Kholle 2 filière MPSI Jean-Louis CORNOU

1. Donner la définition de la bijectivité d'une application $f: E \to F$. Démontrer que f est bijective si et seulement si

$$\forall y \in F, \exists ! x \in E, f(x) = y$$

2. On définit sur \mathbb{N}^* une relation binaire \mathcal{R} via

$$\forall (x,y) \in (\mathbb{N}^*)^2, x\mathcal{R}y \iff \exists n \in \mathbb{N}^*, y = x^n$$

- (a) Démontrer que \mathcal{R} est une relation d'ordre non totale sur \mathbb{N}^* .
- (b) Déterminer l'ensemble des majorants de la partie $\{2,3\}$ de \mathbb{N}^* .
- 3. Soit $f: \mathbb{R} \to \mathbb{C}$, $x \mapsto (1+ix)/(1-ix)$. Déterminer son ensemble de définition, $f(\mathbb{R})$ et $f^{-1}(\mathbb{R})$.

Kholle 2 filière MPSI Jean-Louis CORNOU

- 1. Soit E un ensemble. Donner la définition d'une relation d'équivalence sur E. Démontrer que l'ensemble des classes d'équivalence d'une relation d'équivalence forme une partition de E.
- 2. On définit l'application $f:[0,1] \to [0,1], x \mapsto x$ si $x \in \mathbb{Q}, x \mapsto 1-x$ si $x \notin \mathbb{Q}$. Montrer que f est bijective. Quelle est alors sa réciproque?
- 3. On se donne une fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto \tan\left(\frac{\pi}{2}\sqrt{\frac{1+x}{1-x}}\right)$. Déterminer son ensemble de définition.

Kholle 2 filière MPSI Jean-Louis CORNOU

- 1. Soit (E, \leq) un ensemble ordonné, $f: E \to E$ et $g: E \to E$ deux applications monotones. Démontrer que $g \circ f$ est monotone. Soit X un ensemble. On considère l'ensemble ordonné $(\mathcal{P}(X), \subset)$ et A une partie de F. L'application $\mathcal{P}(X) \to \mathcal{P}(X), B \mapsto A \cup B^c$ est-elle monotone?
- 2. On note $f_1: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ et $f_2: \mathbb{R} \to \mathbb{R}, x \mapsto 2x + 1$. Déterminer l'ensemble des applications affines g de \mathbb{R} dans \mathbb{R} telles que
 - (a) $f_1 \circ g = g \circ f_1$.
 - (b) $f_2 \circ g = g \circ f_2$.
 - (c) g commute avec une application affine donnée.
- 3. On note $h: \mathbb{R}^* \to \mathbb{R}$, $x \mapsto \sin(\pi/x)$ et la relation d'équivalence $x\mathcal{R}y \iff h(x) = h(y)$ sur \mathbb{R}^* . Décrire l'ensemble de ses classes d'équivalence.

Kholle 2 filière MPSI Jean-Louis CORNOU

Exercices supplémentaires et plus corsés pour les gourmands :

- 1. Soit $n \in \mathbb{N}^*$. Déterminer les variations de $x \mapsto \sum_{k=0}^n x^k$ sur \mathbb{R} . Sur quelles parties de \mathbb{R} est-elle injective?
- 2. Montrer qu'il n'existe pas de surjection de E dans $\mathcal{P}(E)$.
- 3. On munit \mathbb{N}^2 de la relation d'ordre lexicographique. Montrer que $s: \mathbb{N} \to \mathbb{N}^2, x \mapsto (x,0)$ est injective monotone. On note $\omega = (0,1)$, montrer que ω est un majorant de $s(\mathbb{N})$. Quels sont les majorants de $s(\mathbb{N})$?