Definicions bàsiques Aplicacions Lineals Nucli, Imatge i Rang d'una Aplicació Lineal Classificació de les aplicacions lineals Matriu d'una aplicació lineal Equació matricial d'una aplicació lineal

Aplicacions Lineals Grau en Enginyeria Telemàtica

Juan Gabriel Gomila

Grau en Enginyeria Telemàtica

Universitat de les Illes Balears

juangabriel.gomila@uib.es

19 de noviembre de 2015

Índex

- Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge
 - Rang
- 4 Classificació de les aplicacions lineals
- Matriu d'una aplicació lineal
 - Construcció
 - Definició

- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Aplicació entre dos conjunts

Siguin A i B dos conjunts donats. Una **aplicació de** A **en** B és una correspondència que a cada element $x \in A$ li associa un, i només un element $y \in B$

Figura: Exemples de correspondències que no són aplicacions

Juan Gabriel Gomila

Tema 4 - Aplicacions Lineals

Definicions bàsiques
Aplicacions Lineals
Nucli, Imatge i Rang d'una Aplicació Lineals
Classificació de les aplicacions lineals
Matriu d'una aplicació lineal
Equació matricial d'una aplicació lineal

Definicions bàsiques

Aplicació exhaustiva

Sigui $f: A \longrightarrow B$ una aplicació. Es diu que f és **exhaustiva** si i només si f(A) = B. És a dir, si tots els elements de B tenen una anti-imatge o antecedent.

$$\forall b \in B \exists a \in A : f(a) = b$$

Figura: L'aplicació de l'esquerra és exhaustiva. La de la dreta no ho és (el número 3 no té cap anti-imatge)

Aplicació exhaustiva

Sigui $f: A \longrightarrow B$ una aplicació. Es diu que f és **injectiva** si distints elements de A tenen distinta imatge.

$$x, y \in A, \ x \neq y \Rightarrow f(x) \neq f(y)$$

que és equivalent a dir que si dos elements tenen la mateixa imatge per f aleshores són el mateix element

$$f(x) = f(y) \Rightarrow x = y$$

De la definició anterior es dedueix que cada element de B tindrà com a màxim una anti-imatge. En altres paraules, l'anti-imatge d'un element de B és o bé un element de A o bé el conjunt buid.

Figura: L'aplicació de l'esquerra és injectiva. La de la dreta no ho és (el número 4 té dues anti-imatges per f.)

Definicions bàsiques Aplicacions Lineals Nucli, Imatge i Rang d'una Aplicació Lineal Classificació de les aplicacions lineals Matriu d'una aplicació lineal

Equació matricial d'una aplicació lineal

Definicions bàsiques

Aplicació bijectiva

Sigui $f:A\longrightarrow B$ una aplicació. Es diu que f és **bijectiva** si és injectiva i exhaustiva alhora. El concepte equival a dir que:

$$\forall b \in B \exists ! a \in A : f(a) = b$$

Definicions bàsiques Aplicacions Lineals Nucli, Imatge i Rang d'una Aplicació Lineal Classificació de les aplicacions lineals Matriu d'una aplicació lineal Equació matricial d'una aplicació lineal

Definicions bàsiques

Figura: Tot element de B té una, i només una única anti-imatge per f

L'aplicació identitat L'aplicació constant Definició d'aplicació lineal Propietats

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

L'aplicació identitat

Considerem un espai vectorial E i l'aplicació identitat que transforma cada vector de E en ell mateix:

$$I: E \to E,$$

 $x \mapsto x.$

En primer lloc estudiarem si existeix alguna relació entre la imatge d'una suma de vectors I(x + y) i les imatges de cada un dels sumands I(x), I(y).

L'aplicació identitat - Lineal per la suma

Per definició d'aplicació identitat

$$I(x+y) = x+y$$

D'altra banda

$$\begin{array}{rcl} I(x) & = & x \\ I(y) & = & y \end{array} \} \Rightarrow I(x) + I(y) = x + y$$

I per tant podem escriure que

$$I(x + y) = x + y = I(x) + I(y)$$

Aplicació lineal per la suma

La imatge de la suma és la suma d'imatges.

L'aplicació identitat - Lineal pel producte per escalar

En segon lloc estudiarem si existeix alguna relació entre la imatge d'un escalar per un vector $I(\lambda x)$ i la imatge del vector I(x). Per definició d'aplicació identitat

$$I(\lambda x) = \lambda x$$

Per tant podem escriure que

$$I(\lambda x) = \lambda x = \lambda I(x)$$

Aplicació lineal pel producte per escalar

La imatge del producte d'un escalar per un vector és l'escalar per la imatge del vector.

