U.E. ARES Architecture des Réseaux

Cours 4/6 : Couche réseau

Olivier Fourmaux

(olivier.fourmaux@upmc.fr)

Version 5.4

Couche Réseau

La **Couche Réseau** achemine les paquets de la source vers les destinataires en effectuant des sauts entre les différents **nœuds intermédaires**

- de bout-en-bout (end-to-end)
- connaissance de la topologie
- calcul du chemin (routage)
- adressage virtuel
- abstraction des technologies sous-jacentes
 - ✓ encapsulation sur chaque technologie
 - ✓ fragmentation
 - ✓ conversion d'adresses

Plan

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 2

Couche Réseaux : OSI

Couche Réseau : approche circuit virtuel ou datagramme

pictures from Tanenbaum A. S. Computer Networks 3rd edition

UPMC PARISINIVERSITAS

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 4

Couche Réseau : Encapsulation

La couche réseau fait abstraction des technologies sous-jacentes

- les données doivent pouvoir circuler de réseaux en réseaux
- les couches supérieures ne doivent faire aucune hypothèse sur les couches basses

sera approfondie dans les cours sur les Architectures supports

Couche Réseau: Fragmentation

UPMC PARISUNIVERSITAS

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 6

Couche Réseau : Adressage

La couche réseau définit un adressage virtuel valide sur tous les réseaux

- identification unique d'un équipement
- masquage des mécanismes d'adressages spécifiques à une technologie
 ✓ nécessite la mise en correspondance des adresses

sera aussi approfondi dans les cours sur les Architectures supports

Couche Réseau : Routage

Calcul du chemin

- initial (circuits virtuels)
- à chaque paquet (sans mémoire)

Décisions de routage basée :

- table de routage
 - ✓ statique
 - ✓ dynamique
 - algorithmes de routage
 - protocoles de routage...
- sera approfondi dans le cours sur le Routage

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 8

Plan

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

Couche Réseaux : TCP/IP

■ IP est l'interface universelle

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 10

IPv4

IPv4 : Service

Paquets en mode non connecté

Service à remise non garantie (best effort)

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 12

Plan

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

IPv4 : Structure

32 bits (4 octets)						
Ver	Hlen	TOS	Packet Length			
Identifier			Frag. offset	20 octets)		
Т	ΤL	Protocol	Header checksum	min 5 lianes (min 20 octets)		
	IP source address					
	IP destination address					
Options						
Segment / datagram / (transport data)						

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 14

IPv4 : Version

32 bits (4 octets)						
Ver	Hlen	TOS	Packet Length	1		
Identifier			Frag. offset	20 octets)		
Т	ΓL	Protocol	Header checksum	lignes (min 20 octets)		
IP source address						
IP destination address						
Options						

- 4 bits
- IP actuel : version 4
- IP next génération : version 6
 - voir l'U.E. **ING**

IPv4 : Longueur de l'entête

→ 32 bits (4 octets) → →							
Ver	Hlen	TOS	OS Packet Length				
	lden	tifier	Frag. offset	20 octets)			
Т	ΓL	Protocol	Header checksum	min 5 lignes (min 20 octets)			
IP source address							
IP destination address							
Options							

- 4 bits (valeur 15 max)
 - ✓ indique le nombre de lignes de 32 bits dans l'entête IP
 - nécessaire car le champ option est de longueur variable (20 à 60 octets)
 - valeur de 5 (pas d'options) à 15 (10 lignes d'options, soit 40 octets)

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 16

IPv4: TOS

Type Of Service

Ver Hlen TOS Packet Length

Identifier Protocol Header checksum

IP source address

IP destination address

Options

- 8 bits :

 ✓ 3 bits de **priorité** (*prece*
 - dence)
 - © 001 : Priority © 010 : Immediate
 - □ 011 : Flash □ 100 : Flash override
 - 110 : Internetwork control
 - ✓ 3 bits de service
 - □ Delay
 - Throughput
 - Reliability
 - (Cost)
- non utilisé...
 - ... pour le moment
 - voir l'U.E. **ING** (*DiffServ Byte*)

