API Documentation

API Documentation

February 27, 2015

Contents

\mathbf{C}	Contents				
	Module CsTransform.pynufft				
	1.1	Functions	2		
	1.2	Variables	3		
	1.3	Class pynufft	3		
		1.3.1 Methods	3		

1 Module CsTransform.pynufft

package docstring author: Jyh-Miin Lin (Jimmy), Cambridge University address: jyhmiinlin at gmail.com Created on 2013/1/21

This file is part of pynufft.

pynufft is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pynufft is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

First, see test_1D(),test_2D(), test_3D(), examples

1.1 Functions

$\mathbf{DFT_slow}(x)$	
Compute the discrete Fourier Transform of the 1D array x https://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/	
$\mathbf{DFT_point}(x, k)$	
Compute the discrete Fourier Transform of the 1D array x https://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/	
show_3D()	
$\mathbf{test_3D}()$	
test_prolate()	
$\mathbf{test_2D}()$	
$\mathbf{rFOV}_{-2}\mathbf{D}()$	
test_radial()	
test_1D()	
${\color{red}\textbf{test_2D_multiprocessing}()}$	

$test_wavelet()$

 $\mathbf{histeq}(\mathit{im},\,\mathit{nbr_bins}{=}256)$

Histogram equalization of a grayscale image.

 $\mathbf{test_SR}()$

1.2 Variables

Name	Description
cmap	Value: matplotlib.cm.gray
norm	Value: matplotlib.colors.Normalize(vmin= 0.0,
	vmax= 1.0)
package	Value: 'CsTransform'
bpass	Value: array([6.85477291e-13, 6.85293298e-13,
	6.84956443e
dirichlet	Value: <scipy.interpolate.interpolate.interp1d< th=""></scipy.interpolate.interpolate.interp1d<>
	object at 0x7f6b3
t	Value: array([-49.9875, -49.975, -49.9625,
	, 49.975 , 49.9

1.3 Class pynufft

CsTransform.nufft.nufft -

CsTransform.pynufft.pynufft

1.3.1 Methods

__init__(self, om, Nd, Kd, Jd, n_shift=None)

constructor of pyNufft

Overrides: CsTransform.nufft.nufft.__init__ extit(inherited documentation)

 $initialize_gpu(self)$

 $Overrides: \ CsTransform.nufft.nufft.initialize_gpu$

 $\mathbf{gpu_k_deconv}(\mathit{self})$

 $\mathbf{gpu_k_modulate}(self)$

 $\mathbf{gpu_Nd2KdWKd2Nd}(\mathit{self}, \, \mathit{x}, \, \mathit{weight_flag})$

Now transform Nd grids to Kd grids(not be reshaped)

$gpu_forwardbackward(self, x)$

true_forward(self, my_phantom)

compute the exact NUFT without sparse approximation only for simulation

forwardbackward(self, x)

pseudoinverse2(self, data)

density compensation

pseudoinverse3(self, data, mu, LMBD, gamma, nInner, nBreg)

pseudoinverse(self, data, mu, LMBD, gamma, nInner, nBreg)

forwardbackward2(self, x)

Update the data-space

maxrowsum(self)

backward2(self, X)

backward2(x): method of class pyNufft

from [M x Lprod] shaped input, compute its adjoint (conjugate) of Non-uniform Fourier transform

INPUT: X: ndarray, [M, Lprod] (Lprod=1 in case 1) where M =st['M']

OUTPUT: x: ndarray, [Nd[0], Nd[1], ..., Kd[dd-1], Lprod]

adjoint(self, f)

adjoint operator to calcualte AT*y

adjoint2(self, f)

adjoint operator to calcualte AT*y

$Inherited\ from\ CsTransform.nufft.nufft$

Kd2Nd(), Nd2Kd(), backward(), emb_fftn(), emb_ifftn(), finalization(), forward(), gpufftn(), gpuifftn(), linear_phase(), pipe_density()

Index

```
CsTransform (package)
CsTransform.pynufft (module), 2–4
  CsTransform.pynufft.DFT_point (func-
    tion), 2
  CsTransform.pynufft.DFT_slow (function),
  CsTransform.pynufft.histeq (function),
  CsTransform.pynufft.pynufft (class), 3-
  CsTransform.pynufft.rFOV_2D (function),
  CsTransform.pynufft.show_3D (function),
  CsTransform.pynufft.test_1D (function),
  CsTransform.pynufft.test_2D (function),
  CsTransform.pynufft.test_2D_multiprocessing
    (function), 2
  CsTransform.pynufft.test_3D (function),
  CsTransform.pynufft.test_prolate (func-
    tion), 2
  CsTransform.pynufft.test_radial (function),
  CsTransform.pynufft.test_SR (function),
  CsTransform.pynufft.test_wavelet (func-
    tion), 2
```