ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работы 3.2.5 Вынужденные колебания в электрическом контуре

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Исследование вынужденных колебаний и процессов их установления в колебательном контуре.

В работе используются:

генератор звуковых частот, вольтметр, частотомер, конденсатор, катушка индуктивности, магазин сопротивлений, осциллограф, универсальный измеритель импеданса (LCR-метр).

Теоретические сведения:

При подключении к контуру внешнего синусоидального источника в нём возникают колебания, которые можно представить как суперпозицию двух синусоид: первая — с частотой собственных колебаний контура и амплитудой, экспоненциально убывающей со временем; вторая — с частотой внешнего источника и постоянной амплитудой. Со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. Амплитуда этих колебаний максимальна при резонансе: совпадении или достаточной близости частоты внешнего сигнала и собственной частоты контура. Зависимость амплитуды установившихся колебаний от частоты внешнего сигнала называется резонансной кривой.

А. Резонансная кривая колебательного контура

Для экспериментального исследования резонансной кривой тока в параллельном колебательном контуре используется схема, представленная на рис. 1. Синусоидальный сигнал с генератора подаётся на параллельный колебательный контур через небольшую разделительную ёмкость С1. Напряжение с конденсатора контура С поступает на вертикальный вход электронного осциллографа (ЭО). Для регистрации резонансной кривой необходимо, чтобы модули импедансов возбуждающей Zист и измеряющей Zизм цепей намного превосходили модуль импеданса самого контура вблизи резонанса $\mathrm{Zpe}_3 = 1/\mathrm{RC}$. С этой целью разделительная ёмкость С1 выбирается

настолько малой, что в рабочем диапазоне частот модуль её импеданса $|ZC_1|=1/\omega C_1$ много больше модуля импеданса контура на частоте ω . Таким образом, амплитуда тока в цепи генератора определяется импедансом $|ZC_1|$. Эта амплитуда относительно мало меняется в пределах резонансной кривой колебательного контура, что, однако, приводит к некоторому искажению последней по сравнению со случаем, рассмотренным в п. 3.2, где в качестве генератора предполагается источник тока, обладающий большим и постоянным внутренним сопротивлением во всём исследуемом частотном диапазоне. Входное сопротивление осциллографа (измеряющей цепи) достаточно велико: $|Z| \approx R \approx 1$ МОм, поэтому его влиянием можно пренебречь.

$$I_c(\omega) = I(\omega) \sqrt{\frac{1 + Q_m^2(\omega/\omega_0)^2}{1 + Q_m^2(\omega/\omega_0 - \omega_0/\omega)^2}}$$

Из соотношения выше следует, что на собственной частоте ω_0 ток в высокодобротном контуре почти в Q » 1 раз превосходит ток во внешней цепи. Именно по этой причине резонанс в параллельном контуре называется резонансом токов.

Экспериментальная установка:

Схема установки для исследования вынужденных колебаний приведена на рис. 2. Колебательный контур состоит из конденсатора с ёмкостью С, катушки с индуктивностью L и магазина сопротивлений R. Синусоидальный сигнал генерируется звуковым генератором (ЗГ), а сигнал, состоящий из отрезков синусоиды (цугов), формируется цифровым генератором электрических сигналов произвольной формы или комбинацией генератора синусоидального сигнала звукового диапазона и электронного реле, прерывающего сигнал с заданной периодичностью.

Эффективное значение тока $I(\omega)$, текущего к контуру от генератора в режиме непрерывного сигнала, измеряется амперметром A, а соответствующее значение тока в контуре определяется по формуле $IC(\omega) = \omega CU_C(\omega)$, где $U_C(\omega)$ — эффективное напряжение на конденсаторе, измеряемое вольтметром V.

Ход работы и обработка результатов:

- 1. Рассчитаем собственную частоту: $\nu_0 = 1/2\pi \sqrt{LC} = 1591, 5$ Гц
- 2. Меняя частоту генератора в обе стороны от резонансной, получим зависимость показаний вольтметра V от частоты сигнала ν . Полученные данные для различных сопротивлений занесем в таблицу 1. По полученным данным построим графики зависимости $\frac{U}{U_0}(\frac{\nu}{\nu_0})$

