Versuch 15

30. September 2021

Schiefe Ebene

Physikalisches Anfängerpraktikum I

Juan Provencio

Betreuer: Constantin Tormann

Inhaltsverzeichnis

1	Ziel des	Versuch	.es													2
2	Grundl	agen														2
	2.1 Bes	schleunigui	ng .													2
		ergieerhalt														
3	Versuchsaufbau							3								
	3.1 Ma	terialen ur	nd Ge	räte												3
		fbau														
4	Messung und Auswertung							5								
		ssprotokoll														5
		swertung														
5	Zusammenfassung und Diskussion 1								11							
	5.1 Zus	sammenfas	sung													11
		kussion .	_													
6	Quellen	l														13

1 Ziel des Versuches

Ziel dieses Versuches ist die Untersuchung des Einflusses des Trägheitsmoment auf die Beschleunigung von verschiedenen Körpern. Wir werden die Beschleunigung eines Vollzylinders und eines Hohlzylinders bestimmen. Mit der Endgeschwindigkeit kann man zusätzlichen den Energieerhaltungssatz überprüfen, falls diese mit der maximalen potentiellen Energie übereinstimmt.

2 Grundlagen

2.1 Beschleunigung

Ein Körper, der in eine Rotationsbewegung geführt wird erzeugt einen Widerstand gegen diese Bewegung. Analog wie bei der Translation eine Masse diesen Widerstand leistet, ist in der Rotation das Trägheitsmoment dafür verantwortlich. Insbesondere werden wir hier die Trägheitsmoment eines Vollund Hohlzylinders betrachten, diese lauten

$$I_{\text{voll}} = \frac{1}{2} m r_{\text{voll}}^2 \tag{1}$$

$$I_{\text{hohl}} = \frac{1}{2}m\left(r_a^2 + r_i^2\right) \tag{2}$$

Dabei bezeichnen m die Massen, r_{voll} der Radius des Vollzylinders, r_a der Außenradius des Hohlzylinders und r_i der Innenradius des Hohlzylinders.

Dadurch, dass die Ebene eine Reibungskraft F_R auf die Körper ausübt, wird ein Drehmoment erzeugt:

$$M = F_R r = I\dot{\omega} \tag{3}$$

Mit r wird der Radius zum Schwerpunkt gemeint, mit ω die Winkelgeschwindigkeit. Die Rollbedingung lautet $v_s = r \cdot \omega$. Das heißt, dadurch dass die Zylinder auf der Ebene nicht gleiten dürfen, sondern rollen, können wir die obige Gleichung umformen zu

$$M = F_r r = \frac{I}{r} \dot{v}_s = \frac{I}{r} a_s \tag{4}$$

Mit a_s als die Beschleunigung im Schwerpunkt. Damit lässt sich die Reibungskraft als

$$F_R = \frac{I}{r^2} a_s \tag{5}$$

schreiben.

Zusätzlich wirkt am Schwerpunkt die Hangabtriebskraft $F_H = mg \sin \varphi$ entgegen der Reibungskraft, also gilt:

$$ma_s = mg\sin\varphi - \frac{I}{r^2}a_s \tag{6}$$

womit wir diese Gleichung nach der Beschleunigung umformen können

$$a_s = \frac{mg\sin\varphi}{m + \frac{I}{r^2}}\tag{7}$$

Wenn man die Trägheitsmomente aus (1) und (2) in die obige Gleichung einsetzt, vereinfacht sich diese Berechnung auf

$$a_{\text{voll}} = \frac{2}{3}g\sin\varphi \tag{8}$$

$$a_{\text{hohl}} = \frac{2}{3 + \frac{r_i^2}{r_a^2}} g \sin \varphi \tag{9}$$

2.2 Energieerhaltung

Zu jedem Zeitpunkt besteht für die rollenden Objekte die Gesamtenergie aus der Lageenergie, der Translationsenergie und der Rotationsenergie

$$E_{\rm ges} = E_{\rm pot} + E_{\rm trans} + E_{\rm rot} \tag{10}$$

$$= mgh + \frac{mv^2}{2} + \frac{I\omega^2}{2} \tag{11}$$

Wenn der Körper "unten" ankommt, so sollte die gesamte potentielle Energie vom Anfangspunkt in kinetische Energie umgeformt sein. Dies ist aber aufgrund der Reibung nicht exakt der Fall. Die Abweichungen werden wir später untersuchen.

