Functional Analysis Notes

Metric Space

Zheng Xie, Xingyu Fu

June 2, 2018

1 Contraction Mapping Principle

Definition 1.1 (metric space)

Let \mathcal{X} be a non-empty set. We call \mathcal{X} a **metric space** if there is a real-value function $\rho(x,y)$ defined on \mathcal{X} such that

- (1) $\rho(x,y) \geq 0$, and the equality holds if and only if x=y;
- (2) $\rho(x,y) = \rho(y,x);$
- (3) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$, $\forall x, y, z \in \mathcal{X}$.

where ρ is called a **metric** on \mathcal{X} . The metric space \mathcal{X} with metric ρ is written as (\mathcal{X}, ρ)

Example 1.1 (Euclidean space)

Metric on Euclidean space is defined by

$$\rho(x,y) = \sqrt{\langle x - y, x - y \rangle}$$

Example 1.2 (continuous functions on [a, b])

We denote the set of all continuous functions on [a, b] by C[a, b].

It's a metric space with metric

$$\rho(x,y) = \max_{a \le t \le b} |x(t) - y(t)|$$

Definition 1.2 (convergence)

Sequence $\{x_n\}$ in (\mathcal{X}, ρ) is **convergent** to x_0 if $\rho(x_n, x_0) \to 0$ as $n \to \infty$. We write $\lim_{n \to \infty} x_n = x_0$ or $x_n \to x_0$.

Definition 1.3 (closed set)

A subset E of metric space \mathcal{X} is **closed** if $\forall \{x_n\} \subset E$, if $x_n \to x_0$ then $x_0 \in E$.

Definition 1.4 (Cauchy sequence)

A sequence $\{x_n\}$ in metric space \mathcal{X} is called a Cauchy sequence if $\rho(x_n, x_m) \to 0$ as $n, m \to \infty$. i.e. for any $\epsilon > 0$, there exists $N(\epsilon)$ such that for any $m, n \geq N(\epsilon)$, $\rho(x_n, x_m) < \epsilon$.

Definition 1.5 (completeness)

A metric space \mathcal{X} is **complete** if and only if all the Cauchy sequence in \mathcal{X} is convergent (to some point in \mathcal{X}).

Example 1.3

Euclidean space \mathbb{R}^n is complete.

Proof.

Suppose $\{x_n\}$ is a Cauchy sequence in \mathbb{R}^n . It's easy to see that $\{x_n\}$ is bounded. By Bolzano-Weierstrass theorem, there is a convergent subsequence and since $\{x_n\}$ is Cauchy, the limit of the convergent subsequence is exactly the limit of $\{x_n\}$. \square

Example 1.4

 $(C[a,b],\rho)$ is complete.

Proof.

Suppose $\{x_n\}$ is a Cauchy sequence in C[a, b].

By definition $\rho(x_n, x_m) \to 0$ as $n, m \to \infty$.

Hence given any $t \in [a, b]$, $|x_n(t) - x_m(t)| \to 0$ as $n, m \to \infty$. Since \mathbb{R} is complete, $x_n(t) \to x_0(t)$ as $n \to \infty$. For any $\epsilon > 0$, there exists $N(\epsilon)$ such that $|x_n(t) - x_m(t)| < \epsilon$ for all $n, m > N(\epsilon)$. Fix t and let $m \to \infty$ we have $|x_n(t) - x_0(t)| < \epsilon$ when $n > N(\epsilon)$. Thus $x_n(t)$ converges to $x_0(t)$ uniformly and therefore $x_0(t) \in C[a, b]$. So $\{x_n\}$ converges. \square

Definition 1.6 (continuous mapping)

Let $T:(\mathcal{X},\rho)\to(\mathcal{Y},\gamma)$ be a map. T is **continuous** if for any $\{x_n\}\subset\mathcal{X},\,x_0\in\mathcal{X},$

$$\rho(x_n, x_0) \to 0 \Rightarrow \gamma(Tx_n, Tx_0) \to 0$$

Proposition 1.1

Let $T: (\mathcal{X}, \rho) \to (\mathcal{Y}, \gamma)$ be a map.

Then T is continuous if and only if $\forall \epsilon > 0, \forall x_0 \in \mathcal{X}, \exists \delta = \delta(x_0, \epsilon) > 0$, such that

$$\rho(x, x_0) < \delta \Rightarrow \gamma(Tx, Tx_0) < \epsilon, \forall x \in \mathcal{X}$$

Proof.

⇒:

Suppose not, then $\exists \epsilon > 0, x_0 \in \mathcal{X}$ and $\forall \delta > 0$, there exists $x \in \mathcal{X}$ such that

$$\rho(x, x_0) < \delta, \gamma(Tx, Tx_0) \ge \epsilon$$

Let $\delta_n = \frac{1}{n}$, then we get a sequence $\{x_n\}$ such that

$$\rho(x_n, x_0) < \frac{1}{n} \to 0, \gamma(Tx_n, Tx_0) \ge \epsilon$$

leading a contradiction since T is continuous.

(=

Pick $x_0 \in \mathcal{X}$, and let $\{x_n\} \subset \mathcal{X}$ be any sequence converges to x_0 .

Now we have $\rho(x_n, x_0) \to 0$, we show that $\gamma(Tx_n, Tx_0) \to 0$.

 $\forall \epsilon > 0, \exists \delta = \delta(x_0, \epsilon) > 0 \text{ such that}$

$$\rho(x, x_0) < \delta \Rightarrow \gamma(Tx, Tx_0) < \epsilon, \forall x \in \mathcal{X}$$

Fix δ above, there exists N such that if n > N, then $\rho(x_n, x_0) < \delta$ and therefore $\gamma(Tx_n, Tx_0) < \epsilon$, i.e. $\gamma(Tx_n, Tx_0) \to 0$ as $n \to \infty$. \square

Let ϕ be a real-value function defined on \mathbb{R} . It's clear that the root of the equation $\phi(x) = 0$ is also the fixed point of $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x - \phi(x)$.

Consider integral equation

$$x(t) = \xi + \int_0^t F(\tau, x(\tau)) d\tau$$

and metric space C[-h, h].

Let $T: C[-h,h] \to C[-h,h]$ be a map defined by

$$(Tx)(t) = \xi + \int_0^t F(\tau, x(\tau)) d\tau$$

Then the integral equation is equivalent to x = Tx. (x is the fixed point of T)

Definition 1.7 (contraction mapping)

Let $T: (\mathcal{X}, \rho) \to (\mathcal{X}, \rho)$ be a map. T is called a contraction mapping if there exists $\alpha \in (0,1)$ such that $\rho(Tx, Ty) \leq \alpha \rho(x, y), \forall x, y \in \mathcal{X}$.

Example 1.5

Let $\mathcal{X} = [0, 1], T(x)$ defined on [0, 1] is a differentiable function, satisfying

$$T(x) \in [0, 1], |T'(x)| \le \alpha < 1, \forall x \in [0, 1]$$

Then $T: \mathcal{X} \to \mathcal{X}$ is a contraction mapping.

Proof.

$$\begin{split} \rho(Tx,Ty) &= |T(x) - T(y)| \\ &= |T'(\theta x + (1-\theta)y)(x-y)| \\ &\leq \alpha|x-y| = \alpha \rho(x,y), \forall x,y \in \mathcal{X}, 0 < \theta < 1 \end{split}$$

Theorem 1.1 (Banach fixed point theorem)

Let (\mathcal{X}, ρ) be a complete metric space, $T : \mathcal{X} \to \mathcal{X}$ is a contraction mapping, then there exists unique fixed point of T in \mathcal{X} .

Proof.

Pick any point $x_0 \in \mathcal{X}$, we can obtain a sequence $\{x_n\}$ by iteration $x_{n+1} = Tx_n$. Then we have

$$\rho(x_{n+1}, x_n) = \rho(T^n x_1, T^n x_0)$$

$$\leq \alpha^n \rho(x_1, x_0), \forall n \in \mathbb{Z}_+$$

And for any $m \in \mathbb{Z}_+$

$$\rho(x_{n+m}, x_n) = \sum_{k=0}^{m-1} \rho(x_{n+k+1}, x_{n+k})$$

$$\leq \sum_{k=0}^{m-1} \alpha^{n+k} \rho(x_1, x_0)$$

$$= \alpha^n \frac{1 - \alpha^m}{1 - \alpha} \rho(x_1, x_0)$$

$$< \frac{\alpha^n}{1 - \alpha} \rho(x_1, x_0), \forall n \in \mathbb{Z}_+$$

Hence $\{x_n\}$ is a Cauchy sequence. Since (\mathcal{X}, ρ) is complete, there exists $x \in \mathcal{X}$ such that $x_n \to x$. Then take the limit of both sides of the iteration $x_{n+1} = Tx_n$ we get x = Tx, i.e. x is a fixed point of T. Suppose there is another fixed point x', then

$$\rho(x, x') = \rho(Tx, Tx') \le \alpha \rho(x, x')$$

This implies that x' = x. Therefore the fixed point of T is unique. \square

2 Completion

Definition 2.1 (isometry)

Let (\mathcal{X}, ρ) , (\mathcal{Y}, γ) be two metric spaces.

