1. 已知
$$\sin x = -\frac{1}{3}(\pi < x < \frac{3\pi}{2})$$
,用反正弦形式表示 x . 解答在这里因为 $\sin(\pi - x) = \sin x = -\frac{1}{3}$,且由 $\pi < x < \frac{3\pi}{2}$ 知, $-\frac{\pi}{2} < \pi - x < 0$,所以 $\pi - x = \arcsin(-\frac{1}{3}) = -\arcsin\frac{1}{3}$,于是 $x = \pi + \arcsin\frac{1}{3}$.

2. 若
$$\cos x = \frac{1}{3}(-\frac{\pi}{2} < x < 0)$$
,用反余弦形式表示 x . 解答在这里因为 $\cos(-x) = \cos x = \frac{1}{3}$,且由 $-\frac{\pi}{2} < x < 0$ 知, $0 < -x < \frac{\pi}{2}$,所以 $-x = \arccos \frac{1}{3}$,故 $x = -\arccos \frac{1}{3}$.

3. 求值:
$$\tan[\frac{1}{2}\arcsin(\frac{-2\sqrt{6}}{5})]$$
. 解答在这里令 $\alpha = \arcsin(\frac{-2\sqrt{6}}{5})$, 则 $\sin \alpha = \frac{-2\sqrt{6}}{5}$, $\alpha \in (-\frac{\pi}{2},0)$, 于是 $\cos \alpha = \frac{1}{5}$. 所以原式 $= \tan \frac{\alpha}{2} = \frac{1-\cos \alpha}{\sin \alpha} = \frac{1-\frac{1}{5}}{-\frac{2\sqrt{6}}{5}} = -\frac{\sqrt{6}}{3}$.

4. 求值:
$$\cos[\arctan\frac{3}{4} + \arccos(-\frac{2}{3})]$$
. 解答在这里令 $\alpha = \arctan\frac{3}{4}$, 则 $\tan\alpha = \frac{3}{4}$, $\alpha \in (0, \frac{\pi}{2})$, 于是 $\sin\alpha = \frac{3}{5}$, $\cos\alpha = \frac{4}{5}$. 又 $\beta = \arccos(-\frac{2}{3})$, 则 $\cos\beta = -\frac{2}{3}$, $\beta \in (\frac{\pi}{2}, \pi)$, 于是 $\sin\beta = \frac{\sqrt{5}}{3}$. 所以原式 $=\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta = \frac{4}{5} \times (-\frac{2}{3}) - \frac{3}{5} \times \frac{\sqrt{5}}{3} = -\frac{8 + 3\sqrt{5}}{15}$.

5. 求值:
$$\arcsin(\sin 2)$$
. 解答在这里 (1) 因为 $\sin 2 = \sin(\pi - 2)$, 且 $\pi - 2 \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, 所以原式 $= \arcsin[\sin(\pi - 2)] = \pi - 2$.

6. 求值:
$$\arccos(\cos\frac{6}{5}\pi)$$
. 解答在这里因为 $\cos\frac{6}{5}\pi = \cos\frac{4}{5}\pi$, 且 $\frac{4}{5}\pi \in [0,\pi]$, 所以原式 = $\arccos(\cos\frac{4}{5}\pi) = \frac{4}{5}\pi$.

7. 求值:
$$\arctan(\cot\sqrt{3})$$
. 解答在这里因为 $\cot\sqrt{3} = \tan(\frac{\pi}{2} - \sqrt{3})$, 且 $\frac{\pi}{2} - \sqrt{3} \in (-\frac{\pi}{2}, \frac{\pi}{2})$, 所以原式 = $\arctan[\tan(\frac{\pi}{2} - \sqrt{3})] = \frac{\pi}{2} - \sqrt{3}$.

8. 求值:
$$\operatorname{arccot}(-\cot\frac{\pi}{7})$$
. 解答在这里因为 $-\cot\frac{\pi}{7}=\cot(-\frac{\pi}{7})=\cot[\pi+(-\frac{\pi}{7})]=\cot\frac{6}{7}\pi$, 且 $\frac{6}{7}\pi\in(0,\pi)$, 所以原式 = $\operatorname{arccot}(\cot\frac{6}{7}\pi)=\frac{6}{7}\pi$.

9. 若
$$|x| \le 1$$
, 求证: $\arcsin x + \arccos x = \frac{\pi}{2}$. 解答在这里证法一因为 $\sin(\frac{\pi}{2} - \arccos x) = \cos(\arccos x) = x$, 其中 $-1 \le x \le 1$, 又由 $\arccos x \in [0,\pi]$, 得 $(\frac{\pi}{2} - \arccos x) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, 所以根据反正弦函数的定义,得 $\frac{\pi}{2} - \arccos x = \arcsin x$, 即 $\arcsin x + \arccos x = \frac{\pi}{2}$. 证法二设 $\arcsin x = \alpha$, 则 $\sin \alpha = x$, $\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.. 再设 $\arccos x = \beta$, 则 $\cos \beta = x$, $\beta \in [0,\pi]$. 因为 $\sin \alpha = x$, $\sin(\frac{\pi}{2} - \beta) = \cos \beta = x$, 所以 $\sin \alpha = \sin(\frac{\pi}{2} - \beta)$. 因为 $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$, $-\frac{\pi}{2} \le \frac{\pi}{2} - \beta \le \frac{\pi}{2}$, 所以 $\alpha = \frac{\pi}{2} - \beta$, 即 $\alpha + \beta = \frac{\pi}{2}$, 所以 $\arcsin x + \arccos x = \frac{\pi}{2}$.