IPv4 : Taille du paquet

- 16 bits (64 Koctets maximum)
- ✓ taille totale du paquet avec entête
- ✓ exprimé en octets
 - le réseau support doit accepter un $MTU^1 \ge$ 576 octets²

²576 octets = 512 de données applicative + 64 de surcoût protocolaires (entêtes IP et transport)

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 18

IPv4: Identificateur

→ 32 bits (4 octets)						
Ver	Hlen	TOS	Packet Length	1		
Identifier		tifier	Frag. offset	20 octets)		
Т	ΓL	Protocol	Header checksum	min 5 lignes (min 20 octets)		
	IP source address					
IP destination address						
Options						

- 16 bits (boucle tous les 64 Kpaquets)
- défini de manière **unique** pour chaque paquet
- pour réassembler les fragments d'un **même** paquet
- habituellement, incrément d'un compteur pour chaque paquet successif

IPv4: Fragmentation

- 1 bit réservé
- 1 bit DF : Don't fragment (=1 interdit la fragmentation)
- 1 bit MF: More fragment (=0 pour le dernier fragment)
- 13 bits fragment offset en octets/8 (shift 3)
 - ✓ exemples:
 - 0x0000 paquet entier (offset=0)
 - 0x2000 premier fragment (offset=0)
 - 0x20A0 fragment central (offset=1280)
 - 0x00B0 dernier fragment (offset=1408)

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 20

IPv4: Fragmentation

Numero du premier élément du segment contenu dans ce paquet indication Identificateur d'autres fragments 1 octet du paquet 27 0 В С D G Н Entête (a) 27 0 Α В С D Е F G 27 8 Entête Entête (b) 0 1 Α В С D Ε 27 5 G 27 8 0 Entête Entête Entête (c)

IPv4 : Temps de vie

Time To Live

- 8 bits
 - ✓ unité initiale : seconde
- ✓ valeur maximum fixé par l'émetteur (255, 128, 64...)
- ✓ décrément dans chaque routeur
 - minimum 1 par routeur nombre de sauts
- ✓ max 255 secondes ou sauts
- évite les houcles

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 22

IPv4: Protocole transporté

• démultiplexage vers les protocoles de la couche supérieure :

Unix> cat /etc/protocols 1 # internet control message protocol 3 # gateway-gateway protocol ipencap 4 # IP encapsulated in IP 5 # ST datagram mode 6 # transmission control protocol 8 # exterior gateway protocol 17 # user datagram protocol 27 # "reliable datagram" protocol iso-tp4 29 # ISO Transport Protocol class 4 36 # Xpress Tranfer Protocol 45 # Inter-Domain Routing Protocol 46 # Reservation Protocol 47 # General Routing Encapsulation 89 # Open Shortest Path First IGP ospf

• 8 bits

IPv4 : Contrôle d'erreur sur l'entête

32 bits (4 octets)					
Ver	Hlen	TOS	Packet Length		
Identifier			Frag. offset Header checksum		
Т	TL	Protocol	Header checksum		
		IP source	address		
	ı	P destinati	on address		
Options					

- 16 bits
- contrôle d'erreur
- ✓ idem UDP/TCP mais que sur l'entête
- émetteur :
- \checkmark entête IP = suite $mot_{16 \mathrm{bits}}$
- \checkmark checksum³ = $\overline{\sum mot_{16bits}}$
- récepteur :
 - \checkmark recalcul de $\sum mot_{16 \mathrm{bits}}$
 - = 0 : pas d'erreur détectée toujours possible...
 - $\neq 0$: erreur (destruction silencieuse)

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 24

IPv4: Adresse source

- adresse IP 32 bits
- identifie l'émetteur du paquet
- permet de retourner un message à l'émetteur (ICMP, UDP...)