L'aplicació identitat L'aplicació constant Definició d'aplicació linea Propietats

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

L'aplicació identitat L'aplicació constant Definició d'aplicació linea Propietats

L'aplicació constant

Vegem ara l'aplicació definida en $\mathbb R$ que transforma cada nombre real en el nombre 2

$$f: \mathbb{R} \to \mathbb{R},$$

 $x \mapsto 2.$

Com abans, anem a estudiar la relació entre la imatge d'una suma de vectors f(x + y) i les imatges de cada un dels sumands f(x), f(y).

L'aplicació constant - Lineal per la suma

Per definició d'aplicació constant

$$f(x+y)=2$$

D'altra banda

$$\begin{cases} f(x) &= 2 \\ f(y) &= 2 \end{cases} \Rightarrow f(x) + f(y) = 2 + 2 = 4$$

I per tant podem escriure que

$$f(x + y) = 2 \neq 4 = f(x) + f(y)$$

Aplicació no lineal per la suma

La imatge de la suma NO és la suma d'imatges.

L'aplicació constant - Lineal pel producte per escalar

En segon lloc estudiarem si existeix alguna relació entre la imatge d'un escalar per un vector $f(\lambda x)$ i la imatge del vector f(x). Per definició d'aplicació constant

$$f(\lambda x) = 2$$

Per tant podem escriure que

$$f(\lambda x) = 2 \neq 2\lambda = \lambda f(x)$$

Aplicació no lineal pel producte per escalar

La imatge del producte d'un escalar per un vector **NO** és l'escalar per la imatge del vector.

- 1 Definicions bàsiques
- **2** Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Direm que l'apliació identitat del primer exemple és una **aplicació lineal**.

Direm que l'apliació constant del segon exemple NO és una aplicació lineal.

Aplicació lineal

Siguin E i F dos espais vectorials sobre \mathbb{K} . Sigui una aplicació f donada per:

$$f: E \to F,$$

 $x \mapsto f(x).$

Direm que f és una aplicació lineal si verifica

1
$$\forall \vec{x}, \vec{y} \in E, f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$$

$$\forall \lambda \in \mathbb{K}, \ \forall \vec{x} \in E, \ f(\lambda \vec{x}) = \lambda f(\vec{x})$$

Les dues condicions anteriors són equivalents a una tercera:

Aplicació lineal(II)

$$\forall \lambda, \mu \in \mathbb{K}, \vec{x}, \vec{y} \in E, \quad f(\vec{\lambda}x + \mu\vec{y}) = \lambda f(\vec{x}) + \mu f(\vec{y})$$

Normalment, comprovar les dues condicions per separat sol ser més senzill a l'hora de realitzar operacions. Comprovar-ne només una us pot estalviar temps, però heu d'anar més alerta ja que tindreu alhora més variables que en el primer cas.

Exercici

Estudiar si la següent aplicació és o no és lineal.

$$f: \mathbb{K}^2 \to \mathbb{K},$$

 $(x,y) \mapsto x.$

Aquesta aplicació reb el nom de primera projecció.

Lineal per la suma

$$f((x_1, y_1) + (x_2, y_2)) = f(x_1 + x_2, y_1 + y_2) = x_1 + x_2$$

$$f(x_1, y_1) = x_1$$

$$f(x_2, y_2) = x_2$$

$$f(x_1, y_1) + f(x_2, y_2) = x_1 + x_2$$
i per tant

or carre

$$f((x_1, y_1) + (x_2, y_2)) = x_1 + x_2 = f(x_1, y_1) + f(x_2, y_2)$$

2 Lineal pel producte per escalar

$$f(\lambda(x,y)) = f(\lambda x, \lambda y) = \lambda x = \lambda f(x,y)$$

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Preguntes

Quan ens donin una aplicació lineal

$$f: E \to F,$$

 $x \mapsto f(x).$

volem intentar respondre a preguntes de l'estil

- 1 Quina serà la imatge de l'element neutre de E?
- 2 Existeix una relació entre la imatge d'un vector $f(\vec{x})$ i la del seu oposat $f(-\vec{x})$?

Aquestes preguntes neixen de forma natural degut a les particularitats de E per ser un espai vectorial (conté el neutre, els oposats,...).

Preguntes

Vegem-ho amb l'exemple de la primera projecció anterior, que associa a cada vector la seva primera coordenada:

$$f: \mathbb{K}^2 \to \mathbb{K},$$

 $(x,y) \mapsto x.$

- I L'aplicació envia el vector nul $\vec{0}_E = (0,0)$ a la seva primera coordenada que és el número zero: f(0,0) = 0. És a dir, la imatge del vector nul de \mathbb{K}^2 és el vector nul de \mathbb{K} . Serà sempre aixi?
- 2 Com que f(-x, -y) = -x i f(x, y) = x, aleshores f(-x, -y) = -x, = -f(x, y). És a dir, la imatge del vector oposat d'un vector $\vec{\in} E$ és l'oposat de la imatge de \vec{v} per f. Serà sempre així?

