

MATHAGO

Schularbeit

Trigonometrie im rechtwinkeligen Dreieck

Die Mathago Schularbeit besteht aus 6 kurzen Aufgaben (Ankreuzaufgaben, Grundkompetenzen, etc.) und 2 bis 3 längeren Textaufgaben. Diese stammen aus dem Aufgabenpool und den Kompensationsprüfungen des BMBWF. Die Punkteverteilung sieht wie folgt aus:

22 – 24 Punkte	Sehr Gut
19 – 21 Punkte	Gut
16 – 18 Punkte	Befriedigend
12 – 15 Punkte	Genügend
0 – 11 Punkte	Nicht Genügend

Aufgabe 1 (2 Punkte)

Gegeben ist das nachstehende Viereck ABCD mit den Seitenlängen a, b, c und d.

Zeichnen Sie in der obigen Abbildung einen Winkel φ ein, für den $\sin(\varphi) = \frac{d-b}{c}$ gilt!

Aufgabe 2 (2 Punkte)

Die nachstehende Abbildung zeigt einen Kreis mit dem Mittelpunkt O und dem Radius 1. Die Punkte A = (1|0) und P liegen auf der Kreislinie. Der eingezeichnete Winkel α wird vom Schenkel OA zum Schenkel OP gegen den Uhrzeigersinn gemessen.

Ein Punkt Q auf der Kreislinie soll in analoger Weise einen Winkel β festlegen, für den folgende Beziehungen gelten:

 $sin(\beta) = -sin(\alpha)$ und $cos(\beta) = cos(\alpha)$

Zeichnen Sie in der oben stehenden Abbildung den Punkt Q ein!

Aufgabe 3 (2 Punkte)

Die nachstehende Abbildung zeigt ein rechteckiges Blatt eines Flipcharts.

1) Berechnen Sie den Winkel α , den die beiden Diagonalen miteinander einschließen.

Aufgabe 4 (2 Punkte)

Im Badezimmer wird ein Spiegel an der Wand angebracht. Eine Person steht vor dem Spiegel und sieht den oberen Rand des Spiegels unter dem Höhenwinkel $\alpha=3,85^{\circ}$ (siehe nachstehende nicht maßstabgetreue Abbildung).

1) Berechnen Sie die Höhe *x* (über dem Boden), in der sich die Unterkante des Spiegels befindet.

Aufgabe 5 (2 Punkte)

Melisa steht in einer Entfernung x (in m) zum Handymast. Sie hält das 5 cm lange Streichholz in der Entfernung einer Armlänge (0,6 m) vor ihre Augen (siehe nachstehende schematische Abbildung).

1) Ergänzen Sie die nachstehende Gleichung.

0.6:0.05 = x:

Aufgabe 6 (2 Punkte)

Eine Rampe der Länge x überwindet 3 Stufen. Jede Stufe hat die Höhe h und die Breite b.

- Kreuzen Sie die auf den dargestellten Sachverhalt zutreffende Formel an. [1 aus 5]

$x = \frac{2 \cdot b}{\cos(\alpha)}$	
$x = \frac{3 \cdot h \cdot \sin(\alpha)}{2 \cdot b}$	
$x = (2 \cdot b + y) \cdot \tan(\alpha)$	
$X = \frac{2 \cdot b + y}{\cos(\alpha)}$	
$X = \frac{3 \cdot h + \sin(\alpha)}{2 \cdot b}$	

Aufgabe 7 (6 Punkte)

Die nachstehende (nicht maßstabgetreue) Skizze zeigt den Querschnitt eines Daches, das durch den Einbau zusätzlicher Balken mit den Längen a und c verstärkt wird. Der Querschnitt des Daches ist das gleichschenkelige Dreieck ABC.

– Erstellen Sie mithilfe von b und α eine Formel zur Berechnung von a.

$$a =$$
 (A)

- Begründen Sie, warum das Dreieck *ABC* nicht gleichseitig ist, wenn gilt: $\alpha = 50^{\circ}$. (R)
- Zeichnen Sie in der obigen Abbildung die Strecke mit der Länge $\frac{b}{2} \cdot \tan(\alpha)$ ein. (R)

Aufgabe 8 (6 Punkte)

Ein Maibaum der Höhe H wirft zu einem bestimmten Zeitpunkt einen 10,00 m langen Schatten. Die Sonne erscheint dabei unter dem Höhenwinkel α .

Hans stellt sich so hin, dass sein Schatten an derselben Stelle endet wie jener des Maibaums. Hans ist 1,76 m groß und ist 8,50 m vom Maibaum entfernt.

- Veranschaulichen Sie den Sachverhalt in einer Skizze, in der die gegebenen Größen sowie der Höhenwinkel α und die Höhe H beschriftet sind.
- Berechnen Sie den Höhenwinkel α.

Bei einem starken Unwetter knickt ein Maibaum der Höhe H um.

Der geknickte Teil schließt mit dem horizontalen Boden einen Winkel γ ein (siehe nachstehende nicht maßstabgetreue Skizze).

- Stellen Sie eine Formel zur Berechnung von x aus H und y auf.

×	_						
\mathcal{L}							

Mathago Schularbeit Trigonometrie im rechtwinkeligen Dreieck