Cryptography in Cyclic Groups (episode 3)

Let $\langle g \rangle$ be a group of **prime** order q

Prover *P* proves to **verifier** *V* that she **knows** the **discrete log** *x* of a public group element $h = g^x$.

P

Scenario

P sends $A = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

Let $\langle g \rangle$ be a group of **prime** order q

Prover *P* proves to **verifier** *V* that she **knows** the **discrete log** *x* of a public group element $h = g^x$.

Scenario

P sends $A = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

Let $\langle g \rangle$ be a group of **prime** order q

Prover *P* proves to **verifier** *V* that she **knows** the **discrete log** *x* of a public group element $h = g^x$.

$$x \stackrel{\circ}{\leftarrow} \mathbb{Z}_q$$

Scenario

P sends $A = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

Let $\langle g \rangle$ be a group of **prime** order q

Prover *P* proves to **verifier** *V* that she **knows** the **discrete log** *x* of a public group element $h = g^x$.

$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$$
 $h = g^{x}$

Scenario

P sends $A = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \mod q$

Let $\langle g \rangle$ be a group of **prime** order q

Prover *P* proves to **verifier** *V* that she **knows** the **discrete log** *x* of a public group element $h = g^x$.

Scenario

P sends $A = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

Let $\langle g \rangle$ be a group of **prime** order q

Prover *P* proves to **verifier** *V* that she **knows** the **discrete log** *x* of a public group element $h = g^x$.

Scenario

 $P \operatorname{sends} A = g^k \operatorname{where}$

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

Let $\langle g \rangle$ be a group of **prime** order q

Prover *P* proves to **verifier** *V* that she **knows** the **discrete log** *x* of a public group element $h = g^x$.

Scenario

 $P \operatorname{sends} A = g^k \operatorname{where}$

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

Let $\langle g \rangle$ be a group of **prime** order q

Prover *P* proves to **verifier** *V* that she **knows** the **discrete log** *x* of a public group element $h = g^x$.

Scenario

 $P \text{ sends } A = g^k \text{ where}$

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

Let $\langle g \rangle$ be a group of **prime** order q

Let $\langle g \rangle$ be a group of **prime** order q

Let $\langle g \rangle$ be a group of **prime** order q

Let $\langle g \rangle$ be a group of **prime** order q

Let $\langle g \rangle$ be a group of **prime** order q

Schnorr's Identification Protocol: Does the Secret Leak?

$$k \xleftarrow{\$} \mathbb{Z}_q, A \leftarrow g^k \qquad \boxed{P} \qquad \xrightarrow{c} \qquad \boxed{V}$$

$$s \leftarrow k + cx \bmod q \qquad \xrightarrow{s} \qquad \boxed{V}$$

$$g^s = Ah^s$$

When the protocol succeeds...

- ightharpoonup A passive adversary sees a **transcript** (A, c, s), where
 - ightharpoonup A is uniformly random in $\langle g \rangle$
 - ightharpoonup c is uniformly random in \mathbb{Z}_a
 - ightharpoonup $g^s = Ah^c$

Producing valid transcripts **does not require** *x*

 $ightharpoonup s \stackrel{\$}{\leftarrow} \mathbb{Z}_q, c \stackrel{\$}{\leftarrow} \mathbb{Z}_q \text{ and } A \leftarrow g^s h^{-c}$ (r is uniformly random)

3

Schnorr's Identification Protocol: Security Arguments

The protocol is **zero-knowledge**

- ▶ A **simulator** that just receives *h* can produce valid transcripts that are indistinguishable from the interactions with a real prover (who knows *x*)
- ⇒ Passive adversaries learn **nothing** about x

$$h^{c_1-c_2} = g^{s_1-s_2} \quad \rightsquigarrow \quad h = g^{\frac{s_1-s_2}{c_1-c_2} \bmod q}$$

$$g^{s_1} = Ah^{c_1}$$

 $g^{s_2} = Ah^{c_2}$

Schnorr's Identification Protocol: Security Arguments

The protocol is **zero-knowledge**

- ▶ A **simulator** that just receives *h* can produce valid transcripts that are indistinguishable from the interactions with a real prover (who knows *x*)
- → Passive adversaries learn nothing about x

The protocol is **correct**

- Suppose a malicious prover (that just receives h) is always accepted by the verifier
- An **extractor** can use it to retrieve x with low overhead
- ⇒ DLOG is hard ⇔ successful prover "knows" x

The Fiat-Shamir Heuristic

Fiat, Shamir (1986)

How to Prove Yourself: Practical Solutions to Identification and Signature Problems.

