Homework 7

Yanyu Zheng yz2690 March 27, 2016

3. Chapter 10, problem 26

```
library("Sleuth3")
attach(ex1026)
fit11 = lm(Inhibit ~ UVB + Surface + UVB:Surface)
summary(fit11)
##
## Call:
## lm(formula = Inhibit ~ UVB + Surface + UVB:Surface)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -17.9722 -3.9444 -0.1806
                              1.4479 21.0278
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                        1.181
                                   4.292
                                         0.275 0.787599
## UVB
                     1226.389
                                 232.773
                                         5.269 0.000152 ***
## SurfaceSurface
                        1.278
                                 11.066
                                          0.115 0.909837
                                 409.839 -2.293 0.039134 *
## UVB:SurfaceSurface -939.931
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.833 on 13 degrees of freedom
## Multiple R-squared: 0.7086, Adjusted R-squared: 0.6414
## F-statistic: 10.54 on 3 and 13 DF, p-value: 0.000868
```

From the summary, we can see only UVB and UVB*Surface are significant. So we build a new model with only this two variables.

```
fit12 = lm(Inhibit ~ 0 + UVB + UVB:Surface)
summary(fit12)
##
## Call:
## lm(formula = Inhibit ~ 0 + UVB + UVB:Surface)
##
## Residuals:
##
       Min
                  1Q
                     Median
                                    ЗQ
                                            Max
## -18.2500 -3.2500
                     0.1016
                              1.6016 20.7500
##
```

```
## Coefficients: (1 not defined because of singularities)
##
                     Estimate Std. Error t value Pr(>|t|)
## UVB
                        363.3
                                   103.3
                                           3.516 0.003118 **
                        911.7
                                   175.4
                                           5.198 0.000108 ***
## UVB:SurfaceDeep
## UVB:SurfaceSurface
                           NA
                                      NA
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.265 on 15 degrees of freedom
## Multiple R-squared: 0.8615, Adjusted R-squared: 0.843
## F-statistic: 46.63 on 2 and 15 DF, p-value: 3.647e-07
detach(ex1026)
```

Yes, the effect is different. The difference is about 939.931, which means the UVB change for 1, the change in Inhibit is 911.7 higher in surface than in deep sea.

4. Chapter 11, problem 8

A case with large leverage has a residual with low variability. Because its explanatory variable values are so unusual, it dictates the location of the estimated regression over the whole region in its vicinity; no other points in the region share the responsibility. Because its residual must be small, this case acts like a mag- net on the estimated regression surface. If, however, its response falls close to the regression surface (as determined by the remaining observations alone), it is not necessarily influential. Therefore, while a large leverage does not necessarily indi- cate that the case is influential, it does imply that the case has a high potential for influence.

plot for (b)

```
set.seed(7)
x = c(1:9, 20)
y = x + rnorm(10, sd = 2)
par(mfrow=c(1,2))
plot(x,y)
fit41 = lm(y~x)
abline(fit41)
lev = hat(model.matrix(fit41))
plot(lev)
```


From the plot we can see the last observation has high leverage but no substantial influence on the model.

Plot for (c)

```
set.seed(7)
x = c(1:9, 20)
y = x + rnorm(10, sd = 2)
y[10] = 0
par(mfrow=c(1,2))
plot(x,y)
fit42 = lm(y~x)
abline(fit42)
lev = hat(model.matrix(fit42))
plot(lev)
```


From the plot we can see the last observation has high leverage and completely changed the model.

5. Chapter 11, problem 16

```
attach(case1101)
fit5 = lm(Metabol ~ Sex * Gastric)
lev = hat(model.matrix(fit5))
stud = rstudent(fit5)
cook = cooks.distance(fit5)
detach(case1101)
```

For case 32, the leverage is 0.2528749, studentized residual is 5.1205163, cook's distance is 1.1672546

6. Chapter 11, problem 20

a

```
attach(ex1120)
fit61 = lm(Calcite ~ Carbonate)
data6 = ex1120[-which.min(Carbonate),]
fit62 = lm(Calcite ~ Carbonate, data = data6)
data6 = data6[-which.min(data6$Carbonate),]
fit63 = lm(Calcite ~ Carbonate, data = data6)
```

Model with all obs

```
summary(fit61)
```

```
## Call:
## lm(formula = Calcite ~ Carbonate)
## Residuals:
##
       Min
                 1Q
                    Median
                                   3Q
## -1.46796 -0.64104 -0.04927 0.67301 1.55856
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.4984
                           3.1766 -0.472
                                             0.644
## Carbonate
                1.0703
                           0.1156
                                    9.259 7.93e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9959 on 16 degrees of freedom
## Multiple R-squared: 0.8427, Adjusted R-squared: 0.8329
## F-statistic: 85.73 on 1 and 16 DF, p-value: 7.929e-08
```

Model delete the smallest X

summary(fit62)

```
##
## Call:
## lm(formula = Calcite ~ Carbonate, data = data6)
##
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -1.2799 -0.4816 -0.1364 0.7184 1.4871
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                2.6727
                           4.6247
                                    0.578
                                             0.572
## Carbonate
                0.9217
                           0.1663
                                    5.541 5.65e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9807 on 15 degrees of freedom
## Multiple R-squared: 0.6718, Adjusted R-squared: 0.6499
## F-statistic: 30.7 on 1 and 15 DF, p-value: 5.653e-05
```

Model delete the smallest two X

summary(fit63)

```
##
## Call:
## lm(formula = Calcite ~ Carbonate, data = data6)
## Residuals:
##
      Min
              1Q Median
                               ЗQ
                                      Max
## -1.1844 -0.7038 -0.1139 0.6854 1.5492
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.0589
                           6.1592
                                    1.958 0.0705 .
## Carbonate
                0.5896
                           0.2196
                                    2.684
                                          0.0178 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
\mbox{\tt \#\#} Residual standard error: 0.8875 on 14 degrees of freedom
## Multiple R-squared: 0.3398, Adjusted R-squared: 0.2926
## F-statistic: 7.205 on 1 and 14 DF, p-value: 0.0178
```

b