3 Versuchsaufbau

3.1 Materialen und Geräte

- Höhenverstellbare Rollbahn
- Lichtstranken mit Steuergerät
- Wasserwaage

- Lineal
- Rollkörper
 - Vollzylinder (Aluminiium $\rho=2,70\,\mathrm{g\,cm^{-3}})$
 - Hohlzylinder (Messing $\rho=8,44\,\mathrm{g\,cm^{-3}})$
 - Verbundenzylinder (Mantel aus Aluminium, Kern aus Messing)
- Schieblehre
- Waage

3.2 Aufbau

Abbildung 1: Aufbau

4 Messung und Auswertung

4.1 Messprotokoll

Messprotokou	V15 S	chiefe Ebene	
30.09.2021			
Mike Brandt			-
Juan Provence	io		
Teilanfacte 2:	Vermesnina	der schiefen Elsene und der Probekörper	
Wis vermesen	mid don	Massahieber die Probaharper	
Tabelle 1: Vern			
Körper	Höhe [cm]	Durchmeser d [cm] Masse m [g]	
Valzylinder	8,00 20,02	5,00 1 0,02 444, 90 20,05	
Hohl Zylinder	8 0030 02	Augen: 5,04 20,02 445,1820,05	
4 (Innen 4,10 1002	
verbundzylinder	806:002	Auben: 4,9520,02 441,1010,05	
		Innen: 2,61:0,02	
		Micho Hart : 027 2002	
W: vermessen	die Pall-Ex	92(0):	
	L	1 h = (2,100 0,05)cm	
		H L=(87,30:0,05km	
nt-		H=(11,5020,05)cm	
To: 10., 100 ho 3.	11-1005-1010-	ung der Bewagung zeit	
Die Lichtschran Startlinie open	iven words	en in folgenden Abständen von de	.c
Talælle 2: Posit	non der L	iohtsch ranken	
Ur. Abstance	d s [cm]		
1 16±1			
3 6431			
4 8121			
Die des Polity	21 008. MALL	Vale and Machanale In	
anal um rach	unter an	- Volt und Verbundenzylinder dewern un Zukammen, weil trotz fast identischer vertalt ist. Eine Wonzentration näher nelen Trägheitsmoment und dementspr	terso
	a ala indition	well in the second	ph 1
lie mass unter	Schrednen	noted Teach to Nonzentration named	Zom