La imatge del vector nul

Propietat

Donada una aplicació lineal

$$f: E \to F$$
, $x \mapsto f(x)$.

La imatge del vector nul $\vec{0}_E$ de E és el vector nul $\vec{0}_F$ de F

$$f(\vec{0}_E) = \vec{0}_F$$

La imatge del vector nul

Demostració

1 El vector nul \vec{O}_E és el neutre de la suma de E, per tant

$$\forall \vec{x} \in E \Rightarrow \vec{x} + \vec{0}_E = \vec{x}$$

- 2 Com que $\vec{x} + \vec{0}_E = \vec{x}$, aleshores: $f(\vec{x} + \vec{0}_E) = f(\vec{x})$.
- 3 Com que f és lineal: $f(\vec{x} + \vec{0}_E) = f(\vec{x}) + f(\vec{0}_E)$.
- 4 Aleshores de 2 i 3, obtenim: $f(\vec{x}) + f(\vec{0}_E) = f(\vec{x})$ d'on, en efecte $f(\vec{0}_E)$ és l'element neutre de la suma de F:

$$f(\vec{0}_E) = \vec{0}_F$$

L'aplicació identitat L'aplicació constant Definició d'aplicació linea Propietats

La imatge del vector oposat

Propietat

Donada una aplicació lineal

$$f: E \to F,$$

 $x \mapsto f(x).$

La imatge del vector oposat és l'oposat de la imatge del vector original:

$$f(-\vec{x}) = -f(\vec{x})$$

La imatge del vector oposat

Demostració

1 La suma d'un vector i el seu oposat és l'element neutre

$$\forall \vec{x} \in E \Rightarrow \vec{x} + (-\vec{x}) = \vec{0}_E$$

- 2 Com que $\vec{x} + (-\vec{x}) = \vec{0}_E$, aleshores: $f(\vec{x} + (-\vec{x})) = f(\vec{0}_E)$.
- **3** Com que *f* és lineal: $f(\vec{x} + (-\vec{x})) = f(\vec{x}) + f(-\vec{x})$.
- 4 Aleshores de 2 i 3, obtenim: $f(\vec{x}) + f(-\vec{x}) = f(\vec{0}_E)$
- 5 Però de la propietat anterior saben que $f(\vec{0}_E) = \vec{0}_F$, per tant $f(\vec{x}) + f(-\vec{x}) = \vec{0}_F$ d'on, per propietat de l'element neutre $f(-\vec{x})$ ha de ser l'oposat de $f(\vec{x})$:

$$f(-\vec{x}) = -f(\vec{x})$$

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Nucli d'una aplicació lineal

Definició

Sigui l'aplicació lineal

$$f: E \to F,$$

 $x \mapsto f(x).$

S'anomena **nucli de** f i es denota per Ker(f) o Nuc(f) el conjunt d'elements d'E tals que la seva imatge coincideix amb el zero de F:

$$Ker(f) = \{\vec{x} \in E : f(\vec{x}) = \vec{0}_F\}$$

Nucli d'una aplicació lineal

Teorema

Sigui l'aplicació lineal

$$f: E \to F,$$

 $x \mapsto f(x).$

aleshores el Ker(f) és un subespai vectorial de E.

Nucli d'una aplicació lineal

Exercici

Sigui l'aplicació lineal

$$f: \mathbb{R}^3 \to \mathbb{R}^2,$$

 $(x, y, z) \mapsto (x + y - 2z, x - y + z).$

Trobau el Ker(f) i una base seva.

Nucli d'una aplicació lineal

Solució

Un element del nucli de f compleix l'equació

$$f(x, y, z) = (x + y - 2z, x - y + z) = (0, 0)$$

Si resolem el sistema pertinent, obtenim

$$x = x, y = 3x, z = 2x$$

d'on

$$Ker(f) = \{(x, y, z) \in \mathbb{R}^3 : y = 3x, z = 2x\} = \langle (1, 3, 2) \rangle$$

Nucli d'una aplicació lineal

Teorema

Una aplicació lineal $f: E \to F$ és injectiva si i només si el nucli de f es redueix al neutre de E.

$$f$$
 injectiva \iff $Ker(f) = {\vec{0}_E}$

Nucli d'una aplicació lineal

Teorema

Siguin

$$\vec{x}_1, \vec{x}_2, \cdots \vec{x}_n$$

un conjunt de vectors linealment independents de l'espai vectorial E i $f: E \to F$ és una aplicació lineal injectiva aleshores

$$f(\vec{x}_1), f(\vec{x}_2), \cdots, f(\vec{x}_n)$$

són vectors linealment independents pertanyents a F.

- Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Definició

Sigui l'aplicació lineal

$$f: E \to F,$$

 $x \mapsto f(x).$

S'anomena **imatge de** f i es denota per Im(f) el conjunt d'elements d'F que tenen una anti-imatge per f:

$$Im(f) = \{\vec{y} \in F : \exists \vec{x} \in E \ tq \ f(\vec{x}) = \vec{y}\}$$

Teorema

Sigui l'aplicació lineal

$$f: E \to F,$$

 $x \mapsto f(x).$

aleshores el Im(f) és un subespai vectorial de \digamma

Exercici

Sigui l'aplicació lineal

$$f: \mathbb{R}^3 \to \mathbb{R}^2,$$

 $(x, y, z) \mapsto (x + y - 2z, x - y + z).$

Trobau el Im(f) i una base seva.

Solució

Un element de la imatge de f és de la forma

$$f(x,y,z) = (x+y-2z, x-y+z) = (x,x)+(y,-y)+(-2z,z) = x(1,1)+y$$

Per tant els vectors (1,1), (1,-1), (-2,1) formen un sistema generador de Im(f). Com que a \mathbb{R}^2 el màxim nombre de vectors LI són 2, en destriam dos com per exemple (1,1), (1,-1) per formar una base de la imatge de f.

Teorema

Si E és un espai vectorial de dimensió finita n i l'aplicació lineal $f: E \to F$. Aleshores Im(f) és de dimensió finita menor o igual que n

$$dim\ Im(f) \leq n$$

Nucli i Imatge d'una aplicació lineal

Teorema - Les dimensións del nucli i la imatge

Siguin E i F espais vectorials sobre $\mathbb K$ i l'aplicació lineal $f:E\to F$. Si la dimensió de E és finita, aleshores podem asegurar

- dim Ker(f), dim Im(f) són finites.
- dim E = dim Ker(f) + dim Im(f)

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

Rang

- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Rang d'una aplicació lineal

Rang d'una aplicació lineal

Sigui $f: E \to F$ una aplicació lineal amb $\dim E$. S'anomena rang $\operatorname{de} f$ a la dimensió del subespai vectorial imatge $\operatorname{de} f$

$$rang(f) = dim \ Im(f)$$

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Definicions bàsiques Aplicacions Lineals Nucli, Imatge i Rang d'una Aplicació Lineal Classificació de les aplicacions lineal Matriu d'una aplicació lineal Equació matricial d'una aplicació lineal

Classificació d'una aplicació lineal

Sigui $f: E \rightarrow F$ una aplicació lineal

Monomorfisme

Si f és injectiva, aleshores s'anomena **monomorfisme**

Epimorfisme

Si f és exhaustiva, aleshores s'anomena **epimorfisme**

Isomorfisme

Si f és bijectiva, aleshores s'anomena **isomorfisme**

Definicions bàsiques Aplicacions Lineals Nucli, Imatge i Rang d'una Aplicació Lineals Classificació de les aplicacions lineals Matriu d'una aplicació lineal Equació matricial d'una aplicació lineal

Classificació d'una aplicació lineal

Sigui $f: E \rightarrow E$ una aplicació lineal

Endomorfisme

Una aplicació d'un espai en ell mateix s'anomena endomorfisme

Automorfisme

Un endomorfisme bijectiu s'anomena automorfisme

Classificació d'una aplicació lineal

Teorema

Siguin E i F espais vectorials de dimensió finita sobre \mathbb{K} i $f: E \Longrightarrow F$ una aplicació lineal, aleshores són equivalents:

- f és un isomorfisme
- \blacksquare dim $E = \dim F$
- $Ker(f) = \{0_E\}$

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

exemple

Abans de definir la matriu d'una aplicació lineal anem a deduir-ne la forma amb un exemple familiar

Exemple

Sigui $f : \mathbb{R}^2 \Longrightarrow \mathbb{R}^3$ l'aplicació lineal definida per f(x,y) = (x+y,y-2x,x+y)

- **1** Obtenir les imatges del vectors de la base canònica B_C de \mathbb{R}^2
- Obtenir les imatges dels vectors de la base $B_E = \{(1, -1), (2, 1)\}\ de \mathbb{R}^2$
- 3 Obtenir les imatges dels vectors de la base canònica de \mathbb{R}^2 expresades en la base $B_F = \{(1, -1, 0), (1, 0, -1), (1, 1, 1)\}$ de \mathbb{R}^3 .
- 4 Obtenir les imatges dels vectors de la base B_E de \mathbb{R}^2 expressades en la base B_F de \mathbb{R}^3

Solució 1

$$f(x, y) = (x + y, y - 2x, x + y)$$

Obtenir les imatges del vectors de la base canònica B_C de \mathbb{R}^2

Com que
$$B_C = \{(1,0), (0,1)\}$$
, aleshores

$$f(1,0) = (1+0,0-2,1+0) = (1,-2,1)$$
$$f(0,1) = (1,1,1)$$

Si col·locam les coordenades de f(1,0) i f(0,1) com a columnes d'una matriu obtenim

$$\left(\begin{array}{cc} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{array}\right)$$

