Bias-Variance Tradeoff

$$MSE(\hat{\beta}_j) = E[(\hat{\beta}_j - \beta_j)^2]$$

$$= E[(\hat{\beta}_j - E[\hat{\beta}_j])^2] + (E[\hat{\beta}_j] - \beta_j)^2$$

$$= (Variance of \hat{\beta}_j) + (Bias of \hat{\beta}_j)^2$$

- OLS estimates for β_i 's are unbiased
- However, the variances of OLS estimates $\hat{\beta}_j$ can be large when
 - the number of predictors is large, or when
 - · the predictors are multicollinear
- Is there a way to reduce the variance of $\hat{\beta}_j$, possibly at the cost of increased bias?

Shrinkage Estimates (aka. Regularization)

- OLS estimates $\hat{\beta}_j$ have no upper bound, and hence is susceptible to very high variance
- By **shrinking** the OLS estimates $\hat{\beta}_j$ toward 0, we can often substantially reduce the variance at the cost of a negligible increase in bias, substantially improving the accuracy of prediction for future observations
- Shrinkage is called "Regularization" in Machine Learning
- Two common shrinkage estimates are
 - · Ridge regression
 - Lasso (Least Absolute Shrinkage and Selection Operator)

OLS v.s. Ridge v.s. Lasso

Ordinary Least Square minimizes:

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip})^2$$

Ridge Regression minimizes:

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip})^2 \quad \text{with the constraint } \sum_{j=1}^{p} \hat{\beta}_j^2 \le t$$

Lasso mininizes:

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip})^2 \quad \text{with the constraint } \sum_{j=1}^{p} \left| \hat{\beta}_j \right| \le t$$

Note there is no constraint placed on the magnitude of the intercept $\hat{\beta}_0$.

Geometric Illustration of Ridge and Lasso Estimates

- Ellipses are the contours of $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2})^2$, which centered at the OLS estimates $(\hat{\beta}_{1,OLS}, \hat{\beta}_{2,OLS})$.
- (Left) Ellipse intersects the circle of radius t at the Ridge estimate.
- (Right) Ellipse intersects the square ($|\hat{\beta}_1| + |\hat{\beta}_2| < t$) at the Lasso estimate

Equivalent Forms of Ridge and Lasso

By the Lagrange multiplier methods, minimizing

$$\sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \ldots - \hat{\beta}_p x_{ip})^2$$
 under the constraints

$$\sum\nolimits_{j=1}^{p} \hat{\beta}_{j}^{2} \leq t \quad \text{ or } \quad \sum\nolimits_{j=1}^{p} \left| \hat{\beta}_{j} \right| \leq t$$

is equivalent to

Ridge Regression, minimizing

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip})^2 + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2$$

Lasso, minimizing:

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip})^2 + \lambda \sum_{j=1}^{p} |\hat{\beta}_j|$$

Tuning Parameter λ or t

Both Ridge and Lasso have a **tunning parameter** λ (or t)

• The Ridge estimates $\hat{\beta}_{j,\lambda,Ridge}$'s and Lasso estimates $\hat{\beta}_{j,\lambda,Lasso}$ depend on the value of λ (or t)

 λ (or t) is the **shrinkage parameter** that controls the size of the coefficients

- As \(\lambda \opi \0\) or \(t \subseteq \infty\), the Ridge and Lasso estimates become the OLS estimates
- As \(\lambda \cap \infty \infty \text{ or } t \psi 0\), Ridge and Lasso estimates shrink to 0 (intercept only model)

Ridge and Lasso Estimates Are NOT Scale Invariant

Say we change the unit of a predictor X_j from inches to feet

$$X_j' = X_j/12$$

its coefficient would be scaled as

$$\beta'_j = 12\beta_j$$

so that the product $\beta'_j X'_j = \beta_j X_j$ stays unchanged.

However, the Ridge and Lasso estimates are not scaled accordingly

$$\hat{\beta}'_{j,\lambda,Ridge} \neq 12 \hat{\beta}_{j,\lambda,Ridge}, \quad \hat{\beta}'_{j,\lambda,Lasso} \neq 12 \hat{\beta}_{j,\lambda,Lasso}$$

since large β 's are penalized

Must Standardize Predictors Before Applying Ridge and Lasso

As Ridge and Lasso estimates are not scale invariant, by convention, we **standardize** all predictors

$$Z_j = \frac{X_j - \overline{X}_j}{s_j}, \quad j = 1, \dots, p,$$

where s_i is the sample SD of X_i . before applying Ridge and Lasso.

That is, all predictors X_j 's in Ridge and Lasso regression are assumed to have mean 0 and variance 1.

Ridge Estimates Are Biased but Have Smaller Variance

- Recall OLS estimate for $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$ is $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$
- One can show Ridge estimate for β is $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_p)^{-1}\mathbf{X}^T\mathbf{Y}$
 - Keep in mind that X is standardized that each predictor has mean 0 and variance 1
- Expected value for the Ridge estimate for β can be shown to be

$$(\mathbf{I}_p + \lambda \mathbf{X}^T \mathbf{X})^{-1} \boldsymbol{\beta} \neq \boldsymbol{\beta}$$

If all predictors are standardized and uncorrelated,

$$\hat{\beta}_{j,\lambda,Ridge} = \frac{1}{1+\lambda} \hat{\beta}_{j,OLS}$$

- Smaller variance than OLS estimates,
- Variance of $\hat{\beta}_{j,\lambda,Ridge}$ is much smaller than $\hat{\beta}_{j,OLS}$ when the data have **multicollinearity** problem

Properties of Lasso Estimates

- No close form formula for the Lasso estimates
- Also biased (toward 0)
- Smaller variance than OLS estimates
- NOT perform as well as Ridge when data have multicollinearity problem
- Greatest advantage of Lasso: Sparsity (See next page)

Sparsity of Lasso Estimates

In a model with many predictors

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

we may believe many of the β_i 's are actually 0.

- Hence, we seek a set of sparse solutions
- Lasso estimates will set some coefficients exactly equal to 0 when λ is large (or when t is small)

So the LASSO will perform model selection for us!

How to Choose λ ?

- We need a disciplined way of choosing λ
- Obviously want to choose λ that minimizes the mean squared error
- Issue is part of the bigger problem of variable selection

Choosing *∆* Using Cross-Validation

- If we have a good model, it should predict well when we have new data
- Data are hence split into 2 parts training data and test data
- For each λ, use the training set to fit (train) a model and than
 use the model to predict values in the test set and compute
 the <u>rooted mean square error</u> (RMSE)

$$\sqrt{\sum_{\text{test data}} (y_i - \hat{y}_i)^2/n}$$
, where $n = \text{size of the test data}$

- Choose the λ that has the smallest RMSE
- The training set and test set should be chosen randomly
 - May split the whole data into several different training set and test set and compute the mean of the RMSE for different splits