Advances in Cryptology - Crypto'86, Lect. Notes Comput. Science 263, pp. 186-194.

▶ In such a 3-pass identification scheme, the messages are called commitment, challenge and response. The challenge is randomly chosen by V.

Fiat-Shamir Transform

Replace the challenge by a hash value taken on scheme parameters and the commitment, thereby removing V. This transforms the protocol by making it **non-interactive**.

The intuition is that any "sufficiently random" hash function should preserve the security of the protocol.

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

SIGN

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes $c = \mathcal{H}(m, A)$

computes $c = \mathcal{H}(m, A)$

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

V checks if $\mathcal{H}(m, g^s \cdot y^{-c}) = c$

P

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

	Signing and Verifying
	Sign
P	P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ P computes $c = \mathcal{H}(m, A)$ P computes $s = k + cx \mod q$ P sends $\sigma = (s, c)$
	Ver
	V checks if $\mathcal{H}\left(m,g^{s}\cdot y^{-c}\right)=c$

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

 $h = g^x$

Р

Signing and Verifying

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes $c = \mathcal{H}(m, A)$

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Introduce a hash function
$$\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

P sends $\sigma = (s, c)$

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ P computes $c = \mathcal{H}(m, A)$ P computes $s = k + cx \mod q$

VER

Introduce a hash function
$$\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

P sends $\sigma = (s, c)$

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ P computes $c = \mathcal{H}(m, A)$ P computes $s = k + cx \mod q$

Ver

Introduce a hash function
$$\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ P computes $c = \mathcal{H}(m, A)$

P computes $s = k + cx \mod q$ P sends $\sigma = (s, c)$

Ver

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes $c = \mathcal{H}(m, A)$

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen}, \mathsf{Sign}, \mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes $c = \mathcal{H}(m, A)$

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

 $P \text{ computes } A = g^k \text{ where } k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $P \text{ computes } c = \mathcal{H}(m, A)$

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ P computes $c = \mathcal{H}(m, A)$

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

V checks if $\mathcal{H}(m, g^s \cdot y^{-c}) = c$

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes $c = \mathcal{H}(m, A)$

 $P \text{ computes } s = k + cx \mod q$

P sends $\sigma = (s, c)$

VER

V checks if $\mathcal{H}(m, g^s \cdot y^{-c}) = c$

$$\mathcal{H}(m, g^s \cdot y^{-c}) \stackrel{?}{=} c$$

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes $c = \mathcal{H}(m, A)$

 $P \text{ computes } s = k + cx \bmod q$

P sends $\sigma = (s, c)$

Ver

V checks if $\mathcal{H}\left(m,g^{s}\cdot y^{-c}\right)=c$

$$\mathcal{H}(m, g^s \cdot y^{-c}) \stackrel{?}{=} c$$

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $A = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ P computes $c = \mathcal{H}(m, A)$

 $P \text{ computes } s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

V checks if $\mathcal{H}(m, g^s \cdot y^{-c}) = c$

$$\mathcal{H}(m, g^s \cdot y^{-c}) \stackrel{?}{=} c$$

Introduce a hash function $\mathcal{H}: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme $\Sigma_{\mathcal{H}}$ is a tuple of probabilistic algorithms $\Sigma_{\mathcal{H}} = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Claus Peter Schnorr (1943–)

More Schnorr-Style Proofs

Base Interactive Protocol

- ► Verifier knows g and h
- ▶ Prover demonstrates **knowledge** of x such that $h = g^x$

Non-Interactive Version via the Fiat-Shamir Transform

Prover generates a proof (a bit string) that the verifier checks

Applications

- Proving knowledge of a secret key (identification protocol)
- Proving validity of DH quadruplet
- Elgamal encryption:
 - Proving knowledge of the randomness

 (g^{r}, mh^{r})

