Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned				
		Theor	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total	
FEC205	C Programming	2			2	:		2		
	Course Name	Examination Scheme								
		Theory								
Course Code		Internal Assessment End			Exam.	Term	Pract.	Total		
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	Total	
FEC205	C Programming	15	15	15	60	2			75	

Objectives

To provide exposure to problem-solving by developing an algorithm, flowchart and implement the logic using C programming language.

Outcomes: Learner will be able to...

- Formulate simple algorithms for arithmetic, logical problems and translate them to programs in C language
- 2. Implement, test and execute programs comprising of control structures.
- 3. Decompose a problem into functions and synthesize a complete program.
- 4. Demonstrate the use of arrays, strings and structures in C language.
- 5. Understand the concept of pointers

Module	Detailed Contents	Hrs.			
1	Introduction Introduction to components of a Computer System Introduction to Algorithm and Flowchart				
	Fundamentals of C Programming • Keywords, Identifiers, Constants and Variables				
	 Data types in C Operators in C 	5			
	Basic Input and Output Operations Expressions and Precedence of Operators In-built Functions				
	Control Structures • Introduction to Control Structures				
	Branching and looping structures				
2	 If statement, If-else statement, Nested if-else, else-if Ladder Switch statement For loop, While loop, Do while loop break and continue 	7			
	Functions Functions				
3	 Introduction to functions Function prototype, Function definition, Accessing a function and parameter passing. 	4			
4	Recursion. Arrays and Strings	4			

	7.0 20,07,20	
	 Introduction to Arrays Declaration and initialization of one dimensional and two-dimensional arrays. Definition and initialization of String String functions 	
5	Structure and Union Concept of Structure and Union Declaration and Initialization of structure and union Nested structures Array of Structures Passing structure to functions	4
6	Pointers • Fundamentals of pointers • Declaration, initialization and dereferencing of pointers • Operations on Pointers • Concept of dynamic memory allocation	4

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15marks.
- Total 04 questions need to besolved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein subquestions of 2 to 5 marks will beasked.
- 4. Remaining questions will be mixed in nature. (e.g. Suppose Q.2 has part (a) from module3 then part (b) will be from any module other than module 3)
- In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in thesyllabus.

Text Books:

- 1. E. Balaguruswamy, Programming in ANSI C, McGraw-Hill
- 2. Kernighan, Ritchie, "The C programming Language", Prentice Hall of India
- 3. Sumitabha Das, Computer Fundamentals and C Programming, McGraw-Hill
- 4. Pradeep Day and ManasGosh, "Programming in C", Oxford University Press.

References:

- 1. Byron Gottfried, "Programing with C", McGraw Hill (Schaum"s outline series)
- 2. Venugopal K.R, Prasad Sudeep, "Mastering C", McGraw-Hill
- 3. KanetkarYashwant," "Let Us C", BPB Publication.

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Pract .	Tut.	Theory	TW/Pract	Tut.	Total	
ECC401	Engineering Mathematics-IV	03	-0	01*	03	2:	01	04	

Course Code	Course Name		ninatior eme	n					
		Internal	End Sem	Exam Dura- tion	appreciate for the con-	Pract & Oral	Total		
		Test1	Test2	Avg. of Test 1 & 2		(in Hrs.))	Oral	
ECC401	Engineering Mathematics-IV	20	20	20	80	03	25	-	125

^{*} Should be conducted batch wise.

Pre-requisite:

- FEC101-Engineering Mathematics-I
- FEC201-Engineering Mathematics-II
- ECC301-Engineering Mathematics-III & Binomial Distribution.

Course Objectives: The course is aimed:

- To understand line and contour integrals and expansion of complex valued function in a power series.
- 2. To understand the basic techniques of statistics for data analysis, Machine learning and Al.
- To understand probability distributions and expectations.
- To understand the concepts of vector spaces used in the field of machine learning and engineering problems.
- 5. To understand the concepts of Quadratic forms and Singular value decomposition.
- To understand the concepts of Calculus of Variations.

Course Outcomes:

On successful completion of course learner/student will be able to:

- Use the concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals.
- Apply the concept of Correlation and Regression to the engineering problems in data science, machine learning and AI.
- Apply the concepts of probability and expectation for getting the spread of the data and distribution of probabilities.
- Apply the concept of vector spaces and orthogonalization process in Engineering Problems.
- Use the concept of Quadratic forms and Singular value decomposition which are very useful tools in various Engineering applications.
- 6. Find the extremals of the functional using the concept of Calculus of variation.