Probability Theory and Example

February 17, 2020

Contents

1	Mea	Measure Theory	
	1.1	Probability Spaces	1
		Distributions	
	1.3	Random Variables	3
	1.4	Integration	4
	1.5	Properties of the integral	F

Chapter 1

Measure Theory

1.1 Probability Spaces

1.1.1. Let $\Omega = \mathbb{R}$, $\mathcal{F} = all \ subsets \ so \ that \ A \ or \ A^c \ is \ countable, \ P(A) = 0 \ in \ the \ first \ case \ and = 1 \ in \ the \ second.$ Show that (Ω, \mathcal{F}, P) is a probability space.

sol. i) \mathcal{F} is a σ -algebra on \mathbb{R} .

 $\emptyset \in \mathcal{F}$ since \emptyset is countable.

By definition, \mathcal{F} is closed under complementations.

Countable union of countable sets is countable. Union of countable sets and uncountable sets is uncountable. Thus, \mathcal{F} is closed under countable union.

ii) P is a probability measure.

 $P(\emptyset) = 0$ since \emptyset is countable. By definition, for any set $A, P(A) \ge 0$.

Countable union of countable sets is countable. Union of countable sets and uncountable sets is uncountable. Thus, P has the countable additivity property.

If A is countable, then A^c is uncountable since Ω is uncountable. Thus,

$$P(\Omega) = P(A) + P(A^c) = 1$$

П

By (i) and (ii), (Ω, \mathcal{F}, P) is a probability space.

1.1.2. Recall the definition of S_d from Example 1.1.5. Show that $\sigma(S_d) = \mathbb{R}^d$, the Borel subsets of \mathbb{R}^d

sol. i) d = 1. In \mathbb{R} , any open set can be represented by countable union of open intervals. Thus, we need to show that any open interval can be represented by elements of S. Let $-\infty < a < b < \infty$.

$$(a,b) = (-\infty, a]^c \cup (\cup_i (-\infty, b - 1/n])$$

If $a = -\infty$, then (a, b) can be represented by the second term. If $b = \infty$, then (a, b) can be represented by the first term. Thus, $\sigma(S) = \sigma(R) = R$.

ii)
$$d \geq 2$$
. S_d is a finite cartesian product of S . Similarly, $\sigma(S_d) = \sigma(\mathcal{R}_d) = \mathcal{R}_d$.

1.1.3. A σ -field F is said to be countably generated if there is a countable collection $C \subset F$ so that $\sigma(C) = F$. Show that \mathcal{R}^d is countably generated.

sol. Let C be the collection that contains all sets of the form

$$[q_1, \infty) \times \cdots \times [q_d, \infty), (q_1, \ldots, q_d) \in \mathbb{Q}^d$$

Then, C is countable, since it is finite union of countable sets. And $\sigma(C) = \mathbb{R}^d$ as presented by previous exercise.

1.1.4. (i) Show that if $F_1 \subset F_2 \subset ...$ are σ -algebras, then $\cup_i F_i$ is an algebra. (ii) Give an example to show that $\cup_i F_i$ need not be a σ -algebra.

sol.

- (i) By definition, $\cup_i F_i$ is not empty. Choose $x \in \cup_i F_i$. Then, there exists F_x such that $x \in F_x$. Therefore, $x^c \in F_x \subset \cup_i F_i$. Thus, $\cup_i F_i$ is closed under complementations.
 - Choose, $x \in F_i, y \in F_j$ and suppose $i \leq j$. Then $x \in F_j$. Thus, $x \cup y \in F_j \Rightarrow x \cup y \in \bigcup_i F_i$. Thus, $\bigcup_i F_i$ is closed under union.

