ala	a Glu	Leu 405
Glu	Arg	Glu	ı Ala	410		Ser	Ala	Lys	Lys 415	Pro	Glr	n Sei	s Ser	Ser 420
Thr	Glu	Pro) Ala	425	Lys	s Pro	o Gly	Gln	1 Lys 430	s Glu	ı Lys	s Arg	g Val	Arg 435

Pro Glu Glu Lys Gln Gln Ala Lys Pro Val Lys Val Glu Arg Thr 440 Arg Lys Arg Ser Glu Gly Phe Ser Met Asp Arg Lys Val Glu Lys Lys Lys Glu Pro Ser Val Glu Glu Lys Leu Gln Lys Leu His Ser Glu Ile Lys Phe Ala Leu Lys Val Asp Ser Pro Asp Val Lys Arg 485 Cys Leu Asn Ala Leu Glu Glu Leu Gly Thr Leu Gln Val Thr Ser 510 Gln Ile Leu Gln Lys Asn Thr Asp Val Val Ala Thr Leu Lys Lys Ile Arg Arg Tyr Lys Ala Asn Lys Asp Val Met Glu Lys Ala Ala Glu Val Tyr Thr Arg Leu Lys Ser Arg Val Leu Gly Pro Lys Ile 545 550 Glu Ala Val Gln Lys Val Asn Lys Ala Gly Met Glu Lys Glu Lys Ala Glu Glu Lys Leu Ala Gly Glu Glu Leu Ala Gly Glu Glu Ala Pro Gln Glu Lys Ala Glu Asp Lys Pro Ser Thr Asp Leu Ser Ala 590 Pro Val Asn Gly Glu Ala Thr Ser Gln Lys Gly Glu Ser Ala Glu Asp Lys Glu His Glu Glu Gly Arg Asp Ser Glu Glu Gly Pro Arg 620 Cys Gly Ser Ser Glu Asp Leu His Asp Ser Val Arg Glu Gly Pro 640 Asp Leu Asp Arg Pro Gly Ser Asp Arg Gln Glu Arg Glu Arg Ala Arg Gly Asp Ser Glu Ala Leu Asp Glu Glu Ser <210> 309

<211> 3871

<212> DNA

<213> Homo sapiens

<400> 309 gttggttctc ctggatcttc accttaccaa ctgcagatct tgggactcat 50 cagcctcaat aattatatta aattaacacc atttgaaaga gaacattgtt 100 ttcatcatga atgctaataa agatgaaaga cttaaagcca gaagccaaga 150 ttttcacctt tttcctgctt tgatgatgct aagcatgacc atgttgtttc 200 ttccagtcac tggcactttg aagcaaaata ttccaagact caagctaacc 250 tacaaagact tgctgctttc aaatagctgt attccctttt tgggttcatc 300 agaaggactg gattttcaaa ctcttctctt agatgaggaa agaggcaggc 350 tgctcttggg agccaaagac cacatctttc tactcagtct ggttgactta 400 aacaaaaatt ttaagaagat ttattggcct gctgcaaagg aacgggtgga 450 attatgtaaa ttagctggga aagatgccaa tacagaatgt gcaaatttca 500 tcagagtact tcagccctat aacaaaactc acatatatgt gtgtggaact 550 ggagcatttc atccaatatg tgggtatatt gatcttggag tctacaagga 600 ggatattata ttcaaactag acacacataa tttggagtct ggcagactga 650 aatgtccttt cgatcctcag cagccttttg cttcagtaat gacagatgag 700 tacctctact ctggaacagc ttctgatttc cttggcaaag atactgcatt 750 cactcgatcc cttgggccta ctcatgacca ccactacatc agaactgaca 800 tttcagagca ctactggctc aatggagcaa aatttattgg aactttcttc 850 ataccagaca cctacaatcc agatgatgat aaaatatatt tcttctttcg 900 tgaatcatct caagaaggca gtacctccga taaaaccatc ctttctcgag 950 ttggaagagt ttgtaagaat gatgtaggag gacaacgcag cctgataaac 1000 aagtggacga cttttcttaa ggccagactg atttgctcaa ttcctggaag 1050 tgatggggca gatacttact ttgatgagct tcaagatatt tatttactcc 1100 ccacaagaga tgaaagaaat cctgtagtat atggagtctt tactacaacc 1150 agctccatct tcaaaggctc tgctgtttgt gtgtatagca tggctgacat 1200 cagagcagtt tttaatggtc catatgctca taaggaaagt gcagaccatc 1250 gttgggtgca gtatgatggg agaatteett atecaeggee tggtaeatgt 1300 ccaagcaaaa cctatgaccc actgattaag tccacccgag attttccaga 1350 tgatgtcatc agtttcataa agcggcactc tgtgatgtat aagtccgtat 1400 acccagttgc aggaggacca acgttcaaga gaatcaatgt ggattacaga 1450 ctgacacaga tagtggtgga tcatgtcatt gcagaagatg gccagtacga 1500 tgtaatgttt cttggaacag acattggaac tgtcctcaaa gttgtcagca 1550

tttcaaagga aaagtggaat atggaagagg tagtgctgga ggagttgcag 1600 atattcaagc actcatcaat catcttgaac atggaattgt ctctgaagca 1650 gcaacaattg tacattggtt cccgagatgg attagttcag ctctccttgc 1700 acagatgcga cacttatggg aaagcttgcg cagactgttg tcttgccaga 1750 gacccctact gtgcctggga tggaaatgca tgctctcgat atgctcctac 1800 ttctaaaagg agagctagac gccaagatgt aaaatatggc gacccaatca 1850 cccagtgctg ggacatcgaa gacagcatta gtcatgaaac tgctgatgaa 1900 aaggtgattt ttggcattga atttaactca acctttctgg aatgtatacc 1950 taaatcccaa caagcaacta ttaaatggta tatccagagg tcaggggatg 2000 agcatcgaga ggagttgaag cccgatgaaa gaatcatcaa aacggaatat 2050 gggctactga ttcgaagttt gcagaagaag gattctggga tgtattactg 2100 caaagcccag gagcacactt tcatccacac catagtgaag ctgactttga 2150 atgtcattga gaatgaacag atggaaaata cccagagggc agagcatgag 2200 gaggggcagg tcaaggatct attggctgag tcacggttga gatacaaaga 2250 ctacatccaa atccttagca gcccaaactt cagcctcgac cagtactgcg 2300 aacagatgtg gcacagggag aagcggagac agagaaacaa ggggggccca 2350 aagtggaagc acatgcagga aatgaagaag aaacgaaatc gaagacatca 2400 cagagacctg gatgagctcc ctagagctgt agccacgtag ttttctactt 2450 aatttaaaga aaagaattcc ttacctataa aaacattgcc ttctgttttg 2500 tatatccctt atagtaattc ataaatgctt cccatggagt tttgctaagg 2550 cacaagacaa taatctgaat aagacaatat gtgatgaata taagaaaggg 2600 caaaaaattc atttgaacca gttttccaag aacaaatctt gcacaagcaa 2650 agtataagaa ttatcctaaa aatagggggt ttacagttgt aaatgtttta 2700 tgttttgagt tttggaattt attgtcatgt aaatagttga gctaagcaag 2750 ccccgaattt gatagtgtat aaggtgcttt attccctcga atgtccatta 2800 agcatggaat ttaccatgca gttgtgctat gttcttatga acagatatat 2850 cattcctatt gagaaccagc taccttgtgg tagggaataa gaggtcagac 2900 acaaattaag acaactccca ttatcaacag gaactttctc agtgagccat 2950 tcactcctgg agaatggtat aggaatttgg agaggtgcat tatttctttc 3000 tggccactgg ggttaaattt agtgtactac aacattgatt tactgaaggg 3050 cactaatqtt tcccccagga tttctattga ctagtcagga gtaacaggtt 3100 cacagagaga agttggtgct tagttatgtg ttttttagag tatatactaa 3150 gctctacagg gacagaatgc ttaataaata ctttaataag atatgggaaa 3200 atattttaat aaaacaagga aaacataatg atgtataatg catcctgatg 3250 ggaaggcatg cagatgggat ttgttagaag acagaaggaa agacagccat 3300 aaattctggc tttggggaaa actcatatcc ccatgaaaag gaagaacaat 3350 cacaaataaa gtgagagtaa tgtaatggag ctcttttcac tagggtataa 3400 gtagctgcca atttgtaatt catctgttaa aaaaaatcta gattataaca 3450 aactgctagc aaaatctgag gaaacataaa ttcttctgaa gaatcatagg 3500 aaqaqtaqac attttattta taaccaatga tatttcagta tatattttct 3550 ctcttttaaa aaatatttat catactctgt atattatttc tttttactgc 3600 ctttattctc tcctgtatat tggattttgt gattatattt gagtgaatag 3650 gagaaaacaa tatataacac acagagaatt aagaaaatga catttctggg 3700 gaqtqqqqat atatatttqt tqaataacag aacgagtqta aaattttaac 3750 aacggaaagg gttaaattaa ctctttgaca tcttcactca accttttctc 3800 attgctgagt taatctgttg taattgtagt attgtttttg taatttaaca 3850 ataaataagc ctgctacatg t 3871

<210> 310

<211> 777

<212> PRT

<213> Homo sapiens

<400> 310

Met Asn Ala Asn Lys Asp Glu Arg Leu Lys Ala Arg Ser Gln Asp 1 5 10

Phe His Leu Phe Pro Ala Leu Met Met Leu Ser Met Thr Met Leu 20 25 30

Phe Leu Pro Val Thr Gly Thr Leu Lys Gln Asn Ile Pro Arg Leu 35 40 45

Lys Leu Thr Tyr Lys Asp Leu Leu Ser Asn Ser Cys Ile Pro 50 55 60

Phe Leu Gly Ser Ser Glu Gly Leu Asp Phe Gln Thr Leu Leu 65 70 75

Asp Glu Glu Arg Gly Arg Leu Leu Gly Ala Lys Asp His Ile

				80					85					90
Phe	Leu	Leu	Ser	Leu 95	Val	Asp	Leu	Asn	Lys 100	Asn	Phe	Lys	Lys	Ile 105
Tyr	Trp	Pro	Ala	Ala 110	Lys	Glu	Arg	Val	Glu 115	Leu	Cys	Lys	Leu	Ala 120
Gly	Lys	Asp	Ala	Asn 125	Thr	Glu	Cys	Ala	Asn 130	Phe	Ile	Arg	Val	Leu 135
Gln	Pro	Tyr	Asn	Lys 140	Thr	His	Ile	Tyr	Val 145	Cys	Gly	Thr	Gly	Ala 150
Phe	His	Pro	Ile	Cys 155	Gly	Tyr	Ile	Asp	Leu 160	Gly	Val	Tyr	Lys	Glu 165
Asp	Ile	Ile	Phe	Lys 170	Leu	Asp	Thr	His	Asn 175	Leu	Glu	Ser	Gly	Arg 180
Leu	Lys	Cys	Pro	Phe 185	Asp	Pro	Gln	Gln	Pro 190	Phe	Ala	Ser	Val	Met 195
Thr	Asp	Glu	Tyr	Leu 200	Tyr	Ser	Gly	Thr	Ala 205	Ser	Asp	Phe	Leu	Gly 210
Lys	Asp	Thr	Ala	Phe 215	Thr	Arg	Ser	Leu	Gly 220	Pro	Thr	His	Asp	His 225
His	Tyr	Ile	Arg	Thr 230	Asp	Ile	Ser	Glu	His 235	Tyr	Trp	Leu	Asn	Gly 240
Ala	Lys	Phe	Ile	Gly 245	Thr	Phe	Phe	Ile	Pro 250	Asp	Thr	Tyr	Asn	Pro 255
Asp	Asp	Asp	Lys	11e 260		Phe	Phe	Phe	Arg 265	Glu	Ser	Ser	Gln	Glu 270
Gly	Ser	Thr	Ser	Asp 275		Thr	Ile	Leu	Ser 280	Arg	Val	Gly	Arg	Val 285
Cys	Lys	Asn	Asp	Val 290		Gly	Gln	Arg	Ser 295	Leu	Ile	Asn	Lys	Trp 300
Thr	Thr	Phe	Leu	Lys 305	Ala	Arg	Leu	Ile	Cys 310	Ser	Ile	Pro	Gly	Ser 315
Asp	Gly	Ala	Asp	Thr 320		Phe	Asp	Glu	Leu 325		Asp	Ile	Tyr	Leu 330
Leu	Pro	Thr	Arg	Asp 335	Glu	Arg	Asn	Pro	Val 340	. Val	Туг	Gly	v Val	Phe 345
Thr	Thr	Thr	Ser	Ser 350		Phe	Lys	Gly	Ser 355	Ala	val	. Cys	: Val	Tyr 360
Ser	Met	: Ala	. Asp	365	e Arç	, Ala	Val	. Phe	370	Gly	Pro	Tyr	Ala	His 375

Lys	Glu	Ser	Ala	Asp 380	His	Arg	Trp	Val	Gln 385	Tyr	Asp	Gly	Arg	Ile 390
Pro	Tyr	Pro	Arg	Pro 395	Gly	Thr	Суз	Pro	Ser 400	Lys	Thr	Tyr	Asp	Pro 405
Leu	Ile	Lys	Ser	Thr 410	Arg	Asp	Phe	Pro	Asp 415	Asp	Val	Ile	Ser	Phe 420
Ile	Lys	Arg	His	Ser 425	Val	Met	Tyr	Lys	Ser 430	Val	Tyr	Pro	Val	Ala 435
Gly	Gly	Pro	Thr	Phe 440	Lys	Arg	Ile	Asn	Val 445	Asp	Tyr	Arg	Leu	Thr 450
Gln	Ile	Val	Val	Asp 455	His	Val	Ile	Ala	Glu 460	Asp	Gly	Gln	Tyr	Asp 465
Val	Met	Phe	Leu	Gly 470	Thr	Asp	Ile	Gly	Thr 475	Val	Leu	Lys	Val	Val 480
Ser	Ile	Ser	Lys	Glu 485	Lys	Trp	Asn	Met	Glu 490	Glu	Val	Val	Leu	Glu 495
Glu	Leu	Gln	Ile	Phe 500	Lys	His	Ser	Ser	Ile 505	Ile	Leu	Asn	Met	Glu 510
Leu	Ser	Leu	Lys	Gln 515	Gln	Gln	Leu	Tyr	Ile 520	Gly	Ser	Arg	Asp	Gly 525
Leu	Val	Gln	Leu	Ser 530	Leu	His	Arg	Cys	Asp 535	Thr	Tyr	Gly	Lys	Ala 540
Cys	Ala	Asp	Cys	Cys 545		Ala	Arg	Asp	Pro 550	Tyr	Cys	Ala	Trp	Asp 555
Gly	Asn	Ala	Cys	Ser 560		Tyr	Ala	Pro	Thr 565	Ser	Lys	: Arg	, Arg	Ala 570
Arg	Arg	Glr	a Asp	Val 575	Lys	Tyr	Gly	Asp	Pro 580	Ile	Thr	Glr	n Cys	Trp 585
Asp	Ile	Glu	ı Asp	Ser 590	lle	e Ser	His	Glu	Thr 595	Ala	a Asp	Glu	ı Lys	Val 600
Ile	Phe	e Gly	y Ile	e Glu 605		e Asn	Ser	Thr	Phe 610	e Leu	ı Glu	ı Cys	₃ Ile	Pro 615
Lys	Ser	Glr	n Glr	n Ala 620	a Thi	: Ile	. Lys	Trp	625	: 11e	e Glr	a Arg	g Ser	Gly 630
Asp	Glu	ı His	s Ar	g Glu 635		ı Lev	Lys	s Pro	640	o Glu	ı Arç	g Ile	e Ile	E Lys 645
Thr	Glu	а Ту:	r Gl	y Let 650		ı Ile	e Arg	g Ser	Le: 65!	ı Glı 5	n Ly:	s Ly:	s Asp	Ser 660
Gly	Met	Ту	r Ty	r Cys	s Lys	s Ala	a Glr	ı Glı	ı His	s Th	r Ph	e Il	e His	s Thr

Ile Val Lys Leu Thr Leu Asn Val Ile Glu Asn Glu Gln Met Glu 680 685 690

Asn Thr Gln Arg Ala Glu His Glu Glu Gly Gln Val Lys Asp Leu 700 705

Leu Ala Glu Ser Arg Leu Arg Tyr Lys Asp Tyr Ile Gln Ile Leu 710 715 720

Ser Ser Pro Asn Phe Ser Leu Asp Gln Tyr Cys Glu Gln Met Trp
725 730 735

His Arg Glu Lys Arg Arg Gln Arg Asn Lys Gly Gly Pro Lys Trp 740 745 750

Lys His Met Gln Glu Met Lys Lys Lys Arg Asn Arg Arg His His 755 760 765

Arg Asp Leu Asp Glu Leu Pro Arg Ala Val Ala Thr 770 775

<210> 311

<211> 25

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-25

<223> Synthetic construct.

<400> 311

caacgcagcc gtgataaaca agtgg 25

<210> 312

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 312

gcttggacat gtaccaggcc gtgg 24

<210> 313

<211> 45

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-45

<223> Synthetic construct.

- <400> 313 ggccagactg atttgctcaa ttcctggaag tgatggggca gatac 45
- <210> 314
- <211> 3934
- <212> DNA
- <213> Homo sapiens
- <400> 314 ccctgacctc cctgagccac actgagctgg aagccgcaga ggtcatcctg 50 gagcatgccc accgcgggga gcagacaacc tcccaggtaa gctgggagca 100 ctcagcagtt tcagccagca gggactgatc aggtgtgtgt cctggagtgg 200 ggagcagaag gcgtggctgg caagagtggc ctggagaaag aggttcagcg 250 cttgaccagc cgagctgccc gtgactacaa gatccagaac catgggcatc 300 gggtgaggtg ggggggcaca ggtgtcatgt gcaccttctt gtctcagcaa 350 gaagagctga gagagggat cttggagcca ttgagggtgt catggagcta 400 cagaggggag ggaaaggtat tttaaggtaa cagtgtggca caatagttaa 450 gagcacagtt tttggagcta gaccgacata ggttcaaatt ctcttctgtt 500 gcttcctagt tctgtagccc caggtaaggg agtgacttaa cctctctgga 550 cttcaatttc ctcatcacta aagtagggcc aataatagca cccacctcat 600 agggaagatt aaatgacata atgtatgtga tgcaactagc aaagtaccag 650 teccatagta agteatgeee caeagtattt ecaeeceaeee etgttetetg 700 ccttcccaac caggtactgc aacgactgga gcagaggcgg cagcaggctt 750 cagagcggga ggctccaagc atagaacaga ggttacagga agtgcgagag 800 agcatcegee gggcacaggt gagccaggtg aagggggëtg eeeggetgge 850 cctgctgcag ggggctggct tagatgtgga gcgctggctg aagccagcca 900 tgacccaggc ccaggatgag gtggagcagg agcggcggct cagtgaggct 950 cggctgtccc agagggacct ctctccaacc gctgaggatg ctgagctttc 1000 tgactttgag gaatgtgagg agacgggaga gctctttgag gagcctgccc 1050 cccaageeet ggecacgagg geeeteeet geeetgeaca egtggtattt 1100 cgctatcagg cagggcgtga ggatgagctg acaatcacgg agggtgagtg 1150 gctggaggtc atagaggagg gagatgctga cgaatgggtc aaggctcgga 1200 accagcacgg cgaggtaggc tttgtccctg agcgatatct caacttcccg 1250

gacetetece teccagagag cagecaagae agtgacaate eetgegggge 1300 agageceaca geatteetgg cacaggeest gtacagetae aceggaeaga 1350 gtgcagagga gctgagcttc cctgaggggg cactcatccg tctgctgccc 1400 cgggcccaag atggagtaga tgacggcttc tggaggggag aatttggggg 1450 ccgtgttggg gtcttcccct ccctgctggt ggaagagctg cttggccccc 1500 cagggccacc tgaactctct gaccctgaac agatgctgcc gtccccttct 1550 cctcccagct tctccccacc tgcacctacc tctgtgttgg atgggccccc 1600 tgcacctgtc ctgcctgggg acaaagccct ggacttccct gggttcctgg 1650 acatgatggc acctcgactc aggccgatgc gtccaccacc tcccccgccg 1700 gctaaagccc cggatcctgg ccacccagat cccctcacct gaaggccagg 1750 gaageettga eeeccagtga tgetgetgte eetatettea agetgteaga 1800 ccacaccatc aatgatccag agcaacacag ccaaaagctg gaatcgccct 1850 tatttccacc ctcacctcca agggtggaaa cttgcccctt cccatttcta 1900 gagetggaac ceacteettt tttteeeatt gttetateat etetaggace 1950 ggaactacta ccttctcttc tgtcatgacc ctatctaggg tggtgaaatg 2000 cctgaaatct ctggggctgg aaaccatcca tcaaggtctc tagtagttct 2050 ggcccacctc tttccccacc ctggctccat gacccacccc actctggatg 2100 ccagggtcac tggggttggg ctggggagag gaacaggcct tgggaatcag 2150 gagctggagc caggatgcga agcagctgta atggtctgag cggatttatt 2200 gacaatgaat aaagggcacg aaggccaggc cagggcctgg gcctcttgtg 2250 ctaagagggc agggggccta cggtgctatt gctttagggg cccaccacgg 2300 gcaggggcct gctcccagct gccacgctct atcatatgga gcgaggtgtt 2350 ggggaaggcg gggcaggcag cctgttgcag gcaggggaag gagaagagac 2400 tgaggggctg tgacctctcc tgaggccccc agcctgagac tgtgcaactc 2450 caggtggaag tagagctggt ccctcagctg gggggcagtg ctgtccagtg 2500 gaggggaggg ctttcacgcc cacccacccc ctggccctgc cagctggtag 2550 tccatcagca caatgaagga gacttggaga agaggaagaa taacactgtt 2600 gcttcctgtt caagctgtgt ccagcttttc ccctggggct ccaggacctt 2650 ccctacctcc accaccaaac caagggattt atagcaaagg ctaagcctgc 2700 agtttactct gggggttcag ggagccgaaa ggcttaaata gtttaagtag 2750 gtgatgggaa gatgagatta cctcatttag ggctcaggca gactcacctc 2800 tcaacaatga gagaccagga gtaggtccta tcagtgcccc ccagagtaga 2900 gagcaataag agcccagccc agtgcagtcc cggctgtgtt ttcctacctg 2950 gtgatcagaa gtgtctggtt tgcttggctg cccatttgcc tcttgagtgg 3000 gcagccctgg gcttgggccc ctccctccgg ccctcagtgt tggctctgca 3050 gaagetetgg ggtteeette aagtgeacga ggggttagge tgetgteeet 3100 gagtcctcca ttctgtactg gggggctggc taggacctgg ggctgtggcc 3150 tctcaggggg cagcctctcc atggcaggca tccctgcctt gggctgccct 3200 cccccagacc cctgaccacc ccctgggtcc tgtcccccac cagagcccca 3250 gctcctgtct gtgggggagc catcacggtg ttcgtgcagt ccatagcgct 3300 tctcaatgtg tgtcacccgg aacctgggag gggagggaac actggggttt 3350 aggaccacaa ctcagaggct gcttggccct cccctctgac cagggacatc 3400 ctgagtttgg tggctacttc cctctggcct aaggtagggg aggccttctc 3450 agattgtggg gcacattgtg tagcctgact tctgctggag ctcccagtcc 3500 aggaggaaag agccaaggcc cacttttggg atcaggtgcc tgatcactgg 3550 geceetace teageceee ttteeetgga geacetgeee cacetgeeca 3600 gagcgtccct gacggacaag tggaggcctc ttgctgcggc tgcaatggat 3700 gcaaggggct gcagagccca ggtgcactgt gtgatgatgg gagggggctc 3750 cgtcctgcag gctggaggtg gcatccacac tggacagcag gaggagggga 3800 gtgagggtaa catttccatt tcccttcatg ttttgtttct tacgttcttt 3850 cagcatgctc cttaaaaccc cagaagcccc aatttcccca agccccattt 3900 tttcttgtct ttatctaata aactcaatat taag 3934

