

第二讲 剩余系

- **例1.** 解一:利用剩余系,存在 $a,2a,3a,\cdots,na$ 共 n 个数,若存在 $1 \le i \le j \le n$ 使得 $ia \equiv ja \pmod{n}$,则 $n \mid (ja-ia) \therefore n \mid (j-i)a$,又 $\because (a,n)=1$, $\therefore i \mid (j-i)$.但 $1 \le j-a \le n-1$,这与 $n \mid (j-i)$ 矛盾,故而模 n 两两互不同余,从而构成模 n 的完系,故存在 x 使得 $ax \equiv b \pmod{n}$. 解二:利用不定方程,由 (a,n)=1,故而存在整数 x,y 使得 ax+ny=1, $\therefore a(bx)+n(by)=b$, $\therefore a(bx) \equiv b \pmod{n}$
- **例2.** 当 n=19 时,若有非负整数 (x,y) 使得 5x+6y=19 ,两边模 5 得 $y \equiv 4 \pmod{5}$. 从而 $y \geq 4$, $x = \frac{19-6y}{5} \leq \frac{19-6\times 4}{5} = -1$,这与 x 为非负整数矛盾,故此时方程无非负整数解. 当 n>19 时,5x=n-6y ,因为 6×0 , 6×1 , 6×2 , 6×3 , 6×4 构成模 5 的完系,所以存在 $0\leq y\leq 4$ 使得 5|n-6y ,此时 $x=\frac{n-6y}{5}>\frac{19-6\times 4}{5}=-1$,且 $x=\frac{n-6y}{5}\in\mathbb{Z}$,故 $x\in\mathbb{N}$,从而方程存在非负整数解. 综上所述,使得方程 5x+6y=n 无非负整数解的 n 最大为 19.
- **例3.** (1)解一: 令 $a_i = i \ (i = 1, 2, \cdots, n)$,则 $a_i + i = 2i \ (i = 1, 2, \cdots, n)$,若存在 $1 \le i < j \le n$,使得 $2i \equiv 2j \ (\text{mod } n)$,则 $n \mid 2 \ (i j)$, $n \mid (i j)$, 这不可能, 故而 $a_i + i = 2i \ (i = 1, 2, \cdots, n)$ 互不同余, 为完系.解二:直接利用例 1 的结论,若存在模 n 的完全系,且 (2, n) = 1,则 2 乘该完系得到的同样是完系. (2) 若存在,则 $a_1 + a_2 + \cdots + a_n \equiv (a_1 + 1) + (a_2 + 2) + \cdots + (a_n + n) \ (\text{mod } n)$,从而 $n \mid \frac{n(n+1)}{2}$,矛盾.
- **例4.** 注意 1、2、…、m 是模 m 的完系,2、4、……、2m 也是模 m 的完系 故 $1^n + 2^n + 3^n + \dots + m^n \equiv 2^n + 4^n + 6^n + \dots + (2m)^n \equiv 2^n \left(1^n + 2^n + 3^n + \dots + m^n\right) \pmod{m}$ 于是 $\left(2^n 1\right) \left(1^n + 2^n + 3^n + \dots + m^n\right)$ 是 m 的倍数,故 $1^n + 2^n + 3^n + \dots + m^n$ 是 m 的倍数.

例5. 即需要证明(1)当p为合数时,不能满足 $(p-1)! \equiv -1 \pmod{p}$,(2)当p为质数时,

$$(p-1)! \equiv -1 \pmod{p}.$$

(1) 当 p 为合数时,存在 $1 < m \le n < p$ 使得 p = mn. 若 $m \ne n$ 则 (p-1)! 中含因子 m,n, 故

$$(p-1)! \equiv 0 \pmod{p}$$
, 若 $m=n$, 则 $p=m^2$, 当 $m \ge 3$ 时, $(p-1)!$ 中含有因子 m , $2m$,

$$(p-1)! \equiv 0 \pmod{p}$$
, 当 $m = 2$ 时, $p = 4$, $3! \equiv 2 \pmod{4}$, 故而 $(p-1)! \equiv \begin{cases} 0 (p \neq 4) \\ 2 (p = 4) \end{cases}$.

(2) 当 p 为质数时,1,2,…,p 组成模 p 的完系,对任意 $1 \le a \le p-1$,存在唯一的

 $b \in \{1, 2, \dots, p-1\}$,使得 $ab \equiv 1 \pmod{p}$,若 a = b,则 $a^2 \equiv 1 \pmod{p}$, $a^2 - 1 = (a+1)(a-1)$ 为 p 的倍数,即 a = p-1 或者 a = 1.

若 a ≠ b ,则 $a ∈ \{2,3...p-2\}$,故 2,3```p-2 可以两两配对,每对相乘后模 p 余 1 .

•

例6. 解一:利用剩余系,因(a,p)=1, a, 2a, 3a, \cdots , pa 组成 p 的完系.

$$(p-1)!=1\cdot 2\cdots (p-1)\equiv a\cdot 2a\cdots (p-1)a=(p-1)!a^{p-1}\pmod{p}$$
, $\mathbb{Z}\boxtimes ((p-1)!,p)=1$,

从而 $a^{p-1} \equiv 1 \pmod{p}$.

解二:
$$(a+1)^p - a^p = \sum_{i=0}^{p-1} C_p^i a^i \equiv 1 \pmod{p}$$
, 可得 $a^p \equiv a \pmod{p}$.

例7. (1) $\varphi(9) + \varphi(10) + \varphi(11) + \varphi(12) = 6 + 4 + 10 + 4 = 24$

(2) ①1~
$$p^k$$
中, p 的倍数有 p^{k-1} 个,故 $\varphi(p^k) = p^k - p^{k-1} = (p-1)p^{k-1}$

②利用容斥原理知,
$$\varphi(n) = n - \sum_{i} \frac{n}{p_{i}} + \sum_{i \neq j} \frac{n}{p_{i}p_{j}} - \dots + (-1)^{k} \frac{n}{p_{1}p_{2} \dots p_{k}} = \left(1 - \frac{1}{p_{1}}\right) \left(1 - \frac{1}{p_{2}}\right) \dots \left(1 - \frac{1}{p_{k}}\right) n$$
.

由此可知(m,n)=1时, $\varphi(mn)=\varphi(m)\varphi(n)$,积性函数