- (ii) Let $F_i = \sigma(\{\{1\}, \{2\}, \dots, \{n\}\})$. Let $A = \{\{n\} : n = 3k | k = 1, 2, 3, \dots\}$. Then for all $i, A \notin F_i$. Thus, $A \notin \bigcup_i F_i$. However, A can be represented by countable union. Therefore, $\bigcup_i F_i$ is not a σ -algebra.
- **1.1.5.** A set $A \subset \{1, 2, ...\}$ is said to have asymptotic density θ if

$$\lim_{n \to \infty} |A \cap \{1, 2, \cdots, n\}| / n = \theta$$

Let A be the collection of sets for which the asymptotic density exists. Is A a σ -algebra? an algebra?

sol. Let A be the set of even numbers. Next, we construct a set B in the following way: we begin with $\{2,3\}$ and starting with k=2, take all even numbers $2^k < n \le (3/2) \times 2^k$, and all odd numbers $(3/2) \times 2^k < n \le 2^{k+1}$. Then, the asymptotic density of B is 0.5. However, the asymptotic density $A \cap B$ does not exists.

When $n = (3/2) \times 2^k$, then the density is 1/3. When $n = 2^{k+1}$, then the density is 1/4. Thus, \mathcal{A} is not closed under intersection. \mathcal{A} is neither σ -algebra nor algebra

1.2 Distributions

1.2.1. Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

sol. Let the Borel set B which satisfies that

if
$$\omega \in A$$
, then $Z(\omega) \in B$

For arbitrary Borel set S, $S = (S \cap B) \cup (S \cap B^c)$. Since S is Borel set, $\{\omega : X(\omega) \in S\}$, $\{\omega : Y(\omega) \in S\} \in \mathcal{F}$.

$$\{\omega: Z(\omega) \in S\} = \{\omega: Z(\omega) \in (S \cap B)\} \cup \{\omega: Z(\omega) \in (S \cap B^c)\}$$
$$= \{\omega: X(\omega) \in (S \cap B)\} \cup \{\omega: Y(\omega) \in (S \cap B^c)\}$$

Since \mathcal{F} is closed on set operation, $\{\omega : Z(\omega) \in S\} \in \mathcal{F}$.

1.2.2. Let χ have the standard normal distribution. Use Theorem 1.2.6 to get upper and lower bounds on $P(\chi \geq 4)$.

sol.

$$P(\chi \ge 4) = (2\pi)^{-1} \int_4^\infty \exp(-y^2/2) dy \le (8\pi)^{-1} \exp(-8)$$
$$(2\pi)^{-1} \int_4^\infty \exp(-y^2/2) dy \ge (15/128\pi) \exp(-8)$$

1.2.3. Show that a distribution function has at most countably many discontinuities.

sol. Let D be the set of discontinuity points. Choose $x, y \in D$. Then we can choose rational number $q_x \in (F(x-), F(x+))$. Since F is increasing, if $x \neq y$, then $q_x \neq q_y$. Thus $x \to q_x$ is one-to-one function. Since $\mathbb Q$ is countable, D is at most countable. \square

1.2.4. Show that if $F(x) = P(X \le x)$ is continuous then Y = F(X) has a uniform distribution on (0,1), that is, if $y \in [0,1]$, $P(Y \le y) = y$.

sol.

$$\begin{split} \{\omega|Y(\omega) \leq y\} &= \{\omega|F(X(\omega)) \leq y\} \\ &= \{\omega|X(\omega) \leq k\} \quad k = \inf\{x|F(x) \geq y\} \\ P(\{\omega|Y(\omega) \leq y\}) &= P(\{\omega|X(\omega) \leq k\}) \\ &= P(X \leq k) = y \end{split}$$

1.2.5. Suppose X has continuous density f, $P(\alpha \leq X \leq \beta) = 1$ and g is a function that is strictly increasing and differentiable on (α, β) . Then g(X) has density $f(g^{-1}(y))/g'(g^{-1}(y))$ for $y \in (g(\alpha), g(\beta))$ and 0 otherwise. When g(x) = ax + b with a > 0, $g^{-1}(y) = (y - b)/a$ so the answer is (1/a)f((y - b)/a).

sol. Since g is strictly increasing g^{-1} exists.

$$\begin{split} P(g(X) \leq y) &= P(X \leq g^{-1}(y)) = \int_{\alpha}^{g^{-1}(y)} f(x) dx \\ \frac{d}{dy} P(g(X) \leq y) &= f(g^{-1}(y)) \frac{d}{dy} g^{-1}(y) = f(g^{-1}(y)) / g'(g^{-1}(y)) \end{split}$$

