Applications of Gaussian process priors

Maximilian Kasy

Department of Economics, Harvard University

May 24, 2019

Applications from my own work Agenda

- Optimal insurance and taxation.
 - Review: Envelope theorem.
 - Economic setting: Co-insurance rate for health insurance
 - Statistical setting: prior for behavioral average response function
 - Expression for posterior expected social welfare to maximize by choice of co-insurance rate
- Optimal treatment assignment in experiments.
 - Setting: Treatment assignment given baseline covariates
 - General decision theory result:
 Non-random rules dominate random rules
 - Prior for expectation of potential outcomes given covariates
 - Expression for MSE of estimator for ATE to minimize by treatment assignment

Applications use Gaussian process priors

1. Optimal insurance and taxation

- How to choose a co-insurance rate or tax rate to maximize social welfare, given (quasi-)experimental data?
- Gaussian process prior for the behavioral response function mapping the co-insurance rate into the tax base.

2. Optimal experimental design

- How to assign treatment to minimize mean squared error for treatment effect estimators?
- Gaussian process prior for the conditional expectation of potential outcomes given covariates.

Review for application 1: The envelope theorem

- Policy parameter t
- Vector of individual choices x
- Choice set \mathscr{X}
- Individual utility v(x,t)
- Realized choices

$$x(t) \in \underset{x \in \mathscr{X}}{\operatorname{argmax}} \ \upsilon(x,t).$$

Realized utility

$$V(t) = \max_{x \in \mathscr{X}} v(x,t) = v(x(t),t)$$

- Let $x^* = x(t^*)$ for some fixed t^*
- Define

$$\tilde{V}(t) = V(t) - v(x^*, t)$$

$$= v(x(t), t) - v(x(t^*), t)$$

$$= \max_{x \in \mathscr{X}} v(x, t) - v(x^*, t).$$
(2)

- Definition of \tilde{V} immediately implies:
 - $\tilde{V}(t) \geq 0$ for all t and $\tilde{V}(t^*) = 0$.
 - Thus: t^* is a global minimizer of \tilde{V} .
- If \tilde{V} is differentiable at t^* : $\tilde{V}'(t^*) = 0$
- Thus

$$V'(t^*) = \frac{\partial}{\partial t} v(x^*, t)|_{t=t^*},$$

Behavioral responses don't matter for effect of policy change on individual utility!

Application 1

"Optimal insurance and taxation using machine learning" Economic setting

- Population of insured individuals i.
- Y_i : health care expenditures of individual i.
- T_i : share of health care expenditures covered by the insurance $1 T_i$: coinsurance rate; $Y_i \cdot (1 T_i)$: out-of-pocket expenditures
- Behavioral response to share covered: structural function

$$Y_i = g(T_i, \varepsilon_i).$$

Per capita expenditures under policy t: average structural function

$$m(t) = E[g(t, \varepsilon_i)].$$

Policy objective

- Insurance provider's expenditures per person: $t \cdot m(t)$.
 - Mechanical effect of increase in t (accounting):

$$m(t)dt$$
.

• Behavioral effect of increase in *t* (key empirical challenge):

$$t \cdot m'(t)dt$$
.

- Utility of the insured:
 - Mechanical effect of increase in t (accounting):

$$m(t)dt$$
.

- Behavioral effect: None, by envelope theorem.
- → effect on utility = equivalent variation = mechanical effect
- Assign relative value $\lambda > 1$ to a marginal dollar for the sick vs. the insurer.

Practice problem

- Write the effect u'(t) on social welfare u of an increase in t as a sum of mechanical and behavioral effects on individual welfare and insurer revenues.
- Set u(0) = 0 and integrate to obtain an expression for social welfare.