- Proving correct decryption
- Proving encryption of 0/1

Reminder: Decisional Diffie-Hellman

Application: proof of correct Elgamal decryption

- ▶ Is m the Elgamal decryption of (α, β) ? $h = g^{x}, (g^{r}, mh^{r})$
- ▶ Run above protocol on $(g, \alpha, h, \beta/m)$ with witness x

$$\mathcal{H}(g,h,u,v,g^su^{-c},h^sv^{-c})\stackrel{?}{=}c$$

$$\mathcal{H}(g, h, u, v, g^s u^{-c}, h^s v^{-c}) = c$$

$$\mathcal{H}(g, h, u, v, g^s u^{-c}, h^s v^{-c}) = c$$

$$\mathcal{H}(g, h, u, v, g^s u^{-c}, h^s v^{-c}) = c$$

$$\mathcal{H}(g, h, u, v, g^s u^{-c}, h^s v^{-c}) = c$$

Concrete Problem: e-Voting with Strong Security Guarantees

- ▶ **Voters** register in advance at the **polling station**
 - Polling station know the public key $h_v = g^{x_v}$ of voter v
- ► The **election administrator** publishes a public key $h_{ea} = g^{x_{ea}}$
- ► The **polling station** publishes a public key $h_{ps} = g^{x_{ps}}$
- Yes/No question: votes are either 0 (no) or 1 (yes)
- ▶ On voting day, voter v has a **vote** $b_v \in \{0, 1\}$, and:
 - **dentify** to the polling station using h_v
 - \oint Elgamal-**encrypt** the **ballot** g^{b_v} using h_{ea}
 - igle **Signs** the encrypted ballot using their secret key x_{ν}
 - ► Sends their encrypted/signed ballot to the polling station
 - The polling station **signs** incoming ballots using x_{ps} , send back the signed ballot to voters and publishes everything
- ► At the end of the day:
 - ▶ The polling station compute the **product** π of all votes
 - ightharpoonup Publishes π and send π to the election administrator
 - ▶ Election administrator Elgamal-**decrypts** π
 - ▶ Election administrator publishes the number of "1" votes

Elgamal encryption is malleable

- Product of encryption is encryption of product
 - ▶ If $(\alpha, \beta) = (g^r, m_1 h^r)$ and $(\gamma, \delta) = (g^t, m_2 h^t)$
 - ► Then $(\alpha \gamma, \beta \delta) = (g^{r+t}, m_1 m_2 h^{r+t})$
- product of encryptions of g^{b_v} is encryption of $g^{\sum_v b_v}$

Security Guarantees

- Only registered voters may send a ballot
 - ▶ Voter v must prove knowledge of x_v
- ▶ Polling station does not know the votes
 - Semantic security of Elgamal encryption
- Polling station cannot modify a ballot
 - They are signed by the voters
- ▶ Polling station cannot "forget" a ballot
 - Voters may exhibit their ballot signed by the polling station
- ▶ Correct value of π is publicly verifiable

Problems

- 1. Votes are not private from the election authority
 - ► Election authority knows the decryption key x_{ea}...
- 2. The election authority could cheat
 - In theory, decrypts π using x_{ea} , publishes result
 - \blacktriangleright π is an encryption of $g^{\sum_{\nu} b_{\nu}}$
 - ▶ What if the election authority publishes a different value?
 - 👍 (non-interactive) proof of correct Elgamal decryption
- Voters could cheat by submitting incorrect ballots
 - lnstead of encrypting g^0 or g^1 , a voter encrypts g^{1000}
 - → Votes 1000 × "yes"!!!
 - Detectable: wrong # votes compared to # ballots
 - But it still voids the election...
- 4. Voters have a receipt
 - ► They have their ballot signed by the polling station
 - ► They have a "proof" that they have voted "yes" or "no"
 - They could sell their vote / be jailed / etc.

Guaranteeing Votes Privacy

Main idea

- ightharpoonup n > 1 election authorities
 - ▶ Votes remain confidential as long as **one** of them is honest

Threshold Elgamal

- Distributed key generation:
 - ► Authority #*i* samples $x_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, sets $h_i \leftarrow g^{x_i}$
 - ightharpoonup All authorities publish their **partial public keys** h_i
 - ► Global public key: $H \leftarrow \prod_i h_i$ $(X = \sum_i x_i)$
- Encryption of $m: (g^r, mH^r)$ as usual (with random r)
- **Distributed decryption** of (α, β) :
 - Goal: $m = \beta/\alpha^{\mathsf{X}}$ (X shared between them)
 - ► Authority #i computes $\gamma_i \leftarrow \alpha^{\mathbf{x}_i}$, publishes γ_i
 - ► The world computes $m \leftarrow \beta / \prod_i \gamma_i$

