Discrete Mathematics Week 6

Abeyah Calpatura

4.5

Exercises

Abeyah Calpatura #1, 2, 7, 17, 22

#1 Solution:

$$n = 70$$
 and $d = 9$
 $70 = 9q + r$
 $q = 7$ and $r = 7$
Since $70 = 9(7) + 7$

#2 Solution:

$$n = 62$$
 and $d = 7$
 $62 = 7q + r$
 $q = 8$ and $r = 6$
Since $62 = 7(8) + 6$

#7 Solution:

#17 Solution: Prove directly from definitions that for every integer n, $n^2 - n + 3$ is odd. Use division into two cases: n is even and n is odd.

Case 1: n is even

$$n = 2k$$
 for some integer k
 $n^2 - n + 3 = (2k)^2 - 2k + 3$
 $n^2 - n + 3 = 4k^2 - 2k + 3$
 $n^2 - n + 3 = 2(2k^2 - k + 1) + 1$
 $n^2 - n + 3 = 2q + 1$
where $q = 2k^2 - k + 1$
Case 2: n is odd
 $n = 2k + 1$ for some integer k
 $n^2 - n + 3 = (2k + 1)^2 - (2k + 1) + 3$
 $n^2 - n + 3 = 4k^2 + 4k + 1 - 2k - 1 + 3$
 $n^2 - n + 3 = 4k^2 + 2k + 3$
 $n^2 - n + 3 = 2(2k^2 + k + 1) + 1$
 $n^2 - n + 3 = 2q + 1$
where $q = 2k^2 + k + 1$
Therefore, $n^2 - n + 3$ is odd for every integer n

#22 Solution: Suppose c is any integer. If $c \mod 15 = 3$, what is $10c \mod 15$? In other words, if division of c by 15 gives a remainder of 3, what is the remainder when 10c is divided by 15? Your solution should show that you obatin the same answer no matter what integer you start with.

$$c \mod 15 = 3$$

$$c = 15q + 3$$

$$10c = 10(15q + 3)$$

$$10c = 150q + 30$$

$$10c = 15(10q + 2)$$

$$10c \mod 15 = 0$$

4.6

Exercises

Abeyah Calpatura #2, 4, 6, 7, 10a

#2 Solution:

$$\lceil 17/4 \rceil = \lceil 4.25 \rceil = 5$$

 $\lfloor 17/4 \rfloor = \lfloor 4.25 \rfloor = 4$

#4 Solution:

$$[-32/5] = [-6.4] = -6$$

 $[-32/5] = [-6.4] = -7$

#6 Solution: If k is an integer, what is $\lceil k \rceil$? Why?

By deifintion of ceiling, k is an integer and the ceiling of an integer is itself since:

$$k-1 < k \leq k$$

Therefore, $\lceil k \rceil = k$

#7 Solution: If k is an integer, what is $\lceil k + \frac{1}{2} \rceil$? Why?

By definition of ceiling, k is an integer and the ceiling of an integer is itself since:

$$k < k + \frac{1}{2} \leq k + 1$$

Therefore, $\lceil k + \frac{1}{2} \rceil = k + 1$

#10a Solution:

i. n = 2050
=
$$\left(2050 + \left\lfloor \frac{2050 - 1}{4} \right\rfloor - \left\lfloor \frac{2050 - 1}{100} \right\rfloor - \left\lfloor \frac{2050 - 1}{400} \right\rfloor \right) \mod 7$$

= $(2050 + 512 - 20 + 5) \mod 7$
= $(2547) \mod 7$
= 6

Corresponds to **Saturday**

ii. n = 2100
=
$$\left(2100 + \left\lfloor \frac{2100 - 1}{4} \right\rfloor - \left\lfloor \frac{2100 - 1}{100} \right\rfloor - \left\lfloor \frac{2100 - 1}{400} \right\rfloor\right)$$

= $(2100 + 524 - 20 + 5) \mod 7$
= $(2609) \mod 7$
= 5

Corresponds to **Friday**

iii. n = 2004
$$= \left(2004 + \left\lfloor \frac{2004 - 1}{4} \right\rfloor - \left\lfloor \frac{2004 - 1}{100} \right\rfloor - \left\lfloor \frac{2004 - 1}{400} \right\rfloor \right)$$
$$= (2004 + 500 - 20 + 5) \ mod \ 7$$
$$= (2609) \ mod \ 7$$
$$= 4$$
Corresponds to **Thursday**

4.7

Exercises

Abeyah Calpatura #2, 4, 9b

#2 Solution: Is $\frac{1}{0}$ an irrational number? Explain.

 $\frac{1}{0}$ is not an irrational number, because division by 0 is not defined.

Thus, the number of $\frac{1}{0}$ does not exist, which implies that the number is not an irrational number.

#4 Solution: Use proof by contradiction to show that for every integer m, 7m + 4 is not divisible by 7.

By the definition of divisble, there exists an integer k such that:

$$7m + 4 = 7k$$

$$4 = 7k - 7m$$

$$4 = 7(k - m)$$

Since k - m is an integer, 4 is divisible by 7.

This is a contradiction, since 4 is not divisible by 7.

#9b Solution: Prove that the difference of any irrational number and any rational number is irrational.

Let us assume that x is an irrational number and y is a rational number such that their difference x - y is rational. By the definition of rational, there exist integers a, b, c, and d with $b \neq 0$ and $d \neq 0$ such that

$$x = \frac{a}{b}$$
$$y = \frac{c}{d}$$

$$y = \frac{c}{d}$$

$$x - y = \frac{a}{b} - \frac{c}{d}$$

$$x - y = \frac{ad - bc}{bd}$$

Since ad - bc and bd are integers, x - y is rational.

This is a contradiction, since x - y is irrational.