# MA01 - PC5

GELMI DE FREITAS SALVO, Guilherme guilherme.gelmi@ensta-paris.fr

SANTOS COSTA, Rian Radeck rian.santos@ensta-paris.fr

## 1 Cadre du filtre de Kalman

Considérons le système d'équations suivant :

$$\begin{cases} x_{k+1} = F_k x_k + w_k \\ z_k = H_k x_k + v_k \end{cases}$$

avec  $x_k \in \mathbb{R}^{n_x}$  le vecteur inconnu d'état du système au pas de temps  $k, z_k$  une mesure disponible au pas de temps  $k, w_k$  le bruit de modèle (ou d'état) suivant la loi normale  $\mathcal{N}(0, W_k)$  avec  $W_k$  matrice connue, et  $v_k$  le bruit de mesures suivant la loi normale  $\mathcal{N}(0, V_k)$  avec  $V_k$  matrice connue. Enfin,  $F_k \in M_{n_x,n_x}(\mathbb{R})$  et  $H_k \in M_{n_z,n_x}(\mathbb{R})$  sont deux matrices connues.

## 2 Les équations du filtre de Kalman

Le filtre de Kalman est un algorithme répondant à la problématique précédente. Outre l'initialisation, chaque itération se décompose en deux étapes : une étape de prédiction, et une étape de correction.

### 2.1 Algorithme

#### 2.1.1 Initialisation

On prend une estimation  $\hat{x}_0$  de  $x_0$  arbitraire parmi les valeurs possibles de  $x_0$ , et une matrice de covariance arbitrairement grande (par exemple  $P_0 = \alpha I$  avec  $\alpha$  arbitrairement grand).

#### 2.1.2 Itération

Pour  $k \ge 0$ 

Prédiction

$$\begin{cases} \hat{x}_{k+1|k} = F_k \hat{x}_k \\ P_{k+1|k} = F_k P_k F_k^T + W_k \end{cases}$$

Correction

Calcul du gain de Kalman:

$$K_{k+1} = P_{k+1|k} H_{k+1}^T (H_{k+1} P_{k+1|k} H_{k+1}^T + V_{k+1})^{-1}$$

Mise à jour :

$$\begin{cases} \hat{x}_{k+1} = \hat{x}_{k+1|k} + K_{k+1}(z_{k+1} - H_{k+1}\hat{x}_{k+1|k}) \\ P_{k+1} = (I - K_{k+1}H_{k+1z})P_{k+1|k} \end{cases}$$

Il faut percevoir que dans le problème demandé, les matrices  $F_k$ ,  $H_k$ ,  $V_k$  et  $W_k$  sont constantes pour tout k. Alors, on a mis en œuvre l'algorithme en tenant compte des égalités suivantes :  $F_k = F$ ,  $H_k = H$ ,  $V_k = V$  et  $W_k = W$ ,  $\forall k \in \mathbb{N}$ 

1

#### 3 Mise en œuvre

On a mis en œuvre l'algorithme sur python :

```
1 x_hat = []
_{2} P = []
4 # Initialization of x_hat (Predicted x0) and of P (Big enough initial covariance)
5 x_hat.append(np.array([0, 0, 0, 0, 0, 0]).T) # Column vector
_{6} P.append(1e3 * np.eye(6))
g def step(z):
        11 11 11
10
            Does a step with a measurement z
11
        ,,,,,,
12
13
        def prediction():
            x_{\text{hat}_{\text{minus}}} = F @ x_{\text{hat}_{\text{-1}}}
14
            P_{minus} = F @ P[-1] @ F.T + W
15
            return x_hat_minus, P_minus
16
17
        def correction(z):
18
            x_hat_minus, P_minus = prediction()
19
            # Kalman gain
20
            K = P_minus @ H.T @ np.linalg.inv(H @ P_minus @ H.T + V)
21
22
            # Update
23
            x_hat_step = x_hat_minus + K @ (z - H @ x_hat_minus)
24
            P_{step} = (np.eye(6) - K @ H) @ P_{minus}
            x_hat.append(x_hat_step)
27
            P.append(P_step)
28
29
30
        correction(z)
32 # The measures are read from a text file before in
33 # the code and now we make the steps with them
34 for measure in measures:
        step(measure)
35
```

