

Основные вопросы лекции

- 1. Веб-камеры: конструкция и принцип действия.
- 2. Матрицы CCD и CMOS.
- 3. ТВ-тюнер: конструкция и принцип действия. Перспективы развития.

1. Что такое веб-камера

Первое устройство данного класса разработчики запустили в эксплуатацию в 1991 году, оно показывало кофеварку Троянской комнаты Кембриджа. Кстати, отключили прибор только 10 лет спустя. А в 1996-м начали активно создаваться гаджеты с режимом реального видения.

Веб-камера — маленькая цифровая модель, встроенная в ноутбук или ПК, передающая изображения в режиме прямого эфира.

Существуют съемные модели – их подключают через внешние порты при необходимости.

1. Внутреннее устройство веб-камеры

1. Принцип работы

Назначение веб-камеры: захватывать свет через маленькую линзу спереди, используя сетку из детекторов света микроскопических размеров.

Датчики встроены в сам микрочип, который отвечает за восприятие картинки.

Чип выполняет роль ядра, снимает видео и фото, преобразуя их в цифровой формат. Этот формат компьютер должен распознавать в режиме реального времени.

Принцип, как работает веб-камера на компьютере, будет единым для всех типов устройств. Памяти у прибора нет, поскольку видео, фото не сохраняются, а сразу передаются на ПК.

1. Характеристики

Основные характеристики веб-камеры зависят от:

- типа (CCD / CMOS),
- производитель (Logitech, SVEN, ...),
- стоимости.

Стандартный набор включает в себя трансляцию видео и звука, некоторые модели допускают накладывание дополнительных эффектов.

1. Функционал веб-камер

Хорошие веб-камеры для компьютера:

- обеспечивают высокое качество связи с собеседником;
- подходят для организации конференций в скайпе, проведения занятий без привлечения дополнительного оборудования;
- используются для съемки разных роликов, приколов;
- быстро устанавливаются без сложных схем распиновки;
- позволяют экономить место на рабочем столе.

Лучшие бюджетные веб-камеры передают картинку и голос, более качественные варианты предоставляют пользователям расширенный набор функций. При слабой чувствительности гаджета качество звука чаще всего невысокое (вероятны хрипы, шипения, гудения, сложности с настройкой громкости).

1. Классификация веб-камер

По назначению:

- 1. Разговоры в скайп и других мессенджерах.
- 2. Проведение видеоконференций.
- 3. Организация системы наблюдения.

По модификации:

- 1. Беспроводная HD web-камера.
- 2. Проводная для скайпа.
- 3. Устройство для проведения видеоконференций.
- 4. Прибор IP-формата.

1. Применение веб-камер

Как пользоваться веб-камерой на компьютере — достаточно проверить настройки и подключить устройство через порт, если прибор съемный.

Для каких задач подходят веб-камеры:

- проведение конференций;
- трансляция панорам, мероприятий;
- демонстрация услуг, сервисов для привлечения клиентов;
- приватные беседы;
- трансляция игр;
- охрана складов.

2. Виды матриц

Сенсор изображения является важнейшим элементом любой видеокамеры. Сегодня практически во всех камерах используются матрицы изображения ССD или CMOS.

Обе матрицы выполняют задачу преобразования изображения, построенного на сенсоре объективом, в электрический сигнал. Однако вопрос, какая матрица лучше, до сих пор остается открытым.

2. Матрица CCD

CCD является аналоговой матрицей, несмотря на дискретность светочувствительной структуры.

Когда свет попадает на матрицу, в каждом пикселе накапливается заряд или пакет электронов, преобразуемый при считывании на нагрузке в напряжение видеосигнала, пропорциональное освещенности пикселей. Минимальное количество промежуточных переходов этого заряда и отсутствие активных устройств обеспечивают высокую идентичность чувствительных элементов ССD.

С момента изобретения ССD лабораторией Белла (Bell Laboratories, или Bell Labs) в 1969 г. размеры сенсора изображения непрерывно уменьшались.

Одновременно увеличивалось число чувствительных элементов. Это естественно вело к уменьшению размеров единичного чувствительного элемента (пикселя), а соответственно и его чувствительности. Например, с 1987 г. эти размеры сократились в 100 раз. Но благодаря новым технологиям чувствительность одного элемента (а следовательно, и всей матрицы) даже увеличилась.

Что позволило доминировать:

С самого начала ССD стали доминирующими сенсорами, поскольку обеспечивали лучшее качество изображения, меньший шум, более высокую чувствительность и большую равномерность параметров пикселей. Основные усилия по совершенствованию технологии были направлены на улучшение характеристик ССD.