Aleshores

$$(f(1,0),f(0,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$

Se calculen les imatges dels vectors de la base canònica de \mathbb{R}^2 i aquestes imatges venen donades en la base canònica de \mathbb{R}^3

Solució 2

$$f(x,y) = (x + y, y - 2x, x + y)$$

Obtenir les imatges dels vectors de la base $\mathcal{B}_{E}=\{(1,-1),(2,1)\}$ de \mathbb{R}^{2}

Anàlogament,

$$f(1,-1) = (1 + (-1), -1 - 2, 1 + (-1)) = (0, -3, 0)$$

 $f(2,1) = (3, -3, 3)$

Si col·locam les coordenades de f(1,-1) i f(2,1) com a columnes d'una matriu obtenim

$$\left(\begin{array}{cc}
0 & 3 \\
-3 & -3 \\
0 & 3
\end{array}\right)$$

Aleshores

$$(f(1,-1),f(2,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 0 & 3 \\ -3 & -3 \\ 0 & 3 \end{pmatrix}$$

Se calculen les imatges dels vectors de la base B_E de \mathbb{R}^2 i aquestes imatges venen donades en la base canònica de \mathbb{R}^3

Solució 3

$$f(x, y) = (x + y, y - 2x, x + y)$$

Obtenir les imatges dels vectors de la base canònica de \mathbb{R}^2 expresades en la base $B_F = \{(1, -1, 0), (1, 0, -1), (1, 1, 1)\}$ de \mathbb{R}^3 .

Si calculam la imatge dels vectors de la base canònica per f,

$$f(1,0) = (1,-2,1)$$

$$f(0,1) = (1,1,1)$$

on els resultats es troben en la base canònica B_C .

Per passar de la B_C a la base B_F de \mathbb{R}^3 hem de fer un canvi de base

$$B_C \xrightarrow{P} B_F$$

$$(1, -2, 1)_C \xrightarrow{P} (a, b, c)_{B_F}$$

$$(1, 1, 1)_C \xrightarrow{P} (m, n, p)_{B_F}$$

Segons la definició de matriu de canvi de base P, seria la matriu les columnes de la qual són les coordenades dels vectors de la base B_C expressats en la base B_F . Nosaltres coneixem just el contrari, és a dir les coordenades de B_F en la base B_C , per tant calcularem la matriu de canvi de base $B_F \xrightarrow{B}_{C}$, i la matriu P serà la inversa de Q.

$$Q = P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
$$P = \frac{1}{3} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$(1,-2,1)_{C} \xrightarrow{P} (a,b,c)_{B_{F}}$$

$$P\begin{pmatrix} 1\\-2\\1 \end{pmatrix}_{C} = \begin{pmatrix} a\\b\\c \end{pmatrix}_{B_{F}}$$

$$\frac{1}{3}\begin{pmatrix} 1&-2&1\\1&1&-2\\1&1&1 \end{pmatrix}\begin{pmatrix} 1\\-2\\1 \end{pmatrix}_{C} = \begin{pmatrix} a\\b\\c \end{pmatrix}_{B_{F}}$$

Per tant (a, b, c) = (2, -1, 0).

$$(1,1,1)_{C} \xrightarrow{P} (m,n,p)_{B_{F}}$$

$$P\begin{pmatrix} 1\\1\\1 \end{pmatrix}_{C} = \begin{pmatrix} m\\n\\p \end{pmatrix}_{B_{F}}$$

$$\frac{1}{3}\begin{pmatrix} 1 & -2 & 1\\1 & 1 & -2\\1 & 1 & 1 \end{pmatrix}\begin{pmatrix} 1\\1\\1 \end{pmatrix}_{C} = \begin{pmatrix} m\\n\\p \end{pmatrix}_{B_{F}}$$

Juan Gabriel Gomila

Per tant (a, b, c) = (0, 0, 1).

Si col·locam les coordenades de f(1,0) i f(0,1) com a columnes d'una matriu obtenim

$$\left(\begin{array}{cc}2&0\\-1&0\\0&1\end{array}\right)$$

Aleshores

$$(f(1,0),f(0,1))=((1,-1,0),(1,0,-1),(1,1,1))\left(egin{array}{ccc} 2&0\\-1&0\\0&1 \end{array}
ight)$$

Se calculen les imatges dels vectors de la base canònica B_C de \mathbb{R}^2 i aquestes imatges venen donades en la base B_F de \mathbb{R}^3

Solució 4

$$f(x, y) = (x + y, y - 2x, x + y)$$

Obtenir les imatges dels vectors de la base $B_E = \{(1,-1),(2,1)\}$ de \mathbb{R}^2 expressades en la base $B_F = \{(1,-1,0),(1,0,-1),(1,1,1)\}$ de \mathbb{R}^3

Si calculam la imatge dels vectors de la base B_E per f,

$$f(1,-1) = (0,-3,0)_C$$

$$f(2,1) = (3,-3,3)_C$$

on els resultats es troben en la base canònica B_C .

