TRAVAUX DIRIGÉS MI1 Cinématique du point

Niveau 1

Exercice 1. Mouvement d'un mobile

- 1. Un mobile dont l'accélération conserve une même direction peut-il avoir un mouvement curviligne plan ?
- 2. Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle ?
- 3. Un mobile peut-il avoir une accélération de direction variable si sa vitesse conserve toujours la même direction ?
- 4. Un mobile peut-il avoir une vitesse dont la direction change si son vecteur accélération est constant ?

*Exercice 2. Éléments cinématiques en coordonnées cylindriques

Les coordonnées cylindriques instantanées d'un point M en mouvement sont :

$$\begin{cases} r(t) = a_0 t^2 + r_0 \\ \theta(t) = \omega t + \theta_0 \\ z(t) = -vt \end{cases}$$

 ${\rm avec}\ r_{\!\scriptscriptstyle 0} = 1\ {\rm m}\,,\ a_{\!\scriptscriptstyle 0} = 1\ {\rm m.s}^{^{-2}}\,,\ \omega = 3\ {\rm rad.s}^{^{-1}}\,,\ \theta_{\!\scriptscriptstyle 0} = 2\ {\rm rad}\,,\ v = 2\ {\rm m.s}^{^{-1}}\,.$

- 1. Déterminer les composantes des vecteurs vitesse et accélération dans la base cylindrique.
- 2. Calculer la norme de la vitesse de M à l'instant $t_1=1~\mathrm{s}$.
- 3. Calculer la norme de l'accélération de M à l'instant initial (t = 0).

Niveau 2

*Exercice 3. Tourne-disque

Un tourne-disque, posé sur une table fixe (référentiel du laboratoire \mathcal{R}), comporte un plateau de centre O, de rayon R = 16,0 cm tournant à la vitesse angulaire constante 33,0 tours.min⁻¹. L'étude est réalisée dans \mathcal{R} .

- 1. Quel est le mouvement d'un point M du plateau tel que OM = r = 10,0 cm?
- 2. Quelle est la vitesse angulaire de rotation ω_0 du point M en rad.s⁻¹?

- 3. Quelle est la vitesse instantanée du point M et celle d'un point P à la périphérie du plateau ?
- 4. Quelle est la distance parcourue par le point M en $t_1 = 2 \min 30 \text{ s}$?
- 5. Quelle est la valeur de l'angle parcourue par le rayon OM pendant t_1 ?
- 6. Quel est le vecteur accélération du point M à la date t_1 ?
- 7. À la date $t_1 = 2 \min 30 \, \text{s}$, une phase de freinage débute et le plateau s'immobilise à $t_2 = 2 \min 40 \, \text{s}$. Dans cette phase, $\omega = \alpha \beta t$. Déterminer les paramètres du freinage α et β . Quels sont la vitesse instantanée du point M et le vecteur accélération à la date t? Calculer la norme a_M à $t_3 = 2 \min 35 \, \text{s}$.

*Exercice 4. Interpellation pour vitesse excessive

Un conducteur roule à vitesse constante v_0 sur une route rectiligne. Comme il est en excès de vitesse à 100 km.h^{-1} , un gendarme à moto démarre à l'instant où la voiture passe à sa hauteur et accélère uniformément. Le gendarme atteint la vitesse de 90 km.h^{-1} au bout de 10 s.

- 1. Quel sera le temps nécessaire au motard pour rattraper la voiture ?
- 2. Quelle distance aura-t-il parcourue?
- 3. Quelle vitesse aura-t-il alors atteinte?

Exercice 5. Attention au choc!

Deux voitures se suivent sur une ligne droite à la vitesse $v=30~\rm m.s^{-1}$ à une distance $d=80~\rm m$ l'une de l'autre. À la date t=0, la première freine avec une décélération constante $\ddot{x}_A=-2.0~\rm m.s^{-2}$. Celle qui la suit commence à freiner seulement 2,0 s plus tard, avec une décélération constante $\ddot{x}_B=-1.0~\rm m.s^{-2}$.

- 1. En prenant pour origine du repère spatial la position de la seconde voiture à la date t = 0, établir les équations horaires du mouvement des deux véhicules.
- 2. Déterminer la date t_1 du contact entre les deux véhicules et leur position x_1 .