10. 求证:
$$\arctan\frac{1}{3} + \arctan\frac{1}{5} + \arctan\frac{1}{7} + \arctan\frac{1}{8} = \frac{\pi}{4}$$
. 解答在这里设 $\alpha = \arctan\frac{1}{3}$, $\beta = \arctan\frac{1}{5}$, $\gamma = \arctan\frac{1}{7}$, $\delta = \arctan\frac{1}{8}$, 则 $\tan\alpha = \frac{1}{3}$, $\tan\beta = \frac{1}{5}$, $\tan\gamma = \frac{1}{7}$,

- 11. 求满足不等式 $\arcsin x < 1$ 的 x 的取值范围. 解答在这里由已知条件,得 $\begin{cases} -1 \le x \le 1, \\ \arcsin x < \arcsin(\sin 1), \end{cases}$ 于是 $\begin{cases} -1 \le x \le 1, \\ x < \sin 1. \end{cases}$ $\text{MW} -1 \le x < \sin 1.$
- 12. 求满足不等式 $\arccos(2x^2-1) < \arccos x$ 的 x 的取值范围. 解答在这里由已知条件,得 $\begin{cases} -1 \le 2x^2 1 \le 1, \\ -1 \le x \le 1, \end{cases}$

即
$$\begin{cases} -1 \leq x \leq 1, \\ 2x^2 - x - 1 > 0, \end{cases}$$
 也即
$$\begin{cases} -1 \leq x \leq 1, \\ x < -\frac{1}{2}x > 1, \end{cases}$$
 所以 $-1 \leq x < -\frac{1}{2}.$

13. 若 $\pi \leq \alpha \leq \frac{3\pi}{2}$, 且 $\sin \alpha = -\frac{1}{4}$, 则用反三角形式表示 α 是 ().

A.
$$\pi - \arcsin \frac{1}{4}$$

B.
$$\pi + \arcsin \frac{1}{4}$$

C.
$$\frac{3\pi}{2} - \arcsin \frac{1}{4}$$

B.
$$\pi + \arcsin \frac{1}{4}$$
 C. $\frac{3\pi}{2} - \arcsin \frac{1}{4}$ D. $\frac{3\pi}{2} + \arcsin \frac{1}{4}$

14. 函数 $y = \arcsin(\cot x)$ 的定义域是 (

A.
$$[-1, 1]$$

C.
$$\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

B.
$$[k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4}](k \in \mathbf{Z})$$

D.
$$[k\pi - \frac{\pi}{4}, k\pi + \frac{\pi}{4}](k \in \mathbf{Z})$$

15. 函数 $y = \sin(\arcsin x)$ 的图像是 (

16. 函数 $f(x) = 2\arcsin(x-1)$ 的反函数是 ().

A.
$$y = \frac{1}{2}\sin(x-1)(-\frac{\pi}{2} < x < \frac{\pi}{2})$$

C. $y = 1 + \sin \frac{x}{2} (-\pi \le x \le \pi)$

B. $y = 1 + \sin \frac{x}{2} \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2} \right)$ D. $y = \sin(\frac{x}{2} + 1)(-\pi \le x \le \pi)$

17. 函数 $y = \arcsin(x^2 - x)$ 为减函数的区间是 ().

A.
$$[-1,1]$$

B.
$$\left[\frac{1}{2}, \frac{1}{2}(1+\sqrt{5})\right]$$
 C. $\left(-\frac{\pi}{4}, +\infty\right)$

C.
$$\left(-\frac{\pi}{4}, +\infty\right)$$

D.
$$\left[\frac{1}{2}(1-\sqrt{5}), \frac{1}{2}\right]$$

18. 若 0 < a < 1, 则在 $[0, 2\pi]$ 内满足 $\sin x \ge a$ 的 x 的取值范围是 (

A. $[0, \arcsin a]$

B. $[\arcsin a, \pi - \arcsin a]$

C. $[\pi \arcsin a, \pi]$

D. $\left[\arcsin a, \frac{\pi}{2} + \arcsin a\right]$

19. 若 $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$, 则 $\arcsin(\sin x)$ 的值等于 (

