Mikroelektromechanikai rendszerek

Mikroelektromechanikai rendszerek definiálása. Alapfogalmak.

Oktató: Tüű-Szabó Boldizsár Iroda: Informatika Tanszék, B606/A Email: tuu.szabo.boldizsar@sze.hu

Mi az a MEMR?

 Olyan technológia, melynek segítségével olyan gépeket és/vagy rendszereket építhetünk, amelyek egyaránt tartalmaznak elektronikai, mechanikai, és szenzorikus elemeket.

Components of MEMS

Alapfogalmak

- Elektromágneses spektrum
- Ohm-törvénye
- Aktív és passzív elektronikai elemek
- Analóg és digitális jelek
- Szenzorok és aktuátorok
- Logikai áramkörök
- Műveleti erősítők
- Beágyazott rendszerek

Elektromágneses spektrum

Ohm-törvénye

Aktív elektronikai elemek

Áramgenerátor:

Feszültséggenerátor:

Passzív elektronikai elemek

- Ellenállások
- Kondenzátorok
- Tekercsek
- Kapcsolók
- Nyomógombok
- Biztosítékok
- Érzékelők
- Vezetékek, stb.

Analóg és digitális jelek

Mintavételezés

- az időben és értékben folytonos analóg jelekből impulzussorozatot állítunk elő
- Shannon tétele: egy mintavételezett jelből akkor lehet az eredeti jelet információveszteség nélkül visszaállítani, ha a mintavételezési frekvencia értéke legalább kétszerese az eredeti analóg jelben előforduló legnagyobb frekvenciának

Mintavételezés és kvantálás

Szenzorok

- A szenzorok olyan jelátalakítók, amelyek valamilyen nem villamos mennyiséget, villamos jellé alakítanak át (egyes esetekben pneumatikussá).
- A szenzorok lehetnek fizikailag jelenlévő mérési érték felvevők, vagy tisztán szoftver szenzorok (ún. figyelők).
- A szenzorok a bemeneti változókat az információ feldolgozóhoz továbbítják, amely azután meghatározza a szükséges aktuátor beavatkozásokat.

Szenzorok osztályozása

Tudományág	Alcsoport	Mérési jel
Mechanika	G eometria	Út, Távolság, Szög, Emelkedés
	Kinematika	Sebesség, Fordulatszám, Gyorsulás, Szög- gyorsulás, Lengés, Térfogat- és tömegáram
	Igénybevétel	Erő, Nyomás, Feszültség, Nyomaték, Nyúlás
	Anyagtulajdonság	Tömeg, Sűrűség, Viszkozitás
	Akusztika	Hangnyomás, Hangsebesség, Frekvencia
Termodinamika	Hőmérséklet	Érintkezési hő, Sugárzó hő
Villamos, Mágnes	Villamos állapot	Feszültség, Áram, Teljesítmény, Töltés
	Paraméter	Ellenállás, Impedancia, Kapacitás, Induktivitás
	Mező	Mágneses mező, Elektromos mező
Kémia és Fizika	Koncentráció	pH-érték, Nedvesség, Hővezetés
	Partikuláris jel	Lebegő anyagtartalom, Portartalom
	Molekulartiás	Gáz- Folyadék- Merev test molekulák
	Optika	Intenzitás, Hullámhossz, Szín

Aktuátorok

 Mechanikai aktuátorok: fogaskerekek, szíjhajtások, orsók

 Fluid-mechanikai aktuátorok: szelepek, kompresszorok, pneumatikus motorok

Villamos aktuátorok: szinkron, aszinkron, egyenáramú, léptető motorok

Logikai áramkörök

Áramlogika

Feszültséglogika

Logikai kapuk

- Tranzisztor!!!
- NEM kapu
- ÉS kapu
- NEM-ÉS kapu
- VAGY kapu
- NEM-VAGY kapu
- KIZÁRÓ-VAGY kapu

KIZÁRÓ VAGY kapu

Kombinációs áramkörök

- Illesztők
- Dekóderek
- Kóderek
- Kódátalakítók
- Multiplexerek
- Demultiplexerek

Sorrendi áramkörök

- Elemi memóriák
- Logikai automaták
- Regiszterek
- Számlálók

Hibrid áramkörök

- Memóriák
- Aritmetikai egységek
- D/A átalakítók
- A/D átalakítók

Műveleti erősítők

- Kétoldalas, szimmetrikus táplálás
- Invertáló és neminvertáló bemenetek
- A bemenetek különbségét erősíti
- $V_O = A(V_2 V_1)$

Integráló erősítő

 A bemeneti jel időbeli integrálása

•
$$v_O(t) = -\frac{1}{RC} \int v_I(t) dt$$
.

Differenciáló erősítő

- Az RC elemek cseréjével kapjuk
- A kondenzátor árama a bemeneti feszültség deriváltjával arányos

•
$$v_O(t) = -RC \frac{dv_I(t)}{dt}$$

Beágyazott rendszerek

- Adott feladatot ellátó kis számítógépek
- Cél-specifikus tervezés

 Néhány, előre meghatározott feladatot képes ellátni

Központi vezérlőegység fő típusai

- ASIC (Application Specific Integrated Circuits)
- ASIP (Application-Specific Instruction-set Processor) és DSP (Digital Signal Processor)
- CPLD (Complex Programmable Logic Device)
- FPGA (Field Programmable Gate Array)
- SoC (System On a Chip)
- Mikrokontrollerek

A mikrokontrollerek alapvető részei

Köszönöm a figyelmet!