Classical decomposition - Trend

Time series decomposition

Contents

MOVING AVERAGES TO EXTRACT THE TREND

DISCUSS LIMITATIONS

How can we extract the trend?

- What window size?
- Assume time series has seasonality with period T (e.g., T=12 for monthly data with a yearly seasonality)
- If T is odd: T-MA
- If T is even: Use a 2 x T-MA
- This will smooth over the seasonality

Date	y	mean
2020-02-12	23	
2020-02-13	30	41.0
2020-02-14	70	43.3
2020-02-15	30	41.7
2020-02-16	25	25.7
2020-02-17	22	

• Monthly data with yearly seasonality $\Rightarrow 2 \times 12$ -MA

- What if no obvious seasonality?
- Visually inspect different window sizes to ensure that the main trend is captured
- Too small a window: will capture noise and seasonality rather than overall trend
- Too large a window: will over-smooth variations which might be included in the trend

- What if no obvious seasonality?
- Visually inspect different window sizes to ensure that the main trend is captured
- Too small a window: will capture noise and seasonality rather than overall trend
- Too large a window: will over-smooth variations which might be included in the trend

Limitations

Moving averages are distorted by outliers

Limitations

Trend will miss data points for the first and last few data points

Limitations

- Rapid changes in trend tend to be over smoothed
- Better methods exist for decomposition

Summary

Moving averages can be used to extract the trend

Due to limitations other methods are preferred for the purpose of time series decomposition