Exercice 6. Tir au pigeon d'argile

Une cible C est abandonnée sans vitesse initiale d'une hauteur h à l'abscisse x = L. Au même instant, un projectile P est tiré depuis l'origine O avec une vitesse initiale $\overrightarrow{v_0}$ faisant un angle β avec l'horizontale.

En admettant que l'accélération d'un corps en chute libre est égale à g à tout instant, calculer l'angle β pour que le projectile atteigne sa cible. Interpréter.

Exercice 7. Le manège

Dans le référentiel terrestre \mathcal{R} , on définit un repère (Oxyz) avec un axe (Oz) vertical ascendant. La figure ci-contre est une vue de dessus. Un manège est constitué de deux plateformes circulaires horizontales de même rayon R: l'une est immobile par rapport au référentiel terrestre, sa circonférence passe par l'origine O du repère et son centre est sur l'axe (Ox); l'autre peut rouler sans glisser autour de la première.

Un enfant, assimilé à un point M, a pris place sur le manège, en un point de la circonférence de la plateforme mobile. M décrit alors une trajectoire contenue dans le plan horizontal (Oxy) et décrite par l'équation polaire : $r = 2R(1 + \cos\theta)$ et on suppose de plus que la vitesse angulaire ω est maintenue constante, soit $\theta = \omega t$ à partir de l'instant initial t = 0.

- 1. Reproduire sur un schéma les axes du plan et le cercle représentant la plateforme fixe. Placer sur ce schéma les quatre points de la trajectoire de M correspondant aux angles $\theta=0$ (ce point sera noté A), $\theta=\frac{\pi}{2}$ (point B), $\theta=\pi$ (point C), $\theta=\frac{3\pi}{2}$ (point D), puis dessiner l'allure de la trajectoire complète (cette courbe s'appelle une cardioïde). Ajouter la base cylindrique $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$ au point D.
- 2. Déterminer, en fonction de t, R et ω , les composantes du vecteur vitesse $v(M)_{\mathcal{R}}$ dans la base cylindrique. Dessiner ce vecteur au point D.
- 3. Calculer la norme de la vitesse.
- 4. En quel point l'enfant risque-t-il le plus d'être éjecté du manège (vitesse maximale), et dans quelle direction serait-il alors éjecté ?
- 5. En quel point l'enfant pourra-t-il essayer de descendre du manège (v = 0) ?
- 6. Déterminer les composantes du vecteur accélération $\vec{a}(M)_{\mathcal{R}}$ dans la base cylindrique. Dessiner ce vecteur au point D.
- 7. Calculer la norme de l'accélération.
- 8. Il n'existe pas de sensation absolue de vitesse, en revanche ce qu'on ressent fortement est l'accélération que l'on subit. En quel point l'enfant risque-t-il le plus de se sentir mal (accélération maximale) ?

*Exercice 8. Mouvement hélicoïdal

Un mobile *M* décrit une trajectoire d'équations paramétriques :

crit une trajectoire d'équations paramétriques :
$$\begin{cases} x = r\cos(\omega t) \\ y = r\sin(\omega t) \text{ avec } r, \ \alpha \text{ et } \omega \text{ : constantes positives.} \\ z = \alpha \omega t \end{cases}$$

- 1. Étudier le mouvement de la projection H de M dans le plan (xOy). En déduire que le mouvement de M résulte de la superposition de deux mouvements que l'on précisera. Représenter graphiquement la trajectoire.
- 2. Exprimer la vitesse et l'accélération de M en coordonnées cartésiennes puis en coordonnées cylindriques.
- 3. Vérifier que les normes de la vitesse et de l'accélération ne dépendent pas du système de coordonnées utilisé.

SOLUTIONS

Exercice 1. Mouvement d'un mobile

1. Oui 2. Oui 3. Non 4. Oui

*Exercice 2. Éléments cinématiques en coordonnées cylindriques

- 1. En coordonnées cylindriques, le <u>vecteur position</u> est $\overrightarrow{OM} = r\overrightarrow{u_r} + z\overrightarrow{u_z}$
- Le vecteur vitesse est (cf. cours) :

$$\overrightarrow{v} = \dot{r}\overrightarrow{u_r} + r\dot{ heta}\overrightarrow{u_{ heta}} + \dot{z}\overrightarrow{u_z} = v_r(t)\overrightarrow{u_r} + v_{ heta}(t)\overrightarrow{u_{ heta}} + v_z(t)\overrightarrow{u_z}$$

$$\begin{bmatrix} v_r(t) = \dot{r} = 2a_0t \\ v_{ heta}(t) = r\dot{ heta} = \left(a_0t^2 + r_0\right)\omega \\ v_z(t) = \dot{z} = -v \end{bmatrix}$$