Guaranteeing Correct Decryption of the Tally

Threshold Elgamal

- Distributed key generation:
 - ▶ Authority #*i* samples $x_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, sets $h_i \leftarrow g^{x_i}$
 - ► All authorities publish their **partial public keys** *h*_i
 - Global public key: $H \leftarrow \prod_i h_i$ $(X = \sum_i x_i)$
- Encryption of $m: (g^r, mH^r)$ as usual (with random r)
- **Distributed decryption** of (α, β) :
 - Goal: $m = \beta/\alpha^{\mathsf{X}}$ (X shared between them)
 - Authority #i computes $\gamma_i \leftarrow \alpha^{\mathbf{x}_i}$, publishes γ_i
 - ► The world computes $m \leftarrow \beta / \prod_i \gamma_i$

Preventing a rogue election authority from cheating

- \blacktriangleright (g, α, h_i, γ_i) is (supposed to be) a DH-quadruplet (with x_i)
- Election authorities publishes (non-interactive) proofs

Proof of 0/1 Encryption: Cramer, Damgård, and Schoenmakers (1994)

Two possible messages: $m_0 = \text{"NO"}$ and $m_1 = \text{"YES"}$

- prove that (α, β) is an Elgamal encryption of a valid message
 (without revealing if it is m₀ or m₁)
- \rightarrow prove knowledge of r, b such that $\alpha = g^r$ and $\beta/m_b = h^r$

Strategy

- Prove knowledge of r_0 such that $\alpha = g^{r_0}$ and $\beta/m_0 = h^{r_0}$
- ▶ Prove knowledge of r_1 such that $\alpha = g^{r_1}$ and $\beta/m_1 = h^{r_1}$
- Verifier checks both proofs, accept if both correct ?

Obstacle

- Prover can only produce a valid proof of knowledge of rb
 - ► Simply does not know r_{1-b}... 🥯

Proof of 0/1 Encryption: Cramer, Damgård, and Schoenmakers (1994)

Solution

Prover generates a fake proof of knowledge of r_{1-b}

Without knowing r_{1-b}

Producing fake proofs?!?

Correct protocol → no way to generate fake proofs

Verifier rejects fake proofs if DLOG is hard

The basic protocol is **zero-knowledge**

- A simulator generates valid transcripts (=proofs) by choosing the challenge before committing 😈
 - So we could generate a fake proof of knowledge of r_{1-b} if we could choose the challenge

Proof of 0/1 Encryption: Cramer, Damgård, and Schoenmakers (1994)

Strategy (cont'd)

Prover wants to:

- ightharpoonup Use a challenge imposed by the verifier for r_b (honest proof)
- ► Choose the challenge for r_{1-b} (fake proof)

How to choose the challenge for r_{1-b} but not for r_b ?

Prover **splits** the challenge (Schnorr — 1991)

- ► Chooses $c_{1-b} \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ (for the fake proof)
 - → Produces fake proof in advance
- commits
- ▶ Receives **unpredictable** challenge *c* from the verifier
- ► Computes $c_b \leftarrow c c_{1-b}$ (for the honest proof) \rightarrow produces the honest proof "online" ($c = c_0 + c_1$)
- ▶ Sends both proofs plus (c_0, c_1) to the verifier

$\mathsf{Prover}(\pmb{h}, \pmb{b}, (\alpha, \beta), \pmb{r_b})$

Verifier $(h,(\alpha,\beta))$ - Choose challenge

$$\triangleright B_{1-b} \leftarrow h^{s_{1-b}}(\beta/m_{1-b})^{-c_{1-b}}$$

- 1. Send A_0, B_0, A_1, B_1
- $c_b \leftarrow c c_{1-b}, s_b \leftarrow k + c_b r_b$
- 3. Send c_0, s_0, s_1

- 2. Send $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- $c_1 \leftarrow c c_0$
- ightharpoonup Check $h^{s_0} \stackrel{?}{=} B_0(\beta/m_0)^{c_0}$

$\mathsf{Prover}(\pmb{h}, \pmb{b}, (\alpha, \beta), \pmb{r_b})$

$$c_{1-b} \stackrel{\$}{\leftarrow} \mathbb{Z}_q, s_{1-b} \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

$$A_{1-b} \leftarrow g^{s_{1-b}} \alpha^{-c_{1-b}}$$

$$B_{1-b} \leftarrow h^{s_{1-b}} (\beta/m_{1-b})^{-c_{1-b}}$$

- 1. Send A_0, B_0, A_1, B_1
- 3. Send c_0, s_0, s_1

VERIFIER $(h, (\alpha, \beta))$ Fake proof for $\begin{cases}
\alpha = g^{r_{1-b}} \\
\beta/m_{1-b} = h^{r_{1-b}}
\end{cases}$ w/ (chosen) challenge c_{1-b}