Abbildung 2: Messprotokoll

Wir mes	sen die d Hohlz	texten an yundars image	don Lichtson	Hal for		
ideelle 3 Hasning	: Zitmes		7 1241 1	111 0 10	1	
money.	Serion	e Zeit Lynnis		lal of [s		
-	1	0,691	0,764			
1	3	1,035	1,142			
	4	1,543	1,705			
	1	0.602	0.240			
2	2	1,034	1,427			
	3	1.376	1,505			
	4	1,543	1,690			
	1	0,694	1967			
3	2	1037	1,144	100,001		
	3	1379	1,522			
	4	1,544	1,700			
	1	0,696	0,753			
4	2	1038	1,434			
	3	1383	1509			
	4	1,383	1,693			
	1	3683	0,747			
5	2	1026	1,125			
	3	1,368	1,503			
	4	1,553	11,688			
Taila Cast	~ S: IV	nlay such amon	zum Enorgiee	chalb. none-		
Wir be	stimmen	Finf Hal die	Endgeschwind Teil in einen	lighted dor 2	ylindern mit	twei
einander.	wic mit	ieren ihre Zei	le out Tabelle	2 4.	100 (20 2 2 1611	w.
Tabelle 1	4: Unter	isvehungen ze	in Energieerha	irongsoutz		
Mesning	Schran	ve Zit tyou	[s] Dtung [s]	Beit thou	[s] Stron [170 [
-	1	1,640	0,284	1,812	0,343	
1	3			2,125		
1	4	1,924		-		
	4	1,924	0 286		0313	
2	3	1,639	0,286	1 804	0,317	
2	3 4	1,639		1,804		
	3 4	1,639 1,925 1,636	0,286	1,804	0,317	0 200
2	4	1,639 1,636 1,636 1,919	0,283	1,804 2,121 1,807 1,110		0,00
2	3 4 3	1,639 1,636 1,636 1,919		1 804 2,121 1,007 1,100		0,20
2	3 4	1,639 1,925 1,636	0,283	1,804 2,121 1,807 1,110	0,543	0,00

Abbildung 3: Fortsetzung Messprotokoll

4.2 Auswertung

Für die Fehlerberechnung wird im Folgenden, wenn nichts explizit anders gesagt der Fehler einer Funktion f(x, y, z) nach der Gaußschen Fehlerfortpflanzung wie folgt ausgerechnet:

$$\sigma_f = \sqrt{\left(\partial_x(f) \cdot \sigma_x\right)^2 + \left(\partial_y(f) \cdot \sigma_y\right)^2 + \left(\partial_z(f) \cdot \sigma_z\right)^2} \tag{12}$$

Im Allgemeinen wird aber auf eine explizite Rechnung übersichtshalber verzichtet.

4.2.1 Vermessung der Ebene und der Probekörper

Tabelle 1 im Messprotokoll 2 entnehmen wir dem Radius der Probekörpern:

Körper	Radius r [cm]
Vollzylinder	$2,50 \pm 0,01$
Hohlzylinder	Außen: $2,52 \pm 0,01$
	Innen: $2,05 \pm 0,01$
	Außen: $2,48 \pm 0,01$
Verbundenzylinder	Innen: $1, 31 \pm 0, 01$
	Dicke Mantel: $0, 14 \pm 0, 01$

Tabelle 5: Radius der jeweiligen Probekörper

Den Neigungswinkel bestimmen wir aus geometrischen Überlegungen. Dieser lautet

$$\varphi = \arcsin\left(\frac{H-h}{L}\right) = 0,1079 \pm 0,0008 = (6,18 \pm 0,05)^{\circ}$$
 (13)

Für den Fehler wurde als erstes $H-h:=h_0=(9,40\pm0,07)\,\mathrm{cm}$ definiert und mit

$$\sigma_{\varphi} = \sqrt{\left(\frac{\sigma_{h_0}}{\sqrt{1 - \frac{h_0^2}{L^2}L}}\right)^2 + \left(\frac{h_0 \cdot \sigma_L}{\sqrt{1 - \frac{h_0^2}{L^2}L^2}}\right)^2}$$
 (14)

ausgerechnet.

Aus den gegebenen Dimensionen der Probekörpern in Tabelle 1 des Messprotokolls und ihrer angeblichen Dichte bestimmen wir ihre Massen als $m=\rho\cdot V$. Damit erhalten wir

$$m_{\text{voll}} = \rho_{\text{Al}} V = \rho_{\text{Al}} \pi r^2 h = (424 \pm 4) \,\text{g}$$
 (15)

$$m_{\text{hohl}} = \rho_{\text{Messing}} V = \rho_{\text{Messing}} \pi \left(r_a^2 - r_i^2 \right) = (456 \pm 14) \,\text{g}$$
 (16)

Diagramm 1: Abstand gegen Quadrat der Zeit

4.2.2 Beschleunigung

Aus Diagramm 1 erhalten wir eine Steigung, aus $s=\frac{a}{2}t^2$ folgt, dass diese Steigung der halben Beschleunigung entspricht, also müssen wir sie verdoppeln um auf die Beschleunigung zu kommen.