If there is a map $\phi: \mathcal{X} \to \mathcal{Y}$ satisfying

- (1) ϕ is onto.
- (2) $\rho(x,y) = \gamma(\phi x, \phi y), \forall x, y \in \mathcal{X}.$

Then we call (\mathcal{X}, ρ) and (\mathcal{Y}, γ) are **isometric**. And ϕ is called an **isometry**.

Note.

(2) implies that ϕ is injective.

If metric space (\mathcal{X}, ρ) is isometric to a subspace of another metric space (\mathcal{Y}, γ) . Then we say that (\mathcal{X}, ρ) can be embedded in (\mathcal{Y}, γ) . Usually written as $(\mathcal{X}, \rho) \subset (\mathcal{Y}, \gamma)$

Definition 2.2 (dense)

Let (\mathcal{X}, ρ) be a metric space. $E \subset \mathcal{X}$ is called a dense subset of \mathcal{X} if $\forall x \in \mathcal{X}, \ \forall \epsilon > 0, \ \exists z \in E$ such that $\rho(x, z) < \epsilon$. In other words, $\forall x \in \mathcal{X}, \ \exists \{x_n\} \subset E$ such that $x_n \to x$.

Example 2.1

Denote the set of all polynomials on [a, b] by P[a, b]. By Weierstrass theorem, P[a, b] is dense in C[a, b].

Definition 2.3 (completion)

The smallest complete metric space of given metric space (\mathcal{X}, ρ) is called the completion of \mathcal{X} .

Proposition 2.1

If (\mathcal{X}, ρ) , (\mathcal{X}_1, ρ_1) are metric spaces. $(\mathcal{X}, \rho) \subset (\mathcal{X}_1, \rho_1)$, (\mathcal{X}_1, ρ_1) is complete. $\rho_1|_{\mathcal{X} \times \mathcal{X}} = \rho$ and \mathcal{X} is dense in \mathcal{X}_1 , then \mathcal{X}_1 is the completion of \mathcal{X} .

Proof.

 $\forall \xi \in \mathcal{X}_1, \exists \{x_n\} \subset \mathcal{X} \text{ such that } \rho_1(x_n, \xi) \to 0.$

If there is another complete metric space, say (\mathcal{X}_2, ρ_2) , of which (\mathcal{X}, ρ) is the subspace. (Naturally we have $\rho_2|_{\mathcal{X}\times\mathcal{X}}=\rho$).

Note that

$$\rho_2(x_n, x_m) = \rho_1(x_n, x_m) \to 0 \text{ as } n, m \to \infty$$

Thus $\exists \hat{\xi} \in \mathcal{X}_2$ such that $\rho_2(x_n, \hat{\xi}) \to 0$.

Then define a map $T: \mathcal{X}_1 \to \mathcal{X}_2, T\xi = \hat{\xi}$, it suffices to show that T is an isometry.

Since $\forall \eta \in \mathcal{X}_1, \exists y_n \in \mathcal{X} \text{ such that } \rho_1(y_n, \eta) \to 0,$

$$\rho_1(\xi,\eta) = \lim_{n \to \infty} \rho_1(x_n, y_n) = \lim_{n \to \infty} \rho_2(x_n, y_n) = \rho_2(\hat{\xi}, \hat{\eta})$$

Hence T is an isometric embedding, i.e. $(\mathcal{X}_1, \rho_1) \subset (\mathcal{X}_2, \rho_2) \square$

Theorem 2.1

Every metric space has a completion.

Proof.

Let (\mathcal{X}, ρ) be a metric space.

Step 1. Construct a metric space \mathcal{X}_1 containing \mathcal{X}

First we define a relation \sim on all the Cauchy sequence in \mathcal{X} by

$$\{x_n\} \sim \{y_n\} \text{ iff } \lim_{n \to \infty} \rho(x_n, y_n) = 0$$

It's easy to verify that \sim is a equivalent relation. We see each equivalent class as an element and denote the set of all these equivalent classes by \mathcal{X}_1 , then define metric on \mathcal{X}_1 by

$$\rho_1(\xi,\eta) = \lim_{n \to \infty} \rho(x_n, y_n)$$

where $x_n \in \xi$, $y_n \in \eta$.

We need to show that ρ_1 is well-defined.

Since for any $p \in \mathbb{Z}_+$,

$$\begin{aligned} &|\rho(x_{n+p},y_{n+p}) - \rho(x_n,y_n)| \\ &= |\rho(x_{n+p},y_{n+p}) - \rho(x_{n+p},y_n) + \rho(x_{n+p},y_n) - \rho(x_n,y_n)| \\ &\leq |\rho(x_{n+p},y_{n+p}) - \rho(x_{n+p},y_n)| + |\rho(x_{n+p},y_n) - \rho(x_n,y_n)| \\ &\leq |\rho(y_{n+p},y_n)| + |\rho(x_{n+p},x_n)| \to 0 \text{ as } n \to \infty \end{aligned}$$

 $\rho(x_n, y_n)$ is a Cauchy sequence in \mathbb{R} , which is a complete metric space. Hence the limit $\lim_{n\to\infty} \rho(x_n, y_n)$ does exist.

Note that if $x'_n \in \xi$, then

$$|\rho(x'_n, y_n) - \rho(x_n, y_n)| \le |\rho(x'_n, x_n)| \to 0$$

Hence the value of $\lim_{n\to\infty} \rho(x_n, y_n)$ doesn't depend on the selection of $\{x_n\}$ and $\{y_n\}$. We also need to verify that the triangle inequality holds, i.e.

$$\rho_1(\xi,\zeta) \le \rho_1(\xi,\eta) + \rho_1(\eta,\zeta)$$

which can be obtained by taking the limit of both sides of the following inequality

$$\rho(x_n, z_n) \le \rho(x_n, y_n) + \rho(y_n, z_n)$$

Therefore, we showed that ρ_1 is a metric and (\mathcal{X}_1, ρ_1) is a metric space.

Step 2. Show that \mathcal{X} is dense in \mathcal{X}_1

 $\forall x \in \mathcal{X}$, we denote by $\xi_x \in \mathcal{X}_1$ the equivalent class containing sequence (x, x, \dots, x, \dots) , and let $\mathcal{X}' = \{\xi_x : x \in \mathcal{X}\}$. Obviously, $\mathcal{X}' \subset \mathcal{X}_1$. Then we define a map

$$T: (\mathcal{X}, \rho) \to (\mathcal{X}', \rho_1), x \mapsto \xi_x$$

It's clear that T is onto. Also,

$$\rho(x_1, x_2) = \lim_{n \to \infty} \rho(x_1, x_2) = \rho_1(\xi_{x_1}, \xi_{x_2}) = \rho_1(Tx_1, Tx_2)$$

Thus T is an isometry and therefore $(\mathcal{X}, \rho) \subset (\mathcal{X}_1, \rho_1)$. By definition of $\mathcal{X}_1, \mathcal{X}$ is dense in \mathcal{X}_1 .

Step 3. Show that \mathcal{X}_1 is complete

Let $\{\xi_n\} \subset \mathcal{X}_1$ be a Cauchy sequence. We show that $\exists \xi \in \mathcal{X}_1$ such that $\rho_1(\xi_n, \xi) \to 0$ as $n \to \infty$.

(1) Suppose $\{\xi_n\} \subset \mathcal{X}'$, let $x_n = T^{-1}\xi_n$, then $\{x_n\}$ is a Cauchy sequence. Suppose $\{x_n\} \in \xi$, then

$$\rho_1(\xi_n,\xi) = \lim_{m \to \infty} \rho(x_n,x_m) \to 0 \text{ as } n \to \infty$$

(2) Otherwise, note that \mathcal{X}' is dense in \mathcal{X}_1 , for each $\xi_n \in \mathcal{X}_1$, $\exists \hat{\xi}_n \in \mathcal{X}'$ such that $\rho_1(\xi_n, \hat{\xi}_n) < \frac{1}{n}$. Since for each $p \in \mathbb{Z}_+$

$$\rho_{1}(\hat{\xi}_{n+p}, \hat{\xi}_{n})
\leq \rho_{1}(\hat{\xi}_{n+p}, \xi_{n+p}) + \rho_{1}(\xi_{n+p}, \xi_{n}) + \rho_{1}(\xi_{n}, \hat{\xi}_{n})
< \frac{1}{n+p} + \frac{1}{n} + \rho_{1}(\xi_{n+p}, \xi_{n}) \to 0 \text{ as } n \to \infty$$

 $\{\hat{\xi}_n\}$ is a Cauchy sequence in \mathcal{X}' and by (1) we know that there exists ξ such that $\hat{\xi}_n \to \xi$. It follows that $\xi_n \to \xi$.

By Proposition 2.1, \mathcal{X}_1 is the completion of \mathcal{X} . \square

Example 2.2

The completion of P[a, b] with metric

$$\rho(x,y) = \max_{a \le t \le b} |x(t) - y(t)|$$

is C[a,b].