1.2.6. Suppose X has a normal distribution. Use the previous exercise to compute the density of $\exp(X)$.

sol. Let $g(x) = \exp(x)$. Then $g^{-1}(x) = \log(x)$

$$f(g^{-1}(x))/g'(g^{-1}(x)) = f(\log(x))/\exp(\log(x))$$
$$= f(\log(x))/x = \frac{1}{x\sqrt{2\pi}}\exp(-\log(x)^2/2), \ x > 0$$

1.3 Random Variables

1.3.1. Show that if A generates S, then $X^{-1}(A) \equiv \{\{X \in A\} : A \in A\}$ generates $\sigma(X) = \{\{X \in B\} : A \in A\}$ $B \in \mathcal{S}$ }.

sol. Let $A_1, A_2, \dots \in \mathcal{A}$. Since $\bigcup_i A_i \in \mathcal{S}$,

$$\bigcup_{i} \{X \in A_i\} = \{X \in \bigcup_{i} A_i\} \in \sigma(X)$$

1.3.2. Prove Theorem 1.3.6 when n = 2 by checking $\{X_1 + X_2 < x\} \in \mathcal{F}$.

sol.

$${X_1 + X_2 < x} = \bigcup_{q \in \mathbb{Q}} {X_1 < q} \times {X_2 < x - q}$$

Both $\{X_1 < q\}$ and $\{X_2 < x - q\}$ are open sets. Thus, $\{X_1 + X_2 < x\} \in \mathbb{R}^2$ since it is represented by

1.3.3. Show that if f is continuous and $X_n \to X$ almost surely then $f(X_n) \to f(X)$ almost surely.

sol. Let $\Omega_0 = \{\omega : \lim X_n(\omega) = X(\omega)\}$ and $\Omega_f = \{\omega : \lim f(X_n(\omega)) = f(X(\omega))\}$. $\omega \in \Omega_0 \Rightarrow \lim X_n(\omega) = X(\omega)$ $\Rightarrow \lim f(X_n(\omega)) = f(X(\omega)) \quad \therefore f \text{ is continuous}$ $\Rightarrow \omega \in \Omega_f$ $\Rightarrow 1 = P(\Omega_0) \leq P(\Omega_f) \leq 1$

1.3.4. (i) Show that a continuous function from $\mathbb{R}^d \to \mathbb{R}$ is a measurable map from $(\mathbb{R}^d, \mathbb{R}^d)$ to (\mathbb{R}, \mathbb{R}) . (ii) Show that \mathbb{R}^d is the smallest σ -field that makes all the continuous functions measurable. sol.

- (i) \mathcal{R} is σ -field which is generated by all open sets. If f is continuous mapping and image is open, then inverse-image is also open. Thus, f is a measurable map.
- (ii) Let S be the smallest σ -field that makes all the continuous functions measurable. Since R is the smallest σ -field which is generated by all open sets, S is generated by all open sets in \mathbb{R}^d .
- **1.3.5.** A function f is said to be lower semicontinuous or l.s.c. if

$$\liminf_{y \to x} f(y) \ge f(x)$$

and upper semicontinuous (u.s.c.) if -f is l.s.c.. Show that f is l.s.c. if and only if $\{x: f(x) \leq a\}$ is closed for each $a \in \mathbb{R}$ and conclude that semicontinuous functions are measurable.

sol. Define
$$E_a := \{x : f(x) \le a\}$$

if Choose x. Let $a = \liminf_{y \to x} f(y)$. Then, by definition, $a \le f(x)$. There is the sequence $\{x_n\}$ such that $x_n \to x$, $f(x_n) \to a$ as $n \to \infty$ For any b > a, there exists N_b such that for all $n > N_b$, $x_n \in E_b$. Since E_b is closed, the limit point $x \in E_b$ for all b > a. Thus, $x \in E_a$. Since $f(x) \ge a$ and $f(x) \le a$, $f(x) = a = \liminf_{y \to x} f(y)$.

only if Construct a sequence $\{x_n\}$ in E_a which converges to x. Since f is l.s.c

$$f(x) \le \liminf_{y \to x} f(y) \le a$$

Thus, $x \in E_a$. Since an arbitrary limit point is in E_a , E_a is closed.

