Report for ARM Microcontroller Project

uLoader WiSe 2014

Appel, Dennis (s813783) Voigt, Alexander (s814526) Merrikhi, Pedram (s882217)

8. April 2015

Inhaltsverzeichnis

Αľ	bildu	ngsverzeichnis	Ш
Ta	belle	verzeichnis	
Lis	tings	ı	V
1.	Intro	duction	1
	1.1.	The Aim	1
	1.2.	Bootloader	2
		SWD	
	1.4.	startup	4
	1.5.	CMSIS	4
2.	Nes	ed Vectored Interrupt Controller	6
	2.1.	Unterschiede	6
	2.2.	Netzwerk	6
3.	Intro	duction	7
	3.1.	Bootloader	8
	3.2.	SWD	9
	3.3.	startup	10
	3.4.	CMSIS	10
4.	Nes	ed Vectored Interrupt Controller	11
	4.1.	Unterschiede	11
	12	Notzwork	1 1

Report for ARM Microcontroller Project Abbildungsverzeichnis

Abbildungsverzeichnis

1.1.	Prinzipieller Aufbau	•				•						•	•	•	•	•		2
3.1.	Prinzipieller Aufbau										 							7

Tabellenverzeichnis

Listings

1. Introduction

Nowadays the usage of the ARM-MCU could be used in every aspect of everyday life. Additionally, the ARM processor is the number one architecture of choice in many market segments.

This project is based on the development of a bootloaders and its implementation inside a network.

The usage stm32f4-discovery Board is a preferred and viewed as an "Allrounder" for such a project. The reasoning behind this is the "value for moneyand user-friendliness. This allows for an easy introduction into the world of ARM Microcontroller unit programming.

The ARM-Cortex-M4-Prozessor found on the STM32f4-discovery board prossesses the principal parts shown in the figure below.

1.1. The Aim

The aim of the project is to research the feasibility to create a quick, cheap and easy to use way of utilizing an STM32 Microcontroller to communicate between a user and a remote device.

The purpose of the application is meant to be a first step fundamental strategy to creating a product for future projects.

It is hoped that by way of HTML communication, a fast and light application could be used to fulfill the desire of a user to achieve a particular objective such as threeway handshake signal to verify a particular device in order to transmit information such as codes or messages, using a TCP/IP protocol stake.

As it can be demonstrated the different applications could be endless.

Es wird später ein weiteres unterschiedliches Diagram verwendet. Dies ist nicht falsch, sondern dient der sinngemäßen Darstellung des Prozessors.

Zunächst soll ein Überblick üeber die behandelten Themenschwerpunkte gegeben werden

Abbildung 1.1.: Prinzipieller Aufbau

1.2. Bootloader

The purpose of a Bootloader program is to allow the installation and utilisation of any program that could be reloaded. Whereas the program that is currently loaded is also being run.

Next it is necessary to initialise the hardware, that would in turn be needed to load the program.

The SSTM32f407 discovery boardöffers three different methodes to boot up the hardware.

In order to switch between the three different boot methods, the Boot-Pins BOOT1 and BOOT2 could be set:

BOOT1	BOOT2	Boot-Mode	Adresse
X	0	Flash Memory (User Flash)	0x8000_0000
0	1	System Memory	0x1FFF_F000
1	1	SRAM	0x2000_0000

Der ROM, hier System Memory, beinhaltet den, vom Hersteller, mitgegebenen Boot-

loader.

Wie man den Speicher dann belegt ist einem freigestellt. Man muss dann darauf achten, dass man an die richtige Adresse springt, wenn man das Programm nachgeladen hat. Als Beispiel-Vorgehensweise kann man sagen, dass die Reihenfolge, nachdem der Bootloader bereits geladen ist, folgende ist:

- 1. Verwendete Hardware initialisieren (USB/USART/RCC...)
- 2. Auf eingehendes Programm warten (wenn sonst keine Aufgabe ansteht)
- 3. Eingehendes Programm an Adresse XY schreiben.
- 4. An Adresse XY springen

Das eingegangene Programm ist dann natürlich selbst für die Initialisierung der verwendeten Hardware zuständig.

1.3. SWD

Bei der Entwicklung kam die Serial Wire Debug Technologie zum Einsatz. Hierbei handelt es sich um einen Debug-Port, der speziell dafür entwickelt wurde um MCU bzw. Projekte mit MCU, bei denen so wenig wie möglich Pins verwendet werden sollen. Dieser Port besteht aus den Leitungen folgender Tabelle:

Pin	Signal	Type	Beschreibung
1	VTref	Input	This is the target reference voltage. It is used to check if the
			target has power, to create the logic-level reference for the
			input comparators and to control the output logic levels to
			the target. It is normally fed from Vdd of the target board
			and must not have a series resistor.
7	SWDIO	I/O	Single bi-directional data pin
9	SWCLK	Output	Clock signal to target CPU. It is recommended that this pin
			is pulled to a defined state of the target board. Typically
			connected to TCK of target CPU.
13	SWO	Output	Serial Wire Output trace port. (Optional, not required for
			SWD communication)
15	RESET	I/O	Target CPU reset signal. Typically connected to the RESET
			pin of the target CPU, which is typically called "nRST",
			"nRESETör "RESET".
19	5V-Supply	Output	This pin is used to supply power to some eval boards. Not
			all JLinks supply power on this pin, only the KS (Kickstart)
			versions. Typically left open on target hardware.