	ν, Гц	1567	1557	1552	1548	1543	1540	1535	1531	1526	1522
$ m R=0~Om~\searrow$	U∙30, мВ	9,8	9,5	9	8,5	7,8	7,4	6,8	6,4	5,8	5,4
	ν, Гц	1514	1505	1499	1493	1489					
	U∙30, мВ	4,6	4,2	3,8	3,5	3,4					
R = 0 Ом ∕	ν, Гц	1563	1574	1579	1585	1588	1590	1592	1597	1600	1604
	U∙30, мВ	9,8	9,5	9	8,4	8	7,7	7,4	7,0	6,6	6,2
	ν, Гц	1608	1615	1625	1641	1648					
	U∙30, мВ	5,8	5,2	4,6	3,8	3,5					
R = 100 Ом ↘	ν, Гц	1573	1547	1525	1518	1498	1487	1474	1462	1451	1430
	U∙30, мВ	10	9,7	9,2	9	8,4	7,9	7,4	6,8	6,5	5,8
	ν, Гц	1420	1390	1370	1352	1316					
	U∙30, мВ	5,5	4,7	4,2	3,9	3,4					
R = 100 Ом ∕	ν, Гц	1573	1602	1612	1635	1647	1672	1685	1703	1727	1750
	U∙30, мВ	10	9,7	9,3	8,8	8,5	7,8	7,4	6,9	6,4	5,9
	ν, Гц	1795	1829	1862	1945	2058					
	U∙30, мВ	5,2	4,8	4,4	3,8	3,4					

Таблица 1: Полученные данные для напряжения и частоты.

Рис. 1: График зависимости $\frac{U}{U_0}\big(\frac{\nu}{\nu_0}\big)$

3. Определим добротность по формуле $Q = \nu_0/\delta_{\nu}$, где δ_{ν} — ширина резонансной кривой на уровне 0,707.

$$Q_{100} = 6,849 \pm 0,009$$

 $Q_0 = 24,39 \pm 0,03$

4. Для расчёта добротности по скорости нарастания амплитуды измерим амплитуды двух колебаний U_k, U_{k+n} и амплитуду установившихся колебаний U_{∞}

	7				\searrow			
U_k , дел	0,4	1,4	2,2	3	0,6	0,8	3	4,7
U_{k+n} , дел	3	3,6	4,8	5,6	1	2,1	4,2	6
n	3	3	4	5	-4	-8	-3	-2
Q	21,40	21,94	19,63	19,50	24,60	26,04	26,68	25,73

Таблица 2: Данные нарастаний и затуханий цуги при R=0 Ом, $U_{\infty}=7,7$ дел

	7				¥			
U_k , дел	2,2	4,1	5,5	6,4	0,2	0,4	1,8	4,2
U_{k+n} , дел	4,1	5,5	6,4	7	0,9	1,2	2,7	6,5
n	1	1	1	1	-4	-3	-1	-1
Q	7,58	6,61	6,33	5,61	8,35	8,58	7,74	7,46

Таблица 3: Данные нарастаний и затуханий цуги при $R=100~{
m Om},\,U_\infty=7,8~{
m дел}$

$$Q_{ ext{затухания}} = \frac{\pi}{\Theta} = \pi (\frac{1}{n} \ln \frac{U_k}{U_{k+n}})^{-1}$$

$$Q_{\text{нарастания}} = \frac{\pi}{\Theta} = \pi (\frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}})^{-1}$$

5. Измерим активное сопротивление R_L и индуктивность L магазина индуктивностей с помощью измерителя импедансов на частотах 50 Γ ц, 500 Γ ц и 1500 Γ ц. Данные занесем в таблицу 4.

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

ν , Γ ц	R_L , Om	L , м Γ н	C , мк Φ
50	29,3	99,9	101,3
500	29,5	99,8	1,0
1500	30,4	99,5	0,1

Таблица 4: Данные, полученные с LCR-метра

6. Сведем полученные данные для Q в одну таблицу, где $R_{\Sigma} = R + R_L$

В Ом	R_{Σ} , Om	Q						
$\mathbf{n}, \mathbf{O}_{\mathbf{M}}$	n_{Σ} , Om	Ширина кривой	Нарастание	Затухание	f(RLC)			
0	30,4	$24,39 \pm 0,03$	$20,6 \pm 0,3$	$25,8 \pm 0,5$	$32,8\pm0,6$			
100	130,4	$6,849 \pm 0,009$	$6,5 \pm 0,1$	$8,03\pm0,2$	$7,67\pm0,2$			

Таблица 5: Сводная таблица для Q

Обсуждение результатов и выводы:

В данной работе мы исследовали вынужденные колебания и процессы их установления в колебательном контуре.

Получили зависимости для построения резонансной кривой, посчитали значения добротность системы различными способами: по ширине резонансной кривой, по нарастанию амплитуды, по затуханию амплитуды, по теоретическому значению добротности через параметры контура L, C и R. Полученные значения отличаются друг от друга, так как в каждом способе есть свои приближения. Способ, которому можно больше доверять - измерение ширины кривой, так как способ имеет наименьшую ошибку и ошибку можно еще больше уменьшать, беря больше экспериментальных точек.