Appendix: On standard Deviations of the Parameter Estimates

Peilun He, Karol Binkowski, Nino Kordzakhia, Pavel Shevchenko

The algorithm for obtaining the variances of the estimates of parameters is outlined below.

- 1. For a given data set y, obtain MLE estimates $\hat{\theta}$ for the vector of unknown parameters.
- 2. Let $\theta = \hat{\theta}$. Generate a new data set.
- 3. For the data \tilde{y} and parameters $\hat{\theta}$, obtain the score vector numerically. That is, given an increment h, the score is $\frac{\mathcal{G}(\theta+h)-\mathcal{G}(\theta)}{h}$, where \mathcal{G} is the score vector.
- 4. Let $\mathcal{F}_i = \mathcal{GG}'$ be the product of the score vector.
- 5. Repeat step 2 4 M times, we get $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_M$. Get the expectation of these \mathcal{F}_i 's to obtain the Fisher Information Matrix \mathcal{I} .
- 6. Take the inverse of \mathcal{I} . This would be the asymptotic covariance matrix of the parameter estimates.

The standard errors of the estimate of $\theta = (\kappa, \gamma, \mu_{\xi}, \sigma_{\chi}, \sigma_{\xi}, \rho, \lambda_{\chi}, \lambda_{\xi}, s_1, s_2)$ were obtained using the above algorithm.

Table 1: Initial Values (Init.Val), Estimates (Est), Standard Error (Std.Error) and Negative log-likelihood (NLL)

		κ	γ	μ_{ξ}	σ_χ	σ_{ξ}	ρ	λ_χ	λ_{ξ}	s_1	s_2	NLL
2001-2005	Init.Val Est Std.Error	2.2500 1.5123 0.0108	$\begin{array}{c} 0.7507 \\ 0.0552 \\ 0.0026 \end{array}$	-2.7500 0.1933 0.1192	0.7575 0.3029 0.0078	0.7575 0.2193 0.0061	0.5000 0.4212 0.0190	-2.7500 0.0741 0.1517	-2.7500 0.1035 0.1184	0.0200 0.0209 4.39E-04	0.0200 0.0037 2.17E-05	155678 -48566
2005-2009	Init.Val Est Std.Error	2.2500 1.1708 0.0092	0.7507 0.0010 0.0016	-2.7500 0.0034 0.1533	0.7575 0.2473 0.0064	0.7575 0.2824 0.0078	0.5000 0.5729 0.0180	1.7500 -0.1907 0.1283	-2.7500 0.0921 0.1518	0.0200 0.0183 4.35E-04	0.0200 0.0032 1.87E-05	1639264 -50741
2014-2018	Init.Val Est Std.Error	0.7500 1.1114 0.0087	0.7507 0.0011 0.0016	1.7500 0.0117 0.1507	2.2525 0.2519 0.0068	0.7575 0.2807 0.0067	0.5000 0.5725 0.0180	1.7500 0.2014 0.1321	-2.7500 0.0936 0.1526	0.0200 0.0139 3.60E-04	0.0200 0.0028 1.70E-05	7878181 -52455