Example 2.3

The completion of C[a, b] with metric

$$\rho(x,y) = \int_{a}^{b} |x(t) - y(t)| dt$$

is $L^{1}[a, b]$.

3 Sequential Compactness

Definition 3.1 (bounded)

Let (\mathcal{X}, ρ) be a metric space, $A \subset \mathcal{X}$, A is called **bounded** if there exists $x_0 \in \mathcal{X}$ and r > 0 such that $A \subset B(x_0, r)$ where

$$B(x_0, r) = \{ x \in \mathcal{X} | \rho(x, x_0) < r \}$$

In finite-dimensional Euclidean space, infinite bounded set always contains a convergent subsequence (Bolzano-Weierstrass). However, the statement is not true for any metric space.

Example 3.1

Consider metric space C[0,1] and sequence

$$x_n(t) = \begin{cases} 0 & , t \ge \frac{1}{n} \\ 1 - nt & , t \le \frac{1}{n} \end{cases}, n = 1, 2, \dots$$

Obviously $\{x_n\} \subset B(0,1)$ while $\{x_n\}$ doesn't contain a convergent subsequence.

Definition 3.2 (sequentially compact)

Let (\mathcal{X}, ρ) be a metric space, $A \subset \mathcal{X}$. A is called a **sequentially compact set** if for any $\{x_n\} \subset A$, $\{x_n\}$ contains a convergent subsequence in \mathcal{X} . Moreover, if this subsequence converges to a point in A, then A is called a **self-sequentially compact set**. If \mathcal{X} is sequentially compact, then \mathcal{X} is called a **sequentially compact space**.

Proposition 3.1

Any bounded subset of \mathbb{R}^n is sequentially compact. Any bounded closed subset of \mathbb{R}^n is self-sequentially compact.

Proposition 3.2

In any sequentially compact space, any subset is sequentially compact, any closed subset is self-sequentially compact.

Proposition 3.3

Sequentially compact space is complete.

Proof.

Let (\mathcal{X}, ρ) be a metric space, $\{x_n\} \subset \mathcal{X}$ is a Cauchy sequence. By sequentially compactness, there exists a subsequence converging to $x_0 \in \mathcal{X}$. Since $\{x_n\}$ is Cauchy we know that $x_n \to x_0$. \square

Definition 3.3 (ϵ -net)

Let (\mathcal{X}, ρ) be a metric space, $M \subset \mathcal{X}, \epsilon > 0, N \subset M$.

If $\forall x \in M, \exists y \in N \text{ such that } \rho(x,y) < \epsilon$, then N is called an ϵ -net of M. Moreover, if N is a finite set, then N is called a **finite** ϵ -net of M.

Note.

By definition we have

$$M \subset \bigcup_{y \in N} B(y, \epsilon)$$

Definition 3.4 (totally bounded)

A set M is called **totally bounded**, if for any $\epsilon > 0$, there exists a finite ϵ -net of M.

Theorem 3.1 (Hausdorff)

Let (\mathcal{X}, ρ) be a complete metric space, $M \subset \mathcal{X}$, then M is sequentially compact if and only if M is totally bounded.

Proof.

 \Rightarrow

Assume that M is not totally bounded. Then there exists ϵ_0 such that there is no finite ϵ_0 -net of M. Pick any $x_1 \in M$, then for each $n \in \mathbb{N}$, choose x_{n+1} inductively by

$$x_{n+1} \in M \setminus \bigcup_{k=1}^{n} B(x_k, \epsilon_0)$$

Then we obtain a infinite sequence $\{x_n\}$.

Note that for any $n \neq m$, $\rho(x_n, x_m) \geq \epsilon_0$. Hence it can't contain a convergent subsequence, leading a contradiction.

⇐:

Suppose $\{x_n\}$ is a infinite sequence in M, we want to find a convergent subsequence.

Note that, given any $\epsilon > 0$, the ϵ -net of M is finite, hence there must exists $y \in M$ such that $B(y, \epsilon)$ contains infinitely many terms of $\{x_n\}$.

Thus for 1-net, $\exists y_1 \in M$ and a subsequence $\{x_n^{(1)}\} \subset B(y_1, 1)$. For $\frac{1}{2}$ -net, $\exists y_2 \in M$ and a subsequence $\{x_n^{(2)}\} \subset B(y_2, \frac{1}{2})$ of $\{x_n^{(1)}\}$.

. . . .

For $\frac{1}{k}$ -net, $\exists y_k \in M$ and a subsequence $\{x_n^{(k)}\} \subset B(y_k, \frac{1}{k})$ of $\{x_n^{(k-1)}\}$.

.

Then we obtain a diagonal subsequence $\{x_n^{(n)}\}$, it's a Cauchy sequence. In fact, $\forall \epsilon > 0$, when $n > \frac{2}{\epsilon}$, $\forall p \in \mathbb{N}$

$$\rho(x_{n+p}^{(n+p)}, x_n^{(n)}) \le \rho(x_{n+p}^{(n+p)}, y_n) + \rho(x_n^{(n)}, y_n)$$
$$\le \frac{2}{n} < \epsilon$$

Since \mathcal{X} is complete, $\{x_n^{(n)}\}$ is convergent. \square

Definition 3.5 (separable)

A metric space is called **separable** if it has countable dense subset.

Theorem 3.2

If a metric space is totally bounded, then it's separable.

Proof.

Let N_n denote the finite $\frac{1}{n}$ -net, then $\bigcup_{n=1}^{\infty} N_n$ is a countable dense subset. \square

Definition 3.6 (compact)

Let \mathcal{X} be a topological space. $M \subset \mathcal{X}$ is called **compact** if every open cover of M in \mathcal{X} has a finite subcover.

Theorem 3.3

Let (\mathcal{X}, ρ) be a metric space, $M \subset \mathcal{X}$. Then M is compact if and only if M is self-sequentially compact. **Proof.**

_ .

Let M be a compact set. First we show that M is closed.

(Actually, all metric spaces are Hausdorff and any compact set in Hausdorff space is closed) $\forall x_0 \in \mathcal{X} \setminus M$, since

$$M \subset \bigcup_{x \in M} B(x, \frac{1}{2}\rho(x, x_0))$$

By compactness of M, $\exists x_k \in M, k = 1, 2, \dots, n$ such that

$$M \subset \bigcup_{k=1}^{n} B(x_k, r_k)$$

where $r_k = \frac{1}{2}\rho(x_k, x_0)$ Take

$$\delta = \min_{1 \le k \le n} r_k$$

Then $\forall x \in M$, suppose that $x \in B(x_k, r_k)$, we have

$$\rho(x, x_0) \ge \rho(x_k, x_0) - \rho(x, x_k) = 2r_k - \rho(x, x_k) > r_k \ge \delta$$

Thus $B(x_0, \delta) \cap M = \emptyset$ and therefore M is closed.

Next, assume that M is not self-sequentially compact, then there exists $\{x_n\} \subset M$ that doesn't have any convergent subsequence. Without loss of generality, we can assume that all x_n 's are distinct.

Then for each $n \in \mathbb{N}$, let S_n denote $\{x_1, x_2, \dots, x_{n-1}, x_{n+1}, \dots\}$. Since S_n doesn't have a convergent subsequence, S_n is a closed set and therefore each $\mathcal{X} \setminus S_n$ is open. However,

$$\bigcup_{n=1}^{\infty} (\mathcal{X} \setminus S_n) = \mathcal{X} \setminus \bigcap_{n=1}^{\infty} S_n = \mathcal{X} \setminus \emptyset = \mathcal{X} \supset M$$

By compactness of M, there is a finite subcover

$$\bigcup_{n=1}^{N} (\mathcal{X} \setminus S_{k_n}) \supset M$$

This is impossible since for any x_m , $m \neq k_1, k_2, \dots, k_N$, $x_m \in M$ but $x_m \notin \bigcup_{n=1}^N (\mathcal{X} \setminus S_{k_n})$.

Hence M is self-sequentially compact.

Since M is self-sequentially compact, M with metric ρ is complete. By Hausdorff theorem, M is totally bounded.

Assume that M is not compact, then there exists an open cover

$$\bigcup_{\lambda \in \Lambda} G_{\lambda} \supset M$$

that doesn't have a finite subcover.

For each $n \in \mathbb{N}$, there is a finite $\frac{1}{n}$ -net

$$N_n = \{x_{k_1}^{(n)}, x_{k_2}^{(n)}, \cdots, x_{k_n}^{(n)}\}$$

Obviously

$$\bigcup_{y \in N} B(y, \frac{1}{n}) \supset M$$

Thus, $\forall n \in \mathbb{N}, \exists y_n \in N_n$ such that $B(y_n, \frac{1}{n})$ can't be covered by finitely many G_{λ} (Otherwise, there exists n such that $\bigcup_{y\in N_n} B(y,\frac{1}{n})$ can be covered by finitely many G_{λ} and therefore there exists a finite subcover of M).

Then we obtain a sequence $\{y_n\}$, since M is self-sequentially compact, there exists a convergent subsequence $\{y_{n_k}\}$, say, converging to $y_0 \in G_{\lambda_0}$.