B. $\pi - x$

C. $x - \pi$

D. $x + \pi$

20. 已知 $\arcsin x \ge 1$, 则 x 的取值范围是 (

A. [0,1]

B. $[0, \sin 1]$

C. $[\sin 1, 1]$

D. [-1, 1]

21. 若函数 $y = \arcsin(\cos x)$ 的定义域是 $(-\frac{\pi}{3}, \frac{2\pi}{3})$, 则值域是 (

A. $(-\frac{\pi}{6}, \frac{\pi}{3}]$

B. $(-\frac{\pi}{6}, \frac{\pi}{2}]$

C. $\left(\frac{\pi}{\epsilon}, \frac{\pi}{2}\right]$

D. $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$

- 22. 函数 $y = \sqrt{\arcsin x}$ 的定义域为______, 值域为______.
- 23. 函数 $y = \arcsin(\lg \frac{x}{2})$ 的定义域为_______,值域为_______.
- 25. 函数 $y = \arcsin(x x^2)$ 的定义域为_______, 值域为______.
- 27. 计算: $\arcsin[\sin(-\frac{5\pi}{4})] =$ ______.
- 28. 计算: $\arcsin(\sin 3) =$ _____.
- 29. 计算: $\arcsin(\cos 2) =$ _____.
- 30. 计算: $\arcsin(\cos 5) =$.
- 31. 计算: $\arcsin(\sin \pi^2) =$ ______.
- 32. 求函数 $y = (\arcsin x)^2 2\arcsin x 2$ 的最大值与最小值, 并求取得最大值、最小值时的 x 值.
- 33. 已知 a,b,c 依次为直角三角形的两直角边和斜边,且满足 $\arcsin\frac{1}{a} + \arcsin\frac{1}{b} = \frac{\pi}{2}$, 求证: c = ab.
- 34. 已知 $\alpha = \frac{9\pi}{8}$, 求 $\arcsin(\frac{\sin \alpha + \cos \alpha}{\sqrt{2}})$ 的值.
- 35. 已知 $\frac{\pi}{4} < \theta < \frac{5\pi}{4}$, 求证 $\arcsin(\frac{\sin \theta + \cos \theta}{\sqrt{2}}) = \frac{3\pi}{4} \theta$.
- 36. 求函数 $f(x) = \sin(x \frac{\pi}{4})\cos(x + \frac{\pi}{4}), -\frac{\pi}{4} \le x \le \frac{\pi}{4}$ 的反函数.
- 37. 求函数 $f(x) = \sin(x \frac{\pi}{4})\cos(x + \frac{\pi}{4}), \ \frac{\pi}{4} \le x \le \frac{\pi}{2}$ 的反函数.
- 38. 下列各式正确的是(

A. $\arcsin(-\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$

B. $\sin(\arcsin\frac{\pi}{3}) = \frac{\pi}{3}$ D. $\sin[\arccos(-\frac{\sqrt{2}}{2})] = \frac{\sqrt{2}}{2}$

C. $\arcsin(\sin\frac{5\pi}{4}) = \frac{\pi}{4}$

39. 在 $[-1, \frac{3}{2}]$ 上与函数 y = x 相同的函数是 ().

A. $y = \arccos(\cos x)$

B. $y = \arcsin(\sin x)$

C. $y = \sin(\arcsin x)$

D. $y = \cos(\arccos x)$

40. 若 $f(\cos x) = \frac{x}{2}$, $x \in [0, \pi]$, 则 $f(-\frac{1}{2})$ 等于 ().

A. $\cos \frac{1}{2}$

C. $\frac{\pi}{4}$

D. $\frac{2\pi}{3}$

41. 函数 $y = \arccos(-x)$ 的图像与 $y = \arccos x$ 的图像 (

A. 关于 x 轴对称

B. 关于 y 轴对称

C. 关于原点对称

D. 关于直线 y = x 对称

42. 函数 $y = \arccos(x^2 - 2x)$ 为减函数的区间是 (

A. $[1, +\infty]$

B. $[-1, 1+\sqrt{2}]$

C. $[1 - \sqrt{2}, 1 + \sqrt{2}]$ D. $[1, 1 + \sqrt{2}]$

- 48. 已知 $\cos x = -\frac{1}{3}, \, \pi \le x \le 2\pi$ 则 x =_____.
- 49. 函数 $f(x) = \frac{1}{2}\arccos(x+2)$ 的反函数是_____.
- 50. $\sin(\arccos x) = \frac{\sqrt{3}}{2}$, My x =_____.
- 51. 已知 $\arccos(\cos x) = \frac{\pi}{6}$, 则 x =______.
- 52. 已知 $\cos[\arccos(x+1)] = x+1$, 则 x 的取值范围是_____
- 53. 计算: $\arcsin(\sin\frac{3\pi}{4}) + \arccos(\cos\frac{3\pi}{4}) =$ _____.
- 54. 计算: $\arcsin[\cos(-\frac{\pi}{6})] =$ _____.
- 55. 计算: $\arcsin \frac{\pi}{7}$) =_____.
- 56. 计算: $\arcsin(\cos \pi^2) =$ _____.
- 57. 计算: $\tan(\frac{1}{2}\arccos\frac{2\sqrt{2}}{2}) =$ _____.
- 58. 计算: $\cos[\frac{1}{2}\arccos(-\frac{3}{5})] =$ _____.
- 59. 满足不等式 $2\arccos(-x) > 0$ 的 x 的取值集合为______
- 60. 满足不等式 $\arccos 3x < \arccos(2-5x)$ 的 x 的取值集合为_

- 61. 满足不等式 $\arccos(2x^2-1) < \arccos x$ 的 x 的取值集合为______.
- 62. 满足不等式 $\arccos x > \arcsin x$ 的 x 的取值集合为______.
- 63. 已知 $f(x) = \arccos x + 1$, 且 f(a) = a, 求 f(-a) 的值.
- 64. 设 f(x) 为奇函数, 且当 x > 0 时, $f(x) = \pi \arccos(\sin x)$, 则当 x < 0 时, f(x) 的解析式为 (
 - A. $\arccos(\sin x)$
- B. $-\arccos(\sin x)$
- C. $\pi + \arccos(\sin x)$
- D. $-\pi \arccos(\sin x)$

- 65. 下列四个命题中正确的是().
 - A. 若 $\sin f(x)$ 是奇函数, 则 f(x) 是奇函数
- B. 若 $\cos f(x)$ 是奇函数, 则 f(x) 是奇函数
- C. 若 $\arcsin f(x)$ 是奇函数, 则 f(x) 是奇函数
- D. 若 $\arccos f(x)$ 是奇函数, 则 f(x) 是奇函数

- 66. 函数 $f(x) = \frac{\arcsin x}{\frac{\pi}{2} \arccos x}$ ().
 - A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 即不是奇函数, 也不是偶函数

