Liste d'indices climatiques de l'atmosphère et de l'océan, calculés par le Système de prévision interannuelle et saisonnière canadien (SPISCan).

Les indices de mousson	Variable SMC	Variable (nom smc); Niveau	Méthode de calcul	Bibliographie
L'indice de mousson du Nord-Ouest du Pacifique	WNPM	Vent (U); 850hpa	La différence de moyennes spatiales entre deux régions; U850 (5°N -15°N, 90°E-130°E) – U850 (22.5°N - 32.5°N, 110°E-140°E)	Wang and Fan, 1999
L'indice de mousson pour l'été Australienne	AUSM	Vent (U); 850hPa	Moyenne spatiale; U850 (5°S-15°S, 110°E-130°E)	Kajikawa et al. 2010
L'indice de mousson de l'Asie du Sud	SAM	Vent (V); 850hpa and 200hpa	La différence de moyennes spatiales entre deux niveaux verticaux; V850-V200 averaged over 10°N - 30°N, 70°E-110°E	Goswami et al. 1999
L'indice de mousson d'été pour l'Asie d' Est	EASM	Vent (U); 850hPa	La différence de moyennes spatiales entre deux régions; U850 (22.5°–32.5°N, 110°–140°E) – U850 (5°–15°N, 90°–130°E)	Wang et al. 2008
L'indice de mousson de l'Inde	IM	Vent (U); 850hPa	La différence de moyennes spatiales entre deux régions; U850(5°N -15°N, 40°E-80°E) – U850(20°N -30°N, 70°E-90°E)	Wang et al. 2001
L'indice de mousson de Webster- Yang	WYM	Vent (U); 850hPa and 200hPa	La différence de moyennes spatiales entre deux niveaux verticaux; U850-U200 averaged over 0-20°N, 40°E-110°E	Webster and Yang, 1992

Les indices basés sur l'anomalie de la Température de Surface de la mer (ATSM)	Variable SMC	Région	Méthode de calcul	Bibliographie
Indice El Nino, Région 1+2	Nino1+2	Pacifique	La moyenne spatiale de l'ATSM sur la région; ATSM (90°W - 80°W, 10°S - 0°)	Trenberth and Stepaniak, 2001
Indice El Nino, Région 3	Nino3	Pacifique	La moyenne spatiale de l'ATSM sur la région; ATSM (150°W - 90°W, 5°S - 5°N)	Trenberth and Stepaniak, 2001
Indice El Nino, Région 4	Nino4	Pacifique	La moyenne spatiale de l'ATSM sur la région; ATSM (160°E - 150°W, 5°S - 5°N)	Trenberth and Stepaniak, 2001
Indice El Nino, Région 3.4	Nino3.4	Pacifique	La moyenne spatiale de l'ATSM sur la région; ATSM (170°W - 120°W, 5°S - 5°N)	Trenberth and Stepaniak, 2001
Indice El Nino Modoki	ЕМІ	Pacifique	La différence de l'ATSM entre les trois régions; ATSM (165E-140W, 10S-10N) - 0.5*ATSM (110W-70W, 15S-5N) - 0.5*ATSM (125E-145E, 10S-20N)	Ashok et al. 2007
L'indice tropical de TSM dans l'Atlantique du Nord	NAT	Atlantique	La moyenne spatiale de l'ATSM sur la région; ATSM (40°W - 20°W, 5°N - 20°N)	Chang et al. 1997
L'indice tropical de TSM dans l'Atlantique du Sud	SAT	Atlantique	La moyenne spatiale de l'ATSM sur la région; ATSM (15°W - 5°E, 5°S - 5°N)	Chang et al. 1997
L'indice tropical de TSM dans l'Atlantique	TASI	Atlantique	La différence entre les moyennes spatiales de deux régions; NAT-SAT	Chang et al. 1997
L'indice tropical de l'Atlantique du Nord	TNA	Atlantique	La moyenne spatiale de l'ATSM sur la région; ATSM (55°W - 15°W, 5°N -25°N)	Enfield et al, 1999
L'indice tropical de l'Atlantique	TSA	Atlantique	La moyenne spatiale de l'ATSM sur la région; ATSM (30°W - 10°E, 20°S - EQ)	Enfield et al, 1999

