No assumption on the DGP of ξ_{it}

After recovering δ_{jt} from the observed market share s_{jt} . We regress it on the product characteristics.

The estimation equation is

$$\delta_{it} = x_{it}\beta + p_{it}\alpha + \xi_{it}$$

where x_j is the product characteristics, p_j is the price, and ξ_{jt} unobserved product characteristics.

We can use the following moment conditions to estimate the parameters:

$$E(Z'_{it}\xi_{jt}) = 0$$

where Z_{jt} is the exogenous variable + instruments.

The empirical moments condition is

$$\frac{1}{N}Z'\xi = 0$$

where Z is $N \times J$ and ξ is $N \times 1$.

Impose AR(1) structure on ξ_{jt}

Question: why do we want to impose an AR(1) structure on the unobserved product characteristics ξ_{jt} ? Now, we assume that ξ_{jt} follows an AR(1) process:

$$\xi_{jt} = \rho \xi_{j,t-1} + \omega_{jt}$$

where ω_{jt} is the innovation term (error term) that is uncorrelated with x_{jt} and p_{jt} .

For δ_{jt} and δ_{jt-1} , we have

$$\delta_{jt} = x_{jt}\beta + p_{jt}\alpha + \xi_{jt} = x_{jt}\beta + p_{jt}\alpha + \rho\xi_{j,t-1} + \omega_{jt}$$
 (1)

$$\rho \delta_{i,t-1} = \rho x_{i,t-1} \beta + \rho p_{i,t-1} \alpha + \rho \xi_{i,t-1}$$
 (2)

The new **estimation equation** (1)-(2) is

$$\delta_{i,t} - \rho \delta_{i,t-1} = \beta x_{it} - \rho \beta x_{i,t-1} + \alpha p_{it} - \rho \alpha p_{i,t-1} + \omega_{it}$$

Thus the parameters we want to estimate is β , α , and ρ . This corresponds exactly to the model in blundellbond2000.

We rewrite as

$$\delta_{j,t} = \pi_1 x_{jt} + \pi_2 x_{j,t-1} + \pi_3 p_{jt} + \pi_4 p_{j,t-1} + \pi_5 \delta_{j,t-1} + \omega_{jt}$$

where $\omega_{jt} \sim \text{MA}(0)$. We have the restriction that

$$\pi_4/\pi_3 = \pi_2/\pi_1 = -\pi_5$$

which can be tested after the estimation or imposed in the estimation.

Now we can perform standard GMM without any additional instruments because ω_{jt} is orthogonal to

$$z_{jt} = [x_{jt}, x_{j,t-1}, p_{jt}, p_{j,t-1}, \delta_{j,t-1}]$$

If we assume that only the price coefficient $\alpha \sim N(\alpha_0, \sigma^2)$ \$ is the random coefficient, for each σ , we get the gmm objective function value by minimizing the empircal counterpart of

$$E[z'_{jt}\omega_{jt}] = E[z'_{jt}(\delta_{jt} - z_{jt}\pi)] = 0$$

We can then find the σ that minimizes the objective function value.

Question: Do we need extra instruments? If yes, what's the point of imposing the AR(1) structure?

Recall

$$\xi_{jt} = \rho \xi_{j,t-1} + \omega_{jt}$$

If ω_{jt} is not orthogonal to x_{jt} and p_{jt} , but orthogonal to some other instruments Z_{jt} ,

$$E[Z'_{jt}(\xi_{jt} - \rho \xi_{j,t-1})] = 0$$

$$E\{Z'_{jt}[\delta_{jt} - x_{jt}\beta - p_{jt}\alpha - \rho(\delta_{j,t-1} - x_{j,t-1}\beta - p_{j,t-1}\alpha)]\} = 0$$

Question: Previously we assume each year constitutes independent market. Mow we look at them from a panel perspective, which means that we impose some (dependence) structure on ξ_{jt} from year to year. Do we need panel where all products j are observed consecutively. What if some j are not observed in the two consecutive years?

Simulation and Estimation

Simulation

- 1. We **set** the true value of β , α , ρ , and σ .
- 2. Then we generate ξ_{jt} which is correlated to p_{jt} for example. (The correlation needs to be specified.)
- 3. We generate ξ_{jt+1} based on ξ_{jt} and some innovation term ω_{jt+1} . ξ_{jt+1} is still correlated with p_{jt+1} .
- 4. We generate some instruments Z_1 for ξ , and some instruments Z_2 for ω . Question: is it that by default, Z_1 should also be valid for ω , but not the other way around?
- 5. To get the market share, we use

$$s_j = \int \frac{\exp(\delta_j + \sigma p_j)}{1 + \sum_{j'} \exp(\delta_{j'} + \sigma p_{j'})} dF(\sigma)$$

where $\delta_j = x_j \beta + p_j \alpha + \xi_j$.

6. Then we have the observed market share s_j , the product characteristics x_j , and the price p_j for each year. And we can pretend that we don't know the true value and estimate the paremeters β , α , ρ , and σ

Estimation

For estimation, we can either 1. use Z_1 such that $E[Z'_{jt+1}\xi_{jt+1}]=0$ 2. use Z_1 such that $E[Z'_{jt+1}\omega_{jt+1}]=0$ 3. use Z_2 such that $E[Z'_{jt+1}\omega_{jt+1}]=0$

Compare the results from the three methods.

Question: But why? Is it easier to find instruments for ω in reality? If we can find Z_1 why bother using $E[Z'_{jt+1}\omega_{jt+1}]=0$ as the moment condition, rather than just $E[Z'_{jt+1}\xi_{jt+1}]=0$? It's only useful when we can't find Z_1 but can find Z_2 ?