e statistique. série statistique

série statistique.

n en fonction du ion. On observe 200) est partagé ctère étudié). La

ti	s des class	ses
	96	
Ī	60	
Γ	30	3
	8	7
ii .		_

statistique.

e en supposant

nt d'asymétrie

n désigne par lie statistique.

nombre x de obtenus sont

ue. r quartile, le [c] Calculer le moment centré d'ordre 3 puis le coefficient de dérive. Que peut-on en conclure en ce qui concerne la symétrie de la distribution ?

[les solutions]

[2.2.1] [a] Tableau des fréquences

							_	T	_		-
nombre n de bourgeons par tige	2	3	4	5	6	7	8	9	10	11	12
fréquences absolues	3	5	10	15	23	19	13	5	3	3	1
fréquences relatives cumulées	0,03	0,08	0,18	0,33	0,56	0,75	0,88	0,93	0,96	0,99	1

[b] Fonction de répartition

Soit $\{x_j', 1 \le j \le 11\}$ les valeurs de la série statistique ; ces valeurs sont :

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

La fonction de répartition F est définie par (§ [2][b][llī]) † :

F(x)=0 si x<2, F(x)=1 si $x\geqslant 12$ et F(x) est la fréquence relative cumulée des valeurs de la série statistique inférieure à x'_{j+1} si $x\in [x'_j,x'_{j+1}[,1\leqslant j\leqslant 11.$

[2.2.2] [a] Tableau des fréquences

formal too									
nombre n d'enfants par famille	0	1	2	3	4	5	6	7	8
fréquences absolues ou nombre de familles ayant <i>n</i> enfants	91	146	104	63	47	33	10	4	2
fréquences relatives cumulées	0,182	0,474	0,682	0,808	0,902	0,968	0,988	0,996	1

Voir la note au bas de la page 15.

umulée des

х

La définition est celle données dans l'exercice [2.2.1] avec ici p = 9.

fréquences (absolues)

[2. étude descriptive d'une série statistique]

[c] Nombre moyen d'enfants par famille dans l'échantillon.

Soit m ce nombre; alors on a:

$$m = \frac{1}{500} (0 \times 91 + 1 \times 146 + 2 \times 104 + 3 \times 63 + 4 \times 47 + 5 \times 33 + 6 \times 10 + 7 \times 4 + 8 \times 2) = \frac{1000}{500} = 2.$$

[2.2.3] [a] Centres des classes et fréquences cumulées

x	centres des classes	fréquences absolues	fréquences absolues cumulées	fréquences relative cumulées		
$0.5 \leqslant x < 1$	0,75	112	112	0,112		
$1 \leqslant x < 1,5$	1,25	282	394	0,394		
$1,5 \leqslant x < 2$	1,75	288	682	0,682		
$2 \leqslant x < 2,5$	2,25	184	866	0,866		
$2,5 \leqslant x < 3$	2,75	88	954	0,954		
$3 \leqslant x < 3.5$	3,25	35	989	0,989		
$3.5 \leqslant x < 4$	3,75	10	999	0,999		
$4 \leqslant x < 4,5$	4,25	1	1 000	1		

[c] L'histogramme des fréquences (absolues) nous conduit à supposer que X pourrait suivre une loi du χ^2 .

[2.2.4] [a] L'étendue commune des classes est la distances des centres de deux classes consécutives, soit 0,4. Les extrémités des classes sont donc:

$$5,4-5,8$$
; $5,8-6,2$; $6,2-6,6$; $6,6-7,0$; $7,0-7,4$; $7,4-7,8$; $7,8-8,2$; $8,2-8,6$; $8,6-9,0$.

[c] L'histogramme des fréquences (absolues) nous conduit à supposer que la variable aléatoire «diamètre des hématies» pourrait suivre une loi de Gauss.

$$\sum_{i=1}^{n} (x_i - \alpha)^2 = \sum_{i=1}^{n} (x_i - m + m - \alpha)^2 = \sum_{i=1}^{n} (x_i - m)^2 + 2(m - \alpha) \sum_{i=1}^{n} (x_i - m) + n(m - \alpha)^2.$$

Or:

$$\sum_{i=1}^{n} (x_i - m) = \sum_{i=1}^{n} x_i - nm = nm - nm = 0.$$

[c]