Le <u>vecteur accélération</u> est (cf. cours)

$$\overrightarrow{a} = (\overrightarrow{r} - r\dot{\theta}^2)\overrightarrow{u_r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\overrightarrow{u_\theta} + \ddot{z}\overrightarrow{u_z} = a_r(t)\overrightarrow{u_r} + a_\theta(t)\overrightarrow{u_\theta} + a_z(t)\overrightarrow{u_z}$$

$$\begin{bmatrix} a_r(t) = \ddot{r} - r\dot{\theta}^2 = 2a_0 - (a_0t^2 + r_0)\omega^2 \\ a_\theta(t) = r\ddot{\theta} + 2\dot{r}\dot{\theta} = 4a_0t\omega \\ a_z(t) = \ddot{z} = 0 \end{bmatrix}$$

2. La <u>norme de la vitesse</u> est :

$$\left\| \vec{v} \right\| = \sqrt{v_r^2 + v_\theta^2 + v_z^2} = \sqrt{\left(2a_0t\right)^2 + \left(a_0t^2 + r_0\right)^2 \omega^2 + v^2}$$

> A.N. Pour
$$t_1 = 1 \text{ s}$$
, $||\vec{v}(t_1)|| = 6.6 \approx 7 \text{ m.s}^{-1}$

3. La norme de l'accélération est :

$$\left\| \vec{a} \right\| = a = \sqrt{a_r^2 + a_\theta^2 + a_z^2} = \sqrt{\left(2a_0 - \left(a_0 t^2 + r_0\right)\omega^2\right)^2 + \left(4a_0 t\omega\right)^2}$$

ightharpoonup A.N. Pour t = 0, $a = 7 \text{ m.s}^{-2}$

*Exercice 3. Tourne-disque

- 1. Le point M décrit une trajectoire circulaire à vitesse angulaire constante : mouvement circulaire uniforme.
- 2. 1 tour \leftrightarrow 2π donc $\omega_0 = 33, 0 \cdot \frac{2\pi}{60} = 3,46 \text{ rad.s}^{-1}$
- 3. <u>Vecteur position</u>: $\overrightarrow{OM} = r\overrightarrow{u_r}$
- $\begin{array}{c} \begin{array}{c} \underline{\text{Vecteur vitesse}}: \ \overrightarrow{v} = \frac{d\overrightarrow{OM}}{dt} = \overrightarrow{ru_r} + r\frac{d\overrightarrow{u_r}}{dt} \ \text{et} \ \frac{d\overrightarrow{u_r}}{dt} = \dot{\theta}\overrightarrow{u_\theta} \ . \ \text{Or} \ r = cste \ , \ \text{d'où} \ \dot{r} = 0 \ \text{et} \\ \\ \dot{\theta} = cste = \omega_0 \ . \ \text{Donc}: \ \overrightarrow{v_M} = r\omega\overrightarrow{u_\theta} \ \text{et} \ \overrightarrow{v_P} = R\omega\overrightarrow{u_\theta} \end{array}$
- $ightharpoonup \underline{A.N.}$: $v_M = 0.346 \text{ m.s}^{-1} \text{ et } v_P = 0.553 \text{ m.s}^{-1}$
- 4. Distance parcourue : $d_1 = v_M t_1 = 51.8 \text{ m}$
- 5. Angle parcouru : $\theta_1 = \omega_0 t_1 = 518 \text{ rad}$
- 6. $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d(r\omega_0)}{dt}\overrightarrow{u_\theta} + r\omega_0 \frac{d\overrightarrow{u_\theta}}{dt} = r\omega_0 \frac{d\overrightarrow{u_\theta}}{dt} \text{ car } r = cste \text{ et } \omega_0 = cste.$

$$\frac{d\overrightarrow{u_{\theta}}}{dt} = -\dot{\theta}\overrightarrow{u_{r}} = -\omega_{0}\overrightarrow{u_{r}}$$
 donc $\overrightarrow{a} = -r\omega_{0}^{2}\overrightarrow{u_{r}}$ est indépendante de t .