Как растет чувствительность:

По сравнению с популярной матрицей Sony HAD стандартного разрешения (500х582) конца 1990-х гг. (ICX055) чувствительность моделей более совершенной технологии Super HAD выросла почти в 3 раза (ICX405) и Ех-view HAD – в 4 раза (ICX255). Причем для черно-белого и цветного варианта. Для матриц высокого разрешения (752х582) успехи несколько менее

Для матриц высокого разрешения (752х582) успехи несколько менее впечатляющие, но если сопоставлять модели цветного изображения Super HAD с самыми современными технологиями Ex-view HAD II и Super HAD II, то рост чувствительности составит в 2,5 и 2,4 раза соответственно. И это несмотря на уменьшение размеров пикселя почти на 30%, поскольку речь идет о матрицах начала 2000-х годов формата 960H с увеличенным количеством пикселей до 976х582 для стандарта PAL. Для обработки такого сигнала Sony предлагает ряд сигнальных процессоров Effio.

Добавилась ИК-составляющая:

Одним из эффективных методов роста интегральной чувствительности является расширение спектральных характеристик чувствительности в область инфракрасного диапазона. Это особенно характерно для матрицы Ex-view. Добавление ИК-составляющей несколько искажает передачу относительной яркости цветов, но для черно-белого варианта это не критично. Единственная проблема возникает с цветопередачей в камерах "день/ночь" с постоянной ИК-чувствительностью, то есть без механического ИК-фильтра.

Добавилась ИК-составляющая:

Развитие этой технологии в моделях Ex-view HAD II (ICX658AKA) в сравнении с предыдущим вариантом (ICX258AK) обеспечивает рост интегральной чувствительности всего на 0,8 дБ (с 1100 до 1200 мВ) с одновременным увеличением чувствительности на длине волны 950 нм на 4,5 дБ. На предыдущем слайде приведены характеристики спектральной чувствительности этих матриц, а на текущем слайде отношение их интегральной чувствительности.

Оптические инновации:

Другим методом роста чувствительности ССD являются увеличение эффективности пиксельных микролинз, светочувствительной области и оптимизация цветовых фильтров. На слайде представлено устройство матриц Super HAD и Super HAD II, показывающее увеличение площади линзы и светочувствительной области последней модификации.

Оптические инновации:

Дополнительно в матрицах Super HAD II значительно увеличено пропускание в светофильтре и их устойчивость к выцветанию. Кроме того, расширено пропускание в коротковолновой области спектра (голубой), что улучшило цветопередачу и баланс белого.

На слайде представлены спектральные характеристики чувствительности матриц Sony 1/3" Super HAD (ICX229AK) и Super HAD II (ICX649AKA).

2. CCD: уникальная чувствительность

В совокупности перечисленных мер удалось добиться значительных результатов по улучшению характеристик CCD.

Сравнить характеристики современных моделей с более ранними вариантами не представляется возможным, поскольку тогда не производились цветные матрицы широкого применения даже типового высокого разрешения. В свою очередь, сейчас не производятся черно-белые матрицы стандартного разрешения.

В любом случае по чувствительности ССD до сих пор являются недостижимым ориентиром для СМОS, поэтому они все еще широко используются за исключением мегапиксельных вариантов, которые очень дорого стоят и применяются в основном для специальных задач.

2. Матрица CMOS

CMOS-матрица является цифровым устройством с активными чувствительными элементами (Active Pixel Sensor).

С каждым пикселем работает свой усилитель, преобразующий заряд чувствительного элемента в напряжение. Это дает возможность практически индивидуально управлять каждым пикселем.

Первые образцы камер наблюдения конца 1990-х — начала 2000-х с CMOS-матрицами имели разрешение 352х288 пкс и чувствительность даже для черно-белого варианта около 1 лк. Цветные варианты уже стандартного разрешения отличались чувствительностью около 7—10 лк.

В настоящее время чувствительность СМОS-матриц, безусловно, выросла, но не превышает для типовых вариантов цветного изображения величины порядка нескольких люксов при разумных величинах F числа объектива (1,2—1,4). Это подтверждают данные технических характеристик брендов IP-видеонаблюдения, в которых применяются СМОS-матрицы с прогрессивной разверткой.