Since G_{λ_0} is open and $\{y_{n_k}\}$ converges to $y_0 \in G_{\lambda_0}$, when k is large enough, $B(y_{n_k}, \frac{1}{n_k}) \subset G_{\lambda_0}$, which is contradict to the fact that each $B(y_n, \frac{1}{n})$ can be covered by finitely many G_{λ} .

Proposition 3.1

Let (M,ρ) be a compact metric space. Let C(M) denote the set of all continuous mapping from M to \mathbb{R} . Define

$$d(u, v) = \max_{x \in M} |u(x) - v(x)|, \quad \forall u, v, \in C(M)$$

Then (C(M), d) is a metric space.

Proof.

It suffices to show that d(u, v) is well-defined, i.e. we shall show that for each $u \in C(M)$, $\max_{x \in M} |u(x)|$ exists.

Since M is compact and u is continuous, u(M) is also compact and therefore u(M) is a bounded closed set. It follows that $\max_{x \in M} |u(x)|$ exists.

Proposition 3.2

(C(M),d) is complete.

Proof.

Let $\{u_n(t)\}\$ be a Cauchy sequence in C(M).

Fix $t_0 \in M$, $\{u_n(t_0)\}$ is also a Cauchy sequence in \mathbb{R} . Let $u(t_0)$ denote the limit of $\{u_n(t_0)\}$.

 $\forall \epsilon > 0, \ \exists N \in \mathbb{Z}_+ \text{ such that } \forall m, n > N, \ d(u_m, u_n) < \epsilon, \ \text{let } n \to \infty, \ \text{we have } d(u_m, u) < \epsilon \ \text{if } m > N.$ Thus $u_n(t)$ converges to u(t) uniformly. It follows that $u(t) \in C(M)$. \square

Definition 3.7 (uniformly bounded)

Let F be a subset of C(M). F is called **uniformly bounded**, if $\exists M_1 > 0$ such that $|\phi(x)| \leq M_1, \forall x \in M, \forall \phi \in F$.

Definition 3.8 (equicontinuous)

Let F be a subset of C(M). F is called **equicontinuous**,

if $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$ such that

$$|\phi(x_1) - \phi(x_2)| \le \epsilon, \quad \forall x_1, x_2 \in M, \rho(x_1, x_2) < \delta, \forall \phi \in F$$

Theorem 3.4 (Arzela-Ascoli)

Let F be a subset of C(M).

Then F is sequentially compact if and only if F is uniformly bounded and equicontinuous.

Proof.

⇒:

Since C(M) is complete, by Hausdorff theorem, F is totally bounded. Thus F is bounded and therefore uniformly bounded. Then we shall show that F is equicontinuous.

 $\forall \epsilon > 0$, there exists a finite $\frac{\epsilon}{3}$ -net N of M.

Suppose $N = \{f_1, f_2, \dots, f_n\}$. Since M is compact, each f_k is uniformly continuous. Hence, there exists $\delta = \delta(\epsilon)$ such that for each f_k ,

$$|f_k(x_1) - f_k(x_2)| < \frac{\epsilon}{3}, \quad \forall x_1, x_2 : \rho(x_1, x_2) < \delta$$

So for any $\phi \in F$, there exists some $f_i \in N$ such that

$$|\phi(x_1) - \phi(x_2)| \le |\phi(x_1) - f_j(x_1)| + |f_j(x_1) - f_j(x_2)| + |\phi(x_2) - f_j(x_2)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon, \quad \forall x_1, x_2 : \rho(x_1, x_2) < \delta$$

(=:

Suppose F is uniformly bounded and equicontinuous, we show that F is totally bounded.

 $\forall \epsilon > 0, \exists \delta = \delta(\epsilon) > 0 \text{ such that when } \rho(y_1, y_2) < \delta, \forall \phi \in F, |\phi(y_1) - \phi(y_2)| < \frac{\epsilon}{3}.$

For this δ , there exists a finite δ -net N of M.

Suppose $N = \{x_1, x_2, \dots, x_n\}$, define a map $T : F \to \mathbb{R}^n$ by

$$T\phi = (\phi(x_1), \phi(x_2), \cdots, \phi(x_n)), \quad \forall \phi \in F$$

Let $\hat{F} = T(F)$, then \hat{F} is a bounded set in \mathbb{R}^n . (Because F is uniformly bounded)

By Bolzano-Weierstrass, any sequence of \hat{F} has a convergent subsequence, it follows that \hat{F} is sequentially compact. By Hausdorff theorem, \hat{F} is totally bounded. For given ϵ , there exists a finite $\frac{\epsilon}{3}$ -net of \hat{F}

$$\hat{N} = \{ T\phi_1, T\phi_2, \cdots, T\phi_m \}$$

Thus for any $\phi \in F$, there exists ϕ_i such that $\rho_n(T\phi, T\phi_i) < \frac{\epsilon}{3}$. Then pick $x_r \in N$ such that $\rho(x, x_r) < \delta$, and

$$|\phi(x) - \phi_i(x)| \le |\phi(x) - \phi(x_r)| + |\phi(x_r) - \phi_i(x_r)| + |\phi_i(x_r) - \phi_i(x)|$$

$$< \frac{1}{3}\epsilon + \rho_n(T\phi, T\phi_i) + \frac{1}{3}\epsilon < \epsilon$$

where ρ_n denote the metric on \mathbb{R}^n . \square

Example 3.2

Let $\Omega \subset \mathbb{R}^n$ be an open bounded convex set. If M_1, M_2 are two given positive numbers, then

$$F = \{ \phi \in C^{(1)}(\bar{\Omega}) : |\phi(x)| \le M_1, |grad(\phi(x))| \le M_2, \forall x \in \Omega \}$$

is a sequentially compact set in $C(\bar{\Omega})$.

Proof.

 $\forall \phi \in F, \forall x_1, x_2 \in \bar{\Omega}, \exists \theta \in (0,1) \text{ such that}$

$$\phi(x_1) - \phi(x_2) = grad(\phi(\theta x_1 + (1 - \theta)x_2))(x_1 - x_2)$$

So $|\phi(x_1) - \phi(x_2)| \le M_2 \rho_n(x_1, x_2), \quad \forall \phi \in F$

Hence F is equicontinuous. Obviously F is uniformly bounded. \square

4 Normed Vector Space

Definition 4.1 (vector space)

Let \mathcal{X} be a non-empty set, \mathbb{K} is a field (\mathbb{R} or \mathbb{C}).

 \mathcal{X} is called a **vector space** if

- (1) \mathcal{X} is an additive abelian group.
- (2) \mathcal{X} is equipped with scalar multiplication $F \times \mathcal{X} \to \mathcal{X}$

Definition 4.2 (linear isomorphism)

Let \mathcal{X} and \mathcal{Y} be vector spaces. $T: \mathcal{X} \to \mathcal{Y}$ be a **linear isomorphism** if

- (1) T is a bijection.
- (2) $T(\alpha x + \beta y) = \alpha Tx + \beta Ty, \forall x, y \in \mathcal{X}, \forall \alpha, \beta \in \mathbb{K}$

Definition 4.3 (vector subspace)

Let E be a subset of \mathcal{X} . If E equipped with the same addition and scalar multiplication as \mathcal{X} is also a vector space, then E is called a **vector subspace** of \mathcal{X} .

Definition 4.4 (norm)

A **norm** on vector space \mathcal{X} is a function $\|\cdot\|: \mathcal{X} \to \mathbb{R}$, satisfying

- (1) $||x|| \ge 0, \forall x \in \mathcal{X}. ||x|| = 0 \text{ iff } x = 0.$
- $(2) \|\alpha x\| = |\alpha| \|x\|, \, \forall \alpha \in \mathbb{K}, \, \forall x \in \mathcal{X}$
- $(3) ||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathcal{X}.$

Definition 4.5 (normed vector space)

A normed vector space is a vector space \mathcal{X} equipped with a norm.

It is also called a B^* space.

Definition 4.6 (Banach space)

A complete normed vector space is called a **Banach space**.

Definition 4.7 (equivalence of norm)

Let \mathcal{X} be a vector space, $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on \mathcal{X} .

 $\|\cdot\|_2$ is **stronger** than $\|\cdot\|_1$, if

$$||x_n||_2 \to 0 \Rightarrow ||x_n||_1 \to 0$$
, as $n \to \infty$

If $\|\cdot\|_2$ is stronger than $\|\cdot\|_1$ and $\|\cdot\|_1$ is stronger than $\|\cdot\|_2$, then $\|\cdot\|_1$ and $\|\cdot\|_2$ are **equivalent**.

Proposition 4.1

 $\|\cdot\|_2$ is stronger than $\|\cdot\|_1$ if and only if there exists a constant C such that

$$\|\cdot\|_1 < C\|\cdot\|_2, \forall x \in \mathcal{X}$$

Proof.

 \Rightarrow :

Suppose not, then for each $n \in \mathbb{Z}_+$, there exists $x_n \in \mathcal{X}$ such that $||x_n||_1 \ge n||x_n||_2$, let $y_n = \frac{x_n}{||x_n||_1}$, then $||y_n||_1 = 1$. On the other hand,

$$0 \le ||y_n||_2 < \frac{1}{n}, \forall n \in \mathbb{N}$$

So $||y_n||_2 \to 0$ as $n \to \infty$ and therefore $||y_n||_1 \to 0$, leading a contradiction.