Solution

Marginal effect of a change in t on social welfare:

$$u'(t) = (\lambda - 1) \cdot m(t) - t \cdot m'(t) = \lambda m(t) - \frac{\partial}{\partial t} (t \cdot m(t)). \tag{3}$$

• Integrating and imposing the normalization u(0) = 0:

$$u(t) = \lambda \int_0^t m(x) dx - t \cdot m(t). \tag{4}$$

• Special case $\lambda=$ 1: "Harberger triangle" (not the relevant case)

Observed data and prior

- n i.i.d. draws of (Y_i, T_i)
- T_i was randomly assigned in an experiment, so that $T_i \perp \varepsilon_i$, and

$$E[Y_i|T_i=t]=E[g(t,\varepsilon_i)|T_i=t]=E[g(t,\varepsilon_i)]=m(t).$$

• Y_i is normally distributed given T_i ,

$$Y_i|T_i=t\sim N(m(t),\sigma^2).$$

• Gaussian process prior for $m(\cdot)$,

$$m(\cdot) \sim GP(\mu(\cdot), C(\cdot, \cdot)).$$

Practice problem

- What is the prior distribution of $u(t) = \lambda \int_0^t m(x) dx t \cdot m(t)$?
- What is the prior covariance of u(t) and Y given T?
- What is the posterior expectation of u(t) given Y and T?

Solution

- Linear functions of normal vectors are normal.
- Linear operators of Gaussian processes are Gaussian processes.
- Prior moments:

$$v(t) = E[u(t)] = \lambda \int_0^t \mu(x) dx - t \cdot \mu(t),$$

$$D(t, t') = \text{Cov}(u(t), m(t'))) = \lambda \cdot \int_0^t C(x, t') dx - t \cdot C(t, t'),$$

$$\text{Var}(u(t)) = \lambda^2 \cdot \int_0^t \int_0^t C(x, x') dx' dx$$

$$-2\lambda t \cdot \int_0^t C(x, t) dx + t^2 \cdot C(t, t).$$

Covariance with data:

$$\mathbf{D}(t) = \operatorname{Cov}(u(t), \mathbf{Y}|\mathbf{T}) = \operatorname{Cov}(u(t), (m(T_1), \dots, m(T_n))|\mathbf{T})$$
$$= (D(t, T_1), \dots, D(t, T_n)).$$

Posterior expectation of u(t):

$$\widehat{u}(t) = E[u(t)|\mathbf{Y}, \mathbf{T}]$$

$$= E[u(t)|\mathbf{T}] + Cov(u(t), \mathbf{Y}|\mathbf{T}) \cdot Var(\mathbf{Y}|\mathbf{T})^{-1} \cdot (\mathbf{Y} - E[\mathbf{Y}|\mathbf{T}])$$

$$= v(t) + \mathbf{D}(t) \cdot [\mathbf{C} + \sigma^2 \mathbf{I}]^{-1} \cdot (\mathbf{Y} - \mu).$$

Optimal policy choice

- Bayesian policy maker aims to maximize expected social welfare (note: different from expectation of maximizer of social welfare!)
- Thus

$$\widehat{t}^* = \widehat{t}^*(\mathbf{Y}, \mathbf{T}) \in \underset{t}{\operatorname{argmax}} \ \widehat{u}(t).$$

First order condition

$$\begin{split} \frac{\partial}{\partial t}\widehat{u}(\widehat{t^*}) &= E[u'(\widehat{t^*})|\textbf{\textit{Y}},\textbf{\textit{T}}] \\ &= v'(\widehat{t^*}) + \textbf{\textit{B}}(\widehat{t^*}) \cdot \left[\textbf{\textit{C}} + \sigma^2 \textbf{\textit{I}}\right]^{-1} \cdot (\textbf{\textit{Y}} - \mu) = 0, \\ \text{where } \textbf{\textit{B}}(t) &= (B(t,T_1),\dots,B(t,T_n)) \text{ and} \\ B(t,t') &= \text{Cov}\left(\frac{\partial}{\partial t}u(t),m(t')\right) = \frac{\partial}{\partial t}D(t,t') \\ &= (\lambda - 1) \cdot C(t,t') - t \cdot \frac{\partial}{\partial t}C(t,t'). \end{split}$$