F

Körper	$a_{\rm graph} [{\rm cm s^{-2}}]$	$\sigma_{a_{\text{graph}}} \left[\text{cm s}^{-2} \right]$
Vollzylinder	68,0	0,2
Hohlzylinder	56,52	0,18

Tabelle 6: Graphisch bestimmte Beschleunigung

Aus Gleichung (8) und (9) folgt allerdings:

Körper	$a_{\rm mathe} [{\rm cm s^{-2}}]$	$\sigma_{a_{\text{mathe}}} \left[\text{cm s}^{-2} \right]$
Vollzylinder	70,4	0,5
Hohlzylinder	57,7	0,5

Tabelle 7: Mathematisch bestimmte Beschleunigung

Die Fehlern hier wurden als

$$\sigma_{a_{\text{mathe,voll}}} = \frac{2}{3}g\cos\varphi \cdot \sigma_{\varphi} \tag{17}$$

und

$$\sigma_{a_{\text{mathe,hohl}}} = \sqrt{\left(\frac{4gr_i \sin \varphi}{\left(3 + \frac{r_i^2}{r_a^2}\right)^2 r_a^2} \cdot \sigma_{r_i}\right)^2 + \left(\frac{4gr_i^2 \sin \varphi}{\left(3 + \frac{r_i^2}{r_a^2}\right)^2 r_a^3} \cdot \sigma_{r_a}\right)^2 + \left(\frac{2g \cos \varphi}{3 + \frac{r_i^2}{r_a^2}} \cdot \sigma_{\varphi}\right)^2}$$

$$\tag{18}$$

berechnet.

4.2.3 Untersuchungen zum Energieerhaltungssatz

Trägheitsmomente

Wir berechnen die Trägheitsmomente nach Gleichungen (1) und (2).

$$I_{\text{voll}} = \frac{1}{2} m_{\text{voll}} r_{\text{voll}}^2 = (1390 \pm 11) \,\text{g cm}^2$$
 (19)

$$I_{\text{hohl}} = \frac{1}{2} m_{\text{hohl}} \left(r_a^2 + r_i^2 \right) = (2349 \pm 14) \,\text{g cm}^2$$
 (20)

Energie

Aus den letzten fünf Messungen, bei welchen die Zeit zwischen zwei Schranken gemessen wurde, erhalten wir einen mittleren Wert von

$$\bar{t}_{\text{voll}} = \frac{\sum_{i=1}^{5} \Delta t_{i,\text{voll}}}{5} = 0,2842 \,\text{s}$$
 (21)

mit einem Fehler von

$$\sigma_{\bar{t}_{\text{voll}}} = \sqrt{\frac{1}{5 \cdot 4} \sum_{i=1}^{5} \left(\Delta t_{i, \text{voll}} - \bar{t} \right)^2} = 0,0006 \,\text{s}$$
 (22)

Wir erhalten damit

$$\bar{t}_{\text{voll}} = (0, 2842 \pm 0, 0006) \,\text{s}$$
 (23)

und für das Hohlzylinder analog

$$\bar{t}_{\text{hohl}} = (0, 3160 \pm 0, 0013) \,\text{s}$$
 (24)

