CS321	Artificial Neural Networks	L	T	P
		2	1	1

Introduction: Biological Neural Networks, Mathematical Model of Neuron, McCulloch and Pitts Model, Concepts of Threshold and Activation Functions, Typically used Non-linearity, Stability-plasticity dilemma.

ANN Topologies and Learning: Rosenblatt Perceptron, Linear Separation and MLP, Feedforward and Feed-backward Networks; Delta and Gradient Descent learning rules, Hebbian Learning, Back Propagation learning, Radial basis Function Networks, Associative Memory Paradigms, Hopfield Networks, Recurrent Networks, Self-organizing feature Maps.

Applications: ANN for Pattern Classification, Pattern Matching and Time Series Analysis.

Suggested Readings:

- 1. L. Fausett et al., Fundamentals of Neural Networks, Pearson.
- 2. S. Haykin, Neural Networks, Pearson.
- 3. M. T. Hagan, Neural Network Design, Cengage