

Общероссийский математический портал

А. С. Дехтярь, Непризматические коробчатые оболочки, Исслед. по теор. пластин и оболочек, 1992, выпуск 25, 76–80

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.205.19.235

7 июня 2024 г., 16:16:53

А.С.Дехтярь

НЕПРИЗМАТИЧЕСКИЕ КОРОБЧАТЫЕ ОБОЛОЧКИ

Зрительные залы современных общественных зданий имеют боль — шие пролеты и форму в плане, близкую к трапеции. Для покрытий та-ких помещений применяют непризматические оболочки — тонкостенные коробчатые конструкции, поперечные сечения которых монотонно из — меняются вдоль продольной оси. Подобные оболочки используются и в качестве пролетных строений мостов.

Пусть оболочка имеет прямоугольное торцевое поперечное сечение с размерами $\mathfrak A$ и $\mathfrak b\mathfrak A$ (рис.I). Изменение этих размеров по длине конструкции представим линейными соотношениями

$$a\Psi_1 = a(1+K_1\xi), \beta a\Psi_2 = \beta a(1+K_2\xi), \qquad (1)$$

где K_4 , K_2 — параметры, \S — относительная продольная координата (0 \leqslant \S \leqslant 1). При K_4 = K_2 получаем пирамидальную конструкцию, при K_4 = K_2 = 0 — призматическую оболочку, при K_4 > 0 и K_2 > 0 размери поперечных сечений увеличиваются по отношению к размерам на — чального торцевого сечения.

Принято, что оболочка имеет толщины, постоянные по длине, h_1 — стенок и h_2 — полок, причем h_1 = EQ, h_2 = μ § Q . Матери—

ал оболочки - идеальный жесткопластический с пределом теку-чести \mathfrak{b} .

При статическом действии равномерно распределенной поперечной нагрузки и шарнирном опирании по концам (рис. I) исчерпание несущей способности достаточно длийных конструкций может проис - ходить вследствие образования полного пластического шарнира в одном из поперечных сечений (рис. 2a). Обозначим координату этого сечения 20λ .

В работе [I] для отыскания верхней границы предельной наг - рузки применен кинематический метод теории предельного равнове - сия и получена оценка

$$p_{1} = \frac{3\varepsilon}{4\lambda^{2}\beta} \min_{\xi} \frac{2\mu \Psi_{1}(\beta \Psi_{2} + \varepsilon) + (\Psi_{1} - \varepsilon \mu)^{2}}{\xi(1 - \xi)[3 + (1 + \xi)(\Psi_{2} - 1)]}, \qquad (2)$$

где $\emptyset_1 = \emptyset_1 \, \mathbb{G}^{-1}$ — безразмерная интенсивность распределенной наг — рузки. В частном случае при $K_1 = K_2 = 0$ получаем призматическую конструкцию, тогда $\Psi_1 = \Psi_2 = \mathrm{I}$ и, следовательно,

$$p_{1} = \frac{\mathcal{E}}{4 \lambda^{2} \beta} \min_{\xi} \frac{2 \mu (\beta + \mathcal{E}) + (1 - \mathcal{E} \mu)^{2}}{\xi (1 - \xi)}$$
 (3)

Здесь минимум β_4 достигается при $\xi = 0.5$, то есть пластический шарнир образуется в середине пролета. Оценка (3) ранее была получена в [2].

Если поперечные сечения имеют квадратную форму $\beta = I$ и оди-

наковую толщину стенок и полок $\mu = 1$, оценка (3) еще более упрошается

$$p_1 = \frac{\mathcal{E}}{4 \, \lambda^2} \quad \min_{\xi} \frac{2(1+\mathcal{E}) + (1-\mathcal{E})^2}{\xi(1-\xi)} \quad . \tag{4}$$

При небольшой длине и достаточно малых толщинах взамен рас - смотренного "балочного" разрушения должна быть введена форма разрушения с цятью продольными пластическими шарнирами, характерная для оболочек. Для призматических конструкций подобная форма разрушения обсуждалась в [2].