Die anderen Leitungen des bisherigen 20-poligen Anschlussen wurden weggelassen, weil sie entweder für SWD uinteressant sind oder sie auf GND gelegt sind. Egal was davon zutrifft, sie haben keinen Einfluss auf die SWD-Kommunikation.

Es ist eine neue, sehr interessante Weise zu debuggen. Bisher war JTAG das Debugger-Interface. Die Vorteile dieser Technologie sind (frei von der ARM-Website übersetzt):

- Nur 2 Pins werden belegt
- JTAG TAP controller kompatibel
- Erlaubt dem Debugger ein weiterer AMBA-Bus-Master zu werden um auf Register / Speicher zuzugreifen.
- High Datarates 4Mbytes/sec @50MHz
- Low Power keine zusätzlichen Versorgungsspannung
- gute "built in" Fehler-Erkennung
- Schutz vor Fehlern bei Kontaktverlust

1.4. startup

- stack, program counter, interrupt, vector table, initial system clock

1.5. CMSIS

Der ARM Cortex Microcontroller Software Interface Standard ist eine Händlerunabhängige Abstraktionsschicht für die Cortex-M Prozessoren.

Dabei ist CMSIS unterteilt in:

- CMSIS-CORE API zum Zugriff auf den Prozessorkern sowie Perepherie-Register.
- CMSIS-Driver Generischer Zugriff auf Perepherie für die Middleware (reusability).
- CMSIS-DSP DSP Bibliothek mit über 60 Funktionen
- CMSIS-RTOS API Standardisiertes (RTOS kompatibel)
- CMSIS-Pack Beschreibung der wichtigen Bestandteile (Nutzersicht)
- CMSIS-SVD Beschreibung der wichtigen Bestandteile (Systemsicht)

REPORT FOR ARM MICROCONTROLLER PROJECT

1. Introduction

• CMSIS-DAP - Debug Access Port

Zusammengefasst erlaubt CMSIS einheitliche und simple Software Schnittstelle zu Prozessor und die Perepherie, sowie Echtzeit OS (RTOS) und Middleware.

2. Nested Vectored Interrupt Controller

Der NVIC bietet die Möglichkeit gewisse Interrupts zu konfigurieren (Priorität, aktiviert, deaktiviert...).

Neben vorgegebenen Interrupts sind hier auch die Implementierungsabhängigen Interrupts konfigurierbar. Da die ersten 15 Interrupts vorgegeben sind, können die implementierten Interrupts in der Anzahl von 0 bis 240 reichen.

2.1. Unterschiede

GNU, KEIL iar

2.2. Netzwerk

was sollte zum besseren verstehen hier einen platz finden.

3. Introduction

Es gibt nahezu keinen Bereich, indem ARM-MCU heutzutage keine Verwendung finden. Zudem gilt ARM als führende Architektur in vielen Marktsegementen.

Das Projekt beinhaltet die Entwicklung eines Bootloaders sowie die Netzwerkimplementierung.

Das verwendete stm32f4-discovery Board ist ein beliebter "Allrounder". Die Begründung dafür ist das Preis-Leistungs-Verhältnis und die Benutzerfreundlichkeit. Diese erlaubt einen leichten Um- bzw. Einstieg in die ARM-MCU-Programmierung.

Der auf dem Board verwendete ARM-Cortex-M4-Prozessor beinhaltet (Prinzip) Bestandteile der folgenden Grafik entsprechend.

Abbildung 3.1.: Prinzipieller Aufbau

Es wird später ein weiteres unterschiedliches Diagram verwendet. Dies ist nicht falsch, sondern dient der sinngemäßen Darstellung des Prozessors.

Zunächst soll ein Überblick üeber die behandelten Themenschwerpunkte gegeben werden

3.1. Bootloader

Ein Booloader ist ein Programm, welches es ermöglicht ein beliebiges weiteres Programm nachzuladen. Wobei das nachzuladene Programm das Eigentliche ist, welches ausgeführt werden soll.

Dazu ist es notwendig die Hardware zu initialisieren, die benötigt wird um das eigentliche Programm mit der gewählten Methode nachzuladen.