- D. 奇偶性无法确定
- 67. 若函数 $f(x) = -\arccos x + \varphi$ 是奇函数, 则 φ 等于 ().
 - Α. π

B. $\frac{\pi}{2}$

C. $-\pi$

D. $-\frac{\pi}{2}$

- 68. 用一个反正弦形式表示 $\frac{12}{13} + \arccos \frac{4}{5}$.
- 69. 用一个反余弦形式表示 $\frac{15}{17}$ $\arcsin \frac{4}{5}$.
- 70. 求值: $\arcsin \frac{2\sqrt{2}}{3} + \arcsin \frac{1}{3}$
- 71. 求值: $\arcsin(-\frac{11}{14}) \arccos\frac{1}{7}$.
- 72. 已知 $\arccos \frac{x}{a} = 2\arcsin \frac{y}{a}$, 求证: $a^2 = ax + 2y^2$.
- 73. 求值: $\sin(\arcsin\frac{3}{5} + \arcsin\frac{8}{17})$.
- 74. 求值: $\tan[\arcsin\frac{1}{3} + \arccos(-\frac{1}{5})]$.
- 75. 求值: $\cos[\arccos\frac{4}{5} \arccos(-\frac{5}{13})]$.
- 76. 求值: $\arcsin(\cos 4) \arccos(\sin 5)$.
- 77. 已知 $-\frac{\pi}{3} < \theta < \frac{2\pi}{3}$,求证: $\arccos \frac{\sqrt{3} \sin \theta \cos \theta}{2} + \theta = \frac{2\pi}{3}$.
- 78. 若 $\arcsin(\sin \alpha + \sin \beta) + \arcsin(\sin \alpha \sin \beta)$ 是 $\frac{\pi}{2}$ 的奇数倍, 求证: $\sin^2 \alpha + \sin^2 \beta = \frac{1}{2}$.
- 79. 求函数 $y = (\arccos x)^2 5\arccos x(|x| \le 1)$ 的值域。
- 80. 已知函数 $f(x) = \cos(2\arccos x) + 4\sin(\arcsin\frac{x}{2})$, 求它的最大值与最小值.

- 81. 记 $M = \arcsin(-\frac{1}{3})$, $P = \arctan(-\sqrt{2})$, $Q = \arccos(-\frac{2}{3})$, 则 M, P, Q 的大小关系是(
 - A. M < P < Q
- B. M < Q < P
- C. P < M < Q
- D. P < Q < M

- 82. 计算 $\arctan(\tan\frac{3}{5}\pi)$ 的值是 ().
 - A. $-\frac{3}{5}\pi$

- C. $-\frac{2}{5}\pi$
- D. $\frac{3}{5}\pi$

- 83. 若 x < 0, 则 $\arctan x$ 等于 (

 - A. $\operatorname{arccot} \frac{1}{x}$ B. $-\operatorname{arccot} \frac{1}{x}$
- C. $\pi \operatorname{arccot} \frac{1}{x}$ D. $\operatorname{arccot} \frac{1}{x} \pi$

- 84. 函数 $f(x) = \frac{\pi}{2} + \arctan x$ 的反函数是 ().
 - A. $f^{-1}(x) = \tan(x \frac{\pi}{2})(0 < x < \pi)$
- B. $f^{-1}(x) = -\cot x(-\frac{\pi}{2} < x < \frac{\pi}{2})$
- C. $f^{-1}(x) = -\frac{1}{\tan x}(0 < x < \pi)$
- D. $f^{-1}(x) = \tan x (0 < x < \pi)$
- 85. 若 $\arctan(x+1) \arctan(x-1) = \frac{\pi}{4}$, 则 $\arcsin \frac{1}{x^2}$ 等于 ().

- D. $\frac{4\pi}{2}$
- 86. 下列函数中, 同时满足条件① 定义域是 R, ② 是奇函数, ③ 是周期函数的函数是 ().
 - A. $y = \arcsin(\sin x)$
- B. $y = \cos(\arcsin x)$
- C. $y = \tan(\arctan x)$
- D. $y = \arctan(\tan x)$
- 87. 在① $\arcsin(\sin\frac{5}{6}\pi) = \frac{5}{6}\pi$,② $\arctan(\tan\frac{7}{6}\pi) = \frac{\pi}{6}$,③ $\cos(\arccos\pi) = \pi$,④ $\tan(\arccos0) = 0$ 这四个式子中,
 - A. 0 个

B. 1 个

D. 3 个

- 88. 计算: $\arctan \frac{1}{3} + \arctan 3 + \arcsin \frac{1}{5} \arccos(-\frac{1}{5}) = \underline{\hspace{1cm}}$
- 89. 计算: arctan(cot 1) =_____.
- 90. 计算: $\operatorname{arccot}(\cot \frac{10}{7}\pi) = \underline{\hspace{1cm}}$.
- 91. 计算: $\arctan \frac{1 \tan 25^\circ}{1 + \tan 25^\circ} =$ _____.
- 92. 计算: $\arctan 7 + \operatorname{arccot} \frac{3}{4} =$ _____.
- 93. 计算: $\arctan(3+2\sqrt{2}) \arctan\frac{\sqrt{2}}{2} =$ _____.
- 94. 计算: $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8} = \underline{\hspace{1cm}}$
- 95. 计算: $\arcsin(\sin 4) + \arccos(\cos 3) + \arctan(\tan 2) + \operatorname{arccot}(\cot 1) =$ _____
- 96. 求值: $\sin[\frac{1}{2}\arctan(-2\sqrt{2})] =$ _____.
- 97. 求值: $\sin[\frac{1}{2}\operatorname{arccot}(-\frac{3}{4})] =$ _____.

98. 求值: $\tan(\arctan\frac{1}{5} + \arctan 3) =$ _____.

