Name	Andrew Quick	abc123	axt050	

Homework #2

1. Write the Verilog code for a 4:1 MUX

endmodule

- 2. There are a number of delays in Verilog. The two we will use most in this course are below. Explain the difference between these two delays:
 - Inertial Delay

This is the default type of delay in Verilog. It filters out glitches, meaning only input pulses longer than the delay propagate to the output. Example: If #5 is used, pulses shorter than 5 time units will be filtered.

Transport Delay

This models a physical delay without filtering any input pulses. Even if an input changes rapidly, the signal is propagated to the output after the delay.

Name	Andrew Quick	abc123	gxt050

3. You apply a 5ns A=1 pulse to signal A where B=1. Draw the resultant timing diagram for A and C where C is driven by this code:

// Inertial delay therefore if pulse is under 10 time units, it'll be filtered out assign #10 C = A && B

4. Write Verilog code for a 6 bit adder using a full 1 bit adder modules

```
module FullAdder (A, B, Ci, Co, S);

input A, B, Ci;  // Inputs: A, B, and Carry In (Ci)
output S, Co;  // Outputs: Sum (S) and Carry Out (Co)

assign S = A ^ B ^ Ci;  // Sum calculation
assign Co = (A & B) | (B & Ci) | (A & Ci);  // Carry Out calculation
```

Name ______Andrew Quick ______ abc123 _____qxt050 _____

```
module Adder6 (S, Co, A, B, Ci);
   input [5:0] A, B; // 6-bit inputs
   input Ci;
                     // Carry input
                    // 6-bit sum output
   output [5:0] S;
                    // Carry out
   output Co;
   wire [5:1] C; // Internal carry signals
   // Instantiate 6 Full Adders
   FullAdder FA0 (A[0], B[0], Ci, C[1], S[0]);
   FullAdder FA1 (A[1], B[1], C[1], C[2], S[1]);
   FullAdder FA2 (A[2], B[2], C[2], C[3], S[2]);
   FullAdder FA3 (A[3], B[3], C[3], C[4], S[3]);
   FullAdder FA4 (A[4], B[4], C[4], C[5], S[4]);
   FullAdder FA5 (A[5], B[5], C[5], Co, S[5]);
```

endmodule