Sol

On

Donc:

$$\sum_{i=1}^{n} (x_i - \alpha)^2 = \sum_{i=1}^{n} (x_i - m)^2 + n(m - \alpha)^2 \ge \sum_{i=1}^{n} (x_i - m)^2,$$

et l'égalité a lieu si et seulement si $\alpha = m$ et la valeur minimum de cette somme est $\sum_{i=1}^{n} (x_i - m)^2 = n\sigma^2 \text{ où } \sigma \text{ désigne l'écart type de la série statistique.}$

[2.3.6] Quitte à renuméroter les valeurs de la série statistique, on peut supposer que les valeurs x_i sont rangées par ordre de valeurs non décroissantes :

$$x_1 \leq x_2 \leq \cdots \leq x_{n-1} \leq x_n.$$

Rappelons que l'écart absolu de α à un nombre x est $|x - \alpha|$. Soit a et b tels que $a \le b$; la somme des écarts absolus de α à a et b est $e = |a - \alpha| + |b - \alpha|$.

- Si $a \le \alpha \le b$, $e = (\alpha a) + (b \alpha)$ et ce résultat est indépendant de α .
- Si $\alpha \le a \le b$, $e = (a \alpha) + (b \alpha) = b a + 2(a \alpha) \ge b a$.
- Si $a \le b \le \alpha$, $e = (\alpha a) + (\alpha b) = b a + 2(\alpha b) \ge b a$.

Ainsi la somme des écarts absolus de α à a et b est minimum quand α est (quelconque) entre a et b.

Appliquons ce résultat à la série statistique.

- La somme des écarts absolus de α à x_1 et x_n est minimum lorsque α est quelconque entre
- De même si α est aussi quelconque entre x_2 et x_{n-1} , la somme des écarts absolus de α à x_2 et x_{n-1} sera minimum.

Il en sera aussi de même pour x_3 et x_{n-2} et ainsi de suite.

On veut donc que la somme des écarts absolus de α aux valeurs x_i de la série statistique sera minimum lorsque le nombre de valeurs de la série statistique supérieures à α sera égal au nombre de valeurs de la série statistique inférieures à α ; c'est-à-dire lorsque α est la médiane.

poser que la variable

$$(x_i-m)+n(m-\alpha)^2.$$

 $-m)^2$

de cette somme est

eut supposer que les

et b tels que $a \leq b$;

de α.

 α est (quelconque)

st quelconque entre

arts absolus de α à

la série statistique jeures à α sera égal re lorsque lpha est la [2.3.7] Les valeurs sont ordonnées par ordre de valeurs non décroissantes :

Il y a n = 15 = 2p + 1 valeurs où p = 7.

[a] Mode

Il y a trois valeurs modales 2, 4 et 7 de fréquence absolue 2.

[b] Médiane

C'est la valeur de la suite située au rang p + 1 = 8, soit la valeur 6.

[c] Moyenne

$$m = \frac{1}{15} (1 + 2 + 2 + 3 + 4 + 4 + 5 + 6 + 7 + 7 + 8 + 9 + 10 + 11 + 12)$$

= $\frac{91}{15} \approx 6,07$.

[d] Écart type σ

Soit m_2 le moment d'ordre 2 :

$$m_2 = \frac{1}{15} \left(1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 6^2 + 2 \times 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 \right)$$
$$= \frac{719}{15}.$$

On a alors (voir [Théorème 2.3.3]):

$$\sigma^{2} = \mu_{2} = m_{2} - m^{2} = \frac{719}{15} - \left(\frac{91}{15}\right)^{2} = \frac{10785 - 8281}{225}$$
$$= \frac{2504}{225} = 11,1288...$$
$$\sigma \approx 3.34$$

[e] Premier quartile Q_1 et troisième quartile Q_3

Q₁ est la médiane de la suite de valeurs :

donc $Q_1 = 3$.

Q₃ est la médiane de la suite de valeurs :

donc $Q_3 = 9$.

If Le semi-interquartile Q est ([Définition 2.3.3])

$$Q = \frac{1}{2}(Q_3 - Q_1) = \frac{1}{2}(9 - 3) = 3.$$

[2.3.8] [a] [i] Tableau de fréquences

nombre n d'enfants	0	1	2	3	4	5
fréquences absolues ou nombre de familles ayant n garçons	8	23	42	18	6	3
fréquences absolues cumulées`	8	31	73	91	97	100

 m_2 Lav

D'oi

[2.]

non

fréc ou aya

DO

[ii] Diagrammes en bâtons des fréquences et des fréquences cumulées

[b] • Le mode est la valeur de plus grande fréquence ; c'est donc 2 (fréquence 42).