<210> 315

<211> 370

<212> PRT

<213> Homo sapiens

<400> 315

Met Gln Leu Ala Lys Tyr Gln Ser His Ser Lys Ser Cys Pro Thr 1 5 10

Val	Phe	Pro	Pro	Thr 20	Pro	Val	Leu	Cys	Leu 25	Pro	Asn	Gln	Val	Leu 30
Gln	Arg	Leu	Glu	Gln 35	Arg	Arg	Gln	Gln	Ala 40	Ser	Glu	Arg	Glu	Ala 45
Pro	Ser	Ile	Glu	Gln 50	Arg	Leu	Gln	Glu	Val 55	Arg	Glu	Ser	Ile	Arg 60
Arg	Ala	Gln	Val	Ser 65	Gln	Val	Lys	Gly	Ala 70	Ala	Arg	Leu	Ala	Leu 75
Leu	Gln	Gly	Ala	Gly 80	Leu	Asp	Val	Glu	Arg 85	Trp	Leu	Lys	Pro	Ala 90
Met	Thr	Gln	Ala	Gln 95	Asp	Glu	Val	Glu	Gln 100	Glu	Arg	Arg	Leu	Ser 105
Glu	Ala	Arg	Leu	Ser 110	Gln	Arg	Asp	Leu	Ser 115	Pro	Thr	Ala	Glu	Asp 120
Ala	Glu	Leu	Ser	Asp 125	Phe	Glu [·]	Glu	Cys	Glu 130	Glu	Thr	Gly	Glu	Leu 135
Phe	Glu	Glu	Pro	Ala 140		Gln	Ala	Leu	Ala 145	Thr	Arg	Ala	Leu	Pro 150
Cys	Pro	Ala	His	Val 155	Val	Phe	Arg	Tyr	Gln 160	Ala	Gly	Arg	Glu	Asp 165
Glu	Leu	Thr	Ile	Thr 170	Glu	Gly	Glu	Trp	Leu 175	Glu	Val	Ile	: Glu	Glu 180
Gly	Asp	Ala	Asp	Glu 185		Val	Lys	Ala	Arg 190	Asn	Gln	His	: Gly	Glu 195
Val	Gly	Phe	· Val	Pro 200	Glu	Arg	Tyr	Leu	Asn 205	Phe	Pro	Asp	Leu	Ser 210
Let	ı Pro	Glu	ser	Ser 215	Glr	Asp	Ser	Asp	220	Pro	су Су	s Gly	, Ala	Glu 225
Pro	Thr	Ala	n Phe	Leu 230	ı Ala	a Glr	n Ala	a Lev	1 Ty1 235	Ser	туз	Thi	c Gly	Gln 240
Sei	c Ala	a Glu	ı Glu	Leu 245		r Phe	e Pro	o Glu	250	y Ala	a Lei	Il د	e Arç	J Leu 255
Le	ı Pro	Arq	g Ala	Glr 260		o Gly	y Val	l Asp	26!	o Gly	y Phe	e Trp	o Arg	g Gly 270
Gl	ı Phe	e Gly	y Gly	275		l Ģly	y Vai	l Phe	e Pro 280	o Se:	r Le	u Le	u Val	l Glu 285
Glı	u Lei	ı Lei	u Gly	/ Pro 290		o Gly	y Pr	o Pro	o Gl 29	u Lei 5	u Se	r As	p Pro	o Glu 300
Gl	n Me	t Le	u Pro	Se:	r Pr	o Se:	r Pr	o Pr	o Se	r Ph	e Se	r Pr	o Pro	o Ala

305							310						315			
Pro	Thr	Ser	Val	Leu 320	Asp	Gly	Pro	Pro	Ala 325	Pro	Val	Leu	Pro	Gly 330		

Asp Lys Ala Leu Asp Phe Pro Gly Phe Leu Asp Met Met Ala Pro 335 340 345

Arg Leu Arg Pro Met Arg Pro Pro Pro Pro Pro Pro Ala Lys Ala 350 355

Pro Asp Pro Gly His Pro Asp Pro Leu Thr 365

<210> 316

<211> 4407

<212> DNA

<213> Homo sapiens

<400> 316 cacagggaga cccacagaca catatgcacg agagagacag aggaggaaag 50 agacagagac aaaggcacag cggaagaagg cagagacagg gcaggcacag 100 aagcggccca gacagagtcc tacagaggga gaggccagag aagctgcaga 150 agacacaggc agggagagac aaagatccag gaaaggaggg ctcaggagga 200 gagtttggag aagccagacc cctgggcacc tctcccaagc ccaaggacta 250 agttttctcc atttccttta acggtcctca gcccttctga aaactttgcc 300 tctgaccttg gcaggagtcc aagcccccag gctacagaga ggagctttcc 350 aaagctaggg tgtggaggac ttggtgccct agacggcctc agtccctccc 400 agctgcagta ccagtgccat gtcccagaca ggctcgcatc ccgggagggg 450 cttggcaggg cgctggctgt ggggagccca accctgcctc ctgctcccca 500 ttgtgccgct ctcctggctg gtgtggctgc ttctgctact gctggcctct 550 ctcctgccct cagcccggct ggccagcccc ctcccccggg aggaggagat 600 cgtgtttcca gagaagctca acggcagcgt cctgcctggc tcgggcgccc 650 ctgccaggct gttgtgccgc ttgcaggcct ttggggagac gctgctacta 700 gagetggage aggaeteegg tgtgeaggte gaggggetga eagtgeagta 750 cctgggccag gcgcctgagc tgctgggtgg agcagagcct ggcacctacc 800 tgactggcac catcaatgga gatccggagt cggtggcatc tctgcactgg 850 gatgggggag ccctgttagg cgtgttacaa tatcgggggg ctgaactcca 900

cctccagccc ctggagggag gcacccctaa ctctgctggg ggacctgggg 950

ctcacatcct acgccggaag agtcctgcca gcggtcaagg tcccatgtgc 1000 aacgtcaagg ctcctcttgg aagccccagc cccagacccc gaagagccaa 1050 gcgctttgct tcactgagta gatttgtgga gacactggtg gtggcagatg 1100 acaagatggc cgcattccac ggtgcggggc taaagcgcta cctgctaaca 1150 gtgatggcag cagcagccaa ggccttcaag cacccaagca tccgcaatcc 1200 tgtcagcttg gtggtgactc ggctagtgat cctggggtca ggcgaggagg 1250 ggccccaagt ggggcccagt gctgcccaga ccctgcgcag cttctgtgcc 1300 tggcagcggg gcctcaacac ccctgaggac tcgggccctg accactttga 1350 cacagocatt ctgtttaccc gtcaggacct gtgtggagtc tccacttgcg 1400 acacgctggg tatggctgat gtgggcaccg tctgtgaccc ggctcggagc 1450 tgtgccattg tggaggatga tgggctccag tcagccttca ctgctgctca 1500 tgaactgggt catgtcttca acatgctcca tgacaactcc aagccatgca 1550 tcagtttgaa tgggcctttg agcacctctc gccatgtcat ggcccctgtg 1600 atggctcatg tggatcctga ggagccctgg tccccctgca gtgcccgctt 1650 catcactgac ttcctggaca atggctatgg gcactgtctc ttagacaaac 1700 cagaggetee attgeatetg cetgtgaett teeetggeaa ggaetatgat 1750 gctgaccgcc agtgccagct gaccttcggg cccgactcac gccattgtcc 1800 acagetgeeg eegeeetgtg etgeeetetg gtgetetgge eaceteaatg 1850 gccatgccat gtgccagacc aaacactcgc cctgggccga tggcacaccc 1900 tgcgggcccg cacaggcctg catgggtggt cgctgcctcc acatggacca 1950 gctccaggac ttcaatattc cacaggctgg tggctggggt ccttggggac 2000 catggggtga ctgctctcgg acctgtgggg gtggtgtcca gttctcctcc 2050 cgagactgca cgaggcctgt cccccggaat ggtggcaagt actgtgaggg 2100 ccgccgtacc cgcttccgct cctgcaacac tgaggactgc ccaactggct 2150 cagccctgac cttccgcgag gagcagtgtg ctgcctacaa ccaccgcacc 2200 gacctettea agagetteee agggeeeatg gactgggtte etegetaeae 2250 aggegtggee ecceaggace agtgeaaact cacetgeeag geeegggeae 2300 tgggctacta ctatgtgctg gagccacggg tggtagatgg gaccccctgt 2350 tecceggaca getecteggt etgtgteeag ggeegatgea tecatgetgg 2400 ctgtgatcgc atcattggct ccaagaagaa gtttgacaag tgcatggtgt 2450 gcggagggga cggttctggt tgcagcaagc agtcaggctc cttcaggaaa 2500 ttcaggtacg gatacaacaa tgtggtcact atccccgcgg gggccaccca 2550 cattettgte eggeageagg gaaaceetgg ecaeeggage atetaettgg 2600 ccctgaagct gccagatggc tcctatgccc tcaatggtga atacacgctg 2650 atgecetece ceacagatgt ggtactgeet ggggeagtea gettgegeta 2700 cageggggee actgeageet cagagacaet gteaggeeat gggeeaetgg 2750 cccagccttt gacactgcaa gtcctagtgg ctggcaaccc ccaggacaca 2800 cgcctccgat acagcttctt cgtgccccgg ccgacccctt caacgccacg 2850 ccccactccc caggactggc tgcaccgaag agcacagatt ctggagatcc 2900 ttcggcggcg cccctgggcg ggcaggaaat aacctcacta tcccggctgc 2950 cctttctggg caccggggcc tcggacttag ctgggagaaa gagagagctt 3000 ctgttgctgc ctcatgctaa gactcagtgg ggaggggctg tgggcgtgag 3050 acctgcccct cctctctgcc ctaatgcgca ggctggccct gccctggttt 3100 cctgccctgg gaggcagtga tgggttagtg gatggaaggg gctgacagac 3150 agcectecat etaaactgee eeetetgeee tgegggteae aggagggagg 3200 gggaaggcag ggagggcctg ggccccagtt gtatttattt agtatttatt 3250 cacttttatt tagcaccagg gaaggggaca aggactaggg tcctggggaa 3300 cctgacccct gacccctcat agccctcacc ctggggctag gaaatccagg 3350 gtggtggtga taggtataag tggtgtgtgt atgcgtgtgt gtgtgtgtgt 3400 gaaaatgtgt gtgtgcttat gtatgaggta caacctgttc tgctttcctc 3450 ttcctgaatt ttattttttg ggaaaagaaa agtcaagggt agggtgggcc 3500 ttcagggagt gagggattat ctttttttt ttttctttct ttctttcttt 3550 tttttttttg agacagaatc tcgctctgtc gcccaggctg gagtgcaatg 3600 gcacaatete ggeteactge atecteegee teeegggtte aagtgattet 3650 catgcctcag cctcctgagt agctgggatt acaggctcct gccaccacgc 3700 ccagctaatt tttgttttgt tttgtttgga gacagagtct cgctattgtc 3750 accagggctg gaatgatttc agctcactgc aaccttcgcc acctgggttc 3800 cagcaattct cctgcctcag cctcccgagt agctgagatt ataggcacct 3850

accaccacge ceggetaatt tttgtattt tagtagagae ggggttteae 3900 catgttggee aggetggtet egaacteetg acettaggtg atceaetege 3950 etteatetee caaagtgetg ggattacagg egtgageeae egtgeetgge 4000 caegeecaae taatttttgt attttagta gagacagggt tteaecatgt 4050 tggeeagget getettgaae teetgaeete aggtaatega eetgeetegg 4100 ceteecaaag tgetgggatt acaggtgtga geeaecaege eeggtaeata 4150 tttttaaat tgaattetae tatttatgt atcettttgg agteagaeag 4200 atgtggttee atcetaaete eatgteeteg ageattagat tteeteatttg 4250 ceaataataa taeeteeett agaagtttgt tgtgaggatt aaataatgta 4300 aataaagaae tageataaea eecaaaaaa aaaaaaaaa aaaaaaaaa 4400 aaggaaa 4407

<210> 317

<211> 837

<212> PRT

<213> Homo sapiens

<400> 317

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg
1 5 10 15

Trp Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro 20 25 30

Leu Ser Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu 35 40 45

Leu Pro Ser Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu 50 55 60

Ile Val Phe Pro Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser 65 70 75

Thr Leu Leu Glu Leu Glu Gln Asp Ser Gly Val Gln Val Glu 95 100

Gly Leu Thr Val Gln Tyr Leu Gly Gln Ala Pro Glu Leu Leu Gly
110 115 120

Gly Ala Glu Pro Gly Thr Tyr Leu Thr Gly Thr Ile Asn Gly Asp 125 130 135

Pro Glu Ser Val Ala Ser Leu His Trp Asp Gly Gly Ala Leu Leu

				140					145	5					150
Gly	Val	Leu	Gln	Tyr 155	Arg	Gly	Ala	Glu	Let 16	u F 0	lis :	Leu	Gln	Pro	Leu 165
Glu	Gly	Gly	Thr	Pro 170	Asn	Ser	Ala	Gly	Gl; 17	у I 5	Pro	Gly	Ala	His	Ile 180
Leu	Arg	Arg	Lys	Ser 185	Pro	Ala	Ser	Gly	Gl 19	n (Gly	Pro	Met	Суз	Asn 195
Val	Lys	Ala	Pro	Leu 200	Gly	Ser	Pro	Ser	Pr 20	5	Arg	Pro	Arg	Arg	Ala 210
Lys	Arg	Phe	Ala	Ser 215	Leu	Ser	Arg	Phe	Va 22	10	Glu	Thr	Leu	Val	Val 225
Ala	Asp	Asp	Lys	Met 230	Ala	Ala	Phe	His	G1 23	. y 35	Ala	Gly	Leu	Lys.	Arg 240
Tyr	Leu	Leu	Thr	Val 245	Met	Ala	Ala	Ala	Al 25	La 50	Lys	Ala	Phe	Lys	His 255
Pro	Ser	Ile	Arg	Asn 260	Pro	Val	Ser	Leu	v Va 26	al 65	Val	Thr	Arg	Leu	Val 270
Ile	Leu	Gly	Ser	Gly 275	Glu	Glu	Gly	Pro	G. 28	ln 80	Val	Gly	Pro	Ser	Ala 285
Ala	Gln	Thr	Leu	Arg 290	Ser	Phe	e Cys	s Ala	a T:	rp 95	Gln	Arg	Gly	Leu	Asn 300
Thr	Pro	Glu	ı Asp	Ser 305	Gly	Pro	Asp) Hi	5 P	he 10	Asp	Thr	Ala	Ile	Leu 315
Ph∈	. Thi	Arç	g Glr	1 Asp	Leu)	ı Cys	s Gly	y Va	1 S 3	er 25	Thr	Cys	s Asp	Thr	330
Gly	/ Met	. Ala	a Asp	val 335	Gly	/ Thi	r Val	l Cy	s A 3	sp 40	Pro	Ala	a Arç	g Ser	Cys 345
Ala	a Ile	e Vai	l Glu	a Asp 350	o Asp	o Gl	y Le	u Gl	n S 3	er 155	Äla	Ph€	e Thi	c Ala	Ala 360
His	s Gl	u Le	u Gl	у Нія 36	s Vai	l Ph	e As:	n Me	t I	.eu 370	His	s Asp	o Ası	n Sei	1 Lys 375
Pro	э Су	s Il	e Se	r Lei 38	u As: 0	n Gl	y Pr	o Le	u S	Ser 385	Thi	s Se	r Ar	g His	s Val 390
Ме	t Al	a Pr	o Va	1 Me	t Al 5	a Hi	s Va	l As	p E	erc 100	Glu	ı Gl	u Pr	o Tr	p Ser 405
Pr	о Су	s Se	r Al	a Ar 41		e Il	e Th	r As	sp I	Phe	e Lei	ı As	p As	n Gl	y Tyr 420
Gl	у Ні	s Cy	s Le	u Le 42	u As 5	р Гу	's Pr	:o G]	Lu I	Ala 430	a Pro	o Le	u Hi	s Le	u Pro 435

Val	Thr	Phe	Pro	Gly 440	Lys	Asp	Tyr	Asp	Ala 445	Asp	Arg	Gln	Cys	Gln 450
Leu	Thr	Phe	Gly	Pro 455	Asp	Ser	Arg	His	Cys 460	Pro	Gln	Leu	Pro	Pro 465
Pro	Cys	Ala	Ala	Leu 470	Trp	Cys	Ser	Gly	His 475	Leu	Asn	Gly	His	Ala 480
Met	Cys	Gln	Thr	Lys 485	His	Ser	Pro	Trp	Ala 490	Asp	Gly	Thr	Pro	Cys 495
Gly	Pro	Ala	Gln	Ala 500	Cys	Met	Gly	Gly	Arg 505	Cys	Leu	His	Met	Asp 510
Gln	Leu	Gln	Asp	Phe 515	Asn	Ile	Pro	Gln	Ala 520	Gly	Gly	Trp	Gly	Pro 525
Trp	Gly	Pro	Trp	Gly 530	Asp	Cys	Ser	Arg	Thr 535	Cys	Gly	Gly	Gly	Val 540
Gln	Phe	Ser	Ser	Arg 545	Asp	Cys	Thr	Arg	Pro 550	Val	Pro	Arg	Asn	Gly 555
Gly	Lys	Tyr	Cys	Glu 560	Gly	Arg	Arg	Thr	Arg 565	Phe	Arg	Ser	Cys	Asn 570
Thr	Glu	Asp	Cys	Pro 575	Thr	Gly	Ser	Ala	Leu 580	Thr	Phe	Arg	Glu	Glu 585
Gln	Cys	Ala	Ala	Tyr 590	Asn	His	Arg	Thr	Asp 595	Leu	Phe	Lys	Ser	Phe 600
Pro	Gly	Pro	Met	Asp 605	Trp	Val	Pro	Arg	Tyr 610	Thr	Gly	Val	Ala	Pro 615
Gln	Asp	Gln	Суз	Lys 620	Leu	Thr	Суз	Gln	Ala 625	Arg	Ala	Leu	Gly	Tyr 630
Tyr	Tyr	Val	Leu	Glu 635	Pro	Arg	Val	Val	Asp 640	Gly	Thr	Pro	Cys	Ser 645
Pro	Asp	Ser	Ser	Ser 650		Cys	Val	Gln	Gly 655	Arg	Cys	Ile	His	Ala 660
Gly	Cys	Asp	Arg	Ile 665		Gly	Ser	Lys	Lys 670	Lys	Phe	Asp	Lys	Cys 675
Met	Val	Cys	Gly	Gly 680		Gly	Ser	Gly	Cys 685		Lys	Gln	Ser	Gly 690
Ser	Phe	Arg	Lys	Phe 695		Туг	Gly	Tyr	Asn 700		Val	Val	Thr	Ile 705
Pro	Ala	Gly	Ala	Thr 710	His	Ile	e Leu	Val	Arg 715		Gln	Gly	Asn	Pro 720
Gly	His	Arg	Ser	Ile	Tyr	Leu	ı Ala	Leu	Lys	Leu	Pro	Asp	Gly	Ser

			725					730					735
Tyr Ala	Leu	Asn	Gly 740	Glu	Tyr	Thr	Leu	Met 745	Pro	Ser	Pro	Thr	Asp 750
Val Val	. Leu	Pro	Gly 755	Ala	Val	Ser	Leu	Arg 760	Tyr	Ser	Gly	Ala	Thr 765
Ala Ala	a Ser	Glu	Thr 770	Leu	Ser	Gly	His	Gly 775	Pro	Leu	Ala	Gln	Pro 780
Leu Th	Leu	Gln	Val 785	Leu	Val	Ala	Gly	Asn 790	Pro	Gln	Asp	Thr	Arg 795
Leu Ar	g Tyr	Ser	Phe 800	Phe	Val	Pro	Arg	Pro 805	Thr	Pro	Ser	Thr	Pro 810
Arg Pr	o Thr	Pro	Gln 815	Asp	Trp	Leu	His	Arg 820	Arg	Ala	Gln	Ile	Leu 825
Glu Il	e Leu	Arg	Arg 830	Arg	Pro	Trp	Ala	Gly 835	Arg	Lys			
<210> 318 <211> 23 <212> DNA <213> Artificial													
<220> <221> Artificial Sequence <222> 1-23 <223> Synthetic construct.													
<400> 3 ccctga		gcca	gatg	gc t	cc 2	3							
<210> 3 <211> 2 <212> D <213> A	4 NA	.cial											
<220> <221> Artificial Sequence <222> 1-24 <223> Synthetic construct.													
<400> 3 ctgtgc		cggt	gcag	сс а	gtc	24							
<210> 3 <211> 4 <212> D <213> A	3 NA	icial											
<220> <221> A		icial	. Sec	luenc	e								

<222> 1-43 <223> Synthetic construct. <400> 320 ccacagatgt ggtactgcct ggggcagtca gcttgcgcta cag 43

<210> 321

<211> 1197

<212> DNA

<213> Homo sapiens

<400> 321 cagcagtggt ctctcagtcc tctcaaagca aggaaagagt actgtgtgct 50 gagagaccat ggcaaagaat cctccagaga attgtgaaga ctgtcacatt 100 ctaaatgcag aagcttttaa atccaagaaa atatgtaaat cacttaagat 150 ttgtggactg gtgtttggta tcctggccct aactctaatt gtcctgtttt 200 gggggagcaa gcacttctgg ccggaggtac ccaaaaaagc ctatgacatg 250 gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300 tgatcctgtg accagaactg aaatattcag aagcggaaat ggcactgatg 350 aaacattgga agtgcacgac tttaaaaacg gatacactgg catctacttc 400 gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450 attttctgaa ccagaagagg aaatagatga gaatgaagaa attaccacaa 500 ctttctttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550 aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600 gaccatgtat tggatcaatc ccactctaat atcagtttct gagttacaag 650 actttgagga ggagggagaa gatcttcact ttcctgccaa cgaaaaaaaa 700 gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa 750 gacccgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800 atactgaaaa tggaatagaa tttgatccca tgctggatga gagaggttat 850 tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900 acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950 tcatctgtcg tgtcatcatg ccttgtaact ggtgggtggc ccgcatgctg 1000 gggagggtct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050 atataataaa tgcatgctat tcaatgaatt tctgcctatg aggcatctgg 1100 cccctggtag ccagctctcc agaattactt gtaggtaatt cctctcttca 1150

<210> 322

<400> 322

Met Ala Lys Asn Pro Pro Glu Asn Cys Glu Asp Cys His Ile Leu 1 5 10 15

Asn Ala Glu Ala Phe Lys Ser Lys Lys Ile Cys Lys Ser Leu Lys 20 25 30

Ile Cys Gly Leu Val Phe Gly Ile Leu Ala Leu Thr Leu Ile Val 35 40 45

Leu Phe Trp Gly Ser Lys His Phe Trp Pro Glu Val Pro Lys Lys $50 \hspace{1cm} 55 \hspace{1cm} 60$

Ala Tyr Asp Met Glu His Thr Phe Tyr Ser Asn Gly Glu Lys Lys 65 70 75

Lys Ile Tyr Met Glu Ile Asp Pro Val Thr Arg Thr Glu Ile Phe 80 85 90

Arg Ser Gly Asn Gly Thr Asp Glu Thr Leu Glu Val His Asp Phe $95\,$ $100\,$ $105\,$

Lys Asn Gly Tyr Thr Gly Ile Tyr Phe Val Gly Leu Gln Lys Cys 110 115 120

Glu Glu Glu Ile Asp Glu Asn Glu Glu Ile Thr Thr Thr Phe Phe
140 145 150

Glu Gln Ser Val Ile Trp Val Pro Ala Glu Lys Pro Ile Glu Asn 155 160 165

Arg Asp Phe Leu Lys Asn Ser Lys Ile Leu Glu Ile Cys Asp Asn 170 175

Val Thr Met Tyr Trp Ile Asn Pro Thr Leu Ile Ser Val Ser Glu 185 190 195

Leu Gln Asp Phe Glu Glu Glu Gly Glu Asp Leu His Phe Pro Ala 200 205 210

Asn Glu Lys Lys Gly Ile Glu Gln Asn Glu Gln Trp Val Val Pro

Gln Val Lys Val Glu Lys Thr Arg His Ala Arg Gln Ala Ser Glu

Glu Glu Leu Pro Ile Asn Asp Tyr Thr Glu Asn Gly Ile Glu Phe 245 250 255

Asp Pro Met Leu Asp Glu Arg Gly Tyr Cys Cys Ile Tyr Cys Arg 260 265 270 Arg Gly Asn Arg Tyr Cys Arg Arg Val Cys Glu Pro Leu Leu Gly 275 280 285

Tyr Tyr Pro Tyr Pro Tyr Cys Tyr Gln Gly Gly Arg Val Ile Cys 290 295 300

Arg Val Ile Met Pro Cys Asn Trp Trp Val Ala Arg Met Leu Gly 305 310 315

Arg Val

<210> 323

<211> 1174

<212> DNA

<213> Homo sapiens

<400> 323 gcggaactgg ctccggctgg cacctgagga gcggcgtgac cccgagggcc 50 cagggagetg ceeggetgge etaggeagge ageegeacea tggecageae 100 ggccgtgcag cttctgggct tcctgctcag cttcctgggc atggtgggca 150 cgttgatcac caccatectg ccgcactggc ggaggacagc gcacgtgggc 200 accaacatcc tcacggccgt gtcctacctg aaagggctct ggatggagtg 250 tgtgtggcac agcacaggca tctaccagtg ccagatctac cgatccctgc 300 tggcgctgcc ccaagacctc caggctgccc gcgccctcat ggtcatctcc 350 tgcctgctct cgggcatagc ctgcgcctgc gccgtcatcg ggatgaagtg 400 cacgegetge gecaagggea caceegecaa gaceacettt gecateeteg 450 geggeaceet etteateetg geeggeetee tgtgeatggt ggeegtetee 500 tggaccacca acgacgtggt gcagaacttc tacaacccgc tgctgcccag 550 cggcatgaag tttgagattg gccaggccct gtacctgggc ttcatctcct 600 cgtccctctc gctcattggt ggcaccctgc tttgcctgtc ctgccaggac 650 gaggcaccct acaggcccta ccaggccccg cccagggcca ccacgaccac 700 tgcaaacacc gcacctgcct accagccacc agctgcctac aaagacaatc 750 gggccccctc agtgacctcg gccacgcaca gcgggtacag gctgaacgac 800 tacgtgtgag tececaeage etgettetee eetgggetge tgtgggetgg 850 gtccccggcg ggactgtcaa tggaggcagg ggttccagca caaagtttac 900 ttctgggcaa tttttgtatc caaggaaata atgtgaatgc gaggaaatgt 950 ctttagagca cagggacaga gggggaaata agaggaggag aaagctctct 1000 ataccaaaga ctgaaaaaaa aaatcctgtc tgtttttgta tttattatat 1050 atatttatgt gggtgatttg ataacaagtt taatataaag tgacttggga 1100 gtttggtcag tggggttggt ttgtgatcca ggaataaacc ttgcggatgt 1150 ggctgtttat gaaaaaaaaa aaaa 1174

