Munkres Chapter 2.13 exercises

Cherie Li

05/28/2018

Exercise 2.13.4:

- (a) If $\{T_{\alpha}\}$ is a family of topologies on X show that $\cap T_{\alpha}$ is a topology on X. Is $\cup T_{\alpha}$ a topology on X?
- (b) Let $\{T_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections T_{α} , and a unique largest topology contained in all T_{α} .
- (c) If $X = \{a, b, c\}$, let $T_1 = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $T_2 = \{a\}, \{b, c\}\}$ Find the smallest topology containing T_1 and T_2 and the largest topology contained in T_1 and T_2 .

Solution:

- (a) To show that $\cap T_{\alpha}$ is a topology on X we need to show that the three properties of topology hold. Note that $X, \emptyset \in \cap T_{\alpha}$ since each T_{α} is a topology, and by property of topology, $X, \emptyset \in T_{\alpha}$. Now we want to show that $\cap T_{\alpha}$ is closed under arbitrary unions. Notice that for all $T_{\alpha}, \cap T_{\alpha} \subseteq T_{\alpha}$. Since each T_{α} is a topology, it is closed under arbitrary unions, so $\cap T_{\alpha}$ is closed under arbitrary unions. Next, we show that $\cap T_{\alpha}$ is closed under finite intersections. Notice again that $\cap T_{\alpha} \subseteq T_{\alpha}$ for each T_{α} . Since each T_{α} is a topology, it also contains the finite intersection of any elements. Thus, finite intersections of $\cap T_{\alpha}$ are contained in all T_{α} , so are contained in $\cap T_{\alpha}$.
- (b) Let T be the topology generated by the subbasis $\cup T_{\alpha}$ where $\{T_{\alpha}\}$ are all the topologies of X. By definition of subbasis, T is the collection of all unions of finite intersections of elements of $\cup T_{\alpha}$, so $T_{\alpha} \subseteq T$ for all T_{α} . is an element Suppose that there is another topology T_1 that contains all topologies on X. Then $T \subseteq T_1$, since by definition of topology, all unions of elements and finite intersections must be open sets as well. So T is the unique smallest topology on X. For the unique largest topology on X contained in all T_{α} , consider the intersection of all topologies $\cap T_{\alpha}$. Suppose that there is another topology T_2 that is contained in all of T_{α} . Then $T_2 \in \cap T_{\alpha}$, so this is the unique largest topology.
- (c) Taking $T_1 \cup T_2$ as our subbasis should give us the largest topology. The topology generated by unions of finite intersections of $T_1 \cup T_2$ is $T_3 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\}$. The intersection $T_1 \cap T_2$ should give the smallest topology contained in them, which is $T_4 = \{\emptyset, X, \{a\}\}$

Exercise 2.13.5: Show that if A is a basis for a topology on X, then the topology generated by A equals the intersection of all topologies on X that contain A. Prove the same if A is a subbasis.

Solution: Let X be a set together with a topology T. Let A be a basis for T. We want to show that $T = \cap T_{\alpha}$, where $\{T_{\alpha}\} := \{T_{\alpha} | A \subseteq T_{\alpha}\}$. We show by double containment. First, we show that $T \subseteq \cap T_{\alpha}$. By Lemma 13.1, T is the collection of all unions of elements of A. Since $A \in \cap T_{\alpha}$, and by our previous results $\cap T_{\alpha}$ is a topology on X, it is closed under arbitrary unions, so $T \in \cap T_{\alpha}$. Now, we show that $\cap T_{\alpha} \in T$. Notice that $A \subseteq T$, so $T = T\alpha$ for some α . Therefore, $\cap T_{\alpha} \in T$.

Exercise 2.13.6: Show that the topologies of \mathbb{R}_l and \mathbb{R}_k are not comparable.

Solution: It suffices to show that neither is \mathbb{R}_l is not finer than \mathbb{R}_k nor is \mathbb{R}_k finer than \mathbb{R}_l . By definition of finer, we want to show that $\mathbb{R}_k \not\subset \mathbb{R}_l$ and $\mathbb{R}_l \not\subset \mathbb{R}_k$ respectively. First we show that $\mathbb{R}_k \not\subset \mathbb{R}_l$. Let B_l be a basis for \mathbb{R}_l . Let the set $B \in B_l$ be a basis element. Consider the basis element $[a,b) \in B$. Notice that there is no open interval of the form (c,d) or (c,d) - K such that $(c,d) \subseteq [a,b)$ and $a \in (c,d)$. Note that if $(c,d) \subseteq [a,b)$, then a < c. If $a \in (c,d)$, then a > c. By Lemma 13.3, \mathbb{R}_l is not finer than \mathbb{R}_k . Now we want to show that $\mathbb{R}_l \not\subset \mathbb{R}_k$. Let B_k be a basis for \mathbb{R}_k . Let $B' \subset B_k$. Consider the basis element $(-1,1) - K \in B'$. Notice that there is no half open interval [a,b) such that $0 \in (a,b)$ and $(a,b) \subset (-1,1) - K$. If $0 \in (a,b)$, then b > 0, and there exists $n \in \mathbb{Z}^+$ such that $0 < \frac{1}{n} < b$. So $(a,b) \not\subset (-1,1) - K$. If $[a,b) \subset (-1,1) - K$, then there does not exist $\frac{1}{n}$ for $n \in \mathbb{Z}^+$ such that $\frac{1}{n} \in [a,b)$. Then $0 \notin [a,b)$.