• Il y a deux valeurs en centre, ce sont les valeurs placées au rang 50 et au rang 51. Ces deux valeurs sont égales à 2 donc la médiane est 2.

• La moyenne m est:

$$m = \frac{1}{100} (0 \times 8 + 1 \times 23 + 2 \times 42 + 3 \times 18 + 4 \times 6 + 5 \times 3) = \frac{200}{100} = 2.$$

[c] • Le premier quartile Q_1 est tel que 25 % des valeurs de la série statistique lui soit inférieur, donc $Q_1 = 1$.

 \bullet Le premier quartile Q_1 est tel que 75 % des valeurs de la série statistique lui soit inférieur, donc $Q_3 = 3$.

$$m_2 = \frac{1}{100} \left(0^2 \times 8 + 1^2 \times 23 + 2^2 \times 42 + 3^2 \times 18 + 4^2 \times 6 + 5^2 \times 3 \right) = \frac{524}{100} = 5,24.$$

La variance est donc :

$$v = m_2 - m^2 = 5,24 - 4 = 1,24.$$

D'où l'écart type :

$$\sigma = \sqrt{1,24} \simeq 1,11.$$

[2.3.9] [a] [i] Tableau des fréquences

nombre n de garçons	0	1	2	3	4	5	6	7	8
fréquences absolues ou nombre de familles ayant n garçons	48	295	1 425	2213	3 438	2457	1 607	453	64
fréquences absolues cumulées	48	343	1768	3 981	7419	9876	11 483	11936	12 000

[1] Diagramme en bâtons des fréquences (absolues)

uence 42).

t au rang 51. Ces

 $\frac{200}{100} = 2.$

atistique lui soit

lui soit inférieur,

[2. étude descriptive d'une série statistique]

35 [les solutions]

[b] • La valeur de plus grande fréquence est 4, donc le mode est 4.

- Le nombre de familles est $n = 12\,000 = 2 \times 6\,000$; par conséquent, il y a deux valeurs situées au centre de la série statistique, ce sont les valeurs placées aux rang 6 000 et 6 001. Il en résulte que la médiane est 4.
- La moyenne m est:

$$m = \frac{1}{12\,000} \left[0 \times 48 + 1 \times 295 + 2 \times 1425 + 3 \times 2215 + 4 \times 3438 + 5 \times 2457 + 6 \times 1607 + 7 \times 453 + 8 \times 64 \right]$$
$$m = \frac{49\,146}{12\,000} = 4,095\,5.$$

[c] Soit m_2 le moment d'ordre 2 :

$$m_2 = \frac{1}{12\,000} \left[0^2 \times 48 + 1^2 \times 295 + 2^2 \times 1425 + 3^2 \times 2213 + 4^2 \times 3438 + 5^2 \times 2457 + 6^2 \times 1607 + 7^2 \times 453 + 8^2 \times 64 \right]$$

$$m_2 = \frac{226\,490}{12\,000}.$$

La variance v est:

$$v = m_2 - m^2 = \frac{226490 \times 12000 - (49146)^2}{(12000)^2} = 2,10104...$$

d'où l'écart type:

$$\sigma = \sqrt{v} \simeq 1.45$$
.

[2.3.10] [a] [i] Médiane

Il y a n = 1000 observations, donc la médiane appartient à la classe de centre 7,2 et d'extrémités 7 et 7,4.

On calcule la médiane M par interpolation linéaire (§ [3][b]):

$$M = 7 + \frac{500 - 355}{270} \times 0.4 = 7.2148... \simeq 7.215.$$

[ii] Moyenne m

$$m = \frac{7250}{1000} = 7,25.$$

[b] [i] Quartile et semi-interquartile

Le premier quartile Q_1 appartient à la classe de centre 6,8 et d'extrémités 6,6 et 7. On calcule Q_1 par interpolation linéaire (§ [3][B][b]):

$$Q_1 = 6.6 + \frac{250 - 115}{240} \times 0.4 = 6.825.$$

et

Le troisième quartile Q_3 appartient à la classe de centre 7,6 et d'extrémités 7,4 et 7,8. Par interpolation linéaire, on a :

$$Q_3 = 7.4 + \frac{750 - 625}{175} \times 0.4 = 7.6857... \approx 7.686.$$

Le semi-interquartile est:

$$Q = \frac{1}{2}(Q_3 - Q_1) \simeq 0,4305.$$

Écart moyen

$$e_m = \frac{1}{1\,000} \left[5 \times 1,65 + 40 \times 1,25 + 70 \times 0,85 + 240 \times 0,45 + 270 \times 0,05 + 175 \times 0,35 + 140 \times 0,75 + 50 \times 1,15 + 10 \times 1,55 \right]$$

$$e_m = \frac{478,5}{1\,000} = 0,478\,5.$$

Écart type

Le moment d'ordre 2 est :

$$m_2 = \frac{1}{1\,000} \left[5 \times (5,6)^2 + 40 \times (6,0)^2 + 70 \times (6,4)^2 + 240 \times (6,8)^2 + 270 \times (7,2)^2 + 175 \times (7,6)^2 + 140 \times (8,0)^2 + 50 \times (8,4)^2 + 10 \times (8,8)^2 \right]$$

$$m_2 = \frac{52\,928,8}{1\,000} = 52,928\,8.$$

La variance est donc :

$$v = m_2 - m^2 = 52,9288 - 52,5265 = 0,3663.$$

D'où l'écart type:

$$\sigma = \sqrt{v} = 0,6052... \simeq 0,605.$$

[2.3.11] Ordonnons la suite des mesures par ordre de valeurs non décroissantes :

[a] Étendue de la série statistique (§ [2][c]):

$$E = 19.81 - 15.86 = 3.95$$
.

La valeur suspecte (valeur aberrante): 19,81. En supprimant cette valeur, la nouvelle série est donc:

et l'étendue de celle-ci est donc :

$$E' = 16,01 - 15,86 = 0,15.$$

[b] Moyenne m et écart type σ de la nouvelle série :

$$m = 15,9169... \simeq 15,92$$

 $\sigma = 0,0415... \simeq 0,042.$

$$m-2\sigma=15,8337...\simeq 15,83$$

 $m+2\sigma=16,000...\simeq 16,00.$

Toutes les valeurs de la nouvelle série statistique sauf la dernière valeur, c'est-à-dire 16,01, sont dans l'intervalle $[m-2\sigma, m+2\sigma]$.

On élimine la valeur 16,01 et on considère alors la série de mesures :

D'où le poids atomique:

$$15,9091 \simeq 15,91.$$

[2.3.12] [a] Histogramme des fréquences (absolues)

[b] La classe de plus grande fréquence ou classe modale est la classe de centre 90 et d'extrémités 84 et 96.

Moyenne

$$m = \frac{1}{270} [9 \times 66 + 45 \times 78 + 75 \times 90 + 71 \times 102 + 37 \times 114 + 22 \times 126 + 8 \times 138 + 2 \times 150 + 1 \times 162]$$
$$m = \frac{26652}{270} \approx 98,71.$$

Écart type

$$m_2 = \frac{1}{270} \left[9 \times (66)^2 + 45 \times (78)^2 + 75 \times (90)^2 + 71 \times (102)^2 + 37 \times (114)^2 + 22 \times (126)^2 + 8 \times (138)^2 + 2 \times (150)^2 + 1 \times (162)^2 \right]$$

$$m_2 = \frac{2712888}{270} \simeq 10047,73.$$

La variance est donc

$$v = m_2 - m^2 = 303,8498...$$

D'où l'écart type:

$$\sigma = \sqrt{v} \simeq 17,43.$$

[c] [i] Médiane

La médiane M est dans la classe de centre 102, d'extrémités 96 et 108 puisque la fréquence cumulée de cette classe est 200 $\left(\frac{n}{2} = 135\right)$; M est déterminée par interpolation linéaire (§ [3][A][b]):

$$M = 96 + \frac{135 - 129}{71} \times 12 \simeq 97,014.$$

[ii] Les quartiles Q_1 et Q_3

 Q_1 est dans la classe de centre 90 et d'extrémités 84 et 96, d'où :

$$Q_1 = 84 + \frac{67.5 - 54}{75} \times 12 = 86.16.$$

 Q_3 est dans la classe de centre 114 et d'extrémités 108 et 120, d'où :

$$Q_1 = 108 + \frac{202,5 - 200}{37} \times 12 \simeq 108,81.$$

lire 16,01,

[†] Pour calculer v, on écrit $m_2 - m^2$ sous forme fractionnaire et ensuite on fait l'approximation de σ .

[2.3.13] [a] Histogramme et polynôme des fréquences (absolues)

[b] Tableau indiquant les centres, les fréquences et les fréquences cumulées des classes.

centres	87,5	102,5	117,5	132,5	147,5	162,5	177,5	192,5
fréquences	11	56	135	140	96	60	30	.8
fréquences cumulées	11	67	202	342	438	498	528	536

[c] La classe de plus grande fréquence ou classe modale est la classe de centre 132,5. Les limites de cette classe modale sont 125 et 140.

