Advanced Engineering Mathematics Ordinary Differential Equations Notes

Chris Doble

February 2022

Contents

1	Inti	roduction to Differential Equations	1
	1.1	Definitions and Terminology	1
	1.2	Initial Value Problems	3
	1.3	Differential Equations as Mathematical Models	4
2	Firs	st-Order Differential Equations	4
	2.1	Solution Curves Without a Solution	4
	2.2	Separable Equations	5
	2.3	Linear Equations	6
	2.4	Exact Equations	7
	2.5	Solutions by Substitution	8
	2.6	A Numerical Method	9
	2.9	Modeling with Systems of First-Order DEs	10
3	Higher-Order Differential Equations		
	3.1	Theory of Linear Equations	10
	3.2		12

1 Introduction to Differential Equations

1.1 Definitions and Terminology

- An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation (DE)
- An **ordinary DE** (ODE) is a DE that contains only ordinary (i.e. non-partial) derivatives of one or more functions with respect to a single independent variable
- A partial DE is a DE that contains only partial derivatives of one or more functions of two or more independent variables

- The **order** of a DE is the order of the highest derivative in the equation
- First order ODEs are sometimes written in the differential form

$$M(x,y) dx + N(x,y) dy = 0$$

n-th order ODEs in one dependent variable can be expressed by the general form

$$F(x, y, y', \dots, y^{(n)}) = 0$$

• It's possible to solve ODEs in the general form uniquely for the highest derivative $y^{(n)}$ in terms of the other n+1 variables, allowing them to be expressed in the **normal form**

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$

• An n-th order ODE is said be **linear** in the variable y if it can be expressed in the form

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y - g(x) = 0$$

i.e. the dependent variable y and all of its derivatives aren't raised to a power or used in nonlinear functions like e^y or $\sin y$, and the coefficients a_0, a_1, \ldots, a_n depend at most on the independent variable x

- A **nonlinear** ODE is one that is not linear
- A solution to an ODE is a function ϕ , defined on an interval I and possessing at least n derivatives that are continuous on I, such that

$$F(x,\phi(x),\phi'(x),\ldots,\phi^n(x))=0$$
 for all x in I .

- The interval of definition, interval of validity, or the domain of a solution is the interval over which the solution is valid
- A solution of a DE that is 0 on an interval I is said to be a **trivial solution**
- Because solutions to DEs must be differentiable over their interval of validity, discontinuities, etc. must be excluded from the interval
- An **explicit solution** to an ODE is one where the dependent variable is expressed solely in terms of the independent variable and constants
- An implicit solution to an ODE is a relation G(x,y) = 0 over an interval I provided there exists at least one function ϕ that satisfies the relation as well as the ODE on I

- When solving a first-order ODE we usually obtain a solution containing a single arbitrary constant or parameter c. A solution containing an arbitrary constant represents a set of solution called a **one-parameter** family of solutions
- When solving an *n*-th order DE we usually obtain an *n*-parameter family of solutions
- A solution of a DE that is free from arbitrary parameters is called a **particular solution**
- A **singular solution** is a solution to a DE that isn't a member of a family of solutions
- A system of ODEs is two or more equations involving the derivatives of two or more unknown functions of a single independent variable. A solution of such a system is a differentiable function for each equation defined on a common interval I that satisfy each equation of the system on that interval

1.2 Initial Value Problems

• An **initial value problem** is the problem of solving a DE with some given **initial conditions**, e.g. solve

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$

subject to

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

- The domain of y = f(x) differs depending on how it's considered:
 - As a function its domain is all real numbers for which it's defined
 - As a solution of a DE its domain is a single interval over which it's defined an differentiable
 - As a solution of an initial value problem its domain is a single interval over which it's defined, differentiable, and contains the initial conditions
- An initial value problem may not have any solutions. If it does it may have multiple.
- First-order initial value problems of the form

$$\frac{dy}{dx} = f(x, y)$$

$$y(x_0) = y_0$$

are guaranteed to have a unique solution over an interval I containing x_0 if f(x,y) and $\partial f/\partial y$ are continuous