Production objective

- Another important class of policy problems:
- Observable outcome Y_i (e.g. student test scores)
- Input vector $T_i \in \mathbb{R}^{d_t}$ (e.g., teachers per student, ...)
- (educational) production function

$$Y_i = g(T_i, \varepsilon_i).$$

- Policy maker's objective is to maximize average (expected) outcomes $E[Y_i]$ across schools, net of the cost of inputs.
- Unit-price of input *j*: p_i .
- Willingness to pay for a unit-increase in Y: λ

Yields the objective function

$$u(t) = \lambda \cdot m(t) - p \cdot t.$$

- Same type of data and prior as before.
- Posterior expectation:

$$\widehat{u}(t) = v(t) + \mathbf{D}(t) \cdot \left[\mathbf{C} + \sigma^2 \mathbf{I} \right]^{-1} \cdot (\mathbf{Y} - \mu),$$

$$v(t) = \lambda \cdot \mu(t) - \rho \cdot t,$$

$$D(t, t') = \lambda \cdot \mathbf{C}(t, t').$$

First order condition:

$$\widehat{u}'(\widehat{t^*}) = v'(\widehat{t^*}) + \boldsymbol{B}(\widehat{t^*}) \cdot \left[\boldsymbol{C} + \sigma^2 \boldsymbol{I}\right]^{-1} \cdot (\boldsymbol{Y} - \mu) = 0.$$

where now $B(t,t') = \lambda \cdot \frac{\partial}{\partial t} \mathbf{C}(t,t')$.

The RAND health insurance experiment

- (cf. Aron-Dine et al., 2013)
- Between 1974 and 1981
 representative sample of 2000 households
 in six locations across the US
- families randomly assigned to plans with one of six consumer coinsurance rates
- 95, 50, 25, or 0 percent
 2 more complicated plans (we drop those)
- Additionally: randomized Maximum Dollar Expenditure limits 5, 10, or 15 percent of family income, up to a maximum of \$750 or \$1,000 (we pool across those)

Table: Expected spending for different coinsurance rates

	(1)	(2)	(3)	(4)
	Share with	Spending	Share with	Spending
	any	in \$	any	in \$
Free Care	0.931	2166.1	0.932	2173.9
	(0.006)	(78.76)	(0.006)	(72.06)
25% Coinsurance	0.853	1535.9	0.852	1580.1
	(0.013)	(130.5)	(0.012)	(115.2)
50% Coinsurance	0.832	1590.7	0.826	1634.1
	(0.018)	(273.7)	(0.016)	(279.6)
95% Coinsurance	0.808	1691.6	0.810	1639.2
	(0.011)	(95.40)	(0.009)	(88.48)
family x month x site	X	X	X	X
fixed effects				
covariates			X	X
N	14777	14777	14777	14777

Assumptions

- 1. **Model**: The optimal insurance model as presented before
- 2. **Prior**: Gaussian process prior for *m*, squared exponential in distance, uninformative about level and slope
- 3. Relative value of funds for sick people vs contributors:
 - $\lambda = 1.5$
- 4. Pooling data: across levels of maximum dollar expenditure

Under these assumptions we find:

Optimal copay equals 18% (But free care is almost as good)

Application 2

"Why experimenters might not always want to randomize" Setup

- Sampling: random sample of n units baseline survey ⇒ vector of covariates X_i
- Treatment assignment:
 binary treatment assigned by D_i = d_i(X, U)
 X matrix of covariates; U randomization device
- 3. Realization of outcomes: $Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0$
- 4. Estimation: estimator $\widehat{\beta}$ of the (conditional) average treatment effect, $\beta = \frac{1}{n} \sum_{i} E[Y_i^1 Y_i^0 | X_i, \theta]$

Questions

- How should we assign treatment?
- In particular, if X_i has continuous or many discrete components?
- How should we estimate β ?
- What is the role of prior information?

Some intuition

- "Compare apples with apples"
 - ⇒ balance covariate distribution.
- Not just balance of means!
- We don't add random noise to estimators
 - why add random noise to experimental designs?
- Identification requires controlled trials (CTs), but not randomized controlled trials (RCTs).