<210> 324

<211> 239

<212> PRT

<213> Homo sapiens

<400> 324

Met Ala Ser Thr Ala Val Gln Leu Leu Gly Phe Leu Leu Ser Phe 1 5 10 15

Leu Gly Met Val Gly Thr Leu Ile Thr Thr Ile Leu Pro His Trp 20 25 30

Arg Arg Thr Ala His Val Gly Thr Asn Ile Leu Thr Ala Val Ser 35 40 45

Tyr Leu Lys Gly Leu Trp Met Glu Cys Val Trp His Ser Thr Gly 50 55 60

Ile Tyr Gln Cys Gln Ile Tyr Arg Ser Leu Leu Ala Leu Pro Gln 65 70 75

Asp Leu Gln Ala Ala Arg Ala Leu Met Val Ile Ser Cys Leu Leu $80 \hspace{1cm} 85 \hspace{1cm} 90$

Ser Gly Ile Ala Cys Ala Cys Ala Val Ile Gly Met Lys Cys Thr 95 100 105

Arg Cys Ala Lys Gly Thr Pro Ala Lys Thr Thr Phe Ala Ile Leu 110 115 120

Gly Gly Thr Leu Phe Ile Leu Ala Gly Leu Leu Cys Met Val Ala 125 130 135

Val Ser Trp Thr Thr Asn Asp Val Val Gln Asn Phe Tyr Asn Pro $140 \,$ 145 $\,$ 150

Leu Leu Pro Ser Gly Met Lys Phe Glu Ile Gly Gln Ala Leu Tyr 155 160 165

Leu Gly Phe Ile Ser Ser Ser Leu Ser Leu Ile Gly Gly Thr Leu 170 175 180

Leu Cys Leu Ser Cys Gln Asp Glu Ala Pro Tyr Arg Pro Tyr Gln
185 190 195

Ala Pro Pro Arg Ala Thr Thr Thr Thr Ala Asn Thr Ala Pro Ala 200 205 210

Tyr Gln Pro Pro Ala Ala Tyr Lys Asp Asn Arg Ala Pro Ser Val 215 220 225

Thr Ser Ala Thr His Ser Gly Tyr Arg Leu Asn Asp Tyr Val 230 235

<210> 325 <211> 2121

<212> DNA

<213> Homo sapiens

<400> 325 gageteeet caggagegeg ttagetteae acetteggea geaggaggge 50 ggcagcttct cgcaggcggc agggcgggcg gccaggatca tgtccaccac 100 cacatgccaa gtggtggcgt tcctcctgtc catcctgggg ctggccggct 150 gcatcgcggc caccgggatg gacatgtgga gcacccagga cctgtacgac 200 aaccecgtca cetecgtgtt ceagtacgaa gggetetgga ggagetgegt 250 gaggcagagt tcaggcttca ccgaatgcag gccctatttc accatcctgg 300 gacttccagc catgctgcag gcagtgcgag ccctgatgat cgtaggcatc 350 gtcctgggtg ccattggcct cctggtatcc atctttgccc tgaaatgcat 400 ccgcattggc agcatggagg actctgccaa agccaacatg acactgacct 450 ccgggatcat gttcattgtc tcaggtcttt gtgcaattgc tggagtgtct 500 gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat 550 gtacaccggc atgggtggga tggtgcagac tgttcagacc aggtacacat 600 ttggtgcggc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt 650 gggggtgtga tgatgtgcat cgcctgccgg ggcctggcac cagaagaaac 700 caactacaaa geegtttett ateatgeete aggeeacagt gttgeetaca 750 agcctggagg cttcaaggcc agcactggct ttgggtccaa caccaaaaac 800 aagaagatat acgatggagg tgcccgcaca gaggacgagg tacaatctta 850 tccttccaag cacgactatg tgtaatgctc taagacctct cagcacgggc 900 ggaagaaact cccggagagc tcacccaaaa aacaaggaga tcccatctag 950 atttcttctt gcttttgact cacagctgga agttagaaaa gcctcgattt 1000 catctttgga gaggccaaat ggtcttagcc tcagtctctg tctctaaata 1050 ttccaccata aaacagctga gttatttatg aattagaggc tatagctcac 1100 attttcaatc ctctatttct ttttttaaat ataactttct actctgatga 1150 gagaatgtgg ttttaatctc tctctcacat tttgatgatt tagacagact 1200 ccccctcttc ctcctagtca ataaacccat tgatgatcta tttcccagct 1250 tatccccaag aaaacttttg aaaggaaaga gtagacccaa agatgttatt 1300 ttctgctgtt tgaattttgt ctccccaccc ccaacttggc tagtaataaa 1350 cacttactga agaagaagca ataagagaaa gatatttgta atctctccag 1400 agtcattttc agtttgaggc aaccaaacct ttctactgct gttgacatct 1500 tettattaca geaacaccat tetaggagtt teetgagete teeactggag 1550 tectettet gtegegggte agaaattgte eetagatgaa tgagaaaatt 1600 attttttta atttaagtcc taaatatagt taaaataaat aatgttttag 1650 taaaatgata cactatctct gtgaaatagc ctcaccccta catgtggata 1700 gaaggaaatg aaaaaataat tgctttgaca ttgtctatat ggtactttgt 1750 aaagtcatgc ttaagtacaa attccatgaa aagctcacac ctgtaatcct 1800 agcactttgg gaggctgagg aggaaggatc acttgagccc agaagttcga 1850 gactagcctg ggcaacatgg agaagccctg tctctacaaa atacagagag 1900 aaaaaatcag ccagtcatgg tggcatacac ctgtagtccc agcattccgg 1950 gaggctgagg tgggaggatc acttgagccc agggaggttg gggctgcagt 2000 gagccatgat cacaccactg cactccagcc aggtgacata gcgagatcct 2050 gtctaaaaaa ataaaaaata aataatggaa cacagcaagt cctaggaagt 2100 aggttaaaac taattcttta a 2121

<400> 326

Met Ser Thr Thr Cys Gln Val Val Ala Phe Leu Leu Ser Ile 1 5 10

Leu Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp $20 \\ 25 \\ 30$

Ser Thr Gln Asp Leu Tyr Asp Asn Pro Val Thr Ser Val Phe Gln 35 40 45

Tyr Glu Gly Leu Trp Arg Ser Cys Val Arg Gln Ser Ser Gly Phe $50 \hspace{1cm} 55 \hspace{1cm} 60 \hspace{1cm}$

Thr Glu Cys Arg Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met 65 70 75

Leu Gln Ala Val Arg Ala Leu Met Ile Val Gly Ile Val Leu Gly

<210> 326

<211> 261

<212> PRT

<213> Homo sapiens

80 85 90

Ala Ile Gly Leu Leu Val Ser Ile Phe Ala Leu Lys Cys Ile Arg 100 Ile Gly Ser Met Glu Asp Ser Ala Lys Ala Asn Met Thr Leu Thr 115 Ser Gly Ile Met Phe Ile Val Ser Gly Leu Cys Ala Ile Ala Gly 130 Val Ser Val Phe Ala Asn Met Leu Val Thr Asn Phe Trp Met Ser 140 Thr Ala Asn Met Tyr Thr Gly Met Gly Gly Met Val Gln Thr Val 155 Gln Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe Val Gly Trp Val 170 Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met Cys Ile Ala 185 Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala Val Ser 205 Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly Phe 220 215 Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile 235 Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gln Ser Tyr Pro 255

<210> 327

<211> 2010

<212> DNA

<213> Homo sapiens

Ser Lys His Asp Tyr Val

260

<400> 327
 ggaaaaactg ttetettetg tggcacagag aaccetgett caaagcagaa 50

gtagcagtte cggagtecag ctggctaaaa cteateceag aggataatgg 100

caacceatge cttagaaate getgggetgt ttettggtgg tgttggaatg 150

gtgggcacag tggctgteae tgteatgeet cagtggagag tgteggeett 200

cattgaaaac aacategtgg ttttgaaaa ettetgggaa ggaetgtgga 250

tgaattgegt gaggcagget aacateagga tgcagtgeaa aatetatgat 300

teeetgetgg etettetee ggaecetacag geagecagag gaetgatgtg 350

tgctgcttcc gtgatgtcct tcttggcttt catgatggcc atccttggca 400 tgaaatgcac caggtgcacg ggggacaatg agaaggtgaa ggctcacatt 450 ctgctgacgg ctggaatcat cttcatcatc acgggcatgg tggtgctcat 500 ccctgtgagc tgggttgcca atgccatcat cagagatttc tataactcaa 550 tagtgaatgt tgcccaaaaa cgtgagcttg gagaagctct ctacttagga 600 tggaccacgg cactggtgct gattgttgga ggagctctgt tctgctgcgt 650 tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700 atcgcacaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750 tactccagaa gtcagtatgt gtagttgtgt atgttttttt aactttacta 800 taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850 caaagaaact ttgatttact gttcttaact gcctaatctt aattacagga 900 actgtgcatc agctatttat gattctataa gctatttcag cagaatgaga 950 tattaaaccc aatgctttga ttgttctaga aagtatagta atttgttttc 1000 taaggtggtt caagcatcta ctctttttat catttacttc aaaatgacat 1050 tgctaaagac tgcattattt tactactgta atttctccac gacatagcat 1100 tatgtacata gatgagtgta acatttatat ctcacataga gacatgctta 1150 tatggtttta tttaaaatga aatgccagtc cattacactg aataaataga 1200 actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggtta 1250 ctattaattg tttaaaaaca gcttagggat taatgtcctc catttataat 1300 gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350 tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400 atcctcttct cccagaggct ttttttttct tgtgtattaa attaacattt 1450 ttaaaacgca gatattttgt caaggggctt tgcattcaaa ctgcttttcc 1500 agggctatac tcagaagaaa gataaaagtg tgatctaaga aaaagtgatg 1550 gttttaggaa agtgaaaata tttttgtttt tgtatttgaa gaagaatgat 1600 gcattttgac aagaaatcat atatgtatgg atatatttta ataagtattt 1650 gagtacagac tttgaggttt catcaatata aataaaagag cagaaaaata 1700 tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagttgt 1750 cctttgagaa cttcacctgc tcctatgtgg gtacctgagt caaaattgtc 1800 atttttgttc tgtgaaaaat aaatttcctt cttgtaccat ttctgtttag 1850 ttttactaaa atctgtaaat actgtatttt tctgtttatt ccaaatttga 1900 tgaaactgac aatccaattt gaaagtttgt gtcgacgtct gtctagctta 1950 aatgaatgtg ttctatttgc tttatacatt tatattaata aattgtacat 2000 ttttctaatt 2010

<210> 328

<211> 225

<212> PRT <213> Homo sapiens <400> 328 Met Ala Thr His Ala Leu Glu Ile Ala Gly Leu Phe Leu Gly Gly Val Gly Met Val Gly Thr Val Ala Val Thr Val Met Pro Gln Trp Arg Val Ser Ala Phe Ile Glu Asn Asn Ile Val Val Phe Glu Asn Phe Trp Glu Gly Leu Trp Met Asn Cys Val Arg Gln Ala Asn Ile Arg Met Gln Cys Lys Ile Tyr Asp Ser Leu Leu Ala Leu Ser Pro 65 Asp Leu Gln Ala Ala Arg Gly Leu Met Cys Ala Ala Ser Val Met Ser Phe Leu Ala Phe Met Met Ala Ile Leu Gly Met Lys Cys Thr Arg Cys Thr Gly Asp Asn Glu Lys Val Lys Ala His Ile Leu Leu Thr Ala Gly Ile Ile Phe Ile Ile Thr Gly Met Val Val Leu Ile 135 Pro Val Ser Trp Val Ala Asn Ala Ile Ile Arg Asp Phe Tyr Asn Ser Ile Val Asn Val Ala Gln Lys Arg Glu Leu Gly Glu Ala Leu 165 Tyr Leu Gly Trp Thr Thr Ala Leu Val Leu Ile Val Gly Gly Ala

Leu Phe Cys Cys Val Phe Cys Cys Asn Glu Lys Ser Ser Ser Tyr

Arg Tyr Ser Ile Pro Ser His Arg Thr Thr Gln Lys Ser Tyr His

185

200

190

205

195

<210> 329

<211> 1315

<212> DNA

<213> Homo sapiens

<400> 329 tegecatgge etetgeegga atgeagatee tgggagtegt cetgaeactg 50 ctgggctggg tgaatggcct ggtctcctgt gccctgccca tgtggaaggt 100 gaccgctttc atcggcaaca gcatcgtggt ggcccaggtg gtgtgggagg 150 gcctgtggat gtcctgcgtg gtgcagagca ccggccagat gcagtgcaag 200 gtgtacgact cactgctggc gctgccacag gacctgcagg ctgcacgtgc 250 cctctgtgtc atcgccctcc ttgtggccct gttcggcttg ctggtctacc 300 ttgctggggc caagtgtacc acctgtgtgg aggagaagga ttccaaggcc 350 cgcctggtgc tcacctctgg gattgtcttt gtcatctcag gggtcctgac 400 gctaatcccc gtgtgctgga cggcgcatgc catcatccgg gacttctata 450 acccctggt ggctgaggcc caaaagcggg agctgggggc ctccctctac 500 ttgggctggg cggcctcagg ccttttgttg ctgggtgggg ggttgctgtg 550 ctgcacttgc ccctcggggg ggtcccaggg ccccagccat tacatggccc 600 gctactcaac atctgcccct gccatctctc ggggggccctc tgagtaccct 650 accaagaatt acgtctgacg tggaggggaa tgggggctcc gctggcgcta 700 gagccatcca gaagtggcag tgcccaacag ctttgggatg ggttcgtacc 750 ttttgtttct gcctcctgct atttttcttt tgactgagga tatttaaaat 800 tcatttgaaa actgagccaa ggtgttgact cagactctca cttaggctct 850 gctgtttctc acccttggat gatggagcca aagaggggat gctttgagat 900 tctggatctt gacatgccca tcttagaagc cagtcaagct atggaactaa 950 tgcggaggct gcttgctgtg ctggctttgc aacaagacag actgtcccca 1000 agagttcctg ctgctgctgg gggctgggct tccctagatg tcactggaca 1050 gctgcccccc atcctactca ggtctctgga gctcctctct tcacccctgg 1100 aaaaacaaat catctgttaa caaaggactg cccacctccg gaacttctga 1150 cetetgttte eteegteetg ataagacgte caceeceag ggecaggtee 1200 cagetatgta gaccccegee eccaceteca acaetgeace ettetgeeet 1250 gccccctcg tctcacccc tttacactca catttttatc aaataaagca 1360 tgttttgtta gtgca 1315

<210> 330 <211> 220 <212> PRT

<213> Homo sapiens

<400> 330

Met Ala Ser Ala Gly Met Gln Ile Leu Gly Val Val Leu Thr Leu
1 5 10 15

Leu Gly Trp Val Asn Gly Leu Val Ser Cys Ala Leu Pro Met Trp 20 25 30

Lys Val Thr Ala Phe Ile Gly Asn Ser Ile Val Val Ala Gln Val 35 40 45

Val Trp Glu Gly Leu Trp Met Ser Cys Val Val Gln Ser Thr Gly 50 55 60

Gln Met Gln Cys Lys Val Tyr Asp Ser Leu Leu Ala Leu Pro Gln 65 70 75

Asp Leu Gln Ala Ala Arg Ala Leu Cys Val Ile Ala Leu Leu Val $80 \\ 85 \\ 90$

Ala Leu Phe Gly Leu Leu Val Tyr Leu Ala Gly Ala Lys Cys Thr. 95 100 105

Thr Cys Val Glu Glu Lys Asp Ser Lys Ala Arg Leu Val Leu Thr

Ser Gly Ile Val Phe Val Ile Ser Gly Val Leu Thr Leu Ile Pro 125 130 135

Val Cys Trp Thr Ala His Ala Ile Ile Arg Asp Phe Tyr Asn Pro

Leu Val Ala Glu Ala Gln Lys Arg Glu Leu Gly Ala Ser Leu Tyr 155 $160\ ^{\prime\prime}$ 165

Leu Gly Trp Ala Ala Ser Gly Leu Leu Leu Leu Gly Gly Gly Leu 170 175 180

Leu Cys Cys Thr Cys Pro Ser Gly Gly Ser Gln Gly Pro Ser His 185 $$ 190 $$ 195

Tyr Met Ala Arg Tyr Ser Thr Ser Ala Pro Ala Ile Ser Arg Gly 200 205 210

Pro Ser Glu Tyr Pro Thr Lys Asn Tyr Val 215 220

<210> 331

<211> 1160

<212> DNA

<213> Homo sapiens

<400> 331 gccaaggaga acatcatcaa agacttetet agacteaaaa ggetteeacg 50 ttctacatct tgagcatctt ctaccactcc gaattgaacc agtcttcaaa 100 gtaaaggcaa tggcatttta tcccttgcaa attgctgggc tggttcttgg 150 gttccttggc atggtgggga ctcttgccac aacccttctg cctcagtggt 200 ggagtatcag cttttgttgg cagcaacatt attgtctttg agaggctctg 250 ggaagggctc tggatgaatt gcatccgaca agccagggtc cggttgcaat 300° gcaagtteta tageteettg ttggetetee egeetgeeet ggaaacagee 350 cgggccctca tgtgtgtggc tgttgctctc tccttgatcg ccctgcttat 400 tggcatctgt ggcatgaagc aggtccagtg cacaggctct aacgagaggg 450 ccaaagcata ccttctggga acttcaggag tcctcttcat cctgacgggt 500 atcttcgttc tgattccggt gagctggaca gccaatataa tcatcagaga 550 tttctacaac ccagccatcc acataggtca gaaacgagag ctgggagcag 600 cacttttcct tggctgggca agcgctgctg tcctcttcat tggaggggt 650 ctgctttgtg gattttgctg ctgcaacaga aagaagcaag ggtacagata 700 tccagtgcct ggctaccgtg tgccacacac agataagcga agaaatacga 750 caatgcttag taagacctcc accagttatg tctaatgcct ccttttggct 800 ccaagtatgg actatggtca atgtttttta taaagtcctg ctagaaactg 850 taagtatgtg aggcaggaga acttgcttta tgtctagatt tacattgata 900 cgaaagtttc aatttgttac tggtggtagg aatgaaaatg acttacttgg 950 acattctgac ttcaggtgta ttaaatgcat tgactattgt tggacccaat 1000 cgctgctcca attttcatat tctaaattca agtataccca taatcattag 1050 caagtgtaca atgatggact acttattact ttttgaccat catgtattat 1100 ctgataagaa tctaaagttg aaattgatat tctataacaa taaaacatat 1150 acctattcta 1160

<210> 332

<211> 173

<212> PRT

<213> Homo sapiens

<400> 332

Met Asn Cys Ile Arg Gln Ala Arg Val Arg Leu Gln Cys Lys Phe

- Tyr Ser Ser Leu Leu Ala Leu Pro Pro Ala Leu Glu Thr Ala Arg 20 25 30
- Ala Leu Met Cys Val Ala Val Ala Leu Ser Leu Ile Ala Leu Leu 35 40 45
- Ile Gly Ile Cys Gly Met Lys Gln Val Gln Cys Thr Gly Ser Asn 50 55 60
- Glu Arg Ala Lys Ala Tyr Leu Leu Gly Thr Ser Gly Val Leu Phe
 65 70 75
- Ile Leu Thr Gly Ile Phe Val Leu Ile Pro Val Ser Trp Thr Ala 80 85 90
- Asn Ile Ile Ile Arg Asp Phe Tyr Asn Pro Ala Ile His Ile Gly 95 100 105
- Gln Lys Arg Glu Leu Gly Ala Ala Leu Phe Leu Gly Trp Ala Ser 110 115 120
- Ala Ala Val Leu Phe Ile Gly Gly Gly Leu Leu Cys Gly Phe Cys 125 130 135
- Cys Cys Asn Arg Lys Lys Gln Gly Tyr Arg Tyr Pro Val Pro Gly 140 145
- Tyr Arg Val Pro His Thr Asp Lys Arg Arg Asn Thr Thr Met Leu 155 160 165

Ser Lys Thr Ser Thr Ser Tyr Val 170

<210> 333

<211> 535

<212> DNA

<213> Homo sapiens

<400> 333

agtgacaatc tcagagcagc ttctacacca cagccatttc cagcatgaag 50 atcactgggg gtctccttct gctctgtaca gtggtctatt tctgtagcag 100 ctcagaagct gctagtctgt ctccaaaaaa agtggactgc agcatttaca 150 agaagtatcc agtggtggcc atcccctgcc ccatcacata cctaccagtt 200 tgtggttctg actacatcac ctatgggaat gaatgtcact tgtgtaccga 250 gagcttgaaa agtaatggaa gagttcagtt tcttcacgat ggaagttgct 300 aaattctcca tggacataga gagaaaggaa tgatattctc atcatcatct 350 tcatcatccc aggctctgac tgagtttctt tcagttttac tgatgttctg 400 ggtgggggac agagccagat tcagagtaat cttgactgaa tggagaaagt 450

ttctgtgcta cccctacaaa cccatgcctc actgacagac cagcatttt 500 tttttaacac gtcaataaaa aaataatctc ccaga 535

<210> 334

<211> 85

<212> PRT

<213> Homo sapiens

<400> 334

Met Lys Ile Thr Gly Gly Leu Leu Leu Cys Thr Val Val Tyr 1

Phe Cys Ser Ser Ser Glu Ala Ala Ser Leu Ser Pro Lys Lys Val

Asp Cys Ser Ile Tyr Lys Lys Tyr Pro Val Val Ala Ile Pro Cys

Pro Ile Thr Tyr Leu Pro Val Cys Gly Ser Asp Tyr Ile Thr Tyr 55

Gly Asn Glu Cys His Leu Cys Thr Glu Ser Leu Lys Ser Asn Gly

Arg Val Gln Phe Leu His Asp Gly Ser Cys

<210> 335

<211> 742

<212> DNA

<213> Homo sapiens

<400> 335 cccgcgcccg gttctccctc gcagcacctc gaagtgcgcc cctcgccctc 50 ctgctcgcgc cccgccgcca tggctgcctc ccccgcgcgg cctgctgtcc 100 tggccctgac cgggctggcg ctgctcctgc tcctgtgctg gggcccaggt 150 ggcataagtg gaaataaact caagetgatg etteaaaaae gagaageaee 200 tgttccaact aagactaaag tggccgttga tgagaataaa gccaaagaat 250 teettggeag eetgaagege eagaagegge agetgtggga eeggaetegg 300 cccgaggtgc agcagtggta ccagcagttt ctctacatgg gctttgatga 350 agcgaaattt gaagatgaca tcacctattg gcttaacaga gatcgaaatg 400 gacatgaata ctatggcgat tactaccaac gtcactatga tgaagactct 450 gcaattggtc cccggagccc ctacggcttt aggcatggag ccagcgtcaa 500 ctacgatgac tactaaccat gacttgccac acgctgtaca agaagcaaat 550 agcgattctc ttcatgtatc tcctaatgcc ttacactact tggtttctga 600

tttgctctat ttcagcagat cttttctacc tactttgtgt gatcaaaaaa 650 gaagagttaa aacaacacat gtaaatgcct tttgatattt catgggaatg 700 cctctcattt aaaaatagaa ataaagcatt ttgttaaaaa ga 742

