

Tecnológico de monterrey Algebraic and Trascendental Functions Second Interpartial Exam Version B

Name			
ID number	Date	Grou	p
"Adhering to the Code of E precepts of academic hones solve it."			
sorre ii.		Signatur	e
I. Read the following question the line. (5 points each)	ons and identify the option	that best answers each,	then write its letter
1 The range of	of the function $f(x) = e$	$x^{-2} + 4$ is:	
a) $f(x) \in (4, \infty)$	b) $f(x) \in (-2, \infty)$	c) $f(x) \in [4, \infty)$	d) $f(x) \in (2, \infty)$
2 The graph of	of the function $f(x) = 2$	when x goes to infin	ity $(x \to \infty)$:
a) The function go	bes to minus infinity ($f(z)$	$(x) \to -\infty$	
b) The function go	bes to plus infinity $(f(x))$	$\rightarrow \infty$)	
c) The function go	pes to zero $(f(x) \to 0)$		
d) The function go	bes to two $(f(x) \to 2)$		
1 units downward	ne following equations sl s from the parent functio en the domain tends to or	$n \ln(x)$ and tends to n	
a) f(x) =	$\ln(x+2)-1$	$b) f(x) = \ln x$	n(x-1)+2
c) $f(x) =$	$-\ln(x-1) + 2$	d) f(x) = lr	n(x+1)-2
4. Which of the property?	ne following statements 1	represents the "Logari	thm of a Power"
a) $\log_a(M) + \log_a(M)$	$(N) = \log_a(MN)$	b) $\log_a(M) - \log$	$g_a(N) = \log_a\left(\frac{M}{N}\right)$
c) $(P)[\log_a$	$\lfloor (M) \rfloor = \log_a(M^P)$	$\mathrm{d}) - \log_a(M) =$	$\log_a\left(\frac{1}{M}\right)$
5 The domain	n of the function $f(x) =$	$\log_3(x+4) - 2$ is:	
a) $x \in (4,$	∞) b) $x \in (-4, \infty)$	c) $x \in (2, \infty)$ d) x	$c \in (-2, \infty)$

Tecnológico de monterrey Algebraic and Trascendental Functions

Tecnológico de monterrey Algebraic and Trascendental Functions II. Answer the following exercises. Frame or highlight your final answers.

7. Solved	7. Solved the following expressions for x . Include your procedures. (5 points each)		
Expression	$\exp[x^2] + 2 = 1$		
Procedure			
Answer			
Expression	$2\ln(x) - 1 = 0$		
Procedure			
Answer			

Tecnológico de monterrey Algebraic and Trascendental Functions

III. Solve the following exercises in an orderly and clear manner. Frame your final answer. Include the WHOLE procedure. This is evidence for your answers, **missing procedures will render the answer invalid.**

8. **Write and use the change of base formula** to compute the following. Report the numeric value with 6 decimals. (5 points)

value with 6 decimals. (5 points)		
Expression	$\log_8\left(\frac{1}{8}\right)$	
Procedure		
Answer		

9. Use the Laws of logarithms to expand the following expression. (10 points)

9. Use the Laws of logarithms to expand the following expression. (10 points)		
Expression	$\ln\left(\frac{x^3y}{z^5}\right)$	
Procedure		
Answer		

Tecnológico de monterrey Algebraic and Trascendental Functions

10. Use the properties of logarithms to condense the following expression. (15 points)

Expression	$\log \left[\frac{\ln(x^6)}{6\ln(x)} \right] - \log[8\ln(x)]$
Procedure	
Answer	

11. Determine the horizontal asymptote for the following function. (10 points)

11. Determine the nortzontal asymptote for the following function. (10 points)	
Expression	$f(x) = \frac{1}{2}(-e^x + 2)^2$
Procedure	
Answer	

Tecnológico de monterrey

Algebraic and Trascendental Functions
12. Finde the critical points of the following functions. (10 points)

12. Finde the critical points of the following functions. (10 points)		
Expression	$f(x) = \exp[(x-4)(x+4)]$	$g(x) = \ln\left[\frac{1}{x^2} + 2\right]$
Procedure		
Answer		

13. Sketch a graph of $f(x) = e^{-x}$ and $g(x) = \ln(-x)(10 \text{ points})$