99. 求值:
$$\sin[2\arctan(-6)] =$$

100. 求值:
$$\cos(2\operatorname{arccot}\frac{1}{2}) + \tan[\frac{1}{2}\operatorname{arccos}(-\frac{3}{5})] = _____.$$

101. 在下列各组函数中, 图像不相同的是(

A.
$$y = \sin(\arccos x)$$
 $\Rightarrow y = \cos(\arcsin x)$

B.
$$y = \tan(\operatorname{arccot} x) + y = \cot(\operatorname{arctan} x)$$

C.
$$y = \arcsin(\sin x) = y = \arccos(\cos x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$

D.
$$y = \arctan(\tan x)$$
 $= \arctan(\cot x), x \in [0, \frac{\pi}{2}]$

102. 若将函数 $y = \arctan x$ 的图像沿 x 轴正方向平移 2 个单位长度所得到的图像记为 C, 又图像 C' 与 C 关于 原点对称,则与 C' 对应的函数是 (

A.
$$y = -\arctan(x-2)$$
 B. $y = \arctan(x-2)$

B.
$$y = \arctan(x-2)$$

C.
$$y = -\arctan(x+2)$$
 D. $y = \arctan(x+2)$

D.
$$y = \arctan(x+2)$$

103. 若 $\arctan x + \operatorname{arccot} y = \pi$, 则点 (x, y) 组成的图像是 (

C.

- 104. 函数 $y = \arctan(\sin x)$ 的定义域为_______,值域为______
- 105. 函数 $y=\frac{1}{3}\arcsin 3x+\arctan \sqrt{3}x$ 的定义域为________,值域为_

- 108. 已知方程 $x^2 + 3\sqrt{3}x + 4 = 0$ 的两个实根为 x_1 与 x_2 , 记 $\alpha = \arctan x_1$, $\beta = \arctan x_2$, 求 $\alpha + \beta$ 的值.
- 109. 已知实数 a, b 满足 (a+1)(b+1) = 2, 求 $\arctan a + \arctan b$ 的值.
- 110. 已知 $|x| \le 1$, 求 $\csc^2(\arctan x) \tan^2(\arccos x)$ 的值.
- 111. 解方程 $2\sin^2 x + 3\sin x 2 = 0$.

解答在这里原方程即 $(2\sin x - 1)(\sin x + 2) = 0$, 所以 $\sin x = \frac{1}{2}$ 或 $\sin x = -2$ (含去). 所以 $x = k\pi + 2$ $(-1)^k \frac{\pi}{6} (k \in \mathbf{Z}).$

112. 解方程 $2\sin x - \cos x = 1$.

解答在这里原方程即 $\sin x \cdot \frac{2}{\sqrt{5}} - \cos x \cdot \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}}$,即 $\sin(x - \varphi) = \frac{1}{\sqrt{5}}$ (其中 $\varphi = \arctan \frac{1}{2}$),所以 $x = -\frac{1}{\sqrt{5}}$ $k\pi + (-1)^k \arcsin \frac{1}{\sqrt{5}} + \arctan \frac{1}{2}(k \in \mathbf{Z}).$

113. 解方程 $\sin^2 x - 3\sin x \cos x + 1 = 0$.

解答在这里解法一原方程即 $2\sin^2 x - 3\sin x \cos x + \cos^2 x = 0$. 显然 $\cos^2 x \neq 0$, 则有 $2\tan^2 x - 3\tan x + 1 = 0$, 即 $(2\tan x - 1)(\tan x - 1) = 0$,所以 $\tan x = \frac{1}{2}$ 或 $\tan x = 1$,所以 $x = k\pi + \arctan\frac{1}{2}$ 或 $x = k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$. 解法二原方程即 $\frac{1-\cos 2x}{2} - \frac{3}{2}\sin 2x + 1 = 0$. 整理,得 $3\sin 2x + \cos 2x = 3$,于是 $\sin(2x + \varphi) = \frac{3}{\sqrt{10}}$ (其中 $\varphi = \arctan\frac{1}{3}$),所以 $2x + \varphi = k\pi + (-1)^k \arcsin\frac{3}{\sqrt{10}}$,故 $x = \frac{k\pi}{2} + \frac{1}{2}(-1)^k \arcsin\frac{3}{\sqrt{10}} - \frac{1}{2}\arctan\frac{1}{3}(k \in \mathbf{Z})$.

114. 解方程 $\tan 5x = \tan 4x$.

解答在这里由已知,得 $\begin{cases} 5x\neq m\pi+\frac{\pi}{2},\\ 4x\neq n\pi+\frac{\pi}{2},\\ 5x=k\pi+4x \end{cases} \quad (m,n,k\in\mathbf{Z}), \text{ 所以 } x=k\pi(k\in\mathbf{Z}).$

115. **解方程** $\sin 2x - 12(\sin x - \cos x) + 12 = 0$.

解答在这里令 $\sin x - \cos x = t(|t| \le \sqrt{2})$,则 $\sin 2x = 1 - t^2$,原方程可化为 $1 - t^2 - 12t + 12 = 0$,即 $t^2 + 12t - 13 = 0$,也即 (t+13)(t-1) = 0.所以 t = -13(含去),或 t = 1.所以 $\sin x - \cos x = 1$,即 $\sin(x - \frac{\pi}{4}) = \frac{\sqrt{2}}{2}$,故 $x = k\pi + (-1)^k \frac{\pi}{4} + \frac{\pi}{4} (k \in \mathbf{Z})$.