⟨=:

Trivial. \square

Corollary 4.1

 $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ if and only if there exists constants $C_1, C_2 > 0$ such that

$$C_1 ||x||_1 \le ||x||_2 \le C_2 ||x||_1$$

Let \mathcal{X} be a normed vector space, $dim\mathcal{X} = n$, then there is a basis of $\mathcal{X} : e_1, e_2, \dots, e_n$. And any element $x \in \mathcal{X}$ has a unique representation:

$$x = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n$$

Therefore, any point $x \in \mathcal{X}$ corresponds to a unique point $\xi = Tx = (\xi_1, \xi_2, \dots, \xi_n)$ in \mathbb{R}^n .

We show that, the norm in \mathcal{X} is equivalent to the norm in \mathbb{R}^n .

Consider function

$$p(\xi) = ||x|| = ||\sum_{j=1}^{n} \xi_j e_j||, \quad \forall \xi \in \mathbb{R}^n$$

First note that p is uniformly continuous with respect to ξ :

 $\forall \xi = (\xi_1, \xi_2, \dots, \xi_n), \forall \eta = (\eta_1, \eta_2, \dots, \eta_n) \in \mathbb{R}^n$

By Triangle inequality and Cauchy-Schwarz inequality,

$$|p(\xi) - p(\eta)| \le p(\xi - \eta) \le \sum_{i=1}^{n} |\xi_i - \eta_i| ||e_i||$$

$$\le \left(\sum_{i=1}^{n} |\xi_i - \eta_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} ||e_i||^2\right)^{\frac{1}{2}}$$

$$= |\xi - \eta| \left(\sum_{i=1}^{n} ||e_i||^2\right)^{\frac{1}{2}}$$

Then, $\forall \xi \in \mathbb{R}^n \setminus \{0\}$,

$$p(\xi) = \|\sum_{j=1}^{n} \xi_{j} e_{j}\| = |\xi| \|\sum_{j=1}^{n} \frac{\xi_{j}}{|\xi|} e_{j}\| = |\xi| p(\frac{\xi}{|\xi|})$$

Note that the unit sphere of \mathbb{R}^n , denoted by $S_1 = \{\xi \in \mathbb{R}^n | |\xi| = 1\}$ is compact. Hence $p(\xi)$ obtains its minimum C_1 and maximum C_2 on S_1 , i.e.

$$C_1 \le p(\xi) \le C_2, \quad \forall \xi \in S_1$$

It follows that

$$C_1|\xi| \le p(\xi) \le C_2|\xi|, \quad \forall \xi \in \mathbb{R}^n$$

It remains to show that $C_1 > 0$.

Assume that $C_1 = 0$, then $\exists \xi^* \in S_1$ such that $p(\xi^*) = 0$.

Suppose $\xi^* = (\xi_1^*, \xi_2^*, \dots, \xi_n^*)$, i.e.

$$\xi_1^* e_1 + \xi_2^* e_2 + \dots + \xi_n^* e_n = 0$$

Since $\{e_i\}$ is a basis, it follows that $\xi^* = 0$, which is contradict to the fact that $\xi^* \in S_1$. Thus we have

$$C_1|Tx| \le ||x|| \le C_2|Tx|, \quad \forall x \in X$$

If we regard |Tx| as another norm, denoted by $||x||_T$, then it shows that $||\cdot||$ and $||\cdot||_T$ are equivalent. Therefore, the norm of *n*-dimensional normed vector space is equivalent to the norm of \mathbb{R}^n .

Theorem 4.1

Let \mathcal{X} be a finite dimensional normed vector space, if $\|\cdot\|_1$ and $\|\cdot\|_2$ are both norm on \mathcal{X} , then there exists positive constants C_1, C_2 such that

$$C_1 ||x||_1 \le ||x||_2 \le C_2 ||x||_1, \quad \forall x \in \mathcal{X}$$

Proof.

Suppose $dim \mathcal{X} = n$, since $\|\cdot\|_1$ and $\|\cdot\|_2$ are both equivalent to the norm of \mathbb{R}^n , $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

Note.

This theorem shows that any two n-dimensional normed vector space are isomorphic and homeomorphic.

Corollary 4.2

Any finite-dimensional normed vector space is a Banach space.

Corollary 4.3

Any finite-dimensional subspace of a normed vector space is closed.

Definition 4.8 (sublinear functional)

Let $P: \mathcal{X} \to \mathbb{R}$ be a function on vector space \mathcal{X} .If

- (1) $P(x+y) \le P(x) + P(y), \forall x, y \in \mathcal{X}.$
- (2) $P(\lambda x) = \lambda P(x), \forall \lambda > 0, \forall x \in \mathcal{X}.$

Then P is called a sublinear functional on \mathcal{X} .

Theorem 4.2

Let \mathcal{X} be a normed vector space. If $e_1, e_2, \dots, e_n \in \mathcal{X}$ are given vectors, then $\forall x \in \mathcal{X}$, there exists best approximation coefficients $\lambda_1, \lambda_2, \dots, \lambda_n$.

Proof.

Given any vector $x \in \mathcal{X}$, we want to find $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{K}^n$ such that

$$||x - \sum_{i=1}^{n} \lambda_i e_i|| = \min_{a \in \mathbb{K}^n} ||x - \sum_{i=1}^{n} a_i e_i||$$

where $a = (a_1, a_2, \dots, a_n)$.

Consider function

$$F(a) = ||x - \sum_{i=1}^{n} a_i e_i||, a \in \mathbb{K}^n$$

We want to find its minimum. It's easy to see that F is a continuous function on \mathbb{K}^n . Also,

$$F(a) \ge \|\sum_{i=1}^{n} a_i e_i\| - \|x\|, \forall a \in \mathbb{K}^n$$

Let $P(a) = \|\sum_{i=1}^n a_i e_i\|$, then $P(\cdot)$ is a norm on \mathbb{K}^n . Since \mathbb{K}^n is a finite-dimensional space, by theorem 4.1, there exists $C_1 > 0$ such that

$$P(a) \ge C_1|a|, \forall a \in \mathbb{K}^n$$

where $|a| = (|a_1|^2 + |a_2|^2 + \dots + |a_n|^2)^{\frac{1}{2}}$.

Thus $F(a) \to \infty$ as $|a| \to \infty$, therefore the minimum of F exists. \square

Note.

If we write $M = span\{e_1, e_2, \dots, e_n\}$, $\rho(x, M) = \inf_{y \in M} ||x - y||$, $x_0 = \sum_{i=1}^n \lambda_i e_i$. Then $\rho(x, x_0) = \rho(x, M)$.

Definition 4.9 (strictly convex)

Let $(\mathcal{X}, \|\cdot\|)$ be a normed vector space.

If $\forall x \neq y \in \mathcal{X}, ||x|| = ||y|| = 1$, then

$$\|\alpha x + \beta y\| < 1, \forall \alpha, \beta > 0, \alpha + \beta = 1$$

Theorem 4.3

Let \mathcal{X} be a normed vector space which is strictly convex. $\{e_1, e_2, \cdots, e_n\} \subset \mathcal{X}$ are linear independent, then $\forall x \in \mathcal{X}$, there exists a unique set of best approximation $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$.

Proof.

Suppose $d = \rho(x, M)$, $\exists y_1, y_2 \in M$ such that $||x - y_1|| = ||x - y_2|| = d$, then $\forall \alpha, \beta > 0$, $\alpha + \beta = 1$, since M is strictly convex,

$$\frac{\|x - (\alpha y_1 + \beta y_2)\|}{d} = \frac{\|\alpha (x - y_1) + \beta (x - y_2)\|}{d}$$
$$= \|\alpha (\frac{x - y_1}{d}) + \beta (\frac{x - y_2}{d})\| < 1$$

i.e. $||x - (\alpha y_1 + \beta y_2)|| < d$, which is contradict to the definition of d.

If d=0, the best approximation of x is y, then x=y. \square

Theorem 4.4

Let \mathcal{X} be a normed vector space, then \mathcal{X} is finite-dimensional if and only if the unit sphere of \mathcal{X} is sequentially compact.

Proof.

⇒:

If \mathcal{X} is finite-dimensional, then \mathcal{X} is homeomorphic to \mathbb{R}^n . Since the unit sphere of \mathbb{R}^n is compact, the unit sphere of \mathcal{X} is also compact and therefore sequentially compact.

=

Assume that \mathcal{X} is infinite-dimensional, let S_1 be the unit surface of \mathcal{X} .

Pick any $x_1 \in S_1$. Let M_n denote the span of x_1, x_2, \dots, x_n , then we can always find $x_{n+1} \notin M_n$ such that $||x_{n+1} - x_i|| \ge 1, \forall i = 1, 2, \dots, n$.

