Es sei k ein Körper und V ein k-Vektorraum.

Aufgabe 1. (2 Punkte) Es sei T eine Teilmenge von V. Man zeige, dass die Menge $\langle T \rangle$ aller Linearkombinationen von Elemente aus T ist ein Untervektorraum von V.

Aufgabe 2. (2 Punkte) Es sei T eine Teilmenge von V. Es sei W ein Unterverktorraum von V, sodass $T \subset W$. Man zeige: $T \subset \langle T \rangle \subset W$.

Aufgabe 3. (3 Punkte) Es sei V_1, V_2 zwei Untervektorräume von V, und $f: V_1 \times V_2 \to V$ die durch $(v_1, v_2) \mapsto v_1 + v_2$ definierte Abbildung. Man zeige : $f(V_1 \times V_2) = \langle V_1 \cup V_2 \rangle$.

Aufgabe 4. (3 Punkte) Es sei V_1, V_2 zwei Unterräume von V, und $f: V_1 \times V_2 \to V$ die durch $(v_1, v_2) \mapsto v_1 + v_2$ definierte Abbildung.

- (i) Man zeige, dass f ein Gruppenhomomorphismus ist.
- (ii) Es gelte $V_1 \cap V_2 = 0$. Man zeige, dass f injektiv ist.

 \star Aufgabe 5. (5 Punkte) Es sei $U_n=\mathbb{Z}/2\mathbb{Z}$ für $n\in\mathbb{N}$. Man betrachte den $\mathbb{Z}/2\mathbb{Z}$ -Vektorraum

$$U = \prod_{n \in \mathbb{N}} U_n.$$

Es sei $S \subset U$ eine Teilmenge sodas
s $\langle S \rangle = U.$ Man zeige: S ist nicht abzählbar.