Лекция 1. Наблюдение за случайной величиной Х.

Мы наблюдаем за случайной велчиной X с функцией распределения $F_X(x,\theta)$. Мы проводим эксперимент n раз и получаем значения $\{x_1,\ldots,x_n\}$. Где θ - некоторый параметр распределения (Пример: в распределении Пуассона - это λ).

Определение. Основное предположение статистики: мы предполагаем, что в нашем эксперименте величины $\{x_1, \ldots, x_n\}$ случайны, одинаково распределены и независимы.

Пускай у нас есть некоторое распределение:

x_1	x_2	 x_n
$\frac{1}{n}$	$\frac{1}{n}$	 $\frac{1}{n}$

Тогда мы можем ввести эмпирическую функцию распределения $F(x)^* = \frac{\nu}{n}$, где ν - число $x_i < x, \frac{v}{n}$ - частота частота события $\{X < x\}$.

Тогда мы можем записать математическое ожидание E(X) и дисперсию D(X):

1.
$$E(x) \approx \overline{x} = \sum_{i=1}^{n} x_i \frac{1}{n}$$

2.
$$D(X) \approx S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

 \mathbf{Z}