du Sud				
L'indice tropical de l'Ouest dans l'Océan Indienne	WTIO	L'Océan Indienne	La moyenne spatiale de l'ATSM sur la région; ATSM (50°E - 70°E, 10°S - 10°N)	Lizuka and Matsuura, 2000
L'indice tropical du Sud-Est dans l'Océan Indienne	SETIO	L'Océan Indienne	La moyenne spatiale de l'ATSM sur la région; ATSM (90°E - 110°E, 10°S - 0°)	Lizuka and Matsuura, 2000
L'indice tropical du Sud-Ouest dans l'Océan Indienne	SWIO	L'Océan Indienne	La moyenne spatiale de l'ATSM sur la région; ATSM (31°E - 45°E, 32°S - 25°S)	http://stateoftheo cean.osmc.noaa. gov/sur/ind/swio .php
L'indice du mode-dipôle dans l'Océan Indienne	IOD	L'Océan Indienne	La différence entre les moyennes spatiales de deux régions; WTIO-SETIO	Saji et al. 1999
L'indice du mode-tripole pour les oscillations décennales du Pacifique	TPI	Pacifique	La différence des moyennes spatiales de l'ATSM entre les trois régions; ATSM (10°S–10°N, 170°E–90°W) – ATSM (25°N–45°N, 140°E–145°W) – ATSM (50°S–15°S, 150°E–160°W)	Henley et al. 2015
Les oscillations décennales du Pacifique	PDO	Pacifique	Il faut calculer la première valeur propre (EOF) des ATSM dans le Pacifique du Nord (20-60N). La base de données est OISST. Ensuite, les ATSM de la prévision devront être projetées sur la carte d'EOF afin d'obtenir la prévision d'indice de PDO. La standardisation est faite en utilisant de la moyenne et l'écart-type de l'indice PDO qui proviennent d'OISST pour un période de 1981-2010.	Mantua et al. 1997

Les indices basés sur la pression	MSC var	Méthode de calcul; équation	Bibliographie
au niveau de la mer (PNM)	got	Standard Tabiti Standard Danwin	
L'indice des oscillation s australes	SOI	$SOI = \frac{Standard.Tahiti - Standard.Darwin}{ETM}$ $ETM = \text{\'e}cart Type \ Mensuelle} = \\ = \sqrt{\sum \frac{(Standard.Tahiti\ PNM - Standard.Darwin\ PNM)^2}{N}}{N}}$ $N - le \ nombre \ de \ mois$ $Standard."Station" = \\ = \frac{Actuel\ "Station"\ PNM - Moyenne\ "Station"\ PNM}{\text{\'e}cart\ type\ "Station"}}$ $\text{\'e}cart\ type\ "Station"} = \\ = \sum \frac{(actual\ "Station"\ SLP - mean\ "Station"\ PNM)^2}{N}$	http://www.nc dc.noaa.gov/tel econnections/e nso/indicators/ soi/#soi- calculation
L'indice du Pacific du Nord	NPI	Moyenne spatial (pondéré par la superficie) de PNM sur la région ; PNM (30°S–65°N, 160°E–140°W)	Trenberth and Hurrell, 1994
Les oscillation s de l'Atlantic du Nord (Les iles d'Azores)	NAO	Pas disponible pour le moment	
Les oscillation s de l'Atlantic du Nord (35N- 65N)	NAO	Pas disponible pour le moment	

Bibliographie:

Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.

Kajikawa, Y., B. Wang and J. Yang, 2010: A multi-time scale Australian monsoon index, Int. J. Climatol, 30, 1114-1120.

Goswami, B. N., B. Krishnamurthy, and H. Annama lai, 1999: A broad-scale circulation index for interannual variability of the Indian summer monsoon. Quart. J. Roy.. Meteorol. Soc., 125, 611-633.

Wang, Bin, Zhiwei Wu, Jianping Li, Jian Liu, Chih-Pei Chang, Yihui Ding, Guoxiong Wu, 2008: How to Measure the Strength of the East Asian Summer Monsoon. J. Climate, 21, 4449–4463.

Wang B., R. Wu, and K-M., and Lau, 2001: Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific–East Asian monsoons. J. Climate, 14, 4073–4090.

Webster, P. J. and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877-926.

Trenberth, K. E and D. P. Stepaniak, 2001: Indices of El Niño Evolution. *J. Climate*, **14**, 1697–1701.

Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T, 2007: El Niño Modoki and its possible teleconnection. *Journal of Geophysical Research: Oceans* (1978–2012), 112(C11).

Chang, P., L. Ji and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385, 516-518.

Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperature? J. Geophys. Res., 104, 7841–7848.

Iizuka, S., Matsuura, T., & Yamagata, T., 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. *Geophys. Res. Lett*, 27(20), 3369-3372.

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T., 1999: A dipole mode in the tropical Indian Ocean. *Nature*, 401(6751), 360-363.

http://stateoftheocean.osmc.noaa.gov/sur/ind/swio.php (Accessed 22nd December 2015)

Henley B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., & Folland, C. K., 2015: A Tripole Index for the Interdecadal Pacific Oscillation. *Climate Dynamics*, 1-14.

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1080.

http://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/#soi-calculation (Accessed 22nd December 2015)

Trenberth K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific Climate Dynamics, 1994, Volume 9, Number 6, Page 303