Mit einem Abstand zwischen den zwei Lichtschranken von $x=(30\pm2)\,\mathrm{cm}$ können wir die Geschwindigkeit ersetzen mit $v=\frac{x}{t}$. Damit erhalten wir eine Energie von

$$E_{\text{kin,voll}} = \frac{1}{2} m_{\text{voll}} \left(\frac{x}{\bar{t}_{\text{voll}}}\right)^2 + \frac{1}{2} I_{\text{voll}} \left(\frac{\frac{x}{\bar{t}_{\text{voll}}}}{r_{\text{voll}}}\right)^2$$
 (25)

$$= (0, 25 \pm 0, 03) J + (0, 124 \pm 0, 017) J$$
 (26)

$$= (0, 37 \pm 0, 04) \,\mathrm{J} \| \tag{27}$$

Hier wurden die Fehlern als relativer Fehler ρ_E der jeweiligen Termen berechnet als:

$$\rho_{E,\text{trans/rot}} = \frac{\sigma_x}{r} = 0,13 \tag{28}$$

Es wurde auschschließlich der relative Fehler des Abstands ρ_x benutzt, weil die anderen relativen Fehlern vergleichsmäßig irrelevant sind. Die Fehlern des Radius und der Zeit wurden sehr präzis bestimmt, sind betragsmäbig kleiner als $0, 2\rho_x$, also fließen kaum noch in den Fehler ein.

Für das Hohlzylinder gilt das gleiche:

$$E_{\text{kin,hohl}} = \frac{1}{2} m_{\text{hohl}} \left(\frac{x}{\overline{t}_{\text{hohl}}} \right)^2 + \frac{1}{2} I_{\text{hohl}} \left(\frac{\frac{x}{\overline{t}_{\text{hohl}}}}{r_a} \right)^2$$
 (29)

$$= (0, 201 \pm 0, 027) J + (0, 167 \pm 0, 022) J$$
 (30)

$$= (0, 37 \pm 0, 04) \,\mathrm{J} \| \tag{31}$$

Vergleichsweise war die potentielle Energie am höchsten Punkt

$$E_{\text{pot,voll}} = m_{\text{voll}} g(H - h) = (0, 410 \pm 0, 003) \text{ J} \|$$
 (32)

$$E_{\text{pot,hohl}} = m_{\text{hohl}} g(H - h) = (0.410 \pm 0.003) \text{ J} \|$$
 (35)

5 Zusammenfassung und Diskussion

5.1 Zusammenfassung

In diesem Versuch haben wir die Effekte des Trgheitsmomentes auf die Beschleunigung eines rollenden Körpers qualitativ und quantitativ untersucht. Als erstes haben wir drei Probekörper nebeneinander rollen lassen und haben beobachtet, dass ein Verbundenzylinder mit einem Messingkern am schnellsten unten ankommt, gefolgt von einem Vollzylinder und als letztes kam ein Hohlzylinder an. Jedoch hatten alle Körper eine nahezu gleiche Masse, wenn wir sie gewogen haben.

Als nächstes haben wir mit dem Voll- und Hohlzylinder mehrere Messungen durchgeführt, bei welchen wir mit Lichtschranken die Zeit gemessen haben, die die Objekte benötigten um die Ebene runter zu rollen. Die Quadrate dieser Werte haben wir dann gegen den Abstand zur Lichtschranke auf ein Diagramm eingetragen. Das Ergebnis war wie erwartet ein lineares Verhältnis. Aus der Steigung der Geraden ließ sich die Beschleunigung bestimmen. Diese haben wir zusätzlich auch geometrisch bestimmt, mithilfe des Neigungswinkels der Ebene und einer Überlegung über die wirkenden Kräfte.

Als letztes haben wir die kinetische Energie der Zylindern auf der horizontalen Ebene bestimmt, indem wir mit zwei Schranken die Zeit zwischen zwei Punkten gemessen haben. Mit dem Abstand dieser zwei Punkten und der Zeit die dafür erforderlich war, diese Strecke zurückzulegen konnten wir die Geschwindigkeit bei der Translationsenergie ersetzen, aus der Rollbedingung haben wir ebenfalls bei der Rotationsenergie die Winkelgeschwindigkeit ersetzt und daraus die gesamte kinetische Energie berechnet.