Те производители, которые заявляют чувствительность около десятых долей люкса, обычно уточняют, что это данные для меньшей частоты кадров, режима накопления или по крайней мере включенной и достаточно глубокой АРУ (AGC). Причем у некоторых производителей IP-камер максимальная АРУ достигает 120 дБ (1 млн раз). Можно надеяться, что чувствительность для этого случая в представлении производителей предполагает качественное отношение «сигнал/шум», позволяющее наблюдать не один только «снег» на экране.

Инновации улучшают качество видео

В стремлении улучшить характеристики CMOS-матриц компания Sony предложила ряд новых технологий, обеспечивающих практическое сравнение CMOS-матриц с CCD по чувствительности, по отношению "сигнал/шум" в мегапиксельных вариантах.

Новая технология производства матриц Exmor основана на изменении направления падения светового потока на матрицу. В типовой архитектуре свет падает на фронтальную поверхность кремниевой пластины через и мимо проводников схемы матрицы. Свет рассеивается и перекрывается этими элементами. В новой модификации свет поступает на тыльную сторону кремниевой пластины. Это привело к существенному росту чувствительности и снижению шума СМОЅ-матрицы. На слайде представлено различие структур типовой матрицы и матрицы Exmor (в

разрезе).

Инновации улучшают качество видео

На слайде приведены изображения тестового объекта, полученные при освещенности 100 лк (F4.0 и 1/30 с) камерой с ССD (фронтальное освещение) и СМОЅ Ехтог, имеющих одинаковый формат и разрешение 10 Мпкс. Очевидно, что изображение камеры с СМОЅ по крайней мере не хуже изображения с ССD.

Другим способом улучшения чувствительности СМОS-сенсоров является отказ от прямоугольного расположения пикселей с построчным сдвигом красного и синего элементов. При этом в построении одного элемента разрешения используются по два зеленых пикселя — синий и красный из разных строк. Взамен предлагается диагональное расположение элементов с использованием шести соседних зеленых элементов для построения одного элемента разрешения. Такая технология получила название ClearVid CMOS. Для обработки предполагается более мощный сигнальный процессор изображений.

Считывание информации осуществляется быстродействующим параллельным аналого-цифровым преобразователем. При этом частота кадров прогрессивной развертки может достигать 180 и даже 240 кадр/с. При параллельном съеме информации устраняется диагональный сдвиг кадра, привычный для СМОЅ-камер с последовательным экспонированием и считыванием сигнала, так называемый эффект Rolling Shutter – когда полностью отсутствует характерный смаз быстро движущихся объектов.

На слайде приведены изображения вращающегося вентилятора, полученные CMOS-камерой с частотой кадров 45 и 180 кадр/с.

2. Полноценная конкуренция

В качестве примеров мы рассмотрели технологии от компании Sony. Естественно, CMOS-матрицы, как и CCD, производят и другие компании, хотя не в таких масштабах и не столь известные. В любом случае все так или иначе идут примерно одним путем и используют похожие технические решения.

В частности, известная технология матриц Panasonic Live-MOS также существенно улучшает характеристики CMOS-матриц и, естественно, похожими методами. В матрицах Panasonic уменьшено расстояние от фотодиода до микролинзы. Упрощена передача сигналов с поверхности фотодиода. Уменьшено количество управляющих сигналов с 3 (стандартные CMOS) до 2 (как в CCD), что увеличило фоточувствительную область пикселя. Применен малошумящий усилитель фотодиода. Используется более тонкая структура слоя датчиков. Сниженное напряжение питания уменьшает шум и нагрев матрицы.

Можно сделать вывод, что мегапиксельные матрицы CMOS уже могут успешно конкурировать с CCD не только по цене, но и по таким проблемным для этой технологии характеристикам, как чувствительность и уровень шума. Однако в традиционном CCTV телевизионных форматов CCD-матрицы остаются пока вне конкуренции.

2. Достоинства и недостатки CCD

К **преимуществам** ССD матриц относятся:

- Низкий уровень шумов.
- Высокий коэффициент заполнения пикселов (около 100%).
- Высокая эффективность (отношение числа зарегистрированных фотонов к их общему числу, попавшему на светочувствительную область матрицы, для ССD 95%).
- Высокий динамический диапазон (чувствительность).

К **недостаткам** ССD матриц относятся:

- Сложный принцип считывания сигнала, а следовательно и технология.
- Высокий уровень энергопотребления (до 2-5Вт).
- Дороже в производстве в сравнении с CMOS.