2. Send $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

- $c_1 \leftarrow c c_0$
- $\blacktriangleright \mathsf{Check}\, \mathsf{g}^{\mathsf{s}_0} \stackrel{?}{=} \mathsf{A}_0 \alpha^{\mathsf{c}_0}$
- Check $g^{s_1} \stackrel{?}{=} A_1 \alpha^{c_1}$

$\mathsf{Prover}(h, b, (\alpha, \beta), \mathbf{r_b})$

$$ightharpoonup A_{1-b} \leftarrow g^{s_{1-b}} \alpha^{-c_{1-b}}$$

$$\triangleright B_{1-b} \leftarrow h^{s_{1-b}} (\beta/m_{1-b})^{-c_{1-b}}$$

1. Send
$$A_0, B_0, A_1, B_1$$

$$c_b \leftarrow c - c_{1-b} s_b \leftarrow k + c_b r_b$$

3. Send c_0, s_0, s_1

Verifier
$$(h, (\alpha, \beta))$$

Honest proof for $\begin{cases} \alpha = g^{r_b} \\ \beta/m_b = h^{r_b} \end{cases}$ with challenge c_b

2. Send $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

- $c_1 \leftarrow c c_0$

Prover $(h, b, (\alpha, \beta), r_b)$

$$c_{1-b} \stackrel{\$}{\leftarrow} \mathbb{Z}_q, s_{1-b} \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

$$A_{1-b} \leftarrow g^{s_{1-b}} \alpha^{-c_{1-b}}$$

$$A_{1-b} \leftarrow g^{s_{1-b}} \alpha^{s_{1-b}}$$

$$\triangleright B_{1-b} \leftarrow h^{s_{1-b}}(\beta/m_{1-b})^{-c_{1-b}}$$

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q, A_b \leftarrow \alpha^k, B_b \leftarrow h^k$$

$$c_b \leftarrow c - c_{1-b}, s_b \leftarrow k + c_b r_b$$

3. Send c_0, s_0, s_1

Verifier
$$(h, (\alpha, \beta))$$

Commit to k (and c_{1-h})

2. Send
$$c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

$$c_1 \leftarrow c - c_0$$

► Check $h^{s_1} \stackrel{?}{=} B_1 (\beta/m_1)^{c_1}$

$\mathsf{Prover}(\pmb{h}, \pmb{b}, (\alpha, \beta), \pmb{r_b})$

- $ightharpoonup c_{1-b} \stackrel{\$}{\leftarrow} \mathbb{Z}_q, s_{1-b} \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- $A_{1-b} \leftarrow g^{s_{1-b}} \alpha^{-c_{1-b}}$
- $ightharpoonup B_{1-b} \leftarrow h^{s_{1-b}} (\beta/m_{1-b})^{-c_{1-b}}$
- $\blacktriangleright k \stackrel{\$}{\leftarrow} \mathbb{Z}_a, A_b \leftarrow \alpha^k, B_b \leftarrow h^k$
- 1. Send A_0, B_0, A_1, B_1
- $c_b \leftarrow c c_{1-b}, s_b \leftarrow k + c_b r_b$
- 3. Send c_0, s_0, s_1

Verifier(h, (α, β))

Once c_{1-b} has been committed, c_b cannot be predicted by the prover (proof \Rightarrow knowledge of r_b)

2. Send $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

- $ightharpoonup c_1 \leftarrow c c_0$

Elgamal 0/1 Encryption with Non-Interactive Proof

Encrypt(h, b)

- $ightharpoonup r_b, c_{1-b}, s_{1-b}, k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- \blacktriangleright $(\alpha, \beta) \leftarrow (g^{r_b}, m_b h^{r_b})$
- $(A_{1-b}, B_{1-b}) \leftarrow (g^{s_{1-b}} \alpha^{-c_{1-b}}, h^{s_{1-b}} (\beta/m_{1-b})^{-c_{1-b}})$
- \blacktriangleright $(A_b, B_b) \leftarrow (\alpha^k, h^k)$
- $ightharpoonup c \leftarrow \mathcal{H}(h, \alpha, \beta, A_0, B_0, A_1, B_1)$
- $ightharpoonup c_b \leftarrow c c_{1-b}$
- $ightharpoonup s_b \leftarrow k + c_b r_b$
- ightharpoonup return $(\alpha, \beta, c_0, c_1, s_0, s_1)$