IPv4: Adresse destination

- adresse IP 32 bits
- utilisée pour le routage
- ✓ indique le réseau (ou l'agrégation de réseau) du destinataire
- ✓ identifie l'**interface** du destinataire dans son réseau

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 26

IPv4: Options

32 bits (4 octets) — >					
Ver Hlen TOS		TOS	Packet Length	1	
Identifier			Frag. offset	20 octets)	
TTL Protocol			Header checksum	lignes (min 20 octets)	
IP source address					
IP destination address					
Options					

- système TLV identique à TCP
- analysées dans chaque routeur
- exemple :
- ✓ enregistrement de la route
- ✓ routage à la source strict
- ✓ routage à la source relâché
- ✓ estampilles temporelles
- ✓ sécurité
- ✓ ...
- 0 à 40 octets (alignés sur 32 bits)
- A éviter!

³Somme binaire sur 16 bits avec report de la retenue débordante ajoutée au bit de poid faible

Plan

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 28

Adressage : Classes

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Adressage : Masques

Application de masques binaires

[classe	masque binaire	netmask	prefixe
ſ	Α	111111110000000000000000000000000000000	255.0.0.0	/8
	В	111111111111111110000000000000000000000	255.255.0.0	/16
Ī	С	111111111111111111111111100000000	255.255.255.0	/24

Extraction du netId

	132.227.	60.1	35		netId.h	ost:	Ιd
&&	255.255.	0.	0	&&	netmask		
	132.227.	0.	0		netId.	0.	0

Extraction du hostId

		132.2	227. 60.135		$\mathtt{netId.hostId}$
&	&	0.	0.255.255	&&	!netmask
			60.135		hostId

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 30

Adressage : Adresses particulières

Adresses particulières :

0 0 0 0 0 0 0	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 This host
0 0	0 0	Host	A host on this network
11111111	1 1 1 1	11111111111111111111	Broadcast on the local network
Network		1111 111	Broadcast on a distant network
127 (Anything)			Loopback

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Adressage: Subneting (1)

Taille de l'identifiant de réseau (netId) par défaut :

• classe A : /8 (255.0.0.0)

classe B: /16 (255.255.0.0)
classe C: /24 (255.255.255.0)

Subdivision possible:

• 132.77.12.0/22 (notation par **préfixe**)

• 132.77.12.0 netmask 255.255.252.0 (notation par masque)

pictures from Tanenbaum A. S. Computer Networks 3rd edition

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 32

Adressage: Subneting (2)

Adressage: Subneting (3)

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 34

Adressage: affectation

IPv4 : Logique de routage

Selon l'adresse destination, envoi au ...

Route par défaut ... prochain routeur non oui

Unix> route -n

Kernel IP routing table Destination Gateway Flags Metric Ref Use Iface Genmask 192.33.182.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 10.0.0.0 0.0.0.0 255.0.0.0 0 atm0 154.18.2.0 0.0.0.0 255.255.255.0 0 eth1 0 132.77.0.0 154.18.2.254 255.255.0.0 IJG 0 0 0 eth1 default 192.33.182.254 0.0.0.0 0 eth0

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 36

Routage: Longest Préfix Match

Plan

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 38

Adressage sans classe

L'attribution des adresses IP avec classe est inefficace

- adresses allouées par blocs de 256, 65K ou 16M
 - ✓ les sous-réseaux permettent une meilleure gestion
- un adressage sans classe augmente la souplesse dans l'attribution des adresses :

✓ les adresses :

192.77.16.0/24

192.77.17.0/24

192.77.18.0/24

192.77.19.0/24

✓ peuvent être regroupées en :

notation par **préfixe** : 192.77.16.0/**22**

notation par **masque**: 192.77.16.0 netmask 255.255.252.0

Adressage: Superneting

CIDR (Classless InterDomain Routing)