1.3 Differential Equations as Mathematical Models

- A mathematical model is a mathematical description of a system or phenomenon
- The **level of resolution** of a model determines how many variables are included in the model
- \bullet A simple model of the growth of a population P is

$$\frac{dP}{dt} = kP$$

where k > 0

ullet A simple model of radioactive decay of an amount of substance A is

$$\frac{dA}{dt} = kA$$

where k < 0

• Newton's empirical law of cooling/warming states that the rate of change of the temperature of a body is proportional to the difference between the temperature of the body and the temperature of the surrounding medium

$$\frac{dT}{dt} = k(T - T_m)$$

2 First-Order Differential Equations

2.1 Solution Curves Without a Solution

• An ODE in which the independent variable doesn't appear is said to be **autonomous**, e.g.

$$\frac{dy}{dx} = f(y)$$

- A real number c is a **critical/equilibrium/stationary point** of an autonomous DE if it is a zero of f
- If c is a critial point of an autonomous DE, then y(x) = c is a solution
- A solution of the form y(x) = c is called an **equilibrium solution**
- We can draw several conclusions about the solutions of an autonomous DE with n critical points and n+1 subregions bounded by the critical points:
 - If (x_0, y_0) is in a subregion, it remains in that subregion for all x
 - By continuity, f(y) < 0 or f(y) > 0 for all y in a subregion and thus y(x) can't have maximum/minimum points or oscillate

- If y(x) is bounded above by a critical point c_1 , it must approach $y(x) = c_1$ as $x \to -\infty$ or $x \to \infty$
- If y(x) is bounded above and below by critical points c_1 and c_2 , it must approach $y(x) = c_1$ as $x \to -\infty$ and $y(x) = c_2$ as $x \to \infty$ or vice versa
- If y(x) is bounded below by a critical point c_1 , it must approach $y(x)=c_1$ as $x\to -\infty$ or $x\to \infty$

FIGURE 2.1.8 Critical point *c* is an attractor in (a), a repeller in (b), and semi-stable in (c) and (d)

• If y(x) is a solution of an autonomous differential equation dy/dx = f(y), then $y_1(x) = y(x - k)$, where k is a constant, is also a solution

2.2 Separable Equations

• A first-order ODE of the form

$$\frac{dy}{dx} = g(x)h(y)$$

is said to be separable or to have separate variables

• A separable first-order ODE can be solved by dividing both sides by h(y) then integrating both sides with respect to x

$$\frac{dy}{dx} = g(x)h(y)$$

$$\frac{1}{h(y)}\frac{dy}{dx} = g(x)$$

$$\int \frac{1}{h(y)}\frac{dy}{dx} dx = \int g(x) dx$$

$$\int \frac{1}{h(y)} dy = \int g(x) dx$$

$$H(y) = G(x) + c$$

• Care should be taken when dividing by h(y) as it removes constant solutions y = r where h(r) = 0

2.3 Linear Equations

• A first-order DE of the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

or in standard form

$$\frac{dy}{dx} + P(x)y = f(x)$$

is said to be a linear equation in the dependent variable y

- When g(x) = 0 or f(x) = 0 the linear equation is said to be **homogeneous** and is solvable via separation of variables, otherwise it is **nonhomogeneous**
- The nonhomogeneous linear equation's solution is the sum of two solutions $y = y_c + y_p$ where y_c is a solution of the associated homogeneous equation

$$\frac{dy}{dx} + P(x)y = 0$$

and y_p is a particular solution of the nonhomogeneous equation

- Nonhomogeneous linear equations can be solved via variation of parameters:
 - 1. Put it into standard form
 - 2. Determine the integrating factor $e^{\int P(x) dx}$
 - 3. Multiply by the integrating factor
 - 4. Recognise that the left hand side of the equation is the derivative of the product of the integrating factor and y

- 5. Integrate both sides of the equation
- 6. Solve for y
- The **general solution** of a DE is a family of solutions that contains all possible solutions (except singular solutions)
- A term y = f(x) in a solution is called a **transient term** if $f(x) \to 0$ as $x \to \infty$
- When either P(x) or f(x) is a piecewise-defined function the equation is then referred to as a **piecewise-linear differential equation** that can be solved by solving each interval in isolation then choosing appropriate constants to ensure the overall solution is continuous
- The error function and complementary error function are defined

$$\operatorname{erf} x + \operatorname{erfc} x = 1$$

$$\left(\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt\right) + \left(\frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt\right) = 1$$