 $\underline{A.N.}$: $a = -1,19 \text{ m.s}^{-2}$

7. En $t=t_1$, $\omega_1=\alpha-\beta t_1=\omega_0$ et en $t=t_2$, $\omega_2=\alpha-\beta t_2=0$. On en déduit :

$$\alpha = \beta t_2 = \frac{\omega_0 t_2}{t_2 - t_1} = 55,3 \text{ rad.s}^{-1}$$
 et $\beta = \frac{\omega_0}{t_2 - t_1} = 0,346 \text{ rad.s}^{-2}$

Pour t entre t_1 et t_2 , $\omega = \alpha - \beta t$ et $v = r\omega u_\theta = r(\alpha - \beta t)u_\theta$

D'où
$$\overrightarrow{a} = -r\omega^2 \overrightarrow{u_r} + r\dot{\omega} \overrightarrow{u_\theta} = -r(\alpha - \beta t)^2 \overrightarrow{u_r} - r\beta \overrightarrow{u_\theta}$$

À l'instant t_3

$$a_r = -0.299 \text{ m.s}^{-2}, \ a_\theta = -3.46 \text{ m.s}^{-2}, \ a_M(t_3) = \sqrt{a_r^2 + a_\theta^2} = 0.301 \text{ m.s}^{-2}$$

*Exercice 4. Interpellation pour vitesse excessive

Soit (Ox) l'axe du mouvement rectiligne de la voiture et de la moto. L'origine est O. À t = 0, la voiture et la moto sont en x = 0.

- Mouvement de la voiture assimilée à un point V: mouvement rectiligne **uniforme** à la vitesse v_0 .
 - Vecteur accélération : $\vec{a}_V = \vec{0}$
 - Vecteur vitesse : $\overrightarrow{v}_V = v_0 \overrightarrow{u}_x$ avec $v_0 = 100 \text{ km.h}^{-1} = 27.8 \text{ m.s}^{-1}$
 - Vecteur position : $\overrightarrow{OV} = (v_0 t + K) \overrightarrow{u_r}$
 - Abscisse: $x_V(t) = v_0 t + K$ or $x_V(0) = K = 0$ d'où $|x_V(t)| = v_0 t$
- Mouvement de la moto assimilée à un point M: mouvement rectiligne uniformément accéléré à l'accélération a_0 .
 - Vecteur accélération : $\vec{a}_M = a_0 \vec{u}_x$ avec $a_0 = \frac{\Delta v}{\Delta t} = \frac{v_2}{t}$

- $\begin{aligned} &\text{A.N.}: \ v_2 = 90 \ \text{km.h}^{-1} = 25 \ \text{m.s}^{-1} \ \text{et} \ t_2 = 10 \ \text{s} \ \text{soit} \ \boxed{a_0 = 2, 5 \ \text{m.s}^{-2}} \\ & \text{Vecteur vitesse}: \ \overrightarrow{v}_M = \left(a_0 t + K'\right) \overrightarrow{u_x} \ \text{et} \ \overrightarrow{v}_M \left(0\right) = K' \overrightarrow{u_x} = \overrightarrow{0} \ \text{d'où} \ \overrightarrow{v}_M = a_0 t \overrightarrow{u_x} \end{aligned}$
- Vecteur position : $\overrightarrow{OM} = \left(\frac{a_0}{2}t^2 + K''\right)\overrightarrow{u_x}$
- Abscisse: $x_M(t) = \frac{a_0}{2}t^2 + K$ " or $x_M(0) = K$ " = 0 d'où $\left| x_M(t) = \frac{a_0}{2}t^2 \right|$
- 1. La moto rattrape la voiture si à l'instant $t_1 > 0$, on a $|x_V(t_1) = x_M(t_1)|$, soit :

$$v_0 t_1 = \frac{a_0}{2} t_1^2 \iff t_1 = 0 \text{ ou } t_1 = \frac{2v_0}{a_0}$$

La seule solution possible est : $t_1 = \frac{2v_0}{a_0} = 22 \text{ s}$

- 2. <u>Distance parcourue par la moto</u>: $x_M(t_1) = \frac{a_0}{2}t_1^2 = 0.62$ km
- 3. <u>Vitesse atteinte par la moto</u> : $v_M(t_1) = a_0 t_1 = 56 \text{ m.s}^{-1} = 20.10^1 \text{ km.h}^{-1}$

Exercice 5. Attention au choc!

