1 Proof of Proposition 2

Proof. Recall problem (\mathcal{P}_1) :

$$\min_{\mathbf{P}} \langle \mathbf{D}, \mathbf{P} \rangle + \epsilon \sum_{i,j} P_{i,j} \log P_{i,j}$$

$$s.t. P_{i,j} \ge 0, \quad \sum_{j} P_{i,j} = 1, \quad \frac{1}{m} \sum_{i} P_{i,j} = \frac{1}{n}$$

$$(\mathcal{P}_1)$$

We manipulate (\mathcal{P}_1) using method of Lagrangian multipliers. Introducing multipliers $\alpha_i, i = 1, \dots, m$ and $\beta_j, j = 1, \dots, n$. Define

$$\mathcal{L} \triangleq \langle \mathbf{D}, \mathbf{P} \rangle + \epsilon \sum_{i,j} P_{i,j} \log P_{i,j} - \sum_{i} \alpha_{i} \left(\sum_{j} P_{i,j} - 1 \right) - \sum_{j} \beta_{j} \left(\sum_{i} P_{i,j} - \frac{m}{n} \right)$$

The optimizer of (\mathcal{P}_1) is the optimizer of the following min-max problem,

$$\min_{\mathbf{P}: P_{i,j} \geq 0} \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \mathcal{L}(\mathbf{P}, \boldsymbol{\alpha}, \boldsymbol{\beta}),$$

The minimizer P^* can be obtained by setting

$$\frac{\partial \mathcal{L}}{\partial P_{i,j}} = D_{i,j} + \epsilon \left(\log P_{i,j} + 1 \right) - \alpha_i - \beta_j = 0,$$

which gives the minimizer P^*

$$P_{i,j}^* = \exp\left(-\frac{D_{i,j} - \alpha_i - \beta_j}{\epsilon} - 1\right).$$

Substitute the $P_{i,j}^*$'s into \mathcal{L} , simplify, gives

$$\mathcal{L}(\mathbf{P}^*, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \sum_{i} \alpha_i + \frac{m}{n} \sum_{j} \beta_j - \epsilon \sum_{i,j} \exp\left(-\frac{D_{i,j} - \alpha_i - \beta_j}{\epsilon} - 1\right)$$

We now study

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}} \mathcal{L}(\mathbf{P}^*,\boldsymbol{\alpha},\boldsymbol{\beta}).$$

 $\mathcal{L}(\mathbf{P}^*, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is a concave function of $[\boldsymbol{\alpha}, \boldsymbol{\beta}]$, whose maximizer can be obtained by setting its derivative to zero. We therefore let

$$\frac{\partial \mathcal{L}(\mathbf{P}^*, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \alpha_i} = 1 - \sum_j \exp\left(-\frac{D_{i,j} - \alpha_i - \beta_j}{\epsilon} - 1\right) = 0,$$

which gives the optimal α_i^* ,

$$\alpha_i^* = -\epsilon \log \sum_i \exp \left(-\frac{D_{i,j} - \beta_j}{\epsilon} - 1\right)$$

Resubstitute into $\mathcal{L}(\mathbf{P}^*, \boldsymbol{\alpha}, \boldsymbol{\beta})$, simplify, and we arrive at

$$\mathcal{L}(\mathbf{P}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}) = \sum_{i} \left[-\epsilon \log \sum_{j} \exp \left(-\frac{D_{i,j} - \beta_{j}}{\epsilon} \right) + \frac{1}{n} \sum_{j} \beta_{j} \right].$$

We want to solve $\max_{\beta} \mathcal{L}(\mathbf{P}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta})$, which is equivalent to

$$\min_{\beta} \sum_{i} \left[\epsilon \log \sum_{j} \exp \left(\frac{\beta_{j} - D_{i,j}}{\epsilon} \right) - \frac{1}{n} \sum_{j} \beta_{j} \right].$$

Also, substituting the α^* into \mathbf{P}^* gives

$$\mathbf{P}^* = \frac{\exp\left(\frac{\beta_j - D_{i,j}}{\epsilon}\right)}{\sum_j \exp\left(\frac{\beta_j - D_{i,j}}{\epsilon}\right)}.$$

2 Bilingual Lexicon Induction Results Using vocabularies of 200K

This section supplements Section 6.2 of the paper.

Table 1: P@1 values on the large test dictionary. Source and target vocabularies are both 200K

source		en	es	fr	it	pt	de
en	NN		60.62	61.66	52.89	42.19	58.37
	ISF		75.00	76.20	68.69	58.32	70.74
	CSLS		75.18	76.35	69.08	58.81	71.00
	GNN		75.17	76.95	69.16	58.64	69.69
es	NN	65.14		67.21	68.17	72.17	54.50
	ISF	76.98		80.61	79.88	82.14	67.53
	CSLS	76.94		80.36	79.87	82.95	67.67
	GNN	77.82		81.49	80.83	83.72	66.62
fr	NN	66.86	67.70		65.92	52.12	62.62
	ISF	78.34	79.92		77.72	65.71	74.3
	CSLS	78.49	80.30		78.07	66.62	74.7
	GNN	79.16	80.59		78.44	67.02	73.3
it	NN	57.10	70.50	67.79		58.38	57.00
	ISF	70.34	81.80	80.80		72.35	69.73
	CSLS	70.05	81.93	80.57		73.12	69.9
	GNN	71.37	82.87	81.80		74.10	68.83
pt	NN	47.81	75.31	54.36	58.99		44.69
	ISF	60.93	85.54	69.58	73.37		58.0
	CSLS	60.60	85.66	69.14	73.25		58.32
	GNN	62.49	87.13	70.90	74.90		57.08
de	NN	60.61	50.05	59.51	52.93	39.17	
	ISF	72.97	64.30	74.98	69.91	57.39	
	CSLS	72.21	63.60	73.96	68.73	55.97	
	GNN	72.33	64.03	73.52	69.62	56.58	