Das stm32f407 discovery board bietet drei verschiedene Arten an um zu booten. Um zwischen den drei Varianten wählen zu können, sind die Boot-Pins BOOT1 und

BOOTT	BOOTZ	poor-mode	Adresse
X	0	Flash Memory (User Flash)	0x8000_0000
0	1	System Memory	0x1FFF_F000
1	1	SRAM	0x2000_0000

Der ROM, hier System Memory, beinhaltet den, vom Hersteller, mitgegebenen Bootloader.

Wie man den Speicher dann belegt ist einem freigestellt. Man muss dann darauf achten, dass man an die richtige Adresse springt, wenn man das Programm nachgeladen hat. Als Beispiel-Vorgehensweise kann man sagen, dass die Reihenfolge, nachdem der Bootloader bereits geladen ist, folgende ist:

- 1. Verwendete Hardware initialisieren (USB/USART/RCC...)
- 2. Auf eingehendes Programm warten (wenn sonst keine Aufgabe ansteht)
- 3. Eingehendes Programm an Adresse XY schreiben.
- 4. An Adresse XY springen

Das eingegangene Programm ist dann natürlich selbst für die Initialisierung der verwendeten Hardware zuständig.

3.2. SWD

Bei der Entwicklung kam die Serial Wire Debug Technologie zum Einsatz. Hierbei handelt es sich um einen Debug-Port, der speziell dafür entwickelt wurde um MCU bzw. Projekte mit MCU, bei denen so wenig wie möglich Pins verwendet werden sollen. Dieser Port besteht aus den Leitungen folgender Tabelle:

Pin	Signal	Type	Beschreibung
1	VTref	Input	This is the target reference voltage. It is used to check if the
			target has power, to create the logic-level reference for the
			input comparators and to control the output logic levels to
			the target. It is normally fed from Vdd of the target board
			and must not have a series resistor.
7	SWDIO	I/O	Single bi-directional data pin
9	SWCLK	Output	Clock signal to target CPU. It is recommended that this pin
			is pulled to a defined state of the target board. Typically
			connected to TCK of target CPU.
13	SWO	Output	Serial Wire Output trace port. (Optional, not required for
			SWD communication)
15	RESET	I/O	Target CPU reset signal. Typically connected to the RESET
			pin of the target CPU, which is typically called "nRST",
			"nRESETör "RESET".
19	5V-Supply	Output	This pin is used to supply power to some eval boards. Not
			all JLinks supply power on this pin, only the KS (Kickstart)
			versions. Typically left open on target hardware.

Die anderen Leitungen des bisherigen 20-poligen Anschlussen wurden weggelassen, weil sie entweder für SWD uinteressant sind oder sie auf GND gelegt sind. Egal was davon zutrifft, sie haben keinen Einfluss auf die SWD-Kommunikation.

Es ist eine neue, sehr interessante Weise zu debuggen. Bisher war JTAG das Debugger-Interface. Die Vorteile dieser Technologie sind (frei von der ARM-Website übersetzt):

- Nur 2 Pins werden belegt
- JTAG TAP controller kompatibel
- Erlaubt dem Debugger ein weiterer AMBA-Bus-Master zu werden um auf Register / Speicher zuzugreifen.
- High Datarates 4Mbytes/sec @50MHz
- Low Power keine zusätzlichen Versorgungsspannung
- gute "built in" Fehler-Erkennung

• Schutz vor Fehlern bei Kontaktverlust

3.3. startup

- stack, program counter, interrupt, vector table, initial system clock

3.4. CMSIS

Der ARM Cortex Microcontroller Software Interface Standard ist eine Händlerunabhängige Abstraktionsschicht für die Cortex-M Prozessoren. Dabei ist CMSIS unterteilt in:

- CMSIS-CORE API zum Zugriff auf den Prozessorkern sowie Perepherie-Register.
- CMSIS-Driver Generischer Zugriff auf Perepherie für die Middleware (reusability).
- CMSIS-DSP DSP Bibliothek mit über 60 Funktionen
- CMSIS-RTOS API Standardisiertes (RTOS kompatibel)
- CMSIS-Pack Beschreibung der wichtigen Bestandteile (Nutzersicht)
- CMSIS-SVD Beschreibung der wichtigen Bestandteile (Systemsicht)
- CMSIS-DAP Debug Access Port

Zusammengefasst erlaubt CMSIS einheitliche und simple Software Schnittstelle zu Prozessor und die Perepherie, sowie Echtzeit OS (RTOS) und Middleware.

4. Nested Vectored Interrupt Controller

Der NVIC bietet die Möglichkeit gewisse Interrupts zu konfigurieren (Priorität, aktiviert, deaktiviert...).

Neben vorgegebenen Interrupts sind hier auch die Implementierungsabhängigen Interrupts konfigurierbar. Da die ersten 15 Interrupts vorgegeben sind, können die implementierten Interrupts in der Anzahl von 0 bis 240 reichen.

4.1. Unterschiede

GNU, KEIL iar

4.2. Netzwerk

was sollte zum besseren verstehen hier einen platz finden.