It is because $\forall y \in \mathcal{X} \setminus M_n$, by theorem 4.3, $\exists x \in M_n$ such that

$$||y - x|| = d = \rho(y, M_n)$$

Let $x_{n+1} = \frac{y-x}{d}$, then $x_{n+1} \in S_1$ and

$$||x_{n+1} - x_i|| = \frac{||y - (x + dx_i)||}{d} \ge \frac{d}{d} = 1, \forall i = 1, 2, \dots, n$$

So that we can obtain a sequence $\{x_n\}$ satisfying $||x_n - x_m|| \ge 1, \forall n \ne m \in \mathbb{N}$, which doesn't have any convergent subsequence and therefore S_1 is not sequentially compact. \square

Definition 4.10 (bounded)

Let \mathcal{X} be a normed vector space, $A \subset \mathcal{X}$ is called bounded if there exists a constant c > 0 such that $||x|| \leq c$, $\forall x \in A$.

Corollary 4.2

Let \mathcal{X} be a normed vector space, \mathcal{X} is finite dimensional if and only if any bounded subset of \mathcal{X} is sequentially compact.

Lemma 4.1 (F.Riesz)

Let \mathcal{X} be a normed vector space, \mathcal{X}_0 be a proper closed subspace, then for $\forall 0 < \epsilon < 1, \exists y \in \mathcal{X}$, such that ||y|| = 1 and $||y - x|| \ge 1 - \epsilon, \forall x \in \mathcal{X}_0$

Proof.

By theorem 4.3, there exists $y_0 \in \mathcal{X} \setminus \mathcal{X}_0$ such that

$$\inf_{x \in \mathcal{X}_0} \|y_0 - x\| = 1$$

 $\forall \epsilon > 0, \exists x_0 \in \mathcal{X}_0 \text{ such that }$

$$1 \le ||y_0 - x_0|| < 1 + \frac{\epsilon}{1 - \epsilon} = \frac{1}{1 - \epsilon}$$

Let $y = \frac{y_0 - x_0}{\|y_0 - x_0\|}$, then $\|y\| = 1$, and $\forall x \in \mathcal{X}_0$

$$||y - x|| = \frac{y_0 - x'}{||y_0 - x_0||} > \frac{1}{\frac{1}{1 - \epsilon}} = 1 - \epsilon \quad \Box$$

5 Convex Set And Fixed Point

Definition 5.1 (convex)

Let \mathcal{X} be a vector space, $E \subset \mathcal{X}$, E is called a **convex** set, if

$$\lambda x + (1 - \lambda)y \in E, \quad \forall x, y \in E, \forall 0 < \lambda < 1$$

Proposition 5.1

If $\{\tilde{E}_{\lambda}|\lambda\in\Lambda\}$ is a family of convex set in vector space \mathcal{X} , then $\bigcap_{\lambda\in\Lambda}E_{\lambda}$ is also a convex set.

Definition 5.2 (convex hull)

Let \mathcal{X} be a vector space, $A \subset \mathcal{X}$. If $\{E_{\lambda} \subset \mathcal{X} | \lambda \in \Lambda\}$ is the family of all convex sets that contain A, then $\bigcap_{\lambda \in \Lambda} E_{\lambda}$ is called the **convex hull** of A, denoted by conv(A). $\forall n \in \mathbb{N}, x_1, x_2, \dots, x_n \in A$,

$$\sum_{i=1}^{n} \lambda_i x_i, \text{ where } \lambda_i \ge 0, \sum_{i=1}^{n} \lambda_i = 1$$

is called the **convex combination** of x_1, x_2, \dots, x_n

Proposition 5.2

Let \mathcal{X} be a vector space, $A \subset \mathcal{X}$, then the convex hull of A is the set of all convex combination of elements of A, i.e.

$$conv(A) = \{ \sum_{i=1}^{n} \lambda_i x_i | \sum_{i=1}^{n} \lambda_i = 1, x_i \in A, i = 1, 2, \dots, \forall n \in \mathbb{N} \}$$

Proof.

Let

$$S = \{ \sum_{i=1}^{n} \lambda_i x_i | \sum_{i=1}^{n} \lambda_i = 1, x_i \in A, i = 1, 2, \dots, \forall n \in \mathbb{N} \}$$

Then $S \supset A$ and S by definition is a convex set. So it suffices to show that $S \subset conv(A)$. Let C be any convex set that contains A. Pick any point in S, say

$$y = \sum_{i=1}^{n} \lambda_i x_i$$

Note that

$$y = \lambda_1 x_1 + (1 - \lambda_1) x_1'$$

where

$$x_1' = \sum_{i=2}^n \frac{\lambda_i}{1 - \lambda_1} x_i$$

$$\sum_{i=2}^{n} \frac{\lambda_i}{1 - \lambda_1} = \frac{1 - \lambda_1}{1 - \lambda_1} = 1$$

It implies that y can be obtained inductively, hence $y \in C$. Since C is arbitrary, $y \in conv(A)$. Therefore S = conv(A). \square

Definition 5.3 (Minkowski functional)

Let $\mathcal X$ be a vector space, $C\subset \mathcal X$ is convex, containing origin.

Define a function $P: \mathcal{X} \to [0, \infty]$ by

$$P(x) = \inf\{\lambda > 0 | \frac{x}{\lambda} \in C\}, \quad \forall x \in \mathcal{X}$$

Function P is called the **Minkowski functional** of C.

We can also write

$$P(x) = \inf\{\lambda > 0 | x \in \lambda C\}, \quad \forall x \in \mathcal{X}$$

where $\lambda C = \{\lambda x | x \in C\}$

Proposition 5.3

Let \mathcal{X} be a vector space, $C \subset \mathcal{X}$ is convex, containing origin. If P is the Minkowski functional of C, then P has the following properties:

- (1) $P(x) \in [0, \infty], P(0) = 0.$
- (2) $P(\lambda x) = \lambda P(x), \forall x \in \mathcal{X}, \forall \lambda > 0.$ (positive homogeneity)
- (3) $\forall \epsilon > 0, \forall x \in \mathcal{X}$, there exists $\lambda = p(x) + \epsilon$ such that $x \in \lambda C$.
- (4) $P(x+y) \leq P(x) + P(y), \forall x, y \in \mathcal{X}$. (subadditivity)
- (5) $\forall x \in C, p(x) \leq 1$.

Proof.

- (1) Trivial.
- (2) Trivial.
- (3) By definition, $\forall \epsilon > 0$, there exists $p(x) \leq \lambda' < p(x) + \epsilon$ such that $x \in \lambda'C$. Since C is convex, $\forall t \in [0,1]$, $tx + (1-t)0 \in \lambda'C$, then $x \in \frac{\lambda'}{t}C$. Take $t = \frac{\lambda'}{p(x) + \epsilon}$, then $\lambda = \frac{\lambda'}{t} = p(x) + \epsilon$ and $x \in \lambda C$
- (4) Suppose P(x) and P(y) are finite. $\forall \epsilon > 0$, take $\lambda_1 = P(x) + \frac{\epsilon}{2}$, $\lambda_2 = P(y) + \frac{\epsilon}{2}$, then

$$\frac{x}{\lambda_1} \in C, \frac{x}{\lambda_2} \in C$$

Since C is convex, so

$$\frac{x+y}{\lambda_1+\lambda_2} = \frac{\lambda_1}{\lambda_1+\lambda_2} \cdot \frac{x}{\lambda_1} + \frac{\lambda_2}{\lambda_1+\lambda_2} \cdot \frac{y}{\lambda_2} \in C$$

which implies

$$P(x+y) \le \lambda_1 + \lambda_2 = P(x) + P(y) + \epsilon$$

Since $\epsilon > 0$ is arbitrary we obtain (4).

(5) $\forall x \in C, x \in 1 \cdot C$, by definition of p(x), so $p(x) \leq 1$. \square

Definition 5.4 (absorbent)

Let \mathcal{X} be a vector space, $C \subset \mathcal{X}$ is convex and it contains origin. C is called **absorbent** if $\forall x \in \mathcal{X}$, $\exists \lambda > 0$ such that $x \in \lambda C$.

Definition 5.5 (balanced)

Let \mathcal{X} be a vector space, $C \subset \mathcal{X}$ is convex and it contains origin. C is called **balanced** if $\forall x \in C$, $\forall \lambda : |\lambda| = 1$ we have $\lambda x \in C$.

Proposition 5.4

Let \mathcal{X} be a vector space on \mathbb{C} , then any absorbent balanced convex $C \subset \mathcal{X}$ decide a seminorm on \mathcal{X} .

Proposition 5.5

Let \mathcal{X} be a normed vector space, C is a closed convex set containing origin. If P(x) is the Minkowski functional of C, then P(x) is lower semi-continuous, i.e.

 $\forall x_0 \in \mathcal{X}, \forall \epsilon > 0, \exists$ a neighborhood U of x_0 such that $f(x) \geq f(x_0) - \epsilon$ for all $x \in U$.

And if C is bounded, then

$$P(x) = 0$$
 iff $x = 0$

Moreover, if 0 is an interior point of C then C is absorbent and P(x) is uniformly continuous. **Proof.**

(1) We show that $aC = \{x \in \mathcal{X} | P(x) \le a\}$.