Per passar de la B_C a la base B_F de \mathbb{R}^3 hem de fer un canvi de base

$$B_C \xrightarrow{P} B_F$$

$$(0, -3, 0)_C \xrightarrow{P} (a, b, c)_{B_F}$$

$$(3, -3, 3)_C \xrightarrow{P} (m, n, p)_{B_F}$$

Emprant la mateixa matriu de canvi de base P anterior, obtenim que

$$(a, b, c)_{B_F} = (2, -1, -1)$$

 $(m, n, p)_{B_F} = (4, -2, 1)$

Si col·locam les coordenades de f(1,-1) i f(2,1) com a columnes d'una matriu obtenim

$$\left(\begin{array}{ccc}
2 & 4 \\
-1 & -2 \\
-1 & 1
\end{array}\right)$$

Aleshores

$$(f(1,-1),f(2,1)) = ((1,-1,0),(1,0,-1),(1,1,1)) \begin{pmatrix} 2 & 4 \\ -1 & -2 \\ -1 & 1 \end{pmatrix}$$

Se calculen les imatges dels vectors de la base B_E de \mathbb{R}^2 i aquestes imatges venen donades en la base B_E de \mathbb{R}^3

Resum

En tots els casos anteriors, hem calculat les imatges dels vectors d'una base de l'espai d'origen i les hem expressat en una certa base de l'espai d'arribada. Aquestes matrius són les matrius associades de l'aplicació lineal.

En el cas 1

$$\left(\begin{array}{cc} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{array}\right)$$

A més $f(1,0) = (1,-2,1)_C$ i $f(0,1) = (1,1,1)_C$ respecte de la base canònica de \mathbb{R}^2 i la base canònica de \mathbb{R}^3

$$(f(1,0),f(0,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$

En el cas 2

$$\left(\begin{array}{cc}
0 & 3 \\
-3 & -3 \\
0 & 3
\end{array}\right)$$

A més $f(1,-1)=(0,-3,0)_C$ i $f(2,1)=(3,3,3)_C$ respecte de la base B_E de \mathbb{R}^2 i la base canònica de \mathbb{R}^3

$$(f(1,-1),f(2,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 0 & 3 \\ -3 & -3 \\ 0 & 3 \end{pmatrix}$$

En el cas 3

$$\left(\begin{array}{cc}
2 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right)$$

A més $f(1,0) = (2,-1,0)_{B_F}$ i $f(0,1) = (0,0,1)_{B_F}$ respecte de la base canònica de \mathbb{R}^2 i la base B_F de \mathbb{R}^3

$$(f(1,0),f(0,1)) = ((1,-1,0),(1,0,-1),(1,1,1)) \begin{pmatrix} 2 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}$$

En el cas 4

$$\left(\begin{array}{ccc}
2 & 4 \\
-1 & -2 \\
-1 & 1
\end{array}\right)$$

A més $f(1,-1)=(2,-1,-1)_{B_F}$ i $f(2,1)=(4,-1,1)_{B_F}$ respecte de la base B_F de \mathbb{R}^2 i la base B_F de \mathbb{R}^3

$$(f(1,-1),f(2,1)) = ((1,-1,0),(1,0,-1),(1,1,1)) \begin{pmatrix} 2 & 4 \\ -1 & -2 \\ -1 & 1 \end{pmatrix}$$

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Siguin E i F espais vectorials de dimensions p i q respectivament amb $B_E = \{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_p\}$ una base de E, $B_F = \{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q\}$ una base de F i $f: E \longrightarrow F$ una aplicació lineal.

Definició

Anomenam matriu de f respecte de les bases B_E, B_F a aquella que té per columnes les coordenades dels vectors

$$(f(\vec{u}_1), f(\vec{u}_2), \cdots, f(\vec{u}_p))$$

en la base
$$B_F = \{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q\}$$

Les imatges dels vectors de la base B_E en la base B_F venen donades per:

$$f(\vec{u}_1) \in F \Longrightarrow f(\vec{u}_1) = a_{11}\vec{v}_1 + a_{21}\vec{v}_2 + \dots + a_{q1}\vec{v}_q$$

$$f(\vec{u}_2) \in F \Longrightarrow f(\vec{u}_2) = a_{12}\vec{v}_1 + a_{22}\vec{v}_2 + \dots + a_{q2}\vec{v}_q$$

$$\dots$$

$$f(\vec{u}_p) \in F \Longrightarrow f(\vec{u}_p) = a_{1p}\vec{v}_1 + a_{2p}\vec{v}_2 + \dots + a_{qp}\vec{v}_q$$