2.4 Exact Equations

• The **differential** of a function z = f(x, y) is

$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

- A differential expression M(x,y) dx + N(x,y) dy is an **exact differential** in the region R of the xy-plane if it corresponds to the differential of some function f(x,y)
- A first-order DE of the form

$$M(x, y) dx + N(x, y) dy = 0$$

is said to be an **exact equation** if the expression on the left side is an exact differential

• A necessary and sufficient condition that M(x,y) dx + N(x,y) dy be an exact differential is

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

• Exact differentials can be solved by

1. Integrating M(x,y) with respect to x to find an expression for f(x,y)

$$\frac{\partial f}{\partial x} = M(x, y)$$

$$f(x, y) = \int M(x, y) dx + g(y)$$

2. Differentiating f(x,y) with respect to y and equating it to N(x,y) to find g'(y)

$$\frac{\partial f}{\partial y} = N(x, y) = \frac{\partial}{\partial y} \int M(x, y) \, dx + g'(y)$$
$$g'(y) = N(x, y) - \frac{\partial}{\partial y} \int M(x, y) \, dx$$

- 3. Integrating g'(y) with respect to y to find g(y) and substituting it into f(x,y)
- 4. Equating f(x,y) with an unknown constant c
- x and y can be swapped in the steps above (i.e. you can start by integrating N(x, y) with respect to y, etc.)
- A nonexact DE M(x,y) dx + N(x,y) dy = 0 can sometimes be transformed into an exact DE by finding an appropriate integrating factor
 - If $(M_y N_x)/N$ is a function of x alone, then an integrating factor is

$$\mu(x) = e^{\int \frac{M_y - N_x}{N} \, dx}$$

- If $(N_x - M_y)/M$ is a function of y alone, then an integrating factor is

$$\mu(y) = e^{\int \frac{N_x - M_y}{M} \, dy}$$

2.5 Solutions by Substitution

• A function f(x,y) is said to be a **homogeneous function** of degree α if

$$f(tx, ty) = t^{\alpha} f(x, y)$$

• A first-order DE of the form

$$M(x, y) dx + N(x, y) dy = 0$$

is said to be **homogeneous** if both M and N are homogeneous functions of the same degree

- To solve a homogeneous first-order DE:
 - 1. Rewrite it as

$$M(x,y) = x^{\alpha}M(1,u)$$
 and $N(x,y) = x^{\alpha}N(1,u)$ where $u = y/x$

or

$$M(x,y) = y^{\alpha}M(v,1)$$
 and $N(x,y) = y^{\alpha}N(v,1)$ where $v = x/y$

- 2. Substitute y = ux and dy = u dx + x du or x = vy and dx = v dy + y dv as appropriate
- 3. Solve the resulting first-order separable DE
- 4. Substitude u = y/x or v = x/y as appropriate
- The DE

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

where n is any real number is called **Bernoulli's equation**

- For n = 0 and n = 1 Bernoulli's equation is linear
- To solve Bernoulli's equation for $n \neq 0$ and $n \neq 1$:
 - 1. Substitude $y = u^{1/(1-n)}$ and $\frac{dy}{dx} = \frac{d}{dx}(u^{1/(1-n)})$
 - 2. Solve the resulting linear equation
 - 3. Substitude $u = y^{n-1}$
- A DE of the form

$$\frac{dy}{dx} = f(Ax + By + C)$$

can always be reduced to an equation with separable variables by means of the substitution

$$u = Ax + By + C, B \neq 0$$

2.6 A Numerical Method

- Approximate values for points on a solution curve near an initial point can be calculated via a **linearization** of the solution curve a straight line that has the same slope as the initial point and passes through it
- Euler's method approximates a solution curve by iteratively stepping along its linearizations

$$y_{n+1} = y_n + hf(x_n, y_n)$$

where h is the **step size**

2.9 Modeling with Systems of First-Order DEs

• In a system of DEs

$$\frac{dx}{dt} = g_1(t, x, y)$$

and

$$\frac{dy}{dt} = g_2(t, x, y)$$

if g_1 and g_2 are linear in x and y, i.e.