 $\forall a > 0$, if $x \in aC$, then by definition $P(x) \leq a$.

On the other hand, if $P(x) \leq a$, then $\forall n \in \mathbb{N}$, we have

$$\frac{x}{a+\frac{1}{n}} \in C$$

Note that C is closed and

$$\frac{x}{a+\frac{1}{n}} \to \frac{x}{a} \text{ as } n \to \infty$$

So $x \in aC$. Therefore $aC = \{x \in \mathcal{X} | P(x) \leq a\}$.

Particularly, $C = \{x \in \mathcal{X} | P(x) \le 1\}.$

(2) We show that P(x) is lower semi-continuous.

 $\forall x_0 \in \mathcal{X}, \ let \lambda_0 = P(x_0), \ \forall \epsilon > 0, \ x_0 \notin (\lambda_0 - \epsilon)C$, which is a closed set. Thus there exists an open neighborhood U of x_0 such that $U \cap (\lambda_0 - \epsilon)C = \emptyset$, then for any point $x \in U$, $P(x) \geq \lambda_0 - \epsilon = P(x_0) - \epsilon$. Therefore P(x) is lower semi-continuous.

- (3) Obviously P(0) = 0. Since C is bounded, there $\exists r > 0$ such that $C \subset B(0,r)$, hence $\forall x \in \mathcal{X} \setminus \{0\}$, $2r \frac{x}{\|x\|} \notin C$, it follows that $P(x) \geq \frac{\|x\|}{2r}$. Hence if P(x) = 0, then x = 0
- (4) If 0 is an interior point of C, then there exists r > 0 such that $B(0,r) \subset C$, then

$$\frac{rx}{2||x||} \in C, \quad \forall x \in \mathcal{X} \setminus \{0\}$$

Hence C is absorbent. Moreover, $P(x) \leq 2\frac{\|x\|}{r}, \forall x \in \mathcal{X}$. Thus

$$|P(x) - P(y)| \le \max\{P(x - y), P(y - x)\} \le \frac{2}{r} ||x - y||, \forall x, y \in \mathcal{X}$$

Therefore P(x) is uniformly continuous. \square

Theorem 5.1 (Brouwer)

Let B be the closed unit ball of \mathbb{R}^n , let $T: B \to B$ be a continuous mapping, then there exists a fixed point of T $x \in B$.

Theorem 5.2 (Schauder)

Let \mathcal{X} be a normed vector space, $C \subset \mathcal{X}$ is a closed convex set, $T : C \to C$ is continuous and C is sequentially compact, then there exists a fixed point of T in C.

Definition 5.6 (compact mapping)

Let \mathcal{X} be a normed vector space, E is a subset of \mathcal{X} , $T:E\to\mathcal{X}$ is called **compact** if T is continuous and for any bounded set $A\subset E$, T(A) is sequentially compact.

Corollary 5.1

Let \mathcal{X} be a normed vector space, C is a bounded closed convex subset, $T:C\to C$ is compact, then there exists fixed point of T in C.

6 Inner Product Space

Definition 6.1 (inner product)

Let \mathcal{X} be a vector space on field \mathbb{K} , function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ is called an **inner product** if

- (1) $\forall x, y \in \mathcal{X}, \langle x, y \rangle = \langle y, x \rangle.$
- (2) $\forall x, y \in \mathcal{X}, \forall k \in \mathbb{K}, \langle kx, y \rangle = k \langle x, y \rangle.$
- (3) $\forall x, y, z \in \mathcal{X}, \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle.$
- (4) $\forall x \in \mathcal{X}, \langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ iff x = 0.

Theorem 6.1 (Cauchy-Schwarz inequality)

Let $(\mathcal{X}, \langle \cdot, \cdot \rangle)$ be a inner product space. $\forall x, y \in \mathcal{X}$,

$$|\langle x, y \rangle| \le \langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}$$

And the equality holds if and only if $x = \lambda y$, $\lambda \in \mathbb{K}$.

Proposition 6.1

Let $(\mathcal{X}, \|\cdot\|)$ be a normed vector space, the function $\langle\cdot,\cdot\rangle$ induced by $\langle x,x\rangle^{\frac{1}{2}} = \|x\|$ is an inner product if and only if $\|\cdot\|$ satisfies

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \forall x, y \in \mathcal{X}$$

Proof.

⇒:

Trivial.

(=:

Define $\langle x, y \rangle$ on \mathcal{X} by

$$\langle x,y \rangle = \begin{cases} \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2) &, \mathbb{K} = \mathbb{R} \\ \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2) &, \mathbb{K} = \mathbb{C} \end{cases}$$

It's easy to verify that $\langle x, y \rangle$ is an inner product. \square

Definition 6.2 (Hilbert space)

A complete inner product space is called a **Hilbert space**.

Definition 6.3 (orthogonal)

Let \mathcal{X} be an inner product space, $x, y \in \mathcal{X}$. x and y are called **orthogonal** if $\langle x, y \rangle = 0$. Written as $x \perp y$. If M is an unempty subset of \mathcal{X} , and $\forall y \in M$, $x \perp y$, then we call x and M are orthogonal, written as $x \perp M$. Moreover,

$$M^{\perp} = \{ x \in \mathcal{X} | x \perp M \}$$

is called the **orthogonal complement** of M.

Definition 6.4 (complete)

Let \mathcal{X} be an inner product space, $S \subset \mathcal{X}$ is an orthogonal set. If $S^{\perp} = \{0\}$, then S is called **complete**.

Proposition 6.2

- (1) If $x \perp y_n$ for all $n \in \mathbb{N}$, $y_n \to y$, then $x \perp y$.
- (2) If $x \perp M$, then $x \perp span\{M\}$.
- (3) M^{\perp} is a closed vector subspace of \mathcal{X} .

Definition 6.5 (basis, Fourier coefficients)

Let \mathcal{X} be an inner product space, $S \subset \mathcal{X}$ is an orthonormal set, where

$$S = \{e_{\lambda} | \lambda \in \Lambda\}$$

S is called a **basis** if for any $x \in \mathcal{X}$,

$$x = \sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda}$$

where $\{\langle x, e_{\lambda} \rangle | \lambda \in \Lambda\}$ is called the **Fourier coefficients** with respect to the basis S.

Theorem 6.2 (Bessel inequality)

Let \mathcal{X} be an inner product space, $S = \{e_{\lambda} | \lambda \in \Lambda\}$ be an orthonormal set, then $\forall x \in \mathcal{X}$,

$$||x||^2 \ge \sum_{\lambda \in \Lambda} |\langle x, e_{\lambda} \rangle|^2$$

Proof.

First consider any finite subset of A, say $1, 2, \dots, n$. Since

$$0 \le \|x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i \|^2$$

$$= \langle x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i, x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i \rangle$$

$$= \|x\|^2 - \sum_{i=1}^{n} |\langle x, e_i \rangle|^2$$

Thus we have

$$\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \le ||x||^2$$

It also implies that $\forall n \in \mathbb{N}$, there is at most finitely many $\lambda \in \Lambda$ such that

$$|\langle x, e_{\lambda} \rangle|^2 > \frac{1}{n}$$

Otherwise, for given $M = ||x||^2$, we can find (n+1)M λ 's, leading a contradiction. Hence there is at most countably many $\lambda \in \Lambda$ such that

$$|\langle x, e_{\lambda} \rangle|^2 > 0$$

Let Λ_n denote the finite subset of Λ whose cardinality is n, then

$$\sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda} = \lim_{n \to \infty} \sum_{\lambda \in \Lambda_n} \langle x, e_{\lambda} \rangle e_{\lambda} \le ||x||^2 \quad \Box$$

Corollary 6.1

Let \mathcal{X} be a Hilbert space, $\{e_{\lambda}|\lambda\in\Lambda\}$ is a orthonormal set in \mathcal{X} . Then $\forall x\in\mathcal{X}$, we have (1)

$$\sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda} \in \mathcal{X}$$

(2)
$$||x - \sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda}||^{2} = ||x||^{2} - \sum_{\lambda \in \Lambda} |\langle x, e_{\lambda} \rangle|^{2}$$

Proof.

Suppose the countably many $\lambda \in \Lambda$ such that $\langle x, e_{\lambda} \rangle \neq 0$ are $1, 2, \dots, n, \dots$, then

$$\sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda} = \sum_{n=1}^{\infty} \langle x, e_{n} \rangle e_{n}$$

Then by Bessel inequality, $\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2$ converges, thus for any $p \in \mathbb{N}$

$$\|\sum_{n=m}^{m+p} \langle x, e_n \rangle e_n\|^2 = \sum_{n=m}^{m+p} |\langle x, e_n \rangle|^2 \to 0 \text{ as } m \to \infty$$

Hence if we define $x_m = \sum_{n=1}^m \langle x, e_n \rangle e_n$, then $\{x_n\}$ is a Cauchy sequence. Since \mathcal{X} is complete, we have

$$\sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda} = \sum_{n=1}^{\infty} \langle x, e_{n} \rangle e_{n} = \lim_{n \to \infty} x_{n} \in \mathcal{X}$$

Moreover, note that

$$\begin{split} \langle x - \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n, \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n \rangle &= \langle \sum_{n=1}^{\infty} \langle x, e_n \rangle \langle x, e_n \rangle - \langle \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n, \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n \rangle \\ &= \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 - \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \\ &= \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 - \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \\ &= 0 \end{split}$$

Theorem 6.3 (Parseval)

Let \mathcal{X} be a Hilbert space, if $S = \{e_{\lambda} | \lambda \in \Lambda\}$ is a orthonormal set in \mathcal{X} , then the following are equivalent:

- (1) S is a basis.
- (2) S is complete.
- (3) Parseval equality holds. i.e.

$$||x||^2 = \sum_{\lambda \in \Lambda} |\langle x, e_{\lambda} \rangle|^2, \forall x \in \mathcal{X}$$

Proof.