2. Достоинства и недостатки CMOS

К преимуществам CMOS матриц относятся:

- Высокое быстродействие (до 500 кадров/с).
- Низкое энергопотребление (почти в 100 раз по сравнению с ССD).
- Дешевле и проще в производстве.
- Перспективность технологии (на том же кристалле в принципе ничего не стоит реализовать все необходимые дополнительные схемы: аналогоцифровые преобразователи, процессор, память, получив, таким образом, законченную цифровую камеру на одном кристалле. Созданием такого устройства, кстати, с 2002 года занимаются совместно Samsung Electronics и Mitsubishi Electric).

К недостаткам CMOS матриц относятся:

- Низкий коэффициент заполнения пикселов, что снижает чувствительность (эффективная поверхность пиксела ~75%, остальное занимают транзисторы).
- Высокий уровень шума (он обусловлен так называемыми темповыми токами даже в отсутствие освещения через фотодиод течет довольно значительный ток), борьба с которым усложняет и удорожает технологию.
- Невысокий динамический диапазон.

3. ТВ-тюнер

ТВ-тюнер (TV tuner) — род телевизионного приёмника (тюнера), предназначенный для приёма телевизионного сигнала в различных форматах вещания с показом на мониторе компьютера.

Кроме того, большинство современных ТВ-тюнеров принимают FM-радиостанции и могут использоваться для захвата видео.

Выпускались мониторы с встроенными ТВ-тюнерами (например, Samsung 940МW), позволяющие выводить во время работы с персональным компьютером в отдельном окне видео, как на телевизионном приёмнике (PiP).

ТВ-тюнеры по конструкции очень многообразны и могут классифицироваться по ряду основных параметров, в том числе:

- по поддерживаемым стандартам телевещания;
- по способу подключения к компьютеру;
- по поддерживаемым операционным системам.

Классификация по стандартам телевещания:

Разные модели тюнеров могут принимать и декодировать телевизионный

сигнал в одном или нескольких стандартах телевещания. В настоящее время, с развитием цифрового телевидения, наибольшее

распространение получают ТВ-тюнеры, позволяющие принимать сигнал

следующих стандартах:

- **DVB-Т** и **DVB-Т2** (европейское эфирное цифровое вещание),
- **DVB-С** (европейское кабельное цифровое вещание),
- DVB-S и DVB-S2 (европейское спутниковое цифровое вещание),
- *ATSC* (американское цифровое вещание),
- ISDB-Т (японское и южноамериканское цифровое вещание),
- *DTMB* (китайское цифровое вещание).

Классификация по стандартам телевещания:

Для совместимости с аналоговым телевидением предназначены ТВ-тюнеры, способные принимать сигналы с различными стандартами цветности — PAL, SECAM, NTSC и с различными стандартами разложения. Как правило, чисто аналоговые ТВ-тюнеры в настоящее время уже не выпускаются, их заменили гибридные модели, позволяющие принимать как цифровые, так и аналоговые сигналы.

В России и других странах СНГ в настоящее время на практике используются стандарты:

- SECAM, DVB-T и DVB-T2 для эфирного телевещания,
- SECAM, PAL и DVB-С для кабельного,
- DVB-S и DVB-S2 для спутникового.

Классификация по стандартам телевещания:

Главное различие между аналоговыми стандартами — частота кадров и разрешение.

NTSC поддерживает разрешение в 480 активных строк с частотой 30 кадров в секунду, а PAL и SECAM — в 576 активных строк с частотой 25 кадров в секунду.

Потенциальное же качество цифровой трансляции видео значительно превосходит эти стандарты, разрешение может достигать 1080 строк и более, при этом отсутствуют кадровые и цветные искажения, связанные с помехами при приёме.

себе цифровой способ кодирования сам по же время изображения обязательно не означает увеличение разрешения: могут транслироваться как в стандартной чёткости, цифровые каналы повышенной что соответствует аналоговому телевидению, так И В чёткости. Звуковое сопровождение цифровых программ цифровое И радио также способны превосходить в качестве аналоговое вещание.

Классификация по способу подключения к компьютеру:

Наиболее общим является деление ТВ-тюнеров на внутренние и внешние (подключаемые к USB-порту и аппаратные), в зависимости от их расположения относительно корпуса системного блока компьютера. Более точным является деление по интерфейсу подключения.

На сегодняшний день наиболее распространены использующие подключение с интерфейсами USB, Express и PCMCIA. Характеристики внешних и компьютерных тюнеров практически идентичны. Также модели с интерфейсом FireWire и с устаревшим ISA.

ТВ-тюнеры, PCI, PCI внутренних существуют

Классификация по способу подключения к компьютеру:

Особняком стоят ТВ-тюнеры, подключаемые непосредственно к видеоинтерфейсу между компьютером и монитором, то есть DVI либо VGA.