- <210> 336
- <211> 148
- <212> PRT
- <213> Homo sapiens
- <400> 336
- Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly
 1 5 10 15
- Leu Ala Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser $20 \\ 25 \\ 30$
- Gly Asn Lys Leu Lys Leu Met Leu Gln Lys Arg Glu Ala Pro Val 35 40 45
- Pro Thr Lys Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu . 50 55 60
- Phe Leu Gly Ser Leu Lys Arg Gln Lys Arg Gln Leu Trp Asp Arg 65 70 75
- Thr Arg Pro Glu Val Gln Gln Trp Tyr Gln Gln Phe Leu Tyr Met 80 85 90
- Gly Phe Asp Glu Ala Lys Phe Glu Asp Asp Ile Thr Tyr Trp Leu 95 100 105
- Asn Arg Asp Arg Asn Gly His Glu Tyr Tyr Gly Asp Tyr Tyr Gln 110 115 120
- Arg His Tyr Asp Glu Asp Ser Ala Ile Gly Pro Arg Ser Pro Tyr 125 130 135
- Gly Phe Arg His Gly Ala Ser Val Asn Tyr Asp Asp Tyr 140 145 ...
- <210> 337
- <211> 1310
- <212> DNA
- <213> Homo sapiens
- <400> 337
- cggctcgagc ccgcccggaa gtgcccgagg ggccgcgatg gagctggggg 50
 agccgggcgc tcggtagcgc ggcgggcaag gcaggcgcca tgaccctgat 100
 tgaaggggtg ggtgatgagg tgaccgtcct tttctcggtg cttgcctgcc 150
 ttctggtgct ggcccttgcc tgggtctcaa cgcacaccgc tgagggcggg 200
 gacccactgc cccagccgtc agggacccca acgccatccc agcccagcgc 250

agccatggca gctaccgaca gcatgagagg ggaggcccca ggggcagaga 300 ccccagcct gagacacaga ggtcaagctg cacagccaga gcccagcacg 350 gggttcacag caacaccgcc agccccggac tccccgcagg agcccctcgt 400 gctacggctg aaattcctca atgattcaga gcaggtggcc agggcctggc 450 cccacgacac cattggctcc ttgaaaagga cccagtttcc cggccgggaa 500 cagcaggtgc gactcatcta ccaagggcag ctgctaggcg acgacaccca 550 gaccetggge ageetteace teecteecaa etgegttete caetgecaeg 600 tgtccacgag agtcggtccc ccaaatcccc cctgcccgcc ggggtccgag 650 cccggcccct ccgggctgga aatcggcagc ctgctgctgc ccctgctgct 700 cctgctgttg ctgctgctct ggtactgcca gatccagtac cggcccttct 750 ttcccctgac cgccactctg ggcctggccg gcttcaccct gctcctcagt 800 ctcctggcct ttgccatgta ccgcccgtag tgcctccgcg ggcgcttggc 850 agegtegeeg geceeteegg acettgetee eegegeegeg gegggagetg 900 ctgcctgccc aggcccgcct ctccggcctg cctcttcccg ctgccctgga 950 gcccagccct gcgccgcaga ggactcccgg gactggcgga ggccccgccc 1000 tgcgaccgcc ggggctcggg gccacctccc ggggctgctg aacctcagcc 1050 cgcactggga gtgggctcct cggggtcggg catctgctgt cgctgcctcg 1100 gccccgggca gagccgggcc gccccggggg cccgtcttag tgttctgccg 1150 gaggacccag ccgcctccaa tccctgacag ctccttgggc tgagttgggg 1200 acgccaggtc ggtgggaggc tggtgaaggg gagcggggag gggcagagga 1250 gttccccgga acccgtgcag attaaagtaa ctgtgaagtt ttaaaaaaaa 1300 aaaaaaaaa 1310

- <210> 338
- <211> 246
- <212> PRT
- <213> Homo sapiens

<400> 338

Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe
1 5 10 15

Ser Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser 20 25 30

Thr His Thr Ala Glu Gly Gly Asp Pro Leu Pro Gln Pro Ser Gly 35 40 45

Thr Pro Thr Pro Ser Gln Pro Ser Ala Ala Met Ala Ala Thr Asp Ser Met Arg Gly Glu Ala Pro Gly Ala Glu Thr Pro Ser Leu Arg His Arg Gly Gln Ala Ala Gln Pro Glu Pro Ser Thr Gly Phe Thr Ala Thr Pro Pro Ala Pro Asp Ser Pro Gln Glu Pro Leu Val Leu Arg Leu Lys Phe Leu Asn Asp Ser Glu Gln Val Ala Arg Ala Trp 110 Pro His Asp Thr Ile Gly Ser Leu Lys Arg Thr Gln Phe Pro Gly Arg Glu Gln Gln Val Arg Leu Ile Tyr Gln Gly Gln Leu Leu Gly Asp Asp Thr Gln Thr Leu Gly Ser Leu His Leu Pro Pro Asn Cys 155 Val Leu His Cys His Val Ser Thr Arg Val Gly Pro Pro Asn Pro 175 Pro Cys Pro Pro Gly Ser Glu Pro Gly Pro Ser Gly Leu Glu Ile Gly Ser Leu Leu Leu Pro Leu Leu Leu Leu Leu Leu Leu Leu Trp Tyr Cys Gln Ile Gln Tyr Arg Pro Phe Phe Pro Leu Thr Ala Thr Leu Gly Leu Ala Gly Phe Thr Leu Leu Leu Ser Leu Leu Ala 230 235 Phe Ala Met Tyr Arg Pro <210> 339

<211> 849

<212> DNA

<213> Homo sapiens

<400> 339 gagattggaa acagccaggt tggagcagtg agtgagtaag gaaacctggc 50 tgccctctcc agattcccca ggctctcaga gaagatcagc agaaagtctg 100 caagacccta agaaccatca gccctcagct gcacctcctc ccctccaagg 150 atgacaaagg cgctactcat ctatttggtc agcagctttc ttgccctaaa 200 tcaggccagc ctcatcagtc gctgtgactt ggcccaggtg ctgcagctgg 250

aggacttgga tgggtttgag ggttactccc tgagtgactg gctgtgcctg 300 gcttttgtgg aaagcaagtt caacatatca aagataaatg aaaatgcgga 350 tggaagcttt gactatggcc tcttccagat caacagccac tactggtgca 400 acgattataa gagttactcg gaaaaccttt gccacgtaga ctgtcaagat 450 ctgctgaatc ccaaccttct tgcaggcatc cactgcgcaa aaaggattgt 500 gtccggagca cgggggatga acaactgggt agaatggagg ttgcacctgtt 550 caggccggcc actctcctac tggctgacag gatgccgcct gagatgaaac 600 agggtgcggg tgcaccgtgg agtcattcca agactcctgt cctcactcag 650 ggattcttca tttcttctc ctactgcctc cacttcatgt tattttctc 700 ccttcccatt tacaactaaa actgaccaga gccccaggaa taaatggttt 750 tcttggcttc ctccttactc ccatctggac ccagtccct ggttcctgtc 800 tgttatttgt aaactgagga ccacaataaa gaaatcttta tatttatcg 849

<400> 340

Met Thr Lys Ala Leu Leu Ile Tyr Leu Val Ser Ser Phe Leu Ala 1 5 10 15

Leu Asn Gln Ala Ser Leu Ile Ser Arg Cys Asp Leu Ala Gln Val $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Leu Gl
n Leu Glu Asp Leu Asp Gly Phe Glu Gly Tyr Ser Leu Ser
 35 40 45

Asp Trp Leu Cys Leu Ala Phe Val Glu Ser Lys Phe Asn Ile Ser 50 55 ... 60

Lys Ile Asn Glu Asn Ala Asp Gly Ser Phe Asp Tyr Gly Leu Phe
65 70 75

Gln Ile Asn Ser His Tyr Trp Cys Asn Asp Tyr Lys Ser Tyr Ser 80 85 90

Glu Asn Leu Cys His Val Asp Cys Gln Asp Leu Leu Asn Pro Asn 95 100 105

Leu Leu Ala Gly Ile His Cys Ala Lys Arg Ile Val Ser Gly Ala 110 115 120

Arg Gly Met Asn Asn Trp Val Glu Trp Arg Leu His Cys Ser Gly
125 130 135

Arg Pro Leu Ser Tyr Trp Leu Thr Gly Cys Arg Leu Arg

<210> 340

<211> 148

<212> PRT

<213> Homo sapiens

140 145

```
<210> 341
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 341
ccctccaagg atgacaaagg cgc 23
<210> 342
<211> 29
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-29
<223> Synthetic construct.
<400> 342
 ggtcagcagc tttcttgccc taaatcagg 29
<210> 343
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 343
 atctcaggcg gcatcctgtc agcc 24
<210> 344
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 344
 gtggatgcct gcaagaaggt tggg 24
<210> 345
<211> 45
<212> DNA
<213> Artificial
```

- <220>
- <221> Artificial Sequence
- <222> 1-45
- <223> Synthetic construct.
- <400> 345
- agetteettg cectaaatea ggeeageete ateagteget gtgae 45
- <210> 346
- <211> 2575
- <212> DNA
- <213> Homo sapiens
- <400> 346
- tctgacctga ctggaagcgt ccaaagaggg acggctgtca gccctgcttg 50 actgagaacc caccagetca teccagacac etcatageaa ectatttata 100 caaaggggga aagaaacacc tgagcagaat ggaatcatta ttttttccc 150 gtgaatgggc tttcagaagg caattaaaga aatccactca gagaggactt 250 ggggtgaaac ttgggtcctg tggttttctg attgtaagtg gaagcaggtc 300 ttgcacacgc tgttggcaaa tgtcaggacc aggttaagtg actggcagaa 350 aaacttccag gtggaacaag caacccatgt tctgctgcaa gcttgaagga 400 gcctggagcg ggagaaagct aacttgaaca tgacctgttg catttggcaa 450 gttctagcaa catgctccta aggaagcgat acaggcacag accatgcaga 500 ctccagttcc tcctgctgct cctgatgctg ggatgcgtcc tgatgatggt 550 ggcgatgttg caccetecce accacacect geaccagaet gteacageee 600 aagccagcaa gcacagccct gaagccaggt accgcctgga ctttggggaa 650 toccaggatt gggtactgga agctgaggat gagggtgaag agtacagccc 700 totggagggc ctgccaccct ttatctcact gcgggaggat cagctgctgg 750 tggccgtggc cttaccccag gccagaagga accagagcca gggcaggaga 800 ggtgggagct accgcctcat caagcagcca aggaggcagg ataaggaagc 850 cccaaagagg gactgggggg ctgatgagga cggggaggtg tctgaagaag 900 aggagttgac cccgttcagc ctggacccac gtggcctcca ggaggcactc 950 agtgcccgca tccccctcca gagggctctg cccgaggtgc ggcacccact 1000 gtgtctgcag cagcaccctc aggacagcct gcccacagcc agcgtcatcc 1050 tctgtttcca tgatgaggcc tggtccactc tcctgcggac tgtacacagc 1100

atcctcgaca cagtgcccag ggccttcctg aaggagatca tcctcgtgga 1150 cgacctcagc cagcaaggac aactcaagtc tgctctcagc gaatatgtgg 1200 ccaggctgga gggggtgaag ttactcagga gcaacaagag gctgggtgcc 1250 atcagggccc ggatgctggg ggccaccaga gccaccgggg atgtgctcgt 1300 cttcatggat gcccactgcg agtgccaccc aggctggctg gagcccctcc 1350 tcagcagaat agctggtgac aggagccgag tggtatctcc ggtgatagat 1400 gtgattgact ggaagacttt ccagtattac ccctcaaagg acctgcagcg 1450 tggggtgttg gactggaagc tggatttcca ctgggaacct ttgccagagc 1500 atgtgaggaa ggccctccag tcccccataa gccccatcag gagccctgtg 1550 gtgcccggag aggtggtggc catggacaga cattacttcc aaaacactgg 1600 agcgtatgac tctcttatgt cgctgcgagg tggtgaaaac ctcgaactgt 1650 ctttcaaggc ctggctctgt ggtggctctg ttgaaatcct tccctgctct 1700 cgggtaggac acatetacca aaatcaggat teceatteee eeetegacca 1750 ggaggccacc ctgaggaaca gggttcgcat tgctgagacc tggctggggt 1800 cattcaaaga aaccttctac aagcatagcc cagaggcctt ctccttgagc 1850 aaggctgaga agccagactg catggaacgc ttgcagctgc aaaggagact 1900 gggttgtcgg acattccact ggtttctggc taatgtctac cctgagctgt 1950 acccatctga acccaggccc agtttctctg gaaagctcca caacactgga 2000 cttgggctct gtgcagactg ccaggcagaa ggggacatcc tgggctgtcc 2050 catggtgttg gctccttgca gtgacagccg gcagcaacag tacctgcagc 2100 acaccagcag gaaggagatt cactttggca gcccacagca cctgtgcttt 2150 gctgtcaggc aggagcaggt gattcttcag aactgcacgg aggaaggcct 2200 ggccatccac cagcagcact gggacttcca ggagaatggg atgattgtcc 2250 acattette tgggaaatge atggaagetg tggtgcaaga aaacaataaa 2300 gatttgtacc tgcgtccgtg tgatggaaaa gcccgccagc agtggcgatt 2350 tgaccagata aatgctgtgg atgaacgatg aatgtcaatg tcagaaggaa 2400 aagagaattt tggccatcaa aatccagctc caagtgaacg taaagagctt 2450 atatatttca tgaagctgat ccttttgtgt gtgtgctcct tgtgttagga 2500 gagaaaaaag ctctatgaaa gaatatagga agtttctcct tttcacacct 2550

tatttcattg actgctggct gctta 2575

<210> 347

<211><211><211><212><213>	• 639 • PRT) :	pier	ıs										
<400> Met 1	347 Leu	l Leu	Arg	Lys 5	Arg	Tyr	Arg	His	Arg 10	Pro	Cys	Arg	Leu	Gln 15
Phe	Leu	Leu	Leu	Leu 20	Leu	Met	Leu	Gly	Cys 25	Val	Leu	Met	Met	Val 30
Ala	Met	Leu	His	Pro 35	Pro	His	His	Thr	Leu 40	His	Gln	Thr	Val	Thr 45
Ala	Gln	Ala	Ser	Lys 50	His	Ser	Pro	Glu	Ala 55	Arg	Tyr	Arg	Leu	Asp 60
Phe	Gly	Glu	Ser	Gln 65	Asp	Trp	Val	Leu	Glu 70	Ala	Glu	Asp	Glu	Gly 75
Glu	Glu	Tyr	Ser	Pro 80	Leu	Glu	Gly	Leu	Pro 85	Pro	Phe	Ile	Ser	Leu 90
Arg	Glu	Asp	Gln	Leu 95	Leu	Val	Ala	Val	Ala 100	Leu	Pro	Gln	Ala	Arg 105
Arg	Asn	Gln	Ser	Gln 110	Gly	Arg	Arg	Gly	Gly 115	Ser	Tyr	Arg	Leu	Ile 120
Lys	Gln	Pro	Arg	Arg 125	Gln	Asp	Lys	Glu	Ala 130	Pro	Lys	Arg	Asp	Trp 135
Gly	Ala	Asp	Glu	Asp 140	Gly	Glu	Val	Ser	Glu 145	Glu	Glu	Glu	Leu	Thr 150
Pro	Phe	Ser	Leu	Asp 155	Pro	Arg	Gly	Leu	Gln 160	Glu	Ala	Leu	Ser	Ala 165
Arg	Ile	Pro	Leu	Gln 170	Arg	Ala	Leu	Pro	Glu 175	Ϋal	Arg	His	Pro	Leu 180
Cys	Leu	Gln	Gln	His 185		Gln	Asp	Ser	Leu 190	Pro	Thr	Ala	Ser	Val 195
Ile	Leu	Cys	Phe	His 200	Asp	Glu	Ala	Trp	Ser 205	Thr	Leu	Leu	Arg	Thr 210
Val	His	Ser	Ile	Leu 215		Thr	Val	Pro	Arg 220	Ala	Phe	Leu	Lys	Glu 225
Ile	Ile	Leu	Val	Asp 230		Leu	Ser	Gln	Gln 235		Gln	Leu	Lys	Ser 240
Ala	Leu	Ser	Glu	Tyr 245		Ala	Arg	Leu	Glu 250	Gly	Val	Lys	Leu	Leu 255

Arg	Ser	Asn	Lys	Arg 260	Leu	Gly	Ala	Ile	Arg 265	Ala	Arg	Met	Leu	Gly 270
Ala	Thr	Arg	Ala	Thr 275	Gly	Asp	Val	Leu	Val 280	Phe	Met	Asp	Ala	His 285
Cys	Glu	Cys	His	Pro 290	Gly	Trp	Leu	Glu	Pro 295	Leu	Leu	Ser	Arg	Ile 300
Ala	Gly	Asp	Arg	Ser 305	Arg	Val	Val	Ser	Pro 310	Val	Ile	Asp	Val	Ile 315
Asp	Trp	Lys	Thr	Phe 320	Gln	Tyr	Tyr	Pro	Ser 325	Lys	Asp	Leu	Gln	Arg 330
Gly	Val	Leu	Asp	Trp 335	Lys	Leu	Asp	Phe	His 340	Trp	Glu	Pro	Leu	Pro 345
Glu	His	Val	Arg	Lys 350	Ala	Leu	Gln	Ser	Pro 355	Ile	Ser	Pro	Ile	Arg 360
Ser	Pro	Val	Val	Pro 365	Gly	Glu	Val	Val	Ala 370	Met	Asp	Arg	His	Tyr 375
Phe	Gln	Asn	Thr	Gly 380	Ala	Tyr	Asp	Ser	Leu 385	Met	Ser	Leu	Arg	Gly 390
Gly	Glu	Asn	Leu	Glu 395	Leu	Ser	Phe	Lys	Ala 400	Trp	Leu	Cys	Gly	Gly 405
Ser	Val	Glu	Ile	Leu 410	Pro	Cys	Ser	Arg	Val 415	Gly	His	Ile	Туr	Gln 420
Asn	Gln	Asp	Ser	His 425	Ser	Pro	Leu	Asp	Gln 430	Glu	Ala	Thr	Leu	Arg 435
Asn	Arg	Val	Arg	Ile 440	Ala	Glu	Thr	Trp	Leu 445	Gly	Ser	Phe	Lys	Glu 450
Thr	Phe	Tyr	Lys	His 455	Ser	Pro	Glu	Ala	Phe 460	Ser	Leu	Ser	Lys	Ala 465
Glu	Lys	Pro	Asp	Cys 470	Met	Glu	Arg	Leu	Gln 475	Leu	Gln	Arg	Arg	Leu 480
Gly	Cys	Arg	Thr	Phe 485		Trp	Phe	Leu	Ala 490	Asn	Val	Туг	Pro	Glu 495
Leu	Tyr	Pro	Ser	Glu 500		Arg	J Pro	Ser	Phe 505	Ser	Gly	. Lys	s Leu	His 510
Asn	Thr	Gly	Leu	Gly 515		Cys	s Ala	Asp	Cys 520	Gln	Ala	ı Glü	ı Gly	7 Asp 525
Ile	Leu	ı Gly	v Cys	Prc 530		: Val	Leu	Ala	Pro 535	Суз	s Ser	: Asp	Ser	Arg 540
Gln	Glr	Glr	туг	Leu	Glr	n His	s Thr	Ser	Arg	Lys	s Glu	ı Ile	e His	s Phe

	545				550					555		
Gly Ser Pro Gln	His Leu 560	Cys	Phe	Ala	Val 565	Arg	Gln	Glu	Gln	Val 570		
Ile Leu Gln Asn	Cys Thr 575	Glu	Glu	Gly	Leu 580	Ala	Ile	His	Gln	Gln 585		
His Trp Asp Phe	Gln Glu 590	Asn	Gly	Met	Ile 595	Val	His	Ile	Leu	Ser 600		
Gly Lys Cys Met	Glu Ala 605	Val	Val	Gln	Glu 610	Asn	Asn	Lys	Asp	Leu 615		
Tyr Leu Arg Pro	Cys Asp 620	Gly	Lys	Ala	Arg 625	Gln	Gln	Trp	Arg	Phe 630		
Asp Gln Ile Asn	Ala Val 635	Asp	Glu	Arg								
<210> 348 <211> 23 <212> DNA <213> Artificial												
<220> <221> Artificial Sequence <222> 1-23 <223> Synthetic construct.												
<400> 348 ggagaggtgg tggccatgga cag 23												
<210> 349 <211> 24 <212> DNA <213> Artificial												
<220> <221> Artificial Sequence <222> 1-24 <223> Synthetic construct.												
<400> 349 ctgtcactgc aagg	ragecaa e	acc 2	24									
<210> 350 <211> 45 <212> DNA <213> Artificial												
<220> <221> Artificial <222> 1-45 <223> Synthetic	_						·					

<400> 350

tatgtcgctg cgaggtggtg aaaacctcga actgtctttc aaggc 45

<210> 351 <211> 2524 <212> DNA

<213> Homo sapiens

<400> 351 cgccaagcat gcagtaaagg ctgaaaatct gggtcacagc tgaggaagac 50 ctcagacatg gagtccagga tgtggcctgc gctgctgctg tcccacctcc 100 tecetetetg gecaetgetg ttgetgeece teceaecgee tgeteaggge 150 tetteateet eccetegaac eccaceagee ecagecegee eccegtgtge 200 caggggaggc ccctcggccc cacgtcatgt gtgcgtgtgg gagcgagcac 250 ctccaccaag ccgatctcct cgggtcccaa gatcacgtcg gcaagtcctg 300 cctggcactg caccccagc caccccatca ggctttgagg aggggccgcc 350 ctcatcccaa tacccctggg ctatcgtgtg gggtcccacc gtgtctcgag 400 aggatggagg ggaccccaac tctgccaatc ccggatttct ggactatggt 450 tttgcagccc ctcatgggct cgcaacccca caccccaact cagactccat 500 gcgaggtgat ggagatgggc ttatccttgg agaggcacct gccaccctgc 550 ggccattcct gttcgggggc cgtggggaag gtgtggaccc ccagctctat 600 gtcacaatta ccatctccat catcattgtt ctcgtggcca ctggcatcat 650 cttcaagttc tgctgggacc gcagccagaa gcgacgcaga ccctcagggc 700 agcaaggtgc cctgaggcag gaggagagcc agcagccact gacagacctg 750 tecceggetg gagteactgt getgggggee tteggggaet caectaecee 800 cacccctgac catgaggagc cccgaggggg accccggcct gggatgcccc 850 accccaaggg ggctccagcc ttccagttga accggtgagg gcaggggcaa 900 tgggatggga gggcaaagag ggaaggcaac ttaggtcttc agagctgggg 950 tgggggtgcc ctctggatgg gtagtgagga ggcaggcgtg gcctcccaca 1000 gcccctggcc ctcccaaggg ggctggacca gctcctctct gggaggcacc 1050 cttccttctc ccagtctctc aggatctgtg tcctattctc tgctgcccat 1100 aactccaact ctgccctctt tggttttttc tcatgccacc ttgtctaaga 1150 caactetgee etettaacet tgatteeece tetttgtett gaactteece 1200 ttctattctg gcctacccct tggttcctga ctgtgccctt tccctcttcc 1250 tctcaggatt cccctggtga atctgtgatg cccccaatgt tggggtgcag 1300

ccaagcagga ggccaagggg ccggcacagc ccccatccca ctgagggtgg 1350 ggcagctgtg gggagctggg gccacagggg ctcctggctc ctgccccttg 1400 cacaccaccc ggaacactcc ccagccccac gggcaatcct atctgctcgc 1450 cctcctgcag gtgggggcct cacatatctg tgacttcggg tccctgtccc 1500 caccettgtg cacteacatg aaageettge acacteacet ecacetteae 1550 aggocatttg cacacgotec tgcaccotet coccgtecat accgetecge 1600 tcagctgact ctcatgttct ctcgtctcac atttgcactc tctccttccc 1650 acattctgtg ctcagctcac tcagtggtca gcgtttcctg cacactttac 1700 ctctcatgtg cgtttcccgg cctgatgttg tggtggtgtg cggcgtgctc 1750 actetetece teatgaacae ecacecacet egttteegea geecetgegt 1800 gctgctccag aggtgggtgg gaggtgagct gggggctcct tgggccctca 1850 teggteatgg tetegteeca ttecacacca tttgtttete tgteteecca 1900 tcctactcca aggatgccgg catcaccctg agggctcccc cttgggaatg 1950 gggtagtgag gccccagact tcacccccag cccactgcta aaatctgttt 2000 tctgacagat gggttttggg gagtcgcctg ctgcactaca tgagaaaggg 2050 acteceattt geeetteeet tteteetaca gteeettttg tettgtetgt 2100 cctggctgtc tgtgtgtgt ccattctctg gacttcagag ccccctgagc 2150 cagtectece tteccageet ceetttggge etecetaaet ecacetagge 2200 tgccagggac cggagtcagc tggttcaagg ccatcgggag ctctgcctcc 2250 aagtetacce tteeetteee ggacteeete etgteeeete ettteeteee 2300 teetteette caeteteett eetttigett eeetgeegtt teeeeeteet 2350 caggttette ceteettete actggttttt ceacetteet cetteeette 2400 tt.ccctggct cctaggctgt gatatatatt tttgtattat ctctttcttc 2450 ttcttgtggt gatcatcttg aattactgtg ggatgtaagt ttcaaaattt 2500 tcaaataaag cctttgcaag ataa 2524

<210> 352

<211> 243

<212> PRT

<213> Homo sapiens

<400> 352

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn 100 Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu 160 Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln 175 Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp 220 ., Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu

Leu Pro Lys

<210> 353

<211> 480 <212> DNA

<213> Homo sapiens

<400> 353
gttaaccagc gcagtcctcc gtgcgtcccg cccgccgctg ccctcactcc 50
cggccaggat ggcatcctgt ctggccctgc gcatggcgct gctgctggtc 100

tecggggtte tggccetge ggtgctcaca gacgatgtte cacaggagee 150 cgtgcccacg ctgtggaacg agecggccga gctgccgtcg ggagaaggee 200 ccgtggagag caccageece ggcegggage ccgtggacae cggtececca 250 gececeaceg tegegecagg accegaggae ageaeeggee aggagegget 300 ggaccaggge ggegggtege tggggeeegg egetategee gecategtga 350 tegecgeet getggecace tgegtggtge tggegetegt ggtegtege 400 ctgagaaagt tttetgeete etgaagegaa taaaagggee gegeeeggee 450 geggegegae teggcaaaaa aaaaaaaaa 480

