

Numerical Simulation of Turbulence-microphysics Interactions

by Zheng GAO

Advisor: Prof. Dr. Xiaolin Ll

Co-advisor: Dr. Yangang LIU

Outline

- Background
- Mathematics model
- Direct numerical simulation(DNS)
- Preliminary results
- Future work

Background

What

Water (vapor and liquid)

Turbulence

Interactions

How

Direct Numerical Simulation

Particle model

Why

Multi-scale

Turbulence

Particle tracking

Background

Clear air:

Less droplets Low humidity

Cloud air:

More droplets
High humidity
Collision

Boundary:

Entrainment Mixing Measurement

Particle Model

Particles length scale:

Cloud Droplets

Turbulence:

Dissipation scale > 1mm (10³um)

Much larger than droplets and

comparable to raindrops

Preliminary Exam

Particle Model

Simulation difficulty

Motion: inertial and sedimentation

Condensation: condensate or evaporate

Collision: detection and handling

Coalescence: merge or break up

1. Important variables

- Velocity field $\vec{u}(X, t)$: velocity of air (m/s)
- Vapor mixing ratio q(X, t): ratio of vapor in dry air (g/kg)
- Temperature field T(X, t): temperature of air (K)
- Saturated vapor mixing ratio $q_s(X, t)$: equilibrium state

2.1 Vector field

$$rac{\partial u}{\partial t}+(u\cdot
abla u)=-rac{1}{
ho_0}
abla p+\mu\Delta u+f$$
 Navier stokes equation $abla\cdot u=0$

2.2 Scalar field

$$\frac{\partial \mathbf{q}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{q} = -C_d + \kappa \Delta \mathbf{q}$$

$$\frac{\partial \mathbf{T}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{T} = \frac{L}{c_p} C_d + \mu_T \Delta \mathbf{T}$$

Vapor mixing ratio

Temperature

Magnitude of vorticity field

Vapor field

3. Droplets model

$$S(X,t) = \frac{q_v(X,t)}{q_{v,s}} - 1$$

$$\frac{dR_i(t)}{dt} = A_3 \frac{S(x,t)}{R_i(t)}$$

Condensation and evaporation

$$\frac{dX(t)}{dt} = V(t)$$

$$\frac{dV(t)}{dt} = \frac{1}{\tau_p} [u(X, t) - V(t)] + g$$

Droplets motion

Radius in condensation and evaporation process

Motion of droplets

Domain:

 $1m \times 1m \times 1m$ Periodic boundary box

Droplets:

Radius $10\mu m$ Density 10/ccNumber 10^7

• Isotropic initialization with filter in Fourier space

$$\hat{u}(k) = k^2 \exp\{-\frac{k^2}{k_0^2} [\cos(2\pi\varphi) + i\sin(2\pi\varphi)]\}$$

- Scale the velocity to control the intensity
- Use Taylor microscale Reynolds number

$$Re_{\lambda} = U_{rms}\lambda/\nu$$

 Energy input only in large wave length

 Energy cascades to small length automatically

 Energy dissipated in Kolmogorov length scale

Enstrophy ($|\nabla \times U|^2$) in x-z cross sectional plane

Enstrophy at 0s

Enstrophy at 80s

Turbulence properties

Group	$u_{rms}(m/s)$	$\varepsilon(m^2s^{-3})$	η(m)	Re_{λ}
Flow A	0.01074	3.1e-5	0.003	20
Flow B	0.02109	1.7e-4	0.002	34
Flow C	0.03422	4.0e-4	0.001	58

•
$$\varepsilon = 2v \sum_{i=1}^{3} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
 $\lambda = \sqrt{15v u_{rms}^2 / \varepsilon}$

$$\lambda = \sqrt{15vu_{rms}^2/\varepsilon}$$

$$Re_{\lambda} = U_{rms}\lambda/\nu$$

Parallel computing

- MPI
- Parallel communication of field (FronTier)
- Parallel communication of particles (New)
- Parallel statistics: deviation, PDF (New)
- Basic idea:

Add buffers at boundary

Exchange buffers direction by direction (x, y, z)

Parallel computing

Parallel computing

Strong scaling for 10s simulation

No.	Time	Speed up
1	1h 22m 19s	1
2	57m 33s	1.4
4	33m 52s	2.4
8	21m 24s	3.8

Speed up: t_1/t_N

Verification and Validation

Mass conservation

Verification and Validation

Turbulence properties

Preferential concentration

Magnitude of vortices

Number density of particles

Number density

Particles in grid cell

3	1	1
2	0	1
1	0	2

Number density of particles

Preferential concentration

PDF of number density at t = 0s

PDF of number density at t = 40s

Condensational growth

Standard deviation of radius distribution with three different turbulence configuration.

Intensity:

Flow A < Flow B< Flow C

Entrainment and Mixing

 Vapor mixing ratio is set continuously from dry to moist

 Define some variables for measurement

Vapor mixing ratio in x-z plane

Entrainment and Mixing

• Distribution of the humidity

The vapor mixing ratio field

Entrainment and Mixing

Radius distribution

Future Work

- Current resolution is 128³, improve resolution
- CUDA-Aware MPI to accelerate particles
- Entrainment from the top and bottom
- Collision and coalescence
- Thank you for coming