Такие тюнеры не требуют поддержки со стороны персонального компьютера, так как выводят телевизионную картинку на монитор независимо от компьютера и операционной системы, что позволило их широко использовать для «превращения» старых мониторов в телевизоры.

К их достоинствам относится универсальность по отношению к операционным системам, к недостаткам — невозможность записи видео и обычно не очень высокое максимальное допустимое разрешение монитора, ограничиваемое производительностью тюнера при обработке видеопотока.

Классификация по поддерживаемым операционным системам:

При подключении тюнер использует ресурсы компьютера, поэтому необходимо проверить, совместим ли он с операционной системой рабочего компьютера.

Подавляющее большинство ТВ-тюнеров штатно комплектуется поддержкой для операционной системы Microsoft Windows. Также для Windows доступно значительное количество альтернативных программ для работы с ТВ-тюнерами, которые, как правило, используют драйвер производителя, но отличающуюся интерфейсную оболочку.

Ряд ТВ-тюнеров штатно поставляется с поддержкой Мас OS X либо поддерживается программным обеспечением независимых разработчиков для этой системы (в основном известность получила программа EyeTV фирмы Elgato Systems (англ.), которая в облегчённой версии также обычно входит в поставку оборудования, декларирующего поддержку Мас OS X).

Как правило, это устройства с интерфейсом USB, ввиду наиболее широкого распространения этого интерфейса на компьютерах Macintosh.

Классификация по поддерживаемым операционным системам:

Существуют программы, поддерживающие работу с некоторыми ТВ-тюнерами на платформах Linux (например, хаwtv, XdTV, TvTime, bttv), OS/2 (например, Emperoar TV, T&V HappyPlayer, TV Show) и др.

Для Linux существует стандартный интерфейс подключения видео устройств: Video4Linux. Как правило, программами для альтернативных ОС на РС поддерживаются устройства с интерфейсом РСІ.

ТВ-тюнеры, подключаемые к видеоинтерфейсу монитора, способны работать с любыми операционными системами.

3. Аппаратная поддержка сжатия видео

Некоторые ТВ-тюнеры дополнительно оснащаются аппаратной поддержкой сжатия видео (также называемой аппаратным энкодером) для форматов MPEG-1, MPEG-2 или H.264.

Такая поддержка позволяет выполнять сжатие видео при записи в видеофайл, не загружая вычислениями центральный процессор компьютера, и таким образом ускорить сжатие данных и освободить центральный процессор для других задач.

Аппаратная поддержка сжатия видео может быть доступна в базовом комплекте устройства или, иногда, в виде дополнительной опции.

3. Комбинированные ТВ-тюнеры

Комбинированные ТВ-тюнеры конструктивно совмещены с видеокартой.

С архитектурной точки зрения тюнер в таких решениях является, как правило, отдельным устройством. С видеокартой его объединяет только шина — PCI, AGP или PCI-E и программное обеспечение, автономная работа без загруженного драйвера невозможна.

Широкий ассортимент подобных устройств предлагала компания ATI (линейка All-in-Wonder).

Проблема комбинированных ТВ-тюнеров в том, что сам тюнер устаревает значительно медленнее, чем графические видеокарты. Для стран СНГ также существенно, что некоторые продукты линейки All-in-Wonder (как и многие АЦП от АТІ и АМD) не поддерживают стандарт SECAM.

3. Телевидение будущего (выдержка из статьи)

С развитием мобильных сетей и ряда новых технологий телевидение и интернет сольются в одно целое — трехмерную реальность, которая будет имитировать даже запахи.

Один из героев всенародно любимого фильма "Москва слезам не верит" предсказывал, что телевидение поглотит театр, радио, и "ничего не останется, одно только телевидение". На исходе первого десятилетия XXI века — в эпоху бурного развития интернет-технологий и беспроводной связи — самое время делать более масштабный прогноз. По мнению Говарда Стрингера, главы японской компании Sony, ключевыми характеристиками новой цифровой эры будут беспроводные соединения и трехмерная графика.

Таким образом, грань между интернетом и телевидением постепенно стирается. Через два-три года ноутбук с модемом превратится в телевизор, который можно будет смотреть где угодно. К этому времени подоспеют и другие технологии, которые полностью изменят облик современных телевидения и интернета. В первую очередь это трехмерное изображение, системы генерации запахов, сопутствующих картинке, и илемы виртуальной реальности.