<210> 354

<211> 121

<212> PRT

<213> Homo sapiens

<400> 354

Met Ala Ser Cys Leu Ala Leu Arg Met Ala Leu Leu Leu Val Ser 1 5 10 15

Gly Val Leu Ala Pro Ala Val Leu Thr Asp Asp Val Pro Gln Glu 20 25 30

Pro Val Pro Thr Leu Trp Asn Glu Pro Ala Glu Leu Pro Ser Gly 35 40 45

Glu Gly Pro Val Glu Ser Thr Ser Pro Gly Arg Glu Pro Val Asp
50 55 60

Thr Gly Pro Pro Ala Pro Thr Val Ala Pro Gly Pro Glu Asp Ser 65 70 75

Gly Ala Ile Ala Ala Ile Val Ile Ala Ala Leu Leu Ala Thr Cys 95 100 105

Val Val Leu Ala Leu Val Val Val Ala Leu Arg Lys Phe Ser Ala 110 115 120

Ser

<210> 355

<211> 2134

<212> DNA

<213> Homo sapiens

<400> 355

ggccgttggt tggtgcgcgg ctgaagggtg tggcgcgagc agcgtcgttg 50 gttggccggc ggcgggccgg gacgggcatg gccctgctgc tgtgcctggt 100

gtgcctgacg gcggcgctgg cccacggctg tctgcactgc cacagcaact 150 totocaagaa gttotootto tacogocaco atgtgaactt caagtootgg 200 tgggtgggcg acatccccgt gtcaggggcg ctgctcaccg actggagcga 250 cgacacgatg aaggagetge acetggeeat eecegeeaag ateaceeggg 300 agaagctgga ccaagtggcg acagcagtgt accagatgat ggatcagctg 350 taccagggga agatgtactt ccccgggtat ttccccaacg agctgcgaaa 400 catcttccgg gagcaggtgc acctcatcca gaacgccatc atcgaaaggc 450 acctggcacc aggcagctgg ggaggagggc agctctccag ggagggaccc 500 agectageae etgaaggate aatgecatea eecegegggg aceteeeeta 550 agtagecece agaggegetg ggagtgttge cacegecete ecetgaagtt 600 tgctccatct cacgctgggg gtcaacctgg ggaccccttc cctccgggcc 650 atggacacac atacatgaaa accaggccgc atcgactgtc agcaccgctg 700 tggcatcttc cagtacgaga ccatctcctg caacaactgc acagactcgc 750 acgtcgcctg ctttggctat aactgcgagt agggctcagg catcacaccc 800 accogtgcca gggccctact gtccctgggg tcccaggctc tccttggagg 850 gggctccccg ccttccacct ggctgtcatc gggtagggcg gggccgtggg 900 ttcaggggcg caccacttcc aagcetgtgt cecacaggte eteggegcag 950 tggaagtcag ctgtccaggg cctcctgaac tacataaata actggcacaa 1000 gtaagtcccc tcctcaaacc aacacaggca gtgtgtgtat gtgagcacct 1050 cgtgggtgag tatgtgtggg gcacaggctg gctccctcag ctcccacgtc 1100 ctagaggggc tecegaggag gtggaacete aaceeagete tgegeaggag 1150 gcggctgcag tccttttctc cctcaaaggt ctccgaccct cagctggagg 1200 cgggcatctt tcctaaaggg tccccatagg gtctggttcc accccatccc 1250 aggtctgtgg tcagagcctg ggagggttcc ctacgatggt taggggtgcc 1300 ccatggaggg gctgactgcc ccacattgcc tttcagacag gacacgagca 1350 tgaggtaagg ccgccctgac ctggacttca gggggagggg gtaaagggag 1400 agaggagggg ggctaggggg tcctctagat cagtgggggc actgcaggtg 1450 gggctctccc tatacctggg acacctgctg gatgtcacct ctgcaaccac 1500 acccatgtgg tggtttcatg aacagaccac gctcctctgc cttctcctgg 1550 cctgggacac acagagccac cccggccttg tgagtgaccc agagaaggga 1600 ggcctcggga gaaggggtgc tcgtaagcca acaccagcgt gccgcggcct 1650 gcacaccctt cggacatccc aggcacgagg gtgtcgtgga tgtgggcaca 1700 cataggacca cacgtcccag ctgggaggag aggcctgggg cccccaggga 1750 gggaggcagg gggtgggga catggagagc tgaggcagcc tcgtctccc 1800 gcagcctggt atcgccagcc ttaaggtgtc tggagcccc acacttggcc 1850 aacctgacct tggaagatgc tgctgagtgt ctcaagcagc actgacagca 1900 gctgggcctg ccccagggca acgtggggg ggagactcag ctggacagcc 1950 cctgcctgtc actctggacc tgggctgctg ctgcctcagg accccctct 2000 cgaccccgga cagagctgag ctggccagg ccaggaggg gggagggagg 2050 gaatggggt gggctgtgc cagcatcagc gcctgggcag gtccgcagag 2100 ctgcgggatg tgattaaagt ccctgatgtt tctc 2134

<400> 356

Met	Ala	Leu	Leu	Leu	Cys	Leu	Val	Cys	Leu	Thr	Ala	Ala	Leu	Ala
1				5	-				10					15

His Gly Cys Leu His Cys His Ser Asn Phe Ser Lys Lys Phe Ser $20 \ 25 \ 30$

Phe Tyr Arg His His Val Asn Phe Lys Ser Trp Trp Val Gly Asp 35 40 45

Ile Pro Val Ser Gly Ala Leu Leu Thr Asp Trp Ser Asp Asp Thr 50 55 .

Met Lys Glu Leu His Leu Ala Ile Pro Ala Lys Ile Thr Arg Glu 65 70 75

Lys Leu Asp Gln Val Ala Thr Ala Val Tyr Gln Met Met Asp Gln 80 85 90

Leu Tyr Gln Gly Lys Met Tyr Phe Pro Gly Tyr Phe Pro Asn Glu 95 100 105

Leu Arg Asn Ile Phe Arg Glu Gln Val His Leu Ile Gln Asn Ala

Ile Ile Glu Arg His Leu Ala Pro Gly Ser Trp Gly Gly Gln 125 130 135

Leu Ser Arg Glu Gly Pro Ser Leu Ala Pro Glu Gly Ser Met Pro

<210> 356

<211> 157

<212> PRT

<213> Homo sapiens

150

140

<210> 357

<211> 1536

<212> DNA

<213> Homo sapiens

<400> 357 agcaggagca ggagaggac aatggaagct gccccgtcca ggttcatgtt 50 cctcttattt ctcctcacgt gtgagctggc tgcagaagtt gctgcagaag 100 ttgagaaatc ctcagatggt cctggtgctg cccaggaacc cacgtggctc 150 acagatgtcc cagctgccat ggaattcatt gctgccactg aggtggctgt 200 cataggette ttecaggatt tagaaatace ageagtgeee atacteeata 250 gcatggtgca aaaattccca ggcgtgtcat ttgggatcag cactgattct 300 gaggttctga cacactacaa catcactggg aacaccatct gcctctttcg 350 cctggtagac aatgaacaac tgaatttaga ggacgaagac attgaaagca 400 ttgatgccac caaattgagc cgtttcattg agatcaacag cctccacatg 450 gtgacagagt acaaccctgt gactgtgatt gggttattca acagcgtaat 500 tcagattcat ctcctcctga taatgaacaa ggcctcccca gagtatgaag 550 agaacatgca cagataccag aaggcagcca agctcttcca ggggaagatt 600 ctctttattc tggtggacag tggtatgaaa gaaaatggga aggtgatatc 650 atttttcaaa ctaaaggagt ctcaactgcc agctttggca atttaccaga 700 ctctagatga cgagtgggat acactgccca cagcagaagt ttccgtagag 750 catgtgcaaa acttttgtga tggattccta agtggaaaat tgttgaaaga 800 aaatcgtgaa tcagaaggaa agactccaaa ggtggaactc tgacttctcc 850 ttggaactac atatggccaa gtatctactt tatgcaaagt aaaaaggcac 900 aactcaaatc tcagagacac taaacaacag gatcactagg cctgccaacc 950 acacacaca gcacgtgcac acacgcacgc acgcgtgcac acacacacgc 1000 gcacacacac acacacag agetteattt eetgtettaa aatetegttt 1050 tctcttcttc cttctttaa atttcatatc ctcactccct atccaatttc 1100 cttcttatcg tgcattcata ctctgtaagc ccatctgtaa cacacctaga 1150 tcaaggcttt aagagactca ctgtgatgcc tctatgaaag agaggcattc 1200 ctagagaaag attgttccaa tttgtcatt aatatcaagt ttgtatactg 1250 cacatgactt acacacaaca tagttcctgc tcttttaagg ttacctaagg 1300 gttgaaactc taccttctt cataagcaca tgtccgtctc tgactcagga 1350 tcaaaaacca aaggatggtt ttaaacacct ttgtgaaatt gtcttttgc 1400 cagaagttaa aggctgtctc caagtccctg aactcagcag aaatagacca 1450 tgtgaaaact ccatgcttgg ttagcatctc caactcccta tgtaaatcaa 1500 caacctgcat aataaataaa aggcaatcat gttata 1536

<210> 358

<211> 273

<212> PRT

<213> Homo sapiens

<400> 358

Met Glu Ala Ala Pro Ser Arg Phe Met Phe Leu Leu Phe Leu Leu
1 5 10 15

Thr Cys Glu Leu Ala Ala Glu Val Ala Ala Glu Val Glu Lys Ser $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ser Asp Gly Pro Gly Ala Ala Gln Glu Pro Thr Trp Leu Thr Asp 35 40 45

Val Pro Ala Ala Met Glu Phe Ile Ala Ala Thr Glu Val Ala Val 50 55 60

Ile Gly Phe Phe Gln Asp Leu Glu Ile Pro Ala Val Pro Ile Leu
65 70 75

His Ser Met Val Gln Lys Phe Pro Gly Val Ser Phe Gly Ile Ser 80 85 90

Thr Asp Ser Glu Val Leu Thr His Tyr Asn Ile Thr Gly Asn Thr 95 100 105

Ile Cys Leu Phe Arg Leu Val Asp Asn Glu Gln Leu Asn Leu Glu
110 115 120

Asp Glu Asp Ile Glu Ser Ile Asp Ala Thr Lys Leu Ser Arg Phe 125 130 135

Ile Glu Ile Asn Ser Leu His Met Val Thr Glu Tyr Asn Pro Val

Thr Val Ile Gly Leu Phe Asn Ser Val Ile Gln Ile His Leu Leu 155 160 165

Leu Ile Met Asn Lys Ala Ser Pro Glu Tyr Glu Glu Asn Met His 170 175 180

Arg Tyr Gln Lys Ala Ala Lys Leu Phe Gln Gly Lys Ile Leu Phe 185 190 195 Ile Leu Val Asp Ser Gly Met Lys Glu Asn Gly Lys Val Ile Ser 200 205 210

Phe Phe Lys Leu Lys Glu Ser Gln Leu Pro Ala Leu Ala Ile Tyr 215 225

Gln Thr Leu Asp Asp Glu Trp Asp Thr Leu Pro Thr Ala Glu Val 230 235 240

Ser Val Glu His Val Gln Asn Phe Cys Asp Gly Phe Leu Ser Gly 245 250

Lys Leu Leu Lys Glu Asn Arg Glu Ser Glu Gly Lys Thr Pro Lys 260 265 270

Val Glu Leu

<210> 359

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 359

ccagcagtgc ccatactcca tagc 24

<210> 360

<211> 20

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-20

<223> Synthetic construct.

<400> 360

tgacgagtgg gatacactgc 20

<210> 361

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 361

gctctacgga aacttctgct gtgg 24

<210> 362

```
<211> 50
<212> DNA
```

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-50

<223> Synthetic construct.

<400> 362

attcccaggc gtgtcatttg ggatcagcac tgattctgag gttctgacac 50

<210> 363

<211> 1777

<212> DNA

<213> Homo sapiens

<400> 363 ggagagccgc ggctgggacc ggagtgggga gcgcggcgtg gaggtgccac 50

ccggcgcggg tggcggagag atcagaagcc tcttccccaa gccgagccaa 100

cctcagcggg gacccgggct cagggacgcg gcggcggcgg cggcgactgc 150

agtggctgga cgatggcagc gtccgccgga gccggggggg tgattgcagc 200

cccagacagc cggcgctggc tgtggtcggt gctggcggcg gcgcttgggc 250

tcttgacagc tggagtatca gccttggaag tatatacgcc aaaagaaatc 300

ttcgtggcaa atggtacaca agggaagctg acctgcaagt tcaagtctac 350

tagtacgact ggcgggttga cctcagtctc ctggagcttc cagccagagg 400

gggccgacac tactgtgtcg tttttccact actcccaagg gcaagtgtac 450 cttgggaatt atccaccatt taaagacaga atcagctggg ctggagacct 500

tgacaagaaa gatgcatcaa tcaacataga aaatatgcag tttatacaca 550

atggcaccta tatctgtgat gtcaaaaacc ctcctgacat cgttgtccag 600

cctggacaca ttaggctcta tgtcgtagaa aaagagaatt tgcctgtgtt 650

tccagtttgg gtagtggtgg gcatagttac tgctgtggtc ctaggtctca 700

ctctgctcat cagcatgatt ctggctgtcc tctatagaag gaaaaactct 750

aaacgggatt acactggctg cagtacatca gagagtttgt caccagttaa 800

gcaggctcct cggaagtccc cctccgacac tgagggtctt gtaaagagtc 850

tgccttctgg atctcaccag ggcccagtca tatatgcaca gttagaccac 900

tccggcggac atcacagtga caagattaac aagtcagagt ctgtggtgta 950

tgcggatatc cgaaagaatt aagagaatac ctagaacata tcctcagcaa 1000

gaaacaaaac caaactggac tctcgtgcag aaaatgtagc ccattaccac 1050 atgtagcctt ggagacccag gcaaggacaa gtacacgtgt actcacagag 1100 ggagagaaag atgtgtacaa aggatatgta taaatattct atttagtcat 1150 cctgatatga ggagccagtg ttgcatgatg aaaagatggt atgattctac 1200 atatgtaccc attgtcttgc tgtttttgta ctttcttttc aggtcattta 1250 caattgggag atttcagaaa cattcctttc accatcattt agaaatggtt 1300 tgccttaatg gagacaatag cagatcctgt agtatttcca gtagacatgg 1350 ccttttaatc taagggctta agactgatta gtcttagcat ttactgtagt 1400 tggaggatgg agatgctatg atggaagcat acccagggtg gcctttagca 1450 cagtatcagt accatttatt tgtctgccgc ttttaaaaaa tacccattgg 1500 ctatgccact tgaaaacaat ttgagaagtt tttttgaagt ttttctcact 1550 aaaatatggg gcaattgtta gccttacatg ttgtgtagac ttactttaag 1600 tttgcaccct tgaaatgtgt catatcaatt tctggattca taatagcaag 1650 attagcaaag gataaatgcc gaaggtcact tcattctgga cacagttgga 1700 tcaatactga ttaagtagaa aatccaagct ttgcttgaga acttttgtaa 1750 cgtggagagt aaaaagtatc ggtttta 1777

<210> 364

<211> 269

<212> PRT

<213> Homo sapiens

<400> 364

Met Ala Ala Ser Ala Gly Ala Gly Ala Val Ile Ala Ala Pro Asp 1 5 10

Ser Arg Arg Trp Leu Trp Ser Val Leu Ala Äla Ala Leu Gly Leu 20 25 30

Ile Phe Val Ala Asn Gly Thr Gln Gly Lys Leu Thr Cys Lys Phe $50 \hspace{1cm} 55 \hspace{1cm} 60$

Lys Ser Thr Ser Thr Thr Gly Gly Leu Thr Ser Val Ser Trp Ser
65 70 75

Phe Gln Pro Glu Gly Ala Asp Thr Thr Val Ser Phe Phe His Tyr 80 85 90

Ser Gln Gly Gln Val Tyr Leu Gly Asn Tyr Pro Pro Phe Lys Asp 95 100 105 Arg Ile Ser Trp Ala Gly Asp Leu Asp Lys Lys Asp Ala Ser Ile 110 Asn Ile Glu Asn Met Gln Phe Ile His Asn Gly Thr Tyr Ile Cys 130 Asp Val Lys Asn Pro Pro Asp Ile Val Val Gln Pro Gly His Ile Arg Leu Tyr Val Val Glu Lys Glu Asn Leu Pro Val Phe Pro Val 160 Trp Val Val Val Gly Ile Val Thr Ala Val Val Leu Gly Leu Thr 180 170 Leu Leu Ile Ser Met Ile Leu Ala Val Leu Tyr Arg Arg Lys Asn Ser Lys Arg Asp Tyr Thr Gly Cys Ser Thr Ser Glu Ser Leu Ser 210 205 200 Pro Val Lys Gln Ala Pro Arg Lys Ser Pro Ser Asp Thr Glu Gly 215 Leu Val Lys Ser Leu Pro Ser Gly Ser His Gln Gly Pro Val Ile 230 Tyr Ala Gln Leu Asp His Ser Gly Gly His His Ser Asp Lys Ile 250 Asn Lys Ser Glu Ser Val Val Tyr Ala Asp Ile Arg Lys Asn

<210> 365

<211> 1321

<212> DNA

<213> Homo sapiens

<400> 365
gccggctgtg cagagacgcc atgtaccggc tcctgtcagc agtgactgcc 50

cgggctgccg cccccggggg cttggcctca agctgcggac gacgcggggt 100

ccatcagcgc gccgggctgc cgcctctcgg ccacggctgg gtcgggggcc 150

tcgggctggg gctggggctg gcgctcgggg tgaagctggc aggtgggctg 200

aggggcgcgg ccccggcgca gtcccccgcg gcccccgacc ctgaggcgtc 250

gcctctggcc gagccgcac aggagcagtc cctcggcccg tggtctccgc 300

agaccccggc gccgcctgc tccaggtgct tcgccagagc catcgagagc 350

agccgcgacc tgctgcacag gatcaaggat gaggtgggcg caccgggcat 400

agtggttgga gtttctgtag atggaaaaga agtctggtca gaaggtttag 450

gttatgctga tgttgagaac cgtgtaccat gtaaaccaga gacagttatg 500

cgaattgcta gcatcagcaa aagtctcacc atggttgctc ttgccaaatt 550 gtgggaagca gggaaactgg atcttgatat tccagtacaa cattatgttc 600 ccgaattccc agaaaaagaa tatgaaggtg aaaaggtttc tgtcacaaca 650 agattactga tttcccattt aagtggaatt cgtcattatg aaaaggacat 700 aaaaaaggtg aaagaagaga aagcttataa agccttgaag atgatgaaag 750 agaatgttgc atttgagcaa gaaaaagaag gcaaaagtaa tgaaaagaat 800 gattttacta aatttaaaac agagcaggag aatgaagcca aatgccggaa 850 ttcaaaacct ggcaagaaaa agaatgattt tgaacaaggc gaattatatt 900 tgagagaaaa gtttgaaaat tcaattgaat ccctaagatt atttaaaaat 950 gatcctttgt tcttcaaacc tggtagtcag tttttgtatt caacttttgg 1000 ctatacccta ctggcagcca tagtagagag agcttcagga tgtaaatatt 1050 tggactatat gcagaaaata ttccatgact tggatatgct gacgactgtg 1100 caggaagaaa acgagccagt gatttacaat agagcaaggt aaatgaatac 1150 cttctgctgt gtctagctat atcgcatctt aacactattt tattaattaa 1200 aagtcaaatt ttctttgttt ccattccaaa atcaacctgc cacattttgg 1250 gagettttet acatgtetgt ttteteatet gtaaagtgaa ggaagtaaaa 1300 catgtttata aagtaaaaaa a 1321

<210> 366

<211> 373

<212> PRT

<213> Homo sapiens

<400> 366

Met Tyr Arg Leu Leu Ser Ala Val Thr Ala Arg Ala Ala Pro 1

Gly Gly Leu Ala Ser Ser Cys Gly Arg Arg Gly Val His Gln Arg

Ala Gly Leu Pro Pro Leu Gly His Gly Trp Val Gly Gly Leu Gly

Leu Gly Leu Gly Leu Ala Leu Gly Val Lys Leu Ala Gly Gly Leu

Arg Gly Ala Ala Pro Ala Gln Ser Pro Ala Ala Pro Asp Pro Glu

Ala Ser Pro Leu Ala Glu Pro Pro Gln Glu Gln Ser Leu Ala Pro

Trp	Ser	Pro	Gln	Thr 95	Pro	Ala	Pro	Pro	Cys 100	Ser	Arg	Cys	Phe	Ala 105
Arg	Ala	Ile	Glu	Ser 110	Ser	Arg	Asp	Leu	Leu 115	His	Arg	Ile	Lys	Asp 120
Glu	Val	Gly	Ala	Pro 125	Gly	Ile	Val	Val	Gly 130	Val	Ser	Val	Asp	Gly 135
Lys	Glu	Val	Trp	Ser 140	Glu	Gly	Leu	Gly	Tyr 145	Ala	Asp	Val	Glu	Asn 150
Arg	Val	Pro	Cys	Lys 155	Pro	Glu	Thr	Val	Met 160	Arg	Ile	Ala	Ser	Ile 165
Ser	Lys	Ser	Leu	Thr 170	Met	Val	Ala	Leu	Ala 175	Lys	Leu	Trp	Glu	Ala 180
Gly	Lys	Leu	Asp	Leu 185	Asp	Ile	Pro	Val	Gln 190	His	Tyr	Val	Pro	Glu 195
Phe	Pro	Glu	Lys	Glu 200	Tyr	Glu	Gly	Glu	Lys 205	Val	Ser	Val	Thr	Thr 210
Arg	Leu	Leu	Ile	Ser 215	His	Leu	Ser	Gly	Ile 220	Arg	His	Tyr	Glu	Lys 225
Asp	Ile	Lys	Lys	Val 230	Lys	Glu	Glu	Lys	Ala 235	Tyr	Lys	Ala	Leu	Lys 240
Met	Met	Lys	Glu	Asn 245	Val	Ala	Phe	Glu	Gln 250	Glu	Lys	Glu	Gly	Lys 255
Ser	Asn	Glu	Lys	Asn 260	Asp	Phe	Thr	Lys	Phe 265	Lys	Thr	Glu	Gln	Glu 270
Asn	Glu	Ala	Lys	Cys 275	Arg	Asn	Ser	Lys	Pro 280	Gly	Lys	Lys	Lys	Asn 285
Asp	Phe	Glu	Gln	Gly 290	Glu	Leu	Tyr	Leu	Arg 295	Glu	Lys	Phe	Glu	Asn 300
Ser	Ile	Glu	Ser	Leu 305		Leu	Phe	Lys	Asn 310	Asp	Pro	Leu	Phe	Phe 315
Lys	Pro	Gly	ser Ser	Gln 320		Leu	Tyr	Ser	Thr 325		Gly	Tyr	Thr	Leu 330
Leu	Ala	Ala	ıle	Val 335		Arg	Ala	Ser	Gly 340		: Lys	Tyr	Leu	345
Tyr	Met	Glr	Lys	350		His	Asp	Leu	355	Met	Let	Thr	Thr	7 Val 360
Gln	Glu	ı Glu	ı Asr	Glu 365		Val	Ile	. Tyr	370		J Ala	a Arç	J	
<210> 367														

```
<211> 30
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-30
<223> Synthetic construct.
<400> 367
 tggaaaagaa gtctggtcag aaggtttagg 30
<210> 368
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.
<400> 368
 catttggctt cattctcctg ctctg 25
<210> 369
<211> 28
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-28
<223> Synthetic construct.
<400> 369
 aaaacctcag aacaactcat tttgcacc 28
 <210> 370
 <211> 41
 <212> DNA
 <213> Artificial
 <220>
 <221> Artificial Sequence
 <222> 1-41
 <223> Synthetic construct.
 <400> 370
  gtctcaccat ggttgctctt gccaaattgt gggaagcagg g 41
 <210> 371
 <211> 1150
 <212> DNA
 <213> Homo sapiens
 <400> 371
  gtgacactat agaagagcta tgacgtcgca tgcacgcgta cgtaagctcg 50
```

gaattcggct cgaggctggt gggaagaagc cgagatggcg gcagccagcg 100 ctggggcaac ccggctgctc ctgctcttgc tgatggcggt agcagcgccc 150 agtcgagccc ggggcagcgg ctgccgggcc gggactggtg cgcgaggggc 200 tggggcggaa ggtcgagagg gcgaggcctg tggcacggtg gggctgctgc 250 tggagcactc atttgagatc gatgacagtg ccaacttccg gaagcggggc 300 tcactgctct ggaaccagca ggatggtacc ttgtccctgt cacagcggca 350 gctcagcgag gaggagcggg gccgactccg ggatgtggca gccctgaatg 400 gcctgtaccg ggtccggatc ccaaggcgac ccggggccct ggatggcctg 450 gaagetggtg getatgtete etectttgte eetgegtget eeetggtgga 500 gtcgcacctg tcggaccagc tgaccctgca cgtggatgtg gccggcaacg 550 tggtgggcgt gtcggtggtg acgcaccccg ggggctgccg gggccatgag 600 gtggaggacg tggacctgga gctgttcaac acctcggtgc agctgcagcc 650 gcccaccaca gccccaggcc ctgagacggc ggccttcatt gagcgcctgg 700 agatggaaca ggcccagaag gccaagaacc cccaggagca gaagtccttc 750 ttcgccaaat actggatgta catcattccc gtcgtcctgt tcctcatgat 800 gtcaggagcg ccagacaccg ggggccaggg tgggggtggg ggtgggggtg 850 gtggtggggg tagtggcctt tgctgtgtgc caccctccct gtaagtctat 900 ttaaaaacat cgacgataca ttgaaatgtg tgaacgtttt gaaaagctac 950 agettecage agecaaaage aactgttgtt ttggcaagae ggteetgatg 1000 tacaagcttg attgaaattc actgctcact tgatacgtta ttcagaaacc 1050 caaggaatgg ctgtccccat cctcatgtgg ctgtgtggag ctcagctgtg 1100 ttgtgtggca gtttattaaa ctgtccccca gatcgacacg caaaaaaaaa 1150