General decision problem allowing for randomization

- General decision problem:
 - State of the world θ, observed data X, randomization device U

 X.
 - decision procedure $\delta(X, U)$, loss $L(\delta(X, U), \theta)$.
- Conditional expected loss of decision procedure $\delta(X, U)$:

$$R(\delta, \theta | U = u) = E[L(\delta(X, u), \theta) | \theta]$$

Bayes risk:

$$R^{B}(\delta,\pi) = \int \int R(\delta,\theta|U=u) d\pi(\theta) dP(u)$$

• Minimax risk:

$$R^{mm}(\delta) = \int \max_{\theta} R(\delta, \theta | U = u) dP(u)$$

Theorem (Optimality of deterministic decisions)

Consider a general decision problem.

Let R* equal RB or Rmm. Then:

- 1. The optimal risk $R^*(\delta^*)$, when considering only deterministic procedures $\delta(X)$, is no larger than the optimal risk when allowing for randomized procedures $\delta(X, U)$.
- 2. If the optimal deterministic procedure δ^* is unique, then it has strictly lower risk than any non-trivial randomized procedure.

Practice problem

Proof this.

Hints:

- Assume for simplicity that U has finite support.
- Note that a (weighted) average of numbers is always at least as large as their minimum.
- Write the risk (Bayes or minimax) of any randomized assignment rule as (weighted) average of the risk of deterministic rules.

Solution

- Any probability distribution P(u) satisfies
 - $\sum_{u} P(u) = 1$, $P(u) \ge 0$ for all u.
 - Thus $\sum_{u} R_u \cdot P(u) \ge \min_{u} R_u$ for any set of values R_u .
- Let $\delta^u(x) = \delta(x, u)$.
- Then

$$R^{B}(\delta, \pi) = \sum_{u} \int R(\delta^{u}, \theta) d\pi(\theta) P(u)$$

$$\geq \min_{u} \int R(\delta^{u}, \theta) d\pi(\theta) = \min_{u} R^{B}(\delta^{u}, \pi).$$

Similarly

$$R^{mm}(\delta) = \sum_{u} \max_{\theta} R(\delta^{u}, \theta) P(u)$$

 $\geq \min_{u} \max_{\theta} R(\delta^{u}, \theta) = \min_{u} R^{mm}(\delta^{u}).$

Bayesian setup

- Back to experimental design setting.
- Conditional distribution of potential outcomes: for d = 0, 1

$$Y_i^d|X_i=x\sim N(f(x,d),\sigma^2).$$

Gaussian process prior:

$$f \sim GP(\mu, C),$$
 $E[f(x, d)] = \mu(x, d)$ $Cov(f(x_1, d_1), f(x_2, d_2)) = C((x_1, d_1), (x_2, d_2))$

Conditional average treatment effect (CATE):

$$\beta = \frac{1}{n} \sum_{i} E[Y_{i}^{1} - Y_{i}^{0} | X_{i}, \theta] = \frac{1}{n} \sum_{i} f(X_{i}, 1) - f(X_{i}, 0).$$

Notation:

- Covariance matrix C, where $C_{i,j} = C((X_i, D_i), (X_j, D_j))$
- Mean vector μ , components $\mu_i = \mu(X_i, D_i)$
- Covariance of observations with CATE,

$$\overline{C}_i = \operatorname{Cov}(Y_i, \beta | \mathbf{X}, \mathbf{D})$$

$$= \frac{1}{n} \sum_j \left(C((X_i, D_i), (X_j, 1)) - C((X_i, D_i), (X_j, 0)) \right).$$

Practice problem

- Derive the posterior expectation $\widehat{\beta}$ of β .
- Derive the risk of any deterministic treatment assignment vector d, assuming
 - 1. The estimator $\hat{\beta}$ is used.
 - 2. The loss function $(\widehat{\beta} \beta)^2$ is considered.