- utilisé pour agréger des blocs d'adresses contigües
- permet aux routeurs de maintenir une seule entrée de table de routage
- utilisé initialement par les ISP pour grouper des adresses de classe C
- initialement décrit en réduisant la taille du préfixe réseau
 - ✓ le préfixe réseau par défaut pour la classe C est /24
 - ✓ les valeurs de préfixes réseau /23, /22, /21, etc. décrivent des agrégations d'adresses de classe C
 - exemples :

```
197.88.0.0/16 agrège 256 adresses de classe C 81.152.12.0/22 agrège ??
```


U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 40

Adressage: Calcul CIDR

Un bloc CIDR est donc l'agrégation d'un ensemble d'adresses

- bits réseau (netId) d'un bloc CIDR correspondent aux N bits les plus à gauche (/N définit le masque réseau du bloc CIDR)
- \bullet bits hôte (hostId) du bloc CIDR correspondent aux 32-N bits restants
- ensemble des adresses attribuables dans un bloc CIDR :
 - ✓ premier hôte : hostId = 000...0001
- ✓ dernier hôte : hostId = 111...1110
- ✓ adresse de diffusion : hostId = 111...1111
 - exemple :

Bloc CIDR -> 192.77.20.0/22 @ premier hôte : 192.77.20.1

. . .

@ dernier hôte : 192.77.23.254
@ de diffusion : 192.77.23.255

Adressage : Subneting des agrégats

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 42

Adressage: Affectation

Adressage: Synthèse

Observation sur le découpage des plages d'adresses en sous-réseaux (*sub-netting*) ou en agrégats (*supernetting*) :

- Attention aux analyses simplistes...
 - $\checkmark N = \text{nombre de bits réseau}$
 - ✓ H = nombre de bits hôte
 - $\checkmark D = \text{préfixe réseau par défaut}$

(8 pour la classe A, 16 pour la classe B, 24 pour la classe C)

- \bowtie si N=D, pas de subnetting ni de supernetting
- \bowtie si N > D, subnetting (sous-réseau)
- \bowtie si N < D, supernetting (CIDR)
- ... FAUX, car on peut combiner subnetting et supernetting!

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 44

Plan

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

IPv4: Adresses privées

Deux types d'adressage :

Public : tout hôte connecté à l'Internet doit avoir une adresse unique valide

Privé : pour un usage de TCP/IP non connecté à l'Internet

- gestion autonome d'un plan d'adressage (avec adresses uniques)
- utilisation de plages d'adresses spécifiques recommandée :
- ✓ adresses non routées (adresses privées) :

10.0.0.0/8 (1 ex-classe A)

172.16.0.0/12 (16 ex-classe B)

192.168.0.0/16 (256 ex-classes C)

169.254.0.0/16 (link local block pour l'auto-configuration)

- utilisable dans chaque internet privé
- même en cas de connexion à l'Internet, ce trafic n'est pas relayé
- possibilité de "sortir" du réseau privé à l'aide de :
 - serveurs proxys
 serveurs proxys
 - conversion d'adresses NAT

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 46

IPv4: Translation des adresses

Network Address Translation (NAT)

pictures from Tanenbaum A. S. Computer Networks 4rd edition

IPv4: NAT, DNAT et NAPT

Plusieurs approches de la conversion d'adresses :

NAT statique: correspondance fixe d'adresses

NAT dynamique: correspondance dynamique d'adresses

table d'adresses dynamique :

Adresse entrante	adresse sortante
10.0.0.3	192.33.182.117
10.0.0.4	192.33.182.118

NAPT (*NAT overload*) : correspondance dynamique vers une adresse (ou plusieurs adresses) avec surcharge

utilisation des ports

table dynamique (pour chaques protocoles):

Proto	Adresse entrante	Port entrant	adresse sortante	Port sortant
TCP	10.0.0.3	1027	192.33.182.117	1027
TCP	10.0.0.4	1027	192.33.182.117	1028
UDP	10.0.0.4	31765	192.33.182.117	31765

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 48

IPv4: Mécanismes NAPT

Où sont modifiée les adresses?