116. 解方程 $\sin^2 x + \sin^2 2x = \sin^2 3x$

解答在这里原方程即 $(\sin^2 3x - \sin^2 x) - \sin^2 2x = 0$,所以 $(\sin 3x + \sin x)(\sin 3x - \sin x) - \sin^2 2x = 0$,即 $4\sin 2x\cos x\cos 2x\sin x - \sin^2 2x = 0$,所以 $2\sin^2 2x\cos 2x - \sin^2 2x = 0$.于是 $\sin^2 2x(2\cos 2x - 1) = 0$,所以 $\sin 2x = 0$ 或 $\cos 2x = \frac{1}{2}$,故 $x = \frac{k\pi}{2}$ 或 $x = k\pi \pm \frac{\pi}{6}(k \in \mathbf{Z})$.

117. 求实数 m 的取值范围, 使关于 x 的方程 $2\sin^2 x + 2\sin x \cos x - \cos^2 x - 1 - m = 0$ 有解

解答在这里原方程即 $\sin^2 x + 2\sin x \cos x - 2\cos^2 x = m$,所以 $\frac{1-\cos 2x}{2} + \sin 2x - 2 \cdot \frac{1+\cos 2x}{2} = m$,即 $2\sin 2x - 3\cos 2x = 2m+1$,所以 $\sin(2x-\varphi) = \frac{2m+1}{\sqrt{13}}$ (其中 $\varphi = \arctan\frac{3}{2}$).欲使方程有解,只需 $-\sqrt{13} \leq 2m+1 \leq \sqrt{13}$,所以 $\frac{-1-\sqrt{13}}{2} \leq m \leq \frac{-1+\sqrt{13}}{2}$.

118. 关于 x 的方程 $\sin x + \sqrt{3}\cos x + a = 0$ 在 $(0, 2\pi)$ 内有两个相异的实数解 $\alpha, \beta,$ 求实数 a 的取值及 $\alpha + \beta$ 的 值.

解答在这里原方程即 $\sin(x+\frac{\pi}{3})=-\frac{a}{2}$. 令 $y_1=\sin(x+\frac{\pi}{3})(0< x< 2\pi), \ y_2=-\frac{a}{2}$. 只需 y_2 的图像 (一条和 y 轴垂直的直线) 和 y_1 的图像在 $(0,2\pi)$ 内有两个交点即可. 观察下图,得 $\begin{cases} -1<-\frac{a}{2}<1,\\ -\frac{a}{2}\neq\frac{\sqrt{3}}{2}, \end{cases}$ 即 -2< a< 2 且 $a\neq -\sqrt{3}$. 利用中点知识,易得 $\alpha_1+\beta_1=2x_1=\frac{\pi}{2},\ \alpha_2+\beta_2=2x_2=\frac{7}{3}\pi,\ \mathbb{D}$ $\alpha+\beta=\frac{\pi}{3}$ 或 $\alpha+\beta=\frac{7\pi}{3}$.

119. 就实数 a 的取值范围, 讨论关于 x 的方程 $\cos 2x + 2 \sin x + 2a - 3 = 0$ 在 $[0, 2\pi]$ 内解的情况.

解答在这里原方程即 $\sin^2 x - \sin x = a - 1$, 配方,得 $(\sin x - \frac{1}{2})^2 = a - \frac{3}{4}$. 令 $y_1 = (\sin x - \frac{1}{2})^2$, $y_2 = a - \frac{3}{4}$.

- 观察下图, 得:

- (1) 当 $a \frac{3}{4} > \frac{9}{4}$ 或 $a \frac{3}{4} < 0$, 即 a > 3 或 $a < \frac{3}{4}$ 时, 方程无解. (2) 当 $a \frac{3}{4} = \frac{9}{4}$, 即 a = 3 时, 方程有一解 $x = \frac{3}{2}\pi$. (3) 当 $\frac{1}{4} < a < -\frac{3}{4} < \frac{9}{4}$ 或 $a \frac{3}{4} = 0$, 即 1 < a < 3 或 $a = \frac{3}{4}$ 时, 方程有两解.
- (4) 当 $a \frac{3}{4} = \frac{1}{4}$, 即 a = 1 时, 方程有三解: $x = 0, \frac{\pi}{2}, \pi$. (5) 当 $0 < a \frac{3}{4} < \frac{1}{4}$, 即 $\frac{3}{4} < a < 1$ 时, 方程有四解.

- 120. 若关于 x 的方程 $\sin x = 2a 1$ 有解, 则 a 的取值范围是 (
 - A. 0 < a < 1
- B. a < 0 或 a > 1 C. a < 0 或 a > 1
- D. $0 \le a \le 1$

- 121. 满足 $\cos(2x + 45^{\circ}) = \sin(30^{\circ} x)$ 的最小正角是 (

B. 15°

 $C.~30^{\circ}$

- D. 37.5°
- 122. 记方程 $\cos 2x = 1$ 的解集为 M, 方程 $\sin 4x = 0$ 的解集为 P, 则 M 与 P 的关系是 ().
 - A. $M \subset P$
- B. $M \supset P$
- C. M = P
- D. $M \not\subset P \coprod M \not\supset P$

I56.