<210> 372

<211> 269

<212> PRT

<213> Homo sapiens

<400> 372

Met Ala Ala Ala Ser Ala Gly Ala Thr Arg Leu Leu Leu Leu 1 5 10 15

Leu Met Ala Val Ala Ala Pro Ser Arg Ala Arg Gly Ser Gly Cys 20 25 30

Arg Ala Gly Thr Gly Ala Arg Gly Ala Gly Ala Glu Gly Arg Glu
35 40 45

```
Gly Glu Ala Cys Gly Thr Val Gly Leu Leu Glu His Ser Phe
                 50
Glu Ile Asp Asp Ser Ala Asn Phe Arg Lys Arg Gly Ser Leu Leu
Trp Asn Gln Gln Asp Gly Thr Leu Ser Leu Ser Gln Arg Gln Leu
                 80
Ser Glu Glu Glu Arg Gly Arg Leu Arg Asp Val Ala Ala Leu Asn
Gly Leu Tyr Arg Val Arg Ile Pro Arg Arg Pro Gly Ala Leu Asp
                                                        120
                110
Gly Leu Glu Ala Gly Gly Tyr Val Ser Ser Phe Val Pro Ala Cys
Ser Leu Val Glu Ser His Leu Ser Asp Gln Leu Thr Leu His Val
                                                         150
                140
Asp Val Ala Gly Asn Val Val Gly Val Ser Val Val Thr His Pro
Gly Gly Cys Arg Gly His Glu Val Glu Asp Val Asp Leu Glu Leu
                                    175
Phe Asn Thr Ser Val Gln Leu Gln Pro Pro Thr Thr Ala Pro Gly
Pro Glu Thr Ala Ala Phe Ile Glu Arg Leu Glu Met Glu Gln Ala
                                                         210
                200
Gln Lys Ala Lys Asn Pro Gln Glu Gln Lys Ser Phe Phe Ala Lys
Tyr Trp Met Tyr Ile Ile Pro Val Val Leu Phe Leu Met Met Ser
                                     235
                 230
Gly Ala Pro Asp Thr Gly Gly Gln Gly Gly Gly Gly Gly Gly
                                     250
Gly Gly Gly Ser Gly Leu Cys Cys Val Pro Pro Ser Leu
<210> 373
<211> 1706
<212> DNA
<213> Homo sapiens
```

<400> 373
 ggagcgctgc tggaacccga gccggagccg gagccacagc ggggagggtg 50

gcctggcggc ctggagccgg acgtgtccgg ggcgtccccg cagaccgggg 100

cagcaggtcg tccgggggcc caccatgctg gtgactgcct accttgcttt 150

tgtaggcctc ctggcctcct gcctggggct ggaactgtca agatgccggg 200

ctaaaccccc tggaagggcc tgcagcaatc cctccttcct tcggtttcaa 250 ctggacttct atcaggtcta cttcctggcc ctggcagctg attggcttca 300 ggccccctac ctctataaac tctaccagca ttactacttc ctggaaggtc 350 aaattgccat cctctatgtc tgtggccttg cctctacagt cctctttggc 400 ctagtggcct cctcccttgt ggattggctg ggtcgcaaga attcttgtgt 450 cctcttctcc ctgacttact cactatgctg cttaaccaaa ctctctcaag 500 actactttgt gctgctagtg gggcgagcac ttggtgggct gtccacagcc 550 ctgctcttct cagccttcga ggcctggtat atccatgagc acgtggaacg 600 gcatgacttc cctgctgagt ggatcccagc tacctttgct cgagctgcct 650 tctggaacca tgtgctggct gtagtggcag gtgtggcagc tgaggctgta 700 gccagctgga tagggctggg gcctgtagcg ccctttgtgg ctgccatccc 750 tctcctggct ctggcagggg ccttggccct tcgaaactgg ggggagaact 800 atgaccggca gcgtgccttc tcaaggacct gtgctggagg cctgcgctgc 850 ctcctgtcgg accgccgcgt gctgctgctg ggcaccatac aagctctatt 900 tgagagtgtc atcttcatct ttgtcttcct ctggacacct gtgctggacc 950 cacacggggc ccctctgggc attatcttct ccagcttcat ggcagccagc 1000 ctgcttggct cttccctgta ccgtatcgcc acctccaaga ggtaccacct 1050 tcagcccatg cacctgctgt cccttgctgt gctcatcgtc gtcttctctc 1100 tcttcatgtt gactttctct accagcccag gccaggagag tccggtggag 1150 teetteatag cetttetaet tattgagttg gettgtggat tataetttee 1200 cagcatgage ttectaegga gaaaggtgat eeetgagaea gageaggetg 1250 gtgtactcaa ctggttccgg gtacctctgc actcactggc ttgcctaggg 1300 ctccttgtcc tccatgacag tgatcgaaaa acaggcactc ggaatatgtt 1350 cagcatttgc tctgctgtca tggtgatggc tctgctggca gtggtgggac 1400 tetteacegt ggtaaggeat gatgetgage tgegggtaee tteacetaet 1450 gaggageeet atgeeeetga getgtaaeee caeteeagga caagataget 1500 gggacagact cttgaattcc agctatccgg gattgtacag atctctctgt 1550 gactgacttt gtgactgtcc tgtggtttct cctgccattg ctttgtgttt 1600 gggaggacat gatggggtg atggactgga aagaaggtgc caaaagttcc 1650

ctctgtgtta ctcccattta gaaaataaac acttttaaat gatcaaaaaa 1700 aaaaaa 1706

<210> 374 <211> 450 <212> PRT <213> Homo sapiens

<400> 374 Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser Cys Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly Arg Ala Cys Ser Asn Pro Ser Phe Leu Arg Phe Gln Leu Asp Phe Tyr Gln Val Tyr Phe Leu Ala Leu Ala Ala Asp Trp Leu Gln Ala Pro Tyr Leu Tyr Lys Leu Tyr Gln His Tyr Tyr Phe Leu Glu Gly Gln Ile Ala Ile Leu Tyr Val Cys Gly Leu Ala Ser Thr Val Leu Phe Gly Leu Val Ala Ser Ser Leu Val Asp Trp Leu Gly Arg Lys Asn Ser Cys Val Leu Phe Ser Leu Thr Tyr Ser Leu Cys Cys Leu 115 Thr Lys Leu Ser Gln Asp Tyr Phe Val Leu Leu Val Gly Arg Ala 130 Leu Gly Gly Leu Ser Thr Ala Leu Leu Phe Ser Ala Phe Glu Ala 140 Trp Tyr Ile His Glu His Val Glu Arg His Asp Phe Pro Ala Glu 155 Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe Trp Asn His Val Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val Ala Ser Trp Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile Pro Leu 205 Leu Ala Leu Ala Gly Ala Leu Ala Leu Arg Asn Trp Gly Glu Asn Tyr Asp Arg Gln Arg Ala Phe Ser Arg Thr Cys Ala Gly Gly Leu 240 235 230

```
Arg Cys Leu Leu Ser Asp Arg Arg Val Leu Leu Gly Thr Ile
                245
Gln Ala Leu Phe Glu Ser Val Ile Phe Ile Phe Val Phe Leu Trp
                260
Thr Pro Val Leu Asp Pro His Gly Ala Pro Leu Gly Ile Ile Phe
                275
Ser Ser Phe Met Ala Ala Ser Leu Leu Gly Ser Ser Leu Tyr Arg
Ile Ala Thr Ser Lys Arg Tyr His Leu Gln Pro Met His Leu Leu
                                    310
                305
Ser Leu Ala Val Leu Ile Val Val Phe Ser Leu Phe Met Leu Thr
                320
                                     325
Phe Ser Thr Ser Pro Gly Gln Glu Ser Pro Val Glu Ser Phe Ile
Ala Phe Leu Leu Ile Glu Leu Ala Cys Gly Leu Tyr Phe Pro Ser
Met Ser Phe Leu Arg Arg Lys Val Ile Pro Glu Thr Glu Gln Ala
                365
Gly Val Leu Asn Trp Phe Arg Val Pro Leu His Ser Leu Ala Cys
                380
Leu Gly Leu Leu Val Leu His Asp Ser Asp Arg Lys Thr Gly Thr
                395
Arg Asn Met Phe Ser Ile Cys Ser Ala Val Met Val Met Ala Leu
                                     415
Leu Ala Val Val Gly Leu Phe Thr Val Val Arg His Asp Ala Glu
                425
Leu Arg Val Pro Ser Pro Thr Glu Glu Pro Tyr Ala Pro Glu Leu
                                     445
                440
```

<210> 375

<211> 1098

<212> DNA

<213> Artificial

<400> 375 gcgacgcgcg gcggggcggc gagaggaaac gcggcgccgg gccgggcccg 50 gccctggaga tggtccccgg cgccgcgggc tggtgttgtc tcgtgctctg 100 gctccccgcg tgcgtcgcgg cccacggctt ccgtatccat gattatttgt 150 actttcaagt gctgagtcct ggggacattc gatacatctt cacagccaca 200 cctgccaagg actttggtgg tatctttcac acaaggtatg agcagattca 250

ccttgtcccc gctgaacctc cagaggcctg cggggaactc agcaacggtt 300 tottcatoca ggaccagatt gototggtgg agaggggggg ctgctccttc 350 ctctccaaga ctcgggtggt ccaggagcac ggcgggcggg cggtgatcat 400 ctctgacaac gcagttgaca atgacagctt ctacgtggag atgatccagg 450 acagtaccca gegeacaget gaeateceeg ecetetteet geteggeega 500 gacggctaca tgatccgccg ctctctggaa cagcatgggc tgccatgggc 550 catcatttcc atcccagtca atgtcaccag catccccacc tttgagctgc 600 tgcaaccgcc ctggaccttc tggtagaaga gtttgtccca cattccagcc 650 ataagtgact ctgagctggg aaggggaaac ccaggaattt tgctacttgg 700 aatttggaga tagcatctgg ggacaagtgg agccaggtag aggaaaaggg 750 cccagggccc ccaagggtgt ctcatgctac aagaagaggc aagagacagg 850 ccccagggct tctggctaga acccgaaaca aaaggagctg aaggcaggtg 900 gcctgagagc catctgtgac ctgtcacact cacctggctc cagcctcccc 950 tacccagggt ctctgcacag tgaccttcac agcagttgtt ggagtggttt 1000 aaagagctgg tgtttgggga ctcaataaac cctcactgac tttttagcaa 1050 taaagcttct catcagggtt gcaaaaaaaa aaaaaaaaa aaaaaaaa 1098

<400> 376

Glu Leu Ser Asn Gly Phe Phe Ile Gln Asp Gln Ile Ala Leu Val
$$80\,$$
 85 90

<210> 376

<211> 188

<212> PRT

<213> Homo sapiens

Glu Arg Gly Gly Cys Ser Phe Leu Ser Lys Thr Arg Val Val Gln $95 \hspace{1cm} 100 \hspace{1cm} 105 \hspace{1cm}$

Asn Asp Ser Phe Tyr Val Glu Met Ile Gln Asp Ser Thr Gln Arg 125 130 135

Thr Ala Asp Ile Pro Ala Leu Phe Leu Leu Gly Arg Asp Gly Tyr 140 145 150

Met Ile Arg Arg Ser Leu Glu Gln His Gly Leu Pro Trp Ala Ile 155 160 165

Ile Ser Ile Pro Val Asn Val Thr Ser Ile Pro Thr Phe Glu Leu 170 175 180

Leu Gln Pro Pro Trp Thr Phe Trp 185

<210> 377

<211> 496

<212> DNA

<213> Artificial

<220>

<221> unsure

<222> 396

<223> unknown base

<400> 377

<210> 378

<211> 116

<212> PRT

<213> Homo sapiens

<400> 378

```
Met Glu Leu Ala Leu Leu Cys Gly Leu Val Val Met Ala Gly Val
Ile Pro Ile Gln Gly Gly Ile Leu Asn Leu Asn Lys Met Val Lys
Gln Val Thr Gly Lys Met Pro Ile Leu Ser Tyr Trp Pro Tyr Gly
Cys His Cys Gly Leu Gly Gly Arg Gly Gln Pro Lys Asp Ala Thr
Asp Trp Cys Cys Gln Thr His Asp Cys Cys Tyr Asp His Leu Lys
Thr Gln Gly Cys Gly Ile Tyr Lys Asp Asn Asn Lys Ser Ser Ile
His Cys Met Asp Leu Ser Gln Arg Tyr Cys Leu Met Ala Val Phe
Asn Val Ile Tyr Leu Glu Asn Glu Asp Ser Glu
                 110
<210> 379
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 379
ctgcctccac tgctctgtgc tggg 24
<210> 380
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24.
<223> Synthetic construct.
<400> 380
 cagagcagtg gatgttcccc tggg 24
<210> 381
<211> 45
<212> DNA
```

<213> Artificial

<221> Artificial Sequence

<220>

<222> 1-45

<223> Synthetic construct.

<400> 381 ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctc 45

<210> 382

<211> 764

<212> DNA

<213> Homo sapiens

<400> 382

ctegettett cettetggat gggggeeeag ggggeeeagg agagtataaa 50 ggcgatgtgg agggtgcccg gcacaaccag acgcccagtc acaggcgaga 100 gccctgggat gcaccggcca gaggccatgc tgctgctgct cacgcttgcc 150 ctcctggggg gccccacctg ggcagggaag atgtatggcc ctggaggagg 200 caagtatttc agcaccactg aagactacga ccatgaaatc acagggctgc 250 gggtgtctgt aggtcttctc ctggtgaaaa gtgtccaggt gaaacttgga 300 gactcctggg acgtgaaact gggagcctta ggtgggaata cccaggaagt 350 caccetgeag ceaggegaat acateacaaa agtetttgte geetteeaag 400 ctttcctccg gggtatggtc atgtacacca gcaaggaccg ctatttctat 450 tttgggaagc ttgatggcca gatctcctct gcctacccca gccaagaggg 500 gcaggtgctg gtgggcatct atggccagta tcaactcctt ggcatcaaga 550 gcattggctt tgaatggaat tatccactag aggagccgac cactgagcca 600 ccagttaatc tcacatactc agcaaactca cccgtgggtc gctagggtgg 650 ggtatggggc catccgagct gaggccatct gtgtggtggt ggctgatggt 700 actggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa 750 gcttctgcag aaaa 764

<210> 383

<211> 178

<212> PRT

<213> Homo sapiens

<400> 383

Met His Arg Pro Glu Ala Met Leu Leu Leu Leu Thr Leu Ala Leu

1 5 10 15

Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly 20 25 30

Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr
35 40 45

Gly Leu Arg Val Ser Val Gly Leu Leu Leu Val Lys Ser Val Gln
50 55 60

Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly 65 70 75

Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr Ile Thr 80 85 90

Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met Val Met 95 100 105

Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly 110 115 120

Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val 125 130 135

Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly
140 145 150

Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro 155 160

Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg 170 175

<210> 384

<211> 2379

<212> DNA

<213> Homo sapiens

<400> 384
gctgagcgtg tgcgcggtac ggggctctcc tgccttctgg gctccaacgc 50
agctctgtgg ctgaactggg tgctcatcac gggaactgct gggctatgga 100
atacagatgt ggcagctcag gtagccccaa attgcctgga agaatacatc 150
atgttttcg ataagaagaa attgtaggat ccagttttt ttttaaccgc 200
cccctcccca cccccaaaa aaactgtaaa gatgcaaa'aa cgtaatatcc 250
atgaagatcc tattacctag gaagatttg atgtttgct gcgaatgcgg 300
tgttgggatt tattgttct tggagtgttc tgcgtggctg gcaaagaata 350
atgttccaaa atcggtccat ctcccaaggg gtccaatttt tcttcctggg 400
tgtcagcgag ccctgactca ctacagtgca gctgacaggg gctgtcatgc 450
aactggccc taagccaaag caaaagacct aaggacgac tttgaacaat 500
acaaaggatg ggttcaatg taattaggct actgagcgga tcagctgtag 550
cactggttat agccccact gtcttactga caatgcttc ttctgccgaa 600
cgaggatgcc ctaagggctg taggtgtaa ggcaaaatgg tatattgta 650

atctcagaaa ttacaggaga taccctcaag tatatctgct ggttgcttag 700 gtttgtccct tcgctataac agccttcaaa aacttaagta taatcaattt 750 aaagggctca accagctcac ctggctatac cttgaccata accatatcag 800 caatattgac gaaaatgctt ttaatggaat acgcagactc aaagagctga 850 ttcttagttc caatagaatc tcctattttc ttaacaatac cttcagacct 900 gtgacaaatt tacggaactt ggatctgtcc tataatcagc tgcattctct 950 gggatctgaa cagtttcggg gcttgcggaa gctgctgagt ttacatttac 1000 ggtctaactc cctgagaacc atccctgtgc gaatattcca agactgccgc 1050 aacctggaac ttttggacct gggatataac cggatccgaa gtttagccag 1100 gaatgtettt getggeatga teagaeteaa agaaetteae etggageaea 1150 atcaattttc caagctcaac ctggcccttt ttccaaggtt ggtcagcctt 1200 cagaaccttt acttgcagtg gaataaaatc agtgtcatag gacagaccat 1250 gtcctggacc tggagctcct tacaaaggct tgatttatca ggcaatgaga 1300 tcgaagettt cagtggacce agtgttttce agtgtgteec gaatetgeag 1350 cgcctcaacc tggattccaa caagctcaca tttattggtc aagagatttt 1400 ggattettgg atatecetea atgacateag tettgetggg aatatatggg 1450 aatgcagcag aaatatttgc tcccttgtaa actggctgaa aagttttaaa 1500 ggtctaaggg agaatacaat tatctgtgcc agtcccaaag agctgcaagg 1550 agtaaatgtg atcgatgcag tgaagaacta cagcatctgt ggcaaaagta 1600 ctacagagag gtttgatctg gccagggctc tcccaaagcc gacgtttaag 1650 cccaagetee ecaggeegaa geatgagage aaaceeegtt tgeeeeegae 1700 ggtgggagcc acagagcccg gcccagagac cgatgctgac gccgagcaca 1750 tctctttcca taaaatcatc gcgggcagcg tggcgctttt cctgtccgtg 1800 ctcgtcatcc tgctggttat ctacgtgtca tggaagcggt accctgcgag 1850 catgaagcag ctgcagcagc gctccctcat gcgaaggcac aggaaaaaga 1900 aaagacagtc cctaaagcaa atgactccca gcacccagga attttatgta 1950 gattataaac ccaccaacac ggagaccagc gagatgctgc tgaatgggac 2000 gggaccctgc acctataaca aatcgggctc cagggagtgt gaggtatgaa 2050 ccattgtgat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100 ttgaactctg gtgactatca agggaacgcg atgcccccc tccccttccc 2150
tctccctctc actttggtgg caagatcctt ccttgtccgt tttagtgcat 2200
tcataatact ggtcattttc ctctcataca taatcaaccc attgaaattt 2250
aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300
ttgtataaga ccctttactg attccattaa tgtcgcattt gttttaagat 2350
aaaacttctt tcataggtaa aaaaaaaaa 2379

<210> 385

<211> 513

<212> PRT

<213> Homo sapiens

<400> 385

Met Gly Phe Asn Val Ile Arg Leu Leu Ser Gly Ser Ala Val Ala 1 5 10 15

Leu Val Ile Ala Pro Thr Val Leu Leu Thr Met Leu Ser Ser Ala $20 \\ 25 \\ 30$

Glu Arg Gly Cys Pro Lys Gly Cys Arg Cys Glu Gly Lys Met Val 35 40 45

Tyr Cys Glu Ser Gln Lys Leu Gln Glu Ile Pro Ser Ser Ile Ser
50 55 60

Ala Gly Cys Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Gln Lys 65 70 75

Leu Lys Tyr Asn Gln Phe Lys Gly Leu Asn Gln Leu Thr Trp Leu 80 85 90

Tyr Leu Asp His Asn His Ile Ser Asn Ile Asp Glu Asn Ala Phe 95 100 105

Asn Gly Ile Arg Arg Leu Lys Glu Leu Ile Leu Ser Ser Asn Arg 110 115 120

Ile Ser Tyr Phe Leu Asn Asn Thr Phe Arg Pro Val Thr Asn Leu 125 130 135

Arg Asn Leu Asp Leu Ser Tyr Asn Gln Leu His Ser Leu Gly Ser 140 145 150

Glu Gln Phe Arg Gly Leu Arg Lys Leu Leu Ser Leu His Leu Arg 155 160 165

Ser Asn Ser Leu Arg Thr Ile Pro Val Arg Ile Phe Gln Asp Cys 170 175 180

Arg Asn Leu Glu Leu Leu Asp Leu Gly Tyr Asn Arg Ile Arg Ser 185 190 195

Leu Ala Arg Asn Val Phe Ala Gly Met Ile Arg Leu Lys Glu Leu

				200					205					210
His	Leu	Glu	His	Asn 215	Gln	Phe	Ser	Lys	Leu 220	Asn	Leu	Ala	Leu	Phe 225
Pro	Arg	Leu	Val	Ser 230	Leu	Gln	Asn	Leu	Tyr 235	Leu	Gln	Trp	Asn	Lys 240
Ile	Ser	Val	Ile	Gly 245	Gln	Thr	Met	Ser	Trp 250	Thr	Trp	Ser	Ser	Leu 255
Gln	Arg	Leu	Asp	Leu 260	Ser	Gly	Asn	Glu	Ile 265	Glu	Ala	Phe	Ser	Gly 270
Pro	Ser	Val	Phe	Gln 275	Cys	Val	Pro	Asn	Leu 280	Gln	Arg	Leu	Asn	Leu 285
Asp	Ser	Asn	Lys	Leu 290	Thr	Phe	Ile	Gly	Gln 295	Glu	Ile	Leu	Asp	Ser 300
Trp	Ile	Ser	Leu	Asn 305	Asp	Ile	Ser	Leu	Ala 310	Gly	Asn	Ile	Trp	Glu 315
Cys	Ser	Arg	Asn	Ile 320	Cys	Ser	Leu	Val	Asn 325	Trp	Leu	Lys	Ser	Phe 330
Lys	Gly	Leu	Arg	Glu 335	Asn	Thr	Ile	Ile	Cys 340	Ala	Ser	Pro	Lys	Glu 345
Leu	Gln	Gly	Val	Asn 350	Val	Ile	Asp	Ala	Val 355	Lys	Asn	Tyr	Ser	Ile 360
Cys	Gly	Lys	Ser	Thr 365	Thr	Glu	Arg	Phe	Asp 370		Ala	Arg	Ala	Leu 375
Pro	Lys	Pro	Thr	Phe 380	Lys	Pro	Lys	Leu	Pro 385	Arg	Pro	Lys	His	Glu 390
Ser	Lys	Pro	Pro	Leu 395	Pro	Pro	Thr	Val	Gly 400		Thr	Glu	Pro	Gly 405
Pro	Glu	Thr	Asp	Ala 410		Ala	Glu	His	Ile 415	Ser	Phe	His	Lys	Ile 420
Ile	Ala	Gly	Ser	Val 425		Leu	Phe	Leu	Ser 430		Leu	Val	Ile	Leu 435
Leu	Val	Ile	Tyr	Val 440		Trp	Lys	Arg	Tyr 445		Ala	Ser	Met	Lys 450
Gln	Leu	Gln	Gln	Arg 455		Leu	Met	Arg	Arg 460		Arg	Lys	Lys	Lys 465
Arg	Gln	Ser	Leu	Lys 470		Met	Thr	Pro	Ser 475		Gln	Glu	Phe	Туг 480
Val	Asp	Tyr	Lys	Pro 485		Asn	Thr	Glu	Thr 490		Glu	Met	. Leu	Leu 495

Asn Gly Thr Gly Pro Cys Thr Tyr Asn Lys Ser Gly Ser Arg Glu 505 Cys Glu Val <210> 386 <211> 24 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-24 <223> Synthetic construct. <400> 386 ctgggatctg aacagtttcg gggc 24 <210> 387 <211> 24 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-24 <223> Synthetic construct. <400> 387 ggtccccagg acatggtctg tccc 24 <210> 388 <211> 48 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-48 <223> Synthetic construct. <400> 388 gctgagttta catttacggt ctaactccct gagaaccatc cctgtgcg 48 <210> 389 <211> 1449 <212> DNA <213> Homo sapiens <400> 389 agttctgaga aagaaggaaa taaacacagg caccaaacca ctatcctaag 50 ttgactgtcc tttaaatatg tcaagatcca gacttttcag tgtcacctca 100 gcgatctcaa cgatagggat cttgtgtttg ccgctattcc agttggtgct 150

ctcggaccta ccatgcgaag aagatgaaat gtgtgtaaat tataatgacc 200

aacaccctaa tggctggtat atctggatcc tcctgctgct ggttttggtg 250 gcagctcttc tctgtggagc tgtggtcctc tgcctccagt gctggctgag 300 gagaccccga attgattctc acaggcgcac catggcagtt tttgctgttg 350 gagacttgga ctctatttat gggacagaag cagctgtgag tccaactgtt 400 ggaattcacc ttcaaactca aacccctgac ctatatcctg ttcctgctcc 450 atgttttggc cctttaggct ccccacctcc atatgaagaa attgtaaaaa 500 caacctgatt ttaggtgtgg attatcaatt taaagtatta acgacatctg 550 taattccaaa acatcaaatt taggaatagt tatttcagtt gttggaaatg 600 tccagagatc tattcatata gtctgaggaa ggacaattcg acaaaagaat 650 ggatgttgga aaaaattttg gtcatggaga tgtttaaata gtaaagtagc 700 aggettttga tgtgteactg etgtateata ettttatget acaeaaceaa 750 attaatgctt ctccactagt atccaaacag gcaacaatta ggtgctggaa 800 gtagtttcca tcacatttag gactccactg cagtatacag cacaccattt 850 tctgctttaa actctttcct agcatggggt ccataaaaat tattataatt 900 taacaatago ccaagoogag aatocaacat gtocagaaco agaaccagaa 950 agatagtatt tgaatgaagg tgaggggaga gagtaggaaa aagaaaagtt 1000 tggagttgaa gggtaaagga taaatgaaga ggaaaaggaa aagattacaa 1050 gtctcagcaa aaacaagagg ttttatgccc caacctgaag aggaagaaat 1100 tgtagataga aggtgaagga gattgctgaa gatatagagc acatataatg 1150 ccaacacggg gagaaaagaa aatttcccct tttacagtaa tgaatgtggc 1200 ctccatagtc catagtgttt ctctggagcc tcagggcttg gcatttattg 1250 cagcatcatg ctaagaacct tcggcatagg tatctgttcc catgaggact 1300 gcagaagtag caatgagaca tottcaagtg gcattttggc agtggccatc 1350 agcaggggga cagacaaaaa catccatcac agatgacata tgatcttcag 1400 ctgacaaatt tgttgaacaa aacaataaac atcaatagat atctaaaaa 1449

<210> 390

<211> 146

<212> PRT

<213> Homo sapiens

<400> 390

Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr
1 5 10 15

Ile Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp 20 Leu Pro Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln His Pro Asn Gly Trp Tyr Ile Trp Ile Leu Leu Leu Val Leu Val Ala Ala Leu Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys Trp Leu Arg Arg Pro Arg Ile Asp Ser His Arg Arg Thr Met Ala Val Phe Ala Val Gly Asp Leu Asp Ser Ile Tyr Gly Thr Glu Ala Ala Val Ser Pro Thr Val Gly Ile His Leu Gln Thr Gln Thr Pro 110 Asp Leu Tyr Pro Val Pro Ala Pro Cys Phe Gly Pro Leu Gly Ser 130 Pro Pro Pro Tyr Glu Glu Ile Val Lys Thr Thr <210> 391 <211> 26 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-26 <223> Synthetic construct. <400> 391 cttttcagtg tcacctcagc gatctc 26 <210> 392 <211> 23 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-23 <223> Synthetic construct. <400> 392 ccaaaacatg gagcaggaac agg 23 <210> 393 <211> 47 <212> DNA

<213> Artificial

<220> <221> Artificial Sequence

<222> 1-47

<223> Synthetic construct.