Solution

• The posterior expectation $\widehat{\beta}$ of β equals

$$\widehat{\beta} = \mu_{\beta} + \overline{C}' \cdot (C + \sigma^2 I)^{-1} \cdot (Y - \mu).$$

The corresponding risk equals

$$R^{\mathcal{B}}(\mathbf{d},\widehat{\beta}|\mathbf{X}) = \text{Var}(\beta|\mathbf{X},\mathbf{Y})$$

$$= \text{Var}(\beta|\mathbf{X}) - \text{Var}(E[\beta|\mathbf{X},\mathbf{Y}]|\mathbf{X})$$

$$= \text{Var}(\beta|\mathbf{X}) - \overline{C}' \cdot (C + \sigma^2 I)^{-1} \cdot \overline{C}.$$

Discrete optimization

The optimal design solves

$$\max_{\mathbf{d}} \overline{C}' \cdot (C + \sigma^2 I)^{-1} \cdot \overline{C}.$$

- Possible optimization algorithms:
 - 1. Search over random d
 - 2. greedy algorithm
 - 3. simulated annealing

Variation of the problem

Practice problem

• Suppose that the researcher insists on estimating β using a simple comparison of means,

$$\widehat{\beta} = \frac{1}{n_1} \sum_i D_i Y_i - \frac{1}{n_0} \sum_i (1 - D_i) Y_i.$$

- Derive again the risk of any deterministic treatment assignment vector **d**, assuming
 - 1. The estimator $\widehat{\beta}$ is used.
 - 2. The loss function $(\widehat{\beta} \beta)^2$ is considered.

Solution

- Notation:
 - Let $\mu_i^d = \mu(X_i, d)$ and $C_{i,j}^{d^1, d^2} = C((X_i, d^1), (X_j, d^2))$.
 - Collect these terms in the vectors μ^d and matrices C^{d^1,d^2} , and let $\widetilde{\mu}=(\mu^1,\mu^2)$, $\widetilde{C}=\left(\begin{array}{cc}C^{00}&C^{01}\\C^{10}&C^{11}\end{array}\right)$.
 - Weights

$$w = (w^{0}, w^{1}),$$

$$w_{i}^{1} = \frac{d_{i}}{n_{1}} - \frac{1}{n},$$

$$w_{i}^{0} = -\frac{1 - d_{i}}{n_{0}} + \frac{1}{n}.$$

Risk: Sum of variance and squared bias,

$$R^{B}(\mathbf{d},\widehat{\beta}|\mathbf{X}) = \sigma^{2} \cdot \left[\frac{1}{n_{1}} + \frac{1}{n_{0}}\right] + \left(w' \cdot \widetilde{\mu}\right)^{2} + w' \cdot \widetilde{C} \cdot w.$$

Special case linear separable model

Suppose

$$f(x,d) = x' \cdot \gamma + d \cdot \beta,$$

 $\gamma \sim N(0, \Sigma),$

and we estimate β using comparison of means.

• Bias of $\widehat{\beta}$ equals $(\overline{X}^1 - \overline{X}^0)' \cdot \gamma$, prior expected squared bias

$$(\overline{X}^1 - \overline{X}^0)' \cdot \Sigma \cdot (\overline{X}^1 - \overline{X}^0).$$

Mean squared error

$$\mathit{MSE}(d_1,\ldots,d_n) = \sigma^2 \cdot \left\lceil \frac{1}{n_1} + \frac{1}{n_0} \right\rceil + (\overline{X}^1 - \overline{X}^0)' \cdot \Sigma \cdot (\overline{X}^1 - \overline{X}^0).$$

- ⇒Risk is minimized by
 - 1. choosing treatment and control arms of equal size,
 - 2. and optimizing balance as measured by the difference in covariate means $(\overline{X}^1 \overline{X}^0)$.

References

Envelope theorem:

Milgrom, P. and Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2):583–601.

Application to optimal insurance and taxation:

Kasy, M. (2019). Optimal taxation and insurance using machine learning – sufficient statistics and beyond. Journal of Public Economics.

Application to experimental design:

Kasy, M. (2016). Why experimenters might not always want to randomize, and what they could do instead. Political Analysis, 24(3):324–338.