au niveau de la carte d'interface :

Modifications annexes:

- le checksum des entêtes doit être recalculé
 - ✓ **NAT** IP. TCP et UDP (adresse + pseudo-header)
 - ✓ **NAPT** IP, TCP et UDP (adresse + pseudo-header + port)
- les adresses et ports paramètres de protocoles applicatifs doivent être aussi modifiées (commande PORT de FTP)
- les messages ICMP sont analysés

IPv4: NAT et IETF

Un standard publié: RFC 1631

- NAPT fortement utilisé actuellement
- ✓ entreprises (flexibilité)
- √ fournisseurs de services (manque d'adresses)
- ✓ particuliers (n'ont qu'une adresse)
- pose ggs **problèmes**
 - ✓ architecturaux :
 - les ports doivent identifier des processus et non des machines
 - les routeurs modifient les paramètres de la couche transport
 - principe de bout-en-bout : deux hôtes doivent communiquer directement
 - ✓ sécuritaires : incompatible avec les mécanismes d'authentification
 - ✓ techniques : comment "entrer" dans le réseau translaté
- solutions
 - ✓ court terme
 conversions statiques, serveurs intermédaires (UDP)
 - ✓ long terme IPv6

UPINC PARISUNIVERSITAS

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 50

Plan

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

IPv4: ICMP

Internet Control Message Protocol (RFC792)

- encapsulé dans un paquet IP (mais appartient à la couche 3)
- test et diagnostique du réseau :

gnostique du reseau :					
ICMP Type	Code	Description			
0	0	<i>⇔echo reply</i>			
3	0	destination network unreachable			
3	1	destination host unreachable			
3	2	destination protocol unreachable			
3	3	destination port unreachable			
3	6	destination network unknown			
3	7	destination host unknown			
4	0	source quench			
8	0	<i>→echo request</i>			
9	0	router advertisement			
10	0	router discovery			
11	0	TTL expired			
11	1	reassembly time exeeded			
12	0	IP header bad			

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 52

ICMP: ECHO

Туре	Code	Checksum	Identifier	Seq. Num.	Data
8 (Echo Request)	0				
0 (Echo Response)	0				
1 octet	1	2	2	2	

Teste l'accessibilité d'un équipement

- utilisé par la commande ping :
- ✓ indique la connectivité et la disponibilité d'IP chez le destinataire
- ✓ plusieurs messages permettent d'estimer le RTT et le taux de perte UPMC

ICMP : Destination inaccessible

Type	Code	Checksum	Unused	Data
3	0 (Net Unreachable)			IP Header
	1 (Host Unreachable)			+ 64 bits
	2 (Protocol Unreachable)			
	3 (Port Unreachable)			
1 octet	1	4	2	(IHL * 4) + 8

Messages émis lorsque la destination n'est pas accessible.

- l'entête IP et une partie de la couche transport sont retournés
 - ✓ @ source = créateur du message ICMP

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 54

ICMP: Timeout

ĺ	Туре	Code	Checksum	Unused	Data
١	11	0 (Time To Live Exceeded)			IP Header
		1 (Frag. Reass. Time Exceeded)			+ 64 bits
ſ	1 octet	1	4	2	(IHL * 4) + 8

Messages émis lorsque le temps de vie ou de réassemblage est dépassé.

- l'entête IP et une partie de la couche transport sont retournés
 - ✓ @ source = créateur du message ICMP
 - ✓ @ destination = @ source de l'émetteur du paquet en cause
- utilisé par la commande traceroute

ICMP: Autres messages

- Source Quench (Type 4)
 - ✓ indique une congestion à la source

 pas de signalisation de fin de congestion
- Redirection (Type 5)
 - ✓ indique si une meilleure route est disponible

 s configuration minimale des hôtes
- autres messages principalement pour l'autoconfiguration

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 56

Plan

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

IPv4: RARP

Reverse Adresse Résolution Protocol (RFC 903)

inverse du protocole ARP (réseaux à diffusion)