5.2 Diskussion

Im Folgenden werden wir die hier erhaltenen Ergebnissen und mögliche Fehlerquellen genauer untersuchen. Als erstes ist sehr auffälig, dass die Massenberechnung mit der Dichte und dem Volumen stark von der gewogenen Masse abweicht. Die Abweichung der σ -Bereiche zwischen zwei Größen $g_{a,b}$ wird folgendermaßen berechnet

$$\frac{|g_a - g_b|}{\sqrt{(\sigma_{g_a})^2 + (\sigma_{g_b})^2}} \tag{34}$$

	$\rho \cdot V$ [g]	m [g]	σ
Vollzylinder	424 ± 4	$444,9 \pm 0,05$	5,2
Hohlzylinder	456 ± 14	$445, 1 \pm 0, 05$	0,8

Tabelle 8: Abweichung der Massen

Obwohl die Abweichung zwischen den berechneten Massen des Hohlzylinders noch akzeptabel sind, liegt dies an den relativ großen Fehler, welcher dazu zustande kommt, dass wir mehrere fehlerbehaftete Größen dafür betrachten. Zur Weiterrechnung war aber offensichtlich die Waage genauer, also haben wir die Bestimmung der Masse über die Dichte und das Volumen nicht mehr verwendet. Die Abweichung liegt unwahrscheinlich einem systematischen Fehler zugrunde, denn die Masse einmal überschätzt und ein anderes Mal überschätzt wurde. Höchstwahrscheinlich wurde mit einer Dichte berechnet, die nicht der spezifischen Legierung von Messing und der spezifischen Komposition des Aluminiumzylinders entspricht.

Als nächstes lässt sich bei der Berechnung der Trägheitsmomente die qualitative Beobachtung bestätigen. Das Hohlzylinder hat ein fast zwei Mal so großes Trägheitsmoment als das Vollzylinder. Das erklärt auch quantitativ, weshalb es langsamer bei der Probe auf der schiefen Ebene ist. Diesen Einfluss ist auch später bei der Energieerhaltung erkennbar.

Bei der Energieerhaltung lässt sich beobachten, als erstes, dass sowohl Hohlals auch Hohlzvlinder praktisch identische Werte für die kinetische und potentielle Energie haben. Dies ist keine Überraschung, einerseits weil sie nahezu das gleiche wiegen, und andererseits, weil die Zeitmessung ziemlich genau durchgeführt worden ist, weshalb sich die kinetische Energie am Ende sehr gut bestimmen ließ. Wo beide Körper Unterschiede aufweisen ist aber bei der Verteilung der kinetischen Energie. Man kann erkennen, dass das Vollzylinder eine größere Translationsenergie besitzt als das Hohlzylinder. Dies ist klar, weil es eine größere Geschwindigkeit hat. Bei der Rotationsenergie lässt sich den Einfluss des Trägheitsmoments erkennen. Derjenige Körper mit dem größeren Trägheitsmoment besitzt auch eine größere Rotationsenergie. Die Summe beider Energien ist aber bei beiden Körpern ja gleich. Außerdem hatte man erwartet, dass die kinetische Energie am Ende gleich der potentiellen Energie am Anfang ist. Dies ist aber hier nicht der Fall, beide Werte weichen um 1 σ -Bereich voneinander ab. Dies ist akzeptabel, liegt genau an der Grenze des insiginifikanten Fehlerbereiches. Die Abweichungen stammen höchstwahrscheinlich daraus, dass die Reibung einen Einfluss auf den Energieverlust hat. Sowohl Luftreibung als auch Rollreibung wurden hier nicht

mitberücksichtigt. Luftreibung ist wahrscheinlich nicht als signifikant, aber sollte trotzdem erwähnt werden.

6 Quellen

Wagner, J., Universität Heidelberg (2021). Physikalisches Praktikum PAP1 für Studierende der Physik B.Sc., 45-54.