2.
$$t_1 = 11 \text{ s et } x_1 = 0.29 \text{ km}$$

Exercice 6. Tir au pigeon d'argile

$$\tan(\beta) = \frac{h}{L}$$

Exercice 7. Le manège

3.
$$v = 2R\omega\sqrt{2(1+\cos(\omega t))} = 4R\omega\cos\left(\frac{\omega t}{2}\right)$$
 4. En A 5. En C 7. $\alpha = 2R\omega^2\sqrt{5+4\cos(\omega t)}$

8. En A

*Exercice 8. Mouvement hélicoïdal

- 1. Dans le plan (xOy) (z=0), l'équation de la trajectoire est : $x^2 + y^2 = r^2$: cercle de centre O de rayon r. Mouvement de H circulaire uniforme ($\omega = cste$).
- Mouvement selon (Oz): $z = \alpha \omega t \Rightarrow \dot{z} = \alpha \omega = cste$: Mouvement rectiligne uniforme.
- > Le mouvement complet superposition d'un mouvement circulaire uniforme dans le plan (xOz) et d'un mouvement rectiligne uniforme selon (Oz): mouvement hélicoïdal.
 - Animation : Figures animées pour la physique / Mécanique / Cinématique / Mouvement hélicoïdal

http://www.sciences.univ-

nantes.fr/sites/genevieve_tulloue/Meca/Cinematique/Helice_FJ.php

2. Coordonnées cartésiennes :

$$\vec{v} = \begin{vmatrix} \dot{x} = -r\omega\sin(\omega t) \\ \dot{y} = r\omega\cos(\omega t) \\ \dot{z} = \alpha\omega \end{vmatrix} \Rightarrow \vec{a} = \begin{vmatrix} \ddot{x} = -r\omega^2\cos(\omega t) \\ \ddot{y} = -r\omega^2\sin(\omega t) \\ \ddot{z} = 0 \end{vmatrix}$$

 \triangleright Coordonnées cylindriques (r, θ, z) :

$$x^2 + y^2 = r^2 \Leftrightarrow \boxed{r = \sqrt{x^2 + y^2} = cste}, \boxed{\theta = \omega t}, \boxed{z = \alpha \omega t = \alpha \theta}$$

Vecteur position : $\overrightarrow{OM} = r\overrightarrow{u_r} + z\overrightarrow{u_z} = r\overrightarrow{u_r} + \alpha\theta\overrightarrow{u_z}$

Vecteur vitesse :
$$\vec{v} = \frac{d\overrightarrow{OM}}{dt} = r\dot{\theta}\overrightarrow{u_{\theta}} + \alpha\dot{\theta}\overrightarrow{u_{z}} = r\omega\overrightarrow{u_{\theta}} + \alpha\omega\overrightarrow{u_{z}}$$

Vecteur accélération : $\vec{a} = \frac{d\vec{v}}{dt} = -r\omega^{2}\overrightarrow{u_{r}}$

3. Coordonnées cartésiennes:

$$\begin{aligned} \left\| \overrightarrow{v} \right\| &= \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{\left(r\omega\sin\left(\omega t\right)\right)^2 + \left(r\omega\cos\left(\omega t\right)\right)^2 + \left(\alpha\omega\right)^2} \\ &= \sqrt{\left(r\omega\right)^2 \left(\cos^2\left(\omega t\right) + \sin^2\left(\omega t\right)\right) + \left(\alpha\omega\right)^2} = \sqrt{\left(r\omega\right)^2 + \left(\alpha\omega\right)^2} = \omega\sqrt{r^2 + \alpha^2} \\ \left\| \overrightarrow{a} \right\| &= \sqrt{a_x^2 + a_y^2 + a_z^2} = \sqrt{\left(r\omega^2\cos\left(\omega t\right)\right)^2 + \left(r\omega^2\sin\left(\omega t\right)\right)^2} = \sqrt{\left(r\omega^2\right)^2} = r\omega^2 \end{aligned}$$

Coordonnées cylindriques :

$$||\vec{v}|| = \sqrt{v_r^2 + v_\theta^2 + v_z^2} = \sqrt{(r\omega)^2 + (\alpha\omega)^2} = \omega\sqrt{r^2 + \alpha^2} ||\vec{v}|| = \sqrt{a_r^2 + a_\theta^2 + a_z^2} = r\omega^2 ||\vec{v}|| = \sqrt{a_r^2 + a_\theta^2 + a_z^2}$$

Les normes du vecteur vitesse et du vecteur accélération ne dépendent jamais du système de coordonnées choisi.