P8106_yiminchen_secondaryanalysis

Yimin Chen (yc4195), Yang Yi (yy3307), Qingyue Zhuo (qz2493)

Contents

Import and data manipulation	3
Logistic regression and its cousins GLM	3 4 5
Discriminant Analysis LDA QDA Naive Bayes (NB) test set performance for Discriminant Analysis	9 9
classification tree models rpart	. 14
# Load recovery.RData environment load("./recovery.Rdata")	
<pre>dat %>% na.omit() # dat1 draw a random sample of 2000 participants Uni:3307 set.seed(3307) dat1 = dat[sample(1:10000, 2000),]</pre>	
<pre>dat1 = dat1[, -1] %>% mutate(recovery_time = as.factor(case_when(recovery_time <= 30 ~ "long", recovery_time > 30 ~ "short")), gender = as.factor(gender), race = as.factor(race),</pre>	

```
smoking = as.factor(smoking),
    hypertension = as.factor(hypertension),
    diabetes = as.factor(diabetes),
    vaccine = as.factor(vaccine),
    severity = as.factor(severity),
    study = as.factor(
      case_when(study == "A" ~ 1, study == "B" ~ 2, study == "C" ~ 3)
    )
# dat2 draw a random sample of 2000 participants Uni:2493
set.seed(2493)
dat2 = dat[sample(1:10000, 2000),]
dat2 =
  dat2[, -1] %>%
  mutate(
    recovery_time = as.factor(
      case_when(recovery_time <= 30 ~ "long", recovery_time > 30 ~ "short")
    gender = as.factor(gender),
    race = as.factor(race),
    smoking = as.factor(smoking),
   hypertension = as.factor(hypertension),
   diabetes = as.factor(diabetes),
   vaccine = as.factor(vaccine),
    severity = as.factor(severity),
    study = as.factor(
     case_when(study == "A" ~ 1, study == "B" ~ 2, study == "C" ~ 3)
     )
    )
# Merged dataset with unique observation
covid_dat = rbind(dat1, dat2) %>%
  unique()
covid_dat2 = model.matrix(recovery_time ~ ., covid_dat)[, -1] #ignore intercept
# Partition dataset into two parts: training data (70%) and test data (30%)
rowTrain = createDataPartition(y = covid_dat$recovery_time, p = 0.7, list = FALSE)
trainData = covid_dat[rowTrain, ]
testData = covid_dat[-rowTrain, ]
# matrix of predictors
x1 = covid_dat2[rowTrain,]
# vector of response
y1 = covid_dat$recovery_time[rowTrain]
# matrix of predictors
x2 = covid_dat2[-rowTrain,]
# vector of response
y2 = covid_dat$recovery_time[-rowTrain]
```

Data visualization

Model training

classification

- glm + penalized logistice regreesion L8
- GAM L8
- MARS L8
- QDA L9
- LDA L9
- Navie Bayes L9
- classification tree: L11
- random forest L12
- boosting L12
- support vecotr machines L13

Logistic regression and its cousins

GLM

Penalized logistic regression

Penalized logistic regression can be fitted using glmnet. We use the train function to select the optimal tuning parameters.

```
## alpha lambda
## 1001 1 0.0003354626
```

```
myCol<- rainbow(25)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
               superpose.line = list(col = myCol))
plot(model.glmn, par.settings = myPar, xTrans = function(x) log(x))
                                         Mixing Percentage
                                                                                 0.9
  0
          0
                             0.3
                                                       0.6
                                                              0
                                                                                        0
  0.05
          0
                             0.35
                                    0
                                                       0.65
                                                              0
                                                                                 0.95
                                                                                        0
  0.1
          0
                             0.4
                                    0
                                                       0.7
                                                              0
  0.15
                             0.45
                                    0
                                                       0.75
                                                              0
  0.2
                                    0
                                                              0
                             0.5
                                                       8.0
  0.25
                                    0
                                                       0.85
                                                              0
                             0.55
ROC (Cross-Validation)
    0.70
    0.65
    0.60
    0.55
    0.50
                                   -6
                                                                           -2
               -8
                                     Regularization Parameter
```

GAM

```
set.seed(2)
model.gam <- train(x = covid_dat2[rowTrain,],</pre>
                   y = covid_dat$recovery_time[rowTrain],
                   method = "gam",
                   metric = "ROC",
                   trControl = ctrl2)
model.gam$finalModel
## Family: binomial
## Link function: logit
##
## Formula:
## .outcome ~ gender1 + race3 + race4 + smoking1 + smoking2 + hypertension1 +
       diabetes1 + vaccine1 + severity1 + study2 + study3 + s(age) +
##
       s(SBP) + s(LDL) + s(bmi) + s(height) + s(weight)
##
##
## Estimated degrees of freedom:
```