Вновь рассмотрим поперечное сечение оболочки (рис. 26). По - ложения верхнего и нижних продольных шарниров можно считать фик - сированными, а положение средних щарниров определяется координатой () В работе [I] для такой формы разрушения получена оценка предельной нагрузки

$$p_2 = \varepsilon^2 \min_{\zeta} \frac{6(2 - \zeta + \kappa^2 \zeta)}{\beta^2 \zeta (1 + \psi_2 + \psi_2^2)}$$
 (5)

В частном случае при $\beta = K = I$ (пирамидальная оболочка, одинаковые толщины стенок и полок) получаем

$$p_2 = \varepsilon^2 \min_{\xi} \frac{12}{\xi(1 + \psi_2 + \psi_2^2)}$$
, (6)

и минимум ψ_2 достигается при $\zeta=1$. Если оболочка призматичес - кая, то $\kappa_2=0$ и $\psi_2=1$, тогда $\beta=4$ ϵ^2 , этот результат получен ранее в работе [2].

Для конструкций с произвольными параметрами толщины \mathcal{E} , \mathcal{M} , формы \mathcal{B} и длины \mathcal{A} наперед неизвестно, какая из двух описанных форм разрушения реализуется в действительности. Поэтому, рассматривая совместно соотношения (2) и (5), получаем окончательно

$$p = \min \left\{ \min p_1 ; \min p_2 \right\}. \tag{7}$$

В качестве примера рассмотрим серию усеченно-пирамидальных оболочек $K_1 = K_2 = 0$, I с квадратными поперечными сечениями $\mathfrak{B} = I$ и одинаковыми толщинами стенок и полок $\mathfrak{K} = I$. На рисунке 3 представлены результаты вычислений, причем криволинейным участкам графиков отвечает первая форма разрушения, а горизонтальным участкам — вторая. Можно заметить, что одна форма разрушения перехо —

дит в другую при $\lambda = 4, \ldots, 7$, причем, меньшим значениям λ соответствуют оболочки большей толщины.

Располагая оценками (7), сформулируем оптимизационную задачу об отыскании наилучшей оболочки заданной несущей способности. Качество проекта будем оценивать объемом использованного материала

$$V = 2 a^3 \epsilon \lambda \left[1 + \Psi_1 + \beta \mu (1 + \Psi_2) \right]. \tag{8}$$

В ходе решения оптимизационной задачи приходится рассматри — вать оболочки с различной площадью горизонтальной проекции, по — этому целесообразно вместо полного объема V оценивать проект оболочки удельной величиной $V_o = V S^{-1}$, где S — площадь горизонтальной проекции. Тогда из (8) получаем

$$V_0 = 2 a \frac{\varepsilon}{\beta} \cdot \frac{1 + \Psi_1 + \beta M (1 + \Psi_2)}{1 + \Psi_2} \qquad (9)$$

Если, как и в предыдущих примерах, ограничимся анализом пи — рамидальных оболочек $\psi_1=\psi_2=\psi$ и примем $\beta=\mu=1$, из (9)

$$V_0 = 40\varepsilon \tag{10}$$

и в дальнейшем будем рассматривать ее безразмерную часть &.

Оптимизационную задачу сформулируем следующим образом: требуется отыскать такие конструктивные переменные оболочки K , λ и \mathcal{E} , чтобы при заданной несущей способности \mathfrak{p}_* целевая функ ция $\mathcal{Z} = \mathcal{E} \longrightarrow \mathfrak{min}$.

В условиях реального проектирования пролет L оболочки обично задан наперед, поэтому здесь и далее изменение $\lambda = L/20$ сле дует понимать как изменение размеров поперечных сечений 0 при заданном пролете L.

Ниже приведены два примера оптимальных оболочек. Оба они получены при 0, I \leq K \leq 1,0; 3 \leq Λ \leq II и 0,02 \leq & \leq 0,06. Для первого примера заданная несущая способность составляла β_* =0,002, и было получено решение

$$\& = 0.03; \quad \& = 5; \quad K = 0.5; \quad p = 0.00217.$$
 (II)

Во втором примере заданная несущая способность была повышена в полтора раза $\mathfrak{g}_*=0$,003, и был получен проект

$$\mathcal{E} = 0.013; \quad \Lambda = 3; \quad K = 0.1; \quad \beta = 0.00326.$$
 (12)

Сравнивая проекты (II) и (I2), отметим, что увеличение тре - буемой прочности \mathfrak{p}_* в полтора раза в проекте (I2) удалось полу - чить за счет изменения формы без привлечения дополнительного ма - териала, то есть при таких же значениях целевой функции \mathcal{E} =0,03, что и в проекте (II).

Литература .

- І. Дехтярь А.С. Несущая способность непризматических оболочек // Сопротивление материалов и теория сооружений. 1990. Вып.57. С.22 25.
- 2. Дехтярь А.С. Несущая способность коробчатых конструкций // Строительная механика и расчет сооружений. 1987. \Re 3. C.II I7.