Construire un réseau

Chapitre II

Introduction aux réseaux : Plan du module

- Chapitre 1 : Généralités sur les réseaux
- Chapitre 2 : Construire un réseau
- Chapitre 3 : Communiquer dans un réseau
- Chapitre 4 : Interconnecter des réseaux
- Chapitre 5 : Faire communiquer des applications
- Chapitre 6 : Découvrir les applications réseau

Objectifs spécifiques

- Distinguer les composants d'un réseau et leur rôle
- Distinguer les différents supports de transmission et leurs caractéristiques
- Connaître la notion de topologie physique
- Identifier les topologies physiques des réseaux
- Construire un réseau local Ethernet
- Identifier des fonctions de la couche physique

Plan

- Introduction
- Composants matériels
- Supports de transmission
- Technologie réseau et topologies physiques
- Normes de câblage d'un réseau local Ethernet
- Construction d'un réseau local minimal
- Construction d'un réseau local avec un Switch
- Conclusion

Introduction

Avant d'utiliser un réseau, il faut le construire

- Relier les équipements
- (éventuellement) par des supports de transmission
- Equipements et supports de transmission nécessaires sont choisis en fonction des besoins du réseau et l'environnement de déploiement concernant les supports de transmission).
 - Type de réseau :
 - PAN? LAN? MAN? WAN?
 - Besoin de mobilité :
 - Filaire ? Sans fil ? Mobile ?
 - Besoin de connectivité Internet
 - Réseau d'accès Internet ?
 - Milieu de déploiement
 - Cellulaires ?satellitaires ?
 - Technologie réseau ?

Composants matériels

Equipements connectés

- Ordinateurs, tablettes, smartphones, imprimantes, serveurs, divers objets
- Ils sont la source et la destination des communications

Equipements de connexion :

- Ce sont des équipements intermédiaires qui aident à l'acheminement des communications de leurs sources vers leurs destinations
- Concentrateurs (Hubs), modem, multiplexeurs
- Commutateurs (Switchs), ponts (bridges), points d'accès (access points),
- Routeurs
- Pare-feu

- ...

Equipements de connexion

commutateur

routeur

Equipements connectés

imprimante ordinateur Smartphone

Supports de transmission

Supports guidés

 En cuivre : paires torsadées, câble coaxial

- En verre : fibre optique
- Supports non guidés : ondes électro-magnétiques
 - Ondes radio
 - Ondes infrarouges

Supports guidés : Câbles à paires torsadées

- Utilisés
 - en téléphonie (câble téléphonique)
 - en informatique
- Se déclinent en plusieurs catégories (avec des bandes passantes différentes): 1-7
- Peuvent être blindés (pour réduire les interférences)

Paires torsadées non blindées UTP

Paires torsadées blindées STP

Connecteur RJ45

Supports guidés : Câble coaxial

- Utilisé pour connecter le téléviseur à l'antenne
- Utilisé
 - dans les premières versions d'Ethernet : 10Base2 et 10Base5
 - dans les réseaux (câblés)
 d'accès à Internet

Supports guidés : Fibre optique

- Utilisé dans les réseaux coeur d'Internet, mais aussi dans les réseaux d'accès et les LAN et MAN
- Existe en 2 modes
 - Monomode : un seul rayon lumineux, plus longue distance
 - Multimode : plusieurs rayons lumineux, distance jusqu'à 2km
- Fonctionnement :
 - En entrée, un diode laser ou LED génère la lumière à partir du signal électrique
 - En sortie un photodiode reconvertit la lumière en signal électrique

Matériels nécessaires à la connexion

- Carte réseau (coupleur) :
 - connecte l'équipement au réseau
- Transceiver (adaptateur, émetteur/récepteur) :
 - composant de la carte réseau
 - Émet et reçoit les signaux

Connecteur

 Raccordé à un câble pour le brancher à la carte réseau ou le raccorder à un autre câble

Port

Interface de la carte réseau pour la relier au câble

Antenne

 Rayonne et capte les signaux issus resp de l'émetteur et du support air

Transceiver

Antenne

Caractéristiques d'un support de transmission

- Portée (en m): distance au-delà de laquelle le signal n'est plus décodable (à cause de l'atténuation)
- Bande passante (analogique : en Hertz) : intervalle de fréquences dans lequel le signal est correctement transmis
- Capacité (bande passante numérique : en bps) : nombre maximal de bits transportable par unité de temps
 - C=2Wlog₂(V) (Formule de
 Nyquist : pour un canal sans bruit)
 - V est la valence du signal
 - C=Wlog₂(1+SNR) (Formule de Shannon : pour un canal bruyant)
- **SNR** (en dB) est le rapport signal/bruit
 - $SNR = 10log_{10}(Ps/Pb)$