1.4 Integration

1.4.1. Show that if $f \ge 0$ and $\int f d\mu = 0$ then f = 0 a.e.

sol. Let N be the set that satisfies $x \in N \Rightarrow f(x) = 0$.

$$\int f d\mu = \int_{N} f d\mu + \int_{N^{c}} f d\mu$$
$$= \int_{N^{c}} f d\mu = 0$$
$$\Rightarrow \mu(N^{c}) = 0$$

1.4.2. Let $f \ge 0$ and $E_{n,m} = \{x : m/2^n \le f(x) < (m+1)/2^n\}$. As $n \uparrow \infty$,

$$\sum_{m=1}^{\infty} \frac{m}{2^n} \mu(E_{n,m}) \uparrow \int f d\mu$$

sol. Let $f_n = \sum_{m=1}^{\infty} 1_{E_{n,m}}$. Then, for any n, $f_n < f$. Thus, $\int f d\mu$ is an upper bound of $\int f_n d\mu$. Since $\int f_n d\mu$ is increasing and bounded, it converges. By definition,

$$\int f - f_n d\mu \le \int 1/2^n d\mu \to 0 \text{ as } n \to \infty$$

Thus, $\int f_n d\mu$ converges to $\int f d\mu$

1.4.3. Let g be an integrable function on \mathbb{R} and $\epsilon > 0$. (i) Use the definition of the integral to conclude there is a simple function $\varphi = \sum_k b_k 1_{A_k}$ with $\int |g - \varphi| dx < \epsilon$. (ii) Use Exercise A.2.1 to approximate the A_k by finite unions of intervals to get a step function

$$q = \sum_{j=1}^{k} c_j 1_{(a_{j-1}, a_j)}$$

with $a_0 < a_1 < \cdots < a_k$, so that $\int |\varphi - q| < \epsilon$. (iii) Round the corners of q to get a continuous function r so that $\int |q - r| dx < epsilon$. (iv) To make a continuous function replace each $c_j 1_{(a_{j-1}, a_j)}$ by a function that is 0 $(a_{j-1}, a_j)^c$, c_j on $[a_{j-1} + \delta - j, a_j - \delta_j]$, and linear otherwise. If the δ_j are small enough and we let $r(x) = \sum_{j=1}^k r_j(x)$ then

$$\int |q(x) - r(x)| d\mu = \sum_{j=1}^{k} \delta_j c_j < \epsilon$$

1.4.4. Prove the Rimann-Legesgue lemma. If g is integrable then

$$\lim_{n \to \infty} \int g(x) \cos nx dx = 0$$

sol. Let ϵ be any positive number. There is a simple function φ satisfies that $\int |g - \varphi| dx < \epsilon$. For all constant c, $\lim_{n\to\infty} \int c \cos(nx) dx = 0$. Thus, $\lim_{n\to\infty} \int \varphi(x) \cos(nx) dx = 0$. Then, since $|\cos(nx)| \leq 1$,

$$-\epsilon < \lim_{n \to \infty} \int g(x) \cos(nx) dx < \epsilon$$

1.5 Properties of the integral

1.5.1. Let $||f||_{\infty} = \inf\{M : \mu(\{x : |f(x)| > M\}) = 0\}$. Prove that

$$\int |fg|d\mu \le ||f||_1 ||g||_{\infty}$$

sol. By definition, $g \leq ||g||_{\infty}$ a.e.. Thus,

$$\int |fg| d\mu \le \int |f| ||g||_{\infty} d\mu = ||g||_{\infty} \int |f| d\mu = ||f||_{1} ||g||_{\infty}$$

1.5.2. Show that if μ is a probability measure then

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p$$

5

sol. Since μ is a probability measure, $\mu(\Omega) = 1$. Suppose two positive numbers, n < m. Let $\varphi(x) := x^{m/n}$ By Jensen's inequality,

$$||f||_n^m = \varphi(\int |f|^n d\mu) \le \int \varphi(|f|^n) d\mu = ||f||_m^m$$

Thus, $\{||f||_n\}$ is an increasing sequence

$$||f||_n^n = \int |f|^n d\mu \le \int (||f||_\infty^n) d\mu = ||f||_\infty^n$$

Thus, $||f||_{\infty}$ is an upper bound. Therefore, the sequence converges and $\lim_{p\to\infty} ||f||_p \le ||f||_{\infty}$.