$$g_1(t, x, y) = c_1 x + c_2 y + f_1(t)$$

and

$$g_2(t, x, y) = c_3 x + c_4 y + f_2(t)$$

it is said to be a linear system

3 Higher-Order Differential Equations

3.1 Theory of Linear Equations

• An *n*th-order initial-value problem (IVP) is to solve

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx_{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

subject to

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

- If $a_n(x)$, $a_{n-1}(x)$, ..., $a_1(x)$, $a_0(x)$, and g(x) are continuous on an interval I and $a_n(x) \neq 0$ for every x in the interval, then then a unique solution exists for the above IVP for every $x = x_0$ within the interval
- An **initial value problem** is when all of the constraints are located at the same point while a **boundary value problem** is when they're at different points
- Boundary value problems may have many, one, or no solutions
- When g(x) = 0 the DE is said to be **homogeneous**, otherwise it's **non-homogeneous**
- The symbol *D* is called a **differential operator** because it transforms a differentiable function into another function

$$Dy = \frac{dy}{dx}$$

• Higher-order derivatives can be expressed as

$$D^n = \frac{d^n y}{dx^n}$$

• An *n*th-order differential operator is defined to be

$$L = a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_1(x)D + a_0(x)$$

• As a consequence of the properties of differentiation

$$D(cf(x)) = cDf(x)$$

and

$$D\{f(x) + g(x)\} = Df(x) + Dg(x)$$

• The superposition principle for homogeneous linear nth-order differential equation states that if y_1, y_2, \ldots, y_k are solutions of the equation on an interval I then the linear combination

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_k y_k(x)$$

where c_i are arbitrary constants is also a solution on the interval

• A set of functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ is said to be **linearly dependent** on an interval I if there exists constants c_1, c_2, \ldots, c_n , not all zero, such that

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

for every x in the interval. Otherwise it is said to the **linearly independent**

• The Wronskian of a set of n functions that are n-1 times differentiable is defined as

$$W(f_1, f_2, \dots, f_n) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f'_1 & f'_2 & \dots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

- If $y_1, y_2, ..., y_n$ are n solutions to a homogeneous linear nth-order differential equation on an interval I then the set of solutions is **linearly** independent on I iff $W(y_1, y_2, ..., y_n) \neq 0$ for every x in the interval
- Any set of *n* linearly independent solutions of a homogeneous linear *n*th-order differential equation on an interval *I* is said to be a **fundamental** set of solutions on the interval

• If $y_1, y_2, ..., y_n$ are a fundamental set of solutions of a homogeneous linear nth-order DE on an interval I then the **general solution** of the equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

where c_i are arbitrary constants

- Another way of saying the above is that any solution on the interval can be expressed as a linear combination of the fundamental set of solutions
- A linear combination of a fundamental set of solutions of a homogenous linear nth-order DE

$$y_c(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

is called the **complementary function** of associated nonhomogenous DEs

• If y_p is any particular solution to a nonhomogeneous linear *n*th-order DE on an interval I and y_1, y_2, \ldots, y_n are a fundamental set of solutions of the associated homogeneous DE on I, then the **general solution** of the equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$

where c_i are arbitrary constants

- Another way of saying the above is that any solution on the interval can be expressed as $y = y_c + y_p$
- The superposition for nonhomogeneous linear nth-order differential equations states that if $y_{p_1}, y_{p_2}, \ldots, y_{p_k}$ are k particular solutions of a nonhomogeneous lienar nth-order differential equation on an interval I corresponding, in turn, to k distinct functions g_1, g_2, \ldots, g_k , then

$$y_p(x) = y_{p_1}(x) + y_{p_2}(x) + \dots + y_{p_k}(x)$$

is a particular solution of

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = g_1(x) + g_2(x) + \dots + g_k(x)$$

3.2 Reduction of Order

- The **reduction of order** method requires knowledge of one non-trivial solution and comprises the following steps:
 - 1. Recognise that the ratio of two linearly independent functions isn't constant, i.e.

$$u(x) = \frac{y_1(x)}{y_2(x)}$$
 or $y_2(x) = u(x)y_1(x)$

- 2. Substitute $y_2(x) = u(x)y_1(x)$ into the DE this will result in a DE involving only u'' and u' which can be treated as a linear first-order DE in u' = w
- 3. Solve for w
- 4. Substitute w = u'
- 5. Integrate to find u
- 6. Multiply by y_1 to find y_2
- A formula for the above on a DE in standard form

$$y'' + P(x)y' + Q(x)y = 0$$

is

$$y_2 = y_1(x) \int \frac{e^{-\int P(x) dx}}{y_1^2(x)} dx$$