Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: <u>R3137</u>	К работе допущен: измерения Петрова И.А.
Студент: Нестеров И.А,	Работа выполнена:
Преподаватель: Крылов В.А.	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 2.01 «Изучение свойств идеального газа на примере воздуха».

1. Цель работы:

- 1. Экспериментальная проверка уравнения состояния идеального газа
- 2. Определение температуры абсолютного нуля по шкале Цельсия
- 2. Задачи, решаемые при выполнении работы:
- 1. Проверка влияния температуры внешней среды и объема газа на давление внутри сосуда
- 2. Нахождение температуры абсолютного нуля
- 3. Объект исследования изучение статических закономерностей.
- 4. Методы экспериментального исследования.
- 1. Анализ
- 2. Лабораторный эксперимент
- 5. Рабочие формулы и исходные данные.

$$p = p_0 + \frac{\Delta p_1 + \Delta p_2}{2}$$

$$t_* = -\frac{C}{A}$$

$$3) \Delta t_* = t_* \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta C}{C}\right)^2}$$

$$A = \frac{1}{D} \sum_{i=1}^{N} (X_i - \overline{X}) Y_i \qquad C = \overline{Y} - A \overline{X}$$

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_{i} \qquad \bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$$

$$D = \sum_{i=1}^{N} (X_i - \overline{X})^2 \qquad \Delta A = \sqrt{E/D}$$

$$\Delta C = \sqrt{\left(\frac{1}{N} + \frac{\bar{X}^2}{D}\right) \cdot E} \qquad E = \frac{1}{N-2} \sum_{i=1}^{N} (Y_i - AX_i - C)^2$$

6. Измерительные приборы.

№ , п/п	Наименование	Цена деления	Δ_{H}	Класс точности
1	Барометр	0,1 кПа	0,05 кПа	-
2	Электронный барометр	0,1 кПа	0,05 кПа	-
3	Электрический термометр	0,1 °C	0,05 °C	-
4	Цилиндр с поршнем	5 мм	2,5 мм	-

7. Схема установки (перечень схем, которые составляют Приложение 1).

Состав лабораторной установки:

- 1. Цилиндр с поршнем
- 2. Опорная площадка цилиндра
- 3. Термостат
- 4. Щуп с датчиком температуры
- 5. Манометрический датчик
- 6. Стенд
- 7. Преобразователь сигналов
- 8. Цифровой измерительный прибор ПКЦ-3
- 9. Кружка
- 10. Поддон
- 11. Лопатка

8. Результаты прямых измерений и их обработки (в приложении).

9. Результаты косвенных измерений и их обработки

9.1. Для каждой из таблиц 1.1 - 1.5 вычисляю давление газа р и обратное давление 1/p и заполняю пятую и шестую колонку таблиц.

К примеру, при $t=17^{\circ}$ С и $V_{\text{ц}}$ = 50 мл,

9.2 Переношу значения рабочих температур t_1 - t_5 во второй столбец таблицы 2.1. Для каждого из графиков $V_{\!_{\rm I\! I}}$ от 1/р расчитываю угловой коэффициент К

Таблица 2.1

№, п/п	t, °C	К, Дж
1	17	11,35
2	29	11,57
3	39,8	11,86
4	49,1	12,10
5	59	12,63

9.3 По найденным экспериментальным точкам нахожу угловой коэффициент A и свободное слагаемое C для зависимости K(t). Расчитываю температуру абсолютного нуля. Нахожу погрешности								
ΔΑ, ΔС и вычисляю погрешность температуры абсолютного нуля.								
9.4 По дан	ным таблиц	ı 1.1 – 1.5 3 8	аполняю таб	5пицу 2.2				
Таблица 2		1						
$V_{\!\scriptscriptstyle m L\!\!\! I}$, мл	50	60	70	80	90	100	110	120
t, °C			<u> </u>	p, K	Спа			

17	188,3	162,95	143,25	126,3	113,4	103,55	94,75	87,35
29	195,3	162,95	143,25	126,3	113,4	103,55	94,75	87,35
39,8	200,55	173,85	151,6	134,4	120,4	109,35	99,95	92
49,1	204,35	175,8	153,7	137,55	123,1	111,35	101,85	93,7
59	208,9	190,05	158,15	140,55	126,55	114,65	105,05	96,95
$1/V_{\rm ц}$, мл ⁻¹	0,02	0,017	0,014	0,0125	0,0111	0,01	0,009	0,0083
$\widetilde{t_*}$, C	-373,07	-387,62	-387,64	-353,31	-347,30	-376,90	-373,50	-374,98

9.5 Для каждого из объемов в таблице 2.2 нахожу значение обратного объема $1/V_{\rm II}$ и рассчитываю величину $\widetilde{t_*}$

10. Расчет погрешностей измерений (для прямых и косвенных измер	ений)	í).
---	-------	-----

Был произведен выше.

- 11. Графики (см. приложение)
- 12. Окончательные результаты:

Все результаты указаны выше.

$$d_* = (-366 \pm 50)$$
 °C

13. Выводы и анализ результата работы:

В ходе работы я провел исследование свойств идеального газа. На практике проверил уравнение состояние идеального газа, а таже измерил температуру абсолютного нуля в градусах Цельсия. Однако полученная температура отличается от ее истинного значения $t_*=273,15\,$ °C из-за метода измерения.

14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Приложение