- obtention d'une @ IP à partir de @ MAC au démarrage
- ✓ hôtes sans disques (terminaux X, imprimantes...)
- ✓ hôtes mobiles (portable changé de réseau...)
- utilisation d'un serveur (rarpd)
 - ✓ mise en correspondance de /etc/ethers et de /etc/hosts
- format des trames identique à ARP
 - ✓ type Ethernet: 0x8035
 - r code 3 pour une requête RARP
 - code 4 pour une réponse RARP
- exemple d'autoconfiguration :
 - ✓ la nouvelle station déclanche un échange RARP
 - ✓ la station demande le *netmask* par un echange **ICMP**
 - \checkmark la station demande au serveur RARP son programme de démarrage

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 58

IPv4: BOOTP

BOOT Protocol (RFC 951 et RTF 1542)

- Protocole **portable**, sur UDP
 - ✓ requête sur le port 68, réponse sur le port 67
 - ✓ quelles addresses IP utiliser lorqu'on n'en connait aucunes ?
 - © IP de diffusion (255.255.255.255)
 - @ IP par défaut (0.0.0.0)
 - ✓ permet d'atteindre un serveur sur un autre réseau
 - à travers des agents BOOTP relais
 - ✓ nombreuses extensions (RFC 1533)
 - netmask
 - liste des **routeurs** du sous-réseau

 - iste des serveurs de noms (DNS)
 - liste des serveurs d'impression (LPD et autres)

 - □ TTL par défaut ...

IPv4: DHCP(1)

Plan

Dynamic Host Configuration Protocol (RFC 2131)

Extension compatible de BOOTP avec gestion dynamique des @ IP

- attribution dynamique par bail (lease) limité dans le temps
 ✓ bail renouvelé périodiquement si nécessaire
- nouvelles **options DHCP** (extensions BOOTP)

DHCPDISCOVER	C ™ S	localisation du serveur
DHCPOFFER	S ™ C	proposition au client
DHCPREQUEST	C ™ S	confirmation d'une propositon
DHCPACK	S ™ C	validation d'une configuration
DHCPNACK	S ™ C	invalidation d'une configuration
DHCPDECLINE	C ™ S	refus d'une configuration invalide
DHCPRELEASE	C ™ S	libération d'une configuration
DHCPINFORM	C ™ S	demande d'information autre que @ IP
DHCPFORCERENEW	S ™ C	demande de reconfiguration

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 60

IPv4: DHCP(2)

Rappels sur la couche réseau

La couche réseau dans TCP/IP

Structure du paquet IPv4

Adressage classique IPv4

Adressage CIDR

Translation d'adresses

Messages de contrôle

Autoconfiguration

Tunnel et pare-feu

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 62

Tunneling

- encapsulation alternative à la traduction (translation)
- traversées de zones avec des protocoles différents
 - ✓ ex : relier des ilots avec des protocoles non généralisés (IPmulticast, IPv6...)
- contrôle du flux de T1 à T2 (IPv4 dans IPv4, VPN...)
 ✓ VPN...

Couche IPv4: VPN

- intégration avec des mécanismes de sécurité, automatisation

 / IPSEC : confidentialité et integrité (RFC 4301 à 4309)
 - ✓ AAA (Authentification, Autorisation, Accounting)
- autres approches VPN au niveau de la couche 2 (PPP)...

IPv4 : Filtrage d'adresses

pictures from Tanenbaum A. S. Computer Networks 3rd edition

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 65

Fin

Document réalisé avec LATEX. Classe de document foils. Dessins réalisés avec xfig.

Olivier Fourmaux, olivier.fourmaux@upmc.fr http://www-rp.lip6.fr/~fourmaux

Ce document est disponible en format PDF sur le site : http://www-master.ufr-info-p6.jussieu.fr/

U.E. ARES Cours 4/6 v5.4 olivier.fourmaux@upmc.fr 66