Estruturas Algébricas

Lista 1

- 1) Sejam A um anel e $a, b, c \in A$. Mostre que
 - a) -b = (-1)b;
 - b) $(-1)^2 = 1$;
 - c) $(-a)^2 = a^2$
 - d) (-b)c = -bc;
 - e) (a b)c = ac bc;
 - f) -(a+b) = -a b;
 - g) a subtração não é comutativa nem associativa.
- 2) Mostre que se o produto de dois elementos de um anel é invertível, então cada um desses elementos é invertível.
- 3) Sejam X um conjunto com mais de um elemento e A um anel. Mostre que o anel $\mathcal{F}(X,A)$ das funções de X em A não é um domínio.
- 4) Prove as propriedades da norma em $\mathbb{Z}[i]$ enunciadas em aula; ou seja, dados $z, z' \in \mathbb{Z}[i]$, mostre que
 - a) N(z) = 0 se, e somente se, z = 0;
 - b) N(z) = 1 se, e somente se, $z \in \mathbb{Z}[i]^*$;
 - c) N(zz') = N(z)N(z');
 - d) Se $z' \neq 0$, então $N(zz') \geq N(z)$.
- 5) Um número natural a é dito soma de dois quadrados se existirem dois números naturais b e c tais que $a = b^2 + c^2$. Mostre que o produto de dois números que são somas de dois quadrados é soma de dois quadrados.
- 6) Mostre que \mathbb{Z}_2 não é subanel de \mathbb{Z}_4 .
- 7) Um anel $(A,+,\cdot)$ é dito um anel Booleano se $a^2=a,$ para todo $a\in A.$ Mostre que
 - a) -a = a, para todo $a \in A$;

- b) todo anel booleano é comutativo. Sugestão para b): Use o fato de que $(a+b)^2 = a+b$ e desenvolva o quadrado.
- 8) Seja X um conjunto não vazio qualquer, vamos munir o conjunto das suas partes $\mathcal{P}(X)$ com as seguintes operações:

$$A + B = (A \cup B) \setminus (A \cap B)$$
 e $A \cdot B = A \cap B$.

Mostre que $\mathcal{P}(X)$ com essas operações é um anel booleano.

- 9) Mostre que os elementos invertíveis do anel dos inteiros Gaussianos $\mathbb{Z}[i]$ são ± 1 e $\pm i$.
- 10) Mostre que o corpo de frações do anel dos inteiros Gaussianos $\mathbb{Z}[i]$ é

$$\mathbb{Q}(i) = \{x + yi; \ x, y \in \mathbb{Q}\}.$$