<400> 393

ccagttggtg ctctcggacc taccatgcga agaagatgaa atgtgtg 47

<210> 394

<211> 2340

<212> DNA

<213> Homo sapiens

<400> 394 gageggagta aaateteeac aagetgggaa caaacetegt eecaacteee 50 acceaecgge gttteteeag etegatetgg aggetgette geeagtgtgg 100 gacgcagctg acgcccgctt attagctctc gctgcgtcgc cccggctcag 150 aageteegtg geggeggega eegtgaegag aageeeaegg eeageteagt 200 tctcttctac tttgggagag agagaaagtc agatgcccct tttaaactcc 250 ctcttcaaaa ctcatctcct gggtgactga gttaatagag tggatacaac 300 cttgctgaag atgaagaata tacaatattg aggatatttt tttctttttt 350 ttttcaagtc ttgatttgtg gcttacctca agttaccatt tttcagtcaa 400 gtctgtttgt ttgcttcttc agaaatgttt tttacaatct caagaaaaaa 450 tatgtcccag aaattgagtt tactgttgct tgtatttgga ctcatttggg 500 gattgatgtt actgcactat acttttcaac aaccaagaca tcaaagcagt 550 gtcaagttac gtgagcaaat actagactta agcaaaagat atgttaaagc 600 tctagcagag gaaaataaga acacagtgga tgtcgagaac ggtgcttcta 650 tggcaggata tgcggatctg aaaagaacaa ttgctgtcct tctggatgac 700 attttgcaac gattggtgaa gctggagaac aaagttgact atattgttgt 750 gaatggctca gcagccaaca ccaccaatgg tactagtggg aatttggtgc 800 cagtaaccac aaataaaaga acgaatgtct cgggcagtat cagatagcag 850 ttgaaaatca ccttgtgctg ctccatccac tgtggattat atcctatggc 900 agaaaagctt tataattgct ggcttaggac agagcaatac tttacaataa 950 aagetetaca catttteaag gagtatgetg gatteatgga aetetaatte 1000 tgtacataaa aattttaaag ttatttgttt gctttcaggc aagtctgttc 1050 aatgctgtac tatgtcctta aagagaattt ggtaacttgg ttgatgtggt 1100

aagcagatag gtgagttttg tataaatctt tigtgtttga gatcaagctg 1150 aaatgaaaac actgaaaaac atggattcat ttctataaca catttattta 1200 agtatataac acgttttttg gacaagtgaa gaatgtttaa tcattctgtc 1250 atttgttctc aatagatgta actgttagac tacggctatt tgaaaaaatg 1300 tgcttattgt actatattt gttattccaa ttatgagcag agaaaggaaa 1350 tataatgttg aaaataatgt tttgaaatca tgacccaaag aatgtattga 1400 tttgcactat ccttcagaat aactgaaggt taattattgt atatttttaa 1450 aaattacact tataagagta taatcttgaa atgggtagca gccactgtcc 1500 attacctatc gtaaacattg gggcaattta ataacagcat taaaatagtt 1550 gtaaactcta atcttatact tattgaagaa taaaagatat ttttatgatg 1600 agagtaacaa taaagtattc atgatttttc acatacatga atgttcattt 1650 aaaagtttaa tootttgagt gtotatgota toaggaaago acattattto 1700 catatttggg ttaattttgc ttttattata ttggtctagg aggaagggac 1750 tttggagaat ggaactcttg aggactttag ccaggtgtat ataataaagg 1800 taagagtatc ctttatgaaa ttttgaattt gtataacaga tgcattagat 1900 attcatttta tataatggcc acttaaaata agaacattta aaatataaac 1950 tatgaagatt gactatcttt tcaggaaaaa agctgtatat agcacaggga 2000 accctaatct tgggtaattc tagtataaaa caaattatac ttttatttaa 2050 atttcccttg tagcaaatct aattgccaca tggtgcccta tatttcatag 2100 tatttattct ctatagtaac tgcttaagtg cagctagctt ctagatttag 2150 actatataga atttagatat tgtattgttc gtcattataa tatgctacca 2200 catgtagcaa taattacaat attttattaa aataaatatg tgaaatattg 2250 acctttatgt gaagaaatta attatatgcc attgccaggt 2340

<210> 395

<211> 140

<212> PRT

<213> Homo sapiens

<400> 395

Met Phe Phe Thr Ile Ser Arg Lys Asn Met Ser Gln Lys Leu Ser 1 5 10

Leu Leu Leu Leu Val Phe Gly Leu Ile Trp Gly Leu Met Leu Leu 30

His Tyr Thr Phe Gln Gln Pro Arg His Gln Ser Ser Val Lys Leu 45

Arg Glu Gln Ile Leu Asp Leu Ser Lys Arg Tyr Val Lys Ala Leu 60

Ala Glu Glu Asn Lys Asn Thr Val Asp Val Glu Asn Gly Ala Ser 75

Met Ala Gly Tyr Ala Asp Leu Lys Arg Thr Ile Ala Val Leu Leu 90

Asp Asp Ile Leu Gln Arg Leu Val Lys Leu Glu Asn Lys Val Asp 100

Tyr Ile Val Val Asn Gly Ser Ala Ala Asn Thr Thr Asn Lys Arg Thr Thr Asn Val

130

Ser Gly Ser Ile Arg

<210> 396

<211> 2639

<212> DNA

<213> Homo sapiens

<400> 396
cgcggccggg ccgccgggt gagcgtgccg aggcgctgt ggcgcaggct 50

tccagcccc accatgccgt ggcccctgct gctgctgctg gccgtgagtg 100

gggcccagac aacccggcca tgcttccccg ggtgccaatg cgaggtggag 150

accttcggcc ttttcgacag cttcagcctg actcgggtgg attgtagcgg 200
cctgggcccc cacatcatgc cggtgccaat ccctctggac acagcccact 250

tggacctgtc ctccaaccgg ctggagatgg tgaatgagtc ggtgttggcg 300

gggccgggct acacgacgtt ggctggcctg gatctcagcc acaacctgct 350

caccagcatc tcacccactg ccttctcccg ccttcgctac ctggagtcgc 400

ttgacctcag ccacaatggc ctgacagcc tgccagccga gagcttcacc 450

agctcacccc tgagcgacgt gaaccttagc cacaaccagc tccgggaggt 500

ctcagtgtct gccttcacga cgcacagtca gggccgggca ctacacgtgg 550

acctctccca caacctcatt caccgcctcg tgcccaccc cacgagggcc 600

ggcctgcctg cgcccaccat tcagagcctg aacctggct ggaaccggct 650

ccatgccgtg cccaacctcc gagacttgcc cctgcgctac ctgagcctgg 700 atgggaaccc tctagctgtc attggtccgg gtgccttcgc ggggctggga 750 ggccttacac acctgtctct ggccagcctg cagaggctcc ctgagctggc 800 gcccagtggc ttccgtgagc taccgggcct gcaggtcctg gacctgtcgg 850 gcaaccccaa gcttaactgg gcaggagctg aggtgttttc aggcctgagc 900 tccctgcagg agctggacct ttcgggcacc aacctggtgc ccctgcctga 950 ggcgctgctc ctccacctcc cggcactgca gagcgtcagc gtgggccagg 1000 atgtgcggtg ccggcgcctg gtgcgggagg gcacctaccc ccggaggcct 1050 ggctccagcc ccaaggtgcc cctgcactgc gtagacaccc gggaatctgc 1100 tgccaggggc cccaccatct tgtgacaaat ggtgtggccc agggccacat 1150 aacagactgc tgtcctgggc tgcctcaggt cccgagtaac ttatgttcaa 1200 tgtgccaaca ccagtgggga gcccgcaggc ctatgtggca gcgtcaccac 1250 aggagttgtg ggcctaggag aggctttgga cctgggagcc acacctagga 1300 gcaaagtete acceettigt etacgitiget teeceaaace atgageagag 1350 ggacttcgat gccaaaccag actcgggtcc cctcctgctt cccttcccca 1400 cttatccccc aagtgccttc cctcatgcct gggccggcct gacccgcaat 1450 gggcagaggg tgggtgggac cccctgctgc agggcagagt tcaggtccac 1500 tgggctgagt gtccccttgg gcccatggcc cagtcactca ggggcgagtt 1550 tcttttctaa catagccctt tctttgccat gaggccatga ggcccgcttc 1600 atccttttct atttccctag aaccttaatg gtagaaggaa ttgcaaagaa 1650 tcaagtccac ccttctcatg tgacagatgg ggaaactgag gccttgagaa 1700 ggaaaaaggc taatctaagt teetgeggge agtggeatga etggageaca 1750 gcctcctgcc tcccagcccg gacccaatgc actttcttgt ctcctctaat 1800 aagccccacc ctccccgcct gggctcccct tgctgccctt gcctgttccc 1850 cattagcaca ggagtagcag cagcaggaca ggcaagagcc tcacaagtgg 1900 gactctgggc ctctgaccag ctgtgcggca tgggctaagt cactctgccc 1950 ttcggagcct ctggaagctt agggcacatt ggttccagcc tagccagttt 2000 ctcaccctgg gttggggtcc cccagcatcc agactggaaa cctacccatt 2050 ttcccctgag catcctctag atgctgcccc aaggagttgc tgcagttctg 2100

<400> 397

Met Pro Trp Pro Leu Leu Leu Leu Leu Ala Val Ser Gly Ala Gln
1 5 10 15

Thr Thr Arg Pro Cys Phe Pro Gly Cys Gln Cys Glu Val Glu Thr 20 25 30

Phe Gly Leu Phe Asp Ser Phe Ser Leu Thr Arg Val Asp Cys Ser 35 40 45

Gly Leu Gly Pro His Ile Met Pro Val Pro Ile Pro Leu Asp Thr 50 55 60

Ala His Leu Asp Leu Ser Ser Asn Arg Leu Glu Met Val Asn Glu 65 70 75

Ser Val Leu Ala Gly Pro Gly Tyr Thr Thr Leu Ala Gly Leu Asp $80 \\ \hspace{1.5cm} 85 \\ \hspace{1.5cm} 90$

Leu Ser His Asn Leu Leu Thr Ser Ile Ser Pro Thr Ala Phe Ser 95 100 105

Arg Leu Arg Tyr Leu Glu Ser Leu Asp Leu Ser His Asn Gly Leu 110 115 120

Thr Ala Leu Pro Ala Glu Ser Phe Thr Ser Ser Pro Leu Ser Asp 125 130 135

Val Asn Leu Ser His Asn Gln Leu Arg Glu Val Ser Val Ser Ala 140 145 150

<210> 397

<211> 353

<212> PRT

<213> Homo sapiens

Phe Thr Thr His Ser Gln Gly Arg Ala Leu His Val Asp Leu Ser 160 155 His Asn Leu Ile His Arg Leu Val Pro His Pro Thr Arg Ala Gly 170 Leu Pro Ala Pro Thr Ile Gln Ser Leu Asn Leu Ala Trp Asn Arg 190 185 Leu His Ala Val Pro Asn Leu Arg Asp Leu Pro Leu Arg Tyr Leu 200 Ser Leu Asp Gly Asn Pro Leu Ala Val Ile Gly Pro Gly Ala Phe 215 Ala Gly Leu Gly Gly Leu Thr His Leu Ser Leu Ala Ser Leu Gln Arg Leu Pro Glu Leu Ala Pro Ser Gly Phe Arg Glu Leu Pro Gly Leu Gln Val Leu Asp Leu Ser Gly Asn Pro Lys Leu Asn Trp Ala Gly Ala Glu Val Phe Ser Gly Leu Ser Ser Leu Gln Glu Leu Asp 280 Leu Ser Gly Thr Asn Leu Val Pro Leu Pro Glu Ala Leu Leu 295 290 His Leu Pro Ala Leu Gln Ser Val Ser Val Gly Gln Asp Val Arg 315 305 Cys Arg Arg Leu Val Arg Glu Gly Thr Tyr Pro Arg Arg Pro Gly Ser Ser Pro Lys Val Pro Leu His Cys Val Asp Thr Arg Glu Ser 340 Ala Ala Arg Gly Pro Thr Ile Leu <210> 398 <211> 23 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-23 <223> Synthetic construct. <400> 398 ccctgccagc cgagagette acc 23 <210> 399 <211> 23

<212> DNA

```
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 399
ggttggtgcc cgaaaggtcc agc 23
<210> 400
<211> 44
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-44
<223> Synthetic construct.
<400> 400
 caaccccaag cttaactggg caggagctga ggtgttttca ggcc 44
<210> 401
<211> 1571
<212> DNA
<213> Homo sapiens
<400> 401
 gatggcgcag ccacagcttc tgtgagattc gatttctccc cagttcccct 50
 gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaaggg 100
 gaggetatat gegteaatte eccaaaacaa gttttgacat tteecetgaa 150
 atgtcattct ctatctattc actgcaagtg cctgctgttc caggccttac 200
 ctgctgggca ctaacggcgg agccaggatg gggacagaat aaaggagcca 250
 cgacctgtgc caccaactcg cactcagact ctgaactcag acctgaaatc 300
 ttctcttcac gggaggcttg gcagtttttc ttactcctgt ggtctccaga 350
 tttcaggcct aagatgaaag cctctagtct tgccttcagc cttctctctg 400
 ctgcgtttta tctcctatgg actccttcca ctggactgaa gacactcaat 450
 ttgggaagct gtgtgatcgc cacaaacctt caggaaatac gaaatggatt 500
 ttctgagata cggggcagtg tgcaagccaa agatggaaac attgacatca 550
 gaatcttaag gaggactgag totttgcaag acacaaagcc tgcgaatcga 600
 tgctgcctcc tgcgccattt gctaagactc tatctggaca gggtatttaa 650
 aaactaccag acccctgacc attatactct ccggaagatc agcagcctcg 700
 ccaattcctt tcttaccatc aagaaggacc tccggctctc tcatgcccac 750
```

atgacatgcc attgtgggga ggaagcaatg aagaaataca gccagattct 800 gagtcacttt gaaaagctgg aacctcaggc agcagttgtg aaggctttgg 850 gggaactaga cattettetg caatggatgg aggagacaga ataggaggaa 900 agtgatgctg ctgctaagaa tattcgaggt caagagctcc agtcttcaat 950 acctgcagag gaggcatgac cccaaaccac catctcttta ctgtactagt 1000 cttgtgctgg tcacagtgta tcttatttat gcattacttg cttccttgca 1050 tgattgtctt tatgcatccc caatcttaat tgagaccata cttgtataag 1100 atttttgtaa tatctttctg ctattggata tatttattag ttaatatatt 1150 tatttatttt ttgctattta atgtatttat ttttttactt ggacatgaaa 1200 ctttaaaaaa attcacagat tatatttata acctgactag agcaggtgat 1250 gtatttttat acagtaaaaa aaaaaaacct tgtaaattct agaagagtgg 1300 ctaggggggt tattcatttg tattcaacta aggacatatt tactcatgct 1350 gatgctctgt gagatatttg aaattgaacc aatgactact taggatgggt 1400 tgtggaataa gttttgatgt ggaattgcac atctacctta caattactga 1450 ccatccccag tagactcccc agtcccataa ttgtgtatct tccagccagg 1500 aatcctacac ggccagcatg tatttctaca aataaagttt tctttgcata 1550 ccaaaaaaa aaaaaaaaa a 1571

```
<210> 402
```

<400> 402

Met Arg Gln Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met

1 5 10 15

Ser Phe Ser Ile Tyr Ser Leu Gln Val Pro Ala Val Pro Gly Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gln Asn Lys 35 40 45

Gly Ala Thr Thr Cys Ala Thr Asn Ser His Ser Asp Ser Glu Leu
50 55 60

Arg Pro Glu Ile Phe Ser Ser Arg Glu Ala Trp Gln Phe Phe Leu
65 70 75

Leu Leu Trp Ser Pro Asp Phe Arg Pro Lys Met Lys Ala Ser Ser 80 85 90

<211> 261

<212> PRT

<213> Homo sapiens

```
Leu Ala Phe Ser Leu Leu Ser Ala Ala Phe Tyr Leu Leu Trp Thr
                 95
Pro Ser Thr Gly Leu Lys Thr Leu Asn Leu Gly Ser Cys Val Ile
Ala Thr Asn Leu Gln Glu Ile Arg Asn Gly Phe Ser Glu Ile Arg
                125
Gly Ser Val Gln Ala Lys Asp Gly Asn Ile Asp Ile Arg Ile Leu
Arg Arg Thr Glu Ser Leu Gln Asp Thr Lys Pro Ala Asn Arg Cys
Cys Leu Leu Arg His Leu Leu Arg Leu Tyr Leu Asp Arg Val Phe
Lys Asn Tyr Gln Thr Pro Asp His Tyr Thr Leu Arg Lys Ile Ser
Ser Leu Ala Asn Ser Phe Leu Thr Ile Lys Lys Asp Leu Arg Leu
Ser His Ala His Met Thr Cys His Cys Gly Glu Glu Ala Met Lys
                 215
Lys Tyr Ser Gln Ile Leu Ser His Phe Glu Lys Leu Glu Pro Gln
                 230
Ala Ala Val Val Lys Ala Leu Gly Glu Leu Asp Ile Leu Leu Gln
                 245
Trp Met Glu Glu Thr Glu
<210> 403
<211> 28
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-28
<223> Synthetic construct.
<400> 403
 ctcctgtggt ctccagattt caggccta 28
<210> 404
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-26
<223> Synthetic construct.
```

```
<400> 404
agtcctcctt aagattctga tgtcaa 26
<210> 405
<211> 998
<212> DNA
<213> Homo sapiens
<400> 405
ccgttatcgt cttgcgctac tgctgaatgt ccgtcccgga ggaggaggag 50
aggcttttgc cgctgaccca gagatggccc cgagcgagca aattcctact 100
gtccggctgc gcggctaccg tggccgagct agcaaccttt cccctggatc 150
tcacaaaaac tcgactccaa atgcaaggag aagcagctc tgctcggttg 200
ggagacggtg caagagaatc tgcccctat aggggaatgg tgcgcacagc 250
```

tatgaacatc tccgagaggt tgtgtttggc aaaagtgaag atgagcatta 400 tcccctttgg aaatcagtca ttggagggat gatggctggt gttattggcc 450 agtttttagc caatccaact gacctagtga aggttcagat gcaaatggaa 500 ggaaaaagga aactggaagg aaaaccattg cgatttcgtg gtgtacatca 550 tgcatttgca aaaatcttag ctgaaggagg aatacgaggg ctttgggcag 600 gctgggtacc caatatacaa agagcagcac tggtgaatat gggagattta 650 accacttatg atacagtgaa acactacttg gtattgaata caccacttga 700 ggacaatatc atgaccaca gccgatgtca tcaaaagcag aataatgaat 800 caaccacgag ataaacaagg aagggactt ttgtataaa catcgactga 850 ctgcttgatt caggctgtt aaggtgaagg attcatgagt ctatataaag 900 gctttttacc atcttggctg agaatgaccc cttggtcaat ggtgttctgg 950

cctagggatc attgaagagg aaggctttct aaagctttgg caaggagtga 300

caccegceat ttacagacae gtagtgtatt etggaggteg aatggteaca 350

```
<210> 406
<211> 323
<212> PRT
<213> Homo sapiens
```

cttacttatg aaaaaatcag agagatgagt ggagtcagtc cattttaa 998

Arg	Trp	Pro	Arg	Ala 20	Ser	Lys	Phe	Leu	Leu 25	Ser	Gly	Cys	Ala	Ala 30
Thr	Val	Ala	Glu	Leu 35	Ala	Thr	Phe	Pro	Leu 40	Asp	Leu	Thr	Lys	Thr 45
Arg	Leu	Gln	Met	Gln 50	Gly	Glu	Ala	Ala	Leu 55	Ala	Arg	Leu	Gly	Asp 60
Gly	Ala	Arg	Glu	Ser 65	Ala	Pro	Tyr	Arg	Gly 70	Met	Val	Arg	Thr	Ala 75
Leu	Gly	Ile	Ile	Glu 80	Glu	Glu	Gly	Phe	Leu 85	Lys	Leu	Trp	Gln	Gly 90
Val	Thr	Pro	Ala	Ile 95	Tyr	Arg	His	Val	Val 100	Tyr	Ser	Gly	Gly	Arg 105
Met	Val	Thr	Tyr	Glu 110	His	Leu	Arg	Glu	Val 115	Val	Phe	Gly	Lys	Ser 120
Glu	Asp	Glu	His	Tyr 125	Pro	Leu	Trp	Lys	Ser 130	Val	Ile	Gly	Gly	Met 135
Met	Ala	Gly	Val	Ile 140	Gly	Gln	Phe	Leu	Ala 145	Asn	Pro	Thr	Asp	Leu 150
Val	Lys	Val	Gln	Met 155	Gln	Met	Glu	Gly	Lys 160	Arg	Lys	Leu	Glu	Gly 165
Lys	Pro	Leu	Arg	Phe 170	Arg	Gly	Val	His	His 175	Ala	Phe	Ala	Lys	Ile 180
Leu	Ala	Glu	Gly	Gly 185	Ile	Arg	Gly	Leu	Trp 190	Ala	Gly	Trp	Val	Pro 195
Asn	Ile	Gln	Arg	Ala 200	Ala	Leu	Val	Asn	Met 205	Gly	Asp	Leu	Thr	Thr 210
Tyr	Asp	Thr	Val	Lys 215		Tyr	Leu	Val	Leu 220		Thr	Pro	Leu	Glu 225
Asp	Asn	Ile	Met	Thr 230	His	Gly	Leu	Ser	Ser 235	Leu	Cys	Ser	Gly	Leu 240
Val	Ala	Ser	Ile	Leu 245		Thr	Pro	Ala	Asp 250	Val	Ile	e Lys	Ser	Arg 255
Ile	Met	Asn	Gln	Pro 260		Asp	Lys	Gln	Gly 265		Gly	/ Leu	Leu	Tyr 270
Lys	Ser	Ser	Thr	Asp 275		Leu	Ile	Gln	Ala 280	Val	Gln	Gl?	glu,	Gly 285
Phe	Met	Ser	Leu	Tyr 290		Gly	Phe	. Leu	Pro 295		Trp	Leu	a Arg	Met 300
Thr	Pro	Trp	Ser	Met	Val	. Phe	Trp	Leu	Thr	туг	Glu	ı Lys	: Ile	Arg

Glu Met Ser Gly Val Ser Pro Phe 320

<210> 407

<211> 31

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-31

<223> Synthetic construct.