 $(1) \Rightarrow (2)$:

If S is a basis, then for any $x \in \mathcal{X} \setminus \{0\}$, we have

$$x = \sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda} \neq 0$$

So there exists some $\lambda_0 \in \Lambda$ such that $\langle x, e_{\lambda_0} \rangle \neq 0$ Therefore $S^{\perp} = \{0\}$, i.e. S is complete. $(2) \Rightarrow (3)$:

$$||x||^2 - \sum_{\lambda \in \Lambda} |\langle x, e_{\lambda} \rangle|^2 = ||x - \sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda}||^2 = 0$$

Otherwise, $0 \neq x - \sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda} \in S^{\perp}$, which is contradict to the completeness of S. (3) \Rightarrow (1):

$$\|x - \sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda}\|^2 = \|x\|^2 - \sum_{\lambda \in \Lambda} |\langle x, e_{\lambda} \rangle|^2 = 0$$

Therefore

$$x = \sum_{\lambda \in \Lambda} \langle x, e_{\lambda} \rangle e_{\lambda}$$

Example 6.1

In $L^2[0, 2\pi]$,

$$e_n(t) = \frac{1}{\sqrt{2\pi}} e^{i\pi t}, \quad n = 0, \pm 1, \pm 2, \cdots$$

is an orthonormal basis.

Example 6.2

In l^2 ,

$$e_n = (0, \dots, 0, 1, 0, \dots), n = 1, 2, \dots (n-1)$$
 o's before 1)

is an orthonormal basis.

Definition 6.6 (isomorphic)

Let $(\mathcal{X}_1, \langle \cdot, \cdot \rangle_1)$ and $(\mathcal{X}_2, \langle \cdot, \cdot \rangle_2)$ be two inner product space, if there exists a linear isomorphism $T : \mathcal{X}_1 \to \mathcal{X}_2$ such that

$$\langle x, y \rangle_1 = \langle Tx, Ty \rangle_2, \forall x, y \in \mathcal{X}_1$$

Then we say that \mathcal{X}_1 and \mathcal{X}_2 are **isomorphic**.

Theorem 6.4

Let \mathcal{X} be a Hilbert space. X is separable if and only if it has a at most countbly many orthonormal basis S. Moreover, if the cardinality of S, say n, is finite, then \mathcal{X} is isomorphic to \mathbb{K}^n . If $n = \infty$, then \mathcal{X} is isomorphic to l^2 .

Proof.

 \Rightarrow :

Suppose X is separable, assume that $\{x_n\}$ is the countable dense subset of \mathcal{X} , then there must exists a linear independent subset $\{y_n\}_1^N (N < \infty \text{ or } N = \infty)$, such that

$$span\{y_n\}_1^N = span\{x_n\}$$

Then by applying Gram-Schmidt method on $\{y_n\}_1^N$ we can form a orthonormal set $\{e_n\}_1^N$.

Since

$$\overline{span\{e_n\}_1^N} = \overline{span\{y_n\}_1^N} = \mathcal{X}$$

For any $x \in \mathcal{X}$,

$$x = \sum_{n=1}^{N} c_n e_n, \quad c_n \in \mathbb{K}, n = 1, 2, \dots, N, N < \infty \text{ or } N = \infty$$

Note that for each n,

$$\langle x, e_n \rangle = \langle \sum_{n=1}^{N} c_n e_n, e_n \rangle = c_n$$

Thus

$$x = \sum_{n=1}^{N} \langle x, e_n \rangle e_n$$

 $\{e_n\}_1^N$ is an orthonormal basis.

 \Leftarrow

Suppose $\{e_n\}_1^N$ is the orthonormal basis of \mathcal{X} , then

$$\{x = \sum_{n=1}^{N} c_n e_n | Re\{c_n\}, Im\{c_n\} \in \mathbb{Q}\}$$

is a countable dense subset of \mathcal{X} , hence \mathcal{X} is separable.

Moreover, given an orthonormal basis $\{e_n\}_1^N$ $(N < \infty \text{ or } N = \infty)$, define

$$T: x \mapsto \{\langle x, e_n \rangle\}_1^N, \forall x \in \mathcal{X}$$

Obviously T is a linear isomorphism and note that for all $x,y\in\mathcal{X}$

$$\langle x, y \rangle = \langle \sum_{i=1}^{N} \langle x, e_i \rangle e_i, \sum_{j=1}^{N} \langle y, e_j \rangle e_j \rangle$$
$$= \sum_{i=1}^{N} \langle x, e_i \rangle \overline{\langle y, e_i \rangle}$$
$$= \langle Tx, Ty \rangle$$

Hence \mathcal{X} is isomorphic to \mathbb{K}^n (when $N < \infty$) or l^2 (when $N = \infty$). \square

Theorem 6.5

Let C be a closed convex subset of Hilbert space \mathcal{X} , then there exists a unique $x_0 \in C$ such that

$$||x_0|| = \inf_{x \in C} ||x||$$

Proof.

If $0 \in C$, then $x_0 = 0$.

If $0 \notin C$, let $d = \inf_{x \in C} ||x||$.

Given $n \in \mathbb{N}$, there exists $x_n \in C$ such that

$$||x_n|| < d + \frac{1}{n}$$

 $\{x_n\}$ is a Cauchy sequence since

$$||x_m - x_n||^2 = 2(||x_m|| + ||x_n||)^2 - 4||\frac{x_m + x_n}{2}||^2$$

$$\leq 2\left[\left(d + \frac{1}{m}\right)^2 + \left(d + \frac{1}{n}\right)^2\right] - 4d^2 \to 0 \text{ as } n, m \to \infty$$

Hence it converges to some point $x_0 \in \mathcal{X}$. Since C is closed, $x_0 \in C$ and we have

$$||x_0|| = d$$

Assume that $\hat{x_0}$ is another point that satisfies $\|\hat{x_0}\| = d$, then

$$||x_0 - \hat{x_0}||^2 = 2(||x_0||^2 + ||\hat{x_0}||^2) - 4||\frac{x_0 + \hat{x_0}}{2}||^2$$

$$< 4d^2 - 4d^2 = 0$$

Therefore $x_0 = \hat{x_0}$. \square

Corollary 6.2

Let C be a closed convex subset of Hilbert space \mathcal{X} , then for any $y \in \mathcal{X}$, there exists a unique $x_0 \in C$ such that

$$||y - x_0|| = \inf_{x \in C} ||x - y||$$

Theorem 6.6

Let C be a closed convex subset of an inner product space \mathcal{X} , $\forall y \in \mathcal{X}$, x_0 is the best approximation of y in C if and only if

$$Re\{\langle y - x_0, x_0 - x \rangle\} > 0, \forall x \in C$$

Proof.

 $\forall x \in C$, consider a function on $t \in [0,1]$

$$\phi_x(t) = \|y - tx - (1 - t)x_0\|^2$$

Note that, x_0 is the best approximation of y in C if and only if

$$\phi_x(t) > \phi_x(0), \forall x \in C, \forall t \in [0, 1]$$

Since

$$\phi_x(t) = \|(y - x_0) + t(x_0 - x)\|^2$$

$$= \|y - x_0\|^2 + 2tRe\{\langle y - x_0, x_0 - x \rangle\} + t^2 \|x_0 - x\|^2$$

$$\phi_x'(0) = 2Re\{\langle y - x_0, x_0 - x \rangle\}$$

Thus

$$Re\{\langle y - x_0, x_0 - x \rangle\} \ge 0 \Leftrightarrow \phi_x'(0) \ge 0$$

Also,

$$\phi_x(t) - \phi_x(0) = \phi_x'(0)t + ||x_0 - x||^2 t^2$$

Therefore,

$$Re\{\langle y - x_0, x_0 - x \rangle\} \ge 0 \Leftrightarrow \phi_x(t) \ge \phi_x(0)$$

Corollary 6.3

Let M be a closed linear submanifold of a Hilbert space \mathcal{X} . Then $\forall x \in \mathcal{X}$, y is the best approximation of x in M if and only if

$$x - y \perp M - \{y\}$$

Corollary 6.4 (orthogonal decomposition)

Let M be a closed subspace of a Hilbert space \mathcal{X} , then for $\forall x \in \mathcal{X}$, there exists a unique orthogonal decomposition

$$x = y + z, \quad y \in M, z \in M^{\perp}$$