

DIGH 402 - Introduction to Digital Humanities Design and Programming

Spring Semester 2015

Week 1

Course Schedule

Wednesday 4.15pm - 6.45pm

14 classes (13 taught)

No class on Wednesday 4th March 2015

Dev class on Wednesday 1st April 2015

Final taught class is scheduled for Wednesday 22nd April 2015

Final Assessment due on Wednesday 29th April 2015 by 7pm

Goals of the course - Part 1

Some core course goals include:

- introduce DH students to project design and computer programming
- focus upon core programming skills built upon PHP
- development patterns and methods
- MVC design and implementation
- Object-oriented design and programming
- Database design and usage with practical experience of MySQL
- Repository maintenance and usage with practical experience of GitHub
- Web design and publication for final framework course project, including HTML, CSS, Javascript, responsive design...

Goals of the course - Part 2

Extra reading

- best practices in educational software
- explore existing platforms for e-Learning
- learn to effectively communicate content with words and visuals
- multimedia usage for learning purposes and effective balance of media
- design examples and practice exercises for online learning
- test collaborative learning and networked skills
- evaluate simulations and games for instructional usage

Ongoing assessment

- design project (50%)
- ongoing weekly assessment/reading (30%)
- class presentation/demonstration (20%)

Ongoing assessment - design project (50%)

- development, publication, and demonstration of an online DH resource

Basic

- online DH resource for any age or target audience...
- free choice of content and material
- organisation and logic of content will also be assessed (eg: flow, presentation, taxonomy etc...)
 - feel free to continue Verne work

Additional

- coding is important ie: it needs to at least work!
- documentation of code
- repository publication, developer and user instructions...
- user testing (basic UI testing required)

. . .

Ongoing assessment - ongoing weekly assessment/reading (30%)

- class questions and tasks
- occasional weekly exercises and quizzes
- class contributions
- course understanding and class performance
- weekly reading material to help inform design and e-Learning concepts, best practices, research, and testing

and

- ongoing development of final project code and modules

Ongoing assessment - class presentation/demonstration (20%)

- scheduled for the end of the semester
- practical demonstration of online DH resource
- teach the class about your chosen resource, subject material

. . .

Course Site and Repositories

Course Website is available at http://dighteach.github.io

GitHub account is available at https://github.com/dighteach/

Online DH Resource

- LAMP (XAMPP/WAMP) stack
 - Linux, Apache, MySQL, PHP
 - use Raspberry Pi, XAMPP/WAMP, or LAMP (CTSDH Linux laptops etc...)
- PHP, XHTML, CSS, Javascript, MySQL
- documentation
- testing
- content structure
- online publication
- repository publication

• • •

Online DH Resource

Already

- PHP, HTML, CSS basics
- XML and TEI
- semantic (taxonomy etc) organisation
- metadata
- digitisation practices

and now

- Databases (and then SQL in particular...)

Databases - Intro

- storing organised information, and subsequently knowing how to retrieve it again
- managing databases can get complicated very quickly
- data is often not only critical but data retrieval may also be timesensitive
- database management involves designing and programming ways to store and retrieve data

A few basics

- a big bucket to dump information
- storing information and retrieving information
- three main types of database designs
 - free-form
 - flat-file
 - relational

<u>Databases - free-form</u>

- designed to make it easy to store and retrieve information, albeit limited
- acts like a notepad or post-it board
- freedom to store dissimilar information in one place
- finding what you want can be problematic
- to find information you need to know at least part of the data you want to find

Disadvantages include:

- they're clumsy for retrieving information
- they can't sort or filter information

<u>Databases - flat-file</u>

- biggest difference between free-form and flat-file is structure in flat-file
- flat-file forces you to add information by first defining the structure of your data
- then you can add the data itself
- each chunk of data, eg: a first name, is known as a 'field'
- a group of fields is a 'record'

<u>Databases - flat-file</u>

- impose structure on the type of information you can store to make retrieval easier
- you need to design the structure of your database carefully
- size relative to field is also important for the type of information you can store
- information larger than storage size, eg: 10 characters, will simply be cut off
- definition of fields is also particularly important
- separation of fields is often useful to enable better sort and search options
- makes flat-file databases easier to search and sort information

- suitable if you need to store large amounts of data
- majority of current database programs are relational
- you must define number and size of fields relative to type of information required
- unlike flat-file databases, relational databases can further organise data into tables
- organisation of information as tables with further sub-division in fields

- dividing data into tables with a table grouping the minimum amount of data
- column in a table represents a single field or 'attribute'
- row in a table represents a single record or 'tuple'
- tables can be linked together
- link between separate tables automatically keeps that information updated and accurate in all other linked tables
- by linking or relating tables together you can combine data in different ways
- relating tables together allows you to create 'virtual' databases
- Primary/Unique key and Foreign key

- create tables to contain required data
 - eg: content, content type, taxonomy, project, user....
- create lookup tables to cross-reference tables
- query lookup table to get information from multiple tables
- sort and organise lookup table to get different query results

and on, and on...

Name Employee II		Table Name Department			
Bill Adams Sally Tarkin Johnny Brown Doug Hall Yolanda Lee Sam Collins Randy May Al Neander Kal Baker	4Y78 8U90 4T33 4A24 9Z49 1055 2E03 4M79 2B27	Bill Ada Sally Ta	arkin 7 Brown Iall a Lee ollins May nder	Public relation Human resour Engineering Engineering Human resour Engineering Public relation Public relation Human resour	rces rces ns
	\	\ /			
1	Vame	Employee ID	Departm	ent	

<u>Databases - manipulating data</u>

- write commands for modifying and manipulating the information
- three basic commands for manipulating data
 - select
 - project
 - join
- select command retrieves a single row or multiple rows from a table
- project command retrieves the entire column from a table
- project acts like a filter
- join command combines separate tables together to create a virtual table

<u>Databases - Data Integrity</u>

- multiple users accessing and editing a database
- ensuring data is both accurate and updated
- can cause an issue when multiple users are updating data
- data locking
- lock all data a user plans to modify
- rollback update choice to previous data state
- requires a lot of testing...

<u>Databases - Data mining</u>

- large chunks of data often referred to as 'data warehouses'
- data mining simply looks at separate databases to find information that's not obvious otherwise
- link databases and mine the data for combined patterns, inferences...
- data mining is useful for helping us to find hidden data in seemingly innocuous databases
- criminal profiling, political activists, genetic disposition...

<u>Databases - Data programming</u>

- if we want to store large amounts of data and manipulate it in different ways
- three parts of a database program to consider
 - user interface
 - database management system
 - actual information stored in a database

- UI should allow a user to use and manipulate the data without having to know how the data is stored or how to write commands to manipulate the data
- commands for manipulating data may include printing, searching, sorting...
- customised management layer with chosen programming language

Databases - SQL

- structured query language
- a way of accessing and manipulating a database

options and tools

- create a new database, rename...
- create tables in a database
- query a specified database and retrieve data
- insert, update, delete records within a database
- set privileges and permissions
- create groupings, views, orders...

there's a lot we can do with an SQL database...

<u>Databases - SQL</u>

generically we can consider SQL in two parts

- 1. Data Manipulation
 - select
 - insert into
 - update
 - delete
- 2. Data Definition
 - create database
 - drop database
 - create table
 - drop table
 - create index
 - drop index

and so on...