Aquesta expressió en forma matricial seria

$$(f(\vec{u}_1), f(\vec{u}_2), \cdots, f(\vec{u}_p)) = (\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{21} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{q1} & a_{q2} & \cdots & a_{qp} \end{pmatrix}$$

on la columna i conté les coordenades del vector $f(\vec{u_i})$ en la base B_F . La matriu A serà de tamany $q \times p$ amb p dimensió de E i q dimensió de F.

$$(f(\vec{u}_1), f(\vec{u}_2), \cdots, f(\vec{u}_p)) = (\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q)A$$

Exercici

Siguin $B_1=\{(1,1,0),(-1,1,2),(0,2,1)\}$ una base de \mathbb{R}^3 i $B_2=\{(1,1,),(-1,1)\}$ una base de \mathbb{R}^2 . Considerem $f:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ l'aplicació lineal tal que

$$f(x,y,z) = (x+y-2z, x-y+z)$$

Obteniu la matriu associada a f respecte de les bases B_1 de \mathbb{R}^3 i B_2 de \mathbb{R}^2

1. Calculam les imatges dels vectors de B_1 en la base canònica

$$f(1,1,0) = (2,0)_C$$

 $f(-1,1,2) = (-4,0)_C$
 $f(0,2,1) = (0,-1)_C$

2. Calculam la matriu de canvi de base de B_C a B_2

Volem passar de la base canònica a la base B_2 .

Com que coneixem B_2 en la base canònica, tenim $B_2 \xrightarrow{Q} B_C$

$$Q = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right)$$

Per tant la matriu de canvi de base es $P=Q^{-1}=\frac{1}{2}\left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right)$

$$\vec{x}_{B_2} = P\vec{x}_{B_C}$$

3. Expressar els vectors en la nova base B_2

$$\vec{x}_{B_2} = P \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{B_2}$$

$$\vec{x}_{B_2} = P \begin{pmatrix} -4 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}_{B_2}$$

$$\vec{x}_{B_2} = P \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} \\ \frac{-1}{2} \end{pmatrix}_{B_2}$$

4. La matriu de l'aplicació lineal

Aleshores la matriu és

$$\begin{pmatrix} 1 & -2 & -1/2 \\ -1 & 2 & -1/2 \end{pmatrix}$$
$$(f(1,1,0), f(-1,1,2), f(0,2,1)) =$$
$$((1,1), (-1,1)) \begin{pmatrix} 1 & -2 & -1/2 \\ -1 & 2 & -1/2 \end{pmatrix}$$

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Sigui $f: E \longrightarrow F$ una aplicació lineal, A la matriu associada a f respecte de les dues bases B_E i B_F de E i F respectivament. Anem a trobar una relació entre les coordenades en base B_E d'un vector $\vec{x} \in E$ i les coordenades en la base B_F del vector $f(\vec{x}) \in F$.

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Exemple

Sigui $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ l'aplicació lineal tal que la seva matriu associada en base canònica de \mathbb{R}^2 i la base canònica de \mathbb{R}^3 és:

$$\left(\begin{array}{cc}1&1\\-2&1\\1&1\end{array}\right)$$

Calculau les coordenades del vector imatge de $\vec{c}=(2,-1)_C\in\mathbb{R}^2$ expressat en la base canònica.

$$(2,-1)_C = 2(1,0) + (-1)(0,1) = ((1,0),(0,1))\begin{pmatrix} 2\\-1 \end{pmatrix}$$

Aplicant f als dos costats de la igualtat, com que ambdos membres són iguals i f és una aplicació (i.e. un mateix element d'origen no pot tenir dues imatges diferents) les seves imatges també seran iguals:

$$f(2,-1)_C = f(2(1,0) + (-1)(0,1)) = 2f(1,0) + (-1)f(0,1)$$
$$= (f(1,0), f(0,1)) \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Per definició de matriu associada a f respecte a dues bases B_E i B_F , sabem que

$$(f(1,0),f(0,1))=((1,0,0),(0,1,0),(0,0,1))\left(egin{array}{cc} 1&1\ -2&1\ 1&1 \end{array}
ight)$$

i substituint aquesta expressió dins l'anterior, obtenim

$$f(2,-1)_C = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Si denotam per Y_C les coordenades del vector $f(2,-1)_C$ en la base canònica de \mathbb{R}^3 , podem escriure

$$(f(1,0),f(0,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$

i substituint aquesta expressió dins l'anterior, obtenim

$$\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = Y_C \Longrightarrow Y_C = \begin{pmatrix} 1 \\ -5 \\ 1 \end{pmatrix}_C$$

Planteament general

Sigui $f: E \longrightarrow F$ una aplicació lineal i A la matriu associada a f respecte de B_E i B_F . Siguin:

