

Upper ocean current measurements using Wave Gliders during the S-MODE Pilot

Hugo Peyrière – Visiting Graduate Student, Air-Sea Interaction Laboratory, SIO

L. Lenain, L. Grare, N. Pizzo, N. Statom, L. Colosi, T. Farrar

Motivation

- How to correct for platform motion?
 - How to consider wave effects?
- How to interpret Wave Glider based current measurements?
 - How to compare them to remote current measurements?

Relevant Instrumentation

- Current profiles:
 - Float downward ADCP,
 Teledyne Workhorse 300kHz,
 - Sub upward ADCP, Nortek
 Signature 1000.
- Float position and movement: GPS/IMU, Novatel OEM7720 + Epson EG320N.
- Sub position, movement and pressure:
 IMU/pressure sensor, Nortek Signature
 1000.

Two experiments

S-MODE Pilot: November 3rd to 5th, 2021.

How to correct for platform motion?

4. Platform speed correction

Downward ADCP:

GPS/IMU-ADCP lever arm

Effect of rotation through

 $U_{motion\ corrected} = U_{downward\ ADCP} + U_{float\ GPS/IMU} + \omega \wedge r$

Upward ADCP:

$$m{U}_{motion\; corrected} = m{U}_{upward\; ADCP} + m{U}_{sub\; IMU}^{High\; Freq.} + m{U}_{float\; GPS/IMU}^{Low\; Freq.}$$

Notes: Heading bias correction was also applied, in order to account for the bias between the measured and real heading for float and sub. Cut-off frequency used in the upward ADCP platform speed correction was 0.05 Hz.

Consistent ADCPs and Wave Gliders

Del Mar 2021:

March 4th to 11th, 2021.

- Consistency between ADCPs.
- Consistency between Wave Gliders (STOKES and WHOI43).

Consistent ADCPs and Wave Gliders

S-MODE Pilot:

November 3rd to 5th, 2021.

- Consistency between ADCPs.
- Consistency between Wave Gliders (STOKES and WHOI43).

Range of profiles & natural variability Scripps institution of OCEANOGRAPHY UC San Diego

Del Mar 2021:

March 4th to 11th, 2021.

- WHOI43 upward looking ADCP
- STOKES upward looking ADCP
- WHOI43 downward looking ADCP STOKES downward looking ADCP
- Broad range of profiles spatially and temporally.
- Natural spatial variability between Wave Gliders.

Range of profiles & natural variability Scripps institution of OCEANOGRAPHY UC San Diego

S-MODE Pilot:

November 3rd to 5th, 2021.

- WHOI43 upward looking ADCP
- STOKES upward looking ADCP
- WHOI43 downward looking ADCP STOKES downward looking ADCP
- Broad range of profiles spatially and temporally.
- Natural spatial variability between Wave Gliders.

Consistent upward/downward ADCPs SCRIPPS INSTITUTION OF OCEANOGRAPHY UC San Diego

Regression:

- WHOI43 Eastward
 STOKES Eastward
 WHOI43 Northward
 STOKES Northward
- Excellent fit between upward & downward ADCP.

Statistics:

Deviation
 between upward
 & downward
 ADCP at the
 cm/s scale.

TABLE 1. Comparison statistics between upward and downward looking ADCP speed measurements (cm/s).

Deployment	Vehicle	Direction	Mean Bias	RMSE	Mean Absolute Speed
Del Mar, March 2021	WHOI43	Eastward	1.09	2.47	4.26
		Northward	0.14	2.25	12.08
	STOKES	Eastward	0.60	1.98	3.48
		Northward	0.34	2.30	10.35
S-MODE Pilot, November 2021	WHOI43	Eastward	0.39	3.86	15.34
		Northward	2.42	6.48	26.05
	STOKES	Eastward	-0.17	2.86	8.22
		Northward	0.65	3.09	14.56

Inspired from Shcherbina et al. (2013)

Bilinear regression:

$$U = a_0 + a_1 X + a_2 Y$$
$$V = b_0 + b_1 X + b_2 Y$$

Vectorial operators:

Vertical Vorticity =
$$V_x - U_y = b_1 - a_2$$

Horizontal Divergence = $U_x + V_y = a_1 + b_2$
Strain Rate = $\left[\left(U_x - V_y \right)^2 + \left(V_x + U_y \right)^2 \right]^{1/2}$
= $\left[(a_1 - b_2)^2 + (b_1 + a_2)^2 \right]^{1/2}$

Note: See 'Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field, Shcherbina, D'Asaro, Lee, Klymak, Jeroen Molemaker and McWilliams, 2013'.

Inspired from Shcherbina et al. (2013)

Bilinear regression:

$$U = a_0 + a_1 X + a_2 Y$$
$$V = b_0 + b_1 X + b_2 Y$$

Vectorial operators:

$$\begin{split} Vertical \ Vorticity &= V_x - U_y = b_1 - a_2 \\ Horizontal \ Divergence &= U_x + V_y = a_1 + b_2 \\ Strain \ Rate &= \left[\left(U_x - V_y \right)^2 + (V_x + U_y)^2 \right]^{1/2} \\ &= \left[(a_1 - b_2)^2 + (b_1 + a_2)^2 \right]^{1/2} \end{split}$$

Note: See 'Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field, Shcherbina, D'Asaro, Lee, Klymak, Jeroen Molemaker and McWilliams, 2013'.

Del Mar 2021: March 4th to

11th, 2021.

Note: Vectorial operators are normalized by f, the Coriolis parameter.

S-MODE Pilot: November 3rd to 5th, 2021.

Note: Vectorial operators are normalized by f, the Coriolis parameter.

Conclusion

Takeaways:

- After Wave Glider motion correction, we obtain consistent horizontal current measurements over [1;65 m] depth with high resolution near the surface, exhibiting natural spatial and temporal variability.
- Measurements from an array of Wave Gliders enable the calculation of vertical vorticity, horizontal divergence and strain.

Next Steps:

- Integrating a third Wave Glider (PLANCK) in vectorial operator calculations.
- How do wave effects influence the measurement?

Conclusion

