Esercizi e soluzioni relativi al Capitolo 1

Esercizio 1.1

Dimostrare che per ogni terna di sottoinsiemi $A, B, C \subseteq U$ valgono le seguenti proprietà (dette distributive):

- **1)** $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- **2)** $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Soluzione

1) Per mostrare che i due insiemi $A \cup (B \cap C)$ e $(A \cup B) \cap (A \cup C)$ coincidono, dimostriamo la "doppia inclusione", cioè che $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ e che $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Dimostriamo che $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Per far questo consideriamo un generico $x \in A \cup (B \cap C)$: allora $x \in A$ oppure $x \in C$.

Sia $x \in A$: poichè $A \subseteq A \cup B$ e $A \subseteq (A \cup C) \Longrightarrow x \in (A \cup B) \cap (A \cup C)$. Sia $x \notin A$: allora $\begin{cases} x \in B \\ x \in C \end{cases} \Longrightarrow \begin{cases} x \in A \cup B \\ x \in A \cup C \end{cases} \Longrightarrow x \in (A \cup B) \cap (A \cup C).$

Mostriamo ora l'inclusione inversa, cioè che $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Sia
$$y \in (A \cup B) \cap (A \cup C)$$
. Allora
$$\begin{cases} y \in (A \cup B) \\ y \in (A \cup C) \end{cases}$$
. Si possono avere due casi: $y \in A$ oppure $y \notin A$.

Se $y \in A \Longrightarrow y \in A \cup (B \cap C)$.

Se $y \notin A \Longrightarrow \left\{ egin{array}{l} y \in B \\ y \in C \end{array}
ight.$, da cui segue comunque che $y \in A \cup (B \cap C)$ e quindi la tesi è dimostrata.

2) Mostriamo ora la seconda uguaglianza mediante la doppia inclusione, cioè mostriamo che

 $A\cap (B\cup C)\subseteq (A\cap B)\cup (A\cap C) \text{ e } (A\cap B)\cup (A\cap C)\subseteq$ Sia $x \in A \cap (B \cup C)$, allora $\begin{cases} x \in A \\ x \in B \cup C \end{cases} \Rightarrow \begin{cases} x \in A \\ x \in B \end{cases} \text{ oppure } \begin{cases} x \in A \\ x \in C \end{cases}$ equindi, per definizione, $seguechex \in (A \cap B) \cup (A \cap C)$.

Viceversa, sia $y \in (A \cap B) \cup (A \cap C)$. Allora $y \in A \cap B$ oppure $y \in A \cap C$. In ogni caso $y \in A$ ed inoltre $y \in B$ oppure $y \in C \Rightarrow y \in A \cap (B \cup C)$. Si è così dimostrato che $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$ e quindi segue la tesi.

Esercizio 1.2.1

Verificare che, per ogni coppia di sotto insiemi $A,B\subseteq U$, si ha: $A\subseteq B\iff A\cup B=B.$

Soluzione

Sia $A \subseteq B$. Per definizione di sottoinsieme si ha che $\forall a \in A \Rightarrow a \in B$ e quindi, ancora per definizione, $A \cup B = \{x \in U \mid x \in A \text{ oppure } x \in B\} = \{x \in U \mid x \in B\} = B$.

Viceversa sia $A \cup B = B$. Per assurdo supponiamo che $A \nsubseteq B$. Allora $\exists a \in A$, $a \notin B$ e quindi $A \cup B \not\supseteq B$ che è contrario all'ipotesi.

Esercizio 1.2.2

Verificare che, per ogni coppia di sotto insiemi $A,B\subseteq U$, si ha: $A\cap B=A\iff A\subseteq B.$

Soluzione

Sia $A \cap B = A$: gli elementi comuni ad A e a B sono tutti e soli gli elementi di A, quindi per definizione $A \subseteq B$.

Viceversa, sia $A \subseteq B$. Allora $A \cap B = \{x \in A \mid x \in B\} = A$.

Esercizio 1.2.3

Verificare che, per ogni terna di sottoinsiemi $A,B,C\subseteq U$, si ha: $A\cap (A\cup B)=A\cup (A\cap B)=A$ (Proprietà di assorbimento).

Soluzione

Verifichiamo che $A \cap (A \cup B) = A$.

Osserviamo che $A\subseteq A$ ed anche $A\subseteq A\cup B$ quindi $A\subseteq A\cap (A\cup B)$. Inoltre $A\cap (A\cup B)\subseteq A$ (e anche $A\cap (A\cup B)\subseteq A\cup B$) da cui segue la tesi.

Verifichiamo ora che $A \cup (A \cap B) = A$.

Per definizione $A \subseteq A \cup (A \cap B)$. Inoltre $A \subseteq A$ e $(A \cap B) \subseteq A$ da cui segue $A \cup (A \cap B) \subseteq A$.

Essendo verificata la doppia inclusione segue la tesi.

Esercizio

Dimostrare che, dati due insiemi A e B, e detti A' e B' i rispettivi insiemi complementari, vale l'uguaglianza $(A \cup B)' = A' \cap B'$.(legge di De Morgan, pag 6).

Soluzione

Mostriamo che $(A \cup B)' \subseteq A' \cap B'$ e che $A' \cap B' \subseteq (A \cup B)'$. Sia $x \in (A \cup B)'$; allora $x \in U$, ma $x \notin A \cup B$ per cui x non appartiene ad A nè a B. Ne segue che x appartiene ad A' e anche a B' e quindi ad $A' \cap B'$. Viceversa se $y \in A' \cap B'$: si ha che y appartiene ad entrambi gli insiemi A' e B'. Pertanto $y \in U$, ma y non appartiene ad A nè a B per cui $y \in (A \cup B)'$.

Esercizio 1.3

Provare che $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.

Soluzione

Mostriamo che $(A \setminus B) \cup (B \setminus A) \subseteq (A \cup B) \setminus (A \cap B)$ e che $(A \cup B) \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A)$.

Sia
$$x \in (A \setminus B) \cup (B \setminus A)$$
, cioè $\begin{cases} x \in A \\ x \notin B \end{cases}$ oppure $\begin{cases} x \in B \\ x \notin A. \end{cases}$

Poichè $x \in A$ oppure $x \in B \Rightarrow x \in A \cup B$.

Inoltre, se $x \in A$ segue che $x \notin B \Rightarrow x \notin A \cap B$, se $x \in B$ segue che $x \notin A \Rightarrow x \notin A \cap B$, si conclude allora che $x \in (A \cup B) \setminus (A \cap B)$.

Viceversa sia $y \in (A \cup B) \setminus (A \cap B)$.

Allora $y \in A$ oppure $y \in B$ e contemporaneamente $y \notin A \cap B$.

Quindi o
$$\begin{cases} y \in A \\ y \notin A \cap B \end{cases} \Rightarrow y \in A \setminus B, \text{ oppure } \begin{cases} y \in B \\ y \notin A \cap B \end{cases} \Rightarrow y \in B \setminus A;$$
in ogni caso $y \in (A \setminus B) \cup (B \setminus A).$

Esercizio 1.4

Sia $A = \{a, b, c\}$. Si dica se sono vere o false le seguenti affermazioni:

- i) $\{a\} \subseteq A$
- ii) $\{a\} \in A$
- iii) $a \in A$
- iv) $\{a\} \in \mathcal{P}(A)$.

Soluzione

- i) vera
- ii) falsa : infatti $\{a\}$ è un sottoinsieme di A e non un suo elemento.
- iii) vera
- iv) vera.