Magical Mystery Tour:

A Roundup of Observability Datastores

"A Developer will never ask you, 'Hey, what filesystem is that?"

Patrick McFadin

Josh Lee Open Source Advocate Altinity

ClickHouse® is a registered trademark of ClickHouse, Inc. Altinity is not affiliated with or associated with ClickHouse, Inc. We are but humble open source contributors

Observability = Visibility + Understanding

50x

Observability data vs system data

What are we storing?

Metrics, Traces, Logs
Labels/Tags
Resource Metadata
Graphs & Topologies
Snapshots & Deltas
Configuration (e.g. alerts, users, dashboards)

What do we need for observability?

Fast streaming writes
Fast multi-row analytics
Full-text search
Tag/label search

"Anything you can do with a group by, that's what analytics is"

—Peter Marshall

More Requirements

Efficient compression & storage Time-oriented management Fast, frequent "last point" reads Updates?

Database Archetypes

OLTP

OLAP

TSDB

Search/Analytics

Introducing the cast of characters

Postgres (OLTP)
Cassandra (OLTP)
OpenSearch (Search & Analytics)
Prometheus (TSDB)
ClickHouse (OLAP)

Taxonomies are challenging

Storage on disk

Database Storage Styles

Heap Pages + Commit Log Time-series Blocks Parts / Segments

Heap Pages

* the JBOD of storage styles

Heap Pages

TSDB Blocks

Append-only

TSDB Blocks

Immutable Parts / Segments

w/ Background Compaction

Immutable Parts / Segments

Writing Data

Write Ahead Log (WAL) / Commit Log

Buffered, unordered writes stored on disk

Concurrency Control Strategies

- MVCC + Vacuum
- "Tombstone" deletes
- Last-write wins

Balanced Trees (B-Trees)

Balanced Trees (B-Trees)

Key Properties:

- · All leaf nodes at the same level
- Each node has max 2 keys (order 3)
- · Keys in sorted order within nodes
- · Self-balancing structure

Now we can build a Postgres

WAL
Heap Pages + MVCC
B-Tree Indexes

Postgres

Optimized for updates/upserts and row-level reads Strong ACID guarantees Scaling horizontally is challenging

Analytics & Search Architecture

Log-Structured Merge Tree

Data stream of k-v pairs ... are buffered in sorted memtables

and periodically flushed to disk...forming a set of small, sorted files.

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

Lucene Family:

Cassandra, Elastic/OpenSearch, Apache Solr

A Lucene Query

```
(title:"database systems" OR content:(postgres OR "clickhouse"))
AND timestamp:[2025-01-01 TO 2025-12-31]
AND NOT tags:deprecated
```

Cassandra

Wide-event Scalable OLTP

Vector Engines & Search

Inverted Indexes

Bloom Filters

Approximate Nearest Neighbor (ANN Graph)

Inverted Indexes

```
"cat" \rightarrow [doc1, doc3, doc7] "dog" \rightarrow [doc2, doc5] "parrot" \rightarrow [doc1, doc4]
```

Bloom Filters

Call me maybe

Bloom Filters

No false negatives

Sparse Indexes

Great for finding parts based on time

Approximate Nearest Neighbor (ANN) A way to organize and filter vectors

Approximate Nearest Neighbor (ANN) Graph

HNSW (Hierarchical Navigable Small World) Structure

Prometheus (& friends)

Time-series Database

TSDB: Data is naturally ordered by time

Excellent for frequent reads of last-sample

TSDB

No. of time series = cardinality^dimensionality

Cardinality Explosions

Row-oriented vs column-oriented storage

Row-oriented Storage

Read all columns in row

Rows compressed minimally or not at all

Column-oriented

Read only selected columns

Columns highly compressed

ClickHouse

Column-oriented MergeTree

VictoriaMetrics TSDB meets MergeTree

Honorable Mentions

Loki, Cortex, Thanos, Mimir, TimecaleDB, Solr, Druid...

Which to choose?

At (very) small scale

Just use what you have until it breaks (Postgres)

Hooked-on full-text search

OpenSearch has your back

One database for everything

ClickHouse is pretty cool

Wide-event analytics

ClickHouse is awesome

Filtering heavily before analyzing

OpenSearch is also a good choice here

Lots of "last-sample" reads + alerts

Choose a TSDB like Prometheus or VictoriaMetrics

Wide-events analytics with transactional guarantees

Cassandra or Postgres->ClickHouse

Database	Style/QL	Storage	Indexes	Use Case
Postgres	OLTP/SQL	Heap Pages	B-Tree	Update/Upsert with Guarantees
Cassandra	OLTP/SQL	Lucene Segments	Inverted	Scalable Upserts
Prometheus	TSDB/PromQL	TSDB files	By label	Time-series metrics, alerting
OpenSearch	Search/LuceneQL	Lucene Segments	Inverted, Bloom Filter, ANN	Full-text search, analytics
ClickHouse	OLAP/SQL	MergeTree Parts	Sparse, Inverted, and more	Wide-event analytics

Thank you and happy querying!

Josh Lee - Altinity

onnect with me

Resources & slides