Let ϵ be the arbitrary number between 0 and $||f||_{\infty}$. Then, there exist a set M such that $|f| > ||f||_{\infty} - \epsilon$ for all $x \in M$.

$$\int |f|^p d\mu \ge \int_M |f|^p d\mu \ge (\|f\|_{\infty} - \epsilon)^p \mu(M)$$

$$\Rightarrow \|f\|_p \ge (\|f\|_{\infty} - \epsilon) \mu(M)^{1/p}$$

$$\Rightarrow \lim_{p \to \infty} \|f\|_p \ge \|f\|_{\infty} - \epsilon$$

$$\Rightarrow \lim_{p \to \infty} \|f\|_p \ge \|f\|$$

Thus, the sequences converges to $||f||_{\infty}$.

1.5.3 (Minkowski's inequality). (i) Suppose $p \in (1, \infty)$. The inequality $|f + g|^p \le 2^p (|f|^p + |g|^p)$ shows that if $||f||^p$ and $||g||^p$ are $< \infty$ then $||f + g||_p < \infty$. Apply Holder's inequality to $|f||f + g|^{p-1}$ and $||g||f + g|^{p-1}$ to show $||f + g||_p \le ||f||_p + ||g||_p$ (ii) Show that the last result remains true when p = 1 or $p = \infty$

sol.

(i) By Holder's inequality,

$$\int |f||f+g|^{p-1}d\mu \le ||f||_p ||(f+g)^{p-1}||_{p/(p-1)}$$

$$= (\int |f|^p d\mu)^{1/p} (\int |f+g|^p d\mu)^{(p-1)/p}$$
Similarly,
$$\int |g||f+g|^{p-1}d\mu \le (\int |g|^p d\mu)^{1/p} (\int |f+g|^p d\mu)^{(p-1)/p}$$

$$\int |f+g|^p d\mu = \int (|f|+|g|)|f+g|^{p-1}d\mu \le (||f||_p + ||g||_p)||f+g||_p^{p-1}$$

$$\Rightarrow ||f+g||_p \le (||f||_p + ||g||_p)$$

(ii) When p = 1, it is trivial.

Let the set $E = \{M : \mu(\{x : |f(x) + g(x)| > M\}) = 0\}$. By triangle inequality,

$$|f+g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty} \ a.e.$$

Thus,

$$\mu(\{x: |f(x) + g(x)| > ||f||_{\infty} + ||g||_{\infty}\}) = 0$$

Since $||f||_{\infty} + ||g||_{\infty} \in E$, $||f||_{\infty} + ||g||_{\infty} \ge \inf E = ||f + g||_{\infty}$

1.5.4. If f is integrable and E_m are disjoint sets with union E then

$$\sum_{m=0}^{\infty} \int_{E_m} f d\mu = \int_{E} f d\mu$$

So if $f \ge 0$, then $\nu(E) = \int_E f d\mu$ defines a measure.

sol. If $E = \emptyset$, $\mu(E) = 0$. Since $f \ge 0$, for any set E, $\nu(E) \ge \nu(\emptyset) = 0$. If E_i are disjoint sets, then

$$\mu(\cup_i E_i) = \int_{\cup_i E_i} f d\mu = \sum_i \int_{E_i} f d\mu = \sum_i \nu(E_i)$$

Thus, ν is a measure.

1.5.5. If $g_n \uparrow g$ and $\int g_1 d\mu < \infty$ then $\int g_n d\mu \uparrow \int g d\mu$.

sol. Since $g_n \uparrow g$, $\limsup_{n \to \infty} \int g_n d\mu \leq \int g d\mu$.