- X_{B_E} coordenades en base B_E del vector $\vec{x} \in E$.
- Y_{B_F} coordenades en base B_F del vector $f(\vec{x}) \in F$.

$$f(B_E) = B_F \cdot A$$

Planteament general

Es pot demostrar que

$$A \cdot X_{BE} = Y_{BF}$$

- 1 Definicions bàsiques
- 2 Aplicacions Lineals
 - L'aplicació identitat
 - L'aplicació constant
 - Definició d'aplicació lineal
 - Propietats
- 3 Nucli, Imatge i Rang d'una Aplicació Lineal
 - Nucli
 - Imatge

- Rang
- 4 Classificació de les aplicacions lineals
- 5 Matriu d'una aplicació lineal
 - Construcció
 - Definició
- 6 Equació matricial d'una aplicació lineal
 - Construcció
 - Definició

Equació matricial

$$A \cdot X_{BE} = Y_{BF}$$

és l'**equació matricial** de l'aplicació lineal que relaciona les coordenades d'un vector $\vec{x} \in E$ en una base B_E amb les coordenades $f(\vec{x})$ en una base B_F .

Teorema

Sigui $A \in M_n(\mathbb{K})$ una matriu quadrada de tamany n. Són equivalents

- A és invertible
- Els vectors columna de la matriu A són una base de \mathbb{K}^n
- L'aplicació lineal definida per

$$f_A: \mathbb{K}^n \to \mathbb{K}^n, X \mapsto AX.$$

és bijectiva.

Teorema

Sigui l'aplicació lineal $f: E \longrightarrow F$,

- A la matriu de l'aplicació lineal en les bases B_E i B_F ,
- C la matriu de l'aplicació lineal en unes altres bases B'_E i B'_F ,
- P la matriu de canvi de base de B'_E a B_E ($B'_E \xrightarrow{P} B_E$),
- i Q la matriu de canvi de base de B'_F a B_F $(B'_F \xrightarrow{Q} B_F)$.

Aleshores
$$Q^{-1} \cdot A \cdot P = C$$

Demostració

- Equació matricial de l'aplicació lineal per A, B_E i B_F : $A \cdot X_{BE} = Y_{BF}$.
- Equació matricial de l'aplicació lineal per C, B'_E i B'_F : $C \cdot X'_{BE} = Y'_{BF}$.
- Equació del canvi de base de B_E' a B_E ($B_E' \xrightarrow{P} B_E$), $X_{BE} = P \cdot X_{BE}'$
- Equació del canvi de base de B'_F a B_F ($B'_F \xrightarrow{Q} B_F$), $Y_{BF} = Q \cdot X'_{BF}$

Demostració

$$A \cdot X_{BE} = Y_{BF}$$

$$X_{BE} = P \cdot X'_{BE}$$

Per tant

$$A \cdot (P \cdot X'_{BF}) = Y_{BF}$$

A més

$$Y_{BF} = Q \cdot Y'_{BF}$$

per tant

$$A \cdot (P \cdot X'_{BE}) = Q \cdot Y'_{BF}$$

Demostració

Multiplicant els dos costats per Q^{-1} i aplicant l'associativa del producte de matrius obtenim

$$(Q^1 \cdot A \cdot P) \cdot X'_{BE} = Y'_{BF}$$

que és l'equació matricial de f en B'_E i B'_F . Per tant $Q^1 \cdot A \cdot P$ serà la matriu associada a f en aquestes bases:

$$Q^1 \cdot A \cdot P = C$$

Corol·lari

Sigui l'aplicació lineal $f: E \longrightarrow E$ i siguin

- \blacksquare A la matriu de l'aplicació lineal en la base B_E ,
- C la matriu de l'aplicació lineal en la base B'_E ,
- P la matriu de canvi de base de B'_E a B_E ($B'_E \xrightarrow{P} B_E$),

Aleshores es compleix que

$$P^{-1} \cdot A \cdot P = C$$

Exercici

Sigui l'aplicació lineal $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ donada per f(x,y) = (x+y,y-2x,x+y). Trobau la matriu de f respecte de la base canònica de \mathbb{R}^2 i la base $\mathcal{B}_F = \{(1,1,0),(0,1,1),(0,0,-2)\}$ de \mathbb{R}^3 .

Sigui A la matriu de f associada en les bases canòniques (calculada en un exercici anterior)

$$A = \left(\begin{array}{rr} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{array}\right)$$

P és en aquest cas la matriu identitat d'ordre 2 (de la base canònica a ella mateixa) i Q la matriu de canvi de base de B_F a la base canònica de \mathbb{R}^3 ($B_F \xrightarrow{Q} B_C$)

$$Q = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{array}\right)$$

Aleshores

$$C = Q^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1/2 & 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & 0 \\ -2 & -1/2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & 0 \\ -2 & -1/2 \end{pmatrix}$$