L'implémentation est très simple et suit les itérations présentées dans la section 2.2. Pour mieux comprendre le code, nous pouvons établir les relations suivantes :

- $\hat{x}_{k+1|k}$  est appelé x\_hat\_minus
- $P_{k+1|k}$  est appelé P\_minus
- $-\hat{x}_{k+1}$  est appelé x\_hat\_step
- $P_{k+1}$  est appelé P\_step
- np.eye(n) crée une matrice identité de taille n par n
- L'opérateur @ correspond à une multiplication de matrices
- L'index -1 d'une liste (A[-1]) accède au dernier élément de cette liste
- L'attribut .T est la matrice transposé. ( $X^T$  c'est X.T dans le code)

# 4 Premier cas

Dans le premier cas les vecteur des mesures était limité à la position de la cible. Après l'exécution de l'algorithme on a arrivé a ces prédictions  $^1$ :



FIGURE 1 – Prédictions de l'algorithme pour les données de "filtreKalman1.txt"

<sup>1.</sup> La valeur de  $\hat{x}_0$  a été supprimée du graphique, car elle reste toujours égale à 0 avec une variance de  $10^3$ 

On peut voir que la trajectoire de la valeur réelle de l'état est toujours (à l'exception de quelques points) située entre l'intervalle de confiance. Donc, la prédiction est suffisamment juste.

Pour vérifier la convergence et la correction de notre algorithme, on peut garantir que la trace de la matrice de covariance est toujours décroissante. Nous confirmons cette hypothèse avec le graphique et le tableau suivants.



FIGURE 2 – Covariance de l'algorithme pour les données de "filtreKalman1.txt"

| 1 - 2998.5238 | 21 - 19.9612 | 41 - 18.7459 | 61 - 18.73992466 | 81 - 18.73984882  |
|---------------|--------------|--------------|------------------|-------------------|
| 2 - 1925.0552 | 22 - 19.6336 | 42 - 18.7454 | 62 - 18.73990187 | 82 - 18.73984868  |
| 3 - 946.8684  | 23 - 19.3877 | 43 - 18.7448 | 63 - 18.73988540 | 83 - 18.73984855  |
| 4 - 479.7416  | 24 - 19.2047 | 44 - 18.7442 | 64 - 18.73987371 | 84 - 18.73984844  |
| 5 - 270.2130  | 25 - 19.0698 | 45 - 18.7437 | 65 - 18.73986556 | 85 - 18.73984834  |
| 6 - 168.1772  | 26 - 18.9714 | 46 - 18.7431 | 66 - 18.73985999 | 86 - 18.73984825  |
| 7 - 113.6223  | 27 - 18.9007 | 47 - 18.7426 | 67 - 18.73985627 | 87 - 18.73984817  |
| 8 - 82.0443   | 28 - 18.8505 | 48 - 18.7422 | 68 - 18.73985384 | 88 - 18.73984811  |
| 9 - 62.5629   | 29 - 18.8155 | 49 - 18.7418 | 69 - 18.73985229 | 89 - 18.73984806  |
| 10 - 49.9198  | 30 - 18.7916 | 50 - 18.7414 | 70 - 18.73985131 | 90 - 18.73984801  |
| 11 - 41.3776  | 31 - 18.7755 | 51 - 18.7411 | 71 - 18.73985070 | 91 - 18.73984798  |
| 12 - 35.4187  | 32 - 18.7650 | 52 - 18.7409 | 72 - 18.73985032 | 92 - 18.73984795  |
| 13 - 31.1555  | 33 - 18.7582 | 53 - 18.7407 | 73 - 18.73985006 | 93 - 18.73984793  |
| 14 - 28.0446  | 34 - 18.7539 | 54 - 18.7405 | 74 - 18.73984987 | 94 - 18.73984791  |
| 15 - 25.7397  | 35 - 18.7513 | 55 - 18.7403 | 75 - 18.73984971 | 95 - 18.73984789  |
| 16 - 24.0129  | 36 - 18.7496 | 56 - 18.7402 | 76 - 18.73984956 | 96 - 18.73984788  |
| 17 - 22.7089  | 37 - 18.7485 | 57 - 18.7401 | 77 - 18.73984941 | 97 - 18.73984788  |
| 18 - 21.7194  | 38 - 18.7477 | 58 - 18.7401 | 78 - 18.73984926 | 98 - 18.73984787  |
| 19 - 20.9670  | 39 - 18.7471 | 59 - 18.7400 | 79 - 18.73984911 | 99 - 18.73984787  |
| 20 - 20.3950  | 40 - 18.7465 | 60 - 18.7400 | 80 - 18.73984896 | 100 - 18.73984786 |
|               |              |              |                  |                   |

