

Estrutura de Dados I Heap

Bruno Prado

Departamento de Computação / UFS

Introdução

- O que é uma árvore heap?
 - Árvore binária de prioridade
 - Representação implícita em vetor
 - Indexação dos nós

Introdução

Árvore binária heap

- Representação e indexação
 - Nó pai

$$Pai(i) = \frac{i-1}{2}$$

- Representação e indexação
 - Nó filho esquerdo

$$Esquerdo(i) = 2i + 1$$

- Representação e indexação
 - Nó filho direito

$$Direito(i) = 2i + 2$$

- ▶ Tipos de árvores heap
 - Heap mínimo

Propriedade $R \leq E$ e $R \leq D$

- Tipos de árvores heap
 - Heap máximo

Propriedade $R \geq E$ e $R \geq D$

Aplicação da propriedade de heap

```
// Procedimento heapify
void heapify(int* V, unsigned int T, unsigned int i) {
    unsigned int P = i;
    unsigned int E = esquerdo(i);
    unsigned int D = direito(i);
    if(E < T && V(E) > V(P)) P = E:
    if(D < T \&\& V(D) > V(P)) P = D:
    if(P!= i) {
         troca(V, P, i):
         heapify(V, T, P);
```

- Aplicação da propriedade de heap
 - Procedimento heapify na raiz

- Aplicação da propriedade de heap
 - Procedimento heapify na raiz

- Aplicação da propriedade de heap
 - Procedimento heapify no filho da direita

- Aplicação da propriedade de heap
 - Procedimento heapify finalizada

- Complexidade do procedimento heapify
 - ▶ A altura h da árvore é log₂ n
 - Custo das operações O(h)

- Construção da árvore heap
 - Começa pelo último nó com filhos
 - Heapify no índice $i = \frac{Tamanho-1}{2}$

- Construção da árvore heap
 - O índice é decrementado até atingir a raiz
 - ► Heapify no índice $i = \left(\frac{Tamanho-1}{2}\right) 1$

- Construção da árvore heap
 - O índice é decrementado até atingir a raiz
 - ► Heapify no índice $i = \left(\frac{Tamanho-1}{2}\right) 1$

- Construção da árvore heap
 - O índice é decrementado até atingir a raiz
 - ► Heapify no índice $i = \left(\frac{Tamanho-1}{2}\right) 2$

- Construção da árvore heap
 - O índice é decrementado até atingir a raiz
 - ► Heapify no índice $i = \left(\frac{Tamanho-1}{2}\right) 2$

- Análise de complexidade
 - São feitas ⁿ/₂ iterações do heapify que custa O(h) para construção da árvore heap
 - Custo total é $(\frac{n}{2}) \times O(h) = O(\frac{n}{2} \times h) = O(n \log_2 n)$

- Análise de complexidade
 - ▶ No nível i existem até 2i nós
 - ▶ Temos máximo de $\sum_{i=0}^{h} 2^i = 2^{h+1} 1$ nós
 - Acima no nível h temos altura $h' = \log_2 n \log_2(2^{h+1} 1)$ e até $\frac{n}{2^{h+1}-1}$ nós

- Análise de complexidade
 - O tempo de execução do heapify está limitada a altura h' que possui até nós

$$construir_heap(n) = O\left(\sum_{h=0}^{\log_2 n} \frac{n}{2^{h+1} - 1} \times h\right)$$

$$= O\left(n \times \sum_{h=0}^{\log_2 n} \frac{h}{2^h}\right)$$

$$= O\left(n \times \sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$

$$= O(n)$$

- Análise de complexidade
 - ► Espaço *O*(1)
 - ► Tempo O(n)

- Inserção na árvore heap
 - É feita a inserção do número 33 no final do vetor
 - Para garantir a propriedade de heap, é aplicado o procedimento heapify no pai

- Inserção na árvore heap
 - Como o número inserido é maior do que o pai, é feita a troca de posições
 - O procedimento heapify é aplicado ao pai do nível

- Inserção na árvore heap
 - Como o número inserido é maior do que o pai, é feita a troca de posições
 - O procedimento heapify é aplicado ao pai do nível

- Remoção da árvore heap
 - O número sempre é removido da raiz da árvore
 - ▶ É feita sua substituição pelo último número

- Remoção da árvore heap
 - Para manter as propriedades do heap, é aplicado o procedimento heapify na raiz

- Remoção da árvore heap
 - Para manter as propriedades do heap, é aplicado o procedimento heapify na raiz

- Análise de complexidade
 - ► Espaço *O*(1)
 - ► Tempo O(h)

Exemplo

- Construa uma árvore heap mínimo e máximo
 - Considere os números do vetor abaixo
 - Ilustre a construção passo a passo

13	2	34	11	7	43	9
0	1	2	3	4	5	6

Exercício

- A empresa de tecnologia Poxim Tech e a empresa de capitalização Banana Cap estão desenvolvendo um sistema para apuração eficiente dos resultados dos concursos de loteria realizados
 - Os apostadores podem escolher 15 números dentre os valores de 1 até 50, sendo igualmente premiados por faixa as apostas com maior e menor número de acertos, impedindo a acumulação do prêmio
 - Em cada concurso são sorteados 10 números distintos que permitem aos apostadores obterem entre 0 e 10 acertos para cada aposta
 - O código da aposta é representado por um número hexadecimal único de 64 bits

Exercício

- Formato de arquivo de entrada
 - [Prêmio em reais]
 - [#Quantidade de apostas]
 - ▶ [Sorteado₁] ... [Sorteado₁₀]
 - ▶ [Código₁] [Número₁₁] ... [Número₁₁₅]
 - •
 - ► [Código_n] [Número_{n₁}] ... [Número_{n₁₅}]

```
3000

5

1 2 3 5 8 13 25 33 42 48

1234567890ef9def 1 2 3 9 11 17 19 20 21 30 34 38 39 40 44

45d45def89bc120a 2 3 5 9 13 14 15 17 18 20 33 35 40 41 42

e7967890aef0a86b 1 2 5 8 9 11 15 16 19 21 27 33 35 42 49

2a1289b0abc78def 3 4 5 7 11 16 18 20 24 25 31 34 35 42 50

890a5178bce7efd6 3 4 7 9 15 18 23 24 26 31 32 38 41 43 48
```

Exercício

- Formato de arquivo de saída
 - São exibidos as duas faixas de acerto e a quantidade de apostas premiadas, além da listagem dos códigos das apostas em cada faixa

Faixa: 6 acertos 45d45def89bc120a e7967890aef0a86b 2 ganhadores de R\$750

Faixa: 2 acertos 890a5178bce7efd6 1 ganhador de R\$1500