- 123. 方程 $\cos x^2 = 1$ 的解集是 (
 - A. $\{x|x=2k\pi, k\in\mathbf{Z}\}$

B. $\{x | x = \pm \sqrt{2k\pi}, k \in \mathbf{Z}\}$

C. $\{x|x=\pm\sqrt{2k\pi}, k\in\mathbf{N}\}$

- D. $\{x | x = \pm \sqrt{2k\pi}, k \in \mathbb{N}\} \cup \{0\}$
- 124. 方程 $\sin^2 x = \cos^2 x$ 的解集是 (
 - A. $\{x|x = 2k\pi + \frac{\pi}{4}, k \in \mathbf{Z}\}$

C. $\{x|x = \frac{k\pi}{2} + \frac{\pi}{4}, k \in \mathbf{Z}\}$

- B. $\{x|x = k\pi + \frac{\pi}{4}, k \in \mathbf{Z}\}$ D. $\{x|x = \frac{k\pi}{4} + \frac{\pi}{4}, k \in \mathbf{Z}\}$
- 方程 $\sqrt{1-\sin^2 x} = \sin x$ 的解集是 (
 - A. $\{x|x = k\pi + (-1)^k \frac{\pi}{4}, k \in \mathbf{Z}\}$

B. $\{x|x = k\pi + \frac{\pi}{4}, \ k \in \mathbf{Z}\}$

C. $\{x|x=k\pi\pm\frac{\pi}{4},\ k\in\mathbf{Z}\}$

- D. $\{x | x = 2k\pi \pm \frac{\pi}{4}, \ k \in \mathbf{Z}\}$
- 125. 方程 $\tan(2x + \frac{\pi}{3}) = \frac{\sqrt{3}}{3}$ 在 $[0, 2\pi)$ 范围内的解的个数是 ().
 - A. 5

B. 4

C. 3

D. 2

- 126. 若方程 $2\cos x = (\frac{1}{2})^a$ 无解, 则实数 a 的取值范围是______
- 127. 方程 $\sin x = -\cos \frac{2\pi}{5}$ 的解集是______.
- 128. 方程 $\sin 2x \cdot \cot x = 0$ 的解集是_
- 129. 若函数 $f(x) = \sin(2x + 5\theta)$ 的图像关于 y 轴对称, 则 θ 的值等于_____.
- 130. 若方程 $\sin x = a$ 在 $[\frac{2\pi}{3}, \frac{5\pi}{3}]$ 中恰有两个不同的实数解, 则 a 的取值范围是
- 131. 若 $-6 < \log_{\frac{1}{\sqrt{2}}} x < -2$, 求方程 $\cos \pi x = 1$ 的解集.
- 132. 求方程 $\lg x = \cos 2x$ 解的个数.
- 133. 方程 $\frac{\cos 2x}{1 + \sin 2x} = 0$ 的解集是 ().

A.
$$\{x|x=2k\pi\pm\frac{\pi}{4},\ k\in \mathbb{B}.\ \{x|x=k\pi\pm\frac{\pi}{4},\ k\in\mathbf{Z}\}$$
 C. $\{x|x=k\pi+\frac{\pi}{4},\ k\in\mathbf{Z}\}$ D. $\{x|x=\frac{k\pi}{2}+\frac{\pi}{4},\ k\in\mathbf{Z}\}$ $\mathbf{Z}\}$

- 134. 方程 $\frac{2\sin x}{\sin 2x} = 1$ 在 $-2\pi \le x \le 2\pi$ 范围内 (
 - A. 有一个解
- B. 有两个解
- C. 有三个解
- D. 无解

135. 下列方程中, 与方程 $\sin x = \cos x$ 的解集相同的是 (

A.
$$\sin 2x = 2\sin^2 x$$

B.
$$\cos x = \sqrt{1 - \cos^2 x}$$
 C. $\sin^2 x = \cos^2 x$

C.
$$\sin^2 x = \cos^2 x$$

D.
$$\frac{\cos 2x}{\sin x + \cos x} = 0$$

- 136. 方程 $\lg_2 \tan x = 1 + \log_2 \sin x$ 的解集为_____.
- 137. 方程 $\sin x + \sqrt{3}\cos x = 2$ 的解集为_____.
- 138. 已知 |a| < 2, 方程 $\sin x \sqrt{3} \cos x = a$ 的解集为 .

139. 方程
$$\cos(x + \frac{2\pi}{3})\cos(x + \frac{\pi}{3}) = -\frac{1}{4}$$
 的解集为_____.

140. 方程
$$\cos^2(\frac{x-30^\circ}{2}) + \cos^2(\frac{x+30^\circ}{2}) = 1$$
 的解集为_____.

- 141. 方程 $\sin x \cos x + 1 = \sin x + \cos x$ 的解集为______.
- 142. 方程 $\sqrt{2}\sin x = \sin 2x + \cos 2x$ 的解集为______.
- 143. 方程 $\sin(x \frac{\pi}{6})\sin(x + \frac{\pi}{6}) = \frac{1}{2}$ 的解集为_____.
- 144. 解方程 $\sin 3x \sin 2x + \sin x = 0$.
- 145. 解方程 $\cos 2x \cos 3x = \cos x \cos 4x$.
- 146. 解方程 $\sin 4x \cos 3x = \sin 6x \cos x$.
- 147. 解方程 $\sin 5x \sin 3x = \sqrt{2}\cos 4x$.

- 148. 解方程 $\sin x + \sin 2x + \sin 3x = 1 + \cos x + \cos 2x$.
- 149. 若方程 $\sin x + \cos x = m(m \in \mathbf{R})$ 在 $0 \le x \le \pi$ 范围内有两个不同的实数解,则().

