

[5주차] 논문리뷰1 (Introduction)

DDPM

1. Introduction

<u>논문이 다루는 분야</u> 해당 task에서 기존 연구 한계점 <u>논문의 contributions</u> Reference

DDPM

1. Introduction

논문에서 다루고 있는 주제가 무엇인지와 해당 주제의 필요성이 무엇인가 논문에서 제안하는 방법이 기존 방법의 문제점에 대응되도록 제안 되었는가

논문이 다루는 분야

• Diffusion 계열 생성형 모델 (발전 역사가 궁금해서 GPT 도움 받아 표로 정리)

연도	모델/기술 이름	주요 기여 또는 특징	관련 논문/출처
2015	Diffusion Probabilistic Models (DDPM 초기 개념)	확률적 그래픽 모델 기반의 초기 Diffusion 개념 정립	Sohl-Dickstein et al. (2015)
2020	DDPM (Denoising Diffusion Probabilistic Models)	Gaussian noise를 점진 적으로 제거하는 방식, 이 미지 생성 성능에서 GAN 과 경쟁	Ho et al. (2020), NeurIPS
2021	DDIM (Denoising Diffusion Implicit Models)	DDPM보다 더 빠른 샘플 링 가능, non-Markovian 구조 도입	Song et al. (2021), ICLR

[5주차] 논문리뷰1 (Introduction) 1

연도	모델/기술 이름	주요 기여 또는 특징	관련 논문/출처
2021	Score-based Generative Modeling (SDE 기반)	확률적 미분방정식(SDE) 기반으로 연속적인 시간 표 현	Song et al. (2021), ICLR
2022	GLIDE	텍스트 조건 기반 생성 + Diffusion, CLIP을 활용한 조건 강화	Nichol et al. (2022), OpenAl
2022	Latent Diffusion Models (LDM)	고해상도 이미지 생성을 위 한 latent 공간에서의 Diffusion 수행 → 계산 효 율성 향상	Rombach et al. (2022), CVPR
2022	Imagen	T5 기반의 텍스트 인코더 + Diffusion 조합, 매우 높 은 FID 성능 기록	Saharia et al. (2022), Google Brain
2022	Stable Diffusion	오픈소스 LDM 기반 모델, 커스터마이징과 Fine- tuning에 최적화	Rombach et al. (2022), CompVis
2023	ControlNet	조건 기반 제어 기능 (포즈, 윤곽 등)을 Diffusion에 통 합	Lvmin Zhang et al. (2023), Stanford
2023	SDXL (Stable Diffusion XL)	안정성과 해상도 향상, 텍 스트 이해력 강화	Stability AI (2023)
2024	Sora (Video Diffusion, 발표됨)	OpenAl에서 개발한 비디 오 생성용 Diffusion 모델 (텍스트→비디오)	OpenAl Sora (2024, 발표 기준)

해당 task에서 기존 연구 한계점

- 언급된 기존 연구 (좋은 성능을 보여왔음)
 - Generative adversarial networks (GANs)
 - autoregressive models
 - flows
 - variational autoencoders (VAEs)
 - energy-based modeling
 - score matching

[5주차] 논문리뷰1 (Introduction) 2

• 디퓨전 모델은 그동안 좋은 품질의 이미지를 생성할 수 있다는 근거가 부족했음 → 이 모델에서 좋은 품질 가능함을 보이게 됨

논문의 contributions

- 논문의 작업 그래프로 정리
 - → 노이즈를 추가해서 데이터를 조금씩 손상시키고
 - → 반대로 노이즈를 제거하며 원래 데이터를 복원하는 모델을 학습
 - ⇒ 노이즈의 크기가 작고, 가우시안 분포를 따르면 복원과정 역시 조건부 가우시안 형태로 설계할 수 있어서 신경망으로 쉽게 구현할 수 있음

Figure 2: The directed graphical model considered in this work.

- (핵심기여) 특정한 방식으로 디퓨전 모델을 설계(parameterize)하면,
 - 학습 과정은 denoising score matching 기법처럼 되고
 - 샘플링(생성) 과정은 annealed Langevin dynamics 방법처럼 작동함을
 - 수학적으로 발견함. 요 때 가장 좋은 품질의 샘플 생성.
- 품질 좋은 이미지 만들어도 **로그 가능도(log-likelihood)** 지표에서는 기존의 디퓨전 모델들과 비교해 경쟁력이 낮은 경향이 있음.
 - ⇒ 그래도 energy-based modeling나 score matching 보다는 좋음
- 무손실 압축길이의 대부분이 눈치채기 힘든 미세한 디테일 설명에 쓰임을 발견했음
 - ⇒ 그래서 손실 압축의 관점에서 분석했음
 - ⇒ 모델이 픽셀 순서대로 복원하는 게 아니라, 노이즈의 크기(정보의 정밀도) 정도에 따른 순서대로 이미지를 단계적으로 복원함을 발견했음
 - 무손실 압축: 데이터를 원본 그대로 복원할 수 있도록 압축하는 방법
 - 무손실 압축 실이 : 무손실 압축 시 필요한 최소 비트 수
 - 무손실 압축에 쓰인 비트 중 상당수가 지나치게 미세한 정보 표현에 사용되어서 그 럴 필요가 없다는 생각으로 손실 압축 관점에서 다시 분석한 것.
 - o progressive decoding: 데이터를 점점 단계적으로 정교하게 복원해나가는 방식
 - o bit ordering: 정보를 복원할 때 어떤 순서로 데이터를 처리할 지 정의하는 방식

- 기존 autoregressive model : 이전까지 복원된 정보들을 기반으로 다음 정보를 한 단계씩 예측. 픽셀 순서대로.
- 디퓨전 모델: 노이즈 크기 순서대로(정밀도가 낮는 순서대로. 큰 윤곽 → 디테일)
- 디퓨전 모델이 기존 오토리그레시브 모델처럼 데이터를 순차적으로 복원하긴 하지 만, 픽셀 순이 아닌 노이즈 크기(정밀도 정도)에 따라 복원한다는 점에서 더 일반적 이고 강력한 구조를 가진다는 것.

Reference

• https://www.youtube.com/watch?v=H45IF4sUgiE&t=206s