Table 1 – Valeurs du trace de P pour itération (Prémier cas)

On observe ainsi que  $Trace(P_{k+1}) < Trace(P_k)$ , ce qui indique une amélioration à chaque itération. L'algorithme converge rapidement vers une valeur de covariance de 18,74. Le valeur 0 est toujours 6000 et a été supprimé.

## 5 Deuxième cas

Dans le deuxième cas on dispose des mesures de position et de vitesse de l'objet. Comme  $F_k \in M_{6,6}(\mathbb{R})$ ,  $H_k \in M_{6,6}(\mathbb{R})$  et  $V_{k+1} \in M_{6,6}(\mathbb{R})$ , les équation du filtre reste la même parce que la dimension des matrices est toujours correcte. Donc, l'algorithme reste le même avec une seule modification de la lecture des données. Les prédictions  $^2$  réalisées sont :



FIGURE 3 – Prédictions de l'algorithme pour les données de "filtreKalman2.txt"

<sup>2.</sup> La valeur de  $\hat{x}_0$  a été supprimée du graphique, car elle reste toujours égale à 0 avec une variance de  $10^3$ 

On peut voir que pour les nouvelles mesures la trajectoire de la valeur réelle de l'état est toujours (à l'exception de quelques points) située entre l'intervalle de confiance. Donc, la prédiction est suffisamment juste.

Pour vérifier la convergence et la correction de pour le deuxième cas, on peut garantir que la trace de sa matrice de covariance est toujours décroissante. Nous confirmons cette hypothèse avec le graphique et le tableau suivants.



FIGURE 4 – Covariance de l'algorithme pour les données de "filtreKalman2.txt"