A.
$$-1 \le m \le \frac{\sqrt{2}}{2}$$
 B. $-1 < m \le 1$ 或 $m =$ C. $1 \le m < \sqrt{2}$ D. $-\sqrt{2} < m < \sqrt{2}$

150. 方程 $\sin^2 x + 2\sin x - a = 0$ 有解的条件为 (

A.
$$a \in \mathbf{R}$$
 B. $a \in [-1,3]$ C. $a \in [-1,\infty)$ D. $a \in (-\infty,3]$

151. 若方程 $\cos^2 x - |\sin x| + 1 = 0$ 在 $-\pi < x < \pi$ 范围内的解之和是 p, 解之积是 q, 则下列结论正确的是 (

A.
$$p = -1$$
 B. $p = 0$

C.
$$q=1$$

- 152. 设 $f(x) = \cos(x a) + \sin(x + a)$ 是偶函数, 求 a 的值.
- 153. 解方程 $8\sin^2 x = 3\sin 2x 1$.
- 154. 解方程 $(\sin x + \cos x)^2 = 2\cos 2x$.
- 155. **解方程** $\frac{1+\tan x}{1-\tan x} = 1+\sin 2x$.
- 156. **解方程** $\tan(\frac{\pi}{3} + x) + \tan(\frac{\pi}{6} x) = \frac{4}{\sqrt{3}}$.
- 157. 解方程 $\sin x + \cos x + \sin x \cos x = 1$.
- 158. **解方程** $\sin 2x 12(\sin x \cos x) + 12 = 0$.
- 159. 解方程 $\sqrt{2}(\sin x + \cos x) = \tan x + \cot x$.
- 160. 解方程 $\sin x + \cos x + \tan x + \cot x + \sec x + \csc x + 2 = 0$.
- 161. 已知方程 $2x^2 4x\sin\theta + 3\cos\theta = 0$ $(0 \le \theta \le \pi)$ 有相等的实根, 求 θ 的值, 并解此方程.
- 162. 已知方程 $x^2 (\sin \alpha + \cos \alpha)x + \sin^2 \alpha \sin \alpha \cos \alpha 1 = 0$ 有两个相等的实根, 求实数 α 和相成的 x 的值.
- 163. 已知方程 $x^2 4x \cos 2\theta + 2 = 0$ 和方程 $2x^2 + 4x \sin 2\theta 1 = 0$ 有一根互为倒数, 求角 θ 的值 $(0 < \theta < \pi)$.
- 164. 已知关于 x 的方程 $\sin^2 x + \cos x + a = 0$ 有解, 求实数 a 的取值范围.
- 165. 已知 $\cos^2 x \sin x + a = 0$ 在 $0 < x \le \frac{\pi}{2}$ 范围内有解, 求实数 a 的取值范围
- 166. 求实数 k 的取值范围, 使关于 x 的方程 $\sin^2 x \sin x + k = 0$ 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上
 - (1) 无解;
 - (2) 恰有一解;
 - (3) 有两解.

- 167. (1) 若关于 x 的方程 $\cos 2x \sin x + 1 + m = 0$ 有解, 求实数 m 的取值范围. I(2) 若关于 x 的方程 $\sin^2 x + 4 \sin x \cos x 2 \cos^2 x = a$ 恒有实数解, 求实数 a 的取值范围.
- 168. 将 $\frac{1}{2}$, $\sin \frac{1}{2}$, $\arcsin \frac{1}{2}$ 中的三个数从小到大排列.
- 169. 将 $\frac{1}{3}$, $\cos \frac{1}{3}$, $\arccos \frac{1}{3}$ 中的三个数从小到大排列.
- 170. 将 $\arcsin \frac{1}{4}$, $\arctan \sqrt{5}$, $\arccos(-\frac{1}{3})$ 中的三个数从小到大排列
- 171. 已知 0 < x < 1,求证: $2 \arctan \frac{1+x}{1-x} + \arcsin \frac{1-x^2}{1+x^2} = \pi$.
- 172. 已知 a,b,c>0, 求证: 若 $\arctan a + \arctan b + \arctan c = \pi$, 则 a+b+c=abc, 反过来也成立.
- 173. 画出函数 $y = \arctan x + \arctan \frac{1-x}{1+x}$ 的图像.
- 174. 在不同坐标系内分别画出 $y = \arcsin(\sin x)(-\frac{\pi}{2} \le x \le \frac{3\pi}{2})$ 和 $y = \arcsin(\sin x)(x \in \mathbf{R})$ 的图像.
- 175. 解方程 $x = \arcsin(\sin 2x)$.
- 176. 解方程 $\cos(\pi \sin x) = \sin(\pi \cos x) (0 \le \pi < 2\pi)$.
- 177. **解方程** $x^2 + 2x\cos(xy) + 1 = 0(x, y \in \mathbf{R})$.
- 178. 已知 α, β 是关于 x 的方程 $a\cos x + b\sin x = c$ 的两个实根 $(a^2 + b^2 \neq 0, \ a \neq 2k\pi + \beta, \ k \in \mathbf{Z})$, 求证 $\cos^2 \frac{\alpha \beta}{2} = \frac{c^2}{a^2 + b^2}$.
- 179. 已知 $\triangle ABC$ 的两内角 A, B 满足方程 $8\sin^2 x + 3\sin 2x 4 = 0$, 且 A > B, 求此三角形三边长之比.
- 180. 解方程 $\tan(x + \frac{\pi}{4}) + \tan(x \frac{\pi}{4}) = 2 \cot x$.
- 181. 已知关于 x 的方程 $x = a \sin x + b(0 < a < 1, b \in \mathbf{R})$ 有实根, 求证: 该方程只有一个实根.
- 182. 已知方程 $\sin^2 x + 3a^2 \cos x 2a^2 (3a 2) 1 = 0$ 有实数解, 求实数 a 的取值范围.
- 183. 已知关于 x 的方程 $2\cos 2x + 4(a-1)\sin x 4a + 1 = 0$ 在 $0 \le x \le 2\pi$ 范围内有相异两个实根, 求 a 的取值范围.
- 184. 已知关于 x 的方程 $\cos 2x 2(2a+1)\cos x + 2a^2 + 2a + 1 = 0$ 在 $[0,2\pi)$ 范围内有两个不同的解, 求实数 a 的取位范围.