$\mathsf{Decrypt}(x, \alpha, \beta, c_0, c_1, s_0, s_1)$

- $\triangleright c \leftarrow \mathcal{H}(\mathbf{g}^{\mathbf{x}}, \alpha, \beta, \mathbf{g}^{\mathbf{s}_0} \alpha^{-\mathbf{c}_0}, \mathbf{h}^{\mathbf{s}_0}(\mathbf{m}_0/\beta)^{\mathbf{c}_0}, \mathbf{g}^{\mathbf{s}_1} \alpha^{-\mathbf{c}_1}, \mathbf{h}^{\mathbf{s}_1}(\mathbf{m}_1/\beta)^{\mathbf{c}_1})$
- if $c = c_0 + c_1 \pmod{q}$ then return $\beta/\alpha^{\mathsf{x}}$ else return \bot

- The Digital Signature Algorithm (DSA) is a United States Federal Government standard or FIPS for digital signatures.
- It was proposed by the National Institute of Standards and Technology (NIST) in August 1991 for use in their Digital Signature Standard (DSS), specified in FIPS 186, adopted in 1993.
- ▶ DSA makes use of a cryptographic hash function \mathcal{H} .
- ▶ 2025: ECDSA with \mathcal{H} := SHA256 is widespread

Textbook ElGamal signature scheme (1985)

Public parameters. A k-bit prime p and a generator g of \mathbb{Z}_p^{\times}

Key generation. The secret key is $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}$ The public key is $y = g^x \mod p$

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, generate (r,s) s.t.

$$g^m = y^r r^s \bmod p$$

as follows: $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}^{\times}$, $r \leftarrow g^k \mod p$ and

$$s \leftarrow (m - xr) \cdot k^{-1} \mod p - 1$$

Output (r, s)

Verification. Verify that 1 < r < p and $g^m \stackrel{?}{=} y^r r^s \mod p$

Hashed ElGamal signature scheme

Public parameters. A k-bit prime p and a generator g of \mathbb{Z}_p^{\times}

Key generation. The secret key is $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}$ The public key is $y = g^x \mod p$

Signature. To sign a message $m \in \{0,1\}^*$, generate (r,s) s.t.

$$g^{\mathcal{H}(m)} = y^r r^s \bmod p$$

as follows: $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}^{\times}$, $r \leftarrow g^k \mod p$ and

$$ks \leftarrow (\mathcal{H}(\mathbf{m}) - xr) \cdot k^{-1} \mod p - 1$$

Output (r, s)

Verification. Verify that 1 < r < p and $g^{\mathcal{H}(m)} \stackrel{?}{=} y^r r^s \mod p$

Hashed ElGamal signature scheme with Schnorr's trick

Public parameters. A k-bit prime p and a generator $g \in \mathbb{Z}_p^{\times}$ of prime order q

Key generation. The secret key is $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ The public key is $y = g^x \mod p$

Signature. To sign a message $m \in \{0,1\}^*$, generate (r,s) s.t.

$$g^{\mathcal{H}(m)} = y^r r^s \bmod p$$

as follows: $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{\times}$, $r \leftarrow g^k \mod p$ and

$$s \leftarrow (\mathcal{H}(m) - xr) \cdot k^{-1} \mod q$$

Output (r, s)

Verification. Verify that 1 < r < q and $g^{\mathcal{H}(m)} \stackrel{?}{=} y^r r^s \mod p$

Full DSA

Public parameters. A k-bit prime p and a generator $g \in \mathbb{Z}_p^{\times}$ of prime order q

Key generation. The secret key is $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ The public key is $y = g^x \mod p$

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, generate (r,s) s.t.

$$g^{\mathcal{H}(m)} = y^r r^s \bmod p$$

as follows: $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{\times}$, $r \leftarrow (g^k \mod p) \mod q$ and

$$s \leftarrow (\mathcal{H}(m) + xr) \cdot k^{-1} \mod q$$

Output (r, s)

Verification. Verify that 1 < r < q, compute $w \leftarrow s^{-1} \mod q$, $u_1 = \mathcal{H}(m) \cdot w \mod q$, $u_2 \leftarrow r \cdot w \mod q$, Check whether $(g^{u_1}y^{u_2} \mod p) \mod q \stackrel{?}{=} r$