《量子物理基础》内容概要

理论内容总结:

♣ § 6.1 黑体辐射和普朗克的量子假设

♣ § 6.2 光电效应和爱因斯坦的光子理论

♣ § 6.3 康普顿效应

♣ § 6.4 玻尔的氢原子理论

♣ § 6.5 微观粒子的波动性

▲ § 6.6 波粒二象性分析

♣ § 6.7 不确定关系

♣ § 6.8 波函数和概率幅

♣ § 6.9 薛定谔方程

♣ § 6.10 薛定谔方程应用举例

练习题总结

绝对黑 体的辐 射规律	两 条 定 量规律	斯特藩-玻尔兹曼定律: $E_0(T)=\sigma T^4$ $\sigma=5.670\times 10^{-8} \text{W}/(\text{m}^2.\text{K}^4)$		
71 /XI TF				
		$egin{array}{cccccccccccccccccccccccccccccccccccc$		
	普朗克能量子假设	谐振子与辐射场交换的能量只能是某个基本单元的整数倍即: $\varepsilon = \varepsilon_0$ $2\varepsilon_0$, $3\varepsilon_0$,, $n\varepsilon_0$, 能量子: $\varepsilon_0 = hv = hc/\lambda$		

光电效	爱因斯	光本身就是由一个个集中存在的、不可分割的能量子组成,其能量为 hv	
应和爱	坦的光		
因斯坦	子理论		
的光子	光电效	1 2	
理论	应	能量守恒: $hv = \frac{1}{2}mv_{max}^2 + A$	
		遏止电压 U_0 : $eU_0 = \frac{1}{2} m v_{\max}^2 = h v - A = h v - h v_0$	
		截止频率 ν ₀ (红限): ν ⁰ =A/h	

效应实 验规律

动量守恒: $\frac{hv_0}{c}\bar{n}_0 = \frac{hv}{c}\bar{n} + m\vec{v}$

相对论效应: $m = \frac{m_0}{\sqrt{1-(\upsilon/c)^2}}$

 $\Rightarrow \Delta \lambda = \lambda - \lambda_0 = \frac{2h}{m_0 c} \sin^2 \frac{\theta}{2}$

自由电子: $\lambda > \lambda_0$; 原子: $\lambda = \lambda_0$

玻尔的 氢原子

理论

氢原子

光谱规

律一广

末公式

义巴耳

 $\widetilde{v} = \frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$

莱曼系: n=1, 紫外区; 巴耳末系: n=2, 可见光区;

帕邢系: n=3, 近红外区; 布拉开系: n=4, 红外区;

普丰德系: n=5, 远红外区

玻尔氢 三个基本假设:

原子理

(1) 定态假设

论

(2) 跃迁假设

辐射频率公式: $v_{nm} = \frac{|E_n - E_m|}{h} = \frac{c}{\lambda}$

(3) 量子化条件

电子绕核圆周运动的角动量: m v r = n h, $n = 1,2,3, \cdots$

由玻尔

推导出

公式

三假设 (1) 定态 n 半径 $r_n = n^2 \left(\frac{\varepsilon_0}{m\rho^2} \frac{h^2}{\pi}\right) = n^2 r_1$

(2) 定态 n 能量 $E_n = \frac{-13.6}{n^2} (\text{eV}) = \frac{1}{n^2} E_1$

 $E_1 = -rac{me^4}{8arepsilon_o^2 h^2} = -13.6eV$, E_1 基态能量—电离能; $E_n - E_1$ 激发能

(3) 跃迁
$$\tilde{v} = \frac{1}{c} \frac{\left| E_n - E_m \right|}{h} = R_{H = i k} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

$$E_n = -\frac{R_H h c}{n^2}$$

微观粒子的	德 布	$E = h \nu$,	$p = h/\lambda$
波动性(波	罗意		•
粒二相性)	关系	或 $E=\hbar\omega$,	$\vec{p} = \hbar \vec{k}$

不确定 关系	坐标和动量的不确定关系	$\Delta x \Delta p_x \ge h$
	能量和时间的不确定关系	$\Delta E \Delta t \geqslant h$