| 1 - 299.2513 | 21 - 16.5201 | 41 - 15.9867 | 61 - 15.98453556 | 81 - 15.98451056  |
|--------------|--------------|--------------|------------------|-------------------|
| 2 - 153.2669 | 22 - 16.3807 | 42 - 15.9864 | 62 - 15.98452863 | 82 - 15.98451053  |
| 3 - 101.0380 | 23 - 16.2753 | 43 - 15.9861 | 63 - 15.98452351 | 83 - 15.98451051  |
| 4 - 74.0667  | 24 - 16.1963 | 44 - 15.9859 | 64 - 15.98451976 | 84 - 15.98451049  |
| 5 - 57.6640  | 25 - 16.1376 | 45 - 15.9857 | 65 - 15.98451705 | 85 - 15.98451047  |
| 6 - 46.7618  | 26 - 16.0944 | 46 - 15.9855 | 66 - 15.98451511 | 86 - 15.98451046  |
| 7 - 39.1198  | 27 - 16.0629 | 47 - 15.9854 | 67 - 15.98451374 | 87 - 15.98451044  |
| 8 - 33.5781  | 28 - 16.0401 | 48 - 15.9852 | 68 - 15.98451279 | 88 - 15.98451043  |
| 9 - 29.4664  | 29 - 16.0239 | 49 - 15.9851 | 69 - 15.98451213 | 89 - 15.98451042  |
| 10 - 26.3664 | 30 - 16.0125 | 50 - 15.9850 | 70 - 15.98451167 | 90 - 15.98451041  |
| 11 - 24.0018 | 31 - 16.0045 | 51 - 15.9849 | 71 - 15.98451136 | 91 - 15.98451041  |
| 12 - 22.1830 | 32 - 15.9990 | 52 - 15.9848 | 72 - 15.98451114 | 92 - 15.98451040  |
| 13 - 20.7758 | 33 - 15.9952 | 53 - 15.9847 | 73 - 15.98451099 | 93 - 15.98451040  |
| 14 - 19.6826 | 34 - 15.9925 | 54 - 15.9847 | 74 - 15.98451089 | 94 - 15.98451040  |
| 15 - 18.8316 | 35 - 15.9907 | 55 - 15.9847 | 75 - 15.98451081 | 95 - 15.98451039  |
| 16 - 18.1688 | 36 - 15.9895 | 56 - 15.9846 | 76 - 15.98451075 | 96 - 15.98451039  |
| 17 - 17.6529 | 37 - 15.9886 | 57 - 15.9846 | 77 - 15.98451070 | 97 - 15.98451039  |
| 18 - 17.2522 | 38 - 15.9880 | 58 - 15.9846 | 78 - 15.98451066 | 98 - 15.98451039  |
| 19 - 16.9421 | 39 - 15.9874 | 59 - 15.9846 | 79 - 15.98451062 | 99 - 15.98451039  |
| 20 - 16.7032 | 40 - 15.9870 | 60 - 15.9845 | 80 - 15.98451059 | 100 - 15.98451039 |

Table 2 – Valeurs du trace de P pour itération (deuxième cas)

On observe ainsi que  $Trace(P_{k+1}) < Trace(P_k)$ , ce qui indique une amélioration à chaque itération. L'algorithme converge rapidement vers une valeur de covariance de 15,98. Le valeur 0 est toujours 6000 et a été supprimé.

## 6 Comparaison

L'algorithme du filtre de Kalman commence par une prédiction de l'état courante a partir de l'état précédent. Dans la phase suivante on utilise les mesures pour corriger l'état prédit dans l'intention de obtenir plus de précision. Dans le premier cas on n'a pas les mesures sur la vitesse de la cible, ainsi la phase de mise à jour modifie la valeur calculée par la prévision en utilisant les mesures de position fois le facteur de la matrice de gain. Dans le deuxième, le mise à jour corrige l'état de vitesse prédit avec les mesures de vitesse et donc la estimation est plus précise. Ainsi, cela justifie le valeur de l'écart-type moins importante.

De plus, on peut voir que les état de vitesse s'approchent des données réelles plus rapidement quand on les corrige avec leurs mesures. Une dernière observation porte sur la trace de la matrice P, qui est plus faible dans le deuxième cas, ce qui indique une plus grande précision lorsqu'il y a plus d'informations disponibles pour la mesure.

### 7 Troisième cas

Dans le troisième cas on n'a que des mesures de vitesse.

#### 7.1 Analyse de la matrice de gain de Kalman

$$F = \begin{pmatrix} 1 & 0 & 0 & T & 0 & 0 \\ 0 & 1 & 0 & 0 & T & 0 \\ 0 & 0 & 1 & 0 & 0 & T \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad P = \alpha I_6, \quad W = T \begin{pmatrix} \sigma_p^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_p^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_p^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_v^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_v^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_v^2 \end{pmatrix}$$