MARS

coef(model.mars\$finalModel)

```
## (Intercept) study2 h(28.6-bmi) vaccine1 h(135-SBP) severity1
## -0.32524568 -1.35310824 0.51047027 -0.73109733 -0.03262848 0.80307433
## smoking1 gender1 smoking2 h(LDL-145) h(bmi-23.1)
## 0.43021337 -0.32207625 0.55022116 -0.05342548 0.41456148
```

vip(model.mars\$finalModel)


```
## Call:
## summary.resamples(object = res)
## Models: GLM, GLMNET, GAM, MARS
## Number of resamples: 10
##
## ROC
                                                      3rd Qu.
##
               Min.
                       1st Qu.
                                  Median
                                               Mean
          0.7027786\ 0.7100512\ 0.7240580\ 0.7243182\ 0.7396824\ 0.7482539
## GLMNET 0.7010325 0.7091541 0.7199426 0.7230782 0.7374113 0.7488612
                                                                            0
          0.7092686 0.7156054 0.7316766 0.7319728 0.7432725 0.7592621
                                                                            0
## GAM
## MARS
          0.7131036 0.7220759 0.7309513 0.7309203 0.7385390 0.7542894
##
## Sens
##
                       1st Qu.
                                  Median
                                               Mean
                                                      3rd Qu.
## GLM
          0.2162162 0.2702703 0.2789708 0.2814698 0.3074324 0.3378378
## GLMNET 0.2027027 0.2466216 0.2837838 0.2693262 0.2969733 0.3243243
                                                                            0
          0.2027027\ 0.2627730\ 0.3175676\ 0.3017031\ 0.3378378\ 0.3648649
                                                                            0
## GAM
## MARS
          0.2297297 \ 0.2837838 \ 0.2924843 \ 0.3044428 \ 0.3344595 \ 0.3783784
                                                                            0
##
```

```
## Spec
                                                                   Max. NA's
##
               Min.
                      1st Qu.
                                  Median
                                              Mean
                                                     3rd Qu.
## GLM
          0.8531073\ 0.9039548\ 0.9154605\ 0.9119755\ 0.9324890\ 0.9438202
## GLMNET 0.8644068 0.9053672 0.9180791 0.9187425 0.9382022 0.9548023
                                                                           0
          0.8644068 0.8884181 0.9124294 0.9018314 0.9157303 0.9269663
                                                                           0
## MARS
          0.8644068 0.8912429 0.9098584 0.9057862 0.9196106 0.9325843
                                                                           0
bwplot(res, metric = "ROC")
   GAM
  MARS
    GLM
GLMNET
          0.70
                      0.71
                                 0.72
                                            0.73
                                                       0.74
                                                                  0.75
                                                                              0.76
                                            ROC
```

test data performance for Logistic regression and its cousins

Discriminant Analysis

LDA

QDA

Naive Bayes (NB)

There is one practical issue with the NB classifier when nonparametric estimators are used. When a new data point includes a feature value that never occurs for some response class, the posterior probability can

become zero. To avoid this, we increase the count of the value with a zero occurrence to a small value, so that the overall probability doesn't become zero. In practice, a value of one or two is a common choice. This correction is called "Laplace Correction," and is implemented via the parameter fL. The parameter adjust adjusts the bandwidths of the kernel density estimates, and a larger value means a more flexible estimate.


```
res <- resamples(list(LDA = model.lda, QDA = model.qda, NB = model.nb))
summary(res)</pre>
```

```
##
## Call:
## summary.resamples(object = res)
##
## Models: LDA, QDA, NB
## Number of resamples: 10
##
## ROC
```

```
1st Qu.
                              Median
                                          Mean
                                                 3rd Qu.
## LDA 0.6982994 0.7092113 0.7204289 0.7236334 0.7385363 0.7509869
## QDA 0.6825470 0.6870515 0.7021897 0.7067165 0.7212097 0.7436988
## NB 0.6882730 0.7120171 0.7177622 0.7186405 0.7223240 0.7519739
                                                                       0
## Sens
                    1st Qu.
                                Median
           Min.
                                             Mean
                                                     3rd Qu.
## LDA 0.1891892 0.26013514 0.27702703 0.26525361 0.29489078 0.31081081
## QDA 0.5270270 0.55743243 0.60135135 0.59546464 0.63175676 0.67567568
## NB 0.0000000 0.01351351 0.01351351 0.01488338 0.02369493 0.02702703
                                                                            Λ
##
## Spec
##
                   1st Qu.
                              Median
                                          Mean
                                                 3rd Qu.
                                                               Max. NA's
            Min.
## LDA 0.8587571 0.8997175 0.9239351 0.9170507 0.9324890 0.9606742
## QDA 0.6440678 0.7090395 0.7211325 0.7185298 0.7299562 0.7683616
                                                                       0
## NB 0.9887006 0.9957627 1.0000000 0.9977401 1.0000000 1.0000000
                                                                       0
```

test set performance for Discriminant Analysis

classification tree models

rpart

rpart.plot(model.rpart\$finalModel)

ctree

plot(model.ctree\$finalModel)

test set performance for classification tree models

```
resamp_tree <- resamples(list(rpart = model.rpart,</pre>
                          ctree = model.ctree))
summary(resamp_tree)
##
## Call:
## summary.resamples(object = resamp_tree)
## Models: rpart, ctree
## Number of resamples: 10
##
## ROC
##
              Min.
                     1st Qu.
                                 Median
                                             Mean
                                                     3rd Qu.
                                                                  Max. NA's
## rpart 0.6570851 0.6730605 0.6885818 0.6892499 0.6958410 0.7433196
## ctree 0.6718201 0.6806484 0.6832281 0.6925873 0.7081043 0.7224385
##
## Sens
##
              Min.
                     1st Qu.
                                 Median
                                             Mean
                                                     3rd Qu.
## rpart 0.2027027 0.2432432 0.2500000 0.2476490 0.2593947 0.2837838
## ctree 0.1621622 0.1790541 0.1959459 0.2288227 0.2837838 0.3287671
##
## Spec
##
                                                     3rd Qu.
                                                                  Max. NA's
              Min.
                     1st Qu.
                                 Median
                                             Mean
## rpart 0.8644068 0.8956151 0.9180791 0.9125627 0.9268631 0.9548023
## ctree 0.8474576 0.8997175 0.9152542 0.9103314 0.9255618 0.9604520
```