Médiane

L'effectif total est n = 536, or $\frac{n}{2} = 268$, par conséquent la médiane M appartient à la classe modale. On détermine M par interpolation linéaire (§ [3][A][b]):

$$M = 125 + \frac{268 - 202}{140} \times 15 \simeq 132,07.$$

[d] Moyenne

Soit m la moyenne de la série statistique (connue par un partage en classes):

$$m = \frac{1}{536} [11 \times 87,5 + 56 \times 102,5 + 135 \times 117,5 + 140 \times 132,5 + 96 \times 147,5 + 60 \times 162,5 + 30 \times 177,5 + 8 \times 192,5]$$

$$m = \frac{71890}{536} \approx 134,12.$$

Écart type

$$m_2 = \frac{1}{536} \left[11 \times (87,5)^2 + 56 \times (102,5)^2 + 135 \times (117,5)^2 + 140 \times (132,5)^2 + 96 \times (147,5)^2 + 60 \times (162,5)^2 + 30 \times (177,5)^2 + 8 \times 192,5)^2 \right]$$

$$m_2 = \frac{9908900}{536} \approx 18486,75.$$

La variance est

$$v = m_2 - m^2 = \frac{142998300}{(536)^2} \simeq 497,74.$$

D'où l'écart type :

$$\sigma = \sqrt{v} \simeq 22.31.$$

Coefficient de dérive

Le coefficient de dérive (ou coefficient d'asymétrie de Fisher) est défini par (§ [3][C][b]) :

$$d=\frac{\mu_3}{\sigma^3},$$

où μ_3 est le moment centré d'ordre 3.

On trouve:

$$\mu_3 = \frac{2134360,263}{536} = 3982,015416.$$

D'où:

$$d=\frac{\mu_3}{\sigma^3}\simeq 0.36.$$

des classes

36

132,5. Les

artient à la

[Remarque] Le polygône des fréquences montre une assez bonne symétrie de la distribution expérimentale. Le coefficient $d \simeq 0.36$ indique que l'ensemble des valeurs de la série statistique est légèrement plus étalé du côté des valeurs supérieures à la moyenne.

On notera aussi que la moyenne et la médiane appartiennent à la même classe qui est la classe modale.

[2.3.14] On sait que (§ [3][C][a]):

$$m_q = \frac{1}{n} \sum_{i=1}^n x_i^q$$

$$\mu_q = \frac{1}{n} \sum_{i=1}^n (x_i - m)^q, \quad q \in \mathbb{N}^*,$$

où m désigne la moyenne de la série statistique.

Pour q=0, la formule est évidente. Supposons q entier ≥ 1 . On a :

$$(x_i - m)^q = \sum_{k=0}^q (-1)^k \frac{q!}{k!(q-k)!} x_i^{q-k} m^k$$

$$\mu_q = \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^q (-1)^k \frac{q!}{k!(q-k)!} x_i^{q-k} m^k \right).$$

Et en échangeant les signes de sommation :

$$\begin{split} \mu_q &= \frac{1}{n} \sum_{k=0}^q \left((-1)^k \frac{q!}{k!(q-k)!} m^k \sum_{i=1}^n x_i^{q-k} \right) \\ \mu_q &= \sum_{k=0}^q \left((-1)^k \frac{q!}{k!(q-k)!} m_1^k \frac{1}{n} \sum_{i=1}^n x_i^{q-k} \right), \quad \text{car } m_1 = m.. \end{split}$$

DII

D'où:

$$\mu_q = \sum_{k=0}^{q} (-1)^k \frac{q!}{k!(q-k)!} m_1^k m_{q-k}, \quad \forall q \in \mathbb{N}^*.$$

e la distrileurs de la loyenne. qui est la

[2.3.15] [a] Diagramme en batôns des fréquence (absolues) de la série statistique

[b] [i] Valeur modale

La valeur de plus grande fréquence ou valeur modale est 4.

[ii] Moyenne m

$$m = \frac{1}{256} [0 \times 1 + 1 \times 9 + 2 \times 26 + 3 \times 59 + 4 \times 72 + 5 \times 52 + 6 \times 29 + 7 \times 7 + 8 \times 1]$$

$$m = \frac{1017}{256} \approx 3,97.$$