<400> 407

cgcggatccc gttatcgtct tgcgctactg c 31

<210> 408

<211> 34

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-34

<223> Synthetic construct.

<400> 408

gcggaattct taaaatggac tgactccact catc 34

<210> 409

<211> 1487

<212> DNA

<213> Homo sapiens

<400> 409

tectgegege gegeetgaag teggegtgag egtttgagga agetgggata 100 cageatttaa tgaaaaattt atgettaaga agtaaaaattg geaggettee 150 tagataattt tegttggeea gaatgtgaat gtattgaetg gagtgagaga 200 agaaatgetg tggeatetgt tgtegeaggt atattgttt ttaeaggetg 250 gtggataatg attgatggag etgtggtga teetaageea gaacagttga 300 aceatgeett teacacatgt ggtgatttt eeacattgge tteetteatg 350 ataaatgetg tateeaatge teaggtgaga ggtgataget atgaaageeg 400 etgtttagga agaacaggtg etegagttt gettteatt ggttteatt tggtgeatat 500 gttaeceaaa atactgatgt ttateeagga etagetgtt ttateeaga 550 gttaeceaaa atactgatgt ttateeagga etagetgt ttateeaaa 550

tgcacttata ttttttagca ctctgatcta caaatttgga agaaccgaag 600 agctatggac ctgagatcac ttcttaagtc acattttcct tttgttatat 650 tctgtttgta gataggtttt ttatctctca gtacacattg ccaaatggag 700 tagattgtac attaaatgtt ttgtttcttt acatttttat gttctgagtt 750 ttgaaatagt tttatgaaat ttctttattt ttcattgcat agactgttaa 800 tatgtatata atacaagact atatgaattg gataatgagt atcagttttt 850 tattcctgag atttagaact tgatctactc cctgagccag ggttacatca 900 tcttgtcatt ttagaagtaa ccactcttgt ctctctggct gggcacggtg 950 gctcatgcct gtaatcccag cactttggga ggccgaggcg ggccgattgc 1000 ttgaggtcaa gtgtttgaga ccagcctggc caacatggcg aaaccccatc 1050 tactaaaaat acaaaaatta gccaggcatg gtggtgggtg cctgtaatcc 1100 cagctacctg ggaggctgag gcaggagaat cgcttgaacc cggggggcag 1150 aggttgcagt gagctgagtt tgcgccactg cactctagcc tgggggagaa 1200 agtgaaactc cctctcaaaa aaaagaccac tctcagtatc tctgatttct 1250 gaagatgtac aaaaaaatat agcttcatat atctggaatg agcactgagc 1300 cataaaaggt tttcagcaag ttgtaactta ttttggccta aaaatgaggt 1350 ttttttggta aagaaaaaat atttgttctt atgtattgaa gaagtgtact 1400 tttatataat gattttttaa atgcccaaag gactagtttg aaagcttctt 1450 ttaaaaagaa ttcctctaat atgactttat gtgagaa 1487

```
<210> 410
```

<400> 410

Ile Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val Ala
$$20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$$

Gly Ile Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala
$$35$$
 40 45

<211> 158

<212> PRT

<213> Homo sapiens

Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys Glu Cys
1 5 10 15

```
Ser Asn Ala Gln Val Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu
                                      85
Gly Arg Thr Gly Ala Arg Val Trp Leu Phe Ile Gly Phe Met Leu
Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala
                                     115
                 110
Tyr Val Thr Gln Asn Thr Asp Val Tyr Pro Gly Leu Ala Val Phe
Phe Gln Asn Ala Leu Ile Phe Phe Ser Thr Leu Ile Tyr Lys Phe
                                     145
Gly Arg Thr Glu Glu Leu Trp Thr
<210> 411
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.
<400> 411
 gtttgaggaa gctgggatac 20
<210> 412
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.
<400> 412
 ccaaactcga gcacctgttc 20
<210> 413
<211> 40
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-40
<223> Synthetic construct.
<400> 413
 atggcaggct tcctagataa ttttcgttgg ccagaatgtg 40
```

<210> 414

- <211> 1337
- <212> DNA
- <213> Homo sapiens

<400> 414 gttgatggca aacttcctca aaggagggc agagcctgcg cagggcagga 50 gcagetggce cactggcggc cegeaacact cegteteace etetgggece 100 actgcatcta gaggagggcc gtctgtgagg ccactacece tecagcaact 150 gggaggtggg actgtcagaa gctggcccag ggtggtggtc agctgggtca 200 gggacctacg gcacctgctg gaccacctcg ccttctccat cgaagcaggg 250 aagtgggagc ctcgagccct cgggtggaag ctgaccccaa gccacccttc 300 acctggacag gatgagagtg tcaggtgtgc ttcgcctcct ggccctcatc 350 tttgccatag tcacgacatg gatgtttatt cgaagctaca tgagcttcag 400 catgaaaacc atccgtctgc cacgctggct ggcagcctcg cccaccaagg 450 agatecaggt taaaaagtac aagtgtggee teatcaagee etgeecagee 500 aactactttg cgtttaaaat ctgcagtggg gccgccaacg tcgtgggccc 550 tactatgtgc tttgaagacc gcatgatcat gagtcctgtg aaaaacaatg 600 tgggcagagg cctaaacatc gccctggtga atggaaccac gggagctgtg 650 ctgggacaga aggcatttga catgtactct ggagatgtta tgcacctagt 700 gaaatteett aaagaaatte eggggggtge aetggtgetg gtggeeteet 750 acgacgatcc agggaccaaa atgaacgatg aaagcaggaa actcttctct 800 gacttgggga gttcctacgc aaaacaactg ggcttccggg acagctgggt 850 cttcatagga gccaaagacc tcaggggtaa aagccccttt gagcagttct 900 taaagaacag cccagacaca aacaaatacg agggatggcc agagctgctg 950 gagatggagg gctgcatgcc cccgaagcca ttttagggtg gctgtggctc 1000 ttcctcagcc aggggcctga agaagctcct gcctgactta ggagtcagag 1050 cccggcaggg gctgaggagg aggagcaggg ggtgctgcgt ggaaggtgct 1100 gcaggtcctt gcacgctgtg tcgcgcctct cctcctcgga aacagaaccc 1150 tcccacagca catcctaccc ggaagaccag cctcagaggg tccttctgga 1200 accagctgtc tgtggagaga atggggtgct ttcgtcaggg actgctgacg 1250 gctggtcctg aggaaggaca aactgcccag acttgagccc aattaaattt 1300 tatttttgct ggttttgaaa aaaaaaaaa aaaaaaa 1337

```
<210> 415
<211> 224
<212> PRT
<213> Homo sapiens
<400> 415
Met Arg Val Ser Gly Val Leu Arg Leu Leu Ala Leu Ile Phe Ala
 Ile Val Thr Trp Met Phe Ile Arg Ser Tyr Met Ser Phe Ser
Met Lys Thr Ile Arg Leu Pro Arg Trp Leu Ala Ala Ser Pro Thr
 Lys Glu Ile Gln Val Lys Lys Tyr Lys Cys Gly Leu Ile Lys Pro
 Cys Pro Ala Asn Tyr Phe Ala Phe Lys Ile Cys Ser Gly Ala Ala
 Asn Val Val Gly Pro Thr Met Cys Phe Glu Asp Arg Met Ile Met
 Ser Pro Val Lys Asn Asn Val Gly Arg Gly Leu Asn Ile Ala Leu
 Val Asn Gly Thr Thr Gly Ala Val Leu Gly Gln Lys Ala Phe Asp
 Met Tyr Ser Gly Asp Val Met His Leu Val Lys Phe Leu Lys Glu
 Ile Pro Gly Gly Ala Leu Val Leu Val Ala Ser Tyr Asp Asp Pro
                                      145
 Gly Thr Lys Met Asn Asp Glu Ser Arg Lys Leu Phe Ser Asp Leu
                 155
 Gly Ser Ser Tyr Ala Lys Gln Leu Gly Phe Arg Asp Ser Trp Val
                                      175
 Phe Ile Gly Ala Lys Asp Leu Arg Gly Lys Ser Pro Phe Glu Gln
 Phe Leu Lys Asn Ser Pro Asp Thr Asn Lys Tyr Glu Gly Trp Pro
 Glu Leu Leu Glu Met Glu Gly Cys Met Pro Pro Lys Pro Phe
                                      220
                  215
 <210> 416
 <211> 21
```

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

```
<222> 1-21
```

<223> Synthetic construct.

<400> 416

gccatagtca cgacatggat g 21

- <210> 417
- <211> 18
- <212> DNA
- <213> Artificial

<220>

<221> Artificial Sequence

- <222> 1-18
- <223> Synthetic construct.

<400> 417

ggatggccag agctgctg 18

- <210> 418
- <211> 26
- <212> DNA
- <213> Artificial

<220>

<221> Artificial Sequence

- <222> 1-26
- <223> Synthetic construct.

<400> 418

aaagtacaag tgtggcctca tcaagc 26

- <210> 419
- <211> 24
- <212> DNA
- <213> Artificial

<220>

<221> Artificial Sequence

- <222> 1-24
- <223> Synthetic construct.

<400> 419

tctgactcct aagtcaggca ggag 24

- <210> 420
- <211> 24
- <212> DNA
- <213> Artificial

<220>

<221> Artificial Sequence

- <222> 1-24
- <223> Synthetic construct.

<400> 420

attctctcca cagacagctg gttc 24

```
<210> 421
<211> 46
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.
<400> 421
gtacaagtgt ggcctcatca agccctgccc agccaactac tttgcg 46
<210> 422
<211> 1701
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1528
<223> unknown base
<400> 422
 gagactgcag agggagataa agagagagg caaagaggca gcaagagatt 50
 tgtcctgggg atccagaaac ccatgatacc ctactgaaca ccgaatcccc 100
 tggaagccca cagagacaga gacagcaaga gaagcagaga taaatacact 150
 cacgocagga getegetege tetetetete teteteteae teetecetee 200
 ctctctctct gcctgtccta gtcctctagt cctcaaattc ccagtcccct 250
 gcaccccttc ctgggacact atgttgttct ccgccctcct gctggaggtg 300
 atttggatcc tggctgcaga tgggggtcaa cactggacgt atgagggccc 350
 acatggtcag gaccattggc cagcctctta ccctgagtgt ggaaacaatg 400
 cccagtcgcc catcgatatt cagacagaca gtgtgacatt tgaccctgat 450
 ttgcctgctc tgcagcccca cggatatgac cagcctggca ccgagccttt 500
 ggacctgcac aacaatggcc acacagtgca actetetetg ccetetacce 550
 tgtatctggg tggacttccc cgaaaatatg tagctgccca gctccacctg 600
 cactggggtc agaaaggatc cccagggggg tcagaacacc agatcaacag 650
 tgaagccaca tttgcagagc tccacattgt acattatgac tctgattcct 700
 atgacagett gagtgagget getgagagge etcagggeet ggetgteetg 750
 ggcatcctaa ttgaggtggg tgagactaag aatatagctt atgaacacat 800
```

tctgagtcac ttgcatgaag tcaggcataa agatcagaag acctcagtgc 850

ctcccttcaa cctaagagag ctgctcccca aacagctggg gcagtacttc 900 cgctacaatg gctcgctcac aactccccct tgctaccaga gtgtgctctg 950 gacagttttt tatagaaggt cccagatttc aatggaacag ctggaaaagc 1000 ttcaggggac attgttctcc acagaagagg agccctctaa gcttctggta 1050 cagaactacc gagcccttca gcctctcaat cagcgcatgg tctttgcttc 1100 tttcatccaa gcaggatcct cgtataccac aggtgaaatg ctgagtctag 1150 gtgtaggaat cttggttggc tgtctctgcc ttctcctggc tgtttatttc 1200 attgctagaa agattcggaa gaagaggctg gaaaaccgaa agagtgtggt 1250 cttcacctca gcacaagcca cgactgaggc ataaattcct tctcagatac 1300 catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350 gggtgtagga tctggccaga aacactgtag gagtagtaag cagatgtcct 1400 ccttcccctg gacatctctt agagaggaat ggacccaggc tgtcattcca 1450 ggaagaactg cagagcette ageeteteea aacatgtagg aggaaatgag 1500 gaaatcgctg tgttgttaat gcagaganca aactctgttt agttgcaggg 1550 gaagtttggg atatacccca aagtcctcta ccccctcact tttatggccc 1600 tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650 gaagttgtat atttttgatc aatatatttg gaaattaaag tttctgactt 1700 t 1701

<210> 423

<211> 337

<212> PRT

<213> Homo sapiens

<400> 423

Met Leu Phe Ser Ala Leu Leu Leu Glu Val Ile Trp Ile Leu Ala 1 5 10 15

Ala Asp Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln 20 25 30

Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln 35 40

Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp 50 55 60

Leu Pro Ala Leu Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu
65 70 75

Pro Leu Asp Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu

		80					85					90
Pro Ser Th	c Leu	Tyr 95	Leu	Gly	Gly	Leu	Pro 100	Arg	Lys	Tyr	Val	Ala 105
Ala Gln Le	ı His	Leu 110	His	Trp	Gly	Gln	Lys 115	Gly	Ser	Pro	Gly	Gly 120
Ser Glu Hi	s Gln	Ile 125	Asn	Ser	Glu	Ala	Thr 130	Phe	Ala	Glu	Leu	His 135
Ile Val Hi	s Tyr	Asp 140	Ser	Asp	Ser	Tyr	Asp 145	Ser	Leu	Ser	Glu	Ala 150
Ala Glu Ar	g Pro	Gln 155	Gly	Leu	Ala	Val	Leu 160	Gly	Ile	Leu	Ile	Glu 165
Val Gly Gl	u Thr	Lys 170	Asn	Ile	Ala	Tyr	Glu 175	His	Ile	Leu	Ser	His 180
Leu His Gl	u Val	Arg 185	His	Lys	Asp	Gln	Lys 190	Thr	Ser	Val	Pro	Pro 195
Phe Asn Le	u Arg	Glu 200	Leu	Leu	Pro	Lys	Gln 205	Leu	Gly	Gln	Tyr	Phe 210
Arg Tyr As	n Gly	Ser 215	Leu	Thr	Thr	Pro	Pro 220	Cys	Tyr	Gln	Ser	Val 225
Leu Trp Th	r Val	Phe 230	Tyr	Arg	Arg	Ser	Gln 235	Ile	Ser	Met	Glu	Gln 240
Leu Glu Ly	s Leu	Gln 245		Thr	Leu	Phe	Ser 250	Thr	Glu	Glu	Glu	Pro 255
Ser Lys Le	u Leu	Val 260		Asn	Tyr	Arg	Ala 265	Leu	Gln	Pro	Leu	Asn 270
Gln Arg Me	t Val	Phe 275		Ser	Phe	Ile	Gln 280	Ala	Gly	Ser	Ser	Tyr 285
Thr Thr G	y Glu	Met 290		Ser	Leu	Gly	Val 295	Gly	Ile	Leu	Val	Gly 300
Cys Leu Cy	rs Leu	1 Leu 305		Ala	Val	Tyr	Phe 310	Ile	Ala	Arg	Lys	Ile 315
Arg Lys Ly	ıs Arç	J Leu 320		Asn	Arg	Lys	Ser 325	Val	Val	Phe	Thr	Ser 330
Ala Gln A	la Thi	Thr 335		ı Ala	i							
<210> 424 <211> 18 <212> DNA <213> Artificial												

```
<223> Synthetic construct.
<400> 424
gtaaagtcgc tggccagc 18
<210> 425
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 425
 cccgatctgc ctgctgta 18
<210> 426
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 426
 ctgcactgta tggccattat tgtg 24
<210> 427
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
 cagaaaccca tgatacccta ctgaacaccg aatcccctgg aagcc 45
 <210> 428
 <211> 1073
 <212> DNA
 <213> Homo sapiens
 <400> 428
 aatttttcac cagagtaaac ttgagaaacc aactggacct tgagtattgt 50
  acattttgcc tcgtggaccc aaaggtagca atctgaaaca tgaggagtac 100
  gattctactg ttttgtcttc taggatcaac tcggtcatta ccacagctca 150
```

<220>

<222> 1-18

<221> Artificial Sequence

aacctgcttt gggactccct cccacaaaac tggctccgga tcagggaaca 200 ctaccaaacc aacagcagtc aaatcaggtc tttccttctt taagtctgat 250 accattaaca cagatgetea caetggggee agatetgeat etgttaaate 300 ctgctgcagg aatgacacct ggtacccaga cccacccatt gaccctggga 350 gggttgaatg tacaacagca actgcaccca catgtgttac caatttttgt 400 cacacaactt ggagcccagg gcactatcct aagctcagag gaattgccac 450 aaatcttcac gagcctcatc atccattcct tgttcccggg aggcatcctg 500 cccaccagtc aggcagggc taatccagat gtccaggatg gaagccttcc 550 agcaggagga gcaggtgtaa atcctgccac ccagggaacc ccagcaggcc 600 gcctcccaac tcccagtggc acagatgacg actttgcagt gaccacccct 650 gcaggcatcc aaaggagcac acatgccatc gaggaagcca ccacagaatc 700 agcaaatgga attcagtaag ctgtttcaaa ttttttcaac taagctgcct 750 cgaatttggt gatacatgtg aatctttatc attgattata ttatggaata 800 gattgagaca cattggatag tcttagaaga aattaattct taatttacct 850 gaaaatattc ttgaaatttc agaaaatatg ttctatgtag agaatcccaa 900 cttttaaaaa caataattca atggataaat ctgtctttga aatataacat 950 tatgctgcct ggatgatatg catattaaaa catatttgga aaactggaaa 1000 aaaaaaaaa aaaaaaaaaa aaa 1073

<210> 429

<211> 209

<212> PRT

<213> Homo sapiens

<400> 429

Met Arg Ser Thr Ile Leu Leu Phe Cys Leu Leu Gly Ser Thr Arg
1 5 10 15

Ser Leu Pro Gln Leu Lys Pro Ala Leu Gly Leu Pro Pro Thr Lys 20 25 30

Leu Ala Pro Asp Gln Gly Thr Leu Pro Asn Gln Gln Gln Ser Asn 45

Gln Val Phe Pro Ser Leu Ser Leu Ile Pro Leu Thr Gln Met Leu
50 55 60

Thr Leu Gly Pro Asp Leu His Leu Leu Asn Pro Ala Ala Gly Met 65 70

<210> 430

<211> 1257

<212> DNA

<213> Homo Sapien

<400> 430
ggagagaggc gcgcgggtga aaggcgcatt gatgcagcct gcggcggcct 50
cggagcgcgg cggagccaga cgctgaccac gttcctctcc tcggtctcct 100
ccgcctccag ctccgcgctg cccggcagcc gggagccatg cgaccccagg 150
gccccgccgc ctccccgcag cggctccgcg gcctcctgct gctcctgctg 200
ctgcagctgc ccgcgccgtc gagcgcctct gagatcccca aggggaagca 250
aaaggcgcag ctccggcaga gggaggtggt ggacctgtat aatggaatgt 300
gcttacaagg gccagcagga gtgcctggtc gagacgggag ccctggggcc 350
aatgttattc cgggtacacc tgggatccca ggtcgggatg gattcaaagg 400
agaaaagggg gaatgtctga gggaaagctt tgaggagtcc tggacaccca 450
actacaagca gtgttcatgg agttcattga attatggcat agatcttagg 500
aaaattgcgg agtgtacatt tacaaagatg cgttcaaata gtgctctaag 550
agttttgttc agtggctcac ttcggctaaa atgcagaaat gcatgctgtc 600
agcgttggta tttcacattc aatggagctg aatgttcagg acctcttccc 650

attgaagcta taatttattt ggaccaagga agccctgaaa tgaattcaac 700 aattaatatt catcgcactt cttctgtgga aggactttgt gaaggaattg 750 gtgctggatt agtggatgtt gctatctggg ttggcacttg ttcagattac 800 ccaaaaggag atgcttctac tggatggaat tcagtttctc gcatcattat 850 tgaaggaacta ccaaaataaa tgctttaatt ttcatttgct acctctttt 900 ttattatgcc ttggaatggt tcacttaaat gacattttaa ataagtttat 950 gtatacatct gaatgaaaag caaagctaaa tatgtttaca gaccaaagtg 1000 tgattcaca ctgttttaa atctagcatt attcattttg cttcaatcaa 1050 aagtggttc aatatttt ttagttggtt agaatactt cttcatagtc 1100 acattctct aacctataat ttggaatatt gttgtggtct tttgttttt 1150 ctcttagtat agcatttta aaaaaatata aaagctacca atctttgtac 1200 aatttgtaaa tgttaagaat ttttttata tctgttaaat aaaaattatt 1250 tccaaca 1257

<210> 431

<211> 243

<212> PRT

<213> Homo Sapien

<400> 431

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala 20 25 30

Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg

Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala
50 55 60

Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro 65 70 75

Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys $80 \hspace{1cm} 85 \hspace{1cm} 90$

Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn 95 100 105

Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu 110 115 120

Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 125 130 135

Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln 175 Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser 185 Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp 205 Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu 235 Leu Pro Lys <210> 432 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 432 aggacttgcc ctcaggaa 18 <210> 433 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 433 cgcaggacag ttgtgaaaat a 21 <210> 434 <211> 21 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 434 atgacgctcg tccaaggcca c 21

<210> 435

```
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 435
cccacctgta ccaccatgt 19
<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 436
 actccaggca ccatctgttc tccc 24
<210> 437
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 437
 aagggctggc attcaagtc 19
<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 438
 tgacctggca aaggaagaa 19
<210> 439
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 439
 cagccaccct ccagtccaag g 21
<210> 440
 <211> 19
 <212> DNA
```

<213> Artificial Sequence

```
<220>
 <223> Synthetic oligonucleotide probe
<400> 440
  gggtcgtgtt ttggagaga 19
 <210> 441
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 441
  ctggccctca gagcaccaat 20
 <210> 442
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 442
  tcctccatca cttcccctag ctcca 25
 <210> 443
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 443
  ctggcaggag ttaaagttcc aaga 24
 <210> 444
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 444
  aaaggacacc gggatgtg 18
 <210> 445
  <211> 26
  <212> DNA
 <213> Artificial Sequence
  <220>
 <223> Synthetic oligonucleotide probe
```

```
<400> 445
agcgtacact ctctccaggc aaccag 26
<210> 446
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 446
caattctgga tgaggtggta ga 22
<210> 447
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 447
caggactgag cgcttgttta 20
<210> 448
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 448
 caaagcgcca agtaccggac c 21
<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 449
 ccagacctca gccaggaa 18
<210> 450
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 450
 ccctagctga ccccttca 18
```

```
<210> 451
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 451
tctgacaagc agttttctga atc 23
<210> 452
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 452
 ctctcccct cccttttcct ttgttt 26
<210> 453
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 453
 ctctggtgcc cacagtga 18
<210> 454
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 454
 ccatgcctgc tcagccaaga a 21
<210> 455
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 455
 caggaaatct ggaaacctac agt 23
<210> 456
<211> 20
```

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 456
ccttgaaaag gacccagttt 20
<210> 457
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 457
 atgagtcgca cctgctgttc cc 22
<210> 458
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 458
 tagcagctgc ccttggta 18
<210> 459
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 459
 aacagcaggt gcgactcatc ta 22
<210> 460
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 460
 tgctaggcga cgacacccag acc 23
 <210> 461
 <211> 18
 <212> DNA
 <213> Artificial Sequence
```

<220>

```
<223> Synthetic oligonucleotide probe
<400> 461
tggacacgtg gcagtgga 18
<210> 462
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 462
tcatggtctc gtcccattc 19
<210> 463
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 463
 caccatttgt ttctctgtct ccccatc 27
<210> 464
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 464
 ccggcatcct tggagtag 18
<210> 465
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 465
 tccccattag cacaggagta 20
<210> 466
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

<400> 466

```
aggetettge etgteetget get 23
<210> 467
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 467
 gcccagagtc ccacttgt 18
<210> 468
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 468
 actgctccgc ctactacga 19
<210> 469
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 469
 aggcatcctc gccgtcctca 20
<210> 470
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 470
 aaggccaagg tgagtccat 19
<210> 471
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 471
 cgagtgtgtg cgaaacctaa 20
 <210> 472
```

```
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 472
tcagggtcta catcagcctc ctgc 24
<210> 473
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 473
 aaggccaagg tgagtccat 19
<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 474
 cctactgagg agccctatgc 20
<210> 475
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 475
 tccaggtgga ccccacttca gg 22
 <210> 476
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 476
  gggaggctta taggcccaat ctgg 24
 <210> 477
 <211> 50
 <212> DNA
```

<213> Artificial Sequence

<220> <223> Synthetic oligonucleotide probe

<400> 477 ggcttcagca gcacgtgtga agtcgaagtc gcagtcacag atatcaatga 50