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Calcul pour k = 0:

$$P_{k+1|k} = F_k P_k F_k^T + W_k = \alpha \begin{pmatrix} 1 + T^2 & 0 & 0 & T & 0 & 0 \\ 0 & 1 + T^2 & 0 & 0 & T & 0 \\ 0 & 0 & 1 + T^2 & 0 & 0 & T \\ T & 0 & 0 & 1 & 0 & 0 \\ 0 & T & 0 & 0 & 1 & 0 \\ 0 & 0 & T & 0 & 0 & 1 \end{pmatrix} + T \begin{pmatrix} \sigma_p^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_p^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_p^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_p^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_v^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_v^2 & 0 \\ 0 & 0 & 0 & 0 & \sigma_v^2 \end{pmatrix}$$

$$H_{k+1}P_{k+1|k}H_{k+1}^T + V_{k+1} = \begin{pmatrix} \alpha + T\sigma_v^2 + \sigma_z^2 & 0 & 0\\ 0 & \alpha + T\sigma_v^2 + \sigma_z^2 & 0\\ 0 & 0 & \alpha + T\sigma_v^2 + \sigma_z^2 \end{pmatrix}$$

$$K_{k+1} = P_{k+1|k} H_{k+1}^T (H_{k+1} P_{k+1|k} H_{k+1}^T + V_{k+1})^{-1} = \begin{pmatrix} \frac{\alpha T}{\alpha + T\sigma_v^2 + \sigma_z^2} & 0 & 0\\ 0 & \frac{\alpha T}{\alpha + T\sigma_v^2 + \sigma_z^2} & 0\\ 0 & 0 & \frac{\alpha T}{\alpha + T\sigma_v^2 + \sigma_z^2} \\ \frac{\alpha + T\sigma_v^2}{\alpha + T\sigma_v^2 + \sigma_z^2} & 0 & 0\\ 0 & \frac{\alpha + T\sigma_v^2}{\alpha + T\sigma_v^2 + \sigma_z^2} & 0\\ 0 & 0 & \frac{\alpha + T\sigma_v^2}{\alpha + T\sigma_v^2 + \sigma_z^2} \end{pmatrix}$$

Nous pouvons noter que les termes diagonaux nous dit que n'existe pas un mélange des différentes composants dans la phase de correction de l'état. Donc chaque composant de l'état est corrigée seulement pour leur composant de l'état prévit. Comme nous utilisons les mesures de vitesse pour estimer la position, le bruit, qui est plus important dans les mesures de vitesse, se propage à l'estimation de

la position. Si on fait  $K_{k+1}H_{k+1z}P_{k+1|k}$ , on peut voir que les éléments diagonaux de la matrice de covariance dépendent du bruit  $\sigma_v$ .

Dans les premières itérations du filtre de Kalman, lorsqu'il y a peu d'informations sur les mesures de position, les prédictions ne seront pas corrigées de manière significative. Cependant, étant donné que des données de vitesse sont disponibles, le changement de position sera tout de même raisonnablement bien prédit. Cela signifie que si la position réelle X de la cible augmente, la position X prédite augmentera également, même s'il existe un écart important en termes d'amplitude entre les deux valeurs. Par exemple, si la prédiction initiale de la position X commence à 0 et que la position réelle est de 1000, si la position X augmente de manière linéaire selon un facteur alpha, la prédiction suivra également une augmentation linéaire avec un facteur proche de alpha.

Une autre observation importante est que le gain de Kalman est proportionnel à la matrice de covariance prédite et à l'inverse de la somme de la matrice de mesure et de la matrice de covariance prédite. Cela implique un "trade-off" entre ces deux facteurs lors de la correction de la prédiction précédente. À un instant donné, les informations ajoutées par la mesure peuvent ne pas être suffisantes pour contrebalancer pleinement l'effet de la variabilité inhérente du système, ce qui entraîne une augmentation de la matrice de covariance a posteriori. Ce concept est encore plus clair dans le cas d'un pas de temps sans observations, où aucune nouvelle information n'est introduite et la matrice de covariance a posteriori augmente inévitablement.