CS425: Computer Graphics I

Fabio Miranda

https://fmiranda.me

Overview

- Texture pipeline
- Texture mapping
- Texture filtering
- 1D, 2D, 3D textures
- Mipmapping
- Bump mapping
- Procedural textures

Textures

- Texturing is the process that applies an image, function, or other data source to a polygon.
- Why? Inexpensive way to add realism to a scene.
- Hardware support for 2D and 3D texturing.
- Simple example:
 - Represent a brick wall as a highly detailed geometry with appropriate colors.
 - Significant amount of resources: geometry, memory, rendering
 - Easier to apply an image of a brick wall to a simple polygon.

Textures

- Terminology:
 - Texture: an array of values
 - 1D, 2D, 3D.
 - Store color, alpha, depth, and even normal.
 - Texel: a single array element.
 - Texture mapping: process of mapping texture to geometry.
- Source:
 - Pixel maps: load from an image file.
 - Procedural textures: program generates texel values.

Textures and shading

- Shading: takes into account lighting, material, transparency, position of the viewer.
- Texturing: modules the values used in the lighting equation.
 - Replace color by texture color.
 - Modify shininess with specular texture.
 - Modify surface normal with bump maps.

Build a mapping between the texture and the object

- Problems:
 - Texture and objects are in two different spaces.
 - Where to specify this mapping?
 - Object space.
 - World space.
 - A point on the surface maps to a location between texels in the texture. How to handle that?

Texture space

A texture is defined in a normalized space.

Texture space

- Texture space is continuous, but textures are discrete arrays.
- Texel values are defined on a cartesian grid.

Texturing a single fragment

Texture pipeline

Projector function

- Defines mapping between object (x,y,z) and parameter space (s,t).
- Intermediate mapping:
 - Map the texture onto a simple intermediate surface.
 - Map the intermediate surface to the final object.
 - Intermediate objects:
 - Plane
 - Sphere
 - Cylinder

Planar mapping

- Convert (x,y,z) point to (x,y).
- Simply drop z coordinate:

$$s = x$$

$$t = y$$

Spherical mapping

• Convert (x,y,z) point to spherical coordinate (θ,φ) .

$$\theta = tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$$

$$\varphi = tan^{-1} \left(\frac{y}{x} \right)$$

Cylindrical mapping

• Convert (x,y,z) point to cylindrical coordinates (θ, ρ) .

$$\theta = tan^{-1} \left(\frac{y}{x}\right)$$
$$\rho = \sqrt{x^2 + y^2}$$

Texture mapping for triangles

- Assign texture coordinates to vertices.
- Interpolate within polygon.

Barycentric interpolation

$$f_p = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$$

$$\alpha_{1} = \frac{A_{1}}{A_{total}}$$

$$\alpha_{2} = \frac{A_{2}}{A_{total}}$$

$$\alpha_{3} = \frac{A_{3}}{A_{total}}$$

$$area(\mathbf{qrs}) = \frac{1}{2} \|\mathbf{qr} \times \mathbf{qs}\|$$

Texture mapping for meshes

uvmapper.com

Corresponder functions

- Defines mapping between parameter-space values to texture-space locations.
- Flexibility in applying textures.
 - Boundary effects (wrapping modes).
 - Subset of an existing texture.

Wrapping modes

Wrapping modes:

Repeated tiling

- Repeated tiling is an inexpensive way of adding more visual detail to a scene.
- If there are too many repetitions of the texture, it becomes unconvincing because eye picks out the pattern.
- Solutions:
 - Combine values with another, non-tiled, texture.
 - Aperiodic tiling: randomly combine texture patterns or tiles.

Aperiodic tiling: Wang tiles

- Small set of tiles with matching edges.
- Tiles are randomly selected.

"Procedural Wang Tile Algorithm for Stochastic Wall Patterns"