Supports en fibre vs supports en cuivre

La fibre optique

- Permet de plus haut débit à cause de sa plus grande bande passante
- Est moins sensible aux bruits électro-magnétiques donc aux interférences
- Est moins sensible aux écoutes
- Permet de plus longues distances
- Mais son installation est plus délicate

Les câbles métalliques

- Sont moins coûteux
- Plus simples d'installation
- Plus adaptés aux installations à l'intérieur des bâtiments (bande passante requise est moins importante)

Supports guidés vs supports non guidés

Supports guidés

- Plus sécurisés, plus fiables
- Moins exposés aux interférences et aux facteurs atténuant le signal
- Permet des débits meilleurs
- Mais déploiement statique et couteux

- Supports non guidés
- Déploiement moins coûteux
- Permettent plus de flexibilité, voire la mobilité
- Mais atténuation du signal, interférences avec les systèmes environnants fonctionnant sous les mêmes fréquences,
- Exposés aux chemins multiples
- Souvent soumis à des réglementations, à défaut de licences

Topologie physique et technologie réseau

- La topologie physique d'un réseau est la manière dont sont reliés ses différents équipements
- Elle est définie par la technologie réseau utilisée
- Une technologie réseau est un ensemble de normes qui spécifient la structure et le fonctionnement d'un réseau. Exemple
 - Bluetooth (PAN)
 - Ethernet, Wifi (LAN)
 - ADSL, GSM, WiMAX, LTE (WAN)

Topologie d'un réseau Ethernet (1)

- La topologie est
 - en **étoile** (réseau de petite taille)
 - ou en étoile étendue (réseau de taille moyenne à grande)
- NB : les premières versions étaient en bus avec du câble coaxial

au centre de l'étoile un hub ou un **switch**

Topologie d'un réseau Ethernet (2)

- Dans l'étoile étendue, pour une gestion optimale, la topologie est hiérarchisée en 3 niveaux :
 - Niveau accès
 - Niveau distribution
 - Et niveau Coeur

Technologies Ethernet : normes de câblage

50 ohms 50 ohms Sous-couche de Couche physique signalisation physique E 100 ohms 10BASE-2 (185 m) Coax BNC (500 m) 1000BASE-T (1001) 1000BASE 100BASE 10BASE-5 10BASE Support physique

1000BASE-LX (550-5000 m) MM ou SM Fiber SC

550 m)

1000BASE-

Topologies d'un réseau Wifi

- Avec infrastructure
 - Présence d'un point d'accès
- Sans infrastructure
 - mode ad-hoc
 - Communication directe entre terminaux

Technologies WIFI: standards 802.11

IEEE Standard	Maximum Speed	Frequency	Backwards Compatible
802.11	2 Mb/s	2.4 GHz	_
802.11a	54 Mb/s	5 GHz	_
802.11b	11 Mb/s	2.4 GHz	_
802.11g	54 Mb/s	2.4 GHz	802.11b
802.11n	600 Mb/s	2.4 GHz and 5 GHz	802.11a/b/g
802.11ac	1.3 Gb/s (1300 Mb/s)	5 GHz	802.11a/n
802.11ad	7 Gb/s (7000 Mb/s)	2.4 GHz, 5 GHz, and 60 GHz	802.11a/b/g/n/ac

Construction d'un réseau Ethernet minimal(voir TP)

- Connecter 2 PC
 - Fabriquer des câbles (paires torsadées) croisés
 - Brancher 2 PC à l'aide d'un câble croisé

Câble croisé

Construction d'un réseau Ethernet de plusieurs PCs (voir TP)

- Connecter plusieurs PC à l'aide d'un commutateur switch
 - Fabriquer des câbles droits
 - Connecter les PCs à l'aide des câbles droits (ou même croisés si on configure l'option auto MDIX sur le commutateur)
- On pouvait aussi connecter les PCs au moyen d'un concentrateur (hub)
 - Un hub est un équipement de niveau 1 (couche physique)

Conclusion

Dans ce chapitre, nous avons étudié :

- les **composants matériels** (« visibles ») d'un réseau:
 - les équipements connectés et les équipements de connexion
 - et les supports de transmissions qui sont généralement en cuivre, en fibre optique ou simplement le support air, les ondes électromagnétiques présentes dans l'atmosphère
- la mise en place de ces composants pour former un réseau, selon la topologie physique définie par la technologie réseau utilisée.
 - Il existe plusieurs technologies réseau selon le type de réseau
- Dans le prochain chapitre, nous verrons comment ces composants matériels vont communiquer dans le réseau.